diff --git a/.gitmodules b/.gitmodules new file mode 100644 index 0000000000000000000000000000000000000000..894747d0ad969818c520fd1e2d53a10b75674dc5 --- /dev/null +++ b/.gitmodules @@ -0,0 +1,3 @@ +[submodule "face-alignment"] + path = face-alignment + url = https://github.com/1adrianb/face-alignment diff --git a/MakeItTalk/.DS_Store b/MakeItTalk/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..a115b8b488c891733c62c6f1ee0a9d0711384059 Binary files /dev/null and b/MakeItTalk/.DS_Store differ diff --git a/MakeItTalk/.idea/.gitignore b/MakeItTalk/.idea/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..e7e9d11d4bf243bffe4bb60b4ac1f9392297f4bf --- /dev/null +++ b/MakeItTalk/.idea/.gitignore @@ -0,0 +1,2 @@ +# Default ignored files +/workspace.xml diff --git a/MakeItTalk/.idea/MakeItTalk.iml b/MakeItTalk/.idea/MakeItTalk.iml new file mode 100644 index 0000000000000000000000000000000000000000..6996f9cdc67163efb6b07bc112cf7f838e0eb96f --- /dev/null +++ b/MakeItTalk/.idea/MakeItTalk.iml @@ -0,0 +1,14 @@ + + + + + + + + + + + + \ No newline at end of file diff --git a/MakeItTalk/.idea/deployment.xml b/MakeItTalk/.idea/deployment.xml new file mode 100644 index 0000000000000000000000000000000000000000..6e78956d043cca83f31e0ee37f1721563ab2a8ef --- /dev/null +++ b/MakeItTalk/.idea/deployment.xml @@ -0,0 +1,22 @@ + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/MakeItTalk/.idea/inspectionProfiles/profiles_settings.xml b/MakeItTalk/.idea/inspectionProfiles/profiles_settings.xml new file mode 100644 index 0000000000000000000000000000000000000000..105ce2da2d6447d11dfe32bfb846c3d5b199fc99 --- /dev/null +++ b/MakeItTalk/.idea/inspectionProfiles/profiles_settings.xml @@ -0,0 +1,6 @@ + + + + \ No newline at end of file diff --git a/MakeItTalk/.idea/misc.xml b/MakeItTalk/.idea/misc.xml new file mode 100644 index 0000000000000000000000000000000000000000..c42f1118ec9835277ba9acedf2c7a711ce4dea80 --- /dev/null +++ b/MakeItTalk/.idea/misc.xml @@ -0,0 +1,7 @@ + + + + + + \ No newline at end of file diff --git a/MakeItTalk/.idea/modules.xml b/MakeItTalk/.idea/modules.xml new file mode 100644 index 0000000000000000000000000000000000000000..0049e6ec850cd8a8e05b37da90cc7686ebf1aafe --- /dev/null +++ b/MakeItTalk/.idea/modules.xml @@ -0,0 +1,8 @@ + + + + + + + + \ No newline at end of file diff --git a/MakeItTalk/.idea/remote-mappings.xml b/MakeItTalk/.idea/remote-mappings.xml new file mode 100644 index 0000000000000000000000000000000000000000..512467408139e7c5a27dba251f8a8215e21e9dbc --- /dev/null +++ b/MakeItTalk/.idea/remote-mappings.xml @@ -0,0 +1,16 @@ + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/MakeItTalk/.idea/vcs.xml b/MakeItTalk/.idea/vcs.xml new file mode 100644 index 0000000000000000000000000000000000000000..1075df115f28b5c874cdd435b262940d88215c3b --- /dev/null +++ b/MakeItTalk/.idea/vcs.xml @@ -0,0 +1,8 @@ + + + + + + + + \ No newline at end of file diff --git a/MakeItTalk/.ipynb_checkpoints/default-4ec17270-11b4-4718-86f3-8d1d348ae399-checkpoint.ipynb b/MakeItTalk/.ipynb_checkpoints/default-4ec17270-11b4-4718-86f3-8d1d348ae399-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..363fcab7ed6e9634e198cf5555ceb88932c9a245 --- /dev/null +++ b/MakeItTalk/.ipynb_checkpoints/default-4ec17270-11b4-4718-86f3-8d1d348ae399-checkpoint.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/MakeItTalk/.ipynb_checkpoints/default-76a81f5d-f4d0-4319-9e7b-74ebb7c9fd04-checkpoint.ipynb b/MakeItTalk/.ipynb_checkpoints/default-76a81f5d-f4d0-4319-9e7b-74ebb7c9fd04-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..363fcab7ed6e9634e198cf5555ceb88932c9a245 --- /dev/null +++ b/MakeItTalk/.ipynb_checkpoints/default-76a81f5d-f4d0-4319-9e7b-74ebb7c9fd04-checkpoint.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/MakeItTalk/.ipynb_checkpoints/default-7f93f412-0c92-4f62-a5a6-2d1f347fc303-checkpoint.ipynb b/MakeItTalk/.ipynb_checkpoints/default-7f93f412-0c92-4f62-a5a6-2d1f347fc303-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..363fcab7ed6e9634e198cf5555ceb88932c9a245 --- /dev/null +++ b/MakeItTalk/.ipynb_checkpoints/default-7f93f412-0c92-4f62-a5a6-2d1f347fc303-checkpoint.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/MakeItTalk/.ipynb_checkpoints/default-9467656a-4497-492f-8641-8461166897bb-checkpoint.ipynb b/MakeItTalk/.ipynb_checkpoints/default-9467656a-4497-492f-8641-8461166897bb-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..363fcab7ed6e9634e198cf5555ceb88932c9a245 --- /dev/null +++ b/MakeItTalk/.ipynb_checkpoints/default-9467656a-4497-492f-8641-8461166897bb-checkpoint.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/MakeItTalk/.ipynb_checkpoints/default-a117106a-6fff-4021-9ff4-f12948d5b152-checkpoint.ipynb b/MakeItTalk/.ipynb_checkpoints/default-a117106a-6fff-4021-9ff4-f12948d5b152-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..363fcab7ed6e9634e198cf5555ceb88932c9a245 --- /dev/null +++ b/MakeItTalk/.ipynb_checkpoints/default-a117106a-6fff-4021-9ff4-f12948d5b152-checkpoint.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/MakeItTalk/.ipynb_checkpoints/default-c7165d9a-515a-4b8a-918e-10a693ab77e0-checkpoint.ipynb b/MakeItTalk/.ipynb_checkpoints/default-c7165d9a-515a-4b8a-918e-10a693ab77e0-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..363fcab7ed6e9634e198cf5555ceb88932c9a245 --- /dev/null +++ b/MakeItTalk/.ipynb_checkpoints/default-c7165d9a-515a-4b8a-918e-10a693ab77e0-checkpoint.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/MakeItTalk/.ipynb_checkpoints/default-d2a2ec1a-c00c-4d54-a176-a2fdd9e80401-checkpoint.ipynb b/MakeItTalk/.ipynb_checkpoints/default-d2a2ec1a-c00c-4d54-a176-a2fdd9e80401-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..363fcab7ed6e9634e198cf5555ceb88932c9a245 --- /dev/null +++ b/MakeItTalk/.ipynb_checkpoints/default-d2a2ec1a-c00c-4d54-a176-a2fdd9e80401-checkpoint.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/MakeItTalk/.ipynb_checkpoints/default-dc2b1c78-9ea0-4efd-82ed-617b467184aa-checkpoint.ipynb b/MakeItTalk/.ipynb_checkpoints/default-dc2b1c78-9ea0-4efd-82ed-617b467184aa-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..363fcab7ed6e9634e198cf5555ceb88932c9a245 --- /dev/null +++ b/MakeItTalk/.ipynb_checkpoints/default-dc2b1c78-9ea0-4efd-82ed-617b467184aa-checkpoint.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/MakeItTalk/.vs/CMakeWorkspaceSettings.json b/MakeItTalk/.vs/CMakeWorkspaceSettings.json new file mode 100644 index 0000000000000000000000000000000000000000..6f258059c2db7b71db858bb512f65267ff15bfed --- /dev/null +++ b/MakeItTalk/.vs/CMakeWorkspaceSettings.json @@ -0,0 +1,3 @@ +{ + "enableCMake": false +} \ No newline at end of file diff --git a/MakeItTalk/.vs/MakeItTalk-main/FileContentIndex/458912a1-7520-417f-9226-526dc56d2846.vsidx b/MakeItTalk/.vs/MakeItTalk-main/FileContentIndex/458912a1-7520-417f-9226-526dc56d2846.vsidx new file mode 100644 index 0000000000000000000000000000000000000000..5272ec22ffef49b087159b5fe6a3de3fe86cb8ab Binary files /dev/null and b/MakeItTalk/.vs/MakeItTalk-main/FileContentIndex/458912a1-7520-417f-9226-526dc56d2846.vsidx differ diff --git a/MakeItTalk/.vs/MakeItTalk-main/FileContentIndex/6c70f8bd-b9ab-4f19-b752-845a2302f68d.vsidx b/MakeItTalk/.vs/MakeItTalk-main/FileContentIndex/6c70f8bd-b9ab-4f19-b752-845a2302f68d.vsidx new file mode 100644 index 0000000000000000000000000000000000000000..59e15d2fdc2d8cbff6cc34bfae1bf913ed3e97b5 Binary files /dev/null and b/MakeItTalk/.vs/MakeItTalk-main/FileContentIndex/6c70f8bd-b9ab-4f19-b752-845a2302f68d.vsidx differ diff --git a/MakeItTalk/.vs/MakeItTalk-main/FileContentIndex/8b11ef0c-8174-4e33-b8f1-cba6e4ee5f22.vsidx b/MakeItTalk/.vs/MakeItTalk-main/FileContentIndex/8b11ef0c-8174-4e33-b8f1-cba6e4ee5f22.vsidx new file mode 100644 index 0000000000000000000000000000000000000000..0955d111f890b2cd499fd626fa4b36c200f158c3 Binary files /dev/null and b/MakeItTalk/.vs/MakeItTalk-main/FileContentIndex/8b11ef0c-8174-4e33-b8f1-cba6e4ee5f22.vsidx differ diff --git a/MakeItTalk/.vs/MakeItTalk-main/FileContentIndex/read.lock b/MakeItTalk/.vs/MakeItTalk-main/FileContentIndex/read.lock new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MakeItTalk/.vs/MakeItTalk-main/v17/.wsuo b/MakeItTalk/.vs/MakeItTalk-main/v17/.wsuo new file mode 100644 index 0000000000000000000000000000000000000000..e55982b087f3e719d4133f2802709e7095665e3e Binary files /dev/null and b/MakeItTalk/.vs/MakeItTalk-main/v17/.wsuo differ diff --git a/MakeItTalk/.vs/MakeItTalk-main/v17/Browse.VC.db b/MakeItTalk/.vs/MakeItTalk-main/v17/Browse.VC.db new file mode 100644 index 0000000000000000000000000000000000000000..0a1930cc64b9ee8c15ad2da60d551bbe09bd3b73 Binary files /dev/null and b/MakeItTalk/.vs/MakeItTalk-main/v17/Browse.VC.db differ diff --git a/MakeItTalk/.vs/MakeItTalk-main/v17/workspaceFileList.bin b/MakeItTalk/.vs/MakeItTalk-main/v17/workspaceFileList.bin new file mode 100644 index 0000000000000000000000000000000000000000..c352d0537806e332cb5271331c5ab03d588b29f1 --- /dev/null +++ b/MakeItTalk/.vs/MakeItTalk-main/v17/workspaceFileList.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fb2a1c58f37407cdaf9b26f6747db327bcb769c600b18e0ff04cbfceed9df10d +size 65916 diff --git a/MakeItTalk/.vs/ProjectSettings.json b/MakeItTalk/.vs/ProjectSettings.json new file mode 100644 index 0000000000000000000000000000000000000000..b11371a972af1df20ae7c61e22d348240d5fa9d1 --- /dev/null +++ b/MakeItTalk/.vs/ProjectSettings.json @@ -0,0 +1,3 @@ +{ + "CurrentProjectSetting": "No Configurations" +} \ No newline at end of file diff --git a/MakeItTalk/.vs/VSWorkspaceState.json b/MakeItTalk/.vs/VSWorkspaceState.json new file mode 100644 index 0000000000000000000000000000000000000000..0ceca636d0104cf928d5d0d82711f70c8a2678ea --- /dev/null +++ b/MakeItTalk/.vs/VSWorkspaceState.json @@ -0,0 +1,9 @@ +{ + "ExpandedNodes": [ + "", + "\\src", + "\\src\\models" + ], + "SelectedNode": "\\src\\models\\model_audio2landmark.py", + "PreviewInSolutionExplorer": false +} \ No newline at end of file diff --git a/MakeItTalk/.vs/slnx.sqlite b/MakeItTalk/.vs/slnx.sqlite new file mode 100644 index 0000000000000000000000000000000000000000..803f4ed420c88e904825d71fc06e3f43afb48760 Binary files /dev/null and b/MakeItTalk/.vs/slnx.sqlite differ diff --git a/MakeItTalk/CODE_OF_CONDUCT.md b/MakeItTalk/CODE_OF_CONDUCT.md new file mode 100644 index 0000000000000000000000000000000000000000..549b492a0f825bfb7461c77efc1cf875d2c06c49 --- /dev/null +++ b/MakeItTalk/CODE_OF_CONDUCT.md @@ -0,0 +1,74 @@ +# Adobe Code of Conduct + +## Our Pledge + +In the interest of fostering an open and welcoming environment, we as +contributors and maintainers pledge to making participation in our project and +our community a harassment-free experience for everyone, regardless of age, body +size, disability, ethnicity, gender identity and expression, level of experience, +nationality, personal appearance, race, religion, or sexual identity and +orientation. + +## Our Standards + +Examples of behavior that contributes to creating a positive environment +include: + +* Using welcoming and inclusive language. +* Being respectful of differing viewpoints and experiences. +* Gracefully accepting constructive criticism. +* Focusing on what is best for the community. +* Showing empathy towards other community members. + +Examples of unacceptable behavior by participants include: + +* The use of sexualized language or imagery and unwelcome sexual attention or +advances. +* Trolling, insulting/derogatory comments, and personal or political attacks. +* Public or private harassment. +* Publishing others' private information, such as a physical or electronic + address, without explicit permission. +* Other conduct which could reasonably be considered inappropriate in a + professional setting. + +## Our Responsibilities + +Project maintainers are responsible for clarifying the standards of acceptable +behavior and are expected to take appropriate and fair corrective action in +response to any instances of unacceptable behavior. + +Project maintainers have the right and responsibility to remove, edit, or +reject comments, commits, code, wiki edits, issues, and other contributions +that are not aligned to this Code of Conduct, or to ban temporarily or +permanently any contributor for other behaviors that they deem inappropriate, +threatening, offensive, or harmful. + +## Scope + +This Code of Conduct applies both within project spaces and in public spaces +when an individual is representing the project or its community. Examples of +representing a project or community include using an official project e-mail +address, posting via an official social media account, or acting as an appointed +representative at an online or offline event. Representation of a project may be +further defined and clarified by project maintainers. + +## Enforcement + +Instances of abusive, harassing, or otherwise unacceptable behavior may be +reported by contacting the project team at Grp-opensourceoffice@adobe.com. All +complaints will be reviewed and investigated and will result in a response that +is deemed necessary and appropriate to the circumstances. The project team is +obligated to maintain confidentiality with regard to the reporter of an incident. +Further details of specific enforcement policies may be posted separately. + +Project maintainers who do not follow or enforce the Code of Conduct in good +faith may face temporary or permanent repercussions as determined by other +members of the project's leadership. + +## Attribution + +This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, +available at [https://contributor-covenant.org/version/1/4][version]. + +[homepage]: https://contributor-covenant.org +[version]: https://contributor-covenant.org/version/1/4/ \ No newline at end of file diff --git a/MakeItTalk/CONTRIBUTING.md b/MakeItTalk/CONTRIBUTING.md new file mode 100644 index 0000000000000000000000000000000000000000..3ac4131dae24e7e35c0943aa7a00db95e44f7db2 --- /dev/null +++ b/MakeItTalk/CONTRIBUTING.md @@ -0,0 +1,47 @@ +# Contributing + +Thanks for choosing to contribute! + +The following are a set of guidelines to follow when contributing to this project. + +## Code Of Conduct + +This project adheres to the Adobe [code of conduct](../CODE_OF_CONDUCT.md). By participating, +you are expected to uphold this code. Please report unacceptable behavior to +[Grp-opensourceoffice@adobe.com](mailto:Grp-opensourceoffice@adobe.com). + +## Have A Question? + +Start by filing an issue. The existing committers on this project work to reach +consensus around project direction and issue solutions within issue threads +(when appropriate). + +## Contributor License Agreement + +All third-party contributions to this project must be accompanied by a signed contributor +license agreement. This gives Adobe permission to redistribute your contributions +as part of the project. [Sign our CLA](https://opensource.adobe.com/cla.html). You +only need to submit an Adobe CLA one time, so if you have submitted one previously, +you are good to go! + +## Code Reviews + +All submissions should come in the form of pull requests and need to be reviewed +by project committers. Read [GitHub's pull request documentation](https://help.github.com/articles/about-pull-requests/) +for more information on sending pull requests. + +Lastly, please follow the [pull request template](PULL_REQUEST_TEMPLATE.md) when +submitting a pull request! + +## From Contributor To Committer + +We love contributions from our community! If you'd like to go a step beyond contributor +and become a committer with full write access and a say in the project, you must +be invited to the project. The existing committers employ an internal nomination +process that must reach lazy consensus (silence is approval) before invitations +are issued. If you feel you are qualified and want to get more deeply involved, +feel free to reach out to existing committers to have a conversation about that. + +## Security Issues + +Security issues shouldn't be reported on this issue tracker. Instead, [file an issue to our security experts](https://helpx.adobe.com/security/alertus.html). \ No newline at end of file diff --git a/MakeItTalk/LICENSE.md b/MakeItTalk/LICENSE.md new file mode 100644 index 0000000000000000000000000000000000000000..49035ff10e9b40aa64301b8e8819dcf46606c4cb --- /dev/null +++ b/MakeItTalk/LICENSE.md @@ -0,0 +1,159 @@ +# Creative Commons Attribution-NonCommercial 4.0 International + +Creative Commons Corporation (“Creative Commons”) is not a law firm and does not provide legal services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-client or other relationship. Creative Commons makes its licenses and related information available on an “as-is” basis. Creative Commons gives no warranties regarding its licenses, any material licensed under their terms and conditions, or any related information. Creative Commons disclaims all liability for damages resulting from their use to the fullest extent possible. + +### Using Creative Commons Public Licenses + +Creative Commons public licenses provide a standard set of terms and conditions that creators and other rights holders may use to share original works of authorship and other material subject to copyright and certain other rights specified in the public license below. The following considerations are for informational purposes only, are not exhaustive, and do not form part of our licenses. + +* __Considerations for licensors:__ Our public licenses are intended for use by those authorized to give the public permission to use material in ways otherwise restricted by copyright and certain other rights. Our licenses are irrevocable. Licensors should read and understand the terms and conditions of the license they choose before applying it. Licensors should also secure all rights necessary before applying our licenses so that the public can reuse the material as expected. Licensors should clearly mark any material not subject to the license. This includes other CC-licensed material, or material used under an exception or limitation to copyright. [More considerations for licensors](http://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensors). + +* __Considerations for the public:__ By using one of our public licenses, a licensor grants the public permission to use the licensed material under specified terms and conditions. If the licensor’s permission is not necessary for any reason–for example, because of any applicable exception or limitation to copyright–then that use is not regulated by the license. Our licenses grant only permissions under copyright and certain other rights that a licensor has authority to grant. Use of the licensed material may still be restricted for other reasons, including because others have copyright or other rights in the material. A licensor may make special requests, such as asking that all changes be marked or described. Although not required by our licenses, you are encouraged to respect those requests where reasonable. [More considerations for the public](http://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensees). + +## Creative Commons Attribution-NonCommercial 4.0 International Public License + +By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution-NonCommercial 4.0 International Public License ("Public License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions. + +### Section 1 – Definitions. + +a. __Adapted Material__ means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image. + +b. __Adapter's License__ means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public License. + +c. __Copyright and Similar Rights__ means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights. + +d. __Effective Technological Measures__ means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements. + +e. __Exceptions and Limitations__ means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material. + +f. __Licensed Material__ means the artistic or literary work, database, or other material to which the Licensor applied this Public License. + +g. __Licensed Rights__ means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license. + +h. __Licensor__ means the individual(s) or entity(ies) granting rights under this Public License. + +i. __NonCommercial__ means not primarily intended for or directed towards commercial advantage or monetary compensation. For purposes of this Public License, the exchange of the Licensed Material for other material subject to Copyright and Similar Rights by digital file-sharing or similar means is NonCommercial provided there is no payment of monetary compensation in connection with the exchange. + +j. __Share__ means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them. + +k. __Sui Generis Database Rights__ means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world. + +l. __You__ means the individual or entity exercising the Licensed Rights under this Public License. __Your__ has a corresponding meaning. + +### Section 2 – Scope. + +a. ___License grant.___ + + 1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to: + + A. reproduce and Share the Licensed Material, in whole or in part, for NonCommercial purposes only; and + + B. produce, reproduce, and Share Adapted Material for NonCommercial purposes only. + + 2. __Exceptions and Limitations.__ For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions. + + 3. __Term.__ The term of this Public License is specified in Section 6(a). + + 4. __Media and formats; technical modifications allowed.__ The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material. + + 5. __Downstream recipients.__ + + A. __Offer from the Licensor – Licensed Material.__ Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License. + + B. __No downstream restrictions.__ You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material. + + 6. __No endorsement.__ Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i). + +b. ___Other rights.___ + + 1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise. + + 2. Patent and trademark rights are not licensed under this Public License. + + 3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties, including when the Licensed Material is used other than for NonCommercial purposes. + +### Section 3 – License Conditions. + +Your exercise of the Licensed Rights is expressly made subject to the following conditions. + +a. ___Attribution.___ + + 1. If You Share the Licensed Material (including in modified form), You must: + + A. retain the following if it is supplied by the Licensor with the Licensed Material: + + i. identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated); + + ii. a copyright notice; + + iii. a notice that refers to this Public License; + + iv. a notice that refers to the disclaimer of warranties; + + v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable; + + B. indicate if You modified the Licensed Material and retain an indication of any previous modifications; and + + C. indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License. + + 2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information. + + 3. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable. + + 4. If You Share Adapted Material You produce, the Adapter's License You apply must not prevent recipients of the Adapted Material from complying with this Public License. + +### Section 4 – Sui Generis Database Rights. + +Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material: + +a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database for NonCommercial purposes only; + +b. if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material; and + +c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database. + +For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights. + +### Section 5 – Disclaimer of Warranties and Limitation of Liability. + +a. __Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.__ + +b. __To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.__ + +c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability. + +### Section 6 – Term and Termination. + +a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically. + +b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates: + + 1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or + + 2. upon express reinstatement by the Licensor. + + For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License. + +c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License. + +d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License. + +### Section 7 – Other Terms and Conditions. + +a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed. + +b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License. + +### Section 8 – Interpretation. + +a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License. + +b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions. + +c. No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor. + +d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority. + +> Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply one of its public licenses to material it publishes and in those instances will be considered the “Licensor.” Except for the limited purpose of indicating that material is shared under a Creative Commons public license or as otherwise permitted by the Creative Commons policies published at [creativecommons.org/policies](http://creativecommons.org/policies), Creative Commons does not authorize the use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons without its prior written consent including, without limitation, in connection with any unauthorized modifications to any of its public licenses or any other arrangements, understandings, or agreements concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part of the public licenses. +> +> Creative Commons may be contacted at creativecommons.org diff --git a/MakeItTalk/PULL_REQUEST_TEMPLATE.md b/MakeItTalk/PULL_REQUEST_TEMPLATE.md new file mode 100644 index 0000000000000000000000000000000000000000..77ac3297e81da915caf7dc1fb51bb6f426dc25f5 --- /dev/null +++ b/MakeItTalk/PULL_REQUEST_TEMPLATE.md @@ -0,0 +1,45 @@ + + +## Description + + + +## Related Issue + + + + + + +## Motivation and Context + + + +## How Has This Been Tested? + + + + + +## Screenshots (if appropriate): + +## Types of changes + + + +- [ ] Bug fix (non-breaking change which fixes an issue) +- [ ] New feature (non-breaking change which adds functionality) +- [ ] Breaking change (fix or feature that would cause existing functionality to change) + +## Checklist: + + + + +- [ ] I have signed the [Adobe Open Source CLA](https://opensource.adobe.com/cla.html). +- [ ] My code follows the code style of this project. +- [ ] My change requires a change to the documentation. +- [ ] I have updated the documentation accordingly. +- [ ] I have read the **CONTRIBUTING** document. +- [ ] I have added tests to cover my changes. +- [ ] All new and existing tests passed. \ No newline at end of file diff --git a/MakeItTalk/README.md b/MakeItTalk/README.md new file mode 100644 index 0000000000000000000000000000000000000000..328d4bd14e550456e71a6f1efd70536b0affc6d2 --- /dev/null +++ b/MakeItTalk/README.md @@ -0,0 +1,185 @@ +# MakeItTalk: Speaker-Aware Talking-Head Animation + +This is the code repository implementing the paper: + +> **MakeItTalk: Speaker-Aware Talking-Head Animation** +> +> [Yang Zhou](https://people.umass.edu/~yangzhou), +> [Xintong Han](http://users.umiacs.umd.edu/~xintong/), +> [Eli Shechtman](https://research.adobe.com/person/eli-shechtman), +> [Jose Echevarria](http://www.jiechevarria.com) , +> [Evangelos Kalogerakis](https://people.cs.umass.edu/~kalo/), +> [Dingzeyu Li](https://dingzeyu.li) +> +> SIGGRAPH Asia 2020 +> +> **Abstract** We present a method that generates expressive talking-head videos from a single facial image with audio as the only input. In contrast to previous attempts to learn direct mappings from audio to raw pixels for creating talking faces, our method first disentangles the content and speaker information in the input audio signal. The audio content robustly controls the motion of lips and nearby facial regions, while the speaker information determines the specifics of facial expressions and the rest of the talking-head dynamics. Another key component of our method is the prediction of facial landmarks reflecting the speaker-aware dynamics. Based on this intermediate representation, our method works with many portrait images in a single unified framework, including artistic paintings, sketches, 2D cartoon characters, Japanese mangas, and stylized caricatures. +In addition, our method generalizes well for faces and characters that were not observed during training. We present extensive quantitative and qualitative evaluation of our method, in addition to user studies, demonstrating generated talking-heads of significantly higher quality compared to prior state-of-the-art methods. +> +> [[Project page]](https://people.umass.edu/~yangzhou/MakeItTalk/) +> [[Paper]](https://people.umass.edu/~yangzhou/MakeItTalk/MakeItTalk_SIGGRAPH_Asia_Final_round-5.pdf) +> [[Video]](https://www.youtube.com/watch?v=OU6Ctzhpc6s) +> [[Arxiv]](https://arxiv.org/abs/2004.12992) +> [[Colab Demo]](quick_demo.ipynb) +> [[Colab Demo TDLR]](quick_demo_tdlr.ipynb) + +![img](doc/teaser.png) + +Figure. Given an audio speech signal and a single portrait image as input (left), our model generates speaker-aware talking-head animations (right). +Both the speech signal and the input face image are not observed during the model training process. +Our method creates both non-photorealistic cartoon animations (top) and natural human face videos (bottom). + +## Updates + +- [x] Generate new puppet! (tested on Ubuntu) +- [x] Pre-trained models +- [x] Google colab quick demo for natural faces [[detail]](quick_demo.ipynb) [[TDLR]](quick_demo_tdlr.ipynb) +- [ ] Training code for each module + +## Requirements +- Python environment 3.6 +``` +conda create -n makeittalk_env python=3.6 +conda activate makeittalk_env +``` +- ffmpeg (https://ffmpeg.org/download.html) +``` +sudo apt-get install ffmpeg +``` +- python packages +``` +pip install -r requirements.txt +``` +- `winehq-stable` for cartoon face warping in Ubuntu (https://wiki.winehq.org/Ubuntu). Tested on Ubuntu16.04, wine==5.0.3. +``` +sudo dpkg --add-architecture i386 +wget -nc https://dl.winehq.org/wine-builds/winehq.key +sudo apt-key add winehq.key +sudo apt-add-repository 'deb https://dl.winehq.org/wine-builds/ubuntu/ xenial main' +sudo apt update +sudo apt install --install-recommends winehq-stable +``` + +## Pre-trained Models + +Download the following pre-trained models to `MakeItTalk/examples/ckpt` folder for testing your own animation. + +| Model | Link to the model | +| :-------------: | :---------------: | +| Voice Conversion | [Link](https://drive.google.com/file/d/1ZiwPp_h62LtjU0DwpelLUoodKPR85K7x/view?usp=sharing) | +| Speech Content Module | [Link](https://drive.google.com/file/d/1r3bfEvTVl6pCNw5xwUhEglwDHjWtAqQp/view?usp=sharing) | +| Speaker-aware Module | [Link](https://drive.google.com/file/d/1rV0jkyDqPW-aDJcj7xSO6Zt1zSXqn1mu/view?usp=sharing) | +| Image2Image Translation Module | [Link](https://drive.google.com/file/d/1i2LJXKp-yWKIEEgJ7C6cE3_2NirfY_0a/view?usp=sharing) | +| Non-photorealistic Warping (.exe) | [Link](https://drive.google.com/file/d/1rlj0PAUMdX8TLuywsn6ds_G6L63nAu0P/view?usp=sharing) | + +## Animate You Portraits! + +- Download pre-trained embedding [[here]](https://drive.google.com/file/d/18-0CYl5E6ungS3H4rRSHjfYvvm-WwjTI/view?usp=sharing) and save to `MakeItTalk/examples/dump` folder. + +### _Nature Human Faces / Paintings_ + +- crop your portrait image into size `256x256` and put it under `examples` folder with `.jpg` format. +Make sure the head is almost in the middle (check existing examples for a reference). + +- put test audio files under `examples` folder as well with `.wav` format. + +- animate! + +``` +python main_end2end.py --jpg +``` + +- use addition args `--amp_lip_x --amp_lip_y --amp_pos ` +to amply lip motion (in x/y-axis direction) and head motion displacements, default values are `=2., =2., =.5` + + + +### _Cartoon Faces_ + +- put test audio files under `examples` folder as well with `.wav` format. + +- animate one of the existing puppets + +| Puppet Name | wilk | smiling_person | sketch | color | cartoonM | danbooru1 | +| :---: | :---: | :---: | :---: | :---: | :---: | :---: | +| Image | ![img](examples_cartoon/wilk_fullbody.jpg) | ![img](examples_cartoon/smiling_person_full.png) | ![img](examples_cartoon/sketch.png) | ![img](examples_cartoon/color.jpg) | ![img](examples_cartoon/cartoonM.png) | ![img](examples_cartoon/danbooru1.jpg) | + +``` +python main_end2end_cartoon.py --jpg --jpg_bg +``` + +- `--jpg_bg` takes a same-size image as the background image to create the animation, such as the puppet's body, the overall fixed background image. If you want to use the background, make sure the puppet face image (i.e. `--jpg` image) is in `png` format and is transparent on the non-face area. If you don't need any background, please also create a same-size image (e.g. a pure white image) to hold the argument place. + +- use addition args `--amp_lip_x --amp_lip_y --amp_pos ` +to amply lip motion (in x/y-axis direction) and head motion displacements, default values are `=2., =2., =.5` + +### _Generate Your New Puppet_ + +- put the cartoon image under `examples_cartoon` + +- install conda environment `foa_env_py2` (tested on python 2) for Face-of-art (https://github.com/papulke/face-of-art). + Download the pre-trained weight [here](https://www.dropbox.com/sh/hrxcyug1bmbj6cs/AAAxq_zI5eawcLjM8zvUwaXha?dl=0) and put it under `MakeItTalk/examples/ckpt`. + Activate the environment. + +``` +source activate foa_env_py2 +``` + +- create necessary files to animate your cartoon image, i.e. +`_open_mouth.txt`, `_close_mouth.txt`, `_open_mouth_norm.txt`, `_scale_shift.txt`, `_delauney.txt` + +``` +python main_gen_new_puppet.py +``` + +- in details, it takes 3 steps + - Face-of-art automatic cartoon landmark detection. + - If it's wrong or not accurate, you can use our tool to drag and refine the landmarks. + - Estimate the closed mouth landmarks to serve as network input. + - Delauney triangulate the image with landmarks. + +- check puppet name `smiling_person_example.png` for an example. + +| ![img](doc/landmark_adjust.png) | ![img](doc/landmark_closemouth.png) | ![img](doc/landmark_delauney.png) +| :---: | :---: | :---: | +| Landmark Adjustment Tool | Closed lips estimation | Delaunay Triangulation | + +## Train + +### Train Voice Conversion Module +Todo... + +### Train Content Branch +- Create dataset root directory `` + +- Dataset: Download preprocessed dataset [[here]](https://drive.google.com/drive/folders/1EwuAy3j1b9Zc1MsidUfxG_pJGc_cV60O?usp=sharing), and put it under `/dump`. + +- Train script: Run script below. Models will be saved in `/ckpt/`. + + ```shell script + python main_train_content.py --train --write --root_dir --name + ``` + +### Train Speaker-Aware Branch +Todo... + +### Train Image-to-Image Translation + +Todo... + +## [License](LICENSE.md) + +## Acknowledgement + +We would like to thank Timothy Langlois for the narration, and +[Kaizhi Qian](https://scholar.google.com/citations?user=uEpr4C4AAAAJ&hl=en) +for the help with the [voice conversion module](https://auspicious3000.github.io/icassp-2020-demo/). +We thank [Jakub Fiser](https://research.adobe.com/person/jakub-fiser/) for implementing the real-time GPU version of the triangle morphing algorithm. +We thank Daichi Ito for sharing the caricature image and Dave Werner +for Wilk, the gruff but ultimately lovable puppet. + +This research is partially funded by NSF (EAGER-1942069) +and a gift from Adobe. Our experiments were performed in the +UMass GPU cluster obtained under the Collaborative Fund managed +by the MassTech Collaborative. + diff --git a/MakeItTalk/_._/MakeItTalk-main/._MakeItTalk-main_in_audio.wav b/MakeItTalk/_._/MakeItTalk-main/._MakeItTalk-main_in_audio.wav new file mode 100644 index 0000000000000000000000000000000000000000..34057b694ac8a17fad231aeed3019fbd105323f8 Binary files /dev/null and b/MakeItTalk/_._/MakeItTalk-main/._MakeItTalk-main_in_audio.wav differ diff --git a/MakeItTalk/_._/MakeItTalk-main/examples/._MakeItTalk-main_examples_in_image.jpg b/MakeItTalk/_._/MakeItTalk-main/examples/._MakeItTalk-main_examples_in_image.jpg new file mode 100644 index 0000000000000000000000000000000000000000..74abd92f214a7f24e423db78f798ccb724b57c71 Binary files /dev/null and b/MakeItTalk/_._/MakeItTalk-main/examples/._MakeItTalk-main_examples_in_image.jpg differ diff --git a/MakeItTalk/_._/MakeItTalk/examples/._MakeItTalk_examples_in_audio.wav b/MakeItTalk/_._/MakeItTalk/examples/._MakeItTalk_examples_in_audio.wav new file mode 100644 index 0000000000000000000000000000000000000000..34057b694ac8a17fad231aeed3019fbd105323f8 Binary files /dev/null and b/MakeItTalk/_._/MakeItTalk/examples/._MakeItTalk_examples_in_audio.wav differ diff --git a/MakeItTalk/_._/MakeItTalk/examples/._MakeItTalk_examples_in_image.jpg b/MakeItTalk/_._/MakeItTalk/examples/._MakeItTalk_examples_in_image.jpg new file mode 100644 index 0000000000000000000000000000000000000000..93f9a6fab695dacdebd319d0edb07ee0cf380bd8 Binary files /dev/null and b/MakeItTalk/_._/MakeItTalk/examples/._MakeItTalk_examples_in_image.jpg differ diff --git a/MakeItTalk/__pycache__/animation_app.cpython-37.pyc b/MakeItTalk/__pycache__/animation_app.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..183c386785e5105ac939572161531175a59036cd Binary files /dev/null and b/MakeItTalk/__pycache__/animation_app.cpython-37.pyc differ diff --git a/MakeItTalk/animated.py b/MakeItTalk/animated.py new file mode 100644 index 0000000000000000000000000000000000000000..e2b1a16cc8c149d429246d07bfb9c9e96d43b223 --- /dev/null +++ b/MakeItTalk/animated.py @@ -0,0 +1,277 @@ + +# To add a new cell, type '# %%' +# To add a new markdown cell, type '# %% [markdown]' +# %% +import torch + +# this ensures that the current MacOS version is at least 12.3+ +print(torch.backends.mps.is_available()) +# this ensures that the current current PyTorch installation was built with MPS activated. +print(torch.backends.mps.is_built()) + + +# %% +import ipywidgets as widgets +import glob +import matplotlib.pyplot as plt +print("Choose the image name to animate: (saved in folder 'MakeItTalk/examples/')") +img_list = glob.glob1('examples', '*.jpg') +img_list.sort() +img_list = [item.split('.')[0] for item in img_list] +default_head_name = widgets.Dropdown(options=img_list, value='marlene_v2') +def on_change(change): + if change['type'] == 'change' and change['name'] == 'value': + plt.imshow(plt.imread('MakeItTalk/examples/{}.jpg'.format(default_head_name.value))) + plt.axis('off') + plt.show() +default_head_name.observe(on_change) +display(default_head_name) +plt.imshow(plt.imread('MakeItTalk/examples/{}.jpg'.format(default_head_name.value))) +plt.axis('off') +plt.show() + + +# %% +#@markdown # Animation Controllers +#@markdown Amplify the lip motion in horizontal direction +AMP_LIP_SHAPE_X = 2 #@param {type:"slider", min:0.5, max:5.0, step:0.1} + +#@markdown Amplify the lip motion in vertical direction +AMP_LIP_SHAPE_Y = 2 #@param {type:"slider", min:0.5, max:5.0, step:0.1} + +#@markdown Amplify the head pose motion (usually smaller than 1.0, put it to 0. for a static head pose) +AMP_HEAD_POSE_MOTION = 0.35 #@param {type:"slider", min:0.0, max:1.0, step:0.05} + +#@markdown Add naive eye blink +ADD_NAIVE_EYE = True #@param ["False", "True"] {type:"raw"} + +#@markdown If your image has an opened mouth, put this as True, else False +CLOSE_INPUT_FACE_MOUTH = True #@param ["False", "True"] {type:"raw"} + + +#@markdown # Landmark Adjustment + +#@markdown Adjust upper lip thickness (postive value means thicker) +UPPER_LIP_ADJUST = -1 #@param {type:"slider", min:-3.0, max:3.0, step:1.0} + +#@markdown Adjust lower lip thickness (postive value means thicker) +LOWER_LIP_ADJUST = -1 #@param {type:"slider", min:-3.0, max:3.0, step:1.0} + +#@markdown Adjust static lip width (in multipication) +LIP_WIDTH_ADJUST = 1.0 #@param {type:"slider", min:0.8, max:1.2, step:0.01} + + +# %% +import sys +sys.path.append("thirdparty/AdaptiveWingLoss") +import os, glob +import numpy as np +import cv2 +import argparse +from src.approaches.train_image_translation import Image_translation_block +import torch +import pickle +import face_alignment +from face_alignment import face_alignment +from src.autovc.AutoVC_mel_Convertor_retrain_version import AutoVC_mel_Convertor +import shutil +import time +import util.utils as util +from scipy.signal import savgol_filter +from src.approaches.train_audio2landmark import Audio2landmark_model + + +# %% +sys.stdout = open(os.devnull, 'a') + +parser = argparse.ArgumentParser() +parser.add_argument('--jpg', type=str, default='{}.jpg'.format(default_head_name.value)) +parser.add_argument('--close_input_face_mouth', default=CLOSE_INPUT_FACE_MOUTH, action='store_true') +parser.add_argument('--load_AUTOVC_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_autovc.pth') +parser.add_argument('--load_a2l_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth') +parser.add_argument('--load_a2l_C_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_content_branch.pth') #ckpt_audio2landmark_c.pth') +parser.add_argument('--load_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_116_i2i_comb.pth') #ckpt_image2image.pth') #ckpt_i2i_finetune_150.pth') #c +parser.add_argument('--amp_lip_x', type=float, default=AMP_LIP_SHAPE_X) +parser.add_argument('--amp_lip_y', type=float, default=AMP_LIP_SHAPE_Y) +parser.add_argument('--amp_pos', type=float, default=AMP_HEAD_POSE_MOTION) +parser.add_argument('--reuse_train_emb_list', type=str, nargs='+', default=[]) # ['iWeklsXc0H8']) #['45hn7-LXDX8']) #['E_kmpT-EfOg']) #'iWeklsXc0H8', '29k8RtSUjE0', '45hn7-LXDX8', +parser.add_argument('--add_audio_in', default=False, action='store_true') +parser.add_argument('--comb_fan_awing', default=False, action='store_true') +parser.add_argument('--output_folder', type=str, default='examples') +parser.add_argument('--test_end2end', default=True, action='store_true') +parser.add_argument('--dump_dir', type=str, default='', help='') +parser.add_argument('--pos_dim', default=7, type=int) +parser.add_argument('--use_prior_net', default=True, action='store_true') +parser.add_argument('--transformer_d_model', default=32, type=int) +parser.add_argument('--transformer_N', default=2, type=int) +parser.add_argument('--transformer_heads', default=2, type=int) +parser.add_argument('--spk_emb_enc_size', default=16, type=int) +parser.add_argument('--init_content_encoder', type=str, default='') +parser.add_argument('--lr', type=float, default=1e-3, help='learning rate') +parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay') +parser.add_argument('--write', default=False, action='store_true') +parser.add_argument('--segment_batch_size', type=int, default=1, help='batch size') +parser.add_argument('--emb_coef', default=3.0, type=float) +parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float) +parser.add_argument('--use_11spk_only', default=False, action='store_true') +parser.add_argument('-f') +opt_parser = parser.parse_args() + + +# %% +img = cv2.imread('MakeItTalk/examples/' + opt_parser.jpg) +plt.imshow(img) + + +# %% +predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device='mps', flip_input=True) +shapes = predictor.get_landmarks(img) +if (not shapes or len(shapes) != 1): + print('Cannot detect face landmarks. Exit.') + exit(-1) +shape_3d = shapes[0] + + +# %% +if(opt_parser.close_input_face_mouth): + util.close_input_face_mouth(shape_3d) +shape_3d[48:, 0] = (shape_3d[48:, 0] - np.mean(shape_3d[48:, 0])) * LIP_WIDTH_ADJUST + np.mean(shape_3d[48:, 0]) # wider lips +shape_3d[49:54, 1] -= UPPER_LIP_ADJUST # thinner upper lip +shape_3d[55:60, 1] += LOWER_LIP_ADJUST # thinner lower lip +shape_3d[[37,38,43,44], 1] -=2. # larger eyes +shape_3d[[40,41,46,47], 1] +=2. # larger eyes +shape_3d, scale, shift = util.norm_input_face(shape_3d) + +print("Loaded Image...", file=sys.stderr) + + +# %% +au_data = [] +au_emb = [] +ains = glob.glob1('examples', '*.wav') +ains = [item for item in ains if item != 'tmp.wav'] +ains.sort() +for ain in ains: + os.system('ffmpeg -y -loglevel error -i MakeItTalk/examples/{} -ar 16000 MakeItTalk/examples/tmp.wav'.format(ain)) + shutil.copyfile('MakeItTalk/examples/tmp.wav', 'MakeItTalk/examples/{}'.format(ain)) + + # au embedding + from thirdparty.resemblyer_util.speaker_emb import get_spk_emb + me, ae = get_spk_emb('MakeItTalk/examples/{}'.format(ain)) + au_emb.append(me.reshape(-1)) + + print('Processing audio file', ain) + c = AutoVC_mel_Convertor('examples') + + au_data_i = c.convert_single_wav_to_autovc_input(audio_filename=os.path.join('examples', ain), + autovc_model_path=opt_parser.load_AUTOVC_name) + au_data += au_data_i +if(os.path.isfile('MakeItTalk/examples/tmp.wav')): + os.remove('MakeItTalk/examples/tmp.wav') + +print("Loaded audio...", file=sys.stderr) + + + +# %% +# landmark fake placeholder +fl_data = [] +rot_tran, rot_quat, anchor_t_shape = [], [], [] +for au, info in au_data: + au_length = au.shape[0] + fl = np.zeros(shape=(au_length, 68 * 3)) + fl_data.append((fl, info)) + rot_tran.append(np.zeros(shape=(au_length, 3, 4))) + rot_quat.append(np.zeros(shape=(au_length, 4))) + anchor_t_shape.append(np.zeros(shape=(au_length, 68 * 3))) + +if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl.pickle'))): + os.remove(os.path.join('examples', 'dump', 'random_val_fl.pickle')) +if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))): + os.remove(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle')) +if(os.path.exists(os.path.join('examples', 'dump', 'random_val_au.pickle'))): + os.remove(os.path.join('examples', 'dump', 'random_val_au.pickle')) +if (os.path.exists(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))): + os.remove(os.path.join('examples', 'dump', 'random_val_gaze.pickle')) + +with open(os.path.join('examples', 'dump', 'random_val_fl.pickle'), 'wb') as fp: + pickle.dump(fl_data, fp) +with open(os.path.join('examples', 'dump', 'random_val_au.pickle'), 'wb') as fp: + pickle.dump(au_data, fp) +with open(os.path.join('examples', 'dump', 'random_val_gaze.pickle'), 'wb') as fp: + gaze = {'rot_trans':rot_tran, 'rot_quat':rot_quat, 'anchor_t_shape':anchor_t_shape} + pickle.dump(gaze, fp) + + +# %% +model = Audio2landmark_model(opt_parser, jpg_shape=shape_3d) +if(len(opt_parser.reuse_train_emb_list) == 0): + model.test(au_emb=au_emb) +else: + model.test(au_emb=None) + +print("Audio->Landmark...", file=sys.stderr) + + +# %% +fls = glob.glob1('examples', 'pred_fls_*.txt') +fls.sort() + +for i in range(0,len(fls)): + fl = np.loadtxt(os.path.join('examples', fls[i])).reshape((-1, 68,3)) + print(fls[i]) + fl[:, :, 0:2] = -fl[:, :, 0:2] + fl[:, :, 0:2] = fl[:, :, 0:2] / scale - shift + + if (ADD_NAIVE_EYE): + fl = util.add_naive_eye(fl) + + # additional smooth + fl = fl.reshape((-1, 204)) + fl[:, :48 * 3] = savgol_filter(fl[:, :48 * 3], 15, 3, axis=0) + fl[:, 48*3:] = savgol_filter(fl[:, 48*3:], 5, 3, axis=0) + fl = fl.reshape((-1, 68, 3)) + + ''' STEP 6: Imag2image translation ''' + model = Image_translation_block(opt_parser, single_test=True) + with torch.no_grad(): + model.single_test(jpg=img, fls=fl, filename=fls[i], prefix=opt_parser.jpg.split('.')[0]) + print('finish image2image gen') + os.remove(os.path.join('examples', fls[i])) + + print("{} / {}: Landmark->Face...".format(i+1, len(fls)), file=sys.stderr) +print("Done!", file=sys.stderr) + +# %% [markdown] +# # Generated video from image and sound clip + +# %% +from IPython.display import Video + +Video("MakeItTalk/examples/marlenes_v1.mp4") + + +# %% + + + +# %% +from IPython.display import HTML +from base64 import b64encode + +for ain in ains: + OUTPUT_MP4_NAME = '{}_pred_fls_{}_audio_embed.mp4'.format( + opt_parser.jpg.split('.')[0], + ain.split('.')[0] + ) + mp4 = open('MakeItTalk/examples/{}'.format(OUTPUT_MP4_NAME),'rb').read() + data_url = "data:video/mp4;base64," + b64encode(mp4).decode() + + print('Display animation: MakeItTalk/examples/{}'.format(OUTPUT_MP4_NAME), file=sys.stderr) + display(HTML(""" + + """ % data_url)) + + diff --git a/MakeItTalk/app.py b/MakeItTalk/app.py new file mode 100644 index 0000000000000000000000000000000000000000..5851b3b26b751fa64afbae4fd996c0174c6c9674 --- /dev/null +++ b/MakeItTalk/app.py @@ -0,0 +1,38 @@ + +import os +from fastapi import FastAPI +import gradio as gr +from PIL import Image as im +from scipy.io.wavfile import write + + +def generateVideo(input_img, input_audio): + + data = im.fromarray(input_img) + + # saving the final output + # as a PNG file + data.save('MakeItTalk/examples/in_image.jpg') + + write('MakeItTalk/examples/in_audio.wav', input_audio[0], input_audio[1]) + + input_img = 'in_image.jpg' + input_audio = 'in_audio.wav' + + os.system(f"python3 main_end2end.py --jpg {input_img}") #add image + + video_name = 'MakeItTalk/examples/in_image_pred_fls_in_audio_audio_embed.mp4' + + + return video_name + + +demo = gr.Interface( + fn=generateVideo, + inputs=[gr.Image(shape=(256, 256)), gr.Audio(), ], + outputs= gr.Video().style(height=256, width=256), + +) + + +demo.launch() \ No newline at end of file diff --git a/MakeItTalk/doc/__init__.py b/MakeItTalk/doc/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MakeItTalk/doc/landmark_adjust.png b/MakeItTalk/doc/landmark_adjust.png new file mode 100644 index 0000000000000000000000000000000000000000..3ff4a7ada66f5fc7901054b955a7836b2e0ca41e Binary files /dev/null and b/MakeItTalk/doc/landmark_adjust.png differ diff --git a/MakeItTalk/doc/landmark_closemouth.png b/MakeItTalk/doc/landmark_closemouth.png new file mode 100644 index 0000000000000000000000000000000000000000..f192051b9ea1fc92e1f70b088fd4ab626e746a21 Binary files /dev/null and b/MakeItTalk/doc/landmark_closemouth.png differ diff --git a/MakeItTalk/doc/landmark_delauney.png b/MakeItTalk/doc/landmark_delauney.png new file mode 100644 index 0000000000000000000000000000000000000000..369d64331dcaa256530c4b3d92ca7efc7456bb72 Binary files /dev/null and b/MakeItTalk/doc/landmark_delauney.png differ diff --git a/MakeItTalk/doc/teaser.png b/MakeItTalk/doc/teaser.png new file mode 100644 index 0000000000000000000000000000000000000000..6bd3c10d89c70424490d316ad51c47f130569f25 Binary files /dev/null and b/MakeItTalk/doc/teaser.png differ diff --git a/MakeItTalk/examples/.DS_Store b/MakeItTalk/examples/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..44fc4544b15943a64b281164fe009a76b82376aa Binary files /dev/null and b/MakeItTalk/examples/.DS_Store differ diff --git a/MakeItTalk/examples/327-3275260_leonardo-dicaprio-png-famous-actor.png b/MakeItTalk/examples/327-3275260_leonardo-dicaprio-png-famous-actor.png new file mode 100644 index 0000000000000000000000000000000000000000..52116b396cd1429320347b6f4c1dacf4e701a42a Binary files /dev/null and b/MakeItTalk/examples/327-3275260_leonardo-dicaprio-png-famous-actor.png differ diff --git a/MakeItTalk/examples/angelina.jpg b/MakeItTalk/examples/angelina.jpg new file mode 100644 index 0000000000000000000000000000000000000000..af4bef8776f2f66e2911e7629d1131bf24f0c440 Binary files /dev/null and b/MakeItTalk/examples/angelina.jpg differ diff --git a/MakeItTalk/examples/anne.jpg b/MakeItTalk/examples/anne.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d9689223154c3b430cd68e4b30c40fbe65dd1960 Binary files /dev/null and b/MakeItTalk/examples/anne.jpg differ diff --git a/MakeItTalk/examples/anne2.jpg b/MakeItTalk/examples/anne2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..976e1e4636612558f3c35015733e414a36629cbb Binary files /dev/null and b/MakeItTalk/examples/anne2.jpg differ diff --git a/MakeItTalk/examples/audrey.jpg b/MakeItTalk/examples/audrey.jpg new file mode 100644 index 0000000000000000000000000000000000000000..273b11d9c0184894ddd05c6ea499e5ef91a74056 Binary files /dev/null and b/MakeItTalk/examples/audrey.jpg differ diff --git a/MakeItTalk/examples/aya.jpg b/MakeItTalk/examples/aya.jpg new file mode 100644 index 0000000000000000000000000000000000000000..13530d8ac95b7b90b8c780c64b5bccd51a34a8c7 Binary files /dev/null and b/MakeItTalk/examples/aya.jpg differ diff --git a/MakeItTalk/examples/cait.jpg b/MakeItTalk/examples/cait.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6863f12f245f337748f7fea0c25eb16ac41631b6 Binary files /dev/null and b/MakeItTalk/examples/cait.jpg differ diff --git a/MakeItTalk/examples/cait3.jpg b/MakeItTalk/examples/cait3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e29d930753721ab8fcc9147b6d04f5f9635fbed0 Binary files /dev/null and b/MakeItTalk/examples/cait3.jpg differ diff --git a/MakeItTalk/examples/captain.jpg b/MakeItTalk/examples/captain.jpg new file mode 100644 index 0000000000000000000000000000000000000000..182d111bd11441f0302323ec3ac80c9e51e77825 Binary files /dev/null and b/MakeItTalk/examples/captain.jpg differ diff --git a/MakeItTalk/examples/captain2.jpg b/MakeItTalk/examples/captain2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e10e3a2d8381155bfb02429724070dfc86e4e0c0 Binary files /dev/null and b/MakeItTalk/examples/captain2.jpg differ diff --git a/MakeItTalk/examples/cesi.jpg b/MakeItTalk/examples/cesi.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5b5abd87ca52b0065365901f766a334c00f16128 Binary files /dev/null and b/MakeItTalk/examples/cesi.jpg differ diff --git a/MakeItTalk/examples/chris.jpg b/MakeItTalk/examples/chris.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0ce31cc96ce5d64e56f1ffc26d9a715190041e6a Binary files /dev/null and b/MakeItTalk/examples/chris.jpg differ diff --git a/MakeItTalk/examples/chris2.jpg b/MakeItTalk/examples/chris2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7dde58ab105acb6951d4bf13621184581f7d2855 Binary files /dev/null and b/MakeItTalk/examples/chris2.jpg differ diff --git a/MakeItTalk/examples/ckpt/ckpt_autovc.pth b/MakeItTalk/examples/ckpt/ckpt_autovc.pth new file mode 100644 index 0000000000000000000000000000000000000000..ceca09a2a6b1320fc927721e8222317ac226d7ff --- /dev/null +++ b/MakeItTalk/examples/ckpt/ckpt_autovc.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cc8bd72894437270f9f79c8e5f27b58d82828c06471fd6e5885a9b15e00cfb3c +size 171881992 diff --git a/MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth b/MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth new file mode 100644 index 0000000000000000000000000000000000000000..caf4ca7ef2e19fac6e5e985a83e0e70098d5011a --- /dev/null +++ b/MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5cf3b00f209cf5e19cb580c23c6bc9af24ff493ba11456eb5f45958f5cbe2717 +size 15423427 diff --git a/MakeItTalk/examples/dali.jpg b/MakeItTalk/examples/dali.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1d35cd6a247212177f88c89a8d50f556cd065d20 Binary files /dev/null and b/MakeItTalk/examples/dali.jpg differ diff --git a/MakeItTalk/examples/donald.jpg b/MakeItTalk/examples/donald.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1721794319d9646522322a2669f3a025b027edb7 Binary files /dev/null and b/MakeItTalk/examples/donald.jpg differ diff --git a/MakeItTalk/examples/dragonmom.jpg b/MakeItTalk/examples/dragonmom.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3792dcf022e058a6e025a9317bba4565861c76cc Binary files /dev/null and b/MakeItTalk/examples/dragonmom.jpg differ diff --git a/MakeItTalk/examples/dump/emb.pickle b/MakeItTalk/examples/dump/emb.pickle new file mode 100644 index 0000000000000000000000000000000000000000..8ff2763514b6631f4ad2d514a44ef6260479bb23 --- /dev/null +++ b/MakeItTalk/examples/dump/emb.pickle @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e973e1645746c1db6c44c8342861e858c1169044521ce2cb1c335217758cb1f3 +size 30928111 diff --git a/MakeItTalk/examples/dump/random_val_au.pickle b/MakeItTalk/examples/dump/random_val_au.pickle new file mode 100644 index 0000000000000000000000000000000000000000..b994bfa76fed078ce18d897af63d09be28086727 --- /dev/null +++ b/MakeItTalk/examples/dump/random_val_au.pickle @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c5d7bc5f8a663c93e5a670e0a17724a1feec755bfef26db3b88af411bf02a436 +size 98863 diff --git a/MakeItTalk/examples/dump/random_val_fl.pickle b/MakeItTalk/examples/dump/random_val_fl.pickle new file mode 100644 index 0000000000000000000000000000000000000000..05da927e7919cf0761520cba623bf4bcc9555042 --- /dev/null +++ b/MakeItTalk/examples/dump/random_val_fl.pickle @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c50cd350875447ec841ac54e7fe4537a0ce750fb8b2f385aaab244841b86cbd5 +size 499064 diff --git a/MakeItTalk/examples/dump/random_val_gaze.pickle b/MakeItTalk/examples/dump/random_val_gaze.pickle new file mode 100644 index 0000000000000000000000000000000000000000..39ed7abd7785a406d49dbed2e4ebcdc3ee11a39f --- /dev/null +++ b/MakeItTalk/examples/dump/random_val_gaze.pickle @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0d70c977ad6603c7d659608db0f6a537f8ecb63ccf4b5709ad25f60cfaf5b74a +size 537114 diff --git a/MakeItTalk/examples/dwayne.jpg b/MakeItTalk/examples/dwayne.jpg new file mode 100644 index 0000000000000000000000000000000000000000..75cf29da1c5d6df6bc139c58cb0ea8ca5321edcc Binary files /dev/null and b/MakeItTalk/examples/dwayne.jpg differ diff --git a/MakeItTalk/examples/dwayne2.jpg b/MakeItTalk/examples/dwayne2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..807fb10bb1a86de3a7307a531e2195d4ff479bce Binary files /dev/null and b/MakeItTalk/examples/dwayne2.jpg differ diff --git a/MakeItTalk/examples/dwayne3.jpg b/MakeItTalk/examples/dwayne3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6f7a09699e53c2dba3b84ef41b975b99c3de4fc5 Binary files /dev/null and b/MakeItTalk/examples/dwayne3.jpg differ diff --git a/MakeItTalk/examples/griltwo.png b/MakeItTalk/examples/griltwo.png new file mode 100644 index 0000000000000000000000000000000000000000..676465b372a6cc48f0679408b008208dae81f777 Binary files /dev/null and b/MakeItTalk/examples/griltwo.png differ diff --git a/MakeItTalk/examples/guyone.png b/MakeItTalk/examples/guyone.png new file mode 100644 index 0000000000000000000000000000000000000000..2a02ad9f070264224adcdcc9c74753e535000fe2 Binary files /dev/null and b/MakeItTalk/examples/guyone.png differ diff --git a/MakeItTalk/examples/harry.jpg b/MakeItTalk/examples/harry.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d3f8c76877a1d1d7403c395d5d2fb09048790a38 Binary files /dev/null and b/MakeItTalk/examples/harry.jpg differ diff --git a/MakeItTalk/examples/hermione.jpg b/MakeItTalk/examples/hermione.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dd1dc597bb3a0700bb719840513f262bfbdbbf9d Binary files /dev/null and b/MakeItTalk/examples/hermione.jpg differ diff --git a/MakeItTalk/examples/hermione2.jpg b/MakeItTalk/examples/hermione2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f15813905d887d69ed6e7eb406371ae4a9d8497a Binary files /dev/null and b/MakeItTalk/examples/hermione2.jpg differ diff --git a/MakeItTalk/examples/hound.jpg b/MakeItTalk/examples/hound.jpg new file mode 100644 index 0000000000000000000000000000000000000000..be9c87bc166bf7edf267b86cb9c0a4e102cb9b59 Binary files /dev/null and b/MakeItTalk/examples/hound.jpg differ diff --git a/MakeItTalk/examples/in_image.jpg b/MakeItTalk/examples/in_image.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7f4c4bf537318f96eca5b18f61bb8436c10ead70 Binary files /dev/null and b/MakeItTalk/examples/in_image.jpg differ diff --git a/MakeItTalk/examples/jali.jpg b/MakeItTalk/examples/jali.jpg new file mode 100644 index 0000000000000000000000000000000000000000..750f3e0d184cf5bee1a681e13d94d70567430341 Binary files /dev/null and b/MakeItTalk/examples/jali.jpg differ diff --git a/MakeItTalk/examples/johncartoon.jpg b/MakeItTalk/examples/johncartoon.jpg new file mode 100644 index 0000000000000000000000000000000000000000..58670dcc91159f558983219939a5eb79826049ce Binary files /dev/null and b/MakeItTalk/examples/johncartoon.jpg differ diff --git a/MakeItTalk/examples/johnny.jpg b/MakeItTalk/examples/johnny.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7f91f7d44fabfc124708d4284c9a86058b986cc4 Binary files /dev/null and b/MakeItTalk/examples/johnny.jpg differ diff --git a/MakeItTalk/examples/kalo.jpg b/MakeItTalk/examples/kalo.jpg new file mode 100644 index 0000000000000000000000000000000000000000..74d775d2fb891355eacad20951b2198cfe06652c Binary files /dev/null and b/MakeItTalk/examples/kalo.jpg differ diff --git a/MakeItTalk/examples/lab1.jpg b/MakeItTalk/examples/lab1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..03a85ef0db77ab755839bb61279ba8e553fadb15 Binary files /dev/null and b/MakeItTalk/examples/lab1.jpg differ diff --git a/MakeItTalk/examples/lab2.jpg b/MakeItTalk/examples/lab2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..82e32982e693432d30c9a740cf2e5519db9c43c7 Binary files /dev/null and b/MakeItTalk/examples/lab2.jpg differ diff --git a/MakeItTalk/examples/lab3.jpg b/MakeItTalk/examples/lab3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0870bec2927696b844f94c855e2f5c192ff16f73 Binary files /dev/null and b/MakeItTalk/examples/lab3.jpg differ diff --git a/MakeItTalk/examples/lab4.jpg b/MakeItTalk/examples/lab4.jpg new file mode 100644 index 0000000000000000000000000000000000000000..706a9cf415af435ce0ca14d03dc7ec22f3757c80 Binary files /dev/null and b/MakeItTalk/examples/lab4.jpg differ diff --git a/MakeItTalk/examples/leo.jpg b/MakeItTalk/examples/leo.jpg new file mode 100644 index 0000000000000000000000000000000000000000..506ae58678bff5a1060a5ea5322cf39c38c75811 Binary files /dev/null and b/MakeItTalk/examples/leo.jpg differ diff --git a/MakeItTalk/examples/leo2.jpg b/MakeItTalk/examples/leo2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..25d73bc3eb02a792f3810c45cb357e0a1d7b2fe2 Binary files /dev/null and b/MakeItTalk/examples/leo2.jpg differ diff --git a/MakeItTalk/examples/monalisa2.jpg b/MakeItTalk/examples/monalisa2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ed1779f0a3148b51dc9b633dfae0312df89a5abd Binary files /dev/null and b/MakeItTalk/examples/monalisa2.jpg differ diff --git a/MakeItTalk/examples/monalisa3.jpg b/MakeItTalk/examples/monalisa3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..db1fc2b5e5c71f444dd866b29e6bb0de355ddfd6 Binary files /dev/null and b/MakeItTalk/examples/monalisa3.jpg differ diff --git a/MakeItTalk/examples/morgan.jpg b/MakeItTalk/examples/morgan.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ad67882170496ae68efb096d51b62ad7add7e66e Binary files /dev/null and b/MakeItTalk/examples/morgan.jpg differ diff --git a/MakeItTalk/examples/mulan.jpg b/MakeItTalk/examples/mulan.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1103789f1a432e154af0896fb60e928110abf8da Binary files /dev/null and b/MakeItTalk/examples/mulan.jpg differ diff --git a/MakeItTalk/examples/natalie.jpg b/MakeItTalk/examples/natalie.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d84506c24a89c26d84181b2c366797f25ad1435d Binary files /dev/null and b/MakeItTalk/examples/natalie.jpg differ diff --git a/MakeItTalk/examples/natalie2.jpg b/MakeItTalk/examples/natalie2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c23fd3b6bb719802ff2ca7a9850c55bff2de4d1e Binary files /dev/null and b/MakeItTalk/examples/natalie2.jpg differ diff --git a/MakeItTalk/examples/neo.jpg b/MakeItTalk/examples/neo.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1e3369182e4dcfd90874201f8ff0d3c6ae99af92 Binary files /dev/null and b/MakeItTalk/examples/neo.jpg differ diff --git a/MakeItTalk/examples/obama.jpg b/MakeItTalk/examples/obama.jpg new file mode 100644 index 0000000000000000000000000000000000000000..33419f2e600fd02933c4106affe199501094805e Binary files /dev/null and b/MakeItTalk/examples/obama.jpg differ diff --git a/MakeItTalk/examples/paint1.jpg b/MakeItTalk/examples/paint1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..999f7222bf8144c5954d644b587462eed0a19655 Binary files /dev/null and b/MakeItTalk/examples/paint1.jpg differ diff --git a/MakeItTalk/examples/paint3.jpg b/MakeItTalk/examples/paint3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1f7f1e200fad9c6d31793397e832dc5be5ec8312 Binary files /dev/null and b/MakeItTalk/examples/paint3.jpg differ diff --git a/MakeItTalk/examples/paint_boy.jpg b/MakeItTalk/examples/paint_boy.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d5256777ad07b42d208265a70ed4e7c9c37f5304 Binary files /dev/null and b/MakeItTalk/examples/paint_boy.jpg differ diff --git a/MakeItTalk/examples/paint_boy2.jpg b/MakeItTalk/examples/paint_boy2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f52236b0ef9533f7b2a553dc0617c2b912ad0de2 Binary files /dev/null and b/MakeItTalk/examples/paint_boy2.jpg differ diff --git a/MakeItTalk/examples/pred_fls_F6_e40_cut_16k_45hn7-LXDX8.mp4 b/MakeItTalk/examples/pred_fls_F6_e40_cut_16k_45hn7-LXDX8.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..6d8ecc0c2cf03bf41dbf0e7bb2531e5eba881355 Binary files /dev/null and b/MakeItTalk/examples/pred_fls_F6_e40_cut_16k_45hn7-LXDX8.mp4 differ diff --git a/MakeItTalk/examples/rihanna.jpg b/MakeItTalk/examples/rihanna.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0758fad12acea433187866caf2bdf7d7aab789c4 Binary files /dev/null and b/MakeItTalk/examples/rihanna.jpg differ diff --git a/MakeItTalk/examples/ron.jpg b/MakeItTalk/examples/ron.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8823cbdf227f3eabc101f16c86081c6697e455f0 Binary files /dev/null and b/MakeItTalk/examples/ron.jpg differ diff --git a/MakeItTalk/examples/scarlett.jpg b/MakeItTalk/examples/scarlett.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d76d4bb1c42edd0ae3691ed0dbee21dbd5e7944e Binary files /dev/null and b/MakeItTalk/examples/scarlett.jpg differ diff --git a/MakeItTalk/examples/statue1.jpg b/MakeItTalk/examples/statue1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..823c63c4cf7746c2b39c00df5b31f31c2e37de19 Binary files /dev/null and b/MakeItTalk/examples/statue1.jpg differ diff --git a/MakeItTalk/examples/statue2.jpg b/MakeItTalk/examples/statue2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8100cbd17d88cd8d2c57345fb013d6afc7d55eee Binary files /dev/null and b/MakeItTalk/examples/statue2.jpg differ diff --git a/MakeItTalk/examples/stephen.jpg b/MakeItTalk/examples/stephen.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6b20225ceb1ca7976e2344d21e8588c36e6e23f5 Binary files /dev/null and b/MakeItTalk/examples/stephen.jpg differ diff --git a/MakeItTalk/examples/taylor.jpg b/MakeItTalk/examples/taylor.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9043aed2fd11553ec08b1fb28e76f09bb7d120e0 Binary files /dev/null and b/MakeItTalk/examples/taylor.jpg differ diff --git a/MakeItTalk/examples/trump.jpg b/MakeItTalk/examples/trump.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5ac01842d27e22c7f261e8826a49bc2785cdb872 Binary files /dev/null and b/MakeItTalk/examples/trump.jpg differ diff --git a/MakeItTalk/examples/trump2.jpg b/MakeItTalk/examples/trump2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9e0427e2a5e689ee02cba2dd8852cbb409457d5a Binary files /dev/null and b/MakeItTalk/examples/trump2.jpg differ diff --git a/MakeItTalk/examples_cartoon/STD_FACE_LANDMARKS.txt b/MakeItTalk/examples_cartoon/STD_FACE_LANDMARKS.txt new file mode 100644 index 0000000000000000000000000000000000000000..e83778db56b1999a80f8f9440b67fbb4298cff06 --- /dev/null +++ b/MakeItTalk/examples_cartoon/STD_FACE_LANDMARKS.txt @@ -0,0 +1,68 @@ +-0.8099 -0.0546 -0.8557 +-0.7941 0.1803 -0.8711 +-0.7398 0.3902 -0.8871 +-0.6977 0.5811 -0.8835 +-0.6397 0.7837 -0.8138 +-0.5470 0.9594 -0.6631 +-0.4469 1.0912 -0.4768 +-0.2816 1.2157 -0.2967 +-0.0192 1.2938 -0.2114 +0.2193 1.2169 -0.3033 +0.3932 1.1040 -0.4839 +0.5110 0.9716 -0.6684 +0.6153 0.7837 -0.8159 +0.6775 0.5665 -0.8807 +0.7257 0.3786 -0.8824 +0.7855 0.1754 -0.8666 +0.8185 -0.0448 -0.8501 +-0.6568 -0.2730 -0.0738 +-0.5659 -0.3523 0.0527 +-0.4359 -0.3847 0.1346 +-0.3231 -0.3505 0.1808 +-0.2139 -0.2950 0.1918 +0.2425 -0.2816 0.1986 +0.3444 -0.3121 0.1886 +0.4768 -0.3334 0.1452 +0.5891 -0.3145 0.0664 +0.6885 -0.2224 -0.0619 +0.0125 0.0149 0.1415 +0.0040 0.1815 0.2018 +0.0040 0.3225 0.2893 +0.0040 0.4317 0.2894 +-0.1455 0.5134 0.0735 +-0.0833 0.5342 0.1024 +0.0040 0.5390 0.1173 +0.0857 0.5378 0.1016 +0.1449 0.5146 0.0713 +-0.5000 -0.0125 -0.0058 +-0.4274 -0.0436 0.0834 +-0.3267 -0.0436 0.0888 +-0.2322 0.0149 0.0487 +-0.3121 0.0406 0.0764 +-0.4274 0.0430 0.0570 +0.2291 0.0162 0.0574 +0.3359 -0.0125 0.0997 +0.4359 -0.0125 0.0966 +0.5000 0.0125 0.0058 +0.4231 0.0455 0.0661 +0.3164 0.0381 0.0849 +-0.3292 0.7672 -0.1399 +-0.2236 0.7294 0.0106 +-0.0833 0.6800 0.1013 +0.0040 0.7087 0.1112 +0.0735 0.6775 0.1024 +0.2230 0.7331 0.0080 +0.3371 0.7648 -0.1486 +0.2236 0.8382 -0.0193 +0.1138 0.8795 0.0498 +-0.0129 0.8973 0.0609 +-0.1297 0.8795 0.0515 +-0.2291 0.8382 -0.0166 +-0.3194 0.7672 -0.1429 +-0.1126 0.7672 0.0396 +0.0040 0.7674 0.0642 +0.0979 0.7672 0.0391 +0.3127 0.7648 -0.1528 +0.0979 0.7672 0.0391 +0.0040 0.7674 0.0642 +-0.1126 0.7672 0.0396 diff --git a/MakeItTalk/examples_cartoon/bluehead.jpg b/MakeItTalk/examples_cartoon/bluehead.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c76e9aa8222695aac7c5a80aa69c8a5ad3d2b71b Binary files /dev/null and b/MakeItTalk/examples_cartoon/bluehead.jpg differ diff --git a/MakeItTalk/examples_cartoon/bluehead_anno.jpg b/MakeItTalk/examples_cartoon/bluehead_anno.jpg new file mode 100644 index 0000000000000000000000000000000000000000..31e202ec6ced9dce39cee1e71e0eefdef3768bd3 Binary files /dev/null and b/MakeItTalk/examples_cartoon/bluehead_anno.jpg differ diff --git a/MakeItTalk/examples_cartoon/bluehead_bg.jpg b/MakeItTalk/examples_cartoon/bluehead_bg.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d74c6a8adcf04aa540c26636f1a928e21e263812 Binary files /dev/null and b/MakeItTalk/examples_cartoon/bluehead_bg.jpg differ diff --git a/MakeItTalk/examples_cartoon/bluehead_delauney_tri.txt b/MakeItTalk/examples_cartoon/bluehead_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..456f340b61b2f43bbb5eaa720298a157a17a7262 --- /dev/null +++ b/MakeItTalk/examples_cartoon/bluehead_delauney_tri.txt @@ -0,0 +1,118 @@ +21 29 38 +29 21 28 +51 47 52 +47 51 42 +56 1 57 +1 56 0 +1 0 37 +57 1 2 +2 1 36 +54 9 8 +9 54 53 +57 4 58 +4 57 3 +36 57 2 +57 36 3 +18 37 17 +37 18 19 +4 3 48 +36 41 48 +41 36 37 +58 5 6 +5 58 4 +5 4 48 +40 50 49 +50 40 51 +58 6 59 +6 5 55 +42 40 39 +40 42 51 +59 6 7 +7 6 54 +17 37 0 +7 8 59 +8 7 54 +60 59 8 +60 8 9 +38 30 31 +30 38 29 +60 10 11 +10 60 9 +10 9 53 +28 21 27 +60 11 61 +11 10 53 +61 11 12 +12 11 52 +20 38 19 +38 20 21 +61 13 62 +13 61 12 +13 12 52 +62 13 14 +14 13 45 +29 33 30 +33 29 34 +62 14 15 +15 14 45 +1 37 36 +15 16 62 +16 15 45 +62 16 26 +28 34 29 +34 28 35 +17 0 56 +30 32 31 +32 30 33 +18 17 56 +19 56 20 +56 19 18 +22 28 27 +28 22 35 +20 56 63 +21 63 27 +63 21 20 +63 22 27 +22 63 23 +23 63 24 +23 25 35 +25 23 24 +22 23 35 +62 26 24 +63 62 24 +16 45 44 +25 24 26 +16 44 26 +25 26 44 +19 38 37 +39 43 42 +43 39 33 +55 5 48 +11 53 52 +39 32 33 +32 39 31 +54 6 55 +41 37 40 +38 39 40 +39 38 31 +13 52 46 +43 33 34 +43 34 35 +45 43 44 +43 45 42 +35 44 43 +44 35 25 +3 36 48 +37 38 40 +47 42 45 +49 41 40 +41 49 48 +55 50 54 +50 55 49 +13 46 45 +47 45 46 +47 46 52 +49 55 48 +52 53 51 +50 51 53 +50 53 54 diff --git a/MakeItTalk/examples_cartoon/bluehead_face_close_mouth.txt b/MakeItTalk/examples_cartoon/bluehead_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..45881a118b2ec6ddb76fbb0256d5a7efa7e862d7 --- /dev/null +++ b/MakeItTalk/examples_cartoon/bluehead_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 0.0927 -0.8557 +-0.8051 0.2730 -0.8711 +-0.7949 0.4762 -0.8871 +-0.7644 0.7581 -0.8835 +-0.7187 0.9892 -0.8138 +-0.5308 1.2000 -0.6631 +-0.2387 1.3727 -0.4768 +0.0203 1.4667 -0.2967 +0.2844 1.4616 -0.2114 +0.5613 1.3168 -0.3033 +0.7365 1.1137 -0.4839 +0.8610 0.8521 -0.6684 +0.9346 0.5524 -0.8159 +0.9244 0.3644 -0.8807 +0.8813 0.1613 -0.8824 +0.8610 0.0292 -0.8666 +0.8000 -0.0927 -0.8501 +-0.6222 -0.0622 -0.0738 +-0.5410 -0.1079 0.0527 +-0.4419 -0.1511 0.1346 +-0.3454 -0.1765 0.1808 +-0.2210 -0.1714 0.1918 +0.1473 -0.1714 0.1986 +0.2210 -0.2044 0.1886 +0.3124 -0.2298 0.1452 +0.3759 -0.1994 0.0664 +0.4724 -0.1765 -0.0619 +-0.0127 -0.1206 0.1415 +-0.0127 -0.0749 0.2018 +-0.0127 -0.0317 0.2893 +-0.0127 -0.0013 0.2894 +-0.0203 0.0394 0.0735 +0.0229 0.0419 0.1024 +0.0762 0.0368 0.1173 +0.1016 0.0267 0.1016 +0.1397 -0.0038 0.0713 +-0.5054 0.4025 -0.0058 +-0.4317 0.1816 0.0834 +-0.1905 0.0978 0.0888 +-0.0152 0.2832 0.0487 +-0.0914 0.4838 0.0764 +-0.3124 0.5752 0.0570 +0.1905 0.2883 0.0574 +0.2210 0.1181 0.0997 +0.4013 0.0698 0.0966 +0.5130 0.2349 0.0058 +0.4673 0.4229 0.0661 +0.3149 0.4457 0.0849 +-0.4140 0.7911 -0.1399 +-0.3048 0.7359 0.0106 +-0.1168 0.7759 0.1013 +0.0686 0.7886 0.1112 +0.2362 0.6965 0.1024 +0.3962 0.5892 0.0080 +0.5206 0.5575 -0.1486 +0.5333 0.7006 -0.0193 +0.3784 0.8686 0.0498 +0.1625 0.9817 0.0609 +-0.0686 0.9492 0.0515 +-0.2921 0.8708 -0.0166 +-0.3937 0.7835 -0.1429 +-0.2377 0.8094 0.0396 +0.1087 0.8409 0.0642 +0.3617 0.7129 0.0391 +0.5130 0.5549 -0.1528 +0.4019 0.7339 0.0391 +0.1252 0.8636 0.0642 +-0.2219 0.8297 0.0396 diff --git a/MakeItTalk/examples_cartoon/bluehead_face_open_mouth.txt b/MakeItTalk/examples_cartoon/bluehead_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..f7a26a53b1ff0b1e225d56c2f3428747a661b361 --- /dev/null +++ b/MakeItTalk/examples_cartoon/bluehead_face_open_mouth.txt @@ -0,0 +1,68 @@ +7.3405 112.9722 1.0 +5.9249 163.2250 1.0 +8.7561 219.8478 1.0 +17.2495 298.4120 1.0 +29.9896 362.8205 1.0 +82.3658 421.5667 1.0 +163.7611 469.6962 1.0 +235.9553 495.8842 1.0 +309.5650 494.4687 1.0 +386.7136 454.1249 1.0 +435.5508 397.5020 1.0 +470.2323 324.6001 1.0 +490.7581 241.0814 1.0 +487.9269 188.7053 1.0 +475.8946 132.0824 1.0 +470.2323 95.2776 1.0 +453.2454 61.3038 1.0 +56.8855 69.7973 1.0 +79.5346 57.0571 1.0 +107.1383 45.0248 1.0 +134.0341 37.9469 1.0 +168.7156 39.3625 1.0 +271.3445 39.3625 1.0 +291.8703 30.1613 1.0 +317.3506 23.0834 1.0 +335.0452 31.5768 1.0 +361.9411 37.9469 1.0 +226.7540 53.5182 1.0 +226.7540 66.2583 1.0 +226.7540 78.2907 1.0 +226.7540 86.7841 1.0 +224.6307 98.1087 1.0 +236.6630 98.8165 1.0 +251.5265 97.4009 1.0 +258.6044 94.5698 1.0 +269.2212 86.0763 1.0 +89.4436 199.3220 1.0 +109.9694 137.7447 1.0 +177.2090 114.3878 1.0 +226.0463 166.0561 1.0 +204.8127 221.9712 1.0 +143.2353 247.4515 1.0 +283.3769 167.4717 1.0 +291.8703 120.0501 1.0 +342.1231 106.6021 1.0 +373.2657 152.6082 1.0 +360.5255 204.9843 1.0 +318.0584 211.3544 1.0 +114.9239 307.6132 1.0 +145.3587 272.9317 1.0 +197.7348 278.5940 1.0 +249.4032 279.3018 1.0 +296.1170 256.6527 1.0 +340.7075 235.4191 1.0 +375.3890 242.4970 1.0 +378.9280 299.1198 1.0 +335.7530 355.0349 1.0 +275.5913 389.7164 1.0 +211.1828 377.6840 1.0 +148.8976 350.0804 1.0 +120.5862 305.4899 1.0 +156.6833 275.0551 1.0 +252.9421 279.3018 1.0 +312.3961 246.7437 1.0 +373.2657 241.7892 1.0 +359.1100 344.4181 1.0 +272.0523 384.7619 1.0 +175.0857 369.1906 1.0 diff --git a/MakeItTalk/examples_cartoon/bluehead_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/bluehead_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..ab8eeacbe405da707bc9fd4b459208c19f6106dd --- /dev/null +++ b/MakeItTalk/examples_cartoon/bluehead_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 0.0927 -0.8557 +-0.8051 0.2730 -0.8711 +-0.7949 0.4762 -0.8871 +-0.7644 0.7581 -0.8835 +-0.7187 0.9892 -0.8138 +-0.5308 1.2000 -0.6631 +-0.2387 1.3727 -0.4768 +0.0203 1.4667 -0.2967 +0.2844 1.4616 -0.2114 +0.5613 1.3168 -0.3033 +0.7365 1.1137 -0.4839 +0.8610 0.8521 -0.6684 +0.9346 0.5524 -0.8159 +0.9244 0.3644 -0.8807 +0.8813 0.1613 -0.8824 +0.8610 0.0292 -0.8666 +0.8000 -0.0927 -0.8501 +-0.6222 -0.0622 -0.0738 +-0.5410 -0.1079 0.0527 +-0.4419 -0.1511 0.1346 +-0.3454 -0.1765 0.1808 +-0.2210 -0.1714 0.1918 +0.1473 -0.1714 0.1986 +0.2210 -0.2044 0.1886 +0.3124 -0.2298 0.1452 +0.3759 -0.1994 0.0664 +0.4724 -0.1765 -0.0619 +-0.0127 -0.1206 0.1415 +-0.0127 -0.0749 0.2018 +-0.0127 -0.0317 0.2893 +-0.0127 -0.0013 0.2894 +-0.0203 0.0394 0.0735 +0.0229 0.0419 0.1024 +0.0762 0.0368 0.1173 +0.1016 0.0267 0.1016 +0.1397 -0.0038 0.0713 +-0.5054 0.4025 -0.0058 +-0.4317 0.1816 0.0834 +-0.1905 0.0978 0.0888 +-0.0152 0.2832 0.0487 +-0.0914 0.4838 0.0764 +-0.3124 0.5752 0.0570 +0.1905 0.2883 0.0574 +0.2210 0.1181 0.0997 +0.4013 0.0698 0.0966 +0.5130 0.2349 0.0058 +0.4673 0.4229 0.0661 +0.3149 0.4457 0.0849 +-0.4140 0.7911 -0.1399 +-0.3048 0.6667 0.0106 +-0.1168 0.6870 0.1013 +0.0686 0.6895 0.1112 +0.2362 0.6083 0.1024 +0.3962 0.5321 0.0080 +0.5206 0.5575 -0.1486 +0.5333 0.7606 -0.0193 +0.3784 0.9613 0.0498 +0.1625 1.0857 0.0609 +-0.0686 1.0425 0.0515 +-0.2921 0.9435 -0.0166 +-0.3937 0.7835 -0.1429 +-0.2641 0.6743 0.0396 +0.0813 0.6895 0.0642 +0.2946 0.5727 0.0391 +0.5130 0.5549 -0.1528 +0.4622 0.9232 0.0391 +0.1498 1.0679 0.0642 +-0.1981 1.0121 0.0396 diff --git a/MakeItTalk/examples_cartoon/bluehead_scale_shift.txt b/MakeItTalk/examples_cartoon/bluehead_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..2ab55d283b940d6aa93b75165c6e9137cf1b23d4 --- /dev/null +++ b/MakeItTalk/examples_cartoon/bluehead_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0035882091 +-230.2929500000 +-87.1380000000 diff --git a/MakeItTalk/examples_cartoon/boy.jpg b/MakeItTalk/examples_cartoon/boy.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fb869454dd80f62aed6b80709a078748877e3bd6 Binary files /dev/null and b/MakeItTalk/examples_cartoon/boy.jpg differ diff --git a/MakeItTalk/examples_cartoon/cartoonM - Copy.png b/MakeItTalk/examples_cartoon/cartoonM - Copy.png new file mode 100644 index 0000000000000000000000000000000000000000..739777128068b3ddd7ed5da0713711bd1f93b6cd Binary files /dev/null and b/MakeItTalk/examples_cartoon/cartoonM - Copy.png differ diff --git a/MakeItTalk/examples_cartoon/cartoonM.png b/MakeItTalk/examples_cartoon/cartoonM.png new file mode 100644 index 0000000000000000000000000000000000000000..739777128068b3ddd7ed5da0713711bd1f93b6cd Binary files /dev/null and b/MakeItTalk/examples_cartoon/cartoonM.png differ diff --git a/MakeItTalk/examples_cartoon/cartoonM_anno.png b/MakeItTalk/examples_cartoon/cartoonM_anno.png new file mode 100644 index 0000000000000000000000000000000000000000..e4a1c1db9148ddce6fc935400e83b5a66258586b Binary files /dev/null and b/MakeItTalk/examples_cartoon/cartoonM_anno.png differ diff --git a/MakeItTalk/examples_cartoon/cartoonM_bg.jpg b/MakeItTalk/examples_cartoon/cartoonM_bg.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a57164f273ee417575ebcc4c575c5ed803546b5b Binary files /dev/null and b/MakeItTalk/examples_cartoon/cartoonM_bg.jpg differ diff --git a/MakeItTalk/examples_cartoon/cartoonM_delauney_tri.txt b/MakeItTalk/examples_cartoon/cartoonM_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..8fb36abfa13422b3950a276776493868e0c0aa05 --- /dev/null +++ b/MakeItTalk/examples_cartoon/cartoonM_delauney_tri.txt @@ -0,0 +1,146 @@ +20 38 19 +38 20 21 +70 0 1 +0 70 69 +77 17 69 +17 77 18 +8 56 9 +56 8 57 +70 1 2 +1 0 36 +7 57 8 +57 7 58 +70 2 3 +2 1 41 +61 50 62 +62 67 61 +69 68 77 +3 2 31 +48 4 3 +4 48 5 +70 3 71 +3 4 71 +56 10 9 +10 56 55 +5 71 4 +71 5 72 +30 35 34 +35 30 29 +72 5 6 +6 5 48 +35 29 47 +7 73 72 +73 7 8 +6 7 72 +7 6 58 +29 31 39 +31 29 30 +10 74 9 +74 10 11 +9 74 73 +8 9 73 +74 11 12 +31 41 40 +41 31 2 +74 12 75 +11 10 55 +29 42 47 +42 29 28 +75 12 13 +12 11 54 +75 13 14 +13 12 54 +27 39 21 +39 27 28 +75 14 15 +14 13 35 +17 36 0 +36 17 37 +75 15 16 +15 14 46 +37 17 18 +75 26 76 +26 75 16 +16 15 45 +27 42 28 +42 27 22 +37 18 19 +17 0 69 +18 77 19 +31 40 39 +22 78 23 +78 22 21 +19 77 78 +21 22 27 +20 19 78 +21 20 78 +15 46 45 +16 45 26 +43 22 23 +22 43 42 +23 78 24 +26 45 44 +23 24 43 +79 24 78 +24 79 25 +25 44 24 +44 25 26 +26 25 79 +76 26 79 +29 39 28 +54 35 13 +35 54 64 +33 30 34 +30 33 32 +3 60 48 +60 3 31 +62 66 67 +66 62 65 +49 32 50 +32 49 31 +31 30 32 +33 50 32 +50 33 51 +34 52 33 +52 34 53 +54 55 64 +55 54 11 +14 35 46 +34 35 53 +38 41 37 +41 38 40 +1 36 41 +19 38 37 +36 37 41 +38 21 39 +38 39 40 +44 46 43 +46 44 45 +43 24 44 +42 43 47 +43 46 47 +46 35 47 +31 49 60 +6 48 59 +60 59 48 +61 60 49 +62 50 51 +49 50 61 +51 33 52 +65 64 55 +64 65 63 +51 52 62 +53 35 64 +52 53 63 +63 53 64 +63 62 52 +62 63 65 +55 56 65 +67 60 61 +60 67 59 +56 57 66 +57 58 66 +58 6 59 +58 59 67 +67 66 58 +66 65 56 diff --git a/MakeItTalk/examples_cartoon/cartoonM_face_close_mouth.txt b/MakeItTalk/examples_cartoon/cartoonM_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..496280d429af9b6af2010f3063ae13219cc0ed01 --- /dev/null +++ b/MakeItTalk/examples_cartoon/cartoonM_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 -0.0015 -0.8557 +-0.8000 0.1963 -0.8711 +-0.8000 0.4236 -0.8871 +-0.7970 0.6362 -0.8835 +-0.7911 0.8841 -0.8138 +-0.6908 1.1616 -0.6631 +-0.5166 1.4066 -0.4768 +-0.3159 1.6192 -0.2967 +-0.0030 1.7166 -0.2114 +0.2391 1.6812 -0.3033 +0.4871 1.4450 -0.4839 +0.6642 1.2177 -0.6684 +0.7941 0.9018 -0.8159 +0.8030 0.6775 -0.8807 +0.8000 0.4354 -0.8824 +0.8000 0.2081 -0.8666 +0.8000 0.0015 -0.8501 +-0.7469 -0.1343 -0.0738 +-0.6524 -0.2878 0.0527 +-0.4871 -0.3380 0.1346 +-0.3483 -0.3173 0.1808 +-0.2332 -0.2613 0.1918 +0.2096 -0.2642 0.1986 +0.3454 -0.3203 0.1886 +0.4812 -0.3173 0.1452 +0.6672 -0.2731 0.0664 +0.7587 -0.1107 -0.0619 +0.0000 0.0015 0.1415 +0.0000 0.1491 0.2018 +-0.0030 0.2790 0.2893 +0.0030 0.4030 0.2894 +-0.2185 0.5358 0.0735 +-0.1004 0.5860 0.1024 +0.0000 0.6066 0.1173 +0.1004 0.5801 0.1016 +0.2244 0.5328 0.0713 +-0.6465 -0.0015 -0.0058 +-0.5756 -0.1491 0.0834 +-0.3218 -0.1432 0.0888 +-0.2214 0.0044 0.0487 +-0.3277 0.0015 0.0764 +-0.5432 0.0044 0.0570 +0.2125 -0.0015 0.0574 +0.2982 -0.1314 0.0997 +0.5756 -0.1432 0.0966 +0.6494 -0.0044 0.0058 +0.5697 -0.0015 0.0661 +0.3011 -0.0015 0.0849 +-0.3601 0.8723 -0.1399 +-0.2244 0.8251 0.0106 +-0.0856 0.7897 0.1013 +0.0000 0.8192 0.1112 +0.0797 0.7926 0.1024 +0.2096 0.8221 0.0080 +0.3572 0.8664 -0.1486 +0.2125 0.9373 -0.0193 +0.0886 0.9727 0.0498 +0.0000 0.9786 0.0609 +-0.0945 0.9668 0.0515 +-0.2303 0.9314 -0.0166 +-0.3546 0.8694 -0.1429 +-0.1594 0.8694 0.0396 +0.0000 0.8730 0.0642 +0.1476 0.8712 0.0391 +0.3458 0.8664 -0.1528 +0.1476 0.8739 0.0391 +0.0000 0.8749 0.0642 +-0.1594 0.8728 0.0396 diff --git a/MakeItTalk/examples_cartoon/cartoonM_face_open_mouth - Copy.txt b/MakeItTalk/examples_cartoon/cartoonM_face_open_mouth - Copy.txt new file mode 100644 index 0000000000000000000000000000000000000000..c53c76c5d60e38a5a2b151b65154b28a06a5e8b1 --- /dev/null +++ b/MakeItTalk/examples_cartoon/cartoonM_face_open_mouth - Copy.txt @@ -0,0 +1,68 @@ +253.9794 240.1855 1.0 +253.9794 275.9435 1.0 +253.9794 317.0385 1.0 +254.5131 355.4650 1.0 +255.5805 400.2959 1.0 +273.7263 450.4639 1.0 +305.2147 494.7611 1.0 +341.5064 533.1876 1.0 +398.0788 550.7997 1.0 +441.8423 544.3953 1.0 +486.6732 501.6992 1.0 +518.6953 460.6042 1.0 +542.1782 403.4981 1.0 +543.7793 362.9368 1.0 +543.2456 319.1733 1.0 +543.2456 278.0783 1.0 +543.2456 240.7192 1.0 +263.5860 216.1689 1.0 +280.6645 188.4164 1.0 +310.5518 179.3435 1.0 +335.6357 183.0794 1.0 +356.4501 193.2198 1.0 +436.5053 192.6861 1.0 +461.0556 182.5457 1.0 +485.6058 183.0794 1.0 +519.2290 191.0850 1.0 +535.7738 220.4385 1.0 +398.6125 240.7192 1.0 +398.6125 267.4043 1.0 +398.0788 290.8871 1.0 +399.1462 313.3026 1.0 +359.1186 337.3192 1.0 +380.4666 346.3921 1.0 +398.6125 350.1280 1.0 +416.7583 345.3247 1.0 +439.1738 336.7855 1.0 +281.7319 240.1855 1.0 +294.5407 213.5004 1.0 +340.4390 214.5678 1.0 +358.5849 241.2529 1.0 +339.3716 240.7192 1.0 +300.4114 241.2529 1.0 +437.0390 240.1855 1.0 +452.5163 216.7026 1.0 +502.6843 214.5678 1.0 +516.0268 239.6518 1.0 +501.6169 240.1855 1.0 +453.0500 240.1855 1.0 +333.5009 398.1611 1.0 +358.0512 389.6219 1.0 +383.1351 383.2175 1.0 +398.6125 388.5545 1.0 +413.0224 383.7512 1.0 +436.5053 389.0882 1.0 +463.1904 397.0937 1.0 +437.0390 409.9026 1.0 +414.6235 416.3070 1.0 +398.6125 417.3744 1.0 +381.5340 415.2396 1.0 +356.9838 408.8352 1.0 +333.5009 397.6274 1.0 +369.7926 397.6274 1.0 +398.6125 398.6948 1.0 +425.2976 398.1611 1.0 +462.1230 397.0937 1.0 +425.2976 398.1611 1.0 +398.6125 398.1611 1.0 +369.7926 398.1611 1.0 diff --git a/MakeItTalk/examples_cartoon/cartoonM_face_open_mouth.txt b/MakeItTalk/examples_cartoon/cartoonM_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..31c9654da7e8eb7e6ceeeca37d0c76d5e3df445c --- /dev/null +++ b/MakeItTalk/examples_cartoon/cartoonM_face_open_mouth.txt @@ -0,0 +1,68 @@ +253.9794 240.1855 1.0 +253.9794 275.9435 1.0 +253.9794 317.0385 1.0 +254.5131 355.4650 1.0 +255.5805 400.2959 1.0 +273.7263 450.4639 1.0 +305.2147 494.7611 1.0 +341.5064 533.1876 1.0 +398.0788 550.7997 1.0 +441.8423 544.3953 1.0 +486.6732 501.6992 1.0 +518.6953 460.6042 1.0 +542.1782 403.4981 1.0 +543.7793 362.9368 1.0 +543.2456 319.1733 1.0 +543.2456 278.0783 1.0 +543.2456 240.7192 1.0 +263.5860 216.1689 1.0 +280.6645 188.4164 1.0 +310.5518 179.3435 1.0 +335.6357 183.0794 1.0 +356.4501 193.2198 1.0 +436.5053 192.6861 1.0 +461.0556 182.5457 1.0 +485.6058 183.0794 1.0 +519.2290 191.0850 1.0 +535.7738 220.4385 1.0 +398.6125 240.7192 1.0 +398.6125 267.4043 1.0 +398.0788 290.8871 1.0 +399.1462 313.3026 1.0 +359.1186 337.3192 1.0 +380.4666 346.3921 1.0 +398.6125 350.1280 1.0 +416.7583 345.3247 1.0 +439.1738 336.7855 1.0 +281.7319 240.1855 1.0 +294.5407 213.5004 1.0 +340.4390 214.5678 1.0 +358.5849 241.2529 1.0 +339.3716 240.7192 1.0 +300.4114 241.2529 1.0 +437.0390 240.1855 1.0 +452.5163 216.7026 1.0 +502.6843 214.5678 1.0 +516.0268 239.6518 1.0 +501.6169 240.1855 1.0 +453.0500 240.1855 1.0 +333.5009 398.1611 1.0 +358.0512 389.6219 1.0 +383.1351 383.2175 1.0 +398.6125 388.5545 1.0 +413.0224 383.7512 1.0 +436.5053 389.0882 1.0 +463.1904 397.0937 1.0 +437.0390 409.9026 1.0 +414.6235 416.3070 1.0 +398.6125 417.3744 1.0 +381.5340 415.2396 1.0 +356.9838 408.8352 1.0 +334.5009 397.6274 1.0 +369.7926 396.6274 1.0 +398.6125 397.6948 1.0 +425.2976 397.1611 1.0 +461.1230 397.0937 1.0 +425.2976 399.1611 1.0 +398.6125 399.1611 1.0 +369.7926 399.1611 1.0 diff --git a/MakeItTalk/examples_cartoon/cartoonM_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/cartoonM_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..b00d0e37103f9be09e008dc80a239b83ad562245 --- /dev/null +++ b/MakeItTalk/examples_cartoon/cartoonM_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 -0.0015 -0.8557 +-0.8000 0.1963 -0.8711 +-0.8000 0.4236 -0.8871 +-0.7970 0.6362 -0.8835 +-0.7911 0.8841 -0.8138 +-0.6908 1.1616 -0.6631 +-0.5166 1.4066 -0.4768 +-0.3159 1.6192 -0.2967 +-0.0030 1.7166 -0.2114 +0.2391 1.6812 -0.3033 +0.4871 1.4450 -0.4839 +0.6642 1.2177 -0.6684 +0.7941 0.9018 -0.8159 +0.8030 0.6775 -0.8807 +0.8000 0.4354 -0.8824 +0.8000 0.2081 -0.8666 +0.8000 0.0015 -0.8501 +-0.7469 -0.1343 -0.0738 +-0.6524 -0.2878 0.0527 +-0.4871 -0.3380 0.1346 +-0.3483 -0.3173 0.1808 +-0.2332 -0.2613 0.1918 +0.2096 -0.2642 0.1986 +0.3454 -0.3203 0.1886 +0.4812 -0.3173 0.1452 +0.6672 -0.2731 0.0664 +0.7587 -0.1107 -0.0619 +0.0000 0.0015 0.1415 +0.0000 0.1491 0.2018 +-0.0030 0.2790 0.2893 +0.0030 0.4030 0.2894 +-0.2185 0.5358 0.0735 +-0.1004 0.5860 0.1024 +0.0000 0.6066 0.1173 +0.1004 0.5801 0.1016 +0.2244 0.5328 0.0713 +-0.6465 -0.0015 -0.0058 +-0.5756 -0.1491 0.0834 +-0.3218 -0.1432 0.0888 +-0.2214 0.0044 0.0487 +-0.3277 0.0015 0.0764 +-0.5432 0.0044 0.0570 +0.2125 -0.0015 0.0574 +0.2982 -0.1314 0.0997 +0.5756 -0.1432 0.0966 +0.6494 -0.0044 0.0058 +0.5697 -0.0015 0.0661 +0.3011 -0.0015 0.0849 +-0.3601 0.8723 -0.1399 +-0.2244 0.8251 0.0106 +-0.0856 0.7897 0.1013 +0.0000 0.8192 0.1112 +0.0797 0.7926 0.1024 +0.2096 0.8221 0.0080 +0.3572 0.8664 -0.1486 +0.2125 0.9373 -0.0193 +0.0886 0.9727 0.0498 +0.0000 0.9786 0.0609 +-0.0945 0.9668 0.0515 +-0.2303 0.9314 -0.0166 +-0.3546 0.8694 -0.1429 +-0.1594 0.8638 0.0396 +0.0000 0.8697 0.0642 +0.1476 0.8668 0.0391 +0.3458 0.8664 -0.1528 +0.1476 0.8779 0.0391 +0.0000 0.8779 0.0642 +-0.1594 0.8779 0.0396 diff --git a/MakeItTalk/examples_cartoon/cartoonM_scale_shift.txt b/MakeItTalk/examples_cartoon/cartoonM_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..76daa098bb7061acaa0310a5a8ede588ec81a067 --- /dev/null +++ b/MakeItTalk/examples_cartoon/cartoonM_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0055312373 +-398.6125000000 +-240.4523500000 diff --git a/MakeItTalk/examples_cartoon/color.jpg b/MakeItTalk/examples_cartoon/color.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4cd241230e101d1f61cbf7f1ccad99ed1327a69e Binary files /dev/null and b/MakeItTalk/examples_cartoon/color.jpg differ diff --git a/MakeItTalk/examples_cartoon/color_anno.jpg b/MakeItTalk/examples_cartoon/color_anno.jpg new file mode 100644 index 0000000000000000000000000000000000000000..30f4fc93dca86f69a995ea9adda1f04705aa1af0 Binary files /dev/null and b/MakeItTalk/examples_cartoon/color_anno.jpg differ diff --git a/MakeItTalk/examples_cartoon/color_delauney_tri.txt b/MakeItTalk/examples_cartoon/color_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..5d9c59370b6fd12e627ac5710e68d41496c311bf --- /dev/null +++ b/MakeItTalk/examples_cartoon/color_delauney_tri.txt @@ -0,0 +1,142 @@ +36 0 17 +0 36 1 +0 68 18 +68 0 69 +18 68 75 +32 49 31 +49 32 50 +69 0 1 +62 50 51 +50 62 61 +69 1 2 +2 1 31 +62 52 63 +52 62 51 +2 3 69 +3 2 48 +3 48 4 +4 70 69 +70 4 5 +3 4 69 +57 7 58 +7 57 8 +70 5 6 +5 4 48 +12 55 54 +55 12 11 +70 6 71 +6 5 59 +35 29 47 +29 35 30 +7 71 6 +71 7 8 +7 6 58 +71 8 9 +71 9 10 +9 8 57 +31 1 41 +10 72 71 +72 10 11 +10 9 56 +29 31 40 +31 29 30 +72 11 12 +11 10 56 +46 43 44 +43 46 47 +12 73 72 +73 12 13 +28 40 39 +40 28 29 +73 13 14 +13 12 54 +37 19 20 +19 37 18 +73 14 15 +14 13 54 +37 17 18 +17 37 36 +73 15 16 +15 14 35 +39 27 28 +27 39 21 +16 74 73 +74 16 25 +16 15 45 +23 75 24 +75 23 22 +0 18 17 +18 75 19 +38 40 37 +40 38 39 +20 75 22 +75 20 19 +27 21 22 +22 21 20 +20 21 38 +43 22 23 +22 43 42 +42 27 22 +27 42 28 +46 44 45 +15 46 45 +46 15 35 +44 23 24 +23 44 43 +75 25 24 +25 75 74 +25 16 26 +24 25 44 +26 16 45 +44 25 26 +29 42 47 +42 29 28 +37 40 41 +30 35 34 +62 65 66 +65 62 63 +6 59 58 +51 33 52 +33 51 50 +62 67 61 +31 30 32 +48 2 31 +56 9 57 +32 30 33 +34 52 33 +52 34 53 +32 33 50 +33 30 34 +14 54 35 +34 35 53 +41 1 36 +20 38 37 +36 37 41 +21 39 38 +40 31 41 +42 43 47 +26 45 44 +46 35 47 +48 31 49 +5 48 59 +48 49 60 +49 50 61 +54 55 64 +52 53 63 +53 35 54 +53 54 64 +64 63 53 +63 64 65 +55 11 56 +67 62 66 +55 56 65 +59 67 58 +67 59 60 +56 57 66 +61 60 49 +60 61 67 +57 58 66 +59 48 60 +56 66 65 +65 64 55 +66 58 67 diff --git a/MakeItTalk/examples_cartoon/color_face_close_mouth.txt b/MakeItTalk/examples_cartoon/color_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..66e4ce1d1711185b49911e4075fd7b5945cc12b3 --- /dev/null +++ b/MakeItTalk/examples_cartoon/color_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 0.1102 -0.8557 +-0.7800 0.3807 -0.8711 +-0.6918 0.6514 -0.8871 +-0.6289 0.8088 -0.8835 +-0.5030 0.9661 -0.8138 +-0.3016 1.0606 -0.6631 +-0.0875 1.0983 -0.4768 +0.0698 1.1235 -0.2967 +0.2713 1.1361 -0.2114 +0.4727 1.0480 -0.3033 +0.6363 0.9032 -0.4839 +0.7685 0.7332 -0.6684 +0.8818 0.5885 -0.8159 +0.8881 0.4311 -0.8807 +0.8692 0.2674 -0.8824 +0.8504 0.0912 -0.8666 +0.8000 -0.1102 -0.8501 +-0.6541 -0.3935 -0.0738 +-0.5848 -0.4564 0.0527 +-0.4652 -0.4753 0.1346 +-0.3393 -0.5005 0.1808 +-0.2638 -0.5005 0.1918 +0.2838 -0.6138 0.1986 +0.3657 -0.6138 0.1886 +0.4286 -0.6264 0.1452 +0.5356 -0.5823 0.0664 +0.6552 -0.5320 -0.0619 +0.0761 -0.3117 0.1415 +0.0887 -0.2235 0.2018 +0.0887 -0.1291 0.2893 +0.0887 -0.0410 0.2894 +-0.1253 0.0220 0.0735 +-0.0309 0.0408 0.1024 +0.1139 0.0408 0.1173 +0.2020 0.0408 0.1016 +0.3405 0.0157 0.0713 +-0.4400 -0.1921 -0.0058 +-0.3960 -0.2676 0.0834 +-0.2953 -0.3180 0.0888 +-0.2071 -0.2676 0.0487 +-0.2449 -0.1417 0.0764 +-0.3834 -0.1228 0.0570 +0.2587 -0.3620 0.0574 +0.3405 -0.4124 0.0997 +0.4664 -0.4124 0.0966 +0.5545 -0.2991 0.0058 +0.4664 -0.2613 0.0661 +0.3657 -0.2550 0.0849 +-0.1379 0.5066 -0.1399 +-0.0435 0.3745 0.0106 +0.0698 0.2863 0.1013 +0.1831 0.2863 0.1112 +0.2713 0.2297 0.1024 +0.3846 0.3115 0.0080 +0.5042 0.3933 -0.1486 +0.4223 0.5129 -0.0193 +0.3594 0.5759 0.0498 +0.2398 0.6325 0.0609 +0.1202 0.6325 0.0515 +-0.0183 0.6136 -0.0166 +-0.0687 0.4941 -0.1429 +0.0686 0.4248 0.0396 +0.1894 0.3870 0.0642 +0.3153 0.3845 0.0391 +0.4160 0.3996 -0.1528 +0.3153 0.3891 0.0391 +0.1894 0.3927 0.0642 +0.0716 0.4305 0.0396 diff --git a/MakeItTalk/examples_cartoon/color_face_open_mouth.txt b/MakeItTalk/examples_cartoon/color_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..f51bb707e1c062afa717d04fbb25aae581774225 --- /dev/null +++ b/MakeItTalk/examples_cartoon/color_face_open_mouth.txt @@ -0,0 +1,68 @@ +175.6666 87.7351 1.0 +177.2102 108.5660 1.0 +183.9963 129.4089 1.0 +188.8434 141.5269 1.0 +198.5378 153.6448 1.0 +214.0488 160.9156 1.0 +230.5293 163.8239 1.0 +242.6473 165.7628 1.0 +258.1583 166.7323 1.0 +273.6693 159.9462 1.0 +286.2720 148.7977 1.0 +296.4511 135.7102 1.0 +305.1761 124.5617 1.0 +305.6608 112.4437 1.0 +304.2066 99.8410 1.0 +302.7525 86.2689 1.0 +298.8747 70.7579 1.0 +186.9046 48.9455 1.0 +192.2365 44.0983 1.0 +201.4461 42.6441 1.0 +211.1405 40.7053 1.0 +216.9572 40.7053 1.0 +259.1277 31.9803 1.0 +265.4291 31.9803 1.0 +270.2763 31.0109 1.0 +278.5165 34.4039 1.0 +287.7262 38.2817 1.0 +243.1320 55.2468 1.0 +244.1014 62.0329 1.0 +244.1014 69.3037 1.0 +244.1014 76.0898 1.0 +227.6210 80.9370 1.0 +234.8918 82.3911 1.0 +246.0403 82.3911 1.0 +252.8264 82.3911 1.0 +263.4902 80.4522 1.0 +203.3850 64.4565 1.0 +206.7781 58.6399 1.0 +214.5336 54.7621 1.0 +221.3196 58.6399 1.0 +218.4113 68.3343 1.0 +207.7475 69.7884 1.0 +257.1889 51.3691 1.0 +263.4902 47.4913 1.0 +273.1846 47.4913 1.0 +279.9707 56.2163 1.0 +273.1846 59.1246 1.0 +265.4291 59.6093 1.0 +226.6515 118.2603 1.0 +233.9223 108.0812 1.0 +242.6473 101.2952 1.0 +251.3722 101.2952 1.0 +258.1583 96.9327 1.0 +266.8832 103.2340 1.0 +276.0929 109.5354 1.0 +269.7916 118.7451 1.0 +264.9444 123.5923 1.0 +255.7347 127.9547 1.0 +246.5250 127.9547 1.0 +235.8612 126.5006 1.0 +231.9835 117.2909 1.0 +242.1626 110.9896 1.0 +251.8569 108.0812 1.0 +261.5513 108.0812 1.0 +269.3068 110.0201 1.0 +261.5513 110.0201 1.0 +251.8569 110.5048 1.0 +243.1320 113.4132 1.0 diff --git a/MakeItTalk/examples_cartoon/color_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/color_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..8802be3240fe21f87de86e548fe66e43d0bb0af2 --- /dev/null +++ b/MakeItTalk/examples_cartoon/color_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 0.1102 -0.8557 +-0.7800 0.3807 -0.8711 +-0.6918 0.6514 -0.8871 +-0.6289 0.8088 -0.8835 +-0.5030 0.9661 -0.8138 +-0.3016 1.0606 -0.6631 +-0.0875 1.0983 -0.4768 +0.0698 1.1235 -0.2967 +0.2713 1.1361 -0.2114 +0.4727 1.0480 -0.3033 +0.6363 0.9032 -0.4839 +0.7685 0.7332 -0.6684 +0.8818 0.5885 -0.8159 +0.8881 0.4311 -0.8807 +0.8692 0.2674 -0.8824 +0.8504 0.0912 -0.8666 +0.8000 -0.1102 -0.8501 +-0.6541 -0.3935 -0.0738 +-0.5848 -0.4564 0.0527 +-0.4652 -0.4753 0.1346 +-0.3393 -0.5005 0.1808 +-0.2638 -0.5005 0.1918 +0.2838 -0.6138 0.1986 +0.3657 -0.6138 0.1886 +0.4286 -0.6264 0.1452 +0.5356 -0.5823 0.0664 +0.6552 -0.5320 -0.0619 +0.0761 -0.3117 0.1415 +0.0887 -0.2235 0.2018 +0.0887 -0.1291 0.2893 +0.0887 -0.0410 0.2894 +-0.1253 0.0220 0.0735 +-0.0309 0.0408 0.1024 +0.1139 0.0408 0.1173 +0.2020 0.0408 0.1016 +0.3405 0.0157 0.0713 +-0.4400 -0.1921 -0.0058 +-0.3960 -0.2676 0.0834 +-0.2953 -0.3180 0.0888 +-0.2071 -0.2676 0.0487 +-0.2449 -0.1417 0.0764 +-0.3834 -0.1228 0.0570 +0.2587 -0.3620 0.0574 +0.3405 -0.4124 0.0997 +0.4664 -0.4124 0.0966 +0.5545 -0.2991 0.0058 +0.4664 -0.2613 0.0661 +0.3657 -0.2550 0.0849 +-0.1379 0.5066 -0.1399 +-0.0435 0.3745 0.0106 +0.0698 0.2863 0.1013 +0.1831 0.2863 0.1112 +0.2713 0.2297 0.1024 +0.3846 0.3115 0.0080 +0.5042 0.3933 -0.1486 +0.4223 0.5129 -0.0193 +0.3594 0.5759 0.0498 +0.2398 0.6325 0.0609 +0.1202 0.6325 0.0515 +-0.0183 0.6136 -0.0166 +-0.0687 0.4941 -0.1429 +0.0635 0.4122 0.0396 +0.1894 0.3745 0.0642 +0.3153 0.3745 0.0391 +0.4160 0.3996 -0.1528 +0.3153 0.3996 0.0391 +0.1894 0.4059 0.0642 +0.0761 0.4437 0.0396 diff --git a/MakeItTalk/examples_cartoon/cuphead.png b/MakeItTalk/examples_cartoon/cuphead.png new file mode 100644 index 0000000000000000000000000000000000000000..02cfe6d10605578563d0c4cea96e46df79e9b546 Binary files /dev/null and b/MakeItTalk/examples_cartoon/cuphead.png differ diff --git a/MakeItTalk/examples_cartoon/cuphead_anno.png b/MakeItTalk/examples_cartoon/cuphead_anno.png new file mode 100644 index 0000000000000000000000000000000000000000..20d838fc5c069017f7f3708a5f68f4bc2a64151e Binary files /dev/null and b/MakeItTalk/examples_cartoon/cuphead_anno.png differ diff --git a/MakeItTalk/examples_cartoon/cuphead_delauney_tri - Copy.txt b/MakeItTalk/examples_cartoon/cuphead_delauney_tri - Copy.txt new file mode 100644 index 0000000000000000000000000000000000000000..5a563ad54f985123d97c82ad1fb44e2b6db9868f --- /dev/null +++ b/MakeItTalk/examples_cartoon/cuphead_delauney_tri - Copy.txt @@ -0,0 +1,122 @@ +40 39 29 +39 40 41 +0 57 37 +57 0 58 +57 56 65 +0 36 1 +36 0 37 +1 58 0 +58 1 2 +36 2 1 +2 36 3 +2 59 58 +59 2 3 +59 3 4 +5 48 6 +48 5 4 +59 4 5 +4 3 48 +39 21 42 +21 39 41 +5 60 59 +60 5 61 +18 41 17 +41 18 21 +61 5 6 +17 41 36 +7 61 6 +61 7 8 +7 6 55 +21 19 20 +19 21 18 +61 8 9 +8 7 54 +10 62 61 +62 10 11 +10 61 9 +9 8 54 +12 62 11 +62 12 63 +10 9 53 +52 33 12 +33 52 32 +11 10 52 +32 52 40 +63 12 13 +12 11 52 +50 55 49 +55 50 54 +63 13 14 +13 12 46 +63 14 15 +14 13 46 +32 29 33 +29 32 30 +15 64 63 +64 15 16 +15 14 45 +30 32 31 +64 16 26 +16 15 44 +23 44 22 +44 23 24 +17 65 18 +65 17 37 +33 29 28 +36 37 17 +18 65 19 +14 47 45 +47 14 46 +19 65 20 +42 45 39 +45 42 44 +21 66 38 +66 21 20 +20 65 66 +44 15 45 +45 47 39 +22 66 23 +66 22 38 +22 44 42 +67 23 66 +23 67 24 +24 67 25 +44 25 26 +25 44 24 +25 67 26 +44 26 16 +27 35 34 +35 27 47 +12 34 35 +34 12 33 +40 29 30 +27 28 47 +28 27 33 +6 48 55 +28 29 39 +40 30 31 +50 49 41 +52 53 51 +52 10 53 +32 40 31 +33 27 34 +12 35 46 +35 47 46 +48 3 36 +37 57 65 +21 38 42 +38 22 43 +28 39 47 +54 7 55 +36 41 48 +41 40 51 +48 49 55 +49 48 41 +42 38 43 +22 42 43 +9 54 53 +50 41 51 +50 51 53 +51 40 52 +50 53 54 +64 26 67 diff --git a/MakeItTalk/examples_cartoon/cuphead_delauney_tri.txt b/MakeItTalk/examples_cartoon/cuphead_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..5605ac4e8e8ce37683d5b23bb18a8f28f39d3751 --- /dev/null +++ b/MakeItTalk/examples_cartoon/cuphead_delauney_tri.txt @@ -0,0 +1,122 @@ +40 39 29 +39 40 41 +0 57 37 +57 0 58 +57 56 65 +0 36 1 +36 0 37 +1 58 0 +58 1 2 +36 2 1 +2 36 3 +2 59 58 +59 2 3 +59 3 4 +5 48 6 +48 5 4 +59 4 5 +4 3 48 +39 38 42 +38 39 41 +5 60 59 +60 5 61 +18 38 17 +38 18 21 +61 5 6 +38 41 36 +7 61 6 +61 7 8 +7 6 55 +21 19 20 +19 21 18 +61 8 9 +8 7 54 +10 62 61 +62 10 11 +10 61 9 +9 8 54 +12 62 11 +62 12 63 +10 9 53 +52 33 12 +33 52 32 +11 10 52 +32 52 40 +63 12 13 +12 11 52 +50 55 49 +55 50 54 +63 13 14 +13 12 46 +63 14 15 +14 13 46 +32 29 33 +29 32 30 +15 64 63 +64 15 16 +15 14 45 +30 32 31 +64 16 26 +16 15 44 +23 44 22 +44 23 24 +17 65 18 +65 17 37 +33 29 28 +36 37 38 +18 65 19 +14 46 45 +47 45 46 +19 65 20 +42 45 39 +45 42 44 +21 66 38 +66 21 20 +20 65 66 +44 15 45 +45 47 39 +22 66 23 +66 22 38 +22 44 42 +67 23 66 +23 67 24 +24 67 25 +44 25 26 +25 44 24 +25 67 26 +44 26 16 +27 35 34 +35 27 47 +12 34 35 +34 12 33 +40 29 30 +27 28 47 +28 27 33 +6 48 55 +28 29 39 +40 30 31 +50 49 41 +52 53 51 +52 10 53 +32 40 31 +33 27 34 +12 35 46 +35 47 46 +48 3 36 +37 57 65 +38 22 43 +28 39 47 +54 7 55 +36 41 48 +41 40 51 +48 49 55 +49 48 41 +42 38 43 +22 42 43 +9 54 53 +50 41 51 +50 51 53 +51 40 52 +50 53 54 +64 26 67 +17 37 38 \ No newline at end of file diff --git a/MakeItTalk/examples_cartoon/cuphead_face_close_mouth.txt b/MakeItTalk/examples_cartoon/cuphead_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..b1c548d92c31ff1fba6bc83f4e7d44944679b915 --- /dev/null +++ b/MakeItTalk/examples_cartoon/cuphead_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 0.2627 0.0000 +-0.7684 0.4128 0.0000 +-0.6894 0.5590 0.0000 +-0.5985 0.6815 0.0000 +-0.4879 0.7763 0.0000 +-0.3694 0.8711 0.0000 +-0.2193 0.9343 0.0000 +-0.0375 0.9778 0.0000 +0.1086 0.9778 0.0000 +0.3062 0.9343 0.0000 +0.4958 0.8514 0.0000 +0.6341 0.7447 0.0000 +0.7644 0.5867 0.0000 +0.8316 0.4286 0.0000 +0.8711 0.2232 0.0000 +0.8632 -0.0415 0.0000 +0.8000 -0.2627 0.0000 +-0.3378 -0.1363 0.0000 +-0.2785 -0.1719 0.0000 +-0.2153 -0.2074 0.0000 +-0.1521 -0.2311 0.0000 +-0.0849 -0.2311 0.0000 +0.5116 -0.3180 0.0000 +0.5709 -0.3417 0.0000 +0.6262 -0.3496 0.0000 +0.6736 -0.3457 0.0000 +0.7328 -0.3417 0.0000 +0.5432 0.3536 0.0000 +0.5156 0.3615 0.0000 +0.4958 0.3812 0.0000 +0.4840 0.4128 0.0000 +0.4840 0.4444 0.0000 +0.5195 0.4563 0.0000 +0.5748 0.4523 0.0000 +0.6104 0.4405 0.0000 +0.6617 0.4049 0.0000 +-0.4721 0.3970 0.0000 +-0.6064 0.0375 0.0000 +0.3220 -0.2825 0.0000 +0.4840 0.1995 0.0000 +0.4326 0.4642 0.0000 +-0.0652 0.5827 0.0000 +0.4444 -0.0257 0.0000 +0.4168 -0.2390 0.0000 +0.7328 -0.2667 0.0000 +0.8040 0.0494 0.0000 +0.7921 0.3615 0.0000 +0.5748 0.2983 0.0000 +-0.3654 0.6933 0.0000 +-0.1995 0.7068 0.0000 +-0.0138 0.7486 0.0000 +0.1086 0.7605 0.0000 +0.2114 0.7415 0.0000 +0.4010 0.7068 0.0000 +0.5472 0.6696 0.0000 +0.4128 0.7314 0.0000 +0.2311 0.7870 0.0000 +0.1047 0.8079 0.0000 +0.0020 0.7960 0.0000 +-0.1877 0.7409 0.0000 +-0.3615 0.6933 0.0000 +-0.0834 0.7328 0.0000 +0.1039 0.7671 0.0000 +0.2761 0.7378 0.0000 +0.5511 0.6736 0.0000 +0.2771 0.7560 0.0000 +0.1058 0.7857 0.0000 +-0.0824 0.7500 0.0000 diff --git a/MakeItTalk/examples_cartoon/cuphead_face_open_mouth.txt b/MakeItTalk/examples_cartoon/cuphead_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..81aa362ed02dd815f9321b51d1e4eb6a24a197f6 --- /dev/null +++ b/MakeItTalk/examples_cartoon/cuphead_face_open_mouth.txt @@ -0,0 +1,68 @@ +140.9400 290.0367 1.0 +147.6491 321.9049 1.0 +164.4218 352.9344 1.0 +183.7104 378.9320 1.0 +207.1922 399.0593 1.0 +232.3512 419.1865 1.0 +264.2193 432.6047 1.0 +302.7966 441.8297 1.0 +333.8261 441.8297 1.0 +375.7578 432.6047 1.0 +416.0123 414.9933 1.0 +445.3645 392.3502 1.0 +473.0395 358.8048 1.0 +487.2963 325.2594 1.0 +495.6826 281.6504 1.0 +494.0053 225.4618 1.0 +480.5872 178.4983 1.0 +239.0603 205.3346 1.0 +251.6398 197.7869 1.0 +265.0580 190.2392 1.0 +278.4761 185.2073 1.0 +292.7329 185.2073 1.0 +419.3668 166.7574 1.0 +431.9464 161.7256 1.0 +443.6872 160.0483 1.0 +453.7509 160.8869 1.0 +466.3304 161.7256 1.0 +426.0759 309.3253 1.0 +420.2055 311.0026 1.0 +416.0123 315.1958 1.0 +413.4964 321.9049 1.0 +413.4964 328.6139 1.0 +421.0441 331.1298 1.0 +432.7850 330.2912 1.0 +440.3327 327.7753 1.0 +451.2350 320.2276 1.0 +210.5467 318.5503 1.0 +182.0331 242.2345 1.0 +379.1123 174.3051 1.0 +413.4964 276.6186 1.0 +402.5941 332.8071 1.0 +296.9261 357.9662 1.0 +405.1100 228.8164 1.0 +399.2396 183.5301 1.0 +466.3304 177.6596 1.0 +481.4258 244.7504 1.0 +478.9099 311.0026 1.0 +432.7850 297.5844 1.0 +233.1898 381.4479 1.0 +268.4125 372.2230 1.0 +307.8284 376.4161 1.0 +333.8261 378.9320 1.0 +355.6306 375.5775 1.0 +395.8850 375.5775 1.0 +426.9145 376.4161 1.0 +398.4010 397.3820 1.0 +359.8237 415.8320 1.0 +332.9874 420.8638 1.0 +311.1829 418.3479 1.0 +270.9284 402.4138 1.0 +234.0285 381.4479 1.0 +292.7329 372.2230 1.0 +332.1488 378.0934 1.0 +369.0487 372.2230 1.0 +427.7532 377.2548 1.0 +369.8874 416.6706 1.0 +333.8261 423.3797 1.0 +293.5716 414.1547 1.0 diff --git a/MakeItTalk/examples_cartoon/cuphead_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/cuphead_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..8a78024f123df344b872202516f86c85569f376f --- /dev/null +++ b/MakeItTalk/examples_cartoon/cuphead_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 0.2627 0.0000 +-0.7684 0.4128 0.0000 +-0.6894 0.5590 0.0000 +-0.5985 0.6815 0.0000 +-0.4879 0.7763 0.0000 +-0.3694 0.8711 0.0000 +-0.2193 0.9343 0.0000 +-0.0375 0.9778 0.0000 +0.1086 0.9778 0.0000 +0.3062 0.9343 0.0000 +0.4958 0.8514 0.0000 +0.6341 0.7447 0.0000 +0.7644 0.5867 0.0000 +0.8316 0.4286 0.0000 +0.8711 0.2232 0.0000 +0.8632 -0.0415 0.0000 +0.8000 -0.2627 0.0000 +-0.3378 -0.1363 0.0000 +-0.2785 -0.1719 0.0000 +-0.2153 -0.2074 0.0000 +-0.1521 -0.2311 0.0000 +-0.0849 -0.2311 0.0000 +0.5116 -0.3180 0.0000 +0.5709 -0.3417 0.0000 +0.6262 -0.3496 0.0000 +0.6736 -0.3457 0.0000 +0.7328 -0.3417 0.0000 +0.5432 0.3536 0.0000 +0.5156 0.3615 0.0000 +0.4958 0.3812 0.0000 +0.4840 0.4128 0.0000 +0.4840 0.4444 0.0000 +0.5195 0.4563 0.0000 +0.5748 0.4523 0.0000 +0.6104 0.4405 0.0000 +0.6617 0.4049 0.0000 +-0.4721 0.3970 0.0000 +-0.6064 0.0375 0.0000 +0.3220 -0.2825 0.0000 +0.4840 0.1995 0.0000 +0.4326 0.4642 0.0000 +-0.0652 0.5827 0.0000 +0.4444 -0.0257 0.0000 +0.4168 -0.2390 0.0000 +0.7328 -0.2667 0.0000 +0.8040 0.0494 0.0000 +0.7921 0.3615 0.0000 +0.5748 0.2983 0.0000 +-0.3654 0.6933 0.0000 +-0.1995 0.6499 0.0000 +-0.0138 0.6696 0.0000 +0.1086 0.6815 0.0000 +0.2114 0.6657 0.0000 +0.4010 0.6657 0.0000 +0.5472 0.6696 0.0000 +0.4128 0.7684 0.0000 +0.2311 0.8553 0.0000 +0.1047 0.8790 0.0000 +0.0020 0.8672 0.0000 +-0.1877 0.7921 0.0000 +-0.3615 0.6933 0.0000 +-0.0849 0.6499 0.0000 +0.1007 0.6775 0.0000 +0.2746 0.6499 0.0000 +0.5511 0.6736 0.0000 +0.2785 0.8593 0.0000 +0.1086 0.8909 0.0000 +-0.0810 0.8474 0.0000 diff --git a/MakeItTalk/examples_cartoon/cuphead_scale_shift.txt b/MakeItTalk/examples_cartoon/cuphead_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..74996a2c90490bfb328b8554f5f3c9883efbd9b4 --- /dev/null +++ b/MakeItTalk/examples_cartoon/cuphead_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0047107705 +-310.7636000000 +-234.2675000000 diff --git a/MakeItTalk/examples_cartoon/danbooru1.jpg b/MakeItTalk/examples_cartoon/danbooru1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d81402d63fc7658755fb8fb90140525cecbd12bb Binary files /dev/null and b/MakeItTalk/examples_cartoon/danbooru1.jpg differ diff --git a/MakeItTalk/examples_cartoon/danbooru1_anno.jpg b/MakeItTalk/examples_cartoon/danbooru1_anno.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cead9a779cc97b90cac31b580c9fe8621a378d04 Binary files /dev/null and b/MakeItTalk/examples_cartoon/danbooru1_anno.jpg differ diff --git a/MakeItTalk/examples_cartoon/danbooru1_delauney_tri.txt b/MakeItTalk/examples_cartoon/danbooru1_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..c25f6680768fedd5e590b5df9f6ba5f4dc3dd460 --- /dev/null +++ b/MakeItTalk/examples_cartoon/danbooru1_delauney_tri.txt @@ -0,0 +1,122 @@ +48 6 5 +6 48 55 +0 58 17 +58 0 59 +57 56 65 +41 38 40 +38 41 37 +1 59 0 +59 1 2 +1 0 36 +36 17 37 +17 36 0 +59 2 3 +2 1 36 +13 47 46 +47 13 12 +3 60 59 +60 3 4 +3 2 41 +19 38 18 +38 19 20 +5 60 4 +60 5 61 +4 3 41 +30 33 29 +33 30 32 +5 4 48 +49 54 55 +54 49 50 +61 5 6 +34 29 33 +29 34 28 +7 61 6 +61 7 8 +7 6 55 +10 62 9 +62 10 11 +61 9 62 +9 61 8 +8 7 54 +9 8 54 +62 11 12 +10 9 53 +4 41 48 +62 12 13 +11 10 52 +40 35 49 +35 40 27 +62 13 14 +12 11 32 +40 38 39 +62 14 63 +63 14 15 +14 13 46 +63 15 16 +15 14 46 +38 20 21 +16 15 45 +57 65 17 +57 17 58 +39 42 27 +42 39 43 +17 18 37 +18 17 65 +42 28 27 +28 42 47 +28 47 29 +19 18 66 +66 18 65 +46 43 44 +43 46 47 +20 19 66 +66 21 20 +21 66 24 +22 43 39 +43 22 23 +21 23 22 +23 21 24 +15 46 45 +21 22 39 +23 44 43 +44 23 24 +44 24 25 +67 25 24 +25 67 26 +44 26 45 +26 44 25 +64 26 67 +26 64 63 +16 26 63 +26 16 45 +29 47 30 +32 30 31 +27 28 35 +31 47 12 +47 31 30 +53 52 10 +52 53 51 +32 31 12 +32 11 52 +52 33 32 +33 52 34 +34 51 35 +51 34 52 +35 51 50 +55 54 7 +28 34 35 +55 48 49 +48 41 40 +41 2 36 +18 38 37 +36 37 41 +38 21 39 +27 40 39 +42 43 47 +46 44 45 +48 40 49 +49 35 50 +9 54 53 +50 51 53 +50 53 54 +24 66 67 diff --git a/MakeItTalk/examples_cartoon/danbooru1_face_close_mouth.txt b/MakeItTalk/examples_cartoon/danbooru1_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..44630cc1653a6b1b6b4ba2325729d13e4959002f --- /dev/null +++ b/MakeItTalk/examples_cartoon/danbooru1_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 0.0170 -0.8557 +-0.7509 0.1717 -0.8711 +-0.6755 0.3075 -0.8871 +-0.5811 0.4358 -0.8835 +-0.4717 0.5302 -0.8138 +-0.3245 0.6245 -0.6631 +-0.2151 0.7075 -0.4768 +-0.0755 0.7755 -0.2967 +0.0679 0.8208 -0.2114 +0.2189 0.7189 -0.3033 +0.3208 0.6434 -0.4839 +0.4415 0.5679 -0.6684 +0.5321 0.4585 -0.8159 +0.6264 0.3415 -0.8807 +0.6906 0.2208 -0.8824 +0.7509 0.1075 -0.8666 +0.8000 -0.0170 -0.8501 +-0.5019 -0.2434 -0.0738 +-0.3509 -0.2623 0.0527 +-0.1925 -0.2925 0.1346 +-0.0868 -0.2925 0.1808 +0.0226 -0.2660 0.1918 +0.3321 -0.2434 0.1986 +0.4528 -0.2811 0.1886 +0.5321 -0.3189 0.1452 +0.6340 -0.2962 0.0664 +0.7245 -0.2774 -0.0619 +0.2038 0.1906 0.1415 +0.2151 0.2170 0.2018 +0.2302 0.2472 0.2893 +0.2415 0.2660 0.2894 +0.2491 0.2925 0.0735 +0.2302 0.3151 0.1024 +0.2075 0.3264 0.1173 +0.1774 0.3340 0.1016 +0.1434 0.3377 0.0713 +-0.4642 0.0170 -0.0058 +-0.3660 -0.1075 0.0834 +-0.1434 -0.1113 0.0888 +-0.0038 0.0094 0.0487 +-0.1358 0.1491 0.0764 +-0.3358 0.1642 0.0570 +0.3019 0.0736 0.0574 +0.3811 -0.0962 0.0997 +0.5736 -0.1453 0.0966 +0.6830 -0.0245 0.0058 +0.5887 0.0811 0.0661 +0.4075 0.1566 0.0849 +-0.1283 0.5340 -0.1399 +-0.0906 0.5211 0.0106 +-0.0075 0.5309 0.1013 +0.0566 0.5332 0.1112 +0.1019 0.5272 0.1024 +0.1623 0.5121 0.0080 +0.2113 0.4962 -0.1486 +0.1623 0.5278 -0.0193 +0.1057 0.5489 0.0498 +0.0453 0.5568 0.0609 +-0.0340 0.5527 0.0515 +-0.0830 0.5411 -0.0166 +-0.1418 0.4793 -0.1429 +-0.0546 0.5046 0.0396 +0.0574 0.5043 0.0642 +0.1600 0.4974 0.0391 +0.2151 0.4925 -0.1528 +0.1609 0.5486 0.0391 +0.0555 0.5891 0.0642 +-0.0645 0.5726 0.0396 diff --git a/MakeItTalk/examples_cartoon/danbooru1_face_open_mouth copy.txt b/MakeItTalk/examples_cartoon/danbooru1_face_open_mouth copy.txt new file mode 100644 index 0000000000000000000000000000000000000000..45de6f65975b95dac8ea4bf45f555ea32b452e2c --- /dev/null +++ b/MakeItTalk/examples_cartoon/danbooru1_face_open_mouth copy.txt @@ -0,0 +1,68 @@ +161.6225 394.3264 1.0 +173.4633 431.6704 1.0 +191.6799 464.4603 1.0 +214.4507 495.4285 1.0 +240.8647 518.1993 1.0 +276.3871 540.9700 1.0 +302.8011 561.0083 1.0 +336.5018 577.4032 1.0 +371.1133 588.3331 1.0 +407.5465 563.7407 1.0 +432.1389 545.5242 1.0 +461.2855 527.3076 1.0 +483.1454 500.8935 1.0 +505.9161 472.6578 1.0 +521.4002 443.5112 1.0 +535.9735 416.1863 1.0 +547.8143 386.1290 1.0 +233.5781 331.4792 1.0 +270.0113 326.9250 1.0 +308.2661 319.6384 1.0 +333.7693 319.6384 1.0 +360.1834 326.0142 1.0 +434.8714 331.4792 1.0 +464.0180 322.3709 1.0 +483.1454 313.2626 1.0 +507.7378 318.7276 1.0 +529.5977 323.2817 1.0 +403.9032 436.2246 1.0 +406.6357 442.6004 1.0 +410.2790 449.8870 1.0 +413.0115 454.4412 1.0 +414.8332 460.8170 1.0 +410.2790 466.2820 1.0 +404.8140 469.0145 1.0 +397.5274 470.8361 1.0 +389.3299 471.7470 1.0 +242.6864 394.3264 1.0 +266.3679 364.2691 1.0 +320.1069 363.3582 1.0 +353.8076 392.5048 1.0 +321.9285 426.2055 1.0 +273.6546 429.8488 1.0 +427.5848 407.9889 1.0 +446.7122 367.0015 1.0 +493.1645 355.1608 1.0 +519.5786 384.3073 1.0 +496.8078 409.8105 1.0 +453.0880 428.0271 1.0 +323.7502 519.1101 1.0 +332.8585 510.0018 1.0 +352.8968 511.8235 1.0 +368.3809 511.8235 1.0 +379.3108 510.9126 1.0 +393.8841 509.0910 1.0 +405.7249 510.0018 1.0 +393.8841 532.7725 1.0 +380.2216 543.7025 1.0 +365.6484 547.3458 1.0 +346.5209 544.6133 1.0 +334.6802 540.0592 1.0 +325.5719 520.0209 1.0 +336.5018 510.9126 1.0 +369.2917 510.0018 1.0 +392.9733 509.0910 1.0 +406.6357 509.0910 1.0 +393.8841 532.7725 1.0 +367.4700 549.1675 1.0 +335.5910 541.8808 1.0 diff --git a/MakeItTalk/examples_cartoon/danbooru1_face_open_mouth.txt b/MakeItTalk/examples_cartoon/danbooru1_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..276b66a5f2872e0dd3f9b93afca4cabd042099a9 --- /dev/null +++ b/MakeItTalk/examples_cartoon/danbooru1_face_open_mouth.txt @@ -0,0 +1,68 @@ +161.6225 394.3264 1.0 +173.4633 431.6704 1.0 +191.6799 464.4603 1.0 +214.4507 495.4285 1.0 +240.8647 518.1993 1.0 +276.3871 540.9700 1.0 +302.8011 561.0083 1.0 +336.5018 577.4032 1.0 +371.1133 588.3331 1.0 +407.5465 563.7407 1.0 +432.1389 545.5242 1.0 +461.2855 527.3076 1.0 +483.1454 500.8935 1.0 +505.9161 472.6578 1.0 +521.4002 443.5112 1.0 +535.9735 416.1863 1.0 +547.8143 386.1290 1.0 +233.5781 331.4792 1.0 +270.0113 326.9250 1.0 +308.2661 319.6384 1.0 +333.7693 319.6384 1.0 +360.1834 326.0142 1.0 +434.8714 331.4792 1.0 +464.0180 322.3709 1.0 +483.1454 313.2626 1.0 +507.7378 318.7276 1.0 +529.5977 323.2817 1.0 +403.9032 436.2246 1.0 +406.6357 442.6004 1.0 +410.2790 449.8870 1.0 +413.0115 454.4412 1.0 +414.8332 460.8170 1.0 +410.2790 466.2820 1.0 +404.8140 469.0145 1.0 +397.5274 470.8361 1.0 +389.3299 471.7470 1.0 +242.6864 394.3264 1.0 +266.3679 364.2691 1.0 +320.1069 363.3582 1.0 +353.8076 392.5048 1.0 +321.9285 426.2055 1.0 +273.6546 429.8488 1.0 +427.5848 407.9889 1.0 +446.7122 367.0015 1.0 +493.1645 355.1608 1.0 +519.5786 384.3073 1.0 +496.8078 409.8105 1.0 +453.0880 428.0271 1.0 +323.7502 519.1101 1.0 +332.8585 510.0018 1.0 +352.8968 511.8235 1.0 +368.3809 511.8235 1.0 +379.3108 510.9126 1.0 +393.8841 509.0910 1.0 +405.7249 510.0018 1.0 +393.8841 532.7725 1.0 +380.2216 543.7025 1.0 +365.6484 547.3458 1.0 +346.5209 544.6133 1.0 +334.6802 540.0592 1.0 +320.5018 505.9126 1.0 +345.5018 510.4526 1.0 +369.2917 510.0018 1.0 +392.9733 509.0910 1.0 +406.6357 509.0910 1.0 +393.8841 532.7725 1.0 +367.4700 549.1675 1.0 +335.5910 541.8808 1.0 diff --git a/MakeItTalk/examples_cartoon/danbooru1_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/danbooru1_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..1c921328314140e7b52a6bca644e17cd348b4653 --- /dev/null +++ b/MakeItTalk/examples_cartoon/danbooru1_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 0.0170 -0.8557 +-0.7509 0.1717 -0.8711 +-0.6755 0.3075 -0.8871 +-0.5811 0.4358 -0.8835 +-0.4717 0.5302 -0.8138 +-0.3245 0.6245 -0.6631 +-0.2151 0.7075 -0.4768 +-0.0755 0.7755 -0.2967 +0.0679 0.8208 -0.2114 +0.2189 0.7189 -0.3033 +0.3208 0.6434 -0.4839 +0.4415 0.5679 -0.6684 +0.5321 0.4585 -0.8159 +0.6264 0.3415 -0.8807 +0.6906 0.2208 -0.8824 +0.7509 0.1075 -0.8666 +0.8000 -0.0170 -0.8501 +-0.5019 -0.2434 -0.0738 +-0.3509 -0.2623 0.0527 +-0.1925 -0.2925 0.1346 +-0.0868 -0.2925 0.1808 +0.0226 -0.2660 0.1918 +0.3321 -0.2434 0.1986 +0.4528 -0.2811 0.1886 +0.5321 -0.3189 0.1452 +0.6340 -0.2962 0.0664 +0.7245 -0.2774 -0.0619 +0.2038 0.1906 0.1415 +0.2151 0.2170 0.2018 +0.2302 0.2472 0.2893 +0.2415 0.2660 0.2894 +0.2491 0.2925 0.0735 +0.2302 0.3151 0.1024 +0.2075 0.3264 0.1173 +0.1774 0.3340 0.1016 +0.1434 0.3377 0.0713 +-0.4642 0.0170 -0.0058 +-0.3660 -0.1075 0.0834 +-0.1434 -0.1113 0.0888 +-0.0038 0.0094 0.0487 +-0.1358 0.1491 0.0764 +-0.3358 0.1642 0.0570 +0.3019 0.0736 0.0574 +0.3811 -0.0962 0.0997 +0.5736 -0.1453 0.0966 +0.6830 -0.0245 0.0058 +0.5887 0.0811 0.0661 +0.4075 0.1566 0.0849 +-0.1283 0.5340 -0.1399 +-0.0906 0.4962 0.0106 +-0.0075 0.5038 0.1013 +0.0566 0.5038 0.1112 +0.1019 0.5000 0.1024 +0.1623 0.4925 0.0080 +0.2113 0.4962 -0.1486 +0.1623 0.5906 -0.0193 +0.1057 0.6358 0.0498 +0.0453 0.6509 0.0609 +-0.0340 0.6396 0.0515 +-0.0830 0.6208 -0.0166 +-0.1418 0.4793 -0.1429 +-0.0382 0.4981 0.0396 +0.0604 0.4962 0.0642 +0.1585 0.4925 0.0391 +0.2151 0.4925 -0.1528 +0.1623 0.5906 0.0391 +0.0528 0.6585 0.0642 +-0.0792 0.6283 0.0396 diff --git a/MakeItTalk/examples_cartoon/danbooru1_scale_shift.txt b/MakeItTalk/examples_cartoon/danbooru1_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..e3984880ac674922410710349263bad4ccb8a6e6 --- /dev/null +++ b/MakeItTalk/examples_cartoon/danbooru1_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0041430191 +-354.7184000000 +-390.2277000000 diff --git a/MakeItTalk/examples_cartoon/dog.jpg b/MakeItTalk/examples_cartoon/dog.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e49ea05dbd0943d665eb345d839cd174c26b182d Binary files /dev/null and b/MakeItTalk/examples_cartoon/dog.jpg differ diff --git a/MakeItTalk/examples_cartoon/dog_anno.jpg b/MakeItTalk/examples_cartoon/dog_anno.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a73ee21ea5273434856f9f4e4934b47149f51268 Binary files /dev/null and b/MakeItTalk/examples_cartoon/dog_anno.jpg differ diff --git a/MakeItTalk/examples_cartoon/dog_bg.jpg b/MakeItTalk/examples_cartoon/dog_bg.jpg new file mode 100644 index 0000000000000000000000000000000000000000..61dfe3e792fea351146f289a01817940c10df0bd Binary files /dev/null and b/MakeItTalk/examples_cartoon/dog_bg.jpg differ diff --git a/MakeItTalk/examples_cartoon/dog_delauney_tri.txt b/MakeItTalk/examples_cartoon/dog_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..c6c44b402f7ddb52bb22a9ccbd864797e75da2a7 --- /dev/null +++ b/MakeItTalk/examples_cartoon/dog_delauney_tri.txt @@ -0,0 +1,118 @@ +37 21 27 +21 37 20 +36 0 17 +0 36 41 +0 63 17 +63 0 56 +0 1 56 +1 0 41 +19 36 18 +36 19 37 +1 2 56 +2 1 41 +56 2 57 +2 3 57 +3 2 40 +57 3 4 +4 3 40 +36 38 39 +38 36 37 +57 4 5 +5 4 40 +18 36 17 +57 6 59 +6 57 5 +6 5 31 +37 19 20 +57 59 58 +6 7 59 +7 6 32 +29 39 28 +39 29 30 +7 8 59 +8 7 55 +37 27 38 +59 8 9 +9 8 55 +61 9 10 +9 61 60 +59 9 60 +10 9 53 +29 34 33 +34 29 28 +61 10 11 +11 10 52 +48 33 49 +33 48 32 +61 11 12 +12 11 46 +47 27 42 +27 47 28 +61 12 13 +13 12 46 +44 24 25 +24 44 43 +61 13 14 +14 13 46 +24 43 23 +14 62 61 +62 14 15 +15 14 45 +33 30 29 +30 33 32 +62 15 16 +16 15 45 +31 40 39 +40 31 5 +17 63 18 +49 34 50 +34 49 33 +18 63 19 +11 52 51 +19 63 20 +21 63 22 +63 21 20 +63 25 24 +25 63 26 +47 34 28 +34 47 35 +44 25 26 +46 11 51 +21 22 27 +63 24 23 +45 42 43 +42 45 46 +22 23 43 +23 22 63 +16 45 44 +16 26 63 +26 16 44 +16 63 62 +27 22 43 +27 28 38 +41 39 40 +39 41 36 +32 48 7 +32 6 31 +30 31 39 +31 30 32 +7 48 55 +54 49 50 +49 54 55 +35 51 50 +51 35 46 +43 44 45 +14 46 45 +34 35 50 +2 41 40 +28 39 38 +42 27 43 +42 46 47 +46 35 47 +9 55 54 +48 49 55 +54 50 53 +51 53 50 +53 51 52 +52 10 53 +53 9 54 diff --git a/MakeItTalk/examples_cartoon/dog_face_close_mouth.txt b/MakeItTalk/examples_cartoon/dog_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..d58d8864a42201da00eb3d121f0792d0ff6cca4b --- /dev/null +++ b/MakeItTalk/examples_cartoon/dog_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 0.0132 -0.8557 +-0.7665 0.1952 -0.8711 +-0.7329 0.3198 -0.8871 +-0.6683 0.4395 -0.8835 +-0.6036 0.5808 -0.8138 +-0.4766 0.6479 -0.6631 +-0.3210 0.6862 -0.4768 +-0.2036 0.7246 -0.2967 +-0.0575 0.7533 -0.2114 +0.0671 0.7389 -0.3033 +0.2060 0.6982 -0.4839 +0.3090 0.6623 -0.6684 +0.4168 0.5784 -0.8159 +0.5030 0.4850 -0.8807 +0.5749 0.4012 -0.8824 +0.6898 0.2910 -0.8666 +0.8000 -0.0132 -0.8501 +-0.4048 -0.2671 -0.0738 +-0.3425 -0.2695 0.0527 +-0.2635 -0.2814 0.1346 +-0.1988 -0.2790 0.1808 +-0.1413 -0.2551 0.1918 +-0.0263 -0.2551 0.1986 +0.0311 -0.2623 0.1886 +0.0910 -0.2623 0.1452 +0.1725 -0.2623 0.0664 +0.2611 -0.2527 -0.0619 +-0.0766 0.1832 0.1415 +-0.0766 0.2168 0.2018 +-0.0766 0.2527 0.2893 +-0.0790 0.2790 0.2894 +-0.1293 0.3054 0.0735 +-0.1150 0.3126 0.1024 +-0.0814 0.3246 0.1173 +-0.0383 0.3246 0.1016 +0.0072 0.3174 0.0713 +-0.3449 0.2168 -0.0058 +-0.3162 0.1641 0.0834 +-0.2563 0.1713 0.0888 +-0.2275 0.2192 0.0487 +-0.2635 0.2599 0.0764 +-0.3066 0.2647 0.0570 +0.0934 0.2048 0.0574 +0.1222 0.1593 0.0997 +0.2060 0.1713 0.0966 +0.2204 0.2263 0.0058 +0.1892 0.2599 0.0661 +0.1437 0.2431 0.0849 +-0.2443 0.5689 -0.1399 +-0.2156 0.4760 0.0106 +-0.1605 0.3946 0.1013 +-0.0766 0.3886 0.1112 +-0.0144 0.3988 0.1024 +0.0431 0.4719 0.0080 +0.1078 0.5760 -0.1486 +0.0455 0.4742 -0.0193 +-0.0120 0.4081 0.0498 +-0.0838 0.3968 0.0609 +-0.1437 0.4051 0.0515 +-0.2012 0.4772 -0.0166 +-0.2467 0.5737 -0.1429 +-0.1557 0.4017 0.0396 +-0.0843 0.3902 0.0642 +-0.0034 0.4022 0.0391 +0.1054 0.5784 -0.1528 +-0.0039 0.4030 0.0391 +-0.0832 0.3910 0.0642 +-0.1528 0.4021 0.0396 diff --git a/MakeItTalk/examples_cartoon/dog_face_open_mouth.txt b/MakeItTalk/examples_cartoon/dog_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..1d9f7d95f4659dfccf76b94328ffe4769190fd66 --- /dev/null +++ b/MakeItTalk/examples_cartoon/dog_face_open_mouth.txt @@ -0,0 +1,68 @@ +75.6633 180.2886 1.0 +82.9852 220.0362 1.0 +90.3071 247.2319 1.0 +104.4280 273.3816 1.0 +118.5488 304.2382 1.0 +146.2675 318.8821 1.0 +180.2621 327.2500 1.0 +205.8888 335.6179 1.0 +237.7915 341.8938 1.0 +264.9872 338.7559 1.0 +295.3208 329.8650 1.0 +317.8096 322.0200 1.0 +341.3443 303.7153 1.0 +360.1721 283.3185 1.0 +375.8619 265.0137 1.0 +400.9657 240.9560 1.0 +425.0234 174.5357 1.0 +161.9573 119.0983 1.0 +175.5552 118.5753 1.0 +192.8140 115.9603 1.0 +206.9348 116.4833 1.0 +219.4867 121.7133 1.0 +244.5904 121.7133 1.0 +257.1423 120.1443 1.0 +270.2171 120.1443 1.0 +287.9989 120.1443 1.0 +307.3497 122.2363 1.0 +233.6075 217.4212 1.0 +233.6075 224.7431 1.0 +233.6075 232.5880 1.0 +233.0845 238.3410 1.0 +222.1016 244.0939 1.0 +225.2396 245.6629 1.0 +232.5615 248.2779 1.0 +241.9754 248.2779 1.0 +251.9123 246.7089 1.0 +175.0322 224.7431 1.0 +181.3081 213.2373 1.0 +194.3830 214.8062 1.0 +200.6589 225.2661 1.0 +192.8140 234.1570 1.0 +183.4001 235.2030 1.0 +270.7401 222.1282 1.0 +277.0160 212.1913 1.0 +295.3208 214.8062 1.0 +298.4588 226.8351 1.0 +291.6599 234.1570 1.0 +281.7230 230.4961 1.0 +196.9979 301.6233 1.0 +203.2739 281.2265 1.0 +215.3027 262.3987 1.0 +233.6075 261.3527 1.0 +247.2054 263.4447 1.0 +259.7572 280.1805 1.0 +273.8781 303.1923 1.0 +260.2802 281.2265 1.0 +247.7284 267.6287 1.0 +232.0385 265.0137 1.0 +218.9637 267.1057 1.0 +206.4118 281.7495 1.0 +196.4749 302.6693 1.0 +215.3027 264.4907 1.0 +231.5155 261.3527 1.0 +249.8203 263.9677 1.0 +273.3551 303.7153 1.0 +249.2973 267.1057 1.0 +232.5615 264.4907 1.0 +217.9177 266.0597 1.0 diff --git a/MakeItTalk/examples_cartoon/dog_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/dog_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..9039cdeb6a2fc6255c7f5eed84b03425913509de --- /dev/null +++ b/MakeItTalk/examples_cartoon/dog_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 0.0132 -0.8557 +-0.7665 0.1952 -0.8711 +-0.7329 0.3198 -0.8871 +-0.6683 0.4395 -0.8835 +-0.6036 0.5808 -0.8138 +-0.4766 0.6479 -0.6631 +-0.3210 0.6862 -0.4768 +-0.2036 0.7246 -0.2967 +-0.0575 0.7533 -0.2114 +0.0671 0.7389 -0.3033 +0.2060 0.6982 -0.4839 +0.3090 0.6623 -0.6684 +0.4168 0.5784 -0.8159 +0.5030 0.4850 -0.8807 +0.5749 0.4012 -0.8824 +0.6898 0.2910 -0.8666 +0.8000 -0.0132 -0.8501 +-0.4048 -0.2671 -0.0738 +-0.3425 -0.2695 0.0527 +-0.2635 -0.2814 0.1346 +-0.1988 -0.2790 0.1808 +-0.1413 -0.2551 0.1918 +-0.0263 -0.2551 0.1986 +0.0311 -0.2623 0.1886 +0.0910 -0.2623 0.1452 +0.1725 -0.2623 0.0664 +0.2611 -0.2527 -0.0619 +-0.0766 0.1832 0.1415 +-0.0766 0.2168 0.2018 +-0.0766 0.2527 0.2893 +-0.0790 0.2790 0.2894 +-0.1293 0.3054 0.0735 +-0.1150 0.3126 0.1024 +-0.0814 0.3246 0.1173 +-0.0383 0.3246 0.1016 +0.0072 0.3174 0.0713 +-0.3449 0.2168 -0.0058 +-0.3162 0.1641 0.0834 +-0.2563 0.1713 0.0888 +-0.2275 0.2192 0.0487 +-0.2635 0.2599 0.0764 +-0.3066 0.2647 0.0570 +0.0934 0.2048 0.0574 +0.1222 0.1593 0.0997 +0.2060 0.1713 0.0966 +0.2204 0.2263 0.0058 +0.1892 0.2599 0.0661 +0.1437 0.2431 0.0849 +-0.2443 0.5689 -0.1399 +-0.2156 0.4754 0.0106 +-0.1605 0.3892 0.1013 +-0.0766 0.3844 0.1112 +-0.0144 0.3940 0.1024 +0.0431 0.4707 0.0080 +0.1078 0.5760 -0.1486 +0.0455 0.4754 -0.0193 +-0.0120 0.4132 0.0498 +-0.0838 0.4012 0.0609 +-0.1437 0.4108 0.0515 +-0.2012 0.4778 -0.0166 +-0.2467 0.5737 -0.1429 +-0.1605 0.3988 0.0396 +-0.0862 0.3844 0.0642 +-0.0024 0.3964 0.0391 +0.1054 0.5784 -0.1528 +-0.0048 0.4108 0.0391 +-0.0814 0.3988 0.0642 +-0.1485 0.4060 0.0396 diff --git a/MakeItTalk/examples_cartoon/dog_scale_shift.txt b/MakeItTalk/examples_cartoon/dog_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..6fbf804bddd6a23e9dc695d28ff074ba2296d28f --- /dev/null +++ b/MakeItTalk/examples_cartoon/dog_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0045798018 +-250.3433500000 +-177.4121500000 diff --git a/MakeItTalk/examples_cartoon/draw.png b/MakeItTalk/examples_cartoon/draw.png new file mode 100644 index 0000000000000000000000000000000000000000..825f44c2122b8588c7615d20ad9b373ca2ac9588 Binary files /dev/null and b/MakeItTalk/examples_cartoon/draw.png differ diff --git a/MakeItTalk/examples_cartoon/draw_anno.png b/MakeItTalk/examples_cartoon/draw_anno.png new file mode 100644 index 0000000000000000000000000000000000000000..808e6e9102aa592f8024722c7c922351c4f9c8f0 Binary files /dev/null and b/MakeItTalk/examples_cartoon/draw_anno.png differ diff --git a/MakeItTalk/examples_cartoon/draw_bg.png b/MakeItTalk/examples_cartoon/draw_bg.png new file mode 100644 index 0000000000000000000000000000000000000000..10cf1cbb6088f4c0703cfe6f7f3c8a4a4be883c5 Binary files /dev/null and b/MakeItTalk/examples_cartoon/draw_bg.png differ diff --git a/MakeItTalk/examples_cartoon/draw_delauney_tri.txt b/MakeItTalk/examples_cartoon/draw_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..3b4cba34082b81f98f2396734c07bfbb71f0ddc0 --- /dev/null +++ b/MakeItTalk/examples_cartoon/draw_delauney_tri.txt @@ -0,0 +1,122 @@ +28 40 27 +40 28 29 +37 0 17 +0 37 36 +0 57 65 +57 0 1 +1 0 36 +57 1 58 +1 2 58 +2 1 36 +58 2 3 +3 2 41 +3 59 58 +59 3 4 +4 3 41 +20 38 19 +38 20 21 +59 4 5 +5 4 48 +38 40 41 +40 38 39 +5 60 59 +60 5 6 +6 5 48 +38 41 37 +60 6 61 +6 7 61 +7 6 48 +18 37 17 +37 18 19 +61 7 8 +8 7 54 +46 52 47 +52 46 11 +61 8 9 +9 8 53 +10 62 61 +62 10 11 +10 61 9 +10 9 52 +43 22 23 +22 43 42 +62 11 12 +11 10 52 +31 29 30 +29 31 40 +62 12 63 +12 11 46 +63 12 13 +13 12 46 +30 35 34 +35 30 29 +63 13 14 +14 13 46 +41 2 36 +63 14 15 +15 14 45 +63 16 64 +16 63 15 +16 15 45 +30 34 33 +17 0 65 +65 57 56 +22 42 39 +18 17 65 +28 35 29 +35 28 47 +19 18 65 +21 65 66 +65 21 20 +47 42 43 +42 47 27 +20 19 65 +45 14 46 +43 24 44 +24 43 23 +21 22 39 +22 21 66 +22 66 23 +46 43 44 +43 46 47 +23 66 24 +24 66 25 +67 16 26 +16 67 64 +24 25 44 +67 25 66 +25 67 26 +26 45 44 +45 26 16 +25 26 44 +39 42 27 +31 41 40 +41 31 4 +28 27 47 +9 53 52 +50 33 34 +33 50 49 +48 31 49 +31 48 4 +33 49 32 +32 49 31 +31 30 32 +8 54 53 +32 30 33 +54 50 51 +50 54 55 +47 52 35 +34 35 50 +36 37 41 +37 19 38 +38 21 39 +39 27 40 +46 44 45 +35 52 51 +7 48 55 +48 49 55 +54 51 53 +49 50 55 +50 35 51 +53 51 52 +54 7 55 diff --git a/MakeItTalk/examples_cartoon/draw_face_close_mouth.txt b/MakeItTalk/examples_cartoon/draw_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..0330c2b415cd5404b3df8ce342c318cc4bf1c5f3 --- /dev/null +++ b/MakeItTalk/examples_cartoon/draw_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 -0.0016 0.0000 +-0.8812 0.2109 0.0000 +-0.9031 0.4453 0.0000 +-0.8375 0.6422 0.0000 +-0.7500 0.8047 0.0000 +-0.5906 0.9859 0.0000 +-0.4187 1.0828 0.0000 +-0.2187 1.1516 0.0000 +0.0031 1.1797 0.0000 +0.2313 1.1641 0.0000 +0.4188 1.0891 0.0000 +0.5938 0.9797 0.0000 +0.7375 0.8297 0.0000 +0.8375 0.6359 0.0000 +0.8844 0.4547 0.0000 +0.8812 0.2484 0.0000 +0.8000 0.0016 0.0000 +-0.5719 -0.0328 0.0000 +-0.5062 -0.0328 0.0000 +-0.4375 -0.0328 0.0000 +-0.3844 -0.0328 0.0000 +-0.3188 -0.0328 0.0000 +0.1406 -0.0516 0.0000 +0.2031 -0.0516 0.0000 +0.2781 -0.0516 0.0000 +0.3438 -0.0516 0.0000 +0.4313 -0.0297 0.0000 +-0.0594 0.3828 0.0000 +-0.0719 0.4516 0.0000 +-0.0813 0.5047 0.0000 +-0.0844 0.5547 0.0000 +-0.1438 0.5953 0.0000 +-0.1125 0.6172 0.0000 +-0.0781 0.6203 0.0000 +-0.0312 0.6203 0.0000 +0.0125 0.6203 0.0000 +-0.6375 0.2391 0.0000 +-0.5312 0.1172 0.0000 +-0.3812 0.1078 0.0000 +-0.2750 0.2266 0.0000 +-0.3531 0.3641 0.0000 +-0.5281 0.3641 0.0000 +0.1187 0.2234 0.0000 +0.2031 0.1234 0.0000 +0.3812 0.1141 0.0000 +0.4563 0.2484 0.0000 +0.3656 0.3734 0.0000 +0.2125 0.3859 0.0000 +-0.1906 0.8734 0.0000 +-0.1688 0.8422 0.0000 +-0.1031 0.8147 0.0000 +-0.0281 0.8172 0.0000 +0.0469 0.8259 0.0000 +0.0969 0.8459 0.0000 +0.1344 0.8766 0.0000 +0.0969 0.8639 0.0000 +0.0156 0.8554 0.0000 +-0.0437 0.8497 0.0000 +-0.0969 0.8452 0.0000 +-0.1781 0.8572 0.0000 +-0.1875 0.8734 0.0000 +-0.1275 0.8328 0.0000 +-0.0375 0.8278 0.0000 +0.0463 0.8303 0.0000 +0.1156 0.8641 0.0000 +0.0515 0.8533 0.0000 +-0.0375 0.8563 0.0000 +-0.1290 0.8553 0.0000 diff --git a/MakeItTalk/examples_cartoon/draw_face_open_mouth.txt b/MakeItTalk/examples_cartoon/draw_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..bac4dcdf5ec20ed83e8b22a9f57ef5221f3d892f --- /dev/null +++ b/MakeItTalk/examples_cartoon/draw_face_open_mouth.txt @@ -0,0 +1,68 @@ +101.7680 193.9204 1.0 +81.5677 246.7520 1.0 +76.1292 305.0222 1.0 +92.4448 353.9691 1.0 +114.1990 394.3698 1.0 +153.8227 439.4321 1.0 +196.5542 463.5171 1.0 +246.2781 480.6096 1.0 +301.4405 487.6021 1.0 +358.1568 483.7174 1.0 +404.7730 465.0709 1.0 +448.2814 437.8782 1.0 +484.0204 400.5853 1.0 +508.8823 352.4153 1.0 +520.5364 307.3530 1.0 +519.7594 256.0752 1.0 +499.5591 194.6973 1.0 +158.4843 186.1510 1.0 +174.8000 186.1510 1.0 +191.8926 186.1510 1.0 +205.1005 186.1510 1.0 +221.4161 186.1510 1.0 +335.6257 181.4894 1.0 +351.1644 181.4894 1.0 +369.8109 181.4894 1.0 +386.1265 181.4894 1.0 +407.8807 186.9280 1.0 +285.9018 289.4835 1.0 +282.7941 306.5761 1.0 +280.4632 319.7840 1.0 +279.6863 332.2149 1.0 +264.9245 342.3151 1.0 +272.6939 347.7536 1.0 +281.2402 348.5306 1.0 +292.8942 348.5306 1.0 +303.7713 348.5306 1.0 +142.1687 253.7444 1.0 +168.5845 223.4439 1.0 +205.8774 221.1131 1.0 +232.2932 250.6367 1.0 +212.8698 284.8219 1.0 +169.3614 284.8219 1.0 +330.1871 249.8598 1.0 +351.1644 224.9978 1.0 +395.4497 222.6670 1.0 +414.0962 256.0752 1.0 +391.5650 287.1527 1.0 +353.4952 290.2604 1.0 +253.2705 411.4624 1.0 +258.7090 399.0314 1.0 +275.0247 387.3774 1.0 +293.6712 387.3774 1.0 +312.3176 390.4851 1.0 +324.7486 399.0314 1.0 +334.0718 412.2393 1.0 +324.7486 427.0011 1.0 +304.5483 436.3243 1.0 +289.7865 437.8782 1.0 +276.5786 434.7704 1.0 +256.3782 422.3395 1.0 +254.0474 411.4624 1.0 +269.5861 394.3698 1.0 +291.3403 391.2620 1.0 +309.9868 393.5929 1.0 +329.4102 409.1316 1.0 +315.4254 429.3319 1.0 +291.3403 435.5474 1.0 +268.0323 429.3319 1.0 diff --git a/MakeItTalk/examples_cartoon/draw_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/draw_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..28a04e0a1cf3d9b1891a7874f8ae69b47fd17d70 --- /dev/null +++ b/MakeItTalk/examples_cartoon/draw_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 -0.0016 0.0000 +-0.8812 0.2109 0.0000 +-0.9031 0.4453 0.0000 +-0.8375 0.6422 0.0000 +-0.7500 0.8047 0.0000 +-0.5906 0.9859 0.0000 +-0.4187 1.0828 0.0000 +-0.2187 1.1516 0.0000 +0.0031 1.1797 0.0000 +0.2313 1.1641 0.0000 +0.4188 1.0891 0.0000 +0.5938 0.9797 0.0000 +0.7375 0.8297 0.0000 +0.8375 0.6359 0.0000 +0.8844 0.4547 0.0000 +0.8812 0.2484 0.0000 +0.8000 0.0016 0.0000 +-0.5719 -0.0328 0.0000 +-0.5062 -0.0328 0.0000 +-0.4375 -0.0328 0.0000 +-0.3844 -0.0328 0.0000 +-0.3188 -0.0328 0.0000 +0.1406 -0.0516 0.0000 +0.2031 -0.0516 0.0000 +0.2781 -0.0516 0.0000 +0.3438 -0.0516 0.0000 +0.4313 -0.0297 0.0000 +-0.0594 0.3828 0.0000 +-0.0719 0.4516 0.0000 +-0.0813 0.5047 0.0000 +-0.0844 0.5547 0.0000 +-0.1438 0.5953 0.0000 +-0.1125 0.6172 0.0000 +-0.0781 0.6203 0.0000 +-0.0312 0.6203 0.0000 +0.0125 0.6203 0.0000 +-0.6375 0.2391 0.0000 +-0.5312 0.1172 0.0000 +-0.3812 0.1078 0.0000 +-0.2750 0.2266 0.0000 +-0.3531 0.3641 0.0000 +-0.5281 0.3641 0.0000 +0.1187 0.2234 0.0000 +0.2031 0.1234 0.0000 +0.3812 0.1141 0.0000 +0.4563 0.2484 0.0000 +0.3656 0.3734 0.0000 +0.2125 0.3859 0.0000 +-0.1906 0.8734 0.0000 +-0.1688 0.8234 0.0000 +-0.1031 0.7766 0.0000 +-0.0281 0.7766 0.0000 +0.0469 0.7891 0.0000 +0.0969 0.8234 0.0000 +0.1344 0.8766 0.0000 +0.0969 0.9359 0.0000 +0.0156 0.9734 0.0000 +-0.0437 0.9797 0.0000 +-0.0969 0.9672 0.0000 +-0.1781 0.9172 0.0000 +-0.1875 0.8734 0.0000 +-0.1250 0.8047 0.0000 +-0.0375 0.7922 0.0000 +0.0375 0.8016 0.0000 +0.1156 0.8641 0.0000 +0.0594 0.9453 0.0000 +-0.0375 0.9703 0.0000 +-0.1312 0.9453 0.0000 diff --git a/MakeItTalk/examples_cartoon/draw_scale_shift.txt b/MakeItTalk/examples_cartoon/draw_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..d85410076bdc1b4523bc836020e1475011d02396 --- /dev/null +++ b/MakeItTalk/examples_cartoon/draw_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0040222117 +-300.6635500000 +-194.3088500000 diff --git a/MakeItTalk/examples_cartoon/foa_example.png b/MakeItTalk/examples_cartoon/foa_example.png new file mode 100644 index 0000000000000000000000000000000000000000..b20cdc173109b57deef403b775844a91705be1d1 Binary files /dev/null and b/MakeItTalk/examples_cartoon/foa_example.png differ diff --git a/MakeItTalk/examples_cartoon/general_delauney_tri.txt b/MakeItTalk/examples_cartoon/general_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..cc81d6a26f3262c53cee115e0dc62001f8f5015f --- /dev/null +++ b/MakeItTalk/examples_cartoon/general_delauney_tri.txt @@ -0,0 +1,142 @@ +19 75 20 +75 19 18 +1 69 0 +69 1 2 +0 69 68 +58 66 57 +66 58 67 +69 2 3 +1 0 17 +51 32 33 +32 51 50 +2 1 36 +37 40 41 +40 37 38 +69 3 4 +3 2 48 +35 29 28 +29 35 30 +4 70 69 +70 4 5 +4 3 48 +9 57 56 +57 9 8 +70 5 6 +5 4 48 +31 2 41 +2 31 48 +6 71 70 +71 6 7 +6 5 59 +54 35 46 +35 54 53 +71 7 8 +7 6 58 +39 28 31 +28 39 27 +8 7 57 +12 72 11 +72 12 73 +71 10 72 +10 71 9 +8 9 71 +72 10 11 +10 9 56 +31 28 29 +11 10 55 +35 28 42 +73 12 13 +12 11 55 +40 31 41 +31 40 39 +73 13 14 +13 12 54 +37 19 38 +19 37 18 +73 14 15 +14 13 54 +17 36 1 +36 17 37 +73 15 16 +15 14 45 +37 17 18 +74 73 16 +16 15 45 +18 0 75 +0 18 17 +40 38 39 +75 0 68 +30 35 34 +75 24 23 +24 75 25 +75 21 20 +21 75 22 +19 20 38 +21 22 27 +46 44 45 +44 46 47 +42 28 27 +20 21 38 +42 27 22 +44 47 43 +75 23 22 +22 23 43 +25 74 16 +74 25 75 +44 23 24 +23 44 43 +44 25 26 +25 44 24 +25 16 26 +16 45 26 +31 29 30 +21 27 39 +55 54 12 +54 55 64 +49 31 50 +31 49 48 +34 52 51 +52 34 35 +60 49 61 +61 67 60 +32 50 31 +57 7 58 +31 30 32 +61 62 66 +62 61 51 +32 30 33 +10 56 55 +33 30 34 +14 54 46 +33 34 51 +14 46 45 +2 36 41 +36 37 41 +21 39 38 +35 42 47 +42 22 43 +42 43 47 +44 26 45 +46 35 47 +5 48 59 +48 49 60 +6 59 58 +49 50 61 +50 51 61 +63 62 52 +62 63 66 +51 52 62 +52 35 53 +65 64 55 +64 65 63 +52 53 63 +53 54 64 +64 63 53 +55 56 65 +56 57 66 +60 67 59 +59 48 60 +58 59 67 +66 67 61 +56 66 65 +65 66 63 diff --git a/MakeItTalk/examples_cartoon/girl.png b/MakeItTalk/examples_cartoon/girl.png new file mode 100644 index 0000000000000000000000000000000000000000..f112f29816293455bba70d03ff31df0866d3920c Binary files /dev/null and b/MakeItTalk/examples_cartoon/girl.png differ diff --git a/MakeItTalk/examples_cartoon/girl_anno.png b/MakeItTalk/examples_cartoon/girl_anno.png new file mode 100644 index 0000000000000000000000000000000000000000..8029dca5484c2a2a8eb9638b1e7037b7cb60edad Binary files /dev/null and b/MakeItTalk/examples_cartoon/girl_anno.png differ diff --git a/MakeItTalk/examples_cartoon/girl_bg.png b/MakeItTalk/examples_cartoon/girl_bg.png new file mode 100644 index 0000000000000000000000000000000000000000..92191a4956cddbe919a7d5a4c78160f9e86a5a1f Binary files /dev/null and b/MakeItTalk/examples_cartoon/girl_bg.png differ diff --git a/MakeItTalk/examples_cartoon/girl_delauney_tri.txt b/MakeItTalk/examples_cartoon/girl_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..e5ed703f5a8213352895254f205e4aa28f55ecdb --- /dev/null +++ b/MakeItTalk/examples_cartoon/girl_delauney_tri.txt @@ -0,0 +1,122 @@ +66 20 0 +20 66 23 +57 65 0 +65 57 56 +0 65 66 +28 40 27 +40 28 31 +57 1 58 +1 57 0 +1 0 18 +35 30 29 +30 35 34 +58 2 3 +2 58 1 +2 1 17 +31 41 40 +41 31 48 +3 2 36 +6 55 7 +55 6 48 +58 3 4 +4 3 41 +4 48 5 +48 4 41 +5 59 4 +59 5 60 +39 21 22 +21 39 38 +60 5 6 +6 5 48 +38 41 37 +41 38 40 +61 6 7 +6 61 60 +61 10 62 +10 61 9 +7 8 61 +8 7 54 +11 62 10 +62 11 63 +8 9 61 +9 8 54 +37 17 18 +17 37 36 +10 9 53 +38 20 21 +20 38 19 +63 11 12 +11 10 52 +19 37 18 +37 19 38 +63 12 13 +12 11 52 +36 2 17 +63 13 14 +13 12 46 +40 38 39 +63 14 15 +14 13 45 +44 46 47 +46 44 45 +63 15 16 +15 14 26 +1 18 17 +64 63 16 +16 15 24 +47 28 27 +28 47 35 +19 0 20 +0 19 18 +23 66 16 +20 23 21 +21 23 22 +47 27 42 +28 35 29 +24 43 23 +43 24 25 +23 43 22 +16 24 23 +25 15 26 +15 25 24 +44 25 26 +25 44 43 +26 45 44 +45 26 14 +42 39 22 +39 42 27 +46 52 35 +52 46 12 +29 31 28 +31 29 30 +35 51 34 +51 35 52 +49 31 32 +31 49 48 +52 10 53 +49 32 50 +50 33 34 +33 50 32 +31 30 32 +55 49 54 +49 55 48 +32 30 33 +54 51 53 +51 54 50 +33 30 34 +13 46 45 +3 36 41 +36 37 41 +39 27 40 +44 47 43 +42 22 43 +42 43 47 +46 35 47 +50 54 49 +50 34 51 +9 54 53 +51 52 53 +54 7 55 +58 4 59 +64 16 67 +16 66 67 diff --git a/MakeItTalk/examples_cartoon/girl_face_close_mouth - Copy.txt b/MakeItTalk/examples_cartoon/girl_face_close_mouth - Copy.txt new file mode 100644 index 0000000000000000000000000000000000000000..f37670cfba85caa61b1debb36015d5c5a2f803ad --- /dev/null +++ b/MakeItTalk/examples_cartoon/girl_face_close_mouth - Copy.txt @@ -0,0 +1,68 @@ +-0.8339 -0.6276 -0.8557 +-0.8057 -0.3675 -0.8711 +-0.7661 -0.0961 -0.8871 +-0.7265 0.2488 -0.8835 +-0.6869 0.4749 -0.8138 +-0.5852 0.7463 -0.6631 +-0.4212 0.9159 -0.4768 +-0.2346 1.0459 -0.2967 +0.0085 1.1138 -0.2114 +0.2403 1.0346 -0.3033 +0.4608 0.8763 -0.4839 +0.6078 0.6898 -0.6684 +0.7039 0.4636 -0.8159 +0.7604 0.1922 -0.8807 +0.7717 -0.1187 -0.8824 +0.7717 -0.3845 -0.8666 +0.7661 -0.7463 -0.8501 +-0.4890 -0.2205 -0.0738 +-0.4382 -0.2657 0.0527 +-0.3647 -0.2940 0.1346 +-0.2799 -0.2883 0.1808 +-0.2120 -0.2544 0.1918 +0.1781 -0.2544 0.1986 +0.2403 -0.2883 0.1886 +0.3364 -0.2883 0.1452 +0.3929 -0.2544 0.0664 +0.4551 -0.2148 -0.0619 +0.0028 0.1583 0.1415 +0.0028 0.2318 0.2018 +0.0141 0.2883 0.2893 +0.0141 0.3562 0.2894 +-0.1046 0.3731 0.0735 +-0.0537 0.4184 0.1024 +0.0085 0.4523 0.1173 +0.0707 0.4297 0.1016 +0.1159 0.3675 0.0713 +-0.5004 0.0000 -0.0058 +-0.4382 -0.0905 0.0834 +-0.2459 -0.1018 0.0888 +-0.1668 -0.0170 0.0487 +-0.2290 0.1074 0.0764 +-0.4099 0.1074 0.0570 +0.1611 -0.0170 0.0574 +0.2346 -0.1018 0.0997 +0.4212 -0.0961 0.0966 +0.5004 0.0000 0.0058 +0.4155 0.1131 0.0661 +0.2629 0.1187 0.0849 +-0.2403 0.6106 -0.1399 +-0.1611 0.5823 0.0106 +-0.0481 0.5541 0.1013 +0.0085 0.5541 0.1112 +0.0933 0.5541 0.1024 +0.2007 0.5710 0.0080 +0.2742 0.5936 -0.1486 +0.2233 0.6954 -0.0193 +0.1329 0.7972 0.0498 +0.0085 0.8141 0.0609 +-0.0989 0.7972 0.0515 +-0.1951 0.7067 -0.0166 +-0.2459 0.6049 -0.1429 +-0.1159 0.5710 0.0396 +0.0028 0.5541 0.0642 +0.1385 0.5597 0.0391 +0.2799 0.5936 -0.1528 +0.2120 0.7633 0.0391 +0.0085 0.8367 0.0642 +-0.1781 0.7519 0.0396 diff --git a/MakeItTalk/examples_cartoon/girl_face_close_mouth.txt b/MakeItTalk/examples_cartoon/girl_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..929bdd48898b76f059d651fe1039a12776cc0189 --- /dev/null +++ b/MakeItTalk/examples_cartoon/girl_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8339 -0.6276 -0.8557 +-0.8057 -0.3675 -0.8711 +-0.7661 -0.0961 -0.8871 +-0.7265 0.2488 -0.8835 +-0.6869 0.4749 -0.8138 +-0.5852 0.7463 -0.6631 +-0.4212 0.9159 -0.4768 +-0.2346 1.0459 -0.2967 +0.0085 1.1138 -0.2114 +0.2403 1.0346 -0.3033 +0.4608 0.8763 -0.4839 +0.6078 0.6898 -0.6684 +0.7039 0.4636 -0.8159 +0.7604 0.1922 -0.8807 +0.7717 -0.1187 -0.8824 +0.7717 -0.3845 -0.8666 +0.7661 -0.7463 -0.8501 +-0.4890 -0.2205 -0.0738 +-0.4382 -0.2657 0.0527 +-0.3647 -0.2940 0.1346 +-0.2799 -0.2883 0.1808 +-0.2120 -0.2544 0.1918 +0.1781 -0.2544 0.1986 +0.2403 -0.2883 0.1886 +0.3364 -0.2883 0.1452 +0.3929 -0.2544 0.0664 +0.4551 -0.2148 -0.0619 +0.0028 0.1583 0.1415 +0.0028 0.2318 0.2018 +0.0141 0.2883 0.2893 +0.0141 0.3562 0.2894 +-0.1046 0.3731 0.0735 +-0.0537 0.4184 0.1024 +0.0085 0.4523 0.1173 +0.0707 0.4297 0.1016 +0.1159 0.3675 0.0713 +-0.5004 0.0000 -0.0058 +-0.4382 -0.0905 0.0834 +-0.2459 -0.1018 0.0888 +-0.1668 -0.0170 0.0487 +-0.2290 0.1074 0.0764 +-0.4099 0.1074 0.0570 +0.1611 -0.0170 0.0574 +0.2346 -0.1018 0.0997 +0.4212 -0.0961 0.0966 +0.5004 0.0000 0.0058 +0.4155 0.1131 0.0661 +0.2629 0.1187 0.0849 +-0.2403 0.6106 -0.1399 +-0.1611 0.5823 0.0106 +-0.0481 0.5541 0.1013 +0.0085 0.5541 0.1112 +0.0933 0.5541 0.1024 +0.2007 0.5710 0.0080 +0.2742 0.5936 -0.1486 +0.2233 0.6954 -0.0193 +0.1329 0.7972 0.0498 +0.0085 0.8141 0.0609 +-0.0989 0.7972 0.0515 +-0.1951 0.7067 -0.0166 +-0.2233 0.6106 -0.1429 +-0.1159 0.5993 0.0396 +0.0028 0.5936 0.0642 +0.1385 0.5993 0.0391 +0.2572 0.6106 -0.1528 +0.1951 0.7293 0.0391 +0.0141 0.7859 0.0642 +-0.1611 0.7293 0.0396 diff --git a/MakeItTalk/examples_cartoon/girl_face_open_mouth - Copy.txt b/MakeItTalk/examples_cartoon/girl_face_open_mouth - Copy.txt new file mode 100644 index 0000000000000000000000000000000000000000..b16a90fdf5fe6fdfa7865f2831bf583aaf7cda92 --- /dev/null +++ b/MakeItTalk/examples_cartoon/girl_face_open_mouth - Copy.txt @@ -0,0 +1,68 @@ +255.4768 162.8430 1.0 +260.9153 208.6822 1.0 +267.9077 256.8522 1.0 +274.1232 317.4532 1.0 +281.8926 357.8538 1.0 +299.7621 405.2469 1.0 +328.5087 435.5474 1.0 +361.1400 458.0785 1.0 +404.6484 470.5095 1.0 +445.0491 456.5246 1.0 +484.6728 428.5550 1.0 +510.3117 395.1467 1.0 +527.4043 355.5230 1.0 +537.5044 307.3530 1.0 +539.0583 252.1906 1.0 +539.8352 205.5744 1.0 +538.2814 141.8657 1.0 +316.0778 234.3210 1.0 +325.4010 226.5517 1.0 +338.6089 221.1131 1.0 +353.3707 222.6670 1.0 +365.8016 228.8825 1.0 +434.1720 228.1056 1.0 +445.0491 222.6670 1.0 +462.1417 222.6670 1.0 +472.2418 228.1056 1.0 +483.8959 235.0980 1.0 +403.8715 301.9144 1.0 +403.8715 314.3454 1.0 +405.4254 324.4456 1.0 +405.4254 336.8765 1.0 +384.4481 339.9843 1.0 +393.7713 347.7536 1.0 +404.6484 353.9691 1.0 +415.5255 349.3075 1.0 +423.2949 338.4304 1.0 +314.5239 273.1678 1.0 +325.4010 257.6291 1.0 +359.5861 255.2983 1.0 +373.5710 270.8370 1.0 +362.6939 292.5912 1.0 +330.8395 292.5912 1.0 +431.0642 270.0601 1.0 +444.2721 255.2983 1.0 +477.6804 256.8522 1.0 +491.6652 273.1678 1.0 +476.1265 293.3681 1.0 +449.7107 294.1451 1.0 +360.3631 381.9388 1.0 +374.3479 376.5003 1.0 +394.5483 371.8387 1.0 +404.6484 371.0617 1.0 +419.4102 371.0617 1.0 +438.8336 374.9464 1.0 +451.2646 378.8311 1.0 +442.7183 396.7006 1.0 +426.4026 414.5701 1.0 +404.6484 417.6779 1.0 +385.2250 414.5701 1.0 +368.9094 398.2545 1.0 +359.9170 380.3849 1.0 +382.1173 374.1695 1.0 +403.8715 371.0617 1.0 +427.1796 372.6156 1.0 +452.7107 378.8311 1.0 +440.2797 408.0238 1.0 +404.6484 421.4548 1.0 +371.3479 406.0238 1.0 diff --git a/MakeItTalk/examples_cartoon/girl_face_open_mouth.txt b/MakeItTalk/examples_cartoon/girl_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..6b102809e5d584204b5249f881b89ecdee8d4191 --- /dev/null +++ b/MakeItTalk/examples_cartoon/girl_face_open_mouth.txt @@ -0,0 +1,68 @@ +255.4768 162.8430 1.0 +260.9153 208.6822 1.0 +267.9077 256.8522 1.0 +274.1232 317.4532 1.0 +281.8926 357.8538 1.0 +299.7621 405.2469 1.0 +328.5087 435.5474 1.0 +361.1400 458.0785 1.0 +404.6484 470.5095 1.0 +445.0491 456.5246 1.0 +484.6728 428.5550 1.0 +510.3117 395.1467 1.0 +527.4043 355.5230 1.0 +537.5044 307.3530 1.0 +539.0583 252.1906 1.0 +539.8352 205.5744 1.0 +538.2814 141.8657 1.0 +316.0778 234.3210 1.0 +325.4010 226.5517 1.0 +338.6089 221.1131 1.0 +353.3707 222.6670 1.0 +365.8016 228.8825 1.0 +434.1720 228.1056 1.0 +445.0491 222.6670 1.0 +462.1417 222.6670 1.0 +472.2418 228.1056 1.0 +483.8959 235.0980 1.0 +403.8715 301.9144 1.0 +403.8715 314.3454 1.0 +405.4254 324.4456 1.0 +405.4254 336.8765 1.0 +384.4481 339.9843 1.0 +393.7713 347.7536 1.0 +404.6484 353.9691 1.0 +415.5255 349.3075 1.0 +423.2949 338.4304 1.0 +314.5239 273.1678 1.0 +325.4010 257.6291 1.0 +359.5861 255.2983 1.0 +373.5710 270.8370 1.0 +362.6939 292.5912 1.0 +330.8395 292.5912 1.0 +431.0642 270.0601 1.0 +444.2721 255.2983 1.0 +477.6804 256.8522 1.0 +491.6652 273.1678 1.0 +476.1265 293.3681 1.0 +449.7107 294.1451 1.0 +360.3631 381.9388 1.0 +374.3479 376.5003 1.0 +394.5483 371.8387 1.0 +404.6484 371.0617 1.0 +419.4102 371.0617 1.0 +438.8336 374.9464 1.0 +451.2646 378.8311 1.0 +442.7183 396.7006 1.0 +426.4026 414.5701 1.0 +404.6484 417.6779 1.0 +385.2250 414.5701 1.0 +366.9094 398.2545 1.0 +363.0170 381.3849 1.0 +382.1173 379.1695 1.0 +403.8715 378.0617 1.0 +427.1796 379.6156 1.0 +450.7107 381.8311 1.0 +437.2797 402.0238 1.0 +405.6484 412.4548 1.0 +374.3479 402.0238 1.0 diff --git a/MakeItTalk/examples_cartoon/girl_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/girl_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..fda0f99afca2eb6b4a99f21dd8233b0ccb1718b1 --- /dev/null +++ b/MakeItTalk/examples_cartoon/girl_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 0.0593 0.0000 +-0.7692 0.3187 0.0000 +-0.7297 0.5912 0.0000 +-0.6945 0.9341 0.0000 +-0.6505 1.1626 0.0000 +-0.5495 1.4308 0.0000 +-0.3868 1.6022 0.0000 +-0.2022 1.7297 0.0000 +0.0440 1.8000 0.0000 +0.2725 1.7209 0.0000 +0.4967 1.5626 0.0000 +0.6418 1.3736 0.0000 +0.7385 1.1495 0.0000 +0.7956 0.8769 0.0000 +0.8044 0.5648 0.0000 +0.8088 0.3011 0.0000 +0.8000 -0.0593 0.0000 +-0.4571 0.4637 0.0000 +-0.4044 0.4198 0.0000 +-0.3297 0.3890 0.0000 +-0.2462 0.3978 0.0000 +-0.1758 0.4330 0.0000 +0.2110 0.4286 0.0000 +0.2725 0.3978 0.0000 +0.3692 0.3978 0.0000 +0.4264 0.4286 0.0000 +0.4923 0.4681 0.0000 +0.0396 0.8462 0.0000 +0.0396 0.9165 0.0000 +0.0484 0.9736 0.0000 +0.0484 1.0440 0.0000 +-0.0703 1.0615 0.0000 +-0.0176 1.1055 0.0000 +0.0440 1.1407 0.0000 +0.1055 1.1143 0.0000 +0.1495 1.0527 0.0000 +-0.4659 0.6835 0.0000 +-0.4044 0.5956 0.0000 +-0.2110 0.5824 0.0000 +-0.1319 0.6703 0.0000 +-0.1934 0.7934 0.0000 +-0.3736 0.7934 0.0000 +0.1934 0.6659 0.0000 +0.2681 0.5824 0.0000 +0.4571 0.5912 0.0000 +0.5363 0.6835 0.0000 +0.4484 0.7978 0.0000 +0.2989 0.8022 0.0000 +-0.2066 1.2989 0.0000 +-0.1275 1.2681 0.0000 +-0.0132 1.2418 0.0000 +0.0440 1.2374 0.0000 +0.1275 1.2374 0.0000 +0.2374 1.2593 0.0000 +0.3077 1.2813 0.0000 +0.2593 1.3824 0.0000 +0.1670 1.4835 0.0000 +0.0440 1.5011 0.0000 +-0.0659 1.4835 0.0000 +-0.1582 1.3912 0.0000 +-0.2091 1.2901 0.0000 +-0.0835 1.2549 0.0000 +0.0396 1.2374 0.0000 +0.1714 1.2462 0.0000 +0.3159 1.2813 0.0000 +0.2455 1.4465 0.0000 +0.0440 1.5225 0.0000 +-0.1444 1.4352 0.0000 diff --git a/MakeItTalk/examples_cartoon/girl_hair.png b/MakeItTalk/examples_cartoon/girl_hair.png new file mode 100644 index 0000000000000000000000000000000000000000..de1e478e75223c8d0d060a47d182e9623f41f450 Binary files /dev/null and b/MakeItTalk/examples_cartoon/girl_hair.png differ diff --git a/MakeItTalk/examples_cartoon/girl_scale_shift.txt b/MakeItTalk/examples_cartoon/girl_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..d1ffd42e5ee1249fed2bd06433439fbb4a36bd95 --- /dev/null +++ b/MakeItTalk/examples_cartoon/girl_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0056576166 +-396.8791000000 +-152.3543500000 diff --git a/MakeItTalk/examples_cartoon/inner_delauney_tri.txt b/MakeItTalk/examples_cartoon/inner_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..c6c44b402f7ddb52bb22a9ccbd864797e75da2a7 --- /dev/null +++ b/MakeItTalk/examples_cartoon/inner_delauney_tri.txt @@ -0,0 +1,118 @@ +37 21 27 +21 37 20 +36 0 17 +0 36 41 +0 63 17 +63 0 56 +0 1 56 +1 0 41 +19 36 18 +36 19 37 +1 2 56 +2 1 41 +56 2 57 +2 3 57 +3 2 40 +57 3 4 +4 3 40 +36 38 39 +38 36 37 +57 4 5 +5 4 40 +18 36 17 +57 6 59 +6 57 5 +6 5 31 +37 19 20 +57 59 58 +6 7 59 +7 6 32 +29 39 28 +39 29 30 +7 8 59 +8 7 55 +37 27 38 +59 8 9 +9 8 55 +61 9 10 +9 61 60 +59 9 60 +10 9 53 +29 34 33 +34 29 28 +61 10 11 +11 10 52 +48 33 49 +33 48 32 +61 11 12 +12 11 46 +47 27 42 +27 47 28 +61 12 13 +13 12 46 +44 24 25 +24 44 43 +61 13 14 +14 13 46 +24 43 23 +14 62 61 +62 14 15 +15 14 45 +33 30 29 +30 33 32 +62 15 16 +16 15 45 +31 40 39 +40 31 5 +17 63 18 +49 34 50 +34 49 33 +18 63 19 +11 52 51 +19 63 20 +21 63 22 +63 21 20 +63 25 24 +25 63 26 +47 34 28 +34 47 35 +44 25 26 +46 11 51 +21 22 27 +63 24 23 +45 42 43 +42 45 46 +22 23 43 +23 22 63 +16 45 44 +16 26 63 +26 16 44 +16 63 62 +27 22 43 +27 28 38 +41 39 40 +39 41 36 +32 48 7 +32 6 31 +30 31 39 +31 30 32 +7 48 55 +54 49 50 +49 54 55 +35 51 50 +51 35 46 +43 44 45 +14 46 45 +34 35 50 +2 41 40 +28 39 38 +42 27 43 +42 46 47 +46 35 47 +9 55 54 +48 49 55 +54 50 53 +51 53 50 +53 51 52 +52 10 53 +53 9 54 diff --git a/MakeItTalk/examples_cartoon/johnback.jpg b/MakeItTalk/examples_cartoon/johnback.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5a3df4f25f676950dd988530ab1ef63570415d53 Binary files /dev/null and b/MakeItTalk/examples_cartoon/johnback.jpg differ diff --git a/MakeItTalk/examples_cartoon/johnhead.jpg b/MakeItTalk/examples_cartoon/johnhead.jpg new file mode 100644 index 0000000000000000000000000000000000000000..184661903394b570efc92d947490ae0b0a407fb0 Binary files /dev/null and b/MakeItTalk/examples_cartoon/johnhead.jpg differ diff --git a/MakeItTalk/examples_cartoon/johnhead.png b/MakeItTalk/examples_cartoon/johnhead.png new file mode 100644 index 0000000000000000000000000000000000000000..b4829be43c78318fdb4f2b2d26505504c4dccacc Binary files /dev/null and b/MakeItTalk/examples_cartoon/johnhead.png differ diff --git a/MakeItTalk/examples_cartoon/johnhead_anno.jpg b/MakeItTalk/examples_cartoon/johnhead_anno.jpg new file mode 100644 index 0000000000000000000000000000000000000000..20f9880375f67ec09040815476a9372604dffe22 Binary files /dev/null and b/MakeItTalk/examples_cartoon/johnhead_anno.jpg differ diff --git a/MakeItTalk/examples_cartoon/johnhead_delauney_tri.txt b/MakeItTalk/examples_cartoon/johnhead_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..0be0df6864d701f6333a82e97e6ad9e139186910 --- /dev/null +++ b/MakeItTalk/examples_cartoon/johnhead_delauney_tri.txt @@ -0,0 +1,118 @@ +2 57 1 +57 2 3 +0 57 56 +57 0 1 +32 49 31 +49 32 50 +1 0 18 +50 33 34 +33 50 32 +57 3 4 +2 1 17 +28 39 27 +39 28 29 +3 2 36 +54 49 50 +49 54 55 +57 5 58 +5 57 4 +4 3 48 +34 30 35 +30 34 33 +58 5 6 +5 4 48 +29 31 40 +31 29 30 +58 6 7 +6 5 55 +13 46 45 +46 13 35 +7 59 58 +59 7 8 +7 6 55 +47 44 46 +44 47 43 +59 8 9 +8 7 54 +11 60 10 +60 11 61 +9 8 54 +10 60 9 +10 9 53 +21 27 38 +27 21 22 +61 11 12 +11 10 53 +18 37 17 +37 18 19 +61 12 13 +12 11 52 +17 37 36 +61 13 14 +13 12 52 +27 39 38 +61 14 15 +14 13 45 +1 18 17 +61 15 16 +15 14 26 +38 40 41 +40 38 39 +62 61 16 +16 15 25 +63 23 22 +23 63 16 +37 19 20 +2 17 36 +18 0 19 +42 35 29 +35 42 47 +19 0 20 +20 0 21 +63 21 0 +21 63 22 +42 27 22 +27 42 28 +20 21 38 +42 22 43 +44 25 26 +25 44 24 +44 23 24 +23 44 43 +22 23 43 +23 16 24 +16 25 24 +25 15 26 +26 14 45 +3 36 41 +31 41 40 +41 31 3 +35 30 29 +3 31 48 +29 28 42 +51 35 52 +35 51 34 +55 5 48 +9 54 53 +49 55 48 +31 30 32 +32 30 33 +52 53 51 +53 52 11 +52 35 13 +38 41 37 +36 37 41 +37 20 38 +39 29 40 +46 44 45 +42 43 47 +44 26 45 +46 35 47 +48 31 49 +7 55 54 +50 34 51 +51 54 50 +54 51 53 +0 56 63 +59 9 60 +62 16 63 diff --git a/MakeItTalk/examples_cartoon/johnhead_face_close_mouth.txt b/MakeItTalk/examples_cartoon/johnhead_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..26ea88f57d91f3fb0122b1426207f03e4b2480d9 --- /dev/null +++ b/MakeItTalk/examples_cartoon/johnhead_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 -0.0163 -0.8557 +-0.8065 0.3102 -0.8711 +-0.8000 0.5845 -0.8871 +-0.8131 0.8914 -0.8835 +-0.8000 1.1918 -0.8138 +-0.6759 1.4596 -0.6631 +-0.5388 1.6751 -0.4768 +-0.3363 1.9102 -0.2967 +-0.0294 2.0147 -0.2114 +0.2906 1.9559 -0.3033 +0.5061 1.7339 -0.4839 +0.6694 1.4792 -0.6684 +0.8065 1.2114 -0.8159 +0.8131 0.8784 -0.8807 +0.8131 0.5714 -0.8824 +0.8000 0.2776 -0.8666 +0.8000 0.0163 -0.8501 +-0.7086 0.3690 -0.0738 +-0.6302 0.2841 0.0527 +-0.5322 0.2253 0.1346 +-0.4343 0.2253 0.1808 +-0.3102 0.2384 0.1918 +0.2841 0.2318 0.1986 +0.3951 0.2057 0.1886 +0.5127 0.2057 0.1452 +0.6106 0.2841 0.0664 +0.6629 0.3624 -0.0619 +-0.0294 0.4800 0.1415 +-0.0294 0.6367 0.2018 +-0.0163 0.7804 0.2893 +-0.0229 0.9437 0.2894 +-0.2318 1.0286 0.0735 +-0.1339 1.0939 0.1024 +-0.0163 1.1004 0.1173 +0.1078 1.1004 0.1016 +0.1861 1.0482 0.0713 +-0.6367 0.5584 -0.0058 +-0.5453 0.4604 0.0834 +-0.3624 0.4669 0.0888 +-0.2841 0.5518 0.0487 +-0.3755 0.5845 0.0764 +-0.5257 0.5845 0.0570 +0.2645 0.5649 0.0574 +0.3494 0.4735 0.0997 +0.5322 0.4800 0.0966 +0.6106 0.5714 0.0058 +0.5192 0.5910 0.0661 +0.3820 0.5910 0.0849 +-0.4408 1.2310 -0.1399 +-0.3037 1.2555 0.0106 +-0.1535 1.2947 0.1013 +-0.0294 1.2947 0.1112 +0.1208 1.2784 0.1024 +0.2514 1.2571 0.0080 +0.4212 1.2376 -0.1486 +0.3298 1.3845 -0.0193 +0.1861 1.4853 0.0498 +-0.0294 1.5207 0.0609 +-0.1992 1.4953 0.0515 +-0.3494 1.3797 -0.0166 +-0.3820 1.2506 -0.1429 +-0.2188 1.3107 0.0396 +-0.0150 1.3486 0.0642 +0.1848 1.3159 0.0391 +0.3429 1.2441 -0.1528 +0.2036 1.3277 0.0391 +-0.0182 1.3642 0.0642 +-0.2423 1.3217 0.0396 diff --git a/MakeItTalk/examples_cartoon/johnhead_face_open_mouth.txt b/MakeItTalk/examples_cartoon/johnhead_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..7757dcd4bc878a74fefbcdf3049f50284d49c64d --- /dev/null +++ b/MakeItTalk/examples_cartoon/johnhead_face_open_mouth.txt @@ -0,0 +1,68 @@ +259.6719 283.0354 1.0 +258.5899 337.1369 1.0 +259.6719 382.5822 1.0 +257.5079 433.4377 1.0 +259.6719 483.2111 1.0 +280.2305 527.5744 1.0 +302.9532 563.2814 1.0 +336.4961 602.2345 1.0 +387.3516 619.5470 1.0 +440.3711 609.8087 1.0 +476.0781 573.0197 1.0 +503.1289 530.8204 1.0 +525.8515 486.4572 1.0 +526.9336 431.2736 1.0 +526.9336 380.4182 1.0 +524.7695 331.7268 1.0 +524.7695 288.4455 1.0 +274.8204 346.8752 1.0 +287.8047 332.8088 1.0 +304.0352 323.0705 1.0 +320.2657 323.0705 1.0 +340.8242 325.2346 1.0 +439.2891 324.1525 1.0 +457.6836 319.8244 1.0 +477.1601 319.8244 1.0 +493.3906 332.8088 1.0 +502.0468 345.7932 1.0 +387.3516 365.2697 1.0 +387.3516 391.2385 1.0 +389.5156 415.0431 1.0 +388.4336 442.0939 1.0 +353.8086 456.1603 1.0 +370.0391 466.9806 1.0 +389.5156 468.0627 1.0 +410.0742 468.0627 1.0 +423.0586 459.4064 1.0 +286.7227 378.2541 1.0 +301.8711 362.0236 1.0 +332.1680 363.1057 1.0 +345.1524 377.1721 1.0 +330.0039 382.5822 1.0 +305.1172 382.5822 1.0 +436.0430 379.3361 1.0 +450.1094 364.1877 1.0 +480.4062 365.2697 1.0 +493.3906 380.4182 1.0 +478.2422 383.6642 1.0 +455.5195 383.6642 1.0 +319.1836 489.7033 1.0 +341.9063 483.2111 1.0 +366.7930 483.2111 1.0 +387.3516 481.0470 1.0 +412.2383 479.9650 1.0 +433.8789 483.2111 1.0 +462.0117 490.7853 1.0 +446.8633 526.4923 1.0 +423.0586 550.2970 1.0 +387.3516 557.8712 1.0 +359.2188 551.3790 1.0 +334.3321 525.4103 1.0 +328.9219 492.9494 1.0 +362.4649 490.7853 1.0 +390.5977 491.8673 1.0 +417.6484 490.7853 1.0 +449.0273 491.8673 1.0 +430.6328 523.2462 1.0 +388.4336 535.1486 1.0 +346.2344 521.0822 1.0 diff --git a/MakeItTalk/examples_cartoon/johnhead_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/johnhead_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..dd91469a565426b3c91d3dbb4ed85bca7cccc5c8 --- /dev/null +++ b/MakeItTalk/examples_cartoon/johnhead_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 -0.0163 -0.8557 +-0.8065 0.3102 -0.8711 +-0.8000 0.5845 -0.8871 +-0.8131 0.8914 -0.8835 +-0.8000 1.1918 -0.8138 +-0.6759 1.4596 -0.6631 +-0.5388 1.6751 -0.4768 +-0.3363 1.9102 -0.2967 +-0.0294 2.0147 -0.2114 +0.2906 1.9559 -0.3033 +0.5061 1.7339 -0.4839 +0.6694 1.4792 -0.6684 +0.8065 1.2114 -0.8159 +0.8131 0.8784 -0.8807 +0.8131 0.5714 -0.8824 +0.8000 0.2776 -0.8666 +0.8000 0.0163 -0.8501 +-0.7086 0.3690 -0.0738 +-0.6302 0.2841 0.0527 +-0.5322 0.2253 0.1346 +-0.4343 0.2253 0.1808 +-0.3102 0.2384 0.1918 +0.2841 0.2318 0.1986 +0.3951 0.2057 0.1886 +0.5127 0.2057 0.1452 +0.6106 0.2841 0.0664 +0.6629 0.3624 -0.0619 +-0.0294 0.4800 0.1415 +-0.0294 0.6367 0.2018 +-0.0163 0.7804 0.2893 +-0.0229 0.9437 0.2894 +-0.2318 1.0286 0.0735 +-0.1339 1.0939 0.1024 +-0.0163 1.1004 0.1173 +0.1078 1.1004 0.1016 +0.1861 1.0482 0.0713 +-0.6367 0.5584 -0.0058 +-0.5453 0.4604 0.0834 +-0.3624 0.4669 0.0888 +-0.2841 0.5518 0.0487 +-0.3755 0.5845 0.0764 +-0.5257 0.5845 0.0570 +0.2645 0.5649 0.0574 +0.3494 0.4735 0.0997 +0.5322 0.4800 0.0966 +0.6106 0.5714 0.0058 +0.5192 0.5910 0.0661 +0.3820 0.5910 0.0849 +-0.4408 1.2310 -0.1399 +-0.3037 1.1918 0.0106 +-0.1535 1.1918 0.1013 +-0.0294 1.1788 0.1112 +0.1208 1.1722 0.1024 +0.2514 1.1918 0.0080 +0.4212 1.2376 -0.1486 +0.3298 1.4531 -0.0193 +0.1861 1.5967 0.0498 +-0.0294 1.6424 0.0609 +-0.1992 1.6033 0.0515 +-0.3494 1.4465 -0.0166 +-0.3820 1.2506 -0.1429 +-0.1796 1.2376 0.0396 +-0.0098 1.2441 0.0642 +0.1535 1.2376 0.0391 +0.3429 1.2441 -0.1528 +0.2318 1.4335 0.0391 +-0.0229 1.5053 0.0642 +-0.2776 1.4204 0.0396 diff --git a/MakeItTalk/examples_cartoon/johnhead_scale_shift.txt b/MakeItTalk/examples_cartoon/johnhead_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..3f8a968240de42b639d8f22eaeb3ce2b15fb01f3 --- /dev/null +++ b/MakeItTalk/examples_cartoon/johnhead_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0060355130 +-392.2207000000 +-285.7404500000 diff --git a/MakeItTalk/examples_cartoon/monk.jpg b/MakeItTalk/examples_cartoon/monk.jpg new file mode 100644 index 0000000000000000000000000000000000000000..65ddf3830847c1dfb337cf76161ec5da0168f415 Binary files /dev/null and b/MakeItTalk/examples_cartoon/monk.jpg differ diff --git a/MakeItTalk/examples_cartoon/monk.png b/MakeItTalk/examples_cartoon/monk.png new file mode 100644 index 0000000000000000000000000000000000000000..559f06a0fd7835592e92ccb1f955543ed1e610ca Binary files /dev/null and b/MakeItTalk/examples_cartoon/monk.png differ diff --git a/MakeItTalk/examples_cartoon/monk.psd b/MakeItTalk/examples_cartoon/monk.psd new file mode 100644 index 0000000000000000000000000000000000000000..db09fa1d1ccf6cb32ddc9fc4e62a842d7c3de587 Binary files /dev/null and b/MakeItTalk/examples_cartoon/monk.psd differ diff --git a/MakeItTalk/examples_cartoon/monk_bg.png b/MakeItTalk/examples_cartoon/monk_bg.png new file mode 100644 index 0000000000000000000000000000000000000000..ee8de61c60644a24a891219336af6b4a6adea2f5 Binary files /dev/null and b/MakeItTalk/examples_cartoon/monk_bg.png differ diff --git a/MakeItTalk/examples_cartoon/napkin_anno.jpg b/MakeItTalk/examples_cartoon/napkin_anno.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2367a80d2432628b9e30481d9e7128bda2ef5b70 Binary files /dev/null and b/MakeItTalk/examples_cartoon/napkin_anno.jpg differ diff --git a/MakeItTalk/examples_cartoon/napkin_delauney_tri.txt b/MakeItTalk/examples_cartoon/napkin_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..0be0df6864d701f6333a82e97e6ad9e139186910 --- /dev/null +++ b/MakeItTalk/examples_cartoon/napkin_delauney_tri.txt @@ -0,0 +1,118 @@ +2 57 1 +57 2 3 +0 57 56 +57 0 1 +32 49 31 +49 32 50 +1 0 18 +50 33 34 +33 50 32 +57 3 4 +2 1 17 +28 39 27 +39 28 29 +3 2 36 +54 49 50 +49 54 55 +57 5 58 +5 57 4 +4 3 48 +34 30 35 +30 34 33 +58 5 6 +5 4 48 +29 31 40 +31 29 30 +58 6 7 +6 5 55 +13 46 45 +46 13 35 +7 59 58 +59 7 8 +7 6 55 +47 44 46 +44 47 43 +59 8 9 +8 7 54 +11 60 10 +60 11 61 +9 8 54 +10 60 9 +10 9 53 +21 27 38 +27 21 22 +61 11 12 +11 10 53 +18 37 17 +37 18 19 +61 12 13 +12 11 52 +17 37 36 +61 13 14 +13 12 52 +27 39 38 +61 14 15 +14 13 45 +1 18 17 +61 15 16 +15 14 26 +38 40 41 +40 38 39 +62 61 16 +16 15 25 +63 23 22 +23 63 16 +37 19 20 +2 17 36 +18 0 19 +42 35 29 +35 42 47 +19 0 20 +20 0 21 +63 21 0 +21 63 22 +42 27 22 +27 42 28 +20 21 38 +42 22 43 +44 25 26 +25 44 24 +44 23 24 +23 44 43 +22 23 43 +23 16 24 +16 25 24 +25 15 26 +26 14 45 +3 36 41 +31 41 40 +41 31 3 +35 30 29 +3 31 48 +29 28 42 +51 35 52 +35 51 34 +55 5 48 +9 54 53 +49 55 48 +31 30 32 +32 30 33 +52 53 51 +53 52 11 +52 35 13 +38 41 37 +36 37 41 +37 20 38 +39 29 40 +46 44 45 +42 43 47 +44 26 45 +46 35 47 +48 31 49 +7 55 54 +50 34 51 +51 54 50 +54 51 53 +0 56 63 +59 9 60 +62 16 63 diff --git a/MakeItTalk/examples_cartoon/napkin_face_close_mouth.txt b/MakeItTalk/examples_cartoon/napkin_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..b181fe0354651ea65882d5d3583867e63408c8c0 --- /dev/null +++ b/MakeItTalk/examples_cartoon/napkin_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 -0.1451 -0.8557 +-0.8627 0.0118 -0.8711 +-0.8863 0.2000 -0.8871 +-0.9176 0.4353 -0.8835 +-0.8784 0.5843 -0.8138 +-0.7686 0.7255 -0.6631 +-0.6196 0.7882 -0.4768 +-0.4078 0.8588 -0.2967 +-0.2196 0.9216 -0.2114 +0.0078 0.9608 -0.3033 +0.2510 1.0235 -0.4839 +0.4863 1.0392 -0.6684 +0.6667 0.9294 -0.8159 +0.7373 0.7647 -0.8807 +0.7686 0.4980 -0.8824 +0.7686 0.3020 -0.8666 +0.8000 0.1451 -0.8501 +-0.4784 -0.1216 -0.0738 +-0.3922 -0.1294 0.0527 +-0.2980 -0.1373 0.1346 +-0.2353 -0.0824 0.1808 +-0.1882 -0.0039 0.1918 +0.1490 0.0196 0.1986 +0.2353 -0.0039 0.1886 +0.3294 -0.0118 0.1452 +0.4157 -0.0196 0.0664 +0.5333 0.0588 -0.0619 +-0.0314 0.2627 0.1415 +-0.0392 0.3098 0.2018 +-0.0627 0.3725 0.2893 +-0.0784 0.4275 0.2894 +-0.1804 0.4588 0.0735 +-0.1412 0.4824 0.1024 +-0.1098 0.5216 0.1173 +-0.0549 0.5137 0.1016 +-0.0157 0.4980 0.0713 +-0.5255 0.0980 -0.0058 +-0.4235 0.0824 0.0834 +-0.2824 0.1451 0.0888 +-0.2039 0.2314 0.0487 +-0.3451 0.2471 0.0764 +-0.4314 0.1922 0.0570 +0.1255 0.3176 0.0574 +0.2039 0.2235 0.0997 +0.3294 0.2000 0.0966 +0.4627 0.1686 0.0058 +0.3922 0.2863 0.0661 +0.2431 0.3412 0.0849 +-0.5412 0.5294 -0.1399 +-0.3765 0.5490 0.0106 +-0.2510 0.5745 0.1013 +-0.1255 0.5961 0.1112 +0.0157 0.6216 0.1024 +0.1412 0.6569 0.0080 +0.3451 0.6941 -0.1486 +0.1490 0.7372 -0.0193 +0.0078 0.7248 0.0498 +-0.1490 0.7108 0.0609 +-0.2745 0.6777 0.0515 +-0.4078 0.6331 -0.0166 +-0.5255 0.5373 -0.1429 +-0.3231 0.5953 0.0396 +-0.1255 0.6298 0.0642 +0.0784 0.6612 0.0391 +0.3137 0.7020 -0.1528 +0.0784 0.7026 0.0391 +-0.1349 0.6806 0.0642 +-0.3288 0.6348 0.0396 diff --git a/MakeItTalk/examples_cartoon/napkin_face_open_mouth.txt b/MakeItTalk/examples_cartoon/napkin_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..bdc2684fe1600f2c8edcf644a4a446e6f5b5189a --- /dev/null +++ b/MakeItTalk/examples_cartoon/napkin_face_open_mouth.txt @@ -0,0 +1,68 @@ +264.8560 503.0670 1.0 +251.9490 535.3346 1.0 +247.1088 574.0556 1.0 +240.6553 622.4569 1.0 +248.7222 653.1110 1.0 +271.3095 682.1518 1.0 +301.9636 695.0588 1.0 +345.5248 709.5792 1.0 +384.2458 722.4862 1.0 +431.0337 730.5531 1.0 +481.0484 743.4601 1.0 +529.4497 746.6869 1.0 +566.5573 724.0996 1.0 +581.0777 690.2187 1.0 +587.5312 635.3639 1.0 +587.5312 595.0295 1.0 +593.9847 562.7620 1.0 +331.0044 507.9072 1.0 +348.7515 506.2938 1.0 +368.1121 504.6804 1.0 +381.0191 515.9740 1.0 +390.6993 532.1078 1.0 +460.0745 536.9479 1.0 +477.8216 532.1078 1.0 +497.1822 530.4944 1.0 +514.9293 528.8811 1.0 +539.1300 545.0148 1.0 +422.9669 586.9626 1.0 +421.3535 596.6429 1.0 +416.5133 609.5499 1.0 +413.2866 620.8435 1.0 +392.3127 627.2970 1.0 +400.3796 632.1371 1.0 +406.8331 640.2040 1.0 +418.1267 638.5906 1.0 +426.1936 635.3639 1.0 +321.3241 553.0817 1.0 +342.2980 549.8549 1.0 +371.3388 562.7620 1.0 +387.4726 580.5091 1.0 +358.4318 583.7358 1.0 +340.6847 572.4422 1.0 +455.2344 598.2562 1.0 +471.3681 578.8957 1.0 +497.1822 574.0556 1.0 +524.6096 567.6021 1.0 +510.0892 591.8027 1.0 +479.4350 603.0964 1.0 +318.0974 641.8174 1.0 +351.9783 636.9773 1.0 +377.7923 640.2040 1.0 +403.6063 643.4308 1.0 +432.6471 649.8843 1.0 +458.4611 659.5645 1.0 +500.4089 675.6983 1.0 +460.0745 693.4454 1.0 +431.0337 693.4454 1.0 +398.7662 691.8321 1.0 +372.9522 683.7652 1.0 +345.5248 672.4715 1.0 +321.3241 643.4308 1.0 +364.8853 641.8174 1.0 +406.8331 645.0441 1.0 +445.5541 654.7244 1.0 +493.9554 677.3117 1.0 +445.5541 690.2187 1.0 +398.7662 688.6053 1.0 +360.0452 675.6983 1.0 diff --git a/MakeItTalk/examples_cartoon/napkin_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/napkin_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..27b22e099b0772976f47a7a84185c19f497caffe --- /dev/null +++ b/MakeItTalk/examples_cartoon/napkin_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 -0.1451 -0.8557 +-0.8627 0.0118 -0.8711 +-0.8863 0.2000 -0.8871 +-0.9176 0.4353 -0.8835 +-0.8784 0.5843 -0.8138 +-0.7686 0.7255 -0.6631 +-0.6196 0.7882 -0.4768 +-0.4078 0.8588 -0.2967 +-0.2196 0.9216 -0.2114 +0.0078 0.9608 -0.3033 +0.2510 1.0235 -0.4839 +0.4863 1.0392 -0.6684 +0.6667 0.9294 -0.8159 +0.7373 0.7647 -0.8807 +0.7686 0.4980 -0.8824 +0.7686 0.3020 -0.8666 +0.8000 0.1451 -0.8501 +-0.4784 -0.1216 -0.0738 +-0.3922 -0.1294 0.0527 +-0.2980 -0.1373 0.1346 +-0.2353 -0.0824 0.1808 +-0.1882 -0.0039 0.1918 +0.1490 0.0196 0.1986 +0.2353 -0.0039 0.1886 +0.3294 -0.0118 0.1452 +0.4157 -0.0196 0.0664 +0.5333 0.0588 -0.0619 +-0.0314 0.2627 0.1415 +-0.0392 0.3098 0.2018 +-0.0627 0.3725 0.2893 +-0.0784 0.4275 0.2894 +-0.1804 0.4588 0.0735 +-0.1412 0.4824 0.1024 +-0.1098 0.5216 0.1173 +-0.0549 0.5137 0.1016 +-0.0157 0.4980 0.0713 +-0.5255 0.0980 -0.0058 +-0.4235 0.0824 0.0834 +-0.2824 0.1451 0.0888 +-0.2039 0.2314 0.0487 +-0.3451 0.2471 0.0764 +-0.4314 0.1922 0.0570 +0.1255 0.3176 0.0574 +0.2039 0.2235 0.0997 +0.3294 0.2000 0.0966 +0.4627 0.1686 0.0058 +0.3922 0.2863 0.0661 +0.2431 0.3412 0.0849 +-0.5412 0.5294 -0.1399 +-0.3765 0.5059 0.0106 +-0.2510 0.5216 0.1013 +-0.1255 0.5373 0.1112 +0.0157 0.5686 0.1024 +0.1412 0.6157 0.0080 +0.3451 0.6941 -0.1486 +0.1490 0.7804 -0.0193 +0.0078 0.7804 0.0498 +-0.1490 0.7725 0.0609 +-0.2745 0.7333 0.0515 +-0.4078 0.6784 -0.0166 +-0.5255 0.5373 -0.1429 +-0.3137 0.5294 0.0396 +-0.1098 0.5451 0.0642 +0.0784 0.5922 0.0391 +0.3137 0.7020 -0.1528 +0.0784 0.7647 0.0391 +-0.1490 0.7569 0.0642 +-0.3373 0.6941 0.0396 diff --git a/MakeItTalk/examples_cartoon/napkin_scale_shift.txt b/MakeItTalk/examples_cartoon/napkin_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..9cbb094302753504fe1e377d16d5a4b39a0c8acf --- /dev/null +++ b/MakeItTalk/examples_cartoon/napkin_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0048613202 +-429.4203500000 +-532.9145000000 diff --git a/MakeItTalk/examples_cartoon/obama.jpg b/MakeItTalk/examples_cartoon/obama.jpg new file mode 100644 index 0000000000000000000000000000000000000000..328d6cf0b902cff2dcc52e97cd21e745604e0775 Binary files /dev/null and b/MakeItTalk/examples_cartoon/obama.jpg differ diff --git a/MakeItTalk/examples_cartoon/obama.png b/MakeItTalk/examples_cartoon/obama.png new file mode 100644 index 0000000000000000000000000000000000000000..7930cb44f9689a19f3e85d3779602e9dc324969e Binary files /dev/null and b/MakeItTalk/examples_cartoon/obama.png differ diff --git a/MakeItTalk/examples_cartoon/obama_anno.png b/MakeItTalk/examples_cartoon/obama_anno.png new file mode 100644 index 0000000000000000000000000000000000000000..6f9c86284705a249e79b286d625aa49e04f7c7c8 Binary files /dev/null and b/MakeItTalk/examples_cartoon/obama_anno.png differ diff --git a/MakeItTalk/examples_cartoon/obama_delauney_tri.txt b/MakeItTalk/examples_cartoon/obama_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..f2975c30355a044814bf20b0e241072882bc6232 --- /dev/null +++ b/MakeItTalk/examples_cartoon/obama_delauney_tri.txt @@ -0,0 +1,142 @@ +1 69 0 +69 1 2 +0 69 68 +60 5 4 +5 60 59 +1 0 17 +31 32 3 +32 31 30 +69 2 3 +2 1 41 +60 4 48 +69 3 4 +3 2 31 +53 64 63 +64 53 54 +69 4 5 +4 3 48 +57 8 7 +8 57 9 +69 6 70 +6 69 5 +9 57 56 +70 6 7 +6 5 59 +61 67 60 +67 61 62 +7 71 70 +71 7 8 +7 6 58 +71 8 9 +9 72 71 +72 9 10 +30 33 32 +33 30 34 +10 73 72 +73 10 11 +10 9 56 +29 35 34 +35 29 47 +13 73 12 +73 13 14 +11 10 55 +29 40 28 +40 29 31 +12 73 11 +12 11 54 +20 38 19 +38 20 21 +13 12 35 +18 37 17 +37 18 19 +73 14 16 +14 13 35 +17 36 1 +36 17 37 +14 15 16 +15 14 45 +22 20 19 +20 22 21 +16 15 26 +75 0 68 +0 75 19 +74 73 16 +17 0 18 +0 19 18 +22 19 23 +23 19 75 +27 42 28 +42 27 22 +41 1 36 +42 22 43 +46 44 45 +44 46 47 +25 44 24 +44 25 45 +21 22 27 +43 22 23 +24 75 16 +75 24 23 +29 42 47 +42 29 28 +23 24 43 +24 16 25 +15 45 26 +25 16 26 +25 26 45 +31 41 40 +41 31 2 +21 27 39 +27 28 39 +14 46 45 +46 14 35 +29 34 30 +31 29 30 +52 34 35 +34 52 33 +50 61 49 +61 50 51 +3 32 49 +3 49 48 +33 50 32 +50 33 51 +55 10 56 +35 12 53 +38 40 41 +40 38 39 +38 41 37 +19 38 37 +36 37 41 +38 21 39 +39 28 40 +24 44 43 +42 43 47 +43 44 47 +46 35 47 +49 32 50 +48 49 60 +60 49 61 +51 33 52 +62 51 63 +51 62 61 +63 51 52 +52 35 53 +52 53 63 +53 12 54 +11 55 54 +56 65 55 +65 56 66 +54 55 65 +66 57 58 +57 66 56 +6 59 67 +57 7 58 +58 6 67 +59 60 67 +65 64 54 +64 65 63 +63 65 62 +62 65 66 +62 66 67 +58 67 66 +74 16 75 diff --git a/MakeItTalk/examples_cartoon/obama_face_close_mouth.txt b/MakeItTalk/examples_cartoon/obama_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..fc049479529f89966c37762d6f374fd217c7e7db --- /dev/null +++ b/MakeItTalk/examples_cartoon/obama_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 0.0035 -0.8557 +-0.7504 0.4425 -0.8711 +-0.7080 0.9027 -0.8871 +-0.5593 1.2425 -0.8835 +-0.5097 1.4973 -0.8138 +-0.4319 1.7876 -0.6631 +-0.3044 2.0425 -0.4768 +-0.1416 2.4106 -0.2967 +0.0283 2.4531 -0.2114 +0.3398 2.1982 -0.3033 +0.5805 1.8655 -0.4839 +0.6584 1.5823 -0.6684 +0.6655 1.2496 -0.8159 +0.7009 1.0089 -0.8807 +0.7858 0.6478 -0.8824 +0.7221 0.3575 -0.8666 +0.8000 -0.0035 -0.8501 +-0.6726 0.2230 -0.0738 +-0.5735 0.1664 0.0527 +-0.4531 0.1735 0.1346 +-0.3611 0.2159 0.1808 +-0.2690 0.2726 0.1918 +-0.0425 0.2301 0.1986 +0.1274 0.1876 0.1886 +0.2549 0.1876 0.1452 +0.3681 0.2018 0.0664 +0.5239 0.2655 -0.0619 +-0.1699 0.4637 0.1415 +-0.1770 0.5912 0.2018 +-0.1841 0.7327 0.2893 +-0.1770 0.8956 0.2894 +-0.4531 1.0018 0.0735 +-0.3044 1.0584 0.1024 +-0.1699 1.1080 0.1173 +-0.0212 1.0372 0.1016 +0.2336 0.9451 0.0713 +-0.6230 0.4071 -0.0058 +-0.5522 0.3150 0.0834 +-0.3681 0.3363 0.0888 +-0.2761 0.4283 0.0487 +-0.3965 0.4779 0.0764 +-0.5239 0.4708 0.0570 +0.0354 0.4425 0.0574 +0.1062 0.3221 0.0997 +0.2973 0.3221 0.0966 +0.4743 0.4000 0.0058 +0.3681 0.4566 0.0661 +0.2053 0.4779 0.0849 +-0.4319 1.3912 -0.1399 +-0.3398 1.4283 0.0106 +-0.2195 1.4513 0.1013 +-0.1204 1.4832 0.1112 +0.0425 1.4212 0.1024 +0.2407 1.4089 0.0080 +0.4035 1.3982 -0.1486 +0.3115 1.6366 -0.0193 +0.2195 1.7974 0.0498 +0.0354 1.8697 0.0609 +-0.1416 1.8586 0.0515 +-0.3398 1.6665 -0.0166 +-0.3398 1.4690 -0.1429 +-0.2166 1.5512 0.0396 +-0.0651 1.5667 0.0642 +0.1359 1.4662 0.0391 +0.3186 1.3912 -0.1528 +0.1665 1.4891 0.0391 +-0.0362 1.5909 0.0642 +-0.2064 1.5741 0.0396 diff --git a/MakeItTalk/examples_cartoon/obama_face_open_mouth.txt b/MakeItTalk/examples_cartoon/obama_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..f8c66952b239ffe15970443fc5516ca221294220 --- /dev/null +++ b/MakeItTalk/examples_cartoon/obama_face_open_mouth.txt @@ -0,0 +1,68 @@ +114.5428 172.8701 1.0 +120.4616 225.2938 1.0 +125.5348 280.2541 1.0 +143.2912 320.8402 1.0 +149.2100 351.2797 1.0 +158.5110 385.9470 1.0 +173.7308 416.3866 1.0 +193.1783 460.3548 1.0 +213.4713 465.4280 1.0 +250.6752 434.9885 1.0 +279.4237 395.2480 1.0 +288.7246 361.4263 1.0 +289.5702 321.6857 1.0 +293.7979 292.9373 1.0 +303.9444 249.8146 1.0 +296.3345 215.1473 1.0 +305.6355 172.0246 1.0 +129.7625 199.0820 1.0 +141.6002 192.3176 1.0 +155.9744 193.1632 1.0 +166.9664 198.2364 1.0 +177.9585 205.0008 1.0 +205.0159 199.9275 1.0 +225.3089 194.8543 1.0 +240.5287 194.8543 1.0 +254.0574 196.5454 1.0 +272.6593 204.1552 1.0 +189.7961 227.8304 1.0 +188.9506 243.0502 1.0 +188.1050 259.9611 1.0 +188.9506 279.4086 1.0 +155.9744 292.0917 1.0 +173.7308 298.8561 1.0 +189.7961 304.7749 1.0 +207.5525 296.3194 1.0 +237.9921 285.3274 1.0 +135.6813 221.0661 1.0 +144.1368 210.0740 1.0 +166.1209 212.6107 1.0 +177.1130 223.6027 1.0 +162.7387 229.5215 1.0 +147.5190 228.6760 1.0 +214.3169 225.2938 1.0 +222.7723 210.9196 1.0 +245.6019 210.9196 1.0 +266.7405 220.2206 1.0 +254.0574 226.9849 1.0 +234.6099 229.5215 1.0 +158.5110 338.5966 1.0 +169.5031 328.4501 1.0 +183.8773 320.8402 1.0 +195.7149 325.9134 1.0 +215.1624 319.1491 1.0 +238.8376 326.7590 1.0 +258.2851 339.4421 1.0 +247.2930 382.5648 1.0 +236.3010 411.3133 1.0 +214.3169 420.6143 1.0 +193.1783 420.6143 1.0 +169.5031 386.7925 1.0 +169.5031 347.8976 1.0 +182.1862 339.4421 1.0 +196.5604 340.2877 1.0 +220.2357 329.2956 1.0 +248.1386 338.5966 1.0 +235.4554 374.9549 1.0 +210.9347 388.4836 1.0 +187.2595 385.1015 1.0 diff --git a/MakeItTalk/examples_cartoon/obama_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/obama_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..df1e7e5a3aad66d1e448f603a68ec498d95e7468 --- /dev/null +++ b/MakeItTalk/examples_cartoon/obama_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 0.0035 -0.8557 +-0.7504 0.4425 -0.8711 +-0.7080 0.9027 -0.8871 +-0.5593 1.2425 -0.8835 +-0.5097 1.4973 -0.8138 +-0.4319 1.7876 -0.6631 +-0.3044 2.0425 -0.4768 +-0.1416 2.4106 -0.2967 +0.0283 2.4531 -0.2114 +0.3398 2.1982 -0.3033 +0.5805 1.8655 -0.4839 +0.6584 1.5823 -0.6684 +0.6655 1.2496 -0.8159 +0.7009 1.0089 -0.8807 +0.7858 0.6478 -0.8824 +0.7221 0.3575 -0.8666 +0.8000 -0.0035 -0.8501 +-0.6726 0.2230 -0.0738 +-0.5735 0.1664 0.0527 +-0.4531 0.1735 0.1346 +-0.3611 0.2159 0.1808 +-0.2690 0.2726 0.1918 +-0.0425 0.2301 0.1986 +0.1274 0.1876 0.1886 +0.2549 0.1876 0.1452 +0.3681 0.2018 0.0664 +0.5239 0.2655 -0.0619 +-0.1699 0.4637 0.1415 +-0.1770 0.5912 0.2018 +-0.1841 0.7327 0.2893 +-0.1770 0.8956 0.2894 +-0.4531 1.0018 0.0735 +-0.3044 1.0584 0.1024 +-0.1699 1.1080 0.1173 +-0.0212 1.0372 0.1016 +0.2336 0.9451 0.0713 +-0.6230 0.4071 -0.0058 +-0.5522 0.3150 0.0834 +-0.3681 0.3363 0.0888 +-0.2761 0.4283 0.0487 +-0.3965 0.4779 0.0764 +-0.5239 0.4708 0.0570 +0.0354 0.4425 0.0574 +0.1062 0.3221 0.0997 +0.2973 0.3221 0.0966 +0.4743 0.4000 0.0058 +0.3681 0.4566 0.0661 +0.2053 0.4779 0.0849 +-0.4319 1.3912 -0.1399 +-0.3398 1.3062 0.0106 +-0.2195 1.2425 0.1013 +-0.1204 1.2850 0.1112 +0.0425 1.2283 0.1024 +0.2407 1.2920 0.0080 +0.4035 1.3982 -0.1486 +0.3115 1.7593 -0.0193 +0.2195 2.0000 0.0498 +0.0354 2.0779 0.0609 +-0.1416 2.0779 0.0515 +-0.3398 1.7947 -0.0166 +-0.3398 1.4690 -0.1429 +-0.2336 1.3982 0.0396 +-0.1133 1.4053 0.0642 +0.0850 1.3133 0.0391 +0.3186 1.3912 -0.1528 +0.2124 1.6956 0.0391 +0.0071 1.8088 0.0642 +-0.1912 1.7805 0.0396 diff --git a/MakeItTalk/examples_cartoon/obama_scale_shift.txt b/MakeItTalk/examples_cartoon/obama_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..c11a7385e100a874b3b7fc73b4c12606ea1e973d --- /dev/null +++ b/MakeItTalk/examples_cartoon/obama_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0083728996 +-210.0891500000 +-172.4473500000 diff --git a/MakeItTalk/examples_cartoon/onepunch.png b/MakeItTalk/examples_cartoon/onepunch.png new file mode 100644 index 0000000000000000000000000000000000000000..5c074c2b2012bcbd79aa6df3f3a62cdfe5efcb4b Binary files /dev/null and b/MakeItTalk/examples_cartoon/onepunch.png differ diff --git a/MakeItTalk/examples_cartoon/onepunch_delauney_tri.txt b/MakeItTalk/examples_cartoon/onepunch_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..2b3b35d66cf33b7a5082bd48ca1a2a4f5cfabe0a --- /dev/null +++ b/MakeItTalk/examples_cartoon/onepunch_delauney_tri.txt @@ -0,0 +1,118 @@ +37 18 19 +18 37 17 +31 40 30 +40 31 41 +17 56 63 +56 17 0 +0 1 56 +1 0 41 +56 1 57 +1 2 57 +2 1 41 +41 0 36 +2 3 57 +3 2 48 +54 9 8 +9 54 53 +4 57 3 +57 4 5 +4 3 48 +54 7 6 +7 54 8 +5 4 55 +50 54 49 +54 50 53 +57 5 6 +6 5 55 +31 34 32 +34 31 35 +57 6 58 +6 7 58 +35 31 30 +58 7 8 +2 31 32 +31 2 41 +8 59 58 +59 8 9 +47 43 44 +43 47 42 +9 10 59 +10 9 53 +59 13 60 +13 59 12 +10 11 59 +11 10 53 +37 40 41 +40 37 38 +12 59 11 +12 11 52 +19 38 37 +38 19 20 +14 60 13 +60 14 61 +13 12 52 +46 44 45 +44 46 47 +14 13 46 +16 46 45 +46 16 15 +61 14 15 +15 14 46 +29 47 35 +47 29 42 +61 15 16 +36 17 37 +17 36 0 +16 62 61 +62 16 26 +63 18 17 +18 63 19 +21 38 20 +38 21 27 +39 40 38 +40 39 29 +22 63 23 +63 22 21 +63 62 25 +27 22 42 +22 27 21 +20 19 63 +20 63 21 +42 22 43 +27 42 28 +63 24 23 +24 63 25 +23 43 22 +43 23 24 +25 62 26 +29 35 30 +24 25 44 +26 16 45 +25 26 44 +27 28 39 +47 52 35 +52 47 46 +28 29 39 +29 28 42 +32 34 33 +2 32 48 +29 30 40 +53 50 51 +48 32 33 +55 49 54 +49 55 48 +6 55 54 +33 50 49 +50 33 34 +50 34 51 +11 53 52 +34 35 51 +46 13 52 +36 37 41 +27 39 38 +24 44 43 +44 26 45 +35 52 51 +48 33 49 +55 4 48 +52 53 51 diff --git a/MakeItTalk/examples_cartoon/onepunch_face_close_mouth.txt b/MakeItTalk/examples_cartoon/onepunch_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..2c84a7107821b94c03427d0a48b3fe015705e2e5 --- /dev/null +++ b/MakeItTalk/examples_cartoon/onepunch_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 -0.2155 -0.8557 +-0.9063 -0.0384 -0.8711 +-0.9181 0.1683 -0.8871 +-0.9122 0.3277 -0.8835 +-0.9063 0.4871 -0.8138 +-0.8827 0.6465 -0.6631 +-0.8354 0.8236 -0.4768 +-0.7646 0.9712 -0.2967 +-0.5934 1.1070 -0.2114 +-0.3749 1.1483 -0.3033 +-0.1269 1.1188 -0.4839 +0.0856 1.0421 -0.6684 +0.2863 0.9122 -0.8159 +0.4812 0.8413 -0.8807 +0.7292 0.6229 -0.8824 +0.8236 0.4399 -0.8666 +0.8000 0.2155 -0.8501 +-0.5993 -0.4812 -0.0738 +-0.4989 -0.4753 0.0527 +-0.4221 -0.4812 0.1346 +-0.3277 -0.4576 0.1808 +-0.2391 -0.4221 0.1918 +0.0502 -0.3985 0.1986 +0.1801 -0.3690 0.1886 +0.2804 -0.3395 0.1452 +0.3985 -0.2863 0.0664 +0.4753 -0.2273 -0.0619 +-0.2096 -0.2332 0.1415 +-0.2509 -0.0974 0.2018 +-0.2923 0.0148 0.2893 +-0.3454 0.1033 0.2894 +-0.4458 0.1742 0.0735 +-0.4517 0.2391 0.1024 +-0.4103 0.3100 0.1173 +-0.3572 0.2982 0.1016 +-0.3100 0.2804 0.0713 +-0.6465 -0.2155 -0.0058 +-0.5284 -0.2804 0.0834 +-0.3808 -0.2568 0.0888 +-0.3041 -0.1446 0.0487 +-0.4339 -0.0679 0.0764 +-0.5756 -0.0856 0.0570 +-0.0384 -0.1033 0.0574 +0.1092 -0.1624 0.0997 +0.2568 -0.0915 0.0966 +0.3277 0.0325 0.0058 +0.2096 0.1151 0.0661 +0.0148 0.0620 0.0849 +-0.5934 0.4162 -0.1399 +-0.5343 0.4419 0.0106 +-0.4576 0.4838 0.1013 +-0.3926 0.4951 0.1112 +-0.3218 0.5160 0.1024 +-0.2037 0.5249 0.0080 +-0.1033 0.5461 -0.1486 +-0.1978 0.5931 -0.0193 +-0.3218 0.6269 0.0498 +-0.4458 0.6188 0.0609 +-0.5048 0.5819 0.0515 +-0.5815 0.4803 -0.0166 +-0.5945 0.4046 -0.1429 +-0.5122 0.4862 0.0396 +-0.4113 0.5332 0.0642 +-0.2661 0.5484 0.0391 +-0.1071 0.5325 -0.1528 +-0.2661 0.5969 0.0391 +-0.4300 0.5929 0.0642 +-0.5346 0.5285 0.0396 diff --git a/MakeItTalk/examples_cartoon/onepunch_face_open_mouth.txt b/MakeItTalk/examples_cartoon/onepunch_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..893868c8ac27a80aa3d0202cb8ea7f92f1a08223 --- /dev/null +++ b/MakeItTalk/examples_cartoon/onepunch_face_open_mouth.txt @@ -0,0 +1,68 @@ +195.6521 91.5427 1.0 +181.5925 114.9756 1.0 +180.0303 142.3138 1.0 +180.8114 163.4034 1.0 +181.5925 184.4929 1.0 +184.7168 205.5824 1.0 +190.9656 229.0152 1.0 +200.3387 248.5426 1.0 +222.9904 266.5077 1.0 +251.8909 271.9754 1.0 +284.6968 268.0699 1.0 +312.8162 257.9157 1.0 +339.3734 240.7316 1.0 +365.1495 231.3585 1.0 +397.9554 202.4580 1.0 +410.4529 178.2441 1.0 +407.3285 148.5626 1.0 +222.2093 56.3935 1.0 +235.4879 57.1746 1.0 +245.6421 56.3935 1.0 +258.1396 59.5179 1.0 +269.8560 64.2045 1.0 +308.1296 67.3288 1.0 +325.3137 71.2343 1.0 +338.5923 75.1398 1.0 +354.2142 82.1696 1.0 +364.3684 89.9806 1.0 +273.7615 89.1995 1.0 +268.2939 107.1646 1.0 +262.8262 122.0054 1.0 +255.7964 133.7218 1.0 +242.5178 143.0949 1.0 +241.7367 151.6870 1.0 +247.2043 161.0601 1.0 +254.2342 159.4979 1.0 +260.4829 157.1546 1.0 +215.9606 91.5427 1.0 +231.5825 82.9507 1.0 +251.1098 86.0751 1.0 +261.2640 100.9159 1.0 +244.0800 111.0701 1.0 +225.3337 108.7268 1.0 +296.4132 106.3835 1.0 +315.9406 98.5726 1.0 +335.4679 107.9457 1.0 +344.8410 124.3487 1.0 +329.2192 135.2840 1.0 +303.4431 128.2541 1.0 +222.9904 175.1198 1.0 +230.8014 177.4630 1.0 +240.9556 181.3685 1.0 +249.5476 182.1496 1.0 +258.9207 185.2740 1.0 +274.5426 187.6173 1.0 +287.8212 192.3038 1.0 +275.3237 200.1148 1.0 +258.9207 205.5824 1.0 +242.5178 204.8013 1.0 +234.7068 199.3337 1.0 +224.5526 184.4929 1.0 +222.8383 173.5807 1.0 +237.0149 178.1538 1.0 +249.8196 181.8123 1.0 +266.2827 185.4707 1.0 +287.3189 190.5011 1.0 +266.2827 200.3058 1.0 +242.9599 200.7631 1.0 +228.7833 190.7023 1.0 \ No newline at end of file diff --git a/MakeItTalk/examples_cartoon/onepunch_onlybody.jpg b/MakeItTalk/examples_cartoon/onepunch_onlybody.jpg new file mode 100644 index 0000000000000000000000000000000000000000..277c3fc42554ec5d4355428da6924ba3b755da9d Binary files /dev/null and b/MakeItTalk/examples_cartoon/onepunch_onlybody.jpg differ diff --git a/MakeItTalk/examples_cartoon/onepunch_scale_shift.txt b/MakeItTalk/examples_cartoon/onepunch_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..be66b435f941a3fa7403d2fc7df80551801070c9 --- /dev/null +++ b/MakeItTalk/examples_cartoon/onepunch_scale_shift.txt @@ -0,0 +1,3 @@ +-0.007558707536598317 +-301.4903 +-120.05265 diff --git a/MakeItTalk/examples_cartoon/outlet.jpg b/MakeItTalk/examples_cartoon/outlet.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6fec15473a1e8b7f176530abd1aa7431ada27e63 Binary files /dev/null and b/MakeItTalk/examples_cartoon/outlet.jpg differ diff --git a/MakeItTalk/examples_cartoon/outlet.png b/MakeItTalk/examples_cartoon/outlet.png new file mode 100644 index 0000000000000000000000000000000000000000..66c824c86331b65e47b02dcc61cdb35495e145a4 Binary files /dev/null and b/MakeItTalk/examples_cartoon/outlet.png differ diff --git a/MakeItTalk/examples_cartoon/outlet_anno.jpg b/MakeItTalk/examples_cartoon/outlet_anno.jpg new file mode 100644 index 0000000000000000000000000000000000000000..af035e9d00d7b48ae005e3838a445ffee8996b1d Binary files /dev/null and b/MakeItTalk/examples_cartoon/outlet_anno.jpg differ diff --git a/MakeItTalk/examples_cartoon/outlet_bg.jpg b/MakeItTalk/examples_cartoon/outlet_bg.jpg new file mode 100644 index 0000000000000000000000000000000000000000..463dc215d20e95ab4dae5ec9fd21957b029cfd2a Binary files /dev/null and b/MakeItTalk/examples_cartoon/outlet_bg.jpg differ diff --git a/MakeItTalk/examples_cartoon/outlet_delauney_tri.txt b/MakeItTalk/examples_cartoon/outlet_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..c35e556af3f8265fd4b8677d2b977dc29d4e90ad --- /dev/null +++ b/MakeItTalk/examples_cartoon/outlet_delauney_tri.txt @@ -0,0 +1,106 @@ +64 63 67 +17 2 1 +2 17 37 +0 65 66 +65 0 1 +1 0 17 +65 1 2 +3 36 4 +36 3 2 +57 65 2 +65 57 56 +2 3 57 +3 4 57 +48 41 49 +41 48 5 +57 4 58 +4 5 58 +5 4 41 +37 38 39 +38 37 19 +58 5 6 +6 5 48 +37 17 18 +61 59 6 +59 61 60 +6 7 61 +7 6 48 +0 18 17 +18 0 19 +7 8 61 +8 7 55 +39 22 43 +22 39 21 +61 8 9 +9 8 53 +47 51 35 +51 47 46 +9 10 61 +10 9 52 +10 62 61 +62 10 63 +10 11 63 +11 10 52 +47 45 46 +45 47 42 +63 11 12 +12 11 46 +52 54 51 +54 52 53 +63 12 13 +13 12 46 +49 41 40 +67 63 13 +13 14 67 +14 13 45 +41 36 40 +36 41 4 +14 15 67 +15 14 26 +15 16 67 +16 15 26 +0 16 21 +16 0 66 +38 19 20 +36 2 37 +19 0 20 +20 0 21 +18 19 37 +39 43 42 +21 16 22 +50 35 51 +35 50 49 +20 21 38 +22 16 23 +43 22 23 +23 16 24 +44 24 25 +24 44 43 +24 16 25 +44 45 42 +45 44 14 +23 24 43 +25 16 26 +14 44 26 +25 26 44 +39 42 35 +51 49 50 +49 51 54 +21 39 38 +40 39 35 +39 40 36 +36 37 39 +40 35 49 +35 42 47 +42 43 44 +45 13 46 +46 11 52 +46 52 51 +49 54 48 +8 55 54 +7 48 55 +52 9 53 +53 8 54 +48 54 55 +58 6 59 +67 16 66 diff --git a/MakeItTalk/examples_cartoon/outlet_face_close_mouth.txt b/MakeItTalk/examples_cartoon/outlet_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..5480ffc46f2e39d6cd0bbcfcf4bc1d6667e57418 --- /dev/null +++ b/MakeItTalk/examples_cartoon/outlet_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 0.0000 -0.8557 +-1.0581 0.2237 -0.8711 +-1.2817 0.5333 -0.8871 +-1.3849 0.9118 -0.8835 +-1.4021 1.3419 -0.8138 +-1.2645 1.8925 -0.6631 +-0.8000 2.4086 -0.4768 +-0.4387 2.4430 -0.2967 +0.0258 2.4086 -0.2114 +0.4387 2.4258 -0.3033 +0.8344 2.3914 -0.4839 +1.3505 1.8581 -0.6684 +1.5398 1.1527 -0.8159 +1.4710 0.8258 -0.8807 +1.3161 0.5677 -0.8824 +1.0409 0.1892 -0.8666 +0.8000 0.0000 -0.8501 +-0.8172 0.4129 -0.0738 +-0.6624 0.3957 0.0527 +-0.5247 0.3785 0.1346 +-0.3527 0.3785 0.1808 +-0.1290 0.3785 0.1918 +0.1634 0.3785 0.1986 +0.3699 0.3785 0.1886 +0.5763 0.3785 0.1452 +0.7140 0.3785 0.0664 +0.8860 0.3785 -0.0619 +-0.0086 1.3591 0.1415 +-0.0086 1.3591 0.2018 +-0.0086 1.3591 0.2893 +-0.0086 1.3591 0.2894 +-0.0086 1.3591 0.0735 +-0.0086 1.3591 0.1024 +-0.0086 1.3591 0.1173 +-0.0086 1.3591 0.1016 +-0.0086 1.3591 0.0713 +-0.6280 0.9290 -0.0058 +-0.6280 0.6194 0.0834 +-0.4043 0.6022 0.0888 +-0.4043 0.9290 0.0487 +-0.3871 1.2731 0.0764 +-0.6108 1.3247 0.0570 +0.4559 0.9806 0.0574 +0.4387 0.6882 0.0997 +0.6452 0.6538 0.0966 +0.6796 0.9978 0.0058 +0.7140 1.2387 0.0661 +0.4731 1.2387 0.0849 +-0.2495 1.9785 -0.1399 +-0.2495 1.9785 0.0106 +-0.1634 1.9475 0.1013 +0.0086 1.9166 0.1112 +0.1462 1.9269 0.1024 +0.2839 1.9991 0.0080 +0.3011 2.0129 -0.1486 +0.3011 2.0528 -0.0193 +0.1462 2.0508 0.0498 +0.0086 2.0446 0.0609 +-0.0946 2.0631 0.0515 +-0.2323 2.0404 -0.0166 +-0.2323 2.0129 -0.1429 +-0.1738 2.0301 0.0396 +0.0086 1.9776 0.0642 +0.2460 2.0224 0.0391 +0.2839 2.0129 -0.1528 +0.2543 2.1280 0.0391 +0.0086 2.1236 0.0642 +-0.1696 2.1308 0.0396 diff --git a/MakeItTalk/examples_cartoon/outlet_face_open_mouth.txt b/MakeItTalk/examples_cartoon/outlet_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..5ed60fc67712a2c60db23205de6b189f247fb054 --- /dev/null +++ b/MakeItTalk/examples_cartoon/outlet_face_open_mouth.txt @@ -0,0 +1,68 @@ +247.4327 163.2110 1.0 +236.5785 172.6180 1.0 +227.1715 185.6431 1.0 +222.8298 201.5627 1.0 +222.1062 219.6531 1.0 +227.8951 242.8088 1.0 +247.4327 264.5173 1.0 +262.6287 265.9646 1.0 +282.1663 264.5173 1.0 +299.5331 265.2409 1.0 +316.1763 263.7937 1.0 +337.8848 241.3616 1.0 +345.8446 211.6933 1.0 +342.9501 197.9446 1.0 +336.4376 187.0904 1.0 +324.8597 171.1708 1.0 +314.7291 163.2110 1.0 +246.7091 180.5778 1.0 +253.2217 179.8542 1.0 +259.0106 179.1306 1.0 +266.2468 179.1306 1.0 +275.6538 179.1306 1.0 +287.9553 179.1306 1.0 +296.6387 179.1306 1.0 +305.3221 179.1306 1.0 +311.1110 179.1306 1.0 +318.3472 179.1306 1.0 +280.7191 220.3767 1.0 +280.7191 220.3767 1.0 +280.7191 220.3767 1.0 +280.7191 220.3767 1.0 +280.7191 220.3767 1.0 +280.7191 220.3767 1.0 +280.7191 220.3767 1.0 +280.7191 220.3767 1.0 +280.7191 220.3767 1.0 +254.6689 202.2863 1.0 +254.6689 189.2612 1.0 +264.0759 188.5376 1.0 +264.0759 202.2863 1.0 +264.7995 216.7586 1.0 +255.3925 218.9295 1.0 +300.2568 204.4572 1.0 +299.5331 192.1557 1.0 +308.2165 190.7084 1.0 +309.6638 205.1808 1.0 +311.1110 215.3114 1.0 +300.9804 215.3114 1.0 +270.5885 246.4269 1.0 +270.5885 242.0852 1.0 +274.2066 237.0199 1.0 +281.4427 234.8490 1.0 +287.2317 235.5727 1.0 +293.0206 243.5324 1.0 +293.7442 247.8741 1.0 +293.7442 252.9395 1.0 +287.2317 257.2812 1.0 +281.4427 257.2812 1.0 +277.1010 257.2812 1.0 +271.3121 252.9395 1.0 +271.3121 247.8741 1.0 +273.4829 240.6380 1.0 +281.4427 234.8490 1.0 +290.8497 239.9144 1.0 +293.0206 247.8741 1.0 +292.2970 255.1103 1.0 +281.4427 255.8339 1.0 +274.2066 255.1103 1.0 diff --git a/MakeItTalk/examples_cartoon/outlet_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/outlet_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..9d92abe72a00f60a012afcd2cfc1ce94fd8f2278 --- /dev/null +++ b/MakeItTalk/examples_cartoon/outlet_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 0.0000 -0.8557 +-1.0581 0.2237 -0.8711 +-1.2817 0.5333 -0.8871 +-1.3849 0.9118 -0.8835 +-1.4021 1.3419 -0.8138 +-1.2645 1.8925 -0.6631 +-0.8000 2.4086 -0.4768 +-0.4387 2.4430 -0.2967 +0.0258 2.4086 -0.2114 +0.4387 2.4258 -0.3033 +0.8344 2.3914 -0.4839 +1.3505 1.8581 -0.6684 +1.5398 1.1527 -0.8159 +1.4710 0.8258 -0.8807 +1.3161 0.5677 -0.8824 +1.0409 0.1892 -0.8666 +0.8000 0.0000 -0.8501 +-0.8172 0.4129 -0.0738 +-0.6624 0.3957 0.0527 +-0.5247 0.3785 0.1346 +-0.3527 0.3785 0.1808 +-0.1290 0.3785 0.1918 +0.1634 0.3785 0.1986 +0.3699 0.3785 0.1886 +0.5763 0.3785 0.1452 +0.7140 0.3785 0.0664 +0.8860 0.3785 -0.0619 +-0.0086 1.3591 0.1415 +-0.0086 1.3591 0.2018 +-0.0086 1.3591 0.2893 +-0.0086 1.3591 0.2894 +-0.0086 1.3591 0.0735 +-0.0086 1.3591 0.1024 +-0.0086 1.3591 0.1173 +-0.0086 1.3591 0.1016 +-0.0086 1.3591 0.0713 +-0.6280 0.9290 -0.0058 +-0.6280 0.6194 0.0834 +-0.4043 0.6022 0.0888 +-0.4043 0.9290 0.0487 +-0.3871 1.2731 0.0764 +-0.6108 1.3247 0.0570 +0.4559 0.9806 0.0574 +0.4387 0.6882 0.0997 +0.6452 0.6538 0.0966 +0.6796 0.9978 0.0058 +0.7140 1.2387 0.0661 +0.4731 1.2387 0.0849 +-0.2495 1.9785 -0.1399 +-0.2495 1.8753 0.0106 +-0.1634 1.7548 0.1013 +0.0086 1.7032 0.1112 +0.1462 1.7204 0.1024 +0.2839 1.9097 0.0080 +0.3011 2.0129 -0.1486 +0.3011 2.1333 -0.0193 +0.1462 2.2366 0.0498 +0.0086 2.2366 0.0609 +-0.0946 2.2366 0.0515 +-0.2323 2.1333 -0.0166 +-0.2323 2.0129 -0.1429 +-0.1806 1.8409 0.0396 +0.0086 1.7032 0.0642 +0.2323 1.8237 0.0391 +0.2839 2.0129 -0.1528 +0.2667 2.1849 0.0391 +0.0086 2.2021 0.0642 +-0.1634 2.1849 0.0396 diff --git a/MakeItTalk/examples_cartoon/outlet_scale_shift.txt b/MakeItTalk/examples_cartoon/outlet_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..8789cb956d57a4a627f2fe7d8ac4381437889de5 --- /dev/null +++ b/MakeItTalk/examples_cartoon/outlet_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0237754174 +-281.0809000000 +-163.2110000000 diff --git a/MakeItTalk/examples_cartoon/sketch.png b/MakeItTalk/examples_cartoon/sketch.png new file mode 100644 index 0000000000000000000000000000000000000000..584d9bfb8d863e2d7d5aed440b04a1b827c95d97 Binary files /dev/null and b/MakeItTalk/examples_cartoon/sketch.png differ diff --git a/MakeItTalk/examples_cartoon/sketch_bg.png b/MakeItTalk/examples_cartoon/sketch_bg.png new file mode 100644 index 0000000000000000000000000000000000000000..575c5ebfced572b8ac9ef7acb6be7b373a0d65b5 Binary files /dev/null and b/MakeItTalk/examples_cartoon/sketch_bg.png differ diff --git a/MakeItTalk/examples_cartoon/sketch_delauney_tri.txt b/MakeItTalk/examples_cartoon/sketch_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..75de1c7baef0eee7c7c31b483eeb6506924248ba --- /dev/null +++ b/MakeItTalk/examples_cartoon/sketch_delauney_tri.txt @@ -0,0 +1,118 @@ +17 1 0 +1 17 36 +1 57 0 +57 1 2 +0 57 56 +51 54 50 +54 51 53 +55 54 7 +54 55 49 +57 2 3 +2 1 41 +3 41 31 +41 3 2 +3 58 57 +58 3 4 +3 49 48 +49 3 31 +58 4 5 +4 3 48 +35 12 52 +12 35 13 +58 6 59 +6 58 5 +5 4 48 +39 36 38 +36 39 40 +59 6 7 +6 5 55 +39 27 28 +27 39 21 +59 7 8 +7 6 55 +38 20 39 +20 38 19 +8 7 54 +60 59 10 +10 59 9 +8 9 59 +9 8 53 +60 11 12 +11 60 10 +10 9 53 +28 31 40 +31 28 29 +60 12 61 +11 10 52 +38 36 37 +61 12 13 +12 11 52 +1 36 41 +14 61 13 +61 14 15 +36 17 37 +14 13 35 +18 37 17 +37 18 19 +61 15 16 +15 14 46 +30 35 34 +35 30 29 +16 15 26 +62 61 16 +17 19 18 +19 17 20 +17 0 63 +63 0 56 +28 42 47 +42 28 27 +35 29 47 +22 42 27 +42 22 43 +20 17 63 +20 63 21 +63 26 25 +26 63 16 +20 21 39 +63 22 21 +22 63 24 +28 47 29 +21 22 27 +23 24 43 +24 23 22 +23 43 22 +45 42 44 +42 45 47 +63 25 24 +15 45 26 +45 15 46 +24 25 44 +25 26 45 +16 63 62 +31 29 30 +35 52 51 +33 51 50 +51 33 34 +10 53 52 +49 32 50 +32 49 31 +54 49 50 +31 30 32 +49 55 48 +32 30 33 +35 51 34 +32 33 50 +33 30 34 +14 35 46 +44 43 24 +43 44 42 +31 41 40 +37 19 38 +39 28 40 +36 40 41 +44 25 45 +47 45 46 +46 35 47 +5 48 55 +8 54 53 +53 51 52 diff --git a/MakeItTalk/examples_cartoon/sketch_face_close_mouth.txt b/MakeItTalk/examples_cartoon/sketch_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..dd66caa628afe4b56cb2e3055396ca890070a893 --- /dev/null +++ b/MakeItTalk/examples_cartoon/sketch_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 -0.0104 -0.8557 +-0.7911 0.2152 -0.8711 +-0.7763 0.4735 -0.8871 +-0.7347 0.6842 -0.8835 +-0.6575 0.9039 -0.8138 +-0.5447 1.1058 -0.6631 +-0.4022 1.2245 -0.4768 +-0.2063 1.2928 -0.2967 +0.0223 1.3492 -0.2114 +0.2479 1.3106 -0.3033 +0.4705 1.2007 -0.4839 +0.6071 1.0167 -0.6684 +0.7109 0.7733 -0.8159 +0.7466 0.5981 -0.8807 +0.7584 0.4082 -0.8824 +0.7822 0.2093 -0.8666 +0.8000 0.0104 -0.8501 +-0.4942 -0.0163 -0.0738 +-0.4082 -0.0134 0.0527 +-0.3399 -0.0163 0.1346 +-0.2449 -0.0371 0.1808 +-0.1766 -0.0341 0.1918 +0.1737 -0.0045 0.1986 +0.2568 -0.0015 0.1886 +0.3132 -0.0163 0.1452 +0.3963 -0.0134 0.0664 +0.4883 -0.0163 -0.0619 +0.0015 0.1766 0.1415 +0.0015 0.2479 0.2018 +0.0074 0.3280 0.2893 +0.0134 0.4111 0.2894 +-0.1291 0.4735 0.0735 +-0.0549 0.5061 0.1024 +0.0371 0.5210 0.1173 +0.1529 0.5061 0.1016 +0.2419 0.4527 0.0713 +-0.4230 0.1558 -0.0058 +-0.3933 0.1024 0.0834 +-0.3310 0.0994 0.0888 +-0.2954 0.1529 0.0487 +-0.3221 0.2182 0.0764 +-0.3904 0.2212 0.0570 +0.2686 0.1469 0.0574 +0.2835 0.0965 0.0997 +0.3518 0.0935 0.0966 +0.3933 0.1499 0.0058 +0.3666 0.2152 0.0661 +0.2954 0.2152 0.0849 +-0.3013 0.9365 -0.1399 +-0.2538 0.8178 0.0106 +-0.1262 0.8089 0.1013 +-0.0282 0.8089 0.1112 +0.0727 0.8089 0.1024 +0.1915 0.8089 0.0080 +0.2449 0.9395 -0.1486 +0.2033 1.0968 -0.0193 +0.0905 1.0998 0.0498 +-0.0163 1.0998 0.0609 +-0.1440 1.0879 0.0515 +-0.2716 1.0790 -0.0166 +-0.2954 0.8786 -0.1429 +-0.2538 0.8525 0.0396 +-0.0211 0.8454 0.0642 +0.1867 0.8422 0.0391 +0.2390 0.8726 -0.1528 +0.1910 0.9159 0.0391 +-0.0204 0.9200 0.0642 +-0.2609 0.9223 0.0396 diff --git a/MakeItTalk/examples_cartoon/sketch_face_open_mouth - Copy.txt b/MakeItTalk/examples_cartoon/sketch_face_open_mouth - Copy.txt new file mode 100644 index 0000000000000000000000000000000000000000..b74010f5872fc549c1ee4031add60d98637a7314 --- /dev/null +++ b/MakeItTalk/examples_cartoon/sketch_face_open_mouth - Copy.txt @@ -0,0 +1,68 @@ +101.7077 174.8965 1.0 +103.1007 210.1846 1.0 +105.4223 250.5802 1.0 +111.9227 283.5467 1.0 +123.9950 317.9061 1.0 +141.6390 349.4797 1.0 +163.9262 368.0523 1.0 +194.5711 378.7316 1.0 +230.3235 387.5536 1.0 +265.6116 381.5175 1.0 +300.4354 364.3378 1.0 +321.7939 335.5501 1.0 +338.0450 297.4762 1.0 +343.6168 270.0815 1.0 +345.4741 240.3652 1.0 +349.1886 209.2560 1.0 +351.9745 178.1467 1.0 +149.5324 173.9679 1.0 +162.9976 174.4322 1.0 +173.6769 173.9679 1.0 +188.5350 170.7177 1.0 +199.2143 171.1820 1.0 +254.0037 175.8252 1.0 +267.0045 176.2895 1.0 +275.8266 173.9679 1.0 +288.8274 174.4322 1.0 +303.2213 173.9679 1.0 +227.0733 204.1485 1.0 +227.0733 215.2921 1.0 +228.0019 227.8286 1.0 +228.9306 240.8295 1.0 +206.6434 250.5802 1.0 +218.2513 255.6876 1.0 +232.6451 258.0092 1.0 +250.7535 255.6876 1.0 +264.6830 247.3299 1.0 +160.6760 200.8983 1.0 +165.3192 192.5406 1.0 +175.0698 192.0762 1.0 +180.6416 200.4339 1.0 +176.4628 210.6489 1.0 +165.7835 211.1132 1.0 +268.8618 199.5053 1.0 +271.1834 191.6119 1.0 +281.8627 191.1476 1.0 +288.3631 199.9696 1.0 +284.1843 210.1846 1.0 +273.0407 210.1846 1.0 +179.7130 323.0136 1.0 +187.1420 304.4409 1.0 +207.1077 303.0480 1.0 +222.4301 303.0480 1.0 +238.2169 303.0480 1.0 +256.7896 303.0480 1.0 +265.1473 323.4779 1.0 +258.6468 348.0867 1.0 +241.0028 348.5510 1.0 +224.2874 348.5510 1.0 +204.3218 346.6938 1.0 +184.3561 345.3008 1.0 +180.6416 313.9422 1.0 +188.9993 305.8339 1.0 +223.3588 304.4409 1.0 +254.9323 303.9766 1.0 +264.2186 313.0136 1.0 +257.7182 346.6938 1.0 +223.8231 346.6224 1.0 +184.3561 346.2294 1.0 \ No newline at end of file diff --git a/MakeItTalk/examples_cartoon/sketch_face_open_mouth.txt b/MakeItTalk/examples_cartoon/sketch_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..15f838c19871d24188ddd7395656a41ecb8380b6 --- /dev/null +++ b/MakeItTalk/examples_cartoon/sketch_face_open_mouth.txt @@ -0,0 +1,68 @@ +101.7077 174.8965 1.0 +103.1007 210.1846 1.0 +105.4223 250.5802 1.0 +111.9227 283.5467 1.0 +123.9950 317.9061 1.0 +141.6390 349.4797 1.0 +163.9262 368.0523 1.0 +194.5711 378.7316 1.0 +230.3235 387.5536 1.0 +265.6116 381.5175 1.0 +300.4354 364.3378 1.0 +321.7939 335.5501 1.0 +338.0450 297.4762 1.0 +343.6168 270.0815 1.0 +345.4741 240.3652 1.0 +349.1886 209.2560 1.0 +351.9745 178.1467 1.0 +149.5324 173.9679 1.0 +162.9976 174.4322 1.0 +173.6769 173.9679 1.0 +188.5350 170.7177 1.0 +199.2143 171.1820 1.0 +254.0037 175.8252 1.0 +267.0045 176.2895 1.0 +275.8266 173.9679 1.0 +288.8274 174.4322 1.0 +303.2213 173.9679 1.0 +227.0733 204.1485 1.0 +227.0733 215.2921 1.0 +228.0019 227.8286 1.0 +228.9306 240.8295 1.0 +206.6434 250.5802 1.0 +218.2513 255.6876 1.0 +232.6451 258.0092 1.0 +250.7535 255.6876 1.0 +264.6830 247.3299 1.0 +160.6760 200.8983 1.0 +165.3192 192.5406 1.0 +175.0698 192.0762 1.0 +180.6416 200.4339 1.0 +176.4628 210.6489 1.0 +165.7835 211.1132 1.0 +268.8618 199.5053 1.0 +271.1834 191.6119 1.0 +281.8627 191.1476 1.0 +288.3631 199.9696 1.0 +284.1843 210.1846 1.0 +273.0407 210.1846 1.0 +179.7130 323.0136 1.0 +187.1420 304.4409 1.0 +207.1077 303.0480 1.0 +222.4301 303.0480 1.0 +238.2169 303.0480 1.0 +256.7896 303.0480 1.0 +265.1473 323.4779 1.0 +258.6468 348.0867 1.0 +241.0028 348.5510 1.0 +224.2874 348.5510 1.0 +204.3218 346.6938 1.0 +184.3561 345.3008 1.0 +180.6416 313.9422 1.0 +188.9993 305.8339 1.0 +223.3588 304.4409 1.0 +254.9323 303.9766 1.0 +264.2186 313.0136 1.0 +257.7182 348.6938 1.0 +223.8231 348.6224 1.0 +184.3561 348.2294 1.0 \ No newline at end of file diff --git a/MakeItTalk/examples_cartoon/smiling_person.png b/MakeItTalk/examples_cartoon/smiling_person.png new file mode 100644 index 0000000000000000000000000000000000000000..0ba857bba46dbcad88c0965a66802ca48a2fc9a0 Binary files /dev/null and b/MakeItTalk/examples_cartoon/smiling_person.png differ diff --git a/MakeItTalk/examples_cartoon/smiling_person.psd b/MakeItTalk/examples_cartoon/smiling_person.psd new file mode 100644 index 0000000000000000000000000000000000000000..b4099c1532f742f0e8d4b74da659c40179224a0f Binary files /dev/null and b/MakeItTalk/examples_cartoon/smiling_person.psd differ diff --git a/MakeItTalk/examples_cartoon/smiling_person_anno.png b/MakeItTalk/examples_cartoon/smiling_person_anno.png new file mode 100644 index 0000000000000000000000000000000000000000..9f0e60f20f498bf44ba46e14478876473cec6b68 Binary files /dev/null and b/MakeItTalk/examples_cartoon/smiling_person_anno.png differ diff --git a/MakeItTalk/examples_cartoon/smiling_person_bg.jpg b/MakeItTalk/examples_cartoon/smiling_person_bg.jpg new file mode 100644 index 0000000000000000000000000000000000000000..47d2a4300545854fc8ab31e838985f0cc7477b14 Binary files /dev/null and b/MakeItTalk/examples_cartoon/smiling_person_bg.jpg differ diff --git a/MakeItTalk/examples_cartoon/smiling_person_delauney_tri.txt b/MakeItTalk/examples_cartoon/smiling_person_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..703fb64aa2a093560df03b249e7ee3271be20562 --- /dev/null +++ b/MakeItTalk/examples_cartoon/smiling_person_delauney_tri.txt @@ -0,0 +1,146 @@ +26 16 15 +16 26 25 +17 1 0 +1 17 2 +0 69 18 +69 0 70 +0 1 70 +70 2 71 +2 70 1 +2 17 36 +3 71 2 +71 3 4 +3 2 36 +42 28 27 +28 42 29 +4 3 48 +4 59 5 +59 4 48 +71 4 5 +50 51 61 +51 50 33 +5 72 71 +72 5 73 +5 6 73 +6 5 59 +60 67 59 +67 60 61 +73 6 7 +7 6 58 +57 8 7 +8 57 9 +73 7 8 +10 74 9 +74 10 11 +73 8 9 +39 21 27 +21 39 38 +9 74 73 +10 9 56 +18 37 36 +37 18 19 +75 13 14 +13 75 12 +11 10 55 +18 36 17 +74 11 12 +12 11 54 +37 41 36 +41 37 38 +74 12 75 +13 12 54 +14 13 45 +29 42 35 +75 14 15 +15 14 26 +18 17 0 +75 16 76 +16 75 15 +38 40 41 +40 38 39 +29 40 28 +40 29 31 +30 35 34 +35 30 29 +69 19 18 +19 69 77 +23 24 43 +24 23 21 +42 27 22 +19 20 38 +20 19 78 +24 21 20 +20 21 38 +21 23 22 +44 47 43 +47 44 46 +21 22 27 +23 43 42 +44 24 25 +24 44 43 +22 23 42 +24 20 78 +45 13 54 +78 19 77 +16 25 79 +25 24 78 +79 25 78 +26 14 45 +25 26 44 +31 29 30 +27 28 39 +54 46 45 +46 54 35 +48 3 36 +52 35 53 +35 52 34 +59 48 60 +57 65 56 +65 57 66 +62 67 61 +67 62 66 +31 30 32 +41 48 36 +48 41 31 +32 49 31 +49 32 50 +32 30 33 +33 52 51 +52 33 34 +32 33 50 +33 30 34 +54 55 64 +55 54 11 +35 54 53 +37 19 38 +28 40 39 +40 31 41 +35 42 47 +42 43 47 +44 26 45 +44 45 46 +46 35 47 +48 31 49 +6 59 58 +48 49 60 +57 7 58 +49 50 61 +9 57 56 +10 56 55 +51 52 63 +52 53 64 +53 54 64 +52 64 63 +51 63 62 +55 56 65 +63 66 62 +66 63 65 +59 67 58 +57 58 66 +49 61 60 +61 51 62 +66 58 67 +65 64 55 +64 65 63 +77 69 68 +76 16 79 diff --git a/MakeItTalk/examples_cartoon/smiling_person_example.png b/MakeItTalk/examples_cartoon/smiling_person_example.png new file mode 100644 index 0000000000000000000000000000000000000000..0ba857bba46dbcad88c0965a66802ca48a2fc9a0 Binary files /dev/null and b/MakeItTalk/examples_cartoon/smiling_person_example.png differ diff --git a/MakeItTalk/examples_cartoon/smiling_person_example.pts b/MakeItTalk/examples_cartoon/smiling_person_example.pts new file mode 100644 index 0000000000000000000000000000000000000000..3c562fd77bbdea4ae371bb79e3c3486878690155 --- /dev/null +++ b/MakeItTalk/examples_cartoon/smiling_person_example.pts @@ -0,0 +1,72 @@ +version: 1 +n_points: 68 +{ +108.083 330.377 +115.368 359.852 +125.246 387.459 +137.039 413.915 +151.382 439.296 +171.238 462.168 +195.288 481.887 +223.168 497.808 +256.266 498.930 +288.760 487.152 +316.554 462.667 +341.008 437.205 +358.929 409.975 +368.976 381.589 +374.050 353.380 +376.652 325.595 +377.345 296.086 +125.232 322.328 +137.463 298.416 +162.160 286.510 +190.058 285.877 +215.381 294.305 +265.008 290.800 +290.023 277.388 +315.053 269.261 +339.489 269.741 +353.226 287.186 +242.644 308.578 +243.674 332.597 +244.655 356.516 +245.784 380.756 +216.819 381.663 +231.488 387.748 +247.826 392.249 +263.604 384.687 +277.248 377.146 +159.468 327.221 +169.638 315.817 +184.358 311.479 +199.268 317.429 +187.638 324.094 +173.089 328.738 +285.371 310.639 +297.738 302.281 +312.514 303.759 +325.639 311.441 +312.909 315.489 +298.381 314.697 +188.086 412.408 +215.982 409.544 +240.678 407.120 +256.508 409.294 +273.689 403.249 +293.597 400.399 +311.854 397.339 +295.761 423.330 +276.986 437.721 +258.568 442.509 +241.327 442.579 +215.911 434.314 +197.046 414.758 +240.702 416.201 +256.863 416.598 +274.324 411.797 +304.486 401.664 +275.151 421.132 +257.425 426.427 +240.938 426.265 +} diff --git a/MakeItTalk/examples_cartoon/smiling_person_example_delauney_tri.txt b/MakeItTalk/examples_cartoon/smiling_person_example_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..a75b093bca7d8e72c02839e68220a9fa02a87597 --- /dev/null +++ b/MakeItTalk/examples_cartoon/smiling_person_example_delauney_tri.txt @@ -0,0 +1,146 @@ +17 1 0 +1 17 36 +0 69 18 +69 0 70 +69 68 77 +9 57 56 +57 9 8 +1 70 0 +70 1 2 +58 7 6 +7 58 8 +70 2 71 +2 1 36 +3 48 4 +48 3 2 +3 71 2 +71 3 4 +62 61 51 +61 62 67 +71 4 5 +38 40 37 +40 38 39 +71 6 72 +6 71 5 +5 4 48 +39 27 28 +27 39 21 +72 6 73 +6 5 59 +39 29 31 +29 39 28 +73 6 7 +10 74 9 +74 10 11 +8 73 7 +73 8 9 +9 74 73 +75 11 12 +11 75 74 +10 9 56 +37 40 41 +11 10 55 +36 18 37 +18 36 17 +75 12 13 +12 11 54 +37 18 19 +75 13 14 +13 12 54 +48 2 41 +75 14 15 +14 13 54 +2 36 41 +75 15 16 +15 14 45 +54 46 14 +46 54 35 +16 76 75 +76 16 25 +16 15 26 +25 44 24 +44 25 45 +0 18 17 +35 29 42 +29 35 34 +18 69 19 +42 27 22 +27 42 28 +19 69 77 +44 46 47 +46 44 45 +77 20 19 +20 77 78 +20 23 22 +23 20 78 +19 20 38 +20 21 39 +21 20 22 +42 29 28 +44 47 43 +21 22 27 +43 23 44 +23 43 22 +23 24 44 +24 23 78 +79 24 78 +24 79 25 +25 16 26 +76 25 79 +26 15 45 +25 26 45 +29 34 30 +33 34 51 +34 33 30 +49 31 32 +31 49 48 +52 64 63 +64 52 53 +48 59 5 +59 48 49 +29 30 32 +52 34 35 +34 52 51 +67 57 58 +57 67 66 +29 32 31 +48 41 31 +49 32 50 +32 30 33 +33 51 50 +32 33 50 +35 53 52 +53 35 54 +14 46 45 +37 19 38 +38 20 39 +36 37 41 +39 31 40 +40 31 41 +35 42 47 +42 22 43 +42 43 47 +46 35 47 +57 8 58 +49 50 60 +10 56 55 +50 51 61 +11 55 54 +51 52 63 +54 55 53 +53 55 64 +66 56 57 +56 66 65 +55 56 65 +51 63 62 +59 67 58 +67 59 60 +58 6 59 +67 60 61 +59 49 60 +60 50 61 +67 62 66 +63 66 62 +66 63 65 +65 64 55 +64 65 63 diff --git a/MakeItTalk/examples_cartoon/smiling_person_example_face_close_mouth.txt b/MakeItTalk/examples_cartoon/smiling_person_example_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..8926b0ed0c2ae4b1d3296846847581f3d8de3c87 --- /dev/null +++ b/MakeItTalk/examples_cartoon/smiling_person_example_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 0.1019 -0.8557 +-0.7567 0.2770 -0.8711 +-0.6980 0.4411 -0.8871 +-0.6279 0.5983 -0.8835 +-0.5427 0.7491 -0.8138 +-0.4247 0.8850 -0.6631 +-0.2818 1.0022 -0.4768 +-0.1161 1.0968 -0.2967 +0.0849 1.1336 -0.2114 +0.2869 1.0563 -0.3033 +0.4388 0.8880 -0.4839 +0.5841 0.7367 -0.6684 +0.6906 0.5749 -0.8159 +0.7503 0.4062 -0.8807 +0.7804 0.2386 -0.8824 +0.7959 0.0735 -0.8666 +0.8000 -0.1019 -0.8501 +-0.6981 0.0541 -0.0738 +-0.6254 -0.0880 0.0527 +-0.4787 -0.1588 0.1346 +-0.3129 -0.1625 0.1808 +-0.1624 -0.1125 0.1918 +0.1325 -0.1333 0.1986 +0.2811 -0.2130 0.1886 +0.4299 -0.2613 0.1452 +0.5751 -0.2584 0.0664 +0.6567 -0.1548 -0.0619 +-0.0004 -0.0277 0.1415 +0.0057 0.1151 0.2018 +0.0115 0.2572 0.2893 +0.0182 0.4012 0.2894 +-0.1539 0.4066 0.0735 +-0.0667 0.4428 0.1024 +0.0304 0.4695 0.1173 +0.1241 0.4246 0.1016 +0.2052 0.3798 0.0713 +-0.4947 0.0831 -0.0058 +-0.4342 0.0154 0.0834 +-0.3468 -0.0104 0.0888 +-0.2582 0.0249 0.0487 +-0.3273 0.0645 0.0764 +-0.4137 0.0921 0.0570 +0.2535 -0.0154 0.0574 +0.3270 -0.0651 0.0997 +0.4148 -0.0563 0.0966 +0.4928 -0.0106 0.0058 +0.4171 0.0134 0.0661 +0.3308 0.0087 0.0849 +-0.3246 0.5893 -0.1399 +-0.1766 0.6308 0.0106 +-0.0121 0.6272 0.1013 +0.0789 0.6416 0.1112 +0.1918 0.5946 0.1024 +0.3048 0.5697 0.0080 +0.4058 0.4859 -0.1486 +0.3152 0.6204 -0.0193 +0.2216 0.6969 0.0498 +0.0968 0.7264 0.0609 +-0.0161 0.7242 0.0515 +-0.1593 0.6840 -0.0166 +-0.1469 0.6404 -0.1429 +-0.0114 0.6612 0.0396 +0.0873 0.6582 0.0642 +0.1954 0.6344 0.0391 +0.2869 0.5869 -0.1528 +0.2011 0.6463 0.0391 +0.0887 0.6760 0.0642 +-0.0085 0.6775 0.0396 diff --git a/MakeItTalk/examples_cartoon/smiling_person_example_face_open_mouth.txt b/MakeItTalk/examples_cartoon/smiling_person_example_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..d816f6b672c33521302d253e6a8631a6db92bd06 --- /dev/null +++ b/MakeItTalk/examples_cartoon/smiling_person_example_face_open_mouth.txt @@ -0,0 +1,68 @@ +108.0830 330.3770 1.0000 +115.3680 359.8520 1.0000 +125.2460 387.4590 1.0000 +137.0390 413.9150 1.0000 +151.3820 439.2960 1.0000 +171.2380 462.1680 1.0000 +195.2880 481.8870 1.0000 +223.1680 497.8080 1.0000 +257.0000 504.0000 1.0000 +291.0000 491.0000 1.0000 +316.5540 462.6670 1.0000 +341.0080 437.2050 1.0000 +358.9290 409.9750 1.0000 +368.9760 381.5890 1.0000 +374.0500 353.3800 1.0000 +376.6520 325.5950 1.0000 +377.3450 296.0860 1.0000 +125.2320 322.3280 1.0000 +137.4630 298.4160 1.0000 +162.1600 286.5100 1.0000 +190.0580 285.8770 1.0000 +215.3810 294.3050 1.0000 +265.0080 290.8000 1.0000 +290.0230 277.3880 1.0000 +315.0530 269.2610 1.0000 +339.4890 269.7410 1.0000 +353.2260 287.1860 1.0000 +242.6440 308.5780 1.0000 +243.6740 332.5970 1.0000 +244.6550 356.5160 1.0000 +245.7840 380.7560 1.0000 +216.8190 381.6630 1.0000 +231.4880 387.7480 1.0000 +247.8260 392.2490 1.0000 +263.6040 384.6870 1.0000 +277.2480 377.1460 1.0000 +159.4680 327.2210 1.0000 +169.6380 315.8170 1.0000 +184.3580 311.4790 1.0000 +199.2680 317.4290 1.0000 +187.6380 324.0940 1.0000 +173.0890 328.7380 1.0000 +285.3710 310.6390 1.0000 +297.7380 302.2810 1.0000 +312.5140 303.7590 1.0000 +325.6390 311.4410 1.0000 +312.9090 315.4890 1.0000 +298.3810 314.6970 1.0000 +188.0860 412.4080 1.0000 +213.0000 413.0000 1.0000 +240.6780 407.1200 1.0000 +256.0000 411.0000 1.0000 +275.0000 401.0000 1.0000 +294.0000 403.0000 1.0000 +311.0000 395.0000 1.0000 +295.7610 423.3300 1.0000 +280.0000 442.0000 1.0000 +259.0000 445.0000 1.0000 +240.0000 446.0000 1.0000 +215.9110 434.3140 1.0000 +218.0000 421.0000 1.0000 +240.0000 419.0000 1.0000 +257.0000 418.0000 1.0000 +274.0000 416.0000 1.0000 +291.0000 412.0000 1.0000 +278.0000 424.0000 1.0000 +258.0000 430.0000 1.0000 +242.0000 430.0000 1.0000 diff --git a/MakeItTalk/examples_cartoon/smiling_person_example_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/smiling_person_example_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..64a56fe38e42c181689c16a26c9f5eed4c0ce5db --- /dev/null +++ b/MakeItTalk/examples_cartoon/smiling_person_example_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 0.1019 -0.8557 +-0.7567 0.2770 -0.8711 +-0.6980 0.4411 -0.8871 +-0.6279 0.5983 -0.8835 +-0.5427 0.7491 -0.8138 +-0.4247 0.8850 -0.6631 +-0.2818 1.0022 -0.4768 +-0.1161 1.0968 -0.2967 +0.0849 1.1336 -0.2114 +0.2869 1.0563 -0.3033 +0.4388 0.8880 -0.4839 +0.5841 0.7367 -0.6684 +0.6906 0.5749 -0.8159 +0.7503 0.4062 -0.8807 +0.7804 0.2386 -0.8824 +0.7959 0.0735 -0.8666 +0.8000 -0.1019 -0.8501 +-0.6981 0.0541 -0.0738 +-0.6254 -0.0880 0.0527 +-0.4787 -0.1588 0.1346 +-0.3129 -0.1625 0.1808 +-0.1624 -0.1125 0.1918 +0.1325 -0.1333 0.1986 +0.2811 -0.2130 0.1886 +0.4299 -0.2613 0.1452 +0.5751 -0.2584 0.0664 +0.6567 -0.1548 -0.0619 +-0.0004 -0.0277 0.1415 +0.0057 0.1151 0.2018 +0.0115 0.2572 0.2893 +0.0182 0.4012 0.2894 +-0.1539 0.4066 0.0735 +-0.0667 0.4428 0.1024 +0.0304 0.4695 0.1173 +0.1241 0.4246 0.1016 +0.2052 0.3798 0.0713 +-0.4947 0.0831 -0.0058 +-0.4342 0.0154 0.0834 +-0.3468 -0.0104 0.0888 +-0.2582 0.0249 0.0487 +-0.3273 0.0645 0.0764 +-0.4137 0.0921 0.0570 +0.2535 -0.0154 0.0574 +0.3270 -0.0651 0.0997 +0.4148 -0.0563 0.0966 +0.4928 -0.0106 0.0058 +0.4171 0.0134 0.0661 +0.3308 0.0087 0.0849 +-0.3246 0.5893 -0.1399 +-0.1766 0.5928 0.0106 +-0.0121 0.5579 0.1013 +0.0789 0.5810 0.1112 +0.1918 0.5215 0.1024 +0.3048 0.5334 0.0080 +0.4058 0.4859 -0.1486 +0.3152 0.6542 -0.0193 +0.2216 0.7652 0.0498 +0.0968 0.7830 0.0609 +-0.0161 0.7889 0.0515 +-0.1593 0.7195 -0.0166 +-0.1469 0.6404 -0.1429 +-0.0161 0.6285 0.0396 +0.0849 0.6226 0.0642 +0.1859 0.6107 0.0391 +0.2869 0.5869 -0.1528 +0.2097 0.6582 0.0391 +0.0908 0.6939 0.0642 +-0.0042 0.6939 0.0396 diff --git a/MakeItTalk/examples_cartoon/smiling_person_example_scale_shift.txt b/MakeItTalk/examples_cartoon/smiling_person_example_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..08b7d3d713e018513d02059c511dfb689113a634 --- /dev/null +++ b/MakeItTalk/examples_cartoon/smiling_person_example_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0059421679 +-242.7140000000 +-313.2315000000 diff --git a/MakeItTalk/examples_cartoon/smiling_person_face_close_mouth.txt b/MakeItTalk/examples_cartoon/smiling_person_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..c015b088acfc3305d7befd0f50374789d4264d65 --- /dev/null +++ b/MakeItTalk/examples_cartoon/smiling_person_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 0.0786 -0.8557 +-0.8524 0.2922 -0.8711 +-0.7637 0.4655 -0.8871 +-0.5783 0.6307 -0.8835 +-0.4453 0.7516 -0.8138 +-0.3567 0.8806 -0.6631 +-0.1995 0.9370 -0.4768 +-0.0665 1.0257 -0.2967 +0.0786 1.0338 -0.2114 +0.2358 0.9854 -0.3033 +0.3607 0.8484 -0.4839 +0.4655 0.7597 -0.6684 +0.5542 0.6227 -0.8159 +0.6388 0.4574 -0.8807 +0.7516 0.3204 -0.8824 +0.8524 0.1310 -0.8666 +0.8000 -0.0786 -0.8501 +-0.5461 0.1350 -0.0738 +-0.4655 0.0343 0.0527 +-0.3567 -0.0101 0.1346 +-0.2640 0.0101 0.1808 +-0.1632 0.0423 0.1918 +0.0907 0.0423 0.1986 +0.1834 -0.0020 0.1886 +0.2559 -0.0504 0.1452 +0.3768 -0.0947 0.0664 +0.4977 0.0020 -0.0619 +-0.0222 0.1431 0.1415 +-0.0141 0.2317 0.2018 +-0.0060 0.3043 0.2893 +0.0020 0.3970 0.2894 +-0.1834 0.4212 0.0735 +-0.0867 0.4736 0.1024 +0.0101 0.5219 0.1173 +0.0947 0.4534 0.1016 +0.1713 0.3889 0.0713 +-0.4252 0.1955 -0.0058 +-0.3728 0.1471 0.0834 +-0.2720 0.1108 0.0888 +-0.1793 0.1471 0.0487 +-0.2438 0.1955 0.0764 +-0.3446 0.2076 0.0570 +0.1673 0.1390 0.0574 +0.2398 0.0584 0.0997 +0.3526 0.0866 0.0966 +0.4332 0.1149 0.0058 +0.3607 0.1390 0.0661 +0.2599 0.1471 0.0849 +-0.2882 0.5783 -0.1399 +-0.1552 0.6331 0.0106 +-0.0463 0.6428 0.1013 +0.0423 0.6517 0.1112 +0.1229 0.6162 0.1024 +0.2277 0.5679 0.0080 +0.3446 0.5098 -0.1486 +0.2599 0.5930 -0.0193 +0.1914 0.6656 0.0498 +0.0625 0.6981 0.0609 +-0.0463 0.6912 0.0515 +-0.1673 0.6564 -0.0166 +-0.1511 0.6469 -0.1429 +-0.0431 0.6507 0.0396 +0.0496 0.6636 0.0642 +0.1350 0.6426 0.0391 +0.2237 0.5904 -0.1528 +0.1398 0.6532 0.0391 +0.0515 0.6789 0.0642 +-0.0412 0.6613 0.0396 diff --git a/MakeItTalk/examples_cartoon/smiling_person_face_open_mouth.txt b/MakeItTalk/examples_cartoon/smiling_person_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..fd8fd27b5bf85d8fb7f31adf2a1efcce2246d4e3 --- /dev/null +++ b/MakeItTalk/examples_cartoon/smiling_person_face_open_mouth.txt @@ -0,0 +1,68 @@ +107.6040 332.6060 1.0000 +115.1970 361.6860 1.0000 +125.2060 388.7230 1.0000 +136.8470 414.6890 1.0000 +150.8100 439.8160 1.0000 +170.3880 462.7270 1.0000 +194.5110 482.7030 1.0000 +222.8650 498.9780 1.0000 +256.5050 500.0560 1.0000 +289.2000 487.8420 1.0000 +316.8250 462.5700 1.0000 +341.0270 436.5330 1.0000 +358.7270 408.9820 1.0000 +368.7740 380.7420 1.0000 +374.3400 352.9850 1.0000 +377.5600 325.7270 1.0000 +378.8010 296.5410 1.0000 +125.5760 322.4820 1.0000 +136.5830 298.9940 1.0000 +160.4660 287.3330 1.0000 +187.6540 286.3200 1.0000 +212.7370 293.7260 1.0000 +266.5240 290.5750 1.0000 +290.9430 276.2970 1.0000 +316.1150 268.0530 1.0000 +340.7020 269.7100 1.0000 +353.6560 288.7850 1.0000 +243.4450 308.3120 1.0000 +243.8510 332.2460 1.0000 +244.2340 356.0530 1.0000 +244.7530 380.2470 1.0000 +214.7810 381.0770 1.0000 +229.7620 387.5780 1.0000 +246.4750 392.4860 1.0000 +262.8890 385.0400 1.0000 +277.0770 377.4960 1.0000 +159.9540 325.7330 1.0000 +170.8550 315.4020 1.0000 +185.5690 311.2760 1.0000 +199.5700 316.8930 1.0000 +188.4690 323.9520 1.0000 +173.8650 328.3040 1.0000 +284.4090 310.4260 1.0000 +297.3580 302.1570 1.0000 +311.7730 303.5490 1.0000 +323.9420 311.1560 1.0000 +311.9660 315.0740 1.0000 +297.7370 314.2490 1.0000 +188.2390 412.1260 1.0000 +216.4960 410.0300 1.0000 +240.8730 407.7990 1.0000 +256.2260 409.9250 1.0000 +272.9240 403.8850 1.0000 +292.8040 400.6670 1.0000 +311.8760 396.5310 1.0000 +295.2230 423.8090 1.0000 +276.4430 438.3920 1.0000 +258.4830 443.1660 1.0000 +241.6870 443.2990 1.0000 +216.4950 435.0400 1.0000 +197.2040 414.6390 1.0000 +240.8920 416.3730 1.0000 +256.5820 416.7820 1.0000 +273.5760 411.9450 1.0000 +304.4870 401.0930 1.0000 +274.4420 421.3050 1.0000 +257.1780 426.5800 1.0000 +241.1560 426.4720 1.0000 diff --git a/MakeItTalk/examples_cartoon/smiling_person_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/smiling_person_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..349a5397914320059e5b998a9c0c3cc420f211f4 --- /dev/null +++ b/MakeItTalk/examples_cartoon/smiling_person_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 0.0786 -0.8557 +-0.8524 0.2922 -0.8711 +-0.7637 0.4655 -0.8871 +-0.5783 0.6307 -0.8835 +-0.4453 0.7516 -0.8138 +-0.3567 0.8806 -0.6631 +-0.1995 0.9370 -0.4768 +-0.0665 1.0257 -0.2967 +0.0786 1.0338 -0.2114 +0.2358 0.9854 -0.3033 +0.3607 0.8484 -0.4839 +0.4655 0.7597 -0.6684 +0.5542 0.6227 -0.8159 +0.6388 0.4574 -0.8807 +0.7516 0.3204 -0.8824 +0.8524 0.1310 -0.8666 +0.8000 -0.0786 -0.8501 +-0.5461 0.1350 -0.0738 +-0.4655 0.0343 0.0527 +-0.3567 -0.0101 0.1346 +-0.2640 0.0101 0.1808 +-0.1632 0.0423 0.1918 +0.0907 0.0423 0.1986 +0.1834 -0.0020 0.1886 +0.2559 -0.0504 0.1452 +0.3768 -0.0947 0.0664 +0.4977 0.0020 -0.0619 +-0.0222 0.1431 0.1415 +-0.0141 0.2317 0.2018 +-0.0060 0.3043 0.2893 +0.0020 0.3970 0.2894 +-0.1834 0.4212 0.0735 +-0.0867 0.4736 0.1024 +0.0101 0.5219 0.1173 +0.0947 0.4534 0.1016 +0.1713 0.3889 0.0713 +-0.4252 0.1955 -0.0058 +-0.3728 0.1471 0.0834 +-0.2720 0.1108 0.0888 +-0.1793 0.1471 0.0487 +-0.2438 0.1955 0.0764 +-0.3446 0.2076 0.0570 +0.1673 0.1390 0.0574 +0.2398 0.0584 0.0997 +0.3526 0.0866 0.0966 +0.4332 0.1149 0.0058 +0.3607 0.1390 0.0661 +0.2599 0.1471 0.0849 +-0.2882 0.5783 -0.1399 +-0.1552 0.5945 0.0106 +-0.0463 0.5622 0.1013 +0.0423 0.5743 0.1112 +0.1229 0.5340 0.1024 +0.2277 0.5259 0.0080 +0.3446 0.5098 -0.1486 +0.2599 0.6307 -0.0193 +0.1914 0.7395 0.0498 +0.0625 0.7678 0.0609 +-0.0463 0.7637 0.0515 +-0.1673 0.6912 -0.0166 +-0.1511 0.6469 -0.1429 +-0.0463 0.6307 0.0396 +0.0463 0.6348 0.0642 +0.1270 0.6227 0.0391 +0.2237 0.5904 -0.1528 +0.1471 0.6589 0.0391 +0.0544 0.6872 0.0642 +-0.0383 0.6670 0.0396 diff --git a/MakeItTalk/examples_cartoon/smiling_person_full.png b/MakeItTalk/examples_cartoon/smiling_person_full.png new file mode 100644 index 0000000000000000000000000000000000000000..161dc0456c73db001d00679755babb46a3a21442 Binary files /dev/null and b/MakeItTalk/examples_cartoon/smiling_person_full.png differ diff --git a/MakeItTalk/examples_cartoon/smiling_person_scale_shift.txt b/MakeItTalk/examples_cartoon/smiling_person_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..a3370b3806dc74ce55901718c3de86bff94afbd3 --- /dev/null +++ b/MakeItTalk/examples_cartoon/smiling_person_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0046480969 +-243.5994500000 +-281.9395000000 diff --git a/MakeItTalk/examples_cartoon/vangogh.jpg b/MakeItTalk/examples_cartoon/vangogh.jpg new file mode 100644 index 0000000000000000000000000000000000000000..aca4cfea689830c2935bd1092d57b07e0b575035 Binary files /dev/null and b/MakeItTalk/examples_cartoon/vangogh.jpg differ diff --git a/MakeItTalk/examples_cartoon/vangogh_anno.jpg b/MakeItTalk/examples_cartoon/vangogh_anno.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2a443978db912cae88783db5b8e1c9a7a1f153dd Binary files /dev/null and b/MakeItTalk/examples_cartoon/vangogh_anno.jpg differ diff --git a/MakeItTalk/examples_cartoon/vangogh_black.jpg b/MakeItTalk/examples_cartoon/vangogh_black.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6104c24b285bccb9f506e4cde80e245a50217adf Binary files /dev/null and b/MakeItTalk/examples_cartoon/vangogh_black.jpg differ diff --git a/MakeItTalk/examples_cartoon/vangogh_delauney_tri.txt b/MakeItTalk/examples_cartoon/vangogh_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..3b7eb15842d32564a6ad8c81ccbaaddd6a245212 --- /dev/null +++ b/MakeItTalk/examples_cartoon/vangogh_delauney_tri.txt @@ -0,0 +1,122 @@ +36 0 17 +0 36 1 +2 58 1 +58 2 3 +57 56 65 +31 2 41 +2 31 3 +1 58 0 +31 41 40 +5 58 4 +58 5 59 +2 1 41 +35 12 52 +12 35 13 +4 58 3 +32 48 31 +48 32 49 +4 3 31 +48 55 6 +55 48 49 +0 58 57 +5 4 48 +6 8 7 +8 6 55 +6 59 5 +59 6 7 +6 5 48 +8 55 54 +61 59 7 +59 61 60 +35 52 34 +8 61 7 +61 8 9 +11 62 10 +62 11 63 +9 8 53 +62 9 10 +9 62 61 +10 9 52 +47 43 44 +43 47 42 +63 11 12 +11 10 52 +47 44 46 +12 11 52 +36 18 37 +18 36 17 +63 12 13 +63 13 15 +13 14 15 +14 13 35 +37 19 20 +19 37 18 +15 14 45 +38 41 37 +41 38 40 +63 15 16 +16 15 45 +23 66 24 +66 23 22 +64 63 16 +41 1 36 +17 0 57 +17 57 18 +22 39 21 +39 22 27 +18 57 65 +40 38 39 +19 18 65 +22 21 66 +20 19 65 +66 21 20 +22 42 27 +42 22 43 +20 21 38 +27 42 28 +23 43 22 +43 23 24 +43 24 44 +20 65 66 +24 67 25 +67 24 66 +45 14 46 +24 25 44 +67 16 26 +16 67 64 +25 26 44 +26 25 67 +26 16 45 +29 35 30 +35 29 47 +29 40 28 +40 29 31 +27 28 39 +30 35 34 +4 31 48 +29 28 47 +34 51 33 +51 34 52 +29 30 31 +50 33 51 +33 50 49 +50 55 49 +55 50 54 +31 30 32 +32 30 33 +52 9 53 +32 33 49 +33 30 34 +14 35 46 +28 40 39 +36 37 41 +37 20 38 +38 21 39 +28 42 47 +44 26 45 +44 45 46 +46 35 47 +51 54 50 +54 51 53 +53 8 54 +51 52 53 diff --git a/MakeItTalk/examples_cartoon/vangogh_face_close_mouth.txt b/MakeItTalk/examples_cartoon/vangogh_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..8ecad3e8b5adb6dd4c1ce7f63e1d15ae4c1255c8 --- /dev/null +++ b/MakeItTalk/examples_cartoon/vangogh_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 -0.0026 -0.8557 +-0.6753 0.1688 -0.8711 +-0.6026 0.3247 -0.8871 +-0.5091 0.4442 -0.8835 +-0.4468 0.5429 -0.8138 +-0.3688 0.7506 -0.6631 +-0.3169 0.9688 -0.4768 +-0.1870 1.1299 -0.2967 +0.0104 1.1403 -0.2114 +0.2286 1.0987 -0.3033 +0.3740 0.9377 -0.4839 +0.5091 0.7974 -0.6684 +0.5818 0.6156 -0.8159 +0.6494 0.4286 -0.8807 +0.6649 0.2831 -0.8824 +0.7273 0.1584 -0.8666 +0.8000 0.0026 -0.8501 +-0.6701 -0.1584 -0.0738 +-0.5662 -0.2260 0.0527 +-0.4260 -0.2623 0.1346 +-0.3117 -0.2623 0.1808 +-0.2026 -0.2312 0.1918 +0.0675 -0.2156 0.1986 +0.1870 -0.2468 0.1886 +0.3273 -0.2519 0.1452 +0.4208 -0.2416 0.0664 +0.5506 -0.1584 -0.0619 +-0.0623 0.0338 0.1415 +-0.0519 0.1221 0.2018 +-0.0519 0.2104 0.2893 +-0.0571 0.3039 0.2894 +-0.2026 0.3455 0.0735 +-0.1299 0.3974 0.1024 +-0.0416 0.4286 0.1173 +0.0571 0.4026 0.1016 +0.1403 0.3506 0.0713 +-0.5195 -0.0338 -0.0058 +-0.4312 -0.1169 0.0834 +-0.2805 -0.0961 0.0888 +-0.1870 -0.0286 0.0487 +-0.2857 0.0130 0.0764 +-0.4156 0.0078 0.0570 +0.0987 -0.0182 0.0574 +0.2026 -0.0701 0.0997 +0.3584 -0.0857 0.0966 +0.4831 -0.0338 0.0058 +0.3792 0.0026 0.0661 +0.2286 0.0234 0.0849 +-0.2597 0.6883 -0.1399 +-0.1610 0.6488 0.0106 +-0.0675 0.6270 0.1013 +-0.0156 0.6426 0.1112 +0.0416 0.6281 0.1024 +0.1403 0.6499 0.0080 +0.2286 0.6675 -0.1486 +0.1403 0.6736 -0.0193 +0.0727 0.6667 0.0498 +-0.0052 0.6775 0.0609 +-0.0883 0.6619 0.0515 +-0.1455 0.6688 -0.0166 +-0.2442 0.6883 -0.1429 +-0.0987 0.6392 0.0396 +-0.0135 0.6444 0.0642 +0.0696 0.6340 0.0391 +0.2130 0.6623 -0.1528 +0.0709 0.6355 0.0391 +-0.0123 0.6459 0.0642 +-0.0987 0.6407 0.0396 diff --git a/MakeItTalk/examples_cartoon/vangogh_face_open_mouth.txt b/MakeItTalk/examples_cartoon/vangogh_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..d8170257961fa249454e61ffa62e103f0a3070c9 --- /dev/null +++ b/MakeItTalk/examples_cartoon/vangogh_face_open_mouth.txt @@ -0,0 +1,68 @@ +206.9956 409.2046 1.0 +240.7208 455.5767 1.0 +260.3938 497.7332 1.0 +285.6877 530.0531 1.0 +302.5503 556.7522 1.0 +323.6285 612.9608 1.0 +337.6807 671.9799 1.0 +372.8110 715.5415 1.0 +426.2092 718.3520 1.0 +485.2283 707.1102 1.0 +524.5743 663.5486 1.0 +561.1099 625.6077 1.0 +580.7829 576.4252 1.0 +599.0507 525.8375 1.0 +603.2664 486.4914 1.0 +620.1289 452.7663 1.0 +639.8020 410.6098 1.0 +242.1260 367.0481 1.0 +270.2303 348.7803 1.0 +308.1711 338.9438 1.0 +339.0859 338.9438 1.0 +368.5954 347.3751 1.0 +441.6666 351.5908 1.0 +473.9866 343.1595 1.0 +511.9274 341.7542 1.0 +537.2212 344.5647 1.0 +572.3516 367.0481 1.0 +406.5362 419.0411 1.0 +409.3466 442.9298 1.0 +409.3466 466.8184 1.0 +407.9414 492.1123 1.0 +368.5954 503.3540 1.0 +388.2684 517.4062 1.0 +412.1571 525.8375 1.0 +438.8562 518.8114 1.0 +461.3396 504.7592 1.0 +282.8773 400.7733 1.0 +306.7659 378.2898 1.0 +347.5172 383.9107 1.0 +372.8110 402.1785 1.0 +346.1120 413.4202 1.0 +310.9816 412.0150 1.0 +450.0979 404.9889 1.0 +478.2022 390.9368 1.0 +520.3587 386.7211 1.0 +554.0838 400.7733 1.0 +525.9795 410.6098 1.0 +485.2283 416.2307 1.0 +353.1380 596.0982 1.0 +379.8371 576.4252 1.0 +405.1310 563.7783 1.0 +419.1832 567.9939 1.0 +434.6405 562.3731 1.0 +461.3396 575.0200 1.0 +485.2283 590.4774 1.0 +461.3396 601.7191 1.0 +443.0718 605.9347 1.0 +421.9936 607.3399 1.0 +399.5101 603.1243 1.0 +384.0528 598.9087 1.0 +357.3537 596.0982 1.0 +396.6997 582.0461 1.0 +419.1832 583.4513 1.0 +441.6666 580.6409 1.0 +481.0126 589.0721 1.0 +443.0718 582.0461 1.0 +420.5884 584.8565 1.0 +396.6997 583.4513 1.0 diff --git a/MakeItTalk/examples_cartoon/vangogh_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/vangogh_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..0d17492bc258e85b92429d9ecf194772674afbe1 --- /dev/null +++ b/MakeItTalk/examples_cartoon/vangogh_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 -0.0026 -0.8557 +-0.6753 0.1688 -0.8711 +-0.6026 0.3247 -0.8871 +-0.5091 0.4442 -0.8835 +-0.4468 0.5429 -0.8138 +-0.3688 0.7506 -0.6631 +-0.3169 0.9688 -0.4768 +-0.1870 1.1299 -0.2967 +0.0104 1.1403 -0.2114 +0.2286 1.0987 -0.3033 +0.3740 0.9377 -0.4839 +0.5091 0.7974 -0.6684 +0.5818 0.6156 -0.8159 +0.6494 0.4286 -0.8807 +0.6649 0.2831 -0.8824 +0.7273 0.1584 -0.8666 +0.8000 0.0026 -0.8501 +-0.6701 -0.1584 -0.0738 +-0.5662 -0.2260 0.0527 +-0.4260 -0.2623 0.1346 +-0.3117 -0.2623 0.1808 +-0.2026 -0.2312 0.1918 +0.0675 -0.2156 0.1986 +0.1870 -0.2468 0.1886 +0.3273 -0.2519 0.1452 +0.4208 -0.2416 0.0664 +0.5506 -0.1584 -0.0619 +-0.0623 0.0338 0.1415 +-0.0519 0.1221 0.2018 +-0.0519 0.2104 0.2893 +-0.0571 0.3039 0.2894 +-0.2026 0.3455 0.0735 +-0.1299 0.3974 0.1024 +-0.0416 0.4286 0.1173 +0.0571 0.4026 0.1016 +0.1403 0.3506 0.0713 +-0.5195 -0.0338 -0.0058 +-0.4312 -0.1169 0.0834 +-0.2805 -0.0961 0.0888 +-0.1870 -0.0286 0.0487 +-0.2857 0.0130 0.0764 +-0.4156 0.0078 0.0570 +0.0987 -0.0182 0.0574 +0.2026 -0.0701 0.0997 +0.3584 -0.0857 0.0966 +0.4831 -0.0338 0.0058 +0.3792 0.0026 0.0661 +0.2286 0.0234 0.0849 +-0.2597 0.6883 -0.1399 +-0.1610 0.6156 0.0106 +-0.0675 0.5688 0.1013 +-0.0156 0.5844 0.1112 +0.0416 0.5636 0.1024 +0.1403 0.6104 0.0080 +0.2286 0.6675 -0.1486 +0.1403 0.7091 -0.0193 +0.0727 0.7247 0.0498 +-0.0052 0.7299 0.0609 +-0.0883 0.7143 0.0515 +-0.1455 0.6987 -0.0166 +-0.2442 0.6883 -0.1429 +-0.0987 0.6364 0.0396 +-0.0156 0.6416 0.0642 +0.0675 0.6312 0.0391 +0.2130 0.6623 -0.1528 +0.0727 0.6364 0.0391 +-0.0104 0.6468 0.0642 +-0.0987 0.6416 0.0396 diff --git a/MakeItTalk/examples_cartoon/vangogh_scale_shift.txt b/MakeItTalk/examples_cartoon/vangogh_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..473c84d704abdd0e30775e0dcce981ddcf14830a --- /dev/null +++ b/MakeItTalk/examples_cartoon/vangogh_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0036968030 +-423.3988000000 +-409.9072000000 diff --git a/MakeItTalk/examples_cartoon/whiteface - Copy.jpg b/MakeItTalk/examples_cartoon/whiteface - Copy.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d0315e26b92a418a0b602b230a74cb074d0d5899 Binary files /dev/null and b/MakeItTalk/examples_cartoon/whiteface - Copy.jpg differ diff --git a/MakeItTalk/examples_cartoon/whiteface.jpg b/MakeItTalk/examples_cartoon/whiteface.jpg new file mode 100644 index 0000000000000000000000000000000000000000..98408e8a6d396d7c3dc7371eba3abcafc7bfd658 Binary files /dev/null and b/MakeItTalk/examples_cartoon/whiteface.jpg differ diff --git a/MakeItTalk/examples_cartoon/whiteface_anno.jpg b/MakeItTalk/examples_cartoon/whiteface_anno.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f1eec75ff0bc597c5045de423b70ef5fba7e9207 Binary files /dev/null and b/MakeItTalk/examples_cartoon/whiteface_anno.jpg differ diff --git a/MakeItTalk/examples_cartoon/whiteface_bg.jpg b/MakeItTalk/examples_cartoon/whiteface_bg.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cfb33f3df31a9c03d4cd8963843d3431d5578cda Binary files /dev/null and b/MakeItTalk/examples_cartoon/whiteface_bg.jpg differ diff --git a/MakeItTalk/examples_cartoon/whiteface_delauney_tri.txt b/MakeItTalk/examples_cartoon/whiteface_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..a0ac3581e688cd32a920ebcf65d7236a71500f28 --- /dev/null +++ b/MakeItTalk/examples_cartoon/whiteface_delauney_tri.txt @@ -0,0 +1,122 @@ +18 21 38 +21 18 19 +2 17 36 +17 2 1 +0 57 65 +57 0 1 +1 0 18 +2 36 3 +57 1 2 +57 56 65 +57 2 58 +2 3 58 +29 33 32 +33 29 28 +58 3 4 +4 3 36 +32 30 31 +30 32 38 +58 5 59 +5 58 4 +5 4 41 +49 51 52 +51 49 50 +59 5 6 +6 5 41 +54 8 7 +8 54 9 +59 6 7 +7 6 55 +36 40 41 +40 36 39 +61 59 7 +59 61 60 +7 8 61 +61 8 9 +30 28 29 +28 30 27 +63 10 11 +10 63 62 +9 10 62 +10 9 53 +4 36 41 +11 10 52 +63 11 12 +12 11 46 +21 19 20 +63 12 13 +13 12 45 +18 37 17 +37 18 38 +63 13 14 +14 13 45 +1 18 17 +63 15 64 +15 63 14 +15 14 26 +0 65 20 +64 15 16 +16 15 25 +24 44 43 +44 24 25 +22 27 21 +27 22 35 +18 0 19 +24 16 25 +16 24 23 +19 0 20 +23 21 20 +21 23 22 +20 65 66 +24 43 22 +33 28 34 +24 22 23 +16 23 66 +23 20 66 +25 15 26 +26 14 45 +25 26 44 +42 40 39 +40 42 47 +34 28 35 +27 30 21 +28 27 35 +29 32 31 +30 38 21 +47 42 46 +48 52 53 +52 48 49 +30 29 31 +6 41 48 +33 39 32 +39 33 42 +43 33 34 +33 43 42 +22 43 35 +35 43 34 +36 17 37 +32 39 38 +36 37 38 +36 38 39 +52 46 11 +46 52 47 +6 48 55 +48 41 49 +41 40 49 +12 46 45 +45 44 26 +44 45 43 +42 43 45 +42 45 46 +40 47 50 +47 52 51 +9 54 53 +7 55 54 +49 40 50 +50 47 51 +10 53 52 +48 53 55 +55 53 54 +61 9 62 +64 16 67 +16 66 67 diff --git a/MakeItTalk/examples_cartoon/whiteface_face_close_mouth.txt b/MakeItTalk/examples_cartoon/whiteface_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..200a9973874b8cebfb77e94b1ea2b6dee7b082e9 --- /dev/null +++ b/MakeItTalk/examples_cartoon/whiteface_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 0.0278 -0.8557 +-0.8667 0.2056 -0.8711 +-0.9222 0.4444 -0.8871 +-0.8944 0.7056 -0.8835 +-0.8000 0.9500 -0.8138 +-0.6222 1.2111 -0.6631 +-0.4278 1.4222 -0.4768 +-0.2278 1.6000 -0.2967 +0.0889 1.6944 -0.2114 +0.2889 1.5889 -0.3033 +0.5111 1.4222 -0.4839 +0.7111 1.1667 -0.6684 +0.8222 0.8944 -0.8159 +0.9389 0.6222 -0.8807 +0.9333 0.3611 -0.8824 +0.8889 0.1444 -0.8666 +0.8000 -0.0278 -0.8501 +-0.3889 0.3500 -0.0738 +-0.3611 0.2611 0.0527 +-0.3056 0.1722 0.1346 +-0.2167 0.1389 0.1808 +-0.1444 0.1778 0.1918 +0.2333 0.1667 0.1986 +0.2944 0.1333 0.1886 +0.3833 0.1833 0.1452 +0.4500 0.2389 0.0664 +0.4833 0.3333 -0.0619 +0.0556 0.2444 0.1415 +0.0556 0.2833 0.2018 +0.0500 0.3056 0.2893 +0.0167 0.3000 0.2894 +0.0389 0.3111 0.0735 +0.0500 0.3222 0.1024 +0.0778 0.3222 0.1173 +0.0889 0.3111 0.1016 +0.0944 0.2889 0.0713 +-0.4000 0.6167 -0.0058 +-0.3278 0.3889 0.0834 +-0.1167 0.3778 0.0888 +-0.0056 0.5889 0.0487 +-0.0833 0.8056 0.0764 +-0.2722 0.8333 0.0570 +0.1611 0.5722 0.0574 +0.2444 0.3222 0.0997 +0.4000 0.3167 0.0966 +0.4889 0.5556 0.0058 +0.4056 0.8111 0.0661 +0.2667 0.8278 0.0849 +-0.0222 1.0889 -0.1399 +0.0056 1.0767 0.0106 +0.0389 1.0644 0.1013 +0.0944 1.0567 0.1112 +0.1500 1.0644 0.1024 +0.1722 1.0844 0.0080 +0.1667 1.0889 -0.1486 +0.1444 1.1084 -0.0193 +0.1056 1.1164 0.0498 +0.0611 1.1273 0.0609 +0.0111 1.1231 0.0515 +-0.0111 1.1060 -0.0166 +-0.0111 1.0944 -0.1429 +0.0200 1.1008 0.0396 +0.0789 1.1008 0.0642 +0.1406 1.0947 0.0391 +0.1722 1.0778 -0.1528 +0.1354 1.1487 0.0391 +0.0696 1.1870 0.0642 +0.0120 1.1545 0.0396 diff --git a/MakeItTalk/examples_cartoon/whiteface_face_open_mouth.txt b/MakeItTalk/examples_cartoon/whiteface_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MakeItTalk/examples_cartoon/whiteface_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/whiteface_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..b9ca18ab84c927ea024cbd6e49c012db99246b04 --- /dev/null +++ b/MakeItTalk/examples_cartoon/whiteface_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 0.0278 -0.8557 +-0.8667 0.2056 -0.8711 +-0.9222 0.4444 -0.8871 +-0.8944 0.7056 -0.8835 +-0.8000 0.9500 -0.8138 +-0.6222 1.2111 -0.6631 +-0.4278 1.4222 -0.4768 +-0.2278 1.6000 -0.2967 +0.0889 1.6944 -0.2114 +0.2889 1.5889 -0.3033 +0.5111 1.4222 -0.4839 +0.7111 1.1667 -0.6684 +0.8222 0.8944 -0.8159 +0.9389 0.6222 -0.8807 +0.9333 0.3611 -0.8824 +0.8889 0.1444 -0.8666 +0.8000 -0.0278 -0.8501 +-0.3889 0.3500 -0.0738 +-0.3611 0.2611 0.0527 +-0.3056 0.1722 0.1346 +-0.2167 0.1389 0.1808 +-0.1444 0.1778 0.1918 +0.2333 0.1667 0.1986 +0.2944 0.1333 0.1886 +0.3833 0.1833 0.1452 +0.4500 0.2389 0.0664 +0.4833 0.3333 -0.0619 +0.0556 0.2444 0.1415 +0.0556 0.2833 0.2018 +0.0500 0.3056 0.2893 +0.0167 0.3000 0.2894 +0.0389 0.3111 0.0735 +0.0500 0.3222 0.1024 +0.0778 0.3222 0.1173 +0.0889 0.3111 0.1016 +0.0944 0.2889 0.0713 +-0.4000 0.6167 -0.0058 +-0.3278 0.3889 0.0834 +-0.1167 0.3778 0.0888 +-0.0056 0.5889 0.0487 +-0.0833 0.8056 0.0764 +-0.2722 0.8333 0.0570 +0.1611 0.5722 0.0574 +0.2444 0.3222 0.0997 +0.4000 0.3167 0.0966 +0.4889 0.5556 0.0058 +0.4056 0.8111 0.0661 +0.2667 0.8278 0.0849 +-0.0222 1.0889 -0.1399 +0.0056 1.0278 0.0106 +0.0389 0.9667 0.1013 +0.0944 0.9389 0.1112 +0.1500 0.9778 0.1024 +0.1722 1.0444 0.0080 +0.1667 1.0889 -0.1486 +0.1444 1.1444 -0.0193 +0.1056 1.1944 0.0498 +0.0611 1.2333 0.0609 +0.0111 1.2111 0.0515 +-0.0111 1.1500 -0.0166 +-0.0111 1.0944 -0.1429 +0.0333 1.0000 0.0396 +0.0944 0.9389 0.0642 +0.1491 0.9931 0.0391 +0.1722 1.0778 -0.1528 +0.1278 1.1778 0.0391 +0.0556 1.2333 0.0642 +0.0000 1.1833 0.0396 diff --git a/MakeItTalk/examples_cartoon/whiteface_scale_shift.txt b/MakeItTalk/examples_cartoon/whiteface_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..f9e333c5a3cca026c98bc98c181ee98fdda3e61b --- /dev/null +++ b/MakeItTalk/examples_cartoon/whiteface_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0054230100 +-271.6549500000 +-199.3480000000 diff --git a/MakeItTalk/examples_cartoon/wilk.png b/MakeItTalk/examples_cartoon/wilk.png new file mode 100644 index 0000000000000000000000000000000000000000..b20cdc173109b57deef403b775844a91705be1d1 Binary files /dev/null and b/MakeItTalk/examples_cartoon/wilk.png differ diff --git a/MakeItTalk/examples_cartoon/wilk2_anno - Copy.jpg b/MakeItTalk/examples_cartoon/wilk2_anno - Copy.jpg new file mode 100644 index 0000000000000000000000000000000000000000..bd8f141d8c327f202cd7bb0a3b342271c0fe427c Binary files /dev/null and b/MakeItTalk/examples_cartoon/wilk2_anno - Copy.jpg differ diff --git a/MakeItTalk/examples_cartoon/wilk2_anno.jpg b/MakeItTalk/examples_cartoon/wilk2_anno.jpg new file mode 100644 index 0000000000000000000000000000000000000000..94396360a708bf257cb9adebc25990b9ca79359c Binary files /dev/null and b/MakeItTalk/examples_cartoon/wilk2_anno.jpg differ diff --git a/MakeItTalk/examples_cartoon/wilk2_delauney_tri.txt b/MakeItTalk/examples_cartoon/wilk2_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..37961cbd102f99778ed7315e174e89d4d956b91b --- /dev/null +++ b/MakeItTalk/examples_cartoon/wilk2_delauney_tri.txt @@ -0,0 +1,118 @@ +38 21 39 +21 38 20 +19 37 18 +37 19 38 +0 57 56 +57 0 1 +1 0 36 +36 0 37 +57 1 2 +2 1 36 +57 2 3 +3 2 41 +40 28 29 +28 40 39 +3 58 57 +58 3 4 +4 3 41 +6 32 7 +32 6 31 +58 4 5 +5 4 31 +40 29 30 +58 6 59 +6 58 5 +6 5 31 +37 39 40 +39 37 38 +59 6 7 +38 19 20 +59 7 8 +8 7 55 +39 21 27 +59 8 9 +9 8 55 +10 60 59 +60 10 11 +9 10 59 +10 9 53 +11 52 12 +52 11 10 +12 60 11 +60 12 13 +27 43 42 +43 27 22 +25 44 24 +44 25 26 +60 13 61 +13 12 46 +43 22 23 +61 13 14 +14 13 46 +29 35 34 +35 29 28 +61 14 15 +15 14 45 +32 30 33 +30 32 31 +61 16 62 +16 61 15 +16 15 45 +2 36 41 +0 17 37 +17 0 56 +17 63 18 +63 17 56 +54 51 52 +51 54 50 +17 18 37 +18 63 19 +29 34 33 +19 63 20 +35 28 47 +20 63 21 +47 28 27 +21 63 22 +44 43 24 +43 44 46 +21 22 27 +63 23 22 +23 63 24 +45 14 46 +24 63 25 +43 46 47 +23 24 43 +25 63 26 +44 16 45 +16 44 26 +26 63 16 +16 63 62 +32 49 55 +49 32 33 +27 28 39 +30 41 40 +41 30 31 +7 32 55 +55 49 48 +30 29 33 +31 4 41 +50 48 49 +48 50 54 +35 51 50 +51 35 47 +33 34 49 +46 52 51 +52 46 12 +34 35 50 +40 41 37 +36 37 41 +47 27 42 +42 43 47 +46 44 45 +51 47 46 +9 55 54 +49 34 50 +54 52 53 +52 10 53 +53 9 54 +48 54 55 diff --git a/MakeItTalk/examples_cartoon/wilk2_face_close_mouth.txt b/MakeItTalk/examples_cartoon/wilk2_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..f45b6bca39ca4f4a996a79279ddb156e3342bd22 --- /dev/null +++ b/MakeItTalk/examples_cartoon/wilk2_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 -0.0214 -0.8557 +-0.8929 0.1429 -0.8711 +-0.9429 0.3929 -0.8871 +-0.8786 0.6286 -0.8835 +-0.7571 0.8214 -0.8138 +-0.6143 0.9714 -0.6631 +-0.4357 1.0500 -0.4768 +-0.2571 1.1214 -0.2967 +-0.0429 1.1571 -0.2114 +0.2214 1.1286 -0.3033 +0.4714 1.0500 -0.4839 +0.6143 0.9571 -0.6684 +0.7571 0.8143 -0.8159 +0.8571 0.6286 -0.8807 +0.9071 0.4429 -0.8824 +0.8786 0.2214 -0.8666 +0.8000 0.0214 -0.8501 +-0.5571 -0.0571 -0.0738 +-0.5000 -0.0571 0.0527 +-0.4429 -0.0571 0.1346 +-0.3429 -0.0571 0.1808 +-0.2857 -0.0571 0.1918 +0.1500 -0.0500 0.1986 +0.2071 -0.0500 0.1886 +0.2786 -0.0500 0.1452 +0.3643 -0.0500 0.0664 +0.4500 -0.0500 -0.0619 +-0.0857 0.2214 0.1415 +-0.1571 0.3071 0.2018 +-0.2000 0.4214 0.2893 +-0.2643 0.4929 0.2894 +-0.3143 0.5786 0.0735 +-0.2286 0.6214 0.1024 +-0.1357 0.6071 0.1173 +-0.0143 0.6143 0.1016 +0.0929 0.5786 0.0713 +-0.6357 0.2000 -0.0058 +-0.5714 0.0714 0.0834 +-0.3286 0.0286 0.0888 +-0.2286 0.1786 0.0487 +-0.2643 0.3143 0.0764 +-0.5571 0.3714 0.0570 +0.1071 0.2000 0.0574 +0.1786 0.0786 0.0997 +0.4286 0.0500 0.0966 +0.5143 0.2143 0.0058 +0.4214 0.3429 0.0661 +0.2143 0.3786 0.0849 +0.0286 0.8571 -0.1399 +0.0286 0.7929 0.0106 +0.0714 0.8000 0.1013 +0.1071 0.8000 0.1112 +0.1714 0.7929 0.1024 +0.2143 0.7929 0.0080 +0.2571 0.8357 -0.1486 +0.2500 0.9000 -0.0193 +0.2071 0.9143 0.0498 +0.1500 0.9143 0.0609 +0.0929 0.9143 0.0515 +0.0286 0.9071 -0.0166 +0.0429 0.8571 -0.1429 +0.0371 0.8514 0.0396 +0.1271 0.8357 0.0642 +0.2214 0.8257 0.0391 +0.2429 0.8286 -0.1528 +0.2300 0.8497 0.0391 +0.1306 0.8614 0.0642 +0.0337 0.8737 0.0396 diff --git a/MakeItTalk/examples_cartoon/wilk2_face_open_mouth.txt b/MakeItTalk/examples_cartoon/wilk2_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..da76021eb4687444525f9ce1ee5b8013fe85a79a --- /dev/null +++ b/MakeItTalk/examples_cartoon/wilk2_face_open_mouth.txt @@ -0,0 +1,68 @@ +140.5092 179.0373 1.0 +122.7468 210.4632 1.0 +113.1824 258.2852 1.0 +125.4794 303.3745 1.0 +148.7073 340.2657 1.0 +176.0341 368.9589 1.0 +210.1926 383.9886 1.0 +244.3512 397.6521 1.0 +285.3415 404.4838 1.0 +335.8961 399.0184 1.0 +383.7181 383.9886 1.0 +411.0449 366.2262 1.0 +438.3718 338.8994 1.0 +457.5005 303.3745 1.0 +467.0649 267.8496 1.0 +461.5996 225.4930 1.0 +446.5698 187.2354 1.0 +186.9648 172.2056 1.0 +197.8956 172.2056 1.0 +208.8263 172.2056 1.0 +227.9551 172.2056 1.0 +238.8858 172.2056 1.0 +322.2327 173.5720 1.0 +333.1634 173.5720 1.0 +346.8268 173.5720 1.0 +363.2229 173.5720 1.0 +379.6190 173.5720 1.0 +277.1434 225.4930 1.0 +263.4800 241.8891 1.0 +255.2819 263.7505 1.0 +242.9848 277.4140 1.0 +233.4205 293.8101 1.0 +249.8166 302.0081 1.0 +267.5790 299.2754 1.0 +290.8068 300.6418 1.0 +311.3019 293.8101 1.0 +171.9351 221.3939 1.0 +184.2321 196.7998 1.0 +230.6878 188.6017 1.0 +249.8166 217.2949 1.0 +242.9848 243.2554 1.0 +186.9648 254.1861 1.0 +314.0346 221.3939 1.0 +327.6981 198.1661 1.0 +375.5200 192.7008 1.0 +391.9161 224.1266 1.0 +374.1537 248.7208 1.0 +334.5298 255.5525 1.0 +299.0049 347.0974 1.0 +299.0049 334.8003 1.0 +307.2029 336.1667 1.0 +314.0346 336.1667 1.0 +326.3317 334.8003 1.0 +334.5298 334.8003 1.0 +342.7278 342.9984 1.0 +341.3615 355.2955 1.0 +333.1634 358.0281 1.0 +322.2327 358.0281 1.0 +311.3019 358.0281 1.0 +299.0049 356.6618 1.0 +301.7376 347.0974 1.0 +301.7376 338.8994 1.0 +316.7673 334.8003 1.0 +333.1634 333.4340 1.0 +339.9951 341.6320 1.0 +339.9951 352.5628 1.0 +319.5000 355.2955 1.0 +299.0049 356.6618 1.0 diff --git a/MakeItTalk/examples_cartoon/wilk2_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/wilk2_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..d210224db0aa54827943afead9821383081f5882 --- /dev/null +++ b/MakeItTalk/examples_cartoon/wilk2_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 -0.0214 -0.8557 +-0.8929 0.1429 -0.8711 +-0.9429 0.3929 -0.8871 +-0.8786 0.6286 -0.8835 +-0.7571 0.8214 -0.8138 +-0.6143 0.9714 -0.6631 +-0.4357 1.0500 -0.4768 +-0.2571 1.1214 -0.2967 +-0.0429 1.1571 -0.2114 +0.2214 1.1286 -0.3033 +0.4714 1.0500 -0.4839 +0.6143 0.9571 -0.6684 +0.7571 0.8143 -0.8159 +0.8571 0.6286 -0.8807 +0.9071 0.4429 -0.8824 +0.8786 0.2214 -0.8666 +0.8000 0.0214 -0.8501 +-0.5571 -0.0571 -0.0738 +-0.5000 -0.0571 0.0527 +-0.4429 -0.0571 0.1346 +-0.3429 -0.0571 0.1808 +-0.2857 -0.0571 0.1918 +0.1500 -0.0500 0.1986 +0.2071 -0.0500 0.1886 +0.2786 -0.0500 0.1452 +0.3643 -0.0500 0.0664 +0.4500 -0.0500 -0.0619 +-0.0857 0.2214 0.1415 +-0.1571 0.3071 0.2018 +-0.2000 0.4214 0.2893 +-0.2643 0.4929 0.2894 +-0.3143 0.5786 0.0735 +-0.2286 0.6214 0.1024 +-0.1357 0.6071 0.1173 +-0.0143 0.6143 0.1016 +0.0929 0.5786 0.0713 +-0.6357 0.2000 -0.0058 +-0.5714 0.0714 0.0834 +-0.3286 0.0286 0.0888 +-0.2286 0.1786 0.0487 +-0.2643 0.3143 0.0764 +-0.5571 0.3714 0.0570 +0.1071 0.2000 0.0574 +0.1786 0.0786 0.0997 +0.4286 0.0500 0.0966 +0.5143 0.2143 0.0058 +0.4214 0.3429 0.0661 +0.2143 0.3786 0.0849 +0.0286 0.8571 -0.1399 +0.0286 0.7929 0.0106 +0.0714 0.8000 0.1013 +0.1071 0.8000 0.1112 +0.1714 0.7929 0.1024 +0.2143 0.7929 0.0080 +0.2571 0.8357 -0.1486 +0.2500 0.9000 -0.0193 +0.2071 0.9143 0.0498 +0.1500 0.9143 0.0609 +0.0929 0.9143 0.0515 +0.0286 0.9071 -0.0166 +0.0429 0.8571 -0.1429 +0.0429 0.8143 0.0396 +0.1214 0.7929 0.0642 +0.2071 0.7857 0.0391 +0.2429 0.8286 -0.1528 +0.2429 0.8857 0.0391 +0.1357 0.9000 0.0642 +0.0286 0.9071 0.0396 diff --git a/MakeItTalk/examples_cartoon/wilk2_scale_shift.txt b/MakeItTalk/examples_cartoon/wilk2_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..5d66fd4c5321773a461d56099a01dd82ddf3b175 --- /dev/null +++ b/MakeItTalk/examples_cartoon/wilk2_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0052277229 +-293.5395000000 +-183.1363500000 diff --git a/MakeItTalk/examples_cartoon/wilk_anno.png b/MakeItTalk/examples_cartoon/wilk_anno.png new file mode 100644 index 0000000000000000000000000000000000000000..b20cdc173109b57deef403b775844a91705be1d1 Binary files /dev/null and b/MakeItTalk/examples_cartoon/wilk_anno.png differ diff --git a/MakeItTalk/examples_cartoon/wilk_bg.jpg b/MakeItTalk/examples_cartoon/wilk_bg.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cace9ce7adf5ec178c506ec1fd4a88c53833859e Binary files /dev/null and b/MakeItTalk/examples_cartoon/wilk_bg.jpg differ diff --git a/MakeItTalk/examples_cartoon/wilk_bg.png b/MakeItTalk/examples_cartoon/wilk_bg.png new file mode 100644 index 0000000000000000000000000000000000000000..9b580bc3923d91d5d78dc901d013cfffa43d62b8 Binary files /dev/null and b/MakeItTalk/examples_cartoon/wilk_bg.png differ diff --git a/MakeItTalk/examples_cartoon/wilk_delauney_tri.txt b/MakeItTalk/examples_cartoon/wilk_delauney_tri.txt new file mode 100644 index 0000000000000000000000000000000000000000..ff452c87846feb4452baf1599a7ebb04ffafe61f --- /dev/null +++ b/MakeItTalk/examples_cartoon/wilk_delauney_tri.txt @@ -0,0 +1,122 @@ +37 21 27 +21 37 20 +36 0 17 +0 36 41 +0 65 66 +65 0 1 +1 0 41 +19 36 18 +36 19 37 +65 1 57 +1 2 57 +2 1 41 +65 57 56 +2 3 57 +3 2 40 +57 3 58 +3 4 58 +4 3 40 +36 38 39 +38 36 37 +4 5 58 +5 4 40 +18 36 17 +58 5 59 +5 6 59 +6 5 31 +37 19 20 +59 6 61 +6 7 61 +7 6 32 +29 39 28 +39 29 30 +7 8 61 +8 7 55 +37 27 38 +59 61 60 +8 9 61 +9 8 55 +63 9 10 +9 63 62 +61 9 62 +10 9 53 +29 34 33 +34 29 28 +63 10 11 +11 10 52 +48 33 49 +33 48 32 +63 11 12 +12 11 46 +47 27 42 +27 47 28 +63 12 13 +13 12 46 +44 24 25 +24 44 43 +63 13 14 +14 13 46 +24 43 23 +14 64 63 +64 14 15 +15 14 45 +33 30 29 +30 33 32 +64 15 16 +16 15 45 +31 40 39 +40 31 5 +17 0 66 +49 34 50 +34 49 33 +18 17 66 +11 52 51 +19 18 66 +20 66 21 +66 20 19 +66 24 23 +24 66 67 +47 34 28 +34 47 35 +44 25 26 +46 11 51 +21 22 27 +22 21 66 +66 23 22 +45 42 43 +42 45 46 +22 23 43 +16 45 44 +16 26 67 +26 16 44 +25 24 67 +25 67 26 +27 22 43 +27 28 38 +41 39 40 +39 41 36 +32 48 7 +32 6 31 +30 31 39 +31 30 32 +7 48 55 +54 49 50 +49 54 55 +35 51 50 +51 35 46 +43 44 45 +14 46 45 +34 35 50 +2 41 40 +28 39 38 +42 27 43 +42 46 47 +46 35 47 +9 55 54 +48 49 55 +54 50 53 +51 53 50 +53 51 52 +52 10 53 +53 9 54 +64 16 67 diff --git a/MakeItTalk/examples_cartoon/wilk_face_close_mouth.txt b/MakeItTalk/examples_cartoon/wilk_face_close_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..a07c04341de5b253652b772c0b93c76aedd73fe3 --- /dev/null +++ b/MakeItTalk/examples_cartoon/wilk_face_close_mouth.txt @@ -0,0 +1,68 @@ +-0.8000 -0.0205 -0.8557 +-0.8923 0.1436 -0.8711 +-0.9333 0.3231 -0.8871 +-0.9333 0.5282 -0.8835 +-0.8667 0.7026 -0.8138 +-0.7128 0.9179 -0.6631 +-0.5282 1.0513 -0.4768 +-0.2974 1.1385 -0.2967 +-0.0718 1.1846 -0.2114 +0.2462 1.1487 -0.3033 +0.5128 1.0615 -0.4839 +0.7179 0.8872 -0.6684 +0.8359 0.6821 -0.8159 +0.8923 0.5282 -0.8807 +0.9026 0.3436 -0.8824 +0.8667 0.1744 -0.8666 +0.8000 0.0205 -0.8501 +-0.5590 -0.0308 -0.0738 +-0.4872 -0.0308 0.0527 +-0.4103 -0.0308 0.1346 +-0.3487 -0.0308 0.1808 +-0.2667 -0.0256 0.1918 +0.1641 -0.0256 0.1986 +0.2513 -0.0308 0.1886 +0.3128 -0.0359 0.1452 +0.3897 -0.0410 0.0664 +0.4615 -0.0308 -0.0619 +-0.0923 0.2359 0.1415 +-0.1590 0.3333 0.2018 +-0.2051 0.4308 0.2893 +-0.2410 0.5077 0.2894 +-0.2923 0.5846 0.0735 +-0.2051 0.6205 0.1024 +-0.1026 0.6410 0.1173 +0.0103 0.6154 0.1016 +0.1077 0.5846 0.0713 +-0.5641 0.0974 -0.0058 +-0.2923 0.0821 0.0834 +-0.2308 0.2359 0.0888 +-0.2974 0.3795 0.0487 +-0.5846 0.3692 0.0764 +-0.6256 0.2308 0.0570 +0.1179 0.2410 0.0574 +0.1897 0.0718 0.0997 +0.4410 0.0718 0.0966 +0.5077 0.2410 0.0058 +0.4462 0.3795 0.0661 +0.1692 0.3846 0.0849 +-0.0103 0.8872 -0.1399 +0.0154 0.8738 0.0106 +0.0769 0.8718 0.1013 +0.1282 0.8708 0.1112 +0.1795 0.8646 0.1024 +0.2359 0.8646 0.0080 +0.2667 0.8769 -0.1486 +0.2359 0.8942 -0.0193 +0.1949 0.8942 0.0498 +0.1436 0.8978 0.0609 +0.0872 0.8964 0.0515 +0.0256 0.8997 -0.0166 +-0.0103 0.8923 -0.1429 +0.0215 0.8905 0.0396 +0.1333 0.8854 0.0642 +0.2359 0.8797 0.0391 +0.2718 0.8718 -0.1528 +0.2359 0.9112 0.0391 +0.1333 0.9199 0.0642 +0.0191 0.9250 0.0396 diff --git a/MakeItTalk/examples_cartoon/wilk_face_open_mouth.txt b/MakeItTalk/examples_cartoon/wilk_face_open_mouth.txt new file mode 100644 index 0000000000000000000000000000000000000000..87ea32b5869f308efcf5de5864c84a2eeba97e9d --- /dev/null +++ b/MakeItTalk/examples_cartoon/wilk_face_open_mouth.txt @@ -0,0 +1,68 @@ +323.8135 189.6446 1.0 +306.3191 220.7458 1.0 +298.5438 254.7627 1.0 +298.5438 293.6391 1.0 +311.1786 326.6841 1.0 +340.3360 367.5043 1.0 +375.3248 392.7740 1.0 +419.0607 409.2965 1.0 +461.8248 418.0437 1.0 +522.0833 411.2403 1.0 +572.6227 394.7178 1.0 +611.4991 361.6728 1.0 +633.8530 322.7964 1.0 +644.5441 293.6391 1.0 +646.4879 258.6503 1.0 +639.6845 226.5772 1.0 +627.0497 197.4199 1.0 +369.4933 187.7008 1.0 +383.1000 187.7008 1.0 +397.6787 187.7008 1.0 +409.3416 187.7008 1.0 +424.8922 188.6727 1.0 +506.5327 188.6727 1.0 +523.0552 187.7008 1.0 +534.7181 186.7289 1.0 +549.2968 185.7570 1.0 +562.9035 187.7008 1.0 +457.9372 238.2402 1.0 +445.3023 256.7065 1.0 +436.5551 275.1728 1.0 +429.7518 289.7514 1.0 +420.0327 304.3301 1.0 +436.5551 311.1335 1.0 +455.9934 315.0211 1.0 +477.3754 310.1616 1.0 +495.8417 304.3301 1.0 +368.5214 211.9986 1.0 +420.0327 209.0829 1.0 +431.6956 238.2402 1.0 +419.0607 265.4537 1.0 +364.6337 263.5099 1.0 +356.8585 237.2683 1.0 +497.7855 239.2121 1.0 +511.3923 207.1390 1.0 +559.0159 207.1390 1.0 +571.6507 239.2121 1.0 +559.9878 265.4537 1.0 +507.5046 266.4256 1.0 +473.4878 361.6728 1.0 +478.3473 350.9818 1.0 +490.0102 350.9818 1.0 +499.7293 350.0099 1.0 +509.4485 348.0661 1.0 +520.1395 348.0661 1.0 +525.9709 359.7290 1.0 +520.1395 371.3920 1.0 +512.3642 371.3920 1.0 +502.6451 371.3920 1.0 +491.9541 370.4200 1.0 +480.2911 371.3920 1.0 +473.4878 362.6448 1.0 +480.2911 350.0099 1.0 +500.7013 349.0380 1.0 +520.1395 349.0380 1.0 +526.9428 358.7571 1.0 +520.1395 369.4481 1.0 +500.7013 371.3920 1.0 +478.3473 372.3639 1.0 \ No newline at end of file diff --git a/MakeItTalk/examples_cartoon/wilk_face_open_mouth_norm.txt b/MakeItTalk/examples_cartoon/wilk_face_open_mouth_norm.txt new file mode 100644 index 0000000000000000000000000000000000000000..04a97c8fb3c82cfc25deb88a466ccb3fe36b4fb6 --- /dev/null +++ b/MakeItTalk/examples_cartoon/wilk_face_open_mouth_norm.txt @@ -0,0 +1,68 @@ +-0.8000 -0.0205 -0.8557 +-0.8923 0.1436 -0.8711 +-0.9333 0.3231 -0.8871 +-0.9333 0.5282 -0.8835 +-0.8667 0.7026 -0.8138 +-0.7128 0.9179 -0.6631 +-0.5282 1.0513 -0.4768 +-0.2974 1.1385 -0.2967 +-0.0718 1.1846 -0.2114 +0.2462 1.1487 -0.3033 +0.5128 1.0615 -0.4839 +0.7179 0.8872 -0.6684 +0.8359 0.6821 -0.8159 +0.8923 0.5282 -0.8807 +0.9026 0.3436 -0.8824 +0.8667 0.1744 -0.8666 +0.8000 0.0205 -0.8501 +-0.5590 -0.0308 -0.0738 +-0.4872 -0.0308 0.0527 +-0.4103 -0.0308 0.1346 +-0.3487 -0.0308 0.1808 +-0.2667 -0.0256 0.1918 +0.1641 -0.0256 0.1986 +0.2513 -0.0308 0.1886 +0.3128 -0.0359 0.1452 +0.3897 -0.0410 0.0664 +0.4615 -0.0308 -0.0619 +-0.0923 0.2359 0.1415 +-0.1590 0.3333 0.2018 +-0.2051 0.4308 0.2893 +-0.2410 0.5077 0.2894 +-0.2923 0.5846 0.0735 +-0.2051 0.6205 0.1024 +-0.1026 0.6410 0.1173 +0.0103 0.6154 0.1016 +0.1077 0.5846 0.0713 +-0.5641 0.0974 -0.0058 +-0.2923 0.0821 0.0834 +-0.2308 0.2359 0.0888 +-0.2974 0.3795 0.0487 +-0.5846 0.3692 0.0764 +-0.6256 0.2308 0.0570 +0.1179 0.2410 0.0574 +0.1897 0.0718 0.0997 +0.4410 0.0718 0.0966 +0.5077 0.2410 0.0058 +0.4462 0.3795 0.0661 +0.1692 0.3846 0.0849 +-0.0103 0.8872 -0.1399 +0.0154 0.8308 0.0106 +0.0769 0.8308 0.1013 +0.1282 0.8256 0.1112 +0.1795 0.8154 0.1024 +0.2359 0.8154 0.0080 +0.2667 0.8769 -0.1486 +0.2359 0.9385 -0.0193 +0.1949 0.9385 0.0498 +0.1436 0.9385 0.0609 +0.0872 0.9333 0.0515 +0.0256 0.9385 -0.0166 +-0.0103 0.8923 -0.1429 +0.0256 0.8256 0.0396 +0.1333 0.8205 0.0642 +0.2359 0.8205 0.0391 +0.2718 0.8718 -0.1528 +0.2359 0.9282 0.0391 +0.1333 0.9385 0.0642 +0.0154 0.9436 0.0396 diff --git a/MakeItTalk/examples_cartoon/wilk_fullbody.jpg b/MakeItTalk/examples_cartoon/wilk_fullbody.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8fc83d9e9fc9600a76be552e56c455a0497271cf Binary files /dev/null and b/MakeItTalk/examples_cartoon/wilk_fullbody.jpg differ diff --git a/MakeItTalk/examples_cartoon/wilk_scale_shift.txt b/MakeItTalk/examples_cartoon/wilk_scale_shift.txt new file mode 100644 index 0000000000000000000000000000000000000000..b2d3260c82aa8788bd992776b609c4f0a6755ce4 --- /dev/null +++ b/MakeItTalk/examples_cartoon/wilk_scale_shift.txt @@ -0,0 +1,3 @@ +-0.0052764149 +-475.4316000000 +-193.5322500000 diff --git a/MakeItTalk/examples_cartoon/wilksolid.png b/MakeItTalk/examples_cartoon/wilksolid.png new file mode 100644 index 0000000000000000000000000000000000000000..e63513c6e3d9539319782ff9e55580224311b916 Binary files /dev/null and b/MakeItTalk/examples_cartoon/wilksolid.png differ diff --git a/MakeItTalk/face_alignment b/MakeItTalk/face_alignment new file mode 160000 index 0000000000000000000000000000000000000000..c49ca6fef8ffa95a0ac7ce698e0b752ac91f6d42 --- /dev/null +++ b/MakeItTalk/face_alignment @@ -0,0 +1 @@ +Subproject commit c49ca6fef8ffa95a0ac7ce698e0b752ac91f6d42 diff --git a/MakeItTalk/facewarp/__init__.py b/MakeItTalk/facewarp/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..7f3999734455352473532ef25cddf059eb5baee3 --- /dev/null +++ b/MakeItTalk/facewarp/__init__.py @@ -0,0 +1,10 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + diff --git a/MakeItTalk/facewarp/facewarp.exe b/MakeItTalk/facewarp/facewarp.exe new file mode 100644 index 0000000000000000000000000000000000000000..f5ebff782bf5d647781947c05938fc4ad920640b Binary files /dev/null and b/MakeItTalk/facewarp/facewarp.exe differ diff --git a/MakeItTalk/facewarp/gen_puppet_utils.py b/MakeItTalk/facewarp/gen_puppet_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..ce6374d66fb4a1d90d3e2852fb9aa55382ec7e3d --- /dev/null +++ b/MakeItTalk/facewarp/gen_puppet_utils.py @@ -0,0 +1,287 @@ +import numpy as np +import cv2 +import matplotlib.pyplot as plt +import os +import random + +def closest_node(xy, pts): + #search the list of nodes for the one closest to node, return the name + dist_2 = np.sqrt(np.sum((pts - np.array(xy).reshape((-1, 2)))**2, axis=1)) + if (dist_2[np.argmin(dist_2)] > 20): + return -1 + return np.argmin(dist_2) + + +def draw_landmarks(img, pts, pc=(0,0,255), radius=2, lc=(0,255,0), thickness=2): + + for i in range(0, 16): + cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])), + (int(pts[i+1, 0]), int(pts[i+1, 1])), (0, 255, 0), thickness) + for i in range(17, 21): + cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])), + (int(pts[i+1, 0]), int(pts[i+1, 1])), (255, 0, 0), thickness) + for i in range(22, 26): + cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])), + (int(pts[i+1, 0]), int(pts[i+1, 1])), (255, 0, 0), thickness) + for i in range(27, 35): + cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])), + (int(pts[i+1, 0]), int(pts[i+1, 1])), (255, 255, 0), thickness) + for i in range(36, 41): + cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])), + (int(pts[i+1, 0]), int(pts[i+1, 1])), (255, 0, 255), thickness) + for i in range(42, 47): + cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])), + (int(pts[i+1, 0]), int(pts[i+1, 1])), (255, 0, 255), thickness) + for i in range(48, 59): + cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])), + (int(pts[i+1, 0]), int(pts[i+1, 1])), (255, 128, 0), thickness) + for i in range(60, 67): + cv2.line(img, (int(pts[i, 0]), int(pts[i, 1])), + (int(pts[i+1, 0]), int(pts[i+1, 1])), (255, 128, 128), thickness) + cv2.line(img, (int(pts[48, 0]), int(pts[48, 1])), + (int(pts[59, 0]), int(pts[59, 1])), (255, 128, 0), thickness) + cv2.line(img, (int(pts[60, 0]), int(pts[60, 1])), + (int(pts[67, 0]), int(pts[67, 1])), (255, 128, 128), thickness) + + for i in range(68): + cv2.circle(img, (int(pts[i, 0]), int(pts[i, 1])), radius, pc, -1) + + +def norm_anno(ROOT_DIR, CH, param=[0.75, 0.35, 0.6, 0.6], show=True): + + face_tmp = np.loadtxt(os.path.join(ROOT_DIR, CH + '_face_open_mouth.txt')) # .reshape(1, 204) + try: + face_tmp = face_tmp.reshape(68, 3) + except: + print('annotated face is not in correct size = [68 x 3]') + exit(0) + + scale = 1.6 / (face_tmp[0, 0] - face_tmp[16, 0]) + shift = - 0.5 * (face_tmp[0, 0:2] + face_tmp[16, 0:2]) + face_tmp[:, 0:2] = (face_tmp[:, 0:2] + shift) * scale + face_std = np.loadtxt(os.path.join(ROOT_DIR, 'STD_FACE_LANDMARKS.txt')) + face_std = face_std.reshape(68, 3) + + face_tmp[:, -1] = face_std[:, -1] + face_tmp[:, 0:2] = -face_tmp[:, 0:2] + np.savetxt(os.path.join(ROOT_DIR, CH + '_face_open_mouth_norm.txt'), face_tmp, fmt='%.4f') + np.savetxt(os.path.join(ROOT_DIR, CH + '_scale_shift.txt'), np.array([scale, shift[0], shift[1]]), fmt='%.10f') + + # Force the frame to close mouth + face_tmp[49:54, 1] = param[0] * face_tmp[49:54, 1] + (1-param[0]) * face_tmp[59:54:-1, 1] + face_tmp[59:54:-1, 1] = param[1] * face_tmp[49:54, 1] + (1-param[1]) * face_tmp[59:54:-1, 1] + face_tmp[61:64, 1] = param[2] * face_tmp[61:64, 1] + (1-param[2]) * face_tmp[67:64:-1, 1] + face_tmp[67:64:-1, 1] = param[3] * face_tmp[61:64, 1] + (1-param[3]) * face_tmp[67:64:-1, 1] + face_tmp[61:64, 0] = 0.6 * face_tmp[61:64, 0] + 0.4 * face_tmp[67:64:-1, 0] + face_tmp[67:64:-1, 0] = 0.6 * face_tmp[61:64, 0] + 0.4 * face_tmp[67:64:-1, 0] + + np.savetxt(os.path.join(ROOT_DIR, CH + '_face_close_mouth.txt'), face_tmp, fmt='%.4f') + + std_face_id = np.loadtxt(os.path.join(ROOT_DIR, CH + '_face_close_mouth.txt')) # .reshape(1, 204) + std_face_id = std_face_id.reshape(68, 3) + + def vis_landmark_on_plt(fl, x_offset=0.0, show_now=True): + def draw_curve(shape, idx_list, loop=False, x_offset=0.0, c=None): + for i in idx_list: + plt.plot((shape[i, 0] + x_offset, shape[i + 1, 0] + x_offset), (-shape[i, 1], -shape[i + 1, 1]), c=c) + if (loop): + plt.plot((shape[idx_list[0], 0] + x_offset, shape[idx_list[-1] + 1, 0] + x_offset), + (-shape[idx_list[0], 1], -shape[idx_list[-1] + 1, 1]), c=c) + + draw_curve(fl, list(range(0, 16)), x_offset=x_offset) # jaw + draw_curve(fl, list(range(17, 21)), x_offset=x_offset) # eye brow + draw_curve(fl, list(range(22, 26)), x_offset=x_offset) + draw_curve(fl, list(range(27, 35)), x_offset=x_offset) # nose + draw_curve(fl, list(range(36, 41)), loop=True, x_offset=x_offset) # eyes + draw_curve(fl, list(range(42, 47)), loop=True, x_offset=x_offset) + draw_curve(fl, list(range(48, 59)), loop=True, x_offset=x_offset, c='b') # mouth + draw_curve(fl, list(range(60, 67)), loop=True, x_offset=x_offset, c='r') + draw_curve(fl, list(range(60, 64)), loop=False, x_offset=x_offset, c='g') + + if (show_now): + plt.show() + + vis_landmark_on_plt(std_face_id, show_now=show) + + + +# Check if a point is inside a rectangle +def rect_contains(rect, point): + if point[0] < rect[0]: + return False + elif point[1] < rect[1]: + return False + elif point[0] > rect[2]: + return False + elif point[1] > rect[3]: + return False + return True + + +# Draw a point +def draw_point(img, p, color): + cv2.circle(img, p, 2, color, -1, cv2.LINE_AA, 0) + + +# Draw delaunay triangles +def draw_delaunay(img, subdiv, delaunay_color): + triangleList = subdiv.getTriangleList(); + size = img.shape + r = (0, 0, size[1], size[0]) + + for t in triangleList: + + pt1 = (t[0], t[1]) + pt2 = (t[2], t[3]) + pt3 = (t[4], t[5]) + + if rect_contains(r, pt1) and rect_contains(r, pt2) and rect_contains(r, pt3): + cv2.line(img, pt1, pt2, delaunay_color, 1, cv2.LINE_AA, 0) + cv2.line(img, pt2, pt3, delaunay_color, 1, cv2.LINE_AA, 0) + cv2.line(img, pt3, pt1, delaunay_color, 1, cv2.LINE_AA, 0) + + +# Draw voronoi diagram +def draw_voronoi(img, subdiv): + (facets, centers) = subdiv.getVoronoiFacetList([]) + + for i in range(0, len(facets)): + ifacet_arr = [] + for f in facets[i]: + ifacet_arr.append(f) + ifacet = np.array(ifacet_arr, np.int) + color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) + + cv2.fillConvexPoly(img, ifacet, color, cv2.LINE_AA, 0) + ifacets = np.array([ifacet]) + cv2.polylines(img, ifacets, True, (0, 0, 0), 1, cv2.LINE_AA, 0) + cv2.circle(img, (centers[i][0], centers[i][1]), 3, (0, 0, 0), -1, cv2.LINE_AA, 0) + print("end of draw_voronoi") + + +def delauney_tri(ROOT_DIR, test_data, INNER_ONLY=False): + # Define window names + win_delaunay = "Delaunay Triangulation" + cv2.namedWindow(win_delaunay, cv2.WINDOW_NORMAL) + win_voronoi = "Voronoi Diagram" + + # Turn on animation while drawing triangles + animate = True + + # Define colors for drawing. + delaunay_color = (255, 255, 255) + points_color = (0, 0, 255) + + # Read in the image. + if (os.path.exists(os.path.join(ROOT_DIR, test_data))): + img = cv2.imread(os.path.join(ROOT_DIR, test_data)) + else: + print('not file founded.') + exit(0) + + CH = test_data[:-4] + # Keep a copy around + img_orig = img.copy() + + # Rectangle to be used with Subdiv2D + size = img.shape + rect = (0, 0, size[1], size[0]) + + # Create an array of points. + points = [] + + # Create an instance of Subdiv2D + subdiv = cv2.Subdiv2D(rect) + h = size[1] - 1 + w = size[0] - 1 + + # Read in the points from a text file + file = np.loadtxt(os.path.join(ROOT_DIR, CH + '_face_open_mouth.txt')) + file = file.reshape(68, 3) + + for i in range(file.shape[0]): + if(INNER_ONLY): + if(i >= 48 and i <= 59): ############## for inner lip only + continue + line = file[i] + x, y, z = line + points.append((int(float(x)), int(float(y)))) + + + points.append((0, 0)) + points.append((0, w // 4)) + points.append((0, w // 2)) + points.append((0, w // 4 * 3)) + points.append((0, w)) + points.append((h // 2, w)) + points.append((h, w)) + points.append((h, w // 2)) + points.append((h, 0)) + points.append((h // 4, 0)) + points.append((h // 2, 0)) + points.append((h // 4*3, 0)) + + # Insert points into subdiv + for p in points: + print(p) + subdiv.insert(p) + + # Show animation + if animate: + img_copy = img_orig.copy() + # Draw delaunay triangles + draw_delaunay(img_copy, subdiv, (255, 255, 0)) + cv2.imshow(win_delaunay, img_copy) + cv2.waitKey(100) + + # Draw delaunay triangles + draw_delaunay(img, subdiv, (255, 255, 0)) + triangleList = subdiv.getTriangleList() + + p_dict = {} # Initialize empty dictionary. + index = 0 + # Draw points + for p in points: + # draw_point(img, p, (0, 0, 255)) + p_dict[p] = index + index = index + 1 + + # Allocate space for voronoi Diagram + img_voronoi = np.zeros(img.shape, dtype=img.dtype) + + # Draw voronoi diagram + draw_voronoi(img_voronoi, subdiv) + + # Show results + cv2.imshow(win_delaunay, img) + print("Press any key to quit...") + cv2.waitKey(0) + + new_tri = []; + + for line in triangleList: + p1 = (line[0], line[1]) + p2 = (line[2], line[3]) + p3 = (line[4], line[5]) + + try: + p1_index = p_dict[p1] + p2_index = p_dict[p2] + p3_index = p_dict[p3] + except: + continue + + new_tri.append((p1_index, p2_index, p3_index)) + + print(new_tri) + + a = np.array(new_tri).astype(int) + np.savetxt(os.path.join(ROOT_DIR, CH + '_delauney_tri.txt'), a, fmt='%d') + + + + + + + + diff --git a/MakeItTalk/gypsum_history.sh b/MakeItTalk/gypsum_history.sh new file mode 100644 index 0000000000000000000000000000000000000000..bb3592b88053b9de2bc200c3456221b659a6267d --- /dev/null +++ b/MakeItTalk/gypsum_history.sh @@ -0,0 +1,78 @@ +__=' + This is the default license template. + + File: gypsum_history.sh + Author: dinli + Copyright (c) 2020 dinli + + To edit this license information: Press Ctrl+Shift+P and press 'Create new License Template...'. +' + +./sbatch_1080tilong.sh "--train --write --name" i2i_1gpu_1 + +./sbatch_fl_1080tilong.sh 0 100 +./sbatch_fl_1080tilong.sh 100 200 +./sbatch_fl_1080tilong.sh 200 300 +./sbatch_fl_1080tilong.sh 300 400 +./sbatch_fl_1080tilong.sh 400 500 +./sbatch_fl_1080tilong.sh 500 600 +./sbatch_fl_1080tilong.sh 600 700 +./sbatch_fl_1080tilong.sh 700 800 +./sbatch_fl_1080tilong.sh 800 900 +./sbatch_fl_1080tilong.sh 900 1000 + + +# multi-gpu version +./sbatch_1080tilong.sh "--train --write --batch_size 32 --name" i2i_2gpu_b32_1080ti 2 24G 1080ti-long +./sbatch_1080tilong.sh "--train --write --batch_size 32 --name" i2i_2gpu_b32_titanx 2 24G titanx-long +./sbatch_1080tilong.sh "--train --write --batch_size 32 --name" i2i_2gpu_b32_2080ti 2 24G 2080ti-long + +./sbatch_1080tilong.sh "--train --write --batch_size 32 --jpg_freq 120 --ckpt_freq 720 --name" i2i_4gpu_b32_2080ti 4 24G 2080ti-long + +./sbatch_1080tilong.sh "--train --write --batch_size 128 --name" i2i_8gpu_b128_1080ti 8 48G 1080ti-long +./sbatch_1080tilong.sh "--train --write --batch_size 64 --jpg_freq 120 --ckpt_freq 720 --name" i2i_8gpu_b64_1080ti 8 48G 1080ti-long +./sbatch_1080tilong.sh "--train --write --batch_size 32 --jpg_freq 120 --ckpt_freq 720 --name" i2i_8gpu_b32_2080ti 8 48G 2080ti-long + +# train on preprocessed vox data +./sbatch_1080tilong.sh "--train --write --num_workers 8 --load_G_name /mnt/nfs/scratch1/yangzhou/VoxCeleb2_imagetranslation/ckpt/i2i_1gpu_1/ckpt_69.pth --batch_size 32 --jpg_freq 120 --ckpt_freq 720 --name" i2i_pre_load1gpu_4gpu_b32_1080ti 4 64G 1080ti-long +./sbatch_1080tilong.sh "--train --write --num_workers 16 --load_G_name /mnt/nfs/scratch1/yangzhou/VoxCeleb2_imagetranslation/ckpt/i2i_1gpu_1/ckpt_69.pth --batch_size 32 --jpg_freq 120 --ckpt_freq 720 --name" i2i_pre_load1gpu_4gpu_b32_2080ti 4 128G 2080ti-long +./sbatch_1080tilong.sh "--train --write --num_workers 8 --batch_size 32 --jpg_freq 120 --ckpt_freq 720 --name" i2i_pre_init_4gpu_b32_1080ti 4 64G 1080ti-long +./sbatch_1080tilong.sh "--train --write --num_workers 16 --batch_size 32 --jpg_freq 120 --ckpt_freq 720 --name" i2i_pre_init_4gpu_b32_2080ti_2 4 128G 2080ti-long + +# 04/08 night train with style loss + minor (ckpt freq) +./sbatch_1080tilong.sh "--train --write --num_workers 16 --load_G_name /mnt/nfs/scratch1/yangzhou/VoxCeleb2_imagetranslation/ckpt/i2i_1gpu_1/ckpt_88.pth --batch_size 16 --name" i2istyle_rawcompress_load1gpu_4gpu_b16_2080ti 4 64G 2080ti-long +./sbatch_1080tilong.sh "--train --write --num_workers 16 --batch_size 16 --name" i2istyle_rawcompress_init_4gpu_b16_2080ti 4 64G 2080ti-long +./sbatch_1080tilong.sh "--train --write --num_workers 16 --load_G_name /mnt/nfs/scratch1/yangzhou/VoxCeleb2_imagetranslation/ckpt/i2i_1gpu_1/ckpt_88.pth --batch_size 16 --jpg_freq 120 --ckpt_last_freq 3600 --name" i2istyle_rawcompress_load1gpu_4gpu_b32_titanx 4 64G titanx-long +./sbatch_1080tilong.sh "--train --write --num_workers 16 --batch_size 16 --jpg_freq 120 --ckpt_last_freq 3600 --name" i2istyle_rawcompress_init_4gpu_b32_titanx 4 128G titanx-long +# -> on preprocessed as well +./sbatch_1080tilong.sh "--train --write --use_vox_dataset preprocessed --num_workers 16 --load_G_name /mnt/nfs/scratch1/yangzhou/VoxCeleb2_imagetranslation/ckpt/i2i_1gpu_1/ckpt_88.pth --batch_size 16 --name" i2istyle_preprocessed_load1gpu_4gpu_b16_1080ti 4 64G 1080ti-long +./sbatch_1080tilong.sh "--train --write --use_vox_dataset preprocessed --num_workers 16 --batch_size 16 --name" i2istyle_preprocessed_init_4gpu_b16_1080ti 4 64G 1080ti-long + +# finetune on preprocessed (train / tune both on style loss) +./sbatch_1080tilong.sh "--train --write --use_vox_dataset preprocessed --num_workers 16 --load_G_name /mnt/nfs/scratch1/yangzhou/PreprocessedVox_imagetranslation/ckpt/i2istyle_rawcompress_init_4gpu_b16_2080ti/ckpt_35.pth --batch_size 16 --ckpt_epoch_freq 5 --name" i2itune_preprocessed_loadstyle_4gpu_b16_2080ti 4 64G 2080ti-long + + +# 04/28 +# train on improved face alignment -> 3rdparty/AwingNet +srun -p 2080ti-short --gres=gpu:7 --mem=64G python main_train_image_translation.py --use_vox_dataset process --batch_size 112 --num_workers 7 --train --name awing_tmp_2 +./sbatch_1080tilong.sh "--train --write --use_vox_dataset raw --num_workers 4 --batch_size 16 --ckpt_epoch_freq 1 --name" awing_1080 1 64G 1080ti-long +./sbatch_1080tilong.sh "--train --write --use_vox_dataset process --num_workers 4 --batch_size 16 --ckpt_epoch_freq 4 --name" awing_process_1080 1 64G 1080ti-long +srun -p m40-short --gres=gpu:1 --mem=32G python main_train_image_translation.py --use_vox_dataset raw --batch_size 1 --num_workers 0 --name test_awing --load_G_name /mnt/nfs/scratch1/yangzhou/PreprocessedVox_imagetranslation/ckpt/i2itune_preprocessed_loadstyle_4gpu_b16_2080ti/ckpt_150.pth + +# debug vgg loss multi gpu +./sbatch_1080tilong.sh "--train --write --use_vox_dataset raw --num_workers 16 --batch_size 64 --ckpt_epoch_freq 1 --name" awing_raw_2080 4 64G 2080ti-long +./sbatch_1080tilong.sh "--train --write --use_vox_dataset process --num_workers 16 --batch_size 64 --ckpt_epoch_freq 5 --name" awing_process_2080 4 64G 2080ti-long + +# 05/01 +# add audio in and comb fan awing feature +srun -p 1080ti-short --gres=gpu:4 --mem=64G python main_train_image_translation.py --use_vox_dataset raw --batch_size 64 --num_workers 16 --train --name comb_tmp_1 --comb_fan_awing --test_speed +./sbatch_1080tilong.sh "--train --write --use_vox_dataset raw --num_workers 16 --batch_size 64 --ckpt_epoch_freq 1 --add_audio_in --name" audio_raw_1080 4 64G 1080ti-long +./sbatch_1080tilong.sh "--train --write --use_vox_dataset raw --num_workers 16 --batch_size 64 --ckpt_epoch_freq 1 --comb_fan_awing --name" comb_raw_1080 4 64G 1080ti-long + + + + + + +# test preprocessed vox +srun -p 2080ti-short --gres=gpu:1 --mem=32G python main_train_image_translation.py --num_workers 0 --load_G_name /mnt/nfs/scratch1/yangzhou/PreprocessedVox_imagetranslation/ckpt/awing_raw_2080/ckpt_47.pth --batch_size 1 --name test_tmp --use_vox_dataset raw diff --git a/MakeItTalk/main_end2end.py b/MakeItTalk/main_end2end.py new file mode 100644 index 0000000000000000000000000000000000000000..d2cdc5e4ef59ae1d56b246ebc2e03e5ccf2e3902 --- /dev/null +++ b/MakeItTalk/main_end2end.py @@ -0,0 +1,179 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import sys +sys.path.append('thirdparty/AdaptiveWingLoss') +import os, glob +import numpy as np +import cv2 +import argparse +from src.approaches.train_image_translation import Image_translation_block +import torch +import pickle +import face_alignment +from src.autovc.AutoVC_mel_Convertor_retrain_version import AutoVC_mel_Convertor +import shutil +import util.utils as util +from scipy.signal import savgol_filter + +from src.approaches.train_audio2landmark import Audio2landmark_model + +default_head_name = 'dali' +ADD_NAIVE_EYE = True +CLOSE_INPUT_FACE_MOUTH = False + + +parser = argparse.ArgumentParser() +parser.add_argument('--jpg', type=str, default='{}.jpg'.format(default_head_name)) +parser.add_argument('--close_input_face_mouth', default=CLOSE_INPUT_FACE_MOUTH, action='store_true') + +parser.add_argument('--load_AUTOVC_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_autovc.pth') +parser.add_argument('--load_a2l_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth') +parser.add_argument('--load_a2l_C_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_content_branch.pth') #ckpt_audio2landmark_c.pth') +parser.add_argument('--load_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_116_i2i_comb.pth') #ckpt_image2image.pth') #ckpt_i2i_finetune_150.pth') #c + +parser.add_argument('--amp_lip_x', type=float, default=2.) +parser.add_argument('--amp_lip_y', type=float, default=2.) +parser.add_argument('--amp_pos', type=float, default=.5) +parser.add_argument('--reuse_train_emb_list', type=str, nargs='+', default=[]) # ['iWeklsXc0H8']) #['45hn7-LXDX8']) #['E_kmpT-EfOg']) #'iWeklsXc0H8', '29k8RtSUjE0', '45hn7-LXDX8', +parser.add_argument('--add_audio_in', default=False, action='store_true') +parser.add_argument('--comb_fan_awing', default=False, action='store_true') +parser.add_argument('--output_folder', type=str, default='examples') + +parser.add_argument('--test_end2end', default=True, action='store_true') +parser.add_argument('--dump_dir', type=str, default='', help='') +parser.add_argument('--pos_dim', default=7, type=int) +parser.add_argument('--use_prior_net', default=True, action='store_true') +parser.add_argument('--transformer_d_model', default=32, type=int) +parser.add_argument('--transformer_N', default=2, type=int) +parser.add_argument('--transformer_heads', default=2, type=int) +parser.add_argument('--spk_emb_enc_size', default=16, type=int) +parser.add_argument('--init_content_encoder', type=str, default='') +parser.add_argument('--lr', type=float, default=1e-3, help='learning rate') +parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay') +parser.add_argument('--write', default=False, action='store_true') +parser.add_argument('--segment_batch_size', type=int, default=1, help='batch size') +parser.add_argument('--emb_coef', default=3.0, type=float) +parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float) +parser.add_argument('--use_11spk_only', default=False, action='store_true') + +opt_parser = parser.parse_args() + +''' STEP 1: preprocess input single image ''' +img =cv2.imread('MakeItTalk/examples/' + opt_parser.jpg) +predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device='cuda', flip_input=True) +shapes = predictor.get_landmarks(img) +if (not shapes or len(shapes) != 1): + print('Cannot detect face landmarks. Exit.') + exit(-1) +shape_3d = shapes[0] + +if(opt_parser.close_input_face_mouth): + util.close_input_face_mouth(shape_3d) + + +''' Additional manual adjustment to input face landmarks (slimmer lips and wider eyes) ''' +# shape_3d[48:, 0] = (shape_3d[48:, 0] - np.mean(shape_3d[48:, 0])) * 0.95 + np.mean(shape_3d[48:, 0]) +shape_3d[49:54, 1] += 1. +shape_3d[55:60, 1] -= 1. +shape_3d[[37,38,43,44], 1] -=2 +shape_3d[[40,41,46,47], 1] +=2 + + +''' STEP 2: normalize face as input to audio branch ''' +shape_3d, scale, shift = util.norm_input_face(shape_3d) + + +''' STEP 3: Generate audio data as input to audio branch ''' +# audio real data +au_data = [] +au_emb = [] +ains = glob.glob1('examples', '*.wav') +ains = [item for item in ains if item != 'tmp.wav'] +ains.sort() +for ain in ains: + os.system('ffmpeg -y -loglevel error -i MakeItTalk/examples/{} -ar 16000 MakeItTalk/examples/tmp.wav'.format(ain)) + shutil.copyfile('MakeItTalk/examples/tmp.wav', 'MakeItTalk/examples/{}'.format(ain)) + + # au embedding + from thirdparty.resemblyer_util.speaker_emb import get_spk_emb + me, ae = get_spk_emb('MakeItTalk/examples/{}'.format(ain)) + au_emb.append(me.reshape(-1)) + + print('Processing audio file', ain) + c = AutoVC_mel_Convertor('examples') + + au_data_i = c.convert_single_wav_to_autovc_input(audio_filename=os.path.join('examples', ain), + autovc_model_path=opt_parser.load_AUTOVC_name) + au_data += au_data_i +if(os.path.isfile('MakeItTalk/examples/tmp.wav')): + os.remove('MakeItTalk/examples/tmp.wav') + +# landmark fake placeholder +fl_data = [] +rot_tran, rot_quat, anchor_t_shape = [], [], [] +for au, info in au_data: + au_length = au.shape[0] + fl = np.zeros(shape=(au_length, 68 * 3)) + fl_data.append((fl, info)) + rot_tran.append(np.zeros(shape=(au_length, 3, 4))) + rot_quat.append(np.zeros(shape=(au_length, 4))) + anchor_t_shape.append(np.zeros(shape=(au_length, 68 * 3))) + +if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl.pickle'))): + os.remove(os.path.join('examples', 'dump', 'random_val_fl.pickle')) +if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))): + os.remove(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle')) +if(os.path.exists(os.path.join('examples', 'dump', 'random_val_au.pickle'))): + os.remove(os.path.join('examples', 'dump', 'random_val_au.pickle')) +if (os.path.exists(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))): + os.remove(os.path.join('examples', 'dump', 'random_val_gaze.pickle')) + +with open(os.path.join('examples', 'dump', 'random_val_fl.pickle'), 'wb') as fp: + pickle.dump(fl_data, fp) +with open(os.path.join('examples', 'dump', 'random_val_au.pickle'), 'wb') as fp: + pickle.dump(au_data, fp) +with open(os.path.join('examples', 'dump', 'random_val_gaze.pickle'), 'wb') as fp: + gaze = {'rot_trans':rot_tran, 'rot_quat':rot_quat, 'anchor_t_shape':anchor_t_shape} + pickle.dump(gaze, fp) + + +''' STEP 4: RUN audio->landmark network''' +model = Audio2landmark_model(opt_parser, jpg_shape=shape_3d) +if(len(opt_parser.reuse_train_emb_list) == 0): + model.test(au_emb=au_emb) +else: + model.test(au_emb=None) + + +''' STEP 5: de-normalize the output to the original image scale ''' +fls = glob.glob1('examples', 'pred_fls_*.txt') #it looks like fls is the name of our desired output video but as a group of numpy arrays in a txt file +fls.sort() + +for i in range(0,len(fls)): + fl = np.loadtxt(os.path.join('examples', fls[i])).reshape((-1, 68,3)) #this is our desired image loaded into numpy ndarray. Data read from the text file. + fl[:, :, 0:2] = -fl[:, :, 0:2] #i think this is adjusting the color + fl[:, :, 0:2] = fl[:, :, 0:2] / scale - shift #an ndarray image array is (H, W, D) i.e. (height, width, depth), so we are adjusting depth here + + if (ADD_NAIVE_EYE): + fl = util.add_naive_eye(fl) + + # additional smooth + fl = fl.reshape((-1, 204)) + fl[:, :48 * 3] = savgol_filter(fl[:, :48 * 3], 15, 3, axis=0) + fl[:, 48*3:] = savgol_filter(fl[:, 48*3:], 5, 3, axis=0) + fl = fl.reshape((-1, 68, 3)) + + ''' STEP 6: Imag2image translation ''' + model = Image_translation_block(opt_parser, single_test=True) + with torch.no_grad(): + model.single_test(jpg=img, fls=fl, filename=fls[i], prefix=opt_parser.jpg.split('.')[0]) #fls is the video we want + print('finish image2image gen') + os.remove(os.path.join('examples', fls[i])) diff --git a/MakeItTalk/main_end2end_cartoon.py b/MakeItTalk/main_end2end_cartoon.py new file mode 100644 index 0000000000000000000000000000000000000000..cc65360176d3f3fe1bba9c5f6f62bdcad24f0ec0 --- /dev/null +++ b/MakeItTalk/main_end2end_cartoon.py @@ -0,0 +1,232 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import sys +sys.path.append('thirdparty/AdaptiveWingLoss') +import os, glob +import numpy as np +import argparse +import pickle +from src.autovc.AutoVC_mel_Convertor_retrain_version import AutoVC_mel_Convertor +import shutil + +ADD_NAIVE_EYE = False +GEN_AUDIO = True +GEN_FLS = True + +DEMO_CH = 'wilk.png' + +parser = argparse.ArgumentParser() +parser.add_argument('--jpg', type=str, required=True, help='Puppet image name to animate (with filename extension), e.g. wilk.png') +parser.add_argument('--jpg_bg', type=str, required=True, help='Puppet image background (with filename extension), e.g. wilk_bg.jpg') +parser.add_argument('--inner_lip', default=False, action='store_true', help='add this if the puppet is created with only inner lip landmarks') + +parser.add_argument('--out', type=str, default='out.mp4') + +parser.add_argument('--load_AUTOVC_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_autovc.pth') +parser.add_argument('--load_a2l_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth') #ckpt_audio2landmark_g.pth') # +parser.add_argument('--load_a2l_C_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_content_branch.pth') #ckpt_audio2landmark_c.pth') +parser.add_argument('--load_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_116_i2i_comb.pth') #ckpt_i2i_finetune_150.pth') #ckpt_image2image.pth') # + +parser.add_argument('--amp_lip_x', type=float, default=2.0) +parser.add_argument('--amp_lip_y', type=float, default=2.0) +parser.add_argument('--amp_pos', type=float, default=0.5) +parser.add_argument('--reuse_train_emb_list', type=str, nargs='+', default=[]) # ['E_kmpT-EfOg']) # ['E_kmpT-EfOg']) # ['45hn7-LXDX8']) + + +parser.add_argument('--add_audio_in', default=False, action='store_true') +parser.add_argument('--comb_fan_awing', default=False, action='store_true') +parser.add_argument('--output_folder', type=str, default='examples_cartoon') + +#### NEW POSE MODEL +parser.add_argument('--test_end2end', default=True, action='store_true') +parser.add_argument('--dump_dir', type=str, default='', help='') +parser.add_argument('--pos_dim', default=7, type=int) +parser.add_argument('--use_prior_net', default=True, action='store_true') +parser.add_argument('--transformer_d_model', default=32, type=int) +parser.add_argument('--transformer_N', default=2, type=int) +parser.add_argument('--transformer_heads', default=2, type=int) +parser.add_argument('--spk_emb_enc_size', default=16, type=int) +parser.add_argument('--init_content_encoder', type=str, default='') +parser.add_argument('--lr', type=float, default=1e-3, help='learning rate') +parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay') +parser.add_argument('--write', default=False, action='store_true') +parser.add_argument('--segment_batch_size', type=int, default=512, help='batch size') +parser.add_argument('--emb_coef', default=3.0, type=float) +parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float) +parser.add_argument('--use_11spk_only', default=False, action='store_true') + + +opt_parser = parser.parse_args() + +DEMO_CH = opt_parser.jpg.split('.')[0] + +shape_3d = np.loadtxt('examples_cartoon/{}_face_close_mouth.txt'.format(DEMO_CH)) + +''' STEP 3: Generate audio data as input to audio branch ''' +au_data = [] +au_emb = [] +ains = glob.glob1('examples', '*.wav') +ains = [item for item in ains if item is not 'tmp.wav'] +ains.sort() +for ain in ains: + os.system('ffmpeg -y -loglevel error -i MakeItTalk/examples/{} -ar 16000 MakeItTalk/examples/tmp.wav'.format(ain)) + shutil.copyfile('MakeItTalk/examples/tmp.wav', 'MakeItTalk/examples/{}'.format(ain)) + + # au embedding + from thirdparty.resemblyer_util.speaker_emb import get_spk_emb + me, ae = get_spk_emb('MakeItTalk/examples/{}'.format(ain)) + au_emb.append(me.reshape(-1)) + + print('Processing audio file', ain) + c = AutoVC_mel_Convertor('examples') + au_data_i = c.convert_single_wav_to_autovc_input(audio_filename=os.path.join('examples', ain), + autovc_model_path=opt_parser.load_AUTOVC_name) + au_data += au_data_i + # os.remove(os.path.join('examples', 'tmp.wav')) +if(os.path.isfile('MakeItTalk/examples/tmp.wav')): + os.remove('MakeItTalk/examples/tmp.wav') + +fl_data = [] +rot_tran, rot_quat, anchor_t_shape = [], [], [] +for au, info in au_data: + au_length = au.shape[0] + fl = np.zeros(shape=(au_length, 68 * 3)) + fl_data.append((fl, info)) + rot_tran.append(np.zeros(shape=(au_length, 3, 4))) + rot_quat.append(np.zeros(shape=(au_length, 4))) + anchor_t_shape.append(np.zeros(shape=(au_length, 68 * 3))) + +if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl.pickle'))): + os.remove(os.path.join('examples', 'dump', 'random_val_fl.pickle')) +if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))): + os.remove(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle')) +if(os.path.exists(os.path.join('examples', 'dump', 'random_val_au.pickle'))): + os.remove(os.path.join('examples', 'dump', 'random_val_au.pickle')) +if (os.path.exists(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))): + os.remove(os.path.join('examples', 'dump', 'random_val_gaze.pickle')) + +with open(os.path.join('examples', 'dump', 'random_val_fl.pickle'), 'wb') as fp: + pickle.dump(fl_data, fp) +with open(os.path.join('examples', 'dump', 'random_val_au.pickle'), 'wb') as fp: + pickle.dump(au_data, fp) +with open(os.path.join('examples', 'dump', 'random_val_gaze.pickle'), 'wb') as fp: + gaze = {'rot_trans':rot_tran, 'rot_quat':rot_quat, 'anchor_t_shape':anchor_t_shape} + pickle.dump(gaze, fp) + + +''' STEP 4: RUN audio->landmark network''' +from src.approaches.train_audio2landmark import Audio2landmark_model +model = Audio2landmark_model(opt_parser, jpg_shape=shape_3d) +if(len(opt_parser.reuse_train_emb_list) == 0): + model.test(au_emb=au_emb) +else: + model.test(au_emb=None) +print('finish gen fls') + +''' STEP 5: de-normalize the output to the original image scale ''' +fls_names = glob.glob1('examples_cartoon', 'pred_fls_*.txt') +fls_names.sort() + +for i in range(0,len(fls_names)): + ains = glob.glob1('examples', '*.wav') + ains.sort() + ain = ains[i] + fl = np.loadtxt(os.path.join('examples_cartoon', fls_names[i])).reshape((-1, 68,3)) + output_dir = os.path.join('examples_cartoon', fls_names[i][:-4]) + try: + os.makedirs(output_dir) + except: + pass + + from util.utils import get_puppet_info + + bound, scale, shift = get_puppet_info(DEMO_CH, ROOT_DIR='examples_cartoon') + + fls = fl.reshape((-1, 68, 3)) + + fls[:, :, 0:2] = -fls[:, :, 0:2] + fls[:, :, 0:2] = (fls[:, :, 0:2] / scale) + fls[:, :, 0:2] -= shift.reshape(1, 2) + + fls = fls.reshape(-1, 204) + + # additional smooth + from scipy.signal import savgol_filter + fls[:, 0:48*3] = savgol_filter(fls[:, 0:48*3], 17, 3, axis=0) + fls[:, 48*3:] = savgol_filter(fls[:, 48*3:], 11, 3, axis=0) + fls = fls.reshape((-1, 68, 3)) + + # if (DEMO_CH in ['paint', 'mulaney', 'cartoonM', 'beer', 'color', 'JohnMulaney', 'vangogh', 'jm', 'roy', 'lineface']): + if(not opt_parser.inner_lip): + r = list(range(0, 68)) + fls = fls[:, r, :] + fls = fls[:, :, 0:2].reshape(-1, 68 * 2) + fls = np.concatenate((fls, np.tile(bound, (fls.shape[0], 1))), axis=1) + fls = fls.reshape(-1, 160) + + else: + r = list(range(0, 48)) + list(range(60, 68)) + fls = fls[:, r, :] + fls = fls[:, :, 0:2].reshape(-1, 56 * 2) + fls = np.concatenate((fls, np.tile(bound, (fls.shape[0], 1))), axis=1) + fls = fls.reshape(-1, 112 + bound.shape[1]) + + np.savetxt(os.path.join(output_dir, 'warped_points.txt'), fls, fmt='%.2f') + + # static_points.txt + static_frame = np.loadtxt(os.path.join('examples_cartoon', '{}_face_open_mouth.txt'.format(DEMO_CH))) + static_frame = static_frame[r, 0:2] + static_frame = np.concatenate((static_frame, bound.reshape(-1, 2)), axis=0) + np.savetxt(os.path.join(output_dir, 'reference_points.txt'), static_frame, fmt='%.2f') + + # triangle_vtx_index.txt + shutil.copy(os.path.join('examples_cartoon', DEMO_CH + '_delauney_tri.txt'), + os.path.join(output_dir, 'triangulation.txt')) + + os.remove(os.path.join('examples_cartoon', fls_names[i])) + + # ============================================== + # Step 4 : Vector art morphing + # ============================================== + warp_exe = os.path.join(os.getcwd(), 'facewarp', 'facewarp.exe') + import os + + if (os.path.exists(os.path.join(output_dir, 'output'))): + shutil.rmtree(os.path.join(output_dir, 'output')) + os.mkdir(os.path.join(output_dir, 'output')) + os.chdir('{}'.format(os.path.join(output_dir, 'output'))) + cur_dir = os.getcwd() + print(cur_dir) + + if(os.name == 'nt'): + ''' windows ''' + os.system('{} {} {} {} {} {}'.format( + warp_exe, + os.path.join(cur_dir, '..', '..', opt_parser.jpg), + os.path.join(cur_dir, '..', 'triangulation.txt'), + os.path.join(cur_dir, '..', 'reference_points.txt'), + os.path.join(cur_dir, '..', 'warped_points.txt'), + os.path.join(cur_dir, '..', '..', opt_parser.jpg_bg), + '-novsync -dump')) + else: + ''' linux ''' + os.system('wine {} {} {} {} {} {}'.format( + warp_exe, + os.path.join(cur_dir, '..', '..', opt_parser.jpg), + os.path.join(cur_dir, '..', 'triangulation.txt'), + os.path.join(cur_dir, '..', 'reference_points.txt'), + os.path.join(cur_dir, '..', 'warped_points.txt'), + os.path.join(cur_dir, '..', '..', opt_parser.jpg_bg), + '-novsync -dump')) + os.system('ffmpeg -y -r 62.5 -f image2 -i "%06d.tga" -i {} -pix_fmt yuv420p -vf "pad=ceil(iw/2)*2:ceil(ih/2)*2" -shortest -strict -2 {}'.format( + os.path.join(cur_dir, '..', '..', '..', 'examples', ain), + os.path.join(cur_dir, '..', 'out.mp4') + )) diff --git a/MakeItTalk/main_gen_new_puppet.py b/MakeItTalk/main_gen_new_puppet.py new file mode 100644 index 0000000000000000000000000000000000000000..0ad2a71c8bc16c3c05e5b9cef9f727c495dc9f64 --- /dev/null +++ b/MakeItTalk/main_gen_new_puppet.py @@ -0,0 +1,198 @@ +import sys +from facewarp.gen_puppet_utils import * + +''' ================================================ + FOA face landmark detection +================================================ ''' + +data_dir = out_dir = 'examples_cartoon' +test_data = sys.argv[1] # for example 'roy_example.png' +CH = test_data[:-4] +use_gt_bb = False + +if(not os.path.exists(os.path.join(data_dir, CH + '.pts'))): + + from thirdparty.face_of_art.menpo_functions import * + from thirdparty.face_of_art.deep_heatmaps_model_fusion_net import DeepHeatmapsModel + + model_path = 'MakeItTalk/examples/ckpt/deep_heatmaps-60000' # model for estimation stage + pdm_path = 'thirdparty/face_of_art/pdm_clm_models/pdm_models/' # models for correction stage + clm_path = 'thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_all' # model for tuning stage + + outline_tune = True # if true use tuning stage on eyebrows+jaw, else use tuning stage on jaw only + map_landmarks_to_original_image = True # if True, landmark predictions will be mapped to match original + # input image size. otherwise the predicted landmarks will match the cropped version (256x256) of the images + + # load images + bb_dir = os.path.join(data_dir, 'Bounding_Boxes') + bb_dictionary = load_bb_dictionary(bb_dir, mode='TEST', test_data=test_data) + bb_type = 'init' + + img_list = load_menpo_image_list( + img_dir=data_dir, test_data=test_data, train_crop_dir=data_dir, img_dir_ns=data_dir, bb_type=bb_type, + bb_dictionary=bb_dictionary, mode='TEST', return_transform=map_landmarks_to_original_image) + + # load model + heatmap_model = DeepHeatmapsModel( + mode='TEST', img_path=data_dir, test_model_path=model_path, test_data=test_data, menpo_verbose=False) + + print ("\npredicting landmarks for: "+os.path.join(data_dir, test_data)) + print ("\nsaving landmarks to: "+out_dir) + for i, img in enumerate(img_list): + if i == 0: + reuse = None + else: + reuse = True + + preds = heatmap_model.get_landmark_predictions(img_list=[img], pdm_models_dir=pdm_path, clm_model_path=clm_path, + reuse=reuse, map_to_input_size=map_landmarks_to_original_image) + + if map_landmarks_to_original_image: + img = img[0] + + if outline_tune: + pred_lms = preds['ECpTp_out'] + else: + pred_lms = preds['ECpTp_jaw'] + + mio.export_landmark_file(PointCloud(pred_lms[0]), os.path.join(out_dir, img.path.stem + '.pts'), + overwrite=True) + + print ("\nFOA landmark detection DONE!") + + +''' ==================================================================== + opencv vis and refine landmark + +1. visualize the automatic detection result from FOA approach +2. click on landmarks and move them if they are not correct + +Press Q to save landmarks and continue. +==================================================================== ''' + +import cv2 +import numpy as np +import os + +if(os.path.exists(os.path.join(data_dir, CH + '_face_open_mouth.txt'))): + pts0 = np.loadtxt(os.path.join(data_dir, CH + '_face_open_mouth.txt')) + pts0 = pts0[:, 0:2] +else: + f = open(os.path.join(data_dir, test_data[:-4] + '.pts'), 'r') + lines = f.readlines() + pts = [] + for i in range(3, 3+68): + line = lines[i] + line = line[:-1].split(' ') + pts += [float(item) for item in line] + pts0 = np.array(pts).reshape((68, 2)) + +pts = np.copy(pts0) +img0 = cv2.imread(os.path.join(data_dir, test_data)) +img = np.copy(img0) +node = -1 + + +def click_adjust_wireframe(event, x, y, flags, param): + global img, pts, node + + def update_img(node, button_up=False): + global img, pts + + # update carton points object and get fresh pts list + pts[node, 0], pts[node, 1] = x, y + + img = np.copy(img0) + draw_landmarks(img, pts) + + # zoom-in feature + if (not button_up): + zoom_in_scale = 2 + zoom_in_box_size = int(150 / zoom_in_scale) + zoom_in_range = int(np.min([zoom_in_box_size, x, y, + (img.shape[0] - y) / 2 / zoom_in_scale, + (img.shape[1] - x) / 2 / zoom_in_scale])) + + img_zoom_in = img[y - zoom_in_range:y + zoom_in_range, + x - zoom_in_range:x + zoom_in_range].copy() + img_zoom_in = cv2.resize(img_zoom_in, (0, 0), fx=zoom_in_scale, + fy=zoom_in_scale) + cv2.drawMarker(img_zoom_in, (zoom_in_range * zoom_in_scale, + zoom_in_range * zoom_in_scale), + (0, 0, 255), + markerType=cv2.MARKER_CROSS, markerSize=30, + thickness=2, line_type=cv2.LINE_AA) + height, width, depth = np.shape(img_zoom_in) + + img[y:y + height, x:x + width] = img_zoom_in + cv2.rectangle(img, (x, y), (x + height, y + width), + (0, 0, 255), thickness=2) + + + if event == cv2.EVENT_LBUTTONDOWN: + # search for nearest point + node = closest_node((x, y), pts) + if(node >=0): + update_img(node) + + if event == cv2.EVENT_LBUTTONUP: + node = closest_node((x, y), pts) + if (node >= 0): + update_img(node, button_up=True) + node = -1 + + if event == cv2.EVENT_MOUSEMOVE: + # redraw figure + if (node != -1): + update_img(node) + +draw_landmarks(img, pts) + +cv2.namedWindow("img", cv2.WINDOW_NORMAL) +cv2.setMouseCallback("img", click_adjust_wireframe) + +while(True): + cv2.imshow('img', img) + key = cv2.waitKey(1) + if key == ord("q"): + break +cv2.destroyAllWindows() + +print('vis and refine landmark Done!') +pts = np.concatenate([pts, np.ones((68, 1))], axis=1) +np.savetxt(os.path.join(data_dir, '{}_face_open_mouth.txt'.format(CH)), pts, fmt='%.4f') + + +''' ================================================================= + find closed mouth landmark and normalize + +Input: param are used to change closed mouth strength + param[0]: larger -> outer-upper lip higher + param[1]: larger -> outer-lower lip higher + param[2]: larger -> inner-upper lip higher + param[3]: larger -> inner-lower lip higher + +Output: saved as CH_face_open_mouth_norm.txt + CH_scale_shift.txt + CH_face_close_mouth.txt + +Press Q or close the image window to continue. +================================================================= ''' + + +norm_anno(data_dir, CH, param=[0.7, 0.4, 0.5, 0.5], show=True) + + +''' ================================================================= + delauney tri + +Input: INNER_ONLY indicates whether use the inner lip landmarks only + +Output: saved as CH_delauney_tri.txt + +Press any key to continue. +================================================================= ''' + + +delauney_tri(data_dir, test_data, INNER_ONLY=False) + diff --git a/MakeItTalk/main_train_content.py b/MakeItTalk/main_train_content.py new file mode 100644 index 0000000000000000000000000000000000000000..12d83579ad97acd47ece258e61aedd5f4cda80e4 --- /dev/null +++ b/MakeItTalk/main_train_content.py @@ -0,0 +1,92 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import os, glob +import numpy as np +import cv2 +import argparse +import platform +import torch +from util.utils import try_mkdir +from src.approaches.train_content import Audio2landmark_model + + +ROOT_DIR = r'/mnt/ntfs/Dataset/TalkingToon/Obama_for_train' +DEMO_CH = '' + +parser = argparse.ArgumentParser() + +parser.add_argument('--root_dir', type=str, default=ROOT_DIR, help='Root dir for data') +parser.add_argument('--nepoch', type=int, default=1001, help='number of epochs to train for') +parser.add_argument('--batch_size', type=int, default=1, help='batch size') +parser.add_argument('--in_batch_nepoch', type=int, default=1, help='') +parser.add_argument('--first_in_batch_nepoch', type=int, default=1, help='') +parser.add_argument('--segment_batch_size', type=int, default=128, help='batch size') +parser.add_argument('--num_window_frames', type=int, default=18, help='') +parser.add_argument('--num_window_step', type=int, default=1, help='') +parser.add_argument('--dump_dir', type=str, default='', help='') +parser.add_argument('--dump_file_name', type=str, default='celeb_withrot', help='') +parser.add_argument('--lr', type=float, default=1e-4, help='learning rate') +parser.add_argument('--reg_lr', type=float, default=0., help='weight decay') +parser.add_argument('--drop_out', type=float, default=0.5, help='drop out') +parser.add_argument('--verbose', type=int, default=1, help='0 - detail, 2 - simplify') +parser.add_argument('--write', default=False, action='store_true') + +parser.add_argument('--add_pos', default=False, action='store_true') +parser.add_argument('--use_motion_loss', default=False, action='store_true') + + +parser.add_argument('--name', type=str, default='tmp') +parser.add_argument('--puppet_name', type=str, default=DEMO_CH) + +parser.add_argument('--in_size', type=int, default=80) + +parser.add_argument('--use_lip_weight', default=True, action='store_false') +parser.add_argument('--lambda_mse_loss', default=1.0, type=float) +parser.add_argument('--show_animation', default=False, action='store_true') + +# model +parser.add_argument('--use_prior_net', default=True, action='store_false') +parser.add_argument('--hidden_size', default=256, type=int) +parser.add_argument('--load_a2l_C_name', type=str, default='') +# arch +parser.add_argument('--use_reg_as_std', default=True, action='store_false') +parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float) + +# test +parser.add_argument('--test_emb', default=False, action='store_true') +parser.add_argument('--train', default=False, action='store_true') +parser.add_argument('--test_end2end', default=False, action='store_true') + +# save model +parser.add_argument('--jpg_freq', type=int, default=1, help='') +parser.add_argument('--ckpt_epoch_freq', type=int, default=1, help='') +parser.add_argument('--random_clip_num', type=int, default=2, help='') + + +opt_parser = parser.parse_args() + +root_dir = ROOT_DIR +# opt_parser.root_dir = ROOT_DIR +opt_parser.dump_dir = os.path.join(opt_parser.root_dir, 'dump') +opt_parser.ckpt_dir = os.path.join(opt_parser.root_dir, 'ckpt', opt_parser.name) +try_mkdir(opt_parser.ckpt_dir) +opt_parser.log_dir = os.path.join(opt_parser.root_dir, 'log') + +# make directory for nn outputs +try_mkdir(opt_parser.dump_dir.replace('dump','nn_result')) +try_mkdir(os.path.join(opt_parser.dump_dir.replace('dump', 'nn_result'), opt_parser.name)) + + +model = Audio2landmark_model(opt_parser) +if(opt_parser.train): + model.train() +else: + model.test() diff --git a/MakeItTalk/main_train_image_translation.py b/MakeItTalk/main_train_image_translation.py new file mode 100644 index 0000000000000000000000000000000000000000..af807c584fd4f9521e87d60b0b66cfa41334d430 --- /dev/null +++ b/MakeItTalk/main_train_image_translation.py @@ -0,0 +1,90 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import sys +sys.path.append('thirdparty/AdaptiveWingLoss') +import os, glob +import numpy as np +import cv2 +import argparse +from src.dataset.image_translation import landmark_extraction, landmark_image_to_data +from approaches.train_image_translation import Image_translation_block +import platform +import torch + + +if platform.release() == '4.4.0-83-generic': + src_dir = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2_imagetranslation/raw_fl3d' + mp4_dir = r'/mnt/ntfs/Dataset/VoxCeleb2/train_set/dev/mp4' + jpg_dir = r'img_output' + ckpt_dir = r'img_output' + log_dir = r'img_output' +else: # 3.10.0-957.21.2.el7.x86_64 + # root = r'/mnt/nfs/scratch1/yangzhou/VoxCeleb2_imagetranslation' + root = r'/mnt/nfs/scratch1/yangzhou/PreprocessedVox_imagetranslation' + src_dir = os.path.join(root, 'raw_fl3d') + # mp4_dir = r'/mnt/nfs/work1/kalo/yangzhou/VoxCeleb2/train_set/dev/mp4' + mp4_dir = r'/mnt/nfs/scratch1/yangzhou/PreprocessedVox_mp4' + jpg_dir = os.path.join(root, 'tmp_v') + ckpt_dir = os.path.join(root, 'ckpt') + log_dir = os.path.join(root, 'log') + +''' Step 1. Data preparation ''' +# landmark extraction +# landmark_extraction(int(sys.argv[1]), int(sys.argv[2])) + +# save image data ahead -> saved file too large, will create data online +# landmark_image_to_data(0, 0, show=False) + +''' Step 2. Train the network ''' +parser = argparse.ArgumentParser() +parser.add_argument('--nepoch', type=int, default=150, help='number of epochs to train for') +parser.add_argument('--batch_size', type=int, default=8, help='batch size') +parser.add_argument('--num_frames', type=int, default=1, help='') +parser.add_argument('--num_workers', type=int, default=4, help='number of frames extracted from each video') +parser.add_argument('--lr', type=float, default=0.0001, help='') + +parser.add_argument('--write', default=False, action='store_true') +parser.add_argument('--train', default=False, action='store_true') +parser.add_argument('--name', type=str, default='tmp') +parser.add_argument('--test_speed', default=False, action='store_true') + +parser.add_argument('--jpg_dir', type=str, default=jpg_dir) +parser.add_argument('--ckpt_dir', type=str, default=ckpt_dir) +parser.add_argument('--log_dir', type=str, default=log_dir) + +parser.add_argument('--jpg_freq', type=int, default=50, help='') +parser.add_argument('--ckpt_last_freq', type=int, default=1000, help='') +parser.add_argument('--ckpt_epoch_freq', type=int, default=1, help='') + +parser.add_argument('--load_G_name', type=str, default='') +parser.add_argument('--use_vox_dataset', type=str, default='raw') + + +parser.add_argument('--add_audio_in', default=False, action='store_true') +parser.add_argument('--comb_fan_awing', default=False, action='store_true') +parser.add_argument('--fan_2or3D', type=str, default='3D') + +parser.add_argument('--single_test', type=str, default='') + +opt_parser = parser.parse_args() + + +model = Image_translation_block(opt_parser) + +if(opt_parser.single_test != ''): + with torch.no_grad(): + model.single_test() + +if(opt_parser.train): + model.train() +else: + with torch.no_grad(): + model.test() \ No newline at end of file diff --git a/MakeItTalk/main_train_speaker_aware.py b/MakeItTalk/main_train_speaker_aware.py new file mode 100644 index 0000000000000000000000000000000000000000..e264838411d114e46d301009dc848684f8656e7f --- /dev/null +++ b/MakeItTalk/main_train_speaker_aware.py @@ -0,0 +1,140 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import os, glob +import numpy as np +import cv2 +import argparse +import platform +import torch +from util.utils import try_mkdir +from approaches.train_speaker_aware import Speaker_aware_branch + + +if platform.release() == '4.4.0-83-generic': + ROOT_DIR = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2' +else: # 3.10.0-957.21.2.el7.x86_64 + ROOT_DIR = r'/mnt/nfs/work1/kalo/yangzhou/TalkingToon/VoxCeleb2' + +DEMO_CH = '' + +parser = argparse.ArgumentParser() +parser.add_argument('--nepoch', type=int, default=1001, help='number of epochs to train for') +parser.add_argument('--batch_size', type=int, default=1, help='batch size') +parser.add_argument('--in_batch_nepoch', type=int, default=1, help='') +parser.add_argument('--first_in_batch_nepoch', type=int, default=1, help='') +parser.add_argument('--segment_batch_size', type=int, default=512, help='batch size') +parser.add_argument('--num_window_frames', type=int, default=18, help='') +parser.add_argument('--num_window_frames_seq', type=int, default=18, help='') +parser.add_argument('--num_window_frames_sync', type=int, default=18, help='') +parser.add_argument('--num_window_step', type=int, default=1, help='') +parser.add_argument('--dump_dir', type=str, default='', help='') +parser.add_argument('--dump_file_name', type=str, default='celeb_normrot', help='') +parser.add_argument('--lr', type=float, default=1e-3, help='learning rate') +parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay') +parser.add_argument('--drop_out', type=float, default=0, help='drop out') +parser.add_argument('--verbose', type=int, default=1, help='0 - detail, 2 - simplify') +parser.add_argument('--write', default=False, action='store_true') + +parser.add_argument('--add_pos', default=False, action='store_true') +parser.add_argument('--use_motion_loss', default=False, action='store_true') + + +parser.add_argument('--name', type=str, default='tmp') +parser.add_argument('--puppet_name', type=str, default=DEMO_CH) + +parser.add_argument('--in_size', type=int, default=80) + +parser.add_argument('--use_lip_weight', default=False, action='store_true') +parser.add_argument('--use_adain', default=False, action='store_true') +parser.add_argument('--use_residual', default=False, action='store_true') +parser.add_argument('--use_norm_emb', default=False, action='store_true') +parser.add_argument('--use_cycle_loss', default=False, action='store_true') +parser.add_argument('--lambda_cycle_loss', default=1.0, type=float) +parser.add_argument('--emb_coef', default=3.0, type=float) + +parser.add_argument('--freeze_content_emb', default=False, action='store_true') +parser.add_argument('--pretrain_g', default=False, action='store_true') + +parser.add_argument('--spk_emb_enc_size', default=16, type=int) +parser.add_argument('--c_enc_hidden_size', default=256, type=int) +parser.add_argument('--lstm_g_hidden_size', default=256, type=int) +parser.add_argument('--projection_size', default=512, type=int) + +parser.add_argument('--use_addinfo_format', default='motion_and_pos') +parser.add_argument('--l2_on_fls_without_traj', default=False, action='store_true') +parser.add_argument('--train_with_grad_penalty', default=False, action='store_true') +parser.add_argument('--train_DL', default=-1.0, type=float) +parser.add_argument('--train_DT', default=-1.0, type=float) +parser.add_argument('--train_G_only', default=False, action='store_true') +parser.add_argument('--lambda_mse_loss', default=1.0, type=float) +parser.add_argument('--teacher_force', default=0.0, type=float) +parser.add_argument('--debug_version', default='', type=str) +parser.add_argument('--lambda_add_info_loss', default=1.0, type=float) + + +parser.add_argument('--show_animation', default=False, action='store_true') + + + +# model +parser.add_argument('--pos_dim', default=7, type=int) +parser.add_argument('--use_prior_net', default=True, action='store_true') +parser.add_argument('--transformer_d_model', default=32, type=int) +parser.add_argument('--transformer_N', default=2, type=int) +parser.add_argument('--transformer_heads', default=2, type=int) +parser.add_argument('--load_a2l_C_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_audio2landmark_c.pth') +parser.add_argument('--init_content_encoder', type=str, default='MakeItTalk/examples/ckpt/ckpt_audio2landmark_c.pth') # 'tt_lipwpre_prior_useclose/ckpt_last_epoch_20.pth') +parser.add_argument('--load_a2l_G_name', type=str, default='/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2/ckpt/local_da_merge_3/ckpt_e_50.pth') # + + +# data +parser.add_argument('--use_11spk_only', default=True, action='store_true') + +# arch +parser.add_argument('--use_reg_as_std', default=True, action='store_false') +parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float) + +# test +parser.add_argument('--test_emb', default=False, action='store_true') +parser.add_argument('--train', default=False, action='store_true') +parser.add_argument('--test_end2end', default=False, action='store_true') + +# save model +parser.add_argument('--jpg_freq', type=int, default=25, help='') +parser.add_argument('--ckpt_epoch_freq', type=int, default=25, help='') + +AMP = {'default':[2.5, 2.5, 1.0]} +if(DEMO_CH not in AMP.keys()): + AMP[DEMO_CH] = AMP['default'] + +parser.add_argument('--amp_lip_x', type=float, default=AMP[DEMO_CH][0]) +parser.add_argument('--amp_lip_y', type=float, default=AMP[DEMO_CH][1]) +parser.add_argument('--amp_pos', type=float, default=AMP[DEMO_CH][2]) + +opt_parser = parser.parse_args() + +root_dir = ROOT_DIR +opt_parser.root_dir = ROOT_DIR +opt_parser.dump_dir = os.path.join(root_dir, 'dump') +opt_parser.ckpt_dir = os.path.join(root_dir, 'ckpt', opt_parser.name) +try_mkdir(opt_parser.ckpt_dir) +opt_parser.log_dir = os.path.join(root_dir, 'log') + +# make directory for nn outputs +try_mkdir(opt_parser.dump_dir.replace('dump','nn_result')) +try_mkdir(os.path.join(opt_parser.dump_dir.replace('dump', 'nn_result'), opt_parser.name)) + + +model = Speaker_aware_branch(opt_parser) +if(opt_parser.train): + model.train() +else: + model.test() \ No newline at end of file diff --git a/MakeItTalk/marlene_test.ipynb b/MakeItTalk/marlene_test.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..55ff0c61141d9b981356ab11a02f84be0c84b5da --- /dev/null +++ b/MakeItTalk/marlene_test.ipynb @@ -0,0 +1,583 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n", + "True\n" + ] + } + ], + "source": [ + "import torch\n", + "\n", + "# this ensures that the current MacOS version is at least 12.3+\n", + "print(torch.backends.mps.is_available())\n", + "# this ensures that the current current PyTorch installation was built with MPS activated.\n", + "print(torch.backends.mps.is_built())" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "## ALL DEPENDENCIES \n", + "import ipywidgets as widgets\n", + "import glob\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import sys\n", + "sys.path.append(\"thirdparty/AdaptiveWingLoss\")\n", + "import os, glob\n", + "import numpy as np\n", + "import cv2\n", + "import argparse\n", + "from src.approaches.train_image_translation import Image_translation_block\n", + "import torch\n", + "import pickle\n", + "import face_alignment\n", + "from face_alignment import face_alignment \n", + "from src.autovc.AutoVC_mel_Convertor_retrain_version import AutoVC_mel_Convertor\n", + "import shutil\n", + "import time\n", + "import util.utils as util\n", + "from scipy.signal import savgol_filter\n", + "from src.approaches.train_audio2landmark import Audio2landmark_model" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# print(\"Choose the image name to animate: (saved in folder 'MakeItTalk/examples/')\")\n", + "# img_list = glob.glob1('examples', '*.jpg')\n", + "# img_list.sort()\n", + "# img_list = [item.split('.')[0] for item in img_list]\n", + "# default_head_name = widgets.Dropdown(options=img_list, value='marlene_v2')\n", + "# def on_change(change):\n", + "# if change['type'] == 'change' and change['name'] == 'value':\n", + "# plt.imshow(plt.imread('MakeItTalk/examples/{}.jpg'.format(default_head_name.value)))\n", + "# plt.axis('off')\n", + "# plt.show()\n", + "# default_head_name.observe(on_change)\n", + "# display(default_head_name)\n", + "# plt.imshow(plt.imread('MakeItTalk/examples/{}.jpg'.format(default_head_name.value)))\n", + "# plt.axis('off')\n", + "# plt.show()\n", + "\n", + "image = 'marlene_v2.jpg'\n", + "input_path = f'MakeItTalk/examples/{image}.jpg'" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "#@markdown # Animation Controllers\n", + "#@markdown Amplify the lip motion in horizontal direction\n", + "AMP_LIP_SHAPE_X = 2 #@param {type:\"slider\", min:0.5, max:5.0, step:0.1}\n", + "\n", + "#@markdown Amplify the lip motion in vertical direction\n", + "AMP_LIP_SHAPE_Y = 2 #@param {type:\"slider\", min:0.5, max:5.0, step:0.1}\n", + "\n", + "#@markdown Amplify the head pose motion (usually smaller than 1.0, put it to 0. for a static head pose)\n", + "AMP_HEAD_POSE_MOTION = 0.35 #@param {type:\"slider\", min:0.0, max:1.0, step:0.05}\n", + "\n", + "#@markdown Add naive eye blink\n", + "ADD_NAIVE_EYE = True #@param [\"False\", \"True\"] {type:\"raw\"}\n", + "\n", + "#@markdown If your image has an opened mouth, put this as True, else False\n", + "CLOSE_INPUT_FACE_MOUTH = True #@param [\"False\", \"True\"] {type:\"raw\"} \n", + "\n", + "\n", + "#@markdown # Landmark Adjustment\n", + "\n", + "#@markdown Adjust upper lip thickness (postive value means thicker)\n", + "UPPER_LIP_ADJUST = -1 #@param {type:\"slider\", min:-3.0, max:3.0, step:1.0}\n", + "\n", + "#@markdown Adjust lower lip thickness (postive value means thicker)\n", + "LOWER_LIP_ADJUST = -1 #@param {type:\"slider\", min:-3.0, max:3.0, step:1.0}\n", + "\n", + "#@markdown Adjust static lip width (in multipication)\n", + "LIP_WIDTH_ADJUST = 1.0 #@param {type:\"slider\", min:0.8, max:1.2, step:0.01}" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "sys.stdout = open(os.devnull, 'a')\n", + "\n", + "parser = argparse.ArgumentParser()\n", + "parser.add_argument('--jpg', type=str, default=image)\n", + "parser.add_argument('--close_input_face_mouth', default=CLOSE_INPUT_FACE_MOUTH, action='store_true')\n", + "parser.add_argument('--load_AUTOVC_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_autovc.pth')\n", + "parser.add_argument('--load_a2l_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth')\n", + "parser.add_argument('--load_a2l_C_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_content_branch.pth') #ckpt_audio2landmark_c.pth')\n", + "parser.add_argument('--load_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_116_i2i_comb.pth') #ckpt_image2image.pth') #ckpt_i2i_finetune_150.pth') #c\n", + "parser.add_argument('--amp_lip_x', type=float, default=AMP_LIP_SHAPE_X)\n", + "parser.add_argument('--amp_lip_y', type=float, default=AMP_LIP_SHAPE_Y)\n", + "parser.add_argument('--amp_pos', type=float, default=AMP_HEAD_POSE_MOTION)\n", + "parser.add_argument('--reuse_train_emb_list', type=str, nargs='+', default=[]) # ['iWeklsXc0H8']) #['45hn7-LXDX8']) #['E_kmpT-EfOg']) #'iWeklsXc0H8', '29k8RtSUjE0', '45hn7-LXDX8',\n", + "parser.add_argument('--add_audio_in', default=False, action='store_true')\n", + "parser.add_argument('--comb_fan_awing', default=False, action='store_true')\n", + "parser.add_argument('--output_folder', type=str, default='examples')\n", + "parser.add_argument('--test_end2end', default=True, action='store_true')\n", + "parser.add_argument('--dump_dir', type=str, default='', help='')\n", + "parser.add_argument('--pos_dim', default=7, type=int)\n", + "parser.add_argument('--use_prior_net', default=True, action='store_true')\n", + "parser.add_argument('--transformer_d_model', default=32, type=int)\n", + "parser.add_argument('--transformer_N', default=2, type=int)\n", + "parser.add_argument('--transformer_heads', default=2, type=int)\n", + "parser.add_argument('--spk_emb_enc_size', default=16, type=int)\n", + "parser.add_argument('--init_content_encoder', type=str, default='')\n", + "parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')\n", + "parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay')\n", + "parser.add_argument('--write', default=False, action='store_true')\n", + "parser.add_argument('--segment_batch_size', type=int, default=1, help='batch size')\n", + "parser.add_argument('--emb_coef', default=3.0, type=float)\n", + "parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float)\n", + "parser.add_argument('--use_11spk_only', default=False, action='store_true')\n", + "parser.add_argument('-f')\n", + "opt_parser = parser.parse_args()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAD7m0lEQVR4nOz9S6x0S5bfh/1WROy9M/Oc8z1v3XurblV1VXdXkf2gqCcpiwNJpm1pIJjwQALlgQWYcE8saOIBKU9sWBDAgS1PBBhuA9RjIEsCDEGyIVi2BMiSbQmSJZkmm+xmd9f7ceve73Vembn3jojlwYrYufOcPOc757vfLX5dvPHhfJm534+IFWv911r/JarKF+2L9kX7os2b+9t9AV+0L9oX7d1rXwiGL9oX7Yt2rX0hGL5oX7Qv2rX2hWD4on3RvmjX2heC4Yv2RfuiXWtfCIYv2hfti3atfW6CQUT+cRH5PRH5AxH5S5/Xeb5oX7Qv2ttv8nnEMYiIB/4W8N8FfgT8l8A/rap/462f7Iv2RfuivfX2eWkMfwr4A1X9jqoOwL8J/LnP6VxftC/aF+0tt/A5Hfcj4Iez3z8C/vRNG3sftGna248ocueTC1K/vFGTqzve8zh1c53teOshXnv8+9/I7hoOtfnSa3d7cKtbT3Jlpzc+3lttB872Bhdw911efz59wwt4o/0O7NNvN89U9Ut32fvzEgw3dJnZBiK/BfwWQAgNX/36t+vyvc/97zJ9V7ii74j9O7D/od+vP9eV7/gryxVEbzhXvWPH/FHcdE3TPR0w6w5d9+F1V89zW2fKM8khXH1dOl91Szt4bTPBoFqfkU4HnIuhu5qxn9XcPbT/6445X3+3/fM0gG/bV1WvLRORveWH9r/tGq5vrweFyR/+7n/z/WsLb2ifl2D4EfC12e+vAj+Zb6Cqvw38NsBisdLZ8hsH57yJ3HXeu59QODh49fp+tfsfvrybhdLdB/rN7dA11r5x8/OaL/ezFde31bL8jRSu+eMSEzq144rs3tPV9/w22k2D/ep5Dp37NkFxSHBfW1bubX7sq99vup758rrP7pnJa4XY59E+L8HwXwLfEpFvAj8G/jzwP/xsh5RpEIqISUQFZCcSDj9w2U190/7Xt79NeDDr0Lt1swPeNDtf2e/Wc8za/kw93//q2WRPQO7pDyIoTALjpq51m0B9Xbttz+tC25bk3QXutjp0A3vHuqtxIrMlWhW6O7WrA/hOwmC+rNzjTYP60KC/ev6rx73t92vuxvrFZxAon4tgUNUoIv8s8B9g09NfUdXfuW2f2wfN9Zl86kVFONx0LNn7XybV9iaT4y7t+j7XTQrTND7DjHhIYBw4926ZCcrd6jIcb7mEaTxefX5vdsU3HsPU2qqC6LWt9MDz2283i7X9ra4c+w0Gxl0FxJsMutcJh5vOd5/zTpPmle3v288/L40BVf33gX//TfbdV8Xc3hiZBrT9uL58/qnX16MyrZM6cvbU5tnJZutuFlwK+J02cvUYB/a97ffUcW7Y9qb9RPbnfi0azf4APXCMG4/+5u3QbFev4OA1vKbT3rT+kK0+W3njILtt8M23uUn9PzS47UlLFYGTRlvfpJb/ZBKT1QS5jjlcvYb7aiEzXeyNzbXPTTC8abvRHLi+4e377gzdm7WNuSax2/rKljfbgzceY2aC3Hh9B37XZTo/Wu1p83NcMTVk2vCqanv1uFfONd/v2pUcavMud6XdZQKV/ScNusNGbjj8NKwOHP/qu9nfVq48t5lQ2sNjriwXQMuyaTLR3aq6XHX61Nm11CPKTATMl+80mVue5fweD2gJVzGM61jG3Y59W3unBMNVlP1NwLidpvD6QXjT8vvMYJ8FMLxp3bVBfSdhJbi5l+Y1YOQONFPcNCrnKnRZpjtbfWe3zqTVoWM6PwFxV24MJoAORBwmHLQIDeGaTqGHz3Wo1SGou5svx75yf1cEq+5JJ6U8kNn2xWuwt1s93uzeDszk8+dy4wx/g2Yw3/fg/d6kUVTB9K5hDJ+lzRH2+vvq94Oz3yTdb1h+0/ZXlr1OUNxHtX/dOW+8Nlt543lualnn2MluBjU1tqyTHRSoKOZQNfeWai44hR0jJ1smZXKUclBFcc6zLyB24HDOCcHhpJ6HaYY9JNSuPre7IPh2yNvt9Lsc7ybPwW3HvC/ecNOsP9dUiqIyu7D6n1wXeAe0gTfFPW5q74xgmA/Kmz73lnEdjLNHeD2Y86YBedNAvk19e91xXrftTeuvbHznba9qWbtnopMduy9o6n1lnIKSyDmTUiLFREyRnE1AZDUfgqrpMHOU33uPiOC9x3uPcx7nPeIcXhw1VkILziN1Fr6h797lPt8EK7hp30PrdoP19oF/SNjITLO47Zx755twiZ36vzMMd0JBMQ1rJzkyh9Catykc3hnBcDd10U3vTAFxV9bNj3YPE+F1guKux5nPmq//fVWYXDvJjec/dB3zTrELLAI3Teo7/SHGSBwHUkwMcSBrto5tO0/HyKow+xQwoQHEmBAB51wRCg7vAt57lsslLnh8CAjOurcq4K4L89e8p9e5C2/b/uo2N830+4N19/+kae2hMexm+L0TMGlltwGFt13LTabENdOkCowbPBzVJLurmXuovUOCAe4mHOaqsu4t2627e8e7z2x/+7GufvLa32/y4u4u8GTSGHJO5JxIKRHTSB6jaQOqBCeoC0jeda6cs3W6nM28yDNzANMymtaZ8EiJcUww7gbK+fk57aJjuVrSth1N0+BdAJSc73ff931Gh7a/n8tuts0VfGOnc81V/GnjOw3wQ9/rdnfFHw7d81WM4TNij++KYJC72fezZVd93/Nw6NuOcWj5ZzUFrgqHzyqM9JZ1Ny3TMo3t7NFqHgykIhQ0mpkggPOCCwHVTNZUMAbrgOLqBJixDp/LGRSkmBkxoprRbJ4FlaJSi0NEGfotQ7/F+cBisWB1dEQTOhCPiJ+ZgjsN+S4D91DU4qFt6vFuwxAODdTXnefWaMYbvQSv13auagY3mSHl22vBys9qVrwjgsHaVVtv6jy2cLdd1eX29y6fn21GPtTuKhSuqfazIV4HwfxK69XOVVTqdldetCuCcz6H7dB0wfB90wIMM4jEcSTG0dR/Ae8cjQ+T2qtluYgrwKOS1bQFLVqDqppQybkMYC2aQpzWpZzJ+eq9Opw4EGEctvTbNW23YLU8pusWNK0lzWlWshQsYtJIZg9r/oR0Z41XHOVQ39+9Bp0JnvJ9usDpIe5ZbfcZS9cHnzDXHA5vc7OQeF3bbf8aDWL2/03P6HXt3RAMN4xfnWyq+sj3X+L+jL8TDFcH6H3whpu3uaupMLv+vdXKrmfOOse1Y5XONbuGCfyDaVbaO4YqaEZ1JKXIGCO5aAeI4L3DO4fzDhGZTAUt2IG5DgRwqEYbgEXATFev5rbMOduf5uk4Zofr3nHrYMRBio4YA/32kvXlBavlipOTByy6JU3ToAgxJSoGkbISvCdlnWzl6Q1PwrC6OQ9oXNcGwmxmL//tuyivb3rbDH8Yq5A9IXR1n5vaTabEIQ3mUDt8nQaG7oOb92vvhmCYtdvU7NtsfVuxb/ndx4S4v6C4n0ZiAFy5yJs3Yq8TzzsLRTBiKn4VeKrKOA7EOJJ0nGZ65xyhCdOgElfNNYeozfCCoimb5gDFzBCyzhxjVQOpuIPuls8/59+dc0WAKORM0kyMI+BwfqDvN6zXFywXRxwfH/Pg4SNWy46YlGEcaZpQhFIdILspvt4PatqGVJ/oPZXDG2fcPRXu7se6Ko0+qyp/03lqXMVnBhFe0945wTC1Gwbh7YP97kLhvstuEwI3novaZ/e1jZuv7fXHFtGi+ivjODIMAzFGlIRzgpvchw7nbDstYmU3u5iQMbfk9Q5WtQLNJoBciZzKOaNpX4uYaxZ1O1XFe08IAXEmyMy8UYZhmK55jJGLywvWmw0PHz7i/fffpx09fUwMQ8JNAlF2mgjmf5o0wbnNWR7xNIAmpaBqZ7N71cPLq9n6OlPguidgvo7ped9d47j9+IfaIZPlEE7xJkLqnRIMb4IJHAInb1z/BlrBTUe+k6CQmo9hx3hToVQvQcTUbHIixZFxHEkpgVhcgfNhEghgcQgCOHF7KmcVoYKSqOBjRkVx4mir/V+1hWKWpBSJ5buBj9fNjfpXBQNqAsN7T9NAkzLjEBm2GzRFgm94+WJku90wDFseP37M40dPWG82bPueYYwgHmQn6HLORVW++qyu2vvsrdulfF9fftuwuQls3BtsM61hrkDchie8bjDP99s3MXQSXgeFw4FrvO/YemcEw0GN4E5awnwgHjYl7osx3LTffX5P4GNBHa+nbd9DYBX9PedMjJEUR4suFKHt2pmZ4KcZSzWbkBDBuSIGNJNVJyBTnEAWXJYJfNR6jpSmmT2nVAb8TjNYrFa7+5xpDrloGfW3kkgpT1pM0wSCDzRNYBxG+mFL8AHNke32krOzUzabNV/56CNCELb9wHobSTlNAs45V3ANdmpWHXhz6GBvcM2fN9eW17VXvV3XPA9wcLDVAKd6Kfvn2N/3NkFzSKO4tt8Ve+d2IfVmJs07IxiutVtwgDef+W8ekPcVAndbVzvd/cyi/W2tC6QUy18CwIdgQUUlAtGJM2R/cmW5vfNUk6Kq45kSQo0NhhjjJBC0mBgiQggB3zY0TQOw2yalHRC5BzruaxHOzQYzpYM7oVu0NN6ZSTFGhn6EQRj7nr7f0PcbPvjwA957+phXZ2vW654YI2i5V5ED+sFueB963nfxDtw0U1/d79pgu0FjuP4+72ZKHLreaT11vvk7xJSAfcl4l/Y2tr3PQL3Peffl+uFzHZp9lGwDGzMHTH2P07Px3uGDp9rZO3xlNwhdUTk1p2sAYUqpHDORkx27zvRtCNMxs2bTGgoukFKazBeZaQhVEBwaYOJ0Op5zQggN3jtUwXtHaDq6rjHhMAyMwwbI/OTHPdvtJb/8zV/hoy9/jVcvz3nx8iVjTOjcLJidb+5pEBF0J58+/3aL1+Cug/I2oXGX49y0zS+UxrCnJt60zX3U8Tvu9yaYxF21ib3Br3rjvtWOTDO1XkQn/MB7cz1e2ctyFWbCQq+MjLm6X787JzgXqG7HOAM0U46M40iOae9627alDWHv/kV2btC97860iAo6bjbrCYPoGtNEuqYheE/bNgyjYSfDdsPLZ8/4bla8C3zrj/0a3gvPX7xkGEbEBWJKiLg94QBMmtFVnOF1M/Fd3uGbDLLXagC3rL/JlJA3vJa7tndOMNwXJLmy91s+3mc7llxRd6+2+cueMImyR0ppmtlFMJV+SlyyGbfO1OId3gesnMf8Wh3O++lYKZr6zwy805zI5Ty7c5rb03nP0XJF0zQ0IRS8wk1gosx+z4VB1Uos+MkCrIZhYBxHxpQY+p5+u+Xi/BLnhOWiY7lc0nUdbWPCoeIap69e8P3v/SFfevqUP/atX+H3fv/3efHilM12AOdmkR/lvoFK0POm9vVd9v2s6++7332Wv40e/04Jhv1Bcn351W2uLbvDsW9a9rpBfx/M4c3228UFVOTfZlZHCH4SDFpcYZNQcA4fAt6HvQGBKhklJ/MqjONQMieTBSpp3pkSBS+o2sBquTStRKQc20KY7Tjj9FevtwqIq7ObqqIlIrJpGgMgY6RtGhbdgtj39H1Pv7W/xXLBarVi0XVQziciDNsNP/jed/jgw/f54L2nbC43pBhJWUhQ1cu9ALDXYQT1Og9tc8hOv7ruwIuemRMmql43mO8rBO7cbgM57tjeCcEgHBjwV36/TjjUA03Z63fZ/obtrm97f00Bbg9Budp5kblHYLQApeCntOZdZy5/spu5fSFG2btMTaQygGMcLYQ5JVALOJqbFN572jpw3W7QpHGcTIs646fipRjKoK33MBcM9bratqXtTLDU5+hdQ84R78AvhCYExqGh77dst1uGzZbFYsHJg2MWXYuqEck0QTh/+RwkcPJgRcqZi/UGVFCVma6135+uPuuD7+kArjUfvPN2FeCbltlO0+/bznHjMe6ohVwFH286xk33cJf2TgiG2t5UY9j9fjvg4fVj339feynsReXN96sztAmFHShodr+bNIQ6qKrpoAjiHI2ztObq2wcD8/JkNhRbfRxMIFhEj11HttwL5x2+6WxQY+ZLX2fxvmfYbknFWzFpMRVsLNdY72XCL1JCinnhnMMH42zouo6m7QhNR+MDPghpTAWE9CxXK9OW+p7NdkPKiaOjI46Pj+jaQI4jOUecdyy7lk3XsN5sAUe6kg+wZ1bM3subYAu34QJ7gn1PGNjZX+d9OHS8O2kTM4zhoCA4cLz7tndKMMDdwMCbtjk0XO+lcXyGa7vadLqgeq5DxwNEp/iEOns7tyNCqS9VywGrMPDOPhFKspJpHCnaDJ/GkTGNpJx2Pv8yZMxEsFldc2YcRzabDRcXF2w2a0u+qsFTZTfnzMzo2g7vAzEnmqYpbtIqGJQYR8YYGfq+RGaaybNZb3EhEEJD13WGJ4SAbxpyxASKCMvlksViQd/3nJ+dISjdw4ekOHB5ccHR8QPSOLDsOraLkWGMiCopF3BVD/eDQ+/yLoj/TWbGwZd5V7PjNes/66B+G+2dEAw6+5sHiuweTOUDrJISW7bHCrRTpd9EdSp7XhnAu+Fkpr3uCaFrrsjpyy5yQUtwUlX9bLuSDCZYLsHYQxEK3jElj4kIWW1fJ7vchxCaaZaqzolxHEnjQIojaYyMw0BWS0YSL5ZLkTIhONrWQpWHoefs9JTzswsuLy8njQWFbtGxalpCCDhn2zdNSxsaRBwppSloySIsBcTOE0cLSIrRIhq3261dY4yktGEctmw2nq5taULDogiKGrzlnefk6MjMmM2WC4QHqyMuXr6kcQGNGR0jj06WXKy3iG+4uLwkJhN6mhK5RDPq/IWK7Ahp7tiuunpva4cH8q6nVC1yLkMMFtpPc6oOlR3X5v0FxNy00jfAHN4JwQDs7DNukvj70YMi138f+rxp2f6pD+MJt2IFB461p8LKddFRk6DqsS20eNwBeGV5zRGw7MjqcdjdgyuRjlWtj2NkHLZojU9QJQQLIwYTGqrKarXCe4hDz+mrM16+fM752Zl5PnAcHR1zdHRE8AZmNk07aQJICXYqJkKKiRiLKeCaqfNqjoh4uq6l6xYsl0eWQCXCOG6nmIhhGFhfbhG3Ydu3LNqW1WJJt1iSxhEFFosFogvSOPDi+QvarmN1dAziSGOk32xofODhwxNOVksu1hsu1ltGtSCqlBTLrJi5bWdC+65aw01tr4/p/uDf7xXzPrWLjNwjGioLVXVv1rmL9nBt3XScOnHqwf56W3t3BENphwe47I2xN9cI7nbua99twb32h+sCxc22yzkxFvvfTAJFyZhtajwGhj/YS642e9M0qFoCVU7RwMSULPBHIzhshldFRchJEe9YhAYfPBcXZ7x68ZyXr16wvrhEgOVywcnxCUdHxzShQRWcGL4xpIhzOmEdMcZyc3ZdIeyElnOOxWLBMAx450hxxKE03rIt8Q1h1dIucgmYMm/JOI6Mw4ahjyyXHV3TmPahStc0LBYdOfZcXlzw8uVLQtMyJuX04pK2XdCPiYePn/LkyWOyvuA0DuS8H8txl7LuhwbfNSyBGzQHudnuv3GfW6/hkE5atuF65OPbbu+cYIDDA/+2Wf9N1r1u+fz3NeXwDucDdsk5WoODKsgYp8QkKEzM7EKGMxlfohiNbzEhJSlpR8ISTTBQQEvNaPEGOMS0hJxxYvkJgvLq5Us++eQTLs5e0m+3+OB5cHzM8fExy6XRsKFCThnvLegpiCPPtXEslNo7T9aaD2EYQW0V+0g5m1AJHpcFSY6sQtsG2mYBKDENbLdb+n7LGCPx4oK+aVgtO5rQ4HLkwfGK1i9RHJfrS1wYSEnpNxsuLy9ZDj2I4+j4mK7reBoCp+fn9GNJ3S5mziF1+hCGUN/DTcsObnPtyEzbVJD5rniCFG2zUsBf8z4cCHC6DQt5EwHyTgmG+4B7t21zF7Pitu9v2q5dPzvp7qS8oJzI0dx+4gwnqUFBEjwVUanuxClbUtixOaeI5rgD/TSjYl6GpEosYdDBe7wIw9BzevqSF58+5/zslJQjzjmWy9X0F3xg6EdEPE4cfZn1nfc4VVIlf5WdazBnJYuZRwVlKMLOBuScyzgXdda7gIiDbNqRdw1dpzhn9zwOW/q+J+dkpLKuY7PtWT46wbmG7TAgMTGMkWEciQlwa1SEzXbDYrniwcOHPGke88mnL9CkB0FBuDmO4a7L9sBhbhYOr2v3MhNuWX+bdnLf/v3OCIZbB/MN29+GI7xuNr/L8rtuexetA4UcU3H9jcX/aICpCBNvgZkNUgaYTDEBoIxxACAXjaN2gGBuDKJaMBMoTeMJztFvNrx68Zxnzz7l4uyMnCI+BLqu42i5JDQNIbSEpiGm3lD9KogUNJdszOIWTSkTU0IlWyyFCkMFNksgVIzmCfHBTdRtKQOqOLG/KgyzFm+MczjAtR3eecZx4GK9RhAWITCMI6vVgnGMxLRliJGclaRCSJ5+uzEzR+Dk4TGLbkEbHGiuMmimou/ey61awA3L7jP7Xu2j+1qGMIcd7yog5qbtL7wpcciHOw1+PTzorwZv3DbA76t9vA5jeB2gOb++autaTICRswbnivqthMZeQ3UPGoAniAvTs8hFC7AMw/08C+cEFRiHiGYleIcXy1R88ewTnj37lPXFBZpz8TI48wi0DT60DGNijIpzAfDEnICd6WJU8eUeUiKpoiqomMBK6nGhQXwDKF4KY5Pz5GQmTVZniVdqvA9m/hh7tZLxzlyxMYJzStsuiis1MqbIpu9puxW+CWyGLTFavIb4wDAOtM5qWqwvL9huT3j86AlN8OSUidXcKWnwu/5T3+7rvQ1X3+nr1PTXDXLgoFDYMxvu6f68zzW8rr0zguHWJhyMaPxMh7yPZvEG+MTeOs3EElugatGHY7LB77238OTRQDLvPbnGCHjrtHt2fM1kBHywIKMUI+v1GsSxaFrQxLDZ8vzZpzz75GdsNheo5sKoJHRdQ2g8Y0rGxSAWTu3wiA/gW1BlSCYsNBiuAYJ4j1cB16J4hnE0VmnnUDwxjXga8I4+RsAjWbD6EhlNowGCYunT3kOOmRyzCZycIZVBpw5BWa97ex6Xa2KMDMPIMERiSoSmJIP5Buc9irI+v+Di+IKnT57w6bPnjHGDK/eI91Nw2YG87Tdudferk9abDszqnLh2HpHX8jG8DVDynRAMc+r3u8zE91n3pmDl/PddHvHN15SLa28gJRMMWtxnIr7QpRm+4JwnFyLUGmJctYU5CQpYlKOImO9/HGmcw7kGTZlhu+H8/JQXzz5hu1lbEBKQcsK7Bh+W+GYJEhhzwGHuSZUGp8EiF70YjZsrM5cz74QWvCGlgAsNhAbNELMNhJQd0gQ0teBHSImUE0LCO8W3zZTqTY1YlGDYS46QBc1umi1VDMvYbgfQNTEn4mieEV88KDUL1TlPaIIlgg1bmnbJarFA1fZ3YhiMc2bi2POFq4Ns3m7CGa6ZIbdsNz/WbWDn/j7Xwceb+t1dIibv294JwVDbfYTD1f3uKgDuMtvf5RrvtC1aMhctNDmnERGD7twEOpot79WSlnLWYuNrUb13f5Np4gxoFCCOI1mTJVGlzLDd8urlC168eMb64tJ4G70HPOICTXsEfskYG9S1BL9EwjESOsQ7U/lFwAWSRih4R2Yo4iwz5BFVT+uWU2JXzooTj8sZnCIuInlEJUGycGYh4ySjDJYApSOaTXMw2no3sRtPXVscKSc2/UhKxapUELFcEnFuKkKrOROHyMXFBc55Pvroq3SLljGO9P0waSkxJlzJRL2qONyn7Q3CO6j+1wftzlN1TZAUgXWfgX7IxHlTDfudEgxv0m7EBe4pKG47dlXcXneuq0BW1swYB4ahJ8UB1Yrsg2bZIfUlklGpJd8KWKmJrExCATGwsrIhpZItacBapt9uOT895cWLT7k4P0NEcM6TMohr8GGFhBMSHVkbmnCMbx/imxWhXeCbBu8bMxdcYBwHnNh5xn5TyGISEiJdtyT4rkQWWjCRE2+ZmiTIyQSDNwGRYwQdSRpRAioDWT0i0bYXQ2GzxArqIK6mmCspJ4Zo5lBdryVEPOfMGBM5W3p6SIm+3/Li+TOOjx+wXCzoh5H1Zihahlbcdz+fgutC4hAAeWg9s0F407aHlr/RoOf2OIZfGFPiTdu9Zu87gY83b38fAQSVeWlkGHvGoSeVQCFKsJZKMQ18mMwC40AwAtVc5+ds8f9AIVWxwVLDhyuvZD/2nF+84vmLZ6wvL3ZuNBUUD7TE3OK0YxEe0a5OODp6zHL5EBcWONcUMtkAVUg1ltmY04gLW3IagUSXFXHtFEClqqAZxZOdYSi4jHcRVRMMzke0uFlhxMkAqUez/YmTSXVWKYVwvJRrEVA3aU5OHOLszzuPZjWSXLK5Vksi2cX5GW3T0i5WxTwznMZ7b093p5Zw3XK/2jduBxzfbF6+WVDciC8cuIbPQ0C884LhkFfi4Da37X/ndddNktswhqvq2nzfcRgZBstSjHGwGaXY60mrK9JMAlWr74BYrkQt6AKmnSo7lqRas6FmOwoWjbi+POflyxecX5zaNTmzn1UcIg3OLwntMcvVU45OvsTy+DHd8oQQVogEcMFK2xc8QhU0pYIDNoSmRZtxCv0dxhGy0b9lFbImRDxKwVAkUauPO+dRMRenRWuOQIuTQE6uDPzBBIEmwDQrRIlERAWhXpsDPIojZ2G9GbAITI93DZqFOBoTdeM9F5cXrJDCUh0YR53MkRqPYQqIvZvX+yhe314HQN5lwColZuSQF+Ra/sU7hjGIyPeAcyABUVX/fhF5AvxbwDeA7wH/lKq+vP1Ah/CFEsQ6mXD3BydvNx1kFpQik4iuKnvd6tojlt2XKturlo+AQ0iaiLFnHLaW1BRjwRQciiHvArjQmn2ds3kFgq2PYyKzS8sWxFB3t6snMY6jzcwom82ai/Nzzs9PyXnEiSepmQ/OtWQ63OIBx48+5OGjr7A4foL4FSJdUeudeR+KEJSCdxCCJSQ5wYlH1RcA1cKsxYMX0xYyMpWkM8+JA3WoJEQzaELIIIGEg+wQFbw4knjQgOYt6kyYUWntU7T4BucQHyxPpJhSMSXatplAWaO3t/oaWSN57EkxWlboYsVmuwV25DF1gNU6Vzbo9E6S4doAnGEMOlt20za1j017zPq5DfBDnW9mehRzajqeVr3HerXtfp0b867tbWgM/6iqPpv9/kvAf6Sqf1lE/lL5/RfvcqD9gXydcv3qdnc5Vvl1w35i2Qmy//DkynfAuAupnam2Uv21hDW78j2OW8ZxwzhuSGks5rPb40RErCpUdUM6Bw5fCs+W4wVvHAs5EXyLkomxBBnFMrOqsrm84OzVC4gjHilqdUB9izYrfHPC8tEHHD/5Cs3iMS4c4/0KCAZMlvHsRPCuPntT1FzwZBUrjKse8bvQ7RgjuIzLgi/AqRcHk9ZTpGV2k0EvmvFingxNJhQst6NFc0umR1OPlc9OhkGksTxjAedLtqBpVCnHCStw4miCWPTnODIUTWLYrnny6DHBeT598ZIh5qJ57KpuhRvMyNsCnua/1RZcm62vLd/bZnLCM1UZo8YwzHvkVUFk7l/berdfuZiZUNhffp/2eZgSfw74R8r3fw34j7mDYLimwt+y7rb9Dmxxr/O+vl3fXlUrMM449qzXl2w3a1KyWb1qP/MOFUKYBld1T1kQk51DVfFq/AZN20z7VtIUKa6+9eU5Z6enDNt+srXVtyAt0NK0jzh69AEPHn3I8ugxwR0h3qpOV1Zp83RU5iWZGKadCFYjMpOyIyY3UcrVz5QSWmY/l6zwrWax4+eirotSEy5M4GSyA9ThTF00DcJ5GmnIOaCxL8+vVN8WyzSNSYs4VxNiah6cKWWcEn7tpKR9C/12i2ri5OSYT5+/mN6BaomvEAvfdnXmviIkXqea33ebN/U0/DzbZxUMCvzfxHxw/3tV/W3gA1X9KYCq/lRE3j+0o4j8FvBbAKFp58tvPNmbuhhvOtahx33YtQl1ytvXYooOISXNN45sthu22w3jMKDkkiOxYzmq8QkixQ2oWlx+aqHG2WIawPzzIpZfkCsDiRZTRJVxMDKT9eUFKScUQZ0BjRKO6ZZPOHn8IUcP3qdbPiK4oyIwnAkCEcRX9N8bt6TfsUq5yQoviVNl8GkB+KYyeDmTnSM5i87MY8UFMPyBPGlWwMSRYMxRMk1mjhp6LeAcMXk0e1J2xRQBsIhJtCSfVS1nAlsL8Y0Iucy+l5eXvHjxgsVqZLHoGNfGVbH3jmtMxU195Y4D/5BWcRdg8KoZIzfsexvOdts13nesfFbB8GdU9Sdl8P/fReR377pjESK/DbBcHd94R3e9oddhD3fxJNy8zXVxYEvVOqSApshmfcHl+Tlj7C0eQXRSHa92gpoQxawj5WyAXSWriTmzXC5tICXLytSYcAoxjlxenHN5fk4s/AVmEyxwzQnLo/d48PDLHD34gKZ7gMgKME3B+YAUCvpatKZpmlIlyuGKaTGppcKUSVln5jgmY3lyzghnC6aQNZOdIuX+ReeKsiu2sFKzSRGPaC7b2j5OGnwrNDmgOjJGISYLljIMpOZZ1MI4Hp2qX1v6ugkPpuu9XK9ZHj3g5OSEzfiKNGS0gMAitw/6+s7uM9gPuS7vpVnM7NnbgMXPS6P4TIJBVX9SPj8RkX8H+FPAz0Tky0Vb+DLwyVu4zlvbXQDJg/sxG+SvExZ6BZAsnakmPw3DlvXmgm2/QSTvbDxlynOojEfAROXmCs9BBSBrshLsSFVTMsr3cTBmZidKHHo2lxcMQ49qBBqgxTVHHD/8Eg8efoW2e0poHuD8Cc51IEbF5py3AeiF0Hia0NB2rYVKe1fcojsOgzQTCpajkPHOis6mGIli164KJCyCs3gpbMA7qtlcn6ezh2v7SBEMZEhmek0hzmo4Sz+siXlAs5rSLyaUc9bCfl1iLJjP1m533eNIP2x48uAB/tWZmSZZJ/TfZPgV8PAe7ZDQuIvwuGmb2zGGw+2QMHrT9saCQUSOAKeq5+X7fw/4XwH/HvDPAH+5fP67b3iGm8578PPm67z/ykMg5ZzqQyZGIFP94jBweX7OsNkaQl+KySpM2sK8ZFydxea/RQz5FxFiSYsO7YIxJVLMuGzquxchpZHtes12uy2JVx6kQdoHrB5+wMPHX2axeor3D/B+CdKAa3HOF0BTEJenLMuuMzKUrmtpgse7yhK1U81TzsaXEEt9ijExOMcwOJwzTSfZhI0TBS8kIo6ASIJUnofLkFzRItLs+RZAzbkSlZjN3MHjQ1co8oQYISctAsSARupzzrWyd7bMS7zlhEQLMHv5/DknJ4+mJLMkiqCGc0zXcbd2X5ygXuPVfa+CilfF0ptqBJ/VfflZNIYPgH+n3HQA/g1V/b+KyH8J/Nsi8heAHwD/5F0PuDfY9fC6a9vdsuzQvred9+bvV17W7HtKI5vNpZGoxsHMimw29VVP1VxbENkVZ60CZK49WDl740jQbGaEAJojfb9hs74sgCOmtvgF7eoJxw/ep1k8QNwC13aI61C8uQGLq8/Ymxu6JrBYdCxXLavVkq6zClPOxmcRaqWEfTYMZBwiKSbGfqQOaIjkpIQwQ8ATqNb7sYzJnG1wa329BcuwbUx9diJ7PIi1kG0T2uJ5gBHL+1BNRnijgivCWnMFISNd0011OLNmgoPLy0vjqXAJr9lSy6t7cPbeP4+IwjcFIK8eA96OVnBbe2PBoKrfAf7kgeXPgT973+NdH7xX4OF7HOOQq/Lq8uoyvNP16MyNhHkgxBnvQL/dsL48NwS9Yg7YIKgoeZjRvNeKT1OxV+93wBnGzyhe6Np20ixysrLzXfBWBHYwivWYEma3e5rFA46Ov0RoH+DCCmlacAH1YqPJGdBo8UFCaBrz73ctR8dLjlZLFgsrF2dy2WxwhSKYMillxsaYmYPz0/NImpHk8NlPGlJWxWVFnTkGVb2p75iXQXO5JsQ8Fk6wxOg8eR1UjQjGacZ5RysNJnESkgMpR8M1spXw805QZ25TzRktad0pRrbbDU3TmUaE4+JyYyCwmiCuode3q5i39JEb1t9lAE+zO7ebMfcFNq8Covdp73zk47vSJk+CpoI3KuOw5fLynL7flsCfvBNDWoHJOquy51KrL7SaFOaZsMG3XCxwzjGMhkOMMeIEYrJiNBeXFwzjWOSJg2bFYvmIdvGI0B4jYYn4tsQomEAwLpdS97LUhGjbjtWq4+io43jVFcq1BnFVuO1o4XPKpKSExhGGwOhMg8nJqNtTyuSk5FzClL2p8zVS0mlxCM5MqOqHr4xP1x96xXHMrDEh2kCK5OjQ7ErGqK3PhSLP+0BUiwwdxxHvxOptFKHadMuifSWEMGlqdxlEnxfYd9UrcaftP6P2cVt7hwXD9VTsG7e8g0S8j9Q8tG1FvK0zZ4Zx5PLynPX6fIrNp4TN1AGF1EKzdoy63byylM1Wflov4mibxvgJopGipBTxjUUdDuO2mC3GjwAN7fIhi9VjQrNC/AKRxngVnEe8L+aD3/NChNAUM6JjuWzpFg1t42mCnwSDYrNoTloGfsaVHCfJEMdAaDwheUIMRG9sSZpBXMb5bHZ/wVic2Ixuj8biCOYBY/OnngGv5jFwThBM6DaNh+xJo5AitE1rQU4CgrOqW4XrsrpVx3EkDD1jtLyVxeqY5XJButwWt6XN1VX4v26I3cU1eNP6u+5r9/O3J4YB3mXBUHrJXdyMe7td2eYNtKjD11IVAOfIKbK+uGR9eUkaxwJN6jS7plSLze5K1M9dffNiMvXF2zpltVzg8Gy3a3C+1Ii0WTVpYrNdE/NYLXAIK5bLR3SLE5qmI/gG7wPedYi0CA0ioXgIzCsSnKNpHG0XDHjsGpZdY8QvJa7BYrLKPSWKN8IiGAXQWEheg0z1NSWY65EsRs5SzDX7tAEoeHPz1ugnBLTELljwsy0TBxWcVAWxmpshOHzXoTla2HNUchbIyQDSIZY0dI8X43+o3iDnTHCAUdOvN315V65e3pt3kSsD/i7g3+1eift5JN52e+cEw121gzexm246x+tclXVSETG7ddhWE6LfA+ishNtOJZ1mIN2Vn5/biTnnKe7fEqJMxc+jRTc6byqwBEfMI7FEVU4VovA03Ypu+YDQLAmNVYlyrrEEJRyihkGAxyINrdal946m8XRNoGkDobGoRx9Kcpfs0r2dKIizTwKaITRKCKPhJ96IbZ1jGoAVXNVCVDu5KjMWGEEhY9FMTZKrWkLG4SXZJxklVZgEJOO9EIJdzxBNcNaK2jtBG2k7Y6KqBXibpmXbbXYYT33Pr7XuD/eN18UU3F843OyVuLum8XaSqt45wVDbHnx4y0CeC4qbtrtNiNxNSBTVWpVhGLi8vGSz2RjdmWRLNJoJBgDnd+7Nqi2o6lTvsQ7uUMrUqypda8h7PwwE5xliNM0gR7Ik+mFr3A4poTmA7yxDsl1ZDcpiNkzaAQEtwsCpFb6tWoN3gneWyu3FogedL2nd5a/G2adoyTiRXGIYdjZ/nY0NJ3HkDMkZu3UuGoNzDnUGMqregKiraQqqVZhKyU+xgK/gzMVYYxXsGkvxm2S4T808BW+xHjGiTvBtS9M0k4kXHCRKJbNkQGvNW7lPm/eV2wKb6vI3xQRuG+SfF9bw7ggGrcSvFKlwf7fjncGj+W/qsGcKjhGuCx/BAmmG7ZbN+rIwPWc0G/9AzrF4IjD1GW+pz7nmD9Qoxxno6ByolO+FDDUlxmSVm2JOxZ5XsibGfiDFXAaRI7RL2sURvlkivjNyVqnpycayqOKqcl7+DCuRadDaADML3eHFWSVqv6Osx5srMamaR0Eq0lKdijb4nTi8M6+Nd87CpLWETItMF6G7x2Dvrf6VICnLpiydnQLglhfkRHBiRWyW3YKUEtvtpgg8nd6fc0LjpQRBGaksSMm+dATflMjVbGnh5QT3GVhvOghvGtwF6ZhUVAviOnCAAlTWbT8PU+MuBXp+Dk32/mq47CEtYG+vO607oF3Yj2m5Xvm8OhPYEEjEsafv1/TDjs1oVzzGYviTFpKReRm5FKfjTVhDeaEVk3DiQYQ+jiSyRfOpVZd26tAhM/YWL6A4kIAPK0K7wgWLahS3wxNqcyJF0NVEL6v7oEU4OPH2vLWkd+OKSHGTir/DQqw7mjvS6mpaqUsDywwkLOeU3SOuAz9XoVBX7IozolgxmlS3NT8pSEacnwIBzcwRvPO0TVNqT5gwFPFYyHWp40HRiEqJPxFLze63W1KKBCe0QQqlXpru9fNqr4+1qbk4E8C2i/mYbzf9MWE4t2FxrxtHh9o7IhjeTruzELnygmR/w711DqyacqEL2243jOOwizHItQAMlL5lL6IQjk4eihqrUI5l6rDbwx40ZfIYjR4tZyNvUYsQTCkyDFubpbMivqFZLGmaBcF3iA/FjJCpe8E0lO04ZXDv4R/olFCUVbGgwkLzroWTsqj4qFj8AUxeCjOfKouTnXF6BhPwuD8o3LSu9m9h56mTyXk56QwTLrFbIWKM2lZBqy3BY4JWZidfw6Gry3WXDXp5aVT6i8WCUGp2iLhrXpLXtbuC4Xc1fa/sefDrz6u9M6bEZwET37TNTY+9F2YrJ8ksKozjMGVOxlTSngs9G1rUatXSKY0g1diRd6aDquIK8Fft4ZRMlTXEPJYoQ4uMzMmyMTMwjNuZh0LwoWXRrQjNAvFNmfl307S5S/MUT7GLF7ABNM087IBQl8NuAEVbbdRyahyVmSkKMqdMyjXbsp5mRlg7+3Mi5D1hNG9XNDeFnb1ShJGm2fY74ea9J4hwdHTEOI6lZmYooOSAaJ7cxzFGQggMw8DZ6SlttyIlNRNDC8uUCpC5qSt+HtGQh1oV2J/1+J9l33dGMNR2k7p1aABfXXf4eNf3ufqoJiNmNlCEWRJRTvSbDf1mwxitgIoNtURMuyKvZmsXGni15Ck/H3zVnz8DzVJSmpJ2XgvGprG4NAGwAViRdVUB8bjQ4UOHkwahAXxJjiqDb09DKpd49c4ngWF8BEkTkgt5zMyMqMFNY0zEmBlHcw1WTeHWzic6eR53woI9wbR/oZZiXcEIzRYqLiWF3YnDiRXdUTEC2kVj4OIw9Ca41IKrHIVOj51XqEae+lIgeDuOln+RM6qC89fu4LXt5zJ4pWIP9zveL5xX4rZ2V6FwuM1dQ69vZkL0DMOWmHoq0zO6Iyupngjvd9oCZSYtWGRhCtqVnJtqU3rTIFIpYQ/z2TcbVVypCi21c7hA6Fb4ZlFwBY9Y1Zcpt4BiUlR2pl3mYJoi7FQtcjGmhItuT003+nqZpVurCYUhGZ9lcammmHfmEsxcfwV3kKKnFGFViVlqGlrdmoqF2A+U4sHAtBZFDXNlHxwO3mpJtG3DMDRs+54YE6HUxcjqppoTuURfNU3gaLVEnUfPzuw69jCpu7gW3157rSvyMx7zTbTxP5KC4XXtZnCnfIedX332uW9aABiDUj9sGOJg7q9iOmje2eDMBrwUIKva4pndzBpCM6N+Nxdl0ziUTIq7Wc1R3G6FHSlFEwzJkD6ca2jbJT50JfS5QZhPdRXUqyO9IHKT6rDLZ4gpMYw2oHMWcvbMtjRwtJgO4xjZbkf63v6GwbgnK95itTct12H3Vz0JZbALxvhUQciKs8FkCpmHwrCNXARwySEFZKpzmdVyKywrNOwEjBh4aYV2zG3ZNCWKMxtQvN1uOH7wiBD8lN2q+iZD8G7tbQiVu8YyvI32TguGu7ge77uPIWGHpfBkH5v3nFp9OY0jw7AtsfXWGa3uohZ3kStBQ8EG2xgx99muarWf+fyrZ8JcfLZNNUlSSrjgGYae4Bwu68yMAHBIu8S1y5JKbcFMFXiEajJUh1ZV9Xd3nEtOhtnlQgjgcKQMrtapzBV7sHoNZkqYYBj6SBwj4xgnjoY5WHqo7Xk1ylXW16Gyi3syD1015HR6zsnZBiIlkEoEjyM7hayWENa2BQgO5BwLoJiKCmbXZgVnRrb9lgfezIlxzMTyHnPJvbj5Ht68zeMRDh1vb5bnut5y1UQoS29ScD5Te6cEw+vwg/u4Lg+5K29sZdxMSHF50ClHxjhaYZdkrkMwFX+ud1fVPadMrHYFNgDnSVIhmNusBjfVjEvNlU3IrP2YRmJKeA8pGRV9TpTq2A0SFriiKTB5IoqbsXzf0xCKcFAyOVvnS9kGdN9HfB10DnzZb0rySjtTYoiJoS91I0dLv86T5rRLH58e6+y7c8Lu0RjAp3OsQSrea2CvMgVOF6+ITiZWPZ4TR3DKKNC1LYuuYxxHcjJW6kn2TAOxaHsxWQGcnGmbhou8nepVmEZ3/5F2yLa/+gwObXfoODB1yTsIo5tNn8/S3hnBcPPAvvu+hzWIOx1hGhgVeEQzaRyMvqzELFga724goK74yq0zxTSSkWJS6CQAKnWaiOxrC26X6EOx5YWiIYhdSyVHyQlQB66laZf4ZoEPbalQXUG9nXCY1HQp3gmBCqdOgGJMjKOw9UzHgEK0UsDTnGAseRwpJvphZBzTdF0x7sLBq5pe3bhQiVCK0BCLUxBkijOoMRDVzWrSgkkQoBaklTUTk9IES8yuxLUioE4K4UzHZttbaHSp9FUJZ3auUzOrcs70fT9V/vKIRXi6u/aZA73owKB/W+r9fPjP5q6D53kb53wnBMP8PdwkEG7zSty2353WTVqtTuxLuZR8z0VbIOseCm9FUffDnufnmohKi1Bws5gFYAoj3mVmMnFAJjKhEMSmGNGkk5dAQkcIVh7Ol1oTIhT0fe/GJju+BlvNfecmdBJ+LJyHaRegVDaw7M6ciDlPGZZjtCrTKZpHprpYDRPZxQxUTWgKFa+uTCz3IlXsYwZUVrC0enjMO6JFayjey+ldFRJYEVocuRWW3YJ1s2GDTIjwdFx2DNsxjpN3QlXtnDtF77X96L52/k0D9Sq2daM7tLyPW7d5y6DoOyEY7tvuqk0c2q6WOoCZQJJdxJ7ZsZTaDeM0+2lOkBWnzrCFWXRmHezeW82DahZUoTCxQBevww6k3GVcArvBUy4sJht8u+Ahj/MdoVmUAjQlT6EyPkthaBJXAD4pXonrwTQpJcZhsCKz2RG94pzi6qnU3LQ1iCkVELIKMtN08t5vyTsA9TpIqxM4OQdHpbgzBZBcIEgRnDrsn2k8KlKK0cyCt5QC3godjuVyyXK9Ye0vGSmCscy1WRXJRngzjiNxHCg+oxKdaqCu3kFCvAkIeNuMPsceXjfAd3Eg93dd3qf9kRQM83bYo3BzVFl11V31UlxtVwdATnMvxOx4k81bwb/CdOz8NS9EvbbKv1Bn293AKX9FuKQ0TuSr1gJdt6Rrl1Px2UoyYuXuzG3pnDcaN5FJQEgdUIVN2XgKbFlOYjkOFgS481oU7CMVDSlVzSGncn12balsVwWDJXntNIVd9CdM5CvF1BFXK1gVvKbWelAjd3FA8cQaKOyKIHEzvg7MbbnoOpaLBW3bsu09qWRe7sKjK3W/aYTDMECw5DOPAaxv5Bs80F6nXVxd/9ZMjrd0nHdSMHwWjeDWfeUmoKYAbdVUQMkpWmcvJCEp56Ip1LGzi/CreEEdAL5xtMEYlFR3rsm5UJiwBfZnDIsb2OVRqO5iBPANTWvp1c43iKs8C66UbhPEecSZRwTYEwzz51MHrAmnIhicWKjThKHs3Jp1ewMjlZiGSXDUnA5NlpYeY6n7kHeFYCr4WY3lSq3vCnHLpIHViEeJQDAQsQKi5vy1Od15nGdXzt45Fk3DctGx6Fo220BK89TxmYYWC+Vbjqzak13kRcEkPq/Z+F5mxp2u4vNr75RguAk3mDpzMQMqYrubL8o6qpo1s5Vn33fbC/sua5386GZOWC5DjCMpbg1UI6HO7G57jyW6UGSXv+C8VVX2xYM/wyRECr+jCClnUrRIO5HqSavIuwCOOCTDFnIdCoI0Ad8tUFc8E9KCWDFacQLBWU1JZ3UhEQhSajmIm1LBpSggWTJjzkYD78xNaeEXxfafmzjFPKhCrv6uYCNqWkQuGaEpR2Lc5V9aQJUBuIiWSlQC+BKh6BCp9E9iQCuZTKIh43REfTb2aUkkKRmhWrIoAe+FVdfw4HjJtr9ks7V7d6JT3IoJMgtVz2MklErjxhvpqW7VQ/3xUH/9LLOz6r7hMoGLuzNMr2J3VVe2EmPKhDIJ6Kxe5R3Nk0PtnRIMr29SXvDut31c+Zyvu9J0Lk7m289cYdVDUDt6LIVcVU3VFCz0uc7GNYGnzviaStrwDe4r0xSEq/2ugpqGneW92RoCTejwocEXQpaqATmHRfpJREh4DQXHsPJr3lUgcyA0Dc5JySUwT4Zl8NnF1FLz5uK063IwEwQ7ANUSyNKeUKhYSh1gtk3FGiLGhFAFMSWuIRsZFRaYVC0OLXRwQYzROQSHuGwuWlcK5tQUcbWwbt84FsuO1dGK04sLxmEwM6KCx0W4bzYbTh5awdujoyP6eEGMOyD0b1uTirDK9HzmAOT+dAiT4J32O3TI+9/QOy8Y7mxW3PV4r9tYSuJQ4UvI2apPz7EES7pxe/kI01fdz0iYmxtzHMGUDdkJgBJQpCUlOucR1YpBABJouyPadkUIDd55QhCaRmlkQBjR4ikY1IRB07RmujiP9w0heNCRnB2Nt+GZsiVIaa7awu4B5WR3kqpZMeEGO+zgqrZg5kaasAyrCFWjIJMJgQJAmlMiTZwWFNdmiXm00nZYTooL0IgQHLTBEYIgoQyUEiMhzhNCS9MtaBdLusXCGLAo7mG/Y5eq/Av9dmvuTUrtD3f3vvSZ2x6Qeh2MvO37/mF+gb0S95dqOzPjLo9kDlQd3L5oAtNMppagk9VqSO4d48q17r3UGbXZIRB0X8BomaHzJOxFFNWRzFhMETDXQosPC5pmQRNaY1ySBDnSx56cesZxYOx7+nGLw9G0nVGvBdM2XNMSfGPmh/eE0CEuACWwxzl0xqRUbnuGN+yCvNLMlKgBWlo0BtO4YmHUNkGQNYJGNEfiOJDiiKaRGHtyjKQ4oBqLd8XcmlUIOREWnafrAkerlsavEOloQoPH3I1mOTkkB8QHnA9TTopDpxJ29c87o7gbx1giS2WadP92aQxyy6y/tw23u0zn2/7CeCVuC1aai3KRfSTh0DFuXnctz3A6fsUPKHhD1jxtOx33ys7V82B2vN+7h/py9hKNykyRZx11d0U2qNBYzBswN2VLCAt86IziXZR+e2EYyLgBHUEjKY7Eobfcht6XLGsPCBlP0y4mgRBCR9N2+GZB1y4IrWVr6sS74CdQzv5qGnkNCa+AY7m/IiTQTNLRthcLfBqGLSltSOOWvl8zDj1p3DKOGzRFqpZglayuvhbHdm1g43rVQnpE6x/yYNXRNt4K/I6jkbs4MaEQGpqmmd7r1b5RYxqsZmfDdjS+SLkj+Pi229ub9d/O9b9zguGmNg3KQ54IuDZ4bxUOZQ+Z/Z4wN2yACzIRtTpn7EK7F7cLg65mggkBN+1z87mt5bwf/AM7T4ExKJfKTQqIJzQLmqalCQ2qyrDdsN1eEnOP0xFfVHQRI4DRnMg6kGOeMjtzFjabC9pmQdMuTDtwntAuWC6OWCxPaJulhVuLn/IWphgEkhWSpYKPs4I42ZhqLIjJvmcdsaK0PdvtJeOwJg2XjGNPygM59qQ4ImJCQYtggEoma9yVXixmI+WB9abnxatThETXBD5870kRJAoxG3+l93RNO5lvubhcY4RmxsU5xjhR0uVkdS8Ovb37zNJv2u7qrbhv+zsEfLR2WJu4n/6382owob6+sC5VshWXZHIx6s4ANwSd/RiBGmzEAcE0d22WBVMMQ912mpVzMq5GINX36Ty+Cfi2QRrHOPZcrjfEcaBpHE3oqHEFVpcxUKpJ4gqZzFDO550h8P12QwgtaGboSwXrmFm0kbY7siCqwklpGk1iqk6lOpkQk4BLJXipkNMkjYxxII4b+nHN0Ju2kONY4iCUXU64NzGtVvtCvMdLMNcrDsXhm5agLWhis0k8z+csmob3Hj2kawNNMLflOCqNg8b7idmpmjhzl3HwjeWuOAu3NjvCHDFF5u+9v3l72wJiPjHAYYzj88ARbmvvlGC4OttfFwBvZvwd1h7myxTUYuWds7nLNYHUK123oO+3heGnhDOX4rN7wUM1AWd27ZpLTcZivwrs8S7MX/Yc1RdV8qiFKs74DJtlR7tsEYcF5kAJifYcHR2zWh3RR7WiNMOGtLmg78+RHA3iF4d4xbm22N5Fa1FF1OMkkvxITCMSB5BQ2KBrGnR1m84Cn3KJzCxu2RwjOUUDDnUgJdMIcqyahkNoTRNRQSTQ+M40BTH+SecCzjcE1+BDR9ctaNuAk4xoIsWeYXuB6MCr00t+8uOP+frXv0zXBnLKBOdpJBE8BBdw3hFTjZlwqFpUq2LVxy8uLohjxDvHGPMbJ1G9jXYVY7gaEXk4YhL23KuvASrv2t4pwQDXB/F9QMnXYwu3N4WisiajeVcM6PNma2fdDehqaszrKEAdRMUk0J3gmIc/zzWEXeRjLmo4xJiNxMgcbTZQmtbqJECpZtVw/PAhx0cnHB8dsVgeE/GMo6nty8tzLi5fEccNOQ24sSdFozFTpIRR10FgHawGPOEi4sZyn76sLynTJWNUqzkxuw8TNBl0nkyVJw9AhfydaxEJJiBcTYgKNos3C9p2gXctzjc0vsF7xUkBEdPAolvh8obODaw3A9vtwLJtaXxgkEgjjsYVly0WE1ET5KygsGPoh5JENlbAygTHzMS8rS99brP3DQDkjULioPL82Vmc3jnBcPf2NqFjmYDHmqgTfKAJDTnHIhgUVx6XVEJ25ybg8er1TIIiG9nL/MXkvQG1y5WoboDKWGzMEDZo2m5BaDpEHIvFikX3kAcPn9I2S7wPJO2ICFkcvvUsaXHNkhQ3pDgwDlvGYUBLqHeMRo9muQgCEshZSEmRso2TVMayFY5hhuwz+8w5kSZhsKPVz0kNEMThXDBQs8mgJmhdeYYhBLxrirbQ4XwpyCuBUZ1xX5a8CSdK0xzTuJbW97R+nCJSQ/AE58g+GJW9N6EmYuQuMmEXbnJfxnEkxVpD1FsS3efolbhP9OPnca67tndOMMyR+2vtphd2D01hF1izv1DUNADLS7DOtFgu2fRrnPM2uNmvWzENklmbexpMfbBZnxJxt0P48xSCXQ42uQOzWhVrxUwA33S0zYLgOlxY0i1WNO0xSMeYPRGPpkzMGc2VJ0FJ0ZGiJyWPagsOvCjiEuJ211JSvhDxFkmglbMh48Ui63aYTAXiKDZ5xRZK2rXWwLBcMiNNuIkEI3vQClAaOYxVqbLzgiusUhlHRiSVKli7c2as0E3wHV3nODk6omk7q9GJlpBw0/y8K5R3xfyxw5hQaNuWtm0Z4k7D8z5YxOgdTIm7Dro3DZ22+737fq87z33DAd4ZwXCX8NPy5fD6Ox5bDmxclwlGoxa8DeSu64x12Lky4PPkajT3365a9TRg2AkMU2OZ+tlc5Z6IWcqsu3NfFt8/GTAAruuOWHTHNGGFD0e4sAJaxiQFR/fFXRhLMJHdS3ANSPFKpEQaYcxpimy0CM6G4oOx3IsSxWn5GoXf0pmJ5KZ+V02L0mquRHVjzipz5WRnysmV9VDp63CCqCNnQawwN8H0CESzaUxa9tGiMWCktclbzUoJDW1rbldNCVxP0owPu1oSZiZZ9qiI5ZRMArxME28ysd51AN9FOLzp7H5VjMlb8ra+M4LhPk0Kgly/X30Od3FZ3nbsXTCUsFqtJlS95vALJW16b79dUNPMukOLj90SsuZ2bjnXNGunEhuQJrMGFOcDi3bFoj3C0+JkAdqQCSieMYlVxcqJzulEe6YSLDJTE5oiEYcWUyGXepLBe1IJaHKF5MUCm5SklsthBV9ttrVamJNz95rAq5qQ0cqXrFA1EDUnyxrNGsgF5wDzDrShoWsWtCVSU2WniZgbFDNRCkyRS6anaslQlaJJhFB4MBXnGnaM3PZemqaZWLRQo45PJY3ecCC9E8ZwqM/8PD0Gt10HMzDys7R3UjAcGtAGtOxuXKi5BpOEoAJp833mYM31g9bNd5Jf3I4WLSelWyxp1wsuOSvquQJx8pFX12Y9oPnNdRoQWjpb1kge807rkN32U0h0FlQtmUgENFPU3sZKqok370lSGzxJGfOAiuK9eQx8uR7vGpw2BCf0ZHIeicmT1ZFjKtmiGSeKkwDOwrGl3Bdp912mUtAy4R7TOChl5fbByIyolpoOOiO4gcpk7UUIztP6huViVcK3G7w4YhqAhBKxFHY3YSM4S70eXSY2HnIgR8gjltXaBvpekNHqhFbuC6veJyQ1zgkXWpQGVYfqaFmVstPe3haGdVMIc1m5P9uzG9JvImhUd0LtJk/GXdtrBYOI/BXgnwA+UdXfLMueAP8W8A3ge8A/paovy7p/HvgLWA3zf05V/4PXXsXsHdw220/m5s7snHbXstDW7wuIeSsIwmzfuTpoGYY1LV/xpJQ5Wj3g8uKcvh+gzIiCzWqeXch0vaiUdwFKE1BXbIpK414vU9GSm6ElN0FQ9dTiMD54usXCOrgXEomYHUg2vgFVQshoHkgKmqwztL7BibLdXDLGgaG/JI5bQ+LjWDgQhCwJdTZbOlWrg6FM6reWZ7nPKVnYq2QO1JWdUsZVr0x5DhVUFabig3TB44O3OAsdGUdliL1pB2ol7oVoHJTZGYFMibbMjlIxC2JUxl5h6RDLxcIHxWoHl+t19tartqAqbIfMZgsPHj1muHgBOgLZeB/nk8sVTOmm9qZBUPOAqkO99i5g5U2/P4twuIvG8K8C/zLwr8+W/SXgP1LVvywif6n8/osi8uvAnwd+A/gK8B+KyLd1v5TQG7U9nOCgifDZXJXXti8zuXMOH1qOjo7Zbtf0hTglZ4uyS6rs4LlSc5Ed1RtUbUdnQqsIhYqmFeFRtt7di4APVjfBCFmcqdAoKfakaNyJGgdUR9Ybq33hPTx+dMLRyQnOCcdHT/nu99Zs15HtxSVjioQm4EMAF2yWFAcu4FLhhRRKrIOzTNHJxKoZrh6RPGmulVW6AqhzkLU4fWx/UbwD8Zlhuy50cgNHxyccnzxgc7lls0losiK+wzgQnOADaElySlmJyTEmZYyBYYyMMRFKxqlzO4/RlDylhajFObI41tvI6fd/xEc54BqZyvQFtzNT/05urxUMqvqfiMg3riz+c8A/Ur7/a8B/DPzFsvzfVNUe+K6I/AHwp4D/7C1d781Nrv+4SSAcMi0OmRy7qEY31UhMoyUHDcNg1aljnLQAA7PcBEDOzkgFuOrxa/ETqZGFufIiz/qlKKEJNE1bXGlqgkhS8VxAHHu24wUQCQ6+/P5jXEj82q9/k/eePuZHP/wxH77/EeP2gk+d4FTZbLb0cWRMESl2ufPBArKcw6XCAOHd5F2R6XlY8pfR1WV2aWf12dZ7L0KByueIaRjO1m03W1ovfOuXv8kvfePrrFYrjo4e8OzTZ3z3O99nfblmbB3DGvrxkvX6EhVhtVoiBETMjTmOA0NsGWKkaX0RHgHnLCErlbiF4B1ZwYt5SM7OL+l7x3b8Ln/8N7+1qxdaQeO31K56sQ59/3m0n5dX4gNV/SmAqv5URN4vyz8C/vPZdj8qy34ubee54I1e7lzlEtirAdGEhq5bEoeRnEaSiHkQcq3PXNKTjeZ0pwFc8YhkdAeLWNjUzK6Fip/U1C3vAiE0UIquikiJIrSAn364YOhfsGw9D09OWLQjy5Xn93/vv+b542OGPnJx9imffvIDLs5GPI7HD44YxsizVy8tkejI0YjlTezqWxYtoLCwWp2Mkm6elahTiauJsOb68yz3V99NOcV2vcYL/Ilf/w2++bWvI065ePGc5x//hIuLcy7Pf8b52SvLIA2Ohcssuo6YMmNcQ2hpwwrVaIQwaWSMkaQN4qXch8cjaMo4FcQ1Bkj6hhiFzaZnTA0+KU+evser00+5OL8gNM1Me3s32k3mBLA3lVQz7130ShwajQcvU0R+C/gtgKbt6rJbP+911sPnfK2kPhRHodkKxiy7JeO2Z7vZYEVoR2QGIMKucjRcxzt0/0RXrm33iie/hkgpVBOwDElXUsFtxMa4YRguyHFNkszZq1M+/skrtsMFOfekbME/3nesz0e8W5K1IYQjVqsTFkHoYyTHEfXBUp4x7ICaUKQ7EpoK5qkqOig52QA0XMRNhX0noLE073ccCP2mp2s7fuUbX+XRw2N++MPf5/vf/UPOzk6JcWSzuWDo1/jGSFhWywXeBbp2xer4mOWiJQPeadECEkOMDCmRshKchyLEAJoQSNmiKhfLE9Q5tv2WjCNGY9ISEfp+Bii/tifdvb1NzeCggKD0mbfsGXlTwfAzEfly0Ra+DHxSlv8I+Npsu68CPzl0AFX9beC3AVZHJzfe0euxBbgPgvw6ITMnVKlmhA+enEa6xYJ207LoFlxGy+FXLQN5QrSrYKkGBAUslT2gaX7Vu3l15iSZZIPxONYq1UBJDc5stpdst2fk8ZTz01fE/pzHj0744L3HnByv+PFPfkQIDY+fPuGv/3//OuevnoFbEhYP0NwTmmVJw3Y4KQ5Eb9O64opb1qPiEW9JXG3wkzZWa29KATJVpegx1XZwOCk1PZ3lLCy7E95/7wE5jfzO3/ivOHv5M9aXp3zlww959ukr+stPjSBWG46Pljx6vEIjnL06ZegvWS5XNG1HbjzQoFLrfiZiyvjg8eIIzuEFvAguNDTtgiZ0jBmUiA8OlzJJYbPZlncfyDlNfJmfZ3ubAVL721jn+dy9Eje0fw/4Z4C/XD7/3dnyf0NE/iUMfPwW8F+84TnevM3cQDc9oNsExFxTcSVkd0gD3ge6xZKcMuvNGucsmGeXR7D/AqYgoLK4SnYb/DtOhj0bfVIFZVLhoQgrjKvS+4CGZJF9lLgIl/nVb3+DP/33/318+9vfxovjX/lX/gqhCTx+9IimC7AVmtah2hN1zbJbIB4WiwbnjaPBty2ZhqzeSFwkTMlNbdPSdQHnDHQdY8IXUhQRh1IFmAdJlmymQtu2BO9ZukAILZvtOTFu+NYf+zq/9zdfkBJ88MET+s2as5cN3WKJ94lv/eqv8vf/A38vqc/8+Ic/5W/8zu/y6fPnLJfHOHWwXNI1LTrR1psJ6cXhxeG8aSniA227RHxLv93gm44mK5ebNTlnttuNFd/VPHFBTFjQFVzgTWJj3qTdx8txaJvPqj3cxV35f8SAxvdE5EfA/wITCP+2iPwF4AfAP1ku5ndE5N8G/gYQgf/p3TwS11mMD4GD9fPn8XLm57Dw2oaURhbLFSklVkcnnJ++LDEHfqJ4P/xCqw9figdgxuegNtNKpWlnzjkopX5EY4NOvA1C5whBWR4dE+MGJ1uOViv+wX/wT/Fn/sw/xAdf+oCXL1/w7V/7DX7w/R/w1/7a73Jx3uNCx/HJA3Cex0/f49vf/nW++92f0ffw4MED2m6Faxds+kw/QEollJmA9w2LxZLj467MqIFxTAx9j7gC+omHEhNhnBYJL57V8ojjkxNCCDx79gkxb/nv/KN/hn/wT/8G/6//9AG//7u/x1/9r/4624uRtn3A8fExTYD33vuQX/rGN1mEJR99+HU264HT00t8EVbLboV3VtA35erH32fudt4jztF2K2ISLi42dKsTvGdihBYgeEDFEtgO9IU3HWhX++pnHbA/r2Cqu3gl/ukbVv3ZG7b/F4F/8bNc1H3aXYTEZxUkIo6m6xguBlTh6PiE7dAT48Bmc0kaB6NsBwv7nfntr+gQVHjSUdibKyKnlseYUQttBuz1lFlYjBZefMDC/8CHJavVQ0RGfDvSjx2+eYBrj3j4tOXv/Qf+IV6+WnN8NrLeGOdB0y2IGvnaN7/B3/0P/D245g/5m7/zA9qu44//+q+hvuNiPfKDH37C5cUwmRFN07BarXj0+IS2bRB3zjCM9Nstst1doxNPEiUEQdNIt2h58vRLfPjhBzx//pz1+pLf+BN/jH/kv/1n+eD9Y05PT/nD3/8xoXnI8cOAwxivjx8t+Mav/AonDx/C6Dm//JQxCu9/8BWOlidTId9cgsIofw4TuE5MADehAe9xvuH89ILtkHBNBvElsUrZbs5ZdGKvIe9qZV6dhH5e2sK70N7JyMf7tIPqXTHwb3qRb/KCnfN0iyX9Zs0w9Dx6+Bgp/IfrnJHimsuzDqVICWyowOLOpog5WQ1GxAJ9QkAkYExLRmaCBMQ3TClMBRwU36IaaFpvATlB0LTmO997zl/969/j7/57TzhadXzjV3+dp3/t9/lbf/gJEk7QBMMIj9/7Et/+9t/FycP3ePqlS776dcd6u+UrX/0aqwdP+Ft/8AN8e4pvLO06BI9vOparJU+ePOL4eIVzDZv1hlevXhUsxZKgVDze2x37xtO0HU+efomj44d877s/4I//sd/kN3/tjzNsPePY8uGH3+bJl36Jo4fPOX11Sc7w/sNH/Pqf+DV++Vu/weV25Aff/QF/7b/56/zs2RnvPfkKx6sTTs/O2PZbmkUouEYRqlgNCVffsRe8D2w3A+dna8AxjAk8GO1mJA49m3HkqOvwxS1cNY6Yd4WJ/05qf+QFAxRbXvYdlG9LKFTVbUyZtluWaEUY+g3L1YqUI94J6/UlMY54H/C+FFpJ2EwvJRKyRj/q5MSzTq1CUOMoQIV2sTCbWRxts6AWlRHviSJ4MeZnVY9vPIsQ0Dxwut7y//zPfofTdeaPffuXabvAn/mH/3FC+4T/9P/x/6bvIycPHvL3/H1/N93yS3znO894+XJLt1ixODohZhiGRD8mmmaJD6bReB/wzrSGo6MjHj16yDAIn/zsuQUNFaBS8ahknAScKN4LuJbNNqEvzxkGkLzke9/5lMvznr/rT/5xHjw64k//t/4sfWz5q3/1r9K2HX/Xn/hNvv61j/iD7zzjB9/7Lj/84Y/ZXKxZLh4xasvLi55hFLJ0ZHUk8STxxhopEKhAqsc707Bevjrlct3THq3Y9j0uWCSp0cFlzs+e0zx4yGL1gBh3RYLeLcflz6/9QgiGu7Y3lfoiQvAt4xhpmo4mBPoQOD19SdctMUbjRN9jNGJQaMlAVApVm0EtqjsPxO74xTanKdmHVrIthAbvW2oGoKgNUhVXZmjIeHwItKEQyUjmr/3O9/mdv/kdvvkrX+eD997j+NH7/MN/9h/jxz/6mL4f+fjjUz79dM3R8THvPf0Ky4+WfO0bv0zUzKuzDTFpYT0yALLWxXTO471FEi4WXaFG86XGg8c5P5lR3teamp5XZxccjYlv/PIv8yd/8zcJzrPZXvD97z/n9K/9AT/75Kc8f7nlvQ+/wdFqyQ9/+pI/+MMf41I2evcxIa4l0DFcDmjMlhMSAuq8RW+KL/UxTDNTsRoToWmIWRgHyw8Zi2vTZ8+qs4SrcdgyrC/YesdieUzTLMiD1S2tEZRXixb/ordfDMEgbzNW7XqrhKg+BFDjTVytjvDBsV5f4L1QWQ3GcbAMTMk7dbZkaKAOJNWDUsKoEDGAMavFKPSDudOWXWM1KmvooBQvhXh8aMA5UoxkPFlAXIf3Zt+3DfRbz7MXG1IEwgJ8S9LM2ast4jLrjWccXvD1X/oyoWnZXK55dXrJZjMY6OkLBsIO1AMlpVLvQmqqdsE9StSh1bsUvPPEJIxjZmwSPjhenH7K2Ec2655XL87px5H1dkvMS4aYGU4Hgg/kvGAcIik7CIExDeRekWzp5BbdaGHSpVYd1buTpydusRdpzDRdi1yMDMO4MzmWHYJwfvqSNA5cnL/Ct0u64ycWI5HFskxnruIpbm367xezvXOC4SpmkNnFBNTw21kIUdlp/msX/Qj3CJK6eh3sshYmajIMiMxknPO03Yq27RhXRywujzgPr7i8vKTve8ZhAKJpExizknPeys2XGoy1TJ4LHdAgZFBL0U4x4MS8AbsOn8tA9YhvLBPUBTQNhkmQCpu1/T1/tuG5XJDjyHq9Zn25JqaMZjGy1EXLoy895OmX3wMvXG5GXr66YLNNjDFPoKi5YqUkellQ0DCOpJSLaHM49TisBB8Y9X0qLy8m6MfMy9MNzp/RNQ3n51tO1xvGMdL3PTGPqHg0O4YEOQcSENUYrYSuaAcedR5tBHwuwVjlqZQJYorYxJLCVI10p+kiY19iFryaZ0KU9fqCtN2gjUf5GU+DZ3F0TLS4cKZSOEoxWStWlMtE4e5QI/v1Hok7xzbMPqs2WcPWr7rp37S9c4Jhr9VJYC/8cycC9MqmN4nwu+INh7bTG9ZlCu9BqdXwuF1wcvyQfrvh8vKS8/Nz1utzxnHLehio/v3gHZIGokaSkR7iQovXlhy3eBJjMuCxckbWBKxEtjDfUvhVEcQ7o0LLiZyHkscRGfrCGBUjOcdC096wWlk8wnK14tGjB7z3/iN8G3jx6oxPPn3FxcXI0Js5U1mP6jlTVIbBeBL7IZq5QQFEtfzV0vLFRasKY1TcqKw3Efdqw/HKiFdCaEk1SKpSwaVswGzhW1DvaWVlXaBoSwhkpySJICZ8i+41uX8ruzVQymE62q5l3ffT++yaAMmzvjjFExnJyPaCl89+wteOvknoOi62I861BRSevfvy/pFCxVeCvN40y/I+A7km+VX3924gFNFwJXbn88qufOfbz8/u23kY7FcJFfYexEyNpmlZHZ3w5Ml7hZh1w8+ef8LF5QWb8w2CEkTwXiz2oTAm+dAUTWEAVbquhWLC7Kr5lj8ptO5iXIbeOYILBbyshWGMCcqYkEopeCf4IITQslotefjwIavVis068uLZBS9frBm2mThCjkJO5usXb0ItRmW7GXG+p+/7UhEc66AGqExkJ6juSGjUMItxTGw2W4y3smWxXOKCo+060oyLslLr26SvOLXq2WmqjqU4Es5lan3O3YAsw0NKv3DGVymVsLcofw4h+EC3OOLsxU/ogjIipDySFH74gx/wy7/6LY4WBp5KDZjSyaig8ldYGTxKIeHrgW536ln6Zvt9Xu0XQjD8fFoRCldlkCqp0JODgpNSJzLQdh2L1THN0Yr1Zs0nP/kZFy+f7/zjyQZQHCNHqwWhaenHATy0ixXiPFZRfufmlDI3VqGkUitcZ5pS07EJnuDML+8FajKT5ow4oW1aVqsVq9WKlJSz84Gzs55+m8jJFX6IoqCr6QCpeCwu1j0ZZX3ZMw6JiYVu6tN1AbMZ2xiXYs6WCDVGmsZYoIMIQXPZJlmCVil9Z+ntxkCVsyKxFupJJQLdm3DAKpAbx6SRxFhxYCElo4sPTcM4jnjvC8u2J+dkrmLn6IcNBEdoPH2/ARG+953v8Eu/8i1k2bLpoz0L1RJwVkoDlJqZpsHtnsN1bfZ6OxSN+64Ihz/yguHnpi3ItXi4Am3YyzQqdgPq5pqdeOX45CHL5Yq0HdmenxZuxoqPWEderCyKb73Z0g9SADU3uc3Iu4K6qNVgULxpkwI4oWk9XdfYX+PwXoz7QPJkkXnvjeLMB7LCej2w7ZMNoIwRympGJaOyKxdnXpeBi4s1MUXWFz1jH0mxVs/aCc6aP1LL1KCKyxbSkdQGfj+ONFhdDOdD0YwsDV1KARtJRmybjP8aJBXExvJPxVWKuNoHKkFMIuXEkJJhIarkkk8BRia7XC4QgYuLC8ZkJpd3giSQkmiVXr3Eff+7fOWjX2LRejOfBDSPk9mQJxB59tL3fhcX9U3d6orp8aamyNtuf6QFw9sMYHpduylOvuY/TB1UtXgoTG3NgFdH8CVnoGkY+q0FQhUmaHHgm4ZF94CjB5Hx1cfEJITQTPTrWtiJNJVoiIo51Y7phNA0dIuO1VHHqg1mNpRAHjdTt0OwQrabrVV5TqrElMgpklIkqQ3CkmlAVkeMsN5sEZ/YDgP9emS7HcqsXtRgKcJBrVK1U0Wzm2iKKnicM8YE7XLhZvQ4Z5Gfxk1hDNEqJRZUx5KTktBS24PCUWlV/IqTUospkw2nGVMmFlv88vLSKPNFWLQtq+WKplFePPuYcRwJIpOrM8aID8I49rx6YRrekydfwvuW0ATGmBlTwofWcJFcC9Uc6jjl/ezpEPv6xN9uIXCo/ZEWDIfa56lBHCJyqUEwWqibplBa50sFZowEJEU2my2V5K3axlM16JRwoePk0XucXZ6iCqFZmG1bPCGUQYPobDBYOLIUlaBqBG3X0HaeNhi1mXe11J4Z2SlltoMgJY16iCNJUyFSScgU2u3IGcaIxWlIohkGUp8Yh2gkr3uJRruKVbXkvbJLTlI16rugNo+mbIVkfaWJxoQYJEQjlam6lqi3un3JvCRaNZQdW5RqKZyTM5vetIWkYphIzqyOjkoqt+LIxHE00htRUlZcSjgHXjNePDEOvHr+jDSOPH7yJR4//RJDzJxfbAy7wHg2bx7aV7WH2/vXu9L+SAiGu2S13bb+bWbF7R1rYky2GVsFq69gkqIkElmnvry84OzslJTGaQIxhiMhjmuGYWt2d3PE06df5uz0OUmF0LTENOLbJdSoyVTrTzjEFWaonQsHweGdp20a2tbhQ6EsE0Po+9EGtIiQk7FRxRgnSvWqktcZWARSgmFrAmwrShxH+u1AHOO0LdUcKAFfgsN5nWjfdzwTlnSVCpgq2dT3ica+kHs6J2QnZq5hz0vE3K1URudQi/SYFyambLRw48hm06N4LtcXxJQ5Pl5xcnxMCI6Uek7Xp2z7DSlHq2+hFVsxwSkSC6dn5Pz8lBjNrPulb/4KKWXGBOZEzsWdmyfhK1K9ITNW7V1vnUzTOqG8rs9d64PT8uv7T9jOlc/7tD8SguGztJto3G77fXXdTQ+2OusQC6HNFA4HKQxIpXbEdrvhxYsX9ENPkkLPZkfHOchpZOy3ll0pnpNH75MipNzT9wM5Z1pRchpRF1GJIA0iJd04CtGbF6G6ONVJycL0+ABW827WISchIBYv4TyOGhPgCogHKRom0DhHdMo4RJRITMNUcs+Yrc1DksQyFH0xXzQNlsWYA0bJVi2LnRdBtTy/bNmkpk1RNCoKe7ZhFFrsqOqedKpIAS9z9sWUMIDzcr21a/GBk5O2sFEHtptL2kYYtlYL02Pnd86TFcuBiVBT6auJc3l5NlUVe/ze+wR16GZLKm5d8Vb7IuZU+DRnlPRSTc5dz7k6qL8AH99Smw/6q37bz6vtH3tHhuqdw1+hYjHS1pGzVy+5ODuzeIKcyGJBQSJaKj1F0rgGFHENTeN5+PR91hevGNNohWMp9nUeQVosgtKRo5KdkLwjJcjFpVep66XMvDVkL6UdJpKSWszDMJJiNrMgVmZn0JwtaKnUk8jJaO7EZVIyXCKlxBgjOeXikJgN1mReGs2CEHA0FkPoLMhrPuNpiZWQCs8knbwdhjuA5J1GI2ScWAyjFQM2gDRGLRpDYrsZCKHjydMTPJ4QAsELTgZy7um3a5RUNBl7Hs4J6hzqxFK5sZofXiEEx+XlJd/57h/w8OULvvrVX+Lpo0dsh5GLzYYxWY3x4CyNPqu5iCegudytyWM96OR6W3307/g4hkOC4G0Lh9cdS1VLpt6EBgKQ8sDZ2SvOXj4nlqKyU0GZaasSEJRHvLe06MvLLSfHT+i6hsuLlxNi71ym8kyqWPI22QatU0eKMA6ZccjEJk9Ris7LpHra4M7EMTOMceqpUy6AKjmOxDSQU6ZrFkbpFpyZOq4Fl9kOPevLNb1a/YaiUBOcFbGJcQCNJWw549rGyuOJRSOKWGWrel1StJc8Ue8XjEMFUXPQlvLhNqOrgliNTHIEzINDyXQ1fkil8Y6j1REOSDGy6AIhLPnkk5dsNqeTieO9LyaaFpVGJkAx5UzKSiqmgZfAxdkrvvuHW548eY/3P/wyTx494GK9JY6jPddiGBVfAzs/5gF/5ufUfnEjH9/BdkhImEQuLkFn0rnvey4uTnnx4lO26ws0jcTYI57JdgcKyu5IeURzpG1b+l4Ibceis3BnkYSScOyQec2WR+Cdt1k2QxwS/WZk23i61hNjYCxIfCjBOTkpcciMQ2TsR8ZxNDxAFDSR0kDWkSZAs+zwztO1LY8fP+b9D97j5GTJEAd+8vEzfvLjjxmfvWDUAS0BQ027QgkMvZDGLTENxGFDbCxCVHRZggQNS5AimKzClwlYmBX+zTbYNZfSfWrPALVnQorFnWuagjoFMn3fW7n7IZJipmkD6sB7JabI6atnRXhZcFLKVlOigqNG8FJDvE1TGZN5RDrM7brNiWefDFycn/LhV7/G8aMnLB6e8OrlmXlwCueGktmP3v18pcIhTOK+7Y+8YPh5Z7sdesiudJ7qtuv7LaevXnF2/pzt+sJ88Wk0xF9ksoMFps9x2LC5vODkIayWx2hOuCbggyelAc3R8AWNkOOkNaQYidEbCIkn+JGmcSw6R98ZjwTqkLYpAowdR2LMxDwiLqI6kNLAw0dHfPmjD3jy5CEXl5ecvnpFCC1f/soHfOMbX+Xplx6y2Y6E5YLL9ZbTl6ekrJAyi0XHg+OWEBJp7Bj6NdvtBXHoIY8M4wbfnViNB5nGinlb6gAqgVtkiz1IKZbPZBhLSogm479whWFbKUFNFsA1jpGzszNzOxLYbDe0YUUIjiFuefnyGRfnL82cwa7FtD43YR6mOFgiGK5ETuRkBXtKycHgPQkTEN///nc5OT3lo698jUePH9F2G05fXVhkpFbFbF8sfB49920Aj/DOCIY7XPz8aRbftKnkJfNvtql1uArwXN9fZ6t26G5ZdOVAu4SZ/QMZtqDTPilF1us1l5cXXF5ecnl5wTBuEUZSQbNDCPTjtsx8dpTq2Ivjlu3mFZq3uNCxXo80jUFs4xDRRcS5DDpAqVuJgiZHGiPVIzGGzDBENtuRpgUIIA0uWGn4pBg+EPNUW1JL3MKTpw/4tT/+G/zKr/4ySOZHP/oRm/WalBPjuOH0/CUuJLbDSN9v6YcNKQ2IRuIwEJ2Sc6BrlqRSR3PRedCR7fqSTTEvhITkWhavEO86P9nCOSWr35EyecxTuLSmajaYcHCUEntTwR8jqo1x5Pz8jGEY0DGTNLJcLXjy4AEvXvyET599OvUO75iiPHPpHFZar+ApIjhnBX9CaNBgXpxxNG0rBU9oWnI6t5Tu7ZaPPvoqX/7yV1m0Hc9fvLQYkVlkpGE8xW2ttU/OAYcrffeW4bD/efM4+oXBGCp/35yw1zjzi1Con9O6+WdV264+4BKpNhvwWo9bXIGulE2vLiHDmU2NrSg8JQim77cMw0Df9/Y5bKe0a1OFi+pvN0QcMqK1zmUyZvbKiJkjF6cfs738KbIQXNvRx8E0jJjQlPFutHj8Ulnai5airB7JgRwVjUoclL5P9L2RxojPiE84p+TRkpVISo5GoNqPA03X8fDJY8ac+N3f/UPOzs54+eIlp2dnAFxeRJ49u2CxbBnjyKvTU85ffUoazsn9OanfMqTApSTGbQ8SEYnkuOHxo4bVcsmPf/qcsX8FywVkE1jgSUgpY2dTtXlaknkGRjWNaxzJMeI14hnw9DjpkTBiNS6tsveQLDP01ekp2z6ivuWr3/gq/9h//89BTvyf/93/E6fnG3JMeHRn+iNktf5mplUBgtThxdiyxTnEBzrfEOPAMI5sUkLSlqZpiOOIDj3fuTxjfXbKN37lV/ilr77P8xennF1cWjJZIZRJEULwoHFPIJgpOruGQ2PjymfFrKYhMZMBb+rpeKcEw8EHoXXd/jaHblWufO6Xcam+/uI+KjJDJg+eofeKhQRXcpJx7BmGHs2Jbb9ls9ns/P5x2M1mRbhQEHnRUr1aZ4zV1ROh5p+v7kxrie3lKy4unnO0fMqDp+9xefacy82lRSTGAde1kEeyAOpRbYCRnFobhALjKLgeXFCaRhBvzFFJITiH5kQak+V3oDbY8MQcefX8U15++in9djDeghkx6vryFWevOtrFgr7v2Ww35jXZnpHjJd6NqDorkxc7SyvXSJCeTWh48nDJ0aLl2dkzlt0Rxw86EIhqQVSWbFViIFKp45nMXZqj8WDmHHFEICIu4kgIkeCx+AY1EDHGSL9ds73c0B4/YEw9v/e3fg808+LlS/I4Tlrm1FeudL2Kb9SK285VZy7gHL7paF1gjCMaR4ZhoAuBGA2z+fGPvs92u+YrH33EB1/5Ku3LhpenF1adPDOB1VImqclbQe0vwp3Hc50op95/fcf7mtzvlGC4jzdh5xO+cYui5u9HnkkVBsAcM7bHadN3LrH84zgaV8A4EIe+lHffqbYxm0Co4OMuKKi64mQ6p+5f2u5dVtMIZeg3rNdnrFzko69/iRefRH70vd8hby95dNIS04BIg6oY5qAjmYjoQBLLnEzJ+A/GUdluLcAoayar0oRdJeuYk9WYTAkdR9ZnZyAJjYlx7I1KHWwQOEsB7+OaYetJSdmut+Rhi6YNoheIDIjLxKQkDaYA5EzrhDUtSyfEbc/pi2e0YcFysaJbdGCGBbFgBJXzIaeMJinP2nAGzYlMIouBr/hohWeCK3ETgheh32wY+h4YGftLPv7JDzg7fUW3WPDq5SeYmrYTylV3FLdj6K7vMabREuPKsSs6KiXKFJgo5QD6fqBtTVB/8rOP2W63rDc9X/v6N2m7Fc+ev+RivTUOh1KHdBJPRSHWWd++eRr8fNs7IxjeRCjIZBZMHEkzF9F+JeFJfygmwi56EdBM1swwzmzHlMwvniIpGp9BPbdVh/I0+An8yrUS857gsLgFLcCkTCDbrGKVkxLma16B7fqM5QI++PAhy2bg/+cGnj/7MccLODrqCt8AaA4oI8oI2kD2pNFU4RSVOEDvB0R2NrSB48XPHyMxRRzQCKT+kmHcMvSXnJ0+5/LiFO+Ek0ePeHDyiNAsUQJER0pqaH9/gaQNXnrGeMb68oxhu4YsqHqjq18ecdI9Zex71hfnjNsLXr34GcdHD2n8EtcYOQtFGKTy/HLMaDQXY0pjiVVIKANKj8pgkYlBcR5CsGCxmEZOT1+R8whEdFxz/iJyfvoS3zTE9TlW1XymT5bOJNQZ3GaOjEK5HsShYjEaTlzRO3UCLUV9MUOyxYUkq7lxcX7Gj3/0Q1LOfOWjr/G1r32Fjz/+hNPzC8RZpKXqrk9PAmGeTCVS3Lk36QNvv70zguE+bSdEylQ8CZQaqnIdewCKS24frIwxMsaBGMcpkzHnTMpxAp8WyyXt8dEVbcA0jJwzsTcGpZR2XAK1g5nLShFS6Up50hCguDenLjFydvqMs9OPuTj7mBfPf0K/fUlOl5ydfsoHX3pK15aoSiJoRBlAAyRHLLOeiw3ixP7EKmY5F0uGZjZXZ4qIg8WihTQSAlxeXNBvTrk8/5SzF5+Q08jZqyWb9z7k/Q8+IjRL+t7IXq3a9iUaN2z7U87OPma8eGUzuXhwHc3qBJEFIpn1+pyXL58zDlsuL844P3vJyfF7tGFFKZW9wxdSJudo2Zg5Fu0ogo4gJgzFRZzPBK84ly1y09mM/er0lXl1sOAkjVvIkTiY8BWLKtsfZWo8kYIrQU67npNzhlSwohB23A7s+CaC8wxDb9GYrrpbR8OcFH78ox+w3Wz48kdf45vf/Crf+94POT27MAxJrU87kVlU7F6HP/z9c2zvhmC44V4PZjPeFuGoUFOfpyCiyY4zsRG8J6u5D4dxJI42c6Yy4J1ztF3D0i8MkfYW6FLJQU2TsH3iWEDGMlPE0TSMyQevxgVA1sIVUAWK7vqkTedQ6vKkzUt+/3f+ay7OnrE+P+Ps+c9gvOD8dKR138IVujjVQC4eipwHVEsthQw+CRLFsja9x/tEvy2xFk4N0ffCcrVk2TTEkyUxXbDZvGDolaOjBcvF+wTv8L4lZjg/e8XySFEahr5nGDeMcU2/OePi/CXDukcWxzx6+JDjk4doNldf61s2w5bL8wsutmtwDU3XIYXUNlftSXUyc3TyQCiqAzmPaO5xjMCIcyPeZ0LINEFoQskgRSEntusLaiKYqx6AQvZivBQluGpnQ059pXoHLCy7Zs3uTAuNEXVMwU8GFBYavCqKUiaOg3FytC1x6LmMIw4jnhUy3/jal/nBT37G6enaPES6MyryHuChu368N1g+Xzf9uyEYZm2el34o5PmGnfawhH1X4t60QEomxbd9b2m4gA+B0DQsl0uAnTDImWHsGUd7qeb/txDllOJkMozjiKY8mRKVhcgi5nIpaL1LNBJAnDNhNCFalnSlmkgvf8KPzj4tSL1lKAYaxuGStl0UTcRm0MQA2Rl4VkC7GHfVmFKJfhxdUZ9dpglK07YcrxYWCehXtEtlvT0lxg3eZ06OP+TL73/Acrkk41hvBl6dbXh1eoYLJYQAyw9ZHj3k8dMv8ejRI46Oj3HOs9lsubi4ZD1sOTt9xdBv8d2Ko+OHPHj0PkcPH+NCQ8omPGPSHXtTGi3ZLEcTCjra/cqAkxHvIiFEQrBalW3BGLTU8MhaWRqt35jIjRjzFdOsWz2Eyq6LmEA3DkkLwpoTwRZXasxT3QmTKpltP9gBxADUEAIpJbbbzVSY+OL8jBQj38kR0cTTh0/YbgZS3iLRtJWkN0x6xaV5dQTUvn5lyYEh8kfRXTkDfN5uwJI9DIfNljElxqFnvb4EEbquo2lamraFgh2YQDCKsQlAVDX+RBKVc0DVOnIVDpYzMO5MiULHJuIsGk8dTosgUKbIR+u8tb/GsiRDibKrxhFpwGm00GkRnKSCL/hS2r0HMcYiF63ThuwZBwvGabLNaG1nNO9NE2i6hrBwOKc8fO8xv/kn/wTHR0f89Ec/JI2R04uByy10yyWhPeLJl04Iq2O2/YZxe4GTx1b5SRNxjCiOTd9zeblmvV7TD1tUE83yIQ+ffshydczi6DGLxQNCsyKJRzNEVcu3yAk0IjnidCTmwcwHjaADUrUFiQSXCR7aIFaU1wljSpZJmeOE7U/PmF0dyvq7jpXJP1H6Xk418MkwG+d2ULUU9FpRYhonAVL7r/WNEnhVDpuz4VUm/AEyP/zB93j63pqHD5+Sc2Kd+uIhu0kj0GuuyGnNDYP+Fza78iqrzYEtyqdcWTYzHwSUbOXktmsrqSbCcnlE13UY5bnHFYTZ3o6bzmlItCcWGzOmRD8MjMMuXqGClTWICYyDgRK7X9VQA0alEMm60tXylZedJy/J7k9wRDaXF6yOHiHOiEyESEo93gVEWtABTZCc4CKMrvhiJSA+E2IgB6v14CdVWYk5Asrq5CHf+NVv8+TpB2zXW+Iwggq+aWi71oKkXrzg+YtnPDg+4cmTR3Rtx8X5OS+ev2TbD2TZcByOWB4bj4L3ruRZNPjQIn6B91YoJiYhp8gYc6GkT+Q0oHlE84jkAfIAagLCyYB3I94ngjcvS3BCKDU8NGdOT0/p+80c65+0AjfrL/tjzCpXWco3OxtjJsDlKg9L0f7SLP6C6laofbC+v6L9qipxHNhq5vTlc1JKPE5KaBY0oaR6Y7kh1zxZzDWGz9eMgHdcMFxtN2sUpRtI/b77tDDWge12Q99vUVVWyxVd101Mzz4Yxdg0aYj5r2McSTGW4KXNTgDMSpbVa6quq3knoGyXC10aWklJQskhzqW8Wklgmv25Wc8VlBgHXr58zsMnH6B4s5+d4hjRVJiPnVW1yknIzpGyw2VwyWIBkteSwqxoyqQxoqJYsoUFRymB1fEjliuIw2hqtXc0bUPTNqgPKI4HJys+/PBDurbj449/xvk6Etmw9K25QbUQyRYBZPyURkeX1AhakqZSYCeRNKJpJOeRnAckRzSZUNDcIwwYvpALviC0wdE2jeEIqqRUApvGocK8twyhncU+CRChgLbGDlXfRi7v0qj1dhojRRPYpbBXT5jZKP5KX61kMjlFtptNKcQrPPnSB7RNoC/mZr0fe/MzX8Xk2pa9c34e7d0QDHug612zJZVKPXbo9ZtL0EKVN5s1w3YDohwdHaMI/dCzWK4ITTuNRHGOGEfGEruQkoX6jmOt22Atl5miZiS2bXsthsFsfMtTcI2nqpjG5pRIaixEe/fOFaB87xlkXp2d2XV404IsJNiRigmiGiZuc1WHUcBbXQRD+JWUHCl5ywLcKi4JzmsRKNnStcWIUsWFmQAEECtVFxpQD3jabslieYxzDSltUHVTB1atA8wVYbbjqZjCwtUIVtBELqYSU4yG4QvoiDDgXcI7TFvwjsY5gveIOnIZVP0w2PfZ87z+TIsWMOlwlN9KZcyScr06Bb7M6OjLAK/aoJYSNihEbGCL7s4Sc5o0h5ysMlnOiTj2XJyf0jYNDx8/pSm4lpmz8yudNSkvc7rqz0c4vBuCgeuD/3V4w2Qm7D2XGXAJpDwyDFv67YYYBxaLBTEaiYYLweoXOmcuIlVi35dknZrMUzqJFLcj5pUYhgFVpVssLJFm5ua0bEXrMMEHXONLjMMsUKdK+wl99tTY6ElW7Om61r37cTTSlGBkqJojjoCqVaOaErUyuOxwyZGTEFODeCVkJSZH7IVeFM0BPxTKtDIzKjuQzTlftCMD7Vy0mA5VJWXLl1h0C3MVBqOIS7FW6saiEevlz8w7A8xKwFJKBbi9KhxGskayRoIknJim4L3QeNMWGu8JsjMQxhiJOZoLOO0G1nwYXel1s0esULI97b0b3qRuJxh23iYTDPPIg/kMnuusv9dbS/4FghMTwDAyinD66gVN29J0R2Y2ilW/msMN06ShN9/N22zvjGB4XbvuoaD2sDJudAKPtMzOcRzZbDaMcZyCT8ZxoFssaJqGFBNZHaqOOA5UFqLQtuRkRVtiyUTsh56cEyF4Hj9+UlDnyDha4FM1M5xzLBaLySMQR3O9Ta5OrSqum5Bm4zbzTKk1WcmugJAzYzNq5vzinIePVliegUKOJaR7R6BGdqQUwQ8mb2LGeSVG8CNsSeQ8Mg6e4IPNuq4IBs2FdVrJo9WA8M6TIvS6Zn1xaanZUbm8PCelzPpiS+ozko0TQlOcogilYDjUWTTXAnE6PRMttPE5RfsrWsO0roZAOwhC0RaMeMW5MHkKTl+dsl4bF+MVEGEmoOb9RqaQZGOLSuTs7Hk1O7MCsc/qqRJsYOfa96rXCXNR16J+yaBZfDFzJ00DMyEsZmOk7zecvnzBoycBHxakWEva6ASU7q57T5x9bu2PjGAAJskJ1ZCoP66CjyCaLc+h31pBEG/q2+pohaIMw2DU5QUvEuc5Wi6t8Ok40m97M0HGARBWxyelI5aZI1lGo3MedUrbWp3EqjkMwzDNrpPrtN6GiJkDuWDdUsNsS7ajFDVb5j3ZgLrTVy948OAJXjzOmSDKMVKzC+0hCaoOzd5yDBLkKCQHMWa2avhD9J7QlM4rHSKFxl1GxCfEQdcuOOqO2W4Gzk5fsV6vSbrlYtyYJjEuuXypvPo4cXnpSOppVw7osRIulMG3w3B0xidZ60dMCWdaoznjzozwpjE4geA9jTN+Ce9deR8wxoFXZ6dsNutihl9TJ69p3VUPrM+sDt6sudS4KGXvisvS+ULrUtzI9mp32p8Uc2LSI8oEtqP8MzCz8j04wdLIvXlTFqtjulWD4IwWbzKV6wHtvV7r68xuVatWUX6+IQ7xzgiGqg1c/Zyvr1J/Fz5a5akUvhzKyzLVdNgYow6aIAtN09igjRHvdyph07R0XSBF0zA2mw0xRkSE4+MTQtNYOYespJL268ThUrIO5aXYzcOeKQEUdbnOhHl3L1pUV+dmE5kUaTHXIXeqY05GCqJpwDctjmiCyaqeWMBTLvRkWdBo14YaQUuKmVE8KTpidCTvCVnx3pH6BMnK3fuQWR61vP/kKS+fn/HJz87ISQjhiPcenLAdTwmLhmX7kI9/cMEPv/OCH37/FevNJd3K0T1MHD0UmkXGScKpICmSJZMDdo8ZSCastYCzVm/DgpjAXJYiEScR7zLBOTMjvLPgK7H9M5kxjay36+IlkGKH39xcCTPWUjxDq5gQm5FTjmiygVnfkBNfMAdHFnvuOUsR/AJqniatkw0lmnIeDAWMMeGCp3EBTQZwC57LizN8syC0S+LkxVLmYf77ALsdVPQ64vBZgcl3RjDUdmtk4/Wt9z51VsQlznIeyBFfiEr6fiA0jY09p/jQIWKErdvtlnGMaFbatmVRTA68ox8HVDKCLw4FK8pSw1jnIdU1lkGTMSWllEgwlYlPOZqKHtyU5m2ciblwBJaZa69UqonCOI6s1xccn3RAQNWqUakqKgnUgEMkIRLJyRfGJCWKqahBPJqELILrTZ1uXEaIBHfEg+WXePbTM378Nz/m5fMLzk8vAXjw6JgHDzr61NO1ymb9Y370vZ9y9mpNHI30ZbuJ+HPl/IXy8HHLw8ctPiQ0D2SNxGj35MVZ0lQxr1DLZsw5FkFuQU1eLL08ODVWKS/4YGX5RCxHZYgD682a07OznYY2Awtv6GhFKZsHM8kOvCpPvHokKN+dc4UJOqPZsmVz0fyuMSeV/3SSFDtT2PqKeXuGYaQJHev1hm414EJnTNjiudoqqPl5mxOvFQwi8leAfwL4RFV/syz7XwL/E+DTstn/XFX//bLunwf+Ambd/nOq+h/c5UJeJwj0yoPdJasyEyRMCLEFHA0WT1DsuhhH26a82KSKRCNSqYCi956ma+m6bhaTYJmGWWYRhTlPdOsWDj3uZV8Ow4DmjBdHs+iQ4vYEWC5XxpNY9lNVfHCTDW5krvH6QyCz7decnp2yPHoIasfQbKi8zTGRLA4RTxZnqcqJ4pY0IRLV4hbI0PgF4gycdN7x6Ysz/pv//LucvYj0F4Joay40B6cvM6GxjEfUM/YbxtgzpC0pDjQ+mBt0K/QDPDu/ZP3qgvc/XLE6NipYTWrYjPal3I7xLO5cvJYDQo4IsXheMl4geKy6lnd4X+MwzPQ7PT3l7PTMQtBrf7kKNBzuWcAu5qViCipSitaWfqY7XkwnlodS3ZdVuO3AwX2NV4sQqkZA7SMxOhZdi3clM5dE329Zrk4mU4RZP9+zFw6Njzssu2u7i8bwrwL/MvCvX1n+v1XV//V8gYj8OvDngd8AvgL8hyLybVVNvIWmRQTXwJyp6rXuloGl7xqRinkZHGYzxm2iaZgEjHOO2FeVP+ObtswaujNZ1I7nZiZOzkos5CGVqCVnK9o6jFtqfYHQdQCTWVJBzxouW5O06vnHcTQq8ixQ+ALLvDU9g5gGzi/OeG+wWhNTjICaTaxOkMINaUCGFZ7VnEjJ2cCNBrYFCTba8PQD/OC7P+LViy3j1jCJrA6RZAi/ONYFgHXOBFHjhRjXCAPOJfq0BQSnwSpNZTh/2bO+fMXDJwsePVoRGiGglsmZBnxjKrwqkAVypW5LeEkEn2k9s2AmwxfECUhmHOwdnJ6eFt5IW1cH8dVWB+du3FYGK5n6Fs5NrE0Us7Vqidk6TlEAZNIgrMSfxYPMHegZkBLPUv0kiikhcYQUW9q2Y9NHQttM7lYRP6uyVSa+a+Ph8LK30V4rGFT1PxGRb9zxeH8O+DdVtQe+KyJ/APwp4D+7y873MyOutGJ71Rm8hjVnjQYaqdGdOx/R0YRIqNGOFFKWuKErHoVqElAgICcOnYU+G2vT1rIzx3GK83fe03Ud3oo5EGMiBOi6BW3XAjAMoyX9OF+8J5GhFG7F2eC1+pSOTKkHMaFaic36nIvLc47DEZX8xVoqPdFZDAIRA0eiaedKeS4FL/ctm8vMixcvOH225fzZFuQI1BfAbShxmJZWbMBXUYt1ZEw9wgbnLDzbEwvHYSTgjRY/DTAKLz455/TFKx6cNBydNLgQUd0SRy21K/1USMbyDcwU8k4J3pXwZ0cTHPbarA7FmCKX60tePH8+pbhPubNVmO962N7vqk9UrElxRu0vDuedEcJK8dZknbwSNXu2ChkTlCWuJs/PNPteNN76vRb6HUczI1RH64MlotaFfTNCSk+s3WDCJJXPRTh8FozhnxWR/xHw/wH+Z6r6EvgI+M9n2/yoLLvWROS3gN8CaJruM1xGbRMWXAqAyE5ISEnfLaAkYkVRci6vtnAcNE0zlW5PKU6mg2Ch0HGc0bhttxPQWDGF5XLJYrFAYVrWda0dV2TSEppgAqJqNeOYyvUAiNHBiytmkbEuTZ3ae/rthtPTl7TLhyUF2CHFd144kNAiFFRHNJs/XqNl/fXbgaEfiKNycapcnkHaKuJXoP0OhXcWqTmBb4VTMeeBxIbgEiIjThKCCUwEUrJU4ur1SebDRGPk1bhmu4VuBb5JqMuEtsX7Dk2uVKWykG8vSvAloClAGzxNyYsAy6/oh56XL1/s8AWYBu5Nw6OOG5GJKd7Ev5T8iFJot2kaEzOqULS7+r53pgymYdQemGc8DQXgnLQHrVwgdZBbtGbK2fgki0ck54y75kGZCYdr9/P28YY3FQz/O+BfwJ7FvwD8b4D/MYcjLw5etar+NvDbAKvVic6W78Ur1Fbz3w+fYv80lZdRRGwWxzNagWJiHPFqZUZ8URVzssrJXdeRsyVa+UL+iYiRoQ6DkYAW06ECjTWO4fj4eMrOHGO0WAZvM2/WXPAGwXlfKi/HKTOzgqTmYTP2YQeMeSwzaEnGUhN+OSdOT19w/OA9jo4XZTJyBVeXSRWHWOiOg1GlaSbFkfXFGev1hnGb2Zx7cr8AOjNhtAcXUS7Jruejr77Pe08f0zSB1aJju93w8cc/ZbO95GjV8PDBMctuhebE+cWGTz99xfPn52R1kBqctPWtFOGQWF9s2fYDrom4znF8fIx03kyXZFa1OLUoxyluQWhbj/eFB1RgGAbW6zU//elPGVOcesDOStgp71XAz9dXGEIMnd2trS5KMTPBzXCDmlyXUi58FwV3Emc4Tnm/dZAbDlFPVv8Kr6PauxzjiHiLnhW/A03tNl/DVHYDjPJZEqjgDQWDqv5sui6R/wPwfyk/fwR8bbbpV4Gf3PGY1wCbuzM6UVQsewgWa27p1HljJdTMzoesNdx09wJiSoQQGIZ+fkGm8hWTotK8GWUYk1AIIUxCoZori8UCHwJ1rqjqZ9YSDl3Mju12O4GeAOKExjcEdcTC/6AUQAy1gVX4G/p+zatXz1gsTwhuYaXeqwaUxQDJVGY7MWC2Jk49ffKUb37jIdt14gd/8IrTZ4pLR3TtEaoD2/icQQdCM3B0Enn6vnB81HB8FLi8jCQ3sN1kHj7sODlpaZzn8nLgfHtJH8/IOmJ8lIE0wW4KWLCS5gg507Uty+OFaVkCJJ1wIqvQDcGZYFgurCSf8/ZMx9GK8H766ae8OH01oTC1L4jusV7MgLuyXV1TgpemFOsJcNyNt4olaPFKTO8UWy5XhAoi1IjvvR48CRjrPymXWI6UqVZt1S6nXWb73TTGX+uBeYP2RoJBRL6sqj8tP/8HwF8v3/894N8QkX8JAx+/BfwXn/kq4ZpXoqK1UoTAxOhExgeL8W+KV8GShoqwyXV2ns/ABi4OYz+59nL25usvHAzDUFyZmvEu0Pc9IQSePHnCcrkkJauX2DYdzaIzIVFUWl8FQ4RtAcv67Zah70lpJARPaALeW5ZgGkbGPJoh4TwqWgSC8Q5mtWK0L188Y3X0gIdP3keSAyyN2dwQSs7REAJ1lmAlJiyPjo55+qX3SGPg1adLLk8jjhWL9hFHq2NciFxcfkJ2Z5z/rOd3P7lE/AtwG8Z4xhi3DOPIYvH/b+9Pgy1JrvtO8HfcPSLuve+9fLlnVta+r1gLKBAbAWLnNlQPe6ZJM2nYJpmoMVPbtMy6Z5qSPozM2mTWMzatsfnQ1j2UaczUbZIoqtUzovWI3SQlNikRALEXClUFFApVBVRlZeX6Mt9yl4hw9/lw3CPivvcyK7NQYiU46YXE2+4S18P9+Dn/8z//02LNBtFH6joyn8KiOYTICs6OQMpE6mnxcYFhC8IGYg2ra2scOblOOSmom4bFokHEg4mp54RXo5DCh1FVQRLp9UFl+Da3t/nh6ddYNDmDo7UOORW5G1PI3+eTGNFwR0Sra/VfoTgPfUiir6laGdlItE2DH+5FSeFaUM8hSujCUg0fpPMa9MxRw6UGIilWG9uxZvO67XGQXWDqIEFxNaPw7zQrISL/BPgkcFREXgP+z8AnReS96fJeAf5aupBnReS3geeAFvjrb1dGQl8fOuR4jz3u6SCqq6CTHINofYRNLcySJ6KZgSzBpa9lrKWp62QoNAzI7v5iMe2et1gsKIqCo0ePMhqNlKPftNiy7Ko2QVWZASXQNCF1YFYC1Ww6BWA0qtSIlZoRmc9mzOYzBMFap7UTwSOoGy0xo+gB30y5eOFM0ktYo/XS8V9MahWfc+ghse2KoqRpPRuXN5lUBxmvreBGc2YLi12UHFg9yu2nTrB2sODK9mm2ts+ycekcTT2lbXdo6gP4oNoPbSzUA/NCCBbxlkm5QtsajCuBQOvnRKbEOAUzx1VCNSo5ePAAK+MJTUgaFj4ZXdHY3JlAaS2Vc1TaIIOyrMjqWXXb8sqPXuXylc1dd385I8CeVaKPVXUuA0ZFVMSWGlom6nPGEzTLQbeZuywQGbRMJfW2ZyR2HkZQt0EGvUPzGtYfck2PqliJEcpq1DVFTg9aihb2Yg395n87vYbryUr86j6//gfXePzfBf7uW7mYHycr0d00dKqsNZSl3uy2niNSpHSWuuImud05ZswchuA91vtOn6FJKUnS37NROHL0EKMkpR5ixBUFRVl2LiekECBG2kZBsulUBUyausZawRWOqqpSXYWnaWoWi3nK01tCAB+8dq02BiTiU+iRS7V3ti+zsfEGx45XODOmaXOxjlZhGmPw0SM4JAptiDgj+CAs2poDx0rWtxsWc/2cFy5doRgXHDp5O489+DgiD3Lm9DnOv36RjfNXtPK0bZCsHxAd3hskljQWghga21K3O9TtJiEuNI0Xa2KYU5VwcH1CVRXUi5omLPDJKCijNGKtAo1VaakKq6XVidDUtCpke+HCRd54441OfKXLRgzcdSJLhmKoBWqMxRiHWIexTkvvne1DgZil3EIn9R4D2qA3r7PYk5r2cBhEszkZXpDh7s5rlp59C2jT3cINd383eo+DziPqeDyD9x5e048zbjrm43DsRxa5+hjEeRGsdRSuZDKZcGUxS54BqidIxBpHpAcP1bCYBDo6df9j7LoOlYlO7ZzjwIEDiAhb29vdCWKd03LstsVY1xkF71tm8xnb29va1altMQnotEaZbwCLxYJ5EpEZVaV2iwpt56VIei3Im13BPMKCjQtnccUKq6u3YUyZFrAnpmxFiGC6xaRdnafzBa2HsvAcOebx04btCxv4OnDu9Tn1/ArT7Tu4/6E7efj+R7jr5A5nz5xlZ2uHul4wXhuxsz2F4KjnQggF9TyytTNjc+cKTbNF9DOIOzjZAtmmGrWsr49YXR0RCdSLmiCqiSkxV1BGCidUhTApHVWhRV7WGhZ1jQ/afu6Hr77KbD5n6DlmTzJ7Tbs9hfw1n+jOFYh1iC2wRaEeBLrhQtbLGNDbM1aUDyEtZVdPjNDXTkgHaKbS/GWgoc+KJFNlxOCs6kN2B0scRAsDL2PPTrhGKPHjjJvaMFz/WJ4uEd3cMXgOrB1gZ2uzE1cJQU/bED0m9UdEcnOZmhBsBzjm9GIIgTZt0BwDzudz2lbBqNF4rDqDMYONqbdiiCzmc7a3ttjZ2k5GQ0/AqnTYFGrM5nPm8xkxoqFI1L4PIlrfAYo7+LbFmn7xR8mZhgWXzr8OjBhPDqlCUlBJfKVRps8uCVsRS4iRxtdEdlhdccSTERtqFpvQThsun215bmvBxpnLHDkx4cSpdQ4dHXH8xAqtbxivlFy5vIlQsr1Zs3ml5tLFLba2zrCzvUnbXsHGTUSuILJBNa45cMixsgYxqHKyKmu1xKhdsqyJlAZKC6PSUpaWsrBo5aM2o23blrPnz3Fp41LyFpYB6xxq5tSgro4+e6CGwXQpSeMKNQzZmKMyfup99P1C8ui6cCevQCnTqVgq5PdPNRcZExtc5e4tHDEYq5qjo2q09Bc6APXGx49bSHVTGAbFoj1ZNiMvfYHOJesSN7F3CIPkM9B07ptJAKRzBW1TMx5PWDuwzqWNCyk2FIInaTKSGqEq7VnwqSIxbSSvbEJVRgoUheuMglZnFpRVRYgoaSjl/Ult6dqmYWdrk9nOFr5tUnhTpJNBr3e6M2NnZ4oRiyushgteezFW5QgRmM+neN9iJIOuA28qLeZ6doXNjdeoKoctUsyP07n0WmRlJEnCSWIHRo8Pc1qBaqXkwFHLlsxUq6GxzOYtr7w05/TrlsmLI1bWSkaTAuMipYksmgXtIjKbNmxvL9jZmTGbbdKGHYxMse4yRjYYjWesH3KMJpE6LmiDkpN8JG3CSEGkcpbKBCaFZVRZXGnBGb3OVmnHZ8+f5/TrZzp6+RBtyuvCw5JR0GUkSEdYAjGWKAasUX0OY8iANoD2sNC6lh6EFLRdYew80J65qheiNkQL2STVxuRcizFC9OmKQ9TiOzHJOFn9SkpNk43Nrr0S+xqP3dHJnynG8Gc6Oh9QBl+H8WMy1GRjkn6f9AyGIwZwtqCWmtF4zHixwmy2k15DBjOqLDSMkp5EQnfChJAZiP3rNk2jYGPbUhY5XFBQ00guBdb06HS6w872ZsIUFAxVVqSKu2j4oISirnaibRHR1vPWGprFnBg8NiHomT/RTVlUo0qMzGaX2NgoOXgEXLFO3S6I0VA4Uf1JES20Eq0FUGqvpU1lz24CK1Gw5Yx6p6Wdj/F1yc5c2JoC59HCLyNYtON222aSTksTa2CGYUaUTUy5zdqqZzIxuGJO7Rsar1zOiOCj3ruMK1RWGFnLuCwZlRWusEQJ1K16OhuXN/jRqz9ka2trKc7vlk5/94miGkwdVyVveUnqzsYQrXSVj+lp+iVqFiAT4jqmY3Lzu/BikBLNeEF+HRFZUgOIUT2IvPY6D8ZYrCsoXKFZKSODzZ96XMRdl5izFRnAGMzDnkKut2gsbi7DcLURk3EYpiulBxyBxBSLnQsZvMcWDlkYlUCPB1WiLekYLrtaIbd1QAxdDYP3XoVTo+20FhaLOXXT9sh1VIl5Z7RSMgQ1UJp92OlOtqJQT2FoAKbTqTIhE+qeAVBjLWVZsFioyIxiHxl8yn0yQcRpO7N0rMSmZmvjPMZWHDwywllDjC0SjXpSkgVA0mfFIL5Qoo1vCKbFrjSUzkMVGMUJ7dyx2BGaudA2htBaYgIxMwgaCETxWKkRM8MWM1w5pxq12KrBy5S2madWeS6VLqsGvQidKlNhDaPKMB5VuEJTzllSbzrd4fUzp9m4vNFlH3YbhXy4WjHJSBdJQ0MNdeN90vhUjolN9zBv9u7I6fQi+s5ioD06OnAv7i53zsCBemekmQ4idLUYMvAwhIRzOIpCQwmbOpIHMngpyMDkDTG3Gw0VbtRA3FSGYb+sRF8oIkuPgWWkdkgV7cGiiHMF3rdU1YjxeMJOu9UpKuXNHcOykQhJL8B77Uhtoy6IrpltRPPqkMq6NW9tU3YhF1Y1jWYQcuORXK2Z05a5jZmIUCevoqqqVNsRur4XReG6wrB+cZiOo98tIoHYztm6dBZwrB++DWtNpxplYy5Y0vCL1PpdRBBnwNd4FkTXYseRZr5NLBzFSkFROUKbFJralIvPqLq0BFpiXBBkgTENRakKUotmxqKeY0xQJSckpQTVE7OpBqIsoKoso1FJWWqdSQbz2rbl9TOnOXv27IAhuutkJAOLOi8amhVYl/AD2xKTSpdqYGQBliGSr2Ho7j6ke3Q0Bhs0r8WsObkXRdi1xtPX/NyyLCmKUtmuYrFGkKhak6oJqp5HruQdApFvxl/4cdiPN5Vh2D06Q0GfkukyFDH2Ln5MnZIlKTN2QGPbxY5EGI9XqOfz1A8xxdpdQ5E0eSEQJPV36BBmaOuaEFMhlrGdR9GlOZORatuW2WymDMegbMuiKDoQsWmapPvQdO5pNlJlWVKWJUhkOtUCraJQkHLRtun0VMwly6WRFnSWJgODr7fZvKiE0/VDx3HFhBhEVaPFIBKwyeAm5m96DZNqNHTuxDUEP1eyVfB64hUChWIz0eS8vgqyxKil575dsAgRCUlsTiwmOvVcMlPQCNZC4aAqDOPSMK5KRpVuEo8nhMhiseD1M2d49dVXmc2ne05LHdIbhFw7YixiSyRVSYrR9vMKyqZ4P62pmOa1I7wN+pDq35NHlkIJ9RSWT/Kc8+l+3nONsXP9BdK1qq6ksyqxZ9O1m8TADEG0nR6SxIf3Gp4fF2S82ripDcObje7WZCsal6dt6FlEwDntNhWSVsOSoRl6HyH04FVU5L9NN0bxiCS44htaD9Y7nHOpKGrW0Zyz25qNQvYk5vN5b1DSoqsS/qAMzDm+aSisxTpVdO5EVkUSgp7c2q6yMmpDm7REQ7PN1qUzGCOsrR/FlcqADNFiQjr1FMvVDY/F2kr1HaWBMEMcSBKcaWVB29b4ttZO2VG1FbSuIXSGKaa2cIgqQ/uopzeSAD6jXoIzWiBVOGFUWsajglHpcFb5CrkM/dy5c7z8ysts72z1AODAs8z3V1mLagQMSWNSHIhNrjkY65LYrLr2y3hBql8ICXRcEu1NXlmat/y+ZohP0HsS+n1Ia2cw10lA2xjV0XTWAZop861qcxgXMZL4FVmt3qj3kDR88sstjat5CT/xGMPuMGLZO9iLMUiHvuSQov+bYhC68ZqmSa6l5itGoxFNXXeG4SoX04UmIWqT1TY06W7oCZ+1E0CIiUhU19q/onuZxIvIxTfZU8gjG6zsLWgM62kWqntQVSqSMk9iLhk4c0UBkus/FME2ZFQ2oiqDHl/vsHn5HMZY1tYdXiwWpzmA0BLFqRqy6GmlDEuPsxXOlYS2wddzmqqkbQvaZkHbLGjahqZO7fdi8mISaIsETBalxWDEgXF6cov21zQmYF3E2cDIGSUylRbrcrpQ7+F0OuX06dfY3tnuANv9FrwxqQO5U4OpEmx00u8xasVp5/6JdGHKEjEopPsdhpmHJURysPmX1+7SVo37PV49BkE6byH3IvGt1/S3D5RVRVEaCpsq6DOWNryGq4w/9x7DXuZjDib6v8nux5OJJMok821gsUi9JpMb7oNKwxdFoQYibVLjHKFtWB5poUftYpXVjRFBknxaPu2tEerad1WSOTTILe9yEVbGKfKC0HDCMaoqLfGNUXtqNlqdCTDd0aaniCLprtS4GejeP/MtehGSmFqse9rZNpcvnMHYkrUDpeouxhpjC8R4YnSITy6ssalIKVJVE6BF0K7NMcm9+6ZJlaYtbdPQNouOzqwFUgnJl9xTS9WtQXDGYFWZFolQFY5RZRmVBWVRYJNStaSQbHt7m8ViATF2AOBw9AeCCqs4V2KtSyFDoiunzRRiv9m7suxdbngYYAtZXEdtbQBjl3Cs/Bzy3zMgbAa6j6FFt3f6W4xduIMIrQ9I0xDjDkVTU1RjWt9Sti1xskJZjRHR9gYSVJdCM0hvnwG42rgpDcP1DPWwevPQt0/P//rSZiXG6Kb1CSHON6jzPrpXXX6P5V+pgcpahRl9zospg5Oka8vgaDYYQ/o16MLWhqcaFjRNQ9t4yqrCGLQbd8JCTCqyqqqqS6VmfIJUZt4DcDK43kDbLJjPplTjGidN4mWohJrBgeTiIIs12mvDWosrBOuEwhnK5OarsMyCulZwtZ5rc566rmkXNW1bpwxAQxu8sjd9k4hAylkYVUWnzDQqHaOy0HLxJFKzPZ3RtovlHH36KoOvipH0BtikksysjtD6bLyzgej7QoSQMaa+q9MwfMjzu+feJ++gIzENRWcH61HrJGJ3rdmrG9Zh5DWZRYqzdidodzRnC1yhhWg+h3y70rTXMhI/jgH5iTUMGXTTb+PSROup7VOL+6Su1HWoTsai8wBCh1THsH+9l4aXPdMkhqAxf4ptew2/lpgKtqwRLBBa3xmLobeQ5d92pzBDCIzGJW3dsKgbfIzYskgNeIslXMJKbpaTwLHkJvcMv7ShQh/bErV/Q9ss1DA59TAg9fGUEpFC6whERVeLUUk1KilKi8SA9zVusU3wDfV8RFM3NIuG+bzWOa8XmHqBNDXiFxAtrW+xAoXxSGwprDAZOcYj9RSMsTSNZ2dnh9liikg6GftocslLFEDlD3rQcfCX/D9CyHUYedkksR5Uti5X53Y9LmLoDAf0X0nhaa5R6eonuhrBwRUmwFLoOn0MQog+RdqFgmn9qnGGEBy+ralrk3pbpGyFpF4jQW/57o0/NHI/7rhpDcMS1rCLvgJ6G3yATJfV/gS+3/i+0XLppsY3Da1v0s0P6STRfyY9P7Mbl2O47gxe+pWCU+peSjq127ZNvSbosg2dF5DqIzQ9OdjY1i5lK1QZyBKBum3xPmCto6pUsyAbkBjb9C8M3NgICXRLCXS6cuHkmTirVGjva1ojGCP4wmCjJURlSurCDwQJWGOVnYdWAEqjcXibuluFFnwQYrRE1JAIDT4qYYrokWAxocX4iJGAE09hYVJZxlWp/SGSuO7lzU0uX76sod6k6IRZ91D8hkN004UYk7ZiSIh+T0UMoRfWzUVX2SPIKcDeMChrkX022BIQqb9g2WQNiU497iCoNODQKPQp0EhOj1prcM4SS5+Mi0+MV9RQR6FNZLb9rm/Pte7z/fWOm9YwwF6sYfnnAYCU8+lRa9tbX2sPyrahaRb4uqFNfR1iWjTd6ZAbymZg6k0nUd1zXU0D+bjsOop07DW/K7zJnwFIxJaiAyYzBuGcUyPhWwRDWVWMx+OOqBNjS3Zp22QEyQ0rk6GCvLglA+lY43CuoG413m6bGiSmNn2OQgokBLxJfSCi0EYgGGKjn8WJ1Y/tPb6FtoW6jrRtwLeeptGvPn3mmMMc7zHBY2hxZWSlKpiUllHpKAtH03guXNzgwqUNWu9ZcQ4Rq2zAJXd+OBJ/IESMUQPQiu9CODVMIXW5GhRCDV4hp6yzYVjaQPlQioMC50EIOPx52VvYfbjQPWfInByOYXjhvce3Tee5tM0CR8SWLq1x9XTfpG1GN37isxLXGrvdyKWRgUhrCI26Z3WtDWl9o92gWt/iQ5P6nJhBiipF5mlDWxH2BhM9Rbo7CfqVkk4kn7yF/kozlz54dRGbtlGQM7uMNvXNTHoPbZuEVAWaxuM9WlgzGim3gWUUPQTdhCSPKqaiIKBj5AlGwTnRSsKqGoEJ+FBrC755QzSCFwM5W4HXKkPR+CPGAD4QTIuX3E1b5ciaFKapl1bjo/5r45w2LghxTogLYlwgtIorOMOoVMCxKC1t23D+wiXeOH+RWa3qVwGDD9r7U0Ovq7sMOs8Dw4u64xH1IDpAMRGX8gHQJw2WDYNImr90CKVjo7/fMry/Q0OS10aPK9huRfTP6a47OUJmsLJzytf7NoVAlnqRe5CETrMh+oyV9G+/nwH4c4Mx7LbI+XedCIcsm4esZ6Epu15fQcG+ltD6pPnfdps65jb2aEiQNbiivlD3Xt37o8m/fa4W8Iq8x37hLi285CkYY1KbPAUZrdXTXxC8b6mbmpg7Qnkl9uRy64wrZNzE+zYt8r6O31pHsJr7lhgxQXkFNqp8GAlVN85hIzgXaFLYVc9naLyd/pFKtUVDk+iFaHol6ugVo/Die6PbJiynWRDamuhrvF8Q/IzQLoihTmlKVeYuC0tRVSyahvMXLvL6mfMsao+xRfJwetUja8zSoTBAlgBZ3vjDLtD5fg8yB10xlMk6Cekxw3h9Hw9hac3JoI5m6H9knsOSKUhXk1KOPq277KVkICh7ERkfU90QBbCbkJr/ti0+xiXvp5uT7jPus0zTXN2oibhpDMPeFOXgbyz3kAB0ssmpe4+JUCR0OkZ1E4NvIUaspI0rdDF0Ph1ifv2oOn0mEYeGYGMIQ5yjjx11UbUplEkn1pBZF7S4yIcE/CXRWd18hnrREPDpdIg4tA+lTxqUZeUQo52l1TBGrBWaJmEaAMYQUj2/jxEbtf+CFU+b2IoQca5UHMBqabf4gI+ismpsISZQmIilJcQRhorgnZK5JPdWiOnU9cRWW/9FHwhtS2haVVIOGlrENjXz9Q3RNzhnKAtDNSowZcX2vOaNc+c4e/4SddviTEEhTlvrBW0H56yhsMVgHXS3nuwfGLHkUnoQQqsUdZM2P7EH5LIxlew5mLSClHOc+iLnVCeDd1tep+lGw3BdLgHXKUDNGQSyo5H4JjF2dRoi2tgmtzKIafO3SU80G426XmBdqZW3IaaMnOkMTkSWsiK7d9DVQZr9x01jGK5n7DEeCbXWL8oIrMoq1SksusWcA7JsDDqp70FkENM3VzNO17iogYvYv486Iv0JEol94xrpXVEf++q90IGJmVWni9Qkw5bfJ3tEDNKdGKPajgrF6SkTE/YgligWjDLttDVfCcFiCLS+YTGdYqJAFSnLSBO0jsNjQWwyqimlR4uJIdG+1Uj59C+Elugb2mZObBdE32BoKVyiOxclW9Mp58+f5/ylDRqvfSUCWbuz78h1PaFEzD5d0I0Roiwd5DlWjxlsyV6EMckzyyftNQNWHR220HMT3uwsXiJi7fKE830eCspm4+W9p6kbQhRqqTEu9vMDfVu/GLuamditv91zdOPjpjIMS5mI3ezHvQ/Wmxoy01FTXmVVMWkmeN+mvHqLzToGMWJUDbF/HX2R7scOLd4VUrzJhe/6MSSRjoFhSDcyRD3vNCuiKk0aXlhtQuL15MvkneAjmJ5rkTMdMWoI4ZxunhBRhmFEQVFaPX2jQWyBMfpPc/8RKQQJLU4Ss7NpmfodfBsZtZ6irLC2IIcZSM7G63w3bUvwIcXDQcOLtiGEhtjOCe0cwgKLpywtKyOtF9na3uHs2bNsT6eqxxDUE8IM4369D845rHPXzErERJ5K24z0Y7d2uuKjXS8QQ0iFpqZ7z+X7eC1D0RuGGxnSQxRL63oIPgYVIk0hJhhxqhLVemrTUJSjFDL2GZb8evulKjtc7AbPu5vKMFzvWCYl9cMYQ1mUyAogkZDSlG1IZbpB8YKYFkwe2QjkxdOJe1yPccinTXfH6Sx5RrRFIpk6nNuY5z6XnYIUy4DWkGjTkVoCCVj1nUHI/3yEgIXWp2tS3CVGgzMl1pZo7YB6DOIM4g3WeEoTqaMCtrPpNm1d96Bn4jMAXTMVQVKyoU2krdzNuyG2DdHPFVeILUVlmYwLhMjljctc3LjE9vYOnoh1BZJay4eYtltIPkCX19+blcgF0sPgDnrEXj+9Vo/uC8ClgyR7CsOV0Kca97zB8vPfZOy+6v1S7n1GREFHk9Zmx6PwJJHZSOsheJUNLF1BNNJRt9Ur3C/kiQoivwWX4aYxDNf0FmLCAXb9PYZetbeL15LXYIzBicFYYWd7OzW0VQnwpc03MAaxX2J7buSweu6qIxmFzjCkuDJnQPIr5dRmzJ87/aVDxulb5FlrtcNUin0Xi17YpUgiqSaFEY33qUoiYslup6EoSsqigpiVrqwqBhWG2LRYPFWlpd/K3qyp25niHK7ApbShAqr6QQIKlMa2xUflcHi/gNhgYsDSUhbCuCwgBC5cusjGxhXqEBTHQTUdrFUSTx5tUPRdm/RexSzv40F0hj1KR8XW6b9Kvj9GutbRGbBa8hKyCNCut9rXKOy/LhR47K9lt/fbhQ3pYVHAhr5JsvEeyqQW7tWYhbYlllGRd+nXz368heF6vlHjcNMYhmuPZbeuB4A0ruwBI62MkwjOOiara0QjOFswne6wWMwVnNpn5EatbznF0z1PX8NEXVSZNz8MKwg5m0HXrWjIdbDWdcZDoEuhaooyUhQlhStwScthtxESerBNjKGoRpSlGkuD0Q0XIxKgkAr8QGgWUnXngraeUkvfuNUaq9ccULA2xlSt2BLxEDwRT4iestDwZuPyJXZ2tlX4FYhiaYNgnFZdhqj6A6ROWp0OAgafuTxvPvmD/dpvBgMpfIx9mDL0D2L2PELKPHXo077vIgPey+7HXMtTN7v+rt5f30ZPvSO6tneZOp9DxGokNK1HrNO0sG/IRbX7Cbm8HeOmMgz7eQv6YXt++NDq5sgyhp5kpGW/kMt8x6OJlr9CqmnPjV+7YLZzWUM7oM7u9R+v91Ok/6UirN3HWzolck8BLc5KXzNrxWn5byZLiULcHYOy6OTUhxJ0aHGS5BM9dm9dFAWlK1QPIRNtQgQLzqr+QwhgTYAiEsUjradtEs28Sf2kRP2q4AM2N1vosjxJsE3UC9jYmioWkkhe1ljEOmIUDR+iYj0mb47BjHdeSVdNuWvbvdmtiZqlSKaBZXborsct3Z7h30XXyCD9ObjCpZcRkW6N9c/uvd2hhkh+dseLGa7nQeoS+ma5nSeZmLveBzqGRRcS5beIy1/fShzBTWYYdo9rgo8knnroK+k07+2S+IgScbRMudRTs21SXJw3ZOiCht1stLc+eldU13QHe6dfhySAmlrlRQ2uQ+sHC0MBPazFxKx4rCXkuWAoU6uzgfBBU7OSgFQfUeGDqB6IdUXnd1mjAqvG2qREVmJdBCPKDTEBY7V3ZGugCUG1JHKfzbamEIHYdh+5rzZNJJyIGgHJojI27TP1mQWNn6NRVSlBxUgKZ2mTQfBBRV50DeTUXwr9Bhs6RwNLGzxG9WL6u7HXRjNUBxt4dDkFGQHx+aerhpPDcBBSY9zBs/R6+3WwnFmDKLETZ4kDQ2CMzl1da+NVXQV0+BUi3dW8fb6CjpvaMOw3ljGGfjOL6e96DEHlyaOWRLuiUPks5yiKcrCIJcVqCb3WV9oXXbiBK0xfAso83BuWxhBULyAtNHVghCwsmjn7WSVKh57KWj+QgbagpJcYu27eGdQ01tC0LWJLjCuULi05LebTWSq68SzYVHUqHYMvYFxa8F7TqMrdV2FV3y5Ictu79pVoNgShA0CxaD5I9syuxuHp5Ewxs7ad15crqxHWFLQ+6z5oFinGNwfae7c//byPq71Ma+6uiMxk1C9vvv0GVBnynU1ct/75nf+vhiPmUDKrnA/wkL4Cs0VixJpC5d9snzqmczgiS8qzxN4j7q7nxlbxzWEY4t4w4mrgI6SbGXvgsfsdWWE3dqzDYFQRSBuXatFS0yx6DyNLig8qJqVDp9+6K6bpMOm2wvBVYueC5w/n8cnlFFFPJ49huOCDp5AiXVXSpkxz182XaJ/Kul0QTQFFha1GhFTFFxOgZozVxRS06S/GJWOh3oKJCgJaC6EIFIMPYFBwDJ/Sjcko5E/rQ+x3RfqnihnZN0in5tJaHi5uoQ0qBDMaj6hGI2rvVd8g3edMILvmPRgYgmvzU+Ku73e7I2+yDvrLHkb8dIdMNhD0eFA2IIIMCqyWr9UH7ShmxWCsUeaqdenAiZ2HsftC+pX71v2Im8MwpLGfcYD8cWXPjR72+MubJ5JFOPT1snjokhuXRFEL57CuL5tOF9HFfT/OxPYvpSdnn/tORi25rJ3lT90QlNWbJM9DJAQVeVVASkEqlR/r52NY9i3GEQKY0SqT9UPcduo+jh9/kHpR0TRGeyokFWWNsY2mxIwhejVCPv0tYJJGAB2OI1ap3SYUatoSQSv78xL32yXZLIhiEwlRl5jSesnLzgaju5dRWFtbTxmVrcFKSIDdYK67BMNV78WN3Mu4yyDs/9zBx+sMwO6/DzNmCoT2yBMiXcsBuztjgc6JQSXqxKoKVsxan92jZPD4/a/zrazjm8owXP/oiTbdYhl4D0OhkrZVUKxJFGIfI8ZaxuMxRVkQY2CxWPSTes2T5QavMgOnAnEZ5ereKgNtEXqsK5N2Uiek3HwXUkqze/3+fUSEoqwQW7J+6AgPPPoIH/nEz3DXPY/wzLdf4ZvfeFGbnUQ0JIFkIPX6jPTcDksEp5vDh4g1nuBKJR0l5mMUT2wEYqNXn2jjknd5f0ySS6Fzdl8k9psjbRQz2DwheQshRiaTFQ4fOUIUYTafMp/PCb5JPIWlEqe3Lc4eYhlv9rg8Yvp0+3kmQz6GcrlyRicJvrC8qWM+OIwaBVtqCz263prL776cDn97xk1hGN6UVsq14sm9fx0iuxlP8GHQ6brM/QaEej7vyDR66MmeSR56L282ho+NKEgkRvacaHsXUI9xdBSeqNmCrPmQ6zii953X3Ql9IKysrvPwY0/wyU99hvc8+STleIWXXz3HxcubND4n8JQh3pUmqQOVjIx6UohDJGJswhZigQ2R6HTDRlGegc8RkTbLVCOXvJEofRY9T6vK79khvAf0wJ3G3OlZAZra0/rI2toBqtGYpm24fPkyW5uXaeo5bdOoh0j3Ud6G/fHW/cTd3kEXMqWh6WLpDIOEHvzu3z0FGGK0L0aZeCSuwJpChXXJ79EblCwKvD/zkTcHZHaNm8IwDMdVsYYM3ET9PzWapvf6Yv/3mBdqzPl9/VkMuMJRViUC1PWiq2Rz1uKl6F4/Zs0FpNs0u6508Jtul2bYafAodYl3W4b8ufYzOuphDPCDXFKcNA4yPyFKiuetZf3wMT7+M5/hs1/4ee6+5z7qxnPuwgbf++4rvHHmfOpMrVtSom5cMX28r8ahF2M10RCDwdhCO2HZmOoXFNtwrtIZCEKIyulXll3aWMNUXzYF+XTsPAv1KvTkjOohASEqgFk3numsZj5v2djcZG3tACdO3cXR46c4/eoPuXL5EoQ6qR6FzjDcEJ19nyFv8bkhgpOUiRlEUhJjaoKjyl6KYYVOqh/65YsxKlNvLaYocaMRRTXGdJ2q7JJTOzRCeewNK27cC75pDMObpSa7IckydzF6+nWWAos5bw25Ak7RfDrVZRGhqWt8ShEWSfrd2GJANNrtiZg+lkx0mOWbIV0XoeUimxR/d1rgy2OPYYhaedcOCr86zCPGLgUb2kAwlmgt60eO8rlf/Av83P/qlzl24jaaxrNx6SLPP/8SL3zvZeY7tSo3pxDFdPPXA2ECRJs7LafmMMYixFQOHbAhYG3ARuXyWxOIVqsojY29Rkk2yNnljYkKLqbzdHrjkDwW+q8+RHyApoW69lSjVebnL+LjlBUKDh06yOPvOcbz33mai+dfIxJxxtCGgDMGLTcRhjUw1zt6b+ZGRy8tZ1L2R9JlGHqpeZPk8tL5Q5sYjZ2n4CzGlbiioqzGVOMJZVmpJ7fbiOy67qGB6PdFrtO5sU9z0xgG2Ost7P4b9NVooCIo/cmdESydhBACTatybojFGZVZz9LvueGLs4V2gQ75dO9U/dRNF43BFbVbjudSuRMZ84DEWpRUA9GZj7jnbg4/zx7jEJYeuLTAO6DUFoCwsnaAn/35X+Tf/w9+laO33cnO9pTtrW1e+9FrPPed57l04RLOjhmms/qUWJo3Bl9TWThRZeWUZ6AxgyfiEg8jWO0WpQIKEKRBkwZRVZPy/dPAO3lH+Z2WYMPummLKTHQ4Q6sVhtZZfBvwcYFbzNne3mZlcowPPvUUX/9qw6ULb6QTmC7k8m8bL+XqYwnXSoYhGvW+jKiWhDGGwi4rN5mUIctp5py5sdbiyoqiGuPKkrIcYVOafZix6eZqMHYfLrt/d6OsyKvpZt00Y7eB6FWgkzpPEhxRifiwhNB3mgVoN+rcpVor9wrKstJeBKIdj2PswctMItIOQT2pKAus5DEMHfKNLwrtgm1cAdb15c5XOY9Eln+/5BrqEUx2Vzr6N4aVA+t88tOf41f/0q9x+x13q2BK23LlyhV+8OKLvPLyy4pxoKGJdmoOS++TrgAydJhER7VdmkqsGaPyb/mfVj1WqmKcailysxcR6bQa+1Mz7vex9x0+hSI+BFrfslg06T63NHXNdGcH71u2t65wYG2Np556ipXVVcT2aP2Pm0269li+j7k+Z6l8Oi4bfmttX9syOPjEGGxRYNLfymrEaDxhsrLCeDLBlcVAlzLTuq9S+3GN8Vao0m9qGETkThH5QxF5XkSeFZH/OP3+sIj8voh8P309NHjO3xSRF0XkeyLy+Ru5+OHX4b/h49pWexpE3/aafkGFWZqmYbGY07TaTNa3LYvFgkVdEzA4V1EWI+1B4LSFWUDVlqOAWKdWuqz0X+p/6MpSv7cWUnqvE+nowgY9FVxRUFQVZVWpCnRRDIwD5IWVnQHZVR03xOwTIqc/JW/GVSPK0YinPvIx/uKv/YccO3EHLRCjMN2Zce7seX70wx9x7uzZdFL5q7qTIWpMr3UMiYVoNE2JUQk6EgNPDUMBpsDabAwKjNU5MklzUv8pqp500sg1JPtaiLhsGENQ4lbTehZNw3yxYHVthcV8pgrXbQsCG1c2OHbiJA8/+piWZ6P1BoSAM9dpiW5oyK7/TPcvHx6d55CyDiEBw8Y6qqrq+pdmzokrSspqRDWeMBqtMBpNKIuK0lU4WyKplDzfR++XVa+v5lnv/nqj43pCiRb4T2KM3xCRNeDrIvL7wH8I/KsY438hIr8B/Abwn4nIY8CvAI8Dp4A/EJGHYq+zve+Q/b7GAXGHfhLyJCUTSibLtK2eKj7Vs2ePQbsKFxhrKZxTzcImy8pr1iIGNJZLwFEOV/QGK7DVtURPtQvpKE4XrKFMCCrmWVSjVEWoj6nrBW2tpbPDWGFITMohg8qr9ADaLigT4xwPPf4E/+v/7X/Anfc9QBBL03pmi5rpbMYbZ97gzGuvUc9mhKbBRO1cFeKAbiVpCUc1aJIjnvyOYiAqy06xF5Qh6dJVhKy1CCYXPjmt6tQMkHp0YoQMZGS/ZN+RAd6YUspBDYp2/Gq6hjxt0ySVqwAJV3jPe9/PbGeb73/vex1v5a1S3K+2jTr2QfLu1FMQhAQGmkTeEunmZniwiVGpPp8qw7IQjyRPyxUFttBuZHqv8jrPYd8w47E/JvfjGoPheFPDEGM8A5xJ32+JyPPA7cAvAZ9MD/uHwP8C/Gfp978VY1wAL4vIi8BTwJeu9h67nezu6+CDZ0PR/6NnN4aknBu8ysWnUMInsQ/nXNfWzacOQ9bavpt0WVIZs2zN09CQRRul1PUitYwPA8Sum6j01VPXc4xT19AYp3qHIixCpI4x7X8ND5SPgeIZw3kf/NQBSikWPXL8OJ/5/Bd49In34KoVFj7iCbQ+MJvOuHTxIlc2NpAYmU93mKyWqdO0Sem9DIQOys5jBgZzBYEo+Jj4F2ICJkaCiRiTay8CPqjGJCmGDjl0Cf0n2XO/rwYyJyNFiITMfZCApPuKqKhuJAnbRKHxkUMrqzzx7vdy4cJFzp99AytC+2Nsjt3PzCS1vnDNDrgJGWNSW6ol8nS6Et1rhkHLu/TciCQ2o1L2bVFqSItJ8pHL3vNw3nZ/vLfTKMANgo8icg/wPuBPgRPJaBBjPCMix9PDbge+PHjaa+l3Vx170yvXWDxpGJNkvHLsHaLWA0eP9xqXWis4ZwZxWui8EJBUP1F0rq/G2KaLA30IyhlITVa6865L/O86lbLX4BXgdK6kcJbC2a5Srknhz3D5xYwjiPSLAbDkNGL6m7GU4wnvfv+TfPxnPsPkwLpShaXAB222M5vN2L6ySbuoCU1Ns5gRqlVMoXhBGBiDrrAoX0Ps513EJH6HQaw2mpEQwQQFPmOLBIcxIfEd1ECoWUnNVjL0LglnGHzeYXVofs8QcwfzLNwSiV6zSj7kw0Cv3jqNzQOG2sMdd93HI4+fZXt7m/nOdpLPX1Y5yuvq+jaPdDgJSDKGqfQ8GdaYcitdI99ONlhST1B9pbZtKcuyo4obo6GrLQpcUVCWI20lYJ326SA7Jns95WGae3n99OPtMA3XbRhEZBX458DfiDFuXmPj7veHPdcqIr8O/DqAc+W+L7TXSg4tp2BMxKt51oVopNPVE8nA0GBSIWkYoJs7NaMVazop92EIYUIgGkPbNsznPukd0rmTST2292Ly32LUJjdFk8KTgrKoCKNAU9csvGc5ldaHRDGl2ayxENokGZ70CmzB8VN38MlPfYbb7rgTV1UEb6hr7TXRtJ66XrBYzLSfRtvgFwt8swBTgDVEHFG86kPmaGjX7ZNkpPI8i1iMBDDakDZGh5dCKzBt7y7bNAchBiyiPS07Kvg+BVSDBd7l89PfQiqNT7IW2r/RqsCLiKEajynHK9hihHEVthzx/ief4rXXXuX0Ky9rz8urbKzrHZJFcIylcGUKSTVDMAwTQmq9B336XMlM3QdN89Jn3bz3iIsdOJkNgzSJOJaIa9LNTR9SLAWX+32euMtbeQtexHUZBhEpUKPwj2KM/0P69VkRuS15C7cB59LvXwPuHDz9DuD1vdcefxP4TYDReGXPle9HdErX0qP20hc8CdKrAUWf6uOzAMpc3TaxmE7LgD7LkECzJe29FIZolWZN2yYsYnfoEHqNSGLG0YQQFO+oXY0xtgtpyrKgqecMRYXzKdsh+QF8aFTDIOEfWPUWHn/Pe/nAhz6Mq0aJzdiDsaom3HSNZwm+61CNK3Wx5TiYSAyC2IQnoF6Cjp66DEmn0hiITiu5o4YTulmVwWdMIJiAdSn80snBhG4N7beyBv965B0Bn9LOom4C3mt7+ID2DB2trDJeWcNUFUEc0ZacOHWI973vA5w9/Zo2M/ZhaS292ZAUquW1kmX+u42b60PTYdOHBspGXZLmEyEYIEQKVJLPGFUUCyjhCRSftaIEO+NcAtHVU+srfndvj2UQ91oew1sNLa4nKyHAPwCejzH+vcGffgf4tfT9rwH/YvD7XxGRSkTuBR4EvvKWri6N/cKMXCuhmodONQASztClM72mKKfTKbOp8uzn8zmLxSIpGuf0Zu4ENWhQkp7fNo3y84Nfzo0v4R/5tMvueO5x0XRdpXxoOmPknBs8fxlrAFLKMP/TykdswYH1w3z6M19g/ehxLaZBU5dVWXYnV9vUtHVNaLVTtW8bgk99NoInph4bcfDuOUZeKhhKn2NoLPqUnMHZIm2cnKHQryK2p++aImUyTBeXL7vBy6dfPxu9ExaitiL0EbTjtGZHJisHWDt4hIOHjmGKMZiCgONDH/4Ijz3+RJrHZfXl/fQj9w7BGk1lF2XZpWARWQJS8xyq26/pbi3vLzoRW5ta3YsITUol+9TLNGTRoFQ+L0Tt4WnBJc83g+rXO7rD8/qfctVxPR7DR4G/BDwjIt9Kv/tbwH8B/LaI/BXgR8D/Jl3csyLy28BzaEbjr79ZRuJqY7elX44P9aQzEpPeYe7l2DfviLHRDEXqM1AUAZv6EmbnzHbpOOnEUoLXFRmDFlhlAdb9mn3scY/pBcJCCLRB5eYy8886iyssTWuIe1q762v7GCnKgmbR6Ge0FrEV73rvB3jvk09hXKkVAia9RlQ5N9+2LOZz5vMZoVmAh5iyM8Z7cIFhY1Y6EBI01ZId4h5UI/8s6oGRMijGOkyMGAtdr4bokegx0RFtxET1hfTvkFMf+x/ekt5/gEUM3WfR1GkbI6YomayucfDQUaJJxCCJRLFMVkZ8+tOf5ZWXX+Lc+fNLbeHe7PSMMd1PMRhXdFmEmD4HJgv5Dg6QqJ8n8bg6DzaE0BVVWWc7YyAi+DZgbU4jB9W1QKn51hii1fAh6CLqMah9r3kf0HGAVQ0N442M68lK/FuuboQ+fZXn/F3g797QlSw/f+kD7Wcc+lirbyHX9UyMqdFL6uqUXfEghgYVU21bterOOQXXzCDeDUDQjVbXddfgQ5MJccmTk8E16c+xfww94SrLouXH743te3BtGBuLLQgejhw+ys/+/C+yduhw0v5LC9KICoeKNtmp67rzcDL/IQbt9yDBI+LUgKJhj6ZFTX8xyRvLupH9yJva4lzEN1oZKEZ7ZhqjvSuidR3mIzF2vUIlFV9h4h4ZtOUx9KR0qJ1OGRVjKMqK0WSV9UOHcZX2ERHfICYQonD/Aw/x0Y9+jP/pf/6fmE6nezbHkDS09M4inZeR11hWyhoal4wRZKMBesqrYcgMzpjwopja+Hk9gJInYDUmw7cNlCW5O3bXeDj3vNh1fV249SaG4mo/X++4qSjR1zs6dllyv421uFioPqEPXS+BJXntHDLUNSKCqyqKWGiBUlo4ufMPIsQQk2Jykxz9ZLlDv7gkJpGXVIjVeQ8JsUacJgjbliYEKFI61NirmNq0yKzVWoSiwPtIMZpw/8OP8MgT78IWpZKPJJ1KonGqdn3yXe/O4FV+PBDw0WNiwKXiMqLv3PXQazktX4cIwYe+XDih9PqzxvpGLMZ4rHFEE4jOQxuJRutDrIUgBpGWIBnU1PZ5u9f1MobUORcDD0INmBqGEeV4wsr6uoK729tI9Nh2oRiENXz0pz/J0995hldeeqk7qTPHIP88HDlEkoRTdQY9ewm7MYQB+AhJAl79xF7aLcaue1cOZYYGpvU5rOj5Cvp+2Uvp32vI5XlTz4e3bhDyuGkNw7UyEv0kaXynwiWQFw+I9pBIAiIS21TXYDuST2hrmtDSsuiAx7bNWoqRtkm6iwaMNSzmmgLVn50agpiwDkm19fQdjYmtiprFgCUiMahCtUnXaAo6/ecef1McInosBg9EsYwPHebTP/vzHD15StOXQSvzghja1hPF4INQLxoWsxnz6U4nwNoEj4sBEz02eKwExESiibSpv6Ulpydilx0BOvGQLNiaIx8R0QrAmHL6idsQYgESEVTINua4HMFIJNISY17YvXuc8Np8p8mT0lXBGI8Vq0kgVxBjQVGOGK+u4sqSYA31bEEUQ93WFNFw5MSdfP5nf55//N/9t2xevgKEjh4ehu8jgNg+85MOkRgjwUinKQoRn4EPeuAxO49th5+kjuBCZxAKZ7vMSgitclrqmsI5jKgEXxkj0/mColKWpG8XA4+kB2a71K5uit6+ZkA+jRzOsvtx1zluKsMwtHK7MxJ7UOVBPJe1DLWG3WEy0IUlkhSGktusjDjtQ2wkqyYntlkLdbLctnAUpaPxDfPFrJtlk1vCAb5pFEE2FpvCg1zDkSN1q2JFWslptbNQyM1XjYOQumQP9koIEVdaWgQ3HnP3fQ/w8ONP4KoKsdpNSuvHklsbhTbXjbSe6c6U2CygmnRxcW5JL8ZD1H6QEVGWYbdJBn5DXkxJGKY7GdM1qgF0isVIwItBcCBeadOkPechWOmyN0Sfvu9B14H5H3yXwi0xWFF5dxGlZIcARTnClRXjyRiMxeJooorb1LGliPD4u97DI489xte/8lV8U0MC+IiRsCuWCwiWZbCyqWvNRgzC1Py3pVAkn+IZ7OxSsDqPysbsvckgsXvNed2AdZRti8Np/89Ohm8ZI9DoOa2dvU5XPwYg5FsFJG8qw3CtcS3cAXQCl4tZcqxoMCYh9m2rcyaR6A0eSa6u3jifshzGFcpwTI93tsA4SeIumgLV1nd9Pju7mkCv4WcMQRx10NPGpRMneG0GSwfISdqc2foYFj5gyhFrBw/z6c9+jnvuvZdMOsrP6SmyKvM+X8zZuHiR2c6Onn5Z4j2ChMFCHoCvkCjYeT5zyi67zHn+d/3r3GJjIaRS8GxkbcITRHEMxTUNJh24IV2zhOyhLCsZ6YZSL0b/ZlXTwGpGwreBqqwYpVoUMRYXDbPgaVJXrEXTsH7oEJ/7/M/x+muv88brr2p/zahGp49X0scmdh5SNy+pEneIM/ShQ+jWXZ7TzvjZBKJmz6P1XXgxJJWph2goqwoS7iDp8OoEa/bDQgZrfhiCsetxP044cdMahqt5C1f7/RDUsc5hW0vb5sVuwMQl8dChi9YZHFmOAU1KLbqioEwnB+nvXSNX39I0LVqRiCalSYvLWLyI6hUYLUpq20Zxi0SKEcnqyYBE2uBponYfctWY97z/Azz51IcYT1bA2KQqnMIpI0CqJK0b2qbm4oUL1POFfuZuUfUnc45dl5HufnH1xibumiuW5ruXhUs6FJIFSixiMlqvm8DYtGjTiS4hpHLj3HtDN6kIqSejJOAt81WSgTAWYxxN61N1bEFRKgNSgnpwElp8ne6Lh3sfeIiPfPwT/O7/+DtsX9lI+FHfsyNPg15qLnqKndqSpr99p8KVJoRMZRL6UAtiaiaclh196BETXqLzlWPHjCkYQhtprFfuSprX3fUeMWY3Ye/5n7k9+xmDt2IgbhrDcD0klGuFFpKAMWMMRVkSYuhSROp8GaIh0abjgLy6fPr6EDDiKauK0WiMK7T4qiqKJXQaUpzpNY1mrNP25b4BNO2EdbTpOTbJ2/tWq0INytS04gYxfG6SArgRj7/3Sf79X/lVHnz4UVxRppPd9ht3cHo1tRqFK1eukBWsNDc+WBhp8XQq5lF3hL5U7ACyPNf5674LK3k7OYQTslGIkGTuY7Sq5hyTB4GStwIhyaf7ZBzy4Z29hPz+CRgV/daJsgNVtMpSJOPgg4YsftSAryEsaINhvmg4sLrCxz/xM7z0gx/wja99Bd+2RHLfh/R+GiupF9N5YD55fQo8SshJ3OWsib5K7K65zxroRHdGIMZunQ0921zcF9Jc+wEpa7C684QnjES/H96j3Tvnzy34mMduAzA0Duk33eMyeShvchNhNldKcwiaZ1fvtVdY6o4kIMQWk0gphUt9Ia3WyscQsUY7D/vW0zRJ/anQeDq7nYR0w4tCwaoQsMYgUQFN39QYAtapn22s8hRC0k40IkhV8viT7+cv/7X/Pe9/6qeQoiDnPfIcxBgH2ZfAfDbnjdOvs725SQxesxVJum2ZfzE0Dj2BaT+ju5/X0P2cJ0+0BJ3EEFS2ZEnIsXYShpQsVWdyLQUaLhC6sFnyORxjJmOqeKoWXWClhCRxZqzVknbnkCDEEqrRCN/M8Y3TyssYmdctx07cxq/86l9kY2ODl3/wIrFr4pMiJ5M4F94jVqnMPnEMRDTMiyFoYjxdZ96JkaiGSnovZ7g0h1yMmL08a1TnwzqMKyiKKulalESExocOX9CIJ3b3fjD5+96XN7tv1ztuKsOwn8u6G5Dc/Tv9PUAvrhJjpCwqivTzbDZjUc/xXvskECXd+O5diJHEctPfdCSpRusQCmNpmrYr1+7at0PnmQCUVYWIdEIx1pgEeLXEuiaGNi0iISYmXUz6jaDiKPc/8Rj/6W/8bR5793uVymwcfiAi07uZim0sFgum0x3lMSzmtLUCbTJ4PJ1XkOYMSWF8bxyWMz6y534spRS7x+nzTZatN+AQ/GDjaNFYfnxM/WUUqNRMQJ8uFRi44sl7SJ2ajKnAGGVbGostXCKoAbEE72nrEU29g/EloZkzr1vKwnPv/Q/wl//yX+W/+W/+K1579YcQ28FeS+dwRAljVo17zgoMqfIJYNmF/IWuIWH+1P36TYeWsZjUm9Jmo1ZUFOUIjKUNAdo2hUsa0vohBX/Xa+7Z7hmbeZvGzWEYrvKJ3iy82O90c64khEjT1IQouKpkpXCUdUVT17TNHGJkUS8SDyArMPcLPQRVD1LBEgWOmnYB0PVTFOg2f9f01dqOZKTGyWFiwDeLVIefWQORJnhsUSJFqYvCWmxV8tCjj/M3/o//Jx554t2U4xXmdYsmFDRTkcFLYj7ltFHOj370KhfOnaOpF8kJkgTspc9lcvowCanY3gOBXmJuaBB2z+9SPh0LknGE1H9ClK0XU1s6C3h0jnWFt0lV2hBimyjGsetxQXLyuyUeRbVeUrbEFmVnTOkwDcGl6k/KkqLUmgZjLNEU+NCyM53ijPDu972Pv/rrv84/++3f4sUffJ/5bNaBhvnUDzFV1A7XWVcPswzydYZXJ6h7Tsf9yOGt9KFDURRUWcDHlnqQGO0+DoKPQTM9Sxt9/z2w5Blc9VFvbdwchoG9i/DNvu9Pt+VTLbv3IpmUYok24KyjKitCO1IW4NSymM+71xRJfRXSQswofWw9LSSCVKIfG5Mk5ZY7RmUtSWMMzmp1pG+b7nEi6kQHBHEFQQzeGKrJKsdOnuLBhx7hF37pL/DIu96NrUYs6oaYcuwxtWUL3uPSwlu0DYKwubndhTK+bTVdGgLGqlDMsHtZt+DSolVvYa8nlhf1bjS+uxfd44xGEiGiddZCbogjRnBAiOqWx1QxqXMc+pUsfWESgNl1HR0OZAqM1TDNGpuimNQsx8Su+tEWBXU9R0SNV9u2XNncghh44vF3U/7Fgj/4g9/nuWe/w8ULF5jPpnpAxMTUHFS+GpE9G27Qaa4L8DpPzEhnZLV4ziKk8LRMrRKLitI5BaejgpomhQwx0jc3XjoUh9/vCuv2wRh2388bHTeNYYCrewj7G4f9Ka2QSqsRRPKmtGAhuKAndNtQN566aYltS8+D0IXQqSjHSIjK5lN6s+9PCFkuymmaBDpa3UyLhVY3OiFJfKEGBUsUgysmrB5c5/a77+XJD36I+x96mEcffZzb77qLYjzWKNzqpg1RgUqJgSKVecfU4KVtPJcvbbC9tU3bNCp5F9OCzXUhIkST5sf0mQRjk7YAsjS/eQyZevnn7p7kRZy2hhGVPU9bWFvGBwEbMdESo08F2LED+wTtrJXxhcEdz3e0I5/FODAMSUPDptBPjIZjGcwrXMkseUfB6xu0bcvGxmX8ypg77riLn/+FX+COO+7ga1/9Gi+//CKznR1iu18tzN7RhT6xNwyd95A8R+cchUtygK7ss2VWNUYRQ2a7DGXkh/fgzcD4/cbQ2/txxk1lGIbjamnKPDIbbRgXd49DN6GN2udPxUQDBDBGdQQKV1G4mmYAQmkJbNItTK8VsgqyV09AXfk2gUPLHIb8d9/mv2vjOY9RQo2onuT6ocM88MhjfOqzn+fu++7n/gcfYuXAOmVZqso0JP1FzZKIWOXQty3Gagt7HwKhDcxmcwRhMZtBDJ02gHonuSyY7jQ0xqairKxbaTDYbg4zoAlJhTuxG3VuM1abmqZI9kBkMId9KXYIbdevNtPGgyTJt2DTBokpMpDuhMyMadWfTO+FxdgCsaLVnCaL8+qx3aP8ruM2SIhEo0VxsfXEtuaKbylLy2i8wqOPP0E1GnHy5Am+88wzXLpwkbqeQUibP62DMAglulQxvdea15tx/eYvC2VnFmVF1sJUNS8NuRRkzZ+5//dmGzp7fPsZgLcrVQk3jWHo49clgGsf8Gt3jj2PJaOR/p7j/hACrQYEeoOiIsFl0SQDE9LJOkg7BY31QmrOoqxBs0RkyvUKoJ6Gz8UyDF12BarMeIUTJ2/joUcf5+M/82kef9d7OX77HYzGE1xRqOaBdbSEtPlDYsiZLoYVIPoWItrABLh86VKq9e+VrDOHIPiAJ6jXko43MZL+KdZgsJ1hiFGp291dicuubZ5/k0Vi0+9CWtcatsQuBAlBZe0EEt8jIq0nJEo2qc8oshwi6gunuox0ulqxqo8okSIJ7HbhjtD3a0iGoSxL5vNFZwgXNbTes5jPVNXLKph49PhxyqLk1G2n+OY3vsFLP3iR+WxbjfugjgaGkU82hNIZtJyJcskwFEVJka6j19o0Xd8soS/Y0vArptQu3aGytEOGa36XUej2ya498ecmlLjRcfUsxfIUGWtx5Buq7rArS2xTYJoFMYJP9Qm74+3YhrShIq1vlmLubBTyZowJf1DKdCSIYbK+zm233cGTT/0Un/jU57j3gQdZWT+ELUaquBRgZ3uOtZZqZHDW0DbaIIcU2oQQ8b7BGYPBMJvNef21M7z++ht897vf5+LlK9SzHQW2RiOUWEOHlxDTiSqm20zGqIaAMQrWKSzh+9DAGAyRpvb4JIZLCrfyKd7NL9nLSuIjtttCmqoVYVHPESItvWJ1NAl7GRwAagyS+4Ykr8F2AJ51wmSyQllW3furN5LASGMpypLRaISfz5UKPdjAIQTqxuNiX1PTtp7RZIUPf+Sj3H7qNl747nOcO3eWnZ0dzUqINuMdsh3NwJAtzalxyv4c4Dc2AYsxHRK9l7CMjQ3xruHoeSjQb/+rb/q3w3O4yQxDH1vqJO39fnlCNPMd82Oym7fLdHYbFnVPY4xYG3BONR+9T6mrkGlPsTvpY+pwZaPKtSW/NYHZKv2Wax+sG+OcY7K2wm23neK2O+/ivR94ig9/5GMcO3GScryCR2jbQL2o2drRkuC1AwfSiacGxjqLWKFuWs1kWIfBgoed6Q7PP/sc//0//Wd861tPM5vVjMYTTpw4zp2njjMerXSptix1ZxFKsakBiuuMl0tCK6Bhh6phS6doDFAnZShNuQ0FUdNJmeY4xCQKK9J5ap0Umghm6ohe+0MYCRgTiR2PIXbhicrV6yZPwIieuM7pnS4sxajCFSUxGloveK8ytx0CmLGGoqBt6o6iHoKn9S3GwHzeqDBKWkX1vKUsC+6570GOHDnCSy+9xA9/+EM2Ll1iMZ/ThLYLJTIADdmY9QS5bvnFfBAlbyER0zCZm5ANgCxhjEtZoMGW2AU3MtwN+yMRcdfXGxs3kWEYfsTeQOz+Pk9qftwu28ruHgWKEiubzaNrJ8uvVaOKgGc+3UGC0IQai9CGVj1YhCDKIMwUZh8SmJlakpejCa4csXJgnbvuvo+77r2Xu+66m3e9573cfs+9lJNVyrKibhrmswYxhrqucWXByupEeQ4ZZ4xKvfU+pHbxKQaNOjfNoub5p5/lv/+tf8qffulPmc9nxBhpdqaY0HJs/QArq2vYqsJPp/io/TacQCGClV6yDNHmMco/SHF+6iAtIh1RDKBp6r6ZTDrZQjpJO13EmKjE1mFTWq4sK8pCu2QHnxoImxIvHk1zqnZGxhl0l9qU6cjAq3oNzhYEGsQKpnREa4nRgY8s5gttBB2V09G0DRglqS12h55C4pdoab3BUriKne2LzJ1jNKoYrx7kife8nzvuvo/XfvRDfvSjH3LpwgXqxVwpz8SOuSqi1beIhnlt1HJzawv1d4z2/ySpgIeUll0eQ4xMv4bkWewVronkqco7Zvhqcen1h9kdbmjcRIbh2oDjvhkLgdwIdel33bfJpR6kNJWvoJ2us8uP98znMzUEIaJnbFbiUXJNg57cYg3iSoqq4tj6Ye65/wEefeLd3HXv/dxz7/2cuvMORqMJtiipfWS6WLBo5+n9obCWyepK91k6CS86+KlbQDmMiInI9P3vf5/f+kf/hD/94pe0srNtFZ/wLdOtLbY2Nzmwvo4tKmCaxEczeJbCKBGMKbQwLKfVBNoY8V7rP5RApO37rNH0IwSCgcKQUoW9+2ySvoQRobAl1lmqasRkPMa5gvl8DrKj7nUGPoNiJCr0HTsDnrES7YqdQomo1SRlMSJKq/c1RJpFw850i6apdaPHQL2YsVjMsDEmLUpD0wQksSVDUpkOba8YHiMs6pp6e4fRqGJldYWyLFhbO8BjTzzBnXfdxdkzZ3j11R9x7o0z1POZVntqA5D0+SV5YioApGKu7AkblnAKSZ4R+4CIu1z/PczTNwEf/9xlJd6M1LT0WEAR92w588Rn/2toMXvXTU8jtaxlWUKYpINZqOs69ZzQ8tfCOuaLBXY0YbS6wuraAR54+BGefPKD3Hf/g5w4dYojJ05SjVfAaC58a2tKmC4oRyO0FDxp/5nhdejQEyT0peISscbShlY/VyIHvfH6G/yzf/pP+ZM/+RNlY6Z50lRoCnesYTKq1PilBR9837LPhohJmoPKpkTr/ttA09Y0dU30gaIsiKFlNBqla4vEVjUtghFMNFgpejFda1ElaZsIPCOqqmQ8HgOws7OTtDbnhNYr/TuDskIKHeg2itZc5EyJxQSLtUYFcp3em/lsxrPPPsO//tf/ihMnjnH82FFWVyZMxiMWixlODCuVSxWwif/hCoqyYjbd7jyfummIMbKyskLTXGFnZ4fpbIeVlRXW1tYonOXIkSMcOXSY+++7j7Nn3+DbTz/N5pVLqVN63EUcy2SlTFnfhVldBQ/bF1DPq3QfoyBcyyiw5/E3Om4aw7Afi3G/LEX3uy7lo5O3W+azj9H01DTZeAw6PkcEa5zSUkVo2siibiEBXYFIWY45fPJOjt91J5/+7Od417vezZGjxzh05LD2phTtTH3+0gaNDxw8dAipRkiIiHM4YicIajKKvruEF/BJtMVErcbMeIOJhvl0xr/9oz/iD//Vv1YFqhiRECmKgrptO0JXWWjvg2pcMU3z1PiAC4FF0xAXCxpvqBsQW+upF2NnPEKqIambBfP5lPGoUil4gcY3+OjxRufT2RLJxsE5jGiLuiJ1VBqNJzjn2NnZYXt7i9l0m7quNethVKtTSX5dspPOC44Gk0Vg0KY3zqbqVhoKo+S0r3z9Szz37HcYj97HbHuTF1/8PnfefjsPP/QgEiP1qGQyGmEk0rQtEj1FWbCzHalji5Vef8G5voVcjIHpzpStrS0OHzrE6uoqxgqTlVXue+AB7n/wQb7/ve/x/PPPsXnlcspE9QpTuZuUHloZztWx+8jL+M1VN+8+m/9a2Ye3y2u4aQwDXF8o0RsFBQsiaKkugKgEy7KnsPd9cmux3AQmJiPhigZXqXjswcOHuPPuu3ni8XfxM5/7LCfuu59qvEJZVERRWa6NS1eom5bJ6iqT9UM0bYtHVOTFmO7kBtLCjCowGsJSCLE0B91nR7sXEXjthz/iD37v99jZ2gKvPRtEhLqpcTbL0UXm8x0KFziwtsbmaIMQwLeBtg2Y1mN8Q5CSaDziG6IIReEwhem0JkA7MIcQ2N7ewVoB33f8Mlbz8MbWSFaKFquMPqspusnKCoVzzGY7nD9/jksbF4FANRpB9MTUg1HTu4MoOUqSNAidNyQSEWtovcdVQjUZ8dDDD3DituOEGHDOMBmPCb5h4+JFXn/1NTbOX+B973kXsVmwmM9ZW51gRAHGolD8Yz6tEaseVYyRqqrY3t7BGElKVUJZVGxvbbOzs8Pq6irteEzpLGVZ8MS7381DjzzCD158kZdfeYnLly7RBJ9wKVIz5CKFRnuzEHmEXRt59/qP/Q979srw6/L3V6mIvYFxUxmGGxpxGXoU6KS78s/6dZlTZxJphey2gkq0OcNobZ2VI8e55957efIDH+QjH/soJ06ewlYjNpuWVhyLxYLZbEZVjRitrlH6iHWOEPUEN0b7KaYcKCH4rqdETEYoeztxkO5cWhBiaFutOlzMZnzly1/mhy+/oqrMzqiADIJzlqKw1G3LZLSGELh48SJVVXHixEkubVwm4tQzsAZbOKpRSVFUGClxRYktXIcPqHJQ6k3RthipadoFPqoXlTtORwTsApOyOjklV1QVVTWiLEsW8zmXL19mOp1SliXVygRJvShVeXueb+NACVnDQi3EjFi0oY04ofY1IpaHH3uUD374KY6fOMTJk8cJ7aPcfe9dVLbi9I9e5zvf/jbPP/c9RmXJww8+QFs0OCuMqyKFh4oVhahqzSH0VGoV81F262g0JgRPXXusGK5sbjFfLFhbXaUNkZAA2sefeDcPJgNx8dIlLp4/z/Z0qvfZJTxFsrc6XL/LQPvVQg2z9Cg6L/hGx094uvL6RjelkeX00D4PVEAxLKWVfNC0nMaGFjeqGI9GPPDQw9z30MO8/wMf5PjJkxhj2FosEGp2Fi3WBl3koxXdzFa7YWnari8ZNiLqoqeb0Wn3JTBKSAzDoE1fjdVehZkl6NMpZhAuXbjAM08/TT2bqepyTDoOxuCDxwajgNnKmLUDa2yf2aKqKiYnV1hbP4zHMF8EsCNsYXGlwxWWwhaMRisUZUk06AaPgvctRV3TNg21q2GamtSaQAxGe2u0LZI6bWVZfS0QKimKgqZp2d7Zoa5rVlZWGI0LrAhNUzOdTmmaFmMc0WobvtDmtn3JwOebKknMloZq1fHYow/x0U98mFN3nCDElrvvvZsnnniM9bUDVK7i+8+/wHefe57Z5g7fff4Fjh4+xJGjh9jZmWLNCgFYLJToFoHatxQpZGsS1rDcdEg9iRzStU3LxUsbVGWpc7wyoW1bRuMR737Pe5nOply6eJE33jjHuXPnmc/mSzTyfP87waCUzhx6DfuFFXt+JhuaN9/sP+HMx/3HHjbcrpHK9LsYbimWE+XHR6vuuzaw1catEU0hGec4sH6Ix971Lh585DHue+hBDh07Thsjm4sGsYbGB0alYTQaIx1BKL1LLnYZuHyZYTi0Uv3NkQ4TycrAEiPWJaOQ65YT18L7lhdfeIEzr72Gb+pEfmoUXY8hMRCVFHXo4HonlW6d9kO88577OXnqDqIpOHfhMq+eOcf21hwk4gqDKwzjyQhTlFTlCO89TdvimobFbE4Igq1aXPDUUcNmch/JusW6BucaylJPWWt1E9R1TdM2lKOS1cmYUeWSUYjdHOQMSQYbnTO0vqVwlqZN4KqxiAMpAvfcfwef+MxHuf+heyBVvD762KOE1jMqSqZbM6rRCJPIWptXtnjllVdYX19DiEynhqoq2NraYlwViBiCD7TQsVVVELgvjDOJr9KnaTWh27aetp2yWNTMJyNGswXzyYKVlQl33nU3d9x5N5tXtjh9+jSnT59mPp/r+uuWTa8YncHF/rC7+kbOy+pqj7gmVnGD46YwDLvzsPvhCvtjD7rLRBLxRP8IpMlPIijeR1wxIkmKghhW1g/y0COP8lMf+Rj3PfggK+vrzJuGzflC5d2LQkVaEjAp3WvH7oJj9lKWGCpJbyCmrsf9H+g4OClj0C/IVqnb2d+MWlod6oYfvvIKly9dorCWtl4kirE2j7W2IMbAgQOr3HPvPTz/vecJEUrnEOuYrK5y1733cey22wgYzl24xFe++k1eeuEVfCwwxhNiy7hapahKiihUMbJYNBANTRsoUzcu03qCCVq8lbyaplavoqq0y1WIHh+gCS1lVVCWEw5MRoj0uIXqbuYNQbfxsmBqztVbpzLqgnD0+FE+/skP89Cj91NWlrppgMD6wXVC42nmC7a2tri8cYnFbIqx0NY1p0+/zn333cuhQweYz+YUhSOiqclIVEZnOry9910H9Ly39h5I6Weja7INnp3pjOl8gbuyxcFD6xw4sMZoNOb48eOcPHmSxx9/nGeeeYY33niD7a2dtJ71/Uymr+fCuPRveLhd77hWVuKtjJvCMMDeTMTVaKFLRkMDghSvxSWLbJ2jbhoFndqABW1UsrLCQ48+xmc/93nuuudeqskKO7MZb5y/yPjAAcQUuEo1HcgIc0gbgrg86WmBy5K7mDMNUb2T/DkGRgGyEEzswpxqNNKHBXUtrbVcuHiGM6dfQwg4g2o4WD1ZrXMqoyahUzI2JvWjsAVrB9aZrK7hRhXlqGK0usrRU7dx6s47+eK/+TLf+Mo3ubLpWbeWyjdQq/KyUo81DneuwJYlrimUDh5bLRmPmruPISQAUVvgNe2CSIExJB7DiFHplDlY1ywWCxW1yZsg9EbWWGUmNk1DWTra0GCsYiI/9VPv57HHH6aoBExgPC71BPae6FsuX7rE09/6Jt/8+teIoVWAMzZsbW3y6muvcvDQE7RBu4qNx2MuXbzIqFJhGZ8a5+YiuN3rTMcuPAA9dKwx/YlvhEsXN9je3ubgwYM0TcPKygqTyYTPfvaz/PCHP+SZb3+H118/0/X/zMZgSLXW+hWWslbD9X+t74c//7jZiZvKMOx2ha7pLWhAn1SIUiGPPguM0ISAF4txJaPKsba+zp333MsnPvNZ7rv/AcarK9S15/zGZarxhNWDhzX/LJlgo43c6vkCIeKMvboLFxLTJb9/YlSoUnLUvyVnI4R+MbSZItwhTLJk3M6+cYZXXn6ZkMqpNUHgcU5Vi8RAWRYE37C5eUVFa6uKI0eOcPjoCSarB1QE10SCeFwpHDt5mM9+/hNMxhX/9o++xMal8xjjWFlZ1fkOCspB6PQOjNH2794YCHriGdMrGmsIUlMFzcq4omA8rhiPRyrg7z1N3fa9OmKfh49kzQPBWBVd8UGNQyRw//338N73vYcDB8ad19bWqkNRLxZsXNjgq1/5Mr/7O/+CSxfOEnyjXaGsbrzXk9cwGY/Y2ZkyGRX4pF2hGhGp2tTZjgae8OHkCO5de4VRIDm0atSL1MpORGjqlnPnznPlyhUOHjzIwYMHmdULTt1xB/fcdz/ff+FFnnvuOc6ePct8PsfS96iAPn25e29cbc/sP348owA3kWGAq6cr9/09uUoiT8PAqovFh4AtK6rxWAlJH3yKd7/vSaoDa9Q+sDWvqWvPyoF1jLGJTGSTpmOr3oiA8YFyVLGoawUzs1HqVINzSrIvzY0oUanLmyTgMQNaMQZ85g74QGu8eiRdjY1hvphx/tx5tjevKEgZA8ZKepwCnc6pEMjBg+s89PCDrJ09iDEFk5U11g4cYv3IYQ6sr7NyYIViVGELTU9Wdp0Pf+SDzHem/MkXv8np069y/NhxDqwfwoiKzvpWNw6ps5JNWEYbBgpLmU4W1S2PRJyzSisej3CFo53PFXNoesGa4b3t4ubB57LGYCzccccd/PRPf5TbThxPoG5a6CEym005e+YMX/nSV/i93/1dLp47i8HjrMe3Nc4WRIlMp1NeP/06Dz/8ELPZlNIaxqMR051tNeXRa8Wmc/hUMRpiVDHf7gDS0UmuJSMwpIhrg9+ePBd84NLGBptbWxw+eoS6rllbW+fhRx7mnnvv5bnnnuOVl1/m9ddfZ7FYdO+R2wOYXcbhevZO//0NPXXfcVMZhuG4FqcB6OzA7jlQYC9QTiYcO3mKD3/0Y3zgQz/F4SPHWHjPzrymDpHRaMyo1L4SIZ3kEhSxNpIa3BqDE8NiNiN0QFQySj6SZchyVqTrBSlR278nlaIcgmj/0pCqJZVQ5EPAeCFTc7Ph2bx8he9+77tkzUTrLE3d4qzBR1WxLgpHWRYYIzRtw73334exJYhlZWWNQ0ePcujoESarK7hKRWttknS77dQJPv6Jj3Hp0hZPf+s5zp99HYCqWkUk9Z9M/1QkKYGLwSadh76qUNJntNZQlAWjUYUrNP03n8868C3b0Wxglyo0nSWEGmu18vXue27nM5/9NO969+NUVQEEom9p6gWbW5s8/51nee6ZZ/nTL36Ri+fOgW8wJmJEJaOdKwiJzn369GnuuedunHMs6gZjlVdSGIMPrSppp3XjQ+i0MA3LAHh3f9LP0v0+JqMPxoSUni40wjXC+fPn2dzaYm1th52dKUeOHOXJJ5/koYce4sXvf58XXniBM2+8Qds0CWdhl+ld3hc3sofe6rg5DEOPQpGbNGX2wXBi9v4t9k9PnkIUy2hllfc8+SQf/8TPcO+DDyG24MpsjikcrhxRJM68MZKyA6HDFH0IaUnEJOWWooCkZ5qneuirINL9Rl0DujR1zOrIMdOXNRuhRkGNg831HnnRhcDmlSu8/NIPaOoaohYbZdXnwjhK5xhVJeNxRdPO+e53n+PkHXdx9733c9fdd1JUIyVera5odWYSoLHGYCoDPnLHPbfxhZ/9JFc2LvC9771EVZYcOGhwbtzxLCKRKCHJIqhUWhCvn9PELACl1aHWUhUlpSuIPlDPF8xnqVt46vqNBIIkRqC12ngnGVBjBePg7vtu5+d/8Wd58KEHKEcFTfSEpuHKpQu8cfpVvvP003znW99k48J5ti9exLS1Gq9kRF1Ski6c0tB3drZ47bXXeODBB5lub+PEYlzFfDFTrYrgIZOuUs+JzDnJBXc5qugxLr3XCWVC0BQyRvCJmOasxWJU3s3D1uUrzLa2ubyxwcnjxzly7Bjve/JJ7nvwAb773e/y/LPPcXFjg2ax6FrQmZRet0Y5JrvTmzmk7pDwfF0DrKEzyDcwbg7DsGf07TyWrDS6/dSiBgy5XgDEFLQBVtfW+PjPfJpPfeZzHDx6gu35jNA2FKNJx2GPqQt06Lpjd94+RFSQk6HFlf6KMnK+Kx2ZT/r8jJALOERP1xiDdkHKxgE9nbQ8WrEDMepxLOYLXvnB97ssRMQTQ6vCqMbiCkdVFFRVyWhUUpSO+WLKK6+8zGxRc+TYMe45eYLRyhokLQNBy7p79mjEFcIDD93NL/17X+Dv/z//IZcunQNTMhlHirJSLMDQCbsYk9zlIGB6hSO9L0pxJqb6jLbVSsem7lS11ZhofYRHQ6ZsWCItxsJttx/nL/zyL3L3fXdTVAUBz3Q25czpV3n26W/y9Ne/wtkf/RDxqqdp2gZLSO20SCXW6skUTrNS1hlee+1V7r3vPiKWto2IcdRNQArDuCyZz3bUeHmvuo+DatJ8iqfl0RkJpP/8+W/dA2IyrJJaBHTelbCYTnn11R/yxrmz3H7nXRw6coSPf+ITvPd97+eP/viPeOGFF9jZ3sbXTVd/UxihbXtDtDTi8Br2eglvxW+4aQxDZ+GSXy7JKHQxfHcH+okRUZmziLqih9YO8qnPfZ6f/uSnWT14iMtb21STibaNT6d2HGxOdd/DUgqxu7m7ZzPN/NBI7eZb7ymI6WIM1XwM+b0T1qBfPSH0mg6CYbazw7e/9TTNYo5EzXlXVaUhhbG4UpWGR9UoFSxV2LLEFmM2Nzd54YUXOHDwEHcfPKxK1KnYKYkMqg6B0c5ZlSt45PHH+MIvfoF/8o//OVvbG6q07HW+TBCcOAU7rRDTipEYOoOhYVKSuWs9jVGwNGMLS6g7agtMMqTWWEBVso+dPMzP/8IXuP+BeylLx6JesHH5Ei++8D2++G/+mJdffIGtjYtUEiidYzGb0ca2B3gTYmisUSylUlm1KIb5fM4rL7/MAw8+yJUrV/Q0t5a6XjAqRiwWiy4T4FudZ5OEbknXq6luUh2H3uDhEtC/S7dCQ3Yxo3qiVqBI3kyM2k39By/+gPXzF7jrrrs4dPQIv/zLv8wPfvADvvgnf8JrP3qVRcJopt4zqqquW3dMJLpdm2jp6zJFmhsaN49hgM4A6JfUz7EzhQO8IYkC1j51PDKWE8dO8vmf/0Xe94EPIq5kVrcYVyBG6crKw0+ucUyaiWFgGBJIsJuMlL9Vs9zHlQhIvqblbNauD5VuUNSFMzQKxJQFSN21ndX4/ezZs0oltg5jVKshJv3ConQUVcV4PGY80n/VKDW7tSXFaMSF8xd46aWXWVk9wO133tWlwXQtp5AnqOxbG4XR2oQPffRDvPDiS3z5i1/HbjrWD0DhRuoii/b5VDl3VWSWge2TPD/J0DUpi9IkhewQQieVJz5iomYfOm2CGDh4aI2f/umP8eijD2MMbO9scub113j6m9/km1/9Kj96+WUMHktkVJZIDLRN002yJBxEDJ3uY1WVKJFKjcPrr7/ObadOUZUl3rdUoxHznYa6DSAGV5Qdp8KnniCSAMmuRFokiWEvHwp97UufWYqpdV/0vhOBDT4CXovCrHoDi8WCb3/72xw/eYK77rqLe++9lzvvuINvfP3rfP2rX2PDOeqU6t03lZ+sT870sOvrT3YokTCGXCRFIiMNxNa6KJ6Y3XlNR544dTuf+fzP8v6nfgpTlDQh4oqCojAsGt9JgLc+EEUbhgbfE0r07WOnx7c7lz3QiUohQ64IjN3f9xuCHmbde6SPmQ1CTl02dcNiXlNVIxbzOd95+hlKa6nKksJZzeujiyvLlo3GY8bjCdVoTDUaYYuKoqy0eY0xvPbaaUKEre0dzUysrqo+gjWE6HFGKArtGOXxHDpykC/83Gc498ZZ3nj9PG1Tpe7PJSb9p9Jp2l6O0CsYASn9qgahbT2+bbowwmep/RCxMTWYMYE2GZLRpOSRxx7ikcceZGVScfnKRV5+6ft8+ctf5Plnn2V6eRNpNV1bFpZR6ZhNd4ioToROf+ox4YwKsRYFhbW4UsHYplUP55VXXuGBBx7A1+mahMSKzSFqTLwMIUTVC9VOYn0oEAZVmZ332vUlGQLk6kFYa4kCbUggblRJOUOgSCnS8XjMbGfKM09/m1N33sHJkyf5qY98hPvuu4+vffVrfOtb32I2m6lxGKQ09+Mr7OUy/HnwGFiO4fvDui+zFoGAwbiSO+6+h0986jN84Kc+QrW6xqL1mMIyTz0A26AL2bdJHSmEpF+QQ4o8gb3hGRoGPXFU5lyVm7PnkIzEgHux23Ew6Yd83SHhG6FzuwNZhKVtPIJhc+MKW5tbjErtaGWN1XLgxCkok1EYjSdUoxWq0ZjRaKQalkVFNIIrKuq25ewbZ9m4dJnJygqrq6sUpSN6j3OG48eOcfK225gcWAcRxqMxd915ik9/6mP8i//P/5etrYswEcpiDWMKNQ1GG8uQ+Rn5vkSIXrkBi3qhDMKm7YxCt5DFJJZfIoyZQFka7r7ndt7/5Ls5fvQw586+zte/8WWefeZpfvDiCyymM2KjgrbjyrF+YJUYGq7UC80QJSUmEXBOKIuCUVkyLis1ouMxPkJVWabzBdPplCtXLnNwfZ3gW+qF1odo7YouwbZpde6tSxqOyuXIXoMCubk8T0lOqpqtoj55mORZRkzXcyMi2lUsHRBtG5SRGTUcMtZx+vTrXLm8yalTp7jt5El+/hd+kdtO3c7XvvY1fvSjH2mISU6QJ0ijswHLKMO/M49BRO4E/lvgZLqW34wx/j9E5O8AfxU4nx76t2KM/zI9528CfwXFmP4PMcb/+XovqEMQInRNDekNR8xpo6Lkjnvu49Of+zzvf+pDFJMJCx9p0fRj02rnpxjV7VVXVpSaOzjBNVUZ9ruULiZOoWOX1pbef2Zoincb5U5Apns/0xkF0u/zwm6alvlszmuvvUZZVFjjGFUjRqMR0S8oi9SvsRoxGk8YTVapxhOqasJoPMYVJTiHKwulRY/GiAit92xvbXF5YyPVK+zgm5rJZMzK6ipFNWJt7QAPP/wQx44d4/HHHuDlFx/iS1/8BvPpFmbsKErbpSZVao2l0E6kb+mX1ZXrutZsRDuYbxHaqCY44DEW1g6MefTxh7j7zts4ffoV/uTf/CHPPvMtrmxcwC9mSNsg0TAajThyZJ3JuOLKxsVOJt8alaOzVqsdq7JkXI0YVZUK5VhL4UqiWELamBcuXNC/lyWzHQWvfVBsIVeWigi+UMNmXd4m+nxNtao4TRyEl4qlmm4TqrHIBXYZJ8s4hKQmxVqfYaxlnkSCCleyszPl9OnXuXRpg3vvvZcPfPApjhw9xh//8R/zve8+l9oQ7t45/Rr8syi7boH/JMb4DRFZA74uIr+f/vZ/jzH+34YPFpHHgF8BHgdOAX8gIg/FGD1XGepi55y/aOyedmQG64x1WrxjhGgdd951N5/63Bd431Mfopqssgie2vsktpqcTB86UZNMQQ2DTal8+WVXbHf8llukxRRUL1XLvdmIyzco2/L8mZRpqLYlhMj29g6bm1val6AcUZYjqtEYQVvGK/A4ohqvMJpMGFUTyoFhEFsgTkVCTGpJV+bPGtV1LquS2c4O0+mUixc2VH/SOZ59+pusrExYP7DO4YPrHD92mDOvXcIafd0o2nvR156YWtMZ1AvInyc33dES5l3NWxLhC4FolAgV44JTdxzn8cce5I0zr/LH/8sf8Nwz32K6vUnwNbQtJkSqyZgjR49y+NABCDXnzi5ofZtvGs5YnHFUrmJSjqmKEaNyjKtG2KLAmAIfQVYMTaOl1Vtb2xw+vE5RlEwXc0KIzBcLFnWjZfO+pa4brC2Uk+Bi2uhWeR5iNONjtPdFTCdG9iIzTyOKam3mbdsxYqN06kERwQd9vg+pyRHCbL5ge2fK5tY2Dz/8EEeOHuWnP/EJCmf51je/0TUrzh21Q1jeYp0nG/8dhBIxxjPAmfT9log8D9x+jaf8EvBbMcYF8LKIvAg8BXzpei5oiVWXXP2cVQgiYAtO3HYbP/OZz/HkBz9MNZ6w8J4GoW48jQ+62VPGgqCGIc/MUkOVGMm60NkFGxoGSZZd9Qiz27w3prvayBiDfi4tIc7GIjPo8iO3trY1T20s1WikG39lQt2sYpxBUHCyKFcoRxPGK6tU1YSyGlOUY4qyxLikSZkW6zDNpvqRgfF4wsp4hdl8ymxnSjNfUC8WzGfb7PiWzY3LTFbWOXRone3NGVtbG2Ad5WiFEMG4pMqcUnWRzOgMXSFSLjMfdtnOgK+1Ft/WLJoFx46u8b73PsH29iX+5N/8Id/+1tdp5lMkBPy8xkhkdW2VQ0ePc/jYMdbXJlw4d4ad6ZTciVoQilRNOhmNmYwnir2Mx5iqRFyJsRaDYEPAOgUtN7e2cIVjMh4znW5B0JAgl1/nz9O2LU3wmBCRIFibDgdjIGd7kiEmhRciPViZr3G4riUbBmIu6yOTX4QE0g680p2dHb7//e9z6NAhjh49xsc/8dPMpju8+MIL2haxbVMTbbNkkPerm7jecUMYg4jcA7wP+FPgo8B/JCL/O+BrqFexgRqNLw+e9hr7GBIR+XXg1wGsTdLgCQAKRGzMnoRgQsRHg6lKVg8e6jyFYjJh3rS0MdBEoWnVKHifpNBTNiDrGGSPYffm7ibQLBsF/acLIndjGj7vzQq99JfDb3vOBPQUW4GuwMgVBeVoTDmZUK2sMW5rFVOJAescZTmmHK0wGq9QViNVYnYVpiiUSGNt38gkfwaTOm6njEz0nrpeMF+bE+o6nY4LLYQKQeXuignrB4/y7HMvsL29STBRMYyuW7UMjFwgRN9tJkgGMRvkAQhW+4ZIYDwpuP/Bezh8aI0//fIf893vfJvFzjaCyvQbEVZXVzhy9BhHbz/F+uHDmOjZ3NliNp9rhgDVxyyKktFozHiyymiyQlWNKUYjKAvtWtU1jI0Yq95nPZ9x5coVhDWsc8QQaL3H56PCq0pX6wOuDXgXsTEANqVEB3Od+SHJO+jmPWUxrGQauXTit2Szml3G7tDQ33sfVMxWSBJ5Uy0JF8O999zJ5z73OXZ2dnj11VdxsrfZ0e41eaPjug2DiKwC/xz4GzHGTRH5r4H/XD8d/znwXwJ/mf1hjj1XF2P8TeA3AcpqlCCEDJQM6iNSXOoR1tfW+fjPfJqnPvpxqtUDzJpGy39DYFG3+r33nRCLpFBE0uLMp1t+r8G16NeQDYK6d9r+TE/gXuylR+Ov6wZkgC5vyoHHoDJisaumjDFSuJKiGlGOJ0xWDxCDVzGVGFKIMaaoxlSjCWWl/RVK5zCpAxKZjCQmdUDr1ZwFwSTcphxNqEY1oa07NWUREKdkqBiFU+IYra7xnWef59LFTeUPFCN89GRZPf2IvQfUzY9OSndSdkYjqsLlkcOHeOSh+/j6V7/IM9/6OtublzUb0HoMsLa2ztHjR1Vs9+RJirLg0nkFU7P7LCK4omQ8GTNZWVNFrfEEV1bYqsSUFcYpwQsBE8AYr0VhYqjrGRsbVyicoZ7PqeuGoihTE+NIGyJt0OyJy/R1Uol/MgimE4FN/TO6vhumT29mbCoZhi49jh5akrAwxcF0jvLprxkdZb0uFgu2t7a4cmWLU3fcwSc/+Ul+91/+S86fO5fC0mWs7N85JVpECtQo/KMY4/+Q3vTs4O9/H/gf04+vAXcOnn4H8PqbvceQPxC75KBOXBDDaGWFD33ko3zsk5+imKwybzy1V+WdECNtqydWaHzfOIVcRjsQX01frwbSZBBJN7NJ4iQkHrzpDNa1jMKQCbn7scmFIebFEJdfVz2GEZVfYdI2iEC9GKULsJTlqOuJWJZl4uXn0yufYH1TmOy95AVsRUOjAqEaqf5iWy862XNjDdZp89jgA4+tH2DlwISnv/Udzp6+gAlgjVOmJpJlnjvDkN8zN2bJUKO6uB6Dp6wcD91/Dz/8wff45tf/lNn2pnaMSjJ4q2trHDt+nOMnTnL85AnW1tepm5rLl6+wtbWdoQqqqmI8WWW8us5k5QDjlTWqhLfYUqXrckfvGNE+EsYnwVb1BuuFEogWTYtyGbTDVWiVGp1p7PpRNJZXw5ta29vcC7ToUpM5hNBDRYvtYsLPdFr0FzkbBkFxMB8I0iQ+SKveilGZv7yGF4s5lzc2KArLo48+yuaVK/z+7/0eW5ubndDwfmvyRsf1ZCUE+AfA8zHGvzf4/W0JfwD494DvpO9/B/jHIvL3UPDxQeAr13yT2G+mzuUiTyAUoxHvffJJPvmpT7N+5Ag785oglkXTasovBpomlfX6RO9DQHw6oX0/UbHvNrV77nKWwESztKG7gplE683xbZca2v1Cktx2FBfpcs70YUvuFiUGnLHq5qZGLW0IVEE3rbWGZjFWwyAG50qMUyXmokidlZMgDQkpl9ToNXs/qtae42FJfSGU+RhCixtVyusQg3EFrioQiZRGWCkMK6uPMJmM+dIf/ylnT19kPFpNSHuao6gbX2IvGotIx+HIv1P168h9d99FM5vywve+zZWNC0TfQPCURcnK6gGOn7qdE6du5/CxY6ytr+OssLV5hbNn3qCeL3AIpXOsrq6xunqA8dpBRpM1ivEEW40xicegFHDT3b8ImFYL0mIotDGOs9SLeWpDF5V6bkWxhhAR61KNSCKJJQ/S2NSSLhkGkmHuvLP0+JhS3vuFnbq803oKAUzAeIg+IDZlf4Ku3Uxumk5nbFy+jHXCqCh4z3vew8alS3zpS1/sGhDtfp+3Mq7HY/go8JeAZ0TkW+l3fwv4VRF5b5rvV4C/li7kWRH5beA5NKPx16+VkRiOntwE/Z0UTpw8wUc+8lGOn7yNnfkcbKlppRQXNnWdnptr21FvQUgncxikJK/ubqmHIsnN741DCFoQk57QPW+IT+SRDUb+HMOQKAwaxvYLJXaPKcuSRcoSlNUIQosVoS20KEkXpYKMelL10m76N9edUvk9oolYpDvhAJVvT8+3oh7HfNGmZizColHSkS2EqnIUxvLgg/dz5cIm25e+Ttu0mMJlhyB1stJTT1vPZYM5NAyeEDyTUcWJY8d4+cXvcOH8G0gE7xvKouDg4UOcOnUnJ2+/g7XDR1lZP0BRlvhmwebmJmfPnSVGrV5cXdW+DwfWDjJaPUAxWcVUYyh0fpxzWPoahTyCC7StJfoWK9Da1H8rtJSxJIYJTT0nMyBzL8ru3xBwTBgD1mKNA5s7cPcYDyLIoJv4cN0FomIKMYIJiG+TDmmbfg++CUlcV6nldb1gPi/Y3NxiVJScOnWKd7/73bzyysu89PJLVzUEN2og5Md1Od6OISLngR3gwjt9LdcxjvKTcZ3wk3OtPynXCT8517rfdd4dYzx2PU++KQwDgIh8Lcb4gXf6Ot5s/KRcJ/zkXOtPynXCT861/rjXeQNsnVvj1rg1/v9l3DIMt8atcWvsGTeTYfjNd/oCrnP8pFwn/ORc60/KdcJPzrX+WNd502AMt8atcWvcPONm8hhujVvj1rhJxjtuGETkCyLyPRF5UUR+452+nt1DRF4RkWdE5Fsi8rX0u8Mi8vsi8v309dA7cF3/LxE5JyLfGfzuqtclIn8zzfH3ROTzN8G1/h0ROZ3m9Vsi8nPv9LWKyJ0i8oci8ryIPCsi/3H6/U01r9e4zrdvTodEnT/rf2jX+h8A9wEl8DTw2Dt5Tftc4yvA0V2/+78Cv5G+/w3g//IOXNdPA+8HvvNm1wU8lua2Au5Nc27f4Wv9O8B/us9j37FrBW4D3p++XwNeSNdzU83rNa7zbZvTd9pjeAp4Mcb4UoyxBn4LLdu+2ccvAf8wff8Pgb/wZ30BMcY/Bi7t+vXVruuXSKXwMcaXgVwK/2cyrnKtVxvv2LXGGM/EGL+Rvt8CssTATTWv17jOq40bvs532jDcDrw6+HnfEu13eETg90Tk66Kl4gAnYqoTSV+Pv2NXtzyudl036zz/RyLy7RRqZPf8prhWWZYYuGnnddd1wts0p++0YbiuEu13eHw0xvh+4GeBvy4iP/1OX9BbGDfjPP/XwP3Ae1EhoP8y/f4dv1bZJTFwrYfu87s/s2vd5zrftjl9pw3DWyrR/rMcMcbX09dzwP8bdcHOishtoFWmwLl37gqXxtWu66ab5xjj2Rijj9og8+/Tu7bv6LXuJzHATTiv+13n2zmn77Rh+CrwoIjcKyIlqhX5O+/wNXVDRFZEdS4RkRXgc2h5+e8Av5Ye9mvAv3hnrnDPuNp1/Q7wKyJSici9XE8p/L/jkTdaGrvL9t+RaxXZX2KAm2xer3adb+uc/lmgvW+CsP4ciqr+APjb7/T17Lq2+1A092ng2Xx9wBHgXwHfT18PvwPX9k9Qd7FBT4S/cq3rAv52muPvAT97E1zrfwc8A3w7Ldzb3ulrBT6GutjfBr6V/v3czTav17jOt21ObzEfb41b49bYM97pUOLWuDVujZtw3DIMt8atcWvsGbcMw61xa9wae8Ytw3Br3Bq3xp5xyzDcGrfGrbFn3DIMt8atcWvsGbcMw61xa9wae8Ytw3Br3Bq3xp7x/wPtiOx5poWq9AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "img = cv2.imread('MakeItTalk/examples/' + opt_parser.jpg)\n", + "plt.imshow(img)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "#get the facial landmarks in the image. Run this on a GPU as it can be slow \n", + "predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device='mps', flip_input=True)\n", + "shapes = predictor.get_landmarks(img)\n", + "if (not shapes or len(shapes) != 1):\n", + " print('Cannot detect face landmarks. Exit.')\n", + " exit(-1)\n", + "shape_3d = shapes[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Loaded Image...\n" + ] + } + ], + "source": [ + "#this block runs if the character's mouth is open\n", + "if(opt_parser.close_input_face_mouth):\n", + " util.close_input_face_mouth(shape_3d)\n", + "\n", + "#this makes any adjustments necessary to the facial landmarks based on user input \n", + "shape_3d[48:, 0] = (shape_3d[48:, 0] - np.mean(shape_3d[48:, 0])) * LIP_WIDTH_ADJUST + np.mean(shape_3d[48:, 0]) # wider lips\n", + "shape_3d[49:54, 1] -= UPPER_LIP_ADJUST # thinner upper lip\n", + "shape_3d[55:60, 1] += LOWER_LIP_ADJUST # thinner lower lip\n", + "shape_3d[[37,38,43,44], 1] -=2. # larger eyes\n", + "shape_3d[[40,41,46,47], 1] +=2. # larger eyes\n", + "shape_3d, scale, shift = util.norm_input_face(shape_3d)\n", + "\n", + "print(\"Loaded Image...\", file=sys.stderr)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/marlenemhangami/miniconda3/lib/python3.9/site-packages/resemblyzer/audio.py:33: FutureWarning: Pass orig_sr=16000, target_sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " wav = librosa.resample(wav, source_sr, sampling_rate)\n", + "/Users/marlenemhangami/miniconda3/lib/python3.9/site-packages/resemblyzer/audio.py:47: FutureWarning: Pass y=[0.00289917 0.00289917 0.00289917 ... 0. 0. 0. ], sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " frames = librosa.feature.melspectrogram(\n", + "/Users/marlenemhangami/Downloads/MakeItTalk-main/src/autovc/retrain_version/vocoder_spec/extract_f0_func.py:97: FutureWarning: Pass sr=16000, n_fft=1024 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " mel_basis = mel(16000, 1024, fmin=90, fmax=7600, n_mels=80).T\n", + "/Users/marlenemhangami/miniconda3/lib/python3.9/site-packages/resemblyzer/audio.py:47: FutureWarning: Pass y=[0.00286865 0.00286865 0.00286865 ... 0. 0. 0. ], sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " frames = librosa.feature.melspectrogram(\n", + "Loaded audio...\n" + ] + } + ], + "source": [ + "#now we want to load the audio file \n", + "# au_data = []\n", + "# au_emb = []\n", + "# ains = glob.glob1('examples', '*.wav')\n", + "# ains = [item for item in ains if item != 'tmp.wav']\n", + "# ains.sort()\n", + "\n", + "#we want an input .wav file \n", + "input_audio = 'yourmoment.wav'\n", + "\n", + "os.system(f'ffmpeg -y -loglevel error -i MakeItTalk/examples/{input_audio} -ar 16000 MakeItTalk/examples/tmp.wav')\n", + "shutil.copyfile('MakeItTalk/examples/tmp.wav', f'MakeItTalk/examples/{input_audio}')\n", + "\n", + "# au embedding\n", + "from thirdparty.resemblyer_util.speaker_emb import get_spk_emb\n", + "me, ae = get_spk_emb(f'MakeItTalk/examples/{input_audio}')\n", + "au_emb.append(me.reshape(-1))\n", + "\n", + "c = AutoVC_mel_Convertor('examples')\n", + "\n", + "au_data_i = c.convert_single_wav_to_autovc_input(audio_filename=input_audio, autovc_model_path=opt_parser.load_AUTOVC_name)\n", + "\n", + "if(os.path.isfile('MakeItTalk/examples/tmp.wav')):\n", + " os.remove('MakeItTalk/examples/tmp.wav')\n", + "\n", + "print(\"Loaded audio...\", file=sys.stderr)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# create a landmark fake placeholder\n", + "fl_data = []\n", + "rot_tran, rot_quat, anchor_t_shape = [], [], []\n", + "for au, info in au_data:\n", + " au_length = au.shape[0]\n", + " fl = np.zeros(shape=(au_length, 68 * 3))\n", + " fl_data.append((fl, info))\n", + " rot_tran.append(np.zeros(shape=(au_length, 3, 4)))\n", + " rot_quat.append(np.zeros(shape=(au_length, 4)))\n", + " anchor_t_shape.append(np.zeros(shape=(au_length, 68 * 3)))\n", + "\n", + "if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_fl.pickle'))\n", + "if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))\n", + "if(os.path.exists(os.path.join('examples', 'dump', 'random_val_au.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_au.pickle'))\n", + "if (os.path.exists(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))\n", + "\n", + "with open(os.path.join('examples', 'dump', 'random_val_fl.pickle'), 'wb') as fp:\n", + " pickle.dump(fl_data, fp)\n", + "with open(os.path.join('examples', 'dump', 'random_val_au.pickle'), 'wb') as fp:\n", + " pickle.dump(au_data, fp)\n", + "with open(os.path.join('examples', 'dump', 'random_val_gaze.pickle'), 'wb') as fp:\n", + " gaze = {'rot_trans':rot_tran, 'rot_quat':rot_quat, 'anchor_t_shape':anchor_t_shape}\n", + " pickle.dump(gaze, fp)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/marlenemhangami/Downloads/MakeItTalk-main/src/approaches/train_audio2landmark.py:98: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n", + " z = torch.tensor(torch.zeros(aus.shape[0], 128), requires_grad=False, dtype=torch.float).to(device)\n", + "OpenCV: FFMPEG: tag 0x47504a4d/'MJPG' is not supported with codec id 7 and format 'mp4 / MP4 (MPEG-4 Part 14)'\n", + "OpenCV: FFMPEG: fallback to use tag 0x7634706d/'mp4v'\n", + "ffmpeg version 5.1.2 Copyright (c) 2000-2022 the FFmpeg developers\n", + " built with Apple clang version 14.0.0 (clang-1400.0.29.202)\n", + " configuration: --prefix=/opt/homebrew/Cellar/ffmpeg/5.1.2_4 --enable-shared --enable-pthreads --enable-version3 --cc=clang --host-cflags= --host-ldflags= --enable-ffplay --enable-gnutls --enable-gpl --enable-libaom --enable-libaribb24 --enable-libbluray --enable-libdav1d --enable-libmp3lame --enable-libopus --enable-librav1e --enable-librist --enable-librubberband --enable-libsnappy --enable-libsrt --enable-libsvtav1 --enable-libtesseract --enable-libtheora --enable-libvidstab --enable-libvmaf --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libxvid --enable-lzma --enable-libfontconfig --enable-libfreetype --enable-frei0r --enable-libass --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-libspeex --enable-libsoxr --enable-libzmq --enable-libzimg --disable-libjack --disable-indev=jack --enable-videotoolbox --enable-neon\n", + " libavutil 57. 28.100 / 57. 28.100\n", + " libavcodec 59. 37.100 / 59. 37.100\n", + " libavformat 59. 27.100 / 59. 27.100\n", + " libavdevice 59. 7.100 / 59. 7.100\n", + " libavfilter 8. 44.100 / 8. 44.100\n", + " libswscale 6. 7.100 / 6. 7.100\n", + " libswresample 4. 7.100 / 4. 7.100\n", + " libpostproc 56. 6.100 / 56. 6.100\n", + "Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'MakeItTalk/examples/tmp.mp4':\n", + " Metadata:\n", + " major_brand : isom\n", + " minor_version : 512\n", + " compatible_brands: isomiso2mp41\n", + " encoder : Lavf58.76.100\n", + " Duration: 00:00:10.70, start: 0.000000, bitrate: 5876 kb/s\n", + " Stream #0:0[0x1](und): Video: mjpeg (Baseline) (mp4v / 0x7634706D), yuvj420p(pc, bt470bg/unknown/unknown), 400x400, 5873 kb/s, 62.50 fps, 62.50 tbr, 10k tbn (default)\n", + " Metadata:\n", + " handler_name : VideoHandler\n", + " vendor_id : [0][0][0][0]\n", + "Guessed Channel Layout for Input Stream #1.0 : mono\n", + "Input #1, wav, from 'MakeItTalk/examples/marlene_sound.wav':\n", + " Duration: 00:00:10.99, bitrate: 256 kb/s\n", + " Stream #1:0: Audio: pcm_s16le ([1][0][0][0] / 0x0001), 16000 Hz, mono, s16, 256 kb/s\n", + "Stream mapping:\n", + " Stream #0:0 -> #0:0 (mjpeg (native) -> h264 (libx264))\n", + " Stream #1:0 -> #0:1 (pcm_s16le (native) -> aac (native))\n", + "Press [q] to stop, [?] for help\n", + "[libx264 @ 0x130e064e0] using cpu capabilities: ARMv8 NEON\n", + "[libx264 @ 0x130e064e0] profile High, level 3.0, 4:2:0, 8-bit\n", + "[libx264 @ 0x130e064e0] 264 - core 164 r3095 baee400 - H.264/MPEG-4 AVC codec - Copyleft 2003-2022 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=12 lookahead_threads=2 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=25 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00\n", + "Output #0, mp4, to 'MakeItTalk/examples/marlene_sound_av.mp4':\n", + " Metadata:\n", + " major_brand : isom\n", + " minor_version : 512\n", + " compatible_brands: isomiso2mp41\n", + " encoder : Lavf59.27.100\n", + " Stream #0:0(und): Video: h264 (avc1 / 0x31637661), yuvj420p(pc, bt470bg/unknown/unknown, progressive), 400x400, q=2-31, 62.50 fps, 16k tbn (default)\n", + " Metadata:\n", + " handler_name : VideoHandler\n", + " vendor_id : [0][0][0][0]\n", + " encoder : Lavc59.37.100 libx264\n", + " Side data:\n", + " cpb: bitrate max/min/avg: 0/0/0 buffer size: 0 vbv_delay: N/A\n", + " Stream #0:1: Audio: aac (LC) (mp4a / 0x6134706D), 16000 Hz, mono, fltp, 69 kb/s\n", + " Metadata:\n", + " encoder : Lavc59.37.100 aac\n", + "frame= 669 fps=0.0 q=-1.0 Lsize= 537kB time=00:00:10.75 bitrate= 409.1kbits/s speed=20.9x \n", + "video:431kB audio:95kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 2.122605%\n", + "[libx264 @ 0x130e064e0] frame I:3 Avg QP:10.29 size: 5368\n", + "[libx264 @ 0x130e064e0] frame P:184 Avg QP:24.28 size: 1317\n", + "[libx264 @ 0x130e064e0] frame B:482 Avg QP:30.64 size: 378\n", + "[libx264 @ 0x130e064e0] consecutive B-frames: 2.8% 2.1% 3.6% 91.5%\n", + "[libx264 @ 0x130e064e0] mb I I16..4: 66.7% 20.3% 13.0%\n", + "[libx264 @ 0x130e064e0] mb P I16..4: 0.7% 1.6% 0.1% P16..4: 6.2% 3.8% 2.5% 0.0% 0.0% skip:85.1%\n", + "[libx264 @ 0x130e064e0] mb B I16..4: 0.3% 0.3% 0.0% B16..8: 9.5% 1.8% 0.9% direct: 0.2% skip:87.1% L0:51.7% L1:46.8% BI: 1.5%\n", + "[libx264 @ 0x130e064e0] 8x8 transform intra:50.2% inter:6.8%\n", + "[libx264 @ 0x130e064e0] coded y,uvDC,uvAC intra: 3.2% 16.1% 10.5% inter: 1.3% 3.6% 3.3%\n", + "[libx264 @ 0x130e064e0] i16 v,h,dc,p: 77% 19% 4% 0%\n", + "[libx264 @ 0x130e064e0] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 9% 8% 82% 0% 0% 0% 0% 0% 0%\n", + "[libx264 @ 0x130e064e0] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 30% 25% 22% 4% 3% 3% 5% 3% 5%\n", + "[libx264 @ 0x130e064e0] i8c dc,h,v,p: 54% 26% 20% 0%\n", + "[libx264 @ 0x130e064e0] Weighted P-Frames: Y:4.3% UV:0.0%\n", + "[libx264 @ 0x130e064e0] ref P L0: 45.2% 17.6% 18.8% 17.6% 0.8%\n", + "[libx264 @ 0x130e064e0] ref B L0: 77.1% 17.0% 6.0%\n", + "[libx264 @ 0x130e064e0] ref B L1: 90.5% 9.5%\n", + "[libx264 @ 0x130e064e0] kb/s:329.32\n", + "[aac @ 0x130e07710] Qavg: 41381.832\n", + "Audio->Landmark...\n" + ] + } + ], + "source": [ + "model = Audio2landmark_model(opt_parser, jpg_shape=shape_3d)\n", + "if(len(opt_parser.reuse_train_emb_list) == 0):\n", + " model.test(au_emb=au_emb)\n", + "else:\n", + " model.test(au_emb=None)\n", + "\n", + "print(\"Audio->Landmark...\", file=sys.stderr)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "OpenCV: FFMPEG: tag 0x67706a6d/'mjpg' is not supported with codec id 7 and format 'mp4 / MP4 (MPEG-4 Part 14)'\n", + "OpenCV: FFMPEG: fallback to use tag 0x7634706d/'mp4v'\n", + "[W NNPACK.cpp:53] Could not initialize NNPACK! Reason: Unsupported hardware.\n", + "1 / 1: Landmark->Face...\n", + "Done!\n" + ] + } + ], + "source": [ + "fls = glob.glob1('examples', 'pred_fls_*.txt')\n", + "fls.sort()\n", + "\n", + "for i in range(0,len(fls)):\n", + " fl = np.loadtxt(os.path.join('examples', fls[i])).reshape((-1, 68,3))\n", + " print(fls[i])\n", + " fl[:, :, 0:2] = -fl[:, :, 0:2]\n", + " fl[:, :, 0:2] = fl[:, :, 0:2] / scale - shift\n", + "\n", + " if (ADD_NAIVE_EYE):\n", + " fl = util.add_naive_eye(fl)\n", + "\n", + " # additional smooth\n", + " fl = fl.reshape((-1, 204))\n", + " fl[:, :48 * 3] = savgol_filter(fl[:, :48 * 3], 15, 3, axis=0)\n", + " fl[:, 48*3:] = savgol_filter(fl[:, 48*3:], 5, 3, axis=0)\n", + " fl = fl.reshape((-1, 68, 3))\n", + "\n", + " ''' STEP 6: Imag2image translation '''\n", + " model = Image_translation_block(opt_parser, single_test=True)\n", + " with torch.no_grad():\n", + " model.single_test(jpg=img, fls=fl, filename=fls[i], prefix=opt_parser.jpg.split('.')[0])\n", + " print('finish image2image gen')\n", + " os.remove(os.path.join('examples', fls[i]))\n", + "\n", + " print(\"{} / {}: Landmark->Face...\".format(i+1, len(fls)), file=sys.stderr)\n", + "print(\"Done!\", file=sys.stderr)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Generated video from image and sound clip" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Video\n", + "\n", + "Video(\"MakeItTalk/examples/marlenes_v1.mp4\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Display animation: MakeItTalk/examples/paint_boy_pred_fls_M6_04_16k_audio_embed.mp4\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from IPython.display import HTML\n", + "from base64 import b64encode\n", + "\n", + "for ain in ains:\n", + " OUTPUT_MP4_NAME = '{}_pred_fls_{}_audio_embed.mp4'.format(\n", + " opt_parser.jpg.split('.')[0],\n", + " ain.split('.')[0]\n", + " )\n", + " mp4 = open('MakeItTalk/examples/{}'.format(OUTPUT_MP4_NAME),'rb').read()\n", + " data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n", + "\n", + " print('Display animation: MakeItTalk/examples/{}'.format(OUTPUT_MP4_NAME), file=sys.stderr)\n", + " display(HTML(\"\"\"\n", + " \n", + " \"\"\" % data_url))" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "5c7b89af1651d0b8571dde13640ecdccf7d5a6204171d6ab33e7c296e100e08a" + }, + "kernelspec": { + "display_name": "Python 3.11.1 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/MakeItTalk/quick_demo.ipynb b/MakeItTalk/quick_demo.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..1152a55198a1b60e9aa14303d99245e817d44d60 --- /dev/null +++ b/MakeItTalk/quick_demo.ipynb @@ -0,0 +1,867 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "quick_demo.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true, + "authorship_tag": "ABX9TyOYW4P15IPg+x69aFu7awQb", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GXaL7nU6TEsV" + }, + "source": [ + "# MakeItTalk Quick Demo (natural human face animation)\n", + "\n", + "- included project setup + pretrained model download\n", + "- provides step-by-step details\n", + "- todo: tdlr version" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2owgbZ22TQmz" + }, + "source": [ + "## Preparations\n", + "- Check GPU" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "yB-ixde4R3nO", + "outputId": "3014143b-2a49-439a-ce4a-54e9aa9589e7", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "!ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi\n", + "import subprocess\n", + "print(subprocess.getoutput('nvidia-smi'))" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Tue Nov 10 19:18:06 2020 \n", + "+-----------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 418.67 Driver Version: 418.67 CUDA Version: 10.1 |\n", + "|-------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n", + "|===============================+======================+======================|\n", + "| 0 Tesla P4 Off | 00000000:00:04.0 Off | 0 |\n", + "| N/A 40C P8 7W / 75W | 0MiB / 7611MiB | 0% Default |\n", + "+-------------------------------+----------------------+----------------------+\n", + " \n", + "+-----------------------------------------------------------------------------+\n", + "| Processes: GPU Memory |\n", + "| GPU PID Type Process name Usage |\n", + "|=============================================================================|\n", + "| No running processes found |\n", + "+-----------------------------------------------------------------------------+\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "o31a6SpeTXDM" + }, + "source": [ + "- Check ffmpeg" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "u4EcdzstSB71", + "outputId": "0925d2a3-92f1-4728-d060-0fa2a9e7cd60", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "print(subprocess.getoutput('ffmpeg'))" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "text": [ + "ffmpeg version 3.4.8-0ubuntu0.2 Copyright (c) 2000-2020 the FFmpeg developers\n", + " built with gcc 7 (Ubuntu 7.5.0-3ubuntu1~18.04)\n", + " configuration: --prefix=/usr --extra-version=0ubuntu0.2 --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --enable-gpl --disable-stripping --enable-avresample --enable-avisynth --enable-gnutls --enable-ladspa --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libmp3lame --enable-libmysofa --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-libpulse --enable-librubberband --enable-librsvg --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvorbis --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxml2 --enable-libxvid --enable-libzmq --enable-libzvbi --enable-omx --enable-openal --enable-opengl --enable-sdl2 --enable-libdc1394 --enable-libdrm --enable-libiec61883 --enable-chromaprint --enable-frei0r --enable-libopencv --enable-libx264 --enable-shared\n", + " libavutil 55. 78.100 / 55. 78.100\n", + " libavcodec 57.107.100 / 57.107.100\n", + " libavformat 57. 83.100 / 57. 83.100\n", + " libavdevice 57. 10.100 / 57. 10.100\n", + " libavfilter 6.107.100 / 6.107.100\n", + " libavresample 3. 7. 0 / 3. 7. 0\n", + " libswscale 4. 8.100 / 4. 8.100\n", + " libswresample 2. 9.100 / 2. 9.100\n", + " libpostproc 54. 7.100 / 54. 7.100\n", + "Hyper fast Audio and Video encoder\n", + "usage: ffmpeg [options] [[infile options] -i infile]... {[outfile options] outfile}...\n", + "\n", + "Use -h to get full help or, even better, run 'man ffmpeg'\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "taPSDYiSTcM_" + }, + "source": [ + "- Install Github https://github.com/yzhou359/MakeItTalk" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "4G0XLqo4SofV", + "outputId": "c762a690-f380-4999-e896-d19eaedd0b42", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "!git clone https://github.com/yzhou359/MakeItTalk" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "text": [ + "fatal: destination path 'MakeItTalk' already exists and is not an empty directory.\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-xe5u4Ede-G5" + }, + "source": [ + "- Install requirements" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "sR4ExzplfBHk", + "outputId": "a865de23-14c1-449a-c393-69cf9138fc95", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "%cd MakeItTalk/\n", + "!export PYTHONPATH=/content/MakeItTalk:$PYTHONPATH\n", + "!pip install -r requirements.txt\n", + "!pip install tensorboardX" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "text": [ + "/content/MakeItTalk\n", + "Requirement already satisfied: ffmpeg-python in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 1)) (0.2.0)\n", + "Requirement already satisfied: opencv-python in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 2)) (4.1.2.30)\n", + "Requirement already satisfied: face_alignment in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 3)) (1.1.1)\n", + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 4)) (0.22.2.post1)\n", + "Requirement already satisfied: pydub in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 5)) (0.24.1)\n", + "Requirement already satisfied: pynormalize in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 6)) (0.1.4)\n", + "Requirement already satisfied: soundfile in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 7)) (0.10.3.post1)\n", + "Requirement already satisfied: librosa in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 8)) (0.6.3)\n", + "Requirement already satisfied: pysptk in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 9)) (0.1.18)\n", + "Requirement already satisfied: pyworld in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 10)) (0.2.12)\n", + "Requirement already satisfied: resemblyzer in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 11)) (0.1.1.dev0)\n", + "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from ffmpeg-python->-r requirements.txt (line 1)) (0.16.0)\n", + "Requirement already satisfied: numpy>=1.11.3 in /usr/local/lib/python3.6/dist-packages (from opencv-python->-r requirements.txt (line 2)) (1.18.5)\n", + "Requirement already satisfied: scikit-image in /usr/local/lib/python3.6/dist-packages (from face_alignment->-r requirements.txt (line 3)) (0.16.2)\n", + "Requirement already satisfied: torch in /usr/local/lib/python3.6/dist-packages (from face_alignment->-r requirements.txt (line 3)) (1.7.0+cu101)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from face_alignment->-r requirements.txt (line 3)) (4.41.1)\n", + "Requirement already satisfied: scipy>=0.17 in /usr/local/lib/python3.6/dist-packages (from face_alignment->-r requirements.txt (line 3)) (1.4.1)\n", + "Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->-r requirements.txt (line 4)) (0.17.0)\n", + "Requirement already satisfied: mutagen>=1.40.0 in /usr/local/lib/python3.6/dist-packages (from pynormalize->-r requirements.txt (line 6)) (1.45.1)\n", + "Requirement already satisfied: cffi>=1.0 in /usr/local/lib/python3.6/dist-packages (from soundfile->-r requirements.txt (line 7)) (1.14.3)\n", + "Requirement already satisfied: six>=1.3 in /usr/local/lib/python3.6/dist-packages (from librosa->-r requirements.txt (line 8)) (1.15.0)\n", + "Requirement already satisfied: numba>=0.38.0 in /usr/local/lib/python3.6/dist-packages (from librosa->-r requirements.txt (line 8)) (0.48.0)\n", + "Requirement already satisfied: audioread>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from librosa->-r requirements.txt (line 8)) (2.1.9)\n", + "Requirement already satisfied: decorator>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from librosa->-r requirements.txt (line 8)) (4.4.2)\n", + "Requirement already satisfied: resampy>=0.2.0 in /usr/local/lib/python3.6/dist-packages (from librosa->-r requirements.txt (line 8)) (0.2.2)\n", + "Requirement already satisfied: cython>=0.24.0 in /usr/local/lib/python3.6/dist-packages (from pyworld->-r requirements.txt (line 10)) (0.29.21)\n", + "Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from resemblyzer->-r requirements.txt (line 11)) (3.7.4.3)\n", + "Requirement already satisfied: webrtcvad>=2.0.10 in /usr/local/lib/python3.6/dist-packages (from resemblyzer->-r requirements.txt (line 11)) (2.0.10)\n", + "Requirement already satisfied: pillow>=4.3.0 in /usr/local/lib/python3.6/dist-packages (from scikit-image->face_alignment->-r requirements.txt (line 3)) (7.0.0)\n", + "Requirement already satisfied: imageio>=2.3.0 in /usr/local/lib/python3.6/dist-packages (from scikit-image->face_alignment->-r requirements.txt (line 3)) (2.4.1)\n", + "Requirement already satisfied: PyWavelets>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from scikit-image->face_alignment->-r requirements.txt (line 3)) (1.1.1)\n", + "Requirement already satisfied: networkx>=2.0 in /usr/local/lib/python3.6/dist-packages (from scikit-image->face_alignment->-r requirements.txt (line 3)) (2.5)\n", + "Requirement already satisfied: matplotlib!=3.0.0,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from scikit-image->face_alignment->-r requirements.txt (line 3)) (3.2.2)\n", + "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.6/dist-packages (from torch->face_alignment->-r requirements.txt (line 3)) (3.7.4.3)\n", + "Requirement already satisfied: dataclasses in /usr/local/lib/python3.6/dist-packages (from torch->face_alignment->-r requirements.txt (line 3)) (0.7)\n", + "Requirement already satisfied: pycparser in /usr/local/lib/python3.6/dist-packages (from cffi>=1.0->soundfile->-r requirements.txt (line 7)) (2.20)\n", + "Requirement already satisfied: llvmlite<0.32.0,>=0.31.0dev0 in /usr/local/lib/python3.6/dist-packages (from numba>=0.38.0->librosa->-r requirements.txt (line 8)) (0.31.0)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from numba>=0.38.0->librosa->-r requirements.txt (line 8)) (50.3.2)\n", + "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->face_alignment->-r requirements.txt (line 3)) (2.8.1)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->face_alignment->-r requirements.txt (line 3)) (2.4.7)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->face_alignment->-r requirements.txt (line 3)) (0.10.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->face_alignment->-r requirements.txt (line 3)) (1.3.1)\n", + "Requirement already satisfied: tensorboardX in /usr/local/lib/python3.6/dist-packages (2.1)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from tensorboardX) (1.15.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from tensorboardX) (1.18.5)\n", + "Requirement already satisfied: protobuf>=3.8.0 in /usr/local/lib/python3.6/dist-packages (from tensorboardX) (3.12.4)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from protobuf>=3.8.0->tensorboardX) (50.3.2)\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AByGGO5fd14P" + }, + "source": [ + "- Download pretrained models" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "SU4abC3iTmXA", + "outputId": "d035840d-b117-41d8-ff48-5d69ae1b3e51", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "!mkdir MakeItTalk/examples/dump\n", + "!mkdir MakeItTalk/examples/ckpt\n", + "!pip install gdown\n", + "!gdown -O MakeItTalk/examples/ckpt/ckpt_autovc.pth https://drive.google.com/uc?id=1ZiwPp_h62LtjU0DwpelLUoodKPR85K7x\n", + "!gdown -O MakeItTalk/examples/ckpt/ckpt_content_branch.pth https://drive.google.com/uc?id=1r3bfEvTVl6pCNw5xwUhEglwDHjWtAqQp\n", + "!gdown -O MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth https://drive.google.com/uc?id=1rV0jkyDqPW-aDJcj7xSO6Zt1zSXqn1mu\n", + "!gdown -O MakeItTalk/examples/ckpt/ckpt_116_i2i_comb.pth https://drive.google.com/uc?id=1i2LJXKp-yWKIEEgJ7C6cE3_2NirfY_0a\n", + "!gdown -O MakeItTalk/examples/dump/emb.pickle https://drive.google.com/uc?id=18-0CYl5E6ungS3H4rRSHjfYvvm-WwjTI" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "text": [ + "mkdir: cannot create directory ‘MakeItTalk/examples/dump’: File exists\n", + "mkdir: cannot create directory ‘MakeItTalk/examples/ckpt’: File exists\n", + "Requirement already satisfied: gdown in /usr/local/lib/python3.6/dist-packages (3.6.4)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from gdown) (1.15.0)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from gdown) (2.23.0)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from gdown) (4.41.1)\n", + "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->gdown) (3.0.4)\n", + "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->gdown) (2.10)\n", + "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->gdown) (1.24.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->gdown) (2020.6.20)\n", + "Downloading...\n", + "From: https://drive.google.com/uc?id=1ZiwPp_h62LtjU0DwpelLUoodKPR85K7x\n", + "To: /content/MakeItTalk/MakeItTalk/examples/ckpt/ckpt_autovc.pth\n", + "172MB [00:01, 116MB/s]\n", + "Downloading...\n", + "From: https://drive.google.com/uc?id=1r3bfEvTVl6pCNw5xwUhEglwDHjWtAqQp\n", + "To: /content/MakeItTalk/MakeItTalk/examples/ckpt/ckpt_content_branch.pth\n", + "7.88MB [00:00, 67.0MB/s]\n", + "Downloading...\n", + "From: https://drive.google.com/uc?id=1rV0jkyDqPW-aDJcj7xSO6Zt1zSXqn1mu\n", + "To: /content/MakeItTalk/MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth\n", + "15.4MB [00:00, 135MB/s]\n", + "Downloading...\n", + "From: https://drive.google.com/uc?id=1i2LJXKp-yWKIEEgJ7C6cE3_2NirfY_0a\n", + "To: /content/MakeItTalk/MakeItTalk/examples/ckpt/ckpt_116_i2i_comb.pth\n", + "839MB [00:04, 207MB/s]\n", + "Downloading...\n", + "From: https://drive.google.com/uc?id=18-0CYl5E6ungS3H4rRSHjfYvvm-WwjTI\n", + "To: /content/MakeItTalk/MakeItTalk/examples/dump/emb.pickle\n", + "30.9MB [00:00, 271MB/s]\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "37JeD3ZZdI-a" + }, + "source": [ + "- prepare your images/audios (or you can use the existing ones)\n", + " - An image to animate: upload to `MakeItTalk/examples` folder, image size should be 256x256\n", + " - An audio (hopefully no noise) to talk: upload to `MakeItTalk/examples` folder as well\n", + "\n", + "## Step 0: import necessary packages" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "olj6VcfiTrd_" + }, + "source": [ + "import sys\n", + "sys.path.append(\"thirdparty/AdaptiveWingLoss\")\n", + "import os, glob\n", + "import numpy as np\n", + "import cv2\n", + "import argparse\n", + "from src.approaches.train_image_translation import Image_translation_block\n", + "import torch\n", + "import pickle\n", + "import face_alignment\n", + "from src.autovc.AutoVC_mel_Convertor_retrain_version import AutoVC_mel_Convertor\n", + "import shutil\n", + "import time\n", + "import util.utils as util\n", + "from scipy.signal import savgol_filter\n", + "from src.approaches.train_audio2landmark import Audio2landmark_model" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A8aaCE6vgmXy" + }, + "source": [ + "## Step 1: Basic setup for the animation" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "58s-c9H8dWPW" + }, + "source": [ + "default_head_name = 'paint_boy' # the image name (with no .jpg) to animate\n", + "ADD_NAIVE_EYE = True # whether add naive eye blink\n", + "CLOSE_INPUT_FACE_MOUTH = False # if your image has an opened mouth, put this as True, else False\n", + "AMP_LIP_SHAPE_X = 2. # amplify the lip motion in horizontal direction\n", + "AMP_LIP_SHAPE_Y = 2. # amplify the lip motion in vertical direction\n", + "AMP_HEAD_POSE_MOTION = 0.7 # amplify the head pose motion (usually smaller than 1.0, put it to 0. for a static head pose)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HRFBOqXMguSH" + }, + "source": [ + "Default hyper-parameters for the model." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ZkZRYLSCf8TK" + }, + "source": [ + "parser = argparse.ArgumentParser()\n", + "parser.add_argument('--jpg', type=str, default='{}.jpg'.format(default_head_name))\n", + "parser.add_argument('--close_input_face_mouth', default=CLOSE_INPUT_FACE_MOUTH, action='store_true')\n", + "\n", + "parser.add_argument('--load_AUTOVC_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_autovc.pth')\n", + "parser.add_argument('--load_a2l_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth')\n", + "parser.add_argument('--load_a2l_C_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_content_branch.pth') #ckpt_audio2landmark_c.pth')\n", + "parser.add_argument('--load_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_116_i2i_comb.pth') #ckpt_image2image.pth') #ckpt_i2i_finetune_150.pth') #c\n", + "\n", + "parser.add_argument('--amp_lip_x', type=float, default=AMP_LIP_SHAPE_X)\n", + "parser.add_argument('--amp_lip_y', type=float, default=AMP_LIP_SHAPE_Y)\n", + "parser.add_argument('--amp_pos', type=float, default=AMP_HEAD_POSE_MOTION)\n", + "parser.add_argument('--reuse_train_emb_list', type=str, nargs='+', default=[]) # ['iWeklsXc0H8']) #['45hn7-LXDX8']) #['E_kmpT-EfOg']) #'iWeklsXc0H8', '29k8RtSUjE0', '45hn7-LXDX8',\n", + "parser.add_argument('--add_audio_in', default=False, action='store_true')\n", + "parser.add_argument('--comb_fan_awing', default=False, action='store_true')\n", + "parser.add_argument('--output_folder', type=str, default='examples')\n", + "\n", + "parser.add_argument('--test_end2end', default=True, action='store_true')\n", + "parser.add_argument('--dump_dir', type=str, default='', help='')\n", + "parser.add_argument('--pos_dim', default=7, type=int)\n", + "parser.add_argument('--use_prior_net', default=True, action='store_true')\n", + "parser.add_argument('--transformer_d_model', default=32, type=int)\n", + "parser.add_argument('--transformer_N', default=2, type=int)\n", + "parser.add_argument('--transformer_heads', default=2, type=int)\n", + "parser.add_argument('--spk_emb_enc_size', default=16, type=int)\n", + "parser.add_argument('--init_content_encoder', type=str, default='')\n", + "parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')\n", + "parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay')\n", + "parser.add_argument('--write', default=False, action='store_true')\n", + "parser.add_argument('--segment_batch_size', type=int, default=1, help='batch size')\n", + "parser.add_argument('--emb_coef', default=3.0, type=float)\n", + "parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float)\n", + "parser.add_argument('--use_11spk_only', default=False, action='store_true')\n", + "parser.add_argument('-f')\n", + "\n", + "opt_parser = parser.parse_args()" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qchIUwTTg3AB" + }, + "source": [ + "## Step 2: load the image and detect its landmark" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "SmYcSmrugxQK" + }, + "source": [ + "img =cv2.imread('MakeItTalk/examples/' + opt_parser.jpg)\n", + "predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device='cpu', flip_input=True)\n", + "shapes = predictor.get_landmarks(img)\n", + "if (not shapes or len(shapes) != 1):\n", + " print('Cannot detect face landmarks. Exit.')\n", + " exit(-1)\n", + "shape_3d = shapes[0]\n", + "\n", + "if(opt_parser.close_input_face_mouth):\n", + " util.close_input_face_mouth(shape_3d)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c_9LmmACg9Mq" + }, + "source": [ + "## (Optional) Simple manual adjustment to landmarks in case FAN is not accurate, e.g.\n", + "- slimmer lips\n", + "- wider eyes\n", + "- wider mouth" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "R2PLXNlhgztJ" + }, + "source": [ + "shape_3d[48:, 0] = (shape_3d[48:, 0] - np.mean(shape_3d[48:, 0])) * 1.05 + np.mean(shape_3d[48:, 0]) # wider lips\n", + "shape_3d[49:54, 1] += 0. # thinner upper lip\n", + "shape_3d[55:60, 1] -= 1. # thinner lower lip\n", + "shape_3d[[37,38,43,44], 1] -=2. # larger eyes\n", + "shape_3d[[40,41,46,47], 1] +=2. # larger eyes" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1nlaLLoShR1k" + }, + "source": [ + "Normalize face as input to audio branch" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "W0GkD0fThN-2" + }, + "source": [ + "shape_3d, scale, shift = util.norm_input_face(shape_3d)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FAcGrT3PhY3T" + }, + "source": [ + "## Step 3: Generate input data for inference based on uploaded audio `MakeItTalk/MakeItTalk/examples/*.wav`" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Mqh5A_7chQ8g", + "outputId": "e7a357f9-dbc7-4597-a7e9-184e69b705ba", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "au_data = []\n", + "au_emb = []\n", + "ains = glob.glob1('examples', '*.wav')\n", + "ains = [item for item in ains if item is not 'tmp.wav']\n", + "ains.sort()\n", + "for ain in ains:\n", + " os.system('ffmpeg -y -loglevel error -i MakeItTalk/examples/{} -ar 16000 MakeItTalk/examples/tmp.wav'.format(ain))\n", + " shutil.copyfile('MakeItTalk/examples/tmp.wav', 'MakeItTalk/examples/{}'.format(ain))\n", + "\n", + " # au embedding\n", + " from thirdparty.resemblyer_util.speaker_emb import get_spk_emb\n", + " me, ae = get_spk_emb('MakeItTalk/examples/{}'.format(ain))\n", + " au_emb.append(me.reshape(-1))\n", + "\n", + " print('Processing audio file', ain)\n", + " c = AutoVC_mel_Convertor('examples')\n", + "\n", + " au_data_i = c.convert_single_wav_to_autovc_input(audio_filename=os.path.join('examples', ain),\n", + " autovc_model_path=opt_parser.load_AUTOVC_name)\n", + " au_data += au_data_i\n", + "if(os.path.isfile('MakeItTalk/examples/tmp.wav')):\n", + " os.remove('MakeItTalk/examples/tmp.wav')\n", + "\n", + "# landmark fake placeholder\n", + "fl_data = []\n", + "rot_tran, rot_quat, anchor_t_shape = [], [], []\n", + "for au, info in au_data:\n", + " au_length = au.shape[0]\n", + " fl = np.zeros(shape=(au_length, 68 * 3))\n", + " fl_data.append((fl, info))\n", + " rot_tran.append(np.zeros(shape=(au_length, 3, 4)))\n", + " rot_quat.append(np.zeros(shape=(au_length, 4)))\n", + " anchor_t_shape.append(np.zeros(shape=(au_length, 68 * 3)))\n", + "\n", + "if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_fl.pickle'))\n", + "if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))\n", + "if(os.path.exists(os.path.join('examples', 'dump', 'random_val_au.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_au.pickle'))\n", + "if (os.path.exists(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))\n", + "\n", + "with open(os.path.join('examples', 'dump', 'random_val_fl.pickle'), 'wb') as fp:\n", + " pickle.dump(fl_data, fp)\n", + "with open(os.path.join('examples', 'dump', 'random_val_au.pickle'), 'wb') as fp:\n", + " pickle.dump(au_data, fp)\n", + "with open(os.path.join('examples', 'dump', 'random_val_gaze.pickle'), 'wb') as fp:\n", + " gaze = {'rot_trans':rot_tran, 'rot_quat':rot_quat, 'anchor_t_shape':anchor_t_shape}\n", + " pickle.dump(gaze, fp)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Loaded the voice encoder model on cuda in 0.01 seconds.\n", + "Processing audio file M6_04_16k.wav\n", + "0 out of 0 are in this portion\n", + "Loaded the voice encoder model on cuda in 0.01 seconds.\n", + "source shape: torch.Size([1, 320, 80]) torch.Size([1, 256]) torch.Size([1, 256]) torch.Size([1, 320, 257])\n", + "converted shape: torch.Size([1, 320, 80]) torch.Size([1, 640])\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vNzY0KtMhkkV" + }, + "source": [ + "## Step 4: Audio-to-Landmarks prediction" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "WP94GnGchXy8", + "outputId": "10c1dc3d-4f60-4f13-f9ba-8e03b8cca18f", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "!pwd\n", + "model = Audio2landmark_model(opt_parser, jpg_shape=shape_3d)\n", + "if(len(opt_parser.reuse_train_emb_list) == 0):\n", + " model.test(au_emb=au_emb)\n", + "else:\n", + " model.test(au_emb=None)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "text": [ + "/content/MakeItTalk\n", + "Run on device: cuda\n", + "Loading Data random_val\n", + "EVAL num videos: 1\n", + "G: Running on cuda, total num params = 3.00M\n", + "======== LOAD PRETRAINED FACE ID MODEL MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth =========\n", + "======== LOAD PRETRAINED FACE ID MODEL MakeItTalk/examples/ckpt/ckpt_content_branch.pth =========\n", + "====================================\n", + "48uYS3bHIA8\n", + "YAZuSHvwVC0\n", + "0yaLdVk_UyQ\n", + "E_kmpT-EfOg\n", + "fQR31F7L3ww\n", + "JPMZAOGGHh8\n", + "W6uRNCJmdtI\n", + "2KL8PfQPmBg\n", + "p575B7k07a8\n", + "iUoAe2gXKE4\n", + "HH-iOC056aQ\n", + "S8fiWqrZEew\n", + "ROWN2ssXek8\n", + "irx71tYyI-Q\n", + "me6cdZCM2FY\n", + "OkqHtWOFliM\n", + "OfPKHc6w2vw\n", + "1lh57VnuaKE\n", + "_ldiVrXgZKc\n", + "H1Xnb_rtgqY\n", + "45hn7-LXDX8\n", + "bs7ZWVqAGCU\n", + "UElg0R7fmlk\n", + "bCs5SoifsiY\n", + "1Lx_ZqrK1bM\n", + "RrnL6Pcjjbw\n", + "sRbWv2R2hxE\n", + "wJmdE0G4sEg\n", + "hE-4e1vEiT8\n", + "XXbxe3fCQqg\n", + "02HOKnTjBlQ\n", + "wAAMEC1OsRc\n", + "7Sk--XzX8b0\n", + "I5Lm0Qce5kg\n", + "qLxfiUMYgQg\n", + "_VpqWkdcaqM\n", + "ljIkW4uVVQY\n", + "5m5iPZNJS6c\n", + "J-NPsvtQ8lE\n", + "gOrQyrbptGo\n", + "43BiUVlNy58\n", + "swLghyvhoqA\n", + "X3FCAoFnmdA\n", + "2NiCRAmwoc4\n", + "KVUf0J2LAaA\n", + "YtZS9hH1j24\n", + "5fZj9Fzi5K0\n", + "wbWKG26ebMw\n", + "QgNlXur0wrs\n", + "qek_5m1MRik\n", + "rmFsUV5ICKk\n", + "bEdGv1wixF4\n", + "ljh5PB6Utsc\n", + "izudwWTXuUk\n", + "B08yOvYMF7Y\n", + "UEmI4r5G-5Y\n", + "Scujgl9GbHA\n", + "sxCbrYjBsGA\n", + "qvQC0w3y_Fo\n", + "bXpavyiCu10\n", + "iWeklsXc0H8\n", + "H00oAfd_GsM\n", + "Z7WRt--g-h4\n", + "29k8RtSUjE0\n", + "E0zgrhQ0QDw\n", + "9KhvSxKE6Mc\n", + "qLNvRwMkhik\n", + "====================================\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "/content/MakeItTalk/src/approaches/train_audio2landmark.py:98: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n", + " z = torch.tensor(torch.zeros(aus.shape[0], 128), requires_grad=False, dtype=torch.float).to(device)\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "MakeItTalk/examples/M6_04_16k.wav\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PFaYlUNNjnxn" + }, + "source": [ + "## Step 5: Natural face animation via Image-to-image translation " + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-xYBO_czjFSD", + "outputId": "1810cbba-4876-4ecd-d6ef-c55cd95a6e1b", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "fls = glob.glob1('examples', 'pred_fls_*.txt')\n", + "fls.sort()\n", + "\n", + "for i in range(0,len(fls)):\n", + " fl = np.loadtxt(os.path.join('examples', fls[i])).reshape((-1, 68,3))\n", + " fl[:, :, 0:2] = -fl[:, :, 0:2]\n", + " fl[:, :, 0:2] = fl[:, :, 0:2] / scale - shift\n", + "\n", + " if (ADD_NAIVE_EYE):\n", + " fl = util.add_naive_eye(fl)\n", + "\n", + " # additional smooth\n", + " fl = fl.reshape((-1, 204))\n", + " fl[:, :48 * 3] = savgol_filter(fl[:, :48 * 3], 15, 3, axis=0)\n", + " fl[:, 48*3:] = savgol_filter(fl[:, 48*3:], 5, 3, axis=0)\n", + " fl = fl.reshape((-1, 68, 3))\n", + "\n", + " ''' STEP 6: Imag2image translation '''\n", + " model = Image_translation_block(opt_parser, single_test=True)\n", + " with torch.no_grad():\n", + " model.single_test(jpg=img, fls=fl, filename=fls[i], prefix=opt_parser.jpg.split('.')[0])\n", + " print('finish image2image gen')\n", + " os.remove(os.path.join('examples', fls[i]))" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Run on device cuda\n", + "Time - only video: 7.921006441116333\n", + "Time - ffmpeg add audio: 9.965285062789917\n", + "finish image2image gen\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "P8mMguI_j1TQ" + }, + "source": [ + "## Visualize your animation!" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Xmnr2CsChmnB", + "outputId": "c7decb3d-102e-484c-9b25-56961d17df3b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + } + }, + "source": [ + "from IPython.display import HTML\n", + "from base64 import b64encode\n", + "\n", + "for ain in ains:\n", + " OUTPUT_MP4_NAME = '{}_pred_fls_{}_audio_embed.mp4'.format(\n", + " opt_parser.jpg.split('.')[0],\n", + " ain.split('.')[0]\n", + " )\n", + " mp4 = open('MakeItTalk/examples/{}'.format(OUTPUT_MP4_NAME),'rb').read()\n", + " data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n", + "\n", + " print('Display animation: MakeItTalk/examples/{}'.format(OUTPUT_MP4_NAME))\n", + " display(HTML(\"\"\"\n", + " \n", + " \"\"\" % data_url))" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Display animation: MakeItTalk/examples/paint_boy_pred_fls_M6_04_16k_audio_embed.mp4\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "hxWMuEEbpywq" + }, + "source": [ + "" + ], + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/MakeItTalk/quick_demo_tdlr.ipynb b/MakeItTalk/quick_demo_tdlr.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..b77be3eccef58fc819431c85eed0cf2db4ce5ae9 --- /dev/null +++ b/MakeItTalk/quick_demo_tdlr.ipynb @@ -0,0 +1,694 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "view-in-github" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_FpIfnReur6z" + }, + "source": [ + "# MakeItTalk Quick Demo (natural human face animation)\n", + "\n", + "## TDLR version\n", + "\n", + "Remember to change to GPU runtime first!" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hi\n" + ] + } + ], + "source": [ + "print('hi')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7PZQxNvvuuNZ" + }, + "source": [ + "## Preparation (run only once)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "56UHwyJKuaWw", + "outputId": "b85928a8-4556-45be-e2bb-bd2c285a3be7" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Errno 2] No such file or directory: 'MakeItTalk/'\n", + "/Users/marlenemhangami/Downloads/MakeItTalk-main\n", + "^C\n", + "mkdir: MakeItTalk/examples/dump: File exists\n", + "mkdir: MakeItTalk/examples/ckpt: File exists\n", + "Done!\n", + "Download pre-trained models...\n", + "zsh:1: no matches found: https://drive.google.com/uc?id=1ZiwPp_h62LtjU0DwpelLUoodKPR85K7x\n", + "zsh:1: no matches found: https://drive.google.com/uc?id=1r3bfEvTVl6pCNw5xwUhEglwDHjWtAqQp\n", + "zsh:1: no matches found: https://drive.google.com/uc?id=1rV0jkyDqPW-aDJcj7xSO6Zt1zSXqn1mu\n", + "zsh:1: no matches found: https://drive.google.com/uc?id=1i2LJXKp-yWKIEEgJ7C6cE3_2NirfY_0a\n", + "zsh:1: no matches found: https://drive.google.com/uc?id=18-0CYl5E6ungS3H4rRSHjfYvvm-WwjTI\n", + "Done!\n" + ] + } + ], + "source": [ + "# # print('Git clone project and install requirements...')\n", + "# # !git clone https://github.com/yzhou359/MakeItTalk &> /dev/null\n", + "# %cd MakeItTalk/\n", + "# !export PYTHONPATH=/content/MakeItTalk:$PYTHONPATH\n", + "# !pip install -r requirements.txt &> /dev/null\n", + "# !pip install tensorboardX &> /dev/null\n", + "# !mkdir MakeItTalk/examples/dump\n", + "# !mkdir MakeItTalk/examples/ckpt\n", + "# !pip install gdown &> /dev/null\n", + "# print('Done!')\n", + "# print('Download pre-trained models...')\n", + "# !gdown -O MakeItTalk/examples/ckpt/ckpt_autovc.pth https://drive.google.com/uc?id=1ZiwPp_h62LtjU0DwpelLUoodKPR85K7x\n", + "# !gdown -O MakeItTalk/examples/ckpt/ckpt_content_branch.pth https://drive.google.com/uc?id=1r3bfEvTVl6pCNw5xwUhEglwDHjWtAqQp\n", + "# !gdown -O MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth https://drive.google.com/uc?id=1rV0jkyDqPW-aDJcj7xSO6Zt1zSXqn1mu\n", + "# !gdown -O MakeItTalk/examples/ckpt/ckpt_116_i2i_comb.pth https://drive.google.com/uc?id=1i2LJXKp-yWKIEEgJ7C6cE3_2NirfY_0a\n", + "# !gdown -O MakeItTalk/examples/dump/emb.pickle https://drive.google.com/uc?id=18-0CYl5E6ungS3H4rRSHjfYvvm-WwjTI\n", + "# print('Done!')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jlEgsX1Ivzbm" + }, + "source": [ + "## Animate your photos here!\n", + "\n", + "- Upload your images to `examples` with size `256x256`. Or use existing ones.\n", + "\n", + "- Upload your speech audio files (could be many) to `examples`. Since it will process all `.wav` files under `examples`, remember to delete non-necessary `.wav` files. Or use an existing one `M6_04_16k.wav`." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "F1IVS6EpHhK6" + }, + "source": [ + "## Step 1/3: Choose your image (in below Dropdown). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 511, + "referenced_widgets": [ + "8f388e32c2dd4d118c3926d13a40a639", + "9bbc2a0602734ef7929d0ae34849b8b7", + "422e4dc6267b4717a3cb075376761645" + ] + }, + "id": "xe8DGOmwuqlx", + "outputId": "a09e6b3a-4d61-48ac-f6f8-b1bcab36af78" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8f388e32c2dd4d118c3926d13a40a639", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Dropdown(index=41, options=('angelina', 'anne', 'anne2', 'audrey', 'aya', 'captain', 'captain2', 'cesi', 'chri…" + ] + }, + "metadata": { + "tags": [] + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy8S68kSZKl94mIqpq5+71x45FZlVXVXT2Y4QMghhgQJBcECAIEuOaC4IKL2fNH8idwQTY3PSRmhgN0V3e9MjIe97q7maqKcCEWWVxMFVG5YS/SgERk5o0IdzNTETlyzhGRiODH68frx+sf36X/f3+BH68frx+vf//1Y3D+eP14/SO9fgzOH68fr3+k14/B+eP14/WP9PoxOH+8frz+kV7lT/3wX/zX34T6RGulLgW1yXbttLYiNQBhjEFbC7NPFKH3ye8/vfCy3alqtCYEzpjBvMP9GWJWkiMW0AkTRIKIQAACVBUHPAI7LWgt+L7hHZbLA4JzvX5mWU7IHIxtIGKM0VETBGH6wGrDWqFWYW7B7IMgMDOmbyyXC75P+v1OM+HUCiOEPneWUqmlsEinSDDG4LSsdHdMwVSZ+42mF2Q9M0UwFYpOxjbo48bl8hqNgc7OdnsGWbmsJ9ra2LfBaWlMd6wa7x4qv//wkedr51Qbp2aMMXg6LSwqTFF2BsMnZ1u4nIJ3D5WvHoym8HZdefvGsDH5P/72yvtr56sn49Wq/F+/qfzdrnz33WdOIjyeCmNO9hHEmPz04QxM8I2fv3tFacJgog7bgE8vk7/93Z0Pe+fpVDlX49MGm0/6DLbZ2efk3geosVrmfRfY587eB/fb5DqVEUp3B7N8FxFMFJ8TfBIKmKBaid6xVlETDKfvTjRhXAc2hShKezgx906MzgwhpqMqiC1c3jwxbjsvn77jsRVOTG7nR6Yq/fMHXAshjswdpVFsIqZoMcwGT6cLswf/8n/4Kf/zv/yGV4tBGOEbmwSlCvMuWFRUnGCiIUgBQhAREKf3HRAkjN6dOYXhgrjy+l/8L/JnB+fDQ0VaRS2f8rqsLEXYHV69Xth3Z9uctgqyVLb7ZCkLl21wfdmQ0oCBiEI47oFIvhCVwEVQK0RMwgMFRIRoRqgCQg1hArMP1suZ4cp2vVIAw5h9gjuIgIHMTBqIUNuCVAOCuQ/GyL+fcMbWEYFxfYFQTJVlXQnfEAdxJTxYFqG60ggaSquFgoCAeeBWiQK1CIsafXRiDs4lqO3Mw6lgaizSsLcLv/vY+cnDyrIon+7Hs1wqRrDq5BdvzrycgqUa5xp8/CB89WR8danc7h23lX0Ebx4bXz0IqwV9Bt+cK1+dlGURZBX+i1+ujLly8+A3n+Gbt4VHH3z9V6+51MKnjxtPJ2etlds1mOK0UvnJcuHhrDzfHLQgInx7DX69DC44j68u7Pvg//7dxqMZX50L15eNZzG+9UGtBbVCFcUoDN/ZZqeI0lrleutEQFXDJXAcD2F4oKLH2QAkz0MAqkKpSr8BRXl8feG7+7dMhJCg33emD4qWDG4C9wC/8t1vPlFQzFZeJoxQTtvk1ISX8yNzdGTuuFgGVmuoQsyBqLBvzj/5iwv/3X/zmhNGDBALQoyYg1mUGTC6U5pQi0EEoSAoMR0cSin0fTJG4CFMD+YMxvAfVjkfXldsCVSD8MrY4fHrlZdPnRmdy6vGyU+4C6NvVBfG7ixVWUy53ztWYFksM1kLYle23RELmMH0iYQAgUegIiBKRD4gFyVCURV8ToRATen7jkzB+44J+bDcsaURY9JORqmF+wgY4N0gHC2CSGP4Di54d9aHik8YPlhEOK2V232w7/lPacKlrfh2ZfegWqEuC32/U2QhJjAm6KQarG3hZJW1Cmt1fvJUODfl5bnwdD7T752fvG585XAfQZXg7blgtXDfN17ug9NppWrwzcV4e1FeLUZQKUtleBAePF0aizoWcBbHcMoUyiIsl4XeJ3Z11tfGLoqZcWoCw9lb4eliqMN8DFpVJIIqYGPy6mKoKS9jIhG8OzXk6zzAv3kRwoVbnxTghvF3Hza+m5NWCktt+IxERBE0K6go4DycCte7E2o4QRcnAPMJYgCJoFyZ6kgx3J1+25lTiCk8v/8ErghyVHtBA+buhDoqiorgc1CkggRxnLO7wNxf+IWtRFE+yaTWhX27oyaZDUIQU2o19l35j/7ZI9oL1+dJWxzxghXh5dNgfVpRKUBnuzqzOadTIUJwd3AnJlgFR9h2ZfokcOZQPP54Z/kng/PyduF0UYjMSte7U0y5PFZerjug1AK1KS+fjpuKgFPlclm4XnfuGyyLsBZjbcqzB30LPBxEkdCsfKqIBhOwGQgKM29QVJg+mfsNrFJqpbTKnINCwzSYY+aDnTvL6cR6KtzvPQNw5q9IZlRTQ2MmtBbDB+ATYSIKLkaLSTNh7o6bodY4nQ2/32AOtCsRQZFCqQVphZidt48nnh4b+xzUZry9wJsyeb2AL5XbHZ5r8PUp6CgVQzU4VeXxJBRdeHlRrtPRYpweCj9pEEhCvSbMUBQoBUyE6JOiztoKxkSGIAyaOm9OBVMYBv1IemrCw4OyAKJ5cGoVfDpVDLHAUSKEMeHdaozItiMPb6X9xPjN8863L047rZy78aZUHEUEQpTBhAieypnbmGiFU4MmV95fN2YYGDA4EvJADoCXaEpABdXGuE8EEA3ogFqiLQ+C492HogFSlcvlkc8f3xMeCMfvkXxuuzu3ObmI87xvSFVUghBl+oAw1qWh0REbfPe5c7sObs+FOZRCMDp8/jQoS3A6OVIERmV76cQ8ID2KE5QIYk5GF8aQPG8ELpM5/nj8/engfKxZqlulFKXcg/t1Zz2ttEvh+XmHAe0sqC18/HZDpWLVeegr3313Y7iwjcxOl8uCyODjd9f8aMvEhwhSDVUlfBJzgjgegbtjqlgxxIw+Jh4Ta5Vyrhjg1z0PHQpizDmZ0XDP3FrXhXHdUTVEMpupJrQQdVQDHxm0S3HwTlmCtSi3PqnSUDXOD8bjufLth50mRl0qOoPzoqwXY+uKuvP6PLlUZbhQF+dxbVwQSp384sEYu/Fgzhiw4QQJhc4mnGXy04eKmzAtX+TJBSnZl1KFMR0fzmKN+94JGay1stQ42oOsGqAUAwuBEhCBILSqNIGiMPcJGIqiBdRBpSDqTHfWCiGwb8EQUKu8sYkCWxduXdgpvHtn2NW4d6cI+HDAWOsD9w73CF76IAJWEZ63Z7b7naaG1sbLfUcIUCG+dCaAujDuO+FBSFCkoig9TzgRgnhgrWYlHqDDeXl5hhDUMuGrKwTMCEB5fx/89Nx4skoR4zngPgbWKoiz7xuuk7UF/+r/fOF//ZsLp2H8/C8W3IKPnydP35xYXwXFBuKB94nvznefnzEJwHF3apGEylHZ75MYE3fn5ep8vu785Q8JzlKD67Xz1M6sJ6UU6L2z9526GKeHBabQFmNZBn2bXF8mZkZbKqdz4eU2ue+dy7KgJdASXN4+cv048DEyv0i+CTFBo+A+AVguC+VU2ftg3O+UUqgi0ArRB7wMughynyDC1JkZqQfXl43ajLHvzC7ggTMgSDKnVpgwh+NDAMFj4D44qVCaUkrw0E64A6Pz+PjIT86FKje2fVLUeHwnNFWGOO++emC+DMqErx8Snn1GUDWWEtSpPFJ4eqXI6NiqYHAfk/sGd9+5vDph01kkcANfCycXBoEXQ4rQx0R00nRyXgytRqkJ930G4x6EC7UUZmRQhUu2FgQFqGiSbVoARczQKvjLHQAZQpVAVYjjLPSk9hCUVuAnr1dKG5yvQa2NPhr/8HHj+XkjxuTxoXF3wdh5WgovvfDhefBBjNevzpyWgmjw8WVwLgJiXGfyB8kNHAShBBRFVHGfzLEf31ko1vDeUbJFMjmCcBuAQZCED4K2AnPisxMCHzZFDV4bvLIFmDzvd2oteBHMVqQWhMn//tcb/8lPK7+YlbLA5U2nnpVqDZOJ40wH6TfqduV2VT5+t3N/gcDYJMAbt5ckwESEbTf2sf3x+PtTwXl7vrGcV1rT7OcMzpfC7TYxNYoGHoBMalUe3p4I2bh+7rRinNYMTt8gHiatVuyxMuncrnsSRTPAHfFgbANUqA+NUMURxsiAK6czsw+YHdl3ou+IJ44Xye8n8kUbUrxPegTTA/ZBPa2ED+jj+DOSfYBPQgRVRwVaMVoVRCpK9kUnM3Dn/jI5vzb+4mvj43Pw2ECr0U7C7oLWiRUYfbKF8JU6F2vMMdmG87opq3TUoTTDd2iitDV4qMInINxZTJKxpHNW5azKDRg+wRWrgpWaPbQVShFEndGDvguKYyr4/xvKBRQp2VPGxKcjCiCoCBGOhFKKEWOiRZhOBkqAu1HV6OEUNU5t4pvzZlEei7I2ZS1GmzvvXTg9LfQJO8Lr88r7a6f3yYd7Pu+fv33i9vzM+5fPSARPl8rLbcdE8kwBIooETBfQPCfuoKKIKFoNtWS0IwL5YhOPOIilJJtUlInjMSkoQSUsE4EGWOxcauHNcuHcC7fR2fokdLBvzhX4N3/3ib/5VeWf/NXC0xrMAZ9+2/nV85XP7+Hl087teXJ77tzvzuiFl2uwnMDU6TdhPd9589RoTVlWOD8E53X5YcHpU1Am60UYPQNgWUoyaQdE3O6dOeE2YR+Tulb0OrEqXC4PvLx0rnfYhrNvHUUQ74RuaDkTRDKzlgdDFkUJRndULDNgdGpdkZiMCBiJe0JAxfJgFUXV8DEIGRQr+JhUM2IpoJOn10/crnfGdmNdko31YcSciAWqUFtjUc2XKMIcnbYUnh5OaIcPnzrvHuBUjdqUTwMw5fUiqAYmwjC4IFQxquR3a2bUElymsmpQFriFE6rJcFYnRNHpNBNcgoFCCC6ChSc8C/AZmCrahCj5vWMXfB/ggh0yVNJsAQRNCyIJbSOCMSfFFSvkIRYhjqjwCMrBnEYcweCgphSBrTvmzsUUn4JJ8FRh75OvTsZXlwtj5ruaXvh869yuYGKsKzxZoc9J6ErRF95dLAmkcKoZHk5Q0KZE93zdGXXAUVmBGIM+J1IK4R1HCA1UCjrnEaQTEUEj8N6ZUhAsq6kGGsHu4PvgEvDufOJFjd/sn5jDExZH5b47v/r1zl//9ScU53YPXl6c2/POdgtiKKelsCwVW4TLQ+Orr523r5UqgkRBTVjWJN2Wmn3F+fQDCaE5MovNEbRiOMmItvXEvg98BhFOsUrfd8a9Z8URJei0pjxcztzvH7i/CLfaaSWDfF0rY3cGlr3FUvKQebBfN1QMWsLgYhXvWzJuZkgo3gcigsdERdAD16dck6zbl7YcUWIf7NtGWRoSgc9On4HERFB0psQyPVIWwfBioJYscjjnxbh/DupaeFyEW3EqQQ3nQYVaoEigAYsPZCiB0KqwVGjFsQExSEa5FsQUU5AQjKCWJMjUMrgt8pkkeZXvI5lPsl/3hL8SQkT2nFOMINGgqhzHOrIP/b4yGSFJuIUqdqCP8JmBOR1m9nkBmNkhf0GxQES5D6e1yiUywE3hZ68X9jEYAU2F2y1YRdhp3D/smBUIeP8y6Qhvl0dexs513Fi8EDtgxu2QIEQE1YLgR2wGolDM8HnIJjpRSWLNVZCq+D7B812ER0rqUvM5EfiYYFClYAQih4wXYDp4aDXTm8KcG+dXlUtrfPtb581j5e2DcJJBnCuG0qrxcDHOq7IUqE04X4ylOXNMPJxWG1Yn4WACbk5b/vhU2J8Mzs/fDS6vCrfnHS4L58fG3DtzGj4m2+5MFxrJAJaixHCWVbi/BBJGrSno9vvktnWQSndBrDDHQEvS7KUpcwZ+H6gUrAA+aWujLIX9DmwBeye0HofOkv6eyf5GdyIclYrPjlXDA2IfRHW2/c4Sge8DK1BqViF10FB0TsZ9R2phXRrUgokwIxCMVp2LKvs+eL1WiipthUWU12Xw9FgwGfgd+hVwpZSk9W1AeB4UCWHsUBdF1GmL4kOwPhkj5YjwrAIOfJnqEyJhuBpWjt7cM3CE/I7FQNQYHilXEYcclfqaKQiCWErDAdnzRyCRQVeLsW/79y0CIlhJNr24IzV7dRU4Abo5ElnBxVKnDIQThtXBDPiLtRIIvwR+87Hz8RMUnKKKNGOijK2jBcLg7vl3bt0RaZlpIhBVpieJh2omHA/cChFHQvGeEkaAaEU0Mon7lzQ1AcFcMXGaOzuBLIaVRpnON8uZQLha5zbgft95uXcef3HmP/zliV/+XLntGx/fT3wrMJWn10prjkiknHVK5ltcwQOTnu3adIqBy6TYHw/BPx2c7zsPrwqXx0rfnfvnO21V1Dyliq2zrg9s1xtLWYka7GPHSrKr231nn07IoYvtAdJ53gb9VohpYE5IOj80CioNOwExiDkIn8yeGXNsmQyEfsCtZGaLpePHfX5PxYuDWUHmpMvg4fKK/TYYY0ciiCmUarAq+21PpwqBhuBhFJTTqpxL9qO33WlWefdQsSp4ga/W7PV8CIsrpzEpxfClYCdhexkpT5ilwQJFZRJh+FBYJL+vBu1kbNMxyYTjBFKE0QOLghkp2nuSNGrpvIqpSOYBrB4VxbMiLq3Se2bqL66rDBvPKgGI5mchqRWqptySEaagqfmJpC4NZAuiJavSl4rdg6kCR/Bk1U2Sr5qiPWgDzudKfxD+gyJs9853L4PvZuNsyrdx5+Ybn+4DlYZqEjxqKYdghe6pncrRVyKJ3hRJ6SIG4fqHhBaKWcpNgfwhyB3cMnEZ0MTp48rb9hX7MD70Z/pB3Ky10PeNf/cPV/7pzyt4o61Ce2qczh3dG9uLcDqBtEm9ZDUNc8wU/fKMQrJlIFGeuGZC+SHBORh89/7Owxvj9Zugb7DdhfWh0c4rD31hu+3YsuCeMG1szhgDM8HM6HtHXBEVtnBwxe/G/X5HxSjRIARD2bcbp7KwrA0JYW4TKU73jdiTwNACFvnix9zQoog2RIyijpoypyMhuHdiQFnO+Bj4HIQ4TfPljK3SmrHUQvSdUylgnVvfKY9nHs9wXgo/e1P53fsdonCpk+sM5oRtKl9bRWWwnDX11psREugirEseeLNgzoS0iZMcXZQxJzUEFWME9FAUpbjj4dTFMhi7M6QwLbBmiME9YDFjzpHabTFsKcQMRjgC9DEOCCtH9egpepsgmiRQ0eMIRPbsMSfdk/AjUixXSf0wVEjqVzDLns/nIdWooQH3nqSNWUXnZBGYZugI/Oz8dt9p4vzTp0q8rfyrX98ot4D1xB5B63Dfg6r3hPBqLIswpxMGcp9IzKPsJ5EoaszhlFqRUGLuiBoxnZidyUSoGSCkcOQmaAh7TLoJjy6IO7DxUBY2f+A+PnO7bbhNrAbv39/Yrk+Hw2fw6lzQtIqxnAu2GnpO2TFiT4IqJjEDbSdgoj7SCyCOT5A/NNR/XnBqJAV9fRYuF2GpSSRcXwYSHbOEkVUUt2DbU9TGk0E1mxRxgk5II4YzLCuTuiElRdpaGhLO5WGlFQUNKkY9NQSnhNB14NdOuOCuyBY0M5BgINmDzsNtdGinsTtzguJsgyR+POAEpUEXo5ZC359ppaAGaxNCja7C41q5LIUxgndPlffvJw3BRNhmBhUO5Ysn1BQ9KTIm9+fg1JKJnTOILQOzYlCz+rmki2a/eXpLQ5DZmeUIBCsojvtEJcmm2hrWNHsmD+rasg8rioiwRzDpKSmQlTlCGBF4KGYJq2UEdhAjJunCoYD3PStOLXiAWEE0e1CdiVYY0GcyviZKbQpT6X1SLbg0hZGGDkN4WAujOJel8s7Tf/urm/NvPw32Lnz9yvj1Z2clkwZ0lvWROQLfr9TMB8whnJeVO7fDyFOZPtAjAfV9EBZYXRLWElAF8QrRCVFCEoEIAqYIwVBAlMXh73//G/7qq19QZeJjS5kkHEK57sHvrjtqSlXF2zjk46CuiiwCZRIWIGlLpXfEICz1dalHm6KKDDi+/J8fnJ9fBmLBq9fO2J3w1HIWC6Zv+EipYttu1JbECQKjD3xkdSvaKHXD1gfmthPXSaC4QhHD0hlNqFOXlSKSUoMa5SA+hjpz3hENmlRGH5TiqS1pozVj3pKtc1dcnNYa4o7Hhvd+sLmKSpInrSqBI3PjoVXMCjUmJ1u4rCuvGpyLcrGUeJaT8fOfGtInT7WyASeCc8ueIqYxXJgWNNE0BAynb4VQxyWIUPbhMKFqJjAqbLuz7zteNf9/BFYqooaq0bSwjT39vJbPxnWipWKmadog8AkeaVbwESiKSRIowyciC6ITnSmYS3GiJzurejCdwJwTL0eFlWR/Z5/0kYc0Zat0i8XRx4YEZhy2uQk4osZiBY1gStDVORV4r4V+n6hPfvpg7Gp8/vSRVY1nT+dWPWC615RIknx1sImIMobjctw3gjKSL/JAXL6HvVYbzGyNsheOZMAjEBlp/VRhC6OE4Hvwm4+/p7TCIsbTeuFzv3OnMz1wWZlksy4oZVVYKlIkDS6SyV0kFYJIej2RyiyE3IABskJpyKHp/9nB+fKyUUvju283RAdP7wo+grJkNr3fR2ZSnOvLnSB7hCBp9SDFfL0VbtcXYgZMzT5RksQIF+bs1CXJJKn5Ml1Jh8xMunwiWFspriwjeHh8zS7BPTrjvtMPvRLygDFz+kS0oKpYVXzuqCgmAtOROVAJzmtaY1ok5Hl7Uv7ZN4WHFjQNiqV7qYvi5uwxOFVj0WBpE1uE+y1RBa64KHm2BZd0I7kJkP7Vokf/OHOCAYNaC1vMzKqRPZMgWBGaJWEWKvTIvslUQSYzHImEkkJWTxHhmDVARKhNGSO+J6Tm0VOKCmOkyczDGDNoSn4vLckUS/53ePZGIhmYX0KCIyAgg2ceLVSxkn2/BjGSRR4R9Cl0d97VgFPhd1vnHz5shBq7OPfpVFVGvxEoZYGYgQ8htHO/b9lTYodZJa2egoJAMU0zuzvr6Qym3PsdiuX5I62FHPZAF6VPuB2MrxDctzsPdsZEEg5zx7nhs/G3v3rh1s9obUgpSIkMQFGCJVu4pH6P5Bak+TpJuIiGyEJIAZfjPf+A4NzmzufbZ8pHZXZYzxdOF+Hzpzu1XRKuxcBE2CNdKGNO3IO+5c1bVYoVZk9/qwrHQ53pq8UpNUmHHoM+HWFShhB7pjvXhTkCdSFiYrUiq6HTmc8bfYxDsFZC4jisg6KCH9myLZW+aWL8SBh41sIawVqS/a0B6wier5PtHvyyTXoINxSdg5eb8uqkqAa1GK0FVp1TM+Z0NAxB2bdkCkONSeQYWVUYTikZoB5C706d6U8OlKkTU5jhNJW0B0ZCZjVBSjnkKw6yJllIUzkOXhyH4VA4RXDPfldMqQpzz6rhOqjaaK2w75PyRX4qwslOjMNiJjV54C+oI+aXiQs55IlkmnPUT7P/NcNEkcP0vXuweY5JTQ9OxTg/NCJ2/vWnzpiBqfPdfVCt8eqUpvo9JLVt16OSGmNUttjTmoemyUQAzZYm9dIkh7Z+p7IcLVZhHBMrX1xpfjyqGUKIcMVpNugUttEZAnO8MBWUBRfj22fnwzV7ejdHygGRKTAtA1+F6HuOkEkaONKd5QhrElORhhPVH2hCEBG224DzJIby8dsrpb6i3zsff/8JkUrvjtagqXHrTn8ZbNdkWsdUdCYLGgK4MBjITLo8m0OQWBhDqCfDJHA3RBWZxhqFGoUizjT40De8VfqA+3an33ei1xwzMiFGwlvRtKPJCKwGc9uoJAWvKOEjCSRX3iyJCFyUxwfltk0+PU/6Q5oRTIMRUC14KMJJlbVNXp2/HFyhnYT7PQNfqxJjEpGByExJJA0Ah9QTwTG0gBXluu2ICcvSvp+uaWujb7d084SCBKXkoZKjz28oOgIp4NO/h3Vq2RvK8R7lcCYd7ThLWZLmHwcba45GxV2ScJt+6KmZ8bMxS5dNaoEF16MaownPBJCcOJlC2hpHkjdLLXR16JEQH+fVyfjL1wUT+HV3FhwLZ9t3assWRxyYwVoFa8ImO9TGuCXcVVPcBy6BWs4VM4NSKsvlxB5OKQWtitw7474x3TNgJTkP/0ITmbA5TAQfkab7mQgu79kYXthnwDIJlUM7VQjLoCP94X6QVXCYOA7/RI60ZXVV+MMM858bnLVWbs9pzi21sT8b73975eGtsW2Bjw4EJyvsc0dGmrn73alSGWNjOMdQ6TFRMIVpIBJ5YyKZubszKNTVeKwrOLwrKw/WmPsOzfh4feFBC88yeLne8DuIN6Z0/ICqOTJUMvBn9gHhFbOgBlyWwtw6ZRivlsaUFy7rK6oo+wxeneGntvBpFH67G1+XydkVqoFuvBGjrQXRmT2XO+FBq0F3Z4yE7kSg5mmHs5xbtIBajVom7gWdKQDMDgVhP/yHZvkZRJrYa6lMU1AFBZ3JopYAJxhEyi/HoIAQWbmM7/tdpBIlsqftI0fvKLgPmgmlWE7geDB9IFrSITSTYZeYqKQnuY+O1qyetz6oZP+pCCFGlyDcGWhq2BrUppQulHC6wHXvFBF+9lAZVrhO5z7zfVY1hhoffGOJE1MOptZz1nL0nP8NTbbZJf2vEUGklSmhJg69c3p8xRiDGTtWDxPKvoH4YU2EfQ7wQxryYMaAmOk2ErJhFaeo8/rrSm05xojMfLYzJaov8lSpRsQgnGR01XNGdIIWx8kzwh9XUv50cJ40uLmzj2D3wf1loqcz+0uO6AR+6G1BscIug9aCtir7bYLCfe84E7FJCaOjyAwCYc6BSMmSX5Ul4NyDMjfe6YmftZU+jU8hXLvzPCef5s5tm1gEtgq+TXQjXSQKYmlzK95ZqtI3RT2QFcBpraQzB+GrN6/wfmLbOufHC60I6wK/fKt8uilaBCs5mmQMlnWhtkLjkHWmECHcP2/QambNg3wr1VgWI2TiYmgEKjtuk2KVgrOeD3g4ySpvLSueBqLBmP0gjQzznNKJmVMf4zCky5R0JWmgmuaFFBjJyZKZUgMSWJE8SzPtfWM61gpMpw/PliEk5Slger4nORw0zgBp2NKoluxoCaOktStbCpPUanNMKDdPRPqct91xL1mFzFjJYfHHVXlzUe53RcKwZvz2euW2f8epPrGa49GZMojpSE/0k/Ktp4VQUwpSz7GzmMNpAboAACAASURBVMH9+TNWK/f7PVHFSD1X1MAMPeyTGtl3ohMTZ5bIym+F2hb6uB66u2M2OZ2BplAMN1KGAoiswkrkxJXrsWggAxtN62uoInN+X0l/UHBqKWhzbtvGcqvURWn3zrOnrnR+KJyacLsNzo8VK7DfByKOSlCKwpwIKcaCpDvGkzCIGURMaltZm/CmC4/lxDfLib9aVj4M5ePufAznWSfvY6QGGelfnSMn0iVyG0JY4jb3wE7C0oTrPUfMJCSdN7NzWs+ZeUN4falpySs506fkPOn5BItMWquo5/2spiwKRSPtVyOrUrNK9wMaSWbOL7ax0KxuMbOamTbmFEod1NYIhOgBklKME1RVRC1Z5zUtfIODaRShRyTJZUJYrhmRY5uDlpS/iGTXZXpqpzW3BhBgVZHDEmjV6O7EDIoYrRaCSZ9ZBfJKuEZYanPibN3Z9/m9BjpdjjUxgy6DqkbxrOSI0LsyCTAHl/zZDMoI3lllvjpRHP7+Y6fvO9vcOUmjArMVdA5G34muadULkMgzJId9kKmZnMQRVfBCuDF6TzfaTDgrOBqe/uNDCkGz9XIOWKuFEaAzOY1lSWmkFOHy1JDziisw7tmueEGio/WwVkYmyZjpGxcZ6Sf1wMdANYf/5Y+C2v+P4Ax1So30xd46jYZ97rR1MFHa+mVOTdjvGYSjD0b3pLonFFHUJmVJTK4BhYIWY86dtiycJfg6Ft5Y4S8vT7w7L3zcbvzN5498uw8++cY0Y46R8oiUzOSHt1RqQjj6Dp6bAqqWzPiWwrpNOK9GQQ5mM/j4cuft5cLb18rjQ6FEDjB3cU5FaeGYwKmlabkp6XaKtLT5mEnKlOQM0XzUQloC/YBYJsZMawtWQCKZZY+DsTZhaZX9mFG0lqNURex78kUjPzt7LMc0HUQRiiVhnslvpgFfJCNazaB/CcIkRBJqJVHlkSSVR4B/2UyRsBRN+UnIkbuYuZ+ne/adIunddc81HSKRdy8psRXy5xEHzNbCjHnwVQEjKB40db45FZ6flW0qPpWLVZZwnn2mq0aVcUyeiOdQxCArn8RENe2fIgZfwMOxTwiUapXp9zRizMPP/T3S8e//jGfJY5RERTGdUKhSUSlEREpK7QS6Z5KbHaIkVzLJxBgDpGROI62ICVcM9XnQLfEF5Pz5wen+xebloI3SKtstaEtWpenO3o3WQMLzJiOrzByDfQczpYTk5MMEJJ0x0ndKQBvOa1He1Sfenh/56tz4fb/xv333W371+coIzSVOp0Yfe84gGtDTeUExRLKKWinghs2d8+mRqoNy35izUCQDT0ZapiLS5/hydy6vhFcn4V0rLCUo09nm4LwunOrhHdagWsI3s9xLhDtWhdBkRUtJb+ruyZyuWtJoEWT/hzIjyGUcehzuXGylp8Kqyom8j5AM9qL6vbQkhwkdzcUOBsTRK4nl55SWe3RKST/s7dbBjrnV4+8LSYbTtDB7mv1Lyc+J7oderfnu6hczg9A7OBNVmDOP1BeoPadTzA6jujFH55B0YUaiqfzXw2KZZ+LUlCmkQ2sp1AoPUTir8u1tJ/qgiaG1pP7qOVFaCGpVpijjSALD852q5Hyq+04Mp5UVa+Adguzl8w3llWc8IXxRI3wkEipKcCz80twF9Rd/eeEnP7vg40ZsV4pv2SaoMlwzoHpBbQHbk/MYcWjqheiAJSEZGgei/Pdff/wnpF9TD/O1mvH0VBmzgyva8gFvL87ox2Hv6Rs0PSQTcdwyWJsqVnIJUol0jlym8npXLjNF26jG7/3Ov3n5wO9f0uQQCLPvhAuvXr/OiZe+p6heU/SeMyl7bQtuO6dTY4tBHzsR+/cvwfugCIdJWynqRCjbrlSCr8+Tn6/Bz1bn3WK8qkozzf42kkxpSgr7Mx0w8xhLWhY7fJLBdBgOlHI4WQZaJqrCfU//r5SkD8KDakYfCXu0GFaSGY1jv86ML6tVsp0Ye8K3GHnak6U9YOzhdpmeEFlLIOYM0lKZXqSJFQf2NKpbJuE5kvqv1ai1YiUD2Wdn94n7H4T+eeieRS03SkQcu3Gy/5UjcAlFpBxTL4JgOQigytmMiwftvmViMuHnb4xfvjOkZK/epPBQGuVwRy1n4aJGkcFJPFeJkNWUkY6fOLTYQ+th+mS/zRwt1JkkDl+8xoJoodWFGMIcASi9D3rvHNQNEp379Zn//L984quvlrRlTmV4Wjk1nMrMTYtCjiZ+vjI+3YltY27O9fnGmD2rqu2pVf/QHUL3fWcOQVS5Pe9c7yunZeG2ObIb6ykoOqke6NRkcMVRg/GlGWYeH6IYyl0HmxY0hEsJXrfGTx/f8qFv/NtPL9yfB88evMTIauG5AqI/X1FP4tuFxOtiTJzSSo5+eXBeL9z7ztg7OhymUWr2PTo7dTlBDArB68czb14VXq3BmzMsTB4wWqmsJ+EelvuMyhd/6WBpOZGTHaAiRyWdEQwPCKeWrDq56mPkJoUvBoQxcQt0SRM6ZoQapSp7BD0UGc6UDIKGfr/lLTQJHbwjWo8eMntliTjmHjUXALh/P/dpixAjqzYztx4OhMUsPbK7JXRVaGbJMgMjgrEH4Yb3nogHyemWmmsp9zEwQJpimmNW93mYUTw7ZSF5Bj8M4CLBIlkxEXhshW975+tlZY/Bb58Hp+VEud55WlfUlM9zUosiU9jLxipLGkcExiBJt+b02ZOB7ZLapwrTd0QLIiV3TX2ZB/0Ck+dEWiBlEDQ8oNoBa11YH1bmCP7H/+k/5r//b79ikdTwN4I5jf2TUC1RIxOkbOxb574FZZ2USz3smsptTBYmZRU+XJ1f/U755z/7AcG5X0EGlBBu18H77+48vWrEtjO7MuqhhU5YxYkI2lqOlRhJnOSe2Pm9wVoVmgaPI9F9XSrrWvh0/5Zv71euYexD0gcJRHyxa3X6h1vuMrJKDMmZPRraMvNLBN4HbDvbdGpdMI3cuOeTTsJSnx0tjXNbePOgXGxjqYXTRWgIRZ3aKmeP3NcTSafH3pnz2BxwDDggCQ2HHnOjM4kafHLfss9U4XsiQiSF8hg9+24fUJwyCqhkZlVHjoVcw4zFcitEHAK/H12KH+Nieoj9GgEl00aI0rThc+aES8s+y9TQ/bBQyrGi0iY+c0611PR8+pyIHZa3zdmHIKHf2/lKSbni9kX3hGQiPb7/VY+50kkONRdL+K+iWKSInzuLoIpTq9J2pa3KW5SPz4XPGzz3G4sqSOVFNiqVshRGTKpC08lUA6tYBx9fJnHKkRzscLINBDt2FB3fTLOnZBbMCt4j2xQL1gWqBtUab7+58J/9pxdk7uwfnbnfeLnv3O/OvE3gzqnWrOJLJoBSFSlK3zdEKz6TI3iZlfe/mfzrv5/8u9++8M//qx8QnETFRzpWBOXTh45ZoDJZR2XMhG1ShdVzveI2nPvm+ExTfPZKSrWsHBvBay08rI3rdkNL5f3tmY9zZyuV/Z4EiXD8eXKBk4hgVoE/MIDZu6TZAZlYgEXelkpQl8beg0ULiw60tGzQPSjVKCJclsI7S9j97usTb8vk+jxwUtp0T8ucT2dooYSlFS6O7QHjyM6Si4RTfC6IGDImepj781Bm95/upXbIHUIxSQhlaS1U+TI4cBA1knLG8VIg/h/O3qXJtuO68/utlZl7n3PqdS8AAnzIlCjalqIdjnY7GO3oiT3zwN/E38gDTzxwODxpyxG21bYsyRGi9YhuhlpUdEsyKT5BEI+Le6tu1Tln752Za3mw8hQ4ESMEcEAABFFVp3buXOv/NGrjWYdrLcba8JXFSVHiew8jtZBFniV4mnSYE4Z5Oyum4QCWFAR8s4g4SaL0FKh667HnaYo8n/hxWgB1HhNFd6FP8f26j9HRO90MH/Y5USHnjHmn60ZOynv7HZYSZ2uUKfNR7by7u+K0PjFruJZcE8vYVde1YUlozUkUag8fsPRxk2ele4tRekglxQcvOVBv90CYhXAyJUmkOUzcORcO08TVpHz7t6757W/O/Oxv3tA+LnzjRlBfeTx3xBLJK2HgVlpX0i6zuzHeeW/H7jqTC6TJsbZRvfA3Pzryf//5Ez/7eGW+hv/2Hzh+vx4Qajz70HJSWms8LcZ+Fk7nDS0RldGbBaJswro52xIuCilC2+JNm1IE9Nbjyq2XkK9J4vPzkYZRxy8890YL8We87fQC6Q//XpxLXJRUIu/GCQuY/0pQ9TwL0MEbSTPX+z3dhN46c9rx9ff2fPMd5SvXytevJ3bFyWNXmjS4wTxZSBAdeksYndydtsUtKUqk9nlMEEa8hdfWmbIyERm9KKAyKBKPAGMNa1kmEgq2zUL4PucADC7E9+WAXj4FH95Gjdu5NUGHDFJV4kXa5Zl20V8Jy1KIv5dCxZJ0gH3xcUe6nwjJ0qAXBjKN0a0HIJzygE6crXZooZ7x7nQ3Oom+hYNGPWSBlmPXrDWuSWXkIJkiHQ4TrGbMWfjmyz1yv/BQEjd3E/MipK48LCtVKy79WXB/0SJXizR8az08vZ6wNGJfknDJFBK9oL06nCahQe49kGu6M09C2u+e0dXdvOOdq8x7xZlOG07lvIBqOGqmOVaKZem8PRp1U5xGc+fuZTAeN3fK7/ynt3z4UPm9P/qY733/iYc3Tpngnfe/pHzPL/yojzdxinG1W+N4bkyi6KEwZaWr0yByON2QJGxrp2+h63Q6y9LRJeb57gGcvGkr7DKWlHdurnhKJ841EvPaxbbnNnaVkaZtFg+wx4EMcDGok2SRitC2zrL50B8HElnbiubEzXxgL4l3d8oHB+e6OLMYaavIlMKdnofBmHBpuAgpx0OoEjdQ7V/g4DL4zFCZ+LjVdbgf4pYxj/1oLgHmdA1VSdyMSi4RgCwXWkaeN9ugbtRDsKCR78OFuJEW2UyXv3dRn4uhJW4qhlY2aUjJJMfD6v3idAlKJklCJh0vgvHrr840CW1I0wSoa6Va3D6MvCHGuJgl3P4XhNgk6KBpShdAP9Q24hSETCJPwu6QeLs0rsQjYf8gXE2Ft8c6gCfIJNJc0BQWtr45ZwLYa2ZARjRwkqgHacMIoM/SQ5ywwXGR14GrIzS0dna7W0iJ2s6ca+K8zFid+eB94YPrwj5tzJOyimAVbNGIO8nO8VhRUWpX2rlyOne8Cj/68Vv+u9/7mH/z12de3CRKgVyE5fQFm/yPOpw6BXydNYFX3MC8U1tUKmwXxK9MNIOUOuZK74I1o/XI4lKz6B9ZOlnDazdP8UBuOcdfF9gsfuirqxvuHzdkc9rG0JKOm1A1dolhJ/P4PQfoAQMBCzBkmhW3DDmz9ZVslUmFWc8cinKzn7iZhL0YSTLJI8CKHAfBDJC48dbeAuRJ8bX6EjuzD+RVPA6VIRGfgUKyoRUOPusSFdK6kizyajfiDb7bFzTL847N5bB0p440PbfgIoc2K25sixehu7HVgP1FdfBnGqofK7h/ES0iQzCgHoIC1eGk6IZJDQQxB9iFgZSETOEtVUmBzLawW7Wk+NqoDSSHPvVCbYnEDcf4nEhhfRMTJnPMapgexMk7JU+dXXfudsrXrgrbU+d1Euq846k9kEXpZeKmlEDzNZE0EHLxYbAf/6FHtkUQmCF4uLwEDSN7otNI80yr8ZApsK+gy8o5Q60rRZyffQST3PKt9/dMKtzsMi9eQJuNdRHOD4l1EabeOMzKVocOeprQlHlTO//j//FLvv/9t7x8EWDjbp4CIf81+r1fH/AVau2IsmhR1NJbaDBbMo7TgtmM2cJ+H9UNQkDL5gMA0XGANkGPGt7HBGWekRbSvrkUfBi535kPPKwnOivWcyhSNILDoOAWhUnuAY37SBW3buQyqAt35qkwzcp2qnjd8LyhJG5L5v2DcKudHZkkRsqJnGOPXFeNAiEz+lDTzCVQwk7YwJat06rTW9x6tjT6FDeUAi5Gt5CIZYHVGuoR3eJt9Hg0oIwbWUNlY+KUFBEkJuFhFAlNMKOOws3H1wnaoA9RgRDvrdAwhvwu1lOl0lARSikRQYpFrJrA2m0ETGfU9XlsduLrY6EZ1uxgOTYFD4+oitK2Gp+5GWZCZsJd4mbQL6aP51DoXZjayVDKFMou9xhzU0RG7jfnGyIc1OjnxL9/cN4vL7h/PPO4bMy7mRd31zytC8flieKDS6bHHqnBQ7sHj/isER5CgzQAxqSR9HeheVBnkkSvjbZFFUSrjc/fPCAi/PzriW9/kNkfgrdNWZl2xrYYbMY0Ik8Oh4zuO2kPP3t74l997y3f/+FK2Wd0zlzdTOz3ibZ23jx8ydza6SD4Nj2Tv7lssUA7VIPj5tS0sTPYmjEvCU0etSHD8+c95v7ePTJuevgJH1uj6hgRc8RUvri65tQrSzd2uxnplVob6jNoeuanYphTXAJguIA8kTwXD457o3aC2xuWsrkkXl7tmEqLdICton2ml6ghuPy7L+KLaUrPkrqcQ3RxsWw5I5FBItz4wq5rip83qAwwVSRPISDokQanCS6qVR235GWEDKrCweMQIhb1C+N7ujxgl5s4ALIeAomBjj7vUw6oRyyHXRLmnKTOVBK1NqaphO/URmyJxOoS3lSLG9Dje6+tosHTDDeKcDYiHI2x+8oQKsCwSfErHKwwZ0HneHnmFM4iITGPSgQR5+pKOeygmTOVQNBLEhbNJE5gyouXO55en0gqzKrUahiJNBS3oda6JN/LWAUCDNOs9HNwtr5uJA0qSTyyj2dPTL1RpdMUTAvHU+WnnzWm/cTVTQPpzIf4nBKQcJ6OUXy1v2qcU+Yvf3Lkf//Te/7y3z1h5sxz4fZq4uZOubktHN86n3z6JW/Ob/zGHW0lWqSeTrSaIvlsEqxqACMFqndK60wtRXZQ+MMi04WOkkfAs1G00Mjcn87060JKia0b+xLRmH2xURegUbGWUhDuvaPFaFi8JYNMhTnsQL52aBUpkPTiMHdyybS10V0jDkVBNQK8EkJWD6FBGlJDIUQNOROtGD6MbfHwQOxtpcShiISB0fmhfLHHuEMXPA0hx5hIw0oV6K6jZI3KBE1wCciOe2+klT9rWcbullJoha3ThvXqmbBwAy1xu0qAH96hZ0Fl8KBONMdlQepFXhe7+yUx3m2MopfXhYSuNtEjo4l42dYWu+7zbZ5BRvmUFhlp8mGAKEK8tNxCrHI7x/dbG1mdak7CSEkorjSvWOukkvj6i8zpvLFMmdfnjFnl/nVjWxpTiT32VCOnSrogJpE9iTwHogkN1YlcdtR6RHrclM+YhkZbWMozB4np56TO0jutgafGL99syM0N5ZYYkW8qxToiE2JQ9ondO3tOm/N//clr/uDPHvjZh+fQ/hrs50xS5/Zu4v0PJv72s1MAhl/mcH71q3sAti2znne8frVxejxxOtdwhPRM2xxVoyls3cm5E+8hRamoe3gyC5y0s5ijCVZ15lKodQt/XVGO23nwaMJWO9sao7WEihJ6eX5kcEN9ZOkIkXA2EgAi6jHHIStCnhI5KbtpQjziR+YSt9IlkDrnEIOHPSgqCCNuM7YCnXIEYCVHUsezxM7VoG0+dmB51qiObzJ2Chu0BnGbiYQrJoCKACtSykFlXI7FmEtFgps0q5EMqHELaRp3xAWNJRIBXCP/VofR283RnLh0comH17NJjwMscXD7sEsJPO9nocD1MCP7UNw8vzBie8uJ4JwqA5LyCGFLglkbxnSwHPm8a+2QlEYLgYaGv1MkojVBkB4ZtC+vd3zt3FEWzjnxVJW78xRbY4MdAeTEQRzo7JA59hovLnAiJgSQhtNACnmXaG15jgOV8eKsg7Lbj8qH6Lga8kUx7PoaeccRPWFlga2Tr0APe2ab0Osd/893H/kf/re3aGvsdxO1RyDBPEd64FrhFx+eef1gnNs/3GT0aw/npx8+cXunHK4Tt9eZq0PieJw4PjTevF05nlZO58aUFM2Op0Q9B9md5xbBTGaobOyngs4TdUts2wkZNWn1HChsL51tgBi1dtal09vYIRKI+YC8h7LGjO6Chk0dJITXSsSSeDeSR1rC5CslX7OTxO0Edzthyp08ZXYlsxMhE3ycuaOFkH3Rgk9SHda20ddRYk/bmjKnSM3rI7ArSlsTbemsPagZT2NchiiCVWfzNjiyxNYc1VCdhHN+cHM63CPROwHK8MWOYI5MyONcGJkk8VHor9RTZIk4UBXSeEnhkaifU9QCWh+Akwek3LeQR+rIDurN6JuhhOCiWuQVdXdKCUXVegrif54LbYqMopjORzK/BvU0aWHal+CZs9BzoowdNqccSRiqXO+vUF35yvGRu2nml0/Gz9+eOUwJJXGN0k4xXuslJMviRecDyPIBFrlEvlNKOvhOSDlRV4kpSy6vlRpe4ykxSYA6mymdipFZ6sabhwq/dY0lw2ZD766QU0JOE9qFn3688C//8CPqqbGfO9O0g2ZoUbZWqWfnFx/CenRevz2y1vOXO5wfv174+PXGi93MOy/3HG4KtzfCB1+94s39gdefP7I8dT75ZfjldMRUCKHctwt/QCzf4PS+0swiZOq8YBZtWFtVUgna4ny0L0AlyaF3tKi5i3ayAcbQ6ZfoExSVTG/gvjGlkKu5R/8JdqbMMyULJWXurnbsh9hburMNInlXwn3AyJPpz6qeINjFbeyCA4EdFMu2+bPgwhoD6Y1DQjdUS6C4I0U97qVANp9h/+54HmPkoCZUCEfIRZw9gsHGWSWoFJ7VODoMvw7jZoQsQhdHPaoLco//n6pC8nEoid+hhYLJqtElUE6v8SJBIktI3bAUN5ZK1Dwcrke1nUJtQE90q2gqMR3QqF1IsyA5dvOo7IuERsYtXkbiIEQp8Pvv7Hh6qrw6w+2ceJqEKWXME4+10DxCzEpZqM2JxLIvej7HrgHSx94dM0RdKiJppEyEEKOkmbfrkRci3OoOkcaNOudJ0DRxtTvEqK55WPSu8fSCLs7Wnnj9+cZ//z99xM9+3iil00e+sFgKUUd1+hPcvzqRi3M9FV7efkme8+nzBZ2Utm48neHmunKzB/2a8uJl5nB1S1uNm+vMJ59uPD2dxqXmJDI+QJytGkevlH3mIIXl9SlkdpbAI+ajdWNZPaRwG2BfePOSgKeRahYnkVwUa1+AHDIeRsfJmkPXKTyX3RQ37q6Eq1mZcubdw8SLg4QwXMIorWrYQDoFozcwS3jql4mOaSr0UbVepoya0xHEFmQglZFqmciutLrRHVRt5KJqFPPkFNyoj+BkTaM2DgatOdREIX/DQ28bxGRQIQPEfY4wwcOqlZJGX6QBF7HfQH81RTSXaIjpe1iFwojcgke1FiVGIhFO3Q1URkiVGpiRVcKTG8RujNTEw997I7lQSrSidRrmjTxPzLsJTX3wXyF6EElYbdTWIr1eItby+lCoFc5b5esvM3fzzE+L89nZ+HSNtWhvMerfXe1Y3p6irzQry6BW3BmSwhjZU7gO6BIGBNeY7pJHJ8vKSvFbXpQ9b9qZhNGt0ttGVmjNh4lgvFw0DA9r2/jjv3jN//rdB65SAKhzytRqtBalSPOcub2LlIRtc8oUZVpf6nDKFkkDS3bq3lh75u1JeThmbm4btzcFt8bdi8zusGNZdqznxuvXC8djx9fwHCpw7kZPHVqkeORhnEJGLMQYva1+0WCdROlBYIxAptgJdVbqUsdT3HGJcRPpkTavQfJLB4phFA7TAWmZ3kKJksRpPWgdVxvgUNyM7kFTmFkkAubYscIqBiKJchB6jQQ/b508ReW8+NjrNPS8ovJ8q0VURad5wcVQUqCeF7LejciiAXzkKElDLWgcxktKxUeWrQb3PNRBl33cXJ5T2q3yPFbGgshQVYXtjE7UWDRINpwpPm4ZQswRIFGMseKBel4KIII7GokLPhwqRDynllg5XCLhQIYJQ/IIApMAgFTCzoUM+aP7+PkDRHpxveOdW6XXxO2c+cufHVmlc95yBHwxkdaFfVDmNLfAILg0rQ2BBDn4YeJnDONKg5GSn4YhIOfEi9016xIv6152PPRXPB5rrA2REY9Ihhbxq599Wvnu905cFae2jUQawXPOXJSb9w7xzK2wrhtPT52tEw3rX+Zw6vVMO53Dj/bUsLVR9yEyOK47Xt+vzJMzZ+Vwo7z3/kxrheu7Pa8+Xnjz5i1r75RUohahd6wx+jriQIoOaqKn4WYnxkGVGInaGohnUbQZva0gJQ4r4J5wDyWOPu9QDfyilxFq30j7fcgDFW7nzP4wHjIJ87JZGMhdNfgy+1UaIMh+J/yKOcVoZiKRZ5MjehJPz0ipMyR4gza5pO5LCoFDGghuxIo43hUvMh5OIWePPZq4FRMJksTLyoZQYUQrqkacio0T7Hbh7uJrJh02rxGNIU6otjxuAm+ABf/aegvPrEQPqPWQ9ylCjbn9GV1u8IVCSByTRrUYl6cSBnXo2Hg5ZI0XpyZ9poFCfueDJ70ATRoSPeJ2n6YACc+S2O+N/+Are/Sxcd42qvfgZ4dtTYdfk/H7EwvMwofyKiyQjZQKeVJaC4rsIq7KOvGmN16vowg6J6wfudrfUrswXweg5mTIhrczj29P/MW/feDvf/xEr1HWlDx4Vk0x5S1vO+dz47wMHa7rCLn+kl0pttVnPk4Yzv9T57gcyfPKMsfDutfEeYVuM7u5MJfG174xcf3ymvv7xvlYqecwJUtxWGNcAhmEdaE36C0S3eOHyoPMS8hUmA4T28OC9z4Su41UNAzXViPFPNbbeBgI4CQORgAmKkTQVIa9wrJuLE/KflZcEuOc4INeYPw7WgPNcVsZI5NWg/tUzzSpyDCV1214HQegIgIlJZpHFEhHn5Pd0gi6FmWMj8Ikob+9CM87ykTstjbG9gso5Ni4XQPjlYu4vbeQTao+0xfWh4VsRDfmVJ51ykb0W1oLoCdcG1+kOkTh2AiRFkFyIFOqEYrGAL5aH1NMiiR5G4KGpJG/KwnMG9ThFgnKlMAibMRvl6CHhQAAIABJREFUSjzcKbpUVKIg64JlHHbCV2+ErSsfJudmP3M6b2z1NEbrwANE4/eeZPSniDyvn72HCSHvMrZEMqMPLjhpYu2dxZ3k0SRg2tiXid2slH0Yvw1BvFFX5ZNPNv7ke488PPXBXcuIZXVKAffO8dFYN+NwpeRdYTmFeaH+mq6UX2u27msbfBDxA6Mhi6qZdmxs92dkA5kmjqfGJx+feP3JiW2N4K8PPrjm2//RHb/5W7e88+6BJCnQu3FoZPjtbKCtbsHhld2ew4s7lIb2CA/rpygFirWrBhqZBgyaNGIap0z3hNXBKw5OcjfNsWeYczVlJhNsSahkUhPaEr+wPqIl3ZTe48HrHjEcvUbleZJMl5DppXSJFIlspEugc7zQgtt65sQ16AVFRrNx2L8iBuQLUb+rDH4ytKkJw9IlRJS4LXuEQcPFvuY8B3iJx61oOnZmBk8Z7WrBZ4aQJHatQMKt2dBFx+FwLgDTQIBFQkNtjRaXd8TQWIru1gaTJnY5R/s2bRySAEXKlJmmREKhReq8tPGzjv02VE4C2mKXlQCcdNREJoGcjP1VobXI3zmvzkf3T4gbJRWaDXopy+CoHUspUPzBBQuJ7Xzi6eGE1ShBIj5CaM5mK82jCjFr5iCJ5bxwe3dgty8DlDO8VepS+dGHCz//6Yq5ceobm1l4ZwdttVXjVDt5B1c3hXlSykig5MvK96Kv0Ef48yADZAKJ0UcscXpcqUvDM1G84/C0GLsJXrwsvPtBYT/PTEnZzYn7hyWSDFpwkVi8ucQTJEV3B7wktu1MF6NPmZvrPeeHx1E7EGocTRPe4wbOmpBRdc+wJbXWmOeZnJ1DmZhKjuXbO6KFRn++bcU9RjjJUeTLRXEUY5sZuKToSckBmDjg0qlrH8BDp/e4IZQSaPQSfaI+in+0eyCRPqIrcsfHPuqEz9FbpNi5BtrYLEh71ZD5CWDjz3WgwTmnGDIsXhJoOPrTMBy0JlQDNNNN2ZYO2Umu9K0HJ9jjxrdqlBRRk3g86KoR6iwC8zyNkbphtKBTcjDbOZcx9naUErrdkuIzGYL7bj1s9+OFEtzvs2R/PG9RpqseL23RFLuzCakkCoqR+ODFHinGL94eaHamWYuyWzO8ha46lQs95VifxsSjTIcrPDlbjZ5ZTdEqkKVw7pXNnauUmBFIO45tJU3Ofp9GxGXnuK788Kdv+P0/fMVn9xXTSDHMxaiemBPs98JyDuBvmnbkEqmFIsbWOqt9ycN5OdUX+1FEJA6COhphcGBbjdSF87bF6LRTWk/UTXl8u/DuV/Ycrgt5GnXr1Xl8OI+Hv0f2jwzebJdDw3ta8NZIOXH8/GFcAcPKdPFy+hBtA9KddtpiR/CLYqahnsfNpRymFPKxCxSKstWKmlCro60yD4dFTzxTIQH2xa4SPSDhAWybs61hJC8lDVdE7LAqgkyZzXxwiPGCcwtvZTOL4p+BnLpItD13HxLANA7ksKwNhZVotGRbulAygXhGvGUfD/eFTAl5YTfDUxqmAYsX4tKwfinS/YLjhMuIHXpUG7tcaHYDNPGLuILIo6U6uQR3Gd2ZkcNTVIc5Xsb4HGCPpB5CDwfUyFMkpT+HWGdlWxutdXKOR7T2OERmILXym+9krtfM/ektSGefJjbvaE7YYpgpzGPExrDeBsgXrWxznpnnTKsNH7+XSwp8U4kIVwkjROvCvBf+y//qA25uMtTGm9dP/N0v3vL7f/CGf/d3K1c3M2/eHjG+SHdHEilHJE7sC0atwtunyrbBUp1tqLH+0YdTNOxKxpBjiUaQdCcAF7EhZknD+wnnvlIsR+/lduSpVtaqzLvG9UG5vd2xnDaOT0ukqRG3X0qCutGfTvg0qtxcMAujbhoP96WgxnwLRFYTaMatj4Nr5Nypa7hgtJRARYHrWbmahTKWD/EIvB4kAQ6sSycV8BJeUumRqyMqwVMO7ECTgCmt+3hjB6m+VR8PkQcoMuxbkbZnOELXkQ4+xETlclv7yAFWGb0v8VEXlaBT4h+iDRWVZoUKvUbItPllEJVntDm6YabgazW8kVkdsdG4LDo8u2EeiA9j0D42hISZZ9xBJPZNMx2mhECJzUN7W63RUsSQqsiIRYlEeZEQuPulUmJwRt07SfOY1Iy2VrYtemBoEkL5oVAShmjdoZ431tpZeiXRyCKc63DslDScRduvOIaiQFckx7g7sqcEjZeNdFR6NMG1Myc6Picejo9857/5D/nOPz0w2cbnn2/88Z99yv/53Tf89d+dcVOub3YhPyVylaYBAtbNgg7MidY6bx+E+6OzWed8ButfEhCScYukKVT4lz4OZ1AX8Wt5JskvdWb13PBjoxdlOkw4C3I0luOOFy+F/X7m6nrm4WFhWICxpPEwmOPreGOTUckRMTmM0365tYmeThMlT5m+WSh8aqR6dyXUMxIBzyll2qUQJ9vQvRqaQnVkHiNV7xZQ5KiHQyJNPWvc2mb+DNd3c6YphA+1jjCuHj0p1qHnoV0dB0uGRECJw9UJBDXnGMM9D7pjfC9mkTnbbRQijXS72DEvHKFhXOr2Ync2vxwlYm/T2H+9BSjUPf7agG2rIW63ePGI23NHLh6jtuBED0rQST78qSUnmrVIEEjxRawFX7if5hivfbSN90t2sY+DbWPnZlAecTsHqBMvLCHM01lLcMHA43mhr0bfwuheUtBWmh2VeUxPgZNsLZ6j4GOjAfsSNWodqvQwyA/Zp4jTB2Xc28qTbNzfbxy+fs2/+OfXXGf40U9O/Nn33vC//MErfv7zM6s0siRaLyOLNtIJ1ZWtG9saU1yXTrWISK0dWlfaqqEZ/DKH031I4xhp2RezKpD3E45HPbnGUu1d6SLQeizEFNra8ebsdhNP25n11cbVtOPmZk81D/3s1kiMWAmPNG+GwdnoTLuZdloiWCpd6G6NmMHW8dTJJWr4+mjTOkxQtxi+uneyVrLuhg+qISluVDSqEmB0g/jl1qkhAdREY0Q7emE9bTGG5tiBenWsB5TvPaD73jsNpTRDktNLZNgkNXIft9YIy/Lq9NRJI5e1bi06MWW8LGiRvyRQLUqfFGgtQrg8DfuYhl9TpI+fgxhnJfY786BMeg8QqNVxUKvHSK/jICOjoiBuNBnOH9t82K2CE+5jgkkaO3uZEkhi80iLgEC24+UUDp6QFI7MYel4b2RR0qT0Hr+apIwDEyNp7426rqQUvStPD0uoz3yiIJxPK/SNlCae1oXuo03MwnkkbtS2jvFfLzZgEGddbWi3fXhBFe2JavBEZ6fO+qryH/+La652ne/+2Sf86b95zff/7onXb47UvtGYoES/qWqYA3qDliPc7bwJuzmjT42tK85G605tY83gS2proSIy4ZZDbyotRsk5Iyng+SKKWaafttjxZAr+xg2s4sdME+d87uyvM3ro3J8fcIR0VZhm4fi6sS3r2B9DVSQDVrcO7XgCYCpTAFEq0CLyETe8b3iKMl4Z7dGlxK4VmT4W2a+toSUgc8buiuSQ5EW+FjpcBjHyKDqFUsm2xuZQTNh6j92kR2ZPXVfQ2LfcPSoPaDSJ1PCUAAk0tPZKQajdyEOEQMto7tgKVQ0ZGTw5XSSP8bKzIceTi71K0+BULV4QHgIJdx+J6BppEmajvTKECe4yMn3iz1VjZ8V61B2IDrAsEOTWnJLj9saIWNS2xb5dZhxjPVZUYNuMbdhh0i6+z9piNSmphFJKw1xNC9klY69167TmLEtFFeYpXizn80qZC0WICJY1cXObeHU6UzfjKu95XWsEq0mntzxseCs3L+7QJNx//oBTIiamO1qDqvKR4ii/kuiwKizeQTL53ZndjfA//96P+Lf//g1vj1FStS4Cc6Y2x7xyFKeQmbN+EWhNVGHuyrDymbHLhSffqEsfaO2XHGt3N5EmtjZDSwE6aT+HGOG0goQmETMkDeKbFkoQiQfGiL6P1leOx5D0aR7VdTmjU+buxTXrk7EtC2ItQpCHt44hQBYnkumMiEEcbLokJ01lPDh9DI5Rw36QCbyFWRjBa0f3Go7/RuxB4wGvLSE5kcRg66wYc0q0reNF2arAQJmbt3AwdOHcO943zJQ6lkjxxC6nkVAQN7g6Ee2IsFVIc4zS1o3zeqZ7oatBBaxS9oXNnfTshQ3fqHmATqKXt/VAPYfQPfa2AfSIREdLUta6YRhF4maPKr9wxagb7ZK5ioDEZw0JN2VrHdkVvAskZ3vqtJ5Gg1hk+mwGtRunrVPNQw9d+0CnAzFdU0dFmKcQGZQcYnHrDFVQOIGmPOFsnJfGumzU1Wjd0HnH1fXMbqo8HDeenipzydztZo4SIpHH9ZEyx87+cI7kQesWo75GQgMOvSjJdOy6A/Qc5oFbCiUJzSFfw7/+68/44SeP3Ewz81ypDjY7mpXUA09YGqTiXB320WogIPOOWDqceVd4OjXcYTfBco7P+TkK6B97ONOc8Q5FGqoNyLSlAht5LoH69UbKOqL//DkaUYgs2UDghjl3c46vK1Kc3dVEmWe6Bf9jCD2upth1bCST+wVQ8cgE9aizD0V4wkMMSs6ZLoZqjpboeUcRD1zVjENOHCbFtQ3zsWFJyN6GnchRcyBRJYK9qoVpyizaokRhMfjsbLxdjI/uOz+8P+It9i/LMRYfds5XrhovD5nUHZohnni5yxzUeHjs7GeNnJwMN/sY32zqlK5sZ9iZkA8lYlGyIiVGcM2CD2eJuIQHMZWBBhJ7tTfUcoRsMSRxSUNl5bH5ije6w7E2UvWoq/PQgsq4ZRkIqyeh1s5cEr07py2UHibCZlG8i1j0q3j4X5/WjtT4/rrC/pDZJ0HLDtPGVgO5zZNQcqatkY5eitDEqD3RfKX1yrYKqcLkneWsnE/Kq4eN3hK3szA14/39gdUb031nSpmnXilMLMcnlq2S04Fn9mHs3D5oRh95MykVXCN/uHVHLfF666yvViYS69bGftrZpQD1thR021adpJ19is6aaZeZdwOpHYq343GjWgYSOTcsOddz+nKHs9UhYRo6zXC/99h7LjvOBSav8UZS0QHDXzJkHPcUt+ugZPpWWOlYP5JmkPkayRHjgV5EAMO9LsQLQJQBEwNBlLcWWagpNTRndvMt29N5yHwGUqeJ/bzjMElUK6TENGdsNBJ707h9R+9lXDiZJD08juYsCr/8/MzbLfP5An9/37hfnFdvT7w5b6HsSZFTqpIRYFeEq0m5nSX2Knde7hIvdsLShfPJ+fptcGE3ubPPif2svLtnRGQYkiPusQ8kVvexe5oZNqRw7rCuw0Mrg0fUSKSQocISEaaS6FmiH9PHYSRSFV0vwoKhnPHIw41nVy7DC/XCyYnw2BorPUZzd7bqVINz7bypEYTy1UPm9WPjsXe+8ZWZ928ymZWrXQaEczVup/is5aLOl7B2JTNk2tG7cDpuWIWjd46nxrI05j3MIszqyNl5ejxj28Zunqitsq2BAWgKW5hjIQ81onsllxCXjLLdmDiIJEQSiwMNjkOU0qwz70ZAaWdUTSpZY0U47BO3h8xhNzylpTPtErYJ6zZa1Q7Kcg7QZneAaU68ePElD+clvh8u+TRGEY/gKhUk57AFeSdpp3XirYDQVmfUd8bbSWRIMBwVxy2zHDvF4madUobDxLZUwlLfUM10N3bXhyg9bVFpYChzuoQEb4jkOFgKaQptaikzqRtOZZqjZu7FXrkeGT09D7G4h8xLU9jHNgt5YHKD3Hnozvd+VvnXH64ca9jOjptwXDdWi1R6czjWiq0Vt9g9p2nCuzGViXmOdAK1xj4nXtzMeIe/f7NydzXRqnEQ473Dnm99JSJJ3rfKb2Tn2pwF8J2y219+XRddbqDH29pIGmR/0hKSu+FNFQnHiZYY06Lq/kJhObusrClxPG54c653BVvbQC9DCbW48fbYaebMqfBpbfzg7cbrt51jddalctyIxPotDtjLu4mdL7x+akjOfPDGeP9uIktnlzOHXeLuduYbHT6YLKYM0rNxXTVFcZKHBW9dGuzBJGxuETQWFFsGliUSGEpKrK0DMXm1FuM5l8QHH8W5OUXWDsFKiITgo0hIKM+1h5smQ7f4mqlo9LxKDu0zsJtCXLOb4usdz8bx3FibUHsFOtPk3N3suL4+4HWhaqDjV7vCzX76coez5JEmN9wgSKS0VB88IUYa9Qs46JSC/DWnVQ+en/gv0bAGMSxIKZ1J+wzTno7w+HiCZngTJAd/6a0PCmcLH6HG2zyXuPmqGTsSeQ6O7Xw6ssth6K19oUgZo51xPcGudGaClC5jmddBwLsZWHBqfTZ++nHjpPCT+8qf/mSN/UUFX5ZICBeludCshfZ0TArNBJGJqkpfGktbkHVFiLqIIsonp07JoOKkY2WXE3V74nba+LvXwt2c+fqLwkenid9+V/jqlNjVguYVbgpZArmMG5JBBcXOH/RphFzpuI1yjgQCL0FVmNXgg8OBgCRjVzJMztut8qbHGHtejarOj984P329stvteHg88tHDytk6p2OjT/GJtm0JflSEqcx8snbOy0rJmTl1PnowyieF3Vx4PK8cdsL7twsHadzOzj//zRu+9c7MLlV2uXCVEuu6sbWN3W6KegVTDlfBIhmQNiWvcBiOJXMnp4ge3TyEJb1FYLY2RXOm+RaRMNWCH3bGnKvgNaYPAtS6BJwxCYeriVyMXVb2OXGJND3czog3Xt+vvH7rHJfEVAKFd5xcBpfeF77+/jUv3515/XpB1DDr3L/5kmZrUaOMXhPDB2neSDrjXoERKYlQpWLu9NZjpLBBBK9fcHyXEK6M03VHag6poUzYFlpMzUq1NsKQ43Pr2zaiaEapa9vIKUzDpmA9hSi9VZDC2jauJwVNJIS9ROpdWxubhjggCbTq5C6UyVgdmjjL0virj1b++CcrD2fY1pXNV6oVpmmm90ZfKp6Cf+3mSC84URLr7ug8IylTvT5L4LLOQA2wZjvTeiKXhLDx9rRhTXmb3vDLVCjqfLre8NEZfvCp8bvvFb75jvMb+8qeifmQKGmm9UoeHGPSGJ+N+B0F3jvkfsPP2HpY3CRBlkJP0cTtc6F65cefNX7weoXDjr/9yZHHJXFqG5/cNzRlzvUVbd3Yto3zFuj67DtaXek9XCfmwvF8Zp4mSoHt4YR4QxPM08w8zWSH5ZS4v1dW66x14V/9+wfevRL+s2+95Dvfuubbdxt3l2LmKQCVZXWSVdp5Y0sT7kais9NEGdm8JStbV4xOGtlOMp5f7c5Eom0N202QCn46jfE/bm7oNIkYGgD3ieu9I7lTknM9Z5IGE3B1lSFVfvzhxudvhCLObnZ6rxEJq2B0rClbynz8+T0fvHPLy7sdbx5q0HCXFId/7OHMA1oWVwpKLjGCmQRBHpVv0Vkh7LC+oJkwGa9Oj7pgQEbz01CToEgNQEaLsfWGd0E1xowiCc8jgHgzaEEcIx2dJmhOXQ3VMEG3RRCmEDBY7MI1z9GxmSKRzduGWhDF1mE9RiBwT8JuEubUeGqJP/r/jvz+D8/kvkYqoFrU5NWVpR1JukPItG2Nn6U7XeIF49IhZXo9YT0zXe/Zzmd6a5BlePxW1DPr1tm2GmjhSMBvHoLujc6PPr/nvjb26nx0PPD+m41/cla+9WLldp95/73M1agOcAnlDPigQuLBMok8JbPQ/boNgYIZWGM5Nn746pFPFufTR+UHHxqfr8ab5Q2vH04htKiREZVYsW6sNWreq09IV+pbw20iZWEbSiFMWLeFdYlJyyU0WutTNGxlFeY5Re+pdJJs9BVe1cyf/fDMjz43vnoH/+w3dvzOTeJmdfqxhZWsTEg6ME/OwZTXj51rgdsJniwyeiwRhnQf4y0h8pdZAqhsEhrmNgK8RUYiR9QiTnPGltGiTWNtnat9WOXacE2VFLLLX3y28vg28IVpZ0yTIZTAZtTBC81DjLFtiU8/X/jKezvuXhSeHja+dMtYJlwiSLyDiwg6zdS+oZKY8+GZgwMfkZDD8eBG2RXaqXPJr4NxVi0cBWJOySWg/Qv53aMfJQ3pXsQVxi0QWkWle4cecY5dRxUgBMVjIc9TDx1ocZiScDcnSlGcyB5qa8XTRJmFM5Wfv+38+Q8f+atfLBRWGg1houQbdqXQrdHbRncnT4XeM9tm3FxPWHfqesJ1xobw3HHqdmaSoFREoy1MRKm9UaYDTmPro4nLgBTBX1immfGLN0/sEjwtlbf1jvua+eGrxrfeF/7JVPmNF3BFJAfaBXAbnaU6XqzWA2E8b8bTUmlmzFQejp0//NsnXj05n54692fl4VhZ2jk0t+P3WpsxT4ky77m/X4NSKqMLR0brGESDs8YhiD8EJI082Yg+UR2umS5sa8V6I48bSlsnJWdbV370iyN/+6Hw/Z8mfuudW77z9QP/ySzceiDfSRqnJ+Hp6HRLHGa4mQtzE05bFNdaH4bxlCNWdCiQ+pBIBngWv4/LHzIEKee6RGXG4JJV2nDmZHKWSPdT4WkxHh4SOTnX1xvTXNhNieu5sLUIYqsdlq2RJHNsK4t1Pnt95isvdhyuM+v5SwrflRACqJbhlEsR6uydnCeSjhBiF+gxwvVqWFVSUfKkUbLTguj2HiBGRBKGhOv8uF4EgYzJGZVhHHbCTC3EA+xGPS2gOnJmZbQtE/UCWSPVHEdSmKInEXY5UtvVnTQNvWjKVBVSdj56K3z3x40ffNppJqhekUrivduJm6vMO1eZzaAvTsnG4aqAdx7e1tDJurJse2rrPG3KujmYkZLT3Lg/bqwtbEjRdmX0HqOeag6qRoL7vUR+hHa3UJvx5twwPYEKx8X58KHjqtzsrimemfOI2tRIaZ8k4kdai27UrXf++mcLD2ujdeMqJ/70b+/5y0+MbTnGGOhByKcUih7NE8u2sTUn03lqzlIlYjlrGBaCtB8I98AdZDzUyRkV80GniYeyazfPg98L5ZMND4JbCNDXbcPpFMlsJ+GvHh94XB355h2/Oym7tbLVzGkzzkNnmFyZFabs6BYqqEhk0Isk9/l5Qwe+kIRUorY+zPbGYVcoc2bdFgQbJU/OfDgE8FOU3c7ZFsM98XisLEvl5V3mvReHaNCbE9Os9MdnNTRnOtU6hzIjGi/Jj18tvPtix+07XxIQmnKOvcg1BCQjvFjzFLtg38KZYvGNdBS73GQZ3M6RherC7mofO9+5jaS5eBDdocwTglDPNrSVQZILHSwPnyShlSVMt5e0dxGFLRSrOuDwVErYqHon7SbKlCkpJgFpQQqfrDMX5dVT5y9+euQnr4y7w54XV8Eb7K8T/8W3D1xP8G6Kt2QxmFV4cJgLFL3i9bny6tR5agewCLJeq/Dq6Jy3Duq8uJn45JVz1orXNkT6G26ZS5CNew0NrYUpfJ6mKAYysC68GUaBfSHiOibhN9/bIXvICru5sJ9hKonWG+vWqEtQSX/z6cIPfmncr42//7Sy1MZHn73lcW206ohmUg6Dc1s65TDTLexPhvO0eFjsJA2TMaHAseCdS3ZKySH6zhPt6S3dlbN19imxv7rmbi5MxXj35RXv7grZhfu1cVyN47LiHm1x5/OJ1pSGsm0LYp2ff9r4fwXk63f853slrYHTRGs6rBa0Sm8tXh6Epc5aH/E1A3keIKZLtIeLG5ttjLAJSpnGyO8kDY6/bY0k1yRttL5wPgvqIao/naI0SZIx7TNZjDLFuHsRhDQPUUx3I1u0B7SUOZ4br94sbPUfPn+/9nC++7Vrzkej1U4yJ0tGVajrShjLheqOyoTIQjZjFzn8mIR0qdaOaKbWAJByIVwkrSLELJ7G0t6GtjU5EQa2f8HpeGSp25D1xfdldlEPXSTl4f/DOxlBp6gtyDpzmBMvD5mchO6NdRse1dl4bMYf/fAt37/3uImL8k9/84pv3cE7d4Vv7I3cE9YaWwmKQ6WzPcvyjA/mxPk6cxblZCvaY1R/XIXPnyrn2nl4avyiXPHRm4554/FceVwbp63RWuhxJY90CIs1ZDnHTospkpQNqE0xqWQxfvy68gd/88R3vrELdPdOab1yezUhArU7W4OP7yt/8oPGm2PjtDgf3i/cn84sRx/9NvHZNYnkC9yZrHLeVrbug2uO2MsI3PPhUslDPrlRcmKaIbWog1/3MzeT8v5h5uXtxAcvr3hxyLxzSNzuhL07j015sg5deWoHSinUpfGT+4XPz/DLN2dOZ4VeWdeNv/r5L6hifPN33uNrB1geFyqXIOweumxipK09mtymYSTYzKibkaahBttGbWEiPMLOiGVZRzJ9CfHAGm3gdXtDL3OsVylQk96NNjjyWjNpSBOVaHrHnNacp6VxPkNKM2cJV9LVFMF2W3Pu77/kztn6ivVLbOBEqy0qDBKA0F3IZLx3chNS2ZMlAJ/T2qnHhZRmSA2RjksOfWiuIe4eXFNro68SRvSkcp13XF9ds6wrWgN9NPdL/kjslJpHst2IuUDwIZaOl7szUbndZ2YJZQYqaO2YC79cGx9tO779rZn3rjO/+5XEP/tK4i4rzWA5N9oSgdazTrTh7UwpuDKzQs7CXVautdN3B7YehPW7t8a3Xky8eWp8Mhl7LdzmQjXlzbHz6fHEw9I4bZXj6UwfhzCqs8KW5RZ0S8eY88SpbeTm7KfMae28XRI/+mzjnV3n/duCOXz2sJGzYLVyWuEHn2786NMjP3/YqL1Tt8a2dM59o5T9iEMRtnXFW3C/2xrjX/aosgh/gIOv7KbCYTYmVa4OV3hvFFH2FHa3hRdz4ipXvna34yuTcKtwNTllblynhC6GzGDaKFmQneJSqN1od/Bbdzt+eTZef/3AJ0+NTz4/8er+iaUan7yq/Pl7J/7rb+zIa8GWiolRicqiWY2lO7XWEFlMCTejb+NGbYKMNIrWNsQVHYCRSPxvU0ksa6WukHNidxNFxqaFpVe0jxXNDc2Gr5lusFWnpE7D6FtkZT0unYcHQ3NmOTXwcNkcAAAgAElEQVSWJry4rexzJqtxbJ1av+xYW2a4CtQ1lucYn9YteDAhk3WU6+QSvkODddtYTxuuE3n2IHHd6N4ia6JHhKO1cA4kUqiNYhXgazlxmyc+efuGrXbcM5eeFDd9dtHXwb0aF9pF0C40zyznit4UDqrsupAnkGbU5mQJbeV9y3Q9853fnfjt68I39omXLqzrkd7T8Dc66kKfIsc1T8AIfqpEUZNgSBbmkikZNhGybWQaV7Pw/3P2Jr26neeZ3vX2a33t7s4+HXnYSKKlSLIdV2BXuYwYSYCgkIzzJzNJgEwyyKSSFFBpqhDbiixTtESRh4en2f3XrLXeNoNnHSoIYCXhgCMS3N23mvd57vu61r3hIjWCKhz2jVAqoXnOveXu2LgyPeOU2MWCagGtpcYkLKOGqUVWOKXRTCPoRraG3W7kZVbkZUCXKpE2NOe95WqvuR0Lv3iXeHtoNDIBxSEred3GMk1RBmnynipnsFxmto/8rRa+o5bM0lg6Y+iDoXcyKT7xnqXVbF1mFSxr0zgNhnUI+NkMvV2GWfCjBK+ZoSlpoajWqMOENgZjGgTFqXF8toBBaV49GF4tFF9f9Hz+bmKMmt89wG/PDJ+uCqss/tdWjfhfmhTgvQ8CBItz60T9/q3rfR/uPQ8pz7lr6wxVZ3TfCFpxzIaqCzED2ZPVkZUDpT1Fzdlt39gfCynBm3f3nK0D1oLOAi0bpkwcNVo3crV4W2S4Zq08QXtL9N9zIFSVtD6UlrherYUpznQ2I3QmobCD15ZUK0NM7I+RUvWsQVDQ8hw8QH5J5b2sR5oPJUo8zWhNLYm17zg3noHMQRVGWyTjWmaCWoNKY73ZkOKROKZZjSEdfas0wXoUDe+hX8B7Gq10/wz3Bl7vE3/1sy1/fGY58xCKxL7ysZGSMDx103Knd+CVoV94bPDk0phKFTJgq1RThcamJDanonwI+q5xXhsqJkJV9LniisZrOCRDUIpFB3f7AW8HWmuMpZLRVCzvtX+tzIGJWjHW4rXlZh+ZooWS+OW7kXf3Ez/9sOf1fuD1g+ZmaNweC6lIgDQ3mOIgkTUlyE7mQZQx8zmtZXrvOFss8VrhrSHHPVvfs3IOqxTr4DhZKE57xUlQbLvASms2XrPqLbozLIJi0Tlh8bYm+3Ct2d/v5D6rDK3UWZcHTsuHcSyZrBSdanQh8QR43lk+XDve7Qu/fjfxv327Y3thWRoxQVhdscjxaLn0lCHivZXE2jwcM05aPjFOEpixzANKcJ1luQxU51h2hn3Z4/tC6CBFQ8oVh3CZ2pytUYD3MjluxTEWOMTCqgklY4iJIc2ExgLWFk7WklSzVo4dWgVOt9/ztZYmbXujFGkS2JWyFqfmUm9BWK/akVJiSIljkh6f68BZRDePoPYrYkhW79P4BsGPAK2o2XPi2OXMk15zqhyv2p2cUVFSfZuDxxXoF9JlnI5QtSAltFY4pzBOmiAr5yRaVfiu2KqsNBY+edrz1/9BYKMLtRl0hjhF4mS/6zt2vUF7Tehlauw6Ny+XZ0+IhpIyNWW5gLzGaU0zjUwjN82uFLTTbDpQkyL7zPR+69Fb1hF8cCz7Dm1gHAcecuWYIeWCNo6YxhlSJR3T1mBMmYXz3A6Jf/e1tL4+fFz53buB/dFgmmacS+BaGQ55lCex0hQFSsnZyKqC04rOBbYLxaZb4TRQMh5QxnMSApcLI/ngleN8rVkHmZKuvGHdGZxVgpv0ioVVdFqLoa40khZr2Xc7RJXRVmGdFbxKEohaiaJmwlRsVayMhFYuguLOGz5eLvj1IXI1Nba9IlRLZ6FThd4H+pR4GJPA23TlMCT5zGkoNaLKDB2rer5JCemhqYzT82fQavpVQbXGmKGVxjQ2tFdYl/Bz7thZy+lJ4/ahkaJmNJlu7uUOKVOSDEOtzZycaE47LxXDKNfOkI4s7Pr7XZzaKJzTMtFrTWhzRtJBBUFLWK2YYmE3JA7TiFKSNWwq451Ub4S9qshFkj+51pm0Phe6q1DImR0gTYMuhWVt9CZQtSZPCZSg9/vekqbK7dUNWnVoJd7OahTWObQVuJUzskapqVFam2nfkqE8XTs+fQ4rLTCq1gplqsSpkkZRL6A11Wi0k31vq0Kj198hRyQ2WEuWiZ+VWhrIeF+ZxjQ/gVWrWFVZeMtUYDFTtMtchjc68G4oDDGzVo5F54ggr1DOMMxDsZQmppnW4BV0Xv7Yb+4a3sGv3maubhUPQ2HhYMqyp4s5UmvEG8kRe62Z8oT3C9ZW45w8D0xJmJqxReHRnHjHycLx7Czw/NRx2kOwlt7pGS0jT4N+ZSV5ZDXJNPlg5YwqQqwwSeYAViuK1eSSBTytFCQrOdR5wFeVIFQcv6cc2qbobOPDoAhBM8SC6wLsJwzSPirzbtMa2TfnWigtSWsHNdMX3NxFlvSZMVqK4joTo0yvi1IEb+m8IU2Jw75RJqkpalegaYIW295m5SlZINGjhujFH1uKBq3pFpngJFaYaCzt/LaiYRM05Th+v4tToAaVMUpDw8zOi6pm9IfSpJQ4jIlDjCgXWDhDI1PrfNRu75NGgDIz6Emmk2n2Whjr0CD9ziJn1ps8SrVJK5RTMOXvzg4NIe6lUtCuEXpRALSUZUdVF0SdqL2VfGmZFzBzUVt7xYePHJtlRUcllbVaicdEnQAltLlcGqREGwvVKmEe1YxC1AixFkqOAg0Tz7WQF+bd2ZQaqlQuAhyaIjXNRMU5z7oDHSuHqRA6g7MaYx13x4mr/f18IXW4YFn3gcXjFVY3piHxxc1ALqJJDEHqYrmBjoo3734vENoXJT/DvOrypqMLle0isA49MU4YZVk7y27a8zDeoZTFK8O5D5z2lRfnnucbx+U6EBRIrD7jnMYE+afzCquZSfSJUioJsE3OsLpCPGSakiGLMuCDl4l+lTcyG4TWZ0HqadrijCLmBNpgGwyxUHPj3Fl2pZAH0X94owleo8eKEbCLYFTno46yMudQur2XwcmASMn2vs3rQOdlABZqYGECnVfs7UG6N60Sk6ENYBfQG9AYcktsFp5aIkM2xAS9f28wUHSdofcaNYPP4T3bqbGcuc/f6+IUupwscL1V0Or81FOoplEVhjGxi0dWyxWLEIjTkVzAKItqEat7QliQhkw0hqJGemcYRpkM1lZRTvZkccoYpxnGyKEVFtqicySP0jyBBAam6jBV06oh1jTDpAx11sdbKkaDtk7AzRZ0Uwhi3uGdpncZS4duhWlMxDFDarQsT/A6g6dyQfaSCSbqd6GIVjKpSvpmPFamUpmKZkpV4GSloHIlN4XtDDY4ggXbZ8qQmErDYnC5zWQFw9pXll1P7w2v7vdi155GOB5Z+S1n28BmZXl6tuSb0aOLhLifnQnucr+fkSUeoQwUuTEuu441jZYbJwvLdmE5X3eooeeb64nbw4FDigS94MwuWDvL8zPNJ+c9TzZyLAi64ZUlU+Tp4yUXmlPGJohkWUO0SkyN4DXGtTkzLSGHmiVbbZysaHKr8lZDYyoFQxAsqGrE2mhOU5qkxVRt2NYwveepaZhjmT9nDa8rmw5Wk8YNlt43hipne1U0ypTZbTzXs4qm1YSIkzSaI52DVb8gRk1psnKpsbFdL4DMNFWqKgST0VhqNcQUJUOu4Hzrub7P7A6VVC2pFIxtbHuHQzGVQtBSp4zz7CTXirXf88zZaIROo63kXuPUMJOiDI2iCvvjxDRlertg1XWUGLFtri0pReg8YRmYdlUCyFVeLUudCQZoOfeUIpoBlVBmCX0HtbJ1jr1esEOhdKC0EWfb7LqUA77WjZwKaKGeWdfoO8sq9KycxqiKDwaFI40zzjEolLLEmFi6QCqK2DKliTq9zoiJ0kRfMBwQapx3coZrcBjg+r7y7iFzt2s8TI3YAGPpvEbFTCqSoqmmEFRj6eGkk4RQxFBKxWkZjFjXmIrsGR8tDVPqeH04klOiGMv1dcLkxukTzw9XmmenUFvg+lDojCfYyEtVWHWGpIzs/ZRm5eycGsosOsvTE0vXW1puvNoN3B937NJAryyndsFH247LReXxmeZ8ZdGtCqfJeQYqE1BiJe4zh93IIVZUgY6KV1USP8bQeUNvBQoOUjHUSuRHy16xXkglUe6iAkxLJYMyaG3JLTMOGaPktRjFLDiWi/1saRiHzCHKov84VKYYSWmUJ2atDGmaoWgyoZcYqEREnXVoBYtNoV/ISkWXTO8VVWm8NkxxQjW4WCmGvjGmysJLQGPIswpRJfo5neZ95f46E5PCGM+mg95KQV0w43aGlxeyklWf4vsOhJgTFRmalajcOI7EoTKWylQbq0XHsvfko/BAjXXYIIVZbeVpKP28Jk+uhuQrKUK+Q8LltYFRBqXkQksUYsskLbIhY5KApGsR25ORdYrSdVYiSY2tpoLpOmmVlsx3igKacFQbYtPKVcbnNL4jtev5jl5gKoVYG5SK8g5nDSkV8hC53hW+vE682zewmsUycPHUsz3z+ABNVfIRbq5GjlmkwuNQeDhUvr5rMyR6YBkUSycRSOvkZqZotFz5YBsoNN7uZDF+n/bUW0vn1pyGwE/ONbb3XO0St/eRXYPlQrFVFbs0eGsIRlOnRknQN8PpqWW7EoXF33594Fevb9hHWOJ57D1POsvHq8LlaYf3VibpWjHkysNxopbCLkGcCvshszsWhlqwWrPuA362iKdSMKaiVaZl+Vz0WrF0hm2fuFhqzgfDqjfYYFFOyH45C25FWlwCBdO6UbRERHUzWKXkSY7hNmaO8xCwd0qAX1mikCXJCtAambiX0mQ/Pa+9rHdkMk/OO4pqDKO8CakC3jnQBaPkd1cMxATjJG6VOvOnxqN8XpJrKFXICVQRIojtBc5dEUVFbWKjk8OP5ji3sHL7nmfOWiVeV6siHwrH/cAwJcZUwATOzpacnDhqhJaa5BWNISwM1iuGQ0UrS9NVODpK45TUk+ysTpMQphICvFbUltBOkUzg9WHPUAvBiKfFafGZaG+wBaY4gQtApmXBVCoaKe8ZtMH23VwlEnRHMFWkUhnCzPmprXHYj7IEZ37tSDIpHXMDU2S4EzNvx8q768TNEbS3fPDY8eHzwJPLjm7tpCNpBc1x2Cf088B+jLSimPaJ/W3l7jbx7j7zdlf43e3Axms23mNiwXSNs1Ug+EKM8DgFprgll8yQB44l8+ZGsQ3w6RPHi0eGpyeWdwv4/F3GBcXSNPZTZrMwPOkt7VAZp8z5SrPqDQ9D5cuvD/zq5S13U2OhNBfW8NHS8WRruDzr8M7hLUytcj00Xu0z41gZxsz9IWO94XztePHxgpOV4SRYtksvrY3UOMREnCIpNh72mZtd5u1D5tV9xjw0tkHzYm14vLJ0XcZ3ntNebv6ST3+vE4SqK1ZpQGNsI/hGs4l8lCoWCMRtu9JsJk25LtiZo2RwSKUpYEzBzxA37wxGKS77jj9+fsY+Fb66GjmS2A9HShL51sKLJv7l7cBiscLpwv29JNuMhRI1U2lMRpSP61VgbDvAEiPcPmTxx2RJKdU8QUECLlFu4vafBiH8vzw5K6AUaYRhiOyHiWMuGG3YLjrWq0AIULSkILQyM3qwSTHbQMuGnNOMhrRMdRL8opKRM0qqTBo1uzcL3gbWJ0uSOmL2I32pPGgBhVltcEa6kDklmQjOZi9tZpq7KtRqcFpSI6lIoDt0Clc0piF81SgF3mms5Fw5HOTsVlLjWCqlibXs9iFyvcvcRAmVX24126VlGwxbo1gHjTeNmAukirEa2yq2KTYGDlMkjRmfMqeqsF5UTpvjt0bz8vDAfamch45g4e4QuTzx2K4SYuHRyjFFy5v7gUxmP0389o3lxZnng1PLYu14/ijQrOGb+0LLirtUeLrpeN43zEIM4ouF5vYu8erNyC/f7HmICY/nxGg+OnE823acrLzc4FTjrjle3U+8fZjYj5UxSbb2cuN5su347KOeD5529J0iqEowijxlhkEzVMv+eiD0gSnAvmuM54bf3g389sZxNUSuj4mPcs/KRs5XipVfoFoV4kYTFpFUL5gvVNmngzwIjFGsl57mEhwUWRu0ed8DFtOcmTutrRSsUVjT6K3l6bLnRad5stBsj4WhFM7XjjssXxvF3VhlPaYq3ihUVJilxrtKiUJhaKl8R9mjiKoyDgIwK61BlbkKTSDaY2pMLqOaJlWF0hYXAi1/zyencFkr42HkYRoYY8QZz+l2yWLR4TuNXxhaSigkHE/T5FQYDwJu1nNlyFhIKc4Fo5muN3NNtbYonSXaly1OWdYKTtcd5yc9l71jqHA1Vr45TFyXyv004KzcCGqt4K0snqckPkojsGatwC1kIb7qpEeqRmi5Uob5/JqhHBXjLsviWCvGBMeYiYfGfipUb3lyYtk6icbFMXJfM8erzO00gnFc30fGAi0Y2lDJh0y/qJAU076gU0Xlgm8KVQsfrhzNrvjNux3fpANnLPEYrg+ZzmucNVycQYmKGHvuhiO5ZB6GwtfvCu8eKp9uFCrAcmHox8bX+4EuGM6DYruA1cISrOfhGNm9nPj124GXhyMKx4nzvDhxfHgZWC0cnTV0RvNuyvzi/sD9feH+OKKy4mLh+XhrWHVwum6cmUq82nM1FQ5JBmVxaNylyrFWjvtESokSMxsLy2AZBljaBp3lZjfx5e3Ei43D28Sbw8iJD6yMHG2KuI9pVc8ou0Y1kKum75zkp1slH4VftJsyN/cTAWkQNTQ+yPeVpkJQloW3PF/2/NF2wc+eBi5PO8ZYeDhMjHHiSYNV6PjmWPjibeQ40w21Mbx+vcOZhm6dtKhMo3eWKSIajtLY70fs7IER2HYjRcku19yIzcoRpoH3AiKv7XvG9+IxsjuMDCWSSmOz3HJ2tiZ0Gt8bTi7lnDfsNMF7pikxTWmG/laZ0FUBFuf0HkJlGJsIQ5Vq6CaTYI2TIYwpPF6t+MmZ4icXK56sLEsryZTYKjdD5d/944H/423jld0TI/P0q8jiHI0VKjI5F2Kycu5SleKEJq+LQkX5b4U7KmuZ1hpOC6ZimDL3g6xyLrce2zVSKhxy5WFs7EolHuB+3PHuWLibKofUeBhGEmK19sbRmcjlqkcrQ98KK1VZGsvGGRYGNgperDq+3e94d9/weslWNabBol3Da83jRz0hNH71mySpl5J4szvy1U3g8UWl7+HUa+JK8XZSnHrNyVKx2cirpi7is3lzNXC1m6hNs3COE2v44HzFdi2DtYjm9V3ib77dcXOQ/LFTlUfBce4bLo8E1ZOT4m++3HE1JH57feTdoBmStHDGZUcBYoqUmFhaR2cMWhsWqrI2E0sN687RUOxLZVkNd4cCWdi3fRBBsEZwAlU1QlB4K+u8FsTDWc1EmgqtKPYxc8wNbT0lTrPfRmYm3hp8r3m0WvLzJz1/9mHPZx+fsl54co7sDxNXN0eu70fqQyRaxZfGMI6JYWqUND+NG1Lwb4rSNL1F+L3VYWYYupo5WbTfn3uNllVbLXKEK8A4TgwVsv+n1dZ/8OK8vt8TS0Rrw/nZkovLU5wp2E5TQOozNJxzxFhIUSJ5Rmuyeq/rm9UKSlrmuSVsM5TZ/iF3x/fNN4M3jZ9/1PEvf7zhg0crdKwcdwNFQVCaF9qy3jQWf9/4H7923KmJhzKgmhR1VUtY5fFq7owqxTQIyLm4IMjNmdQegZQade77Oa8gFQEXG03fOzqjwGp2h4nbQXE1Nt4dR66Oibs4cYyZlBXGazaPzvmLf/Ezbt6+5e9+8YpS7rk/Zl7vj1K/a+CV5jQ4Hi0sT9Y9i6Tpm+aD1YYDmprnwQhV+LZj4cmJ4tlF4Hi/5naXyEVCH99cR354cCyWC7pV45FKPDs6+qA4W8+S27kOvd9HXt8lYoW11pzrxtOlYrtQoOEuNV7dT/zjt/fEqbA2DuMaJ8bQaaHy3zbNm/vEm2ngq33m1e7IEU1Y9vzpv/hjPny25L/9r/9npnFgHBLKKB4YpR+qCp1x9MFy1neclcrGwnQ0eF3pbSO4yjFGGpYOITua4IT35kTC23KjHsTN2pvGo4uAfmgMweOOieGwp9QydzEFXWKNYuUdPz51/NWnPT/9+Ay36hjHieA04SzQB8Vq4fA68Wa4YWstb0ZIR2lOVW2gNaySumJtmvup0qqb562zz6bN5oCZAFLJv7eotfdqjopF47Qhte9JfB9SxBrP2ekpmzOLD5rQS8OdCGmErpOC83CQmBZKpnlxKJTp99gMpa1AmGhYLYtfEc3InUZrxThFXjxb88//ZMOnj9ZobYjxSCuZIYOiEaxiu/X8yz9q3BfL371TxDQR57ZMbZLHCsbgjUUrqa85pZlKxmaDLTMyUgsOsilJrvRBPsqDUqgWcU4z5MLuLnITK692idf7yN1xz1gaVSu8D3gKZ88/4C/+1U/wGs4vC8+eLvi7f/+Kb15dyUCgJMrcj31bCnf7wqsh8azznCrD2cJzsTHYzmKCIU+RaSgUbdG6stDw4YUDZaTtnzPxULjfFZ4+kseEXTguFnVefclZR1spI7y9mXizbyhlWDnL6dLy5GKJ9o2hNN7cJb65ijxeB7YXlt2DhC1UgYHG2zHxZl94OyVuhkSqlZYLm80Z6/UGUxPPzk74T/+TH/DFF9d8/uuXeK1ISaFKw/qA1pZdbOzLwDul2HaGra5433E+79BjVnhdMMGwWGncWhMpxFFCG7YqOm/IOaLROBBcS26MBVJr5LmKaEvDK6H/f7Lt+cuPV/zg+YqqGjdXD8QEyjT6IEm47cZSo+JH44qXdzesveEwFJoWakJpioLERC1iH6vzE7O1OVFntOSy51K9bhrqfOlq8dwYpTBoCdGU74nG7Polq75ns5FVQre0KFV5uJEunLOaNMB4yKQoo+paIQ2VGrVcrHamwxXIKaKUVL1SbVBkghtsD7WwWhh+/PGSFx+d4qvi+PbI7nbPr3438PVb6VJulp6njxd8cKL5i08sU7Lc7Twp5xnylVFhITvQNlup3yeLvnvVUTN9QaJ4BRkwuFlCeX83EGNjVyuvh8KrfeI6Jh7GI2OMLP2C9apncbrm/HLFN19fs9/t+ft/87+ze8i4EJj2Bx52TZwsugEe6w0vPniMrY3bh4mcCq+nidd54knr+Pl5z88+DCzWjlQDJjVux4YzmkUu6KVjN0ScliaPn61gtpN3EKM6zh+JrMkKOhsFHPaFu4eKapaNbyyc4XS7YLE0ErXMEMfMxsMHZ57dLtOsYiqG1ynyOiYe4hyNs46fvFizWlh+8etvycMD99/s+TffvOLzz3/HD394xs3DSL9YsNIHclbsj/CjT5/x5KLn4Xpgdxh4cztwN03c1yMlgD0saLrSac1KN/qNpgsNWv4u7eM7xdorcoKaLEpDzrIPncbKLiYMQv93KmFVw2phFT0/CTw7s5iWeNgnfvnVnl9+HRlq5Wyl+eSy47NnPRenmh/Ent+8tbweHNd3EdN3BNvY3R5BB9osI27vn5JNOrhWycAwK4OuDeWFKJ/H9B4mLxxmJWkqVef46ve5OJ8+PZ1JBYp+qVA1M41iyApBysHjWJgGuSgVmhQzVYROaAfWW8Eatox3RlTbUQZDSimCMThvmaLhJ5/2/PmfPGV7cUZ7t2d6OPLrryb+7S8HFiFwsgy8vcq8/PaO1887fvbpgp9/vOI3+8rhKmN0Q/QpAjVuKHJV5KaZhkpoc81LKSyCTkw1gxZBkkLhKAQ0WmechmoUD0UUC956fvp4xZBXHHB8+NGGs6eWb79txNs9r79oDLlxHx8E2TIllNY4azHzRPqzH5/zbBX49uUNr1/uMWNgyEcmXfnieuDZo46fnVlpLyjDU2AaFOPDSEuay4VmCopUFT4VShT+knMKEvTeyB06NYw3tAj310fi0Fh6xUkX8FrR9xrrNNYqAo1Nr6AZru4St0fFVSy8zkcOqdGrjqebFcugefZ8xT//D8952Gd+89VbBhquQcqVL798zf/5j68INuBMxQVFsBVn4PnjE376yZZ0ceTX3zwQo6e5zHgceHesHCe4mQpnnzjONBhdCH1gbBmtK9ullZSQ1uSahVmUFRbNOlTqXtwmWiW0qljd6H0g18jz8zV/9GTJ0ns0jS+vj/zrX9zycIRdmWgK/u2vCn/56Qn/5c8fcbYwvFg7/v5qYNnBQ2oYb+nXPeM+C3XDisaiVYls0iTckJowIisZrR3Ka2k4CCoKhUQHp/ZdRev7XZzey4K+6z20JiXc1vBBkaZCTnLOFKuTRJTEcavlQrEKbazgMhRo7TDa4KwgMDRyLhynkTRpLk7WPDntUUPm7s2OL76J/M0Xka32vNganl505NZ4dRV583XCLUY+feH5k+sFD7sj9zGitZVSqFKiX1eGVGBokuzRDQiiewcpdhsrKyCtFabCIjQut2KB+vRS82SZeXNUvHzT+Ozxkv0If3sN27XjycWK0+2St292YJB2SmrYztGmhDMGRca1yPr8GT/60SM+W2rOTGRVGvc3E4/ykrWr/DoZ/vUXA+8a/PXHPVsj+2BnDd2qo6WJ2BeGLGawzjipXY1NJte1SK2pSEHbKEuJif2hUpXi2WVAyRGai9NANwfeG4Wu97zdTdyOhW+HhiLzkQ4slx5vFWYT+OjpgmcfbXlxseSV2XO57fnd24jREEJkPBoWeHKahKeUK61r9Ms1m5Ml65OO2+MDV7vI0+c9F77wzZXnstfYKkGQ27Hy6VaqZ/1K07JiehBuctfJa72KUgtENfrOsAyK/qYRjwlF+c67ElviZLnlrz8958+fa7ZB8fnbyH/3v7zjYSeuHZTGtkLnPL98ORHUHX/xgy3ni8DJwrKcAu/eDqTc47wQE3Ir1CxKEKVkYSMEP4gzn6ihKTnPhQ3ksYm84rY2284VMq37PhdnjrA9dUzjjPDTwkgpGcZRdmo5Nsqk5qSNYC+UrbNIR5b63dJRctEyVuEAACAASURBVCUnOd/pJnrv95j/cZpwpmfRBboQKLcDh5s9n7+eGEd41kuC/2IFymm8duiW+fZ3E4ZKZ+HxxrN/c6CU2aClZ97NHL6v2jCVhioN5yRzWr/bScrx3XkRBJ+dBBYzpl+7QrBLPn+1Z/HI8epm4JPLnp+6xkZrPvvoAv2vGm/e3DPcv8PZwALPMOyxRnKej84umaYjy+2GD7eWDQfWS4FJNXXEWsXCWn64gWAXLIDhWFhYoUyolrDW4F1j1VvakOmMw5aKdxprZtiak6hdTVBio+mM0ppiHE1V+tBwTbFeKh6fyCK8mkrQFsVIsJpVZziriVW34LKDddFUaxl6z6OtwVXF1XXCdYHnH13wxTdfsFgshSVkNK2NApK2mj/+yccYY3jYHdmsPV+9vOb1yx0dmr944fnmmwOPyJy2ypLK5cKy1YaV9bJ6GxOWxrp3GOtQAQwVryyHmImTQKMpBZMyFnH2GBNxruG04YdP13x8ojnzlq9uJ/77f3+Fmgwnm8AuFuw0EnCslKO3lt+9Trw4L6y8YWUKvmU23nDMGZUSwVqZ3mKFDmnlwdSk70itsyRKNUwT3hWIjMo5R22yMtRzxPC7Evj/34vz7jYxDJlgBcrcVGNz5hmHgZwkyJxjJUcpAFctFwJ5JrKpinVWvqkaaTnCTEWzRpHmBoM2Rj7IBjgM3L/c8+7lntvric5oegcnK0O/sGgvO9IpOvJt5KvfRdTGcLbp+Pau53CM5Fw5xpH7ZMnZUypkpckpERCPaC1QasPMBAW5r1Wslcia045cC00HFjkTnMHoTBsNr28LHz3z5Hbk7vWOTz8440/+7Bn/0/9wjbONVV9YuJ7jceDFDz7i6eMzXr6859NPzni80rTBs9vdc7HO/OjRlmmYCFlz5hUb3eidZnc38qYUFr6y6GcNvVW4YOgb1KgojALzGhKLRY9SmVxmxk8WqLaIeQrBVKySdcTGa0wtbDrNWCU88XSruXCO6xE+e2x5vA10vcZ7xTjAtzvF4SHzMD7gtx2PH6/5z/7ZB3z57R1f/eOexRI2CwvV8XB84D/+yz/l/FHP3/3iW05WHbv7I+V+4rRUfvrcc/fNjutvJ85CZZkUj5aOs96yXVoWvbREajKEhcfpJnVCLZP9PFbyJDRIDRyHxn6ArBsqDRjkbePydM2fveh51BnujvC3Xw+cLBwXveOhQNsD0bGymqXWuFbBeK4fJh49C6x8R2WUt59SWfUeXQTEfaiw2Xa0KokoM8ukZ04pIAk7JXUsebLmJO0sXQWv2hQ1fU8Sws3tjn7hRe1XKqtlx+5OSrG1ZkqpTGOSBspcZP6/E860tdRSGWOkFoFQNzKpilE4l0Kshd5YqJU6VR6uBo6vj3zzZiIn6BWCuFxq1pfCHTJOUyfL/pjnypFhs1D0neVwnFA0Si3cj5F98iyz7FjNbDb+Tr2gRbykFPPZsBKsNCGK0pgs2ckpa85OHYeh4Iviaqq8uZs4S4nbzzM1nvPDT894/fPn/PYfXnOMR+GHa8OUEveHkUfP1/yzHy9Jb+/ZXR1Yt4HSGe7ujuxuElZKrGyMordz6cAUlp1jufKI/7NQXJWJbY7zz2HIMZGbl/dVI7zUqqA0KQWkIeOV4Di8Fp2A1eBNFfQpoDtH87ApDefhEBPXR4WdDJ1XXK4L7WgYlCKlxHHMnJ4u+S/+6qf8N4fPuX+4ZziOAvXG8Hd//zXdP2hC13N63uEPRy67zMYrru53vH0TWaG47ODEa15sJW3mrVjVUJUSZfWDUTgvDs0pZuKYUMWIMwUppO9i45gE7mWUwaJ5tOr5ZOXZBsP/+ttbXNX8Rx9siK3w8i5yGCqjUkKjQN7iUkxMB6i1A+dIzVBSRlXYD5m11fS2cByFsmeModVJoOmA1pqqZO2iqVgNsc09ZTVfqE0GlAZJxH2vi9NaTYmZ+0OUkTyVcRBOq7YQ40Crst5otRGQwHApBWXEIpzfs2JKnY3JYjDOCskd6vcYwsb11Y7dxnPcZW6H+XnfGodUcUtNd66pRVEmxXqpWXeGXUrcHUemeT6pjFyYWnWUIvnYVgWH8v752JQSnqmeO6dV/p3SzOZs+dpaI77I0Hh62lOy5vXNCNkyHBpvhonV0Gi7gX4d+PNPzzmzgbevrtgfGm3jOFeWJwY+Pms8urniatcYponbIXN7k4n7Eds0i97h+oZKEvHyTrPuDeuto/MSAi9aytnHWshVuK9OGcpUSIdIt7AiINbCOjIYjpPA0YyR1YoJCmENaKytOOXwzbBLkVhh02tCgM1KE46FtzeZl69l2rgMmtO1Y9EqXN/x7u6ey3XPf/Wf/4C//fyWr19fkWICo/Gu46ILfPJ4wUfLxpLC/Tjx5asjb+5GHJZHW8uTteGy1yx6pBfr3r8KNvJUqUOS1orXdEvPOGXR982OmtYMucggThmFxVNVwWnNySZgWuGr28L+YeDnz064PF0yaTkLfq0VOy0dzjw3UQwFEx1xKoAEWYJzFF0Yc+GYNLHJJmI8gHVVGktZyvdKK7n+qkT/trZwHRupqTmgAKhKjtJ40n/gvfYPJ4TGSklIEj82WhmZrNSrUMIM9sFj34tJa6WV36vWUi1oozHMLpPWaErC8bs8onSj1w5vvVDpHjLjbpJkRqw4owlasZ9k6VyNo+aGD5raVxadZlEs7/aZSGXV9dwfIrEcaa2ytILErFrhnJ0zSII1TFXLB1TNjk8aLclNzWpNUXVu02gCMo18ctaLpv1uQmlFRnO3i+yPiXA3se0Nf3qiaP2aMmmS0vQL6GymHDN3EY4Pmf3VxGEElGG9DDzaaHplyGWm8FURC52e9qwXBqsgq0prhZolUlmRdr33QgBgLCjjMCtBaJCFADdFMDNBIiPM2RwrLejvVlqNIkSAnJiGSskO1xlCLZz2hpwrv3s7MY5aWkZ+pI+erlesXOKzpeMHf2TYPT9nTJVjgZY1XZOjAlPkd3cjX11F7NhYOMuTE8OTXrPpLMsgnhVjNMYmVIuosZEH+SAbJbBypRVjqQSl0U1YQ5lKrI2xJRoZjZQ1jHU8XsoN9h+uDrzYLHnyqKM5hYmyQlqFxoOa2Un1PfBb4bXQO0xp5FLxQVEGzURiqBntDJeXPZkCRhPjwPbilONuT61S+kjDNOcQmuw8VRMdpgKlLa3IpPcPuHP/8MW5exjQLOSVGU1uBbsRCU4sihwzyjasiRhliPMPKMkckbc6A2kaybEI2t5odlOkVljbDm86AVYFw7vbyG9eD1waIbSjoLeVuxGmZrCuZ4oJ00G/bixPLW2YQCuhcFNRKkqfVM9PSSooAVPTQYsyFSxFrF8CoRZOTE2g/ZwsaZWmQSlpyC/nHMjFqadQuNs3pgTbANFZbofCm32kvRbD8bbXbKwmHRpv8sQwZWyzdE0zHSp9ZzndWE4Xho5MyhGyo7ON4C2PLgOrLWQyvfGUDHZ+DbJKMCNWV3ItpGTJSTGlRNctqKqgiyPtxdexXHSk1hijmMWMkZKBqgpdmwwrNHTBEqfCOCaOQ2YqDd9rfvzBktNg+cdvRoapoaNiGiJTUNSbyjqM+ElJv1FDUpVxKuxvM7dHoaIvm+akdyyX8Hzj+cmLFSujyUNkuXa0qsgtsVxYAWBNciNVKZEqGG/Jk3yGVJbAS9OaYVLEYjlWzT5nLAZwaDwlGe4fJl6/nvijz3qCV4xVkVOh0x6rJnqTITcCiq5VnPcsvSVXSMrijSW0wlgLxnfEsdB5z+l5x+u3txizQmEY4ziLrTK6iFwql0pWAcwMQq8z5LqBmYEFJcXvd3HqpsCk+XUwo53saGq21KIwTtNUJtfEiMfpefiDbDNEVSdDH+PEtXkcjsSacEomo62JxFb3ikN1vDzAk1PDwhv2k/QwW1EMU6aUhLVCGrcLw9lZoL+d6HtFSBWmhsJLGKLJIKQWS8lFnkilyVMeRc6ZUjOxefo2r4EUkAxhmajOgBZ0itXitzRbCMbQ2Z5137i6myQ2WCJ+GVh2hsOhECvc3U7QdRiryLlSoyUCzjYuTgIXa1h7acekzFwSqASnODsJrFYO5+UpKsbwPPs4K4gKSoIdUZMmUdgrrUnHKHCxVHg/amhUjFX0xsz0QaBVYgQxZGt0ka+z6C2lZBH4tobKoGLkxRY23YbP3x24HzIbFwRREzP3N3IOzjUx5UpqCp0zbaqc60rYeLw2nHWGj58EHm8Ml5tA8JZSBKY2HSXsb1WFpKUbWeVvZZokcEwDYuYhg1WWmiVYMpTK2ylirdjWjbJYY7naNfL9QG6aY4KaHcvQMSDcp0DFa0uwjTMUzli6hWO1dOzHyGHMlCqmbWOknG29IcbM628fGGMhH+7QTXN8iNJTVo0UC03JqvA491OhyAOiQWtZrHDGMuR/+hL8w62UuT2BcbSmSFHRtIdUKDWhPJhq0aZSa0JZkcQ670Rq1AqlVpx30BTjMTKkgWA8vbbCTG3iqWitYoPhOmWO2rFaaXFhaPnjpFKJZe72KUS9TuGk0+y7zBgrKTiuJ0UshaIMQ0lU1YmAtUgp2On3vyBBXwxDpsUmN5454lcnIa01owgr0L3cWJRubJdCytucNFZbxfV95vo2MU0ZisK1hmmFdWdZBM2UMtZo7FKzCvCkV6y0YaIy5YqeAVhKG/wic3EaWG8cvhOUpKGKbqIKzsM48GhqrDhjMAqRFeGFmn8oNCu08VoVKWWmmIhFxMMNcYi+n6ajtZzhaHIsoXFy4jHHwn6UvfX+WFh6xcJm/uRJz24ovNkXxmJxtdAruTlQPYcaaQpO14v3uGZ6q3i8cVxuLRfbji4UtGpYDbZYdM0SWzQyZCzp962UnAXg7bRsB0JVxNYYm1T6ppT5ah+5K7L8T21Ca+hco+WJu0NmacXWXQ3gJXK67CWu6VvmkXNsjWGqjeAahcz9lLmPmWGCY4NMkypiFsphGovcsJUSVIlG+slNeFVYqa0NtSCZtFlDWIU9RKnf+Wa+18XJ7B6pOb/f15KnKCQBpbF6/qMWoZXlXLBe7sy1yDnOOkstheMQSVmWvbYZ+WFLwzqH9XJXUr5xlxU3qXG5tezHjKkK5xqpge4sVnliTKg29+lUxSPn30Unr8OHKJzbITcOtZCr7FuxclAvVcBOgnMV8LCePSwlzm7RAqUmWgavZ6iqOCjoHLhO4ZeGkzPN86eOd7vEcZJXxJaa7GJngzda/t+90SyK1NVSNrQ8E+msZrnQbDY9641huTCyn1SCtNBNvieQD7VuUsWTSbPCaCNRsCKv6VgBWdVWSTnLK/xMe6it0ao0JEww8iGqgipVuRKnROc8F6eWbsrc3Efi1Dg0hW9gTWPTw1kv8uChanJR5HmoVnWgUNh6zcI7CpJa2gTFImiUlnM8NcmUearUVNC6yffRFCC/R8WccmqGGBsqS5QxGLDa8jAUvtpHvhoyk5IbvK4V5zI/ebbkA1/4cocE75PoIbWzeOUgCtX+ImhOMDgZmuC9JdbGfUq8GzOxQGxJbn5axMuNKlJmpzDKMB0lq/37y+Z96UKctEIVFPcnWix30PBG49r/86L7/3hxqhn6XJGv3YrsMaUAW8l0lDSyXvZkJnQTul4Z5e7pvKXkyn4YiSUTcBgssR6JtWKMwTcviJDWsFbSRd8OmfMu0HWGdhBQ0sOuULGiFTwYVGssN57VXeTeFHStDA+FzjqC9dSSUFpxnDLHBZzj5UmlpD+qW0LXJvUxiUrC/AJScyNlYc4oCoSM6jRFN5y2suyfLcrLHjahsdpYCoYpFdIx0yZFHSErIyq90gjGYGKVbGipGK3FlBzgZPt/cfbmP7ZcR57fJ86SeZeqehtJUZSo1qhXYMYNePnRf71/tjHj8Yw90z2SWhuXR76llntvZp4TEf4hzi22AbcaQwIEBOKpXlXlzXMivmvh9mUh15Fn4+AS9RHiLRL1Rv9o36IHs3Uic6dkVIS1GZ46u1KhZLpY9HGGczbAMdVwvHRYN6cQBudUoGhCOzxeGq924dQ47gNPXM9RS5G6UbtTj5nb2biZhEPKlJQoVYJ6IjKL957H75UIzXIfHaqJpOBNsbWHp7/bcwK7QCA5MiYad5LGYaQy0hsXZ23KN+fOx9Z4bOdRlVH47O6Wv/n8wJt+4bcK52a8X4z7c+PwypEcYvNjzVxyIyEkSdwcEjILZ1UeW+P9acNSRMCeLxs5V6apxLOIqDO2LbpXwzKTnoMDAomNEl8jcKFEjg5XB/Uoa6p/5g388zenhkSJEd+nFrEjljOpG3qBUgqXi7J25e4gdI1QpVoLrXceTifWMdtLThHVyERJGiW7Fq5zqYXD6xnr8Kf3F3YfVl5LUC9FEstJaV7wtGOaL+RJUG2YE0Fapoz4oeCUckJx2mY8rolzVSSP0lMPCxmWkTpQNI+SGWEI5In+FSejj53ZMladloJH6+LIqB+PD39HPVIiPMXkYEmoxZ8T6oXrLWhM1Znnyn7v3N5m7m535OQDyRtunRwvYbWEtg4joXxpOnZOQWrc8MupMeUj4vFBIhXcE3XakWQLoTY5EF8NAFHNkB65uKUKYqG26Stoj0NxvxNydnal8vAYvGPr4bJQ3aFd2R2MeYqwbQohzE8g6iEMN8E3oytMLmx94XLaggHwsOttHoFqIhFMLSKQOinlUD+lhPbodUELF9v49hKG5vebAfP4s5kvbmf+4kZIT8JN2XinR/50MW4/Xtjd7dhbTFC7UvlgC8diaI4w6UWNd73zvjUeV0PI5KnApQdo1Tp1nvAs9EvHxyuCB84hkiL/qAEpsne7xG2aJT7/4iEVDbncj3w581TAGCDE9QuOcOWxnOOJrccvEY8ApVJ2LE15f3qkpMKOQjHoNir7xJkkclxSji7PaVLq5FAS51r4sBk/vS2sxaNpSyOE6cWxowRxfnpqPD4qyxpQ+yyZV8eJ75cF64oSpPDHdWOZ97yYQHwkzDPeQrueZuFOKVkiesLGjaqgF43qhSnsQdYdL5l0cLI427qR5zJGRkNyRndQu7ASX3vS6Cr1gbbW2dkdlNu7ymEvIdPP4aBxd1wbtHjIza4P3dmWLWrqUopw6Bq3UFvjezVxUp7ol8j6qTU0xmwd8XCWbN64lSmMCj3c/tnDyGxF2GWhACll9jvY7ZR0lzjsJz5+bGybRJ+KGKaZ0+KIbEyTUKUghUD4U0whySEr+Kpc2gpd6GdlGZ0iJYescFMn5QEmzoanRLcwXWeJ3FlvTuQGTyy+obmweuZ2X9HRSjBj7K3x8lD460/3fPy6cd92rFtGm2IpkebCx+8uPEji0xcT1ZQOPKiwqnF/gfPmrNrRpw7YKOTNNN0imNrC1USyaBQYEtYUfZWYx/Nwd/CIbo0ettjvrSk/Wvhu10XT7UrLAxZtVHVi2lXMGrROLgFtr01purBqJ3tmX2YyQh+AREJoaniqSCojoX1EXK4buWRsMr4/KScVXt8mvvreOJ2c+4/KZy/CA6enNfYmESJbLHNTjbKfKDnF3yc7Os4nZeK0KRyCb1UP32bxkGJNKaE9kvxM8uj3AEwwiUq30hNyAZVGPhuyqxTNUCWKmorTmtFHxkzNia0b7eJ4ClF0jD0w78KneHsXfY01pUCuS6YMcKaR0WZxi3aHMSXoyGlSAxMF6YgV0kC0j7tC2cO2KFuLEdBzxnTFexDfklOEl0nEbbTuSE0kUeZqTLVEKkUPKx0pGsVf3kHJxmVx+uq4KLspagn6aIKTBGKxP/ahyLLVubxrERinYfPqZmSD1WNUlxSicjNYN6Uo4c/FYx8tkX0rPigWj7Xo+8tK9zi8M50pJcyM+1X57Djx6cuJ+vaJ09OF+4dM9TvmXeUime8fh+xOG5vDkoX73tmk8dVT49wN86vfchcvV4pAaHfjIIJJZrUYc6O5O2GkoE0kujtrihvXLMcPJRr9Ou4/XoTgeIh7iayvcHLIeAhR+95XJ9VA69YutGSU1DnOlalOlKmQLGRREDsPXkmUZ0DjmlCulgJM2RXWg/PN1vjktpBq4rJ03r195OevK/uto5cVmmGmZALVfXMopJvEP3xfeFgrqQin1Sgvwy1w0Uz2HPXiOaNdmUWwbkj2oRoSSD5G+FE1yA9AhYiwqpNcaRIUi2QikDoLI6eTrhr5RB5USkpCqfDikLndJ/IuemhQIxnkGsFPZgoaTh/XmFISQaH0LrQtOk9NYEqRkZTokTCuo1tliexdHaf5fp94enTOl04tBXB060idkCuolBPelZwLU61sqnSP/ajWEkBUhptjYbdXtsWfgQ3VlbmG51ccrMX3fy1c1sfG6ePGIMyjYUx4toAld7amGEIzkA77ucbLTKwPXf0HZHOGWY0V509N2MyCpyRxLJlP9zVCyPd7qCumxtod7515J2wYf/j2xLIIh7kz5QntwrlBkZVvtPPHc49xVeIgjCjXeNYpJ1qPfNt9DmHIotEMHkDlONwJpDmnRB//W5KRMuh6RW7+ZUToz5utpz2XvkZMhFi4OzwhJSFZ6K3FOJuizk9XyHu4mXbc3e6ZambtLR7EnEEEbQk2H6dMABGSDLcoS0pJSalSdpVvHzp/YfDqaHz7nfHh/YXT45nUO7pu9ObQhCKZXJxf/PKGw7Hyf3yz4/Gy4aZsq3C/KJ8cCpetc5zzgLtjbHMfu5c7Uwn9ZkoG5pESnkITGS3Txnw9HdVhjZvSh8ZIdrGXMoVpW1VJuVATpJq4PSpvdpl9zmzqdA/t7lWZ4ma4CqoxMrmFQ1zNUIfLorQWipaUnF0eZ4HHyJdlFAHl8Dl6OMvZH2a6PMWNJCncQn3k25QSuyLhwunNoIYZ2HuEIScLygCLcuKSJ6a9omPs940wBojQeqO1QM+bhYVufdii9tEZ0s4wwgfRck28j++1daWUFFEt7qQS4JINjtfHC55LYlPj3SUorqwR2/zpXLnJEgqcIgH+NCVr5iCQutEN1oty2owvXlYOU+Zex++5KL/+/sz7UxvJ7tcYm3iJYtKL8qqzC1WgJme1q+hw3Ow5h864Dzmrh2wyfJ+xbuIJ/7Ev57qsyJVETaAoaXcYaocBnZtClFbThmt/92bmeDezLBslxcusXcfO6ojPGISYucaIICn2z1j6M3VOrCXzh1Pjr+5myv3G5alzWVeOKSBvPXe27mxboKif/ezA3d3Em//8wB8/JFQbuVY+nhp7geVQov6BkMT56DzJY1k3M2zsQdbjJQxBs48c1AQqYfa1FOOfC8uTYxO4KmlXEOAwF3a3hXNX0hR1iIc5sy9CEUFbCJ9LKoHiWYx1SWIctB6joakgHj2RWxsiEDeONbMrEjuyRNlP20L7rsVJIgEwjQ9W94gAadUpA3hp2tnF8kjvTh4g2NIaU4kYUhuTBQPASObjBiks2kK33aN6gjzAH1cydRijY5TefDj/CZSvDyeQGWiYfYM+kRTUSVNyCsrEbZwd5qgrSQsqsEuAB0h1VyEtwic3E8dd5fZQOdwduD00dsDk8KJk2mllMeir0Vqj2jVEPL72H56U//LdGr5N64MCMYzgMVsbAXEulCqUeWZqznnbMBnSSRx3vcKLoQkltLqhdAEkgrKfKyL+f/75M1gRkf9D/FKs5ehVXJ+CJG6O9QjpquYki4SxZVHevz/xh6/eczmHRWZZNkgjGkSg3GT2hwQpRjcAd+dy2vAeC7MJyG7mT6vxsW/c3u1oD53t0kOAkFMUHOUg82/3hV3JTLvEZ68KLhlNic07k0WY8qUFXF+SIAa0KGpKknGJWrbWnPM5HoA1pS0aDdfNsI2Ra5vQBqf7xvbYByWTx7ie6c3ZlngBdnNhqpDc0EWozORJIEW+aR9hVN2G0EAdUw13RGtIsngRzsq2dVQ7pko3wvmTYL+fSS6jUzQ6U/uqiBlzcnzrTJLZ1Hj/pDytTrPEso7R0+MmxSqSKmgJjs4HmEHQSrOMXGBCO53JTFJJlliWlb52kheqhSrLN2N5bFwWRXumm2AeDWNmShuVBpADUHGIJTWM8VH6MmJAhlM+1wSesJZ4WoOzfV1n+urczcKEkkR5dXdkvjlAScyS2E+V3WGizpFKf9qipyRLUJ4fW+eSO799ajycM8lmNI3PaIr9Xoc/uW+Rqzuk7jxalDSJSXSzmI/JwID0LE6AmKicoJQQDSHCv/DPv1rH4DbamojsEe9gZaNOEzpOwW0gjcVDPP54/0A5Qb95yVxX9rsJz46JUfaFUpy2ynOztSTHtGDWcTplqbS1k1NGc+HbRfjbGzg9Rl9LORbK5iSJbz8n4eYYiprpcMMnLx94ubtwaZ2lNXDlJhXeN+EvPUAQdyVnR7rQPNqcEeidUDMRoV80aC2AIBXhmEvQEh6Kj7N1ppJRD9olyUTdBT9qq6MJaqokCeH9qTdua8asY5pQj7bq6iETK+LkFGlv4gnSyuXUWDbHRs5vHgdnp0JJ1Bwjck2RLFiomClba5gF/ymaSD5xXhUUpluB1FhW45iAkQRXzIPQbxIHvht5qI8u28aulOfIUxEH6dH8vRrbtkFSbMrQQNeVbQsBiXunSsFF6V6Q4TO2cciAROaTDXNEqYg0bBPaRDiHHCiVTsak8XHLSCp8si+slqiSuJzDBYVubKeN1eJWPhShd0W5sG4r6+aQhWkqnFW4JHhvxn9+18kOXTx8yZ7xrNH3qZGdK4yayu68W1dySeQSE4arYGTENYK/5Jq4oIiX0TZWQgfu/uNvzlwnPGWcFH0PkpEaiJm3HuRtKc9KotY7vTva6wguUqSUqBk3mOZMrUpbjb4qtgGroVuiLYb1jK85bsch5k914v3mWK3c7ITlFDdN7GVXcbvQUDwnbl7f8eUvXvJmT8RgIjxuG4c5Oj6ftjHlp8D6DUOvXlTjeW9wU7pGuRESWk6uRTgeNXXaQ4+qZjH69UCyrXlUVHRCGtcjhdA9gpAvS/Cd8xRaWyFc4WNPwwAAIABJREFUJongR/vacTasrJwX5f290rqCd3IKjrQUoVaoObpDS3JSCbDBNPot26bo1tgXqCWTs1Gz4G6cTo3TAhfrrN5j/JTgE71Bb5BJI2Yldu6cM8rYG0cWk/a4vSP1JcbjvkYFxPnS2LaoABTz589HjEU5ALBmIazonVU3nFALZQmgpfVQcKnz7LNdPYqE7reNphvLumHd2EvgGJ/ezcy1BoUE1MMUfTzbRr90ns5GM0M8GtEvpixJ+X/enXk6NSQX+lCgBXzu0CPvKlmKG9NjaixJwDvd4oCMvK4+PkVRAhpG+QknHEJJJP5bzvBjb87eNnCQnMPl0Tuok1K8+ZgGB0nskngBMcw21gW0r5xPK6/e3PLyZk+ugm5OO2t4QiW4MprH6Y7gNZPmkdbXYxe9b86H7vyiJraLsnUju2PNQqfojbUHImsYP/+LO375+Z6vP244UcnWFaZauGhQA7hDcSZKvOhDa6sm0f40VEswkMUcoWBxfI+xxhNqKZL+xEfFnZF8EH0Kda7Pt4OUaPFMJgHWmJKAnCMkeWmNtkRDdp6ije3+0VjX2CGvchtJRqmJ3X5CcnyAXZT9tEfqWB9yYnLw5KBRj15yCAoqEgHM7siHRt/g1e0Ujc0ekZ9ojNilxs6Vx0EmA5BBUjhbklCrkSZHNSEuNCQCxFM8w9Y8qCpGKPTg/sQg0N7QYItwRbjIOWKy3KK4OS6BRPMAllY11t4pkiKszRzMqUW4ncMV0rbG+/szl3NnKomTCssmnFdn7cpnx5kiwmLKu6XxD+82piS46FUJSy6C95DtUR3ZBhIro75SAGSIKaJvUwb1+AwQWYgx0vAaYyl2a67tYz/i5XSHVAoyZaKttw/upmC00D7mYXtJoS+UZORcQCUiMrvwQZ5Y1oW72wNzrYPz9Ot3Dx4f0k3jxJlLxlqoYeoMHeH7k/I3nwq6Nk5PyvFYqbJFP4obj4+N+/uF7enE4WbmL//iBb/+euXtx85mcFqVUjPNhW4j4b+E2dolinGx648R5vGx+KBD35dlCJiD7g1lkPzwwTOM7LGfpWD1Q0zuUdgrs1DxyNAdQgJxIvdJlba2aKgqEoT4k3H/GOL4Mgqf3GPvm6ZMkshqcnH2u4kyp+fd3lKol/oWyO9UM/M0pOhd6B6WsHcfjba2AKYkMYUKnnkKMKd6FAlzfZnSVTQW+1Ot4CSUHk4fl6BA1rgVbaidzBxJiSkXFEV7VMEnG6HNPYCrJIF8b+sWxvdgHCIdISV01eBixvM4DKPzXCIzqmShJKV35duvH/jHX79jW4zdsUARtq5cOhScL24rp+6821b+y7snHhbHJeggnLB0bXHQpbmMJoPxyvlAcD12cyGAuZgiM3ZFsYZm7Xpgqjkpxde5Hv4/6uWUNNQqA6ww17DlDJgdge5bfFI9k2rsYtcTNGUHN9azoj16M3Ku6DBMuzVyKuznmYSTPFrAdI1bqdaMZsi18PakXH6640UWliej3UA5xgk05xLpAm8vPH14YMov+MUXt/xPvzrzv/+D8t3DmcetsSOzdBsfjFHfRtA6AUcrTTutpVEVMTjjK3w/btNAQoV2lacRKiqZ4qGoKUnHg1KPblK5EvSQcgBjuQrb2llXwXsn0vIzfevcXxpff994OgvHArss5JLYTYXjwak14bqRSmF3uyeZITmSapMHR3fVCycR5l1mbxVLhm/KrRSaO4+r8/5i9A8XynRgfzPhvT0fBNumlDmT81WP4pg4ORN0U1ekKXQowyWydUcvhHtJ48/YQILjXfPIOhJhSc7kwZObxv49DSFG4OQJa06zlVIzyVOsCa7clMJdVtZlJdHIPvHm5Y5aEvcfz/xfvz3x/ts1EO2xg3//5Lx7UF5MlRcH5x/fN/7b/cJvPkTaQzMQEu4F9zAmSE6kKaM9RDKuPW7EkeB+nbJ88MIJQb0AGmO6DF1tE0S2UK5J1Ez8aCqliEMyLMUii2+orvB8usQy61JDiR+DQEy4GpKnjlM9ow0W6UxzPCQ2pxtM1clWOaSoHVdT+tqYdEI3ECp9izq53390/ufXiSmFv7FOmYwzV8Ga8Ps/LHz2k3t+UhMvbzN/89c3fPX+wvunC+emwV+KsGof37sFvH/NEfKAt7MEeOUSgnHXQUwli7HNGUgc8WckI5LpvTOJUKaBLrojVZA5RhprobpaLg2ZBOuCtcTVWWBpBRLL1vn2o/H9CV7sKi8P0T1pEvEjpU6UOVq09sfKfEi0S+xGzRr7fUG6wzq6TAvkAnOtnE7n4XAxahGqOqsKD2d4d3bevBSOteIWsxHkWGtK6JV9KIG8K0qAIHbRuFUl3D1ZjdPWSBYvrarRPA65SHSIm8dzNL5taiSP9jgxgxrTibjhfSTaZX+umDQxmgr0UG813zAVUuq8eDGTc+X33zzxmz+dqKUCHuqcLnw8O2/fLfzykwmVxIdt44+Pna5hz+tDrC5Xg7RHZlJbt5h00jrya2J/tOv8elW3iwwU97oCDHR5mP7xSIQMfS0/XoSQdxP72x3333+kLT2kTmOcYQRDRdRlBHaZxkOXHuohkUSRgrJFHGaeKLWQckPbwlQm9lOMemaNzRqIxyjkMHmU0EYGkXJSxbyQtlDvdHpk5WRnnysP985/+fWFtN9xu0/sj/GSTkTuDuvGZassu5lcIw3ce8jrckrUKeG+xa0zkGgQGI3XChQR8FjqpcSILCQ8xV7jBmvr7OcwSzfpSBGkEKJ3D90qAyDxFE6/OEUTy2q8f3C+/aDMh4mff1G58yjf3XykBebwP96+nrh5vWfeTawPynK6sJMJxfEM3gxTIxWYJ+HgQjvMPGk48lUbswRY9NiN33z7yM2x8Fc/mZhzIq3Ry6LqUKL7VLIQc/2wYHkmF+h9i1IhRgWeB7KPxwubCKURichyBZBEFSEVYVstxm4BS04pidLjBU5CCG5zogNrSixdWJvyeFnAnELm5c2Om8l5e7/wn/54Rrvzk7tCLtH6Ne13fPtoQOGnr/f85v7E16vysTVWd0xKyBk1PSsFRCD7OCwkU2qltY6k8NeKBYouMpRX2jjezWgz1kGn+fN2OcqcPTTqxYUuP3LnbNpp90+4jtp1T4iFXjD0on6lvEgeQc3RTBxSpxiNOgzb7eXUuVza2CWm8LYtgvRLENzFqLPTtdGlIPmGtHamWrCurJeG5xnbQvpuJZMnYT8Vjhreu6//0FH9yJc/m3n56Z7PXu051szHTdlc2drMwxbPulal5NDSSgneNieJcW0s8c5A1gAIuWBI+SB4K7juIGoeN8qiTKkEaDdavkBIGZIGeb2q04kUCElC1shsenzofP1+o5nzszu422fmtcEU8SLTlJj3if2LyvHTifkuOkSn6pSXO8ycfoaJTC6Z7elCkVDFXNS4vZlItrGcF/alsA2YJyF8t2Z++3Xj5U3l85tCLop5o9vIXR3crFnYqBIByvWloS2mJmuN1pWaY7/3HmOwOON2FXKqdO2RHpjjNil5eCRzRgeVqhITmORrUmLcmFsrnDYLeaLEoTelmKBSKXxcGtuifDolvvzZzC8+uyMn+Oq7Cx/fn/jimHm/rPy3x8433bhfw5PswujugUwJbTmEB5VwCJkDQyxRMqyugxK5qpdyMA9uw2ubxm45RBc+uPaaqJJh/ZFFRrqMo48B0CG4XzDPlP0RWh8vCuD2w4NIV1lSmKli5B1ASYkqADDWzelbgEP7OcTVMeEF/7dsK2Ir3QpvXs08LsbHx5WfHPcR8jXB7ljYHxVPGXVFL8K3Xy/4KV6iw7HwySdHzm8jiOm0Kac1MSfYpeCj6hwBTN0shppmQR0xnBp5/Pwuz0idph/QXKcPPWVYvvJUSBW8NfoaBTbTFBLnZAR9gMffWwqnpeHq9M25PzfuL8br1xNfvNlx3GXmAvONh5siC2WG3U2Y3a070JDRruwK1TXqCm4ndoeErJ1Fz9Q1AKu6h4tGukUdMkUzOADff3fmN7fwyb+5Y8qFWngupMUc1wxEPo6pBaruQpkroom8+UAqA2W1IVBhGMdDUJBJqaCukUInEuP3MFgjMe7V6+oxwHU32BS0NR6XmDqOpdCasZOCVGHaT8w9ekD/zWcH/se/+xSZJx7en3n3cWW2MPL/+sPGh+bcr5FkKCmsXogMcf143vhoGTNwxZdAYuciUCP3VxgWP4nPSx87uwx3ivuIimX8HQibgyd9PgD+u19O/lkKTQT3CLvjkfVpxbYN1ysQfJW6QcplPJzROnZtEdvFiGBdOD/ZeEhCmYXDIbOvOTyGbmx2Vfc7rz+befE6s98l2gfh/hH6mwAZ9sfC3avCw9cLjrOriTt1vtsS7+6V+ruF21/sefPFgT+9vUQvYlfWXtk0s3k4BEqCSiCC4k41GYncKeRlFlrTOrytEsLXOClTjPc5XUcfIY/8IYj6OVpDL06bCxsp2pJzQkoeKQnQ6Cyt83COPf3Tl4XjIZOrBNJaYCPc/jln5pqgK+2cmA9BbeW5QItDz6wxz5lpnmiXzE478zm42zQl5ltn3YyTO4XEZhIrxqr8/qsLv3w98fltopTMD5OBBC1XRtKihUpGcqLOFVnh7EPsb0Z/bqgO12vEdMiIpRHIYy2S4F676lgbAqzrEmkBpYYJehPh0qMOYdNOllD/5KmQc+L2duKwg91USX/7ii8/uSHPhXffveftdxfef9j4fFdYcd4uTs+Z9xdFrYR+2mLKS8jz9+0EJuFmpFTGjml0DcGBjLF0vHNB+6Qw2ENMHNcXXeRKQwWl4qHy+JEvp8euhMepSc7IdCCJDUOyRbbOEAerjJoDD0uPj2865dCShq0n9iHJibqDOjm7eYrSWne6rqEnRbi5m/jiFzvmG8Wbc3p07lvn/qHx8sHY3ym3Lyd2h8rTyUmi3M6JLcH94nz77crmnU++OIT17Fth7Z1FPeiVpvgUwMKhZnalUhByUtpIuPdx8weDmgapPHbScThdofQk6Tldja6YXMO04lY1h55ypAFI8KBZIkPpdDZOZ+FpDf7w7lhJFfY3O2ZztraRPOR22qMKY+sW+55F8W97ajiZyznE4+VmFOrcTPiHTCIj2kOtU4U6V6apYgo5RSLi9+48XpyzdlKaQ7ztRmXoRsftICWH8B0jacYUttai5dlDH9xbvIQyyn4kSfwONGiEmmSsPz4QTYn7YIAmnh0tid2u4lVoawgSmik2wJgsiZLmAMGKUHzjiy9f8pdf3vHxq0d++/v33H/3xFffdUpzXt5OfN86H5rz0ZzHfhnjrLDbH1CHZVmGlStuzbA61njOEtz7BiQ00GMbr7Ff0dcwAZgrKRuJEOEM8HysSIPrTD8WEKoVSQlrI+ZsvXD67kyWaYAmTpknpFZ026hpcJ5+TU0DJqeWTG8apy9Ad1LtzHPiOB2oWejaWHsLKaA7u5vCm88zqa6hhpkrp2p88wDvPzjH3534/M0tdV/44lcHpmNheWqIFOTbKDl9fNy4fDDmG+GLn77gw/voiWhdWQ1yizrCnENi1gZ31sdoFiulUkioSQRAxXBPSqHriYqA8ZnKCbKQukbpU3LSXPDD6GGJ2uxQxGCwKuvibJvy8MG5/7hyaTFWuQlTSbEXTxN6NrQ50xR5QetjWJOmnWJL9HOYC83jcGTOtMcG0kgl3CoQ7piphrY4S0aXSIJ7eVNQUw6HmQ8P68BfEt3D6pTMA6VP9ryiaO9si1F6uDTa0tGmbK2TRKiWWbsOGi52a5HhcMmCj6kDUTYNkUcaU4lMmVRTtNRJYt2i26XR2MxYFbYtUgZnKbzMM+nU4b6hN0+cFuXrPz7y7b3x9VujL85dgosZ79bG02Xj9+vGZQuQz11JtZKTsy4dZEK9sb85gAmn0+W5iS5Q2hATuGk85zAyRfuYBELNYC+uTregSMeBxUCm/2U86F+JxiwbuuWh0rABjqTB7wR0LxK8Xd7N5H2hXxLb+TKohES2zLZuA7XKiBvHl4W7FzM1VdQaXaOioVkLlcdUON7M44d0+prpWZEifFTn3mD//YX7/2j8/FdHPv3swM2ne9oamaEv3iS++t2Fr3GeNuV8aUxz4uZuRk+ddYN1hboX1ubMNcjh5k7VGMemuUQUSFcMZfyukRruFCVGr5wTLo6WiObPOZPS9YETYu0SCqveLWSAYzxVNbZmPDzA6cnZNkE9msIuXUlTIWWhrxvnp4YalBqNYpEgM/y0EpSQ5BpOf4WmDWnGPINMEQXT6XETFZi7szx0LmdnsUDitw6nZRl5OOGASRJAhqZoxdLriS+RGw+Guo+o0xAUKEaz+PO1xIibdOhMY0MLLMLjd1ZyGW3Uw0qYUtAsJZOmRHPl0pxmUVh72WBrcdKLGik39qnzShLf/v7E8r7zuDR+837h7clILWxkJcOpdd49NeadwNLQniilIKlwfrqEqIWJUP6VoIaqk0sHn8BCnGFDbJM8WgvcYmSN92JUYkqJFnXTaLeToFZsAI3+rPb/ES+nax4SK/1B8kbEjPiwu+im6BILddskJGHjes8eVqUQHAZn6hZG1XVTejYGW0ZOzosXO2rJgcpucPqguArbDFRnNyW24nxYGl/sKx//tPH9240vvmz89Ms9b24ncobXP5m5ez3zyduVX//hCdsJW83MU+VyMZoazSrqic2drRtzTlhxNAtSIzSrJKETMrYkRh4SPhcfpbuBXgbDlKFCqTEOlTSQS4PjXEKj7GHTqikhos/k9bJ1zktj2YbhuCvvvr/w+U+POIXv/+mR379d2dy5O1ZuD8LrlzsON4XLuuEe8aPSO12hb51eMtpiAuiurM0wMmUX4vilN949NlatqEbFwFmN1hMvbwr7Kcd+JaNRkeDlfCighsECtdhZLYON/dk8Rt9UPL4Hl+GLLfH/8VgZck6DEQxVlPWQzKUa4E7KIf7fOiwjrmXTkThhIdlLw8w8TYELvHtKPKnycGo8fXR2JArKvgi5xDjqOJfkXCxGaccGoCPopkOaCIXM6XSiTImcpqhXlChQCtlg4APuacyqPvbtkYH0z1jMYD0HDD0wHEF+sJD997+cVy/nDylq8kzA+w9b8Oi69A00JyQWodiriAU5CF0Fcdql86H1sOxMzu2t8G/+es9PfxZpCN/+rvDxrdLPwsWAl4m5CPsbJa0T7981Vp+42U9882Hl//6PD/z6dyf+9q9mfvXZAS+J11/suHu5J98W1ix896S8eNlYTyuos6mxqpNT5OjoFPIvdaLKLjl1mmN/wp71xKEuihuzZHnOes1XEMGVVAZa7WDjJU4pj7rxAD9MFCPjKexv15Y2SdFy9sf3ys2vH5jE+e3XnX//9sRXpyfujjte7/b8/ReNf/fLA/s50RSmFmqWvoVuNKc4jKw7nhqLQqmJtjr/9O2Z33y98s2D8mJq/PVNJUvn3WJogl9+XrjZZ9TC6yoDgYd/5pTw4O0QxwgHRimVJMPcK7GLx88uQbcJRNpZ3JBqDslHeDSUIkiOFMaUU6DI2tk000msqmzNaSYsqrSRBjnlypwTivHq0z2HHbg3+iIsS9Q55JwHYhzP6u3jmQ+nRsnpKicZYvYweKsm3HvYCXuM4yISOMK4TISMeI4ggvHSM/TCMsAku7IWIvEe2kCgn3XbP7J2PrvSRBApMfur0nsjMcQIAfkgHnSKAmWaIh9Flwibsh/Go+suigPNAtFrwm4STg/G/bFw9zrx2c+dvsDjB6NvsJ6NeRet2Okmc/rYOKtzvDVe3mWWE5xOxn/9hw3ZnJ//6gXNEmad169nTh5p4W9vL3xHOBxa73Sr4c8DNlVaCsI55UDXPAXxXaWSUliOcgHMgoAWhms/fHmu4cqoYzdJc4bbjNSCE9K+pmF2tpRoBpvFruhZ2B0rTEbtcLo4//iHC7tsfDzFQ1V2/Ob9wj/aI7+9v+OPJ+V//bev2WF8+LDS1Vm3sL/NZKbJOM2ENepY+eZp4T/81zP/6fdPfHM58aCdv3v5gp/sK9aFb+43Pv/ywL/9uxvmK7LKQKUJ/a8ROl9JQDGmUQO/9UYlI2XwegMUuqizK1cE//qBlKtsGYhIF/HMvMvkyahVSLmyCaxEgrxJIOPKwAc0xH1TKcxTYSfCbjdzeCHsCuyeJjx31INiqlO4d5p2uguPF401Jl8PyxAOmwiiUHKcJt46arHIkKHWHX0bIJw1cppjUvTIjgrYMJBpnhFceDZauyBX2Z788Dv57345p1wRnOYdKSWEBmNOlvTPGNChhRRxdDmH79AJ9Go0FkckQ/SPRBz99cTY2LY9f/qd8nTfePVJ5fgiUw6Cvo+HvK2ZyxPkycA3NnM+LCuv2sxNLRxu4GBwVsfyhJdE36J01SucPi68KJWXN0FNaAtjtfXodNRe6EWwZLSrEXuokq78oUiICaa50vqGuyI1g18T20HL0CMrqESVXtllJMcDsZEqYYQlyyUOgZoTJSm7OfEiZ8pUeXt2vvv6zOOpk8z48uWev/z8wNvLxm/enflwWfjf/vGRMld+eVs5P66sy8quFPa7zIN2St7YT5Vpnzh/XPgPv184W+LFqx33wyz9s9dHFkt8PG188umB/+XvX/PzFxPt44VNO2sb0Y4o0xghgxPuI1okUjF6A9XOoj0cTC0+rPspAhLwQD7zMM6aRUVEdmcjkYpjbpQhhVRiDM2a0PFSNYvEgtWckjMlNn+OYtzNlcMxs0shmNkdMq+OM1NS6hxi+MsFLl24F+HURlSl2bBEp/AnS9zsh/3EZe3hnnLHpZAZ+u+rGTznWMvselNeOdqE2DVcQJ8nqAAtOlFsNF7aH8tzWs5ki+q+7XwhiJAQFoTfcgRjpciKiX1XoAewISNvJ4KRBy0BgXKlQUNoNEzbBA+nuAHwzDw39nPGdcdOoG3O+SFUPdoz7y/G5ydlXzKHmikTvLxN/OynR26OR9plIRLAnaJC6o3bOXS5l0EMN3WKwpYj2t+H1tEIJ4pi7PfXqA5Ha0i26m6OEiHVcZsm0pSYdhkvEuS8dTxnasqQc9RBDLlQjHFX5QikZHzyeoJ94lBDsPBTTzx9lvjq7cI3XyvbphxL4u9fz/zqxY7f3G/8+t2Z//OfHvAvX/BSCmtXlq2zdOd8Vg7TxKev4atvzvz2Ubm73fGrF4kiwt+83mE9oao89savvtzzP/zdSz7/pJIvYbVjLly20K2uOUCmxHDuAIs6ruHMSUTCgQz1lJqGrlV82Koy2SJYWi1uveuNoskpkklD3N9RuieSZS5bo3sJbEBD6bQpEYCWMlMSPr2p3B0rh31mmoM7vz0K203i5kUhl8T7DxcuYjy48YDzUTey7+hjNjALOkc9Ru1TbyFZdMG3kCJpN1T7oM4S01zZtg3HQ58dgyRX+457WBFBrsXww0ii12sN+TOW6j/7cl5aR5IyT4WsJdQcI/rfrryIhQhYbIpTdGivUorRxJqO7BiuCyueC/iIUvTKeuksW9AGc4UXr4Xbl3tevixsF+H82Jglsy0Zs4wU52nbUJ/ZulFNObyqfPbFgeOx4NopCVoL8+6uGuuToU+dWQurWIyz3eg1/TAqDX6tuVHnHELvFCOKSgRo6xaOllxij84SHk3fCfmQIoFPQbSGuD2FYyUBkkZe7wCG+hZxl7tdopZEORSqRN9KLYnPbmY+f1W4/2nj27eNd/dh6n5REn/5sjL5jq9PnT+9W5nezMy7hLXM0oW6T9S98Jv3J/7p7cbnX7zgs7vEnTg3KfHZq0RKHZknXr15yeef7DjsohhZMfLtjPYesjkEF2NTDb7z6hqxq+UrpI/JE1nCjSGjJzSXQJHMiOatMLdy2EewmHZlJ07NhTpFImFXQ1JmmF1opqjC1o1NE806lx7Kpt2U+eTFxO1tIc8OuZGSsNs7t3cwz8JqifWd8n5pPCW470of7iiTuNUk55j+xuFiXkFHOJc48Z3ID+CmEFMhU4jaXYfvN2I6TZSrbPYHhxDPqiFJROzPn/nnXy0ywuOXASkUEmbPaFb8bTGm5WnYZsJgGGnog3QuSZ5HYMMQaUOPmEbAV2aaw3ExT8KbNxMv3hSmI9TZWM9Ob87u6Eh28jFxahGv/7qCl8yUM1IMsY4uG9mCb7MUKXhNFdkiScBHooG2hs0TRqiAuguV2EVyjg9KU6O5ARFDWcZLKUiooWqADFwBaYkwbt06o90mZG8DMBrT/vizAXlOJRINSsnhahlEvKmxz4mXr3Z8dlN4WJ3vv1OeHp3LZeMnL2de3E58c9/5/fcrx1m4nYSSDEvCN48r70/w8s2el8fMy0Pmk6Pw+jhx2BfqlDkcK1MVPIXip2aQaUbT6F+tnW34GEsWio7sHA3EuvcOg0MlgXZiJL1OTYP/MwvAvwQ6Qyrx8/du7IowzQXL4eVsItHx4gR3qx6gnTtLc7rG13SPkK/bu8TxVWKzjXk/Q1Ja39gfE5nGeXE2nIvDOSe+Om24hQLpuvhKSYgHxuFAvzSumAplxKluAzsh0NnehhzxGgI3fl4kkZ6NuqEqw+PryUjuiIrJ2Hd/1MuZsSFCiP2o1Do8fFenXfyGcg6Xhl5/VhnBUT2c4sG9jtOC2L9EIE1QSvByOTuHfeLuOPHiVWLaxVw/H2B/Izy+V9gHAJOzsB7g3ceV/R5u7wJBq8lp22Vk3WQKQnfi+zU4zmEH86utR6IQyPFnEAOBmgvXigZzD/DLBfXGtItWqY7RhsXMJCik3pSc0gCKIgtWhljch6C6u0WODBHG7BZg91RKkNjx64vDK8X3757Y1UyqFhlOzeh5oizOS3PuKvzuvfJP7zasPTHljGrmcDPxq5/t2E+JT28rv/h55c1d5W5XhyHeKfgY1WL1KEPh5Dk6JMmZSLmPWJYiKTJ1Es9B4cSvB1MDiQ5QkRFnY0NTnQxGIJmasyxBomSJlz6lCPveekwwXeKjvHZlVWHtzqUpWx9mbhdB6Bp9AAAgAElEQVRyLhx2ldubDFOk3clO6Jo55YwWuCNjapzd6FPmm8vG908biuBEIgcj6tTNxisRbIRLGOhrmohUKH+miVQ0fjaPsmW3+Pf5P46X1v8/CRaBR8jVFIL9eLTWk2AavYeOo30NNf6UEPIQMkcvBkminOaK7HkkqIuPcIvoPgNGwJEZpSXUopLg8y8nvvgF0ILScJy2RjP065+FVeryFNky+QBbFZ7c0RYV3lvvdFUezi3iRhSmZFhNiFi0n+U8dJPxcpYcxT3dCGrDE54KpSREQt0SN1qiDTGCpF20qF3tWyLsk7ClUNCYj+jE8WKaXUn3iLAIPWrwmSRhKjl8mXXirMMzSDzUzey5BlA9coj6anhxZhwP+ye7OVNeJ+ou8/5j1P9lyfzqFwde32WeTo3dLlIZ1s2xXSTEFRnunhFAnXC0t0hfT4LX+Np9UTZPtOS0YtRd2MfsYQWX8YJWLIXetVjcenEpxIpzTXWPiSW0upgj1ZnmCSM48e7xOxUinaIhdDeWHo4Uc6N77KX7JNwewwjdrTHtCrsiaCk8duFijcfFuVjj7M5vL8o/vjvRdCRfDGVQ/G2VZjZ6T8YLJUpmNIcPCSbjs5koEVqnEXwXpUUDoR236BWJ9XFDiVuwj0MGGvLQH3lz1hL9E3nv9EVw1XCFk8ZSP+HeUBW6bVQPgXPyAIbcgo6QsSmHyyODNaYpxqP9bebnf7Vjvy/gynRInB4G6V+d3kdtwc/h3VewdkNWaE34k3beINytwrplluVM2e+QQ3qOpWySWT4+whS7CylCtpzgyhA4eHC1PhK9ER/lu/ESN1OSGHWa0SvMLuFtzCniFUtKo3hopJUmWHsLdDIN9YgkJIUCqI68npSCVxXdYkpxjxM2xcGjrVF8prlz7s55CZXNzWGmP51GtEfmxZz4y+OOn+wzl9MF88Lf/mTPzU3mbY2oysfHhK8LU1dujzOenBxQQYAdWKCsmtAZpGRqifbsq8naLEzyqCEyDm31sAbKNdIy1oJIBojawfGZxT0MBml8jqddIMCLXl+6HxIQuhsdQT2hbpHna7C1lVWFWYxDLsx0jh78+oagq0a8SKr87nHl4X7j/ZL4rw8PfFxaCPgZTps8IkU06EB3e147gvC0kUBppJTGWAp0o+xrOFaaj599OLI00F+SEjUNhWSJaBKIxIUIkeHHo7WtdciF7SnS3XOq0XUxpHsQGTYixpRr3CY5U447lscHoq05kYvhLcUgrEbZCXXvbEtwl20zXn3S2S4pXoI9uBVSscgoMqMcjNufFPp3idSVVBP3x8xvz8Zt7+x73IK7pDxszuGwR6aC9pBypSXxdGqRq8oWe+QoVQqHfYlfbIrITZH4WZoaOQ/BmQWa6xAmgBxSLlUnzUEVpVHJ4GnwWkOm1t1il5SM+GiGlRRNZinq4EKwMQzrLtSaeDiv0GGj8uFiLCtITSE0EOfuWEgpc1qEtp45ZkMrnC/Ktir5BZSkrDpz2hrZ4JId6crt7Y6WohaxpKjvk9YCwGrEkkh4EKcqbJvQt8jhESxuwipkvdIjQxsrmd5DDaYjlzjlOMSa9pA4jhs310xPgm5BZXhiOJLCQXS6KIvGwdYtyql8jKqrGEuHx2aUGdI5AqrVE+tivLsoW0t8t1X+/cd3fPe40DXsWgxuMoLm0zMNAjoqAgs5F0xX5v00kPk+OP2IJmlri8PYAc/PtrqUxjjv/vzu9eF8SmO0vcbd/Blp7b8y1pojORLu8rPmIcjoyCyNHTKoT48ZXp3ttCCMdD0LrvP57kyQJyhzdC+Wajx87OynicMhbtnEUFN4GjB3UDC7gzPNxL6SDJkT71T4Y1JuXdnrzLIkdA93U2U5dx6eLhGR2EM4nd0pEkl9LiWAmj52vaFkuTaDXduXRULN0jJUM1QTuThCAASeYr8oZWhEJcbKNG7LNgCSdPUsSmZ8ymJHRYZX1Ma+3sPnlxKFTN8ST0vjYYOPF2VnMM+Zw+2O/W0OQGttCLHn5pTR/5ezN+mRZEny/H4iqmpm7rHk9l7Vq+pleqZnmiAGIPj9j7wR4IEASQxAzPRSU8vbcokIX8xMVUV4EPXI4qFr0K8ulRWVkRHubqoq+l974+Vc+dbTa3XG+dRJiyBvlhBEbJ1Jg/ZiTDqSM9qjjcyuPWSMU8atM5Voktt7R0o8PVki9wkjok7zmJS6v2YmjacJl6EiGiFiadzHzzW4QRJkdUyhjsjROuiTPpIo9m5Ui+9de+O//XwlHeBvv8vcpcgQvlTj5dp5PsHvr8b/+1L5by8buwndQnDuGkSDG3zlQL6eYklH+qQEduJOxNHw55WOSkJe+zldBvLF4E1exTqgNhxcwzYWE39crX7R4hTAWo3dLMuItmivi/SmbxCGUTkHQtf3HUlxKZbR+nQDWxCj7lCWRJ4V6dBW4+fvjV//trDc+Wt0orogbSzGoUEUhes1iNzDQwixf78nls1Jl8Zfv1HePBzQLLAZuRnt4lzOjWvtiCbSg9NeQv41j7H7pnxEoLkzIaMFKgzNDmytx12/ByfmOjJJRelqYa8bxnbDKCm/ZuHouINi4wOyuD9NKQ+hRqxXqZ1MnObr6tTdKQKXtfJyNU678eSQm/Gb+8KHu8J6Np7WK2owp+jvsGbsW4uvaeJlVAn4Utg2JxXh6XnFWchJhlImFqMnhdYCADElpUyTW9yjj9zVQFrdEzozJGxhTO+7k/aBzI9OHLOgTXKOpDD30MoiI1colApIGjnEowjphqa6ByW1t8AGNCf2tvP9aePwp4ivXA6JMgn7DtsKXzblf/904r/+6YWXc4vMXQ/OcuhMXoVuYYEMTzL9dgDF6923GoeGjiNKBtpKuFBuQV+3Z9zlRrV8vaeq6tdrq47CJxkdMb9kccYjmQdfoxFf6GHlMWsjmmEs0PGG++BwfJx6cuu9H0++EEHEde8cl8w8JzQp3itfPmbKAd5+iLzUtgt7zDRsFxtVBco8J84vjh07yx1sufBjz7z9snKcJZQ6ScjXRrtU1pfOx6fO9eqkg4af0425N3qexocyUvUkxhGX0VVyA2VUwmHiYZWqu5KWrwHBnuJD6RjeY2qQHLtxaDHHGDce7kboSwMXiSpyH9GSEG1i2x7xGbm10JNaaIEPEq3Vy52QSjjxt2tjLnFap/GgrMO1f5gSU3WMibkop9NKT8oscM1tINBphD/X4PySQHOs9pHuHsCW3nhBV7QJ0pSS474VBmKLu3gJMYrfABQN8XdrkTOkmkbintFLjJUyFPZ7s+gpGVlV7kMc4PLabAZBcb00I5+UjYk395mqzse1czb4/rTx//zwzPnqtNc7XvyMOP7G6cZIKRgzaNBeX08ovakuboj+SNZHX5N8x6F7UwHBq7B9rP6bUIFXY8hYYX9hrv3LZmuN8cQsxhpVATF620EmcENtoIsK3jtd4oPU286SZlrfEYngZQZgkrVQZuH+MVOmjK3O5bnz/Ml580GZ5+gwaeZ4hb5HUY95EOzz7mwX43ivSN74/tR4+Rfj43nnP2/PkJ1DV66r83SB9UV4acLPi/NDbbh3JjG0Jvae6BZ9nVMqGC0Qy6SAkOTWq6FIa0wpv5YTRe5NiBS8BS9Su0N15knGnfwm7RKS5BAueNBUDHqp7Y2+GyKZtTqbM/g8oW+Ny05kqqoxz5mHCT4cDngznl6uJIu2K0mFPHdKFi4Xo9XKm4eZl5YjpFtgngvbaUNTjgKf1bj2ziRCX5yUIU/joRricuu3rFWgR/q6EgCWd3BVTI1sCUlOUwMd8R0e01VSZe/x99NNjSVjHMxBSXW/ZfXIjTKMq2+PE3hvHr5fhd/tlc9b5/fbzvt2x7tdeapXPq9hCzvVAJH60En7rZQL4NU58nVBxsK1MRmlcVWzQGalxgJzCZO4jvhLG7OjdEILkLDWgkp6PeRufKJiVl9b3XTQjr9ocYqUVxQK6QPhEpIH70WKX95IkRNzc/kDsX93zAMAeBUnCJg08lSou/Hli/H2aMwFHt9lvny58sMfDvhfKYej8fgm8+VTRbUwTcb1GtKucqdsz8p13XnzKNjB+dSc0w87P586vzlkfnts+Gp8fnFe1sTv1LgI7AiiKbyi1rhsE3VzbDHQThqBXGkOz2RtIb5whXkq5ALMkBLj9KuxyLqAjtgTn+IDyGmkl/qgUQIZRYOOsTVyTdfdQyZnwr5tSM5cr429KW80kNNszsMiPDyElGwq8HKqnL406PFgZFWWXFiWTt0c753jAe43o2unmUelRklcayzMMrJ8SkpYEw7HQTkNjtLGKG5+ixINeV7XkTzXBnhXhFY3ujqSg/8smfA09jg9Yi6A7nEypikjc4p0wwHUaLp5P2/IbmRT7RYCdU0pym8vF55W4QXnh3WjXRrb9RIntoVB3EfCfIyu8mcH3G3GHBzk0P4GUKUhHLldmMURK4h2uhpthF/7HswEqQbC7D5Q/DzE8GPNQExKFqopFYtNycOR84sWp3cbi81e7xTxAnVYfcA0oWrxQjxHiro4rp2cCvW6B+H96kSQ0bnhTCmR3dDkzA+JMneQI+cfjU9qfPvXwvEODsfMFcOrk4uwboY6LIeEt0RrCTMLsGiv/JefhP8qG4+zBEdpAbK0XDlICZpHC247hxSlOq2F8kQ6kIJC2V9r8aK6IGVB5wwprF06Jbi1pNVOtUDjclGyeWiKJWDz5rBVY+nOnBL7amz71ztZd+e0KdYq4krtjfOmPB4Dvj+kxEzn8RCqJD1msEZJynRI6NXYa6QjWDMWSWiqOHHSfvct6HmlXQxJnZyF56uxrc6jREUBg+tVq8gxgllQHV2qcR3pEob5NNDZmN9j/HWrgQC5RY7OeChzymTJ7LWGb5OwW5lGsn0fPKEMfrPuDTcnq4zcIotaB3PowRV/8c6phWi9BQzMvseEhguiYBJJgUhMIC7ymk38qtYaa0PUUNevE+9IDHQJJVhn9PeIY22PEVUKnjw2Am5Xu2Efs1AAMRR1CqFFv1ExQ0jxi09O5DYGBKIkDNlUQJh4rWNf0DhNJHSFx4cj3Z193cNH9+pdG742jFwm7u9mSgn7Dy6USXl463iD85dQBwVsHXcWH27fBLQagvxpShEJoTH64oleL8E/2RSxISnMvFMWcmlkmbicNtbVoqVL497XLMbYgkdGTg8XhUgkF2RVujdKKqRJg/NVaLVF5+ZA4UKf2RDKTWsSd04It0I3am2YRf5M0AeJSsgFJw3rXXHjsDgzhcMOy53ycJ/YvUEyJs3kSfnmG2PdA31d94bXsBC/vU8cDzNTCeHHN1PGlsaksJedvW7g0U953uLkXM14dqVrD+P4SKYrHqdf742UU9TRE7ykdGAkH4iO5uoBsHSLjSzhY9IIiZ95gEndA4DDb5V68Y6pDtBMAsm1VqnNaa6cVfnTl6fI/SVR+40KGeh+nBrjuY3eHR8KJW5n9xAbvIKb4gO6jTF0Pizs+xZRp1Zfn//YahngTxtA5S0Q7MaRCsGnxUkajWI3Ta5+vZO+YjG/ZHG6cFOtvzIy3tAUzWFxHwlOx/rQH5pwWSuY0baGePCHKj76I0KRkTx0stOSmE24no1theOD8ebXhfNn5+WnENKXeZxaOrSr2Wkb7LuhV2AT8AiUanVYjzSRS/xOaCz8svj4Bzo6dTrKOmiD5hK+QUJ+Fs+Gjn0lRnYfmaruFvXtoyTqFoKVcpwyPvheBfYWnGYaMjjMaaMGfa2jQElip90l38QjHBcNX+YMqXe+WTL5TpiXwiKJnjozGevC+/cT16vx6ecz3TI9O2/fJn71IfH2fsJb3LmmnNA7KCTuipIIG9W+OtOesAaXFl7TSwtB/pSFWnfeLjl0xYMXljRsdAQaH/fzxHBIYx52riTg3sf7E691ShPbSIGPcLrbIg1qKqWQXm5m0eRGRJT0DlIyp2487xXxjBEeygAov2bNjnPxq+14LK+b+AcZJq8b2DW+Fv8xWt95TeALiDWQWvdXSSqvQNkt6C1+RrAnN5RaXu+urw6UV7TJ/5y9+bctzthcQhCMyEibV3xvaFJMQ1Tp7rTWefPuwHZp1Gsdu1IYXG+DjDII7Tnuelt3Jps5P1dQ5c1jQbUAwvGt8PFPjZdPsTjL0UfhbowOmhVpRq0g2tnWcEhsazQg5Wki32XMexjdSqTSuyVUHV0KltttjsWsY+SBpsUHVHJ5rQU0Hz0a1umS4n25kZUitG7kKcT+tw/JneHlDM60tRYO+w2+nI1LjRC0eSzqtAx/6JDkHQ7BpOXWOT4WKB5Fb9Vpa+d8unD51MlMPKhz9+FAK8rz88b79zNv70BX5/mlUh5ADqDHqI/IYpQpk4vg98JhgvUCX75sNFM+Xxvtaef9Q8Zb3MPv7hTRHO9fClQyecSAtr1CHS6PXdHm5MmRPu6bFrnC8xQ61aSKdodM3IF73NndY1StZuMgU/Ze42tN6dK59P4azmw3RU/MJei4I3+Vxemwgo1FoWOy8dDWvho4xkknEqBXH4F09ufPvdiNc4Fh+RMdyZS349QjUDrPS+AyY4HLOJlfF/BYYH/h4PwfhEp7R0nYmJkZwLGSx9gydg2JH76uccfJE+Rc2LYrfYdpmlkm4XquQEdLptbOj983Tkfn4b7w3XcLJTuVIcJOyv0b5eOPF+7TkX6B3hxvxnaB6VDQbYtymVF3XvfoH0lJme8n0B4eAFVatddRrBOh0U2M3RTPEROSuuE2uKc+hN8yTMHiXC8DNJEoeZ2yBhHfEio5qvMk7lvi8f2JFC4Ya6/31x8/Vj5dwi84J+GYNb4X5362oD6SUw6JJIl7mdjbznZa+fx95dMfG+tPBieh5IW7Y2IqxvRd5v2/d777ZkIanP6w88M/v/DyDOlemL5JPPztgV//JiHLRLkLasclws4er86xGF9Wo1R4vnY4de7SxHWNTcjFybOQ+04uc1BJOdG1UHsfiyAh0sf7baSc6bWTmNCkbLWPZAOC+9VI3UiuUYJkPgTlmb5f6S2Kj5p3zlvjx+uF2jXUSLdHXWSc1un17hq+6UjWV3LcB42ggXKKXtWxgJPdMCIHSRGhInGF8li6dLnVEhJG+xy625RCPYaNWBYLuk1akN4iGRvdFBGyPlRg/KUchP/hWBscpd5OYxQ8UtwCOY4RJFCnxHbppJzIM9Q26JOxU7lYAEc+07dOKs7ju4kPbw+8+xaW+41tF2TNeFZUneOjULd7zi8rD29yqGU0+Mf1tI8PII0iUmPtlzgV5gUj0S+Opk4qxnIw3r+b6E2om7DS6DIM1gKKYT3RN2e3RjkWdOy/tUV0xpSDkF+mWFTGEF9MyjFN1CHTi9EnFjAokp3eC6fnyunHK3/4eWe+y7yZlDwr07EEGp6NdwdlSQmbEpYF7cb1vPHxn8789E8rn/7UuF46czlEO9tkbJPgljn/zrhcG/q2Uj/D8z81+tk47yvPf9pJ/6hM/6Xw07+75+/+5zvefjdHC7V1pnkCqXw3H5l/PJFNUS+c941OY7OZeu2c98renW/vJt69c1wai4c+tivROyOdVG8PNHhv9C4xvfSwhYlGi5cJWOthiNfQXicLLKDt7TVKdN131uZ8rhtfztG908cpqZ6+JqpbcM04MXq/TpABatpAzq03lEwKLR09OXclc/SJL3UdI25MWhDqnpBVxrLxXmOsH3et+JcDO1BLeOu4ZrARBM6tzUBG9Jberri/bHGmcamKkOcAZKJEltFUpdHkTNibsipmnbrGCwvZn9PWHduFsowX2sGXzNu3Rx7fJ8qhMy+FpMLZ2pDsGb0qeU7Yc+LpS+Xxnb4mwfVu5JKDwN8idDrrRJ7iDlT3jeN94nhQZIH7KdFsRyWTx0NgRdhWYx+NWns3miiWgmbptaMpuLnkTskRKF1HCY3t9dUuFQFsHkXIFklyaDQqe4eff1r5+ePG5cmoMvG4TJRJOMyJ5aiRJl8knPwlUVtHXoyf/3hi+5ed3//3ldOTsZDJmrFaWbtz2RVdK2+PB1w7X740aC3yjHrnsl9Z28bFd/DM4VPj+6eN9acLv/lPj3z490eWRyVNCc8zLTmHd3c86s7xbuJyzXgXttq4VqWq8uVlZ9tWenbe30806Yh2cgGdHFTZnwwxJYlFz8sUTXW7RXZwZ+AmI9lQJZDZQFUDjKs9+GMTZbdEo/LUBto6rG2aEmbtFTy6UZeOROXgQMNv46q6DPTUXxHY23hpYlxpgTYzGt2HKSL+Yh7qIEUGFSR8FcfrCN7u2qLlrfsrGntbhzcl2nR3ZDtfhk3tFyzOG7oVr/d2v9TgtoQQ+A5h91e+SAafmULKR3sdfaYlkQps+0oqgXzmSUdLmjMdCBK/hRC67UIuzv2D8PwkI6aE8Jc2w0ZtuJlQWywc1YD8S9l5fHvgcC9oaWjL+KakKar0psW5SOeKca6Z+ybsWanjbtK70ZpQ4FXRIZrordN2paUWNXEDEGijM+N2h0gpgQZU8PLS+MPPO+dLcF0fHpRfvUvMKXNYYJmhkEcAt1LXzk///MLP/7jx9McL/WOi3rg1iQfx0g2TRqvCbju93nOcCplAQ/e+UyVx6cKpXXmhsonwyMTRCvt/N84fN37854W7bwoffjvz7lcHDo8T82GCbrTm3B8n9mqsq/CyCS+rIXnix8uV/SfneExh0/KQo7mGuioVp24W6XQ4Ig0zGS3fccLpQFf7kL/F3T6etlAcOdcWmbXNG9de+bQZLeXo5emMv/vV+dTHnU4lxkfrLU4pjNeL3o139tDLBsoqbGtY1LJmEp0pT/Esjnz3kPsNXbfOeK+jqzMSPQxDvL9uEio38e6fDa8jVHq/rv//r/+bF+eNkxmwtsuoWRhpV64BGavJa+OvqIZ+dLzJMnaOXBRNhXW/MC2A75y+CC/HxL0q0yECk5NGSZCpM02EeOGNUvvE+iK0NWoCk2rcQYkyHesOnrGUuHsL3/6mcLwLYXmaJ3oPiVzWCI0WVTw71Yy1Vi418TAZe4fWE1luWS9KzgM5J3yQ3iPiRBlG4RR+z5QgK3QiSrMMXfHp3Hi6NnJRfnU38XffFt68meiuZHEmgid8/rhyUefzHze+/y8XLp8q0p3iFTejiXABzr7RPWrn2oDlf953vpOMW+O8raSy4JoiN8c2zi5cRWhSOdN40MzllPn8jzvT7xOf/vnIr76r/PofDnz46wNpTqOUCo4lMc/GsQn6qfJla2gpiMPL88rbD3eEe0BfQZY8aXhPCUWQQVRImNMDu+GGq2YkkiiM19qCrTa23di6sfe4XlxMuLwaBBgLLuiI4Bf19YDQPMVG3Vt4iS0NRNUCwR8gpY9/iyEPTEO1E/mzfTzXscCSJhAhJyWnRNX4em+jLtB9dKp8xWO0jNrA6/rKrYoQGUh8zZH6Ny/OWzkcfgtpYqQYhMQqTkgbaBavbw4aKFoi6hzcnLpVurSgYmbh4XDPMinb1bl/nyIoSxmL2chFSOr0pjQXlodGXQcYVKIL0X3Ei7S4pKc8k3Lh8cPO/Vvn4T7FSeTO+dkRV1oN94Uq5FnpCdbWuO6d9aBcm3PIPew9SSPgLEkkGvTGlJSURgIJBlFrG0XD3EzLcRcyjVzbl3Nn78q37wr//n3h/VFZ607dFcvCtjnbc+P888b1U+Onf75iW5Dhm3eu1tlpXNx4cmf1xqQJt51JDiRRliQcDoWXpysrxpspc9o2PtYLL+qsPVFNQTubh2GgyI5YY9oS68+dly+Vj9/v/NX/0rj/1UjAE2c5KEuZKKnx7ePEaYfT6RLWtSpc9sqUbPCZEl0oI5pUNUQBZmH9C1AlADAJdQC9dWrrdA/rmRP39vNmnLf47yvCx1pHQdB4qMciF3dc43vVbs/FHqAOYZqQNLKT+1cUV8bmAKH1jXXYRnqixIaPo5qZk8d1QmBZJpZpwWXGzLlc1zDqN4tIHBd2W1EzVA/hz+WrSMHHvVNu5u5fsjg1zwFV94qShrY2BYzeIjZT07h8a2gO40hXeofegiKJHNgUp6k09mq0JRA7s7gbWIdtbRzmzGFRtuojDa/T1wh8Or4p4FHiE+qKHnO/ZHRKqDaOj43Hd8r7D5lMZqud03NnXWODXM8RdanFgZ29FK61cWk7l005p0wR41iEkiM5YEqZZc5BkapFsY7G76Qa00JpMQb39DX2cNsq1xaFuO/eLPzVr2aO7mxX43ztXC6dvcPz1sitUb50Pv9jZdtv7v3OxTZO0rmYsPcWhLvHeK/uVF85KKSWeak7176yIfxuO/H9fuVLu4bqBljpI34yjORiHSEjqfPZTyy28c2PE9v/tvPX/+uRegRdJt6/LTTdKUXIWvmrN8J5FV62FUnHcONkR1uMss0d7RJZsUO6Vz38n3o76W7mbpzWG9ZDNeSMFrG9UxuYZap3vtSdT1tDmIK6si0cLN5AhccPH7i+XLieT2SNEADEEC2BHnuMsui4Gw4/J3jY3bS/RsMo4a4yi2rJKYe/t1pw4EWUh2Vm3Ve0GJMubC1CB0o+4K68vExstUbq/1a/8q3jUiyvOt9feHIyUK/0Z473cFcYWhzVzrwo2y4knXjzeMQsNIo3V3ztjb0F99m3DJqZDjEy1tWZS6Fk4/6g1D1Hw/GiockcERo+KuNSgukAl5eK9szhLrFvwYmVOfHwDbz/VvjNbyaOR+fH73fOl8bpxfCacResRuuTAmlR0mbsu7HuzrU6myV2g3k3mhoywZFEKkryyjKNEtwcyQmeNFqpZeQotSDpcUfM2daITfn1B+FYnP1p4/yl8/3urGfjUht6FT6I8PKj8bzuPPWNj3ZlR3jqja1nNMER4UOZaGZxmopwYudsjp8bL9fPLCqcFV62zskCGc1NsNzpKqxdRmJFpMkpneI3d82VUzKum3D+vxvLb2au886Hp8LdbCzzPQ9zZDb99puJHz5ljlmZljhRenNqSxJRntIAACAASURBVBGU5sbWOq1CtYSQIlvIjCrDoeOwWwsDvmSaK1uNlrlLyzid1RvVhc/bzmpx3WmthhPIOkh65SVLKWwjV9d9LDI6SAPL46QNZBVPCJFLHLKuMY1Zw4i0C0mJknJ4fy3um0kEq43Pz184lpmcMpIqNNCSMevMc6JMj1yr8+XpE+KN3kZerf3Zae3yZ3zsv3VxavBNpqGxfY2uT3AYSQZI4s0xo3nmWGYsKa1Xck6RYtCd8/mFp9rxFGFeVGF+O3E3Z3IStnPipI15CW6wNUeLsq+R3Jcy7NswuwoDbY02rb3FCKTaKeODuWxhD7u+KPseXr/awm3gnigW5uK7KZMexli5h/TtUhvHnDkm5dqDXrn2zlHSaxlNSYwuzuFRnDImwlYrLlEua9aZCanew93Mu4eCutF354cvFz5uGc3K04tTTk69wH4RPgM/SmcdM9tjyvw6KQ9SWNIcgnScKU2Yw8Wdj175rDuXbvxkO5tFl8djLixSWB4PLNNEmWYM5VqvvDyfuPYrzY2Kh261FZo1ntMLP56OvP+d0+9nfjyt/PrNhPDCb76ZKcfC/VHpVWEyehLsbNQXo1ewFOR8GpI519DYbr0GgMjQI7uNpIwS2cVE9tCphQvnpUPtwjPGdXkkrSdcQsLntX+VSopzen5G8ziV5XbnK7EgXDCLQtsA6UAGm2B9+GsHr6EjKqZ79KCKEOi3d7AccTG6k3vEm94zMefMMsXP7j0okswOnlju7zCrXJ+ecdeB4niILUSJYNVfsDjzyBkNntKjtEcMa5HVOR+VKRce5yNlmXj/zR1lmthrD72rK+u6g1X2trLZSka4G3GMIrGznj6HjEmImrykUaNmNdwLOi68dstzGRf6WqPAtEwTuQSpXHfh6XPcT/ua2RsgyjKHqiUnUDKXU8PVIqyrGOvaedo3potwDGUeh1XR5KzXyunFWRah7IIfwKVHT4qHt9E9/Ig6QrSTJdw7yyTcfVcw6bRLQ3untsSyJP7D3x348XPj9993vnyuXLWynhpHF76VzDsyd5JZCLl0kSXS37Iw5xwSxZxoJXKKnq4bn7aV3YyjCvcap9XDmzcsb+Yg3rvh6z2X4wPegrf8+bLyU9v5zJW1r6zAivHkK/MuTOcCyTlOcLw0vqmJhzu4eyP4nKJA6dzxlginMoF4D9pDNQ3Hi+IkNkLs0UdPpwz3S2uRGbQ22FuY268On2vjeWthHujhGwUfz8UYTx1st0HeBdxz8+B6N0RHuxsDQXV4jZy5JRQMWgUZ3z+cIzaECbyqjMLIsCSNNjevqAhTPlDKQm+htT5OTr3EhGgusXZ88DYjhNr518Nr/we5tXHsy1jhIhE6hXRUM493d4ByvDvw13//lne/WlgvnW3tnE871pxpLmxbZp4StSpzSZQSlQE5Cftm1KuzTcp85DXKwYb3s+7QTUk32kYiccF6p28ShUPHHGN2is7E81Pofq11NMPdY2hrczJKFrazsF6J8OKkTMfEfqlca+PlWjmWiTxOrmly5iRsZ+d8bdgBmBt5Bhn37V73uD9J7Ivp9tCIcJgzXYxWDVudQxLePig6K7+6F37z9sh//Btn35xP31/5/f8lbD9vaDeSGdkDHRaJ5u8pJeakJEksS2E6TDBllvuZ99edd5+e6d0pNgKSk6B1J++JY8nxMFrnLmWaQ+4VcWM245ty4JRmmkJ6M3P/RllmZZ4SdyUzpc7bu1sYdEMt0Vdj3z28qE7kCjtgkR9Vx8KJFvSBfgx24QYydoetw7orp924VGc159Lgkwk/ro3zeR3eTAJvGOuEcRYLKSIzJQT0rwup3n6OvWIB46Ee0SxRO3kjDF8zMRxaayjxOl4tIBqUXR8xKkmV89aZkzKVELNoKbhZVCJOShHncT7y+fTEtReKyyiGiqjNX7Q4JQWt2lsUzBwOiS9fOlNKHJYjc3lABO7eZT78dubuTeHdrxfq1fjxj2fOLx2Tzv0+U/uMXzsqzmHAnTpDtoDRL2ejHIXDXaC01iROSHd6DQCo9wCAUs5Ir+zWyHNiPkZDNmiEhlnjeBCOh8ThXknL+BBN2a6dbQ17WduDt6wzWAlqplnj6bKy6JG0dLamNDJdEq13ttq5p7zurCNYb0wZjAUq3Or9EKU1x6rhLQCF376bQo62GjIbh5x490Z5Uwz7Gf74sVLp7MM8OWlilhI626QsUwm7nsX4//Bmoo2Kwl/9+i07jdOPJ7LLa34QF9j3ThJo68a2wrruXLYd1cpRYHbnwzKjDwfe/8PMN28DsTZvzGNzqBYZPnpSpBt7DaokiyAaFYRhGIj3J2ksvm5piFUiIEsJy+DeOxdvXC2xI6xNuDblvEah7k+XlY+Xa/CjHtymym19DxT95jG2itxy7YaYPaR8t1RAGPMZ3jshftfAR8a/KXIjWb4u19txGjnGeaT3gXchTxZmcBW2tjElY8pz5FMJ3M+ZxymBHlBxfvqywohiec2N+iWLU5uwe6SJ7VtnvTamslCOlVRmpjRR5s7f/odH/u7v35EnON4LL1820nTk558bz5fKu1nZr1vAyN5Yjpk8geYQA+wItgnXz+EOz5Oz77HzeZeopG+Otzg5zXrkCkkn54ksjZRgX5XpIaxVk8SCLTMcj4lWjZdnY7vKCMAypglajje+HwrbtkcUYx/19BUOySPQqziLJrx2NAs5j4YwjEXCxZ+SgijWPAKWmyO5UyTRmlA3ONUrD2kKnvbcWC+O2cR6b5THwnf/oHCp/PF3J/YNMI9yV5lGuWwiTTH6yxQmArPOdtnY1srD3R1qG/NB8D2jg87YLjuWoJlxWTekwt522hhDs2Tul5l33yUe/t2B9387k5cAuKTGQrQO6wrb6mHzArC43cXfhbZGia5Jx7RgFqOqJ8hO5Bh7omQhi3BaawgRurPV6EGpLWiorTee1yu1DxNCbSGzfM3sCfMD4gOUC5ovTzOtbmOEHYdmIryZmsNPXAm969DbhsY+5HZ6Eyt4GKc1JVpdh3soAr6aZxwn9binbhhUSDTWXslpQdNE0cxhmrjs8OYOZhp/eNrZmjNL4s8S0P5ti7ON7+tVwAsqTsoXVOfQNvqVD98u/OY/PDIvTts2nn92Pr/snK6BYD6+WTifIl4yHO1g1ulVmIqQlxAZuzvXq5PP4cLfW2Oa4oHe2wo2hdHbjO2yotwzHQ7kuVIOcDgIx3thPko4N7pRZJS4SmHdOpdTQOXeO1jCk5HV8cWY7oR1L5wvnbl3LjskyRyzc9oay658c19ISbB+c9TH+ONhtxmWuXAltNagGt6CVqqjIj014WWrISPcQulpUjm9JB7rgal0fvU/zXFP+eMllD6e0RxAmKiztsbdEpEnak5fO4ZGqPbzKRZbEa51Rx1KDl9l6zsv+8pl66g1Uo4xvOOUWTh+M/PubyaOHwSdOnk64m1nPVdonSQJr47vsTg9J9Sc+SDMybkOB0qzxmEpEVPSg1fOImSBbdX4ie6c9sa2GSuJ1pTaohx3M2cV4Ye18/G64Z4DXwjteACVjBT54VyxEUAGTqs71iIh8la6hQ2PLsaUM4f5yMvTF/prcBcD/Q0MG2LBI04pidrjTEZDUNP2NkIGZpAOlZGBC8hKbx21zjyV0NhKVCYdSuZv3ix8cuF8Pkdy4S9ZnEJHU+SjuMWIVnfIKUeQclKSzvzwhwv/8k8/8+nTxvmls2+Ql8z7b+44PEwhQPCGi1FKIpXoRSmHIGXLAUSVbROeP/doNNYUyK4Y9Bmz8IS24T5JeSdNieND4vBws/V0WhWmRSiamUpoXH/6sbKed7ark6c0+kPBaiQ6lCIsD0qtUba6Wqe0QNaW5JTiXC7GvhgPh8S2NTyBlLH4R49loOQ2RligR/L8XiMyxJrSumMVqjcOKFlHllBrfPn5zJKcw/3Eb//zHXfvEj/9/oJehNpWrAdC7dVQmZibs68N0+iVvG5buDlyoa0Va0MMcY3Gt2vtXGtl9x2VsNglzeQ58fDtzLu/UqbH8LbmfmS9durauVwbR800d6z619iPHs+HdWf3HptRj4p6SXIT8iAS97f4Hx01Z6/RKH7ZG2dLNBPW5mwdzt350175l/OF3UKe1S1kcojGovORpCcxpsoIAEcddQ35ngcdEkFzjd4bpEBZ67bH1cqMiBO5XUPTK/OoQ4VkFuXA3QaV0qB2eDdFn6qOaNXqjSSFLDPeRwdsb2x1R1Kh9oa78eHxwJwSv6tX1r9w6fzLi3NKJBgNwiEgznmizIp6RWTi9OL8n//H93z//ReeTxtCEEcpCYfHmfe/KtzlmbZV8hRqoebOrHnUrgllCjHCdOicP1denoyHt0vQH2jEcvaQBdLDjzgf4fDoTIdw2OeiKIVSBMkddSOJcrka+wVaU/at0WvnsMjgYJ3kCZmMXJx5gZdJeDptLDpz7c7TJQKV7+dIs7srAUFoDuBHskbH57g79Oasp6hkSDoS4TWS4rpH14hp6FYvW2fKiSUHwOCtsyfYtg1PyvJt4R9+/Z72VPnywx4b39Wx3TmfK3sKF0y3BllYawWrLMvC8LUPqWHnKp3VQqOa6LgW5uXA+/cL9x8yj98WZHIurZMlw8uK98p2HR2VSaleYXgvgyVxkhsjiAI83EFWiFOzBn+aNDZDDIrCtTX2HvXszeDajbU2rrtwap2X2vj9y5nP1x3xKby24xQL0fkNWE0xTTFCrlN6vWu+Ko1eESEFC0DHav1KoSB/tjBlTLnhirJeWcrC8eFI/fIRN6GZcF4bZcqUElEx29hU+h51FlMxFtV4/3GuvVOyhyQUYd2uVAWdMlJ/IVqbU2JvhmQhi7IshdZX5lRIkrhcLqx14/uPn7i8tDjtpIE7VoXteuXpyxO//ebIm7uCSkSS9E3pkweIUW6NZaFcOSyZfRfqFhmmpp003rww1yrHx8zyGM1mqhEBIdLRXElppg0/5l6N8ynRLNHbjnsoVloNsOmWJ1O3GO+mRchH5bpmnt1ILrw0KFc4TJ1lMpZp4pBjfEs3UJBAma05fXfa5kw6RSVDN7THg8ywNdXur0n2a3NqbVRz0sAdS1H21nhaG/sh8/g+8XZZWK5G36BfnOtL53puWI9d3FrogD0Vrj1CxHxUD1qK07DnQsoTd0vi4WHmm1/NvPsmB5W07bRNcE3MtXO57OSBzpcsbNbQkka852hvHq8pavJCCTYfMilCeKKuEYuHuofoQQZCWXtQJucKm2curXPanecGf7isfL9e6T0HlZYCZe7DXIAHEs54LuJP+qpdDT7aueVd+aDpwplyiwy5ab8jRdCHHBTiXnxLbHd3sI5YBNZ5ClfVgrPvbaC2IymxxYZw87KGxtbxFn/uGKhEaHgHrYb/0sVp1mhdeP/hHQ93R+idul/BG5X4UPbryuUSBTxmdRhJB+xMQnt4OnMZwVhDs1j3TppC0pdcKCWa5NKU0dZZT5U8J/Kh4DR63bGe0OzcPYYHs1fY3ZkT0aWZMi9PHTQj5uzXyuUa2ltNERFiozOyLJE8by1GbEXpFXhbOFnm+lR5oCBinHbn86WjWTnOO6kE1+geQnjEmFTYO5greShN3DK0yNsVSWiCtsWI6eJcN8CdwxzRIbdYjjxrCOpJXM6NdtrRVGipM73LHD5k8kXRZ+d6hfNFWasxT4UlRQNzX/e4CjVnKonHAjUb88PM3QM83HXmQ+XzXjmda0wmnrFWuZtjlJsnjdqDDfTmPumBbIraSNWLnpg8KtdFYcqKVWWzxtesHIl+TYSLZS7NuLZIe1/xKPztnU+18/21svaRxk+YqG+2aGeksd8WqoawRAaEKzdKcuyaEeDtSA7KRdMUY3Lb4yF/TSoYf5aRyG9hyN/3DTkRGuHeo90AHWHpznVrwaGKxbTgQrc8qkkaW+8kj3a+s1mEd4/AMlrjkP91ce1fTkJohrpzOE78+m/e0NfK9enA588/sW0jgSAph2VmvTTc89ilfAjFncNsHJaEZuNwl9k3Yb30+Mk3S43AvAh9E06XkOJhgrUwxLqCpI7VTikaO7xDXoycU4jNTVifjXU1ulfa1aHlEGE7fPNrJRdjKZnjXSQj1CG67iaIGSnHA9munU+fV65EYluyxvPVKPPMaXOOM8wlTpUst9Q4hzqA98lpm6GboiY0Ge4HF/YmLOqsDVpXSpGoXK9G7VF6c9mNedbI3hWhoKM/NPHxpVFrJYmw4nxO8KSNZzHaViklbGMqnSkF8a1eKSUzH4THudFNuXxp8KkjKVNSwd2o+x6ZtFtjmuLEaTZS4DWqEESjmqKIwsgyLiUUUd2jyKr3YZbQwWwOfrKLcF6Nc3WqO7vB7spucf988cYP+8rTZiNK83a68dV8IaM+IuapgCQIMEi8RPq+h08zDX1sVBAGDZVIrHXDGHy03RwtX3lX59YGFlhG77eayzQ03ZAmZZqVl/Meif5DElhbjPllTrTmrE2ZpLG3HR8ofWuh411G+dUvWpyCICacny5cr/d8+PbIfr3wUB5w2chFeb6sPNwf2NZTtCspYTbuQUhP9xFP6UTwlllDc0gB3S0yUXui78a0OPOq7MFIRIiWRMjxzfKDB6pXJpiWFA9CyniH66VGmgGxsx/uhbt7ePfdzMMjbNdKWzu9NeZZmUTYqtD3xHoNW1xdnUoilwO1K5mwOV0q5JPzpcBd6fGaZgGNtLytht0sTTAdBa0pxlyGh9HDd6oSXGF3R5MM9DVoiJQTh2kYyJugSagWTsfWKzuKJ4+uylU4deNqcBKhDUPwue20V9VNWNrmUnj7kJlnwQv0RFQdemIpkC1a23BlrZWrC3epkASWKXOcNZIlmjNNIUaJnJ5h3etDCDDuVM06yeJ0SUPeXofNzvoYa5tz2YyNuINeuvLUO9+fN9aWYt/usRA0ZRQLgbyDesFSIL5uiTRNiO00NzQnIJFyhtaG28ToreE9RVIFvAJGo/hkPO+DO70dvTeRhHVSyhG3YpFFe75EemIXYbLGkhKr9NcQukvt4AkX49SETOI+dVpzqgn3RUkKW//X4dq/TKXU22Iwzk+Vuzu4+3CE1jmWhO2ddW10Kt++P/Lp5RxWoRa75vEw8fbNRJriN153e33NvYZ/M6bgTm0CPcYf87jDWHWmO6XMidNL3A9j0YdVrbbINLquDbZIS18myPfCt+8nvv1mDl9hqiRAW2btOyXFR7FVQJz54DSr1ItQK3gWpuNMuUT79Z4gubDunadzYsnhsM+zo9oomugbr04ViBNGPSrtBw2OWZTTJofkAUKFaDvuUFnjvY5TIhLtUgr9qDW47hbyNXeq9GG7CtrE3NkFxKP2vbXgVwXnUBJvlsybIxwn5ZAFGQokGffTlJwpKRuKzpkpR5zoXKKD5JCEyOcJJVS3yKONzpQ9umBEuSVQuhvaI59o6yOUa+0je1GpXTg357p19t1oCk8NzntsRt4G0W+GUUf7moTsjxCQi0TWZhJBdMHyjiRlzgu9bYEBeUddmJdDVPUNYcha9xFedzuGblI6eT1JXyvmzSnHiZKdy6Wi3nHpXMdUliUyhHrvzLkgKQwWniLDyM1ZDYo4Kp1KYlN4yELr0y9bnJEq1tnWlY8/feSwFB7f3bPcF94/FC5PK/LsnC4bWpTj3RQSqh5FOYc5cTxMpNkRLKrHc8zvZjfLjqA53p59Ha3ZEsCIVeg18k33zUg54ThFo9zWquASXR2P7wtv3i4ss/Dtr+HDm8L94cBla/z4qbNvPpLbA9lroyp+yol9jw6WUJRYIHXawRqKs/cImzIVnrZOuggkJ83GYwrtZm8Kc9ynbeTdejK83uRgcVJmBbXIyqVbbIAEnZJSmK/do1ohC2gp0Dt9ioY0q330oYbGc5kSrhHp0brBoLmE6P28nzPLQUE6qRSmHAtNVUhd6Op0Ubo4ew30+PGgw08rHCeNBPvhOHcZdqukoIwc3xxluwRqqxI6aMFZu3DdCRCOxLlWqjvXJmwNrnunuvKlNT6uPQpyh8snKvq+yv/8NfN1gCjGmCqcaSpgnV73cJb0OlIOolbj/jAz3xdqbXx5OY3/z7GxAP31tw8uM8zXPn5MnIjm4Uiijvtujc/Qc2G1qDzEhDQp2i0+Dx/9pInRKQo5GdcmzCmR9RcCQrfLfK+Vy8n46Yef2c87f/Of3vP+vXM/K+eXjS/Pz7yslamE79HF2fZrVKnbBAhpPJi9jzuadrpHMZD3kGGZxclacoABVivXU4uC2WnCtQ8FSJxQ5kJZ4NtvMn/39488PoRL5M2HmYdj5lCE5U44r0rfK5KMXjutBfDk1kiSaHunrdD2IK2TOltvWOsUorphNx+i7M6XNdw5KUX2T58k5JrNRqCzvqZT3ATVqvF3tEMSZ85R4JQ1NgZDmVIAU+6dkqPKYM5K3eJefJwUNKHV2NZKSkKaIrHgso/UN1FmBZIGBXRXeFwSh3kgkkTYVEmJkjP76I3pHfIs3B8KxwTNiazfsXHakOO5MDag4BhTCbRTbkkAQ796K2u67J3L3tmb0Ztz7rDuxnmPImQT4cUqn+vOqe6RlCej7WtwgM5NYDAmTQe4Zehm7h4eoAj12bgrkSy/9eiO9VEduF5PWJlZ1xolym5AgJWhyWWI9G8UzAjsQlFVTucnynSIREELqaeZA5nraBNzYLOOVkc9DCM6hPJpUDzNA5jUEVhwnH6xZWxE2Bu0vfFyOiMO8/KWN29mrq1xd594czxy/ukLl7WzXsd45p15MqzNtD2Kf8JJEgtonkbmaYuE7oYMJVJcmPMkTIdErfEwSPlaPecOda/cvZl4fK/89q9mjgcjK7x7mzkcE4cpcZyVTsbbmemgeBf2NdMt/HXCRLXgPs1i46g1hNXJO5MkJgT6zg5sDVSMtYahOr9Eu/KbB2U5hvnHLNIjehW0J7pE3yRdIl+mG1mC/4z+U7Dh4jeB4sacM2kWJDlK4zCQbgUOKHNLlCmkZZ4SixJ9mJK4tLgLLkWYZ2VZEqkIWWN68R4/J6ebe4N44LKQcuI+hzpLkRHKraQk0cQdJg+ad1qr5DJhRHaQpoS1mxCDsAK2GOlqJwqM3Gk7vGyN6z7umq3z3Dd2M/ouRH5smC46xBQ1BO1uo8NlYBv/H2lv0mtJcuT7/czcPSLOuUNm1sAqks1+/Z4mCJK+/1YbCdpoKUALQY0m2SSrcrp57xkiwt3NtDA/N6sXzcYrFUAUmUTeIU642/CfukCeJ+bjzOnzF7KDa8JGqFDgLHHYqXDZN5r5IOQbSLB8cspYC2wTbtTEG7sWXMI1viB4NYQc5BzfaT0qsNDH8iuxt1Aq4cP8bnB4b7HzbkLJwpTia/6qw+kEXS58aaHtG21a8MtO38Myc0rCw93M8pJ5uXR6TXTCIrNDuJqfGr1kypJIAtu2Y9fM4ZHXbMphORTEhASlBDHBXah1eBeNWLWpZPJj2F0+PjrHu8ayKD9+e8c8K+d1Y79sLOnAX3868/yy0vdYtCyH8Ny9ro1ma3wP/EalxJqHa/xQKswpYZ5wjFOPGPnDrFRT3l8NMNba+c5mpjluSevOMnxoPUHkAcT3mOccIluJtjUxKG8SQcKHpBxmpZtASbg20MRBI9xhb46rc7/chZjZIutUeid752mNanOYEvf3ynFxshklJY6iPOSYY00ctWDEaFFuRj9ZnWnK8XJqHOJpzrEYa2146kApJV64seQSCZaXJEAabRMuq/Ny7WwdrCvrvvFlF85bZ2+N1Z3PbXs1fO72lS+gpHCmG4bmN5fXWPbFBjwgjMTn93+FrZPmhdNJMG/orZ0c0yTjYlEVthZGZJGZ6a+XFHDbCsV/GV3PzVR6W6+REDdOjakw5Y42wclMEgSNLhEz+YqD54RkoVnwyLInZhfMogv7VYdTdTwpbtstoyj41ml7BP90i1v1uMxctutXh3SMbUuse6PvwY+VksY8lDkejlxOOxAk7TIV3BVvFZ1SkJNbEBpyCeqeJGE5wP27xjILmjvffnPg7ZvEw30h5848Q3fl+ePG+583fv648fNHo8yjbW6dVsNkOCdjD9JJuDskJ00xw2ChzcxJmD1hvVPpXEV5JChklx4BreJOKpV3Hu7iaLjl+VArBMspGCIzg4XiIDmsRs0CJ03LzFGFuYSEqqsgWvBmzEdh1kTajMnCtvMwC82F88WYPXHIyv3cuLsr3C2JZVaSCX2LBLD5oExZKe6v2SfBf4WpRELZhEUVzhrQiIcvTh8zoPWGCExFaTBaO/8FiSKE+XuHy2rUGqlwl2q8VOfT1qh7o1rjuTc2LN4tC45v3JK3f902wA4iaB8azGE8lkrCe0N7kCeaV7754becPn9ku64Dc4+l0s5IAMeH2qkPu5IggwRaExePjN8VgZRz7BR6RXVEOg6/q9ulPiVh7bD64HMLiLa4YAcfXPfoHOP7CLXD0+ac+6+cOcvEMKxS5qKkaeYwTXz5vPL4qNS1cTpHAvD9csfpapwvAbGYeHBVa6dpOKi1tTEVuL/L1H6mNSFLvBx2jI0kQ9zaxiFqu1MWgRJCbJKREuCd4yKINGpTtmvl/LyHePuyczp3zi+d04vx5SRobpTkr1HyuYC3UKBEUpnRaxC1oyVpqFjc6iJkh7k7e+p82De+nTMTwnULU+N8dmYahyWH44HE0kDJ+DAIIxltN6abb6pDUYkMEo1UaEYFyjk0qX0TrHYmnOWYmJaMJGE7t2gzVfj2PsdMlx2dhXnOEZXeQhnTN8UmBn4MunvE5HWHtVJ7JHRPChlFktNv4P3AGLc2XA/zTU7ltHHJdBEyAyZqoU09r53qIb5qIyr+dHW2rbH1yos1XtqOSgixxUN8756+5mgKw1nC4yWPzRCiEehcUlQzH6OEe+Hlywd6raNZjBnya0pajbaSkUw+5tL4H4GqioygXjxiSKwFf3e0d4PbAD5CLmvCNfJoK053heECv/stRyWsAJ1y3wAAIABJREFUUxmO8apQNWGubLb9usM5zYJVZZ6X2CzNmXePB9rqfPzpipiCR8JYykYu45frgDq9OhdzpIBbWD5IhmTG9XrlssaN/TAV9nam5Jm5ZFSiGektKlfvQZjHGykHZ7ZMynwIFUDdlU/nxtNT5XqBp+dGb5E6tu/CtQolOW1wHvC4gbP6iFs3wmMy/mMyNpEWkXqxCBnsj+GJdMqJt7NSd+H5At0T1hvveudxMRZNEcwzZp/Iu5QxR4VszbBXqZkmAbHx2kuo7auxbyFFkh6YaD4Kc05MUxDwMWe5H85zs5LmyIdpa1hTygzpaOwaogGrBMOpJLwFfpo0RoikAhhLViwJ160RPabhrQ3rTx3OiyFuP0wlZFY2dgEtKIlrg73CS+usVThvUIn9wtmMl9YQg7lkCvEMUlakC7lMtBbZrjcTLpPgzuY0BTXRnX29jqonmIaf3n69DngkYKRpKnHJ7sF6ipLn4TivgrRB8xuHVsZFkHMIppF4LrUaSROC0ojv+bgsnFbj1EOni1t480qEbcGtK495228/l8u4GOL9+lWH8y5P5KJMxwPffvfI93+YmS2zvqzUvXPZQnfXGqgLh+XI5dKpdSgISPTa0J6xHj/ISsb8Goe4Jq6t4d4oaWLdLtjdgVkzrTVaTTArZSqkHL1+Lp35IEzZ6N04X5TtunJdjf2ivDx39j3w0PUSxHlToClrbbQa1iiRqSIcj4rmMQtIAXfaHrRF15FcjeOakX1DxOj7ysmdxMJ9LmzW+LwFE6USkrjvD052oZohBHMla1ikbB5YrmoKVcQtIKdoyJIMvMXyyJNDG9ifBdRkopSSER1b8KwhnxKJNlOVqSipR2alEZrM3gKGCfAgKHGlKE0F9iASZBV8MIsOczCpcEGnQtYw0sZCjRLxB7FMMzP2Dc7XxrXDZsKld/bm7A4XC3+g5+58qWtQNlM83+RK1j4KmFBKXDDUwITEQ5ytqXB3t/Dy/BLeVsbwEBLoDUk6eNbhnhddbWSzhq1bjqQ14tlWoA3LG0xHLEdwj4omtu5AmGG//e4N2+XKdm2kFJGKJWeOU+PUIkE7qQa5xJ2keZgGBK0P70OAHpeDAd7GZfBrDufDYUEdvvnhjv/mf3lLovK3P37m7ttv+c0x8cf/5wOn0yAWpIU8K2W50HofW3DHvQwvmbiBr2u0FvOx0PuOo+y7kg5CqztcjOP9W6wLrXY0gU2J1namQ5DEnz4ryyTwbLh0DtPEtgkvXxrbFtU0MjyFbhEncW5BAGitoyZMUydP8wC6Yx7o9JG3SGBlUoblfmzXzAqtb+xtZa07W93Jb94FVtp3TnsQ890S4p23x6jEqQaIXlWxsckMs+NwwhdrqM70Gi1iN8dLbBVdQ653vXSaJPJizG8UU381O1OElDKicN13EiMzxFtAHj38c9s25i3RwUiKQ+wtbnzNsQ25aSEtzmGoQnrwn6d5WFR54NXXGkSGbTfO18p1cy7duVbhsjubCdcKV1Oe28bT9QuGsqgyaYoMEYXMYAGZcz6dQY2UZrpECy4o3neenjYi7l7CGrNbVO7bjkKIJYI4Kpm6R1pY1pj7zYM0EjhmXDDdO/ROzjlYRg5b3endx8Y6bHHi3ot4R4BP5z3GvTR2fj3afHfldAnXiaGhC4nhWFLZLxzob3Pxf/XhxCspLRwPQuqN//f/fuJ//b/+zPf3P/M//Xe/RUxYtw23RJWdT88n1u0W6DJuvR5Kdx3+OkrELLhvuIJXYzdGLMGBbjtfPq9gnblMpBwOfaTA+0QKdXdqHnOCRjTBtsO+B7VPvEf7sQnNg397OMDj2xwMHY0PU3MnabSdrWYuL8a+hbjWM6QmSE7ghlroV6cRbIOEUuPn0zPvliNlSqytDbumwBJTmphSYyrhJpE0to1JnClH+hgCqoWU+4iC6GHpUcdKvyfu7jLzEinQjrM1o2RFid8bLETPU2bOGWthpyJNQ/4FtB4qHLoOiVdDLIcsz4Ifq0LMWZ2RzBb8JtUcS6EurNeIX8waNL3aQBpcr2HMvVU47Y1TVbYmYQzd4KU679cIt3rUzFELuIYLRkp069TaUTKSS/hVmZHIWFZohtEpMg8E0l/zYVUEH6yyiMewYObUjpaIBWm1Ao6kxHVYhpr4yOcM0YQR7wXoYKkFzVREef/hzGGeUMnsvYFnhEZbLdhnxHsSqW1K9uD4ikT+S7ClBDyYXQPI5TWz87/2cFZJ3E1Cve48fVipe+G///53fHj6xP/2f/wLv/vhIR5evfLlfOJyiRbOb2CXhzZOdOQjjjakd0fyFO2iVNyjHXo8xFJhr9fh4J7ZtkgJmxJxg2ZF1GmVQVyAdnH6ruzrHsTjLsG9zcpxyRy/E959W/jmm8Lp80ZdDS2AQm1heTg4Z7QK29bQCktKrwddVZhKiRd9d7J3Os66Vz7aync6M6Ug/l93+GQxk303GWLBAzaLKIg0mCg5x/zR3dCWSEFRYpLYgoNSJuFYYF6CV+sj7UwgFhU3eVaD3XtQRS1YSIgjObyM2jaiDloPPWYWLE5hwAp4KE2aDwH18NohrD9U42fzAdq3ZlxbkN2lCtturNU47855F172Tmuxpf1UO5+3HerKXVKKhG2qm5GZEI0QqWqCSh/b2jTUKHtQIuPdx7y9StXgxukRBmA8Qo6CBDDN4SusneBfE2qQG/nHA1aPS34Q64sGiyj0yxIjWpcwR7PIXblhmBCG4n2QCqacqL0HPCfhEBgfU4xNUbBCDDH2jL++rQ02hnB67ux2Ack8HgvS3zLrC+veOEwTkjI5F0pqobkTXl0MXlOD3blNOyIdKFgDqzd1gfGhwffvJmZVLuvGtl2hG8djBtdBHg9Qt2gQsS+XTj1D3TqGsyyJx3eZ5c7DtqQ4h3sD2fnycUNdORyVZkFCthax8d4HrjqkSJPqUClEm3uLMjSNl8uDmU23TmsrH18qd4eZu2mh9o648nRxpDXeHeU1ph5CZhW4asTSaYrv8Qr0ByCBMrBQ9dvaPFrdNmrHyP1II3+0Ya94anLFGwiGtSFR0jDmDhQz2F+RbSKo9uG6HjS1q/XXhOk+ksHAxz0fVS3IKca1Ns575/nqvKydZwvLkq0ZH/fKaV9JfeeQlCJxAeegEYGHr9G6B3Ed0egEGfgihH2Ixztg3sazD3sRuFlXAlnRMjNPCbsEQ81LJ7mzr/ZKGdXbwbMhD3MDNURv2Sg6nk14REWkRLCCb5RT8KAyCpTlJtKOYiHigwLI69+J9jVc/ERD7YL//8hKue6XsPxDqE+VG6F7ngo/Ht4Nr5xIcpKDcF0/E/q7oY/TXziY+c1Otwdlr8ogOcSbKkniYXqmtrDB3804HpTjQ9zgvUJr0K5wbcb1Umk1XuD5mHh8W5gPcHwTTKK7u84yeRALXFmmRNYQIfez0Pd4A0pJbDVuQdWAo1Vg0tBGZlWKOt6DBZI0XAnFgxGzS4QHXdqOPQgPRXGUtcHP1blU4zei6JKYxkuUhq2GSixTqoQN6SS3aHsna4qK1u0VHA8tYA83ieGT60P2EhBBtEt73VGL9OjhgQUtgmxvsXhhiBXE7VbDd3YaX889fk8lrFbUZSgunNrDhLtW5+Wy87Ib5104bcbLbmyEi97TVnneryQzFpxkxGcMw+08aH7pBlWI4q6E6ZWPoKyIaTD/incm56sljN4ujdh2d29I3Xi4m2hduFwuLCl+53iMwcfuFhfNjVThrlEs1HEaksqr4wOjTZahKbv93O7BuS1lom6dtvcwo845ukSiMDlRokUl9L/0r9DQr2UIFRLX9YIelcNyQFwxdpIW5kNGdeJ6qfRdkJ64W5R1H8FCEj9c79FquQ4oRSL7khpkec1xWFiEb789IM34+HnF3Hl8PHI4Fo73zl6Fp0+V60Xoe8VMeXyceXjMHA9w9wbu3zaSNpblwDTH6t9dWaUiHaYpsKmw3QyGhuY8PIuChTRNib0GHyVYbQO4V0WyQU9sN0UH0Q4XEUoytt75dL7Qjnf8sESi2b7Dp1VYPzv9vpMOEhu74aLfREjmaHF2j0xL1ZsCp8VhARhREpH5IZgn0Ftka1wychslQjwJHsZil7XTh9cOKeh4yGBjeXhNTnPCJCphEeF+nhB3avUYMSQYQ73G11u3gEw+XZ3T6rzsxm5OlUQz+LxtPNeVYo0FZdaRrSOxEp1SiNNlXOSlTCRdqV1u/V50R8Md71a1uzt95JkQ52YcAEAN7WsoZbRyqT3SsS3Rex1LSgmFyw2mkT5+hljWqenwTI621H1ckANvfY2apwdvtgnry06ZMtM8DQFCf9WRImGBedPz4jK4Tja2w7/ycN7fHVnX08Bhncd3Tm8Te4uWytxZFjBRJhJrn8A6F3eSOZXKpDlYhxobQWk5Mg4HE6RbKMy3k/NePnN3KDw83LHvjSkr12fjQ5l5Pl05fbhySIXj/cT9m8TxQSkH5+7OOBzhOCs5TczHTsrhYYMYe5si0nytsYnblG3XiAhvznqOfA4pOaAfG2G2xCgjaswpSPppmWgunPY2rBUL5o1FMyXH+v3TywtJ7/nhcESLUGvl5er8uTX2mvjtsTNnJSco0pkTFMvU3clThxSsKHPBxHD1yIlUQZNjaw+sre2ReSoz3iObJEYRRy0OSduM9drIx4IlJ6tgGi+Le8dG+y7doqV3jZsfYe+da6/gnQmlXQK/fLl09s340jrvzxEAFU70mb0bf9lWni9nFoNDUo4aM/stxGjOMbv33lkDJKJocI/dBCmKEsu84JpFN4Dc0EvBuKHSYwyQHnO2RuDt87WGMFpB5QyeUKZXJ4zuY4QZGDbebrResg/XA2J2NInlIwRTDlosdiShBJe3GxyXjM6d/bRxS0oLekZoRH3MqcF8ioUevxbnXOZMljgoZo3aCx2njlmjVWealXoNk6PjdI/4xsv6zLpC0hK0LwsqSRKF1DGvARzb6ziPtEQ7J04Gx7vKw10M8J9fKu+fdpI33tzf8/A22tecYLnbWY5wWJzHR+G7HwpfPjWShjOCaiRLtTUsVHBnX6ONbCMqoFbwnqONFGN3Zdsrby2T1Zg1UyRa3pKVuQidgglcW1S31JVOxXvAHt4bf/vUOB0rv7m/42EupN5ZW+Xnl7CwPObGkoQlC8ciPEzG7ASskJw8aVSFPl7qbJAibTm8NhvbFEuxdV+5boHtlnQbv/rrC344TjBpAPDJx8LDyaVAD0zXWoJuJIx12yIefvCq3ZTTFhrRdeucq3HdjM8rnK8xH2rOnMz56bzyeX1hEeUoIdpWCUXSVJTWjUPObNYivqIL1kPCl3NBWiSq99SQauBKcgnbSTG862gXd0xkEFaC1TXOIs2CHzxpYl9XjvffkqfGtlWKzgBs2ynm2NF6KnDLsmxiSBtvpgrcdJ7Y6x7CxzVhFnTGRERFeo2Nt0gOtOLW2o6ZPf6+jj/49ze1/+HhbBU0T+Txw11OgWVhyrQUtq1x3cMy42axUaaJec5stSIWM2Z03YNEr4IwM1a5AdACkpTulWyKygRSqN3Y+wtg3B0Sd4/K4RHKsZOlc3wI/FHFWA4R9WZdKHPDG5xfejgHSiNPcdvDHDevBMGe/Sb98eFUEJBCIUKUsHBiKFP4rmaFxwXQjK0ETU6EqUrMQEPMW71zOr1A68jbOx6nzEEmpFZO10zNiWtR5h4znDvM5kxu3JNxCQpg0nBcUIfuldpC8RJx587L2alr8JxTimxMJQ6pipFLCcGzG1nAqyNDbLBu68gsBSyBOc0MamNvYaiVktKase9BKDitjZfNea5wMcVKInniadv4eb/ysq3MLtynxJtSWHLENxSF1jspF1SdVsNoa9wXJHHKlMgt+LuRYznohoMxpklpEm7ty+GeZnss88aCR3TgjATjaCqQy8TdMYdLvVZKibFIbY7t86hcN28gH+FdoySHDG6EDYUuV4a5mL9CeQAV4bLVESMfRcdiv8XXSZWxAOqvYpJ/v27+B4czIdQa2JBq4GNukQLm60738OZMGuqB3gWXzDyVWImPAf51KJAByqvi1LHxS6MXd1QS3eF6XrmeN6pHLsi7x0LJX+VYZXbujso0xQxQpgjB+fShcT2HDWVdjetpkKkl5GiJEvELe9yIzaC3QWi9tRhm9NqYNW58J/SlJQlzFhaFKQskp411/OYgvQW9q/dBZ3N2jPP1zE/q+OMD3yThmIMwfjGjVqEN+8q9NZYckEl1Y6nBY0UabRcOJQVBQUL/Gbijjw4g3oexTwyGWjeSEiQEVXYdW83meHOSWPx/Hhvg2nqQz3v47m5bbG9RYavBc35eO08brBZ0tyTK1Y0PlwsfrhfcOvcpcZcm3k6Zu5RDFJDicLXWuV/CHYINHCOlEsbYe2evNSxWRPCR52p0InMx/IBuhAMjeLFKATxgKcI+RTWq8TqWWqfLiiShdmHfVlqrYTb3FYgZc+7QpBJdSkoJay3ambG8ieXmqKAy2msJcfk2TMNU03Dnl/Fz2y/QCkOHoD4WXL+yrdWcyWMNXUWR0mltx5nYq1GtsbOjTchuUAKrm3NB00a/YW1DmiOjWnqOEByTcDxXHwO2RhLV9bpH3MDS2XvgZbnEQJ40lAoiFnPZAMfPL51WE/vW6efEVBLbXtmbBu4nGsbONRYCt3aDEXwjQ5kQvqY2JoWIGs8iFA8+76JGzoJn2MzZPdH2Fi2nC4cRJX9ljw2fK9t+5W9foM+ZH5eZOSdMherD1cCDJL155FqurTOnxDzDnGC/Ql2i1e0yRMQ9/Hi6ywDBx59p4JmGUIxQlQhYcr6sO4XYyNYaRP+kNiiEcUlcLit1D6FwN+G0V66103vhWuMiaipUh3Nr/OnlhZf1yqKFx7TwUDLLlLjLAs0pKZGH4/ySlcclcd4r01Ro+/DcUcU3CasaIw6MAwTU5CJhvN3jz90iUDm2zXGxWo2ZVPME45Bad5r0oH6O4lK3PmiZYRtabzKq0R5HTF+Isa3eDs5AFG6j563eyBBnmw1oKhwT/XUuDfxUJRzpb3NrQCy3Lda//8/fPZxbT6h20qQ0rxRgmgr7FsyJlBxqBAeRM0lTpD9LHg9jJE8TD9wsfhmrlcsOh8MC7PFsyohbaBtY3DzFHEtBUChzbAqvF/AkLJOGtUiLrde6hsHy+kXYgbtDpu2xrXx5cZbFEMucz8GzKZOiyZiyxk0aFHWgMC8CK6hGovGAkJEU+sZgexj3i7J2Yd/2se6PJcMkAmSSR0RtmKFf+Wl3rvvCbw53fPswMzHiB1C2auSu5B0yTkmxNHpzlzmWECkXnOphs5JvRNDxPmuP9fxtZkVi4bXXMUN1D1eNHkylANIDZnKLiIcvWyNdLITPhNveaRNW08AjRako12b8vK28P79wbZWHtPBNmribEndLjiS51gMeK5lChyTkSbiblKspvgWOWj26n1rr4JqmAdUOfFBlpKu32JjKzd7GX5dD6XjE25W6N+YJbO8DrQjrltoaqWWETkqMIKJ4eD6IGGGtMtrN8b399fSMGfJ2sl7PVbzT4tERCiksWq2OZiwsbNAb2WB8bY2OS/+O2/t/eDibNeh1eMRkFOWwOMe7kFpN+ch+7exu7N2YSmIuwnmNmHFPEfUaKoYwHfbuLG/e8jAJ6/klSADdsb3FQ7BEOsaaf19BNHNyo1wqTBl3ZT6GC3jfOybRFp2fZehHE7U1zp8qKQUUsO3C9Uuh9y3MwYC61XjUFjfzDc9692bm27cH9j9/Qe5BBjEh5wDQRcKzVrszTc6hwjYXeomk5RXhsl85euKQZ64YGWf1HXfl02njw3blH+o9v39zx0PJtL2zS2LdGAR8EInouMtWeTgIdwdnGq50SYK+l3sc/uAoxEIIYJqMJQV1L1wdoOYg8ls3rlZHKpdDrexr5/nifLpUjlpoLXF1oxFbWJcC0lnd+bJvvL+ufD6HK8Y3ZeExTdyXwpvjwpJifpRZ8NZJNKYSQoV5moazYLTlZj08fFxZZCbrFhYiAuSCDLtNhqWHYqRS0A7uUZncG+ITUEB2qKBppveG9xqVlyCgZ4klIWq4FTpBr5MYVEdHJsMnybgZffnt4r7xYIe8LNrb9HrsGGyjV6w2xVKPwT6K/cvA+weF0P99JOU/2tZC0gXNmTJHxkhKxg/fH8MKQjKXS+O6VqYp+vHtKlzWC0ka4gXTEEpjoXE7tc4394VyyHz48JlFC5L64LoKdW8UlmgH0srhMeFMfHmuTN8qh+HUbl04nQnVw9nZd2fdOtY82EIWkQh7NfLyiNoO5MAscxg7iQe9DQm4JCmctzPrh8o/SuB8iXC7n0toL0nhO3TIhWqNQ2msJZTv4jm2oPkubCC3yiEXVCrqid5g1Yatib9tZ76cd757vOPtnCk63PZCG0K3ztphM7g2mK5GKcZhzpRklNTJeWwUzF/jF1o3pkW4m8Kw6MbGaXu4mEff67ysK21tFFG2HsFL5sJTq1HpJaL1TGIe/Vgbny4rL61htsamWRce55lJM4dJmTMsKXSWvUXo8VwiRHYpBVT4tBHC7JSopNDwkqhc6QT/1D0FhZCE9rCgxJymhrRORMonIhi3sV++RB3VmW3bR4BxqEGEiJPHlUa8O0USlTbE3eFoEL6zgIShXKwwb1GGv3BKcB846XAa0pDLQbCLwjisfT11Ot6z4Bp9/Rp+IzL8ysP5/W/u2GtHJTHdTyCd46Qc3xZeXjqfPp54etp4ebliRTkcJlp13j9dsJ4GfiQDkIqBfsmFT399Au0cpGB+226F610Woe0VwclTocxKM6f0NDoF4XRqiGRaCzuPvim1dvat0rqxbU4iXPqmpbDcrzzcRbiNdRkODx461BQto3u4ym3nuPTcxr9fh35nKkqWmElMlKXAoSh1MuolYspTzux01KCl6AqypNhQJ2MWYcdYLTI0/vz5Cz/lzP088TjPvDksHIpRiLaymdKB0+bI7jxf9/jZNQ6dprj5syaWEr/XfoVr65FKbsNOcqg3WkB0tOrUapQ8xOtxQ2GESdgOXByerlee1o1TM+iVWYVjmiiiPEwTb44LE3C3wF0W5gxdOweN9n8pzjwF8aExqIiMpUmLKHgzZ+0tlkEe682kBW8r3fWWuIm40nssY+JADQhfM/GbBzzjo2llyMnCcVFHdVSaDAhE5bW9j7Hzxo4aqIIEjDJWE6Mq8gtmzxCCp2AA6W0YHV/nhjn7+FFe22T/enb/TuH8+4fz88eKWay203OlLMKzKH/964okpfXE3gufTyd+fv+ZxzePTIfE6bLHZlUStfXhE6txI7rjFhSuIL8F79BMqGtsxlQSklrkZK7C8S6RpWHAundky+MOEmoz2mbUPaplmYRvvilhGj1FtEEqleMhYJLenHoNcnSZQtngHtSu3qBZwtsVJ7M253EathOEcdmiShsSLMGZi/JmKWy7ha1H+ppunVVZhyC6qOJqWINpcrJbqDosIvM+n6MyHa4r3y4L94fEISeyxtbvBl93j42qa8ixeh9G3UmY8hS8ZXfcQ0QtDLkTMVsmTWSPhZHkRJrANWCTzeC0dU7dOO0bp7qHU7kbd3lm0sIhR+TDVJSlZLLCXUk8zsKSnZIcJPI3tXmYWE1pvJhxieSSRqxDzMjmxpwymcZO4A+t19j+e2SfMsy3BoIRUq8+iAbEZ8FwUJ8PB+hCW3dav4ImZHCm/YbgJR3vpAwahA9tqI5ljQ8QYSAODKcEABNEjAjBSXGIg0c43ntGC+xDLSNjyBxsIQKf9rEw+lWHM3iz4fFSdwPJPLw9opMxzZEg9fT5yp/+8jNv3jzyD//4Ayrw1w18MtZ143CnrGsDD42hWyhRGGEyooH7BAk4No+Sw+OW3lm/dFrveMv0kljuoTRYzThdVmqrHPPMPCeWu8Tdg3J8DDVJSs5ydEoqLIuxbcbpeeScIGxXgnmzCyoR4Fq3hkoJLHS44y1TRkXHgUu08UxyajFTJeF+yVxqWExqymEfqcO7tMfBymTyVNhbI7lRtYfOUnxgunVoInfSWZlSZkkTSy7ksfzJaWRdBgH3lTidHKyGXtPccBeKBtOpGhGFJ/HCxbInMOC6GxvO81a57jHz9ZSQaiSEQ0pMOjGnxOTCsUwcphwzeBEe5sxjUZYUfqwlB8TSW4+sG4lnCAK/dIYfPkDWerTbA1fEAOv4HtabKnkIBAJHvtUa8z5wyGHS5U6ZJrr3SGRfElqEUgk/ZGlxoMbyplsk4amkEcR0wyADOQC4keudr0uoKNFjkURDLNCAG2oYP5u/LkHldrA9YEjGPgECSvp7//zdw/lyPVMdSslkU67nxnU7c//mGJKh65VPnz5wOW+8+80b6h5tzB/+8R1394WnT5/ZLsbbb+94Pl14/7czz89nIIDp207avKFpHjNbJy+Z/WJ4CtyonUCkcV4bl2vi/U8bD4/CcUo8zDMPb2aO98LDO0HyxjSHpywm3N8p82KcvwiXF7h5yp7P0Hq46rmFXUlwP+GwLJQ1KlbJkWqdcrw8JuNre9gazjn8WZcWicurxXYXDaPmwzxTDdZWkRbRcPMyMXWLZGkJnmwtlS1ndut477TWuLTKcz+TiWVOvI0xmyqhzMkDS8xaKCrDFjKWLSDMWuLAqWIaXOfedrba2cMPNBz6IeiEGabeyCkzpcKsiSIhSrhLmWUqaBpGzbNyP8MkQQtcSmLKofZIGjK/rLFhNQs8tVlU+qKwj+1lLGacJBnkdjBirLh9Jv22uGPUSbOgVhLUOBGl2Y53ZT9dSYsyTROaCvu2j4lvQC/OgPdCgibcIJLBBhKGy0NYiQTPYLSwEPCgKGIFE0UlRP83mdkwdwpGxOvfIWbk2Abxb/iHv+Zwar/irfKyOZMeKGlmPwl1X9nazum0cz494x3W88bj8ZEf/2Hm7ZsI8rm/f8Mf//mZ3/5h5gcKb9/NvP/pjg8fL1wuZ7ChY38EAAAgAElEQVQUXrQyhU0EFZHEdqqYxMIj54SkStHM+exBpZNgxCyHhcPbxOHOuXvjPHyjpLQw6R7sDCu0zThfldOL4XuiLFCrDYW8Bmapw+e0K7ZV2qXCoHmZhXeNKKx9Z9HMlOIh96QULWx7DwMnIEuoabY6qlURsgm5dkRj44hm7suIom9hCtVJbNbZLNGGdGnFqINh0jvjJU5YNZrBuTfcdyQZrkGo77ZDz0HkV0NSGWZWDVRePZSSA11I2ZkH+6nkxERilhJwyJjp5pJZwnIh2mdNTBMc50RJwQws6mQM9dFh5InFifRnhdU6dHvFnYvqeDcjwBZpoUXtQ8mkjBe94ZJecWkf+Zx6cyfga2gRm2LJkd7QvXDdrtSxmMrqry4XcaBnetsCqrnxqL0HHKKG9k4uGSsT13UlMy6ZHqhCyMAc8UgZC/qgvVZYt69+tgPe/4pzjgMOGeTfP4J/93AeloK2RKmV7leabRjKdlGq71wuO60FvrO+vHC5W0g4+8n49LRzvXaOh4VPPzVMnGme+If/tPDb3x/4y78k1lW4XFf2jaG1u+nlgk9preIy0fZGxzgcQomyrhsuRk7CVODw2Hl4TMwpbBz3JqgvUX2ujdMKl09DXTF5JGl1GzPqFK2Lha7wZuh1mAtzTnSExrC3RBHJdNsDX0sZ1Wh5FiustQbU0SN3JN/EtwP3LEk4SgkvI3cOpTAni8rWIo17YSRFW+dOlG6N1ju7ONVD0lSxX9iWZqBhLRZqYhnriZxsdA+xHilpGjxQDapcDgpgtiCdL6VQJFNKIg+n8pwzc9HRUg84IYGIcTcpSyYSthwyXz2BPBvJQiKmKXSRSUJKdjscA8wMNpPYcEhPo0oNVc6YmRkzf1S+jg8hdjB64l11i3lTPZQv3Ty4wh7YtFm0l7gMCmkbl1RAZZ5iGSXD68c0UYc5dfjP2lDmBKOte4uaOPi9NpZFCK+sNxHFJfNalF/b8vi3i+PtVwYZPT4ULpeO5URtlT5YI+W4sNfMy6c2PnxwbWzXxqePnSk3/vrXMx/eX5iPE2XK1F2YZ+H3/3jPd9/PLMs3tJrZ6s7f/vTC58/rmE0TfnvwprStoRRkqUyzsCwTD/eJve5klPXkXIvSL1BXXjNRppKou7BtMV+23SnZEQ2aGRKXj+1GOUjEyA2Sd2Z8jre12mhT4oOBnPLAwKIlzqqIxowrzemjo9GUyB4VM0nMRwo8lDJiEEBIzIQAu1lE43mD5kI1wXLMrxWovVOtsaY9QoBzBBCZRQaUCsNkKgzWsgZXdNbYD4jMiMMEgV0TC6ecE1MqlJt+dJiRlRSuCy6OmQ7UppE00tesNbLG3qBIaFVziap4ywcRCb5u7SPA1/xVJiXidI9FXnLI2aDdKuogexALF3t1tY1q5O6kPLJv3CGCHF7tcHqtrxvY3m7rxzG39rGIVMUJphoWtiSMrS4elp7eBzSDEVKCmNsjDqRxGOZz6xpjzSD/BdNskBVEhs/WjZOLvK5r7e9w3/9+PqdBzs5u4Wv6+LjQe6Za59OXjdoCMDcJjuhhSXz6tHG97GxrCIKvX74M7Ed5eLzjz//6zOfPE2/fHXnzTnhbJrK/YT7MvP/pEy8vOzlFdoggSG6oZPLsoJ3LeolMS0+c1hW/Fj5/7kw583j/lrZ10pSRHEbTD487OYWXat2M62nnem3YazaLkKYcUAPByUyWQiWvvNpQuAwqXA8jLPH4+91tVFZjKuHJk81fMcecU1QWDXF1bkIBlkPGiECijof636NdVYdmQdZuzeiDx2s50T2x9wgBahYuBiZjFlZlyYVb0I+SyBptqJSAino3sgcNMkuilMwUgSjhkSRQBHIOsvduHdewrNxqGGjNA65o5pEBOhQncxFSFro7kkJE3Xobs52wG7jHhSIW/3+UG+M+Fw7a+WyBedOHwFkTpkOc4EMkMiCQ3kec3yC43gTk3mM7c+PthB9Q9Bl9zJ23IKPIYYnDYox9ArxSL1VGVGV2UpdROILiM6XCuzdvaa1yve6xKPII3Q0Drz66LR182ijzXyfRqMa/6nC+/2gs0y2rsGCWqdb4059/4uM5YFq7rbeBeZk4LDM//PYRJMr+x/cX/vqnL2xb43KurPvG+Wnn0/uVN+8K9/PEVDLffXdgX48s84TjfP6y4h4UwTTkUt0yT08VHKZitLbx8Djz7ZsH3nx7x29+fMvThwtt23nzEKlnzaHXhkhnO9V4gB3Oa6VfNtZ9onaLVC23kccS8epZh4O7hAOAY6RcfrFxi/Dd6x7zkthYOhCzquY8NnjxIUyjukh3kvYxf8YiSnKim6Ajwj0bFDMsx8KoWczZ7o75hHnQ84xIwxaPyIVMVM6S87CUlCBPjHXvLf1rUkgpMS+FqYQOMpr32DC7MSxbYgSoTegezyTc5wIiyxot/FKEKckrfqjDSuQGQ3Qz9ls6l4QUzFrgwUWULgwn9vCXdR9UT9/HEYv21hEY9iJOfF63QuQCbv0VZovYwLBTga8RG4JiHsL1WJzqoNjF32mjI0o6PJ4kRCBx4J2Quyfu7ybIxuWyc0sNvLmvJE3Mh/Kq6Lkx9W6HXV778V95OKe7I3lS3MLcau07T88XPn8JuAEdWycHTfFTvf32wB/+2xQubp75zW8Wlpy5rjt//PNH9kv41bCeeNkS98cHHpbCYYkH8Y//8I7LeUPE+fy0UlfDso7lygikrY267rx7c88//efv+fF373CHUhrfvik8fbqwrs6+VT4/nblW5+XzyrpeYguZD9wf4oM7n8+s+zNzyRymicf5Du0S0fHjQStKorCo0a2iTAykkCTKIUfOB6a01uLF7rHEiC4pUQSKO3MWfHfq0CiqxVbTETYN/aUKkSvahX3v0IM03pujMoPYaLUC6go6WbSb8YErc45rontUunCai/3ADXvMBM7Y802fEWFPalDFaKJsPcyow6DAKTkw5iULSWGaMveTMqfYqooqzT022A7dozvYh5t/bEeCdeXiaHLUM97rWMzJcCb4RVXrMlpb/cX8Fi1uKoVWK9J9YIujRPqofuPd9+6UaQ5CvBtpmsiirJedpEaSTPfO2ncmG25XOeZiUxtVM3jZ5rE8y1nD2HrfRyUUyjQxlZm3hwUtwtP5OUzCRtWM2VReZ9W/98/fPZz/5X/4lsPbzOm5sp8r73++cDrthIV75yZ5cZxluqO1Tsqdt28LSwqt4yE564+F5srvf/89//zPKx8/v3A9Z6Qrp37i5dm4PzxwPB64VKPMmW/ePpKz8NP7E9saDn6zV7CYke4fDvzT77/jh+/uyRjXlzPzvfPp/c6nj9doRUj86afPvKwrSwkA/aEcefPmbYDlbNwtmZ8+f+FycVicBw1YIKhVt+YjIuEjVEVuLhpDnqQcSmZdd/bkzIeC5CAWhNFTyJuSRGDupJl0gEu1G+QGA5Khd9Jy61QUzY7rAdv2AV9EG6hJOOSYX5MwDKj09TJZkjOnyIzZWxz+TRLrHlVlnlIoWlpYLasFH1Rk5INqSATb3mgNjGiDk2YisxTmpMwlcz8njnlwUm/7V/F4VH6r9AymVRD3p5TAYtMrrY8Wsw6y+ah7qmiJxO/exiLF43lifbzkYRczaAPgIScLlk9Q5twd1Uy+v0ME+mWlb7DcF1JyLmuDG5fWwmSt3DbBvb8aTd+yU/CIsBfi4nQCC80KLkopiTcPUxDpaWEng/7buVNia+63yvZrDufDOyXfZV5eNp5fKu8/PHM+X8G/5iXGkqCTinO5XvnyOfH0t4ZKY55mpnzA287Tx53Hd5nf/W7h+JDZ18pf/vxM8pmtb5zXlTwVnl527g+ZJMJxOvL9O1grvJw2rIXXzPE+87sfHpnnxNP7M2lyvBpfvjj/+pdnTqc6bAzjRfjDN7+haMALd4cDj28mRBreFJWMUqisaMl0i01xTunWTA35VGS6lCk2tLfcjD7i13NJzOKwh3Rprk6rsXkNJszIuJbYbh6mTNfwM2qtxeImKZNGPmg1ZWuxXEu5xDMWfW2Ds+ogU4SH7KKxYXU3sihJYBZ4KxlNsJqztQDcYaSaDbsQccayJlrqDmy1srWB53lsXufRyi4jvm5KULyHa7v8W7ZNvF2KbT3m3qxcNTjEAuwWbaWqosO1wcb3c4moerGg3iGxqTV36GH8JWO0qHvEFd6Yot5vh1W5JVVHSnql1g0sxpbTy0tUzJRwi4tl1F2aOF2D7n7L2PRR8V1GFbfG5dqZlmUEGcececwL3x0fMZyPL08RiTEOfzj6hbeia1xlv5pbq0XZTp1+FerFWNdwu3MGsRjAYnt5vWyoJGpdeP+3naePV775zvin/7xQ5kSeJ07PgQ39+JuJu3vhMGUue+fLk3A6bTx/+UJ1OE6Zu4NySHOkPds+BvUgTzshfXp6uoY95r6BOV9OjcvaYv2fhwohx2C+9TpcxWP8WveN62Xl5cvK+bLGC5/CzCtvPji/JVg2wlAROL1HNgy3qif+uhzPKT5YzJhHZbtskVpm6pTBzU3j5VLpWIoqYV3IJW7YkoSpBMbbLZEslBJxG3ukVokyTYEpuhnq4UWUh+1iLCLCSMuBgiFF2MfvUqb0SmnpCL7HiGIeHQHcFGk9aItJWNSYExyTsmhiyUK+Vc0WSzN0uEx4QFOCkMVQ6+EkMSvnLdrk1w60dw4lcTfP7Htj0YAsfMAroWy6DXWM+IqxVWU4E0jkuoR8K954VRn0U8Na+3r8BDIRvYHFPBmf4YghjJ55eAfDzf8kuuUhuJahL7XEVMLlAU88HGeOU3iH9B4mAK47D48Hkh7pDq3vrFtFrdJ+LZSStHD/7sCnnzdeTlfWffAUb5HdN4BegD7RrPOXD58ReeDL04k//+ULf/zjR5opZhPLUvDaOV+Eb76feffNwjcC3393x8cPVz58OJG6U2vnc618YYsIhV7ZayJpC9v7Cv+6xQau7ZGSZd2YcuFYEtPiPBwXxDqnbcMtLFNady5pZfvpyunlzGWrtK4h5k4W7UbvZE90d6o3RBOlRExc7TEFtR6bzZzj8WWJgCK8k6eEVB+K+sZUJryONnWQtROhgOnEKr1IpkoQ0NMIqzUJC4/mFvmP+ot5RYNTG3xfxuxbIvA3xWWhSpAM/OvSDrNoKbVHFUhRMW9sNSRevOASe8Q9WlxmM41ZnWMO9UnJ/roQ0pE7iShoCoGVOnXvQ8ER7faskRdlMpK8Xs9RtM06QqXEolq7GZYmFEPG7+s3Cp4Pto/Fs76xhYybXjuollgdLS5DtuW80nNuLarHkkyUXySWxch2A1KdwKvdBfGM45RbYl5ryNaZy8zDMnPdG0/bhW3fadZ4fDjwX/7xR86XjmjieF8QNf7lX37iy9Pl1x3OrXbcN16e43Due5RoI27fPM2kVGjbDhrsnro1fn7/QvLCujf+9Ocr+16pxEbubsrcLQe25vz4Q0Yl8e7tzNu3me++T/ztJ+Pl85Xn05W9MTxWY/NoY/Zo7qzbNrA7ONxnRDq/ffdIEeHn04U5z7GmThPbXtGknK87Xy4r1rYIf5XCup9foZ66dZrviMzMGuwhG5dFEmFvN4tDHXhn+Kx6czTHn82TU2u0L3dWYl4TDz9TiQVOF0gZZs2EGkexrPQc7ZdHl0QXmFzRSQZX18dLVGi9URIkjwbuNWTWI4wo6SBkD6PoUhI61Ct0Zes9/FuDoho2ohagfB+SpkT49RaJFyWwyEwpcEgS+taxbSzDq2g0krQeboWqcaFFilhI+CQLdEVa4IEy4hi2Vske9Ec3XqtgCKJt4Cix2FK4+XFhDlOZMXHatqJeYucwQnTDbeWX8EoaaQgt2mVCQhjzaRkugBDbBid5uBv4IMYzZuk8H3GzgLDuH1ALq5JK48vpyrY32tb4T3/4Df/z//iG//3//Mx6OfHNj9+Qc+Lu4cjd8c2vO5w//njPy9OFjx+/cL6eSCzh6dn6mFeEuu30WlkWofx/nL1Lj2RJlt/3O/a497p7hEdkZGZVV3dX90zPUJwhwSE5XFAraSEB+gDa6lvpGwgQtNBKG0LQRhCghSAtKGJEEiBnuqdquqqr8hUZEf6495rZOVoc88heSE0pC0igkMgIj3C/Znbs/xy8V3KTd+SwJY8L8/FMsJXUVj91FuPj+cCbxwcsvmS3G3g6rdxcZV6+cOnd49UNHz5kfvjxoxcPxR4aYj4Cmicx84yAoFztRoYhY2vlJ3c3WDPOy8LxvPB4nGltxHRlivByf8c4DhgQX73kxx/e0rQnMJQGo+tEx+yj45gSOSeaLKxFyUlAzFPje3krzyebMg3+oC+rN4ilZEiVZ4WNm9iFIQZiiMRuLYs5EpNPJaVTM6rNax5SoknrxHggSnJ1Dp4LnLq1DYNqcCn+JbojJnQ6w0di8U6Vyx2x+sZhYi4CR5/jQMYgbJKPc0GMQTw9b0ypiwhcnvfcsCW+qARc5oijtaUqTZ0W8qnCAbcYhVwTa62dEuKTyDxAlNJ5wUsCu/Ovz+Q+fgcsi4+Hkd5DaUYKE4YxZmVeDW1GFBeStOiVfq11WkUuVwGBblJz0YljCp7B73ytd4Y2llIIKNvtNTdXe5b5zKkW2qVOsTuUxiHwyz+649//ZuG771b+7jf3/PbdW15cbfn5F1983uL8/m8/8HffvOft23vm1TNxYhyZ4kjRlVpWxFyCVUqgPa7sdplxuyNL5no/Er+49o7M08zpdKIU5bye2HPFd98+EkfvJAkx8cXLK17ejWyngN5eUYvycDhS5j7O0T84rah44HOxxqowRS/bGTcDavD24yOneeU8O7KXZOH1iz3T4KkOeRyYpsEbvK4n5sXIQ+6WHs/pETG2Y2AaL7lFGVMXH6yl34HsEvrUwfQLTyqeP2skNPjxVGpDYmRMl2uB83m1ec+G4hrR2H2tjYi1rsbBMEm0oO6oCG7ZkmejtEvXOkqPidcz5uCi8NIUjYEh9Qr5ppTqiyNcTsoovSHOR84hwxA8dkXETdSbQfCUnkoFJMVPjg5xofuiXfAYPW6mlcaqjUK3CqrSmvXqwB5NKc5rxuAhW9pPSAueHyTw3EDdKWaeOy/lQuzLc5eq85N+iW6SiDlhoaFqjDmhdfbXTaFr7T036NLJKin4AYC/oHUhgSPAq4NMurIZrxnTxq9bITHPXoZbYjd7C3z7uzP364a//EevuBqNN++PHJ8m7q42vL7+TJ7zX/4f3/D2bW8OazAMnopQjiutdrI5Xqxg3uGYxw1KIG4jm6vA9joREJZD4OnBFS+nsiGQqMuGp9OBea4s5cT5DN+/PbAdBJHM2hoxRXRwEreWgNbKZjfy5e01789veDns2E8DpuJj63HmMK8cn2YPDgvCtIn85OW2j8YNkcQ0eGfH/cOBqm7dauaLQzs5PSU/faI0H8skE7qQWdRrChQjJ3+d1S4dk4GYYUPgcbUuGPfaCNFGIPcPzuvj0OaRnBFGHMU0wXmS5Gbjde02q+jcZI7i9EzKXWmj5Jz6Fa4x5NA7UHyaoUHFOUwreIKi9dFRBWuVKG4zW4MyhU+bTjVjGjw5cJsjKXb3hfDM1Wnwe6OaS/0u8rXVjBK8wkNXzyGqQG3VwRqlLxohS0atEOUSwObTkeFxmH33878zcKEvfYICk0YIGRqoqIvuxbOBgrhSS+lh0ObKL3Kfi7uxXvqhfaEjPLYkIFq9uk8vNkcwza4Ljn5XneeFp+OZlAaWVtDSyFPgfD7zN3/7nn/+j+/4yasNf/Vv32La2E6Rucfl/P9enD/8+EArSqtd+UCkrD5mpDz4iIu5PApvHzZRmlbWKrx73xgPwusvJr766YZXd8LxYITJOD0p794q+7svUWt8vP/Imx+eOM/KKRiQMHVQ3EMkPBYxJmMYhasJJG8Y88g8G8d54fB0crI7GEPM7DcjISubzUAy4TyvbKcdQw5oMw6nA+f1wPF0JorircMQJPdeC8ceUnIUd+6aTN+tjab9Lgl0ZMaldOqLVJKRFaQFhMo2Rhe2V30uvh2io7TWyfoQ3LBsAVoI3d/o4gWC27GCuvrG22vUDcz9dBMzN3yLL8xmhlXrjie/z4kaQVw547Ed3eNqeB1cvz+rGbX6ZLSLwnYQUrRniVsQB5Vc3HAhIugjovOopTnPKFFZ6kJTj5ZRcwBI+GR4d8DmEqYlwEVUUTt1gndy1sanNdQ3kc4a0MPJDNgMA00r86mC6HPKwrKuLsqXyLQV5iftxVv+vUR+r2BIeGYKqha/I4fwPDHNpTFkb0KrbQVTjsdzxyDczlbOhf/5X/wVv/r6P+U//ie/QocrajPe//jgKO/nLM7lVGhEJ4QlegxIrWz3LjhopZJjpuFcVFsr61KY5cz94wePjBTh8eM19etrXt1lpl3m6mZgGk+kOFEM0ph4dfea+aCsrXJ8OvHcYyECrT6joZtNIg2VeZ0pLfG7D4+EllmXhSElXu4npjGSkzHG5MZbhNZWdpuB43Li4WRIcCtQOc+kPJFzQ1RJsY+mAkOKRHrQdIzkoLCYVwymSM5Ql9Wxv6o0lJAiechYUNpSSSm4G7479gOJlKFZIydPFIgYpTZCj7pMXQQoPRXOvYs+rg3JmMRrH3L2pHqt7Zkvs85L1tZPbPHbkkjovjN33XjsjYsCsgSKiAdKmyI43+n5tzANgdspEZORunFa+71QJBBzeAaemvnfYb1AqVNHtTpUNJeOenegxrGsAFRydH7W+knoCLefdpeFYlp9SV7QXnGwy9RPyIq4qECMeS5dtWSIqauk/J3twdDK8eCG6SEnp8pq6Qu+p0aaorWRR49tpUIxWNrK1hKtDpgqxVy0gCohZ9cGa/NNlsCyHvlf/7d/y9V24nY/8as/+ZLXL+787vA5ixONxAASI6zuMB+vtm5BW338KuVE0Mu2Bst5oawzpg7z1wq/++ED3727xxRev9zz6naDWePF3Zbd9cCLfUTXyi//5AvKuvLj9weejgvLslDr2t3wPuqsa0EtcdADWhwoIK1c7yde7Cf2V6O7NGolmfTQrjNmgfunIx8PZ7f+IARNBPMOTBe4uyj78qlbVMwunSXO0TrrFqnmU8IwZEpZHdoPbihOATQKGiIZoFe0r6WQWmW/zR5wvBZf+EMkZj8RArE7izrtkmCQQDWoAV/gAcYkDKa0IJTLnbGbqZ3mjs7TBD/FtKmPhj4vE0ypZpTmapimjkpjoRvhfdGPKbEZ3ScZpXet4qdnDBBCIPaSntaFAmpu6JYQSeJ67CEEkkCzFcPBrAiULrG7mkZuQ0Ie5z6ZBIgdNe0nntMrl5FS6NjQ82mXYvTUDJrfNdVdOdrsE1obgre2+b5AKA4ztctB4DucYykxkofEvMysWtlOifNhYZM3vHix5fBx4bAsiC2MKaAasRifbWCOrvvGNObMv/mrv+X9h5n/4j//R/zDP/uK9PcmQvzMxXmJX8hDwrKQskddlLn6DK8dgu6Rl4P4mxiCt3YNU0JKZT01rsNAJfD05olvfvuBzahMY+Lu7pZf/nzLyxcDL79IfPX6ih++GHjzvrIsjYePR37727fkMKEIrfoOZlpZzbiajF/99AW764kYE7VUavNQZDPlw9OJt08H6ppp2kghc7PZs92OgNDKTB4D53lB6HeOWlhK5rTANpvzW/iJKgmaziyLayvj88PfICTUnILKITEmR3TbLEgMbNOAHhbWJbgTxpykDtb66Oz8mT/0UMUteUEyOXTvI4HSHBy5nIhZhJD8a1IIrKvfg1yD6gvKE9JdCKBasdLQ2tDioFQM4vpdE1b175FFeLH7xKWGTsRL9OQIS4FS9ZmrvBAVtSq0iMTASqV0SuJCJwXRC+nYKRsX9WtXnl3um64x6FYCUyc9RPG2NAV1KqtaQ2guL5ROB+Egnve5+nPpDWvR9dHigeTWqxFac69rCEIWes+sMU4DVVfKslJypGrkJ6+u+PO/+Ip/8d//n1y92iLNo2xm84xcN1r3aSn4aV2rkRj58W9/5L/97+75i3/yK17f3RBz4L/6Lz9jccZpJG1Hj81YC3peL+KLPpLo831cOqIl5nB8SsZ6PmMI+/3ANGTvBNGBPRtCgHk58+a7d/zwZuBqu+HqOmH6glevvVp8PmWSKPdvB+bqxldXbxTu9pmffblntxvIJJZmrLOXGJ3nlfNcOM+Np+NCa5kYAjebLTc3O17ebYkSUW2cDpHD+cC6LNy9vmGXAuHcKNV7YaYMuTsupjERM9jqjWnt0hQQvZQpiPyeDlOdVsJ3+9r8nnm12Xh5UC3klIgSn08EjcqQYvdIfjqJltqIWXoolRfgSuujnan/veD1CUAa8vP0EHMkxUw0X8ytNMLqPHWUSycqHsBsUEqjrMomB262I2NwIf44OL3gd9kI0SeKpr5prdVY1LwcwYTtJoNE2rmgxaM5a22UFlgbIL4J5SQ8FU+9CKJUqx7LYv31uhrqImbvxXz+Pgw4n6muznEaSLrgvQsN+iZgmEv/uuFZWQkhdYGEj/4XxNmCCyCqwsPjk2uj8WtbGBJv3j2y/KuVV1/veXw4QBqo50YWYz9mDmvzU7TTLy7a6Y4diazHwv/yP/4rF1DcZP6b//ozFud4s2U5zz4G9GhFLveX/tJyuRPhGltpME3+IAeuiD2JbZDEJhpN1DNMMc6DMG4Tx3PjeDzx9KHy7vszP/vFhq9/ecvuZWQ+CTf7CT0sveNEef1yz8++3PPiKjOXxtOxMC+Fx+OZnIWPD2eOJ+nDXWLYRvY313zxxRW3NyM3+0TuRPdv/rrw8ORJDYiyLJW1BkZzJHFeGvMAN1eZGKxL3waWpbG0SivGEBIpX9La6Gij71oShWkbKSvo2oh4Zms191Z22wuxGSqBhGLpshCdd5s2gTgIRHnO0Wmus/O7Vre66YXRMRcINPX6eOz3WkEs4HffrqQJPU3Vei9lU65iYLdNbLL6WIz/RwkAACAASURBVJ0dcFqrI5qGUKojotrDkQke5GbBGK8yKQlldtpnWRpL8XTCog6oRfw0d8uXp/gFoU8vziNHjIqDW584k8Alwyek7K6cFvtz+elZfMaTmoFERN1n6S749HzI2LPPsgNa1q15BEJINOthbtn7RGMILE8r7XrLtIu8fVdIRJoEiDANmZ0Ezov6knE1heMSBkEd+X/56sZlhX8g9f0PN1t/fEBiZLe94lgf/EJtPsOLXD5s6w+G9k4SQciEkNkOG26urgni/SMxC2nICHBezlyNETucOMuRL/dXnM8L53Phm28W1OCf/rMvePUq8+NvB8YR1rKwmUZur66oRXjzYebD4QgG59PC4bR67V+Dq6sNd7c7csrkzYaf/uKWIYOYMp9mbr8YWI6eB6OtYivoYenm19QdEp1Ak0vZUZd7BcFKpcwe39moDFMvPuqWJCsGFtysjHTDtYvFS+m5qNHd9q01cgoEk04ZOX1RxRjHQByMPCRat5ZJdb7NH0DxIOqeWhAkUItHcIQmVAFwKqxVexbaeOqDI+FB6B5OZTtlrkYP6lIaMScHo1R64oOPmaa+8YiIt1RXZRdguBrIA8xnpa6eZriWymmtLNUrKy69lK1TcCn0kGhtHvKF9J/P5XKY9FHXF2jop2NZyoXg5BJhKV0F9CnW0lGClAJxdAP+YV5RzazHhWAu2te+jsETL1xo77hKDhcXqG+I4yZzc7vl8emJS6uZYozZpx6tcHM1cZrPnGaPzwwheg0lgArLUpFI34Q/Y3HWtRCHzlldiN5eCR66vrA/wgTp1eAS2GyuaSzstiNRKo+nhe1mIF0FDoczrTTymBiHDZviDWB5HPnJl9c83D/w8Wnl++8eiYPx0+sJDYVlrdDcGXKeV+YzHNaVw/mImJDiBCxEybx8vefv/9lX/OzrK3784cTHh8LHj0dPOv945OHjE7+72/Dz1y8oWjmVwkhiBwwYZq0DKh4raYgnEeDC75CEaYjMp+DQXb5kyfrC1aaMfnS6YN5az9gJjAQCXrFnuANjLdbr5A0ZDE2RHN0kXZeCMbJog55OX5fqIEdwbjT0ILQogaUW6BJDNR91A8LQhJMpwawnOhi1CmtZMXOudpMjU3bJZEMJ4vXpKl4pYdGrB6xnwDYTD9FeCqbGfp9JQ+BhLhyOlbB2HrXb2bxtKxHx06/hR+ggyU+RLvww9d+thi7ulYsw3Udma61XfXSQyC58q+tttY+0QTz9QXJk2I5INGZ1JVY9rYgIWWK/3wdqaV1wbyit04eGWUJDRKShtaIi/PrffU8YPOrGrFEFJPh9Vi1AUoYh+XXFhNIaU3S31dIcXbdqhDF+3uIUiVCVx4cnrKv6g14iAv04Dl3PCa6C2e2vICm7YcPNzZbvf3zPh/dPNPHTdl0rT3PhH/zip+xeC1f7ibu7iePDzO1d5vVXr/nht2d+9/aBv/53j/ywOaHtTG3CEL2m4XG+x+rEeW3sNjuutxtAmcYtu+2Gl1/uuX0xcv9h5v79kXcfZj58fGKdZ98YYiQSGeSJ87l5G1aojAwM+C5easFyphaY10qxiLbsipLiY9mYYZ4rtYjvzH4muNIEI2ojx8AgGWvaNdTu8ghDYFVFV89KOtZKJbGelTEXhjEyTAPR4KCFsUZIPbiq879NoBanf+riiKzH4AiXWoHSUxKsKVbNx9EOBgVTomRv2c6946SJJ9alRA2Q1IuPgiQPwK5+oRlyhBg5zyulFO6uJ6YxcDqvnA9eIpyTywbl7N2nnvSKyy+bK6RydkHGjHfNXPhFjyDpdrHm8ZXhQqVKwmPXpMcf+8mmzTCr3Vrgk06TSiTy+HSGaOxvdtS5ojPuUUqBGgWpa88+cuCJPq5fnEyrrcS+eQiu4JJ68Z8qRmWuke0wsrvKHM8r52rsNyObINQi5DGwLkqdF4YI2yFy/gOesT9sGTP3xbXaCHiwcqP105NOavt4q2K8fv0aIpyOR17cvea0uAd0PhWaNoIkoglXZP7dt99R5DU3+ys2Q+Tlq8xyajTg6mrg5XLHbpz57vuPvLi55fq68fZpZhUhxS0pCvsrlxJutyPjNnNzO9KWCqr85q/f8Xff3nMqM+fTSquJLEIUr0w4nY68qzMPJ2UbhO1GqEEJaUNqDa0e9oX6ffF0amwsQXGx9DgI19cjwxQ5PC4c18IUnwsCXAFDL92N1umOQCDT1uJ5uEkYEqxZCHNglkYsnh5wWivn1V0ky3ElJJc4ao+4EHGpWuyxjq16zq4FoXYxfdTVZ7UWmFmoCFqMZJGcPMEhhNZ3d99vJfgm0wzX9opSmxBoLFWfO20Q4XxeKCgvb/dkM86Hynn2k3c7QG7G46qstVLUUHGiPsb43NKBNXIcKVr8nodHtlhrmEXvKRHtgek+9hMu3kifEByU/H1pjxI6ABCDt4+H5qPf6eOR1tQ1uKZYaYTaKRZxCaNq7v2dnsa4Vke6mxpJPN/KTLvf0/W9BFiX3hgefOrch8wY/DJ9vR9BlXk+sBsGYhaIis2fqRBSmtuHgt+lWqsdT+hvgvgdp2nh6vqWPGXmeWW73aMzvD8+UIvzWuH3UDMDkkb+7pt3vN3es522vNhf8/LlhsPbhSYD43bDOIzcX596eHHk7WEhMKAaePHijt0oPHycETHS4EDQ/f2Rdx8PLHOhlEbrMrUYHalr4ha0IRmrClVXXt1mAkatlUbrPtCGBvfplSrMS+McqwMowUgxkrIwDJHr/cjDqVGKR06OOSAWO3/Ic6RiM69TIAmFhqrn3E7RCAPupJnM01+iu0NoRqjmzdKXRmRcURO63vOCP0K3SZkR8Z/fqS2PFxlSIG8DSZXQs35K8c9RgIqS+0kQunRO+r1v6RlFxEBpzTWk0RHd1jzedF0bDWHIkSEYbfYO0KraR0/1qaGHaUn0n1Xa6oqamPxOK34Xjta/jobigWiGINbcS9n/rakfJNIpL182DsCkXndY+xiuBbegxYJq8l5WM/duRkjNfMwN/ZbZxQuhUzLa1WHB0atnLbbrB9WD5MbGy+trxjRgVqlavRi4VoZhZFZXgD0+HLm+2n/e4jTtYcUxEabIegpeKBL6B2oGWohDZtwMSBSur3dYXTkcH5lPK+UckXjZ2fyOAkaMiZi86+TxaWU+PzAvhRQSIVdu73aEKKQ8sawrY/RkgJiEq82WaTOylpVqyuPhxLuHI0/nhXmpHOcTg/YAZbrUSgSRxnYz9NDjwJvjib/8cuSr68g3b2rn8zxs+rkugl4fTuiglyNsNQZi6juoeGTnWj+5LzZRyDl3OZ9zoTSX0jXn+n30EogSSaERx+RJCAKtUxu03sUJFHF+k+ZKHKOX/JgnjgeBIAk1e+ZFJUJO2cl4g2CeamDVnSvB5Fl83+h6W4JzhNY9k7jlyxDWpdAsME2JnAPLXKnF9cZRhGEAImj1K0xT93TGHgQeupPouf9SvDl8FNyUbY7wSo9NMTOwwZ9HOkVieN6Q9zx0Ybz1qo8uIAFidL3xunhJr29AgZwyVKPWhuXY0yN+Ty8cvEPW8O8Xu8Xs96NKvOvkubmVS/qDSGCtxv7FjmiJpSyoKcd5ZrWGBm+RG6yx32252m4+b3GGJEz7jLZATJE0NtoiWDJEnXiX6MRt05Uxb6irsi4zYP3e4DaiEJQQB3abiev9xDgEaNkzYuxSmN64uomss7DO1cObrbKbAk/nM1W9x3NtRr4eCKty/OHEuZw5F6MWH2eSXdDV/kZiTuYPnn5+e33NeVkoGP/gq4m2FtaqTNEzTBvWIzLcydEU6mrUDC05dVbViO2CukJEmXLENDCfV+bS3LERhdKLhrK4CkkNqnaLmbiQR6KQEM9xbRCGQIguRUtmxNx7T5q6GVx9zKIrmFxR5BsJ0b2mwiV0y9FEFwd4jZ40V0/1+ivUBGl+wkQn/xxcuTwMCq1VQoDdlIDG4Wnl3IyJwJADOQUseALCfK59HPR0gti5Q7OAoj7mKqQsjBGGGHiZIz+ZAveLcdZObwQfbz1J0A3Pl7yiS7eRRJCU0HXtcSWXZD0h7yZMFqyoSxqtEceJ8SpzfDr6INz1yyaVOI6UVjCrbhwP4fe0v/Y8Pl8khlY7B9TvjmrKOq88ns5sp4kYI1dxy7wUsniTthvKfbN9On+m2VrEaK1QamRKiaZLN50Gj6U3iDHR2sqQ9izz+qw4GfPE43pijsIUYL/dc7Ub2I4bNpvJM4cOjTwaL6+z24Ay3ks5Fx4eTqz1wOtUyQI/zKu7j1PjeD5yOp7IKVCAeVZq6aebmH9A2DPK54NaQWJGBKYp83h65OspsJfAr58a59K4jsmjQNSIPSxbpHd1FON0LIQt7Kah2548ryaGQM7mCGJ/kLQm1sXjU2JwWVkVQYqPxHRuzTXDLoPTrsE1MzJCisF9js0oCk0ESUKO/TQTH8FUHQ21Ttdc6us+1djh8r0+vVQTqA6ZVG39bunuogFBuhCiWO87bQWxyNWUGEdjrSvHoyte4+BUyDQkFLfFrc1PabXA2npVhbgI3Hq8jQs38LG2Jyy8GhN/drvj2OBvHs68PxYsBSwWQnVLXejAUsRlVO6hdTxDJbi+X8SN31U4fjwjvR1AWiC0xnI4Ee5uSJuR5empMw5ukNeiz1peM+94berDMoCQnLe01uMyL8IY95uK+b/84eGB/bry05sXTOKpGUPyfGQVwdYVUFL4XPleE5aDJ6G3sBBjoFZzpYT4BVoRQsycSmW0hura1TcbkgT+8Z9f8+rViNbEy7sBrYHjGcapISFzOlUeH5QYlIf7B978sGASuRkDv9xFWhXePC4sq49faUggyuHjglIxrQ5JW8RSl9jV2eNUur3HEDY5EsbE9WYkRmWzjfxqGEkZPpxqX9Sux8w4bdJKARkQSwguSbRirKF50W9RgoIMrsJR8VNhuBpJGG3J3D+dXKImiVg8uKpVLxZaWyEgjENAVLySIfqJZj37Zhp6baLB0vxUXevFq+kAVMxAyKj6Qg7S82kt9FOmC9QFVq0+gfQRtzWX3RRVpqGPv2rM5iATCikkbnaZJMLjqbKsFYmJbY7YKOy6e0aLq4AWNVq3mrklUrDqd3IRl4CqCmqVHFyhFENlysI+CT+73fB6F/n2UPnXbw7Ull37SkCJBC8KBPMiYwKUZXEFUd/3cs9SSs1oIr5JtEa+Gshj4vjxEUWIOTHGkTovfqIFxZrLH4QeE0OEtKItdbrHd1TDm8p8Qfp7JSKYBcoKS2q8Pz1xO27ZTpP/u1xdfGIDErzn9bMWp3QNpGpgOXn3hnXPok/1AW2FqIl6fOT21ZeYjqxloawHxu3EV1/ccn0rjDGjVjmbF5zqBPPTzA8/HvjhxyNJJuanA0tVfn438Od3Ww5z5f268MOx0MqASaUsPk6/a/cMQ+U4r15NHn0/FTWauGnaqwXg1e2GzSYiceTl3TXv3n/kfKr86o8GboNwmo2lBZo1gnrs/iAbF9y7Z4sUXCyuBK9lHIyQDen5tKq4VjsKJOvBwkJavJ1tiEoCRAMWoycAWKNpc44PD8taxEOWYwANgSpu10rTyCZ1rq/BurhfcK6F2Bck6lCIWSTF3oGphmmlSWRtjXUu3lXpTUFurlYn6UX8YZeohBpQEdIobEd/Hx5PlbU4brAZEmkIlCyc50r0VGgIHlIWmxc0VfNRVIN/32qCtU9aVu1P+5gyMSoflsrNtfL3v9pzfX/k/WHmwxkOBoGAiiKaCNocIIouUkiYGwMuGbdqhKDUEFBVUsxMQ+obOASFGBLTNnmeUxGC+skp5oCcJ24EqjRSHZDgVw8EVHpKgnmGbam9A9WMMQ00LTzOhWaVMU9cpZFaV6wXdhGV49qYl/nzFmeMuTcJX/Jv6vNs3ZemjwOqlALjNDLPZ0LwsbZq4/vvnpi/XdjuMuu50dZAHDLTxketYJmfXF2z1sp6KryaEv/spxsGMb77OPPhsVHnRAjV3e1LYz4XXr2c2O+vODy8cQRPwWgEJ33ISdluMtvdxDAIKMxNuf/4wOP9Uz9ZRp7WxqkZo8A+Ju9R0UoJK6Ml1BK1NNoYECKoupBchdqEZA4gmQYwL81p1S1eQYz9NmGrsS4u1N+FwBCe50/fU/DxuaoSu7mYFjFpSPI7b1vcbJAyNFEXKKjfYyNCq4qGQGsNs8bQxyXzMFbGMRILBIu0s1MRXvzlOcBjSiTx8dpUWNRIKSM0lnn130mCm9SzMY1u+TqdCoO6KENVyV24cSrKuToKWtVF7GbipysXUYsSWxebB08/+LEW8vHI1RZ+sQ/8k59kfv2+8c1ROagLKkxcine5A3q0pbtmtCOpAR9HPTdXuLqK0GB+WlE1N5OLMQRhPp67Bzf1+Bt3zbj8p3mukVxGX8AiKhe03MG0C4ljeKeNmWcEz/PCu4cH5s3AEAc2OSA68HY+cK4z2zh83uLUi10H310ldI1hcQDnAoGZKjluWJbCUpYu/q7kIaOSMVbe/Hji1d2WX/zsms0m84tf7Hh9a3z76yPffjvz/ZsDt7fX/MUXW7RU/uYw8/6oHOeEBe80AacFTHycPZ9m2gWxEFedAAxR2V8nXtzeEmLgcD7wNDcXfQ/0nTpSTvDeKk3Uy2E7pxZDcMCrNiz5fUFbpZQAyW1WHo3XpW+lOUjWgEIn0z2BQDaRlBKHx5X5ceG0+nuZkW6/chQwdh5PQugLRLEKRHHfZpfTgecMiUAO0T8XL7PuGUBKq16F0WrP2DFYZq+eV/PXrdWLfmNO5OQneRJ/3WYuQSyr+xFTMGJIXtybHAZeSuNcCjFkNlNyN0xpYC5wKNVjUC7Zr0qPJ8HppN/nx1HPos0mNI38+/dn5mPjL36645++3jJK4SSwHhVdjQr9s3Y03eNJe3LCRa6II6eoEA3WJ8dIBglo9oxeVWV+KtTeJmQiDgJdvo3Js0/20//351A8AMD8ct1H3Y7ue2J0J3SUp/ORpRZ2w4ptt57kWJTdMLL7bMtY+yR09x/JR5VwseB0tMzM2O1GTNtzzZwWePFqy5/+2R03u5d8eLOScmS3Hfnhtws//m7m/ATf/u3K9+9O/Pjhnp+9vGGcIt9+nPnuYeXjyT9Ir7xwctnMRfSH48zx5Oqu0CMLUmhMY2a/2/DlT68Y85Z3H448HgrHY2MIcG4wr8p26yjl3DxEegh+4oYQidb9VuYPcdVIVSE2JeIxHJc81BgDoSktdi74khhYK8TMMERCVm5Dokrg9P7M47mQuhOj7ziexyNCiMZaK6mfvGaB3OMfMdeUxiDEBClHj4zsQdP1AtKZb6DaxeaicK5Kwxudk7qtjx4wTU9NEAkd5IKEnxYOZHhpj13SH1b1trCQ2Q2pp537fbKpbwKjZDQ2zh35rmo+ppfigdLiUjY61RRjIo0FVeNphW90pn4Hf/HFxH6M3AzCx1mZu1DhuRSov4WCb6w5D7TSMO1WNumfa/WpIOXI2iq19524pNA9sFOOLsBYPZOpmX+Li/3MAR/xcZZetNXfv98LNurG+i4nNLcvaoPjslJ6wFprBSuZPH3myZlC8HS1C7oohlnx2d8+FYUGolMAYgxxIPbRckjGT78IZGm8GEfefYB1rjwcFu4fVr7++orD3Hg8Lry62XOzSXz/ceX7c+PDSVEN/ZKNjxH2SYcozV8TE2JoDGPgZr/l5d2Vlxt9seHxYeXpeGT29Ai0rT2rRsAah3WirO6kuZkSQ4pYvbg8AiounV2bMsZMphCDI3KoE+AkD8lqAOrJ7yGALtU7OcQXvIzCtIdNjTw9GSUABFpVlmXtQVeuwPEN3IeonCtzan5qRqe0huTWtRQDKXounTYHh0qtSHPtrAvd1asDDRaMc6loEV5NA6iDHrFzhE268ABPgZAUiNmBJ1XxyBpthCgemt3Rb8HpIescsKl/XdLgG4DgFfcXQ7bzMo7gpi7OCEbMqWcvRT7Ohp0a4/sDf7zf8TIZ75LwIJXS6wifJS0BtN/9exWTCyRur1keDp6qL7DZRAjGeliZ8ugVi7WQ+sLa70ZyMI73jWONqLSLtPeZl+0pwM86HOuAkXXTeI8t7FyudCWUe1kVYzNENmmgjYFM4Fg/UyFk0clqRzsiZoVhyqyLI6RRAiEpyupZpBZIYYfgYuoX+x1jhPvfzeQ0cHoM6ABf/dGIrpmlFJo0ii1sdjeYwrdv77k/Nq+IA8+M6TIpBaQT8ubXSDabxM12w/XVDbd3wpdfXaMN3rw5cJwX5nVGrRFSYNpt2baVZa1EizydvAtkMWHEU8G9Pk67EMEtZ6VBwZhEiNaoxcEeicljOcikAEttPTbUP9C2GEUK025AshcRTVcDm5z5OFfOS7+bBl/QKWcWLdjac2tiQki0WlmaQfDOFrXZN05t5OCid7qMLETfOJu66N0RW+ceiUIw3zRLqyRgmzNDTIQglFIAIWQHaExcvreUAtUQktf9JbcBWuyuHLt4If0eKt10XtFneaEpaKn9YfcFZESQRA70072SEryaIuu5cb803k7Cy7VymxLXsXmtQ4Vskcbq9IyGbqjWT4mQCGWtGEZFmYaRYZM5Hp54sb+mNWU9OrMwiPlk1iDmgZqNtXr+bR4ia138EOj8qlPD1hVIgSbmFjhTxyzwh9MnXVcQmc6oBU4HQ7OSxNCk3B+ePm9x6trHFf+RAFhLo/u8UWAYJ+KYaHWlDQNDjF3n2dhuAzkEru8y54OQdsJvvztz+3pLW5R//68/ci5npDX08cyDGeuitDWSJDKOhd31hITAx/sT2vsRnVs08iYzjYmrzY799cjNi4mPh4VvfvuWd28aWo9oM1LeenGNnbiTwL3knlQOaytod8Bfdkcf8Zq7C/CNorVGDDhfhiepo1DUpW3RYMgZ7chtFs+8Ler3vSl6eRAhstsaGoSUK2WpzHMv9w3CwEAcjGkcIPX7aBh5kQLFjPOqLnJXb/+y5mJ0CbE7UEAs0MrK2nwsTeJqpRiVISbGTqvk0L2RNP99UnStqyRK81wcUadcUnCnTEiZT9aHy70mdjG+IrG7XtaIVsWaUEvvUYmCVelpAR6xsq1KCl6V+OE8Myb46W7kabNQTwNvl4VXufDzIfEqGu+C/97ngDuHLIA5eBbUPD8XX2zr0xlDebG/ZTdEylz46volKQvfvv2RIEIObm9MoXGcV949nV0yibqYY5Npp4SXJ7l0MEukafVsJPlU5yAKgeSumH4/9R5owzQSE8QcmdeZ3TTycD6j7XPvnFH7DtAlUSE4naDSHQLOe1ZbkBwYW2HVyiaN5GSUsvLhfuTqemDYJex4xpZKzpHjh0fO68LSCndD4nYc+ObhgOuAhXFUbq8HUopU4OXtjqVUBCXFgRTzs2tj2k3kbeTtuzO//eEN908HYk2Eljw+UgXKym0StlPiviyIGjkLWRON0n2o+AXXXHx+ifmPKEn9BEoXyZj5huV3TyOmgYuf8FL8WotCMFqNnENhipcW6+p3vxiREXL2bNfDWmkNRxBZiBYZJBLVLUw5R9KYmEVZ10JUQWLuVR6CTQ66iDbGYeyfmo+qhk8PLtt2wXhrnkbgLWK+5aq5NLC21pkRIZM8QS98UhxJACTSxOVrrceKxJAIQZlxALFU5USjYL0omC5/S25Kz+5xPZvy5riSo3C1SUxToh5n1jVxX5Q/vxt4YcY4r4wZTrX1IGwXb4TmwNCnDk6XDrk5IIAZu+3ENCYeHx8ZWmN39RqZRo7HR6q2bgRvSFCmcUetK2KVYRN5eqg9tzb2dfcpXLqaEdRFFtrfb+nPieItCfGC9qpLEh/npZcMr5+3OF3F5RqbfuXstIE9J7tZLWiBLEJtCyEkSoH9NnK3c5dIfLmlLSunQ6Gp8eHNzNO7lRQnqhV2Gc7LwuPZq+1jbOx3G66nCUJy8l2EJJkQA+OQGKaRzWZgXVyY/O7+yPt3Hzk+HRHLmFZyCogkNqGwsZUvxk2H7P2mPCRhVIfcT83YxtDrCHwmMfF7WMXFBWbC0tPrsuDpaiJoD0sOfdwhuKOlaCWFRIqBUivHtbC5hH6FTpanhFgjjYlRGlpw9NWDEEhiBK00c5O2mQMiuacyIJ44p80jJqsZwVr/DX2kTCF41pe4JXQQRzAl9vQE7XtSA1V/CKcYvKOhAxtDjgg+dqp1pBW/d1ftWt/LQ8JFKSScNVC72sqTGlxAb33BiAQkBt4dVt6fVr7YJ352E/nmMcN9ZSIx1wo58eIapqfKWLzqQUR6M4Y8q8NijFB94pAQiMmzhsdpIoXo2UAYN7sdw/WO0zJDaQSNPUFfqETWWggqzKeGZnzhh08SPjMcOAz+FQDaIzy5jL/PcZ9+vzaFZfb2u2dCUj7z5EzdXWHWq9j6nC3BxwizfkeRRqAR2kgIsN0F/vTvfcntbSRNfhGfz57qliJIXTgdF0iwC5FpSvx4/4iFgWaro5ExkVJ0UIXIdpeYNm7qHkbfANZWeFor59PKx6dHzocZ0e58DzCOkU0QrsZIssLVKBx7INXSAYqNBaI1noryKkV6JJxbsoIjpgGw5oL1GoyQ/D1x8MSF9QjPKeFCD65KiZBjl5UFxBprbSyrL+CGP8wRz3glCdOUiDTIru4RoRPfEX+X/Wu0qJcIL526MKP01zZxRDCGQB4SOSbSCDUKoSrZPIbTXOeIxEStPqLG4Kl/dNNyCLGXK7ksr6n4Q2MuzpeQaNUXqIGfZPhmstiFu+1f0O1uQeKzRjb0e+o3TycOrfCX+x27aLw9VKQZGuFU4Nv7E19db3k5BA5zI3JZ9NoXqUJQ4jDSzFMDHbNxFc9cC9SVcRgYNhs3jLdCLAvbIKxWuR4GTOBpXimtTxcK2rzGkEBPF+z8PgULkRgGZymsZxSJ01eX9AYL0icY6ZvXRSzy/64O+g8uznGTmA/VOTQu4l4fGS6yMNPKbrtju/F09FqV2/2Gn3y1I2cljo2UMy9fYHNwmgAADFtJREFUDty/OXP/Rvn4bvUUPY4kXSjLyIovNpoT1Kt6dcGUArEGdrtMnhqqibU2nk6Vp+PMu/sHWnXwQwEJxpACmxy5G4XBGqcy82oaCESW6vrVRRuntfLlELkZlKfWWDWyDZekPT8zpPloQkwugFfP+2na3Qutu1hC6CYAc/sS2j+o/Kz1zClga0WrgyX0O2wQLxTSfpKl4Cgu0asUhhghBSQ5Mh1DIike+7E2dPWIEUVYS+kfqyt5+nRFnARdG1QHm0Lw9P3Y79p0i1gOkRQ9jDpF8RQ/Pv3x05Ln8dck0cz7QQx/EBsQUoS1dpTcdcj0DS9e3tuuhGpq/O6wMsTMz3eZD2vh7dE3pUbjpPDYjD+7zrw6R74/LmxzYjahSFfmNBAidZ1BlenqmhwyHz985GFeuN3deNBZjNRavEmgVL9vp8AmjcQYmZdTv7cLZk5paacLL+wh5syJRSFK6qOwK5+euZ3naOvfA4Z6g5l/C1eewWfK906HmYBbvJ5jI8UfQLPGtB252my53mSsGuf1A7vthhf7HbWsXL+6JuSCk0yJNCaWapyPZzRuCbNwvYGrIVEfC84vuA/y/mlmmjLXOweETkulnpTzOrMW5eHg9rB67uO1OQi12Qzsr665agde2swjkU1UfnE7cr80jrVw2bA+LI0/vRv55bLhX3+s/K4s/DyPPY3N/6vlkjDoJ5eJo5Nzc6Q0J7+DKNqdNx5Eratn0Namz5RMLEZq9ow8B+0JATGy1IrG2JPnXXni3GFFcvcp9ugRLpxn7fKi4PK4UhpxGPr2GbvXdiVHQFJPSegnXIi06HlFIr6hSRBij1UheIykxAu5H8mdulDh2Qmj1txKB/31tI/Hnksb0A6E+vIWiYjfj9CgZDLfHhe+PZ34y1dX/GoP/8PfLshaaQFWi0RrHKpxWldPJ5TALvYIkNq4iM/9NpKw1jicV8bkoo1dSkwpAYFai4tEgFIWHz2DkHrKRBh3tHJiSMJm3LDWwnltrrVWRS16/Ek/CYNd9ACum0Zy//1aJ13cZE93tXwSCHQa9g+svz+srbXoJyYg1rzklQWxyLDdsN2NXO82tGVhO4384u/9ET//45dIa+StX3AOHwt1JwxZqRrYv9rzeN9IeDzEdhhpppQimEZMKpi3kf3uzRPvx4UhJ8yUtVTW1T2fZanU2ivbFCQJ++3INjRurfAiRMQCVhqvtxtebDO/PTeaGdejsCrcL4qkwOttYPqo3GtgH+EK9VhUE1YrkEbmZiRVlouONbgjZEBozXduCK62SQEL2vNYjaKNwQJRjWiB2n2AhMCsSixOwq9ro5rfVeOQQdwv2qp609oFGTQX3WsNlNKw2tMD+pidYqBWpZSKibKdRpbuk8yxx3ciaHUq7FI9r+qlxDF6FlLFPNIlJi4Unpr2KgPX/l7SalPsfsrmJ6Jp89JgEZrPeD542bPzkUECH2rlXz498avtxD98veU3h8pvPlRy9xDXo1IrvD8qh6q8mBJTCsy6sMmJGCJaXbNdNbksMOLThBlTithq6MY3mtN8ZswZK919FKLL/fLIZtpzOD+RTk+evNeUulaC9RA/iWSCS+LVnGpqHlh+SZKnb66+YfgCvrxvTqd+qp/3Sij9f1h5/x8Wp69rdwNIR/NiEmIKXF0lhhFIhd124PZ64stfXLPZR7IkthvharvjcN94++OZl68mwJiLkaaJ4+mMtIo2B1tCFzoYl5EC1lmY5wKydCrHd+sWFNHY0xX8Ej5EYR8Td8n4+a6hTfjdnJFB+YdfZabcWJZGksyf3F3x4XTi1x9XHufCH7/e8PNH+M3jSksB2UXm2Xg6L6TSmLInJSwVhk48T90IHLMxBR/banO+KwTDkjCEjC4FSsOaizSkpxKc1+I8oPiYWLrwwdQguizPS3cTVQ2JlUuFWGuNWrrv0txrqD38TMXvxfPqAoOUA7VWT+GT4BEjuHE9WGMK3WnUEebcZ3nB5XrgNHcI9qy7teD6VbUuKBCXCq/NIz1K88+q0ZjVF/AQ/edu6tm3CBSt/JunE4d14T/5oxc0E/733xXePlb+4usX/OOf7/mf/uoH/vpD4VSFd3Pjj/eZ/ZA4WuP6bscgyv27E1MxltU4KrRoBPNnpKnn6Q7WaLPnCcUA9Dp7CxDzyIuXX3CeT+xvrkkR3r99T4y+ESzVqbNtChyb+2LzZmAYM8enc1fcXgApVwNZR/c9Tb7riYxeY0G38hX0D5yd/4HF2X8BLgolIU+JKY9c3078/T97wXaM5Dwg1hgmYxwCmzEzZiFl5es/uuH/+ldn3rxfseC7oGe2FqCCTr448eQzaZeLcnPwwFwfifjJgbnqhR7rKBjbBDej8fWQ+NnNhnFS/ub+yMeq/Ow28/VPBn79RrlfF+42W/6j28S7Ycv3h4Xf3jd+dpv4+i7z9rzy7rgQ0kQ0l5KFProEMU86CBHaJSdWGZunvIHHRT5TKxcrUAyE2KvPTR0U6XdJVVfPqDg1E4L1q1/n6zoi7IlwQltdHB7EfyZrrWfY4CHG5vI610ELl0DHeV3RHgTdDFrxLszBnIO9JN+puOnZ5ZnSrws9FS+4fC9Ge3bgSO2FxiI9zkSpasxdw9ssMVcf+jEjirJ0gYeZ8mOZman8859csZ3grx/O/PrNzJ+82POf/fKGLzaR85++pPwGfjysPM7Gi5+OvLz+v9s7cyY3qigKf2/rbu3SmPHGGC8sZqpMYApTRcIf4B/wYwlJSEgIKFMOWIxdomaV1ep+G8F9miKxHTJBn1iBVHq33+1zzz1nx6uuxYSOZ8cH5LsNPz0/Y30esEmc9Lqc2YXywHEVZ5c7lLHMnKHvtozNCNfMCbmjaWp23Zbed9TK0rUbauckWrG4WiSliGWB3ZT/OHnh/TMicc2kkhyh5XwWOxLkOMsnlZBCGZFm6vz24nw3XcQ+Yl6V2VQmxsB8WvHRoxVPnh7xyeMVy6Xi/oMFTkP3ZotzilEt/ik+dcwXFTHCzaMFHz6akjBkownZYwxUlb4iJvRe+lPoaMoRI8fSEkh+YlIJrTzLOnNvDJ9PDccfOGoDv64v+XuTMWbKwxsTUsz8eZbwSnN/NWFUG26PLffmDa/fdLw6jRzMFJ8eWugD65OWuoscZCemXUqILhE1y/Jw52V3MvgoQu7iP5uzFIfEGkShbbU4zcU+llzKVHTIIjLXKKxSmJSwiqLRFUsUH5OsdUUho0KEPoh+1VhzRdlDxljRe8YgY5WcJDA3Rrm9UhJrDh8SOmpiJyMPlBZngowsXUNxUeeqBQs5EbLcAqnID1B7v1uxDo1ZicND0uxCou0Tfcx4ZN6rrEgBY4ys+56XXeCz5Ygnd2peXgZ+frlhZS1f355T68jWJ45XFd/eXzK2cgP2MTCxmQpD9J6tjzz7eMT33xzy+O6YkYmMiIyTxmWF0ZYYEu3W03ct3W6L1pqqHlG5Ec5V5Azeeyrr2GwuZARVNLLagBsbRrOGHkuwClUpqphFNaVyGa/IrDmEQIq+ZLPwH66GYqFS2ntE7jeb1W+tvvc6IQj9bVFGVoims4obhxMePFxSNYrNWtK7XKNZHUxotwlnNL3viG0gxshk4dDOMF+MmV1uCUGsD61WTGuHNqFoWcWzSCmRgsF+bFYYYp3KLp6m1olbM8thrfjyaMrCatY7xYvTM/5pFUlPmI0rDkeJ003mdLNhXk+4MzUilDeW4+WSTbfmr/Mti8mUR7fGXHQ9L042bO2YpnBqATA5UakK2dDZkzaGvvdst4qxdtBGrPMYLZR8yDJX1HnvuL5P79KiXU0lkk8bchYG1CHvfUmV98woB96V2VjMIku1StjUkMV5P8vaBxkpGJ0ltiGGhFGG3ot+1aYsXG6OdNHLXLAcoqb4QimlMJVCWbkFtAJcxigrJm+II19M0j76KCt0MZdsmAA+yMih1hQjabFkabLmUvW89jtujh13G8svrzw//nFGzjVffbTg1hh6n1Eu0FSOo8aileHEZ853mVpbVqOak2z47fcLFn3N04czvvtixQ9a8XzdctHBXGXOU6BHRmTS9htq05BVovMttrLFJkcT+oBvdyxmMyqXaPsOV8tv6XeeFGEXEprMyFlZfcuqCFjkSWYQT6K97RpQXiuFVGPfmSQv3+Ed2lp1lUM4YMCAa4X3tLUDBgz4vzAU54AB1xRDcQ4YcE0xFOeAAdcUQ3EOGHBNMRTngAHXFP8CID49fYBf9kUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light", + "tags": [] + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy915rsOJbv91sAaMJk5jblu7vaTfdMj7nQnZ5P13oMPZDO7cwnnfk057Qpt21mBEkASxcLIBmRkblN1UhzUdiVFREMkgECWO6/DERV+bn93H5u//Wa+/+7Az+3n9vP7XL7mTh/bj+3/6LtZ+L8uf3c/ou2n4nz5/Zz+y/afibOn9vP7b9oC499+Q//y/+qACKCvXp7Xz7bMQdOEOdwzlHPr3+IB6CiwioOEC61+RzV+a/er37OOZNznt+rqt3t7BpVRdNyLoBzjiAOvEOagPeeEOzVBU9oAs57nHO4EOy74OdnC86+897bed6jIiggzp5TvMeJR52QUyLnTCu+DJn1wyN470FANePFrcbMzgtknNSxwP7Kc8WYERFcsN8cx5GUEt57hDhfg0oZb/vVmBMgiPM2bzYqiBNcWPrgFKCMbZ3Heb5lfo6c8jIvZYwTyxygp9y/3sV7d3a/++/vt7x671Zrcn0vTsZQRBB3slxX193/rXntlM7Wc1RBMyfrsR4HWa252kdBEHsVKecsz6AoOaeyhiP/x//+v1188EeJc93mhz4bTCNAd/FhpSzckwd63x9ctbW7Z0188zFOyV3rSubyJMyLsBCdVIIrn51zZdLLoCrkbCtNFVLKZASPIN4Wuivj4MSIVkTAB5uEacKV70DLf5ngPN63LCOzMJhKiPUJKwHkrOx22/Ig1vemaRjHkRgjcYrlGV0Zg4TigEzXdaSUiSmjmnDO473DeYfKMi7iHb4QQGWGl+bioXZCcOvj77zyp2sLEV469uN7YuMg7zUe96+7v4YvtUeJc/0wJxx0fdyJSc7V93XhV66x7sj62P1OP/5Q55J19eWF608/iwhuRZSyIsTaVycOwYhSxOGcJ/iAeCPWpmmt6yI4J3jnjTirxlC1B1VySqScQZUuCE0TaJsW78tvC3ZOjKvfXy2mbJKzSnZjdJUDw+Fw4HA4kFFEHN47um7L3W20uUDIGWJOpJjIeWKKEeeLRuDDzAByzrjgZ81HNTOVvrvVvF6ao3nOy/eLXP3Pa8sylLPXh4jyfn/X7z+OwOB0CVaie0wrXK471w4vtQ8iziI6Tz+vCPNcBVrfY+7kYz/44EOdPsz5MVmde+mB1yqQEQI4Wc4pT7V653CFQEXmT4wxIU7wPuDEI87b4kUIIZBSIg4jItB1HfubJ2y3PbttS9d1dF1HEwLeOZwXaheCd/jg7bgreljOiID3Hu9C6ZuSgWEYeP36Nd9++x0vXrzg7nCgbQPX19f8/R9/D0BKiXEYuTsOHI8D4zhxe3fHFDMpJVKaClEHcIKiOGe/B5jETIkiIE5fWTHa1Vjb5/X3y4T/eFllN5PVGrw/v/bZueVcET075wENr6jwH8pg3pewzyXmjyZOOCXM9cCIE1RWC3hlb55fd/rg8lEE+tBf/f7ekOspZ5Qi7aqUEi4QqMii3hZbJiWzrRDo9/2iEZTnQcUkzTjStS3XV3v2ux03Nzd88uw5+/2O3b4lhEAIfv5tQUDMmBQRvHNm57Co5QKo1N7Z4lMVYko8e/aUTz/9hJevXnF3e0fXdTx5+pT9bjur5SJCLvbqNE18//0PvHl7yw8vXvDy5Wtub28ZhgFxjrbtEFVjCggOAe9XKm2xfTkds3mu53FefaNnUusD5/28nRPhWgurtnBlvnO/HpCy63ayPkVOnvGhNtv179lOiJOfgDhn6TiPwUpiyn2Jec7NpF7L+sGrlLrU+ccf7iHilLPvl4PnfamMxSSUL3/22YAcJ2LqbAh43yDez9JEUFRNmjRNw6bv2W439F3HJ88/4emTaz55/pz9bkvTNDQh4JyQGTEbsABahZnYoi4jImXacp7ZlyqQy3MViR2Cx3uh6xp2uy1PnjzheDwAwna7JaW0GjNwZahD2PD73/+OlBKHw5GXL1/x3Xff8cMPP3B7d2Ao9mpMsTCLQN+0TCkyxTgv3tO5kpPj9wb+P61dXmuXwaWHCfQccDwVIJef4dI6XR+7QPv3zq3E+a72uOR081PN3BGRU/Cg/C3Tdd4WFeM/K453VkVOJOm5PXLa3xl1LQRqUrV8XyaqbVu6vscXu2/QgaZp2G43PHvylC8++4zPPvuUm+s9fdsRgsehpBhJKaFZUYSU4ywlsyqizHaqcftiv4pDgiG7zjlyVqZpIk6ZrJmcIqoZ54LBhyI0jcd7A4hC8Gy321OtQih2NMQYaZtA113z5MkNX3/9C1LKHI5Hvvv+BS9evOTb77/nxYsXHA8HDsc7Qgg4H2Y09n3aiXRaMdD6nWq+p9VcmtPT+Vuuv0yE6+9tXG2eH+gX3FuTD6/PU1vyIZuzavmm3Rci1+XaBd9b1mnOHyk5nTuFvEUcKgasVJDC1LvTwZyBBbBFtCIUWYEalwbkoQESkRO3yPpYBYROr60SaemPk5VaW96HEBDnEMA7R9O2831znkjJk3Ki73u++upzfvHVV3z55edc7ff0XU/j3SztNE0ktfdtkDJZmZzjSopb36zfGc1aFBEjULMxHRGTgJWBGMc1Kb+4VwoY1DTzwpuK5KuMxumyqDZ9R86Kqo2jD56uDWw2HVfXV/zyl79gGAbevnnLt999y7fffc/xODDFyPF45O54JKVcmIc3kl+BG/PzzUSwoObv2y4x8aqyLp8NPyifTs496Qf3ifn8vIeOO+/m5zpXYR8izkX6ylmfF+FUCTJrXcs/wuZcP2CVmHYQk6x6psa8S66fPeClz5f08UvvHyNk6+IpMcr83qFJSTHjXMaLEJqGvu8ITUvXtcSUOA4DPni+/OILfvv73/HVrz/j5vqavu8L5GaMQUh0TWv9yaA5VUgOQWlCUwgizxMtqoTQ0DSBnLMhqikxpcRYznHeEZpmYYSaITO7akSElLL91UUVPGZGFFtET/1wlcFptSVnLSIgQWh8z37b8/yTp/zdlLg7HHjz9i0vXrzkm2+/5eXLV9wdDsQ4IS7MaO4MJKEXpWyVHw9Jyg9r9yXg+n21vN7rTg9odJfswYeOXWprwhPRU3fUT2ZzAhQEUVjAENZE+p7c0bj/wnEeI7iHUNqLRKv3AaFzu1bEXCUmRYWmNQR1mibUOfqCpA7jAR9gs9nw5Vef89vf/Y5f/epXPH/+nOxHmmASY5qSLXDvCM6RUzTNFS2SZbFzDVyqXNOcz1KeIZVABZ3RRfubpohmJadcwKP5iSFlXAmiUIVYCBsRHP50zFf+0xjTKbsv46RZSUWKqxrYF5zQdA2bvuXZs6d89dWX/Ob213z3/ff89a9/5YcffuDu9kgugR65Sg5MQ6lzbdrDwwvkQwl1Ib5FVbwMFD3OBB4iygoI3V9/94XG+To++bkVeKYrKZlzHecfi9bKOfDjluN1EHT5rO5xJLZOGFwCF5b35+rrJcJ8iIOdqDErQKj8rH3vPc6FWa1FhJyT2YUon33+Kf/8T//El199yf7qipQit7ev6LeeKdsza0rmkhBP9iXKaKW6ijPJVdXnapO4GkkkQDbCFKmO/jz3t23b+dlyTmaritnHKUUjgLVBBbMUW8ZAZ1vX/qUivWxwJJtrRjBp7J35S7NIUX9TIVbY9i2bzYabJ9d89eUXHA4DL354yZ///Bf+8pe/ME4Tfd+TgcPxUIfbhPe7NJz3IlBZLf77NucltPb83Eu/fy7JHxYOnHy296fXnLSzQ3bdSnPRKk0/VnI6d/Lwl9VbIa/su3cN80Pq6kPS8SHJeT6IlyRn5bBV7fJz6F0wiamZm5sn5t8Lnk8++YR//Kc/8fXXv+L6yTUAKU+Ig+ubPcNwS47Zwv68N3dDUZ270BR1UdEMKSqQzeWkZqeDniwwJ4HgM9ktE1ZIelYTU0pzXyuh1wk2qWvPGEIoc2LkdmoPmfrtxRWpkNGUiDHZ8wHBB5qmxYUyZqogNUjDkA7RhBOh7zvatmG/u2K/v2Kz2fDnv/yFN2/ekGHRSFaLrz5bWTLLPMl9QnusLYDPMuvnYF/9jXNb9aH7neMYZkfnud9ryVmP2Ssnn6Vwo/n7Geyx+VgI85RIH2rvVGvPiZOTwVkRxQWudrE9oNI+pLK+69h60s/77WWJAPLFJVLjYkPb0vc9m82G6+s9X3z1Jb/7/W/46hdf0bSBYRjwQfBemFJkHC0mNik4hOAD6hTB0TWt2bEKWbIFZlSEDkgys68yyRY+JxRhLQsoNEctlZDA+jmlbPifCF3XFUZgc1EJWVFSTvMYAOhqEVRV2gngzWXks5BiJI4DcZrmpdy0HW2/IU7GAHwIJSbXHPt1jJ8/f85uv+fmyRP+4z/+gx9eviCmZNoCzEzlDLY56eOHE+X6mjVh1u/Wa/fdNte55NT1+wuS8/R19VS6MJ41MS+fHxZCl9rjaO0qavjE1pQqmYzLeGHx3dnZ8/91hRaaY11X383DYPq5VI6T7z1cbcbplqtMbTI1ss6FohaK5/wJCASgAi449lc7rq+v2Ww2fP3rX/EP//APfPLJM4uW0Yx35ojPUdGUUZfNVVIJpj6tWqheMWXN1iz/av/E1ThXLVy5IoEF0c2ZWML48GIqM3FGakMI2C0qcZn0jCmjOZuKC1BU43n0q4FvbJusWkIEHc4vtqnfbAg+MMWJw+HIMAwcx4ExZULTIM6Rpjjbzy5487m6ABna7Ybtb3/NJ8+e8h//4z/4n3/+C6/fvCYDWvsazYZ2zpmmVe0wzTMDUi3fZwv8cI6VxrHGOhbCvL8+VqfIwwv/UtOFAi8eP7c9L+lrxbQ8u7Zel0+u/VHE6SWgbtWBQqiZBUpXzG/nCqEaeFFjNE/9j8awK1iwOGNNGatPpWj9dDIQdcwc6wwFRe3nHBV9sKACH0AC4j2o0nYtofF0Xctm07K/2vD558/4+uuv+c1vfsPTp0/NhoypSF0jTuc9XTD3iicRfDiJx61qSnX+r7UNLaxUqi+1rJqclZxsnIL3aIZDVKYhQuPwIiQ1m7ZpmtkVVMP7YoyA4sTcMdWfFlMsxFeikMpKVTUimV0yqkYsxe4R5/GtEUDoe1zbWhB9imSNSIaU86zquWgMqpVtYdKOxjueXm1ov/4lnz9/yr/9X/83b9685e44ME3Rfg8WV5CNhM25AxVDkENoLTi/JAt4J6ZluICWDKdi1M/jbcZ8WWBrwpQVo7wn8U6ld23neMd8XFNhrGs12HCAE4yjCqMLZtk6icAYE2h+WGt4NyB0/l7uP1Alioo2PGRTPt4u2Zqrb8/tAjtoNm+RtK6omd4FQmjn69u2pd/0eC9cXe149vyGL774nD/84Q98/vlnNE2LakQE2tbPTEGKutk0phbrwhMsyED1xHZYT3hVoUXM+Y/z4DzLPJrERc3Vst1uOR6PTONIFgGnFtIH86SufZ71Nyrh1v6E4vO8BHLUa+sCMTBKSFkZS0ywqYnFBVQZUJHZqS6wVBhtaBA1wvBqTKTvW8TB3//xD3zz3ff87W/f8PL1a1JOhjx7QSal8Z6UlbbbAMrxeMS7wOwCKlrbzI9nlVVO33O+Hs+J7nStPoTSvrtdltLvOgcum20/Wq2V8x6slPqqQspMmOW12loXiPKhjlVJuv7ukm16v4PO1D1dAqLBFXXRULucM5vNhq4L3B3e4PyW3/zmV/z+737PZ599Rts03B0OpDHRdS2qtihCWKRjztGAk5WqfZ5TWoGae4ESzqEeQslwmXNIncd5YZomhmFg02/ZbDZ478kxMkxHUjbpVsEeVWUcxxPJXAnMpuU0xrmCRueMo75WWzVgktH6n0yNL+fHlFDNJv0xEwabeuI0lHs5C6ZwQkqmSVxdbem6huv9jr998w1/+9s3vLm9tT57U//HKeJ9N6v4TdOisKi5yBxbLFUKrl9PTK5qB69UWxbNdk2UJ5rNB7XFhrV7nCHDwj0p/ZCN+eOJswRjl94s/ZsJQZfvLurg99t5Z9adzScPcWpUL9fd55beL476HA3ASFHpuo7Qe1sk1zt+/Zsv+e3vvuaPf/wD+/2eGEeG4TBLpaot1VA+il+q+iLPGc96PFRAvCGblShijGgCr4GUI6OMpg62LW3b0XcbGuB4PJLSG7p2Q/CefrulzYFhHOb7NE0z37e+n6aJGOP87M45DofDPD7ni3DtCF+PnxNTpU3N0jKG5nvNOS8IcrAFmZIRcJxGYvHZOWeMx4eG4DzD8Ujbtjx/foNzCiTct5m3b98Sk4UjOic0TUNKisgRVQOpnHM4HxHRYrYY4dcwxDWBnjzrGYHW6VkT5cdJTRZ1lXPCXK3HM03vkmZ1Lqw+njhXKkQ5ML/WCSu/ciJhVU8nv3bkvFOXVNiHiPO8X7M9Wz77iiR6QbD3oQn0fcsUR3b7T/iXf/knfvmrL+n7nmEYGMfR4me7bsmZLIt+IUhWEvR0MCtBrFXM5dwiRUsfU4wlBUuZxomcIE6J4D2bzWaWeDFNpBjZ7HpCEzgcDjOBrhdXJdRq61pAQiUUN0voNdiSZ+l4+pdSNCwJLbhAYTJkplSkac5oWgjBi+CaBpci4zgxDQdGMekXmhZyYjiMTDnROPjsk2c4UcsEujsSYyT4hiZ4cp4QpDChkrzuPCoZSLPtWMf8nDjnNSkVST5T+Fbr7pK6/86mC86xaGjnxAo8IJzWzOGcYT6GVL9Tra2Lf36Mk45cIJzVD9bBWL8+1PFqc7J84rGxW/dJVUk5z7GpTejYbrfs9ltynri5esLvfvdbvvjyM7xX7g5viZOpixVwSRX+Lwt8TXB1UJ0LaEE9KfyoJm6HEMrz27nBSwlEgCklaFrIFiGUs0kxC2qf5oTqpmkIITAcDrx+PdC0TTnmS6WDNKvPUInQnUj5rutOmMa5Ole/q89oTMGCtGtKHTATrXeBmCaG48DxOAIWYB9CQAqK2vc9FRRLOTGNR8vGUUUnA9j2uw7vntE1jm9fvuX7H74nxcQ4HIhTpm0adCZAQ9pnY6dQ2+KQOSWMU3VWZl22mly6Ovf9CRKTliqclki5TJiC3KOGtRCqY37e7x8lORdhuVB9Xtmb59xIBBzuhMNfMtwvq6uX9fD1OesFJiJMMRHjBCRA6TY7nt48IQRPSpG2C/zx7//A3/3htzRt4Di8ZRozIWwsh1FkDuYGCKE5zfuU6rpRRMLJc5/0raB4eRUsQC5ASs5mx60kcVsD7FNiHEfGcSTnTN91tG3LcTwwjgOgsxQEy3YZx7zy3RqyukaLgXu2Zv3uEhaAWJWFkwQJ53BikrehNfT7IByPR27vjihKEAOtQtMWRhIIyhxbO04mCTebja31OPHp82dcP33Ok+s93377HYfDESeOacrEpHhn0Vqh8UwpIXiUREyRMAfFnKGkZ+vHaFLnow8RwVqI3Fc55ez4KWNYJCiwQCQnGsoldfpccK2TS87bO9HaRVDK6vU+cnrW9ZPbvEuEq5o7ZG1MVzDq0qCuy4tYRkY/q6fXV3u2my05Z3a7LZ9/8Sl/+se/Z7vdcHv7ipQGgt/Q91v6boMR/OLIr4OuuWRaznaFkEizSlX7XeNKa8xklWjVZSBAaBoQZpt6/RwiZneZRI0Mo9KFhrZtSTnNLo8qXavErQRbVeiq9qZhmJ+jTn59tmmaFrV09byahSzGWGKyLJr6bHa9xSKHpqFpO16/fs3r16+RPBZtJeAb00KqJmJSK9GEhv12W9y8Stu27K+f8vqLz/j2m2+ZYiIlDDT65gfe3h7Z7vbghOH2iIjigkfjfVBr/ZynC8qmzMZ/IaZLau1DwMz58RNiLCu0rvVzMHNta9b+rfNs18/w0Wrt+kbvb0Zf/tGPNsQvtJMI/6xkTTx5csMXX3xW7LrEF19+yi9/+Qs++/xTrq93HI+3TNPIZtOx6fd0bW+ZGCspbHamEdhaalZ1KRdDuE70+k9EUDGOzmrgqzrsnKcJi51oIXlKM1dIMP9lTgn1AeeFrDIDUmuiMj8n8/G1Tdpvt/N410VSpWglzjVzM85tqYBCKfEhZr+6ApIpmTGa+r3ZbfFNoOs7Xv3wnZ0X/El/mqah6zr62QYv6m9ryedxHHE5sdu0tF2HDy193+Kd49//nz/TdRbvfHtw5GzS0wVB8gIGXV51Z8fkFKRZt4fW4xr/uHj39XePENalvjxm3l1q71Brlw4InCy6tSxfC9cKFZ1zqdo+hkjXBvdaLTAHuqPvO66vd3zxxadc7bd47/niy8/o+w1N43n16gdinLi62nJzsyf4DTl5C0vzDpElGL2WErnYz1W85XnfQgjz8Zr5YucWSSc1qXuJzEkxWurVKhwOsMB2Z1OjqGWN1NKXTmjbhpyrm2QhPudkJsBzQOjyeNr7FBPTGEshs2J7+hIPXFTvKY7kbGrnZtPTdQ3bri0SoapoNUTS0XXdLOWnaSLnPINw3hmjfHP7dib47Sbw69/8At94Xr58y3Gc2G+23A1HUErE12OAUF0fzP15V3sYOV2bWpexlY9p5wT6rj6+AxCqqt0pIFTs7EXTXV/00wnI5ZYr9eBcjVGU/X7Hp58+5+vf/JJ/+OPfEeOEc6ZO5pR59fIFzgld1+NdQy1JYhX1rBIdBYBqmlUxrdmXaRMXpCmRSxfstpNJdCsCd6gmS66dJf5il1YpugQUKFOcCE7LwJrbwSLczeXTds3sRokpoiR8EGMs69q6zt0jxPVrfW+VAS3ndEZxU7Kgg5TMnSGAJo7HaWYGfbvFp2yRSc6VsiwVbPIMw1CQ70jO9pyHwxHSgSlOHIcDbRdQmVAcoev5+ldf0W9e8O///j9N0+k3FqlUwLDa5/vorU3B8mh18euja/K+16BKTlfmc+0fWc/1ulUifjjL5CHC/GhAaG1zriVnJdhzc/w8cOBc9ftY1XZNnOuwORHBN56mCfzpH//EP//zn7i+2vLq1Uu8twHzXUeOO2JMeB+IMeNE8d6ezZXwsOrrrIHa1tdqQ1ImzM/EWZ3/6wW/RubODX+yhaflXJOuKzTvTqSfYOcRl2x8OFXlq5R+F6hwbv/Ue5wzOhEQNSQ55Tir3qrKMByJcZrVY/v9hrZteHP71vK/y3M5JzQl0ALg7u6OWKoo3N7eznZ5PI7ENCFe2Wyu8KLcHt9yHI5cPwncXO8JjRDfTGw2O7wPjDrMeGhVVx+UPPLId4+ssfdrlwjzw9olgOhSe++i0pfF5MPtpyDKS11YL0ZVSyD+wx//wL/8yz+V0LuEc8o4DXRtR0ojSrYqB6EpiyyT0ji7JaoUsuCA9sLirX9uln5rohSR2YYEZiDlnFhltm1L7ZiiijpXgZ4Rih1agwDOx7P2txJa9c/GaPGr4k5dJbAgt+fo5EzwmiGbdDPCjKQcTWPI2ULvcpolcopHXh/eAh1t2892cPUbX+33vHzxkre3bxERXr9+zTfffIP3nv1uj0ymJsc8kfNI0wVDh9uO777/hqyBtm25ub5mignnAm3bzRFJnKu0dmj1dq3FPKyWXtaAHmg/wRI+J8p3/e6jxKmu9usUJAnFFikQnP2IgpbEXivfYbrvJemZip/Owigt0N06bKlJc+l7tZhZwdH3e7p2Q9s0iCaQxGbT0myu+MPv/2AqeMoMw0TOoMkzHjOCY9NdIU6IcTSHurd+55SIaUJTQmPkGAfy1FrGhjjEO4uHdVZq0jlf+nU+qbalQlYr7jVGy7/03rZ4UOftu2SLXDLmA1VlKkW7BJkzRbIqeTqCJkJjyK3liA7gG2KymkRCKZRdhHxK2exGFQsagEJwsUTaOLLGWXrPiwZTm1NOxFVES8LOE+donENTJh1tvCRnQuhJdwOHcWDKI20X8AJxes233/6Vw3Fg229gmnBxwCWPhJbWbUgxQYqMh8TLFy/JJG6u9uQEznU89R3bfsOr25FxEmg99GWLi5gsNUIskcJKnM4Yuj1TrmRZF3FGVGfNZ1Zay/oq4Q7zWrd1XPGWBZFdgMLKiKvLqjK9+9XxK4M+Z5DvItD3k5xz6JIRZalqOmvkgpDJs3qvwBzUeN7heobMI8NJBAY1nnJxqfTbDV484zgwjSOOTNPA1dWGr778iidPbspAZcbhyDAczZ4MPa5UtYtTZBhHnMPcHDBXM8ixlBzRzPFwMJd82T/F+cbC8sRcBsK57WbukqgrGweLqqHc0yUj3Lp3CnBiY6qahKpS2RhAQnWyc0v0kyHJaXE5qZClADdZEHWgFphebeicCzGK0nhX1p0W+7L4BHMmx+nU6e/EVmtVmAruoNkm2TvPNA6MY2SIIz4AeI7HAy9fHfjhhxc45xjuDqRx4mq7wannu2/+xq6/5tknz4m03B1vSTny4rvvePHt3/j0+ad07Za28wQnBKfcxSNZPa4PdcHNa8OqELqi8i7J7GvHx8o5B6qrpXeuBq5uXj5XwjyX1DYfl0PzHpKO90ydd7R3EOfp4637vwa2Zsmp9ZpzB+7q/EfvvxjgskLfRISYJqbBtihwZKTU5dnuWkQy43BAXMnsF0NhsybIViMnlpC8GhiPCDEXgklGnA5hHKc5Jc7nBhcgEFCBcRioKpVzRWo5wRWpGJoS1F6QxZwzcYrkqRBdiRBCTMpbIWmTfFXqqlYCScVFklGVUiTMMlwcfuVHM4leeWGVilVKqyq5AiWTrOzKVcGxnMhpsrEXV6o3KDGnpQp9nTEn1O2JpPUIisPhgkOxmNpXr+548/pAcJab6hT6q5bj8ZZv/vpn3r75V77+za95+ukz+v2G580T7t684cX33+EybDc7+u2E73bmJ3aRURNxLDG2NZldda7Hc46BLKtJCyE+hMy+u12ScI+7Yk6/+1D7t7b3tzkf6Mi9Yw86li4dXIhzlqhUcQ8iJlnH8QhqQEPbtIgm2g42m46nT/Y4yRyPtyCJrMl8dSpoTgiRWpjMOW/o6N0duUSAiJZtB2rcrNg+JnXXMC2EJ6JF/TRGk6vKI1amJedkqlPWEk5nC8JKhBTNoUYKaSa6RCpqqfNuyTcm3mIAACAASURBVNVM0XZHw0LhzFMxQmeJzikZoFXBFSPOZU+T7Kq6nuZdwGqu6zpqqKLQdR6c2NhETfPUVK1IKBs55aomlhS9Rmh9A74wogQQaMKGJmy4u32Dy8qub7l984Y3r1/jnRLzgf/4H/+dt8fXfPnLX7Lb73n+/DkO5e7NW1ITmaajFbTGG1aAY9BcNBhfgOxc9oq5v/hVOMm11qrDfkB7SAV91+ule3xM+yjivOQfeujYAk2ft0t8jtl+l2rXYnZozsW2wlwKfb/l+fNnfPn5c7rWMw2HYk9FVKFtI03oyDWft2TYDMORIU5YorPtWyJqmfcpJdq2pZbYyFXVjMZ3t6uiW2hxcWCLIOdE0olpLEnR87Z+xbGvWCZGKepVkduoloPZtW1ZdJ4xJciKy0IuWz2IWGmUnDK4leTEyo/kCv5IqYuaLaBCUUg2lm52ryxVIaz/GVELI9QUFzR+BpQydV+HynYyShwHfAi0fV+gBkGD0viOIA1/HSM/fPMNhzeKd3D79hXDcOTLr76k7XqavjdwLipN6HCuISUYx0TTJEZN3E2JbrPFdQ0OC7j3RUpqleIPSTFhtXXfkvj/PpLzEmGeA2r1/aXXeo8fA4b+KMl53kwlO+/MAgydHHukzbZbOa1pAylCmpSUIsEp+/2WL7/8nOCV491rpmnE+1I9LisaleRt+7uphsA1DahayFmpB+ud2ZE5ZXxBJKWIxzqpdQuGaShSZW2aFAIBym5eCedlTpQWhNaH2aFfa9qaO0BLrdqI5ETfb/AoTg2c8UV9SzGRhwFtdckpVcVV7aKEEGpWBo3LGFfzQwUVIXhvarRU1XRhnlUKN6XqQyXclJIBKVrkqFgkVM24nvfKKeo1HpI43H7P8clTXv3wA8fhwG7T4ZqO8e7At9+95Ktf/JLrJ5/Sb7dcX19bgbHQcXw7cHd7QPGo99wdBnxoaXuhVOQFzSv7Vwszf4gIdH75GEL5EAJ7THJ+zG8/jta+436n0vLCdYsJWVo10y+UgrB9A86aEWlKEdUS6O2ENgg3N9d88ulzpuOdRZ4MA/12Y3tQRkV1RPWOpm0ZxokUE7v9FdfX1/i2Ic+ZCyVReKX2mkSqfcwz07kbhxkQmv2u5bVpPGhCNOOyA40LACRhLiwGpfK8YPWAyQzjgKZMUwIINCVczgTvyQKaa8KzzISgxdYTXEFaMzkmYjoiUiSkqzuGGdw2zV56U/ujLgnWomnOjPElIyTGiGhReWe0vtrT0IeOFBO3b94QY5pjfWOMkJXtdsMvfv01Dui7ljhZ0vqL719xHAde3w4cExyGxCefPOeLL39FFzr+7V//jSklchRiVLIGvGuQVKvk5+IoWOzNyoze1c41vMsX1UCby1Lwkv15CQw6ueMZkb8Psb6n5KzUXwlPT0LURKqjvnC1ImlUT9WIauOcgkSCiKcWwxAsA34eaynpSzETip+t6yx2M04Dx7uX5KQWfD3j4UqaTJocj0f6bsv+6poQWiRb9TwXfFnkQhxGUs62ML1nGkbGabTQuoJ0pRTxlGCAXICpEuETY2TTl53EvAe16jioWWhS3BmJlbooS1D6pgmknLl984oQzMeXUHQcEVUasfF2WivoWanLGus7Lw5VDq/fELq2qOfexlItTXmKZSPdMrD1veSyxYJYsvrx7sAwDLO/tqr5oSDYqlavaBqmOWBBUNI0zfObyfgm8PzT57hSdnOz2dJ1HW9KytjLN68RD9I0vHrzmsPdW549u+FP//yPfPPNd7y+O/Dksy9xTcuoSt+byXE8Hku9oVD8xqdB5etW12BVa2v/TonJmKzKqqRoymf3sS/OM07WwSHvpKIPJND3RGvvt8d07vvH4Lww1/r+C/xdJespiuudtzo1ZRfpmvERY2I4HIgx0m/2BN8SpGEcDry9uyXGyM2TG3a7bQnRM/tJp5E8GeJrmR7LM9kmQ1a9rymSLaeMSibkkknivdl0KeI1471DS9GtomPNqqCTZb+Sqk5KZTx6ast5V6y5NKHTiJTNipwqrjK+akeqwWhSjteB3vaWOG6F1LJVg89KVlc2TxLbir64xLSYEClnjodjkZY6j75KJhc1VyjFp8vfNA5oEvsrWEDOiUkjOLFc06YjNB0utGQfiOLY7K/4arfnyXDg5ZsXHO5eMyUj7FdvMw7Hk2c3XD97Dr7lzeHI+PYteRrBBSverYrGZBs/rfyQywJ9cOk+0u5LzJNbXpCY58d/DAB03j7a5rxEjOfH7RWqa2Vp9x+glqBQahGsRTe2anpLlQHBfEzDOBjAM0x435OTMmq0Le2GkbZtcN4TczTgomtBnKGZeSAmNZdJyRrBKVMJRs9xAk2gEY2RNA14HL7EjxryalXiQ1GHEUGLK3thM2I+yGIP12NVodKysVAoRC9UR3vEsaSyOVWkRO+orqTAahUKsAudBU8AY0zoFJdKB86CKxS3qq1rW84nNcknQFMqDNYEdJxJpzTFAkjZ7Hitsa7L3Fshr0TTt7hg4ZW+bXC+IYtjykrXBNq2odv3NNvAq5eO29cvieOBwzDRNQ1t29P2e1zb4/uWLPD67S0xjvNv5pyQVD6c4AB1NMyE+tBWEI8HEdrH1vtj7UNdLD8JIPS40Vwf9fwYZ8fPpebqPF1su8rdcuH0BvS0hLZDy8Jr+x3ddsd2twFnlQg8iU0bcK4h52ghZOPBQvdcoG06svc4sagTKQ570UxWkOxgiHPBZO/EnPowlwYNolUpL+NSnkgVl61Eh1tXyELn6vnOlTKZCjGaY927AuKUe6GK5hppkucxOvHxqQFEqiApISni0lJp3EwGZ3ynjLeKID6wreValFIWM5PGSNJi05p8xHmTwpvQ4TyFKQk5C04dXj277d6YjfP2nCXaCFViUuIQ8Y1tWWjYWeLuVcJlq297HO6YcqKXa/bbnhCeIc7z6tVLctZiv5eIK/ELh1itnY/HSS+v6UseifPjD7VLhPkj1dqPazMCqOec5jFOYXmFRsprgl6q24m4GRVUtUp0OUV2uxvazQZcIDQd2/0TQusRDz5YxfacM2NKND7QtoFGWlKMDINtG5DiRA62zYJ4R1KH04yoQ72396lsLKRK6xvapgGwa1VmX2VdFrX4dMqp2K4JTaaimnQr41EKirkiB70TnDf71bs1jF/G0pWlt96ZW+1u0zjNrhKXEgFbCMGZOpvL+Fa70EyuGqIIaZoYjse5+rsr0UJ1KwtTVz2+CZBK/SGx6DBxjkCLc8p2sydmnYEqJ4JlwQlZHaiY1MMj4tn2e3xUxrtbRK142OH2jpQzu+trNtsbnuoTUrJA+mpvx5QolZRtPKum9pFrdx7PB1DW93HDfOhvPNQ+yuasoNC6j6py79haai7I2JkknUEhytiukmnrQVxRP22/Eysl4k2iec92f0W/2SGhpd/trBKCU2KaCH2gC1vGceQ4TKRxxLeBxgl92+HEM44WC5vihJea4DyhcSqFmw3N7EKDhBJfHMIsBYM0c9pUdVJUaeicw6cCauU8U5GUPRyr+iSUOraY5KbY1wrzhru2c5lHnFJrimjZx7PglwZ4rd0K4gneSsvk4lpJahKwgkiaLfIoTRPTaEkAgmW/WPUDA2KSQNIiQVMm5iNTmshRQR3BNQQXTEUnIKWigggEkTJeZivWKKcpFrBPelwnyKSQIl49YBkxh7tb8D27zQ59/pyXL19yd3dHdhmPPzOhVuv2o82/+9reuX/0ITX3IYL7yV0p939geV8rBpwSan0tkY5ng7bunl56nQXsWtIuqWLOu7L1elPKdgSe3nzOJ59+TtftENew213RNB1jGtCYGaeJzgtt35EyHMeJ4xBt78tVmY9pMteHa5njcdU5fFE71YGPbq49m7PZhXPfxM51M0NZjosv4E3M5JJY7VbV8sSJ7Rda0tXMzrRJTmWLPSmoqyomGWXZsk9JhdCYC0Evg5pRcXiEMcfiD00lZ9N+M6kwJUuKFqBrW5rQIMA4TUzTaG4mlClbnicC0io5RVLMeBrbf6VxiAsl19RyQX0wsMuXuR1zZkqJpGXLDDWJ58XTNRsiRwPGXIvLiRRHjoe3bK82XO/3jOPI3d0dqNUwsmr050ShZ4vqtF1WK9+PgB5XZ9/vHj86tnZt6K9/uHLDemxx1it5YepFra2EulIV1ncTUM1MabIdsyXgcHgpCdFeyJLIMiCNsL3acfPkKddPP+f6yXOeXt3Q+g7UqrW7EAmtowstt4dIHBUdIxJgFwJNzhzubnkrJjnTOOHSxDY40MRw+6L4+zz4QJ7M19c0HSHEAuIkTLiZfSZqu3St7R5zNwCS8KKIl7k+rNmsBcdQoEjMeT/wlMk4cnHw++pXRQiupJNpTZsTwLacUDM0536I+LKPitUHcmL7iJIVj9iOBjFDjBATLkW8F3wayFMmq1XPVwkcD3fcHSd8E2hLlYPDMOG8YxNaOh8sMGE84NqJFIUxxVLsq6Mxn42NVWt5s15H8hhJ2fI7NWeyZHKIqFca5wkaSjraHXdvv2G73dN1Std7CzWUgCZFk2kBs25W4qbV1fSUolmstgqxAzXCqCQB1DWeT8Ggx+zPhdD0QWk9Yw0f0H7y2Fq4zJUe4xQiQhuaAq4tVezMkW5ctQkNm77n6mrPs2fPePr0Kbvdjs1uS7dpUSyXMefEYTjiUwlAD42V4RgsV9I5R9s0xHFkPB4hWe3YxlvhZ58LARUXiPqAE2i8L0S0TIAUlwlKcTWs1Umo1nPNG61o8zoZ+6FxsUV0VvXhbEFUW/xkTqbF51fjtebCYrlud18zVixMUAugJd4q3Q3HIwpmKojnOFqgfNM0NF1rqWclL7aOZ9+0huQCTSFec+Go7X0SI1abCDS4eWPgXKQ/EhCXyXGwZB4t2U/OEYJDxdxCh8Mdzlsxt9vDYMxmNqnMdLI6SGYGPIbVzgDjfGApCPYxVqUJ6oevXM/lT5CV8khHzrjKWrqugw3e14C2ekClViwl/rMEkOec6fue/X5P3/d0XUu/6dhsNjS9VYWrngIVZndDKBE3mWQZHzHRtA1dCASUPCUb0JTKdgQFXBCFVDYPokT0wBzGWXMx0WovXmZUQrU9A+KWcaiRNmuOfu9aWcXAsuLoutj1spKo9p+Q02S+y6quzNvjWkCSlQw1bYWiKkt2RLUq7t4Lrm1JBSRTMtNkvtKm31oVBqDtWp42W5x3tAbZWiaMZrKMhE3PzDecI6FQflO0pNCp7dOSS/yrAOLCnPpGNgL13uFEi396ogst+03P8XDk7lD2LtVcnlSou7fh5EEqW6v+c+rfDALVUf/Q9v4q7buYM/zEkvNSJNCaONedOu/YUvPGiLOCROKEq+0Vu+2Wq/2OJzc3PH32lKdPn7Db7Q1dDc7QDrcY8lYrVnFYelYQRyQxDQPiPZ33aCtEVcbhOJfZcN4VVTXPYXYewSnMETWVqBQ7rnXhAdWtUQlHBPHNrDrVxbCwsgcmdBWBxQymWTP3gSzHCmEa8tIw5yDmbFpuWWziMk3JukkpF01CSF7I0Z7DlcCMKIlxMneKatlVTkwzESf0mw3bq2sD2m4PjDFaWJ0IySX6psMV14tU27ugqdNkARtCCQckz1k2TjBUPOY5R9Z7M2+Cs4qEmiLBeXabnuNxJGMRW1aaNM/zdNGLd95m2+JiKMOHNX3kB6UwwjJXNVPqsfaTS84Z/LmAat3v76pzuux6hXO0bcN209P1DVdXVyiWMfLs2VOePXtK07akFNnttyBKHCYr6IySYt1FSy3UroJKIkzDxMCBXHanFjKuqNFN6ApIpPO2fV5sAx8U8oUMiJls1lvSuTPOOEs4zsZJS4TO/VaS+4tdfpqr+KiJUAL5LWanrtCIlOB4sDQ5Uvkj47HUr+wsB9aYldJ1PUkFJJEJWK0lA2GyJo53dxyPA8NxIDhH03Y0XUfTd7RdZ77P+gyVQWcl3h1L+KMtVC8QnLPSomRoLKY4Rdv23qtpQ1KkWxoGc5uheDXtR92yXcasFTzSFu9BmY8CZv5I8nz4d4vGtY7L/v8kCGH+fa0B5KfFrurxGZ28ID1jjoRgG/x0vQWwd21D0zhev3mJF+HZzQ1Xuz192xIKAqsiZE3FlVG26wvecJUUIVuVBqfgSmnHaUhMhwPeOTZtZ2oTFPuwoqErSa+mBqbC82RWGatdZ88sQNkgc7l2LeEoRKM6L4YHx5KKzMoJgQNFs1jGbx5PEbCoXFALDJhV4qo2FqRXBFxlLc5sOqp7RxzRmTQKIeBDy5ASsai9aObNq1fkJHgf2Gw2tF2PeE/bdfS7HVlKUrRoQVNtzNQJ274hpUiMYwl7rJsVa8mHdeBNFZZsYzupcEwREILzTCmSxoE2eHzGUGTyXGqkKDbzqD+0XqtNXhmhLuz2g9tjBHcJg3kXgX4wcT5mP9aFXH90LVXXBFrPre+992y6re281W/wwUpQHseBu7sR7+D66RM+ef6U7aZnHAaSZrb7XamnatzTbNYSXpfUpsrWK1oyRJzYPibHaHWDJic0wWzClCNB/bxhsBRVdQ4wFyOauqilqEJFVynqqqy/uTfN56P3kI/soUVSAaWLY09dmAWkWms0TghiScoOD9kT6wrOJWFcrTpD6Hvb9iFFLP7YEZLlinonJJRxOOBo2fQb9vs9TdvZ/byft+2r5UOco9ijxiC2m5ZxVHIyolKNaLZxjeM0B29gocXkYrKYAqwW/DEZUbfBMcZMymDpc1oYmZuZVBmgixpnxQVqTaLFVr9UzUPvHTufg3Mw9BLxzRlND1RNrO29iHNdSa528lz61e+y6kk441q9qz7F9fUiQtu2NI3V6hnjSBpHXPAEX/yHXvjk+TNurq8J3kjDFQl9nKwsSdt3NAWuzsmiUsBsJI0Jp7niS4QmsHWbktJVSowUh7sLnopkzNy3SIFaJCCvwgn9eW3Y9cAVNanmGl6atDWzOnnlfuX4x5rO0niR6BXkqLt7i6Zil5kE9eJIufgivUNcQ0qWXpfVipZpSuRk2kH97ES4udrT+A2+bkeYIr5pCX1HaGzj4lT65MUhXkhYnd3j0eoV+SbMpUk1Z8gJL2KpZaoW4xsM5Us5zmORUqlu33VkHfDZJLrPVmZUawV7ZRlDKOVXlvVr9OosvJKFjg03yQ8S4cMC6tzQtc9rwGkdnPKTSM4PC1laOleJtr6e101d7/I1DIMV0moC4oNlPwRP44RtF7i5vmK36U1qeUfTWiHoGCfaplQ0EFaDWoCHnPFiNXiCB+8FTRPjKEzjSMpx7otl9JuvtsqtDHNonMx25SI3qS6P+uh1zOaPikg6GYf1hDzkVjHGUIIPqgQQqFUNP2i+KhiFqZloqdfrHFJTcmpBL7AghRJT3DQdgm0YJWomgmIMzoVlL9OkSpxGJpSUlRCaZSTEtBBVK+WSZmnmIThEvQVvOqF3bhWlVJ3BguQJF81UiTkieNrgYWObUTFVxiPETCl/mpBQK+cbeFeJZZaA6FyG1CKoTvTheTzX7XFGabrJcq67R5wVif9JJOd5R88X2L3uraTCOYGuRX8lzrrPh4E23lKypIStCVxdXfH05gl9Z7sgeydl1y1l2/eEYEhijKMRXEqQlnzJII4mQOMATYwpz3tl1v5aTmlFUXUGeNYTJb6oWvX4PARa0rGWS9YK6sneLmcA2T2JOY9dXoh7JtCV2vrQ/LDYd5b3eZ7YXlPG1GxP721Rp2VujJjKEtNMzuZSCk3DlCKH8UjMEXBI8HRtwPcbxgx3w8CLV6/YdD2NDzRtQ2iMyHLGiq75rpgDxhOKW9JyddvOcmRTJCdKvmjGE1D1lnubilaE0DrHMETQpc4uVI3G7NZZzT9bo3WcRORk4+Ziot/TFj+0nTPh+vqTSM51h95XelYd/lJb79tRF2yVqE3TGMoZTJUxCF5o2oab62v2ux3eOaY4IgREMkkTm34HmJM7TlZYGbUMj6ZpDUX0DkcijkeOxwNxOFjoHdA1bUkZcxbUHgKemr8oc2iZA+P8stifVOm2cuGcD4bqIs3Px7SOST1eOWwdx3rm2odsnx8afWUWf/OiLMCc6lyH2GApSzSwW5rkUMFsO/WzKQO12qEnFLC6EattZLY/iPfs2pZus0WagAuNRTnlTJ5GVAO+cfRNoAmemNZrZFG/U8q8fvOGtm1NRW5rkTVwkiCPTEPdeyUxTRHVid1+Q2haMnfk41iCIaS4OUvZVnSl0lcJhpksqgvQJw8T4rvX/ymmUlXYNRGeB6L8KOI8v/idHZRZybtoHK87CbZw64Y7NX3KB6u5s+k6nt7seXJzQwh+LmFZF17OCS0ZJyma7dm1fSnc5XFqML2o1WU9TgN3d7foNNF6TxcamqajKbuNldLOxU5ZgASTIKBMq8LZpnRa1gmmInJKosaZs9UN4j6DqwDayeCtkV2Rmbjea+wBJZVrmK+tar6mSp3mqLcQwYoJ1QwVmaOyqnQJLpBVmI4D6oRN15rNuL0i44h54u5wxyY09Nsd+6sb3r54xXA4cHt3x9ucCI2j33T4xkMy4Gw91NU8DF5ogqNtfNFGSp/FkXOxlduGFCPOjQb8DANCtOD6sv7MNBF843DqLAjljIHK/OML81uP1zKP7xvcfv/YOfizJszzvWzO2wcGvl8GhM668yjYUSVmDToXsZ2RRSy1C29Jx94JTd+y2+/Y7XaIUEABWzxVDZm3zUNLmRDbSk4zkLWUiByJ49F2h86p2B4W8OClqhirQtm6FLgSXRTLWU2kxGGqnQuXy1WYdL2/IN7p851H8qI8frCd2EtrNa3e50wTutcvkTnEz+xDk2bBt7Y9fLKAgKZspDSMI77raLseFeU4HMkIm15tTlMkD55hGjiME4fDLc45+qadAT0r3G1z6rynaa306TQeC7rrcD5YjHXJiEGYdwFv21QAvIASkNByGCaOw8Q4JRrvS7B/LS+yXseFMZVav2ZnG2HKCq19aMwuzAD3mOvqdS0tfzJXyjmRXWqzTVn7SMUvquVkB8TZNunzdnPBI8ETfECTkEs+pPeOvrXdr9pgwc0eV6qdmErigoV1SShV5ZxDxALQRRTNAxpH8ngkDwf0eETGiUqYLjRICGQELQEQs3ewgAtzgoyCOCvFgVafoZR0LoW5gkN5UK2EDZWSF2DAbmh8e6l0D5gajRT/bVFLgSUpbK3arhOu7Xc8ddHVqkxUjjNfXQtk1Q2VtNRFyiXKp/KUFCc0qQVfhEC/3ZKACYe2DfFwa4nsCn7jEZc5jgNTTlztr2j2GzZBcAfPOJhJcbg7kvyR0HjatiHgS/ieKZ/uUIpkO4dzgRAsPBPviCVh2wi7RJS1nr3bsukzm11kcxxNysfMixcveXV3wFVQqKjlMSYa3zAX1dYlYSNXO3RFnI+ZJef2fFXRRRawTIRlzkXKtpPr45fbO7edfxdSdQ7+1BCt6us64f5SsujFUACpzmY1RNWFUMFPgnf0IdCGQBBvgMWsCtsCd97273C+QVywSgjiS6hZYhzubM+R8YjEETeNyDjiQo8Pre2KHYLtvaGzFWZQQ13QNTVOlAIvmGpbH0hLPVpqcSiZa/DUVuoPlJHI89FlhOynZj+pSikpsgao6vVFzbq33VxRn2oWkMn31fvCI2ohXy3fzMSpcz2jGsKYdTL1vRQxC6FFJRABCS03Ny3DNDJknUtrIkIk83a4sy0B+4bWb5DGI6HBNwPx+MqCBoaETGD7kxb7dlYDPcG3JD8QfSB7Rw4WtdU2bbEA7BnaNqCdENqGtm/Y7q/Zbnb88MMP/Ot//zM/vHrFsXgDvG8Qr8SUlyGdEfClzJxcIMzzdv/4EoSzJr41YVZirec81t4LELok2h9CG+sqKLTJahnPNuWySWsh1GJ7OR9woeROlhIdfS22LBiMnwVfuZMTSAugIGUj3Lq5T06Z4Tgg04SWLdzB9rH01Se68rtasnTZ80UX21JLtTtK1fdTRqTzfWaI4yy3sEL2dsJCnHWMbPzqNvXCulDyzNzm6uwlXrgeL5pUdfec2rynqu1DvjtjdJbGlef4VCPoVO3lyUppNpsr+q5nzInQBPC9BXw4q82E84SmYRxGJCt90yC+JflM0wld38O2sfpPxwPjNGLVGwXnYMpWeM05K5Vi7i9wXUtwVpmw67qC1tscawG4HNlyQrsNN0+f0W13+O0T/s//9t+4O9yVDbQiITRl3xyHFKP7xM7M9wnvfez+tZp6rrKeq7Tv095JnO/SuS8FJDwkq6UQp21B4AuBlf02sUp1Pti+JPbe07WtZf5TiKckXKOgMVm5y6IG1dy8qWQvTONoCyYnUtnItWmCpT1V+zevObauhIpJkprIbISz7C9iDwMg5R6l7CQU9M++uyT5Fql5OrazniGZkpqMGc9ablHUVFnMh5lAy3cVkVwT5rlL4P770pNSQT3nlcQQSl1cS7kTf0SCo2tbC6FTSGqFr5NONC4QnEd8MJs/JgSr4zQMA8459t2WTejpui25bP5bAT4rsyl4V/ad8VautNl0NJt+TpCwPlpVwVS0m6xCzGIJ9eNERnj+7Cm/+/3vaNqGv/7tGw6HgZyFpBmyK9ctmTE6mxGnY3gJU7jkBnvs7xKB/ii09l3EeY8wucwZFptztS1A/asdLX9epORYekLjS2FmwfuW0JoqqmoxsqGzmFCPlVREzTcWx6HscG11c6YpFpeNRSMpFcSpkSJiu3PpCnIv4E8FWuat86q0qkalmkpXtV05eWpZEfKiR7hz5LD+zRpIwlGk6WrBSAWjlkmZpboxlpWDPZ8RKMz9l6LdCJT0LUqlTp1LqtScWs2JlCHgmIZbYpq4efYUxBM1F5Na0ZgsUTom+rZlilNBVR2u+K7v7u7QYcJ5bxpMaItPUmsuEqZumzbhKBiFenK0zZ5StDjfrGoBK84KdrsQaJ0FsUylEsM0Rb74/DPe15h9ygAAIABJREFUvn3Li5evQFyp3F/HabXOS/5pVYgeI8zz9X+JQNefL4FB72ofrdZesj3PifPcVF4AIVf2wFyFMhUbS9SyxttSPtGMZy3earMznTeCyzlxPA6ICzStBb0LlC3tIpoTjXMMxZbq+562bc2OymUrPRGLGlJKrOkipapkm03MuncKzPZvTbauWwTMXKiOl2BO//qlWo2fGl63jE+eJS9U21eXU+abqwnWqnLndHKfSxJzlvyyqOEzUym2ayx8RNWy7+ozipbEdwBNtlvbNBDeCP3Ns7IbeEnlUkvPi6UYtnPVlLUMl4wwjBMxWVnR4VjGQIrWVOOci3blnS/1hj1xiOgYQSwdMObie20sFVBFaLuN5ZvmzHA8Mowjd4c7drsrco4WgdT3iE5M06FOmw1JlhkoMz53X+O41C5JwXdJzvdt70RrH5Kc73KnrJdetTfNFi1JxPNGP7YM6w7NAEGc1S5tAsHXZFsrkpw14bBNbZCCls5Z+ebjG45H4jjYJr+aySkSQmC/2+GcY4zJ4mOdw3lBs4Wf5ZQLB6/qpczpZgA56WpxV+KVQux59fQLeSp27zoqQrbE4+JVlfJTubypDM7s34WYpIA35aaFOC0c7nReToM77LWo7u7USV5vVlXb2cxQQZ3gxRPHsaTiCTmONpE58+r7b6DtkdCScDjf2t4uYjV2h8Mdu93OJFWK+BI/7UMgDmPREsrCL2p01MzAsai1Mhev9sUdggihCaYJFVvTjxOh7xAxdNkYmvm1b+/uyCnychzQOJFT5HAc8b6z+SyLdJaSZV7t8OMa470Vf0EqvkvNfde9Pyi2dn2jdQTJfdXWLQ8nFbWSWZVV6sY3VbU1dK4uTl9q7fiZm1rupS8uk1gKLjs8KYNzi9qZYiTHaKqx8+TjwDgN7Lqevt+QUrINcdQWe0pVhZJCLAvaahC7zv3XrPM5aN0weG34LWquVsLDAubrVoB1W8M52q/ar+VFSl/M3q1bz5flUvplsaCFKEsf63cpxxMObcfrdQ9pQqtAhVKAzIdgleYF0ojZ8bXUirfr3rx6we7mGRlvRb7arZV6ceYmqY5/EUyTAfq+Y7gby540ufiZlzRnJ56cItM0MeqyHURlNKFpcI3tPi7OCFVSsI2fCm5wPLxlmiLH4x2H4wEXWpxv8KpMw0Cz7WdzodrXuW6OhGle/y9rb94kOXJkef7sAuDuEZFZWQfZ7OnpY1Z2Z/f7f52VFemeabLJYmXG5Q7ADt0/VA1ARGWx2SS9JCoyLncHzNRU9enTpyK/jNK+f3zNGP8SAOj942/SMnb0ou9/6rAQ8AD+cLwYrxfSRDmz+nyqSpBiUCGqLWc7eCURu4l7zaiZKnkvcGPq7V6c5pmipIQN6MCwF3s+FaCyLvrGHqpufnD//PZq9w3uZP++OSSLnUySWdRjOJvmree/HmjeXkKk7t+X/RTfQ6y3czb1m+3g1N8CGX0N6oFP/GYdRa9IOvDkHApIVbzXaV+hBA0/vbcA3HG9vjJMJ6bzAyVXSl4ZTxeWZdb74YyymSJ9aPCYBsJ5UkLIqqJeeVUZmZJX8rrQ6qpj6fvENKeKgMMwkrMnxpE0DIRhIni4vT4TU8LFwJcfv/D45bNGXNHz8vhEiInxcs/H+wu1Nl5uV12WrzgdMbmaIyX9aFzH3/2lkPb9z3/JOP8z4/+Txnnkv37t8TVX3VOuvn17n1avXzlTC+8y/8cTJqS4KaZPKSmpPQUwGQscxGh/K1CLQMC8rnrU1ioBIThHzivLbTatW1NxywWc6KHQwRoRepe/39LDPYTdxvcdIoV+SxzvQYMtQbUv+0bf8+4eNh/zmoBsanv9d3sh/O0a/Lwgfiyme68RQR+4A5Y74kDqO7DKDlY0bUCUmdsZNc4OG++8MnmshlpL0VENwOMf/0gMA6fpoj2yTQ/EUgoxRdIQEZTb64OSTcKoYaVUlchUg1Clg3GItOpoMdNqj2K0bzN6HaA0l8Ky3vBpJgTVDJ6mievTZ/79f/9vnp++8PHDPZfTCY8jBo9bZj7cPRD8QPmPPxKd8Hpd2be202Zt09r17mieX9/7f873jj/7mrH+1WHt+xf5eZ3s7WmxX+/u4unj0Ts7IniDxa0uaQYUEFJwnE4n7s4nUjQ5f9twWwZmOaIYUwTYuLf97ZRSWJaFadChs9VCGO81bNwaPJ1seU/tx8oRobPraLVu16/X3DrcaffEuoM78NKjXHVNGhL/LKM5Nhh1V/v2sYemP8+Djoapb/uQ+7ojy6X+jGS/g0T6dhsmYdLf+8Zz0OK9SLUDUNuxUgo8f/mCc56//8f/gQyR59dn/Diq1m0QHR/hCi3LQamwIVQqOuoBJwzDgGuNdb3pz0o2aRLtw81FtNcUbb4W53G5gA/4EFmXG49fPvP5xx9pNTO4RigZ5wJ1mQnDmduSKS4xpsD1+rodltLvp6HzTXQcxtceP0/h/rRRfu3vvlbW+trjv2Sc72Prr31Pc629UNABIGc1ShVsdtoJ4rxOELOwVUxVf0jJyAemwmaxrDuo8TWTViS93YQOzSdrUTHkWlYkevK66oIa4KL20yyXNG+01TXhcKSqyTgbq9APHIt99XnUcDrpmi1b7IVtG2Dku+mZ59zCYN7Y5G4wbxfu54v68zpmqUUBNO/V4Fo/2OQXN4jD4ZrBePaeOkjULOT1zr/5Hjhazpxi4Pr4yJfPf+Th2+9xyJaf6nRt7b0EPRzFV0IKWwTV1FrxOmJN+0JLYVlXSlmAqt0lN7uGEJURFiI4HXEYY2RdFl6enjQsLgsvj5lE4zKe+Pz5j3z8/tecpxO1FE5D4jYO3GalKzajMTY7bP+cFPFPhbNfe3zNCP+z8YF/lnH+0hv4qmtnP993N773sB172Y6AkIaNyps8TSPjOGx5gQpuBTVWtNalkquyv5503mJA6sqyzMzzDGjeU2tVLq4PG1K4jWbfKFoKEBynR/d8V94Zi5YbVPNm94/ORKp2MKbjPT1M1Rsj2/N377o/GogZQs8hDd0V2b/aASLZ/5OugcT2nvpHP4y+nnM6fdntBQ/ta65PRtN1EHqUkyjzzBgDc8n89OMfiDZ/c7nNiqgWQ2VTIrhAq1kJkOmEC4E4jMTSWNpCW1Vt3odETJUqFaFSStXmhbYDYFIbjawJkGjdfAyRaRxYrrDMN+bnlbosvMbEv//2P5iXzD+d7nAuUfJKipEcmjEWK3VraHDsuc3f9vEeiPvPaqj/Kbf2z/ne21/4ynX1Pdk97js0C6eADbWRok6eOo2T1bm0QbeTiFVWpClhwLkNHNLn18lcNTdWE40evFM1dg7x/h6vHUSW9xLKW6Cl1wi/frG2XXXjW0i/UdTNOPXs6Qfcfn+k53aua612r7zRXPtvKpj05rHnrPSrcaKRiD1339D9XtefheXsh4ARMramxr5eXmzEhJZI3GFkYqyNp5cXvDhKzjw+fuHj9z8QU+Q639RritjQ4y4kXbnNs47USIk0aqi82jTs6FEygRugFUpdWXPeGGO1KclEHDgjH0zjyKcPH1mXM60sUDLX58rz4xO/+/yZp5crtzUzXT7w6Tf/XQ/jZuW72tffvKZHuc2/PI/3q07qv+I539eff+nxJ40zHJpzN6vr70GsRrnlUtv5ChgjPzjlRUZRZl0ElzRHaFVzvxgCUisTnuYb33285ze/+ob7U8T7zLpk0jgRDQ7PNbPUheBU2NiPAwVFP0MI0CptmWnXV9zyyvlyIsqi2rHOk0VwUghZkcCuO9svS+ljTeee4NAivdL8NvW9/p+hzTu6iQlTb6u28XypooT5fr+ctTJZGrAvcKOJ0uK2dyVsuSqCtsQBXc9qXyFPq/1KGkjYDi+x8FTQco6Yx9D6XkP8gRbREXC0hFE6b7jpTE4nOitmJpMmYbkt1OtMiZCj4zRecFVYa6EslbWCG2ULWUPSe+rxxFYZaAQPpVZuz1eaqAr/OF3AR5Ys3F6fcDWbCNxEKap1dHk48d0PP7CWyvnDJ74LIxL/g1v7PcvzCw/nE67+RMsLn3/3/3K+OM4fviOL47ZCc4EwjEiN5LzgbWZrdm8PQ/fmPr/794YOvi2lbIqMPV3QUBAvqkh4JLV87fEnjfONxonswfhWinBWyzPv1/M5DpvWda/h2Gqbeh3OPJ1+fZuvfPvpI//P//0/+cf/9gOff/o9Xz7/0eaWKOmgj3gXEYhh63DpR0NrjbrMXK9X5vmK63ngBqj0azkyP+hC5LwJFcWB31k/x0V5s2h0TOhwEh4Wq5vEHr+at3UdlHmXs4unH9sbOvzuNY+o8bFc2nPCforu4e3utfd3fDxpnTWR91O9axfx9nqO70X0AFapmWrCbpV1ninN4eNIy4XVwtJSGzGpWnxdMl58b7xRal8TfIM4JGrR9yMixBC5v1wYPZTluuEBKQ2c04mPHz8xpAFxlTRM3N15amlcX2+0KtwnYTxFrusjt3nm8ctnPg4XhniPp+JsUrhuYw9SDRB6u8Z7/vQGHDikbrt9eNOzwr1du51EsqdSf6Owdt+eG2Jrhnk0OLXGnlNaa4zfAaH+O+7Y6xY8KQz8j3/5Z/7lX/4ZKTfWZWGcBi7nOwtlbKCroY4heG2rwkod6MSrdZm5Xa+stxuT35lKPX/djkDpJYN9s/XLFQFxsrWRvVkk++yPi8K7RXhzx94eDD1EPhqYO5RQ+l/u4c7eO9pfpYtvd+Hrt21NvxwmefO4++/2AwF7XtlapdQm7eZYLG4CklvO7r0j4Bl8pAX1Auuy4KqQJq9KFbYBS8uIiX277FWlYtAGBB/jhngHGcE5qo0WdA7O45n700gtF0oueK+gUEgj42kCFxjGSEjJyjcDz8/PBB/5Pk2s5ZXf/q7wfH1kvt2oawYaUZwKnDXBeSEERzXl+6Mm1BG068ft18qIR1s47og3a3M4xKvl0r/0+IuMU1faAW9ZEIKePorKmnEaKoeNVBfLQbx32+cxJb55uPBP//j3XC4Tv/v3/6BJ43w+6+JWJV5L78E79sI12bW4WqPmlZpVy9aFPf/i6AE6D7TtJ9eO4up1Ca1LoKphH37+S8CYc24znJ7XdSLB8dGBnf43x6frhtE97XZqH1ah9ec+hFAbWu3eHxP71+6o/6iLaL+jJ733+/04AlJ9LEUPnjrtLjrfSYiaAJRKzZnoI7Ws5l31gEa6uLQQSqM5T3NB1fGs5o13qr7oHT476rpCs1ELzhBwr8ac0oCPidIq0QnBBhn7mLiMJ+4fPhDjwLd3DyzLM398/hGWV7yLSHO42ohEvFTVV0Ipi9Uojv5wH39uBft9/5qRvl/TfV3btg9VuOyvME7v3tYs+8J28asewr4Ja10nGWjOqR0oDnxQLVHc5vm8g8v5xHfffsN//82vuTtPvL4+45zjfD4putd0grVg0iPSQ7a4bUpnIZXUTCsZrKDdSy+A1TWNisduYN2vecsPTWpBPx88h3eOrpm5eU69GjMg1UzdykjbPeJdRC3QJ0G/W8E3CN4hD94iFnsvRzCng1B7Pfn9Vur/1Cv9+oFrSKwIzgV0pP1OazweJMe41gG+OZstY7XUUvCjrlNrlVwbaynENhCHPtZeaKVSctWxhE7bvXBKGwwpIjFQvacuK1ILpVSd6Vkbpa40FxjjoKlSCFhXhDoC75nOZ0JMhHHicg58+O575rLo1LkqTFPCFUfwOo6iOSsbWarg3tzzt3fMu7dg5maQxwjSnuFt/dnCWasT/3XGaX5cl/UQ4B1yFzkYJ86p1zSiug+HN93LKabI7pxOvPr07Uf+5//1f/IPf/cdrhVenh4pJYNzlNpIMXFdX8EHm0pVQQL+FEnjRG1+81htXajrorXNVvFu2EPwXi7t3ugrQacyaYDmEerGsT2irfTF2f47GOFmjH0z25fumHP+HKFrTZ3H1qPY9nd1fN1tw2zGufNlt6llv0hskQ2sku3DbT/bS149b/aHOrzskivsyy1NfyG4QLLm6JoztWRTqVADLAKFyugd3g+EMCDilHvr9UCne2rbWzFEfFLQpLSKd4FxmKyLREs5ISZ8jISkU9GGcdQDuzbGadKOlqB9ofcfP7LUFe88axOi6UR1R9JoULVd0flgPaI/f3zVSx7bHvt6fcVz9rXvB/CRxfW1x58V1jq39e3v+88WtyOWb050Z3/EPt0ZZ4YZgsHVQgyeb7/5hn/6538ktplWqm7SDfKH5XozKpmjNqV7edQTD+PIMgcNQlu1kHam5UW955Ys2FnYvSfY4Bt7n+oizLPrrzvRRVIvqmYoVN57u+PN/6UEf0tz5a2R7gkcG9DhBPXQrpd7vHnn3Wsdmw62UNa8+y6h8rN3wV7k6d6wHxTdCvU1nTc9pA4yid9VB/cAanu/0UYwLDYFu8w3m2KtaL1zAVXPq+ScOQ0T2mYmuFJ1TUwmpRPkxTvNf52jeW2gpuooyCGNxKTK8l2APDdI5pnn2404DDQRhmGitZUWIueHj7gQeHktPM5XSCda1NDeNUGK4K1bqbmvG43r0aLdxjcelIPxfmVvbGyuAxj0F5dSjqeAOxrn9mZsZ3krGQRjAwWVAYlbr6Y3BfeImMFKyZzPE//wD3/P5TwRauNf/7//ZVISwrKsrEvWnNIF7VLIBT+MXO7uSGlgXlacTOR1pdxUj7YsV6Rla2ZuNl4+gG0QaUJu1i2BjpE/gjqdCBH8gKMirW43Ncb4Jkft3RKqrxO3778v9Jdcvm7U7mBch4UEm7CFNTt7JU94wuF37T17Z4ef5XWH0HVffDtAO3i0RQL6N5rLh60TRRULNdQIdj2tqJ5QD6FxXQHRWvmKcm2908M12CZ0OFzQo01KIbfG4lbGcUJQiuUwDEwhsJTM6/XGOA2kYcK5QHN6oIbR05rR8argXFO9oPsHxAVC0ry1imxsqGEYtzmgw3QmjAPXZeXWVnxwLMuNkCawMQ3OOQ1jStuaMPqaHh2Ppi1mpMFGP/SU7eg5D+CPRneaa8qBVFHrLxdU/yzj3KONLrbc19WZUNch9u5hrW0GZ43U3uvkL2cNtcM08KsffuCbTx8RqVxfHpmvL8TBZEewfNXBy+sN0OnWaRwZhpGUBsQH2ipG0K7QNN9UyK0LOO3lEdcaOjFZQ7h+F237HsAY7O9lYwP0TgxpO0NHQ0XZqYSH+7apEGz3sRvsfn87QeBYAnlzytIOFN/9Hm+I4HZQ9tZs2VKJDqbvdTRnDe7WqeI6NtE0UtiCdM3VnenfqsJDw8VE8w6Khq+5qXTmW/QXtCZccDbPxOHw4hGpONNGKq3gjD2EOGpx6l1bw0tjuV5pLTOOo6aSSdFc33TdQojE4UQaBr0n3pyC015UjdB0IoAXnWDnfCSGyBAGxgVaGEjVU6RRbeS9d44QkkYMX4lA3jirg8F+9SFHj7kjs20j+v+twlpdMs1RLKzR/MxvG0TD1e4lFfAJxqP1XnsxlfgeTKmuMU0jl9OEQ3h9fuL6+sxd/EAMCRGHdxHvIaUuZeFtEK3moyIe39CTqBSkZKQUpA+9sZtUDTDqxXech9BzZtgMVPY8Tmh7fdQU6rqyu/mBrQ+wNUG7+a2O60Bcs/xYNkmSPfTd80kxA9jWtL++6Otqzu+2iWldCKyrEHlxyqTASH4GJDm6loPfjTpEtCNnX9sOPm1AmwhJsOtSRYnWaX9iQp6Wl4nTgUSd2G9iFSCqFeycKhnoc3l09KCKg2dZcKjaQXOO6ppqPdXCkhdyWag1KxPGEN9oeynFgWGciCHRqio1uhA0/PcdcIw0GgGPrDMiyueOCPjAmitxHCh9fEdr+G2qtl7Dezv4pa9tm9FBtH0t34av1SaoY0bZQaFfevzZJIRunOKUV+qc34nkB10grI/O+3AwzkgIERGYxpHTaWJIjo8f7okxUPLKersy366cL3dI1EE0zWQvvI+74pxAb8MSUfheP8w4a8ZZ76DerKZTsqzR2fVd9A7g6NfYPZDS+WyTNyM40InvbNScLcwVYUNE+3u1BeqE8jd5hgESfmPD99ft3k7200WUb9tMsrOXrXDOuj5EZUEtJN1yRqeN0X1ieK51Owy80/VSvrlFBebp6aFsrRS/UrJKuEgX+fQBHzDUlANa7PBVuzpayUjQ69P7qro9PjiQSs3V8AiHSKW6Zt2t6v2FxjzfqKKTtMdxxEXtjJEoW+5WpTD4aat5g7dDvVgKrUOYdHlUdsU1yMuK84lWCmysLlGObWUDw/YS4QHwefNvthLTFq3IHlUdveTmSd99/RcZ59sTYg+ljhN6xcKKrgt07NfsSuohBN2ExnNVtW6Nw9e8aC9jyeR5JueMj9W8iyqODzHSil6QFw2BRJzSykpBsnYw1Gpe0+7uruZWAR1559wOZm1p9CFEcaJ/R22WVjgQD81vSgB9JY755/sEf/u6aZjX12BnEelrNtdb3I55Iurh6PmKAUXejkgX3qYX+4VgwaOVekBc6MVGtXHLSTs4Zy9qUYAeLN5buUMEH5PKvQDlcFCIN4jZ6eBdFwLBvIEYsKORTjSDUMqec40osJaMWP27WTuSePDJMzAgNJ2JklXZoflKQUXEV7fivGoLuah7TFDE3m9Eff3/kjPravM/vSeJ4xRGVirr9aYHnq1ho1kDgNuu+WgHrqd1br/f/bEduEdE1iKu94b5N+HWvqlzfm0zOw0jeiirhAO3hbcbUGSIbh8L9/LyQoowz9o5cpkStTXmeWaZF0JSxC74aKR3JQV4lCA/DAMZz7rOhKyhbKs6N8XLPmy99TFw1hPYycLd2/f8zbte3lEPV4ogovmuDovV52pSNhygWR7a71Ou5c292256a7iSdbu4nnNaeLyR3fV7OzMHhEqn8WkEIxvxQ1rRHNhFfKibAp2IkKMR3c17I1mv08WtH9bhcGvWcFqcquvlbC1xXml2ouMVW604aXivyrA+BI1qTETa+QDBRlxsspVF6XrBGrYRvQ/ecPNqAmwh6Nh4ASSAg+JUasaj9z6Mg5ayvNvArJwr3hdCFMZpwHuvnr1C8we1h9YoRUNJj85MaVWI2CzPdVGd5NCnjds+PtS4fxbScsg130W3cgjH1BDfhbSHsPavrnMeDfL4ZvT09hrGdYLvJjt/rAGp0g90kMLQKSc6EflyIQZPKZmcF3A6f1EpekpeECe83q7asZAicRgZxwlExZ1auyKt7KHg4Y0qKKPvt6vAhWAqxSYo5l3cRKScg1YLXqJFrWLqeUFJFNIQZ8p/wlYLE9nzyw6fdX6qQxSgsvvRs/hjrbJvhC31Aw3fLO/pEp5iQE/ONsnbEGgNY9Wjl+QVQbV8GNHfc95RS7P2qx7GeQvfZSMRIDs3tNW6NTxPw8BpGgz51mtofq9za95pKYOzfKt72h77tQJoowNFr0Faw26yXVshr6u2Dg4DMSblMbm9V3iLXozb61ykdxq1avKZtVBFZ3kqAo+OlmiVVtQr6/ZWQ1RCh0AwwC3v/NotjbB/9zWUvtf2RbMDsWMAPZXRe7570rp9/MU5Zwu7+1bF+oO38AYCBMEH/dp7wQWHj8nyxIAjgBea03yjOUNX6ehcYQh62v/6N78BFxDRiWG3ZWZebzgXiGPEnyZcCix5ZV4LdVlAbsBK8EoJW6vDNfWGIp5q6Cwh0EJC0oAfR5oPWq7YMB9D1Ro0Ceq3LEfzKJdTgrYv5Xml5FU7I3JGamFIEYdwGlQEueSME535Uks24+8wzh5RaA0Xe51D+NSKTp0Wq/VZjTeXSq0abjZxzHOmmJpgE7gVR855U7dPKRHTuIkx57JSqpWSTOFOk+qCk0ZeVIndA+fTyGkciNGzRM88JNI4kFLU6xKHjAlZhVJWCAJRjFxQqbIYPqA6wzRwLVKyoukezT+laiW3Vahz0X3jI7lGKlFlL0MgAiF6Lg8PhHEAH2k+sFbdyj54rtdnXl+/gMvUuvByvVkkFch1YTifOYV75pdHJCREvKYtTkyytFBEKYjd9hSmUDbYRmhxnRt2VJdQgewOpokIVYryhEUlTLsKhEhRBPsX69L/hVLK+9h4V2wP28L3miauv/ljB0oPIx3R6ZzGZZ55fnxELgPnyx1pGJmXzPNt5nZ7QQRCjMoGsVCttQbVRiKgHMgqmuMUOzHFpC9KzdTlhouJyzSRhpFaGrd50daxpjU+kb1pu5PDa1OxMM1zNVx5uX7RmmrOlLLSSrHG78I0JFLwnE8jQ4oaxjk92cchbvdvp+bZPZHtgDbVAX2UVm1BFdeotbIsK8u6qg4SgSUXrteZZdWctrbGy9IoVaVCobcuBXo0HUJXu7M19jaXJgWkVfK6sM4LwTtaGZmvgdM4cHd/Rmrh+fmZGAPn80kPYgtVN/APoZWGSFYvRtVhVS5Y5FRopSlNLwbVESqLHuguaDtcR/6aIK4iljs27zkPZ/U464IOllpwXkPSEILtgYZQlPZZKykOtFJZl8LpcsdpHAnBUWx3bzmqATw/Y/tsVtq/d/z+jtB2O3lT5+5eVH7545ce//kgI97G0v37G+n3qHAQOoHZyM4OBXD61yjfZRwiKXhenp75bbtxfzeSvIYYzRBWaISYmKZJIW7nwKv0frOZnPp8nlrFhucqKOSd/n0zXdeueVqKMN8WHq9XlqZ5jXI8C4h67xAjDdERd7eZZVmoqyqXPz09WugnxKDCUcE7kMarVKaUyMuJaUr2My0beCebLq+IHgigB4Hvq7qvtea9Rn4AG1RbMtfbjdvtxryoMNW8Zm631cpKWuS+rir3WauFvmgYLiIb6hlCoDZNH3SzVagr06AHS3QOVYjR8s26zDy3gvcWPYnw+OULaQikITEETwyecYhE73U6dWnqoVsh+YgPOse0rhkKWgPX2NwOP7EaeNJIoKmQmPQuEaddLMuamcuqU8+mC1Uiw6h4c6s2gqOT96sSTV5fXnANTtMJpBF84NPHj7zAgxYvAAAgAElEQVSuhdY8UjQt0WYHY0m9M9C3nJ9jjXNPpX7RANsBqW9vc9G/IufsxrK/Kb8Z5k4wULL0Lha95aEGgnQ1b7/bLnnNvLQVVxyRC/HhjiY2/ck5hnHEubgfBIY4NmlQixXnBVcFSqOt6umkFkU1ja7ig87FeH55ZsnC9TpzW1aKVKQ21nlhvs2UnDdaWsMSeJuU3bLmtOu8bAX8FDzJpl5517SWORnw1CrjmHCDjqJrV2UQxRgJbo8mtiFKh5y8I7y9gwPUa87rwny9cbtdwZnCum3+ZoRwDXm9sqlWPcAcfjvYYgxkqawIa1m18Tl6oodAIzoh+WkbRV+Wik+RgnC7VlKKTNMEwLwu1BKoObMA3gnTkJjGPnjKQzOFiGopj+X+Eaf3NFaGYSIOXpvLm6UX1cpfCqOqx0WoS8OtCyFFLg/3pEHnhkoTFpu/uqwzrc7EAHldcc1RlpWAg2Gk5gIRztNErjeqg2qzAbv499vOHXCHNXtvnDtndtcSPnJnpfVZLB253xHcv4qEUHnrep1XqYg3jIwesgbP3rcZjLnv8cLWt9mJCaVWrnklTJHp4Z77i9LxlnXVOp3zjEMihIjzgbXIpl/bQQSpVbmYa6auWdXI645w6ggHBRKWdeY2X7ldV5alMOesG7kU8rKyzDpXpTUDTDZgBw17q4bS/iAV4qKWG8RreSA4oWTPQqOVFWmTFbYduKZj64YRYrQoQhe8iSgfYkNqbU6JgVm1qtTkuq7kvJJz3sKnWrWGmoxQUauQTLlBqBRp1okTcFRarqxloUm1sLfhUbbWebIhQVa4j9GTQiQFm20Z1RNX4746UeodracXukbjMBKCdn54Vza5lWZUPm/lrIYhlU5pkU4gl0Y25L012cgs3gcasLYGTr3/NJ7xOPK6MIwe1yplmcnzFaHikqOURptnhhhwTZivr9ZqFsl5ZZ5vSAt23xULCd7b0OPOmXLb4dkN9Fj62g10L58psq99om+MsL6tef5V3NrjH/fwNZi8ZYhaP9MSStjCNgzp6/llvwzvbUUPF5TSwOl8IfjIvKxGVB43z9wUgTftG52ATDdOUdSLNUMpOr9TxIr00E+zdZ25ZZjnxjxX8lLI5mXyovljqw0xJLOUYopwGEOm0ux3kpHmFW6PiI9azLchPEglr5laNCzcxhM41dFtsQ+KPSLaOu4+OM16xQxLwyQ27m4zrVgdKtQUpaURQ+9NbWSptFzAykfR6XuSVtTYLa2K3nMaIylFYlIgJXpI3jGkoAOLh4EUgs4uQQ2xlLLNUvMxKgjkLN/0gnfK0vHitEyEjvLTC6nggpIenKr6O9OhldVp83TQEX/ZZ9X22XcLISUGux8hxA30imkgxUQtK60sitzTKBmW20x+fSWFwBiTllzqytgmztPIl8dnJZYYWNVnxCDvw1g2w9w/K6/4zaM7sp4vb1+Da7sy/9uQ9y/0nJthbmCO37mzna4X3qrqKbK7t9Bon6QiHa01YoJk4eowDMSQyLXRvGOYJoJ3lLxqWNMay1JY10qI+9i+1qoW9kuhFW1RaiVvmrX9tUst3NZGrgERJRHUVu2kbwTf8B7T62lIUQChdohbereEUsv60dIEiitEl6hE9QgxEPprSyPnlTUqIKSzL2UT2Aq9+H9Y9HI8Ubf73za4vRpf2Dt9LXAakmG1vJwp66q6v8lzGqIdbE3H87lKaVXbu1JgHBPTaSQNiWgTv1JKDFG/DqYnTC9/CSoZc1hnhq6Q2A9LIa9ZWV1RifTbJm2C800ZidZ3aRUUquECMXriOOgU63W1GmWh4fB1Z6SVXGltIQ0DwxRYblfm65VlvpHzonI2tfD68kKiUUXw48R4OrHcbkiMfPfdD9yWzPPLjXUpWke16OWoTPGeQ/sWJOr7be84ORplNR4tR3KK5Zy9r/OvAIR6btmH/kQ69cv5Pg2qM4H66HcjIeiWZQO3TMo/pUhwCUUSIz4mVXoPjjQksByqlELOlfm6UqwGtvUA1oKnKU2vFWvGVS6m99qwi9+BIhcSYxxpzZNCIucZ5pkQxKh8erIOSZjnhXlZWcuKiBCDloIqTYnz5lWlenUGEUMZnRKyg7dxeoVaPCmoyJZ00rP3NPfWcx4X83AyqmG2oh+bce4RjUO5sD2SCN7jRWeG4JxO35JqoWNgdIqQxqijFQfvGaJGPViPqrRGMZTUG7srhkiKSQ9Hadt+SIaOrutqg6G0FtmA6APRecQ8vtZ4hVazcZSViZViwKeB0hxVdI5na2pQpaqwtPeOIEIaT4zjZNTQSAqBPM98+fyZUpXnmxcF8UopSGm4qDjJMt8oWYGkD6eBT99+ZLp/4N/+7bf84Q8/kde6jVp0vM0z1Q7edg8dc8U3OeZhLVsnux+pen8ztHbjxh69oxbke5uS3nQ7Sd0hF7UeRG1e1QKv8x7x2r7lPIgPVLw1UcPt6QXKipNGLaq85+gKcjtM3bmq3lTjcIZsivYixhBxcSRQidFBiKQ4MsSJ6CMiM8s1MN9m8qKN2XXQksE8NJZFWFenaKZYMT6ASDIOrSrgxaSgUArOxOOVhuaO8DxtPyX7B9DcLmXSUwLnnKGGKJm/VlrLiBR9ng1J7JGitnZJ1ZphcI4hJVoTStbGZ2miXswinBCUkOCsrFFWQYLWpUU8Eu1dq7wB0SkSq8V5XeONRy2QXJdJaaa2eEhvRPtztU1QD2hXGyKV4BPNaflniJHWnLJ8nGfJs4bx0ihFa94haRNEa8XEyD11zby+PvH05bNtP+E2z8zXBecc43gir7OmFk2oIWzTBD48PPDrh28YhjO1wu9+94cN1dfQfQd/jp+/ZljK/FH0+5foeq3tOeh7A/2LjPO4aXwIPx966/dQt+ekm2c1CoIuFFrecNowLa7iEdbWuK1FDdVV1mVB1pnotDDvARccee1GqScy0pBSKGvGt5VaV62fiYIZPiQVJ5bAmCIuJD3VvcfjGGJkCiODryy+UHOjFkf2MMREnhzr6rXOWSs1CzV6RNIG2nivCLQNPtO+z6rIsLPEVzsPGsFVzQvF01rnBmu3jHOonIu1jnUJC8w4tSdyazswSFONt2YVXW4VqNoo3KOFbKAXYsVy0QZi1c8BnEqKlBwIoSqIExuxt/uByncMdRfktlJZlKbNDahSe4h7T6y5HbYSgybdRiRX1owCZbJFAeqFlT8dBwfaIUgKAT8k9fI25m9dFpa6sPgrSGO5XZmSp9bCPM/k61UVAKuw3GaEynlUIbA0JNJp4nQaidEzjJEffviOn376wo9/+IlcCjEMP1MIfmukO/gj71DadjyAD55Tezh3MKi+96Z/qXECG6m91wFxxnA5EA82UoIzgrl0T+vMuzlwsums4pVhohozjRDgNJ2J00BbZvJy4zbfeH6dOT98iyMQwwC+0KjkpZKXK5Qbpa46gKY1VD/WckxpDMNESAMOT83aLVHmG1JnfKtMMaiwU/Dk4lizEFwgIhQnlFWo1VG8Y7X5nYLJdhhXE/HWiG3apJj6g3jtPPJ7OLMttdvYrxb6mzvsC98qnV/bqXw9r9GabiNn/az9pCqgled1k6LszQOuNZxbEccbqqL23VacrwRXCSHrgej6weMoZSANAz4qUu+jo7aIr5oKHD1/Yz9EmzMqm3aK2UORbYeYR1cvHbwS5INUhjSwXq/MOVMslKcpy4qgdd9aCmtuutJOOJ9PiFSGBK5l5usr5ZYhNSRACR6YLK0KpCFQWub19YXz5QOfPn1iPJ+Yc95IKDs69BUzPaQj23opeqeH5sEoO4jXDXcz4J6f/qWA0E40sBPSQKAj+MOh0VoJ1x5P15T1mxdxXgxAiupVfYIQqai4ErUipXBbXrk9P1KWGyLgnSJ4Qz+dRQPdYjlcK+o1VTXAbY3aYk5mGBPDMOGcp7pMpiEqsKATPMQI8tm6YmxQD6L1U4qeer7qSd8hTw2j3oIFalTWOoXHNW03K6Vsm1haQ+y+vh9P0Z9DP+vkrQ62qGZvJufCumYt8udGK9CMM1prY8ltN0y3s4OkYXKiUdurjLcszmufo489cAMRgtMD5zjyT9+bs1KTTuTyzW9eRKOiLnnqjC2mk9ucQ4kCUgkCUgo+jZomNSFET7Le3cv5QlkWbvNViQXLzQDDE6fTnSLILStb0Ae8NIYhcDc94KXx9PkRJ5VpuJBRMsSyLOAa491pQ6C1RxfCEElDwgVPRVHV8CdM443XPNQ1dRLBbpjtYIyt7jKhrb7tVvmLjRM0OT7S87yFtG+Msv97q2X17xlB3lmLkYEBvWvFGokoubC+vpBvL9TllTzfGKeJb7/7gWHSceKIUsN6qcA7THJExzUE4k5Xc3oAxKgQPSL00ZvSBKpQ1qqo4Jp1tsqybIRorRtWylpoZqBrmxUweIfkKRdWqYTNeSQIGBe7NQdpzy1DCDrWQGwkXjy0bh2es8lOjC4lU2s241QDbVlHUigYKOpFS0OcMpyaKQE6G52Ac0zTSLD8E6cHgHpJT7Qm6E6K761+IcRN6jSkzgQz8EfEPLrfGguwOuYm+O0DNM05lfjt8c1RarF8VZ8n0Mkqnof7e+q60PJMq8pQmm8LVSAQiD7hcFqL9VqqEgPbUgjE4JWKOC8wxR3hZ1AVjnEwrkzgtsy8Xl+1E6ZXG954s5970E5m343SvKXsoevxo4e0fy4Q9GcZp8S++YIW3Q8cWg7G1//rLVAavjjc5lwdzmlN0CmDHu+0VFEb5KYd/SENhPBAmybiuOC9ZxVvXhOca3ivTbnVYnes7uaslugdu46M5ZiuVe0MKTOtXlnKlTXfFHp/zSq/WKqOoLveVNzJe5ZcWXMj20ddXgg25QrLAkNQnnCoVqP0leYLLQadaek9LQfcFEkBWnS0wMagAtTCaDipCqK0wmDodGleVVeWRpl1vuha1JeJV7J7larUARfwLZgmkGrojMOAQ0dgXO7urQwj5JLxrXBKGplIjJScWdaVJS88LQttvjIMibu7M/d3Z5s50/BV5SSraHkkSK/96oHtQXN/AwlV8qPpeEFnagqi1MlkjKHk9SAQHwhDIJ7O+NsrLQvBj5yD5vW1LPiE/q7TCCc08K3q55wZvSNFz3V5wXsl6i81k2QixonQBtzNEYHnxxfmx5s2SxBpracklokZ0NdDdv1oWv4x4yvNohWrJOwes1ojt4X7PYxtrQ9C3VKZ/7Jx2q4/AECd2L57xqNMpLf2MHRNtotzYHkoO1JFH8KqciMhRGVyoPlWOxXz2Ep2aAjBYlXld7Y3WnJ60lv+E7S0k4LW7LygXme5scxXluWq4wGtMLyulfn1pv2h0bPWwtPLCy+3mSULzg2EODKKNoWXlmlN9WZOp8AQg+aeznJOEXITXNHNSNVQXkXOEmnos0n9dn9AmUKyXxDivIIHpVFzpRbNf2vzh0bnDWZRV10dQes7DMPE6XyhlMp8W+F6o4jYiHa4HweGaWBMJ2oM4NU4JAQFxNaZx5cXXq6v3G4XHu4uXKaBaUwkH6zTbW+d2kJ8cRta7ewCdcxEgaBRRnBsEURnDoUUWYtWCU7nM6+vE8t6Q5zXQ6Y1nAm2eXXFdGVGcqZQqfONVjIpqmD16mwIlkmZ1Cq8PL4i7ScaT1zXysvji0U+KtalB7o2uWPsckTURPveE9073UnUboyWhoghtxspwX5fYXbsvf8VgJA3ssDPC7Fvi7N7Leg9B/Ht7/XSQUcm+9yTGCNRdMME74x/a68bw6Yi0Zunm+z9jIq/aPd+tDqqTwnCQEgj0SfKqmySeZ65vl7J641yW5hfV/JckSKU5snF8+Xpldt61TmXaeDhbiLEEe8T53Cnh0qD0oRSFdp/fr1xdx4JUf14P7j6KeuqnbROCENkFNVU9VFLSnoVAXFl29CtatP32iprqeTWlJjoOsJi29+BQ8O4Vis+DMTgWWvltlaaW7heb3z+/IVxPLHUzFqzquzf3fH8Mmt9UIRhSFwuFy6XE+fTHU0KT09fuF6feHp6Zb7duL+cebi/cDpPpDRC1aluUhvO90PH0emJx/XvaoVOCqWDZ+ZVoVmEpYDcxw+fuL6+cH19VkoljhgHVUCwk1+ksayZp6cvyO2Vy3lCcJQ1c3u9IiEQpwFK1Va2tfDjH37k+WVmmC4UAi6NrCZlYrf0SGTbHnueKcgvha9a4H5jvG9DWSujcHyuvzLnfCs7r17pyBryzr9Rwe4lFlxXttufT5/Titn29yklfFXamua0+6J6a5/3zm1iWltHinMGcDR8tFDKa4WqI5OgcH3ORT9Kps4rclsoS6YUh7RAkcDSAtUNXO7OjGNiGAfG0wlwvLxcoSx4PGlMuJAQ5yhlJedFW8ialk9Uk8rvYma1sdYC60pcFk6tboV65zHyPEgLeFfw4shRyFEnbW+GabNFoxdqE2o1xgn7AjscpVRe5pmXL0+UBuuaycvKcMq4oFHIXITr+kRwLxs/dpwm7u8WHuY7JZTXlWEIPNx9ZJlnSrnx8nKlirCWxv1JyQ0dyY8p4ke3XbceHn4DiLQzxkjmpRrQVYhFa4QBFRr3Ds6nE5fLHY9fEqAoexVrDHcaKdWycnt+5ukPP1JvL7QPH0jTibyu5GVBYrIoprHcMrfrTOUL+MRwuefu4yfi6QJhOEx1M9WJQ+lkO2RFqKJsrT4ipOezx2Zq17tQNi96MFTEGuFlwwb+YuM8es733vHt93fD5Cj+BdrF7nSuhh4URuoW9UC5NmPSWAHf0FBpjbVVUkqG0RwLwlaLCwFasiG2lqzXCq5sFLze46cGreymOE2keOLxZeGPX165zRUfAt/98Pfc318odeV6vWp4PAyEdSHFO2qprFVJEj3vjmGwjn4jlNuhE/t0bpNerMiOtprMh7JvvLJ6WqM6T0b5ttRK8x4JXmu1NHyz3tPcNlqdwXA4PNfbjVXglitfbitrbZzGM5dvPyBSiWPEpciaK7e1cJounMeRttxYa+GPT688vrySHEoFjI7LNHC+jKR4AlfJuXFbMtGpzGmKQWdtxn1aea9/b1O2na67V/YErhYV76o6gzPUDKIK/z0VO53OnE93XNEuM2lNDygXVaHRZ3IpGzg5L6uqy2cVOYvDwLpoSaZVh7iES0EHHo0j4/mEHwaKaNuYmJ6QHLfa4eATEQ2bqnKuNyqeCcy1Qyi7/ds8aq8AdMXGvxla+x7y38sm7wyzG+rh946P90hVCMGaiBfOd6NycAUtWncKeKskAxZcUJFoqn/jK/Q9GgpqOU5DubVO/EaL817FxVwdoTle1yuPT4+8XBeG0x3ffvsDl8sd0TnytbLkwtP1lVwLr7cr9/GsshkhWc7XQ3zPmCZEtOPdC6qxWizvChFr7qCKqAoeTsncw6Bd/t2j5ExwmcZMyMXojSOxb6BSqc0mfAWsbFQRlJh+m1fGh49K1sjCNEw61MfBkmcIjuF8ptXG6/ONu4dPfPfrXzH5xu31hZeffuL1y2eW240oFcrKPESkfuDu7kSIqopR1oKkpA3XLhBDIgY1mhASQ0q4uOsX6zbXDVql4WtWMn6r1mGkeZriidpPe3e55+7ugWVZ8NHKS2h5yvvAOI4Mw8BCp4Kq/IwfBmjwOq8MceQ83TGcJtL5QjydSaczYTwRhlEHKZWdWud6uejtxj0g02/LJLXuXx/ZQO0Q/iLvw9u3Ie9fZJzvc8ojrLwZJu6dcb792+PjOEagG6dzTj1bM4FgVFNGcNaVIpvBe/FI0DIJVrOXpkJZ4PSUDgFipHq/JeAb7c/pIlbxvLzc+I8fPzPnyjfffsPp8gGc5/PjF56fnnh6euT1duP59YWlZoZp5He3z6Q4qOx/1DHn95cT96eJOAxW8yv2xqCtWoJJl7CRNHA2MMcHYhwY0sQQFf6nCdVFHIFVBB8yISZiGmjiEQpNnI5zF0cKyZQDCllmai746Pn47UfydcEvhfH+HkmJ3/7+97y8fCEOge9/83eE8cQaAktMhPsHPtwPfCifmL954KffTjz/+HvK9VURchrXl2domcvlbGH/xDCMDENiMCOJw0iI2s+ZhnETfLMC8bZhXVPZlkpnUynoor2f2oFU8so333zD5XLmp5+U9eVErK0wI3Eghcg0TvDwgTomFVoTwQ2D1m2XlTQ+cP/hA6e7C2EY8eNI9Z45a5+uRwcOi6A1dOdodrj3kHYPbQ8fViLhDTXzbS7Zt/omMH4AQ/fn/uXHfyrw5XuIcswx/W6ou4c8eMuDUb831PdE754/zkvm7ny2DvxCFUGwpuug+jwpjWTRepZ36nWTDwoiBJXb8DGwSqNksZ5LTCsn0oryap9fF376cmUpMJ0vTOcLpVW+fPnMb3/3e/74x8+8vN7w44BPCQmJ8fQAQUPauVW+u//I6e7C0+MjX56/8KuPHziPOvmK1rtfFMNeciaBqTp4StWWsJQGYtLx69HQ7CE0YkhUr6DOPC/U3HCinTohCClGHYUnHimVtYtq18bdxw/cfXjgizzjU2Q6n3HO8zJfmdeVX3//a77/u1+zVsfnWyGOA8PdmXj2hBoY00cilVNo3B4jgzSm6EyDW0gxMMTI3WnicjlvaohhSIzjoLNMxoHpNOkGtDqm9jcaQX9IpFIoUpiXheYSw5SpeSWEQcdCeE8phfv7B+7u7nn+/BNeIBBxQUkSQ9Ty3LKunKwJPJfC+XKn3Te5cX//ndILQ6B5T3EBweFSJIuHXHFoc/iWKTftN+0EELd5y7p9PhINpFboer19WvjBk2qRYicr6Pd3W/iLjPNr6Cv0bpNj2NrzS0uoexhjv7Ol177P+rAap8BaKm5ZcYjmLSEQnNLHVHndbSCPN1S28zl98PgawJkcZj9EtsRbp1N1lfR5WXh+fuV1LmQ3MZ4n7u7veXp54l//9d/48vxMHE7E6czgB84PH5guF5r3XO4feHi4I5fC7Xrl7371A//tN7/m5ctnHv/wW17++CPz0ytj8Hy43HE5XwAoUnFDNNJ5UjWEGA2gV85y8NEiA8DrhGfvV4KLJK8dIa002qAHlPcz0evYgJfPT7w8P/P68krLhbvzicvdiY847p5egMrpdOKf/+kfeHr6wodPH3AO1rwwjJEPH+65nAa8X4kenHjGKeIeznw8RS4pMhqJvdashAE79DpAI9YJlIaR6XRiPE24sAtfiVRoIL5Tg7t6RrU8zBQdykqrmRASzQxiGAbOd2euT4/Ikk172O9hqHPEcSAOkbUW1hZxYcANE3FytHGiuUPpqSPJTtUklPJrNeeOJPbyCerV1fOZ5KbKNeg1yUH6E/0asHqm+ceeQJvBaimlf4+91v1fNc6jYSoX1L0JY/X7O3L73nMeH/306M/VT5HVNF+kKcVtiIFxSAwmP4ETZfj07WzE+hgCKSa8FAiCawXnFMbXUoyYlKRQTQoxr5l1WclVaC4x3155fPwtr9dX5nllHM5UH3Gj5/7+xMOnb4njxG1eqM0xB0+czlSpXJ0Q7s58e56ISRgGz/r0SLndWEpmqJXTOBL9QJkaKSVOp5O2YMVITCM+RA0D08A277Pp4B2/zARDslNK1GLCzVEV8GppzFctg4zTqEV855DoCF749HDH99/c8ePjC3V2fLicGKPDJc/t5ZmaK99dzvzqwx13yROsjtwkE1xlHD3n85nJe4I0gkuEcNkOF+89NXk9UEcNbdM0qs5sTBt5HoTWvG7eVrV/8115TkSoudLIuLAS4oisjZICl8uFh4d7Xj9/Zs4FHzWt8V5R/JAi5/MdMTrm243mKy4OMJwIMVJksLCavUa/VWE7LqsYRj/Ud+PUT8cSikiXG7F6fGP72noF91yyHdKqZr3BZpd/QnTvzzPON0b3M2/5dcPsnvJo2N0oO8f0OOZhk5908CJXYnBMQ+I0DHjvOIcTzgftcJe3c0ZCCPgW1UPKzlcNAtFBQ6ljgljiruJX67Kyro2nxyd+/P3vCMEznS/46UwOiRhHWkxk5/jy5Qs//v735GXhu//jv/PNN9/wcrshDl7mhV9984Fv3fecoqPcn3n56TOvj498/vKF9XxmOp+Jg+fufOHu/k7zTafsnZgGYhoIKalHsHsVgGjh4jiOG9rsW9NBTtPE8/MzpWbwcLm/4Jpurps0lusr6XLPDx/uybcr19dH8hoV/l8dhMCH+3t+8+tf8+tP95yCIEVoeaGVjHONFlUaTGUdBYI2Y58uZ6bTmZgijDofM5mSXgzKisKraqKufdsOaxExYosHFzD+FhhFUcFAzVfFOXIOOH/m7k7z3DzPOhPF94HM2gPcyqBWZCodLgzUoLXuJuGwF90bw6T/y4DI4/TSN7mmheNKqewiXfa5tkP93YzaDHUnuPfcdEdtOTiqv8o4vYFBb43wbS66e823L3iMqY/jC96/MVWQy6w0FdZaM+MQOZ9O9jxsNc4me7kihIjUipe2NX4HHL4BRrCXQVhiorXGMi8s641aKtFXvvv0gHM6Av3+h++4+/5XXAn8/ssXHh+feb0+UZZXKJlPHz9xPl3Iy8o0TAwxbUvtvSfFxPl8IrRGWVSucllmwnRiiANjGsmtS2ambQBsMAkN3wkk4tUIy8qQVWe2ipBLxQftfx1PJz580jw231baqursH1JSsbLlxqfLQPzhE09PL6ylkVtDogpzf/r0Db/+9MAkmfL0SisL63LDSyOiddiWFxuhGAlDIowDYRpIF216DufRpEuj1WrdJuYWvLNw0IMUHdngVFLFbWGtNik0K3dJFcRF0qRSmbXqvM8QPdPlhH+OJtHSlDuNmFROsEPe2trCgEhQj22pGXYo6jgPjGq4R3QN2cb7CWZ4nVBgTQW1vWugbrsn7b9/9JydlMDBmF0HJ/t74pdd6J8Z1r5nA/38615wttrCzxLdjpZ+zTBBm26dM93T1piXhY7w9edv/VRzbCqAwWui31vU+mESnDKcgou0IgxJvdA4TgI+qLQAACAASURBVKR4ZW1XAisPHy+EkHhZKz/86nu+/ad/4ncvV3738oj4wjef7vj+fiC2SlsLr/kZsvDx7oH705nk1KNkHEspeBwfP3wghUjNlTWvjJcTKWovaHDOxhgOeyteiPuMD9HG4D5+PaaBcTKu76qF+FIyw2lkOk20+8o6z9S5UG1G5ryuVA8pBR6+/0T++IElVxoRUrIZniCvz8ylqDG3RlkXnBNSEPrMmZAiw2nkdDlzvtxzutwxnS+M0wk/RgvT+xwaM05UFFuc2CBk9ZBeep17V2t0mHxMydrgHTIlrwwhUFvldntlPI2Mp4HhPPJyu4FFWgSv5RprMNf6ZNQxFRp/0OfIeHQc4MY+s33XQLtzrHQnsBPYu/yKecba6ht0dlc5MDkSaVZFMG8p7eBF99xz75uEYwXkv2ScKlXvtr//JQPV7x1eSPZu/W6YwMYn7d87GrBY6BSjqomXXDZF9p7HHhibb7pjjkl1f1/BB3wcqOuu3XN3d0+IkQ8PF9bbC8vrlcFH0nThx+eradoIuS48vTwx5xuXy5kpROp1Yb3NpHHi4XzHp/sHXBPW241TcAwhsbSmoVdMjOfEdD5z8RemD4pqIpBS4nw+M46jlVd2rjJ69Oi19oMmeNIwbNKga1GEdVkX8lqJwXO5v6ONhXVeYK0MQ6JIUaX0MeHGiTkX1gphOrPWwuvzM7dl5hQC55AQ76kJBO2ACU51YqfTyPl85v6DgmMhjfiovx8H7fIIQTnRG/ABVu46TGXb3FTfJ4f906Mi9i6cwU1Iq8zLjI+BNI5MlzO3krX9LaosJmXAlUZbi3ll6KBlCInaMtAN0m0H4L5l+vvVt18RPVSakhJ2BpCWTjZvaXu3e8itRHKsXwobcCWye0275D9hlvr40ySEYDfWydYC5HuYQG9s1kvfX0rQDgS/NWT33PQICG1pp/n3Hq6sTWiWS4QxGZUvk1RtlSILjYqPEaYTvGSaQPIaYoloPXVIg4ZUvpFCQqYTaToxPdxzW5WOti6LihDnysdhotbG7X/9K7/6/3l71y3Jkd1K84NdSPe4VGWem6TukVrq7oeY93+NmWlJs1ojnXOqKisvEeEkzQz9AzAj3TMyK89lmmtFZoSHhzudNBiAjY2N6cT/+Z/+nn/5n//O+3cvfCKxlEc+vP+Bf/w//jP/5bdv+E1W7l7ek9qF56f3XJ4/EkV4/PVbTneP3J2/J00nayqfKk2ELNbSNOWZUzpzSjNRZZR7RMRFqA1omc5nU29vLyCVKWfylHm5LN5EHigIlwZbhHpqyPt3rigo/tobMVZOIpwziD5DUN58FyllZisFWkGaadrW2ohT4nSamc8z08kR2NOZ83xiOs2uwB9J0ggUInrYdPvqsDpfw8c+pIBohKJUpzZSzNNOBKjGnNJ1hQDz/QPLslJq5u5xZo7C27tH6kvj0/PKFE7MKaOxcgkbLzFRzg+skkzxQRaiFqI8DDnOfjR6JOe1yGZe9QjoEF25vq7O5a60VoY6Rq+xt2bECAlGjjAj9A1n1DWP9U2GLK78pWFtN6bxv8DXwtOeQPcCiv3+sMuoeq302jhDtPyD/qFFHXbfE3I8Vu88XnvN5l7VXstoYxGJRpCOojDjQ1qhqrFuUp7I+YXlcmG7LKweTtdtRSRwf0r8w9/9Dc9vN5bSuCwb92//ib/5za/57jTRlieefn7iPJluT7j/zt4vT+T53gzTsiKrDbpy3RysRasLL2u/fh66qxPbgytKWOgewMsvYBO+1wZraazVGqGnYOJriokpry8Xtm1lqQVZDebvHk69o6epCSlr9XYmgTgb+nq6O3M6z8ynE/Np5nx3Zjo52aDPwoldTSFcR0QdzfT7dcuKGd0Z1wsH/B48PT2R3r9H55kogWW5INk2+Jji0E62IUqW2sSQidE4zc1BydZan5E80io4inMdPNnwahbg9iFOvce1lb1n8/j8jgENcPfGQ75iTOOa/JLr/Ha0VuRg8vbPbpgN1egfzOP3Q1zd52T01+yo6/73dlNGaNea10gh+dDdNm747r07SESvUXmDsLhwMBKRKCZhOVWaGHE5bJvVVsUaa2vZ0Eul1JVtvXBZnknxxMN05mG+Y6u2Cz6+eeQ8R6Re2LYXQqtQTaZStPOHDbBp6hOwghBTZc6JOWammJhSHqoS4i1xKp2SKI5mWqgbg/Fvo/TP6Ayj2lAtNHy8nTeVS3zDuqyk6cK2LvbZfGGt6+IkbL+HHtWkKZIlEVNgmjLn88x8d2KeMzlP5CkPqpyVUZzx5LNcpN8M9c1yyGFe80e7FObRi5iBuE5vUwiNy8sFPvxMvn9kDoHL8wvxPBOCGGFj4nAeaUhthhg835ThuZHrgv/RCHEj6fnlyDHV5ESbg0BHul5zUGeErP19usHRA2Vu3u8V2+Lr9vntxPfP6pu3L+ttTH1H2B3m3kVyxdHdebBgYxgYk6PttVNMTPMJCGN32j3mbrAx9DcUxOufuNxjkETqOUSArVUkZWKaDfr3lqVaLdc6M/FyuVDXJzRUAonYIIfItAW0PAOVGciT0w+3SgsCIRJjJiQLP/NkA3MkmOr4nI1UkLoCnqs2iLNWzHN2+RovX2EeVAOju6OJEKOSYmZq0DrxQyI1ZUiZkCdOvbG3I9y4Yp/a5O8QrfxhwU0lJROUnqdEmvIQ+4peRrFxe2E/77arDBob2kI60zSyxX2rbt5DSg5G0muItW4EsSinbCuyLEhOpHmmTraJpTwxVRnk+uilFVPZiI4Ey94be1j+u7E48+dgsD233PPFfs4Hg7I7NDzmjsjucqU9rP2M7ndTOjHw8+vHLxvnQGGvf3drm/vueLgk40ReYxqNP3RD7lfB4HYQYkjMeUKodJxb6CGLDSAKTa31qp+DLx4Ntk2HELBpbpEqipNVULEQT8QkNlGbgF3WSAiKlsZpykac3yrQmHS1kNpb0J5ejBiQ5olpOpPPd0x3D+RpYh+Dbp0d2cntsSsWSvAdP5mmED6Mx/IG8/p+7SUI0nb6pAAhBVKOZII1SqgxdohGVQsuzXJscI8hjNYmvE6cUtfcxZrVk6myjw20r4NumId7mGIfLYEbZRsYRdfJ+WyS86C0XXsT03EqCJF8mlFHfMu6UreVWiYkJdMGnnZCTE9R4lYJBQcwg5fapJNkrwyzS7FcGevhPD/rFhlL0zchV0A8rv0rI/yCYd4eX6txwreISh/wr9deTKSfvbvKcYL28+s83OsdRDHxZgN03DP2nEWEJHse0Q+D300CwnoETYj4eCFC6OWWDkaZLEovzKQkBDKiZ1orQOX5k8kiB4UUktUeU7SPVldq8fduoARynjk/fMd8/2B1wDwPRkrvHJm7tu2oNInLiabh8ezszCgRryO7HKk1GJcx09PjNUSUJHZv6F4sZVqtToj3xeEzVaZptkXopRRGvgghqo+Q8J/DvrP38sjxVg+GS9MRMI1888rzfAnwuEE7m/V2IsLEDN7dQ2uUy4U1RQMAHR3uazKkxHQ6kWtDNleN8CFIgqktjHfUV5DWnoPr0cO/zvK5HqnANTILh7X/Ba85bGZn0v3ZYe3RIF8PZ3cD6ndNe/7IDhK8xiLqgJCIxehGyUsmHXJsv6kNyeLiWeMqjxyg69ZYJ0tzrNgXavBGX9c2Uq0IkIJ5ZUVoOXroqaTsMx7Xle2ysF0Wlq2YvKWaFOO2FdPjefyOh+/eMt8/kqYZpmRCli5RkXPk/u7MnAOyfjRDdbTbzsuFt1xku1MNwQGuGAewFeKGtjhkY3Jn30gY3jb5tV820BhoskczLYiHcYpE/FrhM03YwzD6vXExMo9oxO9x6Jusc1JVrUcVDCdotdl4xtqQagho047c9vKE56W+fmwNeEqjzTR4SoUoiJqqf1kXtsU8ZAimc9ujqBACeZqZayNdCmyr1zyVSBxyObZsjoY6Pvh+nUYIfhhI1MsoB8O7eo0dCdofe8VbvmaEv4AHfVs/p+3ShxcV8RDm2iNaqQVGVUkOIdzhBW4BoT5hee9SMTBlyslkL1Mawl0BNV3WzWT9QzKDFiCHfUhtb/Lt+TK0IfcIxY2oq9TJIAWkNI3JY8vLhbp2PVyxpuJkUpt5MvkSDZEavFE8+hiCkEkRYjDTmU8nW0xq16ILpGkwWUpC8EWrbjTmlTUk66ypybVfe47WHMxhqMglV9iLXkrvY+dqM09i4xLUJ2B5ZBMgqImzEaJtWm6U4gs8J3vtQB+25OvQC4NNLb+spdA2Qzi1GqDXPag2k6fsI+/7UGAbBy8G/rUedtuUthgDZb0QUHK02ZtlXQkS0eiSmmDjCmsl5cT5fOZpU7ZWrCfYncZx7XXPeDxsPVqpZPRpljKaqVuzBuurBHQYo/1zhUq7cznaRicevEbi+dLxi/M5b1+gj8n+kic9PPGzV7s25l3xoAOUYeSbuNSJ0EWWBtig/fsume/InKFFIDJoWPvRL5SHmikayKKBWHdhsJIKOc3UuTKfNsq9eQG6Z88+K8a78W2sPW76EJLJNaZgrV0pjAjXNwnPM2OfNRMHHxSwBRBwjxMGyEGI5vl8dLnEfm3sOdYzCUhgOnU1eeMSl1opwaYjmnJCl9EYZ215erOJ0tUFfVMw6ZTg1NgwQKqRpFiO6wwYqergk/3cc9uGTekuzSe4XYV7XHkva7xWtGxInkjZgDOq5Z5pmn3Qrm04ff2UarXulKwBuxJccMvmuhzDWD9193BHxPU6N+6/00Oq1tfUERCS/tqH1z9goa+u/6/ZyPH4pmbr6+/lykAH4rrftc/Q3T2UPZLnu3ymXeAAVMEZP658dlAyY4QQvvOJ5UhUGUp8CjD6B72dqecLsofpRq5wnmc3GiopJFpSm3M5+RwSVfdSga5YrxVq8fymWR6bT0YAn6ZIij7FDCWoh/gSsGHA0cdFuJGKDF0dW4h+fY/UvhhR6uBo+krAWuXcO1iQzuRMpKZCTZFSA6WaR1q2QnKOp/2NjPc3O1GkeVgtHRDEDM7nq8jYTX34b+ebHua2DM+jSkEpWscIgnoAX7pn7X2efYyBqKvzde2gUggo9XQij3JH5/H63FeBmIQUiwFvIhAjRbtn9PfgEKJy1AA6CnUdSkCdfndluL7+x0fYda3cRLgl3VzZxvHrzzfODubsIaw9fjDW8b4dFLo2TvjcQPtrH43Tdl2vdxk2bWFGrVhjwZFOVQBjLZViht1GyLHXSps0WrDdXAQrXosMwSV7op1j54ZGwQWOA0Ws02B4Yg9PtMM30vNXmGMk5cCcfQalWh3SDNMkUoIkJDjR3dHPnnwHB7x8DzAUNyVaManK1qJ9foQ+DMnCKUctxYsZnaPsO57ESNJoHj7ZuHojYI/bB+P6WV+slTOc/ICFn81lMG3R2ffaw9mudO4/q+dqPb9UP6+mx9pnN5LD4lYDBmdX+N+qzYIhBqREalnRWgwg0w72BU6nmVBhcR0ibZXgZI/n1QYOGzG+jQ98RG6vDFNvVPOGYd4oHrwGCNEBzs/D6ddSQDk8/trxTc3WRlTuu8D1m+0Qnrv1LsV/ABc+B4SuvW4HhWTHLH2H8zYdlfG7ruMiLvOPBJraGHodF8dsXaRR1ahWQcQ1hhQV8XDUvJQp/AnR6VxdBNkWcj8HHQCVVoUqZLGODEIw5ky20oRI857ciNDcSDoIlMagJZvc3fnB7OALYEOPvHQQs40BVOu2CU6PNOF2I4H3zLrWza5t9JDZN9goQg49nLPdpndJuKXjibGJQvumOwzIREXsOU5gN5qgsWfUJ4W34ovdQ0L1e3n8eeR9Ry9UrXF5mmdDmt1Yu8KiotTNpnsLEUnZ16LaWMlkmrfJmWa2ychh87EaZn+k55l7jbONx4bC46tGuofkt4hsD2fNJ900fxyM8a9knNfe8vj9QGg9F9nh5C/sEjeJ8EDqOtjkY8Wie7JweG5HWa2dfk/oraywx/rdvFF21NifY3mGq8D54g1qw3qsWdsWaifcR7HhtPvESVP0blZQJBHJ0UcA5onpNBM9yez0uJ59KNWYK85oGXKiPiFcQvDRguo8T9+9Q/Qvb31S21S0NAg+0yP23LF44h5H3j22PN+Q0mRK9TS/X4fQbYgoC4Shy1r3Rddv71jMoKUw5oAUu27VH1NsD/Ard9Pp0XM4Hbla81wSbXz69NFArrs74mxgWq2FbV0Jl4vJk0bbdGwTNhzh7u6O+5fCZW2s62ZMo34/DgDNEbjpn2k8NhQP9No4b7zk0XPajqM27uNLnnOsdfnMPr50fB0QuvWSB7PqHoqRKHeYYA9l97/vuwnjpMfOAV49cG2X/loiPhTH1Q3Y6X0G/8vYGxQxPVHU+ZYydjuHPm2ROmIWgxCJLmAtxhLyBKJuKyZM2Yi2rGwzaBVC7yEUkiSmaeZ0mk139zA6TxuoRFR8IG5Py0WsUTg5ChuigUtBvB5nCGwEtoqpDaaIFDc4v/haK1pBRWjJmrBDs+ek+czt3TLOgcmLgGDJutJqcOMzEkYIwfJ0+6uuuuEvo4cQ0D2Jl01s0+qykPZVMe/SVP375iffxnppByOwpm5LWbQ1ilZ0sxGArcHWlJQyZV3IXaepdKwhMmWY5omH+zueXi68vLxQSkVO2abcBYsUaveWDhJeDRxyj9ia596+gfXNy9aURxytpwJ7fhDcKYg60eVgRsey5MhJv5pxfsM4ht2693DAIqN9ulQ/9sLqwSqDOLp4EAnrIe9x95Hob2hnX1RpGolpsqGsIlSpGLXZ2D21GRRfgQ01Ywr299rqmJWCA0O1VpvJ0oTg7Uz0hdiBAmkQTR82euiHmohziNHDdpMLSfNMnGeTztBqN6Y1b+g1xLBuiiTbTNQnlPWc0zYR8fzP/iZ42G+hsI24k7rRln2ymrFx/P28/hpQkEAom21o9LJoGKGkXSmbXdLAAhHXwekCY3ZBek3TRX+aTRQzMvjmIR8j5xwlMO1X0oEf9XEF2kaOb3uqbQ61OnBVjHElbSOlifPdPQ3habWp3mojWW0SXV1tLoo2ylbQGMkqRNvbmOfElKNNxW7QymrGEGXwZI+1+TGmzz2gVotMggNatObTw83ipDv4q5DV0zHvbumbzzBOOdiD9P9l33D/LOP8wvGaK95d9Xjgs1C2A0K9mL17XYah9+f2rvoxT0T28kH3yiF0L+0v0jmdEka4e0TX9vypS5d4gRmn8YUwwA5xr202FIixEXNGJfr0rWmoAITgCvbumZtWqPi4CUNr7QTc47OHif267CF68QbzQAqJGhtx8G8DlT1fbKqIVlSiybQE82IS9hcfYTyya+T0hahKV4JD7TN00M1ywuq83DoWsc2btNdobphljE1kJ48cNsRy4PZWgSpmbdXD43pgEm1bIW8VDoObO5p9VeLoTJ9mE8hLKYPrm1Ikx4RqYasGHo4csxWPpPpN6M3SO/DDAdH9PJz93JxuyQ23ANH+w+eh7F8p53xdxu/z/JKbn/eTGaT38TLXH3gEyM7lHaMGLZEdBqrBgi9Vn/0YAlIV7R0EwfKqIDJ2dMAWZ/D4I2BA0oHOdQxtjiPwYrT3isnCUGIiOtna0F/z4FBHaGajAz2MbnY+vX+pb1KtLzS/EgNYGAAE5lmDCYLluRCCUNaFQkC98bitFQlOdWyKxmjhWM5erDcI2Ab1dGPEEXEdi/XYgSFGp2eX6vDcsu75mxEcjp5H9/KTyP53h1yzCbQUDHQZ79sXRGC5LKBKnGYKAYnF+kChS/1YvbcbQetqBdWIEsl6UU+niXZRXpbLvtIOiuyjZu7ro7UK/dzb68bZvvB4X8NHNKWnflfA6SvO6mvHN8mUfMlIj4/vA2D14OnCEI6+ftF+tfZDb386eL6x2/traghjJ7bI2fKa6mFXjS6J0YzSN3oLXbi5BbiuuTJ2efB+UXaNJKL9PiQjIMTorJ4OIHg4a+PFC61sLOsCTU0szEWyezgfQ3Bv4MQAsU4TrYWmFUEHMKY+CFdVfPSgKUqkWtmWi3stpa1mVKkV455Ok20o0Us2TqDvxZdgH5rUNybdUctWi20QjhE0Z1N1tsyOYH5BEcDv2b6ZHzzL4TuLVBwADJEskW15sQZ4hSaZlooNWvY0Sgaq6uWdUJFaKawmgDYl5myh7eXi4eghsqKad7yqY9ZmIxUOhntLhL+i8H3haLeLmj3V6+v+yjDD4XevHL8ACMnV94ba6QHh2Z92i8S+5jn3MHOc6zjRKxSsgwl9sch1bns8evgrYAXxUtDBV1VnqzT3Bu6Ba6VPJhufw29UCNEHM3WwyGu9goE4snOGFUv0zbALdVtBG6VslPVCa5iQV568bGIkhL7ImgMUA2Bpxi+1kXVpoMdl2Vi3lVoKAszzmdQqKSWKDyla60IthZdWSCnSWmVqjZYqNkDX1QAO6JzquOAGGmkj9NYy7deM4ZkG6HMouH/Rwwh7SWVPvhBhbwse52Ilk2lKROx9pIEE9QaEiEXzx/fZz6NVq2NKqMSYrQykBu65NJ2dq4h93iE34muxqW2CpYxrw+3n0WuiwWvek+Pn5GiIB1vylEzl2um9dvwyWntl+dLjr92y+uN9F/Dfd895PIEBynRImd2JSr9wbpjGvHHycVAztIN9jhBQ/AsPa1sd7CBaQ0MbOVIv0PdBMhWvCXZu7IGL2/3LsTPHFlp1Sp/fDc9bjPBdPFSsNpzW8+F8PhuY1BHc5syXAxul1eLhsdocyVKorbJcLrxcninFmsODq9oHDaRojdgBaLVQt8C6LrSWxn3LWMdJa5YKiLOdjNM6LrmBHSPqgV7M74jqYAG1XaX/WLw/SkZ2JtB4Tl9LMMpGbYgyN6gF0cacAioTy8vFc8qK1EbSRhMjUugNltAJFaaYB6b+3zuRGsmZ775907C1pR7CCteGhto1eq3c8rVjRJO3JvSad/zG0Pabc84vPf5a2Hskut9+KIOQdV/Xh9cIVy05fpOdaVKl75Q9tO27leV7KUWaFuq2UWMk5ZlWbbx5Jx3XhnMtK6ihtTFGp6U5utk3iOYILj0HNgR4R+rcZFvF1L4NPCnbyuX5heXlmfPJpD7yafbQ1DaSVotJZzan3zVrNNZiEpgtBFQrVc3I12Wh1ULKiZin/Ry1EVDmnNA5o2VjK0JtjbVszuPtKgoN40NYp4Y1PfdNEZv7If5gl+JoDpA0NXKBL+hdNvIWCNkNtXrPpI26Y4R0fSQevhGpNrZ1IalR91IQWoqspaCl0eqGqI2oaN5z15qJkSuBkC1FqZup99VSSWni/u7sRP025Cxt/djnq8VQZ5Nusday6gw14NUa6C0o9Bnwc1zrN2Gr9M2Qzw34S8efbJxfyjn3J/Sc7fp5Hb4epAD9HOXqeY+t/b4TGQQe6Mwg231r/9mx1+gf3ihkFUl9Fz/saH3DaDaVK4T+8e2EjLSgo52tOe2v+Xn0ojzKLoiMgQm1bFCqGefLJ7Z14fHhgbu7e2RKpjS/rfR2OgEfJbdZWOU5D84jXsrLYCYVp8OlLaJ1pqVk10HbCJ+sFxMIwUTBtgJiBjpQ8BBGyKftsHOrvVbvwe1hdwem6uDOVoscOhB08I7mZa4X8PiScQcsd6YjzWYQ63IhxEAtG9Np4nSakDX4NXHB6Tx5JGcyMBQrm+VjriymnyQxMZ9mRITqEUoHrdSjlIHwSt+TDmHyK6H6cZ0e/z/agRqC9hnwAxxQ82u7+Zo//otLKbe55fjNa3Z7yElHZKyWTZZabcAsAMFURjyMa9tmrNLuLA83JHsuYmz0hraCeOhp5ScPabp3dvCFZvVFC29wGWVs4BEQxCY1t2odKYjQQmGUQ8ZHMUBiuyzQCmVZ2NaNKJGHu3vmeeJ5Wxz9VMp6YV036zwphW1ZYYT6QLXREWtbqFpc7b3aopbOTW7OMhJyDJxOkxMhhCaB5rIsbVvRIExYqKdBaK7ve8yfrHJ8KHEdehg7SnsspfTHtrpdgRyvIprsOII/yUJbN9CyFdZlJSRhkUorK3mafKarATODNN9wUnynaNrGobKNPHbbNuJUBhhZSuWIGtdSxkR19XBdlOFdbZ3u4XM/fimsPSzyVwzzC2HsX5ZzfoMD7knKITftu9EXYWM1g2ptj21v5Sx6+DJQwa432F/Cd/WhzomOXb2UQovVeao9d+wbR3DjMvc4ELpxnpb/WPNzn8lRPR45cDP74i2GzmqtLOvCclnQqtzd3XE+39O2wvPz86CfbZeFdV1NeKtWmkst9l7KViqXy4W1rdRW2baNPmdDEbRaWNwZSSlFHh7uefzugXmeCId8SRVTKo9GyOje43hdwUj/gWiI8WHRXglbjYGxu7EaDX+/r92jWp65G2fDcy+/b1Zv9fB023hZFuoGohPTFCmqlGbTtyXvQFVtNr3cmsxN6GyrjRSsLgzWntZqI8XI6XRCf343DMvWRr0yNItWbsGeTvT/slEeo8HbSHKsezeEo/PSw9//0vFnec7XTmT3nCOR/Oy5cBMW6G6cBhR0aP4Iyx925t4ydWhcRXu7lAyDLlthCxspZFNBwGp83inlIBKDzmd8QDt/m4pdrW6pAdTg/lEM77tqA90aZVuo24YAdVkpq6m+351tyti7n97x8dOFp6dPXF6ePU90hk+ro4Ojkx5qNRDo0/OnoWGLQlk3nj898/L0ggTxOZn3zOcZ48Q2lmWiBKPo9ZBd1drb0AKahlDYfu0NbCueg+Ph6ZVxVt3ztsNiPcphHj1sR2v777SnMrgxhIiqxRJbVZ6XlbWH6OnEuixctspSlHgCWTem2e53Q11dQWwI71hCCr4JNwUJifv7e0KIBraNTZ+r8LLPDL0NV4/qka+t++N6vn3si7XNQ2T5Fxvn117gs13i8LiM8/oCXOwL4xYhO7y6N1vb2HLRaKUHXwSix5DXm6GDt121RmkbJazEbA3VJltpf2vhoPVbHne84BIgdjGxuZLm3y1hwtUNugAAIABJREFUEKF0kkR/zU5fK8XCtNpzQDOo56cX/vD7P/LxwycuLy+UbSFEIcVI73oBjBpHozUDsEopbOvi/Y1weXrh3Y/v+PEPP/Lx5w+A8tvf/Za/+09/y5tfv7Wc1wGjcH5gmmwymY3Ks/yzFQvfTNz1oA3lO3+pNk+035c9nDZksx6U9GxDtHvcDs9t9dDJ4XdydKM0B/KaDZUyGmGkNrisBakrrVVe1outm5SQ6cw0n9A8GWMo2ISx1hpVZOjWSghG/xMlx9moltI4nU6mqFB3Dq0vr7Exd2/PIYobuMc32MPRc97axavh7Bec1mvHn+05XzvJY075NUzq6nP3m9n22lMv1Fvz8kRtxbmptqsHGM8prVq/ZOelOshQ64ameYgy9XO0nbwT2u3xEIzjGlxzSOEgC7Izk5Z1RRCiJKKr9wWgibBcXhARUkwsPmpwLYUff/iRp59+5qeffuTdzz/RWuXNr77nb/7md0zzbPXLVtlqYdmKo9Nq4VtRPn34xI+//yM//Mcf+fThyXifQbg8v/D89EzKiYqVkObzxDmfCdPMnGfPuTa24rNQNkeur6hxfl1L3a/PwRN2ecta9wUrauULU1rY82JUxzCpeuWNeh5nXrQ0HEE2/aOtNtpq4EzKifl04v6777n7/g3T/QOSZ1RsoDCuCeykSw9nzThDMME14x2bar644mB17ykeXdVB4j/wbft6HEoRn0d9Izx9xSCvfv6KYd46sy8dv2CcniAf/3XkbUgi7qnmyDW7tL14CPmZoXq4Oj6gmAxi21ZSTrS6kZPw6+8f+f7uzEu9sDXrS24S2UqhIYRpJr2cLBRjI6ZGnle2i83bDCGQ8h2lBHJM1k1fijVgB4PNrXVTQN3ruqZQtBZ7vGnSJGSqM3uCGJJaCq1tqA+WFfe6McKyPvFyufD88QfWdz/x8Q9/4Iff/54f3r1Dpsw//tf/xj/843/hdL5j2yovzxfLPaPVAZeysCwLH99/5PnpmZAib3791oSdJfDd94/c3d8hAuvzQpbAKSZifiDkEyGdrSVNXLaE6nRGK/t0KmVrvbxRrw2z/9yjB3GaXC8xwGg87mrodvMdqW9YjixY3u9i4EEDK6A+3uOprMj5RD7PJkx2f098eKTNZ8L9rwjnO+I02TrZCjEZYFcqhkNs1i5n+IWj3WVDpTBPE2++f8OH9x8JklGxfLc5X8uAIQw09PVo+ISOn3nNCPtmP6r0/vAOtrwKDI3XOOSiXzu+LvD1BUt/vbbZ4RYGuVv8Ll5hQTe5prLnLJZrmkRiiifuziemnNm63MQIS/oOj6noaaEnOX1wrhGyFyRMbMXCmIhC3TAWnDfyuhJdwzxCa713NIEFqyPkFnXhMocge+G9abO+TGxHj1hOVUulNGVbjTl0//BADcKny8IPP/1Emk/89re/M3GzYj2INRgjRpvl0fPpxOP3ytnzp5yST0zLEH2wkUCIkWmeOd2dbZDtNJOiUGqfs2llEG3XKu3q1/yooXMUV25dyQD7/shF7q9jM1G9ZNLnj+BpwcAMZHjQFK28s5WNZV0hBqbTidPpxK/evDWP6m1i5zyRpplttalzXXsqig3hNeTawnhaV+zo6VJjnk9DDMyaHGzRtQOmwfHr2t6uUp/hXQ+549HxqP+OW6O8NdD+Gn+JcQ590K8Y6WeP61DeGB/uFh27rSE1N0jF8pdSCnmaxyTo6Dfz9kKVWklToBWhjwY3salGbA0pFUkVIVLKStVqw3faPvqgbyO9VavfgFbbiBJwfmYM0aICzy+PRPmYnPcqlku1Bmk+M5/uWOcz+e6BN3cPvE1/x/PlwvOyUFvjZV14uLsnTZllfWFdK5oykgLT+cTp4Z7v9a2BNM4TMKExsYUahLvTmbe/esObt2/Ip9M+OiEKoVqZqNSNUjgYo352j64VAdrVY7dSHvZ3viE6UHYkkCgHKRgXEhvrJZhxbN7Ncro78+btWx7vH/jV21972KmENHF3f6ap8Lyunv8rKVrzg/jGmlIaeENwooKq5bY22yUN3vRgMNV6tQaPGMgx9z5eo18EcW5+fURor2zlrxHW3hrn8fsvvagIV8JHyDUCZqGRfrYIarWp17Wa5zqdbZEZ8ONDf/z1xJW8mzaak9Jb8Xy1FmuUbQ2pFS2NFCLbQb0cFK1KBSJe9xQjg49owYGQxiFSCM6Y0Q7B76ylziIKMdtUMwUNkYc3K+v7Z6ZilLbpdObubTDukXQJ0ExdhXWa2HQxbx0j8TRxd3fPPHlBve7GEmNknjKn88zD/T0PD/ecTmeYZ/I0uQGDakRzIocOfuzdGCN3Uh1h7a1RvmagV/eTg8fwBV3bhsqocfnC3r2ZTSm3UDqkyDk98v2bX3GabaL13cMjOWeW1TSBLi8vXC5PzHlyiiNkCdaZ44yfXr8e81zdKHLOV7Kr7eaz9erAn3J8ce336/DK86+Nky+Gvcfjq8aZc/7shEZZ4xU4q+86PWQaoR8dDHBQzKJJKy73ViL1fKA1zqcT9/f346L2grL9rCheqxKhSvOhq5YHVxEzntJ4qRdiy+TzsTPGvR4mrWmkGAMqFAZYYgsJO+HeGlYriLer+QLr26V2rZ48udq6EOc7WotszwU93bGuq8mjpEieJ3JOaGuslxeQxqmeCGIF8TBl8vnEfH/m7nxvE7zVNqQggRSjjaU/2VDg02lmmjIhn8eMU1xuOgRFg1DKSqumk1nHXIp+rz43xFuPemucZYw1sCvbN93aGqGP97JF40bTkLFCdFD7YsrEPNNCpIZAnGy6WeOZdV1YLi+gFe29l9jrZ0yzYuSAx/sWjEnUQ9pOoLjykAPYuYllX1nnv+SUxvvzeup3+xojVfpzjXOapq8iS7e1oR4S7p0aOwJ4LPbfIl1WHrFOihACD4+PPD4+IiEYNxZTzks5o20bhi4ibMVKABLCELWqKiyt8nxZiJvw3WSTpUU6Ba/u5OZ+UXXPf8dnUfyr3yAwGHcPDQVTRwgxoQRinpEYXboxcE8ixZnvlwvLsrA5p7MjwLWsqDRitHkqS060VgjzTD6fbNTAPJF9clpwIeqYDM22YUSBOE1m0L45hOCGHKCXLVJKXovEVBDo4dzeVnfrMW/v99WmrHvoan/XSyccNi5f+F5e6nVnVE1uRW2Kd5pncp54uH9g9qgpT4n3P/+M0MgpWbrhUpwpmfqi9XB6fbP3iIp95j6e49gQHg6Go9rb1m6IKOwJz+3a/5q3O4avX/u7bzF0+AbjvH2j445yvFnjpqnfDt1h615fPO7EI4TtF0oaFPub+/t77u/v7e+9ON3nhhBcKQBAAquanEgKCWKmxcwWAosKn7ZKlMKMkFM2itrWKV96cwP01c/VxUEVRkPz8fOqOCCSsk3/crWErouU5kCa7kjLhWlZ2TYz0M4Q0g5aTJmyZXK2qV+aEiFnpsnCspgT83wip4ltK0zTxOlsdTwRYwql5MCHd2hYB4ltRqh67lUIRWxEg4tS9XzdcNlDNNODVsG8lqh3B/lmFQRp7Pkb14SDPeh1Xd4B5DnTiIqEyOnuju++/948aIhGFvF18P7nn3h+fvaySPJgxl7ZSmgwJRveVGqllOYKUE6m6N7cw9rgkdFxPd4ip/KZaX6+9o+P/+LxmYP7K3Sl9JzvttZz+/0twNMZPCmlV0OifrGOxqtVyfOENOV0OnG+MzBoXdtosBW/G6oGJgDM0x2X5ye0NXKcCKcTqT5a/vW9ojLR0sSqglaY1FTXm1aa4Crzdr59TouIddRHV1If5+w77dh1JULcZ0SmlEGDKeylQJNA0My6Wd4r04nsIsm0jXW9sLwEck6U7dlHK6iVA3yMX86GRE4p+7i+wMPDA9E3q16bBahVCaESjIE9NhW73lbrDNE+27ZtbJuPZBczpKFo4Is16B6qdkPrtqeqzlu1xxu2UYmnCE0P6YwWRIJNxE4+qCkE1m0ju4r+0/MTj4/fj7B0XVe0FT5+/IgIpDwZO7mBbhvEjZAygim+JxfALqWiQYnZGuJDLeScqbX6KI792MEgbh63mu4v5YS3x2th7auhruzP/9rxiznna8b5GtJ3fPwYDr2G9gVVKILEMB7bNgtpT3cnHr/7jpTzSO6L7n2PfUe3KcNKSidiPiG10dpGlYmaZooGqsDWbEhQCpHkRmbq64dePlzjtA91FKv9FQ2d2Yev2KvPWUVJvguLz2bRIL6J9NwVQgyoVJf9cFAMy6OnnKmiBJko3hGjzYYlpZS9WTuTk+nXmrKB32j18/Iv1SNXuOeRbWj09Ciks6/k8Hluo5p+b1/LP8f31CEBOlaEAQ7uXK8jk+Y5ZysQUkaLcZODN8Uvzy+WL59mRAOXl9W5sF5njjZ8KqhvHL1O558358xWjZfbU+mUDKvoVMPa2qgIjM8ptwYqV7jO0cu95jX313k93/ws1GVHbP/inPM2lB2X+xXDvH3Orbc8hrlHSFuw0sXj4yNv3r4x49xW74NiJ1I773PbNrZSkGBDaRUfIRcSpMlYJA3WVWkqzCHQsJzLctROOtBdDVCCpUaqPgfEDCr4gFkDjTqDxMWoBVMX9K8u4q6io1xD7IXt5nC2i5XFSJgnWhBKMK+mJVBbtD6RYOPu0mEE/T7ifejr0Q0TjApoYKCTB5qFzr1c1QERc/rBvF9vRn9lk/2acfa7vA8GkkPJ0Ar6tmhl96qq1GZqeb2CKgplXWhlY5omcjD1xY+fPpi8ZUwmbBYMFCtqqX9uu7eyAb8zpULbtr7HXtEOOzINOy+4n3evKgxjGTjD1/PEq5wSPgthv5ar/lU8Z3+h1wCg10Lb43G8wR197Ul6rdU6MVojBrvJ5/OZ0/kMajS8NKZyybjptTUuizFoNoXv7u9JYoTnIDYpLBocTBVjxK7A5F5NsGXdFweqzmCBPVPqC9Z25hC652TkZNJzrKFq7xs5OkAGxWqenbCAdukPFzyT5N4nIdLMi2qwYblYxwi7mfuxKxDaGe+bpwFkzSkAO/FAm09mO56bG7ApMLUhadk93xDHFt03R9mNr29S/dB+7XrO2RsKbgr1ISaW1Ub1pZi8Qf2J2VvFtnBhWzc+fvhIyplpmtliRsNEcUOzzhXDAYJHITkn0lYItTlqL6M9bBwiQ9eq1z57RDTW+mHo7i/lhrce8kth7dXzX/HKrx1fNU4bM/55InxEXW9D2dc859F7DmN0Qx1qbzlSa2GejRPatWeUtu9KfiH7667ryqrGqLmbMgkf047JSoZWUV/wmyorrs/TgEMnv+GKZvRyCHFsSt5hYXaFAPcEXeoDbGGaPGbt2Zl1T2ihat5JEu4pxGujgpH+WwxAdMMRYrBFHXwK2T6m/miYrnp+c72hq8wVWivgKua1mICYqdDpCHU7mNNwg+0/36CYKvvjPXztRzdMDhuFnaJwtTqBEBKXy5NNJg/CtlzQupHkgSaBtTWvcYrn7xMSJor43FGUpsFGP9a2zyv18DZGAe9CsundaeSbZdvGmrTlJCMH7uv2NQ94/P/KkK/j35GvX33dvt4hrP3a8ScZZz+xHYJ+HRC6ffxLrJNSyjBWtBJjYJ5nUoy28IOwrcXqch1294vd84hVG5dtZc6JOUZ0LWNwa1DLNYsIpVU2aeQAoXktcVwoRwCdCNHLHH20XsNC3OY3Ywh/+XWprevguLdtZmAVC6krFtJ1LcggeJ1LbfSeiM2dlGrN3s2br5Wxy9pLW7Ao+xLaQ0v/Vzk2SRcPZU27tdSOErex2Y0F+co9fu1rgEYcPKQeoo2eg6pFFb3ZZzym0KqBSZfLBQTylNAaucgzUSGUSClqKhI+UFljpOARlJiUS1Mo1ckUiM3/9LVJiGhtV6nAOE+9Qd0dObtGbPfjNnr8Uqh7m3OO1/uFkPhLxy8aZ3+RW0957OW79aBH4zSpDwMm+gWyhbOXU+ym483DeaCQWgtLLehWHNQAJLiYcyZPE2VA/0avq/QSDYPx0/snt6DUKPtwWPHvZQdqYKfgGVvouNn4ZzgYqLoxNg9rtfWw1ueaIFYCUNcpCparSrOct5tb8Cbisal2r9a8GVgLihHV8xxMQDkytFwtZ5IRMg/hsN43epAXaaW4594ZQtKD432t2mduOkLYfj43mYs/f1gq10vbH/bPqdrciAyRra0SwhnRxuXZms6nfEIkcD6fWaupwbdsKg7jBL1cIkMtEFOEbzqmhzeFUmzYUj9iiENRYl0XxgU/OHjbFMdP15/VcYe+qXP4XyzZfx0MOhpo//7w+GvHn1TnvD1eyz33MHYnCgdf/LW6xmtQhApSUBUrukfzmH28m6jY+DcSRRPEO1QLZd0obYMwo1IItVAJPC2VlIWYE7pB0MKp2XCdRQWNmRIzz8lI6WlzsEQaU7CxBx2plOC7szqjRczDhpiMkF5xyUafcdIqhYq2YBNWNIJmosxISmwuZBXU0F1RE67aLi/Uy+rQTmSWOzOG2ggJiroqwrpQykJrRjk8390TpmzDZGOy3sdkG9oswRXtjCXVajXDbhvbtnpvZ/G5UYfxD2JqC8H7LUXVxzxYO11tlW3ZKKWQYuZ0OtPwSdAA1cNiAGmm7SvidDnT5rVaNZS08rR9pHqD99P7j3z/3QMhVHR5JubI+f47WttQmQgps+lMJbHUlZSUVCtBlWmKNG0UbPBxqNYRQxCrFQdHclNkuWykmCl1dVDSRceDju6ZQV/T3aC7mTZ67Xe3KQm7MXbpmG6Et0b6mlf9s3POa0Tr9eM1IKiXEFShSUP7VCsOnlWMQGc0M+vT6+Gqv8oIR+Z5ZlsWT+4tb4s+x7Eu1gDU1crDUEk4jpx3vzA8eXCtIAvDWlOrL/r7jk1n+BD7v7Q6gkqjIppKQK3KWosNKIomRBVIEA1ImmIyr9gqbdt4fnri+f17tsvF+b/2TjlaPTPGhLbCslx4enricnmhlkEJ4Hn+aIN3YyCkRJ5nTucTeZrhnFxZ3rpuGvgskpXl8mIqddWmqEUfVy9BiLHnyN0z2f0zcSzzmDGl0cQ9Ojz8uo7SjvBZk/HgHbtKw/KysF5Waq3kmJEQx4aAC2A3j4A2LTR8GNEwIF9c/f0O63CEpx7ddDdvG9C+bq9D1cOC7kZ34zFv/ehrIeproex47sFjHn7B145vIr5/7bg1zqN4VGt49/vndD7RfT8SSTQVck5elBb67JIYbfGUdUXEhrpaeAgpR3LLrFsfP1dJoijBJ4cFEFcyGOG0gzkpG/Df1IATZYf+PTRrbp59i6pOsA4SUaC42HJpdfxOKL4wEsG9j1SlLCvLywuXpyc+vf+ZD+/eUZcFUVOM083yzZyyMXnWlXVZvBhvAl1982rLhvZhQQIhmdrcPM/oFIy0cMqkHEGMgNCqTeUqpZq+rgQkiW0aauUN+9g7lXG3A0NdU083VCnlSO2zcQ+9d7cbZN/WbCbq/tyyFS4vF16eXtBJmXJCMA3enGfr8JGAtoASnO/sXNSwh909vJQeblfz3V1Rv8kuN3LlrdiBG9Dxvx7E4G5BLIHdu3Idrl4TDF7PR6+M1r/+opzza8Z5W8CGz8Gi0LvsK1fGayhh/xzOM0WYJiu69+QnRkFjoKzFwaCATBPxcvHSRCOnbKPgaqU1TJ4QxkIbuRVYaUWhpQBiY99Ve2jdvJSy55k9b22+CJovPu11TIWtFkothiJuilQ7zyn7TVdle3rm4/sPvP/5J54+fGR5fmJ9ebbOmaZs60ZZt2ERCoM1pdpcFSKyuVaR+PWpagoI1bnCIQZqFKP2nU6czjPTaSI6JfByWSllsX7ZYGlLSwbKxbQbQD/6NUjO6TWyyOb3P45r1Qcrqyv46XEhOuJuG6S1eW3LxrZstqGGgmTr4knZpn6LC0hXrGdTPM+3Tpo9J7cJaZYX19aI1fp6DdCzs2vaeczBMQLciwutmTvdjeRovDees6eWuwG8GqJ+KWT9lufcHn92WHtb9+z52nX+ud9g9YKxhUMNad3w3aOpjvYeu6E6Lqq1ZTVDj5PwcoDOU8wEWXtZyrtDDoBG3wX7FC2tbAI1uL5uSKAuFg0OCoUBCDQsr1Tf/U0xHEdlTfS51JW1VqoEUj5xd+4tXpX1svLpj+/4+d2PvPvxJ5aXJ2gmk6nFNFu1GkCm4CPcrY6nvshyTJRWQA2BRXtujAlP1805tPb5QwjEnJhOM6fTiWm2qdtKZS0raCGnjrZnyxQ9GvlMEFxkSI90hF3Eohww0nhHpQSsCUCMhG7XE9x/Avb4y8cnpCln5wqnlAfjqyks20bTgCZB0+TgmgNnvuEO4oOnF7XY5O8e/Ygvup0xFa7W7G4gt8Yprs641yf7Rxhm9BVD+99mnF/6w1toGXaPeDTQENR3J4XgQsxBgWidEdYwZBdAm7eF7XM/HXskOLk7xkgM+3CkEKJ3YPQBQ5EQoPgVlW5kfgqWbyplgy0FpmR5l9Zgxt329+SwL/Xw1pDLSlEbwa5q3Q5b3Vi3jUYgkAgnpW2Fj09PfHr3kU+//wOfPnzg6dNHWtmIIiSxEYHLZRmqdXaOhrSuvmHF4OF+yoMksayLeZAglGZUtF5GqNU3tRiJ2RDtPGdiTqQUaLoRonI+T/RJaiF0rnP4PA1SPejtNEfw3Xj9LilClw3t+WXFvFgvn/RoRMWmVIcgxGgklyAm+xKiDVBei1/LNJuIW/CWs4Mh9SlsfcMPtVKwocaDQdBDco5Gcbu2D6Ho+Pcr4eatMTqnF7keP/Il4/tWw4S/QH3vS8/tnnJ81FGsM+hf9Rjy9t1bRzjS43+w0koFYgojxI4xkqfsw3o6JNFnd1quKsHBlz4ASXV/r9aoQalqoa1NPQ4ETdCMTdQ/dl9UQ3rD4qSdDN4qxb2WaeRagb+VwmV55sc//sSP//FHth9+Yrm8UNYF1ELrpTOFaqUs6yDy19rYSqGupgQvIqwe1kYfWb9si3sZM5yt1WGc+KYVUkRSRqKpqWMfF9VCniPff/9g5P5kQ4LmYGMckHAwPQOIulfvGySI1R6Ra88ou8cR9rpia809sK2PEIM1gxNY1pW1BO7O1sMZknf0RCuZaexDhnciiGEF1T9QBbUoJYgVsbucjYgDd32z9TTLQCTdCRJt/ww9WhDPxfeVzLgG116Q3WAP9t6fO07ksK4GsPWXGGc/XrP0Yz1zgDzHcOgKcr72tPbVtVod4OGwywW7FDFGNv+7lBLbthDixOPjPe/fz9ajV+29TG7SivAxRR/N7oN3/HSETgQX76KI9vyYSSF4m1HfdWVcZDNMNVUh7/+rrVLW1SYvY3zfUitaBS3CujR++P0f+PH3PxA+fGBZ1mGc0porCtrCXy4X0yEKiVIbL5cXwlJJyLhGW+pEeHtOEzuXlJMpJcSEBGFpxjdGAhVlq5Vl2aw9Kwqlrsw1cfdw50wnoTQl1OpasHqVzqgYGaQv6ur31UZfdABoX3m9tBJCoDq63Y1ViGxlJU2J+5yZpokf/vAjT8/PvHn7PWmaCDkRNRBOJ2SeWFQNeHMBNmuHq0grpmBfGxKEWi3yMiZUJTbrYoohjrDWCC/2/VGXdl+3+5o/1vGB0abY7wcHozwarI6/vwZ8vgVcvT2+apzHMPWXnvf145pVoSNJ73mIDEnIDhV2tknOmW2tpBSoNQzE93w+sa0rL58W81rBcrAQg80WwvLUURy3E0Ww2SOXrTBlM0qJkdBA0oRu68hnxl+Om9c89NMxusCMcuPjp0+spaIagfcsl8IPf/iZj+/eIx8+sG3GzjFHbZ/TCBCm9JclEtPEDJxPMycVku8OMSbyNDlYEkjzRIgZyYmQMnFKpPlEzhM/fXxnJZ0Q2Fq1EFFrr1axlgWkcHc3W5dLyFfkkO49xobLl3GHzw7pt89EzVTYwSZ/nVorp/s7gkTOpzsua2H78R1bq74xCELyDUYMrSXuqLH2W+IG4qWwqmqMKA3EYMSLHXS8OU25NsTduXQe83X4q6qjfgmMyWGv5ZFfyi1vJ+59y/GLnvPoEb/tONY8d+/ZyxNmqPjju2fQsrlHKhaWOccz5UgrAVJyT2mtZXd3d6zLyuXpMl7DukLUgBLppmk7uZ2S0QRLVS4UTqWQcySqhWc9Z+oAyR5g7+frq2R8vlqrbRKXFz49vfD06cLlUlmXyuWlUi8bsdjMzPvTyaYuz5k5JaPx4e1qGJJoNzHYjfGpXlOeOJ3vCDFRVTmd78gna9DeSuVlubCUSlFlvr9nPs2uZ2vXM6ZInC3nLG2j1g2LTCBP2bGB1b3JzuQylHu/AteYwuGOi2LW73moGpKsjaGSb/tMM3mUmIhpIp/PnO4fkI+fbCsN4oCWzTKtEhEiVpBSSzt83KPlqr7jYCwtmzC2d+G0q9KOHozFjU85GI+RLWQM83VAqIe5xzUQvm6Irxnrt3AGbo9f9Jy3N+U6dP38+T0vuLp5Iy/5nPpln8YugDZl21aCTMRo06tTV0BAPbQ1KH/2wvs0ZSMHdC7sLoxjSupavIZnVDaaq40DW620bGCSuuGKGHUe8UU38IFOE9ulIpW9Fc4awzd+evcTHz68oDUy5TtO08TD4z13pzOP93fcnU+cpokcIwGvyYn4WIauqmB0vz61OsVEnjKCsNVqUNmckZxpQdiqsFYb2HN6uLPBRnM2Y0CZ5kSeExJ8oJHagN9t24w9pNXkQ750bw/Ayu5dDxuXAlQfk3B8bqVU8bRkbycjJsgTLWbSdGI63dFCpqoxrGKcaCGjGlESSqRh/GBj9kAKNjENqQN4qk7o74ZkuS4jFx7SCV269ZC6mNxpN6ADBcEN8yp/lBuD7I/5tXjNODm+xjceXzXO3lLzJWj4aLz9aJ5PHT+oHftzr//Ovvpuva4rKQjE2booBNvx60FZwUPbaZq4uzvTaJTaW528BUp1PNeEk4N1nbSKSKS0xstl4RQC51P2BuxoYxp60dxnqniNwFqqmqLFh+RJ1dYQAAAgAElEQVSqWtcL6uFjIebE43ePnOdHHh/ecp7P3CXLr3KyWZDUja32sYXBAr6QvC80EV12I7hgs6qyHQwq5URdlLpcrMbaKlOOhDgxudeMSZyoX5HU0Fg9vzZUm5RAmklxts+7jMZOrxY29o25ex4zTg8D/fY3VR9w270ue++uv3YphRInppBAIvl05vHNW6cJRpoGUsxmkE3QYI9pL1/1qEbwqePO1PI+1iZ9Looxm/a8MCDSrg1GeiR3XN+CkxavjHJsXHL0tkZ0GIboO9aXPOmfenzVOEsp4/svQcS3BqouPLyHDD2cZTzvSDLvR/Q62rptzDlhns+8Uq/JhRhIKXDZVlTNWM/nkxnGutBLMObbKlULVbtxGsfTZq4U1qXyUldyq5zjPbMAtTOAfJcPx8Xgr6HOEXZPhQgSA6fTiTdv33L/+IY533F/94Z5ujMv7OMGWy2sLy9UtYVUa6W8WJ3Tbra1NsUQmaYzIVotsbVK3XzsQTOFc5vcYsoJsysxiFgnTGnFGgmi9Z4TFaUQ4nAaVtNMQqji/aY7/a3fpxAsVO2G5ZQOwGaeWIi5AyeGIDevSRraaSUTO7dSCi+XCz88PfEbSYQ0M813/OpXJ8q20rSijqKLRFqzWTfanDzgmEFH9i1fslC6j0ms0gn+zeVW+/rd15o4SLkbaf+N10gPnvPWmD9PyQ6ha0e6jwbLdX76pxxfN86tG+exRiTcvs9VFDQakZtxLNldfu+AYIS+h/zUL3SrsBVDVAOJ58vG4/2JkCa2bUFCIObIy/MLIQqnObGu0XfW6jM8EtsSKFv2gUPFpSsiz88LH979zMd3H1lfnnj6299w+q//QHo4G8gjwhjc6wugqY8qb77ReKnG0pFAjhPzwx0P94rEzOl0zzSd7O9qQzcDjurWkDihWzDAYi0INloPNSJ9dBJ+2VYoNv+jy5HEEIjB1A6wrihL9cI++6U072mVQI7R5rqESB8KNRaQWkjdYqRVM4Lm5PW+pdbRo2u3yLW1YbCSe0uYe0nFQ9Peywl4OBpj5LIpHz9d+P1PT9Qyo/LA/WMmnxKSMvXyRHBxhxSEpB69NbvOKoJWIUokJkFMQhCtFammxl9pFC1ILegGsQVysIirigfHzhOu1fPPfq/HqEg5GGxfBxzC10NoG8KwiyDX3vK1//+U46vGua1lvPBrMfSrh8m+Xf1d/76HmkfaXzfOKuo7tLAslSVXppxYi7JuSgyRZS2kZLSzy+WFpjZZap4iWoRtdZJ9CZQt0WpGVWzMe2mspfGHHz/y+//5B97/4Ud++sN/8Ptff8/35zP3//T3zDGYCiB7l4Jio+ZKtYQqYDlqpQxvkkImhGSyItPEdDoRUrCBvE44KpvxYCVFNEG9VFpU4mTgF7URBaI0UJ8c3btGOrCGeatS17HRVbF6rkSLLFQxJQVNNM3mEbtKZRVCstxe+ywbf+XeT9qTEQtJ901qJCCHjbg5kyb2aWYK1YcMBWmkgKUJtaE50xQuW+XDTwsfPvwbH5+Vv/37v+fXv3uLSuSlNiQJTQtZEkkiW6uIqX+jzjCJGp264iFsMfqHaPC6poFDoSVCCySJVLyPFvvsUQLl0BzRDfTKENmN6hi+jsdvgKEud3P8u1s7+FOOrxrnslw8lz6iXLsHffVQvTLO4/+3RnkMiQt6NfHqSQTuTG92XVdi8NqZN0nP88zLywutWntSzpNNSS7FRKF8Qff8tLXC+/cf+fD+Pdu6AcKHT5/4+OEH/vs//QP/6W9/S36YCT2PctRRsRYkNS7iQCqPZRbxwbcpJWI24KWrBYQYIQmh7RS92myKd3+OEbQra9u8AqQs1cJDADnU5BTLr5o0iAoR4pSYolMfZVek2G/Jfp07jnDbAN+/hqIFMiiZ/kE7arDfa/9VF5KupZpxiqU2eY6kmFzxYn9vRfn08SPb//fvtBiRBI/fnY3r2+z+xWhc5xgF6eP7PFWyUNLRX9cIstoqoL0sZO2GuxSJJ1hHYwrfbpzdU+63fQ9X93U+ZoP//+85y7b2dzrE0H7ir8KufvTFdHs+DhaogwjH/4ti5G2sS76WQhRhenykbBsqyjTPlG3hsjwTQ2DKmfWyor4DGrkZv8EbzVXZg1gd9cPHD5RSOJ1PhKb86re/5o//9q/8P//yz/z3//b3nE+/Q5KFfjjSp135rzaXLME7Wfz8xRqlY4rEKZuKu5hioP3OJnwpFZVKs4F9NKqVNYpNvC7rahIaxRbiWusAQdoh31IgT0baD8FCPBHQIBAFPRjyUSLmqGBwa5B9I9ofZyDRHUyBHswejuAbiHrY7o0FtimBqtV9+0KutXG5LKSc4ALPz0/8+OMP5FNmnv6Ox7uZ7VJ8Do0SszCJc5RV2fqA3wCIAVW04tfJPZn6sODWCMHa/I6ln97pRBC6/zWE/iYyDLee7xUDu/WcPSTmdaP8q6K1Zd0+Q5y+VkoBT84HDf2V3x/zzMNhE+Ts9Vut1HUjiY3uu7+bWS7PhAAxWOG8lpXWrEBfqqnAm8hTBrHOiyCmxVNLY11WPn34wLo1zvMDWid+89vf8unDT/zLv/4r//f/+Gd+9fY74v15TLIfEYL149KJEQZ67JQ2OpEhmPRe33RG/a0WL+u41HpQSELbGquubLqy1YWtmuZPrQcBLt1HoPfNMYiQUyRk+5Lk8qHbSo6fK1R0IzvqPB2/P4QB9DJY++w+6Y1p9tdzg6iu4uf5mPWkbpRiDKwQAutW+PjpE6UInz59ZFWY7+9ZX1Yb06d3TDEBEZuw0dAonKZgZI+CR2VtoPIW1lwv+loKjc2iqRuBr2Gc7Ij0fl3DF43z1tEcw9r+89fC2j/n+IWwdtlP/htzzo6W2m5sj8CXjdkOQZuMnTuYy+KTfkJrZUq/IUjkclk5zZlpOvNSTB5zCr3VaSc0pBiIwbxfa9UK8QLaKpfnCzmeSFPm7rsHfv273/Hjf/w7/++//Tv/9E//yOl0IosSUEduGU3LqmKfznM2dXCsqwN2gS9CHyBrZQpal/dwGMVvLNFHSKRoygZRaDUSWkM892w9PxQvuneRr2jAWIji7aq2aUSbb3ilnXObVnSPel1S8F1fOxzU75mwb0v7/QKj8onqYUBxc20lr0HqXp6ppbEsK8/PL6icmE4TVKil8u7dz0gQppTIDyfDCVQpZUOiMuVIibAeOodaqwSpiDZCSCMFAN8o6org5bge1ve1HK8JAZ+t668Y2BWGIje2cQUu/flG2Y+vG+flcnXyI87my4wHAxZfzytvj6sPTxqNxTknUGVbL6wvF2iNf/iH/8yyNJ6fXzifZ/uLmGjbNmp3ZbPu+hCFPCW252dqMQL5w8M93z1+x6dPF5blwvl8h4TA21//hhQD//7HH/i//sc/86u3b7k/ZZL0e+QlAYk2PasDzuPEgxGq8RCqunJeEJMKcdAqiDqiamQHbQWkmX5sFsxbHDp6nBygA9ARJ77H3ZhcgEy8cyXmeOjY2Yc/dTG0kfMd7sW+qPZ7vP8+XG+wtvTGnbbhU/hUuR1niNHKPymId8LAtm4sy8pWKkxCKRul7PXQ5+cXnp9feLg/mw5Ua7StkVFyFqZgek8F73MNDZNRZIyF6B6w1eZyKtW0p7rX170N0WaNcvWJhlEevr96/Ob/cJN3/m81zsvlxd8keBK+S//fNubuh46dHH7JY+5HwNQMzHvaKHltylZt8Ozj4x33d2dAuFxWX4TVGDNtz6Vq20waJMX/1d67LVeSXGl6n58iYh8A5KEqi2RP01pSa2Z0owu9iV5At3pUmUkvIJsxjTWn2WSxMrMSwD5EhB91sdwjAigkimRzxvqi3ApWyA1gHyJ8+Tr96/95jLFO/YNWhr6zWG3IKfJ4emToe+7evsE5jfcT//T7f+G3v/0tv/3NrwW3irQbSkpobVA5PcnLJAyslJpadEALglRRRcagKAJa0AqcMSI3SKEUV1P3vGxsq+zi2UxpRZk66oaSinADEdS0X9dilOvsolMJq+fcesptQWi5W89+Xm8h5bkHbVLvmxZYNlbeewWANE6iRqClENn6mBVFGWYfMLYjFwGbZCWM9/t+oOt77h9OfPPNe7TpCSmgTaZToIoM1fe9Jc1tKH3dJ3IO1pSophvaWGJK+FnabyJFIZSrkqfrOkn0Qq7YAgZWx1S0evJvucjPgAbLs6zrX2Ogr+ecsxSElN4M3P5MaFtquf+nj9c32/79pJoIWptlFKvi2GQTZCG5+v77P/Hh2/fsdgM5R0KoRM+VfCrlDd6zlJqXacapMv0Z2TQpBnzMoA3D4GSSRBv2N7dM08Tvv/+Bu7s7Prx7S8pBkuFSqjxhqax2rZKbawgmY0wSXBdUFv7b1u5QuVSO21ZlrBUTUyidvOltJJJSkhtT9Iq4oWqwbKQFGhLHWitwNlrf7eX6wEv5ftNBeXI/Wijbop+lz/g0l/XeUyjokoWR3so8rjWmtntibc2YKkGYq6GIDIPPifF6Ybc/sL+5Raksk0JV2ZoCIUchVLOWziiSM5hUuXfJwpdUo5ylXVdkUqUguXjzzmJA4kWV1kLOBks0uJiWWq/ttioLrVqsl797YsQvGOe/Zv1ZOad+dsNfzT0VLxon8GSzPPesugKn6wtStEDdSu35ffr0Ea0Kf/d3v5HigvcLfUYJipwa9aRGEYFKNlwECN25Hcf9gb7ruIyP2K4j58z5fAag3x2JMfH7P/yJ92/fcXO8waqMLRmrED3O1MjKWrOFujkrjlNnVN4qWAnD38LIxtO6glScuychJ8hz2SoN2x5VSgSTJKxlIYVuJ78xNee262jSS/fopRbLcuPauytrZTdFOYyaxqe8PzmoJi/7o7daBgiMAB2ULqjYCLsUqvIGjeOM95HRJ2IQrdOGQtNaC5ugdcR6eCkUUz0Ahq6jcxa768mzJ4eJXAIYJ3MrlXg7lkzMGaPXkLl9OjGyym2knl2f6jG1eoohXzznMwOVN/0szOXrdvHnRpDb9ToIYeGLWdso7ST5Osq+csqoJVCo/63/L7SCiniWAhLulUYlkRe+GCn0yCn95csXbm8P3N7eVtqMIhMMtOS8hd25csdkwbNmjTOa4+HA3e0d4zhTtCZMM7OPC6tcN+y5NO95e8M3b2/RVskkRWsxLEWSlveJkaZSaGrRC6dO/Tu2hxIbL1mlIYS/5+mNtlT2eWorY1Ez04vkvaqRRfN1mkIxPyX7bmtLJfPsltEKP9u/K3l9XKhk5GBqLP0LqZmqzPRKQZEDzBgBQgAUpQlT4nQ+M00z9w8XSsrsbw7sB9HiTDlSsqFo0UVRxqJJxAA6FbqccVZhdztCKYxBCmamvb7SYCQFaZQmbD+nUpv9xE+uQ6vIqmcG9rWwdlsQWn93pcZ8vpY54b9gvQ58jytCaPvGto+9vPJP/ubnTpTlJFOiSJxZQwilpMhyOj3yww8f6boOYxVxzgzKSIiiWkV1YRNCKRiGnrniUpWGzln6zpFKYZo9pQhTOChcv6OUwsfPP/K73w84qzA3B9CNcLm910ooXT9r/WF91UpetgkVSxuqXw42W6uckr+1ok27TlprjBIUSw0HlgFqGSxOtdeapbCUC9SDIG3C0eciRNv79pIBL39TQ/ic1p/lnAk1pG/PaTuLNUbaOkbXHLpQ6gC8RlIPrQ0xzVzGCR8Sl8tVIg4th6l1Gh8DGkXIGa3EGyalyMqSMsSQ6E2mcwaMZm79VE3VS6my8wqU0XL4hp/uXzkc5Tqn2stu0IGWbz4v6qj2vM/3snr6e695zr8m9/yzplL+0heoplX3YguJtz+vlcYWoyuBXLUTuBVc2kYVpIgwdF8uZ6ZpxHVS0c16jfQbAVVKgudUSkRzQ4z4EGuV2SzhS3tLKcomN9ahjeN8PfH7P37PrrdoPvD2RhjJVW5TOmUJg0ptGemnH3A9tZVAEtuLaWWqmNLaU3ROcsmKaZAQT+mlLVFa4aG+hrGungVJZj5zzcFKJm74ftr92uqCPA9r27XeCk7l2rNMKS9/H2PEp1UhzhiD7fratlo3vLxmretu+i/TPHM6PTJOmRQSymqhYSlSdJuDgA8mP2N7R0aUyJS2pJyYJ0+vFehODqRGV9IOFlVBEgqhPdVCgdKilSUnFMuTf2/D0rJ6z2WPbgzx6edr9sByT37ONv4bGGfYPv0TA/tqCN2KIK/kqFsPsZxMJQuLQV6nClpZ3llLKSvJdM6JlMTwVlVlOUxCaEx0zXuIQRlj2BvHMAw0SXRrLSlUMSWl8CEIzWLKPJ5OfP+nHzjuOm4OHeSErXmtjJRJxSK3loLWT3vhqgbwm7aLbAi9kJK11dTcVqY4ybmkcCTRRKE6yFIw1qz8BErJDHkGcuXkrTlsKU81bb6+QZ5521KeSOfJdY1VclEvwkDamjqPWlpQsGzi3jlyikv4e72OfPnywNWvQk195+j7nr5znOaJOWTGeWY4HoSLVmWcMsI86Ge8USSzqoJjpPijpZi8GJipVfEQIy9t023r4/neXtI3nu5XNnt4iT6eeU5aqvY3Wj8D3xufvHm1eTOCQK1TAXL0Ln0vjanzkGsyDU9PKzaPo4S5oMQVsWGUTLaQwHsYdkfe3r7n5vCGnB3gKEoz50lGw1BgLcVq/BwJcSKXKDdWlUWSfTco9seBh/OFDLjeknWVFQxTVb7SBAof70+Y338mq4Fv37/jRn/GaFBUouwEBofTFhUVxkpua5SAFXIJoISPVW53A0sY1BIp6IWWU2EwSqOUFe9cr29O8YmBtTxPtXBXO5YjwF+WnBDWqmNbW2NdBKVyxkepeKdYiFFY/HIWjp4QIzF6oS/V4Bzs9gZlpb6glcZooSIRuu2M9zNd1zGmzBgTj/OIL5GiIaNwrkf3Pbkz/Hi9ELII8V7Pj3zz/q7WDgxJFZJyZGW5zFDSGeKZlD3OOYodCMaRMIBBqY4cNZOPco8qIkspMBU5XZueTwt1i/HJRi95G9ZWT7oUzFbjXXLUwqLC9lLx5/l9+HM86etMCFXjYvkINW9S7R2W9UvekMzUZVaQcqtyLSfVIon4zKvqNmq0nltSMMpLX6zvS+W1bV6mDtqWsjSat/nAVuqt0VBYa7CVQFkk2B0xI3XRIlMUQn+RuY6ej58/M3QdWmn275SI6qSINQZrHBRhb+g6V1PPldozLcJCZbnxK2JnzdHq3WOhSKExyD3NC38Spma1hKpL3tjywrKe4avnroKGtXgVY8T7QIiJmOR6NvmFEAIplSUSMVbTW03fdwKRZEmHa+ph6vbN6CbiVIthOWeu4yh5v+kkT3WOru9xXbfx2EJ2Fn1gN/SbGoKSfLokGWP0HgU410kLrqYApeaUVL0ZSlqKPItRtH21WU8Lnu16qeVvFzMs697aPta+L6o8ea0VxtnKEmX947VO+NX1OjVm2eQOqtE/tI/WNlVeQ9mWvzRDXN3t08tRT3+2p1JVj64PyBiUkoqtMVaEXxV0Q4/rHUo3YPqmH1dfRdopzYAzcqJKKNl1Hbv9nn0olCJ8tdcpEEPVBClIHmVEUGkcZ77/4SMhBAb1ll3v6Lu+YmipnhGUTsu1KcVUXltdC0RFmuVGL8WrtuGkF7pSoOiiEB2ZDJuW1NJy0qvcRVvbCRNouaOMdBXVWAlbCK6kwBIzMWbmEOXAqeF8CJHgKxduFPZCyTE7druBvu9oIKWmtKbrFhZFt8amqJdWT0qJx8dHUoo40xELGGs5Ho8c9geuITDPs4S/lwvzNLIbejQQlwq4QqWCT540jux3ElpnpJqttCahKKnUQesa1quf0uu89L1ig7VF1RRlk8qVWmtgY+ztsXqbdH2i5VB8uuk3323//usW+rocQ4u32O4TyfKFq6Vm/PUmlLLxfC0BbyGAqpsR5ASqEwRLPF/a8ylk0h2UyohUhiKlgussw9DTdY6sE1Q6kpIbQKAWX2jFjzpcotdye9/3ONcB43Ilm+FSdA0JEeJn15Oj53y+Mk8zKk18+OYdH755B70mpBmjMoNrorfS3lmIlutXMaqC42UWtIVTOSU53Wk9S/FsqlSoH3n5HNDyx6f0MNuqbK6Y3NVQnx5eSwuk/l8MUL5CNdJ59nXIXt5j4wmW6+ZqP3HdByyfNjcxhjVqqs8Sguf0+LiANxIZ13X0w4BShhCu4qmLTKpczhdub24xVi8exmgx/Dh7/Dyx3x2Xz2QcoHSVZmgSg42W82mt5PlaCz76yb+X9GtZPw1V2/NuOw6LW5Q7/5O/2hbMUOvvvrRel2PYTpcsBgggKJ6nb7/9W4Ey6/ZU7eJskmXFMkEvXr5V3VINHSozfD2VSpLwunHjYORv5xAEYN0KL9VQZc80sICwprd81zknuUophBhlYBhhH9dKqrlhngizpzfyOWQELfOnH6/4ZIhZ8+7NnkOncSpzTYGhNyStMdkKNYi2KFXpHRUyKKwbDnf1mjmL5xQ8rSivFTSpCt5ub37RipJWkMFT45QKa1HPDXc13hBSLaalpcgT6wDBPHu8D3gvEz7Wyvjb0A8Liffz9oII/JbNyS3GqinkJdwGXwHvIACG3bDjcDyiFJxOJ87XMyDA9zB7LuczKUbRaq172CiFLhC9VONLKcQQyVaQUc0mSm5EbkLhUmoqtjgGpTbGtPk8sHy1vJPNp1qr7yuNDdvH6y9uK8hsw9rmieuRtaSGz6xou173nItLXw2r9e9KEXph/SzK3ljw0w+s1JO3ISa4fq+qRokCiqpaIrQqbMC6PV3f1RC5gIE4BmwLnSk1wpZCRimgWsC1GQUS3qEdwzAQLldynf0rpbUOmiZIkgtZ2dxNZ/DJ8PlhZPaR63jg2zcHbvcOZ6SNYZTC2IzJBW2KIGWMkCkrqD1I+axCeh2lIp5l0kXl9T1nEgt/7ianfH7CPx+azpuL3Iyyecr2vXhKCSVF/zMQQhOLMsvonXPiMcUwN5MuSovIFGmJSEwrVNV3vwgNx4Svh4C1llwKx7s73n3znm7Y8fDlC9N1pN/tBfYXA/M0Cccv3dJ2AiHu9n4SsAcCknFu2PS4GypLog9bpQS3WebWTzXTWL5aFLfd0e1gbPt/kysutYBqIyvWdj0gl2cqCrXkpM8N9OX1M3IMPDHutcEvxYqFPuPJKbP2KOVvKynM5j2sla/2Owpd5KYucs1L2CS/1neW3SCUmaJLKaGHphle9ZTLZMem+lb08iGUUiJPoAoxelKWTeeMALXDLERhru9wRhP9TIqBDJymGVUSp0vm8eELD28P/LsP73n/9kBUAhmzGWxRmE6J+KzSmKzJqpC1nOxtlK1UHl4aIiqDKg03m2iVvy0ofVttbbe2jaPlukGaG2nG2IyztVi2htmMsxQJYbuuq4a5as+A5GbGrNMujalfoWo7RS93VStVB3S14KDr2Ja1HVNMdEPP7d0b3G7Hj4+PgCaljI6CxY2zJ1cAwdIyypkUPSEGXP2EuRSMs7Xt9DRiUIqK4411j60OY3U0m32+uJqWW+pnv1+W51mJtkvb8TTnrWoKsvipzWs1w1wNdJN/vrB+RmWsXZeWW4CgfyRPW/ONl1ZLtvPyBvSmGLJUrdtrLS52Pakk92rOuJbDrSGmhHGGu9s74uOZlCIh+A08TQxVawvEBb1ircWHwDxPhCTkyqWANk6EiConbaPL8N7jnGHYdaSYiCFwczzSac14vud3v/8T83XGh+84Do6uM3R9waWETZF+6Ol0BdejansCUa4ukm+WLEx+lDbHmivRVgV2t6vZTvCUqk7M6hG3Bqx00zdVT/LKBiiRCq1nnmfmea4esw5wO1dlGCvlimmGqJb3sA0JTYXsCUXlShzW8mdQxJR5fDwTYsbYnvdvv+Xb737NFAKP1yshBvb7Pa7vUUUG06fryOnxkbfv7gQnawVJ5KOoWWstVeXj0Fd5+QxKJmRSknE8hSHFsO6zbRO6dQieryVSfJovLob1bI+2w2n9Q2k4v2QPzUv+zTynhFC1xN+IoouBUpv79UNvX6TW7dYYW61v7WnbF8ljW4Ks1mS5JfFSN1JSFKonM3kFe6PUIq7bPId4TNkYorkpPDZFiccJIRCip9QyO7Wt0IaGrdGEIHlXvxtIMXAeR5Ef1NImKtrQ9XtiUTycPeF3f+JX377lcOjYR4fziq7zoupNIUSwto4qIbLwjWiyFbspa94sitmr55RLtd5Eqa6ubaL285yz5OTydOSclmKP5Jq5/tsvz9F6rV3VLnHOLmpvAr1bw7itxPq61VafIBFKESWxHEW1XGkeHs+MPnD37h23N3coozlfLpyvV87jiFKKQ850zqGyRDTBi7Cwq+NxpEipjBcCFEkCMogRbcrGDVZF71qpfbrh1qVapeknq2x+58kfvLy2Nl820d4Lv7bY9dff1pP1Z3jOFi7W7LogJ3q1Hvn82w8kYc7y703SvW6wLep//b3mkUt717VhjarMBqV6HQNGWxQZ5Yz0uMqW/FjoIUtufUV5zmac1+uFGCN93xFDwvuIQrPb7XDO8fh4YpomUkpM80wIHtc5Sk7M80iOoQpmG8mDzhOP599zd7vj7ZsjNwfH/uDwKTH3AWuGqlgt5NWNXcGoAmUNbVstQYDtacndW79sDd1qilFYxvlqPIb3gupqnjWE8KQq277avRBiMrNUY50z1SgV2jzjZW2Pt16t2sRO7fAs7bAVlE7MhcfThVI0b99/4Pbte9AGP44UwBrD7D3n85nDsKPvLHEOTNcRcsE5szBraAXOalyVZ8g1Vy9tX26qpgtelq/YYL2yXzePr3u0r65XLG31URuHtLXSF9brxtn6QdXJl8YoR8WoLu9nPcG3SIqXIHvbx58gV4xaQiEpYwtEbqG90LoSM4uKs62gcGXtot8pu7Y9d2NwF8HWXC9KznLiykRL7QEWJb+rDdM0Uwp0XY/Sil4qIYyTJ8dAMoaobWUAEGk+Zxw/frR0eLcAACAASURBVP6ByzRyupx5e7fnzZs9h71ILxyGjHMdzsWKptHo2iLSlU2v8VeWLFy3lLQceq3q3PZLiIGa2C9ztg2qmCpDfCv8bMNaARSsuNuWO1pjMcaysiZUo9c1R18G7fWT4hrVKFvsWKrIE8VgO8scI9McSKXw9u17vv32A3Z35PFy5TrP8jlqOL3f7Tjs94RplPGy65WcI04PUCT/bKRuluob2lztSqhbjbEe9PmVnf/fZH3doNe0Tdbi1P9646xM66q+7FKMkOmIpYL+5GhSbEGmz8vvLz0uL9ZOEr2cLAvio57UJRdSSKKfgpacrW5QtdkkrY0iz9/+tgn0yMFSlMZPMl9odA9oLpcRP4fKNCAsBLvdgWHYcf94T5kmWkwSs6hMZ0Q/8vjmHX46c3+6MM8j0zhxeyPaKOlG8tjO9QujuzFVd1QVShGWQKXqIHIGUlw95ybiKEXEZ3PjFaqFmdZ4zyk8qcqK3sraB30CA2wcQ7UWsGKdK6RXPfWUTaR4PQDb3pIDVKIsBUrwv9F7ruOE7Qa++dV7XD8QY+E6jvgg0MYWZRml0TUqzCkJKCEE9G6gqDalVOq9bwdQRGeJOtRyjVZgSzGvGWd50gX589fX/26Tjr74dysGYPntvz6sdVXvEDbFgMqwtgVur5TD7ZR/2SDbY9v/t+8lVK5GVh/LNReltPyssqMnocQo1RtumRqKajOHVWCoSdnrdQi65Vs1BgCEn8ca6G/2lFK4XC+EFOl6IQNzrsd1UYy2tGJMEW9K5mZ/oFd7ooZpmvjk77meRw77gel0Zhh27HZ7+l5AFJLbgcyeChDB6rrBM5WB4esctNtrty385LTxnCkus5+lZYhaVQZ4GUFrxTM290VC2qeTGK1K2w7Q0hz5cpi2L3l/saKNxuss1+54w+P5yuQj0yz0mKKSLdfr8fGEHyf2ux6KMD/KwRIrmF/SJevck/0mSy+tlJYBSy9S8XULVF8lBXh1VbqWl1bryb78apvcvP3/Zxz7662UGkqy9Gty1Q9poefyykBmRTKtPnyNgLahEE9UrZZPxhoyKdqgee1h5VK9ghBf5drBWqc8pEndJjfadIXTdUq+qCXvnOeZGBPDMKBUIHgJn29ubtFKE6LooOy0wnWO63jhch257ToohXka8T7IhtUWClyuF4bO0e/2aGAaL/jzyGWamC6Gw/7A8RAYhoGht/R9X4m9Uh0MB1WZBHMRdoU1rM3LJiuI4G79gdyVCihIKVb29bWNshby6jRL2TbQtxXY9h6at2z6qVQFt5ZnqiU3bod0SylqI4KYBRZ4Hj3nEFCuJ2vN4/mCDxnj5D3GEOTwiEk8Z41sVIUoriOLdfaz68FCSUISjpZwXCoTMpyuluIiNPgebPLRzf7e9hl+Ym5fMerXstRt5Ppyi2QpA1IT9r8+rM31clctnCWBzaoQVRZlYdXyULPQ+7dMFSQCknOu9T9XqJx0zCuNpJHpkdYfkumWmoOiiP6KD2e6oyWWwhQcu90OckUOFYWKmVa4S0TsYNBOQQ4YZQgJFAajLc408Lf0ASPC/Ke0FEfu3A1Y4Sc6XyL7Q482Fqs0l2kmhkjvOlQUmFjf9QSfCArMcMANe87XC6frlRQCPk4EX9h1I7tei0xf50SewSiUMfVaSmhYcS/C4ZsjQmG1Nry1EmiDqkWyHAslK6YU69VvhQdDk/jLSVgAJQxUqFJJqcmk5Cml0W7aGlSo1SB1YwOQfxcyWNO4nDGk+jyFkDMPc+A//fEjn84Bc/ueMWSmMpOVwkaPVgJ1NMpAMfjZQ5J5V2MsGVFVGzpblQcUZncgpY5pHJnDSGc1JmWsmhmsRjtN8XkR4Q0hynACrEyBzXQUyy4trJlY26uvxrxfMajtgbrUelqIvUlN6jsA9VqX8+fEc1temesrb3MNtZImLe954/Xa21Sb0GGtyK6x93rvazFBVcPcvGtrHXOsqlpKLvo8efb7A7MPcpONhGoxNPUtg1IrjYYghSrxtLUoQj2Zy3L6S4/tyjiO7Pd7dNFM8ySzoHbPru+5nM4ordjv95Dl9AfwCLjBh0gcr1hn2Q079l0PlxOP14nrOPHmuKeoHXMcUWbEdsLkYGxldNDtQDKUIgWs0sisKAu42ii1ydMqa0HOi/hQLaZv7k9j3quh/GZ2VCnDgtktP8012x2UQpJeQlzjOoKfSUrgfjFEximQTMenL5+4XKdaWZbQdRon6TWnQNf1YgR5JbyWyaMOiJBtPR9kHE2rshTSpB0mgArvZ7TeoZRIQuYE1+tESlmmZ+r1eeobV5elNv9aovtSNuiHv2DVD7tFCa3fP7UDWsr2yvrzjFNR+4vNIW9fGCkAVMNt/Ud5nOX31xNr7UO2xL1thgV7oVb0ETS9DPB+JsWMcpacCt5HoheqRGu7Sod4JcYkOYqxsslqKKYU2M7SdQ4Yl8kFow1U3Q0FXMcLhYTtOnzwoKR5/zjPpBjFY5fC9XSRwkYphNkzDMNSMTXaYGrol9wARROi5/7qmVOm7zR953A51zG1WhWtE/5Fd1BDXJXLYpzUayStmAaZo2KKy6qEsVRaNQ33LClBVRRT62kuhXfbdk69jyshtUz8rKs9b8mJrutQGWIqpKKZE3z88Qv//IcfSEg7ZbxcBFPbD4R6Pa2zBJ8E5WMr73CMoiRHhmyXCMrUzdz6uq2qLHIPK1ND13X0/UBKhXn28h5TG7guNe9un/ErnnFxcC//fP37l3/2tZrKk9/7Oaus6/Wcc/lY1IrZ+m/FU4KjBh5GSUl9PTmePadSi9xBaV5Ti8QepdKVCENqfS0FRnQW59kze8+b4xu07TifLpiaq+paYZXCSJADw9jK3K5p1MLWmTr8LE16VQ8JISIOiC5kwntPKgW/9DgzrhsI/sI0XTGImJKzVmYQKyRuCV8yhDkSU5KC0qEnBc98vTBdZ/pgOBTYYTAqY1SpTPMZXQpJRbKqsgHtatbnjll6nLYWw5RSSwO8IPDHtZJblp/nkqqytaJUL92MvhV+1JJHblomy+GmlseF0b7J5ypSUYQC9xfPf/3DD0xBofcDKke5LlDJphWqDsqnIjmnspW9IItujCKTUycCTikvr7FFTLXIsxW/xnGEojkcDhwOB5SSnu9mB8NXCkBqk/79TBr4qmGJs6nWobbPJEPppTz3mq8b6evD1giQ2tCig/Yha+ClFCx8Qc049cp8sLhztXjPZgzLW6sUF87WAd5SPURTy1IQc8JaVzeoMAsUFNEndKfIsemJmIoEUiJXoAWN0woWBZkjNLZRV7bwuSwK0TF6jJKwLdVhZG0Mt7e3GCNg8IM/MF4v+Gmi9RuH3Y6pDhRba4UcLWeU0ULUmTNKWfRwIEXP1U/488jkLZ2FwYIyir4yKQjaKUrerWpu2S5/lusucgjy/nXNcbZ0HSsLO+KN6l0F0e8UUj+D1paV62ljlJsdu63aKqWhKDpjGMeZhEbpjh9PV/7w6YGLL9y++8D9eCUVhes6zuczuRbhWpTSQvBWlVUKoSCtZGWKgioZg0I7Q1Glgir8wplrjK7hbOZ6vWKM4XA4stvtpL+73U9LUeiZJ6tfDSq6bs4X1it5ol4ixC3yrT5SWsL7nBHhK0/Gz4W1FSe4BFRqPXxWj9nOtTUP3eptqGdHklLr5y7b79okvZKB4VJfrFAnrVyH6wb6YSAnodXQ2hLjTPSeFIUCQxmD7qxwDWtdJ+IR42w5Vs3rdPUSIk9XFcnqWFnMiZykp9rC5tYzHPaS4/hpwjjL3e0tD1/uJffVms7aOkiqcNZySRFbm/2dG0jZ4bUi+Ik4B7oI2WmwimIKnYasa0ixTDJIOFsKovWxOIF6WDaAeksgloNzPVRbBVP61Cy5o7WSry/0lu2ZSw2Xa2rQ5CAaWCTEiNYGHzL3Dye+//TAeUqY3S1BOUIEHypnkBIW3pISygk/knMdBiUGV/JSnafec2saFluuayxxwQaHEGrP2DH00v6aponL5YJznXAT9R3Xca5GuR1Qf2og9SouEUr7/mWbKE/aiE/XU8N9CR33Utj7tfWzw9bN4FpYVW/t9r2uBaDS9kxZLrSq5t20C5c0vMW0SlHQhFAn3iuWoGQZOM4UbNdRlGK3P2CdY/YelK3haFpwlilntDV0dDWcq7jglGseKrSKqmFclVpCo3a5tROialLGWoMzhhgz59OJfjcwzzPX6xWtFMPhyOAs+37g4f4e2zk0EqKFEKBEdBBRWqUcSteDTinssAOtCX4ilMTFJ1KAaA2D0WhbKkxRmCWE2Fwvs6ksmNc2wylfAvavj5dNtNM+Z5sm0WtO+QSQUKOeUtpzFKk3mGa8enmuGCLdIKief/n+Bz49elS3JyvH/ZdHQkpVtzOKhy6QQsJYQxsp0zWS0rpFYyIzP3Qdw9BLSlIk5Qg54P0kAIUk+a4A9KUfb4zBe884Xul7+fuYZnxNNyrwbInAnhrSGig8MZutl1uv7E9978ZxrX9WKy7lJW/5cwH0zyGEcqnAD5HzXuTENxQUDccqD6uF+aApMsvNrWd/lU+g5jwsw8gK2/e1MV2Vs6gCuKqGG9pwvLlFG0uICdc5pumCUnVOMSdiTrXyaaEKBjnjhOSLhLKWMM1L4adB3sjNkCF6jzKmwvc00yyndEwR1w/sdnumaRStjzqoPI4Tyhr63Y6SErnKDlCovDmRFGSDlXooaa3BWNxuj0qJ6CcuIRB8ZDKaodd0naJz4uFFjTlX8EDLKeupXI2zbdDVS7aBBVXHytJShV2pPJtXbdtyHa+TjaQqg4NdctJcWuVXMfvAx89f+P7TPXPpcEZxHq+MPlSPLulFTkrUpbWALELVj8mtPqEKwQcyGWsVd3c3DP1ATDJZIgdwYJomQhWv2u0O3N7eMQxDjWqkh30+n5fcM5dAjKKD2qK8RcGouo4nxlqji+ems80R1eanT1O0l6zoWfH0hZ99bf2M56wnLmXhE1qqebpJom+KBw3nV2TjUJvhalNClOKB2I6ugrPGWrTpsNZhrJzkmZp31M90OB7RnUMpTWc0ucos5CinaMpyfCRq87okbCkUrXFGctRziDw8nriO04I1bYrVUrkVaJwumWwtOQamaSblIhsgxMoq17PfHzifT1wuFyYvIVbXOZIPzGlaiM0yuRqCNNtjQ1hZi65K2K4bUF2Pv16ZpwnvM5HEXhuME23LBo5XOeL01oBWMMcajGzDqRrVqULOz2U11t9/Xpxsv+OcvE9VUUErqbTAIE/XiS/3Z8YpoIYdqShGH1DaknMgx7jk/TIxqzCVx0iKf4VCqiJWiZwDh8MNf//bv69tlcLt7S3X+cLj9Z6xTrHs93vevHnDhw/fcXNzwzRNnE4nShGJjfPlRD90y8B4TjJHu3y+7Wfdmspzj8r6w+159rXvv7a2tvPnrtc9Z6rGaaScsDAXqDpgC7TeZwMZlNK0QzbhkpVeVcoQUiIWQBvMMLC7ueVwOII2KN1mB6VY0OL08/kRbXtmH1Eq0fcDFJEmn6tXiykQYiBWQ1UlQxJuG6sNOStOpwuff7xnrMaZ61ep2iBKaawzxJC5Xs8obRf0UevDgXx/e3vHN99+w5++/56HhwfpaQ494+Ui9B8hELModPdNrLWGpw1qJt5eizy7c2hlSHZAlUKYL5ymSMwTu8HRN1Z4DaVKCopXAxDOXMVT42wesQhPypPdU0pDDzVmi1bbWttdEupatJJh5tKIw+phK4wQs4DbM5CgiES5RCUxkGMQkL/SIlBUMiUk+q5Dqcw4jvh5RGvonWWaPLvdjjd3b4gpCNSxd4RrlINwmtjtdnRdD7CwV3Rdz+2t3Jt5nrlcLgxDz83NUeQeYiTMflX+Lk+93pPaalkfb0utZZQXH/95s3sdcPDSet1z5jbNXhW6Nidt6x02OFlWQsMBkpPqWmFUSlX8giFSKMYxHHr6ww2H2zt2N7cMw1BzB8kf2ghUy4M+ffooyf3lzDyPhDjXSqooWMfKqxpiIOaqcl0/Q4qZosCnzPl05XKZiHFlNpfwrFbyVMF1A8YUfJTqahuHMtZhnOPu9o4fPv7Aw+Mjv/rVr9gfj3RDTymFXTeAVox+Qo0TOUTSnLmO85IbyaxhlkHvLN7LB0MxMk5mhwFnLME64nxhDJGiEnZvUNaiVKqg9FKhdpqFDg+qHF8zsmZwawFJqTZOVpZplaakDdAGpVv+2UihBaCwVrlBpBg/f3ngx/sH5pDpehmujj4x9E4GDIyVPrU2aN04omo/vKySgVZL0cYYxftv3rI77sAIlvbx8ZGPHz+K6JSCYRhqPzPx8PDI6XSuXl5oTpRWxDksc7nGGIy10hNvh8/G0F4zmhc951cf//oz/bm9ze36GeOsxQYlfZtW0mk5gBQGJALPpSxQPaVV1duoxFW6YArYfsfucOT47h23797TH44o15FR9E5gdUvuU9ae2zff/Zrg51pdVMQoyJOUfR2Dqg1mjSgUVB4Zg1k8QoqFaRIu1kKVJl+8c5GqLqBNwNqOfd/hc2GaPFob+n6Hn0UX9Hg8ysZ4fOQ6TRKONW6e2cvolJHChnaOhEgoWCNgh5IjKich7CqRabzilcEpizOOnKDrBsmv5yuJwBQT1hZ0JTjTqjLSCUJd8veiKCVsQtbmGjLkJmorrH4NvN/kK5qRNkyy2tCayLXdTkhWAy9wvlw5nS8oe2S/PxKxlHxiniOaWMnBlVCzJPFPnXWL0LHVBrcfpD0SZnb7HR8+fLcMfU9+4tOnTzyc7lFKcTgcOB6PtSWjltlUKcLNyxxsKcJ1PPu51kBqSF85iXJMS4fhJbN6PRv869ZfaqA/w1tL7a+VRnooqxRCkA/XphvkBG++v9ScS26o0RbrOu7eveXu3Tfsbu/Y3b7BDANJaWJlSlN1KqVUK298pA7DeB2xXUcXHd5fSCkwjldykCKJsQaHhM0pJVIIKAxGFGhISaj+Y0yUJJXGGEV1msLCXqeNtFZK9iQUISRKkbDNOsfnT5/YHfZYawkxstvtOV8eiTkRJultGmvIyaKLkEyBsDU0JbJU4XiqKEpWC/hBWbneqURylnEq4zpyiEyzxynNUCUDG+5VVa8k0A5p1DfEVdsLhSxshlAZEcISujVis9aacM5UGcFNUahVdetjjZfoerlIipAr0KMUUskYI1Xo3ko7RNV2VSlFACopLzop0qqRlMJZy5s3d9y9uRN6y5x5ePjCp8+fGHYdh+OB4/EG13VALS6VlS2ivS9dq7fX64VhN9AtJNgSBa3Z+n/P9XM++qfrdX3OeMaaHqVczS2teEkUWVe6klIwSJ5pq9pVSbFWYgUmZnvL7bu3vP3mG27evmc43AiLQEhy+heFQFQLRotmimwuyRkv44UQZzqrKDkR/UycruBnkgflZDi6bDr1WUF24jlDzIwlMF4vjPcnqVg6TZ5znREVEiijpKqYU2ScZpE6QFTIjAJ32KO0qqxvThA/U2LoBshw9/YO5ywPD4/MfuLh/gGlE4euF8aEecJaR5okF+26jkzBlKaFEon1Pqbs2HUDBkfJipQtc05E1ZNVxijhqCVLFVIrSy6g7WqULQndElKprKRul4WGsxFM55jJIZF8IpmEUU6YA5V4na6TUa5xlJRinmdOpzPjOFHxH8xpJGTARHb7DkqmWCtpQafQKTFNI9dJKE2zKuQUURWE0FnFbz78ive3t3QUrFVw6Ol//Q0YjXM9putQJROD3B+jTe0pF4gRlcFmjcuWPCVBaFkrnQYt1eumnre0CNvVqdctw5J4tj79Ni/d4o3leervsrn2z9ba7mr3ZulIf9X+XjXOMSdcjhgM2nTCvJ4LPshcI6XgjKXvegEkew9F0bmBmDNJKYztGI43HN+8YXd7i+17YkrM8yRE0a7DuY5YE9qiFbYowWY3Dtbka/W3yhSESJpmSoykoLDaUrIM4hpdiZ2VJhRB0Ix+4nodmWdPmGe0s+SS8UFUqHLIMitopSijjEYrETVSCkGpKDidzxyPR0ipIoiE9OvN3RtiiAz9IMiUVLC+Y5oD0XtMjgsGtLeObJ149iIoq1IKMWeiktRAG03fO7phB1XYSWdNYsbHQm8UTqtlM7Q5Ql1YqnZLZ2Rb428bTa+esYX9JdXaQWp0L/X5ly2k1vpCygQvlewQo3hxZ1BWUXykENGmJ2e9QhDr5yqU+oYrtLBodDFQMlZrDrudzLUWGUHsO4e1e2LKGNst70dmfQtGQSxJ8vd6v8lFqJVjxeMWKvZ4xSFvKS632KnFXnK7dIWl2rZUjZ4Z1JLPf713WVqluIXRpUaXrwTQr1dr93dgDNkILK4RROVcKgxOtEIeTidijDhjUMYSpkIsGdt3vLm95fj+W47vvmU43JBLYbxeiSERY2IaL1jbYfp97W8acpTwKGUprwMkHyglEWZP9InoAyoWSioL1UZGRq3YsKKHlPny4yNfvjxwuU6krBd6i1yEWUEUqwtaxYqUETmGVE9dV5vdyronbYoGNhjHkev1iveeruuEJaGSazUIpK4D31khv9M2tVJCkZkzRJaB8fFyIYciw9m7Hqsd2Rcu85XOWTqlwVQ+Ii05bs5Unty6gVr5dtkgZQ1vWb1Aa3k9ZUxo9QLx6jHGpSAkFVFf2fsCIFLzbRKo4V3b4HzLZ01trxm9AesrltpCAcZxAqWxXUdoVJjO4lw7TMSq1m5BxhpbRY0KsarGxZwIKVKitLBKany2bbRLbVI2tqA2Nt8+OZza/7/m657w1L70czYV4Wev89J6HVtrB3KlRowxEILHWMOw72UiJCaK0tjdkeOwZ78/0B1usMNRjKtkXN+zu71B93um3AadA9YaDIroIyFM2F5K9rpIEz/FsDT/vQ/C4E0h+0kmDWLBoGjkbLc3R+4f5JDou57rOGKNUFyOPvDl/oHJZ7IS4+v7HZ0dGYMQTeWcCT6SYq6IE7mMxhqG3U4qrbsjoRIyd11H13V476WVsttxvV6X6QiNYrfbSRYYZlyd+i85Y5RmVzdwLlWLBCmkkRWlJHLyjDEzhSvD0DPsumVD+qzI2OrhBSSgatFWqw20TK09UICsKk1plikfamRQEIOLRb7c0l4pFepYCbdLy1tlIEAGvNtB1/qpYIwjJykoqbppc/WEueQFUplSWFgGtSqEVPj85YF//pc/8u7dHYfjgW44VlxdEuoWJE8tyyGZUdU7lyJiR6lk0doxurJKSE1seZMvtVHK1nAqCOEvLOBs89+vrZcgfV9br+tz5oIPM8ZI/087UYQuMVOUYXdzxzcffs23v/o7bt68A2VRpqM/3mGsZvIzPsyi5qUVMc5kdSWViyBsvEej2O92OAOUVD1OwM8z3vtFLsBoK2TC9fQrKUGurPQ5sesHfkz3lJjoh4GHxxMoj7GOfthh3R7janhY2y2NdckYS5XblBAzRinQKFE/bqNK19OpbkC1QMKUUtiqSm2tQP+GYSAEqZqmlNC2oxt6UUsbBSxvOgdRQYJOKTEIJdMxKSd2vSOXwpwDPoHOil1nUXpHKJmIQWlLrceJYSswSxOJNYTaVCSlKFLqplwFdhP52eZqlfkKZMi1mJTzIkYcKnCjVeal0EUFTazeF9rsdjssSj0QEjlH4RGqXv7Hhwf+3//8X3j77o5f/eY7vvvwHaazWAS8IAWdZjxSkGwcuyknfPRMYSKVhHF6+SjtvjXDW4HorI1NWm4of7TFw/6cIf3cetKqUj+F9L20XjXOzip8lr6aUZZcK3LG7fjVr/8df/8P/8i3v/kt2IHLnMhFkwvMc8YWjQ+KVCwOjU+RkjXd7oh1HY/3PzKdr1it2BUWUIAPM/M4Ms9TNU65wcMwCOtekXwihiBDyFoRQ2G8nDBaZOZbyBBDxNqeYRDS4qJH0JBCYzh3WBtFvDYL3b9CMc9ebrw1daBXWihTyHR9T+c65nliHMeFC2carxhrcZ1MvfggRYpcIXMxRrSxuL6XIohaQRqUjVBt1UicpyspJuxxLx5kP+CsJl0zPs6kokG7WulMCyb5ifR5y4+WPVBhe6osG3yl2yzLhl024mKYlVgsZ3wQPRU/BykksVbZRZqx5nl1A5acK2je1X0kSt05N1JNwVPLtc5cxonDbeLxMvH4//2Oj19OfPvhA+9u9ziV6ZyA70uRGsMw9Nzd3eGc4eHhgev1TPATKc5Y3dfKtgYjhG0USGpLGP10dhgq3PGVaeuvGeprxvbXGPfrnnO+YuuUfkgRn+HNt7/i3/3DP/Kr3/6PuP0tuT+KuGlJTCFLny/OMEd89LhOSvMhRr7/w58YnOXvfv2BN+8+YJSjROGCEb2OwPU6Ml4vTNNYNSIld7s5JHadY+gsmUQqlRYjRGLUfP78kf3hhtvDns/39wx9h3U9pXq/cZoYpxmtLLbrsE7V2UKhW0wxyXRLFYu1Fpzulr6fNRqLFqLkipahlOoNAArOSgXbewnd9/u9tBVCYJoltB12e0rOhHkiKkXOlhQCIHmnMQaNIqZIyJHgJ66jI5DZ7XZoZYhZEbOh4MQwK8i/qIzCbKq1q2E2D6hgwThXIv8Nc518DvGu4jkX+fl6HYOPzHMgRqkZpIzQt1iZ0Wxiu72xxJTRutYErJXQVamq51LdcUmUImAP02hOjQMrLPyf7088XDzfffOW93cHDoc9rt6DndFoK/o5MSameeR6PTNPVwTQ0IvoVaVcQUkhqU0L63YwNe6hzTVYSMdRayHt1fINPB0JebraUaiWI2lNA762XjVOay2jD4zjI8V0/PYf/yP/y//6v3F4/x3K7SmmZ86Ck8Q6yImiIhTZXNFHruNIP3zDbn/EdgP/8od/wXU9//Ef/ydyAj/NlBRxdsB1e4zbYe2ANiemaRRBIePxQTah1qUigTI5CTO4dR33Xz4xjiNv3rxjPwzM00zJsWpveo7HIyFmHh+vlJQZOsfhIGzwlAJdQ8BkCAAACmhJREFUIRjL5XKpClhqYUooMcoImTJLONKEflrO1GBjSgldhtaa0+m0PE8bCN4NA3c3d5Qs1WKllRSLsiRCGQHvO+dIJRFKkdJ/Rbs4FAczMMfMZQwc3h0wOjL7E/vjgE5PttgSwkn4LZ+1AS6geUzxIG26J8SIjXEN5yrhVgwrfK+hhIw2FCNACNd15FII9ZA7Hg9obaXOEAJkgTX6yxWZxaxtHiWHR270oEqhTUf0iXkM5FEOg/vHR477PXc3R25vDhjjGKfA9foJrQo//PBHHr58lhTMKlCS+tze3eKc4+H+nvPpBEUKm1D1ZUodfmAdglbKPOuzrFHG15YckC9bW6OXqU/05Hm/an+vvdj9mNjfvuUffv0b3n33G3719/8D7777DXMxxKIp2qBFHoIYE4QR4lzxlIq+6/CXiYcf73n37Tu+ef8tf/rjn/hP//m/8Ob2HTc3b7mOH0mpYPoOAzgsKav6/B0meobaRiEFQhIETjGacZzpjWKerlxHjz6PUBSH21vevbnj+0+fOZ9PnM8nSkkcDnuscZweHykl0+8G/DxzuV5RueDneYGtzTXn1dbQu6HqrCTBl8KSZwoDn1nyUpAN74xl1w90Xc+PX+7RKlUdD8HUplIwtqPvLCkIskgEfFZRItc5FAofI2mC4uTm91YR0EwhM4XMvtdo41BZL4x5ZTmWX8ht6vteq7UVMNLIuZe/31QYayso5UKICR8zIcrcrbadVNw3LRqtdUXvSCvIGk0MgoYySsn8bd2Y2khom1Mm+ShygcYRQkJbh9WWq09c/ZnLFBnnwPk6MjiLrQJSzsDjw2dC9ByPO3Zdz36/Fwxv0QzdgLp7A6lwPj1SlBQdFUIDoyt7pFbC8BGXaOKn1vO18DW/Erpq/WwG989Yrxrn//5//J9gDLvDDaobiMpwiTB6j+t30sZQYEtiHs+E60XmIJUVXKMCqzUPD184HHbc3Nzw4cMH/umf/onf/dd/5j/8+38P2nKdr2KgxqCBrBwYB6ZiI61Gk5mvkek6UdJEAnzMpHkmV40TrTSnh0e8F8TN5fGRz3/6xOcvD4SkUbajMcyN1yvn85kSU+1vyqRD8L7Cvnw9VXMdxE7i0SukTcSTqkZLtvh5phu6OrK1bm6lwBkrLakkg+SLHIJSpFyLG0bLhE5Ft1wuUYpvWsa9VMrYTtMZR0gZj2bSicvo6buertvVyEIvr18270Mey7XPudKTaNWG0BvwQy0eM1eyZl2KYHFTwrdiUAj4GCjFiJandWTEq6pGAGYMIKFuo4uxzkJowwnS+zTb91zk2uZUcF2P7QZ8CIzTXAt54m3naSbOI/N4wU8X9ruO/b7nzdtbiu6YA1znjNIBP3/kchy5vT2y3x/wsxe2v7LpjW4JAvh5L/m19a8tHG3X60wIx28IKeGj0F5mlWUEa9iJcGmKdEaY3NJ8JY4XrHH0ux0xBS6XC7EkpnFkmkYOxwPffvuBUgo/fv7Mx0+f2O92jNPMJVzoq8qVUnJCx1wIUYoQKXqSnzk/XpjODzhTAMs0nWRqovYWUxqZP37G+8DpOvLDx8+cxglte7QZKBhiikyTZ55GDvs9vbX42TNOM03IVtjlbMVaZGKCrhfPIpC++npZ4GIxRtHj7AWQkVLk/v4kZNWqQxnpzeXag9VGL+ADqqFqKwAIVRR7eyfV7hhwJVNSYR4nskl0riMamIvi7CPHNLDf7QCP0WtlcUvMVcqq2LYpAz3ZUFvDlF5+gZSEXyllQsqk2GTdMyU3nRQpoLS2iqsiuFYL6D3mjPcTOQgl5pxmUpZhdm1NhdsJ1tc60ZTpOofpBqzt8bOw2GutpefZdWgyPiQeHy9czo+ce8vbN3e4YU9klty1D3Sd9E6vo8fHzO3tDcP+RuQ1VICcJB1LEgKmOtub1ZY5YV0vjddtfvpVhJD06/+y1szrYe1c0NpJJbF6Qucsg9GkKB8s0fIljbYWSVE0w9Bzf3rg8fTIOE+kHClK+lA3Nzfcf/mRx/Mju2Hgcj0TZ0/cDShzwNkq96BaAzxzvU6UGHg8Xfn8p0/sOsvNoUdFiCUyjZ4wC2xwHEceHh+5fzxxf7pQlKXfGaKahIiqDt7udgcx/CDl/FIKneukQFQyk5+qRJ4Yjfd+8Zxa68qhxJJnlpofthwvpUTwgV4Ll1CunlAIyWrRJcrkDzovM7MKRQqZufq3znZgJM9ztkNpQ1KKAIwxcQ2ROzVgdY9RqW6en1ZjVW0PqEoMXto0Ttta2yrvBglTCjKDW8rSHsm1R5pyxuQKpN9ILwpZtyeqKlOYBb8bw4wPQrxlrMVZt1Szc46UbBb0lslgj72MfJVAKRFnNL0TGprQDVjXMQwHlNHMWXN/CdgA3dChrglrzvRdRwqR68fPzClze3Pk+O49Xz5/XqrMRcXa6yw1wnjZAl/zjK8Z7t+8WnseZ25ub8klMk0iLGNUIYVBEDVaE7Kcx7rbYYsmzJ7JzyijsM4sM5bUiYA5zMRYYXMxMU0X7u+/UHICnRl6GR3LRciUpVEPIST8OPP4cOZ0uhI7x3wZ0eERpTQ5wjwJWud0unAdr5wvI+dpwtielBS5aIq2HG9vOdweCbPn8+fPjONI34kEnrDAC8LpOl6ZppGUE9ZZSpbRr4acMcagigC7rbVL4Sd4v/QYtdZCnxnk5plOJO8XtE0l4RIqSuHbFcrLwt3+gNMwny/4caRhZJXWxCJtCZ8Tl3Fmjju6oRfc7CZf3BonlRFBSrRVu2vpmqxUJbqGpI1bKBdV9UQFGim9ZwEgxJzRKTFohSpVKzNlwQ1HaQtZa8kqE30DqlPDaFNbN5th7JzQFCHiniOu22G1pXdWgA/zxKSgcx1aK4bhQEpStLLdEeyObCxROX48e5J/YLcboBa8znPgmxg57gbGJEyHUrGukh41R18J0X5iZV+1l23d4W+xXjXO/+v//n/4D//zP/LmzS2KTElROFzGK7vdDmudgC6UwdiO4oQJbwozaRLOnq7vG+EIKUX6vkcX8H4ipqFOsD9CkbL74AwFEaud5kngXChikELB6XwlJ5ES+fH+nnD+KDObWXE5X/j48RPz7Bn6ClKfPWWwuFyw1grvz27P+XzBzxPv378nzDNffvyRpBOn06mKteo6MyhaHdZaGQGr+VFT6MoVehdrdRPAB2kLTdOE1QabLalktDHoYmkQuFb1zVUDxqcIJchkijV89+Fbbvc7/vi735G8p3c9MQn5V8rCvhdLYfSeOSQOu9d7ba2FsvQ0S6vkrrOzYpRNccxW0LgilxbyrtKCchhBycIcn7VMFMUQScg4mDHSK57GiRCjAD5UXChWUtpw0Voh/hKpio7r6Il+Bi0sEDon5uDJIbAfBrSSqvZud5BBB6WZQqKzPX1/wDjL7jjg5wkfZqAwPz5yGq/sdh27zgk4ouRajFSgNVoVdA5fuYhfByT8LfNNAPW3fsJf1i/rl/W3WX8N6fwv65f1y/rvsH4xzl/WL+vf6PrFOH9Zv6x/o+sX4/xl/bL+ja5fjPOX9cv6N7p+Mc5f1i/r3+j6/wEPMbvu18ZamwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light", + "tags": [] + }, + "output_type": "display_data" + } + ], + "source": [ + "import ipywidgets as widgets\n", + "import glob\n", + "import matplotlib.pyplot as plt\n", + "print(\"Choose the image name to animate: (saved in folder 'MakeItTalk/examples/')\")\n", + "img_list = glob.glob1('examples', '*.jpg')\n", + "img_list.sort()\n", + "img_list = [item.split('.')[0] for item in img_list]\n", + "default_head_name = widgets.Dropdown(options=img_list, value='paint_boy')\n", + "def on_change(change):\n", + " if change['type'] == 'change' and change['name'] == 'value':\n", + " plt.imshow(plt.imread('MakeItTalk/examples/{}.jpg'.format(default_head_name.value)))\n", + " plt.axis('off')\n", + " plt.show()\n", + "default_head_name.observe(on_change)\n", + "display(default_head_name)\n", + "plt.imshow(plt.imread('MakeItTalk/examples/{}.jpg'.format(default_head_name.value)))\n", + "plt.axis('off')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3bF2RPbCEM2I" + }, + "source": [ + "## Step 2/3: Setup your animation controllers (on right Sliders)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hzeK4TPzy_82" + }, + "outputs": [], + "source": [ + "#@markdown # Animation Controllers\n", + "#@markdown Amplify the lip motion in horizontal direction\n", + "AMP_LIP_SHAPE_X = 2 #@param {type:\"slider\", min:0.5, max:5.0, step:0.1}\n", + "\n", + "#@markdown Amplify the lip motion in vertical direction\n", + "AMP_LIP_SHAPE_Y = 2 #@param {type:\"slider\", min:0.5, max:5.0, step:0.1}\n", + "\n", + "#@markdown Amplify the head pose motion (usually smaller than 1.0, put it to 0. for a static head pose)\n", + "AMP_HEAD_POSE_MOTION = 0.35 #@param {type:\"slider\", min:0.0, max:1.0, step:0.05}\n", + "\n", + "#@markdown Add naive eye blink\n", + "ADD_NAIVE_EYE = True #@param [\"False\", \"True\"] {type:\"raw\"}\n", + "\n", + "#@markdown If your image has an opened mouth, put this as True, else False\n", + "CLOSE_INPUT_FACE_MOUTH = False #@param [\"False\", \"True\"] {type:\"raw\"} \n", + "\n", + "\n", + "#@markdown # Landmark Adjustment\n", + "\n", + "#@markdown Adjust upper lip thickness (postive value means thicker)\n", + "UPPER_LIP_ADJUST = -1 #@param {type:\"slider\", min:-3.0, max:3.0, step:1.0}\n", + "\n", + "#@markdown Adjust lower lip thickness (postive value means thicker)\n", + "LOWER_LIP_ADJUST = -1 #@param {type:\"slider\", min:-3.0, max:3.0, step:1.0}\n", + "\n", + "#@markdown Adjust static lip width (in multipication)\n", + "LIP_WIDTH_ADJUST = 1.0 #@param {type:\"slider\", min:0.8, max:1.2, step:0.01}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A0KE1rLxB_Ce" + }, + "source": [ + "## Step 3/3: One-click to Run (just wait in seconds)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XFQh-tlKzQCm", + "outputId": "617a2c4d-f8cf-4f44-a2a6-5dcc92673302" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Loaded Image...\n", + "Loaded audio...\n", + "/content/MakeItTalk/src/approaches/train_audio2landmark.py:98: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n", + " z = torch.tensor(torch.zeros(aus.shape[0], 128), requires_grad=False, dtype=torch.float).to(device)\n", + "Audio->Landmark...\n", + "1 / 1: Landmark->Face...\n", + "Done!\n" + ] + } + ], + "source": [ + "import sys\n", + "sys.path.append(\"thirdparty/AdaptiveWingLoss\")\n", + "import os, glob\n", + "import numpy as np\n", + "import cv2\n", + "import argparse\n", + "from src.approaches.train_image_translation import Image_translation_block\n", + "import torch\n", + "import pickle\n", + "import face_alignment\n", + "from src.autovc.AutoVC_mel_Convertor_retrain_version import AutoVC_mel_Convertor\n", + "import shutil\n", + "import time\n", + "import util.utils as util\n", + "from scipy.signal import savgol_filter\n", + "from src.approaches.train_audio2landmark import Audio2landmark_model\n", + "\n", + "sys.stdout = open(os.devnull, 'a')\n", + "\n", + "parser = argparse.ArgumentParser()\n", + "parser.add_argument('--jpg', type=str, default='{}.jpg'.format(default_head_name.value))\n", + "parser.add_argument('--close_input_face_mouth', default=CLOSE_INPUT_FACE_MOUTH, action='store_true')\n", + "parser.add_argument('--load_AUTOVC_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_autovc.pth')\n", + "parser.add_argument('--load_a2l_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth')\n", + "parser.add_argument('--load_a2l_C_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_content_branch.pth') #ckpt_audio2landmark_c.pth')\n", + "parser.add_argument('--load_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_116_i2i_comb.pth') #ckpt_image2image.pth') #ckpt_i2i_finetune_150.pth') #c\n", + "parser.add_argument('--amp_lip_x', type=float, default=AMP_LIP_SHAPE_X)\n", + "parser.add_argument('--amp_lip_y', type=float, default=AMP_LIP_SHAPE_Y)\n", + "parser.add_argument('--amp_pos', type=float, default=AMP_HEAD_POSE_MOTION)\n", + "parser.add_argument('--reuse_train_emb_list', type=str, nargs='+', default=[]) # ['iWeklsXc0H8']) #['45hn7-LXDX8']) #['E_kmpT-EfOg']) #'iWeklsXc0H8', '29k8RtSUjE0', '45hn7-LXDX8',\n", + "parser.add_argument('--add_audio_in', default=False, action='store_true')\n", + "parser.add_argument('--comb_fan_awing', default=False, action='store_true')\n", + "parser.add_argument('--output_folder', type=str, default='examples')\n", + "parser.add_argument('--test_end2end', default=True, action='store_true')\n", + "parser.add_argument('--dump_dir', type=str, default='', help='')\n", + "parser.add_argument('--pos_dim', default=7, type=int)\n", + "parser.add_argument('--use_prior_net', default=True, action='store_true')\n", + "parser.add_argument('--transformer_d_model', default=32, type=int)\n", + "parser.add_argument('--transformer_N', default=2, type=int)\n", + "parser.add_argument('--transformer_heads', default=2, type=int)\n", + "parser.add_argument('--spk_emb_enc_size', default=16, type=int)\n", + "parser.add_argument('--init_content_encoder', type=str, default='')\n", + "parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')\n", + "parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay')\n", + "parser.add_argument('--write', default=False, action='store_true')\n", + "parser.add_argument('--segment_batch_size', type=int, default=1, help='batch size')\n", + "parser.add_argument('--emb_coef', default=3.0, type=float)\n", + "parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float)\n", + "parser.add_argument('--use_11spk_only', default=False, action='store_true')\n", + "parser.add_argument('-f')\n", + "opt_parser = parser.parse_args()\n", + "\n", + "img = cv2.imread('MakeItTalk/examples/' + opt_parser.jpg)\n", + "predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device='gpu', flip_input=True)\n", + "shapes = predictor.get_landmarks(img)\n", + "if (not shapes or len(shapes) != 1):\n", + " print('Cannot detect face landmarks. Exit.')\n", + " exit(-1)\n", + "shape_3d = shapes[0]\n", + "if(opt_parser.close_input_face_mouth):\n", + " util.close_input_face_mouth(shape_3d)\n", + "shape_3d[48:, 0] = (shape_3d[48:, 0] - np.mean(shape_3d[48:, 0])) * LIP_WIDTH_ADJUST + np.mean(shape_3d[48:, 0]) # wider lips\n", + "shape_3d[49:54, 1] -= UPPER_LIP_ADJUST # thinner upper lip\n", + "shape_3d[55:60, 1] += LOWER_LIP_ADJUST # thinner lower lip\n", + "shape_3d[[37,38,43,44], 1] -=2. # larger eyes\n", + "shape_3d[[40,41,46,47], 1] +=2. # larger eyes\n", + "shape_3d, scale, shift = util.norm_input_face(shape_3d)\n", + "\n", + "print(\"Loaded Image...\", file=sys.stderr)\n", + "\n", + "au_data = []\n", + "au_emb = []\n", + "ains = glob.glob1('examples', '*.wav')\n", + "ains = [item for item in ains if item is not 'tmp.wav']\n", + "ains.sort()\n", + "for ain in ains:\n", + " os.system('ffmpeg -y -loglevel error -i MakeItTalk/examples/{} -ar 16000 MakeItTalk/examples/tmp.wav'.format(ain))\n", + " shutil.copyfile('MakeItTalk/examples/tmp.wav', 'MakeItTalk/examples/{}'.format(ain))\n", + "\n", + " # au embedding\n", + " from thirdparty.resemblyer_util.speaker_emb import get_spk_emb\n", + " me, ae = get_spk_emb('MakeItTalk/examples/{}'.format(ain))\n", + " au_emb.append(me.reshape(-1))\n", + "\n", + " print('Processing audio file', ain)\n", + " c = AutoVC_mel_Convertor('examples')\n", + "\n", + " au_data_i = c.convert_single_wav_to_autovc_input(audio_filename=os.path.join('examples', ain),\n", + " autovc_model_path=opt_parser.load_AUTOVC_name)\n", + " au_data += au_data_i\n", + "if(os.path.isfile('MakeItTalk/examples/tmp.wav')):\n", + " os.remove('MakeItTalk/examples/tmp.wav')\n", + "\n", + "print(\"Loaded audio...\", file=sys.stderr)\n", + "\n", + "# landmark fake placeholder\n", + "fl_data = []\n", + "rot_tran, rot_quat, anchor_t_shape = [], [], []\n", + "for au, info in au_data:\n", + " au_length = au.shape[0]\n", + " fl = np.zeros(shape=(au_length, 68 * 3))\n", + " fl_data.append((fl, info))\n", + " rot_tran.append(np.zeros(shape=(au_length, 3, 4)))\n", + " rot_quat.append(np.zeros(shape=(au_length, 4)))\n", + " anchor_t_shape.append(np.zeros(shape=(au_length, 68 * 3)))\n", + "\n", + "if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_fl.pickle'))\n", + "if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))\n", + "if(os.path.exists(os.path.join('examples', 'dump', 'random_val_au.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_au.pickle'))\n", + "if (os.path.exists(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))\n", + "\n", + "with open(os.path.join('examples', 'dump', 'random_val_fl.pickle'), 'wb') as fp:\n", + " pickle.dump(fl_data, fp)\n", + "with open(os.path.join('examples', 'dump', 'random_val_au.pickle'), 'wb') as fp:\n", + " pickle.dump(au_data, fp)\n", + "with open(os.path.join('examples', 'dump', 'random_val_gaze.pickle'), 'wb') as fp:\n", + " gaze = {'rot_trans':rot_tran, 'rot_quat':rot_quat, 'anchor_t_shape':anchor_t_shape}\n", + " pickle.dump(gaze, fp)\n", + "\n", + "model = Audio2landmark_model(opt_parser, jpg_shape=shape_3d)\n", + "if(len(opt_parser.reuse_train_emb_list) == 0):\n", + " model.test(au_emb=au_emb)\n", + "else:\n", + " model.test(au_emb=None)\n", + "\n", + "print(\"Audio->Landmark...\", file=sys.stderr)\n", + "\n", + "fls = glob.glob1('examples', 'pred_fls_*.txt')\n", + "fls.sort()\n", + "\n", + "for i in range(0,len(fls)):\n", + " fl = np.loadtxt(os.path.join('examples', fls[i])).reshape((-1, 68,3))\n", + " fl[:, :, 0:2] = -fl[:, :, 0:2]\n", + " fl[:, :, 0:2] = fl[:, :, 0:2] / scale - shift\n", + "\n", + " if (ADD_NAIVE_EYE):\n", + " fl = util.add_naive_eye(fl)\n", + "\n", + " # additional smooth\n", + " fl = fl.reshape((-1, 204))\n", + " fl[:, :48 * 3] = savgol_filter(fl[:, :48 * 3], 15, 3, axis=0)\n", + " fl[:, 48*3:] = savgol_filter(fl[:, 48*3:], 5, 3, axis=0)\n", + " fl = fl.reshape((-1, 68, 3))\n", + "\n", + " ''' STEP 6: Imag2image translation '''\n", + " model = Image_translation_block(opt_parser, single_test=True)\n", + " with torch.no_grad():\n", + " model.single_test(jpg=img, fls=fl, filename=fls[i], prefix=opt_parser.jpg.split('.')[0])\n", + " print('finish image2image gen')\n", + " os.remove(os.path.join('examples', fls[i]))\n", + "\n", + " print(\"{} / {}: Landmark->Face...\".format(i+1, len(fls)), file=sys.stderr)\n", + "print(\"Done!\", file=sys.stderr)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ApCZszX-CvuP" + }, + "source": [ + "## Visualize your animation!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "qFBozkB1Cf8g", + "outputId": "525045a3-069b-4600-f437-4ca669eb70d4" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Display animation: MakeItTalk/examples/dragonmom_pred_fls_M6_04_16k_audio_embed.mp4\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "output_type": "display_data" + } + ], + "source": [ + "from IPython.display import HTML\n", + "from base64 import b64encode\n", + "\n", + "for ain in ains:\n", + " OUTPUT_MP4_NAME = '{}_pred_fls_{}_audio_embed.mp4'.format(\n", + " opt_parser.jpg.split('.')[0],\n", + " ain.split('.')[0]\n", + " )\n", + " mp4 = open('MakeItTalk/examples/{}'.format(OUTPUT_MP4_NAME),'rb').read()\n", + " data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n", + "\n", + " print('Display animation: MakeItTalk/examples/{}'.format(OUTPUT_MP4_NAME), file=sys.stderr)\n", + " display(HTML(\"\"\"\n", + " \n", + " \"\"\" % data_url))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "P0etBPyAC1e7" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "authorship_tag": "ABX9TyPb4R1PTR2YSS24nlUOTul6", + "collapsed_sections": [], + "include_colab_link": true, + "name": "quick_demo_tdlr.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.15" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "422e4dc6267b4717a3cb075376761645": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8f388e32c2dd4d118c3926d13a40a639": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DropdownModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DropdownModel", + "_options_labels": [ + "angelina", + "anne", + "anne2", + "audrey", + "aya", + "captain", + "captain2", + "cesi", + "chris", + "chris2", + "dali", + "donald", + "dragonmom", + "dwayne", + "dwayne2", + "dwayne3", + "harry", + "hermione", + "hermione2", + "hound", + "jali", + "john", + "johncartoon", + "johnny", + "kalo", + "lab1", + "lab2", + "lab3", + "lab4", + "leo", + "leo2", + "monalisa2", + "monalisa3", + "morgan", + "mulan", + "natalie", + "natalie2", + "neo", + "obama", + "paint1", + "paint3", + "paint_boy", + "paint_boy2", + "rihanna", + "ron", + "scarlett", + "statue1", + "statue2", + "stephen", + "taylor", + "trump", + "trump2" + ], + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "DropdownView", + "description": "", + "description_tooltip": null, + "disabled": false, + "index": 12, + "layout": "IPY_MODEL_422e4dc6267b4717a3cb075376761645", + "style": "IPY_MODEL_9bbc2a0602734ef7929d0ae34849b8b7" + } + }, + "9bbc2a0602734ef7929d0ae34849b8b7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/MakeItTalk/requirements.txt b/MakeItTalk/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..64f3408488beae427d2535671203051da221c05b --- /dev/null +++ b/MakeItTalk/requirements.txt @@ -0,0 +1,11 @@ +ffmpeg-python +opencv-python +face_alignment +scikit-learn +pydub +pynormalize +soundfile +librosa +pysptk +pyworld +resemblyzer \ No newline at end of file diff --git a/MakeItTalk/src/__init__.py b/MakeItTalk/src/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MakeItTalk/src/__pycache__/__init__.cpython-37.pyc b/MakeItTalk/src/__pycache__/__init__.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8528bcb342a03bf5ea6b0717c8f75110ba9f361 Binary files /dev/null and b/MakeItTalk/src/__pycache__/__init__.cpython-37.pyc differ diff --git a/MakeItTalk/src/__pycache__/__init__.cpython-39.pyc b/MakeItTalk/src/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1d1224ebcf39c85e930390d2777079ee94715691 Binary files /dev/null and b/MakeItTalk/src/__pycache__/__init__.cpython-39.pyc differ diff --git a/MakeItTalk/src/approaches/__init__.py b/MakeItTalk/src/approaches/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..7f3999734455352473532ef25cddf059eb5baee3 --- /dev/null +++ b/MakeItTalk/src/approaches/__init__.py @@ -0,0 +1,10 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + diff --git a/MakeItTalk/src/approaches/__pycache__/__init__.cpython-37.pyc b/MakeItTalk/src/approaches/__pycache__/__init__.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..887c4a92dde64df16f8f06d28fb88c6f91b218bf Binary files /dev/null and b/MakeItTalk/src/approaches/__pycache__/__init__.cpython-37.pyc differ diff --git a/MakeItTalk/src/approaches/__pycache__/__init__.cpython-39.pyc b/MakeItTalk/src/approaches/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea8b86df672223af06024dbbcd66171be6056b38 Binary files /dev/null and b/MakeItTalk/src/approaches/__pycache__/__init__.cpython-39.pyc differ diff --git a/MakeItTalk/src/approaches/__pycache__/train_audio2landmark.cpython-37.pyc b/MakeItTalk/src/approaches/__pycache__/train_audio2landmark.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d91428f47e550f1d3da32ea329ce5b67c6ad0e0c Binary files /dev/null and b/MakeItTalk/src/approaches/__pycache__/train_audio2landmark.cpython-37.pyc differ diff --git a/MakeItTalk/src/approaches/__pycache__/train_audio2landmark.cpython-39.pyc b/MakeItTalk/src/approaches/__pycache__/train_audio2landmark.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7a91b572ae684facc27a98012e2fa445da9aff5e Binary files /dev/null and b/MakeItTalk/src/approaches/__pycache__/train_audio2landmark.cpython-39.pyc differ diff --git a/MakeItTalk/src/approaches/__pycache__/train_image_translation.cpython-37.pyc b/MakeItTalk/src/approaches/__pycache__/train_image_translation.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1ec2165b2c3c7c20eb7499da1dab84c571a17c3e Binary files /dev/null and b/MakeItTalk/src/approaches/__pycache__/train_image_translation.cpython-37.pyc differ diff --git a/MakeItTalk/src/approaches/__pycache__/train_image_translation.cpython-39.pyc b/MakeItTalk/src/approaches/__pycache__/train_image_translation.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b38f344806f90ddaf3172d6ab5a4fbcf9318f743 Binary files /dev/null and b/MakeItTalk/src/approaches/__pycache__/train_image_translation.cpython-39.pyc differ diff --git a/MakeItTalk/src/approaches/train_audio2landmark.py b/MakeItTalk/src/approaches/train_audio2landmark.py new file mode 100644 index 0000000000000000000000000000000000000000..d8c3029d08c07c6584be2d32c4d1da280dd69067 --- /dev/null +++ b/MakeItTalk/src/approaches/train_audio2landmark.py @@ -0,0 +1,295 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import os +import torch.nn.parallel +import torch.utils.data +from src.dataset.audio2landmark.audio2landmark_dataset import Audio2landmark_Dataset +from src.models.model_audio2landmark import * +from util.utils import get_n_params +import numpy as np +import pickle + +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + + +class Audio2landmark_model(): + + def __init__(self, opt_parser, jpg_shape=None): + ''' + Init model with opt_parser + ''' + print('Run on device:', device) + + # Step 1 : load opt_parser + self.opt_parser = opt_parser + self.std_face_id = np.loadtxt('src/dataset/utils/STD_FACE_LANDMARKS.txt') + if(jpg_shape is not None): + self.std_face_id = jpg_shape + self.std_face_id = self.std_face_id.reshape(1, 204) + self.std_face_id = torch.tensor(self.std_face_id, requires_grad=False, dtype=torch.float).to(device) + + self.eval_data = Audio2landmark_Dataset(dump_dir='MakeItTalk/examples/dump', + dump_name='random', + status='val', + num_window_frames=18, + num_window_step=1) + self.eval_dataloader = torch.utils.data.DataLoader(self.eval_data, batch_size=1, + shuffle=False, num_workers=0, + collate_fn=self.eval_data.my_collate_in_segments) + print('EVAL num videos: {}'.format(len(self.eval_data))) + + # Step 3: Load model + self.G = Audio2landmark_pos(drop_out=0.5, + spk_emb_enc_size=128, + c_enc_hidden_size=256, + transformer_d_model=32, N=2, heads=2, + z_size=128, audio_dim=256) + print('G: Running on {}, total num params = {:.2f}M'.format(device, get_n_params(self.G)/1.0e6)) + + model_dict = self.G.state_dict() + ckpt = torch.load(opt_parser.load_a2l_G_name, map_location=torch.device('cuda')) + pretrained_dict = {k: v for k, v in ckpt['G'].items() if k.split('.')[0] not in ['comb_mlp']} + model_dict.update(pretrained_dict) + self.G.load_state_dict(model_dict) + + print('======== LOAD PRETRAINED FACE ID MODEL {} ========='.format(opt_parser.load_a2l_G_name)) + self.G.to(device) + + ''' baseline model ''' + self.C = Audio2landmark_content(num_window_frames=18, + in_size=80, use_prior_net=True, + bidirectional=False, drop_out=0.5) + + ckpt = torch.load(opt_parser.load_a2l_C_name, map_location=torch.device('cuda')) + self.C.load_state_dict(ckpt['model_g_face_id']) + # self.C.load_state_dict(ckpt['C']) + print('======== LOAD PRETRAINED FACE ID MODEL {} ========='.format(opt_parser.load_a2l_C_name)) + self.C.to(device) + + self.t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45) + self.anchor_t_shape = np.loadtxt('src/dataset/utils/STD_FACE_LANDMARKS.txt') + self.anchor_t_shape = self.anchor_t_shape[self.t_shape_idx, :] + + with open(os.path.join('examples', 'dump', 'emb.pickle'), 'rb') as fp: + self.test_embs = pickle.load(fp) + + print('====================================') + for key in self.test_embs.keys(): + print(key) + print('====================================') + + def __train_face_and_pos__(self, fls, aus, embs, face_id, smooth_win=31, close_mouth_ratio=.99): + + fls_without_traj = fls[:, 0, :].detach().clone().requires_grad_(False) + + if (face_id.shape[0] == 1): + face_id = face_id.repeat(aus.shape[0], 1) + face_id = face_id.requires_grad_(False) + baseline_face_id = face_id.detach() + + z = torch.tensor(torch.zeros(aus.shape[0], 128), requires_grad=False, dtype=torch.float).to(device) + fl_dis_pred, _, spk_encode = self.G(aus, embs * 3.0, face_id, fls_without_traj, z, add_z_spk=False) + + # ADD CONTENT + from scipy.signal import savgol_filter + smooth_length = int(min(fl_dis_pred.shape[0]-1, smooth_win) // 2 * 2 + 1) + fl_dis_pred = savgol_filter(fl_dis_pred.cpu().numpy(), smooth_length, 3, axis=0) + # + ''' ================ close pose-branch mouth ================== ''' + fl_dis_pred = fl_dis_pred.reshape((-1, 68, 3)) + index1 = list(range(60-1, 55-1, -1)) + index2 = list(range(68-1, 65-1, -1)) + mean_out = 0.5 * fl_dis_pred[:, 49:54] + 0.5 * fl_dis_pred[:, index1] + fl_dis_pred[:, 49:54] = mean_out * close_mouth_ratio + fl_dis_pred[:, 49:54] * (1 - close_mouth_ratio) + fl_dis_pred[:, index1] = mean_out * close_mouth_ratio + fl_dis_pred[:, index1] * (1 - close_mouth_ratio) + mean_in = 0.5 * (fl_dis_pred[:, 61:64] + fl_dis_pred[:, index2]) + fl_dis_pred[:, 61:64] = mean_in * close_mouth_ratio + fl_dis_pred[:, 61:64] * (1 - close_mouth_ratio) + fl_dis_pred[:, index2] = mean_in * close_mouth_ratio + fl_dis_pred[:, index2] * (1 - close_mouth_ratio) + fl_dis_pred = fl_dis_pred.reshape(-1, 204) + ''' ============================================================= ''' + + fl_dis_pred = torch.tensor(fl_dis_pred).to(device) * self.opt_parser.amp_pos + + residual_face_id = baseline_face_id + + # ''' CALIBRATION ''' + baseline_pred_fls, _ = self.C(aus[:, 0:18, :], residual_face_id) + baseline_pred_fls = self.__calib_baseline_pred_fls__(baseline_pred_fls) + fl_dis_pred += baseline_pred_fls + + return fl_dis_pred, face_id[0:1, :] + + def __calib_baseline_pred_fls_old_(self, baseline_pred_fls, residual_face_id, aus): + mean_face_id = torch.mean(baseline_pred_fls.detach(), dim=0, keepdim=True) + residual_face_id -= mean_face_id.view(1, 204) * 1. + baseline_pred_fls, _ = self.C(aus, residual_face_id) + baseline_pred_fls[:, 48 * 3::3] *= self.opt_parser.amp_lip_x # mouth x + baseline_pred_fls[:, 48 * 3 + 1::3] *= self.opt_parser.amp_lip_y # mouth y + return baseline_pred_fls + + def __calib_baseline_pred_fls__(self, baseline_pred_fls, ratio=0.5): + np_fl_dis_pred = baseline_pred_fls.detach().cpu().numpy() + K = int(np_fl_dis_pred.shape[0] * ratio) + for calib_i in range(204): + min_k_idx = np.argpartition(np_fl_dis_pred[:, calib_i], K) + m = np.mean(np_fl_dis_pred[min_k_idx[:K], calib_i]) + np_fl_dis_pred[:, calib_i] = np_fl_dis_pred[:, calib_i] - m + baseline_pred_fls = torch.tensor(np_fl_dis_pred, requires_grad=False).to(device) + baseline_pred_fls[:, 48 * 3::3] *= self.opt_parser.amp_lip_x # mouth x + baseline_pred_fls[:, 48 * 3 + 1::3] *= self.opt_parser.amp_lip_y # mouth y + return baseline_pred_fls + + def __train_pass__(self, au_emb=None, centerize_face=False, no_y_rotation=False, vis_fls=False): + + # Step 1: init setup + self.G.eval() + self.C.eval() + data = self.eval_data + dataloader = self.eval_dataloader + + # Step 2: train for each batch + for i, batch in enumerate(dataloader): + + global_id, video_name = data[i][0][1][0], data[i][0][1][1][:-4] + + # Step 2.1: load batch data from dataloader (in segments) + inputs_fl, inputs_au, inputs_emb = batch + + keys = self.opt_parser.reuse_train_emb_list + if(len(keys) == 0): + keys = ['audio_embed'] + for key in keys: # ['45hn7-LXDX8']: #['sxCbrYjBsGA']:# + # load saved emb + if(au_emb is None): + emb_val = self.test_embs[key] + else: + emb_val = au_emb[i] + + inputs_emb = np.tile(emb_val, (inputs_emb.shape[0], 1)) + inputs_emb = torch.tensor(inputs_emb, dtype=torch.float, requires_grad=False) + inputs_fl, inputs_au, inputs_emb = inputs_fl.to(device), inputs_au.to(device), inputs_emb.to(device) + + std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], [] + seg_bs = 512 + + for j in range(0, inputs_fl.shape[0], seg_bs): + + # Step 3.1: load segments + inputs_fl_segments = inputs_fl[j: j + seg_bs] + inputs_au_segments = inputs_au[j: j + seg_bs] + inputs_emb_segments = inputs_emb[j: j + seg_bs] + + if(inputs_fl_segments.shape[0] < 10): + continue + + input_face_id = self.std_face_id + + fl_dis_pred_pos, input_face_id = \ + self.__train_face_and_pos__(inputs_fl_segments, inputs_au_segments, inputs_emb_segments, + input_face_id) + + fl_dis_pred_pos = (fl_dis_pred_pos + input_face_id).data.cpu().numpy() + ''' solve inverse lip ''' + fl_dis_pred_pos = self.__solve_inverse_lip2__(fl_dis_pred_pos) + fls_pred_pos_list += [fl_dis_pred_pos] + + fake_fls_np = np.concatenate(fls_pred_pos_list) + + # revise nose top point + fake_fls_np[:, 27 * 3:28 * 3] = fake_fls_np[:, 28 * 3:29 * 3] * 2 - fake_fls_np[:, 29 * 3:30 * 3] + + # fake_fls_np[:, 48*3+1::3] += 0.1 + + # smooth + from scipy.signal import savgol_filter + fake_fls_np = savgol_filter(fake_fls_np, 5, 3, axis=0) + + if(centerize_face): + std_m = np.mean(self.std_face_id.detach().cpu().numpy().reshape((1, 68, 3)), + axis=1, keepdims=True) + fake_fls_np = fake_fls_np.reshape((-1, 68, 3)) + fake_fls_np = fake_fls_np - np.mean(fake_fls_np, axis=1, keepdims=True) + std_m + fake_fls_np = fake_fls_np.reshape((-1, 68 * 3)) + + if(no_y_rotation): + std = self.std_face_id.detach().cpu().numpy().reshape(68, 3) + std_t_shape = std[self.t_shape_idx, :] + fake_fls_np = fake_fls_np.reshape((fake_fls_np.shape[0], 68, 3)) + frame_t_shape = fake_fls_np[:, self.t_shape_idx, :] + from util.icp import icp + from scipy.spatial.transform import Rotation as R + for i in range(frame_t_shape.shape[0]): + T, distance, itr = icp(frame_t_shape[i], std_t_shape) + landmarks = np.hstack((frame_t_shape[i], np.ones((9, 1)))) + rot_mat = T[:3, :3] + r = R.from_dcm(rot_mat).as_euler('xyz') + r = [0., r[1], r[2]] + r = R.from_euler('xyz', r).as_dcm() + # print(frame_t_shape[i, 0], r) + landmarks = np.hstack((fake_fls_np[i] - T[:3, 3:4].T, np.ones((68, 1)))) + T2 = np.hstack((r, T[:3, 3:4])) + fake_fls_np[i] = np.dot(T2, landmarks.T).T + # print(frame_t_shape[i, 0]) + fake_fls_np = fake_fls_np.reshape((-1, 68 * 3)) + + filename = 'pred_fls_{}_{}.txt'.format(video_name.split('\\')[-1].split('/')[-1], key) + np.savetxt(os.path.join(self.opt_parser.output_folder, filename), fake_fls_np, fmt='%.6f') + + # ''' Visualize result in landmarks ''' + if(vis_fls): + from util.vis import Vis + Vis(fls=fake_fls_np, filename=video_name.split('\\')[-1].split('/')[-1], fps=62.5, + audio_filenam=os.path.join('examples', video_name.split('\\')[-1].split('/')[-1]+'.wav')) + + + def __close_face_lip__(self, fl): + facelandmark = fl.reshape(-1, 68, 3) + from util.geo_math import area_of_polygon + min_area_lip, idx = 999, 0 + for i, fls in enumerate(facelandmark): + area_of_mouth = area_of_polygon(fls[list(range(60, 68)), 0:2]) + if (area_of_mouth < min_area_lip): + min_area_lip = area_of_mouth + idx = i + return idx + + def test(self, au_emb=None): + with torch.no_grad(): + self.__train_pass__(au_emb, vis_fls=True) + + def __solve_inverse_lip2__(self, fl_dis_pred_pos_numpy): + for j in range(fl_dis_pred_pos_numpy.shape[0]): + init_face = self.std_face_id.detach().cpu().numpy() + from util.geo_math import area_of_signed_polygon + fls = fl_dis_pred_pos_numpy[j].reshape(68, 3) + area_of_mouth = area_of_signed_polygon(fls[list(range(60, 68)), 0:2]) + if (area_of_mouth < 0): + fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] + fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3]) + fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] = fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3] + fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] + fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3]) + fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] = fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3] + fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] + fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3]) + fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] = fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3] + p = max([j-1, 0]) + fl_dis_pred_pos_numpy[j, 55 * 3+1:59 * 3+1:3] = fl_dis_pred_pos_numpy[j, 64 * 3+1:68 * 3+1:3] \ + + fl_dis_pred_pos_numpy[p, 55 * 3+1:59 * 3+1:3] \ + - fl_dis_pred_pos_numpy[p, 64 * 3+1:68 * 3+1:3] + fl_dis_pred_pos_numpy[j, 59 * 3+1:60 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:61 * 3+1:3] \ + + fl_dis_pred_pos_numpy[p, 59 * 3+1:60 * 3+1:3] \ + - fl_dis_pred_pos_numpy[p, 60 * 3+1:61 * 3+1:3] + fl_dis_pred_pos_numpy[j, 49 * 3+1:54 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:65 * 3+1:3] \ + + fl_dis_pred_pos_numpy[p, 49 * 3+1:54 * 3+1:3] \ + - fl_dis_pred_pos_numpy[p, 60 * 3+1:65 * 3+1:3] + return fl_dis_pred_pos_numpy + + + + diff --git a/MakeItTalk/src/approaches/train_content.py b/MakeItTalk/src/approaches/train_content.py new file mode 100644 index 0000000000000000000000000000000000000000..0797d13f6a62df57197551af99b66c9791af21f2 --- /dev/null +++ b/MakeItTalk/src/approaches/train_content.py @@ -0,0 +1,336 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import os +import torch.nn.parallel +import torch.optim as optim +import torch.utils.data +import time +from src.dataset.audio2landmark.audio2landmark_dataset import Audio2landmark_Dataset +from src.models.model_audio2landmark import Audio2landmark_content +from util.utils import Record +from util.icp import icp +import numpy as np + +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + + +class Audio2landmark_model(): + + def __init__(self, opt_parser, jpg_shape=None): + ''' + Init model with opt_parser + ''' + print('Run on device:', device) + + # Step 1 : load opt_parser + self.opt_parser = opt_parser + self.std_face_id = np.loadtxt('src/dataset/utils/STD_FACE_LANDMARKS.txt') + if(jpg_shape is not None): + self.std_face_id = jpg_shape + self.std_face_id = self.std_face_id.reshape(1, 204) + self.std_face_id = torch.tensor(self.std_face_id, requires_grad=False, dtype=torch.float).to(device) + + self.train_data = Audio2landmark_Dataset(dump_dir=opt_parser.dump_dir, + dump_name='autovc_retrain_mel', + status='train', + num_window_frames=opt_parser.num_window_frames, + num_window_step=opt_parser.num_window_step) + self.train_dataloader = torch.utils.data.DataLoader(self.train_data, batch_size=opt_parser.batch_size, + shuffle=False, num_workers=0, + collate_fn=self.train_data.my_collate_in_segments_noemb) + print('TRAIN num videos: {}'.format(len(self.train_data))) + + self.eval_data = Audio2landmark_Dataset(dump_dir=opt_parser.dump_dir, + dump_name='autovc_retrain_mel', + status='test', + num_window_frames=opt_parser.num_window_frames, + num_window_step=opt_parser.num_window_step) + self.eval_dataloader = torch.utils.data.DataLoader(self.eval_data, batch_size=opt_parser.batch_size, + shuffle=False, num_workers=0, + collate_fn=self.eval_data.my_collate_in_segments_noemb) + print('EVAL num videos: {}'.format(len(self.eval_data))) + + # Step 3: Load model + self.C = Audio2landmark_content(num_window_frames=opt_parser.num_window_frames, hidden_size=opt_parser.hidden_size, + in_size=opt_parser.in_size, use_prior_net=opt_parser.use_prior_net, + bidirectional=False, drop_out=opt_parser.drop_out) + + if(opt_parser.load_a2l_C_name.split('/')[-1] != ''): + ckpt = torch.load(opt_parser.load_a2l_C_name) + self.C.load_state_dict(ckpt['model_g_face_id']) + print('======== LOAD PRETRAINED CONTENT BRANCH MODEL {} ========='.format(opt_parser.load_a2l_C_name)) + self.C.to(device) + + self.t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45) + self.anchor_t_shape = np.loadtxt('src/dataset/utils/STD_FACE_LANDMARKS.txt') + self.anchor_t_shape = self.anchor_t_shape[self.t_shape_idx, :] + + self.opt_C = optim.Adam(self.C.parameters(), lr=opt_parser.lr, weight_decay=opt_parser.reg_lr) + + self.loss_mse = torch.nn.MSELoss() + + def __train_content__(self, fls, aus, face_id, is_training=True): + + fls_gt = fls[:, 0, :].detach().clone().requires_grad_(False) + + if (face_id.shape[0] == 1): + face_id = face_id.repeat(aus.shape[0], 1) + face_id = face_id.requires_grad_(False) + + fl_dis_pred, _ = self.C(aus, face_id) + + ''' lip region weight ''' + w = torch.abs(fls[:, 0, 66 * 3 + 1] - fls[:, 0, 62 * 3 + 1]) + w = torch.tensor([1.0]).to(device) / (w * 4.0 + 0.1) + w = w.unsqueeze(1) + lip_region_w = torch.ones((fls.shape[0], 204)).to(device) + lip_region_w[:, 48*3:] = torch.cat([w] * 60, dim=1) + lip_region_w = lip_region_w.detach().clone().requires_grad_(False) + + if (self.opt_parser.use_lip_weight): + # loss = torch.mean(torch.mean((fl_dis_pred + face_id - fls[:, 0, :]) ** 2, dim=1) * w) + loss = torch.mean(torch.abs(fl_dis_pred +face_id[0:1].detach() - fls_gt) * lip_region_w) + else: + # loss = self.loss_mse(fl_dis_pred + face_id, fls[:, 0, :]) + loss = torch.nn.functional.l1_loss(fl_dis_pred+face_id[0:1].detach(), fls_gt) + + if (self.opt_parser.use_motion_loss): + pred_motion = fl_dis_pred[:-1] - fl_dis_pred[1:] + gt_motion = fls_gt[:-1] - fls_gt[1:] + loss += torch.nn.functional.l1_loss(pred_motion, gt_motion) + + ''' use laplacian smooth loss ''' + if (self.opt_parser.lambda_laplacian_smooth_loss > 0.0): + n1 = [1] + list(range(0, 16)) + [18] + list(range(17, 21)) + [23] + list(range(22, 26)) + \ + [28] + list(range(27, 35)) + [41] + list(range(36, 41)) + [47] + list(range(42, 47)) + \ + [59] + list(range(48, 59)) + [67] + list(range(60, 67)) + n2 = list(range(1, 17)) + [15] + list(range(18, 22)) + [20] + list(range(23, 27)) + [25] + \ + list(range(28, 36)) + [34] + list(range(37, 42)) + [36] + list(range(43, 48)) + [42] + \ + list(range(49, 60)) + [48] + list(range(61, 68)) + [60] + V = (fl_dis_pred + face_id[0:1].detach()).view(-1, 68, 3) + L_V = V - 0.5 * (V[:, n1, :] + V[:, n2, :]) + G = fls_gt.view(-1, 68, 3) + L_G = G - 0.5 * (G[:, n1, :] + G[:, n2, :]) + loss_laplacian = torch.nn.functional.l1_loss(L_V, L_G) + loss += loss_laplacian + + if(is_training): + self.opt_C.zero_grad() + loss.backward() + self.opt_C.step() + + if(not is_training): + # ''' CALIBRATION ''' + np_fl_dis_pred = fl_dis_pred.detach().cpu().numpy() + K = int(np_fl_dis_pred.shape[0] * 0.5) + for calib_i in range(204): + min_k_idx = np.argpartition(np_fl_dis_pred[:, calib_i], K) + m = np.mean(np_fl_dis_pred[min_k_idx[:K], calib_i]) + np_fl_dis_pred[:, calib_i] = np_fl_dis_pred[:, calib_i] - m + fl_dis_pred = torch.tensor(np_fl_dis_pred, requires_grad=False).to(device) + + return fl_dis_pred, face_id[0:1, :], loss + + def __train_pass__(self, epoch, log_loss, is_training=True): + st_epoch = time.time() + + # Step 1: init setup + if(is_training): + self.C.train() + data = self.train_data + dataloader = self.train_dataloader + status = 'TRAIN' + else: + self.C.eval() + data = self.eval_data + dataloader = self.eval_dataloader + status = 'EVAL' + + random_clip_index = np.random.permutation(len(dataloader))[0:self.opt_parser.random_clip_num] + print('random visualize clip index', random_clip_index) + + # Step 2: train for each batch + for i, batch in enumerate(dataloader): + + global_id, video_name = data[i][0][1][0], data[i][0][1][1][:-4] + inputs_fl, inputs_au = batch + inputs_fl_ori, inputs_au_ori = inputs_fl.to(device), inputs_au.to(device) + + std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], [] + seg_bs = 512 + + ''' pick a most closed lip frame from entire clip data ''' + close_fl_list = inputs_fl_ori[::10, 0, :] + idx = self.__close_face_lip__(close_fl_list.detach().cpu().numpy()) + input_face_id = close_fl_list[idx:idx + 1, :] + + ''' register face ''' + if (self.opt_parser.use_reg_as_std): + landmarks = input_face_id.detach().cuda.numpy().reshape(68, 3) + frame_t_shape = landmarks[self.t_shape_idx, :] + T, distance, itr = icp(frame_t_shape, self.anchor_t_shape) + landmarks = np.hstack((landmarks, np.ones((68, 1)))) + registered_landmarks = np.dot(T, landmarks.T).T + input_face_id = torch.tensor(registered_landmarks[:, 0:3].reshape(1, 204), requires_grad=False, + dtype=torch.float).to(device) + + for in_batch in range(self.opt_parser.in_batch_nepoch): + + std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], [] + + if (is_training): + rand_start = np.random.randint(0, inputs_fl_ori.shape[0] // 5, 1).reshape(-1) + inputs_fl = inputs_fl_ori[rand_start[0]:] + inputs_au = inputs_au_ori[rand_start[0]:] + else: + inputs_fl = inputs_fl_ori + inputs_au = inputs_au_ori + + for j in range(0, inputs_fl.shape[0], seg_bs): + + # Step 3.1: load segments + inputs_fl_segments = inputs_fl[j: j + seg_bs] + inputs_au_segments = inputs_au[j: j + seg_bs] + fl_std = inputs_fl_segments[:, 0, :].data.cpu().numpy() + + if(inputs_fl_segments.shape[0] < 10): + continue + + fl_dis_pred_pos, input_face_id, loss = \ + self.__train_content__(inputs_fl_segments, inputs_au_segments, input_face_id, is_training) + + fl_dis_pred_pos = (fl_dis_pred_pos + input_face_id).data.cpu().numpy() + ''' solve inverse lip ''' + fl_dis_pred_pos = self.__solve_inverse_lip2__(fl_dis_pred_pos) + + fls_pred_pos_list += [fl_dis_pred_pos.reshape((-1, 204))] + std_fls_list += [fl_std.reshape((-1, 204))] + + for key in log_loss.keys(): + if (key not in locals().keys()): + continue + if (type(locals()[key]) == float): + log_loss[key].add(locals()[key]) + else: + log_loss[key].add(locals()[key].data.cpu().numpy()) + + + if (epoch % self.opt_parser.jpg_freq == 0 and (i in random_clip_index or in_batch % self.opt_parser.jpg_freq == 1)): + def save_fls_av(fake_fls_list, postfix='', ifsmooth=True): + fake_fls_np = np.concatenate(fake_fls_list) + filename = 'fake_fls_{}_{}_{}.txt'.format(epoch, video_name, postfix) + np.savetxt( + os.path.join(self.opt_parser.dump_dir, '../nn_result', self.opt_parser.name, filename), + fake_fls_np, fmt='%.6f') + audio_filename = '{:05d}_{}_audio.wav'.format(global_id, video_name) + from util.vis import Vis_old + Vis_old(run_name=self.opt_parser.name, pred_fl_filename=filename, audio_filename=audio_filename, + fps=62.5, av_name='e{:04d}_{}_{}'.format(epoch, in_batch, postfix), + postfix=postfix, root_dir=self.opt_parser.root_dir, ifsmooth=ifsmooth) + + if (self.opt_parser.show_animation and not is_training): + print('show animation ....') + save_fls_av(fls_pred_pos_list, 'pred_{}'.format(i), ifsmooth=True) + save_fls_av(std_fls_list, 'std_{}'.format(i), ifsmooth=False) + from util.vis import Vis_comp + Vis_comp(run_name=self.opt_parser.name, + pred1='fake_fls_{}_{}_{}.txt'.format(epoch, video_name, 'pred_{}'.format(i)), + pred2='fake_fls_{}_{}_{}.txt'.format(epoch, video_name, 'std_{}'.format(i)), + audio_filename='{:05d}_{}_audio.wav'.format(global_id, video_name), + fps=62.5, av_name='e{:04d}_{}_{}'.format(epoch, in_batch, 'comp_{}'.format(i)), + postfix='comp_{}'.format(i), root_dir=self.opt_parser.root_dir, ifsmooth=False) + + self.__save_model__(save_type='last_inbatch', epoch=epoch) + + if (self.opt_parser.verbose <= 1): + print('{} Epoch: #{} batch #{}/{} inbatch #{}/{}'.format( + status, epoch, i, len(dataloader), + in_batch, self.opt_parser.in_batch_nepoch), end=': ') + for key in log_loss.keys(): + print(key, '{:.5f}'.format(log_loss[key].per('batch')), end=', ') + print('') + + if (self.opt_parser.verbose <= 2): + print('==========================================================') + print('{} Epoch: #{}'.format(status, epoch), end=':') + for key in log_loss.keys(): + print(key, '{:.4f}'.format(log_loss[key].per('epoch')), end=', ') + print( + 'Epoch time usage: {:.2f} sec\n==========================================================\n'.format( + time.time() - st_epoch)) + self.__save_model__(save_type='last_epoch', epoch=epoch) + if (epoch % self.opt_parser.ckpt_epoch_freq == 0): + self.__save_model__(save_type='e_{}'.format(epoch), epoch=epoch) + + + def __close_face_lip__(self, fl): + facelandmark = fl.reshape(-1, 68, 3) + from util.geo_math import area_of_polygon + min_area_lip, idx = 999, 0 + for i, fls in enumerate(facelandmark): + area_of_mouth = area_of_polygon(fls[list(range(60, 68)), 0:2]) + if (area_of_mouth < min_area_lip): + min_area_lip = area_of_mouth + idx = i + return idx + + def test(self): + eval_loss = {key: Record(['epoch', 'batch']) for key in ['loss']} + with torch.no_grad(): + self.__train_pass__(0, eval_loss, is_training=False) + + def train(self): + train_loss = {key: Record(['epoch', 'batch']) for key in ['loss']} + eval_loss = {key: Record(['epoch', 'batch']) for key in ['loss']} + + for epoch in range(self.opt_parser.nepoch): + self.__train_pass__(epoch=epoch, log_loss=train_loss) + + with torch.no_grad(): + self.__train_pass__(epoch, eval_loss, is_training=False) + + + def __solve_inverse_lip2__(self, fl_dis_pred_pos_numpy): + for j in range(fl_dis_pred_pos_numpy.shape[0]): + init_face = self.std_face_id.detach().cpu().numpy() + from util.geo_math import area_of_signed_polygon + fls = fl_dis_pred_pos_numpy[j].reshape(68, 3) + area_of_mouth = area_of_signed_polygon(fls[list(range(60, 68)), 0:2]) + if (area_of_mouth < 0): + fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] + fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3]) + fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] = fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3] + fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] + fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3]) + fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] = fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3] + fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] + fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3]) + fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] = fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3] + p = max([j-1, 0]) + fl_dis_pred_pos_numpy[j, 55 * 3+1:59 * 3+1:3] = fl_dis_pred_pos_numpy[j, 64 * 3+1:68 * 3+1:3] \ + + fl_dis_pred_pos_numpy[p, 55 * 3+1:59 * 3+1:3] \ + - fl_dis_pred_pos_numpy[p, 64 * 3+1:68 * 3+1:3] + fl_dis_pred_pos_numpy[j, 59 * 3+1:60 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:61 * 3+1:3] \ + + fl_dis_pred_pos_numpy[p, 59 * 3+1:60 * 3+1:3] \ + - fl_dis_pred_pos_numpy[p, 60 * 3+1:61 * 3+1:3] + fl_dis_pred_pos_numpy[j, 49 * 3+1:54 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:65 * 3+1:3] \ + + fl_dis_pred_pos_numpy[p, 49 * 3+1:54 * 3+1:3] \ + - fl_dis_pred_pos_numpy[p, 60 * 3+1:65 * 3+1:3] + return fl_dis_pred_pos_numpy + + + def __save_model__(self, save_type, epoch): + if (self.opt_parser.write): + torch.save({ + 'model_g_face_id': self.C.state_dict(), + 'epoch': epoch + }, os.path.join(self.opt_parser.ckpt_dir, 'ckpt_{}.pth'.format(save_type))) + + + + diff --git a/MakeItTalk/src/approaches/train_image_translation.py b/MakeItTalk/src/approaches/train_image_translation.py new file mode 100644 index 0000000000000000000000000000000000000000..1c4e31de66104591936477092ccdd649d660295a --- /dev/null +++ b/MakeItTalk/src/approaches/train_image_translation.py @@ -0,0 +1,457 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +from src.models.model_image_translation import ResUnetGenerator, VGGLoss +import torch +import torch.nn as nn +from tensorboardX import SummaryWriter +import time +import numpy as np +import cv2 +import os, glob +from src.dataset.image_translation.image_translation_dataset import vis_landmark_on_img, vis_landmark_on_img98, vis_landmark_on_img74 + + +from thirdparty.AdaptiveWingLoss.core import models +from thirdparty.AdaptiveWingLoss.utils.utils import get_preds_fromhm + +import face_alignment + +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + +class Image_translation_block(): + + def __init__(self, opt_parser, single_test=False): + print('Run on device {}'.format(device)) + # for key in vars(opt_parser).keys(): + # print(key, ':', vars(opt_parser)[key]) + self.opt_parser = opt_parser + + # model + if(opt_parser.add_audio_in): + self.G = ResUnetGenerator(input_nc=7, output_nc=3, num_downs=6, use_dropout=False) + else: + self.G = ResUnetGenerator(input_nc=6, output_nc=3, num_downs=6, use_dropout=False) + + if (opt_parser.load_G_name != ''): + ckpt = torch.load(opt_parser.load_G_name, map_location=torch.device('cuda')) + try: + self.G.load_state_dict(ckpt['G']) + except: + tmp = nn.DataParallel(self.G) + tmp.load_state_dict(ckpt['G']) + self.G.load_state_dict(tmp.module.state_dict()) + del tmp + + if torch.cuda.device_count() > 1: + print("Let's use", torch.cuda.device_count(), "GPUs in G mode!") + self.G = nn.DataParallel(self.G) + + self.G.to(device) + + if(not single_test): + # dataset + if(opt_parser.use_vox_dataset == 'raw'): + if(opt_parser.comb_fan_awing): + from src.dataset.image_translation.image_translation_dataset import \ + image_translation_raw74_dataset as image_translation_dataset + elif(opt_parser.add_audio_in): + from src.dataset.image_translation.image_translation_dataset import image_translation_raw98_with_audio_dataset as \ + image_translation_dataset + else: + from src.dataset.image_translation.image_translation_dataset import image_translation_raw98_dataset as \ + image_translation_dataset + else: + from src.dataset.image_translation.image_translation_dataset import image_translation_preprocessed98_dataset as \ + image_translation_dataset + + self.dataset = image_translation_dataset(num_frames=opt_parser.num_frames) + self.dataloader = torch.utils.data.DataLoader(self.dataset, + batch_size=opt_parser.batch_size, + shuffle=True, + num_workers=opt_parser.num_workers) + + # criterion + self.criterionL1 = nn.L1Loss() + self.criterionVGG = VGGLoss() + if torch.cuda.device_count() > 1: + print("Let's use", torch.cuda.device_count(), "GPUs in VGG model!") + self.criterionVGG = nn.DataParallel(self.criterionVGG) + self.criterionVGG.to(device) + + # optimizer + self.optimizer = torch.optim.Adam(self.G.parameters(), lr=opt_parser.lr, betas=(0.5, 0.999)) + + # writer + if(opt_parser.write): + self.writer = SummaryWriter(log_dir=os.path.join(opt_parser.log_dir, opt_parser.name)) + self.count = 0 + + # =========================================================== + # online landmark alignment : Awing + # =========================================================== + PRETRAINED_WEIGHTS = 'thirdparty/AdaptiveWingLoss/ckpt/WFLW_4HG.pth' + GRAY_SCALE = False + HG_BLOCKS = 4 + END_RELU = False + NUM_LANDMARKS = 98 + + self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + model_ft = models.FAN(HG_BLOCKS, END_RELU, GRAY_SCALE, NUM_LANDMARKS) + + checkpoint = torch.load(PRETRAINED_WEIGHTS) + if 'state_dict' not in checkpoint: + model_ft.load_state_dict(checkpoint) + else: + pretrained_weights = checkpoint['state_dict'] + model_weights = model_ft.state_dict() + pretrained_weights = {k: v for k, v in pretrained_weights.items() \ + if k in model_weights} + model_weights.update(pretrained_weights) + model_ft.load_state_dict(model_weights) + print('Load AWing model sucessfully') + if torch.cuda.device_count() > 1: + print("Let's use", torch.cuda.device_count(), "GPUs for AWing!") + self.fa_model = nn.DataParallel(model_ft).to(self.device).eval() + else: + self.fa_model = model_ft.to(self.device).eval() + + # =========================================================== + # online landmark alignment : FAN + # =========================================================== + if(opt_parser.comb_fan_awing): + if(opt_parser.fan_2or3D == '2D'): + self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, + device='cuda' if torch.cuda.is_available() else "cpu", + flip_input=True) + else: + self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, + device='cuda' if torch.cuda.is_available() else "cpu", + flip_input=True) + + def __train_pass__(self, epoch, is_training=True): + st_epoch = time.time() + if(is_training): + self.G.train() + status = 'TRAIN' + else: + self.G.eval() + status = 'EVAL' + + g_time = 0.0 + for i, batch in enumerate(self.dataloader): + if(i >= len(self.dataloader)-2): + break + st_batch = time.time() + + if(self.opt_parser.comb_fan_awing): + image_in, image_out, fan_pred_landmarks = batch + fan_pred_landmarks = fan_pred_landmarks.reshape(-1, 68, 3).detach().cpu().numpy() + elif(self.opt_parser.add_audio_in): + image_in, image_out, audio_in = batch + audio_in = audio_in.reshape(-1, 1, 256, 256).to(device) + else: + image_in, image_out = batch + + with torch.no_grad(): + # # online landmark (AwingNet) + image_in, image_out = \ + image_in.reshape(-1, 3, 256, 256).to(device), image_out.reshape(-1, 3, 256, 256).to(device) + inputs = image_out + outputs, boundary_channels = self.fa_model(inputs) + pred_heatmap = outputs[-1][:, :-1, :, :].detach().cuda() + pred_landmarks, _ = get_preds_fromhm(pred_heatmap) + pred_landmarks = pred_landmarks.numpy() * 4 + + # online landmark (FAN) -> replace jaw + eye brow in AwingNet + if(self.opt_parser.comb_fan_awing): + fl_jaw_eyebrow = fan_pred_landmarks[:, 0:27, 0:2] + fl_rest = pred_landmarks[:, 51:, :] + pred_landmarks = np.concatenate([fl_jaw_eyebrow, fl_rest], axis=1).astype(np.int) + + # draw landmark on white bg + img_fls = [] + for pred_fl in pred_landmarks: + img_fl = np.ones(shape=(256, 256, 3)) * 255.0 + if(self.opt_parser.comb_fan_awing): + img_fl = vis_landmark_on_img74(img_fl, pred_fl) # 74x2 + else: + img_fl = vis_landmark_on_img98(img_fl, pred_fl) # 98x2 + img_fls.append(img_fl.transpose((2, 0, 1))) + img_fls = np.stack(img_fls, axis=0).astype(np.float32) / 255.0 + image_fls_in = torch.tensor(img_fls, requires_grad=False).to(device) + + if(self.opt_parser.add_audio_in): + # print(image_fls_in.shape, image_in.shape, audio_in.shape) + image_in = torch.cat([image_fls_in, image_in, audio_in], dim=1) + else: + image_in = torch.cat([image_fls_in, image_in], dim=1) + + # image_in, image_out = \ + # image_in.reshape(-1, 6, 256, 256).to(device), image_out.reshape(-1, 3, 256, 256).to(device) + + # image2image net fp + g_out = self.G(image_in) + g_out = torch.tanh(g_out) + + loss_l1 = self.criterionL1(g_out, image_out) + loss_vgg, loss_style = self.criterionVGG(g_out, image_out, style=True) + + loss_vgg, loss_style = torch.mean(loss_vgg), torch.mean(loss_style) + + loss = loss_l1 + loss_vgg + loss_style + if(is_training): + self.optimizer.zero_grad() + loss.backward() + self.optimizer.step() + + # log + if(self.opt_parser.write): + self.writer.add_scalar('loss', loss.cuda().detach().numpy(), self.count) + self.writer.add_scalar('loss_l1', loss_l1.cuda().detach().numpy(), self.count) + self.writer.add_scalar('loss_vgg', loss_vgg.cuda().detach().numpy(), self.count) + self.count += 1 + + # save image to track training process + if (i % self.opt_parser.jpg_freq == 0): + vis_in = np.concatenate([image_in[0, 3:6].cuda().detach().numpy().transpose((1, 2, 0)), + image_in[0, 0:3].cuda().detach().numpy().transpose((1, 2, 0))], axis=1) + vis_out = np.concatenate([image_out[0].cuda().detach().numpy().transpose((1, 2, 0)), + g_out[0].cuda().detach().numpy().transpose((1, 2, 0))], axis=1) + vis = np.concatenate([vis_in, vis_out], axis=0) + try: + os.makedirs(os.path.join(self.opt_parser.jpg_dir, self.opt_parser.name)) + except: + pass + cv2.imwrite(os.path.join(self.opt_parser.jpg_dir, self.opt_parser.name, 'e{:03d}_b{:04d}.jpg'.format(epoch, i)), vis * 255.0) + # save ckpt + if (i % self.opt_parser.ckpt_last_freq == 0): + self.__save_model__('last', epoch) + + print("Epoch {}, Batch {}/{}, loss {:.4f}, l1 {:.4f}, vggloss {:.4f}, styleloss {:.4f} time {:.4f}".format( + epoch, i, len(self.dataset) // self.opt_parser.batch_size, + loss.cpu().detach().numpy(), + loss_l1.cpu().detach().numpy(), + loss_vgg.cpu().detach().numpy(), + loss_style.cpu().detach().numpy(), + time.time() - st_batch)) + + g_time += time.time() - st_batch + + + if(self.opt_parser.test_speed): + if(i >= 100): + break + + print('Epoch time usage:', time.time() - st_epoch, 'I/O time usage:', time.time() - st_epoch - g_time, '\n=========================') + if(self.opt_parser.test_speed): + exit(0) + if(epoch % self.opt_parser.ckpt_epoch_freq == 0): + self.__save_model__('{:02d}'.format(epoch), epoch) + + + def __save_model__(self, save_type, epoch): + try: + os.makedirs(os.path.join(self.opt_parser.ckpt_dir, self.opt_parser.name)) + except: + pass + if (self.opt_parser.write): + torch.save({ + 'G': self.G.state_dict(), + 'opt': self.optimizer, + 'epoch': epoch + }, os.path.join(self.opt_parser.ckpt_dir, self.opt_parser.name, 'ckpt_{}.pth'.format(save_type))) + + def train(self): + for epoch in range(self.opt_parser.nepoch): + self.__train_pass__(epoch, is_training=True) + + def test(self): + if (self.opt_parser.use_vox_dataset == 'raw'): + if(self.opt_parser.add_audio_in): + from src.dataset.image_translation.image_translation_dataset import \ + image_translation_raw98_with_audio_test_dataset as image_translation_test_dataset + else: + from src.dataset.image_translation.image_translation_dataset import image_translation_raw98_test_dataset as image_translation_test_dataset + else: + from src.dataset.image_translation.image_translation_dataset import image_translation_preprocessed98_test_dataset as image_translation_test_dataset + self.dataset = image_translation_test_dataset(num_frames=self.opt_parser.num_frames) + self.dataloader = torch.utils.data.DataLoader(self.dataset, + batch_size=1, + shuffle=True, + num_workers=self.opt_parser.num_workers) + + self.G.eval() + for i, batch in enumerate(self.dataloader): + print(i, 50) + if (i > 50): + break + + if (self.opt_parser.add_audio_in): + image_in, image_out, audio_in = batch + audio_in = audio_in.reshape(-1, 1, 256, 256).to(device) + else: + image_in, image_out = batch + + # # online landmark (AwingNet) + with torch.no_grad(): + image_in, image_out = \ + image_in.reshape(-1, 3, 256, 256).to(device), image_out.reshape(-1, 3, 256, 256).to(device) + + pred_landmarks = [] + for j in range(image_in.shape[0] // 16): + inputs = image_out[j*16:j*16+16] + outputs, boundary_channels = self.fa_model(inputs) + pred_heatmap = outputs[-1][:, :-1, :, :].detach().cpu() + pred_landmark, _ = get_preds_fromhm(pred_heatmap) + pred_landmarks.append(pred_landmark.numpy() * 4) + pred_landmarks = np.concatenate(pred_landmarks, axis=0) + + # draw landmark on white bg + img_fls = [] + for pred_fl in pred_landmarks: + img_fl = np.ones(shape=(256, 256, 3)) * 255.0 + img_fl = vis_landmark_on_img98(img_fl, pred_fl) # 98x2 + img_fls.append(img_fl.transpose((2, 0, 1))) + img_fls = np.stack(img_fls, axis=0).astype(np.float32) / 255.0 + image_fls_in = torch.tensor(img_fls, requires_grad=False).to(device) + + if (self.opt_parser.add_audio_in): + # print(image_fls_in.shape, image_in.shape, audio_in.shape) + image_in = torch.cat([image_fls_in, + image_in[0:image_fls_in.shape[0]], + audio_in[0:image_fls_in.shape[0]]], dim=1) + else: + image_in = torch.cat([image_fls_in, image_in[0:image_fls_in.shape[0]]], dim=1) + + # normal 68 test dataset + # image_in, image_out = image_in.reshape(-1, 6, 256, 256), image_out.reshape(-1, 3, 256, 256) + + # random single frame + # cv2.imwrite('random_img_{}.jpg'.format(i), np.swapaxes(image_out[5].numpy(),0, 2)*255.0) + + image_in, image_out = image_in.to(device), image_out.to(device) + + #this creates the temporary video writer for the image_in tensor + writer = cv2.VideoWriter('tmp_{:04d}.mp4'.format(i), cv2.VideoWriter_fourcc(*'mjpg'), 25, (256*4, 256)) + + for j in range(image_in.shape[0] // 16): + g_out = self.G(image_in[j*16:j*16+16]) #g_out is still our landmark tensor + g_out = torch.tanh(g_out) + + # norm 68 pts + # g_out = np.swapaxes(g_out.cpu().detach().numpy(), 1, 3) + # ref_out = np.swapaxes(image_out[j*16:j*16+16].cpu().detach().numpy(), 1, 3) + # ref_in = np.swapaxes(image_in[j*16:j*16+16, 3:6, :, :].cpu().detach().numpy(), 1, 3) + # fls_in = np.swapaxes(image_in[j * 16:j * 16 + 16, 0:3, :, :].cpu().detach().numpy(), 1, 3) + g_out = g_out.cpu().detach().numpy().transpose((0, 2, 3, 1)) + g_out[g_out < 0] = 0 + ref_out = image_out[j * 16:j * 16 + 16].cpu().detach().numpy().transpose((0, 2, 3, 1)) + ref_in = image_in[j * 16:j * 16 + 16, 3:6, :, :].cpu().detach().numpy().transpose((0, 2, 3, 1)) + fls_in = image_in[j * 16:j * 16 + 16, 0:3, :, :].cpu().detach().numpy().transpose((0, 2, 3, 1)) + + for k in range(g_out.shape[0]): + frame = np.concatenate((ref_in[k], g_out[k], fls_in[k], ref_out[k]), axis=1) * 255.0 + writer.write(frame.astype(np.uint8)) + + writer.release() + + os.system('ffmpeg -y -i tmp_{:04d}.mp4 -pix_fmt yuv420p random_{:04d}.mp4'.format(i, i)) + os.system('rm tmp_{:04d}.mp4'.format(i)) + + + def single_test(self, jpg=None, fls=None, filename=None, prefix='', grey_only=False): + import time + st = time.time() + self.G.eval() + + if(jpg is None): + jpg = glob.glob1(self.opt_parser.single_test, '*.jpg')[0] + jpg = cv2.imread(os.path.join(self.opt_parser.single_test, jpg)) + + if(fls is None): + fls = glob.glob1(self.opt_parser.single_test, '*.txt')[0] + fls = np.loadtxt(os.path.join(self.opt_parser.single_test, fls)) + fls = fls * 95 + fls[:, 0::3] += 130 + fls[:, 1::3] += 80 + + writer = cv2.VideoWriter('out.mp4', cv2.VideoWriter_fourcc(*'mjpg'), 62.5, (256, 256)) #changed this to remove *3 from width + + for i, frame in enumerate(fls): + + img_fl = np.ones(shape=(256, 256, 3)) * 255 + fl = frame.astype(int) + img_fl = vis_landmark_on_img(img_fl, np.reshape(fl, (68, 3))) + #this is line is concating the arrays along the third dimension (i.e., the color channel dimension). + #its creating the live video of the landmarks (not our final video yet) + frame = np.concatenate((img_fl, jpg), axis=2).astype(np.float32)/255.0 + + + #the below code does the following: + # 1. The resulting array has the third dimension (i.e., color channel) first, + # the first dimension (i.e., height) second, and the second dimension (i.e., width) third. The transposed array + # is assigned to the image_in variable. + # 2. Creates a new numpy array of shape (3, 256, 256) filled with zeros and assigns + # it to the image_out variable. The shape argument specifies that the resulting array + # should have 3 color channels, 256 rows, and 256 columns. + image_in, image_out = frame.transpose((2, 0, 1)), np.zeros(shape=(3, 256, 256)) + + + # image_in, image_out = frame.transpose((2, 1, 0)), np.zeros(shape=(3, 256, 256)) + + #this line of code creates two PyTorch tensors from two numpy arrays + image_in, image_out = torch.tensor(image_in, requires_grad=False), \ + torch.tensor(image_out, requires_grad=False) + + #this line of code reshapes two PyTorch tensors to have 4 dimensions with the specified number + # of channels and image dimensions. + image_in, image_out = image_in.reshape(-1, 6, 256, 256), image_out.reshape(-1, 3, 256, 256) + image_in, image_out = image_in.to(device), image_out.to(device) + + g_out = self.G(image_in) + g_out = torch.tanh(g_out) + + g_out = g_out.cpu().detach().numpy().transpose((0, 2, 3, 1)) + g_out[g_out < 0] = 0 + ref_in = image_in[:, 3:6, :, :].cpu().detach().numpy().transpose((0, 2, 3, 1)) + fls_in = image_in[:, 0:3, :, :].cpu().detach().numpy().transpose((0, 2, 3, 1)) + # g_out = g_out.cpu().detach().numpy().transpose((0, 3, 2, 1)) + # g_out[g_out < 0] = 0 + # ref_in = image_in[:, 3:6, :, :].cpu().detach().numpy().transpose((0, 3, 2, 1)) + # fls_in = image_in[:, 0:3, :, :].cpu().detach().numpy().transpose((0, 3, 2, 1)) + + if(grey_only): + g_out_grey =np.mean(g_out, axis=3, keepdims=True) + g_out[:, :, :, 0:1] = g_out[:, :, :, 1:2] = g_out[:, :, :, 2:3] = g_out_grey + + + for i in range(g_out.shape[0]): + #fls here is not our original file still landmarks though not tensors , g_out might be it though + # frame = np.concatenate((ref_in[i], g_out[i], fls_in[i]), axis=1) * 255.0 + frame = g_out[i] * 255.0 + writer.write(frame.astype(np.uint8)) #this is generating our final video + + writer.release() + print('Time - only video:', time.time() - st) + + if(filename is None): + filename = 'v' + os.system('ffmpeg -loglevel error -y -i out.mp4 -i {} -pix_fmt yuv420p -strict -2 MakeItTalk/examples/{}_{}.mp4'.format( + 'MakeItTalk/examples/'+filename[9:-16]+'.wav', + prefix, filename[:-4])) + # os.system('rm out.mp4') + + print('Time - ffmpeg add audio:', time.time() - st) + + + + + diff --git a/MakeItTalk/src/approaches/train_noautovc.py b/MakeItTalk/src/approaches/train_noautovc.py new file mode 100644 index 0000000000000000000000000000000000000000..76347d0f1d67466d0059fae08cf469096c1d5a55 --- /dev/null +++ b/MakeItTalk/src/approaches/train_noautovc.py @@ -0,0 +1,470 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import os +import torch.nn.parallel +import torch.optim as optim +import torch.utils.data +import time +import torch.nn as nn +from src.dataset.audio2landmark import Audio2landmark_Dataset +from src.models import Audio2landmark_speaker_aware +from util.utils import Record, get_n_params +from tensorboardX import SummaryWriter +from util.icp import icp +import numpy as np +from scipy.spatial.transform import Rotation as R +from scipy.signal import savgol_filter + +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + +class Speaker_aware_branch(): + + def __init__(self, opt_parser): + print('Run on device:', device) + + # Step 1 : load opt_parser + for key in vars(opt_parser).keys(): + print(key, ':', vars(opt_parser)[key]) + + self.opt_parser = opt_parser + self.dump_dir = opt_parser.dump_dir + self.std_face_id = np.loadtxt('dataset/utils/STD_FACE_LANDMARKS.txt') + self.std_face_id = self.std_face_id.reshape(1, 204) + self.std_face_id = torch.tensor(self.std_face_id, requires_grad=False, dtype=torch.float).to(device) + + # Step 2 : load data + self.train_data = Audio2landmark_Dataset(dump_dir=self.dump_dir, dump_name=opt_parser.dump_file_name, + num_window_frames=opt_parser.num_window_frames, + num_window_step=opt_parser.num_window_step, + status='train', noautovc='noautovc_') + self.train_dataloader = torch.utils.data.DataLoader(self.train_data, batch_size=opt_parser.batch_size, + shuffle=False, num_workers=0, + collate_fn=self.train_data.my_collate_in_segments_noemb) + + print('Train num videos: {}'.format(len(self.train_data))) + self.eval_data = Audio2landmark_Dataset(dump_dir=self.dump_dir, dump_name=opt_parser.dump_file_name, + num_window_frames=opt_parser.num_window_frames, + num_window_step=opt_parser.num_window_step, + status='val', noautovc='noautovc_') + self.eval_dataloader = torch.utils.data.DataLoader(self.eval_data, batch_size=opt_parser.batch_size, + shuffle=False, num_workers=0, + collate_fn=self.eval_data.my_collate_in_segments_noemb) + print('EVAL num videos: {}'.format(len(self.eval_data))) + + # Step 3: Load model + self.G = Audio2landmark_speaker_aware( + spk_emb_enc_size=opt_parser.spk_emb_enc_size, + transformer_d_model=opt_parser.transformer_d_model, + N=opt_parser.transformer_N, heads=opt_parser.transformer_heads, + pos_dim=opt_parser.pos_dim, + use_prior_net=True, is_noautovc=True) + # self.G.apply(weight_init) + for p in self.G.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + print('G: Running on {}, total num params = {:.2f}M'.format(device, get_n_params(self.G)/1.0e6)) + + # self.D_L = Audio2landmark_pos_DL() + # self.D_L.apply(weight_init) + # print('D_L: Running on {}, total num params = {:.2f}M'.format(device, get_n_params(self.D_L)/1.0e6)) + # + # self.D_T = Audio2landmark_pos_DT(spk_emb_enc_size=opt_parser.spk_emb_enc_size, + # transformer_d_model=opt_parser.transformer_d_model, + # N=opt_parser.transformer_N, heads=opt_parser.transformer_heads) + # for p in self.D_T.parameters(): + # if p.dim() > 1: + # nn.init.xavier_uniform_(p) + # print('D_T: Running on {}, total num params = {:.2f}M'.format(device, get_n_params(self.D_T) / 1.0e6)) + + if (opt_parser.load_a2l_G_name.split('/')[-1] != ''): + model_dict = self.G.state_dict() + ckpt = torch.load(opt_parser.load_a2l_G_name) + pretrained_dict = {k: v for k, v in ckpt['G'].items() + if 'out.' not in k and 'out_pos_1.' not in k} + model_dict.update(pretrained_dict) + + self.G.load_state_dict(model_dict) + print('======== LOAD PRETRAINED SPEAKER AWARE MODEL {} ========='.format(opt_parser.load_a2l_G_name)) + self.G.to(device) + + self.loss_mse = torch.nn.MSELoss() + self.loss_bce = torch.nn.BCELoss() + + self.opt_G = optim.Adam(self.G.parameters(), lr=opt_parser.lr, weight_decay=opt_parser.reg_lr) + + if (opt_parser.write): + self.writer = SummaryWriter(log_dir=os.path.join(opt_parser.log_dir, opt_parser.name)) + self.writer_count = {'TRAIN_epoch': 0, 'TRAIN_batch': 0, 'TRAIN_in_batch': 0, + 'EVAL_epoch': 0, 'EVAL_batch': 0, 'EVAL_in_batch': 0} + + self.t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45) + self.anchor_t_shape = np.loadtxt('dataset/utils//STD_FACE_LANDMARKS.txt') + self.anchor_t_shape = self.anchor_t_shape[self.t_shape_idx, :] + + def __train_speaker_aware__(self, fls, aus, face_id, is_training=True): + + # fls_gt = fls[:, 0, :].detach().clone().requires_grad_(False) + reg_fls_gt = fls[:, 0, :].detach().clone().requires_grad_(False) + + if (face_id.shape[0] == 1): + face_id = face_id.repeat(aus.shape[0], 1) + face_id = face_id.requires_grad_(False) + content_branch_face_id = face_id.detach() + + ''' ====================================================== + Generator G + ====================================================== ''' + + for name, p in self.G.named_parameters(): + p.requires_grad = True + + fl_dis_pred, pos_pred, _, spk_encode = self.G(aus, face_id) + + # reg fls loss + loss_reg_fls = torch.nn.functional.l1_loss(fl_dis_pred+face_id[0:1].detach(), reg_fls_gt) + + # reg fls laplacian + ''' use laplacian smooth loss ''' + loss_laplacian = 0. + if (self.opt_parser.lambda_laplacian_smooth_loss > 0.0): + n1 = [1] + list(range(0, 16)) + [18] + list(range(17, 21)) + [23] + list(range(22, 26)) + \ + [28] + list(range(27, 35)) + [41] + list(range(36, 41)) + [47] + list(range(42, 47)) + \ + [59] + list(range(48, 59)) + [67] + list(range(60, 67)) + n2 = list(range(1, 17)) + [15] + list(range(18, 22)) + [20] + list(range(23, 27)) + [25] + \ + list(range(28, 36)) + [34] + list(range(37, 42)) + [36] + list(range(43, 48)) + [42] + \ + list(range(49, 60)) + [48] + list(range(61, 68)) + [60] + V = (fl_dis_pred + face_id[0:1].detach()).view(-1, 68, 3) + L_V = V - 0.5 * (V[:, n1, :] + V[:, n2, :]) + G = reg_fls_gt.view(-1, 68, 3) + L_G = G - 0.5 * (G[:, n1, :] + G[:, n2, :]) + loss_laplacian = torch.nn.functional.l1_loss(L_V, L_G) + + loss = loss_reg_fls + loss_laplacian * self.opt_parser.lambda_laplacian_smooth_loss + # loss = loss_pos + + if(is_training): + self.opt_G.zero_grad() + loss.backward() + self.opt_G.step() + + # reconstruct face through pos + fl_dis_pred = fl_dis_pred + face_id[0:1].detach() + + return fl_dis_pred, pos_pred, face_id[0:1, :], (loss, loss_reg_fls, loss_laplacian) + + def __train_pass__(self, epoch, log_loss, is_training=True): + st_epoch = time.time() + + # Step 1: init setup + if (is_training): + self.G.train() + data = self.train_data + dataloader = self.train_dataloader + status = 'TRAIN' + else: + self.G.eval() + data = self.eval_data + dataloader = self.eval_dataloader + status = 'EVAL' + + # random_clip_index = np.random.randint(0, len(dataloader)-1, 4) + # random_clip_index = np.random.randint(0, 64, 4) + random_clip_index = list(range(len(dataloader))) + # print('random_clip_index', random_clip_index) + # Step 2: train for each batch + for i, batch in enumerate(dataloader): + + # if(i>=512): + # break + + st = time.time() + global_id, video_name = data[i][0][1][0], data[i][0][1][1][:-4] + + # Step 2.1: load batch data from dataloader (in segments) + inputs_fl, inputs_au = batch + + if (is_training): + rand_start = np.random.randint(0, inputs_fl.shape[0] // 5, 1).reshape(-1) + inputs_fl = inputs_fl[rand_start[0]:] + inputs_au = inputs_au[rand_start[0]:] + + inputs_fl, inputs_au = inputs_fl.to(device), inputs_au.to(device) + std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], [] + seg_bs = self.opt_parser.segment_batch_size + + close_fl_list = inputs_fl[::10, 0, :] + idx = self.__close_face_lip__(close_fl_list.detach().cpu().numpy()) + input_face_id = close_fl_list[idx:idx + 1, :] + + ''' register face ''' + if (self.opt_parser.use_reg_as_std): + landmarks = input_face_id.detach().cpu().numpy().reshape(68, 3) + frame_t_shape = landmarks[self.t_shape_idx, :] + T, distance, itr = icp(frame_t_shape, self.anchor_t_shape) + landmarks = np.hstack((landmarks, np.ones((68, 1)))) + registered_landmarks = np.dot(T, landmarks.T).T + input_face_id = torch.tensor(registered_landmarks[:, 0:3].reshape(1, 204), requires_grad=False, + dtype=torch.float).to(device) + + for j in range(0, inputs_fl.shape[0], seg_bs): + # Step 3.1: load segments + inputs_fl_segments = inputs_fl[j: j + seg_bs] + inputs_au_segments = inputs_au[j: j + seg_bs] + + + if(inputs_fl_segments.shape[0] < 10): + continue + + if(self.opt_parser.test_emb): + input_face_id = self.std_face_id + + fl_dis_pred_pos, pos_pred, input_face_id, (loss, loss_g, loss_laplacian) = \ + self.__train_speaker_aware__(inputs_fl_segments, inputs_au_segments, input_face_id, + is_training=is_training) + + fl_dis_pred_pos = fl_dis_pred_pos.data.cpu().numpy() + fl_std = inputs_fl_segments[:, 0, :].data.cpu().numpy() + ''' solve inverse lip ''' + if(not is_training): + fl_dis_pred_pos = self.__solve_inverse_lip2__(fl_dis_pred_pos) + + fls_pred_pos_list += [fl_dis_pred_pos.reshape((-1, 204))] + std_fls_list += [fl_std.reshape((-1, 204))] + + for key in log_loss.keys(): + if (key not in locals().keys()): + continue + if (type(locals()[key]) == float): + log_loss[key].add(locals()[key]) + else: + log_loss[key].add(locals()[key].data.cpu().numpy()) + + if (epoch % 5 == 0): # and i in [0, 200, 400, 600, 800, 1000]): + def save_fls_av(fake_fls_list, postfix='', ifsmooth=True): + fake_fls_np = np.concatenate(fake_fls_list) + filename = 'fake_fls_{}_{}_{}.txt'.format(epoch, video_name, postfix) + np.savetxt( + os.path.join(self.opt_parser.dump_dir, '../nn_result', self.opt_parser.name, filename), + fake_fls_np, fmt='%.6f') + # audio_filename = '{:05d}_{}_audio.wav'.format(global_id, video_name) + # from util.vis import Vis_old + # Vis_old(run_name=self.opt_parser.name, pred_fl_filename=filename, audio_filename=audio_filename, + # fps=62.5, av_name='e{:04d}_{}_{}'.format(epoch, i, postfix), + # postfix=postfix, root_dir=self.opt_parser.root_dir, ifsmooth=ifsmooth) + + if (True): + if (self.opt_parser.show_animation): + print('show animation ....') + save_fls_av(fls_pred_pos_list, 'pred', ifsmooth=True) + save_fls_av(std_fls_list, 'std', ifsmooth=False) + + if (self.opt_parser.verbose <= 1): + print('{} Epoch: #{} batch #{}/{}'.format(status, epoch, i, len(dataloader)), end=': ') + for key in log_loss.keys(): + print(key, '{:.5f}'.format(log_loss[key].per('batch')), end=', ') + print('') + self.__tensorboard_write__(status, log_loss, 'batch') + + if (self.opt_parser.verbose <= 2): + print('==========================================================') + print('{} Epoch: #{}'.format(status, epoch), end=':') + for key in log_loss.keys(): + print(key, '{:.4f}'.format(log_loss[key].per('epoch')), end=', ') + print('Epoch time usage: {:.2f} sec\n==========================================================\n'.format(time.time() - st_epoch)) + self.__save_model__(save_type='last_epoch', epoch=epoch) + if(epoch % 5 == 0): + self.__save_model__(save_type='e_{}'.format(epoch), epoch=epoch) + self.__tensorboard_write__(status, log_loss, 'epoch') + + + def test_end2end(self, jpg_shape): + + self.G.eval() + self.C.eval() + data = self.eval_data + dataloader = self.eval_dataloader + + for i, batch in enumerate(dataloader): + + global_id, video_name = data[i][0][1][0], data[i][0][1][1][:-4] + + inputs_fl, inputs_au, inputs_emb, inputs_reg_fl, inputs_rot_tran, inputs_rot_quat = batch + + for key in ['irx71tYyI-Q', 'J-NPsvtQ8lE', 'Z7WRt--g-h4', 'E0zgrhQ0QDw', 'bXpavyiCu10', 'W6uRNCJmdtI', 'sxCbrYjBsGA', 'wAAMEC1OsRc', '_ldiVrXgZKc', '48uYS3bHIA8', 'E_kmpT-EfOg']: + emb_val = self.test_embs[key] + inputs_emb = np.tile(emb_val, (inputs_emb.shape[0], 1)) + inputs_emb = torch.tensor(inputs_emb, dtype=torch.float, requires_grad=False) + + # this_emb = key + # inputs_emb = torch.zeros(size=(inputs_au.shape[0], len(self.test_embs_dic.keys()))) + # inputs_emb[:, self.test_embs_dic[this_emb]] = 1. + + inputs_fl, inputs_au, inputs_emb = inputs_fl.to(device), inputs_au.to(device), inputs_emb.to(device) + inputs_reg_fl, inputs_rot_tran, inputs_rot_quat = inputs_reg_fl.to(device), inputs_rot_tran.to(device), inputs_rot_quat.to(device) + + std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], [] + seg_bs = self.opt_parser.segment_batch_size + + # input_face_id = self.std_face_id + input_face_id = torch.tensor(jpg_shape.reshape(1, 204), requires_grad=False, dtype=torch.float).to(device) + + ''' register face ''' + if (True): + landmarks = input_face_id.detach().cpu().numpy().reshape(68, 3) + frame_t_shape = landmarks[self.t_shape_idx, :] + T, distance, itr = icp(frame_t_shape, self.anchor_t_shape) + landmarks = np.hstack((landmarks, np.ones((68, 1)))) + registered_landmarks = np.dot(T, landmarks.T).T + input_face_id = torch.tensor(registered_landmarks[:, 0:3].reshape(1, 204), requires_grad=False, + dtype=torch.float).to(device) + + for j in range(0, inputs_fl.shape[0], seg_bs): + # Step 3.1: load segments + inputs_fl_segments = inputs_fl[j: j + seg_bs] + inputs_au_segments = inputs_au[j: j + seg_bs] + inputs_emb_segments = inputs_emb[j: j + seg_bs] + inputs_reg_fl_segments = inputs_reg_fl[j: j + seg_bs] + inputs_rot_tran_segments = inputs_rot_tran[j: j + seg_bs] + inputs_rot_quat_segments = inputs_rot_quat[j: j + seg_bs] + + if(inputs_fl_segments.shape[0] < 10): + continue + + fl_dis_pred_pos, pos_pred, input_face_id, (loss, loss_reg_fls, loss_laplacian, loss_pos) = \ + self.__train_speaker_aware__(inputs_fl_segments, inputs_au_segments, inputs_emb_segments, + input_face_id, inputs_reg_fl_segments, inputs_rot_tran_segments, + inputs_rot_quat_segments, + is_training=False, use_residual=True) + + fl_dis_pred_pos = fl_dis_pred_pos.data.cpu().numpy() + pos_pred = pos_pred.data.cpu().numpy() + fl_std = inputs_reg_fl_segments[:, 0, :].data.cpu().numpy() + pos_std = inputs_rot_tran_segments[:, 0, :].data.cpu().numpy() + + ''' solve inverse lip ''' + fl_dis_pred_pos = self.__solve_inverse_lip2__(fl_dis_pred_pos) + + fl_dis_pred_pos = fl_dis_pred_pos.reshape((-1, 68, 3)) + fl_std = fl_std.reshape((-1, 68, 3)) + if(self.opt_parser.pos_dim == 12): + pos_pred = pos_pred.reshape((-1, 3, 4)) + for k in range(fl_dis_pred_pos.shape[0]): + fl_dis_pred_pos[k] = np.dot(pos_pred[k, :3, :3].T + np.eye(3), + (fl_dis_pred_pos[k] - pos_pred[k, :, 3].T).T).T + pos_std = pos_std.reshape((-1, 3, 4)) + for k in range(fl_std.shape[0]): + fl_std[k] = np.dot(pos_std[k, :3, :3].T + np.eye(3), + (fl_std[k] - pos_std[k, :, 3].T).T).T + else: + smooth_length = int(min(pos_pred.shape[0] - 1, 27) // 2 * 2 + 1) + pos_pred = savgol_filter(pos_pred, smooth_length, 3, axis=0) + quat = pos_pred[:, :4] + trans = pos_pred[:, 4:] + for k in range(fl_dis_pred_pos.shape[0]): + fl_dis_pred_pos[k] = np.dot(R.from_quat(quat[k]).as_matrix().T, + (fl_dis_pred_pos[k] - trans[k:k+1]).T).T + pos_std = pos_std.reshape((-1, 3, 4)) + for k in range(fl_std.shape[0]): + fl_std[k] = np.dot(pos_std[k, :3, :3].T + np.eye(3), + (fl_std[k] - pos_std[k, :, 3].T).T).T + + fls_pred_pos_list += [fl_dis_pred_pos.reshape((-1, 204))] + std_fls_list += [fl_std.reshape((-1, 204))] + + fake_fls_np = np.concatenate(fls_pred_pos_list) + filename = 'pred_fls_{}_{}.txt'.format(video_name.split('/')[-1], key) + np.savetxt(os.path.join('examples', filename), fake_fls_np, fmt='%.6f') + + + def __close_face_lip__(self, fl): + facelandmark = fl.reshape(-1, 68, 3) + from util.geo_math import area_of_polygon + min_area_lip, idx = 999, 0 + for i, fls in enumerate(facelandmark): + area_of_mouth = area_of_polygon(fls[list(range(60, 68)), 0:2]) + if (area_of_mouth < min_area_lip): + min_area_lip = area_of_mouth + idx = i + return idx + + def train(self): + train_loss = {key: Record(['epoch', 'batch']) for key in + ['loss','loss_laplacian', 'loss_reg_fls', 'loss_pos']} + + eval_loss = {key: Record(['epoch', 'batch']) for key in + ['loss','loss_laplacian', 'loss_reg_fls', 'loss_pos']} + for epoch in range(self.opt_parser.nepoch): + self.__train_pass__(epoch=epoch, log_loss=train_loss, is_training=True) + # with torch.no_grad(): + # self.__train_pass__(epoch=epoch, log_loss=eval_loss, is_training=False) + + def test(self): + train_loss = {key: Record(['epoch', 'batch', 'in_batch']) for key in + ['loss', 'loss_g', 'loss_laplacian']} + eval_loss = {key: Record(['epoch', 'batch', 'in_batch']) for key in + ['loss_pos', 'loss_g', 'loss_laplacian']} + with torch.no_grad(): + self.__train_pass__(epoch=0, log_loss=eval_loss, is_training=False) + + def __tensorboard_write__(self, status, loss, t): + if (self.opt_parser.write): + for key in loss.keys(): + self.writer.add_scalar('{}_loss_{}_{}'.format(status, t, key), loss[key].per(t), + self.writer_count[status + '_' + t]) + loss[key].clean(t) + self.writer_count[status + '_' + t] += 1 + else: + for key in loss.keys(): + loss[key].clean(t) + + def __save_model__(self, save_type, epoch): + if (self.opt_parser.write): + torch.save({ + 'G': self.G.state_dict(), + 'epoch': epoch + }, os.path.join(self.opt_parser.ckpt_dir, 'ckpt_{}.pth'.format(save_type))) + + def adjust_learning_rate(self, optimizer, epoch): + """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" + lr = self.opt_parser.lr * (0.3 ** (np.max((0, epoch + 0)) // 50)) + lr = np.max((lr, 1e-5)) + print('###### ==== > Adjust learning rate to ', lr) + for param_group in optimizer.param_groups: + param_group['lr'] = lr + # print('lr:', param_group['lr']) + + def __solve_inverse_lip2__(self, fl_dis_pred_pos_numpy): + for j in range(fl_dis_pred_pos_numpy.shape[0]): + # init_face = self.std_face_id.detach().cpu().numpy() + from util.geo_math import area_of_signed_polygon + fls = fl_dis_pred_pos_numpy[j].reshape(68, 3) + area_of_mouth = area_of_signed_polygon(fls[list(range(60, 68)), 0:2]) + if (area_of_mouth < 0): + fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] + fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3]) + fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] = fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3] + fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] + fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3]) + fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] = fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3] + fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] + fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3]) + fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] = fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3] + p = max([j-1, 0]) + fl_dis_pred_pos_numpy[j, 55 * 3+1:59 * 3+1:3] = fl_dis_pred_pos_numpy[j, 64 * 3+1:68 * 3+1:3] \ + + fl_dis_pred_pos_numpy[p, 55 * 3+1:59 * 3+1:3] \ + - fl_dis_pred_pos_numpy[p, 64 * 3+1:68 * 3+1:3] + fl_dis_pred_pos_numpy[j, 59 * 3+1:60 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:61 * 3+1:3] \ + + fl_dis_pred_pos_numpy[p, 59 * 3+1:60 * 3+1:3] \ + - fl_dis_pred_pos_numpy[p, 60 * 3+1:61 * 3+1:3] + fl_dis_pred_pos_numpy[j, 49 * 3+1:54 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:65 * 3+1:3] \ + + fl_dis_pred_pos_numpy[p, 49 * 3+1:54 * 3+1:3] \ + - fl_dis_pred_pos_numpy[p, 60 * 3+1:65 * 3+1:3] + return fl_dis_pred_pos_numpy + + + diff --git a/MakeItTalk/src/approaches/train_speaker_aware.py b/MakeItTalk/src/approaches/train_speaker_aware.py new file mode 100644 index 0000000000000000000000000000000000000000..01fb52deb0761a1937804e5675d84c59353bb73a --- /dev/null +++ b/MakeItTalk/src/approaches/train_speaker_aware.py @@ -0,0 +1,693 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import os +import torch.nn.parallel +import torch.optim as optim +import torch.utils.data +import time +import torch.nn as nn +from src.dataset.audio2landmark.audio2landmark_dataset import Speaker_aware_branch_Dataset +from src.models.model_audio2landmark_speaker_aware import Audio2landmark_speaker_aware +from src.models.model_audio2landmark import Audio2landmark_content +from util.utils import Record, get_n_params +from tensorboardX import SummaryWriter +from util.icp import icp +import numpy as np +from scipy.spatial.transform import Rotation as R +from scipy.signal import savgol_filter + +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + +class Speaker_aware_branch(): + + def __init__(self, opt_parser): + print('Run on device:', device) + + # Step 1 : load opt_parser + for key in vars(opt_parser).keys(): + print(key, ':', vars(opt_parser)[key]) + self.opt_parser = opt_parser + self.dump_dir = opt_parser.dump_dir + self.std_face_id = np.loadtxt('dataset/utils/STD_FACE_LANDMARKS.txt') + # self.std_face_id = np.loadtxt( + # os.path.join(opt_parser.root_dir, 'puppets', '{}_face_close_mouth.txt'.format(opt_parser.puppet_name))) + + self.std_face_id = self.std_face_id.reshape(1, 204) + self.std_face_id = torch.tensor(self.std_face_id, requires_grad=False, dtype=torch.float).to(device) + + if(not opt_parser.test_end2end): + # Step 2: Load dataset (train/eval) + self.train_data = Speaker_aware_branch_Dataset(dump_dir=self.dump_dir, dump_name=opt_parser.dump_file_name, + num_window_frames=opt_parser.num_window_frames, + num_window_step=opt_parser.num_window_step, + status='train', use_11spk_only=opt_parser.use_11spk_only) + self.train_dataloader = torch.utils.data.DataLoader(self.train_data, batch_size=opt_parser.batch_size, + shuffle=False, num_workers=0, + collate_fn=self.train_data.my_collate_in_segments) + + print('Train num videos: {}'.format(len(self.train_data))) + self.eval_data = Speaker_aware_branch_Dataset(dump_dir=self.dump_dir, dump_name=opt_parser.dump_file_name, + num_window_frames=opt_parser.num_window_frames, + num_window_step=opt_parser.num_window_step, + status='val', use_11spk_only=opt_parser.use_11spk_only) + self.eval_dataloader = torch.utils.data.DataLoader(self.eval_data, batch_size=opt_parser.batch_size, + shuffle=False, num_workers=0, + collate_fn=self.eval_data.my_collate_in_segments) + print('EVAL num videos: {}'.format(len(self.eval_data))) + else: + self.eval_data = Speaker_aware_branch_Dataset(dump_dir='MakeItTalk/examples/dump', + dump_name='random', + status='val', + num_window_frames=18, + num_window_step=1) + # self.eval_data = Speaker_aware_branch_Dataset(dump_dir=r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2/dump', + # dump_name='celeb_normrot', + # num_window_frames=18, + # num_window_step=1, + # status='val', use_11spk_only=opt_parser.use_11spk_only) + self.eval_dataloader = torch.utils.data.DataLoader(self.eval_data, batch_size=1, + shuffle=False, num_workers=0, + collate_fn=self.eval_data.my_collate_in_segments) + print('EVAL num videos: {}'.format(len(self.eval_data))) + # exit(0) + + # Step 3: Load model + self.G = Audio2landmark_speaker_aware( + spk_emb_enc_size=opt_parser.spk_emb_enc_size, + transformer_d_model=opt_parser.transformer_d_model, + N=opt_parser.transformer_N, heads=opt_parser.transformer_heads, + pos_dim=opt_parser.pos_dim, + use_prior_net=True) + # self.G.apply(weight_init) + for p in self.G.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + print('G: Running on {}, total num params = {:.2f}M'.format(device, get_n_params(self.G)/1.0e6)) + + # self.D_L = Audio2landmark_pos_DL() + # self.D_L.apply(weight_init) + # print('D_L: Running on {}, total num params = {:.2f}M'.format(device, get_n_params(self.D_L)/1.0e6)) + # + # self.D_T = Audio2landmark_pos_DT(spk_emb_enc_size=opt_parser.spk_emb_enc_size, + # transformer_d_model=opt_parser.transformer_d_model, + # N=opt_parser.transformer_N, heads=opt_parser.transformer_heads) + # for p in self.D_T.parameters(): + # if p.dim() > 1: + # nn.init.xavier_uniform_(p) + # print('D_T: Running on {}, total num params = {:.2f}M'.format(device, get_n_params(self.D_T) / 1.0e6)) + + if (opt_parser.init_content_encoder.split('/')[-1] != ''): + model_dict = self.G.state_dict() + ckpt = torch.load(opt_parser.init_content_encoder) + pretrained_dict = {k: v for k, v in ckpt['model_g_face_id'].items() + if 'bilstm' in k or 'fc_prior' in k} + model_dict.update(pretrained_dict) + self.G.load_state_dict(model_dict) + print('======== LOAD INIT POS MODEL {} ========='.format(opt_parser.init_content_encoder)) + + if (opt_parser.load_a2l_G_name.split('/')[-1] != ''): + model_dict = self.G.state_dict() + ckpt = torch.load(opt_parser.load_a2l_G_name) + pretrained_dict = {k: v for k, v in ckpt['G'].items() + if 'out.' not in k and 'out_pos_1.' not in k} + model_dict.update(pretrained_dict) + + self.G.load_state_dict(model_dict) + print('======== LOAD PRETRAINED SPEAKER AWARE MODEL {} ========='.format(opt_parser.load_a2l_G_name)) + + self.G.to(device) + + ''' Speech content model ''' + self.C = Audio2landmark_content(num_window_frames=18, in_size=80, use_prior_net=True, + bidirectional=False, drop_out=0.) + ckpt = torch.load(opt_parser.load_a2l_C_name) + self.C.load_state_dict(ckpt['model_g_face_id']) + print('======== LOAD PRETRAINED FACE ID MODEL {} ========='.format(opt_parser.load_a2l_C_name)) + self.C.to(device) + + self.loss_mse = torch.nn.MSELoss() + self.loss_bce = torch.nn.BCELoss() + + self.opt_G = optim.Adam(self.G.parameters(), lr=opt_parser.lr, weight_decay=opt_parser.reg_lr) + + # # test embeddings: + self.test_embs = {} + if(not opt_parser.test_end2end): + for i, batch in enumerate(self.eval_dataloader): + global_id, video_name = self.eval_data[i][0][1][0], self.eval_data[i][0][1][1][:-4] + if(video_name.split('_x_')[1] not in self.test_embs.keys()): + inputs_fl, inputs_au, inputs_emb, _, _, _ = batch + self.test_embs[video_name.split('_x_')[1]] = inputs_emb[0] + else: + self.emb_data = Speaker_aware_branch_Dataset(dump_dir='MakeItTalk/examples/dump', + dump_name='celeb_normrot', + status='val', + num_window_frames=18, + num_window_step=1, + use_11spk_only=opt_parser.use_11spk_only) + self.emb_dataloader = torch.utils.data.DataLoader(self.emb_data, batch_size=1, + shuffle=False, num_workers=0, + collate_fn=self.emb_data.my_collate_in_segments) + for i, batch in enumerate(self.emb_dataloader): + global_id, video_name = self.emb_data[i][0][1][0], self.emb_data[i][0][1][1][:-4] + if(video_name.split('_x_')[1] not in self.test_embs.keys()): + inputs_fl, inputs_au, inputs_emb, _, _, _ = batch + self.test_embs[video_name.split('_x_')[1]] = inputs_emb[0] + + print(self.test_embs.keys(), len(self.test_embs.keys())) + self.test_embs_dic = {key: i for i, key in enumerate(self.test_embs.keys())} + + if (opt_parser.write): + self.writer = SummaryWriter(log_dir=os.path.join(opt_parser.log_dir, opt_parser.name)) + self.writer_count = {'TRAIN_epoch': 0, 'TRAIN_batch': 0, 'TRAIN_in_batch': 0, + 'EVAL_epoch': 0, 'EVAL_batch': 0, 'EVAL_in_batch': 0} + + self.t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45) + self.anchor_t_shape = np.loadtxt('dataset/utils//STD_FACE_LANDMARKS.txt') + self.anchor_t_shape = self.anchor_t_shape[self.t_shape_idx, :] + + def __train_speaker_aware__(self, fls, aus, embs, face_id, reg_fls, rot_trans, rot_quats, + use_residual=False, is_training=True): + + fls_gt = fls[:, 0, :].detach().clone().requires_grad_(False) + reg_fls_gt = reg_fls[:, 0, :].detach().clone().requires_grad_(False) + + if (face_id.shape[0] == 1): + face_id = face_id.repeat(aus.shape[0], 1) + face_id = face_id.requires_grad_(False) + content_branch_face_id = face_id.detach() + + d_real_dt, d_fake_dt, d_real_dl, d_fake_dl, g_fake_dt, g_fake_dl, d_ano_dt = 0., 0., 0., 0., 0., 0., 0. + # + # ''' ====================================================== + # Discriminator D_T + # ====================================================== ''' + # + # if (self.opt_parser.train_DT > 0.0): + # for name, p in self.G.named_parameters(): + # p.requires_grad = False + # for p in self.D_T.parameters(): + # p.requires_grad = True + # for p in self.D_L.parameters(): + # p.requires_grad = False + # self.opt_D_T.zero_grad() + # + # # real + # fl_dis_pred, _, spk_encode = self.G(aus, embs * self.opt_parser.emb_coef, face_id, fls_without_traj, z, add_z_spk=True) + # + # d_real = self.D_T(fls_without_traj, spk_encode.detach()) + # d_real_dt = self.loss_mse(d_real, torch.ones_like(d_real).to(device)) * 2.0 * self.opt_parser.train_DT + # if (is_training): + # d_real_dt.backward() + # + # # fake + # d_fake = self.D_T(fl_dis_pred.detach() + face_id, spk_encode.detach()) + # d_fake_dt = self.loss_mse(d_fake, torch.zeros_like(d_fake).to(device)) * self.opt_parser.train_DT + # if (is_training): + # d_fake_dt.backward() + # + # # # another embedding + # # another_emb = np.tile(another_emb, (embs.shape[0], 1)) + # # another_emb = torch.tensor(another_emb, dtype=torch.float, requires_grad=False).to(device) + # # d_ano = self.D_T(another_emb * self.opt_parser.emb_coef, fls_without_traj) + # # d_ano_dt = self.loss_mse(d_ano, torch.zeros_like(d_ano).to(device)) + # # if (is_training): + # # d_ano_dt.backward() + # + # self.opt_D_T.step() + # + # ''' ====================================================== + # Discriminator D_L + # ====================================================== ''' + # if (self.opt_parser.train_DL>0.0): + # for p in self.D_L.parameters(): + # p.requires_grad = True + # for p in self.D_T.parameters(): + # p.requires_grad = False + # self.opt_D_L.zero_grad() + # + # # real + # fl_dis_pred, _, spk_encode = self.G(aus, embs * self.opt_parser.emb_coef, face_id, fls_without_traj, z, add_z_spk=True) + # + # d_real = self.D_L(fls_without_traj) + # d_real_dl = self.loss_mse(d_real, torch.ones_like(d_real).to(device)) * 1.0 * self.opt_parser.train_DL + # if (is_training): + # d_real_dl.backward() + # + # # fake + # d_fake = self.D_L(fl_dis_pred + face_id) + # d_fake_dl = self.loss_mse(d_fake, torch.zeros_like(d_fake).to(device)) * self.opt_parser.train_DL + # if (is_training): + # d_fake_dl.backward() + # + # self.opt_D_L.step() + + ''' ====================================================== + Generator G + ====================================================== ''' + + for name, p in self.G.named_parameters(): + p.requires_grad = True + + fl_dis_pred, pos_pred, _, spk_encode = self.G(aus, + embs * self.opt_parser.emb_coef, + face_id, + add_z_spk=True) + + if (use_residual): + baseline_pred_fls, _ = self.C(aus[:, 0:18, :], content_branch_face_id) + + ''' CALIBRATION in TEST TIME ''' + if (not is_training): + + smooth_length = int(min(fl_dis_pred.shape[0] - 1, 51) // 2 * 2 + 1) + fl_dis_pred = savgol_filter(fl_dis_pred.cpu().numpy(), smooth_length, 3, axis=0) + fl_dis_pred *= self.opt_parser.amp_pos + + # close pose-branch mouth + fl_dis_pred = fl_dis_pred.reshape((-1, 68, 3)) + index1 = list(range(60-1, 55-1, -1)) + index2 = list(range(68-1, 65-1, -1)) + mean_out = 0.5 * (fl_dis_pred[:, 49:54] + fl_dis_pred[:, index1]) + mean_in = 0.5 * (fl_dis_pred[:, 61:64] + fl_dis_pred[:, index2]) + fl_dis_pred[:, 49:54] = fl_dis_pred[:, index1] = mean_out + fl_dis_pred[:, 61:64] = fl_dis_pred[:, index2] = mean_in + fl_dis_pred = fl_dis_pred.reshape(-1, 204) + + fl_dis_pred = torch.tensor(fl_dis_pred).to(device) * self.opt_parser.amp_pos + + mean_face_id = torch.mean(baseline_pred_fls.detach(), dim=0, keepdim=True) + # option 1 + content_branch_face_id -= mean_face_id.view(1, 204) * 1.0 + baseline_pred_fls, _ = self.C(aus[:, 0:18, :], content_branch_face_id) + # option 2 + # baseline_pred_fls -= mean_face_id + baseline_pred_fls[:, 48 * 3::3] *= self.opt_parser.amp_lip_x # mouth x + baseline_pred_fls[:, 48 * 3 + 1::3] *= self.opt_parser.amp_lip_y # mouth y + + fl_dis_pred += baseline_pred_fls.detach() + + # reconstruct face through pos + fl_dis_pred = fl_dis_pred + face_id[0:1].detach() + + # reg fls loss + loss_reg_fls = torch.nn.functional.l1_loss(fl_dis_pred, reg_fls_gt) + + # reg fls laplacian + ''' use laplacian smooth loss ''' + loss_laplacian = 0. + if (self.opt_parser.lambda_laplacian_smooth_loss > 0.0): + n1 = [1] + list(range(0, 16)) + [18] + list(range(17, 21)) + [23] + list(range(22, 26)) + \ + [28] + list(range(27, 35)) + [41] + list(range(36, 41)) + [47] + list(range(42, 47)) + \ + [59] + list(range(48, 59)) + [67] + list(range(60, 67)) + n2 = list(range(1, 17)) + [15] + list(range(18, 22)) + [20] + list(range(23, 27)) + [25] + \ + list(range(28, 36)) + [34] + list(range(37, 42)) + [36] + list(range(43, 48)) + [42] + \ + list(range(49, 60)) + [48] + list(range(61, 68)) + [60] + V = (fl_dis_pred + face_id[0:1]).view(-1, 68, 3) + L_V = V - 0.5 * (V[:, n1, :] + V[:, n2, :]) + G = reg_fls_gt.view(-1, 68, 3) + L_G = G - 0.5 * (G[:, n1, :] + G[:, n2, :]) + loss_laplacian = torch.nn.functional.l1_loss(L_V, L_G) + + # pos loss + if(self.opt_parser.pos_dim == 7): + pos_gt = torch.cat([rot_quats[:, 0], rot_trans[:, 0, :, 3]], dim=1) + # pos_pred[:, 0:4] = torch.nn.functional.normalize(pos_pred[:, 0:4], p=2, dim=1) + loss_pos = torch.nn.functional.l1_loss(pos_pred, pos_gt) + else: + pos_gt = rot_trans[:, 0].view(-1, 12) + loss_pos = torch.nn.functional.l1_loss(pos_pred, pos_gt) + + loss = loss_reg_fls + loss_laplacian * self.opt_parser.lambda_laplacian_smooth_loss + loss_pos + # loss = loss_pos + + if(is_training): + self.opt_G.zero_grad() + loss.backward() + self.opt_G.step() + + if (self.opt_parser.pos_dim == 7): + pos_pred[:, 0:4] = torch.nn.functional.normalize(pos_pred[:, 0:4], p=2, dim=1) + return fl_dis_pred, pos_pred, face_id[0:1, :], (loss, loss_reg_fls, loss_laplacian, loss_pos) + + def __train_pass__(self, epoch, log_loss, is_training=True): + st_epoch = time.time() + + # Step 1: init setup + if (is_training): + self.G.train() + self.C.train() + data = self.train_data + dataloader = self.train_dataloader + status = 'TRAIN' + else: + self.G.eval() + self.C.eval() + data = self.eval_data + dataloader = self.eval_dataloader + status = 'EVAL' + + # random_clip_index = np.random.randint(0, len(dataloader)-1, 4) + # random_clip_index = np.random.randint(0, 64, 4) + random_clip_index = list(range(len(dataloader))) + print('random_clip_index', random_clip_index) + # Step 2: train for each batch + for i, batch in enumerate(dataloader): + + # if(i>=64): + # break + + st = time.time() + global_id, video_name = data[i][0][1][0], data[i][0][1][1][:-4] + + + # Step 2.1: load batch data from dataloader (in segments) + inputs_fl, inputs_au, inputs_emb, inputs_reg_fl, inputs_rot_tran, inputs_rot_quat = batch + # inputs_emb = torch.zeros(size=(inputs_au.shape[0], len(self.test_embs_dic.keys()))) + # this_emb = video_name.split('_x_')[1] + # inputs_emb[:, self.test_embs_dic[this_emb]] = 1. + + if (is_training): + rand_start = np.random.randint(0, inputs_fl.shape[0] // 5, 1).reshape(-1) + inputs_fl = inputs_fl[rand_start[0]:] + inputs_au = inputs_au[rand_start[0]:] + inputs_emb = inputs_emb[rand_start[0]:] + inputs_reg_fl = inputs_reg_fl[rand_start[0]:] + inputs_rot_tran = inputs_rot_tran[rand_start[0]:] + inputs_rot_quat = inputs_rot_quat[rand_start[0]:] + + inputs_fl, inputs_au, inputs_emb = inputs_fl.to(device), inputs_au.to(device), inputs_emb.to(device) + inputs_reg_fl, inputs_rot_tran, inputs_rot_quat = inputs_reg_fl.to(device), inputs_rot_tran.to(device), inputs_rot_quat.to(device) + + std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], [] + seg_bs = self.opt_parser.segment_batch_size + + close_fl_list = inputs_fl[::10, 0, :] + idx = self.__close_face_lip__(close_fl_list.detach().cpu().numpy()) + input_face_id = close_fl_list[idx:idx + 1, :] + + ''' register face ''' + if (self.opt_parser.use_reg_as_std): + landmarks = input_face_id.detach().cpu().numpy().reshape(68, 3) + frame_t_shape = landmarks[self.t_shape_idx, :] + T, distance, itr = icp(frame_t_shape, self.anchor_t_shape) + landmarks = np.hstack((landmarks, np.ones((68, 1)))) + registered_landmarks = np.dot(T, landmarks.T).T + input_face_id = torch.tensor(registered_landmarks[:, 0:3].reshape(1, 204), requires_grad=False, + dtype=torch.float).to(device) + + for j in range(0, inputs_fl.shape[0], seg_bs): + # Step 3.1: load segments + inputs_fl_segments = inputs_fl[j: j + seg_bs] + inputs_au_segments = inputs_au[j: j + seg_bs] + inputs_emb_segments = inputs_emb[j: j + seg_bs] + inputs_reg_fl_segments = inputs_reg_fl[j: j + seg_bs] + inputs_rot_tran_segments = inputs_rot_tran[j: j + seg_bs] + inputs_rot_quat_segments = inputs_rot_quat[j: j + seg_bs] + + if(inputs_fl_segments.shape[0] < 10): + continue + + if(self.opt_parser.test_emb): + input_face_id = self.std_face_id + + fl_dis_pred_pos, pos_pred, input_face_id, (loss, loss_reg_fls, loss_laplacian, loss_pos) = \ + self.__train_speaker_aware__(inputs_fl_segments, inputs_au_segments, inputs_emb_segments, + input_face_id, inputs_reg_fl_segments, inputs_rot_tran_segments, + inputs_rot_quat_segments, + is_training=is_training, + use_residual=self.opt_parser.use_residual) + + fl_dis_pred_pos = fl_dis_pred_pos.data.cpu().numpy() + pos_pred = pos_pred.data.cpu().numpy() + fl_std = inputs_reg_fl_segments[:, 0, :].data.cpu().numpy() + pos_std = inputs_rot_tran_segments[:, 0, :].data.cpu().numpy() + ''' solve inverse lip ''' + if(not is_training): + fl_dis_pred_pos = self.__solve_inverse_lip2__(fl_dis_pred_pos) + + fl_dis_pred_pos = fl_dis_pred_pos.reshape((-1, 68, 3)) + fl_std = fl_std.reshape((-1, 68, 3)) + if(self.opt_parser.pos_dim == 12): + pos_pred = pos_pred.reshape((-1, 3, 4)) + for k in range(fl_dis_pred_pos.shape[0]): + fl_dis_pred_pos[k] = np.dot(pos_pred[k, :3, :3].T + np.eye(3), + (fl_dis_pred_pos[k] - pos_pred[k, :, 3].T).T).T + pos_std = pos_std.reshape((-1, 3, 4)) + for k in range(fl_std.shape[0]): + fl_std[k] = np.dot(pos_std[k, :3, :3].T + np.eye(3), + (fl_std[k] - pos_std[k, :, 3].T).T).T + else: + if(not is_training): + smooth_length = int(min(pos_pred.shape[0] - 1, 27) // 2 * 2 + 1) + pos_pred = savgol_filter(pos_pred, smooth_length, 3, axis=0) + quat = pos_pred[:, :4] + trans = pos_pred[:, 4:] + for k in range(fl_dis_pred_pos.shape[0]): + fl_dis_pred_pos[k] = np.dot(R.from_quat(quat[k]).as_matrix().T, + (fl_dis_pred_pos[k] - trans[k:k+1]).T).T + pos_std = pos_std.reshape((-1, 3, 4)) + for k in range(fl_std.shape[0]): + fl_std[k] = np.dot(pos_std[k, :3, :3].T + np.eye(3), + (fl_std[k] - pos_std[k, :, 3].T).T).T + + fls_pred_pos_list += [fl_dis_pred_pos.reshape((-1, 204))] + std_fls_list += [fl_std.reshape((-1, 204))] + + for key in log_loss.keys(): + if (key not in locals().keys()): + continue + if (type(locals()[key]) == float): + log_loss[key].add(locals()[key]) + else: + log_loss[key].add(locals()[key].data.cpu().numpy()) + + if (epoch % self.opt_parser.jpg_freq == 0 and i in random_clip_index): + def save_fls_av(fake_fls_list, postfix='', ifsmooth=True): + fake_fls_np = np.concatenate(fake_fls_list) + filename = 'fake_fls_{}_{}_{}.txt'.format(epoch, video_name, postfix) + np.savetxt( + os.path.join(self.opt_parser.dump_dir, '../nn_result', self.opt_parser.name, filename), + fake_fls_np, fmt='%.6f') + audio_filename = '{:05d}_{}_audio.wav'.format(global_id, video_name) + from util.vis import Vis_old + Vis_old(run_name=self.opt_parser.name, pred_fl_filename=filename, audio_filename=audio_filename, + fps=62.5, av_name='e{:04d}_{}_{}'.format(epoch, i, postfix), + postfix=postfix, root_dir=self.opt_parser.root_dir, ifsmooth=ifsmooth) + + if (True): + if (self.opt_parser.show_animation): + print('show animation ....') + save_fls_av(fls_pred_pos_list, 'pred', ifsmooth=True) + save_fls_av(std_fls_list, 'std', ifsmooth=False) + + if (self.opt_parser.verbose <= 1): + print('{} Epoch: #{} batch #{}/{}'.format(status, epoch, i, len(dataloader)), end=': ') + for key in log_loss.keys(): + print(key, '{:.5f}'.format(log_loss[key].per('batch')), end=', ') + print('') + self.__tensorboard_write__(status, log_loss, 'batch') + + if (self.opt_parser.verbose <= 2): + print('==========================================================') + print('{} Epoch: #{}'.format(status, epoch), end=':') + for key in log_loss.keys(): + print(key, '{:.4f}'.format(log_loss[key].per('epoch')), end=', ') + print('Epoch time usage: {:.2f} sec\n==========================================================\n'.format(time.time() - st_epoch)) + self.__save_model__(save_type='last_epoch', epoch=epoch) + if(epoch % self.opt_parser.ckpt_epoch_freq == 0): + self.__save_model__(save_type='e_{}'.format(epoch), epoch=epoch) + self.__tensorboard_write__(status, log_loss, 'epoch') + + + def test_end2end(self, jpg_shape): + + self.G.eval() + self.C.eval() + data = self.eval_data + dataloader = self.eval_dataloader + + for i, batch in enumerate(dataloader): + + global_id, video_name = data[i][0][1][0], data[i][0][1][1][:-4] + + inputs_fl, inputs_au, inputs_emb, inputs_reg_fl, inputs_rot_tran, inputs_rot_quat = batch + + for key in ['irx71tYyI-Q', 'J-NPsvtQ8lE', 'Z7WRt--g-h4', 'E0zgrhQ0QDw', 'bXpavyiCu10', 'W6uRNCJmdtI', 'sxCbrYjBsGA', 'wAAMEC1OsRc', '_ldiVrXgZKc', '48uYS3bHIA8', 'E_kmpT-EfOg']: + emb_val = self.test_embs[key] + inputs_emb = np.tile(emb_val, (inputs_emb.shape[0], 1)) + inputs_emb = torch.tensor(inputs_emb, dtype=torch.float, requires_grad=False) + + # this_emb = key + # inputs_emb = torch.zeros(size=(inputs_au.shape[0], len(self.test_embs_dic.keys()))) + # inputs_emb[:, self.test_embs_dic[this_emb]] = 1. + + inputs_fl, inputs_au, inputs_emb = inputs_fl.to(device), inputs_au.to(device), inputs_emb.to(device) + inputs_reg_fl, inputs_rot_tran, inputs_rot_quat = inputs_reg_fl.to(device), inputs_rot_tran.to(device), inputs_rot_quat.to(device) + + std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], [] + seg_bs = self.opt_parser.segment_batch_size + + # input_face_id = self.std_face_id + input_face_id = torch.tensor(jpg_shape.reshape(1, 204), requires_grad=False, dtype=torch.float).to(device) + + ''' register face ''' + if (True): + landmarks = input_face_id.detach().cpu().numpy().reshape(68, 3) + frame_t_shape = landmarks[self.t_shape_idx, :] + T, distance, itr = icp(frame_t_shape, self.anchor_t_shape) + landmarks = np.hstack((landmarks, np.ones((68, 1)))) + registered_landmarks = np.dot(T, landmarks.T).T + input_face_id = torch.tensor(registered_landmarks[:, 0:3].reshape(1, 204), requires_grad=False, + dtype=torch.float).to(device) + + for j in range(0, inputs_fl.shape[0], seg_bs): + # Step 3.1: load segments + inputs_fl_segments = inputs_fl[j: j + seg_bs] + inputs_au_segments = inputs_au[j: j + seg_bs] + inputs_emb_segments = inputs_emb[j: j + seg_bs] + inputs_reg_fl_segments = inputs_reg_fl[j: j + seg_bs] + inputs_rot_tran_segments = inputs_rot_tran[j: j + seg_bs] + inputs_rot_quat_segments = inputs_rot_quat[j: j + seg_bs] + + if(inputs_fl_segments.shape[0] < 10): + continue + + fl_dis_pred_pos, pos_pred, input_face_id, (loss, loss_reg_fls, loss_laplacian, loss_pos) = \ + self.__train_speaker_aware__(inputs_fl_segments, inputs_au_segments, inputs_emb_segments, + input_face_id, inputs_reg_fl_segments, inputs_rot_tran_segments, + inputs_rot_quat_segments, + is_training=False, use_residual=True) + + fl_dis_pred_pos = fl_dis_pred_pos.data.cpu().numpy() + pos_pred = pos_pred.data.cpu().numpy() + fl_std = inputs_reg_fl_segments[:, 0, :].data.cpu().numpy() + pos_std = inputs_rot_tran_segments[:, 0, :].data.cpu().numpy() + + ''' solve inverse lip ''' + fl_dis_pred_pos = self.__solve_inverse_lip2__(fl_dis_pred_pos) + + fl_dis_pred_pos = fl_dis_pred_pos.reshape((-1, 68, 3)) + fl_std = fl_std.reshape((-1, 68, 3)) + if(self.opt_parser.pos_dim == 12): + pos_pred = pos_pred.reshape((-1, 3, 4)) + for k in range(fl_dis_pred_pos.shape[0]): + fl_dis_pred_pos[k] = np.dot(pos_pred[k, :3, :3].T + np.eye(3), + (fl_dis_pred_pos[k] - pos_pred[k, :, 3].T).T).T + pos_std = pos_std.reshape((-1, 3, 4)) + for k in range(fl_std.shape[0]): + fl_std[k] = np.dot(pos_std[k, :3, :3].T + np.eye(3), + (fl_std[k] - pos_std[k, :, 3].T).T).T + else: + smooth_length = int(min(pos_pred.shape[0] - 1, 27) // 2 * 2 + 1) + pos_pred = savgol_filter(pos_pred, smooth_length, 3, axis=0) + quat = pos_pred[:, :4] + trans = pos_pred[:, 4:] + for k in range(fl_dis_pred_pos.shape[0]): + fl_dis_pred_pos[k] = np.dot(R.from_quat(quat[k]).as_matrix().T, + (fl_dis_pred_pos[k] - trans[k:k+1]).T).T + pos_std = pos_std.reshape((-1, 3, 4)) + for k in range(fl_std.shape[0]): + fl_std[k] = np.dot(pos_std[k, :3, :3].T + np.eye(3), + (fl_std[k] - pos_std[k, :, 3].T).T).T + + fls_pred_pos_list += [fl_dis_pred_pos.reshape((-1, 204))] + std_fls_list += [fl_std.reshape((-1, 204))] + + fake_fls_np = np.concatenate(fls_pred_pos_list) + filename = 'pred_fls_{}_{}.txt'.format(video_name.split('/')[-1], key) + np.savetxt(os.path.join('examples', filename), fake_fls_np, fmt='%.6f') + + + def __close_face_lip__(self, fl): + facelandmark = fl.reshape(-1, 68, 3) + from util.geo_math import area_of_polygon + min_area_lip, idx = 999, 0 + for i, fls in enumerate(facelandmark): + area_of_mouth = area_of_polygon(fls[list(range(60, 68)), 0:2]) + if (area_of_mouth < min_area_lip): + min_area_lip = area_of_mouth + idx = i + return idx + + def train(self): + train_loss = {key: Record(['epoch', 'batch']) for key in + ['loss','loss_laplacian', 'loss_reg_fls', 'loss_pos']} + + eval_loss = {key: Record(['epoch', 'batch']) for key in + ['loss','loss_laplacian', 'loss_reg_fls', 'loss_pos']} + for epoch in range(self.opt_parser.nepoch): + self.__train_pass__(epoch=epoch, log_loss=train_loss, is_training=True) + # with torch.no_grad(): + # self.__train_pass__(epoch=epoch, log_loss=eval_loss, is_training=False) + + def test(self): + train_loss = {key: Record(['epoch', 'batch', 'in_batch']) for key in + ['loss', 'loss_g', 'loss_laplacian']} + eval_loss = {key: Record(['epoch', 'batch', 'in_batch']) for key in + ['loss_pos', 'loss_g', 'loss_laplacian']} + with torch.no_grad(): + self.__train_pass__(epoch=0, log_loss=eval_loss, is_training=False) + + def __tensorboard_write__(self, status, loss, t): + if (self.opt_parser.write): + for key in loss.keys(): + self.writer.add_scalar('{}_loss_{}_{}'.format(status, t, key), loss[key].per(t), + self.writer_count[status + '_' + t]) + loss[key].clean(t) + self.writer_count[status + '_' + t] += 1 + else: + for key in loss.keys(): + loss[key].clean(t) + + def __save_model__(self, save_type, epoch): + if (self.opt_parser.write): + torch.save({ + 'G': self.G.state_dict(), + 'epoch': epoch + }, os.path.join(self.opt_parser.ckpt_dir, 'ckpt_{}.pth'.format(save_type))) + + def adjust_learning_rate(self, optimizer, epoch): + """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" + lr = self.opt_parser.lr * (0.3 ** (np.max((0, epoch + 0)) // 50)) + lr = np.max((lr, 1e-5)) + print('###### ==== > Adjust learning rate to ', lr) + for param_group in optimizer.param_groups: + param_group['lr'] = lr + # print('lr:', param_group['lr']) + + def __solve_inverse_lip2__(self, fl_dis_pred_pos_numpy): + for j in range(fl_dis_pred_pos_numpy.shape[0]): + # init_face = self.std_face_id.detach().cpu().numpy() + from util.geo_math import area_of_signed_polygon + fls = fl_dis_pred_pos_numpy[j].reshape(68, 3) + area_of_mouth = area_of_signed_polygon(fls[list(range(60, 68)), 0:2]) + if (area_of_mouth < 0): + fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] + fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3]) + fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] = fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3] + fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] + fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3]) + fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] = fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3] + fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] + fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3]) + fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] = fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3] + p = max([j-1, 0]) + fl_dis_pred_pos_numpy[j, 55 * 3+1:59 * 3+1:3] = fl_dis_pred_pos_numpy[j, 64 * 3+1:68 * 3+1:3] \ + + fl_dis_pred_pos_numpy[p, 55 * 3+1:59 * 3+1:3] \ + - fl_dis_pred_pos_numpy[p, 64 * 3+1:68 * 3+1:3] + fl_dis_pred_pos_numpy[j, 59 * 3+1:60 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:61 * 3+1:3] \ + + fl_dis_pred_pos_numpy[p, 59 * 3+1:60 * 3+1:3] \ + - fl_dis_pred_pos_numpy[p, 60 * 3+1:61 * 3+1:3] + fl_dis_pred_pos_numpy[j, 49 * 3+1:54 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:65 * 3+1:3] \ + + fl_dis_pred_pos_numpy[p, 49 * 3+1:54 * 3+1:3] \ + - fl_dis_pred_pos_numpy[p, 60 * 3+1:65 * 3+1:3] + return fl_dis_pred_pos_numpy + + + diff --git a/MakeItTalk/src/autovc/AutoVC_mel_Convertor_retrain_version.py b/MakeItTalk/src/autovc/AutoVC_mel_Convertor_retrain_version.py new file mode 100644 index 0000000000000000000000000000000000000000..54d6a3b2f619b6cd0df0f7517ba18cdffbc8dfe2 --- /dev/null +++ b/MakeItTalk/src/autovc/AutoVC_mel_Convertor_retrain_version.py @@ -0,0 +1,282 @@ +import os +import numpy as np +import pickle +import torch +from math import ceil +from src.autovc.retrain_version.model_vc_37_1 import Generator +from pydub import AudioSegment +import pynormalize.pynormalize +from scipy.io import wavfile as wav +from scipy.signal import stft + + +def match_target_amplitude(sound, target_dBFS): + change_in_dBFS = target_dBFS - sound.dBFS + return sound.apply_gain(change_in_dBFS) + +class AutoVC_mel_Convertor(): + + def __init__(self, src_dir, proportion=(0., 1.), seed=0): + self.src_dir = src_dir + if(not os.path.exists(os.path.join(src_dir, 'filename_index.txt'))): + self.filenames = [] + else: + with open(os.path.join(src_dir, 'filename_index.txt'), 'r') as f: + lines = f.readlines() + self.filenames = [(int(line.split(' ')[0]), line.split(' ')[1][:-1]) for line in lines] + + np.random.seed(seed) + rand_perm = np.random.permutation(len(self.filenames)) + proportion_idx = (int(proportion[0] * len(rand_perm)), int(proportion[1] * len(rand_perm))) + selected_index = rand_perm[proportion_idx[0] : proportion_idx[1]] + self.selected_filenames = [self.filenames[i] for i in selected_index] + + print('{} out of {} are in this portion'.format(len(self.selected_filenames), len(self.filenames))) + + def __convert_single_only_au_AutoVC_format_to_dataset__(self, filename, build_train_dataset=True): + """ + Convert a single file (only audio in AutoVC embedding format) to numpy arrays + :param filename: + :param is_map_to_std_face: + :return: + """ + + global_clip_index, video_name = filename + + # audio_file = os.path.join(self.src_dir, 'raw_wav', '{}.wav'. + # format(video_name[:-4])) + audio_file = os.path.join(self.src_dir, 'raw_wav', '{:05d}_{}_audio.wav'. + format(global_clip_index, video_name[:-4])) + if(not build_train_dataset): + import shutil + audio_file = os.path.join(self.src_dir, 'raw_wav', '{:05d}_{}_audio.wav'. + format(global_clip_index, video_name[:-4])) + shutil.copy(os.path.join(self.src_dir, 'test_wav_files', video_name), audio_file) + + sound = AudioSegment.from_file(audio_file, "wav") + normalized_sound = match_target_amplitude(sound, -20.0) + normalized_sound.export(audio_file, format='wav') + + + from src.autovc.retrain_version.vocoder_spec.extract_f0_func import extract_f0_func_audiofile + S, f0_norm = extract_f0_func_audiofile(audio_file, 'M') + + from src.autovc.utils import quantize_f0_interp + f0_onehot = quantize_f0_interp(f0_norm) + + from thirdparty.resemblyer_util.speaker_emb import get_spk_emb + mean_emb, _ = get_spk_emb(audio_file) + + + return S, mean_emb, f0_onehot + + def convert_wav_to_autovc_input(self, build_train_dataset=True, autovc_model_path=r'E:\Dataset\VCTK\stargan_vc\train_85_withpre1125000_local\360000-G.ckpt'): + + + def pad_seq(x, base=32): + len_out = int(base * ceil(float(x.shape[0]) / base)) + len_pad = len_out - x.shape[0] + assert len_pad >= 0 + return np.pad(x, ((0, len_pad), (0, 0)), 'constant'), len_pad + + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + print(device) + G = Generator(16, 256, 512, 16).eval().to(device) + g_checkpoint = torch.load(autovc_model_path, map_location=device) + G.load_state_dict(g_checkpoint['model']) + + emb = np.loadtxt('autovc/retrain_version/obama_emb.txt') + emb_trg = torch.from_numpy(emb[np.newaxis, :].astype('float32')).to(device) + + aus = [] + + for i, file in enumerate(self.selected_filenames): + print(i, file) + x_real_src, emb, f0_org_src = self.__convert_single_only_au_AutoVC_format_to_dataset__(filename=file, build_train_dataset=build_train_dataset) + + '''# normal length #''' + # with torch.no_grad(): + # x_identic, x_identic_psnt, code_real = G(x_real, emb_org, f0_org, emb_trg, f0_org) + # g_loss_id_psnt = F.mse_loss(x_real, x_identic_psnt, reduction='sum') + # print('loss:', g_loss_id_psnt / x_identic_psnt.shape[1] * 128) + + ''' too long split length ''' + l = x_real_src.shape[0] + x_identic_psnt = [] + step = 4096 + for i in range(0, l, step): + x_real = x_real_src[i:i+step] + f0_org = f0_org_src[i:i+step] + + x_real, len_pad = pad_seq(x_real.astype('float32')) + f0_org, _ = pad_seq(f0_org.astype('float32')) + x_real = torch.from_numpy(x_real[np.newaxis, :].astype('float32')).to(device) + emb_org = torch.from_numpy(emb[np.newaxis, :].astype('float32')).to(device) + # emb_trg = torch.from_numpy(emb[np.newaxis, :].astype('float32')).to(device) + f0_org = torch.from_numpy(f0_org[np.newaxis, :].astype('float32')).to(device) + + print('source shape:', x_real.shape, emb_org.shape, emb_trg.shape, f0_org.shape) + + with torch.no_grad(): + x_identic, x_identic_psnt_i, code_real = G(x_real, emb_org, f0_org, emb_trg, f0_org) + x_identic_psnt.append(x_identic_psnt_i) + + x_identic_psnt = torch.cat(x_identic_psnt, dim=1) + print('converted shape:', x_identic_psnt.shape, code_real.shape) + if len_pad == 0: + uttr_trg = x_identic_psnt[0, :, :].cpu().numpy() + else: + uttr_trg = x_identic_psnt[0, :-len_pad, :].cpu().numpy() + + # ''' plot source and converted mel-spec figures ''' + # import matplotlib.pyplot as plt + # plt.subplot(1, 2, 1) + # plt.imshow(x_real_src[0:200, :]) + # plt.subplot(1, 2, 2) + # plt.imshow(uttr_trg[0:200, :]) + # plt.show() + # + # exit(0) + + file = (file[0], file[1], emb) + aus.append((uttr_trg, file)) + + return aus + + def convert_single_wav_to_input(self, audio_filename): + aus = [] + audio_file = os.path.join(self.src_dir, 'demo_wav', audio_filename) + + # Default param + TARGET_AUDIO_DBFS = -20.0 + WAV_STEP = int(0.2 * 16000) # 0.2s = 5 frames + STFT_WINDOW_SIZE = {'25': 320, '29.97': 356} + STFT_WINDOW_STEP = {'25': 4, '29.97': 3} + FPS = 25 + + # Step 1 : Normalize the volume + target_dbfs = TARGET_AUDIO_DBFS + pynormalize.process_files( + Files=[audio_file], + target_dbfs=target_dbfs, + directory=os.path.join(self.src_dir, 'raw_wav') + ) + + # Step 2 : load wav file + sample_rate, samples = wav.read(audio_file) + assert (sample_rate == 16000) + if (len(samples.shape) > 1): + samples = samples[:, 0] # pick mono + + # Step 3 : STFT, + # 1 frame = 1/25 * 16k = 640 samples => windowsize=320, overlap=160 + # 1 frame = 1/29.97 * 16k = 533.86 samples => windowsize=356, overlap=178, (mis-align = 4.2sample / 1s) + f, t, Zxx = stft(samples, fs=sample_rate, nperseg=STFT_WINDOW_SIZE[str(FPS)]) + + # stft_abs = np.abs(Zxx) + stft_abs = np.log(np.abs(Zxx) ** 2 + 1e-10) + stft_abs_max = np.max(stft_abs) + stft_abs /= stft_abs_max + + # Step 4 : align AV (drop last 2 frames of V) + fl_length = stft_abs.shape[1] // STFT_WINDOW_STEP[str(FPS)] + audio_stft_length = (fl_length - 2) * STFT_WINDOW_STEP[str(FPS)] + stft_signal = Zxx[:, 0:audio_stft_length] + stft_abs = stft_abs[:, 0:audio_stft_length] + + audio_wav_length = int((fl_length - 2) * sample_rate / FPS) + wav_signal = samples[0:audio_wav_length] + + # # Step 6 : Save audio + # info_audio = (0, stft_signal, fl_length - 2, audio_stft_length, audio_wav_length) + # au_data = (stft_abs, wav_signal, info_audio) + + aus.append((stft_abs.T, None, (0, audio_filename, 0))) + + return aus + + + def convert_single_wav_to_autovc_input(self, audio_filename, autovc_model_path): + + + def pad_seq(x, base=32): + len_out = int(base * ceil(float(x.shape[0]) / base)) + len_pad = len_out - x.shape[0] + assert len_pad >= 0 + return np.pad(x, ((0, len_pad), (0, 0)), 'constant'), len_pad + + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + G = Generator(16, 256, 512, 16).eval().to(device) + + g_checkpoint = torch.load(autovc_model_path, map_location=device) + G.load_state_dict(g_checkpoint['model']) + + emb = np.loadtxt('src/autovc/retrain_version/obama_emb.txt') + emb_trg = torch.from_numpy(emb[np.newaxis, :].astype('float32')).to(device) + + aus = [] + audio_file = audio_filename + + sound = AudioSegment.from_file(audio_file, "wav") + normalized_sound = match_target_amplitude(sound, -20.0) + normalized_sound.export(audio_file, format='wav') + + from src.autovc.retrain_version.vocoder_spec.extract_f0_func import extract_f0_func_audiofile + x_real_src, f0_norm = extract_f0_func_audiofile(audio_file, 'F') + from src.autovc.utils import quantize_f0_interp + f0_org_src = quantize_f0_interp(f0_norm) + from thirdparty.resemblyer_util.speaker_emb import get_spk_emb + emb, _ = get_spk_emb(audio_file) + + ''' normal length version ''' + # x_real, len_pad = pad_seq(x_real_src.astype('float32')) + # f0_org, _ = pad_seq(f0_org_src.astype('float32')) + # x_real = torch.from_numpy(x_real[np.newaxis, :].astype('float32')).to(device) + # emb_org = torch.from_numpy(emb[np.newaxis, :].astype('float32')).to(device) + # f0_org = torch.from_numpy(f0_org[np.newaxis, :].astype('float32')).to(device) + # print('source shape:', x_real.shape, emb_org.shape, emb_trg.shape, f0_org.shape) + # + # with torch.no_grad(): + # x_identic, x_identic_psnt, code_real = G(x_real, emb_org, f0_org, emb_trg, f0_org) + # print('converted shape:', x_identic_psnt.shape, code_real.shape) + + ''' long split version ''' + l = x_real_src.shape[0] + x_identic_psnt = [] + step = 4096 + for i in range(0, l, step): + x_real = x_real_src[i:i + step] + f0_org = f0_org_src[i:i + step] + + x_real, len_pad = pad_seq(x_real.astype('float32')) + f0_org, _ = pad_seq(f0_org.astype('float32')) + x_real = torch.from_numpy(x_real[np.newaxis, :].astype('float32')).to(device) + emb_org = torch.from_numpy(emb[np.newaxis, :].astype('float32')).to(device) + # emb_trg = torch.from_numpy(emb[np.newaxis, :].astype('float32')).to(device) + f0_org = torch.from_numpy(f0_org[np.newaxis, :].astype('float32')).to(device) + print('source shape:', x_real.shape, emb_org.shape, emb_trg.shape, f0_org.shape) + + with torch.no_grad(): + x_identic, x_identic_psnt_i, code_real = G(x_real, emb_org, f0_org, emb_trg, f0_org) + x_identic_psnt.append(x_identic_psnt_i) + + x_identic_psnt = torch.cat(x_identic_psnt, dim=1) + print('converted shape:', x_identic_psnt.shape, code_real.shape) + + if len_pad == 0: + uttr_trg = x_identic_psnt[0, :, :].cpu().numpy() + else: + uttr_trg = x_identic_psnt[0, :-len_pad, :].cpu().numpy() + + aus.append((uttr_trg, (0, audio_filename, emb))) + + return aus + + + +if __name__ == '__main__': + c = AutoVC_mel_Convertor(r'E:\Dataset\TalkingToon\Obama_for_train', proportion=(0.0, 1.0)) + aus = c.convert_wav_to_autovc_input() + + with open(os.path.join(r'E:\Dataset\TalkingToon\Obama_for_train', 'dump', 'autovc_retrain_mel_au.pickle'), 'wb') as fp: + pickle.dump(aus, fp) \ No newline at end of file diff --git a/MakeItTalk/src/autovc/__init__.py b/MakeItTalk/src/autovc/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MakeItTalk/src/autovc/__pycache__/AutoVC_mel_Convertor_retrain_version.cpython-37.pyc b/MakeItTalk/src/autovc/__pycache__/AutoVC_mel_Convertor_retrain_version.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5b081772ab929abf161ad7afc6973f45eb9c4714 Binary files /dev/null and b/MakeItTalk/src/autovc/__pycache__/AutoVC_mel_Convertor_retrain_version.cpython-37.pyc differ diff --git a/MakeItTalk/src/autovc/__pycache__/AutoVC_mel_Convertor_retrain_version.cpython-39.pyc b/MakeItTalk/src/autovc/__pycache__/AutoVC_mel_Convertor_retrain_version.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8aa569f1515e5cb320c5974685b703955ebf0e70 Binary files /dev/null and b/MakeItTalk/src/autovc/__pycache__/AutoVC_mel_Convertor_retrain_version.cpython-39.pyc differ diff --git a/MakeItTalk/src/autovc/__pycache__/__init__.cpython-37.pyc b/MakeItTalk/src/autovc/__pycache__/__init__.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2e749bc8b4269502395d23d26b45dc52a950cf8c Binary files /dev/null and b/MakeItTalk/src/autovc/__pycache__/__init__.cpython-37.pyc differ diff --git a/MakeItTalk/src/autovc/__pycache__/__init__.cpython-39.pyc b/MakeItTalk/src/autovc/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1fba79ca7bff9b9105a50f5abea53fc34d96d0dd Binary files /dev/null and b/MakeItTalk/src/autovc/__pycache__/__init__.cpython-39.pyc differ diff --git a/MakeItTalk/src/autovc/__pycache__/utils.cpython-37.pyc b/MakeItTalk/src/autovc/__pycache__/utils.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5e0fcac5085b89b7fd68301c8f4fe4d2469e9a39 Binary files /dev/null and b/MakeItTalk/src/autovc/__pycache__/utils.cpython-37.pyc differ diff --git a/MakeItTalk/src/autovc/__pycache__/utils.cpython-39.pyc b/MakeItTalk/src/autovc/__pycache__/utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..79728af2756e1513a4a472e2af7844e0e2c9b93e Binary files /dev/null and b/MakeItTalk/src/autovc/__pycache__/utils.cpython-39.pyc differ diff --git a/MakeItTalk/src/autovc/retrain_version/__init__.py b/MakeItTalk/src/autovc/retrain_version/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MakeItTalk/src/autovc/retrain_version/__pycache__/__init__.cpython-37.pyc b/MakeItTalk/src/autovc/retrain_version/__pycache__/__init__.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d6013a5cc1f61cedde6b66ae9fa20f28c3fa9976 Binary files /dev/null and b/MakeItTalk/src/autovc/retrain_version/__pycache__/__init__.cpython-37.pyc differ diff --git a/MakeItTalk/src/autovc/retrain_version/__pycache__/__init__.cpython-39.pyc b/MakeItTalk/src/autovc/retrain_version/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..61adb8aab29a5b0a518753008440a8cbb0a267dd Binary files /dev/null and b/MakeItTalk/src/autovc/retrain_version/__pycache__/__init__.cpython-39.pyc differ diff --git a/MakeItTalk/src/autovc/retrain_version/__pycache__/model_vc_37_1.cpython-37.pyc b/MakeItTalk/src/autovc/retrain_version/__pycache__/model_vc_37_1.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a214aacd73443fb9b03a3b8ce3e358b667ffebe1 Binary files /dev/null and b/MakeItTalk/src/autovc/retrain_version/__pycache__/model_vc_37_1.cpython-37.pyc differ diff --git a/MakeItTalk/src/autovc/retrain_version/__pycache__/model_vc_37_1.cpython-39.pyc b/MakeItTalk/src/autovc/retrain_version/__pycache__/model_vc_37_1.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4133d1bb3d3d5da31391a7fafe978be1b9f808af Binary files /dev/null and b/MakeItTalk/src/autovc/retrain_version/__pycache__/model_vc_37_1.cpython-39.pyc differ diff --git a/MakeItTalk/src/autovc/retrain_version/model_vc_37_1.py b/MakeItTalk/src/autovc/retrain_version/model_vc_37_1.py new file mode 100644 index 0000000000000000000000000000000000000000..b5da95e763b1db49412dc8f42305c028144411c9 --- /dev/null +++ b/MakeItTalk/src/autovc/retrain_version/model_vc_37_1.py @@ -0,0 +1,205 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +dim_enc = 512 +dim_freq = 80 +dim_f0 = 257 +num_grp = 32 +dim_dec = 512 + +class LinearNorm(torch.nn.Module): + def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): + super(LinearNorm, self).__init__() + self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) + + torch.nn.init.xavier_uniform_( + self.linear_layer.weight, + gain=torch.nn.init.calculate_gain(w_init_gain)) + + def forward(self, x): + return self.linear_layer(x) + + +class ConvNorm(torch.nn.Module): + def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, + padding=None, dilation=1, bias=True, w_init_gain='linear'): + super(ConvNorm, self).__init__() + if padding is None: + assert(kernel_size % 2 == 1) + padding = int(dilation * (kernel_size - 1) / 2) + + self.conv = torch.nn.Conv1d(in_channels, out_channels, + kernel_size=kernel_size, stride=stride, + padding=padding, dilation=dilation, + bias=bias) + + torch.nn.init.xavier_uniform_( + self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) + + def forward(self, signal): + conv_signal = self.conv(signal) + return conv_signal + + + + +class Encoder(nn.Module): + """Encoder module: + """ + def __init__(self, dim_neck, dim_emb, freq): + super(Encoder, self).__init__() + #self.dropout = nn.Dropout(0.0) + self.dim_neck = dim_neck + self.freq = freq + + convolutions = [] + for i in range(3): + conv_layer = nn.Sequential( + ConvNorm(dim_freq+dim_emb if i==0 else dim_enc, + dim_enc, + kernel_size=5, stride=1, + padding=2, + dilation=1, w_init_gain='relu'), + nn.GroupNorm(num_grp, dim_enc)) + convolutions.append(conv_layer) + self.convolutions = nn.ModuleList(convolutions) + + self.lstm = nn.LSTM(dim_enc, dim_neck, 2, batch_first=True, bidirectional=True) + + def forward(self, x): + + for conv in self.convolutions: + #x = self.dropout(F.relu(conv(x))) + x = F.relu(conv(x)) + x = x.transpose(1, 2) + + #self.lstm.flatten_parameters() + outputs, _ = self.lstm(x) + out_forward = outputs[:, :, :self.dim_neck] + out_backward = outputs[:, :, self.dim_neck:] + + codes = [] + for i in range(0, outputs.size(1), self.freq): + codes.append(torch.cat((out_forward[:,i+self.freq-1,:],out_backward[:,i,:]), dim=-1)) + + return codes + + + +class Decoder(nn.Module): + """Decoder module: + """ + def __init__(self, dim_neck, dim_emb, dim_pre): + super(Decoder, self).__init__() + + self.lstm = nn.LSTM(dim_neck*2+dim_emb+dim_f0, dim_dec, 3, batch_first=True) + + self.linear_projection = LinearNorm(dim_dec, dim_freq) + + def forward(self, x): + + #self.lstm1.flatten_parameters() + + outputs, _ = self.lstm(x) + + decoder_output = self.linear_projection(outputs) + + return decoder_output + + + + +class Postnet(nn.Module): + """Postnet + - Five 1-d convolution with 512 channels and kernel size 5 + """ + + def __init__(self): + super(Postnet, self).__init__() + #self.dropout = nn.Dropout(0.0) + self.convolutions = nn.ModuleList() + + self.convolutions.append( + nn.Sequential( + ConvNorm(dim_freq, 512, + kernel_size=5, stride=1, + padding=2, + dilation=1, w_init_gain='tanh'), + nn.GroupNorm(num_grp, 512)) + ) + + for i in range(1, 5 - 1): + self.convolutions.append( + nn.Sequential( + ConvNorm(512, + 512, + kernel_size=5, stride=1, + padding=2, + dilation=1, w_init_gain='tanh'), + nn.GroupNorm(num_grp, 512)) + ) + + self.convolutions.append( + nn.Sequential( + ConvNorm(512, dim_freq, + kernel_size=5, stride=1, + padding=2, + dilation=1, w_init_gain='linear'), + nn.GroupNorm(5, dim_freq)) + ) + + def forward(self, x): + for i in range(len(self.convolutions) - 1): + #x = self.dropout(torch.tanh(self.convolutions[i](x))) + x = torch.tanh(self.convolutions[i](x)) + + #x = self.dropout(self.convolutions[-1](x)) + x = self.convolutions[-1](x) + + return x + + + + +class Generator(nn.Module): + """Generator network.""" + def __init__(self, dim_neck, dim_emb, dim_pre, freq): + super(Generator, self).__init__() + + self.encoder = Encoder(dim_neck, dim_emb, freq) + self.decoder = Decoder(dim_neck, dim_emb, dim_pre) + self.postnet = Postnet() + self.freq = freq + + + def forward(self, x, c_org, f0_org=None, c_trg=None, f0_trg=None, enc_on=False): + + x = x.transpose(2,1) + c_org = c_org.unsqueeze(-1).expand(-1, -1, x.size(-1)) + x = torch.cat((x, c_org), dim=1) + + codes = self.encoder(x) + if enc_on: + return torch.cat(codes, dim=-1) + + tmp = [] + for code in codes: + tmp.append(code.unsqueeze(1).expand(-1,self.freq,-1)) + code_exp = torch.cat(tmp, dim=1) + + encoder_outputs = torch.cat((code_exp, + c_trg.unsqueeze(1).expand(-1,x.size(-1),-1), + f0_trg), dim=-1) + + mel_outputs = self.decoder(encoder_outputs) + + mel_outputs_postnet = self.postnet(mel_outputs.transpose(2,1)) + mel_outputs_postnet = mel_outputs + mel_outputs_postnet.transpose(2,1) + + return mel_outputs, mel_outputs_postnet, torch.cat(codes, dim=-1) + + + + + diff --git a/MakeItTalk/src/autovc/retrain_version/obama_emb.txt b/MakeItTalk/src/autovc/retrain_version/obama_emb.txt new file mode 100644 index 0000000000000000000000000000000000000000..f5fd404f37e861f379634cd36799c7c6183be7a7 --- /dev/null +++ b/MakeItTalk/src/autovc/retrain_version/obama_emb.txt @@ -0,0 +1,256 @@ +3.485156921669840813e-03 +5.180678330361843109e-03 +0.000000000000000000e+00 +0.000000000000000000e+00 +1.299644857645034790e-01 +1.485745608806610107e-02 +2.433147840201854706e-02 +1.734322309494018555e-01 +3.488792863208800554e-04 +2.343524975003674626e-04 +1.168143972754478455e-01 +4.353693127632141113e-02 +1.119122654199600220e-02 +4.096035845577716827e-03 +1.244617719203233719e-02 +0.000000000000000000e+00 +1.588326692581176758e-01 +2.693510055541992188e-02 +7.560948870377615094e-05 +6.694764015264809132e-04 +2.211406390415504575e-04 +1.450907438993453979e-01 +4.392612027004361153e-05 +0.000000000000000000e+00 +6.514630746096372604e-03 +7.605784386396408081e-02 +1.809341483749449253e-03 +7.242101710289716721e-03 +0.000000000000000000e+00 +0.000000000000000000e+00 +7.801884412765502930e-02 +1.223208755254745483e-02 +0.000000000000000000e+00 +1.661048270761966705e-02 +3.575059026479721069e-02 +1.075502391904592514e-02 +2.138529525836929679e-04 +6.113369390368461609e-02 +7.184921950101852417e-02 +7.000826299190521240e-02 +4.226747259963303804e-04 +3.193872282281517982e-03 +6.999827176332473755e-02 +2.178352624177932739e-01 +1.895590275526046753e-01 +0.000000000000000000e+00 +5.960784852504730225e-02 +2.250120788812637329e-02 +6.631626281887292862e-03 +3.377478788024745882e-05 +0.000000000000000000e+00 +3.422381356358528137e-02 +2.020718420681077987e-05 +0.000000000000000000e+00 +0.000000000000000000e+00 +6.893983576446771622e-03 +0.000000000000000000e+00 +0.000000000000000000e+00 +3.554837312549352646e-04 +0.000000000000000000e+00 +1.071802107617259026e-04 +6.687045097351074219e-03 +4.910957159154349938e-06 +8.916533552110195160e-03 +2.422720752656459808e-02 +0.000000000000000000e+00 +1.221082434058189392e-01 +3.839059791062027216e-04 +0.000000000000000000e+00 +2.214188687503337860e-02 +1.649506972171366215e-03 +9.467118978500366211e-02 +0.000000000000000000e+00 +1.673464328050613403e-01 +1.087261131033301353e-03 +2.883908164221793413e-04 +0.000000000000000000e+00 +2.060444466769695282e-02 +0.000000000000000000e+00 +1.121300552040338516e-02 +9.182656183838844299e-03 +4.661668557673692703e-03 +1.786554455757141113e-01 +1.391431689262390137e-01 +0.000000000000000000e+00 +7.245449814945459366e-03 +5.211337283253669739e-02 +6.365934759378433228e-02 +2.302282518940046430e-04 +8.688702434301376343e-02 +1.468240767717361450e-01 +1.596641377545893192e-04 +6.368762697093188763e-04 +0.000000000000000000e+00 +1.909994025481864810e-04 +0.000000000000000000e+00 +1.133953500539064407e-02 +0.000000000000000000e+00 +1.446712482720613480e-02 +4.759112198371440172e-04 +0.000000000000000000e+00 +0.000000000000000000e+00 +2.317394018173217773e-01 +7.134937494993209839e-02 +1.902934908866882324e-02 +8.344057947397232056e-02 +3.291504085063934326e-02 +5.047998949885368347e-02 +3.585516475141048431e-03 +9.548693895339965820e-02 +0.000000000000000000e+00 +1.296362373977899551e-03 +1.985106355277821422e-04 +9.556125849485397339e-02 +9.986672550439834595e-03 +0.000000000000000000e+00 +8.966121822595596313e-05 +1.819013617932796478e-02 +1.462051272392272949e-01 +0.000000000000000000e+00 +9.311980009078979492e-02 +1.164544895291328430e-01 +2.115104161202907562e-02 +9.950368851423263550e-02 +1.145666241645812988e-01 +5.718902871012687683e-02 +9.552785195410251617e-03 +1.189151331782341003e-01 +8.719354867935180664e-02 +8.338474435731768608e-05 +0.000000000000000000e+00 +4.645757508114911616e-05 +1.985682696104049683e-01 +2.767498604953289032e-02 +5.139464512467384338e-02 +1.671042293310165405e-01 +7.135498453862965107e-04 +0.000000000000000000e+00 +5.613401532173156738e-03 +0.000000000000000000e+00 +0.000000000000000000e+00 +0.000000000000000000e+00 +6.508714705705642700e-02 +2.777191251516342163e-02 +3.725937381386756897e-02 +9.060292504727840424e-03 +5.238759890198707581e-02 +0.000000000000000000e+00 +1.384088546037673950e-01 +5.087232682853937149e-03 +1.282836217433214188e-02 +2.878300729207694530e-04 +0.000000000000000000e+00 +3.043334186077117920e-02 +9.256956218450795859e-06 +9.714958816766738892e-02 +3.041963100258726627e-05 +0.000000000000000000e+00 +8.217152953147888184e-02 +6.564814597368240356e-02 +5.543935913010500371e-05 +7.760917395353317261e-02 +1.082694754004478455e-01 +2.780511043965816498e-03 +1.090130303055047989e-02 +1.611811295151710510e-02 +1.126632317900657654e-01 +3.647574037313461304e-02 +1.098266243934631348e-01 +1.279866546392440796e-01 +6.978068995522335172e-05 +0.000000000000000000e+00 +8.873947896063327789e-03 +3.071823448408395052e-04 +0.000000000000000000e+00 +3.798659017775207758e-04 +2.532905898988246918e-02 +2.354834042489528656e-02 +8.779582567512989044e-04 +3.271421790122985840e-02 +7.659280300140380859e-02 +8.424200862646102905e-02 +1.023359894752502441e-01 +1.106431782245635986e-01 +5.938956514000892639e-03 +0.000000000000000000e+00 +6.152947898954153061e-03 +3.081916458904743195e-02 +0.000000000000000000e+00 +8.629474323242902756e-04 +0.000000000000000000e+00 +9.105703793466091156e-03 +0.000000000000000000e+00 +1.317713689059019089e-02 +0.000000000000000000e+00 +8.838734174787532538e-06 +9.693139791488647461e-02 +1.271191984415054321e-01 +1.951815560460090637e-03 +1.964211463928222656e-01 +7.059391587972640991e-02 +1.694180923550447915e-06 +4.247502365615218878e-04 +6.014964077621698380e-03 +0.000000000000000000e+00 +0.000000000000000000e+00 +9.994859574362635612e-04 +1.310710906982421875e-01 +5.860686767846345901e-03 +0.000000000000000000e+00 +5.186166381463408470e-04 +1.986530236899852753e-02 +9.832148998975753784e-02 +1.318094283342361450e-01 +1.162994408332451712e-06 +1.230002817464992404e-05 +0.000000000000000000e+00 +3.008085303008556366e-03 +1.097007095813751221e-01 +4.021976608783006668e-03 +4.635450895875692368e-03 +1.618872047401964664e-03 +8.870983123779296875e-02 +0.000000000000000000e+00 +6.792824715375900269e-03 +4.724383726716041565e-02 +7.772513199597597122e-03 +4.837199579924345016e-03 +0.000000000000000000e+00 +0.000000000000000000e+00 +4.598747473210096359e-03 +2.396156742179300636e-05 +3.475082293152809143e-02 +0.000000000000000000e+00 +3.786871820921078324e-05 +7.681988179683685303e-03 +1.405978202819824219e-01 +2.798609435558319092e-02 +1.058738455176353455e-01 +1.398699432611465454e-01 +5.355220660567283630e-02 +8.426458574831485748e-03 +1.552212597744073719e-05 +1.003954093903303146e-02 +0.000000000000000000e+00 +4.411612823605537415e-02 +4.116490017622709274e-03 +5.894969799555838108e-04 +1.145541295409202576e-01 +0.000000000000000000e+00 +0.000000000000000000e+00 +4.553372785449028015e-02 +2.887419896069332026e-06 +1.535569899715483189e-04 +9.108778089284896851e-02 +4.152749478816986084e-02 diff --git a/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__init__.py b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/__init__.cpython-37.pyc b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/__init__.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..049a4a4ae5ca18a5585a8a56ca279e5ab69564b9 Binary files /dev/null and b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/__init__.cpython-37.pyc differ diff --git a/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/__init__.cpython-39.pyc b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e1937f1463d096d3f1e9df46be62b82bbb470ee0 Binary files /dev/null and b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/__init__.cpython-39.pyc differ diff --git a/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/extract_f0_func.cpython-37.pyc b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/extract_f0_func.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b61df1019e56512d4246789e117ecd3db258b342 Binary files /dev/null and b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/extract_f0_func.cpython-37.pyc differ diff --git a/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/extract_f0_func.cpython-39.pyc b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/extract_f0_func.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4cec522298c7bf358067858ac567b884195637e3 Binary files /dev/null and b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/extract_f0_func.cpython-39.pyc differ diff --git a/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/utils.cpython-37.pyc b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/utils.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c7c9c717bedf29d428bd9f752092449422795cd9 Binary files /dev/null and b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/utils.cpython-37.pyc differ diff --git a/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/utils.cpython-39.pyc b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3c7f934e511c2f891408fc473ee7e4cdd5adbea4 Binary files /dev/null and b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/__pycache__/utils.cpython-39.pyc differ diff --git a/MakeItTalk/src/autovc/retrain_version/vocoder_spec/extract_f0_func.py b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/extract_f0_func.py new file mode 100644 index 0000000000000000000000000000000000000000..cf7390163b60ba75597369eb45768cdcf44a83fe --- /dev/null +++ b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/extract_f0_func.py @@ -0,0 +1,132 @@ +import os +import numpy as np +import soundfile as sf +import pdb +from scipy import signal +from librosa.filters import mel +from numpy.random import RandomState +from pysptk import sptk +from src.autovc.retrain_version.vocoder_spec.utils import butter_highpass +from src.autovc.retrain_version.vocoder_spec.utils import speaker_normalization +from scipy.signal import get_window +import glob + +def pySTFT(x, fft_length=1024, hop_length=256): + x = np.pad(x, int(fft_length // 2), mode='reflect') + + noverlap = fft_length - hop_length + shape = x.shape[:-1] + ((x.shape[-1] - noverlap) // hop_length, fft_length) + strides = x.strides[:-1] + (hop_length * x.strides[-1], x.strides[-1]) + result = np.lib.stride_tricks.as_strided(x, shape=shape, + strides=strides) + + fft_window = get_window('hann', fft_length, fftbins=True) + result = np.fft.rfft(fft_window * result, n=fft_length).T + + return np.abs(result) + + +def extract_f0_func(gender): + floor_sp, ceil_sp = -80, 30 + mel_basis = mel(16000, 1024, fmin=90, fmax=7600, n_mels=80).T + min_level = np.exp(-100 / 20 * np.log(10)) + b, a = butter_highpass(30, 16000, order=5) + + # Set the directory you want to start from + ROOT = r'E:\Dataset\VCTK\test_audio' + rootDir = os.path.join(ROOT, 'audio') + targetDir_f0 = os.path.join(ROOT, 'f0') + targetDir = os.path.join(ROOT, 'mel-sp') + + pt = glob.glob1(rootDir, '*') + + cep_all = [] + dirName, subdirList, _ = next(os.walk(rootDir)) + print('Found directory: %s' % dirName) + for subdir in sorted(pt): + print(subdir) + if not os.path.exists(os.path.join(targetDir, subdir)): + os.makedirs(os.path.join(targetDir, subdir)) + if not os.path.exists(os.path.join(targetDir_f0, subdir)): + os.makedirs(os.path.join(targetDir_f0, subdir)) + _, _, fileList = next(os.walk(os.path.join(dirName, subdir))) + if gender == 'M': + lo, hi = 50, 250 + elif gender == 'F': + lo, hi = 100, 600 + else: + raise ValueError + prng = RandomState(0) + for fileName in sorted(fileList): + print(subdir, fileName) + x, fs = sf.read(os.path.join(dirName, subdir, fileName)) + if(len(x.shape) >= 2): + x = x[:, 0] + if x.shape[0] % 256 == 0: + x = np.concatenate((x, np.array([1e-06])), axis=0) + y = signal.filtfilt(b, a, x) + wav = y * 0.95 + (prng.rand(y.shape[0]) - 0.5) * 1e-06 + D = pySTFT(wav).T + D_mel = np.dot(D, mel_basis) + D_db = 20 * np.log10(np.maximum(min_level, D_mel)) - 16 + S = (D_db + 100) / 100 + + f0_rapt = sptk.rapt(wav.astype(np.float32) * 32768, fs, 256, min=lo, max=hi, otype=2) + index_nonzero = (f0_rapt != -1e10) + tmp = f0_rapt[index_nonzero] + mean_f0, std_f0 = np.mean(tmp), np.std(tmp) + + f0_norm = speaker_normalization(f0_rapt, index_nonzero, mean_f0, std_f0) + + if len(S) != len(f0_norm): + pdb.set_trace() + + np.save(os.path.join(targetDir, subdir, fileName[:-4]), + S.astype(np.float32), allow_pickle=False) + + np.save(os.path.join(targetDir_f0, subdir, fileName[:-4]), + f0_norm.astype(np.float32), allow_pickle=False) + + print(S.shape) + print(f0_norm.shape) + # exit(0) + + +def extract_f0_func_audiofile(audio_file, gender='M'): + floor_sp, ceil_sp = -80, 30 + mel_basis = mel(16000, 1024, fmin=90, fmax=7600, n_mels=80).T + min_level = np.exp(-100 / 20 * np.log(10)) + b, a = butter_highpass(30, 16000, order=5) + + if gender == 'M': + lo, hi = 50, 250 + elif gender == 'F': + lo, hi = 100, 600 + else: + raise ValueError + prng = RandomState(0) + x, fs = sf.read(audio_file) + if(len(x.shape) >= 2): + x = x[:, 0] + if x.shape[0] % 256 == 0: + x = np.concatenate((x, np.array([1e-06])), axis=0) + y = signal.filtfilt(b, a, x) + wav = y * 0.95 + (prng.rand(y.shape[0]) - 0.5) * 1e-06 + D = pySTFT(wav).T + D_mel = np.dot(D, mel_basis) + D_db = 20 * np.log10(np.maximum(min_level, D_mel)) - 16 + S = (D_db + 100) / 100 + + f0_rapt = sptk.rapt(wav.astype(np.float32) * 32768, fs, 256, min=lo, max=hi, otype=2) + index_nonzero = (f0_rapt != -1e10) + tmp = f0_rapt[index_nonzero] + mean_f0, std_f0 = np.mean(tmp), np.std(tmp) + + f0_norm = speaker_normalization(f0_rapt, index_nonzero, mean_f0, std_f0) + + return S, f0_norm + + + +if __name__ == '__main__': + extract_f0_func('M') \ No newline at end of file diff --git a/MakeItTalk/src/autovc/retrain_version/vocoder_spec/utils.py b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..fea6e8ab01d15ea1cb3a70a6aed43527675d30a1 --- /dev/null +++ b/MakeItTalk/src/autovc/retrain_version/vocoder_spec/utils.py @@ -0,0 +1,263 @@ +import os + +def _get_padding_conv2d(input_size, output_size, kernel_size, stride, dilation=[1,1]): + Pr = (output_size[0]-1)*stride[0]+(kernel_size[0]-1)*dilation[0]+1-input_size[0] + Pc = (output_size[1]-1)*stride[1]+(kernel_size[1]-1)*dilation[1]+1-input_size[1] + padding_h = (Pr/2, Pr-Pr/2) + padding_w = (Pc/2, Pc-Pc/2) + print(padding_h, padding_w) + + +def _get_padding_deconv2d(input_size, output_size, kernel_size, stride): + padding_h = (input_size[0]-1)*stride[0]+kernel_size[0]-output_size[0] + padding_w = (input_size[1]-1)*stride[1]+kernel_size[1]-output_size[1] + print(padding_h/2, padding_w/2) + + +def _conv2d_simulator(input_dim, kernel_size, stride, padding, dilation=[1,1]): + h_out = (input_dim[0]+2*padding[0]-dilation[0]*(kernel_size[0]-1)-1)/stride[0] + 1 + w_out = (input_dim[1]+2*padding[1]-dilation[1]*(kernel_size[1]-1)-1)/stride[1] + 1 + print('Floor of:', h_out, w_out) + + +def _deconv2d_simulator(input_dim, kernel_size, stride, padding, dilation=[1,1]): + h_out = (input_dim[0]-1)*stride[0]-2*padding[0]+kernel_size[0] + w_out = (input_dim[1]-1)*stride[1]-2*padding[1]+kernel_size[1] + print(h_out, w_out) + + + +import numpy as np +import librosa +import pysptk +from scipy import signal +import pyworld as pw +import copy +import pdb + +def sptk_left_signal_padding(x, count): + x = np.pad(x, (count,0), 'constant', constant_values=(0, 0)) + return x + +def sptk_frame_zero_padding(x, winsz): + x = np.pad(x, ((0,0),(winsz//2,winsz//2)), 'constant', constant_values=(0, 0)) + return x + +def sptk_signal_padding(x, count): + x = np.pad(x, (count,count), 'constant', constant_values=(0, 0)) + return x + +def sptk_window(x, framesz, hopsz, winsz=None, windowing=None, normalize=False): + x = librosa.util.frame(sptk_signal_padding(x, framesz//2), frame_length=framesz, hop_length=hopsz) + if windowing is not None: + win = pysptk.blackman(framesz) + x = x.T * win + else: + x = x.T + if winsz is not None and winsz != framesz: + x = sptk_frame_zero_padding(x, winsz-framesz) + if normalize: + x = x / np.sqrt(np.expand_dims(sum(x**2, 1), 1) + 1e-16) + return x + +def hz2alpha(hz): + alpha = 0.313 * np.log10(hz) + (-0.903) + alpha = np.round(alpha*100) / 100.0 + return alpha + +def sptk_mcep(x, order, winsz, hopsz, fftsz, fs, window_norm=False, noise_floor=1e-8): + alpha = hz2alpha(fs) + windowed = sptk_window(x, winsz, hopsz, fftsz, windowing='blackman', normalize=window_norm) + cep = pysptk.mcep(windowed, order=order, alpha=alpha, miniter=2, maxiter=30, + threshold=0.001, etype=1, eps=noise_floor, min_det=1.0e-6, itype=0) + return cep, alpha + + + +def my_world(x, fs, fft_size=1024, hopsz=256, lo=50, hi=550): + frame_period = hopsz / float(fs) * 1000 + _f0, t = pw.harvest(x, fs, frame_period=frame_period, f0_floor=lo, f0_ceil=hi) + f0 = pw.stonemask(x, _f0, t, fs) + sp = pw.cheaptrick(x, f0, t, fs, fft_size=fft_size, f0_floor=lo) + ap = pw.d4c(x, f0, t, fs, fft_size=fft_size) + assert x.shape[0] >= (sp.shape[0]-1) * hopsz + sig = x[:(sp.shape[0]-1) * hopsz] + assert sig.shape[0] % hopsz == 0 + return f0[:-1], sp[:-1,:], ap[:-1,:], sig + + + +def global_normalization(x, lo, hi): + # normalize logf0 to [0,1] + x = x.astype(float).copy() + uv = x==0 + x[~uv] = (x[~uv] - np.log(lo)) / (np.log(hi)-np.log(lo)) + x = np.clip(x, 0, 1) + return x + + +def speaker_normalization(f0, index_nonzero, mean_f0, std_f0): + # f0 is logf0 + f0 = f0.astype(float).copy() + #index_nonzero = f0 != 0 + f0[index_nonzero] = (f0[index_nonzero] - mean_f0) / std_f0 / 4.0 + f0[index_nonzero] = np.clip(f0[index_nonzero], -1, 1) + f0[index_nonzero] = (f0[index_nonzero] + 1) / 2.0 + return f0 + + +def speaker_normalization_tweak(f0, mean_f0, std_f0, mean_f0_trg, std_f0_trg): + # f0 is logf0 + f0 = f0.astype(float).copy() + index_nonzero = f0 != 0 + delta = (mean_f0_trg - mean_f0) * 0.1 + f0[index_nonzero] = (f0[index_nonzero] - mean_f0 + delta) / std_f0 / 4.0 + f0 = np.clip(f0, -1, 1) + f0[index_nonzero] = (f0[index_nonzero] + 1) / 2.0 + return f0 + + +def quantize_f0(x, num_bins=256): + # x is logf0 + assert x.ndim==1 + x = x.astype(float).copy() + assert (x >= 0).all() and (x <= 1).all() + uv = x==0 + x = np.round(x * (num_bins-1)) + x = x + 1 + x[uv] = 0 + enc = np.zeros((len(x), num_bins+1), dtype=np.float32) + enc[np.arange(len(x)), x.astype(np.int32)] = 1.0 + return enc + + +def quantize_f0_interp(x, num_bins=256): + # x is logf0 + assert x.ndim==1 + x = x.astype(float).copy() + uv = (x<0) + x[uv] = 0.0 + assert (x >= 0).all() and (x <= 1).all() + x = np.round(x * (num_bins-1)) + x = x + 1 + x[uv] = 0.0 + enc = np.zeros((len(x), num_bins+1), dtype=np.float32) + enc[np.arange(len(x)), x.astype(np.int32)] = 1.0 + return enc + + +def quantize_chroma(x, lo=50, hi=400, num_bins=120): + # x is f0 in Hz + assert x.ndim==1 + x = x.astype(float).copy() + uv = x==0 + x[~uv] = np.clip(x[~uv], lo/2, hi*2) + # convert to chroma f0 + x[~uv] = (np.log2(x[~uv] / 440) * 12 + 57) % 12 + # xs ~ [0,12) + x = np.floor(x / 12 * num_bins) + x = x + 1 + x[uv] = 0 + enc = np.zeros((len(x), num_bins+1), dtype=np.float32) + enc[np.arange(len(x)), x.astype(np.int32)] += 1.0 + + return enc + + + +def quantize_f0s(xs, lo=50, hi=400, num_bins=256): + # xs is logf0 + xs = copy.copy(xs) + uv = xs==0 + xs[~uv] = (xs[~uv] - np.log(lo)) / (np.log(hi)-np.log(lo)) + xs = np.clip(xs, 0, 1) + # xs ~ [0,1] + xs = np.round(xs * (num_bins-1)) + xs = xs + 1 + xs[uv] = 0 + enc = np.zeros((xs.shape[1], num_bins+1), dtype=np.float32) + for i in range(xs.shape[0]): + enc[np.arange(xs.shape[1]), xs[i].astype(np.int32)] += 1.0 + enc /= enc.sum(axis=1, keepdims=True) + return enc + + + + +def butter_highpass(cutoff, fs, order=5): + nyq = 0.5 * fs + normal_cutoff = cutoff / nyq + b, a = signal.butter(order, normal_cutoff, btype='high', analog=False) + return b, a + +def write_metadata(metadata, out_dir, sr=16000): + with open(os.path.join(out_dir, 'train.txt'), 'w', encoding='utf-8') as f: + for m in metadata: + f.write('|'.join([str(x) for x in m]) + '\n') + frames = sum([m[2] for m in metadata]) + hours = frames / sr / 3600 + print('Wrote %d utterances, %d time steps (%.2f hours)' % (len(metadata), frames, hours)) + + +def world_dio(x, fs, fft_size=1024, hopsz=256, lo=50, hi=550, thr=0.1): + frame_period = hopsz / float(fs) * 1000 + _f0, t = pw.dio(x, fs, frame_period=frame_period, f0_floor=lo, f0_ceil=hi, allowed_range=thr) + f0 = pw.stonemask(x, _f0, t, fs) + f0[f0!=0] = np.log(f0[f0!=0]) + return f0 + + +def world_harvest(x, fs, fft_size=1024, hopsz=256, lo=50, hi=550): + frame_period = hopsz / float(fs) * 1000 + _f0, t = pw.harvest(x, fs, frame_period=frame_period, f0_floor=lo, f0_ceil=hi) + f0 = pw.stonemask(x, _f0, t, fs) + f0[f0!=0] = np.log(f0[f0!=0]) + return f0 + +import torch +def get_mask_from_lengths(lengths, max_len): + ids = torch.arange(0, max_len, device=lengths.device) + mask = (ids >= lengths.unsqueeze(1)).byte() + return mask + + +def pad_sequence_cnn(sequences, padding_value=0): + + # assuming trailing dimensions and type of all the Tensors + # in sequences are same and fetching those from sequences[0] + max_size = sequences[0].size() + channel_dim = max_size[0] + max_len = max([s.size(-1) for s in sequences]) + + out_dims = (len(sequences), channel_dim, max_len) + + out_tensor = sequences[0].data.new(*out_dims).fill_(padding_value) + for i, tensor in enumerate(sequences): + length = tensor.size(-1) + # use index notation to prevent duplicate references to the tensor + out_tensor[i, :, :length] = tensor + + return out_tensor + + + +def interp_vector(vec, t_new): + t = np.arange(vec.shape[0]) + out = np.zeros_like(vec) + for j in range(vec.shape[1]): + out[:,j] = np.interp(t_new, t, vec[:,j], left=np.nan, right=np.nan) + assert not np.isnan(out).any() + return out + + + +from scipy.interpolate import interp1d + +def interp_vector_scipy(vec, t_new): + t = np.arange(vec.shape[0]) + f_interp = interp1d(t, vec, axis=0, bounds_error=True, assume_sorted=True) + out = f_interp(t_new) + return out.astype(np.float32) + + + \ No newline at end of file diff --git a/MakeItTalk/src/autovc/utils.py b/MakeItTalk/src/autovc/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..8f735bc83a81715e6eea898f93e480bd3cfeca24 --- /dev/null +++ b/MakeItTalk/src/autovc/utils.py @@ -0,0 +1,261 @@ +import os +import numpy as np +import librosa +import pysptk +from scipy import signal +import pyworld as pw +import copy + + +def _get_padding_conv2d(input_size, output_size, kernel_size, stride, dilation=[1,1]): + Pr = (output_size[0]-1)*stride[0]+(kernel_size[0]-1)*dilation[0]+1-input_size[0] + Pc = (output_size[1]-1)*stride[1]+(kernel_size[1]-1)*dilation[1]+1-input_size[1] + padding_h = (Pr/2, Pr-Pr/2) + padding_w = (Pc/2, Pc-Pc/2) + print(padding_h, padding_w) + + +def _get_padding_deconv2d(input_size, output_size, kernel_size, stride): + padding_h = (input_size[0]-1)*stride[0]+kernel_size[0]-output_size[0] + padding_w = (input_size[1]-1)*stride[1]+kernel_size[1]-output_size[1] + print(padding_h/2, padding_w/2) + + +def _conv2d_simulator(input_dim, kernel_size, stride, padding, dilation=[1,1]): + h_out = (input_dim[0]+2*padding[0]-dilation[0]*(kernel_size[0]-1)-1)/stride[0] + 1 + w_out = (input_dim[1]+2*padding[1]-dilation[1]*(kernel_size[1]-1)-1)/stride[1] + 1 + print('Floor of:', h_out, w_out) + + +def _deconv2d_simulator(input_dim, kernel_size, stride, padding, dilation=[1,1]): + h_out = (input_dim[0]-1)*stride[0]-2*padding[0]+kernel_size[0] + w_out = (input_dim[1]-1)*stride[1]-2*padding[1]+kernel_size[1] + print(h_out, w_out) + + +def sptk_left_signal_padding(x, count): + x = np.pad(x, (count,0), 'constant', constant_values=(0, 0)) + return x + +def sptk_frame_zero_padding(x, winsz): + x = np.pad(x, ((0,0),(winsz//2,winsz//2)), 'constant', constant_values=(0, 0)) + return x + +def sptk_signal_padding(x, count): + x = np.pad(x, (count,count), 'constant', constant_values=(0, 0)) + return x + +def sptk_window(x, framesz, hopsz, winsz=None, windowing=None, normalize=False): + x = librosa.util.frame(sptk_signal_padding(x, framesz//2), frame_length=framesz, hop_length=hopsz) + if windowing is not None: + win = pysptk.blackman(framesz) + x = x.T * win + else: + x = x.T + if winsz is not None and winsz != framesz: + x = sptk_frame_zero_padding(x, winsz-framesz) + if normalize: + x = x / np.sqrt(np.expand_dims(sum(x**2, 1), 1) + 1e-16) + return x + +def hz2alpha(hz): + alpha = 0.313 * np.log10(hz) + (-0.903) + alpha = np.round(alpha*100) / 100.0 + return alpha + +def sptk_mcep(x, order, winsz, hopsz, fftsz, fs, window_norm=False, noise_floor=1e-8): + alpha = hz2alpha(fs) + windowed = sptk_window(x, winsz, hopsz, fftsz, windowing='blackman', normalize=window_norm) + cep = pysptk.mcep(windowed, order=order, alpha=alpha, miniter=2, maxiter=30, + threshold=0.001, etype=1, eps=noise_floor, min_det=1.0e-6, itype=0) + return cep, alpha + + + +def my_world(x, fs, fft_size=1024, hopsz=256, lo=50, hi=550): + frame_period = hopsz / float(fs) * 1000 + _f0, t = pw.harvest(x, fs, frame_period=frame_period, f0_floor=lo, f0_ceil=hi) + f0 = pw.stonemask(x, _f0, t, fs) + sp = pw.cheaptrick(x, f0, t, fs, fft_size=fft_size, f0_floor=lo) + ap = pw.d4c(x, f0, t, fs, fft_size=fft_size) + assert x.shape[0] >= (sp.shape[0]-1) * hopsz + sig = x[:(sp.shape[0]-1) * hopsz] + assert sig.shape[0] % hopsz == 0 + return f0[:-1], sp[:-1,:], ap[:-1,:], sig + + + +def global_normalization(x, lo, hi): + # normalize logf0 to [0,1] + x = x.astype(float).copy() + uv = x==0 + x[~uv] = (x[~uv] - np.log(lo)) / (np.log(hi)-np.log(lo)) + x = np.clip(x, 0, 1) + return x + + +def speaker_normalization(f0, index_nonzero, mean_f0, std_f0): + # f0 is logf0 + f0 = f0.astype(float).copy() + #index_nonzero = f0 != 0 + f0[index_nonzero] = (f0[index_nonzero] - mean_f0) / std_f0 / 4.0 + f0[index_nonzero] = np.clip(f0[index_nonzero], -1, 1) + f0[index_nonzero] = (f0[index_nonzero] + 1) / 2.0 + return f0 + + +def speaker_normalization_tweak(f0, mean_f0, std_f0, mean_f0_trg, std_f0_trg): + # f0 is logf0 + f0 = f0.astype(float).copy() + index_nonzero = f0 != 0 + delta = (mean_f0_trg - mean_f0) * 0.1 + f0[index_nonzero] = (f0[index_nonzero] - mean_f0 + delta) / std_f0 / 4.0 + f0 = np.clip(f0, -1, 1) + f0[index_nonzero] = (f0[index_nonzero] + 1) / 2.0 + return f0 + + +def quantize_f0(x, num_bins=256): + # x is logf0 + assert x.ndim==1 + x = x.astype(float).copy() + assert (x >= 0).all() and (x <= 1).all() + uv = x==0 + x = np.round(x * (num_bins-1)) + x = x + 1 + x[uv] = 0 + enc = np.zeros((len(x), num_bins+1), dtype=np.float32) + enc[np.arange(len(x)), x.astype(np.int32)] = 1.0 + return enc + + +def quantize_f0_interp(x, num_bins=256): + # x is logf0 + assert x.ndim==1 + x = x.astype(float).copy() + uv = (x<0) + x[uv] = 0.0 + assert (x >= 0).all() and (x <= 1).all() + x = np.round(x * (num_bins-1)) + x = x + 1 + x[uv] = 0.0 + enc = np.zeros((len(x), num_bins+1), dtype=np.float32) + enc[np.arange(len(x)), x.astype(np.int32)] = 1.0 + return enc + + +def quantize_chroma(x, lo=50, hi=400, num_bins=120): + # x is f0 in Hz + assert x.ndim==1 + x = x.astype(float).copy() + uv = x==0 + x[~uv] = np.clip(x[~uv], lo/2, hi*2) + # convert to chroma f0 + x[~uv] = (np.log2(x[~uv] / 440) * 12 + 57) % 12 + # xs ~ [0,12) + x = np.floor(x / 12 * num_bins) + x = x + 1 + x[uv] = 0 + enc = np.zeros((len(x), num_bins+1), dtype=np.float32) + enc[np.arange(len(x)), x.astype(np.int32)] += 1.0 + + return enc + + + +def quantize_f0s(xs, lo=50, hi=400, num_bins=256): + # xs is logf0 + xs = copy.copy(xs) + uv = xs==0 + xs[~uv] = (xs[~uv] - np.log(lo)) / (np.log(hi)-np.log(lo)) + xs = np.clip(xs, 0, 1) + # xs ~ [0,1] + xs = np.round(xs * (num_bins-1)) + xs = xs + 1 + xs[uv] = 0 + enc = np.zeros((xs.shape[1], num_bins+1), dtype=np.float32) + for i in range(xs.shape[0]): + enc[np.arange(xs.shape[1]), xs[i].astype(np.int32)] += 1.0 + enc /= enc.sum(axis=1, keepdims=True) + return enc + + + + +def butter_highpass(cutoff, fs, order=5): + nyq = 0.5 * fs + normal_cutoff = cutoff / nyq + b, a = signal.butter(order, normal_cutoff, btype='high', analog=False) + return b, a + +def write_metadata(metadata, out_dir, sr=16000): + with open(os.path.join(out_dir, 'train.txt'), 'w', encoding='utf-8') as f: + for m in metadata: + f.write('|'.join([str(x) for x in m]) + '\n') + frames = sum([m[2] for m in metadata]) + hours = frames / sr / 3600 + print('Wrote %d utterances, %d time steps (%.2f hours)' % (len(metadata), frames, hours)) + + +def world_dio(x, fs, fft_size=1024, hopsz=256, lo=50, hi=550, thr=0.1): + frame_period = hopsz / float(fs) * 1000 + _f0, t = pw.dio(x, fs, frame_period=frame_period, f0_floor=lo, f0_ceil=hi, allowed_range=thr) + f0 = pw.stonemask(x, _f0, t, fs) + f0[f0!=0] = np.log(f0[f0!=0]) + return f0 + + +def world_harvest(x, fs, fft_size=1024, hopsz=256, lo=50, hi=550): + frame_period = hopsz / float(fs) * 1000 + _f0, t = pw.harvest(x, fs, frame_period=frame_period, f0_floor=lo, f0_ceil=hi) + f0 = pw.stonemask(x, _f0, t, fs) + f0[f0!=0] = np.log(f0[f0!=0]) + return f0 + +import torch +def get_mask_from_lengths(lengths, max_len): + ids = torch.arange(0, max_len, device=lengths.device) + mask = (ids >= lengths.unsqueeze(1)).byte() + return mask + + +def pad_sequence_cnn(sequences, padding_value=0): + + # assuming trailing dimensions and type of all the Tensors + # in sequences are same and fetching those from sequences[0] + max_size = sequences[0].size() + channel_dim = max_size[0] + max_len = max([s.size(-1) for s in sequences]) + + out_dims = (len(sequences), channel_dim, max_len) + + out_tensor = sequences[0].data.new(*out_dims).fill_(padding_value) + for i, tensor in enumerate(sequences): + length = tensor.size(-1) + # use index notation to prevent duplicate references to the tensor + out_tensor[i, :, :length] = tensor + + return out_tensor + + + +def interp_vector(vec, t_new): + t = np.arange(vec.shape[0]) + out = np.zeros_like(vec) + for j in range(vec.shape[1]): + out[:,j] = np.interp(t_new, t, vec[:,j], left=np.nan, right=np.nan) + assert not np.isnan(out).any() + return out + + + +from scipy.interpolate import interp1d + +def interp_vector_scipy(vec, t_new): + t = np.arange(vec.shape[0]) + f_interp = interp1d(t, vec, axis=0, bounds_error=True, assume_sorted=True) + out = f_interp(t_new) + return out.astype(np.float32) + + + \ No newline at end of file diff --git a/MakeItTalk/src/dataset/__init__.py b/MakeItTalk/src/dataset/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..7f3999734455352473532ef25cddf059eb5baee3 --- /dev/null +++ b/MakeItTalk/src/dataset/__init__.py @@ -0,0 +1,10 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + diff --git a/MakeItTalk/src/dataset/__pycache__/__init__.cpython-37.pyc b/MakeItTalk/src/dataset/__pycache__/__init__.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0a619d6221623a49f88abc8fc8c48484c77a6f79 Binary files /dev/null and b/MakeItTalk/src/dataset/__pycache__/__init__.cpython-37.pyc differ diff --git a/MakeItTalk/src/dataset/__pycache__/__init__.cpython-39.pyc b/MakeItTalk/src/dataset/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ad795902714b77905de72171dfd7d5a906c62533 Binary files /dev/null and b/MakeItTalk/src/dataset/__pycache__/__init__.cpython-39.pyc differ diff --git a/MakeItTalk/src/dataset/audio2landmark/__init__.py b/MakeItTalk/src/dataset/audio2landmark/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..7f3999734455352473532ef25cddf059eb5baee3 --- /dev/null +++ b/MakeItTalk/src/dataset/audio2landmark/__init__.py @@ -0,0 +1,10 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + diff --git a/MakeItTalk/src/dataset/audio2landmark/__pycache__/__init__.cpython-37.pyc b/MakeItTalk/src/dataset/audio2landmark/__pycache__/__init__.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7e383d08330ec0c1092942bdff6350d2282c3032 Binary files /dev/null and b/MakeItTalk/src/dataset/audio2landmark/__pycache__/__init__.cpython-37.pyc differ diff --git a/MakeItTalk/src/dataset/audio2landmark/__pycache__/__init__.cpython-39.pyc b/MakeItTalk/src/dataset/audio2landmark/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..198417c6c20c0fb18e3d49b60e2b04a62b39aa4f Binary files /dev/null and b/MakeItTalk/src/dataset/audio2landmark/__pycache__/__init__.cpython-39.pyc differ diff --git a/MakeItTalk/src/dataset/audio2landmark/__pycache__/audio2landmark_dataset.cpython-37.pyc b/MakeItTalk/src/dataset/audio2landmark/__pycache__/audio2landmark_dataset.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6cdc0f255c36b10565fa6520d9529f8559c9fecf Binary files /dev/null and b/MakeItTalk/src/dataset/audio2landmark/__pycache__/audio2landmark_dataset.cpython-37.pyc differ diff --git a/MakeItTalk/src/dataset/audio2landmark/__pycache__/audio2landmark_dataset.cpython-39.pyc b/MakeItTalk/src/dataset/audio2landmark/__pycache__/audio2landmark_dataset.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4b8ab206850ba3e4537a986ed5f61bfeb8bcef77 Binary files /dev/null and b/MakeItTalk/src/dataset/audio2landmark/__pycache__/audio2landmark_dataset.cpython-39.pyc differ diff --git a/MakeItTalk/src/dataset/audio2landmark/audio2landmark_dataset.py b/MakeItTalk/src/dataset/audio2landmark/audio2landmark_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..1857a3e376904b4d6de91bae8b7afff04a99515d --- /dev/null +++ b/MakeItTalk/src/dataset/audio2landmark/audio2landmark_dataset.py @@ -0,0 +1,283 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import torch.utils.data as data +import torch +import numpy as np +import os +import pickle +import random +from util.icp import icp +from scipy.spatial.transform import Rotation as R + +STD_FACE_LANDMARK_FILE_DIR = 'src/dataset/utils/STD_FACE_LANDMARKS.txt' + + +class Audio2landmark_Dataset(data.Dataset): + + def __init__(self, dump_dir, dump_name, num_window_frames, num_window_step, status): + self.dump_dir = dump_dir + self.num_window_frames = num_window_frames + self.num_window_step = num_window_step + + # Step 1 : load A / V data from dump files + print('Loading Data {}_{}'.format(dump_name, status)) + + with open(os.path.join(self.dump_dir, '{}_{}_au.pickle'.format(dump_name, status)), 'rb') as fp: + self.au_data = pickle.load(fp) + with open(os.path.join(self.dump_dir, '{}_{}_fl.pickle'.format(dump_name, status)), 'rb') as fp: + self.fl_data = pickle.load(fp) + + valid_idx = list(range(len(self.au_data))) + + random.seed(0) + random.shuffle(valid_idx) + self.fl_data = [self.fl_data[i] for i in valid_idx] + self.au_data = [self.au_data[i] for i in valid_idx] + + au_mean_std = np.loadtxt('src/dataset/utils/MEAN_STD_AUTOVC_RETRAIN_MEL_AU.txt') + au_mean, au_std = au_mean_std[0:au_mean_std.shape[0]//2], au_mean_std[au_mean_std.shape[0]//2:] + + self.au_data = [((au - au_mean) / au_std, info) for au, info in self.au_data] + + + def __len__(self): + return len(self.fl_data) + + def __getitem__(self, item): + # print('-> get item {}: {} {}'.format(item, self.fl_data[item][1][0], self.fl_data[item][1][1])) + return self.fl_data[item], self.au_data[item] + + def my_collate_in_segments(self, batch): + fls, aus, embs = [], [], [] + for fl, au in batch: + fl_data, au_data, emb_data = fl[0], au[0], au[1][2] + assert (fl_data.shape[0] == au_data.shape[0]) + + fl_data = torch.tensor(fl_data, dtype=torch.float, requires_grad=False) + au_data = torch.tensor(au_data, dtype=torch.float, requires_grad=False) + emb_data = torch.tensor(emb_data, dtype=torch.float, requires_grad=False) + + # window shift data + fls += [fl_data[i:i + self.num_window_frames] + for i in range(0, fl_data.shape[0] - self.num_window_frames, self.num_window_step)] + aus += [au_data[i:i + self.num_window_frames] + for i in range(0, au_data.shape[0] - self.num_window_frames, self.num_window_step)] + embs += [emb_data] * ((au_data.shape[0] - self.num_window_frames) // self.num_window_step) + + fls = torch.stack(fls, dim=0) + aus = torch.stack(aus, dim=0) + embs = torch.stack(embs, dim=0) + + return fls, aus, embs + + def my_collate_in_segments_noemb(self, batch): + fls, aus = [], [] + for fl, au in batch: + fl_data, au_data = fl[0], au[0] + assert (fl_data.shape[0] == au_data.shape[0]) + + fl_data = torch.tensor(fl_data, dtype=torch.float, requires_grad=False) + au_data = torch.tensor(au_data, dtype=torch.float, requires_grad=False) + + # window shift data + fls += [fl_data[i:i + self.num_window_frames] # - fl_data[i] + for i in range(0, fl_data.shape[0] - self.num_window_frames, self.num_window_step)] + aus += [au_data[i:i + self.num_window_frames] + for i in range(0, au_data.shape[0] - self.num_window_frames, self.num_window_step)] + + fls = torch.stack(fls, dim=0) + aus = torch.stack(aus, dim=0) + + return fls, aus + + +def estimate_neck(fl): + mid_ch = (fl[2, :] + fl[14, :]) * 0.5 + return (mid_ch * 2 - fl[33, :]).reshape(1, 3) + +def norm_output_fls_rot(fl_data_i, anchor_t_shape=None): + + # fl_data_i = savgol_filter(fl_data_i, 21, 3, axis=0) + + t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45) + if(anchor_t_shape is None): + anchor_t_shape = np.loadtxt( + r'src/dataset/utils/ANCHOR_T_SHAPE_{}.txt'.format(len(t_shape_idx))) + s = np.abs(anchor_t_shape[5, 0] - anchor_t_shape[8, 0]) + anchor_t_shape = anchor_t_shape / s * 1.0 + c2 = np.mean(anchor_t_shape[[4,5,8], :], axis=0) + anchor_t_shape -= c2 + + else: + anchor_t_shape = anchor_t_shape.reshape((68, 3)) + anchor_t_shape = anchor_t_shape[t_shape_idx, :] + + fl_data_i = fl_data_i.reshape((-1, 68, 3)).copy() + + # get rot_mat + rot_quats = [] + rot_trans = [] + for i in range(fl_data_i.shape[0]): + line = fl_data_i[i] + frame_t_shape = line[t_shape_idx, :] + T, distance, itr = icp(frame_t_shape, anchor_t_shape) + rot_mat = T[:3, :3] + trans_mat = T[:3, 3:4] + + # norm to anchor + fl_data_i[i] = np.dot(rot_mat, line.T).T + trans_mat.T + + # inverse (anchor -> reat_t) + # tmp = np.dot(rot_mat.T, (anchor_t_shape - trans_mat.T).T).T + + r = R.from_matrix(rot_mat) + rot_quats.append(r.as_quat()) + # rot_eulers.append(r.as_euler('xyz')) + rot_trans.append(T[:3, :]) + + rot_quats = np.array(rot_quats) + rot_trans = np.array(rot_trans) + + return rot_trans, rot_quats, fl_data_i + +def close_face_lip(fl): + facelandmark = fl.reshape(-1, 68, 3) + from util.geo_math import area_of_polygon + min_area_lip, idx = 999, 0 + for i, fls in enumerate(facelandmark): + area_of_mouth = area_of_polygon(fls[list(range(60, 68)), 0:2]) + if (area_of_mouth < min_area_lip): + min_area_lip = area_of_mouth + idx = i + return idx + + + +class Speaker_aware_branch_Dataset(data.Dataset): + + def __init__(self, dump_dir, dump_name, num_window_frames, num_window_step, status, use_11spk_only=False, noautovc=''): + self.dump_dir = dump_dir + self.num_window_frames = num_window_frames + self.num_window_step = num_window_step + + # Step 1 : load A / V data from dump files + print('Loading Data {}_{}'.format(dump_name, status)) + + with open(os.path.join(self.dump_dir, '{}_{}_{}au.pickle'.format(dump_name, status, noautovc)), 'rb') as fp: + self.au_data = pickle.load(fp) + with open(os.path.join(self.dump_dir, '{}_{}_{}fl.pickle'.format(dump_name, status, noautovc)), 'rb') as fp: + self.fl_data = pickle.load(fp) + try: + with open(os.path.join(self.dump_dir, '{}_{}_gaze.pickle'.format(dump_name, status)), 'rb') as fp: + gaze = pickle.load(fp) + self.rot_trans = gaze['rot_trans'] + self.rot_quats = gaze['rot_quat'] + self.anchor_t_shape = gaze['anchor_t_shape'] + + # print('raw:', np.sqrt(np.sum((logm(self.rot_trans[0][0, :3, :3].dot(self.rot_trans[0][5, :3, :3].T)))**2)/2.)) + # print('axis-angle:',np.arccos((np.sum(np.trace(self.rot_trans[0][0, :3, :3].dot(self.rot_trans[0][5, :3, :3].T)))-1.)/2.)) + # print('quat:', 2 * np.arccos(np.abs(self.rot_eulers[0][0].dot(self.rot_eulers[0][5].T)))) + # exit(0) + except: + print(os.path.join(self.dump_dir, '{}_{}_gaze.pickle'.format(dump_name, status))) + print('gaze file not found') + exit(-1) + + + valid_idx = [] + for i, fl in enumerate(self.fl_data): + if(use_11spk_only): + if(fl[1][1][:-4].split('_x_')[1] in ['48uYS3bHIA8', 'E0zgrhQ0QDw', 'E_kmpT-EfOg', 'J-NPsvtQ8lE', 'Z7WRt--g-h4', '_ldiVrXgZKc', 'irx71tYyI-Q', 'sxCbrYjBsGA', 'wAAMEC1OsRc', 'W6uRNCJmdtI', 'bXpavyiCu10']): + # print(i, fl[1][1][:-4]) + valid_idx.append(i) + else: + valid_idx.append(i) + + random.seed(0) + random.shuffle(valid_idx) + self.fl_data = [self.fl_data[i] for i in valid_idx] + self.au_data = [self.au_data[i] for i in valid_idx] + self.rot_trans = [self.rot_trans[i] for i in valid_idx] + self.rot_quats = [self.rot_quats[i] for i in valid_idx] + self.anchor_t_shape = [self.anchor_t_shape[i] for i in valid_idx] + + self.t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45) + + # ''' PRODUCE gaze file for the first time ''' + # self.rot_trans = [] + # self.rot_quats = [] + # self.anchor_t_shape = [] + # + # for fl in tqdm(self.fl_data): + # fl = fl[0].reshape((-1, 68, 3)) + # rot_trans, rot_quats, anchor_t_shape = norm_output_fls_rot(fl, anchor_t_shape=None) + # self.rot_trans.append(rot_trans) + # self.rot_quats.append(rot_quats) + # self.anchor_t_shape.append(anchor_t_shape) + # + # with open(os.path.join(self.dump_dir, '{}_{}_gaze.pickle'.format(dump_name, status)), 'wb') as fp: + # gaze = {'rot_trans':self.rot_trans, 'rot_quat':self.rot_quats, 'anchor_t_shape':self.anchor_t_shape} + # pickle.dump(gaze, fp) + # print('SAVE!') + + + au_mean_std = np.loadtxt('src/dataset/utils/MEAN_STD_AUTOVC_RETRAIN_MEL_AU.txt') # np.mean(self.au_data[0][0]), np.std(self.au_data[0][0]) + au_mean, au_std = au_mean_std[0:au_mean_std.shape[0]//2], au_mean_std[au_mean_std.shape[0]//2:] + + self.au_data = [((au - au_mean) / au_std, info) for au, info in self.au_data] + + def __len__(self): + return len(self.fl_data) + + def __getitem__(self, item): + # print('-> get item {}: {} {}'.format(item, self.fl_data[item][1][0], self.fl_data[item][1][1])) + return self.fl_data[item], self.au_data[item], self.rot_trans[item], \ + self.rot_quats[item], self.anchor_t_shape[item] + + def my_collate_in_segments(self, batch): + fls, aus, embs, regist_fls, rot_trans, rot_quats = [], [], [], [], [], [] + for fl, au, rot_tran, rot_quat, anchor_t_shape in batch: + fl_data, au_data, emb_data = fl[0], au[0], au[1][2] + assert (fl_data.shape[0] == au_data.shape[0]) + + fl_data = torch.tensor(fl_data, dtype=torch.float, requires_grad=False) + au_data = torch.tensor(au_data, dtype=torch.float, requires_grad=False) + emb_data = torch.tensor(emb_data, dtype=torch.float, requires_grad=False) + + rot_tran_data = torch.tensor(rot_tran, dtype=torch.float, requires_grad=False) + minus_eye = torch.cat([torch.eye(3).unsqueeze(0), torch.zeros((1, 3, 1))], dim=2) + rot_tran_data -= minus_eye + rot_quat_data = torch.tensor(rot_quat, dtype=torch.float, requires_grad=False) + regist_fl_data = torch.tensor(anchor_t_shape, dtype=torch.float, requires_grad=False).view(-1, 204) + + # window shift data + fls += [fl_data[i:i + self.num_window_frames] #- fl_data[i] + for i in range(0, fl_data.shape[0] - self.num_window_frames, self.num_window_step)] + aus += [au_data[i:i + self.num_window_frames] + for i in range(0, au_data.shape[0] - self.num_window_frames, self.num_window_step)] + embs += [emb_data] * ((au_data.shape[0] - self.num_window_frames) // self.num_window_step) + + regist_fls += [regist_fl_data[i:i + self.num_window_frames] # - fl_data[i] + for i in range(0, regist_fl_data.shape[0] - self.num_window_frames, self.num_window_step)] + rot_trans += [rot_tran_data[i:i + self.num_window_frames] # - fl_data[i] + for i in range(0, rot_tran_data.shape[0] - self.num_window_frames, self.num_window_step)] + rot_quats += [rot_quat_data[i:i + self.num_window_frames] # - fl_data[i] + for i in range(0, rot_quat_data.shape[0] - self.num_window_frames, self.num_window_step)] + + fls = torch.stack(fls, dim=0) + aus = torch.stack(aus, dim=0) + embs = torch.stack(embs, dim=0) + + regist_fls = torch.stack(regist_fls, dim=0) + rot_trans = torch.stack(rot_trans, dim=0) + rot_quats = torch.stack(rot_quats, dim=0) + + return fls, aus, embs, regist_fls, rot_trans, rot_quats diff --git a/MakeItTalk/src/dataset/audio2landmark/audio2landmark_noautovc_dataset.py b/MakeItTalk/src/dataset/audio2landmark/audio2landmark_noautovc_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..05f0cf3fb39e137642d235cd8a0b64fcd0a365ea --- /dev/null +++ b/MakeItTalk/src/dataset/audio2landmark/audio2landmark_noautovc_dataset.py @@ -0,0 +1,306 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import torch.utils.data as data +import torch +import numpy as np +import os +import pickle +import random +from scipy.signal import savgol_filter +from util.icp import icp +from scipy.spatial.transform import Rotation as R +from tqdm import tqdm +from scipy.linalg import logm + +STD_FACE_LANDMARK_FILE_DIR = 'dataset/utils/STD_FACE_LANDMARKS.txt' + + +class Audio2landmark_Dataset(data.Dataset): + + def __init__(self, dump_dir, dump_name, num_window_frames, num_window_step, status, noautovc=''): + self.dump_dir = dump_dir + self.num_window_frames = num_window_frames + self.num_window_step = num_window_step + + # Step 1 : load A / V data from dump files + print('Loading Data {}_{}'.format(dump_name, status)) + + with open(os.path.join(self.dump_dir, '{}_{}_{}au.pickle'.format(dump_name, status, noautovc)), 'rb') as fp: + self.au_data = pickle.load(fp) + with open(os.path.join(self.dump_dir, '{}_{}_{}fl.pickle'.format(dump_name, status, noautovc)), 'rb') as fp: + self.fl_data = pickle.load(fp) + + valid_idx = list(range(len(self.au_data))) + + random.seed(0) + random.shuffle(valid_idx) + self.fl_data = [self.fl_data[i] for i in valid_idx] + self.au_data = [self.au_data[i] for i in valid_idx] + + # # normalize fls + # for i in range(len(self.fl_data)): + # shape_3d = self.fl_data[i][0].reshape((-1, 68, 3)) + # scale = np.abs(1.0 / (shape_3d[:, 36:37, 0:1] - shape_3d[:, 45:46, 0:1])) + # shift = - 0.5 * (shape_3d[:, 36:37] + shape_3d[:, 45:46]) + # shape_3d = (shape_3d + shift) * scale + # self.fl_data[i] = (shape_3d.reshape(-1, 204), self.fl_data[i][1]) + + # tmp = [au for au, info in self.au_data] + # tmp = np.concatenate(tmp, axis=0) + # au_mean, au_std = np.mean(tmp, axis=0), np.std(tmp, axis=0) + # np.savetxt('dataset/utils/MEAN_STD_NOAUTOVC_AU.txt', np.concatenate([au_mean, au_std], axis=0).reshape(-1)) + # print(tmp.shape) + # exit(0) + + + au_mean_std = np.loadtxt('dataset/utils/MEAN_STD_NOAUTOVC_AU.txt') # np.mean(self.au_data[0][0]), np.std(self.au_data[0][0]) + au_mean, au_std = au_mean_std[0:au_mean_std.shape[0]//2], au_mean_std[au_mean_std.shape[0]//2:] + + self.au_data = [((au - au_mean) / au_std, info) for au, info in self.au_data] + + + def __len__(self): + return len(self.fl_data) + + def __getitem__(self, item): + # print('-> get item {}: {} {}'.format(item, self.fl_data[item][1][0], self.fl_data[item][1][1])) + return self.fl_data[item], self.au_data[item] + + def my_collate_in_segments(self, batch): + fls, aus, embs = [], [], [] + for fl, au in batch: + fl_data, au_data, emb_data = fl[0], au[0], au[1][2] + assert (fl_data.shape[0] == au_data.shape[0]) + + fl_data = torch.tensor(fl_data, dtype=torch.float, requires_grad=False) + au_data = torch.tensor(au_data, dtype=torch.float, requires_grad=False) + emb_data = torch.tensor(emb_data, dtype=torch.float, requires_grad=False) + + # window shift data + fls += [fl_data[i:i + self.num_window_frames] #- fl_data[i] + for i in range(0, fl_data.shape[0] - self.num_window_frames, self.num_window_step)] + aus += [au_data[i:i + self.num_window_frames] + for i in range(0, au_data.shape[0] - self.num_window_frames, self.num_window_step)] + embs += [emb_data] * ((au_data.shape[0] - self.num_window_frames) // self.num_window_step) + + # fls = torch.tensor(fls, dtype=torch.float, requires_grad=False) + # aus = torch.tensor(aus, dtype=torch.float, requires_grad=False) + # embs = torch.tensor(embs, dtype=torch.float, requires_grad=False) + + fls = torch.stack(fls, dim=0) + aus = torch.stack(aus, dim=0) + embs = torch.stack(embs, dim=0) + + return fls, aus, embs + + def my_collate_in_segments_noemb(self, batch): + fls, aus, embs = [], [], [] + for fl, au in batch: + fl_data, au_data = fl[0], au[0] + assert (fl_data.shape[0] == au_data.shape[0]) + + fl_data = torch.tensor(fl_data, dtype=torch.float, requires_grad=False) + au_data = torch.tensor(au_data, dtype=torch.float, requires_grad=False) + + # window shift data + fls += [fl_data[i:i + self.num_window_frames] # - fl_data[i] + for i in range(0, fl_data.shape[0] - self.num_window_frames, self.num_window_step)] + aus += [au_data[i:i + self.num_window_frames] + for i in range(0, au_data.shape[0] - self.num_window_frames, self.num_window_step)] + + fls = torch.stack(fls, dim=0) + aus = torch.stack(aus, dim=0) + + return fls, aus + + +def estimate_neck(fl): + mid_ch = (fl[2, :] + fl[14, :]) * 0.5 + return (mid_ch * 2 - fl[33, :]).reshape(1, 3) + +def norm_output_fls_rot(fl_data_i, anchor_t_shape=None): + + # fl_data_i = savgol_filter(fl_data_i, 21, 3, axis=0) + + t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45) + if(anchor_t_shape is None): + anchor_t_shape = np.loadtxt( + r'dataset/utils/ANCHOR_T_SHAPE_{}.txt'.format(len(t_shape_idx))) + s = np.abs(anchor_t_shape[5, 0] - anchor_t_shape[8, 0]) + anchor_t_shape = anchor_t_shape / s * 1.0 + c2 = np.mean(anchor_t_shape[[4,5,8], :], axis=0) + anchor_t_shape -= c2 + + else: + anchor_t_shape = anchor_t_shape.reshape((68, 3)) + anchor_t_shape = anchor_t_shape[t_shape_idx, :] + + fl_data_i = fl_data_i.reshape((-1, 68, 3)).copy() + + # get rot_mat + rot_quats = [] + rot_trans = [] + for i in range(fl_data_i.shape[0]): + line = fl_data_i[i] + frame_t_shape = line[t_shape_idx, :] + T, distance, itr = icp(frame_t_shape, anchor_t_shape) + rot_mat = T[:3, :3] + trans_mat = T[:3, 3:4] + + # norm to anchor + fl_data_i[i] = np.dot(rot_mat, line.T).T + trans_mat.T + + # inverse (anchor -> reat_t) + # tmp = np.dot(rot_mat.T, (anchor_t_shape - trans_mat.T).T).T + + r = R.from_matrix(rot_mat) + rot_quats.append(r.as_quat()) + # rot_eulers.append(r.as_euler('xyz')) + rot_trans.append(T[:3, :]) + + rot_quats = np.array(rot_quats) + rot_trans = np.array(rot_trans) + + return rot_trans, rot_quats, fl_data_i + +def close_face_lip(fl): + facelandmark = fl.reshape(-1, 68, 3) + from util.geo_math import area_of_polygon + min_area_lip, idx = 999, 0 + for i, fls in enumerate(facelandmark): + area_of_mouth = area_of_polygon(fls[list(range(60, 68)), 0:2]) + if (area_of_mouth < min_area_lip): + min_area_lip = area_of_mouth + idx = i + return idx + + + +class Speaker_aware_branch_Dataset(data.Dataset): + + def __init__(self, dump_dir, dump_name, num_window_frames, num_window_step, status, use_11spk_only=False, noautovc=''): + self.dump_dir = dump_dir + self.num_window_frames = num_window_frames + self.num_window_step = num_window_step + + # Step 1 : load A / V data from dump files + print('Loading Data {}_{}'.format(dump_name, status)) + + with open(os.path.join(self.dump_dir, '{}_{}_{}au.pickle'.format(dump_name, status, noautovc)), 'rb') as fp: + self.au_data = pickle.load(fp) + with open(os.path.join(self.dump_dir, '{}_{}_{}fl.pickle'.format(dump_name, status, noautovc)), 'rb') as fp: + self.fl_data = pickle.load(fp) + try: + with open(os.path.join(self.dump_dir, '{}_{}_gaze.pickle'.format(dump_name, status)), 'rb') as fp: + gaze = pickle.load(fp) + self.rot_trans = gaze['rot_trans'] + self.rot_quats = gaze['rot_quat'] + self.anchor_t_shape = gaze['anchor_t_shape'] + + # print('raw:', np.sqrt(np.sum((logm(self.rot_trans[0][0, :3, :3].dot(self.rot_trans[0][5, :3, :3].T)))**2)/2.)) + # print('axis-angle:',np.arccos((np.sum(np.trace(self.rot_trans[0][0, :3, :3].dot(self.rot_trans[0][5, :3, :3].T)))-1.)/2.)) + # print('quat:', 2 * np.arccos(np.abs(self.rot_eulers[0][0].dot(self.rot_eulers[0][5].T)))) + # exit(0) + except: + print(os.path.join(self.dump_dir, '{}_{}_gaze.pickle'.format(dump_name, status))) + print('gaze file not found') + exit(-1) + + + valid_idx = [] + for i, fl in enumerate(self.fl_data): + if(use_11spk_only): + if(fl[1][1][:-4].split('_x_')[1] in ['48uYS3bHIA8', 'E0zgrhQ0QDw', 'E_kmpT-EfOg', 'J-NPsvtQ8lE', 'Z7WRt--g-h4', '_ldiVrXgZKc', 'irx71tYyI-Q', 'sxCbrYjBsGA', 'wAAMEC1OsRc', 'W6uRNCJmdtI', 'bXpavyiCu10']): + # print(i, fl[1][1][:-4]) + valid_idx.append(i) + else: + valid_idx.append(i) + + random.seed(0) + random.shuffle(valid_idx) + self.fl_data = [self.fl_data[i] for i in valid_idx] + self.au_data = [self.au_data[i] for i in valid_idx] + self.rot_trans = [self.rot_trans[i] for i in valid_idx] + self.rot_quats = [self.rot_quats[i] for i in valid_idx] + self.anchor_t_shape = [self.anchor_t_shape[i] for i in valid_idx] + + self.t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45) + + # ''' PRODUCE gaze file for the first time ''' + # self.rot_trans = [] + # self.rot_quats = [] + # self.anchor_t_shape = [] + # + # for fl in tqdm(self.fl_data): + # fl = fl[0].reshape((-1, 68, 3)) + # rot_trans, rot_quats, anchor_t_shape = norm_output_fls_rot(fl, anchor_t_shape=None) + # self.rot_trans.append(rot_trans) + # self.rot_quats.append(rot_quats) + # self.anchor_t_shape.append(anchor_t_shape) + # + # with open(os.path.join(self.dump_dir, '{}_{}_gaze.pickle'.format(dump_name, status)), 'wb') as fp: + # gaze = {'rot_trans':self.rot_trans, 'rot_quat':self.rot_quats, 'anchor_t_shape':self.anchor_t_shape} + # pickle.dump(gaze, fp) + # print('SAVE!') + + + au_mean_std = np.loadtxt('dataset/utils/MEAN_STD_AUTOVC_RETRAIN_MEL_AU.txt') # np.mean(self.au_data[0][0]), np.std(self.au_data[0][0]) + au_mean, au_std = au_mean_std[0:au_mean_std.shape[0]//2], au_mean_std[au_mean_std.shape[0]//2:] + + self.au_data = [((au - au_mean) / au_std, info) for au, info in self.au_data] + + def __len__(self): + return len(self.fl_data) + + def __getitem__(self, item): + # print('-> get item {}: {} {}'.format(item, self.fl_data[item][1][0], self.fl_data[item][1][1])) + return self.fl_data[item], self.au_data[item], self.rot_trans[item], \ + self.rot_quats[item], self.anchor_t_shape[item] + + def my_collate_in_segments(self, batch): + fls, aus, embs, regist_fls, rot_trans, rot_quats = [], [], [], [], [], [] + for fl, au, rot_tran, rot_quat, anchor_t_shape in batch: + fl_data, au_data, emb_data = fl[0], au[0], au[1][2] + assert (fl_data.shape[0] == au_data.shape[0]) + + fl_data = torch.tensor(fl_data, dtype=torch.float, requires_grad=False) + au_data = torch.tensor(au_data, dtype=torch.float, requires_grad=False) + emb_data = torch.tensor(emb_data, dtype=torch.float, requires_grad=False) + + rot_tran_data = torch.tensor(rot_tran, dtype=torch.float, requires_grad=False) + minus_eye = torch.cat([torch.eye(3).unsqueeze(0), torch.zeros((1, 3, 1))], dim=2) + rot_tran_data -= minus_eye + rot_quat_data = torch.tensor(rot_quat, dtype=torch.float, requires_grad=False) + regist_fl_data = torch.tensor(anchor_t_shape, dtype=torch.float, requires_grad=False).view(-1, 204) + + # window shift data + fls += [fl_data[i:i + self.num_window_frames] #- fl_data[i] + for i in range(0, fl_data.shape[0] - self.num_window_frames, self.num_window_step)] + aus += [au_data[i:i + self.num_window_frames] + for i in range(0, au_data.shape[0] - self.num_window_frames, self.num_window_step)] + embs += [emb_data] * ((au_data.shape[0] - self.num_window_frames) // self.num_window_step) + + regist_fls += [regist_fl_data[i:i + self.num_window_frames] # - fl_data[i] + for i in range(0, regist_fl_data.shape[0] - self.num_window_frames, self.num_window_step)] + rot_trans += [rot_tran_data[i:i + self.num_window_frames] # - fl_data[i] + for i in range(0, rot_tran_data.shape[0] - self.num_window_frames, self.num_window_step)] + rot_quats += [rot_quat_data[i:i + self.num_window_frames] # - fl_data[i] + for i in range(0, rot_quat_data.shape[0] - self.num_window_frames, self.num_window_step)] + + fls = torch.stack(fls, dim=0) + aus = torch.stack(aus, dim=0) + embs = torch.stack(embs, dim=0) + + regist_fls = torch.stack(regist_fls, dim=0) + rot_trans = torch.stack(rot_trans, dim=0) + rot_quats = torch.stack(rot_quats, dim=0) + + return fls, aus, embs, regist_fls, rot_trans, rot_quats diff --git a/MakeItTalk/src/dataset/image_translation/README.md b/MakeItTalk/src/dataset/image_translation/README.md new file mode 100644 index 0000000000000000000000000000000000000000..5e3b086154bb21695780a730636ad2d3bf705b6c --- /dev/null +++ b/MakeItTalk/src/dataset/image_translation/README.md @@ -0,0 +1,12 @@ +## Dataset + +- VoxCeleb2 - train split + +## Landmark extraction with FANet + +- function: landmark_extraction() + +## Offline raster/frame data preparation + +- function: landmark_image_to_data() +--> too slow, will do this in dataloader with an online version \ No newline at end of file diff --git a/MakeItTalk/src/dataset/image_translation/__init__.py b/MakeItTalk/src/dataset/image_translation/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..7f3999734455352473532ef25cddf059eb5baee3 --- /dev/null +++ b/MakeItTalk/src/dataset/image_translation/__init__.py @@ -0,0 +1,10 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + diff --git a/MakeItTalk/src/dataset/image_translation/__pycache__/__init__.cpython-37.pyc b/MakeItTalk/src/dataset/image_translation/__pycache__/__init__.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7d3ccb698b7faf6fa001d02b71da32eb9ec2ebaa Binary files /dev/null and b/MakeItTalk/src/dataset/image_translation/__pycache__/__init__.cpython-37.pyc differ diff --git a/MakeItTalk/src/dataset/image_translation/__pycache__/__init__.cpython-39.pyc b/MakeItTalk/src/dataset/image_translation/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eaac27e8fb8d9abc4793d4aa67902ec13a988229 Binary files /dev/null and b/MakeItTalk/src/dataset/image_translation/__pycache__/__init__.cpython-39.pyc differ diff --git a/MakeItTalk/src/dataset/image_translation/__pycache__/data_preparation.cpython-37.pyc b/MakeItTalk/src/dataset/image_translation/__pycache__/data_preparation.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9b6ca97c4482072a2e62c335235378b5aac109c7 Binary files /dev/null and b/MakeItTalk/src/dataset/image_translation/__pycache__/data_preparation.cpython-37.pyc differ diff --git a/MakeItTalk/src/dataset/image_translation/__pycache__/data_preparation.cpython-39.pyc b/MakeItTalk/src/dataset/image_translation/__pycache__/data_preparation.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4be5b20f7b0e2ceb155718cff79ea7319ec9a54a Binary files /dev/null and b/MakeItTalk/src/dataset/image_translation/__pycache__/data_preparation.cpython-39.pyc differ diff --git a/MakeItTalk/src/dataset/image_translation/__pycache__/image_translation_dataset.cpython-37.pyc b/MakeItTalk/src/dataset/image_translation/__pycache__/image_translation_dataset.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a32215630574beff28fef492df2e939f456f2261 Binary files /dev/null and b/MakeItTalk/src/dataset/image_translation/__pycache__/image_translation_dataset.cpython-37.pyc differ diff --git a/MakeItTalk/src/dataset/image_translation/__pycache__/image_translation_dataset.cpython-39.pyc b/MakeItTalk/src/dataset/image_translation/__pycache__/image_translation_dataset.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dcb5fc2780bb97c0bd64b48a59e9ec2186055131 Binary files /dev/null and b/MakeItTalk/src/dataset/image_translation/__pycache__/image_translation_dataset.cpython-39.pyc differ diff --git a/MakeItTalk/src/dataset/image_translation/data_preparation.py b/MakeItTalk/src/dataset/image_translation/data_preparation.py new file mode 100644 index 0000000000000000000000000000000000000000..8cc4d5945e13b268e1f3ee7df9de3673fadeec27 --- /dev/null +++ b/MakeItTalk/src/dataset/image_translation/data_preparation.py @@ -0,0 +1,266 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import os, glob, time, sys +import numpy as np +import cv2 +from src.dataset.utils.Av2Flau_Convertor import Av2Flau_Convertor +import platform + +if platform.release() == '4.4.0-83-generic': + src_dir = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2_imagetranslation/raw_fl3d' + mp4_dir = r'/mnt/ntfs/Dataset/VoxCeleb2/train_set/dev/mp4' +else: + src_dir = r'/mnt/nfs/work1/kalo/yangzhou/VoxCeleb2/train_set/dev/mp4' + out_dir = r'/mnt/nfs/scratch1/yangzhou/VoxCeleb2_compressed_imagetranslation' + +def landmark_extraction(si, ei): + ''' + + :param si: start index + :param ei: end index + :return: save extracted landmarks to out_dir + ''' + + for folder_name in ['raw_wav', 'raw_fl3d', 'register_fl3d', 'dump', 'tmp_v', 'nn_result', 'ckpt', 'log']: + try: + os.mkdir(os.path.join(out_dir, folder_name)) + except: + pass + + + if(not os.path.isfile(os.path.join(out_dir, 'filename_index_new.txt'))): + # generate all file list + + clip_len_count = [0] * 500 + id_clip_list = [] + + ids = glob.glob1(src_dir, '*') + ids.sort() + for id in ids: + print(id) + clips = glob.glob1(os.path.join(src_dir, id), '*') + clips.sort() + for clip in clips: + videos = glob.glob1(os.path.join(src_dir, id, clip), '*.mp4') + clip_len_count[len(videos)] +=1 + # if(len(videos) > 10 and len(videos) < 30): + # id_clip_list.append((id, clip)) + id_clip_list.append((id, clip)) + + print(clip_len_count) + print(len(id_clip_list)) + + files = [] + for id, clip in id_clip_list: + cur_src_dir = os.path.join(src_dir, id, clip) + cur_files = glob.glob1(cur_src_dir, '*.mp4') + + cur_files = np.random.permutation(cur_files)[0:1] + + cur_files = ['{}_x_{}_x_{}'.format(id, clip, f) for f in cur_files] + + files += cur_files + + with open(os.path.join(out_dir, 'filename_index_new.txt'), 'w') as f: + for i, file in enumerate(files): + f.write('{} {}\n'.format(i, file)) + else: + with open(os.path.join(out_dir, 'filename_index_new.txt'), 'r') as f: + lines = f.readlines() + + print(sys.argv) + for line in lines[si:ei]: + st = time.time() + idx, file = int(line.split(' ')[0]), line.split(' ')[1][:-1] + + # # check if exists + # video_dir = os.path.join(src_dir, file) + # if ('\\' in video_dir): + # video_name = video_dir.split('\\')[-1] + # else: + # video_name = video_dir.split('/')[-1] + # save_name = os.path.join(out_dir.replace('VoxCeleb2_compressed_imagetranslation', + # 'VoxCeleb2_imagetranslation'), + # 'raw_fl3d/fan_{:05d}_{}_3d.txt'.format(idx, video_name[:-4])) + # if(os.path.isfile(save_name)): + # print('==> File {} {} exist, just copy'.format(idx, video_name[:-4])) + # shutil.copy(save_name, + # os.path.join(out_dir, 'raw_fl3d/fan_{:05d}_{}_3d.txt'.format(idx, video_name[:-4]))) + # continue + + c = Av2Flau_Convertor(video_dir=os.path.join(src_dir, file), + out_dir=out_dir, idx=idx) + c.convert() # (save_audio=False, register=False, show=False) + print('Idx: {}, Processed time (min): {}'.format(idx, (time.time() - st) / 60.0)) + +def landmark_image_to_data(si, ei, show=False): + ''' + DROPPED DUE TO LARGE DISK SPACE CONSUME + :param si: + :param ei: + :param show: + :return: + ''' + # load landmark + print(src_dir) + fls_filenames = glob.glob1(src_dir, '*') + print(fls_filenames) + pf = {} + + for i, fls_filename in enumerate(fls_filenames): + + fls = np.loadtxt(os.path.join(src_dir, fls_filename)) + print(i, '/', len(fls_filenames), fls.shape) + + mp4_filename = fls_filename[:-4].split('_x_') + mp4_id = mp4_filename[0].split('_')[-1] + mp4_vname = mp4_filename[1] + mp4_vid = mp4_filename[2][:-3] + print(mp4_id, mp4_vname, mp4_vid) + video_dir = os.path.join(mp4_dir, mp4_id, mp4_vname, mp4_vid+'.mp4') + print('video_dir : ' + video_dir) + video = cv2.VideoCapture(video_dir) + if (video.isOpened() == False): + print('Unable to open video file') + exit(0) + + if(show==True): + length = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) + fps = video.get(cv2.CAP_PROP_FPS) + w = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) + h = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) + print('Process Video {}, len: {}, FPS: {:.2f}, W X H: {} x {}'.format(video_dir, length, fps, w, h)) + writer = cv2.VideoWriter('a.mp4', cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps, (512, 256)) + + # skip first several frames due to landmark extraction + start_idx = fls[0, 0].astype(int) + print('Skip beginning # {} frames'.format(start_idx)) + + for _ in range(start_idx): + ret, img_video = video.read() + + # save video and landmark in parallel + for j in range(fls.shape[0]): + img_fl = np.ones(shape=(224, 224, 3)) * 255 + idx = fls[j, 0] + fl = fls[j, 1:].astype(int) + img_fl = vis_landmark_on_img(img_fl, np.reshape(fl, (68, 3))) + + ret, img_video = video.read() + + frame = np.concatenate((img_fl, img_video), axis=1) + frame = cv2.resize(frame, (512, 256)) + writer.write(frame.astype(np.uint8)) + + video.release() + writer.release() + cv2.destroyAllWindows() + + exit(0) + + else: + # skip first several frames due to landmark extraction + start_idx = fls[0, 0].astype(int) + print('Skip beginning # {} frames'.format(start_idx)) + for _ in range(start_idx): + ret, img_video = video.read() + + # save video and landmark in parallel + frames = [] + for j in range(fls.shape[0]): + img_fl = np.ones(shape=(224, 224, 3)) * 255 + idx = fls[j, 0] + fl = fls[j, 1:].astype(int) + img_fl = vis_landmark_on_img(img_fl, np.reshape(fl, (68, 3))) + + ret, img_video = video.read() + + frame = np.concatenate((img_fl, img_video), axis=2) + frame = cv2.resize(frame, (256, 256)) # 256 x 256 6 + frames.append(frame) + frames = np.stack(frames, axis=0).astype(int) # N x 256 x 256 x 6 + pf[fls_filename] = frames + + # save to pickle file + # with open('train_data.pickle', 'wb') as handle: + # pickle.dump(pf, handle) + + +def vis_landmark_on_img(img, shape, linewidth=2): + ''' + Visualize landmark on images. + ''' + + def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth): + for i in idx_list: + cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth) + if (loop): + cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]), + (shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth) + + draw_curve(list(range(0, 16)), color=(255, 144, 25)) # jaw + draw_curve(list(range(17, 21)), color=(50, 205, 50)) # eye brow + draw_curve(list(range(22, 26)), color=(50, 205, 50)) + draw_curve(list(range(27, 35)), color=(208, 224, 63)) # nose + draw_curve(list(range(36, 41)), loop=True, color=(71, 99, 255)) # eyes + draw_curve(list(range(42, 47)), loop=True, color=(71, 99, 255)) + draw_curve(list(range(48, 59)), loop=True, color=(238, 130, 238)) # mouth + draw_curve(list(range(60, 67)), loop=True, color=(238, 130, 238)) + + return img + + +def vis_landmark_on_img98(img, shape, linewidth=2): + ''' + Visualize landmark on images. + ''' + + def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth): + for i in idx_list: + cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth) + if (loop): + cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]), + (shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth) + + draw_curve(list(range(0, 32)), color=(255, 144, 25)) # jaw + draw_curve(list(range(33, 41)), color=(50, 205, 50), loop=True) # eye brow + draw_curve(list(range(42, 50)), color=(50, 205, 50), loop=True) + draw_curve(list(range(51, 59)), color=(208, 224, 63)) # nose + draw_curve(list(range(60, 67)), loop=True, color=(71, 99, 255)) # eyes + draw_curve(list(range(68, 75)), loop=True, color=(71, 99, 255)) + draw_curve(list(range(76, 87)), loop=True, color=(238, 130, 238)) # mouth + draw_curve(list(range(88, 95)), loop=True, color=(238, 130, 238)) + + return img + + +def vis_landmark_on_img74(img, shape, linewidth=2): + ''' + Visualize landmark on images. + ''' + + def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth): + for i in idx_list: + cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth) + if (loop): + cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]), + (shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth) + + draw_curve(list(range(0, 16)), color=(255, 144, 25)) # jaw + draw_curve(list(range(17, 21)), color=(50, 205, 50), loop=False) # eye brow + draw_curve(list(range(22, 26)), color=(50, 205, 50), loop=False) + draw_curve(list(range(27, 35)), color=(208, 224, 63)) # nose + draw_curve(list(range(36, 43)), loop=True, color=(71, 99, 255)) # eyes + draw_curve(list(range(44, 51)), loop=True, color=(71, 99, 255)) + draw_curve(list(range(52, 63)), loop=True, color=(238, 130, 238)) # mouth + draw_curve(list(range(64, 71)), loop=True, color=(238, 130, 238)) + + return img \ No newline at end of file diff --git a/MakeItTalk/src/dataset/image_translation/data_preparation_with_preprocessing.py b/MakeItTalk/src/dataset/image_translation/data_preparation_with_preprocessing.py new file mode 100644 index 0000000000000000000000000000000000000000..ee8828fc63e49c7285699518991bb6338e98f013 --- /dev/null +++ b/MakeItTalk/src/dataset/image_translation/data_preparation_with_preprocessing.py @@ -0,0 +1,54 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import os, glob, time, sys +from src.dataset.utils.Av2Flau_Convertor import Av2Flau_Convertor + +out_dir = r'/mnt/nfs/scratch1/yangzhou/PreprocessedVox_imagetranslation' +src_dir = r'/mnt/nfs/scratch1/yangzhou/vox_p3/train' + +''' Step 1. Data preparation ''' +# landmark extraction +# landmark_extraction(int(sys.argv[1]), int(sys.argv[2])) + +def landmark_extraction(si, ei): + ''' + + :param si: start index + :param ei: end index + :return: save extracted landmarks to out_dir + ''' + + for folder_name in ['raw_wav', 'raw_fl3d', 'register_fl3d', 'dump', 'tmp_v', 'nn_result', 'ckpt', 'log']: + try: + os.mkdir(os.path.join(out_dir, folder_name)) + except: + pass + + + if(not os.path.isfile(os.path.join(out_dir, 'filename_index.txt'))): + # generate all file list + files = glob.glob1(src_dir, '*.mp4') + with open(os.path.join(out_dir, 'filename_index.txt'), 'w') as f: + for i, file in enumerate(files): + f.write('{} {}\n'.format(i, file)) + else: + with open(os.path.join(out_dir, 'filename_index.txt'), 'r') as f: + lines = f.readlines() + + print(sys.argv) + for line in lines[si:ei]: + st = time.time() + idx, file = int(line.split(' ')[0]), line.split(' ')[1][:-1] + + c = Av2Flau_Convertor(video_dir=os.path.join(src_dir, file), + out_dir=out_dir, idx=idx) + c.convert(show=False) # (save_audio=False, register=False, show=False) + print('Idx: {}, Processed time (min): {}'.format(idx, (time.time() - st) / 60.0)) diff --git a/MakeItTalk/src/dataset/image_translation/image_translation_dataset.py b/MakeItTalk/src/dataset/image_translation/image_translation_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..caf98862c07b5d139fb555d580cbbabb2e9929fc --- /dev/null +++ b/MakeItTalk/src/dataset/image_translation/image_translation_dataset.py @@ -0,0 +1,950 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import torch.utils.data as data +import os, glob, platform +import numpy as np +import cv2 +import torch +from src.dataset.image_translation.data_preparation import vis_landmark_on_img, vis_landmark_on_img98, vis_landmark_on_img74 +from torch.utils.data.dataloader import default_collate + +from thirdparty.AdaptiveWingLoss.utils.utils import get_preds_fromhm + +from scipy.io import wavfile as wav +from scipy.signal import stft + + +class image_translation_raw_dataset(data.Dataset): + + def __init__(self, num_frames=16): + + if platform.release() == '4.4.0-83-generic': # stargazer + self.src_dir = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2_imagetranslation/raw_fl3d' + self.mp4_dir = r'/mnt/ntfs/Dataset/VoxCeleb2/train_set/dev/mp4' + else: # gypsum + self.src_dir = r'/mnt/nfs/scratch1/yangzhou/VoxCeleb2_compressed_imagetranslation/raw_fl3d' # raw vox with 1 per vid + self.mp4_dir = r'/mnt/nfs/work1/kalo/yangzhou/VoxCeleb2/train_set/dev/mp4' + + self.fls_filenames = glob.glob1(self.src_dir, '*') + self.num_random_frames = num_frames + 1 + + print(os.name, len(self.fls_filenames)) + + def __len__(self): + return len(self.fls_filenames) + + def __getitem__(self, item): + + fls_filename = self.fls_filenames[item] + + # load landmark file + fls = np.loadtxt(os.path.join(self.src_dir, fls_filename)) + + # load mp4 file + # ================= raw VOX version ================================ + mp4_filename = fls_filename[:-4].split('_x_') + mp4_id = mp4_filename[0].split('_')[-1] + mp4_vname = mp4_filename[1] + mp4_vid = mp4_filename[2][:-3] + video_dir = os.path.join(self.mp4_dir, mp4_id, mp4_vname, mp4_vid + '.mp4') + # print('============================\nvideo_dir : ' + video_dir, item) + # ====================================================================== + + video = cv2.VideoCapture(video_dir) + if (video.isOpened() == False): + print('Unable to open video file') + exit(0) + + # skip first several frames due to landmark extraction + start_idx = (fls[0, 0]).astype(int) + for _ in range(start_idx): + ret, img_video = video.read() + + # save video and landmark in parallel + frames = [] + random_frame_indices = np.random.permutation(fls.shape[0]-2)[0:self.num_random_frames] + + for j in range(int(fls.shape[0])): + ret, img_video = video.read() + + if(j in random_frame_indices): + img_fl = np.ones(shape=(224, 224, 3)) * 255 + idx = fls[j, 0] + fl = fls[j, 1:].astype(int) + + img_fl = vis_landmark_on_img(img_fl, np.reshape(fl, (68, 3))) + + frame = np.concatenate((img_fl, img_video), axis=2) + frame = cv2.resize(frame, (256, 256)) # 256 x 256 6 + frames.append(frame) + + frames = np.stack(frames, axis=0).astype(np.float32)/255.0 # N x 256 x 256 x 6 + + image_in = np.concatenate([frames[0:-1, :, :, 0:3], frames[1:, :, :, 3:6]], axis=3) + image_out = frames[0:-1, :, :, 3:6] + + image_in, image_out = np.swapaxes(image_in, 1, 3), np.swapaxes(image_out, 1, 3) + + return image_in, image_out + + def my_collate(self, batch): + batch = filter(lambda x:x is not None, batch) + return default_collate(batch) + +class image_translation_raw74_dataset(data.Dataset): + + def __init__(self, num_frames=16): + + if platform.release() == '4.4.0-83-generic': # stargazer + self.src_dir = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2_imagetranslation/raw_fl3d' + self.mp4_dir = r'/mnt/ntfs/Dataset/VoxCeleb2/train_set/dev/mp4' + else: # gypsum + self.src_dir = r'/mnt/nfs/scratch1/yangzhou/VoxCeleb2_compressed_imagetranslation/raw_fl3d' # raw vox with 1 per vid + self.mp4_dir = r'/mnt/nfs/work1/kalo/yangzhou/VoxCeleb2/train_set/dev/mp4' + + self.fls_filenames = glob.glob1(self.src_dir, '*') + self.num_random_frames = num_frames + 1 + + print(os.name, len(self.fls_filenames)) + + def __len__(self): + return len(self.fls_filenames) + + def __getitem__(self, item): + + fls_filename = self.fls_filenames[item] + + # load landmark file + fls = np.loadtxt(os.path.join(self.src_dir, fls_filename)) + + # load mp4 file + # ================= raw VOX version ================================ + mp4_filename = fls_filename[:-4].split('_x_') + mp4_id = mp4_filename[0].split('_')[-1] + mp4_vname = mp4_filename[1] + mp4_vid = mp4_filename[2][:-3] + video_dir = os.path.join(self.mp4_dir, mp4_id, mp4_vname, mp4_vid + '.mp4') + # print('============================\nvideo_dir : ' + video_dir, item) + # ====================================================================== + + video = cv2.VideoCapture(video_dir) + if (video.isOpened() == False): + print('Unable to open video file') + exit(0) + + # skip first several frames due to landmark extraction + start_idx = (fls[0, 0]).astype(int) + for _ in range(start_idx): + ret, img_video = video.read() + + # save video and landmark in parallel + frames = [] + fan_predict_landmarks = [] + random_frame_indices = np.random.permutation(fls.shape[0]-2)[0:self.num_random_frames] + + for j in range(int(fls.shape[0])): + ret, img_video = video.read() + + if(j in random_frame_indices): + fl = fls[j, 1:] / 224. * 256. + fan_predict_landmarks.append(np.reshape(fl, (68, 3))) + + img_video = cv2.resize(img_video, (256, 256)) + frames.append(img_video.transpose((2, 0, 1))) + + fan_predict_landmarks = np.stack(fan_predict_landmarks, axis=0) + frames = np.stack(frames, axis=0).astype(np.float32) / 255.0 + + image_in = frames[1:, :, :] + image_out = frames[0:-1, :, :] # N x 3 x 256 x 256 + + return image_in, image_out, fan_predict_landmarks[0:-1] + + def my_collate(self, batch): + batch = filter(lambda x:x is not None, batch) + return default_collate(batch) + +class image_translation_raw_test_dataset(data.Dataset): + + def __init__(self, num_frames=16): + + if platform.release() == '4.4.0-83-generic': + self.src_dir = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2_imagetranslation/raw_fl3d' + self.mp4_dir = r'/mnt/ntfs/Dataset/VoxCeleb2/train_set/dev/mp4' + else: + self.src_dir = r'/mnt/nfs/scratch1/yangzhou/VoxCeleb2_compressed_imagetranslation/raw_fl3d' + self.mp4_dir = r'/mnt/nfs/work1/kalo/yangzhou/VoxCeleb2/train_set/dev/mp4' + + self.fls_filenames = glob.glob1(self.src_dir, '*') + self.num_random_frames = num_frames + 1 + + print(os.name, len(self.fls_filenames)) + + def __len__(self): + return len(self.fls_filenames) + + def __getitem__(self, item): + fls_filename = self.fls_filenames[item] + + # load landmark file + fls = np.loadtxt(os.path.join(self.src_dir, fls_filename)) + from scipy.signal import savgol_filter + fls = savgol_filter(fls, 11, 3, axis=0) + + # load random face + random_fls_filename = self.fls_filenames[max(item - 1, 0)] + mp4_filename = random_fls_filename[:-4].split('_x_') + mp4_id = mp4_filename[0].split('_')[-1] + mp4_vname = mp4_filename[1] + mp4_vid = mp4_filename[2][:-3] + random_video_dir = os.path.join(self.mp4_dir, mp4_id, mp4_vname, mp4_vid + '.mp4') + print('============================\nvideo_dir : ' + random_video_dir, item) + random_video = cv2.VideoCapture(random_video_dir) + if (random_video.isOpened() == False): + print('Unable to open video file') + exit(0) + _, random_face = random_video.read() + + # load mp4 file + # ================= raw VOX version ================================ + mp4_filename = fls_filename[:-4].split('_x_') + mp4_id = mp4_filename[0].split('_')[-1] + mp4_vname = mp4_filename[1] + mp4_vid = mp4_filename[2][:-3] + video_dir = os.path.join(self.mp4_dir, mp4_id, mp4_vname, mp4_vid + '.mp4') + # print('============================\nvideo_dir : ' + video_dir, item) + # ====================================================================== + + video = cv2.VideoCapture(video_dir) + if (video.isOpened() == False): + print('Unable to open video file') + exit(0) + + # skip first several frames due to landmark extraction + start_idx = (fls[0, 0]).astype(int) + for _ in range(start_idx): + ret, img_video = video.read() + + # save video and landmark in parallel + frames = [] + + for j in range(int(fls.shape[0])-2): + ret, img_video = video.read() + + img_fl = np.ones(shape=(224, 224, 3)) * 255 + idx = fls[j, 0] + fl = fls[j, 1:].astype(int) + img_fl = vis_landmark_on_img(img_fl, np.reshape(fl, (68, 3))) + + # print(img_fl.shape, random_face.shape, img_video.shape) + frame = np.concatenate((img_fl, random_face, img_video), axis=2) + frame = cv2.resize(frame, (256, 256)) # 256 x 256 6 + frames.append(frame) + + frames = np.stack(frames, axis=0).astype(np.float32)/255.0 # N x 256 x 256 x 6 + image_in = frames[:, :, :, 0:6] + image_out = frames[:, :, :, 6:9] + + image_in, image_out = np.swapaxes(image_in, 1, 3), np.swapaxes(image_out, 1, 3) + return image_in, image_out + + def my_collate(self, batch): + batch = filter(lambda x:x is not None, batch) + return default_collate(batch) + +class image_translation_preprocessed_dataset(data.Dataset): + + def __init__(self, num_frames=16): + + if platform.release() == '4.4.0-83-generic': + self.src_dir = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2_imagetranslation/raw_fl3d' + self.mp4_dir = r'/mnt/ntfs/Dataset/VoxCeleb2/train_set/dev/mp4' + else: + self.src_dir = r'/mnt/nfs/scratch1/yangzhou/PreprocessedVox_imagetranslation/raw_fl3d' # first order + self.mp4_dir = r'/mnt/nfs/scratch1/yangzhou/PreprocessedVox_mp4' + + self.fls_filenames = glob.glob1(self.src_dir, '*') + self.num_random_frames = num_frames + 1 + + self.fps_scale = 2.5 + + print(os.name, len(self.fls_filenames)) + + def __len__(self): + return len(self.fls_filenames) + + def __getitem__(self, item): + fls_filename = self.fls_filenames[item] + + # load landmark file + fls = np.loadtxt(os.path.join(self.src_dir, fls_filename)) + + # # ================= preprocessed VOX version ================================ + video_dir = os.path.join(self.mp4_dir, fls_filename[10:-7]+'.mp4') + # ====================================================================== + + video = cv2.VideoCapture(video_dir) + if (video.isOpened() == False): + print('Unable to open video file') + exit(0) + + # skip first several frames due to landmark extraction + start_idx = (fls[0, 0] // self.fps_scale).astype(int) + for _ in range(start_idx): + ret, img_video = video.read() + + # save video and landmark in parallel + frames = [] + random_frame_indices = np.random.permutation(int(fls.shape[0]//self.fps_scale)-2)[0:self.num_random_frames] + + for j in range(int(fls.shape[0]//self.fps_scale)): + ret, img_video = video.read() + + if(j in random_frame_indices): + img_fl = np.ones(shape=(256, 256, 3)) * 255 + idx = fls[int(j*self.fps_scale), 0] + fl = fls[int(j*self.fps_scale), 1:].astype(int) + img_fl = vis_landmark_on_img(img_fl, np.reshape(fl, (68, 3))) + + frame = np.concatenate((img_fl, img_video), axis=2) + frames.append(frame) + + frames = np.stack(frames, axis=0).astype(np.float32)/255.0 # N x 256 x 256 x 6 + + image_in = np.concatenate([frames[0:-1, :, :, 0:3], frames[1:, :, :, 3:6]], axis=3) + image_out = frames[0:-1, :, :, 3:6] + + image_in, image_out = np.swapaxes(image_in, 1, 3), np.swapaxes(image_out, 1, 3) + return image_in, image_out + + def my_collate(self, batch): + batch = filter(lambda x:x is not None, batch) + return default_collate(batch) + +class image_translation_preprocessed_test_dataset(data.Dataset): + + def __init__(self, num_frames=16): + + if platform.release() == '4.4.0-83-generic': + self.src_dir = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2_imagetranslation/raw_fl3d' + self.mp4_dir = r'/mnt/ntfs/Dataset/VoxCeleb2/train_set/dev/mp4' + else: + # self.src_dir = r'/mnt/nfs/scratch1/yangzhou/VoxCeleb2_imagetranslation/raw_fl3d' + # self.mp4_dir = r'/mnt/nfs/work1/kalo/yangzhou/VoxCeleb2/train_set/dev/mp4' + self.src_dir = r'/mnt/nfs/scratch1/yangzhou/PreprocessedVox_imagetranslation/raw_fl3d' + self.mp4_dir = r'/mnt/nfs/scratch1/yangzhou/PreprocessedVox_mp4' + + self.fls_filenames = glob.glob1(self.src_dir, '*') + self.num_random_frames = num_frames + 1 + + self.fps_scale = 2.5 + + print(os.name, len(self.fls_filenames)) + + def __len__(self): + return len(self.fls_filenames) + + def __getitem__(self, item): + fls_filename = self.fls_filenames[item] + + # load landmark file + fls = np.loadtxt(os.path.join(self.src_dir, fls_filename)) + from scipy.signal import savgol_filter + fls = savgol_filter(fls, 11, 3, axis=0) + + # load random face + random_fls_filename = self.fls_filenames[max(item-1, 0)] + # random_fls_filename = self.fls_filenames[max(item-1, 0)] + random_video_dir = os.path.join(self.mp4_dir, random_fls_filename[10:-7] + '.mp4') + random_video = cv2.VideoCapture(random_video_dir) + if (random_video.isOpened() == False): + print('Unable to open video file') + exit(0) + _, random_face = random_video.read() + + # # ================= preprocessed VOX version ================================ + video_dir = os.path.join(self.mp4_dir, fls_filename[10:-7]+'.mp4') + # ====================================================================== + + video = cv2.VideoCapture(video_dir) + if (video.isOpened() == False): + print('Unable to open video file') + exit(0) + + # skip first several frames due to landmark extraction + start_idx = (fls[0, 0] // self.fps_scale).astype(int) + for _ in range(start_idx): + ret, img_video = video.read() + + # save video and landmark in parallel + frames = [] + for j in range(int(fls.shape[0]//self.fps_scale)): + ret, img_video = video.read() + + # img_fl = np.ones(shape=(224, 224, 3)) * 255 + img_fl = np.ones(shape=(256, 256, 3)) * 255 + idx = fls[int(j*self.fps_scale), 0] + fl = fls[int(j*self.fps_scale), 1:].astype(int) + img_fl = vis_landmark_on_img(img_fl, np.reshape(fl, (68, 3))) + + frame = np.concatenate((img_fl, random_face, img_video), axis=2) + # frame = cv2.resize(frame, (256, 256)) # 256 x 256 6 + frames.append(frame) + + frames = np.stack(frames, axis=0).astype(np.float32)/255.0 # N x 256 x 256 x 9 + + image_in = frames[:, :, :, 0:6] + image_out = frames[:, :, :, 6:9] + + image_in, image_out = np.swapaxes(image_in, 1, 3), np.swapaxes(image_out, 1, 3) + return image_in, image_out + + def my_collate(self, batch): + batch = filter(lambda x:x is not None, batch) + return default_collate(batch) + +class image_translation_raw98_dataset(data.Dataset): + """ + Online landmark extraction with AWings + Landmark setting: 98 landmarks + """ + + def __init__(self, num_frames=1): + + if platform.release() == '4.4.0-83-generic': # stargazer + self.src_dir = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2_imagetranslation' + self.mp4_dir = r'/mnt/ntfs/Dataset/VoxCeleb2/train_set/dev/mp4' + else: + self.src_dir = r'/mnt/nfs/scratch1/yangzhou/VoxCeleb2_compressed_imagetranslation' + self.mp4_dir = r'/mnt/nfs/work1/kalo/yangzhou/VoxCeleb2/train_set/dev/mp4' + + # self.fls_filenames = glob.glob1(self.src_dir, '*') + self.fls_filenames = np.loadtxt(os.path.join(self.src_dir, 'filename_index.txt'), dtype=str)[:, 1] + self.num_random_frames = num_frames + 1 + + print(os.name, self.fls_filenames.shape) + + def __len__(self): + return self.fls_filenames.shape[0] + + def __getitem__(self, item): + """ + Get landmark alignment outside in train_pass() + """ + + for i in range(5): + fls_filename = self.fls_filenames[(item+i)%self.fls_filenames.shape[0]] + + # load mp4 file + # ================= raw VOX version ================================ + mp4_filename = fls_filename[:-4].split('_x_') + mp4_id = mp4_filename[0].split('_')[-1] + mp4_vname = mp4_filename[1] + mp4_vid = mp4_filename[2] + video_dir = os.path.join(self.mp4_dir, mp4_id, mp4_vname, mp4_vid + '.mp4') + # print('============================\nvideo_dir : ' + video_dir, item) + # ====================================================================== + + video = cv2.VideoCapture(video_dir) + if (video.isOpened() == False): + print('Unable to open video file') + else: + break + + length = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) + + # save video and landmark in parallel + frames = [] + random_frame_indices = np.random.permutation(length-2)[0:self.num_random_frames] + + for j in range(length): + ret, img = video.read() + + if(j in random_frame_indices): + img_video = cv2.resize(img, (256, 256)) + frames.append(img_video.transpose((2, 0, 1))) + + frames = np.stack(frames, axis=0).astype(np.float32)/255.0 + + image_in = frames[1:, :, :] + image_out = frames[0:-1, :, :] # N x 3 x 256 x 256 + + return image_in, image_out + + def __getitem_along_with_fa__(self, item): + """ + Online get landmark alignment (deprecated) + (can only run under num_works=0) + """ + fls_filename = self.fls_filenames[item] + + # load mp4 file + # ================= raw VOX version ================================ + mp4_filename = fls_filename[:-4].split('_x_') + mp4_id = mp4_filename[0].split('_')[-1] + mp4_vname = mp4_filename[1] + mp4_vid = mp4_filename[2] + video_dir = os.path.join(self.mp4_dir, mp4_id, mp4_vname, mp4_vid + '.mp4') + # print('============================\nvideo_dir : ' + video_dir, item) + # ====================================================================== + + video = cv2.VideoCapture(video_dir) + if (video.isOpened() == False): + print('Unable to open video file') + exit(0) + length = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) + + # save video and landmark in parallel + frames = [] + random_frame_indices = np.random.permutation(length-2)[0:self.num_random_frames] + + for j in range(length): + ret, img = video.read() + + if(j in random_frame_indices): + # online landmark + img_video = cv2.resize(img, (256, 256)) + img = img_video.transpose((2, 0, 1)) / 255.0 + inputs = torch.tensor(img, dtype=torch.float32, requires_grad=False).unsqueeze(0).to(self.device) + with torch.no_grad(): + outputs, boundary_channels = self.model(inputs) + pred_heatmap = outputs[-1][:, :-1, :, :][0].detach().cpu() + pred_landmarks, _ = get_preds_fromhm(pred_heatmap.unsqueeze(0)) + pred_landmarks = pred_landmarks.squeeze().numpy() * 4 + + img_fl = np.ones(shape=(256, 256, 3)) * 255 + img_fl = vis_landmark_on_img98(img_fl * 255.0, pred_landmarks) # 98x2 + + frame = np.concatenate((img_fl, img_video), axis=2) + frames.append(frame) + + frames = np.stack(frames, axis=0).astype(np.float32)/255.0 # N x 256 x 256 x 6 + + image_in = np.concatenate([frames[0:-1, :, :, 0:3], frames[1:, :, :, 3:6]], axis=3) + image_out = frames[0:-1, :, :, 3:6] + + image_in, image_out = np.swapaxes(image_in, 1, 3), np.swapaxes(image_out, 1, 3) + return image_in, image_out + + def my_collate(self, batch): + batch = filter(lambda x:x is not None, batch) + return default_collate(batch) + +class image_translation_preprocessed98_dataset(data.Dataset): + + def __init__(self, num_frames=16): + + if platform.release() == '4.4.0-83-generic': + self.src_dir = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2_imagetranslation' + self.mp4_dir = r'/mnt/ntfs/Dataset/VoxCeleb2/train_set/dev/mp4' + else: + self.src_dir = r'/mnt/nfs/scratch1/yangzhou/PreprocessedVox_imagetranslation/raw_fl3d' # first order + self.mp4_dir = r'/mnt/nfs/scratch1/yangzhou/PreprocessedVox_mp4' + + self.fls_filenames = glob.glob1(self.src_dir, '*') + self.num_random_frames = num_frames + 1 + + print(os.name, len(self.fls_filenames)) + + def __len__(self): + return len(self.fls_filenames) + + def __getitem__(self, item): + fls_filename = self.fls_filenames[item] + + # # ================= preprocessed VOX version ================================ + video_dir = os.path.join(self.mp4_dir, fls_filename[10:-7]+'.mp4') + # ====================================================================== + + video = cv2.VideoCapture(video_dir) + if (video.isOpened() == False): + print('Unable to open video file') + exit(0) + + length = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) + + # save video and landmark in parallel + frames = [] + random_frame_indices = np.random.permutation(length-2)[0:self.num_random_frames] + + for j in range(length): + ret, img_video = video.read() + + if(j in random_frame_indices): + img_video = cv2.resize(img_video, (256, 256)) + frames.append(img_video.transpose((2, 0, 1))) + + frames = np.stack(frames, axis=0).astype(np.float32)/255.0 # N x 256 x 256 x 6 + + image_in = frames[1:, :, :] + image_out = frames[0:-1, :, :] # N x 3 x 256 x 256 + + return image_in, image_out + + def my_collate(self, batch): + batch = filter(lambda x:x is not None, batch) + return default_collate(batch) + +class image_translation_raw98_test_dataset(data.Dataset): + + def __init__(self, num_frames=16): + + if platform.release() == '4.4.0-83-generic': + self.src_dir = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2_imagetranslation' + self.mp4_dir = r'/mnt/ntfs/Dataset/VoxCeleb2/train_set/dev/mp4' + else: + self.src_dir = r'/mnt/nfs/scratch1/yangzhou/VoxCeleb2_compressed_imagetranslation' + self.mp4_dir = r'/mnt/nfs/work1/kalo/yangzhou/VoxCeleb2/train_set/dev/mp4' + + # self.fls_filenames = glob.glob1(self.src_dir, '*') + self.fls_filenames = np.loadtxt(os.path.join(self.src_dir, 'filename_index.txt'), dtype=str)[:, 1] + + self.num_random_frames = num_frames + 1 + + print(os.name, len(self.fls_filenames)) + + def __len__(self): + return len(self.fls_filenames) + + def __getitem__(self, item): + fls_filename = self.fls_filenames[item] + + # load random face + random_fls_filename = self.fls_filenames[max(item - 10, 0)] + mp4_filename = random_fls_filename[:-4].split('_x_') + mp4_id = mp4_filename[0].split('_')[-1] + mp4_vname = mp4_filename[1] + mp4_vid = mp4_filename[2] + random_video_dir = os.path.join(self.mp4_dir, mp4_id, mp4_vname, mp4_vid + '.mp4') + print('============================\nvideo_dir : ' + random_video_dir, item) + random_video = cv2.VideoCapture(random_video_dir) + if (random_video.isOpened() == False): + print('Unable to open video file') + exit(0) + _, random_face = random_video.read() + random_face = cv2.resize(random_face, (256, 256)) + + # load mp4 file + # ================= raw VOX version ================================ + mp4_filename = fls_filename[:-4].split('_x_') + mp4_id = mp4_filename[0].split('_')[-1] + mp4_vname = mp4_filename[1] + mp4_vid = mp4_filename[2] + video_dir = os.path.join(self.mp4_dir, mp4_id, mp4_vname, mp4_vid + '.mp4') + # print('============================\nvideo_dir : ' + video_dir, item) + # ====================================================================== + + video = cv2.VideoCapture(video_dir) + if (video.isOpened() == False): + print('Unable to open video file') + exit(0) + length = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) + + # save video and landmark in parallel + frames = [] + + for j in range(length): + ret, img_video = video.read() + + img_video = cv2.resize(img_video, (256, 256)) + frame = np.concatenate((random_face, img_video), axis=2) + frames.append(frame.transpose((2, 0, 1))) + + frames = np.stack(frames, axis=0).astype(np.float32) / 255.0 # N x 256 x 256 x 9 + + image_in = frames[:, 0:3] + image_out = frames[:, 3:6] + return image_in, image_out + + def my_collate(self, batch): + batch = filter(lambda x:x is not None, batch) + return default_collate(batch) + +class image_translation_preprocessed98_test_dataset(data.Dataset): + + def __init__(self, num_frames=16): + + if platform.release() == '4.4.0-83-generic': + self.src_dir = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2_imagetranslation/raw_fl3d' + self.mp4_dir = r'/mnt/ntfs/Dataset/VoxCeleb2/train_set/dev/mp4' + else: + # self.src_dir = r'/mnt/nfs/scratch1/yangzhou/VoxCeleb2_imagetranslation/raw_fl3d' + # self.mp4_dir = r'/mnt/nfs/work1/kalo/yangzhou/VoxCeleb2/train_set/dev/mp4' + self.src_dir = r'/mnt/nfs/scratch1/yangzhou/PreprocessedVox_imagetranslation/raw_fl3d' + self.mp4_dir = r'/mnt/nfs/scratch1/yangzhou/PreprocessedVox_mp4' + + self.fls_filenames = glob.glob1(self.src_dir, '*') + self.num_random_frames = num_frames + 1 + + print(os.name, len(self.fls_filenames)) + + def __len__(self): + return len(self.fls_filenames) + + def __getitem__(self, item): + fls_filename = self.fls_filenames[item] + + # load random face + random_fls_filename = self.fls_filenames[max(item-10, 0)] + # random_fls_filename = self.fls_filenames[max(item-1, 0)] + random_video_dir = os.path.join(self.mp4_dir, random_fls_filename[10:-7] + '.mp4') + random_video = cv2.VideoCapture(random_video_dir) + if (random_video.isOpened() == False): + print('Unable to open video file') + exit(0) + _, random_face = random_video.read() + + # # ================= preprocessed VOX version ================================ + video_dir = os.path.join(self.mp4_dir, fls_filename[10:-7]+'.mp4') + # ====================================================================== + + video = cv2.VideoCapture(video_dir) + if (video.isOpened() == False): + print('Unable to open video file') + exit(0) + + length = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) + + # save video and landmark in parallel + frames = [] + for j in range(length): + ret, img_video = video.read() + + img_video = cv2.resize(img_video, (256, 256)) + frame = np.concatenate((random_face, img_video), axis=2) + frames.append(frame.transpose((2, 0, 1))) + + frames = np.stack(frames, axis=0).astype(np.float32)/255.0 # N x 256 x 256 x 9 + + image_in = frames[:, 0:3] + image_out = frames[:, 3:6] + + return image_in, image_out + + def my_collate(self, batch): + batch = filter(lambda x:x is not None, batch) + return default_collate(batch) + +class image_translation_raw98_with_audio_dataset(data.Dataset): + """ + Online landmark extraction with AWings + Landmark setting: 98 landmarks + """ + + def __init__(self, num_frames=1): + + if platform.release() == '4.4.0-83-generic': # stargazer + self.src_dir = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2_imagetranslation' + self.mp4_dir = r'/mnt/ntfs/Dataset/VoxCeleb2/train_set/dev/mp4' + else: + self.src_dir = r'/mnt/nfs/scratch1/yangzhou/VoxCeleb2_compressed_imagetranslation' + self.mp4_dir = r'/mnt/nfs/work1/kalo/yangzhou/VoxCeleb2/train_set/dev/mp4' + + # self.fls_filenames = glob.glob1(self.src_dir, '*') + self.fls_filenames = np.loadtxt(os.path.join(self.src_dir, 'filename_index.txt'), dtype=str)[:, 1] + self.num_random_frames = num_frames + 1 + + print(os.name, self.fls_filenames.shape) + + def __len__(self): + return self.fls_filenames.shape[0] + + def __getitem__(self, item): + """ + Get landmark alignment outside in train_pass() + """ + + for i in range(5): + fls_filename = self.fls_filenames[(item+i)%self.fls_filenames.shape[0]] + + # load mp4 file + # ================= raw VOX version ================================ + mp4_filename = fls_filename[:-4].split('_x_') + mp4_id = mp4_filename[0].split('_')[-1] + mp4_vname = mp4_filename[1] + mp4_vid = mp4_filename[2] + video_dir = os.path.join(self.mp4_dir, mp4_id, mp4_vname, mp4_vid + '.mp4') + # print('============================\nvideo_dir : ' + video_dir, item) + # ====================================================================== + + video = cv2.VideoCapture(video_dir) + if (video.isOpened() == False): + print('Unable to open video file') + else: + break + + length = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) + + # save video and landmark in parallel + frames = [] + random_frame_indices = np.random.permutation(max(1, length-12))[0:self.num_random_frames] + random_frame_indices = [item + 5 for item in random_frame_indices] + + for j in range(length): + ret, img = video.read() + + if(j in random_frame_indices): + img_video = cv2.resize(img, (256, 256)) + frames.append(img_video.transpose((2, 0, 1))) + + frames = np.stack(frames, axis=0).astype(np.float32)/255.0 + + image_in = frames[1:, :, :] + image_out = frames[0:-1, :, :] # N x 3 x 256 x 256 + + # audio + os.system('ffmpeg -y -loglevel error -i {} -vn -ar 16000 -ac 1 {}'.format( + video_dir, video_dir.replace('.mp4', '.wav') + )) + sample_rate, samples = wav.read(video_dir.replace('.mp4', '.wav')) + assert (sample_rate == 16000) + if (len(samples.shape) > 1): + samples = samples[:, 0] # pick mono + + # 1 frame = 1/25 * 16k = 640 samples => windowsize=320, overlap=160 + # 80 overlap => 200 / 1 sec, 8 / 1 frame + f, t, Zxx = stft(samples, fs=sample_rate, nperseg=640, noverlap=560) + stft_abs = np.log(np.abs(Zxx) ** 2 + 1e-10) + stft_abs = stft_abs / np.max(stft_abs) + os.remove(video_dir.replace('.mp4', '.wav')) + + # we want 0.2s before, 5 frames, 40 dims + # and 0.2s after (may remove later) + audio_in = [] + for item in random_frame_indices: + sel_audio_clip = stft_abs[:, (item-5)*8:(item+5)*8] + assert sel_audio_clip.shape[1] == 80 + audio_in.append(np.expand_dims(cv2.resize(sel_audio_clip, (256, 256)), axis=0)) + + audio_in = np.stack(audio_in[0:-1], axis=0).astype(np.float32) + # image_in = np.concatenate([image_in, audio_in], axis=1) + + return image_in, image_out, audio_in + + def my_collate(self, batch): + batch = filter(lambda x:x is not None, batch) + return default_collate(batch) + +class image_translation_raw98_with_audio_test_dataset(data.Dataset): + """ + Online landmark extraction with AWings + Landmark setting: 98 landmarks + """ + + def __init__(self, num_frames=1): + + if platform.release() == '4.4.0-83-generic': # stargazer + self.src_dir = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2_imagetranslation' + self.mp4_dir = r'/mnt/ntfs/Dataset/VoxCeleb2/train_set/dev/mp4' + else: + self.src_dir = r'/mnt/nfs/scratch1/yangzhou/VoxCeleb2_compressed_imagetranslation' + self.mp4_dir = r'/mnt/nfs/work1/kalo/yangzhou/VoxCeleb2/train_set/dev/mp4' + + # self.fls_filenames = glob.glob1(self.src_dir, '*') + self.fls_filenames = np.loadtxt(os.path.join(self.src_dir, 'filename_index.txt'), dtype=str)[:, 1] + self.num_random_frames = num_frames + 1 + + print(os.name, self.fls_filenames.shape) + + def __len__(self): + return self.fls_filenames.shape[0] + + def __getitem__(self, item): + """ + Get landmark alignment outside in train_pass() + """ + # load random face + random_fls_filename = self.fls_filenames[max(item - 10, 0)] + mp4_filename = random_fls_filename[:-4].split('_x_') + mp4_id = mp4_filename[0].split('_')[-1] + mp4_vname = mp4_filename[1] + mp4_vid = mp4_filename[2] + random_video_dir = os.path.join(self.mp4_dir, mp4_id, mp4_vname, mp4_vid + '.mp4') + print('============================\nvideo_dir : ' + random_video_dir, item) + random_video = cv2.VideoCapture(random_video_dir) + if (random_video.isOpened() == False): + print('Unable to open video file') + exit(0) + _, random_face = random_video.read() + random_face = cv2.resize(random_face, (256, 256)) + + + fls_filename = self.fls_filenames[item] + # load mp4 file + # ================= raw VOX version ================================ + mp4_filename = fls_filename[:-4].split('_x_') + mp4_id = mp4_filename[0].split('_')[-1] + mp4_vname = mp4_filename[1] + mp4_vid = mp4_filename[2] + video_dir = os.path.join(self.mp4_dir, mp4_id, mp4_vname, mp4_vid + '.mp4') + # print('============================\nvideo_dir : ' + video_dir, item) + # ====================================================================== + + video = cv2.VideoCapture(video_dir) + if (video.isOpened() == False): + print('Unable to open video file') + + length = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) + + # save video and landmark in parallel + frames = [] + for j in range(5, length-5): + ret, img_video = video.read() + + img_video = cv2.resize(img_video, (256, 256)) + frame = np.concatenate((random_face, img_video), axis=2) + frames.append(frame.transpose((2, 0, 1))) + + frames = np.stack(frames, axis=0).astype(np.float32) / 255.0 # N x 256 x 256 x 9 + + image_in = frames[:, 0:3] + image_out = frames[:, 3:6] + + # audio + os.system('ffmpeg -y -loglevel error -i {} -vn -ar 16000 -ac 1 {}'.format( + video_dir, video_dir.replace('.mp4', '.wav') + )) + sample_rate, samples = wav.read(video_dir.replace('.mp4', '.wav')) + assert (sample_rate == 16000) + if (len(samples.shape) > 1): + samples = samples[:, 0] # pick mono + + # 1 frame = 1/25 * 16k = 640 samples => windowsize=320, overlap=160 + # 80 overlap => 200 / 1 sec, 8 / 1 frame + f, t, Zxx = stft(samples, fs=sample_rate, nperseg=640, noverlap=560) + stft_abs = np.log(np.abs(Zxx) ** 2 + 1e-10) + stft_abs = stft_abs / np.max(stft_abs) + os.remove(video_dir.replace('.mp4', '.wav')) + + # we want 0.2s before, 5 frames, 40 dims + # and 0.2s after (may remove later) + audio_in = [] + for item in range(5, length-5): + sel_audio_clip = stft_abs[:, (item-5)*8:(item+5)*8] + assert sel_audio_clip.shape[1] == 80 + audio_in.append(np.expand_dims(cv2.resize(sel_audio_clip, (256, 256)), axis=0)) + + audio_in = np.stack(audio_in, axis=0).astype(np.float32) + # image_in = np.concatenate([image_in, audio_in], axis=1) + + return image_in, image_out, audio_in + + def my_collate(self, batch): + batch = filter(lambda x:x is not None, batch) + return default_collate(batch) + + +if __name__ == '__main__': + d = image_translation_raw_dataset() + d_loader = torch.utils.data.DataLoader(d, batch_size=4, shuffle=True) + print(len(d)) + for i, batch in enumerate(d_loader): + print(i, batch[0].shape, batch[1].shape) \ No newline at end of file diff --git a/MakeItTalk/src/dataset/utils/ANCHOR_T_SHAPE_9.txt b/MakeItTalk/src/dataset/utils/ANCHOR_T_SHAPE_9.txt new file mode 100644 index 0000000000000000000000000000000000000000..aec57ce73b15e80b427adda77de174f7984235d9 --- /dev/null +++ b/MakeItTalk/src/dataset/utils/ANCHOR_T_SHAPE_9.txt @@ -0,0 +1,9 @@ +1.070000000000000000e+02 6.000000000000000000e+01 3.229999999999999716e+01 +1.070000000000000000e+02 7.100000000000000000e+01 3.842000000000000171e+01 +1.070000000000000000e+02 8.200000000000000000e+01 4.592000000000000171e+01 +1.070000000000000000e+02 9.100000000000000000e+01 4.664999999999999858e+01 +1.090000000000000000e+02 1.020000000000000000e+02 3.317000000000000171e+01 +6.700000000000000000e+01 6.000000000000000000e+01 1.744999999999999929e+01 +8.900000000000000000e+01 6.000000000000000000e+01 2.191000000000000014e+01 +1.270000000000000000e+02 6.000000000000000000e+01 2.203999999999999915e+01 +1.490000000000000000e+02 5.800000000000000000e+01 1.714000000000000057e+01 diff --git a/MakeItTalk/src/dataset/utils/Av2Flau_Convertor.py b/MakeItTalk/src/dataset/utils/Av2Flau_Convertor.py new file mode 100644 index 0000000000000000000000000000000000000000..91303de03754bc9ffefc6f589bb685934747e15c --- /dev/null +++ b/MakeItTalk/src/dataset/utils/Av2Flau_Convertor.py @@ -0,0 +1,425 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import numpy as np +import os +import ffmpeg +import cv2 +import face_alignment +from src.dataset.utils import icp + + +class Point: + def __init__(self, x, y): + self.x = x + self.y = y + + +class ShapeParts: + def __init__(self, np_pts): + self.data = np_pts + + def part(self, idx): + return Point(self.data[idx, 0], self.data[idx, 1]) + + +class Av2Flau_Convertor(): + """ + + Any video to facial landmark and audio numpy data converter. + + """ + + def __init__(self, video_dir, out_dir, idx=0): + + self.video_dir = video_dir + if ('\\' in video_dir): + self.video_name = video_dir.split('\\')[-1] + else: + self.video_name = video_dir.split('/')[-1] + self.out_dir = out_dir + self.idx = idx + self.input_format = self.video_dir[-4:] + + # landmark predictor = FANet + self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, device='cuda', flip_input=True) + + # landmark register + self.t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45) + + def convert(self, max_num_frames=250, save_audio=False, show=False, register=False): + + # Step 1: preclean video: check stream==2, convert fps/sample_rate, + ret, wfn = self.__preclean_video__() + if (not ret): + return + + # Step 2: detect facial landmark + wfn = self.video_dir.replace(self.input_format, '_preclean.mp4') + ret, fl2d, fl3d = self.__video_facial_landmark_detection__(video_dir=wfn, display=False, max_num_frames=max_num_frames) + if (not ret): + return + if (len(fl3d) < 9): + print('The length of the landmark is too short, skip') + return + + # Step 3: raw save landmark / audio + fl3d = np.array(fl3d) + np.savetxt(os.path.join(self.out_dir, 'raw_fl3d/fan_{:05d}_{}_3d.txt'.format(self.idx, self.video_name[:-4])), + fl3d, fmt='%.2f') + if (save_audio): + self.__save_audio__(video_dir=self.video_dir.replace(self.input_format, '_preclean.mp4'), fl3d=fl3d) + + # Step 3.5: merge a/v together (optional) + if (show): + sf, ef = (fl3d[0][0], fl3d[-1][0]) if fl3d.shape[0] > 0 else (0, 0) + print(sf, ef) + print(self.video_dir.replace(self.input_format, '_fl_detect.mp4'), + os.path.join(self.out_dir, 'tmp_v', '{:05d}_{}_fl_av.mp4'.format( + self.idx, self.video_name[:-4])) + ) + self.__ffmpeg_merge_av__( + video_dir=self.video_dir.replace(self.input_format, '_fl_detect.mp4'), + audio_dir=self.video_dir.replace(self.input_format, '_preclean.mp4'), + WriteFileName=os.path.join(self.out_dir, 'tmp_v', '{:05d}_{}_fl_av.mp4'.format( + self.idx, self.video_name[:-4])), + start_end_frame=(int(sf), int(ef))) + + # Step 4: remove tmp files + os.remove(self.video_dir.replace(self.input_format, '_preclean.mp4')) + if(os.path.isfile(self.video_dir.replace(self.input_format, '_fl_detect.mp4'))): + os.remove(self.video_dir.replace(self.input_format, '_fl_detect.mp4')) + + # Step 5: register fl3d + if (register): + self.__single_landmark_3d_register__(fl3d) + # TODO: visualize register fl3d + + ''' ======================================================================== + + STEP 1: Preclean video + + ======================================================================== ''' + + def __preclean_video__(self, WriteFileName='_preclean.mp4', fps=25, sample_rate=16000): + ''' + Pre-clean downloaded videos. Return false if more than 2 streams found. + Then convert it to fps=25, sample_rate=16kHz + ''' + input_video_dir = self.video_dir if '_x_' not in self.video_dir else self.video_dir.replace('_x_', '/') + + probe = ffmpeg.probe(input_video_dir) + # print(probe['streams']) + # print(len(probe['streams'])) + # if(len(probe['streams']) != 2): + # print('Error: not valid for # of a/v channel == 2.') + # return False, None + # exit(0) + # probe['streams'] = probe['streams'][0::2] + + codec = {'video': '', 'audio': ''} + for i, stream in enumerate(probe['streams'][0:2]): + codec[stream['codec_type']] = stream['codec_name'] + + # create preclean video + ( + ffmpeg + .input(input_video_dir) + .output(self.video_dir.replace(self.input_format, WriteFileName), + # vcodec=codec['video'], + # acodec=codec['audio'], + r=fps, ar=sample_rate) + .overwrite_output().global_args('-loglevel', 'quiet') + .run() + ) + + return True, self.video_dir.replace(self.input_format, WriteFileName) + + ''' ======================================================================== + + STEP 2: Detect facial landmark + + ======================================================================== ''' + + def __video_facial_landmark_detection__(self, video_dir=None, display=False, WriteFileName='_fl_detect.mp4', + max_num_frames=250, write=False): + ''' + Get facial landmark from video. + ''' + + # load video + print('video_dir : ' + video_dir) + video = cv2.VideoCapture(video_dir) + + # return false if cannot open + if (video.isOpened() == False): + print('Unable to open video file') + return False, None + + # display info + length = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) + fps = video.get(cv2.CAP_PROP_FPS) + w = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) + h = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) + print('Process Video {}, len: {}, FPS: {:.2f}, W X H: {} x {}'.format(video_dir, length, fps, w, h)) + + if(write): + writer = cv2.VideoWriter(self.video_dir.replace(self.input_format, WriteFileName), + cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps, (w, h)) + + video_facial_landmark = [] # face-landmark np array per frame =: idx + [x,y] * 68 + video_facial_landmark_3d = [] # face-landmark np array per frame =: idx + [x,y,z] * 68 + frame_id = 0 + not_detected_frames = 0 + + while (video.isOpened()): + ret, frame = video.read() + # reach EOF + if (ret == False): + break + + # too many not-detected frames (in middle of video) + if (not_detected_frames > 5): + if (len(video_facial_landmark) < 10): + # at beginning of the video + video_facial_landmark = [] + video_facial_landmark_3d = [] + else: + break + + # dlib facial landmark detect + img_ret, shape, shape_3d = self.__image_facial_landmark_detection__(img=frame) + + # successfully detected + if (img_ret): + # print('\t ==> frame {}/{}'.format(frame_id, length)) + + # current frame xy coordinates + xys = [] + for part_i in range(68): + xys.append(shape.part(part_i).x) + xys.append(shape.part(part_i).y) + + # check any not_detected_frames, and interp them + if (not_detected_frames > 0 and len(video_facial_landmark) > 0): + # interpolate + def interp(last, cur, num, dims=68 * 2 + 1): + interp_xys_np = np.zeros((num, dims)) + for dim in range(dims): + interp_xys_np[:, dim] = np.interp(np.arange(0, num), [-1, num], [last[dim], cur[dim]]) + interp_xys_np = np.round(interp_xys_np).astype('int') + interp_xys = [list(xy) for xy in interp_xys_np] + return interp_xys + + interp_xys = interp(video_facial_landmark[-1], [frame_id] + xys, not_detected_frames) + video_facial_landmark += interp_xys + + not_detected_frames = 0 + + # save landmark/frame_index + video_facial_landmark.append([frame_id] + xys) + if (shape_3d.any()): + video_facial_landmark_3d.append([frame_id] + list(np.reshape(shape_3d, -1))) + + if(write): + frame = self.__vis_landmark_on_img__(frame, shape) + + else: + print('\t ==> frame {}/{} Not detected'.format(frame_id, length)) + not_detected_frames += 1 + + if (display): + cv2.imshow('Frame', frame) + if (cv2.waitKey(10) == ord('q')): + break + + if(write): + writer.write(frame) + frame_id += 1 + + if(frame_id > max_num_frames): + break + + video.release() + if(write): + writer.release() + cv2.destroyAllWindows() + + print('\t ==> Final processed frames {}/{}'.format(frame_id, length)) + + return True, video_facial_landmark, video_facial_landmark_3d + + def __image_facial_landmark_detection__(self, img=None): + ''' + Get facial landmark from single image by FANet + ''' + + shapes = self.predictor.get_landmarks(img) + if (not shapes): + return False, None, None + + max_size_idx = 0 + shape = ShapeParts(shapes[max_size_idx][:, 0:2]) + shape_3d = shapes[max_size_idx] + + # when use 2d estimator + shape_3d = np.concatenate([shape_3d, np.ones(shape=(68, 1))], axis=1) + + return True, shape, shape_3d + + def __vis_landmark_on_img__(self, img, shape, linewidth=2): + ''' + Visualize landmark on images. + ''' + if (type(shape) == ShapeParts): + def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth): + for i in idx_list: + cv2.line(img, (shape.part(i).x, shape.part(i).y), (shape.part(i + 1).x, shape.part(i + 1).y), + color, lineWidth) + if (loop): + cv2.line(img, (shape.part(idx_list[0]).x, shape.part(idx_list[0]).y), + (shape.part(idx_list[-1] + 1).x, shape.part(idx_list[-1] + 1).y), color, lineWidth) + + draw_curve(list(range(0, 16))) # jaw + draw_curve(list(range(17, 21))) # eye brow + draw_curve(list(range(22, 26))) + draw_curve(list(range(27, 35))) # nose + draw_curve(list(range(36, 41)), loop=True) # eyes + draw_curve(list(range(42, 47)), loop=True) + draw_curve(list(range(48, 59)), loop=True) # mouth + draw_curve(list(range(60, 67)), loop=True) + + else: + def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth): + for i in idx_list: + cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth) + if (loop): + cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]), + (shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth) + + draw_curve(list(range(0, 16))) # jaw + draw_curve(list(range(17, 21))) # eye brow + draw_curve(list(range(22, 26))) + draw_curve(list(range(27, 35))) # nose + draw_curve(list(range(36, 41)), loop=True) # eyes + draw_curve(list(range(42, 47)), loop=True) + draw_curve(list(range(48, 59)), loop=True) # mouth + draw_curve(list(range(60, 67)), loop=True) + + return img + + def __ffmpeg_merge_av__(self, video_dir, audio_dir, WriteFileName, start_end_frame): + probe = ffmpeg.probe(video_dir) + fps = probe['streams'][0]['avg_frame_rate'] + spf = float(fps.split('/')[1]) / float(fps.split('/')[0]) + sf, ef = start_end_frame + st, tt = sf * spf, ef * spf - sf * spf + + vin = ffmpeg.input(video_dir).video + # ain = ffmpeg.input(audio_dir).audio + # out = ffmpeg.output(vin, ain, WriteFileName, codec='copy', ss=st, t=tt, shortest=None) + out = ffmpeg.output(vin, WriteFileName, codec='copy', ss=st, t=tt, shortest=None) + out = out.overwrite_output().global_args('-loglevel', 'quiet') + out.run() + + # os.system('ffmpeg -i {} -codec copy -ss {} -t {} {}'.format(video_dir, st, tt, WriteFileName)) + + def __save_audio__(self, video_dir, fl3d): + """ + Extract audio from preclean video. Used for creating audio-aware dataset. + + """ + sf, ef = fl3d[0][0], fl3d[-1][0] + + probe = ffmpeg.probe(video_dir) + fps = probe['streams'][0]['avg_frame_rate'] + spf = float(fps.split('/')[1]) / float(fps.split('/')[0]) + st, tt = sf * spf, ef * spf - sf * spf + + audio_dir = os.path.join(self.out_dir, 'raw_wav', '{:05d}_{}_audio.wav'.format(self.idx, self.video_name[:-4])) + ( + ffmpeg + .input(video_dir) + .output(audio_dir, ss=st, t=tt) + .overwrite_output().global_args('-loglevel', 'quiet') + .run() + ) + + ''' ======================================================================== + + STEP 5: Landmark register + + ======================================================================== ''' + + def __single_landmark_3d_register__(self, fl3d, display=False): + """ + Register a single 3d landmark file + + """ + # Step 1 : Load and Smooth + from scipy.signal import savgol_filter + lines = savgol_filter(fl3d, 7, 3, axis=0) + + all_landmarks = lines[:, 1:].reshape((-1, 68, 3)) # remove frame idx + w, h = int(np.max(all_landmarks[:, :, 0])) + 20, int(np.max(all_landmarks[:, :, 1])) + 20 + + # Step 2 : setup anchor face + print('Using exisiting ' + 'dataset/utils/ANCHOR_T_SHAPE_{}.txt'.format(len(self.t_shape_idx))) + anchor_t_shape = np.loadtxt('dataset/utils/ANCHOR_T_SHAPE_{}.txt'.format(len(self.t_shape_idx))) + + registered_landmarks_to_save = [] + registered_affine_mat_to_save = [] + # for each line + for line in lines: + frame_id = line[0] + landmarks = line[1:].reshape(68, 3) + + # Step 3 : ICP on (frame, anchor) + frame_t_shape = landmarks[self.t_shape_idx, :] + + T, distance, itr = icp(frame_t_shape, anchor_t_shape) + + # Step 4 : Affine transform + landmarks = np.hstack((landmarks, np.ones((68, 1)))) + registered_landmarks = np.dot(T, landmarks.T).T + err = np.mean(np.sqrt(np.sum((registered_landmarks[self.t_shape_idx, 0:3] - anchor_t_shape) ** 2, axis=1))) + # print(err, distance, itr) + + # Step 5 : Save is requested + registered_landmarks_to_save.append([frame_id] + list(registered_landmarks[:, 0:3].reshape(-1))) + registered_affine_mat_to_save.append([frame_id] + list(T.reshape(-1))) + + # Step 5.5 (optional) : visualize ori / registered faces (Isolated in Black BG) + if (display): + img = np.zeros((h, w * 2, 3), np.uint8) + self.__vis_landmark_on_img__(img, landmarks.astype(np.int)) + registered_landmarks[:, 0] += w + self.__vis_landmark_on_img__(img, registered_landmarks.astype(np.int)) + cv2.imshow('img', img) + if (cv2.waitKey(30) == ord('q')): + break + + np.savetxt(os.path.join(self.out_dir, 'register_fl3d', '{:05d}_{}_fl_sm.txt' + .format(self.idx, self.video_name[:-4])), + lines, fmt='%.6f') + np.savetxt(os.path.join(self.out_dir, 'register_fl3d', '{:05d}_{}_fl_reg.txt' + .format(self.idx, self.video_name[:-4])), + np.array(registered_landmarks_to_save), fmt='%.6f') + np.savetxt(os.path.join(self.out_dir, 'register_fl3d', '{:05d}_{}_mat_reg.txt' + .format(self.idx, self.video_name[:-4])), + np.array(registered_affine_mat_to_save), fmt='%.6f') + + +if __name__ == '__main__': + video_dir = r'C:\Users\yangzhou\Videos\004_1.mp4' + out_dir = r'C:\Users\yangzhou\Videos' + c = Av2Flau_Convertor(video_dir, out_dir, idx=0) + c.convert() + diff --git a/MakeItTalk/src/dataset/utils/MEAN_STD_AUTOVC_RETRAIN_MEL_AU.txt b/MakeItTalk/src/dataset/utils/MEAN_STD_AUTOVC_RETRAIN_MEL_AU.txt new file mode 100644 index 0000000000000000000000000000000000000000..81586359467633ce7ba0e3057d8e179a97d7a10c --- /dev/null +++ b/MakeItTalk/src/dataset/utils/MEAN_STD_AUTOVC_RETRAIN_MEL_AU.txt @@ -0,0 +1,160 @@ +0.65552288 +0.63678050 +0.62862653 +0.64315903 +0.63372910 +0.61890388 +0.62397623 +0.63225651 +0.62276840 +0.61606812 +0.60994613 +0.59415638 +0.57933658 +0.57880449 +0.57279420 +0.55681163 +0.54415250 +0.54421031 +0.54469109 +0.53460932 +0.52676821 +0.51771337 +0.51614189 +0.50657839 +0.49831682 +0.50071305 +0.49976191 +0.49744946 +0.49278450 +0.48789251 +0.49431247 +0.49403304 +0.49034998 +0.48957843 +0.48897672 +0.48429415 +0.47947717 +0.47652364 +0.46989229 +0.46300641 +0.45609096 +0.44222555 +0.43763435 +0.43181244 +0.42883748 +0.43032700 +0.42795774 +0.42087471 +0.41099399 +0.39662123 +0.38498884 +0.37260655 +0.36552140 +0.36029646 +0.35710073 +0.35460103 +0.36138788 +0.36911866 +0.37582651 +0.37259215 +0.37013996 +0.36100924 +0.35209429 +0.34485739 +0.33580288 +0.33268702 +0.33167681 +0.33432001 +0.33587450 +0.33933657 +0.34646717 +0.34023783 +0.33086601 +0.32771298 +0.31800920 +0.30575135 +0.29174423 +0.28115794 +0.27007085 +0.25495395 +0.10022733 +0.09965322 +0.10150415 +0.11404851 +0.12577450 +0.13116451 +0.12822984 +0.13202952 +0.14068684 +0.14249982 +0.13781352 +0.14019910 +0.14439307 +0.14568821 +0.14430368 +0.13664825 +0.13330828 +0.13154012 +0.12966111 +0.12728664 +0.12545471 +0.12669823 +0.13040930 +0.12942214 +0.12872306 +0.12809943 +0.12596071 +0.12490212 +0.12304984 +0.12145414 +0.11861907 +0.12138324 +0.12450711 +0.12149651 +0.11914475 +0.11796197 +0.11895841 +0.11975087 +0.11911552 +0.11636622 +0.11348476 +0.11241212 +0.11087927 +0.10833395 +0.10831793 +0.10890901 +0.10890223 +0.11123040 +0.10861225 +0.10379040 +0.09746616 +0.09425750 +0.09648293 +0.09891678 +0.10103154 +0.10408922 +0.10865188 +0.11413056 +0.11868828 +0.12004474 +0.11806849 +0.11876569 +0.12061996 +0.12216672 +0.12443987 +0.12697268 +0.12815005 +0.12898965 +0.13065509 +0.13337550 +0.13575020 +0.13334973 +0.13184448 +0.13169083 +0.13136534 +0.13119751 +0.12992120 +0.12879632 +0.12835018 +0.12796283 diff --git a/MakeItTalk/src/dataset/utils/MEAN_STD_NOAUTOVC_AU.txt b/MakeItTalk/src/dataset/utils/MEAN_STD_NOAUTOVC_AU.txt new file mode 100644 index 0000000000000000000000000000000000000000..246c01aceffaa30867b5b974c0a3d8064a4aff37 --- /dev/null +++ b/MakeItTalk/src/dataset/utils/MEAN_STD_NOAUTOVC_AU.txt @@ -0,0 +1,516 @@ +4.302870631217956543e-01 +4.329850077629089355e-01 +5.685940980911254883e-01 +5.712650418281555176e-01 +6.301161646842956543e-01 +6.297593116760253906e-01 +6.523380279541015625e-01 +6.487343311309814453e-01 +6.416400671005249023e-01 +6.339513063430786133e-01 +6.163446903228759766e-01 +6.080252528190612793e-01 +6.113053560256958008e-01 +6.048123836517333984e-01 +6.089278459548950195e-01 +6.014906764030456543e-01 +5.976414084434509277e-01 +5.889482498168945312e-01 +5.757003426551818848e-01 +5.676506757736206055e-01 +5.516545772552490234e-01 +5.436137318611145020e-01 +5.272551178932189941e-01 +5.188843607902526855e-01 +5.056031346321105957e-01 +4.976431727409362793e-01 +4.863975346088409424e-01 +4.780227541923522949e-01 +4.690479040145874023e-01 +4.604197740554809570e-01 +4.530926346778869629e-01 +4.446310400962829590e-01 +4.401264190673828125e-01 +4.318185448646545410e-01 +4.301604032516479492e-01 +4.217644035816192627e-01 +4.207197725772857666e-01 +4.119378030300140381e-01 +4.148601889610290527e-01 +4.060906171798706055e-01 +4.129358530044555664e-01 +4.041081666946411133e-01 +4.112914502620697021e-01 +4.020560979843139648e-01 +4.086940586566925049e-01 +3.990238606929779053e-01 +4.066910147666931152e-01 +3.972068428993225098e-01 +4.043895006179809570e-01 +3.952069580554962158e-01 +4.002084434032440186e-01 +3.908338546752929688e-01 +3.964079022407531738e-01 +3.870742022991180420e-01 +3.927547931671142578e-01 +3.838558495044708252e-01 +3.864553868770599365e-01 +3.778637051582336426e-01 +3.793562650680541992e-01 +3.705330789089202881e-01 +3.737193644046783447e-01 +3.646190464496612549e-01 +3.693541288375854492e-01 +3.598558902740478516e-01 +3.668220937252044678e-01 +3.571247458457946777e-01 +3.639110624790191650e-01 +3.543456792831420898e-01 +3.600860536098480225e-01 +3.506647646427154541e-01 +3.583330810070037842e-01 +3.490052819252014160e-01 +3.579534888267517090e-01 +3.482857644557952881e-01 +3.566582798957824707e-01 +3.469156026840209961e-01 +3.542033731937408447e-01 +3.448287844657897949e-01 +3.512574136257171631e-01 +3.421357572078704834e-01 +3.466380536556243896e-01 +3.379490375518798828e-01 +3.394297361373901367e-01 +3.309125900268554688e-01 +3.304294943809509277e-01 +3.222375214099884033e-01 +3.211519122123718262e-01 +3.134178817272186279e-01 +3.142671883106231689e-01 +3.066852688789367676e-01 +3.093062937259674072e-01 +3.013248741626739502e-01 +3.049390017986297607e-01 +2.966026067733764648e-01 +3.011901974678039551e-01 +2.925492823123931885e-01 +2.982412874698638916e-01 +2.896260321140289307e-01 +2.950778901576995850e-01 +2.868031263351440430e-01 +2.931855022907257080e-01 +2.848391234874725342e-01 +2.913966178894042969e-01 +2.835488021373748779e-01 +2.894437909126281738e-01 +2.821984887123107910e-01 +2.880464494228363037e-01 +2.806955873966217041e-01 +2.859749197959899902e-01 +2.783367037773132324e-01 +2.843734025955200195e-01 +2.765018045902252197e-01 +2.823626101016998291e-01 +2.746102809906005859e-01 +2.805898487567901611e-01 +2.726437747478485107e-01 +2.776762247085571289e-01 +2.701420783996582031e-01 +2.747407853603363037e-01 +2.677863836288452148e-01 +2.728692889213562012e-01 +2.655031979084014893e-01 +2.702272832393646240e-01 +2.626596391201019287e-01 +2.663676142692565918e-01 +2.590825855731964111e-01 +2.614631354808807373e-01 +2.541282474994659424e-01 +2.577168941497802734e-01 +2.502178847789764404e-01 +2.546462118625640869e-01 +2.470743060111999512e-01 +2.527989447116851807e-01 +2.449320256710052490e-01 +2.507088482379913330e-01 +2.428641468286514282e-01 +2.469285130500793457e-01 +2.396548092365264893e-01 +2.436506450176239014e-01 +2.364525347948074341e-01 +2.407835870981216431e-01 +2.338835895061492920e-01 +2.381655573844909668e-01 +2.312569320201873779e-01 +2.347238361835479736e-01 +2.280696630477905273e-01 +2.306185960769653320e-01 +2.241190969944000244e-01 +2.269364893436431885e-01 +2.204524576663970947e-01 +2.231295853853225708e-01 +2.168890684843063354e-01 +2.198849171400070190e-01 +2.135286778211593628e-01 +2.166685312986373901e-01 +2.102234810590744019e-01 +2.130802124738693237e-01 +2.070899307727813721e-01 +2.110152840614318848e-01 +2.047983705997467041e-01 +2.087054103612899780e-01 +2.025521397590637207e-01 +2.066276222467422485e-01 +2.002108842134475708e-01 +2.043113410472869873e-01 +1.979889869689941406e-01 +2.009201496839523315e-01 +1.945998668670654297e-01 +1.972880959510803223e-01 +1.908641606569290161e-01 +1.952197849750518799e-01 +1.886671930551528931e-01 +1.941741406917572021e-01 +1.879018098115921021e-01 +1.913273483514785767e-01 +1.856006085872650146e-01 +1.887409985065460205e-01 +1.829372644424438477e-01 +1.873194128274917603e-01 +1.814936250448226929e-01 +1.857633590698242188e-01 +1.797549873590469360e-01 +1.832359880208969116e-01 +1.772834807634353638e-01 +1.794296205043792725e-01 +1.735989600419998169e-01 +1.761844903230667114e-01 +1.703535616397857666e-01 +1.742460131645202637e-01 +1.684966385364532471e-01 +1.733116656541824341e-01 +1.675050109624862671e-01 +1.728866845369338989e-01 +1.670183092355728149e-01 +1.709302812814712524e-01 +1.653109490871429443e-01 +1.688426733016967773e-01 +1.631140708923339844e-01 +1.682002097368240356e-01 +1.623237133026123047e-01 +1.688488274812698364e-01 +1.632665693759918213e-01 +1.688253283500671387e-01 +1.630404591560363770e-01 +1.674817353487014771e-01 +1.611120253801345825e-01 +1.662845909595489502e-01 +1.599376499652862549e-01 +1.648005843162536621e-01 +1.587333977222442627e-01 +1.632812023162841797e-01 +1.572237014770507812e-01 +1.621258407831192017e-01 +1.560851633548736572e-01 +1.604795604944229126e-01 +1.543021053075790405e-01 +1.589092165231704712e-01 +1.523593068122863770e-01 +1.565810590982437134e-01 +1.501773148775100708e-01 +1.543460935354232788e-01 +1.478193253278732300e-01 +1.507386267185211182e-01 +1.444239467382431030e-01 +1.475356221199035645e-01 +1.411407440900802612e-01 +1.435377895832061768e-01 +1.373259872198104858e-01 +1.391184777021408081e-01 +1.334686428308486938e-01 +1.351947039365768433e-01 +1.294825524091720581e-01 +1.301932930946350098e-01 +1.244819760322570801e-01 +1.253503561019897461e-01 +1.198811456561088562e-01 +1.200198605656623840e-01 +1.141593977808952332e-01 +1.131606400012969971e-01 +1.072530299425125122e-01 +1.049047932028770447e-01 +9.871529787778854370e-02 +9.385750442743301392e-02 +8.723104000091552734e-02 +8.409243822097778320e-02 +7.743817567825317383e-02 +7.468298077583312988e-02 +6.841873377561569214e-02 +6.661880016326904297e-02 +6.046786904335021973e-02 +5.949334800243377686e-02 +5.333671346306800842e-02 +5.112767219543457031e-02 +4.521905258297920227e-02 +4.352581128478050232e-02 +3.741116076707839966e-02 +-1.416901010088622570e-03 +-6.883418187499046326e-03 +1.741380542516708374e-01 +1.744701862335205078e-01 +1.488099545240402222e-01 +1.485277265310287476e-01 +1.531689614057540894e-01 +1.511479616165161133e-01 +1.604339182376861572e-01 +1.592715978622436523e-01 +1.672322452068328857e-01 +1.651556342840194702e-01 +1.674363464117050171e-01 +1.651960164308547974e-01 +1.759075820446014404e-01 +1.747871339321136475e-01 +1.818635612726211548e-01 +1.805393248796463013e-01 +1.841373443603515625e-01 +1.822661310434341431e-01 +1.876604259014129639e-01 +1.851135343313217163e-01 +1.889493316411972046e-01 +1.861916482448577881e-01 +1.878747344017028809e-01 +1.846561878919601440e-01 +1.839650720357894897e-01 +1.810104697942733765e-01 +1.798687130212783813e-01 +1.764082759618759155e-01 +1.764876842498779297e-01 +1.733033657073974609e-01 +1.750180870294570923e-01 +1.711488813161849976e-01 +1.743437200784683228e-01 +1.705033630132675171e-01 +1.740618795156478882e-01 +1.702489852905273438e-01 +1.742689162492752075e-01 +1.706060320138931274e-01 +1.746693402528762817e-01 +1.712474673986434937e-01 +1.743968427181243896e-01 +1.713177412748336792e-01 +1.740152090787887573e-01 +1.708085983991622925e-01 +1.734201610088348389e-01 +1.701134592294692993e-01 +1.724670231342315674e-01 +1.692045778036117554e-01 +1.722743511199951172e-01 +1.690131425857543945e-01 +1.727514117956161499e-01 +1.692989021539688110e-01 +1.722173094749450684e-01 +1.690336316823959351e-01 +1.719439625740051270e-01 +1.694768518209457397e-01 +1.713540256023406982e-01 +1.690345853567123413e-01 +1.705982387065887451e-01 +1.676244139671325684e-01 +1.701680570840835571e-01 +1.671418845653533936e-01 +1.697881966829299927e-01 +1.667105406522750854e-01 +1.685932874679565430e-01 +1.656097918748855591e-01 +1.676881611347198486e-01 +1.646179109811782837e-01 +1.676190495491027832e-01 +1.648135930299758911e-01 +1.676189154386520386e-01 +1.649064421653747559e-01 +1.674782484769821167e-01 +1.649503707885742188e-01 +1.680356711149215698e-01 +1.660433262586593628e-01 +1.686387509107589722e-01 +1.668708175420761108e-01 +1.695240885019302368e-01 +1.675783991813659668e-01 +1.705005317926406860e-01 +1.682148277759552002e-01 +1.712000221014022827e-01 +1.688868403434753418e-01 +1.712892949581146240e-01 +1.691593229770660400e-01 +1.712662726640701294e-01 +1.689164787530899048e-01 +1.702962368726730347e-01 +1.678230166435241699e-01 +1.691144406795501709e-01 +1.664085090160369873e-01 +1.678532510995864868e-01 +1.648552417755126953e-01 +1.665741652250289917e-01 +1.637268662452697754e-01 +1.656013578176498413e-01 +1.627896130084991455e-01 +1.657320261001586914e-01 +1.628660857677459717e-01 +1.658926606178283691e-01 +1.632345616817474365e-01 +1.657857149839401245e-01 +1.633633524179458618e-01 +1.657294332981109619e-01 +1.630016267299652100e-01 +1.658105999231338501e-01 +1.629222184419631958e-01 +1.676902323961257935e-01 +1.648019403219223022e-01 +1.683911085128784180e-01 +1.658893674612045288e-01 +1.690624803304672241e-01 +1.667239069938659668e-01 +1.684066355228424072e-01 +1.661660075187683105e-01 +1.690212935209274292e-01 +1.669714450836181641e-01 +1.697995066642761230e-01 +1.677403301000595093e-01 +1.704378724098205566e-01 +1.685023754835128784e-01 +1.705895215272903442e-01 +1.686036586761474609e-01 +1.705590933561325073e-01 +1.683548986911773682e-01 +1.709799766540527344e-01 +1.685460507869720459e-01 +1.713512688875198364e-01 +1.692624092102050781e-01 +1.715231090784072876e-01 +1.693207770586013794e-01 +1.723637431859970093e-01 +1.701082736253738403e-01 +1.726115494966506958e-01 +1.707085669040679932e-01 +1.733771860599517822e-01 +1.714404225349426270e-01 +1.737480461597442627e-01 +1.719624549150466919e-01 +1.743068546056747437e-01 +1.723527163267135620e-01 +1.742808073759078979e-01 +1.723789125680923462e-01 +1.745792776346206665e-01 +1.728020906448364258e-01 +1.754607260227203369e-01 +1.737925261259078979e-01 +1.755764186382293701e-01 +1.737650483846664429e-01 +1.751600205898284912e-01 +1.732143461704254150e-01 +1.749082654714584351e-01 +1.726772040128707886e-01 +1.740257441997528076e-01 +1.722028255462646484e-01 +1.741070449352264404e-01 +1.721841394901275635e-01 +1.735565811395645142e-01 +1.719312518835067749e-01 +1.733075380325317383e-01 +1.716907322406768799e-01 +1.727186888456344604e-01 +1.710999459028244019e-01 +1.722015738487243652e-01 +1.706579923629760742e-01 +1.717225611209869385e-01 +1.703684926033020020e-01 +1.716670393943786621e-01 +1.706496477127075195e-01 +1.713628023862838745e-01 +1.705816537141799927e-01 +1.708029508590698242e-01 +1.701831668615341187e-01 +1.705559492111206055e-01 +1.701376140117645264e-01 +1.716326177120208740e-01 +1.713687330484390259e-01 +1.728234887123107910e-01 +1.724312454462051392e-01 +1.731097251176834106e-01 +1.728188097476959229e-01 +1.737402975559234619e-01 +1.734578460454940796e-01 +1.752629131078720093e-01 +1.751931160688400269e-01 +1.781849116086959839e-01 +1.783810108900070190e-01 +1.813419759273529053e-01 +1.816955804824829102e-01 +1.828004717826843262e-01 +1.833159476518630981e-01 +1.823456883430480957e-01 +1.827383339405059814e-01 +1.818209588527679443e-01 +1.819853931665420532e-01 +1.822193711996078491e-01 +1.821866631507873535e-01 +1.818389296531677246e-01 +1.819194853305816650e-01 +1.808823943138122559e-01 +1.809842288494110107e-01 +1.812085658311843872e-01 +1.815614849328994751e-01 +1.819383203983306885e-01 +1.821983605623245239e-01 +1.814371496438980103e-01 +1.816721558570861816e-01 +1.806734800338745117e-01 +1.806735694408416748e-01 +1.811009347438812256e-01 +1.807713657617568970e-01 +1.807944923639297485e-01 +1.809404194355010986e-01 +1.805291920900344849e-01 +1.806485205888748169e-01 +1.807752102613449097e-01 +1.808416098356246948e-01 +1.809067279100418091e-01 +1.809429526329040527e-01 +1.809979379177093506e-01 +1.810966730117797852e-01 +1.815706491470336914e-01 +1.816397607326507568e-01 +1.817078888416290283e-01 +1.814450919628143311e-01 +1.821802556514739990e-01 +1.821412742137908936e-01 +1.828713864088058472e-01 +1.827526539564132690e-01 +1.827601045370101929e-01 +1.826141029596328735e-01 +1.824203580617904663e-01 +1.824553757905960083e-01 +1.822753250598907471e-01 +1.825555264949798584e-01 +1.821830570697784424e-01 +1.826389878988265991e-01 +1.821144819259643555e-01 +1.820396333932876587e-01 +1.817731708288192749e-01 +1.816450804471969604e-01 +1.820534467697143555e-01 +1.820371001958847046e-01 +1.814373880624771118e-01 +1.812399029731750488e-01 +1.806672364473342896e-01 +1.803853213787078857e-01 +1.794976443052291870e-01 +1.790982037782669067e-01 +1.780932098627090454e-01 +1.776514947414398193e-01 +1.781182736158370972e-01 +1.773777008056640625e-01 +1.789437383413314819e-01 +1.783492118120193481e-01 +2.088857740163803101e-01 +2.079844772815704346e-01 diff --git a/MakeItTalk/src/dataset/utils/STD_FACE_LANDMARKS.txt b/MakeItTalk/src/dataset/utils/STD_FACE_LANDMARKS.txt new file mode 100644 index 0000000000000000000000000000000000000000..2be7fa561f2486813ff55268b3d35c413e0c21df --- /dev/null +++ b/MakeItTalk/src/dataset/utils/STD_FACE_LANDMARKS.txt @@ -0,0 +1,68 @@ +-0.8099 -0.0546 -0.8557 +-0.7941 0.1803 -0.8711 +-0.7398 0.3902 -0.8871 +-0.6977 0.5811 -0.8835 +-0.6397 0.7837 -0.8138 +-0.5470 0.9594 -0.6631 +-0.4469 1.0912 -0.4768 +-0.2816 1.2157 -0.2967 +-0.0192 1.2938 -0.2114 +0.2193 1.2169 -0.3033 +0.3932 1.1040 -0.4839 +0.5110 0.9716 -0.6684 +0.6153 0.7837 -0.8159 +0.6775 0.5665 -0.8807 +0.7257 0.3786 -0.8824 +0.7855 0.1754 -0.8666 +0.8185 -0.0448 -0.8501 +-0.6568 -0.2730 -0.0738 +-0.5659 -0.3523 0.0527 +-0.4359 -0.3847 0.1346 +-0.3231 -0.3505 0.1808 +-0.2139 -0.2950 0.1918 +0.2425 -0.2816 0.1986 +0.3444 -0.3121 0.1886 +0.4768 -0.3334 0.1452 +0.5891 -0.3145 0.0664 +0.6885 -0.2224 -0.0619 +0.0125 0.0149 0.1415 +0.0040 0.1815 0.2018 +0.0040 0.3225 0.2893 +0.0040 0.4317 0.2894 +-0.1455 0.5134 0.0735 +-0.0833 0.5342 0.1024 +0.0040 0.5390 0.1173 +0.0857 0.5378 0.1016 +0.1449 0.5146 0.0713 +-0.5000 -0.0125 -0.0058 +-0.4274 -0.0436 0.0834 +-0.3267 -0.0436 0.0888 +-0.2322 0.0149 0.0487 +-0.3121 0.0406 0.0764 +-0.4274 0.0430 0.0570 +0.2291 0.0162 0.0574 +0.3359 -0.0125 0.0997 +0.4359 -0.0125 0.0966 +0.5000 0.0125 0.0058 +0.4231 0.0455 0.0661 +0.3164 0.0381 0.0849 +-0.3292 0.7672 -0.1399 +-0.2236 0.7294 0.0106 +-0.0833 0.6800 0.1013 +0.0040 0.7087 0.1112 +0.0735 0.6775 0.1024 +0.2230 0.7331 0.0080 +0.3371 0.7648 -0.1486 +0.2236 0.8382 -0.0193 +0.1138 0.8795 0.0498 +-0.0129 0.8973 0.0609 +-0.1297 0.8795 0.0515 +-0.2291 0.8382 -0.0166 +-0.3194 0.7672 -0.1429 +-0.1126 0.7672 0.0396 +0.0040 0.7674 0.0642 +0.0979 0.7672 0.0391 +0.3127 0.7648 -0.1528 +0.0979 0.7672 0.0391 +0.0040 0.7674 0.0642 +-0.1126 0.7672 0.0396 \ No newline at end of file diff --git a/MakeItTalk/src/dataset/utils/__init__.py b/MakeItTalk/src/dataset/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..7f3999734455352473532ef25cddf059eb5baee3 --- /dev/null +++ b/MakeItTalk/src/dataset/utils/__init__.py @@ -0,0 +1,10 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + diff --git a/MakeItTalk/src/dataset/utils/__pycache__/Av2Flau_Convertor.cpython-37.pyc b/MakeItTalk/src/dataset/utils/__pycache__/Av2Flau_Convertor.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5b2d29b33b6f31cec61c6e8b76b7237d2bc28ca9 Binary files /dev/null and b/MakeItTalk/src/dataset/utils/__pycache__/Av2Flau_Convertor.cpython-37.pyc differ diff --git a/MakeItTalk/src/dataset/utils/__pycache__/Av2Flau_Convertor.cpython-39.pyc b/MakeItTalk/src/dataset/utils/__pycache__/Av2Flau_Convertor.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d559252aa63909c7307dca4d7cf4501f5d4a7d49 Binary files /dev/null and b/MakeItTalk/src/dataset/utils/__pycache__/Av2Flau_Convertor.cpython-39.pyc differ diff --git a/MakeItTalk/src/dataset/utils/__pycache__/__init__.cpython-37.pyc b/MakeItTalk/src/dataset/utils/__pycache__/__init__.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c969670b59519d5d823dc16a83b60673a70a184c Binary files /dev/null and b/MakeItTalk/src/dataset/utils/__pycache__/__init__.cpython-37.pyc differ diff --git a/MakeItTalk/src/dataset/utils/__pycache__/__init__.cpython-39.pyc b/MakeItTalk/src/dataset/utils/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b00eb99d7c29761252a36fdcc4f7e0d58398ce1 Binary files /dev/null and b/MakeItTalk/src/dataset/utils/__pycache__/__init__.cpython-39.pyc differ diff --git a/MakeItTalk/src/dataset/utils/__pycache__/icp.cpython-37.pyc b/MakeItTalk/src/dataset/utils/__pycache__/icp.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bc8d75e659957bd2bf611e4f8ec47598f7cd63dd Binary files /dev/null and b/MakeItTalk/src/dataset/utils/__pycache__/icp.cpython-37.pyc differ diff --git a/MakeItTalk/src/dataset/utils/__pycache__/icp.cpython-39.pyc b/MakeItTalk/src/dataset/utils/__pycache__/icp.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..166c0a49b11edc66e3267f4f49350f4201d9f20f Binary files /dev/null and b/MakeItTalk/src/dataset/utils/__pycache__/icp.cpython-39.pyc differ diff --git a/MakeItTalk/src/dataset/utils/icp.py b/MakeItTalk/src/dataset/utils/icp.py new file mode 100644 index 0000000000000000000000000000000000000000..5fcf851e18c61f9a09dd28080531828d0025e98d --- /dev/null +++ b/MakeItTalk/src/dataset/utils/icp.py @@ -0,0 +1,142 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import numpy as np +from sklearn.neighbors import NearestNeighbors + + +def best_fit_transform(A, B): + ''' + Calculates the least-squares best-fit transform that maps corresponding points A to B in m spatial dimensions + Input: + A: Nxm numpy array of corresponding points + B: Nxm numpy array of corresponding points + Returns: + T: (m+1)x(m+1) homogeneous transformation matrix that maps A on to B + R: mxm rotation matrix + t: mx1 translation vector + ''' + + assert A.shape == B.shape + + # get number of dimensions + m = A.shape[1] + + # translate points to their centroids + centroid_A = np.mean(A, axis=0) + centroid_B = np.mean(B, axis=0) + AA = A - centroid_A + BB = B - centroid_B + + # rotation matrix + H = np.dot(AA.T, BB) + U, S, Vt = np.linalg.svd(H) + R = np.dot(Vt.T, U.T) + + # special reflection case + if np.linalg.det(R) < 0: + Vt[m-1,:] *= -1 + R = np.dot(Vt.T, U.T) + + # translation + t = centroid_B.T - np.dot(R,centroid_A.T) + + # Step added for scalar (deprecated) + p_deno = np.sum(AA**2, axis=0) + y_nume = np.sum(BB**2, axis=0) + s = np.identity(m+1) + s[:m, :m] = s[:m, :m] * (y_nume / p_deno) ** 0.25 + + # homogeneous transformation + T = np.identity(m+1) + T[:m, :m] = R + T[:m, m] = t + + # Step : (Deprecated for Scalar) + # T = np.dot(s, T) + + return T, R, t + + +def nearest_neighbor(src, dst): + ''' + Find the nearest (Euclidean) neighbor in dst for each point in src + Input: + src: Nxm array of points + dst: Nxm array of points + Output: + distances: Euclidean distances of the nearest neighbor + indices: dst indices of the nearest neighbor + ''' + + assert src.shape == dst.shape + + neigh = NearestNeighbors(n_neighbors=1) + neigh.fit(dst) + distances, indices = neigh.kneighbors(src, return_distance=True) + return distances.ravel(), indices.ravel() + + +def icp(A, B, init_pose=None, max_iterations=50, tolerance=0.0001): + ''' + The Iterative Closest Point method: finds best-fit transform that maps points A on to points B + Input: + A: Nxm numpy array of source mD points + B: Nxm numpy array of destination mD point + init_pose: (m+1)x(m+1) homogeneous transformation + max_iterations: exit algorithm after max_iterations + tolerance: convergence criteria + Output: + T: final homogeneous transformation that maps A on to B + distances: Euclidean distances (errors) of the nearest neighbor + i: number of iterations to converge + ''' + + assert A.shape == B.shape + + # get number of dimensions + m = A.shape[1] + + # make points homogeneous, copy them to maintain the originals + src = np.ones((m+1,A.shape[0])) + dst = np.ones((m+1,B.shape[0])) + src[:m,:] = np.copy(A.T) + dst[:m,:] = np.copy(B.T) + + # apply the initial pose estimation + if init_pose is not None: + src = np.dot(init_pose, src) + + prev_error = 0 + + for i in range(max_iterations): + # # find the nearest neighbors between the current source and destination points + # distances, indices = nearest_neighbor(src[:m,:].T, dst[:m,:].T) + # + # # compute the transformation between the current source and nearest destination points + # T,_,_ = best_fit_transform(src[:m,:].T, dst[:m,indices].T) + + # Step x : just for our T-shape transform, we don'n need this nearest neighbor search + distances = np.sum((src[:m, :] - dst[:m, :])**2) + T, _, _ = best_fit_transform(src[:m, :].T, dst[:m, :].T) + + # update the current source + src = np.dot(T, src) + + # check error + mean_error = np.mean(distances) + if np.abs(prev_error - mean_error) < tolerance: + break + prev_error = mean_error + + # calculate final transformation + T,_,_ = best_fit_transform(A, src[:m,:].T) + + return T, distances, i diff --git a/MakeItTalk/src/models/__init__.py b/MakeItTalk/src/models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..7f3999734455352473532ef25cddf059eb5baee3 --- /dev/null +++ b/MakeItTalk/src/models/__init__.py @@ -0,0 +1,10 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + diff --git a/MakeItTalk/src/models/__pycache__/__init__.cpython-37.pyc b/MakeItTalk/src/models/__pycache__/__init__.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b8cc652f259926f7164ddb1777e10c92e743550 Binary files /dev/null and b/MakeItTalk/src/models/__pycache__/__init__.cpython-37.pyc differ diff --git a/MakeItTalk/src/models/__pycache__/__init__.cpython-39.pyc b/MakeItTalk/src/models/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5ac2d34eaf9801874245cb149aeff36d94243bd2 Binary files /dev/null and b/MakeItTalk/src/models/__pycache__/__init__.cpython-39.pyc differ diff --git a/MakeItTalk/src/models/__pycache__/model_audio2landmark.cpython-37.pyc b/MakeItTalk/src/models/__pycache__/model_audio2landmark.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8719b5a76b7d3f24797d4f8b180233de75703d70 Binary files /dev/null and b/MakeItTalk/src/models/__pycache__/model_audio2landmark.cpython-37.pyc differ diff --git a/MakeItTalk/src/models/__pycache__/model_audio2landmark.cpython-39.pyc b/MakeItTalk/src/models/__pycache__/model_audio2landmark.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a5dc938c15a0c015a2e4cedb26dad111cf6e14ac Binary files /dev/null and b/MakeItTalk/src/models/__pycache__/model_audio2landmark.cpython-39.pyc differ diff --git a/MakeItTalk/src/models/__pycache__/model_image_translation.cpython-37.pyc b/MakeItTalk/src/models/__pycache__/model_image_translation.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c9e47e2220f6c9930130e499acc6f7adb0a618e9 Binary files /dev/null and b/MakeItTalk/src/models/__pycache__/model_image_translation.cpython-37.pyc differ diff --git a/MakeItTalk/src/models/__pycache__/model_image_translation.cpython-39.pyc b/MakeItTalk/src/models/__pycache__/model_image_translation.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ed210eb9c429a1c03fca79f1cbf6b23a31213ca7 Binary files /dev/null and b/MakeItTalk/src/models/__pycache__/model_image_translation.cpython-39.pyc differ diff --git a/MakeItTalk/src/models/model_audio2landmark.py b/MakeItTalk/src/models/model_audio2landmark.py new file mode 100644 index 0000000000000000000000000000000000000000..fb94f0a749a1d42d6075dea1a990e224e13465d2 --- /dev/null +++ b/MakeItTalk/src/models/model_audio2landmark.py @@ -0,0 +1,492 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import torch +import torch.nn as nn +import torch.nn.parallel +import torch.utils.data +import math +import torch.nn.functional as F +import copy +import numpy as np + +# device = torch.device("mps" if torch.backends.mps.is_available() else "cpu") +device = torch.device("cuda") + +AUDIO_FEAT_SIZE = 161 +FACE_ID_FEAT_SIZE = 204 +Z_SIZE = 16 +EPSILON = 1e-40 + + +class Audio2landmark_content(nn.Module): + + def __init__(self, num_window_frames=18, in_size=80, lstm_size=AUDIO_FEAT_SIZE, use_prior_net=False, hidden_size=256, num_layers=3, drop_out=0, bidirectional=False): + super(Audio2landmark_content, self).__init__() + + self.fc_prior = self.fc = nn.Sequential( + nn.Linear(in_features=in_size, out_features=256), + nn.BatchNorm1d(256), + nn.LeakyReLU(0.2), + nn.Linear(256, lstm_size), + ) + + self.use_prior_net = use_prior_net + if(use_prior_net): + self.bilstm = nn.LSTM(input_size=lstm_size, + hidden_size=hidden_size, + num_layers=num_layers, + dropout=drop_out, + bidirectional=bidirectional, + batch_first=True, ) + else: + self.bilstm = nn.LSTM(input_size=in_size, + hidden_size=hidden_size, + num_layers=num_layers, + dropout=drop_out, + bidirectional=bidirectional, + batch_first=True, ) + + self.in_size = in_size + self.lstm_size = lstm_size + self.num_window_frames = num_window_frames + + self.fc_in_features = hidden_size * 2 if bidirectional else hidden_size + self.fc = nn.Sequential( + nn.Linear(in_features=self.fc_in_features + FACE_ID_FEAT_SIZE, out_features=512), + nn.BatchNorm1d(512), + nn.LeakyReLU(0.2), + nn.Linear(512, 256), + nn.BatchNorm1d(256), + nn.LeakyReLU(0.2), + nn.Linear(256, 204), + ) + + + + def forward(self, au, face_id): + + inputs = au + if(self.use_prior_net): + inputs = self.fc_prior(inputs.contiguous().view(-1, self.in_size)) + inputs = inputs.view(-1, self.num_window_frames, self.lstm_size) + + output, (hn, cn) = self.bilstm(inputs) + output = output[:, -1, :] + + if(face_id.shape[0] == 1): + face_id = face_id.repeat(output.shape[0], 1) + output2 = torch.cat((output, face_id), dim=1) + + output2 = self.fc(output2) + # output += face_id + + return output2, face_id + + + +class Embedder(nn.Module): + def __init__(self, feat_size, d_model): + super().__init__() + self.embed = nn.Linear(feat_size, d_model) + def forward(self, x): + return self.embed(x) + + +class PositionalEncoder(nn.Module): + def __init__(self, d_model, max_seq_len=512): + super().__init__() + self.d_model = d_model + + # create constant 'pe' matrix with values dependant on + # pos and i + pe = torch.zeros(max_seq_len, d_model) + for pos in range(max_seq_len): + for i in range(0, d_model, 2): + pe[pos, i] = \ + math.sin(pos / (10000 ** ((2 * i) / d_model))) + pe[pos, i + 1] = \ + math.cos(pos / (10000 ** ((2 * (i + 1)) / d_model))) + + pe = pe.unsqueeze(0) + self.register_buffer('pe', pe) + + def forward(self, x): + # make embeddings relatively larger + x = x * math.sqrt(self.d_model) + # add constant to embedding + seq_len = x.size(1) + x = x + self.pe[:, :seq_len].clone().detach().to(device) + return x + + +def attention(q, k, v, d_k, mask=None, dropout=None): + + scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) + if mask is not None: + mask = mask.unsqueeze(1) + scores = scores.masked_fill(mask == 0, -1e9) + scores = F.softmax(scores, dim=-1) + + if dropout is not None: + scores = dropout(scores) + + output = torch.matmul(scores, v) + return output + + +class MultiHeadAttention(nn.Module): + def __init__(self, heads, d_model, dropout=0.1): + super().__init__() + + self.d_model = d_model + self.d_k = d_model // heads + self.h = heads + + self.q_linear = nn.Linear(d_model, d_model) + self.v_linear = nn.Linear(d_model, d_model) + self.k_linear = nn.Linear(d_model, d_model) + self.dropout = nn.Dropout(dropout) + self.out = nn.Linear(d_model, d_model) + + def forward(self, q, k, v, mask=None): + bs = q.size(0) + + # perform linear operation and split into h heads + + k = self.k_linear(k).view(bs, -1, self.h, self.d_k) + q = self.q_linear(q).view(bs, -1, self.h, self.d_k) + v = self.v_linear(v).view(bs, -1, self.h, self.d_k) + + # transpose to get dimensions bs * h * sl * d_model + + k = k.transpose(1, 2) + q = q.transpose(1, 2) + v = v.transpose(1, 2) + + # calculate attention using function we will define next + scores = attention(q, k, v, self.d_k, mask, self.dropout) + + # concatenate heads and put through final linear layer + concat = scores.transpose(1, 2).contiguous() \ + .view(bs, -1, self.d_model) + + output = self.out(concat) + + return output + +class FeedForward(nn.Module): + def __init__(self, d_model, d_ff=2048, dropout = 0.1): + super().__init__() + # We set d_ff as a default to 2048 + self.linear_1 = nn.Linear(d_model, d_ff) + self.dropout = nn.Dropout(dropout) + self.linear_2 = nn.Linear(d_ff, d_model) + def forward(self, x): + x = self.dropout(F.relu(self.linear_1(x))) + x = self.linear_2(x) + return x + + +class Norm(nn.Module): + def __init__(self, d_model, eps=1e-6): + super().__init__() + + self.size = d_model + # create two learnable parameters to calibrate normalisation + self.alpha = nn.Parameter(torch.ones(self.size)) + self.bias = nn.Parameter(torch.zeros(self.size)) + self.eps = eps + + def forward(self, x): + norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) \ + / (x.std(dim=-1, keepdim=True) + self.eps) + self.bias + return norm + +# build an encoder layer with one multi-head attention layer and one # feed-forward layer +class EncoderLayer(nn.Module): + def __init__(self, d_model, heads, dropout=0.1): + super().__init__() + self.norm_1 = Norm(d_model) + self.norm_2 = Norm(d_model) + self.attn = MultiHeadAttention(heads, d_model) + self.ff = FeedForward(d_model) + self.dropout_1 = nn.Dropout(dropout) + self.dropout_2 = nn.Dropout(dropout) + + def forward(self, x, mask): + x2 = self.norm_1(x) + x = x + self.dropout_1(self.attn(x2, x2, x2, mask)) + x2 = self.norm_2(x) + x = x + self.dropout_2(self.ff(x2)) + return x + + # build a decoder layer with two multi-head attention layers and + # one feed-forward layer +class DecoderLayer(nn.Module): + def __init__(self, d_model, heads, dropout=0.1): + super().__init__() + self.norm_1 = Norm(d_model) + self.norm_2 = Norm(d_model) + self.norm_3 = Norm(d_model) + + self.dropout_1 = nn.Dropout(dropout) + self.dropout_2 = nn.Dropout(dropout) + self.dropout_3 = nn.Dropout(dropout) + + self.attn_1 = MultiHeadAttention(heads, d_model) + self.attn_2 = MultiHeadAttention(heads, d_model) + # self.ff = FeedForward(d_model).mps() + self.ff = FeedForward(d_model) + + def forward(self, x, e_outputs, src_mask, trg_mask): + x2 = self.norm_1(x) + + x = x + self.dropout_1(self.attn_1(x2, x2, x2, trg_mask)) + x2 = self.norm_2(x) + x = x + self.dropout_2(self.attn_2(x2, e_outputs, e_outputs, src_mask)) + x2 = self.norm_3(x) + x = x + self.dropout_3(self.ff(x2)) + return x + + # We can then build a convenient cloning function that can generate multiple layers: +def get_clones(module, N): + return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) + + +class Encoder(nn.Module): + def __init__(self, d_model, N, heads, in_size): + super().__init__() + self.N = N + self.embed = Embedder(in_size, d_model) + self.pe = PositionalEncoder(d_model) + self.layers = get_clones(EncoderLayer(d_model, heads), N) + self.norm = Norm(d_model) + + def forward(self, x, mask=None): + x = self.embed(x) + x = self.pe(x) + for i in range(self.N): + x = self.layers[i](x, mask) + return self.norm(x) + + +class Decoder(nn.Module): + def __init__(self, d_model, N, heads, in_size): + super().__init__() + self.N = N + self.embed = Embedder(in_size, d_model) + self.pe = PositionalEncoder(d_model) + self.layers = get_clones(DecoderLayer(d_model, heads), N) + self.norm = Norm(d_model) + + def forward(self, x, e_outputs, src_mask=None, trg_mask=None): + x = self.embed(x) + x = self.pe(x) + for i in range(self.N): + x = self.layers[i](x, e_outputs, src_mask, trg_mask) + return self.norm(x) + + +class Audio2landmark_pos(nn.Module): + + def __init__(self, audio_feat_size=80, c_enc_hidden_size=256, num_layers=3, drop_out=0, + spk_feat_size=256, spk_emb_enc_size=128, lstm_g_win_size=64, add_info_size=6, + transformer_d_model=32, N=2, heads=2, z_size=128, audio_dim=256): + super(Audio2landmark_pos, self).__init__() + + self.lstm_g_win_size = lstm_g_win_size + self.add_info_size = add_info_size + comb_mlp_size = c_enc_hidden_size * 2 + + self.audio_content_encoder = nn.LSTM(input_size=audio_feat_size, + hidden_size=c_enc_hidden_size, + num_layers=num_layers, + dropout=drop_out, + bidirectional=False, + batch_first=True) + + self.use_audio_projection = not (audio_dim == c_enc_hidden_size) + if(self.use_audio_projection): + self.audio_projection = nn.Sequential( + nn.Linear(in_features=c_enc_hidden_size, out_features=256), + nn.LeakyReLU(0.02), + nn.Linear(256, 128), + nn.LeakyReLU(0.02), + nn.Linear(128, audio_dim), + ) + + + ''' original version ''' + self.spk_emb_encoder = nn.Sequential( + nn.Linear(in_features=spk_feat_size, out_features=256), + nn.LeakyReLU(0.02), + nn.Linear(256, 128), + nn.LeakyReLU(0.02), + nn.Linear(128, spk_emb_enc_size), + ) + # self.comb_mlp = nn.Sequential( + # nn.Linear(in_features=audio_dim + spk_emb_enc_size, out_features=comb_mlp_size), + # nn.LeakyReLU(0.02), + # nn.Linear(comb_mlp_size, comb_mlp_size // 2), + # nn.LeakyReLU(0.02), + # nn.Linear(comb_mlp_size // 2, 180), + # ) + + d_model = transformer_d_model * heads + N = N + heads = heads + + self.encoder = Encoder(d_model, N, heads, in_size=audio_dim + spk_emb_enc_size + z_size) + self.decoder = Decoder(d_model, N, heads, in_size=204) + self.out = nn.Sequential( + nn.Linear(in_features=d_model + z_size, out_features=512), + nn.LeakyReLU(0.02), + nn.Linear(512, 256), + nn.LeakyReLU(0.02), + nn.Linear(256, 204), + ) + + + def forward(self, au, emb, face_id, fls, z, add_z_spk=False, another_emb=None): + + # audio + audio_encode, (_, _) = self.audio_content_encoder(au) + audio_encode = audio_encode[:, -1, :] + + if(self.use_audio_projection): + audio_encode = self.audio_projection(audio_encode) + + # spk + spk_encode = self.spk_emb_encoder(emb) + if(add_z_spk): + z_spk = torch.tensor(torch.randn(spk_encode.shape)*0.01, requires_grad=False, dtype=torch.float).to(device) + spk_encode = spk_encode + z_spk + + # comb + # comb_input = torch.cat((audio_encode, spk_encode), dim=1) + # comb_encode = self.comb_mlp(comb_input) + comb_encode = torch.cat((audio_encode, spk_encode, z), dim=1) + src_feat = comb_encode.unsqueeze(0) + + e_outputs = self.encoder(src_feat)[0] + + e_outputs = torch.cat((e_outputs, z), dim=1) + + fl_pred = self.out(e_outputs) + + return fl_pred, face_id[0:1, :], spk_encode + + + + +def nopeak_mask(size): + np_mask = np.triu(np.ones((1, size, size)), k=1).astype('uint8') + np_mask = torch.tensor(torch.from_numpy(np_mask) == 0) + np_mask = np_mask.to(device) + return np_mask + + +def create_masks(src, trg): + src_mask = (src != torch.zeros_like(src, requires_grad=False)) + + if trg is not None: + size = trg.size(1) # get seq_len for matrix + np_mask = nopeak_mask(size) + np_mask = np_mask.to(device) + trg_mask = np_mask + + else: + trg_mask = None + return src_mask, trg_mask + + +class TalkingToon_spk2res_lstmgan_DL(nn.Module): + def __init__(self, comb_emb_size=256, input_size=6): + super(TalkingToon_spk2res_lstmgan_DL, self).__init__() + + self.fl_D = nn.Sequential( + nn.Linear(in_features=FACE_ID_FEAT_SIZE, out_features=512), + nn.LeakyReLU(0.02), + nn.Linear(512, 256), + nn.LeakyReLU(0.02), + nn.Linear(256, 1), + ) + + def forward(self, feat): + d = self.fl_D(feat) + # d = torch.sigmoid(d) + return d + + +class Transformer_DT(nn.Module): + def __init__(self, transformer_d_model=32, N=2, heads=2, spk_emb_enc_size=128): + super(Transformer_DT, self).__init__() + d_model = transformer_d_model * heads + self.encoder = Encoder(d_model, N, heads, in_size=204 + spk_emb_enc_size) + self.out = nn.Sequential( + nn.Linear(in_features=d_model, out_features=512), + nn.LeakyReLU(0.02), + nn.Linear(512, 256), + nn.LeakyReLU(0.02), + nn.Linear(256, 1), + ) + + def forward(self, fls, spk_emb, win_size=64, win_step=1): + feat = torch.cat((fls, spk_emb), dim=1) + + win_size = feat.shape[0]-1 if feat.shape[0] <= win_size else win_size + D_input = [feat[i:i+win_size:win_step] for i in range(0, feat.shape[0]-win_size)] + D_input = torch.stack(D_input, dim=0) + D_output = self.encoder(D_input) + D_output = torch.max(D_output, dim=1, keepdim=False)[0] + d = self.out(D_output) + # d = torch.sigmoid(d) + return d + + +class TalkingToon_spk2res_lstmgan_DT(nn.Module): + def __init__(self, comb_emb_size=256, lstm_g_hidden_size=256, num_layers=3, drop_out=0, input_size=6): + super(TalkingToon_spk2res_lstmgan_DT, self).__init__() + + self.fl_DT = nn.GRU(input_size=comb_emb_size + FACE_ID_FEAT_SIZE, + hidden_size=lstm_g_hidden_size, + num_layers=3, + dropout=0, + bidirectional=False, + batch_first=True) + self.projection = nn.Sequential( + nn.Linear(in_features=lstm_g_hidden_size, out_features=512), + nn.LeakyReLU(0.02), + nn.Linear(512, 256), + nn.LeakyReLU(0.02), + nn.Linear(256, 1), + ) + + self.maxpool = nn.MaxPool1d(4, 1) + + def forward(self, comb_encode, fls, win_size=32, win_step=1): + feat = torch.cat((comb_encode, fls), dim=1) + # v + # feat = torch.cat((comb_encode[0:-1], fls[1:] - fls[0:-1]), dim=1) + + # max pooling + feat = feat.transpose(0, 1).unsqueeze(0) + feat = self.maxpool(feat) + feat = feat[0].transpose(0, 1) + + win_size = feat.shape[0] - 1 if feat.shape[0] <= win_size else win_size + D_input = [feat[i:i+win_size:win_step] for i in range(0, feat.shape[0]-win_size)] + D_input = torch.stack(D_input, dim=0) + D_output, _ = self.fl_DT(D_input) + D_output = D_output[:, -1, :] + d = self.projection(D_output) + # d = torch.sigmoid(d) + return d \ No newline at end of file diff --git a/MakeItTalk/src/models/model_audio2landmark_speaker_aware.py b/MakeItTalk/src/models/model_audio2landmark_speaker_aware.py new file mode 100644 index 0000000000000000000000000000000000000000..86ce63d8a45231accd22225b753641bf4094d375 --- /dev/null +++ b/MakeItTalk/src/models/model_audio2landmark_speaker_aware.py @@ -0,0 +1,492 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import torch +import torch.nn as nn +import torch.nn.parallel +import torch.utils.data +import math +import torch.nn.functional as F +import copy +import numpy as np + +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + +AUDIO_FEAT_SIZE = 161 +FACE_ID_FEAT_SIZE = 204 +EPSILON = 1e-40 + +class Embedder(nn.Module): + def __init__(self, feat_size, d_model): + super().__init__() + self.embed = nn.Linear(feat_size, d_model) + def forward(self, x): + return self.embed(x) + + +class PositionalEncoder(nn.Module): + def __init__(self, d_model, max_seq_len=512): + super().__init__() + self.d_model = d_model + + # create constant 'pe' matrix with values dependant on + # pos and i + pe = torch.zeros(max_seq_len, d_model) + for pos in range(max_seq_len): + for i in range(0, d_model, 2): + pe[pos, i] = \ + math.sin(pos / (10000 ** ((2 * i) / d_model))) + pe[pos, i + 1] = \ + math.cos(pos / (10000 ** ((2 * (i + 1)) / d_model))) + + pe = pe.unsqueeze(0) + self.register_buffer('pe', pe) + + + def forward(self, x): + # make embeddings relatively larger + x = x * math.sqrt(self.d_model) + # add constant to embedding + seq_len = x.size(1) + x = x + self.pe[:, :seq_len].clone().detach().to(device) + return x + + +def attention(q, k, v, d_k, mask=None, dropout=None): + + scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) + if mask is not None: + mask = mask.unsqueeze(1) + scores = scores.masked_fill(mask == 0, -1e9) + scores = F.softmax(scores, dim=-1) + + if dropout is not None: + scores = dropout(scores) + + output = torch.matmul(scores, v) + return output + + +class MultiHeadAttention(nn.Module): + def __init__(self, heads, d_model, dropout=0.1): + super().__init__() + + self.d_model = d_model + self.d_k = d_model // heads + self.h = heads + + self.q_linear = nn.Linear(d_model, d_model) + self.v_linear = nn.Linear(d_model, d_model) + self.k_linear = nn.Linear(d_model, d_model) + self.dropout = nn.Dropout(dropout) + self.out = nn.Linear(d_model, d_model) + + def forward(self, q, k, v, mask=None): + bs = q.size(0) + + # perform linear operation and split into h heads + + k = self.k_linear(k).view(bs, -1, self.h, self.d_k) + q = self.q_linear(q).view(bs, -1, self.h, self.d_k) + v = self.v_linear(v).view(bs, -1, self.h, self.d_k) + + # transpose to get dimensions bs * h * sl * d_model + + k = k.transpose(1, 2) + q = q.transpose(1, 2) + v = v.transpose(1, 2) + + # calculate attention using function we will define next + scores = attention(q, k, v, self.d_k, mask, self.dropout) + + # concatenate heads and put through final linear layer + concat = scores.transpose(1, 2).contiguous() \ + .view(bs, -1, self.d_model) + + output = self.out(concat) + + return output + +class FeedForward(nn.Module): + def __init__(self, d_model, d_ff=2048, dropout = 0.1): + super().__init__() + # We set d_ff as a default to 2048 + self.linear_1 = nn.Linear(d_model, d_ff) + self.dropout = nn.Dropout(dropout) + self.linear_2 = nn.Linear(d_ff, d_model) + def forward(self, x): + x = self.dropout(F.relu(self.linear_1(x))) + x = self.linear_2(x) + return x + + +class Norm(nn.Module): + def __init__(self, d_model, eps=1e-6): + super().__init__() + + self.size = d_model + # create two learnable parameters to calibrate normalisation + self.alpha = nn.Parameter(torch.ones(self.size)) + self.bias = nn.Parameter(torch.zeros(self.size)) + self.eps = eps + + def forward(self, x): + norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) \ + / (x.std(dim=-1, keepdim=True) + self.eps) + self.bias + return norm + +# build an encoder layer with one multi-head attention layer and one # feed-forward layer +class EncoderLayer(nn.Module): + def __init__(self, d_model, heads, dropout=0.1): + super().__init__() + self.norm_1 = Norm(d_model) + self.norm_2 = Norm(d_model) + self.attn = MultiHeadAttention(heads, d_model) + self.ff = FeedForward(d_model) + self.dropout_1 = nn.Dropout(dropout) + self.dropout_2 = nn.Dropout(dropout) + + def forward(self, x, mask): + x2 = self.norm_1(x) + x = x + self.dropout_1(self.attn(x2, x2, x2, mask)) + x2 = self.norm_2(x) + x = x + self.dropout_2(self.ff(x2)) + return x + + # build a decoder layer with two multi-head attention layers and + # one feed-forward layer +class DecoderLayer(nn.Module): + def __init__(self, d_model, heads, dropout=0.1): + super().__init__() + self.norm_1 = Norm(d_model) + self.norm_2 = Norm(d_model) + self.norm_3 = Norm(d_model) + + self.dropout_1 = nn.Dropout(dropout) + self.dropout_2 = nn.Dropout(dropout) + self.dropout_3 = nn.Dropout(dropout) + + self.attn_1 = MultiHeadAttention(heads, d_model) + self.attn_2 = MultiHeadAttention(heads, d_model) + self.ff = FeedForward(d_model).cuda() + + def forward(self, x, e_outputs, src_mask, trg_mask): + x2 = self.norm_1(x) + + x = x + self.dropout_1(self.attn_1(x2, x2, x2, trg_mask)) + x2 = self.norm_2(x) + x = x + self.dropout_2(self.attn_2(x2, e_outputs, e_outputs, src_mask)) + x2 = self.norm_3(x) + x = x + self.dropout_3(self.ff(x2)) + return x + + # We can then build a convenient cloning function that can generate multiple layers: +def get_clones(module, N): + return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) + + +class Encoder(nn.Module): + def __init__(self, d_model, N, heads, in_size): + super().__init__() + self.N = N + self.embed = Embedder(in_size, d_model) + self.pe = PositionalEncoder(d_model) + self.layers = get_clones(EncoderLayer(d_model, heads), N) + self.norm = Norm(d_model) + + def forward(self, x, mask=None): + x = self.embed(x) + x = self.pe(x) + for i in range(self.N): + x = self.layers[i](x, mask) + return self.norm(x) + + +class Decoder(nn.Module): + def __init__(self, d_model, N, heads, in_size): + super().__init__() + self.N = N + self.embed = Embedder(in_size, d_model) + self.pe = PositionalEncoder(d_model) + self.layers = get_clones(DecoderLayer(d_model, heads), N) + self.norm = Norm(d_model) + + def forward(self, x, e_outputs, src_mask=None, trg_mask=None): + x = self.embed(x) + x = self.pe(x) + for i in range(self.N): + x = self.layers[i](x, e_outputs, src_mask, trg_mask) + return self.norm(x) + + +class Audio2landmark_speaker_aware_old(nn.Module): + + def __init__(self, spk_emb_enc_size=128, + transformer_d_model=32, N=2, heads=2, + pos_dim=9, + use_prior_net=False, is_noautovc=False): + super(Audio2landmark_speaker_aware, self).__init__() + + self.pos_dim = pos_dim + + audio_feat_size = 80 if not use_prior_net else 161 + audio_feat_size = 258 if is_noautovc else audio_feat_size + + # init audio encoder with content model + self.use_prior_net = use_prior_net + self.fc_prior = nn.Sequential( + nn.Linear(in_features=audio_feat_size, out_features=256), + nn.BatchNorm1d(256), + nn.LeakyReLU(0.2), + nn.Linear(256, 161), + ) + + self.audio_feat_size = audio_feat_size + self.bilstm = nn.LSTM(input_size=161, + hidden_size=256, + num_layers=3, + dropout=0.5, + bidirectional=False, + batch_first=True) + + ''' original version ''' + self.spk_emb_encoder = nn.Sequential( + nn.Linear(in_features=256, out_features=256), + nn.LeakyReLU(0.02), + nn.Linear(256, 128), + nn.LeakyReLU(0.02), + nn.Linear(128, spk_emb_enc_size), + ) + + d_model = transformer_d_model * heads + N = N + heads = heads + self.d_model = d_model + + self.encoder = Encoder(d_model, N, heads, in_size=256) + self.decoder = Decoder(d_model, N, heads, in_size=256) + + + self.out_fls_2 = nn.Sequential( + nn.Linear(in_features=d_model + 204, out_features=512), + nn.LeakyReLU(0.02), + nn.Linear(512, 256), + nn.LeakyReLU(0.02), + nn.Linear(256, 204), + ) + + self.out_pos_2 = nn.Sequential( + nn.Linear(in_features=d_model, out_features=32), + nn.LeakyReLU(0.02), + nn.Linear(32, 16), + nn.LeakyReLU(0.02), + nn.Linear(16, self.pos_dim), + ) + + + def forward(self, au, face_id): + + ''' original version ''' + # audio + inputs = au + if (self.use_prior_net): + inputs = self.fc_prior(inputs.contiguous().view(-1, self.audio_feat_size)) + inputs = inputs.view(-1, 18, 161) + + audio_encode, (_, _) = self.bilstm(inputs) + audio_encode = audio_encode[:, -1, :] + + + + # multi-attention + comb_encode = audio_encode + src_feat = comb_encode.unsqueeze(0) + e_outputs = self.encoder(src_feat)[0] + # e_outputs = comb_encode + + fl_input = e_outputs #[:, 0:self.d_model//4*3] + pos_input = e_outputs #[:, self.d_model//4*3:] + + fl_input = torch.cat([fl_input, face_id], dim=1) + fl_pred = self.out_fls_2(fl_input) + pos_pred = self.out_pos_2(pos_input) + + return fl_pred, pos_pred, face_id[0:1, :], None + + +class Audio2landmark_speaker_aware(nn.Module): + + def __init__(self, audio_feat_size=80, c_enc_hidden_size=256, num_layers=3, drop_out=0, + spk_feat_size=256, spk_emb_enc_size=128, lstm_g_win_size=64, add_info_size=6, + transformer_d_model=32, N=2, heads=2, z_size=128, audio_dim=256): + super(Audio2landmark_speaker_aware, self).__init__() + + self.lstm_g_win_size = lstm_g_win_size + self.add_info_size = add_info_size + comb_mlp_size = c_enc_hidden_size * 2 + + self.audio_content_encoder = nn.LSTM(input_size=audio_feat_size, + hidden_size=c_enc_hidden_size, + num_layers=num_layers, + dropout=drop_out, + bidirectional=False, + batch_first=True) + + self.use_audio_projection = not (audio_dim == c_enc_hidden_size) + if(self.use_audio_projection): + self.audio_projection = nn.Sequential( + nn.Linear(in_features=c_enc_hidden_size, out_features=256), + nn.LeakyReLU(0.02), + nn.Linear(256, 128), + nn.LeakyReLU(0.02), + nn.Linear(128, audio_dim), + ) + + + ''' original version ''' + self.spk_emb_encoder = nn.Sequential( + nn.Linear(in_features=spk_feat_size, out_features=256), + nn.LeakyReLU(0.02), + nn.Linear(256, 128), + nn.LeakyReLU(0.02), + nn.Linear(128, spk_emb_enc_size), + ) + + d_model = transformer_d_model * heads + N = N + heads = heads + + self.encoder = Encoder(d_model, N, heads, in_size=audio_dim + spk_emb_enc_size + z_size) + self.decoder = Decoder(d_model, N, heads, in_size=204) + self.out = nn.Sequential( + nn.Linear(in_features=d_model + z_size, out_features=512), + nn.LeakyReLU(0.02), + nn.Linear(512, 256), + nn.LeakyReLU(0.02), + nn.Linear(256, 204), + ) + + + def forward(self, au, emb, face_id, add_z_spk=False, another_emb=None): + + # audio + audio_encode, (_, _) = self.audio_content_encoder(au) + audio_encode = audio_encode[:, -1, :] + + if(self.use_audio_projection): + audio_encode = self.audio_projection(audio_encode) + + # spk + spk_encode = self.spk_emb_encoder(emb) + if(add_z_spk): + z_spk = torch.tensor(torch.randn(spk_encode.shape)*0.01, requires_grad=False, dtype=torch.float).to(device) + spk_encode = spk_encode + z_spk + + # comb + z = torch.tensor(torch.zeros(au.shape[0], 128), requires_grad=False, dtype=torch.float).to(device) + comb_encode = torch.cat((audio_encode, spk_encode, z), dim=1) + src_feat = comb_encode.unsqueeze(0) + + e_outputs = self.encoder(src_feat)[0] + + e_outputs = torch.cat((e_outputs, z), dim=1) + + fl_pred = self.out(e_outputs) + + return fl_pred, face_id[0:1, :], spk_encode + + + +def nopeak_mask(size): + np_mask = np.triu(np.ones((1, size, size)), k=1).astype('uint8') + np_mask = torch.tensor(torch.from_numpy(np_mask) == 0) + np_mask = np_mask.to(device) + return np_mask + + +def create_masks(src, trg): + src_mask = (src != torch.zeros_like(src, requires_grad=False)) + + if trg is not None: + size = trg.size(1) # get seq_len for matrix + np_mask = nopeak_mask(size) + np_mask = np_mask.to(device) + trg_mask = np_mask + + else: + trg_mask = None + return src_mask, trg_mask + + + +class Transformer_DT(nn.Module): + def __init__(self, transformer_d_model=32, N=2, heads=2, spk_emb_enc_size=128): + super(Transformer_DT, self).__init__() + d_model = transformer_d_model * heads + self.encoder = Encoder(d_model, N, heads, in_size=204 + spk_emb_enc_size) + self.out = nn.Sequential( + nn.Linear(in_features=d_model, out_features=512), + nn.LeakyReLU(0.02), + nn.Linear(512, 256), + nn.LeakyReLU(0.02), + nn.Linear(256, 1), + ) + + def forward(self, fls, spk_emb, win_size=64, win_step=16): + feat = torch.cat((fls, spk_emb), dim=1) + + win_size = feat.shape[0]-1 if feat.shape[0] <= win_size else win_size + D_input = [feat[i:i+win_size:win_step] for i in range(0, feat.shape[0]-win_size, win_step)] + D_input = torch.stack(D_input, dim=0) + D_output = self.encoder(D_input) + D_output = torch.max(D_output, dim=1, keepdim=False)[0] + d = self.out(D_output) + # d = torch.sigmoid(d) + return d + + +class TalkingToon_spk2res_lstmgan_DT(nn.Module): + def __init__(self, comb_emb_size=256, lstm_g_hidden_size=256, num_layers=3, drop_out=0, input_size=6): + super(TalkingToon_spk2res_lstmgan_DT, self).__init__() + + self.fl_DT = nn.GRU(input_size=comb_emb_size + FACE_ID_FEAT_SIZE, + hidden_size=lstm_g_hidden_size, + num_layers=3, + dropout=0, + bidirectional=False, + batch_first=True) + self.projection = nn.Sequential( + nn.Linear(in_features=lstm_g_hidden_size, out_features=512), + nn.LeakyReLU(0.02), + nn.Linear(512, 256), + nn.LeakyReLU(0.02), + nn.Linear(256, 1), + ) + + self.maxpool = nn.MaxPool1d(4, 1) + + def forward(self, comb_encode, fls, win_size=32, win_step=1): + feat = torch.cat((comb_encode, fls), dim=1) + # v + # feat = torch.cat((comb_encode[0:-1], fls[1:] - fls[0:-1]), dim=1) + + # max pooling + feat = feat.transpose(0, 1).unsqueeze(0) + feat = self.maxpool(feat) + feat = feat[0].transpose(0, 1) + + win_size = feat.shape[0] - 1 if feat.shape[0] <= win_size else win_size + D_input = [feat[i:i+win_size:win_step] for i in range(0, feat.shape[0]-win_size)] + D_input = torch.stack(D_input, dim=0) + D_output, _ = self.fl_DT(D_input) + D_output = D_output[:, -1, :] + d = self.projection(D_output) + # d = torch.sigmoid(d) + return d \ No newline at end of file diff --git a/MakeItTalk/src/models/model_image_translation.py b/MakeItTalk/src/models/model_image_translation.py new file mode 100644 index 0000000000000000000000000000000000000000..8a1dae863d7924b8a818052fe998ef9263921fbd --- /dev/null +++ b/MakeItTalk/src/models/model_image_translation.py @@ -0,0 +1,642 @@ +import torch +import torch.nn as nn +import torch.nn.parallel +from torch.autograd import Variable +import torch.nn.functional as F +from torchvision import models +import torch.utils.model_zoo as model_zoo + +from torch.nn import init +import os + +import numpy as np + + +def weights_init_normal(m): + classname = m.__class__.__name__ + if classname.find('Conv') != -1: + init.normal_(m.weight.data, 0.0, 0.02) + elif classname.find('Linear') != -1: + init.normal(m.weight.data, 0.0, 0.02) + elif classname.find('BatchNorm2d') != -1: + init.normal_(m.weight.data, 1.0, 0.02) + init.constant_(m.bias.data, 0.0) + + +def weights_init_xavier(m): + classname = m.__class__.__name__ + if classname.find('Conv') != -1: + init.xavier_normal_(m.weight.data, gain=0.02) + elif classname.find('Linear') != -1: + init.xavier_normal_(m.weight.data, gain=0.02) + elif classname.find('BatchNorm2d') != -1: + init.normal_(m.weight.data, 1.0, 0.02) + init.constant_(m.bias.data, 0.0) + + +def weights_init_kaiming(m): + classname = m.__class__.__name__ + if classname.find('Conv') != -1: + init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') + elif classname.find('Linear') != -1: + init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') + elif classname.find('BatchNorm2d') != -1: + init.normal_(m.weight.data, 1.0, 0.02) + init.constant_(m.bias.data, 0.0) + + +def init_weights(net, init_type='normal'): + print('initialization method [%s]' % init_type) + if init_type == 'normal': + net.apply(weights_init_normal) + elif init_type == 'xavier': + net.apply(weights_init_xavier) + elif init_type == 'kaiming': + net.apply(weights_init_kaiming) + else: + raise NotImplementedError('initialization method [%s] is not implemented' % init_type) + + +class FeatureExtraction(nn.Module): + def __init__(self, input_nc, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_dropout=False): + super(FeatureExtraction, self).__init__() + downconv = nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1) + model = [downconv, nn.ReLU(True), norm_layer(ngf)] + for i in range(n_layers): + in_ngf = 2 ** i * ngf if 2 ** i * ngf < 512 else 512 + out_ngf = 2 ** (i + 1) * ngf if 2 ** i * ngf < 512 else 512 + downconv = nn.Conv2d(in_ngf, out_ngf, kernel_size=4, stride=2, padding=1) + model += [downconv, nn.ReLU(True)] + model += [norm_layer(out_ngf)] + model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)] + model += [norm_layer(512)] + model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)] + + self.model = nn.Sequential(*model) + init_weights(self.model, init_type='normal') + + def forward(self, x): + return self.model(x) + + +class FeatureL2Norm(torch.nn.Module): + def __init__(self): + super(FeatureL2Norm, self).__init__() + + def forward(self, feature): + epsilon = 1e-6 + norm = torch.pow(torch.sum(torch.pow(feature, 2), 1) + epsilon, 0.5).unsqueeze(1).expand_as(feature) + return torch.div(feature, norm) + + +class FeatureCorrelation(nn.Module): + def __init__(self): + super(FeatureCorrelation, self).__init__() + + def forward(self, feature_A, feature_B): + b, c, h, w = feature_A.size() + # reshape features for matrix multiplication + feature_A = feature_A.transpose(2, 3).contiguous().view(b, c, h * w) + feature_B = feature_B.view(b, c, h * w).transpose(1, 2) + # perform matrix mult. + feature_mul = torch.bmm(feature_B, feature_A) + correlation_tensor = feature_mul.view(b, h, w, h * w).transpose(2, 3).transpose(1, 2) + return correlation_tensor + + +class FeatureRegression(nn.Module): + def __init__(self, input_nc=512, output_dim=6, use_cuda=True): + super(FeatureRegression, self).__init__() + self.conv = nn.Sequential( + nn.Conv2d(input_nc, 512, kernel_size=4, stride=2, padding=1), + nn.BatchNorm2d(512), + nn.ReLU(inplace=True), + nn.Conv2d(512, 256, kernel_size=4, stride=2, padding=1), + nn.BatchNorm2d(256), + nn.ReLU(inplace=True), + nn.Conv2d(256, 128, kernel_size=3, padding=1), + nn.BatchNorm2d(128), + nn.ReLU(inplace=True), + nn.Conv2d(128, 64, kernel_size=3, padding=1), + nn.BatchNorm2d(64), + nn.ReLU(inplace=True), + ) + self.linear = nn.Linear(64 * 4 * 3, output_dim) + self.tanh = nn.Tanh() + if use_cuda: + self.conv.cuda() + self.linear.cuda() + self.tanh.cuda() + + def forward(self, x): + x = self.conv(x) + x = x.view(x.size(0), -1) + x = self.linear(x) + x = self.tanh(x) + return x + + +class AffineGridGen(nn.Module): + def __init__(self, out_h=256, out_w=192, out_ch=3): + super(AffineGridGen, self).__init__() + self.out_h = out_h + self.out_w = out_w + self.out_ch = out_ch + + def forward(self, theta): + theta = theta.contiguous() + batch_size = theta.size()[0] + out_size = torch.Size((batch_size, self.out_ch, self.out_h, self.out_w)) + return F.affine_grid(theta, out_size) + + +class TpsGridGen(nn.Module): + def __init__(self, out_h=256, out_w=192, use_regular_grid=True, grid_size=3, reg_factor=0, use_cuda=True): + super(TpsGridGen, self).__init__() + self.out_h, self.out_w = out_h, out_w + self.reg_factor = reg_factor + self.use_cuda = use_cuda + + # create grid in numpy + self.grid = np.zeros([self.out_h, self.out_w, 3], dtype=np.float32) + # sampling grid with dim-0 coords (Y) + self.grid_X, self.grid_Y = np.meshgrid(np.linspace(-1, 1, out_w), np.linspace(-1, 1, out_h)) + # grid_X,grid_Y: size [1,H,W,1,1] + self.grid_X = torch.FloatTensor(self.grid_X).unsqueeze(0).unsqueeze(3) + self.grid_Y = torch.FloatTensor(self.grid_Y).unsqueeze(0).unsqueeze(3) + if use_cuda: + self.grid_X = self.grid_X.cuda() + self.grid_Y = self.grid_Y.cuda() + + # initialize regular grid for control points P_i + if use_regular_grid: + axis_coords = np.linspace(-1, 1, grid_size) + self.N = grid_size * grid_size + P_Y, P_X = np.meshgrid(axis_coords, axis_coords) + P_X = np.reshape(P_X, (-1, 1)) # size (N,1) + P_Y = np.reshape(P_Y, (-1, 1)) # size (N,1) + P_X = torch.FloatTensor(P_X) + P_Y = torch.FloatTensor(P_Y) + self.P_X_base = P_X.clone() + self.P_Y_base = P_Y.clone() + self.Li = self.compute_L_inverse(P_X, P_Y).unsqueeze(0) + self.P_X = P_X.unsqueeze(2).unsqueeze(3).unsqueeze(4).transpose(0, 4) + self.P_Y = P_Y.unsqueeze(2).unsqueeze(3).unsqueeze(4).transpose(0, 4) + if use_cuda: + self.P_X = self.P_X.cuda() + self.P_Y = self.P_Y.cuda() + self.P_X_base = self.P_X_base.cuda() + self.P_Y_base = self.P_Y_base.cuda() + + def forward(self, theta): + warped_grid = self.apply_transformation(theta, torch.cat((self.grid_X, self.grid_Y), 3)) + + return warped_grid + + def compute_L_inverse(self, X, Y): + N = X.size()[0] # num of points (along dim 0) + # construct matrix K + Xmat = X.expand(N, N) + Ymat = Y.expand(N, N) + P_dist_squared = torch.pow(Xmat - Xmat.transpose(0, 1), 2) + torch.pow(Ymat - Ymat.transpose(0, 1), 2) + P_dist_squared[P_dist_squared == 0] = 1 # make diagonal 1 to avoid NaN in log computation + K = torch.mul(P_dist_squared, torch.log(P_dist_squared)) + # construct matrix L + O = torch.FloatTensor(N, 1).fill_(1) + Z = torch.FloatTensor(3, 3).fill_(0) + P = torch.cat((O, X, Y), 1) + L = torch.cat((torch.cat((K, P), 1), torch.cat((P.transpose(0, 1), Z), 1)), 0) + Li = torch.inverse(L) + if self.use_cuda: + Li = Li.cuda() + return Li + + def apply_transformation(self, theta, points): + if theta.dim() == 2: + theta = theta.unsqueeze(2).unsqueeze(3) + # points should be in the [B,H,W,2] format, + # where points[:,:,:,0] are the X coords + # and points[:,:,:,1] are the Y coords + + # input are the corresponding control points P_i + batch_size = theta.size()[0] + # split theta into point coordinates + Q_X = theta[:, :self.N, :, :].squeeze(3) + Q_Y = theta[:, self.N:, :, :].squeeze(3) + Q_X = Q_X + self.P_X_base.expand_as(Q_X) + Q_Y = Q_Y + self.P_Y_base.expand_as(Q_Y) + + # get spatial dimensions of points + points_b = points.size()[0] + points_h = points.size()[1] + points_w = points.size()[2] + + # repeat pre-defined control points along spatial dimensions of points to be transformed + P_X = self.P_X.expand((1, points_h, points_w, 1, self.N)) + P_Y = self.P_Y.expand((1, points_h, points_w, 1, self.N)) + + # compute weigths for non-linear part + W_X = torch.bmm(self.Li[:, :self.N, :self.N].expand((batch_size, self.N, self.N)), Q_X) + W_Y = torch.bmm(self.Li[:, :self.N, :self.N].expand((batch_size, self.N, self.N)), Q_Y) + # reshape + # W_X,W,Y: size [B,H,W,1,N] + W_X = W_X.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, points_h, points_w, 1, 1) + W_Y = W_Y.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, points_h, points_w, 1, 1) + # compute weights for affine part + A_X = torch.bmm(self.Li[:, self.N:, :self.N].expand((batch_size, 3, self.N)), Q_X) + A_Y = torch.bmm(self.Li[:, self.N:, :self.N].expand((batch_size, 3, self.N)), Q_Y) + # reshape + # A_X,A,Y: size [B,H,W,1,3] + A_X = A_X.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, points_h, points_w, 1, 1) + A_Y = A_Y.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, points_h, points_w, 1, 1) + + # compute distance P_i - (grid_X,grid_Y) + # grid is expanded in point dim 4, but not in batch dim 0, as points P_X,P_Y are fixed for all batch + points_X_for_summation = points[:, :, :, 0].unsqueeze(3).unsqueeze(4).expand( + points[:, :, :, 0].size() + (1, self.N)) + points_Y_for_summation = points[:, :, :, 1].unsqueeze(3).unsqueeze(4).expand( + points[:, :, :, 1].size() + (1, self.N)) + + if points_b == 1: + delta_X = points_X_for_summation - P_X + delta_Y = points_Y_for_summation - P_Y + else: + # use expanded P_X,P_Y in batch dimension + delta_X = points_X_for_summation - P_X.expand_as(points_X_for_summation) + delta_Y = points_Y_for_summation - P_Y.expand_as(points_Y_for_summation) + + dist_squared = torch.pow(delta_X, 2) + torch.pow(delta_Y, 2) + # U: size [1,H,W,1,N] + dist_squared[dist_squared == 0] = 1 # avoid NaN in log computation + U = torch.mul(dist_squared, torch.log(dist_squared)) + + # expand grid in batch dimension if necessary + points_X_batch = points[:, :, :, 0].unsqueeze(3) + points_Y_batch = points[:, :, :, 1].unsqueeze(3) + if points_b == 1: + points_X_batch = points_X_batch.expand((batch_size,) + points_X_batch.size()[1:]) + points_Y_batch = points_Y_batch.expand((batch_size,) + points_Y_batch.size()[1:]) + + points_X_prime = A_X[:, :, :, :, 0] + \ + torch.mul(A_X[:, :, :, :, 1], points_X_batch) + \ + torch.mul(A_X[:, :, :, :, 2], points_Y_batch) + \ + torch.sum(torch.mul(W_X, U.expand_as(W_X)), 4) + + points_Y_prime = A_Y[:, :, :, :, 0] + \ + torch.mul(A_Y[:, :, :, :, 1], points_X_batch) + \ + torch.mul(A_Y[:, :, :, :, 2], points_Y_batch) + \ + torch.sum(torch.mul(W_Y, U.expand_as(W_Y)), 4) + + return torch.cat((points_X_prime, points_Y_prime), 3) + + +# Defines the Unet generator. +# |num_downs|: number of downsamplings in UNet. For example, +# if |num_downs| == 7, image of size 128x128 will become of size 1x1 +# at the bottleneck + +class UnetGenerator(nn.Module): + def __init__(self, input_nc, output_nc, num_downs, ngf=64, + norm_layer=nn.BatchNorm2d, use_dropout=False): + super(UnetGenerator, self).__init__() + # construct unet structure + unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, + innermost=True) + for i in range(num_downs - 5): + unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, + norm_layer=norm_layer, use_dropout=use_dropout) + unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, + norm_layer=norm_layer) + unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, + norm_layer=norm_layer) + unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) + unet_block = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, + norm_layer=norm_layer) + + self.model = unet_block + + def forward(self, input): + return self.model(input) + + +# Defines the submodule with skip connection. +# X -------------------identity---------------------- X +# |-- downsampling -- |submodule| -- upsampling --| +class UnetSkipConnectionBlock(nn.Module): + def __init__(self, outer_nc, inner_nc, input_nc=None, + submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): + super(UnetSkipConnectionBlock, self).__init__() + self.outermost = outermost + use_bias = norm_layer == nn.InstanceNorm2d + + if input_nc is None: + input_nc = outer_nc + downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, + stride=2, padding=1, bias=use_bias) + downrelu = nn.LeakyReLU(0.2, True) + uprelu = nn.ReLU(True) + if norm_layer != None: + downnorm = norm_layer(inner_nc) + upnorm = norm_layer(outer_nc) + + if outermost: + upsample = nn.Upsample(scale_factor=2, mode='bilinear') + upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias) + down = [downconv] + # up = [uprelu, upsample, upconv, upnorm] + up = [uprelu, upsample, upconv] + model = down + [submodule] + up + elif innermost: + upsample = nn.Upsample(scale_factor=2, mode='bilinear') + upconv = nn.Conv2d(inner_nc, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias) + down = [downrelu, downconv] + if norm_layer == None: + up = [uprelu, upsample, upconv] + else: + up = [uprelu, upsample, upconv, upnorm] + model = down + up + else: + upsample = nn.Upsample(scale_factor=2, mode='bilinear') + upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias) + if norm_layer == None: + down = [downrelu, downconv] + up = [uprelu, upsample, upconv] + else: + down = [downrelu, downconv, downnorm] + up = [uprelu, upsample, upconv, upnorm] + + if use_dropout: + model = down + [submodule] + up + [nn.Dropout(0.5)] + else: + model = down + [submodule] + up + + self.model = nn.Sequential(*model) + + def forward(self, x): + if self.outermost: + return self.model(x) + else: + return torch.cat([x, self.model(x)], 1) + + +# UNet with residual blocks +class ResidualBlock(nn.Module): + def __init__(self, in_features=64, norm_layer=nn.BatchNorm2d): + super(ResidualBlock, self).__init__() + self.relu = nn.ReLU(True) + if norm_layer == None: + # hard to converge with out batch or instance norm + self.block = nn.Sequential( + nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False), + nn.ReLU(inplace=True), + nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False), + ) + else: + self.block = nn.Sequential( + nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False), + norm_layer(in_features), + nn.ReLU(inplace=True), + nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False), + norm_layer(in_features) + ) + + def forward(self, x): + residual = x + out = self.block(x) + out += residual + out = self.relu(out) + return out + # return self.relu(x + self.block(x)) + + +class ResUnetGenerator(nn.Module): + def __init__(self, input_nc, output_nc, num_downs, ngf=64, + norm_layer=nn.BatchNorm2d, use_dropout=False): + super(ResUnetGenerator, self).__init__() + # construct unet structure + unet_block = ResUnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, + innermost=True) + + for i in range(num_downs - 5): + unet_block = ResUnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, + norm_layer=norm_layer, use_dropout=use_dropout) + unet_block = ResUnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, + norm_layer=norm_layer) + unet_block = ResUnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, + norm_layer=norm_layer) + unet_block = ResUnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, + norm_layer=norm_layer) + unet_block = ResUnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, + norm_layer=norm_layer) + + self.model = unet_block + + def forward(self, input): + output = self.model(input) + + # print("\tIn Model: input size", input.size(), + # "output size", output.size()) + + return output + + +# Defines the submodule with skip connection. +# X -------------------identity---------------------- X +# |-- downsampling -- |submodule| -- upsampling --| +class ResUnetSkipConnectionBlock(nn.Module): + def __init__(self, outer_nc, inner_nc, input_nc=None, + submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): + super(ResUnetSkipConnectionBlock, self).__init__() + self.outermost = outermost + use_bias = norm_layer == nn.InstanceNorm2d + + if input_nc is None: + input_nc = outer_nc + downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=3, + stride=2, padding=1, bias=use_bias) + # add two resblock + res_downconv = [ResidualBlock(inner_nc, norm_layer), ResidualBlock(inner_nc, norm_layer)] + res_upconv = [ResidualBlock(outer_nc, norm_layer), ResidualBlock(outer_nc, norm_layer)] + + # res_downconv = [ResidualBlock(inner_nc)] + # res_upconv = [ResidualBlock(outer_nc)] + + downrelu = nn.ReLU(True) + uprelu = nn.ReLU(True) + if norm_layer != None: + downnorm = norm_layer(inner_nc) + upnorm = norm_layer(outer_nc) + + if outermost: + upsample = nn.Upsample(scale_factor=2, mode='nearest') + upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias) + down = [downconv, downrelu] + res_downconv + # up = [uprelu, upsample, upconv, upnorm] + up = [upsample, upconv] + model = down + [submodule] + up + elif innermost: + upsample = nn.Upsample(scale_factor=2, mode='nearest') + upconv = nn.Conv2d(inner_nc, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias) + down = [downconv, downrelu] + res_downconv + if norm_layer == None: + up = [upsample, upconv, uprelu] + res_upconv + else: + up = [upsample, upconv, upnorm, uprelu] + res_upconv + model = down + up + else: + upsample = nn.Upsample(scale_factor=2, mode='nearest') + upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias) + if norm_layer == None: + down = [downconv, downrelu] + res_downconv + up = [upsample, upconv, uprelu] + res_upconv + else: + down = [downconv, downnorm, downrelu] + res_downconv + up = [upsample, upconv, upnorm, uprelu] + res_upconv + + if use_dropout: + model = down + [submodule] + up + [nn.Dropout(0.5)] + else: + model = down + [submodule] + up + + self.model = nn.Sequential(*model) + + def forward(self, x): + if self.outermost: + return self.model(x) + else: + return torch.cat([x, self.model(x)], 1) + + +class Vgg19(nn.Module): + def __init__(self, requires_grad=False): + super(Vgg19, self).__init__() + vgg_pretrained_features = models.vgg19(pretrained=True).features + self.slice1 = nn.Sequential() + self.slice2 = nn.Sequential() + self.slice3 = nn.Sequential() + self.slice4 = nn.Sequential() + self.slice5 = nn.Sequential() + for x in range(2): + self.slice1.add_module(str(x), vgg_pretrained_features[x]) + for x in range(2, 7): + self.slice2.add_module(str(x), vgg_pretrained_features[x]) + for x in range(7, 12): + self.slice3.add_module(str(x), vgg_pretrained_features[x]) + for x in range(12, 21): + self.slice4.add_module(str(x), vgg_pretrained_features[x]) + for x in range(21, 30): + self.slice5.add_module(str(x), vgg_pretrained_features[x]) + if not requires_grad: + for param in self.parameters(): + param.requires_grad = False + + def forward(self, X): + h_relu1 = self.slice1(X) + h_relu2 = self.slice2(h_relu1) + h_relu3 = self.slice3(h_relu2) + h_relu4 = self.slice4(h_relu3) + h_relu5 = self.slice5(h_relu4) + out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] + return out + +def gram_matrix(input): + a, b, c, d = input.size() # a=batch size(=1) + # b=number of feature maps + # (c,d)=dimensions of a f. map (N=c*d) + features = input.view(a * b, c * d) # resise F_XL into \hat F_XL + G = torch.mm(features, features.t()) # compute the gram product + # we 'normalize' the values of the gram matrix + # by dividing by the number of element in each feature maps. + return G.div(a * b * c * d) + + +class StyleLoss(nn.Module): + def __init__(self): + super(StyleLoss, self).__init__() + + def forward(self, x, y): + Gx = gram_matrix(x) + Gy = gram_matrix(y) + return F.mse_loss(Gx, Gy) * 30000000 + +class VGGLoss(nn.Module): + def __init__(self, model=None): + super(VGGLoss, self).__init__() + if model is None: + self.vgg = Vgg19() + else: + self.vgg = model + + self.vgg.cuda() + # self.vgg.eval() + self.criterion = nn.L1Loss() + self.style_criterion = StyleLoss() + self.weights = [1.0, 1.0, 1.0, 1.0, 1.0] + self.style_weights = [1.0, 1.0, 1.0, 1.0, 1.0] + # self.weights = [5.0, 1.0, 0.5, 0.4, 0.8] + # self.style_weights = [10e4, 1000, 50, 15, 50] + + def forward(self, x, y, style=False): + x_vgg, y_vgg = self.vgg(x), self.vgg(y) + loss = 0 + if style: + # return both perceptual loss and style loss. + style_loss = 0 + for i in range(len(x_vgg)): + this_loss = (self.weights[i] * + self.criterion(x_vgg[i], y_vgg[i].detach())) + this_style_loss = (self.style_weights[i] * + self.style_criterion(x_vgg[i], y_vgg[i].detach())) + loss += this_loss + style_loss += this_style_loss + return loss, style_loss + + for i in range(len(x_vgg)): + this_loss = (self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())) + loss += this_loss + return loss + + +class GMM(nn.Module): + """ Geometric Matching Module + """ + + def __init__(self, opt, input_nc): + super(GMM, self).__init__() + self.extractionA = FeatureExtraction(input_nc, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d) + self.extractionB = FeatureExtraction(3, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d) + self.l2norm = FeatureL2Norm() + self.correlation = FeatureCorrelation() + self.regression = FeatureRegression(input_nc=192, output_dim=2 * opt.grid_size ** 2, use_cuda=True) + self.gridGen = TpsGridGen(opt.fine_height, opt.fine_width, use_cuda=True, grid_size=opt.grid_size) + + def forward(self, inputA, inputB): + featureA = self.extractionA(inputA) + featureB = self.extractionB(inputB) + featureA = self.l2norm(featureA) + featureB = self.l2norm(featureB) + correlation = self.correlation(featureA, featureB) + + theta = self.regression(correlation) + grid = self.gridGen(theta) + return grid, theta + + +def save_checkpoint(model, save_path): + if not os.path.exists(os.path.dirname(save_path)): + os.makedirs(os.path.dirname(save_path)) + torch.save(model.state_dict(), save_path) + + +def load_checkpoint(model, checkpoint_path): + if not os.path.exists(checkpoint_path): + print('No checkpoint!') + return + + model.load_state_dict(torch.load(checkpoint_path)) + + # try: + # model.load_state_dict(torch.load(checkpoint_path)) + # except: + # model = nn.DataParallel(model) + # model.load_state_dict(torch.load(checkpoint_path)) diff --git a/MakeItTalk/test.ipynb b/MakeItTalk/test.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..0ecc1ba2a824238b43628aff97cdbf13440a6f2d --- /dev/null +++ b/MakeItTalk/test.ipynb @@ -0,0 +1,600 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "\n", + "# this ensures that the current MacOS version is at least 12.3+\n", + "print(torch.backends.mps.is_available())\n", + "# this ensures that the current current PyTorch installation was built with MPS activated.\n", + "print(torch.backends.mps.is_built())" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Choose the image name to animate: (saved in folder 'MakeItTalk/examples/')\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c22f8dc1e8b542d99dc9e3d8bb37a439", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Dropdown(index=33, options=('angelina', 'anne', 'anne2', 'audrey', 'aya', 'cait', 'cait3', 'captain', 'captain…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADv2klEQVR4nOz9V5MsWZLnif0OMTN3j4hLkxVvMtXV08N2sbuDAUYEZHcFeAQ+IfYL4AWCFzxCZAWyLyOLmWkM767q4lmZlwRzdzM7RPGg55iZR3iwmzere1bqpNyMCHfjdvSo6l9V/2pEhD+MP4w/jL97w/5tX8Afxh/GH8bx8Qfh/MP4w/g7Ov4gnH8Yfxh/R8cfhPMP4w/j7+j4g3D+Yfxh/B0d/r4v/8mP/1SMMRhjADDGUNHd5Wdm8TfIgcgbQLc43Gf6fvH7zc9ufnfsb8eN/Y1ByolvHbseVwQjt4/50Pnuus6HvjOHXwBwEyXPNza0zM/t9sjc+dUd1yVS/hnK/w6+nZ7HU8aHIP3H9rnrOPcd/+Z3d22bdDYcfH/Xvg9dx81j3Hcvx86XOX78//nf/dXRt3mvcJrFRKqC+ZBgPXSsp+xzbP/7jmEWgnn0++mnYXmIu4TS3CFI913DrWs9dn1H9nflZ16scceH3CuYd19TWRcE5NjBF9fzbYbXzJHzHPvs5ufH9jm27c1rNxgEOdj+2L53veP7nsWx75dycvN89VoeO+4VzuV4tGDWGcCh1jy+6eO05lJ7H2wnR/Y7uI77x2MXmscuKMev8fYEvL3PfCNu+mL6XxkHN/uo6zl+wnn3eWKZ6T3dfM8fY9w1wW+e59i5HxKOm9vc+swUAV0c++bvd13P8vO7BO7bHA9qzocuYGnSqmaQaXF/rLa8KVCPNXvrgz/23b1XfWO/e89x8OHiRR5uXH6ZFyUOhO7IuUTK93dMXA6PefP894/7nvfyHszir1yub7HF7cu/cZY7zMCjVyPz/2+Z1XePm0L0KIFcfFZ11V2CdUzwbp7/Pi37aCGdpuzjhfpBzXmvdjvy/X2P/dDcMxgp5tah8Vc91MNjzQvhjYPecV3U6XZEC3+DBe/4OnNM28hsxsq847wQHT/O/ef6GBptYUIik4KWI1tUE+yuxfWux3j7SRwuah+icB4rpLfNWl3T5Ma5p2sUylOQ6SfMc+eu89/87mGBm43aY9jNsXGvcN5lyooI9oapOf9+3J87+Fk1Kzc02BGxPGYWT2c6Yu7WzwU1EcUwPZCDA8gdZugdf8/P4uGHevu5HJ574XnWox87yp3H/9Bxp592xzV8KCB2zA+bv7t7ot8nAMtt7jJFj2lAow+8SOVta2ZaoKbvzLSW3meO32fmHv0eDoT/Ma7Do33Ou0CO29vdv++BYD7h5T8kSDc/XywV0+p5oL2OLCD3HduYagRWs3T+1cy/zNuX/98EgMyNNfnQ51xqNW59dtdYHuHmX7Pqvmf/xQOZ9l74ozcPWQ9816FvL6jztstnP5vVwvLHDJwtPjf1kmThMy++LJ+LMP1cvqS7zNcP9R3vAoP0um4DqCJyx3O8ezxKOG8K5ocAJDc15rFt7tr3oW3vPN/N7x9xnnsXhJtm501/9y4tby3HJuDtK1vA8wYwc0xKyso/TW5ZvOdbE8XcmAQyWwpL227xtannMAZbhEMnVxWiw33qXHvcMJPhWC53mqzTnd844HQ9i9tZPI7p2mTy3adHMV9gvfWl0B8Bg44KrsxXXR+4yPyOFX09PFW91qPHM3UB+Yg+53zT5uAqjk3iQy1wY7sbgvlUoXxIWJ9mZt5/zruPdWiyP3aIpFkwDqapTGaeWX4nQo10gpDzwjQyhhzzBLxhFhMGwdgJ7108bwsGUhW2eQZPmubownLjuT0G2dT7vdscfOzx7kJU7zvmUzXindpvIXiUhenmYiTTd4u3eXNNXJzjiUoTeARauxSMu34e/j6vENN31bQ8cvxjf98lTPeZEg8eRz+4c9u7jnW47f3nvfO400+DmNnLWQp7XuhlwZBFkJyJKZFiIqaI5IwIZMkgS39m1mzeeYwxWOdwzuGsxTqrP43VyVQQMSMLbXTHzHnMfX6I73jXvse+q4u+PLDvcZPVHPiPd53z9vluC/vys5taGO733T9EQB9Ga3mk+TKtLAL2prl3v8Z80H/8AA158/wH/ubi7zu/P7LdkT8fvI7lSxeRRRRBn8oskBBiJMRAjJExBBXC+r1KlR5DVEglyzRlc9ZtU0xgDNbaSTC9VUFdr9c4b2mcK9dYvGjR355iYTwqAeCO7W9uc5fGO/xuqdsPTcxDl+GGCJgZhLoPvLnvWu4S3JsCWjGJo6GZahndEOj7xv2a81GHmLP16iSffAtm40y/evzLf4ypeUx4b323vLbl9/f8/diH99jru3keQVf0JJmcMzEnYsjEGMlF8IzzuBsvWHIuGtVAFtXCov9y2da2DSJCSpkQAybMi+bl9RWrtmOzWdF2LU3T4KxTzZLyk+77qc/o2PaPCSdM+x/sd/P9Lcz6G1sLjxOyY79zx773fX7zno9ZN48dTzJrb363+GsCim7GxjRV7n7NeNfnTxHQ+7Z/rNZ++Hz3+1z3TcD6fUZIKRJjJqRESqKma9Z8WWst3nsVXMmT8KnPqmBNzhOCc+t8MWbVqJKRKbHA4Mp77MeBfhzwzrFadZycbOi8xwHOuYNrfYrw3DTx7tpmeeyHNO6xY951nruOp+e6+5yPvYb7BHE5z+5bBJb3/pjxKEBoPvB0OVQ0YvmchFtL2jLicOtmvul4rGDeMjMPVjBFRCaTfN6SQ0gU3a4cavmwjalo7M0XAcZYTb4WyCkTU1TzNVSBVBO0cc1kguWcMQYVRJHJzxRRcKgKbEqqeRGZ0NWYcvkukXNC8mwaGxGMNVhjwRr6MLIbBlZty9l6zarraNtW76FoZsNy4lb0dnpy5X4Pn7vc/PDGd1IfTrlufahyMFlE4HByPV7r3NJy9e3cY8LWz+C2oD40JrfljuPO1zHLzV3PaDkelfi+uIzy+fLvMtmPCMp9muhxGvnh63qs2Xo45kXk5uIxH/vw5c6ezHxvS3+ors7Td6CCBYxZtWOMsQhN0WgFtLHWYkwRwOJHSi6XKeoaxCKkKqBF4KRshyFnFdRcTGWp25fvqkCTQCSCNdjocCHR9CPX2z2bzZqz0zPWqxWNbzAIOaUCIWQkJ7xzReDLk5sm9PLpCjWkcPjYbwjgzTdmFoJxh9Fyn6Y7anbqH/NCcGOfu8ZdZu0xTX5sHNXioADVJKbfQDhvn+y4WXef73ff9ndt85ht7zr2Y/c52Pa+Z3RbVo+8qALKlM9MmQwhBEJMhJzJktQntBbf+slMrdtba8i5Aj6WnOYQSs5ZfZYDgEjIInrcRV7DEny6+Zm1dhLUnHX/EAIjMDrLfui53u44Wa85PTnlxfPnrNZrckrEccA3HSmH8lgOvMDyLMpnWTX0vc/zrsd9l+Y5nH6PGtWkfdTxv8GY58PTwyX3jUcLZ7kMbs77hwXzcYLzaEDlCYJ4/zUtUbaHt5fF3Lu1rS7PGrwvE34IYwF4BFNCGVVLWmtnTQYH6HbVjFLUpphSRlbMXf0nk0CDJZtq3s7HWGpYa+30uXMO7z1YNZlzzkhKDOPIMOo1xxi4vr5mt9/x4vlzPv/sM2LTEONIGhPWyGycTfdR3Rw7P5vbqmrWnswCfqBB5I7PeTgkclzwFvNTbue23rXv449/exwznw8EWG5vd2w8OUPosWPax9xcZW8f80O0Yzn0o7a7+Z0pwjRbZh+2MCxtaslCypmQIiEEYkoYwHmHdw5rVTA1oD1rsmqRzO/IICiSm4qWA9W4kz9YNF+MkZwzKSVC+T3GfCCYdfv6bxJO0fM75zCNJ0dHCIl9PxKT0DjP+O49+75nGEdevXjBy5cv2fdbhn4ghoBDc6zrYqNaOcNkuJXzH3lky++mbZfafvr87sl7NwC0/Htx2MUf9/mXx0zZhwCe6srUBeRu/9YcPd6x8Wifc2nWPqQtl98f00r37f844bpfez7k6x76kw9te/eoR8lFKGNUkMcYQ9u12AK+WLN4QWX1NNZOpl/1JVXrVGRWt5m1oOjxU2IsGi4V8CcvhH2zWU3XvtSguVxX/TsVf9I5h7EW13bYRnCxIY5jQXQ9KQu7fuD86pLP+57vfe+7GNcwDgNpvyvHrZrcTotJNXOr33fwxCdZlMOnv5j4i7dQnvXdQnVMYKZ3JAtrT+TgHDf3vU/Yj2nWm/vdhBqPa+Pj3x0bH2zWPtXnvLntfZ/fJyAfx6y9/1gP3kfVvCgqqiGRBID3TjNySqDfGouVrEENMZOvWc8jIiTy4kUJSkOiq7yambEgs3NYxXtP2zm8bwAmsCklWZi/MxB0U5tWrV1N3uovd12Hc54YEjEEwjBgRkM/jvT9yH4Y+PyLL3jx+jXDhaPf7YgxIoAtiwszJns4jvh/cBzcufn5XRrr5n63PzuuOW+Ox5q1x653sQV1Yfq9mbX1gp5i3T7FFH6MBv64571tLt0817FVOBczDmOKCRlJJTHAmJIy51Uop3/lbL4IgikpdCkfctDU8Ec1VcekZm3VeN57qj+Xc2YMI+MYGIZRF4gQSCkhYg6Ec3kvB/dnF9dYYqvOObII1npWq4bctgpqhUA/BER2DL/+Ldt+4E/+5I/50Xe+x+X5Oe/fvyPFUJIAJjXFPFHLE68uRP64gMx94665/1j/8di2d5usTzvXR9ac88ke//2HCdbDpunDx3qsVj00g+TOfatfkRdhESlCZ63FOtWahztRsnBmYcg3XsrS9Ky/W2sPzNoQEuO4V02aEiGU8y+ut21bvG8P7r8Kc91u0qZWJ8w4jozjyH6/n3zSpulomobGN1jvadquxGY1LpreviMJtMbw5z/5CcY53r97SxhHvIWUki5ik4DaeqNHpeVhjfTwO/wQBPah8z7kl9bvlmZtNeU/xvjgUMqjxx27PUUbPniKJx7roXs5CJPcMIVSMWFjjFA02mTCOgcVGAHNa3UOt7g8YwwWcM7qccrxVDjVRxIMKWuSwWyulgVBMs46NpsNTdNMGrUCTtO1lAXjQCCLdk4pEbKecxzHSesOw0Df92yvrjHO0nVr1us1XdfRtC0hNNOC8P79BX/9s1/y6vXn/OmPf8J/+k//gYt37xj7vVbITTbDIia6eAYfOoEf2vebfv/U/Z76+VPGk9DaW2DKA37nZNY90S98ipZ8ig/6QfsZ5uybEEugXzAF9azCWV9ElgRGcNbivcU7e0DDKaLTNSf1JUMYicWERZhQ2pjylAFUteJ6vcEW4dPzesCU44TpH8wLzIwIH6KIUkzLpmlwzhHjSNN4uq5jHCLDMDD0PUM/sFqv2Gw2dF0HQIwJYw27YeSnf/MLPvvic15/8gX77V6/ywlIB89VsZinZejcZU4+1t/Uzxc+HtybxXPf8e87x2NHff+PHU9Ga28K4UMCet93j9n+3t/vu/gjY95X5jXG3N7mYHJQBDNGQkpT7qsr2T0HE18yFrC2lms5JpqMcrIa+NcEhTgLoUjJ7hFy0kwhNTGbEh9107WEEAlhYByvJs1XQaMYw8E9LIWzata2bfFdO+XSGqCxjpgj4hx2pffYjIF+GOn3Pf1+ZLVacXZ2Rtt1enzjMb7l7fsrvIHNs2fknNjvrqfMJpFD7bl81fcJwfRMjyyixz6/Gfqony3P+RDaetcxHq+NDwGhu45x1z3cHE/UnMc/P9zm5gk/xOR85HdP0JrL6zOiUH3liF3uVzWVMZp4UE3B6gcuBRPQwHbWakxrDc75Ete0s4A4RypCOBYtN4axgELMjyjrRLKuoWvdhKSmlOiHQbXZMNL3w4TixphUoIvPai0axyz3MoVOUtbQTjV3vd5D13V0bUNXFoHGWcYcofifm/WaLGbyS1NObE5OOD09xTcrxpiJWbDO0LYrmq6j3++0UkkSh+7D7RXxQ7TRffvcFoKDL2/kCj/eDH6MVl36nHdZCVWTP+a+v9X0vdlR/uaa9OFru/vvI3sAoiv7PVq7IrIVKGHh000Ptvz0vsFareywxmKYM3NSOc4whilBIaVUa0bmKWsstghNzqph9/t9ydbZF40Zp7CNiGrptm1LCMSRUqRp/EEWUr2PEMLsY44jGNjv93hn6byatG3X4X1L2zSEmIgpY41lvV6zWq3oh4GrqysAzp53jDFyfbXl2dmGEBPdakVYr0lDT81qEklPepePQULvMnlvb3cbg/pQv/QhAf3Y4wHh1GwPzWA5jHFK1snNYsWgaKQpr7JA6BzRUE8Zppzn4O96Amaqj/nbmw/uUPOLnYuUl6a61ERuAynDEBIiqG9nHcaUdDhjQDTFzhqLb/zkBxpTnNRihoYQGYJm7oQghDEVYW9wVgusc0pY7/FdixjDEEYuzy+5vLxiv93OyfIC3aqjazY0zmOdpss1TUPbNBhjSCnhXBHOUvVi0DhoPVeIkf3Q0/c9oNewTZndGPD7PW3b0fiGrlvRdS0xJkJMOOM5PTnTe9pFDFvO1s94f36Fdw0pGlIwrE9eMdgtzsHu+grJEVtiwpiMLbQth+HHp82Nm2Go+8ZRH5WFHp/V2cJBnalkFidiigndcdxHXn3ZX24tHMvxCN7a5QHN4eflWm8SNB8jbP4QTXmXf3ngO955vcsxm1MqOzdCGSpN07FTzoQ4hx+YckZ1+5Qz1hgFexb3UP27VMzMEALDGEiJhQb2Bc2EEAIiwmazwThHP0Yury54+/49l5dXxBixGE5PTjg5OcEXk7ltmgkVNkbN2Gqu5qhaspqldQJFEZwxtKuOjo7NZk2IETEwhkAf4hRW2e12GGNoh562XbFebVivOkJQM3W1WkGni9e79+/oupbTzQZrDTEk9nHEO8vL58852Zyw213T767L/HeYkjx/w+Kc3vJjteddYzlvZCFIS0k4nM0s7c05G4mlzFbBnM/xkBa9G9Cq13bXfNXxZGrMpYa6zwf9mOMuQOjYNTy0//ExC2bOwhDU7LRWibGyCEYEyxxTrP5M9eOappnAmlgAnpQSKQYiio54axExWDS8YZ2l8S3OO66udrx5/4535+/ZXu8Ay2q94uz0jNOTExqvx/fW4pwitBXgARV+AFOoTCYtjprXq9WKcRyx1hFiAgzWq/ncuIbWteSuYxwHYkqMIRBCZD9eEYaR1XpD07RlokaapqVZnRBj5Hq75f35OW3jySmwvb5k3XpSGHj18jkvX73knWTGeIHJwm035/73c1Tz3RBguCseqcc/5gfetc9913DMLju8j49n9j6pnvM+VPVjfffQ54d/H4fi7zsfVE1fzWGrq6XUmss8VYVkESwGW7Rtloxl1kZZBOcUJJoS0ItwCgrkZMkYK3ivyG0IgSgamPeNhkLevz/nq6/ecHFxyW4Y8N5xenrGyempxhmbkvCeNMYpWbDGg1ly4KqP6axFZM4Oqv4pMCVI5JwQa3G2wRjBmoRNGdd0rJoGAcYY6YeefhgIKXJ9fUnTNHRrXShSMpyevsC5UyzCdnvN2HgkRfb7PbttZBjXWCPE0xO6boX3nqurKyT0h8DbI8IWx4Tp5mfHBe644C+TNx7rX1ZT3NwQ9hlbmQGh++7jsVbBB1WlTH7VE/ZZfnafiXvf7x86jh9jcoQXpmyaYnhTdg6CcQblxzMLVNTi7ZyBU4P7NZ1PgRi1W7wDkUTKxbT1DmM8Qz9yfnHJ12/ecnl5NWnr9WrNer1hs97gvWMcR5yxOKOoaS0/E7F6vWbJxiClpCwt73IqNStb6LbGIFmrZ7zTxaMUlSgJWNdhrSVloR9HhnEgSWa12mAsDH3Ps+drvLeMQ09MgRhGYhghRXZWMEbY9z2b9Yrnz5/xomk4/+rL4tMdX1wfioU+9Nnh37cM2EePp5is931/v2a/+9oe3Svl9k+OmCdMq9FD+z/mAp8imI857iFoNNv7qfD5xJiKCVu2MbpRFTZjHblMZmstxvliyqoPNWneRQjFOUuWgRi1U6T3DcY59vuRt+/P+frNGy4vt8SU8F5DG+uTExrvaZ1XczZFTM4YW7KNcp7yVF1Jw0u5IsCqkawoGJVzKqavIaVIFr0uyQImQdZi7WyKz4omKKQSc7WFELtrO5x1DDFoHBPB+ZEQR9p2XbKMAjEEDaFIwifHvoR9MIazZ9B2Hc435AC1vOxmZ5KHJvZdnz3FlLw5Rw+OdaO+5PFCejym+qHjQeE8FuOpIMnyApc/bwZY7xOyxwjgU3zOh0Cm5fUZY8hCQSM1iG+sxiSFVOoezWQaxlLk7N1sDkWUw0cT1gFTiq4Nk8+axoBksAX1HYbIV2/e8fWbt1xtd5qS5z3GWZquw7UtbeNJcSSnkcZajDdIUtTTN74guFX7ZXLNs0XzWo2AI9I4Q+PV4ErGEVLEOqOLRa4L0ZwAkVKaspQ0Cd7hnEFQU3jdrFQLh0hMgbHfsekamsYxjjtSCqUUzTCEUHxyw/V2y1n/jBcvX/G+aTBZkKR+ckZKU6un+4E33+lDJuNDgqZP4xiIs/z5+GPedZ7HbP9Bie83T7T8+W0e77YmfNy+dwl3FrSyI0admFnIOYAxJdao9CKgyGfKmaZpMCVMkguXTkqx/K5axnpH41tijOy2O7wxdG1HFKHfD/zuzTt+99Ubrvd7RAzONVirNaDee3KMGGfxaAmWw+KtxTg06SGNeGvJYogpkhCcMyCGzuo9xjDSWgWsHEJIEW8czkIMAx7I2eAEEoYxzeVo1hhwjpzSXDOaRXMKEGwBLofdjtY3bHeKLIeC9qYUaRuP5ExTyueQxPX1NVfX17x89Qlv33zNPkZ1DcTh3EzH8nHHccXxwZpNjpvJxtwmv7zf3H54PDF978O14McClw7/fvhGjx1LM38ULBlLlk0SmdqCG1s4ZZMCPtapX+lL/FCBgZn9roIbIFPua4yKdjrnaGxDSsK+H7m4vObNm3fs9gPWeAVvUsS7hpV3rBunyQx5pMHgvKcxgjMaCjHekAvHrOp3QaxFBEJKNCnQOEd2KLdtjipwOeEbiAgRiEkBrSSCsw7X+ZKIX56RCB5DLBpVsmCyHD7yHBmHPZZMypEYoqYCqpONlGR9Zy3G+6lQfN00rNYbRNBEeWMRKeh41hTImvB313u8y++8rT1vz4eblt0xgT0mzHcBQnfNu8dkFt03PiDx/XGAUN3usUL4GK33mGt81BBISRiDMquHUvoloAwFWWETJGOdwRqHSNbkiiLYIpq2J4tyLGNMQUQVlU05470jRdj3I+/en/PmnYZKsoC1ReisZdM6Ng58GvBiObGWE9/QNupXWlFwxRtLNLksIEIwCbCaLpICnUTW5ZoRNXmV2MuAMcQMIUEwQixpfQlDNsJIxkgiZkpurJ63+oZ5sR6qS5AJQw8plueiKYze+UJfottqtlPk+voaZy0/+O73absVYQwMZkARY0eKAVcXOQyPzyu6PRdupsvd9f3Rv8uOxxDZmpb9FGE7Zm4/Zr5+Y7P2vgt66Pebnz3dT9UX+dC5boILWYQxBYYwMAY1CzE6ec1C2BrnSjaQZgLZoqGSZM0QKllC9Yw1VFHpSjA6Mft+4OLykq/fvuPy+hpjHN4I5ERjYe09z5yjI9EInPiWF61j0zhWrcZQG2dLjNMxBjW9Q8r0w0jMmSjQeThrV7Te6+2I1p46q2h0EiFmITqI2RCSJdhIFGHMCS+ZESGQiRhS8emNgSiVdMwo963VShxJgUxW/7xiaGS8b5As5JgIWUNJKXn6YeDrd+94dnrCar3WBP79nsaXXGRj6mu9N6b4kH86f//wtsc+/xDBW87Hp/q7x8YHC+d9VuU3RVmPn+z49k9ZBKDw/cQ4s82ljFhblliKwlSE0xeUU+OHKqS5Lp1SyazAGO1JYp2bktFrF7AhDJxfX/Hm7Tuu9ztlU5CMEcEhtECbA50YXrqOZ5uW56cnvFx3dF77nHjvlEmhXmJjZ+H0+jMDKXesyq3klDAiFMyIZDSAkhwkC1EswerfMQshCwEYDQzJMGYYsybLGwpTnzZVwbgitCKFXV4zcZQvSa/TG0uSOJFeYw2SEjkmLq+uaJuG9aor/vZY0g7dgZqbp9jdk+1hEOjpPuyxMx0K4OOu4ZsK6TfQnMf5hG5exJ17P8U/PfbZPavDTdNhua+m1I0Mw8AYAiIa0yQvibJcCebXmCFKJZnnMAkimJoxVOKiE3VJMQM1e2bHu/fvubi+migtkYw1QmMMa2c5az2vNys+P1vz8nTD2apj7T2NZY6nAhaBEjbJQGOMorp+7lKWwqh+LBkjmUzEYskoqVcqGtEZ8BaisWQrpFSF09Bi2S0THAwkqVU8BjFCJGJEj2ONwSI4Sm+cLAy9MitoFY9VRDtEgg9Y33K93Wo4ptTFppiZ8uUWJy66qPz9zcITD4FCjxMaTSA55t8uAaFv3ee8qYnuFpKnAUb3+pxADRyb+YNyg4sPlg+CWbnW/Y3uNJlJBkvOaRLOELVfCc5iRVWmkjibKVc1ZxVA66xqjspDW/1LlNGgVoCEkvJWWyjs+j1XV1e8v7oiZK3uMKLIamsdLZnTdcvnL8747oszXp+sOHGG1kJjwBlwFkolp058o4BLKMCJ91Y1X9JzWmewYklYxBqSaGglG6PCJBClXLsxOFHW+Cy5UF0K1gokh7EZm9ViSIBkSzZaFKDJCw5nXHkGhyVubdtO7Sa0jWHEGEvKmaGQh3VNw2bVMu53+taKr2+kOAtF407jkTjHoT+5lPelH3p8m3mOlfm18LEns/vIdUzHq1Z53UaY4qZ1ht/mWjo+ngYIYQ7iUXdt95hj6fGO71c8w8Xnhzb9ciuxdW0tFTH1m7JrkgzGkYA+RnYxsguRkPRBW8wNUIdCmiyErAiiNZaYDZK03YH1Hus9ISe8a8lkJAZyiqQYyAJZLNfbnnfvt8ToMVjIIwahtXDSZM4ay3eeO77/quX1ynLmhbU1NFjNSrJG788ofaUYQy43poXMmZQTNidar89Fs4YiOM0TFqshISlCJpI1oQFRkClDskKy4LKlzRmTBGcybRY2WRiz0GehJxOyAjXJwCCa9GBF84YxMnF3pZTIRsExayzGN1AWx4zD+YbtEHj+6hVnznPx7mtyHPDlPUqOpfijmX3QxTx5fBqf3BLGOqeWnx/8Xv4/i2gRqCKYN1Hk5X62WDDL/fRaWPx98/Pj49EZQvUGjlWcPLTf0e+fcN6HjmEO/pqHajlluwshsNvttC4yqo9mj7xU7zXrR9PiynEqNQnzi0gh0LSNBkuNbq++pj746+2W84sL+qEvLfsCjYPWQifwvG34/PkJX7x4xouTNSvrF1UuBgqvrSmJ9aZWmGAna8CK4HIkJTvl0i5zapWmshaOK9g1zyw146WULfmszPGqqWoZoF6KsWCsCrIt2VQktQBscW9yUqM5YzDGTedY9oYRyRo/jRHTa8lazsLZ2Rnv33598A5NQaKUUrRCpIfz4yEz8anbfCgC+22NJ1elPOa7J4U1jh7ruBN96/dqah8BDKR8j7GElNj3e/b9XtFZkTLjZvKrGr80i8+cU3M1pYhkwTsV9Jw0n9XbmgZXOoEVcGQYIxdXV1zvdsScCnWJ0AEnzvB63fHF8zM+e3bCy1XHiW3oKP6asWigUwXTeYdzHuNqfxV7kOwm4iYB0Gst2t5qxYmz2hlbLIQIRgoKKxlDLpqumP7GgGgSgqmZBlkwoprcZIO1GRcT3mfImSRoGEpEfy8Cn7IiulWTqv+eMSZNWmi73fLu3TvCZkW3WjHuCgYwIfD6ZmuS37E58VjhO6ZdHwPW6IK4VJfHk+XvsyYfysG9azyxy9jjvju23WNM4aduY279vyZ2ozE+AykntrsdV9fXDCESc2kXUMyYmy+iJrEvX2YqmSu5mEI5R9brNVosmzV0EgXEMsbI1fWWq6stY9D0NIfQGThpLZ9t1nz3+TM+f3bC87ZhbQydKDhjrcV6i/Fzb5WmafBNU1L/agVNueNy/nrNOWdSUMYDazM5ZdVkUrS/NcrwV4Sw2AK6wBXfyBUVVRv3ytSq3tAURNr7Rhe4FBhjVCLr4rfl6rsLJY2xoLlGv9MwFNP17nZbzk7XnJ2dcR4G8rgvVkq5zslW+1C09vY29b0e+/6uMfuc86XcB/Z8DM36rcU54WHBvGdPZuf9foE1stxHf1StmRH6IbDd7dj3w9T9uXrsadKQM5hxQEtCSSkTTYOrk6YKTk7a/3IcVAgFyzhGrrd79uOoieMGWmDTWD57dsp3nz/jk67lmfecOUtn7YTKGmfJVuOlzmvSe9u1NF2HdV5RZWup9aciaa6IKSwHyXqM0ZBONpEo80R0NtcIuvLtavb89DyzZNLk5qvAOXTbXCxeU7h5owjSWMxgGPOoPELAZNDmSEzaujDl6l/pT7tYBENI9EPg+esXXFqr76iq24k93pbX+/TJfkxwHyPAd21zn89513goznrX+GjC+RTUtmzw5K+OAUdLCucaTtDf1by82l6z74eCNpZqDjFIaUZrzZzFVFfz5d/GGFxhWo9ZC5zXTUNOgVS6SOeUwDhCSmz3Pfu+1+oVA97A88bw6YsN33nxjE82a545x8YZGgONLaipt+AcxhplOyh8Pt1qNVVyaH8VV7RnJfWKpKipcyklcsiKnI4jydrZT86qBY3T4IoHkjGFwVLIVkqy/Ex6bVBwzGBL35fyfK3BiwXrFKgRMDEqYJaYwZVq5oqmCVLegStFBZWB8O3bt7w4O1FSbuPIZqbVPIT/Hh5P9RvhuADfBHpuHvFDNeNTQitPrOe8/YiOhkMe+OzYvvef9/jvt26tbCIofL/b79nt+kLHUdu1G2TptRlzoDWNWTbkYfI9QbWoFldbwjAimVLBohk4+2Fgu9szDKMCJgbW3vJ63fD52QkvVi0rC6vG0jijE9/KVLmhbRGUcb1dreg2WtfZrla4RoUTY6cSNsmZnBM5RmKhx4x9PHhOkhNNtkyRyAROlAmBjObl5oIBm6w+n6nWRRXUjDEOA1NKnbGaVtj6Ro9lLELU0rVi6psM2TL54xUY6nxHKuGZJBlsw/V2h3ONLijiQBb9Y8zifh7hJz51fCgodPMY8HTteN94Elr7oeOo0N5xjhrOeNT1CBO4UJnszAQADVxtd4TCclcBP1n0EKnxTEVn4wSmGGMOiKJBY5jGWdq2mxnakxZoO98RY2IYA/2+J8eINWAFnq1aPj/teNY2rL2hbQzWAU40V9caDWYWi7VpGrqmxXcd69NT1puNMuK13QQG5ZKZpFo7lua2I2EccVa7VguKjuZgkXIvqs00rCKqFjXOaea8Yo0z2gK0SbEyQHOj9PssmjAgYieKFhU08FkrZaxVriVBmfAthQk/65FS1qT4fT/QNS2uaXBi6LdMnnCl+pxckSfOt/u+f4wQzdsdBylvnu+xvu9NkOqu8a36nL+PURFWXWkNWBjGkavtln4YCSke9Capk9SYOSh0CPfrtpU8qzb3ySmxWm0KB88IIsQYqGjwmBJX263mvYr6XpvG8HLd8XzVcdp61t7SOqv1oI4pjmmcLb6cwztP17Y0mxNWJyesNht82+LbtghRRZOZ6zhzwnmPaxqijTBto1o154zNheLE5ZJsMZudFhQoM4qN6rf1PzMJr/rycqDJMAaHoRFDTIKJGZstKUWMc7qgVH/UOaJo8ydCmGpnxxgZh5F115T70wocZ/30Tj6WwD113EZrH7H9N9TCdXwQWvtYv/JRsconaOZj29ZVVcuMIYyB6+st19ud1jqmPD3XrNkBYNH6x4VvWXM76zmqCVu/t8bQNG0BXxJkbSjkGvU1hzCy63fKuI7mzL5YN7zcrDjxjpW1NMbSWoO34Ispa52WgWkjJNVCq9WKZr3Gr9f41QrftNimmTh2bbnvnDImRSQlsBbBYpIhxkaF1Xt8o/WhkhMiKjjW5el51MXNmYoVFdh1DpNTpfHm01dNqwuGaywugw0JYqJtO2JxQC2GELVKx5kanspKsTmOrOKKYQycblas12v224hInvTVtAA/ICGPCVvc9f2j9zXmIN79bY5vkPj+cAjkru3LBx966sUxmFZ/YxQ93W63XO+2jDEU/7KEBCpwAxMIZOAgDLGkkpySDQoiu1pvsDj2+z3OQIhBQzVAlMSu1z4hFE209vBi03G2amlbrXBpraVxjsYavDF4q1rHmUWXssJf26xWtKsVTbfGeodxDnF2em4igkuZFK0Kp1FDNKaMadxETq1CajT1Lpc8YFOrTWYLwpgZ8CmpDqokRbAosVkqz9sUFCiiTBJilOWh6zSVMApITJjiQqQsxFJC55xDjKNp3YSSW2sJhT2wW63o99dIhGlh+AZT5Wjc8gFA5n6z9OHtPtZ4UhKCuec6PjxscvsYd/196/OqNY2GAfqh5/pazdklCFED9MisKeqDPSyWnoPlU1PZnLFo5lBtgWBKhzDrLClHZT3f70hZhd8Bp13Ds9Wajbe0jcd7Tab3RjWMR/NnrTO4rJrclTinbRps0+KaFtt4zQ7ymsKnSdc12J+0UsVYvBgkg2u88tv6huiGKcNo2XVMCae1PlSlzWAzc+J/NTAqEktBbosgSnn06o65yXIxJa1RjCXGQZ9fEsYwqkAIpBhpVi0iTNxLTdOw6VpCyjTGlmhruiUMj51DD8Ucnyqg96G1j9W4d/28bzxNcxruTd+7C6W9a7v7BPkxglr9IBGhHwPX251qsJwQ7MSzk7Nms4DGKOtSXLWmiEz9RSpfkLY20O/aVrtrhSHgrCdGnWwpJxKifUzGkZgiTjKdg5N1x0nrWXmv7AhFOJyxeBFczhovFU1Ir238jLPgSkaOUQTXOFtinOqXTn5xLOVcKChESf8zXo8zNTFyDuszNiVFhY365rbQoGgIsSxeVRgPgVLNKCptJqpph4Dxmnuc6vZ1EbCWnJTPwJaKHUWBNffXWKFtNckiZ62YsVYLA5YL5dTb8wljOVfuSz6on3+oj3ifoH0M3/N+n7M+cGNYuB5HL/K+8ViHfrEH83pVDK2Cms1aUxeKbBQdrGGMEBNZClIoqKBmgRJ3dEbrDTWLRQPkxizio7WGsWhQY00pFI6MSTWVCrCFDClBGCI5JGwBgtat53TVsvaWzhtcZTwwS2JqDW/AnE8rFD/YaAt3Z5yyEVDim1a7jWEKYOUKb53UnFjQaG+J+BqmxH3VcLV6RLCSSmK8lBioPvJKDyKmXJHoNavw1ZCJJuGXJCUVVqPfOQerThkW9n2vzPjWEAQE7SNjfVMsm0wM6qPnGLFWNX42yo9kC/OEQZHnx44PNTXvFrBSV1IWLjHHASIVE5m3/YZm773Lkrn1725teHiRD393dyhlubUsfsrBd5X1NANDiOz7nn4clG09C7GEOZQBIJW+mWAspTZTt6l3ttSiGh9UJNQZDeRrNUUiplB8WDA4UhCNLSZR1NLAxjs2rWfVOE00MJqM4CylHAowmg1T6kOmewH1iWvigynmpRXVVpVZb7ItmU12/ZkW/wqAUapDlEB74beaclZ1LtVkNSWZoyKyyJSHqwxEGiXOxijpWHk9NQZrraNpWtartdKrmNpbprxcY9UEXjSFclhSTKV7mjIg4huwlpSTLjRPEM6njvssucknX9iMZjItDk1lUzHGusbekJNj1uB9svJ0m+EDxmMFuWqQ+bP7vtNHU9vj7Xstno6FPHkpbKS5AVH1t5bdnmHu+gxMZlj1RbWIOpFr/mqu/TSVq7YfNbQiOdE4w2rV0jUNjfM0CzNveUtSzllx0QkpnV7YDEoplC9ww3+W8hCqgECpAinEY8pScFsbLCfFofsxJ/+bxbM+OEJ5XkY0zjo5hZORozHi9XpD27Z67+WZaotEd/BullU019trBd9WK1xxM6ZQxhPGYwHKx7phB/vd+cfHH7+XJISnjTkOqcK4vI7ZxjfGgsAYA/t+T9/3mher/JHkwq5e4NxpYiCaDF9LX6cKlIqWVsFMEVcKiGOJFcaccTAlK+ScSuH2gBTmgNZ5TrqOlXe0VkGe4uJhUFIuy9yXs2qi6gkf+ktlgch6LkEwkUL5kUGi8r/mrGa72vPTIjJlEomy9C0FcxbGvBDIhSa48U6Qkltb/lwuHvUjlU01bY0xnJycTG0H1US1hDSSRTNwpTBHBO8Zx5HLi0s2XYvkSIgBJzOpdZkEx2fMPQH/jzmWC8U3Of5j9/3G1JjHVuBj+x85+JF97kbOai8QHbXvZWLX9+z3A2OsDAQ6KWPRgto4R4Ggmg2UU9a8UGpSQp60qrV24qFtS4+S2iQohxJYL0ZeTllDNvWqDLSNofVzuMShxMzL8E29Tan+1OK+p0qt+kQKwbMVo74hGeUXU0GUlEkxkIKm8GnoRw612l3P3xpI9bq0WNoZMzUVhmr0a2gllWurjHzOVD+5FKTjimmszPRt29E0DcM46HMXDUsJ5V3AZKHEmIkpYZyjbTxh7JEkmqNMMXWfOH4fAmTM/Y/5ruN9fLT2ERdw7PenjZsXPKOr5cgH5mxfSKFT8a+Qkq+JAh1Q2yK42RSjglQgMrdXmIikc1bUsSC2VTirX6ctG+zUjQujgtNY2HSedeNorVM/s/qJ1WTUh1OLN2f/T2pGTvk9a7KDtbYkzWmanW5eYrEpQdIsoDQG0hg0AT5GUpxrPKEuAtPLQUwFowpia/KNdzbvUWkqS9S4oLrFNSCDrX509cyUWNv7hqZtacaGPAzlfoyCdGImTtuq5X3TsFmf4KxwdXk+h77kxvXfGN+GlnzccZ8+x2+iuPeN32v63l0O9+Iv4DYx19LMrZM5xsgwjIyjdoquKW1p4ZNVofNWgYfaskBNsDQhtq7k2EJJOhBoGq+1iWWSa7zTTj6nNZaQlPc254QRaJ1l07Z0xaRtrMUtXmClqNDfmQAYyu867/WackzEOKocl/Q7KYKp26nWlKR8POPQMw4DYRgYx5EYw1TSVv3jTK3cOfSvqn9pjEVMnkCNaZuSDF8Fs6xy1BIUU8AaW8rZsui7qAz2ehwwhcZELRjVlqa0TtReL0Lf97x4dopznpSC7vctOncfQ7AfOsa3Ekq572RP/f5RmtRM/zsYE4KKli9p1yst9B1GpVUUzFTMWwXVFnBCk9iVEtMZMzHl1awgt/A15+T3wqZX+nnEnOicZSg9LnMWwhgVkCm5o6vGsGqtEnQ5pYe0C+2IKEKqPubhC5tMvKQ8OzIOiNdQSsoJG6z6miIToEVW4UwxEPqeMI6zeRtLjWfOpEL+Va0OufFsmT4ri8cy86CguaY2oaWYtVmTIKhJ8saUYnCLLeYtWWPEbdtqDDgnSIr0CpVSs4YdLCEG9kPPS/dM+53GQUmxjVb93GXafizhekws9JgOv2muUrf4hsr8gxjf7/v9rn1vHevx1ziv8GWCpKyNh2JKhJyUsZw5w6XOq3ouNZsKK7lZAC1FeGuj2SVaq0hiJaxSU7ZWrtQ+ImMoOaCioZK1N6xcKQezVuuiDzSTXtiytj+LlMk+04ykGJExIHbACgWJUb+wJmHnIpiS1IwNw0gcx8mkrcdbotF1LH+3xpNMRFBeJVP8SFOaIlSNboya8la9XgTl3lVTPx1YKpWxIRfh7LqVhqKSmuuHc6F2cVMWfu2PKrRNS7/NhbGeyUd96jjm6918Bse2O3Ycprf2sCa8zwx/7HgyWvsUX/K++NFx5E1u/WmhaIw5tFfbKMSkvssyRW/qnGUO6zQxqiVZCGGlAanhkpl/x06CMsP9Zs7XFa1IiVHjm0agc7BuG7rG0Xr1Nyn+Zv03KVFjbpm0RYSmsI0bh5LFs5hQBaGWpHWcym2USTERxoEYAymEIqBxei6p/FuWy0mNr5o0CYkp8U1jUP/W6oIotmreGkuti6ACQ5JziUPmqTWieiCGrlvRdSuGvmccQ/HZNduogoKmPA+MLjrDME5ZUdY4JEfKCvHouXc41R5O6fvwsRBDc1skb/qYTznnk9Hau7Z5CM196PjHvqsZSqph9PcstVFt4cjJc7hAClCxPG7OeZoour9MGrNpmoOYJjClvNVKFZgZEYSEs+0cE80ZiknbOcPaezrnlWvH2qlm8tY9T1q0lIyZWvamK3oMASmo8JgU7Z19VVHhKwKq7ANRBbNcc80Brg1zc+kgVuOzKc95xxXgysvFopxHikBUmGcZiKc4EoU1aAFZlpTDujhKy6pbs292GPZIoSqdwSOm6w0hElJcJINYSmuze8dd2vDmNo8V0JtYx93b3J8J9E0XgG8NrX3ydmb+OWci6QeToBZQJ1RfKhdQpGhLk+egRNWGQMlEmRndq2DWguqKxtaMlWWlCjALvhHEaGpajFEFU5TpvHOWVaOCWatMTP1XFgfNa60CylQhUkdFoUMIZKuMBz5GalZN3SjlkmggGclJtWhNkkCrb3JKalkUuakLUF3MlkkY0z8qUKU1nBNNZp4SDQu7u34uRpn2nEFbNVCtAAXZ1HVdsV4H9rs1W7/FDDNqrZZQJmft0D3GUFyFcqtZzWBtd/i4efVNBPSucMdjhGwS1ocv89FC+603Mlo62pOGODIqdcgkmMu/FveRUskuQaZJqgmh1dOcQyVQNaEeS4wmBfgb6Gy9tkrqVbXOzclrrJpvIS2FV/DAumtZtx2Nc3hnsb5oO6c9Me0iOK//ZPE8FlqxAkJoq79snVK/V0aCIlg1pqvCOTPwTX5rUqHNC+FcFgIcCGh9asaUYlGr9Ck16dzo87ViCseQiqpYM0W6alpkDRnpoqpEaV23YrVa0TYdvR2o/EpU0mnryn6avTWOI21TGkMZd+CnftPxkJa9+f3HMn8/5DhPEs5vohkfMmGPXbZhDi3IIr5ZTZ4J4cxTyH5aDKpZVTN5MpTi40YrU+Qwl7YK5jKN7+bKqSZySYtbVLq01rBua8reXJ6lE0//OWtxhSRajy2Hi5WdJ4X6nUHrIW1he0dN+1vargT2c1Lmg3ER30w5q+Vd/lZmQTVpl1y3S5O0RquM8oMoyFPCxk5Ug7uiRytFTDKLxdRarPVY4zAomGOatvieHb5pYCghLckYU3ziUsSekmZinbZrdswLUm1Y/ND4ECF4mk/6MaCex40nEnwd/j19PlFXFCh+6ZvUkqQ5unbr/6CZNFJvvAAkSU+iEwSnpMUYhhjpY2QQIZEQK8pOUCaTTnwAFSRnoS3hEiPqK9bUNhVM1a5SzEEjBXzI6sNWX7YTiCFB1t6WAaW+pIN2bWldZOMa1lYKF63FY3A+Tby0ese29E1RVLQyLtReIUIuLe4z2YYJMKkabja3DbNfWeKZWf9pwn9W/3IBasViAsN8b0kywZRGQuW8zoBJlmQM2WphmkMLrxti8TQ3hExhik9kM6Bs7xYjHufWyvXrGvwq0Z2O+GHED9qfVKwiwsbWRr6KDo8xYZ3XXi8BXMkOW7osD83Xb6LtdN8D6m7mubqY6jL/sgy01F8ma9AIIrOP/VhT+aOYtVX4Kpo2iZw5/Hlw8UePUx7CciPRG6vO91IrVI5ZEZl8Vc1llUlzqrBWzZcOmPXg0IzRCoi6/fISan6q1U7Por6SKf7m2jd0ztP6piDClmTQeKj3jBaS0aY/WtPpEJQxPiPakdp7rIUxRkxJJ8QIVkpIg7nD2Xz9dhbOBbvdpImEAgAtNacCPbmkxuVUu4/Nx5QiDBk1W63xammI2i/GKHNgoNVqGe9JtQ611JxSalNrkyjnLat1x8nJmu21U8JtkckKEaML7H6/Jz0/o21bTk5O2MYRqe22PxCt/RjDGDUw6gyvVsMECs1bApNzNe13/Jj3389HoSl5YMtHbSWYe5590aY1U8eaKWl66VtaqT7mTeGTWw9oafouzcQJRSwopiy0bDCGMSsHq+auZloDm7Zl07S0Tgur8R5pGkY8I4YQLTkmRDRdrWlaBY6saINe5wmi5qNxXiOMSbWbzQIm10egym3SnGkyUw+Q16lyZhbOasrOrRPyjNIKiNhZ+LHkrH07lYbEkLHl95I8gKi29Q3GNojzGN9gvEe8tvMxFgXNLLSNY9V61l3LarUi5T1JTCkKdxNKXu2noddMp4qGUv/9HkbFKPQZL6xBc9wX/VtDa58S14Sl1nycbT4f//j2ZtKkZvJBlSSqxNcWx7h1rQtTyNaGQBMgY25sOgu5CCQKGrowswPaml2K5nRAawwb71h71ZzWOpKxxAxD7BmTsIuJcRgZxxGArutovMU7S9d4Ou8VSDLaHKhr2tL3kqJtK2VI8bwn4WQhkFJM3qQJEwtUNpfeoyLKspcKPWUWlD9WIOTMEGJJ7sgMMTOmzBiKxjS2tGYomjgLOIdvO3zX0ZycsLEt3cpodo/YCSyyKGVm46FxBud8ycudVoZpcXTW4awr7RTD5CQtUx9/3+M+7Tdvcz/QdHPbj4rW3p9QcLDhQTTs2DEe/m4hsAUprD6rgnyWmplzsO+N+62IrDFzmKRuvwR5lisgGCob/JxhoyMIRKHU2dYQimHlHZ33tE1DNobrfmAfE/uYCNkQRNsj9GNU0zqEYhqqEekks25bVt7hC1HzqnV0rWfddHRtQ2NMadkntRlDub7iU5bbj1LivyW2WWPBqQhxkPK7KQI5BvoU2ZZi534M9DHSh8iYIYlBpBZfq/dfRyPg/B6spd3ueJ7guWtpN2c0rkOwpDBqwXjx7ZvG0TTLaXc4r2rM0zcNTdMwhqHYk39bgvmR0FqeDiN9cCOjm9sc33S+pHuF+2D75c/D3ydTtBzDWgrpsUxb6jbMPudkvj7m5c7ZRkuhrUKcMIgUtjvRlL2u8XSl2ZAA+35g2/f0OTOKIRvNw8WUKheEMedpATAINiW2+4F141m1LUb2eCt0red0tVHKyKalqwCTMaWl/FyrmYuVoLnFM3FZrskamNKaXgiSCSIMcWTb9+zGwGVIDCEQUmZMiSElNWWxGsMU1WDWKNBlTLkWawk5Mex3XLx/RxaLb1a8+nSDkvN6chQlsHYNbdNO3dmUtFSb6lrXTG8hxKAlfkZ5iCwa1rk5uZ+irT50fFuZRd8YEFrGKB97wtufPXr3ssOtqyimZglJOIuJMyu7WUSnra15rDL5KbUC/0BrwuQ3LU1ckTnGWbet2lOrUprih8ZyPvCNw7ce2xj2cWS/2zGGiGkaVr4toEzSEipr6MUQCw9PDZlEybTGEbIgfU/rG03iHwJJ9qpNuhW5a1l7j7Gu0J1UoVwIav1Zwytp4X+ifuSYIrsQ2IWBfhzpQyRGpkXHMJe6ZckgJT5snbIHGkvlyGtaRxSvpnHfc/nuLU3T8eLFa1zX4HwRujFgTYN1WuNpnS3hnyVqrnnOCo6ZKf+ZCgTecEduTu6PLaTz4nz3Nh9LWI+ND0p8vxVa+cCTP0bwK0Jrjca5vPfIvmfVdQzDcIC+Trw7ixiiNeaWcFLAHLXU9PMp64fDBz4BKgV1lBghJwphO926oV23YA1jX6genfpNpycnbDYbiD1joTO5MpnroSeKZthYkxHrCqWJXltlaxdncDGSChtDsJYGo41sy6NTk7ZozZynDKHKt6uF55rVlDCMkhlSnAi3c84Y0TaENpsSKnHk0pvUWFsE02qNqrV03rPqOlzbIsaSRBhi4rqPjCJsL8758te/4Ts//CN805GjlBaGDda0WglkHTEkjKtpfnMus3OO6+trUtTGUbn8/Pb04/3jps95M/59LLNoiXcs0f+nCPMHN8/9phr18cfR1DznLDklvPOAKPjiHM7IgaYzU+DflrDKbFpXDWgKAugwRMnzJF1oyhp+WPqdErImuqOeV+MtTetpu5ZsIKZI6yzPn59xdnLK6eaU080az8AQAtf9wOV2y/l2xz5ExpQZQlAyaihdoovGMiW0VK45pkiMhmANFo9bJC1MmrNkLC0pSqqJG0Ub3aaF2Y5o/UllBbTW0BpfXwzWak/OxnlWjWfVtHSuEGM7T/S+ILmGkOCky+yTYXQd437H0O9p2jXOt4QxYE3CuXZK+KiYQg3zGGO07C2mGQwyqrUfAwh9m1rsLlDoTkE9Bs0cEeL7rvejp+99bLd9zsJUIKbxjsY3yufjHNnIBPzYsnUtMTq8qtn3NVBCMWkR35tjqDUckYvJrLJfagrLNVm00/Wqbekaj0M4Wa15tlrx+tkzNk1LYy2tRBwBawTbOlo2rBtPH9Sv24+BcYwlLVErTEQyuSxajTGaMxwTyRpSskRTy7pKXSTMiCdznaTGOzVhIuYFZWiaE/ZdiQWLEdxEuaf5s433eOf0PpylbaA14IwmargkiBJ3YnCYpqHpGga7IvhWFwtTi9lLh27j8IWVwhhK6p6ZhLC2pQghKh9STtojVGovl29nPC1L6OOf69h4NCB0iGje3PCu/R937LsOUs3O6n9gFNJfr1fshr2aOine8o0nP4Y5GHygBSviWsYyj7YKplQzVua4YBRTQ/Rq0jrP2rd01rPxhs1qzWnb0BnwKWBFS8rGrKyAKQmkhIsJFyM+ZTrRHqHZO7I1RKsxx3p+YwRvwJo83Yfmprqjz7e+8ylZQ6pgquasJrNGLlX4k7VEqznKqq1sKSEtPLtoql1Ohug0EmmNYJMCREnASNZEA+dxbYs51USCSuLtSkc1ZylxTTNlOxmTcU4X1LZpadsW4khlezDOMpXMPDAeO/E/NM1Pn/Hj93voPPdZjt84znk/Wgv36dJb4RMDh4CzmUybGFNhO9c4oSsr+q5MwhoG0SPOZmp5nPr/SWjNwWnmeOAyC0fT4wQ0gyZXxFMT3Z01nKw6TlcrNr7hxDs23tEi2KRoo0dL3GIuJW8lXc9bQ2M1SyemjMRQzl1MTWtorKMGpaxTsjAFslTINJQzcfbNT3pB7FWTECpDRKzJCTlDyhNRl6YrznFja3yJLysYpJrUoxQkRWsnpU9RihKrBe8SyS6AZBqvoaC29eQsOKt5wI2fEfRqsltbMAI7h7GmyGaNojxBjh4rRI8R0A/Xnjcu2pgn3QN8GyVjB7HH22bC8udTj133sxhONhv6YcAO48RQ4Kjb1AqXeb/lKXWSa8/NShlZ/R5MjYEyxxDrhLZOGfCKD7xpV5y2KzocK+NossHbTCMCuVyXZKI7UU3nDNYKvmTepKRGoc2auqb9QTSP2OY8FVq76sKkTLZJNZo16HKhlSBQS7nKY6/XXjOBRGbKzFQSKVKCpG0SHAmb9XqczTS2pXNK0NU1s5+YZK5oyaLxVBCM9VOOr/IDjRij9Z7eWTrvEGcKS0SpRCkldU3TTGwUItpDxZUcaGPM5B8/1az9Nn3Qp14H8pHjnEdPcmOo1mI6ua64c5VJlVdza59D3pbFWcqLmPcRKX5l+SynzKrrWLUt1uwmNgBhJo/SsEvp78isNUUE0vz7zDlUXr6p28+Tm1ovagWxQComWNvQOq8tHkQQiSCZmDIxB4zJiLUEC95ZnPV0tjKeezKWkDS0YSQhUTW0yYVlyFa+Iw0HaVIB0+9izKQ3pw4B1f0oNzKZ6iJLpaotAUsWkZU8hZ6csTjjab3nZLWi9a2CcFbZBlPOJNAW9liShPL8IlkMOQZMjHgBiRmJEdu0NE3L6Hqw2nHNlY5ptdGSasystKJo/WgsVsQ8eT6ez3lXut38CA8tuPv2e9y5ZsV0DOE9Nr4xb62e3Syk8NBU1Viifn4HiFVGnoxS3XM2TRLoKiz6jSvhguebDRfbLaHvcaIkXGC0hhE7AzimAjuVymSuY8wipeJDV5hqWUtJk5OcMUm1GFF5djDgGke7WhUNYIgEkEQjQMjqN/qGPgvJRsyYsBJKm3bHdt8rgjuO7EMkJtEu2dbiBIKJCBaXc2k45EAUtVwmSFBiu7UA2puZaqTcRSkb0wQKRW/r76U0rnAECgbjW01kN5aBTIoDJu0REUYRAkI0hmwdbWhAPEkKZzAJK5EmBewYsX2k7ZRTSIwnNS0xBdrSBSM5tWicd5qHS4RxS7vrePniOV+nnqEIiROLXWQnLfOnH+PTPV2oloDicUF+CEC66+/HCug3NmuPCfDB94/c97HnqkikLUXTJycn7Pc9KQ7FbFPQqGbMQKk8lNowdi4FEpESspg1veIwyzBK+Zz5p0UnVNs02qXalNxWI4wxY2NCjCVEYTSUVhERnOPs5QtOz07BGT45OWX7s78hb3t219rst/FO2/hZmVBbX4AoUK1vTGEOtHbyyXRtXCRVFOBrvo/Zp67aVF+OLcF9rZnMzrAderCOzsCzkxOenZ0w7PbIrseESB4CMQwMrtX2hLU3IGBtRlLEx0CIIzEFfHYYs/AtjTZkcoVKc0JpTWboe37xi59j5PuY1qBEYqbUlz5puvxnP7593lpz+9e7hPKYmXvM/F1C75vVmrbpiCGRJDOOEe+1GWvdJ02m3iykMLlmBYAo/ThF5rrK8vtEEVI0kRhNhmgbXwREwY6M5qsatLnSVQwElKTqxedfELzjR3/x57z45FN+/ctf8v3PvuCqjzj7NWRL3+8Z40DIEe8MbVuY7LJgbb2uPCdeiC4slUBMfWFXCLTAGplLbRd9U6aFyyhddTYgVmOr/X4A1/Anf/JjfvijH7HZbHh2esrbr77iFz/9G/bXO1wT6Pc95zGy3+8xJrParPFeIaqcEy4GmjDSpREnHmtEmwVbMM4RkyaWOOuxIvq9MWyvLhn6np/Fnj/9h39OyJWG5qZz9M3GXZlGv28f9RuhtR/1Asxsrj51//mhmQOO2dY3rAv1Ykhx2vamhrz5++EzMcgBkVTp/rVEdKnXXnmJSpoZqPAYo53MgGwsl2Hk3TBi2xUvnj0nNhvMyZp/8R//itOv35GGkTcXO3711deEy2uccWyevaSNI+/evyPGgPXrkk1jp34q08VkFU5nZsYHyYKVOPmP9T7NQeEwJXFg8WwtZG/YbQeMafgHf/GP+OEP/hixlvfvrvjyy3dcXl/x1dWWi4srTR/0nuQa2q4j5cAuqrm6aVuSaFF3yIEYR5rcYbzBOnBW0fKc1I1prKY1emcgRcZ+j4mBHBs+ef2KfHnB9uoK67tH8Qj9Psddpq2OGxlCNyIEjxnfKH3vQbP0kXL4GOf4WJw1Z6X9X680lW+/19intjBf1GnCpDGNHuSG/7swgG9chxw87LrIFPY+5yulrCZpk4mo1rweA9elqdDFxTUXv/2Sq7FnkMyYSyt76wlXWzbW0Ulm7Rqen6xxviMkIcRczGb1KZcCamWmzfTeT2RljEJKWZFrKMXOTKbt8vbs1MZeCLuBVdvxwx/9mGdnr/jpz3/NX//sZ5xfXTGmyNV+x3YcoXWItXSbDWvxbNqW09MNTbdBeW69srUXxDalEZGIE49DAadsLM57XFYk92y1wVphN/ZYyUiI5JoxNPSa9P6RNefH1JDH52/x4r8BYvxRiq3vEtKnPMqHBH1ZFG2KtnDeEXJmtepo9w2rriPEva7MdVJO7tcsWEsKikqCcuNs5acsti2ooZgijOUfRQBsnnzXbd9z2fdchMjFxRUXQ+LZ85e8+vQ7bE5P+NWvf41rPJ+8esVf/qu/5M3FFWsDz1eeUbJWpzTN1MJdMBjncVaTAhyqMZ0RvDM0jcM1raKfBTAa3YIrV5RexKClW7n81K5qHmJk3a45++QzhhT5F//u/8eX55dcXO/4/Dvf5errt3y11Rb2PlvWJ6ecvHyJHzMXF5dcDyMn6w1d67FNpvVg0swLlFPGeQoroTJFGONpvbBulOtXJGoaoXcYr5D4sN8DmsUkOauJ/y2Pj5nEsNymBDQ+Hlr7sccSor43afiOsdTYFRAyw6j9IFcdKWd2+55kjdJwSE1nu6ENy3XUtbhSbzDFDKeN5n2mQNXCnASlFEHzda3TBcM4NUNjSmRj+OGf/Rn/zX/93/CTH/8Zzjj+h//h/4ZvGl68eEnTNvQN0DbsRWgk0nUbsNB0KxpvaZ2hazyehJeMt1qu5o2lsY62bfFdB9ZiUqmHrCyApnQ6QxeTjPp2CUPXtljX0K5XrK3nfNizTYnv/v0f8+W//w9EMs+/8znbYcC/P2ezWpGt5Sd/+mP+y3/6T5Eh8Ztf/pJ//2//LW/fvOF0vcaIg5WhbbrSNqLEK7FY43H4QtYleGtZtx2dtWy3PSvvkK6h323JObPre9SaycU/XqKvh27Lh8TOP2Q8Bf09ts1TtOhHbQH4+3hAy3NYa/HOEWNis16TUubsZMP7iyusBiYL3ceRhzo9oxLblPkeKthppthgEfLynQWaUqlhqTFVTUnDw+lmzVnM7K3hZHPCf/3P/in//J//cz7/9HPev3vPP/zzn/DzX/yc//CXf0l/vWXlLS/OTvEGPvnkJX/+kz/jzV/9FDOOPHv2jJNVy6qxyNjD0GNT0lpKtAJmtVrRnZ6AczTUJk9D6Sytbf28USsiG0tCGRZO1mtOzs5ovefrN2/Y5cj/5r/97/mLf/bPOPsf/z/8x3//V/ybf/GvSNd7XjYtZycn5Kbhs08/5Ud/9ENO/IoffOc7DLue6/NLvHE4LOvVGm+dBmimsE+hzSzJB67EOjddCynSb684OekwzjHYSpmiFgOCVgMdSWr5UJPx5lz9pmbut5Hw8K3z1n7Tbe4b1hhWbcvVuAURzk5PtPNYjGz3PWNQzh41bRfVKwepVbkYioq41liaRfNBTeXDLQXKItWkNKU9vE5874rUZqUteb5ZEa0hNI4uDDxvHKeNpX39gn/2v/6v2F68I1ye4vY7DMKqbQhEfvhHP+Cf/Df/Jb+wll/823/Humv5i7/4czorhN2Wr375c8brLR6lNGm8Y7NZc/byJa5r2aGVHX3f43q9G2fUpBSTMN4RktCuOj59/ZrPv/iCr9++5bLf8eN/+A/4b/+7/wNnn37O5fklX/6Hn/LKO5rTU7xR2pHu+Ql/+vd+xOnLU1YDfH19hY2B733+KWfrE23eZA0m135mc1KEtmBwmojgvZrkzrI7vyQNA7ktWt4ZxFiu9j10a3CKWBvmVM3HuFX/uY9vTTiPh0VQ+P8uH/UDHrK3hs2q1aD+OPLyxbNizhpS3pZcUDTVzVRwRZBsZrBosSKnHAtWa3HeKtePMRhxjDmTJGmRtZ1RUFN8vcZasrd4GtUO3rNLmfOf/ZSf/+W/5Oy/+l/Rbjb8/b/3Q/7qL1/z1V//J5451S6MI59++pJ//JM/4/XzU8ZPX2N/+EP2/TU/+N53efVswy/+6j9x0Xqs1+a0znm6xrPZbHj56hWrZ6dssez3e87Pz4HCIgDqz1mnLPLe0TUNn79+xfPTE375s5/xX/y9P+cnf/4PafcjqxD4yRdf8K8/fcn75ydszy8gZV6++Iw/+8f/gL/48Z/S9zt++Ve/5N/8y3/F5Zvf8d1XrznbnHJ5eUE/9LRdhyt5u0aUrEyMVVY+UwrVrWXY79hdXeGAGIKy/VnLKJl+jIxxx6o7xRunLsTERRznYuz/hY5v1edUAT1E2T6WYFYzQmJg1bWTSbEfRjabFTEnjLVsdztCTHjnkNIMV3JS/8toke9cdgVU4ISMyaIdqlGl2K1WJIlYm1k37VTI7ZzBmoivyQBGcN7hvWUQGHeX/Nv/6X8k7y740U9+QtO1/J/+d/+cV43nf/p//4+kYeD58zP+8X/1X/LpquXtT3/K7vw9667h9OQV5EgaR1LoWTceU1oDeu+m1hKb0xNOX7yg2Y989dVXOolL7o9DyEYLp8VYTCkaCP2eq/cCQ+AkGd7+9d/wl5db/uy/+MdsXjzjv/vf/lOaNPCv/+W/omtb/tE/+sd894c/5O1P/xM//fkv+e3Pf8HueseL1YpWAsP1e0wY6UzGEnEmaXnZYhEDJkYLa4XL9xcMuy3rTcM4BMQ6MKWJsXW8vdjy/PmKl+sGSj+YWrHzv/TxewWE7hofuvoZY3DeEUNQHh/f4H3P+4tL1m1XtGeGYdCXTaHQxGFKS4BUTVzJHFi7VNAFWsDkBKJC3XivmTx1jhjw1ql/V0w5h1b0nzWetIJkDD//N/+an/7bf8MP//SP+eTTz/n8xSn/5//+f8+Xv/o1cRi4+u1v6b/+is3pCd97/Snr76754z/+ASKR/eU5kiKkiLNSen/agroqP5F1ntVqpaGVwjDvnJ26R4NMOa3ewPXFOSmc8Cd/8kf843/4X2CsY7ff8fbnP+ev/vKC33z9JeP7r/nRd16z2Wx49+Uv+c1f/xU5Gob9SMw9nTF0eML1BTlp5lbjlKO3MRlnlSUfo1lTNYHDNw0mR+I4klMkRUPII9k7Vu0GjKUfA9d9j/U7nq9esGoaxnEslSxM8e5vMof+Lo9vVTj1eX17D80ASMZ75bBx1rA5OcH6huvdDrPvJ1kbQtBOzAhWTIHzlyXLZpE0XlL0nKGxBpc1OycMA6ax+NWaxrmD1go1tNE65dmJMaGJ7wpMGWsx3mN8i+8Hdu/ekmKkaQzOQ+oz/eUVYizN9Z7zMbH60Q9oG89+t+fq6pyh36twOYuTSsGtpnpGJv4jUzS6dYXhz6pPrCWxGecabWsfIikGaB2/vH5P7kfibs/V2/ekcSD0O05yRMaRMQx427LKmRgSTRaMN4wpkYcdkg3eNsrx5LREzKl7WfzOGTk3RlkkJEDXtSRjlQHBZiQK65UWb7+/uGQIifOrLWeNxZ1oPLfWpP4vfTxaOG/7kLUyvU5wmMIkVSCnQP+yPUP58dhEhttXQlVXyimr16DUHoLHsO4auvY5J5sNp6uO996x3W4ZxpFhHLV6ogIkJFpjydEQMWSTyaXweGMNKyBi2RsDEnARGqPaQYxWqWjTWX2YystqwCnxdcqJJEkFNAsmw/7tG67fviGkzG63Z7vbkUOCnDBNS7Nu2Xz2nOffe43xQthds3/3jrzfIzEoKlzscCMCCyKvGHtyDrq4iNF/WdPis9EEeCRpsXkeYbT05+/YekvnW/aX1+y3F0rl2ffEHLU1gwCM2p2aRDQRF2FlBG8yzhmcU0b95CrNirLvGdNgRMnYbEpEDA5PzoHNekVcNQx9KInLluw9ORu22z3DIERv+A0CzUtON52+BwyOhDOiVTyC+rTGkMVosYR1GEkPqoePV9Nppp+1HrXkSTLJxhNQ3Q/TnAXAnOXqhlAe+AN3J+w91v88vt2czlfXZn0EMlFHrpuG9cuXPDs9Y9/v2W53XF1dc7Xd04dAH7dYhAYQ28xlVcXvXDlLiyVmQzKCJKaJak3RB0bT9gxGu1Ab1cLeaRggZrQ3SxZSCMRxUC6fKJriFhMNhmazpm1b1us1L1684OTzT2hax+X5e86//ppwvYUhYCttp3HFcigUJkMgDiNhHJAY9RoxWFHfU3t1FMQzF6rQqMXRab9jfPced7LBiTLqJUmaDBAKYJUyMcepUa63mbVrtf6zsDUYQKwwWilUKlPKhCZviLZMTGXCmqxtJ9quZRx2+iaNwTUtLhkurnckHFks13v49dfv+ZMfndG1nri/xlu3QIMpBQtzi8Gc9ew6Vx8fn7w59x67Ty3MqKG4OkXnBIRZyf1eqlIeuthvfxhu356Uzl5O2/6VCpLT01Nev37FOEZ2w8BXb79ke33J/mpQbWKd2oAyJ6N472jJ+FFDKV3X6ETIoizsqLAa0coOW0Awa5X93VtNFJBc2NUR1dyVqLm0vqu0kJvNhufPn7Nab0jXe969fcf+3XukHzFhxEQtkLYGrNfyMmIk7HvwjtQPxKT+ZcmrABStTmU1t8yVKikHYjAlgd3QrlZsVprTu+raUptamvGGShtaeq/gtUIop0JRKsRileRiydRrkFJwKlbdD2sNUaRkMRkqbmgK0HWyXvObd5eI7zAEXRiI/OIXv+Qnf++PaVZr4rDHo5QqE+Iu+rt2xM5V5dfckSePqQb4b2H8nQCEvsm4idtV/1FEkKSExYImmLTG0XjHqtWGOicbz26/48vffMX799fU3pIS9ZghJVYnLU1j6MMlxsJ6tcIZc1hTKYXnFZ34psRAjVOHzzSFKdA3GOcQ66ndnVWxalFx27RsNhtONhtySgyXl4SLS/J+wKRUeUcmIjNdFBJxGBl312QjhG1PGkPZ1hRz7zARUQvLtbenJIuYTE6BGAJtaWNoTINIM/VdEdEObMqHG0k5EZLRSplotMN2afJkKAXhRku+tKdLaQCVtWJGQyERXwA95ywxZRrnyQncSvun7MYR4w2+8Qz9wBXw1z/9G378pz+iMYY47NWtKCV0GFECM5u0AubI7Fj+fWw8VJf5+xp/q0kIH2Mc432q6XhqYqgfqo9WaioQ1gjPz07YrDtCn7i86jG5bINOuiyWzWaFt56h33IR9IU7CzmFqd7TYiAX0itjC7NPAUEM+EarN5puhW0ajPNI0erVP3BOWQW9V200Xu9IfQ9JfdGclLkgG0Gsdh8TSifsYWB3fY3PibTdEYeAxGL+ljvSjhbVYF+wQlR6BBEkR0IY8DS40lxInFE/FacClTIpGVK0eIRMIhntbJ1F0W9nICKz0pLSvDeXhsdxJIaxVBYVehhRZHm1XmOMUd7aFEhRQ0A2gVhPPwy8P0/87OeWH33ve9huTR4HMhUMY+IiOjovyu9ZpqD74Xyq294wgz+8aPvDx7cinB8zyeChcXdepZpU6sdQ5LI8aMk4soIUrqFtW5rGsx8CSClpQsDqiv1stSI+2zBcJEyKeN+WPpaUhj4WSdrGrtwoSOndaQ2u8XSrjm6zwa86jGvAee1POXWChsZ5jIFhGFABUrMzpUjIkVQFAbBWsCQkBeh3xCuDHQdk2zP2fRHmUjRe9kkCYjIURgTsBB+oTsmJnCJSAv0addHVSDOs9FjJOG1xmBMpKct8FK3Iqe3pa8qjEc3BMlK7b0dSCpAj1gi77U7Jow203Yr1eoM0nss37xhjAKs8xVLQaLxnCJG37y4wxvHpq5eKkLeeHEdSCrTeKUiWsxZpHxl2srCWM+b23PrbHL83s/bb1KTHirFVyNAi46I/NDPFTIW7KSdiyvR7peEwJZtGzGRBklKic4bPnp/yfrvFkFg1tVSsct8UMzcV38eAcTKZd6ZqxsbTdB2u7TBNSzYGYzWRQLIUECNiwoB1SuA1hkAkky1odqmZWi4ggomRMPQkIzAOmD4Rx4BMwfr5GQlFi5mZT6iCiVN6YwFtSKnEEmcKTsGpCSl5gqitMWAFSXpMI3rdIkwCqswLuZBbR8K4R0S5b4dhIOXMerOh22h/lYxlLP6tODTskwrdiQgY7e/55u17Qgh8+uoln75+SY6e/fXVlJdrS/9TuF13hGGaBw+J4H+WPudjqgHu+/5jVhMcHEuYwjtKECWFIFrjlRXNs8awvd5xcXVJkFheWPEBgW2I9GGkbT2rZs0Xn7zi/fkFVhJd60kpYhpXRN+WhkGqJbAGJ5Ud3kyC6qzFty22acGXkq0iHHEM0/XFnBjHkRBjobcsNJ2V/S5lnDEqFMOoGsz05FGT3mOIs+acUGhDzFkzh5wFTZUopm6ptDFC6SmOiKK9+rzMlLRhisa3RuPGtYdnLG5DTXQXY4hJsFmpS1JSxsNxv8MhXO+uySmyOTnl9OwU4xuGnLi83NMPAzGLFq6KTItgSknfs3OElLi4vCZGXYj+9I9/pIUOKaiPPdHNZPX1a7rfFM++GRWYtac8orL7drVTuW+RowJft7/5867xtwYI3UVJct/fN7+7++ZkevApVcpJM7HAZ1GGqX4/8u7de4ZhmIALQKEdaxhyZDdqB2YnwufPzxQZTYmxrPjZtIQkRCPF5CzaN2dSzIiLmBRLcfSif4v3WO8nChUdeaITcaIlYd46IraATsW8FIGYyDkqqhwhDVH7hyalCc05lQ7ZhdXdaL8VSj1lSFL6floKn4NW3ciiZC6rT2kz2JJ0UZHp6qcaWajgUiRgsCAWycy0oqUVYQyRfrsll7K29uyM09Ua1zRc73tM0xL7gb4UzOeYsI0t2lonfWQmBwfhantNjAGRzGefvMSJZ78XJCW9ZlSDpqwdA0x5PzPBfQ3Cfchc+/bGtyKcS8G7Gdf5tsYBJwzVz0EzcyZG1wrSWEJIvLu45OLyWtsg5IQYZbqT4iumCLsxaQ2ktZxah3n1nPPrHSGqL5gRoggRpXJMFIaCKGSbMS5jUtJAeSr/pMRiF02YJKVSCK0ocxhH0qAt103MSjNZ5SAJXrSTt8umsLknsIacVThTSoXPN2tmYgYjSgodk2AsuCSExtJW7VhjtxVyFUo3M6gwrKQKIun32jYe/UeNbZYGxKVpaMp6TzEKOQTifkfrPWevX+GweN9grWcwliFntsNIYk7uIGmetLXaMZusQSFlbXJY77nebvmrn/2Md+/f8aPvf58XL14TxoH97opctK11M+OiPZiLZV4swjF3IbnfdI7+nYhzHhPGjy2g95rMFC1WtskLB2tMiYvLK96+v2AMiTFpywI135QGMxc0dBQB51i1jv12z+vTU5qu4931VoEQ0DYKZTImUWYEY8GKlpxJTOQxkELAhUiOyhJga0MfUfg/p5JSN2rD2eoHqoKwxDAypkDKCedXSvXhtNi6tYZkDU3YstvukSw0vmb6SiHSigwxksQUukoN0ierDHxYiyiKVZBkKckLlVa0asJqlpnyr/jouXRlM9rEN+aMFe3gVutiU0rkGGid43R9gjGWMSbcasW6aXj31e+43O0p6QPqN5beLhS+swry5KxFDJV82mA5v7xm+Ouf8frVK774zhc8e/mKfrcjhIEY5vtRrTkZsbOQ/B6CDN9uhtDfwXFMUGs4RX9XLTUMI++3V7x5+57trifEzBijptuJqHRhSFkAS0iJmKBpOxhGuqbBrVb0WcjGaLaPsToZxRCz+ljWOl36M8gYGPsB2/bYttO2fmNUpl7nNMSRMnnURPAwBMYQiSJkqwQjQ0oEBGk8XbPBWkfTdrx88ZJPPv+c1bNT+hQ5/+0v+M1vfkv4+j1h1JIt7zyb1uMBM4z0ITGmxG5MmCbTtTXCpFaGlNkroqEPUwQXZu7fnEoHs7Io5WxKG3ttXxFTbUEBpFTAKKNIdExERnJKuNYroFR8yDcXlwxFmOv5rKmkbakk8i/aOSDEFMobbxESKQ8MX73h/HrHD7/3mlcvnnP2/BmX7y/o93t1O4p/uOS//bbHcR/17vGffZyzjts3aicHX4GRTD8MnJ+f8/bqkqvdQI6JmASKSVe1AyjwYjDsQ+R6v4fnJ5ytNoQseG9pvGObUtGexbTNmSglESElXMwYq2CFcQO2abDtCtMNytUKKPWPIsgpJVIIpKihk2gNY87ElDh5/pzPvv8dnr96xfX2movzC1rv+ey73+X7f/Qjnn36ml0YeNPBbrfj/P351HqhW61pz56RXUMXIttxZNsPDGMgiGE/RnLbqLdcGctQU7VqFQ1Jafw3Jb2m5c+QM1EsSUzJDqIIeAHYnCHGwNXlJSlELJZ+v2flGqxv6GPgzfk551fXc3ijLKjWumLPq/1smMM8xmjlUUzaNlAjW4Vsbdvzs5//gouL53z/e9/j+asXdNcdl5fnRbhzmTsHM6me/FuZn48Fg+BjdLZe3IuuvuX3CZRZ7G/mHNhj++sBpo0XN2AOD7PY7eAY1WtQJwlQQGi737O9vma73eq/wiebgyZM28YxhlGvTeaML4B+DFxd7zR7xRr2Qw+tPrYwBsJKm9ymrPE+LU0TclTwQ0zG43FhJI6BcRhg32tOqVHOocouJylqfDLFKdUvWXj2+iV//8//Pn/0Z39KMvCLX/2Ky2HPGBPbOPJme8l+ZdmHkTD0DEM/VaiMIYAdaVKmW7dE58nO47o1UdB61zCqXyilCN1SfDr1tTWPWEhRK1JyaVWYUiRFIZUwSuXDFWOmd62eqMJEIUQuL6+QUfvIRBE+25xy8uKUy7fv+PrNm8X+tnAPzUkTmgiRSMlgjRbDW2dofEsUYRwiIUZGybiU8QI57jSJfz/wg+9/j+9/5zt0q5bzt281Nl2u2dT/VbdTKno7T4Zbc/eOOXjz531i+FF9Tl1Fy8ObTn+Y8Hsoz2b6eQjZHH6LpLLfnMcx9ZoSpbiodCM1OCEFgEmlQU/1aXb9yDiODMNQKlEGbVpUtkso44E6RIIZoBGnGpAMXiBp8njK8MurPS8Hx5+1F9jOE+JAI2DHjAmOwXZEA4MJ7F3ihMgpEZ8iLpaOXV7N2zzskdFjvCAuIzYh1pFCgpgwyZCjdvAK455V1/Di5TNIgV/8m3/H9cUl5+/f019cAPD+4prhd2/o1i0hBt5ev+N3l9dcBMNVcAyD0MWMkS1pPyKFlHpMGffyNc3mU9789tesxojbGFzOtFgaU23yyGgosVyBACaCGy0hZxWGKCQcI449jt54BuOJxtJYpTfJcSTHwOX5BSEMtM7w59/5Dv/X/8v/EUnC//3/8f9kvHiLxDota3OmjM1RCwxysYYUsZtoYqxV0rLWOmIUxjAS0p64F6Q5YQwDfYCL3d/w9mrgT//kT3j1g+dcvn/L7vICiaPWnoogKeB8w1jnYFEYxurkTiUL6Q7pOPxZ/dpZ0ud5/wgE+Em8tUevo3w3b3PshObGz+VqpLmiCuDoDZjF5pWKPyOl1YL6CSFExnEkitD3Pfv9Xv+OUcMJsbQxpwbf55S1Gv9CKseNOYh95kWMKwOX2x3nV5eMrzOfvn7O24sdV/2WMWeGNNKYVVkoRDUomWgyMRmcyViblCh5tOTeQtsg1moiejHbckLBoOKfKfesMqN//faCN2/OCftBtVxM0zL+brejvbyk65S7tx+2nF/vuN4PbIOaxgOJfb+jy55MJmAYSt3o+vmazeqEt5e/Y7Nac3J6hlhFWG3JlMolxsjUaEkXxJTnfNtIKbmzriCtRvtqos/TOUeMmX3fs9uNPD9pGWPm3//HvwLJvD2/ZIxVN1XbaDHJK5JcrRPRtEJrZ+vMlo5lxlpsDMSUGMdBNWtZnH/1y1/S7/d8/3vf4fvf+ZyrxnN98R5K1hIlVFXDK6bOnTJbzaRdb8jELXNuVlZ3fH1Dbm6PRwnnU1DWelN3fj8JQzl23dosfMQDc1gFU1BwIIRACEGJvEJgCHHWiCWEoFQWei3LZrj1p75rOXi+0/Oe1D9T+G4/BK62e8KnLZ/94HvE7h3/5ue/ZNtn2rMXDCnSlnrNINriPRht+mONoSk+kYsRxoDt+5KkoCik802JCcp0LzlCDIaLyy2CIabMEOK8QFllX0AMdjfg+0BOmbAd6IOwj4brbBitIRmDEPFBu6BpeWlHyx5je4Z95O27S1rfcdpuaNdt0Vs6WfUyc0GUFZLOJZ4aUyZJJpAJxjKKEA2INVjnoRJXG+U26oeBAFwPgZ//5kveX16wWnV89f5cke8bC7jUd7IIzeUciXF2jxWvmqkzvXPTQiuiYbRxGGnblmgiv/vd7xj6PcN+xx/96AesVy3v37yh313jrNNEfxYacvKVZDFl5OCvb2M8KJwfJJhSfURDiVZRGQd0HCZTaU1k2cqYaZmpk2II4ySUqa7UKZJiIoSZ+tI5p9UfNLpilbS62uZviv/lqB3JROayIpm1K2o5TwtHErja98jqGc+/8wVDt2b8n/81v37zDlZnfH9zVsP4+JwJQFQLEFtaxjfWIjHBGAn7gepTW4wm3BujSeBpJGXtMIZp2PWRfYxsh5E3l5dcXO2w1vL8xTNePjtj5T3egCss8jLCdsjsE/TWcxkD5/sd+2FALXZh5Syn61Ned2eMfeT6as9VH/jq3QUvTs5YNy9wzik1aFIfU329RI4ZE4WYNBkjioJhgdKFzJVaTq+cTcZ5cI6YEucXF1rNQqlnfXfF+8srmsZxuYulteA0K/T9GA1V2QpmFP9Xr2cWULVA7IGFZI3FO81myjkzjqP2cXWOy6trfvGrX5NT4gff/y7f/cEP+OrLL7m+uigEv3la4HUckotXRodvMzfho6K1S0Ge6/OqgrrpTt/8Xf0I0NzMmCIhhKkxbtV8sUwSYwyr9YrNaXugFbOZTZ9xDKSYMTkdUHjU5j/ComoDKZqy2iEWrYJUIfv6/ILfXmz48uKaX795x/v9yDZlvrq45PWnAdu2CEoGFgQCQhCDSZlsAmINbaw9N2d+3FQ0brZO0d6UEKNJ4DFpS77rbc/5fuCryy1fv78kpMz64pIvPnnF9z77jE3jycOAN5YQMtdJ2CW4GHp+e3nJ+2s1/72BzgKbhpVRVPVqv+XtxXv2IXBxveX95RWfnJ6yXrdTrHXK9EmK1JIzISdiAcGCGILRuuxgDck7cJ5sLWId1jiGEDg/vyjJ95YkmT4JUUDGqK3rnSlruYCU8q96DUU76uI9d4xTWmINF1n02S7dGGctwzhoIkrhHBLRNEKRzC9+9Wv2fc8Pvvcdvv/Hf8Iv/+ZnXF1dYkuv1TlZ4Nh8Z5rZIrMZ/LHGB6G1xz5bZjzUwP9yETwwustDN2U1FMA4pW1MKRLCSAhRM3BymlbFpmtZufWUimecJYyzVowlh7MKIsVfSiESU5z7c4qQY63aKCjjJJjlQktGjJZBwcV+z7/4t3/D767+X1xe7/jduwuuI4yXV/zYNcTSXTqIYczKruBKAjgWTIq4qKQ6ppBQi3NEM+j1WEcUAedZbza0zYbVELmMgTf7PTKOrM7O+HS1wTqnTZSS8uuwWeOAfuzZx8g+BM77nveXVwz7wLO15fnzZzw7O8FmwVuHdy27cc/19Z7r/SWNg1XX4B2zSS95sihyUj84ls7eQWDMwpg1EWMERmvIziGuwfgGvDbdzSXccb3fk1D/1RinBeDl2WcomUfVDJZJUOu7EaOmqmZ9zfOuJtRT5kn5orRJnEGanBS99t7Tti3jGMpiaOjHkYzhOz/4I/jNr+jP3xWlkBZSuOw3V39+e+btkziEYEaZbqbnHd9nBndmCg/Ky1n4lqIvfgwaaohRg8reayXHer3WcztN4Uo5KyIXAoIlpcQYVQCXfmcIYcrtlKTaWAVXc0/V+V9CDwowaAsBqZemZpFkfvs+89Xlb3T1V6AXj2c7BlaN+mmJauIlzdlGMNEgVsvNmlg6OadEjgljg5q0NiK+oW0a1icbXLdi7Rpk3XAx9Ox+9WuytXxx+ozPP/+CzXqNk8y437G7POfq4hwc5MYSovL8vDhZ89mrV7x4+ZzT01O8NfT7PVfX1wzDjouLS/ZjYL3yvDpZ89nzF8VUNpBLZUtJA4wxElImFAHVuKYQMPrPWKJzRO/J3mn2km+156fUtLnSfLgUbCFaaWOrG3MD7ASZfpeMkqXZRTF79UtFzdwxpbnjGvoKx6EHat25Nn1KKbHve1yhFr282hJjJuafEjG8fPGKuN8R9/uSBFFqU2+FImahvR1kkQNte5f1+8GhlMcI4NET1v2PfLb8aQoyGks8brvdYgx0XUfbNLRtgzEUjlNbCKziZHqKaNv4xAzuiMhkCk9CGtU8zkkTtSewAKZ81joRJC98izKpouTJey4FG9NqOSRDFEtMYI1TJjlgQGk1c05KmZEypiQluOzV/xHB5UbJuLpWK1aahqZtMauGbB0vP33BP/onf6ENkH71G0JIhKtL9v2Wk9WKk9Zx9ulLnm08fd/jx8Br8xKDopkxRCww9nt222t2+x39MJAQnm8aPv/kBWebFa82LWfrDafea7WJCFkiMQZ97gIxF8sgZUKGKIZRMkMVTuNI1kPRnNYrciohcL3bEnNCSj6svkJ1HWY0tGq9JU7BnBmdM4mMMaUZUs21LRB/jUuGpB3OKwaSoVhIVWubCRFPqeQsF4v6b37+K3afvOKzZ89IOdPvlZytuj0l4bIsxHWq3OxaN8/Fo/Ihcu/3dXyQz7nUoo/ep/yspmwuSGqIkf2+Zz8MWAPr9Yauawulo8G7UhZrqvOvD8Jaq63mopYtpRQZx0H9zIJ4VgBJRPDegy8hAE3H1BUX0XBN0pdsMaV/pUzoxNxUAGb/WKdOEsv1tuflZkMuyGhEGFPCW0ODIejM0AT4SCm5gmwMYo2au76Zem0aY8lGiDKCGJ6fbfjJn/6IL169pN/1xFF5VNrG0XYN3lvevXO8efuG7z57zstXL+majuura96/fcs4DPQkTv0p8XStprVzWO9ompa2says0DmPl6zNkFJGoroWMQkhZTVjRRgFRoGQhSAwGEuwlmQd4rTaxlhfakG1sPvi4oL9sL85GxbP8vZsUaBWn4f+Ifr7chG186GmhV/m1htqNtf3WH/XyVStwCzCGBJZenh/rnnP8TltqwtMTkrgpkDn7WiELi43XLmPMD4KIPSgZr0ZsoDyQAL7fqDvB0Qy6xMVTNDjNY3HTdywOvGzQC5m1jhE9jcSDG5qe1eSy+uLqC+uputNq6k1SmciumjYCS5aXrVXoEhtXQQYY+Tt+3d89vIZimcYxDrt05kEMUIjtlZu62qfEiZZsjVIcuQUMdX/TZkYE2nMpOp6RcEjvDjdwHpdhFO0XUTT0HTapt6QOTl9zhdffEHXdfzuyy+Juyv2JFq31gqS4pdV9NNOzY5yYSvQa6HQesacVQhTZshCSOhPEYYsRAyjMSTrSM5jvMf6hqZpp4a+OSfOL94zhqFYPTea+S6miTn4tLzL6msaM9XGVtAn58JXtNBGWvyTqTFLPcZ89FtLQfGrU8rs9z2SBSeZzz59hW9asgxIchgze5g1N/dgflfw6iNBuI8GhB5bZXLTOT5iiZMlE5Kw2+3ZDRpWOD09AYRhHNisV3SN1+IjU5jaYmQcNK6pweXIGLRCY3k96k/qy2/b9naM02jBs6F0KUN94MkMzqnUKN64cn0j013UKSUiXFxelqp9FeiMNuyJooXNsfi2CLgsWMka4xRB447K5+pSIoQI/UDODlOT8aOWmjmEJAnvBFM5RpS1Z2JacMX0WrcNJ6sVjbXsctKlxFSNpNaCM4LLlOwXM012Kf5fzJqBFUWrc2LRlJrkDyNqwkdjlbTMeYxrsLbBOY/NRovDsyhTu+QyuYW6uC0e7oyUL7SplDllzJzw7jBFi9aOcEs3h2kRqpZRFRpt71j8RlHWiRrusyVvMxc84/zqGt+0vH75DGubwjJvtQpmnsyHk/wRPuZTxpPjnI/xP2UR01xeZPUBUk4MQ2A/9IQY6VYbUlQmNu81NqWroSYTjH0sIZS5AawSac3dplJS5gARYbXq1ORdhGAqOCSisLtrFM6PU/xzfqE6h0s51Xz1qCAc5koaMmnck3JQEwitTPE4UgE8xhRLOzyDkYxJVkMsLuKzQbKHlDFjQExhABjdZDXo5JvTE5X1PBWuHo+JmRiVj3aURD8MdKuVttnzqrVTSLOfr09MTWvApNlcS1LyhEtpmOYMl8SKLMSswplyJhlPwpKdA+fANTjf4l2DNZ66VKvfGjXMkQody8HMXix2zGIrJeZdSASV4dBoPq0pLo4pfr1UxL1gSJVxsArqPHctdUGrs1SZBUt4zWhFzN5E3p1f0rYNJ12j2xr1cUXyrfldk1s+5vjGZu1N7VpTNiYrfGGrCCUuFiL7fk+IYUJCxxBZd6c0TaNxzELMkWLEoO3KbeuISdiPY/GFIkPQwLL3npcvX05oXAgRYDJ5rbWsVivtr1HrJpNMYRhla1PmACgmsKkKdIIdMDZPbVXqm8kS2V5dcfryBW2ZFDGjvmxJ5cNYbBbV+g5IgkRBrEVchII8hyS4MeBdi7ceY6s2TkogZgx9GKlct6SM7Ae211s1h71wsdsRc6Lf7ohB2d0lajaPFkQWNganCx0COdV7LoKXkxJ6ZQVNQsrEVEzGpMXd0XjNPrIOrPZqMa7BNx5vrdZxxsTF+Tn73U4ZKBQDWs6g25rHVOVW6DVFF4uEFJ98jnlaWxF2ZeYlLTUwJbusVtaocNWEEX21s99ZryFldS/2Y8+79xf4189ZOUeKS/Z7u7jgeX7/nfM5lzPVIAvzbx7zCqN9S/pByY+tU5Py5GSFGM3icNYgomVCzhk267XGqGKg7wd2+x1hVOE7O1lrh+vi31Tt6qxFrMW07UQ3OWWJxFRW1Hrxs19bJ0+tqXHMq3A1TW++gJgy7y8uePXsGd46knFYq2zuGCmms3ILuUkziYJQKUNMiA1KZZITzkVodFFaY2mLdhmdMDSG6AybpuWk2xB3I+eXF1zuekJOjHKNWGiSkN5dk377HrPbYSTh1i2jJEJxl1xGGRXQQu3KOaTxZo0LStGcQTREFNEUxZQhec2lFaME3tZ5Leq2+j7IiTGOXFxesNvv9CHam1Oaww+mFd2WN1Mutl5XTpAXAgpYp0KXctHIMltBas1PUL5+ZwCTi7lsFI3NeaoXNUY5dL1zXG93nG5WNJuu9G5Nty5XkVq5YQMwXXe9x6Uv+o1LxmBGZG/+PPxeympXKf+Xl2dvPFyh3w+EUIirMjS+JWchhITzgoglCzRNg2s7hiT0O01ujzFijeXsbEPTNGB1AsVCruWMJSUNkhvnFXiScGDWSvEDY8l4WXaqElBe2IXQTilhC/9/+WzHlDm/2tKLUY1RqjHUWhQGMhmrYZwsEAXrUMqgwoDgQsDEhIuOxkV6As450j6xDgbnPLm1NKcbvnj1Kddfv2f3mze4kHnmG86efcp52GM2jtd+zf5vfsfVf/ol49/8kv2wRTYt48uO9HJDWrcksbjsyFGLw2IbS3G4wSRK7xVN5o8LwRzR3jHZaPhEnC1Uny3WdVjXYIwtmi4zpsC+1zbyBgpD4T3zbZovVUQLIFtMcE00UfCroq7OKFjjDNq/RkpaplSaTvVgVSAUsRUjc9J8cRtiDAqy2VYZ+mMmecvl9ZaudZqJlXMxjfO0bwWM8xL4rLb1DbPgKWDRkxsZPeRzLjCs+ZLKBWXJhBDnHFkRmsZjrGEcRppGL0ec0HmHMYa+77WhTlBmurZtWa1WNE2DdZYx7Mkmq09H6aSFCoWIEEOYfJKaOZSyHIRZ1CwyJeCsZFa2MMVrXmkBLIxwYAIxr5RDDOx2W9anJ8UvkZKEQCGXyiRjSEZ/hpQRm3HRkE3EZbDOa9jCZOx+JFvLvmnojWHjPd9ZPWP/izf0//LXDG/Oub68JBrYvHzO6vkpEgPtquHr3Z7f/s2v2J1fIWMiZq3zlGtHfntN8+o5qxfPiY3TDB8R8l7BEVt6Y6ZYDMLiX2oxecGmKI2gSr9PZz3WNYUETClOomRCDOz3ey4vLyefUPNW75qgNU2uzLGDf8UtntBS9SdzETpbWtnnLFhbWl5k1Y63BWKRFiiLBrzFp/c+07YdcRhofcN+t2c86VjXDttHpv+sID8GFKTjGye+1wTg6fclZFIyg02JGwpMFetVOH0DISotpXOWnJUcKhhNbK8gj3OOdtXQtZ3GLFHBoSB5auZodk9Nx8slaSHmuWpF+ztqL42mawgxEsaIATZr7W1ZASQRsF4rP3Iu/mnOLGEi0DV01/ecX1zyfLPSIt+csVLSB00GLC5nZUM3Bls4PcQIJpUs3hSnl7w2DY0FkwPeObZvv+Zf/Oz/S35zibkeaAu6Ks6yvzrHNp6cEl2EXRjoY2KXRvqcaF2jvTNzwowDu6s3XL/f0X3nM+TsRHVA0PK0XgIUftrKYyuFfkUTESBiEOPIxmonL+en/qCu9v0TXQAvLi64uLgkpZq9cb/enOYVFa9VqVT+X110bWnfKOVwOdekgwIWWjtxF1VGxRrrXFZNVU1ag6VS00CTgpRSgLeEMPQDUjLVkLmEbHlLx+7smKZ8rPb8OD5nuVhjqmDOK1H9TH22TIqRfhzUnDRK7Jz6BM1MXlyrC0BZu5ummUzOaj7P8Up1zHUdUNQ1xMg4BobSNDeGQF/o/51zdJ3HoIuCNYb1qtPMnAImxcqNCsXcDmSJUwsEpFRGLB5BTImrqyvCJy9ZN45aH0pWwitjS2G4qB8by8xKWcMoIQohj9oVzDmsF0iwuhZ+99Nf0r87R/qgCDaiWGPOuGww4zWpWAC7BLhGBdMYonfs40ADNGIRiYhY+vMrrQV9/ZKTF89wziPGMoSRIQ/aPduYYopr0kYSo/+MIzsPtsW4DvEerNc2E84BlhB6xlGFM5UgvinAzSweR8akCBagXJlbtWGud2bSokjlJE4lbU8VRO2eTaoL6iyEZRot4uJV1GZk38dE27aEYUfTesZxIEvGm9nHLFN8ccSl0B8qtA+JfT6pnvOpaXzA5CtUYUqSJ4oK53xB4hLRGSQGnXjOT7dmjCHGntWqU6RVhJBitZcxxhWKf/VZ+2FgGLToula1xBi129eqK5oQUgwY5/BdR9u2AIzjqKhqo+eJIRCTkjNrETZT+78DWEA0E+Vqv+XqesvJs1P1WU3pEwmQwRrBW0NC2wWmXJkeam/NVNrJQ97uePfuPeGrC8a3V5yhQl29nfr6K/poAJuEHsOQAgOFrzWpIZhxDJQC7mq+jcL45Rt2X7/HPX9Oc7YhescgQkafmUNUyxeS94QtcU1X6jU16cD4pjCyK8tETJHt9pq3b98q7egEsXHDLKzTfOmf1RAHhZVdH7I1mjGmoI0BSVP8seZQ6/xUIbTWTcKjNZpLoZmFy5g5DzZnrWIKIdA1K71uY6bMM+/NtPd8G7M/Ox/+mwvot8u+Zw5XyJzzDF1nJVOt5m0qbeDHGLEFcVXfQmiahkrBWAGcqaIlqZYcS2Pcvh8m8Kf6mOv1mtVqBQgxatJ7s+omjVwTEJqmASBGZU1PIZJjLFw2ivpZo8XftvieVZtba9j1A+8vL3ixbvFW0/Myc2F5oiR6iyllYhnEkqOmjw3DQOhHYsy48wvk8hrpMxtr2Ypy3SIUFvtSfkaN2BkkJd5bQfAEU3qaiGHIQb/PWgblrZI+x6xmX4yZq7fnmP0eOVkRG0t2Qts0dM7ikmCyknZlQwn/eMR58A3WdyqgziHlGQ9jz/vzd1xeXkyT8hBMOTLqhK6IrUHtE1MoSazGwJumKX79zABf37dzblIgWqCillWeyMpyUTTm4LRmOVeFqZNa413BGUoBhbhbaP1d45tmCn1QhtDypNXcPHbBNy+tlnGpNow4YIwad4uxoCekaWXMJT7ZdR0pZ4YxlG5cbgo+D0UwqxlbQZ4QtLLl9PR0qmqJMbBaeU2kN0wsCcY4nLPUjle1oqX6xtVqqKmAodBZ1EB49UCSZN6dX/DJ2Snr05PpmVXfKQnTPwScUHqMqCl+dbVlv9sThkB7uacbsjb2xXItmdFZrkyibwyfff+7vHr1mta1rFYbdv3Ab3/zW87HPav1hpNnz+nWG41JXm85f/M1V2/f4JLQ5Exj56a6YgwpZfrtjnHsCY3Fdpaz01N812rhcUJrNI0G47EO4zqMbfBNpxSfZX6MoWe32/Hb3/6WmOJiJpQFdeGjGTN/Pm0jgKm9O8uWRilCtCIFLbmTmf0gxkhN0pjrZdUUFtFu45poohQnyuhHAfcKDYs1B4IYQ6B1lpwTxoEmZ5Z00MmMNbfm+XSrR754bNI7fEsZQvP16Yuok7cmrXvvyfu9djkOyjcRaucroBG9rJQi3nv6cTw4v8avdEJXyhLtzMUkmN77STD1pUXWqxXez35HNYW0iFuh9NpuvQJRAqX+0mOlJYzDFHpxVgF9KWTKFtgNA2/Oz3m2XtE5jyFjC/myEXA5Y4yaeVlh5Smg/ur1K57/0XPGfuD6P/4ceXPBSfKcNB0jma9STyDTNw3Ds1PyF5/CySnh5JTL3Zavu0Te7mhfvCCdPUNcQ3+95TxseZcHEokuZ51epfJDE+xVo8ecyRnatmN1tqbrOvXNyvvTvGFNTTTFrO26NWIM1ikBW4gjKSe+/vorzs/fU7Wk8gZX0HCet/McPfQJa+FDFcaaDWQmo776oZU+c+bVNYXETOdpVkZFDMbkOVitEeyDUKSpIFuZEylnzXwCGuUwPTSM5bayOpj/5mESr/vGR8oQWvwOk53OQpAFFUprwoS2VihbKf4XTWqKUEgxg8YwauqXMfhivmgpWKQfR2JQ09M5xzAMeO959eoV6/V64oLtWk/XddT8W9W8bjKHxqBIbt/32ggoRmzjaZp20phpUCSvMtiJogpFgzpMibe+efee55s1n716iTEWnzXGmYs5lQrK3MBUmO4bx+nmlE8/fQ1J2P72PeH9jhWG103HyckpwVt+u7/i0mb6X1+y+/Lfce4N1xbOU2CbEnboGde/461zGg8cR9jted1HzrCceEtrNJoYJDNm2BrDG9GyvNOzU1588Zpm0xLGEoJBq2ekdKzGOaxrca6hWa3Ur7a2WBwj19dX/OrXvyDEYZontrAfHNpYt39XZscSGjEK6jinIFBNZ6xujTXqu1deJWutZoZJWpxXwTglkjZkkxXQUyKlSYGowi4x0mL+khSotNZodtkRy/FQ+BbLjtwttH+LaO1tE7eaAM46nLGsVytMFlJMU4aQ2v1aDBsXVJegJsw4qh/piv9RTc/dMEz79cNA0zR88sknrFYr1YQh0raOruuogWNrK9U/jKFUx+z37Pd7drs9YGhLE1etKdW27NthxKAEUjVJuhJKaTVLQjDsQuI3b9+yOllx0rbYWH1MIdUUstotLGdc8aNSDFyev+dkfcLpWce4An+xZ4PhuycbPv/8u7Qv/ozfXJ3z9dUVX56/Z7cNbGPgMgR6SRiTaHqr2iJlfM74IGycx6ZI6xzZZPYpsU2JPUJ2Hmlbutbz7MUL1uvN1Go+5VIPaQoXj/U42+Ga1QSkdW07czOlwC9//gsuC3VnWWuL9XSQOMesKWfBrIUJzhhNCHDahr4WQFT/sm475UObuX5zWX1k3QwAabhNLbQ632YNfgjwAXOxhDWsum5mWZg3WViu87kPP/9w3/NbR2tN9bbLxVtnaYs26kOgQXNdK31wfQDVhxARJe1K2qNx0mIhlIJlJo3ZNA2vX79mtVoxDD2I0DTaS0R9D70mW1DFMSjws9upjzSOQc/VqJa1kzZQ09k6g7cODcyrb9OW9LUxlCT78lrOr3d8+e493//sU9rCBhBTxpmo8dgSVnCu+GE5YpzD5EgOPebzZ6TdC3L/FXEYOH/3NXbj+fz7z/njv/gLvg+8/eWXXPz6a66+es+4D4wpklvN2W3EYFOmFcCNGCOMeeQ6DVzESCZNReF7BOkaNs+f0XRrxjEQkvIvJZGSOGRVY/oO167xfj2VhWEgRWVMePP113z5u9+QJRVAr84hUDPSUZnWD7RlGRX08c7gnaFpHL6is0XQlZ0wUvt1VjdnAglFFgIxm5bVNKYG9+q8vuEf1u9qsknjPL6AUObGtjO/0DFBPyxl+72gtcubPTaW7v3yMwS88zRNZrPZ0J+fzyVdJWHZeofLM6BTFwTvXEkQUJNjHJWmpGm0LMx7z7Nnz8AYrq+vJrPH+w6RTIyap2utJneGlNj3e6631+x2ew1jOEvXdqUPiUIx/TCw73swhq5bKYoX86StBYixkG9YS5ZEEhgyfPn2nFXbltb1FcQqTOqiQl6Lfw06Z4d+DymxX7fELz7B7DJff7WlD5nz373hVxL5ztjzgx//mO//+U/4/Ps/4u2vfsf+aqv0j89W7K+2NAnMEGiSIEPPbnvN+faSsE1cSeQCx7k1XCPsuxWr589oT0+1MKFXpvqcNdyTrVUmPd9or5d2pf8K2+E4joSUuLy85Fe//Dl9vz9895Pv9f9v789/LbuyPD/ss4cz3PuGmAcG5+A8JDOLzGJm5Vw5Vimr1A21LLVsGRIakAz7Zxs24L/DgPybAUENtdoQBMvucg/qVlV3VmXlyGRmkpmcpwgyGMOLiDfce4a9t35Ya59z7nsvyCCTKdQP3EDEfe++e8+wz157rfVda33XZIecAkD6c04gKLwfhLP0DpeL0xkb/MZJtclYl5vdqZwn61Z6lOZE+RjRPqjKykAWyHxF+Xos3jmqshxqRtNKtOQWJq2u9d8rWvtJD2uVwyVGNjY22N6W4LnY/XHItcUqeTHyYKd5sSMFSeZwFdAoV5wsmiWpD1hrmM1qFQAQON0Mvy+bhu3tHXZ2dug7MS19WVIU1WD2LpoFy+WSlJIgxkPIx2iqodFYasTY3ERXfKaYoOl63rt8laPHj7C5vkbpNME6BUIEG1EzTR+3E1+o71sWS4eZHyWdsyzjNfobDcd2W6q3t7l55be8/fpN3B0nmN99FnPHKWZ3n6XsIm69or9xgzpa2pvbLK9vs3f5Ku+/v8v2zh43+8BuKtgBbhpLW9f4Y5vY9TmdrFoB0HqJSWMlGwilH7FFhS9rvK+Q1CZpOxFCz+X3L3Fta0vCFfrMczgs12Smwe80g2lqtHvAGC5xFN7inBnLB4EcBjGMSHseKYfYsBgjvXHkz9LWIbtd+Zz2cIx1HIbB3aiqekRnDxW627cmP0ry+wcKZw60j5yz42sOfIMsSJNVu0kEE/QzSsRklAUmGUpn6EzHfDZnc3ODK1tbMmnaQ84kAYdiSGCNdovO6XOaCqjVEtYKa4EvCqy1koPbtjhrqeoCSWbuRdiMwagQdH3Hje2FEEV3UdjsypKyLIUtHGkGtNjdxRuL1Zxf+o6UEmVVgTEsFtKlLOX7U3MooaYzhht7La/6He5Zm3PMWlxqcVhtDZgAL3FJj8QPrYAWe6klAuV6iT+9wU2LkFs10O/u0r7yOvattyl+M8cfmWPXKpK3NMWMvmlITUe3t0uzs8dib8H23h7bsWfXeq57yzVrWMxm+KNHMbOKRWpJscWkgKEnECV/1nhMMSfZEles4asZtrTgA72CJonI+5cvcfHdC7RtBoFGIHD8OQx/y8CPsSPvNClKFpBxWGcpvPbkTEi5HGJ5xJSGlMzsa2b2/KhseWPYLz8WIRezVupkY4x6zKi9apigyQZPoPASgvGFJVOkZKzX7MsPTmksntivRX+vPucQetr3OpoRjH5lymjtxNWcXGpKwudj247ZfMa8WbK3WIw3NoJdYnpYoSUJxlBmECDojjnp1yIarCN2PWVZkJKXduRqvljnsFa6O+/u7bG9vUOrcdO6rqmqSqpAQqBdNjTLpZrFfkB0rbXUheSRLttW+2ZIuVSOr44PRPJlU0pc31tSXd3CnzjCkcLR9i0uWYwvpNWgVbQ65myfRAUS5w0BWznS8Tm7haXbaZlXULY9tm0w79/EXDUY74QqNJWS6N/3pNgTYs+SwALYxXIjBXa8h4013NqcprB0oSGFHsld6jEpaC2rkQwgV4CvKKt6zG02ib5vscawdX2Lt95+i+3t7RW/79ClZMCSs3zywk2DSeuUOtTaVX00VAalXN00JqPkcMpIfcqgDJIdS8fy+Sd26bC+h+ylrFnVvC60B6qY5lkDW4xN0zjQ5HAabRh87bTyOr2fDxu/h2Lr6XuTB6WmTQjiH1prmdUzjh3RFgutEHVNLzqmpBF7wI6hlhACzlhcckOt5rJp6LtWkhaMJUZouw5rHdZEnJpAi8WCXe2rAlKWVmrNZxbCvb29lYyhnIAgZk45NEayRrhzw4RASi7VYk2SDtFA20eubN2kdobZ8SN45+l0h8ZonvhkKRoM815icm2MdC7RzB29L4mzxFqsKBYBu9vgFy2ulXaDroukGLQ4Owk5tzE0OBY2sVd4lmVBP6toK8eeCSz6nhQCZYxgE97mIvMxPc85aV1Y1jUuZ1XpfO7u7XHh3YtsXd+CHJRfWXijjynxSkuh+IG1ltBLiqQ1Fu+dINkaoxzyp/Uo2c/MsemcTC8JCWkQzP3r87CRizEGi3Bihw+CWRQURSFosRXyb8WlyHwS03Psj2vejgB+0Gd+B7RWbmr/Z8aLHONH+QENu0iMQkkSHHVZMZ/N2O53pS255kpizLC4QX2MJAmeIQSwCZckdzI3MCIlJQgT9DBZYbHLqGvuPNZ23aDBs2CCaN/FYiF9TXS3bNtWk+UrrJOc27aX8ipfCLdM6ket6YzRYvGkO7JooGWfuHTtJp7EueNHwXlhVNDu11YmaCCwMkQhA7NSe7og0JWJaAu2ly2+ShS2pKxLfJewXZB2DykNwhlMoiXSIjWlrbX0ZUHrYK9vaLol0ToxK5OyECJlYMLOV2IKAYDKupZAPEarfiTH+cK7F7l06ZI8k1sG3dOkI5ih8hZfKHuiMzQdOIPGMU3u07uCcGZLbcoJtVKHO/nsSAPGoGlH6AfGinpzwF00xmCs8E+VRYFXi8sYp2RoAkgZZeJLk6ZYB9Hag3J02Outxu+A1poh2WBVezKYm5Gku03uNhWHXTeTbAGs1TOWy1YbsYYBVZtWZsUIwcQRnjdGQxidlvr0ckwjlS5Z2+Xr65WCs1cSL4wZdkYQwVwul6oRzZBMba2VB1WWJAPLvT36Pqif6zQWKGEDiyywacliUmMxkdhpIxevbgOG00c3mZcFRhOtnZHYXrKiOYM3Cm4abACPVaGIROvYo6eNApRhwVSWVFliaof+mNIV2w0t4Nu+J6UGernaAqk6sclgXDbXjGTFeAF/bDmnrGeUVY11XjbIBE3T8O57F3nr7bfZWy4OzYYxai6Kn2cnaKz87pzBWQ/kuLZuzGpBhTgy3SUYet6MAqqWysR0NfsURmBVaDI4qFcoPw3va99Pq/+cE+E0buStGta7YBMx96g5VEYO/vxRxu8JrZ0IKuhcjBe4wqqQpOB6PpsJ67uCLmZiauTjZJ9M3hPN3GpiehqqE4RU2ERJgvbeD4nsS03JMxkRVMHMGjUjs4V1w64s/miJMYZl1wtbg/M479XPzY2UwDtZdAMBVI6pJWkdH0jsdJH3rm1jrOXkkQ0oPTZZXIoUWsua/XaMaOLKeLyFygSWocOGRPKSZrZEOHKb0NHFhE2dxlolqycXI6eE0n9K+1GXAh5hH7TGEq0iM9YSXYHxojGLeoYvK+EH0phe2za8//4lXn/jdXZ2dwZQZmphySowGrMUdkCn8+SsaMo8R95ZehW83Eg4C6BVkCZEYbrIvv1wT4aV3wFlOBiX3uD/IZtmSvk1qfZUkNNKyM7lemF1c7rOgbd4I2mK1mQ/ObtySm6d0mQryOv0cG35O/uc+23pwxIRDvqcY2KzMRnFXTVRrHfErhuo800wVHUtSewqnIeh0ymN9QwmSTu6PvZkORhZ9kSTFUlM2rbt2F0uh+PYiVbNubQ5rjq9X9GaxeDTNI2AQKWmAXadJEpYA85YykIY6iW0YgY/myR1hlJyldhpA+9fvykAyNENnAl4HAWi4bxxlAYKazHWS99PB731FM5T1pGyDRRdT9X3LLuepuukoqcRyyQkCecE9R8xWZOJ6eyNxRvw2sErKudSdFKXaX2OZ0qZneyvEmrZ29vjwoUL7OzsYJ2TbtyHLDqrJGSF92pRZNBFk9jVBM/CPTVP83GCSlLUsrqp4OY1kVLSvIbVRZM17vj7uFGNlo38Lxpe1qPXUFoIgeWyJYZIXZWYqhBuY1bx2HQQGzpwHR9nfCTNuV8wD//bquBGDbsAw84XWsld7SZtE2KQouq6rgdBcc4OAf7hmMiOHJOERILGLa0Rsqow9UWsJWiyQiadzkzxGbnt1P/MviWIiWutJB1IuZo06O36XkvPYG9vlxB6TdCGsvBDUn2M8ir3lchbSjKizUKMbC97uHKdyhmqzXWiMfQJonP0FqpocUHMdK9cPdFAtBXBCFVIbnUfosRb27YjLaUJVNP1ksyPcLnGJB3aksnQUySmXgEph4kFbUiAxRUVrqrxZYUvC2knoQkTXd+xs7PDsmlkUYaJ76FjtIwk46fwYh6alMiNgZL+LC0WxiKEw0CVsVxL3JO8zmKSMroUR0Aum8HAUNJnEKtBjid8vPJ5EbGUUBY/QZBj6Ok6dYd8QawKqRnuS5jV1HUpG00MQtPi3Arrwic1PlaXsQ8e2ceUkSs+phUgWSilx2O/ErPKu1dukyBHHIdOJySpksi5VxnNCyHTW2Z0r58ARjDwlaaRNnOaKignMYrOOtWQUq0i5q2V7/VBNgRthlNVFTnvcyz+zdeugfccJzOyoTRdz96ioZ3VdGrC9jHhEnTGYKwQhRUarjHWSAaV9+AdpvT4olRfUO5nt+tEOJdSRtc1Hcs2F513dFoILXmwChwFSFjKqqT3BbgCX9UUVY1BkgBiSOzt7dB03fhETJw8HLPymjl9XLaOjJZvRTvU5CbVnNnEzObrfi0aQhhAqKDzq9b/wKE1WFsmJyykg5fGiPhO47Byj3Z4fnl9Fgr4TTcM5zW903uwThMczLBh3I7Zerua9BP3OWWO1OdRE6TvhaU9apu+vuvoQqALPSFXmGQNGns9EAMwFCao7TitCOiRg78IYECvyKCzA9wuWUXS3l36lFhCL9eFWdWaUWsd94dXYoyUVS0EZW1DSoGi8NSVFG1b64Zrybm7ilFglG/WGvVvsp+jpliO03Up0fS9LDBvCDYNLHGFNdJ7xVoJ1HtDURaUsxpXFkSg6wvoJGG9Whb0jQhnu2zou562dTRtS9sZ2mBodOF3xtHYgoAFV+LrNYpqhtFChdh17O7usGgWROzgvhzyRAZAJgul1RZiJmts/S+b3vkIOXZpgaBzldfPVDizVZTBoP1+7hjzHI+dr07yXCSpZbxeO7pXE/DQmLErujEGbI2Pia4PLJtWQj8WmSPtwYNWGx0Exvbn+97e+MjCOWrT1Ycy+cSg7qeTm5HYPki7vraTtvFSgSIdlEPoB7M0aZu4nAV02H2Z1bNKXDQmaXluzWRjECkxVusOJ9owh1mEuU3rNDXGBQyfE+GVwHsIPd456qrSGlFJSexCXkC6EPQaLVlA9bqNw6aAMVKp450nJWlhZ2wvJM0xatsG6eESiFgswUThabUGrFgGqTdSXtcHytBj+x4XJYOnIOGNtOkj6rVFiNHQB0vshWkgWumr6asZZT1TDlpHioGbN7a4cWMLXxaUs/lQHbLqeU2fiPwt01HGFHNHRc3MEXAvhJHsZTBFs+UxEcYMAhk71oTuX5PT/WLYFA98Zsr7pNdoVgXzQHgmSgKL856+LMWPjxJGkjYYBoyTdomT89xqfBQU9+OHUm4BCuWwZkojtWLUHbrV/phN39F2wsre9YGYojQOmjyIgfHF5H4Yk/MfelEjGoemeI2wu4IhwwPIrdSzfzrudt57IalWsKibxEQHQTWGsiyZz2ZDMD0l7VAWGfJ/s3B6AUHJZVMS05RURa/CieayNn0vfow3lE78omgMwTKmSKYgfUhaoW3xtpeStD7iQyB1HbHtMH1P6nti20s7BvW7Jf1Nktr76OgxxKKgqOf4coYvanxZ0ncdW9eucP3qFVJo8X4dCxTa2u/wYeRZxCgAk8aljQI/MYkPnIm1x+eaBp9xWtc7BX8gP8PDg/0rwCSjgKbJv1FkRxaFaYaRvJkgmhVTN9cP51LvthPGRueKYQPiQwRzZbnexuc+vlmbGOKchw2LcOhI0nLSguZ2oMbsetEUOSaZUpxUEGQwaRSq/SKZ8sM0Uzuf4TVXsocwggIw0j3GIOaKsCa4wXzJflIuFcvaFaRMjRAovGdWj/WM090yJmkdH1KO8UHp1CcGwOCSPH9jBEiq64rUQkqBECN7TYM1Pd5U+GQoSEQc0SVS5n5OkoEUTKQzvbZcSLShISjY1geZ4zZ1NESWSCrfMiWaGKU5EYbgCqwvccUMX85wZUnb9Vy7cplr779HaBfMqkqSxVOUFu9uDOkfNvImMGgiopL6RKTIXUxP8TkniK1uWkn9gkE4VVhHvTDmVE11xX5hhkwwN30nKxIzronhT5KcsBIvNUbxDLX+oqPvgqZ3Orlm9cv3a87DhPAT9Tn370z6Llnj7BfQjIxlv4GEgD/qa/Z9GEAguRkjjXg0d5HEpOO0cskwcvWMVzC2MD2wSw7+BcO1i4zropgANylJaVHOBsEYWdhdqwn2lhB7ZWaQfNuiKIZc3DBofAZzzJBBJXC2J+Y+BCknUAso5ayh8J5IJMRO/MQ+sNf0QwV/SaWNdt1gGaRgiTaRjPjoUdsndLaX+VWfvusDy66lCUIMnQVzGbWFvBU+IGsFXCrrkr5ruXzlCpffu0hsl5QaFsorXJLV7cSozc9FE1MwirCGgXkxY/YmqcuigM3Ur8vlfAOYM21CFCG3wD5scWfhXnnmQLLy3XGDnvjKE0uKDOoIaDLET2NSt8xJI61cXRNiJ/1igiSRxKgu1SFyc6hPdmDuDo6PTSqd9mnOEenMnDNqsxsxFZ0RtuzUC6JKNBjjBsQtGK9mcFLLKEEKgtjGMSUugy6AFChPULd8m8Eop09uBQdSRZCi0mVIVQNR+mXGKCVmFqG9aJuWpDFHuX+p/4xBGiYVZUmyhk4pHyVB3BE0+R6SxPONaNkYLS55rCnpjaUhQOopIpTe4FNDspFUlcTe4XtYdgs60wvHj4dFsNRYamMpotFKjgBmrGWMJBbBEZOVdgqdIXYJGyxlNIQ+YPoEQVoNtDFhvMeXBW5WUVSGsLzBlUvvcu3yJUzfUlmPt5XEJLV7tzEFpZNUvtWllrdTifvGGOixQqStmt5ap6mCDGagPNdRg8akKYyyBMQCMVKNNGwQh6xTkFRsWX1mQPCnVwiZARASisTqKkpJqlamcVdnnVxHmoCbveRzpwBd01D6HOtlyBwahT4O8d0DMsQHiebvq3nuxI/IGqSsKnzb0nTKOZvCWBCvApBG7iYxbchCul9r3841id+7/zqHrlOMYZkY1Swyo1kUJuGdpD0mYWyek2IceFqzWdR1nXRBNgyhGHnACZus7OgZZEjS28MZJCMJMYlLb4kh0UVEg2oTIlNFTFmSYqC3TuKreYcn0cde+mAizO8xBkKvWrTrhS8owKILLPtAFyRWWjov8VzvWezucOXK+2xdvUIKHd6NEeo8/zEmfKWVGtx6cWX60BQj0aCE0qvPIqnAZgAnpaThljiYsSvL6RZjBIImqXof8q39fuwQWknjc85dxvP7MaUBhyBFmrYlKsu0IPGyVgKyfqVA+3AqlHgb1/ixEt+z2Xb4ZxnMhax1nBWGgdlMFkurcbdcBynMdRap9xs18NQaGH2Xg+btrUaMhyB2mcZ/gq8n9QETSj4cI33oiSStpk/aenzcJGKIWL3XfOwBPFJ0zzuh5HDWSi1pQgmaRTgLJ6GRQsM+yYIpJHTURU/qJeNpN0ZSFwl1oC4KCudWGOmGbSxB3zeDbyTmtuTUdjGxDIllH2mCkEPbssLXa7iiYnd3m0uX3mOxu40kCsjmaZRCErU8MuuElI1xa8nRuR4UV0xqYo5mrwjTPv8wJrAMhQDo5jwclsNjBHqK2xiHfHuSAJ+LuWFsMxhTlFaLSQC4JnfCC4HYW3rbUZUl3uVbH/3hARM5YNp++MV+okkI+1HcPHIa3LpZA1CfqFcmcDV3TSQ3H8ojC2J+gNOauw8U0OmfJuh+TEk1shmvVZ+91V03a8w+xkNBhsHhX1G3EivNfUKz1pQkhohHWBvQ+XRICWdhHaXmnOYOWRIzS/TJgRUGvL4P7PQL2k4ylKqyVLNZN4aYkU6DCeIH9RqW6qP4mF2fWIZIE6FPBleVVPUaCcf16zfYunaZnZ0dQIiUjWbLZAFJatas+IeHTvzoZuQRs5BJtfNg9h34dl4+gwYcTdj9SQWHPf14yHsHx2oI6FAls4IUi+x6IyBWiBECWDzBAH1Ph/BcFb4gd2FPes+DVh/u8fYUC3wEn3P/6wf9PcVpvmQ27axwsWhcCWvZ2d2l6zucUV9hKgCTyRsf1UGNfVtadMAzpmVs4wOXR2XI/EQMoIM8yJxVYhmD1GKyKiVGjLTLRhnjvCYl6H0SNQY2bjyZLLkqCipfDW3UnQWHCGjbW6I12NLQ0kpcuOlZ9ELLUqj2clb6mEb141wS4KLTDaYPiSZIT86AFY1ZFBTVjJDg+pWrXL9+DfpGuWcTKfbaaQ2yUTZ0jx42qsNEIT+Lyfpg9PsTEu90Kl0HazkYhGHQNPs+kv3JDNjkEQ5ZBgffGq9rXMP2gALKJqx8UN2XmPuo9IRgMaUUOojVl6Rr3OQYAemMfhhym8OEv5c4561GBoBIOVQgwfGgvh7J4J1nY20dYwSl3N3bZdlIQ9vDhgSkD8LjK+f9wGvS4Ddo+ZrRndcMO3TWnFKiNGqIaQ8O0IcRMyeRISPFMUqPzaIoKHyBHyo4EhhLN8Tlsn8VcAZmVUFdljjjwFg8mhHkE7X1mJDogvo8xkq7ib4jdi0GO1TXiICKv+OiaKpcJhaQxJVORANXlJiU2NraYmdnj7YVahKvQum8Fa2cIiZZQWZJQ8hL/PL+QxeWPJc884yKM8oamX49se/3NCivQ5/z1LSV70438P3DHP5zgimTRh6ZCkfWgNxvTrrIGtGpu2Lqith3eGvFGuz7ge1zZIT/aNpyOn6nYuuUBXD6vs5cAmFCzyETEkkrIay1zOuZ3oSEAEKMQ/3raDVqXeUk+f1gOOU2rp9RlOwtvJYM+Sf9QlRmcGm9rmdx4nNItMUM95xjoVljTmH9lCTojqKCidH0H+pJE2Ac1qrZ6Cyl86rFpH4zFLIbh94KwKNgD6CJ6TKP1mgXb72nkIRZPhmpq1xsb0mCfJTPS29NESJnrXI4IXb2dE7I/mISmpjbWXBTK4X8lYwvZB8xS+GqLzK+tXqegyitGTTw/ivKCQv738tHGguyp3/P6316ztUkBatlgTmWG9IYA81VyqM8rApo+ggC+zsVW9/KGw1RfbuYBsF1Vvo2GmuHHiiFL6iqkllX0qcAXT8Epqfm1O2J4O2NiCBp+3fmmCQ312DUdJMPZxpMQXDlgTgDRgNoxkilRuYoymmAWUhDiAQNDcg6jMKTE6XFg/eFXpXV/NwMQkk+bfKOZA0EKS7HajDfSmF123Z0XUvXSm1pNJVsKOpa9VEysBLZRxXf1yLhKWd6bJTqf6P3Y51B+pLIU44hSue1II2QUg49GX1K07k0U4fw4HOLabVx+2FuScYDsu4ZHYzxW7nV1VSbHnqc/aasMTApqDAT3MGYISucHArMlSpZOPN7zhq6tsWYvOFreCUrLL3yw2TkdlfzJ2bWTrXrNLYkdY3ys4AiYhoY6ygKL1QQ3lP4YuwgRqbRl/CCumSsPp7x/9u6PvI1SOA/x66mI0RJ0M5LxmjTG6NPr8+mXTRgQlYu0gTYGZKCTpFESpqGmAPUQdpOWC+lbpUzwu42oK7CmGAmOcUeSEmZA40ZelUmCrIvLOlxCWMDicBCU/Rk8icJ4aDlYlp/SpL2fmRqFCOfmkqDTvk0IJ+0C1NdVXhnCYEBxY4rqOQ+JGQy9vuatxTQfV/PlxT1D7dlLQ67sFFXxgyuTT7ocBiThdWsbLBpslbEIgr0fSIlIb+W1hRTcoA0fO/DLvIwvzuPT7zYOu8cK8kJhiFNKzvWxmbUT/4VZTFw++Q0OmO0eqEPwy6+3zz4qCMmqa7fj9qBmG1M4loBMwG3GGoX8y47zbssikJMNeJA5SHH0HiXlR122fU4Hym9oa6EfMxoXiZGQhc2McSApZGWBtSTI1pINhGdo/R+jBXrWHZqMmqaIkltHCUcs0YT8ZWOcmRsUGfJTnWUWQHNDGbwwWd1xawSn6sf0GL2xTOnnuE4DsYYDx/7n/Bo/I4SdTAYs38MScmT65n+PIJLci1CkyIWhFgzWerGWG+UQgTjcK5QAuxx3UxTSqdnSqTBfTrs/vaPjx3nHOw0Dk72wFMLwwJeQXOTxg3VpJApMUNjWq+pcVOGNRF6TVL/Xc3clIYwxBSGykcXkdUwjl6fXJuYejlvFwUJopphorFGVHZMmA4UVkzatZnl6NENzp87wyOnTlM2LaaVUhEx/w0EuQ7xBDzGKK+SUU5WPNbkIL/4pcEZgnN4ddZMtmDy/OqUTR6bbiYidMKPMzxFVmN/DBtUTD0mRY5srFOWJds7020uz8GqEfrBj+JjPMs08d1u+aGJz3fIBiD3NFajZCbm7KztT0JYPbl83hszCKa3mUVxenbdOm5xkZ9IEsJHGVJ9Pp7WTrTodJfs+354FbNB+nLO3EyKXEk0TTPR3p/cNU4tAqvgyco0GUE+9dODTyKeIUPjXCYmZAa9jJxgOI8xhrr0lM5w8ugRHnniQb7+9S/x2H338OYvfslrP/0ZxkY1hWHss45q0om2wJFcvphAsI7SK4N88MSUqEzEYehU46UIdmCKky0n+1bS2HfCy2TGfNlkdMM0q+VUElKJrM3XOHn8hBBwLxcslku6ELFMSSPzdf+Om+nkWCO+fhuCOZzbsKqhzfDeEK9Ncq+iPCbNmSebR0pjz1Cx9tzQy8Xqrjc9zf59ZzovtzMjHz8JQXevA0nvH3DiKeI1co9KSz1jDEXp8U5Y15fNcgx4D6aXWTn4fvPhg8ZU40vGhlF/ePWKD8S89P9pDm8vduPAHJ5LjlIcF46dXNvm+hqfeexRvv3Nr/H0559iPve8//ab3LwuaXLi90GfotJTGvUzUXAM5SkyeGspLdJ5OiUxdZMnlBFMoqOVMJaSVA/Xn0TSM3M6RqqG8iIca0zMoDTz1MQs5foM+64jxJ6NjQ3quqLve7ZuXOf6jW2WbUPXhU9MHFefxe0edd+aNKscRfuF1ZqcdJE3oZyZu3/ty/m991SFp3DF0NclC+3UOlyVhMOM9A8et605D/qcmvA9cSuyL+ayDz5V6SlXbDCYgQlF7qzBF17aHABN06k5K4hmxvcEi1EEWC5q3PVXXs3kf9W6Wb71g0FNP0xa2eHy/R0U/AS4Sd1eJERFC2MOuQirpGQ6BZyFkyeO8t1vfJnv/8n3uP++ewhdw7Ur7/Pmi7/lyruXBMyRiRPTM1thJguoUFemmEg24ZLF2kiRpColWkeykeA8hEhVeFxKtBG6FAgIaDQs7Ml6syq0VntrDCngw1xJ3DX/DZLUjbYt/d6C0CzZvrHF5sYG995xmjtPneDNt9/m2vVtmpgw1utmLMkYA1h8WytudUyf60f/snQvz/mvoztmhPbS5oQSAbVsZtMDsr6TPi5JmysZZpVnVnuKnA1mR4p60SNmWFcT3XuoL3qr8fGrUva/kf0Std7zYoiKlmWhzOZhQpnVrKWs6uE8bdspcZbB+4K+7/F+kgyQomoUGTaNFxCHK0sMjj3CAmcUEMl/jbpKlCb1wNgvnAmNJ6p2lP1FNbFyFznjiH3A2oh3kZMnjvL3//3v8r/58+9wx5mz9F3HtatbvPHii7z5m5dod5cYLIGoQqnNGBQE0toMLdQW/9Va8UtjgsJJQ9qkTYBxjjYGknVYlzAhYVzegPI1ZyBIzF2b91fduYwK7GCem9EzTbHHhCA9Y5qGjbrm6qUFi9RTssaxo8c4/dknee5XL/LO5WskkrLzKR9tEkK0/mOp1dv3Y6cj158Yk9dB9hfy3LrhNXPmkiCFoMi9bEzOS8ezqnDUdclaXVGVxYS+Gl1H+28um+L7LDQ+3Or7nftzDlB9dqBBmw+p+cCq7S0ESkKGbI3BWCkVy7SWXddhjBBnmZBIaaTaz5NsEPZwjMQk5TrMyolG70RNEWWvCyEn0DNo4+m0Te/ngPaclM3kqIFayAoSBQonu+7mxjp//v0/5R/+x/8R9549xt7OLjvbu7z99gVe+NWLXL1yjbn3uNx/Y3LulEbfRTAzDX9Y6VLmnMSMk+kp9G5CEmCoGMxPudTOROhz4fMkuJ7X+mD9jDWX4/3qs49JKVEiMfaE3tN1LaZ0hCitMOqmYGd3l5Nr6/zhs8/S/finvHflumbZaC9S64TQ+/c8ptGC/UkB4meKINrc9HhSceSMUWsjDKCRc5aq9NRVIa9lSVk4CjeKT35++wVu/H200A5L6Tts3Ipr4kO/uF9IBx9S0/VCEG3S971kAOWi1b5XMEhWT+x72sWStm2JMVJ4aVwr3YzBu1wdH5WGMrchl0BwDvxPrIo8FcPvUSkLpZ1bSeEtXniCxzV6i3tcOeY+TRpRvwwjBM4pYkzkyOYa3/3W1/nP/vf/W+6965yQmPWBGzdu8Morr/L662+QjcghM2nVtl45r0X8YxFQQQedCqtXTeqtwXvpN1I4T+Gd+kMyX9PO0APYMXFLzCGPev+9mySx6j4ISXfUMFfbdmzv7tGHwI3tm2xsbvDss8+yvj5bjf/9XjzR8VqHf0nmzBm7ojRGs1ITCTQ/uSj8ivLxxlAUMpdlUVBXQkmzvjZnPp9Rln4gv066Qx8mmAfHrQT38PGxEt9XJsWY4XMZeZ2iXFIBItQdfddJkTMjz06IQvdQ+ZHyI0ZJFu8Q380gHLbOmJVdcUwtM5Idg9SK5sr3NNFyMUbqWugrQxjNZNNH+jBqr/ELgszFQQcz+WnARwY/BRJ1VTArLV/50rP85//Z/467zpwUBvaU2Nvd4/1L7/Pmm29x6dL7zO+8e/A3V849mXeroSaMmO+5qj+iQhrFbYi5U7Y2CSImUnSaoeXE50xp0IQp42BGfHjDqGH2j+m7MSaMjUKDYhvC0rC+vs6VK+9Tlp6u75kZw40bW5y94y4ee/Qxnnv+edq2lz4zIWCtJ2WGxY80PkBRTE1LzBAhsCYTuuUjiPZPyepmk4TIzDnathvyag3gikJbMliqwlPXBVVRUKjSGAsARvaL/ZGJVQ2ZX9PK6weNj52+NzVxp8IirNxG/RsxGPvQiy8Zw6A98+5VKO+r916qKZS3J4Ygsb+YqCvd2SbQt5hYSfldVNCC7tI2TYRHJibESN8HqqrA2bF7WNO20Pb0Ia5C3QMwNGqVvIjHrA5FUgiQpDnTk088zH/8H/0HPHT+HrwN9F1L0yxZLPa49O4lLrzzLotFS9dHSiLO6IKZglhGc1xT0LCHzKP4z+DUpXbe4pOGrryUp1W4oddpjLq7e/EZQ5TwSchNaAcAY3+oYWUiBiBNSKAtyUDfyZxm0u22l1K1mMMpsefppz/L7t4uv/3ty/Ta6GiaPfbRx8Hvjta5Gax0Z/O9TaujdJ2kcf1KKh669gIpBdWyicKlga2+LHPPFANKYp7dqenx2ScX4xSOSuKjjA8RTnPo6/6YURZGUSA5rSzTZ4if13YC9GQOWO8dvvAUhcOq5suZQTkGWpYF1lZDF7DpeQeSagNN2zEQhO1bY3lCQoKmbfHeSuqZtSRjlG5xSUrdwAEzaF3dDcdd7vAAu4ANidOnj/En3/sWn33yUeaVh9gQk9CbLPYWXL16ja2tG8Tk2N1bUq2t4R1KBjZJ+YoMIQ9ZdFlzyz/pCiZ6PGqzo+gMKRrKpETH0RKjBEklBgtoNzRJ5YP98viBYTMjbBBRwbVApE9RqloMQ6G5cxZMhNCxMav43Gef5MqVK1y6dBljHJ8kK7pljFXarClNjs3KZyJgBipPq0KVnzLaaXyko7FWhNw7NWtLT1l4CpdZEyfW02HCeAuf82Bo5cPHh8Q5D743oF3jOys/Gys+4vQYMUplRhckCdtZK5SSxqqZpruRnrAsJH5krfCzGnLZjtKChKhF0Yk29oPOUcvtwHVn7dnrJlF6aUTkMq2lalUp/h5H1IWcv693JMCJtlA3JuIszGYlzzz9FN/65lc5sjknhgavJDghBBaLBTdubtO00gxp2fR0VZDO2brYzTQrR7VlNkdRzWBV+4g/bnVTEj8pWSv9Na00JorK0Rui9mpJhhQkXJJ95v2pmNOqmpUUzGw6Ju3bpQh1FvxcxSOtF8S+MLHl/D138ZknHmV3Z5ed3aVQah5SAvjRYtZjTazTvp7OOhHInHirrpWxZvhdMrDk2YG4VmVZDtlqudrEe0kuqKqKslC6Gc2rHjbL/e5VSitzNs7bxx8f26zdfxHjhUNSakl5XAbjpFlR3vuTlYU0vQHvJjmMoP6CGUif7eTz0VlskF4nfdtrTDQNYYKUlCc2jUKV3+964R+tioLCCP9sjIlGj7Pf6so7qjESjHfWSS6pmkDWCN3InedO851vfp2777pDzPAQCU0DCBF10zYsl1Iw3faBpulpOknrsy7ijeThmlt4f1OfyiiQY9W/cupzJmcpYgBniXHaUFbZ7IXC7oCPvb++aBDOcRbGP8ZEMkE0KRZSEGAO6Vsyn1WszUrqwlF6S104nn3mad5++yKvv3mBpmkmSPTq4v6gMb3CAQjUyqa82edihiFFNOaEzPEeMrtiXhN6U6P7E4JECjR+WRQVzglRmviVuib2zcwHgYfje6tz+YmEUlZPcDhAtJp9ob8rX4zVJPbcxNQiplYToxIhWYpiJPG1zmGd0c5Uq30sxCQWc62LaTCTsxRm/3AozEBBFRXeEKOUWSmdiC28mi+F+J9hovV1IqPeD1EY95wVygpiwDmYz0qe/uwTfPGLn6cuPTF0WCO+dt/J9XXt2GAoRqOdwXoql4Z2eMblOKMkM+RLH7pz5c1vtBVEEySkGW9KeC0pi2Ldiga1EXxmtJe5CgrcTTfE6chbqVgiEW0cSiKomSvmdOpF+0cixibW1mqOrM2pSkthIqVLHDt3hmee/hzvXHyXrtfSs8la+rAx+pNpQOd97mCmnbYzog2rtDJ9XCWmzmszMx20basWmhKDZ84kY0G7e3tvCTERQ6eRp6lFMZGNffN4UPhuXzDhd8yt3T+5WSBJWpOIAkTIrp1buPVE+n45lIcV2qUpA0OiGdRsTEGEO027GRu6rmfZLFdMKzhgZOuU6CZh7BBn7XqLD9KaDn3Q3nv62K6YxQly+0YxseOIBDqTKK3hxJFN/uQ73+LMiSN4O9ayFmVF00pMt9UuYF0vZWh9H+lCpIsGnyvuU9Lej7kwfFUU88aT6yjzDm6tkYQCDEWeqzTVng5SECQXwGnsEnso2UiGufJ86hZFLikbFECKkIL4zUHaPmyuzzl2dINZXRKTobQRT+DLf/Qsr77+Fj/6yc/GdMcBlLFjmdsthkFaIhZFiVNzPYNaNmstwySFUkxa74yAWGm6XnN6h6HvO6wVLdnHgGcEjoKuHGsdwVlMkt4vKUA6dOYOHx/XvP1EzNoVf0HdJmcMMVr6FKQjcRoJelMnQV4p2rWkosBYN7kJIVAW98AQ+owAKj9rkKT4tmmH1n5pnz2ap3+/E25MZu+O4+IwY/co23cDSzyTIxgkXloUFV3b4AyS5+oNz3zuMzz7zOcoC4sxUg2fWw0kLH3oWS5bFsuGtgsQoY/SzaqPku0j+e5jFk8WAmPGahmGzWa8R2MY/GJrtV1gchQxEp0IaYgJ5wxe+4SmBIYoOaRT4OQWWmxMolqtBbH6z1nZlMvCsbG2xsljR3E2YZwD43EG6rU53/nWN3nt9de5fPn9lRYIt7N4pQ7VaizXDz1BDYK4grJuTNoFCoJqdU0axT9kkzHG4LxTy0t8zhgCyQVCspq0IVlsCenAndSyEXDsg4XuYMjkoKW5+veD42P357yVgI6m1+i7xNyjI6aBnBktdXIOehugFaIvSddzymJnJkgb+h2UXrMVwEZ9Ur3/cWWT82MVWIFh94xoaCX2EOyK37BfoPNPI7uABqqdZCedPH6CP//+n3L86Do+c64iKHDXBUBY4du2ZblcEkMkBQmP5GY+IUoSQY6XjlegUgtqUh5eK5iQzRDvSNqaMKf5SQv1iE9i6sqBAsZYotG8W4naQ9rvfXLgPCu+VoxYjQRba4RhcT7jxLEj1KWXDTRAVJaFhx98gK98+Sv8///5Xwgf774FOtWo+0dmJMgIuhn4nEYBT2mkCxmEwHoYLI28RmWD6vtOaWccxggLxtD2sY+UpZJd5/e1IkeEfjI3+ZlMkNz946P6m/AJl4zli06KMjpn8XjakMGWTNgsmk58z0TfR9pmgTWGsvKUUfsiCnaN9153Sdmh26YbYqWjeSTXYK3DpYQxdpKqlxdBXsiyyELfEyP4UpgF7JBoujry97x39H1HUThSiMzqkkcfeZjPPPk4ZeG1nk9rGo0Dk/u1BLq+E/pMDXOklJvfRjFBUwZsZPEYppUiqyNXwuR7E62Zf49DVozT+s6QnGwGw7MBjPRZMUgigqTniel8mN+U43hMnnEeFpnUqiqYzSqOHFmnLgt2dgxFMjS9J2DAOb7+ta/zy189z2uvvTZUHU3xhP3aO+MNzhltlBtXAMLBcppoqqmAJy3lE9GbMhtEiRJEWTMDgJSStLLog8SFU9Kwk/JGTEJBSedD/OERfPyg8VFM3I9cMvaBSG3WWuqTBQV8XGKgxDAxCmUHwp+aTMKbJJQgGOgjfewwXZC25dZiba9+Rhjyco2VB9ctGq1yAV/kfhyGRNQmtepvWmnDkBJEPF2qsRS4lAhdwtiES4nSQIOm5k1LXqyhTzXWCB2IN5GTxyq+/6df59zZYxiCmonaHbnvsSZgUkvXtDSLlr3dRkm1IMQlEUNMJSEWxFDIAvIQTYNNTh6PyRp/NIWMcfqq862bkKSsaVICSCdto3FHsu8t92oQispoNd0yCy55fx8g1WEK8k9G/3XeYpKjaCOFdcxCZK20rK/XFJXHuJ52r8OnQBt2MRHuO7POv/en3+W//q//G67f2CbFnGQx4gOyhlDXIf/VDsJiTCTazPYAQgkjlzsKql6xlV6bblizuaVkktaLzpByzxNraNoG7wucgdi3EAu6xR6uKvAemqYnKuG4KEPdCHIf0rz5MW4WI7y2apnt16b7x0dqZJQXxH7EdmWo8smLaQBPtKwmv5fUB01JEMUU45DoKwtcdv9gNCcnC6C3FIWn73sWy2V+jpLepxBn1/UqBEYXshkqWsRPStokKAklp8u+WlQtpGjv6C6otHb40mFJzGaeB87fy5NPPEpVFniviytm5oYRzo8B+j6yu7tH00XmVW4qC7nbVrIC0OQ5FBMpa6385vhAo8bzhmejc2mtxSU5XkhgTRyC884Kqqo2C8EYTNSKnZQmaY+rAjpdXnnCTTLKohe1kaykaZZlSVmW1PMSZxKeFuhJbaLXTKrPPvUkP338UX7845/SdkE0ts0JCgeBllzOhRHhbLpuQGkzCfh0zqfILDFzAanWZJy3EAK5Xk7uf3TDurbBK0G0wwlX7YT0XFI7R+2JWjB8gMCNYjR1TW7lSHwCZu2t/dDRHMpmllBhqICq7xBiIigfaDSoFkigi0oEOUgfSy/mR+YPLZzHKECQET/pSlyu+CBD1cGQCG3wJpJiq7uuJyXUX0lZ+eseZ4f5NhZiaKlLw/GjG3znu9/i/vvvIzfqHcuvxnSuru9ZLhuuXb3G7t5C2yjY0UeZmmDDLps1yNh0R0IAqwDD+Dr+y36bsdLIacgzdVZIjo0Z/GYTI9FkiyIRTSRHpTL+bXXhjdqIIVkihzCcc3gF7qqykuB96SXBInlCWNKpdmq7JceOHudPv/cdLr5zkbcvvicUn7niZ5hDubuIJLBPR65gchO/M8/L0LZjsiYFBki6lYwk4X0MmBiRKO3EpUlgTTuUhOW+MHKu1Y1geATDRR8WYjwoM7czfuc454e9nzWldyJcrneYvpe920pN4dA5LJmxoV+SvFmx54XRLqRICqIlczVBUZTDBIxdoHrN05W6UIa4szxkyXfoCTFp1yzo+l79DJlpN3xJi8JTwqQW7xyzyvP5pz/LF//wGdbmtSY8yENmcu9Bm940XcflK1dplq2mA2Y/djQk5fcMLLCCvkwzdqYPdj/yBwxk3tLoKFezSFcyOa9RAGgsibNabhejdNAOMeG0AY8ZdgW9JlGbsniUsjMDT6Hv5ZmUBWVRkFyEYOi6SJckYaQPEULLww8+wNe++iX+x//vX7B1YwdjMqn3OIVJ10TEaBsN1YJY8eVjHGKbeT4GYguD/C1KJ7t+IAxXLYneiz4Hmd9xE8gAVAw9MUC0TlFxw8GwT5pkJh2Ul1VNuf9vtx4fu9j6sM8c9tmp5iy1bXdOHLCkASWMyuA2LDidymySCdydKKuSuq4pCo9zltJXAp9nh56RWMs5g3flILSAaBCXSEmZ/qwjGei6QB8SCSsMeMYOO3YMYeh6Vnl45nNP8J/8w/+Qxx55iKrwWAJMuHbyM4pRck+vXLnKjRs3yVSWsktrtURSRHngvRy11P5Y4PSB3grVJOUFbsQvDwJ0uWSJRgixnSLAg5aHIY0SUm7sPAhn/hyquYcnbAxYR2EshTVItpDD+4KiLNBgIV0baIOhiQkbe7p2wfr6Jt/8+ld57dXX+NFPfkbXC+qbY5d6K8M/rIbAcjNjIyh9ZpHIdzRqQJ3XjNTGcSuUj+TNbvzZaTKC04IM7+ywJlMIAwvHLeWA7JFMLaH9j+f2tCb8DmbtrYCi/Sc36m/m5AIx9wx2uZA23lEEqyOuVCxMjeM+xSEjxPtiqOksClkAXot4g1LiG2Pkb2QTKMhCNU4pLDv6XpISkvqoTRekj4h3mqHj8FaC9zGBN4aqNjz99BP8H/8P/4g/evYPKAvLyN+n2i9plYluFsvFkosXL3Hz5o4yP7iBbjHGDB5Mi9HUxzpkXg+LjR182Ll6RUCQYMEnN8yohAyky1m+3lyOpvzxstmRyGRCY54vZIq+zJSIg9I6SpubBcsm7L30cCEk6llk2Qd8Z7EWQuzpmiV3nDnFf/qf/EO2trZ4+dXXCRMraghrJeHGtXptIQYFhcREz82pREBH03S0KnRTW4FTzQDmjNlHokS8docrtJaz1LCeIRFjl8GU4bv7pv4DnsuHPbeD42N3tt4PEh12wvy+tdLTI6VEVZRYzVtcLBY0bUMK4lNGI12+yOaJHFQrHTKAIloxdEkD4MXAoND3vSDB+t0htQ+oKjF/+z63kvcY6+gTtG1PkBw91ThiulkXMClKFzDreOKJ+/m//9/+z3zuqcepfK4OCcO9Gs1ASoi2bZqGvd1dQh9pGmFnz3FXo2ZXyvM2rBtJrBb/3EyOPf68/3lMf88IbjZrvRWU2yNmmlES6BDjEGiHJFZCMhiT6C3YlTwhkOwgtW2HdSB8UZV1aqVIAnpRCBZgY8KWEHqo257dtqMMlthFQrsgFCUPPnA//8U/+kf8P/6r/4o3335HTpHvlSxPUrxvHUNcO1sTg5mZMuXMeG3K3z/8PqzOyXy5zIpgJHZdlZ6yKKWHjRWLLfSoe6AFBLpG5comY+KXj2+N5/+o42Ox732YqXvYLu+9J6gjb2KirDy+WKNqKlptqhuBpm003pXR0wyIyEPoQ4+1hmAkltn0HcDQ9j3B4HfmWF9uD9+2LSklfFGRkqXpemFsmNSZhRgoCykVIrR4C2Vleeyxx/i//l/+Tzz15KOszUpCu8TESEoBVxQKKOXqGiuVM13PW2+9w6XLl1m2HTkzJaXpxiU+tbVj6dOKSOxDuA+b3+nvLi/Cid8p2Kwg1c5YRaoNMTmS0a6oSdIH+2TIxNJDFVA+rrLvg7wU1mISVIU2802r/rH3jhgNVSksFBZlsrcSZtvb28FYzx/8wVP8l//lf8F/+9/9U15+9RUWi6ViCCga7DW7bNXXG32/cV7zMINpm98cXYOsJadMCWVRUFYVZSnNqOpSOrg5p/On/UrFrF+18A7YLh/BdP2g8ZF8ztv5eVhI+eLzojGGMsPfIeBiJDlpNFtVBbXSmuzuWcmkUUdaJj0O6GA+XuiTmJwxd8CSrJg+jkTU+fxZs2Zh7WMS8EfT9CyGaMTn8d7gjHTdmq9XnDt7ikcffpC/9/f+Hp/9zOPUlaNrlzgjsdYU5P5DSFjrgUTXNwBsb2+TYqRrpenQwOMzdIwed9qcqykLx6wI6X4rJSPTq2GDiSNgNOapIaqk5XZBc5kjki+aUUuitGbAmAlTqM71NDEjqqnJ4IJijABD1kmIS/w2BnQ+uVzY4PFFge16AZJSou87tm9eJybDU088QfGflvzLf/Wv+NULL3DlylX29pZKByJ8PnFlHvZrdla05pghrPNjx8IKZy3e+SHEJzWbBWVR4gsvjBsaVzLRSq+alMa83X0b6NQFW7mcWwjpJ4rW3o4GHXwj+WXlQvNncmu8XgU0Ad5BdJEyGamm76QxT+rDYGZicnBfkDpxZeKoKYfMktGMzqPrOhFAhd3bpiFEC8arbxgEJEGa987LkqNH1rj/3jv5wh8+wyMPn+eJxx7jnnvuZjaTGKdxkmieUtRqBoR+IwmwYjCELrJ1bYvt7W1BgrvcQm+kzphqmQyEWKelcgZhwTvEZZjmpe6/32QygoKaxzkUEeXcVoQzyge0RE65WpUGxeSyKjM9P4PJnc9prTA2SNmbsNNZO7bSwFqclRI/771uznuy8Si6HfrA9a1rzNY3uOeuu/izP/s+d911Fz/+8U947bXX2d1d6Ca6sqI4TDAT5pB1OskwUuyj9IWgyl4YDnIkYXQlkpbjoT63LLQhvfIDrMZbjQ8CiW41PnYo5Za/xzgkUR/mo1q18w3i/McgO5R30qC08p7W+7waJJxirMTMVgLGok27kEmdpZg6Y2Y5jjWSPjO0zJPL6hVljXgDZeE4fuwIjz/2IN/79jd54Py9PPzQAxzZXKMsCylTI4kvalA+HOHV7Xtp2xc1Xzj2AgQZDM1CrICBdc5kKF9BjSSbgnWygGTRJxxjTFjmb8JZE6KAVnl+BytDNcqAKqp5isEmIUXL+bz5WjI/sDDOS+KGjQwcQyvPUQU5J5YYY3AYYRy0YsZm4cSq764atPBe8AZrNR1OMj1Cn2j6RB8SrixZm9U8+cRj1HXFHWfP8vzzv+Tq1S2Wbau3OlLVjGatGRBXVtaeItVKfOadoyxKyrKgLgvNPhO/PDMgjJo2WwdpopFvLVhThH263sefzSGf/+DxkRoZHfZz/txhSO30M9Pj5WyeGCM9GuIwRvIzC09XlCrkku+ZBTSlkbzZpEjSxG1rzZhjqacbg9HS2HTsuZKAKKVZCdZmlnNnT/PkYw/zzT/+Gp976nHuvOMM83lN5aXsTfaKgNGayEgS7aLHywAQWH3fcu2a9MHMtYI5oRqUOjQGpG2cZiXpPdpsEmJxjOGZmPbN42BmjfNvFMUe3kM6lwFD3WyMkeiyT2nogyF1PT0JL4Fn8ec1+SKH/uQxio8pJqIYjt5avFy0+GvquuT5scZqS/ZEVZZURcn2YinpmNGybFv6vmdv2eAKLy0iY+T06ZOURcm5O+7gpz/9Ga+89iY7i+UA8o3rampqj/eV/1mHakk/gFVVWVCWpWrv3CVlUppnGClJksxBXtqHRSnkh4Pv3QoM+r0lIdzO+DD0Vn/TdDv1o5Ck67IsKLuWtpMZCWlkdZ8eM/ZJXQsjIRnVLLmLGTAIREb2hvPZwJHNGXedu4Mv/uHn+e43v87DD97Hsc11qsIRQ0uKLcvdRgqyqXHO0fVqJahGkSTsiLEFBstib8nFCxd4/+JFXv7Nb7hx/SqLvaXQK9Y102dlrCGZKKixyUXmGc53FMYpCCO++LDYrCCGodG0tcElHBdkHkPxuvqS+wERY4xQXNLQM2pmm3IVjznweVn/Mg+F+m/WSAhqPp9TluVw/hDioNGMlU5ydV3TLANtG4Z5dMaQQqRLLVbDFsRE6Fvm8xlf/vKXuOPOu3nhty9z6dIldnd3dUOyWOMmG/GYSDDOl1ojiiSP/rzgHeI3p+yqk6dv1MKTzW9fptJUMA8DhvaPjxr3/GDNyepJTT6YOsQrP0++t/K77uAH7HS9ackxFZKvlEbGM+89xABGtaV+LXdySmqGxeTpFbGd+mLWGGEoR9BE7xzzjXXOnTvHvXef5Quf/yxf/tIfcfbMCdbrEpsiKTT0TWR3bwdrDJsbGxqUlup4p2Zb37US+3TiA8eY2N3d5de/fpH/93/3T3n+58/RLvdYn1WcOnOGE+fuZV7XWGdVmNWvw2GtV1PQDiah947CSrw1hjDE8oxy02IcXSecvwZljrBIQvtAbpU1qFS9SDmUCJHT4uKcb9vHRBs7qWfUYnHJGxXJt0qsbNRnzbrK6gInJZx3zKqSsvCSsBGE3jSmEUW11sizLQqatseqsGRC7pQMbb/UTttirLbNkrIseeCB8xw/eYrXXnuNN998k2vXrrFcNoTQk83aDAoCg/Y22TRXbzlnUOUz2MF0lxWfWzYYOci4XFcUzlgFNV35BzHcgyKbDnz21uPD0VoOolEHBFauegCEVBz1SxMgQ3f5wSe1Vp1sjRupP1fVFSFF9hZLFc5O/aNekUdDtILQdlFMz6QZR5JKllirCurKcWRjjfvvu5sH7ruHe++9h8999jPcf++dbKyJadO2Df1iD2MF1S2Kgtn6OtZ6SdmylpByl2qpz5Qdf4TVw7Ljxed+wz/9J/89P/zBT6QJU4rs7kbacI3NzdMcWZ9Rl5bdRUcg0EdIVBhTYxGys8I5vBWyaGesIIYmh0JkzgamCBgQ6Ly4xNrN5nHWsgJc5cIDCRNUkl6XEjb0tEtHayXYkoyY2Sa7WpnMWsM9bljYCRslnNKZQCoStjJ4bbCU+sRi2WCcF+bDpqXvOpyNFL7EWAmZYSWnNxkp1cJ6YjA4PJWruLp9hd43lHXF8bWK4595jAfuPcebb77FW2+9zeUrWyybRps2BYFyFNCyzoERf5YkdcLJeQwGb/ykO1hOHFld7yvqZNCSWg+6IpSTdMChNH0qoKP7M5Uj+cqtwaWPhdbeKowy3JB2h15hETcitMONTP6WBdUjGsU6yYcMEWIjwEoKEauhcelJqaZqbAQ99YnSWarKc+zoSR46fx9PPfk4D9x/Dw+cv4+77rqDeV1RFJ4UWrpmb0jpQxd9WZYr5szhCHVU1kDZHPoYePmlV/nH//gf8zd//WNJA9Qc0xAC29s73Li5w+aRoxSVh4VQcBoQy4AxZc1bS+E0YdwoZ08m5A6BwpbSEdxpAkWIElu0EWMdznrxl+wYv5NjS2aV5AVXzGZzCu9ZLpeiJfJ3nMHFDK7kVLeRx8kp03w27ry6I66olZxM6m2XbcvO7q7kNltHnxLLpmWxbJF6V4czli50ij9Y9Z+Fkyhzy4Jw/Ozu7FDNauZra5Rlyeb6Bk8++ST33HMv7757iTfffpv33nufRdNISCqiSLFoA6dgVeGUoS+lQVPm9Tf1W7MrkNf3dN3vN0Nv9futsoF+L2jthyUeTD5J1p2DMQ6MLvcUSZQcyWxmyE4vRyjLkrmoCymwblvhGtJKf+8KmmbJfOZYW1tjc2OdRx95kD985mkefPA8d95xhrNnTrI2q4bE9L3tbZqFMLMLvO5wfmzrvn8DigScccPfvHX0oQei+oOGd999j3/yT/4JP/jBX9N3WrBsjJqTQhZtnKOu5wNqnFIairBD3xOiI/TCJugtEAJNkHTErhNC7pgivpAu0nU9Ey1nHW2QulW0b2fhcnsKfTUShyyKgqqsqKuKejYDYHd3l+VySdO0Uo2jlTUJzRCaoLWiNVEfU55XoWBPFwLWe/o+sFgs+fWvXuBf/Zt/zenTZzl56hTztXWq2Zxl02CNp6g25LmmROijEjd7dhdLDMpE0EnCyNraGje6jt2dXXb39lhbW2NjYwPnC06cOM7xY8c5f/487116n5//4nmu37g5hOlkTY3d052brr8R1ZfnvbqKb4WbjGv8VoJ5eHFCuuXnbz1uG63d//v+n8dX1BybHmkMuk93lqSBf8zYqjwvBqfJCcZADB1ReXukW1WkLkvuPHuG++45wne+8x2e+sxnOHXyBMdPHJ1Q5vdsXbtEDIFjR49QV5rKVhhS8hqPy77UwcC+5NUYkKxbUkg467QVvQBAf/mX/47/6V//G0nNUyKpoijo+1bzew2+LLHeUdU1xuyJCdVL0W7ftXRNYhE66FpaJ4Z/SoYQ4goKbVrRPlW90AJzSxcCIQWSjSQbqZ3Y3Dmm57NG9tJOYDab4b1nd3eXmzs77OwtaNqWmFsBIvMbNA5pyE6+MPDlUj+rGrRwBVhHR8RZz3LZ8jc//RG/+vULPF3NuLGzxyuvvMKdd97NQw8/QkqGsu6o6xnJWPq+EzLssmBnZ5c+Ra0UEkHyQ+8cP7S12N7e5tixY6ytb2CcZX1tzoMPnuehhx7gN799mRdefJEbN25IRpERK8Dl3F/VmDFFqTxaGeOizYjw7SQS3BYq+zG05ydm1o6vGuIeOrCCVOK7fRdlGKkGZOQ4ptWOVtI/MtF5T6wKUgwcP36Ue++9h8888QTf+c63eej8UWbzGVVZiikcOm5evULXN2ysr3Fsc50+dBgTpUW4LcE6FTroe2Hb875Yoc0Y7nV4VYLpJOGbSOStN9/hX/zzf8nOzT1CUFjCWNq2HWpPAXaXDdiSjfUjbNU3JEwUemXAt/TBEEwkmEQXtMSrcPjC4guLNV6TLURQd3d2Bg6d3DxKyLQsjYtDYN0ZCU2VzlOWBWtrYs7uLBa8f/ky17a2iEBd14SkvEraLsOE3Kk7jo+QRMqtFLWAOcSA9ZbZfM6DjzzM6TvOCL+v91TzOaGPXL26xTtvv8uVy1s89dnP0nSJ5XLJfH0TY4zQUxYFvihoF0twEm5KKVFVFTs7O7J5hqAAX8nO9g67u3usr6/Tz3rp71rUfPapJ3ns0Yd55ZWXef31N7h6fUuqVwBDxDmv8dgc2xzN2dU1PyVG37/+R9Tl74RZ+7FGJteaFtlNJ2Mf7J/fz1w86nRxZKPm1Ik1zt9/H89+/vN85ctf4uwdp6mqgtRdw5lAu9hhsdilris21mtiLPGF9A8pCmV2V+QzRalZ9IoKJ3Xysx+S6TeHTBcdBi0Mx7BYNPzwh3/LG6+/RTAW6y2hyymAHlcKilzN5qRkuHLtKlVVcubMGW5sXUPELWI9OGUXn5UFhZE8T+cd2BwukOqLrm3p+8jSCgduH8XE72OUlnwYWif+s49+CBdUVUldlVRlyXLZcP36dfb29ijLivl6gVTmdMpo2OVtS0rcEgzJmLldhaKpyUMXWqwpefLJR3j2j/6QY2dOcfrsaR4Jj3HfffdSuYqLb13g+ed/zW9feJG6qLn/kUfouh7jPEVVE/qOaCRx3iTpXJY0ecR7acAbtNqormv5vZXa2O2bN2mWS9Y3NnRzjXjveeozIqQvvfoaW1evceXyFXb3pG7UOYbuZ2Zihk7c0HFTPkTYdMUytuc43DReEYVbvf9xQykfbxjGRhyTf1MtqZMyaKpc2Kq5nxhpz1d5z+zIjEcefpCHHz7Ps59/mrNnT+MstM1Nejyh2cU5KfCdz2qclxbiNmUYXdCzlIwggTAE7weWtpRjXGaoCxVgamSDM0boKyQ0ZLl6eYtf/OJXLBat8OCkBE5qQbsYIIoZO1tbY2Nzg+2LO1R1yR3zM5w4soElEJsFtRPhdJW0hyhcwXw2o6w8mEShTOZ9CLRtoYiyY3dvj7DslUsnEUOgty1dJ75r9JJ37KyVXh+FfHdnd4e2bVlbW6OYzcBaurZjb2+PvuuwSqFJ8pIgMi3jM2Z8nCQ601Os1zz0+KP80de+zJm77qAjcu/5e3n8ySfY3DhK5SteevFlfvPr37KzvcNLL/6GzRMnOX7yBHu7u6xZByT6phmEI4QWZwv1PTtynDrHllOMVFUl7yfZMLeuXaUsSxZVxdraGn3XMZvN+IOnnmJvseDa1au89957XL58mWaxEMBNz5fvLWl1SwYDp4JzmImbVnJ5x4MdmozDqoD+zhlCtxrTNKkDf0tAzi6ZaMosrMZI1Uiy4AvhDbV69Tlu5r3h2JENPvOZx3ni0Yd46OHznD51jJR6uuaGtLsLLbacUdSzMU6l8ciBWGG4f8OBeVT/1+zPvNGHn1KSxF8t5DZ6C0nT31566VXeeedd2i5inafrhIQsplGwrfMcPXaMXQ3VFN5RlwUP3Pcwd547S2kj169e5v2Lb7Pc3iEYsKXHFp7ZrKYoLHVZDcBR13kWC6mGCWXujNVqb9AEoadrLZ1vaZ0nlKV0ZtPki7aVcEZVVVRraxRVTdt37KU9FYyUvUxJDDAW5w1d6HFeLAHZgyw4SygM9z14D1/+9te57+EHCAaMdTz2+GNCWeJr9rb3mNWV5PdG2Ll5kzfeeIPNI0cEeNrbw1c129s3KarZsElDP2R1WWVZyENwh5FULqWE1TzdRb9H17bMZjXtckHTNMznc+69+27uvftubt68yYV3LnDhwgWWywWh68mik+PuQwbWijn6USRkn0x8gO/6QeO2S8Y+yM+cfn5Y/QmlGRGhHMNEYq44L2ZmXXiFXQQpPHJkxmOPPsxXvvRFHnrofo4eWSd0ezTLmzgLRaGZHbbAmDjQUCQ1gZm8mvFS9L8x2DzGedLwa9aSKQQi0FtLpQtb2vRJtk7XJt54402uXbuBcxJQT8aSM3sL54gpsb65yb333ceLv30Rkm48zrK+PueB++/l7B0ncUSuXXmfn//4R7zx0muUMVBZ4fVZr0rKqpTAeUq0TSM+b98TYkfX9UOv0WxhpRDp247Ot/RVpc2MIyYE+tBTVBWzsqJem5OMo98NA1PEmPEiPn+O7QrDvFbweEdu93T0zEm+8I2vcv6xh7F1KVzCJDaOHiF2kXbRsb29zbVr19ldLME5lm3PxQsXOH/+PEeOHWW5XLBeFECibaW3jKQ2CjAmjBbaeW4fQDl1lhIoKp8IoWNvL7BcLjA3tzl69Cibm5vUdc3pU6c4e+YMTzzxOL/85S957933xIfXHD05n10R1BEkvLVS+iAZOuzn2xm3VTKWL+iwcMoBRHcIoxhd92aU1yRNYrquxQVLH1pIlqosWV8vefyxR/nud7/D/ffdw9q8YrHY5erli2xurlFY4bRNscc6NDd3EgpO42NKKo05W2QEs60+zUGcSbrw5QGMmjGb3HVdDcfPLd/fvXqJdy5clHxX6wmxwzgJs3jvRJMZ5cPNiQyho/CWI5vrbKzPpUyuLllbrzl750nuvvscP/y3P+DnP/o53c0blG6TWV8CHXVZiDbWUqdCKzwq39OFjj5aovYwyX1c+j7QhZ4+dDR9J3w+zlLXFdVsjaIsWSylALxpmkE4p2h1Dm+FJHW4vizpolgIVV3xzBe/wCNPPo6tCpKBal5LaVwvJX3Xrl7n58/9gh//7Od0MRGioY+J7e1t3n7nbY4cOzoUpc9mc65cvUZRVWK9mIzi58KF1XWWx1RASVo87axaULIGtq5eY3dnhyNHj9J1HWtra8znc77zne/w5ptv8qvnn+fiuxdgaGU5Mlnkc1o7KpnbAXs+KlB02PjIie/T32+J4A7/mwzzyYM2EGMn9ZKFYVZXbB7Z4L777uW73/4qDz5wnrX1GaHtuL51mfms4vjRzcF591ZMLVKiWXQkoqTW7R/6xGIcNbcM5ZQzo+bMnaVTGB9I7IMws2WQKuV7kiyS9957l9dff0M6lnUBjCOGhPNecAJrKIuSvo/cvHGDsnDYSuJyZ04eZ3N9DWMTSbNjTOE5fvYU3/jet6lna/y7v/oBl7a2sNaysaZme0rEPlN0aK6rszjrsTZK4TfKg8OYEtf2PX2MUjJVeMp5LXm+qhX7thuaLa3G/Eb/EhzOeboY8GVJJHH/A+d56g8+x9rmhlgNCULTY7A0TcvWlS3+9kc/5n/4H/8Zl65cowsR4wp6Az4l3r1wkfPnH6Cazdjb3aWo56TY03WSNWZTGAokpD9rTu4fU/GG7VjnJOdSB+31mpviGmPo2o7Ll97nxo0bHD16lKNHj9K0C+666xwPnL+Pl19+mRd+/Wvev/S+JGew2hApEwBMwyW3E2a51fjEfM5bCeIt35+4vlNX2VrpZ1GVjtm85NGHH+QLf/h5/uAPPseRzYIQOtrlNn3XcWRzPhTlZoKvtletbAwxWKp6RtvJRK74wSll5bhyJRlsykhwLn3MIMOoNQMxRHorgEjKhMHGsGga3n//Cjdu7ijJMVjrCKkfekE673GF58jRozz08MMcvTynsI6N+Zxjm5scP3GUzaMbrG2uUdYFlJLBs1kUfP5LX2Rnb8nP/90PeOvCRc6cOsmxI0cojRmAIclXVW5fJ4JjkzDMZUAD0FYCWkVTeMq6pp7NcL4QZLZt6bpupTg9x6rzk5P6Tr1/68B67rr7Tr709a9y+uwdpGjIoEGKhr3FgnffvcSP/uZH/MVf/AsuXbpKwBE0YcL5Agjs7e1x4cIFHn7kEfYWDda31PWMnd0FkPvHWG3LISmTkSi+cI696siaNQvi1Bf1mpCRN9oQIltbW2zv3ODEiRO0bcuRjU0effQRzt93Ly+88AKvv/4GFy++S9M0wzlEOBOZ0Pt2x61inbczPvF6zn2fZjQ8JPA7mwu7wFe//Ed84Quf59SJ44TQ0i53iFEQtrqssQPRcRz7jxgnTY2s0ySADuNGDh/kU1jSys6a/559z4SUoSUMmitG0m5l2aSNMWDCyC+bj3/j+g1+89vfDlrWOU/TtTjnCamnqkp8UVCUpfRLCT0PnD9P4aShz8Z8zqlTxzl+4jhr63N8LUEVrMNiOXvuHF/52tfYvXKNF37xC9699D4mwVo9w2uyRkzKxGgdxjqMi5iI9C0JE81qNBncOakImdU47wlRmvkul8sxhVHnaIzzyj/vDW0MWCuI8j333csff+fbPPmZz2DLmojEJJu25cb2Nr/+1Qv8+pcv8Dd//bdcev8qXUDIw6ylT2B9gUOQ8gsX3uHe++7De0vXtiQroJNxTgAgZZYQYu4IJqO2iWn1yfT5TF8HSyhmnENcghxMuHz5Mtvb2+xubLO3t8PJ4yd45plnePjhR3j55Vd46aWXeO+994RaZ5iTW8vFB8oN437yiSQhJOlAg5TUyOSMZuJExYvjpmJopDW5vm9SlLQvE1lfq/n805/jG9/4Co88dD/OGZrFljCdlQXOVcNEEkfOGEPS7sOSyJ35gkyK2WrWM6vPqe8MAmkmm1aCZNMYQkk56TkOLciDdqsy2pUrJ0fHaLl+Y4dXXnuDpuukIVKSzQIM3hYUvhIumtmMRej41W9f5N47z/DA/fdx7713M6s8G2tz1jZmeGcpsFof6bCVIQW4475zfO37f8qlGzu8/psXKYtt7FHHzDsgEojShEgkUs197YiljydrP0moLyiLisKVpJBom5ZmuRQAJwYigd5r5zUChRVKkwgEC1hLKix3PXAv3/2z7/PQww/i65I+tnQpcfXqdd565z2ee/5FnnvuV1y5fI0rVxc0vVeIWza5wkuyOa4mWcP27h7vvPM2Dz30EDs7uzgPlYNls1RfPtFrT9SgmivHpCGsROsG4Ul5Y84rVefWQopBtK/zWJy4IQFuXN9mZ3uPa9ducObMGU6dPMkzz3yOBx86z29+8xteeOEFtrau0TQtGdMwgz8s/EYSL13lOEpTy23A2qa+Z/ogef9omnOsOXEr5tP0b1IcbQdfwHsLsWVzfZ1vfuOrfO873+T0yaMsljukPjKvCy0QTkOz3RhUW06q/w0oijfxhdModNmcHgSSiVbfZ1mkJKaqidJFihQUCBEhDdoqHit0/6if0yw6Xnn1dZq2A+O0x0gCTQwvCosvShHOusaXBYvlkjfeeIO2WXDq1HHOnL2PzbVqIGIemCFMNuUSpvTc8/CD/Onf/3P+X//Pd3n/2haFtcTZjKr0A/aVQzYuSLGzsdJqQTpQTHwzVbUxRPo+0CwbWmUrjCqEssAzA59SmxjoSeAtp++8g3//P/j73HP+PnxVEFJksdjjrYsX+flzL/Cjnz7Pm29dogvSe7TtDRE3aDWrO4Y3FuuFc9g6y9vvvMP58+elaVPfSa/PvsUWlrKsaBdL7cSm7A8ux8ZRU3Wqk+Q+7AF+oSxQKFAUSUbOn9t+GGNY7C156823uXTpEvfcfZYTJ07w9a9/laef/hx/+Zd/yUsvvcTOzi5d2ystTZSSt16TNQ4VtBEoPTh+F0Bo6rTlDrIwSsTUbsQK+GM0oz9KeMRbx9Gjx/ned7/Jt77xVY4dXWdn+zrzWYX3utsMgpE1mpjAKkkyoSuqb3rvB+HtA4jeJAQEiHbRviCS1BuHIu0YIylISpyNiZz0a4xhd3ePX/zieZqmG9gQyroWMMhailLyQOuqZlZVlKW0JZgXlu2bN3n5pZc4fnSTE0fvpSyU2c1YicsahMzaSTFA4SyPP/ko/96f/wn//X/z33J99wZV6TCZKi9ZvJGSKOMS+AxZGTX7Mp1LGvwxITrrxddsxx4j1jhIwtuXGfeMbpjWGU6fPc2f/Nn3uf/BB/BlSdM2bG1t8duXX+Gv/uoH/PbVN7i6tU00Fd6X7C0WhCRd4IyyC2KEO8kXMkeyMSWWy4bXX3+dRx58iOs3bihboqdpW+qiplW/L6ZE6oMm8yflwZQNxQwaSMAwM10X+v/qkpANmaRUrMZTuHIAlNqm5dVXXufK5Wvcc+/dnDhxnH/wD/4Br776Kj/4wV/z9lvvsFTLI4QlVVUJu0XK1DOjeBzmcg7rkH0f2Dc+RHNmbYhaDPmh54Le6R3nQBuErhnqKs+ePs6ff/97/OHn/4DSG/p2QeEt3hlIUvIUQyT3ER4EZCKY+YbM5JrGKxx5dj4oOWJlmMnEJMCMvu0An6dEilIVYp2gfpfeu8ze7p4SlYm/J02IJGxS1gWzWc2snjGrZ1R1JY2XXKKuZly5fIXXXnuNzfU17rn7zlWIXuczRJCO3j1r6xVf+PIXeO3V3/LTv/4hbttxfPMItS8wyUiDnRSkqZCx0gwpb5hjNEvaDCotadf1dH038a218XAQ89O5QgTaiFWxcewoX/na13jk8cfAWm7s7vDOxQs899wv+MmPnuP119+mT45EQVnOCAlpToRYAULFaUBT8aTRkbSwsEa6z128eJFz585RVBV9CNR1Rbe7pA8txhhK77EYWs37lYobca2MkQoaY7OFtfrs3YSHKc+HVVcthF5Y+IAUeyJR++44UhKWiOd/8UvOnDnDPffezf33389dd93NT3/yM37yk5/g/XWpU9Uw1Ljs9ikxVmlNx9ffwazNBzCDYKp7qTFDWeBa+5fEiEooYZa33HnuDH/6vW/zxWefpiwMxI6iqLBFQegaWVAGQi++TmLMzsk0hOPuMtqwq06/VmyYkQ9WrnH/bjm9r1GTZt94ENQBhEp0bUe7bKirisVyyS+f/yXeyuJyfoEvS4KRmsWyLKnritlsxnxWM6sr6rqmLDx1mbmBEhffeQebIrs72xw5ssH6+hqz2ZpsADFhnKMoSqyJBAJHThzl23/6J7z33iWuXHyPuuuwxlLKksRhicYQlf5SSKNHwCQnGGTS7b4Pw89Do9mYcElIvZOxJNMRUqKY1zz8+KM89PijVPMZV27e5JXXXucHf/NDfv3rF9i5vqTtRdO7osKXFc3eQldBGv1Ba7Be7suXBU7jtM4mYt9hrOGNN97gwQcfJLaBEHtBZ7te/UtJgehCwPQB56U7gHXZp8wgEUOG0yAmSty1smEr6OW8QoepF9QKqTiKWLyXjgGz2Yy9vT2e/8Uvuevuc5w9e5YvfemLnH/gPD/58U947rnnWAzcRhmYSqxqzMME83fWnLmj0oi5mrzLJzUghnuWSbQGSme47967+PY3v86Xvvh5NtYrQr/EFZYY1EyJkkAeeokfxdSvmLaJbO6m4RTTuKvN15F9ymF3NIPfOfVHp9/HjCx+YiULBJoUCo29aHFhlhcqkJvXr7N9c4eqrDFGqEvKqgInHEBVXTGb1cxnNWuzmlldU9dCUlwVssNXpaPvW9579xJb17ZYW5uzvr6OLwvhvfWeU6dOc8cd59jcrLEmUs9mnL3nHr7yzW/z//sf/j9c297BzA3GlxTOjZ3TVNO5JOZo9rWjmrPLRpowCU1nP3Rfk8T6JKaiifREojXYouTO++7lqWee4fjJ01x87zI//NnPeO6Xv+blV15lb29J6oRitChr5keO0sVE092UzDCrnaAxkuBeVFRlTV3MKEuxMEgBW1e0iz329va4ceMGm0eOSkyUXpgRMu6QoO8CxnT43g0hEpcFTTdoa82qgNpxDZjxl0Fo8xI2JEwKQwhcCuYlvxcDzlsuXrjAzes3OHfuHGfvOMuf/9n3ufPcHfzkJz/hrbfeYtl0jJIi6Mxq7Hhi8X0SmjPvBPlOR0UtJzea1mYUnSm84YH77uS73/0WX3j2aebzghQaoaFMkdh3Q6W7iUb7oyRC7CdoVxbSOL2f4bxoKAQYaEs+KKRzALpOUtKWFNkzpDGfVj9vjWSz9F1Hs1hy4e0LVEWFc5a6kkB+o3SO8l7JWl2zNq+ZzyrmlQhrWUjT1aLwgHTDlrS4nu3tHba2rtN2Hbt7e7Rdz2y+xvr6OnXl2dhc56FHHuXUqVM8+PiTPPLyG/z8Bz9ke2+Jnwld6BA2STnoaobMxKQgU1AmhRgTbdfSdi19H4b5FutB5j+YAM4y29zg4Sce44677+GNCxf41//2B/zil7/mytZNFk2g6y02Geqq4uiJE5TzNa5ev0EfZGMzVnxYYd4rqYqaqppRVTPqOjehKmRjSFLNc+XKFaqqFkaK3YVszrpBSkWOILR9IRrfe7eyJjJHrwis2vdWa4xNFtn94SL5nLVmWOsmRSkr7Duss3RNo53tCvZ2d7l44QJb165x//338+wfPsOpkyf4q7/6S174zcu07Ria2rfoDlmL0zDCwXFbGUKYpOWZo10vvD2dUkxIoyDnE/fdcxffU8FcW6uIoSH2LYZACB0QNRvHaDVHtiolM1V2qtH3y9cxFTyJeQtPTK4wmRIrf+hIq5NkJhO3UmSrJu7uzg7bN2/inSSi11XBrK7okTQ96xyzwrM2q1ib16xVNbOqZjabSUWIEwIsqyaeLBzpIRoUrKnKip29PfZ2pYKibVpc4fn5cy8wX1/jyOYRjhw7zrHTZ7j2zgVK6yickcXtDaHt5DmBgnJyo9nXBIbyqxHxF+tDeIOE3Ms5T5cCp+86x0OPP8Hb777Lv/qf/4qf/+pFbu7s0fbQ9UI1sjYrOHnqBJvHjtNGaC4t6ZRwK5Fw1uOtp/QldTWjLmpm5YyqhlLDKka5coOa2tvbNzl67ARl6Vnu7AkLRrOkbRtC7DFBSucKJYLDK+JtmLA1ZKqWcdMezdv8zxyymWdtZiR9EJQ+E2ED1IlbLhfs7u6wvX2TRx55hJMnT/D1r38d50t+9vPnBiZ9Cf2xspancpUU77jVuC2Cr/FIjGhUihICSQFjIoWDO86e4bvf/mO++OzTzGclsW8wdIS+IYRWACCMAj6jcMrhp5orkgaTetXPBIi6M0r/yUnrvX03f+thmBIF585W2aTOGTMG2NneJiVBY+u6ZD6vmc9r1tsO4z0ByfOdVwVrVcnG2ox5WTKvSqpKipx9wcA0J8I5zqwULCfxVedzFmsLdveWNMuOZdOxu9hjO+xyfesmR+brHDl6jOWNm1zf3sY7mNclJgQpttY+MnmN5eB9Th7PJXK57Xq+5xgDtrBE7SW6ceoET37us1zb2eHf/Nsf8NPnfsXesiUGS9M0GBzrG5ucPrnOqVMnmG8c5d33r7C72CUhVTmkiHcFVVkyq+eszebM6jXqWU1V9hrz1G0+OHpNbt/e3sb7gtlszvbuQsAbkhbFR2KU0j3xmXtitMLF5JxwGlmDc0pPogj4ULWUTd8cUbiFTZm5rvJvApCbzLImZjGwt7vLKy+/zNFjxzh18iRf+9rX2N1b8NJLLw1cUjnMFvdZZsNrOvwa4DaoMeVS8+8ZPZWYU4oJS6AsLceOrvMn3/tjvvDsH7A2L+jbhWTZ0Gnn6kgMYeiinAPTaV+y8XDu7HeyqjVX0rOMGVnPJ9/7sOT8yc0hd5OGTCEY08HADEnhZVEwq0vmMxHAtu/xhROKTO+YlSXzumR9VjOrhDy5KEvREH7kTs3ARa5jHXiTkqSWNW3LYrmkaw19SCzbRuN8PYW1zIuCk0c3eeWFX3Fjd4dkI2UhWS8RiycDEsrYEMfMp5W5TWnoXp108UcMxXzGfQ8+xNrx4/y7v/kRz//qRbb3FpAcXRdwWObra5w6cZI77zzCsWNHCTi2d29KnWRuUGyFFmVe16zNZ6zNZ1R1SV0XVKVRkuccDw+E3tL1luWy5cbNG2wYQ6nFDQJayfXHKNU1IQjNSwqOmBxO59U7QXKdHU1VO6wZxNI1ZkVzDtDFBFvpBzxCU1uUnS8G1aDGDHQvfS9Nmu++936++93vsru7y9tvv4MxRmhkwkGT9nfPrc2IsCKlgsrmzUO0JiawubHGt/74q3z1S8+ysV7RtQuduEDXNUrJ0UkbAaNwd5RCsWli8a1vQONlGFCKxuxrZTN0yqRwW5OQkV0yAKWoYEqMbebiEPvy3lNXnvm8YrOZSTeyshj4a2dVwayUxViVuSlOofWpDMBNjo/na7ZK4yiLwsoGUJd0nRl5fRRZtAZMTPh77mB9s+I3v/o1N69eZW4q6qIcumBNn11EMn+snQhnZNAMmeZEemPC0eMnuP/hR/nhj3/OT37xS65v79KHSOjk+0c2Njh5+iTnzp3h7NkjlGXJu1e2uH5tS311uZ+yECtjY23OxnrN2qygLB1VZamqEqfpjBggWnor7SKctSyalhtb17C+ZLls6dqGsixIbVQmiyChjxiISXKhTVSGeYsKppi1hRvn2kyEVPhpGdaMLhay/hECN3lLmmUhnditJUbpWh4Qzdw0Ddvb29y8eYM777qTb3zjG/yzf/YXvP/+ZSSTaHUNfjLpe1PhMLJ7COGTJZmAJbI+r/jKl77AN7/xFdbnJaFbkIIU9SallxCaCc1xzB5rSoNwjv9UakRMVnzl3NRHQEg7mm+TkqIPE8xpxtD+z+YzR92IImnluEVRUNc9a6Gi6+dgoG46YpT0uUr7b1SlmrLe47yARc6mkbNG7yEDEiKwefFYDCWhLumjoW07vDYBsk60jXWyIa0ffZy1zTm/+vnzXLlwCaLF21yFgfqcI8OdMb0ilsIamBh9bAGpLb6que+Bh3np1Tf5258+x82dBcs2EAN4b9nYWOf06VOcPXOKM2dPcuTIGm3Xc3PrBjvbO/roDFVVsz6fsbk+Y3NtxsbajNmspCw9ReGovCRb2EHLR7y1dL0Z2lksNDG/71qMQa0DYSQUryCiLd50gYhQ5oyfTLnppW2LEG9n4bRG2QUzhqIaM62uvainCRFMkNegrBPWOmLfD2u4aRq2rm/hioLHHnuMGzdu8s//xb/k5vZNFejDAKEPHrcpnDLvdthgRMVXs5Jnnvkc3/rjb3Dy+BHaZhdrAn3XSF6sop1dp1oT9Rf12IOJy9jtSl7GScrDxNVkbhjNlMFM28eYtn8iRqBnKiAM2hMYtKbEwTzShUy6aMfYEWJJiDMBgVQ4JXzkKAonmT+Fl/xN54Uz1ebWCGjfl3ztaWBdN2Zs5GpMQZciVe0gCNFZUTiKygtK7TzOrzFff4LZbI2//au/4eqFS6zXfrLgs+AZoh2TO8TimQqm5DBH67n/3vPsLTqee+llrly7QRuEbb8sSjbX17jz3GnuPHeaU6dOcOTIBsZ5bt68zHvvvkuzbDE4vC/ZWNtgc33O0Y0ZG+viCsxKT1FYikL4dbOg5BFckMT0GLC2x/qCZdPK9RpLHw3GRjojtCUSSpF5dDmEYsdmUFk4nZtq0gm6bYQ9YUVrTtZ9IoqnE6V/q3A1oby+wpKfUhoSEPb29rBbW1jnKIuKz372s1y7do2//uEPWewtD1UUHzZus2SMFd85gzFnz57iy1/6EnfccZpls0vhoGs7LbnqaRvNnEBVe0rkhuqBaUHr0J3ykIsf/cVsck4rDpzxgIBLmHHXW0k95GA4NFf6G8MACOXz5JGDysIM36ppm+ijlA6VvpRgOLIoSm+GnFHjHNZLL49iQGnNcC35NINpi5pkQ6cxx9xbYtOSooQaQr+knM2gcBRVhXUFDzz0EDev3OSn13bp256iUOGEQTglTJT9aDXd0tQfhbKqOXHqNL969XXev3SFhBEi66Li2LGj3H3nWe658wzHj29w5MgaZeVpG7h5Y4dL778vvLquZm1tnY2NDY5srrO5UbE+K6grQ1kYCi9+mqVYcUUAoo+4PtAHD6bAuJ5khLysiAWzWcK0HcYqW4HmJk//DVaIy9rT4d3YJ2fKju84HLFNui5zDW+MSFYqYJMhBH2/C5RlSbcU5vq2bVkul9y8eZOyqDl37hxPPfUUr7/5Jq+9+vothfGDhNR8FDX76fh0fDr+1xsfITj46fh0fDr+1xyfCuen49Pxd3R8Kpyfjk/H39HxqXB+Oj4df0fHp8L56fh0/B0dnwrnp+PT8Xd0/C+FTrgIh9Ej8AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import ipywidgets as widgets\n", + "import glob\n", + "import matplotlib.pyplot as plt\n", + "from IPython.core.debugger import Pdb;\n", + "\n", + "print(\"Choose the image name to animate: (saved in folder 'MakeItTalk/examples/')\")\n", + "img_list = glob.glob1('examples', '*.jpg')\n", + "img_list.sort()\n", + "img_list = [item.split('.')[0] for item in img_list]\n", + "default_head_name = widgets.Dropdown(options=img_list, value='marlene_v2')\n", + "def on_change(change):\n", + " if change['type'] == 'change' and change['name'] == 'value':\n", + " plt.imshow(plt.imread('MakeItTalk/examples/{}.jpg'.format(default_head_name.value)))\n", + " plt.axis('off')\n", + " plt.show()\n", + "default_head_name.observe(on_change)\n", + "display(default_head_name)\n", + "plt.imshow(plt.imread('MakeItTalk/examples/{}.jpg'.format(default_head_name.value)))\n", + "plt.axis('off')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "#@markdown # Animation Controllers\n", + "#@markdown Amplify the lip motion in horizontal direction\n", + "AMP_LIP_SHAPE_X = 2 #@param {type:\"slider\", min:0.5, max:5.0, step:0.1}\n", + "\n", + "#@markdown Amplify the lip motion in vertical direction\n", + "AMP_LIP_SHAPE_Y = 2 #@param {type:\"slider\", min:0.5, max:5.0, step:0.1}\n", + "\n", + "#@markdown Amplify the head pose motion (usually smaller than 1.0, put it to 0. for a static head pose)\n", + "AMP_HEAD_POSE_MOTION = 0.35 #@param {type:\"slider\", min:0.0, max:1.0, step:0.05}\n", + "\n", + "#@markdown Add naive eye blink\n", + "ADD_NAIVE_EYE = True #@param [\"False\", \"True\"] {type:\"raw\"}\n", + "\n", + "#@markdown If your image has an opened mouth, put this as True, else False\n", + "CLOSE_INPUT_FACE_MOUTH = True #@param [\"False\", \"True\"] {type:\"raw\"} \n", + "\n", + "\n", + "#@markdown # Landmark Adjustment\n", + "\n", + "#@markdown Adjust upper lip thickness (postive value means thicker)\n", + "UPPER_LIP_ADJUST = -1 #@param {type:\"slider\", min:-3.0, max:3.0, step:1.0}\n", + "\n", + "#@markdown Adjust lower lip thickness (postive value means thicker)\n", + "LOWER_LIP_ADJUST = -1 #@param {type:\"slider\", min:-3.0, max:3.0, step:1.0}\n", + "\n", + "#@markdown Adjust static lip width (in multipication)\n", + "LIP_WIDTH_ADJUST = 1.0 #@param {type:\"slider\", min:0.8, max:1.2, step:0.01}" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append(\"thirdparty/AdaptiveWingLoss\")\n", + "import os, glob\n", + "import numpy as np\n", + "import cv2\n", + "import argparse\n", + "from src.approaches.train_image_translation import Image_translation_block\n", + "import torch\n", + "import pickle\n", + "import face_alignment\n", + "from face_alignment import face_alignment \n", + "from src.autovc.AutoVC_mel_Convertor_retrain_version import AutoVC_mel_Convertor\n", + "import shutil\n", + "import time\n", + "import util.utils as util\n", + "from scipy.signal import savgol_filter\n", + "from src.approaches.train_audio2landmark import Audio2landmark_model" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "sys.stdout = open(os.devnull, 'a')\n", + "\n", + "parser = argparse.ArgumentParser()\n", + "parser.add_argument('--jpg', type=str, default='{}.jpg'.format(default_head_name.value)) #this give us the image \n", + "parser.add_argument('--close_input_face_mouth', default=CLOSE_INPUT_FACE_MOUTH, action='store_true') #the default is whatever input the user gave \n", + "parser.add_argument('--load_AUTOVC_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_autovc.pth') #the first ckpt file is loaded in \n", + "parser.add_argument('--load_a2l_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth') #speaker ckpt file is loaded in\n", + "parser.add_argument('--load_a2l_C_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_content_branch.pth') #content ckpt is loaded file\n", + "parser.add_argument('--load_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_116_i2i_comb.pth') #ckpt_image2image.pth') #ckpt_i2i_finetune_150.pth') #c\n", + "parser.add_argument('--amp_lip_x', type=float, default=AMP_LIP_SHAPE_X) #whether to increase lip on horizontal \n", + "parser.add_argument('--amp_lip_y', type=float, default=AMP_LIP_SHAPE_Y) #increase or decrease shape on veritcal\n", + "parser.add_argument('--amp_pos', type=float, default=AMP_HEAD_POSE_MOTION) #increase or decrease head motion\n", + "parser.add_argument('--reuse_train_emb_list', type=str, nargs='+', default=[]) # ['iWeklsXc0H8']) #['45hn7-LXDX8']) #['E_kmpT-EfOg']) #'iWeklsXc0H8', '29k8RtSUjE0', '45hn7-LXDX8',\n", + "parser.add_argument('--add_audio_in', default=False, action='store_true') #we're using an audio file \n", + "parser.add_argument('--comb_fan_awing', default=False, action='store_true') #not sure \n", + "parser.add_argument('--output_folder', type=str, default='examples') #which folder to store in \n", + "parser.add_argument('--test_end2end', default=True, action='store_true') \n", + "parser.add_argument('--dump_dir', type=str, default='', help='')\n", + "parser.add_argument('--pos_dim', default=7, type=int)\n", + "parser.add_argument('--use_prior_net', default=True, action='store_true')\n", + "parser.add_argument('--transformer_d_model', default=32, type=int)\n", + "parser.add_argument('--transformer_N', default=2, type=int)\n", + "parser.add_argument('--transformer_heads', default=2, type=int)\n", + "parser.add_argument('--spk_emb_enc_size', default=16, type=int)\n", + "parser.add_argument('--init_content_encoder', type=str, default='')\n", + "parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')\n", + "parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay')\n", + "parser.add_argument('--write', default=False, action='store_true')\n", + "parser.add_argument('--segment_batch_size', type=int, default=1, help='batch size')\n", + "parser.add_argument('--emb_coef', default=3.0, type=float)\n", + "parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float)\n", + "parser.add_argument('--use_11spk_only', default=False, action='store_true')\n", + "parser.add_argument('-f')\n", + "opt_parser = parser.parse_args()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAD7m0lEQVR4nOz9S6x0S5bfh/1WROy9M/Oc8z1v3XurblV1VXdXkf2gqCcpiwNJpm1pIJjwQALlgQWYcE8saOIBKU9sWBDAgS1PBBhuA9RjIEsCDEGyIVi2BMiSbQmSJZkmm+xmd9f7ceve73Vembn3jojlwYrYufOcPOc757vfLX5dvPHhfJm534+IFWv911r/JarKF+2L9kX7os2b+9t9AV+0L9oX7d1rXwiGL9oX7Yt2rX0hGL5oX7Qv2rX2hWD4on3RvmjX2heC4Yv2RfuiXWtfCIYv2hfti3atfW6CQUT+cRH5PRH5AxH5S5/Xeb5oX7Qv2ttv8nnEMYiIB/4W8N8FfgT8l8A/rap/462f7Iv2RfuivfX2eWkMfwr4A1X9jqoOwL8J/LnP6VxftC/aF+0tt/A5Hfcj4Iez3z8C/vRNG3sftGna248ocueTC1K/vFGTqzve8zh1c53teOshXnv8+9/I7hoOtfnSa3d7cKtbT3Jlpzc+3lttB872Bhdw911efz59wwt4o/0O7NNvN89U9Ut32fvzEgw3dJnZBiK/BfwWQAgNX/36t+vyvc/97zJ9V7ii74j9O7D/od+vP9eV7/gryxVEbzhXvWPH/FHcdE3TPR0w6w5d9+F1V89zW2fKM8khXH1dOl91Szt4bTPBoFqfkU4HnIuhu5qxn9XcPbT/6445X3+3/fM0gG/bV1WvLRORveWH9r/tGq5vrweFyR/+7n/z/WsLb2ifl2D4EfC12e+vAj+Zb6Cqvw38NsBisdLZ8hsH57yJ3HXeu59QODh49fp+tfsfvrybhdLdB/rN7dA11r5x8/OaL/ezFde31bL8jRSu+eMSEzq144rs3tPV9/w22k2D/ep5Dp37NkFxSHBfW1bubX7sq99vup758rrP7pnJa4XY59E+L8HwXwLfEpFvAj8G/jzwP/xsh5RpEIqISUQFZCcSDj9w2U190/7Xt79NeDDr0Lt1swPeNDtf2e/Wc8za/kw93//q2WRPQO7pDyIoTALjpq51m0B9Xbttz+tC25bk3QXutjp0A3vHuqtxIrMlWhW6O7WrA/hOwmC+rNzjTYP60KC/ev6rx73t92vuxvrFZxAon4tgUNUoIv8s8B9g09NfUdXfuW2f2wfN9Zl86kVFONx0LNn7XybV9iaT4y7t+j7XTQrTND7DjHhIYBw4926ZCcrd6jIcb7mEaTxefX5vdsU3HsPU2qqC6LWt9MDz2283i7X9ra4c+w0Gxl0FxJsMutcJh5vOd5/zTpPmle3v288/L40BVf33gX//TfbdV8Xc3hiZBrT9uL58/qnX16MyrZM6cvbU5tnJZutuFlwK+J02cvUYB/a97ffUcW7Y9qb9RPbnfi0azf4APXCMG4/+5u3QbFev4OA1vKbT3rT+kK0+W3njILtt8M23uUn9PzS47UlLFYGTRlvfpJb/ZBKT1QS5jjlcvYb7aiEzXeyNzbXPTTC8abvRHLi+4e377gzdm7WNuSax2/rKljfbgzceY2aC3Hh9B37XZTo/Wu1p83NcMTVk2vCqanv1uFfONd/v2pUcavMud6XdZQKV/ScNusNGbjj8NKwOHP/qu9nfVq48t5lQ2sNjriwXQMuyaTLR3aq6XHX61Nm11CPKTATMl+80mVue5fweD2gJVzGM61jG3Y59W3unBMNVlP1NwLidpvD6QXjT8vvMYJ8FMLxp3bVBfSdhJbi5l+Y1YOQONFPcNCrnKnRZpjtbfWe3zqTVoWM6PwFxV24MJoAORBwmHLQIDeGaTqGHz3Wo1SGou5svx75yf1cEq+5JJ6U8kNn2xWuwt1s93uzeDszk8+dy4wx/g2Yw3/fg/d6kUVTB9K5hDJ+lzRH2+vvq94Oz3yTdb1h+0/ZXlr1OUNxHtX/dOW+8Nlt543lualnn2MluBjU1tqyTHRSoKOZQNfeWai44hR0jJ1smZXKUclBFcc6zLyB24HDOCcHhpJ6HaYY9JNSuPre7IPh2yNvt9Lsc7ybPwW3HvC/ecNOsP9dUiqIyu7D6n1wXeAe0gTfFPW5q74xgmA/Kmz73lnEdjLNHeD2Y86YBedNAvk19e91xXrftTeuvbHznba9qWbtnopMduy9o6n1lnIKSyDmTUiLFREyRnE1AZDUfgqrpMHOU33uPiOC9x3uPcx7nPeIcXhw1VkILziN1Fr6h797lPt8EK7hp30PrdoP19oF/SNjITLO47Zx755twiZ36vzMMd0JBMQ1rJzkyh9Catykc3hnBcDd10U3vTAFxV9bNj3YPE+F1guKux5nPmq//fVWYXDvJjec/dB3zTrELLAI3Teo7/SHGSBwHUkwMcSBrto5tO0/HyKow+xQwoQHEmBAB51wRCg7vAt57lsslLnh8CAjOurcq4K4L89e8p9e5C2/b/uo2N830+4N19/+kae2hMexm+L0TMGlltwGFt13LTabENdOkCowbPBzVJLurmXuovUOCAe4mHOaqsu4t2627e8e7z2x/+7GufvLa32/y4u4u8GTSGHJO5JxIKRHTSB6jaQOqBCeoC0jeda6cs3W6nM28yDNzANMymtaZ8EiJcUww7gbK+fk57aJjuVrSth1N0+BdAJSc73ff931Gh7a/n8tuts0VfGOnc81V/GnjOw3wQ9/rdnfFHw7d81WM4TNij++KYJC72fezZVd93/Nw6NuOcWj5ZzUFrgqHzyqM9JZ1Ny3TMo3t7NFqHgykIhQ0mpkggPOCCwHVTNZUMAbrgOLqBJixDp/LGRSkmBkxoprRbJ4FlaJSi0NEGfotQ7/F+cBisWB1dEQTOhCPiJ+ZgjsN+S4D91DU4qFt6vFuwxAODdTXnefWaMYbvQSv13auagY3mSHl22vBys9qVrwjgsHaVVtv6jy2cLdd1eX29y6fn21GPtTuKhSuqfazIV4HwfxK69XOVVTqdldetCuCcz6H7dB0wfB90wIMM4jEcSTG0dR/Ae8cjQ+T2qtluYgrwKOS1bQFLVqDqppQybkMYC2aQpzWpZzJ+eq9Opw4EGEctvTbNW23YLU8pusWNK0lzWlWshQsYtJIZg9r/oR0Z41XHOVQ39+9Bp0JnvJ9usDpIe5ZbfcZS9cHnzDXHA5vc7OQeF3bbf8aDWL2/03P6HXt3RAMN4xfnWyq+sj3X+L+jL8TDFcH6H3whpu3uaupMLv+vdXKrmfOOse1Y5XONbuGCfyDaVbaO4YqaEZ1JKXIGCO5aAeI4L3DO4fzDhGZTAUt2IG5DgRwqEYbgEXATFev5rbMOduf5uk4Zofr3nHrYMRBio4YA/32kvXlBavlipOTByy6JU3ToAgxJSoGkbISvCdlnWzl6Q1PwrC6OQ9oXNcGwmxmL//tuyivb3rbDH8Yq5A9IXR1n5vaTabEIQ3mUDt8nQaG7oOb92vvhmCYtdvU7NtsfVuxb/ndx4S4v6C4n0ZiAFy5yJs3Yq8TzzsLRTBiKn4VeKrKOA7EOJJ0nGZ65xyhCdOgElfNNYeozfCCoimb5gDFzBCyzhxjVQOpuIPuls8/59+dc0WAKORM0kyMI+BwfqDvN6zXFywXRxwfH/Pg4SNWy46YlGEcaZpQhFIdILspvt4PatqGVJ/oPZXDG2fcPRXu7se6Ko0+qyp/03lqXMVnBhFe0945wTC1Gwbh7YP97kLhvstuEwI3novaZ/e1jZuv7fXHFtGi+ivjODIMAzFGlIRzgpvchw7nbDstYmU3u5iQMbfk9Q5WtQLNJoBciZzKOaNpX4uYaxZ1O1XFe08IAXEmyMy8UYZhmK55jJGLywvWmw0PHz7i/fffpx09fUwMQ8JNAlF2mgjmf5o0wbnNWR7xNIAmpaBqZ7N71cPLq9n6OlPguidgvo7ped9d47j9+IfaIZPlEE7xJkLqnRIMb4IJHAInb1z/BlrBTUe+k6CQmo9hx3hToVQvQcTUbHIixZFxHEkpgVhcgfNhEghgcQgCOHF7KmcVoYKSqOBjRkVx4mir/V+1hWKWpBSJ5buBj9fNjfpXBQNqAsN7T9NAkzLjEBm2GzRFgm94+WJku90wDFseP37M40dPWG82bPueYYwgHmQn6HLORVW++qyu2vvsrdulfF9fftuwuQls3BtsM61hrkDchie8bjDP99s3MXQSXgeFw4FrvO/YemcEw0GN4E5awnwgHjYl7osx3LTffX5P4GNBHa+nbd9DYBX9PedMjJEUR4suFKHt2pmZ4KcZSzWbkBDBuSIGNJNVJyBTnEAWXJYJfNR6jpSmmT2nVAb8TjNYrFa7+5xpDrloGfW3kkgpT1pM0wSCDzRNYBxG+mFL8AHNke32krOzUzabNV/56CNCELb9wHobSTlNAs45V3ANdmpWHXhz6GBvcM2fN9eW17VXvV3XPA9wcLDVAKd6Kfvn2N/3NkFzSKO4tt8Ve+d2IfVmJs07IxiutVtwgDef+W8ekPcVAndbVzvd/cyi/W2tC6QUy18CwIdgQUUlAtGJM2R/cmW5vfNUk6Kq45kSQo0NhhjjJBC0mBgiQggB3zY0TQOw2yalHRC5BzruaxHOzQYzpYM7oVu0NN6ZSTFGhn6EQRj7nr7f0PcbPvjwA957+phXZ2vW654YI2i5V5ED+sFueB963nfxDtw0U1/d79pgu0FjuP4+72ZKHLreaT11vvk7xJSAfcl4l/Y2tr3PQL3Peffl+uFzHZp9lGwDGzMHTH2P07Px3uGDp9rZO3xlNwhdUTk1p2sAYUqpHDORkx27zvRtCNMxs2bTGgoukFKazBeZaQhVEBwaYOJ0Op5zQggN3jtUwXtHaDq6rjHhMAyMwwbI/OTHPdvtJb/8zV/hoy9/jVcvz3nx8iVjTOjcLJidb+5pEBF0J58+/3aL1+Cug/I2oXGX49y0zS+UxrCnJt60zX3U8Tvu9yaYxF21ib3Br3rjvtWOTDO1XkQn/MB7cz1e2ctyFWbCQq+MjLm6X787JzgXqG7HOAM0U46M40iOae9627alDWHv/kV2btC97860iAo6bjbrCYPoGtNEuqYheE/bNgyjYSfDdsPLZ8/4bla8C3zrj/0a3gvPX7xkGEbEBWJKiLg94QBMmtFVnOF1M/Fd3uGbDLLXagC3rL/JlJA3vJa7tndOMNwXJLmy91s+3mc7llxRd6+2+cueMImyR0ppmtlFMJV+SlyyGbfO1OId3gesnMf8Wh3O++lYKZr6zwy805zI5Ty7c5rb03nP0XJF0zQ0IRS8wk1gosx+z4VB1Uos+MkCrIZhYBxHxpQY+p5+u+Xi/BLnhOWiY7lc0nUdbWPCoeIap69e8P3v/SFfevqUP/atX+H3fv/3efHilM12AOdmkR/lvoFK0POm9vVd9v2s6++7332Wv40e/04Jhv1Bcn351W2uLbvDsW9a9rpBfx/M4c3228UFVOTfZlZHCH4SDFpcYZNQcA4fAt6HvQGBKhklJ/MqjONQMieTBSpp3pkSBS+o2sBquTStRKQc20KY7Tjj9FevtwqIq7ObqqIlIrJpGgMgY6RtGhbdgtj39H1Pv7W/xXLBarVi0XVQziciDNsNP/jed/jgw/f54L2nbC43pBhJWUhQ1cu9ALDXYQT1Og9tc8hOv7ruwIuemRMmql43mO8rBO7cbgM57tjeCcEgHBjwV36/TjjUA03Z63fZ/obtrm97f00Bbg9Budp5kblHYLQApeCntOZdZy5/spu5fSFG2btMTaQygGMcLYQ5JVALOJqbFN572jpw3W7QpHGcTIs646fipRjKoK33MBcM9bratqXtTLDU5+hdQ84R78AvhCYExqGh77dst1uGzZbFYsHJg2MWXYuqEck0QTh/+RwkcPJgRcqZi/UGVFCVma6135+uPuuD7+kArjUfvPN2FeCbltlO0+/bznHjMe6ohVwFH286xk33cJf2TgiG2t5UY9j9fjvg4fVj339feynsReXN96sztAmFHShodr+bNIQ6qKrpoAjiHI2ztObq2wcD8/JkNhRbfRxMIFhEj11HttwL5x2+6WxQY+ZLX2fxvmfYbknFWzFpMRVsLNdY72XCL1JCinnhnMMH42zouo6m7QhNR+MDPghpTAWE9CxXK9OW+p7NdkPKiaOjI46Pj+jaQI4jOUecdyy7lk3XsN5sAUe6kg+wZ1bM3subYAu34QJ7gn1PGNjZX+d9OHS8O2kTM4zhoCA4cLz7tndKMMDdwMCbtjk0XO+lcXyGa7vadLqgeq5DxwNEp/iEOns7tyNCqS9VywGrMPDOPhFKspJpHCnaDJ/GkTGNpJx2Pv8yZMxEsFldc2YcRzabDRcXF2w2a0u+qsFTZTfnzMzo2g7vAzEnmqYpbtIqGJQYR8YYGfq+RGaaybNZb3EhEEJD13WGJ4SAbxpyxASKCMvlksViQd/3nJ+dISjdw4ekOHB5ccHR8QPSOLDsOraLkWGMiCopF3BVD/eDQ+/yLoj/TWbGwZd5V7PjNes/66B+G+2dEAw6+5sHiuweTOUDrJISW7bHCrRTpd9EdSp7XhnAu+Fkpr3uCaFrrsjpyy5yQUtwUlX9bLuSDCZYLsHYQxEK3jElj4kIWW1fJ7vchxCaaZaqzolxHEnjQIojaYyMw0BWS0YSL5ZLkTIhONrWQpWHoefs9JTzswsuLy8njQWFbtGxalpCCDhn2zdNSxsaRBwppSloySIsBcTOE0cLSIrRIhq3261dY4yktGEctmw2nq5taULDogiKGrzlnefk6MjMmM2WC4QHqyMuXr6kcQGNGR0jj06WXKy3iG+4uLwkJhN6mhK5RDPq/IWK7Ahp7tiuunpva4cH8q6nVC1yLkMMFtpPc6oOlR3X5v0FxNy00jfAHN4JwQDs7DNukvj70YMi138f+rxp2f6pD+MJt2IFB461p8LKddFRk6DqsS20eNwBeGV5zRGw7MjqcdjdgyuRjlWtj2NkHLZojU9QJQQLIwYTGqrKarXCe4hDz+mrM16+fM752Zl5PnAcHR1zdHRE8AZmNk07aQJICXYqJkKKiRiLKeCaqfNqjoh4uq6l6xYsl0eWQCXCOG6nmIhhGFhfbhG3Ydu3LNqW1WJJt1iSxhEFFosFogvSOPDi+QvarmN1dAziSGOk32xofODhwxNOVksu1hsu1ltGtSCqlBTLrJi5bWdC+65aw01tr4/p/uDf7xXzPrWLjNwjGioLVXVv1rmL9nBt3XScOnHqwf56W3t3BENphwe47I2xN9cI7nbua99twb32h+sCxc22yzkxFvvfTAJFyZhtajwGhj/YS642e9M0qFoCVU7RwMSULPBHIzhshldFRchJEe9YhAYfPBcXZ7x68ZyXr16wvrhEgOVywcnxCUdHxzShQRWcGL4xpIhzOmEdMcZyc3ZdIeyElnOOxWLBMAx450hxxKE03rIt8Q1h1dIucgmYMm/JOI6Mw4ahjyyXHV3TmPahStc0LBYdOfZcXlzw8uVLQtMyJuX04pK2XdCPiYePn/LkyWOyvuA0DuS8H8txl7LuhwbfNSyBGzQHudnuv3GfW6/hkE5atuF65OPbbu+cYIDDA/+2Wf9N1r1u+fz3NeXwDucDdsk5WoODKsgYp8QkKEzM7EKGMxlfohiNbzEhJSlpR8ISTTBQQEvNaPEGOMS0hJxxYvkJgvLq5Us++eQTLs5e0m+3+OB5cHzM8fExy6XRsKFCThnvLegpiCPPtXEslNo7T9aaD2EYQW0V+0g5m1AJHpcFSY6sQtsG2mYBKDENbLdb+n7LGCPx4oK+aVgtO5rQ4HLkwfGK1i9RHJfrS1wYSEnpNxsuLy9ZDj2I4+j4mK7reBoCp+fn9GNJ3S5mziF1+hCGUN/DTcsObnPtyEzbVJD5rniCFG2zUsBf8z4cCHC6DQt5EwHyTgmG+4B7t21zF7Pitu9v2q5dPzvp7qS8oJzI0dx+4gwnqUFBEjwVUanuxClbUtixOaeI5rgD/TSjYl6GpEosYdDBe7wIw9BzevqSF58+5/zslJQjzjmWy9X0F3xg6EdEPE4cfZn1nfc4VVIlf5WdazBnJYuZRwVlKMLOBuScyzgXdda7gIiDbNqRdw1dpzhn9zwOW/q+J+dkpLKuY7PtWT46wbmG7TAgMTGMkWEciQlwa1SEzXbDYrniwcOHPGke88mnL9CkB0FBuDmO4a7L9sBhbhYOr2v3MhNuWX+bdnLf/v3OCIZbB/MN29+GI7xuNr/L8rtuexetA4UcU3H9jcX/aICpCBNvgZkNUgaYTDEBoIxxACAXjaN2gGBuDKJaMBMoTeMJztFvNrx68Zxnzz7l4uyMnCI+BLqu42i5JDQNIbSEpiGm3lD9KogUNJdszOIWTSkTU0IlWyyFCkMFNksgVIzmCfHBTdRtKQOqOLG/KgyzFm+MczjAtR3eecZx4GK9RhAWITCMI6vVgnGMxLRliJGclaRCSJ5+uzEzR+Dk4TGLbkEbHGiuMmimou/ey61awA3L7jP7Xu2j+1qGMIcd7yog5qbtL7wpcciHOw1+PTzorwZv3DbA76t9vA5jeB2gOb++autaTICRswbnivqthMZeQ3UPGoAniAvTs8hFC7AMw/08C+cEFRiHiGYleIcXy1R88ewTnj37lPXFBZpz8TI48wi0DT60DGNijIpzAfDEnICd6WJU8eUeUiKpoiqomMBK6nGhQXwDKF4KY5Pz5GQmTVZniVdqvA9m/hh7tZLxzlyxMYJzStsuiis1MqbIpu9puxW+CWyGLTFavIb4wDAOtM5qWqwvL9huT3j86AlN8OSUidXcKWnwu/5T3+7rvQ1X3+nr1PTXDXLgoFDYMxvu6f68zzW8rr0zguHWJhyMaPxMh7yPZvEG+MTeOs3EElugatGHY7LB77238OTRQDLvPbnGCHjrtHt2fM1kBHywIKMUI+v1GsSxaFrQxLDZ8vzZpzz75GdsNheo5sKoJHRdQ2g8Y0rGxSAWTu3wiA/gW1BlSCYsNBiuAYJ4j1cB16J4hnE0VmnnUDwxjXga8I4+RsAjWbD6EhlNowGCYunT3kOOmRyzCZycIZVBpw5BWa97ex6Xa2KMDMPIMERiSoSmJIP5Buc9irI+v+Di+IKnT57w6bPnjHGDK/eI91Nw2YG87Tdudferk9abDszqnLh2HpHX8jG8DVDynRAMc+r3u8zE91n3pmDl/PddHvHN15SLa28gJRMMWtxnIr7QpRm+4JwnFyLUGmJctYU5CQpYlKOImO9/HGmcw7kGTZlhu+H8/JQXzz5hu1lbEBKQcsK7Bh+W+GYJEhhzwGHuSZUGp8EiF70YjZsrM5cz74QWvCGlgAsNhAbNELMNhJQd0gQ0teBHSImUE0LCO8W3zZTqTY1YlGDYS46QBc1umi1VDMvYbgfQNTEn4mieEV88KDUL1TlPaIIlgg1bmnbJarFA1fZ3YhiMc2bi2POFq4Ns3m7CGa6ZIbdsNz/WbWDn/j7Xwceb+t1dIibv294JwVDbfYTD1f3uKgDuMtvf5RrvtC1aMhctNDmnERGD7twEOpot79WSlnLWYuNrUb13f5Np4gxoFCCOI1mTJVGlzLDd8urlC168eMb64tJ4G70HPOICTXsEfskYG9S1BL9EwjESOsQ7U/lFwAWSRih4R2Yo4iwz5BFVT+uWU2JXzooTj8sZnCIuInlEJUGycGYh4ySjDJYApSOaTXMw2no3sRtPXVscKSc2/UhKxapUELFcEnFuKkKrOROHyMXFBc55Pvroq3SLljGO9P0waSkxJlzJRL2qONyn7Q3CO6j+1wftzlN1TZAUgXWfgX7IxHlTDfudEgxv0m7EBe4pKG47dlXcXneuq0BW1swYB4ahJ8UB1Yrsg2bZIfUlklGpJd8KWKmJrExCATGwsrIhpZItacBapt9uOT895cWLT7k4P0NEcM6TMohr8GGFhBMSHVkbmnCMbx/imxWhXeCbBu8bMxdcYBwHnNh5xn5TyGISEiJdtyT4rkQWWjCRE2+ZmiTIyQSDNwGRYwQdSRpRAioDWT0i0bYXQ2GzxArqIK6mmCspJ4Zo5lBdryVEPOfMGBM5W3p6SIm+3/Li+TOOjx+wXCzoh5H1Zihahlbcdz+fgutC4hAAeWg9s0F407aHlr/RoOf2OIZfGFPiTdu9Zu87gY83b38fAQSVeWlkGHvGoSeVQCFKsJZKMQ18mMwC40AwAtVc5+ds8f9AIVWxwVLDhyuvZD/2nF+84vmLZ6wvL3ZuNBUUD7TE3OK0YxEe0a5OODp6zHL5EBcWONcUMtkAVUg1ltmY04gLW3IagUSXFXHtFEClqqAZxZOdYSi4jHcRVRMMzke0uFlhxMkAqUez/YmTSXVWKYVwvJRrEVA3aU5OHOLszzuPZjWSXLK5Vksi2cX5GW3T0i5WxTwznMZ7b093p5Zw3XK/2jduBxzfbF6+WVDciC8cuIbPQ0C884LhkFfi4Da37X/ndddNktswhqvq2nzfcRgZBstSjHGwGaXY60mrK9JMAlWr74BYrkQt6AKmnSo7lqRas6FmOwoWjbi+POflyxecX5zaNTmzn1UcIg3OLwntMcvVU45OvsTy+DHd8oQQVogEcMFK2xc8QhU0pYIDNoSmRZtxCv0dxhGy0b9lFbImRDxKwVAkUauPO+dRMRenRWuOQIuTQE6uDPzBBIEmwDQrRIlERAWhXpsDPIojZ2G9GbAITI93DZqFOBoTdeM9F5cXrJDCUh0YR53MkRqPYQqIvZvX+yhe314HQN5lwColZuSQF+Ra/sU7hjGIyPeAcyABUVX/fhF5AvxbwDeA7wH/lKq+vP1Ah/CFEsQ6mXD3BydvNx1kFpQik4iuKnvd6tojlt2XKturlo+AQ0iaiLFnHLaW1BRjwRQciiHvArjQmn2ds3kFgq2PYyKzS8sWxFB3t6snMY6jzcwom82ai/Nzzs9PyXnEiSepmQ/OtWQ63OIBx48+5OGjr7A4foL4FSJdUeudeR+KEJSCdxCCJSQ5wYlH1RcA1cKsxYMX0xYyMpWkM8+JA3WoJEQzaELIIIGEg+wQFbw4knjQgOYt6kyYUWntU7T4BucQHyxPpJhSMSXatplAWaO3t/oaWSN57EkxWlboYsVmuwV25DF1gNU6Vzbo9E6S4doAnGEMOlt20za1j017zPq5DfBDnW9mehRzajqeVr3HerXtfp0b867tbWgM/6iqPpv9/kvAf6Sqf1lE/lL5/RfvcqD9gXydcv3qdnc5Vvl1w35i2Qmy//DkynfAuAupnam2Uv21hDW78j2OW8ZxwzhuSGks5rPb40RErCpUdUM6Bw5fCs+W4wVvHAs5EXyLkomxBBnFMrOqsrm84OzVC4gjHilqdUB9izYrfHPC8tEHHD/5Cs3iMS4c4/0KCAZMlvHsRPCuPntT1FzwZBUrjKse8bvQ7RgjuIzLgi/AqRcHk9ZTpGV2k0EvmvFingxNJhQst6NFc0umR1OPlc9OhkGksTxjAedLtqBpVCnHCStw4miCWPTnODIUTWLYrnny6DHBeT598ZIh5qJ57KpuhRvMyNsCnua/1RZcm62vLd/bZnLCM1UZo8YwzHvkVUFk7l/berdfuZiZUNhffp/2eZgSfw74R8r3fw34j7mDYLimwt+y7rb9Dmxxr/O+vl3fXlUrMM449qzXl2w3a1KyWb1qP/MOFUKYBld1T1kQk51DVfFq/AZN20z7VtIUKa6+9eU5Z6enDNt+srXVtyAt0NK0jzh69AEPHn3I8ugxwR0h3qpOV1Zp83RU5iWZGKadCFYjMpOyIyY3UcrVz5QSWmY/l6zwrWax4+eirotSEy5M4GSyA9ThTF00DcJ5GmnIOaCxL8+vVN8WyzSNSYs4VxNiah6cKWWcEn7tpKR9C/12i2ri5OSYT5+/mN6BaomvEAvfdnXmviIkXqea33ebN/U0/DzbZxUMCvzfxHxw/3tV/W3gA1X9KYCq/lRE3j+0o4j8FvBbAKFp58tvPNmbuhhvOtahx33YtQl1ytvXYooOISXNN45sthu22w3jMKDkkiOxYzmq8QkixQ2oWlx+aqHG2WIawPzzIpZfkCsDiRZTRJVxMDKT9eUFKScUQZ0BjRKO6ZZPOHn8IUcP3qdbPiK4oyIwnAkCEcRX9N8bt6TfsUq5yQoviVNl8GkB+KYyeDmTnSM5i87MY8UFMPyBPGlWwMSRYMxRMk1mjhp6LeAcMXk0e1J2xRQBsIhJtCSfVS1nAlsL8Y0Iucy+l5eXvHjxgsVqZLHoGNfGVbH3jmtMxU195Y4D/5BWcRdg8KoZIzfsexvOdts13nesfFbB8GdU9Sdl8P/fReR377pjESK/DbBcHd94R3e9oddhD3fxJNy8zXVxYEvVOqSApshmfcHl+Tlj7C0eQXRSHa92gpoQxawj5WyAXSWriTmzXC5tICXLytSYcAoxjlxenHN5fk4s/AVmEyxwzQnLo/d48PDLHD34gKZ7gMgKME3B+YAUCvpatKZpmlIlyuGKaTGppcKUSVln5jgmY3lyzghnC6aQNZOdIuX+ReeKsiu2sFKzSRGPaC7b2j5OGnwrNDmgOjJGISYLljIMpOZZ1MI4Hp2qX1v6ugkPpuu9XK9ZHj3g5OSEzfiKNGS0gMAitw/6+s7uM9gPuS7vpVnM7NnbgMXPS6P4TIJBVX9SPj8RkX8H+FPAz0Tky0Vb+DLwyVu4zlvbXQDJg/sxG+SvExZ6BZAsnakmPw3DlvXmgm2/QSTvbDxlynOojEfAROXmCs9BBSBrshLsSFVTMsr3cTBmZidKHHo2lxcMQ49qBBqgxTVHHD/8Eg8efoW2e0poHuD8Cc51IEbF5py3AeiF0Hia0NB2rYVKe1fcojsOgzQTCpajkPHOis6mGIli164KJCyCs3gpbMA7qtlcn6ezh2v7SBEMZEhmek0hzmo4Sz+siXlAs5rSLyaUc9bCfl1iLJjP1m533eNIP2x48uAB/tWZmSZZJ/TfZPgV8PAe7ZDQuIvwuGmb2zGGw+2QMHrT9saCQUSOAKeq5+X7fw/4XwH/HvDPAH+5fP67b3iGm8578PPm67z/ykMg5ZzqQyZGIFP94jBweX7OsNkaQl+KySpM2sK8ZFydxea/RQz5FxFiSYsO7YIxJVLMuGzquxchpZHtes12uy2JVx6kQdoHrB5+wMPHX2axeor3D/B+CdKAa3HOF0BTEJenLMuuMzKUrmtpgse7yhK1U81TzsaXEEt9ijExOMcwOJwzTSfZhI0TBS8kIo6ASIJUnofLkFzRItLs+RZAzbkSlZjN3MHjQ1co8oQYISctAsSARupzzrWyd7bMS7zlhEQLMHv5/DknJ4+mJLMkiqCGc0zXcbd2X5ygXuPVfa+CilfF0ptqBJ/VfflZNIYPgH+n3HQA/g1V/b+KyH8J/Nsi8heAHwD/5F0PuDfY9fC6a9vdsuzQvred9+bvV17W7HtKI5vNpZGoxsHMimw29VVP1VxbENkVZ60CZK49WDl740jQbGaEAJojfb9hs74sgCOmtvgF7eoJxw/ep1k8QNwC13aI61C8uQGLq8/Ymxu6JrBYdCxXLavVkq6zClPOxmcRaqWEfTYMZBwiKSbGfqQOaIjkpIQwQ8ATqNb7sYzJnG1wa329BcuwbUx9diJ7PIi1kG0T2uJ5gBHL+1BNRnijgivCWnMFISNd0011OLNmgoPLy0vjqXAJr9lSy6t7cPbeP4+IwjcFIK8eA96OVnBbe2PBoKrfAf7kgeXPgT973+NdH7xX4OF7HOOQq/Lq8uoyvNP16MyNhHkgxBnvQL/dsL48NwS9Yg7YIKgoeZjRvNeKT1OxV+93wBnGzyhe6Np20ixysrLzXfBWBHYwivWYEma3e5rFA46Ov0RoH+DCCmlacAH1YqPJGdBo8UFCaBrz73ctR8dLjlZLFgsrF2dy2WxwhSKYMillxsaYmYPz0/NImpHk8NlPGlJWxWVFnTkGVb2p75iXQXO5JsQ8Fk6wxOg8eR1UjQjGacZ5RysNJnESkgMpR8M1spXw805QZ25TzRktad0pRrbbDU3TmUaE4+JyYyCwmiCuode3q5i39JEb1t9lAE+zO7ebMfcFNq8Covdp73zk47vSJk+CpoI3KuOw5fLynL7flsCfvBNDWoHJOquy51KrL7SaFOaZsMG3XCxwzjGMhkOMMeIEYrJiNBeXFwzjWOSJg2bFYvmIdvGI0B4jYYn4tsQomEAwLpdS97LUhGjbjtWq4+io43jVFcq1BnFVuO1o4XPKpKSExhGGwOhMg8nJqNtTyuSk5FzClL2p8zVS0mlxCM5MqOqHr4xP1x96xXHMrDEh2kCK5OjQ7ErGqK3PhSLP+0BUiwwdxxHvxOptFKHadMuifSWEMGlqdxlEnxfYd9UrcaftP6P2cVt7hwXD9VTsG7e8g0S8j9Q8tG1FvK0zZ4Zx5PLynPX6fIrNp4TN1AGF1EKzdoy63byylM1Wflov4mibxvgJopGipBTxjUUdDuO2mC3GjwAN7fIhi9VjQrNC/AKRxngVnEe8L+aD3/NChNAUM6JjuWzpFg1t42mCnwSDYrNoTloGfsaVHCfJEMdAaDwheUIMRG9sSZpBXMb5bHZ/wVic2Ixuj8biCOYBY/OnngGv5jFwThBM6DaNh+xJo5AitE1rQU4CgrOqW4XrsrpVx3EkDD1jtLyVxeqY5XJButwWt6XN1VX4v26I3cU1eNP6u+5r9/O3J4YB3mXBUHrJXdyMe7td2eYNtKjD11IVAOfIKbK+uGR9eUkaxwJN6jS7plSLze5K1M9dffNiMvXF2zpltVzg8Gy3a3C+1Ii0WTVpYrNdE/NYLXAIK5bLR3SLE5qmI/gG7wPedYi0CA0ioXgIzCsSnKNpHG0XDHjsGpZdY8QvJa7BYrLKPSWKN8IiGAXQWEheg0z1NSWY65EsRs5SzDX7tAEoeHPz1ugnBLTELljwsy0TBxWcVAWxmpshOHzXoTla2HNUchbIyQDSIZY0dI8X43+o3iDnTHCAUdOvN315V65e3pt3kSsD/i7g3+1eift5JN52e+cEw121gzexm246x+tclXVSETG7ddhWE6LfA+ishNtOJZ1mIN2Vn5/biTnnKe7fEqJMxc+jRTc6byqwBEfMI7FEVU4VovA03Ypu+YDQLAmNVYlyrrEEJRyihkGAxyINrdal946m8XRNoGkDobGoRx9Kcpfs0r2dKIizTwKaITRKCKPhJ96IbZ1jGoAVXNVCVDu5KjMWGEEhY9FMTZKrWkLG4SXZJxklVZgEJOO9EIJdzxBNcNaK2jtBG2k7Y6KqBXibpmXbbXYYT33Pr7XuD/eN18UU3F843OyVuLum8XaSqt45wVDbHnx4y0CeC4qbtrtNiNxNSBTVWpVhGLi8vGSz2RjdmWRLNJoJBgDnd+7Nqi2o6lTvsQ7uUMrUqypda8h7PwwE5xliNM0gR7Ik+mFr3A4poTmA7yxDsl1ZDcpiNkzaAQEtwsCpFb6tWoN3gneWyu3FogedL2nd5a/G2adoyTiRXGIYdjZ/nY0NJ3HkDMkZu3UuGoNzDnUGMqregKiraQqqVZhKyU+xgK/gzMVYYxXsGkvxm2S4T808BW+xHjGiTvBtS9M0k4kXHCRKJbNkQGvNW7lPm/eV2wKb6vI3xQRuG+SfF9bw7ggGrcSvFKlwf7fjncGj+W/qsGcKjhGuCx/BAmmG7ZbN+rIwPWc0G/9AzrF4IjD1GW+pz7nmD9Qoxxno6ByolO+FDDUlxmSVm2JOxZ5XsibGfiDFXAaRI7RL2sURvlkivjNyVqnpycayqOKqcl7+DCuRadDaADML3eHFWSVqv6Osx5srMamaR0Eq0lKdijb4nTi8M6+Nd87CpLWETItMF6G7x2Dvrf6VICnLpiydnQLglhfkRHBiRWyW3YKUEtvtpgg8nd6fc0LjpQRBGaksSMm+dATflMjVbGnh5QT3GVhvOghvGtwF6ZhUVAviOnCAAlTWbT8PU+MuBXp+Dk32/mq47CEtYG+vO607oF3Yj2m5Xvm8OhPYEEjEsafv1/TDjs1oVzzGYviTFpKReRm5FKfjTVhDeaEVk3DiQYQ+jiSyRfOpVZd26tAhM/YWL6A4kIAPK0K7wgWLahS3wxNqcyJF0NVEL6v7oEU4OPH2vLWkd+OKSHGTir/DQqw7mjvS6mpaqUsDywwkLOeU3SOuAz9XoVBX7IozolgxmlS3NT8pSEacnwIBzcwRvPO0TVNqT5gwFPFYyHWp40HRiEqJPxFLze63W1KKBCe0QQqlXpru9fNqr4+1qbk4E8C2i/mYbzf9MWE4t2FxrxtHh9o7IhjeTruzELnygmR/w711DqyacqEL2243jOOwizHItQAMlL5lL6IQjk4eihqrUI5l6rDbwx40ZfIYjR4tZyNvUYsQTCkyDFubpbMivqFZLGmaBcF3iA/FjJCpe8E0lO04ZXDv4R/olFCUVbGgwkLzroWTsqj4qFj8AUxeCjOfKouTnXF6BhPwuD8o3LSu9m9h56mTyXk56QwTLrFbIWKM2lZBqy3BY4JWZidfw6Gry3WXDXp5aVT6i8WCUGp2iLhrXpLXtbuC4Xc1fa/sefDrz6u9M6bEZwET37TNTY+9F2YrJ8ksKozjMGVOxlTSngs9G1rUatXSKY0g1diRd6aDquIK8Fft4ZRMlTXEPJYoQ4uMzMmyMTMwjNuZh0LwoWXRrQjNAvFNmfl307S5S/MUT7GLF7ABNM087IBQl8NuAEVbbdRyahyVmSkKMqdMyjXbsp5mRlg7+3Mi5D1hNG9XNDeFnb1ShJGm2fY74ea9J4hwdHTEOI6lZmYooOSAaJ7cxzFGQggMw8DZ6SlttyIlNRNDC8uUCpC5qSt+HtGQh1oV2J/1+J9l33dGMNR2k7p1aABfXXf4eNf3ufqoJiNmNlCEWRJRTvSbDf1mwxitgIoNtURMuyKvZmsXGni15Ck/H3zVnz8DzVJSmpJ2XgvGprG4NAGwAViRdVUB8bjQ4UOHkwahAXxJjiqDb09DKpd49c4ngWF8BEkTkgt5zMyMqMFNY0zEmBlHcw1WTeHWzic6eR53woI9wbR/oZZiXcEIzRYqLiWF3YnDiRXdUTEC2kVj4OIw9Ca41IKrHIVOj51XqEae+lIgeDuOln+RM6qC89fu4LXt5zJ4pWIP9zveL5xX4rZ2V6FwuM1dQ69vZkL0DMOWmHoq0zO6Iyupngjvd9oCZSYtWGRhCtqVnJtqU3rTIFIpYQ/z2TcbVVypCi21c7hA6Fb4ZlFwBY9Y1Zcpt4BiUlR2pl3mYJoi7FQtcjGmhItuT003+nqZpVurCYUhGZ9lcammmHfmEsxcfwV3kKKnFGFViVlqGlrdmoqF2A+U4sHAtBZFDXNlHxwO3mpJtG3DMDRs+54YE6HUxcjqppoTuURfNU3gaLVEnUfPzuw69jCpu7gW3157rSvyMx7zTbTxP5KC4XXtZnCnfIedX332uW9aABiDUj9sGOJg7q9iOmje2eDMBrwUIKva4pndzBpCM6N+Nxdl0ziUTIq7Wc1R3G6FHSlFEwzJkD6ca2jbJT50JfS5QZhPdRXUqyO9IHKT6rDLZ4gpMYw2oHMWcvbMtjRwtJgO4xjZbkf63v6GwbgnK95itTct12H3Vz0JZbALxvhUQciKs8FkCpmHwrCNXARwySEFZKpzmdVyKywrNOwEjBh4aYV2zG3ZNCWKMxtQvN1uOH7wiBD8lN2q+iZD8G7tbQiVu8YyvI32TguGu7ge77uPIWGHpfBkH5v3nFp9OY0jw7AtsfXWGa3uohZ3kStBQ8EG2xgx99muarWf+fyrZ8JcfLZNNUlSSrjgGYae4Bwu68yMAHBIu8S1y5JKbcFMFXiEajJUh1ZV9Xd3nEtOhtnlQgjgcKQMrtapzBV7sHoNZkqYYBj6SBwj4xgnjoY5WHqo7Xk1ylXW16Gyi3syD1015HR6zsnZBiIlkEoEjyM7hayWENa2BQgO5BwLoJiKCmbXZgVnRrb9lgfezIlxzMTyHnPJvbj5Ht68zeMRDh1vb5bnut5y1UQoS29ScD5Te6cEw+vwg/u4Lg+5K29sZdxMSHF50ClHxjhaYZdkrkMwFX+ud1fVPadMrHYFNgDnSVIhmNusBjfVjEvNlU3IrP2YRmJKeA8pGRV9TpTq2A0SFriiKTB5IoqbsXzf0xCKcFAyOVvnS9kGdN9HfB10DnzZb0rySjtTYoiJoS91I0dLv86T5rRLH58e6+y7c8Lu0RjAp3OsQSrea2CvMgVOF6+ITiZWPZ4TR3DKKNC1LYuuYxxHcjJW6kn2TAOxaHsxWQGcnGmbhou8nepVmEZ3/5F2yLa/+gwObXfoODB1yTsIo5tNn8/S3hnBcPPAvvu+hzWIOx1hGhgVeEQzaRyMvqzELFga724goK74yq0zxTSSkWJS6CQAKnWaiOxrC26X6EOx5YWiIYhdSyVHyQlQB66laZf4ZoEPbalQXUG9nXCY1HQp3gmBCqdOgGJMjKOw9UzHgEK0UsDTnGAseRwpJvphZBzTdF0x7sLBq5pe3bhQiVCK0BCLUxBkijOoMRDVzWrSgkkQoBaklTUTk9IES8yuxLUioE4K4UzHZttbaHSp9FUJZ3auUzOrcs70fT9V/vKIRXi6u/aZA73owKB/W+r9fPjP5q6D53kb53wnBMP8PdwkEG7zSty2353WTVqtTuxLuZR8z0VbIOseCm9FUffDnufnmohKi1Bws5gFYAoj3mVmMnFAJjKhEMSmGNGkk5dAQkcIVh7Ol1oTIhT0fe/GJju+BlvNfecmdBJ+LJyHaRegVDaw7M6ciDlPGZZjtCrTKZpHprpYDRPZxQxUTWgKFa+uTCz3IlXsYwZUVrC0enjMO6JFayjey+ldFRJYEVocuRWW3YJ1s2GDTIjwdFx2DNsxjpN3QlXtnDtF77X96L52/k0D9Sq2daM7tLyPW7d5y6DoOyEY7tvuqk0c2q6WOoCZQJJdxJ7ZsZTaDeM0+2lOkBWnzrCFWXRmHezeW82DahZUoTCxQBevww6k3GVcArvBUy4sJht8u+Ahj/MdoVmUAjQlT6EyPkthaBJXAD4pXonrwTQpJcZhsCKz2RG94pzi6qnU3LQ1iCkVELIKMtN08t5vyTsA9TpIqxM4OQdHpbgzBZBcIEgRnDrsn2k8KlKK0cyCt5QC3godjuVyyXK9Ye0vGSmCscy1WRXJRngzjiNxHCg+oxKdaqCu3kFCvAkIeNuMPsceXjfAd3Eg93dd3qf9kRQM83bYo3BzVFl11V31UlxtVwdATnMvxOx4k81bwb/CdOz8NS9EvbbKv1Bn293AKX9FuKQ0TuSr1gJdt6Rrl1Px2UoyYuXuzG3pnDcaN5FJQEgdUIVN2XgKbFlOYjkOFgS481oU7CMVDSlVzSGncn12balsVwWDJXntNIVd9CdM5CvF1BFXK1gVvKbWelAjd3FA8cQaKOyKIHEzvg7MbbnoOpaLBW3bsu09qWRe7sKjK3W/aYTDMECw5DOPAaxv5Bs80F6nXVxd/9ZMjrd0nHdSMHwWjeDWfeUmoKYAbdVUQMkpWmcvJCEp56Ip1LGzi/CreEEdAL5xtMEYlFR3rsm5UJiwBfZnDIsb2OVRqO5iBPANTWvp1c43iKs8C66UbhPEecSZRwTYEwzz51MHrAmnIhicWKjThKHs3Jp1ewMjlZiGSXDUnA5NlpYeY6n7kHeFYCr4WY3lSq3vCnHLpIHViEeJQDAQsQKi5vy1Od15nGdXzt45Fk3DctGx6Fo220BK89TxmYYWC+Vbjqzak13kRcEkPq/Z+F5mxp2u4vNr75RguAk3mDpzMQMqYrubL8o6qpo1s5Vn33fbC/sua5386GZOWC5DjCMpbg1UI6HO7G57jyW6UGSXv+C8VVX2xYM/wyRECr+jCClnUrRIO5HqSavIuwCOOCTDFnIdCoI0Ad8tUFc8E9KCWDFacQLBWU1JZ3UhEQhSajmIm1LBpSggWTJjzkYD78xNaeEXxfafmzjFPKhCrv6uYCNqWkQuGaEpR2Lc5V9aQJUBuIiWSlQC+BKh6BCp9E9iQCuZTKIh43REfTb2aUkkKRmhWrIoAe+FVdfw4HjJtr9ks7V7d6JT3IoJMgtVz2MklErjxhvpqW7VQ/3xUH/9LLOz6r7hMoGLuzNMr2J3VVe2EmPKhDIJ6Kxe5R3Nk0PtnRIMr29SXvDut31c+Zyvu9J0Lk7m289cYdVDUDt6LIVcVU3VFCz0uc7GNYGnzviaStrwDe4r0xSEq/2ugpqGneW92RoCTejwocEXQpaqATmHRfpJREh4DQXHsPJr3lUgcyA0Dc5JySUwT4Zl8NnF1FLz5uK063IwEwQ7ANUSyNKeUKhYSh1gtk3FGiLGhFAFMSWuIRsZFRaYVC0OLXRwQYzROQSHuGwuWlcK5tQUcbWwbt84FsuO1dGK04sLxmEwM6KCx0W4bzYbTh5awdujoyP6eEGMOyD0b1uTirDK9HzmAOT+dAiT4J32O3TI+9/QOy8Y7mxW3PV4r9tYSuJQ4UvI2apPz7EES7pxe/kI01fdz0iYmxtzHMGUDdkJgBJQpCUlOucR1YpBABJouyPadkUIDd55QhCaRmlkQBjR4ikY1IRB07RmujiP9w0heNCRnB2Nt+GZsiVIaa7awu4B5WR3kqpZMeEGO+zgqrZg5kaasAyrCFWjIJMJgQJAmlMiTZwWFNdmiXm00nZYTooL0IgQHLTBEYIgoQyUEiMhzhNCS9MtaBdLusXCGLAo7mG/Y5eq/Av9dmvuTUrtD3f3vvSZ2x6Qeh2MvO37/mF+gb0S95dqOzPjLo9kDlQd3L5oAtNMppagk9VqSO4d48q17r3UGbXZIRB0X8BomaHzJOxFFNWRzFhMETDXQosPC5pmQRNaY1ySBDnSx56cesZxYOx7+nGLw9G0nVGvBdM2XNMSfGPmh/eE0CEuACWwxzl0xqRUbnuGN+yCvNLMlKgBWlo0BtO4YmHUNkGQNYJGNEfiOJDiiKaRGHtyjKQ4oBqLd8XcmlUIOREWnafrAkerlsavEOloQoPH3I1mOTkkB8QHnA9TTopDpxJ29c87o7gbx1giS2WadP92aQxyy6y/tw23u0zn2/7CeCVuC1aai3KRfSTh0DFuXnctz3A6fsUPKHhD1jxtOx33ys7V82B2vN+7h/py9hKNykyRZx11d0U2qNBYzBswN2VLCAt86IziXZR+e2EYyLgBHUEjKY7Eobfcht6XLGsPCBlP0y4mgRBCR9N2+GZB1y4IrWVr6sS74CdQzv5qGnkNCa+AY7m/IiTQTNLRthcLfBqGLSltSOOWvl8zDj1p3DKOGzRFqpZglayuvhbHdm1g43rVQnpE6x/yYNXRNt4K/I6jkbs4MaEQGpqmmd7r1b5RYxqsZmfDdjS+SLkj+Pi229ub9d/O9b9zguGmNg3KQ54IuDZ4bxUOZQ+Z/Z4wN2yACzIRtTpn7EK7F7cLg65mggkBN+1z87mt5bwf/AM7T4ExKJfKTQqIJzQLmqalCQ2qyrDdsN1eEnOP0xFfVHQRI4DRnMg6kGOeMjtzFjabC9pmQdMuTDtwntAuWC6OWCxPaJulhVuLn/IWphgEkhWSpYKPs4I42ZhqLIjJvmcdsaK0PdvtJeOwJg2XjGNPygM59qQ4ImJCQYtggEoma9yVXixmI+WB9abnxatThETXBD5870kRJAoxG3+l93RNO5lvubhcY4RmxsU5xjhR0uVkdS8Ovb37zNJv2u7qrbhv+zsEfLR2WJu4n/6382owob6+sC5VshWXZHIx6s4ANwSd/RiBGmzEAcE0d22WBVMMQ912mpVzMq5GINX36Ty+Cfi2QRrHOPZcrjfEcaBpHE3oqHEFVpcxUKpJ4gqZzFDO550h8P12QwgtaGboSwXrmFm0kbY7siCqwklpGk1iqk6lOpkQk4BLJXipkNMkjYxxII4b+nHN0Ju2kONY4iCUXU64NzGtVvtCvMdLMNcrDsXhm5agLWhis0k8z+csmob3Hj2kawNNMLflOCqNg8b7idmpmjhzl3HwjeWuOAu3NjvCHDFF5u+9v3l72wJiPjHAYYzj88ARbmvvlGC4OttfFwBvZvwd1h7myxTUYuWds7nLNYHUK123oO+3heGnhDOX4rN7wUM1AWd27ZpLTcZivwrs8S7MX/Yc1RdV8qiFKs74DJtlR7tsEYcF5kAJifYcHR2zWh3RR7WiNMOGtLmg78+RHA3iF4d4xbm22N5Fa1FF1OMkkvxITCMSB5BQ2KBrGnR1m84Cn3KJzCxu2RwjOUUDDnUgJdMIcqyahkNoTRNRQSTQ+M40BTH+SecCzjcE1+BDR9ctaNuAk4xoIsWeYXuB6MCr00t+8uOP+frXv0zXBnLKBOdpJBE8BBdw3hFTjZlwqFpUq2LVxy8uLohjxDvHGPMbJ1G9jXYVY7gaEXk4YhL23KuvASrv2t4pwQDXB/F9QMnXYwu3N4WisiajeVcM6PNma2fdDehqaszrKEAdRMUk0J3gmIc/zzWEXeRjLmo4xJiNxMgcbTZQmtbqJECpZtVw/PAhx0cnHB8dsVgeE/GMo6nty8tzLi5fEccNOQ24sSdFozFTpIRR10FgHawGPOEi4sZyn76sLynTJWNUqzkxuw8TNBl0nkyVJw9AhfydaxEJJiBcTYgKNos3C9p2gXctzjc0vsF7xUkBEdPAolvh8obODaw3A9vtwLJtaXxgkEgjjsYVly0WE1ET5KygsGPoh5JENlbAygTHzMS8rS99brP3DQDkjULioPL82Vmc3jnBcPf2NqFjmYDHmqgTfKAJDTnHIhgUVx6XVEJ25ybg8er1TIIiG9nL/MXkvQG1y5WoboDKWGzMEDZo2m5BaDpEHIvFikX3kAcPn9I2S7wPJO2ICFkcvvUsaXHNkhQ3pDgwDlvGYUBLqHeMRo9muQgCEshZSEmRso2TVMayFY5hhuwz+8w5kSZhsKPVz0kNEMThXDBQs8mgJmhdeYYhBLxrirbQ4XwpyCuBUZ1xX5a8CSdK0xzTuJbW97R+nCJSQ/AE58g+GJW9N6EmYuQuMmEXbnJfxnEkxVpD1FsS3efolbhP9OPnca67tndOMMyR+2vtphd2D01hF1izv1DUNADLS7DOtFgu2fRrnPM2uNmvWzENklmbexpMfbBZnxJxt0P48xSCXQ42uQOzWhVrxUwA33S0zYLgOlxY0i1WNO0xSMeYPRGPpkzMGc2VJ0FJ0ZGiJyWPagsOvCjiEuJ211JSvhDxFkmglbMh48Ui63aYTAXiKDZ5xRZK2rXWwLBcMiNNuIkEI3vQClAaOYxVqbLzgiusUhlHRiSVKli7c2as0E3wHV3nODk6omk7q9GJlpBw0/y8K5R3xfyxw5hQaNuWtm0Z4k7D8z5YxOgdTIm7Dro3DZ22+737fq87z33DAd4ZwXCX8NPy5fD6Ox5bDmxclwlGoxa8DeSu64x12Lky4PPkajT3365a9TRg2AkMU2OZ+tlc5Z6IWcqsu3NfFt8/GTAAruuOWHTHNGGFD0e4sAJaxiQFR/fFXRhLMJHdS3ANSPFKpEQaYcxpimy0CM6G4oOx3IsSxWn5GoXf0pmJ5KZ+V02L0mquRHVjzipz5WRnysmV9VDp63CCqCNnQawwN8H0CESzaUxa9tGiMWCktclbzUoJDW1rbldNCVxP0owPu1oSZiZZ9qiI5ZRMArxME28ysd51AN9FOLzp7H5VjMlb8ra+M4LhPk0Kgly/X30Od3FZ3nbsXTCUsFqtJlS95vALJW16b79dUNPMukOLj90SsuZ2bjnXNGunEhuQJrMGFOcDi3bFoj3C0+JkAdqQCSieMYlVxcqJzulEe6YSLDJTE5oiEYcWUyGXepLBe1IJaHKF5MUCm5SklsthBV9ttrVamJNz95rAq5qQ0cqXrFA1EDUnyxrNGsgF5wDzDrShoWsWtCVSU2WniZgbFDNRCkyRS6anaslQlaJJhFB4MBXnGnaM3PZemqaZWLRQo45PJY3ecCC9E8ZwqM/8PD0Gt10HMzDys7R3UjAcGtAGtOxuXKi5BpOEoAJp833mYM31g9bNd5Jf3I4WLSelWyxp1wsuOSvquQJx8pFX12Y9oPnNdRoQWjpb1kge807rkN32U0h0FlQtmUgENFPU3sZKqok370lSGzxJGfOAiuK9eQx8uR7vGpw2BCf0ZHIeicmT1ZFjKtmiGSeKkwDOwrGl3Bdp912mUtAy4R7TOChl5fbByIyolpoOOiO4gcpk7UUIztP6huViVcK3G7w4YhqAhBKxFHY3YSM4S70eXSY2HnIgR8gjltXaBvpekNHqhFbuC6veJyQ1zgkXWpQGVYfqaFmVstPe3haGdVMIc1m5P9uzG9JvImhUd0LtJk/GXdtrBYOI/BXgnwA+UdXfLMueAP8W8A3ge8A/paovy7p/HvgLWA3zf05V/4PXXsXsHdw220/m5s7snHbXstDW7wuIeSsIwmzfuTpoGYY1LV/xpJQ5Wj3g8uKcvh+gzIiCzWqeXch0vaiUdwFKE1BXbIpK414vU9GSm6ElN0FQ9dTiMD54usXCOrgXEomYHUg2vgFVQshoHkgKmqwztL7BibLdXDLGgaG/JI5bQ+LjWDgQhCwJdTZbOlWrg6FM6reWZ7nPKVnYq2QO1JWdUsZVr0x5DhVUFabig3TB44O3OAsdGUdliL1pB2ol7oVoHJTZGYFMibbMjlIxC2JUxl5h6RDLxcIHxWoHl+t19tartqAqbIfMZgsPHj1muHgBOgLZeB/nk8sVTOmm9qZBUPOAqkO99i5g5U2/P4twuIvG8K8C/zLwr8+W/SXgP1LVvywif6n8/osi8uvAnwd+A/gK8B+KyLd1v5TQG7U9nOCgifDZXJXXti8zuXMOH1qOjo7Zbtf0hTglZ4uyS6rs4LlSc5Ed1RtUbUdnQqsIhYqmFeFRtt7di4APVjfBCFmcqdAoKfakaNyJGgdUR9Ybq33hPTx+dMLRyQnOCcdHT/nu99Zs15HtxSVjioQm4EMAF2yWFAcu4FLhhRRKrIOzTNHJxKoZrh6RPGmulVW6AqhzkLU4fWx/UbwD8Zlhuy50cgNHxyccnzxgc7lls0losiK+wzgQnOADaElySlmJyTEmZYyBYYyMMRFKxqlzO4/RlDylhajFObI41tvI6fd/xEc54BqZyvQFtzNT/05urxUMqvqfiMg3riz+c8A/Ur7/a8B/DPzFsvzfVNUe+K6I/AHwp4D/7C1d781Nrv+4SSAcMi0OmRy7qEY31UhMoyUHDcNg1aljnLQAA7PcBEDOzkgFuOrxa/ETqZGFufIiz/qlKKEJNE1bXGlqgkhS8VxAHHu24wUQCQ6+/P5jXEj82q9/k/eePuZHP/wxH77/EeP2gk+d4FTZbLb0cWRMESl2ufPBArKcw6XCAOHd5F2R6XlY8pfR1WV2aWf12dZ7L0KByueIaRjO1m03W1ovfOuXv8kvfePrrFYrjo4e8OzTZ3z3O99nfblmbB3DGvrxkvX6EhVhtVoiBETMjTmOA0NsGWKkaX0RHgHnLCErlbiF4B1ZwYt5SM7OL+l7x3b8Ln/8N7+1qxdaQeO31K56sQ59/3m0n5dX4gNV/SmAqv5URN4vyz8C/vPZdj8qy34ubee54I1e7lzlEtirAdGEhq5bEoeRnEaSiHkQcq3PXNKTjeZ0pwFc8YhkdAeLWNjUzK6Fip/U1C3vAiE0UIquikiJIrSAn364YOhfsGw9D09OWLQjy5Xn93/vv+b542OGPnJx9imffvIDLs5GPI7HD44YxsizVy8tkejI0YjlTezqWxYtoLCwWp2Mkm6elahTiauJsOb68yz3V99NOcV2vcYL/Ilf/w2++bWvI065ePGc5x//hIuLcy7Pf8b52SvLIA2Ohcssuo6YMmNcQ2hpwwrVaIQwaWSMkaQN4qXch8cjaMo4FcQ1Bkj6hhiFzaZnTA0+KU+evser00+5OL8gNM1Me3s32k3mBLA3lVQz7130ShwajQcvU0R+C/gtgKbt6rJbP+911sPnfK2kPhRHodkKxiy7JeO2Z7vZYEVoR2QGIMKucjRcxzt0/0RXrm33iie/hkgpVBOwDElXUsFtxMa4YRguyHFNkszZq1M+/skrtsMFOfekbME/3nesz0e8W5K1IYQjVqsTFkHoYyTHEfXBUp4x7ICaUKQ7EpoK5qkqOig52QA0XMRNhX0noLE073ccCP2mp2s7fuUbX+XRw2N++MPf5/vf/UPOzk6JcWSzuWDo1/jGSFhWywXeBbp2xer4mOWiJQPeadECEkOMDCmRshKchyLEAJoQSNmiKhfLE9Q5tv2WjCNGY9ISEfp+Bii/tifdvb1NzeCggKD0mbfsGXlTwfAzEfly0Ra+DHxSlv8I+Npsu68CPzl0AFX9beC3AVZHJzfe0euxBbgPgvw6ITMnVKlmhA+enEa6xYJ207LoFlxGy+FXLQN5QrSrYKkGBAUslT2gaX7Vu3l15iSZZIPxONYq1UBJDc5stpdst2fk8ZTz01fE/pzHj0744L3HnByv+PFPfkQIDY+fPuGv/3//OuevnoFbEhYP0NwTmmVJw3Y4KQ5Eb9O64opb1qPiEW9JXG3wkzZWa29KATJVpegx1XZwOCk1PZ3lLCy7E95/7wE5jfzO3/ivOHv5M9aXp3zlww959ukr+stPjSBWG46Pljx6vEIjnL06ZegvWS5XNG1HbjzQoFLrfiZiyvjg8eIIzuEFvAguNDTtgiZ0jBmUiA8OlzJJYbPZlncfyDlNfJmfZ3ubAVL721jn+dy9Eje0fw/4Z4C/XD7/3dnyf0NE/iUMfPwW8F+84TnevM3cQDc9oNsExFxTcSVkd0gD3ge6xZKcMuvNGucsmGeXR7D/AqYgoLK4SnYb/DtOhj0bfVIFZVLhoQgrjKvS+4CGZJF9lLgIl/nVb3+DP/33/318+9vfxovjX/lX/gqhCTx+9IimC7AVmtah2hN1zbJbIB4WiwbnjaPBty2ZhqzeSFwkTMlNbdPSdQHnDHQdY8IXUhQRh1IFmAdJlmymQtu2BO9ZukAILZvtOTFu+NYf+zq/9zdfkBJ88MET+s2as5cN3WKJ94lv/eqv8vf/A38vqc/8+Ic/5W/8zu/y6fPnLJfHOHWwXNI1LTrR1psJ6cXhxeG8aSniA227RHxLv93gm44mK5ebNTlnttuNFd/VPHFBTFjQFVzgTWJj3qTdx8txaJvPqj3cxV35f8SAxvdE5EfA/wITCP+2iPwF4AfAP1ku5ndE5N8G/gYQgf/p3TwS11mMD4GD9fPn8XLm57Dw2oaURhbLFSklVkcnnJ++LDEHfqJ4P/xCqw9figdgxuegNtNKpWlnzjkopX5EY4NOvA1C5whBWR4dE+MGJ1uOViv+wX/wT/Fn/sw/xAdf+oCXL1/w7V/7DX7w/R/w1/7a73Jx3uNCx/HJA3Cex0/f49vf/nW++92f0ffw4MED2m6Faxds+kw/QEollJmA9w2LxZLj467MqIFxTAx9j7gC+omHEhNhnBYJL57V8ojjkxNCCDx79gkxb/nv/KN/hn/wT/8G/6//9AG//7u/x1/9r/4624uRtn3A8fExTYD33vuQX/rGN1mEJR99+HU264HT00t8EVbLboV3VtA35erH32fudt4jztF2K2ISLi42dKsTvGdihBYgeEDFEtgO9IU3HWhX++pnHbA/r2Cqu3gl/ukbVv3ZG7b/F4F/8bNc1H3aXYTEZxUkIo6m6xguBlTh6PiE7dAT48Bmc0kaB6NsBwv7nfntr+gQVHjSUdibKyKnlseYUQttBuz1lFlYjBZefMDC/8CHJavVQ0RGfDvSjx2+eYBrj3j4tOXv/Qf+IV6+WnN8NrLeGOdB0y2IGvnaN7/B3/0P/D245g/5m7/zA9qu44//+q+hvuNiPfKDH37C5cUwmRFN07BarXj0+IS2bRB3zjCM9Nstst1doxNPEiUEQdNIt2h58vRLfPjhBzx//pz1+pLf+BN/jH/kv/1n+eD9Y05PT/nD3/8xoXnI8cOAwxivjx8t+Mav/AonDx/C6Dm//JQxCu9/8BWOlidTId9cgsIofw4TuE5MADehAe9xvuH89ILtkHBNBvElsUrZbs5ZdGKvIe9qZV6dhH5e2sK70N7JyMf7tIPqXTHwb3qRb/KCnfN0iyX9Zs0w9Dx6+Bgp/IfrnJHimsuzDqVICWyowOLOpog5WQ1GxAJ9QkAkYExLRmaCBMQ3TClMBRwU36IaaFpvATlB0LTmO997zl/969/j7/57TzhadXzjV3+dp3/t9/lbf/gJEk7QBMMIj9/7Et/+9t/FycP3ePqlS776dcd6u+UrX/0aqwdP+Ft/8AN8e4pvLO06BI9vOparJU+ePOL4eIVzDZv1hlevXhUsxZKgVDze2x37xtO0HU+efomj44d877s/4I//sd/kN3/tjzNsPePY8uGH3+bJl36Jo4fPOX11Sc7w/sNH/Pqf+DV++Vu/weV25Aff/QF/7b/56/zs2RnvPfkKx6sTTs/O2PZbmkUouEYRqlgNCVffsRe8D2w3A+dna8AxjAk8GO1mJA49m3HkqOvwxS1cNY6Yd4WJ/05qf+QFAxRbXvYdlG9LKFTVbUyZtluWaEUY+g3L1YqUI94J6/UlMY54H/C+FFpJ2EwvJRKyRj/q5MSzTq1CUOMoQIV2sTCbWRxts6AWlRHviSJ4MeZnVY9vPIsQ0Dxwut7y//zPfofTdeaPffuXabvAn/mH/3FC+4T/9P/x/6bvIycPHvL3/H1/N93yS3znO894+XJLt1ixODohZhiGRD8mmmaJD6bReB/wzrSGo6MjHj16yDAIn/zsuQUNFaBS8ahknAScKN4LuJbNNqEvzxkGkLzke9/5lMvznr/rT/5xHjw64k//t/4sfWz5q3/1r9K2HX/Xn/hNvv61j/iD7zzjB9/7Lj/84Y/ZXKxZLh4xasvLi55hFLJ0ZHUk8STxxhopEKhAqsc707Bevjrlct3THq3Y9j0uWCSp0cFlzs+e0zx4yGL1gBh3RYLeLcflz6/9QgiGu7Y3lfoiQvAt4xhpmo4mBPoQOD19SdctMUbjRN9jNGJQaMlAVApVm0EtqjsPxO74xTanKdmHVrIthAbvW2oGoKgNUhVXZmjIeHwItKEQyUjmr/3O9/mdv/kdvvkrX+eD997j+NH7/MN/9h/jxz/6mL4f+fjjUz79dM3R8THvPf0Ky4+WfO0bv0zUzKuzDTFpYT0yALLWxXTO471FEi4WXaFG86XGg8c5P5lR3teamp5XZxccjYlv/PIv8yd/8zcJzrPZXvD97z/n9K/9AT/75Kc8f7nlvQ+/wdFqyQ9/+pI/+MMf41I2evcxIa4l0DFcDmjMlhMSAuq8RW+KL/UxTDNTsRoToWmIWRgHyw8Zi2vTZ8+qs4SrcdgyrC/YesdieUzTLMiD1S2tEZRXixb/ordfDMEgbzNW7XqrhKg+BFDjTVytjvDBsV5f4L1QWQ3GcbAMTMk7dbZkaKAOJNWDUsKoEDGAMavFKPSDudOWXWM1KmvooBQvhXh8aMA5UoxkPFlAXIf3Zt+3DfRbz7MXG1IEwgJ8S9LM2ast4jLrjWccXvD1X/oyoWnZXK55dXrJZjMY6OkLBsIO1AMlpVLvQmqqdsE9StSh1bsUvPPEJIxjZmwSPjhenH7K2Ec2655XL87px5H1dkvMS4aYGU4Hgg/kvGAcIik7CIExDeRekWzp5BbdaGHSpVYd1buTpydusRdpzDRdi1yMDMO4MzmWHYJwfvqSNA5cnL/Ct0u64ycWI5HFskxnruIpbm367xezvXOC4SpmkNnFBNTw21kIUdlp/msX/Qj3CJK6eh3sshYmajIMiMxknPO03Yq27RhXRywujzgPr7i8vKTve8ZhAKJpExizknPeys2XGoy1TJ4LHdAgZFBL0U4x4MS8AbsOn8tA9YhvLBPUBTQNhkmQCpu1/T1/tuG5XJDjyHq9Zn25JqaMZjGy1EXLoy895OmX3wMvXG5GXr66YLNNjDFPoKi5YqUkellQ0DCOpJSLaHM49TisBB8Y9X0qLy8m6MfMy9MNzp/RNQ3n51tO1xvGMdL3PTGPqHg0O4YEOQcSENUYrYSuaAcedR5tBHwuwVjlqZQJYorYxJLCVI10p+kiY19iFryaZ0KU9fqCtN2gjUf5GU+DZ3F0TLS4cKZSOEoxWStWlMtE4e5QI/v1Hok7xzbMPqs2WcPWr7rp37S9c4Jhr9VJYC/8cycC9MqmN4nwu+INh7bTG9ZlCu9BqdXwuF1wcvyQfrvh8vKS8/Nz1utzxnHLehio/v3gHZIGokaSkR7iQovXlhy3eBJjMuCxckbWBKxEtjDfUvhVEcQ7o0LLiZyHkscRGfrCGBUjOcdC096wWlk8wnK14tGjB7z3/iN8G3jx6oxPPn3FxcXI0Js5U1mP6jlTVIbBeBL7IZq5QQFEtfzV0vLFRasKY1TcqKw3Efdqw/HKiFdCaEk1SKpSwaVswGzhW1DvaWVlXaBoSwhkpySJICZ8i+41uX8ruzVQymE62q5l3ffT++yaAMmzvjjFExnJyPaCl89+wteOvknoOi62I861BRSevfvy/pFCxVeCvN40y/I+A7km+VX3924gFNFwJXbn88qufOfbz8/u23kY7FcJFfYexEyNpmlZHZ3w5Ml7hZh1w8+ef8LF5QWb8w2CEkTwXiz2oTAm+dAUTWEAVbquhWLC7Kr5lj8ptO5iXIbeOYILBbyshWGMCcqYkEopeCf4IITQslotefjwIavVis068uLZBS9frBm2mThCjkJO5usXb0ItRmW7GXG+p+/7UhEc66AGqExkJ6juSGjUMItxTGw2W4y3smWxXOKCo+060oyLslLr26SvOLXq2WmqjqU4Es5lan3O3YAsw0NKv3DGVymVsLcofw4h+EC3OOLsxU/ogjIipDySFH74gx/wy7/6LY4WBp5KDZjSyaig8ldYGTxKIeHrgW536ln6Zvt9Xu0XQjD8fFoRCldlkCqp0JODgpNSJzLQdh2L1THN0Yr1Zs0nP/kZFy+f7/zjyQZQHCNHqwWhaenHATy0ixXiPFZRfufmlDI3VqGkUitcZ5pS07EJnuDML+8FajKT5ow4oW1aVqsVq9WKlJSz84Gzs55+m8jJFX6IoqCr6QCpeCwu1j0ZZX3ZMw6JiYVu6tN1AbMZ2xiXYs6WCDVGmsZYoIMIQXPZJlmCVil9Z+ntxkCVsyKxFupJJQLdm3DAKpAbx6SRxFhxYCElo4sPTcM4jnjvC8u2J+dkrmLn6IcNBEdoPH2/ARG+953v8Eu/8i1k2bLpoz0L1RJwVkoDlJqZpsHtnsN1bfZ6OxSN+64Ihz/yguHnpi3ItXi4Am3YyzQqdgPq5pqdeOX45CHL5Yq0HdmenxZuxoqPWEderCyKb73Z0g9SADU3uc3Iu4K6qNVgULxpkwI4oWk9XdfYX+PwXoz7QPJkkXnvjeLMB7LCej2w7ZMNoIwRympGJaOyKxdnXpeBi4s1MUXWFz1jH0mxVs/aCc6aP1LL1KCKyxbSkdQGfj+ONFhdDOdD0YwsDV1KARtJRmybjP8aJBXExvJPxVWKuNoHKkFMIuXEkJJhIarkkk8BRia7XC4QgYuLC8ZkJpd3giSQkmiVXr3Eff+7fOWjX2LRejOfBDSPk9mQJxB59tL3fhcX9U3d6orp8aamyNtuf6QFw9sMYHpduylOvuY/TB1UtXgoTG3NgFdH8CVnoGkY+q0FQhUmaHHgm4ZF94CjB5Hx1cfEJITQTPTrWtiJNJVoiIo51Y7phNA0dIuO1VHHqg1mNpRAHjdTt0OwQrabrVV5TqrElMgpklIkqQ3CkmlAVkeMsN5sEZ/YDgP9emS7HcqsXtRgKcJBrVK1U0Wzm2iKKnicM8YE7XLhZvQ4Z5Gfxk1hDNEqJRZUx5KTktBS24PCUWlV/IqTUospkw2nGVMmFlv88vLSKPNFWLQtq+WKplFePPuYcRwJIpOrM8aID8I49rx6YRrekydfwvuW0ATGmBlTwofWcJFcC9Uc6jjl/ezpEPv6xN9uIXCo/ZEWDIfa56lBHCJyqUEwWqibplBa50sFZowEJEU2my2V5K3axlM16JRwoePk0XucXZ6iCqFZmG1bPCGUQYPobDBYOLIUlaBqBG3X0HaeNhi1mXe11J4Z2SlltoMgJY16iCNJUyFSScgU2u3IGcaIxWlIohkGUp8Yh2gkr3uJRruKVbXkvbJLTlI16rugNo+mbIVkfaWJxoQYJEQjlam6lqi3un3JvCRaNZQdW5RqKZyTM5vetIWkYphIzqyOjkoqt+LIxHE00htRUlZcSjgHXjNePDEOvHr+jDSOPH7yJR4//RJDzJxfbAy7wHg2bx7aV7WH2/vXu9L+SAiGu2S13bb+bWbF7R1rYky2GVsFq69gkqIkElmnvry84OzslJTGaQIxhiMhjmuGYWt2d3PE06df5uz0OUmF0LTENOLbJdSoyVTrTzjEFWaonQsHweGdp20a2tbhQ6EsE0Po+9EGtIiQk7FRxRgnSvWqktcZWARSgmFrAmwrShxH+u1AHOO0LdUcKAFfgsN5nWjfdzwTlnSVCpgq2dT3ica+kHs6J2QnZq5hz0vE3K1URudQi/SYFyambLRw48hm06N4LtcXxJQ5Pl5xcnxMCI6Uek7Xp2z7DSlHq2+hFVsxwSkSC6dn5Pz8lBjNrPulb/4KKWXGBOZEzsWdmyfhK1K9ITNW7V1vnUzTOqG8rs9d64PT8uv7T9jOlc/7tD8SguGztJto3G77fXXdTQ+2OusQC6HNFA4HKQxIpXbEdrvhxYsX9ENPkkLPZkfHOchpZOy3ll0pnpNH75MipNzT9wM5Z1pRchpRF1GJIA0iJd04CtGbF6G6ONVJycL0+ABW827WISchIBYv4TyOGhPgCogHKRom0DhHdMo4RJRITMNUcs+Yrc1DksQyFH0xXzQNlsWYA0bJVi2LnRdBtTy/bNmkpk1RNCoKe7ZhFFrsqOqedKpIAS9z9sWUMIDzcr21a/GBk5O2sFEHtptL2kYYtlYL02Pnd86TFcuBiVBT6auJc3l5NlUVe/ze+wR16GZLKm5d8Vb7IuZU+DRnlPRSTc5dz7k6qL8AH99Smw/6q37bz6vtH3tHhuqdw1+hYjHS1pGzVy+5ODuzeIKcyGJBQSJaKj1F0rgGFHENTeN5+PR91hevGNNohWMp9nUeQVosgtKRo5KdkLwjJcjFpVep66XMvDVkL6UdJpKSWszDMJJiNrMgVmZn0JwtaKnUk8jJaO7EZVIyXCKlxBgjOeXikJgN1mReGs2CEHA0FkPoLMhrPuNpiZWQCs8knbwdhjuA5J1GI2ScWAyjFQM2gDRGLRpDYrsZCKHjydMTPJ4QAsELTgZy7um3a5RUNBl7Hs4J6hzqxFK5sZofXiEEx+XlJd/57h/w8OULvvrVX+Lpo0dsh5GLzYYxWY3x4CyNPqu5iCegudytyWM96OR6W3307/g4hkOC4G0Lh9cdS1VLpt6EBgKQ8sDZ2SvOXj4nlqKyU0GZaasSEJRHvLe06MvLLSfHT+i6hsuLlxNi71ym8kyqWPI22QatU0eKMA6ZccjEJk9Ris7LpHra4M7EMTOMceqpUy6AKjmOxDSQU6ZrFkbpFpyZOq4Fl9kOPevLNb1a/YaiUBOcFbGJcQCNJWw549rGyuOJRSOKWGWrel1StJc8Ue8XjEMFUXPQlvLhNqOrgliNTHIEzINDyXQ1fkil8Y6j1REOSDGy6AIhLPnkk5dsNqeTieO9LyaaFpVGJkAx5UzKSiqmgZfAxdkrvvuHW548eY/3P/wyTx494GK9JY6jPddiGBVfAzs/5gF/5ufUfnEjH9/BdkhImEQuLkFn0rnvey4uTnnx4lO26ws0jcTYI57JdgcKyu5IeURzpG1b+l4Ibceis3BnkYSScOyQec2WR+Cdt1k2QxwS/WZk23i61hNjYCxIfCjBOTkpcciMQ2TsR8ZxNDxAFDSR0kDWkSZAs+zwztO1LY8fP+b9D97j5GTJEAd+8vEzfvLjjxmfvWDUAS0BQ027QgkMvZDGLTENxGFDbCxCVHRZggQNS5AimKzClwlYmBX+zTbYNZfSfWrPALVnQorFnWuagjoFMn3fW7n7IZJipmkD6sB7JabI6atnRXhZcFLKVlOigqNG8FJDvE1TGZN5RDrM7brNiWefDFycn/LhV7/G8aMnLB6e8OrlmXlwCueGktmP3v18pcIhTOK+7Y+8YPh5Z7sdesiudJ7qtuv7LaevXnF2/pzt+sJ88Wk0xF9ksoMFps9x2LC5vODkIayWx2hOuCbggyelAc3R8AWNkOOkNaQYidEbCIkn+JGmcSw6R98ZjwTqkLYpAowdR2LMxDwiLqI6kNLAw0dHfPmjD3jy5CEXl5ecvnpFCC1f/soHfOMbX+Xplx6y2Y6E5YLL9ZbTl6ekrJAyi0XHg+OWEBJp7Bj6NdvtBXHoIY8M4wbfnViNB5nGinlb6gAqgVtkiz1IKZbPZBhLSogm479whWFbKUFNFsA1jpGzszNzOxLYbDe0YUUIjiFuefnyGRfnL82cwa7FtD43YR6mOFgiGK5ETuRkBXtKycHgPQkTEN///nc5OT3lo698jUePH9F2G05fXVhkpFbFbF8sfB49920Aj/DOCIY7XPz8aRbftKnkJfNvtql1uArwXN9fZ6t26G5ZdOVAu4SZ/QMZtqDTPilF1us1l5cXXF5ecnl5wTBuEUZSQbNDCPTjtsx8dpTq2Ivjlu3mFZq3uNCxXo80jUFs4xDRRcS5DDpAqVuJgiZHGiPVIzGGzDBENtuRpgUIIA0uWGn4pBg+EPNUW1JL3MKTpw/4tT/+G/zKr/4ySOZHP/oRm/WalBPjuOH0/CUuJLbDSN9v6YcNKQ2IRuIwEJ2Sc6BrlqRSR3PRedCR7fqSTTEvhITkWhavEO86P9nCOSWr35EyecxTuLSmajaYcHCUEntTwR8jqo1x5Pz8jGEY0DGTNLJcLXjy4AEvXvyET599OvUO75iiPHPpHFZar+ApIjhnBX9CaNBgXpxxNG0rBU9oWnI6t5Tu7ZaPPvoqX/7yV1m0Hc9fvLQYkVlkpGE8xW2ttU/OAYcrffeW4bD/efM4+oXBGCp/35yw1zjzi1Con9O6+WdV264+4BKpNhvwWo9bXIGulE2vLiHDmU2NrSg8JQim77cMw0Df9/Y5bKe0a1OFi+pvN0QcMqK1zmUyZvbKiJkjF6cfs738KbIQXNvRx8E0jJjQlPFutHj8Ulnai5airB7JgRwVjUoclL5P9L2RxojPiE84p+TRkpVISo5GoNqPA03X8fDJY8ac+N3f/UPOzs54+eIlp2dnAFxeRJ49u2CxbBnjyKvTU85ffUoazsn9OanfMqTApSTGbQ8SEYnkuOHxo4bVcsmPf/qcsX8FywVkE1jgSUgpY2dTtXlaknkGRjWNaxzJMeI14hnw9DjpkTBiNS6tsveQLDP01ekp2z6ivuWr3/gq/9h//89BTvyf/93/E6fnG3JMeHRn+iNktf5mplUBgtThxdiyxTnEBzrfEOPAMI5sUkLSlqZpiOOIDj3fuTxjfXbKN37lV/ilr77P8xennF1cWjJZIZRJEULwoHFPIJgpOruGQ2PjymfFrKYhMZMBb+rpeKcEw8EHoXXd/jaHblWufO6Xcam+/uI+KjJDJg+eofeKhQRXcpJx7BmGHs2Jbb9ls9ns/P5x2M1mRbhQEHnRUr1aZ4zV1ROh5p+v7kxrie3lKy4unnO0fMqDp+9xefacy82lRSTGAde1kEeyAOpRbYCRnFobhALjKLgeXFCaRhBvzFFJITiH5kQak+V3oDbY8MQcefX8U15++in9djDeghkx6vryFWevOtrFgr7v2Ww35jXZnpHjJd6NqDorkxc7SyvXSJCeTWh48nDJ0aLl2dkzlt0Rxw86EIhqQVSWbFViIFKp45nMXZqj8WDmHHFEICIu4kgIkeCx+AY1EDHGSL9ds73c0B4/YEw9v/e3fg808+LlS/I4Tlrm1FeudL2Kb9SK285VZy7gHL7paF1gjCMaR4ZhoAuBGA2z+fGPvs92u+YrH33EB1/5Ku3LhpenF1adPDOB1VImqclbQe0vwp3Hc50op95/fcf7mtzvlGC4jzdh5xO+cYui5u9HnkkVBsAcM7bHadN3LrH84zgaV8A4EIe+lHffqbYxm0Co4OMuKKi64mQ6p+5f2u5dVtMIZeg3rNdnrFzko69/iRefRH70vd8hby95dNIS04BIg6oY5qAjmYjoQBLLnEzJ+A/GUdluLcAoayar0oRdJeuYk9WYTAkdR9ZnZyAJjYlx7I1KHWwQOEsB7+OaYetJSdmut+Rhi6YNoheIDIjLxKQkDaYA5EzrhDUtSyfEbc/pi2e0YcFysaJbdGCGBbFgBJXzIaeMJinP2nAGzYlMIouBr/hohWeCK3ETgheh32wY+h4YGftLPv7JDzg7fUW3WPDq5SeYmrYTylV3FLdj6K7vMabREuPKsSs6KiXKFJgo5QD6fqBtTVB/8rOP2W63rDc9X/v6N2m7Fc+ev+RivTUOh1KHdBJPRSHWWd++eRr8fNs7IxjeRCjIZBZMHEkzF9F+JeFJfygmwi56EdBM1swwzmzHlMwvniIpGp9BPbdVh/I0+An8yrUS857gsLgFLcCkTCDbrGKVkxLma16B7fqM5QI++PAhy2bg/+cGnj/7MccLODrqCt8AaA4oI8oI2kD2pNFU4RSVOEDvB0R2NrSB48XPHyMxRRzQCKT+kmHcMvSXnJ0+5/LiFO+Ek0ePeHDyiNAsUQJER0pqaH9/gaQNXnrGeMb68oxhu4YsqHqjq18ecdI9Zex71hfnjNsLXr34GcdHD2n8EtcYOQtFGKTy/HLMaDQXY0pjiVVIKANKj8pgkYlBcR5CsGCxmEZOT1+R8whEdFxz/iJyfvoS3zTE9TlW1XymT5bOJNQZ3GaOjEK5HsShYjEaTlzRO3UCLUV9MUOyxYUkq7lxcX7Gj3/0Q1LOfOWjr/G1r32Fjz/+hNPzC8RZpKXqrk9PAmGeTCVS3Lk36QNvv70zguE+bSdEylQ8CZQaqnIdewCKS24frIwxMsaBGMcpkzHnTMpxAp8WyyXt8dEVbcA0jJwzsTcGpZR2XAK1g5nLShFS6Up50hCguDenLjFydvqMs9OPuTj7mBfPf0K/fUlOl5ydfsoHX3pK15aoSiJoRBlAAyRHLLOeiw3ixP7EKmY5F0uGZjZXZ4qIg8WihTQSAlxeXNBvTrk8/5SzF5+Q08jZqyWb9z7k/Q8+IjRL+t7IXq3a9iUaN2z7U87OPma8eGUzuXhwHc3qBJEFIpn1+pyXL58zDlsuL844P3vJyfF7tGFFKZW9wxdSJudo2Zg5Fu0ogo4gJgzFRZzPBK84ly1y09mM/er0lXl1sOAkjVvIkTiY8BWLKtsfZWo8kYIrQU67npNzhlSwohB23A7s+CaC8wxDb9GYrrpbR8OcFH78ox+w3Wz48kdf45vf/Crf+94POT27MAxJrU87kVlU7F6HP/z9c2zvhmC44V4PZjPeFuGoUFOfpyCiyY4zsRG8J6u5D4dxJI42c6Yy4J1ztF3D0i8MkfYW6FLJQU2TsH3iWEDGMlPE0TSMyQevxgVA1sIVUAWK7vqkTedQ6vKkzUt+/3f+ay7OnrE+P+Ps+c9gvOD8dKR138IVujjVQC4eipwHVEsthQw+CRLFsja9x/tEvy2xFk4N0ffCcrVk2TTEkyUxXbDZvGDolaOjBcvF+wTv8L4lZjg/e8XySFEahr5nGDeMcU2/OePi/CXDukcWxzx6+JDjk4doNldf61s2w5bL8wsutmtwDU3XIYXUNlftSXUyc3TyQCiqAzmPaO5xjMCIcyPeZ0LINEFoQskgRSEntusLaiKYqx6AQvZivBQluGpnQ059pXoHLCy7Zs3uTAuNEXVMwU8GFBYavCqKUiaOg3FytC1x6LmMIw4jnhUy3/jal/nBT37G6enaPES6MyryHuChu368N1g+Xzf9uyEYZm2el34o5PmGnfawhH1X4t60QEomxbd9b2m4gA+B0DQsl0uAnTDImWHsGUd7qeb/txDllOJkMozjiKY8mRKVhcgi5nIpaL1LNBJAnDNhNCFalnSlmkgvf8KPzj4tSL1lKAYaxuGStl0UTcRm0MQA2Rl4VkC7GHfVmFKJfhxdUZ9dpglK07YcrxYWCehXtEtlvT0lxg3eZ06OP+TL73/Acrkk41hvBl6dbXh1eoYLJYQAyw9ZHj3k8dMv8ejRI46Oj3HOs9lsubi4ZD1sOTt9xdBv8d2Ko+OHPHj0PkcPH+NCQ8omPGPSHXtTGi3ZLEcTCjra/cqAkxHvIiFEQrBalW3BGLTU8MhaWRqt35jIjRjzFdOsWz2Eyq6LmEA3DkkLwpoTwRZXasxT3QmTKpltP9gBxADUEAIpJbbbzVSY+OL8jBQj38kR0cTTh0/YbgZS3iLRtJWkN0x6xaV5dQTUvn5lyYEh8kfRXTkDfN5uwJI9DIfNljElxqFnvb4EEbquo2lamraFgh2YQDCKsQlAVDX+RBKVc0DVOnIVDpYzMO5MiULHJuIsGk8dTosgUKbIR+u8tb/GsiRDibKrxhFpwGm00GkRnKSCL/hS2r0HMcYiF63ThuwZBwvGabLNaG1nNO9NE2i6hrBwOKc8fO8xv/kn/wTHR0f89Ec/JI2R04uByy10yyWhPeLJl04Iq2O2/YZxe4GTx1b5SRNxjCiOTd9zeblmvV7TD1tUE83yIQ+ffshydczi6DGLxQNCsyKJRzNEVcu3yAk0IjnidCTmwcwHjaADUrUFiQSXCR7aIFaU1wljSpZJmeOE7U/PmF0dyvq7jpXJP1H6Xk418MkwG+d2ULUU9FpRYhonAVL7r/WNEnhVDpuz4VUm/AEyP/zB93j63pqHD5+Sc2Kd+uIhu0kj0GuuyGnNDYP+Fza78iqrzYEtyqdcWTYzHwSUbOXktmsrqSbCcnlE13UY5bnHFYTZ3o6bzmlItCcWGzOmRD8MjMMuXqGClTWICYyDgRK7X9VQA0alEMm60tXylZedJy/J7k9wRDaXF6yOHiHOiEyESEo93gVEWtABTZCc4CKMrvhiJSA+E2IgB6v14CdVWYk5Asrq5CHf+NVv8+TpB2zXW+Iwggq+aWi71oKkXrzg+YtnPDg+4cmTR3Rtx8X5OS+ev2TbD2TZcByOWB4bj4L3ruRZNPjQIn6B91YoJiYhp8gYc6GkT+Q0oHlE84jkAfIAagLCyYB3I94ngjcvS3BCKDU8NGdOT0/p+80c65+0AjfrL/tjzCpXWco3OxtjJsDlKg9L0f7SLP6C6laofbC+v6L9qipxHNhq5vTlc1JKPE5KaBY0oaR6Y7kh1zxZzDWGz9eMgHdcMFxtN2sUpRtI/b77tDDWge12Q99vUVVWyxVd101Mzz4Yxdg0aYj5r2McSTGW4KXNTgDMSpbVa6quq3knoGyXC10aWklJQskhzqW8Wklgmv25Wc8VlBgHXr58zsMnH6B4s5+d4hjRVJiPnVW1yknIzpGyw2VwyWIBkteSwqxoyqQxoqJYsoUFRymB1fEjliuIw2hqtXc0bUPTNqgPKI4HJys+/PBDurbj449/xvk6Etmw9K25QbUQyRYBZPyURkeX1AhakqZSYCeRNKJpJOeRnAckRzSZUNDcIwwYvpALviC0wdE2jeEIqqRUApvGocK8twyhncU+CRChgLbGDlXfRi7v0qj1dhojRRPYpbBXT5jZKP5KX61kMjlFtptNKcQrPPnSB7RNoC/mZr0fe/MzX8Xk2pa9c34e7d0QDHug612zJZVKPXbo9ZtL0EKVN5s1w3YDohwdHaMI/dCzWK4ITTuNRHGOGEfGEruQkoX6jmOt22Atl5miZiS2bXsthsFsfMtTcI2nqpjG5pRIaixEe/fOFaB87xlkXp2d2XV404IsJNiRigmiGiZuc1WHUcBbXQRD+JWUHCl5ywLcKi4JzmsRKNnStcWIUsWFmQAEECtVFxpQD3jabslieYxzDSltUHVTB1atA8wVYbbjqZjCwtUIVtBELqYSU4yG4QvoiDDgXcI7TFvwjsY5gveIOnIZVP0w2PfZ87z+TIsWMOlwlN9KZcyScr06Bb7M6OjLAK/aoJYSNihEbGCL7s4Sc5o0h5ysMlnOiTj2XJyf0jYNDx8/pSm4lpmz8yudNSkvc7rqz0c4vBuCgeuD/3V4w2Qm7D2XGXAJpDwyDFv67YYYBxaLBTEaiYYLweoXOmcuIlVi35dknZrMUzqJFLcj5pUYhgFVpVssLJFm5ua0bEXrMMEHXONLjMMsUKdK+wl99tTY6ElW7Om61r37cTTSlGBkqJojjoCqVaOaErUyuOxwyZGTEFODeCVkJSZH7IVeFM0BPxTKtDIzKjuQzTlftCMD7Vy0mA5VJWXLl1h0C3MVBqOIS7FW6saiEevlz8w7A8xKwFJKBbi9KhxGskayRoIknJim4L3QeNMWGu8JsjMQxhiJOZoLOO0G1nwYXel1s0esULI97b0b3qRuJxh23iYTDPPIg/kMnuusv9dbS/4FghMTwDAyinD66gVN29J0R2Y2ilW/msMN06ShN9/N22zvjGB4XbvuoaD2sDJudAKPtMzOcRzZbDaMcZyCT8ZxoFssaJqGFBNZHaqOOA5UFqLQtuRkRVtiyUTsh56cEyF4Hj9+UlDnyDha4FM1M5xzLBaLySMQR3O9Ta5OrSqum5Bm4zbzTKk1WcmugJAzYzNq5vzinIePVliegUKOJaR7R6BGdqQUwQ8mb2LGeSVG8CNsSeQ8Mg6e4IPNuq4IBs2FdVrJo9WA8M6TIvS6Zn1xaanZUbm8PCelzPpiS+ozko0TQlOcogilYDjUWTTXAnE6PRMttPE5RfsrWsO0roZAOwhC0RaMeMW5MHkKTl+dsl4bF+MVEGEmoOb9RqaQZGOLSuTs7Hk1O7MCsc/qqRJsYOfa96rXCXNR16J+yaBZfDFzJ00DMyEsZmOk7zecvnzBoycBHxakWEva6ASU7q57T5x9bu2PjGAAJskJ1ZCoP66CjyCaLc+h31pBEG/q2+pohaIMw2DU5QUvEuc5Wi6t8Ok40m97M0HGARBWxyelI5aZI1lGo3MedUrbWp3EqjkMwzDNrpPrtN6GiJkDuWDdUsNsS7ajFDVb5j3ZgLrTVy948OAJXjzOmSDKMVKzC+0hCaoOzd5yDBLkKCQHMWa2avhD9J7QlM4rHSKFxl1GxCfEQdcuOOqO2W4Gzk5fsV6vSbrlYtyYJjEuuXypvPo4cXnpSOppVw7osRIulMG3w3B0xidZ60dMCWdaoznjzozwpjE4geA9jTN+Ce9deR8wxoFXZ6dsNutihl9TJ69p3VUPrM+sDt6sudS4KGXvisvS+ULrUtzI9mp32p8Uc2LSI8oEtqP8MzCz8j04wdLIvXlTFqtjulWD4IwWbzKV6wHtvV7r68xuVatWUX6+IQ7xzgiGqg1c/Zyvr1J/Fz5a5akUvhzKyzLVdNgYow6aIAtN09igjRHvdyph07R0XSBF0zA2mw0xRkSE4+MTQtNYOYespJL268ThUrIO5aXYzcOeKQEUdbnOhHl3L1pUV+dmE5kUaTHXIXeqY05GCqJpwDctjmiCyaqeWMBTLvRkWdBo14YaQUuKmVE8KTpidCTvCVnx3pH6BMnK3fuQWR61vP/kKS+fn/HJz87ISQjhiPcenLAdTwmLhmX7kI9/cMEPv/OCH37/FevNJd3K0T1MHD0UmkXGScKpICmSJZMDdo8ZSCastYCzVm/DgpjAXJYiEScR7zLBOTMjvLPgK7H9M5kxjay36+IlkGKH39xcCTPWUjxDq5gQm5FTjmiygVnfkBNfMAdHFnvuOUsR/AJqniatkw0lmnIeDAWMMeGCp3EBTQZwC57LizN8syC0S+LkxVLmYf77ALsdVPQ64vBZgcl3RjDUdmtk4/Wt9z51VsQlznIeyBFfiEr6fiA0jY09p/jQIWKErdvtlnGMaFbatmVRTA68ox8HVDKCLw4FK8pSw1jnIdU1lkGTMSWllEgwlYlPOZqKHtyU5m2ciblwBJaZa69UqonCOI6s1xccn3RAQNWqUakqKgnUgEMkIRLJyRfGJCWKqahBPJqELILrTZ1uXEaIBHfEg+WXePbTM378Nz/m5fMLzk8vAXjw6JgHDzr61NO1ymb9Y370vZ9y9mpNHI30ZbuJ+HPl/IXy8HHLw8ctPiQ0D2SNxGj35MVZ0lQxr1DLZsw5FkFuQU1eLL08ODVWKS/4YGX5RCxHZYgD682a07OznYY2Awtv6GhFKZsHM8kOvCpPvHokKN+dc4UJOqPZsmVz0fyuMSeV/3SSFDtT2PqKeXuGYaQJHev1hm414EJnTNjiudoqqPl5mxOvFQwi8leAfwL4RFV/syz7XwL/E+DTstn/XFX//bLunwf+Ambd/nOq+h/c5UJeJwj0yoPdJasyEyRMCLEFHA0WT1DsuhhH26a82KSKRCNSqYCi956ma+m6bhaTYJmGWWYRhTlPdOsWDj3uZV8Ow4DmjBdHs+iQ4vYEWC5XxpNY9lNVfHCTDW5krvH6QyCz7decnp2yPHoIasfQbKi8zTGRLA4RTxZnqcqJ4pY0IRLV4hbI0PgF4gycdN7x6Ysz/pv//LucvYj0F4Joay40B6cvM6GxjEfUM/YbxtgzpC0pDjQ+mBt0K/QDPDu/ZP3qgvc/XLE6NipYTWrYjPal3I7xLO5cvJYDQo4IsXheMl4geKy6lnd4X+MwzPQ7PT3l7PTMQtBrf7kKNBzuWcAu5qViCipSitaWfqY7XkwnlodS3ZdVuO3AwX2NV4sQqkZA7SMxOhZdi3clM5dE329Zrk4mU4RZP9+zFw6Njzssu2u7i8bwrwL/MvCvX1n+v1XV//V8gYj8OvDngd8AvgL8hyLybVVNvIWmRQTXwJyp6rXuloGl7xqRinkZHGYzxm2iaZgEjHOO2FeVP+ObtswaujNZ1I7nZiZOzkos5CGVqCVnK9o6jFtqfYHQdQCTWVJBzxouW5O06vnHcTQq8ixQ+ALLvDU9g5gGzi/OeG+wWhNTjICaTaxOkMINaUCGFZ7VnEjJ2cCNBrYFCTba8PQD/OC7P+LViy3j1jCJrA6RZAi/ONYFgHXOBFHjhRjXCAPOJfq0BQSnwSpNZTh/2bO+fMXDJwsePVoRGiGglsmZBnxjKrwqkAVypW5LeEkEn2k9s2AmwxfECUhmHOwdnJ6eFt5IW1cH8dVWB+du3FYGK5n6Fs5NrE0Us7Vqidk6TlEAZNIgrMSfxYPMHegZkBLPUv0kiikhcYQUW9q2Y9NHQttM7lYRP6uyVSa+a+Ph8LK30V4rGFT1PxGRb9zxeH8O+DdVtQe+KyJ/APwp4D+7y873MyOutGJ71Rm8hjVnjQYaqdGdOx/R0YRIqNGOFFKWuKErHoVqElAgICcOnYU+G2vT1rIzx3GK83fe03Ud3oo5EGMiBOi6BW3XAjAMoyX9OF+8J5GhFG7F2eC1+pSOTKkHMaFaic36nIvLc47DEZX8xVoqPdFZDAIRA0eiaedKeS4FL/ctm8vMixcvOH225fzZFuQI1BfAbShxmJZWbMBXUYt1ZEw9wgbnLDzbEwvHYSTgjRY/DTAKLz455/TFKx6cNBydNLgQUd0SRy21K/1USMbyDcwU8k4J3pXwZ0cTHPbarA7FmCKX60tePH8+pbhPubNVmO962N7vqk9UrElxRu0vDuedEcJK8dZknbwSNXu2ChkTlCWuJs/PNPteNN76vRb6HUczI1RH64MlotaFfTNCSk+s3WDCJJXPRTh8FozhnxWR/xHw/wH+Z6r6EvgI+M9n2/yoLLvWROS3gN8CaJruM1xGbRMWXAqAyE5ISEnfLaAkYkVRci6vtnAcNE0zlW5PKU6mg2Ch0HGc0bhttxPQWDGF5XLJYrFAYVrWda0dV2TSEppgAqJqNeOYyvUAiNHBiytmkbEuTZ3ae/rthtPTl7TLhyUF2CHFd144kNAiFFRHNJs/XqNl/fXbgaEfiKNycapcnkHaKuJXoP0OhXcWqTmBb4VTMeeBxIbgEiIjThKCCUwEUrJU4ur1SebDRGPk1bhmu4VuBb5JqMuEtsX7Dk2uVKWykG8vSvAloClAGzxNyYsAy6/oh56XL1/s8AWYBu5Nw6OOG5GJKd7Ev5T8iFJot2kaEzOqULS7+r53pgymYdQemGc8DQXgnLQHrVwgdZBbtGbK2fgki0ck54y75kGZCYdr9/P28YY3FQz/O+BfwJ7FvwD8b4D/MYcjLw5etar+NvDbAKvVic6W78Ur1Fbz3w+fYv80lZdRRGwWxzNagWJiHPFqZUZ8URVzssrJXdeRsyVa+UL+iYiRoQ6DkYAW06ECjTWO4fj4eMrOHGO0WAZvM2/WXPAGwXlfKi/HKTOzgqTmYTP2YQeMeSwzaEnGUhN+OSdOT19w/OA9jo4XZTJyBVeXSRWHWOiOg1GlaSbFkfXFGev1hnGb2Zx7cr8AOjNhtAcXUS7Jruejr77Pe08f0zSB1aJju93w8cc/ZbO95GjV8PDBMctuhebE+cWGTz99xfPn52R1kBqctPWtFOGQWF9s2fYDrom4znF8fIx03kyXZFa1OLUoxyluQWhbj/eFB1RgGAbW6zU//elPGVOcesDOStgp71XAz9dXGEIMnd2trS5KMTPBzXCDmlyXUi58FwV3Emc4Tnm/dZAbDlFPVv8Kr6PauxzjiHiLnhW/A03tNl/DVHYDjPJZEqjgDQWDqv5sui6R/wPwfyk/fwR8bbbpV4Gf3PGY1wCbuzM6UVQsewgWa27p1HljJdTMzoesNdx09wJiSoQQGIZ+fkGm8hWTotK8GWUYk1AIIUxCoZori8UCHwJ1rqjqZ9YSDl3Mju12O4GeAOKExjcEdcTC/6AUQAy1gVX4G/p+zatXz1gsTwhuYaXeqwaUxQDJVGY7MWC2Jk49ffKUb37jIdt14gd/8IrTZ4pLR3TtEaoD2/icQQdCM3B0Enn6vnB81HB8FLi8jCQ3sN1kHj7sODlpaZzn8nLgfHtJH8/IOmJ8lIE0wW4KWLCS5gg507Uty+OFaVkCJJ1wIqvQDcGZYFgurCSf8/ZMx9GK8H766ae8OH01oTC1L4jusV7MgLuyXV1TgpemFOsJcNyNt4olaPFKTO8UWy5XhAoi1IjvvR48CRjrPymXWI6UqVZt1S6nXWb73TTGX+uBeYP2RoJBRL6sqj8tP/8HwF8v3/894N8QkX8JAx+/BfwXn/kq4ZpXoqK1UoTAxOhExgeL8W+KV8GShoqwyXV2ns/ABi4OYz+59nL25usvHAzDUFyZmvEu0Pc9IQSePHnCcrkkJauX2DYdzaIzIVFUWl8FQ4RtAcv67Zah70lpJARPaALeW5ZgGkbGPJoh4TwqWgSC8Q5mtWK0L188Y3X0gIdP3keSAyyN2dwQSs7REAJ1lmAlJiyPjo55+qX3SGPg1adLLk8jjhWL9hFHq2NciFxcfkJ2Z5z/rOd3P7lE/AtwG8Z4xhi3DOPIYvH/b+9Pgy1JrvtO8HfcPSLuve+9fLlnVta+r1gLKBAbAWLnNlQPe6ZJM2nYJpmoMVPbtMy6Z5qSPozM2mTWMzatsfnQ1j2UaczUbZIoqtUzovWI3SQlNikRALEXClUFFApVBVRlZeX6Mt9yl4hw9/lw3CPivvcyK7NQYiU46YXE2+4S18P9+Dn/8z//02LNBtFH6joyn8KiOYTICs6OQMpE6mnxcYFhC8IGYg2ra2scOblOOSmom4bFokHEg4mp54RXo5DCh1FVQRLp9UFl+Da3t/nh6ddYNDmDo7UOORW5G1PI3+eTGNFwR0Sra/VfoTgPfUiir6laGdlItE2DH+5FSeFaUM8hSujCUg0fpPMa9MxRw6UGIilWG9uxZvO67XGQXWDqIEFxNaPw7zQrISL/BPgkcFREXgP+z8AnReS96fJeAf5aupBnReS3geeAFvjrb1dGQl8fOuR4jz3u6SCqq6CTHINofYRNLcySJ6KZgSzBpa9lrKWp62QoNAzI7v5iMe2et1gsKIqCo0ePMhqNlKPftNiy7Ko2QVWZASXQNCF1YFYC1Ww6BWA0qtSIlZoRmc9mzOYzBMFap7UTwSOoGy0xo+gB30y5eOFM0ktYo/XS8V9MahWfc+ghse2KoqRpPRuXN5lUBxmvreBGc2YLi12UHFg9yu2nTrB2sODK9mm2ts+ycekcTT2lbXdo6gP4oNoPbSzUA/NCCBbxlkm5QtsajCuBQOvnRKbEOAUzx1VCNSo5ePAAK+MJTUgaFj4ZXdHY3JlAaS2Vc1TaIIOyrMjqWXXb8sqPXuXylc1dd385I8CeVaKPVXUuA0ZFVMSWGlom6nPGEzTLQbeZuywQGbRMJfW2ZyR2HkZQt0EGvUPzGtYfck2PqliJEcpq1DVFTg9aihb2Yg395n87vYbryUr86j6//gfXePzfBf7uW7mYHycr0d00dKqsNZSl3uy2niNSpHSWuuImud05ZswchuA91vtOn6FJKUnS37NROHL0EKMkpR5ixBUFRVl2LiekECBG2kZBsulUBUyausZawRWOqqpSXYWnaWoWi3nK01tCAB+8dq02BiTiU+iRS7V3ti+zsfEGx45XODOmaXOxjlZhGmPw0SM4JAptiDgj+CAs2poDx0rWtxsWc/2cFy5doRgXHDp5O489+DgiD3Lm9DnOv36RjfNXtPK0bZCsHxAd3hskljQWghga21K3O9TtJiEuNI0Xa2KYU5VwcH1CVRXUi5omLPDJKCijNGKtAo1VaakKq6XVidDUtCpke+HCRd54441OfKXLRgzcdSJLhmKoBWqMxRiHWIexTkvvne1DgZil3EIn9R4D2qA3r7PYk5r2cBhEszkZXpDh7s5rlp59C2jT3cINd383eo+DziPqeDyD9x5e048zbjrm43DsRxa5+hjEeRGsdRSuZDKZcGUxS54BqidIxBpHpAcP1bCYBDo6df9j7LoOlYlO7ZzjwIEDiAhb29vdCWKd03LstsVY1xkF71tm8xnb29va1altMQnotEaZbwCLxYJ5EpEZVaV2iwpt56VIei3Im13BPMKCjQtnccUKq6u3YUyZFrAnpmxFiGC6xaRdnafzBa2HsvAcOebx04btCxv4OnDu9Tn1/ArT7Tu4/6E7efj+R7jr5A5nz5xlZ2uHul4wXhuxsz2F4KjnQggF9TyytTNjc+cKTbNF9DOIOzjZAtmmGrWsr49YXR0RCdSLmiCqiSkxV1BGCidUhTApHVWhRV7WGhZ1jQ/afu6Hr77KbD5n6DlmTzJ7Tbs9hfw1n+jOFYh1iC2wRaEeBLrhQtbLGNDbM1aUDyEtZVdPjNDXTkgHaKbS/GWgoc+KJFNlxOCs6kN2B0scRAsDL2PPTrhGKPHjjJvaMFz/WJ4uEd3cMXgOrB1gZ2uzE1cJQU/bED0m9UdEcnOZmhBsBzjm9GIIgTZt0BwDzudz2lbBqNF4rDqDMYONqbdiiCzmc7a3ttjZ2k5GQ0/AqnTYFGrM5nPm8xkxoqFI1L4PIlrfAYo7+LbFmn7xR8mZhgWXzr8OjBhPDqlCUlBJfKVRps8uCVsRS4iRxtdEdlhdccSTERtqFpvQThsun215bmvBxpnLHDkx4cSpdQ4dHXH8xAqtbxivlFy5vIlQsr1Zs3ml5tLFLba2zrCzvUnbXsHGTUSuILJBNa45cMixsgYxqHKyKmu1xKhdsqyJlAZKC6PSUpaWsrBo5aM2o23blrPnz3Fp41LyFpYB6xxq5tSgro4+e6CGwXQpSeMKNQzZmKMyfup99P1C8ui6cCevQCnTqVgq5PdPNRcZExtc5e4tHDEYq5qjo2q09Bc6APXGx49bSHVTGAbFoj1ZNiMvfYHOJesSN7F3CIPkM9B07ptJAKRzBW1TMx5PWDuwzqWNCyk2FIInaTKSGqEq7VnwqSIxbSSvbEJVRgoUheuMglZnFpRVRYgoaSjl/Ult6dqmYWdrk9nOFr5tUnhTpJNBr3e6M2NnZ4oRiyushgteezFW5QgRmM+neN9iJIOuA28qLeZ6doXNjdeoKoctUsyP07n0WmRlJEnCSWIHRo8Pc1qBaqXkwFHLlsxUq6GxzOYtr7w05/TrlsmLI1bWSkaTAuMipYksmgXtIjKbNmxvL9jZmTGbbdKGHYxMse4yRjYYjWesH3KMJpE6LmiDkpN8JG3CSEGkcpbKBCaFZVRZXGnBGb3OVmnHZ8+f5/TrZzp6+RBtyuvCw5JR0GUkSEdYAjGWKAasUX0OY8iANoD2sNC6lh6EFLRdYew80J65qheiNkQL2STVxuRcizFC9OmKQ9TiOzHJOFn9SkpNk43Nrr0S+xqP3dHJnynG8Gc6Oh9QBl+H8WMy1GRjkn6f9AyGIwZwtqCWmtF4zHixwmy2k15DBjOqLDSMkp5EQnfChJAZiP3rNk2jYGPbUhY5XFBQ00guBdb06HS6w872ZsIUFAxVVqSKu2j4oISirnaibRHR1vPWGprFnBg8NiHomT/RTVlUo0qMzGaX2NgoOXgEXLFO3S6I0VA4Uf1JES20Eq0FUGqvpU1lz24CK1Gw5Yx6p6Wdj/F1yc5c2JoC59HCLyNYtON222aSTksTa2CGYUaUTUy5zdqqZzIxuGJO7Rsar1zOiOCj3ruMK1RWGFnLuCwZlRWusEQJ1K16OhuXN/jRqz9ka2trKc7vlk5/94miGkwdVyVveUnqzsYQrXSVj+lp+iVqFiAT4jqmY3Lzu/BikBLNeEF+HRFZUgOIUT2IvPY6D8ZYrCsoXKFZKSODzZ96XMRdl5izFRnAGMzDnkKut2gsbi7DcLURk3EYpiulBxyBxBSLnQsZvMcWDlkYlUCPB1WiLekYLrtaIbd1QAxdDYP3XoVTo+20FhaLOXXT9sh1VIl5Z7RSMgQ1UJp92OlOtqJQT2FoAKbTqTIhE+qeAVBjLWVZsFioyIxiHxl8yn0yQcRpO7N0rMSmZmvjPMZWHDwywllDjC0SjXpSkgVA0mfFIL5Qoo1vCKbFrjSUzkMVGMUJ7dyx2BGaudA2htBaYgIxMwgaCETxWKkRM8MWM1w5pxq12KrBy5S2madWeS6VLqsGvQidKlNhDaPKMB5VuEJTzllSbzrd4fUzp9m4vNFlH3YbhXy4WjHJSBdJQ0MNdeN90vhUjolN9zBv9u7I6fQi+s5ioD06OnAv7i53zsCBemekmQ4idLUYMvAwhIRzOIpCQwmbOpIHMngpyMDkDTG3Gw0VbtRA3FSGYb+sRF8oIkuPgWWkdkgV7cGiiHMF3rdU1YjxeMJOu9UpKuXNHcOykQhJL8B77Uhtoy6IrpltRPPqkMq6NW9tU3YhF1Y1jWYQcuORXK2Z05a5jZmIUCevoqqqVNsRur4XReG6wrB+cZiOo98tIoHYztm6dBZwrB++DWtNpxplYy5Y0vCL1PpdRBBnwNd4FkTXYseRZr5NLBzFSkFROUKbFJralIvPqLq0BFpiXBBkgTENRakKUotmxqKeY0xQJSckpQTVE7OpBqIsoKoso1FJWWqdSQbz2rbl9TOnOXv27IAhuutkJAOLOi8amhVYl/AD2xKTSpdqYGQBliGSr2Ho7j6ke3Q0Bhs0r8WsObkXRdi1xtPX/NyyLCmKUtmuYrFGkKhak6oJqp5HruQdApFvxl/4cdiPN5Vh2D06Q0GfkukyFDH2Ln5MnZIlKTN2QGPbxY5EGI9XqOfz1A8xxdpdQ5E0eSEQJPV36BBmaOuaEFMhlrGdR9GlOZORatuW2WymDMegbMuiKDoQsWmapPvQdO5pNlJlWVKWJUhkOtUCraJQkHLRtun0VMwly6WRFnSWJgODr7fZvKiE0/VDx3HFhBhEVaPFIBKwyeAm5m96DZNqNHTuxDUEP1eyVfB64hUChWIz0eS8vgqyxKil575dsAgRCUlsTiwmOvVcMlPQCNZC4aAqDOPSMK5KRpVuEo8nhMhiseD1M2d49dVXmc2ne05LHdIbhFw7YixiSyRVSYrR9vMKyqZ4P62pmOa1I7wN+pDq35NHlkIJ9RSWT/Kc8+l+3nONsXP9BdK1qq6ksyqxZ9O1m8TADEG0nR6SxIf3Gp4fF2S82ripDcObje7WZCsal6dt6FlEwDntNhWSVsOSoRl6HyH04FVU5L9NN0bxiCS44htaD9Y7nHOpKGrW0Zyz25qNQvYk5vN5b1DSoqsS/qAMzDm+aSisxTpVdO5EVkUSgp7c2q6yMmpDm7REQ7PN1qUzGCOsrR/FlcqADNFiQjr1FMvVDY/F2kr1HaWBMEMcSBKcaWVB29b4ttZO2VG1FbSuIXSGKaa2cIgqQ/uopzeSAD6jXoIzWiBVOGFUWsajglHpcFb5CrkM/dy5c7z8ysts72z1AODAs8z3V1mLagQMSWNSHIhNrjkY65LYrLr2y3hBql8ICXRcEu1NXlmat/y+ZohP0HsS+n1Ia2cw10lA2xjV0XTWAZop861qcxgXMZL4FVmt3qj3kDR88sstjat5CT/xGMPuMGLZO9iLMUiHvuSQov+bYhC68ZqmSa6l5itGoxFNXXeG4SoX04UmIWqT1TY06W7oCZ+1E0CIiUhU19q/onuZxIvIxTfZU8gjG6zsLWgM62kWqntQVSqSMk9iLhk4c0UBkus/FME2ZFQ2oiqDHl/vsHn5HMZY1tYdXiwWpzmA0BLFqRqy6GmlDEuPsxXOlYS2wddzmqqkbQvaZkHbLGjahqZO7fdi8mISaIsETBalxWDEgXF6cov21zQmYF3E2cDIGSUylRbrcrpQ7+F0OuX06dfY3tnuANv9FrwxqQO5U4OpEmx00u8xasVp5/6JdGHKEjEopPsdhpmHJURysPmX1+7SVo37PV49BkE6byH3IvGt1/S3D5RVRVEaCpsq6DOWNryGq4w/9x7DXuZjDib6v8nux5OJJMok821gsUi9JpMb7oNKwxdFoQYibVLjHKFtWB5poUftYpXVjRFBknxaPu2tEerad1WSOTTILe9yEVbGKfKC0HDCMaoqLfGNUXtqNlqdCTDd0aaniCLprtS4GejeP/MtehGSmFqse9rZNpcvnMHYkrUDpeouxhpjC8R4YnSITy6ssalIKVJVE6BF0K7NMcm9+6ZJlaYtbdPQNouOzqwFUgnJl9xTS9WtQXDGYFWZFolQFY5RZRmVBWVRYJNStaSQbHt7m8ViATF2AOBw9AeCCqs4V2KtSyFDoiunzRRiv9m7suxdbngYYAtZXEdtbQBjl3Cs/Bzy3zMgbAa6j6FFt3f6W4xduIMIrQ9I0xDjDkVTU1RjWt9Sti1xskJZjRHR9gYSVJdCM0hvnwG42rgpDcP1DPWwevPQt0/P//rSZiXG6Kb1CSHON6jzPrpXXX6P5V+pgcpahRl9zospg5Oka8vgaDYYQ/o16MLWhqcaFjRNQ9t4yqrCGLQbd8JCTCqyqqqqS6VmfIJUZt4DcDK43kDbLJjPplTjGidN4mWohJrBgeTiIIs12mvDWosrBOuEwhnK5OarsMyCulZwtZ5rc566rmkXNW1bpwxAQxu8sjd9k4hAylkYVUWnzDQqHaOy0HLxJFKzPZ3RtovlHH36KoOvipH0BtikksysjtD6bLyzgej7QoSQMaa+q9MwfMjzu+feJ++gIzENRWcH61HrJGJ3rdmrG9Zh5DWZRYqzdidodzRnC1yhhWg+h3y70rTXMhI/jgH5iTUMGXTTb+PSROup7VOL+6Su1HWoTsai8wBCh1THsH+9l4aXPdMkhqAxf4ptew2/lpgKtqwRLBBa3xmLobeQ5d92pzBDCIzGJW3dsKgbfIzYskgNeIslXMJKbpaTwLHkJvcMv7ShQh/bErV/Q9ss1DA59TAg9fGUEpFC6whERVeLUUk1KilKi8SA9zVusU3wDfV8RFM3NIuG+bzWOa8XmHqBNDXiFxAtrW+xAoXxSGwprDAZOcYj9RSMsTSNZ2dnh9liikg6GftocslLFEDlD3rQcfCX/D9CyHUYedkksR5Uti5X53Y9LmLoDAf0X0nhaa5R6eonuhrBwRUmwFLoOn0MQog+RdqFgmn9qnGGEBy+ralrk3pbpGyFpF4jQW/57o0/NHI/7rhpDcMS1rCLvgJ6G3yATJfV/gS+3/i+0XLppsY3Da1v0s0P6STRfyY9P7Mbl2O47gxe+pWCU+peSjq127ZNvSbosg2dF5DqIzQ9OdjY1i5lK1QZyBKBum3xPmCto6pUsyAbkBjb9C8M3NgICXRLCXS6cuHkmTirVGjva1ojGCP4wmCjJURlSurCDwQJWGOVnYdWAEqjcXibuluFFnwQYrRE1JAIDT4qYYrokWAxocX4iJGAE09hYVJZxlWp/SGSuO7lzU0uX76sod6k6IRZ91D8hkN004UYk7ZiSIh+T0UMoRfWzUVX2SPIKcDeMChrkX022BIQqb9g2WQNiU497iCoNODQKPQp0EhOj1prcM4SS5+Mi0+MV9RQR6FNZLb9rm/Pte7z/fWOm9YwwF6sYfnnAYCU8+lRa9tbX2sPyrahaRb4uqFNfR1iWjTd6ZAbymZg6k0nUd1zXU0D+bjsOop07DW/K7zJnwFIxJaiAyYzBuGcUyPhWwRDWVWMx+OOqBNjS3Zp22QEyQ0rk6GCvLglA+lY43CuoG413m6bGiSmNn2OQgokBLxJfSCi0EYgGGKjn8WJ1Y/tPb6FtoW6jrRtwLeeptGvPn3mmMMc7zHBY2hxZWSlKpiUllHpKAtH03guXNzgwqUNWu9ZcQ4Rq2zAJXd+OBJ/IESMUQPQiu9CODVMIXW5GhRCDV4hp6yzYVjaQPlQioMC50EIOPx52VvYfbjQPWfInByOYXjhvce3Tee5tM0CR8SWLq1x9XTfpG1GN37isxLXGrvdyKWRgUhrCI26Z3WtDWl9o92gWt/iQ5P6nJhBiipF5mlDWxH2BhM9Rbo7CfqVkk4kn7yF/kozlz54dRGbtlGQM7uMNvXNTHoPbZuEVAWaxuM9WlgzGim3gWUUPQTdhCSPKqaiIKBj5AlGwTnRSsKqGoEJ+FBrC755QzSCFwM5W4HXKkPR+CPGAD4QTIuX3E1b5ciaFKapl1bjo/5r45w2LghxTogLYlwgtIorOMOoVMCxKC1t23D+wiXeOH+RWa3qVwGDD9r7U0Ovq7sMOs8Dw4u64xH1IDpAMRGX8gHQJw2WDYNImr90CKVjo7/fMry/Q0OS10aPK9huRfTP6a47OUJmsLJzytf7NoVAlnqRe5CETrMh+oyV9G+/nwH4c4Mx7LbI+XedCIcsm4esZ6Epu15fQcG+ltD6pPnfdps65jb2aEiQNbiivlD3Xt37o8m/fa4W8Iq8x37hLi285CkYY1KbPAUZrdXTXxC8b6mbmpg7Qnkl9uRy64wrZNzE+zYt8r6O31pHsJr7lhgxQXkFNqp8GAlVN85hIzgXaFLYVc9naLyd/pFKtUVDk+iFaHol6ugVo/Die6PbJiynWRDamuhrvF8Q/IzQLoihTmlKVeYuC0tRVSyahvMXLvL6mfMsao+xRfJwetUja8zSoTBAlgBZ3vjDLtD5fg8yB10xlMk6Cekxw3h9Hw9hac3JoI5m6H9knsOSKUhXk1KOPq277KVkICh7ERkfU90QBbCbkJr/ti0+xiXvp5uT7jPus0zTXN2oibhpDMPeFOXgbyz3kAB0ssmpe4+JUCR0OkZ1E4NvIUaspI0rdDF0Ph1ifv2oOn0mEYeGYGMIQ5yjjx11UbUplEkn1pBZF7S4yIcE/CXRWd18hnrREPDpdIg4tA+lTxqUZeUQo52l1TBGrBWaJmEaAMYQUj2/jxEbtf+CFU+b2IoQca5UHMBqabf4gI+ismpsISZQmIilJcQRhorgnZK5JPdWiOnU9cRWW/9FHwhtS2haVVIOGlrENjXz9Q3RNzhnKAtDNSowZcX2vOaNc+c4e/4SddviTEEhTlvrBW0H56yhsMVgHXS3nuwfGLHkUnoQQqsUdZM2P7EH5LIxlew5mLSClHOc+iLnVCeDd1tep+lGw3BdLgHXKUDNGQSyo5H4JjF2dRoi2tgmtzKIafO3SU80G426XmBdqZW3IaaMnOkMTkSWsiK7d9DVQZr9x01jGK5n7DEeCbXWL8oIrMoq1SksusWcA7JsDDqp70FkENM3VzNO17iogYvYv486Iv0JEol94xrpXVEf++q90IGJmVWni9Qkw5bfJ3tEDNKdGKPajgrF6SkTE/YgligWjDLttDVfCcFiCLS+YTGdYqJAFSnLSBO0jsNjQWwyqimlR4uJIdG+1Uj59C+Elugb2mZObBdE32BoKVyiOxclW9Mp58+f5/ylDRqvfSUCWbuz78h1PaFEzD5d0I0Roiwd5DlWjxlsyV6EMckzyyftNQNWHR220HMT3uwsXiJi7fKE830eCspm4+W9p6kbQhRqqTEu9vMDfVu/GLuamditv91zdOPjpjIMS5mI3ezHvQ/Wmxoy01FTXmVVMWkmeN+mvHqLzToGMWJUDbF/HX2R7scOLd4VUrzJhe/6MSSRjoFhSDcyRD3vNCuiKk0aXlhtQuL15MvkneAjmJ5rkTMdMWoI4ZxunhBRhmFEQVFaPX2jQWyBMfpPc/8RKQQJLU4Ss7NpmfodfBsZtZ6irLC2IIcZSM7G63w3bUvwIcXDQcOLtiGEhtjOCe0cwgKLpywtKyOtF9na3uHs2bNsT6eqxxDUE8IM4369D845rHPXzErERJ5K24z0Y7d2uuKjXS8QQ0iFpqZ7z+X7eC1D0RuGGxnSQxRL63oIPgYVIk0hJhhxqhLVemrTUJSjFDL2GZb8evulKjtc7AbPu5vKMFzvWCYl9cMYQ1mUyAogkZDSlG1IZbpB8YKYFkwe2QjkxdOJe1yPccinTXfH6Sx5RrRFIpk6nNuY5z6XnYIUy4DWkGjTkVoCCVj1nUHI/3yEgIXWp2tS3CVGgzMl1pZo7YB6DOIM4g3WeEoTqaMCtrPpNm1d96Bn4jMAXTMVQVKyoU2krdzNuyG2DdHPFVeILUVlmYwLhMjljctc3LjE9vYOnoh1BZJay4eYtltIPkCX19+blcgF0sPgDnrEXj+9Vo/uC8ClgyR7CsOV0Kca97zB8vPfZOy+6v1S7n1GREFHk9Zmx6PwJJHZSOsheJUNLF1BNNJRt9Ur3C/kiQoivwWX4aYxDNf0FmLCAXb9PYZetbeL15LXYIzBicFYYWd7OzW0VQnwpc03MAaxX2J7buSweu6qIxmFzjCkuDJnQPIr5dRmzJ87/aVDxulb5FlrtcNUin0Xi17YpUgiqSaFEY33qUoiYslup6EoSsqigpiVrqwqBhWG2LRYPFWlpd/K3qyp25niHK7ApbShAqr6QQIKlMa2xUflcHi/gNhgYsDSUhbCuCwgBC5cusjGxhXqEBTHQTUdrFUSTx5tUPRdm/RexSzv40F0hj1KR8XW6b9Kvj9GutbRGbBa8hKyCNCut9rXKOy/LhR47K9lt/fbhQ3pYVHAhr5JsvEeyqQW7tWYhbYlllGRd+nXz368heF6vlHjcNMYhmuPZbeuB4A0ruwBI62MkwjOOiara0QjOFswne6wWMwVnNpn5EatbznF0z1PX8NEXVSZNz8MKwg5m0HXrWjIdbDWdcZDoEuhaooyUhQlhStwScthtxESerBNjKGoRpSlGkuD0Q0XIxKgkAr8QGgWUnXngraeUkvfuNUaq9ccULA2xlSt2BLxEDwRT4iestDwZuPyJXZ2tlX4FYhiaYNgnFZdhqj6A6ROWp0OAgafuTxvPvmD/dpvBgMpfIx9mDL0D2L2PELKPHXo077vIgPey+7HXMtTN7v+rt5f30ZPvSO6tneZOp9DxGokNK1HrNO0sG/IRbX7Cbm8HeOmMgz7eQv6YXt++NDq5sgyhp5kpGW/kMt8x6OJlr9CqmnPjV+7YLZzWUM7oM7u9R+v91Ok/6UirN3HWzolck8BLc5KXzNrxWn5byZLiULcHYOy6OTUhxJ0aHGS5BM9dm9dFAWlK1QPIRNtQgQLzqr+QwhgTYAiEsUjradtEs28Sf2kRP2q4AM2N1vosjxJsE3UC9jYmioWkkhe1ljEOmIUDR+iYj0mb47BjHdeSVdNuWvbvdmtiZqlSKaBZXborsct3Z7h30XXyCD9ObjCpZcRkW6N9c/uvd2hhkh+dseLGa7nQeoS+ma5nSeZmLveBzqGRRcS5beIy1/fShzBTWYYdo9rgo8knnroK+k07+2S+IgScbRMudRTs21SXJw3ZOiCht1stLc+eldU13QHe6dfhySAmlrlRQ2uQ+sHC0MBPazFxKx4rCXkuWAoU6uzgfBBU7OSgFQfUeGDqB6IdUXnd1mjAqvG2qREVmJdBCPKDTEBY7V3ZGugCUG1JHKfzbamEIHYdh+5rzZNJJyIGgHJojI27TP1mQWNn6NRVSlBxUgKZ2mTQfBBRV50DeTUXwr9Bhs6RwNLGzxG9WL6u7HXRjNUBxt4dDkFGQHx+aerhpPDcBBSY9zBs/R6+3WwnFmDKLETZ4kDQ2CMzl1da+NVXQV0+BUi3dW8fb6CjpvaMOw3ljGGfjOL6e96DEHlyaOWRLuiUPks5yiKcrCIJcVqCb3WV9oXXbiBK0xfAso83BuWxhBULyAtNHVghCwsmjn7WSVKh57KWj+QgbagpJcYu27eGdQ01tC0LWJLjCuULi05LebTWSq68SzYVHUqHYMvYFxa8F7TqMrdV2FV3y5Ictu79pVoNgShA0CxaD5I9syuxuHp5Ewxs7ad15crqxHWFLQ+6z5oFinGNwfae7c//byPq71Ma+6uiMxk1C9vvv0GVBnynU1ct/75nf+vhiPmUDKrnA/wkL4Cs0VixJpC5d9snzqmczgiS8qzxN4j7q7nxlbxzWEY4t4w4mrgI6SbGXvgsfsdWWE3dqzDYFQRSBuXatFS0yx6DyNLig8qJqVDp9+6K6bpMOm2wvBVYueC5w/n8cnlFFFPJ49huOCDp5AiXVXSpkxz182XaJ/Kul0QTQFFha1GhFTFFxOgZozVxRS06S/GJWOh3oKJCgJaC6EIFIMPYFBwDJ/Sjcko5E/rQ+x3RfqnihnZN0in5tJaHi5uoQ0qBDMaj6hGI2rvVd8g3edMILvmPRgYgmvzU+Ku73e7I2+yDvrLHkb8dIdMNhD0eFA2IIIMCqyWr9UH7ShmxWCsUeaqdenAiZ2HsftC+pX71v2Im8MwpLGfcYD8cWXPjR72+MubJ5JFOPT1snjokhuXRFEL57CuL5tOF9HFfT/OxPYvpSdnn/tORi25rJ3lT90QlNWbJM9DJAQVeVVASkEqlR/r52NY9i3GEQKY0SqT9UPcduo+jh9/kHpR0TRGeyokFWWNsY2mxIwhejVCPv0tYJJGAB2OI1ap3SYUatoSQSv78xL32yXZLIhiEwlRl5jSesnLzgaju5dRWFtbTxmVrcFKSIDdYK67BMNV78WN3Mu4yyDs/9zBx+sMwO6/DzNmCoT2yBMiXcsBuztjgc6JQSXqxKoKVsxan92jZPD4/a/zrazjm8owXP/oiTbdYhl4D0OhkrZVUKxJFGIfI8ZaxuMxRVkQY2CxWPSTes2T5QavMgOnAnEZ5ereKgNtEXqsK5N2Uiek3HwXUkqze/3+fUSEoqwQW7J+6AgPPPoIH/nEz3DXPY/wzLdf4ZvfeFGbnUQ0JIFkIPX6jPTcDksEp5vDh4g1nuBKJR0l5mMUT2wEYqNXn2jjknd5f0ySS6Fzdl8k9psjbRQz2DwheQshRiaTFQ4fOUIUYTafMp/PCb5JPIWlEqe3Lc4eYhlv9rg8Yvp0+3kmQz6GcrlyRicJvrC8qWM+OIwaBVtqCz263prL776cDn97xk1hGN6UVsq14sm9fx0iuxlP8GHQ6brM/QaEej7vyDR66MmeSR56L282ho+NKEgkRvacaHsXUI9xdBSeqNmCrPmQ6zii953X3Ql9IKysrvPwY0/wyU99hvc8+STleIWXXz3HxcubND4n8JQh3pUmqQOVjIx6UohDJGJswhZigQ2R6HTDRlGegc8RkTbLVCOXvJEofRY9T6vK79khvAf0wJ3G3OlZAZra0/rI2toBqtGYpm24fPkyW5uXaeo5bdOoh0j3Ud6G/fHW/cTd3kEXMqWh6WLpDIOEHvzu3z0FGGK0L0aZeCSuwJpChXXJ79EblCwKvD/zkTcHZHaNm8IwDMdVsYYM3ET9PzWapvf6Yv/3mBdqzPl9/VkMuMJRViUC1PWiq2Rz1uKl6F4/Zs0FpNs0u6508Jtul2bYafAodYl3W4b8ufYzOuphDPCDXFKcNA4yPyFKiuetZf3wMT7+M5/hs1/4ee6+5z7qxnPuwgbf++4rvHHmfOpMrVtSom5cMX28r8ahF2M10RCDwdhCO2HZmOoXFNtwrtIZCEKIyulXll3aWMNUXzYF+XTsPAv1KvTkjOohASEqgFk3numsZj5v2djcZG3tACdO3cXR46c4/eoPuXL5EoQ6qR6FzjDcEJ19nyFv8bkhgpOUiRlEUhJjaoKjyl6KYYVOqh/65YsxKlNvLaYocaMRRTXGdJ2q7JJTOzRCeewNK27cC75pDMObpSa7IckydzF6+nWWAos5bw25Ak7RfDrVZRGhqWt8ShEWSfrd2GJANNrtiZg+lkx0mOWbIV0XoeUimxR/d1rgy2OPYYhaedcOCr86zCPGLgUb2kAwlmgt60eO8rlf/Av83P/qlzl24jaaxrNx6SLPP/8SL3zvZeY7tSo3pxDFdPPXA2ECRJs7LafmMMYixFQOHbAhYG3ARuXyWxOIVqsojY29Rkk2yNnljYkKLqbzdHrjkDwW+q8+RHyApoW69lSjVebnL+LjlBUKDh06yOPvOcbz33mai+dfIxJxxtCGgDMGLTcRhjUw1zt6b+ZGRy8tZ1L2R9JlGHqpeZPk8tL5Q5sYjZ2n4CzGlbiioqzGVOMJZVmpJ7fbiOy67qGB6PdFrtO5sU9z0xgG2Ost7P4b9NVooCIo/cmdESydhBACTatybojFGZVZz9LvueGLs4V2gQ75dO9U/dRNF43BFbVbjudSuRMZ84DEWpRUA9GZj7jnbg4/zx7jEJYeuLTAO6DUFoCwsnaAn/35X+Tf/w9+laO33cnO9pTtrW1e+9FrPPed57l04RLOjhmms/qUWJo3Bl9TWThRZeWUZ6AxgyfiEg8jWO0WpQIKEKRBkwZRVZPy/dPAO3lH+Z2WYMPummLKTHQ4Q6sVhtZZfBvwcYFbzNne3mZlcowPPvUUX/9qw6ULb6QTmC7k8m8bL+XqYwnXSoYhGvW+jKiWhDGGwi4rN5mUIctp5py5sdbiyoqiGuPKkrIcYVOafZix6eZqMHYfLrt/d6OsyKvpZt00Y7eB6FWgkzpPEhxRifiwhNB3mgVoN+rcpVor9wrKstJeBKIdj2PswctMItIOQT2pKAus5DEMHfKNLwrtgm1cAdb15c5XOY9Eln+/5BrqEUx2Vzr6N4aVA+t88tOf41f/0q9x+x13q2BK23LlyhV+8OKLvPLyy4pxoKGJdmoOS++TrgAydJhER7VdmkqsGaPyb/mfVj1WqmKcailysxcR6bQa+1Mz7vex9x0+hSI+BFrfslg06T63NHXNdGcH71u2t65wYG2Np556ipXVVcT2aP2Pm0269li+j7k+Z6l8Oi4bfmttX9syOPjEGGxRYNLfymrEaDxhsrLCeDLBlcVAlzLTuq9S+3GN8Vao0m9qGETkThH5QxF5XkSeFZH/OP3+sIj8voh8P309NHjO3xSRF0XkeyLy+Ru5+OHX4b/h49pWexpE3/aafkGFWZqmYbGY07TaTNa3LYvFgkVdEzA4V1EWI+1B4LSFWUDVlqOAWKdWuqz0X+p/6MpSv7cWUnqvE+nowgY9FVxRUFQVZVWpCnRRDIwD5IWVnQHZVR03xOwTIqc/JW/GVSPK0YinPvIx/uKv/YccO3EHLRCjMN2Zce7seX70wx9x7uzZdFL5q7qTIWpMr3UMiYVoNE2JUQk6EgNPDUMBpsDabAwKjNU5MklzUv8pqp500sg1JPtaiLhsGENQ4lbTehZNw3yxYHVthcV8pgrXbQsCG1c2OHbiJA8/+piWZ6P1BoSAM9dpiW5oyK7/TPcvHx6d55CyDiEBw8Y6qqrq+pdmzokrSspqRDWeMBqtMBpNKIuK0lU4WyKplDzfR++XVa+v5lnv/nqj43pCiRb4T2KM3xCRNeDrIvL7wH8I/KsY438hIr8B/Abwn4nIY8CvAI8Dp4A/EJGHYq+zve+Q/b7GAXGHfhLyJCUTSibLtK2eKj7Vs2ePQbsKFxhrKZxTzcImy8pr1iIGNJZLwFEOV/QGK7DVtURPtQvpKE4XrKFMCCrmWVSjVEWoj6nrBW2tpbPDWGFITMohg8qr9ADaLigT4xwPPf4E/+v/7X/Anfc9QBBL03pmi5rpbMYbZ97gzGuvUc9mhKbBRO1cFeKAbiVpCUc1aJIjnvyOYiAqy06xF5Qh6dJVhKy1CCYXPjmt6tQMkHp0YoQMZGS/ZN+RAd6YUspBDYp2/Gq6hjxt0ySVqwAJV3jPe9/PbGeb73/vex1v5a1S3K+2jTr2QfLu1FMQhAQGmkTeEunmZniwiVGpPp8qw7IQjyRPyxUFttBuZHqv8jrPYd8w47E/JvfjGoPheFPDEGM8A5xJ32+JyPPA7cAvAZ9MD/uHwP8C/Gfp978VY1wAL4vIi8BTwJeu9h67nezu6+CDZ0PR/6NnN4aknBu8ysWnUMInsQ/nXNfWzacOQ9bavpt0WVIZs2zN09CQRRul1PUitYwPA8Sum6j01VPXc4xT19AYp3qHIixCpI4x7X8ND5SPgeIZw3kf/NQBSikWPXL8OJ/5/Bd49In34KoVFj7iCbQ+MJvOuHTxIlc2NpAYmU93mKyWqdO0Sem9DIQOys5jBgZzBYEo+Jj4F2ICJkaCiRiTay8CPqjGJCmGDjl0Cf0n2XO/rwYyJyNFiITMfZCApPuKqKhuJAnbRKHxkUMrqzzx7vdy4cJFzp99AytC+2Nsjt3PzCS1vnDNDrgJGWNSW6ol8nS6Et1rhkHLu/TciCQ2o1L2bVFqSItJ8pHL3vNw3nZ/vLfTKMANgo8icg/wPuBPgRPJaBBjPCMix9PDbge+PHjaa+l3Vx170yvXWDxpGJNkvHLsHaLWA0eP9xqXWis4ZwZxWui8EJBUP1F0rq/G2KaLA30IyhlITVa6865L/O86lbLX4BXgdK6kcJbC2a5Srknhz3D5xYwjiPSLAbDkNGL6m7GU4wnvfv+TfPxnPsPkwLpShaXAB222M5vN2L6ySbuoCU1Ns5gRqlVMoXhBGBiDrrAoX0Ps513EJH6HQaw2mpEQwQQFPmOLBIcxIfEd1ECoWUnNVjL0LglnGHzeYXVofs8QcwfzLNwSiV6zSj7kw0Cv3jqNzQOG2sMdd93HI4+fZXt7m/nOdpLPX1Y5yuvq+jaPdDgJSDKGqfQ8GdaYcitdI99ONlhST1B9pbZtKcuyo4obo6GrLQpcUVCWI20lYJ326SA7Jns95WGae3n99OPtMA3XbRhEZBX458DfiDFuXmPj7veHPdcqIr8O/DqAc+W+L7TXSg4tp2BMxKt51oVopNPVE8nA0GBSIWkYoJs7NaMVazop92EIYUIgGkPbNsznPukd0rmTST2292Ly32LUJjdFk8KTgrKoCKNAU9csvGc5ldaHRDGl2ayxENokGZ70CmzB8VN38MlPfYbb7rgTV1UEb6hr7TXRtJ66XrBYzLSfRtvgFwt8swBTgDVEHFG86kPmaGjX7ZNkpPI8i1iMBDDakDZGh5dCKzBt7y7bNAchBiyiPS07Kvg+BVSDBd7l89PfQiqNT7IW2r/RqsCLiKEajynHK9hihHEVthzx/ief4rXXXuX0Ky9rz8urbKzrHZJFcIylcGUKSTVDMAwTQmq9B336XMlM3QdN89Jn3bz3iIsdOJkNgzSJOJaIa9LNTR9SLAWX+32euMtbeQtexHUZBhEpUKPwj2KM/0P69VkRuS15C7cB59LvXwPuHDz9DuD1vdcefxP4TYDReGXPle9HdErX0qP20hc8CdKrAUWf6uOzAMpc3TaxmE7LgD7LkECzJe29FIZolWZN2yYsYnfoEHqNSGLG0YQQFO+oXY0xtgtpyrKgqecMRYXzKdsh+QF8aFTDIOEfWPUWHn/Pe/nAhz6Mq0aJzdiDsaom3HSNZwm+61CNK3Wx5TiYSAyC2IQnoF6Cjp66DEmn0hiITiu5o4YTulmVwWdMIJiAdSn80snBhG4N7beyBv965B0Bn9LOom4C3mt7+ID2DB2trDJeWcNUFUEc0ZacOHWI973vA5w9/Zo2M/ZhaS292ZAUquW1kmX+u42b60PTYdOHBspGXZLmEyEYIEQKVJLPGFUUCyjhCRSftaIEO+NcAtHVU+srfndvj2UQ91oew1sNLa4nKyHAPwCejzH+vcGffgf4tfT9rwH/YvD7XxGRSkTuBR4EvvKWri6N/cKMXCuhmodONQASztClM72mKKfTKbOp8uzn8zmLxSIpGuf0Zu4ENWhQkp7fNo3y84Nfzo0v4R/5tMvueO5x0XRdpXxoOmPknBs8fxlrAFLKMP/TykdswYH1w3z6M19g/ehxLaZBU5dVWXYnV9vUtHVNaLVTtW8bgk99NoInph4bcfDuOUZeKhhKn2NoLPqUnMHZIm2cnKHQryK2p++aImUyTBeXL7vBy6dfPxu9ExaitiL0EbTjtGZHJisHWDt4hIOHjmGKMZiCgONDH/4Ijz3+RJrHZfXl/fQj9w7BGk1lF2XZpWARWQJS8xyq26/pbi3vLzoRW5ta3YsITUol+9TLNGTRoFQ+L0Tt4WnBJc83g+rXO7rD8/qfctVxPR7DR4G/BDwjIt9Kv/tbwH8B/LaI/BXgR8D/Jl3csyLy28BzaEbjr79ZRuJqY7elX44P9aQzEpPeYe7l2DfviLHRDEXqM1AUAZv6EmbnzHbpOOnEUoLXFRmDFlhlAdb9mn3scY/pBcJCCLRB5eYy8886iyssTWuIe1q762v7GCnKgmbR6Ge0FrEV73rvB3jvk09hXKkVAia9RlQ5N9+2LOZz5vMZoVmAh5iyM8Z7cIFhY1Y6EBI01ZId4h5UI/8s6oGRMijGOkyMGAtdr4bokegx0RFtxET1hfTvkFMf+x/ekt5/gEUM3WfR1GkbI6YomayucfDQUaJJxCCJRLFMVkZ8+tOf5ZWXX+Lc+fNLbeHe7PSMMd1PMRhXdFmEmD4HJgv5Dg6QqJ8n8bg6DzaE0BVVWWc7YyAi+DZgbU4jB9W1QKn51hii1fAh6CLqMah9r3kf0HGAVQ0N442M68lK/FuuboQ+fZXn/F3g797QlSw/f+kD7Wcc+lirbyHX9UyMqdFL6uqUXfEghgYVU21bterOOQXXzCDeDUDQjVbXddfgQ5MJccmTk8E16c+xfww94SrLouXH743te3BtGBuLLQgejhw+ys/+/C+yduhw0v5LC9KICoeKNtmp67rzcDL/IQbt9yDBI+LUgKJhj6ZFTX8xyRvLupH9yJva4lzEN1oZKEZ7ZhqjvSuidR3mIzF2vUIlFV9h4h4ZtOUx9KR0qJ1OGRVjKMqK0WSV9UOHcZX2ERHfICYQonD/Aw/x0Y9+jP/pf/6fmE6nezbHkDS09M4inZeR11hWyhoal4wRZKMBesqrYcgMzpjwopja+Hk9gJInYDUmw7cNlCW5O3bXeDj3vNh1fV249SaG4mo/X++4qSjR1zs6dllyv421uFioPqEPXS+BJXntHDLUNSKCqyqKWGiBUlo4ufMPIsQQk2Jykxz9ZLlDv7gkJpGXVIjVeQ8JsUacJgjbliYEKFI61NirmNq0yKzVWoSiwPtIMZpw/8OP8MgT78IWpZKPJJ1KonGqdn3yXe/O4FV+PBDw0WNiwKXiMqLv3PXQazktX4cIwYe+XDih9PqzxvpGLMZ4rHFEE4jOQxuJRutDrIUgBpGWIBnU1PZ5u9f1MobUORcDD0INmBqGEeV4wsr6uoK729tI9Nh2oRiENXz0pz/J0995hldeeqk7qTPHIP88HDlEkoRTdQY9ewm7MYQB+AhJAl79xF7aLcaue1cOZYYGpvU5rOj5Cvp+2Uvp32vI5XlTz4e3bhDyuGkNw7UyEv0kaXynwiWQFw+I9pBIAiIS21TXYDuST2hrmtDSsuiAx7bNWoqRtkm6iwaMNSzmmgLVn50agpiwDkm19fQdjYmtiprFgCUiMahCtUnXaAo6/ecef1McInosBg9EsYwPHebTP/vzHD15StOXQSvzghja1hPF4INQLxoWsxnz6U4nwNoEj4sBEz02eKwExESiibSpv6Ulpydilx0BOvGQLNiaIx8R0QrAmHL6idsQYgESEVTINua4HMFIJNISY17YvXuc8Np8p8mT0lXBGI8Vq0kgVxBjQVGOGK+u4sqSYA31bEEUQ93WFNFw5MSdfP5nf55//N/9t2xevgKEjh4ehu8jgNg+85MOkRgjwUinKQoRn4EPeuAxO49th5+kjuBCZxAKZ7vMSgitclrqmsI5jKgEXxkj0/mColKWpG8XA4+kB2a71K5uit6+ZkA+jRzOsvtx1zluKsMwtHK7MxJ7UOVBPJe1DLWG3WEy0IUlkhSGktusjDjtQ2wkqyYntlkLdbLctnAUpaPxDfPFrJtlk1vCAb5pFEE2FpvCg1zDkSN1q2JFWslptbNQyM1XjYOQumQP9koIEVdaWgQ3HnP3fQ/w8ONP4KoKsdpNSuvHklsbhTbXjbSe6c6U2CygmnRxcW5JL8ZD1H6QEVGWYbdJBn5DXkxJGKY7GdM1qgF0isVIwItBcCBeadOkPechWOmyN0Sfvu9B14H5H3yXwi0xWFF5dxGlZIcARTnClRXjyRiMxeJooorb1LGliPD4u97DI489xte/8lV8U0MC+IiRsCuWCwiWZbCyqWvNRgzC1Py3pVAkn+IZ7OxSsDqPysbsvckgsXvNed2AdZRti8Np/89Ohm8ZI9DoOa2dvU5XPwYg5FsFJG8qw3CtcS3cAXQCl4tZcqxoMCYh9m2rcyaR6A0eSa6u3jifshzGFcpwTI93tsA4SeIumgLV1nd9Pju7mkCv4WcMQRx10NPGpRMneG0GSwfISdqc2foYFj5gyhFrBw/z6c9+jnvuvZdMOsrP6SmyKvM+X8zZuHiR2c6Onn5Z4j2ChMFCHoCvkCjYeT5zyi67zHn+d/3r3GJjIaRS8GxkbcITRHEMxTUNJh24IV2zhOyhLCsZ6YZSL0b/ZlXTwGpGwreBqqwYpVoUMRYXDbPgaVJXrEXTsH7oEJ/7/M/x+muv88brr2p/zahGp49X0scmdh5SNy+pEneIM/ShQ+jWXZ7TzvjZBKJmz6P1XXgxJJWph2goqwoS7iDp8OoEa/bDQgZrfhiCsetxP044cdMahqt5C1f7/RDUsc5hW0vb5sVuwMQl8dChi9YZHFmOAU1KLbqioEwnB+nvXSNX39I0LVqRiCalSYvLWLyI6hUYLUpq20Zxi0SKEcnqyYBE2uBponYfctWY97z/Azz51IcYT1bA2KQqnMIpI0CqJK0b2qbm4oUL1POFfuZuUfUnc45dl5HufnH1xibumiuW5ruXhUs6FJIFSixiMlqvm8DYtGjTiS4hpHLj3HtDN6kIqSejJOAt81WSgTAWYxxN61N1bEFRKgNSgnpwElp8ne6Lh3sfeIiPfPwT/O7/+DtsX9lI+FHfsyNPg15qLnqKndqSpr99p8KVJoRMZRL6UAtiaiaclh196BETXqLzlWPHjCkYQhtprFfuSprX3fUeMWY3Ye/5n7k9+xmDt2IgbhrDcD0klGuFFpKAMWMMRVkSYuhSROp8GaIh0abjgLy6fPr6EDDiKauK0WiMK7T4qiqKJXQaUpzpNY1mrNP25b4BNO2EdbTpOTbJ2/tWq0INytS04gYxfG6SArgRj7/3Sf79X/lVHnz4UVxRppPd9ht3cHo1tRqFK1eukBWsNDc+WBhp8XQq5lF3hL5U7ACyPNf5674LK3k7OYQTslGIkGTuY7Sq5hyTB4GStwIhyaf7ZBzy4Z29hPz+CRgV/daJsgNVtMpSJOPgg4YsftSAryEsaINhvmg4sLrCxz/xM7z0gx/wja99Bd+2RHLfh/R+GiupF9N5YD55fQo8SshJ3OWsib5K7K65zxroRHdGIMZunQ0921zcF9Jc+wEpa7C684QnjES/H96j3Tvnzy34mMduAzA0Duk33eMyeShvchNhNldKcwiaZ1fvtVdY6o4kIMQWk0gphUt9Ia3WyscQsUY7D/vW0zRJ/anQeDq7nYR0w4tCwaoQsMYgUQFN39QYAtapn22s8hRC0k40IkhV8viT7+cv/7X/Pe9/6qeQoiDnPfIcxBgH2ZfAfDbnjdOvs725SQxesxVJum2ZfzE0Dj2BaT+ju5/X0P2cJ0+0BJ3EEFS2ZEnIsXYShpQsVWdyLQUaLhC6sFnyORxjJmOqeKoWXWClhCRxZqzVknbnkCDEEqrRCN/M8Y3TyssYmdctx07cxq/86l9kY2ODl3/wIrFr4pMiJ5M4F94jVqnMPnEMRDTMiyFoYjxdZ96JkaiGSnovZ7g0h1yMmL08a1TnwzqMKyiKKulalESExocOX9CIJ3b3fjD5+96XN7tv1ztuKsOwn8u6G5Dc/Tv9PUAvrhJjpCwqivTzbDZjUc/xXvskECXd+O5diJHEctPfdCSpRusQCmNpmrYr1+7at0PnmQCUVYWIdEIx1pgEeLXEuiaGNi0iISYmXUz6jaDiKPc/8Rj/6W/8bR5793uVymwcfiAi07uZim0sFgum0x3lMSzmtLUCbTJ4PJ1XkOYMSWF8bxyWMz6y534spRS7x+nzTZatN+AQ/GDjaNFYfnxM/WUUqNRMQJ8uFRi44sl7SJ2ajKnAGGVbGostXCKoAbEE72nrEU29g/EloZkzr1vKwnPv/Q/wl//yX+W/+W/+K1579YcQ28FeS+dwRAljVo17zgoMqfIJYNmF/IWuIWH+1P36TYeWsZjUm9Jmo1ZUFOUIjKUNAdo2hUsa0vohBX/Xa+7Z7hmbeZvGzWEYrvKJ3iy82O90c64khEjT1IQouKpkpXCUdUVT17TNHGJkUS8SDyArMPcLPQRVD1LBEgWOmnYB0PVTFOg2f9f01dqOZKTGyWFiwDeLVIefWQORJnhsUSJFqYvCWmxV8tCjj/M3/o//Jx554t2U4xXmdYsmFDRTkcFLYj7ltFHOj370KhfOnaOpF8kJkgTspc9lcvowCanY3gOBXmJuaBB2z+9SPh0LknGE1H9ClK0XU1s6C3h0jnWFt0lV2hBimyjGsetxQXLyuyUeRbVeUrbEFmVnTOkwDcGl6k/KkqLUmgZjLNEU+NCyM53ijPDu972Pv/rrv84/++3f4sUffJ/5bNaBhvnUDzFV1A7XWVcPswzydYZXJ6h7Tsf9yOGt9KFDURRUWcDHlnqQGO0+DoKPQTM9Sxt9/z2w5Blc9VFvbdwchoG9i/DNvu9Pt+VTLbv3IpmUYok24KyjKitCO1IW4NSymM+71xRJfRXSQswofWw9LSSCVKIfG5Mk5ZY7RmUtSWMMzmp1pG+b7nEi6kQHBHEFQQzeGKrJKsdOnuLBhx7hF37pL/DIu96NrUYs6oaYcuwxtWUL3uPSwlu0DYKwubndhTK+bTVdGgLGqlDMsHtZt+DSolVvYa8nlhf1bjS+uxfd44xGEiGiddZCbogjRnBAiOqWx1QxqXMc+pUsfWESgNl1HR0OZAqM1TDNGpuimNQsx8Su+tEWBXU9R0SNV9u2XNncghh44vF3U/7Fgj/4g9/nuWe/w8ULF5jPpnpAxMTUHFS+GpE9G27Qaa4L8DpPzEhnZLV4ziKk8LRMrRKLitI5BaejgpomhQwx0jc3XjoUh9/vCuv2wRh2388bHTeNYYCrewj7G4f9Ka2QSqsRRPKmtGAhuKAndNtQN566aYltS8+D0IXQqSjHSIjK5lN6s+9PCFkuymmaBDpa3UyLhVY3OiFJfKEGBUsUgysmrB5c5/a77+XJD36I+x96mEcffZzb77qLYjzWKNzqpg1RgUqJgSKVecfU4KVtPJcvbbC9tU3bNCp5F9OCzXUhIkST5sf0mQRjk7YAsjS/eQyZevnn7p7kRZy2hhGVPU9bWFvGBwEbMdESo08F2LED+wTtrJXxhcEdz3e0I5/FODAMSUPDptBPjIZjGcwrXMkseUfB6xu0bcvGxmX8ypg77riLn/+FX+COO+7ga1/9Gi+//CKznR1iu18tzN7RhT6xNwyd95A8R+cchUtygK7ss2VWNUYRQ2a7DGXkh/fgzcD4/cbQ2/txxk1lGIbjamnKPDIbbRgXd49DN6GN2udPxUQDBDBGdQQKV1G4mmYAQmkJbNItTK8VsgqyV09AXfk2gUPLHIb8d9/mv2vjOY9RQo2onuT6ocM88MhjfOqzn+fu++7n/gcfYuXAOmVZqso0JP1FzZKIWOXQty3Gagt7HwKhDcxmcwRhMZtBDJ02gHonuSyY7jQ0xqairKxbaTDYbg4zoAlJhTuxG3VuM1abmqZI9kBkMId9KXYIbdevNtPGgyTJt2DTBokpMpDuhMyMadWfTO+FxdgCsaLVnCaL8+qx3aP8ruM2SIhEo0VxsfXEtuaKbylLy2i8wqOPP0E1GnHy5Am+88wzXLpwkbqeQUibP62DMAglulQxvdea15tx/eYvC2VnFmVF1sJUNS8NuRRkzZ+5//dmGzp7fPsZgLcrVQk3jWHo49clgGsf8Gt3jj2PJaOR/p7j/hACrQYEeoOiIsFl0SQDE9LJOkg7BY31QmrOoqxBs0RkyvUKoJ6Gz8UyDF12BarMeIUTJ2/joUcf5+M/82kef9d7OX77HYzGE1xRqOaBdbSEtPlDYsiZLoYVIPoWItrABLh86VKq9e+VrDOHIPiAJ6jXko43MZL+KdZgsJ1hiFGp291dicuubZ5/k0Vi0+9CWtcatsQuBAlBZe0EEt8jIq0nJEo2qc8oshwi6gunuox0ulqxqo8okSIJ7HbhjtD3a0iGoSxL5vNFZwgXNbTes5jPVNXLKph49PhxyqLk1G2n+OY3vsFLP3iR+WxbjfugjgaGkU82hNIZtJyJcskwFEVJka6j19o0Xd8soS/Y0vArptQu3aGytEOGa36XUej2ya498ecmlLjRcfUsxfIUGWtx5Buq7rArS2xTYJoFMYJP9Qm74+3YhrShIq1vlmLubBTyZowJf1DKdCSIYbK+zm233cGTT/0Un/jU57j3gQdZWT+ELUaquBRgZ3uOtZZqZHDW0DbaIIcU2oQQ8b7BGYPBMJvNef21M7z++ht897vf5+LlK9SzHQW2RiOUWEOHlxDTiSqm20zGqIaAMQrWKSzh+9DAGAyRpvb4JIZLCrfyKd7NL9nLSuIjtttCmqoVYVHPESItvWJ1NAl7GRwAagyS+4Ykr8F2AJ51wmSyQllW3furN5LASGMpypLRaISfz5UKPdjAIQTqxuNiX1PTtp7RZIUPf+Sj3H7qNl747nOcO3eWnZ0dzUqINuMdsh3NwJAtzalxyv4c4Dc2AYsxHRK9l7CMjQ3xruHoeSjQb/+rb/q3w3O4yQxDH1vqJO39fnlCNPMd82Oym7fLdHYbFnVPY4xYG3BONR+9T6mrkGlPsTvpY+pwZaPKtSW/NYHZKv2Wax+sG+OcY7K2wm23neK2O+/ivR94ig9/5GMcO3GScryCR2jbQL2o2drRkuC1AwfSiacGxjqLWKFuWs1kWIfBgoed6Q7PP/sc//0//Wd861tPM5vVjMYTTpw4zp2njjMerXSptix1ZxFKsakBiuuMl0tCK6Bhh6phS6doDFAnZShNuQ0FUdNJmeY4xCQKK9J5ap0Umghm6ohe+0MYCRgTiR2PIXbhicrV6yZPwIieuM7pnS4sxajCFSUxGloveK8ytx0CmLGGoqBt6o6iHoKn9S3GwHzeqDBKWkX1vKUsC+6570GOHDnCSy+9xA9/+EM2Ll1iMZ/ThLYLJTIADdmY9QS5bvnFfBAlbyER0zCZm5ANgCxhjEtZoMGW2AU3MtwN+yMRcdfXGxs3kWEYfsTeQOz+Pk9qftwu28ruHgWKEiubzaNrJ8uvVaOKgGc+3UGC0IQai9CGVj1YhCDKIMwUZh8SmJlakpejCa4csXJgnbvuvo+77r2Xu+66m3e9573cfs+9lJNVyrKibhrmswYxhrqucWXByupEeQ4ZZ4xKvfU+pHbxKQaNOjfNoub5p5/lv/+tf8qffulPmc9nxBhpdqaY0HJs/QArq2vYqsJPp/io/TacQCGClV6yDNHmMco/SHF+6iAtIh1RDKBp6r6ZTDrZQjpJO13EmKjE1mFTWq4sK8pCu2QHnxoImxIvHk1zqnZGxhl0l9qU6cjAq3oNzhYEGsQKpnREa4nRgY8s5gttBB2V09G0DRglqS12h55C4pdoab3BUriKne2LzJ1jNKoYrx7kife8nzvuvo/XfvRDfvSjH3LpwgXqxVwpz8SOuSqi1beIhnlt1HJzawv1d4z2/ySpgIeUll0eQ4xMv4bkWewVronkqco7Zvhqcen1h9kdbmjcRIbh2oDjvhkLgdwIdel33bfJpR6kNJWvoJ2us8uP98znMzUEIaJnbFbiUXJNg57cYg3iSoqq4tj6Ye65/wEefeLd3HXv/dxz7/2cuvMORqMJtiipfWS6WLBo5+n9obCWyepK91k6CS86+KlbQDmMiInI9P3vf5/f+kf/hD/94pe0srNtFZ/wLdOtLbY2Nzmwvo4tKmCaxEczeJbCKBGMKbQwLKfVBNoY8V7rP5RApO37rNH0IwSCgcKQUoW9+2ySvoQRobAl1lmqasRkPMa5gvl8DrKj7nUGPoNiJCr0HTsDnrES7YqdQomo1SRlMSJKq/c1RJpFw850i6apdaPHQL2YsVjMsDEmLUpD0wQksSVDUpkOba8YHiMs6pp6e4fRqGJldYWyLFhbO8BjTzzBnXfdxdkzZ3j11R9x7o0z1POZVntqA5D0+SV5YioApGKu7AkblnAKSZ4R+4CIu1z/PczTNwEf/9xlJd6M1LT0WEAR92w588Rn/2toMXvXTU8jtaxlWUKYpINZqOs69ZzQ8tfCOuaLBXY0YbS6wuraAR54+BGefPKD3Hf/g5w4dYojJ05SjVfAaC58a2tKmC4oRyO0FDxp/5nhdejQEyT0peISscbShlY/VyIHvfH6G/yzf/pP+ZM/+RNlY6Z50lRoCnesYTKq1PilBR9837LPhohJmoPKpkTr/ttA09Y0dU30gaIsiKFlNBqla4vEVjUtghFMNFgpejFda1ElaZsIPCOqqmQ8HgOws7OTtDbnhNYr/TuDskIKHeg2itZc5EyJxQSLtUYFcp3em/lsxrPPPsO//tf/ihMnjnH82FFWVyZMxiMWixlODCuVSxWwif/hCoqyYjbd7jyfummIMbKyskLTXGFnZ4fpbIeVlRXW1tYonOXIkSMcOXSY+++7j7Nn3+DbTz/N5pVLqVN63EUcy2SlTFnfhVldBQ/bF1DPq3QfoyBcyyiw5/E3Om4aw7Afi3G/LEX3uy7lo5O3W+azj9H01DTZeAw6PkcEa5zSUkVo2siibiEBXYFIWY45fPJOjt91J5/+7Od417vezZGjxzh05LD2phTtTH3+0gaNDxw8dAipRkiIiHM4YicIajKKvruEF/BJtMVErcbMeIOJhvl0xr/9oz/iD//Vv1YFqhiRECmKgrptO0JXWWjvg2pcMU3z1PiAC4FF0xAXCxpvqBsQW+upF2NnPEKqIambBfP5lPGoUil4gcY3+OjxRufT2RLJxsE5jGiLuiJ1VBqNJzjn2NnZYXt7i9l0m7quNethVKtTSX5dspPOC44Gk0Vg0KY3zqbqVhoKo+S0r3z9Szz37HcYj97HbHuTF1/8PnfefjsPP/QgEiP1qGQyGmEk0rQtEj1FWbCzHalji5Vef8G5voVcjIHpzpStrS0OHzrE6uoqxgqTlVXue+AB7n/wQb7/ve/x/PPPsXnlcspE9QpTuZuUHloZztWx+8jL+M1VN+8+m/9a2Ye3y2u4aQwDXF8o0RsFBQsiaKkugKgEy7KnsPd9cmux3AQmJiPhigZXqXjswcOHuPPuu3ni8XfxM5/7LCfuu59qvEJZVERRWa6NS1eom5bJ6iqT9UM0bYtHVOTFmO7kBtLCjCowGsJSCLE0B91nR7sXEXjthz/iD37v99jZ2gKvPRtEhLqpcTbL0UXm8x0KFziwtsbmaIMQwLeBtg2Y1mN8Q5CSaDziG6IIReEwhem0JkA7MIcQ2N7ewVoB33f8Mlbz8MbWSFaKFquMPqspusnKCoVzzGY7nD9/jksbF4FANRpB9MTUg1HTu4MoOUqSNAidNyQSEWtovcdVQjUZ8dDDD3DituOEGHDOMBmPCb5h4+JFXn/1NTbOX+B973kXsVmwmM9ZW51gRAHGolD8Yz6tEaseVYyRqqrY3t7BGElKVUJZVGxvbbOzs8Pq6irteEzpLGVZ8MS7381DjzzCD158kZdfeYnLly7RBJ9wKVIz5CKFRnuzEHmEXRt59/qP/Q979srw6/L3V6mIvYFxUxmGGxpxGXoU6KS78s/6dZlTZxJphey2gkq0OcNobZ2VI8e55957efIDH+QjH/soJ06ewlYjNpuWVhyLxYLZbEZVjRitrlH6iHWOEPUEN0b7KaYcKCH4rqdETEYoeztxkO5cWhBiaFutOlzMZnzly1/mhy+/oqrMzqiADIJzlqKw1G3LZLSGELh48SJVVXHixEkubVwm4tQzsAZbOKpRSVFUGClxRYktXIcPqHJQ6k3RthipadoFPqoXlTtORwTsApOyOjklV1QVVTWiLEsW8zmXL19mOp1SliXVygRJvShVeXueb+NACVnDQi3EjFi0oY04ofY1IpaHH3uUD374KY6fOMTJk8cJ7aPcfe9dVLbi9I9e5zvf/jbPP/c9RmXJww8+QFs0OCuMqyKFh4oVhahqzSH0VGoV81F262g0JgRPXXusGK5sbjFfLFhbXaUNkZAA2sefeDcPJgNx8dIlLp4/z/Z0qvfZJTxFsrc6XL/LQPvVQg2z9Cg6L/hGx094uvL6RjelkeX00D4PVEAxLKWVfNC0nMaGFjeqGI9GPPDQw9z30MO8/wMf5PjJkxhj2FosEGp2Fi3WBl3koxXdzFa7YWnari8ZNiLqoqeb0Wn3JTBKSAzDoE1fjdVehZkl6NMpZhAuXbjAM08/TT2bqepyTDoOxuCDxwajgNnKmLUDa2yf2aKqKiYnV1hbP4zHMF8EsCNsYXGlwxWWwhaMRisUZUk06AaPgvctRV3TNg21q2GamtSaQAxGe2u0LZI6bWVZfS0QKimKgqZp2d7Zoa5rVlZWGI0LrAhNUzOdTmmaFmMc0WobvtDmtn3JwOebKknMloZq1fHYow/x0U98mFN3nCDElrvvvZsnnniM9bUDVK7i+8+/wHefe57Z5g7fff4Fjh4+xJGjh9jZmWLNCgFYLJToFoHatxQpZGsS1rDcdEg9iRzStU3LxUsbVGWpc7wyoW1bRuMR737Pe5nOply6eJE33jjHuXPnmc/mSzTyfP87waCUzhx6DfuFFXt+JhuaN9/sP+HMx/3HHjbcrpHK9LsYbimWE+XHR6vuuzaw1catEU0hGec4sH6Ix971Lh585DHue+hBDh07Thsjm4sGsYbGB0alYTQaIx1BKL1LLnYZuHyZYTi0Uv3NkQ4TycrAEiPWJaOQ65YT18L7lhdfeIEzr72Gb+pEfmoUXY8hMRCVFHXo4HonlW6d9kO88577OXnqDqIpOHfhMq+eOcf21hwk4gqDKwzjyQhTlFTlCO89TdvimobFbE4Igq1aXPDUUcNmch/JusW6BucaylJPWWt1E9R1TdM2lKOS1cmYUeWSUYjdHOQMSQYbnTO0vqVwlqZN4KqxiAMpAvfcfwef+MxHuf+heyBVvD762KOE1jMqSqZbM6rRCJPIWptXtnjllVdYX19DiEynhqoq2NraYlwViBiCD7TQsVVVELgvjDOJr9KnaTWh27aetp2yWNTMJyNGswXzyYKVlQl33nU3d9x5N5tXtjh9+jSnT59mPp/r+uuWTa8YncHF/rC7+kbOy+pqj7gmVnGD46YwDLvzsPvhCvtjD7rLRBLxRP8IpMlPIijeR1wxIkmKghhW1g/y0COP8lMf+Rj3PfggK+vrzJuGzflC5d2LQkVaEjAp3WvH7oJj9lKWGCpJbyCmrsf9H+g4OClj0C/IVqnb2d+MWlod6oYfvvIKly9dorCWtl4kirE2j7W2IMbAgQOr3HPvPTz/vecJEUrnEOuYrK5y1733cey22wgYzl24xFe++k1eeuEVfCwwxhNiy7hapahKiihUMbJYNBANTRsoUzcu03qCCVq8lbyaplavoqq0y1WIHh+gCS1lVVCWEw5MRoj0uIXqbuYNQbfxsmBqztVbpzLqgnD0+FE+/skP89Cj91NWlrppgMD6wXVC42nmC7a2tri8cYnFbIqx0NY1p0+/zn333cuhQweYz+YUhSOiqclIVEZnOry9910H9Ly39h5I6Weja7INnp3pjOl8gbuyxcFD6xw4sMZoNOb48eOcPHmSxx9/nGeeeYY33niD7a2dtJ71/Uymr+fCuPRveLhd77hWVuKtjJvCMMDeTMTVaKFLRkMDghSvxSWLbJ2jbhoFndqABW1UsrLCQ48+xmc/93nuuudeqskKO7MZb5y/yPjAAcQUuEo1HcgIc0gbgrg86WmBy5K7mDMNUb2T/DkGRgGyEEzswpxqNNKHBXUtrbVcuHiGM6dfQwg4g2o4WD1ZrXMqoyahUzI2JvWjsAVrB9aZrK7hRhXlqGK0usrRU7dx6s47+eK/+TLf+Mo3ubLpWbeWyjdQq/KyUo81DneuwJYlrimUDh5bLRmPmruPISQAUVvgNe2CSIExJB7DiFHplDlY1ywWCxW1yZsg9EbWWGUmNk1DWTra0GCsYiI/9VPv57HHH6aoBExgPC71BPae6FsuX7rE09/6Jt/8+teIoVWAMzZsbW3y6muvcvDQE7RBu4qNx2MuXbzIqFJhGZ8a5+YiuN3rTMcuPAA9dKwx/YlvhEsXN9je3ubgwYM0TcPKygqTyYTPfvaz/PCHP+SZb3+H118/0/X/zMZgSLXW+hWWslbD9X+t74c//7jZiZvKMOx2ha7pLWhAn1SIUiGPPguM0ISAF4txJaPKsba+zp333MsnPvNZ7rv/AcarK9S15/zGZarxhNWDhzX/LJlgo43c6vkCIeKMvboLFxLTJb9/YlSoUnLUvyVnI4R+MbSZItwhTLJk3M6+cYZXXn6ZkMqpNUHgcU5Vi8RAWRYE37C5eUVFa6uKI0eOcPjoCSarB1QE10SCeFwpHDt5mM9+/hNMxhX/9o++xMal8xjjWFlZ1fkOCspB6PQOjNH2794YCHriGdMrGmsIUlMFzcq4omA8rhiPRyrg7z1N3fa9OmKfh49kzQPBWBVd8UGNQyRw//338N73vYcDB8ad19bWqkNRLxZsXNjgq1/5Mr/7O/+CSxfOEnyjXaGsbrzXk9cwGY/Y2ZkyGRX4pF2hGhGp2tTZjgae8OHkCO5de4VRIDm0atSL1MpORGjqlnPnznPlyhUOHjzIwYMHmdULTt1xB/fcdz/ff+FFnnvuOc6ePct8PsfS96iAPn25e29cbc/sP348owA3kWGAq6cr9/09uUoiT8PAqovFh4AtK6rxWAlJH3yKd7/vSaoDa9Q+sDWvqWvPyoF1jLGJTGSTpmOr3oiA8YFyVLGoawUzs1HqVINzSrIvzY0oUanLmyTgMQNaMQZ85g74QGu8eiRdjY1hvphx/tx5tjevKEgZA8ZKepwCnc6pEMjBg+s89PCDrJ09iDEFk5U11g4cYv3IYQ6sr7NyYIViVGELTU9Wdp0Pf+SDzHem/MkXv8np069y/NhxDqwfwoiKzvpWNw6ps5JNWEYbBgpLmU4W1S2PRJyzSisej3CFo53PFXNoesGa4b3t4ubB57LGYCzccccd/PRPf5TbThxPoG5a6CEym005e+YMX/nSV/i93/1dLp47i8HjrMe3Nc4WRIlMp1NeP/06Dz/8ELPZlNIaxqMR051tNeXRa8Wmc/hUMRpiVDHf7gDS0UmuJSMwpIhrg9+ePBd84NLGBptbWxw+eoS6rllbW+fhRx7mnnvv5bnnnuOVl1/m9ddfZ7FYdO+R2wOYXcbhevZO//0NPXXfcVMZhuG4FqcB6OzA7jlQYC9QTiYcO3mKD3/0Y3zgQz/F4SPHWHjPzrymDpHRaMyo1L4SIZ3kEhSxNpIa3BqDE8NiNiN0QFQySj6SZchyVqTrBSlR278nlaIcgmj/0pCqJZVQ5EPAeCFTc7Ph2bx8he9+77tkzUTrLE3d4qzBR1WxLgpHWRYYIzRtw73334exJYhlZWWNQ0ePcujoESarK7hKRWttknS77dQJPv6Jj3Hp0hZPf+s5zp99HYCqWkUk9Z9M/1QkKYGLwSadh76qUNJntNZQlAWjUYUrNP03n8868C3b0Wxglyo0nSWEGmu18vXue27nM5/9NO969+NUVQEEom9p6gWbW5s8/51nee6ZZ/nTL36Ri+fOgW8wJmJEJaOdKwiJzn369GnuuedunHMs6gZjlVdSGIMPrSppp3XjQ+i0MA3LAHh3f9LP0v0+JqMPxoSUni40wjXC+fPn2dzaYm1th52dKUeOHOXJJ5/koYce4sXvf58XXniBM2+8Qds0CWdhl+ld3hc3sofe6rg5DEOPQpGbNGX2wXBi9v4t9k9PnkIUy2hllfc8+SQf/8TPcO+DDyG24MpsjikcrhxRJM68MZKyA6HDFH0IaUnEJOWWooCkZ5qneuirINL9Rl0DujR1zOrIMdOXNRuhRkGNg831HnnRhcDmlSu8/NIPaOoaohYbZdXnwjhK5xhVJeNxRdPO+e53n+PkHXdx9733c9fdd1JUIyVera5odWYSoLHGYCoDPnLHPbfxhZ/9JFc2LvC9771EVZYcOGhwbtzxLCKRKCHJIqhUWhCvn9PELACl1aHWUhUlpSuIPlDPF8xnqVt46vqNBIIkRqC12ngnGVBjBePg7vtu5+d/8Wd58KEHKEcFTfSEpuHKpQu8cfpVvvP003znW99k48J5ti9exLS1Gq9kRF1Ski6c0tB3drZ47bXXeODBB5lub+PEYlzFfDFTrYrgIZOuUs+JzDnJBXc5qugxLr3XCWVC0BQyRvCJmOasxWJU3s3D1uUrzLa2ubyxwcnjxzly7Bjve/JJ7nvwAb773e/y/LPPcXFjg2ax6FrQmZRet0Y5JrvTmzmk7pDwfF0DrKEzyDcwbg7DsGf07TyWrDS6/dSiBgy5XgDEFLQBVtfW+PjPfJpPfeZzHDx6gu35jNA2FKNJx2GPqQt06Lpjd94+RFSQk6HFlf6KMnK+Kx2ZT/r8jJALOERP1xiDdkHKxgE9nbQ8WrEDMepxLOYLXvnB97ssRMQTQ6vCqMbiCkdVFFRVyWhUUpSO+WLKK6+8zGxRc+TYMe45eYLRyhokLQNBy7p79mjEFcIDD93NL/17X+Dv/z//IZcunQNTMhlHirJSLMDQCbsYk9zlIGB6hSO9L0pxJqb6jLbVSsem7lS11ZhofYRHQ6ZsWCItxsJttx/nL/zyL3L3fXdTVAUBz3Q25czpV3n26W/y9Ne/wtkf/RDxqqdp2gZLSO20SCXW6skUTrNS1hlee+1V7r3vPiKWto2IcdRNQArDuCyZz3bUeHmvuo+DatJ8iqfl0RkJpP/8+W/dA2IyrJJaBHTelbCYTnn11R/yxrmz3H7nXRw6coSPf+ITvPd97+eP/viPeOGFF9jZ3sbXTVd/UxihbXtDtDTi8Br2eglvxW+4aQxDZ+GSXy7JKHQxfHcH+okRUZmziLqih9YO8qnPfZ6f/uSnWT14iMtb21STibaNT6d2HGxOdd/DUgqxu7m7ZzPN/NBI7eZb7ymI6WIM1XwM+b0T1qBfPSH0mg6CYbazw7e/9TTNYo5EzXlXVaUhhbG4UpWGR9UoFSxV2LLEFmM2Nzd54YUXOHDwEHcfPKxK1KnYKYkMqg6B0c5ZlSt45PHH+MIvfoF/8o//OVvbG6q07HW+TBCcOAU7rRDTipEYOoOhYVKSuWs9jVGwNGMLS6g7agtMMqTWWEBVso+dPMzP/8IXuP+BeylLx6JesHH5Ei++8D2++G/+mJdffIGtjYtUEiidYzGb0ca2B3gTYmisUSylUlm1KIb5fM4rL7/MAw8+yJUrV/Q0t5a6XjAqRiwWiy4T4FudZ5OEbknXq6luUh2H3uDhEtC/S7dCQ3Yxo3qiVqBI3kyM2k39By/+gPXzF7jrrrs4dPQIv/zLv8wPfvADvvgnf8JrP3qVRcJopt4zqqquW3dMJLpdm2jp6zJFmhsaN49hgM4A6JfUz7EzhQO8IYkC1j51PDKWE8dO8vmf/0Xe94EPIq5kVrcYVyBG6crKw0+ucUyaiWFgGBJIsJuMlL9Vs9zHlQhIvqblbNauD5VuUNSFMzQKxJQFSN21ndX4/ezZs0oltg5jVKshJv3ConQUVcV4PGY80n/VKDW7tSXFaMSF8xd46aWXWVk9wO133tWlwXQtp5AnqOxbG4XR2oQPffRDvPDiS3z5i1/HbjrWD0DhRuoii/b5VDl3VWSWge2TPD/J0DUpi9IkhewQQieVJz5iomYfOm2CGDh4aI2f/umP8eijD2MMbO9scub113j6m9/km1/9Kj96+WUMHktkVJZIDLRN002yJBxEDJ3uY1WVKJFKjcPrr7/ObadOUZUl3rdUoxHznYa6DSAGV5Qdp8KnniCSAMmuRFokiWEvHwp97UufWYqpdV/0vhOBDT4CXovCrHoDi8WCb3/72xw/eYK77rqLe++9lzvvuINvfP3rfP2rX2PDOeqU6t03lZ+sT870sOvrT3YokTCGXCRFIiMNxNa6KJ6Y3XlNR544dTuf+fzP8v6nfgpTlDQh4oqCojAsGt9JgLc+EEUbhgbfE0r07WOnx7c7lz3QiUohQ64IjN3f9xuCHmbde6SPmQ1CTl02dcNiXlNVIxbzOd95+hlKa6nKksJZzeujiyvLlo3GY8bjCdVoTDUaYYuKoqy0eY0xvPbaaUKEre0dzUysrqo+gjWE6HFGKArtGOXxHDpykC/83Gc498ZZ3nj9PG1Tpe7PJSb9p9Jp2l6O0CsYASn9qgahbT2+bbowwmep/RCxMTWYMYE2GZLRpOSRxx7ikcceZGVScfnKRV5+6ft8+ctf5Plnn2V6eRNpNV1bFpZR6ZhNd4ioToROf+ox4YwKsRYFhbW4UsHYplUP55VXXuGBBx7A1+mahMSKzSFqTLwMIUTVC9VOYn0oEAZVmZ332vUlGQLk6kFYa4kCbUggblRJOUOgSCnS8XjMbGfKM09/m1N33sHJkyf5qY98hPvuu4+vffVrfOtb32I2m6lxGKQ09+Mr7OUy/HnwGFiO4fvDui+zFoGAwbiSO+6+h0986jN84Kc+QrW6xqL1mMIyTz0A26AL2bdJHSmEpF+QQ4o8gb3hGRoGPXFU5lyVm7PnkIzEgHux23Ew6Yd83SHhG6FzuwNZhKVtPIJhc+MKW5tbjErtaGWN1XLgxCkok1EYjSdUoxWq0ZjRaKQalkVFNIIrKuq25ewbZ9m4dJnJygqrq6sUpSN6j3OG48eOcfK225gcWAcRxqMxd915ik9/6mP8i//P/5etrYswEcpiDWMKNQ1GG8uQ+Rn5vkSIXrkBi3qhDMKm7YxCt5DFJJZfIoyZQFka7r7ndt7/5Ls5fvQw586+zte/8WWefeZpfvDiCyymM2KjgrbjyrF+YJUYGq7UC80QJSUmEXBOKIuCUVkyLis1ouMxPkJVWabzBdPplCtXLnNwfZ3gW+qF1odo7YouwbZpde6tSxqOyuXIXoMCubk8T0lOqpqtoj55mORZRkzXcyMi2lUsHRBtG5SRGTUcMtZx+vTrXLm8yalTp7jt5El+/hd+kdtO3c7XvvY1fvSjH2mISU6QJ0ijswHLKMO/M49BRO4E/lvgZLqW34wx/j9E5O8AfxU4nx76t2KM/zI9528CfwXFmP4PMcb/+XovqEMQInRNDekNR8xpo6Lkjnvu49Of+zzvf+pDFJMJCx9p0fRj02rnpxjV7VVXVpSaOzjBNVUZ9ruULiZOoWOX1pbef2Zoincb5U5Apns/0xkF0u/zwm6alvlszmuvvUZZVFjjGFUjRqMR0S8oi9SvsRoxGk8YTVapxhOqasJoPMYVJTiHKwulRY/GiAit92xvbXF5YyPVK+zgm5rJZMzK6ipFNWJt7QAPP/wQx44d4/HHHuDlFx/iS1/8BvPpFmbsKErbpSZVao2l0E6kb+mX1ZXrutZsRDuYbxHaqCY44DEW1g6MefTxh7j7zts4ffoV/uTf/CHPPvMtrmxcwC9mSNsg0TAajThyZJ3JuOLKxsVOJt8alaOzVqsdq7JkXI0YVZUK5VhL4UqiWELamBcuXNC/lyWzHQWvfVBsIVeWigi+UMNmXd4m+nxNtao4TRyEl4qlmm4TqrHIBXYZJ8s4hKQmxVqfYaxlnkSCCleyszPl9OnXuXRpg3vvvZcPfPApjhw9xh//8R/zve8+l9oQ7t45/Rr8syi7boH/JMb4DRFZA74uIr+f/vZ/jzH+34YPFpHHgF8BHgdOAX8gIg/FGD1XGepi55y/aOyedmQG64x1WrxjhGgdd951N5/63Bd431Mfopqssgie2vsktpqcTB86UZNMQQ2DTal8+WVXbHf8llukxRRUL1XLvdmIyzco2/L8mZRpqLYlhMj29g6bm1val6AcUZYjqtEYQVvGK/A4ohqvMJpMGFUTyoFhEFsgTkVCTGpJV+bPGtV1LquS2c4O0+mUixc2VH/SOZ59+pusrExYP7DO4YPrHD92mDOvXcIafd0o2nvR156YWtMZ1AvInyc33dES5l3NWxLhC4FolAgV44JTdxzn8cce5I0zr/LH/8sf8Nwz32K6vUnwNbQtJkSqyZgjR49y+NABCDXnzi5ofZtvGs5YnHFUrmJSjqmKEaNyjKtG2KLAmAIfQVYMTaOl1Vtb2xw+vE5RlEwXc0KIzBcLFnWjZfO+pa4brC2Uk+Bi2uhWeR5iNONjtPdFTCdG9iIzTyOKam3mbdsxYqN06kERwQd9vg+pyRHCbL5ge2fK5tY2Dz/8EEeOHuWnP/EJCmf51je/0TUrzh21Q1jeYp0nG/8dhBIxxjPAmfT9log8D9x+jaf8EvBbMcYF8LKIvAg8BXzpei5oiVWXXP2cVQgiYAtO3HYbP/OZz/HkBz9MNZ6w8J4GoW48jQ+62VPGgqCGIc/MUkOVGMm60NkFGxoGSZZd9Qiz27w3prvayBiDfi4tIc7GIjPo8iO3trY1T20s1WikG39lQt2sYpxBUHCyKFcoRxPGK6tU1YSyGlOUY4qyxLikSZkW6zDNpvqRgfF4wsp4hdl8ymxnSjNfUC8WzGfb7PiWzY3LTFbWOXRone3NGVtbG2Ad5WiFEMG4pMqcUnWRzOgMXSFSLjMfdtnOgK+1Ft/WLJoFx46u8b73PsH29iX+5N/8Id/+1tdp5lMkBPy8xkhkdW2VQ0ePc/jYMdbXJlw4d4ad6ZTciVoQilRNOhmNmYwnir2Mx5iqRFyJsRaDYEPAOgUtN7e2cIVjMh4znW5B0JAgl1/nz9O2LU3wmBCRIFibDgdjIGd7kiEmhRciPViZr3G4riUbBmIu6yOTX4QE0g680p2dHb7//e9z6NAhjh49xsc/8dPMpju8+MIL2haxbVMTbbNkkPerm7jecUMYg4jcA7wP+FPgo8B/JCL/O+BrqFexgRqNLw+e9hr7GBIR+XXg1wGsTdLgCQAKRGzMnoRgQsRHg6lKVg8e6jyFYjJh3rS0MdBEoWnVKHifpNBTNiDrGGSPYffm7ibQLBsF/acLIndjGj7vzQq99JfDb3vOBPQUW4GuwMgVBeVoTDmZUK2sMW5rFVOJAescZTmmHK0wGq9QViNVYnYVpiiUSGNt38gkfwaTOm6njEz0nrpeMF+bE+o6nY4LLYQKQeXuignrB4/y7HMvsL29STBRMYyuW7UMjFwgRN9tJkgGMRvkAQhW+4ZIYDwpuP/Bezh8aI0//fIf893vfJvFzjaCyvQbEVZXVzhy9BhHbz/F+uHDmOjZ3NliNp9rhgDVxyyKktFozHiyymiyQlWNKUYjKAvtWtU1jI0Yq95nPZ9x5coVhDWsc8QQaL3H56PCq0pX6wOuDXgXsTEANqVEB3Od+SHJO+jmPWUxrGQauXTit2Szml3G7tDQ33sfVMxWSBJ5Uy0JF8O999zJ5z73OXZ2dnj11VdxsrfZ0e41eaPjug2DiKwC/xz4GzHGTRH5r4H/XD8d/znwXwJ/mf1hjj1XF2P8TeA3AcpqlCCEDJQM6iNSXOoR1tfW+fjPfJqnPvpxqtUDzJpGy39DYFG3+r33nRCLpFBE0uLMp1t+r8G16NeQDYK6d9r+TE/gXuylR+Ov6wZkgC5vyoHHoDJisaumjDFSuJKiGlGOJ0xWDxCDVzGVGFKIMaaoxlSjCWWl/RVK5zCpAxKZjCQmdUDr1ZwFwSTcphxNqEY1oa07NWUREKdkqBiFU+IYra7xnWef59LFTeUPFCN89GRZPf2IvQfUzY9OSndSdkYjqsLlkcOHeOSh+/j6V7/IM9/6OtublzUb0HoMsLa2ztHjR1Vs9+RJirLg0nkFU7P7LCK4omQ8GTNZWVNFrfEEV1bYqsSUFcYpwQsBE8AYr0VhYqjrGRsbVyicoZ7PqeuGoihTE+NIGyJt0OyJy/R1Uol/MgimE4FN/TO6vhumT29mbCoZhi49jh5akrAwxcF0jvLprxkdZb0uFgu2t7a4cmWLU3fcwSc/+Ul+91/+S86fO5fC0mWs7N85JVpECtQo/KMY4/+Q3vTs4O9/H/gf04+vAXcOnn4H8PqbvceQPxC75KBOXBDDaGWFD33ko3zsk5+imKwybzy1V+WdECNtqydWaHzfOIVcRjsQX01frwbSZBBJN7NJ4iQkHrzpDNa1jMKQCbn7scmFIebFEJdfVz2GEZVfYdI2iEC9GKULsJTlqOuJWJZl4uXn0yufYH1TmOy95AVsRUOjAqEaqf5iWy862XNjDdZp89jgA4+tH2DlwISnv/Udzp6+gAlgjVOmJpJlnjvDkN8zN2bJUKO6uB6Dp6wcD91/Dz/8wff45tf/lNn2pnaMSjJ4q2trHDt+nOMnTnL85AnW1tepm5rLl6+wtbWdoQqqqmI8WWW8us5k5QDjlTWqhLfYUqXrckfvGNE+EsYnwVb1BuuFEogWTYtyGbTDVWiVGp1p7PpRNJZXw5ta29vcC7ToUpM5hNBDRYvtYsLPdFr0FzkbBkFxMB8I0iQ+SKveilGZv7yGF4s5lzc2KArLo48+yuaVK/z+7/0eW5ubndDwfmvyRsf1ZCUE+AfA8zHGvzf4/W0JfwD494DvpO9/B/jHIvL3UPDxQeAr13yT2G+mzuUiTyAUoxHvffJJPvmpT7N+5Ag785oglkXTasovBpomlfX6RO9DQHw6oX0/UbHvNrV77nKWwESztKG7gplE683xbZca2v1Cktx2FBfpcs70YUvuFiUGnLHq5qZGLW0IVEE3rbWGZjFWwyAG50qMUyXmokidlZMgDQkpl9ToNXs/qtae42FJfSGU+RhCixtVyusQg3EFrioQiZRGWCkMK6uPMJmM+dIf/ylnT19kPFpNSHuao6gbX2IvGotIx+HIv1P168h9d99FM5vywve+zZWNC0TfQPCURcnK6gGOn7qdE6du5/CxY6ytr+OssLV5hbNn3qCeL3AIpXOsrq6xunqA8dpBRpM1ivEEW40xicegFHDT3b8ImFYL0mIotDGOs9SLeWpDF5V6bkWxhhAR61KNSCKJJQ/S2NSSLhkGkmHuvLP0+JhS3vuFnbq803oKAUzAeIg+IDZlf4Ku3Uxumk5nbFy+jHXCqCh4z3vew8alS3zpS1/sGhDtfp+3Mq7HY/go8JeAZ0TkW+l3fwv4VRF5b5rvV4C/li7kWRH5beA5NKPx16+VkRiOntwE/Z0UTpw8wUc+8lGOn7yNnfkcbKlppRQXNnWdnptr21FvQUgncxikJK/ubqmHIsnN741DCFoQk57QPW+IT+SRDUb+HMOQKAwaxvYLJXaPKcuSRcoSlNUIQosVoS20KEkXpYKMelL10m76N9edUvk9oolYpDvhAJVvT8+3oh7HfNGmZizColHSkS2EqnIUxvLgg/dz5cIm25e+Ttu0mMJlhyB1stJTT1vPZYM5NAyeEDyTUcWJY8d4+cXvcOH8G0gE7xvKouDg4UOcOnUnJ2+/g7XDR1lZP0BRlvhmwebmJmfPnSVGrV5cXdW+DwfWDjJaPUAxWcVUYyh0fpxzWPoahTyCC7StJfoWK9Da1H8rtJSxJIYJTT0nMyBzL8ru3xBwTBgD1mKNA5s7cPcYDyLIoJv4cN0FomIKMYIJiG+TDmmbfg++CUlcV6nldb1gPi/Y3NxiVJScOnWKd7/73bzyysu89PJLVzUEN2og5Md1Od6OISLngR3gwjt9LdcxjvKTcZ3wk3OtPynXCT8517rfdd4dYzx2PU++KQwDgIh8Lcb4gXf6Ot5s/KRcJ/zkXOtPynXCT861/rjXeQNsnVvj1rg1/v9l3DIMt8atcWvsGTeTYfjNd/oCrnP8pFwn/ORc60/KdcJPzrX+WNd502AMt8atcWvcPONm8hhujVvj1rhJxjtuGETkCyLyPRF5UUR+452+nt1DRF4RkWdE5Fsi8rX0u8Mi8vsi8v309dA7cF3/LxE5JyLfGfzuqtclIn8zzfH3ROTzN8G1/h0ROZ3m9Vsi8nPv9LWKyJ0i8oci8ryIPCsi/3H6/U01r9e4zrdvTodEnT/rf2jX+h8A9wEl8DTw2Dt5Tftc4yvA0V2/+78Cv5G+/w3g//IOXNdPA+8HvvNm1wU8lua2Au5Nc27f4Wv9O8B/us9j37FrBW4D3p++XwNeSNdzU83rNa7zbZvTd9pjeAp4Mcb4UoyxBn4LLdu+2ccvAf8wff8Pgb/wZ30BMcY/Bi7t+vXVruuXSKXwMcaXgVwK/2cyrnKtVxvv2LXGGM/EGL+Rvt8CssTATTWv17jOq40bvs532jDcDrw6+HnfEu13eETg90Tk66Kl4gAnYqoTSV+Pv2NXtzyudl036zz/RyLy7RRqZPf8prhWWZYYuGnnddd1wts0p++0YbiuEu13eHw0xvh+4GeBvy4iP/1OX9BbGDfjPP/XwP3Ae1EhoP8y/f4dv1bZJTFwrYfu87s/s2vd5zrftjl9pw3DWyrR/rMcMcbX09dzwP8bdcHOishtoFWmwLl37gqXxtWu66ab5xjj2Rijj9og8+/Tu7bv6LXuJzHATTiv+13n2zmn77Rh+CrwoIjcKyIlqhX5O+/wNXVDRFZEdS4RkRXgc2h5+e8Av5Ye9mvAv3hnrnDPuNp1/Q7wKyJSici9XE8p/L/jkTdaGrvL9t+RaxXZX2KAm2xer3adb+uc/lmgvW+CsP4ciqr+APjb7/T17Lq2+1A092ng2Xx9wBHgXwHfT18PvwPX9k9Qd7FBT4S/cq3rAv52muPvAT97E1zrfwc8A3w7Ldzb3ulrBT6GutjfBr6V/v3czTav17jOt21ObzEfb41b49bYM97pUOLWuDVujZtw3DIMt8atcWvsGbcMw61xa9wae8Ytw3Br3Bq3xp5xyzDcGrfGrbFn3DIMt8atcWvsGbcMw61xa9wae8Ytw3Br3Bq3xp7x/wPtiOx5poWq9AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "img = cv2.imread('MakeItTalk/examples/' + opt_parser.jpg)\n", + "plt.imshow(img)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device='mps', flip_input=True)\n", + "shapes = predictor.get_landmarks(img)\n", + "if (not shapes or len(shapes) != 1):\n", + " print('Cannot detect face landmarks. Exit.')\n", + " exit(-1)\n", + "shape_3d = shapes[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Loaded Image...\n" + ] + } + ], + "source": [ + "if(opt_parser.close_input_face_mouth):\n", + " util.close_input_face_mouth(shape_3d)\n", + "shape_3d[48:, 0] = (shape_3d[48:, 0] - np.mean(shape_3d[48:, 0])) * LIP_WIDTH_ADJUST + np.mean(shape_3d[48:, 0]) # wider lips\n", + "shape_3d[49:54, 1] -= UPPER_LIP_ADJUST # thinner upper lip\n", + "shape_3d[55:60, 1] += LOWER_LIP_ADJUST # thinner lower lip\n", + "shape_3d[[37,38,43,44], 1] -=2. # larger eyes\n", + "shape_3d[[40,41,46,47], 1] +=2. # larger eyes\n", + "shape_3d, scale, shift = util.norm_input_face(shape_3d)\n", + "\n", + "print(\"Loaded Image...\", file=sys.stderr)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.simplefilter(action='ignore', category=FutureWarning)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Loaded audio...\n" + ] + } + ], + "source": [ + "au_data = []\n", + "au_emb = []\n", + "ains = glob.glob1('examples', '*.wav')\n", + "ains = [item for item in ains if item != 'tmp.wav']\n", + "ains.sort()\n", + "for ain in ains:\n", + " os.system('ffmpeg -y -loglevel error -i MakeItTalk/examples/{} -ar 16000 MakeItTalk/examples/tmp.wav'.format(ain))\n", + " shutil.copyfile('MakeItTalk/examples/tmp.wav', 'MakeItTalk/examples/{}'.format(ain))\n", + "\n", + " # au embedding\n", + " from thirdparty.resemblyer_util.speaker_emb import get_spk_emb\n", + " me, ae = get_spk_emb('MakeItTalk/examples/{}'.format(ain))\n", + " au_emb.append(me.reshape(-1))\n", + "\n", + " print('Processing audio file', ain)\n", + " c = AutoVC_mel_Convertor('examples')\n", + "\n", + " au_data_i = c.convert_single_wav_to_autovc_input(audio_filename=os.path.join('examples', ain),\n", + " autovc_model_path=opt_parser.load_AUTOVC_name)\n", + " au_data += au_data_i\n", + "print(f'this is {au_data}')\n", + "if(os.path.isfile('MakeItTalk/examples/tmp.wav')):\n", + " os.remove('MakeItTalk/examples/tmp.wav')\n", + "\n", + "print(\"Loaded audio...\", file=sys.stderr)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# landmark fake placeholder\n", + "fl_data = []\n", + "rot_tran, rot_quat, anchor_t_shape = [], [], []\n", + "for au, info in au_data:\n", + " au_length = au.shape[0]\n", + " fl = np.zeros(shape=(au_length, 68 * 3))\n", + " fl_data.append((fl, info))\n", + " rot_tran.append(np.zeros(shape=(au_length, 3, 4)))\n", + " rot_quat.append(np.zeros(shape=(au_length, 4)))\n", + " anchor_t_shape.append(np.zeros(shape=(au_length, 68 * 3)))\n", + "\n", + "if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_fl.pickle'))\n", + "if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))\n", + "if(os.path.exists(os.path.join('examples', 'dump', 'random_val_au.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_au.pickle'))\n", + "if (os.path.exists(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))):\n", + " os.remove(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))\n", + "\n", + "with open(os.path.join('examples', 'dump', 'random_val_fl.pickle'), 'wb') as fp:\n", + " pickle.dump(fl_data, fp)\n", + "with open(os.path.join('examples', 'dump', 'random_val_au.pickle'), 'wb') as fp:\n", + " pickle.dump(au_data, fp)\n", + "with open(os.path.join('examples', 'dump', 'random_val_gaze.pickle'), 'wb') as fp:\n", + " gaze = {'rot_trans':rot_tran, 'rot_quat':rot_quat, 'anchor_t_shape':anchor_t_shape}\n", + " pickle.dump(gaze, fp)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/marlenemhangami/Downloads/MakeItTalk-main/src/approaches/train_audio2landmark.py:98: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n", + " z = torch.tensor(torch.zeros(aus.shape[0], 128), requires_grad=False, dtype=torch.float).to(device)\n", + "OpenCV: FFMPEG: tag 0x47504a4d/'MJPG' is not supported with codec id 7 and format 'mp4 / MP4 (MPEG-4 Part 14)'\n", + "OpenCV: FFMPEG: fallback to use tag 0x7634706d/'mp4v'\n", + "ffmpeg version 5.1.2 Copyright (c) 2000-2022 the FFmpeg developers\n", + " built with Apple clang version 14.0.0 (clang-1400.0.29.202)\n", + " configuration: --prefix=/opt/homebrew/Cellar/ffmpeg/5.1.2_4 --enable-shared --enable-pthreads --enable-version3 --cc=clang --host-cflags= --host-ldflags= --enable-ffplay --enable-gnutls --enable-gpl --enable-libaom --enable-libaribb24 --enable-libbluray --enable-libdav1d --enable-libmp3lame --enable-libopus --enable-librav1e --enable-librist --enable-librubberband --enable-libsnappy --enable-libsrt --enable-libsvtav1 --enable-libtesseract --enable-libtheora --enable-libvidstab --enable-libvmaf --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libxvid --enable-lzma --enable-libfontconfig --enable-libfreetype --enable-frei0r --enable-libass --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-libspeex --enable-libsoxr --enable-libzmq --enable-libzimg --disable-libjack --disable-indev=jack --enable-videotoolbox --enable-neon\n", + " libavutil 57. 28.100 / 57. 28.100\n", + " libavcodec 59. 37.100 / 59. 37.100\n", + " libavformat 59. 27.100 / 59. 27.100\n", + " libavdevice 59. 7.100 / 59. 7.100\n", + " libavfilter 8. 44.100 / 8. 44.100\n", + " libswscale 6. 7.100 / 6. 7.100\n", + " libswresample 4. 7.100 / 4. 7.100\n", + " libpostproc 56. 6.100 / 56. 6.100\n", + "Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'MakeItTalk/examples/tmp.mp4':\n", + " Metadata:\n", + " major_brand : isom\n", + " minor_version : 512\n", + " compatible_brands: isomiso2mp41\n", + " encoder : Lavf58.76.100\n", + " Duration: 00:00:04.59, start: 0.000000, bitrate: 5863 kb/s\n", + " Stream #0:0[0x1](und): Video: mjpeg (Baseline) (mp4v / 0x7634706D), yuvj420p(pc, bt470bg/unknown/unknown), 400x400, 5860 kb/s, 62.50 fps, 62.50 tbr, 10k tbn (default)\n", + " Metadata:\n", + " handler_name : VideoHandler\n", + " vendor_id : [0][0][0][0]\n", + "Guessed Channel Layout for Input Stream #1.0 : mono\n", + "Input #1, wav, from 'MakeItTalk/examples/yourmoment.wav':\n", + " Duration: 00:00:04.88, bitrate: 256 kb/s\n", + " Stream #1:0: Audio: pcm_s16le ([1][0][0][0] / 0x0001), 16000 Hz, mono, s16, 256 kb/s\n", + "Stream mapping:\n", + " Stream #0:0 -> #0:0 (mjpeg (native) -> h264 (libx264))\n", + " Stream #1:0 -> #0:1 (pcm_s16le (native) -> aac (native))\n", + "Press [q] to stop, [?] for help\n", + "[libx264 @ 0x13d70ab60] using cpu capabilities: ARMv8 NEON\n", + "[libx264 @ 0x13d70ab60] profile High, level 3.0, 4:2:0, 8-bit\n", + "[libx264 @ 0x13d70ab60] 264 - core 164 r3095 baee400 - H.264/MPEG-4 AVC codec - Copyleft 2003-2022 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=12 lookahead_threads=2 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=25 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00\n", + "Output #0, mp4, to 'MakeItTalk/examples/yourmoment_av.mp4':\n", + " Metadata:\n", + " major_brand : isom\n", + " minor_version : 512\n", + " compatible_brands: isomiso2mp41\n", + " encoder : Lavf59.27.100\n", + " Stream #0:0(und): Video: h264 (avc1 / 0x31637661), yuvj420p(pc, bt470bg/unknown/unknown, progressive), 400x400, q=2-31, 62.50 fps, 16k tbn (default)\n", + " Metadata:\n", + " handler_name : VideoHandler\n", + " vendor_id : [0][0][0][0]\n", + " encoder : Lavc59.37.100 libx264\n", + " Side data:\n", + " cpb: bitrate max/min/avg: 0/0/0 buffer size: 0 vbv_delay: N/A\n", + " Stream #0:1: Audio: aac (LC) (mp4a / 0x6134706D), 16000 Hz, mono, fltp, 69 kb/s\n", + " Metadata:\n", + " encoder : Lavc59.37.100 aac\n", + "frame= 287 fps=0.0 q=-1.0 Lsize= 232kB time=00:00:04.60 bitrate= 412.4kbits/s speed=19.7x \n", + "video:185kB audio:42kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 2.458348%\n", + "[libx264 @ 0x13d70ab60] frame I:2 Avg QP: 9.37 size: 5462\n", + "[libx264 @ 0x13d70ab60] frame P:80 Avg QP:25.34 size: 1275\n", + "[libx264 @ 0x13d70ab60] frame B:205 Avg QP:31.02 size: 368\n", + "[libx264 @ 0x13d70ab60] consecutive B-frames: 2.4% 5.6% 4.2% 87.8%\n", + "[libx264 @ 0x13d70ab60] mb I I16..4: 85.1% 1.7% 13.2%\n", + "[libx264 @ 0x13d70ab60] mb P I16..4: 0.7% 1.6% 0.0% P16..4: 6.0% 4.0% 2.4% 0.0% 0.0% skip:85.4%\n", + "[libx264 @ 0x13d70ab60] mb B I16..4: 0.3% 0.4% 0.0% B16..8: 9.3% 1.7% 0.8% direct: 0.3% skip:87.2% L0:52.4% L1:46.1% BI: 1.5%\n", + "[libx264 @ 0x13d70ab60] 8x8 transform intra:38.5% inter:7.6%\n", + "[libx264 @ 0x13d70ab60] coded y,uvDC,uvAC intra: 3.3% 15.7% 10.1% inter: 1.3% 3.5% 3.2%\n", + "[libx264 @ 0x13d70ab60] i16 v,h,dc,p: 83% 13% 4% 0%\n", + "[libx264 @ 0x13d70ab60] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 3% 6% 91% 0% 0% 0% 0% 0% 0%\n", + "[libx264 @ 0x13d70ab60] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 20% 25% 31% 5% 3% 4% 5% 4% 5%\n", + "[libx264 @ 0x13d70ab60] i8c dc,h,v,p: 58% 22% 20% 0%\n", + "[libx264 @ 0x13d70ab60] Weighted P-Frames: Y:3.8% UV:0.0%\n", + "[libx264 @ 0x13d70ab60] ref P L0: 43.8% 17.0% 20.6% 18.2% 0.6%\n", + "[libx264 @ 0x13d70ab60] ref B L0: 77.2% 16.8% 6.1%\n", + "[libx264 @ 0x13d70ab60] ref B L1: 91.5% 8.5%\n", + "[libx264 @ 0x13d70ab60] kb/s:328.07\n", + "[aac @ 0x13d70be50] Qavg: 33747.719\n", + "Audio->Landmark...\n" + ] + } + ], + "source": [ + "model = Audio2landmark_model(opt_parser, jpg_shape=shape_3d)\n", + "if(len(opt_parser.reuse_train_emb_list) == 0):\n", + " model.test(au_emb=au_emb)\n", + "else:\n", + " model.test(au_emb=None)\n", + "\n", + "print(\"Audio->Landmark...\", file=sys.stderr)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "#reshaping the data that we got \n", + "fls = glob.glob1('examples', 'pred_fls_*.txt')\n", + "fls.sort()\n", + "\n", + "for i in range(0,len(fls)):\n", + " fl = np.loadtxt(os.path.join('examples', fls[i])).reshape((-1, 68,3))\n", + " print(fls[i])\n", + " fl[:, :, 0:2] = -fl[:, :, 0:2]\n", + " fl[:, :, 0:2] = fl[:, :, 0:2] / scale - shift\n", + "\n", + " if (ADD_NAIVE_EYE):\n", + " fl = util.add_naive_eye(fl)\n", + "\n", + " # additional smooth\n", + " fl = fl.reshape((-1, 204))\n", + " fl[:, :48 * 3] = savgol_filter(fl[:, :48 * 3], 15, 3, axis=0)\n", + " fl[:, 48*3:] = savgol_filter(fl[:, 48*3:], 5, 3, axis=0)\n", + " fl = fl.reshape((-1, 68, 3))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + " ''' STEP 6: Imag2image translation '''\n", + "\n", + " model = Image_translation_block(opt_parser, single_test=True)\n", + "\n", + " with torch.no_grad():\n", + " model.single_test(jpg=img, fls=fl, filename=fls[i], prefix=opt_parser.jpg.split('.')[0])\n", + " print('finish image2image gen')\n", + " os.remove(os.path.join('examples', fls[i]))\n", + "\n", + " print(\"{} / {}: Landmark->Face...\".format(i+1, len(fls)), file=sys.stderr)\n", + "print(\"Done!\", file=sys.stderr)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Generated video from image and sound clip" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Video\n", + "\n", + "Video(\"MakeItTalk/examples/marlenes_v1.mp4\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Display animation: MakeItTalk/examples/paint_boy_pred_fls_M6_04_16k_audio_embed.mp4\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from IPython.display import HTML\n", + "from base64 import b64encode\n", + "\n", + "for ain in ains:\n", + " OUTPUT_MP4_NAME = '{}_pred_fls_{}_audio_embed.mp4'.format(\n", + " opt_parser.jpg.split('.')[0],\n", + " ain.split('.')[0]\n", + " )\n", + " mp4 = open('MakeItTalk/examples/{}'.format(OUTPUT_MP4_NAME),'rb').read()\n", + " data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n", + "\n", + " print('Display animation: MakeItTalk/examples/{}'.format(OUTPUT_MP4_NAME), file=sys.stderr)\n", + " display(HTML(\"\"\"\n", + " \n", + " \"\"\" % data_url))" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "5c7b89af1651d0b8571dde13640ecdccf7d5a6204171d6ab33e7c296e100e08a" + }, + "kernelspec": { + "display_name": "Python 3.11.1 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/.gitignore b/MakeItTalk/thirdparty/AdaptiveWingLoss/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..47bddecbbbf35bbbe62c199e32eaa2c92dad1cc7 --- /dev/null +++ b/MakeItTalk/thirdparty/AdaptiveWingLoss/.gitignore @@ -0,0 +1,8 @@ +# Python generated files +*.pyc + +# Project related files +ckpt/*.pth +dataset/* +!dataset/!.py +experiments/* \ No newline at end of file diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/LICENSE b/MakeItTalk/thirdparty/AdaptiveWingLoss/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64 --- /dev/null +++ b/MakeItTalk/thirdparty/AdaptiveWingLoss/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/README.md b/MakeItTalk/thirdparty/AdaptiveWingLoss/README.md new file mode 100644 index 0000000000000000000000000000000000000000..fbde5b8f0c42b5cb2d38cb6b0fb3a454f124a7d9 --- /dev/null +++ b/MakeItTalk/thirdparty/AdaptiveWingLoss/README.md @@ -0,0 +1,82 @@ +# AdaptiveWingLoss +## [arXiv](https://arxiv.org/abs/1904.07399) +Pytorch Implementation of Adaptive Wing Loss for Robust Face Alignment via Heatmap Regression. + + + +## Update Logs: +### October 28, 2019 +* Pretrained Model and evaluation code on WFLW dataset is released. + +## Installation +#### Note: Code was originally developed under Python2.X and Pytorch 0.4. This released version was revisioned from original code and was tested on Python3.5.7 and Pytorch 1.3.0. + +Install system requirements: +``` +sudo apt-get install python3-dev python3-pip python3-tk libglib2.0-0 +``` + +Install python dependencies: +``` +pip3 install -r requirements.txt +``` + +## Run Evaluation on WFLW dataset +1. Download and process WFLW dataset + * Download WFLW dataset and annotation from [Here](https://wywu.github.io/projects/LAB/WFLW.html). + * Unzip WFLW dataset and annotations and move files into ```./dataset``` directory. Your directory should look like this: + ``` + AdaptiveWingLoss + └───dataset + │ + └───WFLW_annotations + │ └───list_98pt_rect_attr_train_test + │ │ + │ └───list_98pt_test + │ + └───WFLW_images + └───0--Parade + │ + └───... + ``` + * Inside ```./dataset``` directory, run: + ``` + python convert_WFLW.py + ``` + A new directory ```./dataset/WFLW_test``` should be generated with 2500 processed testing images and corresponding landmarks. + +2. Download pretrained model from [Google Drive](https://drive.google.com/file/d/1HZaSjLoorQ4QCEx7PRTxOmg0bBPYSqhH/view?usp=sharing) and put it in ```./ckpt``` directory. + +3. Within ```./Scripts``` directory, run following command: + ``` + sh eval_wflw.sh + ``` + + + *GTBbox indicates the ground truth landmarks are used as bounding box to crop faces. + +## Future Plans +- [x] Release evaluation code and pretrained model on WFLW dataset. + +- [ ] Release training code on WFLW dataset. + +- [ ] Release pretrained model and code on 300W, AFLW and COFW dataset. + +- [ ] Replease facial landmark detection API + + +## Citation +If you find this useful for your research, please cite the following paper. + +``` +@InProceedings{Wang_2019_ICCV, +author = {Wang, Xinyao and Bo, Liefeng and Fuxin, Li}, +title = {Adaptive Wing Loss for Robust Face Alignment via Heatmap Regression}, +booktitle = {The IEEE International Conference on Computer Vision (ICCV)}, +month = {October}, +year = {2019} +} +``` + +## Acknowledgments +This repository borrows or partially modifies hourglass model and data processing code from [face alignment](https://github.com/1adrianb/face-alignment) and [pose-hg-train](https://github.com/princeton-vl/pose-hg-train). diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/__init__.py b/MakeItTalk/thirdparty/AdaptiveWingLoss/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/ckpt/.gitkeep b/MakeItTalk/thirdparty/AdaptiveWingLoss/ckpt/.gitkeep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/core/__init__.py b/MakeItTalk/thirdparty/AdaptiveWingLoss/core/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/core/coord_conv.py b/MakeItTalk/thirdparty/AdaptiveWingLoss/core/coord_conv.py new file mode 100644 index 0000000000000000000000000000000000000000..3949a4d7e694884b6fe9a5d4550631b5e7c4f247 --- /dev/null +++ b/MakeItTalk/thirdparty/AdaptiveWingLoss/core/coord_conv.py @@ -0,0 +1,157 @@ +import torch +import torch.nn as nn + + + +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + +class AddCoordsTh(nn.Module): + def __init__(self, x_dim=64, y_dim=64, with_r=False, with_boundary=False): + super(AddCoordsTh, self).__init__() + self.x_dim = x_dim + self.y_dim = y_dim + self.with_r = with_r + self.with_boundary = with_boundary + + def forward(self, input_tensor, heatmap=None): + """ + input_tensor: (batch, c, x_dim, y_dim) + """ + batch_size_tensor = input_tensor.shape[0] + + xx_ones = torch.ones([1, self.y_dim], dtype=torch.int32).to(device) + xx_ones = xx_ones.unsqueeze(-1) + + xx_range = torch.arange(self.x_dim, dtype=torch.int32).unsqueeze(0).to(device) + xx_range = xx_range.unsqueeze(1) + + xx_channel = torch.matmul(xx_ones.float(), xx_range.float()) + xx_channel = xx_channel.unsqueeze(-1) + + + yy_ones = torch.ones([1, self.x_dim], dtype=torch.int32).to(device) + yy_ones = yy_ones.unsqueeze(1) + + yy_range = torch.arange(self.y_dim, dtype=torch.int32).unsqueeze(0).to(device) + yy_range = yy_range.unsqueeze(-1) + + yy_channel = torch.matmul(yy_range.float(), yy_ones.float()) + yy_channel = yy_channel.unsqueeze(-1) + + xx_channel = xx_channel.permute(0, 3, 2, 1) + yy_channel = yy_channel.permute(0, 3, 2, 1) + + xx_channel = xx_channel / (self.x_dim - 1) + yy_channel = yy_channel / (self.y_dim - 1) + + xx_channel = xx_channel * 2 - 1 + yy_channel = yy_channel * 2 - 1 + + xx_channel = xx_channel.repeat(batch_size_tensor, 1, 1, 1) + yy_channel = yy_channel.repeat(batch_size_tensor, 1, 1, 1) + + if self.with_boundary and type(heatmap) != type(None): + boundary_channel = torch.clamp(heatmap[:, -1:, :, :], + 0.0, 1.0) + + zero_tensor = torch.zeros_like(xx_channel) + xx_boundary_channel = torch.where(boundary_channel>0.05, + xx_channel, zero_tensor) + yy_boundary_channel = torch.where(boundary_channel>0.05, + yy_channel, zero_tensor) + if self.with_boundary and type(heatmap) != type(None): + xx_boundary_channel = xx_boundary_channel.to(device) + yy_boundary_channel = yy_boundary_channel.to(device) + + ret = torch.cat([input_tensor, xx_channel, yy_channel], dim=1) + + + if self.with_r: + rr = torch.sqrt(torch.pow(xx_channel, 2) + torch.pow(yy_channel, 2)) + rr = rr / torch.max(rr) + ret = torch.cat([ret, rr], dim=1) + + if self.with_boundary and type(heatmap) != type(None): + ret = torch.cat([ret, xx_boundary_channel, + yy_boundary_channel], dim=1) + return ret + + +class CoordConvTh(nn.Module): + """CoordConv layer as in the paper.""" + def __init__(self, x_dim, y_dim, with_r, with_boundary, + in_channels, first_one=False, *args, **kwargs): + super(CoordConvTh, self).__init__() + self.addcoords = AddCoordsTh(x_dim=x_dim, y_dim=y_dim, with_r=with_r, + with_boundary=with_boundary) + in_channels += 2 + if with_r: + in_channels += 1 + if with_boundary and not first_one: + in_channels += 2 + self.conv = nn.Conv2d(in_channels=in_channels, *args, **kwargs) + + def forward(self, input_tensor, heatmap=None): + ret = self.addcoords(input_tensor, heatmap) + last_channel = ret[:, -2:, :, :] + ret = self.conv(ret) + return ret, last_channel + + +''' +An alternative implementation for PyTorch with auto-infering the x-y dimensions. +''' +class AddCoords(nn.Module): + + def __init__(self, with_r=False): + super().__init__() + self.with_r = with_r + + def forward(self, input_tensor): + """ + Args: + input_tensor: shape(batch, channel, x_dim, y_dim) + """ + batch_size, _, x_dim, y_dim = input_tensor.size() + + xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1) + yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2) + + xx_channel = xx_channel / (x_dim - 1) + yy_channel = yy_channel / (y_dim - 1) + + xx_channel = xx_channel * 2 - 1 + yy_channel = yy_channel * 2 - 1 + + xx_channel = xx_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3) + yy_channel = yy_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3) + + if input_tensor.is_cuda: + xx_channel = xx_channel.to(device) + yy_channel = yy_channel.to(device) + + ret = torch.cat([ + input_tensor, + xx_channel.type_as(input_tensor), + yy_channel.type_as(input_tensor)], dim=1) + + if self.with_r: + rr = torch.sqrt(torch.pow(xx_channel - 0.5, 2) + torch.pow(yy_channel - 0.5, 2)) + if input_tensor.is_cuda: + rr = rr.to(device) + ret = torch.cat([ret, rr], dim=1) + + return ret + + +class CoordConv(nn.Module): + + def __init__(self, in_channels, out_channels, with_r=False, **kwargs): + super().__init__() + self.addcoords = AddCoords(with_r=with_r) + self.conv = nn.Conv2d(in_channels + 2, out_channels, **kwargs) + + def forward(self, x): + ret = self.addcoords(x) + ret = self.conv(ret) + return ret diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/core/dataloader.py b/MakeItTalk/thirdparty/AdaptiveWingLoss/core/dataloader.py new file mode 100644 index 0000000000000000000000000000000000000000..d50deda51bca3f3349bb84f676ea2a0447884a67 --- /dev/null +++ b/MakeItTalk/thirdparty/AdaptiveWingLoss/core/dataloader.py @@ -0,0 +1,368 @@ +import sys +import os +import random +import glob +import torch +from skimage import io +from skimage import transform as ski_transform +from skimage.color import rgb2gray +import scipy.io as sio +from scipy import interpolate +import numpy as np +import matplotlib.pyplot as plt +from torch.utils.data import Dataset, DataLoader +from torchvision import transforms, utils +from torchvision.transforms import Lambda, Compose +from torchvision.transforms.functional import adjust_brightness, adjust_contrast, adjust_saturation, adjust_hue +from utils.utils import cv_crop, cv_rotate, draw_gaussian, transform, power_transform, shuffle_lr, fig2data, generate_weight_map +from PIL import Image +import cv2 +import copy +import math +from imgaug import augmenters as iaa + + +class AddBoundary(object): + def __init__(self, num_landmarks=68): + self.num_landmarks = num_landmarks + + def __call__(self, sample): + landmarks_64 = np.floor(sample['landmarks'] / 4.0) + if self.num_landmarks == 68: + boundaries = {} + boundaries['cheek'] = landmarks_64[0:17] + boundaries['left_eyebrow'] = landmarks_64[17:22] + boundaries['right_eyebrow'] = landmarks_64[22:27] + boundaries['uper_left_eyelid'] = landmarks_64[36:40] + boundaries['lower_left_eyelid'] = np.array([landmarks_64[i] for i in [36, 41, 40, 39]]) + boundaries['upper_right_eyelid'] = landmarks_64[42:46] + boundaries['lower_right_eyelid'] = np.array([landmarks_64[i] for i in [42, 47, 46, 45]]) + boundaries['noise'] = landmarks_64[27:31] + boundaries['noise_bot'] = landmarks_64[31:36] + boundaries['upper_outer_lip'] = landmarks_64[48:55] + boundaries['upper_inner_lip'] = np.array([landmarks_64[i] for i in [60, 61, 62, 63, 64]]) + boundaries['lower_outer_lip'] = np.array([landmarks_64[i] for i in [48, 59, 58, 57, 56, 55, 54]]) + boundaries['lower_inner_lip'] = np.array([landmarks_64[i] for i in [60, 67, 66, 65, 64]]) + elif self.num_landmarks == 98: + boundaries = {} + boundaries['cheek'] = landmarks_64[0:33] + boundaries['left_eyebrow'] = landmarks_64[33:38] + boundaries['right_eyebrow'] = landmarks_64[42:47] + boundaries['uper_left_eyelid'] = landmarks_64[60:65] + boundaries['lower_left_eyelid'] = np.array([landmarks_64[i] for i in [60, 67, 66, 65, 64]]) + boundaries['upper_right_eyelid'] = landmarks_64[68:73] + boundaries['lower_right_eyelid'] = np.array([landmarks_64[i] for i in [68, 75, 74, 73, 72]]) + boundaries['noise'] = landmarks_64[51:55] + boundaries['noise_bot'] = landmarks_64[55:60] + boundaries['upper_outer_lip'] = landmarks_64[76:83] + boundaries['upper_inner_lip'] = np.array([landmarks_64[i] for i in [88, 89, 90, 91, 92]]) + boundaries['lower_outer_lip'] = np.array([landmarks_64[i] for i in [76, 87, 86, 85, 84, 83, 82]]) + boundaries['lower_inner_lip'] = np.array([landmarks_64[i] for i in [88, 95, 94, 93, 92]]) + elif self.num_landmarks == 19: + boundaries = {} + boundaries['left_eyebrow'] = landmarks_64[0:3] + boundaries['right_eyebrow'] = landmarks_64[3:5] + boundaries['left_eye'] = landmarks_64[6:9] + boundaries['right_eye'] = landmarks_64[9:12] + boundaries['noise'] = landmarks_64[12:15] + + elif self.num_landmarks == 29: + boundaries = {} + boundaries['upper_left_eyebrow'] = np.stack([ + landmarks_64[0], + landmarks_64[4], + landmarks_64[2] + ], axis=0) + boundaries['lower_left_eyebrow'] = np.stack([ + landmarks_64[0], + landmarks_64[5], + landmarks_64[2] + ], axis=0) + boundaries['upper_right_eyebrow'] = np.stack([ + landmarks_64[1], + landmarks_64[6], + landmarks_64[3] + ], axis=0) + boundaries['lower_right_eyebrow'] = np.stack([ + landmarks_64[1], + landmarks_64[7], + landmarks_64[3] + ], axis=0) + boundaries['upper_left_eye'] = np.stack([ + landmarks_64[8], + landmarks_64[12], + landmarks_64[10] + ], axis=0) + boundaries['lower_left_eye'] = np.stack([ + landmarks_64[8], + landmarks_64[13], + landmarks_64[10] + ], axis=0) + boundaries['upper_right_eye'] = np.stack([ + landmarks_64[9], + landmarks_64[14], + landmarks_64[11] + ], axis=0) + boundaries['lower_right_eye'] = np.stack([ + landmarks_64[9], + landmarks_64[15], + landmarks_64[11] + ], axis=0) + boundaries['noise'] = np.stack([ + landmarks_64[18], + landmarks_64[21], + landmarks_64[19] + ], axis=0) + boundaries['outer_upper_lip'] = np.stack([ + landmarks_64[22], + landmarks_64[24], + landmarks_64[23] + ], axis=0) + boundaries['inner_upper_lip'] = np.stack([ + landmarks_64[22], + landmarks_64[25], + landmarks_64[23] + ], axis=0) + boundaries['outer_lower_lip'] = np.stack([ + landmarks_64[22], + landmarks_64[26], + landmarks_64[23] + ], axis=0) + boundaries['inner_lower_lip'] = np.stack([ + landmarks_64[22], + landmarks_64[27], + landmarks_64[23] + ], axis=0) + functions = {} + + for key, points in boundaries.items(): + temp = points[0] + new_points = points[0:1, :] + for point in points[1:]: + if point[0] == temp[0] and point[1] == temp[1]: + continue + else: + new_points = np.concatenate((new_points, np.expand_dims(point, 0)), axis=0) + temp = point + points = new_points + if points.shape[0] == 1: + points = np.concatenate((points, points+0.001), axis=0) + k = min(4, points.shape[0]) + functions[key] = interpolate.splprep([points[:, 0], points[:, 1]], k=k-1,s=0) + + boundary_map = np.zeros((64, 64)) + + fig = plt.figure(figsize=[64/96.0, 64/96.0], dpi=96) + + ax = fig.add_axes([0, 0, 1, 1]) + + ax.axis('off') + + ax.imshow(boundary_map, interpolation='nearest', cmap='gray') + #ax.scatter(landmarks[:, 0], landmarks[:, 1], s=1, marker=',', c='w') + + for key in functions.keys(): + xnew = np.arange(0, 1, 0.01) + out = interpolate.splev(xnew, functions[key][0], der=0) + plt.plot(out[0], out[1], ',', linewidth=1, color='w') + + img = fig2data(fig) + + plt.close() + + sigma = 1 + temp = 255-img[:,:,1] + temp = cv2.distanceTransform(temp, cv2.DIST_L2, cv2.DIST_MASK_PRECISE) + temp = temp.astype(np.float32) + temp = np.where(temp < 3*sigma, np.exp(-(temp*temp)/(2*sigma*sigma)), 0 ) + + fig = plt.figure(figsize=[64/96.0, 64/96.0], dpi=96) + + ax = fig.add_axes([0, 0, 1, 1]) + + ax.axis('off') + ax.imshow(temp, cmap='gray') + plt.close() + + boundary_map = fig2data(fig) + + sample['boundary'] = boundary_map[:, :, 0] + + return sample + +class AddWeightMap(object): + def __call__(self, sample): + heatmap= sample['heatmap'] + boundary = sample['boundary'] + heatmap = np.concatenate((heatmap, np.expand_dims(boundary, axis=0)), 0) + weight_map = np.zeros_like(heatmap) + for i in range(heatmap.shape[0]): + weight_map[i] = generate_weight_map(weight_map[i], + heatmap[i]) + sample['weight_map'] = weight_map + return sample + +class ToTensor(object): + """Convert ndarrays in sample to Tensors.""" + + def __call__(self, sample): + image, heatmap, landmarks, boundary, weight_map= sample['image'], sample['heatmap'], sample['landmarks'], sample['boundary'], sample['weight_map'] + + # swap color axis because + # numpy image: H x W x C + # torch image: C X H X W + if len(image.shape) == 2: + image = np.expand_dims(image, axis=2) + image_small = np.expand_dims(image_small, axis=2) + image = image.transpose((2, 0, 1)) + boundary = np.expand_dims(boundary, axis=2) + boundary = boundary.transpose((2, 0, 1)) + return {'image': torch.from_numpy(image).float().div(255.0), + 'heatmap': torch.from_numpy(heatmap).float(), + 'landmarks': torch.from_numpy(landmarks).float(), + 'boundary': torch.from_numpy(boundary).float().div(255.0), + 'weight_map': torch.from_numpy(weight_map).float()} + +class FaceLandmarksDataset(Dataset): + """Face Landmarks dataset.""" + + def __init__(self, img_dir, landmarks_dir, num_landmarks=68, gray_scale=False, + detect_face=False, enhance=False, center_shift=0, + transform=None,): + """ + Args: + landmark_dir (string): Path to the mat file with landmarks saved. + img_dir (string): Directory with all the images. + transform (callable, optional): Optional transform to be applied + on a sample. + """ + self.img_dir = img_dir + self.landmarks_dir = landmarks_dir + self.num_lanmdkars = num_landmarks + self.transform = transform + self.img_names = glob.glob(self.img_dir+'*.jpg') + \ + glob.glob(self.img_dir+'*.png') + self.gray_scale = gray_scale + self.detect_face = detect_face + self.enhance = enhance + self.center_shift = center_shift + if self.detect_face: + self.face_detector = MTCNN(thresh=[0.5, 0.6, 0.7]) + def __len__(self): + return len(self.img_names) + + def __getitem__(self, idx): + img_name = self.img_names[idx] + pil_image = Image.open(img_name) + if pil_image.mode != "RGB": + # if input is grayscale image, convert it to 3 channel image + if self.enhance: + pil_image = power_transform(pil_image, 0.5) + temp_image = Image.new('RGB', pil_image.size) + temp_image.paste(pil_image) + pil_image = temp_image + image = np.array(pil_image) + if self.gray_scale: + image = rgb2gray(image) + image = np.expand_dims(image, axis=2) + image = np.concatenate((image, image, image), axis=2) + image = image * 255.0 + image = image.astype(np.uint8) + if not self.detect_face: + center = [450//2, 450//2+0] + if self.center_shift != 0: + center[0] += int(np.random.uniform(-self.center_shift, + self.center_shift)) + center[1] += int(np.random.uniform(-self.center_shift, + self.center_shift)) + scale = 1.8 + else: + detected_faces = self.face_detector.detect_image(image) + if len(detected_faces) > 0: + box = detected_faces[0] + left, top, right, bottom, _ = box + center = [right - (right - left) / 2.0, + bottom - (bottom - top) / 2.0] + center[1] = center[1] - (bottom - top) * 0.12 + scale = (right - left + bottom - top) / 195.0 + else: + center = [450//2, 450//2+0] + scale = 1.8 + if self.center_shift != 0: + shift = self.center * self.center_shift / 450 + center[0] += int(np.random.uniform(-shift, shift)) + center[1] += int(np.random.uniform(-shift, shift)) + base_name = os.path.basename(img_name) + landmarks_base_name = base_name[:-4] + '_pts.mat' + landmarks_name = os.path.join(self.landmarks_dir, landmarks_base_name) + if os.path.isfile(landmarks_name): + mat_data = sio.loadmat(landmarks_name) + landmarks = mat_data['pts_2d'] + elif os.path.isfile(landmarks_name[:-8] + '.pts.npy'): + landmarks = np.load(landmarks_name[:-8] + '.pts.npy') + else: + landmarks = [] + heatmap = [] + + if landmarks != []: + new_image, new_landmarks = cv_crop(image, landmarks, center, + scale, 256, self.center_shift) + tries = 0 + while self.center_shift != 0 and tries < 5 and (np.max(new_landmarks) > 240 or np.min(new_landmarks) < 15): + center = [450//2, 450//2+0] + scale += 0.05 + center[0] += int(np.random.uniform(-self.center_shift, + self.center_shift)) + center[1] += int(np.random.uniform(-self.center_shift, + self.center_shift)) + + new_image, new_landmarks = cv_crop(image, landmarks, + center, scale, 256, + self.center_shift) + tries += 1 + if np.max(new_landmarks) > 250 or np.min(new_landmarks) < 5: + center = [450//2, 450//2+0] + scale = 2.25 + new_image, new_landmarks = cv_crop(image, landmarks, + center, scale, 256, + 100) + assert (np.min(new_landmarks) > 0 and np.max(new_landmarks) < 256), \ + "Landmarks out of boundary!" + image = new_image + landmarks = new_landmarks + heatmap = np.zeros((self.num_lanmdkars, 64, 64)) + for i in range(self.num_lanmdkars): + if landmarks[i][0] > 0: + heatmap[i] = draw_gaussian(heatmap[i], landmarks[i]/4.0+1, 1) + sample = {'image': image, 'heatmap': heatmap, 'landmarks': landmarks} + if self.transform: + sample = self.transform(sample) + + return sample + +def get_dataset(val_img_dir, val_landmarks_dir, batch_size, + num_landmarks=68, rotation=0, scale=0, + center_shift=0, random_flip=False, + brightness=0, contrast=0, saturation=0, + blur=False, noise=False, jpeg_effect=False, + random_occlusion=False, gray_scale=False, + detect_face=False, enhance=False): + val_transforms = transforms.Compose([AddBoundary(num_landmarks), + AddWeightMap(), + ToTensor()]) + + val_dataset = FaceLandmarksDataset(val_img_dir, val_landmarks_dir, + num_landmarks=num_landmarks, + gray_scale=gray_scale, + detect_face=detect_face, + enhance=enhance, + transform=val_transforms) + + val_dataloader = torch.utils.data.DataLoader(val_dataset, + batch_size=batch_size, + shuffle=False, + num_workers=6) + data_loaders = {'val': val_dataloader} + dataset_sizes = {} + dataset_sizes['val'] = len(val_dataset) + return data_loaders, dataset_sizes diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/core/evaler.py b/MakeItTalk/thirdparty/AdaptiveWingLoss/core/evaler.py new file mode 100644 index 0000000000000000000000000000000000000000..e5f5946e7eb0a097aba691beb573340124e53e42 --- /dev/null +++ b/MakeItTalk/thirdparty/AdaptiveWingLoss/core/evaler.py @@ -0,0 +1,151 @@ +import matplotlib +matplotlib.use('Agg') +import math +import torch +import copy +import time +from torch.autograd import Variable +import shutil +from skimage import io +import numpy as np +from utils.utils import fan_NME, show_landmarks, get_preds_fromhm +from PIL import Image, ImageDraw +import os +import sys +import cv2 +import matplotlib.pyplot as plt + + +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + +def eval_model(model, dataloaders, dataset_sizes, + writer, use_gpu=True, epoches=5, dataset='val', + save_path='./', num_landmarks=68): + global_nme = 0 + model.eval() + for epoch in range(epoches): + running_loss = 0 + step = 0 + total_nme = 0 + total_count = 0 + fail_count = 0 + nmes = [] + # running_corrects = 0 + + # Iterate over data. + with torch.no_grad(): + for data in dataloaders[dataset]: + total_runtime = 0 + run_count = 0 + step_start = time.time() + step += 1 + # get the inputs + inputs = data['image'].type(torch.FloatTensor) + labels_heatmap = data['heatmap'].type(torch.FloatTensor) + labels_boundary = data['boundary'].type(torch.FloatTensor) + landmarks = data['landmarks'].type(torch.FloatTensor) + loss_weight_map = data['weight_map'].type(torch.FloatTensor) + # wrap them in Variable + if use_gpu: + inputs = inputs.to(device) + labels_heatmap = labels_heatmap.to(device) + labels_boundary = labels_boundary.to(device) + loss_weight_map = loss_weight_map.to(device) + else: + inputs, labels_heatmap = Variable(inputs), Variable(labels_heatmap) + labels_boundary = Variable(labels_boundary) + labels = torch.cat((labels_heatmap, labels_boundary), 1) + single_start = time.time() + outputs, boundary_channels = model(inputs) + single_end = time.time() + total_runtime += time.time() - single_start + run_count += 1 + step_end = time.time() + for i in range(inputs.shape[0]): + print(inputs.shape) + img = inputs[i] + img = img.cpu().numpy() + img = img.transpose((1, 2, 0)) #*255.0 + # img = img.astype(np.uint8) + # img = Image.fromarray(img) + # pred_heatmap = outputs[-1][i].detach().cpu()[:-1, :, :] + pred_heatmap = outputs[-1][:, :-1, :, :][i].detach().cpu() + pred_landmarks, _ = get_preds_fromhm(pred_heatmap.unsqueeze(0)) + pred_landmarks = pred_landmarks.squeeze().numpy() + + gt_landmarks = data['landmarks'][i].numpy() + print(pred_landmarks, gt_landmarks) + import cv2 + while(True): + imgshow = vis_landmark_on_img(cv2.UMat(img), pred_landmarks*4) + cv2.imshow('img', imgshow) + + if(cv2.waitKey(10) == ord('q')): + break + + + if num_landmarks == 68: + left_eye = np.average(gt_landmarks[36:42], axis=0) + right_eye = np.average(gt_landmarks[42:48], axis=0) + norm_factor = np.linalg.norm(left_eye - right_eye) + # norm_factor = np.linalg.norm(gt_landmarks[36]- gt_landmarks[45]) + + elif num_landmarks == 98: + norm_factor = np.linalg.norm(gt_landmarks[60]- gt_landmarks[72]) + elif num_landmarks == 19: + left, top = gt_landmarks[-2, :] + right, bottom = gt_landmarks[-1, :] + norm_factor = math.sqrt(abs(right - left)*abs(top-bottom)) + gt_landmarks = gt_landmarks[:-2, :] + elif num_landmarks == 29: + # norm_factor = np.linalg.norm(gt_landmarks[8]- gt_landmarks[9]) + norm_factor = np.linalg.norm(gt_landmarks[16]- gt_landmarks[17]) + single_nme = (np.sum(np.linalg.norm(pred_landmarks*4 - gt_landmarks, axis=1)) / pred_landmarks.shape[0]) / norm_factor + + nmes.append(single_nme) + total_count += 1 + if single_nme > 0.1: + fail_count += 1 + if step % 10 == 0: + print('Step {} Time: {:.6f} Input Mean: {:.6f} Output Mean: {:.6f}'.format( + step, step_end - step_start, + torch.mean(labels), + torch.mean(outputs[0]))) + # gt_landmarks = landmarks.numpy() + # pred_heatmap = outputs[-1].to('cpu').numpy() + gt_landmarks = landmarks + batch_nme = fan_NME(outputs[-1][:, :-1, :, :].detach().cpu(), gt_landmarks, num_landmarks) + # batch_nme = 0 + total_nme += batch_nme + epoch_nme = total_nme / dataset_sizes['val'] + global_nme += epoch_nme + nme_save_path = os.path.join(save_path, 'nme_log.npy') + np.save(nme_save_path, np.array(nmes)) + print('NME: {:.6f} Failure Rate: {:.6f} Total Count: {:.6f} Fail Count: {:.6f}'.format(epoch_nme, fail_count/total_count, total_count, fail_count)) + print('Evaluation done! Average NME: {:.6f}'.format(global_nme/epoches)) + print('Everage runtime for a single batch: {:.6f}'.format(total_runtime/run_count)) + return model + + +def vis_landmark_on_img(img, shape, linewidth=2): + ''' + Visualize landmark on images. + ''' + + def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth): + for i in idx_list: + cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth) + if (loop): + cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]), + (shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth) + + draw_curve(list(range(0, 32))) # jaw + draw_curve(list(range(33, 41)), color=(0, 0, 255), loop=True) # eye brow + draw_curve(list(range(42, 50)), color=(0, 0, 255), loop=True) + draw_curve(list(range(51, 59))) # nose + draw_curve(list(range(60, 67)), loop=True) # eyes + draw_curve(list(range(68, 75)), loop=True) + draw_curve(list(range(76, 87)), loop=True, color=(0, 255, 255)) # mouth + draw_curve(list(range(88, 95)), loop=True, color=(255, 255, 0)) + + return img \ No newline at end of file diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/core/models.py b/MakeItTalk/thirdparty/AdaptiveWingLoss/core/models.py new file mode 100644 index 0000000000000000000000000000000000000000..c3d77c1b0eefcaaa20b47c8ce74a9696180803ac --- /dev/null +++ b/MakeItTalk/thirdparty/AdaptiveWingLoss/core/models.py @@ -0,0 +1,228 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +import math +from core.coord_conv import CoordConvTh + + +def conv3x3(in_planes, out_planes, strd=1, padding=1, + bias=False,dilation=1): + "3x3 convolution with padding" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, + stride=strd, padding=padding, bias=bias, + dilation=dilation) + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(BasicBlock, self).__init__() + self.conv1 = conv3x3(inplanes, planes, stride) + # self.bn1 = nn.BatchNorm2d(planes) + self.relu = nn.ReLU(inplace=True) + self.conv2 = conv3x3(planes, planes) + # self.bn2 = nn.BatchNorm2d(planes) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + # out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + # out = self.bn2(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + +class ConvBlock(nn.Module): + def __init__(self, in_planes, out_planes): + super(ConvBlock, self).__init__() + self.bn1 = nn.BatchNorm2d(in_planes) + self.conv1 = conv3x3(in_planes, int(out_planes / 2)) + self.bn2 = nn.BatchNorm2d(int(out_planes / 2)) + self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4), + padding=1, dilation=1) + self.bn3 = nn.BatchNorm2d(int(out_planes / 4)) + self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4), + padding=1, dilation=1) + + if in_planes != out_planes: + self.downsample = nn.Sequential( + nn.BatchNorm2d(in_planes), + nn.ReLU(True), + nn.Conv2d(in_planes, out_planes, + kernel_size=1, stride=1, bias=False), + ) + else: + self.downsample = None + + def forward(self, x): + residual = x + + out1 = self.bn1(x) + out1 = F.relu(out1, True) + out1 = self.conv1(out1) + + out2 = self.bn2(out1) + out2 = F.relu(out2, True) + out2 = self.conv2(out2) + + out3 = self.bn3(out2) + out3 = F.relu(out3, True) + out3 = self.conv3(out3) + + out3 = torch.cat((out1, out2, out3), 1) + + if self.downsample is not None: + residual = self.downsample(residual) + + out3 += residual + + return out3 + +class HourGlass(nn.Module): + def __init__(self, num_modules, depth, num_features, first_one=False): + super(HourGlass, self).__init__() + self.num_modules = num_modules + self.depth = depth + self.features = num_features + self.coordconv = CoordConvTh(x_dim=64, y_dim=64, + with_r=True, with_boundary=True, + in_channels=256, first_one=first_one, + out_channels=256, + kernel_size=1, + stride=1, padding=0) + self._generate_network(self.depth) + + def _generate_network(self, level): + self.add_module('b1_' + str(level), ConvBlock(256, 256)) + + self.add_module('b2_' + str(level), ConvBlock(256, 256)) + + if level > 1: + self._generate_network(level - 1) + else: + self.add_module('b2_plus_' + str(level), ConvBlock(256, 256)) + + self.add_module('b3_' + str(level), ConvBlock(256, 256)) + + def _forward(self, level, inp): + # Upper branch + up1 = inp + up1 = self._modules['b1_' + str(level)](up1) + + # Lower branch + low1 = F.avg_pool2d(inp, 2, stride=2) + low1 = self._modules['b2_' + str(level)](low1) + + if level > 1: + low2 = self._forward(level - 1, low1) + else: + low2 = low1 + low2 = self._modules['b2_plus_' + str(level)](low2) + + low3 = low2 + low3 = self._modules['b3_' + str(level)](low3) + + up2 = F.upsample(low3, scale_factor=2, mode='nearest') + + return up1 + up2 + + def forward(self, x, heatmap): + x, last_channel = self.coordconv(x, heatmap) + return self._forward(self.depth, x), last_channel + +class FAN(nn.Module): + + def __init__(self, num_modules=1, end_relu=False, gray_scale=False, + num_landmarks=68): + super(FAN, self).__init__() + self.num_modules = num_modules + self.gray_scale = gray_scale + self.end_relu = end_relu + self.num_landmarks = num_landmarks + + # Base part + if self.gray_scale: + self.conv1 = CoordConvTh(x_dim=256, y_dim=256, + with_r=True, with_boundary=False, + in_channels=3, out_channels=64, + kernel_size=7, + stride=2, padding=3) + else: + self.conv1 = CoordConvTh(x_dim=256, y_dim=256, + with_r=True, with_boundary=False, + in_channels=3, out_channels=64, + kernel_size=7, + stride=2, padding=3) + self.bn1 = nn.BatchNorm2d(64) + self.conv2 = ConvBlock(64, 128) + self.conv3 = ConvBlock(128, 128) + self.conv4 = ConvBlock(128, 256) + + # Stacking part + for hg_module in range(self.num_modules): + if hg_module == 0: + first_one = True + else: + first_one = False + self.add_module('m' + str(hg_module), HourGlass(1, 4, 256, + first_one)) + self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256)) + self.add_module('conv_last' + str(hg_module), + nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) + self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256)) + self.add_module('l' + str(hg_module), nn.Conv2d(256, + num_landmarks+1, kernel_size=1, stride=1, padding=0)) + + if hg_module < self.num_modules - 1: + self.add_module( + 'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) + self.add_module('al' + str(hg_module), nn.Conv2d(num_landmarks+1, + 256, kernel_size=1, stride=1, padding=0)) + + def forward(self, x): + x, _ = self.conv1(x) + x = F.relu(self.bn1(x), True) + # x = F.relu(self.bn1(self.conv1(x)), True) + x = F.avg_pool2d(self.conv2(x), 2, stride=2) + x = self.conv3(x) + x = self.conv4(x) + + previous = x + + outputs = [] + boundary_channels = [] + tmp_out = None + for i in range(self.num_modules): + hg, boundary_channel = self._modules['m' + str(i)](previous, + tmp_out) + + ll = hg + ll = self._modules['top_m_' + str(i)](ll) + + ll = F.relu(self._modules['bn_end' + str(i)] + (self._modules['conv_last' + str(i)](ll)), True) + + # Predict heatmaps + tmp_out = self._modules['l' + str(i)](ll) + if self.end_relu: + tmp_out = F.relu(tmp_out) # HACK: Added relu + outputs.append(tmp_out) + boundary_channels.append(boundary_channel) + + if i < self.num_modules - 1: + ll = self._modules['bl' + str(i)](ll) + tmp_out_ = self._modules['al' + str(i)](tmp_out) + previous = previous + ll + tmp_out_ + + return outputs, boundary_channels diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/eval.py b/MakeItTalk/thirdparty/AdaptiveWingLoss/eval.py new file mode 100644 index 0000000000000000000000000000000000000000..1236d05a337e8f56468130e4d1e74f4ee3d820a8 --- /dev/null +++ b/MakeItTalk/thirdparty/AdaptiveWingLoss/eval.py @@ -0,0 +1,77 @@ +from __future__ import print_function, division +import torch +import argparse +import numpy as np +import torch.nn as nn +import time +import os +from core.evaler import eval_model +from core.dataloader import get_dataset +from core import models +from tensorboardX import SummaryWriter + +# Parse arguments +parser = argparse.ArgumentParser() +# Dataset paths +parser.add_argument('--val_img_dir', type=str, + help='Validation image directory') +parser.add_argument('--val_landmarks_dir', type=str, + help='Validation landmarks directory') +parser.add_argument('--num_landmarks', type=int, default=68, + help='Number of landmarks') + +# Checkpoint and pretrained weights +parser.add_argument('--ckpt_save_path', type=str, + help='a directory to save checkpoint file') +parser.add_argument('--pretrained_weights', type=str, + help='a directory to save pretrained_weights') + +# Eval options +parser.add_argument('--batch_size', type=int, default=25, + help='learning rate decay after each epoch') + +# Network parameters +parser.add_argument('--hg_blocks', type=int, default=4, + help='Number of HG blocks to stack') +parser.add_argument('--gray_scale', type=str, default="False", + help='Whether to convert RGB image into gray scale during training') +parser.add_argument('--end_relu', type=str, default="False", + help='Whether to add relu at the end of each HG module') + +args = parser.parse_args() + +VAL_IMG_DIR = args.val_img_dir +VAL_LANDMARKS_DIR = args.val_landmarks_dir +CKPT_SAVE_PATH = args.ckpt_save_path +BATCH_SIZE = args.batch_size +PRETRAINED_WEIGHTS = args.pretrained_weights +GRAY_SCALE = False if args.gray_scale == 'False' else True +HG_BLOCKS = args.hg_blocks +END_RELU = False if args.end_relu == 'False' else True +NUM_LANDMARKS = args.num_landmarks + +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + +writer = SummaryWriter(CKPT_SAVE_PATH) + +dataloaders, dataset_sizes = get_dataset(VAL_IMG_DIR, VAL_LANDMARKS_DIR, + BATCH_SIZE, NUM_LANDMARKS) +use_gpu = torch.cuda.is_available() +model_ft = models.FAN(HG_BLOCKS, END_RELU, GRAY_SCALE, NUM_LANDMARKS) + +if PRETRAINED_WEIGHTS != "None": + checkpoint = torch.load(PRETRAINED_WEIGHTS) + if 'state_dict' not in checkpoint: + model_ft.load_state_dict(checkpoint) + else: + pretrained_weights = checkpoint['state_dict'] + model_weights = model_ft.state_dict() + pretrained_weights = {k: v for k, v in pretrained_weights.items() \ + if k in model_weights} + model_weights.update(pretrained_weights) + model_ft.load_state_dict(model_weights) + +model_ft = model_ft.to(device) + +model_ft = eval_model(model_ft, dataloaders, dataset_sizes, writer, use_gpu, 1, 'val', CKPT_SAVE_PATH, NUM_LANDMARKS) + diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/requirements.txt b/MakeItTalk/thirdparty/AdaptiveWingLoss/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..fa6fe11e90facd05c5da179b036adca36dc9e485 --- /dev/null +++ b/MakeItTalk/thirdparty/AdaptiveWingLoss/requirements.txt @@ -0,0 +1,12 @@ +opencv-python +scipy>=0.17.0 +scikit-image +numpy +matplotlib +Pillow>=4.3.0 +imgaug +tensorflow +git+https://github.com/lanpa/tensorboardX +joblib +torch==1.3.0 +torchvision==0.4.1 diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/scripts/eval_wflw.sh b/MakeItTalk/thirdparty/AdaptiveWingLoss/scripts/eval_wflw.sh new file mode 100644 index 0000000000000000000000000000000000000000..7a3bc305b5f80229b22470befad6093c388feb67 --- /dev/null +++ b/MakeItTalk/thirdparty/AdaptiveWingLoss/scripts/eval_wflw.sh @@ -0,0 +1,10 @@ +CUDA_VISIBLE_DEVICES=1 python ../eval.py \ + --val_img_dir='../dataset/WFLW_test/images/' \ + --val_landmarks_dir='../dataset/WFLW_test/landmarks/' \ + --ckpt_save_path='../experiments/eval_iccv_0620' \ + --hg_blocks=4 \ + --pretrained_weights='../ckpt/WFLW_4HG.pth' \ + --num_landmarks=98 \ + --end_relu='False' \ + --batch_size=20 \ + diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/utils/__init__.py b/MakeItTalk/thirdparty/AdaptiveWingLoss/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MakeItTalk/thirdparty/AdaptiveWingLoss/utils/utils.py b/MakeItTalk/thirdparty/AdaptiveWingLoss/utils/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..8fbad7b9739fe89330bec1f6e3dd07f27e33d4c0 --- /dev/null +++ b/MakeItTalk/thirdparty/AdaptiveWingLoss/utils/utils.py @@ -0,0 +1,354 @@ +from __future__ import print_function, division +import os +import sys +import math +import torch +import cv2 +from PIL import Image +from skimage import io +from skimage import transform as ski_transform +from scipy import ndimage +import numpy as np +import matplotlib +import matplotlib.pyplot as plt +from torch.utils.data import Dataset, DataLoader +from torchvision import transforms, utils + +def _gaussian( + size=3, sigma=0.25, amplitude=1, normalize=False, width=None, + height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5, + mean_vert=0.5): + # handle some defaults + if width is None: + width = size + if height is None: + height = size + if sigma_horz is None: + sigma_horz = sigma + if sigma_vert is None: + sigma_vert = sigma + center_x = mean_horz * width + 0.5 + center_y = mean_vert * height + 0.5 + gauss = np.empty((height, width), dtype=np.float32) + # generate kernel + for i in range(height): + for j in range(width): + gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / ( + sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0)) + if normalize: + gauss = gauss / np.sum(gauss) + return gauss + +def draw_gaussian(image, point, sigma): + # Check if the gaussian is inside + ul = [np.floor(np.floor(point[0]) - 3 * sigma), + np.floor(np.floor(point[1]) - 3 * sigma)] + br = [np.floor(np.floor(point[0]) + 3 * sigma), + np.floor(np.floor(point[1]) + 3 * sigma)] + if (ul[0] > image.shape[1] or ul[1] > + image.shape[0] or br[0] < 1 or br[1] < 1): + return image + size = 6 * sigma + 1 + g = _gaussian(size) + g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - + int(max(1, ul[0])) + int(max(1, -ul[0]))] + g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - + int(max(1, ul[1])) + int(max(1, -ul[1]))] + img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] + img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] + assert (g_x[0] > 0 and g_y[1] > 0) + correct = False + while not correct: + try: + image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1] + ] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]] + correct = True + except: + print('img_x: {}, img_y: {}, g_x:{}, g_y:{}, point:{}, g_shape:{}, ul:{}, br:{}'.format(img_x, img_y, g_x, g_y, point, g.shape, ul, br)) + ul = [np.floor(np.floor(point[0]) - 3 * sigma), + np.floor(np.floor(point[1]) - 3 * sigma)] + br = [np.floor(np.floor(point[0]) + 3 * sigma), + np.floor(np.floor(point[1]) + 3 * sigma)] + g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - + int(max(1, ul[0])) + int(max(1, -ul[0]))] + g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - + int(max(1, ul[1])) + int(max(1, -ul[1]))] + img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] + img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] + pass + image[image > 1] = 1 + return image + +def transform(point, center, scale, resolution, rotation=0, invert=False): + _pt = np.ones(3) + _pt[0] = point[0] + _pt[1] = point[1] + + h = 200.0 * scale + t = np.eye(3) + t[0, 0] = resolution / h + t[1, 1] = resolution / h + t[0, 2] = resolution * (-center[0] / h + 0.5) + t[1, 2] = resolution * (-center[1] / h + 0.5) + + if rotation != 0: + rotation = -rotation + r = np.eye(3) + ang = rotation * math.pi / 180.0 + s = math.sin(ang) + c = math.cos(ang) + r[0][0] = c + r[0][1] = -s + r[1][0] = s + r[1][1] = c + + t_ = np.eye(3) + t_[0][2] = -resolution / 2.0 + t_[1][2] = -resolution / 2.0 + t_inv = torch.eye(3) + t_inv[0][2] = resolution / 2.0 + t_inv[1][2] = resolution / 2.0 + t = reduce(np.matmul, [t_inv, r, t_, t]) + + if invert: + t = np.linalg.inv(t) + new_point = (np.matmul(t, _pt))[0:2] + + return new_point.astype(int) + +def cv_crop(image, landmarks, center, scale, resolution=256, center_shift=0): + new_image = cv2.copyMakeBorder(image, center_shift, + center_shift, + center_shift, + center_shift, + cv2.BORDER_CONSTANT, value=[0,0,0]) + new_landmarks = landmarks.copy() + if center_shift != 0: + center[0] += center_shift + center[1] += center_shift + new_landmarks = new_landmarks + center_shift + length = 200 * scale + top = int(center[1] - length // 2) + bottom = int(center[1] + length // 2) + left = int(center[0] - length // 2) + right = int(center[0] + length // 2) + y_pad = abs(min(top, new_image.shape[0] - bottom, 0)) + x_pad = abs(min(left, new_image.shape[1] - right, 0)) + top, bottom, left, right = top + y_pad, bottom + y_pad, left + x_pad, right + x_pad + new_image = cv2.copyMakeBorder(new_image, y_pad, + y_pad, + x_pad, + x_pad, + cv2.BORDER_CONSTANT, value=[0,0,0]) + new_image = new_image[top:bottom, left:right] + new_image = cv2.resize(new_image, dsize=(int(resolution), int(resolution)), + interpolation=cv2.INTER_LINEAR) + new_landmarks[:, 0] = (new_landmarks[:, 0] + x_pad - left) * resolution / length + new_landmarks[:, 1] = (new_landmarks[:, 1] + y_pad - top) * resolution / length + return new_image, new_landmarks + +def cv_rotate(image, landmarks, heatmap, rot, scale, resolution=256): + img_mat = cv2.getRotationMatrix2D((resolution//2, resolution//2), rot, scale) + ones = np.ones(shape=(landmarks.shape[0], 1)) + stacked_landmarks = np.hstack([landmarks, ones]) + new_landmarks = img_mat.dot(stacked_landmarks.T).T + if np.max(new_landmarks) > 255 or np.min(new_landmarks) < 0: + return image, landmarks, heatmap + else: + new_image = cv2.warpAffine(image, img_mat, (resolution, resolution)) + if heatmap is not None: + new_heatmap = np.zeros((heatmap.shape[0], 64, 64)) + for i in range(heatmap.shape[0]): + if new_landmarks[i][0] > 0: + new_heatmap[i] = draw_gaussian(new_heatmap[i], + new_landmarks[i]/4.0+1, 1) + return new_image, new_landmarks, new_heatmap + +def show_landmarks(image, heatmap, gt_landmarks, gt_heatmap): + """Show image with pred_landmarks""" + pred_landmarks = [] + pred_landmarks, _ = get_preds_fromhm(torch.from_numpy(heatmap).unsqueeze(0)) + pred_landmarks = pred_landmarks.squeeze()*4 + + # pred_landmarks2 = get_preds_fromhm2(heatmap) + heatmap = np.max(gt_heatmap, axis=0) + heatmap = heatmap / np.max(heatmap) + # image = ski_transform.resize(image, (64, 64))*255 + image = image.astype(np.uint8) + heatmap = np.max(gt_heatmap, axis=0) + heatmap = ski_transform.resize(heatmap, (image.shape[0], image.shape[1])) + heatmap *= 255 + heatmap = heatmap.astype(np.uint8) + heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) + plt.imshow(image) + plt.scatter(gt_landmarks[:, 0], gt_landmarks[:, 1], s=0.5, marker='.', c='g') + plt.scatter(pred_landmarks[:, 0], pred_landmarks[:, 1], s=0.5, marker='.', c='r') + plt.pause(0.001) # pause a bit so that plots are updated + +def fan_NME(pred_heatmaps, gt_landmarks, num_landmarks=68): + ''' + Calculate total NME for a batch of data + + Args: + pred_heatmaps: torch tensor of size [batch, points, height, width] + gt_landmarks: torch tesnsor of size [batch, points, x, y] + + Returns: + nme: sum of nme for this batch + ''' + nme = 0 + pred_landmarks, _ = get_preds_fromhm(pred_heatmaps) + pred_landmarks = pred_landmarks.numpy() + gt_landmarks = gt_landmarks.numpy() + for i in range(pred_landmarks.shape[0]): + pred_landmark = pred_landmarks[i] * 4.0 + gt_landmark = gt_landmarks[i] + + if num_landmarks == 68: + left_eye = np.average(gt_landmark[36:42], axis=0) + right_eye = np.average(gt_landmark[42:48], axis=0) + norm_factor = np.linalg.norm(left_eye - right_eye) + # norm_factor = np.linalg.norm(gt_landmark[36]- gt_landmark[45]) + elif num_landmarks == 98: + norm_factor = np.linalg.norm(gt_landmark[60]- gt_landmark[72]) + elif num_landmarks == 19: + left, top = gt_landmark[-2, :] + right, bottom = gt_landmark[-1, :] + norm_factor = math.sqrt(abs(right - left)*abs(top-bottom)) + gt_landmark = gt_landmark[:-2, :] + elif num_landmarks == 29: + # norm_factor = np.linalg.norm(gt_landmark[8]- gt_landmark[9]) + norm_factor = np.linalg.norm(gt_landmark[16]- gt_landmark[17]) + nme += (np.sum(np.linalg.norm(pred_landmark - gt_landmark, axis=1)) / pred_landmark.shape[0]) / norm_factor + return nme + +def fan_NME_hm(pred_heatmaps, gt_heatmaps, num_landmarks=68): + ''' + Calculate total NME for a batch of data + + Args: + pred_heatmaps: torch tensor of size [batch, points, height, width] + gt_landmarks: torch tesnsor of size [batch, points, x, y] + + Returns: + nme: sum of nme for this batch + ''' + nme = 0 + pred_landmarks, _ = get_index_fromhm(pred_heatmaps) + pred_landmarks = pred_landmarks.numpy() + gt_landmarks = gt_landmarks.numpy() + for i in range(pred_landmarks.shape[0]): + pred_landmark = pred_landmarks[i] * 4.0 + gt_landmark = gt_landmarks[i] + if num_landmarks == 68: + left_eye = np.average(gt_landmark[36:42], axis=0) + right_eye = np.average(gt_landmark[42:48], axis=0) + norm_factor = np.linalg.norm(left_eye - right_eye) + else: + norm_factor = np.linalg.norm(gt_landmark[60]- gt_landmark[72]) + nme += (np.sum(np.linalg.norm(pred_landmark - gt_landmark, axis=1)) / pred_landmark.shape[0]) / norm_factor + return nme + +def power_transform(img, power): + img = np.array(img) + img_new = np.power((img/255.0), power) * 255.0 + img_new = img_new.astype(np.uint8) + img_new = Image.fromarray(img_new) + return img_new + +def get_preds_fromhm(hm, center=None, scale=None, rot=None): + max, idx = torch.max( + hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2) + idx += 1 + preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float() + preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1) + preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1) + + for i in range(preds.size(0)): + for j in range(preds.size(1)): + hm_ = hm[i, j, :] + pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1 + if pX > 0 and pX < 63 and pY > 0 and pY < 63: + diff = torch.FloatTensor( + [hm_[pY, pX + 1] - hm_[pY, pX - 1], + hm_[pY + 1, pX] - hm_[pY - 1, pX]]) + preds[i, j].add_(diff.sign_().mul_(.25)) + + preds.add_(-0.5) + + preds_orig = torch.zeros(preds.size()) + if center is not None and scale is not None: + for i in range(hm.size(0)): + for j in range(hm.size(1)): + preds_orig[i, j] = transform( + preds[i, j], center, scale, hm.size(2), rot, True) + + return preds, preds_orig + +def get_index_fromhm(hm): + max, idx = torch.max( + hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2) + preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float() + preds[..., 0].remainder_(hm.size(3)) + preds[..., 1].div_(hm.size(2)).floor_() + + for i in range(preds.size(0)): + for j in range(preds.size(1)): + hm_ = hm[i, j, :] + pX, pY = int(preds[i, j, 0]), int(preds[i, j, 1]) + if pX > 0 and pX < 63 and pY > 0 and pY < 63: + diff = torch.FloatTensor( + [hm_[pY, pX + 1] - hm_[pY, pX - 1], + hm_[pY + 1, pX] - hm_[pY - 1, pX]]) + preds[i, j].add_(diff.sign_().mul_(.25)) + + return preds + +def shuffle_lr(parts, num_landmarks=68, pairs=None): + if num_landmarks == 68: + if pairs is None: + pairs = [[0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11], [6, 10], + [7, 9], [17, 26], [18, 25], [19, 24], [20, 23], [21, 22], [36, 45], + [37, 44], [38, 43], [39, 42], [41, 46], [40, 47], [31, 35], [32, 34], + [50, 52], [49, 53], [48, 54], [61, 63], [60, 64], [67, 65], [59, 55], [58, 56]] + elif num_landmarks == 98: + if pairs is None: + pairs = [[0, 32], [1,31], [2, 30], [3, 29], [4, 28], [5, 27], [6, 26], [7, 25], [8, 24], [9, 23], [10, 22], [11, 21], [12, 20], [13, 19], [14, 18], [15, 17], [33, 46], [34, 45], [35, 44], [36, 43], [37, 42], [38, 50], [39, 49], [40, 48], [41, 47], [60, 72], [61, 71], [62, 70], [63, 69], [64, 68], [65, 75], [66, 74], [67, 73], [96, 97], [55, 59], [56, 58], [76, 82], [77, 81], [78, 80], [88, 92], [89, 91], [95, 93], [87, 83], [86, 84]] + elif num_landmarks == 19: + if pairs is None: + pairs = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9], [12, 14], [15, 17]] + elif num_landmarks == 29: + if pairs is None: + pairs = [[0, 1], [4, 6], [5, 7], [2, 3], [8, 9], [12, 14], [16, 17], [13, 15], [10, 11], [18, 19], [22, 23]] + for matched_p in pairs: + idx1, idx2 = matched_p[0], matched_p[1] + tmp = np.copy(parts[idx1]) + np.copyto(parts[idx1], parts[idx2]) + np.copyto(parts[idx2], tmp) + return parts + + +def generate_weight_map(weight_map,heatmap): + + k_size = 3 + dilate = ndimage.grey_dilation(heatmap ,size=(k_size,k_size)) + weight_map[np.where(dilate>0.2)] = 1 + return weight_map + +def fig2data(fig): + """ + @brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it + @param fig a matplotlib figure + @return a numpy 3D array of RGBA values + """ + # draw the renderer + fig.canvas.draw ( ) + + # Get the RGB buffer from the figure + w,h = fig.canvas.get_width_height() + buf = np.fromstring (fig.canvas.tostring_rgb(), dtype=np.uint8) + buf.shape = (w, h, 3) + + # canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode + buf = np.roll (buf, 3, axis=2) + return buf diff --git a/MakeItTalk/thirdparty/__init__.py b/MakeItTalk/thirdparty/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MakeItTalk/thirdparty/__pycache__/__init__.cpython-37.pyc b/MakeItTalk/thirdparty/__pycache__/__init__.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..21b14c4e86d7ec1c1d0128c3098c3d9093aa3078 Binary files /dev/null and b/MakeItTalk/thirdparty/__pycache__/__init__.cpython-37.pyc differ diff --git a/MakeItTalk/thirdparty/__pycache__/__init__.cpython-39.pyc b/MakeItTalk/thirdparty/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..066584c42a9e74b4ecc546a8c138e90a60323a86 Binary files /dev/null and b/MakeItTalk/thirdparty/__pycache__/__init__.cpython-39.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/CODEOWNERS b/MakeItTalk/thirdparty/face_of_art/CODEOWNERS new file mode 100644 index 0000000000000000000000000000000000000000..3b20970fac357d6301d9c4187e682ea2d174d7a9 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/CODEOWNERS @@ -0,0 +1 @@ +* @papulke diff --git a/MakeItTalk/thirdparty/face_of_art/LICENCE.txt b/MakeItTalk/thirdparty/face_of_art/LICENCE.txt new file mode 100644 index 0000000000000000000000000000000000000000..02fef6bb5e96ddcf3b2d47b043033b525874835b --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/LICENCE.txt @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2019 Jordan Yaniv + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, +DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR +OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE +OR OTHER DEALINGS IN THE SOFTWARE. diff --git a/MakeItTalk/thirdparty/face_of_art/README.md b/MakeItTalk/thirdparty/face_of_art/README.md new file mode 100644 index 0000000000000000000000000000000000000000..de7e0cfc4c7a0bdcb60781bf6c59fa6a06eb8fa9 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/README.md @@ -0,0 +1,98 @@ +# The Face of Art: Landmark Detection and Geometric Style in Portraits + +Code for the landmark detection framework described in [The Face of Art: Landmark Detection and Geometric Style in Portraits](http://www.faculty.idc.ac.il/arik/site/foa/face-of-art.asp) (SIGGRAPH 2019) + +![](old/teaser.png) +Top: landmark detection results on artistic portraits with different styles allows to define the geometric style of an artist. Bottom: results of the style transfer of portraits using various artists' geometric style, including Amedeo Modigliani, Pablo Picasso, Margaret Keane, Fernand Léger, and Tsuguharu Foujita. Top right portrait is from 'Woman with Peanuts,' ©1962, Estate of Roy Lichtenstein. + +## Getting Started + +### Requirements + +* python +* anaconda + +### Download + +#### Model +download model weights from [here](https://www.dropbox.com/sh/hrxcyug1bmbj6cs/AAAxq_zI5eawcLjM8zvUwaXha?dl=0). + +#### Datasets +* The datasets used for training and evaluating our model can be found [here](https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/). + +* The Artistic-Faces dataset can be found [here](http://www.faculty.idc.ac.il/arik/site/foa/artistic-faces-dataset.asp). + +* Training images with texture augmentation can be found [here](https://www.dropbox.com/sh/av2k1i1082z0nie/AAC5qV1E2UkqpDLVsv7TazMta?dl=0). + before applying texture style transfer, the training images were cropped to the ground-truth face bounding-box with 25% margin. To crop training images, run the script `crop_training_set.py`. + +* our model expects the following directory structure of landmark detection datasets: +``` +landmark_detection_datasets + ├── training + ├── test + ├── challenging + ├── common + ├── full + ├── crop_gt_margin_0.25 (cropped images of training set) + └── crop_gt_margin_0.25_ns (cropped images of training set + texture style transfer) +``` +### Install + +Create a virtual environment and install the following: +* opencv +* menpo +* menpofit +* tensorflow-gpu + +for python 2: +``` +conda create -n foa_env python=2.7 anaconda +source activate foa_env +conda install -c menpo opencv +conda install -c menpo menpo +conda install -c menpo menpofit +pip install tensorflow-gpu + +``` + +for python 3: +``` +conda create -n foa_env python=3.5 anaconda +source activate foa_env +conda install -c menpo opencv +conda install -c menpo menpo +conda install -c menpo menpofit +pip3 install tensorflow-gpu + +``` + +Clone repository: + +``` +git clone https://github.com/papulke/deep_face_heatmaps +``` + +## Instructions + +### Training + +To train the network you need to run `train_heatmaps_network.py` + +example for training a model with texture augmentation (100% of images) and geometric augmentation (~70% of images): +``` +python train_heatmaps_network.py --output_dir='test_artistic_aug' --augment_geom=True \ +--augment_texture=True --p_texture=1. --p_geom=0.7 +``` + +### Testing + +For using the detection framework to predict landmarks, run the script `predict_landmarks.py` + +## Acknowledgments + +* [ect](https://github.com/HongwenZhang/ECT-FaceAlignment) +* [menpo](https://github.com/menpo/menpo) +* [menpofit](https://github.com/menpo/menpofit) +* [mdm](https://github.com/trigeorgis/mdm) +* [style transfer implementation](https://github.com/woodrush/neural-art-tf) +* [painter-by-numbers dataset](https://www.kaggle.com/c/painter-by-numbers/data) diff --git a/MakeItTalk/thirdparty/face_of_art/__init__.py b/MakeItTalk/thirdparty/face_of_art/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MakeItTalk/thirdparty/face_of_art/__init__.pyc b/MakeItTalk/thirdparty/face_of_art/__init__.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0b9e3bf343ed64266613989ad81fe216c7c9b629 Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/__init__.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/__pycache__/__init__.cpython-36.pyc b/MakeItTalk/thirdparty/face_of_art/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 0000000000000000000000000000000000000000..61eb9ad048f027ecb44f3c7b0f57d3b35b3e92b9 Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/__pycache__/__init__.cpython-36.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/__pycache__/data_loading_functions.cpython-36.pyc b/MakeItTalk/thirdparty/face_of_art/__pycache__/data_loading_functions.cpython-36.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6cb2deab1fc5ad0e55627e6ff3ddb2ea8c017da8 Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/__pycache__/data_loading_functions.cpython-36.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/__pycache__/deep_heatmaps_model_fusion_net.cpython-36.pyc b/MakeItTalk/thirdparty/face_of_art/__pycache__/deep_heatmaps_model_fusion_net.cpython-36.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4fea5794088f8f6a980ab1f57c0e4a8c81f02bf5 Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/__pycache__/deep_heatmaps_model_fusion_net.cpython-36.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/__pycache__/deformation_functions.cpython-36.pyc b/MakeItTalk/thirdparty/face_of_art/__pycache__/deformation_functions.cpython-36.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4d0840412329da651d7e9f1838c3a32632fcae54 Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/__pycache__/deformation_functions.cpython-36.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/__pycache__/logging_functions.cpython-36.pyc b/MakeItTalk/thirdparty/face_of_art/__pycache__/logging_functions.cpython-36.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5c5276c59f1fa5216af03f225191ae72a0163abe Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/__pycache__/logging_functions.cpython-36.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/__pycache__/menpo_functions.cpython-36.pyc b/MakeItTalk/thirdparty/face_of_art/__pycache__/menpo_functions.cpython-36.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b6c055f4c2355a379cd06720b4499ed9086619db Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/__pycache__/menpo_functions.cpython-36.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/__pycache__/ops.cpython-36.pyc b/MakeItTalk/thirdparty/face_of_art/__pycache__/ops.cpython-36.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0320fef778d2ebc211c5e4ea8af76e48b0b12d05 Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/__pycache__/ops.cpython-36.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/__pycache__/pdm_clm_functions.cpython-36.pyc b/MakeItTalk/thirdparty/face_of_art/__pycache__/pdm_clm_functions.cpython-36.pyc new file mode 100644 index 0000000000000000000000000000000000000000..15d4f78a92df2b2ff9b8b488bcfb6cbcd8818a58 Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/__pycache__/pdm_clm_functions.cpython-36.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/crop_training_set.py b/MakeItTalk/thirdparty/face_of_art/crop_training_set.py new file mode 100644 index 0000000000000000000000000000000000000000..0a6405c4194895d2614a7e05ba79558677bfd8a5 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/crop_training_set.py @@ -0,0 +1,38 @@ +from scipy.misc import imsave +from menpo_functions import * +from data_loading_functions import * + + +# define paths & parameters for cropping dataset +img_dir = '~/landmark_detection_datasets/' +dataset = 'training' +bb_type = 'gt' +margin = 0.25 +image_size = 256 + +# load bounding boxes +bb_dir = os.path.join(img_dir, 'Bounding_Boxes') +bb_dictionary = load_bb_dictionary(bb_dir, mode='TRAIN', test_data=dataset) + +# directory for saving face crops +outdir = os.path.join(img_dir, 'crop_'+bb_type+'_margin_'+str(margin)) +if not os.path.exists(outdir): + os.mkdir(outdir) + +# load images +imgs_to_crop = load_menpo_image_list( + img_dir=img_dir, train_crop_dir=None, img_dir_ns=None, mode='TRAIN', bb_dictionary=bb_dictionary, + image_size=image_size, margin=margin, bb_type=bb_type, augment_basic=False) + +# save cropped images with matching landmarks +print ("\ncropping dataset from: "+os.path.join(img_dir, dataset)) +print ("\nsaving cropped dataset to: "+outdir) +for im in imgs_to_crop: + if im.pixels.shape[0] == 1: + im_pixels = gray2rgb(np.squeeze(im.pixels)) + else: + im_pixels = np.rollaxis(im.pixels, 0, 3) + imsave(os.path.join(outdir, im.path.name.split('.')[0]+'.png'), im_pixels) + mio.export_landmark_file(im.landmarks['PTS'], os.path.join(outdir, im.path.name.split('.')[0]+'.pts')) + +print ("\ncropping dataset completed!") diff --git a/MakeItTalk/thirdparty/face_of_art/data_loading_functions.py b/MakeItTalk/thirdparty/face_of_art/data_loading_functions.py new file mode 100644 index 0000000000000000000000000000000000000000..98a50de5e26622dcfc84f579e6d4e5f25d4ab028 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/data_loading_functions.py @@ -0,0 +1,161 @@ +import numpy as np +import os +from skimage.color import gray2rgb + + +def train_val_shuffle_inds_per_epoch(valid_inds, train_inds, train_iter, batch_size, log_path, save_log=True): + """shuffle image indices for each training epoch and save to log""" + + np.random.seed(0) + num_train_images = len(train_inds) + num_epochs = int(np.ceil((1. * train_iter) / (1. * num_train_images / batch_size)))+1 + epoch_inds_shuffle = np.zeros((num_epochs, num_train_images)).astype(int) + img_inds = np.arange(num_train_images) + for i in range(num_epochs): + np.random.shuffle(img_inds) + epoch_inds_shuffle[i, :] = img_inds + + if save_log: + with open(os.path.join(log_path, "train_val_shuffle_inds.csv"), "wb") as f: + if valid_inds is not None: + f.write(b'valid inds\n') + np.savetxt(f, valid_inds.reshape(1, -1), fmt='%i', delimiter=",") + f.write(b'train inds\n') + np.savetxt(f, train_inds.reshape(1, -1), fmt='%i', delimiter=",") + f.write(b'shuffle inds\n') + np.savetxt(f, epoch_inds_shuffle, fmt='%i', delimiter=",") + + return epoch_inds_shuffle + + +def gaussian(x, y, x0, y0, sigma=6): + return 1./(np.sqrt(2*np.pi)*sigma) * np.exp(-0.5 * ((x-x0)**2 + (y-y0)**2) / sigma**2) + + +def create_gaussian_filter(sigma=6, win_mult=3.5): + win_size = int(win_mult * sigma) + x, y = np.mgrid[0:2*win_size+1, 0:2*win_size+1] + gauss_filt = (8./3)*sigma*gaussian(x, y, win_size, win_size, sigma=sigma) # same as in ECT + return gauss_filt + + +def load_images(img_list, batch_inds, image_size=256, c_dim=3, scale=255): + + """ load images as a numpy array from menpo image list """ + + num_inputs = len(batch_inds) + batch_menpo_images = img_list[batch_inds] + + images = np.zeros([num_inputs, image_size, image_size, c_dim]).astype('float32') + + for ind, img in enumerate(batch_menpo_images): + if img.n_channels < 3 and c_dim == 3: + images[ind, :, :, :] = gray2rgb(img.pixels_with_channels_at_back()) + else: + images[ind, :, :, :] = img.pixels_with_channels_at_back() + + if scale is 255: + images *= 255 + elif scale is 0: + images = 2 * images - 1 + + return images + + +# loading functions with pre-allocation and approx heat-map generation + + +def create_approx_heat_maps_alloc_once(landmarks, maps, gauss_filt=None, win_mult=3.5, num_landmarks=68, image_size=256, + sigma=6): + """ create heatmaps from input landmarks""" + maps.fill(0.) + + win_size = int(win_mult * sigma) + filt_size = 2 * win_size + 1 + landmarks = landmarks.astype(int) + + if gauss_filt is None: + x_small, y_small = np.mgrid[0:2 * win_size + 1, 0:2 * win_size + 1] + gauss_filt = (8. / 3) * sigma * gaussian(x_small, y_small, win_size, win_size, sigma=sigma) # same as in ECT + + for i in range(num_landmarks): + + min_row = landmarks[i, 0] - win_size + max_row = landmarks[i, 0] + win_size + 1 + min_col = landmarks[i, 1] - win_size + max_col = landmarks[i, 1] + win_size + 1 + + if min_row < 0: + min_row_gap = -1 * min_row + min_row = 0 + else: + min_row_gap = 0 + + if min_col < 0: + min_col_gap = -1 * min_col + min_col = 0 + else: + min_col_gap = 0 + + if max_row > image_size: + max_row_gap = max_row - image_size + max_row = image_size + else: + max_row_gap = 0 + + if max_col > image_size: + max_col_gap = max_col - image_size + max_col = image_size + else: + max_col_gap = 0 + + maps[min_row:max_row, min_col:max_col, i] =\ + gauss_filt[min_row_gap:filt_size - 1 * max_row_gap, min_col_gap:filt_size - 1 * max_col_gap] + + +def load_images_landmarks_approx_maps_alloc_once( + img_list, batch_inds, images, maps_small, maps, landmarks, image_size=256, num_landmarks=68, + scale=255, gauss_filt_large=None, gauss_filt_small=None, win_mult=3.5, sigma=6, save_landmarks=False): + + """ load images and gt landmarks from menpo image list, and create matching heatmaps """ + + batch_menpo_images = img_list[batch_inds] + c_dim = images.shape[-1] + grp_name = batch_menpo_images[0].landmarks.group_labels[0] + + win_size_large = int(win_mult * sigma) + win_size_small = int(win_mult * (1.*sigma/4)) + + if gauss_filt_small is None: + x_small, y_small = np.mgrid[0:2 * win_size_small + 1, 0:2 * win_size_small + 1] + gauss_filt_small = (8. / 3) * (1.*sigma/4) * gaussian( + x_small, y_small, win_size_small, win_size_small, sigma=1.*sigma/4) # same as in ECT + if gauss_filt_large is None: + x_large, y_large = np.mgrid[0:2 * win_size_large + 1, 0:2 * win_size_large + 1] + gauss_filt_large = (8. / 3) * sigma * gaussian(x_large, y_large, win_size_large, win_size_large, sigma=sigma) # same as in ECT + + for ind, img in enumerate(batch_menpo_images): + if img.n_channels < 3 and c_dim == 3: + images[ind, :, :, :] = gray2rgb(img.pixels_with_channels_at_back()) + else: + images[ind, :, :, :] = img.pixels_with_channels_at_back() + + lms = img.landmarks[grp_name].points + lms = np.minimum(lms, image_size - 1) + create_approx_heat_maps_alloc_once( + landmarks=lms, maps=maps[ind, :, :, :], gauss_filt=gauss_filt_large, win_mult=win_mult, + num_landmarks=num_landmarks, image_size=image_size, sigma=sigma) + + lms_small = img.resize([image_size / 4, image_size / 4]).landmarks[grp_name].points + lms_small = np.minimum(lms_small, image_size / 4 - 1) + create_approx_heat_maps_alloc_once( + landmarks=lms_small, maps=maps_small[ind, :, :, :], gauss_filt=gauss_filt_small, win_mult=win_mult, + num_landmarks=num_landmarks, image_size=image_size / 4, sigma=1. * sigma / 4) + + if save_landmarks: + landmarks[ind, :, :] = lms + + if scale is 255: + images *= 255 + elif scale is 0: + images = 2 * images - 1 diff --git a/MakeItTalk/thirdparty/face_of_art/data_loading_functions.pyc b/MakeItTalk/thirdparty/face_of_art/data_loading_functions.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2cade76a9d35dee6dd3e33c5f4fc166462b82e97 Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/data_loading_functions.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/deep_heatmaps_model_fusion_net.py b/MakeItTalk/thirdparty/face_of_art/deep_heatmaps_model_fusion_net.py new file mode 100644 index 0000000000000000000000000000000000000000..b4815c866b92537d3fa685e8273e5a6215820527 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/deep_heatmaps_model_fusion_net.py @@ -0,0 +1,872 @@ +import scipy.io +import scipy.misc +from glob import glob +import os +import numpy as np +from thirdparty.face_of_art.ops import * +import tensorflow as tf +from tensorflow import contrib +from thirdparty.face_of_art.menpo_functions import * +from thirdparty.face_of_art.logging_functions import * +from thirdparty.face_of_art.data_loading_functions import * + + +class DeepHeatmapsModel(object): + + """facial landmark localization Network""" + + def __init__(self, mode='TRAIN', train_iter=100000, batch_size=10, learning_rate=1e-3, l_weight_primary=1., + l_weight_fusion=1.,l_weight_upsample=3.,adam_optimizer=True,momentum=0.95,step=100000, gamma=0.1,reg=0, + weight_initializer='xavier', weight_initializer_std=0.01, bias_initializer=0.0, image_size=256,c_dim=3, + num_landmarks=68, sigma=1.5, scale=1, margin=0.25, bb_type='gt', win_mult=3.33335, + augment_basic=True,augment_texture=False, p_texture=0., augment_geom=False, p_geom=0., + output_dir='output', save_model_path='model', + save_sample_path='sample', save_log_path='logs', test_model_path='model/deep_heatmaps-50000', + pre_train_path='model/deep_heatmaps-50000', load_pretrain=False, load_primary_only=False, + img_path='data', test_data='full', valid_data='full', valid_size=0, log_valid_every=5, + train_crop_dir='crop_gt_margin_0.25', img_dir_ns='crop_gt_margin_0.25_ns', + print_every=100, save_every=5000, sample_every=5000, sample_grid=9, sample_to_log=True, + debug_data_size=20, debug=False, epoch_data_dir='epoch_data', use_epoch_data=False, menpo_verbose=True): + + # define some extra parameters + + self.log_histograms = False # save weight + gradient histogram to log + self.save_valid_images = True # sample heat maps of validation images + self.sample_per_channel = False # sample heatmaps separately for each landmark + + # for fine-tuning, choose reset_training_op==True. when resuming training, reset_training_op==False + self.reset_training_op = False + + self.fast_img_gen = True + + self.compute_nme = True # compute normalized mean error + + self.config = tf.ConfigProto() + self.config.gpu_options.allow_growth = True + + # sampling and logging parameters + self.print_every = print_every # print losses to screen + log + self.save_every = save_every # save model + self.sample_every = sample_every # save images of gen heat maps compared to GT + self.sample_grid = sample_grid # number of training images in sample + self.sample_to_log = sample_to_log # sample images to log instead of disk + self.log_valid_every = log_valid_every # log validation loss (in epochs) + + self.debug = debug + self.debug_data_size = debug_data_size + self.use_epoch_data = use_epoch_data + self.epoch_data_dir = epoch_data_dir + + self.load_pretrain = load_pretrain + self.load_primary_only = load_primary_only + self.pre_train_path = pre_train_path + + self.mode = mode + self.train_iter = train_iter + self.learning_rate = learning_rate + + self.image_size = image_size + self.c_dim = c_dim + self.batch_size = batch_size + + self.num_landmarks = num_landmarks + + self.save_log_path = save_log_path + self.save_sample_path = save_sample_path + self.save_model_path = save_model_path + self.test_model_path = test_model_path + self.img_path=img_path + + self.momentum = momentum + self.step = step # for lr decay + self.gamma = gamma # for lr decay + self.reg = reg # weight decay scale + self.l_weight_primary = l_weight_primary # primary loss weight + self.l_weight_fusion = l_weight_fusion # fusion loss weight + self.l_weight_upsample = l_weight_upsample # upsample loss weight + + self.weight_initializer = weight_initializer # random_normal or xavier + self.weight_initializer_std = weight_initializer_std + self.bias_initializer = bias_initializer + self.adam_optimizer = adam_optimizer + + self.sigma = sigma # sigma for heatmap generation + self.scale = scale # scale for image normalization 255 / 1 / 0 + self.win_mult = win_mult # gaussian filter size for cpu/gpu approximation: 2 * sigma * win_mult + 1 + + self.test_data = test_data # if mode is TEST, this choose the set to use full/common/challenging/test/art + self.train_crop_dir = train_crop_dir + self.img_dir_ns = os.path.join(img_path,img_dir_ns) + self.augment_basic = augment_basic # perform basic augmentation (rotation,flip,crop) + self.augment_texture = augment_texture # perform artistic texture augmentation (NS) + self.p_texture = p_texture # initial probability of artistic texture augmentation + self.augment_geom = augment_geom # perform artistic geometric augmentation + self.p_geom = p_geom # initial probability of artistic geometric augmentation + + self.valid_size = valid_size + self.valid_data = valid_data + + # load image, bb and landmark data using menpo + self.bb_dir = os.path.join(img_path, 'Bounding_Boxes') + self.bb_dictionary = load_bb_dictionary(self.bb_dir, mode, test_data=self.test_data) + + # use pre-augmented data, to save time during training + if self.use_epoch_data: + epoch_0 = os.path.join(self.epoch_data_dir, '0') + self.img_menpo_list = load_menpo_image_list( + img_path, train_crop_dir=epoch_0, img_dir_ns=None, mode=mode, bb_dictionary=self.bb_dictionary, + image_size=self.image_size, test_data=self.test_data, augment_basic=False, augment_texture=False, + augment_geom=False, verbose=menpo_verbose) + else: + self.img_menpo_list = load_menpo_image_list( + img_path, train_crop_dir, self.img_dir_ns, mode, bb_dictionary=self.bb_dictionary, + image_size=self.image_size, margin=margin, bb_type=bb_type, test_data=self.test_data, + augment_basic=augment_basic, augment_texture=augment_texture, p_texture=p_texture, + augment_geom=augment_geom, p_geom=p_geom, verbose=menpo_verbose) + + if mode == 'TRAIN': + + train_params = locals() + print_training_params_to_file(train_params) # save init parameters + + self.train_inds = np.arange(len(self.img_menpo_list)) + + if self.debug: + self.train_inds = self.train_inds[:self.debug_data_size] + self.img_menpo_list = self.img_menpo_list[self.train_inds] + + if valid_size > 0: + + self.valid_bb_dictionary = load_bb_dictionary(self.bb_dir, 'TEST', test_data=self.valid_data) + self.valid_img_menpo_list = load_menpo_image_list( + img_path, train_crop_dir, self.img_dir_ns, 'TEST', bb_dictionary=self.valid_bb_dictionary, + image_size=self.image_size, margin=margin, bb_type=bb_type, test_data=self.valid_data, + verbose=menpo_verbose) + + np.random.seed(0) + self.val_inds = np.arange(len(self.valid_img_menpo_list)) + np.random.shuffle(self.val_inds) + self.val_inds = self.val_inds[:self.valid_size] + + self.valid_img_menpo_list = self.valid_img_menpo_list[self.val_inds] + + self.valid_images_loaded =\ + np.zeros([self.valid_size, self.image_size, self.image_size, self.c_dim]).astype('float32') + self.valid_gt_maps_small_loaded =\ + np.zeros([self.valid_size, self.image_size / 4, self.image_size / 4, + self.num_landmarks]).astype('float32') + self.valid_gt_maps_loaded =\ + np.zeros([self.valid_size, self.image_size, self.image_size, self.num_landmarks] + ).astype('float32') + self.valid_landmarks_loaded = np.zeros([self.valid_size, num_landmarks, 2]).astype('float32') + self.valid_landmarks_pred = np.zeros([self.valid_size, self.num_landmarks, 2]).astype('float32') + + load_images_landmarks_approx_maps_alloc_once( + self.valid_img_menpo_list, np.arange(self.valid_size), images=self.valid_images_loaded, + maps_small=self.valid_gt_maps_small_loaded, maps=self.valid_gt_maps_loaded, + landmarks=self.valid_landmarks_loaded, image_size=self.image_size, + num_landmarks=self.num_landmarks, scale=self.scale, win_mult=self.win_mult, sigma=self.sigma, + save_landmarks=self.compute_nme) + + if self.valid_size > self.sample_grid: + self.valid_gt_maps_loaded = self.valid_gt_maps_loaded[:self.sample_grid] + self.valid_gt_maps_small_loaded = self.valid_gt_maps_small_loaded[:self.sample_grid] + else: + self.val_inds = None + + self.epoch_inds_shuffle = train_val_shuffle_inds_per_epoch( + self.val_inds, self.train_inds, train_iter, batch_size, save_log_path) + + def add_placeholders(self): + + if self.mode == 'TEST': + self.images = tf.placeholder( + tf.float32, [None, self.image_size, self.image_size, self.c_dim], 'images') + + self.heatmaps = tf.placeholder( + tf.float32, [None, self.image_size, self.image_size, self.num_landmarks], 'heatmaps') + + self.heatmaps_small = tf.placeholder( + tf.float32, [None, int(self.image_size/4), int(self.image_size/4), self.num_landmarks], 'heatmaps_small') + self.lms = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'lms') + self.pred_lms = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'pred_lms') + + elif self.mode == 'TRAIN': + self.images = tf.placeholder( + tf.float32, [None, self.image_size, self.image_size, self.c_dim], 'train_images') + + self.heatmaps = tf.placeholder( + tf.float32, [None, self.image_size, self.image_size, self.num_landmarks], 'train_heatmaps') + + self.heatmaps_small = tf.placeholder( + tf.float32, [None, int(self.image_size/4), int(self.image_size/4), self.num_landmarks], 'train_heatmaps_small') + + self.train_lms = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'train_lms') + self.train_pred_lms = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'train_pred_lms') + + self.valid_lms = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'valid_lms') + self.valid_pred_lms = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'valid_pred_lms') + + # self.p_texture_log = tf.placeholder(tf.float32, []) + # self.p_geom_log = tf.placeholder(tf.float32, []) + + # self.sparse_hm_small = tf.placeholder(tf.float32, [None, int(self.image_size/4), int(self.image_size/4), 1]) + # self.sparse_hm = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, 1]) + + if self.sample_to_log: + row = int(np.sqrt(self.sample_grid)) + self.log_image_map_small = tf.placeholder( + tf.uint8, [None, row * int(self.image_size/4), 3 * row * int(self.image_size/4), self.c_dim], + 'sample_img_map_small') + self.log_image_map = tf.placeholder( + tf.uint8, [None, row * self.image_size, 3 * row * self.image_size, self.c_dim], + 'sample_img_map') + if self.sample_per_channel: + row = np.ceil(np.sqrt(self.num_landmarks)).astype(np.int64) + self.log_map_channels_small = tf.placeholder( + tf.uint8, [None, row * int(self.image_size/4), 2 * row * int(self.image_size/4), self.c_dim], + 'sample_map_channels_small') + self.log_map_channels = tf.placeholder( + tf.uint8, [None, row * self.image_size, 2 * row * self.image_size, self.c_dim], + 'sample_map_channels') + + def heatmaps_network(self, input_images, reuse=None, name='pred_heatmaps'): + + with tf.name_scope(name): + + if self.weight_initializer == 'xavier': + weight_initializer = contrib.layers.xavier_initializer() + else: + weight_initializer = tf.random_normal_initializer(stddev=self.weight_initializer_std) + + bias_init = tf.constant_initializer(self.bias_initializer) + + with tf.variable_scope('heatmaps_network'): + with tf.name_scope('primary_net'): + + l1 = conv_relu_pool(input_images, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init, + reuse=reuse, var_scope='conv_1') + l2 = conv_relu_pool(l1, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init, + reuse=reuse, var_scope='conv_2') + l3 = conv_relu(l2, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init, + reuse=reuse, var_scope='conv_3') + + l4_1 = conv_relu(l3, 3, 128, conv_dilation=1, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_1') + l4_2 = conv_relu(l3, 3, 128, conv_dilation=2, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_2') + l4_3 = conv_relu(l3, 3, 128, conv_dilation=3, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_3') + l4_4 = conv_relu(l3, 3, 128, conv_dilation=4, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_4') + + l4 = tf.concat([l4_1, l4_2, l4_3, l4_4], 3, name='conv_4') + + l5_1 = conv_relu(l4, 3, 256, conv_dilation=1, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_1') + l5_2 = conv_relu(l4, 3, 256, conv_dilation=2, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_2') + l5_3 = conv_relu(l4, 3, 256, conv_dilation=3, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_3') + l5_4 = conv_relu(l4, 3, 256, conv_dilation=4, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_4') + + l5 = tf.concat([l5_1, l5_2, l5_3, l5_4], 3, name='conv_5') + + l6 = conv_relu(l5, 1, 512, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_6') + l7 = conv_relu(l6, 1, 256, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_7') + primary_out = conv(l7, 1, self.num_landmarks, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_8') + + with tf.name_scope('fusion_net'): + + l_fsn_0 = tf.concat([l3, l7], 3, name='conv_3_7_fsn') + + l_fsn_1_1 = conv_relu(l_fsn_0, 3, 64, conv_dilation=1, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_1_1') + l_fsn_1_2 = conv_relu(l_fsn_0, 3, 64, conv_dilation=2, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_1_2') + l_fsn_1_3 = conv_relu(l_fsn_0, 3, 64, conv_dilation=3, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_1_3') + + l_fsn_1 = tf.concat([l_fsn_1_1, l_fsn_1_2, l_fsn_1_3], 3, name='conv_fsn_1') + + l_fsn_2_1 = conv_relu(l_fsn_1, 3, 64, conv_dilation=1, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_2_1') + l_fsn_2_2 = conv_relu(l_fsn_1, 3, 64, conv_dilation=2, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_2_2') + l_fsn_2_3 = conv_relu(l_fsn_1, 3, 64, conv_dilation=4, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_2_3') + l_fsn_2_4 = conv_relu(l_fsn_1, 5, 64, conv_dilation=3, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_2_4') + + l_fsn_2 = tf.concat([l_fsn_2_1, l_fsn_2_2, l_fsn_2_3, l_fsn_2_4], 3, name='conv_fsn_2') + + l_fsn_3_1 = conv_relu(l_fsn_2, 3, 128, conv_dilation=1, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_3_1') + l_fsn_3_2 = conv_relu(l_fsn_2, 3, 128, conv_dilation=2, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_3_2') + l_fsn_3_3 = conv_relu(l_fsn_2, 3, 128, conv_dilation=4, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_3_3') + l_fsn_3_4 = conv_relu(l_fsn_2, 5, 128, conv_dilation=3, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_3_4') + + l_fsn_3 = tf.concat([l_fsn_3_1, l_fsn_3_2, l_fsn_3_3, l_fsn_3_4], 3, name='conv_fsn_3') + + l_fsn_4 = conv_relu(l_fsn_3, 1, 256, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_4') + fusion_out = conv(l_fsn_4, 1, self.num_landmarks, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_5') + + with tf.name_scope('upsample_net'): + + out = deconv(fusion_out, 8, self.num_landmarks, conv_stride=4, + conv_ker_init=deconv2d_bilinear_upsampling_initializer( + [8, 8, self.num_landmarks, self.num_landmarks]), conv_bias_init=bias_init, + reuse=reuse, var_scope='deconv_1') + + self.all_layers = [l1, l2, l3, l4, l5, l6, l7, primary_out, l_fsn_1, l_fsn_2, l_fsn_3, l_fsn_4, + fusion_out, out] + + return primary_out, fusion_out, out + + def build_model(self): + self.pred_hm_p, self.pred_hm_f, self.pred_hm_u = self.heatmaps_network(self.images,name='heatmaps_prediction') + + def create_loss_ops(self): + + def nme_norm_eyes(pred_landmarks, real_landmarks, normalize=True, name='NME'): + """calculate normalized mean error on landmarks - normalize with inter pupil distance""" + + with tf.name_scope(name): + with tf.name_scope('real_pred_landmarks_rmse'): + # calculate RMS ERROR between GT and predicted lms + landmarks_rms_err = tf.reduce_mean( + tf.sqrt(tf.reduce_sum(tf.square(pred_landmarks - real_landmarks), axis=2)), axis=1) + if normalize: + # normalize RMS ERROR with inter-pupil distance of GT lms + with tf.name_scope('inter_pupil_dist'): + with tf.name_scope('left_eye_center'): + p1 = tf.reduce_mean(tf.slice(real_landmarks, [0, 42, 0], [-1, 6, 2]), axis=1) + with tf.name_scope('right_eye_center'): + p2 = tf.reduce_mean(tf.slice(real_landmarks, [0, 36, 0], [-1, 6, 2]), axis=1) + + eye_dist = tf.sqrt(tf.reduce_sum(tf.square(p1 - p2), axis=1)) + + return landmarks_rms_err / eye_dist + else: + return landmarks_rms_err + + if self.mode is 'TRAIN': + + # calculate L2 loss between ideal and predicted heatmaps + primary_maps_diff = self.pred_hm_p - self.heatmaps_small + fusion_maps_diff = self.pred_hm_f - self.heatmaps_small + upsample_maps_diff = self.pred_hm_u - self.heatmaps + + self.l2_primary = tf.reduce_mean(tf.square(primary_maps_diff)) + self.l2_fusion = tf.reduce_mean(tf.square(fusion_maps_diff)) + self.l2_upsample = tf.reduce_mean(tf.square(upsample_maps_diff)) + + self.total_loss = 1000.*(self.l_weight_primary * self.l2_primary + self.l_weight_fusion * self.l2_fusion + + self.l_weight_upsample * self.l2_upsample) + + # add weight decay + self.total_loss += self.reg * tf.add_n( + [tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'bias' not in v.name]) + + # compute normalized mean error on gt vs. predicted landmarks (for validation) + if self.compute_nme: + self.nme_loss = tf.reduce_mean(nme_norm_eyes(self.train_pred_lms, self.train_lms)) + + if self.valid_size > 0 and self.compute_nme: + self.valid_nme_loss = tf.reduce_mean(nme_norm_eyes(self.valid_pred_lms, self.valid_lms)) + + elif self.mode == 'TEST' and self.compute_nme: + self.nme_per_image = nme_norm_eyes(self.pred_lms, self.lms) + self.nme_loss = tf.reduce_mean(self.nme_per_image) + + def predict_valid_landmarks_in_batches(self, images, session): + + num_images=int(images.shape[0]) + num_batches = int(1.*num_images/self.batch_size) + if num_batches == 0: + batch_size = num_images + num_batches = 1 + else: + batch_size = self.batch_size + + for j in range(num_batches): + + batch_images = images[j * batch_size:(j + 1) * batch_size,:,:,:] + batch_maps_pred = session.run(self.pred_hm_u, {self.images: batch_images}) + batch_heat_maps_to_landmarks_alloc_once( + batch_maps=batch_maps_pred, batch_landmarks=self.valid_landmarks_pred[j * batch_size:(j + 1) * batch_size, :, :], + batch_size=batch_size,image_size=self.image_size,num_landmarks=self.num_landmarks) + + reminder = num_images-num_batches*batch_size + if reminder > 0: + batch_images = images[-reminder:, :, :, :] + batch_maps_pred = session.run(self.pred_hm_u, {self.images: batch_images}) + + batch_heat_maps_to_landmarks_alloc_once( + batch_maps=batch_maps_pred, + batch_landmarks=self.valid_landmarks_pred[-reminder:, :, :], + batch_size=reminder, image_size=self.image_size, num_landmarks=self.num_landmarks) + + def create_summary_ops(self): + """create summary ops for logging""" + + # loss summary + l2_primary = tf.summary.scalar('l2_primary', self.l2_primary) + l2_fusion = tf.summary.scalar('l2_fusion', self.l2_fusion) + l2_upsample = tf.summary.scalar('l2_upsample', self.l2_upsample) + + l_total = tf.summary.scalar('l_total', self.total_loss) + self.batch_summary_op = tf.summary.merge([l2_primary,l2_fusion,l2_upsample,l_total]) + + if self.compute_nme: + nme = tf.summary.scalar('nme', self.nme_loss) + self.batch_summary_op = tf.summary.merge([self.batch_summary_op, nme]) + + if self.log_histograms: + var_summary = [tf.summary.histogram(var.name,var) for var in tf.trainable_variables()] + grads = tf.gradients(self.total_loss, tf.trainable_variables()) + grads = list(zip(grads, tf.trainable_variables())) + grad_summary = [tf.summary.histogram(var.name+'/grads',grad) for grad,var in grads] + activ_summary = [tf.summary.histogram(layer.name, layer) for layer in self.all_layers] + self.batch_summary_op = tf.summary.merge([self.batch_summary_op, var_summary, grad_summary, activ_summary]) + + if self.valid_size > 0 and self.compute_nme: + self.valid_summary = tf.summary.scalar('valid_nme', self.valid_nme_loss) + + if self.sample_to_log: + img_map_summary_small = tf.summary.image('compare_map_to_gt_small', self.log_image_map_small) + img_map_summary = tf.summary.image('compare_map_to_gt', self.log_image_map) + + if self.sample_per_channel: + map_channels_summary = tf.summary.image('compare_map_channels_to_gt', self.log_map_channels) + map_channels_summary_small = tf.summary.image('compare_map_channels_to_gt_small', + self.log_map_channels_small) + self.img_summary = tf.summary.merge( + [img_map_summary, img_map_summary_small,map_channels_summary,map_channels_summary_small]) + else: + self.img_summary = tf.summary.merge([img_map_summary, img_map_summary_small]) + + if self.valid_size >= self.sample_grid: + img_map_summary_valid_small = tf.summary.image('compare_map_to_gt_small_valid', self.log_image_map_small) + img_map_summary_valid = tf.summary.image('compare_map_to_gt_valid', self.log_image_map) + + if self.sample_per_channel: + map_channels_summary_valid_small = tf.summary.image('compare_map_channels_to_gt_small_valid', + self.log_map_channels_small) + map_channels_summary_valid = tf.summary.image('compare_map_channels_to_gt_valid', + self.log_map_channels) + self.img_summary_valid = tf.summary.merge( + [img_map_summary_valid,img_map_summary_valid_small,map_channels_summary_valid, + map_channels_summary_valid_small]) + else: + self.img_summary_valid = tf.summary.merge([img_map_summary_valid, img_map_summary_valid_small]) + + def train(self): + # set random seed + tf.set_random_seed(1234) + np.random.seed(1234) + # build a graph + # add placeholders + self.add_placeholders() + # build model + self.build_model() + # create loss ops + self.create_loss_ops() + # create summary ops + self.create_summary_ops() + + # create optimizer and training op + global_step = tf.Variable(0, trainable=False) + lr = tf.train.exponential_decay(self.learning_rate,global_step, self.step, self.gamma, staircase=True) + if self.adam_optimizer: + optimizer = tf.train.AdamOptimizer(lr) + else: + optimizer = tf.train.MomentumOptimizer(lr, self.momentum) + + train_op = optimizer.minimize(self.total_loss,global_step=global_step) + + with tf.Session(config=self.config) as sess: + + tf.global_variables_initializer().run() + + # load pre trained weights if load_pretrain==True + if self.load_pretrain: + print + print('*** loading pre-trained weights from: '+self.pre_train_path+' ***') + if self.load_primary_only: + print('*** loading primary-net only ***') + primary_var = [v for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) if + ('deconv_' not in v.name) and ('_fsn_' not in v.name)] + loader = tf.train.Saver(var_list=primary_var) + else: + loader = tf.train.Saver() + loader.restore(sess, self.pre_train_path) + print("*** Model restore finished, current global step: %d" % global_step.eval()) + + # for fine-tuning, choose reset_training_op==True. when resuming training, reset_training_op==False + if self.reset_training_op: + print ("resetting optimizer and global step") + opt_var_list = [optimizer.get_slot(var, name) for name in optimizer.get_slot_names() + for var in tf.global_variables() if optimizer.get_slot(var, name) is not None] + opt_var_list_init = tf.variables_initializer(opt_var_list) + opt_var_list_init.run() + sess.run(global_step.initializer) + + # create model saver and file writer + summary_writer = tf.summary.FileWriter(logdir=self.save_log_path, graph=tf.get_default_graph()) + saver = tf.train.Saver() + + print('\n*** Start Training ***') + + # initialize some variables before training loop + resume_step = global_step.eval() + num_train_images = len(self.img_menpo_list) + batches_in_epoch = int(float(num_train_images) / float(self.batch_size)) + epoch = int(resume_step / batches_in_epoch) + img_inds = self.epoch_inds_shuffle[epoch, :] + log_valid = True + log_valid_images = True + + # allocate space for batch images, maps and landmarks + batch_images = np.zeros([self.batch_size, self.image_size, self.image_size, self.c_dim]).astype( + 'float32') + batch_lms = np.zeros([self.batch_size, self.num_landmarks, 2]).astype('float32') + batch_lms_pred = np.zeros([self.batch_size, self.num_landmarks, 2]).astype('float32') + + batch_maps_small = np.zeros((self.batch_size, int(self.image_size/4), + int(self.image_size/4), self.num_landmarks)).astype('float32') + batch_maps = np.zeros((self.batch_size, self.image_size, self.image_size, + self.num_landmarks)).astype('float32') + + # create gaussians for heatmap generation + gaussian_filt_large = create_gaussian_filter(sigma=self.sigma, win_mult=self.win_mult) + gaussian_filt_small = create_gaussian_filter(sigma=1.*self.sigma/4, win_mult=self.win_mult) + + # training loop + for step in range(resume_step, self.train_iter): + + j = step % batches_in_epoch # j==0 if we finished an epoch + + # if we finished an epoch and this isn't the first step + if step > resume_step and j == 0: + epoch += 1 + img_inds = self.epoch_inds_shuffle[epoch, :] # get next shuffled image inds + log_valid = True + log_valid_images = True + if self.use_epoch_data: # if using pre-augmented data, load epoch directory + epoch_dir = os.path.join(self.epoch_data_dir, str(epoch)) + self.img_menpo_list = load_menpo_image_list( + self.img_path, train_crop_dir=epoch_dir, img_dir_ns=None, mode=self.mode, + bb_dictionary=self.bb_dictionary, image_size=self.image_size, test_data=self.test_data, + augment_basic=False, augment_texture=False, augment_geom=False) + + # get batch indices + batch_inds = img_inds[j * self.batch_size:(j + 1) * self.batch_size] + + # load batch images, gt maps and landmarks + load_images_landmarks_approx_maps_alloc_once( + self.img_menpo_list, batch_inds, images=batch_images, maps_small=batch_maps_small, + maps=batch_maps, landmarks=batch_lms, image_size=self.image_size, + num_landmarks=self.num_landmarks, scale=self.scale, gauss_filt_large=gaussian_filt_large, + gauss_filt_small=gaussian_filt_small, win_mult=self.win_mult, sigma=self.sigma, + save_landmarks=self.compute_nme) + + feed_dict_train = {self.images: batch_images, self.heatmaps: batch_maps, + self.heatmaps_small: batch_maps_small} + + # train on batch + sess.run(train_op, feed_dict_train) + + # save to log and print status + if step == resume_step or (step + 1) % self.print_every == 0: + + # train data log + if self.compute_nme: + batch_maps_pred = sess.run(self.pred_hm_u, {self.images: batch_images}) + + batch_heat_maps_to_landmarks_alloc_once( + batch_maps=batch_maps_pred,batch_landmarks=batch_lms_pred, + batch_size=self.batch_size, image_size=self.image_size, + num_landmarks=self.num_landmarks) + + train_feed_dict_log = { + self.images: batch_images, self.heatmaps: batch_maps, + self.heatmaps_small: batch_maps_small, self.train_lms: batch_lms, + self.train_pred_lms: batch_lms_pred} + + summary, l_p, l_f, l_t, nme = sess.run( + [self.batch_summary_op, self.l2_primary, self.l2_fusion, self.total_loss, + self.nme_loss], + train_feed_dict_log) + + print ( + 'epoch: [%d] step: [%d/%d] primary loss: [%.6f] fusion loss: [%.6f]' + ' total loss: [%.6f] NME: [%.6f]' % ( + epoch, step + 1, self.train_iter, l_p, l_f, l_t, nme)) + else: + train_feed_dict_log = {self.images: batch_images, self.heatmaps: batch_maps, + self.heatmaps_small: batch_maps_small} + + summary, l_p, l_f, l_t = sess.run( + [self.batch_summary_op, self.l2_primary, self.l2_fusion, self.total_loss], + train_feed_dict_log) + print ( + 'epoch: [%d] step: [%d/%d] primary loss: [%.6f] fusion loss: [%.6f] total loss: [%.6f]' + % (epoch, step + 1, self.train_iter, l_p, l_f, l_t)) + + summary_writer.add_summary(summary, step) + + # valid data log + if self.valid_size > 0 and (log_valid and epoch % self.log_valid_every == 0) \ + and self.compute_nme: + log_valid = False + + self.predict_valid_landmarks_in_batches(self.valid_images_loaded, sess) + valid_feed_dict_log = { + self.valid_lms: self.valid_landmarks_loaded, + self.valid_pred_lms: self.valid_landmarks_pred} + + v_summary, v_nme = sess.run([self.valid_summary, self.valid_nme_loss], + valid_feed_dict_log) + summary_writer.add_summary(v_summary, step) + print ( + 'epoch: [%d] step: [%d/%d] valid NME: [%.6f]' % ( + epoch, step + 1, self.train_iter, v_nme)) + + # save model + if (step + 1) % self.save_every == 0: + saver.save(sess, os.path.join(self.save_model_path, 'deep_heatmaps'), global_step=step + 1) + print ('model/deep-heatmaps-%d saved' % (step + 1)) + + # save images + if step == resume_step or (step + 1) % self.sample_every == 0: + + batch_maps_small_pred = sess.run(self.pred_hm_p, {self.images: batch_images}) + if not self.compute_nme: + batch_maps_pred = sess.run(self.pred_hm_u, {self.images: batch_images}) + batch_lms_pred = None + + merged_img = merge_images_landmarks_maps_gt( + batch_images.copy(), batch_maps_pred, batch_maps, landmarks=batch_lms_pred, + image_size=self.image_size, num_landmarks=self.num_landmarks, num_samples=self.sample_grid, + scale=self.scale, circle_size=2, fast=self.fast_img_gen) + + merged_img_small = merge_images_landmarks_maps_gt( + batch_images.copy(), batch_maps_small_pred, batch_maps_small, + image_size=self.image_size, + num_landmarks=self.num_landmarks, num_samples=self.sample_grid, scale=self.scale, + circle_size=0, fast=self.fast_img_gen) + + if self.sample_per_channel: + map_per_channel = map_comapre_channels( + batch_images.copy(), batch_maps_pred, batch_maps, image_size=self.image_size, + num_landmarks=self.num_landmarks, scale=self.scale) + + map_per_channel_small = map_comapre_channels( + batch_images.copy(), batch_maps_small_pred, batch_maps_small, image_size=int(self.image_size/4), + num_landmarks=self.num_landmarks, scale=self.scale) + + if self.sample_to_log: # save heatmap images to log + if self.sample_per_channel: + summary_img = sess.run( + self.img_summary, {self.log_image_map: np.expand_dims(merged_img, 0), + self.log_map_channels: np.expand_dims(map_per_channel, 0), + self.log_image_map_small: np.expand_dims(merged_img_small, 0), + self.log_map_channels_small: np.expand_dims(map_per_channel_small, 0)}) + else: + summary_img = sess.run( + self.img_summary, {self.log_image_map: np.expand_dims(merged_img, 0), + self.log_image_map_small: np.expand_dims(merged_img_small, 0)}) + summary_writer.add_summary(summary_img, step) + + if (self.valid_size >= self.sample_grid) and self.save_valid_images and\ + (log_valid_images and epoch % self.log_valid_every == 0): + log_valid_images = False + + batch_maps_small_pred_val,batch_maps_pred_val =\ + sess.run([self.pred_hm_p,self.pred_hm_u], + {self.images: self.valid_images_loaded[:self.sample_grid]}) + + merged_img_small = merge_images_landmarks_maps_gt( + self.valid_images_loaded[:self.sample_grid].copy(), batch_maps_small_pred_val, + self.valid_gt_maps_small_loaded, image_size=self.image_size, + num_landmarks=self.num_landmarks, num_samples=self.sample_grid, + scale=self.scale, circle_size=0, fast=self.fast_img_gen) + + merged_img = merge_images_landmarks_maps_gt( + self.valid_images_loaded[:self.sample_grid].copy(), batch_maps_pred_val, + self.valid_gt_maps_loaded, image_size=self.image_size, + num_landmarks=self.num_landmarks, num_samples=self.sample_grid, + scale=self.scale, circle_size=2, fast=self.fast_img_gen) + + if self.sample_per_channel: + map_per_channel_small = map_comapre_channels( + self.valid_images_loaded[:self.sample_grid].copy(), batch_maps_small_pred_val, + self.valid_gt_maps_small_loaded, image_size=int(self.image_size / 4), + num_landmarks=self.num_landmarks, scale=self.scale) + + map_per_channel = map_comapre_channels( + self.valid_images_loaded[:self.sample_grid].copy(), batch_maps_pred, + self.valid_gt_maps_loaded, image_size=self.image_size, + num_landmarks=self.num_landmarks, scale=self.scale) + + summary_img = sess.run( + self.img_summary_valid, + {self.log_image_map: np.expand_dims(merged_img, 0), + self.log_map_channels: np.expand_dims(map_per_channel, 0), + self.log_image_map_small: np.expand_dims(merged_img_small, 0), + self.log_map_channels_small: np.expand_dims(map_per_channel_small, 0)}) + else: + summary_img = sess.run( + self.img_summary_valid, + {self.log_image_map: np.expand_dims(merged_img, 0), + self.log_image_map_small: np.expand_dims(merged_img_small, 0)}) + + summary_writer.add_summary(summary_img, step) + else: # save heatmap images to directory + sample_path_imgs = os.path.join( + self.save_sample_path, 'epoch-%d-train-iter-%d-1.png' % (epoch, step + 1)) + sample_path_imgs_small = os.path.join( + self.save_sample_path, 'epoch-%d-train-iter-%d-1-s.png' % (epoch, step + 1)) + scipy.misc.imsave(sample_path_imgs, merged_img) + scipy.misc.imsave(sample_path_imgs_small, merged_img_small) + + if self.sample_per_channel: + sample_path_ch_maps = os.path.join( + self.save_sample_path, 'epoch-%d-train-iter-%d-3.png' % (epoch, step + 1)) + sample_path_ch_maps_small = os.path.join( + self.save_sample_path, 'epoch-%d-train-iter-%d-3-s.png' % (epoch, step + 1)) + scipy.misc.imsave(sample_path_ch_maps, map_per_channel) + scipy.misc.imsave(sample_path_ch_maps_small, map_per_channel_small) + + print('*** Finished Training ***') + + def get_image_maps(self, test_image, reuse=None, norm=False): + """ returns heatmaps of input image (menpo image object)""" + + self.add_placeholders() + # build model + pred_hm_p, pred_hm_f, pred_hm_u = self.heatmaps_network(self.images, reuse=reuse) + + with tf.Session(config=self.config) as sess: + # load trained parameters + saver = tf.train.Saver() + saver.restore(sess, self.test_model_path) + _, model_name = os.path.split(self.test_model_path) + + test_image = test_image.pixels_with_channels_at_back().astype('float32') + if norm: + if self.scale is '255': + test_image *= 255 + elif self.scale is '0': + test_image = 2 * test_image - 1 + + map_primary, map_fusion, map_upsample = sess.run( + [pred_hm_p, pred_hm_f, pred_hm_u], {self.images: np.expand_dims(test_image, 0)}) + + return map_primary, map_fusion, map_upsample + + def get_landmark_predictions(self, img_list, pdm_models_dir, clm_model_path, reuse=None, map_to_input_size=False): + + """returns dictionary with landmark predictions of each step of the ECpTp algorithm and ECT""" + + from thirdparty.face_of_art.pdm_clm_functions import feature_based_pdm_corr, clm_correct + + jaw_line_inds = np.arange(0, 17) + left_brow_inds = np.arange(17, 22) + right_brow_inds = np.arange(22, 27) + + self.add_placeholders() + # build model + _, _, pred_hm_u = self.heatmaps_network(self.images, reuse=reuse) + + with tf.Session(config=self.config) as sess: + # load trained parameters + saver = tf.train.Saver() + saver.restore(sess, self.test_model_path) + _, model_name = os.path.split(self.test_model_path) + e_list = [] + ect_list = [] + ecp_list = [] + ecpt_list = [] + ecptp_jaw_list = [] + ecptp_out_list = [] + + for test_image in img_list: + + if map_to_input_size: + test_image_transform = test_image[1] + test_image=test_image[0] + + # get landmarks for estimation stage + if test_image.n_channels < 3: + test_image_map = sess.run( + pred_hm_u, {self.images: np.expand_dims( + gray2rgb(test_image.pixels_with_channels_at_back()).astype('float32'), 0)}) + else: + test_image_map = sess.run( + pred_hm_u, {self.images: np.expand_dims( + test_image.pixels_with_channels_at_back().astype('float32'), 0)}) + init_lms = heat_maps_to_landmarks(np.squeeze(test_image_map)) + + # get landmarks for part-based correction stage + p_pdm_lms = feature_based_pdm_corr(lms_init=init_lms, models_dir=pdm_models_dir, train_type='basic') + + # get landmarks for part-based tuning stage + try: # clm may not converge + pdm_clm_lms = clm_correct( + clm_model_path=clm_model_path, image=test_image, map=test_image_map, lms_init=p_pdm_lms) + except: + pdm_clm_lms = p_pdm_lms.copy() + + # get landmarks ECT + try: # clm may not converge + ect_lms = clm_correct( + clm_model_path=clm_model_path, image=test_image, map=test_image_map, lms_init=init_lms) + except: + ect_lms = p_pdm_lms.copy() + + # get landmarks for ECpTp_out (tune jaw and eyebrows) + ecptp_out = p_pdm_lms.copy() + ecptp_out[left_brow_inds] = pdm_clm_lms[left_brow_inds] + ecptp_out[right_brow_inds] = pdm_clm_lms[right_brow_inds] + ecptp_out[jaw_line_inds] = pdm_clm_lms[jaw_line_inds] + + # get landmarks for ECpTp_jaw (tune jaw) + ecptp_jaw = p_pdm_lms.copy() + ecptp_jaw[jaw_line_inds] = pdm_clm_lms[jaw_line_inds] + + if map_to_input_size: + ecptp_jaw = test_image_transform.apply(ecptp_jaw) + ecptp_out = test_image_transform.apply(ecptp_out) + ect_lms = test_image_transform.apply(ect_lms) + init_lms = test_image_transform.apply(init_lms) + p_pdm_lms = test_image_transform.apply(p_pdm_lms) + pdm_clm_lms = test_image_transform.apply(pdm_clm_lms) + + ecptp_jaw_list.append(ecptp_jaw) # E + p-correction + p-tuning (ECpTp_jaw) + ecptp_out_list.append(ecptp_out) # E + p-correction + p-tuning (ECpTp_out) + ect_list.append(ect_lms) # ECT prediction + e_list.append(init_lms) # init prediction from heatmap network (E) + ecp_list.append(p_pdm_lms) # init prediction + part pdm correction (ECp) + ecpt_list.append(pdm_clm_lms) # init prediction + part pdm correction + global tuning (ECpT) + + pred_dict = { + 'E': e_list, + 'ECp': ecp_list, + 'ECpT': ecpt_list, + 'ECT': ect_list, + 'ECpTp_jaw': ecptp_jaw_list, + 'ECpTp_out': ecptp_out_list + } + + return pred_dict diff --git a/MakeItTalk/thirdparty/face_of_art/deep_heatmaps_model_fusion_net.pyc b/MakeItTalk/thirdparty/face_of_art/deep_heatmaps_model_fusion_net.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b7da7873c85e4e845faff3b5a1026b43a1c9eee2 Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/deep_heatmaps_model_fusion_net.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/deformation_functions.py b/MakeItTalk/thirdparty/face_of_art/deformation_functions.py new file mode 100644 index 0000000000000000000000000000000000000000..41b9464f4a6241d055e529fb4700a7eb2f29c8f7 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/deformation_functions.py @@ -0,0 +1,386 @@ +import numpy as np + + +def deform_part(landmarks, part_inds, scale_y=1., scale_x=1., shift_ver=0., shift_horiz=0.): + """ deform facial part landmarks - matching ibug annotations of 68 landmarks """ + + landmarks_part = landmarks[part_inds, :].copy() + part_mean = np.mean(landmarks_part, 0) + + landmarks_norm = landmarks_part - part_mean + landmarks_deform = landmarks_norm.copy() + landmarks_deform[:, 1] = scale_x * landmarks_deform[:, 1] + landmarks_deform[:, 0] = scale_y * landmarks_deform[:, 0] + + landmarks_deform = landmarks_deform + part_mean + landmarks_deform = landmarks_deform + shift_ver * np.array([1, 0]) + shift_horiz * np.array([0, 1]) + + deform_shape = landmarks.copy() + deform_shape[part_inds] = landmarks_deform + return deform_shape + + +def deform_mouth(lms, p_scale=0, p_shift=0, pad=5): + """ deform mouth landmarks - matching ibug annotations of 68 landmarks """ + + jaw_line_inds = np.arange(0, 17) + nose_inds = np.arange(27, 36) + mouth_inds = np.arange(48, 68) + + part_inds = mouth_inds.copy() + + # find part spatial limitations + jaw_pad = 4 + x_max = np.max(lms[part_inds, 1]) + (np.max(lms[jaw_line_inds[jaw_pad:-jaw_pad], 1]) - np.max( + lms[part_inds, 1])) * 0.5 - pad + x_min = np.min(lms[jaw_line_inds[jaw_pad:-jaw_pad], 1]) + (np.min(lms[part_inds, 1]) - np.min( + lms[jaw_line_inds[jaw_pad:-jaw_pad], 1])) * 0.5 + pad + y_min = np.max(lms[nose_inds, 0]) + (np.min(lms[part_inds, 0]) - np.max(lms[nose_inds, 0])) * 0.5 + max_jaw = np.minimum(np.max(lms[jaw_line_inds, 0]), lms[8, 0]) + y_max = max_jaw - (max_jaw - np.max(lms[part_inds, 0])) * 0.5 - pad + + # scale facial feature + scale = np.random.rand() + if p_scale > 0.5 and scale > 0.5: + + part_mean = np.mean(lms[part_inds, :], 0) + lms_part_norm = lms[part_inds, :] - part_mean + + part_y_bound_min, part_x_bound_min = np.min(lms_part_norm, 0) + part_y_bound_max, part_x_bound_max = np.max(lms_part_norm, 0) + + scale_max_y = np.minimum( + (y_min - part_mean[0]) / part_y_bound_min, + (y_max - part_mean[0]) / part_y_bound_max) + scale_max_y = np.minimum(scale_max_y, 1.2) + + scale_max_x = np.minimum( + (x_min - part_mean[1]) / part_x_bound_min, + (x_max - part_mean[1]) / part_x_bound_max) + scale_max_x = np.minimum(scale_max_x, 1.2) + + scale_y = np.random.uniform(0.7, scale_max_y) + scale_x = np.random.uniform(0.7, scale_max_x) + + lms_def_scale = deform_part(lms, part_inds, scale_y=scale_y, scale_x=scale_x, shift_ver=0., shift_horiz=0.) + + # check for spatial errors + error = check_deformation_spatial_errors(lms_def_scale, part_inds, pad=pad) + if error: + lms_def_scale = lms.copy() + else: + lms_def_scale = lms.copy() + + # shift facial feature + if p_shift > 0.5 and (np.random.rand() > 0.5 or not scale): + + part_mean = np.mean(lms_def_scale[part_inds, :], 0) + lms_part_norm = lms_def_scale[part_inds, :] - part_mean + + part_y_bound_min, part_x_bound_min = np.min(lms_part_norm, 0) + part_y_bound_max, part_x_bound_max = np.max(lms_part_norm, 0) + + shift_x = np.random.uniform(x_min - (part_mean[1] + part_x_bound_min), + x_max - (part_mean[1] + part_x_bound_max)) + shift_y = np.random.uniform(y_min - (part_mean[0] + part_y_bound_min), + y_max - (part_mean[0] + part_y_bound_max)) + + lms_def = deform_part(lms_def_scale, part_inds, scale_y=1., scale_x=1., shift_ver=shift_y, shift_horiz=shift_x) + error = check_deformation_spatial_errors(lms_def, part_inds, pad=pad) + if error: + lms_def = lms_def_scale.copy() + else: + lms_def = lms_def_scale.copy() + + return lms_def + + +def deform_nose(lms, p_scale=0, p_shift=0, pad=5): + """ deform nose landmarks - matching ibug annotations of 68 landmarks """ + + nose_inds = np.arange(27, 36) + left_eye_inds = np.arange(36, 42) + right_eye_inds = np.arange(42, 48) + mouth_inds = np.arange(48, 68) + + part_inds = nose_inds.copy() + + # find part spatial limitations + x_max = np.max(lms[part_inds[:4], 1]) + (np.min(lms[right_eye_inds, 1]) - np.max(lms[part_inds[:4], 1])) * 0.5 - pad + x_min = np.max(lms[left_eye_inds, 1]) + (np.min(lms[part_inds[:4], 1]) - np.max(lms[left_eye_inds, 1])) * 0.5 + pad + + max_brows = np.max(lms[21:23, 0]) + y_min = np.min(lms[part_inds, 0]) + (max_brows - np.min(lms[part_inds, 0])) * 0.5 + min_mouth = np.min(lms[mouth_inds, 0]) + y_max = np.max(lms[part_inds, 0]) + (np.max(lms[part_inds, 0]) - min_mouth) * 0 - pad + + # scale facial feature + scale = np.random.rand() + if p_scale > 0.5 and scale > 0.5: + + part_mean = np.mean(lms[part_inds, :], 0) + lms_part_norm = lms[part_inds, :] - part_mean + + part_y_bound_min = np.min(lms_part_norm[:, 0]) + part_y_bound_max = np.max(lms_part_norm[:, 0]) + + scale_max_y = np.minimum( + (y_min - part_mean[0]) / part_y_bound_min, + (y_max - part_mean[0]) / part_y_bound_max) + scale_y = np.random.uniform(0.7, scale_max_y) + scale_x = np.random.uniform(0.7, 1.5) + + lms_def_scale = deform_part(lms, part_inds, scale_y=scale_y, scale_x=scale_x, shift_ver=0., shift_horiz=0.) + + error1 = check_deformation_spatial_errors(lms_def_scale, part_inds[:4], pad=pad) + error2 = check_deformation_spatial_errors(lms_def_scale, part_inds[4:], pad=pad) + error = error1 + error2 + if error: + lms_def_scale = lms.copy() + else: + lms_def_scale = lms.copy() + + # shift facial feature + if p_shift > 0.5 and (np.random.rand() > 0.5 or not scale): + + part_mean = np.mean(lms_def_scale[part_inds, :], 0) + lms_part_norm = lms_def_scale[part_inds, :] - part_mean + + part_x_bound_min = np.min(lms_part_norm[:4], 0) + part_x_bound_max = np.max(lms_part_norm[:4], 0) + part_y_bound_min = np.min(lms_part_norm[:, 0]) + part_y_bound_max = np.max(lms_part_norm[:, 0]) + + shift_x = np.random.uniform(x_min - (part_mean[1] + part_x_bound_min), + x_max - (part_mean[1] + part_x_bound_max)) + shift_y = np.random.uniform(y_min - (part_mean[0] + part_y_bound_min), + y_max - (part_mean[0] + part_y_bound_max)) + + lms_def = deform_part(lms_def_scale, part_inds, scale_y=1., scale_x=1., shift_ver=shift_y, shift_horiz=shift_x) + + error1 = check_deformation_spatial_errors(lms_def, part_inds[:4], pad=pad) + error2 = check_deformation_spatial_errors(lms_def, part_inds[4:], pad=pad) + error = error1 + error2 + if error: + lms_def = lms_def_scale.copy() + else: + lms_def = lms_def_scale.copy() + + return lms_def + + +def deform_eyes(lms, p_scale=0, p_shift=0, pad=10): + """ deform eyes + eyebrows landmarks - matching ibug annotations of 68 landmarks """ + + nose_inds = np.arange(27, 36) + left_eye_inds = np.arange(36, 42) + right_eye_inds = np.arange(42, 48) + left_brow_inds = np.arange(17, 22) + right_brow_inds = np.arange(22, 27) + + part_inds_right = np.hstack((right_brow_inds, right_eye_inds)) + part_inds_left = np.hstack((left_brow_inds, left_eye_inds)) + + # find part spatial limitations + + # right eye+eyebrow + x_max_right = np.max(lms[part_inds_right, 1]) + (lms[16, 1] - np.max(lms[part_inds_right, 1])) * 0.5 - pad + x_min_right = np.max(lms[nose_inds[:4], 1]) + (np.min(lms[part_inds_right, 1]) - np.max( + lms[nose_inds[:4], 1])) * 0.5 + pad + y_max_right = np.max(lms[part_inds_right, 0]) + (lms[33, 0] - np.max(lms[part_inds_right, 0])) * 0.25 - pad + y_min_right = 2 * pad + + # left eye+eyebrow + x_max_left = np.max(lms[part_inds_left, 1]) + (np.min(lms[nose_inds[:4], 1]) - np.max( + lms[part_inds_left, 1])) * 0.5 - pad + x_min_left = lms[0, 1] + (np.min(lms[part_inds_left, 1]) - lms[0, 1]) * 0.5 + pad + + y_max_left = np.max(lms[part_inds_left, 0]) + (lms[33, 0] - np.max(lms[part_inds_left, 0])) * 0.25 - pad + y_min_left = 2 * pad + + # scale facial feature + scale = np.random.rand() + if p_scale > 0.5 and scale > 0.5: + + # right eye+eyebrow + part_mean = np.mean(lms[part_inds_right, :], 0) + lms_part_norm = lms[part_inds_right, :] - part_mean + + part_y_bound_min, part_x_bound_min = np.min(lms_part_norm, 0) + part_y_bound_max, part_x_bound_max = np.max(lms_part_norm, 0) + + scale_max_y = np.minimum( + (y_min_right - part_mean[0]) / part_y_bound_min, + (y_max_right - part_mean[0]) / part_y_bound_max) + scale_max_y_right = np.minimum(scale_max_y, 1.5) + + scale_max_x = np.minimum( + (x_min_right - part_mean[1]) / part_x_bound_min, + (x_max_right - part_mean[1]) / part_x_bound_max) + scale_max_x_right = np.minimum(scale_max_x, 1.5) + + # left eye+eyebrow + part_mean = np.mean(lms[part_inds_left, :], 0) + lms_part_norm = lms[part_inds_left, :] - part_mean + + part_y_bound_min, part_x_bound_min = np.min(lms_part_norm, 0) + part_y_bound_max, part_x_bound_max = np.max(lms_part_norm, 0) + + scale_max_y = np.minimum( + (y_min_left - part_mean[0]) / part_y_bound_min, + (y_max_left - part_mean[0]) / part_y_bound_max) + scale_max_y_left = np.minimum(scale_max_y, 1.5) + + scale_max_x = np.minimum( + (x_min_left - part_mean[1]) / part_x_bound_min, + (x_max_left - part_mean[1]) / part_x_bound_max) + scale_max_x_left = np.minimum(scale_max_x, 1.5) + + scale_max_x = np.minimum(scale_max_x_left, scale_max_x_right) + scale_max_y = np.minimum(scale_max_y_left, scale_max_y_right) + scale_y = np.random.uniform(0.8, scale_max_y) + scale_x = np.random.uniform(0.8, scale_max_x) + + lms_def_scale = deform_part(lms, part_inds_right, scale_y=scale_y, scale_x=scale_x, shift_ver=0., + shift_horiz=0.) + lms_def_scale = deform_part(lms_def_scale.copy(), part_inds_left, scale_y=scale_y, scale_x=scale_x, + shift_ver=0., shift_horiz=0.) + + error1 = check_deformation_spatial_errors(lms_def_scale, part_inds_right, pad=pad) + error2 = check_deformation_spatial_errors(lms_def_scale, part_inds_left, pad=pad) + error = error1 + error2 + if error: + lms_def_scale = lms.copy() + else: + lms_def_scale = lms.copy() + + # shift facial feature + if p_shift > 0.5 and (np.random.rand() > 0.5 or not scale): + + y_min_right = np.maximum(0.8 * np.min(lms_def_scale[part_inds_right, 0]), pad) + y_min_left = np.maximum(0.8 * np.min(lms_def_scale[part_inds_left, 0]), pad) + + # right eye + part_mean = np.mean(lms_def_scale[part_inds_right, :], 0) + lms_part_norm = lms_def_scale[part_inds_right, :] - part_mean + + part_y_bound_min, part_x_bound_min = np.min(lms_part_norm, 0) + part_y_bound_max, part_x_bound_max = np.max(lms_part_norm, 0) + + shift_x = np.random.uniform(x_min_right - (part_mean[1] + part_x_bound_min), + x_max_right - (part_mean[1] + part_x_bound_max)) + shift_y = np.random.uniform(y_min_right - (part_mean[0] + part_y_bound_min), + y_max_right - (part_mean[0] + part_y_bound_max)) + + lms_def_right = deform_part(lms_def_scale, part_inds_right, scale_y=1., scale_x=1., shift_ver=shift_y, + shift_horiz=shift_x) + + error1 = check_deformation_spatial_errors(lms_def_right, part_inds_right, pad=pad) + if error1: + lms_def_right = lms_def_scale.copy() + + # left eye + part_mean = np.mean(lms_def_scale[part_inds_left, :], 0) + lms_part_norm = lms_def_scale[part_inds_left, :] - part_mean + + part_y_bound_min, part_x_bound_min = np.min(lms_part_norm, 0) + part_y_bound_max, part_x_bound_max = np.max(lms_part_norm, 0) + + shift_x = np.random.uniform(x_min_left - (part_mean[1] + part_x_bound_min), + x_max_left - (part_mean[1] + part_x_bound_max)) + shift_y = np.random.uniform(y_min_left - (part_mean[0] + part_y_bound_min), + y_max_left - (part_mean[0] + part_y_bound_max)) + + lms_def = deform_part(lms_def_right.copy(), part_inds_left, scale_y=1., scale_x=1., shift_ver=shift_y, + shift_horiz=shift_x) + + error2 = check_deformation_spatial_errors(lms_def, part_inds_left, pad=pad) + if error2: + lms_def = lms_def_right.copy() + else: + lms_def = lms_def_scale.copy() + + return lms_def + + +def deform_scale_face(lms, p_scale=0, pad=5, image_size=256): + """ change face landmarks scale & aspect ratio - matching ibug annotations of 68 landmarks """ + + part_inds = np.arange(68) + + # find spatial limitations + x_max = np.max(lms[part_inds, 1]) + (image_size - np.max(lms[part_inds, 1])) * 0.5 - pad + x_min = np.min(lms[part_inds, 1]) * 0.5 + pad + + y_min = 2 * pad + y_max = np.max(lms[part_inds, 0]) + (image_size - np.max(lms[part_inds, 0])) * 0.5 - pad + + if p_scale > 0.5: + + part_mean = np.mean(lms[part_inds, :], 0) + lms_part_norm = lms[part_inds, :] - part_mean + + part_y_bound_min, part_x_bound_min = np.min(lms_part_norm, 0) + part_y_bound_max, part_x_bound_max = np.max(lms_part_norm, 0) + + scale_max_y = np.minimum( + (y_min - part_mean[0]) / part_y_bound_min, + (y_max - part_mean[0]) / part_y_bound_max) + scale_max_y = np.minimum(scale_max_y, 1.2) + + scale_max_x = np.minimum( + (x_min - part_mean[1]) / part_x_bound_min, + (x_max - part_mean[1]) / part_x_bound_max) + scale_max_x = np.minimum(scale_max_x, 1.2) + + scale_y = np.random.uniform(0.6, scale_max_y) + scale_x = np.random.uniform(0.6, scale_max_x) + + lms_def_scale = deform_part(lms, part_inds, scale_y=scale_y, scale_x=scale_x, shift_ver=0., shift_horiz=0.) + + # check for spatial errors + error2 = np.sum(lms_def_scale >= image_size) + np.sum(lms_def_scale < 0) + error1 = len(np.unique((lms_def_scale).astype('int'), axis=0)) != len(lms_def_scale) + error = error1 + error2 + if error: + lms_def_scale = lms.copy() + else: + lms_def_scale = lms.copy() + + return lms_def_scale + + +def deform_face_geometric_style(lms, p_scale=0, p_shift=0): + """ deform facial landmarks - matching ibug annotations of 68 landmarks """ + + lms = deform_scale_face(lms.copy(), p_scale=p_scale, pad=0) + lms = deform_nose(lms.copy(), p_scale=p_scale, p_shift=p_shift, pad=0) + lms = deform_mouth(lms.copy(), p_scale=p_scale, p_shift=p_shift, pad=0) + lms = deform_eyes(lms.copy(), p_scale=p_scale, p_shift=p_shift, pad=0) + return lms + + +def get_bounds(lms): + part_y_bound_min, part_x_bound_min = np.min(lms,0) + part_y_bound_max, part_x_bound_max = np.max(lms,0) + return np.array([[part_x_bound_min, part_x_bound_max], [part_y_bound_min, part_y_bound_max]]) + + +def part_intersection(part_to_check, points_to_compare, pad=0): + points_to_compare = np.round(points_to_compare.copy()) + check_bounds = np.round(get_bounds(part_to_check)) + check_bounds[:, 0] += pad + check_bounds[:, 1] -= pad + inds_y = np.where(np.logical_and(points_to_compare[:,0] > check_bounds[1,0], points_to_compare[:,0] check_bounds[0,0], points_to_compare[:,1] 0 + return out diff --git a/MakeItTalk/thirdparty/face_of_art/deformation_functions.pyc b/MakeItTalk/thirdparty/face_of_art/deformation_functions.pyc new file mode 100644 index 0000000000000000000000000000000000000000..edee4c9319512b87833d603fa2855943fb614294 Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/deformation_functions.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/logging_functions.py b/MakeItTalk/thirdparty/face_of_art/logging_functions.py new file mode 100644 index 0000000000000000000000000000000000000000..9477a18f807c96e5bd39dc841d569c57078e503c --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/logging_functions.py @@ -0,0 +1,200 @@ +import numpy as np +import os +import cv2 +import matplotlib.pyplot as plt +from scipy.ndimage import zoom + + +def print_training_params_to_file(init_locals): + """save param log file""" + + del init_locals['self'] + with open(os.path.join(init_locals['save_log_path'], 'Training_Parameters.txt'), 'w') as f: + f.write('Training Parameters:\n\n') + for key, value in init_locals.items(): + f.write('* %s: %s\n' % (key, value)) + + +def heat_maps_to_landmarks(maps, image_size=256, num_landmarks=68): + """find landmarks from heatmaps (arg max on each map)""" + + landmarks = np.zeros((num_landmarks,2)).astype('float32') + + for m_ind in range(num_landmarks): + landmarks[m_ind, :] = np.unravel_index(maps[:, :, m_ind].argmax(), (image_size, image_size)) + + return landmarks + + +def heat_maps_to_landmarks_alloc_once(maps, landmarks, image_size=256, num_landmarks=68): + """find landmarks from heatmaps (arg max on each map) with pre-allocation""" + + for m_ind in range(num_landmarks): + landmarks[m_ind, :] = np.unravel_index(maps[:, :, m_ind].argmax(), (image_size, image_size)) + + +def batch_heat_maps_to_landmarks_alloc_once(batch_maps, batch_landmarks, batch_size, image_size=256, num_landmarks=68): + """find landmarks from heatmaps (arg max on each map) - for multiple images""" + + for i in range(batch_size): + heat_maps_to_landmarks_alloc_once( + maps=batch_maps[i, :, :, :], landmarks=batch_landmarks[i, :, :], image_size=image_size, + num_landmarks=num_landmarks) + + +def normalize_map(map_in): + map_min = map_in.min() + return (map_in - map_min) / (map_in.max() - map_min) + + +def map_to_rgb(map_gray): + cmap = plt.get_cmap('jet') + rgba_map_image = cmap(map_gray) + map_rgb = np.delete(rgba_map_image, 3, 2) * 255 + return map_rgb + + +def create_img_with_landmarks(image, landmarks, image_size=256, num_landmarks=68, scale=255, circle_size=2): + """add landmarks to a face image""" + image = image.reshape(image_size, image_size, -1) + + if scale is 0: + image = 127.5 * (image + 1) + elif scale is 1: + image *= 255 + + landmarks = landmarks.reshape(num_landmarks, 2) + landmarks = np.clip(landmarks, 0, image_size-1) + + for (y, x) in landmarks.astype('int'): + cv2.circle(image, (x, y), circle_size, (255, 0, 0), -1) + + return image + + +def heat_maps_to_image(maps, landmarks=None, image_size=256, num_landmarks=68): + """create one image from multiple heatmaps""" + + if landmarks is None: + landmarks = heat_maps_to_landmarks(maps, image_size=image_size, num_landmarks=num_landmarks) + + x, y = np.mgrid[0:image_size, 0:image_size] + + pixel_dist = np.sqrt( + np.square(np.expand_dims(x, 2) - landmarks[:, 0]) + np.square(np.expand_dims(y, 2) - landmarks[:, 1])) + + nn_landmark = np.argmin(pixel_dist, 2) + + map_image = maps[x, y, nn_landmark] + map_image = (map_image-map_image.min())/(map_image.max()-map_image.min()) # normalize for visualization + + return map_image + + +def merge_images_landmarks_maps_gt(images, maps, maps_gt, landmarks=None, image_size=256, num_landmarks=68, + num_samples=9, scale=255, circle_size=2, fast=False): + """create image for log - containing input face images, predicted heatmaps and GT heatmaps (if exists)""" + + images = images[:num_samples] + if maps.shape[1] is not image_size: + images = zoom(images, (1, 0.25, 0.25, 1)) + image_size /= 4 + image_size=int(image_size) + if maps_gt is not None: + if maps_gt.shape[1] is not image_size: + maps_gt = zoom(maps_gt, (1, 0.25, 0.25, 1)) + + cmap = plt.get_cmap('jet') + + row = int(np.sqrt(num_samples)) + if maps_gt is None: + merged = np.zeros([row * image_size, row * image_size * 2, 3]) + else: + merged = np.zeros([row * image_size, row * image_size * 3, 3]) + + for idx, img in enumerate(images): + i = idx // row + j = idx % row + + if landmarks is None: + img_landmarks = heat_maps_to_landmarks(maps[idx, :, :, :], image_size=image_size, + num_landmarks=num_landmarks) + else: + img_landmarks = landmarks[idx] + + if fast: + map_image = np.amax(maps[idx, :, :, :], 2) + map_image = (map_image - map_image.min()) / (map_image.max() - map_image.min()) + else: + map_image = heat_maps_to_image(maps[idx, :, :, :], img_landmarks, image_size=image_size, + num_landmarks=num_landmarks) + rgba_map_image = cmap(map_image) + map_image = np.delete(rgba_map_image, 3, 2) * 255 + + img = create_img_with_landmarks(img, img_landmarks, image_size, num_landmarks, scale=scale, + circle_size=circle_size) + + if maps_gt is not None: + if fast: + map_gt_image = np.amax(maps_gt[idx, :, :, :], 2) + map_gt_image = (map_gt_image - map_gt_image.min()) / (map_gt_image.max() - map_gt_image.min()) + else: + map_gt_image = heat_maps_to_image(maps_gt[idx, :, :, :], image_size=image_size, + num_landmarks=num_landmarks) + rgba_map_gt_image = cmap(map_gt_image) + map_gt_image = np.delete(rgba_map_gt_image, 3, 2) * 255 + + merged[i * image_size:(i + 1) * image_size, (j * 3) * image_size:(j * 3 + 1) * image_size, :] = img + merged[i * image_size:(i + 1) * image_size, (j * 3 + 1) * image_size:(j * 3 + 2) * image_size, + :] = map_image + merged[i * image_size:(i + 1) * image_size, (j * 3 + 2) * image_size:(j * 3 + 3) * image_size, + :] = map_gt_image + else: + merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = img + merged[i * image_size:(i + 1) * image_size, (j * 2 + 1) * image_size:(j * 2 + 2) * image_size,:] = map_image + + return merged + + +def map_comapre_channels(images, maps1, maps2, image_size=64, num_landmarks=68, scale=255): + """create image for log - present one face image, along with all its heatmaps (one for each landmark)""" + + map1 = maps1[0] + if maps2 is not None: + map2 = maps2[0] + image = images[0] + + if image.shape[0] is not image_size: + image = zoom(image, (0.25, 0.25, 1)) + if scale is 1: + image *= 255 + elif scale is 0: + image = 127.5 * (image + 1) + + row = np.ceil(np.sqrt(num_landmarks)).astype(np.int64) + if maps2 is not None: + merged = np.zeros([row * image_size, row * image_size * 2, 3]) + else: + merged = np.zeros([row * image_size, row * image_size, 3]) + + for idx in range(num_landmarks): + i = idx // row + j = idx % row + channel_map = map_to_rgb(normalize_map(map1[:, :, idx])) + if maps2 is not None: + channel_map2 = map_to_rgb(normalize_map(map2[:, :, idx])) + merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] =\ + channel_map + merged[i * image_size:(i + 1) * image_size, (j * 2 + 1) * image_size:(j * 2 + 2) * image_size, :] =\ + channel_map2 + else: + merged[i * image_size:(i + 1) * image_size, j * image_size:(j + 1) * image_size, :] = channel_map + + i = (idx + 1) // row + j = (idx + 1) % row + if maps2 is not None: + merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = image + else: + merged[i * image_size:(i + 1) * image_size, j * image_size:(j + 1) * image_size, :] = image + return merged + diff --git a/MakeItTalk/thirdparty/face_of_art/logging_functions.pyc b/MakeItTalk/thirdparty/face_of_art/logging_functions.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eb954728e1fda871f20bf04e9ae0dae0a39be3a6 Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/logging_functions.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/menpo_functions.py b/MakeItTalk/thirdparty/face_of_art/menpo_functions.py new file mode 100644 index 0000000000000000000000000000000000000000..20e2c7e6fcb5f1aee1508a15af6bea3b947f303f --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/menpo_functions.py @@ -0,0 +1,299 @@ +import os +from scipy.io import loadmat +from menpo.shape.pointcloud import PointCloud +from menpo.transform import ThinPlateSplines +import menpo.transform as mt + +import menpo.io as mio +from glob import glob +from thirdparty.face_of_art.deformation_functions import * + +# landmark indices by facial feature +jaw_indices = np.arange(0, 17) +lbrow_indices = np.arange(17, 22) +rbrow_indices = np.arange(22, 27) +upper_nose_indices = np.arange(27, 31) +lower_nose_indices = np.arange(31, 36) +leye_indices = np.arange(36, 42) +reye_indices = np.arange(42, 48) +outer_mouth_indices = np.arange(48, 60) +inner_mouth_indices = np.arange(60, 68) + +# flipped landmark indices +mirrored_parts_68 = np.hstack([ + jaw_indices[::-1], rbrow_indices[::-1], lbrow_indices[::-1], + upper_nose_indices, lower_nose_indices[::-1], + np.roll(reye_indices[::-1], 4), np.roll(leye_indices[::-1], 4), + np.roll(outer_mouth_indices[::-1], 7), + np.roll(inner_mouth_indices[::-1], 5) +]) + + +def load_bb_files(bb_file_dirs): + """load bounding box mat file for challenging, common, full & training datasets""" + + bb_files_dict = {} + for bb_file in bb_file_dirs: + bb_mat = loadmat(bb_file)['bounding_boxes'] + num_imgs = np.max(bb_mat.shape) + for i in range(num_imgs): + name = bb_mat[0][i][0][0][0][0] + bb_init = bb_mat[0][i][0][0][1] - 1 # matlab indicies + bb_gt = bb_mat[0][i][0][0][2] - 1 # matlab indicies + if str(name) in bb_files_dict.keys(): + print (str(name) + ' already exists') + else: + bb_files_dict[str(name)] = (bb_init, bb_gt) + return bb_files_dict + + +def load_bb_dictionary(bb_dir, mode, test_data='full'): + """create bounding box dictionary of input dataset: train/common/full/challenging""" + + if mode == 'TRAIN': + bb_dirs = \ + ['bounding_boxes_afw.mat', 'bounding_boxes_helen_trainset.mat', 'bounding_boxes_lfpw_trainset.mat'] + else: + if test_data == 'common': + bb_dirs = \ + ['bounding_boxes_helen_testset.mat', 'bounding_boxes_lfpw_testset.mat'] + elif test_data == 'challenging': + bb_dirs = ['bounding_boxes_ibug.mat'] + elif test_data == 'full': + bb_dirs = \ + ['bounding_boxes_ibug.mat', 'bounding_boxes_helen_testset.mat', 'bounding_boxes_lfpw_testset.mat'] + elif test_data == 'training': + bb_dirs = \ + ['bounding_boxes_afw.mat', 'bounding_boxes_helen_trainset.mat', 'bounding_boxes_lfpw_trainset.mat'] + else: + bb_dirs = None + + if mode == 'TEST' and test_data not in ['full', 'challenging', 'common', 'training']: + bb_files_dict = None + else: + bb_dirs = [os.path.join(bb_dir, dataset) for dataset in bb_dirs] + bb_files_dict = load_bb_files(bb_dirs) + + return bb_files_dict + + +def center_margin_bb(bb, img_bounds, margin=0.25): + """create new bounding box with input margin""" + + bb_size = ([bb[0, 2] - bb[0, 0], bb[0, 3] - bb[0, 1]]) + margins = (np.max(bb_size) * (1 + margin) - bb_size) / 2 + bb_new = np.zeros_like(bb) + bb_new[0, 0] = np.maximum(bb[0, 0] - margins[0], 0) + bb_new[0, 2] = np.minimum(bb[0, 2] + margins[0], img_bounds[1]) + bb_new[0, 1] = np.maximum(bb[0, 1] - margins[1], 0) + bb_new[0, 3] = np.minimum(bb[0, 3] + margins[1], img_bounds[0]) + return bb_new + + +def crop_to_face_image(img, bb_dictionary=None, gt=True, margin=0.25, image_size=256, normalize=True, + return_transform=False): + """crop face image using bounding box dictionary, or GT landmarks""" + + name = img.path.name + img_bounds = img.bounds()[1] + + # if there is no bounding-box dict and GT landmarks are available, use it to determine the bounding box + if bb_dictionary is None and img.has_landmarks: + grp_name = img.landmarks.group_labels[0] + bb_menpo = img.landmarks[grp_name].bounding_box().points + bb = np.array([[bb_menpo[0, 1], bb_menpo[0, 0], bb_menpo[2, 1], bb_menpo[2, 0]]]) + elif bb_dictionary is not None: + if gt: + bb = bb_dictionary[name][1] # ground truth + else: + bb = bb_dictionary[name][0] # init from face detector + else: + bb = None + + if bb is not None: + # add margin to bounding box + bb = center_margin_bb(bb, img_bounds, margin=margin) + bb_pointcloud = PointCloud(np.array([[bb[0, 1], bb[0, 0]], + [bb[0, 3], bb[0, 0]], + [bb[0, 3], bb[0, 2]], + [bb[0, 1], bb[0, 2]]])) + if return_transform: + face_crop, bb_transform = img.crop_to_pointcloud(bb_pointcloud, return_transform=True) + else: + face_crop = img.crop_to_pointcloud(bb_pointcloud) + else: + # if there is no bounding box/gt landmarks, use entire image + face_crop = img.copy() + bb_transform = None + + # if face crop is not a square - pad borders with mean pixel value + h, w = face_crop.shape + diff = h - w + if diff < 0: + face_crop.pixels = np.pad(face_crop.pixels, ((0, 0), (0, -1 * diff), (0, 0)), 'mean') + elif diff > 0: + face_crop.pixels = np.pad(face_crop.pixels, ((0, 0), (0, 0), (0, diff)), 'mean') + + if return_transform: + face_crop, rescale_transform = face_crop.resize([image_size, image_size], return_transform=True) + if bb_transform is None: + transform_chain = rescale_transform + else: + transform_chain = mt.TransformChain(transforms=(rescale_transform, bb_transform)) + else: + face_crop = face_crop.resize([image_size, image_size]) + + if face_crop.n_channels == 4: + face_crop.pixels = face_crop.pixels[:3, :, :] + + if normalize: + face_crop.pixels = face_crop.rescale_pixels(0., 1.).pixels + + if return_transform: + return face_crop, transform_chain + else: + return face_crop + + +def augment_face_image(img, image_size=256, crop_size=248, angle_range=30, flip=True): + """basic image augmentation: random crop, rotation and horizontal flip""" + + # taken from MDM: https://github.com/trigeorgis/mdm + def mirror_landmarks_68(lms, im_size): + return PointCloud(abs(np.array([0, im_size[1]]) - lms.as_vector( + ).reshape(-1, 2))[mirrored_parts_68]) + + # taken from MDM: https://github.com/trigeorgis/mdm + def mirror_image(im): + im = im.copy() + im.pixels = im.pixels[..., ::-1].copy() + + for group in im.landmarks: + lms = im.landmarks[group] + if lms.points.shape[0] == 68: + im.landmarks[group] = mirror_landmarks_68(lms, im.shape) + + return im + + flip_rand = np.random.random() > 0.5 + # rot_rand = np.random.random() > 0.5 + # crop_rand = np.random.random() > 0.5 + rot_rand = True # like ECT: https://github.com/HongwenZhang/ECT-FaceAlignment + crop_rand = True # like ECT: https://github.com/HongwenZhang/ECT-FaceAlignment + + if crop_rand: + lim = image_size - crop_size + min_crop_inds = np.random.randint(0, lim, 2) + max_crop_inds = min_crop_inds + crop_size + img = img.crop(min_crop_inds, max_crop_inds) + + if flip and flip_rand: + img = mirror_image(img) + + if rot_rand: + rot_angle = 2 * angle_range * np.random.random_sample() - angle_range + img = img.rotate_ccw_about_centre(rot_angle) + + img = img.resize([image_size, image_size]) + + return img + + +def augment_menpo_img_ns(img, img_dir_ns, p_ns=0.): + """texture style image augmentation using stylized copies in *img_dir_ns*""" + + img = img.copy() + if p_ns > 0.5: + ns_augs = glob(os.path.join(img_dir_ns, img.path.name.split('.')[0] + '_ns*')) + num_augs = len(ns_augs) + if num_augs > 0: + ns_ind = np.random.randint(0, num_augs) + ns_aug = mio.import_image(ns_augs[ns_ind]) + ns_pixels = ns_aug.pixels + img.pixels = ns_pixels + return img + + +def augment_menpo_img_geom(img, p_geom=0.): + """geometric style image augmentation using random face deformations""" + + img = img.copy() + if p_geom > 0.5: + grp_name = img.landmarks.group_labels[0] + lms_geom_warp = deform_face_geometric_style(img.landmarks[grp_name].points.copy(), p_scale=p_geom, p_shift=p_geom) + img = warp_face_image_tps(img, PointCloud(lms_geom_warp), grp_name) + return img + + +def warp_face_image_tps(img, new_shape, lms_grp_name='PTS', warp_mode='constant'): + """warp image to new landmarks using TPS interpolation""" + + tps = ThinPlateSplines(new_shape, img.landmarks[lms_grp_name]) + try: + img_warp = img.warp_to_shape(img.shape, tps, mode=warp_mode) + img_warp.landmarks[lms_grp_name] = new_shape + return img_warp + except np.linalg.linalg.LinAlgError as err: + print ('Error:'+str(err)+'\nUsing original landmarks for:\n'+str(img.path)) + return img + + +def load_menpo_image_list( + img_dir, train_crop_dir, img_dir_ns, mode, bb_dictionary=None, image_size=256, margin=0.25, + bb_type='gt', test_data='full', augment_basic=True, augment_texture=False, p_texture=0, + augment_geom=False, p_geom=0, verbose=False, return_transform=False): + + """load images from image dir to create menpo-type image list""" + + def crop_to_face_image_gt(img): + return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size, + return_transform=return_transform) + + def crop_to_face_image_init(img): + return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size, + return_transform=return_transform) + + def crop_to_face_image_test(img): + return crop_to_face_image(img, bb_dictionary=None, margin=margin, image_size=image_size, + return_transform=return_transform) + + def augment_menpo_img_ns_rand(img): + return augment_menpo_img_ns(img, img_dir_ns, p_ns=1. * (np.random.rand() < p_texture)[0]) + + def augment_menpo_img_geom_rand(img): + return augment_menpo_img_geom(img, p_geom=1. * (np.random.rand() < p_geom)[0]) + + if mode is 'TRAIN': + if train_crop_dir is None: + img_set_dir = os.path.join(img_dir, 'training') + out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False) + if bb_type is 'gt': + out_image_list = out_image_list.map(crop_to_face_image_gt) + elif bb_type is 'init': + out_image_list = out_image_list.map(crop_to_face_image_init) + else: + img_set_dir = os.path.join(img_dir, train_crop_dir) + out_image_list = mio.import_images(img_set_dir, verbose=verbose) + + # perform image augmentation + if augment_texture and p_texture > 0: + out_image_list = out_image_list.map(augment_menpo_img_ns_rand) + if augment_geom and p_geom > 0: + out_image_list = out_image_list.map(augment_menpo_img_geom_rand) + if augment_basic: + out_image_list = out_image_list.map(augment_face_image) + + else: # if mode is 'TEST', load test data + if test_data in ['full', 'challenging', 'common', 'training', 'test']: + img_set_dir = os.path.join(img_dir, test_data) + out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False) + if bb_type is 'gt': + out_image_list = out_image_list.map(crop_to_face_image_gt) + elif bb_type is 'init': + out_image_list = out_image_list.map(crop_to_face_image_init) + else: + img_set_dir = os.path.join(img_dir, test_data+'*') + out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False) + out_image_list = out_image_list.map(crop_to_face_image_test) + + return out_image_list diff --git a/MakeItTalk/thirdparty/face_of_art/menpo_functions.pyc b/MakeItTalk/thirdparty/face_of_art/menpo_functions.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18c3d9beaef5c82d265316c350de7a38cccb1767 Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/menpo_functions.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/old/create_artistic_data_in_advance.ipynb b/MakeItTalk/thirdparty/face_of_art/old/create_artistic_data_in_advance.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..cb34a185d2baddb71961af525ce96d0ad9c917f3 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/create_artistic_data_in_advance.ipynb @@ -0,0 +1,540 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import os\n", + "import numpy as np\n", + "from glob import glob\n", + "from deformation_functions import *\n", + "from menpo_functions import *\n", + "from logging_functions import *\n", + "from data_loading_functions import *\n", + "from time import time\n", + "from scipy.misc import imsave\n", + "\n", + "%matplotlib inline\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dataset='training'\n", + "img_dir='/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/'\n", + "train_crop_dir = 'crop_gt_margin_0.25'\n", + "img_dir_ns=os.path.join(img_dir,train_crop_dir+'_ns')\n", + "bb_dir = os.path.join(img_dir, 'Bounding_Boxes')\n", + "bb_type='gt'\n", + "gt = bb_type=='gt'\n", + "margin = 0.25\n", + "image_size = 256\n", + "mode='TRAIN'\n", + "augment_basic=True\n", + "augment_texture=True\n", + "augment_geom=True\n", + "bb_dictionary = load_bb_dictionary(bb_dir, mode=mode, test_data=dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def augment_menpo_img_ns(img, img_dir_ns, p_ns=0, ns_ind=None):\n", + " \"\"\"texture style image augmentation using stylized copies in *img_dir_ns*\"\"\"\n", + "\n", + " img = img.copy()\n", + " if p_ns > 0.5:\n", + " ns_augs = glob(os.path.join(img_dir_ns, img.path.name.split('.')[0] + '*'))\n", + " num_augs = len(ns_augs)\n", + " if num_augs > 0:\n", + " if ns_ind is None or ns_ind >= num_augs:\n", + " ns_ind = np.random.randint(0, num_augs)\n", + " ns_aug = mio.import_image(ns_augs[ns_ind])\n", + " ns_pixels = ns_aug.pixels\n", + " img.pixels = ns_pixels\n", + " return img\n", + "\n", + "def augment_menpo_img_ns_dont_apply(img, img_dir_ns, p_ns=0, ns_ind=None):\n", + " \"\"\"texture style image augmentation using stylized copies in *img_dir_ns*\"\"\"\n", + "\n", + " img = img.copy()\n", + " if p_ns > 0.5:\n", + " ns_augs = glob(os.path.join(img_dir_ns, img.path.name.split('.')[0] + '*'))\n", + " num_augs = len(ns_augs)\n", + " if num_augs > 0:\n", + " if ns_ind is None or ns_ind >= num_augs:\n", + " ns_ind = np.random.randint(0, num_augs)\n", + " ns_aug = mio.import_image(ns_augs[ns_ind])\n", + " ns_pixels = ns_aug.pixels\n", + " return img\n", + "\n", + "def augment_menpo_img_geom_dont_apply(img, p_geom=0):\n", + " \"\"\"geometric style image augmentation using random face deformations\"\"\"\n", + "\n", + " img = img.copy()\n", + " if p_geom > 0.5:\n", + " lms_geom_warp = deform_face_geometric_style(img.landmarks['PTS'].points.copy(), p_scale=p_geom, p_shift=p_geom)\n", + " return img\n", + "\n", + "def load_menpo_image_list(\n", + " img_dir, train_crop_dir, img_dir_ns, mode, bb_dictionary=None, image_size=256, margin=0.25,\n", + " bb_type='gt', test_data='full', augment_basic=True, augment_texture=False, p_texture=0,\n", + " augment_geom=False, p_geom=0, verbose=False,ns_ind=None):\n", + "\n", + " def crop_to_face_image_gt(img):\n", + " return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size)\n", + "\n", + " def crop_to_face_image_init(img):\n", + " return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size)\n", + "\n", + " def augment_menpo_img_ns_rand(img):\n", + " return augment_menpo_img_ns(img, img_dir_ns, p_ns=1. * (np.random.rand() < p_texture),ns_ind=ns_ind)\n", + "\n", + " def augment_menpo_img_geom_rand(img):\n", + " return augment_menpo_img_geom(img, p_geom=1. * (np.random.rand() < p_geom))\n", + "\n", + " if mode is 'TRAIN':\n", + " if train_crop_dir is None:\n", + " img_set_dir = os.path.join(img_dir, 'training_set')\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False)\n", + " if bb_type is 'gt':\n", + " out_image_list = out_image_list.map(crop_to_face_image_gt)\n", + " elif bb_type is 'init':\n", + " out_image_list = out_image_list.map(crop_to_face_image_init)\n", + " else:\n", + " img_set_dir = os.path.join(img_dir, train_crop_dir)\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose)\n", + "\n", + " if augment_texture:\n", + " out_image_list = out_image_list.map(augment_menpo_img_ns_rand)\n", + " if augment_geom:\n", + " out_image_list = out_image_list.map(augment_menpo_img_geom_rand)\n", + " if augment_basic:\n", + " out_image_list = out_image_list.map(augment_face_image)\n", + "\n", + " else:\n", + " img_set_dir = os.path.join(img_dir, test_data + '_set')\n", + " if test_data in ['full', 'challenging', 'common', 'training', 'test']:\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False)\n", + " if bb_type is 'gt':\n", + " out_image_list = out_image_list.map(crop_to_face_image_gt)\n", + " elif bb_type is 'init':\n", + " out_image_list = out_image_list.map(crop_to_face_image_init)\n", + " else:\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose)\n", + "\n", + " return out_image_list\n", + "\n", + "\n", + "def load_menpo_image_list_no_geom(\n", + " img_dir, train_crop_dir, img_dir_ns, mode, bb_dictionary=None, image_size=256, margin=0.25,\n", + " bb_type='gt', test_data='full', augment_basic=True, augment_texture=False, p_texture=0,\n", + " augment_geom=False, p_geom=0, verbose=False,ns_ind=None):\n", + "\n", + " def crop_to_face_image_gt(img):\n", + " return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size)\n", + "\n", + " def crop_to_face_image_init(img):\n", + " return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size)\n", + "\n", + " def augment_menpo_img_ns_rand(img):\n", + " return augment_menpo_img_ns(img, img_dir_ns, p_ns=1. * (np.random.rand() < p_texture),ns_ind=ns_ind)\n", + "\n", + " def augment_menpo_img_geom_rand(img):\n", + " return augment_menpo_img_geom_dont_apply(img, p_geom=1. * (np.random.rand() < p_geom))\n", + "\n", + " if mode is 'TRAIN':\n", + " if train_crop_dir is None:\n", + " img_set_dir = os.path.join(img_dir, 'training_set')\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False)\n", + " if bb_type is 'gt':\n", + " out_image_list = out_image_list.map(crop_to_face_image_gt)\n", + " elif bb_type is 'init':\n", + " out_image_list = out_image_list.map(crop_to_face_image_init)\n", + " else:\n", + " img_set_dir = os.path.join(img_dir, train_crop_dir)\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose)\n", + "\n", + " if augment_texture:\n", + " out_image_list = out_image_list.map(augment_menpo_img_ns_rand)\n", + " if augment_geom:\n", + " out_image_list = out_image_list.map(augment_menpo_img_geom_rand)\n", + " if augment_basic:\n", + " out_image_list = out_image_list.map(augment_face_image)\n", + "\n", + " else:\n", + " img_set_dir = os.path.join(img_dir, test_data + '_set')\n", + " if test_data in ['full', 'challenging', 'common', 'training', 'test']:\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False)\n", + " if bb_type is 'gt':\n", + " out_image_list = out_image_list.map(crop_to_face_image_gt)\n", + " elif bb_type is 'init':\n", + " out_image_list = out_image_list.map(crop_to_face_image_init)\n", + " else:\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose)\n", + "\n", + " return out_image_list\n", + "\n", + "\n", + "def load_menpo_image_list_no_texture(\n", + " img_dir, train_crop_dir, img_dir_ns, mode, bb_dictionary=None, image_size=256, margin=0.25,\n", + " bb_type='gt', test_data='full', augment_basic=True, augment_texture=False, p_texture=0,\n", + " augment_geom=False, p_geom=0, verbose=False,ns_ind=None):\n", + "\n", + " def crop_to_face_image_gt(img):\n", + " return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size)\n", + "\n", + " def crop_to_face_image_init(img):\n", + " return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size)\n", + "\n", + " def augment_menpo_img_ns_rand(img):\n", + " return augment_menpo_img_ns_dont_apply(img, img_dir_ns, p_ns=1. * (np.random.rand() < p_texture),ns_ind=ns_ind)\n", + "\n", + " def augment_menpo_img_geom_rand(img):\n", + " return augment_menpo_img_geom(img, p_geom=1. * (np.random.rand() < p_geom))\n", + "\n", + " if mode is 'TRAIN':\n", + " if train_crop_dir is None:\n", + " img_set_dir = os.path.join(img_dir, 'training_set')\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False)\n", + " if bb_type is 'gt':\n", + " out_image_list = out_image_list.map(crop_to_face_image_gt)\n", + " elif bb_type is 'init':\n", + " out_image_list = out_image_list.map(crop_to_face_image_init)\n", + " else:\n", + " img_set_dir = os.path.join(img_dir, train_crop_dir)\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose)\n", + "\n", + " if augment_texture:\n", + " out_image_list = out_image_list.map(augment_menpo_img_ns_rand)\n", + " if augment_geom:\n", + " out_image_list = out_image_list.map(augment_menpo_img_geom_rand)\n", + " if augment_basic:\n", + " out_image_list = out_image_list.map(augment_face_image)\n", + "\n", + " else:\n", + " img_set_dir = os.path.join(img_dir, test_data + '_set')\n", + " if test_data in ['full', 'challenging', 'common', 'training', 'test']:\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False)\n", + " if bb_type is 'gt':\n", + " out_image_list = out_image_list.map(crop_to_face_image_gt)\n", + " elif bb_type is 'init':\n", + " out_image_list = out_image_list.map(crop_to_face_image_init)\n", + " else:\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose)\n", + "\n", + " return out_image_list\n", + "\n", + "\n", + "def load_menpo_image_list_no_artistic(\n", + " img_dir, train_crop_dir, img_dir_ns, mode, bb_dictionary=None, image_size=256, margin=0.25,\n", + " bb_type='gt', test_data='full', augment_basic=True, augment_texture=False, p_texture=0,\n", + " augment_geom=False, p_geom=0, verbose=False,ns_ind=None):\n", + "\n", + " def crop_to_face_image_gt(img):\n", + " return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size)\n", + "\n", + " def crop_to_face_image_init(img):\n", + " return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size)\n", + "\n", + " def augment_menpo_img_ns_rand(img):\n", + " return augment_menpo_img_ns_dont_apply(img, img_dir_ns, p_ns=1. * (np.random.rand() < p_texture),ns_ind=ns_ind)\n", + "\n", + " def augment_menpo_img_geom_rand(img):\n", + " return augment_menpo_img_geom_dont_apply(img, p_geom=1. * (np.random.rand() < p_geom))\n", + "\n", + " if mode is 'TRAIN':\n", + " if train_crop_dir is None:\n", + " img_set_dir = os.path.join(img_dir, 'training_set')\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False)\n", + " if bb_type is 'gt':\n", + " out_image_list = out_image_list.map(crop_to_face_image_gt)\n", + " elif bb_type is 'init':\n", + " out_image_list = out_image_list.map(crop_to_face_image_init)\n", + " else:\n", + " img_set_dir = os.path.join(img_dir, train_crop_dir)\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose)\n", + "\n", + " if augment_texture:\n", + " out_image_list = out_image_list.map(augment_menpo_img_ns_rand)\n", + " if augment_geom:\n", + " out_image_list = out_image_list.map(augment_menpo_img_geom_rand)\n", + " if augment_basic:\n", + " out_image_list = out_image_list.map(augment_face_image)\n", + "\n", + " else:\n", + " img_set_dir = os.path.join(img_dir, test_data + '_set')\n", + " if test_data in ['full', 'challenging', 'common', 'training', 'test']:\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False)\n", + " if bb_type is 'gt':\n", + " out_image_list = out_image_list.map(crop_to_face_image_gt)\n", + " elif bb_type is 'init':\n", + " out_image_list = out_image_list.map(crop_to_face_image_init)\n", + " else:\n", + " out_image_list = mio.import_images(img_set_dir, verbose=verbose)\n", + "\n", + " return out_image_list" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[2 3 1 7 5 0 6 8 4]\n", + "[6 8 1 7 4 5 3 2 0]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAIyCAYAAADRzCBZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Umsbdl93/fv6nZ7+tu+pl71VawiKVJs1IWKAluiYMEQ\nIAgwYMQDw4YzU5BMMssgSAIYQYAAycBBBkECQ5kkQSAjkZ0gUWOJkqii2BSLrGI1r+q19932tLtd\nXQanlHhkk5Llx0uez+jh3ck+e++zz2/991r/JWKM7Ozs7Ozs7OxcR/JpH8DOzs7Ozs7Ozl/ULsjs\n7Ozs7OzsXFu7ILOzs7Ozs7Nzbe2CzM7Ozs7Ozs61tQsyOzs7Ozs7O9fWLsjs7Ozs7OzsXFu7ILOz\ns7Ozs7Nzbe2CzM7Ozs7Ozs61pZ/2Aezs7Ozs7PxlCSF+oO6uX7p1m8+8cBPpNdEFvBRk0SFiQPjI\nWmmU77mMEuN7XG858x2LpmPetSybls56fIiEEPHBE8KuwexfhRij+Jf9/fsOMj/oTbJzffyrbpK/\njO/nvvn1v/lvMRztk2vJbDYCmfLowV1uPnOHIk85eXKODz0nj6741CuvcW/+kNIbzhYLFm1FGSS9\nDnz6hRc538y5ffwMWkukgre+9V0a26MlfOnn/21+6VaP1YJjvaSpU2ojOcg9ZVFQDDb86bsLhMwQ\nyvHv/af/Nx8+WeF8pOv9X9Upupae9j2zcz39Vd43P6ihTnBCUEZPLUAHgVOK6DQm9mRESiWRMsPo\nBKsME2VJCTgTqbUiRk0wmsFwRh8s+XjAIB9Ru5ZH955w7927rFcb1k3NotpAhHr3LPnXbleR2Xnq\nhBVUrmOz8DSu56BIeO6VTxBaj+w22N7z+HyNTgbcf3yX1nkuQk0uJLSepe+48cwtejxN1eEDKONZ\nX7RcVRtevrnH9Ogmz93MaVVLIxIuLlKKg4SizUl1g405RMXPfnoMJIDizf/pJRjVLOY556sl//0/\n+xq/+T+/w+Wipmnc0z5tOzs7fwlZUiCCgBiIRLwSSCJRgpcRLxQV4JUkBk80EUTEBEcrNDFCLjyN\nyolaIuWA58Y3mT0/487REfO+pnr8XY6t4cF3HvLts+/wiy8+y//15hmDl14jGKivlnz45JTVZk29\nbnh0dkHVWuo+EGIEIYDIbiehf7ldkNl56ny0jIGlMhRRcjqv+dxxSzwo+fDtJQ9OF7x84wZXVYXJ\nE+ha2lWLMpqQCAqVcPNgilSSItN03RLbCR49OeWwGJBEuDFIOWCJdR2SAeX0HrU95GZYE5ylTMco\nFFHliC5CHiHtiH7KeJQz3cv4h//hL/MPf+PXebR+wOYi4z/6L3+Lxcryp19/SIiR3u5GWjs714EU\nApEpCIqNkiQ+ECKIGEEEIgpBwBGJwqGEpw+QRYtTEQcoKUlkykZpUpMitKGNESVypNIM9YiTJ5YX\ndcHJo7uMphNOL1omcsrR/gA5SJi99Co/XX3E8XTA448e8kffepuZjOhiTBUlP/Xv/Ar5/oD5xZKr\nTc+DRyecnJ7x6MkZj05O2WxqemvpraO3Dud+PAdYPxJBRgjBbvPL6+utuyf89S/sYSYZ01FB0tWo\ntKTuBJeVZTKcsW6WrDcLPnv7dZ7ML+l7SyoMA6N59tYtJkXOxfICKQzRe7yFxWrDy2NDmyTsTYbI\naFm4gjv5Ob6fsHGOfqKJJiVPG/AZ0vWQWNAR2gxROOgkGA1uAtFya3oT9gW/9Y//FrFJ+eCDlhgk\n//l/+9sEL/gn/89bxCip6hb/lN6ZCwHDQY4AkCCiIG7/ya2bIx5frrk6r57Kse3sPG1KCvIUhNxW\nYZRQxBAQURIJiAhBRgQgg0fK7f91CiQKJcGLiJUKKTVDmeE8BGnJdUKiUjayJROSZX3GvcsTPvnC\nT1CdWU6tJd+smY6OSAYSlexRB897jx9TD494ZppyebVhdPuIz/zMpxhMB4gApZkScGgt0TJFmohb\nrVg3azYB1lXD1dWKB/ce8fDkEfcfPeHBk3MuLuasVxXrTc16U1M17Y9chefaB5nDacHPv/Ys9x6t\n+N75Beu6e9qHtPMDuvfRY/znP719YBjBdDCktSBVS1AZMgjmqw0qpizbJQZFmqQ8ma+5dXCIU5Kr\naslqWaGNJlPw+OqKm/tjJoVmleXsDQLWRbRyGBepdc1A7pMVA7QUSAcx94heEtMSOoMwHt8PUOkK\n2imMVxAN2BS8hmAQUfPSSwMijv/hv/p1CJJ7D38RSPnN//UNfuf33mRWGlywEHreP2l4NO8hghLb\n6QJCSbrOo42ACKmWRCEgCpSSmCTSe82d4wmH+2PSoGnwIIAALkQ677Heozw4CUlU7B0NUQGCAuUU\nUUWiEKRBU9Vvc8UuyOz8eNJCUmqNxiNCwKMIahv1pYiEGFEBvBQIBK2QRAREhZIR4yNRaFoiWWII\nTuAFpNIglSJISeISXrr9Eu996/dZGsfB0Q3O7BxXL5D5ECIs1h3J6IDqZMHVZcJnX/o8MVtxdf87\nfOb2p0ncEBEMQQUqX+GrSGoUuZSoQmBKw34+40gPkKXcDug3PRQeiFAIXGVpT6+ou4qusVRWcHL+\nhMcPzvnu+/c4O11ysW44Wy65upxzfrVksVwTQnjal+n7du2DzOfuHPF8mfHsi1N++qXnuFtf8Wff\nO+F8vviRS50/qiIwr2qs9QwGBbOyROORomWYK1bLOc/cmKCcoHcBpyR9W5MqyV6Zo/OEs6tLFILN\nakPsWs4vlnz6zoyTesOnn3+e3EQyo3DBoEXNfD3hpaMMYQRCKpS0OJ9hkg5nIzo1IAJSie23JF0S\nfQI2IpIO9BJsAmEAaYdwBcgcrOfZm2NIrviNv/03kHXDyzcGrNqO3Ajm1QpvDSH2lIWhi4IUwXc+\n2jAuJVJIDmcD8mFC5zx5MmIw1pwsNF3XcL6O2DpuSysh4gn03tM1Pa11yCiJIoDfVmBC6kmcIKYa\nHTxOBKISfPblV/jo/im7r8jOjyMpJFqnhBhQbCf5Jt4SUCQIXAw4qVDSIwnUUqLxICJBbKsyTkGq\nEoxSOB3opMergFQQpcdEiR4H3nt8Rp4eMNSHfOjmJK5nHDPy1hB9D3HFN995g3l1xdnVB2wCOGcY\nzo5ZiYb9IBkJQSUCVbvGrj19npA4Rak0QgnSUYKwKaSGWPQIrUFbRB8xISBSjUxSprMJ1kdu7w2x\nN17jCy+fk6cSM91j03ZsmiuqrgEvuHvvIx4+vKQVKZuqYnm+4GK55OTRivfvvceqarfzeH4IXOsg\nk2rNyy8c0s0DC9ky6UqeH9/h5peOWLUd7z844a33H2B3cxd+qAkBJlecLmo+fHhCom+hpgnap6xW\nj1AoBsOCZe3xTU1rPUWRsj+b0BrPcVFw9+EDujbQdI6L5YZBmtIGRW0lR5MEQaDpBFFEohbk44BQ\nAikiBI0i4DJHFDkmjQhhQTjwHuEAPHQFiAq6ZDviCQYyC70AYaEvQTrwBtoSkZYIoYhtZLFoKA5u\nIJXnMCvZ+AaLYmwEwbXkWU5RKI6mx9w/e8wnJq9z8+CMTTgkhI5URCrrKbTkQb9klGpsjFgXsL1j\n3fWYEOiE2o4ytYLgiTHgtUJ5R2sCxkmi6hjth21F54fjObSz829UojQISS8C0gMh0uuE3Cqggygw\nBBxiW4lJeoyVNHpbselQBJkhlKYNFpV6MheJHQgEIkp6Wt55sKA1AzQ97z56wodnT9icP+bb326Y\nDPc4Hu8TdeTqvY9ofM/5u+/QlRnPvfIZLqorBpdDkhAwZULICwSW04uPKNIhk+GU83XNcC/heKCQ\nQSM8CKlBRETjibGnvrgimoCUBjoQrWe1XrG6cOguRxYWtWgpXUNpM9pY8eajJ9wp90lGPenBLeTI\nkESFCy2bWvA7//Sf8PiyQXmLbyILk1DbjkEXOGsWSJXgo+ThyWNs54hEYvyrm7R8rYPMJ4+OyMyQ\nRnfkzrIIa0wPkyxFJCWffz3j1def4ex0zu9+5Tu7eTQ/xA72RgyLIcF5LudXCFlQloLTZc84y6k2\na0ItWJ6ucDkMJiP2hgM2ssa1HevOocWYvQm4viLFcnG1xBlNojNy0+O8RGpJ70tGStJaGFuDTC0e\niepBGsALEB58tg00QUGfgOpAWlACRA5BQnBEqRDOQbqCPiXGBSIGUlOTFRGlEiYlDHTFWiS0saKx\ngoM8pXUdWZ4hQsdIDklU4Gj/kO/c/RZfzF9BT1vc0vBofkoWtw/V/WGJtQ0iBoL1rKqKGAUmSZHK\nI53ERoGUmtQF6syTOYPDQgTdJ6DbXY7Z+bFVpgYTHDpInIgQPCkKrVtsDPhokCpA1AhA2wyvLYjt\noCdISBJB9BGcQ7qA1iUgkFIiVECvN/SLiu89fshtk/HmB2+yqRuGWcnqcsXJ+Zx38wekhSHYgAuK\ntqoxQjAWLd1mA1crHrkNX3v7lJ+7/Tx12/Dw8RN+4hMzxJGF2NEsLWG/RWgLwiCkgFgRmppmdc5m\nVTMeH6DHYzZnp9Rtz7JfkJYjvLQE61C25WpT061qutUlb/7ZNxmPhshoYNEwnM7wJrCfH2BXj9De\nkliNFo5FKkAJpmlJNtJkIWNvf8Jnf+qLvPGNN0htoFaW0kL0knV3SbApjy9WzOcLqsbio8T7gLU9\n1jq8/8Fea13bICOF4HOfehGaAh8qNtYRdIqRmkvvUWlD2hhMEXlp/4D9X/0ib797ytvvPcC56/Pu\n78dBjCCd4oWjBNIxvtnQWDh/8oTeOsjhyVWDdXDreMzCOg7yAY1vybMRb737HgrJspnT+8g4laza\nHoUkURIRAxvvyKXEaINXmlxopBiho0W5DJk4pI5EKRAByAJRRJB6+4DwIEIPKCIRIWsQA+jctvoh\nPIQJEBBSgepxleSZvdu8//7bZOOcSZEzkpa2bTnYm9B2FVlRQGwZDgecrK+g3Od4OqTvJtw/X/D8\n6Da9suxPxvQ2UtcBbXqUzujrnqqrUAgSo/E6IqPBS4uOAkKg1ZGsFdTSU3Qabzqcz7Ai3ZbCduF+\n58dQkWi8dsQ+QYWAl6AVyNCTuohG4YQEKel0YOigl4AUxCCpVULqA1p4epWQJJo+WCbFCK0U3mq+\n/u1v8ge/93u8vHeAtxVmU0NvAU+iDYlX9Ouey9WGAwYkrmKVwsBV/OnX3mB68pj55nlen77MV77x\n+zz/t25S1Bvu3T/hM698knE9ZjwbUts1XgmcSlBOEqRH+Avm9y65uDjj9uvPofIE1zWcnp/TzVt0\nmpPfNlzINfp0w9sXK/7oa9+gjxuWT+Y8OTml1xq0ISkTVJrR64SbhzeZKo3vajqTElyHDKCcQRhF\nn0WyoGnWG6K1yDIhW3j2RlOCa1nUNQrNZDhFGcPN45JpMePOi88ymx6waC+4eFhTlpE3vvWQP/zj\nr35f1/PaBplf+4XPIRPD3C+IScbID1kpi9OCNGZYHWmnGiUsoZOUOuWvvf55vvxzL/LN9x7y5lun\nXC3XP3Dy2/krICBqT5Q9IvQMywzdw/sfLqHfcDic4lyGM4pE99zeH6Biyib2mCg4PZ/z3M1jJmO4\nf/8+mc0ZDAZILZhMhoTQE0OC9T3SOnzhEKrBSui0J1UZMSQYLxHKE4XcVlt0RODBqu1BpkCICBmJ\nUSCyHnpB1BFRJaBaiBp8D8aQKsHRzT3OH2vKQoHtqedXkGis90QUPVBmJcF0jEn56GzNdHTILO94\ntGpom0DrI5PxkHXXsmxqNm1DCBHrwHlHkhi64ChDAsoTkIQQEFEgogMyjOppgyQERSocIqine813\ndp6iPZEhbLYdgMRADBoHuJgiiWgiPkZk8GgR6JTGC4WMIJTAS4FSmii2gyOsRyhI8xQjBTJabk1m\nHOcF9dUFx7OEh32PigKvJIaGTmWMxhNWqzmL2JPEyCAzTHzEJopkueLyrYe8MbjCrja8/95bvDA8\nYEpkvT7laFYwSAp0XiJTiwgbYppD3bI+W3F1dc4zr72IKAoQBacnD1jcP+Hk8QkHt16kjJpVteT9\nd97l2+98F3F1xT0XaGrL0XDMyllkW+PaDQdozmYl73ZrDnTENQqvHPQC4RQyShpjyaKi957YerCB\n2XhCv9nw+PKCLjSkMWCsYNFdEj1IleKk4Hx+hslybCsZlwWtarlYX3zf1/NaBhkpBUf7x7hFgw4J\nUQVcGkhiRioiGy2Z9p5WS6Q/IMQ5HkEwNf1C8rnZbb7wS59gc5jw3Tff5yt//B363j7tj/VjTQeQ\nfcLSrohlRttKHBLrUh5drjmYpvR9x8oKBo2mrTZk05L55SUqwrJZMM4yEqGYVw0YySwbMi4LHl9U\nnFwaFpsK1a3plGYvS/jECyOszbk1CZSZR8RIdOn29VLU4AQYC1GC7rdDMpWCcAg0dBp0By6D4Zpo\nU4R00BdgO6SUaOWIqiQtNX2UBJ1RV4HRNCc6j4geSHB1jxwW0C55dHpGCC1HkzGLaoFOxlTOs2kF\n58sGrEAhaNoG7xQmL9EiEkILMWIENMEhowAUVgR0J/DSYZzGK4kQgR+aFqs7147SmqQoaVbLp30o\nfyFpniBUIIbt915EiZAeGSHKQCMFIgiikogAOkTaVJK7QK9AxoCKkRgESZ4ipSYiSJMEqQ1WapIi\nY3x0i/nFQ0w+QyWWEHry4MDBhsBKLMnQtK4hG2QMlCJpK1TUbNqW4J/gWsUkpHz3rXeYH6/Yj4rN\nquW9x+9we3aDyegGos/wmcdUS1zbsVwuODw+RjhBZks2fs3VySVpDKTO8sEH90ivKh4vVnz3m9/i\n9PKUcdOhyUnKAesY8EiSGNFmivCB6AUmCEJcY31J6jXaQi8NMloCAbock6U4V3N+dcmNoxlvvPkh\nyUCRCYMKii5KQr9CxUA0kbarGfVDVqtzhvmQq1ATgqdp++/7el7LIPOll+5AV2OTgArbBRy9Exhj\nkXrAqFW0oyXeS1rVk2oQvWYZG4bDMfnemGleEo3ktV+5zd/9B1/mj7/6Dr/923/Gg7uPd3Np/k2L\nAtmWrIeaxDvq1YrFukf4gMkSHp01JK4nGM9qKeFqw2Swx0CMef/xQ8aZgV5wurlklBjWKNrGso5r\n3p4vuJulPDq74P6JI5E9PhSUM0Ppv8qzt27wSz/1MqO9CT/74i0ORysEChG378Oj1wgDCL2d0Cst\nxASiI2ogJghqqAfb6odQ28pMGILtSLMRl50g6yxZMkDLlEFSkyjojMZgiBhUYVhVjsNpjut6ynLA\npncczwpW3nFZOZYrS9X2EAx5GhFSoj5+jWWkwTtN1TYkaltBiiiU8gS3nfuThxSb9qggETGitcbv\nAvzOv4JU214pSkmee+41yr0RN4/3McND/rf/8R9dy9eTajjAZRrVbxtyaueR0dGLiIkeHzRKBvi4\nCtMYud1PSW/bSmkZcc6RZkMEERdAKoFUmlwltBH69YrHDx9RrU/I0pToe0phiKHD6AFTNFfrNdbV\nDIQhKg29IxQG1QQIFofAmoh3huXlBYqUrEh4cO8J/ftXPD4+41OvO25kzxKKCaaf0/cNg72CwSRF\nuJSNnbM8uwTTkIxyRi7wJ+9+neVoxtV8xeryHBElPkaClGADpAIpE6LIkcKwcpbOQq4kwaZYFFmi\nqXFI5TBNQHqJI5IMB+hqW2W58cxtkkyRyJTCaEw+4t7jR1gNuo4MsgIRIrap2ChDGyQxpiRZTvDf\n/1DrWgaZw9vPYvvtev7Mg48ao2AkAsu4ZKADqsvoc4Wxgo6ATCJapaRJhlMFKy1RWnI5d9x64ZBf\n/eVf5sWjm5ydPuZ7f/g2/8e33n9qzcx+3FhneTj/Hs8dv0iSZpyez9lsekyeUrg1WgpaHTgYzIhS\nkBUDksRjTMLFuuWFowOu1lcUJsdKS5lktFWDFpF1G9EyxYQptw87ZoOMLC94tF7xk0c3+cN3z3jw\nv/whd2aad774Rf7O3/gJDgaW9dwSfc/ekcfIFBE8aAkowINRiFpBEsCWkPWwiZB6QEDviapnOhlS\nnc1JkxFqtsJ7TcwzlFYUKscYhTWOSW54EgWp0cwXDa/cOuKdRx/yLBJFQPUR1fcQPNNpAdZiREaz\nbkhCgCSQJimNDfRdi5QCmTiCNygCUQjcx1N5RBT4xHPrxpS7986e8tXf+WE0muyjjGI4GPGFn/sZ\nhukBUdZkUuJ8TeoS/vnXv3otQ4wARqlC+g68QwJCBoTwKJEQO4mRIGSkF5CGiBWRzFmcUXgh0CGi\nlEQYhQ4CKQNGJwgRaGJPQFNIQ5HCvh2zuDqn9i3DQUnbZRw/c4sH52fkK8FcSlSWknUbQpLRW00a\nLWWiMNaxrARt1jONKd38EjO4A63g1viYq+99yGI4YZwnmDFEn5BYQZbkhNrR1JecXZ7ge0UxUqwu\nN/z+W+/TtZZqcUXfLokBFIZKZVR5ilGC0mnWzuGThI3raDJFmhTYdBvami6S+g1KeELU2CgQEaTa\nrvQESdf2eOHZP36GRw/vkxYFSdKhosTWhkAgtD3lKCPJh9jYksUMK0EiWC2+/2rftQsyN6YTXt87\nYNUuufKRkFiM7MliQu8iqZV4LfA6ooNFGo0jEK2mVZq+l+TVhtKmDEYJL7xwRJInpFHwAgPSxnH8\n6hE/+9O3+ZPvnfBH37jH+aJ52h/7R17LhuGo5vxBi9ApB3szFv2GvFW0m4RJAUc3x1y4iq4KHI5z\n6mpF9Iq+U4zNgLWtOChLNr0nCo1zliAgGUdeSzTz4QTTBdbVhnbTI59LeeW5fR4sNA/qnss/eRNr\ne37+M6/yZ++9w52jI148lXz+8zNUGqHPP+7fIrdLrrdd9CCttsM0BhA7ohAIGSCmHE4EIi2phWJq\nAiSO1TJyY0+BCtuJ50JuJ/9ZS5ZFBmWOT1uKIqH1MBnk6OgQAmxXUxpBg2LZN8jEEENCrhRWRw5G\nOY/PGurWsi81nXYIrREOkhjxH/fIKL1EY572Zd/5ITGe7TM53KMwA6ZFxnOvfopJnjIZjxGZYrOp\naZoxfWhZbzSDzBDj9ZxfKAQc6x5pJdIFvFQEEbBCERwoFekNCKFJCHiVQLREkeBUQCBwMiBiQGpL\nkZV4F5AybJcBWovXkfNugxjvE6NGVOckLhCiQ+mUs/mcy4sWHQO9luTA/mhCENC0gVk+YRMsoq/J\no0CGntnkWaqrJzx48pApPbf3XkVrwQfvfcRsb49xMSEcR4LbNvPruorTR48YNyVNLomrSH1Z8+Js\nn698dJd+taYNgUJo1lkG2ZAQIUdxmhmqzmJ8T2YEPtMk2YhUeKquIvge3wpUkLTGYVDYqIh0rOsV\nQ5HSND0Sw0GheOB7LluF6XuImly01Ah8sAQX6WJJYjJU1GTG0HVzXP/9N7e9VkFGCcG/+8kbtElN\n3k+ZhQZRd6yNxStPbj3SSGTclr8SqRBCcOwzzpVlP0Y29RXVZsJm4Jnu7UGEvg689/ZbtHffYU8a\njsZ7XM4rvnznOX7xC1N+8/+84Kvffu86Dj6uDVmVFGc568WCWZkSs0DTNPQ2YlRHUwvW8xUjAzUt\nWci52PQcDQSb5oy22c4POW8arFAoDL2TpGXKrNxHzzZw0vBk03N+tUQmJZO9lPWm4yjPkGXOi3sZ\nf/L1bzKtHHfPHnIw2CcdeRaLFbPhPhQgXNgGmF5tizN93DbCCxH0BpxEUIJs8I0GZ3n9k8/zjW99\nmy8ef4pmdZcsyVEm0rWORGvyImfYBL5TX3KrHbB2Dis8zx0/z8P5FXeGKbOhoQ49bZ1g0ozT1SVT\nU5KME84WC7IuRQZDK2A2mXF2uWLZBiaFoBcBlwpEG7AxoLXCSbF9NbbzY+H4xk3SvCDPh6hhgW8r\nZlJBnjIpS/YmB6jUo2vPIon4Vc2Vs7TScJTfAAU2rHG1pe0aEl+TFcOn/bH+QgTbJpc+Oto8YJzA\n9JGgBFJFRPRoFCIqUnpaYYhyW4mJUaJDJABJkqJk9nEFYvvWWUgBqUL5wGK9RhMht7iFJYuRGAOz\nZMCTzRrfd2zSnvHgALmq0MUIokPHBZ4eoySuLMn6HhMjPtbcunVM5VtaX3HJFTc/dYdvvvkh33v/\nHq/eOmA817gk4EJHJ+9zdnUPKfeZ5c8wb5bsN54nTUeMjjgoaLuAjZGoJErn7EdNIzvq2OGlYRQT\nUmNwDjrvkM4TrWOYai70iqIKEDP6CB6JcZbYOPLRHg/bR4SmY54JVBRkMdA7i9IJPhXgI0IJgu+Y\nSEXTw9xdMjSCUFXYH+C197V6lP38nZcp1bM8umhITA35gDqLaK/IXKQeCuglqRAkoiUThlXX0fhI\nRqQSnuFkQNQJWSpZLVZEek7PHnLUwWjPkHdTzpsFF7biFVkgFvv8+7/wAh/8tU/zxjvv8kdf/YjL\nxWYXav41q/vI+8uKjW8xPnDH5Fz0Pa7reGY24cliyf1H59w53GdYJFQCVs05qRnQNHMSmeC8pZaG\nJHiCshzsT8hyRe9WaOE5HJXcGhi+1ZzTYvCLS156dsjZE0vdJVTNhlvD2/zxRx/ywqsvMT8/Iz7z\nOvfffUDxKiTqACkcImpIFPi47S0jBATYbmqkAQsOpIdUB37xC5/kd7/yDb7zze+xahqKWcbNqSQr\nBMLkIDTF0JMmORtb4Vuoa0lWRqr1BtuUWCXJPt6YLvpAFiWLvqKUUGjF2arlYBCRwpIkKYd7GffP\nF4hWM84VPoJQhkIoehcwgNotXLqWlJIoKVFKIaVESkme5eyNhowmY0SSInxPkJG9wYRyOuLWjUO6\n1hHoKPWAh1dX+PkKryU6MVQ0TPQBjeogWtDgOthcXjEqE4rygN5HbN0hk5w+VCCLp30q/kKUEBgJ\n0Tuy3lCqwDxNyIUmOkfpPJ0SBAFOCPJg6bxBG0svJSZ4bBR47/nztlMqQmIECIeL21VPq82cOybl\n/pOWvnJMSsXecMRm5WhXFUOhIBqOkCzLlLN2wzBNKdIBTdeTCUGhU7TRGCXRbYOYGmauJCQRkozp\n8Q1eXi94Ui+ZnD1hb18Tlx76K1bNkqRSuFIQjeTu2QUPV4947/QhY51h9IANPRAJRNrQYUXAB08R\nA05GSAzRRnF6AAAgAElEQVRr4SFIVNUTpMdEjQwC+gQVHCpGgvZ4abHCI4Jl2c7BevpVQ7up8cJi\nfU4QFikkSg/Jw5zY17RkVMpSdyDoma86JqH9gTbhvTZBRgp48TXJJizJrWEQctZOMRDgdGSdKobC\n4HykEAlzVaHXEYMAHXFCIFLJ5HCKFjneew5mAw4OJ+iF42x5j6lTPG6ekNdLjmYlaqBwdU3bOO70\nDnP7Dj/36gHnVvF7//x93v3gCeumfdqn5keCbSqi6ymjoUxyKmFYtD1ZUTLbS2A84+GHcx4vVxwk\ngUNfcnZekShN025HWVpLtIukJlB7TYgRHSKd75n3kXIgKRLJdDZiU0U2iWFcCmSeUC/X/PRrd3gw\nP+XAjfnaW/f5xM0hf/bwCb/2s89hLy5w9QXlnoJy8PGcGQsy3VZnEEQXEX/eCdRpyCH6nHLU8vpz\nt/Drihu3xrzxsOFbj8757AslvXBIL5kvFiRS0/aOZHDA6ZMLbnzCMDkYEyJsukhCT90FYuixUTLQ\nkj56puMBJ1dLTquazGiqYMmN4LnZHh+enxOjYlKkdNLhrEV4SfPnq5x2njohBEVRkOc5RbHt8Jzn\nOXuzkps3D7mxX3DzYMbxfs7+YIiKgfl6g+CAvldUMiHJ0o83P4xsVp67Dz7g3smHuI1gNhuCMCAD\n9SqySTpG+YS59di2R1pDgiYmHVprpMqwbo0gwfWS+bwmLxUxGoTW5K4kyQzlRHAd20PnRlLImi4U\nOAT1xwMRo2GtFL0ckOG3q5akpBUSQSSxkUZCLxVRCXKt6fuAyR1RJB9vMilwscF7R1X3zKZD2u9V\nmGCp5YCsS/lgdc4mejKrMAI636GVITMptfWg0+0KyuAohOLwcETVrSlGBtf2aAFYwXI1R3XPcPul\nT5IsTujmFVfFFXXbkHULNosNyIRkPKaVnuWp4/TeBcGDMgZrA0KleG+JISKkwFmHDIIiKvrCQHTb\nncL1NrDo1BF7hXCaPASiCtioiSKQ95E0KDa5pw4bcuB8eUnXNiipiMITvWSQRJx3WOMJvsPLBNfV\niDjARSjjmkX4wfaBuzZB5uZswnP9MQ9cgzaBvsioZUvhMqzpmXioZUBliq7v0T1sjCWNgtZExjGl\nM4ooS4y2fP6525S3BpjVnLfuv8eeDsyDJ9U9sszJ9yZc1T1HRFqtKIYlg0YwXjtKW/MPfuEFhl/+\nGd51I/6T//q/e9qn59qrjGDTBy6WC2Rq6F1F3ydY5/jgyRX75YikUPSdJfSK1bLCB0HTWaIUhODJ\nkoTSGNbVGucdTefIjEZ7gVSB2DdUVnEw2uN46HE+Yd54vFR85pWbXDZzZrM9NqsFLx8krJaX3Hs4\n5DsfaX7q1RSF31ZhOgsiBaVBBYgKYkRI8FjERkAMBC/wMeJC4Jd+6Uv85m/9M6bZAV+4teKjqw7b\nl0xGkqtVQ+UdZZlTDqbYDbxzsuKV/iY39mf0TlHoFY/OOjaNY2AMPjiETuhsR5ZFZiPDcu6pGstY\naEgMJJY7h3uczpecLyvKRCETiyxSiiTjmeN93v/g6odmv5TrKksNUgjqf2G5qJKCPDPs7R2wPztk\nbzJmOp1ycHzI0cEhx3duc3R0xNHRIft7U9I0JUkiSZKRpKckOkG0l9vhfrshBk9f1/TrFbb19LYh\n1DXzquPxsqfueqxOUamkHAv2u32qjeOse8z8bEG2ByoErNsgnECWE8rhBB17Nn2NkB4VDEE2aDFC\nlQZZWaToaTearq7RWpPoFJdGRlnKSF/PrV8ypemVIgZJZLu+LxER73sSI5HeE6XABkEQCiW23Rha\nDMSAJBKE2G4sqSPCCno6huOc4aBEYqjqNSOvWfQraDekacqqbbm6us9q45DGkSHwScJ5UzMyKeVw\njA49fZQIIdFRIzWkeCazkmSQ83i9xnhLjCDOFzw4ecAzL9zh1mzKpVYs5pc8ObvizlDRVwX57QOK\n/WdZPrRcnV1x8eQKJSMiWpTOtj1gsJAmODy5C4TEUCKozLb5XyoExmjaJGKUYulqBBYVHWupkUFv\nAw+RunAQJaLTBBm4mp+TlAqBRPseb1JMnlIvLwh9TetglhtSM6Rta2TXIEi4/AEHWdcmyPzMSzd5\nbHq8ikyjIS9KfN2yVDVRRtZSkSKJMhCjJgkBmabY3lJ40FpDlnDZVeynM07qmtc6eOftb3I89Khm\nwyLRDLSj9hmxa5DScz6OPDt9gXun97mVJjSq5ECmVJcbkmcdv/GrX+Kv/8In+Uf/+H/nn/7OH7NY\nbZ72qbqWFIK9vQnLqsEGQbepiSJig8dVAuVqbo5T7l52KFqqziGVwoYlCUOkEri+QxhNIiIoSZoZ\n2tgiE0mpSoTMafoNvm1RIpIkOavLnvHkJm02R/oRd+9+yH6eUxrBbG/MNKvwdUq3KSizAEZAHYm5\n265Y8my3KJANxAn3PrriwCRkRUcQBWenFq02BCQHx8/ylbc+INOBdx6co53l0y/dYY3mYqXQfU0y\nHHI4DLzzbs3ZYsOzgxF5kVBVAzZtt30HrxQQ6LsO37QEk9J4j04NtgvoVOKDRymBzhqORwXztsN6\ngfIC1Wu6oHn2+LNo/SG9/f77NfwwGk0nDIqcgODJ48cYY8izjLbr6LvtZxNSkGUZfdfj/f//A2wS\nQ5nnDMqC0WiAUYo3v/suo8mQ6WTMdDpiMEwxtiXJE8phSkLg5nFBmU4Zj1uCn9BWNZerDbMiJdWa\nvEhp6o4v/82/za0XP0VeFGS5QuoUaQZElXzcrHD7I4D4eFuMCMRLos+wISVuzjB5TgwCKRR6OAAq\n+ugRRnBrb8S5fMjzDLlwmi46EqvZmw1ZVzUru6RZrNhcLSgHY6RUVE1DlHOG+QQ3FIzbAeuwQXUb\nRJZDv0SbBF+CqWqaztF0N8gHM7yZ0weJyBXJ+OBaNodOjKHVCUmvtvWksK24xP9vL9ZIiBDZXg8v\nFCI4nJTbUMO2+7ezkXKUIOT2+TUux5hE0yeSLIe9QcH7b95DKkMbDb4OdE1DFgzOSZbCI62jTDSd\ns7SbNTIxDPMEVaYoB4Qa71ukTWkrjw4K5ex2iXLjufvRfYajCTdfOWK0WbNszqhXS8gPKQ5vcHjz\nNYSWtKuPcKwxiaFxHhN7rG8JPiHpQSsJEcZFwZlfYi20G4tWmk5EDpMZK98R+oboWqT0pNZihUAJ\nSSckwTgIkIiIpMMJS9tsuDV+gfv9IybCkGhFcEukbgiNJwaBTyRtjIBHE9Aq4jc/glsUfO6ZGzw7\nLGi8ZxAFPT33l3dRGIYxxzhBn0AiFdZ7+qSnkJKukBihSchYJ5bJaEZTd4wPDUkqWV9usOsrDm/t\n8Va1Au85kwLdem6+cIQxA+quIZk2tB9cMTy+SaFLPvzmBwyfeZGf/ZVPY5uKfWn5b/7jv4f4L/4D\n/uBP3+bv/8Z/xuV88bRP27WieksqHXf2ZjgtiL3kYdcwGAzIVYm3NSSSzbLD7RvqxlJqzaIV6DQh\nSyF0lnXXEoPCAwhNqgekUrBsFlTrGu0id0/PGZYGrR/zk5/4PO3yPioWrDYrjooRe7OCfGBIw4pJ\nUvLue3+Aj6/yc594AZM3CNuxXloG4wkxqTh52HDVSobDwHtvvcc3ouHLP/2TfOU7j/ndr73NJ154\nkXm75Oz0IZerBetNR10rfufN93njvbtEDL6rMVowmk44nAyIEh6fXnEw3aPcG+KUorFPKIxhPEiI\nLqGpWqKPtF3EeoWgxRiFDNsf7z5kGDIwkQGC9dphO0hSgZaWk8VHhHg9R9X/op/6zE9we5xTKUjc\nJ3EyReLo/HZjTKMkWkqiUDR9hwRSbUgTgzIKLTU6MeSZIc1L/t7f+TX2bh5SKE0Xc6rNIx7e/Top\nkSgi1dpw54anUzl5p6hMYH+q/l/23iTYtjQ9z3r+djW7Pf25bd57M/NWZVVKlSrJkuVSqRAKWQ4a\nMSEcmhAwwAMYMPOUCUwZGwczQxB4ABjCYRMIGUl2WSVVqRpVk33e/tzT7341f8tgZwgiAIcTAZVX\noXd4zmSv/e9Y61vf973Py85kj4EWXIYO22/jIfaPztgfjAjtTbo8RRuJtRr5Zw//HuQJsAMUZBaI\nfonQU0y5Q79ZAgeIOENbkKmjcysKUxHbSK8SN8SY91+ccnu/Y8GAUAp2rWCzGbKYV3TdCtEllu05\nlSgZq8yqCRgbKWSBMw27/YReLKCJ+ASD3hAnBU7XdO2KfvUUVU1IWIxIjLNnPTnmVRwtlbagoyZJ\nqImEvL2KiMJnCWQ+bdUgckQiCAmSAJEyQUsMkiS2AZICEFIyHA2R2kBMmF4y6zZcb5Y0qoZC4HNG\ntR6dAl0SVFKhGofoE85EGhUhV+xpRVmOyAOJ7i2JSE8iRocRkowgZ4hdh88b1udXqHfuMO4HbCSM\nBiXjO3sEvYMB1s9PWS6ebycVViNTwNgBHoWNME4ZI0vcZkkTOhYsWQZHF2HUSWYi4vsVphhTDYek\nrOjDAi+g1QqjAriEiREda6JN9EVkGBWtW+JDhxSelXRUEZZtQLlITD3CG7RSCB/JMaFtRRIdTf8v\n71iCV6CQEQJ+6e0dlkWHikOy7AkebqpDYlixrDydUhih8SKRPAiTCVqTQyYPLEEIdFFTKkFXluhB\nyVff+iKuOcdd3uL7L1YMxwPs05a+SHz9a+8Qk+dPfvgxh5OaZz88Z7dSXPQLYuNomxU/95U7TEev\nc9a8JMRIYQTVeMBv/fVf5uUf/yP+3j/4x/z7f/s/+Wl/fa+MfvDhC7709kMoYCBg7iIRQ6ULbh5q\n5m3Fy/NLklBsfKZrGzYxIYRGicymWaGEJCeBB+rCsrh6wVmQCBLn84Zlo4E1fSt5fNIzGkHb/REP\nDg4YV7scHpdMRGTlJGp2QlQZNz3G5RHvP7qmHlh+cTiGkUWsW2bPTygPdvALx7DzPD1z/MnjF7x+\n603+6L0n/I//5I+5MbzB73/rOyw3C9omEIJmWsKB7/h4vmG3HOPqmtHOkNmy5cXJmtN5T10Yzi8+\nQinDz1RjhEiURiKsogsJtKKqCxadI6ZMrRRNv72pLptIjJli2JCExYiILiwjpVgtO+ZixU0Dt44S\nSkL4KZ/9n1chOVo7wkSFKyNFFiAsdU5bwFdmm4+lBRNdkoUiqa0VHT5ddcyJIiUgkaQma0NTFZjG\nMV/+GE2PFYomBoIYYlWmj2JrrRVDKBpikxHGUibLatGS7RS93MUfV+hhom57GGoQjpwyYIEZiE8Q\nIpLFdIvLX80Re3cgCIwakcQaaQagQawCKXoqY2nrEbnrGB3uMN0suWwCk7rHRUUrhuwdFVysR1ye\nzsg64JtAo3qEToxzwaq7Yq++izAS3/fEqkK2nmx6rlyg7kFnS1UasluQ19e4sCblHVbGc/7ut19J\nC/ZuramkQ1PgpEQEMCIRlEEKSdG3OAy9BlQmSFAkQCGFILEtahxQCYWLiaQFg9IykJouQZhn3n3/\nBNEskFZyuYYsJEkaSjI9AqM1TgsmEs5jR1w44qolJcF9W1AOhghZYWSiCAmtYebB6S3nJmcY9x2r\ni0tkLymGCjuX3H9wh8nNe6zPG4TtmF2dcdGcbj+0zJSFZR0VQUpqLZAjzZKWpWqIbEjXPU5EnPC0\nWUKQXMaesQ1ISjabgCLTKkHMgqpxaCXxKqN0QoqEagWxLCiTIPpAihn6xHAyofNLhoVlnnpESigf\noFSYCLqSTFzg6vyzFTLy/4Pfyf+rquuCNCwxFOic6ELBWilmbJhriQiSw3WBVglBRJqMTCWkjJIJ\nLQpQEhkFi9TS+wFPnpzw9OSKqyvPh5cXzLorHu6/wfs5M9rdw8htaNg7X75HqQsu3JoueHy75vx0\nyeE7r/POv/IN2B1hp/c5/NJX6Vcd7uKC2HeoieNv/urr+Ot/yn/19/8OZVkixF8C4f9FciHQdx2i\nCfjANtNIQTlUJJlQzjKfrSiDInVrfNimtpZKE8KaghKiwQBGaLQsaZeSpycbPnw0o20Ed4/2+Jk7\nb3BnXGDrArdyvPvxiv/1vZdcXV9BE5C0mKKnj3B67jm5uODhrbt0csTF1TUvTjpy0Ixv3WTnaI9K\nWO7e3WX39iEP7tQUOfJ8seC//p3vIETN47MTurbHdJY7AnYGmqqqiAdTbt67yWZaEEvJzrSmGhSk\nSmPwFNaybhyrLtP3nraHYV2TtML1LaXUDAc1dV3T+0iICYdF6gpbS4gRuxYUwdFJQwqGQhUMK4sJ\nlspb+la8Yu/S/2dZaznY26PIEmUCFsF2vz8hlMAIQSEESilIiiwEmYQK20kOKaFS+hTBnrZPBx3R\nKWGjIPXnhEVmUFnWaLTQyCLQC0U2FrsfEakiUBBCIknLSCicWZDCFXmikHIAjIkH+2AEkhqRJaQN\nQtSw8eRwBpwgxAmitCAmoA+QdYFCgRqT2cWlIV5P6PKIoAYEPaDlgP3Jz9CqfS6bCZtYkURkEDI3\nih2KqSKjkEoSm4BqLV2RUS6y3lxRyBFIqFpPoaYUZOpo6fqOmWtwKZBDpm+fk/tTgr9g6DLl6NV0\nLY1rjYqQBSShEDkRsiIh0H1mbQytBpkDOoBOEZPENkQWgY0SKyRSKJbdipgT08mQXkFnJTIL2rBi\n3s7pCPh2g5WSwieMtGyKAU5uGSrRSi5QyNIyHU0YFhG3PGWxukQHgZaWTiqcHLCMUCqBlKCrTKMl\nUghWocH5RE4C40t2bz4k1ftoLXDLGc9PXrI5mbGet2hZs/GZVprt5yaSaFjEM2Z5SbdsKLqeccjs\nJkstCoZSUXtoY+Tl9ZoudfQpUvcKrRLebl8EUtRoMkFKtAzE1LFpHRfLc2QQZAfr0BGLCSuhGMYx\nImYWoYe4QNeCjW9Y1tBums90pp/rjoyUgt/+9V9lKMaE6grnEylEypAIwm0jxo3govKMy5LYSlrZ\nokQgi4RWFl0IhLTkBDZrjh7cIFDw/R/+KS+unuG6lqmd8D89amD8GoPpbX7n4xVfuFGwYwTXzYw+\nJvoXC66k4fiLD/m13/o3cNWQZrah3BmxpGbnpmFzdYa4vKK2EakV0g757d94h3/7g3/MD3/yEf/p\nf/Z3+Yf/5Lt/GVT5f6NCG3rnaVNAK02lM7VR6Cw5WZzRJoM2AqMkSlb0fkEQkvFAgCooY7clPluJ\nC0vO2iVt0hzu7jCRHVl0ONWxe2PA2GmUnPD8omW2avm9dx/x6/INLFOk1pzHjmXULJ+vSFzxeNXw\n9sFNmt6x6SQjsUFVA3JOtG3PB49f0jUKaQyT/pw3Doe8+3LGuu+ohePWzSHD0QF2vsLbMR99csnr\nY8P1xnH79h4HU0MMmSxH3Nqv8KngaGfMm3cOQWlkAltUpPWCQlmyiFAVVFWm6TpKa4itY2gdWUko\nKi76jkknGMhAp6FHESQMKsuFD6TBLtZanHt1gY8pJaSpybIlRosSicDWOivydmYQBaiUkUSSMKgQ\n8Sph4raQ80JiciLkRPr0oZZzJIqaxeySTjmGahch5+hcIrMjy4JCQ9lNaSuPlAHlM7QbWiVYLUqO\njwqKT9kkOfeYwHZBPLcgOoTMW9u+eA24C9FC+hDK1wEFYUVqMjiHHHhIHSJKRuUBvW+JUYMZE2NE\nTTVDN6ZtHNlqROjJekEeZArj0a6kVz0RxcqvGOUdrJ2wXq2pyhIzmhLmZzgWVHKMq1eoTlFuHGu9\nTYTeLccQHYv2inW5R6ESr+JoaUdNiMEgSYgo6YSl3sbDkoXA+ETWatupFGwdNwqkkGSx/aNLGaKn\ndxDpeDi5z7CqKb2ip+eTqxfUUhFrTd94ZJ/QKtHj8V3LsA8EI7FtIsuCUT2hzBkvx9gUOFmeMl6U\nTA+O8FGycgmrNVJECm0Ya0vykQ7DvpHQejYXkXKvZjTapdOGrm9Zv3fB2dMXPPvwEeMHd3j8yRO0\nymgZsblho6Y87zdstGb/5ZxeFqSblmXQlD7TqESVLL33gGDL/BM4Ik5LtNd0OqCBIiSSSuQsUUnS\n50xZGgo7oq3P0K1hFTbcLaesYkuuDMoNKKOkMCU+bxj2Hh0Fbf/ZRt6f60Lmi2/tcqxecp6b7Swt\nO0Yy0RYVIQ8wwVOGipwducoE3VE7Sc6SKDNWCYRUaKHxBSQhuXPbYob7XFU9n7x8xI4vebleUlxc\n0hrDRxfP2J/uYdp9zoPknp9y9zhyMjuj2HnA13/zXyXv1lgfKY4ntH2meXLOshxx5+Ah7upj6ueP\nKVJLcid0lKQgeWdP8V/8x/8uf+/nf46/81/+dzw5nRH+sqD5M+VPOQZ9jqROYcvMwNZkY5mte87P\nlhzWiqXMKF0gUwc54ZEUwtLh6FPC6IqRDiw2mZgr7h6P8KFlttZbamX/abiZ0dw9nvL112/TNokn\nT0/4vR++yy+/eYevfvmIWZKM5QDbCJ4/PiGVBd/6+Jw7Nx8ghQNjQQ4Q2mNjpJYV3/zoMdEndu+P\nYB1ZLMDVJQoYj2umZcL1QzyaGxaenp7zVx/c5Tq2CCSj4QThO3z0HI1rnl0t0WXY5twQ2TiHlIk2\nOGop0LkjhQ6RM0OduJTQ9gIztKih51AqrlvPet0yKgqUkQxUout7dFViHTy89zrf/dGPftrH//9Y\nMUZE7lBxawHdFjDbDLYkxLYTKiAhECIgU9hGNbCFmpEkQmZiTuSUt26wkBBCEfsZZVFh5IBiFNFd\nopeSGMW242Uq+ipQrLeBoC4aNsD6ekmTIl95+yGDnV1yZ0lWIqVH6AJiAl1CciAV6H1oF4i8AL0L\nxT7bGAwAhTAlKQtyLmn8jBAyUVrip1b/2WbN6uyS2WzBfLVESsGya0l9h0eRVhu8bhFRU0nLzGVW\nmw3jyQ7GGK5mcw4PR4RyhO4WtElSaksnG1KdGHaw8RuMc5RaIfrA1ewSKcav5LLv7sgSdUa4bXEi\npURFT5EVSWRiyoi0ZcQkWyBNgSkV3vfUytLHSJYKKRUqA1ngckYoibNQBE135XBakmOiyQWpkChp\nMEEw0IlVG6i1RqoRx3tDiv0hqc8UsznToWa+uGB9cc1efcykNqSyp0DirURnyXUQGKlZm5Iiauoy\nsNw4pns3kVpRK8dZs+aPf/Aj5HpJkz3KB3JWVNmBsHShYhXXzJuITT1nJViV8U3GJUcQgjJLfFIU\nJrAMkhE9vlX4UcZ4SaET2StisSUKCxICj5efEsRFxaCeEq8Ve1XNutvQ1xumg4L15Rove5ZBYDuF\nSNtF6L5MbLrPNvD+XBcyX/3q6yxONRwqDu0R1l7z/KqDlLBmQSE1K9WhcoaNpUqZ3kqyVBREoqwp\nrIWokCZRyYrd4T5hIFlfnlILR7IZaQN2U1DEzIUXXMxO+Ei+YDK5wXXpGC4TX3j4ZX7ta/8a9dE+\nw2KArBQiCcpCsHuwy3Wv2DQt08PXaBeXiIsrCnlNXdzGmx6fDojXM/6DbxzxH/7S3+I7J57//O//\nI/77P/yA9jOAf/6iKmdQUVEUdmuXNppUOfpVy6PnJ1RWknSgzJooAiF0jExmnbZFUE4JgwK1XYyb\n+0CSGZN6VpsNejDhaO+Qfn7C6TwiQsOL9Zy0M+DezUO+8PXX+YPvn/G9j07ZPdrn3v0vczk/4fy8\noR4J3jre48PnSz4+WXP7zpRsK2Qlyd4i5JydA6gG2yVO1wqM1Xxxv6YXAqFLrp1j2dWsaBkPM1/5\n4m2+9Z7g43WPVAL2S6gccpm5ulxzc7qDUIZCTcgyklLEO48SiuwBK4gh4/seISVBSqwyrHrHnlVI\nkfBKMq1KYnDMuxbRZqzMIBIqBhCa3n02XsPnUX3vsSOB8hLytiPzZ0NzkUHILc0VRZQKmRIZSRJ5\nO2ZKgpwyIWVS2KYaJ6mwFtbSMiwqRErkuG2l5ygRIqOlJESJMD2+iTg2yNWA67lk1a+5/8brKDUl\nB0FWNXQdOTZgp2yrqQSuhcU59Nfk/TtQHSBQ5NCQ2wWxa4jJoZ1mk5cEl4kuEvG8OL3iyfklJ0+e\n8fLigmWzod94IOCEp0ySsioICYp1oC8VoogMBbRe45oN1g5ZLy9oF6fkyV1s19GlDTpIilzR0BOL\njO01qVsRaos0BSkGEq/mfWsyGbLu16SsKHIipYzPEFNG54QSEDIEKVBSoqXYhrx6QR8ziEzIGWMN\nIoCyW8q3VIIQHTJAkx1JBEKQhFoyqi1lNrg4ZHZ9gh5WjI6GlKmmON7hb/yVX+fd0xc8/v53SBn2\n946xmwWNv+JA71NqxaIRxMZTVdvKMSLRW78Vz88vOR7uMdw/Jo9K4mqD1EMO9yd4k+lfPKdaJozV\nRBcJviH225WJcWnwsaBG4vqO6GEgt/y1wicWKiNbizWeTlqGMaFnBjcSRJlAgw6aTiYmXtEZTw4a\nUISBJPSO6BU9jqQEzfolu9VdlqYgxJY9vYvvW6wS+BQZC0fff7ZC5nO7I3P7xpibege3X9BvPOdX\nz3naQNQ1Q1nRkXFBkoNAdJqQExuTsFXBuKzptUEbS0jbqHBQJJNYuBl+1fLBk6fcnt6hsC2TJqJ8\nz2Yg6JRGjQyi02zOrnixnoMcom+8zcIWpMYj2xWLl5e0zRKRIgc7ii/csNy6dUQ9GjF5+BX0m6+T\nS03bLhGxxh48YHTrAc8vZlx1G37phuLv/vZbvPsffYO//Rs/z9Hu8Kf9lf9UlVOm7xPKWqy1KClQ\nVcnLixmzRYt3mi4krDKEEHG9QGuLMYKQJS5JlBDoJMixoI+B48mYKBKHR7t8/Wdep7KJW/fucf9u\nxZd3MkVyPD9d8fjZM549Pec3vvYVjm7t8ex6wWrxlCKsuX1rwDd+8W1KE/j5m3s8enaJayyilCBL\nKCxUNWWC41HB3hhinxjKgmqoaKOjD5FpPWLTOYbKoBVIG3jn/jEXzZL1ouVHn7xAykAxsCSX2DQb\nRuMBy8022M67TPSeFAPjgQESfRNYtw4lJCTBqAJyoHE93it8kmxCJKrMtC6ZDiqKcoyhRIeIkgtM\n+baLJ5kAACAASURBVC8fzPZ5VM6ZTeeQQZJUJsvt3gBCIKUAKbZFjIrkT5OMkRIE5JhIKRFDICaI\nKRGTJGRBTqCxiLCkthIfPcF0SKlwySLkBCc0ipIoNQTDutc4saLZLPjqgzvU49do1mbLIunWxG5F\naDqyc6TNgry4Il0+I23mRDsgmyNAktyCOD8lLa8hdsSlo+8ucVdrQujY9D0fPnrJ//wHf8g3f/+b\nfPf9H5NWPTF60BEhMmNZIwYFQkmkkDgZ0DpQOknQmoGALkRi2lDKmsXqjLFydEpio6TPjmRahhiE\nktgCgrSYrLE6o5UnRRDic/sI+b+UlpJ112NiQpDoRIYcySltO2REco6IlJBCIgBv2HZh1KcAQCFA\nSFISyMJSDwZMqiG4hE6K0PfMmhnCBxSOSltu+Al2NGbWXFPmxI1bN/jCl36Fm5NdVtWAvVs3+fmf\nfZP9nSGIzHi8z+T1tznvegSK1mli6BDeI7uADaBkRmlNJHPxwRmiqjDjCVIYYsz08w0HNyacb5ao\nJKHYFu5CxO2LjO8QombfjqgxDIwhKoPQEqNLOjUklgo1qAhWIaLAZcFcB0K53UOLIhJ1oPABaSJK\nJ0TSKOuxMtIJz2p1TREdXbfBND2NW/NyfopykSLVuBLKsqIyFaasWG2GpM84rPhcdmTGVc2/8/W/\nzkoskLpAp8gyRwazFQbNRQ0TV7A2HpEysswMlcZQE7NgKTylh0YlagFkgUqCQVXTXZ7z7qMLDuKa\ny6dPubi6pNoz3Lp9zIODt3n2/vdZXGTGdWDcZcJM8Lg/Y/2HPcvrlqqs+Nrrt9jdF6xmlttvvo5A\nIIYZYQE5IOWatHcfOTpCn/6AfOsNGA4o2sS9N36FtHhEbDLZHKN3Wv7W20d8/Wdf5ycu8N/+8x/y\n7T/58Kd9BP+/Kwu2tlFVoGQHwnO9irw4u2KgKrRy1NIQaIk9hJDBgswZmeOnWSQCYQIhBAamYFD1\n2PGEL93/IpUV/Oj5Cw4HguLWXeR+4h3b8N7zJW1QPFr23G3P+drPPOSP/vRHzE4zb959m0F8TPnk\ngpu7u9x/fY/f/eAF10KxawbAdkQhhyM2safJHUel5io72DT0WrA/qFj3EWksu9PAJgtsqVg3ifl6\nQRkCfuM4jwVfCneRRUObPE2bOD4ccrHasLs/xYeMBFadY3dkIRdcL65xvWdQGoyFRImULUoLVA5b\nHEEJTRfJ2WNLg/SeaBLImpQ9yg2A65/q2f955boOKadEMjIJgoqIvO3BiCzZDvY1QmyttI6MTJko\nEjlCEgkdIyRDnzMuQVKKLSDEAIq+Sei+JpdgTCa7QBCSUg3w0bNcO8pSI5iw9HO+9IUv473G5I7Q\nw6aNYALr6xV7u2tk2RBWV+imwQx2QO0Q+jV6uQYBMiuCj/huzdx3mLML/uD9F3zp1kO+9/hD3v/o\nEadXlzS9Z2BKTro5KmUqp2nrQJ8zRZOYC8mIhLAe4RRRgBaSaGAQNa4JyAJyM2B2+RJVjWgNGF8C\n4GuQXUHGEulwTNk+z2vEYLsLmNyr05nRUpDxhAhZRmSSZBKGQMyJlC1kgdfbRGypNQpISUAS5OyR\nXoLesmSSkIwGFbn09GVPKYa4rsNfLlhlyMZQjSuWpaXrMgLF4fEdDu48pJwW9I96vnrvFzh8bRch\nb9H88hn/4Hf+KXY558G9BzxvXtJ7CNmzUyhWMZJDQmrBcDqkcT0iSU4Xc7524yaiqiAa7M4uti45\nWbacP3rJ7uSIs7MXKBRWeSSKXhsO7t4nzRZEHdkgSaGntFPqaoSLDh8MN3ePYOx4cXGO6lsaEjF3\niDDE9NAbKKRgnWAtEyJnYrTInEldYhnmiKzwwjHMApJj0S45sHsUyiBVQIiKNkuGInPefvaXq89l\nIfOVN49Y1E/xVz3r5NBynx2dcFJvcdIhsFYSEzXKKKamYmEyG1oKB2UOeFkjZYHC4oHxzohleZNB\nO2f24kP8+orVfMEwCarxAeM85lvf/ibn6xk2aI61pbqj2dclJ75i/lLyu/F9dvMtZovAL9/cxbkN\nA3p0MiiTEdMz6uGUpdMk3yFDTzF8QD25ud3pswIx3ScPh+hmia73CAd34eQDDv70mq+Kitd+8x3q\nf+9v8j/8sz/hv/mHv0+zeXUXMT+LvAucvbzgxniEEYlOas4uruj6wHDiUCNDdBoXHC09OUXKPuJU\nQZCKIHsUBiUSpIApC+pR4v6dh9y5OcY7z9AaPvzwhLceTNjIAR9fXOFUweHOLk3tefT0PYbDL/Hr\n73yV2n7I9fw9+lxwLA84OrxHmQtU1pjJEUKvIBUgEyII+gS13keJjlr2eHrwElVppNAkE0lK0y0D\nmw3MVpnvfXTBoRlw0l3j25YffvKY2zfvcXxwm7VrqEuLNkOyLFCiJedI2/b0hSFIQdN2ZCERWpOt\nIPeChKaUGqk9fVLgenJSCBS+y5RbohciBqIteO3hF/jRozP6/tWF4jV9ByJtuwM5I5EIFEFGbE6E\npDHGk50iyISOmZADMSWMh2AESYEyGhHidryUtuTX6d4Rq4sZ54tLrAqkWCKAlAradeZWZXhyFfnw\n5RU3JgUfvHjMTjHkk9M5k8ePiEPJfLXkwfiQ8+aS5UeP+eW/9jbZerr+kh12yaMWETfIlw1pNGCT\nA+LqBX4dafsFs2aFPJtx+vwZP/jkMW6+ZN4GREwoo5AJ9mRFI3taHbD99nsICqRI9FpQCcXSRVAV\n1SbRVZkke0TW5BDR2tB2a6Z6iAw9DYEiTyhahTUJKDBEYg+OHp0N8/lLUni1zPtGSsrU4TDIvHWu\nRRGJcRs9IFBIHOOY2ciKPnmqaMkpkuW2qAlKEBWMRiWp86z6DZaSigKvHJeza9brFSYGilIymeyj\ntCX3iY4Zl6LjWAu680tOCfyV+0fUO0cIKbnzxa+x+4ffJ81PaK5e8mCyw9nZS24dHdF3DqMLhjpt\nl/0dmGjJgu3IHQ25AAuKAZN6gDud012f4afH6OEUaxJu0+OaGaPxEafdkn55zsbWNFZy9xT6e0cM\nb36R8OwHbBYttjYMBgfo6SFnP/oe3XJMLlf4HUcRLDkLYh0RXjBG4HJiIwIqZpJQxL4jFY4iRBa5\nYuInpC5wVc/ZGe5ROE2UkbqU2LCmc599d/RzWch8+X4izjesfAG64tbhkJgTV+0aGRQlhiYHkIai\nLljmgOwiwwytjrhoqKoSIwS9cNx97S6jW0NiG0jzyHJ9jXIt6yIg1ZjF9ZofbC6ZNA1T3XNwc5fJ\ntKBMhpQt90eCeVjxbDZlQcu7nyzwccVbtyqaJmJtAinZLYdcbnoulpbR0ZSb4wHYQDYl3UcvKK1G\nmAIFeNXzonlOe96wO56yPnqGWGmqruT87ITf+tWvouyIb14veP7t77C6nG/bn39BlXOm3WxAJjoh\nuTpvmc1mHJQlhRZUYoAILZ3dOg28h3UZySJSSoEOAmkgZsG66RkONDJKikrTKE1ZDnj45hv887M/\n5dm1xtgOsSpYZc83fuVtHC1PPxzy0dMLXhvv8/M3voy7Az9ZBbSH9nKGH0vKWnEwtBAkMIDckFVA\nxcjO1GxtkH3HxXJDNR6TtaIcwPVl5GoR+e57z5nNr1mtO1xUrIwlkDCi5uPHp3S953A45dovEWnE\nqNZb2KsQ2MKiRST4FnxCSYMWiUJKgtNk36JlwqgtrMtmwcpntNb0WVIXmqbt8TEzNgACFQKvMhhA\nSsnt45uEkMgiEfV2dy2LhEkZLzUqJ5Lbgs50ynQSRIAiKZoyMEBTID9FJChc7xAR+kHJYHXM0/CI\n5SpyOL3BZt6wXp3zvcUcl+F9K/EuIBYb3jv3lB1cTxq++/1v8eH5M25Qc9Ws+MnhELdc8vbNfb73\nk49R8ZKd0YB0mKlXCZsiRk1pFie0bY11jpl/SX/Vspqt+OjynN4H+qsWgyZrh0iGW8UO1/GSJoHx\nBoUmFoIgIin3GJ/xbjtyE7mjFYZsFDIKKmlZ54wKGmcjULLq5mitEAtPl85Rw51tppDsIUWQESkV\nmUzpNekVuycZIfEIVI5bsJza2qhjypicSCIiosLp7XVl8vb/JiNj+tSjJVCfBkwaFP3Ko4WFbIg+\nsrqesZA9hR4ga8PB4U0a5vg+cGcy5apZc/b0fbLTHH/xTX7hjYcIkUl4qqLh6OiIefOCi/ff42e/\n8jZiLzI9OGQzu2QkJbujipwks8WCUmoQFX5YkOpdhCzIIZBC4uWzF1xcfYDvI0U9YH+yy6Ht+d4H\nC452bpLaxNXFOfcePKB0LfPFFZPDY9qje0x2FP0jx/VyQxoMuP/m2yzPznj34/fIfk20GZUyiQ4r\nBf3KYqwjKEEvMkLHrV29y7hKkZOg9JqmbOi9YqA0TRdII4mfKnLvaRaZybRFhb8AhcxrNw8Y7N4g\nJEHfr2BR8eL0HFEJRmFK0pFORypfbDfMcyLFTJAJckJFhZUSRaJNnv3pFDWeENcJWxnee/KEp+sl\npu3okQi1JC8MooB6nFjlAqtGiL4iK4ceGsZG4UaegytF73tuzAtMueC5mDNUkTffeo2pOYJywO7e\nAZObgpwEwXrKwS55uULoBFmChOwjq9M1OmnKiUaP93jw+i/xdPaS49Ex4+xwvufW0ZA7yxVv/eu/\nhhhPeP/b3+bRTx7j2v8dvf4XSUZkCtFxOc98/PQJOoDLLTkVpHaN0QklJCkljEoQDUUKuMR2fp0S\nOWQWHdQDja4GjEY1lQVyzcP7tyA0/MmPnrN4seb1e3v8+sOH2KmiFoJPdCRGyXeePOIL997i4a7g\nxi3Pqt9l/uKEx+dX3L93k3ryadaSWG2dJcvMwUQRZebiXBLchqrSDGqBKuHFrOL7H3zCN999Tt8K\nbpaWsdUURExtaXLietEyKkuC0zyfXSBNxcX1NXcP7uNjxlrLqK5YlgqlYO0jxhiKKhFTQgaPdw6Z\nM22KiCSJsSclCYptCzdHrJIoFEkJJJlCbb0vr6rypxlXgrTlV4RMVgmZJFFJdMogBOlTlG5CYmIi\nIkkahkGjrSYIQwEgBSE5+hCYKkWIG86eBEJzweOrS3rX41OPFQarJMNkmMeOOZEsEoODimw0JsLl\nxwvOizMGUTCfX7BvC+bHUx59/GMejHaxsmWyvsKOKpQTqKJhqAZ01tBZyU63wwf9iudnL3n24pLY\nN0RtKGrB3vWQ5bDhqr9EdolSbWMDIomCDLlABctcGbSe4zZQEHANmDrSd4mNUgglCF4QewciYs0Q\nFz0JQS8zbbNgIApGxQFSRLL0lMESDVTjCUII8itkW9qtFKVocbkiZkXSEhsSUQgiCiEyXirIER16\nYq9Ae0IUSKkQRiC833b+UkYZQdu1xLChdLDJiXaxpiBhFISiYrBTctMc893wmNzAg+ENsBZ2Iv/W\nb/4qe7fu0C7nCDK1iLxz/5CPecCP//BbzJYNN+49YHhjyv3dfdrFNTsyMXMbJqVEk+msJJghqlSg\nJEIVyNSSLTw/cQzuv0XuFyxdiZaJG7deo104PnryCcXN1/jiG+/w8fX7XF/NuRqfYdMRzeUC7xr0\nbs3DO7fYuzGlXzznjfu7nH7s8dvVPVqR0TEgZabTBp01OQfKlaUTCalaYhpQu4q12jBoFL6MaAIk\nw3J+zf2dN+hMICZHCnvM2hef+Vw/V4XMoDD8xlfusF4LBD1lV3IlCggzhouaduyooqS0AS8UKiQ2\nTY9FUegt9CnITLIaoyu0llQHx3RJ0K2X6JXivU+eMNA1bmio+0hAkgcK0fbMXUEo5lxcnbNXlEyr\nwMpVjKZDpsWAcuyotOB4NEamSy56x46o+PhPP+CNnzXY3SnOXXJ+vaFvPcNhwfigRqwDA2mIwZNW\ngewSIQWq5BlWFk+gWa1pg6UynkoHaAuqESQCrW+5Lw45/sVf5K9+5csELfjRT37MJz98wvXF8pW6\nkfyLpE1J1yjee/KI7CUhboPDdmVJBCQJLSAEh1WSIEAqTU+g7CWujEQDOQSkNLy86rh/dcV4fIxK\nCzKZL33hAa/t3uG9D17w9tt3sKan6a8p6oKfu3+TsHnOug/87re+y/CvvcPdqUcX50zGI/74k+f8\nm/fvIOhBC8ieHCAS0HrIzZ12Cw7zFYejEtdkTheZ3/vxE9794CXHO/sMbhveOCw5OTulHo1ZdY5R\nD7lYsgmadrGk6Ru+8tou33n8MW88eA30NotHWw2mACRlobGiwyVofMQkaBGkIDBJ0otACKCEJGq2\nDBVA620KbQwRI4Fiyf+Bl/8KKuNcB3aAjhJU3i5cCdCfjg0UFkQg5wKdHUFsQx1JmVRIkhRYtcW+\nyywhQrPq2UWzij2xm9NsPOVwAEUgrBRGDukHDWe9JrhA3jj2TIktFVUe4EeRnRTIQdJ6TRU91bii\nnXvadWIxgGI9RxzdJwqP3ZkiBiMIIwbX15w/X/PdD59wdXHBxdk1wnW0LjMWIL1iVWloEkUqCUVE\nJE+zaHFdT+8DXSyw5RKdqq3N11iwE0SOBKnQfpsvpJWh1R7jJDFHOrmi1EP63KDYgkHjvOfMPGFn\nsENdS4IBTEelXj0g3k5Z45AEmVAhkXwm5YwQESsUPiu0EMQscVoSRWSVe+pP7e4+aRRy63Qik0uY\nKMH56pJyZ8h61fLJk2eEXjAY1MiB5c7uDcqDkr9xdIdvhx9w8uyKu7cP+aUv/xx3b7zOenmB8pm2\n71hcbTg9X/Hw/kMunz/j8uQFSSZ+4503uXAwODLsbFqsL1m9vERmwb4w/LAAU+5uL1JYRGHZe+dN\nstAMb9zi0DRc3r3Ng+kBzy8veO/7/wt2OubOmw/Zee2A18yGn3zyCGaW9fpDDlTFtVQc3LvFwfEx\nMTlGB3c4uGg4NZcoX5FoqXxkXQh09NsssAiN8AQhCEVCdomByCxUR04tQSuMT2yUxqpIdo6L63MO\ndo/wA8tZv+LJyWd3Un6uCplbtxWBU9bzCpE9flRSRYUvDSFbZE6sJaiNQYtIL6EwAjmoqKVhHTrG\nyVCNB9scmrpC6AF1kWip+dE/+y7KZ0LeAS5YFQLpJNY5OIbypGQjDd265UL1FFFxGMd0WnDL7ODL\nNW4ncWe34vRduB00+WqFbNd88p0P2Ct20fqKaagwOxP6FDh99zkHox36UrK6uMSWlib0lNWIi82K\ncVqT1h0fd57TDaSuwlZboFfXrplEWM42rMpTpJTEDCMUR2bKa79QcDprebaIXLx4TrNY/bSP8M+l\nGAInlzPaDgal5aJtGUhNnzxSSVIG4TMiAyqTI4iUKKVEakjRUNFhck/yjoTgh+8942q5AhLjQlOb\nIRrPw1sF1y+eIvKK0cDSDYfkxYpb05KzpuO67fn+yTkHB0ccHGqSSliZqY7MNllaQJZya+/tGvRA\nIfSUuzLRd4Gr+YrnbeAP3j1ltjZ84xffQjs4O/8Q50bs33oN13ZMtWadNxxNb7HpPf35CuszS6sR\nvaJpG6xVCDRlUVAYy2axwQ4tZTXEdI6mDZAFA625Eh0bFxgWikZEOpkwXiLN1r2ThUfJTN9LGpUZ\nJMvx/pBHz17NbLCcYdM4DkcVnRSomLchnmT+N+re5Mmy7L7v+5zpjm/OsbKqsoauqp4bjYGESACc\nRJqSLVlSeGkvvHeEw3+M15bDoZXDlheSaTksUiQkigQgEmM3gB6qu8bMrBzefKczeXEL9KgIA150\n92+XLzf58tx33vec7+QFSNHbU1XQQG+7TmKkk4EoJCqCQgK920kKgRdQdTWd60jTIXk2wRRbCqWY\nt/0tjylgPJxyOl/gmw6d5SQjQW5SZBopoukLCNPAZKSZqDEr7bmoK4qioNpskdojtSBRJaq8CcUB\neIm43DI/e0azuGRzccp605AJgywFBYaNc2gCe6MRXbRcngkW8YrVMhA7gc0dSVBUbY5YwmNTkYgF\nB3pI2M1IW80mqVFR44QjxEBUCu8jshb4vEbEDOmWtLpFak3iU1bLCzqmTEpN6ob4RKKUwn2BdDJF\nPqWRAhlV/yzQ9tQjgughKtU73oLBxUhCIBE5LgSkEtjY9c32SpNITWoEN/b3WYU5urtJSkOqHXmm\n2c1GrAOcnT3lKL+D9HBn9oA9E/jKV19hYS0PH/0MLSJtteTs0adsVi8Y6RQnc978+u/Rnqz4/vs/\n5Hnr2DnYIas1ibggt5HZvQMW8y1JJbmjBLGroBjRWxA6EnGN5WKLNqek3/wqb7x9j+ve8b99+9uU\n4xnFeMC9V26hU8H1W8d8o36Hnz18xtOffUI1EezdOOL33v0ynS4onWEVKpweUvtAYVo2qUO1Ht0Z\nolMkosMjUTJiFWAFVkTatsLGQNZq6iIysAIRI510lChi1XKlL9nNR8RVxfzFL78XfW6AjFKCb925\nTedbtoVhjx3GJFyZhtz2eRylkWglcdphPaQqw2QZWUhpXI10kZgpGmURUYBQYAKVsjTzlpWzkCRs\nMUw3O5j0EpcLso3l4kWOFDmoEWVecSkrzq1mT3tGUrPlKZlICFcdT3LPEE+6gquHj7n99quoccrj\n73+HndkERKR9njE82qHQJfX5IzrvWb2ALo4YDhM4lBxcP6RaP2FTtcSQUAwHrGROZj1BRpzUaNGB\nW2NXOY3YMEhy4u4+Ielwm8hwMuBbd2Yk3/oKJ+dzXpzP+fjnP2d5Pv/C3dSczbeMJ2OmgwwkjEcT\nlvMlpqkZlDlllKxlIBXgrCKYjo5AGpPeeisCoY00QXGxbbhxOCM6x+XzKyaDIcnBAaenF3z5+CYi\nXfHhixW3ZruotOJiPWcy0Lw9G/GlLOXJPGF/VDAoStYLh7GOvZ0dpE77BuzoEDESlSOua1SRIXWg\nrTOKosBtGxKliLHjH37jXcZxyZ99/6dMr+1zOLnOZdXw6JOHzFcrWpdytC+5cXCNh5uWQYCCBj/c\n42obuTmJ+OggRAieEALCtlTCsO0cQkHQkoHWTCdjFqsVzimEhFxpmuBIY0RGiwvgnEcHj4wpLhaU\n+QD4YgIZgLqt6eLspbVaIH3Aa4GMffJseNmqJGJ4ucX3l1DRR6KCKAVCxF4jIy0mpHR1Az6QJgVJ\nqcg2gca1uI0jKIcpwDeBre0oM8FEKxSa4PosGxkiwkSMHpCh2EqPjgbjW4bFEBsEwq9wTY0cjMEc\nIvQB6JLk+jNmP5zykYJV5/HRs/A1hU2o8sB+mVCTs9lsOV2d8mIVGMqaYpzQ2ozQCnwK0SQUqqAN\nEVWtOPM101WKG0ZEK5E+EmVEkxK6lg7bZ+u0KSQShyJtFdFENqIm8RK/dVR+Q5fUaF+itf5CAZnd\nkSHG0N/eiYCLEhc1Mga8SlAu4BOBCAoVBCEGAg6rJcFblBckSPRwSFIYTAg83zTcmOwQQ0e7WGNy\nzWgumG+XKJPy6Kc/Y315SdN5TBdI1JC//tkCJwQfParJs5SJciRbwf2bO7RxiB4fcfr0A2ZC8Nbt\nG6w2K44Pb9AIT5oOKDKPykak+Qj7fMmtvMS7NbBHn7SsKMcGuXfEdJJz9Ppt0nLIyU//irpx3Hvj\nVfbzkm5+ytNFwng25vbRffb2X+GvSDi8cY3rx7fRQ2hWG6rBkME4Y1IIhINGa5I29CGTQDPYoDuN\nRqKUJIZI2WjO044KjwweoTwigNUOGUtkaNkoy8BbbFVz0Vdu43+F/q7PDZCZ7My4yPYp9IZpA00p\n6IRExyEhbVDCoWQGMRLllkhOUY5oQsvGbtARZCKI3sE6YmQgSoNKU9y25eNnH9NWmrlKyFzGerBC\nbDum+Zjh9Zs03SFnzSOm8SbOf8zdrOBKtaxkzfB0RhnHdInFVwX+mWOdQ5cZ3nr9bfJrM9quxpQO\nf7nErQShOyf+5IS5g2Eq+OjDE+78nb/PJjVUScZysyGVHbsqI+Rr9saC5bZmVUnaNCMxC5rW4ZRj\npi22PkPqnNpvyMINhsMpF4szxCShbiJdvaIgcP/mdX7/196B6Yz/+dt/ypPvf8x6fkXwn//NpvUO\niGghQEl2RoF6GxmUGhU1W20xVhCVIHEW5/u0zA6PlJGyhUsUxWiM9JFJprG2Q2vDvXeuY6RiGQzL\n5hKRKu7dvs2qOuVwZ8L98gZzFznOPYPBhLcezJDdJYMc5t6QFSXBnSGyrM+8lwZiCzESZIdJShCS\nVEX2RkNkEBz4Ld98bcp0sOTR84qtC3zzza+zP8v4F3/85xzt3UBmLZdXl5wutwh5zt5wwNPNgg4F\n3rGqK7TcIYRIxCME/elQFKy3DdGH3jGlSqK2FBpSMeZys6Cz4DwYrXA+EGNH2wUSGVBZhwiSRibI\n+EWW+0JbtagYcUKgQqTTPa0UXgKUl3G/L+GMQ3pJVLEXUQMIhRMeEwXaamyp8F3EbR0mS5A6Q8sh\n6+YCS40wUPopT84/QScNJi/pMkkRCrS2SCkRuq8w0CrglGQiB2xCgFgTXYPwOVWwONcQVXh5yzft\nM03kEGEcPq5RQlN2DqsLTAkKRRsUl80p87MlYyXQR4fMvUdfKp5cNlRbgRYG0ghli21aVp1BGIU2\nnnHnMEERpOidW1rQJCBriRUOgccEjTO9BsKgKEOKbVvarKaIKc55JB1Kq8928X/JORAJgYZWSJCO\nLiiSGBEyIoJDKYEPESUCkogNgjRGBklCW9UEAU5APkgwyuBiQ5bkHOsdQp5ydbmiWzeENpINoNjR\n7O0dQF1ztm0ZjWfsjQ5YWUtplkzLksm+ZKIyuheegRV0iWJ5PifvPGIyprg25ujWDRCQ5pLM9k41\nQcBkkbQUGBMoAvQVsDkCjRnsc/3+K+xNEo52pzyZb/ne+ycc33sFGwRnF+fsTEa0ruPZ4hJTFJgi\nI9vdIR2NcDhkBSYfMtSGxEa+9+IDBioinCVEz7pISJqGWOVgHJ4OZSW1ENjUIhpNASwySLxibD1V\nojCqo9ha1oOEjg7hDdptebFtf+kMGfgcAZlvvHmdPV9wLltiuiZtJVpt+0wMMkyE2m0w0hFdKYib\nzwAAIABJREFUQgyR0G6ISDSWrCyZjnsLmwuWzXqFEgaZOKqTS6qzK3JlaXTO7TfvcPU4sKi2bKxE\nTP+AweI5dTHly1/7Gg8//hH6xXe4n3oqfU6zXmEcGIYYmzFKYKRrPJ6NrxnnmmI6owl7nE48Rmfw\n/IzNtiU3GavVmg+yC7bNCYtNwaOHH3O1PEdZS1lmpNpzpxgy3t3HlylHgy0iyVAuowuS3A3ZhiXU\nNWJQYNfnjIsdVsNz0jpFTBSV8wzKAuUDrYzMBil//+u/zfu719A3Mx4//oAP/+VP6BpHtfl8gpqz\nsyvefe0WZ8sNe+MxpdacJ3NyLWhjJHlZGOyR1MIjoiZVAWUFXdBUShCt58GNMZ2PHM6mDLMDYrek\nOX+GIudmYkiA86sFX3ut5Fo+Y5aXpFnHbmbQueai1WS5Y3DwCsunK/JU41KBGo4okhRkC7qB6KFL\nSEgRpgU0ZlyQFpaJuomuzzh2gYsnH3F11fK3v/kN3v3ya5wvzzk4ukuzOGf3+AHt6pRPHp9zsVwz\nmU7JygbvI7PdiAoO6xwmKXChYXe8w8V8hfeBxWpN6ARZEmjblkRKCgMhseRK46LF2YCUfYmk0BKw\n1D6ijWSAQskOJexnu/D/P2dnZ0RUAuHBSjAWrAJDIEaDxKMDeAIhKqLsLdqegAwQnMXIBCXB64ih\nQ4pIVwSyJiBTD21F11miMAzcjI8vnuAbQTIcUnSRSx3IqhVegdGGgXa0eUGaDxjnOdp7vG3RoSA1\nJXNfE1tLamp8aNFyg6BBiBTUlLq07LQJZ7Fkm66olSCRhl1t2NRbLhdrMrNLcifn/Z9Yzp5dctGs\nCUIwHguizYlS8urbv8nl1TkXz664qq9oakiyDCUiqTA0oUU6jwmSgEEEj5MeHSSKAcpHZGhwMuK1\nwHSBRjUk0tB1AfsFSyXPo6OKHhU9zkd07OGs6gJWCxAaE3qqKZheEF/FlpFNemrJO5K8JFUZPjpc\nJzjIxjyTaw5tSiJylBeURU4xkTx49w7XyiO6reb4YIFIE6Z7h5w8vWScllD2In+pNHvTS65Wc773\ngxP2XrnJgzduc/vuAcoHdvPrRNdS+g1CNvSuEYn1AfKURDeIYPvX6emxernhta+9iXz0CLY19vQZ\n5W7J73/jP+RP//zP+avHH/Lo8cccTW6zc/Mm2/OaublkIA3Pnz3k0088qhAkQSHRID3Lk2fINFA7\nTVIryk2glTky2yK7EhEjWRRY3dEGTxYjLRqCJJcSqR1DZ3E+pZEJicwI0fcHCr+hqn41FuFzAWT2\nDgaYXDEvXjCwA0yr2KoNCYbWZ3iTkrqWxAvqKCkEyDKyaTYkOsNJg7eRzfoSrQ06zbg+HnHu1iwe\nf8CnH3xM20ZcrsgsvHX9CHn7Nn/xl98hLitOfvYvGWRj/tP/6r/gW2+/yre/f5Pv/dGS490l6Gts\nnp6glglT2xGvpZhCkFYR30aaqia/sYeZpqwvGjbnNc9OXjDKc4ok4TuPn3AxX2Gj52d/8WNW1QLj\nWgpZcNWtmJ9HRjHhB4OnTE9O2T24QbtbMBhkPD6/JETBIjoIrs8KcYoiz3l+sWY0TNlua/amBzx+\nscCua2JR8OzkgpgmVA6mowHVacevT+7z9/5Lxz/+bz/i083ms17y//eJgiwp2S88ra1QekDnEtrQ\nX1WKIKm1IPN9hLwIHhsSusSROPGywkCwM9vh+t4hJ88/oW6umIw1Va1YtiveOj7kyjZ86eA2b88y\nJvmWk1YivKdD01jDbHcPOd5BbJeU4xmxmrM4OeX4eEKaib7or9N9Q3dsEJmFaPpvT+FIXIJLJNV6\nyp/94N+Cr3jzwVv82lt3UcM90iRHmIc8P5tzaMbYmGESwU5Zsr8/Jaqcev6CgVdQpkQnCLrXtmAi\nLkAwCUWWsPYtRWIQMiBUghWOYFOaUONsJEaJ871zJ0NRJJrQabrWg9Eo7bh+c8B7n0q6XyG/4bMe\nIQTFYIT0L8shIzgt0DESUQjRh+M5LQihp5d+sVVKJRExYr1DxYQQI8YJvNW4RCK6gAuRVGpqF8FL\nRiLhtHuOdIJJ1FytN1gHwwWsUoERYI2mIiWra3xa09gR5WiIwjEcSDyOSaoJmSbNNMyfIq6/CqkF\nFFpllDePCD96n+JoiDrbUqHJXUe1XvKkWXMQPNuDjPceaYZJzflwh1dyjd854sZU8cEPHzIaG+7f\nPeLgAB4NAsVzyXq5QbYCaTxOOFSQOBFQUfY/awOdwpoGHQ1WOgQpEUuGwItAcB1BJUjRYbv2s1z+\nX2oEsDaKVgqM77+YVVS46HFKIWNfddIJSSTiokJ7T+gEjazxIVKE/ubPGIPzgUGa8OmTx1yThyzc\nimuHM+q7Bzy5fMatm/sMa8m2eY4ZlNSbUxI34UK1aN1iL9e4NVSJYb1dc1i0/OyR5M6DY37vjS8z\nvLVDVgiGOsE3c/yqQ4WGKD1Ra0TQZGFLKCUmdlj1giTe698ogsHubbaLU8bXhtgkRU93+dtvfxlB\nyu03b3JtNGaxPOXpi6csLx6y2igGoynEmsIHUB7lOuyqxpOiQ0CJpN+boyMqSBxEHFQJToAzDucy\nTJuwFpYqb0grydHKUk8EVVToqAgq4EVk1FWIMsfGlo6C2v1qlSmfCyDz6199gFsZTNBQwiqXZE1J\nG1sQPS+5TSDrNBJJC2ROg9AgMkxZUuQpXdVibaCtOzZ5iUo9+uICKZdMQoZXEldlfPidPyabHXG0\ncw25J/jS1/f5W9/8Jsevv0PTrLhxdJOPb3+Jx4//e+4cHpAmhmkiKXPFQT7mSlmQWxKpmby+S/HW\nrxOlYac85+z8faqnL3g8P2M4HqFf1KiTJV46WlMxVZFKpVQ4QpmgOssT7Sgbw2a74tHFB3w8TLm1\nN6Rb1aQu0sYI5Chjsc7jnKIxBXG7gxFb1vWcYe6IdUO3rokqZziaEdqUqupYbVe4KnD1eJ/Hj374\nWS/3v3eEjOSJpzYpobZYHwix7zgxqSM4SIQi0Be62ajweKSXSGXxRIiBevmCrbE8OCzZmd1mnGqe\nbz2r9ZJXDo+46V9wvBcx4zmtHrGfQx4yPjnvhY0Pph3YK5zdUq3PKe/OaBcZe5MdpNS8DKwBMvAr\neqGF791FnUBKTWUL/tmf/yvO5y2/9aVXeO3+ET7VhOaCNBvxza+8xk9++ogXFxfUdYOrBVmm2S8M\ng1HJ++cfc1kZdldz4u6AEAZkCjabLd4H0lQzyPqPr+xd/cQQKQS86Gps91InZiJjo6iDw4WIUhKf\nRegiEYfqDMP8ACUfA188S3+MkaZpCJkBKeBlHF6f9gEi9uFl0gt4mezbt2KL/4Naco7oPTFASAIi\nerQB6RXolMyUuGhQneS532JaSQg5JyNLLkeUeQaqIvEJJSlKCwrlicr0+T/e021riknKeDRiOhgi\n3CVpMcRkA5rNnKy9ghQQDiHHHB68wZPrP+DumWOV3mNcZJxtG97/5OeMioxprXh46Tg8eoWv3Tvi\nv/nH/x1BRmR9wflygTee2196g9l+S3KeMh8d0qwlrRNY1+IKj6kNSkgcFpQi2kjwEYVEWEFIQFqN\nTx2yUTjRErzECk8aLIkuvlD2ayEEUULZChr5klpUgUBE+EhU/XuJBJCWGHvTRWIFVka0kvgYSFVO\n3dneNSstepTzzisPqNwSt3hKudvwrTv3iHmLkS3tpePq0xdI62jXFWKZYIPFxS1ik+GTkmUy4v7B\ndf7z33iXdKgYeRBjEMLjhUSjMKaGWCOqALmENKC0Qdm212W1GYgCUIAHGVnrwNe/9DV+/P3v8aXf\n/V0KYblaaJSLHN2+xXG5S/7jgiyXfPLTZzx7/pydvQGzvCBvLUiDeHvK2cMz6nnF/s6E522N20ii\nstS6Jut6cFKlAawmcwHTBrQ1XOQWrRzbQcQHyJ0jl4Jl7EteoxnRAamTDJSjcr8aMP7Mgcz+bIJO\napqio/WasC5J0oBNJF4OUdtIyByZ7UWWWkRip9BpQhRZj5pjSifGpAeGN27fZjisyWVJ4s9pr17w\nTpwzbhPae1OqOqO7qnh0+RQrnlAP91jaDT/4kxYVK4bliGLjuFEZLt7PcJ+ueP3OV7lxq4DOcGgU\nk80WVXtiLpnt3EBkCYiM2CXspCWH+SHWPmN58oguShAFecxIkxrfQSY6RkazjXDZKqoqEk1FSD2q\nMayqBT9+1uCiR5tI1whSKRB+BF1L2zmyVLHsMpJYYxdrjFZM84KVXTPSmmQ4RptAchYYK0MSAn/5\nvY8J/nO86URIUxBGQgeZimRJIFMR3SrqJGJ8RCBwXoKJqNCHxUkniUoihOPBtQPu39olB9J0TRAr\nro1T0iIjyWtulIEs87SVJBUQspYzK7h5vE+ep8jE0HWeqwvHcCfBPq/44Ucr/uA/eb0HLMGA2ICp\nISb9p0jK3nGCICY1Hz3dsrd3g6+8kzFJA5+eXXEgJuzuDokmcrR/zD/8w2/xR3/2bxCxZbhT8sr1\nA6ZTTbXaEhrBR48WDETOzTt38d4iyDi9nFMkmsQ3DFJBmeRsu45MShZt4PmqQYZIDBItADQtnlR5\nfJD4qMiCoEkjgd654b7Q9uu+oiAyRoqACL8gjTRRBmKUGB9xKqJC70yySiA9IH5BN8W+Z8n32pAY\nI1JluKrGjFO8jbSxpWscPkKmUkSRMyxn+NNLnqwlIcDNoWB6Y0BlA6u24b7JiUVJoytKKTjOZ9y8\ntkOWZ7SLivFsjNZjLucPGW83iOEcxBGIPlvqwRvf5Mnyu+QHA3bMpF/DVc2i8vy4WjFKLvmPb42p\nbr7Cb3/57/Djn3+XzVVEpwW/9vYbvHv7HnXb4lyBxqMHkvG6ZI3HuwJEIIgITiITCUKTdNDkjsxq\nvI84EdG1xum++M8I0D2rQZChdxN+QULxJECMtNIQXh56hBUQe1CrQyAI1YvqY8AoiwoKKQUySkIU\ntGgsnp2uv5hN84zf/uqvgW7QvmZiFhSjDhWeY8SAqqmofSD6ls55MpXjo2XrHUuTc+3uMV++9zZ7\n0wOKLEdsPfEychkWiEvH4dEEMagRyiISDZUGY8B3BC9wssNYyWI4Y5TN+h6oX0B0GZjdvsVqtWRj\nI2nQtFlJmm0QCDZ2RVg+Y29cUO4IBgd3OHqe88n7JyxenDMYjthc1siLwNBIju6+hoqK1nao5JK8\nUizXjg6BCI7dbcmV7NiODEqtiashYyuRxrNRCbOVZz5SvZjaRoTXqFQjRCRq6EJC1fxqVOVnDmTu\n3r6NqDRp1XHmAnLQ4EXGoJN0wiOLAK0jpI4kpqgoaXXvVNkKcM6w7iS6FAjnkUlgWm45/7ffZ397\nQnG5ZtQMkEnC9r1L5MRjpynvTF5HZWM2RE5P5jRX53z/n/xPlFbim4YhQ8ZySHMWmLw94+6X71Of\ntxRXFcVqS4UjTlMGxzMgIbqK+clj/tW3/xmnD39ObSUqi1jn6GYFAztkrhxjaaiUxcmMOjR0ZYtp\nFN5oOpmSSIHyiroNjH2kaUOvqJeSRDiciEgcdgvjRFKHkqTrkMmGrEiYX0RG12ds2o7mcklcLxDV\nBaFJefTTz3eHUwAaKUikAKVQwiGFJJq+HycNlhgVXgZEfBkjT9+JUosIXjMbj9iZ5rR2zYcnW+7s\nFOzvHzLJFcPKMxGeneEu3ls2QeP9Jed1yt3bx2TH+wjXn9xNJSjzJWlyTOue8JvffJNsPIYugux6\nKikWQA1W98F4RoDoECEnmXSMRinj3QlXrmFx6vh3D3/I9d1HTA+HtK1FOMHf+63fYX52gikUZZoS\njSedXxJv3uYbUvOjkzNeuVpy49qITdvhqg4ZPM4NaGpLrjyJkCRGcS1LmEvB5XyOkqCFRwpQQdN4\ngcSzriy5FqTS4JVERIUUdW8j/4LOtmnQBIITL7+cFUK8pJD+RuQbkFHgZd/HBCB8QBJAaJy3dNZg\njMcIQaIkjW1JXcS2FaIN2ODI9JRGBXwTuDg7o7Vz8qwiTzI2wvHr3/qPkIXh4uHHvP/zf8doGdkZ\n5uTTkmK/ZH9/F11MuWoaptdyVJKSxD185RDhHCFvIpAgx8xeuYdfPuOTZycQYZYVqPsP+PbDH3B8\nmfGDRc1lnsPV+9x5Z8ytu7/DyluU1qA7OnGK2YxZtMu+Q0dpbGnRtcE4R6v6AFH5UrCrTP/ZSoTB\nGY8KCiUj0seXJeICoSJaJ0gVISiM0jj7+dTc/d8nNwkKT/B9yrOMEPryGKKM/c2MiCD7ZvTURVoT\nGeUFtXDgBA2SumrJShhmOdFuYSBJQsFAX7J+ccXOaEB19ZRhMiOJkp09w72dEfN6w7AcYa0i6pTr\nN24zmh2g0gy5UHRugdpaNlcXnF4943B2BNeHyOD7bCQZXh6kOiINIpGY0DdQN2HGcLADeH5xIyOU\n4eZ0n3V1wYQtlxcnDHf2EEZgRkP8esmtnUOaskNrQek9B3ceMElmXFzO+fjpJ9Rui/SOg4MJF8sL\nkiB4/dWvsFnP+ein75GuKxLnWUmDSizaWdxWsZKKHd2xzBSy2OC3knrUkoWMcpOwpqVTKcYLUI5K\navab8CvVE8BnDGSEgONx4HLY4baRrMwwQpE0Fm8UIfGkVmF1f00VhQOTIKJlUS+ISUqapn3XhIwk\nBjQNxdUj7qRnDC7nmIM9iuF11PqMJ9s1ZhM4b2uWZ4/xuSONlrsqofAlsjZIRgzKMdtxyfn+V1h/\ncoktRjg5IMsbpDsFc0aqHcnB68gyAQwidtSrC/TzE2RdMzUdSyTaT9CtZqMbylAQVMugydjoLaaL\nuJiQGVBKcX13SMeW1bKkW3RY1yKSiKokIbXUXhEIxCCR2rOfGCoCTmZ465gvtyQh0FUd8uIZV5+e\nsl6ccXPzCYsXGV33+aYOYozQSGq/xURNZwN1Kxm2fR4Bv+BWnUQp0AiciIigSJXCDA2p0Qgvebra\n8MbtfV7dLbhyLb5uuDZSzIoCrzKiiNTSspFj9m7fIBsWSKch08QuwZZb1jJn8ewJy8vAq78xQtgc\naMAboIYYoDKgXC/O6GQPZhC8eSvn5Jnl6elTBsMZb92eMFElV1bTBMmHL9Y8n1+wd3hJCJ7nj5aI\nCM4pfv7pKTIZ83HT0kTNunJE61BJzt7uELqWPAqs0jTrmtoL2kwwLA1JOWLY1JytG6Iw5CYleI8y\nCToGRspQW4u39NUGwlOqhPs3DvjRh08/4yfglx8pJddmM2KI+L4EHEVEhEhQAkEkCkEUgiD6nilE\nJIb+tkH4iKM/rWtp8ESSKAhS4JqA77ZsWosWNT5JUTIwGo549vgZ0dXcUDnV6JD7I0GRlxzeGjO+\ncY9XbrzKYDrmr/70T9meLZjWNW8ezcizAeWwoFYpeZFglCKJKdG3EF8+U0IhkMjMsLeXE7sbnFdL\njnaHJCLyt3iLj8qn5I9v8fi975MMB4z2jlmu5tR2gQ2emEkSOSCzS9ahxklDkqRkRYOTCbbzJDZH\nGocXEW0VUQeUVbQCTAArBDF6nI7IoHAq9BRM1MioUAGk+uK4lnaSDKcCMYq+JFIqfJAkeFzQL8MT\nBVJIZIx4BUFCa7egMoKStFGivUavHOQaJwUKQ5pGyiDxgxFVXTPbfZ1KwzDJGGQpi8ZzazSl3B2S\nioIkyRHlAG0U1BvatkEvN6zXHVfNnDd+66vkKoci7SN0g+mBuZGIbQt4iJLoCzYiJ5/uvcxKMv3v\n0IDl/lvv8qM/+ae8+sobXL2YM712hySTvP3W69jFJX/8z/9H9mclu9Md5FCSJAVHtwckU8FgIFgd\nB3bGQ9IyI3pN6zd8+MklJ08+QDqLlB4jKxo5QciEoXVkdYI2EWEDwzZHNjWBwDrJ2AmORkWwAaEU\nnSiIYknRGbZFjY2/Gij+TIHM6189pB4FsqsJMp8TpcKWkcQpuhiYrj2XWcN4m6CSSJcLEi9IRIVv\nU9LgyGJKLTT1VSS0nstuzqvtgGvX7uJjxiAbIRKBPrzLg3ZE/fx9Bj/VfNQJquCZVSsQBdKv8UXG\nXt5xcpkxt4rFZEhy7x4PtzWTxQl3Fg8RYYUYFMjzBeIgheHwbzbGDz96QXF0A2EjTp9gRYJLNuRi\ngDZDtotTts2Erl3TsIUMsCnDAaQ7E0KzxijBzu4AWzvWnQMf8UkkOEUqBd6nOGeZaM3TFxeoxJOF\nDqdqQpUTs96lkumcw/1dbuYphwPLf/1Pf/RZLvX/pwkBllVD8BGRSjaNw/qOzsMwEWxcRhkroJeo\nGCJB9hKVmZa4rsUZwWxnzFcPjshLxWH+gnRtMRuYThQ+jUjtwIx57UaK1MN+c8gV+AxaAaKhuaq5\nOG95/N6H/P5/9o8wWQZh3bfMxaT/A6KBHGhE/1riiY1GJIG8FPzd37zFp4/XzFcXPH66Ybw34SCr\nkWVOIhWJHpHnhsOdEe+1c3QHcTgEccTTkzMuXUAp+OT5Gbd3JDqH2wcDHl5autgxy3d5Ep5jFx7v\nFM4LookoBT44BqnGiI46NZRuS40iOoEOCustPrTkStBGS+s+3yD33zcxRkyeYWOfD5NEBbGvK4gI\nZBRoIrKNdCngJMoHvAgvMy0iqooo02uvdOzLBINtcCrSbmqWzYpkG8lGkigN14/vcP7kOT62PK0D\n98SSF8+2fPVbv8n+zk26LiPVliJPeO3+O5w8fc7BJOXJozNef+MNRFGQDANGCWRmGeznSDMANeAl\nAQIIEEMYjdjRF6weCrK9fW7tHzE6OOPwLOXqxj02bonYLvHtlr2bnk1tqNZ9ZcW6Paf2jlGa0coc\n66FLE/b8jJXacLmt+pDJGLCZQwZFLPogSR/6YlFl+3RxlEQEQR16fUznO7ZGvHTCfTFmz2QUzrOW\nBhcMKgaIESE1QgLhZZVFjCgpiAJM6/6mOR2ZEWRANIraVBzku8yXNc8+/ph33riPMTnD3V3ifEs5\nShnIAqcFOYbdWyPSWBDbBDlVCJnCEugqsIJgPE4M2Z3C7OgBeTZDhAC+gdb1fF4lYetBK4TKQDlE\nl3AxmnH3+AGyGNE/Pz09I4QkLa8RmfL40+e8dnCDQa5Rg5IilsTZmN/9B7/Pv/nn/wu5W7N+lnHj\ntZsUyYCuWbFtG+pOcLpYMS07ZuOEgZgx3rnOzevX+PF3f8x7FxeENmJyCK6lMoEuU9hgmGcNB+uW\nVggS4RluCuZFrxtTNuDTiBaut4oLi3UGZ3+1KIjPDMgIIbg12CfZwLlpSdSQQSEQViKDZpM5UhEZ\n1lAlHUoEdrqMOnSEmGFkgxMFqe7IM0UcCV5/5Qbfup0yMSPKM4surrPeXDI+ugezKSzmjBLL67OK\n+41BTW9iu4QXmxShXqD2DO1C8VuHu4Q714itJ8qM6uwC9+i7eHuF2L+OWDvU/pSQDxHLBrFTI3Rk\nd2eXs8ePUGPF3mqGtg2VD5yrCyr/gnYNnbjgNAiKShGWkWAqJtFjVh2iVIgQEeEK4SJFAtumjxJH\nOaLrVfVGD/EyoOOWu3du8+jTx7TWk9gU12Rsii3JoCMfaFw24J/8ScOnj6vPaql/iYk0vmWoC4IB\nv63QWlK73nqtsy3BSppckDhJpUR/ChKSTgSsTri9M+PmfsGwFAyHAsMNjkYNftawTgylHJJkETmc\nQeIRQQGhdyHpDlQBWaA+r/hf/4d/zbvf/DpZWSJiC34MoupvYKKF2IEyMBgQW4eIEpHV4HKECqjx\nkOMHhtvdhJg1/MVfPuPL1zO69YjJxDAzC+K2oi0kb907or18yvFOw9IccHKR8fwKnpxfso2eThSc\nzmuOi4xCp2hSrGg5mE55Ur2gbiwucyTRcGEtRmlkIulcn2TrOkPleluxUJogAk41LKMjER1CfzEt\n2JHItmlIygzpJAFHFBEZ+nqGKDydVhgJwvd0QW1AdQIPfS6RSZHGo/SAICNCGqSNJJkAKZi5gqss\nYaZ7p9pkoDg+vsWnT2pe3X/AuXvOu6/d43f/g79L07Vo/4Kf/PivePSjhxzvDxi/dpP18pL7145x\noxGdGJInHm0E0GKkJFgH/pCXwqYex8gStfcqsoa9S8P24pT89n32Z3fYLQ+wR89pliUbewhCYgcZ\n29WcxfmKp6cnTH3NT05qplj29zwDmWKGOYlO+dnFkpOP5zxfLbiaD8gZoEyHagJBGoTwdEriAuig\nEEFjZUMZM2xwFHrA1BnGQvM59UD+P+aqbXHS4aTFOIn/xWVSDCBBR0EIPX0WA/2zIASV7xCdQ4qM\nLM2wyrKxlpVds1fs8PEnT3jztVuYrCAb7FNOLPPTOSoTzJI99NiRyQI5zWCdQhL60tm0I64FlJps\nMANliJnpKwZ0BKmIrUGUOfgapCAWCjYaYiA2GZvCUGYaBiWEqjci/AIMC48QHV/5g9/j0b/4I/71\nH/85v3m4x/StB8isACK7t9/m639oefHTv2b1YsPFp0+5de8+s0GG0Psk85r9fNg3qbeBpXF07pJC\nSXQdmCjBMlc431DayCpRrHHsVBaXKOrMsDSBTFmur1qSLrJVBtkp5Fahh45NYkldgrSR4L5gGpnd\na1OsTLmMkMoEhcXWCrRA6Y7SKgKRNpEYlRCBtW+pk8DISZQvyAcpOhmQzqa8fvcav/8bO4yHClEp\nCBVCCsZ2F0QO5QRtFOFyi96/h+62oFNMPuH4KiXqgseVwLNmGyITX9PFLebyCZk/Re46MHugAuBR\nmSbGFmE0+EBcLJkWA3642jBKdrGjS5bbNctWsFgpdBOQXrHeHbBXa7pJh7Kepg1cbWsSdUYeBgjv\nCKJlsRkiRYFOIkJ5QpNQZR0qarRydB68rfngw09I8IQKXOmJcsTWF1Tzq75V23X85K9/8lkt8y81\nMULA90JcBSvbMlAG8zLyWrocaRq0E+RBsFWRTsZ+XTXo1jLKNIcDRZY7EqlJzBa0QspddrKk55kz\ngYgSWgl5Am0DxgH9rYpbFjz54VMmrxzwpa+9S+wsQhQgt72QJ0ag6F0yzRJCv2H0sbnba9W5AAAg\nAElEQVQRsr5FWfiAEZpqs+LubMS1P7zG4uqcDz5dcPLBY0ZJycxbdHNBulvyYi441YKD3YbZccmN\n3YSDaSRNBmRDy/ZJ5PuPz2i7huPdEp0akkz34tFg6XzE1pG68xgNrgMVPWhJowMFEttZvGgovMbZ\n3lkTbILji0MR/F8mQrNpEHmKpA8xC1IjYt8tFQDl+zOqEIFGR5QXL0tGI1EACWQxR0uHlpHWb2ht\nRuIM2nZs8cRsTBSRmEh2hGDnG+/yYP4AWyfsXP8dZuPAez97D767RccFO3nBr702xQjJBycn3BtP\nePvV+4id69jFe+hZTdSS2DhEOUCWQ8D9n7RKAoSE5BhhJoxf/4Du06dgazC7qOsa2YxQuyfo5ytU\nSKmLAWNzwN50Tb53hNheoYolNyYBeZBi2yX1PLBoV7xxoLiu9vjBj56h8xqTJ6xJkEGiEk8TInIj\n0brrKV1vSYTBGkcaNSIEql2IOyUs5p/V6v9S86Rd0YZrOAkGgQ6RIAQxBEQQOAkqBLyQECIy9iWM\nSXz5/6DGyAyvOlQQXC7mXNu/xtXFJaZThLEm6SRt7SnLISEHYxT/O3Xv0WRplt73/Y573fU3bWVW\nZXWZNtVmusdwHAgwAEIiCVFUUAuEQt9E30Mb7aiQIsSNKCCgCICkgBCMMINBo2d62neXr8yqtPfm\nta85Tos3gVBwJfaQ3ehnkxG5yLwRz7nnPOZvMtNBFFdCmr1ISweTUKSILIBKQWaQBITO2/tFtThB\nUWswDdQKnMVNV2gtcHGI6ymCgs1MQN0QzQySAoGGv/O0FyjVo1FDHjQ1r1/M6a8qVJJADOjMcP3u\nW2x1RyzPnnH8fMrR6TH9NOV6fgPb90wvJxS9nNGwpqqGRON4snrK9q1Njp/0yaaeRkoaAcIrOlGA\nFsyM5HrpGHlPleZc5jVlNNQajJEE3WAxeN9+4oW60sX5EvG1FTKja5v00wGumGJWHm8MhoCMjkq1\nuh5OQM8LrIpIb7AiMCwDVRIR/ZRuZ4zob5B0Eva7jt7qAtSotTLf3oSLEvoZ/uIC5T2sPWzvIdKM\nWKXE6RKRNwRxgn1SomJKL8+Jy1PiqibVC1Bl27WbFPauw3JO9GVrNPnyXdi4SaynrL54THlyRqc/\nYnNrF6sMy9NHDD59Qa4uORwHZs4jVgatKxYxIUtaCkDfChZ1STNfE/FkQtA4Qd6xxNAKLDltSStN\nUJKjk0OcDaAFwdY4FTFa40rL9sGAqhbYyzFNAk/P+MaA8YQArRSOQNZEysYhhEbLSGokMYAWGWVs\nsEqREsnTBK0FRRpJk4SXbu4js4RMaVQSiDJFFikizUAE/u7lMrZ93RwtviVIwBATWPopxyfHfOut\n7zPsR1ieErsd0BqCQIQrZV87hzBoFX4bCVmAqNu1UyYRJhK1ZPagwdtjNq+P2B90ePnWiOOzHd59\n8IjDo5otacj9nN0x2MUKCkNUCZu5INvJ0WmgiYHunYzPuxnvPXrB4WTB3kYfYRJCklBEh4mas8sJ\nA6MpfWTVNKRS4WNFrgzOOIgKV/tWJ0NCIQQrLLeHQ56qCc2XvEi+zljbNSEO8NEiQ6sPEoJoUxoC\nQSqC9GhvAIeXEhnbOkHLFBkEMdcoWlNO4wyNktgIwSpqDYlSZE6y8J5ffPAxHV3T0EfpFZwE9N09\n7oxvkNwryCpNXNc0YsrT2YpXx3e499rrMMrRxSHh2VOSTg6zhohFhD6ik7TryWjbDwa0j5ECMUL2\n3iDdr4nTS2LSgSxHjHqYMIbwkOlHH1A8m7McDEmTnFuDjLi9S4HjbHnE1qpHsdknGykQY6ZVxdno\nmA8fW/SZolGXjOWI801N59hRJQYpPNaDDAGHJ5MKEVuxtUrBxkIzHl/n+YNvBraqm2ZUEhIXCXhi\nlBACygtkAk4EHO20oxWEdgRlKAQ4Z9F1Q2OWiGCJMjKQmvW6bWR6vS4qCSQ2QfiaSCSlixbgo0Cm\npsW6qBTSvF0XhaRNsZSgcqCdDGFaAUuigyy2q2tXEl1N/eIxYnuX+fUBQkAvNsR5yfyzd2lkRu+2\nIxtsge4QgmttOXzF3r1vc/Oj9/FNoPKORAQEHpwkpB2S6zcZXhvRP5gwOzpidjLlxWRKJxHcvruP\nKSRZ8JztGLKVYvP2mF+ev8+7jSNvJFLWzGWCw2CjIEhHHjXawyIXdJrAKtVEpUiagBeOECWDqsTq\nHCUUNtZ8WSb/11LIDLoDvnv7GjpWnK9XRGmhTEFqZKoY+ASLxEvNKvPoRrX7QKkoVYJMNIONjXZP\naDLwlvLwUy5nDTovGOxuI0a3iaEBvY3avoZYz6HbQd3ahmVFPL9A9EeI/i46OcEz5/qNAllkEFZA\niSg1hD5x/hiReZicQTLAb2SIvTuIzQ1Ih1AFVHRcLls67lxoRCejlH1qe8JykdHfyVmo56hmijMZ\nrHOCWSNJWYgEmUEsaxrtqaNCC0nTRLSqQOao0D48QTliLYkiQFAM8oxmXeFFJLqKTGeU5Yyse0yn\nN+PB7//i60jxl4rWKkdATJnVK6JvjSIDGldbGlOirUYqiVcBGQwqlWRorve2WJQTdjauk8QJrvGk\nWYFUguhApFfjWAkCRYwRIZJ2qhJbSwRiAzbj+ednFJ1t3nxzGxEa4tJzdvIcORgw6ueotKDl7gaE\nWUKt27+x1pAG4pW5JblAqITdN4a4iwXCVQgtSHO4OUy5futNjs4XPHz4glcyaHyKqxpMWhKzBBdq\n0hxkVNSuZGdQgDGo4hY/fe9TRIBQL8mDY9Y4lrWjyA2dtGA2mYKLOCXRRIJodWWMEnijW3lzH4k6\nkouUeeGIUvztev0bE0IIFAnSBxrZMjgSp/AiEFGoKIjetvgO36Cv6MNBSSQtK0fpHCk8KsmQum49\nl5o1KiuwcUFaCRaVYdVJeGXQsDuWbCU5y+6Ql8cH2GFgvkiRywX14wn5MjDZL9mPt7n72o/pdVPy\nQUBdr4knz8k2+4T5Ob6Zo1IFriaWBlHUxFgDEiH+tquOtCaACfTfonzxl1Qfv8vo7R8iTYZQKfra\ny2z0rxPKx5j1GfhLVqImbyy3v2U4CHutB5CMiLxLSBMSHRht9Hh2eMrs9AGTILF4tE1ZJwITIi42\n7TEXER0USipcAKlA1hExtiR8c1aSW6lutXZqRRCWSFusCCmJrjUMjaJlCDkp0d4j6pq1Vgjpcb6k\nWTu00kitiLlhVh6xu3+NbifF5jkFNUmu8dGjY4FQEXqdtsHhahLjru6hQkAjQGoQriUbSQW+vava\nxWmGoCHaBYvHx5wtF+y+8gpaCvL5mvXlIZ9++Amn5xdsbu6wfuuQ1954g3pdc37ynDQdcuPOLbzs\nc+P1N1kYz41MtYWSBGSFDAFoWh+57habrw3YuLNgz1aYucfWJY32mDqQedky1nYD+y9vsz3s8GI+\nI40VoDGxoTIGYTXDSjArAstcMKglPiiKJlCqSF1IBuvIujcgJxJIWKy//JLyaylkXr3ZQ9tnzFY1\nOukQvCSXuhXsqhsWOqCURtUKkSiSVBGFRkRQvqE/GJHGjJULXOtn/OZbW9yqOqwmZ2jd4FYBnV9C\nWkB9ZbSnBcLk7XRlOEAWm8RlQ7AKMd4me+NtcGvgEmQXllPQS6K7JMwukauI6EHcuoPc7sPeTURn\nAGoA0hKCZ9gfMByN+eWzc3767gfo8ylq6cju3eDlH77D/C/+DXF1zp2DN5js3WDys/c48zVJSGlK\naLoD0lWF9wKlJDpqfAyYEFjJiGkgYlrdr9iqbNb1CpTHExCp4fL8MUJL7EnCcdzi6Nnx15HiLxVS\nQF5EYgRTS5RqGUAqKpyypLFVdk6iR3uodSBJC+p1zenilFRnmELirSbLJDLTIBRRJS2uxbeGZyQB\nESKE9qLmbx8NBb50HD3+iOv7r5GmgWp2xk/+7DOmp8fsbw3o3XiJ/RtjvJAUcknRSZCJBykQKsAK\nRLJquy5vEJlHiQ6yM2B1tiYyJQ0apENmgYMDyf7GATIuWVwuWU8XJAZk7HG5mjPIUsrGoxpHrhqG\nheZmDR8XmrJaMU6HzFZzbCUZZZImCZS2AefpJJqlbKCJhABGpW2HJiXRBgSGgAAJo0T+Hcz0mxRC\nCHavbRBiQEmFCAEhWlItIWCBNERWRJSzOCHwWpOJNt9CKlRQ7SMSQTQKHwSyUNTeYqcN6+WM8caa\n13cDOxuaRmuqxiFXax6iCI9zxkXOTm+G2z1gc/QKr228hEm72PUlOneog7yV8szHECfEeoUgEtIu\nwfXRvobymLisoRiCKRAiJUbfsq4ISKXJ77zN+Z++QP/iJ/T/wT+GbBfkENUbo3qbEM8hrEiZE10J\nYokpK/Luinp5iZ9PUD5BJRlRdbh99x4ffTKjelpy2VX0m5qVMAhtiSID1RB1RLmERlnSkOCokUJS\nrxoKnX+9B+A/IjaNhmipBUThkc6hY6RMBYnXIBJk8HipCAKsiAgXEAp6wlCLSApY39AZbdOTBefL\n57z+xm9Rs4bGQe0RokKXGtFv19VCtrIAJCmkEirVgqSbFFhCoq8aCAFNA7IF9BIVggakwM4u+eLo\nmFdev4tLFcn0nPOLIx798iNe/PKMbBwYFin3P/kA1ktcBe7iGR8+nbB55za/+Tu/y62X7/Dxgw9J\ngmybrRBBaoRsiCGCTYAaITPIBaktcMMlWgLnApdV5IBJIkFK6s2c3Rt95s+eUjeW2nheO3iN53bO\ns4uIjjW5gGSeIAyQCESlsUoyKg34kpWAvvPU2lGtv3wX9ZUXMkbD9Z1zlrXBhx5FVIRKE4uA90AU\n6KgRIqASQ5SBLDGUbk1mPY1OybM+lbNoo/jhvQNe39PEWcJHj5/z/bs/RHJKCClKj4j9DHfa4G1G\n2peQG2gcceqYn0qOTxtub8wxWyPodYhPTyBPEL5DPLkgvDhCAJXT+KRLVgyQezeQgz2wNYSAUAVJ\nf4vtTci2DPm1DT5/vOC8r3jtIKP7yh7dgy3e+vV/xh/+/v/K8vAZ48UJupph8j2u37zFk88/Qq8N\nVaIRoSEQ0T6iUC1SPkKTOzKX4KUnekWOpHYegUP4wHjcp5YNcS2YJX3e/Td/8lWn91eOXqEAzdml\npZsY1NWFonVGAjgRcVYSgiR6yKRhlkh6AQ7u7LPR9ZTB0xUWoVsTPpnKdoUkHIgOVwISROkQVxcY\nEeZW8u9+7//GMGBr+xrlxPHsseOjT4954/Y+BwPL0+WUL35+zrPJnEFzQm845uDl1xmMBN2Ra+m+\nOPAg0r8VpmqLnGJTQj1qV0+iBgKyjMiBJ6ou/Syn2OoSJhbdyek0A7zz1FVD13qMCTRLycnFOS9t\ndcmV5GhaYiuQOFxiSELKyXqGUBonJNJaMqGwEoJ0hBCRSpCQUscWLyJ0w1pZ4jewkokxYkuHzBXK\nh3YtI0BGiRcB5cHG2DJUgFYHLeJFRKpIiBJ0jRIpUbZA4aA9MSQMCWzdtNzqaIYbcC1p/apsNWca\nLcFApkb0bqUUWxsMBj8m775MkRm8q6kvL1EJ5K9sIbRsp8J5RXg8xduKMLyDNENic4l7csGpfYDW\nFs8msdgj156yLKnCihA9nWKL3b2XOPiHv8Hy/qcsHn5I/yUQ+TbIFGIG7LVFOxYhZxCmkC0hKUnN\nJsGcsjq7wDUnePrsbF/nO7/2A9bVn7GeeGIypuzOGEwlIa9wVU6iq9bOQQicCSRNICSS0pQonX6N\n2f+PC532iN4j6nayLb2gEYqsDGgamkwhVETESBFC+zUlEILGiogLDl97dJYSEoUiorKMTlLgpUMj\n0MIiWEIYIpqkVfu2Wavl70U7bRGAztrOzRVAAaIBFKTt6o6gibSmtHG2pJlFhh1NJ/RxZxVn63Me\nffCA508uqb/9JurGiPOzBav5gsvj5xSdEfNeQXpQ8fyLRzz58Ke8/t13uHlzg7PpU8x8yMb1DRAC\nEQMI0wLNdYDaE50nqDnS5SxWa4S3JEbhbEUMmpBIeiLh5q27nLz3iBBrHolI5RYUPpKESKMDXkm6\njeKyE6g8RKnxuhUjRSnGVY2rE1TuKcsvb3fxlRcyg7FC9cCtcsIwQ64ylrml1ziUlCRR4RJPt8mo\n0jVJrVhaizKWJgaE6ZEHx0Rq3rz7EhvijNOPTlBLR+f8OevqiN54s0WepxaBRu8a1FlNnFrEYAW2\nj689h6stzsLn7CQbDNMOhBUieDg+xD1/xPq9n5Dfehv3yneZrE9JRynpuIZkfOVQ23b8mBSVe/L5\nQ3T/JnvDHv/F79zj37+7Ynb0CfbpZ9TmBYPRPt//h/+cj97/Bcdzy96b7/Avf/TblPWcWRN58tHf\nYHyCcYKIwJmIROCxJE1GbQ1ZN6WxDhcrrOiig8clJa5J8DFS6C5pX7A6f8F8dvRVp/dXiwjSJjit\n8LQKvpV3KKlobMAS0UqR6oSoa1Jh6CpFExrO3ZL/9pUfkTUl66qk1JrMeWSqwbqWXUQCetV6Iikg\ndCBxRBVYrR3/27/6CbubY/7xj76DySY8Xi75/NlniCbydF3RD0P2ih5WXnB4tubt/REfnAb+9z/6\nU370gzf43r0BIvPExZo6nJOlNxBpaBGnQSJV2u68YwN1D6RtK3vhECJFGInpZFAEKAXoJWENg3GP\nfsiom4bjSc3j4ym393pMlpHz6YoYIxujFGckJ5MarKeT5jTWY1SCix6BR/p2wiedoDEgQySYBtVI\nfJVd4Ye+WRFjZN2s6SUdGkHrfi0kJkakE0QR2rPkwV+5Ywt59bvg2+I2JlgfUaoBaTBasDFKuPfq\nLpl+SDdfkZrYavKoFDodNmRCmghEOmJj9xZs7IDaaam6q4CqE5JCYw522sZotQI08eKSZn2GNLvI\n7hjWFfOHH/Hx8WNKq9gODQszpDQH7I73WbiKYjllcrbmedWw9dIW/+jX/2uK29/CXj7AT54i5DFq\n/00iOQiJ+Lvx0gZRjkFPoZpDvib6IXJ0gW9OaGYLGjfnlWv7mB//Fn/wV/+e9YtI1u1QdxOS0hC6\nDcGn+NAgrqj7wbSeXn1f0N/4uk/A//8wWcT7QBJAiIhAoaXDCUlA0/GeWrRsJh8DXkaEMAjpaByt\nt5tJSLt9+t0hRkdkiJDVzO2CHd9pgbmTBPYqYtlHpAkth11DEtsVkxLg6ytxTcBawIKwbUEq20KU\n2hJnFc3xhISUjfGY1WyOXa+Y339MebzkuRU8X9R893HNybBGhobnhy8IW5L9zRsUdYIPJV988IQ3\nX7tHPuhTTVb8wb/91/zOv/yn7N+9AxiEd+DX4BOijsigEbFHSAR+WqM0CFHQ8eAM7So3kVy7u8+4\n6PPhdE5iPKP+Bk+m5wjpKaxgiiHRa8bLDJFJClEziwoda6zRnOLY0pqKQPMrrLW/8kLm23fepFlY\nhM4YNuBDD501BBEJosGgEM5hdYOPkiptd/tZJXE6YyMfsI41b790l+/sJOiff0ria1QXNlTC5PMT\nem9tE1cXlPWE/M1tpNEI5bELi/1gTvLSCDVUHMQ5d3pbmB1JlCvEck548Tncvw+Hx6jiGvZgjyAC\nIwzal6jlC8TqC8iHLUBL5ECD3L5Jkv8es0cTslt3+c6WZvBS4EU95PkXSyYfPsTtLrE3uvS27vCP\nfvDr9K/vUrsGdeYoRE7qh7gwYU3ASDBWoxOwXuFNhawKyrrBYTFNylos2Ug7NE2KAGo7Q/kRi47j\nT//03a86tb9yxAi2FNi45nK5JjUptRWoYHFOIgk4E3AERnRpcolPItOjc7779tvsjSOpsXR6Gb1U\nXVEY5RXTyBGlB5chqCDmiMSCM0RnWR+e8fLWgO/9cIukNyWWOdWzI+qLwM44Qw8cjWr4dHIITnJ7\ne8Siozm43mU+m/PZkzNu7zrGmz2ESgmXE8r0krwzasfIwYPLIZ2BTYiJatXEE9EWw0FA6q7wyBKS\nGqUSlMla5+oQKArDts2pvWQZtnkxP0SZNRhF7HQ5PptQlp7NXgcrGkJsZdebxqODIpqAjgqrPUJa\nNBJbSi7KivPF8hsjNf8fRlM1uH7nSp1dY6QHH1qwLwJBwKtI9I5aS9IoEMEThCLIiA0RHTzCCRyG\n64OUvY0tihx663OimZCxScxy+mkG+RCV9FFpRra5D4MeqBxhy3ZKm6SQCMzoBqIzbGmxfkG0l4Tl\nOVDAcIhflDx++D5PnpUYt0FQBevhCuya1fIFR0vDaGPEvNih3lqhTudcfDThf378r/j1H/0D3vzN\nf0acXxD9c178+R+w8+P/CiGytotnAVbQ7inHBNkgqgUwRSU5GTeR3RnCTpnZOUlvzndu3eED9ynu\n9JiyuUGZ1ohGkNoEnxhEHokecqephCaVkhr5jfFb2vCOiMYaRYIgaoWKLf7HSkGlJcJHjIt4FUhi\nq/jrgsAIy9oLrGgnnMp5yhTyJCW6Kcv3D1GjHoM7G3jZUD2uMMmMZHuMcLGFOuVX7tRSQlCQXN0L\n+KuG2LXA3hziEmK9RsSGpNNhdXlGV+U8/fA9VrVlPV3wl/MZH59e0nz+jMu3X+a3d15BxzVPpjPK\n2mPKNf/Pz37Jdu8Ac17z3ncP+ME772A2O/zaD9/CV5b1Yk7R69AWvoooYvs9UoroE5bzBUWWwdKz\nyGo6EWwTKEPDOlXcOtjk4+0N9i8cF/NnnJcTrA2IoJgngTzARabImoiQLZwQGykT6Hooo2EtG0ZF\njv8V1MW/0kImzxO2x5rKaJQNzLUihhIVDFZCGnIqFRHGIZpWyErHlBADtTGMhmMSkzF3jrlQdJuK\nXlwhmg4ipPQ6kZOzE6LdRcyWcL6A7Qn0ekSrqRYB2dTEpxPS2zfobafE3YpoK/zhKXFxSXg2pZlU\n6Bv7qO+8gV4GwsUpk9MvmJxOGG/vMrgbEb92i2ywTXsIBVEP0eO7DHuBy5knyedsdA03vt2jfull\njj9P+OzBOTufQC+xPE9/RnnxEnqwyXq5YHpxAWmJQJI6Q1QB/JWugYVgNNbURC/w3uFwiOCZezAi\nQypHXeWoFFYLRf0rjOm+rhAC6hA4niyJQeGNJDGGug64IBA6IYsBl0gqKjKfsziek6Y5W92U5eWU\nzqhPQivHT1REIRGBlokgMtCW6DqIzLU7YdlAUKRFwXbfk+ouQgo+f/yUDx6ecFpWBKn4wegmiZ1T\nVeesXYdunmGUoQ4LNrYMqYqcn0/oJykmCWS9DheHF+hshNnmSjisaUX3EIisaZlOPlyNmGOLQiWA\ncMRSI2Td7teDay8/FMOh4Nq1DZ4eT6Cu6WpBlo04myypZzX9PG/rtlrga4eUgQSBkrIlaYmA9gob\nJIu64XJd4RpPFlIE37yJDEBZr9FhRC0EhAYfFdoE8K1Ca4gGFSuESpAhtB5BISEqRwyttYnVoJwm\nILio54xnS7ovpWyNFDJ5jcSlmDxDdVMwm8i00xYp/Qxit82RHgEKGo0YpDDcJgoDzRyoiesL1vMz\nktEtnOhwdvQR3cs5uk75/HzKvZs9MnkLm1mSyTkPz09IpxPmnZR7g22OpjPeu/8FP7x+iz/5oz9m\nsHmN/ddeQfoO43COvf8+ye032v+JbKna1RKKDtJ0wM2J3uOqCSHVKPpElSO6km42o2dm7AwVzFIe\nasuO7tNkCl+X2FqQNCBIcWmFDZ4gBPJKa+WbUMi4xGCibL2TQmhJAFLipULhiEETZUQQuEIloSN4\nbahjxCiBSxKK8ah1LveK3vaQXreLykaUD6ZcdAs2NzOKvqQ+W+MnKaovEMaAv5q2BNHi8oIEWQO9\n9vzE1nE6eo9fnBPXFjPswKBDNn1BffSC46MzFutLHi0a1lWHTPXYfXXM93oJ59ML4mKJijDMhrz/\n8Rf4CprNGaPiBh+//znvvP4OOtPYYCmSHutFTdHP8VWFp0TYCoJDZxnCGXJlqIXCiXZ4GaRDBdCN\nJPeRpfW89Wvf4f5f/z4HMeH4+AIfC6z3GBVIbEMRIfeBJjpKEUiFRBhBEtOW0SUcMkuZN1+eXfuV\nFjLvfHsMoyV+2aMxgtQpvEqxBIgGl9fkDThhkLHdTXopkEnCMO+SDfpUWK5vXGe32+HyFw/o1JJi\nV7UAWJWRBUc4mhBOJJMTx7VrK2TnOmIjpZtLKH3bQVUrwvIF9eePsadT1GYOWhLFkLjdRd3cRrma\n2eRdpg9POPxowWq2Ztp5ir+YcnfvdXZvNcR0D5n1CLKL7b9K8vDP2b5zj6i3aGYXpOWMbqY5uHOd\nYdbh2QePkKXg/BcrHn7yMQuZEXsZy7MJRIO2DmFCa1wmIy54nPBI2+79gwzgI8HUiMZQU5Ol4/Zh\ntAUq9Xzw82+Gbsx/GCFEFqu6BeyjcSGQpQaiIBFth50IcDEhwbJoamZl4J9+/21OLuc0q4gZ59BJ\nEd0EVIJwvlXjRQNNO8HVtvVHchZSQfQND5/NKJJANBXLesRP333Insn49GzGzx48pp8nWLNkX/ZJ\n8i5RBkpRs7jU/OyRZzyo+O7NA8ASbEJUFaNugj09RBZ7qEHe6jsI166UmhRUdTUtUi11O7Q+KcJ7\nROHANcS1RCgHSQ4hwSjH919/lf/xwz/k3s4WWZHy2eM5i8sZqTQYZWmAtY8IHPPak8l2TZnGBCkj\nlQisq4a6tGBbbyub1EgtWizRNywWS4ttHF4pghZoF2ikJPERj0IKCyIlyoAKkqgURIeIrSWBo52X\nO+0wfsV6oVmoGaMiMhr3EQxbZkmeEpMUEbtQdCHPAH3l0fcSiHFLxc98y6aUPXBLhLDQnOMupoRe\njygGnD/6hGZyzvuHJX/4/mPqecUHn6146e053955hYVUhPQSvzLs6gF/9Ytf8tnnj6H0vJtO+I0b\nB/zJH/0ev3v3fyBTCV436JNn0MlgaweUhiQhBgHiiomVdhHVAC2X1LOKmCu01iShS9Q9tMlYlYq9\nrR7PHy94sp4yGu200hXBUwmLVpGCBE1rxDmwESkE34RZnkwDPdvO6NZaI6NvMdKztt0AACAASURB\nVFNSkAZF5QWplCAEKgTQLXU6iIDxCZWQ5GmXoii49BVpuWT/1jWCCChydrqWJ598yvCt75KkiqQP\n9rzGOUmy20EGdSV4eCXfEGyrDm5C+71rWlVx1obqdIlJDDHpwcUxi4tDLh58TB4tnTTl+dmCgS+4\n3Bjyg7t3mV7M2Iw9zvwl2ktGoy5nR5ZxXtNMLvDdbc5ml8yXCzaFYTKb0EvmdHSCv0jw1Yq1W5Hq\ngOo4ojdIY9CqpnxckxcOFTUEhdKRrKeJZWC9rFE3Ouy/0qF+75iDSvBFocm7GyjnWMo52lrKrLVI\n6UaNVooq1dAIZnXFjU6CsYK6+vIMuK+0kNkbj7HzBuksKsloVCv2Y+rs72hwzgSkSIiJJRLQQjLs\nDJADjW88G6NNhuMN9mNFs5xy4dZkto+WDb7OCfGM2cmEfjMgLgUxU1d2rQKRp6ADoVwRL1aETx4h\nVhO6rx4grm2D84QXj6lPjyi/eMacGeGTBTYUnBclW51Nxn7N8/kFl/c/YvrkASJ49l79FsXOPk+n\nnsnTFT+8EZE39rk53OXRn/ycJ6dnZNHQSRU7d/u4ByXp3FHplDwY3j9ZkokOq7hgpB1rEZFREHUE\n3wozNdGTyEggIEVEhgQvPHJp6GwOqJsGmTqeHN3n+f2HX2Va/5NFS4cM9DPDZSiJUZIpSbefs6gb\nDBJsjVYpOniq0rG3vc1GGoGAVxofG5aNIV8JRL+1oSdCVO2cBhXb3wkHuQQNs8uCX374jN/53i1E\nmbFoJtjFhPPRAe8+PGJ6UfJ//uQL/su39/h4/ZBYjNjKd1DlmP/p//pj/ugnj+hryen59/jd37zJ\n1m5Nlx5qmCCdp358jtkfo0c9RPzbPXlNjBohPa2y8BWzwfvWGM5LsAXCrGjH0ZFIRDjPTtEQUCwC\nrNeB2eUK5wQ+CySmT2MrsmhZeYuyDSpPCc7hDPjG4+qaqo4sy4rgPLnJSDopw80OJ4ezr/cQfIno\nbgxpoieESFprrAFtISpBEB4RY4sRIiC8QmiBj5LgW3FLETVa1HiVoG2kUgG9PqHf2UcMOggpiK4L\nCQjRB6XaPejSgx9Bca21E1C6BW2aDJIOAMJXsJrDcoXPM0SV8ej0A8LTI949XfLeL45Yl4EsT3h5\nZGAROFeHVLGiX0omqWOrl0KuGFYeER3L5RRvXufw0RNmX3xMcneESQv84hJ7+HNE2EN29hBJD/KM\n0KwJpUOIGX61pF7WCKeZxgXSZ8xthCpSy4yBMcxi4JVr1/ib+4eIVUPVDaQ+Q1CgiDjlUUqSkWPG\nOUJf0Xn/HocAulFSK0OUAhkiOrYPoIvtfRt0ZC0FSQApJIrYChR6QwyOKAtkkQKKtIl0Ogmya/B4\n+pVHFxH92YKzh4/Ze+k2MjiM8SyPz/DGtO7W/1+dGHElZlTX7U8ViedzQtUgplPiVg97+hAlS0yW\n8/TwKdoH1DLio2G42WfrlQNG/YTP78/JxwOUTxCJxoeC/Z1dntpH5F6weH7Ewe53EDHjpJoxGG3y\ny5/9OW/88C02+iPkqEdPFOBbvE6QgmAltk7Q/YISSxIE3s9wtSEKTZCgzJinx89otvboyUNO5nM2\nRps8aEqy4EivHF0KkVGlFmU1iZEEpWmWlwhjWKHR64aq/gaAfYf9BBcbnJd4aUl0QlIqQgioJuIK\niUAjdImsAyEB7SRSQYMj81mrEdHLubXR5+Knf0F/XZGGQHkxgW6G6hnyuSNGh9wI2A7EpiKuplB1\nYDbHX84RwXP86TOSfIAWBSomcP6MJ3/z5wySyNGHn5J5x7m9yV+LwAN1RCcf89+98SqX5pTHs+ck\nJ4ckdY78/Akf/uQX3PsX/5ygC2L/OtPaMV6vEMkGG3duc/hkSrW2yAwGez2uLQpW/pydtEQd3OQd\n6Xn85IiLmaaUEmkDEkGIESx45TCOlkIOhCAwERovULlkvS65tjnixcTx8Ud//VWl9D95xBhxjcXq\nhMwUeBwiMUgEHQlCaEyaMyo0J9Mlo3HBrb0B3kjuDLo4p6grg6s8856nl9XINLTnStStFkewCKOg\nUcQ64LXhL/7yr4ihpC405wWc3T8jVILDxZrjy0gnKJ6fvCDIm7xU9DhvVjy7PGUjSsrjS671NGkp\n+F/++H1MBv/9r/VohhVDOUZ3Femow+p4TvSB/qjX2tZ7g1C+HSdHATQt8M8BUbZytGkDPm8Lm8YT\nqYhVBD9Fek+1LDm4Zng+0FzOAplp0KHC1hV1dJRNzXJZkgTQUtJzNbWQ1Dbh8vKSREpiCNTGc50e\nm1Jz8jWfgS8TKRZXG3yi0cYjoiIoj4iC4NpVbBBgQiAogfYaJROUFOBb0G/QkugDMoKynmt3E1Tm\nIPTABIQqoRlBYSHptew3F65A5IErUR9QCSDbnMWK6DwsL2Cjy/zBKZzOmN//gOlqzi8e1ey4yKLT\n49XtHts3r7NyS0StmUtBzxny0nM+XPODt97mz0vL06Nzbm/tU/uS3Z0dRn6GaiD0MlTsEtUZHD9h\nmV+gioJOtonoSHyd4sqnLF484/zBM87CnK2tMUUyoPbXKauACzm97hYXywm9DGKuqBJHVmnWoSIk\nNVok1FOPqhyrYsGB30Oh/t6ryXSMQkbdUgiCx0RBg8KHQCPAS4X2oIInilZ7yQeJEy1A2CvRenjF\ngJItm7aba7K8g7c10q6ZXcw46Btmj59w5mds9260w1ahaI6OsALMnZcRMoK7IiDItlnFS6jWcHlK\nWJSkhUCpdt2FEBR5we7BAUdPXxBZUJqUnVdv0tsfkDWWYT9j+vQZVkVq4PTxU7777Xc4vXiOXHtc\nohlc3ycrJHnax1YFX9jHPL1/yHh/l273OkmwIESLp6oDjgoRGkwWsfMOqyQil1ClJdIF0gi5mxEq\nhWsUnXuvc3T/Q4z2JNKTVbD0LQlFyZJGtZjnKDVhbblMU9KkS7/RXMY5LnwDMDI//s1dvFwj1n20\n8jjfkGnNIhWIbkm+NqRR4nXEp4LERRpnQWpUXSJUzsaw4Hvv3KH86CPS09bzZunWLGcOaaGT9DB5\nzkBvQ23Iu3OoBrjLJWpZEj/9GNnfoiqnNEeSeiDZuXmN1ekpmTvk6ONfUmYlkpqn84I/q1/wYWdB\nemE41Pf516Lmx2/2UOvA/U9PcK7LVm+b+nRC+W//lJu/8d/geteR2S70RgilGbyyzw+N4f5Pf85Q\nrBgWm/zV+RNGd7YZbWZ8cq5ZrVe8dvc67pHl8mzRgq1Ee8la2bTqi1Iio4bYIEKkjh7tHSpPqV3F\nvJxRWljOFl9VSv+zRGUjvSyh9CukMWx1M6yzuKzHSIPXNfN1znS65GCvT0crjEro5wKRVFQusjne\nYmVLulWNFwnKgF/ASlTkAvSihFRAx3C+POOv//I5/+S3vkNPGZpqjlslHJZrziZrtrY8ZgXbOze4\nvRkgc0wfF5xPa7rmjO9954DfHhj+j59+gW40/+4vPuLexltsDZ4z3C55+eWbqG1FN005f7Ru/aGK\nIUK1ZnFE2olhbQDbsqlqWhXhxgFVC7zDE2rJ/GyBKQPfemmTs1nFRpFy7+Ub/PKzI6pFqye0qIGo\nyRODzgzGCGyMBHK0sxwvLigDCNWubcdJylxXuPRr9ZD90rGqFIM00ATfGm9mjtQaWqGY1kRVIvG6\n9cOKDdjEEaVGRahjRepzEmtBw2gg+NYb1zAbNdSnEEz76BjdYpxWS0j2IOuDU2ANZFcgTpHQjgDb\nKSGXUygWRLuNsCUPP36PGJ+xXHboJQO6r+/wG72czU6fqsrxseGkdERpOe85khjxJ+c8i/Cje2/w\n/dc19WzB6NqAH//4X5De6MOiQuYXLXDdN5R1jbQKuYaL8mf0mztU1QCrHKYYsHP9EnvW0JstmQZH\nkw+pmjXaZGwOxpwswYaKwqWYvkRXlkzm1GXrfi2ipcQRXxim5Xlby/09h+T1tMEmgeAgCQIrBI3w\ndHwkREUUrSGxFJ61FoC/Ev0WrSlw9NC0eLtmXYFo7XM2lGL64JAOCwZVRdSWcS9hdTxntfycIHqY\nLAUrOG8W7OQ5cny9xegFTYyiLWDKBM7PwD/Gl0OELolmiJISoUBsdnntR79OOvqI8q8+odjswf4O\n62yNmWu6ieJ4VtMIgROCbDdjNBiwdWOXZ08uePu7b/Kjt76FbWA5XxOt5aWthMujCUc//YL09pzx\noEMhU0zfA23BLwUEKZCiJPeeoD1yXbEOiqURVHLIeO+SMxVIdlN6x10OL9bk4wyr1ljdkESwylAE\nSYFCiA5rDZoFuatYy0DVNb9Sfr+Sm6voZOR08UtPnTmSpkAFSSMsndWYgatYZw2uKFE2IOtIFRwY\nyKLGSoHG44Ll5P13MU/PGDnLoNvDyoZSZpCN0WVG1rlGFCVBG1IZKOv7dMoRi/Ul2fKM9YsXaDPi\nsgncHe2iuhm+XqDVBqOix+mTZyhtuPBjrtmCF+trfC9bYrZqpnVgdVwzmwuexQVb21vcffk1ltdO\n+fz5c66HQDHcZiJShkHBQCNSTXJnh3v6HuunT1mfP2O8k3GoGnaynKxX8vr2mGdyQvhsBRFMbvFo\nbB0RQeNb7S6U97jYCsZ5wCWCoTftumzq+PSzj7+KdP5nCyUEb+10OBOCjsqprUBETdnURLdipRU+\n00yPXzDsdOjJQLO85ChWvH7tFr6pOI8gzYK90ZByDXNfkvgEXWrUUEM34kWKR2Kqhukjz2BsqMKE\nONii73pINaNIIp35Ob997y7RVJydTFjUnnK1xf6NIWF+iKx7ZL2G7e0t/skrGUZf8PTS8cnxBbfG\nOauLcy43uoxGW0i3ZHPDEmcL6Ccth1HYFr+zlJAtoMnaRFO3JpZGgpfEGIhCMVkuMQIGA8V4Y4Pl\n+hij1lzvdrkY9vli9f9S9ya9embnud612rf7+t1ysyerl0qlNrB9Yuf4GLYHRkYZJAiQUX5NfkR+\nQoIMggQJjOjgGA5kybJkSdUXWST3Jrm5269/m9Vl8NLImcTHcaFU0gPsAYk9IZ7F9T5rrfu+rw2b\nuoE6kOUFUnSISYYIOVZ0dF3L0tXIIBloSWn64K8goJKBWv6Of43+PypSY02BFoqYIsJZlEgEHQko\nTAgkmVCpzwmJGrToP1BbEjiBl45BIck0SK1YPJ2zOdolKxW6KJAdUG6gLklFROSfwPYIzFH/pNRs\nAQ0Z/dOTT6Rug99+jAJEtmDgBrxon5PHnGmWMcEjVE4mJfPQsd2uuGobBq6j05GiM6xlxhEOt7yk\nONrnvXfeJt/bYzbaR45yaARpzyL8S5KdI2JG4Z+wXj5nk90kHx0w33xKN0/44GlXGbOBIuRjti5H\n6A4lW3KRKHONUgXT7YBXzxtEaftUXz9gm5aECMiIihk68/gZrLeRXFk21N/oGvhPVZHnpKTIUsRJ\nCUGQVM9aMjEihXst+g2Ury8GvBSImAhSYJKilZApiX39/2anmqCcIXcN2UIynFj8ZkOmPMYKPIk8\nzInbgtAEbBqz/egR+vs5edjp08RFgusG6lek6xf4lWS+eMnswSE60g+IxeutoszZyUdc3r9LOdnj\nTCcO7IBH4RLfzWmiI0ZIIZAJTW0EH3zvTyl3LviT/+wPuHn0AKfmXC8VxdUCeeM+J5/8LbpZMZP7\n+MWa4/qM7DxntDdESIUNjrZrMQJSbOiM4fIykZkNpsmZ+xohBwx/8CaXP/kF79465PR4wfm1ohC9\n88tZza6HeZYw0tPYFtcGrJfkpkCNWyZfIQwPfkuDzFvvfwuh75Kqz8ljS1cqksgpQ4bOlizzBusS\ncilxypEilEZjbY4sBPujXW4clIyKS8Sja4ptwBwUJAGZGSFNSdAWpxObqw07Q02uPVkSNE9ecfHs\nkjpcM3FjqukBPnZ88PZbvWamviKrFMiSd3/wxwwbwcfnz5nt59z+wRt8S2bcWp3x8fqUqZhwdrmg\n6QTdUNEuW375s79jc3LCeDpjvD3HVAc8PT1nXykGdYEoNUKAuHOPKjN0myvy82u+5QzGduzfGvDj\nf/iYo72cSl1j9DWus9RoCq9oZED7gNSGjg4RevFZCopM52xpSGvN8+aaF89+Hx8G/t+KJNY68GC8\nw+O5p0gNPq5Ybmrmiw13bxyht44vz0751sMD7u9PaRYvqeOUdnvFzs4+iobHTzf85skZQhR8543b\n7E4DPteQa+QAqC02dBAGXJ4/5t/+4bvcLhPtyTFfrBVBSybVgFWreHH+gg/eOuSHh3f47MsvaIj4\nq5KbhwecbR9TtRX3ioa7PyoZDCNPHy/41Ze3uZw/ZViVPLtaMbrdoUtHXA9pliuqoxbx+jkpRYPI\nNiDGoGpew5/6ASeFnoDrDVfXjstnV9zcnyFDy9HehM+fJuYbibcNWEXjPTLl1E0Lcs0o03TJ00ZB\nZRPaCs4vOxAeKzQdihQDQXkGwVCk/JtdAP/KituOFCXeBApvCCrhpEIgMQmStvyTHFXIiImSKAQq\ngEwRgUdjUDHDWEGpDHKvorsSrF9ckh/uMN47RHYrUnfdu8rUCEyNiA1Y24fRxdC7T0IC70hPfoFc\nfonYv4FwGfn+hD/+1r/jYnmNDA07RxkXYgQbuGoNsdlQAkFFtlEx9o48E7Rjw3fe+A63HrzP7M5N\nislNYgQvMuRQIBoH5RukuKRefYrdP6ISNcvzl8h2B6UmmIFg3DQ8Fxeczjfsmz1UaThZtFgD89xQ\n1gJXCkzpaISmCFB3iYYthc/ZqBbhBVkOsbVUKqHHjtF4xOXid1tbNbISLyM2SIyCGEP/GpgkXiV0\n6ENHvZEgBTKBJJFET8PGC6INDMYl0UqM0NhcEQSMnMS3HcsWlCvJ8ogSidR5lE5I7ZF5YtNcI45X\ntEVEvvEQmRn0UsDVC2gW+NUVdW4ZjSqMEtBqRFH3cFvnEBnku/uUMqLUmLmWxDYxX68YhohJiagE\neZazaBtuTKagE//FzQNu3j6kza8QfkiRJ7I8gE98cGvI+RcfUseO299/l3vxDvW9gAmSJihAkGJg\n2S2IzZr2vMBnHt0FFuGatouIesvOg3c4+eWHyLFlfLFE5UMcff5QylpSKxjnPUhzhqHeLLm0jnnc\nMswsZ8vNV+rvb2WQ2bYtrt0S1S5NCkyDIEhPzJa0y4DwESciSvRvy3lRMCxLopRYpxhmdzHDwEBM\naNMJpY7kqXwdCqfIQ0uuN7w469gRwB50fgttRPgIrqW6s0v2R0O0HmNa24cQpQ4xNJA0qW1ROG5+\n900Olgc8F5YX4ym37ZjPrl5wtUjICirhqZXg+4Nd/vaTxzh3xg+doEwrFpcfUs1ucfz5hPmLFX/+\ng4LBzRahFAwLBAdMf/QH/PDBp7Sb50ijEKXBVt/m5z/7BU2zpQyJiMPLlq7MoE5EJYl0SK8IMiKT\nJKk+MC4gGE+H/OzHv59Opf+4UoKrTjPKAzeGjk2tWCwNLy7OGWYjJkXG6eUCazLevnGLFNfIvGIy\n1HTC4IWjE3Bj35KkYHElqFfXbIYDxuMVqZ3gXgaEvkCOclJhePL5l/zlf/lD5ucvOL1SfOfB21Tj\njPu39/kf/5f/nVGacPtwxE51h/zkOY9ewmyQ8cXlJcE5/vu/fIuxOkGVQ7Y1SDnhs+XHLE4N791a\n80fVG6hYQydQ1pG7LcwHMOopuCKkXg2HBx1IW4NQNUkoRNAkH1gvPS8//4JbkymKjqgCo0HFpvU8\nO3MMTEmIGZkW3JoVHCvJ9XpB2xTIUhAxBOfYJsHR7g4vrq7posRIxcAoCizLGGni7ycBexscSoEU\nGTEDjSQliRGRqDRSJKJSaNeDgmKMhM4TYiQljxAJYySyklgkSgiGo30YCwrjOP3sCcEHptP7yPF1\nL94935KqBuwIMZQ9ANDofpgJibQ4YfX8Q8pxhdQlyIiwlp3vvcu4XVAvloQ6MImJ7VYy3Eiu7yjE\nqw3xak5YeZo8cG+nYjrdYefuPuP7N8nHBz1vSwIqIEQBeSL5BNUNbDWD5RfImy375oJnl5+Tb/aI\nMifoAXuzEc9Ot1wHycQOkNrTbDoGuWGxDcggKIUgotmqDpMsSM0irejWHSYKhIBc5vjYIqShGk2A\n4296GfyzNRMGowIh9VDRIASkhFMCGyNRKKz0xGSQr29h+up/TymNMIKizMlET6dOtkC1gSi3OOnJ\nzRjfbHG1RkaPlJ7OFWQyIpIm0x4Q+E8/4vrkgnJnl7JUyNASQ6BNHUXaw2T0t7F5BEzvciRCkcEg\nYdcZJsFgGfHTMTNTcGEFyWqK4ZDaCW7fuUExGrNzZ8zUZH0acbOljjVhkCGbMTo6yrJgz2hOn37O\nr9Zzdo9ucFS8SVXO0CqQiJS24Pjpx8znF0yKG7SbFW4NZ0YyyHKKIRxfPGEpavRqxdQanm/P6Yxi\nNyvJCsvCbahCS9EVBCEoDSyV50FxSCc8n5mvRlD/rQwyD27cxKmOJoJwkq26RMSEbAVRBbLMIqNF\nht5aX6gRMjV4aRntZpS7kgf33uDk1z9jONySakFwNYKEMhpkgRMtbZozD/vUC5jFLdPtiOVoS/6t\nHcZvvY3M6ePidSQ1Gs43pGYFqiDFNck4zLSkzRJXz7b83//hGcMHU4rFDs5LxHIFIaBNznRHM2gb\ndvMhS9HgUuTx8YK3brfcPdLsFSWZBVYtyZp+IzMWsXcDlMM8vkIRiZlk7yDn6P4R5b//eR+bHi0J\ni3YGtKcLAh0l0SRU1CQSVgh8itwYHeCKRLNtfhut/NpLStAddElzve54fv6SKtPsTeDp/JrF2QpN\nRHU1k72SPAkOdiKd70gpIKMlG2ZI6RhnJS+X50zDlNPnlkcvnvLpyRV/9p0/5PbukO5lpMp2WZ0p\nghzxvQc3KSeQtGfvUPLf/MWPWJ4uke6cR9enTA73yTdrVustTdIc3trleL2gJEMWNcX4gPezLaa6\ny1sPHjKYWYwBkbfgCoRZ45RHdEtUa3txb+z6K2a2r09dBlqJkIHUJHzIePLoC24OC6wB5zyqhqae\ns2oCyMigWrBaaywBoyM7OxUhRM67lj2rkVoSkkR6RTKJUTWgaRq66BDCEktD6QUzZXj6TS+Af0X5\nbdcLBaUn86pPxBaRTkmsTwQFOEeXgDbggidERxYiKev1MwpBJgydchRFQXSO5BU+aoal5eXnn9Ec\ndhzs3UTblpYF6mKDmDnk6hZi6BDlpNc9+A2rj/6WplkxvHfYa6BsBBcRmUarAVXrSWVH4QKuCNRD\nwcNuj/NiwmJUsnEeay2TkUWWlp29KeX0EFSGiAVJhl4zJwD6fBLRtohYI/JDuvhtNtOfcru5z7Pu\nmPwskM32SLbg9jDny3XHF7JmNjBc1C1l89oVKXNM5ZDKIjtDYyNdsyQsW5q8RaWCbVdjqwxMxiho\nyuk32/9/SQ2M6EMRZUJJ0Qu9Y0Km2P8IgZOmN7giEaT+hkZGhFD46CmkRRtLEII2JLQc4JcX2FNJ\noz2+iXgfSK4jyIxcSYRoiVhk6Milp06RMtNQQTYCX7ekrulvP/KSpNaQRq81kr3tnba3bafQGxQy\nY0lXG4ZCslVDbJXh/ZRMbnnn5hs8mp/yYHYDOyvZV7t4nZCURNWCq7F1gdstsdk+xfvvUS8WDK/n\nVMs5ZiD45Y+fMjg64L33/ohCK84vTlifPKGUiZehYyIKdBdx+RjlFF1IcD1nuDdkPj/l8MaUqyvJ\n8fmcjW+xjBnIgvXymsI64mwCkyGzesQyJfJOkS6/Wu7D1z7I3HrjiFGloHTM2opu+ZyYPD5qkhHs\npwlrIZCyRmCx1hKVZ6skR5MZh5MRf/D+t3ny5Jekz9aEjSHmC1qdKFRBFJKoI3mewTRjd1aRKo8P\nBS/aALcN+w/eIKaWZrGhGFcQc7ANjBVd12LiHDEc9+FkSSI3iuE444em4LOLOSfzyBLHmEiuCmgd\nx4+eMBkKjK3JV9fgc2a7O8wmgi6XZMUt6tUFcrFG7WhEqGAAyRRsL3J8d4vR5BLvEk29RbeRsbJc\nx0CeKs6zROYSwWkELSkpIgGRJEpEhDQEJzBS8Hcff/p1t/G3UgLYyQOdhHYbuLi+YLeYEFRH1jU8\nv4xMo2eVG56sa769U3FwNGFU5kgpWdcN09xyudiwPxzQtHN2qwknry7ohCXVJe8U+3x+9YIb/iZX\nC/hyfcyf3X8HrUYI6ehShnAFxo64eU8y1IrOT7n46CM+Ob7m7Tcfsj475YtrzygIfvrTD+FexQe3\ndzGhZlhZ3q0Eo32HlE0vEm0ykI4UBTpkcNKSjpaI6WtBqnP9rUyAlAxCbPuwPJ14dfKcqVIMckNS\nAnykU4m4WXJnt2KzWJONpmzOnpNFwaYNFHniaJzx5SJQu4DRFSluqSpDvZyjZSCKQGksXjsyEagy\nQYi/n8Nw7Tp8jJggcLr/OBEyZIo4mcD1/14ZgdgSY8CkCFqiFSgvkEbitCYPHpNXNC6gxTVezCkK\ny7DOqF894WR+wa233kZuPPXmFXYFciZQowEy2B5K+PwRy+tnzA72SVIijOxj6aWETYTY9WgkDAZe\nB6Q56qIjNw4fcoz0iCQYlRI5rvCVRoW2j8D3ChHla1oyPZYgWYQMiKYmtQusVUgz5Uou2TW3aPbW\nvDp9ya1pSbp5m/tPzvikW6Od4GioOasTqRMYI8hTjhYtKUTSxuPo+ngMH1FS0jZbMBFTGbyWHDD7\nRvv/LylfKoSXCCmxIdAhEKJnbUUhiFJRJI9Dk1If8hcTOCFRXmABrGLtAkXXMNvfxeY51JFOrZHX\nkWvOKEQiaIXJI6bLSanBx0jIc0zTIYTGqoDzDf5ihcgVLniMTOjxoGcdRfV6MM3AB8i3oCuECxhj\nsSOJqxuUUIgkGQ8PmQTFbOy5fXSbdWgoBgOG2Zh2KpFtgzcbUlAoKxGZR7uCMCuQGnaPbrFe1sRO\nIE4uOQiOl5uGny5W3JkeMp9/yWi7olUDdts1szzSkdG2iUZu0EIwtZb67VBx7QAAIABJREFUxhGX\np6cMMORdQl9CKyP7GE6bNc22gyS4ESZsmkSuJFujyFeJ1dVX23u+9kHmTx6WiPSM9Mqxig2CiNQD\nsiqjCparyqE3Alka8pSTYsST2JM7LK7het0Q+FuKly8p0gatYa4kZQxEK9nLJLFImEpzc39CYQxe\nePzQIWrH7t4NuvkliyfPuTw95ta7B4z3HsLEgI20ZUOY12SxQ9ga30T0WHJ3vENceJ4/tbygo0ot\nw1whukvKCuLgiPfvZZz85hhhLGrnBsllrE4fk5qK63DJYCS4Wlxw5PZo4oLB3hTiGjY1nSzx0nF8\ndYU2Fd4YsjBgNVtgV5osQJSKmBpEFAQJhP5pCQQms5Q68aLZcvybZ193G39rNQ0F62vPLx8/ZbUK\nNENPTA0vNz3b4zp57uphH6kvZpRFwFkFTUftFLna0raSTm9wMeOjp8/5o4c3GFVDugKEu0bsHrF9\nfMr/9n895q/+8i8o8mnP5fHrngyt+nwXq8bM7g2ZP3/J7XtvsGobrrqGcn8fud3yq1dz/nhWcftw\nl0GQNLHDKUk+2UX+k0JPeZC9hoNoUZMNzinM9hxhD/or5MzDll5foZbgLSm1hFrSnl1zc68k+YQ0\nEq00q7ggV5bBMEdrwVAtscmDiIiu7m8iMpiNBlwtV6htTT6VdNuaLirqLpEbS4ieobQE19JKiRn8\nfrqWfOd7B7SKyKhJaNA92oQEiNRffumE6AR57M1GWgqkVMhMI3zsDQUajNUMzYTVYs3luuSguslc\nnVAkuH71JV1M3D26hwmSp4un3BrcJSmHbi4RxrO6fMpoMCAflJAaSBkEBd6TaPp0VysQXoBUKCX6\nDC2fGKcCue9QzZg40CR1l6KyDPQNXLgkrTKsDQg5ImERDjCvQ9a0QJRD4JTFyUdIm1HuHvHl8Zfc\nOjpg961Dnj5/xIPlNebGIZOzY05ry4EKSJ2z7OBg4lAFSAtCBzZdQ+YtLQETels7UbBxNTMyDAmX\n/e6DI0spSFGTicRGSSR9jowIIJVEp/7ZkQSSgO/R6KgkSNKANuTTIUM7Yq+oiLlAY6hfnqNdi5IO\n04K2Bi8K8taxzDp01JTrgBs6ksoptSdJifIdUW9oNxlJCsphiWxLhKkROGhzyOJrG3/ZDzcqooeW\ntJasljViNqVROY/zlphZPrj9BtsKdq532N85YpTnZClBq1E+kOMRmcE5i5SOKAvkeEj2ne9QPD1B\npCUuSiYyYaxgrygIVy9pVnOGqcHZgqEtoWzYuoLdIFG6ZR4axExSrgw7ewd0ixa33WBTpImBrp0z\nXCeiNNTes3GBMs9ROuLac1IY0XbdV+rv17pzTUeKrZqj5gmvA50cciA1WyXQjWI7SIyWOUooYoh9\nsHz0+Oi5JvLem3fJVIW8/gnkK4yuMGHAxFhcU6MnJW5smekck5eQGbQU1JstzecNwwq65UuWowFN\nPAOz4upJQiMwxQNMiliVsbWWupljO4VUDhs0rVBIWTObBf7UdjgjWdslN6Zvk4zm/s0fMJrucfWD\nBZ3RTHaOePzzL6kfLXHdS8oUGP/oHfZvP0AosGjCvOH5VcvFZs0g3xBP18wvXnH77kPU9IC0b/Dr\nCbpMhGUkqY4EBKFQsafyyijBSEppyfPILy9Ofy/iwf9lJbhSY/7h09/w8uWaFA3DqkIEw0DSO26M\n5tptUbWi6QRKjdl2iZEQSBvpYqKqImvveXZ1wfFpzdXNJeJmy2g9IjiNX9b89DeP2L95gzcPJ4hU\nE8oc2c0QsQZin/MgQaqOyZ0doox8N7zPy8UJ4+o+T178BF0m7n7nPvdvlyR3ht8CucBOXl8Lk3ry\nrfZARBgPukDMA7ERyC71NvCVBHHVp81e74KsQTZcvtwiRy1dJ0EE5FagdeDVuiEFw6go2Mw3NPmQ\n0V7O2csTVAS8IpiWWaVQIWfRbEi1pmkV264lVoo9JBdesAmBkdTUyXG13H6j3f/XlncdPgVU0igC\nQUpsjARhESkgX9OLy66lFonOJDLf5xKKJEkSmtBnyegaYkicEVCLFavulCpWiGFDe60pByM++/JL\nvJa8tf8mhT/msy9+xg37R+wfHZK2LVu9ZnpwB29qtEjgGtAWiL3DqQqwKogkUoq0qqXtIDlFO46U\nzQ5pkiPliBgmnF8/4/TFC9i21FGwdguy4ZCjt9/gaP872Mk+SQReJ/ZBGlENNC8ef8jO7JDd/SGn\n56fcf3AbdfMDPn76U959Z8LhnSniswvqNmLtED1o+2GogBJN0gK5jbgi4ZPAJEMgkpNRu7rXnI0F\ntvtdT5GBUlm86s8KkHpLsYu9EUOAFxIn/ynxudeK9TObpJVgUNAmGrdlaxV0OcrVsH5JEGsOkyG5\nRE5EZhrnOppQoVRGXrXY4IjCEIQkSo2SkuQ0S6nYKUtkCXSL/kCTKyi2oLM+9TspiDXC9bbwtN6g\nWk9IQ7pkqRzUd++wSoaTz78gbT2L+RP2411UI6nzyLb1yNBRmAEyS5iYkUigC9qbR4x/8AHzn/w9\nnVgyUlAWgYvumkKvOQxX1HpKVpY0nccsFa+UpDINoa0pgULucVleErMJ2+6Yi3ZDTUvZFZzIDSY4\nJIKp3aFxa2whSduWg/07OD1n477a3vO1DjIPbgmkqwmiRGnLJBY0sSUSMVpiW0U7BUFL0SlcuKYJ\nimFWce/GXY7uvsN6/Yz8eSTWI6qiROaJLN8jbj9FSMODnXeI2Rq6iB0ELp4vSL7FmCX53h7BGNQm\ncmhnXN6w7I4KyofvwmAHUUZMpxivMrYrzfnTx1SDCZ5IKSwHZo2Xz6jHFSO3RBZ3Gdy5Txgd0s7u\ns9yvkMnRXCmeesm9NwLm+RO66w3r+YrVp08wQiGHBWKwQ1KSw1mGsBOu1h35aIejhxn/eHLOpNNc\necNwG7lSERkFPgmC8ei2JJptnzmAhA7mvmF7DV/87POvs4W/1UopcvrkmIvLFhkiOhNUpSUJTXO1\nIDeabYqMckUnBcNqjBaRgQRlEykZSkpE5zEDwQi4P21o2zVmMaUuI8/PLf/Tj/+G/+7f/Yj7774B\nuiVRoGIH2eskT99fq+M9Qo0QoqTMOmLVYDYluprz3/7n7/Pk1Uvu372Htmeo4QHZoUJmOUK617H1\ngK3BGYSM/Y6pBKbUINakeIpoDiAmEpK01WBeIVwkeU2XLplA/yFmjQY2bUmzDgx0x2gw5eNNS4pr\ndosxz5NitfaIsKa0QzbUKA3TQcF8saIOkZ2ywiG49jUmWerg6YxAuZJcjoGrb3IJ/Kuqc47WBXIN\nLYa8j5/qCddC4GzAxkQrBZkTdLHXwmgpUSkRfaAcVdB5ahkZlAZdlpweOzYvIN0pmCxmzKWm1DP2\nC8uXn5ywa48YTY4ojGP++T8g63uMJrvkdhdXlWRCkfzmdehhC60HNiRXEGJFChInAnK7Q/SazkGz\naXmyuOby6int6oq0s0U+03TaUqmSrMq4d3QPd7Hi57/4P/n07i+4+fAO99/9Q4rRAUIJyKfo9k32\ndgKr+Utm4zFq23F1dobd/xGHB+/yi4+O+fb332K6u8SdLvHNgkwb2nyLPs/YigXKBYKFYaOwQaOy\njE23QeQC4QK1X7Hjd4nmd/sgZZSELJE3Oa3osAFiVHQRnEpYIcmjQCVPkyI+CUQQOKUIkj6Qc6OJ\nY4/yAZU8w8kM4xa0TYut4dWuRvuA1ZLcWzYiElWg0IGNz9EERCExEWyz4LLYpfGeYmzJ8g4ai8gk\nWAfDrj8AreG1MA5CR3IDkvJ0XnJsMoqpZqMH7Eym4DYIk7Gzf5urkxN2ukAWAi7LUCtF6zWyygkx\nxxYClRQJT7dp8KWgfONtHn3ylOHWs5Yr9rItWUq8erbkjvZstEZfKkKwtCOB1hkChV9rhO3oCoFU\nmkzU2CgJXlA6hfI9FiZJaHVCuhVZLajbNXcObnF9dsydD75F9+OffKUef22DjJRw83BGlDBKBU0m\nEe2GzmcUZkDKPFFJxmlI261wvsanQJEPufPgTTYUnJxeMHj1FDPPCYMO/5qE3KkztluDDp6V25BS\nA21kKAXCD7iILffuvcO6HWJWDSkb8nG3YaDfIr83xO9MiNsl3YeazRenvKiv8a3g+WbFn/zJ2+Rl\nYjt3hKpgb2+HzWrJq9UTNmrIm4f3UeMZQhcoIPOGRy/OubwMPNs+4531OVMdyW+MsOM9Fq82bJ4v\nmOw5ymGBGQ3ZyVpWDLgQjttliVx8yD8++ZJ8uORiGyBmBFWitp6oAtIkpMhxMmBSIpQGGzWfPvri\n62rfN1IxJY6v50jvKI0hG2R4l6gKzSYT6MoyvXIUsiBaz7TMQPRWx66V5LQs/JbRMO+RBJnk/Yf3\naPSGEAsWJyt+8rOP+a/+zQfcf2MXOVgiOgvC9TboFigDKc5AzHvRXXQkN0cNLJ9+uMY3iawrGVvJ\n22/cZb3ZIlwO0w3Ca1ARwuvETqleowe6/u9j1msbTEMSFXEFMt8iRIRtR/Qt0iWSz2mbhp28IK4k\noUzk7QS3qbnyC6QpCCmRFRlIyaZJPblamh6V1EWcdsSYsOWQ7fKSNioyo1jrngwdtMJEQQG4JDBK\nEn8fQUuA9w6XPMEZFB6fRbywWAKdFFgniFKSVH9w2WSJotEkJQnWUIVErSKjIDDCI0i0mw3rtOHc\nRY4vX7BTJkaDkk0y2GxI3kY+f/oZ9yffhSJnn0i7fMbq6ozh3fcRosE5R3ItSvdrS5V1L/rOI6ou\nqKNmfr3i7PwJl2evCH7JthG01zVX0lBtcvx1xJ11pGnEGQWh48R9gjaSwc45Pl6z/PeX/M9/87/y\nrT/9K95/88+R2ZzoW/Rwn6EB4VoGu2Pi1Ybz+UsOS0u594DzXz7HDm4xLE44WzVkY4mPkoBFxEBX\neMpFTi0dKZdkMvZmAx3IRU7TtHSTloEcf9NL4J+tSml0lISsQ3QQUUQpICly6ZDBI6RmQyJh0CIS\nEUihcURMkmyLmnwwZpgptOp4uF/hzp4RuhanAxpFDJ4zBIVbUugB05SQsSUJAUmgYkDoDD8YMQjg\nVCS3CqEV0ThIChEq0iqCff3UIhyonBRHdGZAaCo+aVasyglGVBSFZRmv0MUAQWI03UWXFUc33sJk\nFrtNtGVCk1EoDSpglUagcSmRlCdzOd2wpDuccna8YU9azps5OYpYGV7kt4k6ZyME3QDqzqOlwJS9\nkD40kU1qmLWa2CauV0vqboPNFZ3VDBx0a4VLnmV7jZtHxiry98tz7t+6i1K7X7nHX9sg8+D2mMFk\nQLtVdNoRmxzhLVr34DyXBIWzbP0ZQW8JIWc4HDGZ7bJer/nut99jOZ/TtKc46SncgMGeZTlfsVxH\nuthSbgxWdORC4bLAaiP4eNug/S7Hx55nccFV0hzmLasmMJmtWX0sOf8/nuE++oS09GSngrlbUFjI\n3rnH53/3c7LrJQmNvnuLwdFtdt5+h92dP8EagYuKZ8+PebWs2b+zw53K8PA7M0YnG25k77H6sKE9\nfYzuhryaP2Nwd4/D/TdxwOLlFeZiTTat8N6z6BqqcsjOzdt88uUj9sSAz3xL1PTamEyQOkkUkagi\nJiiEVRzoMW2RcXXx+3d6/mcrgQmBm9Mcmw9wQtO2S2wbORjNuFhds64Cu0XHVdO/YccQiQp06hDe\nsXCCwkPRCDJleFZfsm81Z6tzHl+d8RffvcX0oUZkK7pmirIRZNbrKUwL9QAhVySVQ16TXAlWo+qW\no2kOzjCeTGhSQ2UNw2JG7I5xS4+qAibL6RWYqbdfxQTudTa3SP3GlIBMQRdJa0fwHtF2SOlJEaIP\nRBURrWStapSrEKphVdQsN5Fu47H5Ppmo+eFbu3zy5QuWzRYtE6HKaeuOpu3QRrOcX1N3jtwWaAVN\n21FajdGarulQMhGEREuPT7+fgXgkiF6QsoBHUjiNsD0w0sRePJm0J281GyuRoaMzEhki0kW6/8jB\n4oGNa9m4yz4HpHTkYY1tK3QSqMohlWJlJHQtYX6G3h/QpZbkFFm5BvOCJuZcvXzMxm852jtkMBkg\n1yVdOUb7IZvLDZ9++iHPnp5wtQhkpmCS76PxrAf7vInn3F4zn9fII8lQjNjEQH4Z2bavuFnuMHl4\ni729dzifbHhndYPy7/+av370a/7NW/81IW+5XLxkGpcM9+5jK8V1esq0XVMvJiyrEnHHUC81Tra0\nzUsGhSJYB6VFBklyCgqwtUYgSVES8xYbcxrbMPSGVdMfHH6XK9OmxxN4kDEhpe7dSDHikwYRiKIf\n9EObcLwGR8oe7aGCZ2UdRzt3WXdXVHJIXCyZP33KQHpkIymcY4hj3jjiIEObSC0kKVqKXPR4LjRJ\nKlohSQIKqekqS4Zjc+lQk4bqakAqLUIpkqigA7KWTo5Zby1rF6njgNndQxKBURux0qDyMUF2kBtu\nDd5DmYzoAyFBpgUhBgpT4nyHsLrXqoYMbUrwvUvt9p23+PzyGm8r6tWKS9uSDWbUqkSLSKsL5iFx\nEBRXdotd5mRKkmE4jdCqRFmOECoHO2SvcZykyEJpZkUkGEXRjOnklizWYDyrFyc8av76K/f4axlk\npBC8d/chzkMWJbrwpI0llBETE05HMmfo9IrWa4zXmDxnrzqgiR251My3L/DP/5Hh3JOsRBWaVm6Q\nQeOjIBQFx43k2aNH7E4tNw9n0HhO14a5bLmzjAxSRr5e8ovTLfdCydOwZnFxzY2omJkC5T1iA3+o\nYLFfcuPoIZfzNZcfX+NXgfTZgufTzwnjisGDKfs3KszBEfnogL3dgt39PWwKjP2a2b1pH9DXvcVi\nc8X50yWrReRwvaR72HLz7vcwe3u8/PmvuJhfog/3eSE92+2WGBWH9x9ysvyUtVhThQyLoHWJ6DXJ\nBEgKZSTWCvJqxbNnc4L/fWDO/v8oAXsjRT62lMWQOsDFq4azjWesV0yriuX5hjURnQzrDkgJHRNa\nGsgEo1zgEtQ+sTMUXC8s2aIj6DVvHY0oZwITMy5eWfYPA7QZlB4wCApSUfexyanBxQFX7YbzLxuy\nXJCN75EbgWOBcpp158mNAqswUhJVT9IVMfYWrLWFvHttpRSgXE+7jj1fRWggthwvBNMEw9yRYiSl\nDhUbYjtlYCLew1asyTvJCMMyCR6fXbG3kzObRYrnBZUWhFTTdpYqK1iu1zTbmibCtJrS0hBCwGrL\nNkZK4fDSv37ecBgveHHy1bIcvqlKJELoMCpH5Ob1GCl6ga8EYUOf0ioDKUGGwROIMdK4Fm0tWZvo\nrCMmyW4ecZst63oHlUz/4U4dZa4QMaMRNSYTiK0kmpoczSsxxQpBnVbsXXi8WDCbzdgRYzJVQpfR\nDCJ+Cy8eH/OLxz/n9PkFV9uWkR6R30gsooVtS9N1PNpmrNYtVe1wbojTgToVXK1q2rDi4bfe4t4P\nHqCMYRIrVqsdVpc7XJ/9Db/6u/+BfPJnzIonfLG4YFivuPfedxGMEfaMmC+wMSEaz0pLGoas/ZpS\nj1m2a7L2Fsn8Gt0JRK4hBOrSUaaSUGukBVNrOusZqAlb16CUIvyOgiMzq1lnmrJNeNXhQ+iJ1vRs\nLaToySBCg0oYwPnQmywIOOHRRpMLw9mLUyb3h1yur5GLDd5JnAwo57j0PaNpulaUQ1jajIBBYShS\npLWCUrRo32u3tHE0nSfGjrC9Zq0hFwUqLaDbpxWGpDUqCero2OTQkhFVIGlH7i2q9WQ2o1vXpFwT\nfOSiO2V5uaDIwCpDtTPh5t17uNChTD+UxmSRtkYJi98EUkxcbVZsMvBFznKt2HaS27OqJ6W0iW2V\n41cSqTzSg/Irtr6iDQWmFGy6xGCwy9p9hkkBlQJFq6hFR3SB2ioGpsBoS9hqDsOWQnScX3310Iev\nZZDJxwVmYGmToKkSlpKUazQ9dVWrhhQkXqp+mqRkOhxzGdZM7JjRbIerz75geOWpg2diJIPRBBc2\ntGFOFiIGicoSvslov1gSdYYZZlTK8/wCTm5W/NVb+7zVBNLikuMvTvgeI2Q34HA0Ji8UV37Etdzy\nmQCxbvAvLrlql7RGkJmK9rrFXzfoUQMbzfWFYvGrD5n8cMsHf/59ymGJDw3dKkdZw3p1QXljD3t9\nD3d6jBOBdrUhPnrBic8Jc8fq8y+JmzWX5xdU37+F94L5csnlvGEUKwYyIehoO4HBI0uFEBHR5HS0\nuE2BouOjTz/8Olr3zVaCmARGZQzzETIFnriXOCfZbFr8OqCKyKaRyNyzrD1aedqoUaFDDUtmwnK8\n3DKrKhyB3cmQn/7mMX/2/pSsnFKrBukarN0i4k0QNcnlCCVIyhMxtCnjerPlJ3/9a/7x16/47jsz\nnGgpqpJqUHFjrBhWQ3wbkPYcoUtIEeEixNA/a0VIZe846/8QSZ0A6Yhd17tlckNsDd1yRb5v+qyX\nCGIbWfuA1i2t8ujgWG9rhm2JqAKTrqRpG1zqAWyLBoxsmGaBjVXUG0frHF1IjIwmhBahBUZmODbQ\nerwwSAnBJyyKLotE8Z9u0e9kJVBWYZUlih6yB/2pVyVJQKJDBKWwEYLx/ROeMogQiLHnyaS2QxuJ\nHRes3RrVLclGgcWmQzQNtYXOOkqjaWJClRmyknRSM06RrV0iHDzvnjIKQxhlCDPBZ4aUCtSrhsfP\nl/z8k5/RbhxTMWY4smw7gTq74KKRDO0YPRkxmzl2D4YENWBiM2xWYLOAs5J3Dv6C8c37iL1bpFaj\ntGdn26C+b/jW4g94/Iv/wMvL51SzB6h1yccfPWJ3XGHHu/itIB9aNluPVgGbWgoVkbrCRUEnJSD6\nU7X+f7h7s1hr0/Q863qnb17Tnv/5/2uuLvdod9x4iB3H8YDTISICI0AGLCRkpOQgObYgHIEQkkVy\ngMQUCSIR45DYBCdY6bjb7jbtbru7uru6urrGf9rz3mte3/ROHKwCRcQIgQu5OvfJPtkn63tfrfV8\nz/Pc153A+7tdJqQI4UFs7clRCbraUpgWr3MGZcl8ufyTvgl/pAZakkRPz5anlPiIdJEYJRgQ8v0X\njRBJg6bV29WIRArWRLRWDE3B+fUVe3ducvjgLqUBUo+wWy5M5z21CwwqjTeaZZZSCEUrA0o6euGQ\nQm9t3SZCqlDBIGuHo0XaGr+EZjenjAaXK3wPifCEXkAdEE3L6dk509UV1e4BJ/Ua9+SY9eKK602L\nL1OoChKdYyQkwx3SqDn5wte4d/8GL/2Zj3Pr2ecJwiCV3yZux0AQgX664OTkEcPhiKQsOD3xTDKD\nyDQ29PR9oDcpykgu1ZwYPDWWJN2giopQS7QKSCV5vGwRLFknKb3VFL1irg1J2xOVwRBw2YCNS4Ap\ntfnjf/H8/1LIfOIjtykmQzauRVtFDIJOAomgyzdkVqFxCCOQKIrBiLzMES3s3tilny+QTNG6RfjA\nvA0sTt+kcBqvEqwGEwQDsUYNdlggmAxvcjAYIO49RSxW6NZj9A77z+T8peER/vgQNe3wZxtMv0Lt\nHvLcvXu0yZir1QUPv/UGry6XjDeKtAusTMfEQy1TatWw09VUMWevqPjWb32ZZ57dJX68Iq3h9MlT\n9g/3yazFqytm1Yb1LU1aN2S5gb0btJfX2MsNuokEERF7kjLNuNxcc/nmu7x1/DYj2SNNjvYpYhzp\n1h1Hozs0ekN33SGMp+oj10tYLz/c2Sb/XxSBhe8pETgZKWJPEj2LIEm6SKsteq1QA4tizPmypusT\nonAQFD5EOhyZ3hYSVnV4V1OMCrJiTJ1GMluw2awpb+6ArxHFGCElxC3V00fDF7/2Hf7u3/k9HhxM\n+Pmfu83B8CZX01OOF4LXv/0mXzp9zM7eLlIadivJ933iFe6lhm89eci9OwMO7xmUrxFObjswgu1f\n3RC9YrqBMo0UJiCUZn/YIqIn2oDH4lON8gpjBMIGXNBIG1j4NW6WE1QLQRNioAxbm36iFFUB65Vi\nvp4RcGRJQhsdRihyk+DaHu88Kko665E6EDNFdJLKeeT3rPtty4oh2YJVdNyOlVS02zGB9NuzkB4r\nArH328CCGLDBI2TEhEjnw5a1Uzt6maKkg86QuYhVEe8hFZYYA2QNg0riRYFNemwbcRuPDRGd3mW6\nVyCbCaVzyKWgX/c8qq957Y2vk9aSkU3ZKM1OmXJwaxdx8xnu+HtUY08iBog4QJYNJo4ohykJhmow\nQOYFclCB8/R+iaBG1jmyFMjaEyd7vPAv/AwvxgwbznD7b5M/Tnn9aw958IOCyjq0kmRYIp4ei9Sg\nlcJaUDqnCTNkTLHCoztBn2ytPU4IZPQIr1A+4L1i3i4xWcqgGnxoC5mh1kTpEURMACEjPkIIYCKo\nILYZXUEQBfQuMga88PgQmAz32RmUnLQnfPzGp3B5glpbPAItFI6IqzuMNnRW0xpJERVaQK4kBZ51\nphiLSJQgm8i6ikRXIzYBFWp87cmOboJO6fIhTg2QdIg+Mn204fqdJd85/y6+XdGXOd+YLalXC6qr\nNVVoUYMDeieorxvSwwm9tORe88ytGzz34A7fffQ6r/+NP+RHfvwH+L6f/FnSvSG4lCgdXikSBXvD\nBKUDw4OK0bsj8kTRKkm/9mSFJ4vb+BZhPa71dFoioib0Dm0SgjNcLhuoPYdLyXIgt/QDHISIyg2r\n2JGrjNK1+JBRmhTb/vFdbx94ISOkZPfwDrWYkgRJZzRBwthvU2T24piZv6INkREjehHJkhTRwGB/\nh8KM6K5eI3U9uAYfJFKXDEOkSwXDIke4FOcs8xYGa0fiIq8//RwPdUrnDEPlKGzOoNWo7h5WrvnO\n/DEvf+TjpEcp51+tkZfXaNMy+egPcXvvZY7uPsvtp1c8WjxhedVwcnzOurBEpykVtOsT3JMpfZpR\necvf/w//Fv/iX/tXuf3p72P/qESKFLt4jdn8HCUaxK1zzMWc2UXAdIE81PRLTe8V03tj0uf36IRA\n+5ZyR3GwkSTqJnqzwroNlR3h+oTN8hqVGbomMF32kC15fPnwgz6dAmDqAAAgAElEQVS2D42CS9gZ\njAhJxK49de+ZJCldDEgViWL7paR8YNN1XG0UNyclWgmkiDS9pEolXnnykFDHwKdfHNEQUU0gHWvO\njgP9Xo6MmtykUHSgIguv+C//u1/n87/ziOee/T4evHibUb7Do6nl6486kq7h+r1z7j3zHOkdxfXb\nJ5wvKx7+9j/hU688z+9+5bsMv5bzM3/hJZ4fKZJcIQhEFMLbbW6SdJSmJxV6u4OQKkwcI73HJyti\nD0pGdCrofI9KgFXESJj2PWkI2HZDVGNCa6m9RQZLlbbMXIoh0FhLlSTUvmeQKNZdipMdVmzpsjEE\ncCkiDVR9ZKO2LW7i92ZLJkaYrwMPCFjBFj8vemyUKB+IIWKlJ/WBBokAooyY3tKFQNIKfOIRuiHR\ncrs8bDWN3UEkc4RpEfWSRgpyCqzqGY9LkpEmZJG67dA9WNZIWVAmFW1T0a4aTuWMdbtBXlxy/NaK\n/vSYQTXk8FN73Ln1PEU1IZg9FPtImWI1CG/QJkcLw+jWEUkqiI2kDxtmT97B+UhSDGmmC67WxwgS\nbt88YGcwwoULdJKjC0ngNjIaBkEyXVwwfzLF7A1IO4c3Hctzv4UsopAJuNai04LFYkPjOoKL9Ekk\nBsE2rUrhdLsFD8pAkJF0LYhpQ1qUf9LX4P9WqU5o2X4GAXizDYNUYVuYdUpRCLbLr31gZCIjYzkJ\ngZ0sY1IUTFc1B3tHdFKSOEM9v0LXjtD31FGilEHbjkJIqnwXoSO9EgQDNiZUsScoQyQShWe4Fqg+\nUJuaJAjcZIQzY3IxolfburyqNY/fPeXRGyc8fespZ/4xu4Mjnt3dIxkfMc8OuFh+m9gGhuUIQcTN\nWsLpGosllh3HO477O/cY1oc0Z0/4h3/vH2Bnlu//Sz+HPtxDiojMNb4I5JnF1mu6OqUaBUaDHVyR\nkC96NsozEQlPh4FRrYmiR2hNrBOiDXTjbTjvYr0i0R1CdehQkfrASivSoFArSV95EmHoE0UlIO17\nFvUfP6frAy9kDu4dEqPFzjQrGVA+YPAsVSBNPBdxgw89g2yXUA3IWsfF6TVFkfLKgxsszr5D165Q\n0lHTsBdzTOJwRYExEDJNYj3aaq5dT6Ytw2GJ7QPdccIo1fiRZzOdsXrzBB01XYgciI43H32Jg3TE\n9UCh2hHJ047+6nc5/InPYLJD8uc+yfPP/Qgnbx1z8dpDbmUD3n3tC4jrNfXZCndyRayGBC1ZXx3z\nu//D3+PPP3ObYlTh128yr08QrqEcTGiaBWdpi92FZ3TL6uKaJ37M5BMTNrtrzq8aLtYLBkc5+zdf\nRmeHvPn4mrq+RqVQNyvquGKxNtxKR1QjjbY7CFEwvzz+oI/tQ6OqGmKSEqRl3gn63lOOJYlICbLF\nKShjQhcs0UciHmcdMjWUWHopcCLBaEmz8ahcMchG4Fvm3pPHIZNbPYPOQhqIeU3MSy6mjl/+5f+W\nN9Yw0UNit+Sbb/whZ90+dmWZPV1x9/4hSTrkbL3ip+QrTO8Efv/JjM/cfYG8X/PC7Vt84dtnLP/7\n1/nZn/wk9+9FDnc8wmswAbxCxp48TQidIGIRKiLyQNs2pAKcCAQraFQgpcH3OVY6nEsYSFjZgHWK\ntI/U/QrtcrytQXhUesjx1UOGWtHKniqpCN6htCd6EL2jER4vFEZoTOtpJcQocUrxvdqPARBJR4jb\n/LEoPfgt1NALQZAB3St6Hbb/47YQ+rVIwPXbTBvtGeUZMu/Idva4Pp6xDpfsB0MjIkFIlKjpjcIl\nnv0y2/7447HWUeuEZm1IVMbV5YqT5h3K2QXxYsbjJqVGMBHn3Pu+AftHD8j1mHbesZ6e4eIl2fAx\nxkzQxT758JACgdWOd177PP1sTYyKtttmBUmZgHgX1wZUlBRDy/XZY56eW+4c3qY8HBIRJKYhZlDo\nCpOOuThfkSYClxkqFO82C0pTUGhBaiTzIElokEWKCholBaKJOMU2RkNGVC2xBkIfiEJSm0Dsa/bK\nig+rh7LIBMKDigEvBNqxdRJJSQiK1HlaZUgJhCJSyZpGRlZRMBkWxLZh0Sx56ZmXUH7DobxNW79O\nDBYZelyU9NEQEoEXGYPUUIptQKXF0eYGlCT1nmgMIXXITnGtc66TnCw4ZsqxmwwQMpDOe6zQfO2b\nb/P6t76OaQWrvuVoXHH7YEQ5cjw5PeV4PkUsa/bvPuBiEVisl3TOE3VL58F4Q/vmlMfmGloQnaGr\n1/ze//y/8N7xIz77V/8y1XiEtpo27FAOnuXtR7/P0QgEGgj085bBUcFqU1LvbUiXGcpAKjy+idjM\nM50nZErhZcKsWSMTz0znxBgwPmCioAcmUdLHSCoEvhDM2g4vMjazD2Eh8wMfO2JHR3q1xYTrDIzQ\nSGvpfUD1ESVL0nKXvvOoomRnUJLonIdPn2K6KUdpj7Kw8gluGBFZgtKG4Gqa5oyNFFTVProPrLuM\nclgxGBSs9y2sDbt5QjEoOVuvGM47qmGBGw8ZTq+ZX0OOxg1Lgmy5upqy+fKrVHdH+I/9GfYn95l8\n/wH3nn+B+vqCajKnfjzg6mSEcAlKlyxm10hZE954h9d/9Tf42L/zi1y2BXmX4ppjGlcjXSQpLFEs\noH3Io7hH+dwLqJsFd1zGu2ZBdlDgWseFWPPt92Y8fusU0wViNPjQItYZHo8MOdL07BmNKWY0y/kH\nfWwfGlVljjCSREYulisUUPcdO2WB0BVdbtCbJanJ2PQNu+UNgvIYPE3IyXPN0KREFRjtSBKd0bY1\nTgpKmSL9mqxIcG1Llt6iLhK6q4b/+Fd+k2+dOW4fpPz5V+5zPnuPSkqGaw1mxeAokuee4Z6km3Z8\n7fHb3Ngf0y0eMf7YfXbHNZsk4e4bG771xjEXlxv2jgT/1r/5YzyYrFBKbemcISGKniA7Yh3QImJU\n5Hhac+ugQEQNqifrNFYIhHKUwJyWEARWCJwUZCVsXGQ8Dtw52OFytWY6W+BaTxMgTTV5CCxEoJQR\nIwWXMSBESiE8yIhju0uSOoFHvv+++r2pdtXhA6Didi9JekQEiGgnsMZhnKCPgiAiCoXwDUY5iqRA\neE82yMALynQX157hoyTIlMw6uiTFCMnKwygIvALpC6azJTtqgDARJwWxbej8KYe55O69Q+j2OHxX\nMxeOm3vPYNURs1XD8upt6rVHykCUkXgOUlSUxQ4irRjs3Gev3GPVF+RmTNSS8aCDpmU529BteprN\nlNPNEy7qx7w4eoGXPvERBlWOLQVKb2Fv0UTSoWG3POB8UbO4lkhmmP0RlVhjrcAmFUUBK6+RXYuR\nOdEIoo6Enm1uIoAHJyOpBysFUgiiTfBrSyg+vGVwrg0Q8CYjxo7gBVFKiBGhAvhA7jfERGNsS5MI\npq1gpxphLCzXKwZ7JUk+pBgWRLPENnOEdSQ6RaSRUFvC+y6lufRIaUgEJEawMZaNiARt0U6hA3RB\ncjFKMUJgomaAoM5q/MKzulzyzntf5eztCwrpeLCzg3ymIL3UlCHl+p3HjM09Skr0buRsMcUlE/K8\nIk5rnLXs5DlCpAz2bxNFzdlbX0UAXWJol3OefuUr/Oqv/Bf8wl/+JYKBJtTEQcL4xi1meHQxRPSO\nrnOYpMRlKTuNwWaOtpasQ0KlwTmP2pFY2yGswK9q4jql6lYEnXCiDLtNzzRGjkWDtpI+K9EhZxgM\nN/2C9QcAVPxAC5my0Owk0Pmarl+TJxWpLqmbli4L6HqbEZQUKQFPUILgevJqj0QJ3n74hLtJgtcT\nVLqgTDRaC2LiiXJD7zakrtsiyNngfUHrI9OTKXdvphxNBug9j+8VWg6Ziw3fuDznyA8o2oDVEUqB\nTDxn10uUHOBevEVqV1y/PaW4d5fD/i6dX1Io2H/lDrfu7yAHBTrfUjPdcsbpF7/D6//oN/juk9/h\nO1evM3r1q/jhkOOrlnYNB2oFqkVKSex6juuOZlJR7da4q2O+M18wqY7ISFl0HeNMsV4sqfsrpFA4\n0W3fKDPLQA9wsqNUFTt5wmvvnuLDP2dupX9KI9OhdEvXJDw9vyZVKSEK1p2jDBKPodKw8lveR2Is\nqJxMO5pg/s+uRoZGREUQCpUYYuhJ8oyV9xSJBjknxoKz03P+5t/8Eu+9ecFnf+hTGPcUW2wwC0cd\nS548fpsfvPsC+6MFc7clK+/6nunJnMX0kh99/h59d029yHjj+ow//fxLPPvDzzF/y/LkdMbf+K+/\nxC/96z/MC3fWCG3BakQQyFgQoyP6gPbgJEilia6j9wJcSpJ19LRYnyGDYqkbvMvQSYn2krrNCNJy\nf3fAty8bZvMZ1kV6YCQkK6ASCVZ7nHB0NjI2go2KROnI2VJLHQIlLUJ8eH+M/p/U944QFFI7ZNDb\n5/l+PIGToO3WlRJ9g0okRnoatyavMjACk2giGYM82z7z1QqXJTjncDKQyoSoLcFe0+sBvbL4XtCE\nlq4oCY2mySNhI9G0pEKizSssq0AunpAue5rG0Zkekw4ojm6RLQVaGdAeuYpoUWHzOZuLkvXJCe9k\n38XVgb3xmFwYFoljOfM01ydcrWco+ZhSrLh56xb7u4o6Wq7bK0aLinKkt2RYUqLXaJ2SphXXZGym\nG3ZVTu8PaeqarAwURpAkms5pmm5DgkZG8EEBESkEdd9jgyVNFLH1SAVOeFQfSWrzJ3wD/mgpIbC5\nYscK1iaC0AQftu4kG3BK44Wil56Ap0wMTe8ZZgOGZoRZCE5cy8effQHXbzjI79POjmkWNdE5lPHE\nLiV6T9cr0rxgYCVCRtokkqHYWTvaVKGkoUFgNGy0YNlsuDO3hDSyQjJcOk6WM771jbeRizkHkyGb\nRHJuIuPzlne7hOVigy1T4IK8S4k6cq0NplPIFMKtgnyjSSYjZnbJwzc+zzgbkB7dIll6OrlCpwVy\nfsnZb/0jvv7SA1789A+SFpqA5s69TzBdnDDYS6lnl3gco8KwcQGR9hSdxA4zpnNLlgcyte1qzRaR\nfuEQbUuVWjatYB48QgdmiaJtl1TeIHuFlIpEB8Kw5JFtWT7+47vdPtBC5vs/McK210TpMMER7Jp1\nv0eWKZSV4KAYpWid4Z0nERqdl+gqx3SSWduSSEteKHIZSQXkQrBRDX4DQdVEK9EmpZM1LSn7d/ax\n55eYVYvILbPKs68cOoyZpId0vqFuFNL1ZPkI7wQbLzFpzreWDYsGfni0yzCecv47X2UznRIWguga\n9u4eYGyHPdjjpT/75/CuQw9ybv+FH+Xopz7F+S//Z7z3zf8RX3yeW88/IMsHHBy+zHL6Kmo6R1Yl\nrXkGP7lE+ztc2hnu7AllckA2atilYDhSnF8pzi+mjMiY60guDDYGrmYd2rQImbM/sbzyEcWv/q//\n/OQq/VFaa8tN1ly1Q5Z1x83xiF6ELXbFOaLq8bqjs4Y0RrIY8MrTRUOpIk2QDIQAoXC9RWiBQCLD\nFu+dJ54YA6+9eso0POXVhxd8+Z+8zo/9yA9Rto/50T/1GdauZbV7hPWG09/5Ir/5xpt85sE9TjZz\nhsMR0XVcX12zMx4xXa04aQLvzJ7wcK5Y6Z7P7I95YU+zczjh1W9c8Ld+7fP84mdf4u5RiSkE0gfQ\nAvQW0haVYjgst+wYIxExEouW0EtCETAuZd4rrEtAShrTU8UxV2dr7u7tYJI1eZpAVVIe7fCtxycs\nnCOTGh8D0Whc8IAiKEkMWzePFAEtA9JJQjDfqysyAATvQIP2AqcjKsTtkrUUSAt1dATbok1kqCtm\n7YIk0aRJSW8tVZFsn4sytJuWJvTkvgMncElEYwhe0zf1tmNR53TjHukhKkUwPVUjmGdrut4SOsHV\n1WMGe0c0KkHpBmEukJunXNYllRcsRKDrK0KfctFavDtlb+BxYcag9cyvJcnjlq/mr9M62O1gkxXk\nfoYetzx/a4+5nzAs7pCN9kmzjPpyjVaX9FnN5GqX/mZNOtgnnzziZj1g2kXWfc7ics1OOaSOkmRT\nsvYNqfB0InC9PKft1+AMUVuk2DKbbN8QY6S1FhEkUgYSJwlpoDKCUZazaD9cJoRESkoCqzRDREi9\nwBPwXuJRoCHxnhpDqQydtegkp0hzfHDMwpriZkE+TMEkaGVZnb2LcxYRA8IoghD0UpEbwaWbc5Te\nwauOjTQEGUicRgmBkD1rLUmsIW0c7WbJ2+99l2mquFdXXBze5nTluF5bdgYHpIdj7h/eYrpckt9I\nGd/Y5SDPWKzX5JvAvI1sxiU/uPscX3r1ixyWDzjcPeBiccF8ccH51Yrh3jPcfXAI45znixtcXl0w\ne/SEY12jCvj8r/4ausgZVBMWoUUPx1BmZL2m02twM1ZuQJI4vBZ4EchDQVE4XJSQWUyUjGLFG++d\n8vp1Sz5raISjk4FJG1l174/xdAIhYGVA5IoyRqpGwwcw1P7AChklBQc7GTF4fLc9QGVBmo5KjVlh\nt3sCQRFCj4s9g8l9bjy4iag9X3z19zhcZlz6nptmyKL0GLNBCTAu0LvA2ig8ht1MQCHBW0xoaOlp\nrUeYATkw6zr0/hUHt+9SXmSkB2MWZ+8i6jVa5qxCzjkb9CDjaLHkDfeEfd3gTjNOL2uef/4F7uzf\nQIWEzeWc+q2HvLH6HMPxhOu44cFLLyNKxY//lV/i+j95k7NXv4GcCUYvHjF56SWeefnHePjab9Iz\noNrb57IdsjtUvHvaMRoLfCJx5x1zNyc7yvnuWxfIvmNtFGkv6UMDiaGoCjarOednHSMTeWO6w/T6\njxeu9WGXaCKxUSxWSxAZfQhIoxmUgpW1+GjopGBXKc4Xc9DPb3NLvEZoSKRGxYDUEqELtA/0qUZ1\nYAnIPvJr//jrWJfyuM7RxSvkh0+ZHCg++1N/mtsv/ynseoY0oEzGZz72Ir/9le/y2skxL95/nmdv\n3eViekq7uOYnX/4Ebz5+k8XFCa/sHfCD93NmdcPDs1MMgtFkwEdeHvEHf3DMq196A/HpnGhusb+T\nM9AG9GbbilGGjJwYV1gnQQZ8HRFJj6wLfCK5qluGpsCZgJIJmgh9j7V+67gShtl6xv7hbfbvTGge\nT8mySCc8JsCq71EqEImoYEBCiBobPAa33Rn4Hh4t9X2PFopeBFTcFjRWOOglnWgREfLEYHRg1a1Q\nUZJmBc5E4tqh0Ngg2bQWQ00n5gw7WJOTxe3uRGuhcYJucUU+hNLcYN5foZYtk92Kedah12AbT5CB\nVXeFXHuESOmHKUW6z8HAsSsdfmkRfY/sOubdip06MG4iV6JlB4FNPV5N0C+0lB1YkTIxHSrtKKNk\nko1wzYh1PWWv0khTUI4H5HpMpSrEFITskE2HLm7gDvZI146jZs7pChZLwVJbjE5YeGhbAbHbPrM6\n0ixrXLS498Ft67Ah2ri9dzqijIc+Iaqtfd1LgR4W8CErZIxURKVIfCQCvYgEpdExoiXYAI6IkRIr\nBb3S7BQZrYK+X9LmPc/fuMvlZsGd4W3a5TlXx08YW4uUAhdBuw6lJWmiWFzM6SdHJGkkNZbMCrrU\nsUkMiRe8D2WhFYK8StBHd5h1p7z1+JS3VhsG9oCsusGN+wW3x3vk4x2Gz94gVWP2h0OyJKVzDlFU\nuCAxpsQQeNK8yF46oaoyyqOKxVXJj3z6B9g/HHPzlRdZb2aYCA9spO4c73zlD3j1t7/A6eNX+dzf\n/ttYDcOb9/jkT/5ZyvGQZJwRpgV7lQORQhahkwgc635NZjxBCpRPaVAUpaFljQk99Y6Ea00eBbWR\neB8ZOwkRhNoye4wM9NEhdMYHYZb8wAqZ28/eR+gBttmAWlHGlsYMqTLFOgb22GUuL7G+xaCIZAx3\ndzFpye9+4XO0TYP1gnrmWSWSQamJfc5aS1Bui6RHsyoF06FiSCStlnRZTpb23BgZRCKQuWWUJJT9\nDrrU1IMN0UUMN7nYPKH3Eq03qKgRdY80iumlZGQzbBnZbK559Y0vc+aPuB9vkixAiBJ5OuPJa49Z\nJ5amd9x74aNUd+7yF//af8Bv/ed/nfn172PfvMNL+4pp9UlEuUdVpZQyJWtyikJzdd4RA5ThkpOF\nZjqIDOuSs6vHjKJn3ipE2ZKHAc73JNqi85xLb7m+bnn1N37vgzquD62G5NSd4WJ5TFVkbLo1VSwR\n2YRBssAHqH1FYWC23HCxshztpqTSI1AQI42TyGBJdcBZCK6lSMB1kf/pC2/x3jn8xA98ii/9w9/g\naj3j3//Fv8hPffJjSAmSFtUH0JrYeHbvHPDnSsO/xMc5u5hyuVjz4HDM0WHJ7Wc7bj94kc3sPkXW\n462kiAHXd0xXT6lizsnZNa/uTfnDY8etWxHXXfDd2DDYvcWdccnN29vFuiBWuF4haIlekKQaLzQ0\nOUIo6s2awU6GR2BiD0KRpoF60zMoJTfKERdBMb9ccm/niD+IF6TRI2JCiIq2BR01LkikCQgZCM4T\no0HKyDZe/XtXbdPR9QFtPNLBMgXZRQgdQQkSIXGiR7YCWRqUZQsHaxxOShrp2RGWGAa0fYLyGY0Y\nkZgli7DHTt9gsLisQMbI9LhmMqkJrebN6WOeKe+zQ0pnwOU9zgdCv6aderwUDPOEIAXLQm3jt0aC\n23bMdeg5WKTsJTnLI8F91VEhEK3jpmvoucmt6ZpHF4d4c8GkbZk3gjb2pAPHJz/6GY7uTNgbHJJO\nDknyQ/SgwssFcR2oRYKRLcPkHjZpmaNpgdAskG0k5gbdeWTwbLoOb2HjF6xXLbZv0KYkYunqbjtq\nUtuX1hgVLlqECJjOgA6U0nD9J30R/i9SWqFUQNtAqyQiSmSMSCJWCGLw9DJiMAgEidI4vX2ZtASK\nIkXKgq5dcWMyRl49QvX9++7JHmclSiqc99StI+093714wscfPMC5nlUmEFKgeoGOARkVRM9lE0iH\nE3bujZB+yFO34e4yYzzUHN55DhWXzK4u2bQ96jzQJRk3PvJRtI+4UYULDqkrTK5QWcoPfexj7JR7\nyMSSWEkb7jC8dURTr9HRMSxTfDDkKmGiE27dvc3de/f49X+QcX3yh4zqgHnL89tnM77/sz8B4Q6t\nMiiZQ99QREOUDmUFgoDwGSYEQmHJSUg9HFZ73J1kfG2ZsOc8LsBGePIAGyNIYiSTkWVfk6iSxERa\n4T8Qk8EHVsj8cPkMWbdhHVpEN8KqEZP8BmXiuO46nFKQp+iNo5cJg7xCKMns4VPEdE7qYZkJQtvz\ncHECyYRJ2TLUltyDSBUkgrG26N7jpCRGxzpa5ECyyAU7qUX2ipgFlnnHwBnWZ9fsjC9Q8h5a3Ofg\nYA2x5WhPY/uS6aVjIR1vLtd4DLkcoXXP5q0L3n3rMX0csJgU3DlL0dNz+MR9JLvMN++wf3LNjRt3\n+IX/6Ff49q//N1zO38XWjqtpzTAO2DG72NIxVkc8XUsS/Q5dXqKHe6hUw3XHd9+ZUi8t68TR6p6k\ny2j6K2xjEcpgjOEZYzifwvG7Fx/UcX1o1emEokiJPpCZSO0jgyrdMl9kSux6BuucftyQJgWJmYDf\nEDJNCBERe/I0I0RN76FUYJyhFx3feer43Kvn/PV/9+d5ePYq/+lf+QWktAzu3Cb2Z3SLHL1pwSy5\nvFTsHmQon5AaQ68T9m4/4OBuxnp1ynJl2CwjSebYxIjqZgxIWG4uiRh2qxFvddfce6bkXxt9ir/7\nm1/jv/rcE/LJkHtZz8VrSw4Oc/6NH32R4VjQWY/oMlTSEz14OlwcEIcdy+uKq5Xhxo6HCN4q+tgi\npGLRwN7EUaRzymFOnmmUumRnNKFbr6lyRSc7pLPbBVcj0FFSR41RPRPbs1KGAov6Ht6R8SHQxR6s\nwSlP1ipsiPRKUvqA1YGEBJclFNZijcK7DodAS023aHHDAp0LHAmInGgtrodCXrMICblISKXDe4Oz\ngSdPG/b2nwf1+7z33iMu9g442FXk0tBo0BpkJ2h9x2w5Y1AkVKN7JIVGLxvOs5bJakR92JFYw0gp\nEkYkSQo9XC9ndE/nTO0xZnTO7nBMubvHJ4Z3qXYP2L11QLC7VMUQmeXo4FBlhkgKZByBtlT9Eu87\n1qsFXQbWpYxaT5tCu3bEPiJTQ3SaDke/6pgt5lx3U7yNGBPoGo9oPUpKEBJFxPqAFxHlYZ22jKXG\nF3/St+CfVaokmoQ2RqyMVNbRC0nwgiC3jCUjDVobrO/I85QQAoqATFO8gov6ih+/c5d+rDh0Ax4Z\nkFLiPST/R2CthdZ1DBH0JwtOxhfcGu8j20giAhmONgXlJSJ4LruIDwkDZRmh2XvhgCbu07uIk0ui\nCBSDAZ211K0ncR0nX/oy9mif/aPbDPZ3MPsVXkSidaSZQlSC2KaE3KFFQcAhbY8uEla1oF5fs3N0\nC2s7IoKjT3+Unz+8wdf+8a/y5ntfpbr1HMNvnfH1v//ryM/+K6TjipgadBKx3hL81hVojCZmEtHl\nKF+jYqTzNevVBf/byTkv+oR3q4YuaPacwvuaNkuQTWDsUi6bjkzILew8/WBo0B9IITMuDcPxlHqp\naceKKklJzZCQRhatI7QZbbXG16BNwt7gNq3saacLXn3tVdojx+A4RTcS4SPLTcfjZEMXE8IiIG9Z\nqujQejtrs77f5tYYyd5QkB9ICmtQ2uNySawD+SCnGJZsejBZDoMpR0cPqDpJr4fEpaLazykGlvat\nuzy+mFL3lpBvWIuUJ8bhgmTHT5n2jxl2AZP1LJuGzYljcn3MxeCIZ5wjpjC99TyrDlzXUTVP0bnC\nl5ZURk7QCBO5RiPFAbXYpRUL1l3L8elTpLIYm9HPHau4RkZJkJJJnmMGmqyxnC3++bVc/9PqZECn\nmmeO7vPtx0+wStDGmlE3IJYlrZ8hRy221+gssm6W7IwNRIg+4oQm+Ihm23HotCJkPZ3LuVhf8fHb\nQ/azY7qxZndP08kKY69QJCSTgjcfv87DhxaZKD7KfabzY6INRAl3bt2GOKNreobDJS5okIGBbOBq\nzbx0rKZrZmcNh0cpN4ymjh3Pjdb81X/5JX7zd3q+eRV4ZrMrnWoAACAASURBVG/ET9875GS54c3j\nd/n04SHdUqPHgdQLWh+IvUEkHuE075xccbiTba2jHmJQKBFJkxzvOoQy3K9KTvc8rg4I2zEuch5e\nzkgys+1ClgXzWcduIfBEdBAQc+aZx/TQS0X8Hh4txbC1revU0bEluQblyIPAKomWAilACYdVIJzD\nedAyEqTEJIoezbgqUDLBJ5EgHNFrrMvQqgMlaa3ahoHm4GZzVFQUo+dx/pTu8oqlKwlFTpYaNAZy\nzUCUrDaKVe2h65mQ04ia8bKgLS2FqRB5zkCNkSNJaRREw264Q/y0IAmS0DsQJSo5wIx2EGaEZIjQ\nervVLAKQEGRDJEFGuU1aVxprPakGiWaYdcwzMJ3B9T0LZzGtg8zi2sjFxTWb4zVmJZnRYmKg6Vqi\nB4wELwgKVIwIscUfyCAxjUJI9Sd9Df4ZjROJ1IFMGJSPqOjx0mEAFQXBKKSWdFIgMViVIbH0QpMg\n8asafSQx2Q5JnXN2vUZ7IFiEkEQ8wW3ZRKkU2NCxVxpO3n6P/OXIeHdCVBCDoA6SNDiEVQjVs+4X\nrJMEkacI6WgX16yDY0JOJiX5xDC/jsgjSTNtkH3H5TeuaY8vCaOK5z/1GXZu7BGylNP5GWdPTmmb\nFSatmJ5dYfuG4lbJ88+8zMnJGZfXS174SM24HJONhpRdzv6dfX7u3/73+JEnP8uT3/4N8ldu0P3u\nl6GrSYpdtNREEcFtoxSicPSNwqQaIR0g6aMktZGvfO09Vn2PMym9lIw6zzpVhFiw53tcbji1liQG\naHtyNWDWfDDGlQ+kkPn03rOsVoKQe17qbnNcNnTRIWqH6XuSImNcCFZ1SToa0GvDbjXmzbffRq8j\noyalFx5Di0sFog+spysGYsRDs4FFCaME3zjydMPGO2SnORwKMtmjnOeyX3PbpGg0QmtWmzmxsXRy\nRJImVKMdin2D14ZifUj6coLoUion2L295t7xTa6fnPDO6VOU67Gl5Kg3pDtQditMSIj7BzzY2yGd\nDPn4D/00vpDoWGKdZTfL+cbpjHuTjltFTzHc3bb/VEUULcLNyHqB2TU01Yh9VfHV4y8zO58jgmet\nWyxbr2MUWz6E1AkajTWK1cPvzRyc/7cyukXGQFEoln0gNwlZqhHKoWODTg3eQhoKFq5j2ipeRNEG\niDFu90uCIsqeNFoEBULnnE97vvh73+G5ScK7M83O+DZRJRi14NFbC0hz9u/sokVK5TeQ5rz+9tuk\n3nG4f8BsPeOt19+iVxItFS8fTBB5SrsyfPub32A3rAi+Z/8w52YV+eZb72BCxic+chfnEpzo+Okf\nfo6fyQrGWuCSwL1+xMPHJ/QNPFnVvGiGNMZvs1AKh/Ipdlnw5tm7vHwr3T4gEUFBogLZIGV6HpHa\nEMWCG0XBo9U1oW/ZzUrO85RxXtB1AZvC5XSD3RhUoRDGIruEvIsEFelD8j7a/3tTIXq86OD9EUHP\ndvwRBUgp0ER6adAxEpAIPFHKbWp48KiqJETYTQcsadCtolUbsihZuYqJfR+m57ejhL7fupjm8xlW\nGTKzz6Dq2TRLCjxdotA+IguHISOVO9TLJf18Q7uTkaQDxCiSGo1WKXlZUSQVCINOJEpnCJkQg6b3\nKSoZEDOHEWN0NUGIHRAaRCAi39+XjEjM+0vOAdjGCQSlkHKCVY7gS6JcofUGUoPqA+5/J+9NlizL\nrjO9b3enu5337tFnBjKRDQgCBEVKJrMyVcnKTMYn0QPoOTSsR9BEA05UHJTJJKMoM3YFFkAgAWQX\nkRmNh/e3O/d0u63BCUicqpAsZKrWyCdubn738eP/Xutb/588Yoi0dc3l+o5hu+RWSIqU0Q49IXrQ\n42gg6ITyY56ZDICQaC/oKkvpv33hkaKcYOVoL2DcwFaPwZFCSkReobVAI8GBLNUIxzPGdmjrCUXO\nOyfv8Iv1JSevC6qvV/jOkZuIUGOQposCJSNRFcQo2Nqa+yrn/DdfsX0v8v7xEUE5iijRmaOmoAg7\nKt1ggkQB0luoHO2kZ3u9oeo12sxAeKp2hig12d4+vryhbmqGV0v+7/WSj3/8Yx5+/yesNoHm+oZW\nJU5EhpiWTLc58cLxq6uf0Q87mhC5Kj0nf/ADKqlp2hvyNMUpSXH/jI//+/+B13/+FxRDAb2jb7aU\nckKcSJIKGFPgXaKYJYx3eCWQ0dD0gd5mtEPAqsA2D+y3ml5KDAYde3ptSCpxEDNWbku7Gzgs9/lq\n980E1f7OQqbINKdnBukShVb0fsmwHphVJQFNpyIHIVIPGj2Z40TOg5Mjrl59zfL8gkIrNq6BJDAh\nI5Qw8zlL27NctSz2NG/aHj0tCEi8K8iTZR0celdQVh3lQnCSJCvvWAjPoDKO5nu0Q8uwbnkWFR9X\nhlSWlNk+3JuAz0hZhVQ51dmCx7nm5FBwf1HysvM8C9dIe0M7Hyi6Q1TRICYzOCq4P5nxur7gcfY+\nnV7hdx2FrXmcrrhXbJHt+9yUMB8yovBUUnA7CMxsTlCOStWcX/asb++QyTLoiOgjJhoGFQhuhNSy\nUpG04WXtGJz/Js77W19JOJJKLDdbRJCYPPCuWnBlamahYlLtaHtFJlq0FXx6ccuP3nlE8oJceYTU\nCJFwFr6+hSfvlhQp54tXXzGd7zPfg2FoOZ4eQUhgp8wPE//wm2f8u//9L3nnvR9weJxRZBn6aIoN\ngdVuR8wU80XJgTE0O8/XO8v519c8+/ozvr8Y2HY1Sk2QjcfPJ/xR+SHPb25Y95ZTLMYE5EQhi0Rr\nwQ2BbtlytR04tB0FniE55kIRZESS07Yz/u7Zr5hliQj4AIiEIpAwRK/ZxAEbJeudQlNzOIW61qz9\nwKPFPhfbDcdzjVQlH5ye8Zs3rzgTJWai6HOPEBHtBbmwfJct8WJIuDSuCasw2sYLRh+3BAgh/0m/\nKY4eIinhY0AbRS8iRQDKCX1zjUAQhpxOO1RqkWlACElQAp8GCp3jvaBLGeHukjWGO+PZXxQMMZHb\niM0teZMzFJZMamxlsXXHtgjMzTFaq9GyXkmSEAQf0NPsbWcjEYeSoZgjyhkhJETq8DqgQhq99UmI\nJEfh8ltYO6Ux94tEwpGSRgZHlJFCjqv5UkcwGpVJpIfBOYa25ebmjvbylivbEVpJLDNcZzFCgBrz\nqERMjNJpTE1PIhAlaK8x/tvHWU0KQxYF0r8dPUaJjBLKgpSP8R59iHij0PnYWWhjwMRA7zzzk2Oc\nFnw4fcAwr2jrGxprKXODEoyXThGIUeJIJK+JskQmy0NhePHZK76ezXg6nSCzDus11kQWaYZICas9\nk06RtGARMpxyVFJx1d3QXC2J1uNMRXn0iK7umJ+c8RBLsxNcv17zt//237H3o9f88Mc/5MG77xPK\nEmsbFiJHxZrceLqpo7kaEIuexXyfX//8p9xer5me3ePHf/pfc1CWNDEhFgvc/CGr6u9Y/uwXnOkf\nYk4ExTwRbU6I/q1/0NjdG4JGDAFiojU9p6d7vP/iNX5eEHVDIwUzEo6I0BqBxWlNLiYMwiEyRd19\nM3D47yxkPr73iDkZd8oyWUsa94bT/ZLlEJjsHzCrt+ykQoYTKmMYZKRraj79zWcYZbn1goPOUBcD\nInhm3tDlAaUUF13Hvj1kt2u4komHJxPCtKZHo2PGV52haMS44TOzmEFQe5j4RO86FvM5R7MFu6Wl\nDwku1ug9y97xHFE6QpwjZhUMCXGw49Ifs/9nP+JHe2ccf/4rPvv5/0l/c8X8/gGzo2OeFse8+M2n\n/GYuubeo8NMj1nd31NdLtjcNKVMMlxnZokfcg8E6nI6kJMnzCSvTcnfRobOOX/76c+p6izRyDDAT\nObHsKVpDHQeKXCOLDGzGVz//6Tdx1t+Jkn2BbgyfvLwhxcTOB66TJQ05oZIQArmFfBKxncSYjOAC\n0kR8EuAlnsjtuuXlsuPd751ytamxfcfjByeU9hk//v57mBxab9F5TiEz/uTDx+xR8G/+13+LNBP+\n5b/6MU9Oziij5sFsjxUBrCCJnmQlf/ezv8HFnJ88XHBvtkWLBU2Xs/Edzaah3iy5eHONzx5xVip6\nmTAyH9dV6dEIboeGaUwopXhQSHzoCVGTksQ6yb9/9prOWh7sFW//GwdCUEQdiAGyYYkeFLtQUGSa\nl8s1s/wen21esiinlFPNsIlMxB6BGkrNg7OHvHj9knf1FJMLUtBEmchS4Lu8tRRjJFmIhcAqT+4g\n5hGRFEkIvJCYON62RRLElIghEkkUeQkxIVMi+MTtakuUjkF6VGjREXqn/59OqR8KXGnQOBCeTpRk\n0ROGxPZ6h34056QXDHkgHxJJeRCJ3JX0OtE1PdVsIOmKLL0NRI8eVzlSkAgMTk/wVYmUChXWuN6R\nvCcWBUpM0HKHkBVJjPlSo4j5fzOkZALvd6QY6NuBpmsRQhNFT0yMPzQkrI/0fctqc8fyZsVyu6Ld\nOTI5ckCIiJeSjDHQNEZB0BGRIBkQFtCCaCJp79vnJXNYjHxU6BxBggoJbQyuhNJrPB6FpJAgXCIk\nByESkwSjOV7sse23nD58ymqqWMqGhVaYFBEIZJIoCUInvB8QShKToYmJQgceaM/zl19y/MFPyAkE\nJchiIEMCElKPEHo0q9MdFRI1NRxyyLwy0NZcrjtevPiC1CberAz3pgaR7VPdr9izUza/eMb/cX7D\nR+8/4P7JQ2bVHKcsdbjh2RvH3l4ORc9f/dVPkbXjwVHOH3zwMZP7e0wLCAtJsRMIO+H4wSMO5pbQ\nb9jdXJObnHxvDy0FMQUyn4hJk5RHR8MkH/Oj1s9rdtjRasCDSAO5r6ikYpuXVMLR955eS57oCTcy\nsgw7burf3dUXfkchI4An0wXbTlNMFV0WUGaBJKLzjrPJhOf1HFVNyaVj1w88ffKQn/3DL8hsT4tm\n30ZcaSl6yVAOVCGnN4njWlDLnOf9jnfkjFebNU4knpo9MFuccbhG82KdE63iKEJWDJjkaVNijwqd\nBpzKmJ/leB/p9UDlAtYNaDMBlfBpzKRZzku6UPLodB8zX/B0/ic8+PB7XL3+nGcvLxlWG+5mxywe\nK7K+YPXrJZ9u/j3F4REPDw5507+hrQ64TgtuWs982/D1K8d7HxwzndVYdcTk1NCkW4Sd8fr6kpnP\n2KoOZXOUCmg3Z2tatAclNWXKeRV6unb3jRz2d6F6obmSK7yN+BQxoeSm9hwfSlQOapdxKyy6GxvA\nRV4xSM8iJVKQ5LJDKIHvGu6byDSruL4bUEngQsMf/+gPebNbcqgPKPMKvZgi4wmfX/6MOwIf/Dd/\nTLMOfPmza/5+95zGrTBF4PT+PWaTCYXJeHN1RS/mPLk3x4fEJ1eBu/VrLr+6Y3Iw5f7xjG69408/\nvM/LtiFU+wTvKTykIqDJ8IPjzZuaHz7OaftEJQx50WIR3GwUP3t2ThocD47GiAIFKARSxNFUD0sp\nS2zwNKueRbHg66VH+td412AWEY/lpMx4vrrlbG+BLhIHJK7KKf0QyQqJEJ6EZGcM8Ts8WgJo40BM\nOXlMiFySJUGQCpUiUUgCHhnFGFsQEiEGykyTGQlSYpRm27XYVYNWAYIldhGfJUhuDBxUEKsGGQI+\n5hgjCGnkcAglTRyYLD27w4xJq+gLh/KSqCNKSbTIcH2ibjumSo7+NNITo8Y6S8xyhlTg5QGTaLCx\nY9jVNM2G4BP5tCCowDQeI/IZ0mQIX4Cw9P2Kxln2Z/cJCHAe7z2D84SQ6EOP7S390OH7nm4YaIaa\nzabm7m7J5uaWq2aLkZou8xgnUGPjhyTHEEWBRCU5pjgnCFKOQG2Amfl2CRkBFGRkA3jviFoQpEYr\niYqaICJBjNPaqALKCpxUZEAvE0ezA6g0ot/ijgq6L9/QNx15sCAygpREBD4ppAzIFBESgjbYLiCl\n4GHmUJcNr+7d8IO9KUPyDLnFxAyRWVRI+GKgsPlogZALCipEkUMIJLmgDDmnWcvpfuJFZ9ldt/jK\n4NUVIQ5MbaK6ifzq5oJP1N9QTeEkKt70gWtdsJ9JDtc12bBBPHmX+x+8y5OffJ/85CHoQBiATKOd\nIjxcIM1TRNhxMp9jiSQxdviGYDAm4nzCJEOUo7Ctg+T5z9+QQsGEnnYHSuQkJZAyoYOmlZZK5Kxj\nT13MuFcd4oXgdvPNBI3+TkJGSYEVG+L0hCcmoILGFDmNKDjwG9qmZiIN05hjq8SsyLm+uODN5Stm\nMUOLQCxHg6KKgsGOFqeF8twsYNYmto3ljcg5ns25vL2iHjp++PgEqi1diLxa7rgcSu4PJfcmMzLT\nsm8W3JaeST9QyIaVlNzPNJQav2lpzAkL85QuT9jdjn5oudsdsv1ih927ZXL8LqnMyfbeZfrwj7n/\n8Zecf/2GT375a56+8z1mruIwXWHbBhlP+cUnP6U5f4kWOevWsJjMeF3vWPnAT599ybGEyWFink+o\nqkNef/qCYQhIqYhO4nUgzzxb11C2E5oUEAps09Dd/v9/U+mflggD8brEOUuWV6hcgpFIJymqjCgl\n8mZNE1sWZSQKSC6jnwbyCEPUYwYIM47nmk++uuJvPn/BHz0+49lX19yFGUdI0jCQPXhANIpnn75A\newjtJX/2R+/zf/3dL2m2gQ+PzvjHq4put6F+vsYcZ3wmLVWcMBNbnp83XK52nAZH2WjeO9jj3oOK\ns3nBxf4+0iQeH+3TeMtE5ahpJFc57bbj9c0V033LvJzTJQemJ4U5zQA//dUFp5UkPzRY3yOFJMmI\njzm99ugUMSlDZtAHxZAKbmPP+2f3+OTz5zyaTRhSxoQFdR44LjrqmJhEg9ADVZlz1zacJsWgFHmA\naXDI77aOIXYdcm8Pn4FOEiciOnqiEIjoIGm8jGAdIToKkdCZQQiJFhqUxPctHkuRBCpGrIacgEsa\nUAghSFayC4IKh5ASI4GQiBJEFOy6xLQNuIkmIsmEIHMGnyVMEAiV6HqHcw3lNFKFEicjhQIpMqT0\naAYG6YjrG2R9B6GHmBg2BlfvWKstEzXHlxKVaTJpIAhev35Df1pzdPIArKNvO/yuww5bbDNQbxt2\nbUPdNDTtju1mx3K7ZHN3x932juR3wBHGaVBhVDASMgzurad6TIkgI8ZJvI6gwBLh22UhM0YoaEGt\nHGa0ZyJkEq0ENkEQCY0gxIBwEokkqIiJkHJNVuVYYTC+w754zfkvf04xJHJtIEaUSwidSEkiiSgx\njt+CA6SmDZ4LMePd6Y4vX7xgc/pDYg9Vn+NnLUUw4/cGxzZ3TIMBDD0WpUe2a6Y0UUlC8OxVGpPt\n82t/BX6F30Y0M9K8JWwde1KjXCRrE9kwcBw825kkSghFxdGHf8C99z5ieuB5dr3m3uSER9U+Igm8\n24BRKBcwT864evWS/OXXZD/4GNfm6KqjbS2TQiKFQkRBzD2OjIXqSdeW3fnXmBTppSAnUghJJyWp\naxFa4bDMoqFNPZWOmEwivqFx9u8kZHxM/MUnX1Hlb/hX9z/g7CSnWnTkzQGhCJSmpdc7Sl3jzMec\nVhP+t7/8K47KnI0fUEJRGI1wEls6sJIucyQp2NsVLHVLtSvZqB1RTTgqD6mX1/xjbDmel+SzA75P\nwZaG13XNy01EtBNOJ4n7dcHTRxbXN9QbzTPdMXmQU31Vs/v0a3783z3B3U65XCr2qymfXzzn1NSU\nJwcgM6Scjw+ZGCjn7xAOpnz8I8PRYhxd1EOH2LxHyAyPP/qAc76mXl8zFH/Ap0pwksNHjwtM6dns\nlrx8ccnBYsLnX+z4/OWXzFrBRrfELFEmwdBJymTo8x7TC/akpDp7wLN/+A/fyEF/V8qHisuuIWlF\nXgimc0mpS3rfIQPoKexxxPXzVyxySV2v2PQGXWWkZBBKkIue27bj8f1HvHh1yfeOHrB3NqP/7EuG\n4YqTvSfshoH64o6JKQh3b3iwd8wzD+s3N0xiw/d/dErf93yxW5MqScgMnezYzwwyOjqj+fCk5N5m\nx3Qe0fsaXVnOHmhUJzjKBEF77h8IUsrHl2YdWLs1jQ8cLiSni1M2vqHpAg8O93Gp4/M3O473Mw61\n4cZdoKJB5JEQBUI49JBAClIKiBQJwTKtMqZiizo85Oc6Y+sC227NbVJUWc4kk2RGoJIjack8V+xa\nkCgEnqDe4rHym1mF/H1V7xxCCHRMJJGQgBOg00iMROlQDlz0aBWRKkNriRKSpCQJzeA7fKPpyoaY\nBPiEV2/9M6RDx4RLEi0CLmpcgjxCVAKFx6uc4CO3vYeNQTtNnCeiDhjt0VqhARUD0QVoPW20pLal\nVYo3ux1H1VPM6Y6pnPDs+W+4/GpJHR1KS3QS2ODQThInGYfFMVU5o9ifcbA3ZWZmfPn5FwxdpDCG\n3vU4H+iaQLNrWO/WtOuGbb1hta2pl7dsVmt2yzvu+lsOu4I3C8l+1FgCmRpda60JKCcYNORJkrzA\nA0XQdCRmvWJXWKQUxPjtYK2UgEoNKJcRSXipMEislGQAITBogRLjWjEqjNCvTxTTCqElE1WQ7RXs\np0CzesVhigQt8SlRKIVI/m23LxFTGgUOFlREoNn4iDFTqnqHdz1q0uOGnKHRZCYQFWgVMa3GTTyy\nybCmQw9zdA7WZ8g9h3aKbdfT5op7QnPpA95oXFhRVoo4kbDucYPFhIgIMMeRFRWP7z+hTpKbYWDW\n7nh9c85/9f6HfPXrrzj7l0eosqK5C4iugZOCw/sLLt/M8DGy/OyXyIMFs5TQYnymuhixJHRv8CmS\nS8XkqUF/0dFbTZ8H5kqiVUaDw5ic5AJOjDxXdB4ZDSLMRu7vG6hvZGupHQb+4qtfoF5I3r085M/e\n+VPEk39ErSumJlEdP+bxox/yl3/+dyzEAiUAWVPGik4nfDdQpoIgHHhIhWMTFAOaVFp0o+lCxwpJ\nkU9YrtoRylpdMc0Vj54sCBhumwYXN/yHXaLPTrFTaMI+92YLjtjSL28xtuDu/JYvj35F6xfcLg0n\n7x8zTQPfe/8dQt8T+0tkERFyBoAQPUdqy+KDdwhDTWJN++sSeWpQK8uyDpw8+W+56X9NWe/4eO+E\nW7vjor3iJ2eHzKojkB03yxbrerpNQyoUKRhKpbBuQOUBERW680xmFdXJKS+/HmjX7TdxRN+Z0iW4\nbrwpCTQpGKQa3WubjWB6opmV0B7PebO2vBcFd81ANi/ZkxKJp/ea3nd4xpXiD99f4Ndr/ujxPsg9\nUjYnFyu29S31JOd7Jwt+cf2aH7/7mPPlOZqIcI4X5yveP52Sy8BS73NWNpxMMz6vHeud5r7qKE9y\njkMilp6LHQwbTTy5Y8+dkM0zOju6oZoS2mB55VpOlSHX48vVpMQwwPo6EeY5Yag5mAfavsc5oHCk\nVCFlGoFPoUkJAoHkEtF7tB2QswwVHbO9Q+rbG0yqQCh614MsWPUdJ/MKryNb26MJOD8wV4IhaZQc\ns6ngdw9w+32VtQNCjt0rFQU+JUQcxweEMUQxSAgk8iTAKLRQRK0wRFACoTI2bc9RdCgZsSJigiNE\niXISqxSShBcSnQI+JLwIxGAIemyloxKdU9geVgbmtaSfCLIhJ4uaoQrku32s7mkYKHaKvgiICG61\n5Wev/x719VdUxVPa1YqbYUvaeaLIiDFSFBnCCVKTaNQ5KS9ZrApemwVKeWKE84sbhFGoKCmMIcZI\n21ravqZtd9R1w3azYVtv2CyXXKxW5Gg2WcmRFHgx8kUxjp+NDBqvFIqIQJJkQEeJlw4ZNTZzlEOG\n1gZrvx3u40JIUspw/m3QpQJpJAKJNR4GhQyjQ20eBZbx9ws5TKsZnkSZ72EOJlw2Ld2uQc8nJJFI\npLfgvcCKcT4lCbigEApc0igFJEHtJYqMbtOzSBOGvEOmkTuyjGn0On+b1j5zFF2JyCNDb9hERyYM\nJ0pjpcWYDApJbxNbYK8De+Mp9qE0C/Ynlq3PSV5hjeJo/4ByYlh2lp6eNu44OzljNj/iyb0DpDek\nrkEj6B0oJVmjuPeTj9k8/4wwWh8Ta0mVl+yiQA+AkSgjqXct3Zslvq0xTWCyFUzODF4rXEpo1zFk\nUxZCYr0nRkkcAld355xU7+DDt8hH5rcVYuTLFzf8L7d/zoduzr84vMf+/WMOP3hE9+UNN+oV6iTH\nNePD3xWB2ZCPYkYOKFvQKE/RZLRETAw4W9IXPTJJWufxKpILw8thxb4p2UnP8+cNj0+mnMqKPp+x\nWjvepCUZC7x0PL+54/7JnD988IR+X9Haml++XFFlgnbZsr36iv2HJf9YL6lyw8c//gEPfvABMj9C\nyAy85ejeAYkAoqLbBjayYLbd4q5/zWd//0vefZrT94rb9Y4hNMzPjtjsCl7eRZ7sWYQ21KvE9eqO\n5DOcGjBag9S40DPRAteC15G5mtK1O37zm19+k8fznagkWkSyKKURKpA8eOWJIeNqe0FV3SebKR4e\nTrm7e0PeeWoXOXSCVeZQtqLtOo6OD3lztyJEkMNAkBnff/qEWBr63TCOrYYOZxP2YErb3DB7csSR\n0mg9YX235nhSkC8y0hCxbcNsuGUnC6Yy0kdN22/ID4+ZTQvaqDg1LUIFijanz7cYPyEvMlKC2IMU\nPU8yQSbGzYgUNYXe5/hgi+877jYNp4dTfGtZdjsmsST1nlAGUoAYIkqM2yLSC0Q2kBvJro/MKsOJ\nchxPJOdbSW8D05nhcH5MOwSOM4syEuE0XduyV+b4lNOFAUFAfMdDIwG6zo78iwQRIiLF0UI+jjtM\nTkMREikkhJZkQiKlQCLRBpRQ3C6XDLbmVkyY55GUIgNxTMCWijIlvFbjiryQqBhxSYEKmKCQwhOk\nIkuOlRNMdxC0oGgVTRkpTEBYcFkzZmp5Rd2BtwkdoZN7CHtJs73lvAnMJlMW8ymx0Aw2oWJACEUy\ngcZC8tAvl2w2mtysEAJ89AgkWmu01hRljlQSby3D4GibhrZpqLsNze2Om/UlO9Gy18+pJwaRxhV/\n48ZRCUiiSJiQxm7E25XvKBMiKJSIRCWxZUAUEr4dJ35LdwAAIABJREFUOgYtBZkO1CoysSARJCGR\nArQVxLdizMqEjJIoAoUUiCTJy5JkB8rMkPYO6J5dkLWgDyAIQYgJnxJSJmTyuCDeIteeFAUITRIS\no+TIZ6bIarNjdliQfAba0SoPrcQkgZoMxK7CZQLKROEFSSRUBJOVhIMK1SYmCaZH++iYIYXletMT\n5vCiXVLZljcBCpOj9w/po2DXtrxuHXo6I58W3Ds95cG9E37x2df86/ceU+92rHY1pw+fUioJ3pBl\ne+zqmr3T97hLNbd6x4Q9tmrDkYtELeko6YPC94LzVxs+/duvmAb4LHcUeYW0Y55ciaIRAVdmZCuJ\nQ5IEuNbRXb7Cf0MtmW9UyPy2lk3LX/91y0/NDU9/dI//6f5P+OlfX7AXNbopuJmNDrZDXAOBLJM4\nDxmRPg5IIZj5GWvdkEVH8mn8kGUgbwv6smawhtgFikwwL2s+f9NiZUSGN3Q+Q/eGT8KKH+ydMUsV\nX3z5nPOVIdMaGzVPjx9xnEfuHyva5YzN8xarzunLii+jpK1b1NxwdPwIkSXmZx8SoiUxcgXVvad0\nzSWcHPHozLBZWkRn+f4EytN9VvMZ/uKcy4uBpptzd9NwdXHFcr0lyDHbAykIylJ4gXUZlh0+SIS/\nY7OF7eabIbq/SyV8wRB25JlBSo31HUmVZCGQnGO1uWNPHxFLyWRS8GJ9x0k4wDuB9RkuRbIEOle8\nvG4pVU69c6iqRFeC2QxiMhg1sHc8up/qPOP0YEqzveBkfkoVLaXZIw1f8OldTdKGTEVexwqZMj66\n94DDey3TCPuTfYys2dcBLUv029XvTZsh80CMo6ld0B0maQIJT0SFHKECQ7JEn+GlYKbmrLvIcthC\n1JD3hKAQ0RGTQQVJrwLGJ3opCF4wXRScrwNHJzNmzjHLFftVyTpZShHoXIdSUzLtGaJgvV6TgEme\ns/MCpwW5l9goSenbZ2j2/6VsZxEpoiMkJRBRjq1/RhfRPAjSW3hRS42Q46hGxsBCzbBaYTvHdrtk\nmknU4QKtEtF6ohVkIdJoiUkRLUGZhEsKHxM6JYIOGKvwRpB0wrhEJy1W5YjgCH1O6ANxVZFUIP2W\nqxEJ30bapkVHi3P7LBtw247dxqE3BYWRSGDX+/EWmyJCCGyAFN3brbZx+5qYkEpg9Nhp00YBghAd\nwXmGrqUbRqj5enXBpu+Yuxm7UpGpgPcFUo0grxTjlpdnBJZlGoUNIpGURImAj4kqZmTWkiXDQP97\nfQ5+W6UZmaZy0HTZGDsihQIZER5QIyej0thhkkCW5AhuZ4bYdqAk5cTQ7G6IJhGVJDJ2WVOKhAhJ\nBEQYhd0gc0wakESkABdHY8JKlmxu1sj79zDVblxh9wKqiM8Ewmb00lI2Oc1cM0WQT0CbHG0zdJFw\n2ZRKSkI1oRaSmZLM0gSlcx4NHRdvXnF+t6IjsbIb3BAopOKdd7/H0ck+zOH7H31IPfTsLSpEhLbr\nKSV4tyRD0VhLdbSP1YpXF59z9PAjpn7CrWhJVmOlRPtxvCaIuGjZK97hNT8jz9akPEdkOcqNYb5b\nASdCsrY7MAJhB/o0AvL+aveNGT78swiZ35Z1gU9/+pr/8R/+Z3Q24fG7Cx4+SpxcTdjFnsobvtae\nj4YJl/OOCRlqkPjCMisGujbRawsRlI6IlGhKixoUOgQsAisSeI0pBpwJVDuNMJZkMvJa8GW4YeZy\n9ncJPxcsgmbbwkt/DvKYR4sZdr8lLhR5P6XedAy/fMXq+S0//Nfv001z2k5QLGp0DiF4CukpZEPj\nOq5vJ5hH/wK1uWU4/4K2CWRmwYlINMWMm7pnt9tw/vqOi+sVro9kRuCEQEmF61tUNUYz6CbRiUhD\ny4vreoyb/y+sNuse6zzCaFIY10Ts0KO0RgjDuuuY2QTCsFgccLXe0geNTyCFQ4RxLTRlGZ1taWPD\n42PNcbagr3dom5FNd6S8oEsdWXFMNi1456P3+PVPP0FmLdWswmvL7MF9/uR+wf25gtSzaz2V1iym\nAStzil2BmgYyuYdH4KMlOMtET5FFg9AeLQQp86MIQSD8WwhRBSQC5yVJORATXm933N3dUU4cJQYb\nDJGE8opo3lqFREhxvPsZ1XGgJ7za1pCOiCqRMk2QHU27QVnBIgmyxRofCpbrFZfXS/aKanRQ1gY9\nKKIxeJGD/Gd9Hfyzlw0OpxOTIBjS2OHopSB3CanFaKUuE5kTpGIkhJyWaJHwRiGDRoYJA9Cu7jAE\n1OEBQnXUvSNLniwoPDnGgEJhUhj5GuGIg2GrBVpERMzQRpIFDQ1ce4kQLTiJEA29G3AukoZERIDU\no6nf2AzBpUhK4FwGQzt2gIIkxQgpEolECUhBicARCT6QYiQREUmgpCRKgZajCAohjM9o37NrOs7r\nO6gVM1XSlJJJEjiv8SoiUOgATkdUVBgRR5ZKCISMEAR5BKsUZRQMZUDYDCYG6t/vc/DbmmSaKDXi\nLVNmhEARR8YpjeNBFSEmgUuOQpUEqUiZQA8Oh6MXPUdtzc/qS2IpiVEQZSJIhVGS+JZVEySckGMw\nbZQICd4ntPTEMif0it4N3A0rFmaGNR2lFQSVyCzsiw3LqcEPFZlwtMpgjWJWasJQQqgwqqXSU5az\nBe/kExrhsClDzBRHKN559wP60FCpOU3nOL+44XJ7y/5+wfHTh0z2NZfrK65eXfHHf/pjir0FosqY\n7j8gdTf4rmNW5OiqIlxdsVytmZ8M3AnH2cQwOME6KzFpFMS4nO3Gc9PuiIWjraEyOS0RUSiCHUYT\nRW/RQ8ApPTYbokAOgm/IQgb4ZxYyv62YInao+fLTmuefn3Nv74jDD3IOl3NKs0Wamj1fEmSgUoK6\nDeMq9VRxdKP50nRjDLoI46zWjC09ETXJRnbZwN6gEC6j0Q6ve7ZBkpmMfFD0ijE12Fr25jOiFqyT\npLm75SIGzspD5oVE7Qm6DPxW0+gevdrx8YHGYVldvmB+fECXEs4Flrd3dLuO0G+5vLrg+s2GajJD\nTXo+e/GGeydw3QtmswNuXl/w5uqKzW5LZgw2RTSSftiQrEMMBd55YhYoNgW23efixc1/jqP51tVt\nux6t5IlIIYhSYJKk9Yl9CbWDyOjgu5gLbm9ahLdo1ZKCwWiByjN08hzNc6bzfVZ9T311x2HWo8sJ\nP5hXeKORvSQrFZJxjfYHH9wjExVCZ8yC4eHThPAbRNqgbYO3Aikl2EgnIuYAdPII4QnJM7ge2+yw\naqCUU0SwoziIjiQDJoCXgagEyY7t+DwTpH7CF6+3PL9Y8vDAQCeJuXsLrAqEgOQkIflxXTLK0dDN\nKyayJ7UW6S1SerrGUzc1WiXufKSUYwL4YOH2bs3R5ISi8DQmoIfALvMsGKjMCqW+HTfp/9RKboQc\nx48nYVNCu4TXEqUlzgVUCAStUG8df2VMaAGDUcxmM67ubijjPtu45uvLG6ptzfHBHKEl9eDREirv\nyHJJkXucyhBeEpPCJolMETtAFA4fPDYMSJUzkRKJYOcCXkRkTORGoXQGBGzb0PSOwUm0dkQtKZIc\nx6peEfwoYEIcxUoQYhyTycBKSpRKiC7g44D3AR8DMUXeal+kGpPhk3M03Ybb3pMpCJWiAaYp0clE\nrhgzhILAqYhyCmEiPmoiYGJARAkx4RVIl7AGdCeR0lJK8W3RMeiyZMgysjQmwHudEVNExpFjkQGU\nSCSZ8FGg8wwSTPKM5Hry1pIGi1ndYXctJgi6BIUYL5hRJPAJJyW5AM3IU428jESgCEkRnUDgKZVk\ne9GSv19RGAspQ4hAFLDxE4ZWsisSJ0GSykQVBEIkwmGB7KDI97CznEwZpNZkah+fG7SSlENkayIP\nDs6IKnGcFTyJH1KvNhwdnPGy/YrF9JjPlp+wf3LE3sEBap4x2yq87XBKjJcxMRCGawqz5t6kRCbD\n6y/PKc8M7J+Rpx2t80gxSoerN3e8fPGSfLOlFzkhN2RBkpwj95GoNSt6Dng7wksekzStgmXh4JvZ\nvv7PI2T+acWYOF/ecP43UGYlPzo7ZvJ4i5VzjIfkAzaz6F0JZotZzJlt5JieKRQmJLIY8SlHqnEO\n54SilWN2hvKKGLPxj56ETRFBh5QZrnH8Kr3kLDvj8OgInefsuppntyvMpCTPFHv5AS4fQBQ0z9dc\nbX7OuydTumbDbliTUCSvcF2PloF8UXGUP+JGPuTq5g33DzKiFVw3jiIPbG6v+fSzc5a3NVVlGJJF\nxkQTO0RviVKRUotIgWAjvupgGL1u/kuswQUmWiOVIggw6u3K6zDQJuiixDsoCrAeOi+4WNU8PluQ\nG49SFTIoRPQMbqDfbni42CfYFWeTE3LTYRYHKKmRE4c0b42ecJjFFOE1xEihe5IqiDuFFlNEUSBL\nSWhbQtGhVYZRGp12JBQqJbTICENOAaQQia4nJQcpMHhNIR0SiQyKqCJRCpKDT86v+ep8ydOTCs+A\nNpEhSXSUI3qrEiJ6fAyIVpN0wiPxGlQW6a1n1QtUFdi1SyZ5TrCWk/mCmFpEmvDq9gKpDfkk0sSI\naCLRR0QuCdKR/IQUDd8awOE/oZz39N6Ty7HtLZMaTdASpBCIMo5fJzApjaF1wuO1ofKRIkXcektS\nCp8LMqepO0t/ecu0mpAVgqQiTRoI3uNsjtQDQkuUMIhs9KmJUWBjwARJ9JLb7YrgBpxQVDohoiKg\nIAZQEakNk6wgTQVVrbhzLVkj6XSiCI5gEtYnBqeJ0ZFSwrhIbRgTiEVOIR02OpKLxORJSaACiAmU\nskD0cB3XNL0l8wJtSswgSTpiiPRJYlCE9HbbywSS1cS3iceIQEQywFsTvziOx0WO7lucssRWENy3\nZzx5bCSL4NkkAQWUgyXmBiMikTAyPkhwASUgSDEybU5QDwMiVwhbs1omgkjszWcIlUb/Qa9IOhFR\n6OiI2uBCROIJSRMZQXMlHdoLktEMamCRRRyRghltbjFO4/PIkEesBd/11AvDJFYjFBwUQlsmx3so\nV5JMQdCKPuXEwpCZnIigN565MBwcnhBVGhnDfI/50QynJe+LPyS4gUePHyJDxiSfkcWCoWohdmTW\nolPg9avXGAIi7uiD4Or158xFj559QBsNhQfvWnzKUNHito5nn3+FdT1hb0FvAvM+UQtHpiRy6NgP\ngnoRmWwVnYBOBqqUUO6bY/J+r73kznb87cuXXMQJH53l7B/doVYHHOFp5gNHNqeRkjLrqVMxJodq\n6KRAeoeRGQ7PFIUNaTTJ85rMwpAn9qzATx2iM3htUU4ybB0v1CtUc85+PmO+t0/Kcrb1FjVLdG0P\nWlDZAmKgx7NZ1hweNDzctlRViS5yjFG0/e4/svdmP7Zk15nfb+0pIs45Odz51sAiRXFQt6m2GugH\nw0AD9qMf/af60YD7qQUbLYmyJIoSRdZ05yHHM8Wwp+WHnUUT7TaMRpe7qkitlwTuReLmjTgZsfZa\n3/f78HcR7r2ZeBcjn06B7uwe/f4dN6/e8+w3n3I8JIYhQzRgZg4poikTqkWk7crbglt4tNrw1y++\n+CZvyzdacyxsnCeTkSiklAnB06lyVCVYeLu74Sebx+yXkdOTe3zx/D3/+o++x6kriKloKSwRvAz0\n1pBRHj7+HqM7QtdBTWAU8QOm9pAiapQaHbZfo7JA6TAmYzyUHDBSKMuCasaYDnGWkhUrCdCWe+OU\nECzXu4VuMHdPfIO1mU6ahTpp401oNWgpFK0gPWdDmw7goBQPohTXQgtLBaWB3MRmRA1G2wvRq7LF\n8aaeoGnDYdlxNnTcjgcenDlMBzeXI8fDzNPze2TJSFaKBoYekiS0POBgPKrfLqDZf27VWsg5U0Lj\nXCw14riLKygFWwVxYLSSjWMoCq7RemMuxGXmSKTMhdUCsTNsMmQt7KcDZjH0RujWA3Na6CQhxqMi\neCME3xGsoQSDGmU7R/I844JjHXoWBJcq0Si4iZIHVtI0FvEwMu8zFZC5cDRglsoiBlm0+cgtSHEY\nVbIBU6VlseXIEpY7TgptYlIMphOI8D4eyEtEpHKiPftVpZscsU9ote35I21ykys4FFsUtYrWShZ3\np2VIBA1N7HtHBe5DZqJSiiHlYwuW/JZU6DyTNFH2SQSsp4pSijQtldyRi8URVMEN7ZBshFAWHj79\nEPP2gr989x8wN7n9bq4MiwjiK16VGgw2N4E1tSDWIqXQ8jOFUgERjLZGelvAFCEUQ6yWqoVhVvCw\nQXGhqeiWRTCpZxoyppsQc4I8hjgKSz+Q1bZ1uyqoIEY4xi1zOmfVPUC8hZoRVUIRxAkSDN/76Clq\nA04txQpxKVhp+X5mKKxOA++3EVM8978/0M2F87oB57HWM5QZ8QOXR8+4vWK6uSarsqwCooVh7HBG\noE4wzaQ+UJbKXA3rktq/Y4WcDcfp6zusfyuW4s9eHnn28hec3hc+3iz44Qk/TkesecLeX3Gyt1z5\nHUnXFDV4tVhrsFUxShttZliKxefMhMFoYvQOmyy6SmzGjsN6xC8OkgFN3KQrro9XTd3f9wz7jv16\nxhlDdT2zJLrjKddS2W6P7I8jH33Q8+j0hG0xjPORdRc4aEctiSgL5rAQwsKbV1/w7p/e8+rwFjmC\n2ooUQ9GCz5Bc0+f11TESMRT8OnCbhZvrPxyS739cmhKFgVIz3hgUiBSsC/gyIWqI04HPXiyNzFyF\nlDv+4fo1/6r7HusOckzEPDOcBMZpIc0Ldvb80dPTtrcuhiiOzhvUd+Q54Uqh1ozVAqVSCriqiAsY\nmVEJWGJzjpAQ8ajLlKmnyg5nE6hQimF94sgxYbIHE4nFobW0sLqvmCaSoRrUwoMTw8trR/UZUyrF\ntQwdUdsyc7RpHpwKRaEFi4JgGXxiYy0y7eiDpe/gfB2YS8cUI057Xt6+43zTN4BVFpx48BOTGExt\nzVFfwct3myNTckFQfIXJW+ysYJTWH7YVQlMXNVxttYVaLN4rGSjxwG47IizkAfpRKHeunZAtNRT2\nS2W37Om8h9XAQEWcRVOm1iOds/SDBx+womA74nHiJh+pWRAKJrf7iuxYXEGto1t5TPUQI0snDFnI\nBrw4kq0UlbYzswraps+mGopPWHGY7Emu4LRCAbWGeU6MS7zrTgQpgclV+qWJW6VaTFWSCiKtAbGA\nqKGotmRwbQJpo5CrMJeFUisF8BnEeryBSkatI8i3p5HZ2DatGIKjpqbxCbnga3uhRidgLbZUWHcY\n165LzQZZrVid3mPaLnz5xTN+9OAHdKmFcDoqqo6ihSpKqubu1lQSvsn5VYBMi4SEXgMmO/JyxC6n\n1DX4VYJsKaNj6QQzGUqJmGKwfgYyfh7w9OT7Cz6tKGvbDlmuZYVBxUgG49hf7tAPbHuxWN8OXcXT\nFl0LqmCcwdA1l6LW5kbTM+ao1LpG0p7eb4hPN9ibyM3NLTp8xCk9tmRk2DPeWI5Hw/j+OS8v37Cr\niR89fMThMEIR9prQeSLXwJKFj3Mll8rRZkLMpGo4usKoX19+4LeikfmqdtfKP1xfYc0N9eQc/TE8\nmiz3DobPvEEXIVRFfG4UxrqQDHQ1UFzFqiB4BlshBSzCYC0lCtEqTKYlJPtEqAEEck3EkijHyNgp\nZ+WMaj3ZKasZonH4YFEH+aZyM3fc6448PPcEs2NcHjANgWAXvFMO04j++pqXL15xsXuPPSqCEqmE\nCE6EuasE2kt6kYItEK3w8Cj86t11+xn/QMvUthawxYAIag2mVJJk1IAUxUplPyne9py6ytvjFr1V\nXp5e8aF7TK/gvUONcLoZMK5jmjPXi8MxsQU2HdjaIcse7zLUhKGjLjNCxbkJaqU5NDxaFtLcrM8i\ngRw9xrTVji0dyninYzkQ59pWFrZpIWIqBJuo4qh3bgahuV1KbZMjU5vrykpEiwVXkGKBjNY7XZAI\nxgOlsUwwoAU2g2PcH7iWhQ/OOlJMPDi9z3YZWeLCdrvwgyf3yEXpVEkVqg30RZltpthMcLEBwb7D\nVau2U660sXWRSsG2RtA2se9vrdfGIioYU0CUgPD+/RYfEzY2xky1jey7noUxKCELwRpyVZZ5YY6R\nCSH4gLceI4ZdLuzmgrEJ59vETbA4MeicmExpDiY1VKdsxDIYQ13ausMZxypnIs3NVJ3io23wQ9rB\njWoptjXFNnUUqWRX8XeDG4NjO82ksTV21YDJUKU2l069WynVtnpHDA2FIhgRioAx7bOLBZOgGEXu\nYIKioFVZBPw8UQbLZhJyzYQhfNMfg9+Wbiqlr4RJWazh1ChzdSw+tRgLbYTfBRiw+Kq01kB5uD5h\ns+rZ/PATVn+75vPnX3L60x9xv3SYrrTcLs1IEbIVqniSBSueZA21FgZRiioiFZHMYRUQ50mHI7o2\neAn0mihda05LtRhniBXGJRGcUotjvLqlVsuqP8NkR/KlZbyrAV+x0RA3EI+Zy8MWv+oJwSJ48A4x\nB0gWNQsoVCJGFczM2gqpHiiy4DKM6xPy4RHxdo8ptzh3n+I7SiokzVy5FTZk0FtqrNzc7Lhv1xQc\n1gauzEjaj02TFCIhw0UvSErUaklW8LlSoyF9TQwZ+JY1Ml9VqZVfbK/h59esfODD+2eUZLF+pEii\nHztYKbkYunp3ynIOCZAduGKonUFi5eAWXHEYN1MkNw2NCotPVKe4JNhiKH3GT5ZdPCBBwArZbBiC\nZaoD3WwwK4OJlXfHW3bpHhvnGbglhcw4X1DHifn5xG9efMFuPtJHSwwFkwSXLcUWxFW6GMA3GV5K\nLT0Vha078vLi9Td9+b/RKtIsjRhFVZGcqdZja6bgERNJKWAlE3XmgGG1OecvPv2C//mjP2U3vcf2\n9wjOYsRjxHF6tmKaIrd14eMBLA4tA/hCmRK1OIxdY0NCokV8oFoLdWl5J3km50zrInKzpZrYHFIM\niM/ItGFOF8QjzEtk7RWxBQp4oJYO3EKJd2HFTjCmndlSGXmwqmATWlvStalN6FmiAxupySJGG7RO\nKlI8agSpArLm+VWiascXr68otXI6nNP5Fe+318zRcCwFJTBoJRlhI4GjGakFPBW5Y4N81+v1F895\n/NMfUOROA1MUaxRrBFGhUOht43skqazoyGIRF5jSDZVIDQ6flWLbVC5aYahCsQaptU0h1EBRUilN\n5C0RFYPYlg6c5W7Fc0d4TTViZiVaGKwnstBPhp2NLEPk0WoNDnLJd9NbaesdU4k+oIceZyeyyahr\nEQxKJTtBreCiR60iS2GXJtK4tOBDqUhth6YqNNKwL5hiiXcuKWfvWDEAFERcw0BQMTRnDliyTVh1\nQKWQ0Ao5ZbypjL3Bi+XxasOzb/D+f1UCLQE6WygZ0abPcHlhlRNz8IiASQnnPD2OaCtGlVQzm/P7\npLDiOE6U/ow8XvPm9TvWww/wg6PTStLAYCYoHSqQXUfNFdWCViGaNgzTWhhwjN5DMLwpCXNQTiYh\nr9rKZ5UMcV2o0eFpxG5FWOSI5onxSrlwHvvR4wZzNC2r3s2GicT+81sWWbi4fMHJ2nMvWJCChAGV\nczAT0vaWmNya1uwLaAdmpquQZeZw/RJbF8acmeIaY5QlTkz0kIWcAmtr0OMVz798zyFbUj5ye3PB\no9yx5ANdVhRLl8FX2FlLvy9sYuL9GoxajG2BrV9XfSsbmd+Wwhgjn769wBhhe7/no08cnkI9GGwQ\nShpY5Iixni4OWCvYCqKl5fJkQzbQJ4e7E3i57LAY7FxItmCzx2tg8g7ySJgctRau3Q1FIqtwSpkG\nlumEfuVxXpF0AJfIw8jly/uMlzPby2d8ebtlToW+2rsHh0EQkstoMbhoKTajSZDSmpkMdNFwUQq1\n/uFZrn+3VJtS39y5T1ChaMGIEF1qq0KfkFKhGkZN9Dny6s2B1+8qf/KJYcYSrLDMuVmd4wLLjCkn\nFGtZvJLnBScWYyLIAVmU3ST4/oRBE4yKmJlabQtNqzNVAr7vqVOmYMghQ1F88hR7YJ4n4nhNF1Zt\n7JuFahUR03bkxeO0YLySs1AlQRTGJSI2tPwSU8jS9ugmW6DAnUZHqkXVNH2PA28yxQZiTPzq2Wv+\n5H/8b3n8IPD89RvsqUdXln50tJixnohpbhlXmWPCaHvoptyRq6fod7+Rubq6xukPiabisoBXrDdQ\n5C79GNSZxpkpYAZFtNA5x3E3kUrBWKF6QWslZEt2SqwV6xymKn2SpnMxgq+WZAoCeCONUyKCRVHb\ntFC+tIZAA6gWMILNwmwVrxajnu0UWa0DDkNCKDRxcJ+E4CessRz7Srd4VFo6s5WM1IAFJqlETRzi\nSJ4zdwM8pLSg0WQFqwJOkWKA0qYxpgEEXRGQTG+UKQviErl4nBdyp4SdUnvBOENOSmc9y1yI0mzu\nMXp+OAQOTw3m59+OmILTtacWw9EnTJlZaoc1iQUhFoOTSkKQzuH6FYeg3Js9k1e6zQmnYcM/vP01\nJRs4OefL6YZ7hw+Q1T1wMyuZiaXDSmKFMlVPrG0qox4WCj44ogGs0pmWlL1KhdvDkdwXLIWwrFCf\nAYN1hRAdy0Cz6mtB8OwOV2yvR07sBwwffoTaBbJhNol+WuHrwLG+5WP/EXVURj3SbQzGgGQLXtsE\nuTgkWNQKPi+UYPFpzexmYjWEoSceI9asOXu44e30jofDCRTl4aZjXma277a8+sc3vH91Ccs1ZTmQ\nsue2jBTpGPtMlyoJhzeFP54XPu3b58dnsEm5HhzL1/iu+3Y3Mr9TtSrXlxPXl+As/On3TwhdYXPT\ncVgnNrpmPpsICNV7NDuQRHSG1dJ2kN4pR2CdEsn6plxfeoxUIon17CmuMHZdezAdelRgN49M08xx\nf4vrPME7umARM+CPE1fbZ7w9bCky02VYzyu2pzOuFlTBZYu9284Xzx08aSFbg89CFphc5uWX19/w\nVf7mSyjtOOWUqoZA+1oFbDKEqtRkKEbbeFQtSWc2pxt+/eUzHn30CffLzDj1aNmzXm+o5QQXEtsl\n8cAM1GSpjFTzqNFVl5mLPfg0s17tiUMgd4/M+bx+AAAgAElEQVTQccOUlG2srMxj1nZkt194d5iw\n0vPg8ZqhW1gvyrxfsAdF/AnFZrz2qM6UOeGDkKpFHGAStYDKQl4aRj+EgouWJbfxri0WbKKIQYug\npgnkShWkqTHpJw8DvF/OeHZ14O3FDTe7Ax9+/DFYSx8KKsKBRPDN+dCVFYvP9LlwlKb/8CokQHzB\nmm/+5fNfWillogVTC8mCw0E1JFtxpuCytEgCbU6UUgaKFMiZmI90Xii3iXDWkXBEKfRiWLIiRdHg\nOfYTw7Fn8ZEBR5ZKFxviwVmo1oC21G31QnS1NaBFccWjOeEqeGOYTGGtvhlhHITRwGpmPa/Yh0wq\nFq1CWS9sxsChq/gMOGWxPZs5clEdTEdqSdjSmmzrFK3C4rURh51pYmdALZQkWK10S0fe1LZBLYas\nhmoSqymQTgshCymDnnS4mjirhu1gsWNmHjJ9AmuVnSQu8jvsrFj7zTcyfdcThzM0TaQpc5oKKokk\nLRFdnG1TXnX0ZqB4mug2z6wfPmQTHEtJfPblF5xWYe8skgOvb97QD5AHy9FmBlW8Day80o2KdxGM\np1RIMSJGGbxhnSpeLMvaUd3AAEgHPnuURCqOEhes7zFekRowVsFXalImN5G2I5/+7V/xoyg8PnvI\nTV341T/9I9O45enjxzw6v8/LF5/x13//l9y//4g/++RHnJw/waw9Ppwx64KaRBcCGEOxglY4cMsy\njyyHSJlhr7DkCW9PcfYBx7TFG2GxLePr2Zef8/b1C17cvsCI8Lje46ZsuXGGj/czW3o2NbIdFmZO\n2U0zi7M8mJU9mdIpD48BvsYz+3emkfndygX+z8/3mC/hwVnm0cax2q4oIgS7Rq0nhwPJCv0iZB9b\n9koObJZKGgwu6p3+JZKzxxTHLiyYPGCXQhZDDIVaPSsqoDjToUvkaj8SSybJzFJHRMEby2YJzM6w\nu3+gP67AF6TAGAouG/oKoo7kFlg8geZYMFWpapm/RhX3d7XyHchMjYXa7K6mtBBAJ23CUW2mYpFa\n0Qo2Cad95YvX1/wP2/+GZEemlHBGWPUdUxwZusR2t+Xtqok7fW+I6UCuHbk+5G+/+Iw/+/GHbDtD\nPcLPf/E5zy5uuby6Jo0HEo5hDTFm7BI5eXTCjz78mJ89+pC3eoEbtwxuxyAFTR0iY5OUeihVqLqA\nKnVpPAWqo3rQuFDVI1kgZiaNVKn42iFhomR/h7LvMBWyz3RVGFeJki3vth2//PUveXj/MU9OAzZN\nLNPEWgwlBFJ1ZLWEIswusS6FWBW3RKoIszjWTqFk3O8BgDHmBFrJ1lFqe9GUUumrEkPLnzmJC9EL\niKVjz6ID1sAwrIlz5KC3+GpYmUDOCTP1yKpQjgUnnvvdwLXLdLGwM8JQWrNiKEzGN7y8qyjNHdNX\nx6IFXEPbC5ZsoWhlyMKhi5x1lk1d0NUZxfbEobJSS8YStEBxlM3CKgeqGKiVOiduXMZsb8n9DV09\nZWc7nCq1CDhYp0p2BVMEL4VFPEjFlAo4lrXSZ0tCwDT3Uhfbs+98sexMRDYr/sXxwN8+vc+7F4nl\n+JbjzcLVkojLnjhHUPjsm775v1PBKzrdYudMECFK0xIFFaRWfCosxqHeIxaKKn0wbGPi4wePmcVi\n9jNmP1KWAyJwUjuuD4Xy6pIfPvqEsHIscqSjUowhBEufDUkaLbpTy9F5bhbDlsD9reMeHfXU4QbF\nm4ztBV1X6hRoYJ5KThZCazpX0TGbSG87wuC4fPWG7fJ/0J3cZ97uuJkrD0T5+fYLfByIMrMR4W2/\n4dUXL/Arx8++/6d88MPvc3bvjHFaOE4z3WkgVAEzU8ZCzBnvlcUcqTGxZkCNxdAzT1eoTqRFefW+\nsC4dF9dvGDRzGwM34cCiifUMNxtFZWGujmEyHFdHjBceLIXJGSatWKMMh6/X0PKdbGS+qlrh4iZy\ncRP5dJX4wD7h7OkluTulOzjCLBxWEzYZ1Jhmoe0EW5Xo2sl3ttC73Ei71UJVCo4qSiyZKhNjtlBg\nP+8pVExuH/wqcBo3LCHiYmD0GXWJ/jgwd+m3ioN+MaReKYuhSEKSx4gSXUKTYWWFz959WzBS32x5\n3B1evmk31NjmkFBFTQBdaKbTphEQAyKWXBL7ceTv3nzGvzl9iO+FIGu8qy2WAk8fhDJmljNDHYWD\ng7lEfvXigvPHG7ZxYn+r/NOzV7x7d8XNzY6AYb3qWZ2uuD9UJBcuxwOxRD57/iV/8/aSH587fraZ\nQYWD95hRSMHjugmSpfhKFYdJhQqsSqEYS04wJwt5RMwWQSnVUDF4X9BpaEpLaUAtDQkb15hsiENm\nuzvnn768JC+FTx5YRDoOYllSJqaAdAn1niKGUT11yqQK2nkyFRcLxliEymKbEPS7Xjk2N5jYQh9h\nWmeChqZ/mAsrKYy9ZZULONuymNwJ6pSr+ZY++tZgHCJmMyDesTcLm2yJkknpyELHPRvYq2BSZDQF\nUw1k19g/HkJu9nuTDKFkihfsAsm05qZUQ1JPNpl+bvbZbawE9ohzFHUYa7AuteeSM9TSA4VYZ8pc\nOXLDer9gN7fEE8M6KXk5x42esRNshnkF/RwoIZPLCkdCFuFgEydUaupACohQqsP4iTk5bmtkez1x\ndYSDXPGL6YbjX6Sv9RT9/2dtrMHGxMEIvcnE6jAC1VisvXOzG4tBMMESqsPHSvSO1eYEVLnZ3VLz\nTC6R4g1ztdiUuNrvOMZf8oNHTzndDBSfyNnROc/eN72ZWKEGQ0mG0azZxUg6FKRkugxm0wTlagN9\nBBxYGxCn9KPS1ciSOhSHtQ6XjsxTIKcDx1fvMGbkwx98D/UjbhaeiOW27un8QiqBslxweH7F91en\n/MVh4F8W5U9+8AMuxz1v373hv/u3/xY1EzmNHA63jOlIGDvevbqhZEW6FTEdOHvQ8/ayIPOeZ9uZ\n3csDVy8u2KcRjZazmpkoEAPrnDlYz1ozt4Py5GDJ0WDmxOQqWZQ+NYfXy56vUSHzHW9kfrfimHj2\n2UvevjA8OX3AD//NzFBOeXQwHN1CLZkYaA8qU/BZMDJiUmapbX2h0qxqpQq5ZEK0FN+4E4KhSMEl\nS3YFmxyGwtxHqoB2zbNvRtfYMKqExbC4QnZNG1Pl7qRkGq2zS63B6UrPxbtvg0Tumy81paUUC3cn\nWkWKoL6SKAxViWKA2sSI2VFMgVoYnOPnf/MpP3n8mI8ega4O5GiYp8T56QYqDBR2tzf03nFBh6jh\n09+8YHNvRSqZ3fsFxVKS8vDBObUkztcbihdcmCAYHvQbUlLiNFPnket9ZusU40BnjzVHNl2mZg9a\n0dw0CzVbNCyMainRMqXIYZe4GSvzHCg1E4Kg5a4FloKqwTqo0VKqodfKoS/cHu/xjy8W/t3Pf8Mf\nP93w4vKSRXp615glh2ViM/QMTtj0lpoqc84EYzHzjBUh4xDNUALFBtQG4Ludtq6qHDRxmmzToBSH\nCEwLGMmICPdS5WArZySSWAavTNuZ+XrCywrVnt1yxPqeTXDsNDObinSWumRyWtiaxHC3Yp52nkLm\nqNDVRF+E7B19FhbfQGvZCKWr2KwkZ5CcUSuY2gS7pmZOu0AeCqVaupSIK6FLMIe5UZ6XytFU7O6C\nk7NbPtnM2KeVD2b4TAz3p1vex0umq4+YXUe/X7X8d2MafXaK7NyBcdczpiOXIoyp4MuOw1JIsVLL\nQloK+i3QuPyX1No7Ysj0e4/2INzplhRQi7OegrIWS1LBdoab2y0nHz5CUIIqb968xC0LWgqbFLFa\nOVpPSJY5Ra67W/rVPcpcuMlbTs4ecOIH0CNGKiqw2IUw95QlcjtWDlNBo2d1a+m94EKhH044C5Zh\nE/CDQYyljnBbA2tNECq9CLMtdP0J0zgym4VjnDlf90iY0YNnVU95M3bQLazCGnrL22nL9Owl83Jg\nt9/x06d/RDA9r198ycPze1RX6bJgy8Bnuy/JS8IYoYjBWoOzkXsebq4Tu/0emQ98+fI3eBbG4Dit\nQtq3HO/UKWIVyRCicgwG0ZkSKkkMJ3NF1Ta0xvj1OiR/bxqZr2qJleeXv+L5/woPnp7w449P6LpH\nPKg7rrdK9NfoohS7YIqgWtHYkVcWtUotgSoVEw1zl9v0RdpayC2W5AtuaZqN6jMhOoo0PoxUS+na\ndCdkw2wqRg1GDcllrBpqtdiqqCtksZzNli/G7R+8yPer0pKR2lT1xVS6DLNRXDaIaxkn1NrsoMUg\nVlERRHvWXXtY/G9/9Qv+p//+z+jFclWPSHEUbznpO359e8PpsmmOJJt58fqa46yk68g+j9w7PWe/\nH+ltbsArOsR6ehOxNSG2BfIt2XGRb3DdB/RuoNMti70l+EDNgavDgGrGmxlMxpuFosKy2xC/og4v\nmeOSmGbLaHqsgtcEX3FDbEuJ1wRIoeSenascxhWv33v+/O/+AW9gbTIMa95cXfGDH32P05MTXry9\nISwdnXWsvaXmOw2MNY1lowWlYL1jUTgpSv97YvsvU8Le77FY3FJJqpgEXa9IEEYtlJSxq0yRjmpO\n2O5e4RfLcZMIwXE8OC7GAw/zPcLKUcm4qvguMJeE3cK0gvNVxZwU5lIYonCbKxPCOhtK8KxrEwWL\nQvKOlRiWkEnRIbVgrMX7gusDrlthrXCmlf1q5N5hxXvbcS/eQI08T6f81P+Ky6d7zj5pDcw/rj1d\nSlxNQp6V167gV29ZboW//wdYspJyIaX8B4V1WMtwBw6sVBVCTRQrjT/mHNaZxsZxjqkkVvs9miNP\nnnzMcT7gZMPN89fYnDhYoa+039G7gE5TDLvbI/vyj/zx+ffQbuD5+0senJxxf7VmCGA00/ULmAnT\nVeJS2KVK2o3Nbu8GnEzYbuRk6Dl7eI/vrQNhEF7dHnizzazDit45Hpw/ZUl7Xm+fsd3uwTrqu0se\nf/yYj82WyfXU04Fzs+JQZ6w4xvlIzYrLW8YLwxf1LYfbxO56x5uXL/jeJx+htpIlYdaOtM+kmgkS\nsKXj3cV7rLEsZeY4HrFz5tN/+iVv0xUfqSPlyugisXN4SaTc4V3iiMMaReWAxIDD8iBHbgeAyj4J\nR20O0K+rfu8amd+WwtWbPVdv9vTDe558cMbPPviXiLthvWSmPuBNx1QLJQk+9BwOgeqEMTUhlhkN\nORRcVRZXsLlxaLLPuMVTc4u0r7SXajGKKY5OhWxKE6NiGrsh2ztoUkEFumqZXOVgKm/f/7PI97eV\nm92zsY6ViKWrBRWDKQq2YGmWeTG1gby0kk3TKGwcfPnqhj//61/yr/70XxA6pfcj764mLtVzmGeq\nucJZT2c79jcHpuNItznBdwM32z1BF2zdUbJwoCMtI14cXk7JtZJS5v3NRNYHvNi/4zmQnpzzg/QJ\nl+OWm3FiXi55cio8vmfx9BymM25ujxzrFTYbIDEm6I1wGgRrm+sl1xaR4MJCUsWbxLx0bZFmItvx\njGdXa/6Xf/93TLsj9zfQ9x2Lh3AHzzs5GUivK/txITil7wM3t1s671vAnYUqwpkNLDVjpQEao5Vv\n+OZ/TWUV5z2hQA4jaMUY6FYGSR2+m6EYeg+Eytk9uH6zYE56gqkwOBDDvOy4Ttes6sBD6zjYRKeK\nXwmzjYQ6c6RnMD3eNpfRecgcFmGhsjKZQqDaRlcNWcmqMAmdQmcMixHuo3Tdhpr2TIvjdtqgmy1X\n5h1vplPu+bfcDAfG+ZRhc+TZoSJ/Dm8uW6OiI8SUKRlyqWj5bmdmfR3VrzzRVToDmiE6g9UmRFbr\nyCrNCWhgI5k4HVidn+NL4BCPzHpgP+6bj94qmxypzuM1cfSNUZajIe0iz+pzHp18yGm34v3NJRfb\nLfdPT3iwPmGVFeMMvRiCiYSVcCiGqSztz1PiatxSllteXb9j++icp+tz1BZOqVw+f09MC1+erehT\nJcVMLorNmcN+x8ntGe9OTym+JxbLNI+kOTLayjKDuMdYDzkl0u0tu+MBneHNxZE3lzc8eHLGvZMT\nynUGMZz4FbvjkX3ecTxOzMtMnicONxccX13zfH/J0AnpxrPylRQDXVQmO3BvyeTkKUHR5LDFkFeJ\nagbqMdKJx82JWpSL5et1SP7+NjK/U/OUefb5Fc+/+HPOT+FnP3Y88QNdUapXpApXc0U7yFIYsqEk\nUJ/ukkwrklr2j8uN7phNQREcHpWEiGKrUFwmSoVksbQ1lCsetRmTHJgmAly00i1wMJF5/88i368q\nCqQqVCBUoUgl2f87v0Vr0y+pLSCGIgZXGi230LRQxY68f7/j9YtX/Ouffp+DrZg8kJfKmg6CY6cH\nrq/2lDFTjoV5uUVWR04frOjNirokCh1dFspo2E0LX44v0BhZJDKOmbwkQh94eGJ49n7hbz57QV4y\nJi388cdPyCpsbx/z5dUrXl58yTTPnDiIIhi1YAwnQ+XpiXB/0+GZEVfJmklxIGHZLc0WW4zjMG74\nzYsD/+6vf8Xrd1v+7IMTzh917J1jHQ3vb3Y8UYOsBIplfbcirSFzGgacaydQqxUVZbagxZCiQfrK\n71zm73SVsdCXI2ZuAMKaz+Fkz8alNnWNBu88xieCLZyfGbwd6LojduqZw4GTaqmcsUqRus/sN4UP\nOuGdFR4swkU546SMbPsKS2ZjYXFCKnDmF66KpZQ1q/WMjIFrOzNGhXlh0cSSYE6FVMHGCSsvuNlF\nypQhCyoFqNTa1mVNUHDk1/+P/+3Xd6r9farHA5wfYasD6mZsVZyxeNO1J0WpjN4wADY5bm3gp0/+\nhLf7Sz7ZPOHi4g2jzGyk6VoOtkNNYkkeR71jDBls9hy2GS3veBRWPBo23OYjl+NbLtwVT+4/4NwY\nTvWErD1yBqvqGc8Dk5mx1rEZhaE/5fbzT3l92POmv+YnP/4JGx+IZ46LL76Aixldr3n0+D5xf0XO\nsL/ccVh+w7BaUUNb5/ShZyDgDNCtKOLYH49QUyPh28BxaYfsab7mME88G15TqVgDj84fcns4UEvB\nqbI/XBOPI6+++JLLd++puXB/tFz4wsrl9vELlpWZ2YrHmoK4gitKtkK3OErIjF5YR2VrLCa36fbX\nWX8QjcxXparcbOHf/1XCyCX/4o8sP3tqQJQTf86xPKDaCV1l4mywaglqKBVsqRjftC3JZVzxGJWG\nhQwVNUK6Y9RoDlhmkqeFfmkmI3gBCZaaMtkI3lQunkX+gCa+/5+VAbTS4Ug+I6mlyIopSFWKVSoG\nl8Ba6GommfZBruKwNnM/DLzbL/QXlzw8P8WdDxzH96Rc6CSwKpYikcGeMLuZo46YYvBT5vL9nlex\noNkQteU2WY1op/RySkiGnJtj6v6wQWXiwenAdHnK7eVvWA89P/jgPvdOKs/eB3715heU3Z4H5/c4\nHSr3OkuVCimzaKYLQimWQ6703qMxEw8PWMxMLgu+ghsKh90p//uvLvmrXz8jzZkfnnVULxzrhvn6\nCPaWN28sP5t+guuE0AW0E06k4+IYyTIziSAkeqHRinNua7luQUqkxN+Pl+Jff/4Z2/HH7PQWd7bi\nweOej/RTnr34gDfTws9+KsiSeHtVWLSw1Fe8v+25lj1dFW4nxzDPbMeZF2nkbH3C4Wi4Ps4kHXiZ\nbzmURJ5BxolxUZa0EGPmqw1x6DzVCTVlavzntfF/7bL3LftQkHlCTSKUjuoUFRhNoCuxwS5lYRbD\n5vSMSQp9zmzWHX/5N8+5t4edKBaDqxBKJmHwuRJFWLzFRguqHMZEmbb0Zc9p/4C1OvaHAy92b3g5\nWO7XA+o6mDNnYcVwAoMOaBIeLJZxt6eOkOqMHmd+sf8LTAgssRAOis/C9XBgmmFtOyggxXO5XzBD\nx7BA9JX98cBUW2RG38+kmtj091li4pYZSSMmOkQU1h37BF4z3Uqxpeftu3eIKLkm6hHyfuHFb37N\nzcv35DpSCaRqML2y5OZwm1ZKN3mmzczjKByXNdlmpq6gS6XPSkzKdsi43PH2oeV6Ujj8npN9/2tU\nVfjl54Vffl54ch8+frLm7F5kJZm0W2F84thVfCxIdiwBXHFkWwjFIZXmhPClBa9VhzeJCtQ+UpLB\n1iZe1Woa/V0rNVlMlaZVKMrF7vKbvhTfqgrFoE5ItWCLpdiKyNKusaE9VLRQBBbTkOrtwNqEfNkI\nXhc62/Hl8xvW9hU/+dFH7NIOTY5jXaj5jKqOXC7ZjkfOuhO6rmdMM2V2uGQ5jDO+FrCGeyf36Nce\nkcQuFVhg5TtKTTy9/2Oev3/B64tfYUVwQdmbDRdvb3nz9gvSCDlbtGbWJ4Z1n6laQSt9snRDJhhI\nxjAdT3i363h33NMT+eDhQi8n3Fyf8R/+7jm//PwZ687z4dM1T3rHVZ3YuJmTtSFlx9Vx5HZ7pH+6\nYXOy4eLtO/ohoLFw796akis5V7bLRFTwRam+YrNlKoFSv9uhkV/V/v0Nf/P+L/4Tf/MCgL//q//U\ndwn/bz6KV7wB4Pl/xs8Ql9QOOf9c30idaUfkgCmBappBYIUhFcX6kQ6liGuNp3WchXPmJXPSbzje\njByubvFUck14NSxOUDxOhUUUiUJXI8ZYlmKQCNnA7jYxrS9ZDScM9oQ+Txz3kRt3Sz8F3GjZdQvT\nu4pfGySAHmG3nwiLbTIEo/RHweXC5k7kmwCzreyP73HrUzJCrwMPVyumMWIfnOMutojrOVy8Io2R\nHZZytua6mwhWMYtlWG1YbONSeWOJRwgPBRWPJMM8TZx2PTpnUrzlxcvPufjycw6msLEwWmEvFacG\nqQZjBJOE1VyIZkMi4V2beHW7gPULNxJ4UDM3qXAilh99kXg9f72n9z/YRuZ36901vLt+hrHw9I+e\n8uieZW0Kq6MjdwmkpVbb0TQuiFHENjhblob2diRqbSuOnIWgFWPs/8XevTzblZ73ff8+72Wtte/n\nigOgG+hG38gmm26SupGyIqlM20ksO5UqqyoZJLNUUpW44nkG+SdSlVEqo0wySFJOrKRSlUS2ZYUy\nadGiRFEUm93sCxrAOTi3fV2X9/JksEBZZUsWQzWJRnN9qjAAcICz9z777PPsdz3P8+sTZY301+ud\n4HPfi7AfhXe2HSkO79Z+wFihnDuKTL+VOSlqDCQLBowmOjV46RcNljGBFfpEGaXQSAASHlc0VF3J\nH31winPCCzdvEKae6+trzpsL2q5BGoO3BQ+2p6ScKG2BEUNQw9w7LnZrcs6s2xWLOMXgIGZEIVcF\nzjre+/A7XK5X0EL0BYUZ896H7/a7cGJBiB2dBJrQEnd7NDiMCWQyu1YI1lC6SNPC2WXkbHlGFZXq\naI62C+5fNnz1O2/x7oMz7h5OqArD3qxi2dVo7Lce+xsl+92Ebr1ls9xg9i03Dw9554MPmE/n7M/7\nAvCyawkBUEvTRZIqPib8eIpnh9dnO2vpL2c4Fv2kcCJUtSW5CZnUp8VLJoig1lJ1kZAEKfoUeMYF\nUQzSdswP9lmdXRB2S2KqGUVQI7gUIVsckdoYKhIbHMYZRqljJSUmJZwKbDLbsCJPHKmNkBJba2i0\nZqKOurY4b8lBMZoxySExY6OgCMFmVDpGCH1LPhTB4hrDtoicxbN+uV5RMpIFhT2mTad09Yb15op2\ntyFlKIxFlxEznuB8H+PTCHhf0uaWEBMjHcGDjGjBZrskpZpTFcTC1emHXH/wkK1GjECxEfYkcV0V\njFtlXQhmFJAgXE0cuPbJAs9AYw3qAkUQqGrElizWmYtiy/WJ0t3vw00/sq/5R/dfPftyggffe8RD\nI0wPSvZuLDh2E0ZSw05IXsHlfpJE+4AxkuDpM1Qk9julClWyGNT0WU7JJ7Jx/UI3TXgxbKvA6fvX\nT/suf7wYgUXGBkWTIUtCVIm2D4qMscS5DpKQJRMRkvSRFAjUCD5HklhsKrC2g2z5znuPOF1uuHW8\nYDGesQ0dRVGwiX03fh0CGWGVOqwYrDGslX5pmFicJh48uAAyqCIKYgRnDVkjqpZpZWnpeH91ilfB\nyIhN2PVbXmPmYt0SuOSWnVMWBe3OkjTQZSFny8PNlrZZcbsqWUxH1K3ha/fv8+H9M642yslexZ2T\nOVchU00qWhLtZsPOtdxczYiTipgDy82GxWaEr4SbN47JdcYV2jeFhj79tgKu45aQO8qqgGKHs4ZR\nNbwcDJ593hm2ZSIoaAFGBBMdKlDFwMbkJwMDQqmBrFUfIJkiVVHx3vkZo6AsgUIyUZ/stjKZ3Oem\nELGMUh9CmqxnlALdk03cXRJmOyUYZQeMgmCjgiZ2kimChWhwjWIkUBtLKYamsBQRyqhkb9gWgqQf\nTGx2RGf7v9v1r4m7JrDc7XCrayQpwURs6voBFMkEB0el4fT6EStpEevQc4MvSvYPTkgC24tTRlXB\narfuVzeUI7ZdQ3dxweXynCZHvIUJsK6gtQZvAp0TFg00saDKLWuXOYxwbQUfLGUydOOA2xr2ApyP\nAiNnSTmxqw0f9ZDu8Mr1Z9CsrM8b1ucNDwrL5GjMzb0xcxzjtqAtFZOF7DLWJLKxeAW1idaAT/0x\nddk6dqPEqLMkkwjGoK7D5QJ2nt31s72z46MmaiiaMaEUcuqTfo0YTO4nlTIRkzIRiyWRsZiUyAhO\nwWtGVbFkgo2QwRsgJJbLFZvNivF4zM3DBTDvC1HTH49qk7HG9mODaD8hJZBNYpfAIUT6IMAk4NWg\nKRJFICcex0yREpWxXLcZpcZlixJR8ySUL2YuLxvE7mjaDgjkrKhaqsJxY7JPzvCtixXvPThnuWyZ\nObh9UDF2iU3u98CIbRmXgbIqqEPiPNW4VYekjvNtzaumJOTA4f6cty/e595swenyEhMTduSxxjMb\nFUg0pCBI4whlZjucSgw+Abw1hCLi+qwKsvUk8UhUGonYDKWBkOm//5NjnVqmoxkuZh5fnBNyoAqJ\niFJon6WVsuARLKD9KivQiKpHjCFicKbv4atNYroLjCSz8wVFDrTGEkzGhkCTHRMVjC36lPMgJAe1\nAYMw6vrgYpOESUrsin5pYhEzjRiskWcFmIoAACAASURBVH7ZYpeJZWZR77j0YJ32t1UF0cR5WuK6\n3I+a+0w2ga6NPO4eEMVRaqApDCPvaXct2/pDmrajo6XOihcoO+iSIYwUYyNV47kuC/CJaDPVxhJH\ngtQO45Xs8pOsOcPFzHBQWzwRFYfLwo2151xr0k9NaOTHQOoSqwdrVg83WCNMZwUvPHfIzGRcWxF8\n3+8ABvBMkhIqRdbKtuhwNbROKXDEmJDk6Gi5fzls8v3XZKB2WBeRZFBRgiYMSsD0TdHShyZq51Cn\nOITw5JQy67/sdLAqJAVsfzRsggdpaa53fL+u2d/bsj+a0uX+35iRoGTGOHY59n03ongVcinYLpON\nQMoYsagksu2LGRGHTxGbDXXXErLr4xU0IIUn537sPtDHUhg1WCrqxlKHln7JSOLx9SlnVzt0l9l1\niZEantuzbF3BuOqv56cu0a3bvkdobKEriFtl1SwRW1LXLXWbKJ2h8krIyi5BJkOO+GxoNDFxkI3Q\nVJZS1xgBjT/Nl5YGnxTe9FlXAYe3tq86FHAW2wZsYTDWYhVwI3TkmZqKWVFSxJbdbkmtHWMN7Lxi\no/abuTXjbGJnHKOY+q3juY9VqSKoQrbCLClBlJWz3IiKNRn/pGeysxaT+6VxW6fMY2Y/ZNbGM2sS\nyRiC69d82BBAHDtjqEIEIySbkGQYhY7GQsLiUs3K99OwLmfUmn5XWQJvOjpVqhzpQoXPgZ2H1DSo\nClp4DsXTBNg2l8RtS0iJIMpYARFqC2GmmNpRbpXsYZw7ClUSQi4io1DQTGpaKSiy0haZxQ582dHY\nknEXWSlghN3+jlx/tF/zoZD5YamSkrK8bvj96w9x1nDr3hE3rSBpRCpbvApRPGVTsq6u0cazi/1Y\nq0rGS2RrE+XGcPl49bTv0cePUXTUb8RUp9jU7zvB9JEF2XekWGI0oEYhGzpncRKfJBv3l32iPHnt\nSorr3xggZYNmS3agOXG53LDdNizGFVPvCAo5KXURMShqA0ksIhbpEp3JxOhwJpNFMPQbWH02dK7D\nq6VDQQwlqV+SKIJJkco5xCpODW27o+6Uq13NdteiMeGd40L7S2m2TphQQ5EppnPqMhLaiC9mjIuG\n9cpx+vCaam/EZLJPYwNTAfKOOgsxdVixaOrwLmMs2BjxDtpakSZA6dkrPZskOJvZNolwDVeX26f9\nDBgM/tJyVlaXG8pqQuUyuAIkYbQjZiVIpkqKc57koEgF5EA58Tz84F12lxfMg9CKRaJiAbQ/fcjZ\n4jM0xuAQLIbCRtamxKZER3/5ZZoSyWV2xpASWKCxMM/CyimjkNEobCshGcVpv2lbM1Qh01ohGEeR\nleSEjKHoFAOMCHTiEM39tmKEcVRStIgVvO2HIRo1xBwA1/dymj5MVSRgcsnYOELecbq+pg5KmTpE\nAQcHtbIRR/L9rqMsEW+gdpY4TpSdIYaSMrRcjSzTpUVHHskl+23Lw5mwHAuqJYehQ4PSTITbbeRU\n5ygf7c+/oZD5EcWU+eB7Z3wATKYjDl/e40YYg4uoCeTs6KxCTGhnmJUQpOQodbxjQn+IM/hXKNbt\nMFKQoiGqIirknLEqSDJgMy5D+2R3m8uRiMEmAenzPCT3vS3Yfg+Hw5KNx0um04RJFiRDG1imTJpO\nKa3ijCF1SlbBqkeT0PpEafpoiRF9VpJowmZLdonOKy5AKxGDYSRCtgUifZCeRRDvcMawCzXrzY56\nFzAhU2UBl/GSiS5Q4Vib/tr62ExwatGdglMwDnFCk2tyYZiOPW5koelwqizjiKPJmBQMMScKhdgZ\nqsJQx0waAU1JaT0xB1ZZCZqhNpQccNFckoc9AINPgKum4ze+/ehPfm+NYI3gjcEITEeem5OK2WzC\nraMTjqShM/DS4kW+9r99k2QynRUaMfgQ6YyjFFC1NA5mMVErGAlIdKRCmD0JsFWEqBkfDaVmSomk\nXFBJR50tOYIpgcqTOmXcJtRactk31G4Lxzj0l5sXoW9HmNaRprQYDDtxjKRlFBJZwRolWKVTQ3SZ\naQ7sVNiUBUdNSyew8v1LiI8NQX3/+mc7ilzTJZBWOModQZWNFTCwsY5NacD1+85YFmQH3nbE1QgZ\nNXSjwLjt3yyaIpIqJeWWM2cpgjDNHY8rw9YoY8BYj0uBydVHP843FDIfge2mZvvNmoeF4/i5KTcO\nF7idw8dIawXnDOL7Rt9kDJfvDpt8/2xK1g5CxjNim6AqIUVIrt/JE7L2l6az/cHyGIxEDNL/IBZB\nRPpsGpRkI5gCQ+xXlVtH52OfJK2Cz4m2XhELT1VUiIOcMykaSpvQlIlW8ArBWFDBmCcFkwHfWRBl\nlBJqDTUBpCHmPvG8D2KMrGMHQQlBKbJQFxmXtT8GNgJYOhGcN7TB0TnDQWHZGqUUj3WR0CaurjvU\nV8xLJXtPRSRjiGlLaTq6JtO2idJDnSxj7wk5op3lcG5okqFIBucLTBSasOXxuqPNGfmELPYdDP60\nlJWUle5J4uW6jTy8roEr4P6ffJz9jd9En3ShFlaYWsO+VXwFN71QKCRnaE3CRU82SusF3/Xj2cmU\n2BxR07GswAdLLQnrInUo8T7QqmXaRoJJuAzZKiYZXJvwSZi5wM56bIJGLZ3p36SJJLLJlNESjGPn\nDNYGRD3GZpIaqq5j7RzZJKYhoqaP3bGSICrReppCOak7TiuhjoYqR9bOkhxsc4UkmNWJR1NhRGSz\nm5BcR1sI2ETrhFFsydFgbGLlDFkzWwG7qvBFh5dASgW1sxxcK1f7mUosi7Xl/NCx1giPP9qv8VDI\nfIRCF3nw/WsevnsNIswPphxMR0znijMlJ6ngLEO9HQIi/yw5wfrMYuZCosPYTG77EXYjlqQZJ7Yf\nf0ZxOZPUkYzrk7DVoE+OurKCFQNRcAa6wlKRSWQcfXN2J0qHoAGyJsYmUhiP5kgyiQZwGQTTT6Wx\nQ7KHzJOxSSFIR7IZ82QizeZ+2kkQogRCzJho0KQYEZxkokkUYnEaiGrwBEw0pDIRNFGIsmczj7uW\nw8mC/ZElx8jFsqOOidIbNqFCDFirhKaj0I6MZ9sGNpuGvVlFVsU5xe4CYdWhC4PzJdYU1CGCiVhf\nkWzC7Vo+AeHXg8GPLP2pUZomKU1KnAPUW779Z3y8ERg7ywKwhaMyDQfaD3tsxoYDQIzFkPDa5/Y5\nWpbeUiRDoUqg3xhfpMTGjPDRME6JzmYS0NlECJYYLY3JzHIgYykkk4U+uNgZplulxaHJYXOitkqX\nIZFRyRRZ2FgQ23Lp6XeaqSGKwYiyq6fopKFE2Zl+tCJ0nko7goL3gSIm4roizGqqzZiomUoTRQMX\ns0iVIXUWCgUX2VZKGRN+N6UtGsRtMBuB3Uf/QjMUMj8GfcKqsjxfszxfU0wdt+7O+cIrz/H+1+//\nhf/+p5UKbCUyTY4uKtNKCGIQ+ySb6klPtUhfyGRjkRwpkxBFycYgue9T6d98RToH0SpljCQcSRRJ\n/Xp+r4IzAtqHh65TxygawFBicAoORXNGs2LEkbNBfYQkJO0LnrKtSDbiQn9tujNPGv+iYBSyRjCG\nRiPOJLL4fueNNThRWixqMyYrbZeghG0E45T5qCAXgZSFq21CVRiL4bpxTG1HoZ7r3RbvLDZVQOCD\nx6e8dOcuU9tSj6acXj6kbgPF+Dar9TUX12s6aznZP+asPqPLwvrJZbPBYPDDyQqbkNgAhH+lUf5J\nM6sApRHGAsZZJijiCvYJWOOYxsxRhvOxZ092JFeSLCQc5ZM3QUkyZVKCGtaFx+Z+0y+pPyXRpOQE\nnQNLRxQhmExrDEI/abmpEnSJvU3kkRlTatffTOMoiDRVR7W1JBc5H1m8ZJJVKhLZGbQriDZQkbhy\nBjvuaA24ALvKYHPkurRMaOnUUUXD3i6yLYRRF9gCvjGUCqH5wcjXR2coZH4Cuk3kvW9f8uH3rocF\neP8GIsponEENkX4F9thCqx1qn0wXPZlMMoAkAENr+1wmyUrKBkx60ltjKUlEFTAONRmb5clOmv6d\nkGbtJw2spcge6Tqy6TOJHJmtN1Q5Y/AEkzAmUnR9U/HOZkwQjHa0LiFR+tOZnCmzpVOhMRkf+tOa\niXF0yTCXTKPg1JBNwiXBA12AQGKERZ1yvDjG+H7M/PHja7YxMi8te4sJy9YyH3va2NC1DW0UzFQ4\nYo/L1Qq1nsK2VFZQ6zk+HLNtGpbXK64bwTjlwfkZKWQOq5LtzgzD14PBR0yBJisNQIr9CU9b8y7w\np1c/u3VNIeBMhzVCIYapGCrrGJWw8AbJwl4MRGupS8ssZWpnsBF2zvR7a4zFq+Ljk1BGm7Aom5wx\nVtmKUNBShsRV4cgIAU9rMsF6CpSKwHht2PrM1ntGQSlyYDlSsJnpdUESpXL9GzeXhSL3wciUQhWE\nPAqk2tIg+KhIlYhY2nlku9Y/KfQ+KkMh8xMUh8yVfyPJwiJ6FmOHhIh1oLR0uT8BMWqIvh9fRgRj\nEzkbTFSiAxIkkzEAAtZHNBtMzGSjZLU4kwnisE6JMYD2LxAhRrQUvDVYK8Sc+nHs1mEkU7tEGRPB\nQW37Ph2TDM4IGx8powPNSISolrUBcVClPhyuywmjGYp+XNyopVJorEWSsPPKeNtv6nXOsnfjJhPv\nqGzD2VXkwdkVN4/3uDUp0NmUad7R1IGuabg831G4EVlbUnYst0rLBKqEbwJFBZXJpAB1C8HANGe6\nLpFVEavcmo/5A5HhVGYweAqi9r/+5aa4xCkALTwZJuw76foFfyJQChTeUjrH1MDEGJyzTEWoPBTG\nsK+Ba1sybzJSBs50hE2RDY6thcMm43NijWUzDsRgcY1jPe7IyVKlTOMtoUiMaoNVqKtMYSKxLcEm\nHMqmsmibwCnjDlosxhgOY8vKOnxUChtZrjzaBT7qTdpDITP4+DCgU48SOZlUXMaari3Y1YnaJfa9\nR3I/QTT2lpj65t7SKjE9Gbe2mfzk0l6HYAAnfa5V6YEMgmICYD02JXJhSRG873twXGcIZSapoAUU\nQchZEQwS+s2eoxSwGVqfKZo+hE2zYkaeUdtRqdBqQjWRI/hoKUSRDFYtuES0gkuWSMRH5TJnxGdO\nDhfYqoJwyaqxfP/ROZOq5IXDKevdDq237FOzXisfXiyJQTlalBAzdVrTLhPel6zaipAdU19Q2jVn\nteNwv2KSPG2z5WrTUpZ7VD5RiMMM3b6DwcdWPzYAT8Ll+vOcFH/wp/+aHxQ+zrVUBqYWsmuYj/rE\n3UnruBxZ2rmjqmHSRdaFpUyZlVj2XGTSQvSwaDNXeUQe1xRNQbaK2EiyQkieUezIORGSQJGZdpB9\npNZ+grPYOYJL1KNI/jGc/Q6FzOBjQzDs+ykT17LNliKVrJuWjMVFCGXCZ4OxmeAMkjM59ceXajJi\nINKn0RoDPoNkpbOCSYZk+lSsUvpvMssIYzqiKs5DbCPNCOaVgxTxdoSmDvWGsnPsbMTagO8Mm7If\nDR9lg7HQihB8xqmQfInVSGoy66SMslL7fhS7s4YREcVgxFKQ2YqlDDuWTeTlG3swntHEFTdj4A8e\nd5AyLz63h1aWrjXsW0uXI2+fLbHW8dKtGW1V9pfYtMRWjylcZtyek33BxioLM6bdmxG7lvN2B7Zi\nbkridsfUBIJ3w9TSYPAJ8oPCJ8ZMA/SBOB0P1vzgb/7kY62AM4A1jMmIM6xKw9QJooZWLKV0SAfj\nEFgZzyRFNFt80VF3lsomymTYFZZJl2nUMImQk2E7iqyjZbaNP5bVI0MhM/j40Mw4LXl1JjzwmW7T\n0cZECqBZKEqPjRGcw+U+pMDbviufZEgoRjLGZqJajMukZPA2ktUiKhTCkxXjDhsDuQDXKSNjkLJv\n2t0UMG5LSpPJjKlzZFoFbCxpQsNGOmbq+yV9Zd//UkbDuCuxkogusXkSqWCTobXa9/0YocRTFoFd\nZ5nZjnUR0bXjIvQL/saFxdiMCZHTNbz94JxXblTsF0q2FYezmlG341vLGiOOQ2vQomNWzTBtoklL\nVOgTtbNyublgayZId5+FnxIP5+hlwaPNYyZWKfcnuK7hcT4j/Tnv7AaDwSdbUkgJSLk/6eky7DJn\nAASgP+ERw5NL95HCQlkExr4fWkhjwyz3e7ZyBGcTlkQ0MGkdbQex6z/XR030h1yCJTIMZ35SqeqP\n7b34/5/njbHCp1/f5zkrpKagzYnLJrKLSpuVwnmMZJL0zbFR+hFoVQiSMU/iBvqT135DsOQ+6oAn\nW3edEbIarPbjiyL9jgkBpBAW4kjZECRTmkCrDskOIy0hW4qsbHNAVBAn2JzQbIlGyU8+v8/QqqCx\nI6Bo7ounpP2WUGsgqsG5PmspdkKjuV+oV1q8Lwmxo24TTReZekvhBeMqhAAhsuoyqoIlgzWoeEQV\n1UhU2FvskVNLjJkugtBhsGAMMUViVFT7+w1K0kwIP/y3+MflOTN4tgzPm58eQv9a5yxU1iA20xrY\n/QjpPH/R8+aHLmQGg8FgMBgMPm7M074Bg8FgMBgMBj+qoZAZDAaDwWDwzBoKmcFgMBgMBs+soZAZ\nDAaDwWDwzBoKmcFgMBgMBs+soZAZDAaDwWDwzBoKmcFgMBgMBs+soZAZDAaDwWDwzBoKmcFgMBgM\nBs+soZAZDAaDwWDwzBoKmcFgMBgMBs+soZAZDAaDwWDwzBoKmcFgMBgMBs+soZAZDAaDwWDwzBoK\nmcFgMBgMBs+soZAZDAaDwWDwzBoKmcFgMBgMBs+soZAZDAaDwWDwzBoKmcFgMBgMBs+soZAZDAaD\nwWDwzBoKmcFgMBgMBs+soZAZDAaDwWDwzBoKmcFgMBgMBs8s98N+oIjoj/OGDJ4eVZUf1/89PG8+\nmYbnzOBHMTxvnk3z2YQbJ4fcPdrn5GTKzXLMf/e//xbrTfMT+fx/0fPmhy5kBoPBYDAY/HS4+/xz\nfOnnPs2tF+7gjbJZZ9p6xa6ruSxK7r54kz/81rtP+2YCQyEzGAwGg8FPNe8d8/mUe3du8fKde9RE\nXOE5PlgwKkYoDRPAzseYdUfMJfduPj8UMoPBYDAYDH6yRISy9BzN5xwc7XFycsxib4pRoUuB7MFF\nD21NszUcTg1dtcAWVxS2wPs9ogjuhSOKwtN14WnfpaGQGQwGg8Hgk0pEKArPdDrhuZs3+MLnP0sj\nW8qt5SqtkOTJMYEq4gQXL1G3R9tGLtcN1bhknh2dLyliZlsoSkvlPV/+5c/zj/+vrz/tuzgUMoPB\nYDAYfFIYI8ynEyaTiqP9PUbTCTeP9uiS0sVAEzcczm9yzfss2j1CtyUnIZCxOdIES5RAFwyBhqul\nMBpVVN6hdoRJW2JbIl3F0f4tjDHknJ/qff7EFDJ78xn/1pc/x9nZFR88vuLx6QUhPP0jr8FgMBgM\nfpyqwvOFN17jU6++wOsvPc+q7fj+Ow+ow4b1ruOqqXFYVAzXF1uORtfMxwc0cY07GLFqV+SlYZE9\na2okR7w1hK5jt1EuL1bsHSzAdGh2oB2xcBzsTynKgqb+yUwv/Xk+MYXMnbu3KYsDXv70Hd78TObe\n65/mD771Fl/73W9x+ug+6/X1076Jg8FgMBj8pc0mI155/hZf+YU3uXnjmMV8TCoKskkYK7CJlMdL\nrj7oKK3StZFWAtYYEOH+2TV3b98hTGraneW4O+bUXbHVTKMlpmkRV6DG0OVIrGs2O8uBnZLI4BOa\nd1RYDvenfDgUMh+NNz7zeXbJMhvtU/jAZLbHweIGr9z7LD/35pexh3O++n/8Qx5cPKDerp/2zR0M\nBoPB4IfireWXfvZ1fuXzn+GLL79IOa1QhTYpzablLEVcztgI6jJTdbwwnbGx1+wSOCOICm1WROB6\nveXg4gGjm3fp9H3aPGckFaHrsKo0KeOoydnRZIipY1t3mOoaCoOPlgmJaCMvvnqDDx+cP9XH5xNR\nyBTjEZu6Y7J3TOUt9169x/ff/oDTyyVNUi6uHnGsa4pqyssvvMF8OuHOnRPeefePGY/nfPMPvsly\neYXq073ONxgMBoOfbgJUVcG9Oyf8p3/3K3zpzc+wV87JuaWNLXUIaDC0bYNrEzvvkJRoEZwD1LGa\n1Yy7MeXBhHAaqH0khozJ4FxFo/Du5ZrX9lbMxvtc5gt0PcYk2HfCo2zoNJFVMamjNTCrMnYrBMkU\nGWzY0bmSX3rtHv/8q2/RPsXppU9EIbPYOyDsWvaf89x4/ibWFnz3e/cZTY/RtKFuM++0l1zuYDKO\nfOHVuxjd8JWv/A3W5xeE7YZNVn71Fz/Pd966z+98/ausr5cow6LIwWAwGPz4FN4xn0z41Et3+fKb\nr/FrX/kFbh8sEJuJIdHvtM0Y42ClGM3kDIqSs1CTUVtgU6QTQatEGQriXsvtleePTh3jGNkkIblI\nzoGqLNhtVzx+eM6nX7lH1IIzsyE7IaCMCuG6BSOJaAznXcSs1rjbE8pQsfU1TBvSLjGtHW++8TJf\n+8Z3ntpj+IkoZF577WViCuS6ZjLyvP3Wd9lcB0J7yXzkqW4tWD06Z78SXn/jc+y6SImw3S156/vf\nQWzLf/zv/RqffvE2P//pV/hrX3yDZlPzu9/8F7zz/n0eLq+5Wq1QHQqbwWDw8VYUBScnN/jgg/tP\n+6YM/hw3jw757Kfu8cs//3l+9tOf4sWbN3CVQTSiLhJDSyEejRExgmgCsRRWiRLpVMlJqY0S1CBk\nggWTE9I5xCTCsuU5nfPdask6ZKIkiBCIGIHKjLnarLm/POXW8QlNblm2lqZJ2NJSBO1/rmJBE493\nHemx4XNzOMuCXRYQAuui5HOv3RkKmb+MwntevX2TTZvxRaTrah4+fMx4PqNwgdLD7uoxbbvkSz/3\nOik1PL64oC08m82Wdhf44he+yGxief+dd9CcOZiNKY+nvHr3b3KyP+fOCy/zm9/8Jt/+8BG/+X//\nJt/69nfQpzxuNhgMBgBlVXJ0sMfzhzd5/s4xB6OSNij/52rJ6XLoB3za+gV0BT/zuZf4hS++yS9/\n8Qvcfe42VemxahGT6HKADOIdORgkRDQrWmWIBs0WNZC8Q3cjsmzJydCK4lCyyXRBCeua0G5JsWWz\nqtnXglIhRiHmTMKSNWI6ofMJHz2n91fM/JT5ZI/rVY2wIzUJsRbJCYOCGnJWVqsN7xaeWx4aLEhH\nlMjCWj7zqRt8+4/Pnspj/MwXMrO9OXfunLBNDhs7Ls8e8vD9+9y48yrLqxXlgSM1a+7dvsHh/oh3\n33kbqy0TO+fs8pKTozFvfvYelYXx9Ii63rFYHHJ844DcZfYOb8PRjM/xOv/O3/k7/Fd/7++xlZKv\n/t43+O//m/+Wf/o7v03Xtk/7YRgMBj9lqqLg+du3+JVf/FlevnXEw8tLJip8uGyAhpNbt4ZC5ikZ\njSqeO9nn7t0XmM/HfOnzb/ArX3oFGy05zSgqCAnoInilFKULgssZBVSUzjbYxpNNIlmDTQYXO0zO\nQCSjRBFsTJg6cf34IY8enbFqttRtRxUr3j1OxJyJpkBzizFKToB2jBjRSEsMHe8/uuClu8fszzOb\nTrkOBVYaxDgkBYwrCKnFRcPZcsueG9MYaGxg1I4psvLG3eeGQuZHtTjcI5cFk6qkjGO+/ttf4+Vb\nc663H0LYEOsJL710gkFZbR/TNWsILZfLMxYHx7z5hc+yv6jw5Yh220HIFOMRy5B44eYt4tEI11lG\n1R45dbTthtuvfpb/8IV/n1//d/8Wj3ctD7/7Pf6H//l/5Df+p/+Ft999+2k/JIPB4BNqPp3w4s3n\n+IWXT3BUZJMgRC5PH7KYn7BtN5QYrtfKvVef5/e/892nfZN/arx+74Sff+Nljo72uEhTbowMbYZm\nu2T96AFp+zzej2lsjYYRSItaQZJBnMfZTHagIaCSyTtFvJCzo7IKKdF2sJYGaugQdiGyPrvkvYsr\nHpx+SNd1mGww0VOMDculoYoBLRpstn3DrxUaVYSMEYtJcH19zcOJ50Z1xPV8x+iqJOZA1ISKQUkI\nhtZkXFTq3Y7RbI6Gikoyp0XFzaNjCu/oQvyJP/bPfCHz5bu/QFcrNu24f3ZGbhpiOabQyEsvnzAa\nj+jahvneEfffepsOIYhjfzFjfvuYkxdPcOKIUfjgvfd5/t4dqqpCvaeoSiahophMmM332Ds8JnSG\n1AaiV7rmnJP5Ibc//xqf+pn/mv/iv/zPmUni7/9nf59/9o2v8/7p46f98AwGg2fY4f6Mz776HC/v\nnfD9hxvGVabTyDJGqjJjA3TdiPfPr/nCIlJUBdP9yK4OTIM87Zv/iVU4w3Rc8lc/8zyfevMV7s7m\niNRkLcnJ0qwz0gSWJBopsdnQNkpZRCbFgpgs1mRUPNl0JBuJIYAakliyVlgLURLeGEJj2cXMLmTq\nrZDEsUmG7333Ha4315wtL5hFj5cx1oI3mc4mFg1ka4kxIwrZJDQbfIIkLYhBvUCuWD44x75QYKTE\nYlA/pqClCR0mKagQRCg0ct5NuRU6xnh2ZQvGYaPyi1/4NP/oa9/6iX89nulCZjSfcfKL92genWNM\nojlfskst3TIyqxIpz0g5cnTzhG9841scH77A+dX3qdwEnPLKy68wVUcbIpaOmzcOef72HYxxbOst\nxk8QXxCNpRxPaJOwWp2zv9jDNw2hPKExmeBKTEzkdk30JTk3/Ce//reZT6d889vv8tbZe7z1vXc5\nv9qQht6aP58I9uZtWC9JbQvDZubBTxFrhL3ZmP3FhHufOuTues5rb96gnc754Gtv8cabd/itf/YO\noxQ4PBxRzT2rpdKtP+RgOmO7XLK4sUA78Aau1iv25lOuV5unfdeeaSLCpCp4+d4Bf+X2EZ9+ccKd\n+RHfutqRosG3ETtOFJXHO8flOjHxnkbBBaEQi6au72NpEznXTKoR0QZQwXjPmhZKQWLGUZILyCHi\no9IaQ3KGbrelbRRqZeky988vuLy6oN6ucdEQiKQCEBA8OzX4MqEFzDaZrQWSYjURbX9SE02JakY1\nUVvL2dklr04P+XC2g23EGEfhCmLJLQAAIABJREFUExo7rBFyENoslEAtHTuxmM6wlyI4y/GNfYwR\ncv7JDsY804XMCy+9gq4u2NQtEw+kxPJyyeHt28yOD7h4fM69V+7y8MEp9a5jW1yz27QsjmeM5mPm\nkwmoopJQzSyOD8hiiTFwfHwTGRVURUmqW6rZEblribsWP0+YZslsNEdVKRS6OlHmOQ8fPuLGbEpa\nXXAVGu7MPF/+8t8itBf8k3/yz9nUay6Wid9/90N2dfe0H8KPFVtWvPq3f51RteCy2VL/3j9l9+gx\nXbMlb7fE3fCCPPjkGHvL0aTk5b05v/qFu/zdTz3H7uBF7n/vEb/9tfd452LLg5uGKm+xixGHruTL\nb77Io7NzVtdbDhZjDiaJtRlR2khdr5mEMWVpme9NGe8v+CUS//C3fu9p39VnTuE9B/tzXnvtBX7p\nZ97gteM9FnuG9fmSx48/YBV37NtINz6iq2vUQrTgVIhiqXxm1wS8dYSg2HFF1g2WOVpFaglgMqVr\ncOrxOZEjmM5AGTEqZOPYOsW2SpKWuqm57gKQ6a63XD88Z1N3dNrnK+mTzKOYhLpIjFSpnLARz9wr\nOSdaTJ9cnRKdNQgJbzxdSpChXdd8f7Ri6heEtGEjibm3tOUBuV1RFUITEnW3Y7MrWEggWuXCBUZ+\nxLEWfP71l/jGH/5kWyye6ULm3/6lX+adt+5z44UFFw9Oud7u2Dt8jqPFAlHDycmCqnC89eEpBY7T\n83NEDNs2czsF2s2OVDmEAjff48beDeqQMCRG4xGl8eQUCDHiSiU1lv0b+2gXSKMp3kETKwpacmUY\nLyr8+1dcnJ8xvbXHuDNMjkZEbch14sbxDT4zvcPBzWP+o/EYO1rwD/7Xf8T/+7v/gs2ufurBW0+b\nVCNieUzjMrfHC/Rv/Bq5GbMY7cjlnPbqnD/+w7eR9WMe/+5vod3QZD14trxwuODLLz7P3/wrt/nS\nwnFrPOLyfE3IUx7/4SNWX9rnxhvKX9+7zT/+B2/xh997j5PNEeWi4J3TB8xmUw5O9rk8Pefq/JJp\n5TFY9rH80cWGcTVhcjxhfjwjpMQ9dxN+62nf64+/UVUym0+5cXjA7VtH3Dw6YuQ9VVlSGM9OC8rg\n6GxgFwx7hcX6yIcpUEmi3ayZmikqHZKUqoFsBek6kvFYLWk3CoeOECNWdkylQlRREYItUW1RSRjJ\nlFoRTaKowZhEjolUQ7fuONPA9aMHnF2fY3OgRIiFo8iKc4J0yliEIju6qTJrLG7siTZTZ8ghk61A\n7vtkvJd+L42AtYb2omFy5CkLS2paNmKpZIdah1foohAI7LbKdJKwqsTgqDTQaMndowO+wVDI/HBE\nMJM52/Waqb3B+9cXTEcVWz/i8eWGw5nw+mdf45t/8C2qaswmZXzbUIxLYmo5vVyz+p3fZT4bsTc9\n4LnX7jAqLfsHx5S+olHLQVGQc8fkZA+nBiVjxJGmI4wriRox+YKcKsqypBsZ/p+vf5VZWeEqZXt1\nxuLkcxgVkvEUZcF0f4/das3nv/gllpuGv/aVX+Xw8JB333uPNPW888fvcHmx6q+X/pSZjwru6o7r\nNrOd3mDRrGhNxIyPGaVAvdzxws1j7PPH3H7lHsuVx7UfslnVNMsPaM6uaJZLNAdIfSz9YPA0TUcF\nP/vK8/wHf/UNfvX1V3npzj7+9B3YL0jvX5L2HDdeNZxfWsQdsrfvya2jOoQ7r89wb+/4/uljUnvM\nKlsSG05OTtDn9iiWhkfbJSYqu6JjavZ4//SKT40d5dRjsiGNPWXpaNuffAPmx5mzlpObB9w+PGJx\nOGNcjSisRwQoLCZlYpnoUHZd5iq2uOgRP2ZUGioZ4YvArIPOGrYxM6s8IsKUyGmIaGtZ5UgRlHFK\nNCmw1EBpPF2E5AKhSxRWsBl2oYOQqGJFHAUkQGcyoPhGkDYR64br5TVnF2timwkieJQJUBSWJimJ\nxDYLde7Y1YF5Y2lGMDaWaYJgMi4LO9MXMxoT4+mE7fqS/4+9N9m19bqy9L5V/eUuT33rS15SLEQp\nJCsUEY5MBJxOA65hG27YHcMG8gH8Bn4A9/wSbrjljltORyKVcgYiMxWiRJFifatz7z3lPrv6q1W6\nsdkwErCR2aAIihy93Z1z7R9jrTnHGI4MlRzrbkuWFwSpqaxjyHKia4mqQOpEdJKtsEhrOCo0hYB1\nAFEE9m+NuHvngNMXf7jYgm8tkZkeHBHimigtzWZL6ns6JTnZ3+PJ0zPiaEzfDmw2A12/YdtGqqom\npYAYelbO0tx4rosenbd8en1OlSTz0RxioL16Sj8dkxUCXY5JQSOEIwsRZQxSOnw3sJET5hJiu6VM\ngeXLK9760VvI3HM1XHN5eU1+c0WazKmmI5wqaNsF0hR88cXneFEwPzphtbzm0evvMNI5N6uOcTVj\n3S747W8/xNvvxghqWk+pw5ZkamJYEcucg3pGHhxX5y9Ze4EQCiEUSiRmM0XmXmN25GG4jwuBzidM\nd8lGQCFHeNuwOD8lnF8y2B7XNcThmw04+x5/vMiN5udv3eY//Nmf8p/86X1ef+seMytIfgm6Ig0t\nZDOICvZqlLqmG6A+gMKOaNoNmU6EXPPwLx/w2D7laOE4ZU1mDFjN6YtX3Nk/5KbacJTlGGc4axqS\naOgGwcvLLZNUkitBygzvPrrNrz969k2X5huFVpLxZMRb9++wf7jHuC5RSSIUDCkiPXgBCdB2R2Jk\nkKAi3ke6JrLJPbUwRD0mP0zEpWFtoaqPubm+4KiLuxFTEXcvMq2mCBaRw4XdsG4FdTCY7TmafTqh\noB8IskVOamKfcDESVEvuMrKk0EHgY2DA4qNnwLPYruhsj04JrwUy5SQVWfvIMDh0SmgpKIUEJ0jB\nEnpYeqBQZE2gV4qdDlswBE9GhhQ7d2ATJWEbUTrhUuBKwWRosVEj3IakSoxUaJ0Rg2XtO2aqwOnI\nXguDMdy7dfQ9kfk3wXvv/RmXz54zrWvs0GBthzaG7bChqmuSyPiXH3xAFwJt44h4YjJoF9k/LNAy\nZ7AB3waiSaQh8YvffMoa+POf/31827DaXDAqjvCLG/LDORFBs2mYjCckvzsHM9cR6gIXJClpVKVo\nmksql3H3B6/z7MknlFqz3a64Wiyp702pi5q+DWx7iGKgrqdk+Yxtu2RiCpLqMcmyP9tHvPdjfLfl\n4vKCV1eLb7rsXyvkeIy3N+i8gLJCRFD0bC8WLPvAKLZ0KkeHDd4aeg2DiHgnCeyeVl3SVJM597J9\nRsbhxZTX7zwgjDJSdDSDwvUd7WrLenuJXFwxNB2b5YJh8c14IHyPbzdGueF//K/+iv/y7R/x5s9v\nU88FatiD7QIyTSAhrSShYXZC5y/IjSWGFpKBSuGkoD5xfPD+FW8/nOMQqCzy5rsn/J+/fMyoMOSD\nZBUaylhyrq4ox2PWQ0+MHb5P6KJHtQE3UkQqlJCIfuDBbMKvv+ki/YEhheDwYM6tw31uHe+TVyVK\nGTSRqCWJxCATKkpUAqtAxZ3IOIpE8hEhE1pHJA7vPE0vKfMMPZkShg6Cw/UWkfWYKtFbi68g9wKl\nE0JGtEwEFWHTYDvL9XJDiaLKWgov2MYthJxjcrQCLSGFHOlhKBNCJsJywPYWnxyu9zjrcRGUlORC\nUWjF2g0kG6mMJDcGBEjpKTtNqHPGyZJCpNEdXkXUV2OlpCQEcG6DKkqGbgVRE0RP7jSjvIB1S5sC\nSSaiUyTfYqNEZZL9zKBjSasEQibWwtOmgpM7x0w+fcx63f1B+v2tJTLmQDF0HVkmWV1fMDo4gLB7\nMkwykE8mDOdXhKCZZjCgKYSj3NfcfXBCSonN1Q0vhjV1CPR9YHX1ivJTxZ2DPfLJHLmEkdnncvOU\n2XhGMhKCheRpugad1UQJqnUEkZBxw/mTJ7z55i0urzoO7wR+8qO3uLo6o7sZGM/mbLYLbh3dYdFa\nsirn+SefMj48IPiWiwuLygyTg9v03ZKQSX58/w5Nstw6GfFw/QZ/86t/8U2X/muDOLxPyvc49B3P\n3Za5ykhNxPuBqb0gCM3IaFwPygyIIFDGgW2wg8JmNYdjQykKOqm47AZSAD3TTIYW5yaUastYS0aH\nY37w4JiTO0eMxsdYVXIwrKjXLyiunuO7ht89fcHffXnKJy/O8CESwi5E7Xt8dyEFjHPJG/Mp/92f\nn/CTg4zDRcFb/+hnDC9ryuk+QuwuOWKqEc6jtCBO8p1zq23JshyZZ8hMsblRVIXCdtdMTc0PH2SE\nLIIFlSxHJ2PGI0gqo7M3SKfp8p7l85Y33t2j1RbVRfaPc65XiRQF27Zn2liuXMdm05GPZkghvjNn\n1xjDf/Mf/wMMiRaJFZHaRpz2RKnIIiQl0T5hVSRLEu1BEOlNJCQJSaBCIKaACBFSQFqHKzLqckb3\n8gIx1ehBEJWkitBbSZlHJAXBCIxtib2naW6QXeC6bfALwWU/4EcZd0sFYk3qSrIoyJTG4xkXY5Io\nMS4SQ09MCe8SkkCWPIRAhgSdyKTBEUhS7UiWihAS56sG5waG3mPlQIXCZAZtBPtJ8zwlcqGIMWGi\nZLCOrFTkcYLQHckL2q5HaIPKNKIPyGGgV5KJF7QK+s7yqrdUCo6mFfezKVNludkbENucp4/u8Xe/\n/sP4GH1riUy2bEi1ZlrUnK0v2B/NaBJcna0pxyXrxTUQqHODUDmFVGz7hkdHJ+RS02xbUkzM6ppq\nOqNrOtS24eXpCz78+IB6tuQ1v8e947tQznn16pTbdx+i65rt9YLVzZb9eUtnarANoGkJJAaajacW\nLT3HNNuOzisCmsm4ICrF/u173KwW7Oc5z5Tg+npJa6GsMw72a/o+IOUMHzwLNzA3CjU74Vd/99ff\ndNm/NggpGR0do9B0daJQGhEd/XJBs9iQBUc2hi72SC3JnENIBc6S6pwyn3PAFV7nKFGgL88pfIeo\nDJmNxM7SFDB1Di8kr+0V/MntE2a1QKpL9p1l5i9I0lE93MOZY/7qT99mf1RRVmOkGuN0xqKz/M0H\nX/DL3/yW93//MdfbNTerFW3TfNMl/B5fE8ZFxmvjnP/sUc7PDg4oZeJ8ozjUJd1HgtWtiOh7ir05\nAsAlpHLQR4gGYkSkSJIe4SHRkbxB2EhdjUgqYZcjZBkZzSJuA0M03Kzh+cWW25MRT5ZbtiIxLiwu\nBo6yjOePH/PmD9/gfLHbp9Mmwl7ErnvOXgYODw6wJG5WN98ZEgPgnGPIJT5Fog3oFOlziYqgLCST\nCFEiZcJ4iVMBkLRSYLwkCRAp4WMEHwlZQPuIiIFAZJpVhL0KOXiW1QjRDrRqRE4i+jExlQgv2LqX\nXFwu8A7KpLh48pzNrCQLCu0lH1WSaVlRxitscGRBoqNkOI7cmml0njP0Akkiw+FCwsTIKCk6KYhS\nIiQEFyjyMTmWi82W9WLBtncEGZBC4bwgdp61cUhleGAcWkkkBVZHlIBAQHeerhQor0k4oksMbYfU\nkqAS+Jws9HQkQjRIoUgx4W3iBVvc4CiPFEcvRmiZ+JMfHPK73335BzHI+9YSmYe3D3l+ds5Zd0GR\nlQhdcHV5Se83zPM5lxdnCJUwZneTBoEIDZvNGucHjJCYQlLmitm0Zm8+4uUp+MHy7PlL3q4KQLJd\nLjkY3efx84/Z3z9GuYFXz19yvr5Aqp9ydvM+VTli7+A2qb+hXfWcdp9z7/YJbvCUe4cslmtOjo5Z\ntA2hX0KluX7xgs26p297LIlMB4L3NE1AR48bOkgSESNXPiKN4XLVftNl/9ogpeRkHmlNgXQrcikZ\nVtcMTSS3PSnXCHJG7UAQFoRCK0s5qiFpxPCSlM8Zq5z19XMIHbFIaBMQqw5pBHd8g9EDd8Zzbu0f\nc1B7dO4pHKA853oGLHijrijzEm0ULiji4FCFp84kbx4c8vYPHvKP/vt/n6CmLPIDjNI8Xzb8b198\nxtO/eZ9ff/Ehw7NnLF+cMlxc4r3DOkcM4Zsu8/f4/4FRgtksJ4bA3njMn+3P+S/eusdGGdrPTvmz\nR5I2DNBqVmLEdANR17xeBGhywiRHuAChB5FAVQixJOVjaDUCAapH6gpiJImSaLc4BZM6sR0irEr+\n2acXfPzsBYuza4LqybVEiYIiWHKj8UnTFANiUJxdX1KOKtyqI7nEVEOqK56uVkzKDKk1b92Z87e5\noR++OwKCdttynNWs84RyChEESUSS3hm7STxRSAohEEliVaT0gsju5SqIiEDRS4sJghADPlmkBxs0\nlAdstpekEAgacmHorlY0qifYlr4U3NxcIVpFJIDJuLi6oFh89cIhEgZJU1RMyhF2I3fmrEqwfXXJ\neXIcHhwTo8X3PVZFYhSIsBspaUDGiEqCKBVeKWzb4VctrQOZ52SmolQKT2CbD5jGE9qO5yMoYobJ\nIiYARJJUeLn7rTTIlOOlJQRHJSqEEdjBMSiB6gVRBXRKBBJbFYnWMEoeca44LVaUmWbuM9587YAP\nPz372vv9rSQyZVGwabcYJRhlBU274uLsktRZ5rfmDLahdwNFltE1HTFFUibQZITBERFsvEcawXg8\nZr1akFc5+8cT3KDYbLeQQHrBs09+Q/GjgqrO6ZsbRJRs05Y7t05YrJ9y9vgF9x++y82rC7zd4KTk\n9g9+TOauuHNygh08zmlenl1w+9YBPhvQ1ZQkMqzdoHPJSEvCkKGUo3UtCsmozJFKIoRBxI5h9ce9\noKpyQyZLmnXGkLfEsCV0LbYN+OBQKUMMSwZfogpJYSrKXCH7jiGtyLMDZLCsr5/hQyATgWgHVLfz\nV6hVhbQtY10wmY6oCghxgwwKj8ZbQddsORSAMuiiJNMKqTRCQoZDBkXsWxQCmxc0KkOZCNmWH84U\n/9PP30P87C06o2iSoikKZlvPy2en/PL0BddPvuTqg4/4/ZMv+ez0lP7mhvVqTff98vE3AiFgWuXc\nqSccTmr+h59X5G/t4VNkb/YW2ftnnP7u98x/fovL5LDFjNgVZJlmT8HYROYHNY8//T2P8hk6z0Fo\nkioRvgMdgBIhEuQZkMCPEATi4JFEgguItecmm/N//e4xn53dsH71irZx3AmJ00Izk4KXg2XZCNbe\nE3xknARee7oXS8QUnHKMkqPpBG3fUnUwLhLVXkEMjtm04uxi9U2X/A+GTz77kunPfkwWdwQmaoH0\n4CREAQZFFgXbMlIPmjpBTImb3FPYhI+7nRkxSKQMiBDw3kO0xCjxYkQXN1T9Ka2V2LRku1rSxYCW\nGrd00EoGJUCClomxmJJCot/2eJ3IY0awFuUsSnqiGnjj3m3qLKe73HA9OExZU0uDSHL3IiR6lEgI\nKXFCIELAlYZZGLjoBy7jgJCapAvaBP3QEwAhJNm4YKMMvtuAjpTZToYtA6gUcSlRxIxt5qlDCVmL\nt4a16DBKE4qI7ARRgo6JKEEkRSYkKQUue0GeOfZCSdt77KD54cH3ROb/Ez949x2894xGObYdeHG5\nJUaBVJGRG3GzuiFLkr1RzfXKoeNOiauc48nZSzJREJFIHHsnloPDQySSaTVlq3ratcANlpHLGekK\n7wf2Do4ZQuT0009Ybj9jWY4ZXMbKRn7163+OAmqdGKxl8fIVar9ms17TbB1+sARjGFc5Z88DwxDJ\n8pwiVwTvWPWW2WzGfKz44skFVTXBFAI79DTbBis8j1/9casOirKCTU8ULyAlypSxshuGbUIFS9KR\n4B2iqMkzDb2jtR06Qjk6gv6G66sVQnoyJUjBIeKuy1Em8CWYFVUxpawyutBQqIoYBdF5ch9RwVHl\nCgHIFBFIJAECkAl0btCjDFlolO8pmkuqoxyMIWlB2vYIU2DyMfspcuQl7STnnXdf5713XgPx7yGS\nIwhYNRZ78SXrV57nwws+/eBz/tkvfsH77/+W3kcuV2va79AN+g8FIeD+bMqjkzGv12Pmo5zS77w6\nRvsjhM+IfoSKNb7U7BeG7EozTy359DYigxgSj+oMU4HbbnAiQQRigjgg0OASaENSAyIGUAJ8hLwH\nJ2m7QKlbmkax8QP/5NkV5588Ybu+xsocbzNOi47aCOSh4qiRSOURLnCpB15aA9uecV7Q3Wyg8mw3\nUO+PmDzICK96Hi9W3K0SuSu4d3DwnSIyZ2cLsigxvqKJHcF4ZFDoCJmA3gjyKBg5hUqCpoiYpDix\niWWMBMApCNIjvSFGR7IZznuiDEivSRiWCbhc0gaP7wWzuiYkjTaWVAZuup5SCowSTGuJcYGVrykB\nK0CKSIkgZoJuZVnpBSd3DhjlOc5rJggy6RBBsJYWLyQqJhSSKHbj9QxBDImrzlE7gS1rboaO2EVQ\nESUiAoOTgbIo6Lyh8x4VHJNkdovlIRGTYFCBvFeErAVbYqSn9wkTA6WWdCgyPN1X+UuSgI0JAYQY\nOe89UiSEgsZIJsf7f5B+fyuJzPF0DkpQmgkfPf0AXOJgnOOVIDSOSEJVksH1iBgRuYDGsU6BOhuh\nyxInJHK14dXTM2pRIg4Lri+v2Du8TTcNTEZjjqYjNt2as+U5fzLd5+L6jM/e/z0my7iJ5xSq4Pxq\nxfu/+YzXXp+yeHXK+nLN1UrSrUr2R2MGH9h0LcpLhqZj+sOfsbm4IPlAu93iNw1ZqSn1wDBo6rpi\ncB0iZSSXcbNtqEcVp8//uBU1eZlj+sAga8ZVQ0wdfnWB7kviOCPJDiWnyMzjt4EYLcqUFFWN367p\nbi4RSmMIyC7hlUOhEUBCMLiWqoiUydC7jlE1orceYzReCFJMFMJQF4BIxOCJSqGUQEiJkZrMaFQl\nEblEbyL99UvS4QwxPUAMS+TVBVEY8vk+Ih9DcFSxREiBSAkhIjE6pI9MU2SY3mKaC16vj/jLn/6c\nNx4c8rf35kzrmiYN7JUjPvrySwZ6np0tePVizfOLFYvV9/s4/6bQUjDPc96ZTXl9OqesS5KXEFsG\nJxm8RpWaSkcWeY0Jh6y3kdsnA67SjG/PefpqCfqY0y8G7o8V5m6B6ODzD6+4f3uPbZURfYfQM0RS\nACTS7tvjISkQwYKSeF9w/eqc0XSf1dNL/ubcY0zGbz/+DFYrQq6ZKkFbBVKCosjAS5RKjI3iwgVu\nGUmjBbmcsO4a8sMMjeSZS7TrJferY/qjQHYaWb+0bKNjNM2+4U78YdE0HTF4+iIQQmRsDU5ImsyS\nRU0VoS0jVasYskTpEkF6goBeg7Q79ZL0EmsUgoRIAT84el9RqISTAtN3XLqBichp84QpInUYuJaB\nwe3GP15IClUSooIMRirHG0saEkpIjJLkStOnwOm6xZgNd+5OGBWRPDlGGSQv6YqEsAGdJFKBdBqn\nwfjAjQsEn1BFyWawpMFT6EBUEnROlmVooxg2PaascavVLi4hz7A6YVIixEgeE0mWhOiJJhIGTYal\nITDuNKIE7xK51AgXicEg1ABekISk6yON9OS5psNzbA1Vbr72S9m3jsiUZcHRrTGZHPHJ5x8j8dSz\nnC6LFMnQRUulDdPRiKuba5QWpM7hk6NzjsHtZnzbrWUyrRkVgsenT/h7Dw+J2QzrO24f3kFriZpp\nJnLKZx9/xJP927z8V7/G2gVZdYsXT65Ynr/k8nqNyTRfvP+S65tLtB7TDzd8+HTBs+sFhdI8fHCL\nVbule81w7/AO67blg49/j+0G8nFNMVJ4AcF1+JTohojSnuvNlpQiMbYUmWD9TRf/a0SVz3DRslda\nVMygk6zcnHwaKIjUoqYpDWZ7xtbX5CahihrdbVldn5KnAkyLRjOUFoJCRUUUgjBYguwwLvKsfY7+\nDGomYCJFVjAZzchHY/aUYGThIAi8dVRJEEIi1yCKnBQDonVATnQeGQKxu0GNi52JlnLIZkVKLaKe\ngUmoNkOYgpRVoB0y16StRSSPGTaw9SzEBlU/ZGOu8MGRdKBAc3BwzL2+ZV4f8O88bBhMx63ZPs8u\nnzAqa37zyVOUDHz4xYLffvKK68X3BOdfxz/cP+Av7x7RGblTcZSJVivSoDmaF7w4D3x6c8PBvKLY\nHtDHnlHyOJej6wE3n3CY18xOlyyvLRxJuq2nJCcOW7ZPC46DIMYeiSQBsl+S1ARvI0aF3d6M0aTg\nOHt6yu0f3SZdbDi73rByErnckC5fMS4Nr5cZSy0wWYdnR4pUErSbhHSW3reEoHb5bgUMQRAXV4yP\n5xwfC7YXkiePX3Lv3gENiQzD3r7hrjT880wx2O/GnlZKibPlgjv7B6So6bUnIimGRKs9E5FR9BKQ\nJOkw1pBEwgOV87TEr0ZICR8TJiR8iDjvsMGhKVB1hfE7qXPwnpjtyIWeFJQ+0S1bYhLoBF4FGu2o\nhaGQnnYYKFKG0AYhPbnSpKCwIbBYrdifloyUpqwdo6gQY8/SFSQRwMDgPEJK8AklAsK1lCRWIpKc\npsog+IAWgegMMhf86PZdXlyeY7stTzYFwTU0KqdIIJF4Eq2MqGIgixKFIksJlxvKTWQ9GihCQUTg\nQ0AqhdYenyRJBHQUJDHQ+5qxhkEFrqPm4XzCR2fXX2u/v3VE5uhgzvKmJ7o1m+1AVUh89GhriCpg\nU0J4R9cbltuWXAgyI2iHxH495f4Pfsjvf/t7hqAJXYM8nJH5ge16SzEqaJcdISXkjWfVKcqppPui\nY/nFZ5w/f8Ubb77N//273+JedKyXgqGxZKMOXUYO5IR1a8k7w/RWTVh2GBm4uLwiBkvvJNIknp8+\npe8tRanwNiHWG0JWEKVmXMHNRpGrnPlI43VEkbha/vEu+gJsj++z0AN1KpBR0F+umKg1qpmTTxSt\n9ujrBQ0zRqrHeRDbS5bLNSEzxNQRUsQmi3SQoiIUA8lJpIAyj/gYiYuILRMh3MCgWJuWV+oGhGKm\nA+fzPV7bb5jMZrwxUaQsR1lYerebT+aCfMiQGbsPSDdA4xAGkpCAQiQJSiD6AaKF4BGugSrbKVn0\nzjlUiJ20vNeRWzGjSJrUfeVhIQ6o9jTdk8C+GSArUa5lSAJZFYiQcbw/wbeC//Y/+iH/+T+w3Dk6\nZjSZ8+XeEX99Gfnow487M+ZKAAAgAElEQVRY/Itf454/w69X9F1H8J6UEkIqUvxq5sofr6Llo67l\njbQjHgsMYdi5tY7JKUaGh0Vgcjnhpk98+PkTtE385N0DcNfI0ZTm1Tnh5orJYaK3mvygxqWWoenI\nxz/Fvf859u0RbRUZ2YHgPHbboXWHYWAYEvm0gFzj1g3H927x6mlP+OQZxWHBnZdb/ubZM+5m0PQN\n7SjSi0ToI+3mK9WMigxO0eOp+xxqQR09VpUUtWNzdkSz2XBwsIeatYSN5IsvT9k/GjGELZkpENpy\ncjTl6ekftxfV/xtPL655MD1BxECrJDFZZBRon+i1QyhNLjwqSIIUZCHQ6YhUEkIkkbAJ6iSQIaK9\nxwdP7DyMIuOypppOCGFDiaArA03Q6FxQxEgUCS8SIwpCjGQ2kKRkKQS5GVFnBukjIAlRkAlIImft\nEmdbRz3KmaLJihqjewqjyDR0SSKSRsSI1oqYBK0NOK1IscDnjuloRLtd8kY258pA0zuyRzWPpve4\nvr5mFc5YrCClQEiSXnmky/A4dCOQOhIyQa8D0itSlpG6BGJXtyQSMUWk1gg8Jip8DtZ6bPIMSSId\nWN3zl28++J7I/Ot4cOsh2ijawZFLh8ZASmRG0TQdSYJNiZg2zKqSJA0qBh7cG/HuT35C6wv6v/2Q\n1/7k55x9/DEjFPfuvc3Z6WOOb0uGwXI7P0EjOC4VzUjw8I03kEHgZOSD08/ZnF/w8MEtprdyPv50\nw+GB4vZ+xZdPLug2HeVkxFQL9MEYOfQMITBTmpvVkrPLG559+pS9+ZxmeUk3BIq9PVJ3g1E1MQbq\nUrHqOlKCidScXSz+6HOYilt36NyEWm7Q2hPdJdIkUA5HRLc5aiwRgyX1A5KcoV8jlCQLnhQk0ki0\nj9ivouZt0GgnibmnjIFWZshcUdpIa9jlZ6lAGRW9iHQu8PzyjKvrK6qi4KN6xHuPfsDD/T2wgeH0\nFcdinzSFYjxhCAF5fYOsZjDJQFUk34LbIApDih7ReaCDIocYSNGD0JAEwVkG5cm8QMSeIhbUZYVC\nI3XD4mVPso68lHRewloSRgMVI7T0CK/J1YD1A6My5/nNOW/ogodiw9uz1zn6i/vYn/4FxXZNvlnQ\n3mxYnp3y/NWCenrCx75EXr9ks15gl1t8tyBuVkSREKM9xPaa4B3JW4TKidGB/3blW71qO1RVsAm7\ncL2uVeSuJZ8qkvQYrRkdbciaGSe3bnHz8efsFQMrXXFcaV5cN/zF3Vt8fHPGLI8MwZGNC2Kl+Pjx\nU374D++zuHjJemV51S4oup5hGVgEx6PjA0zcEC43FHUNhUJmGvfkI04OEi9Oplx/csoodozyhELT\nS42+MDxtrljcNHgRiTEjmF3Oze4/oQhxTK8DB2j6eU9oAm5sUVlJVg0Ym3P5Ys1kNmF0NKeTNffu\nbr9TRGY/L/Da0ZiEand7TIMCmQRZSEQNAY0JkXVlmQwSK8VunBwFhETwiZg5IgoRE9ElbLCEkIPK\nODi5y9nNNcIkCNAEz9RneOvpkiePu6XsdYwMg6I0iUokCiNxXlIW+VeS/ARiZ4jnUmKzXLKpAvcn\nx5j9SBU0+7WlUjlOWCIaokMikSKRXCRmJWooiWmF1HCryjj6yUPiF6dsG8F8mzO+O+NESJpVol33\npCjwWqC9wCVPSBEVAilPlGGnkOtjpEgtSULnFSpFlIqoqAkykKGICpSJCJ/Tu0CvBaXRbLXlpBx/\n7b3+VhEZIQRBevqu5Wa1IgIpBlDQdQNRCHKzW6zarjuKssQ7i8kK3nn3p/z053/BL3/xLzH1mJNH\nb7B8+px2uyLTE1qrafoNqbG8un7B22+9xypXPNw/4gLJxasr7MUVi2bgcOxYFS1Zpnjr7XsIOlZR\noKqKBw8zPnpxRlbd4mhesTnznNy5zdWrC9585z0GaxnPanzfEgIoFUH0yARFptgOAw/3Kx6ft1gb\nWSfH8+uvl81+4xACXY7YxMBRaLHrRCsimRxRZCX4gDdrhqVA2S1DWVEEi4ueDIWJLb2oMB4CERkE\nQQVkUAQGahkYZIFOASkgSYESggKDx+ElZBqUy5C6w/uEbVv6tuf9tuXmzgl7dx9QpYH0+JLqluXQ\nOsr9Q9rrl4zOniHCBFnMEQcVNAHWaxCGFAaQGqKG3pIU4IfduXWCKCLDckUrXzLSJS70SGtIaWC1\nkeikicPOctznOwmvEAIbwEhwytA1W/oYqKLiVdOwP73FG/GSV63ho2tPEyXZUFINF3hTc3yoYRgY\nFSVHB3ssj26TnEKZgdbWFH7Lupigg8cFg+7PsHrK9cuPaX/7j7/p0/JvhZQSNz4xmcxQqmeCZJoX\nOAJ46LUjVxUMOaefPufRYU5fd6i4xzoa8v2cwuRcLhyjcc75VjAp5jCMeHX1Id6fo/tD/vdfN5Rp\nTf/8CfuP3uVOofjVq9/xUPf4dmD27gNuv3GL008fM06B4WCC3wjGIlDRE2RGEBIVMp77hvPVlqRy\nxhbEtML6gfUGlr3mPjn5zFGkSCMFea6wXrNdNYznmpDAzDNGfcPV6pr8SWQ0m7OfVd8pY7zTxZpH\nr0Hu1c5TBgkxEBEMwNgnFIKkFbONos1hMni6tLODCCkSUiIk8EkQpcWnAus8zgeEcRS1Zjofo7Yd\nyTuE7WiswXeWzgnQmjGGmCRGQqUEtcgIMe72UIiUuSFFTZQCTcJLQURx3SasSBQxIcYjysxTTRvS\nzZaRUmx9g4w5Ue0UTGUU7O0p1LpgayPzomTxdMHqekWSU6qRpJxmmFRxfzBcrBKrjUDFwBD17rsY\nEiiwDqTc2VdkEYYkMDFgNTvZVxSkxM4fKWnQoGxEykRwni4IDrTAuIGlGFNkmt5+fX4y3yoiM5mM\nMcKQgsf6gUxJnACFxAcHUVBkBXmW06SOKARa5ZjymOneHJOV/PS99/jrX/yaj//pLxnlI9798Vtc\nPf+UOyfHvHV/ysdPXiKi5/jWEQ9v30HkYKOi3nTYmyUnbz5gFa5IqyV98LS9Yf/QcPHyhirPOR88\n2/WG1XrM/nxO4y0TnTh59JD6+JDViwvapkMmT1ZKzCDQSrMVOUM/UJsJm9Bx/3CCI0OQ83/843/6\nTZf+a4VQBh8Ng5TY4CmGNSM9QYiednNDiD3OGcq0MyAs0oC3EFUkBIEXBiUCKQkIAuQujiKoQCEi\nyMTgIjo5ooBcSiAihUUQ0V7v0mVVAjSHItELRSsDsun5/MkzRss1xXRMqGvuZwnXbZnPGyaHh7jN\nktT1ZOMOdXSAkJK4WpBuLrE2oXKD7AdSZpA6282UZcIRiB4yobHdlsPxhIOTI86fnHJ4/Br94pS0\n1QxNiygDSQTGWYF3gbXtEEKTpcTQBPZ0YuUtd2NP8kvm+T5frgd0L5i5FapfkoYNEz+wTZEFhmIY\nCCGw1hIhBbWXeONZi4qcDqdzhA6M8pplzCjW53zbBpwh7ULxhIhIHxgXgjxLlJmmiY4iK8niiE9e\nnnIvK2EsiakgkZFSYvLmGzx5/ws2jSd7/YCPNgfEV1s+35zx7OyCs+WE0F5Rbj/D25JcQXb5AY+q\nxE/vZwxvzBhJjb58yat2zcXVwNF/cMh6PeblR49pXm3IekFLYFyXvAwlV9cvuDXex7ZrLrXmQQr0\n+7e5YoFedGyERfuKdR+IQbJfSDIB7abHVyVSgNWRUk/ZLyxdYwlqC1KQZ5ruO6KGuzq/giTIbaTX\nAmE9UQhEAmKiwTERkiFL1F4TlSdICEhEiuwyFSNiSEjjEU4ipcezM9rLco2UE2bTfXT5nKszwzIG\nyjZybQPWBwpgrRJzUWPwJJcIZUats6+kCJIQJEonUpKEJFAxEUXEDo520xEOMuR4jOsl+5NrSg9O\naTQZSiQKCZNxRXuReP1Ryd//8R3+17/+jIWPXK7PkMPAw5M1xXzGtd4nKwx5tWRW7tNsWwIWZEAg\nCELjZCT3gsFYcp+hBTgCHoEZBFHvFJ1ojwiKgMeQ8EKjskAKhs45bnLFKGYE6Xnvzi3+1ePnX1uv\nv1VE5r0fvINLPTIWZMlg9M6aWSLwaWcf3rkekQnq8Zi2bXGpQhSC5eKa1flLju7e4a9+9uecXZ3y\n9/7q5zy4d4v/5X/+W167/y6ymHH7pKAbOt56523mR3fYdj399W84f/6Y+mDOpjnnZXtNGSpODk9Y\n+WtePN/QND0rEbm8tmTlnMX1hpNbES8FRuc8ePgIqTWXZxcYkyFjJCaF0YbVusOYgs1K0LNgNhtx\ntT0jpPHO7OiPPAlbasVIrAn9FJM0KQrssMQPPdEoMgFC2K/k0B15yrHSo0ggIjIJdNRY6UDKndQ+\nBgKeQUeKpWCdd2QhIINjmyXywRBCQZo6Yi6Zao32iRgjqxhQuWZPGKxK2MFzubziaNPyeL9iMoHb\nHLEMFwjnyOqSapRhu57w6ilaT6Ad6Jqe6Ae8K1CyZSgV2mZso0VGhRmPCBFQPX3a3RqPpnNe+lOu\nr5d4tng7x7YeFxO5kWy2G+os56IJWBs5mNdc32wo5nuIrWXVWR4JSRo25Js1J03L4DvMtiOGllF0\nKAK4AqsUoYjcdT0TPdCriB72WGeJQYBxiUFIOgljP3DVfTvlu5fblrLKMCLQ9pHNEBnnGpkZClXw\nyfkNeRtReY+oJqSU0Q8bymwGxiBfP8A9WfOr7Yj3P3yfvA/U44wsaarGMr3rSdOSZzeabdPxqN/w\nxt2cgoFPnyTuVpK9ozEPR5Fbb4wRhSJdbrk9DCwZGPzAigpZaz47PefdOzM+aTs6r0nMWOc59UTz\nX//pv8vvPv6S/vELuj5yoHJedlsGFUkm0lhFtrQU44yst2xNRI1gWEdu1TlaB072Kh6/+nb28d8W\nXd/TqsAmS2RBo6PHq6+sFaLEh4RToAdFAMqQiAiUTGi+yl1KiVZ4UHonQiCibcJmkdx7pKw4OvKY\n88SXYkAh6V1ksfUkFEhFpz1DaDFLKIpE3lselBXTSY2RkhTTbnQFWBvQJuKQ+CC4WXd03RRpFWYk\neXRSMs+gQSFChdAZJoNS5FzfnHFS1vyntw5Z/dk1v/jgJV4asumMH7xzF7I9Cm/pGs3VWlGVir2R\nZtE7YtAoPEIGwlc7QyEJRLAEk2F8gRMdvRYUMWClRDoBMqCSIgSJIWCFYKxzVi5ws20xacQs23B4\nMIfvicwOd+8e8uTpM0TqgYRHME2C1vrdr7iTfyUk1nmWrWdUCmRw/Oo3T/nwi2fcPZzx6P6P+OEP\n71JWnm5xiYgl88MjpDYM4YJqMufk/kNUVaFWC1ZfnHJ+vcTlhptmSx6nJJFwqeVIlfyTq5e8+PyS\nqpzQuh4ZHT4ZbOuRIkNGSV6PuLlY4tqWFHZLY127IQTBduUY741oSIydQ48M8SLnWiYW56++6bJ/\n7SjrCdUAWpwSh5Zuu6AfIlLm4CVJ9sSQ4wGTIn6I/w97b9ZjaZad5z17+sYzxok5cqzKrLGrmj25\nTTQlShRJw7RJwZBv5Asb0L1/gf+IbwwDBgQYtq9M07IBiRKboths9lTd1V1DVmblnBEZ45m+YY++\nOEX4zjCsbhar2guIu4gDxPk2znn3Wu96XoJ0SKHQDmwBMjiU23Afkk90OmFcQgTBpfRknSNKhUCR\nybBZLdQt1gZk45gnkHXBQTBUeSTYxByPKmCUGxYp0gnLdm94+eKK8Z0Bpa7wfUs9KBEuYQpJaBXC\nnmNXESMTXUhctpf4GKAp6NueT58+Y5jV7OxdIxrNk/6cFBKZlzgJLqy5XCdub9/gxD/BMSUToIyi\naS1a5DjfkRBU2ZAn/pL15SX1qGJ52dD1DURDVB4jHKHr8cFhvAeZUETqrOUWlrEIkEtUFohB4Ysl\nJgTWXjHXDYM+o1MGtiIP1397aba/zPr46oKvXhsxNwHT5Yiu52IZOFldMR527B2OoHJsbxc4A0kE\nVPCsrGWngJ+fJ54tljz+i6cUJudox3CmBNujAQ+WL/jGeMrRNDAbr1EXgZmxHI0TVkf2Fwl3ZQk2\noG5lqMEBQgumOxkn3ZriIjKLgn4wYbvX/OTpBePdW2BXvGkgf+cu7pMfYPRtBuOC27eP+MXlJfK4\nQ5aOPDPElWA61jTZhq2k1gGfS0ZeY6Ng3XascGQxZ3dn/GsjZFJMPH9yyhs7OzgtCEZvmD4CvE5o\nn+hxjEVOqgI6aKIGHdLGaxk9CQg+QS+IJuFTQnmHSw4nBElZVMhZqJpV2yBFTussXvYUscLhUWtJ\n5z2dFoQ+IAQ8jgtuItFVTZZtzMVOJASCPkhykYjecdEV9E3HILQUeUU2nvG1t9/i+Y8+ZqAzsixj\ndzTm3L5gSxqa84BbBb5x413W4nUuTl6SjgrM/j7t4jn9uuX5/CXrdUuTZeyNCpJMnDWOCJs1cwRO\nJLST9EaivAcJKiiK6ElJbsSglIjPOuAuGZISKC/pdEDHHB8jS+fJBpojo36lY80vjJAZ1gOidyAS\n865B60QdBfPUg9bQCbJCEZUkuoSWGW/duc7WZIzzka3tHXb2rvPBTx/z8/XPGQ8GTKY5Tx8/4vBo\nlz5F3rj9KoNMYiVMRzOErFjPlzz+9FPOHj6lPDpAmS0Wi5cMxgM++elzHp5fEdySaZ5YK8ugKPAU\nsHDc+/QR+/sjVCYpyyGPHj1nsVxRVIr52QJr2SDwTQW+JVclXajRyRNLRdWX/ODx08/7rf+V12y6\nw6A/IzhFcnNsG5FaYKTAq4hPGqEDOiRi0gQ8CYFMCpf1GJcjCDgRkEESJOgQcFEQjUeLnEYMMUEi\ndIfpFEiwJJKQJFFh6o68h8dhTRkk10rFSGfMo6QLjsKASJqTCKG1FM+Oubu3Q9zdIoVEwNKtwEjB\nat0T+47msmPZreh8pPAFj1bHnJ+esl47HkaPffSM5XLBbCE5qQNni0ukUrimoVvO+aQ/oyxHfHp1\nxescInxi2S2JbcI7gekki74nVwUD7ZDBU09qCjXgpe9RUqFx9DGSYqBFkD7bvi3zz9roQWKiwIW0\nIZ42nkYJJB0DJ6lnGXf3bnPv/Z+wWn3RBkubenq+pGMzdfQCxlsFR7nm5qpg3vbo5RVZlrOqJSMy\nQlQEUaOCZ7lOHGSBNuXc3K943BWMJktEGrP0C2aLLUq3IpkJVQjM9hNHg5rWKgYpp+9XlFogujnt\nS4dphrA1w0xytt99hXsffp8qOgay44mVfK2ryRanvPnWNR7dv4/92Y9YmYz//Cs3aVNke1owLQac\n656874nDjJ2JZ1EkhslgFpZGJWqlcCoRI1jjScuAncIr+0O+/7PPltV+DWpSl7hcEcXG75I3gk4o\nIBKEhBhxMiKlRAtDGSNeCXRM2CTwPtBJQRkC6IiMiRA2P0Wbo6LCss+LJuK5AJmYt57Y1bTJ4WQk\nqIDWEkEiZAWXM8fBSnPZzDGZZCIHoCLRB2IUaKNJcfP5tWp61pcNY3mJ8Fv4MvLmbce95zPuXXRU\nAbZnYzh7jNi7zgduyb84bejdfQopqccBcV7xcH6MW0a87dF9TiEztB4xG1rKGuLJFYO84ORyTRsT\nQ9XTKkmWItpLOgNKghcSLSTaOawCnRSRREbAJ0cKmihAiIBMipQUhcoZhgGTwZiL5dWv5Dl/YYTM\n7u6Uq/kc6SUqKaRM9BFijKgY2apr6lFFSnAxXzIcDNjbGiNEIHnL6fFT+tNz9rcPqZXE0nJ5tmK6\ntUdu5hgrOJufs2pafvuP/lPq8YxE4tmnH+IuFiQ5RJUzlqdP0dJwOW8Y3D7g3VnBx8c5drlA+UjS\nNZdXp0hR4BYrhkVJNdylzbZw6RRBQqZIs+5RIqONNbVeA57pQHJ63tAtNV2raWNivfzy354Ot4aU\nrLECQrIEGTAqJ8mASgVJOESUCAXJRGQnQUgEARFy0B7rJSIqkkzIkBCJDYgOSS8qhgdbZOUMQsfy\nck5jNXnoGHGJ1ytsr+gYUuaOWktO2x5RBbZKjc40fYAUQKaeLla8//KSPZ0oZyNQCSk8ZV3j247g\nezIf6LSla3vOWsvV/BmnZwuEBp8JFldLmtNLYhR8nGnkMmCEIGsgVTmDMsdf9ZymK6qF4b2L+0S5\nCW+rTYOWEZ0XbPXQq5xPFjn7o5p6b8w8CbwQGBJtZ+mERMeEDIFORCDRCkHpQKi0AXkFRUqJJtPo\n5LBRolNgdbHkp+c/hcZ+3sfk/3O5EHneeq4Pa5ZFixIarwSyTsh8gHQdziekynHKIGJH21eURhC0\nYvjGAe2/+4RxlVHYC8xwSDpZ8uL5ijtbA7Se0F4apnWHqgXU0JyvQBcUfcfWcIZvl3R9xnCdELmB\nqJjdHTCbjLDLmrwQ3NgZ88HPLcOB5mvvvMu126/x6MFzdne2MWqbp6eP6NYr2uDwwvPIB4q2x+aQ\ntCFlHqsUXROpaoFGcGETtSzoQiT3PVLlGK2w7teDJ/P09JzD8Yhlpsi7QNAFJq0hJqyUFFEgdWJk\nQQbLZRYJuWG3FTRZztonZIhY7yEzkCKdimQhQuwJtaWzCWU8Q6141ARWfSCKgJAJkxQqsvFrSoPL\nEnvnElWCKUu8bekD6NGQQihAUupAh6KVFTMdedpEDp7niJsNtcgx5ZTvvJvov38f5wLaGCbktOMB\nNlR8eNpzbXILPV9Sr1raaNkmx0mBpyBmDikSMjiGWjEwA64fDZB5wf3BOR8+O2XhKyrVI8VmqymF\niAwJJcUmh0rlCN8TVdps9JpIFnOsBBE9vdj4sUgCoudUz5nulP+/kLl57YitccnVfLVJP0bgYgtB\nYDJJEyz9WUvMJQTNm3du89brd5nWQ9qrM+5/9AyjLFnVcXjtgK3dfYrBhBfPnjDcmvLy5JJr0zFh\nd59vfu23AIjB8fzeI/Yn2/QDT6wr3pre4fTqFB9bfOc4R/G7f/RPmL98zv/+f/4pj5+fMBxUTPe3\n8Os1pjaockQMAq0lMiW6dk1mFDEqBmpOJRU+JrxYYcqaxxeWRatZrhvcl9wfA1APSggeUsI7uTHu\nColJkV5s0OG9jqSkyKzFpmzTAg0CIwIpslmXTBYfFTJtaKpEiSGSTQqGk2uI0YgQM0z+lGIp6MaS\nkG4gW0/WHbO+6pl3gcHuLSbTOYvLCwaxIR/uMUgtbePp1o61m9NrwyUZO5mGrCRmDpEsOiUqY7jq\nesSyZ3W15OTlBRfrllhqxoMapxLhfIkykljCqAn4PCC6nDDtqRuDj55QKaTdtLAlMNQlHk/brcg6\nOFNzbOspy4y565gqya7Zpo+RPEm0szgPOT1BJ3zc8DBCgiwoklKgPIVTtFkg7zWSDVciD4FOSVRI\nTGzi49h+3sfk36vOT8+4tX3EKNMEJJWItCbRrANVacAIlJP064Ara6SyLEJGpjXaOga39ijXHXp+\nSTrOeLaKjHvBw+NzztZjYtawPcp58/W3WC9OmeSRLGi8yFl3LVlMuC5AnhBaIpJB1yNG1yv6p3Oa\nozc4enWfD//lX3C7zjHPXzLs1lzPNBcPTvj4wyeMDJhVz96oYPSVI7KHJ5ytel4uA3FhqTOJyUG1\nCa56bFERbAOZYmlbpjbjwvfsToc8ffmr+UL5u1Yvnp9g795lsIbWCFzRodaSVmy2cKTS6KhZ64TN\nJVUjiR4WyI1XRmh64dAx4kJEpoSMUIeAkwFchtaJTGY4nRG6BckFFCUy88SoScnio8arxFd39hBV\nTnf8nGgju1tjhJKk4BgUNbkWzCpDUvDCeupBQaMszdUV6mjIUJfIkeZITLlzc5vF1QodO77+lWv8\n/PEF1d4RJ2fnLJo19aBgt4C1K5BS4JqePji0LHHRMixKCqOIIjHIJYPC8NrBhJuzij//6DnLXtOH\nQGkEUkQCkqgh92BFj0qKGAPRZGjvCMqjogAhMSHiRcACV+sSnVnemu5wn1+NVeILIWSUUigp6KPA\nRcA7Qq4xcTP3DEjwFplnzPKSwbUph3u7nB4/Ijs4YjAa8PZbt5nuz1j4OQfbByQEOhO8+/a3KCcF\no/we7dkZb/zGbyOygoRgsTjH3vuE/dk2WVUxvXsDJRTv/7Tj+3/5Pru3Z/zTf/Zfs/vmO/zx//jP\n+dZv/jb6Zx/w5OlT6BsKpSiNZrC1TfSW89MThnXF2cWcIs/ouoCSYFNAGEW3atjdPuTDh2uGGp5c\nfcKXGVb2N2WQ2ORQXuGBIDSShEsahCcgMF4ShMciENIhgybJSJSQgkCLsIEwxQBG4fOE7A1OZEz0\nkLoytGaAwbC/e4vz+in+Rc9xVmJCpA57kL1kd5gzzGEVJQfGgA/03jGQsJCKXHTs5APy0lCVhlQp\n8plBZPtgW4K7IBII3tH1DSf9FWehR1UZW8Oa3jvcstvcbApF5iWUCeEla+VQrSSxwX1nKmeYZxyH\njkGXWCrPRGdE0SNKhVISkxJXzQIfgTiijQqRBUKTsO3GS6bc33STPnvtABqPzxMqCYJK5B6SiITM\nIxtDV3qqpWZtBL5KqGdfbEF9/3zJG+uELhJ5rlikSBEyXHfJ8PoOp89WbAuFXSTCeEASFus9UlUQ\nBbMbe6z++gOSNDxaBJYXa1KdoVzF45VlWuQ0XnD10UP2pOSt3ZJrukfnkkuGjPFcyxPpo6fwlUOQ\nClXB7a+/waP2JxyJNd1Fw+DGhHqaaJ93yFVgN+vY29/m2ukKEVbkpaSZOta14Cv/6HWe3Tvj8sNP\nWA0mJCHR68iDYsGij9gOlBAoFdE2crFsUIXiq3f3f22EzGK+2lwKSoWIgmK94bDIz9awbe7xMiNP\nAuEjKIXLAjIIdHQoozHWkWTEpojZLEESA3gvKKVEOYXRntYDEXzSDMYFtrdIadFhE1rcq5J8OORb\nv/cun/7LH/Pi8oRn84br12aoxiJp2d8asV8blDJcvlixOznEdwse9y2vXvWw1RJFTZ4Jbr2yx/MH\nkS5YhtWE6qZg1V+ydX2LkCS6b4CCA7HJL73KG1zXkRWGzvYM8wyTK3CWssjJpEALxW8eHiBby18/\nO+d41eNjRAhN+vKwFfUAACAASURBVGx0r02Bjw0ETxKK5DexQLrXBLPZfpJSEXwEk7ChIYic2TBD\nSUn4FTDRvhBCpqoKRILL4zOsa8l0RiIS84wMEMBoMiPrehrveW025mhnwO0bb3B+dsLF8YKsyhke\nHcAxrOYrlvOe3Cz5jf/wNtIY6qrCjnaYXjvavGJy/Lv/9X/ixlfu8ObhFlfDGlOMeP7khPNPnzDb\n2uLb3/pddvZ3yYXiYt1wedkitSR0jsOdW3z6ySeMJ0OMjmBPsd2C+XKOXXV4JbAuIVGM8owuOHTM\nOD8/ZaAyfGYo1S7w4ef75v8tlAas8Js4BuExSQNyYw6TEKJApYACgvjMNAZEE6mspJcJhEA5Qcwk\nZdA0TpELIM+RWjC/OMGMOtamYKgztqbXuTkUvFxZ2tRz4C8ZFteYTqaMrefBVcdiERhModwak6eO\nvZOWWA9Iky2UX6B3xgwmd2EyQgy3IAiEsFy9PKZrGy6WF7TrNSrLKIVhPl+SSPSuh1xS9YlORqIH\nHyN5ELQp4KLFAX2SaCKGgoVxiK6jLSJRaGwIDKzmYtyx4wc0dSQ3Y0ymwMOyabARQEDc5BkiEiRB\nUoE+JoQLZFHQVJsOjfJic/STJOsNXSZQRJQ3POuWn9v5+GXUs3lLspaUC5LRaAHN8zllWSKlQiRF\nWjvWRtGfLbl2MCSkhHZzbJihDyVBa7zMOL1YgjIklbPue8ajktkkI/OBW9pw+909Th6csioMW1s1\nZV2wK3tyHG5lUPMGsa0RZsb0nZusHz+nFjBXPf0bkht7O8wfzRm/OqSaNTQkHiWLKqYMnz2GvQH9\n7S1813PwjSnfe2A4Ty1NGwkBdlvJlVH0VtCVHq00axkhOGZliZJf/svR31RR5CipMc7S5ImsC6xJ\nCLHJYKuixghBn3uqdU5fOlSCvNd0MqIJ9GrTSe9DpEwB5RNJBxwRlwIqd6hGQ+tJEtA5Js/wa4fJ\nKywdmRyQm4rz1nJ3b8qtf/AdPrz/Hn/9/YdcPVrz7s0ZpQFhBXrviK18ye7FJaNRTasDXWvprtYM\nRgWiDnShZms70S9aruZLjPbcPJiQ7JirdcOl85DlCKERRpBc3PBhconUhkorskxTGIlXilxJjAYt\nEkkXfOv1O9TjLX786ac8n3d0UhBSJBeBvEyEkNHbnhQjIgmS8HiTEEkjlSRFB0IS0wb2F0IiGE1R\nZKyb7pf+nL8QQuaVmzcoK8Pz84ZC12jl8WITdFUOh6gU0CGwIjKbzfiP/6M/YLfwSGmgqMiulcz2\njui6hucPHlIOCo7eeIdrt+6Sx0jTrokBJvvbjLf2AWhePCV/+ZS9b95llSQlEfyC9773Qw4O73C9\nMtz78H3yyZjXv7HF9vCAP/nJ/4b2PdsHA3SeqDBUeb4Jr0yJdrUkyzLmUTAsDFWRsW5a+igxCmwp\nia2lyiU2RK6WDz7nd/5XX3mWozX4EEgeQhBQaJSKhN6gRQCRCFoggkBJi8HQA3mQeCNRYWPcU1jK\noqIqNCOdU5oBOpP4SmN6Rd5dEp0gIqnPLFkuuVVujL8iiQ0kzV7gFhnFqmc8mRD6NWIUuFVc4/4o\nsbNefjbyypjuHTHamyCHI6gG4C0kT2M9bWsRWmJUxiBprA8oKXA2oIRmIKCpEqX3xH6zL7AiMk+J\ndRS43iCEw+YGlGcUS1bCY5eJnVyiRWChG7I+w2aBpBVW90QnScnibCSliAqRRiZSDGyg65v/VQi9\nCcgTkWKlaPOIUFB0Ei83vytERDpDVI752RfbqxViYi4uGc8HlFoiiooX64bpbEp70SCNYC01tYm0\nraU7XzGeZqQgadoGpQQPneQhkbmqGYsMEzvOO8twK/HWm29xc2+Hqw8+YvGLB9yd3EQf5UxeKTDJ\nsVMdk1FD28ODM5hVoDoY1FTXZsiLFQd5YPQf7OKvPOVrYw5khw+7yNWana9NaaPgUu/Q7kWqsODU\nG+R8xWtvXWPxw08Yjo7omgWiWDE2FeesyXtDa3uC07TOc972DAcZozpjsf7i+p7+39Zq1dD4hnEc\nIKXFmoD0m0DOJCJCaqJKaC/os4AJgiAEUQq8TFglUEFsPoNixCeBJxCS24DkkqQ3Gp1vQX5M6iGq\nRCRDmktSXjPKFEuzz7RYINsBflWytX2LN+UVFw8Cj87PuX++4lJb5BsHvFZB0mNG9RXj1FEPC152\nnrPVnNLtkhjR5AVSlGxfy3HrD1j0PRmByXDEZFww6Tyr8xXH/RrRavKyYjgcYLOM3vWURYWInswo\nRoMMJUApKAQ4b1C65Z3DfWYjzV9//JjnVz0vtcC6BuU0kyrnxcpBsEStNgG9SaGExCX3WRhmYmg0\nWiQckJJld3uLTx8//6U/5y+EkHn7N75OOz+lzitCTGSlQbqIynJSTFTDIf18ya2DA771+/+Qqsoo\ntSIrSgbjO5yLEnF5ymwwY+8f/yGD8RGz2ZjYNpydnnL67BhrFN/6znc27Z0Y+es//RPe2p2gs5zT\n8xXbJmLMGMqcuH5JWR8yHW/x0++9x1/+2+/x1td/m9/9B7/F5fIxr7zyGvfvP+Boa4e3vvIaRkRW\nS0skcTW/wtmOUEq08ozqnGXXU0hNbhQqWpbe4sm5vPxyJ14DTKYjAp5M5vTBkgRkDhybuaxLAi3E\nxvciA1oZok9kJJASgkCpgAkJlxUc7QwR0qBNojSwpSzBtkQjyMIShUHGjNEkEF1GFwXEQC4LLBF7\nGnBqzfZwRJ1Bc5UQT3vU2znXRGRLDmmt5dVXb3A4PUSPaijHIDLoFtBqTBdJecVo7zpNe5+Xq54i\nL+k7x9wkTGtZOzB+E4tw5hVX9Jy3Gus9XdKYkBBCYl1CR02rHXnKWKOYs2LLl0z6RFM6WuEZWoUy\nOd47vAs4+dnqqAibTCUvcCohUyJIgVOC3G48Mp2B0mqiDNh8QxvOO0MwnqgjTkou5qvP+6j8e9f9\njxv2jnLSQ4+SF9zam3K+XlOPS2a55uUysjsBbSXHK4kaVXgjmZUKQUm2O2G2uOQy1fzk9BKtFK9v\nzbhz+xVmgwmv/73vsLpzndP/5Yf8/N/cI3u1YO/Gt7l2OCcrpoi6R4QB6XQFyW5mFAIm79zhxXc/\nYHC9ZkKF2F+zXPe0D8E+fUGht8ljIt/x+Fsb4Z+XhqMjhdQlF7tXrB684EeXJxRbBzRVQf3ynCA7\nTmVN8gErNUoIRPTsFJrbrwx472df/riClCIX64ZpubELkCBFiRcRLxTWOYzW5M7Q1BF6iZSJJCJW\nQtF6Vih0+iyXLEasjAiRMN6TZSCcJArJYGA4X3qiUMhigOjOEalkNN0iMyPmJw37Ry0mjxTjE6os\n49r+DDsx9IsLxsU13vvojG/dPGKoFKqoCAnKQpOEJfWRNnSI5EBlXDJkMNNUr14j/Pwj2lRxsXDc\nmlXsDAyzMmNqW85Oei6uzohaI4VgUBiiklRkaC0YlpCrnCxEPA5lDDqBIbFV7pKbnPsfPuKH/ZqX\nFy0rt6bWE8pBxWoRUTbitUDJgCIhBeROkJWbUd2lc9yRcOkDw60d+HUUMsZocEtOzy+QmSG4HkJC\nZIIYevqkIFZILZjdPGSrrOhEgKLElCPUwRFvb81IyaAkSFWQQk/yiRAE9mpNVhW88fVvY7LRhm4Y\nExMVKbe2KVKOHwislFSTLb7xu3/I6aOn/Nl3/5RbWzk7d9/m/MdP+Kt/9cdsTYe8/s43GEx2+Nf/\n+s+pi4Iqn0BUnD57xKDMuDq7YDAuqEpDmZWcXy3BR87bFb2LVFVBJhLrszOs/fLfmHYnA6QyCGFR\n5jN3vI94DSY5lBd4sWFgZgl6A4OQcJlARoXKI9pJQhF4c6D4e6/fxeSaxfqcPElU1hFlxSgvqKXA\nSoHA06WAsgZVeEZmQC8FVdJQFcgQCCnHqMAZGZ1zXHOBJg8UY0mbB157/TXKvT1SkYM0iKTBtySj\nsd4xzAvysmY2nZGHFaKusVkiP76iSzlSt1xGS4xjtpLHrD1dV4AZkEKH8A0pQOEjVIZSKjoSWdeR\n1oaT3NFqxdAqHHN8eUivAsFCcvzfCHG7gUUqEZE+bUZyCcoerA6ouDHm9SZijaBoJIUIdJkjpoT0\nAtMHgv/ib7n89GLJf/OtPboY6Mox80VkXBhMjHiRKIzDr0cUwuCD43wpuT4YkVxJp2DvYIo9PmFS\ndui+YOquuH20B43nZZREIpPxjBfXjvj6VLFYDXnxg8fc+ScjhIqIFACPaCbwYE16aw+BQk1rpm/s\nEFYKVQTCKmd0NIHJCluOcZ88YZEmbDWGveYpfV7CjdeRhQep2H+t5Lf+QNL/D/+GB/GcN2dH/PzR\nguhrsplhvhJoldgeaupKcpESN6a7vMeXX8iAYKgNfRU3DJkoUCkS2Zh9WySFTbRFT241BIE3EaUF\nuTVEIlJC+hviLgHtBCIaUiHxVlNpRxMUQZZENUJ3K3YLzXm5g7UNj14sKOsVLpaMtkq26l26K0t7\nKVhcXVFOMrbzO1wlQd0ukUIQpMQUJSICFjKVoaKkbTsIBUInFGGTzbXzCpO7GU8fP6LJpjw4W7O7\nO2VkFBM9YPrqmi5sE5tEFxwkSx8EIgay3FCgSCIgQkTGEt21m2y3skW5gp3phPotyejZBf/Houdk\n1eEuF1R5RWE0rXBIsfHRKA1alhgT6KSEpSWvFUu58fbdGVa8/yvgyfydFzL1oObF8Qt8UhA83nr6\nwlAljSlykpKcHp/ytW99ld/5/X/Mto7MVyviwT5BCWaDPZTQG+yv1IgQSMkg6LhcLDh++ZKb775N\nOZkhEBtrbQo4UyNHNVZrqt7Rh0hCcHgwYTwseXjxnL/67vf45viQu7f3KGzB+x/f48FHDzhZNeRp\n49nwqadbbDZgZrMZxggKJcikxkaL7T0qy9gd5LRO0sce5TSfLr783hiAohzS2TVeGDwBrTVeJoYO\nnDRI4VExgoBeC8oukaTC6AxlLW0qMLFlXzpuXdtHDjSiPeegKqhKBWpILhUpE4ioqaXHOUOBoNpS\nKFkijGDsA9IYcq/ohcdXnr3pPq8PcrxQuJdzFm1DKTVFNaDePkRMajAZUANXJK9Znx1D2CSWD4YV\nh3s7XCQY7h+ho+Z4uGC1bHhwcswwBF72Pcu5J+mM116fUO68wuX0OuL0ip+9913sqkH6Bpc0ZaZw\ng5zgMrIYaJNDe43LLarxmE6Qho61ARc269ZrFRFYfAQRIaSIjAIrQcVIlAKnJJkXlH0gqkQPaC9J\nKbKix9r+V2LQ+9uuzgWETSx0JOs9VW4QKpCCRgiojaILnhQ8RiTy5YJL31LduYmMinKQMV8aKrXk\n7d+8y9mn51xdXeEGBf/Zb3wNe77gez/4CYf2kvzOLWZ/9UO23tQIBgiRwBrIJexfbdyiXYJCQoTi\n1k3O7n2CeRqoM0HKK2RhyN71mCND3UooIaExZU6UBcI5YgwsRWL31pA3fusVTt7vefLCMSxqLqJl\n1bvNUoRMrBvHNM84uUgUqkApSQhf/Of6/1QpJV6+vGK7GiCTwseIyyTJBUibCAsbA1mvsCaRGYH0\nit74TeSJEaguIJPAy82Ikggul+gkUMkhYkJlhqwsMfkasza0EfZv3+SDH/+ITBjoBaXquXv7Ns1F\nwqkzPr33XRapJ8uuc2EDft3x7o0tCIlhLRhnmig83gZkStjOEgTk0SFThkwW0Aid4PotJnjmz5Y0\nRnO29MhhIpSKQZoyyYCxI3pDoidaSSwi0m9CNPGBbt3T2RVdLlEyEmzJqvckLTgYVujXB/yOSvz5\nh4952C6xfcBrQaYUIQEJXJ+IOEIWqIwhDiRFllE4iyozRoVkOqo5/yV3eP/OC5l33n2TcZXj3Yog\nImSKPlmMEPgYGQVBqgq++vbXWZ4+o1uv2bl+g0rX5MMcYTJClEgVIVqENIgksZ3kB3/+F1y/dcju\n4R1Asek7JqLvGdWKaNf0KxgOh9Rlwcp2nFycEGPg7/3m1zl99hF/+f2/4hvvvI3aLbj76iHf+Mrb\n/PDJPX76i/tMd8fU0x2OP/2YShl62yB1husDfQluabFJU3rJlW0wmcYQadvI8adf/rESwHg0xCtB\n8B7SJrQsakUvBTo5vMgQ0hGSpgqWKCSpFhQ+4nWgV1BIwds3D/ja/hFbg0Q+OkTXGTmakCVShJAE\npovMB558LYgRtBIkF+i7lpSXTAYZkZyt6T7DfEA+qEjdGjtfgBHsqhJRDJCH15E726AtREkSa0S/\ngnWLbS8ZZIlqXCIKxXA8oFmvqYRAzIbMjGW59lwuGzIyfNexPx4w3J0wuXGHbnZIa6dcbO/z3vGC\nJUsGOzMWL58irk6hh6oMQIUJPWvds5d2sEbQC0VSEWU3N0jhFCJI8JqYwiY4T0i0/JvkX4lxAiUi\nIEmfiRsXNc44YlCMe8NzLOlLQlD7RdOwNxltwGM6IkJBlBGpI04KauHwjSB4WBdQy47kPCFL1LVh\n/GbF6N6cu3c1r954g4+eB/anh/zb977HzGe8LRI3UuTpD37O7mHNzbe3UVW/STz3biNgXAdNjogR\nqICESpHdu69wptc8/rN7HN06opzmULeIwRRh5QaaL0pEiIiQcD5Hizm1zkgDxztfe52Pl8f8/P2X\nfHtUstKJkyVI2SK8xCnDk7VkHRQHhWM8Lrm4WH/ej+RXXg09TqZNRpKIlH2iT4LAJq6AEAkCbAKv\nN6PtcqVpIsTMY1KBVR0qKFwM5NKjkyVFidM9hJwoPKOywMRI1AHRXXI4u0Z65S4nVydk5ZRXbh8y\nmdR88NGfcXp2iT6reW3ngIuipDl9xK4esH8wYGeoyXRiVBm8DfQugoReBbI2kdk1AQVabcY4QKM0\nxdE1Zt19Tl44zosO0+TkIhLySC8qKgFaGQQBW+gNBLDajJJjL8kR2Oipk8U6Q4qBPDOk0LFqO0Jo\nuTEc8Tuvv8q98zN+9uKKeb/EpkieFCrXoCK5SkgESkiqIscSqKqSpU4QE7uT0a+fkBkYWNmO4WiE\nSoG861itFngnSO2SdW74za+8Tb86Y3b9bYb7hxSzmiatKdO1zQeH7CBmCFWQYiD1nocPn3Bw/RaH\ns9nGQ8BGvZM8zcUTkm1Ynl+gRlvk4+uIlKht4uz+TxBFzt27b/Bf/lf/jP/uv/3vee/9e7y6XyFT\nYPRmyVdv7rJ6+pI+Tyjn6dZrQueJtmNSVFytrzBNz7yziJDRRosNHu1AG8Fl17Fuf/nO7r+LVY1L\nREhc+J5MaRwbhL5PgiwKOu1RXpBk3KCzjaSOGR0RQ2Av03z19k2+eXvKwXaFqRWVGSIVZDpDlxoh\nc5Ly+HbDf/C5J8m0uSkZSaErisEAXSrQA8QggjWEvqFfW7qgKMwEP8yo926gRmMQEmwGZY7wDlxD\nii2x9RgfUd4jjaAYlswGJclEylKD2EedP6TMDQNTsHO4y1B5TldrLh8+Z5AC9dCTFbv8/jff5l98\n9y84e3lBL0tCfUDrAyNr0dWY0rXk6ZJFgt0sYgNkXpAIhJiwKdBLT5Rx08pNApESXiqMTwQJUUp0\n2BgbiQriZiPDOImXnlYKLs4uP+9j8kurH92/4A+/VmDRKAdSB1oP3komhSTlkiQFEsF6ZdmdzHh6\nesGdwwMu1x3ly46zqPnBX56yvR0pl4/Yy06Rfc2tPTgqG06WS7I39jh4Zw+xD0nPEat20xITFeTr\njdk3BXAedAZiEyA4u51hP9nh8Y8fcvfbr6EmY5LzkAeEbklWghKIXqLzJet2l4wWrRJlHfmH7x7x\n7OkxH140NDcH7OeB9bnF64rdYWSdNKGzFAPDraOtXwshEzqPCpHEhrKLNHTCYXzamHtLgZCJ2htU\nUHTGYgeB5CO6kzjtkXHDlVFCIExODJpgPVZYYhjRiB6pDCkpJImLtmd9Fbn2zl2Gi5vUwTIr19z7\n3g8JUjCj5vWDIUprPnp5wlY+4WC3Zj8ExsMKbEdOovE9bdB0HbRWY9se2a3JdYEWOboAkwwTaVmH\nxHRrQnSXnDeay6YhE448bZPVHb3L4DPvnBYelCB5TUIiswBBITMJqUCZlpA8mfMIIwh6hFq19HnH\nbCCYippplvPpacnJ+oqFd0gjSE7T+YgM0Pg1o1RwMNuiLoFVz1oGDm6O+ODRL9cn83dayFSDiqrI\nmfcNg0KSZwOSkAgdcWsoC8G333yNrd0pN29cY7J7yEgEnMgpg6YqLaG1oHJSpVDJ0s57fvHjH/Hy\n6TPe/PpX+PjhQ1b3f8bf//t/gC6HtOsr7NUxTkvmsqRuWoKELMsR4wO++Z+8yQ/+7I+JscfkGf/F\nP/0j/uSf/89cnS42X7b9gltVzeU373DpC14eX1JWFaoY8uTZAwbjLapUsVpZMiXplUdgqEVi2TUU\nZsi8fU5KX+6WL4DWitYbcixGGbzrN0YzIxm0kZWMZDERpaBMiag0Sid6JegTfGeQMbx7nd86GFLV\nmkwrVMoxWlIVJTrLUIUhlRVSaMR0k26N3BAnRbb5ckdJNqSnBEpD60j9krC+xHaRTMBVPWLv2nWU\nySEkkhaQlRAA20EE0pIsevISlPTgIyIX1IOCpDVSBgajinfeuMneaMgnL57hmp7TtmN3OqFvLIt7\nD+niE+yOQfotvnPniE+vBMfLjrN+TXRDFrHBRM1cjJiGMTouKNIVu87hpEMEgYPNtkXUiBDxskOE\nRJRpAxNMEbxCJejzgLGKYALxs7+LRGKQOHouLhef6zn5ZdbLhaeV+SZRxotN/EVwKJlIKSGThjJC\nK8mkw5Q57vgl7d6YoUocP1lwfxH4Zmq4s2u4fWPM5G5O93hB/+gFv3h2wc3f+ybFtbeZuzV7cY4o\nNFACCpZr8D0sA4wBCYQAQiNkBDHi4PVDsk8k6wvLcLyFcCvILSSN0IYkEjFEhMwoRYvUIEPATIcM\nHz3g93ZK/jS0/KuPjjk42iHVGTulwGQ5UyD1gq1CUF8r+NHPPtfH8bdTSuFIBCEgSCCSxQhJYnUi\ni4ksGlZVIIuJJATDecmibEmA/GycFAVIIckxeHJ6ZzGZwMZAVENQjqyUmDbDrhzvf/oz9hrBxCaC\n70hRcu3gEF0oDvMRVzpx7/glk3rCQTZkN++4cThCftY5ilHiXEJruCQjlx6z7uiTQHUrRCEo7Ra2\nXTN3Ad/+X+S9Wa9l2XWl9612d6e55/bRR2Rkz2xISiTkUlmGZNioKrhgw4D/h/+T/eInw/aDXYJK\nJgSCVZBElZISmcnMjMxoMuLGjducdrer88NOAUJBdsEQRaZS4+m+3Je9Dvaea845vnFJ6DqOc7Bx\ny+Uw46LZEdSOB7aiEANjHKYCAS4EfIwkk0aDQjTorCK4bgyxHBTRV0SzoRcSYTQz9rCpoe57joqe\nOLPs2z0+ur7mcteTozAiMIiEERo/RHbtiiZY4hAolOCN3PATLen8r+4b940uZA4We1TVHtP5gvV6\nza7ZUhYZmSmo/RUf3nvIyY093nz3PQ4PbiGGhiY3HJgpscppnEfrAus7vBjjsIahxneOt95/l2df\nfM5P/u2PuXPndX4s/xDdt8T2kgf33mI23cPnM3bnTzFFzm6yoJockivBrdfe4aDMiSSyw2P+xf/w\n3/Dk3/85rYerZk1/ICk2guLGDT77+DE6BlwK9L1H9TWLcs568wIrNRNjcHFgCIEyz/Cp5vLpxW/6\n0f9aVBUlC+dZmoA2Ei0tKcEwDEgZIGYk5UhJ46zAA1komfpL3p8f8OFrE8x+RZkJpMrQNmdS5FQ6\nh6zAlBLIEFGORNUYR6eTHF9iJCBZUB70146GPpKamvpqRbtakmY5WXnE4ekhQgFqZK2Mt2v1NXfl\nb0jDicJEQh8JrkGFGjYRWWqQORjQxlOZjPt3Dzm5sc92GXi2fM6LF8/pguNgXlBWBfXVjmv3OVUn\nmYTAA2s5NxO2Aa7khGe+ZOU2nG+OMYNjLyk2aQ85BDK1g87gTCAJh2kFnVHQizEDJUKvJCaNKbam\nVwxZQDuJdtBnjpASyQmslyzX355bu5VQOUcrEi4qqsGzjJHQe9at4MZ+TqkrXlGzpyxXy6+4vbdH\nv7siLwJ3bpxSLR/ze3sbPnxLEmzi4lEHZy3xCh7+3u9y87vfYX2RUJsvxt+aLMZdqpBIdQDmuHyK\nCQbhPMnkIBVxG/j0r/6K49yyyHuunq9Znl8jC83Ne68jjy8gKXwdWb1YcXigQTqScGAKSLD/4CZv\ndDWqH2iHPf7i1TW33jxFGI+rHVly7M80tZaUejLyVL4dU8P/V3W7hjQSDlAh0YmICOPOiwEIsDOO\nfCspUdSVYyg6rFc45SGAFGKk7SPwJiCDx0WNDwIhO9TXTiaZDJ2yTJTkWHh+P1oO9gyVNghVIkRk\n6As+GS541nhem97naJEzEz2388BkKiAqRAdJehCGrRN0LtGT0J1DXV0idMHuquGq2iBjy6uvLthu\ntrRXPetYc/PoiPJQY3NL3Sa+dD2LTDEpPdN8DIr0oUMkhek7up0hThRBdngRiUqirMDTkFIg6wNO\newSCQgrqfApIZs2GiUjEyYKP4isaASlqUkp0gwfZcrjMuRAdcvBcl4a8lFib0flfHS38G13IfOfd\n18FHWjfw6mLJbhhY7BWoPvLGjQOW9TX3zUNMllPXazyKG3t3SWJAREWMGh172hRpr84osgPOXz4n\nxoHHT3/OH//oz3nzwR2ueIZ5cs7m2WeILhDON3z/hx+yUorrZYvDkJVzhFHgI7fvvIaJLW67pSwE\nN26/zuR7ms9ePEavNZXI2TWfcm/xHT6mZ3ddYyqJFoogYFmv6fvA4Dw2CxQ6R0uHD+CD5MX1P86U\n4f+/yvKMXdmSmQzRQiPkuAidNEEOFGicUsQk0Mli3YobccVvn0y4cWCh3GO/dGSqQOgpMwvSFuhJ\nOeYyJYWUChAIFDB+MJCAiWMRIyApi4gJGk9ya+rVwHrX4lTJjAJZ7aGjR4SB5CPCRogWhCcKiXQd\nYbvFv7rGs6EhTwAAIABJREFUmgwvV6y6jv2tJfURaSzquBiH2VqD1ZApzOqa6ULzzuQBh4sbvDj/\nkldPz3h8dcaxLJlNZkxUw8mspPQly6ZHJcHj7gl/cbbPx7sC7694Ni+Z+Mhp4VE+0Q8alwLBCfSQ\nI2Qgqh6txQiokhERNM4EFB5vQDuDCpFd5bCtInOJVnnqvKcevj1jzst6YOcSrcgIwdMpgRWCyVwT\ne8VXX12hC8EbD19j8DXHu4bW9szthMX8kO9/d0PV/5zTo32KDtbPB6ZPeg6Ppxz963uI431iN7Cf\nvcJ8YJEzQARQluTBP6pR33sIMYe2oXvxiKshsLvWPL96weHP1vxZmLD37glvfrck35Vcn/c06VMm\n1S3cNnD59Dmnr1dQDygroRNEERi8A9tjbj/gzmD4rfYJy67g488ec/vmCdd9zdB59qclx5Uies/9\n21O+fPaPG3b4n9LV1RqfEsiEFAoRPcFI7BBJUtATmfaCNgMnB2QniUXCRuhlRAdBUqMLMETom0BW\nRERwdF4ilKaRCuk9PkAjHScG/tW9Y/7gbcW0izxqGh7tCuqQeMlAj+GtG3c4rkpmzqFtx+3b+wiR\nQ3LEJIhRIuLALkqUShQh0ibNcLHB1U9HB6YuYTaDeke38zzpd7ROcfHZBfn5NT98+12syun8jq3K\nsEvBmpqhMQRWGF/SW4dYBPLeYHVEOkmfBMJEAiAage8l3ka8jiRtsMZjQkGqIpe7RKYM0VxBSOAB\nHAWaQcEZkdi35FGjN57lSmKyDJp/IoXMD957n599/gnNumZXO4yxiC6xdzCDWUm6qmnrluQ859sv\nuH38JvVyi6tGrgalRs0tBoGWMz57+SWHasF66vnT/+WPefT0FXvzDN0NPG0vuHvvPhfXLV+tVxzv\nGkRIyLZGJIGxeyA8goCeZAihsKkHkTGJG+zrD7B7C16cX/PFJ3+MlQUmN9w/vc1HF7/Ad55UQGlL\nnpy9RBqDYZzDbv1upIv6yCqVuMH/ph/9r0XTWUVWG+pCkkWQ0VH3HTEkMjPutUgHpQ50Q+BQeN7f\n04jFBPYKDieGQheYwmJljzN7TKzAp4CRCpk0UYKQCfpIks04apESpIE8gVfQdbja0w1bdNvj20CV\nVyidWG3g7OJnXHU7jJNMjufcvPUO2V5PLo/p2MHFC/LVC8R6Qz8k1qFgTxja1QaFJ0sTkpshsoxk\nHEiQ1RSrDeLygrpbcWe2zyx7yP2T2yxXG549f8rF7pqJV4i251xcjHjwgzkP9xR/cCfyi/qKxxea\n/+uZZfCC4DvWsSSGgrlf40kjbTNGslbTyxEx7hBoGfBRklTAJ4kmcD2N7O80gwr0AtSgUJ1k6L49\nGIAQoZOBSgsGEbFK4IQkkxVq0qJMRuglot9hGseVTRwKwfrM4Z/t+M4xzE5vcWwdi3uevcUherpC\nHmrEvETMWoRao041KDt64eX4nkjB4A8XaBK66Xn5f/wZVxeJXCX8m4fcOLEM9x+wt7ng+SeX7ArP\nDx/e5sadfYawxF95xO4rTt86RAwBooO0JnqNxJPLnpfeo/KeOngO8p7fOQiswx5NvcRGjV4Let2x\nvIJpFvnwzh2+fPaL3/Sx/IOqrHKEGXPDWi3IW8GQAk4riBGbEltrUUNPkeUoBE0M9Hgmg6UXnpgE\n2d9EfCjAaTxzSlmzHgzBNdBFdjZxa7PjX9w45IG8YHNuuXIVv/SWrWupdcaQSd5b3OJ2kVMm6M3A\nDZtT7e0jUk3sE/iE95FWKnIBee/YqoLLesPV2RIiZFpTZCuca+m7xHrbQ5TMzZTPlk+x6xw3/JL3\n37rPfrmgd57zXDLbmzIbBmw2xYkZUjYoEhFBszWktEZIB+uCFFpa2RJkoG8VtqiJYUatEoXxaKs5\nLDKeDR37bc6rboeTEpEkwUYqIhOvqe2Exg9oEdAxcGuWcfUrXL37xhYyr7/xFp9+9jHnL86p5ntY\nHZBa03UNh8UpE6M5ee0W5XzGetuz/vSM3fMt99/+HaxWdMMVeruhqHOutmdcvloybypeZk/wteP5\n5SV/+hc/J68GZtrxwXvv8/MnF3z1/Jw/eP8hdYJZrlAyo5MFRgRESuNxy0TAomaH+JDQwaELTRY9\n7dnHzGcndKZGDZ5nL86oJlN27YbYC56tz5DGMCk1KRhwntZ1RBcxJmf52ePf9KP/temgqnB5JLlA\nEAEpFEYYoh5IIaJzjbElvtnx+p5kPkhklZgaSyVKjMkxXwduSiKVHqMLhAykpIjSkXqF0AOI0X6d\nUiCqgdR5KIeR09B6YtuTfEvbemRZEYaezz99wmdPnrJ5tUQaw97xnL3rOdfPXjGZFnhl6C+/4tit\niEmQFxVVLpioCjUtUNkR3dmXRNEh6x0oi6jMOGxXDlEY7MkCaWrC6opFlcOk4vDQ8trNEzbDhqvN\nCr9csd01NMMO+mYc9+QD98yEWyct9441n1wnvDpgtesxZU8tEzshsJ2kFyOp1/jxbxmhFwnhE6kH\nqQSDjsx3kk6BjAJBxMuIBwb37SmsE/DZWcP371q0FCgjqZuBOHF4o6EbFzqllfROMCn2cEYxD7B3\nWzI9npJ/6cldg8xvoUQFbx4hywrMDLoMMWPcnRIwDi8CaE18sSFeO7hVEYYLmnaF32bExRHX14n6\n4hy5axkmb/KHP/sJ/2zyLj/56U/4/n/7Byi54NGPn/D2f/EAX29w3QW2Bu81NgaWr9YYGmwX2VmL\nvLPHUfkGrx6dcevc89RFlpvIWgZmO8nFck0TJUJ+Yz8BvzKtVzu8SyitUCHQZwoVwBCQcQw+ZGhx\nSK5jR2kUxZATpKPOAqaXJBVJcVypM0IQUoe2BpdAyA19b5nMKj6se+6fWt4+Tii9z5d1zoUIDDoS\nomBeWn54fI+JLdkTiSQCqlEcnh4gMgk7i6DFE3FR0KeE1BKRLM4NPF4tGVYDk8KgFpLoBdfrlzTb\njMbBYv+Yl5sLXp5foE1B7xtSknzw3YqJUKg+ES8aulIxE1OEWBNSRIWAWzbEpcJngqGyuCzitz3b\nPpB1Eo0kDCVRRVJKKJ2RS4NUEZtZkr2C2qCISCHHXCoj6URBZgbKQdJaTYyexcEc8eT8V5Yk+I39\nFf/+3bv8+PNfEgaNlZbGRebGY4TFp8jDew/R2pLCgEo71EHGbKXJMs9eOUNJBX2HToq5OuT5oyfY\nD/aZhMT/+qP/m198eY2uDrh17ybNl1/y6OkjPvrxF7xoLrl/Z5+D6ytmRwv07bfo25qpVKQUSVLC\nINCpATQ6OIKQvHr2BJNVvPPwPTaHS67+5N9wdb5mu2kQQtC0kW3TE0TkUGT43hFiYIiRXCtCCiSb\n8fEXn/6mH/2vTXU/0F5cUec5U6EYlCGFYYS56YDeKq6rNWWn8VOJMwZrCjKrUbkAmRHx7OpIVWlC\n73GxI8UMYSRSS5LoiEGglEWaEc0fnYAQkdceHzrSEAkioEWi15bt9ZKPPvqIJ5st+nLHZ+trXjs9\npSimvHh1Nua3nCuaZs3d0tCalnqo6M6eYKTn4f4pc3XIpKqobj+guz5D7jpk1SPqAiozwuqIkFv0\nAagyhziA82RfB0kWQ8XRzBKPF7S+YVj1+NRTdzu6rsOzQwQF/prqxh7FieXjX9Y8v97hXUAKT9AJ\n6RUxDTg1xhakBCRBjGHszgiPcZI4Yk+RUeDEuARdd/+4U6//Lv3yq2t+8KDCCY9KUzoXkCrhBkUu\nIme7hrIpKEpLcDWlnTNcNRw8eJ+uvWaSZ5RHDXJaIm4dgSrHfSmrx/Fh1OObNeUjvRdJCoLds6+o\nSkFKW2JbE+QBlzPDzdt3Mc0XDC96zq5e8ct1zeWjl3yy0+S25bK75vBQ82Df8PH/+RFvfHAH2WeY\nmy1GKNLOM6xWtL2lLzV1XkK5wdopx/OS+o++Ijc108qQBYPJBNppyg46BUVhadtvT9ftP1bTtGy7\nBlNWaBIuRiSCkBSdCqiocDqSYiQfFHUKpLLHJkXuJUEGhJCjq1VKcJKYSaIPWA2hg4cnlg9e01xf\nbDg5LDmoJkSpyYbELSTC5xT7M/aOFkyUZmojmZ3QDg3CZ9hJQWoNyXekUOBizS545JAQClodWW96\ntpsa7yOFsCykJUqDvepZDx0hSpbXaz59+gK/83i7ozWKJ88ec3p4hLlxSBCKXQqotueFEkxzSxkl\nRnmstcTTSJCKutnSxh7nEwyWXjsa6QkSVIpIIUAJ/EyzZzW3vOJjJTBivCTJqBA20XSB3Ha07UAl\noSwVs8GSGcNPtML9ikCb39hC5t/8/C85XFTEwowYZWUJUSB0wOYZVVXQ1Q29G7harsgP7rL1A5Pe\nc/H4M8w0Z2amlCayO3vO6ev3wCnS/oxWHXDdfMl/968+JHM1+5MTstkc/c80w5866otrll88oiw+\nZO/Gmzz77EsWr7+DEgKSB2UgQhIJkkNKweHiGBk7ktfIoz2Ob9znD//sl6QkqduO5B1FmdEPjqVr\nKPMclEQlR+0GrBZI63Dfotvv/5eEEEgt8UWBFgYXAiIDIyxhGAhWolqJlBCTxEfHfFqyPzEYk41J\nznrAhQl9twI3FiiZzSmqnCIrMPmYlSNERChNRAKKFCIiBGIKkBJWglMWnySDD/zl559w/XKFVoK6\na3DLHT9bf4FnS1Hss7l+iZEKbSLDdM6KkqyaclLlfP7yJfHpE+71W3zbMz89QVcThuU1+dpAMRmR\nANpAsCAzMC3CekhmdLB0LQwOoUAW4wK06eekRY+vBxbDFB92rK62rJuahQwU/Yp2BZO779EPn6JX\nF2if8BFc9IiUkEniCTgTMd2Yf6KDRyJwaiQpSQ9eJkRMpASr1T/+aIL/WKvagVtjU4m3fhwXDIoX\nVxvuHlv25zmX5yvysuJWUeFXik7ucbXx3C0EN+8XqMUCxAEYCZSgIqQM6McmzCBIxo8teqlIPsDZ\nBvXaAWwU21cdP32+x//07/49Nxdf8t+/fxuzSby2XtIcH/DlsznNq2u6g0D36gn63tvovZ6jqynb\nV6/YT9c8ezQwuZEjB0nw0C8iTiWir2ldYAie6dRwvFfyUa0hbyCV5J1lyDqqSY5yidWs5Om3uJAB\nWF6sOLpT0WmF6j1Ojvv6eRR0KjLxkj4FovKkIBhqT8ojWlmSkhg/7skQx9gOyRgn4pJnakt+8NYx\nsyc/x041h3tzKlvQJckCiZGKajqhmk3IMkNmLCavUConCY8moqLEJQVMcKmlDTlRtCglSE4Q2oZ2\nO9D2novLS56fnbN84x4PFjlO91xHyXyX0NPA3uyAq+bl1wgGT4qKp2dPuHsyp9SeJmpclDgXaNuG\nsjSkvkcTGBC4tiaPksYlxCABTwR0H9EekInkFUaM4yglKpTdMVEZ17SYKIkyEgYYIri2x3mJKgTH\nqoJ5D0lw99acR09+NXTpb2whc+doipke4YcWrTPMniN5RW5y3njnbXabHbbI0FIwuBp9lhDZDbwI\nXP3sU+QErlCETSS/uSCbnPDhh99lcfM2P/zBJcPVM+6elPz4T/6Sdw5KNiLjzrvv8tXlFbesQOUV\nar3j5I2STt9k+eIxh8f3RhS96AkIoo8oIsJJUrNFEElaY6UkZQXPlxuk0iThMUWObDu62JHIUAgC\nCRcig1O4TnD51ZPf9GP/tUkpxbSs0MaQCUstW+haWhex2pLpkbYqtUDKxKDguMhZzBWdnuFkT9dC\nlXVctwP7ByXDrmfYW5Mtj/AHiqgZ25lGk7lEMh7pHD2BoXFIk5gIhcgzdG7QQrD+4orHr55Tzif0\nQ82578nzgoWJSFUxzTTd0uJ0S15INl3P2brm7PljNh5sZnhzAfbx5zSiJdKzd3obMdvHXW0w+/sI\nVyCsHG3gvhvHEJQgA6gMpowW3fUZ7FaI0sJUIoYcO7ekrccGRZnn7K9nrDcbLuUOdite9i+40qcc\nT6ek/gy9uaaPQFBE4UCA7cY9opQiSSVkEqgASUW8EFgHO+vRLnK1XP1mfyj/AOp94nltuHFiqFeR\ng7Jg1dRUSuK+HgXpTiAXHc9WNYfc5eRQ4c4f8WXj+OBtjTgUcCrBFSMYMQlIAynmCAKoBHGEpaET\ndAp7fISUGds//YTVGv73T75Ed5r/bF6SuTOa0iMvM25PNP/ynSnh/BmTA8XNt95Bywo1l8xvr1n/\n9JrtkDMLia6rWdxc0GpLsxuQmSDToJOk1gLnI8eHJemLwCxqmgTP05ZJL5hWit2s52goeXr+7Tvn\nv61XLy94+94tVHAE9Bj4KDxeSXKf2FlQTowWfMm4HOwiVkRICtQI0LNJEUIkpJYoSoLznN5dEC+e\nUPgNlHscFQVWW4pkkRPNwbREFjlgiVqR54aUJNIEks/RSRGioUmSIC3CCBw1Rhmi9NRDi193LNsd\nj1+eM9QDWirqr87Zij2CSxgXGWQij5LvPrjBT+PAq6uG0EtcXmEIVLMJxjkikUF4REz0XrBeDePF\nTgW86yijotMCFyVJeJJLI0dnSEQJQwlFANULmlYw7AwNOYWdoWVNk3pyadgNHdEnAiPQbzsEhPPk\nlWJvmfGduwff7kLGaI2cz5hOZlxedlxtGw7mJU3YUs5mZGkgs5LpZAJR44fEq59/hDhxPLz52/jX\n3kBdLxmagLp1yuTWhIP5PvndI6Qf+N0P3uCQ3+eP/uhHLGzGyxdLvv/m97l385TnB8f87MkvuddP\nmf7r99mElunhIZU2EN2YHyxGi5xUjjBIlGzQSeD6SLZvqL1ms20gCno8BI+MA41rqYymFoIheFKK\n+K4hBM/gI188efmbfvS/NhmjKSYTyjxj13Rk0dAMHqkVQ/DYesAZO+LbSVituSoPuZMFXBrYV5oD\nM7AMMDEl2yaSGbDDjNoG6ssLolfsBsfEKCpjiWWJyHOmCiYyIu0ElVmcUNAHro8DB6e3eWv9kC9+\n8QVyNxCyxJ7Z5/jWnNlkyq5eEbItNhhap5gGWMicxqyoe8uqb/gPzxJTU/FBfkFrKgyJarY33tQ3\nl6MVWyuY2PEWXznYJhgk0IARkOawV0FxAa+eQjGAmkPqEMogzBiClyeJlhI9aJ6LFrlKNNFyrTZM\nsCQ1Fks+cyOO3gWCSKN7SUREGp10iIBxAki02qNbie8Tu923b7QE8JdftBxNp2zrHeXRAdv1wOG8\npN3CposYlTgaNNWNnBdnF1xsL3j3zjFDC2FRYBYTQI3hj4MEOwUREV2EIYCxowNFNuANwgTsvMJ/\n/oTm0yuWmx03vKGeKd5/MCGYRCUzPg2Jrz55wu89nPLwrfv0x7ep5hlaS4a9HKEG9r4/wXz6lOVu\nimkl609+STo6wc6nXGbgugFYo5OhryP3TixB5ix9RxM8BEFjA9579qIkLaZIKYjx2+vDfnb2avyg\nJomOnl4Fil5T5x29ySiGSFACh0DFSFKCMEgaMUBuqYIEI0lItACpFBuvWeg9rjbPObvueDCdUmSa\nypYIrbAC9g/nSKVhaIlGEsti3N8j4kWBF56hsAQMUibAkULC9QOxjziXGJqaq23gUX1BajxGKk6O\nZ5jDkgzoCk3yAt31NPKaPQK/8/4DHl162p1n0l7yuz94l0WhiFpQFpG+TzQh0FQN67pEDZ4ugZKa\nFD1ETei2hF4StMKEns1eYtIL2hBokiATYEoYjOO07llOLU/FCDJtYyC6RIgJLyCERC0EjzYdDyYT\nxF5gMVS/svP9RhYyB4t9To5vEYbIqt5QWokPFiM1x4f7rLqOO8enfPn5I2RZolXOg9/+56w7xafX\nVxRK4GrHwZv7vPv9DzgsD+m7gbRr0YsZ+UE1YvBTR3KQTW+wcw0f//VH7F6+YBYV+/eOuX/nDnFX\n84vHP+eHv/Ofj6OIKBBtjzMTjAsk70jLDd2qYYhbUhEJHZxfrOlCpOkbhl3NpMqoMk1InmmK1N7j\n3UDrPAhNkQWuV9/uW9HfVlFWFNOM3oEWkqbvSMkhgkGlRHIelylsI6lN4MjMOMosHY5SBNayYCsn\nNLHjQ6E5z3vSTpGLDj+dUtqK2MO+lDgZ0RNFqQQkh/c5Xlh0gugsqlDs8gLVBFI18J03f4tNn3Hg\nE0frJdNJxvn1JcvzMzJVkklNaAPSw1XuwCROb52weOV5nDS+hU27YScj07Zme61RdUd55xZMSmCA\n1oHcgd2HZrzxoQVjoIuH1Iz2cHkCswYuzqC4hK4CM6YmC5OD9Zj9jL3ryDAt0AHUcs3Qa/A1PnoC\njjSIMWuJOI7WpBiDU4VDSEnmFYMKpCBRnaBLHoejrr891uu/rYt1javHW68LkTIzoDxZ4clbhxUZ\nMYzDyHuHe1xevWLdCcoooTDjm9N9zSUaeogGxAQqO3bWXAS/GwvVOJAQqFt7PPuTn1I+KJl9Hvmu\nlvzWh3fZO4msHuX8/Jc917uCmak5jI7Fb91gt3iPXFV0SWF0gytL/C0Yjg5Qz54TniSWz0tOqgar\nO577yMxatrVBVAJ8TTFAsTchvGjYKE0ZBKKzPItr7kwW5IWlyCx12/+mj+UfTCklmm1NnJeUTkCE\n1nikM5iY2GWQebAxEYwa0+eVQAqBbAODBTFEtFE0gyNXChthXYHZ9hSlRksoc8kkS2ityIsclUlC\nE4hFRZNypJ7j+wFMQUZAKoEUGXIYEEpBNLRDw5CgSz3JtdTNwNL39EuPzC25yvj+/TtM+iteBcWl\n70mdZykltvNcuIZyvuPDkyPsacZ0fo+TxRGFysCOcQQ6M2RlZK+2LFLLpfGkJmKcp2sdQTlCL/He\n4xgYUoIGbNLEZMi6QBKSZBPRG2SfkamALjVy48D78cIkIAZBFAkVEqtuR3tuOToVTH1iUeQsfwUU\n+29kIXN89wghFavVFcJ5ugjS1EwEHB4uUKGm63r2D/eJdkYnpzypYXX2JUezGUWl+MF/+T3uvfs9\nyKbgHaJqmNspqfEMgyeESKlyLhIgHRePnvDw9h1+75//NlpFTt7+XYzWTNHo03dYvjwjK+akXKGs\nwdBRC4tt1qyvLvDDNRpN2HpWIfLZ01coLdld7tif5eS5Zd03hJAQwhN8oOsGjCmYlvBi6771YKq/\nremsRHURcAQfiXFACU0goITAiYDuIgiBUgKFpc8EO6tQwVGpiGIg85GzLDG4ErVfgbVMosQZRT20\n1F3CotjJktnhPtNqwrSaEaqKGDXBe9bRk4JExsB1cqQ88OCtN7i+XPLwwS3OXr4ibc/J8DRqi3WG\nYDp6Avkmo9xX3Dq0iIOKB/WUuN3x+fU1WWtphhaTBHm+oLQlkJGChsEjxACyBp2NOTweRvpWCcKP\nCHsVwE4gm0C8GEdOfQSTSNhx18Y7dCUxXrMfPQSNcTV1smgi0gsG6YgpkpzAi4QYxvaycpKkA52K\n6CToBWjhkL1iEJ62/3Z+3Fat58rD/lzT1z1oRbtVoBw+apS2hMLT1ZH6+iXJZewuzhnMnH5zi3y/\nHymxOoxv0ejB1mN3JllQDmIGwZGEJ146ZCXZ/703uf6ff8TmeUMmFIcHN7BlYrlwzBYT/nzr+K+O\nSw6+P6Gv9pnOJ1/vUfQIM8XIHVpHfD/gblToUiI3a+pOghuYn1qCjpTS0PuGQnhaUVKyZFkmZAd6\nMFyKLcVKsKl6iv2ck4MJX3z17Tzrv9HZ1ZI3qpytGruPnkQvAlobKgc6JWoD2gWcTKM7iTGTLcSE\nEYq2H0gGTNDYPFHGwKbJyMrEvICimJFrhchKdA6piwQTaEWOlxkOg5ACRaRzGiETxjkwY+0LjpoB\nrXN8G2ibLR7HhECcVxyuG377zRu8995A/CvDyyColx7RhzE1OwMXHaoTyJM5c5WxX2RUZoJRgaQs\nKIGNiSElwmxAGMtB5yliz8Y5lAKlJXEY2WZDhCwllIROJjAKXQkMsEsROSRUrsmaimyekerdGKUB\n4zK6cMQwTtDjIPjMrpj0B5xmcP/2PsvP/v5xBd+4QkZKyY3FMU7Cq+tznA/MiikWgbSacmqxcctA\nwl+9IhzmtL5hlnYczDJODkumJ3scPHwPPwSUbDEyYyItkZ4Ye5JMTDJJWSWKac7ER167fczr9+9x\nelQiD/aw8wlCRF6+2LEdlty5f4dmuaQ8XoygojCgmp5HP/5jbhxU2JkGOadPAy8++ZSXg6SwFps8\nVZUxNDuGZoyHjwpyZclKBUpihODq+p8GzfdvNClzECNsatu3X+O/x4VUYRTReaKKY0gbOUopQq6Z\ni4ypD4jSoJUhpMDFbuDUCIJukWHLq14TQ2LXBMoyZ3p6zHyxj6lmyLKiTZq+j2h6pNBkJiMER5CS\nRk1ZS8lwuKCsWtrnn3NroVhtDLtdBf2O2ntiTOjoGaLhIOUcC4OaJkKekeRAdCVdFjBYDuYVs8UR\n5BZhNClGUr0hNRrhPWSHiFyNFFiXYNiC0qRMIUQPPo70VpUjogUxjPEHrh3bwE6Q+kRuO244zZG/\nYmgagm/wckD7fgzh9I6BxBATWobx/2QcXTYyMCiDTAM+KIRKuKYnfgtSr/8uhZhYrXoOigyhRuK3\nFhleKVQWGeqavbSgUCXXwlHqyNsf3mLzsuXldaA61MgyIL0YKdHaQatA9WABNzI9SJC2K4RVCN9R\n5QXl//hfc/uvH/O97ZJ+r2HdgBaWoDa8czfn/onCZnepyhsktccuemTcYvtrlApEaUl6pK+mSUVx\nb0G4vMAPPWQlE524LBRaKYKZUQ07bt08oFteYKXklWnQSCpKVusde5OK919b8MVXV7/pY/kH1aMv\nn3Ny7xjtEoOEECK5F7Q2jEGqccwdy5NiZyJ5AOFH957RCSkMTg2EEGm7jigtoenIbcEkTxRFYmoF\nwoBRnoSm946+mtD2GRRTiAMGMeafeTFGTSSFDxLRBboU8SnhRaITkmUHZrPj4zZQbhreu32L9w97\nDp4FXsiSdrdFJEVnFVoI9kyGlZKjMmNmM/KiIJ8I+tCCtCgiRktCKrGqo+3mYBtMhDzzEC117Kjb\nniBxmr6MAAAgAElEQVQFSUWciFijiClwHRzIyNoYDobEVsBRZTGpYbFx7AnLSwxBd8gwmmOSUYjg\nSSnh0dTbxLluufmdOf9y0PyHz/7+Z/uNK2SqyYTZvODq5YsRjJZZkk4oBfPZhGFoOHnzHvWmYJff\n4ODGB1z+9Ed88N4bzI4OsfMZMy0wEpJWGK2JbiBET995Mpsz7K7pdpf81tuvo3zLjcMD3n3tbaQI\niKllOlfIrxchbUx8+uN/x4Pj+1wO59ya7iGyHi8UH//b/42T0qKygs0u8fzyFzy49RYpn6P0C0Qf\nkVow9B1bH0EJpJFjKCKBLELjE80QePr5P61CppxOES6xjR163PbA+46Yj1V8pzwmJWIKuOCIMjKo\nPbayp8gKrPd0saPAMZsfcDAr2bQDn7vIrMgpkeSmZ744JK8mBKEQbkD2GmWhMBkJSYqCjQ8oaeiV\nRgyOnEgnwJucrjDMl5G7B4d4u6Bv1nz56opi6FgriTGaY5OwSlPEjEkBabbP7Rv7KO/JS42ppojZ\nFGlG1wNBQLcFsnGRcHIJvgBbglFfhwgmRAgw1KTQQmkJ52tEvEZmBaKoSNrC9Yo0NPg2sHWaobki\nRctQzQitJ7aBmByqkXiV0H4spL0UKAJJCpJMGK+JIhFTIkVJFI6u9d+a1Ou/S0+uOx7emCNUQgwZ\ndYIiSIyWbIXg8tWWfNKSiQBG4+sNd48l6/OOUPbUlWRyeIiSAcJYcKIFyUmEEIwgmQ6hO5q/XlG9\nN0OUPQIPb+8hGkW+3JByy8E7ivk0w08O2dsKUtNRuwMyIbCdI9lIShm971EikStDzAzr1RX27oyt\nW9GxTy9qlFTkpSAli3aRcBB4e5v4SEvmqWeuFWWvWBuH7STbTcvN1w8w+stfmR32m6jNriYmj0kW\nlxwxwaASNsQxHoWISILeeDInCSmC8kQS1lmGosHGEqkkUSik67huWzKZuJlFZJgjZEAlC2iSizQ6\nElOFEAknItIFgjTgx6arUIIkEsl7XPA43wMDDst0dsh2ueKsa2l6xYP9OQ+PSnRsoChophOm7cCq\n6SGCzRUH8wk6JebGMK0s0zJDJEPvEyEFiqSQQqNMIDmNzBwSBYVGdgVCeiaFRhrBpkkEK8EFrmLk\noCwxyaM6j7YKpR0mJbZZgfaGcCTRvcRGRQiGNjlc1GO6kzDE2I9dYRLXXSStHfPTI7R8hv977md9\n4wqZ2/dvQ0ysrpYIwFpLlhIiCWxVcHJ0g1fPG1yE6vQWl09+zu++/xCvB2KpiEODzEuMcUhGO6uU\nsO49vr5mvUusVo958eQzbr31kDdfv8ed09sE77EVpFxDmiFkgD4wmQjmZs6Ti+cs7JymbGARWJ19\nRX9xhn3vLV6uNlx/9ZhcV3SnHReXW7LoCcaipR5JvV4glSCkhBI5ceh41XsIiYsGum8RPfU/JSEE\nWRIMdJig6PDwteOrEAqkQEU55qMYICVSgEIamswT4oLBXREDkB9xOLN80bXsS8vDg1N6v2O56ciy\n0eKOhM1ux+LoiCwrQUaG4GmCxshIiSCqhBE9ZArvdsz6QI+hSTVd6BA1DFYyLY74YF6Se4EvCmax\n49R0hCSROjDVgqQz1BSiKzCFBjPG2zN0IAz4wOBawqqhOE1QG0S+Gr970gAJRBr3Zfqe0F7SvThH\nywazfwJZRlIWt93SrbdIGZBRIIF+uo9ZNhR+CxPJdicgxtHqbyyogHQe7SEljUyJFCPeemLI0DGS\nkgAvaPv+Wz3uvNh2CFcT9ZQ8kxDG16ESUGaC1XZDVcyQWUY9eHZMuQdsZxVq5shebnjxyWNO3nyI\nySV0ASF7xOEEwhz6S9KuRzRLilyOXRodx4BRpRDlFJlZqosVSPh/yHuTX92y87zvt7rdfe35TnfP\nuV31t0pkSaQayIpkBZLtKIgNGM7AToAgyMD/QRAgf0tgwwkgwBkkSJxM4khCFEmWRNKUSVYVq8hq\nbn/v6b92d6vNYBczs4CIVqpcfGdn8g32Wmfvd633eX7PweEcMR4TF4nt+AHXnWL9nb9g3Wv03ow3\nT48ZVSNMtiIlS5ZVGF1DnhFuzQkusJeNibIjxR4fE4U29MCbez15CpjKk3UKM80Y1S1tKZlk4FJg\nPM5Yrr6a4m4A5wPdJqKKQfCexQRCk6SnJ1HEQJQJ5RMD+hR8FChn8SqQWoU2DmEKrHVI21PExOvS\nMa4kQiqi11AIpOxpY4YYKUIvSAzGjjJpQq7IlcDrgFIK6xLOexrbEGyHUgKjPWUZeHD/hHsHFW/3\nkUomdMp51uU820pmGZzMxjSd4GakuDPKORiXTMqCZDIKErJXpHJLjDkuKVIKqNBjoyJFhUuDS89r\nRcoU0eUE7xHCk+lh9DbXOZ3vcLFnmlWkPGJTYGkUNgmcD2SuQBWOo9WUD83N4D4VGhkjSUeCkmhr\niL0lCIEgcO0FpZdMCsWy+emwI1+6Rua1115ht7nGWUdRleSlJtlAT+T+yV0O7pzy4uGaN197g0xb\nipMJy7Mn5NmUmw/f5+6Dtzm5/yaZGYMTdGHgcVRFhhofs+uvefidZ9w6PiZteopcsVY1t6sDmBiy\nokKbSBstxhTMFlOKwwVnH3yP13/17/LZH3+bsN/jbj5mfz5m021pljv2JguiyWivlrz3fAnRs23W\ntDKQvEDkmiomeutxqad1HdtNYFoGGnsD/84Yh1/+ElKQjyUBSW2HE6ApBMlKgpQYFJ9TTZAiIaJC\naHBRUeAZi541iiLTFGNFNppyW7W0vWCbLKp2ZCkx0RCjY73cMj04QKqM1nYEYzBakWmFBvq+x7YN\n0kc8nmBhNFKoriebHGCFwpRr1HbNKCmSLnAJpsJzd+wolKYLOePMo4Qi5hEZDLIICGVAqcHpZvwQ\niYBFB0ETd6ilwuxrcBWYZgjK1AG6QQTu+zPaz56hx5BNThGFIjSe9e6M5aMLJllGOcpIKHolqBME\n1+KjRgtPjD0+RBIRaQOtSOgYiTqhESDBC4kJgl5EBHJoooDdv8MslC9jrWrPVWNIMjDKJCJ16CTx\nTrPrG2QruAxbknSYEPnRR89R+yNGsqTfSKokuT0ZE19eEYJAqIRMBVyvSLpH5Akx6qDLECMLehgD\nIvwQL4CEmJHyEX5TEswx/npCPdrj7IVnu/pzXt2/w6FIvLxe87v/8k9YHIx5491XeOfBXQpTY6oJ\nOoeTbMHq8oKUa7yTGFmgo8eoEdK2sNij6x4RS8ekU8SRJtUJ6zzrvmfUSe6fHrBcPf2il+Wvtc4v\nLrl1/5ixHyB4pIBEYGIiSkmSAo9AotASiiTwCmwKyM6ziz0mabwL2CDQuuCVW4YQMrzriZlASQ+N\nQapAqEuEGW46tRQ4FRHB0zqFNPLz/CZL3zX4dUfvevKJJNOWUQSdC8ZmwsJ5RArYWpIHR7Q907xE\n6pLaZhyIwPH+Hl3bU4hEldV4UzNmRh+n5CGhCRiGfZqJnlZ5gjDIpEidxKaIlRGlEtFGlFGgNEpK\nZoywtgMRKIsc1cHOBnIRqYTAFxIVQGaRIs/ounrgdmmIQTHTesAB2IgUcNP1LJeB433DO6/O+dMP\nfrp8wS9VI1NUBYd7BZ+cb4lGUBWG0EciEpMk5XiC7hRZ7JlOQBUVVRCcvzS8+ta7vHz4IUevPGB8\ndAvfwfnNNR//4MfU23M2y0tOsgmzN++y/8ZvUS9+TO4ctV1R1Z4X10+4PX8LIzUpdJhWIqtAyOHe\n61M+/V7DKm25/eYttukFo2JB32c8/OxT9g5epZUZmU7somcXFLIwbM5WLIqCjXUo72lMhtASFR3S\nKaDF6Irdi+aLfvT/v1amNZktaUSLDZZca6Ll86DHRDIDrEomQZJDKnUmNEFY+ijphKLMApU2OCHw\ntqbpeqbZhBgiDYr901tQjfDOIa2n7jvSrqYoS5RzrOszXlxdc768pLmooU2UhWI2GREQiJQh8oAs\nPCMzZjLaZz6eEGnIxJaqsXiZaGPFuvFIFdBSkmPRSUCuEcKQSAiRhuBAr0Fa8AqV50zLnqvVNXt5\nhpwYhNcDObrroA10u5rLJ99jsTchM/tE17B93LG8ukJGgdYl0RiijHQusRUZve3w3lJHTdU7fEwk\nD0FGfAT5OZXT6kQWI1aCcRJbBEyrB/6JgJhF2t1X+5YwARerhoP9KTfNlhgNOiZmlaTMCmxlmS4q\ntnXLXl5SW48fGTarS7aPJlSjHuFA7VnCpSROc6TvIKjBMWQ3pLNLvKzQdwwgoQhgxdDIhGzY39UJ\nwi8Qdo//8QfvMV6+xzSA0RP+sPiU/YMpy2cvGa8i67MN37/4iIvvPeVrf2OErjLiuWQxHdK8SzTC\naLYWhDT0dEyKEU/9iHdfP2L7/Wc8Oknccx3XWnIYKs6XHY/TOUfTOfDVbmTOzq+4c+eImAJJQOE1\nVgSsDOAGaq2PEi0snQByw0SXaKkRytPGgO8cNklUEiyCIMUtMe0jUk4AlBVY2dPoEmUkLnQEIQmt\nR2QaWQSUGoh8nojre1y/Y7PdYZQBB5XaotJPNJQRk+UE19FnglGsgBZkTq4Fh5MOaQLjwuCnEKZz\n9O6YLtuyvHlCv1uz6wJJCJKBxXjBtFywvyhJIieIFSpaZEgUoWUNjKdjUnT0NcO4OQONQuphDJ+V\nCR1BxgR5wHhJkiNAg+6p0tC4aBsQmWBSQrCCEBJBG1wn+dF2xesXt/md2RF/yleokTm8NUW1PTJl\nID3p8w+ZDonJZM7+yQk+eKanx4goqSip+x133niT3va4mLNrEu/92Uf897/7u9TXwzz6N3/55zm5\nfULdjHj63WdM5h9z/9XXKPc0065kJ6/gZYcUPcIZLndweDJBxwIbPNOT28yfbfjwh98hu3dIljrG\n7YrmxQVNJyA/J1UHRD3BB4WUfjiEK4EVgUwBSSKtBx1JXtGlmkmusRJW7VePnvqXVTHWRNngd4Jh\ngqqJJmEwhGQxwgx0yCwgk0Jrgco0WgXGCAppiUrjZSSLgd4NzU6UgpAio6M9dMq4fnmBDS0hGOLY\n0D/fYl1Ps9px/ewl0sF8pMmnGY1puWwlrbfspOWwhw6QVhPEijj5MXnMCCPNvDDcH83QSRAEZLnE\nxw075+myjAmBzPWDG0nJz29hBiEdxiJSICkQmcGUOWfPL7l3vEdSlrRtaHYbls8uufDPeTBfkFcL\n+m3Pw/UL2CTGszFCRQoLOYG6U+x0QgtLbyOExDR2uFwO0yohMFpiQyCGRJKJshcEIRHS4yWYAH0W\nKB04ochCpNnVX/BO+euvx8uO48mMkBS5AK8iy66GNeRTReUEOytgIQnbjpgH7s0E9VxhV4EsA5oS\nJTakyx1x7wDZ7kiXP4L9Q/Bz5K2AEJ7kIsklQIDMEHpOEgZ7I7l+smZ1ccMvv7zh+J03efnDp1yv\n4H6xQeucq13kzp5mpEfs2qd8+INn/OtHR1QHBxyaK+5MEm8/OIDKkqSizARCBLrW4YTnVraiGlVs\nm4RJia4yjJQkGEeRZ3DdIhqPFPAVxslwdbXCExmFDC8T27zHRImKEpGgVQolAq3RGJsIfaDuN4yr\nCb0WSBfpQyApwyIPGNNS9JaMSEfCdxGnOigM+AZaCXmJTQ5ygU4S6zVKOeglXWppNp6bZUsnJfMY\nKVKD9oqEguCxgBQ1UWRkASSeXGhE59hOKg72xhSpZyM8ZZrQhzEP9WfU37pBqjkTYQg6p02CXeP5\n0L7Edp8ynxrefvOIo/mM1BlIPYqcBR2i7pBjhc8VVkQcimgswimShkwq8iwSggSnkHJwJpX7M8pH\nGWtjyZKn05HxqKTEsMoVpfVYI4hWYPvIv9pc8gvl5Kde1y9VI3P39hFLsWVZb1FSo4whiQ4hJbdf\nOSZT4Lzl+PAIneX0LhAJnH3ymMdPlnz48TPy8V/w/NmW/fkMtX3GNNa8/96O8/o266stuS+oP3vB\n4wff5+DeMW9+/ZuMZ/ucfmOBCJZoJGUWCTuBGSm8t8hqwsnbr1A+3fLy2XPKeYY0U7bpHFNAvu3Y\n1Rdcmh3F0TF1veF6uUZJCSngkkBqQUoeGSRNbBglQzuOdBct8WckluAnVYwWxFqzyWpKm6HkAIOT\no0TsJd4H8iynTz0k0JkhREURFFJ4umJESSRFAUKw3jbcmk5RVU4XPCYI3nv0GF8FJmZOc3NF88Ez\nlm1PlQlSHHM6OmR3qOh8T6sC1WqGWp/zvL9ktD/hudJkQjLKerZZg9lpSmHo+8ANW3aqJpuWjLMK\nIS37o4JZPoMsZxW3TGLNfrADLTR3EIrBgdQnSAmkRpaGufO0dou/2NFtt1xeXSJwTGaGd2anaDPn\nxdOHXKyuyeKYyf4I0XeApEMQk+IyWIpSgSlARkyuEc6hQ2QjIj6Tg1QoKDySIBxOKpRIeCRaQvKa\nUQzscoF0ieQdzrkveqv8tdfTZc1vvJKGK3IFl7XACEUxU1SZ4LrrWEwylAycViX+SvJQWKrZAaPN\nOYtjhdptEGoDUSK7G9COUE1I9SXLLONwbAZBZ0iIZAYJlJakkPBXLZ/93mP6uOPu3V+k7jWbj7ak\ny4iMnlU+5uNn19w+mfAb/8XfowqGdFTyK2c3fPTsiqW74Rvzeyy3T7laR6azCSqLEGuCD6AydOhw\nWeLBWPCBklSNII4UyQyn5mgdWVlg0UzKjHXzFb+J6z2dEXgBZWtwKgz5QAlE8MOhswt4lf7f3LG6\n7chzTUSAVFRKDhEiHYhpQSEyiI7gJHULyUZkniAN5g6RItFu6YsJMoyxBrrW4XtL11tC8ggHoghU\n+SC4T9EPvCgSKVVDqySgMIaYBE7AXjPEGKzEgk3p2e12bK/O8DuDZ4S2LbFMLIUltIGrbkPfa5Kr\naC9qXq7P2B9d8uqdA4QSqNTS9hYdA/NkKIsKlRmst2RO4rOEiJ5kBNIyuB5RJCDoRFGV7I3HrK4b\nOimQPiCVRkqYYFllghyDzxzEjN2q5kkctD1XPwV880vTyCilmJVzzh9tEFFRaiiqCrvxpNwMZN7c\nUBSDhmC5uWa+d0DcBXIluHN6yM15x+jubX77d17l1bunWLvl5adP+Zf/+7+g/tbHZMdzxuM5Tgpu\nZaesz1re19/mzcN7iKbmlXfeRiRHUY2Q1lJvE1YnTKkR04JPtz9g9eQRi70H1BiEOaSRO3Sn2F0u\nsYeJ2IMUgdDXGCnwQaJTwsZIHjRRBjKpqIWlaOHDbvMzpI4ZKpspWrUjszm9SigfaUygsooQIfVD\n7pKUanD1yIGEafHsjTKEd4TokUnQuGFUovMx2zaQMKyXK9rtiruvvcmeqrDzitGv/zytlYyynKNR\nQd9KUDkpRay3WNfy0p7x3h/9BfXzLe0IQibwbU7ZluTC8yI1zI0mGkFvW0SX2DQtXet4rDx72YR7\nRyMOD/ao8xIZNkxTR+bagQkTNTGAiD1UY5ASOa44atc8f/qYaVEx2s8YV2PCRJDFOc/PH3Kx3NAl\nz2Rasm06ZOhxUWKUIgnP2mUUpkQEhYo9uq3psgJ8h0hyeJlIsCqSeY/3EikCXkjEcJlFEAEvB0YP\nAa5Sjv0KO1h+UiHCFYH9QhM7w3yc0Dqi05COnEvDqg4cj3NSpti0gdlScXPHsCslzY9XnEw9yiVi\nkQhWIbcd2b5EiCUjZqTkEa4k7QIi68HnMLLUNxnf/Wc/ID87I3v3Fc63O2oV2LYXvJhp7rz5Or3t\n+I3TW7zzH/2tIdRTS2KzxYiG/+Cbh9RNhsod+dOO9x9+j2KmmEzASUWIDoeEJOi8Z/rmbfYmz2ii\no9EghEY6z8Ym+irhW88rpwd8/5OfnuvxZa7lxYqT2ydo63HCE+OQItGrROEkViUEwz+GShGHxGHJ\no0RIQxUCOhsOpr4qaWjYJhjHhMMhkiD0gVAHktiSzQqMG4HvqFVHOYPoFMEFUoIU0xCNgKfMEjJp\nYkq4ZIlek2US5XtaIfFJIMKAA2idwsqcTYKPNs9Jj3qIBf1YI3cdKZPUPqE6Sy5ytnFLJvYYK4MV\nAm9zdvUNn64bntysmE7GGJ2IXlEoOJjA3VuWEkkeBC4JvByiTIIFpSE6jVbgY0YeHL3oyDJFksN7\nJ6oBVN7mEtFBJjPQEuESEkWIkudty9Hx9KvRyORFxna3ZbeuQYNFoowiJUWIicl4CinhQ8S5YePt\nrld88v77vPMrv8Rv/83f4h/8Y43Wmub6gtFojsxKwq9HvvHrv8p/+9/815TrltXmCd2NY/vjj9nb\nk9ydvcrD5XMuNivWVw2//Os/T9Adrm04c4nQ92RlzmJxgESQqQzVBR53Le26Z3HrFi92FzTXnrQv\niMtznPe0fUcAZJIEDUpEIJF6T0rgpMDbwObip5sN/vtY2idcUCghECIRk8SkSLCRBLgUUXIIaau0\nABQpQu8CTZGzbUtm9Ey9JznH3dmE1jlE7+htwdXFDaO9GWMx5tbxMSIX2CYwLj0heprW0jUSwjUR\ngyoV8+mMg3zO63/3HbxbcrVa0dysWTWOvltzdb2kdImNqBnXDhETzaUnyxOxgHEfWYVrthctk92U\n09trstktrrKGmfUU/QrZt4O4TzhS0pgqJ5WapCuCuiKKxHxvH99btIUnFw+5urymDT17s30sPU3Y\nkeqAVYFSl+xcxOYRupxtodDJ4UUkhUByHpEg6gQukaQYwjM/t2F7LVE+gUwEITE+4lHoKDFhjf8Z\naGQAblY75mYCskcnDUGRZMAHjVSJZlmTbo+IuaMOgYlS5P1zhJAEfcO6N+QYOi9Z3zQclh5pr1DH\nkrI0SJVIwSILOQTu5YnU7vH+t55zdE8yv/0W37KKy48e8s7xIXd/45vsxZLprOTrkzHF/oItNTjB\nZx89IcWOw1df4f1vf8A3v3FA8GAWJXv7p6TNjktKxrMcITpkgoQGpUjRsZ4LTlt4GgxeBoKLCCkJ\nWuBEzyjLkWrINf2q1o8eP+Pw9i2kGP4e1lFQxAGXIX+ShCckToBKgYRCItAiYTNJSUCSIVNi43La\nTYsuIxnZ8HsyIlE0NtGudmQKjDSkTNDuNuiyJPhEYjAkeN9T6Thwh1JF0h1uFyA4vChpyOiDx6VA\nCiXX3rJse4T3rJpEiBo9HlP2kbZfskk9ua+YRsHOJnZ4zlc7Xrm3hz7IeWM0ZnJ0wK4PXC231MsV\n1y+fYHvPeFJwuDdFasWLZWR/T+FioE+CMnmCS4hBSYiRCp8CCoGUEZUbqr2K0mS0rkFHyUgIlJOs\nRURKgcxy8q6hE5IUJS4kDlX1U63pl6aRObl1TLPriDpRlRUpJkJIOAPzfMJsMeX6+prpuOLhj3/M\nr/7ir9FFT5Kat976eSqjuTm/5JNnn/Dm61/jR9/7Q0aTfV598A1eff0e/+Sf/nd8/zvfwYU9fu+P\n/4Tm6opPzj5lLa7IxvvcnCWePfkAP5/xC+++Qcj2OPvgz6itZ7aYMttbMJ/lTMwpj27WrJ7f4N2C\nUNzQbDvCWFOMcpYvLzFaY6SAIIgykSPxbuAI7GwPSjESikdXF/S7ryYC/i+rm/OagzemeAxSCIQQ\naKmIIQ6OGQfBBKJNBKnRWHrX0zWe1hlSzHhiCkyKmLTjdsjwfU23srSpI2aG+WjCvNIEIJcZ1Vjj\nupab7Q2Xy3M6oZDOEXc9rUiMRwVZliGlpDCSeTXj9q0jgsxw7YZ2OzgS6qbnbNVDfQPdkm51TXuz\nZdt55FhRtREfnvDoM8nVCbxxfJe2apCiwHSWvW5JsC2xuCJzC/KJwhY9zbllb7Kg7hum8xn16obt\nzZLNdsXx3hEx12Q6ILaBNvWEpCmFoKs9SgnWusfZwYEVQ0AkTxsjQgiqqAga8hCJArIgMWlIv26N\npnIJLcIg3UiClEWa66/+WOkn9en5jrf2SpIOhDCQjQmaXjp8HF7ZElBCgukoVY5be+oso2pn7IqW\nJm4YTw8oXWLdRWIBe0aQ4prYaIQZgc9Y6oIqLyFm/OhPP+YX3zrishL8zXffZLo3x4XE+o3XKVNF\nRkewLWdPnmBvGnadxHjHJTt++N7v82t/5+fIJxNal5ACDu/ucf2ix122XPmWfDRHsiOSEch49GzL\nwWyCZUUUAmsDm6ZGy4yARIVEsxYcHo05f/nV1e21rcUIQTQGHQJeCvIgaJUa3H1hIIpHEoqER1Aw\naB6FEGjnQQ18M6cjKIMSLYKSJBVRJEQURDFoJYNL1GFLWU6QTuNlj9sN+Xp5nkMITCWoXJJch3Mb\njFcIJekSuKRoZU8KEh8ND+uW6+UKrScUmUAWGr/e0LY9wkLsE3upIn0uuF3qDre03D894pu//XX2\nm0PkXGGqoZm6f6tnGwUj+0uMwgrtJaV5ygefbvj4xTVBSYrMYIj0Igc8zjuSEmgSNgp8MIMhw3im\nZc60yLhue5T0tFKgjUO1kSgTJYlGanTwoA1ORowsMFri/F8NwPmlaWTe+oVXefrRYwqdkXxCZRqX\nHDpI5nsT0ILj+TGVMmxWHS/WN1Qy5+Teq8wWe1jnyMc5o/yUf/4//DPeeuMBLx5/xNNHnyIauPfq\n6/zab/1tYu345Xdfp/Vbvvvdb/PJex/xR//qD2n0mJeNRf7Bn6OLwFtvv8XB6Yhj9nj68iHLyxuK\n2RhTas6ePEePNVnZYzeB8WzMRu6YZBMu3Tm26wZldgroz3EgQkeIgnFV0TQtWWl4cfXVJmn+2yrP\nJcZKMJEgBNIO9EgQiJgQMuHcMDJsbIfJJU3t2Nkd8+0hsYxkNuARRFNy1UY653E7yU4GXjOGfFQg\nTEbvA6Ft0NMZedBIJal3HefnZ+yWGy7DjtPRnP3ZjGk+JZ9UbEpNf/VkOIGNEpmbwDSQpwJd5tzJ\nJ4xCxqhfUKdTYtcRnMD6NZcXK15ev0TejOnWGz68WXPr/phJtY/Ic3YsKGOiaJYEsyRh6XvLeCzp\n5ZaJ2GNZr5iWY2QJ/YUlqEhKlkIblkpTxzWLfE4+nmG3j8m7RBczuqkj1xKXhheC2FmCFLiYkGWi\nHj4AACAASURBVM4ThURKUCh2pcd0YkACKIGIkigSjRHs1YJd/dUX+v6k1q3FiY4iK0itxAZBUlB4\ngQ2R3CTUViP2HUUNWmWEUKMFXBQbTvfmXDwPyKalnEKHoNqvkWIBUpN8IEhL1JpJb0iq4dMfbuku\nW+781h7Tu6ekPCBcjzQGHRUT0XH18Anb5Q354THTsqTaNLzfXvL9P/oWv/P3fgGXbandMSbfEkLG\n7PQ27bZF9huWeU4XKwQJLYYcy2J/yhLHSBdoGXGdw4sBlIZ1iCBRwqIr80UvyV9rxRjZNQ3TUYVX\nEhmhNooiOpSFnVGINNyO9EpS+ICWCpUUQQqihC72jEOGEIZ2DGs1ovAdfYRMWnyUSBjy46IAl+hD\nRzEu0FGQoie6hhA7XBLk+XD4vdxErvuaRZmRaUMvywFo2Ut8HPHh9ZLHq54YNdNk6fKCnYzsMs94\nlbFxHSkmlvuS2fEI1oI75Zh77465/fo77IkDwp5CijWplsS8RiTDPA9UeUfpPYdSI/0t9IMRV23N\n5bYmn89w0iBCIsWAj4NtHQ1afH6DKRQx9YRMIqYZ4kZhZaDy4ADvIyl5knDD7aSAPElCcPRSUxYG\nt/urxWR8KRoZKSWqHSirQUVCdBAh+UGfcng0Yz5SVKOKm+sbTk4OefbZY6r5Ae+88zXaekM+2gOf\noUyLNgW/+0//Cf/pf/If46oFenTMk/MND1/+z9yf3efevVfIouSbP/ca3/j5O/yX//jv8+xHD/mf\n/sUf8t0PHqP+l/+L0T80mOmCQkvGKuf86UdMZ6d4JZkeH/Hw/IKFmZIVW+qbNa0RVKMpHsFmWw9O\nHO/p8WRJITEIGZApIJKkrnva+qudbfJvq7IsqU0iSMnYQtCKPCRalTBOUgtNHixWJaTT7OodVV7S\n33TsxkvKowybjzFJkZmcp+eP2Ms0WMfxtMAezgnzCX2fY/KecT5i51p8ctiQOFoU1M2cmBw8fMGT\nl1s+U08oy5zyZMZxdcL+Xk4mSgiaQCJuPDpIQrdhvXvJi+unLChAaXzf0Yme8WTKIi9Rd05xS8uL\n1SWj71qePt1y+LUnmL0TxnKMZh/TewrTsLY78izQrwLTPUmvOySJXRM5GB9zma/pdlvwmpbF55wT\nSZNHdG8xfrB6xqAJn5+9iS2xhl0mSJ2n/5xqJ0IaEDEyUDSK7QjGNrGbthiXyJqCqQusK8PN5mdn\nb/owgJbzFFFyYP8oCZmRGKXRjeTSX7MII2xUPL/pSE2GKDMO+oJQJub7mn7XUpiK/dsJPR+RCkHo\nLc4HpK04O/d8fP6Y+EnJDz98yX/2mw8oi0TbXePWU9zjF4SDQ548esILUYHPeXDrlJ2DR9/+AY++\n94ibEPkPv3mX6rCglIa0PsObQ1bXjyiqhDzI8dWI6EqenD3j7X1JLaYgYJpZDteJ7TjgU8Raj+oB\n4bAmoYUiEJmmMc/F8iuNtnr+8pLyrdfJvCUJRd4HfK7ockWRhtGxlQrjA1EIehMphCPrS3rtSR5a\nAnMpcS4gdUX0kU3jMNohZCJLCpE8PeCRqOARoSVXOSIGkpK4eoeQgjLbQ8dILRTrbksvEuNCQd4y\nSoZO5Pxg1/LJVYfsA/NccWM74sWGfZ9RpMCTPDF55RaJgmk14c50hnyr4Va5z7haIENBWUVaueXp\nwyus7cnHhoP5Hs1uxzJ0TKdTbkIg1wVJKE5Pj2mfn9O4gFZgJHgUISVMCgSXYTNJIT2JDhc8xudo\nkZOqQBkg4CFEXLSkkLAexl4igiBIQS40PTAvpmx2fzXC/ZeikZmOp7x89hitBSkIdAw4BBQQdYFP\nke26o2uvcE1HNs5YHB9hkmSxPyUFuFlecbVds3pyRnW64O7omD/7g+/jqh1vf+NdHtx/Ayvv8tnT\nFqm21Ltn1JefkI9zZApUheG/+ke/w6v/97/hn/8ff8z0T9/j9a+fcnJ4gp8dUTQbbi4fszg9ohxr\nqpsRfb0kxYTODWK35sWTj1he3VC3HW1rEVJSZTkBj/2cvpqMJp8rXjy5/Erj3/+ycosDUgpkPg3O\n5BTopUSlSDSJIniCEggrcNoiOs3F9pqyyNDXcJKfMloEumwQMfbJ4DvLosxYHc14JZuzjyHkMJse\nDWyUVU1WjdgbRy6bhlt3Z6gXmu3VJbUOiLEk3ATaT874pD/jfZ0otSQTCju2jLoRqtJUSjKWAV1G\nrk2DVAIhJEoItusbRFBUpSEf53xj8Tbt8Y5n6yte/LAkL15yOIUPRocQa34p5Mwn0GUBpzNqF8hK\nUAiW3TWVmSC1Ztt6wrbByBxRFcxazaZrSaVBCnAxcY3gWAdmiyknLy550lpkGpOSHXRZUpMpSFIh\nSXRaUDUQhKBcTkhZTxJpEIdaQdf+7NzIALxoAuYIZG+IQjEJia0wzNpIX8LybMNcTPnR9ZKTO3c5\ntjUn71Z0P1Z0q0jetyQEPjl2LrGvBYiEbXNiFtFkdP4JR+aA75y/4B/8rbvc+tocZyMsW8zBLUJ1\nyY3fsX94REnGoz/4mH/9+5+QyR27XcV8lXH/mxmni5oXccVheZd/870n3D5Zc/v2ITF5lLQE4Yir\nFcdVwU5qshC56jypW2GE53mxQ15W9MEixBBXkXkNImJVREbIy4z+K+xeur5Z84aztFKSR0+vNLn3\ngzGDAVSXfEQACEHWJ0IpSNKhEJgYEFLSiUTqDdkkp2931BtPZhNWJnIpkUmSVEAS8CIR6xpVRmJS\nBNcN3zkJ0jeEKmNaVMxbDZ7hpmYXsKXhvS7y2dkSmp7R3ojt1pFvNoyzguq+IZNTTl+7zWQywucz\nKmUp/ILxrCBlAWeXrNcrzl9ImjbAqmO60AgT+OjTj8kCvHJ0gLcgTUYnBFnyLCYTrkY71jbigsSF\nSEgeKRIuCbLco7xilwlkV7ANMFKWInm0VWjFcBC04GJEi0jwnqAjNkh0iqAlwcNkPoKrf48bmVv3\nDuh9whiJkYpWhMFV4SOTIqIQ7FrHJCvQkwmfnj3l7ftvcOv2a4wmE1aX15wvr+n7lut2w/Kzz7g7\nq7h6uuXhVeC79ff59h98i/npbZRWfPv7ExaLnEwl9ItzyqMZRiTG+ZgHtw/4z//+3+F/+73f52p9\nA7MPeXXvDl9/8Bpit8QJkIUidC1lJth2HXo6QWUV08mYtm3pPxf0ygQhBmQSZB6iTHgZcTc1Zxc3\nX/Rj/2JKCEY+EaSiV5Jx8iSZUFGBSkOGiXRIn3Baor3AmYjeBl6KFxQK1kWBLiS6KCl2gc721Cpy\nWJZMQ4kUiag1eT7kCrURZuMZbq8kLy2jboyzOQf3NHL0gCePz+mXDfNZwO4VpN5g1Ra9S7jQEOoh\ns0bpmi4XGANdlJQuIl1CFxIpNFGAFgEhNNo4gg6MFzlfO7mH1oMYzmh4Y1SyeyZ5+OIZd/WUaBOk\nSCYixkdqm/B9olMNJi8RwnO2q4k3a24dHZJP53B+hVhtScFTJ9hRcFdqts4yH2msTzxe9xRobnKP\nsRElBDEN839EJAmJFH4QW1tFEtBIzYiWrvnZgjR+fL7j3aMFTnuIkVZotHVYJchFoJAZfRQ0QaEv\nbnjwq3NGesfoUOMuzmFjibkhLw2jRQZG0zYNTCO7y4Tzjzica8Z31/zcr9wBr2jtC8SmYP1szdXz\nG3bZnI9/9GPkn39MOCkwSVBzxFMlibLilQcdt+9FdgdTXrt1m9gL7h2XvPL6XSIB223xjWV7XnO1\n7dGlQ/QCJ6cYk7FJr/Bo/Bl7zzNeykAMHikkKkKQgRQTUgikjlTj4ivdyOx2NTEmhIAgJFIM7qQk\nEpKECIn4uRo4JYkDhIzkKQE5QQiKkPAJutKyi4KqVrS2pnMSoYfEES8hi3oQwqqITAlnw/BbQpNk\nYOscV77DGKiKRJKapBLe7bDRsAwZHzz9GLEZMzE5Wad59XbH0TfvcdidMCsSTea4VregyOnkBBE9\ngSXXuxfY68hSXJHiXaQVlL5Bm4LttuYv3v8eZTXj9buH9METfUMhJEIbGiSZEszGU/rNlt5B7SJG\nSqIBbSQkSZciySbwgd4IgpK0oUMxjIzwAe0chERQAvBoIVEkpJQEAUJ5ymmOFIL4VzjgfykaGRH9\ngHWNEPGo+BPUhqTZNkwnExaTMUpC8i2xtYwWU6bTEaaqqKqK0WJGv2m5JwL/60cfcakC/SJjditj\nWy+5ERF7+YJxNcLT4PMxoz6wP5mT65JV35EXBkYF79yaMTa/xUfPn7KYKK7Or6jD6+giIzbdAIyS\nDlPuk9qOrreIwmCqgkmZc365QQgxcGSAoAWkCEERrMcJyXK9/mIf+hdUwiiulGYWIiUBVCRFTVQB\nleSgkVEQGRw1QQ6ZS60Gte24kudkOscowZ5YgJVEBHJu2BWKItf0lSZmhr4sKASQKyhHOK0R2QHl\nnRGFi8zchvLWHY7uN6wubnh5fU62vKTZNXSpZBQVIpWMdIvykiQTFQIdFFHZIcdLS2IQkATCW4pp\nTjYClQymGJgxWg7C2SQCvTWEbsfjF2dcXy05LA1dDOzPNCEpgu2xTaSzPQhFVGLYW8awPF9RTsfM\nqhKdK9qQCCIBCdOuefayZDFaYPuGaTXDbG5Qec7CKlpv8TonajBJkoc4iFgFSOnRIeGUIEsRH3La\n9mdLhL7qPX2ehr0YE1IO2iEdE0KMKcoOVWqOxopbC4VPNbGO0HSs14m9PKPazzl/1DA+2EfnEi1A\npgB9x/Y6YhYtRb+gUB1J6SF7rezJf27MUZYxu4Hj2QkXT5/QVxViavg0rTkqTulmV8wnHSMdWLzx\nBnJc4jycvvZ1QtYjfYfUinJRcaw91Y3m5aalDhKD5MZNeHFzjm0aYidYVp7cD2aEJAUqJQSJKCQC\nSVmWLNl80cvy11bOB3ZNx2xSDd8ehuwlrwfNTBIQBagY8ELgRUT1CS9ACIeUA4VbAsFG4vaKTrTg\nE0mAT0CIqJ/k65nBDSUjyABJeFAak6CwORdZht4VTHY9SQfG2rPNpixFwcPlDVdXgfte8NpB4P48\nMhkdYfqccbbGlAX7WSSKa1yqBlesXrN75llnLVWZc6Jvs2p2rC62rFLL9XLNy4sbxpMps6wkuUBt\nWy5a2NNz9npHSImUG8pMMzKGzvVAIApDFGCFRKvhoE4cQuB9PsJ93sypPIOU6FzAChAigFDokOiB\niCAxBMe7FBGpIstyuv7/+7vnC29kskyjQsJrEGE4Jcbh+0+pNHXXYG1N267ReYVEcrB/yA+/8z36\nN1run94hpUh1MMWpHd//4V/wm3/j1/nOt/6ET/tnhGBYN5HT2QEuWoqJQrQ91z/aUB0fYgrP5dU1\nm6sz/HTCbhfYu5tz58EJJw9OsAr+9P/8c66uXrJY7BN2F6Rckc9mnN0sCZstmckxuWFXe9q2+/xD\nLFBSYIAuJXRU2AxSDbumGYIkfwYrWU+yFiENSQR8lAgVSWFgFASR0EGjtCf6hEyDil06SZCKi+2K\nUktSHsAHJuMJuoKRGCGlIoqIN5GV7xj1gn5skNrQZIkQLW4kKOYH6CSJ5piRTXjbYu4GCutQ/Yqw\ncvjtBardgfMo2yN9TWocTiQyArbviaGnq1vc/8Pem/ValibneU98wxr2cKYcqipr6olFNiVTAg3r\nxoBhQP/ZF/aVIRuGIQqi1KTUZrO7a8jx5Jn2tIZviPDFOiUTFAR3GzCrVcW4PJkJnFx77bXii3jf\n5/UjEaFbtazWPW0fEa1IEMwqNgnqC1ZhFsPGzP3hmmcXazTArI7kItUJZVTqsLBcTnWiVpitMovj\nNCaOY6YPHTFGZi1YXlKpdrVQD0c+OP+QiRWt8/RBOM0Dl+crSilkndnkjkOrHDvl2c7zIBvuQ4+U\nCD7T1cyQ0vdZHvFfrHGKnK0dlYJzQlQoj6frcb9j9dGKcSPszyrq19DODKEhrhv4TJBccC7zy1+8\n5J/9D5/S+IZ5PBAlI21LmmFgR99Fqs14DUgb6Z4r62Lcyp7rvzzwwWeBJk7cvkr8+RdXdB+1uNOK\nF599QnhyhfvjT6hhhfgOtQkri4sma6WEBlZPOIw3MO9I0xEssp8z3Sqj3xy4f9oR5+UlW6QSLFLF\nqECslSzCeW+8ccv56/tYZsbtw46rsxXGEmQrZuA8Xiuzh2BGce4xWNUYUYpB6wwnHswRnLHGsTbB\nxjXGSCOK1YXf43xAUMSWQWgIjgUuEnGmmA/4jWPbFnLqGENPG417D78thbQbuP/VOz7YC//tF57P\nzpX1KXDMe8bgSdah9wZN5d32RA0rLsKak5s5ArEI5VR4o6948y7z6ut7bJ4pxeH9hq5mXHAcqiOW\nCuNMaa+RfsWchJKFxgttH5Bs1FqxWskoqwquFZBAbQRXjSfDiYe0I1MQhPkRqmm2ZKUuDnNbDoEq\naDBmB9lgWwvrdfyvs5FZbVZUJ6xUUL/QWsUtWPXbhxvapsdqy8l6ZKycbq754ic/49Mf/ZR/+vMv\nltNE8PShoXt6xp//d/+CYRroL1f82fV7HA3/y//0P9OViT507E8ToyifG5TrW17bnqfnZzz55AVU\nIUbHul1DVUop/MW//Qt2tzc4ET64WJFRLCt5SszHE/3FJSJK0/Ycbne41rNetaSp4Lwju4qoYa7S\nJWF0xvXx+3vS+X8tEbRpGXJDXw/glps8FFvWNnXhnnjzS6teA+KXxODr3vGjm4avmmvqNwI1AR9y\nfrlFa8G0MpVMlwrmC3NN5FRom8i8H+k2HTFEWhFUjLkkenGUvmfdCWci1EMkhYn+TKhlSywnwqx4\nSSSFUPOSiztNTNOJ+TAzpD3ppBAH5jQjWglBSKbItKRPl1jQELik51eHl1QnbNdrrJnhoWJtwJ8C\nJ39gTIVREyc1ggYkKzZl8I70kBj9CS8B0Yx3RpMCppVt3yLi2Kw3vDvuOT/bsv/mNan1fHZ1xvVp\njw4TMm1obcObNTRFuEwzapCSw9GSpx/mtPDffvmK//5Pn2EaEVWid8haqZaouTLNysW2IXbKu8Hz\n3Les+pHUGt410Avb54K9PPKLf/WKP/0Xl5jL9BtPyYV2qtweZjbdAz40JLdk6LQSqaFwZoX1F8ra\nC/6jjg/+dEWtW1i31MsfgQbis2dIt8ZYIbpHzRG8p1oAB/4xJNR7T2i3pKky1sBhHsn3M3Mq7LsD\nPp8D4KVS3cIbCvhFu1EWArlrOur0/Z3M3b5/4Geff7LYr1WxJuJqWTRDJnjzeIHkwFmiVmGwSJGC\nPG4NQFEgusAUEt4tq5EgiiJoXULkqggNLBEVAaQu2UepVNKY8Xcn7m3it2cbmJTTcCQPxvXbkaex\n4X/84gWf9Dvc4HiIM6UKcVwxmPFGBpCITsrDm7f8Rt5hraPkSKqVnCq73Z5hP9HWhtC0tMGzdoXt\nqUIwwkXL7jTx4uNLegtMxS+0cEbmfoWVStcUlMCQygIrbcHTMLmCDkoSh57gYV/RqugjbNSbom6Z\n3BhCFcFkAZmKKa6Gxb3kM5dPnnB7d/i9P8vvvJF5erEmVEdqDGcOlUpEEYRalrH7KQ18HB2ha2nq\nFe/u3vHi8x8RNitYe1bd+WO20YZm84wLCi8+/RO0nBh3d/yzn34KwzsYB96+vCYRmd9+xd/8u9+y\n79b87I9+Rr/a0HaXJM04zVzfvOGrN18z7Gc+++ILfAg8zJknseH9bub21Tv6qx7XZR5o+dhHyjzg\nTPAiVCpUw9uSqFpNKI8f3LuXP0zbNYALgbMCGjMznmAFX4UUhFgU9UB1aDA0RcQXFEdpKuenhq8/\nmHnx0HGd7h6xVY4yzoznmVIqsxnVCmM546JuuGdHJwkfPDoq7dwxpz05VFrXosHhWo8UKDkhp4zl\nA8NpB1qZbKFuirasNRGBVsFvG7yPeH8gToGhPaIlUEsBn0gTzHHCj0KJQjRo+8AwFMbhxNP1OXHr\nmR6EiT2nQ8vhbGQajGlWprkwTYXWVVSNmo1AYHIT07TsqItXRml4KELjDDcoD+bQqERgNuPZszOu\n3x8Y48Tl02fISmlSZiwHxuEJr9YdV3XmputYa4K54e38w3Es/d16/TBCXThGgzO2BiEaNgc6hYE9\nH63PqKlh3icOn61pznvmL406F7JUaGbOP14zE/irv7zj5z+/gGBoM8AucP55szS2Pj3SY+clJfmu\nQbrMZvsMvwJ5/uMFjtY/IUnGt+DbLerPkOAhC6YNxkyqa7A9WmaKQmgceXYUrZytPIcxMKU79vcP\n1DKz3W9J3sh+CeT1WXA4zApeHZMHXyrtpmX4Hjcyu8OBIrAySGHhWAUHFEeOhoaKVMWZIznBmeI1\nY9VQEporMXv2Kry6m2mt4Eul2sKboQoVQ/ziVK1qwPICxwtUo+jIcVdwkxLSNeHlgeJOdOmKc6n8\nNx/0/PRJy1ZvEFtRSuVoJ9a2oo/KPkJuPUPwuCFQ+477h2v01QNWlL0ZPiWydMT1GqdrOldxBlMI\n+Gisz89Z9yvmqoytcLHeMurIYILGBi2Z0Da0ZSarJ1ohAFUd+Ip4IQRhZuTBV46lEBTGcSZUIUfD\nlwYzkAXIhOAQjIrQUEhBcCZ0m4hzgv6egV/feSPThQYNjq4o1SuCozgjTg7njdoUGhco00jjPL51\nvPjgx4xOkdCxarbU4AhiQEAWlCXg8D6wWvUMV5ccvdJ2lR9vr7i7veGb9DGrP4Hb3Tv++hf/kcsf\nf04jL9ndHKilsFkFym7g6UfP0Snx9PKcL3/1K95GT7k70Fz1xLMzssu0N4WhGZh0QrMylYwiNHgK\ntnTiZnhR7ouS0w8HNvb3qwueZ25aiP3e4Uwofgk3FJaVXDBDqyw05AolFNzsqD6xeui4beBCT1wf\n3pK+TpRnMxdayDmzmQbSuOZ4PJG2l/DwnvZdz+XFFftwy348sm57ulVPJ4FiilaliGFzIiWlnwei\nJsQcvu0InUc1cO8DoXrWdiCcMqEUxC8r9qYJqAilKnN1aBop1zMjhTZ2+GZF59f88t1vaF3L5rwj\nNCvqduLw28J6O3M6dcyHkcM0M84nygTHOtP3nlE8svJ4Ew5WiTRIDuTqUS3MbeVBAx93nulQ2K7P\nef/uBjcZ52drxlzIt9eoa9j4jud9w9on1nXiIZyzrcZKjSlC8+7td32bfCeVqnKaCzU6XK7sveNT\nC/zit9f82WdPcf6ASGR3m1Fa8mnD7uxEVyr5COHMYSksU9hk5Klhny+5WB2hJsZ15Sz1WFMIRMSl\n5WU2OZofNTSpA18pviWsDIsXFOnwbEk1k08ntpuCrx3VJkQ8aRa83iBuwPk1Tg2XhP1ppvGZYB21\nntiGyi/fvMJFx0MXCLPRFqU6KOYooWLFo97YVs8YC882jq++x+DxlBLjacSdbfCqtGokacAZTVW8\nBVQLp9riJSOWcM7QapwoeDE6cfyodXyYM3txHKzSq1/YT04wrYiLy0tbFecFJ7Y0Nh4oCdk0dOcd\nH5RKVy7p3IqLeM7zrdGqolNmFzwPpTB0LcdhZj+PvOkn7nxPc1d4fxq5LMJ7l9lLyyfBs19vkTox\nN2vm8gHbuiOvIhdz5uAD3iY+/PFnXDy7oMvKZrXhjIh0Kza0nMaBumTu0IgnxEhslMYpxyFRrdKL\nRzTQSKQWj5XXSDL2eVhW+USa5MnOEDFMl/al2gLT8+aIHrIYvRlKpfWBUX+/d+R32sisum55mYlS\nHhsY49EK6IypqbTqOc4T05wJMfP02VPids3Z9ozgPMSAN8GsRYJbAtkAbBnt7YeBm9OA9z1CYj47\nY+Ujz1zHzMSTTz7g9ctfsu4cTdzgnSFNpKdi6zVv3t3jUmLXeoJ3dOfn7IMi0iJTwrxjEs952+Fu\ndxzGAS110Ws4wzl9xPEbtXje/0DZMd9WVkgGrVRqfRwtikdcWdwDamTxBH08xZghdXEPVIMQKhTH\noYlcjI537i3pdWaaR05nB9brNV3f06073r1/T3CBvuv42n3JlGfariG6uOyqjSVWvlZcmsjOsUnK\nNs6EvqeLLawagvOcxzXxoqdKIPmeDuhzRcgoFVyluEy2Qq4TVQqDU/rG46IntB3vXr1kTgMvLi9I\n4VHqNiskZSwJlw5UzVgF1GGmDDljWnDKQoSNMB0zJUBKxkMeCb7FqWM8HaGFy9UFD2nPR5stXx3e\nYaq46HC+Q0xIeWQKmaaDL7LyetrxdrXmfBe5v6gch/vv9B75rsqA//1Xt/zLf/IpFoVYM9/sMxfr\nFnd2xIfVomHycKoDgymnwxltOGedD6ynBpsLWEVVeXHR8dd/+Yov/vgp8JQn68IU7+nULdRXcyiw\nL5mnSeB8A3kmSAGbqcVTJGK1IH5JMB9PA622WDWG4YhJZS+Reb6gjYXDbNzuT6yalqKeuzTw9X6k\nXh/42y+vcec9/SSkoMzfHhp8gSoEZ2QzigjRPOYbvD9S6/f34HVz88B531O84CQgsjQoTmEK4BWi\nTY/ZR54qHlcTsxmhtHzQKZ+drXFtYK3CzWkkLHxgvBreRaot7zdn4LQSUsDi4hKLFmgFdlPmJjts\nPtG2ns6dCCnQBMHOYJ4D3pRDmZmdJ5vA3vHkLlMaYa0bSBO2iQTpeKgzX657LlODTi0tGW0jG82U\nlXC+7vj8w0958vSKul4TmOlXW0IfCe2SBC5pCcgUcbRrobOWOY948XR9pMBiGEiVWQpTATtCLicO\npxmHp0hezBCyaI4sLIfWRo3swVOprkE0c0RJJbA6O2e8/f066O+ukXGOqz+6QosR6iKGjHm5gCUI\nxSvtLGisWIJUCrkkYmxwpqxWPaPNjDrSySLonMuJzjdLtkidmeYjb6+vmZ1wtvUwR/RwhK6lXXec\nP38CLcz1E67fvub50xf0nceb4zQpZXKUlFi1keF0omwveL8biLXQ9A1VM8e90WwvsSq8endNSoXg\nA96MLBAsUnxFFWqTefXq5Xd2yf8QSmvBppkpepyrFOcwV5BiIBURwAsmi/TfLCA+LZOaiwjg8QAA\nIABJREFUKosl0lW0Ot5HoTs9I9me12nkfLc0MrHv6PqWpu0IfrFGV7FHF4HHx4iYUqohokQx+iiE\n0JNDJWkG51ATqlWiOlwb2a7XnF+u6bdntN6xyfeIT9gEpRZKqaQ0UNJMNnB+2QVrqTzc3zIOI59c\nXZGnmTYGOvGUrIzVaGTG7XnMXoEqnuoysQrTWNGV0a82aFRymjkcZ8ZaeJgLV62jD4GDGq+/uaVd\nN4z3I3NxtN2aKSXyNONW0NMu67I5EUpkWjuu6ky43/Her4j7yOHuh7v63A2JTGHVeYp03Hz5kj/7\nJx+hZXFxeIRN23EYM8ch8aMnO8a1YOMImrG20OSGuinU4YE/utrw5m9vMFFeSuD5meezf94t94gX\nnDjynDjZhjUNuKVxFfU4v1BPa1omlG1Q3u1u+erdv0eK0Jw/YYqfEvzMNClzzqjLmGa+vj+xGxPB\nL862V3/zDdfV+NBFclORsqxvi0FVwevizMEbZpHqK50fOd847r7Hkqk379/z4x+9eCRbFzwOfaRc\nhyqoCk48anl5Nlkhu0UFfRUqPlSii5zUsW4nxrI0J95AnSJWl9SVqjSPRpbFMABOFuJ7j5C0cMxG\nqhNb1gxFCVUYXMBEaRpjpZFDa1xSuRcHU8Fc4UEDG6/EvvJBnbjVzMF6nt1ObHyiroQPAlz0lc8/\n+oxyIbj2Gc+fRvptD/WMIIpzRiCCLOt07yJNOzLXBizhvCM0gVATxEislbkoNTryPDLMM3mX2Z2O\n1LTcW55A8YVFMSCPCAijeCHWRUztrSw60mqYFVbbhtvf8xH0nTUym37D5dxQvFC94bOQG8MVEF0y\nd7IsyPpjOpFyphJIpZDuDxw+HPH7A5ebM6wJfH3zGxoXOWvPscbDvOf1zS13Nw88fbql0cCkK2Zm\n2jJgwTC/qKib2CI47oYHNt2a+/fvub6b2aXK0/M1qpWHLIw3twQvWOhAHapCMuOsX7Pb37E7HqHp\nFpW76SMLpeLVMPE0g3G4+WGBxv6zcp7BEisNFBdpdJHLadHF8ugD3srCF6BiwaAuorvsl5EvtoTv\nRYQ5ZO5dJKTIzZTYHU7EpqFzHokOFwMxBEIMxBDxPiDfOjScxznBe88xRGKoNE2kCQ2NGI13tBKZ\ntFCGwsP9A6++2bPuvmTbe56uE11wIC1IRQsknZHsiA20zfK7V5upYnRt5DhNoIU6wavde65vdmw2\nDS63izjQlFKV9LiiymZMLM38/f5It23QAgWgKL4oc6ysEFQqx9sbQr9BfUcqmbZrgMI+e/xJmftM\n7wKzwlEmVmOD4ej7RDd5NtQfLKgRYC7KfppwsmbVLK4xTZW4aply5uFYOR5nnneBK/b4FOjvjFqU\nh2r02XMM0E8gbo3ZxIcXjqpCzYWXXw28+OceHx1igmFsP+z45qs9P40dMXiYMqp3HNpA5pLp4PjX\nv/klZsKYjV6Nso/UzQ038Z4T59icmKrifSKFmUYiITqO88h4d89f/OYVm9iQGqGZHSkspOeqDsci\n+HXVIyaoVrxVRD3ttoXd93eKvLvfo6ViAZzKcuBZsgUwPOqX3DJzESkFb4ahdM6zbRUV4dU486Lr\nmWhwmglOFvCkD9RseHEUCsEFtDrUJ0r20Do84KIgsVIHQOGYZk5hQ7HKuiqcDFohrxOr1ONcy7pP\nrNbCpJ4YhDAJIi2tC3SN575Zc1UqW99xbJ4wnHd88cRz2pwzbte0XUMfLun6Foeg9UAeF7K+ScBJ\ng7QzaVoRw45cDddAZ5ExVyhGIYBNWA3U0lLTPTY9cPMwMokQdRH5tizTdK9LqriYUfyyXlMxqjmS\nV2o1vCmXseGb3/Nz/M4amYvViuSUtjpmwJwQCxQvhLo8SKszYoHpeKCWBFqQUohXW4bjnq5puXv9\nmimNdN0WbeDf/4f/DR87as1s/RrTissJLQ3BzXg15nFgHB9og5FLYUgnts+fUo4DZRooLTQ9yAyH\nw55jEbw42lWHWCHMExWP+QBWCd4zVQPnaJwnl8Rq1bMbRkwr6JL6+UZP5PrDtF1/W+dNi5eI6uJE\nEpdJqkiuVOcIZkQfGBsjnJaeRbQurBgTKqBBCSbghFCMah5xivlF/DtNhdFlYo20VpgHqOhi/QuC\n90tT0zYNMQbEOXAglaWzFY/zHgnuUdDb0LII+ExglRPPTwmdldgFWs34qIhEgiwobxHPmOUx3VWh\n6iLytIwvxmQzuWQ2vqF6o1I4ZKPq0rRUq8xalgeGKMELKRllX8mWqbORVREz5pyX70UbSJNQQwtN\nC8OMFKMatCFgFNKccStougbJSxgnscHXwDMd+Pq7vkH+AOrVzYmnP+mpU+Xp1QUhKLNWgjjasx4Z\nDsRNILuJJMa0aQnpgo0bIUBjlVACEiomSi0LDJFVw/knHTpVCop3juAdAeGzDyt1viO47YIleHjN\nuxvHb4cbnj6B508b1DKpGEjHqY28Grsl9iQduXkYqMURemG76Xh/c8tJDrgB9m+O3B0nzj+8ADOS\ncwgLCFHcssLy5rCFjAdiaIHsjNa2+Gakfk91fbVWdsPEk7MtJUBjUJxHqjGbLM8E8wQxslvI8xXP\nugtIWJ75yQKHNLHpVxSMJIFGIZPpYkM1xRROtbJyjpIgOIiloMEwvzSN3nksgGolUYjFMeEREeLg\nFzenH3Dql4iDWvHieNIJm03HdhVoY4N3QqbFmbB2E4eQOVVjLBt0FQjujC4oTVsxFylOSbGhVI9a\noRXQXCi14K2QvcN7R1AlE2h9XNLBs5JtCbqs9YQOiYfTA8ch42ulBmjMUR04BRXDybK69MgSTWNL\n3ldXPIMt2lINQoiekn/3CPbvpJERIGyNLjmsccS6kP0Mh9eykP5MMGeQK+9v7/lsGjic7hjrJdsS\n4VR4P33FwbcMY+Jsu+X6/S1v724Y9/e04jh7uuI8bHn7pfCTP/45YXNBu7umznumYWbKE/vjifu7\nHefnV0i/IqeJ2K452wZev3mLe3JFzEeaTYvmRKmVIWfS6URwhvgWaYRpHgGj2EwfAz6Cq8uu1ABS\n5de/+uq7uNx/UNUw86MPlJtji81KnTOmkEXx6nFuiS1oRiN7h9SFTiWiKBGxii/LyUEqIIKw/B3z\nAnU5RZXqKHNhnoUYA7FxIA5VXZKhMeo4UaIgLJAqZw5rjCgBosd7hycQvDCGBtcISsMglR2Jd/cO\n1yitVJro6aKxaT1d6+gaXSyG1MVbVSpZjJoWoIKGgpSAt8CcEzoZWpXZZ0peHma5glVBdGmY8RWf\nK1UcRR6F0U4wVUQrIxNRA9NGqc5RxWi9x0uDzhPrZsuNDui+Mm4Kc/ecWO7oxsqhgS4KFz/ANPa/\nX68fJv4plXQc+Pj5UwaUdmihhZCgNeFmV/B5S4iJU7uhm4+cu2UV6SQyNCfq0NN1AbxjA7z5xvj5\nv7wEW8ICTR24gNaEl4C3lvn4wMSeIZ8z14kqF/yfv7jjZ58/JT5pOI7n3B0HhuHEu6ElBOXh9IZx\nOCCsqEfl3ZuJ4/G4ZNjMiV/+1d9ydtZRvSeaol5ZYF0VK80CoRRDhf+0ghWBOSnFEnH9SDr4ntb9\n7T1XZxuMFiOjpgSDxozihFqXFzB18Vx3psTeM+eM6y5JkphZsZoz41zYtBmVhgCY+EXwaw4rwkkV\nguKjEc1wKoTgqZKXtU0WvHrmpGyiQAILM9WWVY3gwQs9y0reguIIrCL0oaOPK7qu4jVQfKLqBpWG\nkoUHPOuxITYDNW0pzuOkLBuRb1fhCOIeg0RZ/rzJgTI3mFOqVDwse7GaYc5MqXA4zBzuMjd3M7Vm\nAgtR0Lwu1nbnyW5xxwWrFPOYGnPjiZMyBiUWR7ICTjjre+7y757A/t00MjHQtT2jQFSjeKUpDg2C\n2fKz5MAnIWHUU+X+dsfZxQWvv/mam/fvCD5g6jnsD3RnF8T2jHQcOB3fME0n2tFx/L+Ml+tMwLGR\nhnh+hbz/K5onHXlKHB4emCqU08SpvuVwPLF98gRfCvsKSWCdJ9xmzTQl1CqoEFYrsoexJGLbcbi/\nx+FJJqwkLOOyOSPBITkDwiEP3Lx9+C4u9x9UvT3OvP1f/xbnhNWm4/LjJzzzW4oPSJkx5whqzDET\nSoPgFm4LgBWcOtQrrrpFTL3grBasdeWRyikoy5RPVJhqpYyCeUMbx6oKoVRK52ke6ZyCQ30Fc9Rc\nYS5UhLmvODOCRsQLjYuMXgiiHPD0J6jB0VkgekFb4cwH2jYifsla0WqEpY9iJeB8AC80dYm4H0+J\nPBkFR+8q3sACBBNcA96M6ha7ZpUlviCrkk0pNZBxnKxBinE8HbhoNqxiJEtgphBMSD4waqIrwrE1\nminTDO+ZOqGE5aHoU+D2+nd/eHxf6/6QKBlEhdQ6dBBu6sCFa4iu5doqZxPcXith/Sn1IvH2Vti2\nEQWcGatdYA6Z+jg9PIZKOHfcvr3h6oMeFOpYwXuCNDhgKgdc8qQaOLVbuGx5/VJ49RauTyPjuiL1\nNSnB3T6hYyHEHnXC2hkvx7eIeWoQNhnu0z2//ptXXK3O2G+bx2wzwRcF9czRE7ItWg5XcDVQ/SJ0\n9eYIHjzG+XrFdP/9Fcrc3Nzzsx9/TleWlzqPUQW1WRhOjVNSXcCTgws86YStNOzmI2NXyPGMCWNo\nIqWNHNW40IprA7lmvPcohVocqkbrHTYtTDFxEFUptUKNGI4mCs5XqIEUMq1EZksISsgNFSFEMFtB\nLHjxRFlcvrhMtcixiRR3zrFTxtQyhcSpgssDbloj3cRsRlNtAd2VQJ6PjKelyWIlSFaKFeY8UxkW\ngnHJzJapGVKujFMijRPpcGB32vEwnB6bZUeoDnHKLAExoyn2uNJ0qChOFMpyENWqiPOUCn0Vrp6e\nc7f/A29ktnHNqiyK59I4NrNxao1QoKEyhWW/Nrcen5SqA/v7HcNuh/ZnIIWH0540JoaUeOYbjruR\nKR/onePyyUfU6wee9B31Y6GfW/7613/Nhj3PPrzk/OSJvqVdXTGMic2zNXXYsb24ggpHlIfbe1bB\nY1TmcSDXRBsbunVDGmcEZe0j4aJlTopZRVTxYcHV1wIpzQTf0DjHy9f/2MT83VI1jvuR4/4l3/CY\ngO6EF59/wMVqS2MtvUDyitZIDWn5AqsDNSQuzQzOUA0El6mAiSEm4GzZ+WM4UbTCKQpNUQ4KKwd9\nNlQTswMxj7SFMHXMq0RTHeqFdfaoPeq31Eh5ptdKloBE4V6MmgpIxYXM+thxkITvDKfrhSnUVrps\neAETxVxAvCNaWU456lnPEVvNxLCckk0q+sgEVDHS7MlqZKvkUqk41AJHE3IBVWUeCoNLyOYOuXzG\n2fkZ7+7uaVWIwTjK0oC5WbAm4ACq0s2V4mHfFn57+oFmgP29evMw8NGqwaVC33fkW2OfKvmschY6\naig0Z579+A3d9gm3k3A8V6IKbhOYV4oOI/ZQyE2gjUZ7qZiDYV/wvaP0iaZM1HqgDBe8LYFj2zKM\nPV++88zjNcl1fHiZ+fJ+YmRm00aerTc0M1zvrhndiuN+5joZkUiz8ohvmC1z/Zu3/Lzb8s3K0xRH\ndkpxnqpKcIm+hIXfoYLOAefB23LCHy1BcUhwXPjAjV8mE9/Hut/vyVXR4BFbCJ2KEGthcp5aK1GE\nHOG5CC/OO+ZxIBXYjyfKZoXrHWOF4ANjVjbeKLmiApJ5ZKcoUTyqy7Qj1UpQRczjnFK1kMwRFLw4\njiWzwWPBEG2QDENj+FQXeGu3wORc65dp8pIRwKGRJYTXQYmRyTWcUkc97ZjHigsTjQp+NiyMqBqD\nVqwsDZzMmXKfMMuoOVJJzHNmzokhVcpUmB/ho7OO7KYdw+6A3uw5lkRngVrtEYLHEgyJUn1YaMne\naIqQgqPJxhiMNi3P+lYWc0x0v19r8p00MqsngVMntMkoRRkaJZRlrJVweCoqjn6uZA+icLt7YPN+\nzfb8xGV8AgLjOJAL3N3ekCtIzQzRcd5knr+4oEjCQsOv396Tj8ofbQvv3r7h/vZE8NBuzsnaMeuM\nWstwGpjGEd/2hHaNm4/kaSaJQzig85rBFFcLzANz2NCHNfvjgYf7HVYLzvfghbubPSqepmZKDNze\n/zAtrb9rqSqq8NWvX/PtAq5pGy66Lf6Z51OuOG0z0RnFL3hw58FXmIMQs6C45cvzLW4pGKKCmcO8\nEDKkKASFoVaSgz46fDU8ihYjxUzIQnWKqmdyBZ8D2LIKMm/sO2iSkjWTy4ItV0lUczy4Aw7oDy1u\nfcNl23GWeyw+ItBDxJsStVIFghWiOobzCScVqQ3CIw7cQItQCkxUpBglQ0LIothspEdo31gLqNCv\nJsIQkCZwaCY6Wf4P1Tm6ZIgFsiUmzTR+RS+Fce2oJlzNhd0/TmQAuL4d+Mn5OccRXBfROLFeRyxn\nhjLzk/M1d2S2Gsm/2fE+93x8sebddM9TNyPJiMHREKguk6rH7+HNV5XVi5mzp45GC/tk7O46vt6f\n8+7ZOS/6DUkO5En47dc3DGmi3fa4znEZtuz3J3796hucO4A25JJBITgHbeY0T+Rxx3gorFdrftl7\nHGGZXBZbrN1+gU0iS4ghtrhDSxWqLisPrQFwPOuUT7bK/q7lzf33c+2YU2YeE/3ZCmSxXItAUfA1\nocEh4niyNT5oWryN5LmAyaKxpDDnFbE1tBPmUyWZQywSncecEqOnlIKTJTzYaoFqzAhZZMFO1Ey2\njqkmgkSCCAlBsxGsIjEyG0RbVlVhHmi6iGoA6SnNyMCWKTqKdwzdegmfFMONlbZmqIU0Bo7XO7J4\ncsyLhrN2uMZjBkPNUAq5KKozPgpajFIqk1XmU6LYRBqN+XBi3u05Hfa8PN3hTRYmV1is/YvsajlY\nBjWIFVMhewGrVL/oE6MPzJKgsgwJakNwjqK/W0bGP3gjI85xsd4QxwW61KfKKB7nFdFHPHR25LiE\nbYn5ZYx/HDjc7UhTRpND1HHMAzULwzyiKkuQ4HbL8DDym+PAh+dX5PsH6pQorsLZOcYNd/s3bNZb\nVnXNLJk5JaZcydORVA2OD5hvmOYZHx02TYyS6F0DsydPA9IG5nEmuIb793eUtFh2S6oMc8JSxbWe\nh6S0dWJ3/IG7lf4/VJoT1/Mt7OA63NCuWrbrlnXcsmkDXdNRfINQkVARDRQqrSjgl3RVYVnxVUMD\nNHWxxasZUgtVBHWLel6qx7uKL465AV8fVzquQHLUmLES8LNbGAqSUPGIGu4R52dVqAK7rtBmY7aJ\nB2bElpTd9lFwHDUgvoJztNVRR5Y9vICQEDOSCq4WkgmGIrUymqE5U3NlNEcAkrMlF5OeuQbezzOb\nbcNqtWEq9+h+ogFGD4Ih4vBJOYSRlazAMj4pdx7m8sMWo39bb3czNcw4EmXqcA1MU+HyaeDt18rw\nEazEYy5St8K/+T/ukPNP+elzpfgdbT/gJs/KO6hA59HUs19X3I3wURg53Ue0BB7OCtfuxG9+lfkP\n9SVIYNtF1tvA6WbHb18OzCUvicEihGhodQvzSjKFhuQnwrjc426szD4wumU6HHVJci6iBJVHd87y\nglBZ7ruAw0TITjkVcAEuOs+LVWTVFz772RVv/vXr7/ZD+f+x7g47PjvboKJgUGSB2aksQt9Pnjf8\n9Fw57jO7w8isyx67Vo8qtCFRfA/9mhomki2KG3mkJ0+PEgOsEtUjwWjNMddCzrpwVqgUHSAsq5jl\nYL/8+zk4nFS0LKvkFJQxRw6hpW2UooXLpJw6SNpxajo0GM5G0l7Y3ewZ00zTRIpUbu6OtLkydp4I\nSAjguv+kS02lUGpaVj5eiD6iUqm5MpeJMhun+chhd2C6PXJ3e2BOhsdh/ttspSWQdEkT96jYooOt\nS7MT3BJUGqonuWWYEdpAopJd4erpOdfXv9sA4B+8kdluexxGcRmyLmukouChIHTJSBE2VTkJBIys\nHm/Gze7AJ+2a93fX1AlEFmBabDuSCaIT4zRxtunRDl7WmeEhkw4TUTKvVyvWzQXizvBtwyE35HGm\njCdqFJp+TXTK9DCyO2V8t4Ka8cyItggz3balSovMI8mMaSr4rmEaEzEGUirMsxLXLWUuqFXu3w+/\nlwL7H+s/r1qUYT8y7Efg/1nTeecIMdB5R2hb2rPIi6szfAz4EiAYsTqKh6hCDorXRVdjsgTCBVPU\nBYIpg4e2Lmuk5du4THDGptJOHlzF1FFwqBOCVtLjxN0eIXZqAt6oOCw7DqESsmdGYYbkKk6nRazs\nHZ0zzAfa4nC+UqIieUnapRj1cULplAXqbQLeE82wxrNWAXMM64nVuGZo7pjvnlHzmlErzgdUBxwR\nrCIO1CtSAxMT3wLDFaj1e5oS+HvWMBeGB+VcLjicJcQEPwuWHdoYxRp8CBQX2Jx3/PT5mr/4V/+R\n+ucf8+KjM560nlIGRklYjECHnBu28bSqvKMnnQt5cKhcEi+F9cPI6q3xzaqyOxnusEx/u1bpfE/V\nhGsyVgSxQhIj1AbRCV8hAXmqVAtMvjLNLSspC0FWjSUnfRGQE4xvncbqHoFlYjTWUr0ntIWVGO/L\nwF/9auL64ffPv/mvqb766iWfvPgQscWCLbpMWs1m/mQT+OipcrgfudsXDilRDII5qjfUjCpCZ0CZ\nKRUGMWJOeN+iVCQvzwTnl9gCtYIGKLbE8Vh11EeOljPFBYGopMcUbofgrFIa0KnlSEYboVfFV8cT\nr9wUodaRZI46CVkO2G3l5ibx5uGeXDNqheAjooHJKWnINCUx48gWlpBeU1LOFK3AMk2J3uGcMNVC\nmRO5FE7HETuceH/3wPthpvGOpH9n+iKLRrGGSsgBHq+riscZSxNIIVQQL6gPRHXMOZN9Zd13v/Pn\n9w/ayIgTnn9+hY5+uWAR4gTaVIItp9HsA6LKPvgFmOMVeyT9noaZ/5u9O/mxNEvv+/490zvce2PM\nqKzKrKmrB1KUKImySZoNCjYsyVp6AGzLgAFtBMP/l+GFtTG80caQDIuiIFAcZKrZzR6qumvKKTKm\nO73DmR4vTpCoJtmsJtFdWZF5PkBtCllZ90a8iHjuOc/zex5fPef4tTM20zlx1oSUaNuO104P2Qwj\nOSVM9iz1MSprOnTpb1kd8u3vfZu+daxWhtPpjCM3MqWMMxanIrYT1OQZkwaZbj/tGpTtabNhIuPG\niNWwncB1h1zdrOmyY5siMZXgu8YZ4i5A52i04UeXz77IL/MrJeVMmj0zwDDBNTx7fIVrLEvbYg4U\nq2ZJc2w4tktAY8kgpnxSECkR3FlIBlpV9oYkAZ0F0ZnZQjsprMvMCC4mkolor9hpKddaWvAm3W53\nLbkOqSmj9xIUYypLB31KpFwC/xSCypGNGJT2GJ1xXpMGQUsoBYZkjIMGCwpio0pvQ1P2KUlQ+CZj\nY8ZNltl40tRztVnz8LhE1rumZTN6IGNQONG47Nib0oBoNWRliDaXsfiKLPBsHjhuHVEUrV3glCf4\nxBLLfu+5f7zASEJ0or1/j689G/ntf/+Exdsdv/z6MfdPF7R2Q9MZDIZ44xGfccuGxirmybAZI8NT\nzdxObIbE7Mrer+uUMB6s03TZotWIF0hzCQ6Dkrg6ZlWeSSBnA8ozOIfxgtZla7PKt8tYKZEFTmlG\nErfHhBgFi6DYHSnCNrHdb9k8mQlzJL0iz8P19Q0ZiyGSpVwD5+Q56DSr1x1xm3m+F3bRQyp7kwzl\nZsBIJmWNpEwTDCEEhii0vSnZM0Zhe43TloDHRGFW0GaDteXDuA4Gr0sxc1D6jclGgcpEXU7UrJ5Q\nVhMURCxeEtoYWp+4aCOH3pHYo/zM3jaEJzMXV4GbvWfUFmNA24Y2SIkN0AoZPDfzVEJAsyJLIuaM\nZCk3ImSc0swCgUxOkRgSU/Cwn7nernm6nVgpx6Apc19ZwChSNhgVMQHEJkQURFV2KUlES5mU09re\nXqdpBi0EIn3QJPXTlydfaCHTKIfeZ0QCwQpm0kyN0Keyn8QKZFPe8MGYGDtK4qTNeKVYRmHY7Dlo\nGhqzIMuOFpA4cb21RB/IPqBCj8QdmwZ8ztjo2V8+IYXI/bMHHK+OuNgELtI1SWmWHSxai8wOPwWG\nzcCy61guWxAhBUPOHqUSm2hI3vP0OnN4uKc1is16yzzNKG0wEpk1uIVDUsaEwNX21U1KfRFSyKTg\nmfDlWoqybVwp0EZjrMY6zclywf2zhnunBzjT0aeETK5kHThF1hmbBRMhuVJQd7qMhVsBTUB5xbVR\n2JghmbJnR4RsFM6XgihrCCJIUkQpEyPyJ9dIuaQVK52ws2FnLL1MJZROFLEBhyXYhM6ao71mdwQH\nQTFqjegASaGzIXQzShp6BeN8zbA+QmwgSkOvLVv2iLWoWDIpGmVQZPa9ot0l1o9rf8xnPdtG3n3t\nANXucCgmKOOjpwYJkRsDbyrFqE9Z9x5zOvNWH5g+cfzW80ccn/T8wutnHB2C6yY21wFRgU4MZnFA\nJHO5TexDIO892nSE3jBM4LNnpUqWyMwekUVZL4EgMpGTId+moqICU3SsdGQymuWs6DQEC20wjEox\nmRlJZRzYp7JV3ZCZlONyv+YH53vyx5lXOAuRmBNZWVyeKNPmkdO2Z5E1g5+IYcLlhEjG6xZxwpFS\naCN4LSxUZpNmXGOx6LJ7LXvEdKgsmCTorPGScdkgCjDl+il2EQkGpRKTMbQmkrVGSxnNVtqy06ZE\nOrgZJRqlHZI9vnHoObFWghk9UUV2W8+wUWyzsHWW1LQoZzkKmY3RxDgzbPf42ZPmhMRIyAmREoiZ\nsyonRBmmOEMuE2yRsiJGD57z7Za1Tyxp8I3gYjmZ0rkkF3tySbjXFhdTmTKVBMogWpNj+Vk5Ecg+\nIZ0hzgkJQlpaQh5pu4Z5+vzZ/y/2RObAkENC6QZE0RrBesG3HpNKr4LKoBF2nQGdcV6hTMYGzdgq\nlgkebdccu0U5znOWrAWTJhIwp4yftmymAWcMjXGMIRBN2bQ9ZM/zTz9m3kaytawfwVAwAAAgAElE\nQVQWLZolSRzzuC6fUiTio4EhwgwhZ6wEzMESZs+zy4mPPl3zD//RrzGHgG9HtgM0GqYstFExm4Qo\nYfCRYTd+kV/m6icQKVdUKWb8BMPW8+gpwPmP/bnTk443Xlvx4KwlmAUtgXbqGJ2wIhPbTBcyQRmM\nShyGzCyaLBmdFLp056BVIumMy2BUxishBsdaa5aSShMyGVEJfEskIwRitPjGceA9WW5feNQYBTdH\nmkWIhFkjJqANWO9KQSOKEDuaOHK58KyWl7z24C02Vzf0bUc/zMQA6My4ALvJKJdYDY7ohOvd5gV8\nV768Hl/sMX8jwQSPB8879ywHS8dwNTHrjmmv+GgHbz403LOej2iZm0x/5nnPdZwPwu9891MOl5qj\ntuGwXdEtWnbGM289W9HEaJkkMmuD8ztO+kNaq2Ga2QwR1xiSWrBPnkOlwUGjSiG8l4RLJYE6a42z\ngYUo9s1EEMdJiOydoZOMJMcsmSCWWUf245btfiRuErwahy6f68MffcjX3/sKXoNEhQCtUczS8SRM\nBDRBK7xqy+mC0ihnAYNJmtlabMxMXmGs4CMYZUm+FCWxCWWpMZBVAluWJOvbvjqlSpEUPYyNpmk1\nWkUUinwbpGpUOdFoTMImhTeaJiSSD+WUNikUEykZnkfPLhp20tAlj44NT1UmTDNxHvC5BPVlUkk3\nDqmcNCUhpbLlO2SPtxkTFGIMbdZMw57zcY9MjoU2hAZc0ngSWmW8UZis0VYgGjLl5EVEMelAGwVp\n27KHKWSilB6tYZ7L9XljMNnR5D0Hi/bLV8ic9qcop3G23MrvJKGNIoopUfUagtG4CF0sHc2C4G0Z\nhT0IwtzAYs4M2rPSkGzCZYWKQqMUXms6cfgUySEymARGcBmaADdXO/xOsUuJB8sDuuMOrQOZgRD3\ntActvV1y2GTmKXEdInGvUW0kjXvS5cTvv/+Yd9464+DshOHJU0znSihZ25JzYNKJhYcowsfb+svh\nrrm6nri6nvjO93/83y+XDYenlpODFQetwy0ch6nFuIiJZUxc24iosulcicWRUJQfeguT8O1MNzq8\nUWgSLoOKClGRqCAki6hIH0eCUxhdrpe0sdBYFpMmMSMWFtkxo5laj0LT4zDsubQzp3rBfpy57zOu\nMexzpjeWa5lxIiz2QkSRbpNcm6TYvOR9EH9Vc8hcby4JcYUoCEHYPhkZUkKrPUuOuXyy56a5ABbE\nJLhFz3VM2P3M2/0hs2TmHXy4E5Lb0uYRvQTjMr40qGCSsLCaSSnOpz19SKzHhOksi1bjfCwNwwuw\nNHiVEJNYpQStwUjGK4+IQruGgzkxKo1uItu5RdSem0m43AxMu0QOtXL5i3z6ySd8/WtvY5Ni1qCj\nZo4zpMSRdswyMmeDKMtMRqQET4oIWZWpwW6x4OriioEFHYFBDNYacAab7W37REYnQYUSACpKIAsm\nO7J4vNG4pDAqoLFEkzGp9O4EYzGqQRsQY1imxEg5SfMbz5A1PhuCZK73E7N25FSehyQjKgqSUjlZ\ndCXJ2Y8zcZqIRLTSJapCJnJK5VpyBpylCYpxHrjYzbTBMLeUMe/b16a1IcdMo8tpsk5l6KIhgir9\ngy5rghb6qcRlaAFSJiCld9HBQgyNVUTTcHrYc3H1+T+XvrBCxjjLQa+x2pW+g+hpvMK30IqgjEZl\noUsltGkyij4qZgN9KsdSY2ewWZG0oHMC3WJSLpMnSiEGuhhvN2xGkpR9JvPtg/LpuMWIYx5mkjIM\n45qz2DFnQeJM4xboKKQcWE+KkBT7ccTnRIgz08eJD59ecXSw4t7ZCfMc8MNIipHkA7F1KK1ossO3\niewTj5/VXI6XxX7v2e89Txh+7N93nWHRWmzbctA2LLuexYGjcYIyloVRJK1pI7TLhIuRdSq5D0lB\nMJHWW0IfWYXAkR4wuSN2hlXWxCYT0CzGgbXVNLnBOhjRZJnoU09uIpP3pDDTa4tCsZl2zJst/f1D\n5osbMoJRZa9ZtgmlFW20eFXyLoaf4pPPqybZzFfvN+zHxLAbyWiWveFev+TRo0uOmwMWRy1dTry/\njBg6DFuyhdzNrFvovfBGdAxDYG08J0PD9IYtO2hywEwQGmGRGiYfuC5rb2klI8EQdSQtBRsAM7FA\nE0XhG8NKRbQ2dDGzd4rXmfjIJq4mRdgFPr3astu/nOsFftbGccZJ6V9zEkhGWI/CxRgxtiHYnn1M\nbHMsV79KYZVil2A2LWfNkjB4dmRcjDRGlT6QVP7xGsRG1KzKJgh12xCryu8wpWaSBpMCOmd0aIir\niI2O5DIQcTHgZGQ2LaI0sxZyUGyCZxc0w5TZh4k0zcwSCSREOTTl2geJKKeRKPitx8eRyQdSLsGb\nGE0g086C0o6gI0pZogHZT6yngEETG4UWcBFml1FJIdkgKgIasaW4MmQSgg6ZpKGJFrGJUSUaLFuT\naYNmdiWdPQXBrQzagbSO1YFDf6I/93v3hRUyb7z+JtoIWSUklCN+b0vKqraGLIIYRVQKJbAIQnSJ\nNmmy0ZBNSWBV5Rtictmf4wzkrGhjJklmdBbj023eqyAm0vlUehW8wqdISobkEsFnPnz6KSiHMxar\nU4l+j4JkQGlSCOxmzzzPDGNk4RzLvuXe8QkpRJIXhnmHbhwpln0sGU2XhKsc2Fy+vImYVTFNiWlK\nwPxjl1TGaJwzmNawajtWS0u77FgZaFSD6hwmOloxHLUjKxMwWjG7hhxgwYD3PUF5mjmwbjVNWrAy\nmbVM2NjQGYNnIu9KoFYymaZTKJ+QKDwZLvlb8hrX1iBJs9jDVntcUDTa4HXZPIsWplrI/Dn/7lvX\nvPXrB2Tn6PuGMEcOVg7Ta173hp0P5ZqhN8R1g3eeREnMfbqNnB20xAMh7jUmNrRz4EIyb0yWsDCY\nIMzKYyZNJqJMZhEzY1/GfmOOiBZcABFPRBOjYRbFmdM0eiIZxW5IfHot/OFGuNpmJl9PXf6qRIT1\nsOP4oMcEUEaTkvDsYo9rNHYeyRksDjEZCUJohYBmvQ2oznB4fMD8YaLRgZhdSa8F/mRoVWJGsBhJ\nGF2CLbnNXklKEYMiR83e3AasRgU6kGfFPieid3iEOYNTM7bT5BA4T5npyZohJzJgJ8XeeTCO6Hz5\nexBiioyTZ86e0qansKJpdGnm7ZIi5zLGLyaiksaljMTEJiS0GILJuATBAAlsLKdShoRH0ajS+Oy1\nJSnBRMHbMgmauxId4ERIKrFEEdqygQVVih6jYZUso4bVaUu/+Pwy5QspZKw1vPv2a4RhIvmhHFsZ\nTScanMaoEs9ucpkgMWS8VWRxoD1C2VispFSB0YLJtxMk2WGAsTW0SVBJ0UokIkRASiwAKJhTyfpA\nQ0tizpa89WQ9Y5qGRjfljk6DtprNes9mmFCSwFpc4zCtJevE8fEJ0XtGv2NhO3Zqj9YKcskvmTT8\n8R//8JXeJPyqSymXceYpsGfiT2bXlAJ1e9fdOcdRZ/CHmdAvcP2CxW3D3JCgYU+bwZoFB9qxtJEb\nFEdWI6K4zBH2E4lMqyy2NRzsHbuTiW7o2FxfM76x5uCwR90EfJvRPmOCBmtonEdSZvKaaa6f3P+s\n7RD56HLDm68dkLRCstDYBc+uBx6cOFS3uI2ISBiTiTlx7BzjKnAwKy6HyIldsFjBYDPH6wzKczEJ\nq64BDVopLMLsIw0CruEwBa4nj7Zw37WIbjDekERBo2ga4enO88NnketdZAq80o26PysX5xccLd9B\nqbLzyOtAq+HQWprVMeu9Z/RC8h6jFQRNcBGlNLs44qxljeUJmeNoCJJoFEgqHXAOi9YRrRQ5G7Lk\n8oE7Q9SJkR5F4lqEwQsHSqNMxgcYZsX1NLP1mcSIdg3dVkGI3DDQoNnEkouWKEVRG0G8kHNGcibd\n3m500RDaUiB7U658lNZ4K7jZIBFEMqIUWyOEoZwAG8pepqwVViDajMrlAAIURiBqhbYaFTJWBG/K\n2oFAWQpslSIAaI0OGUWiTYoZ6MWidM9TM7G5uubReWAePz/b6gspZIxSbC+uac96fBBycixIKKPp\ngdFGorJIBpWFoCyrGMk6ELMpnd36dh260YAQo8JMgakTem1ZxcTOWUwWomRmo1BK06ZMUmVczt6O\nfIkuR3reJ4aQSn/LEOmZyaZjUhEV5nLUroXeOVqVsLZDkpQt2L3m+pMLrDEMw0gWEAyNtszjQKPg\nop7GVH8BEW4nA4RdnNmN8OgaYALKVaSzCmsMCwurVcfJ/Q3bCyGFhrcPj7CHRwSf6VRZ4rSX8oMl\nY5iWmX7qiC5gg2XjJx62x6ytoVEOozLSgNGekEzJwxjGsq+q+nO+/2Tg7XsrjJTJpSwl3+pmsDg7\nI9mQu7Jg1MwzftGyOHTMVyN9MFytBw57x4GzbI8jRxvNLkf0VmNWmqhS+UTaRPZkoh8wO4PVhgPr\nyA6GENnrxLOrwNXaM8ypNIJXP1OPnzznK19563aaEFS27Hxm6/c0gyVkuV1kC9mYsgsug7HCkYPd\ndsfFlPG6bJe2GWYlLLTG5bL1fJk0ypZcGadAyCRb9hKhZkblmLMiz5E5JYwpH8J9Ks27gmLhNcO4\n49x7fEroqNguBBWhty2zhlUw3DBjfWZsYjk4sIoOV/ZrSSz5SBpIpkxVcbtPlLIipfcZiULU0IVU\nrqdQ5KxACTYb4p/EWGQNyqJj2SHVICXBN2SSKbviIqUnyBjojWKOFmMUvs1MF3uerneETz69bUT+\n6R/wL6SQmUPkWz/4AH5QPol2hx1vvn7EolkQUiYExSIIWCEpjQM2PXSzJtqM1Q2KkoXgrabLQmy4\nzZGOeAvRaXRONLOwbxU2lntO70oDkg4BjwWTyTmiQsljCEnKUj6T2GdopnVZzucCq2VPlEznDDFm\nvIq0t9dQMSaur885XByy2W7LOnQrJD+zCYo5DcRYQ/Cqv54QhRAj4wyX+x0ffSaK6EPKOL+iZDNp\nrelWhq63DNeBVdtwfG+FHK/oUuIXn2348NmW/NpEmw5Q8YgpPKZVLcYuCcw82W//Sj84XiVPrweM\n3ZLzgqY9YDtlDml4vh/52uunfPDJJe+8cYI+OCRtZ4Y08aZbctM1tGFmsYOnw8DZ4YLXzIJ1H1j4\nzCyeuM8ldbcJNMOSbD19cnAPfAffeTRy83FkmDL1u/Pzt90NBAGjM0kZXBaCztikCT7yp0GaDpzW\nYBRalaymg1az3nhCyDydN7hjy6Hpy1WhwMIqGmBSmQ4DGhqtoCkTutZrbDuXmUexJQS0BFr9acqv\n6csVTcKy3wmX4wwelBZaZdHWchk80UeUEbTVGGNwvux4ygZSH8lRCCYhyeKiIluPBSbKWLhYw8mk\neNJEmghzTihtkJyx6NLXY8AEQIPNCWxZt+BiSUZWuSRRi8kkUWWvlMro0LIwlsuzG+a5Ybja8uz8\nihj/+tehX3iyr4gwrkfeX4/AU1xrAcVyueDeyZIVPcol+tFiVCk+ck44a/EtuFiim7UWmlbDbFCS\nkGRokrDvSrR8sOXUJQdF8ImkNDYFRJsSYpVgLoGolHgp0CGQNOAyC9cQc6SRcqKUJNN6hTORo3sd\n2Y+EEBl2A23XEzPgIWXFaa/4zg/qBEj18yWAZCHnxO4msbspPS7DFDhf7+H2Mutbf/j+j/13WpX7\n8nKTqzhedmzGuf6i/AlCgs3WcS92zMdCK8JODRyI5XI/8Mbrh+ynHavGEhrIkomTcM8dMZ1uMDvh\nG1PPB5cbdnbi3X7FniUqTDzpMpgZGTVXzQAbzfvXM+NQPwS9CCFGwjDjFi02JYJWGBFEUQLzVMZQ\nljo2t1uncZlV47DzwEFr6A56hvWOHz0/5+HqmKPlgs5kRlG4rLDaYlWkCxorCpMVuk0Y15Ip+4js\nCHkyeCUEfduIqy29NyQduEkD62FgnEuyuJKMGxNZzTgU2kA3lYWT0WWMDUwYFpMw5YRD04WyrsLm\nMqWVkqExEassJgmTEZZjZrQa6zVRCQZFtJQm5VSa4U2GEUsHdEpIJmOUxtrMLA2NCsSQ2BuNGuBZ\nOsefe3Z//LNb2/NClkZ+VpjL/dfNvObmqlzF9IuG4zfOODGUIzDX0AA5KbIpAUSKspXYNmU1OjGR\ntKENkVFbupDY67JhWKmESRlvHFolBI3kiCvtMqBK4J7WoEyJrBdRtEDX9ow+oZVG2RJ8dHx4RhKw\nxuG6BY3KPL+eGUbPgYW+b/jhJx+/qC9pVf2lPnuFlEW4qjlHn+vxVUQfC/daR6IlPh9xJw1TjATJ\nuE7R9AbVJRaqYc4T8zRirKJftORl5BfiCVud+HQz4w4i+xR5spt4fh7Z74V6gPvl8PjpU7763ruk\n20lakzRZ53IFRIkrMGiM0SgDNhjSPDOL4St9yw9WwtgYptzyaLPmwg8cdwsO+o7egNaCCbB3CbGG\nBlBB0SuP1xoI2K3D58R64THeIGIY3J5kE8krwhzY+cBEuebSuSzEbVPG6JZAIjiYnXCQIQdHnzKz\nS9hooBFiVoQ2Y8j0oQUXUAqaZBh1xJK57jTLUZHQDCqVyeBy94TNmo2N5QQpQ0JjpGz2tsmgdAna\nu7yZeHxxyej9z61n9IUXMn+RcfCMP3zME8A1jpPViv1Zz1GzwDYGo0pH+SJrYmfwEySdgIzWjjaX\nHRVNiARRaDTBlJMYfEYJBK0ISsoahNvmyiyU5YJOo7Wm6VumENDWgDElqTc6uoOG7Euksp8mYnbM\nU2SehOVBZvA16r2qXibfP1/z5vEBN5uJgw6ignG/5/UH99jubrjfn/DgwSlPnj1iQSBph7ER4zVu\nodGtYRdGPt7NXK01H32yp65f+3J6cn7FN77+LoiQRZF0IqPLwEku/ZoJIQPBlEyWThKHZ0uCF7Tv\n0C6BaJazYwywmUfWu4GmMbim5cgZnAZtLHsnuFGzNqUoEZ1RUZiUwo9CmyYGEWTWdH+yHytFRCtU\nVGRVMg11FEZjQKXboRWhTWWqV/RIFEvKCqsiMluMbeiDR2GJ1qOsos8NuIS2im7oWMaZ0AnawyIY\nRp3JCpKGnIUmK9okDJTlo7MWwhQ5Hwee+yvGpyPyBexv+1IWMp8VfOD86przq2u00Sz6loevHXH8\n8BTbaDoF0oCaNKJB2YBJjhAzUVGaeyXjlCJoAdHEHCFDk8o3RWJZoJYk4bRhYRRt32FSwpgGnyNG\nylF+f9JjtWEf9jTdgotnW3SXUZLoe2iahn/7+99+0V+2qqp+hm52kZ1P3Fto5jHi2oSbG6b9hnuH\nS9oWjrsFtuuRWXGd4GIt3IwDzdWW50Pmepfq9d0dsNvtSwChoSS9U/augZBVaWy1WbAomqgRl1AC\nPgrLUVBmi5KOrAeCdrQkUqvQSROmxLTfc2M12kDjNI3SWKvQ2mC0xgDbZkdIGpUEckTdZq2NBoxp\nSAhihLIPVPAWTCw9PQohNBqTMlYyUacyTWszB0Gz7qGbE85ORFXWIqyCJSrFIidumpZ7Qbg8nOg2\nBpUUySW8BhOhiYpJC21WbLVig+FyfcUwzOyGPXGOX3i/3Ze+kPmsnDK73cj3dyP86Cld77h3csgb\n9w45OFjQtw41L5HGo42wGVPZd4FGi8ZmgEQKCm8yt83Zt0eGiiNjaJcLms4RgmeOCe0E5Vp88JCF\nd87OmMcN47yh04ZIwonFaMNxD6POXN/c/OVvpKqqOyUk4Y8eX/JfLd8iSURPDc2pZXmkaQ+ENEf+\n7Q9/xO+8v+Fqu2MKdarorkoxcbPZcnp8RCajkybq/KerHLLWYARpFHtnaBDmBPNeYZMnZoVT0HlD\nVBEtBpOFI9Vx3U30c0nEdVNm9plJJbwuRYkyCmUBb0iSbzPNyqdorTTOwsomaCytN4xEosmsfLkO\nAs2sNc0cSQ6izhxGiyghasV6ETnZWnYmkHxHb0ECzH1JD7+2sFKBXadYDiumfocMht5rmqDZKMVl\nN7K/EC6un7PbjsxfgtiGO1XI/FnTGHg0XvLo8SXGaFaHLW8/OOYbX32AUj1qvWG3CbjsyM4Tk0Jp\nAzlAKP03fRJGbXh90WMbB0qxXW+Zk9DbEilNShAiuAUPHrzJev2UcTuw2ZcAM+8nWqURZXn+/LKO\nsVbVS+hiM7Nvy6BBt/Ds8sRv/7sbfni+ZTeGetryEjm/uOL4+OB26WFCiSaqjBGwZLRolICJufyK\ncJFgYVKaZoBoPKINyguBjBWYlpk2W5yPzFaIBogaR0aSQnRGkkZUBgQjCh1Ls6+6XZ6clEZixhEQ\nrUmSaYJmpzJONEEEHSa00xxEU2JGdCK6zHFucKNhbz0Wh4sjo9LQaQ5pMSL42dFFTTy7pPNvMMqS\nwd3w0X5i82TP+eWamNKXbsLxThcyn5VSZn09sr4e+aPvPAHgzQf3+MVfeJvFoSGtFwzDGjMtSNzg\nU0LEonrD61YRSKQp4DM423B22DKKICojg2cwml4L+nbj7LTeYbuGxija1KBCptGOR0/qpuuqehkN\nc+Sf/7/fBWr43Mvu+dWGX8iKeLv4MKmSCWO0oExpRYgpo7KQbYOgmbOQd5ahv6S7OcLrPQ2WRCwr\nCMbISed40meOJoi6YbYTk2h6rRgSZCVEbWlSIpoSfqgSUGJbcJ7SIoEmq9KfE8g0GaJEhMRBMigD\noQ/Y0LA0CibN5AyOgLEZnRI7q2mwrHwZdkmHV5j9fW7mhqfTxPc/+DZXzwd8ePEnLp/npSlk/iKP\nnlz+aWFxdNpzcnTA8VlER4OaPEsDRwJROSwwqsxy0XF2dMJu2hH3e/ZTZhon2q7BtgvGcQ/J4lNE\ns2RlBLtY8PzZDTfriauLeq1UVS+rWsC8Gva7HT4FumyYNGTRaDLKGowIxlm8cbTKkQjoZIh+RARW\nc898nJiDI+wCGYWKmRubiNlwn5bny4k2ebq8gHks00cKdM4QIVsFAiYrkirjtQohGMFlKVOzooiS\nsSqXgRWBw2wJbaDThi62ZC3MXYkfeZA9j51wcnPM+mjLw4uGT5czSgemJ5EPPhn4+NF/IMa795C/\n1IXMZ62vRtZXI/yohIj1y5avPTgkrlbo7MlZceA6bLNk60emeeRiN+EElt0Cc0/xxul9kh/Z7ze8\nfv8dLs6fgfIcSYv3M9/+4KM7Ub1WVVVVP9k8e8b9iD08AJEyYuwEc7tUUeWyqDOrgDaCSELnjtzP\nxNBztbtGyxLRHpOExraQM96P7O2SM9szSWKWmWA0IUYUimg1KperJqwmI4goghGaULZMJxQ6CWIy\nLWCVRiN0OhOs0IjCJMXYeRaj5WCnGduWjQQWCKPe8Hg98O2bc67en9mP/s4X6K9MIfNZkoVhO/Gt\n7YTinMPDjnuHC+6/vuJ1a9nPmnnIrJRl2XdwqDmdG9567y38cIMMEd0H4m6isbAxGyQktvvdi35r\nVVVV1c/A5WbN6miJo5x8GGfpjDDMgohndj06lUXBc840ytPEDO2O3ZXHqkjfHKN1ZHYzy9zRhZZt\nHsne0nUtNjqOnGKcIUTPNAuzhfl2o3nW5WTGRiHpkhcDCqugdYmlsgiCspDmliYlksp0oplniMGx\nPr7h4mbg6c2O5xd7xjnwsqWDvJKFzGcJsN5MrDcTP3p0Rdc42kVLt1zw8HSB6zQqNqTXFhwcd9ys\n9zQSmPzEcrXAqhEfhZ1W+FSDIaqqql4Gz59f8fZbD4hS1gLoKETKbqGEoU+ZrCxZl+seHzNdhOAd\nx6pjLcKcB47tgjYrNpJYLizL1JDiSN7tMAZYaN5uHHMyrKeZlCxTTFxbA1nIZERBQmG1YBUsFoGH\nwRFagxZF7xXnvcftNeeSuPZ7Lp55bjYz22m88ycun+eVL2Q+SwTGOTDOAa53PHtUUobvn53y9bPf\nJO62xCmTo+boYMH5bkSrlsZp/P6qXqBXVVW9JC4ubiAJWTQxa5IXNJEmliueOQSsUsySmTuDUyN9\nb1h2HR8x4TDIHBmYscZwFB0jM421vLVoWeuJPAbUVnNz6DnqjngY9jzVA2euZRngXAtRJWYULhks\nmqXSnIpD95q50aSl4uKjPX/89JrttWeaE+kLCKH7MqmFzF9CBIa958P9Uz76+P/kt/+l497RAV9/\n5x2+caoZsbSdcLnNfOt7H73ol1tVVVX9jOQsbKeZRdOVVPhs8GNGOVOmiLKwl4DLZf/Q/aw4TRDy\nRDskpjZjKVufj5xmfTRzOnWMzjNqw3vqkI9f26CfKPaTEPzAvWXH5T4R8HxF4L4SPpkPuLETINBm\nGpNQwfM7T3d88mQkxPzKf4auhcxPSUSYJs+j6ZJHzy75N7+n+Qd//+9h7Sk/uvzuK/8gVVVVvWyu\nzzd07yzQuiGmBGJLgm8Dc1Bl8aqdOW0sDw8Sp+MJN+NA2/b4PGCzweZElsyROEQS92TBhU2c5MSb\n8YxPl1csvQEtnDNwYhdcz8LlMvHudmS9vOByo/h0PbPZDvi5tjD8WbWQ+WvKkvmX/+b3AdBGv+BX\nU1VVVf2sffToEW++fR8rmiiQbvfyOcksW8uQNV0WTrqGB2x5KDuWGEIWbO+QTWK2mefMHGTN0Cre\n6Rx/cxLe7xK/0Hge4Ngnw4UyHG49NBMXc+ajJ5f8i5uJIeaaEv05aiHzM5BfsfvIqqqqV8E4jgQR\nMoaEYHPixCkedB6nNU/GiGoVrYmc2hZ6x5FbsXV7WgRjGuYwsUoTxh/w+pzYqkB2Byy855Nrzzrv\n+ej5c/Zuxfp6zWaoER5/VbWQqaqqqqq/QM6ZafAsu7I/6dgIry0Sp03LjbUcpEjQmR4h0/NWP/Lu\ncsEnVztShCllQuzILjCYiBkiQ7hic/mEYZrYzv4z/7fphb3Pu64WMlVVVVX1E1w8v+Dkq29xgOes\nyZxZ4cAqnoVMK5qcDBttmY4Ch+eWX4kL/pVkNsHzaBgJs8LPW2L88u0oelnUQqaqqqqqfoKr6+ec\nLd7gfhAOXCCqFoIiz8ITr5mHHd/wA7+13/N//NGOf/X9a57Pe6ROgHxhanw9sZIAACAASURBVCFT\nVVVVVT/B9fWOXzp4jo8rvvP+mjcPhX/9yY4/erLlZu8REf4F1O3nL5D6aatGpVT9Pr2kRET9vP7u\n+ty8nOozU/111Oem+uv4vOemzg1XVVVVVXVn1UKmqqqqqqo766e+WqqqqqqqqvqyqScyVVVVVVXd\nWbWQqaqqqqrqzqqFTFVVVVVVd1YtZKqqqqqqurNqIVNVVVVV1Z1VC5mqqqqqqu6sWshUVVVVVXVn\n1UKmqqqqqqo7qxYyVVVVVVXdWbWQqaqqqqrqzqqFTFVVVVVVd1YtZKqqqqqqurNqIVNVVVVV1Z1V\nC5mqqqqqqu6sWshUVVVVVXVn1UKmqqqqqqo7qxYyVVVVVVXdWbWQqaqqqqrqzqqFTFVVVVVVd1Yt\nZKqqqqqqurNqIVNVVVVV1Z1VC5mqqqqqqu6sWshUVVVVVXVn2Z/2Dyql5Of5QqoXR0TUz+vvrs/N\ny+lleGb+23/4mzSHCxCIkgk7z7OrKx4/OefJ+SUp5y/iZbxSXobnpvrifd5z81MXMlVV3R2ds/zd\ntx7wOz/65EW/lC+l5bLHHC9pgkaArBPtgeXh6iHvvP0QIxCd4rvf/oBvf++DF/1yq6r6S9RCpqpe\nEho47Tv+p6+/x2vWsAyZ3wXqucKf99b91+giBCuIRHQySAatABTSaHpj+PX/9Jf55jd/jcY1fPzD\nD/nej37Ix58+ZfbxRb+Fqqpu1UKmqu641hp+9b03+VXVs3SZ1DRMMrPWit5Z9qH+0v2z3v3KA6Iu\nNxE2aCYjiAaFIEajBaxojDI0CN0C/v43/w7/9T/+VY7bDdePZv75b/8W//G751xcjy/43VTVq60W\nMlV1BzXW8LffOOPB4Qmvdz2NUfRhQggom5mUxbQdb58e8t1nVy/65X6pNI3j+HBFmy2TCWRlMBKJ\notCiMYBzoDXgBG00vRh6bTgh0y4aXjsb+e+/+Yv8029+gzEF/u//74I/fP8Jzy537Cf/ot9iVb1S\naiFTVXfE6arl4arlrdPXOHSaU9+h+57lseV6t+WpzvSpoQ2C9AqlI3/7wVktZP6M05ND6Cw5CAJE\nlcmiySaX6yWtUYA2ikYcxlqMM+RWk23DuNX43QZnoMVhjOM3vvEm33j3jO0WZhGeXlzxu9/5kOdX\nuxf9dqvqpVcLmar6ElPAe4dHvHP/iL/1+opVsNx4GMJMtDA3ia5psAvLeJnRSuFDghasEdpm9aLf\nwpfOVx6+wUEwJEAny04lbBZUBhGNQmGUxilDYxVGG0S1iDhmqxjHzHC94dwHvtJmrnPgk0nxum7x\nR5lfPDvlV77+Nv/5r/8N8vXM7z2+5Pf+8Hs8vVjjY73mq6qftVrIVNWXiFJwetTyT//Ld/ll3/EH\nN47XdteokzOW9+/z4fufEpvEvQf3WW93zNnxZD9jRpiDYTYz3WHPoetYLaCb9vTGMKb0ot/al4IC\n3nvnLWYjhEZYzoaMoHJEAK0EpcFoS28N1gLWoKxFLITRMm2uCGnkG4tDFvqcJ3vLUXfMNE2s2gYr\nEOKaVb9iPtb8J8fv8ivvvMlFdJj5Kb/9x+d8+7vvM4zTC/5qVF8m7WKFH/eI1Cnyv6o7Xchorck1\n66G645zWHB31/Hf/6F1+8+92nNLhh0R7rXkPzc5Z5jTxbP2c85D5+puHtC6i94KfPbKL7K0n95aH\n/QGjRAaZibNC94c8PDrkg6vrF/02vxSMMZhe0QSDmyLKCvcn4TmanDINkJeGDgENWbc0rqFVDc53\nzFoR1iNnZwsees0PbxaIXmC1IFE4PVnSGGhdS8PM3i5pwsgH2SENvLs44r/4z97g13/j15kuHvHp\nzcTv/8F/ZLvd4UOsv8ReYf/jP/knRNfxf/3v/xvjsH3RL+dOubOFzNe+9pBf+dpX+d3vv8+jT85J\nqRY01d1glOL+0YJfeu2Y/+HvfIN+nDn81a+i78H24oJpmnCrnuvjK5bNQ4YPEo+eDzy/2XLcd9jl\nhLFLDo73BCXsTGJpe6xtQDLdHJlGxeQyKw3vPjyuhcytr3/lTXS26Kzw1hFTYqMzEgWjFUZrllGh\nFoJoQ6MtC21hBcZoRK5xq4mv96c8np7yTBnuHbVcPV/TGGHhA/sezuwhIc64OHE5N0DmOGc+iQ0r\n3eLHDUpb/vFv/BL/6//833ByCN/5zkf8P//+W/zBf/gej5+dM/vwor9c1Rfk4OSYxjTYNPHP/tn/\nwg8+fMIf/N6/5uLpk1rc/hTubCHz937paxht+OYv/012X3uP3/+j7/P02eWLfllV9WO0gt5pHiwb\nfu1+//+z914xt6Xnfd/vravs+tVzvvOdfqYXzgzJoVhGJC2aomIlEgwZia3IkBIkiAwIsX1hQImB\nIPZNipxIDpwAQYIoiOw4kBMpLrIVKZJYRIpDUhyOpnDKOTNzevnarqu9LRd77OQixbEonTMz53e5\nsS/Wete79/q/T/k/fOZEn86tUxWGCyePE65fZiPbQE+W+K2zLHXBtLmJ0QOiHpJCxPXXuP7Wbbbk\nmBP9jqQVSXbIPBKnimFe0OtpqqaidQIXwMhIoaAnEg8c6/HbL9/tlbg3+P4nn2RqAzYmkhAkF4ku\nIJNCCIHMEqVIlFGRlEUYicw1/VQy1okwrzBBcnM54ZU9AcM+i65P7aZkwww5ztlsPE1bcxglWZC0\nSSIJHPlAPzqmNqGrOfn4OOcunGe3n0jB8cwTj/D0h55ESsuym/H1b7zOb3zld/m951/C3a+teV/z\n/Z/5l1guKmKWY6PkqcdO89SHfpqXL17hm1/8dfZuX7vbl3hP854UMt/3scfIlCUJQMBoUPLJDz/O\nS6+/zcW3r91XsPe5q6z3Mh44VvLxcxfYbGY8tJlYTxlbZSJazxsXEzerJcV2oL7muHHjEqfOfRhb\nVawNM2ZHY965MaG/3UORc3txnXE2IOtFzKhBdwOSiphUoIYBGzwy5fhOMKlq1oo+0iacqmlExyCV\naCnxH/A0rJSCLpP0K0GnEh0RQiQhkCKRC0UvabQ1BGPRQmKVpDSavklIJQiywRjJ601OBQy1xrsZ\nIjf08xJdRUI/JxxVtEFRtR7nWnKTUTdwkAribAkm51OnRmwPFYNSc7jMiVjyYFBaUpab/PBnj/HD\nn/1+GhxvvHKR3/zaN/nat17k8rUbhPs1T+8beqNNBsWA+dKxbhXKZgg75OD2VbaV4zMf/xgvXV7j\nzZdeJd5/7v+3iH/el/69MsfiscfP8/RDZ0FIEAnlJUFDAkjQNh1f//ar3Li1d5ev9L3D/fknfziE\nEPzQU4/yg2tjnH+bpx8/gZu1nDhxjm89/xpnyx521OCkQx8bUO8XvP7qHQYnJOfNmLRYMF0fM3zs\nIdQQ9uqc57/xKmGmaXrQT4JqOmF0coRK+7ReoAuBSpr5tMPqHtW84fakYSgV1iYUJbVekklLYzJ+\n4/df4drB8nt2z+/FPXP25A4/8H0fpbaeQS2oUmSeAskHlFIMckVpLcZYlLbkhWXQ67PVG2BKRUge\nd3RAPZ/x5sxRmMDYWFK7wGrLqK8hC5hgaOaJw+Q56AwhBYLQtLXAi4QQkedOHufBx84x6im8NMxc\nn3EBeaaISaKEwJmEdhKJZpl7RKVY+obFfMaLr77NP/6NL/LVb3yL99K57b24b/6oeeYTP8TDp3ZJ\n2rK2vcN41GPv+ttMj+akFMmko8wVd+oFr373Epcvvo77gKUd31ezlvIi58mHHwAhiICNic6CiRCk\nIJLIi4zPfOppFlXDV7/+BxweTe/2Zd/nfcgz50/yV37mp3huL7L2RJ9yrYVXL/J3/rubFK/WLI3i\nencHc+w0t+dTdpcCO1ijmns2+x2LEbz21h4nd07Qs561zZx2dojPM0rV8cjuBr97eIX+pKY4vsvU\nKbRTZL0xNkSC9zgp2dCW23tLJpOGoYFRbmg0zLuavlJoLdFC8InjI/7e91DIvBd56MIJhPZYB40S\nNClCFwGBEYISiREaLQAlyVBYaUmZJHiB8J75rOJgMqVOkpPrQ26HDNssWe8pOu3JUWiXSGVHmOYc\nVZ4oHXknqXLoR/jwI+tceOA4hUosoye3A9b6HZkv8FEihQISpdfErEO0if5M0SrHSFjs+Bif/74x\nn/rYk0ybmuWtKX/3H/0jvvr8dziY3C8SfS+hdcZTjzxNKzy5VBR5wf7tG0yOGqQQ5JlBCMVRXJJ1\nkWfO7PDoA2eoRc4Xf+0f4P0HS9D8P/Geisg889wzfGTnFLVwBBIqJmQSeClQKSFjIgpJEhJPQsXA\n3nTG7z3/IotFdbcv/57l/inp/5t+bjlzfJsf+cQzfOGjp/nYR9bJe9twOKW63qH7YEdzrn3tCl/9\n298h7T5AG97m5MlzvHnjFmfGgq3NDWayYmtzyMW3Kw6uLDlq7/Cx8+eIGxnFsSFVAUsRSaGmenPB\ndy+1LHygSoK5bzm7s0G+XiAD9HzL81f22L9dszssGY80ZZFYOpgFT24jWaGQrcHNFvytr735PVuP\n99qekULw43/2CxTKkjpPlwJVF3EhEUVkbCxlT5GLjFxqZJFT5gXluE8/62FS4ODoDu/cukZ1tKCf\ngSn6BBeRUtMbbdLLEuuDDB8qDieOS3NH4RravE9oYNsmts8c56mTY/q9PqpQBJsjQw9rLCkYtOkw\nCWLQaCERGRDSyrHZGbwGHzq6JCA0CCWIukEKiYqJ+XzG8994g//5f/8qL79xmWXdfq+X8g/Fe23f\n/FHzoY9+jk9+/JMs54HhRoFGcO3S6+Tao/oZIhp8bPDLjrquMIVhfXOMihXS9nnrxj7Pf+VLHB29\nv4v53zcRmf6gx6M7OwQd8VGSNQJXOoQXICQRCCq9a2yVkDqC0Gyuj/mxz3+Gt/Zu8+1vv8qyuu/d\ncJ//d6QQlJnhkbMn+cKzD/JTf/pT7KqWPDsBmYFkoF8h2gFpmFHkAm5eJR15Nk7mPPHkBhffvsbO\n2VP45YTUOnYvnKeJU06X29x45TJHh56NYozuDMWpTW7eOKA8UdKzkUV0eN/hT3kulJLbFwN35om2\nhu+8dpm14yO8KLDRc3i94tiwz/FjCpEZosjpxSMqqelLia5a5kIyk8UHuk5m0C84HhSeQJAWOsdc\nOEQCjaCXBDoapIZgFVYYtFZkyaJkovOJmwcT/I19qtji54pGz5AhEHKNmd5isxzDsVPUjeLy4TVK\nkSFlTgw1XjaYcpMzJ9dJuaUd5SQHItfYTuBNgzU1oh0TrEOkQCSgVCT6iJOa3HYYQAWH1okkwKuO\nwufEokIGhR0O+MEvPMMPf/5p2kbx5puX+cX/9bf4zutvczCZ3zfku4ewWcmHP/Q5RJpQ9CGpIXtX\nf59+dkTIN/GdJklHbDsq3zEajShKQT1dkA8Khlbx2HrB2uefo99f54tf+jKXL1/9QD7j94aQEfDR\nZx5DxkjrIghB0ALpBQKJJJFkQqTVpN+kPSIoBAmVBJ2G8zs7nP+RXS5fucHv/f5LtO39eSj3WaGl\n4MTGkMd3t3nu8cf4gSc2ePbCWVQ5hkJApqGKJF+TpIEgEZUGIiJa0B2uGKKjpMhO0JaXic1V8vEp\noi44b1psDiFpfHdEsR7pTwWZXnLmXMH1N95ha3PE9deus/2ph7FxQS0k87bFjOZkJxRrVwMiSQb1\ngL1Jw+bugCxp9DjneJEYJsONWFEqhy8NayLho2ARNYuFZ0sGTm/nvHXrgxmZfOT8KQ5yhWoDqYgU\nJGSdcDKSASGXGCnJREKgkEoitEZqQfQCHzvS0REHwiMTSKkRHqyQmKhxPnGj2+dmPSG0HdUUslKS\npKaHYPfMWc7u7hJSBpkldg2JAbpyZFoR0DgVEYXHaIGMAiEFspOETmC0I6qI1oqIQakWSUB7ix7U\n+DaH5FFRo0LAi4iWkgdPbfOzf+HPEtsF77xzyPOvXuGFV1/jtWs3mM7vj0+4m5x/8EMMN6bMjww6\nL3H7L9D5Q2R/HV+3xFQhOk9SGevDHGsS08URSEEZNXfuTAkucPrUCR498zCf++SHObp+wP/y5d/i\ni19+Hv8BGhb7nhAyo+GAU1vrBJGIAiSQZAIkQQBi9cNPIiJkIkSNEAEZBV6uvh/kaibKIw89wBOP\nPMBLL73B733nZTp3P8f4QeT4sOALT5ziM6fP8eyZc5z62EkGKSBShMwhvCSqjhQlygtIAWEtiQXC\nCIQDZM2qdU5hBjmIgtQ0PPjxD/Gt332J/NZ11tb6dJWg2l8ic8+EmsGJPuuLliORGO2M2X9ln6fW\nTrK/f4Q47AhrFqsUmT5Ocpa0PiFLkfI6RBxb3tPt3aEYlGyfWuP27QO8jaBASegCKK2IRmAbzUgt\nCF6zs2Y/sELm7KkdIDL0inkLCgFSoqJHKYVICoTES4WRkmQlRmqk9DipCZVjEhMJwShqZiagpWBY\nWERMTJWnqAe0RzWN0ySZqJYeE0Csl/RyyzI6XFeh9ls2yoxs2CDICHlEN46gFf3gaRN0OtIK0G3C\n2kTUAhk13kNKCZ0CTYhoW5OanCQ9MXQIZ8F4DAqnPKDIVEdIBTvba/zL6+t84ZOPsTh0XL414Ttv\nv8lvfuP3mS4+2PVTf9xIKfmBz/8o7fSI6G8RF4lusUQLg68neC/RRpB0TiY9SvY4nB9gUouxJbP5\nDKMF587ucu78aQY9cA2sHxvw7/65H+Mv/cQP8pvf/B1+6X/8JoeT9/+zveeFjBDwuec+hheKhEfF\nd5UJYhWFiWL1LkEgkiQR0UhIiSgSAiAJokjoBBKFzQ2f/uRH+cxnnuF3vvICX3n+hbt5i/f5I0YI\nKLTi0+c3+JlPfYin1kq2T2+jt3NEW8FhgmZO7I0R/R4cHJJSQIx74GYkFRFlBwuDbDTYOegCYksK\nEvIxwlmS6MAvGZw5y9OffZCbl1s0kjg54GhTs1kaFu0dxoPznHhyxLUvvorpbXJnOsMVhrE2tBZE\nkujkkGqOk4ZM9whFotwRmAPBvMkxhzPaqqI4PiROclKlyNZaZimRjKCQFq0TspswrQJda9kJPWBy\ntx/HHztZZhgMhphWUuUeESVzIdBREJJACIEWq9guUmKlREtDhiZJhYiR5fIQLTo2hMINDC4uyV2G\n7hVI14ELeN1SKU+bIoJET2gKq4mxY+/WDbrYMpwMORqVPLjZZ9tASJ6wn7BZSaYHBCWJLqFcJKpI\nsILKC4Yy0vmEjC2CQBshxYRKhpB7qB0JTbQBGTXJgyCiNJhW08kaoQU6RLxM9HqaR09ucWJ3xOef\ne4o61rzxxnW+9OIrvPnWzfsHvD9iHnj4MXrdnGvzq4yMpq0WLNoZodOUfYO1FulLYmzQvTGz+WVs\nVDipiHOH7gmOHTvBow+cZ30MwTp2eg3R1ZzaMAiR8/hjP8Zf+ws/wZdffIt/7d/6G9Tv46ns97yQ\nOXZ8i15hCARkhKAiOkmSBJ0gqogMmqQCBEVUCdMKkpaQIoqERKKTAimQmaKwGb1ewWNPPMazH/0U\na7/0S/yDX/vi3b7V+3wP2V7r8/GHx3z6gRM8ceIYu1drjm31GW4IbGwh1WAz6A+hBe8DarQNRhPF\nErllEGGKUDk0AliHNCFZATonxdVpOgWB8AvwLegcUWQgJU994hPceO1XOXxDMXAbTK9bjh03DHun\nWPqGIlYM17eYHjU88sQZ/v5vvsnTD47oMoUgkpKhdoq+rGm1wJSCxincZsRNJaoxBA/dosL2JJOD\nGcfyDUoFnQyEYaQX4GChuFQ1jLOOEyd79C4rlu0Hy4vioZMnUQiEdnidkA7AEVk1CmQIFAIjEwaB\nEgppBCmP4DOUi7QeRgNL5yQHqsXXijAYkYwjikiaWRbVkipEohQMhKBvLJt5j6mDw8OKrr1FU84Z\nHA25ngTSt7QykedDtkYW36/oXAdOEBXYzpBFgSs8TVcSaQkIMumILiK0o9Ma1QqCTuAEOgSQiVBK\nqCWESEgO6QQmSppc0neCSd7SGZg3nkwb+irjI58Y8swzj/LK1UO+/cZr3Hr7OhffuU6875r+Pefj\nT30/F6+/xWbRsQyGo/kMKxK2kAhdojqIYslgsMadvav0sgGLOEMsPXJcsjEa8+ST59jebJBdou8W\nLELLk9snaWTEDEsGeUGWb/DDn9titveP+a0vvsS/8zP/KZcv37zbt/89554XMt//7NNEkYgpIQTI\ntIrAJAQiCZQXBBVXIkaAjhBNZOUsk0hpdSL3WlAKhVUSKy1ZWWLKPgc3rvAnP/FRPnfhLP/V//br\nXLq4h79vOvSeQklJZhWnT29zenuTP/PRx3j09Am2Xv8uXTVE7U3pbQSyMy0y61M3Y7TaxEgDM0/c\nWac6mDJwM/Adcqzxk4TWCcERqCGoGswSIQqSzREhQfTgBbiSlFidgntr+OUeaqvkoec+wsV/+CrF\nxHItM4x0j0HZkWVrTI7mcCrn5tV9Htu2vOpvEtaOU4qIS45FgnUjqMmIBIxODPLIMs04LC16U9Md\nzClKyY4tuDg/5IXXLzIsMgYbA4qwxs3pnNmk4sG1NYZFw05qOFYY3vqACZmdM+sEE9CNRkaF9R0+\nKcCjU0BKgxAJpCQpRWs05bufJRGwxYR+OmBUNry+tPgDT649pW0wjWLSCmZtzTR0qxERKWPDZqyN\nhsjQcVwI9tuC+WJJ23iaZkkrAu1BwfagpNhSpLJHOc1wwdGmiIqCuuhIYjXHSchVjZRQklBnEBvw\noJMBLxGqAqVI3iKSR8WIxNIKB1Ejc490krJuaURGJmFZd5i0avUWHpoImUyUOrFrDb0Hz/PwE48w\nLEtef+cSl9+8wWQ6w3v/nvKuudfo9Ua47gAlLC4Jlgc3yaVCSIvA4HwDUpMNNrlx+wpFbpnXLU3t\n6Q1yikzz8AOn2CotqlpgfcfCdzx89jROegbZgCwNyPs7xEEHGPzBjM995tO88/YXeOnlO/zkT/5F\nXn75Vdz7JPJ2TwuZRx88T2kUlRTYEImKlVmUTKt0kYyEKBBRIcQqlBqFRMZITCBCIioQQiKlREqF\njQadGc6eOc1yNuXKjatUt26ysT7mr/7oF/jOQcev/pMvc+XWTcIHtMPjnkZApg2b44LR5gYfPrPL\nbsy4eHibGDwf663z9HjI/OiQy7PrrC1ath/bYXhuju2PENZgJgJl5jg3wPQMCIcpNEI4RGhJUaP7\n+Srkt8zAGhh40nKwSlVWEWQfrIJQE4ND9CyEQHItwhSE0ZCNZ0/w2guXmB7LWN/u88J3Wr7vyfOk\nnqDpRtRdyZ5MzMMu43HHC2/OeXIzRw4SUGNEoDU5bVeTqQ6XZbTTnM0QWFhIGkTbkgrJ6WPbnD63\ny/47B/i242h5G2MDj5wbEv2UkCK3nGJ7s+CtyQenc88aw9ZgjUGlmfY8ZZuY20jjVocchEIgSErS\nKYmSCq0U1mtoLVom5mJJkXvmNyJ7swUuNIzyjHahqH3FncbRNQ4tIpksGVmJLi0dAasVMWm2Ck/P\nDaicwNeRg70ZhVMcxkRW5ty+c5u211IM+xihqMVqsCXaI1uDkuC1QqWItxHtLJ3UxFST6QKXDDal\nVeemEJAUUTTgElF0SGeRBLxydCEQfCRFh0oJpMJ1EZJHWIsyOZ015I2j9S31InHq+AlOnT5Lapc4\nr7l06SLXrtxiuay5r2n+//FDn/0xgqxYVw1zFxGZREWFNpI21sRUYIp1ZrfeJNe91WDYtmGQ52Dh\n2EBxYsuQTGTajDEq8OjJR5C2wRpF13b0NwYIDTIO8VFg1zaQ+Qi84sknnuHb3/pt3nr7Jj/77/2H\n/Mqv/Op73in6nhUyUgo+/PjDtHoVZQlSrSIwIkHQCJX+mYCRBLwAE8CriEgJYiRJMNIgrcEIgzKG\n4WjM9s4W5WiLN7/xW8hqxpmdE+zNprxyNGWUl/zlP/eneHFvzte//C1eeefi3V6KDyxG61XRaohs\nb62hhKI/GPHpC2dY21bocY8hnjsvz6mvJR5bH/PME+dxGxOcXifLHqJ5u8bvKESmWc49VjhKm0Ex\nXNW5mBKhBGpVQAW1XRX80kCykNvVxdQGEQOoBqyAzoPrI3oOUgu1BgHOgwqRaAqKfMDWxx7mtd+d\n0PklLx5MOfz6HLkxYHZnwmK25FB3vHDrOm5vzrrMmX3zSzz74UehpwhSEoNAhkSbLIWS7BlPViV6\nNlBFw2IhyKRk6SraqxWHoeXUeIQjoHKFbx1RC5zIyZGc3ezx9Yvvb8+J/yujYQ8KTWUCeadAJ0In\n0V2Hl6zqZJQkSYlKmgKNMqCzFm8Dba05WvZZ3FBcvdPS+MQ4s7TBMF/WLOqWoCNaaXpIhPY0RrOe\nFCYGClmQjGeREgkYyUQH9EWBXHa0PhA3JarOOZwdIKqKM9vHGGhNByASnYokWmJIuOgwncEJyKyH\naoAwFSIahARrEikoUgw0SZGEh07gksM5RwyQty17QhECNGZlAKiUQJkMrTTaQBYTC5VIHUQbMSZn\nNm8ojeTY9nHW1i0nj20RQsve/oyb+xNmkznuA9Qp8y/C9tZxhsMGHzQVkjbOMRTIPNC5BCFjWPSZ\nT6/ggyHIltBKZJYTjadfObpK8Y1vvMkj586wtj5g5+RZsJpgMlBg+hrZO0EqLCIElE2IYp3U7CN6\na4AAUXD+7Bl++X/6Ja7duMUv/I3/nP/+l/4OB4eHd3uJ/oW4Z4XMsx96lJC9mxpCgBSotEopIRQS\nT1KrVJNIAuvTqn7GJ/y737dolM0wyqKVocwL8vGIjY0trr3zOs38iBPHznNreoeDynFc9WmVpkme\nxzYGPPnjf4I3XjvH3/vi19k7vO+Y+cfB5sY6j588xeD4iFGSrC2XvLpoGRzr0d2cErItdFszvSY4\ntrVFbAVvtfv0bMZ6MWd0tiFGzTAskRs9XBNRuaAzJUIkvOpx1CnW+kNM6qBbgMloZi2mrxE6gpEg\nB+A7MB6cgFSBXLUFieghQWqvEeQmqTXAAl9NiUoQ9JJLswIWkb3e0HCAJAAAIABJREFUSWZ5wyt/\ncJ3lqOPFvSlbR0scC8qgKbxgcrjHhf6YHZVjJtDrD5mpBt8VWNnQFBZ8QrQBLQxt6MjrjnGR2G8T\nLrSUPbAqw1RQ1S1KgrQSqSDIHtE3KOHY3cjRUuDjB+McvbuzSR4UToNIkbmJlC1M343cIgQaiUZT\nJEnSCoElxQyfJFHMaasjDto5bRIUmWUePJNuTl1ppFz99wgB2IgVOSlFJt6jhaQTLTYpiqAJElCC\nsbQMiox5CAgCcTHHlBraxHI6o93aZESGzwXSQ4gBWkMwNdErkveIXFLFDBUDngypFdGvuu1U9Hjf\nolykagxOdrha4LuIi4GpEDRdZGkVKYH2AaJEpMjCBUKMaDQJByLh8BghIbQ0SWJEi5AFxmR4ETl3\nYpcHzp8CMhbLBVdv3ubWrX2m09ldfvr3FpnN+fizH6NqIplMODpycpKMuKBo05RCZdTNEX4p0CqC\n02A8RSNIKpCViqrpOJzc5OaVPY6dOs5z0rL9yCOAQFmFtQXSaMTSgfSI7QsQO+iuQA9IiSQmIB5F\nINg9cYyf+7n/gH//r/wMv/hf/zJ/7ef/Y+bvsS62e1LIlEXOufM7pJSQEVRaGd4hYTUnMhCFQJFI\nJBAJVEJFSRQBlUAJhbAGrTXSWJSUFFnB5sYmQefsX3+H9f6ISbNHdTBjx/a4urzFo1sPcNgdkUto\nyXh6Z53xjz4HU8/f/LUvsmzfHznFu0VZFIzXh1TzJbtbuzx8YZfzF8bMF5KeVNS1RzczrFtlcMLO\niPLmPrM3phxFzanHBaMTAw7eOeTaq28iupy9oykfyQxFL6eee6IVlAm8F8yiwllPkhlSJnr9MWHR\nIGNEtIGUW4TKyAsJefauZb0F0QAGgiNZiQiOFEEEA96BCHjfA7dExju0csxXr9/kQ+U2t5Liqy++\nThwXXLx4icP9ayxbyfhAM0sGJxxqrcdIODbnicvmBP1iQr8UTOY5qYgoJ/HWsqxbwnKOkIIoLIsu\noaQhAbbnES4iTSLqQLKCNRk5aDS5iEgZ8EliXQMIam/xVjPqWQ7m95bj6x8VF46fQArQncQbR3lY\n0BY1pIBMEpUgUxJnEqUIJA0IhcGTVRl1apgsPLLqWHjB1HW0bUd0FnKJFhEle7Siw0nDKRIjPSDa\nFuMFwkd61qJ6ObJxCJHIrUQogZSr7kpZR/II1uR0bsG0mjBaK8kx2BiYq5aQB1zUZCHiJHjhKH0N\nMqfzEnSHDDmxqwi0iAY60UFocAFi56lDYi41XYo0KRLRqOhp1Uqgu6yj3FOk1FEpSeoS0XV0TpGJ\nCSnlBF/TeEdwgrJv8ZOKTnUM5YhOCUajLXqDAU889igqJo6qBa+89N37s++AZ5/+MMNBjxAT3kek\nbrEiY7ZcUjULyqJHJyI+roRjBLSOSC+JhScTDbXTKAFSWoIJpEXLb33payRteOrhB2gaTzkYknRG\ncjOEXUOiQXoY1CBeBx8RYoskPClJIom2ahkkzU//2/8Ka+VVXv2D1/jFX/smh7P6bi/bPxf3pJB5\n8qkHAU0KEq8C74ZlSKyiM1GtzO9kFAgSQUgECW8SulMEtTKs0tpglUahKQwUgwHj42c4uHWZQgtq\nWXL17Xc4e+wM71x7i63xJlI6tntruNiwPd7gu4e3ObN9jFl+yH/y5z/Pl1+7xS//7rfv9hK95+hZ\ny49+7rOQazZ8xBaaobRcbqZsr59jx+xz/eaEJkZSG+lpxTR2uJs1UebM/QzfH3C2HCJiH8YtpdU0\nh4H1pOnngf5TF5AWZJYjiNSTBfv1EQ+LhzCpwXsgCOxojVS924roStDNqnB3oUF4MA68ejenaRFh\nCUKsCkLbBnxLco5m0lCMBnR6i9A1TK4c8sao5PdnV1m/eIVXKs+s7hiGjuGxhDhIeCHZShl7U8/g\n/DpycJ0HF5bZ7RZ2xtR7Nc0hpA2BaRNFCsyVRCRJcAIZA1IEdClxrcXrlthkRJ1QJhCihn5ENWaV\nKnMOJ0CYEkdFr205PSo/EEKmKDLkWk5tPDZIQND2F0gv0dHiWaXdpAaCosslKImVAm/Bdkv27uxz\n5+iItoZl3eJ9whMogsBV0KiASA4VDLV13DaJXEKBpF/08N7jfMIGh84NyQm0MsgUyVIiCUH7bu1L\nMdCotE570HAk7qBtSW5zUu2ICYx2tLJDBIWJFicMNoBUHU1TE/2C6CQxCbrO06ZE33tSSOyb1SEv\nhADR4aWGFPB6dQiUUhBawdF6DVcENniWKQGKzgVmtSOpHBEiKjjQOUMlqXVGdJBGhlRFvA2kGBEi\nYnPFZr7JT/yrP0LWG/Dyay/f5R1x98izgjO7DxBcohANnWpwYcCN5VU6lyjIIRm6UBOCQ2qDVArf\ndWAluZuRbAkdvDu3HTrBDb+PjYIXX36Dx09dwJaJqMEdHaFFhtxeB6HB3QS9S0oS4jUED4NKCGoE\nHhPnYG6j0mUW01uce3STn3/yT/PKOzP+h1/5Crf27+2ZhfeckFkb9jm1u4OPAUvEB01SEYkiJlAy\nIVNCIAhmNW8pCRBOrozyREQgkMZg3q0EzzKJtoLx+i7Vcs6t65eYTCqWyzs8fGKHg72biLLkzPET\nkBvqakLWW+Nwtkf0jlZYhC5ohGPUl/y3f/nP88Ib+/yXv/ZP7vZyvWewecbp9Zx3Ks9RUpho6HqW\n07sPcbS3oK6mvHEEo7JHmyrqTrC+PaAbGcxC4zcazjx8lqaec2vumR5NOV5uUh0cclJaDrKWh3oZ\nsWdIXaDuHP3xmAtZD+9KfJmznEKRS/LYEJDYoBCyJXUQmog57UiHiVUPswJfgxYIn4N0ICMpTkFm\nJGHpjUuaDm5XDYubb3N+a5tf+dYrzLoJl+bw6sEcY/o88PAaA3GVrrfO3s0j5krzoNbUXeLk+jq3\n1RR/o2V5qNg6vcbt23N210ZMo6EOAiMtmoba1aioCLSYTCK9ol8KGlljvUDXijrzFJ0i0GGCxArB\nkpysThQkahW5cGzEC9fe/3Uyu1ubDDpJ8hJpE3mrmJlI9ILAqp1RIlBJIUOGTBolNQlFJRShi1zd\nb3FHcyY+UrWRHIlVPYJpSFKSgmauQMqWCMxqwztxQT8VnNeBQW81iiB6gZWRpCxRREQSeKXJUiC3\nlkwKcgF9k+jykgxNvawJztPERMChckUbEyIkXNMgMoWJGbVb4lpF8CsTvSbUFJ0ilYJ9kdN4z529\nfURsGWR9ZAQfK8K7jROmKNBFJEVJ8p7Urkz5VAg4BFJC7Rw6TjBJ44KjV45YdCB6JUU3wbsOaSQy\nBWA1RmbeQNnzQCRKyeH+B9dJ+PyFM6iyQgbJsoJJPUM2E6SWmOSxmaaJS2QDRii00cTWI40g+A5p\nc6KMZFrixKqWKY+rd+LMtBzduM7r332J0zvb5MJT9IeQqVVE2Qwg5YhlA3IHxA5kQ4QIICyEBiVG\nBHPEpd/ep5pZChtpkueBsxl/9S/+AIezwH/zt7/MjdtT4j2Ylr6nhIwAPvTUQ8QUSSh8THgTUUkA\naeUFEVYn46QSIkB4N1STZFiNJxCRXOYYpcAItFQYG8nyY6wd32Jy421ml9/g1mTC+mDEW7cX+HnL\nY2eOMY9gupplgEHbsHfzBsc2R/hYE5c1bxzN+JOf/QJPPfkRPv1ntpnmBb/+O7/D/uH7/6Xwh+Vo\nNudGkyhbz56rOZZtMpsu2F4vsDZx46jBxETtGpRvV0ZgjWO9HLN/9W2SdIToGG+NODg6woc+b+/N\nyFXkVOZ41Rr6paSqO0QyZHpILj1iWICu8W1isJEhU01bG4wG7xPCtejCEkrLnSsdOjWkfUN/o0VZ\ngyaAaBFakjpJqCSiO6KpOu7M97lxrabN+qQ2sIwNze096k4xT4F+pljfCVwYF8TFGrPtxJNxyMUb\njtcHS/qXlmyYTQpnES4yuXGH8+fPU00PaNox2oA2Fh0PoIM8KEL0IEp8867LdfAUKdEohZMBk0CH\njsNkKJImyIhJnqVsEC6jIrG5naHllff93KWdM8eZqkShI10CocW73Y0AASVASUGUElFIRG6QsUQK\ngWwj07Rgud8ySRrnPcaWlANL6CKd96ggEPGf/u9kmOBRRiFdws07FmrGsNiksILgNUkKREqEJFbF\ntSlitSbTEaUl/Z6iMJBCi7CKXHt8FOQyo2kdtWyJPmDD6jniAsu4RHQC0QnakJj5loVOaJOhD2tu\nVBUH+0f4xQIXPC46uuhAKqyHom9Z6w/ojUuELgjZDC9rnBOooHCyQwVJSgmEIhGg6cjXInMcYzOm\n8Q3SQ5QeqRRBggHa2GHSGlo1SByXLr19V/fD3cIaw7OPP0uKjqpaMp9MkFLTKY91AWN6hM7ho0Np\ng5YCFzsigcxkmIVn0XXknWHdGMJQg080OIZ5D9F6Quv52qsv0d7sM9p4jqLXRyhIyw4xcqC3SNN9\nsHPEaJd/VquRPCIqUpqSYsU3Lr9Mb92TZ+s0foFyGVYEtsqGn/rxTzNfOr75nXd44cW3qO+hgaT3\nlJAZr4/YXF9DeAUqEIRCB94tjFmlkJJYzU9SIeElqAhRRqIQyLgyv8MIIELSKOUxaszWiQcwWnHr\n5iFX2o4xhjvLJaGaUGSGVw4yLijFcD1Dix7vXLkEyYHNmF+6zCHwiac+wnN/4nO0UXDzyiX++s/+\nJX7h536O/+y/+Fv8R7/w83d38d4DuFIwPYoYJcktDIoBHQJhLYOswAw6jjoHGLZKQyYky+UMLz1b\n61tUbWTHGrqlI3mPzBJa95h4B97j1YhCTtDJk8uOWCnMwEC3GiTaxgwRFbKLJA3JJagcxVpFPjyB\n9A35KKNZtNR3blMtBRvrfeSwRCwCug2gPIu648arl1Gh4vT2kCvNEYf7U+LsiA+tr6I0b0ymFKcy\ninxldFVuFMSDKdp0nN8Zsn85UiX4+tsVF7a2Ef1AXLRMbt2gt7lDJzsKGjwCoTM66Zm6lS/I0Ams\niEySI2iNyhJCJGTlmboMESUZAalWPin1ApYJZGoZlBGJp7CKefP+FTJaK8ZFD2oHhaEQYmXZHyWd\njIiV+sBai7IlKkaUlGgVyFVkWWuu3jhgSiIlQSstZa8kkvDdEiUVMTUkwAUFOpBlOTF5YibRCSY+\nsts4ZFEgZSKmVdRYIvBJY1XA5gV9K9gZFoxHAilLfIDkaqyCZRto0xIXHbZtabvBak6cCgQZoQuE\noGl9Yp5aDhdLKgFN6MiOFtyqOxb1gsY16AAdiVJoondMZUs4grfkPlu9nGG/5MHBGjOvqUJNJhOy\nEyAiCdAp4XzgIMDQJaw2iCzQRINqIy5FQgArEjGBTAGrGpzYYDapubN/cHc3xV3i3NlzuHZKM3Ms\n6jkuKmwIaCQh06gUca4lCYFSmgBE51BK0x11TOs5PvboWc/UV/QOImvbm/SKjDosKUxGXiZ025Lt\nnqKb17ixx/ZKkmhXBptBQxsRriH1WoTMQRhwNYkIsqI6nHPplTucf2CdkBxl3sPVgaAih9OMQk3J\nypx/8yf/dfyg5O//3X/IV770PIvF3R97cs8IGSkFn3jqEVKMq8KkIIkqIMK7Lr1RIEVEiNV4m5RA\npYRM/7R4Jv2fowpiIEmNkZHMDtk4cYFjx7bYu3mTg8UB58ZnuZluoWYzxqMxlYrMD/d5bT7l+sGQ\ntqkZ5pqhzLj81h3qOvCnfuDzPPbcF3CZZHHzOk9+5CMU27s0iyN+9qf/DdbWCv76z/1NFu+xau8/\nTt58+SIPbB4jxUDnO4zW5G1LU2hKnZjJiuO9nDTKaH1HV80xyXCs2GBtd8yV6T7tvKR1gV6ekwnJ\nULRcVQ6bBNN6jlUCKcYc1YrlpOJOM8FmgrW8x7XZFU49+CCPasGw3ceVG+xfmXJyv6a/c4f+qR44\nQTbcohxvMOyW+MURvgvkBaT+Btfe+i5737qKTzPWP7yBGp5i9tJ3CbJhZ3fEKeO5c3XCWl+TjMNp\ny63FhFmK9OUaKfM0bQepZldrXp8teXEy54Sx5Mc36d9a0l32FOePSIOCpVAgCwIBUolUc9AdM99Q\nOAO9DqcUvRSoTYnvOgZWkVxgf+FRJmKsYIDCuYRoJFk/cX675MUr93be+w/DYNhHa0krEm0X2cwj\nTkhyJ4iAQBIkZDpHi2LVphwCSSUWUlO3nskS2miYOEmZl2SDIe3hNVSeSN4QhceajkYMccJzetjH\nqQZzVGFLQxkTlXBkWJAGmwQhBRICozoyYehb2B0NON5XmNwglIa6ptMd9ayki9AxI0VHWkBsK2oi\nnlUtCiFRRcFh3XEztcymU7SDRVXhuogjIJNftZkDmYTgO7CWkgIVw/9B3pvE6pal6VnP6nb396c/\n5/ZxI260GZHRVJbtaihn4TLGLplmYIREgcoILIE8AyExAAb2AMQECQlhbCwhhMASAgQq09hQVVmV\nWWSmozIjM6O7cSNud869p/vb3a6Owb41QSAhUZE3K/ObHOmX/sFZ/9Le3/rW+z4vpYuUtaVmxalu\niCuJdJ7SOSx94yVCJDEK5xzZpoT9AFrgakOeClaVJ9Ox1wSlCu8aQgyEKJloy+ePL+m6nz1r9mQ2\n5p2XX6VxHWtbEjuYSMEi79AoDBLbdhAlMtWooOlCQ6IMzsHFsqJzQ7KxB5ORDTpiZ5hvLsjGh+St\nZDBMibYmTSpEZanaJV21Ju06NOCyBlUtiI3Amw16tSQMFUJFaFdEnxK9oi3X2BiwtqPpLOPxDJMH\nOquxriGNBrIWY2CSGP6ZP/913njpNj/48C4Pn5zyw+9/2E/unkP9xDQyB/tbmEmOsP31kIwgQo9q\njyHgYx/yJoRAxoCTAtlDZJBREBAoQGuNUBKjNcPRiP0rdzg82KLsSk7uf8bACR6c3sU2ApMmNC6w\np8ecDlPO55dszudk44zAkEeLOTcObvBXf/NfJT16iehrBlKz//q7tIOc9uIEs15AZvjrv/mv8Rf/\n7Nf5xV//Z5kvf3pfEP9/6ovPH/HazharrsY1Bl8bqqy3BkdlaC8qdmY5plnTVFBVkSZpSAYpqltx\nlI54OD8jbQODtObBukSmA4Z5ivIl7VnH9x603Hv6Ob5u2TSWqQrs5RnfiJ43trf41oPHfPHyK7w1\nmTBfLFHCsycTzj77jCC2OJ4LGu6zvz1k72ifZDwCb0FscfdHH+A/f8TBlUAzO6KzhkfnK47PSiZR\ng7FUtBxc2WKraZjLyDI27IWUbil5dFay6RJOjhvWpmCpFI0UbFcNy1Rw+uiM5WjA5YPP+LXzG+xP\nC7YyaNscZwXH7QVjIdG2tw570eJbTc9m7U/HWxEuyg7bOtJUojxMUoUQmlVSUzcgaLmxb/jeg+e9\nI768ura3TVAS4wIqOMosMnYJbRJRFiygUQQliSLQOkWGpHIFsaxo2g2ubGg7y0horu5u0RE5DQHU\niHEecMmGtbvKSCvW3YaXbt5Ab21z77u/R2o9wzylqSNBSYQJ1MEjpezPXVIzUpJxZphkETlJELNt\nrOh1EeUipYtLKu84LxuqaoWvJJ03WBPBdwgvaa2h8i2nVcm8s3SVpZUeERyFE9RJIOsCUffk8xBA\npAJnHSYXZF6RJpFKOKpGoy4r2tKjyWhDixACH0BLiFEQkSyJ7AUQKYi2Q3Q5IrlA+gEuNAinaFuL\njgKko2w1n3x4/3lviedSX//aL9H5Fts66qqj0JqGQGJzEpVQdxtkBIwi1Qlt12KCxBGp28Boe8T+\n1oQ0m/K7f/BDBjrn1ZenxOYJfr1g9+pVXLMic7FPuxaB0WSEcYGNt4y0pF0+JlUg4pywaHEYRAyI\nOiV0HUq3BNvx6PicxntWnSMzOSiN1J6uspisBm3QQZLmA6wTzBdrCIEXrhxybW+Xt197mU+/OOaD\n739AWf54pzQ/MY3Me++9QnTQmkBqBXUaSJwAPCIIggBHIPGSRPenBBkEUfUPcSUCKSmkIJUhGxbs\nHFwlG7r+xHL/Hh9+/i2SlWBvNEHOUrSH87Dhi8UJ20uHSjXzxOHONtiVZ3pwxN7rb3OprrAnM2ZG\n9zC01pK6SFc5TLaH0KDCY165dcD5J9/gxlf/HI9OnjzvJf2Jq1VZoYsCrzTFaECUsdeg+Ixmccpl\n0CybmoG3+NIgiojUgt0iY2Udw0lGdXrCWA3plGPmJA/jmkwZEu35w48/YtGumTnNuDJsqcDJRHNC\ny1RK5l/cY5MUfOsbv83i6Ig3bu/w4YMVL/3qi+xPduDxipem0OiM1fFjThdzxDBjejTh9Ae/w872\nHuq9qzz+6Ckn379HDBLnBNeCo9ACuW4Y7GxTHS8ogWw/JQbLfNOxuoQfnVScryKdiwhtyGXCWEE8\nuka3OsVnY54MA5NW8YOP77F/7T1WKIYxUDnHsK6JKvJEGURrSBKPjhHQdEozdIpPNgtkKzjc00Q9\nQNYdD9crxsOUichxxtG2lqORed7b4UutqzeOED7QCYFSoOuAHUSkTXqiregbmegiPhMkwREpaFGo\n1rDaOM42NT40bI9z0p0jyvMTlMhJVUsxnLHyWxRqSrt8wGiwxZvvXgMZWH824XK+ZFsm+MT1AaRC\nIwX4EEh1QEhJNAmDNGE4HIDZIqYJ83mBXAk24pKnJcyfllxczqlDhxWK1lsQgi60ROdwQbO2gcp2\nxK4X1qaR/oSdCFICSmcoERir3o6/LgJ6IbGt4HyowEZkcBytJWfTHJetkFXAhYCSCSJYPJqma8l9\n/z8UsqPTGdasiSFBtTlV6F1RSkVicGg8CTMa4bl797PnvSV+7DUYDDG5pFo2tK5hmEti0HgXkRpa\nv0aQIJQniTmddOQxwSeSLkSygebGlSvcvr3Dpx8/Yi+LlGPH93/0gD/1zkuY+iEGj0ZRZY5BUhDM\nmNloTBWnJOUFMj8kD0tijES/pgsXBN9BVbEoLVtmhppk1DXc+/SSHENT1xSDAVG1aB9ZVB4hYZiO\naGiI6ZDycs6mKmmaHupoo0eJyKs3D3j56i4LD/OLOd/43W8SfgxavJ+IRub2i1eJKLQLSA9eRoyV\nfbNCwCORRAgCH3uiLxqEiOioEUKAMijdE3+VlAwGGc51SIZcfv45v/u7f59xbTnRivsPH4H3BAGD\nKIhScpoGZk6xbYasZx1eGNbtks/e/0MKIk+3Bnz15ddRckCTGdLEYNIcZTQxM4hNf+IRPuHz73yD\nf/vf/ff49//Wf/G8l/YnqqzzCNHy1rVtMAqnE5wK4C9ZSYlzgat2hFYLzgo4Gk5AKSzQlhuSkaFa\nt/imIxtqtrTFJwlD2yFFwkVbsoXhLI2IoUd4j1gP2S5aNkNFOxmxrQ3jVlMfP+SjruHVg5d58ul9\nzDvXObwyo7uYk2w6pmnOsl3wg3uO2Yd3eenFa6i2pDKSqlpgakeIkVzGPozQCaqNYrBawtjRLgPG\neoQsEPJdPox3WTjBi9OUU+cJaLr1mtop3o6P+cgqTps1V8whr1ytOT45p7U9AK+WHi3BjRRGCvJa\nsgiKkTZ4AipCEQVPOqjWNS9f3afLOqRtiQPJoZnxxemcpWrZmWRokaLHmkGmKJs/2Wjy/7fKRK81\nSHoFADEKrLUYLQgalO//GpPhWglGYl2DSmtitMw3l2AbpIakyNmdSSjhuG5YdYbGVeSDQL2+YJTA\n6zeus390g63giG9d8g+//QGNE1zb3mez2TA2OQGHEpaNFxgFuXSMhGecK+IwEgIkBLJsTXtacnZa\n8fllw7ILuGcNhMJh8MTO0zlopKOxlo6ABaxW6BgxSeibXJHQRocTAhtU/9KsAtrovslqHDIErDJc\n7noa39CtMwRtL4pWgRiegS+ioEp7gF4TIhM/YlFJTLNhiOE8rLA+YmyLCh4ygw0CXXZU1Z8MHskf\nZ733zrv4sqJzHdZHojJoJKSKYCPSp3TKomQGQiOtx+pIkDCQhvH2iNlsi60dyfwfrclngTw9op6t\nOV5Ybs8OsFWFMgFRlQg/pCzXrEVGISDzl/iNoR2tMGcb2qbleH3OpJVIteY7v/0pX/2Ff4xRNcBp\nzenFCdMrArfZIk0MMUbWTUtsLdkgQyaBo+FVcJ71fEFZlrTO9telIYLvZR9WKSbCM9qb8s/95X+C\nJ/M5i9rx0Q9+SPUlTWp+IhqZO7dfQLoe3SHjs2DIGCH2gt+oQj+VQaDDMwolINAgwSjVP5yVQEpF\nlkTy0IEdYJuWb3/3W9il4/MMxmHKOhsgug7flSx0ZJqkpNoxUIa19hQYjNcQJW1Z8e1v/T6Hg22u\nq5wGyXhvxv61OySJwWc5UWpCvocOG3CWtl7xr/yVv4wJHX/z7/w3z+3e8CetYoycVRv29QRnDEMT\nCEFhO4WtPalOOGsuIO9QG8PdULOVJywqy86ooPOe6ARHQXIuPG1qmCaOi7XHJh0ZiuzAcC1mnC7X\ntElGtfHsFJL9zKBdRCsohWRL56S24uHj90nCDj+6e45+8YDp0RBdDVFD2NPwj78+oZufIJoVcrMk\nupQtEqKU2CjJ8kjdBLKuxrrABSO2m5ydpKG8yDitMz5uH3N+OedaDplfszct2Fw6nprAag3/wDoq\nq8BpCtEQhgZvA8vqkp3kEI9Eq4Y8m1JfzBmPc9btGq8VNggez1eM04x2s+LKM/u6aTVkChUiKotc\nnY25rEsu5y0tnnwdmWTmp7KRuXq0hxSCiCcge0SDBBcgQaCCBECaBHwgGokUik0z7qGbXcVm7Yki\nRdmW4BKG2ZT2QLF/Oacpa3yIXF40DKYD3rg94et/9g4HuaSrdtnb22U0KHh6UrPlwSDIcstWmjAW\nih9tLMNJQWE8RVbgR2kvvKwHyGSJ7jReT1hsnnK+WtBqRfnM5OCERNSOKDoEEuklDQL3jK81DP3V\nfJCSynuIHaFzRBfoRG/dlghq3SJ8xgiJGASsiMRKkLUSKz1VB0gIvn92pXQoOcA5i/GajfXo3KLl\nhk0ICNN/P8RA4yIRwVRpgvR8/PG957gbnk9lacqV4ZCzdkHQ2zJ2AAAgAElEQVS0EZEolNXYxKNs\nH1gaJWgpSZTCSYsJik4KcmMYDQrG4yHpcEPbDHj9hTf5+9/7lJh9wUvvvMHNg2v4+9/C+kiaTYix\ng0xTDDRZ7BiOBbKx2Mlj9CJwPn9Cva44P7vk/fkT7mzf4u7ZKfPf/x2yfEiRFHzw4QPuvHCIzBxG\nGVxIOV9aiqEgTRXBZYwnN1g1DZeLOXXT4jqPDQHhPQjZk7JDxCuFcCB15MrOhKseUvVVvvn7v/+l\nrPdzb2S+8tXbKBHwQmI8BNmL8Qh9yrVH9OGP9HwvJRWNUAx8IKqIlgatEnQKKhoSJVGm9+rfOJjx\nyQ+/x3K1QU1SdpigRwWrk0s6K+i6glCueRiWmDSiBmNmOwVDNF3q+jmQlyjRMF+d8b9++1uMZcLP\n/fIv0NZnSLnH0Nn+gSg8zgna00tOTo45uHGLr//Sn+bt67f5jb/5H1K1PzlWtedVQoAepkSZkntP\n2UEUHW3lKb1HGBALi0gDRhkGmQFrGeQJZqjZtCXDpqUazciEp5WQtZ4L68lrwWwqCUagRMdWavDe\n08wksojoJBALje468o0jiRVbkwnzOhB9ID8/5ywPKHuF4bSfCIrRGFHUJElB/OQMu16C2JB3ktFE\n4JYg0cymW2w6Qbq8YN041lEztpb51i5Pj9c8uXjKL+7vcNx2oAXvvvEWv/O973DFTUgWGeHiEWsC\nYgiHpuV7FytmYcriZM3uZBvvBZnUNN0a2XRMr+/QlhmuDuxsFRxubXO+OEd1CRvbMZhnqGnAr2Ah\nFAZPogT7WwUxapaLJVVV8crBkOOfwgDJt++8QCl8n5tEwD8DzgUX8Tr2uVr0LseQKoQIuBhxuoEq\nslpXXHQ1QUlGacrKnvLFk/fZO3iBG698lc1ygYs1M5Xw0ou7fO3lV9ne2SFwClwQC8Ws3edpOOV0\n2fDmzpStLHA4Kxinmu/dPeNwZ4x2S7JMUcmUIRKddbgqwRpBq3O6ZJs6LhFIhBWkHgiCjfeIGOkE\nGNkhPBgZERIQiiB6ErVRiigTEhmoQsNW8ASpsMETnMfXHZfaUXQpA1KEcpSJYRU8gRoRJF704FGv\nNE54VAi0CmIbwUfqpiD6kkpaLBBiJMaAlhFpckL0/O633n+u++F51LtfeYd11pI1hg0OGSVBRrTv\nT+uCPh6iMAO8ChRC4YRgmkaK0ZQsT9GJJq4iS2MZbEX+6b/6V8h9yv6VIScf/iOejHYgLFl0gamH\nveGYnXyXYiTQ2xldKVCLmrpsWZ08YdUaTp6ULK3jg9VdHj+94NH9C2Km6NqaxdMl79NwbecqO01O\n5+eEtkJmhjyfYFOFTccsHt9nvSzpmg7nA8QAUSAI+Cj757zvQ5wdEYKmVfDhhz/80tb7uTYyWZZw\nON0mxl59b5Xq85REz43xQfQQsihAxH6hUD2oyRgyKZFCgoTUp0jTg++Eh4PDGxw/+pTTL44ZFzlN\nC3uH+zxZQ4hPidJxuDOk6Ubcbxp0ueK4LMlFZL07YCoKdNpTMaWWeCFYnJ2T7R7x8PSY3aJgfnGB\n2b+FTgwqtqzXNZvNgt3bbzDcP+Do5AF3dq7yd/+Nv86/85/9XT78Gcd0xwiPvnjCraMDWgTBO6rG\nErpIBmgZWHpH2iUwcOS5IoQMGy3jYkhZtlQ5BN1QVA2tNdzPBRNgnnhmgxQbNTFGsq0U23SMZIBO\nUrcNMgVhUsxIIxuB7RrGgyHr1YJuY+hWgXhck28rXvn5O0gZQBSIoYdXE+Q3M+KmoSoDrg4EIPVL\nLi42PegsCEZJhwqeNSNWX2ywVcUvvnOLw1YSPrrH7K2v8tqfusZyXXJ69x5H771J+0jTPLjL8XjA\nCzdepDv5gvlLI9ZNTdM0yERjYkGuJV0XSLQFWaGCpgo1gppBAXu717l793PqdWBoEhAt5aql6zzO\ne7QW7IxzdJExVJrbY8c//Oj8+W6KP+YSgEsVAwdOebzsr0KihERrnLVomUAUyFQTgqB1AaUC0XZ0\nWUbnaxK3ZjstuLlV8PZsi3U55+kP/4AqTblabDPZnTEYHbG/GynPzjCpI2wkaxtYf+zQasjRXknd\nWh7XFYe7Q3Z2d7DViltbAw5GGfWmRWQRJTXqWbOg80BotyhSx/7WkLtPFKWLKJXTeNc3CdHTeRj4\nCEri5DOWVgwIGXGppPAZgUCIHa4tqQJEZ3FCIoUmKSJZmiKagF+XnGeWyTAh4nG2RSFxQhJjH3UR\nRCB4RSpTrK9p8XTOk8WStXdY4RGuP3A+g5QwwaH8gKb72Yp10cpwdXtMVQe6rkOY3qSiFPgAQkkS\nq4gDjcTjQ6TzivE4YTwYoYuWIqmYpAbhW+ImZb4JFPKSgxdu8ej0Ht/75DE3b+yznRVcrhe4JCM9\nHHPrzhXM9j7CbJAmo7Nz2kXD5XLNaT3g0UXDcDjh/GJBsLF3BPuAFAI9TFEVHF8+YV1V7E7GiFRz\nWTZM9ibMBmMa23H8dEVTdzTWE0JAyB6a6KNEykAMAk8f2iyDxOvA8mLNYv7lmWCeayPzlVdvYZRE\nWo83GmMdQQiCFMigkNI/m8wIIqJnEwiPVwLlIsIIlBBoevjdYJgwHg/YmU64f1px8eg+pXGMRILO\nFKt6zp23fp3GGc6PH7B2gekw8GIyxRxeJSQZq5M/pHAOL2AoApmQGJPTdJZ0OGC9vOTsbMCxUBzs\nH7Gen5EmKW3XMz+2br3B4Op1hLfIbIiylnfefY3/dPob/Jt/67/lmx//bEKh/qiOT+ZksqUNKUnU\nqEwQtGCzWNLY/h591Di6oaSqHfkgJXOexlvWzZrcFeAsndecR43oWo5yWERP5TTaBYxJMcFiEKwW\ngbQTlNIza6akBPRRpGojkoS88SR1TVQCGc/Z353SuRqdBkgyhPDEtgBXo0YGX4FMFGkVKINk7sdU\nLkEWGRthSXWCaCNDqdloz+HBFrev3eb+d3+bwdaQl3/pHQaTA177uQHf+eABVz67S12eE6VhMtrh\n9s3IenYL9f0HdLbj7DsJW68esNkO7Aw01WFCPJ6zAyyVI9n08VAx9fixppEeqQXRtAiRsLMnia3D\n+gxpLZW16NKBkFjl6I8MPz21v7uFBmot0IgeECgVVnh8DCQioYuBTGuElDgCgpbgU955+wrXpw3v\n//ePGO4Zrs9SZmnFrWuRvLjKyWXHo4sLzjZzLp+cE0/O+eHnEqEKsm86iBYnIw5JdmvM1mqLTMLi\n8TGznV1MOuD04oxXrx2gc03bGIRIyJxGSLAxYoIhZJZcCfa2DVMCddAkKGoVenx9BBk7apmTxgAE\nJIFGGrSC3AcGMbAIFfWioto0LFzE24ZWRIZeovOEItOMJlPUKKfrVqyWngEGXXu6Z02MeXbN70Nv\njmhNIA+K2DmaMtIp31u0XSQQiUhiCDgh2KjI2ZOT57wjfvz12nsv08iWWEdqoUi1xodA9JAmAa80\nQVnS4Fk5QZ4uufXiHm/d3uPFqwX1GXw+P+XkfM1e2iJzw+FuSt0Inp58iqosX7mzT7Gdc+fGHR5+\n91vUacaboz1Gbx6hsxvE+nNUc0ljI6uLU1bnS85swIfISbVhPy8YK0ssPV4qfBlxvmbuWq64lMXl\nKScnC27eOYSQk+a7mOkR58cnbFYLfOuwXQtKYqSBINAyEqMiCN+/q50E7dEK3v/goy91zZ9bIzOd\nDLi2t4uTkegF2jmCkBADmYt0wuODQCSCzClq3YecuegwUYCKgESHHCVhnGfcmIyZ7kwZ2ZLQPGB3\nf5sXDjtSMaAtxjy5yPjsD36PN1//M/iv/hInn32DdQNvvfEGb3z9F4gLwf/yX/0HqKcPEUlE1UPU\nSGJMSucdoyxnWa9J2w3t2Rn1aEQyGOB2t5lsv0Y6maESCUTK43N2B0cESgiO8cEN/qN/61/ms9/7\nJv/if/5btP6nT5vw/6XmFxvCZytsMeBSWUyQyKiITc26tIhxZL5dUMxbFrEXzLo84GpDczFnbBKe\n2pJNIxGFZlJoVralaDU+rsAKGhuwaUJZbii7lkXTN0inoxVbeo/DVcFeTBGiYmV9b3NM13Qrw6PP\nTjl8c4ISHtQQMoGYNJBtQ9uRfXFMMYFajtjuNBfCYzCYSUG3XrKzf4Sg4fJszdVZwjR7lfn/8F02\njzwHf+5VJqnEsGH/+pS/9td+lf/47/wW5AdcilN+5fY1DiYjNuePuHdxzq9/5Q7/9W//Af/Cnb9A\nY1c0UlPmkcxaunSHqFesG/AmMMw07vySLCjYSFSZc1wuGNsh7WFHUQecghgii9AyIoPEcOtgxL0n\nPz3J7tf29nAKcgdSOByKVgWy2LNjpI6E0AvLFR4nNd4qXrt1wIvqKfqHj3llqJlujRkYQXAj7j1t\nuJ4t8EYyHkwIQ8muj4Qq52iQkQSDHhsMQ+ax5qmGMNhitT6jEYEb1/Y4mmYI3+HQ3NybcX++xkhQ\nRYLIIOQpwQq6LiGqDpwgYphub+FWgpWQ5JWnFoIOg4gOrSxBGpRUKBEpgke2li7CA2u5WC2hbKjp\nrzWUSUlkpLIe31WsKjivVuwPRwzSlJULLGWDCAGj++RtJyIEidF9ZEF0kU5L2uAJtsbUKZloqWwg\nENFK457pGwdR8s1Pf7bcSklieHH/OnVZEUJEKYjR9yHGWhKjZNRZ7CBDpwXb7lN+8fZ1rt+e0GaW\nOlpGb0554/MX2JtmTNKO8TBjMh3Q1I62WnNpCzLbsjeZIIaBJztX2JYNxUtvkA/uIIgIWWA3DldZ\njs8XPBDbFEKziZaBU5yKimGVU8YVuEA0ipgJ9DJwmjQk7YTB5JL54xPy3QNmW4fUneeLT++B9bjw\nR8YcnmlhABReRgigkEQd8UqgreHp6dMvdd2fWyPz+mu3CfKZEE+BlxoVeidRK0HEPpytaATrNJJa\nCaojCRBMRMcEFSNWRQbGMBnkTHa3OFLw9OkZ+1imE8eZTDl1gq454cUXD/jK62/yw4ePsWdnvPe1\nr3H12ttsHR0gjcaMWn7153+Z733rdwgsITxDdHcaGRV115EkAV862LG03qFmWwxmQ2QeELHCtxq7\nvmT+4D7j/asIC2QJ48GY+apj/403+dv/euThpeJv/L3fYtP8bI1dy87ywMPysiWRkWmiiYlnZT27\nTpCrHFFbujQhjR7tFGsrSY8rFmWgomVVOkYMMAimKBItmIc1y1BQhIyu9djqnLJ0LKJlV1gu/JRu\nbjmRjzhfDXnh9jUOZjvEtqS2YGzJbTrO5xtMl3E7SUAl/X1YcIiRIZ6uMdszukuJ0Z50GhmYyCo0\nDK5Jhpe7NFlKkeyzc22Le58+5Iv/84Tj44piMOS62uPkwZKdOKQoNG13k7/w5/8lTpfH+PaCtlzw\n7Y+e8IMffI5It/lP/sFjdrtbnB033L46IpcJD7oEFy8BSzHbw66W1F1JDDPuXh5zIFKO1YauFLRW\ngAqYWtI4CG3EWE+uJF3nyW3GSz9NjYyA/NqEtIXWeJCCQkiIni4ItOxAFqQYXHS4DoiKZJBydvkJ\nwQZM8Ozsb7GXDoh4Lr3kNJ3yRdvirEXZSEMklwnKSBblCj0ZM4wK7RY80RmL01MSLtmWCbd3El65\ndoXcpDzdbLi6u0sToOpqlPIM0pw2m9KJMV00oFuMSKh9hTCKg61tEBvSMmGROXQIVDpgY4bXFhkg\niRYpIjZCjaOtS1Z1hW40IU9ReY6oHZ33GKMZTTSxcSzLFa6yPAwLDtIRciKxXaCmf+EG4RARtIgU\n2lBaSyIUtXXIACoEVqpDCUFsJVKCC653TUmJ1i33jn+2aL4v3XmNUVA04Rm0VfbrIiNoJaGIBHLy\n2JK3nzO9Gnj15w+5srvHME/pSticdCyC4ObLGaPZy4yzKdoJyuYzBm3Gvvd4O6EUHckmcDDNIQns\nvn0NwQ6RClxDPS9xTz7n8XlFYY4o21MaCcM8Z+YM1bRBblJcW1OH0AfTppZbo1uclCcMzAyhNHs7\nI3ya8vjepzTW4X1/1egThfEgZCR6SdB/xH/rD/NeCVIv+B//j9/50tf9uTQyeztTdscTYuzHsEL0\nOUpBCmT0OCEQeHQQOBlRrh+f9tnXAikFuVUYLSmiYDfJOby2y2E2RNcbMpOxe/U2RkYmLnIzOubt\nlA8fHHMaHrM/O0BcnVHPP+D7D37AcCdnd+cI6hFPzs6YDMekzrB2lxSdIk09AsMIQScKpKtR8ga+\nbJnfv8vqiweY0Rg13sZFS5IP0DvbyCRSR0+DotUanQ0ZbUO6us6f3rb85j/5i/xP3/6Yzx4eP4+f\n4bmUVhKrIm3d4hUkwZPViq5x3BcN08ZSVANcYRnJjqZ2LDcOxmOSpWLX5ljZcVAkrIYdc++RZSRE\nQ+ch2ooLF4hWo72g0yl0Dp83XBMZZnrAMFF8/+7HzG8d8sZkSDYdYtaa1N4n6hnVF+sesKgdPXEx\ngG3h1gzx8IJknKEPZ+A3xK0ttuIFwhUcXk+p24gxguVG8vG9OSdPzvnKm68xnZVswgN+9J0V7fsJ\ne9ev8eRsw6q64HCUIJ7cx/gNB4NdXv3KHuUXJzw69wxnDbtJiT2b8uhiyf3Tc17ZHaINeLGgzSWm\nGfD05JLhNOCjQXYpuoYsjZw1a3ZUTlAdXoAPni4mFIVAeEeWyOe9Jf7YKs8yCqdwWoAPCCcoZUdi\nDImRdNaR1BFXdMSo8T6ihxLvG7I2MMkzCiEZjXKUjpQWksRxPXg2QnMWElbCYhPJEoUIAp3MsJ1A\nxxQyw26M7O1fJS8ch4nkpV3J1iijWncY6SnShPlyBU4wSTO67RHWDHvdix7glGECqNqTJYphlnB1\nmnJuPHIRqBNNlk5ptKYmkJRLVFOxEJINHe2moll3SKXphorFItBWNSFYXFBo0VKVkA1SBoOCNS1V\nXfO5r7gaMlKl8FGQxEAbRR/EayQyyWjrDVZIktiLgBsnQHQ9ilT0sQ+RSBSRVCvWa4v/CQwY/LJK\nSslXbr3IaVwgokIbaL1HolFKkQuIRjO0ERdWiCzwz/+lX+Pmy68hc0m+6rhUp4QUjtI9Ur+LC4Hg\nnpJ3GSMxIk41I1EQp4bq9JwfnX7ESKS8+it/kWFxE4RExA2uumRR3+Pjhxdcxim7oWFlE2Ss0V5w\nsVj32kBn6YIkTXKkzJB+g2obhK1B5iSDIXdefZf5fM756TmEiPc9nVojEBK0ACeA0F9USwROCWSM\nLJ3n7OzL1+H92BsZKSVvv/4iUfUqZx0jLka8lyAFgYiMAR2fuZdERNFfI6kowAiKmKCSFJUV7G/P\neOnWIYfDGdsuEIxk++pNUq1AChCaTipGTUNRBI6XNY8uF9Cc06UJR6MJY9fgHj9gtajY7+By9QBr\nNLstNNoi1IBcCkL0KCVJ0pRUG4KKqChJBxmJzvC2IU8LlOnHiN5uCJs11ja96j/J8MEz2zlifXHC\njevX+Ru/9Cv8/vsf8rf/3n9HWf/0OUj+7+V8wFPy6s4eDRKbOWabmmqcIh55BialG4beilgmPL2I\nxIFGe1CF4FKcI5aSlWqRVSSrI20GuyYjWbcspWJSCxayRW0PedVJnvqaRGhEtNjVMfMrM37tpSt8\n/+4FT8eOt/embApJ7a+TCos0GetHju2pAmP6yAypEWmLHI+RuYDDAFohVB/iGBuB8QFjPF4uKRaK\nn5ttc+96w1iumedjXnrpKr9+/JBlqRChpNmCT1cpB5OG2TsvkFysEd0Fqa5o/IZmext3eoZWFWYv\n49qLU15fTPnDHzwgazU7cYQvGx7Xltos2EoL6o1gmGha5ciZsrKXbGSLcgZEJBkYBp2msx7r+1Tt\nPJHU3Z/83KXD/W2UD2wkpFEQiSgvsb6FPCMxCaWvKfwAnRiCNDRtS+skX0kKdguPFgV5pkFmJMIy\nLATeRdqouKo1rcmwUiNUgo0GExyhC7TB49sOKQND2XLlYMDBTo6MmlBvaNuOVClWZUMdHNp5Nte2\nGQ13kFLio6BBEUykYYApJJmuGeWXCFEwDTXRDqhST1A5HsHGB7yMVLrFryvKqsTXjm6UExvNRdMR\nDAylw1cOLy1WCmIIlKuGOjWkJkF3ga6sKWPNZiuHEpwWz4jRglT2ydqptwSvcYlAhoD2lnVUpFKR\nqkiQnq4VaBEYDxJ+ePenGB39/1A3r90giArqgDOgXZ9Q6qNDSolNAjOfMk8qbkrJr/9Tv8aLr7+C\nsYKwWBFo2NofsaeG1E2gu7yLO3eYRtNdu072wqsImYN0ONtxuviE67sHTH7hDYbXriPkiBgrYvsF\n1ZO7+OVTzpYd26lGmoTRyOJXmvlqQRs7UpNSR4OzK9anK5pcQMi5XCpaKRkhObxyhBrMePKjT2jb\niuCfRWO4iJR9dphAPiPs921MkD35TSj40fc//LGs/Y+9kTnc32YwzIkyIjuFlI4gJYbYi8QkmABO\nSFQMgMZJSKIArRioDJPkZEXGdDrl1s1r3NiesOUjqY6IfMYwSXs1tlAIJRABwmTM9mSLF5oNy+WK\nxfyck8sV54tjllXdh08GwbpTdEIj6ogYKF57+T20dNSrJZvVCdK3JHqM95aDgwPq4OkWc2K8ROUp\nOskxTUrQBiUirm1wnUWGnq3gVYrMx6zlgvFWQvANf+aNW6wvvsYPTpZ85/3v/9RzZ+49WHD1rV1k\nEsiDZj0oUOsKrQzJbkYYeiZ1yoP6lC5ArsYY1ZJISbdoMX5IJOClYVZ0VDpQKyhlynpucUGSkRAo\niOmaVgvON5F2mDJUAXFeM89HvCoOmD+a86CoGe0FLvyEFwtBrpcU+/tEZRGqAx2BBOqIGKWAALPp\nPwtAYxGlRwwj5ECpSAdrDu4EZrOOZD7gk0++4OLJOW0hGM/AuwxLwkuzBu1rJg87HrcrRrJmOhgy\nfOEQeeJYVCl2vsTPn0C+j7464+fyW/yX//P/ztvpACvHPNl8RjGckmaGta3ABIposKsKg2RIis89\nWIX3iqVqiCtPG1raNjLMEuruT34TfbS/g9eaJASUC3gpsCKQREnXtqTFEKykbS1RZwTvaewGJQvu\nHGi2M9DJCGMkgoAcFSTDnGgVDYHW9xZZhIIAPiq6KKl1y7psSQdwuJ8wnYzRWoGF2NQsNp5VXRNE\nwqZyPbxumLE728cjCV6AkoBHikgbJU4pYhoxSpAaTzfImGjB0CcEWRC1xDUl8wCrqsabhoHWkAfO\nrUQog+8Cg5FAOIlvA0rXRG+Iaa9h8NZhQ4Q0x3YNKyTZ2iEyA76frOgge16R7XBSoWNAkmFDwLqA\nJuBVL4CP1qOJDLIMlUY+/OLL1UX8JJWSiju3b1FbTySSOkkUmoEUuChRmWaIYS0tW+WKn/9LX+P1\nV18irqv+6nDY57YJkxKThAEJg4OM2NR4u4MeDBFFRmyXxMZz8qOP2Z1pplvbiOuvIWQEPCIeY48/\nIK4/oQxTdoaS4UFOoW5yUT+h9XM60eEXirPUE6WnqirM0R7NxZqZ7zirHjHQOUZLrly7yXo1p1yv\niI0jOtuTemVARYGQCiv6kFQnAuLZey4ScG3g03s/HnPLj7WRkVLwzlsvE6JEWwiqt1NrIl5ElBSk\nEbyUKATSa7yKpEikEiTGkOkMLQXFcMDt3T12Us24aXtSpTBM0xSlJOgckiHCBDAJSiQgAoltyPc6\n9iLcLBu6ZcOF62hXG85bja8ucXLIaJQw3TtgpAPBWz76+LvknSboHJumHNx8ke2r11gtL7h8eoZv\nGupyQ0hBXZreBm4yVAxEJVAiwflI7jvWMiNow/Z4i6WQ5LZie3ebG9Hxy7/xG3z75DO+8b/9HuGn\ndCz76MkF9u2bZE1CrVZk0XDpOpqpoBlY8ipnUzsuNhum+RSTb5DJkLLcsOoGJAzZCxW2EDz0OSNl\naF3NuPMsYs5x21HkkfeKjE00jHcTJrIg1R1Hi/t8rCsoNPLkETt1xl6yR34UEclWD1r0IE2DMDm9\noXcCYomQClRBjCDCsoeYqRxGKejQJ/I1Aoknmy3JZlcJN14gxiu8+2bJ02rI/OQei67h/P0PSRpJ\n5zvSYYYfGIquJRm2DN7NGVxpsMWY7LKith0nD59QTPcoc8uxveS9m5ImkXz8wefcSsfILOHJ8pIU\nw0BLOqt46hoaEfBWEYAkgOw66sr2rq1cMhGCo1HC2epPdiOjtWI8HiGiIBGCVotebBljP/b2ghAC\nCk1HJNQOhwCleTdveG1WkJkcnWiEiZikgDRB1J4YanJj0GlOEBqVCrwYItCU9YLYBNLxgGsvzVAC\nhK2IbUusHauyY7muabzh3EtKMWDXbUh2pkQvcTGiZQTRU8xFUHghsSrDTce0x+dUrcekEpMUREcP\n6hSRs0ZBJhiPRtQ+0LpzygVMB5qbb+1w/s17CGHYAtpt2LX7PK5rVv8Xee/x62mW3vd9TnrT7/2l\nm1NVdVVXdXWczBlN4JCUbNmAYAKGBQOGvbT/FG+9sXcCbAuwYNgLeWHCACXKgkRqEocz0zPT3dVd\nHSrXrZt++U0nefHWeC+B08MmH+DubsI9557znOebgmM8SohSsbhYYIyEEHFOILRG+151lAdBpyMm\ngLcRiaaTkXEiEA7WwZNphe1qhBhjgwUlein7RrOpvth76t+ntg62yMaarg5EqYhJbxPimgwzbEik\nIkpN6a/4w3/8R3znrRsI/wylSpLtN5GjCUJnRJMjxLQ33TISke/Qg78K3BXRGtz8EaNcUI5zOHgH\nIcv+mIpPCVf3eParn7G/d8J0ENhsp+xf/wpGSFYfXPHZk3NsF7jx1jv84ff+kPOLJf/T//jfU51F\nrh1OWTYrum7NUBrGu9fIB1t89vAJrV3jELTBYZ3v7ybVu+tLIfA4RJQE+VK75h0/+/kH+M9J1PK5\nNjJ3bt8gVZroAv6lxrxFUsRIrSCq0JtUCUluBa2OpFHiVUJiBKXK0DIhKxK2d/eZ7h0wChWx7QhK\nkIpeGRDVEKkMpBKhJpAC0oA0iAIkgegiJm8QYziolza78mgAACAASURBVGymCVuiAyuxqWMQPWq8\nTWMkz++9Sy4Nye4RNkB5/Bpbd79EVmSsW8f55T183RFrxyZaWuUIuWE3K1EIVJqylSXkMXKRReYb\nmArDZpCQdgEjDJQJ46uMlbvkH7zzFq9Njvl/fvQXPH/yvB/l/S0qLTWrpxZEQ2Mkcr1isRTIAkwd\n8a3lwcNnnNQF9sRjTYIlpfYrMA2J8MS8JI0dXgY0FVOVIEaaRM05qSSTa/vcfes2Hz35hOV7H3Pt\n9oR8+jbN6j5ZVNy8exOjHB/+YsHigxd879vf4s4NQf3rD9jb3iaeb4h7CSJLwVfgMthN4ewxInHQ\nWJAdFJZoPaJNQVkICvICkZd4lyFHW8QZhPEBy6VncvubbO3CK9/8A/R8hkmfk/tnXL17xsgG1OEA\nMd5GlJZkZEjdGelyi6HwhM1z/vw84ePnHa9dv8n9Rw8YqMij5pJ8E4lBEIucy4FBrlqihR1vcfWc\ndQwknSagyQPUyjOsNXLo2Ysa8fSLLcM+3NsiKIV46ZMuiCggRIEOAYvGWw8iELqESkUS4blhNN++\nnpIDEDEKhMlAK0Ld4o0jZENsZ6AoSVFE25GmUEWPFopBkTA+3EI6QbQ1MUhoGjYbwdmyYRUTrryj\n6jxBOFyeohKF12AEiDSihUFqhbeGyJy1HaDSfVLzGCnOWboBSZaSJ5LWRSyW5fycT56dcbZZs2kj\nrtmQjjTffGeX7379mB/8eEnHhqyQHB6ckA5a1h8p6sWCw/EW5Sjhw1XDEkEwChcDXniUkMRIn1Ml\nFMRIEL6XegeBlilEj6g7nJF0QpDrDrxDCsEgGD55/vgLvZ/+feubr38DHRRKtAQhsMHjgyQZRYTa\nQtMi8+f859//T7nx2oDoKuLkLklxjBhNQSREs4UQg/6BxEtqBAKiJ8YV0S3g6hQTA6O7ryLUEJEe\nvmxiPLF5wubxfbYH11HDA2T7lN3xaxzt7/Pw00/49Mmcd+68wdIrbn/pTcYnr3D/V/+ck+khn62f\n8eCZYG8nI2wCbhJ45ZW71D6ymS/wNXjf57QF79FS4GP/o72wSBQihP4hKAQuRB49ffq5/f0/10bm\njTvXscpBlKgQsFJggkM6jXpJFnKqdwVsZCDxEJRB6oiKBoFGG8G1V25x4+YtVH2BrjfYLEUFR9Y1\nWF30AXAyIqIhigBiiFAJKP3yozcBQnYUtiGohDSxOJdSTzzjokTnE65OH/LgFz+jFGtu37lFW9cs\nFguObrxCsXcdoRRP3/+Yzx48pXOWjWuYbdb4toUusElBWJAxUmxNOdjZYW86ZVTkrMaD3ohIe5qg\nyHTEJILzxYzt7Wssq0v+qz/+I4La4Z/+7/8LV2d/exK1Z4s1XdbReE1eR7RUyDJhuxWoS8fDy3OC\njnRTSaU6hrrAtTWhi4yjwWeGxkFqFIlLsF2LV5EQWzopmO4brh3uM9nJ+dbum/zlzDLf1Dy5uody\nivJoh/HuIcn2Fq8tf8rCT/jBv/oxk+9/lTdfPca2NZUQZKLsqWvG9XHJcgijCdRLaIcwXkK9g8gV\nlGuIY0hcD0VFhRpWICIxrekezDhQt9AekiZQlhlqb4PINCy22dkZge5gMCbaFJIKYS3cegddK3Q8\nJZo1b9Un/Mm/e4oY7bHcOEJjGfmM1jli4th0HcF6jEloujWh7i+jkcyYi4626Zi3lqHWzBPHfswY\na4PRczr3xW2Yt3d3kDFCUD1G7+E3b0GP6MNJkYQgsTJhIAUTA0cDy3aavzxbMpyUmOiwnaOWilhM\naZoElRZEU9C2LcaUWKXpmg5MTppkhGhoXQSv0bVn2bU8X0pWTqJUIOtAREmLZW4SkssloY7YKlBI\nTZZ7RAzozOO6ISKRmOjpRiPc8oJSg8UAnmkR6CqFTALeBQb5HmkhGSyuyBL4/u4xB13KqzfWvP9I\nc5mtaB93xK7mqhqQ5gm3vnad9UXF7mGJfLFg1Rmi6TBRE33EREXUoESgi4Ik6cm9Qiga0RBs7OEl\nL/DBI7uOLE+xviUmkUen89/hbvh8a3s8YbIj2FQWkSYYq4COqMH6DrVuGB8s+No7b7J/zXJYlCTF\nHmmWImVDdAKGh0ip6Z8TPaWCGIBIDBv8+QM+/dd/wu5rrzH58n+E1Fsvf7oCIMZLYuOJZxuKnTEy\nEbB0TK8fgUgwPhJlwA4k263n9NkTDm6+yfnTZ2xOz/BVSzHOSCYp3q0Yj3YohttcnV9RVSu866ib\nNSIElJKECCaCkxBF7/QX6CX6TktaD95/fufJ59bIfP3Ld5EWghV4GQkvLcJFEKyz2MuqrUO0jk7Q\nk/GUxsheam2SBJkJdg4OOXj1DarqOeXVc6yCTJRY00NSMVqcjRgHMZEIXbzMm09Aa176eCOihTQh\nZglyKJHaIp3Hry6YP/+Q6tlTvK957fYtsixnNVuRVku2xhMm2yP0ICE2lvP3fsWzhw8IUhNtrwyZ\nuQ3CK0Kn8D5Qy0h88oKHj5+TJ4rR1pibh9c4urYHGpJcUbXQBYdsoVpe4qLEV5G9GyO+fWeH+s4t\n1s2ae5+ds7z6Yh8STdNhZMu2SlhOPcLD4MKzqCrO12tU1IxVhFKS1ymidESnCSGyEZqhjigf0QHO\nK0v0jjyNxERzUknCOHKYSzqRgot87z/5Oj//2T3CfM3eYI+vvfUl4uwB4rLl+lhRDwPbyZTRyJGo\nDj8Yk2znoDXCG8CAHoB2cLyBdQmLM6gliDPiaoCIOUwDiJQoJcIkRAwCj9ySTL90RKDBPlmRHozA\nNpAo6EooBzCQ/eQn8YgkBzxRlfBahTifEfMDRNty2Dr+8T/8Ev/rn77LWzd3ufPWdZaXL3hwHmlV\nZKhh1kauLi5JhUAe5Lh5y2VVUcc+dXuvyMhVoJMGLx1p1jLJJWerL2Yjo1UPKyXOY5XAhP4q8FHy\nG69ZqTVaKZqYkAvFMFNIC7dMINcpRuVYAjmBaA2bBGIxomsylEpoVEriHEKIPjYlehCCSqUMjKCK\nopcrY+iaJVcrQW07Ugydtayi5Fm95MV6RX52Rp5KymFGPjoja1ZsDzOUKDHFgK1JSSE9G5/QDneY\nZZfU2Q7DaBGbFwyMYWuY89buNrbpWKW7VBYuoiMpFZ/UHe3McOPwy5wufkrVSOarNSpailHGN965\nwfVii4shyPGURVWTzGYo2TuYe9mHV4ooiVGDCsiuQOgWDRgvWbYWFT3eR4jgfEc60D2E0jRczNe/\n0z3xedbf+4d/HxUlRVJTt5a1rxirDJWN2FRnHO917B/lvHGyzejgDiY5RJRznLWk2T5isAUxEJsV\nIkn6M0QE6BawuWLz/BO6i2ccfPsfUV5/q7/LXlKx//85amiJ80cU2ylq6MF2qEyS7x7ho2N3us/J\n9Amn/pRXd27ywfkpP/vzH3Hz1uv82Q9/TT4I3Lj1KrGriUGxvb9Day3L1QrfNdRNTVN1ZEpjlUDG\n0OeYAbg+1SyKiFCCGOGjTz+j67rPbQ0+l0YmzROOd3eJRc4oH5BpjQuKrl3jOg+2pq03tK7GSMlA\np4gAUoIRGmUUWgmGxZAbd94gVGe4Tz/iRb2hmE5Iw7q35s6gSxSZa4hJgdQOkcSeHKASUOrlCde/\nzhACIQXRN8R6Q1jMSKo1+8IRTo4JmcZ3HdVsjl9c0i0vmZy8jZyUICXRWx49fUFVrTBpwjp2QGAo\nBoRcoAJcACYGEiPYxMDaeTYXM148v2D62ZCvvPk6w2lJs6mRTUFXXNDMLkiFZF2t2DIDZL7HICw5\nGW/zta98i4/ee5+fffgJq+X6c8Mg/1pLQGsUQld0YowWljRITmeXDLykGwpyOaWRa6wxpE2k8TW6\n7vAiJ4mONjqEEnS+IvOSrWyKq1ek0VPHnLVtmaoabQyahG9/65ssnpzRXa1YfPQ+zeWGYbGLLnJu\nv7NLPoW9ayUqmaLWFjMoeiMIPFgNGFBDYroD1Qw2A4IfouIlrCDEBWJrBzCIRAMKEWowA/AaCoOS\nHfL2FniLKGS/wdsAWdvrF4WBNoEkgXaAUBaaMYwiAterpKLltRuGa4nh7knJzFwy6ka49RK7idTe\ncXHVcTwpCKliGBUvhgEnI2krkCoQZMR6iYpQt54Cyf6g4Gy1/N3ui//AKgY5wzShfal69EHgpERF\nj4ySREKeGKToQ2ZLLYneMUkUh6MhmYImBmTQeNvRSAPBEFoDoaNRIKxESk3QfQRKFyQiRtLw0jbC\nRaL22NWSzWaN930jUNuK+bLj8bLl02YFNpKOCiqRUGw6luGCWmiqS4Vs+0fecDjgxrUpMb9BFk6J\nSYFbedoiofMZvtNcz1PS/RFfshWftZFTO2KWGKJO+Gzd8HD5nKzc4rUb7/CimyF8YEd3nNw8YHv3\nFuu4YWco0APDB24IYoaUIELEWAhCIHVAeFBG4GKLCIqoJZ3wiBDwIeBFJEZDHR2btmF/UHK+WP6d\niSVI04SsWfC0qhlnY4xMwEuWwrK5+Jjj7YLp2HC0s0u+d4ftdIIwFWaxxgyvQ3HSp5naC0gHRNGf\nO9WTXxI3TzHJEFnuMLl+GyFTBILfTGFeYkrE2BFbD7ZCCAtOEd2cNI2o/GPc1REUW9w6epP1i5+y\n6Bbcfm2bhx/f5+FVzXd/7zvkuUcrz8NfvMtmlLC1fcx8NmezWtO2lrapkRKiFKggiLJn7ojQTzx7\nykwf7Oxay7337n+u6/C5NDLf+72vslPuMzM158szfN0hvCQREuUFXkOqBIN83E8wbIO0MGGASjRK\nSpI04dobXyY0K2aP71PNz5hu7zJTgqJ1OFUjXEuuFaQGES0mOHzwKO8QrCHmIHvMl0jP6uxaROsh\nOAyKMEiJFLimxV/OmF0+o+kadGeJ6Qizt4PcPkQIAVExvzjDpCkOxzgrsab3HZEeLgNIqciblhUd\naQudACcEGricL/mLv/pLjqaHzNcVSTZgMFdcpI50bNi4FpENuVGUfLRZU2SG2Fxy+/VXeWf/hMd2\nw7sPn/HJe5+PxO2vrSJUHVgzYOgEtlWc1edsXM14akgSQZs1ZFb2kj7hqIPDGkcMLTFCFiWhDiRt\ngkgja7uh2EhWPpK1kup8Tb1X48KKT69m+LUiuWi5mZdMVcvhOKO8nlAOpwxHgenRAJPnhPWGWkOZ\nGmIrEGmk11J6iCNE1xKTgqrwmBiRIYVMEWdLVj85pfz6m8g8QVgDqk9qR/WeJsS0HwgqAd6Ar4jK\n9AZSQvX70QRwFagakBAtL808wEeEAeMabmUg5IJbruNhMUAVBRfPrlBEdsqcy6pifrpiNBiyO01Z\n+MAgsTS+l0yqGAmxQmiIKA72Mn51+sVsZPYmY9AKGUG9fB1qH/vLmIhKFKnUrEMk8RBTiRaKkbYk\nAwnO4LAsrcdNE0LikKqgix0hSEQw6ODxqewdHbzAR49wsod3XuZsb+oGX9Usuw2h7ljVFYsLz/1m\nzbtXV9SLCiMlw/FNbhU5rqu49Evk2XO0GaA7xUY40uc1Tz8548arS/a3d1GJQC0C627NUEEXFVZK\nJnmKOj6gfnyO0A55csLq4jk2jtCrwMXpBWSBV0+ukYyHjEsFccB5MHQJOByLbEamFmjt0SLtvYZE\nxHiJ1x6nAxKoiRAFpRe0tiPGgPeyb2Ro0ULgqpaszJldbP7O8GPe/urrnD28QBYpS7FCCUEWNcLC\n0JTc2Mso88DR4SEmG7GRlljNKYYlavcAoVLwHSQThAzEuMZ/8AG6PkXfuIko92ifPuTDX33A8skl\nx999h+OD3++/rg/YQlBD9xxii/ctsnJElZBvjYnVArNjaB9kjK/v8mV7i4+e/IK66tg72UNmn/Jn\nP/gRSqTYTKDzhDKbko93qa9mbOoVzoJ1HqkkXvbeQrKX6BBeOvkKARBRInLvyVOs/Xwb2d96IzOZ\nlOgUTi8/RQhNrgytNjjtqVVkKHJKBF10LDdzZIwMixH5oEQoAdKwNdni1S/9Hrq9YvbgA7rzM5LR\nqEeMA1QqMnKWNQOMXbMyGbpuQFWY2vSkKROAjt6n/eUvF3z/DXwLscHXK4JrWW6WXJxfoEKHNhMG\nJWSFIT2+S3HnDUReEgHbtox29zGxxZcGU29oSTlbz6hJ8LbGhIhPDIMo8QMJrkW1Ai8lEHC14Jk/\nxbeejWrxJqGLDSdhwENdcTwY8t70iMIuWLiMLESKtqUaBdKq4L/8xlfZfPerhOFr/NN/8j+wWn4x\nLiP7YoE+SVnPHRfVjHwJozphNCmRVjHLAon1ROMwXUlcOcYbg5MRqzO2skjUjmgMjRBU1rIXAvMQ\nmNqWq0tJd+8h03nHZDqlaDXHt7e4NV6yvzdiqgsKHWn2PXKaomRG++Eli9Sw8503ESYgSKCRIGui\n1xA9dBW0DnMp0AqYpCACcjwiPVtR/fA+5e9/mTgEYoKQKYSeM0OXA6FvilogSRAhgtBEP0Sw6pVP\nro9aQHVQpNAAK0HYSti8t6Tc89z+w1f58U9+zXdff42Lp0/Y7go+cC1v3DhBZQ1DNeV4OeTTp0vi\nOkC0bExCGTvmTpAEIBh0FCQicJTlGCWw/ot3BR2dHCIiqCjoFISokNERo0SL2EMmbcBpiVACFTwk\nmr0sRTWRTqyJ0qBVwmpTMbAFwXi8iSid0lmLSAQqJP26mYiOPSznbcRXkVZ3dNETQsvmcoEPNWdX\nkfev1ty/Ome56rC697e5eHbB1jhHtzV2JVjJDic8JkkZFmPOqwYv4OLdD/mjr3gyM6Ee59gu0KYF\niUpZK0kiEnSm2d+H9mLGeEtzpaasNg3ZUBLliMWy4uLX92nHCZPRiMl+xiARdO0e82bJ4mLdp9DH\ntDd+DJIYBK22DEKGCQJrofCCNb3dvmj6z0EElAMvBDY4UpmzaWvun//dCMfNs4wdkRCGmqg00YNJ\nUoyKyNbzyn6KySRbewek2SE5V5gLT8uKlTxhcH6KLiRqMAKxIraW+PgRzcVj8ldv42POT//k/+JH\nP/gF0w3kuxp5dob6Tsf+m99CmBRig3BrWF/C7Bwpato1JNMjzPAYEk3Mh1hVkemU4Ve+S9j1LD/6\nMY+uOq7vjflv/vht7r//gJ98lhFMzdHREd1yydV8iW8cnpYoJMpLhAwIIRGiVyk5GfuHe1R98nkn\neP/eR5/7WvzWG5mvvv0lMpHh8pxESkSacyQ1Ji9wSnK2OedsNWegMo52jlFKsfYNXdcxGe+wd3yE\nTA2pgosHHxLOLqAo2MqHCBw2QKM8qZVkcUllFcOlZiNKhrpBmgTZBMRK9nJa0Y9PozTgbO+XYJes\nL6+4mj2msS1mvMvk8HXcoEDEFqMM+XiE2T9ETCYIIYlE2rpjf2+H8s4dPvjoR9w7f8LFZoOwW9Td\ninq2oaNGKI82CdulRg8zsiSlxZF3hnVq0V2k8h2ZSlk3lpFWrFOLmQvCIGOQSSZmzGmEHSHwtsGl\nKTsi59TXpF3KH7x5m+3/7r/lReX4iz//M95//16v9/8bWj/7+AIXc6RRTJKcZbliMWvI04Q6AdMo\nQhDUnSSGNevoMUlHLBU7KqdWLQw1W11EBcN86VmJwLmM2Ay+dnuP8qpirxxRbi7IR4qRXbO7fY3d\nrvfAWDcN4lpCsbNP8BnOaOosR5UjcAmolphKYjfEnZ5x/vMfkSwti4tTprJh+OYb6FUFeYFkgLl+\nHfvBL7n6k5+Rf/cr5NcnfRMtHQQD6Roq2U9Xsg6cBmnB8zLKwoJV/X+lCIDqR1cSQiG5+vkLpolB\ncM6dm+/wg3vP+cuPH5MohTsU5E8VftWRKE/rLEkoqdrHxJ1DjAvU9Zp1khFjoImQpwGNZBNTCI5h\nariqPj9c+6+j0qTni7ig8cr1pMYQcbFPHPZaIkXEaVBEZFSAoIiOne0RuQQlDXiJcxu8E3TOMypA\nMcLqgIgp0Rm87F7GVggEDa2FYC1Vt4QoCdGw7gxndcug2WAbwTx6XEyRheGwSDi6NiJZNTRXFyzw\nLIJGN2CMRk4z5nbN2tW0lcUnBX/x7kPe+vYW2nsKkdDGiqgkrU2osshIKg7HBlVlPKgDO6MB0yKj\nbVsIK3SiKdeGhfXMny+5fLrAG4/JHrAJoOsK34JWvUImEAlSkDqJKFzvgBwDUQYilk4VSNGig6T+\njTFa7IN9c22ZrSSz2eZ3vS0+l7p75y4yTXASBokh1B7nO0JS4JVAphmv7ByQjwqsMMw/usf7V6e8\nsbPH4Ot7xM6gyiVhNcNWM5idEk5nmOsHtOMT/uX/9j/z/Nf3eTZ35NevsX0yxZeKJx/8irOHzzje\n1xTbI7Ic4tWarpySbALGnSHaFKGGME0g7pINLwnzgJpYDm98g2b0nN0/f877Z+9DmnL9+gFPm47L\nT3JGkz3W1ZrNpkZES+g8kkhMPKnTeNN7NIFHBEEQLyMYiDyYnbNZV5/7WvxWG5kbB3tc35+ytBFF\nwImA9hUPHKSrS5KYM8wTdscnxERS1RuqxRVJUGxNd8gHCYm3fPmr3+eDX/yIpnOoVDNQks5bCpER\nkoDxgk0CQhuGVhFMjWiusCbiNoqsWSNFjqzWoDJiFD0jXEhiW7OYn2K7FYOyRA+O8aN9Ogk6Sqwa\nkZSSphiQpOYlWbh/tbarBcoFtnd2ib/QjNSQporoN7+GPrvk2ewjhOh9KXIkjypLOt9wVK7JB1Na\nacmDxPkADqTURBlZxcg+Y6ryErmcE/U+flyhmhmu0zS6YVqPoDTE+QJXGlbrK+JgQvPkHt/48pd4\n+/arbLpLfvLjX/Li8m8e8a5pag5LAVrjAuz4kudqjVyliIlngGKZONIIWW2Yh46kTTmsDP7QI4Uk\ndJK68iztmmULAw3feuWAbKDYKyxJ4nj77AWySBjcOeHaTYNZt4RFxNZnDL/zFcwrOQwKNk/WXDw9\n58Z//S2iSCE6/KyjXjU8ff9XnP7qHsdtzXmVUXYznux5dj58j53jEXqnJCYlKvcMjm+Ro6jffUr1\n5ILi791FxD7zCJeB9ODolXOBnoA+FFBbsAbSCjYBsgBLDSmELuH5ux9TWoEsHXGhiHbO1AzZHFYk\nBEZBsCczTIhYIXpUa2I4vnaT84eP2btxwHxjyYMnSwTSKkKQKCvZJBbjPUeT4gvXyEymI2zMkboh\nCIUU4B0EPASPCArZRawWyKiQOiJFYGIkpZQELI3zJBp0THDesZpVhDSggyZajxobglZkqD4DLlg6\na7Ftg106nG1JRglSR4oECqP58LNTflIZtqLgnemQaydTdo9z5k/OOe1ylBbYWiDaSCEDapjwi/uf\nMH/myERDHI7oxgqC5ehqxl42YZlmqFohQouJfZxLrXNyKZnsRUanC5bLNWY4Is0Npc64WC5Y2ICP\nLYqMqrNYq2m7hBggRkmqlwQCxB4qklEStUBEjROCEMARyX0f6utE7zsjrcQKi4uS6CUil8yv6t/1\nlvhcSivFK0d7NCIwquFqtkSblEFSgLdsTwzHx1MmW2N0ItjWC2RWc+PVa5RvXsekx9itGeZUsm5f\nUNQOT8DsXEPubPNv/tk/4/T+I/7taUX16DnbQ4WZaqoqYxBmeP1X2I9nzPKco50T7hzuog7v0DQG\nFRYkyiHKFPwYUeQkowRvQWSaLCl5Tb3Ok7trwvk5wlV4nnBcKj4tdlDRUzdLkBoXdQ8bSYF0EqsD\nUQgIgij6SArhBUEGAp6f/OSvfjfr8dv6xkpKbt85YTlfguyxMykjUSZMRSBmCqcabGdZ1kuSTSRF\nM84GJGUJQjAphrzy5lv85Kc/RL34BLwn0wnKJEStUb9RIbnehEmHwGagMN7RtiuEUAgb8E4Q1Jq8\n84QkA6VItAYtaes1y3aJVIaNHkF0MHtO3UTauiZJJOXBNXaUJnaTlzBBb2DVtWum29vs7xyQTPcZ\nXL6gFYbXt69xOjzio88+JDiDEAkudMggCHnK49WKzF6yW45QxrOIHuM167AgRWPpWFsPSvLw8WeM\nywmXZx0705tsZk+JVtAmHSIVfbpq17KuNmxPjnhk7pMmGU2z4XBS8sd/8B3+yT//F7+tZf4Prk3T\n0VLjREqbOvLGYdAsZMNISqpoGGvJwvRNXlgJap/xcdoyUJZ0aXBNTQgabSRfrx3hesndmyUHRwN2\nRpZUlgyX+7gHZ+xuSwYRVkuDSZcUd1/B3Bwg8t7k7PzJnJ3X34KzFRezRzz+9BlXy3OG00DeRba3\nx4jzAep6wumFZ6PGZM0U8fiKZH5GKWqUyNHTMVoLBtfHVPMlrCNkDmoDcg2+6NVPjYcsgdpDHACL\nl/BT18NKNhB1R7xSrJ98wnjlGZRAExBVR3H5iK/fLnmxHPJRc8XJeUE5mVC1FVutpEoFwc0ZD3Z4\nJCKjxYrhSOBjivPglWDjWhINCkUUgoO9gl8/+2Ip4m7duIaUFh0EHoWkxUpB6iVN9ATn2RjZu/1q\nhUESo+DmcMDeKOIvPW3n+gZSpEQhEVqwWbTkZo2OjqVPKKcpHQpva4KI2I1n3SzpFh1FOcBTk0Uo\nZaA42iULHfrMoqXj+jRjf7zBNTXGCx4ZxbJpqDuBtoGmMBzmQ8aDLTbmGT7EPinbVyzWOc8u1+xe\nGzOgwSaappkTUoGMKQIIMqfMIzd2Ix+3lrZqkEXR+zWKSJ4bUhWpgiZdB7rgaDvJOBUIDPer2BPP\nQ89/UBKkCAQpCN4RbSBESaslmgAhEqPEi67PVPUBSURLyYNnfzdy4956/R2kVhQOzu0lIkDT1ZTD\nnC46JuNdTo720EYxTAa0rqYY7bNbDCg+MdidJ6Rzh40ZOnjQMzQniN0h7tkV7/3qHiruIl/8kr3O\n8+Dqip3xDrP2OT4znNwc0IiSMN/wsHqKdCtend4kVb3jOaiXezkHcpATdHGOKGpiYdCbKXvXDxgk\nHbN2QaIagjbMuhHLrsU3Bq0a2mgJQby0tOmJxpGXE5rwkm4sPTJIlpuWavO7aWR/a43MtZMDxuMp\nMka0EoToAEGC7AmOKjL0GU3WkdoWgqdLI4lRxbcvRgAAIABJREFUlHlBkRnGxzf44P2fsX5xSaYt\nAslABxKpSIwkdCCiZwMkjSAtFGnTsTKGadwQrMctFti2l4pJk+LSAVqCnm4TMFR1y5PHj9A0nLaB\nSaLxpgBrudKSUEH66CMO3nyT13LDqCyQcoDQ4JRmWhhknvDmK6/yQbviortHt37B7de/z/tHb9HO\n73P7tTssZhd8/Owcs66QacayWeDFmq0yR9YBpwQ4j0wNptUsuyVDVXB5+ZC9V7/P5YdrEnGLdZLA\npqULHaM2YQU471hbSak8Kk8Im8hl3XANz5998Dcz7yRGuLwKHG8bYgj91CKPuC6wWYAwARMlhh4K\nJARE0jBKAyezEiMC1Y6hKAvE+TmJcmwfjrl7wxBUYITAhA1uMGL49gHD0Af7ja5HzMFNxHEB+QCS\nDDsPlLZkMLzi3b+6pPvZC1Khmb5R0LRX3L9Ysa+mZMcjzqqCP/nVRzw6v0+D4Jt3v8wfJZKbg0ti\ns2ZSjim/eQv74CmD77zdB6nJQHAWMRkh5hXIBLQkxoBIBISub6Cth0VLxBLrSDefo6uOQkdkqqFp\nIOQ4BzUdjZnySRtYv7jiUjSMtnZYnn7KemDIO0WnAtvekiSK1KVEFdCVwAhPS6QkQ9mOkEWUkmyl\nGUqKL0zQn5SS8XAIgBMGrxyhM7ROgLJIJJuYUYSWXAqUEggUIxmYbhs651l7h+kCPloGWkEMBAWu\niRg6hClwrsPZDaHRWO/poqduHZt1g0AwioHCLsgwKCVIEskr1/fY327ZdI4QAtOXl/4TclZ+xbzy\nBCdQQmBcR1guefVoxIsnC1rXMcwE0QtWoeLF8zln45KdyRitDarLaFCokJAGgc5aYhywM5KIW4ZH\nj16wahui0oyLAp0ohM9J6g1GRIzUeN/Rdo5la9kpx0QUzy+XSBWJ9B42KkSqECCCUL372W8uL6c8\n0glCkEhqMpODi1z+DmCFz7vSNOHW9UOkgMvVitj1cQ4ySmrbMk0Lbh9O0NpQDDWFhiIRTMWQVbui\n2l5S6iFGHGG7hqS7RG8NQRcgJE4PsFGysgtUOmSwm/LNr36Hi/lnGDxMM6y7xmX1gsXzUw5OblLW\nS64uTxkfHhOjxqSih7DlEBggsgohDOS98pFhQTrep3M1W/NIuxHsDTxf/9qYH/4y0oYWYRUheJAR\n7SVRQpQO6fu8LvrBDMJDFJ7lYvU7W5PfSiOjteKdt+8yCgkL0RG6DhUCXve+YgkSaz0ruyANCick\nRgnKYszWzgHerTi6+2UWjz4lPntMmWcUSqGTjEwKvNEYK4jaIryiyQQuTciiIxpBETqWPsU6TZIl\nDMcTBiZHFx6tthBZQZACFQIyM5zVG+zD+zTR8ChqFk5Su8i2GnN484BlbLC/+DlN7HhLSCZHJ+hB\nyf7ONnMtsXHN9bfeZr64pEwkHzz4hHpb8f3f/0f88N/8n3z4wWeU6oqRHLAqdxD1OUpoWutYbGpy\nlRDwCAdIj9cRUTWEsmCxXFGs1xinOX/+EdNrR8yWFYvGk2ZrjNK0TUXaLdgoRSJKGl2zLxXPBlv8\n4oP/97exxH8tdT6bcbw9ZSM6tjJDnmiSSlFri9x0PGthXwmW3pOGgE8toyBZ5y0xROKmN8CTqeBw\n6bm2N0Gt15y8ckA6gNLskCwdejYnK4eoVwxqMoZBgVADkAnRF8wePyLfznm+bvjx//2Yr7whiTvb\nzJ49pPYbMhdRU8m9Z1f8u3/1A55f9knsCyn4ZH7K4sVT/oujjDtZhziYMPvxB9ROcpxacHPcMoXF\nFaodEF1EbEnoLMIXfRMjQ086v5jDpoP5kigsxgeEBaFqSApoE3wmWT6KBNGR5Rm7+9cQmxWXszOu\nj/eZLxRpTNBZA1pTmQUTo5i3NWWnqZIAXtHZjiA8JjOkqvdbUUJQJIZV88WAl8rhAJMmPYQUA8oK\nQgy9GWbopaAJNSpIvJCo3n+U67lg5FZsqo7lMpJITYUgeEsuHc73UvjGt8S0QOKpVhuMyYhSgY19\nYxo9iU7RXJEFAzaAFygNuYa0yEij56JR3NtE0lJjiw69WOBjD9loH3BRsmHN8HCP63dP+PjTp4yU\nwhtBva7x6ysW1SGjIeRS4BNFfOlAPtYRF/Me8c4KtjJFkSqePV1yulhCqpGiPxdVTJiUBdFbNlYy\ncJE9kXJSWX703PH0akUhHV1McIb+bxl69ZcSER0VHo9+CbFJI7BdhxCGowyeL6oeJv9bXjduvUKZ\nJ1zNrujWFSrXBBcRuUK1np1rW+xfG5FJSY5kHS3TdIvHi6fsj4ZMih2aTeRKrdmuLsivHSPSI8gy\nkIfEdcu1owOez2u+8fZr3Lx9i6fzS+TconKNnHveO7/P4/tPebFccXQeOPjPCrZXS/T0Bk32EjZG\ngyogDPozRCcgaxDnICVqOmJQb2ObhqZZITae5PiYVfsEETyODrwA0XOnon8ZoSFj7+hLBA9BBBIv\n+OFPf/47W5PfSiPzxuu3KBzMwxwlBFFG2gREFBTSsAktpg2kJkWlEiU1g7SgyAdUi0u+993v8sIP\naetZH0ilE7QWJFnSM6SblK6wCJGATkiLIYO0xCdDhNb44AmJwKgUXUzwpqARilI6EimRSqKCxcaE\nlAnX9k/4Fw+f8dRVqE2Fc4IZjvfaC94Yt3zvndeZXb3g6a/vUTeO23fvcuOtb6B39pgUhnx+RfHa\nLV6/eY3HwkEqePDZh1yWlq/83ndZNZ7OObLhgGFZ8O5f/Vue3fsB0jqUAqkEPvTj2SglRhqatqNK\nOryL7F6c0g0Mly/OMc0ttIjUredqCZNSIjA8upxx7fgQWe4yce8hD474P/70T/9GyyA/fbHmnRsK\n0UaGStKkjsIJRFRoGUkcXHiLDpGBkpSbhLEPdF7iFMiYsSsndLNzNqri1anh6LXbDCYJWhjSJKAn\nKebufv+iTDOEKUF5ot7grODy0zOax4HiNc+9965YDC3PsjtcPp+zerLmul9CklI9e4wyHf/xTYH6\nxjYvOOJf/usf8XracXTnJh89fEQSBTubU6RqmP6Dt0FFCC1qs8GLjiAa5NBCuwvWQqzACWLM4WKG\nWJ8RGw9OEPKIfXFBPtRwmYGsCUlGeH7BfKXQ4w69uqCMLXqioSnxWSQVkpH31J2mlZHCTljLJbGr\n2FMlUqa0ncSLhCzV6ODwRESEGBzbg+wL08gcHOz2hN4gCbIPerQ6IXYdxEAXFSEoEtERY4d2glJH\nvrQ/IG8Vs1WH8JE2tug2ofWRzmiE8X1jZwNJFIgu4ERFXdWU5ZDOe7rO9TJlasZlgowvw/J8wAdQ\nWiNUpEwlm+C5WnUUTQlGkmpJ0kUa1ScF2yywaCLJZc3b+zskZKy7S55dgF5eshjUNBvLKkSkgjwm\ndNZzWltEHHCQ1lhdEJFoOaTMU05OSqbbOU+ezlnonMR7ikTQOUvXKbZkis1gIBX/H3dv8mNZdp37\n/XZ7uttFH5GRfVZmVrHIEkVSKpHS6ywP3jNgeKCRAf9jnnhowDBsw7BhSPB7D7JMkaIkUmyry6qs\n7CMymhu3P83uPDipZ8CeGH5JVUkrxjG42Pves85a3/f91I7mcbtAPjd4IlY5YlC9qDn1vKoUFSEJ\ngk5EPNYnNlEQXKLMNE0SnE6vvuor8VsvKSXfe/A+i3bOcrkgq3JiTATb/47LMdy7tsMgK9Ai8rqF\nm8clF+2SgxGow31OFzN2XI7pziluHtAWB2T5DuS3YdOSb2v+6I//JfOTU371xWf8+ukjtKsxg4aV\nrqiSJRtEbh4MeVVvuDw/4/Szb7F164pmf42uKlQpwAz66F0j+yZGW2AE6rIXkuUZeqtChgzbWdpG\n0q1yMuNoNpHoPTE58JEuCELyPeU89I5bkgAiAsGr+Zym/urYWm+9kVFK8t7RPou0QltLiQbVd3GB\niG9brBdYpd6kASoGWcVoPGbV1bz3zgNeLFquHv+CbrmhlAorHFHnKJHAW3y2JqaMsc0pc01RZMiB\nRpsNhAGbCHlmMKJAmAKhEpZAsALlBVFKHALhIkIEjm/c43eXLcPT17TtjKUPPGglG2EoY+DJixeo\nTiPVEu1f8NnLDa8vT/jW7//nrCioGJARuf3+BywWV5QF7OeCv336GS+fLmizjHcffgud3yGahq3d\nW1yVv6bbTHvmlA9E0wuncmlIsQ8uq+uGzEo260suN3NGeUY7fw5Zhd2cs2w8e8KQDSvW569ZDYeM\n7JBi6wZrM+Dk9cXbPt63WpvOsYkr5oual5ljuBZE0b9RF6Mclg21gCwqhkrBKBG9pyhahsMDLhcd\nL1aveQ/J8c6EO793n1ytMVphlUJgUFWGyAPYQW+f1g5URUJz8djhXq05vlfxi4++4PVM8vmLM/6P\nn37GuBrwn/3OLbaevUANIut9yehwC+M12Vxw/b7nd4eHlHsHnNQlv/rsN3SyINsp2Pk338bevYXY\nbPrsosGG7pFHradkJbDbR3qnmCBmML8kDXNSDAi3JjJEvjon7zR0NUnPibMMl2acOIdzK1I9oPry\nIybXHuLlgCfpNTdcyVpqXp0viI4+nGu44Uaxw/NOsW4Mg7EiGYFN0KVIRJB1iotQk5xkb5zz5PIf\nh4X/+o3rpCDe4Gh6to1WnigkMQZ06ggpsUoSESRbKTLUUKkM52u8kxiR8ChSCKwRGCRZ7K39Qih8\nbNEiw4ZICi2uUT3FKTUMtGBcCBSRlBRB1mg0MXlSlKQ3IkhtJHt5Rp02HGeS1faIWbNGdI5oFLtR\nIWzAu4DNS753c8SXJ5BOHnOpJY2IrNslYbmF39LUWlLG0AN2W5gqxVi2eKEIqaWQkcIKtBiT38+5\nutiwWi1xXjNJJR0bUu1xHprQkboOs3FkWR+UKOhXB/GNc86riErgpcfEfoXXSkmMHkRkkBuE0Ly6\n+OpWC/9QdfvmMSmuaa9qsAZqsCPDaK3ZiMDN4QE3HkhC25Immt8pKl5eOa7JFeP9bep5zdYmsbRP\nuH7tOmF4QGqPYfcdXJuwpSKtEsPJFs1sznIzZ69pOTMW7xMHtedy5Lih91gdKPTVhm/Up3y+ecru\nbMLk6gXi7j7IUW+lN7YP0xSqD4RNAfwIzAm0fbq9Gu4xkRFh4NNnidAaXDcndg4fPV1w+ODBO0JR\noEgQE0FEXIIsJn7yk599pefy1huZ733rAS4EClMgvWBNICaP8T2MzHnfI+6znMFgQlVUrNua1WLK\n/W9+l3m95vLRXzK0GRu/IitzFKoHvwWPTgnhJTHlZDb1wl9j6BLYmaTJV1Re0bqcNqwwixV5VHSH\nI3adZZFpch+giyRtkCpjVCo+uH+Hanubk9cnLJaXODzUgBF09YZVkoDnpI5sZYHDn3zEbhpRHN3h\n809+yof3b6O2d3j/G9/i+dNPyGTkD96RfPLlK75ocn794x+S7fwlR5PvkVZrxjFjmlmkSGxkxARo\npSCFmlqaN8FeLdiM9eYC7QW5LFi1G7btEeecYV3gZLDmxvgOV/6M1yevuHbne6yaOX/3t39B6Nq3\nfbxvvRrZcm17gO8anICaiFkJvGppdKTsoC02GDqO7R6Xm8RFprh78w7Nq8+ZnC7Zywx3vnMdv7wg\njS0iGoxsCcKStIMwJokcYQSpSBALWGl28w3NwYTpQjL/689p60Pil6/ZrbYpC814W3EeHrL87DF3\njw6IL+dkjcSMNLrr2HnngFa23BNw/7/6FqMwQ9zbR+wUEC5BSxArqBXFfUn6NJBWYwhrSDWIhqRK\nxMTAi2kfkGcCcn1O2puQnjwntIp0JWhihyhzxLIjSxXNvCQNNmzVF5zIHV4uFJt1y7i8RrOSvDi/\nYsmCa1by4OYR4rzjxeNXnF4JDncL5KAiDwFnBSSwQdF1kXt7I/7m8dlXfS3+P1VhMhKRKA0pOYRI\nPZU39aGXPkKKgmFSHAvJ+7uad7PI7LwmxTUi2h6XklSPS1GQQiRKjUiBEAKurRFGIGKiSwFZL8Fq\nxjYj6kiInpAqMI7YQB0SJhOIIAAJMmCCJMsqhOsolOb2sGIxjDxd9U2QLQpwijy2VMpgteHh0Raj\n8gHtdEWdtewVQ8qwgVAQoqNV/RQo2EA7rXE3SrQv8L5joxSF9RhjUUljDjImwxJXNzRti/SCjeh1\nQcXG4GKHyiuIrykUuBBJiDfJ1gIZBVJGZJRE7ZGx50e1MaCBKhly1f6TT/OVUvL+3fu0baKmw6iC\ndtygY2I2DAyV4fB4i+1JwXSh+YbIeNlcsl9Ihsfb0CbUxTOu6sTdd24hd3YQ9kPs3iEpBJRNRK/B\nRnQ2IoqCvVzxzEpGy8hs5FkmRRs9c9Uwnkz48E7ii9PAB25Bs/I0XWAy3O9NKXLrzWrI/d9u29TB\nwoHpwAcEEkqN7QbUMnL68jHT5bwPpo2B6Fwf4xEjUlpkCETR6/tC7AHMs6Zlufxqm9i32sjYzLA7\nmdCRkE2LkBJpQHeCJBJeeIqqQNsMm5V43zC7WpEPhtx8+BBlJK8/+jVFFCxSR6YEHomTAZ0EIiSc\njMg2I5UtIXq819hGEDvN0nd0qSDzCmWuQJZEoYkamkXDJgctFEEFEhLrN8QkEESK0YDDSM+V8A26\nrfFZS9ZJFgls1xDrRNk5bGo572r+7K/+Pf/pv/ovMEazXi+pqiHl7Ztcjy3PZKBcKUxWok/POU8X\nnM8Vn53+KaHuiNpR/D1fkNTnUKiAjpYYBSlKJIEQwHmFkB0bv8aIfTrREpJBBEfAUroVV6Oc7nJD\nmH/Ost7h3/3wz9/m0f7W6tGjS37vYUYrBClFOifYCEkmBdbBIisYNRaXN5w0M4qmYl8I8tCyWLds\nlVtonbh7/zZlZvBBUebQiQFBFhRtJOlIc7mmdrJ3ZETHIIcXrztGVc4y36C2M9TPHrFfCSb7Hd/+\n5g2ap19yNm+Yygnrny5AZ4xKw3dTx/nlJWItsWNDNfDkuUNkO4itCqLtxbsh9Eo44RAbAXctTAX+\nag1zjybr3XtXa7RuSSkiZw1tI3HRcRlK9DphbaBZ1bTLBl0VyNxQz2bMa9g8OyMelvzg5hA3Dzye\nPeUgebZujhCZ4dX5KZ8+XnNjp+B33r3D51+85PTTGQxqdDWmKgIxl+wKxdVIkUJC/P0z7GtcR0cH\nCAAEKXqSkH3WiUuE5AkxYYViksFYw+088GBnl13pmQbF1SqSp575Rooo8ybxWPZYCiVknwEUINIS\nSCTvqENgLAdIk6FExNUdwczJYk4bPbHzSG3IlCakQCSRmUTeepIMdJSUVeLa9ph1VNQqUFkDVhGV\nIsMRTEWpMx5ujcgfGjrRoZSFxuJkwkfBykeEFMzayNY4Z31WU2xDpjNSgMbnGBOwwqBKidaaZCRq\nHfG1ZCBa6laiqg1hZdgaW7aM5HVS6NChlSIFhye8aRBByESICR0lXggUGkGNl4kX83/6a6Wd3S1U\npjifTtHSIkVkqAYEHEUnGB8VHB0NiFGylWXM8pfkYYeD/SEmwqvnj+nywJ2775Ju3iWqbyKqG8gu\nIHUkSI1YgagGSHVK8oK1C3hiD67tJFF5Ro1Htp617+iS5k7V8t0iMd206IHGyCF0S9AgogEFSap+\nMuObPsOqANGNoXkBHaSR4/FfBZ69muN8IngHzuF9H4IYiEgpaJNFiYAQIHxEKFi1X30D+1Ybmd/7\n5ruoBF0S6NxgZY5VkSYETPSITKHLDO0T680KKzXbR7fYObzB1ekTPvrlTymTxueW7S6gVIYWoY8b\nl4KUJDYIgo0oBV1RUa8ihd3QGUtcdjjdsgiWl7FhPDLcnFQEk9PpgnMj0DrHSIWSChM6RGgwsUH4\nxHamMHtj6nbFy4sVpgksxQbfRqxvWRSaTM35u2efkG8037zS/PL4F3z79j3OFg239yOyKhm88w43\nC8XJl5+yHyEcXGNHgT2PxKJlvbmikwG/isSUiFEQo0O0Gm8FCI9OkS6C6gK+6Fh3iSoM2aQ5WV5R\nFkPi+grpoImGoVtxtrGkDj59/gti8G/zaH9r9eR8zu++e5OYAsicaMAISaBjIyzJJ+TQ8roDm0Yc\nqw07zrC86Di9NKj9Ld75nX3GKSF8ICtLROswRY4xDb6RmFEizxXZwPSwUmGIqeTii0/Y/RbsTRLm\n+x9Q7X7O6Fc11zLDg4M1s4MRx19qPvl0iToY8vrC8dEa/Mpx+3lieGfAcLtFLBMqWdgq+zcgHUje\nI0LqO1VhekxByGC0QZWGtOVZnzua9Zpt25LWG1Je0mSatq2ZzgPruuXweIAKjsWiZV4rrhWKkBmK\nnTGzFx4zCYzHNaJw6G2J3mQsHgUuZMdKd7x7dI3XpzWvr87ICs3BUcbh9pBZanHOcVULVtMZL0XL\nvZ0JZiC5tVvy5Pzr7T55+O5DQgi9KYyIRuCTxAMuBUqtGFaSEYKtmBjlBZ1Q5FIw6+bEKPAyIBOI\nIIlEogaiQGuJlhIhDSIJUgooFCFJEAEpJRWBVSd4vO5oSVyrJEpJWtkgnXpz3pEoJSRPnlmEt6yD\nZ0DG/lCzbiIr5Si1phCSznWoZoOpJkiZUxgoBxlD06G0Qvuck67DbtY4L1hHUK1kUQnMcIR/2dIO\nl9iBQIUc5zUpD4gg0EoTtEIki5cLQpJ9+rGIDK1ip8wZlyWzdQ0acqvZ1B1JCP7Dn5SIIHAiItsA\nRJJWkDx/89HpV3wjfvv1g29+k+XljOAjWSkJJPJoiC5gh4aDnX32rufEDiZxziBIDh8qdNPy6LNX\nTI52uF4eEHYCUd5BZYfoxiHoQGVovwQzxLsNretYNOe00dHImpohu6Ej2ZxhOaCUPYtNc4o8EHza\nSbYPdtnav45kRugKVMxANRBzRFzQB8kkyPag7sB/0XOeMkdYD/nksy9oGk/yARcDMfYamS4lZBQg\nJFJGVBIkCegeEPl3X6HI9+/rrTUyW7sjbgzGzGVLZiyjYsiqWSOIIBOtjhSZIjrPJoGxFQfXb5Nv\n3wCfePT5C1SoEaMx4+DxApIKKAxJQEigY0/s1dIjnGC+aEBFtM+ogqPRDe6qYy0Mx+98j9lsw2e/\n/BnVjQcMJxPGTUYwgU7n5LbEZUNiyrAypwuBTF6S8pJrR9eQIvAsvECsBWWKdEpStgmvEhMxQHYr\nposp619+inr4Ha6ePOZob0I+uA5FRXX9LtdNwcXj33Dz8gQRB5SFJp3XXGaatg2kZUOtfD8GjJBs\noA0ekTwuRWQS4D11swEXabVDbVqaUQ2iQJQZqVO0rmMdB1hxAtt3+Mv/5k/f1rH+1ivGxGjsyOuM\nnSS4lBG3TqxdzsYHqlawocErRZYy5J5EtUtkt8A3ZxxEwfboOmezmuODCYXUJKF6MmvbIo0lXknk\nsJ+OBOG4ejHFLgzpdI6+VbHeGbF1f8zeg2vc/ue/R3z1ilwXXLfnTPaecfsPR6x+PuPcJjb720zr\nOUrD1hAmRiB2MvAd1AJKDSkinAMC6BwIJBf6tN4UkWpDMmDylhg1UUnkKBIvGkIbWHSS6NeMtgXE\nNSafkBKMckkqNpigaL1mvBtIVYe8OCNWlsZ0HGRD1I2Cl5crkC3COPaPDEf7u5xfLgmhIeYd20Aj\nLXtaslkNOX1t+fmzC6pM8sHe1te+kcm0pEuBIiRCbsmRRNMiOk0uDGWWse6mKJGTDypKaxFNy8tc\nM5vXlJREGZBagohE6CMahESqBEIiVETGSEq6tyUbQesFoVsTqkQ3yGGpeblZgxLsZpYgK5xQLFqB\nVNmbVZdHGk1OoqlbUhNQecbO0JM5qAYDlnXDaLyFCB4bW7LRBCkdsXEM7Ijgehv0Tog4ZVg5R+cU\nl8IxvIRsX7FzLElrz+KZo6wC5VjiRYaRhiQ9a9fQBo+Klo6aJAR1YxEyYU3OVlnyZTOnCBlFLlgt\nQchIQCJERMQI9Gu3VoAOgtJm5HlvZf+nXKPJgHadWEZPIWzPB8TQpBqVCQbRsH+4yzCXyFVgWKy5\n+f5tulryxbMn7N79gPFGclpfcTh6F50OkOu6J93LPm0aLaDcIDctTTcnTc/ZTYKTOrEtEno8JLtW\nsWcqRjqB1eweVcTmPRKBGx98gBqWpOmK0HkUb6aKbgVNB9aDqME/gXDaZ1bJJUl0zC+veDZrCU7S\nCEiuxblECL3soQeZJXRMJBGJb8Ci06sFy+VXH7j61hqZ99+7TysSOEGIgct0SSEguITKFCOhmNct\n3if2d47JxrtUe9fY2ZnwF3/2pzSNw6XEoEsEA52ylDJACvggMckRtALpyb0kCo03C0xrma8F2gpU\nSjQxcuoc+yQO7t3kZPqUX/3Fv0eWGUOZUeSGYA1UFaasKCiptibsTzR7h+8Q3BrNOXsH1yjKARen\nzzlbLFBBUI6GqGpMZS75PLygdmu0u8K3G1SzIJxtEJMII0tIgmz/gD0raJ70TJ154Wl0STXPAMGn\nywWxnjMMMMs1uRNE4wkBtIw48Wa91LWEGNBNjZeC6dlr7h1/g9fLhklwTM+WXLt9zGkteHqqcf+A\n+PS3USeva7KRx+pAgWKdHMlHDJ6ZUT1fqsvx+x2bYcZJdZdfPzrjnaziXxzs0T36iDvffwelJD72\nD6KUXB/cFDqiWrGeaixzqAsGskAcWUYDjdNQriDlDiEKRuMdRDkhaEt0tynHd2hDzcHeKZNXAffF\n5wy+cZfNICD8itR5hIXQ1ciBAmkQIYIYgG7BJ5Jq+xRf2dCeDcm2AugGs59hFh3JOGgsHAfSyjGe\nBTaXLWU2oq0b1nFBNcgJ85rFy0QVl7iUaFB4pUh2ST68BcqipceMt6kuPGevHOtdiTaeThqKfAxJ\ncb6GRkWsMhRoNkXi+g3Fjdslqyt4evL1Folvb49JrqPKFQ92FVu7AisE82aAWzk2oWW+amlrx/Zo\nwCDXJDStBJMatJNkuteBxJTQwgARTepz4QD5Jm076X7lJEVEYsk3cGo020XE2Mje3oRmnVgiMSgE\nkg6FMr0eQYT+PYXYQYhEI3HO00RNURUJNHfEAAAgAElEQVRIH1FZRhEC0VusjEQfyHVEaY3G0YTA\nONOQEoXVrDpBJNC4hHaw6QLPzte4Yc7+FuSTEcuryLRZMNokimHsU+6SxEpJIztka3AukGKkFg3H\no5LtModzgcygkRk+rpFCIFLsMRlJ0it/BJJApi3VINH9I+G7/cfUd9/5HebtgkpYUtlj0GSlEf0g\nGbs/4Oj6Dbxbo+o5o1vXeUXGi88e8/sPPyT4jkebZ9y9s4st75PWLUIMewGuseAjAkMCYjS46RTo\neo6bEAz2JaOtHfaOBmRJMxysGAmFNNcYjQqy8W2E0T2MdjrHlJP+/1vdQykzepekO4W0gDmw87TX\ngbae6TQwbzydVIg6ElxEKI8NCacTMmoSAmcC6o3A3kTHR48+/Vqsod9KI3P76IBDM6DpGpLQQIfx\nELUgKy2ZzFi0DiMNh/t7iGqLbLBF2NT8r3/5P9LNPSHVOFfTbgrSyKKDpw1g8SQlcRgkkDWSOtOU\noqbrSoR1iFbSCUmeJPkgZzxvWM1eku/ssX/nO2yPtkkKLl5NmbYC7db41ydcuY5dUdLtjLgqSi5O\nXrNzfIvMFGQ7h6T8JVmVc+wcM1FhhyNcF1mMpmzyMTcKxc1730WtHTqbcLGYkrVX6GaMxIHKkJN9\n7K3IQWrQz6+IW4k8H2ImO5xfXbE4WbBGoLqA1pb6zQXpRA9Fj0khQuyTS6OgUxHjBE/OPubOzkMW\n6xMKEt6/JFsf8T/82/+amP5xZTl89GTFOzcP6GLC4mmlwucFw1pCJqhUixh2BFMwWGd8evIUM1/y\nzq1ddvWKaw8nBD3BuhrvNuiUozaiF2cGjRpIslKipOJsdcHw0QLhJ2Qrh1zO8TcLUsooVcRHTySQ\nRUeXLGZ0h9JrxOCQtTindBFVdQwLi7HXSTV0ziGzQAyCuDSoLYf0rhd8ihYWFegraAy2uCJRwiaR\n0gLvFGq1Qe6N0V2gKC2Ua2wV8GlB81ygfSB0vbjS4HBGk1pDNqpIrWexWrJ59Jjtb77DgkCrI8nC\nVr7Fb55eUZWB44OCXFZc1TVbCtoAXYK1sjiWBGWRPmGPLA/za/zwxZzGfT3fsvf3txllgQf7Y7Ym\njvVCUncbVhtBEh2hVizbPmQxt4byDdU5LzWfPnnB0GyT3rg0UoyE6JAalMoIIvQoAyMRqrdUSwEy\n9no9tZfROcF5W7C32pBniaoYs2wi89Zhh4aMROw6AgIVwTgQyYKIbGtP0AX4lk5DVRX45CgLzSIm\nRmJF9BLR7SDVEESBCh0+OawqiCKnwiGSIs42XEmPl4Jm5TiXidBpynLFaKLIRUVwmq5xhFaSuhrf\neWIjcbpG0xJQpHnDIgvkg5zYSBoZKFJLlP3nz1VvspVovEi4JHrrrYwYV/LzZ0+/6ivxW63S5oii\nI9W9XrMUJUlJpOpF09XK8OC7tyiGAb8sKPdGXMkxW5+/4Pe+8S/o/Irnz59w+8EN8slt0sVrZL6H\nqAb9NEYGUlAkVyLiGhdPaJtXVGWHsgN2j5ZsXTvgQbmN1Z5R3pLpHF3QryFjgUBBMiQ8y9Ml1XdH\n/URfvVlt2zWpvQR3gahn4Fekq20SAb9Z8/jRBa5LONnRzyMCOPlG0gHB9OslIzROBJKMrDaBk1df\nD0DoW2lkju4c0eUKqwqM8iipUBK0yZBNpJMtVVGxs3ODeb1ibIcY1/GTn/0Y4SPet8TWkZLgVC64\nno3ZlIqBEzhjSUGiCUSn+/GxTzhpyVXbQ/aMQweBNxVCC0Y7BeezCw4Xr+nyIeuYs1MV3L2/z/Fq\nSWZHuAyePX/K548/o5xueDjaYTZb8uLVGVYHxgc3uHf9AdvvPWS2ueLm1jG5MKgsp/OB71clQ7Gm\nWZQsLz5Dz1asz86Ir45wNwxSvskVCBIx2KY7fpdi/reYyxV2+za3Y8fj3Zu8OH2GljUISUSgRESI\n3iUhpSDahAxv9pJvyL0JSGvNM/OK3cltuvaEeFHyZXzB9PL12zjSf9CazhfU7R6bJBBRMp4YDrIB\nIV4yTpbGaUJnUEZwcnnFoEl8eHOPe8cD8p0htjjCDQIybLh6bansktw50rqmU5KdG1voruLyYsrm\nlyuMmxCblv3jFe3eAdI5sIEgtogqEdor6qhxUhFCjU05gl3Ihszu7iNUQs8X+LmDNmLaltFgwPmT\nz6iyBXajsBaEHaHta6gCqcsJRYT1Fio1JBFJrkSpKzpTkqU13kd0YcBr7N4YIzyxkrirGYtGU68d\nk1sFtrNstiLSzNGXijQtOL2I7IoWrKFqO7a04DkzdsaWtq6pN4ImrQgbybqo0HFD2UE36rDLEQvh\nSW0izwWqTNzeG/PJq+lXfTX+XyUEXJuMOZ4MqQaa9dWakzrSth0pRryPhE4SU2JgcvJMgRVYGVkK\nwayJ7JkWMEQfsNqQfEQKiY8Ro3sJscdj0UgpwQemsqOrA9onJuWARZuzWbaoDgaqI1eBCIilw9qA\nSArrLQ7LSnu8FwSpkI1HqZYcQxYCcm2ptSIWNWNd4gaWcp1YZQsGKSeJSCBDeImUoJTCaEUpGsR2\nDleReVvTRcNy3mB3xrApUas5uA79BsEhmz7NOcZI3kBMBa0CpQS5KTibXrFtCva3LM9na/wgQ4g+\nkL5DYKTG45BRQuh/m3ILS9VxOv2nbbt++MF96jpgNP1UQkW0VgQXqDqJ3tJs7YwpdUa76ZhU22Q2\nYvbvsWg8zfljDg4nxNpzfvYlx9/6PqKaAKpf/SAhNSQsUQnql09pmgVJlezt52x3infUDmaUoOio\nil6vJClQBzmp61dIKSXiqmHRNAyihU5B1UC7JjVL0uwJwp2StAdtaWvF/PkzNtOcH35yhRYRnKIL\nDVlS9GlKYMQb3wLQdR0IgZawbNb8PXfwq6630sj8+Ec/53h7m+/84e+zXSmM9n3cfghMfc3IjJD5\niOlixv7xXbyr+eHf/JQ8QkNLfBOB7RHE1jNdN0xU1guKpKYse42SFi0haWwKOAVCSZSALAlC6h90\nKE0ZE7KA5y9fcOP2OxTbEz5/8YwDY9GZwjUrMlPwwYff590/+D6PPv6Yn318Tl5/TpEVlKbgavmE\nH02fc/P0Nru3b3N4BIUdoq3AighWQ5iQtMPXA86ef0k7n9IeHaNLgR4WBCEQSkIXCGYE+w8Qi49x\n9Yx85xb72/uYzhGMwgRJTB6bFElKxJtLJLqEQOC1QMRIQiPxBCAuI215ykhrpl7wNz/6q7dxnP/g\nVTvP9lhgYkSsBZUURN0SGWOTp6gUQiTqVeL58oR75YChmKFnDc8Kj8o11fAYlwtyLjCXmtkmkVKO\n8GvO1zOGZU0hSsJuQNWSVVcjbx4gJqN+NKwDPq4xrEimQATIWZGi4XIBT16fU15dYv2aZ1PHYOlZ\nXS4ofIfZbFBbI4o88OjXP6NdZJQMqG97bnzwkIff2iPYFa1ZY1cFPkR8AO0cppB0MeGfgNi2JNP0\nY93QIQcaFTvaOGJ6+oxMl7i1Q2wLsmRR6xEuRcrdxGA6Z/qqI93Z50nrGR1sMTYlrx6fYHPBdL5i\n3Ukmw8SoKuhIrK46bGdY+gWqMSSlyb3CCc3hePC1bGQyaxlXhsHAsGo7zjeB0Dm0c/gAXZKIKJBK\nMCoGjIxBq0iUlvOzC4a6B78KkdBGQxAkLfAxgAbjBahe1IqMJNnhAN90rBcecdogBytOb0+4bbZQ\nsSbGGucc+IBSOW0+YJYGtCYynS9plxs2wpKvpygbyAe7bBcKQc7aekQhGaYxozQBlxGTZiA2VMHS\nqAYpazbRoJykUAJpBErkFKkjjCu06mgXjnWrOL9Ysyo8YZgzlJJ4GfCxQZVASkgvWdmA9y2pkSAc\nLZFh0RGbhh8cHvM/zT+nWc0wwoDoETNZ6uPoOwWZFgyEoU0JEwLun7A+xhjNRCja0K+RhEm4zpGb\njJQCi8zxncO7bE92iXVkXEJeBqo2xwVL6k7YG4yJMWdTn3Jw6w8gfwDS0LMfBCkAXiLUirTZMH/6\nAtUaGjy3si3S7g6DQSDIc2wuENYgpUTmBXQlQhpSYWDmCMtLtE4IPQC9IV3OSMsTgvwc2c4QQpDE\nAcurV1x+/pTRtSOetVe0raSNgc26pjCKJnp87BAopEkIpUkpQlSE5BEOPvn00Vd9PP+h3ppG5uV0\nysWPf8SffPMPUEdjrL9ivmnQukJXW7joufng96kXl/zsb39B1zVIK5EBZPA4rVA+gVBM1zXaKIJO\nSKOwIUNJCQhUCH+PrCIFgdIaReybWy/JcSRbUBhJ1zlOTp5xuH+d8fY+L149wl4mtgZbdHVg+fjH\n3P2jf8b3vvsDHrw/Z/r0Jh999DGvp6/ZNiP8ZouLjy6ZXc64ePmM6+/e4/7t90lZRggZVq2QXhHz\nisHBIWcvvmR1+hhbWUobkVYTfcSFAF1gWU0oj67TffaEnaN73Du+wb/Lchq/Jo+BOCmJTUJ3CaED\neNmvlmRAxkhAIwnEpPAStHFcnbUMrlXMu4blYv62jvMftEKI6OS4N8i5jBFTRmRXE5vIrGspywml\ni5yvFmR6yL3jCYftDDXQ7N/coSk10S3I84aLdJMsr9HZnELVeN+yXlrUdENazQgusQJ2r1nqiUJ2\nS6Q1+JRj5YquhSg9aPD+iMtpx09/9EO+XeWUu9c4e+2Qj85ZXM64eX2XyeCQ85efsHc76ymzH3yH\n8XlAVDPmMvGr//kXXH22x/3/ZItcwKfnjpOPn7Iz8dz93QOGMkeNFNOzjgMbEZH+zU8mTKehzHj9\n0QsaLxjmCWk1zjtkpwhpg8s08VKRySFPvlywd1xxqKfExWP2i32GR9uEuuOL5ZomeGwjaC9nlKMh\nSRqeX80poqF1EUSHC72Fd7u0PRDuq74c/486PNhGS8tF49kxhhGeRQqsMbgEHQIroLIZk1HGUAus\nMMhCMq1nbJshCBD6jT5GAjFCUnQxYm2fWtpvT1SvcfGh1z4VFVul5eL1FWe/+YzN4ZityRZb5YhG\nW1TwuKhoVy1P5l8Sa816uUKKksSKcV6xp0t857mqa5quY0VNEAGbawbDE7Tp7byDeshkvKQcb5GL\nAZUOtDLDJDBSYwykVGFDjcoL9tuGkxCo65ZFlDTrC/JhwXCUkStIPiAXEls3tLbDbhIhCJx1xBDB\nVYiwwsjAw/E2j2bnEHqsTAqSjRRMjEVIsFHQpoDVmpev/nFkDv3/rTu3brJO9MLrpJFIpHszngiC\nSWY4vHsHazxd43nnusUIRzSa7fUZ3UQBFt927Ox+gBo97L/gohdvE12/41UtKWyYrj4mhjltbFnH\nmqlOlAc50Xm0URhZ9OuiTPeJvVaC1aSNJHWe1WyJLiooI7TnJHlOWHwM9QluaDHZkFdffMT8/Cm3\nj+9TZzmffLYhukDbOYSM/XQnpDdKqEDqBMqmXscTIp7IdLnh4vzrY7l/q/br9mLBf/vn/zvDnQl/\n9OFdjvJ9JpMjGiKHN77L+fmn/ORHf0EuLMF3ICwiiZ6DEvpgrqgl3gWmixUH2xPWq4ZcKYQ02BSo\n6YV6uUskC55+xFZ41VOGTYZWoKRGakEIgbOzlxzu3aZN7zF/+TGfLc/Z3o5MdM5nv/wxx+/fZ3L9\nfez+A8b33uWLv/5znn3+HL3acKEy7HRJt6VwHz3hbPqaH3z4zzE29LbMRlAOJOXeLu29u7z84ufs\nDDOsOMarDFVqvITkAmVbc2UH7O/scX76CcXxd7m1e5svXv2MNrdsmQHTzRxn+9Cp5BNBRyDh6G2m\nKSha6RgqQ0qWWrasmoyXFyd9cNE/0jo9mzF8fx+rLGrped10LK869oOkjguiAB03FNKyjp64tYN7\nbwu5VyGsoJaR6dIwqE4IDmReEzYjunVFXjWU2QgX1nTzDUt/TnjvPbQNdN6R1oGhbhCyQupEkg7T\nbPH67Dl//md/xfbWHabGcvHpl7z4+WMOswn6QhNnc56XS7SQfPybE55s1uix5e6oZBQ1u5Nt3rvT\n8cO/O+VXv1zTdZDY8K//ZIf995a0l6+ZvlohJaw7SdqMiAOH8h4lMqLIeP7pOVdnDXuTbYoq4KXH\nry2mahAxp+gkXm/IcsNEJdyXH3F0fI11tUMpztgIwWw5JE8V3dWcCwc+thxagzM5MUnKMqMZdPhV\npO4CHo+2ijxT1O3X62376GAHWSqateOpr1FoYjJ4Ek5EBJBnioNRzsharOxBjieXp5hksCqQkqDz\nESkTQkJSPaNJtAkvNK3onw9CRAwSqTzJ53TJk1TDZKfkZlvy6ulzPnlxTtgec5iPiXlHt/E8vbhC\nhwkDJbAIhkNB8hYdOpZRgMqoJbShJVUZVhSkEDhddxTrFltp3HpDMwtoMaXYKbh27TYjGRAmUXtD\nrjwojZA5QjlMrhmkJb4V4BwboeGiJWiHziPRg209pA65DGS+R8cgfM99Ch1LpfFxxX6meK4FnRAM\njaUOHhMTTiakD7ReYAvDQBtennz9pnZvq6w17OwMCS2gQOiEjIFO9U2Ij4mb+4ccTDKii4xHiUIL\njJUo07BMhlF5hLeKiQ3I7F0oDwBJItArqCXoXrMSwxraE4a6ZRMkmVboIpJ1gagdWbKILPU5VcKA\n6sPzenX6CrFeEesWe3Cf5CUxtoSLlyzOv6QaRYyZ8PSjnxPalp3jHRoyXj1f82zmaCV434LUpDdB\njtJrhAj9d8T1OilHRHaOL549/1o9b34LrKXE8vKKP/3ffsr9o0P++L884p9984/58W9+w1/9+b9l\nqxixFA3NxpMZjVAaJQRRJKQ0KCGQKdL4xOV8zsFozFmz4rocEosMoQVZ8P3e1/U5DVI5OivIWkGS\nEakFQkMePEFaUoKzk0/ZHww5uj7myekVVy9PmGeWG+ObPP27z7ksCu5tf4jef58f/Ml9qp/8n3z+\ny59y+ewpVZ3QF4nn167QsyG2/Ws+/Jff73Uwww1qJVBVSbW3y+Jii/NPnyNdRzW+RjOL6FzhlKAj\noGOLLC28PMdMvuR3f//bvPpfPsFLGEnJKxKDlWCjAzmJGAMdBo0naIH2LUL1AVfnbc2O1MQ04Kd/\n/dVGRP/H1pPzFe+6I3IBc9a4pqP0GVO/YTFP7PmMYmw53JP8fL7Bltv8Ya7wpcV3AR9qhtowWEs2\nNrJsD3FDx1XcsN1smDQrfC1Ig4IqSerXp2R7d5BhgRcFoe1wygANot3mV49f8t//d3/BZJEj1C8Z\nXt+hMyOu3brD4tkV/tqES7Eh397i+oN97jRzPswmVPsWkXnC1SnCw14VeOfdW8RM4NYL2l3J4PAM\nvzREs6ZbdizW24yGS9rNOcpZfBYJbSDtVTx7ecXWuCRpSRI1jVKYTYBZJMkcXEuZPDHVHDSC82ee\np+eRw2/foZaR7XxIDIrD146NTUz/L+7e5Ney7Drz++3utLd/bfTZtyQzpVJD0bJKKJVVgAzDMKoG\nHhjwf+SJp4YBwwNPDMMowCiZaiCKEiWSmcxkJjMjm8iMiIx4L15/+9PtzoMTLKhQsFyASUaK3/iO\n7t73nHXXWt/3i/34ta08p90F+0VBXjr8GqwVNK1nXVim0jAtc+r22Vsrfy6lFOOdKW3tmVzLKFrP\n+cKydn13JQrIZU+oHxUFhREo6bCNpTvbIKPEa0HUCmNi3zbH4H1LjBBQ1NFigyJY0EESjEcUBcp5\njG151EkSq7hdWHbLG3x1AicPLnhkF1x6za6KTIxmlgHjSCqHrGNAbByXYY1cC2I5oBpqlI3IyjOm\nZW46QtUS9Yh1Ixi2inSW4rMJy7OWRyd/z9tvvMSeeYlEbajbjA6Pko5OG6JqGaiETjd0nSfrOkSe\nE2Jk2SiSyuOiJ/ECHRyQoVWH3ErqTrIR4FyCQTNNaqYm5bPNlq7zT5EfkAaDKTNciMgQWYuG1bZ+\n1tfil6abh9cw7ilXCAFK4YJDAh5LFJLRLEeqgMsNt6aKtvUkeaDUkrbcI5Yz9FdHNLt7T0fkAVxD\ne37OtjpisTjDBMF4f5dBOiN2A5ycMso35BgmQjPwLTIXyNyBSiBqYkJPs/ZJz207W8AGbITpnQOC\nPyeEwKNHd9nTa0J+g7vvvsM47JFMHANR02QNH/64wXYNbWUJvkME8KkCJXGyP+dWSrT12NhRBYdr\nOh5/9fgZn85/qF8KNBL6rtlnT0747H/4n3nybyxddUIxGdEq0AuDVC3WeTIlCUaRdoFWRXSUfQUY\nA9XKcyK27MeUx27DgZQUQlKj8EGQaxCxpfM5iYMuBY0lRFCdI2rRL6zJlNIoNnWFEYLDGzco82Mu\nTy756O5PuXbjJuu//Snqt/swtr2dF/j2v/iveP073+Hex5/z2d/+BXe/XHHtJGOynPPe/Mc0Q8vv\n/86/JISO1NRcbLb44ZAwGtNenXPy2KLXFeOiBG3oCOg0owmexHYMhwOe3PuMYXbA3vgWX80fUo01\nw7Zjk0REgE4HfFSY0GJRGOepVMtAlHRCIGXk5qjgu3ffI34dPHD/PzRft7iqo2olF3NHiIaWmlp5\n9qoBdqIZRlhcZVRmxapxbNuU2jcED6UeQJBcxUU/toxQ1jBNMmKzoNI5sfGYcksqwF2/SW03XK0t\nWQejPCHUBULNeHBa8Xff/Qm3NByklt1RySZK7j/4jPP2nFu7L/Pa7/4GB6OcUHr2XxzQXWYkT+6D\n3dJ9vqLdNYjtCTI69E4KsxOkV4wnAdVkJKOKxT2PHRUctHNimZDIBCcHRNHiTUq0gc2FYO9Fg48V\nXQWZc4Q2oUo7cnNM10pcLahjis48ud7hs/M5+UpS7d7EOvis8uyP4EYxxF/WFKmh2lqapcdNBUoX\noM7wqaEM4GSHkAnXpwOOr74+hcze7hSixIbIyemGLNGEJEdKh7IOFwVlnjJIEwYajJT4KHl89Ygo\nwHiQPhKNI4iEKEBgQShMED0wMSichVb/vLsToK1pnWLjLW0XsDgmLud5FfmNV2HJcyzbmnXjkBTk\n2pGJFK9bYqoR2lDdNqzbKZdVx+mixq8iqnXY2rFEMjKKpcx7fo1ULCvLKs4pxh1IjU5v84N3j3nj\n1cCrd56DcovvcrwTRGURUhFCIFWeKvbJxL5tqX0gxPDz//840SNiKtGSaI2xgQaLI2JwrJVg042o\nw5IiUSRBYJ1j6yXYmmJYkKuICpLjR/80R9n/KRJScvPWlLYBozVBuT5TCIXDEYLEGMsgHzIYplwv\nPFsRcV3F9aykXW0Zzna4/8Ff46Li5uA26iry4N5f8vlHf4pYTxGLyPR6Tu1SdoqM4nCH4c4riNmK\nLHGUtJg0IIXBqICwGcJEYpQIkUGqiNYR6havI150FHvXIZG4leb4vb8gHSyJ4g7vvfNjhiLnfFcw\nSZ/jtLqkXWQ8PDulFimrdk4EmtBSeokWKZpAJwyJjwThiF5wLWZ8//H9Z308/5F+aYXMP9T/+b//\nrwxnM75x/SYiT2gLz9Cl1K0jSRVd05KkQzpXkaicSrZoB14LFtsNMgQm0wGnyzX7YUiRCioZCa1g\n7AVBWTo0Jnhc0AjvSXVL9BpvApmKSJWTDibo6ICIKr5BNnlM8tURj778kp205JOF49ata8jDhGX9\nmOnkFq/+9lu89Z/9Id32iuVxy0//6m+wRz/iy3/7ITtqzGuvvUEXUkS3ZSgSloMRy8s50XuSek1Y\nL1FJ2YMziw3Re1oP3kfSJOGr40+4frjH/Yuv8K2jK1LY1vgQsUgS6QnSIEXA+4i0ClP26PRZmrEo\nCx7c+/RXcYy/VHUu8INPrjAoCgnDUrE7HHAVG5KpRKiWtejI6dhfwaN0y8bdRLeXBJ/guaLUKRJL\nrEqUNtiixtpLRsObXGQWz4Iiu0krO+zyIXu7L3Br9zad3NCuA5SSzdmn/Ojf3iMeOd58ZZe3/+iP\nyWcTopE9bT0GbFNDs+kdBm2EKhBSxeOrJYPHW8LiKwY7L+FICGcnZOWGQI3Oc2QtcaEhakFyILBH\nDV4nROGoGiBZE1xOnhou51M29l6fdh0bYi6RUaFwbLsSWzd4mYB0BGMotEeEBbO04N2fPeDtP/4d\ncrukVE9I0oSQpQyFJTpFluZkVcvV5ZrhtRRpcoYmsPWRqGBbOVDZs74W/4EOdneASJQB68HXfV6S\nBFQUpIkmLzJWUVLmI0xniW6L31pKnZNoi9Citw871+96CIHUscciKYmNgeAEXQw9JqRLCKGl9hrr\nJMF7Mt0H5wkRUUFzTWw40IErpXBqQxc1wofejOA8Nih2B5Jb0130jmR5bcXdvGQbMs7na+YnKyq1\nRUWFXgWMt3RSUAbF6mrBprK0iYKYsXrnAS52vHTnTUza0ARJFUA4h48KFQNZ8Kx9hEQSVg4rPCIx\nmBCwUVC0oreWa0eHwClPUiUo55jHwDxWrHwgEmmDICIJMTBINGUqKbOExarh5OrXdz/m+uEeOmpa\nEbEmkjYJGAjRISPYtiUfpEx2E2QEnwrCxSUH+wVN09Clls//7m+prrY8tzviifkb7n/0Aa/YEdmL\nBQM5514HZTsmLFZ8eP6Y8vJnvHjnir1rt5DCgV6BB0wAmUAWIBOImIE2RB+gqYi1R4UB5/qEg+lr\ndAvP3bv/jt1MMJAv8sP732VPTVDjCYU2XF3eZXZ4jXsPDVdVDW337yGQJnis75Baokh6IOrTGBAT\nPSvvePzV8bM+nv9Iv5JCBmB9dcXfLRbMZru8dO0mpI7ECKwzmETQ4tEIvPRIoSE4+vpXsths2VrL\n/nTMk7BmWpaUCawSjxOGsolAQ1SGIAx5pJ9/C1Au4JVAJwkmycmHQ1QMTIQi1hnDckqafMz9kwvq\nyy/xqwWndLygb9Be3af64pLnn99hdusWoxdHvHD7v+HjH73Ej//0/+CHf/VXHA53iDtTqq6DzZqY\nzsgPLJePPuPAKBpZEKtLSpVStwmGDUuVkwhNDB2pMXRhyZ3pHvfnp8zKA1bG0eGQMUKQeBkwKsPS\nkIQMq1NS1ceGX66eHTr9F62TRd5LMHkAACAASURBVMOb+7vkqSekUIvI2GZ4ETFNgmoVeeFYDDrq\nuWOxDMRxRLCg9TmL5hKT5gxHLQ0R1w3ZmSi2riV0AbFXkAwEm2XF7sEBqUyQYotab/j0XsPDq085\nv9rh0ycV//r33+Y3/4s/oCw0eM+yiQRWXDy5QNcNUTjcxZrYQrh2kyef/JDbXc1FLsCO+OreQ3LV\nsJeCySxpVoDt+iXB0NF1MBAKNw3IdIg/X7MddAyCRCQFbZXy3g9+yovXJwjZIOpApxRBrnFMCDEQ\nngJtXScoNXROUEvDaAjmoub0dMkorBhruEDSekc6yNEu0LmEybjk/GRDfVWhRwrGmtxHRDCswoYb\n45T3pMCHZ9/tU0oynY2QMfapzUSE6K3SEoHUgiLP8VHQyIylyChVwuX5EcEFgnBIrXqOlPQgNUEL\nRD9TwtMH3wkZsfin8EhB04GNgZoeiyKCRAswStEkimWQTHNJEJFKOdpWo11Joy6pfUYRNJ6I8B3Z\n7pbEDMn3hhz4HdwYdg/2udq/ovOR0HacHp+ztEvac8vxyRPSYcK1ay/hG0vdtWx9y49+dsYgz5lN\n97C+w3eezjfE0HeR0lxQtZ62ctgoqYhktsVqSUxBS4lLAsMoUVuIXhGKgLKOZjPh1J6D7fcfQnTo\nIPpAQOvZXm1ZZhWGyOJy++wuxC9RUkkODvfovEDIiPYCn4IgYEO/k+JdR2FyJmJCZwObTY4UOUYZ\n5ucLNlcrnC+48fpL3D85Rn7+kMnNP2abSHaSJYuuIz+9zz33EAqD3W6pzxzz4x8z3X/EN775NqNU\nkmQtMXcEbZAyAbkGL3rYo+uIde8O8JsCnQ9Y+VNWH3zGzfGQPCn48Xs/ZMQt2tkNYlVTrx1nzsF2\nn0+//JTgJJebbW+p9gErBEr0obYS1+fIiP53IaTm45MHX8vu/6+skAEgBK4uznh3fsnhjUO+cf0a\nG20ZqJxFWzFIDFtrydKM2rWEzmO8oNNg28jR+ZLJIEMFSTuE0dOF2M5FOh8Z2RQ9rklyQyNTMhHx\nusIJjVFTsixHJxlaKhKlEKMJ2e4u5Tinfu8z7s+vcMsHXLx7wtnpjN+YvclADXh88ikP7w4Z3tjl\nlRff4uVvv4VLC777v/yP/OVffZd/8Vt/SJtKmk1EiwrbeiY717hYXDEeRVI0T5zFth0DWWONIsYN\nfmNZ+I4iJmjVkZuMTbNGiZxUNrgY8AJKPLXvUCIhKQCjMNJQA9/7sz/7lR7hL1NptAymKQUBpQxn\n9YJNE6m9YGw1VQpFI0lNQtRr3j+74nDvJtfVJVJvUBpiNLRa4rwmSRy1UAjjyRLTh5Box/7BlE21\nRtlIYyfcvz/n/meXdMUhdij57/77f8NvvWhYzy95/GjJ0emKtAtsGs1ukpPvVGiZ4Ci42Hju/1/f\n47lv7nHiVpy/84iYeb71ckExNqQ3M4SIyKYj6pa6qYldiywNMhMM1ZAYG8wtzYSMq3PDl1+cspNn\n7MjAzp4gVC3OKJTTyDggjR1JEai7PmFTJEBtcUJTl57Mem5Np/z4e++jxIjf+d0D0lQjfYsPkTYK\nlJJMBglhlnO6rjnUBpSniQIqx8Zb0hjZG+WcLJ49rqDIMvIsJQjR4zwESCFRGgwKlWiM0jglSFTA\nm0gjHBeLFZNokNHhBTRNIEszFJFE9PtCXrUY3z+wI5D4hE5Y2hAhdNQRnJUoPKmWGKGR2tEBRkTO\ngASJioZaeFaixVWBqYGBSem84qpxnDWW3cNz5GjIULZccEipC0bXC6QT1NkV+3szErdi5TpSSuRe\nRndmObta0Z0FjuZzzuoF7378hN95MyBNhm8j+JroA63zxOAJMqCkZuMbYg8vRraBIig8gsr2XZlS\nA5Vk4CPbCMvmilXd4mO/F6KlQmmPEtCGyNF6QbbSQKBu/2kliP+najKekCtD8H2+UNQBRCDGiPAB\nLyIhSnSiadKWsZmAdQQx5v7RirixiEHGG3/wB2ST69ysBIwmaCFxzQYxv2LV3uV/+v4PKOyUQZIQ\nS0sdHNfiLvXFGV988Q63n3uNm2YHFzskEiGXCN+BT4nCEZoOkSmamD0FM6+pr44Yjkqslnz40YcE\nW7Dc26VqKxZVxM5X3Lk+Y9GlHC03OBeJrjeuhBhRUhOUQgaJV4CnRxK4iPUdn3/09bFc/0P9aguZ\np/Lec/TVERdPTnnjtZe5drBDJgNCSrK2JRpBYXJWlaOWHcYr0B6lNPOmobaWPRcQ4wzjA9p7tk1k\nqS3nYci1qmQ6s5AKdJRE2xLEBUoajMwJJiVqQyEUeV5w405BmZcMPvgp97Vk1m65Wq345OIH1EC2\nN+HNJzdojk64e1Fz7bm3eP3Oa5z9l/+KD//6+7w/+5id/R1m0+vMT+akwbG3c5t3F5cMO8+JiwTR\nMmsT5soT3QrnPTUGEQINAW0yMlVTG4VoPDHTCAu6bWmyvgLOtaELkR2V0iWB0y+2OPfsyaO/KG1d\nhxx2aFlgukioIE00vu0dE94JHDBwLZPRmNPjc+xrz9NtKwa7ATHJSGTfpkiSgJYeFzxSKkK0ZDol\nSVJicKTJlNhUnB1f4S4XvP7tO9wc7zB+4WUuj+Z89nBFYxVdF9B1hxQj9kuLu1pwdlIxFyvqxy2X\nd08wJnJ/9ZBUDNntFuy9miNdhd6JjIMhJBai7V+EJuB0gibgnEVmHr/yLGpFmpZ8/Oklo2EkTS27\niURvr6jCDK82GLNlaw2+iQQTyBoBiaNJC5K8plKRWmQwM7T5Luf3As3VEb9nb5GMJa7VpLbGpIE6\nJHSq5OaNMYvPHlKtFZanroXOIp4C4p7bKb8WhcxsNiYK8TTvPz7FBgiMNKRGo41GaYHJCmbTnOgC\n9x4f49uOUSpAKAj9/XHColE0UWA6hxMCIQJOBDQKq9vefuoMIkSqAF4EBhIyrUiRaCGICBrnMa2B\n3CF0go8K13ZUPmNuHV9MVgzHE6STtFGyPo9QXbD727tMakmVPKLeKoqB4YbZw1/P6KRn0kp2Qk6r\nO/w1we07DZKWn33xhI9+tOXTo3PGkxHXdiwDIYh46ghprqm3EZdE2hiQTcratGijyOqOLkoSI9nd\nCNoIdeowRrCoah5azaNqias9Qko0AmUieciIqiWLCWvZkFvPx2e/vm6l5+9c76M//M8RQwqrPKbr\nnUoA0vXdVa00IvRnGzYbQqZxScpvvvAqk91DRDoDOSfYDqcDRVbgb15nf3ON//a/rvnzH33BYLPl\n/MKyLTzdGJS8RvN4wccXf419/S1ef/MtlJojVUDYnGA90QvctsPIglim+OYeMpxg5IDtUDD/7CGX\nG8Usn7FqG2xbUy8iQ/WEYvR7fPTpx8QWVrQoYl+0oxAJiGj6zqXoMR7CQgwd9x8/ebYH84/omRQy\nP1drHe99eJeP737ON9/653xrBkcFuLamzPdZty1sKpzpA/MQ/Sy8bQOPlyu868jGBSNrMInBysB6\nuaRKG3bEiGkRKVLF0DhK76ijRghBsZsjFNQ6AgWj3DB+4XXeKq+zf/9n3PvkLsVmQ5p7Ch/plls+\ndh+zaDLG6RWvpSsOb73If/5Hf8zLL+zwp//bd7n25AmzP5iSlgVdXXNZnfHqc9fYrDvEYkGsO750\nDpRjmgoa72hEv0hWBUuZ3sDqFXHrIDdk3uBST2ckug00CVjZf94qiHqXDz/962d5fL9wOefJ6gCD\ngHdDYnWCiXs0ckOKwYsO51KsTDist3zZeT44PuL2qymqTOi8QhlPOpZsrwxeeSY5BF3QOo8XjtpG\nEh3RdMSBoa5L5lcPuEOBmGVstmvKmSbdM8zvrTi6d58P3/kUTi0P1g0v1xklI7ZDy1XekctDrk0i\nN29rVmw5SGEoA8FfMKuHPHqyYTyIjG7MQFZ9MrPUiABJmdJuWsxQMB6WfPz3Z1RXa14ZDhlmJVXd\nUHuDMRtaX2DbljTtqEeCrIKYROxQkzeRqvQsuhGtijRxj3c/PeLk0RNeuFHwyfqSF8fPo9JTGj+j\ndUuW864PqFcp4yJh6CPBZDgFQkg2dcN6btkdJM/6WgBweHj479EbClAxgtIkSiAySAOURclOmeGK\nlrufXvL4wQmHRcJaZAxiRBL7z0uBQhEiPZxWRHyQGKcRUqKEw4uIixbhPM5rovaE0OfPaAUxgrGR\nkDhineKEwGvHQGWkheNBo3BW0J03XFQLOuMYjabs5UOqyrP48Yfsvr0iqfZp5w1PNqdcnZ8Qb2iG\nwZPt7iFm1yh9oI4W1Y1hNOIbbxbkk0Pe/Yvv8eHn91nUuxxMDLsqMkVgxxldMIgtaKkoykBoI4lJ\n+5eVDSxKx4tBkRHx1hB8S5I4YlfTbBusiFghyITAec/WtYx0xjZ1qG3CRlsuV7+eY6Vyd0SZZbgY\nnjK/+2lw0gis8kQRQURidGjpkcGw3liMsOg847kdy0yVDHcOkWmGEDXVqmXRnFFvQJqOndt3GE4P\nuPP2n/CvJ59x76tj0sdfsLy/gKajTi643C9ovxAI/zmTyYjbb+7g7QBYUVvP9skpa1lxffdVVPic\nKC9R0eAHHZvjcy7OT/HjHRaJollINuuAZE0+HHNVBR4cL5BaYhaWRii0CzijcDLBCE+Mqm974nHC\ngwvc++zLZ3s4/4ieaSHzc7XO8c67f8H9UclbL78KhUaoBj0oseuGbWyZ2tAn/QpACmTQnK8bkrZh\nqftCJtOSIi1Q2nHRNrjRmLJIqI1C0TBczCnG50zXDbs3bpKVBVJvqNUA5wXFwQ6/dfiHvPyt3+Lh\ne3/Llw8eUG8jqQmkUnOYjUi6EdkCVCG4aD7B8Twvf+t15g/u8cEnd/lnv/HP2M6PcV1gdniHJ+t7\nCGOwVUsRPRQFXVfhXYRcYrQhiROOmkdQQaM8uTNsXA0KNAk6leREcpWSKE0k8v5HP8H9E4ND/n8p\nRniybLkzLVnYMzpruGKNlQ5dC/wwkhkoE8e9gSDbgPaeQqUY0+GNxjpNEVKmqWGTNmy6XbL0ChVz\nhEiJqqH2Y6IZYi+OWR+fkI5yOqUpY00UJTofkFpDe21Fnmb80e5rXH56zO93Oxy9f4yvIsd+hskD\no7GhcVes717w0rdybt8YYVyFG+zgzhbcfOs6MjUItcVdSk4fSHbveDoJuC2kEXSKoOPltwuyIvDB\nTxv2X9/ywqhEbz1r65ByjUk1rfWIytN4TWYUobFcJoENBW0esbVlcbzk0b0rnmsE19Uunz/YshEb\nbt46JMsFq3qP7fl9srGi6Wo6IoPdCUo5zusNhVKk+R4unLJddiRK0vlnlxmhtWYyKYhCoEJACYFI\nJEMjSbXGBQlKIAKEpsI1isW5Z1Et2VUlnU6pPQilyEXEBWilRwiP7Sk1oPsoBx37tFUZFdopKhVB\nCZToE6ti9MTQs5dE1ueAtKpCOIUWoGLLVsPObkCet9S1wreC1VogL884Kubs3dhje+aY//0jdkYN\n5XjKZDAl39d4m3G+Eph7LSfiYzI1wivL5KChjAaakt3DnO/8q+/w07/4Sx7dv+RqPGAwDbxUFlxP\nPQJFKhQiERglQRiUAjUQxNqQB0UjLSsJg63DNLBxGWfbM6oKhIiMZMrcVQQnSITjot5SCs8oyTm2\nnm3dPrP78MvUSzcPiCKQBIk3/XK3FAJvFLg+JE6rQNc5JAbbtpgsReiEa8MxegDx+g7J9T18SPA2\noFzH459+xnA84/Royfx8xc39lsnta+y+8U3S6YzycI/Vtc/4+PEX2EeCV9WC+wPNJ4tP2Lk34vrh\ni4RiReI6bHPJ5mJJOd0hWNhsLxFun3VWM2s3zE8u8NmQFE9mLetuS0YgugyRDTh7cETjYL3ZUHWO\n1jmCFuQxxYsIzhCkQEQHXqBbz6fHZ1jnnvXx/L/qa1HI/FyXqy1/+e5P2J/MePm1W+xnM55Mx9Tr\nM4LvOUQhgpQCgsWpiPAKFyyycyykIpENuTZM6oz5umaUJAyGBdNRQesTzOaSzWrB/OoxO3t32Nu7\nRlpYapOTpCVxdo3r1xX7L7/KN0+PuH/3E85PznFNw3A0pXMCOTRM98YEEykTS+Vfo/INZ48/Z9s6\nagSD6FjYmlGWcbGpEalCqQzvHW3j6ISji5KrywUPLr7ian6J8QpBP5OXqUdTYLEooYm+j8sOoaNu\nBF/e+/pZ4H4ROlltuGP3CL4H+k3EgJXeEoaBXGiUhE5o3qhrVnrE3Uef88XkNt96e5dNtCRpiW8V\n0bSITlIkc6LLUTEQEIiQkIgaX21xWjAuJY3OSLTG6QkmSZFC0GCh01wfTLm6fsW4MoirK175HUO4\n1OyuF3wQBa++YHjxG6+RzD9hfFOjZj3ALQmX+FGKzjqiBmKOLgKVv8Trmwi5xnuFEBKio+0CUUXu\nfGvCc99QXBxH3n/nmNuvZHgsvvb4ELBtwBhQBWy1Y9tqlnhEgEYqji5H/ODLOVeLhuF+xoV7TOb3\nuffTd9id/jZpkZDFGlUYpIssTzbs6ohRjifrirqOdCPPRHpmwx0mZWD81RXnq2eXFzIel0gpUPIp\nYy9CagwyMTSq5yilJmN3t+TACL48W7FuT1Cd4LKpGKUjgu4DUTWeLApsCP3ibpD9GCH2aav+qeEg\nakEVFFYoch8ZKMiNRgkQEpwMfeXtJEIFpIIYJZZAaB1aRkY7mnbrcJuOwihkK7iUivmDUw5oqS88\nn4w3DMeX7K522Nl3ZGoAlxphUmQwtPWGMof16VdoeZ0sV4y8Ym825c6f/Amff/Ehp6eXOJsxrzy7\nkxpjZmTjmugMzjVII0hNRKiENRFipDYB0yYMk0Dwa04rwUlbUycdsVJcuA3RR2KMtEISXGA3Lyim\niuzLX8/sGKkVOmR9cryKPRZHChyxt+1LjxD9srmkIwhP11mGI8NgMCAfaUyasL/3Oq69JM43rNot\nm6sjLi4e8L33/4zvPP/HdKuOj89/Sv7FT/jGt/8l2d5zXJcFk92bHN75Bvc/u8uX7/wYVyTczu/w\n+eUxrx6dkr/RIDcJRozZfT7HdpKwuWClJAMhGCUr5u05502GKhJaL1luFpxuGmZTjVhrxntT3v/g\nAW3T0llH7fv3S+YlrQYRdN8wICBDoPMWZy33H371rI/nH9XXqpD5uc4WV5z98Iq333ib8fN7YFqa\nq4pcBCSC+PThQ3D9DE/Ip12w3i7YBUftK0zTcakUyapicK6ZDBIm+/u0NSy/POX88SWP94YcXnuZ\n/dke3XSHNh+RDHbRyZByNOXNG3dozo5Zns2Zbytca2lcwNsVZTKjch1FhDQNdMKxWJ6gRwPqRYOq\nKoa7O1xuNhACwTY8PjtHFyPkYIrzgeOLU86XlyQWGu3AR2KwuBZ0DniBlY7M5E8teQnvffQhzv76\n7Mb8Qy0WLV0Q1E2DkB5XenZiThoiNjd0SQON5nioGcot5w897xzkHIjXcPYxOQ3eSEwEJXvzhVYd\njdAQNAWBioLVZomKHQFNMShQkxStSmJjWNeOarvk7Mk5L90+xOxmhLSgWq8oPzlCDmqu7e3x2nCH\nbALKeOzNF5Bjg6u3mGkOlw3Z/pzQ9blIEIml4SxkHIQKTezdIrEGKfGhexqGV2NcQlZannuxoE1a\nVBPRnaQxAVtApwTWabbR4BtH7RMIu3x62vJ3x+e0Dzf8xiBjkzc8Tg0D12JqxYd/8wG/9e3fRU8U\nN8o9bO24MJc0taJWhhA1oWnJSkXbdWxdZGhS7hyOn2kh89xLN8mNwmqHsRIpNFqqfv8JhZCKxJRo\naVmvBZ98cY6taoyWrBrLMq0wuiCKSGJBCE+JBg1BOYQS+PgUJqT6P0vWR7xsUAhKnZCkBqGeup1E\nJAhF8I4U0XOQXETKgDaCUkBFv4dzYz9nkAXOLmu2icN0kmhyah9QpYFlw8nlnFNzAlnOMEnxCnaG\nA8osZWSGVMKDE7SXF6TpJWWRI3PBQZJx48U3qF76gu/95AlbNOswYGgCNgaUs7SJQ3eSJJHEKJCu\nYyMiUmus0rDdksvIol3Srjsa64hBEmK/IByAQERIzyiRoDQP5otndhd+mbr+3HM94a516CzFegdS\nIWMgKA9RYkKfAh0IiBDomkAiBPmgwOT7pIWG6JFqTCjqPkgudKQjx8g/5ocPvs/b4jvM7tykriLv\nff//Zu/WLUbjfRQ95POV11/j+m3Fpz98n9Uiw8Y1q8UF6dmIdbZBNCA2GxZuTS4TZBoJw4rYpZw/\nsSjTdwe7ztJ2LblKEM2GYnSTsycNm7aisZFN3SFRSKUJ2qAi/VKzCCgvsEiCd5wtl1TV17t4/VoW\nMgBEeP+j9xmc7vObb76FmG6I2xOElqjYxyUb34dYqacWsZ7qJRERnO8rZx8l2xBp8bStZH30hHme\nsr9zQCY7mkdnXB1tWD2/w8611+lERKjIaHePkGaYckR6oBkXM8rNkiZ2VKuKzWaNY4qJG+rVnMpu\nyaLi7OyIg9vfxC9O6LZropYkaZ8ce7aN7N15lW0IBDTzx19werZAuA4rNcIJvBEoF+mEoKm2YCT1\nRjIaeyQpTxYVxw++fj7+X5TqpiVsPdFGxqJEuRarFaIUjIqS2jsGredSG5LYMhOO1i15+OSEb9xS\npFGAjwjZINUIHyyhiaRZQ9N0kEmalWHx8ISDwR6FWRAnL+CFp9nOaeuO4BR5aphMx9x79JDbs1uI\n8ZCD2R7p868gWoeKWza2IQwFEosRmlZohC5Rfo0YDhDLihg30EVEluK2LXeu94u+IigENVIKmhCJ\nNtKpDtVIbGsJweGJ2CcRLyNhpKlSTbdV1F3EJbCxkbVOqO2Is/PATx6c0a4iN3YMCx2wOmeIwiYR\neSDZdFvuPXjEm69dZ4PHJJHnbxzw8dEG16yZjCdcLjcMNglCbfBe0pmcw9kEOHlmd+LGdII0kWgl\nUfRp4CFJ0a1DKUlqUrLSoCrB56cPuJifoLygM30BeLpdkhiNl4ZEw8ArUgKZjkShkF4QdAAliEHg\nA3inkLieO5MFZBKRsh8t+ahopEcLQYfE4kkISKdQWqKMphQKhEIZxd5hws2dlMXVFrUS3N06TpIh\nMutI8xTTDbCNxbQd1ToQUBxfXYKKeNEv8E6SjOFhxcv7uwzTAVM1QpstUbbsiSE3rzve++ghq8mA\nIEAGjwsRTZ+To2TE+n4/qPAOoTTS1TSpZiMSjtoN1aol2EgUDhUFiNg/RyNID5sgORCey+WvT+TD\nz5UVhpEpMVqQJAnWWp5uiPS7MpGe76f67zYqj3OetuvwQGIMidGUk32kytH5BAqHlhnt1RUPaijG\nt1icn/GTu3/H68nv8vzsJs3gBQwZoaq5XJxi5AZsR1YmfPO3X+SdH/w5y9PAh6884XdXU2Kc0YQG\nk0vsymNqh9AKn1/SBEHbWjolcG3NYtnS0jFMMlbbIdev7/DuOx+zrDt846m7QJIlEOLT3b2n1muh\n8SqihEMJyRcPvt7dGPg6FzJPtbk44/t//edMXnqNm4evMF4/pJGeJAhc0reZY4h9HoQSICMiqp6O\nHm2/iyI8Wyex1uMnJUTN+viYvZ09DmYpugl8ce+Yk+WaG9s5dA2EjsHuDVyWEYuCVCsyk5HVFSZm\neBfQ4pKmCthqjewMu7MZxxen3Hn+m5yqiALaTUNsGhpnOXjhTS7Oj1BiwNX8MY+eHLNazxEWrOhQ\nQRKU7KNGntLdlYDgoPEdQz3k43vvfC19/L9Ize0Z++MhPgTOqi3XyGnbQJt0TKTgYgq2SyhONTtN\nw/xBwza5hxkMifuRuimxzlBmDU1MMNrRdEOscWy7jBPOMc+VtHOLGuUUY4XRHaYYMhqVyDJDEpl5\nye5mh6TIUUFjUocQChkdti7J1YK6bonSYJ3qzzsAKpIKScwq4nYBXehD68SKnWFBjBUuOISP2Jhg\nky1GSCwW0QqwgeXa8tUqowqSDEniBVvjsWlCN5TYrWTtFfU28mSe8rOHj7Fbz2w2Jm2XVJ1kGSLX\nokQlmlBLRk3GR9V9pPS89OINtgZy0adhJwJC7MgiZHlkXQlE7bnqluwY1T/gnsG9K4ocp2T/xQZJ\nMCCURrSeqOlZSmmGVIKT+YZ7j08hRqyLmAheSzrnebRecFtPUGjarEeZTK0iyyxEg/M9xw/ZU+ej\nioQY0FFjhcKZAChEiHhpiVKTBI8NOdEJrAxkaewLLTSJlsgskosCk2gmg5S9UcZo47i+iHx+OufR\nRrI0E8YomqwPsstU6BluOAQaRMdwUDAd7jDOIM81RguEr6n0EK0Czo8QYkltBOuqJRIJSlGIvoAR\nShAIBBtB96MEbfpdIISnudiyWVvmriMnZelbjOydWtIGvJBAJLSOy7Wn+zWkXb/0+sukwiJNTmNb\namcpTIr0Ai8DKoq+U0HfrRNB0XaWttnS2BbvHSLpvyepEoQwRKFR44LJnZe4dnnG0eMjrs0i7z2+\npPt33+XjmzPK4YydSQrBY5Irom/IQsJgmDAqJ9x66QbLk58x/fA+X/xexk322VVD1moMPKTKO5KQ\n4INms97gQ4F3LZvK0TZXqGJKFWtqM2FdtSjR0tpI3TQo2b8nI5IYgSgQQWJkwElJFJKgJVX99S9c\nv/aFDECMkfnnd5l//gn7LzzPG7dnsGnZYMF5vApoqbBa9DBJEfoKB4kKjqgMQgY65zi96m21tyY5\nj0/OaLuCyXDKTEuqszWfVfdY1xte7WpuWM9oOgNTEJTEZxIlckzsKP2Erm7xck1nRhh1Rus9st4S\n2sD8fMNwpkmIeO0xk1022yuCsGzY8vj+fR6cPOrzB6Qkd5raCLxyEDTbumUnHeCNYCAjV/OaNl1x\n+vjiWR/HL12X55EXXym5f3JKvirJ85RVscHajlSXiMIRS8tq01F4zbunp7z27ReoshFJu8FqwGqc\nTwFHFJ55syW4AToZkjQJ5WhIdu0hw/IQVUS83lJ4jUhSaA1SKZyKDCYGSUvbBbzYwTtPlm1I0hG+\nntNaRcha8lQSbUAR8U4R/vbJ5gAAIABJREFUBfhGoE2CUzV6adHeoH1FJwJBa4IUJG5NtZC4YBHS\n080FF4Mh0l0SraDYkWyTwFaW+LmgEp62kmxdSrVSPH7S8uGTR5Sd5mYWyXQK7ZhGbcl1wzw0hKqg\nFf3YZOoEJz/7kuneIfu7mm1dUK9Pub6nuQoRTEpRaDYeZBMwrkMMI3mq2DS/+mW/vd0ZXR3QShFk\nREbR06iJJInBGEOiAnZuuX/yPptVn38hRF+IJF6CMYTGcTJfIKcFgZJ50Rc5Q6EZCo+KkRAUPkac\nl/ggyWMgKT0mk/g+ew8tRZ+vgceZjpVU6E1J0IHaw06XUJYOIXMyUlSmMYkg05FUFGSJYlZavjXR\nHG0kH2w9F03Llohwfa6L8Iaqk6SiY+Q8JksIpUYWKS4qvHBooYmhQeKovKMKkmFpUAiCDyQo7P/D\n3ns1W5ae932/5w0r7HBS9+me7gmYGcwgg6AYVJJsFmWXXeXyt/KH8I0v/QF8Z1e5ZJdEWbZFAfAg\ng4NJnbtPn7z3XulNjy/WgaVi0SRIDCeA/F93dZ39rnev/YR/MAWTMiZnSlVIVHggq4EcsWIZo/Dx\n6Rkvui3oRJEGq0KSjJ8cW8LMlSmFTRWIT7af+R34LPAv/iX8+N/uwbSjHxOIMBBoKofJBjUZ7w0l\nRqyAjTWxH9nutvS7jmEaSUNCj6CIYJizvKy7y+rOkm/95xW28vzbP/vf+e595fmbO9IHW/zzgfDd\nW9zfe42DxQFxCvT7pzx/tGWzu2J9eJ+v/f7b/LufB777wx9xcudd2m8d8bWuphsTi/2G4EdqFlAM\nmzKS1ROnkeIqnHNcXw/cen2f7nIHVmlKZBMjqV5SKbPxKnMRZklEuSHOC5y9PCeGLz6N4UtRyPxH\nKC8//pjTTx7w6jf+gK+8tWBxGbhiQqdyY55naZJSEmCFZAVXMiIO75SVEdLukkfBYsTDWaAfJjaL\nlrqtOdwKpw8nxt1IP0y88eZX8O0ezWqNsY6Qlc5V2LbgSKRRaeoNdVOQUjNd1ez6Dl8ZXBgYzIJi\nK3JVs3n6kPrgNa7+4ic8OHmMGyBawURhcnOXIyNEIkwZXcGt1V3G8xfsvOff/+svdzDkb4qPX5zy\n1qsLuiFzu/Gc3eo4xnNlK8aVZT+DTY5hkTnsMl+Lno9/+pBv7n+XV98SDjFc0tDHQDINKVissbi6\n4+nZFlLEtQsWvuL5yUtuLQ0c3qY9LhRdYGzBOovJBawjFYuvBWt3IA4tjjAMbK5q6sU5tsDusvD0\n6pJjs8YsI++//xHrnLi1uMS7DX2MqGaWsmIUJW4CMlS8TEeY7RXGJjbR0nUVSTrKYQN3lY1AH1YM\nu4GzzbxOIlR0Y+Lk8ozTq8hehmPn6dcw2isWS0d9WYhTg1lBi3CHmqeyo3EVZzbw/q8ecli9yTa+\n4LW3G7QYpvORxSLimhY5u8TZhoUIw2Xm3mrFB+Nnz424f/8+GWEyc8RjKTPZ1tYGJw4q8K7ief+M\n8QQO144X2w5ThCQQrdKKYquGMI58dNbzxoEl0qIE1HhybWlrpYpKJrHRBhuE4izOzH41NAXCjesv\nFmtuVE4Utm0miMWLpSWRjGPPOkybEVNhcs1YFYIxtDbROEvxNdMR/F455LAOXO0WvNz0PLm6YJoi\nTQZvF8hqzeL+LSpgO+04sC3XU6b1hv0CnYM4jMQcqXwL1hM0I9lgNJALqDX4aXY1tiLz1PdmnRbi\nyLPrHdWQ8FVLHCdqJwQ3c2rcWJiKQXDEyfD+s9PP/A58Fvgf//tf8fof/j63r5WsUFmhAEkVK/MG\ngJRRZsm+VJar6ZrdtOXs8pz9iz1u3zomhgFNI7iKYhqMscAe9d6ab//pbV776qv84M//F7qf1Lz2\nB5FdZWivPuQvnj7gOizYv7XPq+aA2/calus1xh+yLy3/zdrSuidM4QUPP5m42rdztAaB1M+8nt02\n0W8DXT+QnMGbJTYuGYpn/+gWHz75gM1WsN4gJVLVjtRPVLaiGKUqQrEyF7LFQh75+YePP98H8xvi\nS1bIzFAtPPnlD3j2keNbv/f7HB+uyJKZ0ogvMFnB34wC50oTVGbZ5AQgQpoyqokhGKYx0Q+R9bKl\nq0fWZcEmFwKRIe746mtvoWVCxCHWYArkBBsT0KJUFIoVsgfvPd3VCRss6moKerOzvGZ1dMzp5QmP\nnr0gbCLBzhEExkDtGmIOKIl+mPCuYbl/yHrR0m0M45XS95vP89g/M5SinL7o2bOWtFfIdslFZamH\nRC9l9jZzhXRUsYuRLho2l895evEVfvxs4I/+4G2W6wgBgi244sBOlCCsXI1bVcQp8PJy4PjwFs0+\n7K8WJKkxKbOqLdCAbCmpQsw4rx8mRUuH4ohdIoTIuGk4Pb/gg2ef0BBxhxUPP0r0zwJv3bFMZp/G\nFWqvdGI5UWV7WejTEY+eTqTTHctXDJVUtMESrSMvLcFatFR0U+TqOnN+JYzRI8lz1Rsen11xkQ37\nccGxy3SHE7UFJw39qJwZ5ZXWM7aZtnJskhA7YZczB6nhydMH/MTCd77zOn3s8c7TljOaRU3SLbdv\nLekteFMYN5nNh5+P3NY3C4wkKpRJIceMU6W2FvHQWEPc7dg9fsHl0FFVhioJRQSngi3gak9RpajF\nTIUn11vu5UimJQGxCMkVWm8RVXJRutqSbEGtoy3gssxqJZm//0Xm5Y+KIVtFAIdyWVkOcUSTEbFE\n2xBayFR4b9hyQGwnGIR62nFsEvVqjd47oOY2+91dps6wyBO5OAZfI5rotlvWiyVHB/ukPJLsyBgK\nnQh9UkQFvCflOdwwuDlqQnWY7eytw2imiKGSSDGQp8jldkC7wsYmCgafhMkb1mLIWtipxYhibWHV\nOHbTF787/7tgHBMf/fkPie++zb2mJXmDxHkCiGSMt/NKCcEqZGPop8z2/IqL5TnN8xqxhmkcMMZi\nzDlT7nn1jW8isgTAujUH977Gn/xLxz/7vY949PEHYAvj67e4c9XTbTPBXNHqBGHg8graOpBMRXP3\nHoe3/gkXLz9k73oiEVjWNclELlOPH4SrYWSzvcY3K6rRk0xi13VY01ImmIaJMCqxVARv2HfK1maC\nMXjNZGOZ2adgCLzYXbK7/nIQu7+UhcyvUULiZz/4AYu9Bd/63tusFwtkTEylUFQxajA6Z7JIEcQW\nijBnhxiDYEgKm5DZpR0xBBarljgExjQRYmSYJjYXV7z6+uvs76/RbBFrEGvJIZKmjo0OROKc6dM4\nzrSnqhqCmXNdcjGUIlzvOp5+8oCnpy9nDkyZ/0a/aDC2QfoRRbFZ8ZVnUS9mKWiq+fkv/+zzPu7P\nFHGrtIeeTVPmvW5eUbUGjJCzQYwlS43eHrl/DdWY+YvrDetmwSYqqyRkKxAzlogwq0GWfiCFEV83\n7N9eslp7WN8nNjVSwFaOfnQs2w1xqjBuSxoNMV1gUmGXPJdnL3ny9APibss2BRpguTIcHq54dhF5\n+PFE88otrlaH7LlnnA9HvDw5J9kr1osKs3uNH52NfPL0km8cN9Qm4FdrTneBTnrixhGTJZjMMBiu\ntpCKYZoqrq9GHl8XXBbuilJWlotGWFlHahztZHkedxxSYTWhxmAEmklZJkNfFdaN8krV8OjFQw6O\n17z19hFxd8XR60csth3XLnJF4ee/2PDLx+c8u/p8zM9ePT7gvs80VaLgOB/nMMeqVpzx2EViYQJP\nr064utywS8r+9UT0BZlz8FCBphiiAVsSQ+PJIfJwO3CcMznXhIWSxJMqwTUG9QEUqgxjSJw7z3rK\n2CKIDzQoYj3FLhBrqKMlaQRTEGnoHHhryNJivEV8RakMRhoqH+jyGsmZUTIZw6q9halXrCvL6pbM\nTuZ2x8VVTbvbEsdCuz5ktXJUqxUuOlRkzpobekK4aajU0GshBmVMgcbN06TGCkYyMRtCsSzIqM+M\nsePlyRm7cZqVdVEoC+VO22BVeZ47nBGmrLROKP0Xnyvx26Ak5cFffIy88Spff+UumyaTU8ZZx1Tm\n9aMyS9KNGLxUPD17gWs9qsquG3jwyWN+8Re/4vj2MV9/502exV9y6/gWVbOHlkAYr4n1Ie7ed/nG\n0T1C6Bm7c85PT+n6HROW1ltQaK0jZc9Ur2jMHi9ePuT64hRbKZVbIjZQukIta7bDyItngWnyiKwI\n9OS+YkpX3L57m8cfP6YLhatuxDjP0lSM40DtLF3saaVGjaIIqlCy8pOffvh5P5LfGF/qQubX6Dc9\nP/g/fsb+rX2+8847LFcVkgpFIgWLKjddFFQpk+2sZrKasTjqpYUA191ITJm4aJhiZBoTQ5jou4Gr\n7TX379xjsVjgvUfEghFCmPNzEnPQY7NcEG3GoXNtq0IqyvVu5PmD5zx8cga53GTFOHxV0TQrpjBg\nTcOYt7R1hTTCnlX6KfPeL39GKb97BLu/Dk+Gnv3jNWmKdAqNGen2DOZiYlxa6gxWGi5WhrUox1dL\nnv3yfRZvvUl4ACdfafF4FlVD1QZiLBgCvVicLJhkj5NUM8ket2nYBVjYwpTAaccwtTjdcLGraQkM\nec3l+cizBz+kf37GlGH5iuX4oKH1E5Vt6LPh8mKPFy86wvaUy3svKZtAGjukrTheHnN5CT9/8D52\nl9gvmetzx0hFGUeGLXRTS6cRjYUpF3IyTCHTTYluGKijIiZgFC6s5bUsTNahjaMthpddj3hHOyau\nsmJThfoVyY34Ggo1YTVhVWgXFS9PLvjWN+7h9hpOXl7x/UdXfPjwkk9Otlz3n2/3/V9/9zXeOFBG\nrRii0HmlzYn7zZKDWyNvNsLZRWHzZMsFDi+OQZQ9XXDlR1ahoqenk0RtHZM3GBTjDCYoZ2kkxMR+\nTkzFs60ibTG0paaKheyUIYF0EGJGdC48vHgOm8Si3YDZx7qCFEcphZgiNgiDWCaXaNxI0Yriamyl\njHiiCpP3yHSTa4NSuYC1S6rK42QPY2/R+ol+2ZJzYCqFtRiMbQiDYYoB45RYHIlCtEpQQ4ojSSxq\n5tDkaIUslrqY2YlWDSOQULpJ2XQTfSoIDkuiOVxxMDleWvB5y6pymKSQIn/+0RfX2fVTgyoPHj2h\nP275p80+1zmRVJFS5ogMZmWbiJB9wSTDy7MzwpC4ur5m3e5xenLGs/3HPHzykLrytLXl/v1bfPO1\nY0oVoHYcHb7B4I9oKMABx1JhNs9hl9FxZHV0wJgz+XrH2Ecmc0237cgk2rpFWsd4MfEyXLDv7vHx\nww/oOrB2TaZQkqdEyzDVvL485sXjj+m6npjn9SJVg0kFdVCjpFxwAsVafC5cxpHd1fXn/TR+Y/xO\nFDK/xvX5Nf/n+Q85uLPmj9/9Bs1iQUkWdSNBweW54kQF0Uw0IBooO4ut5lHwMI6EUvBW5tVBiMSU\nmFKg70eOjw5YtEuMWLRk1M5+EjPbe/a3iBpJRdEEORm2my1Pnp7x6NFLNsMVag1WLLWrcG1NThPE\njGkcbudoK0upM7U3/OTpCefnLz/vo/3Mscsj50c7mrFhT2p6l5FNYUhb6rTiysLx2lFl4WpRIT6x\nPl3Rv/+M/mCP9bWnHB8zSMJniCguKVsjLN3E2q+QxhNHCDWs1tBnx8IC6ihJOe1XDAM8icKPHz/i\n+uKae+6cpixoX8mYxYSJ+1zEfU6vtpxcbHl+9pz1ruFe09P627z/8oppuuTV15e8/3zL7mWgt4V6\nNNRZ6CfPReiY2gW7aSANnhDmNOWXKeCiJdjMEk/aL+Qrpewqgs8cZUO3tqy9oaCUYSTkgt8M2OWa\naj+zEKiGwIN8zX1rsbXBYLGlZlVlLscd/+Gnz/jlowe896tThumLUzC/uteyksypeMQolSns7zne\nua282UTa4Zj/+eHPeHDdYWOFWsEUxXjhTjEMTaadWlIO1Kbm2oW5uHEjUgQjwuWQ2CXlMCi3KiEE\nIRY3p9PXzORfnaiyQUhcZYOEiQfOcrSsub+ExTqTjcGU2URskEjKiSqPbMKIzwFJNTUNUWpsGikq\nFA1UbjG7DKtgBcg1pZ5VU9ll6jBPj1tdIHZeIalLlCkSciKYSCduXi+ZwiRQiyF5ITmLE8VqmU3d\nDFQ6MdnIMEz05xviNqKiSIK9RUOuLapK7CLSWEqeVXSp5ndSrfRXQRVOfvABP7h7zOG7r3BLFUJB\nsRRhnsjrPO5TZxh2E1XZ0Q091+6C5WqPTbfg9PKKpqo5WC948eSEH/9o4N7dQ955+xhXW1r/Fl3a\nYvWKZEca70ntktIYMhXD5QlDf4WplxQU6kxrKrxr2F0MfPzoEW/ffpMPnr+g65eINxRpGKaBki1j\nMBzceYuTi54QMhebkYJBSsZZP+eOlYjBkEuiGE+dIIvy/gePvlTq2N+pQubXuHq55V+9/D4Hd27x\n3T/6Oof9EsdI0EJfFaQIdSzzGqcUosx5JGoyhnnKEgSmccT3kTgNlCkwxkA/jtza26duPBYDWAqZ\nOETUCDtJiBbCmCkULi6vOXl2ycPzc/KoHNb3CfVIHDsoEEJPGgPLekFvCqqOujHgoRsNv/h//mEQ\nfP8ycsq4a0ux0NUFexPul1PN4HYwGs60YOrCLV3wdDkxvjrhzhxPnn/At+wfYrenNMuK+4e3WS4H\nDhmxSbg0S0SEPUl0XaGPG95yd1jaQJdqOjsxTg0fPbngfLPlZT+QS8+quuJ5PMTUNbd3p1yfrjgb\nIlP/HkEDQ7EsnJBfTYztMf/hRx8jKbBfTVxfGLa9cl4qpjFxbAznDWxIHOXbnJyNDFa4ZjZFZARM\nwTpoV4JMltvVHqm6ppdA22R87yl2VkCtu8yTvsfsAreWK6Y6cMCSWDo+mEbeqRY8XhTWoZCK0MWO\n/+2nO2IG3nv6eT/uvxK+RC5Gx6RQqbJXK9/eq3i1bXlnVfM/PTjj+uXEUdrjRDqMGA6S0C9GfG7p\nCRw2jpcamDRxWBo21cQqNZzZiaZYshSmkDnb9PTNhDUVVeVZSqEp0IwOg5AaRRudA/Zqg4zwsA8U\ndRyopyURrKFkZSnKYqkQR6azlotpR6oWhKVD1ZEp1IuKN2/fpfIT0hkSLQWIPmJEMFYxE0xuH9Uz\npBR8nvOepmzJam6yx/KspHGgDoy3TDHgByF7Ja2EqQgOCMlgkkWHQNhlnu4GLsZMJHNQO9qqYjEo\npzaRibSuZUoDzsP2evd5X4fPHM9PTrk627D8L79OM3lE5oJzIrPMhSyeSELUct317O2t6ePAcDGy\nCkv20iHJ14xTz95iydGdAx69iHz8yS/45uNr/vi/WtGQCaknaU8oE34sjEm46B8w7jzNnddwPuPO\nCl0ciSXzwYePMS5zd/Eu751cYUNgcnBQPH3aEccGhzKYLd+580e899Mf0aeJnJRSZjNHzKzsU2tw\nWQliaQMETSQtPHzw4PM+/r8V5DetukTky1Oe/ScQgXtv3uPdd++znyp6CpKVbDImMSffkjEFohFc\nVrKRufMx4LEYERZNxa2jPVZ7Sw4ODqnrito41BqMCjFnwJDiwDgWdtPI5mrkYpvp+h5fIDSFaeqo\ns0VFGfPsFNxUjqpdM3UTaRxYHHkWTvjJw1M++cVHf+9npKry9/V//zb35u03b9O2FbVaRjOHuFWp\nzOGZyTC2hVJgbddYo7zSOwgbnvgrDu+8yh9845scv7LHWArGH3K7EWq7Yd02VJWZbe+LUnB4dQRj\nAeF8Es4vB3abyBR6BEfbZJZ1x65vOD3bcnl9gqTMQRvZX3tKZ5CFEkfDyeU1z87PqFNN20wsTWAs\nLVOwjFooZCZ1LIwlLZX9YHnRb+mTsmcdQSKDFZbbTGgtlcx/a/COshm5CMI7SejbhGs8d0PFedlw\ncpl4o1pydGC5lMBRs+RyynSabnxWMs+3A+fbgfBbNtef1Z1pKstr91/hnfv3+N5ra7762orv7Rfu\nXkf+ux+d8PGTLcUru1Gpi+K95daqoSeQY4JqgU5KtiPLZs0w9lwL1H0mesh57sCxzIGRNRix1N6z\n10BTNeAMjbccak1jhCxKDMI2dKg1LJuGpvHUcXaQbpoFS+9pq0RKwmVSGuMI9QKpGmojJFNovGF/\nf00qwvH+AYev3OLwcMHC78OiwpZ50qjJgCRMUaYpkkPPMMX5faEjl7uJftexGUfGKVCMx1nFlYKI\nJbh5UuVD4cxnFkNAn77k3398zrPujDYrbdNALaxD5mVK1Fj6Av2uI2bD8yePudr99lypL+q75m/C\nt7/zFfaWBzhVkiayZirjZlVYyTNVwFuOVi1q5uTsqqpR76hdi3cVq6ri4M6K9XpJKYbDVyYOTcfb\nb91ir1qQNJNyx3bXUVKkcUtkKcioDDkyXgXOuwi+ZpwWXG3PyKMB5zGpJ9kFaVRCGig20oRD3vnP\n/gXv/Zs/4+Vlx/XVDrUWdQaXLdEINiVK0tlQ1hjI8MOf/5Inj79Yzc3fdG9+Jycy/ylU4dknz3nx\n6ISvv/tV7r92QM1MekMKDiWLkBG4GcESC0mgZAgyW90PXaabRo62S6ZhYLmoscaB84hC1kwOypRG\nLs9gM+zYxo4pxNmwz2RkcHhRrk2au6g8B7dYaQkpoGVHtMrB2HDWwuMPH37ex/e54vp6oFo7YrRk\nW1iMsww324Lkgg2gmrmWC0qpOVk5VlH49uk+L5494f9+sOGP/4s/4M69Pc77F6Syx+u3GpwmSqiw\nrUfFECK8mArbOHC+CYRph/RCPyRyGOniJX5hCbtC3Ay4qVCFgbROxNDyi+cdOgWmOGBVyWKoimG5\nMmiCqawIdgQ7skoVfQwokaVbsBsTOReCZBYy+8+UAqti2LmIzTOxdBDYT5YhC4c20NtEbWpuRUM/\nTFxPiXdXB1R7YBeRlXFs88RmN/Le446z/kvZhzCGzIcPnvLRg6fs3jjG/ekr/Gl5lfShp7++ybEq\nyqIIwUV8ETQXUmW5VTw7M3G79jwqguyuaVY19WB4bhJVmDkz4cbh10lBA0wkhjHQ9Yb9JrNsG9Qk\ntnXAGbAF0pAYQsQVy2BHmtZTVw6riV3Xc4rQVB6xlljViDN4E6icJzUV62yQCNvTnslbcveMl/2G\nu3tL1oe3WS7X1K6mOMfeqqJ4QVMmTiMpz+aFRSZCElIOJMk4a2cVlmaq4omVp5SIAjZDrB1TsaTr\ncz558YKz3ZY9FagcKgUzKWdRMTnj2xq6kXkTn9l9CUzR/j7x8589pG6e84ffeB1rK2wRrL3J5VLF\nlEIOSj8lVq3BeiGmArkwlGuMdfTtgk2M1IsNa2she5b3DFeXmdBcYVNgkESbHFJbcJkYlDwV8lZ5\nOWVennWkHFFzTYk1deVJeYe6Go0jMZTZ3DE30CzYnZ4zRMs0zFwfA5hsQMCr3vgjKUUNopmi8PTJ\nl885/nd+IvOXYZ3lne+8zTtHh2RnkTRbeU9WMENgArRENIECaKFg0FKIWMQqjbEs64pV22CdUBVh\nUphGZRdGtuNE1ECVHcYbrBWSUcgJQ8GqQ40ianDWIHWFhgmi0hH5anvI958/5tFHTz6TM/midkmV\nt7zz1Ts0xbLzyjILQRSTC6ODKkHQglcBy2wvXwt1veP4DD4+GTh47YA/+b1vcvvuMe5wztdBPI33\nZLX0U2EcI0KmriGlCZdrXpx1pH7C5UitgZwCp9ue1lbs+ivKMJFdptKRmB3WGkQs6pQ2TeykYSED\n5JrJzgm4MVkCmb4rXOGoNVKyUDshekOrhr5K7E+WcxfZS8LoZ85CowZbGXbTxN4gHESHNi2OidN+\nojraw9XK1bDjbBt5eRk57/7+DOw+zzvjxfDOwX2mOnC058nqqXcVVb1Fa0vbeEJV8Ua2XCwyrxTP\nTjPXXYf1yrJecH0deJEyyVrIiqkMFshWqYIyzZ70iIWmcRwtamrTUMrEEAt9KIjO5g6NNzSNwxmg\nzMZiTfG4WtDWY12LrT3WeeqqoW4aFr5GvMGqoVjIZCoR1rWj3T/i8PCIvdWSqq6oWo9f17OBSQ6M\ncSKNI9MQCCkzDD1Xu4EclW1WNASMF5w15AQpZRTBxUC3ueCjByc8eXmNyZEogjEFk4RYJhKFlTRo\na9hsOkoSxnGYOROfwrP9or5rflM4a7lzfMCrd49o2mbO0EuFpDcCDisc7a1pMUTjkWzIJqGqKOAq\nWLQtdTPfmVurBa/dP+DOsWe5EDwVizpj2gGJhmkqbMfM5cvAs4styTaoFlRBspDU48pItpBSYrvL\nOIks6gZ3+DqlU569PKHb9VxveqzziDe4IhSEopmSM6k4alP4yScP+fCXf/9bgL8t/sFPZP4ycsq8\n/6MPeLJqeOedt7n/yhKX5s4ly2yClrJByf9fvoZooZiCL1CyocuZTegxlyNalOQyVkGywYpgRfHG\nzvktqjPnIc8yWGPm6Y/DIEbBCCVMoDITNTO88JnHH3+xRnufB2IqpKIEU3CpsMXRaCZYaOJcHFpb\nsKEh+oykTB0WBCmEOvKNvcz5w0v+zeb7vHXnNl9/4z57X7uLVi0XzTn1eEAqYOuB1CXOTgMOwxS3\npGFkGAOXu0sMSux6TIEtBu8sySVaBMkVnoiahBQPsTCqwevETufYghQKsdRIBQRoFob1ENA4r5GC\nKi2GSTx1VjYm0QQYnWJKwpTMgKWESNUvWKgnLwPdauLybODprrC5OKOPgVx+J/qNvxZRC7+8nIv8\nR2eGdrVgVR1wt2SWY8Xe6Dh9JbNwLZsy4QVuLQxTMLQdxGXmztpSricuI/ROsLlQvMElIUsB5vy2\nrFDGQlcm8kKIksgZclasKpOZybBKoa4djbfzlE+VXUosBkNsRnwpWJtIMTDuBi5rpbYO29Q4M/Nw\nItAHRxMs3ZBYrhas2prFwrPcVrSrFlUDmslZUFuQsZD1RjZrYaUweD/HX1ihYv4hvYwT0+nI5clT\nzi/DnBllhBgjHgg54FWoNEFjMH3EAs4KL/v+UylifheQcubZi3Ou+sDX3z6eTesUKgoZpZAZ+gFp\nD/BGyFowaihSbpJ6BeF5AAAgAElEQVSzhd24owuGevBMY+a6Czw9WXJ81PLqa8rOCLqrQDI5wu4q\ncX6ZiFohOaPGIaUQJ8WYCJUDTaQxYeOAqRuiqdij4flwSk6FUhRhtiWp81xviyoiBpGCmMyUhQcf\nfDm3AP/gJjJ/Gcv9lre//Q732gUxKTFlcghk/XXuK5j8H0dwUhzJKBmDaCHDLE8UBZk7NBGZjZQM\nNyFjgAgGwYgluzkI3t90b1kjpQh5Cpja8Mnjc05ffnYOml/kLunNN26zWNXYPKfPRm+QVBAsSJpX\ngxSKrVDN4BwSDMUnBjfx6lUhjPDRruOet3zz3j73334be7+loyftClNIDH0kTQWJ06z2SAbpJ3JK\neBFiiRgsxSXEONocKKJEDWSTaZMlemCAbBTjGqYUMb1ySmJfKlYusmks6xGC8+xyh8WTirCXK4Zm\nxI+wcQNt1NlN1TikGSnjjdpGBPHK6SPlZJMJUT+XH5kv4p0RI7Ttgq8e3eK1u7Bvb4Ev+P3M4c7z\nYLxAeqgXnldKy4N8ThkdDw34bIjWzNR9lZvmBXyG4iyVt9jGsYhQcqEjAxZbCuoNdSpYP3/hjYVV\n7SnGkCl4MWhtWEmFtQ5Z1VTFkXR2ErZVQ8U8VfTG4poFTVXTLBqqtmVVVSwWDYcHC5q2Qm5Sisek\njKEnDsKokTQqO8kwzZO4UiZycmzjwO7ygsuXW3bnl5z1I1MYoFi8KJoiKhlxHkqhqT1jyuSkGLX8\n4lcf031KHjJfxHvz26CuK/7Jd77CqlqTpKBklgzkXLNYHxBMQ62ZKECoqZqBZCdE58gNX1mct6yr\nhr31EbeXGZaOV24tmExC+8AURsIAUxGCJHzKpCQUVawYjFHClBmGCUqmaVoCC46PX+OTR0/QkNh1\nO/pxoiCYqsInyLagahAxkAq/evSYn/3sV5/1Ef5G+JvuzT/4QubXaNqGr//z73E7w5AiIWZ8jnMB\nI/MoTwFB0WIp6DziQzECUuaKxejcyRUDKoZFhiA37pjMOv2qzFPiIAVDpp4qBhOxOjFS8+P3fv6Z\nfvYv8svl9uGSO7fWqCtodnMQYJ3QPHclyVocGYqj0ky0c6gjxuCSYddEVlshGTi9Hui2HbcWlrfu\n3ePuK7fxtceWgGawYuh2HclZxBaiZuJ4jZSEKZFgF9gUsHicUbQoVi2lDMRiQQLJzJ4cRiFnT7EJ\nzZZUErUHzUoxYCKQHUOa2FUTzSgEMkY8jXVkU5js/A+7XrjaZM6uI/Gzjzv6K/FFvjO/xn7T8s/f\nfYNXVyuWq4Rc7ThLQmyVY9fwdNvRGLjolROnMDlylUkObJwN8aIHp5bKGMQD4m5MKgEUVwxOQWtD\nWyzJJ5bZEQWW3mCKZVdHmiQUNbPIwFpaX7NoV/imYooTWcDJLCww3uN8Re0dztdUTcVq2dK2LUeH\nS6raYMRRciGWyKgzSTPGxBAyJSei1oTxmq4P5OuB3eacZy+veLm9QKNQAVFAJM0GW8ZQMUdyFARy\nwolh0swP3/vg03gcwJfj3vxd8PbXPN/9ZsNt3zPYis2pZQhfY90ssXiiU1Qyxg7YScneUxmLOiED\nrfNUxRHZsXd4yN7hmr3W4C2UPDIVocRESfOmwIhA0ZsYhQLdQJ8z1lVMUZHqmP3DQ05OXqApcT2O\npG6giCDiQQBVxBpAoMD/+q//L/qu/7yO8K/FPxYyf0sc3rnD6+++xZpIjgVXJqabGHdUZ9dDClJm\n34aCxaKoyvw+QChGsUVQ47FSyGJxOquiPDq7DpdCxuJMJugcMlaL4/s/e5/xMybWfZFfLnXteOON\nI6zYuQBQQUrBGDv/KBSL2kRRS3aRenLgFEmGXAdMqMm1oklpUibFjNn0dF1iaTN1cVzVmVoEbS2u\nrbh/e80YIy6DzY62ElIuCIaiESOGnUBbwEhiKOCoUdPh0xwGifW4kuYubSrgE4yC1rNV/KRK18/E\nzTY7xtriFgXJlksVLk9HNtvIEMun9Sg+VXyR78xfhjOGf/aNPe4cNVz1r/OVuMEvheswUueETY6f\niZBLYhDBZyG72SfEFgFnSLawzAY1N99lB06FiUJrHC1QrFApUAnJKXU2pBpWnTA180dSMcg4qyaT\nE5oiSOOpMKhxOOcwtaESj/UV1jms9yyaBr9qOVrt0SwclfPArEYCS1cCKQRCETREYon0447xvOPy\nasOj5+dcDSONWqJJ2GIwNxEp2IiWhkoSipKsnWNYrHJ1sePjjz89rt6X6d78XfCN34Ovfkv45l3l\n6rnnxfN38etbeGORrPRaUDveWHfM5ooxTEylYCi0ywNcBZIDtw4OqRrBezvnv+U4e7sYixUlJBiS\nwhQIuWCsJyfD+dUVr9x7i8ViweXlOTkE+r5nmCbEeIrOtatVcNaDgYfPTvjB93/yeR/f/y/+sZD5\nu0BgvVpy995d3lkvuHaKZMjMKbBauFlomHmVhKIyv/iSCAZwxiFiyDMNZk66E0VKRlXmiliYoxPE\n4q3hPEz84jOexsAX++UiAm+9eUzr5pPOIohLlFzNUowiiMnY5BCrTLZQZSVi8Qpg8ZpIpqClIpOJ\nNiI4lkMh1pGDMbHIlkBBxYC1qIMlhV0L7SSECipT35hHRSrNdAKiBi0Za4UVMEmmNh6nShGhDBNd\nW1gNhVQ5RBY4Rop4JAXOnSPEwNk28fT5SEhfjq/ZF/nO/HWw1vDK/pJ3j1ZUVctiGfnKLvDUVTzI\nhs4UbJqlSQaD6Mxtm21P5/w29+v8NiNYBGOFqhhyDTUz4bPNBrWG5COlGCRnGl9himXSQLaGOijB\nKNbMYgJxFm89lXUkJ3jjMNVc3LRNg68a2v2G1i2p6tlZ3Dgw4pliYhoCJSnDNM1eWJsN52cv+eA0\nkEuiLkqygi+zlYFasDITJcvNyjYbcNmQjSIFPnnwlPOrTy/x+st6b/42MAZe/V7Ff/sngYunjuHs\nmxxUK0ZfIUAyBlMShUDXB4Y+zUojJ6xWFdZa9tZrnFX21g3OV1Q2M5MTlFIgaSQOE8M4u9dXbcu0\nmXh6cUndOr737X9KySPn52eUEOi6nj5FKvFE5obcOovBgmb+1b/7PttP8Tl/2vhHsu/fBQrbbcd2\n+zGPq4o33/0Kd5sadYVcdJZbG4NFZkfVmwsmKEYV+2t+TElg7PwiMxmbC0ksXjJFKqzAaAu1gLMV\nv/rZTz/vT/6FgyqEIVCtGowVslF8NtiiRKNUyTL5dEO6TlSjp1jFSpn3wSURLEhyqM0YySwnT3KJ\n6CuyCqdNjeQCOHyJMw/FRbrsaaNiJAEFVxIZGFSoVGilIBSkFjQbRsnYYiBnzjXSqke9YCZP5Rx9\nLYRkubgoXHVbrofItv+H4Zb6RUHOhacXW55ebDECi9rx9YXn6H7DMt8hlZ7sdPaPQvCLRKWKj4bR\nODJCLkoAXJqjAeoBSu1YTkJqZtL/ZDNGFTfOK+conhhm1WLxhTYYBl/wyVBuiMWiEGNgyNNsiOig\n6h1SWfqhxtc1i2mBazsq5/GuonYVxewoIdPlgdhnQt9zvc1cnp9ztusoanBmznWzKGpAmMULeVYg\nQEgU7+Y8KZMhCyEVNv3weT+yLx1KgcfvBf6HH8Gb30y8+eoL1tUB2EOKGEwnqBaSg6BCLArW4G3F\n6VXHYtGgZUO9V1OuC8UEbE6z75WdQysnzaQwkUMmZsfm6QWEjF0sWLRH2PWK8eQSSiaXQqJg5SZ/\nLjF73dwITk7Pt1/oIuY3wT8WMn8DphB4/+cf8KRteOcrr9OsLJUolTqCU2wElURWA/N9RIyFomRA\nslJMQjI4LYib9+bRFkwqGGNwWvjg7AUp/m4my/622KVMa8AoSFKSmadbVVImE+fsEy1zCCeB4ASJ\nFrGZIhbJhQoICqZYRldu0oozRgzkQlOEnkg0zMF6CYoomYrDbIguEI2wEsWRiOqoZKS2LZMR1n5C\nckXGEMdEaxz7TcMAfPCi48fbLddDIN24a/4jPn8Uhd2Y+OGY4GKgchuWi5aDOy13FjX3KwFr2UuW\nvoWNFHLO6OTIZFyyTBR8ZUk205TZRK4CNM28OKQQMIhOOPH0ldJEw+AUX+bg2mIjPvlZDlsUV8Cq\nJeVMMBFJmWwzcZyI44DbeZyrEe/mFYUkcgIdJ4YhEDcTT7oNMevcYpmMYlADBsXd+IdkM5OLCwU1\ns0+NZPf/sndnsZpd2WHf/3s40zd/dx7r1swiWWSTVHer50mtSN3qhiVZiZ0YShAEiZEgQAIEebGQ\nAEGc+MUB7ABBAjixEcdKgkRJoBZk2A5kudUautUTm2xOVcWap1t3+O43nmkPefjYhjM43U2xeHnJ\n/XvhC1F1zr6rzl1nn73Wooo8kYCpKair98ihrBPIe7jxKtx4dY9u/5Bzl57mmSVJ3GwwqSyTIseU\nYJFID3VZ0dARvrIcmRo5qVBKopUmihVKz1+SwGLrmroyeC0Qhrd2BmO8lLTaGT6fMC0qvDdYa7DG\no5lPbxdvPfec9MRe8cMrJ2c45D9P+LT0U+q1mjy1swVNiXARxluwzEs2vcMiiIXAOHDCIaV4q2TS\nIcV8QJxVAu2gUoKmdeQq5sXvvYy1x/N2/l7f7m00Is5sLlAJgRIC4SzGy7c+6TkSoyiSGl9rQBJ7\nKNX8LTTygkrVCKNIhaH2AuUFhfNIKUmYv/wiHc4KYhwlko4QZKLGJxFVDavNCZXLUFrRNBWFTIh9\nSaYcNqpoeEFuBHUqeHBf89qDCbPKUNv35z+b93rM/FlJKWhHioXFJpfOLiMTzeKRx+J5JB3GzEeR\nGC9pSoVWUApJLOa1jiYWaKtwymGFQNUQ+QgXW+q3igAckmmzpptrHPOZWrGBXDkk4IRAC4FHz5v1\nodHMz9nM49rPGwA6w3RmmVQzhtbgK/HWWT2JZ36mQnuHUAopHBpH6SWREvPP3N5jFERWEGEQOqbA\n8ejBAXfv77+j6/p+j5sfJ00jLu2c4ZNPtbg+dUyGFRXzBpogUBoiJyij+TJ55/HW4Y3FeYcVnoaX\nuFSTMD/rgvAkVlOmHqM0z5x9EhHBZLyPqB3TWUld1TghcUicF0ipQDuGo4Kv//6fHOeS/ETCp6V3\n2NFkyh+/8gad5T4Xzmy8dUhPkZSWSluEs9gfNRryFuvmJZ3SS1CeWoj5FFXhSWsB3nL7wZ1jS2JO\ngqqyVA4iVWNdjJEeXTuM9kg8UynJynmliIkM1kpi4RDzClkiM3+g18z/a4RDaQG1oVAKKQ3CZmhR\nkCqFsoI8M7StpBCeZsNA0US1HYvOMM0cwk7p4TmoDTd2ax4OPAeT8DN8v3DOMywNw/tDbtyfTwFe\n7Tc5d7lPO5e084ijtqdbK4R2zCLIhKSWkBWSWkuateBIOzozzTCpiWKHIqI/lowbBo+iPY0ohKdS\nNYkVlAoECuE8iZfgPZUwuNoyFjNM4SgwYOd9Z4QVOAfCK2IUcSSotMVKDbVHC42R88okNf/AgCVC\nRh5hBRaHf+tZVCtPKTURFmE8Rx/A+UqPW1HUvPjGFW7KNb643qNGo2OHEBpj55/Di1iijGNe/uqp\nvCOuIU8ESRRhpSNxAqkkzluEV1jlqaWkUYLzBkqLtw6Mw/r5c8n+08pbh3IKjOW119+5irTjFBKZ\nt2m0N+C7ewNWV5dZ216jGwuUlFALhIYKi6g8eIsT87er2GiMBFVZqlgSI8it4ODR4Lhv5z3NGEdu\na7QHqed74oWyKC+RVhBjcbrGI1Fmvl1vhAGhSKzBaYF3Ai8F8keNxGoJap5oZlZh4wnWZXhdkQiJ\nJKZjcoglUZEwbsxoVDASkusPct58WFGb4+nhEhyP3cGU3W/M5w210oTlfgu91EaLiKyStLVnmmqi\nWNCrDTUWWRtmWqK9J64TTGQZdg219jTKGqsUSlsaLiLznsoLKsG8e7WvKa1AGcvAO5QB5wWJj3HM\nWzko4XBa4rQltw7tBJAQ1Y4qEnhfEzkFwmO9RPDWbo/XgEEJhZXMm05aQICpPaaqmUw/2GMJHqej\n1x7yW689pL+4yNPntmkkApFo4sIxs26+Yy/mv0O8d5hIIoQGMT8jo7TEWIcSEcLW1A1Jajwi8mRZ\nl/HsAGk8864g8/mBaj7EG43Aa0tVw6MH7+yO23EJn5beAUJJ2q0WaxsrLLfbKBxjWyPyihoP3s0r\nlLSeD6P0DmkFMnLcfHDE4d7BsV7/SdjuXVpp0ksaiGjefNB7OS+5UAZqjRQWW8/fUoQUKDEfCKq9\no5YShZlXiHmJEGBriU9qvJs39YkS0DaG1BBXgikCLWaoGezWkqOjKXkezgv8yEmImXfT6kqLp9cb\nqEaHlpdUDU88yxCioNYWVTusUminUbEgFZpSzA9vxs5jqohBkuONwlUGZyUFHuUsuRXzcQlvTbic\nr7x4q0mnnLfGt5BLT2Q9ztv5vwMHtZw3j4y8wOkaaSNULMFB9VbhgkSgFBjxVlsI4zkcT7h96+E7\nvk4hbv6/LfQ7nN3ZpL/QQBhHVRtyU1N6T2bmo1VirciUnA8tdQalJcIovJpXyrqqprO8xM72DmVx\nxHQ2QwnPeDzDSo0XCldanJSkwvONF99g9/47/zN+HEL59bus0emwc/YM3cRhiprSzIc2CeaN0LAO\n4yHCUBrJlffAYMiT8HBJGgmnlntIYfFKvPXZSFDPj1QjraSWhlhqvFdEwiG8wCg777LsASGwwqIQ\nRJWjUhHaCqqowFswzlHNHNOyIi8MppoPUQv+305CzBwHIaDXSljpd9jqJciFjIUpTBCkiQet0Vog\nSDDCEzuP94oqrmlONLciS5wbCiUQucP5ecUJfv4ZQbr59G3hBV563LzX/LzyyVqsmOf3kRBMPcTe\n48T8U4JR815VCDAI1Fvzf5zwRDhsDT4W1JXl5q0HTCbvfMVSiJv/f+1Wg4vb26i2po1F6vksriiz\nmFFC7SrwniSO5ntrEoSPmIxGNHs9zuycQ0UGWY+Y1BW1mQ84rbVEOk1d19hIISrP7/7Drx/37f7E\nQiJzTBqtFr1zp1g1lto7HB6BpXIS5QqUF9x8eMh0fPydFE/Cw0UIwcbpPlE977dQekeCmrcjdAbb\nkESFQiYONNQOEutxnvnBNl8hjMaiUJFmYnKqqmRUVFQTg60s/r3Ze+496STEzLETEGlJK4vZWOly\n6VQDOWqRrw5ZyBuUskkaOwwS4xylrLB7gmkGUQ4jaqSdVzK1KsFUGzzznRYjPVbMP5XWCrx1CAxC\nKoQXCAWu8lTEaFEipEM6idRqfuBTMG8c4SDyUEiLryFVmokpeeONW4+lui7EzU8mjSO2T3e4uLEA\nPqLy9byZZ5aS5fOqNycVvpaMh0NU0qKnU5547kksM8rxAa6qmFlPLtS8Ks46Su9oI/j29Vtcf+Pm\ncd/mTywc9j0ms8mE2Q9e5aEUrC0tsbK6CCLCa2jYiGFt3xNJzEnh/bwPRi0EGAXCMRMOrxzaKTp1\nhFIWGzv0TNP0cBiBdTWiAGsk09mEyaTAGPdWi+7jvqvgfc1DXTsGdcFgVPDam5CqiPXtFqdXNWtu\nnWrlAUJIskmHMjHYt+Y21cKTWUUhLJGAYctDLVEOTORwViKNx8p5GbUyDpRi3u1XIPBYIUGW8zj3\n8zEdiRAYaYlqNR9aqyS1M6ROUmpP7uZlvaFFwPEqqpqrVw64/uYhSRqzs77I8tYSfeuoU4uqIo4m\nFb4uUUmHqCfJR4ZmlnI0e4ivcySS2nq8nXeALrGgPZXX3Lx2+7hv8R0VdmTeLULw5M8+w1nfQC33\n+f2v/yHj8XujCdFJeUt68nSLhU6ToZHYyoMz4BMi5SgaBU3TZVjOeLQ3xsaWamSwtQsJy2NwUmLm\nvUwKQbsfc+n8Ftt6g0l7F4YNYmEZKFDVvAEjzhMZqJ2g0gbjQdcwU47YKLyyeBkRe4EzZj7fC0nt\n/Hz6tXUgNE44Yq0wb82Is2I+AVkxr6R0tkbW8ODwiEd7R4/lnkPc/NkkrZTttWX6jRZpFCF0TNSx\nSNekoeGjH3mKo90f8mBQQZWQ+5pilkBTkBqBcIrvXb/O9Ss3j/tWfirh09J7UNRsUL+HhnOdlIfL\nWj/jExe6DDDMDhrcNjPKaEo9sIwPqnfqrwl+AiclZk6SJNasn1tkI+mQkWAiR6OCcTJv32C9wxsB\ntWX21tiThrRMvKTpodIeZ8EJixAaX1XgeWsgpccbhUoV1BYrBaW0tF2EVR5nHJEWFMDrr96kfkzT\nSUPcvHOUVqRJzMrp06zG8OlPfYJWdsjo8CF7QwE6wTjDdOoRIiYTiomx/KPf+0PK8mQ9L0MiE/xY\nJ+XhIgQ0WprpxIRdlmN2UmLmpIq0ptnNWM4WaK5ErNmEcWSJa8fISIgMTQuFVojazVvPe4/yYJi3\nybfzLjHzpnkIrJy3qTcWnLdoIamFQxuJTtU86aksL71x47HdV4ibx6ffa+C9YG1tgZXVNjpdZCWr\nKN05lLxHnCXcurPHH/3R94/7Un9qIZEJfqzwcAl+WiFm3l1pEtNZ7LHQbKAySUNGSCzWKRQgFNTO\nIxCY2mBii7YK4eadgA0WrEMpCbUh9wLnLLFQiFihvKQwFfl0xp17j6+3SIibd5dSgqTdJokjGo0G\nD+89wD6m3bbHKSQywY8VHi7BTyvEzPFRWtFoJrS7TdrdDj0yIm2Y/35yGAzOq3klUzQv1dZOkosa\n7RQzUaNzqMX8rIxE4zAopXjzxv3H9lkJQtwEb0+oWgqCIHgfscYyHs4YD2fAHlJJVFOha8XFzQ2y\nSHHgS5bLiEnsAYNUMZlLqDBop3Da4o1HComVhsRLmmkTcwLf1oMgJDJBEAQnmLMON3LU1Pzg2nUA\ndKwZtbvovuLUaAu/eESeg0ZijcHXDqSg8oaEiG43Y380DkfPghMpfFoKwnZv8FMLMXNySCnmzfmi\niLXlPlFLomxCLR2tSpL2ErpO84Nb93g0eDxl1z8S4iZ4O8KnpSAIgg+wHzW3K23FrTu7AAgp0GlE\nT0S05RKTpmM4DdOug5Mp7MgE4S0p+KmFmAnejhA3wdvx4+JGvlsXEgRBEARB8E4LiUwQBEEQBCdW\nSGSCIAiCIDixQiITBEEQBMGJFRKZIAiCIAhOrJ+4aikIgiAIguC9JuzIBEEQBEFwYoVEJgiCIAiC\nEyskMkEQBEEQnFghkQmCIAiC4MQKiUwQBEEQBCdWSGSCIAiCIDixQiITBEEQBMGJFRKZIAiCIAhO\nrJDIBEEQBEFwYoVEJgiCIAiCEyskMkEQBEEQnFghkQmCIAiC4MQKiUwQBEEQBCdWSGSCIAiCIDix\nQiITBEEQBMGJFRKZIAiCIAhOrJDIBEEQBEFwYoVEJgiCIAiCEyskMkEQBEEQnFghkQmCIAiC4MQK\niUwQBEEQBCdWSGSCIAiCIDixQiITBEEQBMGJpX/S/1EI4R/nhQTHx3svHtefHeLm/SnETPB2hLgJ\n3o4fFzdhRyYIgiAIghMrJDJBEARBEJxYIZEJgiAIguDEColMEARBEAQnVkhkguAESBLNkzvraKWO\n+1KCIAjeU37iqqUgCN596xubfHRnA99vcS6LKMxL3Lj38LgvKwiC4D0jJDJB8B7TXmjzmc99hfOL\nitq3yYsjXF5z1Brw3NPnQiITBEHwzwiJTBC8B1x65iJr/RVWVxd5ttVFbm6wc+Ey3/jjPyDxkqKV\nMRwXXFyIj/tSgyAI3lOE9z9ZD6HQbOj9KzSpevdJKekudHj+o5e5fPZpbL6HOoJdV5A1M7RUPHfm\nAs3183z3By9RjPYZFiWVOeSVV+9x7eprx3r9IWaCtyPETfB2/Li4CYlMEB4u7xYBa+vrbJzfoSPH\ntKMWi8IxW2iz2ligtg5bGXSlcdRUSczTTz1P1t7i1Te+TTmGOr/H8qXT/PW/+jeO9VZCzARvR4ib\n4O34cXHzvvm0lPVTnv/Qs/zg2y8znebHfTlB8E/111Y5tdpi6+zTPHF+gzNLm7z8rf+T67uPOGxq\nFvIWpTnCRpKGyLCLmngE09mYG1deZOvZHuvLO9ypbhGriDSXxI0G1Wx23LcWfIAJIfhJX4SD4HF6\n3yQyz2+d4cnVHue+9EneuP+Q7337dayx4R9acCykEGyfWuOj557jmZ/9EPhDrl19yN6Vm2SV44Uv\n/ktU3/o2/t5L3C+O6Lo+KzpiZqc0BhWN5hpGVRyMRsTXfsD6+adoLV2gHHuUlayvneLW9deP+zaD\n9zkpJXESkcQxDSLKfpuOUGwtrPBoesSV10MMBsfvfZHItJoNLl5YZjQpaPUbfPrZD/PRZ58lXejy\ntd/5Pa68fOW4LzH4AFBS8jNPP8GnP/wc5XTK/nAfrye8efX7rPVX2Tq9w+2bN3j5lSuMJiOee/4T\nfDttsfzoDoV9xG4R0Y+bHMkp5PeJul2alefhgxskcUxv5QIzuYKyhs2FNreuH/cdB+8Xi/0eSaSI\nYo3TmpWkwcLGBktbq1BbHh0NiPdGFJEC51DK0ColQkB4VwyO2/sikXl2fZ3SRKwtd5CqRbrcYCld\nxVc1f/7zn+HV0xv80TdfYX9v77gvNXgfaqcJ/86XPsXqap/l008SZQpfFNx48IB7D/Yp8pwrt6/S\n7LdZ66zgMNx9sM+s+jo///Ff5Xevv8H2vR/woLSM5YSsTjl0BUuDMVlTYH3KjbtvsDip6a11STtP\n8uEnP8Yff+fbx33rwQl2+ekL/JV//99ktHuEb/W4d/sOj3b3mUxzhsM9hHDY6ZTNxWVaScLDytJA\nohs92s2MaO8B4tXX8d4d960E71HtdspCp8HyUpv7RyPu3xo8lr/nxCcy/WaT1c1V9h48oNtZ5PTO\nMqbV4/DOTW7duAtO4Qx89XMf5chE/PZv/zbOhVeI4M8mjTR//rlLfObcEu2VBu2FdVxV8sb9G5zZ\n2GSmU86e2sE1MvZuX0PWGf6g5HV/hXOtDkfdBDPa53e/83f5xc//G3xPpWR3Xqaf7bCbD5C14U5u\n6buIIoFlFwmooyYAACAASURBVDGcPuTo2h4bW46lxTbNVofpZHTcSxG8x0gh0LEiSxKEdWwst7iw\nscC5rRWevHSZkbQsLm/wxLkLDPOCW/eHFA8e0VzaYiNtU+QVw/Ey+w93MRPDlaM7NFttttbWmVlL\nbQyz/IBYKaQQhDQmAIi0ot1Kabcyur0GK+0Oy+t9lNNIL2nd3QuJzD9Pp9VgfWeFM3qb9vIiU6kQ\nw33uXL9PVc9wShDFMQc5JBl86YsfZy+fcnvvgN0r9/AhqQl+Qlkcc351hd/4pU9y7skdfLdHmVtM\nPuZwNiOJM3qRJPce18jQvuDCxhYNKfnm7e/TzSKySnNnOKb0UzaTBlnR5ve+9t/xiz//67yaaG6+\n8Sds9HaYuQ7S3GNQDFB5i7rh2Vxucji1PHj4Okl/my//6l/gf/27f+u4lyV4FwkhkEIQaU2WJawt\n9Ki9ZbW5yPaFdc5sLPDJS89wdXALtz/lxuERPp/yxOnz7B4+5M2XvsfKMz/DcneDifZUVjMZldy7\n/4C1LYUpppgyJ9IRxlaMizFpY4lJmWO8RUpJv9FESMFRNSaKY0weiis+SCKtOL21TK/Xot1MaTYS\nGqpBkgqckAjvkQKskEhnEMLho4pW3z62azrRiYxSis/8wseI45Teeh+LxJcz7ly7QVlPabbamNrj\n4xatVpv8/lXKvKZTa15YWyN9/lle/N5r3HrzNtY8vkUOTq5Ia1548jxf/JnL/Otf+WXAYSmoygpf\nV0RNML0WaeUpq5Ll4YhpZehIzUS3UaZga2ebp6qaN4fXibMeFYfEk4qDKifrOZYaHX7nn/w9nr/w\nc5w/8wJvvvGHxFGX5tIZyvsl2DF7s4hiNuJU9yzfnezTvJdzbmeFKIqo6/q4lyl4BwkhaDSbdDtd\nMhmz8/R5Lj5xkSdPrfPg+k1eeu0aH3nqLFIIzq5s8u2X/gTvU1YXFKurW9wZ75M1VvGN+zTKJlJp\nDospS8ub+N4C4zu3uRJnnJPPMJnmbG5vkjWbXL/yGkIovIBZWSOUJtYa6gFaCmxVYZTm0SBHCs1C\ns023mZGHROZ9SQhoZgnNRkqrmbK+2GV1uc/iQgcPWGMpK4uWGudKbCRRxuKEw0iInMZJB94iyhSt\nm4/tWk90IrNzdpt2owPSUpU1R8NdHtx5SGlKWllGnU+oHGRKM3qwzzg3tJsJzXaL/to6h48e8JXP\n/iyDz36Mr3/jm9x5/WaocgqQUnJ6a5Nf+3Nf4d/9S7+CNyWzoyl7wyN2Fpeo6dDq1FR1xcxURFVN\nLh3ojEy3yA8fkVRjCt2ERIAyXDq/w9HBPoe3a3TUJtcz/KSgNDnJUpdOkvDK63+fixc/x8rmZe5d\nfZH9acHqwmn2968hTU3+aMKQe7zQ6nJ9OKBfR5w9d4k3Xn/5uJcseBviOGZzZZ3trW2WdnY49dR5\nPr79BFtPXKS52qHXbuPHJdPigJXFDYSs+Ce/9wdcfeUNfFlTTQ8o1xbYWVvj2rUr9J74EKPZlFRa\npszYXl7HHo2JtOLR4SGlccQ6or2wgZjlHIz20brJ8PARyyvrPLzfZP/gEAU4Ldla6nP3MEf6mGY3\nYavbYn9ckM+mDEYVw2mN0if6V8gHmhCgpCDWkoV2yupSxubyAh96qkPa3KaRSSaFZPcgJ4lijDVI\nD0fTGWVZ4h2kSYSxllRrZtaDkHgHkfNUwhMZSSUtkS5pivixleyf2CgUwBc/cp5IxMyKEZOD2xyO\nphQ2Rzow9QQlE4SQTMtD0laL05sLtBe6+LzmaH8XU1qMgNVul69+7mN8d7HFlR/e5PBofNy3FxyD\nbrvNv/Jrv8yv/+qv8vzzF4i0wpeWl7/5TS5/7DMcTWcU+/u0mk2MrfD5BDUZUskYaSwJOU2ZMUmX\nqM0UbyHRGlUrRlVJO+1yN7uOryJiFVFKQ1XV3N+7Q7+/RqoXeO21b7G69SGSxSbsTjka3KHXOs2j\nw2tgHIeznH6rj261uHfviJ0zHwuJzAnyX/71v8YT559j4eIZTq2v0ig9cZIgohiTVSR1hBcGoyoo\nNI+abbhdMx7nOGc4feo0z1y6zIvf+0MunF3nwcM7NGKJtTPKqMWD22+S2DFJI2GUKGb7R3SWe6Qu\nQ8WaJ7bP8r27V1lM+pxqNxnmjvHwgKOjQ7KsQZzlpMIxLnIOJ2NiqWmmKRrP1BQIX+K1p5UlHIxn\n6Cg97iUNfoxICxqJpJPGLC2mbC938VZxZjWi02tydmORfq+Lih1WLiG14/b9itk0RylBr9XEmgoP\nlEXNLJ+RyQirBUqLeexWBQIHTiKB2guUdxjhibwEr9Cqpt1KGY3f+R28E5vI9Lsxbjpg30kaUUpp\nDD63VKWBWBGrBKMFi+0O4+mMxmLChbMXuPPmFW6+eQ9fGZYW+uS7B9x9/RrmcEBfCz753Fm2z5/l\n7/+jP+Lm7UfHfZvBY6aV4qMvvMB/8hu/wUefPkOW9ZHRDFGB9QrhK5rNNpVTLGycYbcwiKxDLGpy\nESOqAllZEumZqgjhLUk3hWmJnXke7k+4fvMah5MBwguaQjNxFocizVq4cgw2ZXB4QNxKaOsmD++9\nxHK2xb3mNbTxjOwey91TjPdvMBzMuGv22VjdZuLvY+QQpTXWmONeyg+8OIpI4og4TXnqwkWe+dmP\ncG57i+cvXaC3dort9RUWltZw2iG8oqyhiKYYVdOwGuUjZq7Ge4sTkoaAhaqkvZBhlWFYLXNKw6u3\nX0UJxeknLnFUH9BNFpj6iOWFPrPRCovdRaLYU05HLCy0qOqa5aUe0+mUaTJloSXIB3co86eIuxlP\nXP4wL73yIhLBqZU+ewf72FlO7TxLK32sq7EevIwRsiJxEpmUnO2vkheOW3duH/fSB/8PjVSzsZjx\nL//COdra00gz+gsNSi9ITMIPb5ZkySPObl/g4eCI/cmQp3Z2EB1gFiO1Ieu0mFUeU4ww3iBIOJqM\niGRC1MhQxuBMPU9cFPganBBICcqBkCB8hKdAOIVQjl6nERKZf9ZHn9vEGIU1NbktOdo9IBcWrWKE\nbtNf6jAdj3i0P2bnmbP0dZOvfe1r9F3KRAmoZ+T3pizUY1ZUyq4XXLx0hs984efoLCZ89Ze+wLde\ne5n/9D/+b7EmnMt/v1loNfir/9ZfZuXys3z6wx9i6dQ21eAulStIJxOQFqlaGOPI0oTaOBpZg0Z3\nkXxUkHZaNLIZrmjiyiFeapSsSE3NeFZyd3/M9994heHBCIPHCoG2AqFAKZjVOYlKUEhE6jG1ophV\nEHsiEg7EHbRqM5G7NKolKibItRXU/pihKSn2brO2dYr0xpRQ/fruEULQbjRpNjMWG23Orp3mw5d3\n+NQnP8XFC6cYWM9eMeTMyimsLXBS0IxTUAKvc8rJEb7RQuGIjAEf4yqLbBiEqUmUZkZM01ZIX7PX\naLGepThX04jgSGd84iMf5w/+4I+5e/Ma3QurTPOSxcUVvBjRW2jgkghnC7yqqUWJMSUbrS4PDqeY\no5z15WUelTn7kyGL7TZCOzbXNznYfUhRWvKiRKcNUuWpmBFVJVUtGLmShs7wiaBpJeXskK3V5Lh/\nJB9ovU7KRz90io98ZIPrL+/z3PkusVZkkcY7QTuJKcsxSXMFMRsTxZJm2mKaPyLSAoPk7MYSo8GM\nq/d2ORfvMC4t7W6LcWF48GCXIrfEcUJdlVTG001ipKqJ0wRjFKOjCV5aUq+RiaXyCqUkwjmkt1Q4\nhPCkaFrtNnDwjq/DiUxkkkhybnWJqU0QCpg5KjNhodljJjMQJbu7+6SZ5oVPfJS7N29y4+brZDSo\nkxhb16zLLrUuyJKIAy/46i9/lq1Ta6QLEaV17L7xJueHJf/4v/qP+Nq3v83f/Dv/AGPDb4yTLI00\nz53Z5KmNZT753EU+++XPM0BSlSW1BTurUXJM3UpIXI7XHpFkRFEDW1egFXG7zWhvj5ZKsTpBSU8p\nDMpUNOqaa4MR37txnZs3blAaRSU1qTMYAV5CEVtaeUQkPHJmsZEgqQAJsdNMppZSz0i8otdowSSl\ntg+x8SIt16XMmpR2ytIo5f7N26yv99nY3ObunRvHvbzvG0IImq0mZ7e2OHPqLKdWVniUjzi/tMTW\n+VMkxmOEpqctqJJz558hijXDLKKdNRhdO2RaWTZ3zhNJj44ijqwkHU0QSY6IY1RV4VWNtgqvEqRT\n4D1OWZQscM4ga8WmzZHKMq0FMKOd9vjFX/4lvvXKS4yGhrUqYjgekCUSicaVhxSFpr+2xmK/SS1j\nXvrhDVq796hLx82DET+/tMOh88RxAyrP4GiPysKjwQActLs9qmKEmVkmA0O/30O1FfXkCFNPiJtt\nmjoiUjFZI5mXYIezhY+FVhIdSfqdhH/hUxf50mcv86mPb9NqxqQ6I1YZIqowZpHf/J/+APbuk7YV\n4/GAre0drj24z+mtNcbDiiqDdruHFhEikSx2Fvn+a1fZWV7CSMNap8esOsLKLnujgtsPjxhPStIk\nJYsF2muyJGY6M5xqtyhiS6RimhttjvYN9wdjejaik4KVjiqSYCSJVBjrcE7TbcaPZ50ey5/6mH3l\n8zsUtcVqj6pgcLSLcyWVnNJIm0xnBkHN6qmz3L32Jvdv3SNqtiknEyo7IasVuR5DlGF0wpe+/EXW\nNtbwasJ45mnJhKav8Q1FHuf8ykee5l/92fP8N7/7Hf6Hf/hdJnl53EsQ/BTOby3zFz72HP2FNqkr\neZDnjH2GRSKdRXqL9A6JpYoaEC0iNVhrieoRlYUGHvAI6dESZpWHashkViOqgsloyvfv3ufGjVvc\nfbCLEBqrHVktKJUgcR4lLFmeUseGhhYcmZLUaqZUxEpSpRJtJLYyFDhm0jJpKPSoQZnPsLai1zuF\nn6Q8yPZp24x6f8yzL1wKicxPQWtNpDU6illaXmKxv0LtHL7IqeuCsxfO8eu/8mWaWvBgPGJy/y4f\naqxRA1kC2xsLNJt9mkmEbUTEjVVUqyTyXaLI88QzzzAzhrjZIhaOiVMcvvEy03aHxcVN9PgArTOk\nlpRRC+II6SRWl+jC4LxgKpv4WNHw88PiCg9lTD65Q2/9NP/iL3yev/13/nvG35my0m5zdzBg++5D\numtrbLQb2EpTT0a4yRSBw+kGFy6t8o0//AZbjR6tzdNs9FYpMsFWepZXX32Fcjajv7xMJ9Y8KKc4\nYTHWE9UltZQ04pRZUaGNZVBaBoVBiQIhBdiQyPy0pBQoKYi0oN9psNxvsbaa8fEXTvGZj1/gYz+z\nQKq7IGsouxC7+Tr7CJwGUYJVYAVS7PHchUX+99de5FzSJIo75NUBw6Mpqq+pTU6caHAR+JpZlTAd\neDbXOhjn2Fpc4/7+IZeWF5k66GrF5lKPI+9oNRuMy4KZh62VBe4dHnLvaEIvjUkjQ+E9jY7iXNbm\naFxzfzyjnymiSFNJS1HPQEakSczacuOxrOWJS2SEgG5DUlc5TkimR2OKvKTdWUYgyadTCj/h1PIZ\ndm/eYnQwJFfAwQTvIlrO0kg83kqUr7l8+SLrG+tUXjIrU/rScXh4lVFe8NyHLqHbCW2v2Hz9Bv/F\nn/sM/9m//av85b/xW7x09R5X3rwbqpzeo5RSbK+sce7SFl85u8GeqOi1Gzwa1givqLFEsSLzmlp6\nRKywURMlGiTe4FUDZSvwnqTRwKUp3sF0MEA0WvjikNHhkHK4j8unvHT7Nq+/cpXd6QSlE5SWSFNR\nS0fkPAJFpWq8AO0rtFXEkaA0DuEEzllkqWlFMUeyRuSeoRiyGq9wIA5JEPjRjIflFTa2zxPnG9xT\nEyhzlvUicZxSVcVxL/t7hxBoHaOkor+wjCstOst49vIlVlfWSLDQ6rK51mX/7h2+86ffgwS668t8\n9cs/z+DwHkdljYwyWr2MZqyQjTZrq6vMZlOsLak7y2xHCpsYhElRiSSJNVWtSRdbVGVN0kxoCcvy\nygoqzuYJrY+wUYZMUlKhQBqEMMi6pvYe4T1dW1DJGF9byplnImtcDi3V5uH4Ppc+8hkWfucfMBlM\nuPz0aQYm4eaDEWdbK1RmhHOSYmopZYYwjvt7h6wtrZElTf74xW9x+SMfY3lthK8y7j98xO1rb9Jd\nXMZ7z2A8IY4idFNSe8fUWppJi3w6QimN9xrRa1LuTqiOJBKFDW3x/m8iLWikMVkiOBxWNLOYdqbY\nXG1xbnOJ85vLPPFEj0unelw8v0AWLSKEg7aGKgFVgYvB5VA3wDlwFqybz4TQFgyAAd9AqIIzp06T\nNJoYL+mu9NBW0M0m5L6k020BNZGW2Mqz2EwgFiwuNhkMBElX0a5a3DuYsr21SCuTtHIweQJSYKsa\nvMCYnMVmiksce6MZYmZxCJpZik4U/Z6g3YqYTQrywhJJjVYJTii8ScD3Hkvl0olLZM6c7qHkErWu\nyWeWMp/R73TQWYejckJ+NCZpxcxmQwaDAcaBw6GNxkUlkfEIUxGnDVpuys3bt3BC8eTTz6DTBqPZ\njMMq5dknt0kX+iQy4daNq/QvnUJjaaWev/cb/xpmuc/Xv/syf+U//1948YdXj3tZgre0Wy0+/MTT\nPP/8OmeXnmBa3aOpY/b29/E6nn8qqmru3N/FW0u3t4yVgsIJVNomL2aoEkQEVDVVWVPlIzr95/Cu\nohznYCtMNaQY7DM53Ofa4YCrb94inxQoIUiExHqQVqKlwMcOYSGtakaVJa89layIao+TBi1TrC8x\ndcVUGDwaoyyirDjwQ2KZMXUjfOLx1nH/2lVUs8F6/wxejfDmgKWtFe5f/2AeupRSIoTkyWeeZ3nx\nLH5Rcnb9Ii9//fcZjcaknQ7Dg0N2zmyyubbB3sE9Vhf7pLJgf7/m+u3bqDghSRI+8+lPk9khqtFA\ndiSdtMlsppiWe6z2+lRVgW51aTdTpndvcrPX5fz2BeJIIGQCpsaZEjf2ZN0WUOB8TH+hx2g2Ymwz\nuo0mWinwGq9AOIktamZSUUjoFQWTlqOoHWY2QRQVo8keSXuNw1IhSkFdjPnFX/gS//P/+Jt8/9p1\n2nGLb716h2u3HnHh7DqDcsT+wxmj8RCrFd005h8Pv4MvS5pO8vqffpfaOs4//TytTpvF9SWmkxm+\nMri6QkYamSiWkoiDwQGitIzGhnrmyNqaTBSsppKbrYQka1JPjo47DI6FlIJmGtNoplzcXuLymWXO\nb3W4uKZpNft0mzF7ewMWF1Z4YnveH4hEIGyGj0uElPgkgTLGa8B48FPIJUK+9WJSC9AeHHgD4kdJ\ngDfz79XCQ+2IlSFJ2pipxYweUpFQiyZKN5HaUJr58yhpJ/S6bSbVDFnAYFqxVQuWl3pcu7XPatGk\ndBZjBZWTFEXNtKzIdEpeAaYmyxRpJjGVACPRyiKsx0lBpD3NdkJdVcwKSzVziMiQZRXtZk6WKmb5\nO1uccKISGaUkn39uHW8MRiQgSlKV4EXN4eA21mlINOu9NW7u3ULXAiKFriVOGVIToURBriVKSuqk\nTX0w4uHdP+Xey99ha+cSl59/mtOnN5H9PmoyRcgJaRRjF5bxQuG9x4gKP/H8whc+zc9/+XP8H7/z\nTf7D3/ivuXX7/nEv0QdSliY8e/oUZ5/q8uGdZ9ifzNjot3g0ekC/lWDbPZZrx2iSoxtNoqpm9+g+\n+6MRp9bOAJakKqj8/ICaiyNkMcUWM1xZk0VNvLRMR7v4PEeKmsnuAdXhATcPB9x6/Sr7oxEqUigh\nMc4RGY9vgHZgJ1MezSR1OWPiDAaLdxKtJanSyKRCeI8ACuNpasFYQVqL+bZsYhFeoIylUGCUJZp4\nbpsr9LtdunGLD59+hq+9jxMZpSRpHJO1mjQbDXZOn+Xy80+yf3ePvI6ZjWukNqx22hwM7+P0LZyy\nlDJmcG9Mb7HFyvopDOCM5vb9fTrNnNLUTIdTGrHn4pOnWV1q026lKKVIk4yj4YS7D++wsNAgbTXo\nNtvMqpI4yqgXNO1GRmFnpI0uCIOvQWpBFHkiHeN8iaTEOUWWtamnM0azKbLfpekESkhmZcnkYEA+\nO0KKJsZPiQZ9ZtU+r175NlnSoZeukh894KWr36URZQwHj5jtHdLtLXLntdvcTSJGRjAeTNk9GrAQ\nJxyWiuWORBIRGYMrc3rLbaqiwBU1m+tbRKkmUgnLG6eYXnkNoyLqakY3blC7AlPVFKWhiBQOhdUp\nUnpsnTOzFesdx4Uzm3z/5fd3IqOUYmWhw+Jil7XVPitLXUxRMhxOieOaS08/x5cvbdFrzpgaT9/X\n6CwmKxWnzsREjUVSWSOUwtdAVCGExrsEb5uIdDL/3FD0QXiEKIE26CnzDMaBnyfsyBqsBSTzQ6Ie\nXEakK77wiRf4m3/rf+PnPnGRaT5mMK4R1iEyB06hZYZXOaudJuWBZVpNKaqU6/emPLUD589vIHSG\nMlOGE8fecEqv1aKZpnhTU+Q5orIgM/AaIQpiDUVhqAy0Uo3VCi8hihO6KdTTkkFeoPEolZKkyQc7\nkcmyBC/6TKQkihxiCgfFEVFukE4yxdBvLfBwvIecOWYxNMz8LTZygrpR0CwM7bhNLDTGKlyzwcgM\naQ5z7vzgB9y7dp2/+CtfpdNpY/uLRFXBuU6fKNKoJMN6h7GwuHkJWQ+REn7tl3+Or/zi5/nN3/o9\n/r3/4K8xm4Ut/nfD2dOb/KW/+BW6OsWZGp/v8rA4ICND+gjJjIaKsK5kcWmB2zdeodfuciQEabcL\nxRQnU5ox1DUYU+CshqqmMAV2nFMPD7C9Fh1ruffqVVLVpRqPyMcjBsOa3cGIwSxHGk8rVlghmClN\nE8PEw8HeIft5TuVBixilOtRuChhq44lryLWl5cEIgXCO2tdopaldiTcKQ4EgopIe6ebJlhclpnKM\nDhLypqG/8vi6Zh4XKSVf+NwniCNHlEh6cY80zTAOLly8yNqpU7ysr3L3/gFFFVHlUx4NJwwOc+LE\nsLq0xtH+Dc5sL3DhiR0SbTncf0gxndHrxUT1hPuHD1jv9ClEwRNnz0Lq0UJReYOoPaaasrTYYWlt\nmSTJKKuKejplqjMaWtLpdLBe4pGIyCONJoolUdqishVaSITwiMhjvcRGEeAQRUmBoq4d9XDKtds3\nGdy7SvvUIqf7m+TlbSoH92+9yeio4vKl5/jem6/yyp9e5/ROm9uPbjK9scdBfkR/ocsgr+mYEt/K\nsFpTx5Zzpzdpi4LhaIBygriXsby2RjUdcDCZouKEuJFQzQT1bIRUCY1UMcPigfFghLWQRm0O8xle\nLVDUFUvS4lNFMqqYjvdZfEznHo6DEIJ+v8X6whKL2wuURzO6/ZSnnvwQk+EeW6vrWA3VtOT7r7zG\nqY0VOv0un7m0hU1HTJE0VY0xJWUh6bRrijSmoWpEBpRADLVrE9Uakc4QxoOqEa6JtyOEFHglEUkN\nRs+TFQHUMVCD8lA2ICpBZZBbvCvAKi5v93jhuWe4/uaMZloycBm/+51bfOG5ddpLKVZYJpOKQlmG\n433ObJ/jXCx48dWb/xd7bxZra3qfef3e4ZvXvPZ4ztlnqFPjKZdddiV2YrfjJN3tkNAhId2oRdNN\nEERcwAWCFoMiuAGEhBASQqAW3NIIhJpuoU5bgEjcSew4Hsp2ueYzn7PPHtde8/rmd+BiF9wgJKQu\nqIrp527dfv9P63ve//sMxLrP7esdZBSTxB2ePbzHuJciBMgkwRvPTjLm6HwCVYPSAYUL6MYBXjrM\n3DNfN/QSTRSF1NqinMYHnjEBuRd0REiv02M+zz/Wuf2ZIjKfv9mDxmFdRX62ZrmZE2qBseBUi4hj\nXFli1y02hFRoUA6BQDpB0HpC4fAB+KAmIKFsLxNZZ17SER5hLP/9P/g9frX6J/jKl36eVWMRnYQw\njUE5bNUyHO0j/BJWOTQS0YFECH7nr/wl/vpf/i3+0//ib/Pv/vv/8Sf9uH4qkaUJb7z2Cr/wpVe5\ndusm16/f5ujRXR4/fJvbOy+zOrpHzzjO85xxp4tBQGtQ6ZDah5RWk6mKeWnIsiFOtAgRsikqmnyD\nKysEIW3bspmeE+sEuchpt6f48xl6S7DcTPBFha9yFqsZwrSE4UeWQwyZjhBVyXyy4GK9Qao+oqsw\nlcc0jpaYuG1pdMvGtXQKT54GxN4SOk3tLZEWtE7ghcO1QCAQ6EuxsYNKgyyhSTfYdUwu5Sc9mo8d\n4+GIrU4XtzHI8R4uSihMw9YoI+ztcvjwMU/vHqGSjDgKWC+nHOxfRUSOXjfi3uPHPP98n2sHB/R0\ny8nsFFU2BHaOWSum8zlb/QEox+7OFYa7Q1pT05oGGSgiDCaQVElEt98F57Heo9MeUQBSKc4nUyKl\nkG1FOOgQkdDKlvOLDUnb0Nu6QhJLQtcniCW6mlN2BzjfIMolbVlTtzWJnRE9v0vHtxyef8CTp0+4\nNnyZ1A84Wj7mO9/7Iz744AG+arj/RGI3BToV7GUjlAdV5eSJp9At4yxDBYok8Ozt7aJnMdPpgtVk\nSiEEd567RhXErPIVA7tN6QWz6QKQNJsVnSyFtqEoLu3jASFaCyJV4ZMNASmrokVFIb0kIFSf7lA8\nrSRhGJLEEU3dgBTEUcTB/hbXru8w6qZkSZ9aWzIXcja94Hg6Q7sWlcW8fPtVJudP0U6yqnKUMzw5\nPGU7CAmlYX+7Rz8sWdWCTmgIyFmYkBvbHdJUooiR2mAcKH2ZsxJgEUF7uYWxArh08witQSsEHkoD\nSn6kl8lAF+A8NDHoj0iOKfA4MBHIhkZLfvNXfp7/9hu/T9Xss29mfCg0//P3H/DlO8+zqWreOTxh\nPjtn3bTcP1rhrKWsHI/PjvnMyZov/OwXSNMO3Y7C2ITW1th1RdobIHAM6h2Wqwn9WDEvKiKvqXRM\nvO0Y5i2zyrCs1ggt0VKhfItzLSqKKLBk8cdPO/7MEJksCtjqhEynF2jbsKqLS9FQLWilwylFYhJa\nVyGlJAAiLNZBoR2BAwrPRHmS+ZJut0sSOjKtMUlE5SVhALLKSScTfvDNb7AzjBnvv0S+cHS3Q5Tz\niEiiTAcjQAAAIABJREFUYoVwNaQW7BpWG7wQ0DOEYsDv/ju/zb/+r/7T/I1/+Xf5+9/4I9r2H4eV\n/aNAacWt61f42c/fYdAfk0YKT4R3ChlFdHojJBkbsSAKejipWSzOuJYdYHVKpGvqtqAbx7giR8Zj\nzoozwlBxtvGIzOLLOdVpzvn0LjcOXqBpG1zZUJmCsD/m4ukzwnDEerXAVC21MCwq8FVLIkJ0aymU\nYzeJKRz8+PSCTW4h7FIKUGtNLTVSVwTBiO2XDshXC9ziMVXb0GkbpFRU0oD11EIhvUIKA1YiVANK\nIrzDaVBtgAss0mqs8tSbktc+8wZvv/PmJz2ujw0HV66Tbo+oEsOqslxLB8i05tqN6yRhxB+9+yGb\nTUC7WZB4yX4vxZUTtntdTo+eMugZdgcDtKrJukPyo/tEWtFoBUTQ2SYOYzwBW/0xtRNEKsbYGmdK\n1usKLzIOekOOTs4YDEZsp11arYmMxNoGXRsWxjKfrrmxgVn3lO32GqwLZqIhP37C6tkx2WBA98Yt\ndrzDBQmUaybOMv3gAe9//4+IxgllbsniLVZVybOje8y2ao6PDzl9dkFZWUxbgkjYaRr6B32ubQ9p\nm4qjkwV+3EUlMctlzVvvv3up9yrWnC2nHFy5je1YHJLN2TmnUcTuzgEnx4+5uncLoQTdrENZzqnq\nhk4cs/YFw16fdbECbwhViKtWdNOQyhqGOqBA0pr68uP7KcPrz+/x2udeAK1JZIKONI11aK25fXDA\nulgzmW5YbTZMZyVuXIBzlLZkbRyhDvHWcOPKFr1eSFPFtC2IpmK5KlEYXtgKOJYhd3b7aNEShCla\nb6htSisiskyhvMMpkMLjWo2MJMKCUApaDcJdblYaBZH/SCPjQVjQEnB4C8gS0apLga9weNFQV4Kg\nUsAGE0Scn1vKsuS4rri1c4vf+9b3mBdrmpnnfLPgvbtPub5/jXVteGl/i/snc05mBeOOJu528I0h\nSQOsVDTe0u9scb6c41uPFxJbFUSZwFQrhFCgLot0z9YVAzTKeebmstA0DT2Gj67CRBdTF0jr0OGK\nm7sh733MstJP3xv4f4M7L49wTtFoQ2MsYVlj4oRWlehaU3tFbdf4QJLQEvmURhiU8YTCUzuBcBWS\ngEoIzLLgwizo65Co1+NAddmYhjAeYFXAbLniJz98m1/6lR1WtaV3EdLZSlFSghcQSahjvPN4GyKi\nNSwrSCq8iIiTlL/1H/1b/Jf/yd/kn/lr/zbf+eG72H/ctP3/GIHWjLYGvHjrOjcO9lBI0AGNM2gj\nCSO4mEzZ21ugw4jOIKItFaQWt2mRzrFsDXv7fRbTKXlRknb6PHh6n63M0w0CKqFx6xohK1YXE9Ki\n5iePHtE4iMKAuG4IHDQIfAH9uM9iOkd7iXeGvC6IjeNYO0LZ0o1idBRz9/ERPhfYMKGuFTZIub4z\nwAlHOfXsvPwid17/MpPTCY/f79M5f4/cgxctygmcc7TUJFJjnMSFDu0ECHBCIk2Ily3KeZxvCXRA\nsal55eXbP1VE5mR2wWdcSr6Y0dnrEMSWbNhFZjHFcsVmVdAUEb1RjyCEYr3AB572bEI30exfuUkg\nDKOrV/jgnR+jVZ/CNdTGIFVCpBoKlREhCYxldbFC0SJaizMNz85WJE7xrc0xWThke9CnlA2ECTvb\nA67u7sNwxEHW5dHRGQ/Ojtjd7XMYT/ns7i368RicpvfikOX0mOboEWfDMWlV0awnPLj7iAffexuS\niNh3uP7iSxwd3eXR0REm19R5wVCGbD13i0JJjo8OCSLNtf0upS+Yy4h161HjHbqm4XBTYLVFxwPC\nTsrxfE57vubodMp+f0SYjhh3NI8OT7HOcuW5F1kLTUNK98YdbPCYB+9cUGeWclMTCEEWJUgVsCoq\naqtwuUDrS3dVgCZQBuJP30bGKk2/P2a2bLGRJFEhvSxmOOzh8UzOZpzNS7b7HXzPMco65G2NM57E\nNARJyM5olygLmJwfY02DaQVFbnh2es6da2MelCu+9sarJEmLsx4kGBQDJZBRRNEkJLLBKwlodCgQ\nl0H+SGVBCoQLLq+N5KVgl9BeupNEAMZ+pJcJL8lLa/G+QaiUKo/49vfvIZzljedf4Pfff8Kbbz1C\nRAFHF2csJjM2OQy3YrpZQXblBuX0mCJyXL/SZ9zVeB0zWkd0ugH7/R5HF0sGvT6x9pcmKe9oqoZE\na7ASbx35qmW5KYmTiEBJ+h1NVeRYq9DK0okCrGvI6xZPiAoFqW9ogxZJipUxRkcI8fBjdS79mSAy\nYaC4GXWolQfraKqaVku8bUmFZpkowgZqDbFViDCg8S3et7Re0ipB0ka4IKKTpjSmpa49QSiwxrJZ\nTKhHDdf0FnMu48EVCQ/efZ9Nm/PiwR68VvHSzhvUmxVZv49vIwgliBARAybAa491IdI2uNYgyOkN\nxvxrf/2X+NlXt/jGH7/Phw/PPunH+anGoN/l9osH3NzZI4oChJAY4REOdGtwCFoRYC1YA9PJhP7u\nHp0aXMcj3JhWL+kFGatqxUHdEoUSLSXeJtStJeqNqR4e8+aHT7kyzHn0zhmPT59wZ2dMNdlwVDyi\n6gpuygQdSrrOEochm8QRElLLhqaF0tUENqBXbRBK0Y0iptMprorQeyPa8w2VaBl6Q397G18/oF16\n9q++QBwN2Nvvw3TFo/oh2cxSBZelbF5JtBV4xWXYmBM4eXmillbh1OUmxmiBNY7UWtbCk9UlveGI\n1Xz2SY/xY8Fses7Z5ATXGIJC4rQg6knWmyWqccQyoPQVWbLFOi8p85y4bUmTgO4wxuJI+0OW8ymP\nj8+5cfUltKp59uyUXEKno8mEoHRLTh9XTE6OyY1herGhkeBbgQpC9ncTqrLgrQ+eEiWCUW/IO2/d\nY2ecsjUc8GD7CpPJBVujAXvjEZvJgg8372OqDf3dffa29un3+6QqgLbi8OKEe29+l/lkTTwesLe/\nR9usmTz8Ce8/fUIzmdNV0N1p6A26XAhHXLXcutlhvWmYLdb0+imxdOTFhnVRMTeWddWymObkHop1\nSRQFuCagWTseFAsCN6VqS16+9QJ3H50SZCOuPtdAGJJFITbL0KG6/K6iWG3WoCSybQn1JalprEcC\nXggq2+CcwlSXW3DnPj0W7IdPJ3zty46qMsRRhK8bjIYgGNPYllnhSJIe8/UU24LYMgjjUbTURcnW\ncEivG5OkMe8en2GaFuMktq3phCHn60ti100yAl2jpacfWhAJkppEKXJX0dMVeINVAdIJHAqhP1q6\neI/3LQiFcBJiBa2FVkJQ4W0IzlK3cxZnK1xiefbYcL5qeXZ0Qj8ZcdEY3n36Pd6/d4JvYW3XqAZe\nGHfZ9CxBP+LQBjw7fsJBL2NbK+qqJB6NSIZdtKg5m6yIvOC5Gzt8+OiCq9euI+OWqm6JpGKxyhl2\nLzeXR4ePsc6jpcZrhWwUSE1Xh/igoTYK0zoQMc4LQqlY1Q2NlfQDi7cRveDyGt4Y+7HN+88EkRl3\nIwKl2AiD9gEr70nCANkayliSrmETGpTTdJWkNA4v2ssCK6VJjMJHms9+/mtc3+uAV3z7W39AuXIY\nUSKTALFYs+xF7IZDNt4TdFIiUbKcTQivH9BGDmMt3jvqyYRoZx9fJvg4RAYSv9hgYoEwDuFD8mIF\nOqBeVxx+eMRg0/LP/fIdTj//HP/Ltz7kwdlPx8fm40CWxVy/ssf163uMe128FCAUgRW00hO04iMH\niiRwFmsbmkaRqoj1puDmi2NOO11sMSfsJWwaTxKFzCpDaTRWQLerOJ0asmTMyXxOIyMevfMT3tMt\nsVH4szV/lDyhYyXr7oJgEaB3O1wJYuqVp4k7JAJUGBDYgLJtkE3LyhjKoGEQZKhQsXYNg3iEfukL\nbA3OeHj4GGMdx4cP2OQBN567zXjvOZSFYvqYxfp90ibCjSyuaVCFow0soZMY00KaIusaZxUah1Xg\nbAKqRjnwzlD7Fq0URVHw/Esv88M//ZNPeqQfC+qqIksTTi8O6dZd5usFndQwDAIeHx2zvDhi2O+x\nWd9F+ZB+X3Flp0/YSdFI5vWSLNnj++/9iFiGnJ09Q0pFFqU4CaG31KaibRwfbk4vg/I8IEISHWAC\ni/EN06lBBTndrsLXLYvFDCUdp083nF4s2DpbUrUNddOwNe4zTDuEJiDVA4qLDT988If4OGa4vU9q\nBWZV4lcVvsyZPHvGxdF9nOiwOZvR6yj0TkYQNHjdsFxPkEaQt4JuGNHJQjZlQVEW1CUcH014drFi\nvqmQKgbhiaQn7nXZGEcd5iiv8IGmE3UxS4/qROzG13hyfszrZQ6RgrogTBRpFnE+mxEnIU4p6qK+\nvOHohHS0R0QC6xKEMYjWYp0lTFP2drY4Pv30dNOVdUOgNFvjiCyR9DNFN+1inSQQhjQJqcsVV7b7\nGBsgvKMucxIVsb+3RS/LCFLFdDbDiphFA3s9jUSSFyWu8vQGXaypqGpF7QX5ckNRGH5Sg2+mGJmw\n3YlJkgqvY1442ONmb4WSCt/GPDlfkq8tu1c9O50upl0TSImwfUxlUKKmLEs28zn5xpGZgJ1Bw3Lt\nWa2X5FYwXUmOJ+dUXuLLnEzVXDs4YLvjOF4WhHHM9kvwwpU7vH9yxt3ZkhDNYrrhC6/eQIxgUWUc\nnl9w/foBB1dgbjwDFxKGJbnw1FVFEViEMURhTNFUpNrjjcM1JaF01NrijcabBmMlUgm0DJDCkoSa\noHU4PJFoyMY1Wgs+znq4Tz2RkULw5ZeukWNJnea0BekgbSLWyqE3Cq9benlCVylsBCoxJLnABP4y\npimCUMd86fOvUghHuZlTbSp6W1dweclicYLXDilKvFT0woRYV7S2QcxqmtAxDgKWh08Y7u4zf3bK\nzmCATAcIFeGrCi8dighvE2hBGk86SLn/3kPee/dHPH/rFoPeANPm/Ju//XV+eH/C//C/fpfFZvNJ\nP+JPDAfXd3n+uRvsJgki1nghQQgCLzFCYqVFOolRHu8vxdpSe5y1tFVLKSrSJqVY5YTDbS7KOXto\nylVBkg4pVhPsesI6iBm3CU9O3mFzcsFKNqQm5dH5Q3o2YSMVVrSXp/7Y0jeSurLMnECvDWo/IlMJ\nKlAMt8Y0bU375BlFURBKS78NsIkmmhdsjCXLc2IjeP3PfZXn66/z6NExzdljRl96nlu3blJM7vHo\nyUPWJ8fI2NAdpQgviXXM1J/jGoszDisEsTG0WiGVx1iLbhQy3ODaEC88QghM09KNAqa+5mBrwA8/\n6cF+jLjS75PdtgwHW8hE4yVsmoq6KMnLJXt7fYIopilWeAnztaedL0h7Edev3WRxMcUUFdmgi3IR\nFxdzJJZ+NmBZbAhkA6qhGwWknR7DLMLRsK4cdeNQpQcds7M3pBdL8tpgnWS1ntHpZgTpFs18TlM1\nFMuKo8fP6L/yEuMrGS7OkPmKMtlGrksy25JHIcGoz+2Dfd6s5rBcEGwiZNqQ7Sdko4xJfsZkcUGD\nIrfQI8PbmroKiQcR/Shgua54dLbgeLZB1Uu2Ak8eKwQBxnuWVUme+8vwugBSrfGhQ8WKo2fPiGWE\nTATPnt5jO751qcOSNaNhn9VsQRRIZvWl+zJMAjId0QpDp9OjnOdMN2u0iBFSILxnNPx0ERnvPXnb\n8PjZjCgKeO7KNlIaRGRRzjGZzUiCGGMMQek4na8xHlxm2e300aHCu5C37x9y6+o+QRBwfHRCGgR0\nOym9NKUTZ9x9esr3VyU/enjMYlYQSEHjQ165MWSxXrMoQTQ1ux2J6kZ85fOv8bkbWzyaHvPkZMpv\n/vwbFCcnrDsFnZ0Mj6ddP2axlIwGMaFWpGGHx+WUDx6ckXTGvPXgkE6oubkbcagLkhraIGQrSzE0\nGNFyUYITEXGgMdIhkpqe1hgP0/MZZzhm6w13bt3EeU836fLWw0N+8fMvY5TEWkiTDmroycsNWilq\noci6GmstawNhaahaMDXoWtIoS2PE5f8SAiksEo0VLUoKqtrjhCcRkiQMqKqPj8l86onMwc6AhIiZ\nKzBNQ7C2yDRiQ0srJVHb0uiAKFDMU0+vbRguFbXwpKGiDgL6gx1Cafnhj7/NjTuv0csCxtd3wUlG\nuwe0702J+kOy1jI3NTuJZU1KYCvCMGRyvCH6Usj86CFBUNPdGWIWOcHOCLdesVlOUD6AXkwctBS1\nu1TGFwlnjz+go2s6210CF9HrG+aLGXcOhvwH/8pv8P7jJf/1//iN/9/1OGVZwpdfeRHCAKEEgRd4\nCRZJowSBhUYJtHUoI/DSYaVAC4/xHusNTdtirWYxnzLcvcHs2UPAU4eCYb/H07MLzjYt92dPuOsN\n+XyNw2ArQ5tW6ILLPpDQkrYpKrWEIkIAW1lMVWyYK4OfWV5K+wjbkmYdomiHcDDBi3vkdU5XaSrp\nqVLF9WbAojtncf+7nCSSKwcHXHt9h8Wsz2z+iB99+4zGXtCnIR57hk5RqIQw6CGEIVtLLs42zMSM\n1Ghsa5GhAi6vnNrAgAuRugF3KQhuKOhIDS7Ct4adnSucn//ZzzSKo4g2arhzcIfD6TF7e9vQhkwm\nj1nnG7b3djk+vyDLenTSLXqDjCK/PPHuDVKCIOT+k0cIoZA6pF5t2JQtkZeswxopGuqy4dqVMXvb\nI4QGKRX5ckMoS8JugOxLjBA417CqHc5ZTOvY3dmm2x0z3ZzT3RoTdWqipMvaeO4fnyFDwWvPvUB2\n/RpXgucxq3NWPmC1LoirgrLY0JYV8daQKIoZ9PtsXMnhfI12EWWd0TYWHSgY9BjqkFw52tMp58s1\n9zcber2AOwd7nK8ymlDy+u3P8OzpPU6OpnSiXQKxxrSKPJ+yqhtGwwO2R9ucPzmido6oNRyeHLFz\n8wZCGLAWqTSdbkyZr+AjcWwaKJxs6AUZm3yNwCNEQOE9ERFV6el0P10WbO+hqxS7e9ukSlC3Lev1\nBaqR1Jtz5uuacBQwXbdYL9iKFeEgJcsGFKuGIAp5+PQpqQyYLi4IEGwnMZvWs8lLhDWcXVww6fap\nVyWhl3zuhSsEoePwbM15vuErr1zh7lHBpJyhgoyrXckffvsHPLk3omw1r1zf5Zs/fpevv36dq12N\ncDUiCAi2t9nuetABVblhtTG89eEx641GJCf0hSeOExbGEwWSm1sdVACPZyWDTojuZGSZZ7IsWFtY\nLSwfPjrl6cmMWEpk4FjlnnBlee/eUyIdoJWnl/X4vR98wD/7tZtsfI3wnjRLGQ5HTI6nxF1FHHbI\ni5y6aiidoJsEGGs5K3IGUYTHoaXE4pBO4XyNtx7jG2Lh8D6gtDGdNGG++vhasD/1ROaN/R2KqkEp\nRV5V+AAaATulpRGSBkl3E2IDxfZa4hNoVEmmDH54hTc+9wXKckljKnx3xcMf/zFhZ5vXX/8i3/vD\nP+bZ5gK/2+Ug2mdV58TTKUJDJgsKJxiP98iymNU6xHV7LM7vcq33RaSxmHyBbQuadk3VeprplDge\nEvU6qFCRU/H4/jGd4ZgglByeTRh2YtLtK7jFBC9bbvYt/96/+Cv83W9+n7fuX3zSj/v/MzhrMcIR\nyMu+90pL9Ec2eTyXGy7v8FLgcIBA46i8I2ktrbrsSWrKklVe091K6O6/RH32BFk03O1UzNuS6aN3\nGcVjllVLGUXEtUBhQEq0CS+D62xA0II2IaNIUdcldRTjYw2lpKGk6i4J4wiZZGSDHQ5e+izTB/eZ\nnkwwUcBQdVFa05GCoL+DP5nx5Me/x/reDkFvQGsNrgtZJhjmMVthQaYgVZp1cHmyLXWX7nCf3d0Z\nf/r2fZw4A0KctSQyJG0dC2nw3mBsgHOgVYNoY2ZlxbCXUFNycH3vp4LIVHXNqrZYU5CGPeaHx8Rh\nj/njc0Jf4oWnLGtkZNjuhYy6AcalrIoZo+5tKu+ZzhZc27rF6eGEsinw0lIBaVvRCSJcAsNuShQG\n1HUFwuJExWCQ0BoLGCJCClHhRYBRhlE05rxYsrxYkg0zjMpRwhEEnrzM8ac5mVTs7e5y58UbGCdR\nMoLpOWfvvMmT6YbGNFinWU1P8IMxRWa4KjShV5RRj2s3bzFfnDM7n1Be5CzqY3pxQmUDLrohP/fa\nz6CM5cHdtxlf3+VXfuuf5+rNK/zDb/wB3/vON+n0MipeIc+f8eMfnaJzQVHM+Lk3fp3TYcrZ3RMG\n4Zgb/S1a4wlCjTaOxfwCKywv3LrNPXnIcr2mrC2ygUVaMYo7XBRzKuuQLkIpTV2vyKJPF5EBeOfx\nlC9/bg+yjIGKAElTab517wJaQ5XndLYzZNVysmkIi5rGFezvbCMax/HpOTd3t1nka8KmQXZDEh1x\nNtmgnKWxhk63z+ggIlgLnl6sUYVkvlqxs7NLJCteeyHl/MyyLgVpHPHcNUlrG2bLhjfv3ef2jSHv\n32s5nw34mec6dAcfJUQPAshLfL6haZY8tz3injnm9kGPTRuxntVwsaCnBadByUF2lX0tKasAo6Eu\nPM9mLX/4p+8wkBojDa9sd1lI2EoTJhh8ZSlbgSgttXeMdgNql/Le8WOeO9jCeHEpQnYGJ8FULTYy\nLPMGJwQRHdCW8SimVyfM1guaRqA1RFLRyBrXGsrWkCowsiUhpFIVg1Rz+DHO+lNNZL706k0Miqpt\nsXVD0GbUQU3cCtZaYB1kraAUitArqqBAt5BR0tm+zl/4p/48g1GPYrPk7vvvc/HeiuH+mGadszbn\nfOFnP8fV3X3iNGJ2vuGbf++/46WtDOMqjFdEvREuUdx750Nu3brFjZ97jcndlvfeu8etmy8wPznl\n9MFDwjgi2x7z9nuPefHlz7AdHyBVzLLYsJ6vGUSS1cUhXg24/upnOXrvXTZhQD8IWSxP6DvDP/nV\n1/mdf+Eaf+tvf4t7Dx7/1Fu2y6qhaBv6cQxCoj0oJ0FdOnRaKdBWYhUofxkI5ZxHGUurIPYa4T3r\nekOW54gopjfa5+n5M1a2pvP0EbWpGOk+m9Sw5ftUPidyDVGQ0CIQqsJojcQhuoLMKWqlUVLTLjdk\naYZUUDWCs/kSk2Q8h0AlPZ5/tU99dsSjpydolxMnCTe/8AUefO/HYDfcuHOTbpjitEApQWwNWjm0\nN+iuQ3bHbHxMR8EuAh0oVibCC8k6fIUvyy5v/ei7bPySFEUTX16pKq1oTY1qPUJarJeEwtM6SdEY\nxlFGkfjLfIqfgh6w+knLsV8yGgw5npT4nmNnNORkUtOWS8b9Xej0uJg6FqsJKRAEklXTcnF6RKBC\nzhcTSmeIAskgDFFJjDUNjWuRriWfn1BUJVKWxKpHVVacbqakjeC8LTCmIQhCOjrESYUdVvQHIenB\nmNZBVTawaZhNzxkPx0RxH9UJefHVz9Pt9HFOUDDl6LvvMVvUTIscN1+yPjlB6ARfa1bTAjnssLXz\nAhdVy3I1QwrP7rADWqJ6V6jXDape8uLVazx78ojFYs7+a5/jL//aXyG5/RxKBvyF3+hz9/EZ3/vW\nD6jzt9nZusbtUZ/bX77J7ZfvsHt1h/n0PksqJGu+98G7fClL2Lp2hbLYUK0LskBzPpuwm3UIvGSV\nrzEYqmVNUzZUZUsSBFjfUJucOI3x/tNXpDuZXaDMHmJjOG3WpIHmdFGivCRMYh49K6mKmmzQ4Vp/\nm7y2HMQevadYnVUYq1jXl26haV4Rty1tUBIArUy5faWLkyXt+jLm44VbPZR1xPHgcmNTwVbHo9KU\nW6MAZw2mUvSJ6GeSIS1XdzKKpqQ5r3i2u89LO7voUQrEOB3QXpyz3LSc5iWj3h6iauhpT9jXHD88\nQ20NiBvJxi7pDRKoQ95/OOf3v/8hjUq5fnWLWzsxyWjA2eGEbl4xOZtTxwFbwy0OOhmnsyXFsqGq\nDd2u5+nJlOt7I6K0S2NbtscjZvMNoQh5dDGhKj1ZIEGU1IRkkUAGFi0VpWjwjcAGkpCQWEGEIK89\nOtI4pxBRTdaPPtZZf2qJzEt729xMx5yXSxIfgjfUQUvaKorEs10pzjotURuBNDQioNtC6ixxt89X\nf/ln6eyFSG1IteT5Oy/R655hPSxma2xzzuZ+xNnS4ALY2soYphltZ4sgzBlmI46OzjBzx+5Wn9Xp\nGYvjPte+9DO8+yd/yP1nD7BVRVWtWU0lH7x9wmQxJRYpf/LdN/nqL3yN2guWTYwuI9p6wUuv32Z5\n+IBeFJPEPRaLOXq+QmYR1whYnC/5z/7Dv8npYsl//l/9N7z5g/d+qkspj44njF7q4gRoJzAKBOrS\nrWMlTlmEUAhxea0kcIj2MuDQ+0vnhGkNm9WKxUVOp9PDIpCFIbcCGUGv8hy3lmgrIzlacmbXDFqF\n0xlBEJK6BG8dmACny8sEVK9pA01pW0Za4bwjXy+IFwmrxZr4iifu9Pjcz3+FwyenvP3ud3FOkuoO\nL3/xy3z46IjMl8QqIo0cUiq0dmSqwUchOE8WaIwXSCFR9RSSAbsWKhGwDGOuju9QqYy3vvP32GhH\nxzYEYZe2XmC9wkmB9BLlHU0cIlqH9C1FYOl2A4JA0zbtJz3if2T0PnuNYD3jycUJcZIym88xbUlZ\nWII0ZHc0YJI3tFVBXiwZjMeUQvH4ySFPj84IhSa3BVGYkcWSCEXuG+IgwFYNpWmYrAWqmhIDF82K\nVVEjVcw6BKlT1MZhpGJjDFpZHh09Iz1zbI1mdAY7KK1ozJqgqZge51TlkOdeeB6ZRsi4B0hCYyHK\nWL/9Pr4XEyI52LvBmU+obUFLTRuOqJQi60v2dq8RxZIsTAiQLMsNp0+eIJKYe2++w8OzQ37t136V\nwe4e8+Up0XpIGI/oRyG/89t/g6988Rd4583vkcaObuDpDXsUQvDBj97h6YfHdFSAFxWBTQnDlNYI\nyjInkmDKGlEKSgXCtAwGfaIwZjI7p8xrVKDx3hB4hQhDhLAEKvikX5X/CyZnc7yOWOmErhWczU7Z\n5JZk1CWqKto6Ikgct3Z71L6il2ZsgKtG8mhxxtVuynozw1iPUbAWELUOkJTOEIgY5xzeCpz0NEUR\ndhxHAAAgAElEQVRDVTUkYYI1BVVRsbyIEYHGCEctJWbTMNgfI6McMd/waJFSNZor45BrwQjRDUGk\nEDYIHSLChCSe8OXP7PLoYgaVQLcldbVmvN3DCks/SdCxY7LyfPP9E56cV/zc555jEMQ8Pn7Kcy/e\nIQ1DpkdT0uEebVjTU7Aoa+bLcw6u7lD1JRcXZ3xtb8wj57GupWkrAqkxwLIqGHZH7GRdJs2aUCuS\n0OOlIpCGVSWpquYy+yoQdDTUtqYWXAp/OxIai9egXI+tsUKIw4/trPWpJDKhVrxx5xblpKbxAZlz\nqDhCljU+cqStIA8cWRnQSs9wOEQVG6JqQxCkfP03fpFf+PNfoUpaWK45PHbYQHDlYMT2/jaR0pgW\nFssNR8crzp9N+fDuCVd+5nU2szN++au/yg/u3mVQCtaPn+FNydbXvsr4yg3SrMdzN2/jEDx9/xHL\nac7xck41LZkuSj588AArFflkgxj0mE02jMc3mU2fMQq7HOYFZd2w31c8mW/opwEbD4Fr8bnFJzFX\nY83v/hv/Et/+zo/4O//T/8aTJyef9Ej+X8E7Hz7l1Zdvg7iM5wdxmZuAuOxzkeIyK0VIpAXlJa10\nSOG5fP8d1kmadsPk2QMGn/kcvf6A82GKm9bEccC0aJE2oGgK6lWBd5JNGDEgZNPUtLIlEyEtBmUS\nMu+oQkuqQNqEqpVkMQyjlrqoWB8+o3/1FlmvT7C/w6/81b/K4BtdHh894fCD+3zxa7/ArVsvc/70\nKcvFFClaNJYwEKSBIBQghCGOFN5B4yxZOKZWBuU1ldMoU1L39vlzr8UUzz7Hj579kMpIghHgAuLC\nYIWlFQqBRDpAeaTQUHv6ccB4a4fT46NPcrwfC+SmYZU7VkXN4NaYpKN5+MF7UBVkvQ7L9ZJBJ6YO\nA1zVZ1Kt2d3fJdMJ8cWctmlRomGvO2Zp1qyr6tL2GcdI55AIVONYbuYsjSPq9FBxihAReV6wKgq8\nFYwjSRDF2BCudG8RpIJqM+fw7gP2Bx2uXdujGgWEdYSxcHFyhhIehEYiCJIQO13Qu/U8wWJJFnuG\n2QBpNc6nBL2MnZ0tujsjkkFIVya0zhA4T93CT374hOP379LtjfnMq69x68UXqTY1x/MHHB6eMPjx\nXVrXUDaSZ4fPsLal302QZcnjpxeYVpIFmrDf4+bze6xmFyzmSxrvODl5xCvb25yUDWlnQNPm9OIh\nJ7ND1usVsTWYTsONrSvca55Q15batGglCKS4DAN1kMQhZdV80q/M/4lNuWJ7P8ec1Bwva5IgZW83\nZVrMOJ86tnoa4wx3n5wSB4rhyJKlXTYFTOcbAqfIjUM2miiQBFkX3eYsc0NmNTWaloIkjKhLw+k0\nx9cNT89mbEpLHEIviYnCiJef2+fK/pgrNwe0vqTcSGarmNnxgn43YDFTHL5UcyfeAqFBFKAUIoDr\nBzuEaczVK4Zi2YJJOT6PucghMBuWFp6elbx595zR6IC/+PWbuLLlW2+9x9d/8Rd46fUvMLk44eHT\nYy7Op9zc36doS+ppQU9Lrm11GO/vc/etFd9/OKXTM1xMBmztKFQCi3WOqw2dvmOlKm7udFlVNbGU\n5MYxWdYYcymCj7TEC4lXhlRAbTymdaRKUgUSIyUKzaCnuAzQ+XiYzKeSyDz/ygFeSzbSEVqJTyKU\naggij/MNvjFoKyi0oxNEXO12eXL+lBfDmM/++i/y87/xRcLYIR3o7ZTbIuLpk5xsVKF1yHI2J0oV\n450eSS/ihTuvM1uvubZ/lX/w9/8uw6tXeEXGHB79AeMbN6E5pb87ZnjnNYRvSIfbTO4/5MF3f8im\nasFYZCjoBJ5JXlG2De9954+REoz1rJ9obDfmQlxhvFcwWeXMmgixLAgGGbd3rvO0Etw+OECYlnVR\nc3R4Rift8Nd+69d458E9/uE3f8B6XXzSo/lY4Zxjludsd/oYJVDCXwrEpMcJEF7hhEf6y98WUHic\n93jvLlvNpcNayWpxxmaxYv/qS5weTcjTNYFsaWVDFAdMTs85a3P6QUZlBI/PlhSuYiA0UTdipGLM\nUFCrgEERYlWLiBq6vTHOt2gaxolmefqE7dPnSXdGiLRLem2bP/ebf4mr77zPh2+9yXvvvcsvffGL\n9L/wJZqqIFifsVnMWG5WRKFDC43SDutAypaBELSRZMtaMGuKvCB0kmeLU7q7r/AXf/03WP2dnOOL\n9zB5zTDrMa3OMWjAIr1AWAsCai1xpqFA8eLN6z8VRGZ6/yFhkjCfzujFgtHWNmkaczo5JnENpXNY\nk9DpDSilY72s6K9LTGhRWtPkOUqFzM2GwDpy40mUxrqSJIixLqCsaoySOAFVUROEAq0cZl1Q1AFX\nX9rn7NmCXuGJ+oJHxTGdZMC13R3eeOMF5meHNF5xc+cFyrwg6wwxIUTJkP/jz9o5QZRK7OkJe9cP\n2M4k437Gq6nCJBnNICLLhmQqxQQltmpoRIuoK6aHc+7+5CGtlexefZ6bqeLRxRm9rS2SKGRTLLCm\nItvbwS4tewchaj3hxv6IbhIwWS1ZXUzZO9jHaomtVsw2HWzlODk+Y+vggIeP7iF1ShR5IuEQwhKr\nhNKXYCSmtaxEQW0sZWPIkpRAC4SwlxH1vqXf6VBWn55YiaJo2RxlHF1MMY1FdQJGnYzHx49oXMxW\nT4MQ1E14mcWzKEh0wEVd0zaO2pSEMiDuSbARTZEjJB91HzkWiynroqGuGqbriiwdkKUh21lGoCXR\n/87dm/1qml3nfb89vOM3nnk+dWquruq52d3spkTJpGxJlCNBIALbgO0LA75KcpnL/B1JLhLEyEXs\nAJJiBEkgJ5QdUxQlsin2PNRcdU6defjGd9pTLr4iBCc3sdlIN7Muz9V3sPa717PXetbzxA3WKs6n\nnr/89DHLB6dsL/e4utxHtiXL+Tb5dMJSYrjVn+OjU8OdoGZOs0GC9ARriHsZQkZEqk9LBmRdcr3b\nY35QophjZHro1hm9XkVZBEZHD5iOPX/4W29z6caLyCRl7vJ1/Hci/td/81NOTs8IpmGll7K9tc7l\n5ZyRC4SkS3++g7Vn/OjDJ/z+b/RRecyosPSjme5NUzoS2YCp8WlCP49J45iDg0OUlEhhEDIhWE0V\nAlI4rPdMPCieT7x9jfYCreRzHtovH187IJPqmDt6g2Bj5vICXwVcR1GPG3wAZySKBJEIcp3RahrG\n9+9yx/f4w3/6Pea/8yK6owkVxEmCSjT5YkK+2VAfn82InWHC0dmA0dmAre2X2ZsYXnzhDq224tu/\n/m0iabg51+aZi3jy9DHf/y/+KRvf+g4i0ggvOTw6470f/ZRBE4hbCb6YzV17EnaWVhifD/DeUDVj\naiU5q2qiiefo/qd0ti9hnOTRzz/ldstxtxjRvjgmzRbo7FwlVJKTsxEnhyMuBhXeODbbK/y9/+i7\n7J4e84M/e+9LFRL6quOjjx/y3XfeIgoe6wVeeggCRSDIQCBA+MVKH8gg8QrCTHoSJxzeR4hQcnZ6\nxM61qywsbaLiI+z+M0ocy5Xn7mhAR7Y5NBXFqMFaicjaxPObRHM9bDMgI6blFHFXEaY11liWl1aZ\n7+ccP7lPlLWJhKDZvYfpt4hv3kEISbQ0x8btF5gWFcP9PR49vsvcpmVlbQOxdJuub7jkLK4a4poK\nfI2XEqUCjYqJQkDKBmFKWpMJ5ek+1fE5e0/+kuVr3+T3vv9P+MH/9N/w8OgeUZ6Rt9vU4wrtBEaD\nlNAiUAVDTIZzjpWFLnGS0NRfP+7Cv098vrfH3/r1lzk4qxmPCxbmHVJrtJToJGWtM0dlG4rGMb5w\nTKsSoWMmoxGTqpiRFYVksd1jUgyRxhCFgFMS6S21sOgYzNiSSkV/c5U7L3+TZ08e8WBsMPUF1979\nXeTnT5l+/iGm6qOSA65fvc7ugw853X/K6sISq6vbdDY2SM/HNOWUm7deJVbxc6rSrNN48PQEEWmu\nvHGVdpbQ0hIrHE41qKLGuQvCpKHTzagSaKuMsqmIdM2t29coZESc5lStjNoN+OT+I7I8QTnL2aTG\nfnSPxc1VdCsnl5aPHn3BXCelH3UZHR+CrZhbzNnpLbLYbzA0JNE8C0tdFleX+fyTjzm/KFGNI8k0\nUaxQmcTphl48z0UxxdSBbiclTSTeenCKUhgaY0k7GXyN9hXqxrJXjhmPS5q6RscLHJycM7YZTV1x\nOChJdUo78qz0M+4/O2ZxocfZZEI7TZmUBcg2wRUYI0AIjPfIOEapWfE+GAW6ecx8FDDBYDwEBcQx\nXsL6Yky/k7Cct5E9zb2zij/92V3e/sZtVto1W4sJKzqw0Y3ors9DNPNMCgQQgawFUmmEtuA1UTtA\nnqGsYDmNcUYRl0v82ccHfP5gSFE10JR8/3vvcjap2Ds6Yn7OEiKPMw3fuL1Nrm5xPDykbgzTccHB\n0ZQHB2POjy+odUExdUS54Oh0zEZUsz2fcKb7TCcVGwvrHE6eYYeCxjaodkAmbdJYMikdeawRUqII\n6GCxbmZZIAyUpqbtPVY0WDd7MHxZVNCvHZD53t99m6Tw2HpCUC101yPPJ4g0RVZTJhKkqInjDhGC\n5YMDri71eOMf/x3mv3UFqTSqUMhI4Y1AxAnSR7QXF+gubxNiyaJ5i8tSEkKKCJLLxYS6BulKLl+7\nwuGj++w93CW7ssN/+p//Z6y8dAOpEsDQmCmf/sVfE6aW+XaHsi5RIsJ7gdWW2pSUwSKkx2UtXFki\nBdTG8Pl771O//z4bW9tMp+eEjQ38F0MWX3mZtB8j04yLyYjT4xOOj/YJCGTlqJsCbw1bpPzjv/0O\nHz7Y5a/vPcX//4A/s79/TIgEkVb4wuBnSt94KdHB44UkyDCrR8FTK4nGEXB471HOYwUEEZiMRlgP\nC0srlIOSMfe5Ggk+OD1BGc2FMPgps3x1e6zEildef4OX3/0uYvqYh/ceog/2GTT7zKuYeZWwvHGZ\nhU7KeHhBkkR0e32KwTlze08IvRZi7QpCSlor89x47SXumwmUE0YP7zKeHLC6domF1R2kiJG9Dknw\ngJ15rIRALAUER3CB2jfITolqrbLa20fvH/HZZz9h+7Vv8P0/+If8D3/y3/Ps8D7z/WVcyzGpanTQ\nIAOVFajaYVsznYY6GDbW1nj0+PFXnOFfLp4+eUD7t94ljhTW1BTjEdYUdLKcdh4hM09iejw4eEoi\nHP3VFovzyzydDKiKiraUOKEYNxM0kiA8QmusCdTBIVxAOUs7i7h+5wVeuP4y0fIKxWSMTR+wxiZP\nf/ojmiIgg2NzPeNb3/4Dbr76BvXJG/yz//afsX9QE82fc/3GTZqFBH8Cd269itARs46Mh6rCjk+5\n9epllhcVQ1vgdQsREobnY+x0SjquMXnD1EKaLhN8Tbq8xKX16yy908IUFSGRzIkF3irPeHb6jKGH\nyd5jdg+fcPT0CYfP7jE5Nfj+MnJwyKgdMZIWLQS1dxyZCRZ48fIKzbjgyJ7xbO9jtm69ze99+1v8\n7PNHPPzoHsYLMpmidYp3lr39AxoDSarp+YiqdiihmApL7CWJjui1O1/xafl/xsVowvbGMqfDEUIq\nlAdTjsnyjLWlRRppUFXg870neBczGhWY2jAqa7oyZiwKsjgm1THaFzQ2oZfAuJhyUUrWFjMS4KSy\nbKyuU4/PafXb6MmUdVPjhgW754FnKqGz0ufVF7fJLm3y+Nkhac9g4x1kNsdf3X/IH7z76swsUiQI\n6QhlSRTrme9SYmAwj8jPwUSgQAoPWcWH7+9yd3fK5pWrbF/qMSyO2SslMvQ4Pj+gPD0hS7vs7u7T\nlBWdS4u8sLzK02fvEVWOOztdvnH1ElW1xd7pBaNxwUkZYUXNpOkyHRUopelkGbU3LHeXOJgeMykc\nTQpZ3DB2jjxSiDhgTUAgqSqBMTUhCUipUDZQhgZlI0wIxFpT8OUgma8VkGlHkuzeA058xZzuUEUZ\nk3HFZFLQnuvRilpk1jOOcuKJYM1e8No3X4KFJXo7q6j2InkEAoELgjhqEWSCamWIoEAqcBIpA0LF\nhKDBS5I8xZwec++jDzh6dpfrt9/mbGXM7dtXWHnpNaTWECy2afjZv/wjVqYjhqHAesVwWBCyGCKF\nJSdaSsnynNG4pA41zkNZT0gCjKVhXjn2nzxgbmuHs0bRTiX7FyNWLr+KDI7yvOD85BRjDcE76nJC\nVFq8D7MuhBPcWV7i5cVFfnj3MfdPzwlf0pzxq4q9s2PW5xdxavaA/sXWn40Cyj7/AwEvBLEPWCnB\nC1xwRM7ilKE0kshMKCYl7fk+KvHIouHQas6KQKK6eGuxSYxIFDtqDdu2+N4St25cRdhthLWc709J\ny3skNkEuztHu9OkvdMjzjOWFVWQE02LA9OQEzs5Ili5BpBESWhvLXHvnXb746/cQxRnZxKOe3uN8\nPGBhcwvVXYU4EESGeD4i1jhCUOAbaFKcUCBirO6SyhUut5+x/8lPoNXju9/7T3jv3/53fPDZR7Tn\nlumnNXVd4DzUskGrmds7IaBF4MblNR4/efIrTRivqoLj4Tnz/R6NsEivqFxDkraoYk1L5Dw+OkBU\njhqJLgT7B09oakuUCCKREbcES3mfg7ND6sJy4maS+ipJESpFRx3yLOGlqy+w+tI2/XiBy5sbfPMb\nb/KnP/hXHB94qKa8/htvc+fONp0s5ejBJ5QXDRsr20gF5rzh0YNdXr11jUhL8uQXIAaCs5x++ikd\nFVhtaWIR02ql0HichqVeH9nvo1TGeDKkHI4RtkH253BGgZkQ9QKtXBEaOLi4S01NFBJa4pSrr9zi\n1XfeppVoSl8y3j9iMBwz2N1DGYc53CddXqA9t4HSkuOTY/YPT+l22rhRRXu+i7QeJyr6eYoRjkRl\nXIynVFYyGk+RaNJcMqkqDnQg1YpUCiKpiLSmchXJ19CAfffxMSvdLt1ehjaGqvE0daDbjYlzR2w0\n98+fYJoMJSwJYHRMbQecIUiyjAzBuSxp+ZnHXiEsF0VD0ta0YqiU4Dsvv0ycx/z043M2+j2S7U0m\nxtIeHaAGDtnrcvPGC0wvLvj08RdsXrrON65tsz0/ogyai1EL1U0gTkCOoXEQGoSSgIAqh8xClEEy\nM5kUNkHGmne/oTFhnrE55uTBMZaCzcUBnXiLtWhE0C1Eu2ZrYZGPP3tMc7rHdO6Ulzav8ljcJY4q\n2vGYubWUa9sLHBylJHFMnMAkON4bVnz88ISVXsxSr4/uRcSDGOkqfBAcDCZIJ1Fa0BSBXAUqb5AJ\nZCJiWtUEZWcWKwGEtAQb6PVzBqPqS8nz1wrIvLESY4dnRDJmXB8wRuKjnEgIXDVl0EzAwJ3NNRab\nCb2FZea+9TYr6y2ilRVsFShkIHcZuu1ROLIsx1sLOkYEi4xyQohmBDXhGZycc/HRPX74z/+YN959\nlZUbN7hbHfPWd3+HpfUbiNlQj+DGhI9/xrX9PZrtPuNxTFNJhk4waBrG0zHDwyMOixHOSYLO6UQp\nlYckjzCDmutX1pke7WIjRXG4x+PJhLVr17j51q9Bt8Px4TEHe/tURYVSkno6QTmDkJ7MBvAC7T0Y\niZWe37m8wWhtm3/95AG7o9GvLJz56Y8/4g9/+9sEOSP6IgIBj3Azg7XIe6wEFcAqiQwBi0d4jwsB\n4RuciWhcRVNPaLUWSNt9GlcxLHukrTYTIrJJQvAVOwstqsgx3n/M9Z0drBXIacWD9x+xM+comxZj\nq7h9+QZZnpAlLZyBuJUSEORxxPjsgPhkg+TKc/dfIRBC0F5f4YX01xjd+4h6NGAymqBHnvLpIfmi\ngfk5ZALE+QyfEYMx4CRaeBAxifaEtEJ2WpiwyIrQjE+POTv537myvQxmh8+f7VLbCBlFKAmZj1GJ\nQhuPdZY0zen3EpI0oSq/nMviq4gQAt6AUuArx/H5MbL0WAWyFBycH2MqQy0d2jRokzMaXOC9IhIC\nnUicMYzqCmM8kRaoOEKmOdIJ6tpgkxQpU84nhsVzqOctTVXQ7Wp+/7e/y+OHA6qmQEvL43uPiRLB\n+WiINrC83OfKxjKLm5fItUSrgNN9kvk5hPib/+H04hDZ6hDJhLqpUNk8aRZwFpySCGuwYkKatVAq\nI41aREohQkAGRRgZBvUp+3uHjMqCs+kAGWLm5nN01kfHZ3iXkCU5vY1N1jcE0aXLVM4TW0FlHZO6\ngVCTrW9iy4JyfMDa6pCpKQh1wXQI06pGyRTvHcYaTGNI45igIFUJlTFIN+Or2ViBayhDgGDpdL5+\nHZm983NerhrqyjKQll7cpZMlZFmKjjT3Hp8wPW9Yyh1THWOVwLmSbiRACpwM1B6ElzOOBx4XJEbA\nztIccV5z68bbbCxDUWqePDvi/uMB7X6N8YKWiMg683zr7ZdJFwPhTDOdDBiNKv7Fv32ff/C3XmB7\nNSYEgUgy8IBNZ53DNIWhmD1OYsOs9VxBEUPqgIDwEt1TfPc7OxhT4k0bY0ZMLiJ++MU5x0fQ63o+\n+OwJ3VARoph4UCDGgWZll808ZXgxou0dKnVEWnNltUXjDJNKsL0A8/kCGxtL/PnP7rLYstjaIpSk\nlQkmE4sWgdV+l93BAG+g0o6WBuED6EBGRG0MWjuQEo8mjzWXlrs8efrlcKq+NkBmp9ViUc9TyBQh\nGlQck7gp0guaAMIYCI6k32JnOSKkXea2duj1HTJR1BcD8C3mdRvZFiRRGx9JrJIEX9EMGrLeMtJl\nTAYj9h4+Y/3KGnc/uUvcSN74B/+I7Ze3SDrzvNGeB+ERwgPRbIzx4EfYe+/RXu0StxQLdoFjUq4s\nLvPRx58TxRk6ZOSnJwzHY0xR8dgMiWWMDDOlwzCY4JOMUJTkCwtU1jC6mFLmkqSuGR2fMxgUBKUx\n4wqJR4bZOUbomUBcAERAB0EjErKW5Xs3LnMyqfmzRw+5qL8+WwP/b6OYlpTGkEaaQMB7SUQgqBmw\nafRzJB/ELBsSIgtWWCKv8VbS0BDXJdMq0HKWVhYjLCAmZCGj3epwXo1pvONoEBDhnOVbv86NSzcZ\nHu/x8P3/mW56RtKMGTWK9YVFVrd2SFSE6S0SRZpkrkdRVHgCjZkQqgGhNJB6hJS/eICTzXVJX/8m\ndlow3H3G088/5MPDCzYPUrYuXSddWyVxFpFnoFNEognBgwsoJXFaI01EHEMea0IWITtzeC84Oj1m\nqd+lqRbZHw+xQYKfEQOd81TeEaQguJK+jtlYX+fBg4dfaX5/2YhxHI8KWmmKDwW9tU0m+7s8O7mg\n8g4lAr28jVOGoD3BB5wNhCCZVgUmOIQP1MZgvZ3dDY3BSwVS0OnOMZoI3v98l6fP9glC0RiLkgJn\nUzppl15bEMeBJJGkAd68fYeVlRUkDatb2yz255lOx5yfn1KVjvn55effKkgVc/mNb1OcnHC3mnB1\nWpP1PSZIwrRi2jRIa2ktL9Fp52hrwCsQEiEFSEnwgYXuOnPbtyHJMSricP8hx198TjG/yHZH44ME\n6xBCQiSJkjaxbKB2JCqiH2m8bnH85AvKUNLJ19lcXWPa1Nz/4nM+++whpxVEUcL58BQpI3SiiHUH\nU1cE68ikQGtJLTzOTvEiIYQKWzU0wSGlwPuvz5NqOC5xkWBcGJTV+MQz18txvuHeF2ccnA3pxprC\nW1ISalNTV5aKiHYUZlpMDmSwOJngcMTeYp0hTyP6vXmyjsCnOXnS4+9+902OD8+5uPAUg4bLW33y\nrMGMnzGtU2JveHW1h29r2lmb1W6CztusXV4nz+WM8EaNQIMTkMTP7xUPWoDVgAEfg9KgLbiZtYuO\n+tjRgOF5iQ6Cb7+ySl9tENKGXzPXKH3NWTXh8Khmejbm1voIjwK7ihCGuN3mYlSik4LIplRVSWQb\n+q2E7dqw1s+o6jHt9jKjwSneyJmGTJ5wPqmIgkfEisbXNEYSxRKCQAuodUTmA1MEmXRYD92FOeDx\nl5LnrwWQyaOI169tQ8iIQo21motiQEAQVZ5JDitBcqIibrdzXLfFiy/fIEkUKo0YNJJ+dUZlS+TY\n4zcCSEUWtxFNg0rnCXnADStGlFzsnyPNmGaYsrGziJukxJ2crNUn6vSf/yrFbDXM45sx0/2H5D2B\nCAppICRdkrTHhz/4Kad7+xTVBNdd45U338S1ejz49EM+/+RzxsahGwfC82Q4YqsTM2xqzKRG9rr8\n5nd/i65u89mT+zx6to8LDmccqYMqOBIRiITCh9mLwInZK8G7QCw8xkkckoWu5PduXuWHuwc8vRj8\nSnVnQgh89niPN25ewvjZpWGlQntBQBGFMFP4FQCCKHicEnjvccYhhEc1GpNUhPqCspJkWYsmipGD\nhqrnyftdlkNEtW+oSLh+5wrv/uYf8Pju+zx7+ld0JgWbC4LxkzHJcpebt79BMtcnSzu4aUkqDCpr\nIccTTFOgpSckbXAVuJzA864MM2Y+WqE7HTo7V7nU6bN6MaI5e8Jnj+/RnpZ0e11WF1rE3Q2INQiJ\ncxZMjQqgEbMWf5JgphFNDK0kZrHTpl7epJoWFE3DUTEliBkPxNUVyAjtNcIpjHXcvHP5Vx7IHB9f\nkHc0IijyJMPUDQMTsMYhpKfbS/DegAy0dMZgOsALBd6ihCbXiia4WT1oPLW2xFJQl5aLqcTYU9ZW\nV5gMR9Rl4OqNK6wvzLonF09PURRkueP6+jb91WV25pYpWgF10WCUZn1+kbouUR7KScWVV15Hyggh\nxOw7FJAvLrPzzrc4uvcx48ExZnyXXtZjKgPBWoqmQQmByrcwRCQyoGIBiSKUXVxboxaWUVE2W7WX\nks1rd5hrpURJF9XVaONmmkiuhlgQQoqnhZIlAk9RN5w+fMj80hLL84uEZkrA0VOW7twin9395+we\nlfTjBCsFOniEkJSjIWVwxEIRxRLhHbGTeCEwWEJT4YIk0zFJHFNWXx+CeTGqiYwm7XRIvUAoS97W\nfHr/hPF0Qq4TROSJfEJpp8hpSlNZLB5vAk5KpPBY/obLdlpB00gsmt3TkuXFERfG4N0JtjAD+eUA\nACAASURBVKowpWIhj9nqaJ6e7JHEga3VOTqJQ0Qtrl3p0O+1WVhfRiGxdszaxhqSFIKddWW8B3KI\nK/AlVGZWjqSGaKZ0TsQM8KaACFBHqNWI7jQjNAPSqEbpHJkEiAN5Cou6xY3LOSHMgfe40mGbAl8a\nklZGZ0linEU4ydz8AsYbRhPJw71zNhYFuV7kgwdH2FqRJxaVp0wrS1FOiHRG4w1ZiDDCIzw0IYB3\naCLqxJJYT1V7xlXD+Es8J18LIPOtV67OVAR9jR0JTgdnSC8JUlBqTyoyfDQi1Rm3rl9mbWeJpD+H\nqgqEbUhlw1JTctwMGIRDVP8VOkvLjI0mXEyxcU28Ok9sDZ/81U8QLbj58stMz2t++t57nHx+zvFo\nn41uyjvf/31uv/M7CKGe0881bvCEemJpKYHUCmyYiUIRobNllm8ustiWzG3ucOmNdxBS8F8eHxFn\ne4zHxxREtIVkMik5NA1p8CytrrNw6wrZ+hrj6YTh2QDrG6Z2jK8qXGiIvCeylkbEtHygkpp2cBjv\nqYMjGA86RglLQBInOb97bYs//shwXE2/6rT+e8Xe031evX4ZpEc6MRspCDEbNwX5fAwTkF7wfAAF\nIuBcQ2gUQYOvNXV1Sj0RZOkqc/1lTkcntIQmxpJs3GDl1e+RRQl5MuCzn/yPrHUjOjZhZUVy+uQJ\nKyFh69ZvcGl+HoFEdXOOd+/R77WgHCPKKU1jSNI+UatFVVmyYgp5Dl7jg0AIg7dQj4eUw4J6MiU1\nJVXcYnvnFhdnhwyGI4pdy6VrnnS+i88Sgn++leU9VjzvPpkawayX7+zMWmExkhzOL9MxDU4pzi+m\nyFhjhaSdSMoKLooCGVIWuzntbpvJ6FfXnPTh/j6vX7tKqQNpMsfh2QkXwykiWLpZirEO7SQq0lRN\nReMMuY2wkSSNBFmWomTE0I3Js5zGOWwTMagHtPIWK/MpSwsxVy7NMR0OsaNzzk7P6GvPdj+lt7nK\n5o1tFls9iqLgye5DbN5idXGZq1evoARMpyXlZMTyxhrrl67PRtKAYLZ5JwREaZ8oSki2LnH40U84\nLS06bSGcJ9QNo/MHzEvPwvIGstOBWOCjmEppVCtDZm2kCgQvZyANQXd1CWcThLSIBGqZInAklcFp\ni6w9xCnN+BwzLVhfv0RwBbIu8FIhgiAOkihL2Lm2wwfDB5RFgxMGWxqG1YQ0kvRabZxwlLXFOkft\nHCLMujMpMT4B7R158vUCMlVTM408XaGJlcFpz95uzcnpkIW2pp1HGOUxBlAB4QUNHi0EHoXyhqEK\n5EZipCPEjsRM8T5gC8OkMfz84we044j19XVWVpa5d/CAOTXHILa8eecyLTVkrhuz1HZ0VYputYgX\nl/BlQZCGs7Fj/c7151sOEbgIQg1WzmqQyUAZsHbG86w1UIDIIHEzMKM1omWBLu3rHvwKxjbY4Ygk\nzkGOZsCnkYgQEGkgRF20VOiFbNb9mVqC8oTCEKUxSR2DDugMjoYV6ysbfHF0RGOnyJakPddn/2RI\nUwcWsxaN8FBrnG5wdSAg0VIShEZKj7UwrQyDaUXsBdGX2Ln7yoFMv93i6vwSU1MyGhQUxyNUA0Mx\nZTFp44jJXEleGHpbW6zfvkY+n4MNtLSjTFt4YyiDoYOA8ZDhwX22Vq+S6Igm6dCMBwz+6gtOHu/j\nnGDj5nUO98b80b/4I/zUcXE84ObNS0Srmsc//ikqOLZuv0qStVC6YXI+JPFdpK+gmUIyR9SOWOr3\n+c3fepP/44c/R2QRD558zvLVG7TXNyidZ+fWLRqdcHF8gteCJgRGcWDNtYg6Gdsv3iQYy5Nnzzg9\nOcPh8WWDwmB8IHOG2is8HiMk1gVccDRBIoOnEYrIOxqlEIASht1h8ysHYgDGwwnTspoVJunRz7Vj\nhBcI6RFBPgcvHqs9BIiNxIuA944QBI33TMdTdJqgoj4bC2scHh4SW0dTGFa7Iy52P+ZgIml3Sl67\ncwlVn6J8w9n9AzaznFtvfAPVbeN7KXGi8e0c/+wz1rau4IoJtpiQ6Iho+zpOKIQxmKKckZLjWfFq\npg3F8JQvHn3B8GiXs+EDJhcJvpOz2l7l+s5lsnaH8ePPefTez9i4+TLdVgfb8VgREaQjagylaXDG\nYExD5A2yqUCC1tDOEprOAo6MQVkzKqd4oxkZA1GD9JLj6ZTES1785mv85b/64Vea318mTk9PqW9d\norOwxOhswMXp6azdHwciLQmFIcQBHyS+sWADTdTgjCNTEUVZIHWMkILaNNRNg7OOG1vbrK4uogmk\nsWSpk9Gb7yAbiNtdenNdljf6lH6KqgR7xRHp1JAvLfDOr/8uSScnlCWD8wFNUTJtKl598TdQ+hfj\ngPCcaO0JZkIiChZX55naGrF1ie78NioYjHP4pmH08ITjn/+cuVs1V159jX4zk773qSFVy0gpwFmE\nCCDsrICFBKUcITiEc6SyJIiYEEUoAcjZ1lSS94h0ijs7JAhNYzW6bVEyxdoxOmjWVlbp6IcMQ8Ba\nGIyHKKXotDOEVDTTIVUt8AhkJIjVbNyNVyTW0ARJGsdf6Vn5v4f3ATM+R87NUxr4+JM9JsOaWHqM\na6hMjDSaoAyxkJRNjcwcrUpRWU+eCrSN8JGbkVVdYGAVSkgGVcEbt65zPjpirpPTbU2wpyVvbM8z\nrKa8uLbC7c1A3moTXESqKkqZsNBuIWNBMXQgcxaXuyRKIRpmG0oqJjQSKGc8QTHFj2JUNEFYCRhC\n8DTDCVG/i0wVxLPtH+E0QXuEkURJQPQXIaugaM26PG2giSCvETZAbsHP5C28EEggbiUEVyOVAC1p\ntSN2tlf5+b1TqC7opRBFCzw7OMZUnk47xQowhZ2N4jzEKFwIKAlIz6RoaKxjOq5x1iJVRNyJvjRJ\nvK8cyPz933iTelyzv7tHU3hEI6kiQ99lxM4yVoZuWWH7fbZuXqa9kCPTgAqBSZEQF4ZaC4YyolNJ\numKKPTjlx2f/C+eTISsLCzSNJ+wfk/UXWHv1TYSLGA/HDB8+pdGGyWjE+/cm3OQy03ZJ8ef/mp/+\nmx+w00y5+s13We7njBIHTQrUkOWg2whTszXX5vXtS3x298es9fr8+M9/wM6Lb/LWnZf5k3/5J1RC\novIu/VxwNh4hp2OOkz7fuXMD1ekzODvlaPcZDgs+EKMY2wZlA4VI6ISaMihscER4fPAIJImwBCK8\nfE4AFgqE4Ge7X6YV1/93EULgiwePeeOVm4DABIkQAiECGvC/2M2SAt0oVAgY7YitwEogCIT3TIop\nehLh62PW17f46JN7RF2HKAv29scszG/ym7c3ubpe8+DiGfpojJsecWWhw4u3XiHtrZPNzaED6P5l\n6tMHrK+uE6eKyajmvGyYn79GrNqYkFMNxsRNgdQRWgbsZMjJ6JwHu08JuxWDeh9fFGwdP+WB7HJa\nnvHJ3Q945dqLvHLtJYZnh3z4wU+4duNF2lUbWgUxiqYaY6saU9XYi+lsSy5YjKlBO5Zjhey1GXpL\nPkiZuIpG1ijnEJUmKA/EfDEa0oqT2ZjjV3R7qaorFnurPNl9hkZgg0VLQ6wyKmMw0ezFXNEgrMcL\n8MYRlGRcTvEhoEOFCAKRx0Qo+kttlpZ6bC702b60RRxJ2nlEsMD5lLouYSFhe36Vx2bE4e7nLO1c\nYv31O1y5/gJKCHAeqxu+ePSQ6WDES2+/QZJ3/uZiDuCCx5QFFyeHDI526fmGsmzIXEDZkjzVFFmG\no0O3rjj9dMru2c8Q0xEv3Hp7RupszeOjGImbvdoF4BVCzepG8BFOZiAN8vlownoIXiKFRsmC2RdU\no7IW6nTCsB5BURF1WohgmTSGWHlMJZFaMN9doDg5R2mHCoG6KQlOUilIEWgkxjmslnjt0bWnMYYo\n+cpLyr8T3gdkkISp5a/vPaYuAk2oKStHO2vhnAFtaduICQ4tAqGMaLBopamfG4dqFYgbwRjFxtoS\nOxtrJN5TNCM2F1p0OxmlVSQdzetXFtFS0J8LeFvhhh4XBxZuXKfb7YOXTCdDPnpwzurmKtduLMx+\nrC7AaWyRMHp8xPGzR+ydj5lMUq7dWeGFdoJccQgbQe0R5YDxxTntrduoTgO2Bdoi3ExUT/gIMgMu\nhpYDr6EGkprgFMILSA3UCVAh2zXCGihShKogTyEkSGV564Vt/vRH7/POiy9xPjzh088PCNaioxgZ\nRVyYitQ7yqZGBU+iNRaBdYraNbjCcTyckgaBFRYbK9KQsLjU5uTkl+8Wf6Wn7srGIsO6JkymzLuc\ni6gijsE1EVoIxsGTGYvQglbe5fWbl5gqB0VgzkusmGKkYD7McYgiThuE8aT1mJVWyrr12GfHWAut\nuR7tnR10v03dmWPZK1rdGDM4YX6ug44sJ6VBHTxF9dusLbQwZc0P/6v/mr/zH/828spN6jNBLAQi\nyiBTiAAf/eVHXLryMiUXHJ/cY3O+y4/+z/+NpdVX2F67htt7QDzXQ2lLHAps1WZubo72pUukXnJa\nG8bVlADYylLVI0TTEAmLcOCkQgPSChxghEQEiyVBqoCXM96Ol2CM4PxXkOz7i3j0eJ/XXrxJiGaW\nBIHZvW2ZeQoFMSPv1/FMGVcEQa1BuxkQCoBrDK4YUIma3uarXFpsc3FhiLqCyzsLvLAhOecB9x48\nw1cZvTDl5uUlNi6/RH9xExf1SHQgztagL6nvTVH9ObwL2KhNHCWEpRXqpE3lLCqUTB8XnFTnTEbH\njMcl08aQDC3BWk5lYH7pRZ7qY754/GOu133kw5yPdv8CHNzZuMTG9hwfffxzbq1dhcUORUuTOYsz\nIKc12nuyYtZpWHAFz4KAYAktzbLvcH48Ig5Dghd4G+PThuA0mXJ02xnj6ZS01aacjL/iDP+HRV03\nnJ4fI7R8rh4a4XxN5WtyNFGYFdOMmMZXgEQ5h1OBREmiROHTBC1SqsGQOghuLC3w0vUryGA4ePqA\nze01Et/n9OyMrJWwsL1DlCd8drbH1tIaL/69f0R/aRMpZ5BAGIF3DQ8+vMfTx7u88/o3SKyiPhvO\ntDJkIEJyPhzy8L0/49knP8KHFF9OSPIV8jimtXBGsjTHwvIGIZawuciVv/1bnD25T/V0n0+q92F9\nhStRRJ4aQpAz+frnbvAzVQKPlBbhAmAJzgEx2k8hBmcEY9+hbc4QwzGDcYUZH0Fq0CaGSY1THjPR\nPHt8FxFLoiYGYdGdjKYeUwzHuFaECI4sKJyYyVHEQmGNIfYaoQRxnNDrtWHv6Ks8Lv9OhBDY3Tsj\nzUtkUCws5pQ2Z1KfUxrDXJrjZWAqDKmXM083bzFCkmiIncTpQFTF1GlNUsNSq81CN7CZ5XR0zvyi\nROEwMsLaiNVuQ2d+mWlZc2pTFjY6rK6toNMEfIIXng9+fI+x7/DNrQXKwyNOLiaUY0MURtx/dEFa\n7rPe6bOo5nn48OeMnCVc8lwybTr5MkF5dNwmaQpOv7hL3+4QrXmEUggdoJaEyIGXCOXAxIAhaINo\nYkTaAA4qAb5CBDMbL9kM0gZ8RAiWYGuwljY1QUScH49I+4akrRlNHXFW4W2CHU2YSI+pDZPSEueC\nKBJIpfC153A4mbnAxxIpE5RUtEXN8q86kBHAjcUliuGUYnBGUTdkKuIikqRaMk0DUwk9pyhXeyxt\nrOK7gSTWVF4wjQYIYXFlwnFscLqPt8ec5CvI5oCtaMokdlgXiNIOC6+/RdjaptYZUkd0pWfjlVfJ\njlIuX3qT+7sHTI/3WHeGkEgOo5jROKW/eoWPP/mM11c2cImn2jsl27qKiLqEJOL2W7e4uP+EWy+8\nzN5wwuH9Xa7mXfb2d8ldzbuvvUp3u8+zp8cM9x5TK83tt14hSbvU3lIPx7NLKEhsOcE3xczlOEgs\nIPxMDjsIUGI2b/dS4pgRYWXwBO3xZNw92qdxv7qu2XXd8Gww4nK/T6UhtgKvQQSHExIdAo0OaDuT\nk5d+pn45O00C6RUEqCcBkgZTnJAu9xmPn3CntcaKnvBo74hobOllCfOrHXayVba2NmjNbyHjFqQt\nZNxGdnN8c0G7v4h0FdW0YjJ+hG6tYlQL4cAe7HJ4csjZxTNOzIC00ngPxs9M1E4ST20b9Klh9+AZ\nZ9Njuk1BmrTQSnHw0c9YX9vhrJkyn0Xcv/cXXK23kXmPcSsllJZJNaSYTgi2wrnAaa1wNEjh6fiA\n6rfIMoXFIRGYzNApYy6kQQlJHOd0jOHG9g0++PRnX3WK/4PCWktZ1UxsQRYiGlMjtAQHWgtKAUpI\nKj8zbvDKUyHJQ0S8qOireSbFGOenOO/ZWF/k7TuvcjbZ58albdZfu42vCqStyVYXaaKYxfkey+vb\nZOtLtPsLKGKEmzmKSySBwNQFPvnsC77x1lsILfnoi8/44md/TBI0yYpiYW2Fk2ePKB8/wOTDmWJr\n6PLwwTHxSpflYkzvbML51LO4uUBue6TzEV0xj5700a1tLi4GPPj4Lk8e7dFfnmP58g3anSWEa0AI\nQkiAkuAjEI4AlAEi0ULXIxrhyUxFUxVMjvcIVY3uGSKRULmUZ80ZPdUn67W4euMW7fvvMSEmihWL\ni4vsHk6phCIUFolGa4fG42VEIxyxldhktk1pHaTxl+tq/GXEvcNzXr7eQiqBQrKz0OLk/Iz5lkZK\nC0GigqSWgdQ6iASy8Vg363gpn6BlzdTF5JngzuY628uaR8cVi/Nt0jghkZ62MCyvt2m1PT5rs7ix\nzHLWRjjJbM4nIBV89qOPyaKU197e4sknD/jgw11uz0vE/DLDcko/cixlyzStnHRSorp9wrRC1CuI\nRtDEU4Tx6EgQpRlLi+AGI4ZnJ7RW14mWJKQC4ZiBE6WBGkQE2BlZ2AMNoJvZiFI5QIOpZ7pdQoLz\ns5Hn8ZjYKt64usZgNGWnrem9tsUHnx1zdjFmUI5oCkeaJeQdTdqRaCFnHMay4XRSEIlAqgNoTYQj\nimKmeBYW14DDXzrHXxmQWU9zBmcXZELjrCDoiEpFJIBIFMaXrPpA3e/w8Lzk73//KhtXFymtp9Od\nIKaCC58ypyPKbJFO46nHBWmvTUGXR8OC5P/i7s16LEuz87znm/Z05hNzRuRclTVXsWf2QFIk1BAl\n25AFC4R1Z8Dwja/9K/xDDFmABBsyKEicRapJdjeruruypqyqHCMzMuYz7umbfLGTsuAbDU12V2kB\ncXFu49vnO2uv9b7Pq8es0oTXfut76Js3sFKR2BpXLzF5wne+/TXuH12lPq05/uwBW1lLTAf0khHt\n4Sk/ff8QKdbcvHWTy+eHDHcmrKwnR0E/QaQZyZUNirMz5MWcv/ed7/Kv/uhfcvnkEbs3XmbcG/Hw\n8AEnl4pF2dJLcnSuePXW63gCdVOxWK6wztPaBr9eEYPoJjBBkITQ0Rs9WAR59AQhcEojbCTIiBIQ\nhcK3NX/+7MvtTgF4ev+Qq1/fQOJxMiIiHeE4dgRf7QVeBHTsEmcDAiOAEGmlQ9M5LgyK5WrOuJjy\nyviM3QkkInB7MGZvOoaiYi8ds7m7ix5to4op5AMECWQpUWpEKbrPskXamuW8YftKTukbFrML1vef\n8mD5HF2eI/QAX1iquqKpPWXrcK6mVyb49IQyWzCQKc1JhNAgo2Y+W5F5SW+wwTrA5dNn/Pndu+wP\nM9TwChZwCtLY4EJN5RSJB9s6TKqpbEMaA6NRD5SglYG8kSzSFtkq1nVNltWM9rZokhnqnu4Ew1+y\n8iGwmq8pbUu2oSjSlLaqcUnACpB0SeDeW0SiMU1LlhiKNEEsA8/rQ7K8R6Kglyl2RwPacMl3vvIO\nG+OCIh8gGaFEwnB7m3z7Kqbogzad/Tl0jbOS3bomOmjrio/+4j1G44JBmvHpz+7y+//63zC+uosY\nGqoo6F06jj65S6Fhs/8KyvR4Yuc8cwvmH33OGwcbiB3N808+wM03McWIYmNEEUZUesVwZ4/pzjWS\neoFSEjerefTjn7Jz64Dp1VsI7xFY8CmIkmgdIkYKXRK9RgiN84H5oyccv/dnbGwMGUyGQI+T5xc8\nefoJAxR2v2EynQI5DoWUEOsamUIMjrTIcNHi2i4DSMbO8i6QNEr8e76VwVPkukMI+PDLfmz+fTVV\nw/Z0jK1nLMslg/EUF1PmTtCTAiWhlR4ZFE5AcAKXQhY6B2IrWoSIJDJjmMHGKKeSkW9+5SqvjyRG\nLvFOYXo91OYEowwi673IwDWgPFFG8JHLx6fc++iQ7//2r3H84Jw//MP3EUXO5a0d5qcPCbUky1Om\nheNkafhnv/sT/sUPPmPDB9K9Pv/g22/zP351wnhnTdHbIE/6JFGhR56hG+LmFzy/L+i9NGQwKhDa\n070RG5ANoo2g5Yvpi+8ATcrRwXIcpBFct4Z23nD48JiNfk6SeV66uc8f/+hDmlUkmIrpxoQnp+cU\nuqB0jqoqGckMl0QqJ8hlpFaKvc0p56sSZx02eHQqUJmmrzxK/M08J7+URkYB18YZWEcpPalOMGnS\nQZZkxARPEQVVnpOtG777xm0GeyMskTSzRJswywQpEZPnSBeQuiEsFaQJSx9wRZ+l2KS/f0By+yYi\narLoaYRCpQlCD7hy4zpeFPzzH/zf9OwaGzyVdcw/t+zubPDSwQEPD0/58OEDXvt0h9QMOa8cJAbS\nHJxFGsPozg38xTlCWL7/69/h9373DymffIbOE77yxgFnq5Z3/+ouemDohyF6I8UHS7VecTGb0a5K\n6taR+gYdO/Bb4gON0IgQiTh06HbfmWxp3QAnW0xUOAVeRj5+8hQXvjiXx39pPXpyxNtfe4dejFhA\ndYpfnOjWS42C3Aqs6SYzSnYYBRMlwXbTGWElQgmkr+lvbDFeDbnWSyiSwEYW6e9OyaRmOByTTsaI\n3gjSPqgBnYr4r98qNUI22FXL8uyM1LVUJsdVNdXxKY/Ec5JyTlvnjLYy1CCnWaxxa1gLi2xbordI\n2eNOopj5KRdbhpUuCXXBwc4m/asH9F5kB73yla9Snx2zunhGtTjCGI0djmmNADsicUuiFvjaUFmH\nAWxTMZmMydMc6gWNDqRO02hwraUsa7Z3rzJUlv3tKzx+9viXdrY/T9lYEYjUqwaUJIhA9JLoIkJF\nmhCAiPcBoSWpFFysFugIqTFs9FIWZU0+6PPdb3+XG6/cYkNCT3t0npGElPXugGJyB5UmnTskRqIP\nSCJKJMTgaeuSd//kB1gchci48+odPr73KX/2wx+zkJY3r+zjguPRvQ9ZkrJcZ2y9cpVVmvHuuz/j\nx3/xAbapIEQe3PuMGzeucXV3zKj2lO4+SZawc/A6eZbSDI7Ym+7S9FIkEt/LyGONXLWEeoGMBVE7\nZBtoMw0mIa0tNgqka2iUYf7wPoc//GP2tycME82i9pw9/CntUnX5P1kPX8KFvaRuanrDCe1yhhYZ\ni/kMrRQqUYTWYZTA4WiEwLwQ46c+4lUEAUEqtEpQ8ovVyJR1Q5ELdJEibInx0M89/UyjCB08MSgc\nERsjUnt6XlPLiFSCDM3USFrZkvX6vHZtwmQk6Y8ThknApOPu7sg1CN3ReJWAmNKNPRTeGe7ef8by\nk1N+++99g/lyyd0PH/DhxYJ3ppt8/njJbLYgICjSglGScj4raeYL/s7bUxYXDZcq4U/+3XvMzjb5\nnV/dIlUn2F7OV/feIL0qkBsZSZ2yk7XMHs5Y767ob+2BXkKbd5249lCHThxsBPDXExgFBGgUCItd\n97h//3NGGGTs2DW7G1vMK8dHj0o2Bwnr0CNXkYMdxWC8zeX5iqOqZhgESdppZHqpxtqKTDuaIBBG\nYXTEtDW1jtTiS5x+vdV7kS4sNH2vQXkCIGNEqJyIYxkDW03JcGfAW69dJxn30E4hZQdAG6QS27R4\nregrz7mLTHamtHVLfzigt3XAfBmZXr2Okhpva3QxJLZ152yIJVrnRBUJbc1mJjiuA0PTcPvgKtd2\neiTDjPzwKZmw3Pv0U76+0Wd3/xWCzlHSd2sNpRFZDz0KxPMFW/0+/81vfItPHn7MR/c+JayPGCdj\ntsYF8bjh1Xdu4gHZNBwfnbFalkSZgC07cV6MxACNAOM9BoeLGmMdQUWaaNDaU3uFkREVBSEqPv4S\n22v/w3LO8Qf/5o/4777/6wgVwYcuCBbgBRxwbbroEas8CokKAidDl6UDeOWxSIQxXC0MdV6xQSBL\nJ4zHG+h+n5ExpMM+Mp9AMoB00L1+edmNXWM3CYsuIKqGxfkJ2XibEGrWi3Pa5SHZkzn37y/5Sf2I\n8eM+V69fwUmL1DWJ9yRtZKGW1DZSJDkm1ewiMGGHR6bh9itvMRwOsCpFEhkVBlPkhFGfcPKc9XyO\nWK9QxqBkwAh46h258KzqlrSfY8s5plewsTnmwZMLgofaQNI6MmOoyjWr5Zzp3oTRyQZ8SRuZctWg\nc421jqgjwaUYVdNqjfIgosW6SGEUtUxpiIySHDMZwrJi0baYoLhx6ybX77yEiJ6yrdDZCJVNqCOM\newfovIePARUbYtRd6KMURN8SmsByuWLQG3O+vMDkjvf+8gd88vExjx7M+bMfv8sHH3zI17/xq4TG\n0yw+h7Llfs8jkoT6ZMVvvv0GZ73Ax3efIn0Fbcnpw4pGRcy1ITJO+fin9xjvHXBz6ybnrYVoaaoS\nlWeUF+ccNSteVpYs30J6TX7VYKpIMB4vAs5KRFtzdn7M/X/9Txn1JwTpuFSa1dkzhBqRbib4NkKi\nKYNiIRyiGDDaqFmtz1FGd1wjCW3juhgGGVFBIKVAO4GVHqslSfBYFKFpaYNHKgn2l/3E/H9Vt44S\nT2FgYVKca3FWUkZJkXVT7zpqUuFQWhBfaO9yLwlSoRS4TODKwOvXDjjY7pMnjqzo1k5IA/0cEWQ3\nfVESEQXEFqQgSMHp42P80Yyvfecq56crfu9PPmJ2ueKvPnjEX7x/yFsv7fF3v3JAKJ9wOPN8Euds\n9IZ859t32BwNODpa49tz9sZ9fvzwMQ/O4Bt7CaLWfPb4Lqbd5uViH2nmEC2DnqE6dWP8VAAAIABJ\nREFUdrB9BrEHsuzs3EGCrMHqF4JD0WGafQDpiTHQrBLuf3aPHaMoXjQivpTUl8fsjPtcns3JBz3W\njy86wfOiRPcU+5uKrBmxXtbUVcuwp7HeU9YehyHpwQDJonFYHRhEjbD6bwSi+AtvZLQUHIw1BvDR\nU6UgtUA7R6IzvJREqelXNXvLiLpWcHUwRYoUkzvakJFnDXUdGRdDgg7YKBgVhurS0ldw1jbsFprV\nak4SLBFB2ttE4gkioWpXGN1lQ/hlyziJJFtj8qcn7CRAGokjzU6S8Ux5XpKGST8h6hy9u4WwJdEX\nCKkQroNP4XPEjoMQGO1PuKNvMxpkPL24R2tmTLczbDllvDlG1S13H37E6f01CZpZW5PFQDAp0tYd\noyB0jh3pErSyeOPBabSK1L5zbVkpUSrQXFaclvNf9FH+rdVise6mS7qbsPy1HqYTN8buEtVgnCDK\nQCs7FoYPnhAdwiWkHhAeoRWTjW0WixXTXkGSFC922j1EPgVdgOx3l5FMOiCVFN2oNXQC2/WqZWAi\nTSpZrVcsnj1n8eyCnxw9568uHxEYspMMaKoVadpdbjLWBCHpW2h8hccQhwn7O68QTcoV2efqr/wG\nUST0CkFpt3EmYTDu0R8W3LNL0kRzcfqccrlgJxtxniZkKNpYUWDwo4zl5Zxe1mNrvMXnj58gQmBQ\neuaJw3jJ0q65PDqnP8q5sXONj9RdnP8C/cr8J9b5bMaV3g7KR6qyxUlBCJqR0jSxJniNUpaoNakK\n4CJylLOV5pwsFvRMn/HOJtevXmW1rhkPhthoiIMxeb5DFRYkUiN8d1+UMqGwgWAMwmpcWNDOKqr5\nGZd2jRj2efz4mJ/+8AHLIPmDTz4kzhRuojg6P+Ubb73NB5+ck/se+rjh5laPja+9Tl05bm33een6\nbZbLFcNY8tMPnvOnnx2SPJCMsgFbr7/B9GDK1jBFeI9JJLWFw7N7bE2vASBWgouLc9bLM8arTTbS\n21gTqMWCi4sj2ouG84/+gK3cMNjcYH56zun8gryY0GQOuZ7TJlPcuoZgmdFjPJYMNyY8efgR0Sf0\nU8UcQQieEANRaF5Q5zunUtR4F2mUIIaI1pqh0gyKnLr+4pgOmtpyedZ0GINMUXlo2xbvBSjfWZ9F\nIESIQtJD0QhHmyi28gKH5ebGlCNOeeu11zBijnABIzOkMcRUvYB6d1gIEUJ3jygDUYONNPWavZFH\nKs0PfvgTkjbhj+8/ZTru0YSK7bwlTVJOywHXtsdspA22XhPblqv9jBtva67IfVa+ZlmN+OH9GY8u\nAgebnq1Bn7evT2C9Jg48wubo1JOXp8QHU8RLCkIKsWuKO5heCavY3XnBgfdgPSEInn76kJ1MUpgE\nlQq0T1j6Eu0dW5OMYX+MjM/ZHg/4fL0mNIF1aBgkEqM9076kDZqmsczKhiTXpErjbGANFImhDg0u\nJCRZy2iYczkrf64z/oU3MrcKiZEQZGBYQ5lC1kiaXGFdiQ4aEs0wRpYjwx0D6fUxmRBUSpFGh3OG\nZGhwrYW2yzfJnMZKie+NubZ9i9Mnj9i5ssfm1pBUp0jTfRFjrHAqQ0lJIiRJNGzlCRvjA9rqAp/3\n2JuMyH1K0lT8ZuZpEsXp5SlbWaS/NSKuW2gVFAFIO9CQX4PsIUKDUAnjgy2ka/G+omlPaXslN7/3\nKwx373B2cUQq++RjT7Pw+LZ8McJOccJipMf5QIyeRhn6MYCDxkiIFuUCQQZUkEgR+X8+//QXfYx/\n6/XRk4e8c/06tQDtY5et4wVRdk4E4WIH8g5dXIMQHisFOnZcBJEKhq0gRMdotMNxbcnyAUl/RKEM\nopchjOqw3yoA8q9BzmBVl2niJdgW1SyIyYAqao4PPyYcPeHeySWfHT+hX/R4pejRn7Y4OSCNoEVg\n7SNWehApJkRCEtnr7zDc20Zaxd6rX2eyNcGkSYc8L2pE6Ygi4EdT9m69wcXhA1CGfut4fP6EPRdw\nRUZLpFku6a8lMgQSXTDd3mVQDFjPzpkbgSbBiYZBWnBpTxmf9tnZ2mT/lVd49OHdX/Lp/udX2TRs\nbgyZLUtklRBbS/SeWYhoL0mMR+icYCO9YUFOijcBTIHXgl5vwJ03Xufb3/weIo88//BDJjsH9GKf\nmZtRa8dOULi2QdZ1R4N3gQtRIlYNZjRGtAFrFVdvXefSr3j+3kc8evyYy5WjrVvy3Sn97Qnbwx7l\n/Ay3toy0YSItD9szVo+eM771Bvt7t7nWC8yeLbj//ruM3ZJiPOFgZ8jV115m9+A19m/eoY4lWWqQ\n1pM1Q5p3H/Pe6gOcsajf+DVev/NdhEy4+NGPmK0/ZpUNCIXD7CwZuDWv3bnO8umCJ2efsXg6o2wc\n/Ze3kKcXkCjS+XNaG5itFtjtHS4ntxn2LW1dI3sakxhSrXAElFcIAk4KpBBIofAiIlOFQ5LXgPQ0\nGIoih4svzotVCJGT5TkvDScUaWA5dwgtGSUgSTDa44LGqIQ61sxUYBxzWglpbrCVZz5fMJ0coLPI\n2go20hZhNhE6dDqqJr5guRRQy47XUkIsIuUy8qc/fMRv/9orXDhLu5rzydOabda89M4Nrk57ZH7B\n4cfvQZJyLOZ81kiez1u+9+oBE6FII7Q9QXAF33t9lysHLQdXbjEdQ39YkCmJGMyhHkDSQqw7rlJ9\ngnw2Regt6NFNmp2HUkPPwnpOdN1LM63h4uyITK8xMcHaGh96SJFyWpVk0XB9d49/+94DNvPAKDPk\nRcHFrEY0NU2eYIXqtrIhsrSeQd7HC0uwgSLReBVp6wYZNA01aZD0p70vVyNzrT9mMqyRTqCVYlXA\nJChs8LQhEEMgkwlrLDEziOGAm9/6b2lkpNWgrMATCUqQOo/Vho69m9Jqjct6bO1u0DSC3VcP0LlG\njzYhewGochHjDXkO0sGqtjw6PuT2zX2aec105yoHgwHbwx00DUPlWb91h8Hta/Q2huTXruAWK6pZ\ny+CggSbvxofOgMqA+gWkSoDU6I0eWb0JVcuVG5FKBi6CJ8oBRyeH5D5hvpqRtQ4hBUHUpMIgpMHb\nhhACInhKCaSmAzP6SNQOdGdRNlZyWv7XsVb6D+ve3Qe8eXCbaCxNFGjbNTM6dGNILyLEgEfgVCCP\nAmE9Tnh0lIQYWZuGZdNwZThlNBihdEqW5KBTolKIaIgu76iY0QChm8zEFioLtobWE4nUMSDOj7l4\neIg/OePwbM6eymAwol/kmMyQqoZKC1QpUHjSEBACrFIkKmVj7wZJNmTryk2Go01GqiKQErRDN4IY\nh3jmtOWSQhrixjXa9jlVWPLWy9/g8PQIRcV0OuXSW0J0DCQ4Z9GmYJgmLGTEWEVIBCbp4WVJ2hpO\nZ6cM+oo7r7zNo48+6OwYX6Kq64ad8Zh+0efzh4dE7/EqoFuJFpEaSV9YnE5YVxYvHdNik+ezE4RT\nTHa3+co7X6VcLGguS65efRmVJ5CnpDHQs4ay0WjX0KQjUlvhRaCvB9AL3Pv4fWYnF6zqBaN0yJPZ\nE+7d+5zPThc0qwmjYo9f+60b/OPvfo+f/eQv+Oi9nzF3kY1B4JPZjLUUbFy9xsgHPvr0Q5pFQ8+u\nub23y7fefIVhPyEfDSm298jzIaG9IBcD6tiQuBa5q7ny5svEzw8Jy5r7f/jnLD5/xFff+Bbjr/0q\n9XxNL6449SuadQWTAcf3P2Ai91ivFOvMY4qEM3uGRtPMWpqyZbEQlOsLaqXZ2pzim0A26pHGiJWa\nNEvB+g7ZLyXOdcnqltAJi31HLa4VL+7itkv2/oLVYllhJ2N0G7BVC0FSRkEaQZQBm62JbdLFFVhD\nkzSgcpRM6Oc51eo5/9M//iobRYOwDSI1YNsujTrGbqLhdXd3qBS8J+aa6CR/8MMfsTGYUqQ9Yllz\n+86rnC4+pgkDBsqyNw5kw18hSeAvP1qysI4NAa0RVEbxe4/PeT2H269PyGLB9jbs7KeorMYMDFLM\niSEhVgVClZ2QVwbMQBNCRvt4RrJ/huA65N29iWiIywWsxqBWxBqsnlNenDPJu/BKKxuSCi7akspp\njPHkueeV69e4f/8TToQnxogsUgoMi7ZFK8ds1SKkYtgb4mKFihoRa8qyxRiDFBEjwEVD0To2eik/\nL/3sF9rIbCY1QQSkEtQikFrJIpNY3WKahAisqRnJhHkmCTHwbPGQq+odmmDo+QYvFJmEizawMVLQ\nFIS1QkWNioJP/uivsLnGKM3Xv/4twmzNRZwj1i3OW4LS5CZBZwXt2ZzF4WeEgSYZ9dnXt7ieS0bz\nUwqVUOWOa9/8JmaUEKcZEFHlJTkSmrYT/SYKGtspvoWGLAIpsYkIq0gTifJTjs9KxgcD0IYf3/0Q\nU0tCKlBaEYV/sdbgxUMmO4FriCQxIH3s9ogyEFEoLM4JXD/l6eGXkw3yH6u6bqlCJ2jGd26JbjDl\nAZDdFBdPxFtP1IokgvCOVggwLWsrmc8q7ESyNdxCmRwhJFIIkCkxCIRqiaFjLCBTCLb7sy14j3Ae\nrTXOei5PnlMsD/lkHZmnnusxg35Okhq0zkmExISO1FppgQmSJgaiNkwGGyTDPsNiynB/n51R0eHA\noyBGiSosMvF4G8mC5vxyQVPOmU6HeG+5vDjh5vYuZVjx7PwcmWU0LhCyHqnROKGZjsY8O32OMwFp\nwfQLlPU4U2Fi4Hh2wtZ4wmRzj8vTZ7/U8/3PrbJueHJ0TuMtygdc9GQi6Rr6VJJYEFoTQiB5MU3x\n3jE7mbO1NeZgd5+HDz7i5s4Vdvev0UsiMRhqbxmkBW1mMPaEIPsktmPy1NFxdn7E8+MzDn/wU7Zu\nXGPnYJ/YWG5tfY3x5lco0wEP793j9uYN3ry2z/OTx8wvLU0LN3Y3WK8WLC8FajrEiJSjk+f4ZcVt\nlbP7zutcGRVkY4XopfSLCTJ14JbIXKGaiqzyiFzTkynX3n6NtG84ffSErJngZg1/9sO/RO1osn7C\nclGxnl1wZW+bkTDYwXWO7Rpd7dAGTasUhhSnAytxQZA5rVzR9DdZryrGq4os7ZGjqVvbcXvSlJzA\nhWwRVUQKh4tQGI2PkUYGIh13rZYSKTzZF7CRKcuaWCSwCnjWjAqDFrLjcGUZvRiIWoKSWAmZ1Ght\nMCZyeHjI977+dfrqkkInFHlBlnhIJFFLRNuCMkSpO72JjMS2Yz2V0XL3R4/4B7/1Bhcnz6jp8bV3\nXuYrb7/Kw2efU53WDEzNSXXOau25vp0jh1ssL4+ZrxIePr4gKy85uznmrbCk0bBsazK9jUxyhM8g\naRAy0KGBuzgTIRQiz8A5/E5BvKxh4xTBpFsveUt0LWE1RxYlREN13rDdzynbQFCePGSUcsUqRpra\ncFxrikFgc7Imu32dTw6PmG5oZmXH36FMOLqcYXSCNJbgS5LE4JoW6ywiRupaYHIwMhKip5QeLfOf\n+3x/YY3MtWGfrO9Q0YCAQZQ02pGtNXUeSETnygnrOUs1oJ8O6U9ypv2UtQ2YxQpZ5PRoWEfooWmX\nGTIKnn36iLpaIk6X9B7/jOFLr/Dxp3d5+Gd/AtbTLNbgNaskZf+tl9kw+9x4+wZb+7e4ducVpDQs\nbE0rzpmYgJm3ZJMeusjR13NoG3AtURqay0uSXg9aCUmEoIiAkJ6oNMJW4AXSOFKtyHSO2Mi5Nd1k\nTYELY965eot3l58QBehg8SESdESFCEoSPV0eBgFBxNNd2MLVaBkIHoIIZM2af/7hT39RR/gLr798\n9y6/+bV3qHQk4lGxcxICL2S9AhVfrJp8pJGdVdc7S1JpnPPM52tKEdhJC7RWaNWtkIRtQRqiSDtN\nTFBACU5AVYJviW1DjJ0LxgjDyeWcy6XgnMCGGZJt9ikGE3pa0IqI9oHgAlIFciFZJ4ae0BRZQT7a\nYJD1GezdYpgqpIi0IiMJrnt2RIeZDzEhZhI11LizmnXTYNqAFClnx08pNie8+cqbPHh0j7PZjKKX\nkeY5tizZ2NxEPjRE74gxdP+vzFCEhLpd0fewKD9nejD+0jUyMUaSVJN4SV1ZUiLRR3KT4IMnUQLv\nINWCRPdoZMV6saKVgVdfukF58Zy9rVcZTacoI2lai+pLcpHQNhXCwtpbVidH6IyOghoCTVuhj1f0\nBz2GeYEvHQe3Xma4t4Wxjje/cY362QUy1Kwu5jw9PmRh32e0PWZnssuH9Rx2+0hjqJ4dsf/ObV56\n7SZbOkH1LGkWsT1FkkmyQQ8vLLZqcW1L6xRpPyc1Ahs96wD9azv0t3coVzNmh6cs1hX9/i7L1Rkn\n9z4hSwxMM0JtuGhbTs8r1p9e0MiEfKcmlQmr2RmlVYxySTQ5KgbsWrBeWbb3B9y6+RLv3n0P6aCu\nGmSUiMrSeEcmNVFA4wNKRKQX2OSFpk8FhNWMsrwTSX+Bhn62atnpa05bj5OBLDE0tiWJElcFagIa\ngdAGmYBvBVp6nh1d8NatmzTlkqPnsJOkVHpMFjymdQjhOkCiqFgvNG0d6acJIk/QQVEt1rx5a4ft\nDcPxRcOrt3ZRfYeMCS+/9CrN5iWVjeTLY0xI+fTBJ8RMsnHnDv55zd37z5mKyO7BmCQdgJ9RVrr7\nLc1Vh3AWsZvCiADRA7F7frVGKk9qDXHoCAvRrZ987CbOqkbEllg7gm9JkpawNBhjCSGysJckVSd2\n3kklF2vNyXLFdOhYmRRISVXNdJDwfN1wsZrRSyVeBAqlqKxC1JbgHI3v8KapMnjrOje41UjpmYx+\nfiTEL6SRyVGEXo1zERFdZyU0Bus1IasomoAXHdTLRU9vVWP7miQa5DBluY7sDhxV1VJJhZFQOcP8\n6Anu4QM2s5zq/mMy4/nqb/8T+m/d5Hr8+zx9uESWJWdPTzg8eUpvfsaqjPS2Kn720w+ZHh5y5+XX\nqKmgCgz627T33mW0M0JvDtGjFFF3pEy0QqxaXF2SxAiNhyKCCAgVOl1GbKDqbIdiaZE6YTQasGxb\nZNJH2QHVRcXHn3/WsWFUhLYhioj3FkXEe0dlA5lzSO+RQiJkxAePJCIDeASFKjlfmF/E8f3S6uT4\njIqACl1QnlcO3Wpa1b0FyhhesBrAx4jwDu8jrYIqCTgV6S0N66pC9IsXdlqPkC20/Y6foAMilmDF\ni3C/SKRF1A20NbGpEEFSFAOuHVyn9pbh+QJhhkw3RvTynEQrvG1YuJoYwCSRzAkKDKMiYzIdY4Yj\n9HSb4cYQqSUiSHqhRuiAQ3a4cN8RVUWQaCnw20OSozluOIB6Qb6WuPmcIxGYbG2jij7Li3PKGIix\nYevKVQaDu/izJUEEmtiidUb0FqNSlhVsp4K93T73ZSfQ/NJUjGitEGnGIMJEZTx9/pS2rQk24I1A\nao2OEqSlLhsa1/L1O7e5vpEw3b3K3rXrCCUpz4+RaDaLEc+Pj7C0NJlkLMaoCKaULArPWHjmJmGx\nPGKws8VsvWZ35yr5xgjrPEpL9kabiKzPuqxwWcpO8PyjX/+7/NG7/w6wfP+bX+fh0SGi8ty+us3u\ntRvEXLHlDRe5oOgXtKNdtFvSVitCcMgkY5glQEJQKc622OhAe9JcYo0mL8YkgzHNw894/70/B/ki\n6C8rOJ2tqa2gjp71/SdY20P1WoxUUFXgNBNjqJsaGzxOKIxoWR494th4ZrMVrgk0bYtrA1Xocqti\n7Cag6C6TJyowQZCESOUkSjqCgKSXw99Yis7fTM1mDctF4HS2wLaQakmqMpqmQaFASqSCVCgsmkw0\nnK8d2xubHGzkjAvJKgjOF4KJCVzWgrFfIVLDIngyL8BoskKhdcSHNVH3mc9qJoMxwSbcfnmE0JFY\nG8gkUkryjU0yZ2kHOSq5ZHdrxMPnT5hu5OxnA0ayJSFnf/91xPCEPI7Jpz1UYQCD0K4LmRTxRWK2\nJ0qFkEC0LwJ2AxRp56Rq55zNFXUMXDEtSE1cG3xcsm5bdOLxPhK9wLU1yzrSREntSzIx4dlswZVe\nji1n6HZFoiULl7C4OCWLnYaxpzVVDPR0ACm5bDwpKVE1ED1SQ+IFjXL4aNCm+LmdS7+QRmZjL2M7\nWLTs8qqEEEjnicbjosYpSSYafJBIoWhlTdlWXK2HqGgYTGqEsVg3IdZLjg6PGO9fJWQ5yXBKqQ37\n3/4qb739q4xu38anGfu0XLkuicKQFQWXTx7z+//293n8waecfnCGbdaUueT07kd882vfYns4orTn\nnJuE/e0hoqe6yHTfdt1u0xJtRKqkSyE9vyROhojgOn++j0TvoLSIrOk2RHWDyj1pNqWlx1+8d5/3\n3vsZXo9I0x5+scQ0liA8WikkmnK9oKgtJroupIyIj13IaYMgqi5I0RnBnz74clpp/1PLWcfp6Tl7\nG1O8DOAV1niUi0hEZ50PgigkwvsOUBkCLnarSxOhippmtsb3x3gPdbvGSIlmhrQDiIro+4hcIpDg\nLKIJhNDivMfZhiS2JMWAKzdeptjY4+rFCXW0GJ2hEsPaS1K7Yts3VFbhKUmEIChJLytIE0Vb9HFF\nThE9WVS4ULOYn9HKlqTNkV4wGA3Bt6hW4oOhj6cdSIpsHyP2uLh8ytnRMeb8hMpvvACPOUJ9AWkP\nZRL2tne5vFjg44s+rZdQr1qSLKddr1hWkq2sT5InNOsvTkrxf6wi8OTohKIYUFtHkUM26tGUFVkv\nIVMF63aOdYGydqQicOfqLtujjNFwynA6JZENl4sF7eoYr1KenT5mpCdsHbzMSEApFI2dc2Eb9HHg\nwfMHLB/UTF/ZxxQF117bZ2OySXM+p5iOKLI+Inbwzt5kxJ6IPAsrJpnj1ZNtohLcePkG+7sbnJ4f\no3vgkxojx1yW50SXUU76DJoVSQxcRItfebLpmLAoIQsI7Uhbj8WyajNWUTJOI0YntIkl2+qz9+o+\ndrlivLVBaANHH3zE+aNjio1dBFBMW5L+Jl4qhG1I85TWz1CtQWiFCiXaSVauRMoet17qMS5SDk9P\n+PjeE0QrmUmL8JGAQQZPKjVeOEASoscYT0AgFGRIkqRzrXxRarGsWK8dq1WLD4omBAZpxrDIcaHB\ntyATDV6xNU04Oq0YDnq8ujdlFQK/srtH055yYTXz5wuywvD+gwVZUnF7f8xow6B7Mw5PKz56MOPt\na2+zc91Q14F5aNm5tockRcQWYbo7nOCIMhKlIRkrtpMrrJO73NK3ePz0GYMbCX9nsMdKznlyecFI\nSHr5mBhWxKiR/RZE2k1iVJfVh0864S50ot4Qib5GtAoyAzYhNRXV8Yy4pYhNJCRL0JpMeGoUiXKU\nDnLVZ96eoChYuIhqa4JtuWwLDqaGy0Wfz8qaxek563WgRbCpJE0QJCLB64gk4Gyglwtc6FAhiQ9U\nopNUpNGTCUmRG1br/3Kn2996I2N6gmv9mss2J3cVnhSvAsFEjI/4IOiJknlM0XSEyIlMmfuGuVtx\nfnbM9OomR0uDyWpMCVnWcv/BAybNE15/8x8iVMVrb98hBolLPDFzlM+OePfH7/Lam1/horTcuLLN\nf/87/5D/83//P1i0Nfpsjq89O0nGB7/7L3j9d/5nSA1q+xVqk5O154gkdLoXA7TgXYOvLSFNkJdz\naFcEnyOEJzRLyufHsKxQxtM0C8Y7A4QVrAYJuuzx4KOn3Jq8zmVYcvLwgmfNCf3Go4wgk5qyWaNs\noBGSEBK0DzRKkGBxwWCNIcUhTWDlxjyY/9fnVvr/14/f+5C///1f6zr5GCEIiB3TwtiIibGb0AhB\n9IIQfRc0aQXRS84zR1NaGhEZOY+rFYqKaAIxSDACESU+RqRUEGpoSmgaRFNi52eovEBnkkzm5HnG\neNjHykC0nhgdwTnq1pCkHdZ85jZJaKk9RKlpTMbgxsvsDLe4PD/m9OQzzs/nlE2NaVNWUrN2l/S9\noE4Cu2mfYivlymrE3Ja8v/oR/c0N3rz9Ok10XJ7UyHIJeUGaFSi1JuYF89kJOzu73Lv/CBpLFN16\nKUpPqg0uyVk0DT3Z8Op3Xuanv/flci9dns3ZfnmI1IpoKyaJIdvZwdNSVQ0jNaQ37dF6iywrtILT\n2SXzjwRvBcV2OuR5bajuHWFjw7DNWe5UiFQRBilHdz9Frmu88YzSHUQLw1d7XPvWTa5u3qEYjvGN\npRi3aGUQMqVpauqeIcdw6SvyXPHZ8nPC6pze3lXieYOQOdvXr+O0pAgJ6/kTFqeXjCYbxPkaPzBY\nLRjqAWw2pNQIKQkxo1m3LGyLjfD+3T/FzUv2X3mJje19siyjrwvKcUbMR0TRkmQ1+1+5QVhJDp89\nxzaOtj9EtA2r+ZzeeJPy/ARXC9QUBsWUi6alQWDnJWvXsh162EHBeD1kkBus9kxkzmloqBcVREUt\nPKqOWN0inUaKSBAKGbsBQZomX6hGxvnAwq4ZD3KqBgIWmSjyIiUGT+hl9IQgSRuOL2rW65qD4Ri7\nPOZ0pTksLC/dPCAzkKiKdem5dWVEtQocnc1o+5s8f1jRHLfcyG8zX51h7rf8X3/8Pv/b//KPMKoh\nEhCiB6YC3zkUQ52hrABpiWKGGW/w6MF9mihIT3Km4ynT4R71eI2P4P0ptoqopEGLEeLFFLkTxsiO\npip8N2EOiqgaZrUjk5JC1aBSej2FTUtkNLjg8DIQK0sdIYaSQEJqHN4HFl7SjwGXGRIhUWXkYlmw\nNZlx+2DCo8/PyUzLlVf2uXcx43y2YkNJrAooJ/AxEGK3Z1SkSNUR2xM8wmu8UEjlyXpf8EbmTpoS\nSsc0elwCKMeoFlglusmMtKxDyqANlL1uvD+vG/J+wHmDsxoZWnTWo12uOTqZM8g9t/cEm2qPwUbD\nwZ3XSZMBTqQEbWnnl9w/eYKxZ/zLf/ZPuXXwBpdPTrh2Y4//4X/9J7z/V59y8mjG43d/RNleUI2m\n3PvJHyOj5+3f/A6lhrSXEK1DRt/Z6lYR5Q0mBnwIRM6Y/6sHmF6Ce3qGGiTkvRF6o0D2BuQbQ3wC\nFoWwOedNyXp5Ru0Dh0fPqZeAlEQMzltm6yXBRRKvME6TiBZUQInObt0oQYqkYnsGAAAgAElEQVQg\n4PHAxWxO+CItof+Wqqpq7j96xOsHe9QaCBGPQLqO7yRFRAZJiAIhOmE0wlOLSBI0/bLlsK7ZbzyT\nYGkSiazrjvvgA9o7pHCItiHmGiLE1hFWJcvVirapiHmfRCUI02kCssRgokYawTLCljtnnaZgFats\nTWo1ZRxhhCMkO4xMQrKCn3z+51yenSFbMJMCVzbcWz0mmzmyiz7P8yXDpeJJbHjsVtzZ2mQxSRmv\nh8wePeXxZ0/4xre/jbr9BvLzn1DPT1G9MURDIgNGBgbTDUbDERcX593dZiNJCFQOkjShtSUX5ZyD\n3g4/5cvVyFS2RiWazAdEYjjY2WW1mhPlEB+X5KbHqloRy/+XuvfqtS3NzvOeL8y48s57nxwqd3V1\nUJNtUlQLAgWSsi2ajhcGDFh/wf/BvvKFDcMGDOhWgC8EGjZlmLQgUibVZMfKVadO3ufsvPfKc830\nJV+sQwIyL2w0Ueyq8RPW92GuMecY7/Os2N8Z0en2aIqCgTQs5yueTK/YzVLEjV0aaXBtF9NkFBcl\nr8cx04NbdExAJRHLkwX5vuDX/uHvEA0Gr764OuI0om0CGMtKl6wmMwLluknpp0BOqjrc/MZ3UWlC\nPopRJibTCmkcjfQkOyOSe32Eq1CRXzfDtHgZI23CSoDCU05O+Oyzx7Q4BIJukhEfxIyPX3B19ITd\n/dvk6YiOyplyRSfeIYkz6noBfcW19A5FJ+Z0UjIvWlQIa9Jx1sULiykaLsorIhXo6QSkYnZ1TtW9\nQ2IEp1XFcDSkrEoa57mdbnJsxhRNTbDgpFgnBIVEYxAInBJkBtJEsfhlX5j/V02nJTtbI5RyLGpH\nL9NEwrNqHWW1IHQzEhvx+OVTvnV3nzs7OcE23Or3qbylrCp6eU5lMrJ+io48Oq6pqxhxNeOdrS52\nNKC1Z4ynHX7yxRH/5D/9bWKxDmm80v5CJaAjECZBpg66lmAFQaVEIuaNO3vMzhK2djssGkvl3Nog\nkCgSnxJFhhA0vm6QnRykRdh03cA4D5GGWqwnA8rTVQptHb5ZSyRVIilri44g63hUneOlIfF+zXEj\ngNEY7TFVoOytn68m9dwcjfjR4RG73W1EmDNMhjxtxqQLyZsb2xwFzdl4zM3+gLGrSRU0rSPVmjhx\n2KAQQhKsJEiHDmDRDNOEK1a/8Nl+qY1ML5boxFIh6UQWaRUd52mj9eelUipiCz4K1HkgRoANVLEg\neAjVCd69wZNHR8SjXUKdsnntOqm5ZOOgz0Z/yFZ/iyxKEHlEZASr4xWFWzJ+esa82cScfM5CD9jK\nt3jx8RmnL6947Y036I/67N/d4uM/+SOGZxNuNysevHjJcaO58e++R2X6ZLbA28UacKQ8NJ6Vk3SL\nkrCck1UVoTAI7YlLha2WiLZHXcyx8ZCz8ozGRvjRgmW9S1EXqCTGlFOIcpSMkE6hCVB5muBwXpAK\ng1drl4n3EUG5dXoch/ISlVj+zaOjL/PovlL1/PCMezcOEN7j/Zqd4tQrMNdf8l9Yz4edXC8ZJi20\nkSF4z2KxZDGds0wiMh8opSaIkkhoWmGRISC1BR+jPDhXU4eWpJyCtUSyRWu5TgbIiHitbUSJwNA2\nNCKlEQ0rHSF9ju1qBiHDKkldeg6ff8pl+RR9FmG8wmhPs7pCXBp0ZclEZy0RzO8Qv7PDCsX25WPO\n28C1zR5+o2XDV0xry09+/CPe+/ab2J37uKvHuKomaAWmROc5MY7NwZD5bIknUIkGIRNMWxKlPSIZ\nWLQO0SzY2d/l4vSrYyr+/6rVqqaXRMyMIUVT+orZcsVssSTICJtZGluTuJY0GyEiz727t9i/ts98\numR8coza3aWYzQlakBcrFqslJhvxQFxH5x3G8yXWWa5v5tz+3nfJO9s09RKlY4SE0BoiIESKpLG0\nvQ4qxDRtSXt+xnhaErIbqJ0BLOcU0xVCtJyslkRxxKjXQzaO45OPqV6c4ja22BARaX/I9lZCshFR\nBUejFOzcZLNsobog7m0h0JTtEltbsD1MUXN8/hGmrUl1n0XnkN7WPiJKMDSo1hDtdNhNIs5eHNNE\nXaIkZ7qYUdQtUVOi0phaCFQvJ800l0VB0bSkOsIER7/bpyhLquWKzayL9JZICLyXICQJgUasYZUB\nQDhaLejmPS6+Yq3MRkdwez+lbCJ6ZR+vapaLimdnc3ppl61Rl8nkiiRYpBPsZjE+S7k+iuj0ejQu\ncDxZsZUlrJoCIsXJsuSzJ4f8+hu7yK4mSwJH5xk/fP8B/9HvvMvW0OMihxLilbTRr0MiVfwq6Qre\nKqZNxGw6YXpcIzNPiDeZXoL0U/CKaeEZxhMmnZyd+CaH54d8+uiQ/e0+d+5vsTcIRMmaiSNajUgM\nwabQBiKhcNrjS7N+aUOxvz/g8csrbuoeUlm8DUigDZ4Ihe16yssh0+acrUFMEIEgApGoSZKWi4lh\nZ0fy+shSFgNUiBHuihsbQ8pixaSsGfU7NM6wu5czmywoKkcvAZ1JbLQWJeM8aEfa/5sll77URuZ2\n6jFS0A+OxkS4JNDxEuEDizQQOQ9OrhNLNsLpgEaRBYdrPCtVMb66ZHR9n24vJtvbZjuqWPkB10Y3\nodejs3kDrwVKCTKZoO5u8f6/+IidO2/yyR//Cb2Na3z2+QPOXjzm7/77/zG22+VnP/8Zb73zGsOd\nPQb7/5gn/+aHPPjJn3M96fDy8XPeOLrBxv1dvJvC4oqVEmSqhxQKby3BlGhfgfco2xB0ipcO4Rvq\nmaEdn9GaQLa1TffmDeZZzE//4i+4uX+HF1fnyNYROgHtHLH1COFplMe1AeUlwq834QmCSDYEH+Fj\niXQOXn2OLL+G8r9ftBaLgqooybopQVhg7cFxiPVcmHXiyyixvlM+0KpAGizBe2xVs6gM8zxBugpv\nY7xYO760WOELi45blM5olUa0NW21pC1mREpC1CFIiVcCbVusVAShUHZF4SRWSIzqYmSOihzDrI/N\nJY8+eZ/x86eUsxYrBF5bsNex1Us4LHns5mwmd3nvH/2H3HjvDe7uaYg7tKcN0mnY8Vi/4uGDgml1\ngZuecvLwX/P5j3/K3fd+BRtvUI0PSTsJPokRQhBHkrzfQ8aSyMW44EEGrG1orcbrQNxqVvMFt/av\nfa0amdZYgs5IlSYSgmA9RWuYrxoSBUoqbONwGI6vjrizd43OYIBSCd2eo13VzGZTesMthPfMZzM6\nB/cI8Yiqajn+9Ofc291ic28D30nAGIryijhPUIB3JYEYhKe2HhdaHn/2MY8/+piMPqne5KKcUMzP\nmEy/IL5QZFs5Pl+nN2QvR3Uhjrs0kyVXF1MWT+b4smEw0CRbQ3aHIwbDnGt7u/Q7FUnWowAa0aCD\npPUd7GaMqgMylvTSPufHnyJtTWRyyskYnSjQkrTXo1k0BG0Y7e9Qt3BZLqgvLwmdIeSaqJOhgsGq\nlpYMtaqYTqd0ujkdHeN8YG9zm9l0zvHVBT6sY+45EiM8QkgiuV4OJQiEiQmiYTjo/LKvy1+rT14u\nufn2TbQQ9AgcnlfMZku20hFZVPL45SG+tAw6Gc8mc4ZnGa/f75H3BzQuoiMrgogwVqAlhMgRqYTv\n3dlHp4ZgM47OpowvLvnP/uEbZN2KUBpkLwYkQVkEESJE+KSmdX1a3/An/+oJzz8/Y2tL887dPVbn\nYwqb8fzwnOnxGddubbFaLEjTPo/P3uc33r2DNRXnS8sPP/wE9/sNW7duEicVv/Kte3z7rR12+3ad\nStKCUAmUldBN15A+LxAiZ3vYR6gGY0AFjw8RUoFAItGcTeo1V8s3eCERLTi1ZLs74mJWsLfbZX/U\nslglHM1rhNOYdsb14QaX84KyrBkNMhplGeQjVmXg8PSSrgn0BhEheKxSpM4x6v7NgitfWiPTTwW6\nI+gESSM9WiniYCi0JG1AO49FkGGovSB7BVhtooB3np4NLHCcHr5k++49lO7QTwuaVKNFhuhkDLpD\ndOTQaUYQHtKYsDIko4xkI+fa3nUeX37GwWiTjSfP+Oj3/xn62n2yg+s8//wLemmOUp5vfvM95vdv\nc/Yv/xVaveBnH3zGD25tEFxCVVkoV7CTU9pA7EqUqMA4NODlevlXWocRgSgWKK1RkWGsJUFYmrZD\n2Qpqt0BEEU1bIoJBO8EyBBI0wTvy1mFFS7vGyAAO7yWd0NC0GVoEXGz480cnFO3XZ1Hzb1ree15c\njnmte4BDosN6SR/WDibhBV54IuOxIhCkR6+DZLR4SlNxtlpysDkgLS1CGBqvITS0SuC1R5iWXLWo\nWOKcw1YFrbdkWQeXRGuZJ45WxAi7IgIIFiMyGhljhUSHhGI15eXlMWb2gqvzMfPGsNFaQuJoZjlF\nfMSqXFIIxY1r1/mN3/st3nrnW8h8vXi3msxYlivyWHN2dkxcCA6GGxxsdbiIRrj5HuXFnE8++Qve\nfONXMP0+oWnwCSADMniyLEHqmEhnWF/jfUPwHmNqpIhQ2uGagNYGKSX+ayIbtc4yLiZ0uz0a76Cy\nREmXYbdlNS8pypY8TQk253JRcG1DgFKsioIQHDu720zbFdPFAoGg7nVxMqVZVtxKFWZvi+03b7K5\nsUOSxjTzMy78itt37hOlOR5DwHN6PuVf//M/5Pj5IdcOdtnYzOl3enz6/GPOTy5Q3T6XT1t6tcR4\nz2sbu6yilMePn5PtbaKHOZXrMm4ExeKKs4s5empQL8Z0hCCKAwdxwvadA0bDhO1hhwvX4Gxg1lQs\nJy1dJ+lf32V/c5fe3luMJ8/oZz0SFXM1OSEKLUW/Qr0irXa6Q9p5weL5I5SM6WURrQ7QWSd2fZSQ\nlQ2LxjCrWjY3NxntbDG7nHJ4eoLSMVVTgYzQSqOjCNfWgKTTi5BegoNZWRJazXZn+Mu+Ln+t6uWS\njjXM6ojnx+ecXizpZAnLdsx87pECDAHrPMobTpdz3k1vIXRA+BajJEkwLIoWkQV2u0NSHFXc0Fsp\nVtUZeRR48/4mKm0RLqWlpGP0etyz1okTEk8QHT57fMb/8s//lKZM+O1fu8/b1/s8XdT87MGYfrdL\nPTW0IcYnKa/fGPF4PmV3e4vtPUVP9LlQhu/mbzC7E5M9NVymO/zsz57zv/7RR/z9t3PefbPLZmeD\ni3JBL99mkHawTUm/DyJaq19WS02SGlwQmNAgmoS6ZzDzHp8fPuW1G/G6eQ2CoASJgF6W8v5JyVtW\n4FXGZHnEthxy4XNOL4/Z30o52NRcTD3TVUsc5ySpYtS1uO0NHp9e0Ot08Xq1TitLyLO/mXPpS2lk\npIT3DnJKZRFWkAtFKR3KSFQQ1IklbjQuNTgnIRbUyiE9KL+2qTbWEiewnIyp5mNcPqBYLYjjPgiI\nVUJDzTDfIlIaESzCt8RJwvd//fs4l5C2EZPTMSfH56TX9xDNnMXT5xSPnjEf5uzsbOOaigshGe7s\nc+2118gHXT7/4EOefLzLzus3MD7hIDTYoiULLQ6PJ8frBl8EpPS0VhJLgQ8BVzsqoVFJDz01XG5b\nnoxPCEFQmYAvShyOxHg8oIkIoQUfaOL1mBPvka/idEFIChWhcHhpiF3LF5eTL+PYvtL19PCE+7cO\n1lI2JNJLnFrHQcVfkUYd2vt1okmCRWJxCCOYz2ZMb98m9S0hNCQNTKJ185xnLXFZsMxThOmSW4dx\nKxohsf0dapmipUfYwCoOZE4jjGMpcmysMK5P6wPnJxdcTI9oZhe4tkYWBcI2XJYlq2WDkCkqSele\n3+Pu6+/yqz/4uwy3r6M9XBw+5vTyEHVVEWUJT/WEyO6zu7mBj0ukjMiSjM3+Lq5U9ILi4Sc/4c7b\nf4cX1SNyE4FkzbxJYiIdoYmQzYqKNYwqWI9PBCJ4QqIRTcP+rescf03Sb8559vdvYRczHh2f0lU5\nJQZai1OS1GhUpPA9jSrN+o3PQSIq8m6Py/mM5eUEnedkG1scDPd4eVHw8tHH7L/3Nn/njdu4rRF1\nFDg/fMTW9pBv3HsXFXVAC4p54I//r/+Dn/3kI5599Ii+blBqxtmFIM5SWuuYmYpbepNnScxiNsY9\nyvg4foDTFa2pSE/naP2cWV2jqBltDXn3zoCkF2jGBUZnTOc1n19c8OOTS3q5ZtSLiGOFX1m6Xdi7\nvkGIIw4/POZ8c5ODvT1aJ2jtBLV7g708Z1ULnDHIWODpcjWecfnoGC00eiODpCFPurg64IQkNy3z\nuoU4oVlVrEyNUJr+tX3yywvOjs8hS9jr9liYhmBblPP4CESraVSNlhHDWLKUjiA0QgjCV2iP7+Ji\nSbCb/MVHP+P0fE7wEXdv5uwMdzm1JyRCkbUSqx1DFLVWDJIIaR1JBNI4lDPUWqLbiFVpyXLFMOpw\nelHgfM33rw8o5ABhAvOrOfHOkETXRGoL8NCxXI49//0//d/5+YcXZL0+tw40P//4Q15cjBCuInM1\nSaSIrnXIHs+ZfXHEmQiknYZ71/b58IslL66mnK88DxrDfSK2uil7/S5v/DvX+NHTjD94/znzsxbd\nmbHyIJtn+GxAIlu+886AN+9v0LSKpjFspxKcBSFxaYubbvDBk+eksVs/P4PAOYmUFu8kOZd0rOP0\nImVzq+a1rWv8i08OiW3LRsr6JdtDnickwVIGh/QCk4DQligK2NDiW02qDQTWMFGlaPwvNmn4UhqZ\nIAUTmXAQFCvtWfqa3ECjFLl3GCEI2pO1mjZ3BAFpK7HSgQwICSbSJJXFRjXHT57T74ywtEgLdw6u\nMV5OuJVfB7NGGcWqQwgeiSNLM4KFO2/e47+88U84+uQz/viP/5Dp4xXbcbP+k/OK6cUL8msH9LIN\nUCsuLyYolVD3bzA/niGTwEY+4GUn52ZzxTKVdKTH1xLrY0xSw8qxFJ5+XRPinLqtEemAAijiiGYi\nKMcVpmnJRMx5U9E2LamWaBHhfYsTMdILUsAEj3+FYHAIVJC0wtMLUGm4mkgq676MY/tKV1lULKqG\nbpquZa3RWh5JCHjvyazHqPUoMw4eUOsvfGG9KFdXltop5iqino4ZSknUxpBIVlVJLaFTNVRhTqVS\nspXFK4XrZkgRaJAEZ4kqC05QRYKCFE8XPUo5/fyIF0ePMZMzkmzGXpnz43pB4g3pzh6vb2WY7jWG\n2ztcv32TG298k8q1nD76C1yTcPbsCfZqTlqO+VG0ZBBt8tq2IN0fEYkEiSfuBPK8QzebsXQb7A0C\nXzz5iN3NG5RhBT4ghCBVoLVCWl6tDjlArXHizkPwSBVhvGFvOOKYr0cjE0Lgs08+oamWLAuYZSsG\n/R6DQUaCxzhD6iWFW5EZeFlccW2xR62hr0tkiNm6fZvZiwfMrhRxvkMi4c17e2xtxpxOz8jsino8\nRsWC7PZNosEGdZzy8vEx//R//J958vEJ2ldknSmjvmJyfsb5RcXlYkIaIkoNzeac7b0thjfuczgt\n6A0T3nv7dfqpYrE4Y2ujx/W7B+xuDte+OL/CWAeTitNJQZiXVK5iEhKqUHP2yRfkPU22u8Gdm9fQ\ng4zJ4YyPmk+4ePkEpWOi4BCsiLViriTGaMxsiks6lKdntLUjHUpEN8c2YLxC2UCgIjKKqdE4axEi\nwpoFxXyDvBNRjMcc3LmHxfPi+TGXdkKk1dqAnUTIEPC0KBMIKmCDpjaW1lqUktiv0LPKOM+HD55w\nNS7JhaY3yvA+MF9M2R0MqVpLG17R52OYTwxnC8Fmfw37jrzHJzk7WczYtFgr0KnDhUDeD+z196iD\nB+9IBh2KskaVYFKDjC2yI/j0ScV/+9/9AR+/XPL9t3Z5b39AuTxByB4ffvgF1wY73NjbZzyfobOM\nnbfvM7264M7+dV57+4DF+QU7keYHA4VOFIkAJz1xu2JV1xhX8ru3cn7vN17j2fMXfPL4BdevH/Dt\nmzfZ2Mrw1vH48JTpdEVtFEXVsj3I8FIivWZZaf780SFRKNnZUjgHSqz/V73Va0Bo5BkkXc4bT+4T\nosGMb7/9Jj/88DNCbWmLBiUj0txh4hxh1nfBW8l0vmQryxFJhCgVhoYYhUozokTTmK9SI2MDnz6e\n8DCWfOtOQl5pTOJJrGelBHkAH8k1ed5FRFlDaxRJqzCZRbYRQlqQGhcc0+PnPE5zepsbeGd4OT7m\n4Pgal9sT3nv7W5BJJuMn3L9/i6Q7AhKkFkhtiVTC3W+9hR7GFNMrDt//hMWLL0iWLYO8w3BV8Oj4\nnJ3Is3XrBkme8L23b/PTTz/kxvH7xLfuUr/9Jt5JUhPwQmOlx7eBmY/xMtB1liWazqqkMZbZ/JyQ\nbGIHCcX+EHt8zqq2dHoZ5crSVQmRawjC4W1A+waUokKsYcHB4oMkIAiRQHhBw9pP8acvTr9CmKm/\n3Xr49IjvvvUmwjt07TBqvRvjBTTRetkw9gGPQgv+amdG6pbGVDRVwSLOMPMSN+iSxZbcSHIHRFBq\ntfaA+hInLEoMWMiUgY5o25KlilArQ6IcK5FRa0UsNKcPj3j84guKyUP6lytOteEn4pL97W/w7Tfv\nsbO7g9q9xaDbJ7t9gzA2XM1POH3whPkiJ5me4xcv0dOSP60ekoqcbCunTQuOrw65sX2dWGVoBJ3+\nBk21Iiyn1HJEWjcsmxlJJ8K0632YIBTBO5w3tMHSOkfiASWwQqClerVTFJFKQdbvUS2+HqqLp4cv\nOBh22e7nxHmCDoJ5saSTd+lFPaz0bLd9pvEEigqkwOoV9XSMHB2wkeQ8KDWjXo8KRVPOePPOAUW5\n4Kps+JU3v8X8xnWq0wmpH/Lg0VPSieV/+Ge/z+SiZGO7y93b13nt7dfZv3GfNNeUixrTNjx/+oDV\nvOD6/jVuvnWP7WybuJvRiSK8NGAtgZKmWDCbjlm1Ky5OTpmdzaibCaaRBOfJNnfZ2dphOMyYL6+4\n/utvko76CB/R0nD18pQP3v+AsoL9a/t0N3JiIvLeDQILVibi8pMP8UGydeMmnf0d9GJFYyymaohs\ni5IdWjTexkgtUMLi6BC5Au/h6uqUOzuvk1YVF4sxo9GQOOtzfnJMUawQSpNqS5akINSauK3ANQFv\nHTKwVnt8hRoZgGKx4N5eTBT30GmMMIHD03PmRZckMURSIVvFuYEQwadHY+5v94iEQ0USESnK0lDW\nsLGt8ImnXsFmf4soWWtmgpfYsqG7MVg3fB3NvLD82b/8gv/mf/ojfut7v8p37sHbN3eJ8oju5jfZ\n3jpgMZuwWJZcLRw385v00ogQIr713j2IckYbiq2tDmVhEaszcmNYrCY0c8PczyhOLJvbOfvbXeK0\n4u6thHfvv0fIPCGAaT3FvGW5KBmO1jypTtTStAZPzs+fLbi6umJ3sHZEBRfwzqwRJDbgQ0AKSWg9\nHRV4eTGhf2OfoDLujywn+xuMr6Z4HIOeJk4CEJPlULeBw6NjCIpOT67/z1RDIS2Zr8hFQpJEFEX9\nC53rl7rsa1rPT76o6HYlN7cDWvVJlKEVgujVlwcrAqJMcZHBJx7RRrjIgYmwqWGzgIIG8fQR1XwP\nYSSd3R5PZyc8/fiUn//wM27fvMvb79zj/NEFOp+z0esSj7pIHWHKhovLM7yK6R4c8JqIqA422Xn0\nkPP5gjqUvHuwgcgSjJ1QhgIxzPmd37hDLW4xXxTcHM9Y9gJJLUC2BDQ2duSlR4UI16yYupqJFzQ2\nELWOKl9idt7mclpwOrmi2xlydPSCdlmSW42NFYkxBCHXTV2QKPxa1SElIUgIDm/BaIFXkJdwuay+\nzCP7StfZ8QXN2/eJZUvjJSIEPGvvkovdWpYIr+i8gvgVBbkioOvA1WTM8NZ1pkphnGe7UZjYUWqN\n0tBrLOdJTK816GCxaYIMFWXIsMsZtm2IVYqJYoooQouY+dU5nx7+GH96TFVWXESSzY1tfvtb32Fr\n6xr94RYuG9DqDYrVBac/+jOackWIE1RZcW8x5eXymB8tHpJOZgyDJutG9JMEtCKuAi/ODtkebBOn\nEXmuaYc7eBFw5Zzu5gbTxRiZ9tfmbOsItkVKSeEanCkR1mKkJhYeEdZQKu1aWi1JnGdjd5Pjr0kj\n40xgd6OH1UN6eR/jaq7OC5qmQFCQSDB5Dy0UtjUsqpJ+HtM9GNDJ+lzMWvLhBtu3b5HR8s73voFy\nLfWqZmt7RNwfEq/mfH5yzk8/fsLhUcF8tn5B+ce/+5v85m9+n93dPZQSSLWWBHot8HXL37Pfx/qA\nMAEdpfjGspxNCGVDlCqCibg8X/D08x9TO8H07Dm2aulub7IbbfIkatC2IXjD45dPqB4nDKIVnf09\n9EogRMGqWnF+cU45m7B59y22el0mF1f4NKOkYZD2CMsLslzjuhvIPOV4PMdVNVpJQtBYFSFtADPD\nB4GsHJXxeG/QCmIkTVlyOZmwt9HHT2dESUK2Jbhmd/li9QzhwVSWyrWQx6Qe5vOSsl4TzbM8kMYR\ndf3V2uXb6ArSOCXf2AS9XnovjSPyFqzFKocIMSozpA4Oz684X41IxZJb29sY50kjuJ4npJFGADsD\njRYxWimMbemkKZX2KFtyuXB8/H+f89HZitPTmuvXBty8k/Hv/YNvMbhxF7EqMH6tpdnZ3cQ0NSiP\nKS1BaUwpKIoZ/c4KZ2K063L4xQdEs2Mi2RILxc29PokfoXYWLCuHvbzk7rbB+JhWrYPfwgdEcDx4\necb1oSbXmhVzokhibJePXlzS1i2vjwac20sSDZYUpSKcaddLmyahTUp8o9nbaPnkzHB0Jdnd7LDP\ngp1Bj2DhxfEZ00lBlsbsbLW0XnN0fkokE/q9lKptCa0iUZLaSRrRxwXNqNNhPP7FnkN/K2TfovB8\nVsDW9oo73Rid+L/i9+gQQBkIEmUFrRYEIYiExQaBlwrtA75aElUjXjz8lM54l+HOATSOouxRh2e8\nPD3BsKIrIcsMN+7f59bt13HKY1ee4e4InEINBuypfVJj6V0ck3vwUYYUDYN8E6NqBAYjExZVwngV\nuDFcsaxTIhlwTtJKT6gDWkY0tFRtwJYtPSRtklFVFUVqkfkOxdFDVEhC/lwAACAASURBVMgJuqWY\nzklqi40NqZUEJLH3WNb6AWs1QrbI9ZYHIBAyoL1C65YPzleY8PVYzPwyylrLxdWEvWEH4S0BgRcC\noQRRG2O1R3iBDn4dV5fqlUCwpYkjppMLzP3XcUnGbDohHfWwKmYgHaLReFoia5GqpYpiyHN8awhi\nymrZEjuoO5aGDrqRNMuCL04eYF4eU9mWrc0NvvX6axzcfRehYlIdoVRguSzJZYpQKePDI3qtpIhS\nZv4ljy7mLE6/IJ+WxN0UlSbIWJP1U5Jul95oyE6vy6opsMSopENnw2GjLvVlQ2NLQqwQ3iHk+o/e\n1KBERt3MIAhCACUcPiiCDwRhEGIdX6+0ZH844kS8IHwd7pYPhHjI5sYmjfXIUmDahkxGr77QCaq2\nIoo9CYHx5RVZuke5EKhGMb84543XX6M3zOinI+I4Ild96tah8owXDx9w+Pwljx684OS0pJtl/NZv\n/n1+83d/g41Ogq3n1OWM0hbML87p5COEgBeHT5m9PMMKSLs5WncxtcEXgs7OHmksefj5+5xPn5Bo\nSS8d4Ad7OLlkUta8vDykXdSIRBGNUxIjyLZv0dveoN/LcM5xfn7FdHZBNRtz/fYt0ihiNV/QSk1z\nekmk4WrYR/mKaPsaxgWeH5+Dt2gliOIM5yq0tbQGrGkQSiJ8DW3AekUdW/JuH41gMv2C3cH3wFp8\nlHP58oRu1CXPMlrnUaal9IZutR5/N96TxPH6XtnAoN9ltih+2Tfm36qHp0vu3BwxUjE+qlnV6zH/\nMBPrEb8KWKXoe0kns1ws53jV5eaWo7CBUSIxMqYfBRoPHZFgrCdEllRGICWtcOR2zv/58zGPnpZs\njvqMxwtuXUv4r/+L/4ouM1A9ivEldrXgixcFt+/uU16smF9e4h047xAogtYIBXUz5OXFjBcvf8Rb\nmzWdtCYkA2Zz+OB8xtn5mNTW7O93WNiIlU7IhERlFq0VzcIwL8e8eTsiVQkXxRTpYnY3tjhfLUgJ\nDPuBq2KONBE4gdBrNU7QHucETlVElaQRAkTNW9cHPHj8nIPN16mytRtwOl/STTVOROTdBO9bzqYL\n2sawPRpQhpYEjUnatX5GSKRsSCjpb8AvOuX+W7VfX11aJleW4Ybk1kiQuJg2BuEDsQeDJPEOcDRo\nYueoI4GLJLkJjCcXqLTDZXlEs1yik4T+aJvxxYwiSen2+yzlAlTKRx/9lIePP+Xte99hd+820rJ2\nGsURIenhd3ZJpcY3BW21QOaOxhkka9SzbTyVcdzsO9ApibAsZUTPeGRQ+EjRthZLYFatsJVloSWm\nXlJ6T5sPqauGetlgXcRyfoWsDTp22LDGUyMFloAIIIJFCUtsPLWSqCDRSuICCBnw1vPT46+X6O/L\nqA9+/hm//YPv4qRECxBCIgSgAiIoeBVbdxpkEGtENhITHOWypCwKciFZzSdUaQ7CkCpNGjxLJdFi\nPT508R6oDpFomRcObx11rNEKHBGhKTh+OeH8i8/RlWTv9h3uXLuJHm4yOTrCjadEgw7F6oKZV1iZ\nU8cF8jLwRDS4aUtRnGCrJXGmybc0mY0gSsnynO5oQLq7TdLP6A/65K5Hay2SQNAd8tJgu0sqE5PY\nGK0i3KtRZeGWiNDQmhpFQPi//D3+skX2OAHr2DqoJKY3HLCYTn+5h/v/o1rribIOeRojvGQ8nYBz\n1M6T6g5SroF2XnuUVVwsZnxj+A7Xbt0geE/j1+ObNIpogl0nB60j6SbYomVlG25tZrzxe3+Pm6//\nCns397Ftg/eOxjvieMjjlx/x4v2HLJcL+gebDPpDmjrC5yMG3R69NGJZtJRWUhQLPvz8DzgZX7K5\nt8ntgz2en77k2eHHeKO5OeyxOeiQb+8xTq7I44hsc4vNrS263Q2Mq3hycsFyPMc3U/bv3maznxDi\nnPOzMSFIQlsRjXroXBNMi4x6TKqGtnFgS/qbu4hmTmNrMpVSU4DSiDgjxkJI8WmLblvioLFNiadL\nmFQs+wVbWyOmlcUWDXaQ0t0YML6cEPd60FSUpsaHQLKGomCFQCrYGvY5PDr7ZV+Zf6vGs4bvfWcP\nl8akxjKeLVDOUrqWTpyg4gQkJMGyaALomnpRk2wrfCwATSYkpZBEziNy0EGBD6zahlwo8BX/2w8n\nPD6t+U9+cI8QCf7z/+C7BJGCmuGMxcUJxfiIZ48vERmcvvSAQOQC5STBaRKlSZXg6HLOn/7oI1w8\n5M2NHtNJzdOlZz57QrdVvPXNAXt3N5EKVFyx2R8gpMFrD5XhRTNF14FhqkFqrPNs55u0qmJWL3DG\nEqeKWdFiG0GsDa2S4EFEHvfqOSp8wBCtuWoeNtKGz8oV56uEhbQsq4beoIepBUJAnjlKE3M6OeHm\n5ogaQ+IVdVBEKsG4Bu88Dk3kQeke8Ivdl7/VRgbW2I/J2DOdwXbfsL8nGBpNkQXWAmyJsoHIQhAx\nrQhE1tISEzmLMCviEGEuSyqpWF5d0OltkHY2KRZzbuzssJAR/WQLOWv49NMPePD4Kb/6a99ne28T\nFQRZ1MLA4PCEZY3uBIogSGqPkK+cSpHgWpMRsgjlHU2ISNrAUnmEEzQGWuMpa81stUJ5iXEeLwJl\n0qV0kl1V89n4klZoqtmC3Fpa6YleRYNxHhUESLGWHgJVcHhjcUohQwRIpKowU0Xjvlrz5l9Geed5\ndnLJ/Vv7gMBLiLxcJ3bCqy1pCYI1Lt1KjzYBLzzGWC7GU7bzDkELgmuxbWDRSXAEstYy7gRGqk+a\n9TBYVNXgXYTE4JRE25yVnzA/WXH58CPq6Yzrb9xnrz/AWcP85DlNqWivTqjGik4/JW1jlvU5Zj7F\nzWumNpA3U+KeYSfTLHuK2AhCpOhtjrj7xuvs376L7Q8ZphlR3CETjqppaJ0HrQnDCuky9CqiE2cY\nY/FCYE1NaC1lsyQYh9MSFQLCCbzyREFiAY2hRdNK6LYNg2tbX49Gxhi8DLTGQyYomxIVR8QhwiuH\nDhGubYjDetG7npacnl4y3NomjyTDXgenBcv5jP7GNpWxdNKY5coQbM3Lh0948xvv8e6v/gN6Gzne\nGprVhIcPD7m4uqCoVhw9fk4QDle2jC6veJkKiqphMruk39lGxTHHj5/RFoJKg6tbOh3JuSg4O36K\nXVWkNmVrkNIWBUeTc8RGh9f2b9Db6NPEKVpKJotzFrMrTLEgT3I6e3t450mijJlRqKRH1dbUrSVW\nrJ8bLmVezGmdJNKe7tYG1loqLxBoVk2B1zEd5QixwtqA8g7VOuZG0uoKgkbUM+rWcXT0jOs3XydO\nDMYYjPN0VcIy0lR1SXCO1lhknJEoh1eSqjHoxjHoxL/s6/LXajydsZVJmrhktoDjScFer08THAGP\nNw0qjqiDp99raCeanz95zHfuvIaUAqEkSkmCBxcE1gSEFAQXyJWkVJqj04raZQz8MUn2DfqDBJ1l\neGdYzFsuypajB3/Ix89OaWXOqDtAiSNaH7FYjimakkx1iPKced1SLFfo0LK5a3l2OmNPVvRTz8Y+\n9HJJ1jdoVZNFCUmW4bVBOoX0DudrtoVEdTwOD0KhnMRICEJjfMSLS0PdzMikR2uDl2vWmxcSgcVb\nhcUgbIQIFicESgRyVbO50eFoWvHWpkKqgmGeIbIe82b9wnRydYVpI+ogsUGjQiCOJTZ4ZJBo7Jp3\nrGEzEb9wBPtvvZH5ywoOLqaWqyVs7gfuhpSuhzK2eK/WLhwkqbUEGWPVX8YEPf0ArRCIKEItK+pm\njFrVtNbzbDZh59oN6o0udzY65BiWSvHpz37Ke+98gwjPpH6BMyXKG1zsUHisbenENd6t/wxVkNA1\n5K2kEayFjt5gPEgbqF1gXjYcHZ8wqj2tXjM8Wh8RUk925xbvf/AhLtS0K4s/qallTPA1cfAYAToI\nWiGQNmClInUWLTWtN4TW0iaBhITWxPzJs+e/rKP6ytXh0TnfuHGNRgdSHxEIa19a0MQ0IOR65CTD\nOrWj1zPwCs38/Jit+3dQJCwXDcNeQCQldaRABCKvWMobeBGjY4stHN63SA+mTPiJfUR4ccHli1Pq\nbp/vfPub9IfXsN6zapcsVjWjoDF7m6zclIvLc1blAucKXJ2QJI7xniFepSiZUQkQRKhuyu0bu9z+\nxq+yd+0eqpthVYeO9nihaQUUOoW2QlZLIixKa9IkQViY2xmudpSmpFrBYtWC8wTp8a8QV3iJU+vx\nkQsCodZ3thSB/SjjVGvsVxy06OwaiidEjVpqqnqFtIGQQB7lKCWwtsE3EVYbQutxBGxrKYNAAR2V\nEmcJ89kFKlIohrStY3I5ZVk15HkHpWKEFfgaesmIt9/LeM2+w9MvPmW5mCMvFzx+cUIzc0RJxuHp\nETbpcNZ9iIwFM+Px3jKMFf2N7npc6ALL6YKQZrzeT9iLWhoHTdCQ9jhvVhw/HpMoR3c0YGO4w8G1\nXWQ5oqRFEbAqoricsFwUVLVFB0GaCOYrj1806DyQZ11CvSTRCcHJNXW4CaRquV6Eb2taFeGrFcYG\nvHOotqZ1MYlKSZAU0hD+H/bepNe27LrS+1a1i1Pc+pURL4IRZESQFKmkCiqVKaVhwO4K8F/wnzNg\nuOOWYGdCjcy0ClsSpaQYBaN89bv1KXexyunGfjRsA2mB6sSjnLN7gYOLszb2mWvOMb6BY7fz9Lue\netEwPz2j223Z50Jla5SagJQx74n7HSwalnWL0ppej0j51n5e/rNVRBjpWYzCk9WAULNNEYuhblsW\nM0fvR6rs2I2OWVN4frujGxsWyxG0IeVMRtG6KQMvB0+lIFcHjGrOf/rmYz7/4pY/+t6CxjmW8yNy\njJj5jNPlCduLa37rRz/g45s9ZwcnPP70MffrE3LY8vV5x4jndDawPFpglzV37ii6ojhthYd4zuoZ\ny6UQlMPkkbkStBb2MWAs1LWZ0sl5bYO3gTHriXuWC0obKmO5uEr8/OkLlloxm4GWiIhQip7CcLKm\n5GnCrTFkJejiMEpQYtEu8ejkmP/1k895cPR77McLnp1f0NiKu6d3oNIc1JaVVTROSKLRUpCcSDli\nsiEbi9VgEfTB62fqn2Bn+daftJLg6llibfcsP2z5YapoJNKLYqwLbchsrcbGiRcyaEOFJ5kZbRgZ\ntaUtgbSPeC34m57l0R0kBT5er7l39z7d/hqz23P59af89N1j1rORRdugqoIZzKStqASJBkpE0GSb\nEZUZck0Iwscff8zdTc9SaZIuaGnYRzheVAx6WmMgimQUoz3ANGfcu584/+QXdENHMJlMmQSoonAK\noKCkkItDFHilsZIxyiImo8dMmA2UneGF/6fnUPxzq6EfWZXIUtVkLZPAEl7jtxWiFQbBCCQByQWR\nDCHTDx0yP6a2mj4MDFEjY2YeLB0GYwwHB7dY7dDZMUpAkrAdFJ/vNhzomuXhPdLdjjv33uLk7AGS\nI3nYs94O5O0N/2AtuzzS7jJ1GjixiTJbUB0WTKmpYo1UhtmBZblc8PDOCW9/70MefO8D6uO30VWN\nUYlUHMUIoQhD8MzTSM49SgY6KRg9JXZnyUiCFDMxZJLvGFMPSqFyAa1ATcwjJRper8+MKLIzMCa0\nzSwP5qxuN9/28f6jFVSisjWbfg+xYIxhMZshJqFLhdYak4WkNK01JD9iG4siY+oGZTJFF0LK+E1H\n+/AQ6yqOzk756tlLXFWTU2IYMk5XpJgYSHz88ae0oVDcjNlp4d3vP8A8u2W97lk+PMbdmVPSEdvN\nmmXMnB0dsVMFNY48aBvunix5+ycfcnByzBJLVxJDH9luO7IeeHRyhnaGwEj2nt3+Cr/qkKyYnx7T\nugVjv8HMKtqqoS7VNAWIif02cvHqin0/4nPhsNJoChvvcSIYCcQS2Nk9bjBUqYVaUVmHso5q1iC6\nJoyC5B7E0XlP3Hr+j9XP+NFH3+few7v43SFdt5/gitKCmvLxunFD9IFNTFTOUFmLNG+mv/IwLVkH\nT+evWM4rfOo4dHOGEDg5qOm8Y5CIWUTSzSH90PFkJfxuY/BqCjbW1pGoqHLPZy8juq747nuKi4tz\nbFE8evuMP/jJR3gdWHWR07tH2MWS/dDz5ZeP+cHpCe8eWhY2YO8p7p85nl+v+EFrudfU3JiG07Lh\nQAdWi8SYT0jjiHuwYHH/jFM7op1QqUOQggqGA5PJKWLRoAwxgdOZmO20QtQWhSZoj4zCYBxhCBw8\nqBjTSFI1VqXXFx+FIr/mpk1sLm00ShVEJsp5LQotFS/Pr/kPf/cJP/nRA+7ee5/rmytaC6pSuKYl\n5j3FK5KKpJhffw6MemqSECGZitPsaCvHfvj1BeLfeiPzq4oJbj8Z+Kv5wLsPKt7CsdDTTm5ZYHCK\nZYl4qUgaUhGKGBopzHvBG422CnLh/PEXvP3dHzNse568/JyiPBjNj374HpX2zGYNxhVU1IgWCIKV\niuCG6e6aMyprVGkZdgPXP/uC77fQVcI6QY4gOmEr2EU1CXUFyIo+JJoP7hPWI10x7PstYTvg04g2\nblp5EKfEVaUQUUCgjkJUimwERBAthEqRVeHffvPq2z6eN6qkCE+fX/Lb773LaMpruq8BnckG6gSj\nmTr7bDMqaYKOmGzxPtDWcy6P7pFur0mSyT4ic4sm05WaRY5IbkhSocYdK61YhIH2+IT77/4erR5Z\nbD4k7/a8vF7h05bd6Ml+T98aFsnTOIvcrziY1cztjKpu0PM5jZtuQzNToxdL3J1j7h2c4U6/y/zQ\nQDvFJBQqBsBkgeyxMRJUJOVprZKTx4eRlCM5Ty+cLuwJQ2KUHaQyPcNGEKUAPTXNKIRpZJxEQSxo\nnTGlcOfu8W9EI7P3geZ4yYaRalYRYiJIZC4Vo9M0YgmjYJXGqprL6zXnT1/w3nvvsLldcd33nJwe\nc3N9y66PaNPw6uUT3nn4HURgu+/Y7rc4o5kpy1o6dvvM3FU8fv4Jx/OaojMX/Yg5PWSbJstyIVGd\nnvH+w7us1itKN/AnP/6QP/zwPdqjBVkltEsUGnIWShYyhdsUGG9WSO2o6paiE7su0HYr+q4l1wvK\n9pwcC3Vt8NnRlIIYTU6e2lVEE6lmNS4GRAmxtOBvQUDlRNAON0RQmqQcSgLK62ktpBPbImjjCSKE\nFOh7xW49cnF1jXUN/fuFs8URY7pllls2PoDTSPQoDe1ixpACUqYpc5WFpa7fOCgewMoZ3HzOR+q7\nhPwVl9uKA2spTpFSx9GRo+sahtBwcjSw2ws/e/6UhycPOXaRgKKWjAqwjo7+5iX37p3RR8uXL/fc\nuXuH688u+dmzK/7VT95Hq8J6vWHe99Cv+emDEx6vb/nD3/qAp5fnLOdvcbPdcYxDn3hux4wzga1z\ndK7hd999yHeOClpZ5iagZ3OcsxTtiSER/Ig0PSpojIqkNAlvtUlkpt/JqDI2C6loiI5iR+62C76s\nKrqkMdkhBmJ2KC2kopCiAINW0+9hNgXLJHmok7DWMz5+2fHp5+d8761/wVwSwWa6ncc2FdYlMIqz\no4ZtgEoljIai9JSSLoYzpdhbwWXFUBfq+W94I/OrSh189WXgchG4//aCH2phQ8NpGCi6wiDME2yN\noAr4YlAGFIllb+gM1L7nZf93NIuGRb1ktphjnOXZVy+o3O/wQG941I6UhceKolaTDiZlRciayjni\nXvPyyUs2jy+pmyVfR4VOBSkaUxlyDDhlsRJQpiYlIYTMqC2H1QKzbNl1N4ROcTg/Y7t7ybJoSo6I\nmlYeyiqq/BoPrYSmCFunWBTwylKryOV1ZBP+ad76f871/Nk5P/7uW5O18LUrB4SSDUEVqgzRaGyX\niMYj2lGVhkTh4sUT7t97h5dDh+/3aGWnl4ADmwbG3mGdo8wLWRdKH3iVO9zLW65z5u7993CLGlPP\nOJvDfjzjMO7xoeBxzFXPXO0oyqGdwTVLlosZdrlgUbfouqXWmmBbxBpUc4CbO4KqppTcMoXw1QIp\njJSxoxRPGQeGYc1mdU0YPL6fQIspJlKMxBQJfsewKfiUcVqwYjBScBSCNmgtKBGgYNTkVCloStEc\nzlu00ZT8ZruXfvbv/j2//d//CYv2gOPjwsvzG4Yhoh0Y3XB4fI/t/hKCZUwD17stMRdiFvwQOTu7\nSz1rebtasPOFbrdBfOFmdcPbJ8d4n4gS0Fnz8vaWV88fc/bglNOjhtMf/THXsmWWCydnd3jr7n1e\nXjzh9uqWd9//DqcnZxye3uNAO5T2GFXwmw3bMSNzTW3mDM2MeeiYR09Uwr3g2R0c0F2/xJtAaxoO\nF4mcHKEzMPQ0zRklDNyurhEPy0VNUQqvW7yGIIH5bIZ2S3y3Y+M9xRfUbIatFDoEUm25Gww7A0Uv\nMaqQixBLpBXBE5hlWHnFuOv5+Mk5tTXcaRIX5694+NZdtNXYecv+4hzrNcvFHOMSZ/MDXmzWlMHj\nx0hetOSsJufS5s2y9r+6fMJ7b7/NaDyrfaA1hjQXZq7Bh0yt5zTskaTIylFSQWVYi+G4RBBLUmpa\ntUhmtEecndzlk48fc7Y44t5JQ7zzisN2iZ0doNIKlSw3V3vmBw3tnUP68y0cRL77zjuk1PEgPqLf\n79gXw3t3DlnqPcoIVlVorcgyQWIrK1jZI0owUmOcxWhht4vkMuKsoZSAzeBHhzN+Ev4mTVEyrV4p\nKAW5RA4WYBDEWEiaohNSmC7TRSG6oHEUpSkxQ67QLnEljsfPGv7sr3/Jv/jOHV7cfIZX/xrrLKfH\nRzw/f8kdfQiV5eHhAY8vrxEjzKoGDWhlaCvFXgki0/MrPmH1Py1z6Y1rZH5Vuz3sPtuzOVI8vG95\nu2S2qsKWRFGWQ4RsFFUUkoYmObye3E9Yofae7COrasd67VCVwWVHv/r3PH14j6fvPuCn9zXUPb4E\ncknU2VIpzT4lVlcd+9WAbU8pOmPKxLxxOqNKwemC1QmVNWOcXgjFVfhYKKFn221QPpE7T+0slsIs\nZ7ZKTy4lpSYxFgalBAS8LlQRklGoUjBK8VfnV9/2UbyR1fcjV5s9ZwcHFFMoorDFkNE4IL6OeEgl\nTreAkMAWdNHc7G75yR/+1zx+/Dk7hPtlxBWLyg6xM4YUqf3EklEFqhhJwbPNnuvHn9HfvuL4/iNO\nD0+grjmsNEoO0KnQ2wzdhqETlNYctDPmBwfMFkfUswW2tSg12bJztSSkjEEo/UA1K+jsQcuU6q0i\nqesZho6iFKXr8f2e4AeGvqMfe0L0jGFg8D39ODAMnlW3QzHFEWudSWpCGthSEBRJppdXEY1iyq1K\nr1EIp3eOuTq/+baP9x+tvd/gFhXjK0+lFclM4+7kh8mO3ywoJhO6KaKi73s633F6csThwRxP5uZq\nzX4YODo44vTuKUEVfvhbvwezhrqqMSVz+vCMswfHYBxHbUvOMDsXNqnjpz/9fezigA9/5/dxVY11\nLUhAJKCixw8dm+2GfTNHzSZII0VwvqfzgX0u1CrSmIzBUjUzckrEGNlsenbXG8Luln7bszg+QBuh\n0TPkoCbFkX3wrPY9OiaKEjDgkyFlTbSWeVWBchQ1UGsN5ohBByQofAyYvKdIg3WFZAu7bPBjpLvp\n+fL5C4xkFosj3GLOzbbj8ZMnPHrrEaFOPHrrbb76+nPi2GNmNUmpiVcUI0opYj9Nfw4XszeukXn6\ndMsHd+Hp1WQLHkWRtaN1gbtHjnpRQ9J4CdzuV9xVmlfjFZfXDzl0mqqpqdFkBUYife64HTNZOx6d\nVmwHzx/85McYXSj9JcrMqStYntS0pydUzvL7/+ZHbJ8/Y9HOaer7FCymbZBxiykeWIIkSoykMWKq\ngqlqJCdy0kA/AbTEoYonJY+ROGlaCmSdsUYQsQgFrTLoKeYj5YwEjQ8di3lL7z0ppCk2IBmcNZPw\nWU8BklDIJuOCJUvhJs55dtHyP//HXzD0ng9OWnYm8OXj53z/tz/k3sNjvnrxktxFXJ1wjaGtapwR\nxGlUKaQsdHkyamQiddXiJPDgcM7F5a9vOnhjG5lf1eVauN5sSHPF2QPDW7qQqdEqU4fIaB0lWToD\ns6TINbg04aTFCGXQiAsUb0km0G+FkweFcXfDZ/qQ09kBp82IbhObPhCHgc57+q1nlhxjEWwWpGT0\na4ifLXkSUyUhYaakahRh9CxPzjj5wXtsvrjg1u/JKNLegDbM7Mg6NjRYksv/12hZlGCZuCdGT52w\nssLLlWfl47d8Am9uff30nLMfLUFeO5TMdDajUtQJvNWvTwZSyggQYmDYbdl3PVWBJMKgK+qsIDpi\n23E0zNiYQKMMtc2UhUFcRWsKZkz40PHi1Tesz5/jqjnaapyrgEJdEt5oVNVw2jrcbEbd1OjKIWZy\n5o2VZaNntLqgVGbf9YQYcTuNNgqlFIoEoonJkyYBDMMw2cf3m47R93jf48eRYejohoHY79itO7b9\niM0a5TJippWSVq+ZO1LQ00AGVEEVEC2IaDJw/+zOb0Qjs7kpLGRk03UYBVoJVitSEqJPUBSVq0l2\neoFvttvXTqVTbm63eEnoSnO0POH21TWb/Y6ffPgRXgr9q6cYKXznnfdpjaJkjcwmLYlrHA8/+h5v\n2Qqlq0mTJVNODUxuOagQLezjlqt9z1ASB5Wj0TW+LbhhDnPIg0X8NbuuZ/A94zgwjhmf92xvbqAo\n3OERJ4u7U/xGN5CsJfpE1wdyyhiTUHVL5QTpMhIFcTVVtyEUjc0eoy2RQun2xKyJAiZl+qGh+ICv\nPcElorfcXK24ut0hSnGybNEGhnFH7VqeXV1ydniCPWgxi5rjoyOuLi+pKsMch9bQtHMqq7FVQw6J\n2dEJvHizEtZfXW7oYmBzu8VYhcVxeGio9IwujrRBMVs66rZlftTw/KsrhovE9u6WF7M5x2paZ0ca\n8ph48Og+n11ec7vynBw4FstD1kPmyAjPx56P3poTbY3BTHRgVVFL5M7dt187oRzZgxELTQVjen2R\nAUk9RWcQR4mT8wxTY3VEsib6DevVDnKgKDB6CtFNBazS5AxiXz09rAAAIABJREFUFKo4osQpxkQM\nY9KkEqfctRinqZPWgCK/RlgIasq0sxmyZi+OdWj5h280f/qXP+OOgzsnmk2lmGX46vE3vPedd6kP\nDe8/eovH3zzlTLdsfeB42WCdZhc8OVnIhc6PaMnMNWQTaBthfn8JX/z6Z/rGNzIwWbZ/sReqL3t+\n67jmB/cyh2PmtrG0Y0JpSyxqAmLlgiSFN2CzULTgkpB1gKKwmx2v/tPnPJkJ7qBheXTM4eKE79/R\n3D1TJGuIwZDtMcKOWBJSRgwaESGrSUuBMuRi0QSkaCgKHwvGHvFq5ZiPme1th64jYwqcmIau9Mx1\npuQMWaBMFjXBEtWUVfKr23GtEy82/2Wl9P9VV1crQs5U1iCmoLLF6zzh97WiLtAZocUyqjCFSwZP\nGTyr1TXD4hj6G7QoYq0QBqCw9pEDvSd4wTNDjmAZDV7XMGto1WvLvLVoVaik4KymGIcxDVY5WpNo\n6hnVbIFuGmByDGytwaqAI1M82BTZJU/sAioovAiQiFKQkEmuQCkMw0gYB0bvCX7Ee4/PkeBHtsPA\nsN+xH0aernYMJdLYqSHSeco+kzKJg6PSuFKISiO6gGiUyuiUSMBCF6raEd7wBnq96enwpLGgW4Wx\nBmUdlMxqe83BfEHMwvJ4ydDBi/Nr6sYiotBVTesqZq1DpcjRrKaaHfD4xXOeXVxytDzm7sNHuDaT\npMFWFlvXmKqZFEZaI7qahK4CKPP6v5rG5JTCGDLrzYphu6f3iXZeEdoMvRDIFGcYU6DfBYbNDcP6\nCrWAKjhyiZj2DtvdJU45YhrwXpCiGaNHwuSiyxqcbalMIhUhqcLWJ7a7nuA9Wc1YmpG6UVjtyFYz\nlkKImRxG9qKIZaTf9Iw+sOsDo49UlaVSBm01OY80qiGZzP5yxS/SL/md3/1tUhw5PjrCAE9fPIc6\nUFcztNbUSrHpA4LhZLn89h6S/0wNoRD0CdvwGKMstjGo7DA64rPm6vKCuT/g7GjJ4axBPjjjq8+u\n+eXROYvjj5jHSeBc0oCrNDSaw9mMYmuoTnlyecvDhWJ50LKoQbkZRltUVaFVSxp6NB7JBrEORUKr\nhCQ7oSPMjJIGYg+KlmI8pUxxK4PJaKmpSiKNhWGzw5RAKAZt05Q9pzISFWIhqQwJMhmVFVlrfIZ+\njNzsEqudopc5ICx1mkS9OhBHhzJCVzRh21AMPL054M9/8Q2/+OKcpSm4w5ZqcUjaeAa9I9Zz/uHT\nX/Lhb32Xs5MlY3rEF599zvcffYetv2SMUHxGOUNdOU5VQYWMahRD9DRux3tn3+PP+fTXPtPfiEbm\nVxUE/u7W8+nW89N7ht9B01uDjYm5rvBJTXh6XVDRIGra9XunSEAVC6EySByQrcMPPcv5EZvdc/5i\nNeP0Rct7Jw1H1uHGNauckRARI1ACYDASgKlB0mq6yZIzUSzBKI4++A6nUfGxCBdPvkSMoZc9M1uz\nGS3OhmncC0wzQAO6oJVDlYjRiuQy+53hl+v1t/Zd/yaUHwM3u56Hpy26FDIZl4UMuJzxrSMOQqo1\n2gtIIcRIDInnj7/isNFcF0VUmiZNQYrFW7LuuQwty2VLzj2yKaxNxVFOVJIJVY3TlrZkYmupZdol\nOykoJdQ2g5vEc8l7pG6INpONodU9hQpVIiUKKfXI1cDOb7gJnn7YU0j0QyYHKNU0/SNmfEr46Ml5\nIm7mksk5M447Qthyfr3icr/DToRFjGhyNe33dYFswaVEVNMUUeVJtF6ykGMm6ELRgYOzO1y/4fBF\nVYSDkxNuV08RsagipBDIRUh+5CYVZlWND56jkzt0N2tWNxtOT065d3yELpHiEyOFcYxs1he89fBt\nTo5PmC8PaeuacUzU80JdLVA2EjVUYpAyTd/QFikRKJP9n4KMnjRsOd+t2V/cUmlL7Ndst8KX22u2\nVzc0y5a7s1O8a7naf025fYItGqUN5ELvI2m4RdUL5rMZMzcnGEW3jSTf04dAMY7kGnSKXMfXwMYx\n0sVICiO2tlR5T922uFYTo2IMgg+Brhvoxkgae/YhTlOtpMhtw0EDJQaKUVhlJ7txScRxZBkdt7dX\nvHjxgrPDE4KF+njBd3iHVxevaEwDaK53O7pdoGmOXmvX3qzyfqSd7WisMKKwzjAMe3ypcbFQbMXl\nzS06R2bHd6lNy48/eMAXj5/yww/ehSwYI9i6xYmFoCEP5N4TliO6XnBy74hS5cnJmjOizSTQzRlM\nhWRPjA21CQgzRCZUgo4jURlySZAFsYbbjeGzp+dc9YFHB/c4PLIQYeMveCDDRMEH6AtVm1EyRZH4\nlChBk6wiZMNm79jFkV0/sF5rYirMtMVacDpBsSSbGLolMTh8yqAzqRj+/pPIv/3bv6Sxhu+9fcDS\nwr5EXBqoTlvcvMUMS754+oIPH73FOAvcP4Pwve/y9dNnPLh3wnV3g/iRSht6bTlsNElphIKiZbep\nuNEXWKtJ6dfT6f1GNTK/qjHBf3yR+Vud+e8eKma6IauMql7v3JKQjEwRBzI1NYYyBQGnQnSglaeO\nlvDymtP37xGXkc1+w98933Oka5Q1nJZIZTJD0Xg0tQGTA8o6fC7MdCEXGIp6PQbMyHrk59u/p6pO\nCDmx1A3BZoII2VqchlQ8VVQoDCNg02QHRYM3EzHyZ+c7wm8CMv5bridPXvHOyQmjqqag0aympsYI\nB6Wh0ze0as4goFxNCTtSHrlaXfPgvQ8n8VtMjEohrcKahPUKHT27WjMrjrKH3PRcOcWhUdhcaHNm\nv3Q0qVAqh64nLY1JI4UFWjnERLIKhBhwGrRWjDisePKm0HUrVptrXly/JHcdfuzxxZBjRVUKuU6M\n0SClELQQYpyIvDlPKbRFiHFEQubmquOb8w5JGqssWhLKCipnrBhGLdS5kG2AMEObKbXXhqkJyw5M\nVoTS8s4icv1tH+w/Ut9cv+TDR3/IM/MYKWBESDr/amOGxMAuJw7nh2x3K+aN5bOvvqYxgtEJW81Q\n7gAtGbOccWoVry5vIQWiMpjNLdIaTuuKdp6o7IJUIkEi1mi01jy7+Rr6SDurCQXi7Yrbi2terS+4\nvrphs1uRxz3lZkM3bDGmQluLaWZcuRdcX28oRXOiOg7PatRhYX+7I9Bw3D6izx1jUrzoI+IjhC37\n2DCOhnG8RlcWQ6TYA/r+huwFkRGcmVYMtWaMmWfXA8O+p+x7fNIoyQw+cd2N9EOPNYaZKswHz1hp\naluTS6TEfvo+mxlWFJ3KzKPi0y8/5w9++8fUB6fsrs8xB5qTfIfN+oqjo3sckNl1e4a0pa7evJ+Y\nGAsX1yNJwGmLRCilpnoNDnQS0QVWg+foIJK1ZiwJY5f8xd9/Tvsvf8zbRxplE8YYVqsO0yiWy4ax\nRIpYvrzZ8/27B1gyHYV5NUMlIfoOQ0blgZgG+r3QzHZYk7juG66uN3x+ueb85Sv2QXHkhJwGlBS8\nzpxfvkIpzSiah0eZxWHGtRkpLUo71sOCfa/QbkvGsR80z16NnN9c4dOaFDI+GZTNLBvF0dwwN4LN\nc8KoeLGquAgDp9KzPGjZr1v+9O+/5Oryhn/5wV0uvefeYkE0Ef3SMwSPW854tQrcUWv2feHLlze8\n/94dtIa7x4ZnzwUZR+YHmm205FhxUMMYhfnygNitCdmz3g3MjcZa8/+PRuZX1Rf4H54HjusV/+2d\nOe/nzKW1k78+CNlovNWEUEgm00ZLVoLz4BCCDay3nu6rntOjIxYnR8wXjmQKJhY2aO4naLSQssaL\nxuqakjPKWKKeNkTJKZQIuy7x/szwaq15tX3OQd0y+hFjNGiFtZP1Fa2IlSVnwZaCtxpXMkkrrGj8\nPvPp6vLb/np/I+rly0uG3/mIFkcWTVQFrQSvoWkc7crRzyx1PaOqW3b7DUkKdfakkqltwxA91mhK\nglorfFNQ2WD2A4MeYZEwSaGSZkiaui50dobzGacLOhbEOooqBGMQGbAxQ5njpGHwO5JoKJawyfio\n8P0tu6tLVvst8doTfUWyCq0yTu8ZcWykUPxAlEiMk6ZKXmP1++QRgRQju37Ps8s1ozc0WiMmTwJy\nBMmGrDKayfkADcVkdBa0QFARWzSiFZpMjgkvkXpW4/s3K/Dv/163z64Zvi/YrElak42gjcPEQE6Q\nK1A5s+t3nFWn3Kxvqd2MX3z9lE0ofPTRBxw0mVlVTRRdKTx4eMyDu2+RakddOboQqbuOISYWBwfU\nRmEwpCqyurjk6uqS9975kNvzV3z5zVNePPuK3XrFzaYjxi3WCzFozvaO07P76LdaxjuwuDV8c36J\nKMO2u6VfHnLZae5xzKpXDDHx8yef0pjE8uiUWCyMilfrqwmsliOlqWgstI3FhMyMipA8nZ6hQmI/\njoQhsMuecShIEZpqhksjT4ae0keGHDhpLDFncBWDycyqGUoCZjSInSbPy1KIuSLbgV4rjLd88ukX\n/PEfPWBUlj56ls4ynNT02xusKGaNI6aMa8A5Q4xvzmSmFOGrx89e81amVDtjM0k5apOJfqSII3nP\nFy9ecTif3hFC4cX5wM8+/Yrug7scHB1yCLhWY1SNVEK7aDiuKvrNyG0y3JlDshXXm46jRUtDIVG4\nXMPTyz0/fnjMzU7x9XnHL795wvnNDYTIwbxmvnActwarFYVJ1rbqPKsh0Keai03FF1GoasP57ZoX\nF2uU3nB0rDhp7/P4fMXTyxfUdsFhs+WgXWDmBUh40bQoHIo+GG63NV9vrpmNwtlsTtKH/IefPeXF\n+TXWzvjw3pJRCTPjUC6h0sDsuCIlRx4tyyg8Xd1yfHLGs6tr3n/4AGU8KllOD+eMMbELcDavGXVB\nqZqyH1j1A229ZLe9xdiWaxkBA/x6q+3f6EbmV7Xykf/p+Zq3Z5Y/PphRF0NjCgmhCROXRUeLd0Ib\nhGITohUuZ1I25FvPy90N88seM1/y1uEBzZmGRrgtDhc1p0xaCK0yRU2EyAB4oyhJ0Y9CMDX9ve9w\n2GSe/c3/QpnVlHFERDBWcMqBEqI2Ex9ETWhmm4UiClBok/iri/+yUvp16sXzju8+Op6EbCZDtjT1\nAq8S82pBBnptJ45PMcTQM7RzZuOO5u33Gb/8B1QQdOUoxaFQKBMQNEkMrlcEPbnLLJlRWao8/d3Y\nBqUSbgAxGtFpaghEsVdbFB3GV1RjTTQKv1nR+4682rHbQl8UqUrYpUK0Y0jQBdgNa2KfSLEgqUAW\nIpkUMzl4QkrklBliZD2MdMEiVUZEUQlAQYuQLUienAKQcVq/FqkLQsal6XMVEzciK8FQOD095WX/\n5q6Xcsx88uzzKW9Ly6RzCoFioNZMgkWlIUaub68hF4qMpJQ4P19zNHtFCYG8PMDMKiplyAkiCRUV\nly9f0BwdoL1CqsRmt6GtHFY0kiI//8U/cOfglP/94s95/vySbrvnertDjRtKimhTs7i/IOSAUoZk\npvVFfAqXvWccPZvVnn7Xc3lzzeFyyZP+c/bDgNaW5fGCytYMY+Z6dcF+PVKSJiph3i6Zk1nYFl0M\nXRy52mwnvtBr4TZS8EnICUxyjDlxsbqmxEIuEWuEY6NIqqCco5FCspYqZvYloy3ootF62pzEEpih\n2HlLbTO77Z7zy5ecHp7Q3TxjXzwuaoacGPstWjzLwzuoJLRNTYz9t/3I/D/q8rrjzvEBuSR00ahU\nSKaQtUFUheiIZEVMI5ejB2WolaJtWv72k69obM2PP2rw1UDnTjiyiRBGxgEslqbRvHx1Tbx7iK4D\njasmp1qBzQB/9fMnvP/oHn/2xTPOLwd8l0jDnuNGkdyc2bymtA6lOgqGbfZsNprnNx3j6PHlFo4N\nn6wWfPLsJZUU3r3/kJO559XK8td//zf0e0Oxwrt3FZU9QllLpiImwzZkOrEkgZv9Dp9uuFM1bHTi\nz798ydVqxMTIu2czeuM4ni+p6kLqPa+erbG14+jsGIVhoUZ827C/annHwOZmxb4LNDVkNM2sRjYj\nw1XHcDKnnc15/vQFO2nQskcbSyqFs4XhfrPgb9Ovr8/7Z9HI/Kqe94n/sd/y0bzi95sGfaimrJ00\nUS4NhmjLZKXOE7rdI0CGmLiKATVuuemuqdcNi8OWo4MDZpVhdA1tDugcqXXCaYuiIAjeKDYhMHvr\nAaYUrp79nMXskP3qYnIjKUUpmdAYmpTR2ZIloFFTA2MUWE0m0G8L36zf/MybN6m+evolHz36fYJW\nmGIZVOTd5YJvLp4zqx21rtmrLTlmsIqcC2EMpP2ad374r+iff8Pa9xyMYKuEfZ3pqRRUJKLWuBwR\no+hxNGlkbw1trDDFo4qhVBELGNGIU6Qy8YH0zpH1SJFMN3pufYesBa8ysbIk1eK1wZZCjJlNtyX5\ngA+CpyApEaOQoqfEhE8Bn+ME+SuwGxNjEpwpLLKQrVAoU2K80pg4iUK10giKIAXRoFMmCQQtE7dm\nMvpgxCAYjuYVF9aQ05tzk/5/1/XVDfcOG3QGb8vEE4pCqgw5KxxT4J3KCSWKnEZUsfTrDT//YuAD\nH3nrLVCD5XC+JKQBu14xb+ZgLXm351n3FXcePKLvLjhf7RnDyG6z5unTF3xTzVFNQ+czcb9mO/YY\nPxIlo0TY+z2iFCKFOA4UK1TKEU0i3BZKiVRtzbD39EPPtusJPlI1innM3Eim62/Ro6PzYaI258K+\nzzg1sJhZsIY8RIaUEIEohZwyMU1J4EEUsWRUeT2hE0HpMl2olEGL4IBioVWOSKRYTaPMFLwpikZp\nUIU+QiFQSkNE+OXnX/PTn55wtDjjdn3BYlFT68CLsSeMFUftAZIzi9axfbMc2IQxTvl2BYpRQCEX\nhREwJRPUBPkvArZEkgidE3QQqsrxZ3/7CYLjd3+4IPoLbndzNMKsMaSY0FXBVRnjI6tVwhhLKYZV\nTjx5es71i5HL24F99LS2JZaeWm1QRehDTVABvxI+KzvGzYAKij6MKIGTec3x/JDoA19fvqTrB06O\nj7jsNjy52CI0DIPC60nv9M3VLee94ng5xyjYbAdEMtlP8SciQsqRX65vkF0PMbBwUJ8cMJDwYUCd\n3KWut0jI7FTFnQYOXWTUC4oOWA9z4ylxSQqZv/7sl/zJv/khS/aYZcV5WHB0GDhctFzdbCmVo0JT\nieG6H7GqZakThy5SuQmQ++vUP6tGBqaUhs+6wOdd4F/vHHfvnnFmO/avhboWSFgkZ6ItVKngG4PN\nBkmBLCBhwGhDSorr24BqNdpVzCvFoXNYXdE6g7FTENi4i/SbQj7ouXj5JVfPvmF5923oBooBRSFk\nsEXwFrS2ECKCIMpidGYUhbbCv3v84tv+Cn/jar3aslOK4wI9imRBcMiY6OdwUJ+gxh37caCWQiyK\nUBJ9zMwbgboljD0+xIm2bAzWaCiR3mhaAS8KmwzGRJJyMCoCE0irfc12yJoJOIemKEuVIZlEGUY2\nKbLdZ3zWFKfJUuG9Z9XfsI+RVAxaBkqWKQAyZnIWYpmGyiHCGEckFpQuFKXxKSPZ06gJKp6sxr6m\n9yJTIyZapnWmCEWDlIJFE6zG+oJHo0XQKoGqKCZgaFi0Fad3Trl89eauODerLfdPF6QU0ViUmngy\numTqDMlqDAVvFC7JRDtWCa8Vecx8+uVXpJI4vnc2QcEAJJOWI8vlEZWZQcp8/fnHdNsN3bYjhMjN\nzS3eB4yZLLpZYOgHRp9IoUdKRlmNKooYR5y1iIbKGEbxSIyEPDmeks+Mw0gMkaQUrgiDD1xtt6gy\nCdfDODCGQglQRBPzQKumxrrxiTFnfEgMuZBLhjK9a4ZaUXmNUdNUOumCtRqJIK+vYQiILtRViygA\nhS2AFrIIFRUhBtAWJOCyoRPPDMfFyzV/9Rd/yX/zR/8VK9cTyp6m1jgDs2bBYYbbEjiYzXnJm0WM\nHsZAKVOUiY4Qa6EKhWQArdDyGhwpQhKH2ImMq0QwKnDYOP70f/sbMD/k975zH9OMqEozhp793jCf\nVVQNPL/Zs7/aQqmJqTCOmetX14Q+oGuLOM3Y7mkwdAM8u4mM/Y4gibY1tM4wryq6mGlcQ+MsYwzc\nvnjOehwpJTOzC57srrDKkCOUMFJioeipWdOSKdGyHgJNhq0XVpsdY+fRaooeqFykVRVBKfYaFm5J\nrTTK1SzbOU4NdKPmy+drMg7FjGc7w/EiUOsZz29eUkSTW8VbR4f8/PEVV51lfnyIUQptAw9PKrR0\nzBczTo5b1jETQ4v+P9t7sx7Lsiu/77f2cM69NyIjojKrKlksDk1Wk83qQd2SLdMCDLWtF8kWDAvQ\nJ/CH8neQBT/4hYAtwIbcaojudpMym+wiizVX5TxE3Ig7nHP2sJYf9i3CpttussiqnM7vJZBAIvPE\nvfvsvfYa/n+/Q3xkN1Y+Wu8+U2/ocxfIfIoCf54y8c49/uMjx5v9K/h+JGuhqmEOrNbmOZPbDQon\nLBQWWannO9ayJ4twFAWJgavguNM5enOkosQQmdLA7mrPgsgbr7zE5cOHaPCsrx7R+8hkuc3iW2ai\nEgg4EcrCk6fEkRhbc6ziwPbceDjOI9efhY8+usvqm6+jUyZ6z1Q2BIwxJcJpYGERrSO6ctg2o10T\nj7p//z7mhL4LTNMe5wIC8Km/SDEG38otk6s4dXS5MAaofkeX29hvOPRKRWdoUrxPDDg0K/tSGXa5\naUNU5fE0sD4/ZzdNLeiQ2A6srKCZmmC0QqoVVypIc642M6qz5l5btfVLYFTahF5XDA3Q1dKagg82\nS9W1zISvLZgpYvTq2QdHX1L7u9bMNwMdpfP0qwVvfuN3n+pApuami9GJo5Ym6KehUkxIUVBrehi+\nNpn8loMFVcHGVnr+6Tvv8Nr6EfXmTVZnp1TN7HcbHj0+R8vhsHOeEKQp/pY2tZjTwKA7Hl1c0omw\nrZkjPBfDjug807BBEbRWgnMUKwQCqkotpX3vWtsYL4KYI1hiF0FKZdokfIUsNPsDdagULARWWhBg\nnBL7qhRTrBqoYSaYtO9ZkhC0sPMOCRVX2vN86jzso3Aknm61QDHqpOzzYZ1qwXygdonY96Qpo6Wy\nmwa0KuFsxVEnbDaZdz98j+/8yR/z/vt/QwjCteMVeTuQNw8Qc7z00hl8+HSVKXPKINaMe6MRUgeh\n4CqAQehwTBT1RNcyW2ZNHC4BIWeun/T8m3/3Y3729i3+/u99jZuvv4y4PcZEHDoCCzabPcsukv3I\ntgzUwTHWyjDtwTx+FKaLCfDkBGncMU0jhjEM7ayYcqamSi0VQwiukg+2DwWY3BorkMuEqsNMmj+S\nCH1o+j4AV+dr7uwStk8kESIFic20UdSjoRA6Iaqw8oVNKby6OuXatQW4xEe3L/HdMdejce30jGms\nRIHtdsP9uxsWMRKKsokbet3yo5/9jP/mv/pP2Nx9l94b6xJZ2SXXjk7pz1aUB3d468Get370/i8y\njvoZ7Sye20DmU7Ia399U/vfNPa5H4btn1znuJqIWQurJC6NPjjFAnz2TU4rzjCpMGliVzCZ4sqsE\nzThx7OSw+XQJR6BbnpFXx7z2J/+Ik065e35Ol4FrS2xnpDqiInRVEK0UHwkKRZXsJmJcgfN87733\nn/TH9czy4x+/xZtf/xaZgRPruKiFvhoP+0KKhyDAJ87qiku7pOpEypmHd26jweNSYTQjZsH7FuCq\nFcw7lhWm6PDqm0EjRl8rGgNT9uALeQEBYaoKQehrZrKITrAtlaka6zJxdbFle37OpB12tMK5Jf1R\n5ThFPhkeshsKk7YyQYdr2RMUUsvs9QpTrWRVjHwwy6yECiXaL8wS1cA8iDVfE8QOKXSHV6V0jmVR\nhtBDUbCKGiydY2k91xcn7L/+e7j/8EN0eDqDazXYWsepJcw3rzJTz8ISe4ssqzCGSixQ4SD1bsSq\nFO8QV/A7+HC64Pb9S26cnfLlmy9x7WzFarVqPkHFEFcIXU9Rg1G5uDpnt93i3Yo87Hk8DNRSeeSF\nKELXd0xqyLinAAmhWkVM6MUjFsCDahMndGIgmdRDP3msdeqwD8JxaYdWRukMsmaygdpBF8QgmjGI\n4JzSFaF4w2dH8YUpOkSNWJSEozqly8oiOo76JcuTJVOaGK9G9jnRxyU3j3smjNoJut+z21Y2+x1U\n4+h0hfOOa3GBD8ZZcdx79Ii/5x03bl7HLh7ztWtH3HHCowdbxITjxdOnJVNKRapRoyMoqDOqNEE4\nfMVq66MUmhaLAQ5FxDWtWx9xYeRs1fHh4wvO/2LDN756kz9546vE057NkLncXlBTy4D6PlBSYUwT\nOhlj2rLb5Pae5to0ZSiUaoSqJPGEMuLrwS9Jmzp3k+oAKQfdsVYlZDSjD5GoQqWQ1HBqaKyk/cS6\nZGJx1FKgU6JFRCtCaFIMaqgaY5rw0ZMsc+Olm5wcB3ww3vt4x+7qij/5zu+w31zhyLwqe27fG7lz\nteN3Xz9pFijRsyyVfgEPN4Vrxzf4i/d/xP2HLRC63N3mYvM+45CpqtTfkh2K/KqGXtLGIJ4LXus9\n/9FL11iFCTOHFM8VRlRruoYlknDk0HRpoimBtujrQaNDncOph1AR3+EXK/7Jf/0vOTvxfP8HP+DE\nO2oRLi/uH1yIoYo0NdXqSGVCh4RH6RdL9nT86+//n0/k87DmXPm58EWum9//gzf5g69cp8SOhQXW\nwxbX9xyf3kAePcKWDosdenXF4viY02sn0EVu3HiZzUdvUSRwbA5dOPog4MDwhIMJXuo9oRrBGZXI\nQhSix2Kkl9br5Lzic+RCOnQfGPweb8a2GOnxBQ/Pz5l8JIUAtR1aNXVYyKQ8UUsm4tDQcboMZM1M\nu4xabjdzaUJ5Uy04awekO4goCk38LuZKAUwEcYJXT/YtM+CTo/hWsuhiRGrGaiUlmJwQU+KDhxfs\nrq4wo218fwtPy5q5fnrKazdvoN7oC+hxRx0TXalMMbQSgShJOo7zxOibuShVDn1DHKxCWuYjLgOn\nR6dcP1kiiwWhVtQL0QUKmZoreVCqVTbDHi1CrQkvglrWjv0sAAAbnklEQVRBoidKZNVFxpJILrDM\nuTVa1op4bUquVaDmNkLv2k3fF8P5lj0zca2BWRTNSsiFvXMEClGF5NqBWlVJ1nqe1AkJJRZDnVC9\nshqFfaeEAiNGj3G6OKK71qGDYlpIteBNsGsdXzo+IWjlctzTJePDcaBOlT4IJfS87IQ+QmaFjw6O\nRi52wre/8U9J9g63PniP+7fOuX3/nPy3NDo8LetGnPCtb7/Gke+b4revhMmjvtKZtH47Z4g5iitt\nrdTDdJ/aQaslol4JOrKdOnaTcXwEf/DN17l5ekJ3dsR+KlxerZnE8KakbSUPAxPGNFaCGT62QYIU\nEj51OFM6oZXIrZJqR5DUpqvUE6SSnSIFghwkRpwn14zLCmbkYORUENeCpOwMXyrVCafFWEvlVD1j\nV/HmUVF87rnYn7NaOl776u/iqxJtw0cXxtX5FW98+YSjsyWXVxtudJGPH615vC7EUrj+Ss8mvMJx\n7JjknPPHcOdc6YKyfvT4Nw5Y/q5189xnZP427k6V791b882jju8uArtlZmGOfjIGiexiO7COi1JC\nE6pyVpDDIabeUQpYhFBpvS4xcnqypJRCp4rG1odRrKV3nbTUpCjgFNVmdIk4HJl3bz3tyh1PP2//\n/B3e/PJ/QfUJHSewymvLmzzYPmDZGeIhpkwWo1qh1ELAc3J2nfXHgUk9nSVqjggQDj0v1ZRtJyyy\nos5I1eFcYucCXS0sk7INAQfsXcQmx5VtKNOAqkEtTCmz3ey5qpBqpY6F2moG1LBlmR0mhsSAeWM5\nJXZjRhJUX9BKsz+giUg5AxVDELJrPREiAmpU55pedAVnHouOTkHVY7FJka/M2gSXXzLVgU+GCy4+\n+KQ90zPEVjNqFV+E7AS/zdRwCA70cHtVoScz+iZzYArZtw1fEIoI+ENpJlfOzx9xufa4GDnuAqvl\nithFxDs6HygkcjYWXUemTYr56PESaDNvylgmvAWWNZHF4TWhzhGyYxeVo9y0bwZxeKuYgQVjjA7J\nrm3MVpDcSuCDE5CKy45d5+i0NWvb4QKm4jCvdNmhXqlAP8E+GFKEqp6jDm6EgMVAGgeWRdj7ildP\ntwycuhPMHNsy4W3BpHuuEVk7sMmYhj23amacKrvxHuM4MaY2YfKD7//6aqxPElNjtzMWZ0pRJew7\ntJ9QOopTTA7WJq418GtWNDYD1oqAb+KSakaVBSFMnDrBCvzwpx8RQ6DUyo2bC5ZuxWoR6PslUYTL\nrqPXhAYldK65mi/AVQcykHXB6IxoFSosrGIHi5EoE6MEVsWz7SZqcuCUkHMLurxSzeM0QzAsG6Fm\nKEYkkKxyFYSFeqYgmEZUK8FXdnlL7oXfufEqV6as9JLLc+X9jx/y5pdWLEmc+Zssrwe299bsa8dm\nKlxMyo/+eg08uWnbFzKQgdYU/N4u8eEu8XvHPX/cBzah1dBPtTB1gSoOM0dkwrc8PRPtsFgAg7ZF\nvdJmVag1M0mbksgaWmqvVrxz1JJxElqXeK04bVoe2hklF/761mwO+ZtSc2GzfsBLixvsGFv571pH\nvj3RLSOrGhltbEJwtVBqhZJxAuH0JXh4wd57FpNREFSMGK3Jhqd2KISiWAUfBGq7BY/appSCVibL\nXJaMjQeX8+wYSmXIA+dV27ScKXY4vLyDRfXE6KgYrkCkknGUYuBbHwhA9gGzCrX1zYDhaEapKq5t\nvtZKKJi2W71vPTESHNFal0ivPY96T/nkko8v3mba7OAz1qafNG7UduPsMkED6pWO9lkKbRoL36YX\nl6Wyd6EdEAeH3xoESUoRY6mesRPiFEhq+KkwpMJlmlhMkGL7bL3zEASPI4oQpAUbC4McBbHWbK1W\nAUcnSraOYAX1xslQqRIYvRBKJYvQqTF6R793SEhUPAUPVlsPVzUm78he6FWp5lpmSeLBJsVwqYnd\ntRF6GCPNksHDsocjEZLLiAlLPJOvBAu4Tsm5cCffZ1obti/cu2reTykruVR+1cz9s8SYEqkGVuoY\nVoU+e4o7eOqpR6W9ZhUwc4SSqb6Jq5oZk0BQqGQ6hFFa5mYZHaYF7wLbiy17HXnkKoanDwGNysuL\nJU48kpTohJIMLYpKR/AFUyU7T/RClREpAV+NqXfEUdlJwWWjz033KolD0HbmmFE9LNWzF2PQAgoi\nBYtteCE7o5cIcWA/RdIEdy4TX3vlmB3GmXR8sJ548HjkpbMThmT84PaW5cNP+Jt3n65+J3iBA5lP\nqcBb24m3thP/4OUFb/hI7j3HKKE2ee7ROaC2dK4J0Yy9h6gHBeHYc3p2zG6YMN8aC00OG+mhES9q\nW/wlViiKE0V9QLrEn791SXkON4onwb//8AP+xZdfo9Ytq8UpV7sNsRYygdqBTdCE4gQJUFPl4cO7\n+Lhk3N5Fry3AmsidF0cGlqbkhacrlSpQvVJEW1NdbUHR6ARVIdeJkjPqWyp6N+5ZDwP71BzSKx4v\n2v4PAdEm5jaow1sLfmpx7SgWQ6pDpeJMMGqLwJ1vB4sq1blfTCg1J+uAieJpN3Nx0nptinAVPJur\nPXfO77K7/3xkAJMmNm7Ly7VnckJvlSQBLwVXHSlUPIqrHZNrTdvFg8+CE0Oq4VybIDIznClEcCVi\nvjJoxEphlEiRwiJDipkwAdbKdF485oTiHDELvW9BhhdPFoFqOKl4rVTzTCJoUCS1XrvqjIwRiiFS\nKXhyVVw18iE4Td7h1XDOKA6sQFcdRQzvHBI8ocsUE2IWyJValE4rPvQceZBcuEyVNI1sdgP7oTBM\n6RBc27May35mNBWiCOJAqiCiLashHnFKVYejICrNiNFZK0Na650J1vYDMSN5RyiOYjT5huCortJr\nxxiUXpvURs0VMqzTgDnog6PvOmKMiEAwbe84LctqLuNTpLpW/mTksB+AV8cYC/3kSa7iHKgLLK1N\nye5rZshNV2l0HofhNbCKhfPS4VzFkxkH+ORioguRB4Pj7mbN1fYeaVJKqr9UIrz64r+oX4EXPpD5\nv/PDRyM/DRN///SIL68im36iq0ZXPBoiK1WyMyYDj+APo7HBgfOBaI4HmzU2DfjFiiGPBA51axWc\nJfq6YBKHIvhlZLNXPr7aPulf/blh/2gDpmCB4/6Ih/sLjl2kYFDBqx6a+sovJjxyalMk53XkbCts\nlpFoEJ1itRk4ii0YgqNzgGtiYepadqYo5FRIOCxlqnfIKAybLQ/znmlQJjlM0Ehp+i4G6tqB56ri\nJGEE1AmtnvDpCLXiqwcpGB7nSsu04Kh6uIU5xWjlJhcUbzCJtGQOgU0ufHz/Lrv1hvqUm0H+umhV\nri4zL1/vMdeyEqyUUjx0GbLHSWUKlVCar8tidOTu09KMYA6iQo6VkF3LqLiC0cbXezNyqPQGASOb\noyvK0DetlmItkxtTZR+EsQaitKDEfMvchKrsQ7vNezpiSlQRhEp/+LqzGdW1gDVWIQfDZ8CgesFV\nbSPa2WFB8E4J9ARJTeCw9qCFzTCy2e3ZDJk8TeRaf23J9xeBQSfMQ9bWBI+VQ46zgra14tRTfPtz\nFW39BIfgBXEElGwerwWcR1AKbUJNkJbtdUI7MQQn2oQnHc2HSQ0pBdV6mDB0RFpjf9VAX5W9U65p\nZWcRb4VqCjhUhB5H9p5e2gRTB1joIU9onuhUyOI5DY6dwa5ktrvMeRoZp0yeEsOo1NpGzR8+ZWPy\nvypzIPNLDMX494+3nK09/+DshGUfqJ2wlMLePKKVRSuvc+mgM6N3cBoWjCVTpsrkPf2wbpuR920D\nogItRVup+G6BY+Qnt87bNMTMbwU14627H/LG9a9gC8PWA37Rg3pGNx6yaNpe8FIIzki5cuPlm5g/\n4f5uy2lRSu8pAaTChRQWusVLpA+eBVBDu+GglY3vkKqoZEwdZpldHtjkxDBlJgyvjkNOhb4VkRCt\ntC1LcA6qqwR1aIthCIdxa4sFqa00lENkkYwcBGdKUX8oJQjBmnv6EIS0z7y3vmK895gyPr1WA78N\n4iCIdlis5OBauSbLwYakormVd6q00t3Qt5JPX5XJ05owxbcJEITUKzE7fDFUCjkIfVZKNEbv6Wpl\nGwOOljURgSKOIdLKxbVQokdU2warRpE2sShVGPvEIhslCIKAdziEzrV/qw2XGdEL5gNmha4atetY\nBsH3HU4qWRM7tlxcJR58suPR+dVzWQL6vLDBsNx0vHCGa290c403mqaQtPcwu4zkgOsM0yYs6LSp\nKJs3xIQsEAOMtAbcVW2igxEoJnRUEg4nSi0tEBFVJAoBh9RAoJC9Z2mO7BNOPV6FrUWcFEapdOoI\nIoRQkORIUqmmFImIOGyxYxiU2+uJ7XagJKWUFqzYc5p5mwOZ/w/WtfK/Pr7guBP++fUbpJXjWq4t\neg+OtcJL48DULXggmW+cnZFSwo+FIJ5FyQyquM4Tx8reOaSAKwN0Qg1wvs28/+jpTNU9y7zz89t8\n+x9/i24qVO8ZV4GzErmcdmgU+hQYnbIqhRwDabchffkbfPm1r/Pu++9we/eYMDhe7k6QZetJyAlS\n3bPuwdMsJQxjdMZRdiykI3vPEJRYEuM2s8kJKy2Fo9JuXNEg4/Fy0IRQw5yjWmiN4GJtpJpKFd9u\nXRmmaKCh3bxcM33rxZEwKsbREPlg2nDr7fdIGDqlJ/wtfHGs8wWnfsH11LN1ga4oWRSvgs9GFqW3\niq8eQ6HAURX2nRCtHqT4W+q+Cmh1OIWh86xyoVTPFAxvgkMpSJvoUNDQxna7JpxLlMDkKx5YemFc\nOSQL3gtqDhcKTj3VVUCR2mqC0hl9iTgXCUvwwSNRmfaZzc7YjnvO1wPb/Z7tdiCX8tweSl8UxTIa\nxpZdLY6dGb03Um2jzZhvU13m8IcRZVeNSvPMS6HiFbxVinicKZaFnqZhtOs9q2yk6umkkr3HVygc\nGry9RxUYjH3I9EdCLMIxgosOX5u203HcM9WAlIBSyepJfcLFyvah587lBZuLLbk8v4HK38UcyPwd\nbJPx3997xCvLyH/2yin4hBgcqbLplkhn+KpcP+653Oy5GjY4L4y5sC/GkcDQdfih9dqsaiCZ49QL\n589mFu+pZ3O5Y5+3+H7JSYGaHbpoAaWrHguOOhbyoiLSMY4JcR1f+eYbfPDhB4gsmPYjn4zn9Fee\nrouEZWQZAn3pUFNCUDAhFs+uKo/KRE3joQ8ik8zQTxtyXUVqKx9UB64W1DnMgeJxagRXESdgDnEw\nsUAksyyGeqMzjwuCs0DvCyLNtDTvdnzy0X1uP3h6hes+b3Qy7FKoZxVfoJoSXTMQzZ3iU1Nhxrd3\n1ZuwXVRikeabhiBqbVQdcNpKSt5aOU+7wmrnSX2bEhIHXoUxOFbV8B68CKUIwypzlNt4dHbQJVAJ\nnCRhihHrHCcZ1n1HnLbk0DI7m13i1u6czW5H2mfGsTJO+YU8lL4oalZ264L1ykRuYpbVYyJtwkeb\nH56XpqhsoZWKWmlIiSaoQRHamL9CPbzo6gU/GSrNZ69oIJqhwYjVwzIgRXCu6b/UJXwtwZ0+cknm\nVb/mXj5jnCo1J/ZXF5xfTWyvBuqcwf9/MQcyvyIPh8z/+PEj3jju+ePjjhx6jkMBC2QXWcTAw8s9\nVjNH24kLD32t7PtIrEKy1vBbu+a1NGTPX96ZzSE/Lz64f4/vxte5XC5YVCPtJhLQSTNQ7NQoqsSS\nmczI2wtu/s53ILYG2945kjiKClNKuGFiTROZ88432W9z7Oqnomba+luKx4WKk091KNohWUIrO8jB\nukgNojoU5eAogIhDg6cT6FKbgNh3hlOhl4Pzcj+yW/d8/OAutz65RU6/pinJc8rGDyx1hSjkUHFF\nMe84GR1TO4noi7DtWwluUVxzFNYW4CCtV0YqZOfwVBbZg1MW2bHtWrOteSWoJzUT+yaCSGgy/7Ey\n5q6VivvCUiAFx64mNjUzDCO73cjufGK3T6jWX6T7Z54Mj6c9wS8YxoIuPdFBJlPJaPV03jP5QigB\nFw/flUCPUVQo0nRnshkqipMA1przJVbyuCAuK/HQj+ero/iKm6BSSdWxnRJ5a9ydEpcpM24TeUzU\n+uJeTn5d5kDm18CAd7cTH2wn/vCla3zjJCIOFsdHLF/9Ctz9AUGEKThkyiQHvjatEK+OEioh9dTV\nnlu396y3cyDzefH2Wx/we199mRNdMMZKVQgGvXj2VsmdsMSaF1E2Lq+ueE2VsFhyvCtchtR0RSIc\nVc82CmKG1UzNhb0ZUZvHj3mPeEEEXEioHYzoquEQcNJKCGZN40FogmVqh1KSQwL05mltyI7cCYui\nrMyahUEeuXN+wUe373OxnlN5v8z+zo7p9Yg6wVtHFOjFUWITqnPJuOpglQwTTw0OqrVgswolHH4e\nRkaKRXKn4CGkwEoyE4Lk0CbLQiUOgbEfmXyibiMXJTHqhrRLTOPEfj9RfkvKpTOfDyfqOO07TqKR\nApQ0kXJkv8vEaLiFQ5IHnxHpUWkXkuRaFgaaaJ5zYIceShOjVCGbgBvZbgQvEzVnhsFI00RKmVqt\n2Q7McexvzBzIfAYq8KOLDW9dCn90c8U/fONVJAhEz27c4zGiKGLWmqzkIF5mwhAKy1L5/gePn/Sv\n8VyTpsT5wzVfuvFqG63U5o6cO4+fAOdIJbNYLhCpUAYeXV5w49qSe9tL4s6j3vBZqdFxVBxJMlUC\nNVSWSZgCVGkNnV4NOSjmooqq4qu0DU8d3jVRimiV6lzz0YkQSxudXWDU0CGxcjwGhlDogvDBdsvt\nd+/yeH31W5Pzfh4ZdGJfjRsxMDnwIbQx+aFSpLSRWRWKeHwwxAvmlOLcwRywHUzOAoax0MJggaM0\nsUbYFBAdSYOx14mUFCallER6ih3CZ/7/kb7j7GTJOOw5Oj5mOi+sUyGuOOhFeUJVqg94KrUIEpq4\nnAVlmgrbfaZOI+OxhzG3KchklKzUcpgMmYOVz5U5kPkNyGr88O6Oj4efcuGP+NZZRHPi2BnnAmXK\n+H6BTQ4LimVHWOx46+6esc6b3+fNWx/d4Usvn5FdIBhMXrie4Fy0TYGIEYChFnQcOL/zIS+9/Ar3\nP3lIDYZUPdzolaNFpGQlUKip6TeYKcvUHK5NWqNoV5TkjFBaT0wwmmlhbOWkBIg1Q7cueyR6Vk5w\nXWBhTTfkPG149+MHPLz7mGl8cZp2f1Mm8xSEiJBLJZiDNrkO3rEwA+eIaPMnqs0V3GfPLhRsUjRv\n2ddKngpDzljOlGpY1bkE9Bwy7ne8ds0joeMSJV1bcuUyKRnSNacsjY7dmDnfF4Yhk3JpwUr+pT18\nvps+MeZA5rfAo/Ul//p//l94+eSYf/Kdb7A8C/TV6JZCzYXcB3wVRAtUz+W950vL42nl3p0LNt8e\n6Y+P8NJBTuxcaUaAIbQgZhjwU2Ezbbm26Xn5la9RRPHBgQqmRgzGoJmF80y+o4Y9cQCqsIkVX9rB\nuKjKPnqWqkzB4auDoJS+gjZdF+cFqT1Ej+sCL2FMLPAx8LOf3+L9jz8h57nJ87OwW1/A8euseqNI\nR8y1yfxLwBOJC6ilst5XhrJl2hQGJupQ0YMQ2RysvFgMxfirdWC8u+PR1UNKzrjjBWk3QVVMFZsT\noU89L6Rp5OfNqgv8t//pH4PssGqU4EklIerZWOV/+P67T/oR/x88LUZunwd9F/gv//Pv0i+XbMcN\nx7ZgKBNxtWgO5D4hGNGE029+jVdf+kP+t3/7PeKuMsWK1oyzvslcdcZ17cmhZz9uGXWEbdPzGKXg\nPJziGHshqKd2SiyhuS6r4WIkLuEkR/LCc0zg9vqSd9+5xXq7e5If06/N07pm/vk/+8eUq8zH6wc8\nfHTB9nJLqZWqis3THk+cp3XdzDzdzKaRT4B9Kvx3f/YDvv7KNf7R734NcRNnBOpp4d/92e0n/Xgv\nFFMqDFU4lUwujtHVptcSPHFqKpsr7xkxfFowjXtOumPubR9wlATtPVoGVv0xdUqcu4lolev9kmwn\nbPwVNkZWu5FNLtxZKa/thbpQ+hQZe6HLxhkOH3pGOaUEeOunf8Pde7O/1m+b7/1Pf/akH2FmZuYL\nZg5kPkc+erjho4d/wx9+5Qbf+R2hfyTc3w1P+rFeOO7eucVL3/wK1dNMFwX8FJjCiOaC9QtKESKO\nh3fe5yvffIOLqw1Xw55ehI7IZhhZLHpumGOfJtbs6PqOGycn7HvHxWrL2TAwjZlHQVkVQ33ipHjo\nj7kyx92HVzy4+1PSbnzSH8nMzMzMc8McyHwB/OTWY352p5mJzXzxvH/rHm9+7Qbe9+TUZMI7n6mJ\n5qxSwaHk3Z6aEze/+lX++sd/hahjs5/oFo6TuCDliYKw7Dt6cVgqbNIV/dERr/kztsuOVfG8bhOZ\njnM8H11c8OCdd5m2s5/WzMzMzOfBHMh8QZSmjD7zBNhtR9YpcLbwJFWCVpYEdqFCbjZvC3Pshg2E\ngO96glsS+z1pr6QEg2VWiyOiq+zyxKk/xY6ELvcwjAyLwlFY0oUF71wm1h++z72Le9Q8f+szMzMz\nnydzIDPz3GMGP3n7Pf70j75NiUIYHY+HS8x7vJVmH1A9ltYcndxg/2DN6dkx99NEd7SipJE6Ztay\n4frimJf7E3aS+JJ3THhG68ibwl998hPOH59Tyhy8zMzMzHxRzIHMzAvB/Qfn3NkPvBKvsesSpSh9\nhYpDF4mVP2WTtogK6/UjbrzyVR59eBd/FMF39MEzhpGRSnGF6+GUuzlwdecj3vrkbXb7We9lZmZm\n5kkwBzIzLwSlKB98cJsv/dG3WSZHLUtGtoSg+BKpp6H9zEqviS995U3e+tEPiTHgRQnJODJhUY0j\nhH/zF3/O7mrue5mZmZl50syBzMwLwyd3H/EPv/Ud7DgSyGhxmHaITyxNCV3Hvu44cTd5+dUjvvT6\n19nevQU+MCk8Hvfcffwe+4eXqM4qWTMzMzNPA+5JP8DMzBeFVuXD3QMWGknBsVSHC4bniOwXsAhU\nVwhRuJaNP/3Tf8ojRt6+eMBf/vgHvPPWz9jev5iDmJmZmZmniDkjM/NC8d7bd3jz7KvERYdMjhwr\n0Xf4Xoi5Zww7Xr5c86/+7fe48+E9fv6Tn6A6+2LNzMzMPK3MgczMC8X6asOjfuTMrSiLRGCFxBXd\nLvJ/nF/y4c/f5V/d/kvKnHWZmZmZeSaYvZZmXjj/k29/+6t89/f/Hj5VHsvEz376Dp/cfcg4TE/6\n0Z4ZXrQ1M/PbYV43M5+F2WtpZuaX+PnPP+GV7/w+28vCT//D90n72TJgZmZm5lllzsjMzLekmV+b\nec3MfBbmdTPzWfi71s08tTQzMzMzMzPzzDIHMjMzMzMzMzPPLL9yaWlmZmZmZmZm5mljzsjMzMzM\nzMzMPLPMgczMzMzMzMzMM8scyMzMzMzMzMw8s8yBzMzMzMzMzMwzyxzIzMzMzMzMzDyzzIHMzMzM\nzMzMzDPLHMjMzMzMzMzMPLPMgczMzMzMzMzMM8scyMzMzMzMzMw8s/xfHx44CDTcJ1oAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=[10,10])\n", + "num_augs=9\n", + "ns_inds = np.arange(num_augs)\n", + "\n", + "for i in range(16):\n", + " if i % num_augs == 0:\n", + " np.random.shuffle(ns_inds)\n", + " print ns_inds\n", + " img_list = load_menpo_image_list(\n", + " img_dir=img_dir, train_crop_dir=train_crop_dir, img_dir_ns=img_dir_ns, mode=mode, bb_dictionary=bb_dictionary,\n", + " image_size=image_size, margin=margin, bb_type=bb_type, augment_basic=augment_basic, augment_texture=augment_texture, p_texture=1.,\n", + " augment_geom=augment_geom, p_geom=1.,ns_ind=ns_inds[i % num_augs])\n", + "\n", + " plt.subplot(4,4,i +1)\n", + " img_list[0].view()\n", + "# plt.savefig('g.png',bbox='tight')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 183, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 184, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "outdir = os.path.join('/Users/arik/Desktop/test_art_data3')\n", + "if not os.path.exists(outdir):\n", + " os.mkdir(outdir)\n", + " \n", + "aug_geom_dir = os.path.join(outdir,'aug_geom')\n", + "aug_texture_dir = os.path.join(outdir,'aug_texture')\n", + "aug_geom_texture_dir = os.path.join(outdir,'aug_geom_texture')\n", + "aug_basic_dir = os.path.join(outdir,'aug_basic')\n", + "\n", + "\n", + "if not os.path.exists(aug_texture_dir):\n", + " os.mkdir(aug_texture_dir)\n", + "if not os.path.exists(aug_geom_dir):\n", + " os.mkdir(aug_geom_dir)\n", + "if not os.path.exists(aug_geom_texture_dir):\n", + " os.mkdir(aug_geom_texture_dir)\n", + "if not os.path.exists(aug_basic_dir):\n", + " os.mkdir(aug_basic_dir)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "num_train_images = 3148.\n", + "train_iter=100000\n", + "batch_size = 6\n", + "num_epochs = int(np.ceil((1. * train_iter) / (1. * num_train_images / batch_size)))+1\n", + "\n", + "num_augs=9\n", + "num_epochs = 10\n", + "debug_data_size =5\n", + "debug=True\n", + "\n", + "aug_geom = True\n", + "aug_texture = True" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "saving augmented images: aug_geom=True aug_texture=True : /Users/arik/Desktop/test_art_data3/aug_geom_texture\n", + "saving augmented images of epoch 1/10\n", + "saving augmented images of epoch 2/10\n", + "saving augmented images of epoch 3/10\n", + "saving augmented images of epoch 4/10\n", + "saving augmented images of epoch 5/10\n", + "saving augmented images of epoch 6/10\n", + "saving augmented images of epoch 7/10\n", + "saving augmented images of epoch 8/10\n", + "saving augmented images of epoch 9/10\n", + "saving augmented images of epoch 10/10\n" + ] + } + ], + "source": [ + "np.random.seed(1234)\n", + "ns_inds = np.arange(num_augs)\n", + "if not aug_geom and aug_texture:\n", + " save_aug_path = aug_texture_dir\n", + "elif aug_geom and not aug_texture:\n", + " save_aug_path = aug_geom_dir\n", + "elif aug_geom and aug_texture:\n", + " save_aug_path = aug_geom_texture_dir\n", + "else:\n", + " save_aug_path = aug_basic_dir\n", + "print ('saving augmented images: aug_geom='+str(aug_geom)+' aug_texture='+str(aug_texture)+' : '+str(save_aug_path))\n", + "\n", + "for i in range(num_epochs):\n", + " print ('saving augmented images of epoch %d/%d'%(i+1,num_epochs))\n", + " if not os.path.exists(os.path.join(save_aug_path,str(i))):\n", + " os.mkdir(os.path.join(save_aug_path,str(i)))\n", + " \n", + " if i % num_augs == 0:\n", + " np.random.shuffle(ns_inds) \n", + " \n", + " if not aug_geom and aug_texture: \n", + " img_list = load_menpo_image_list_no_geom(\n", + " img_dir=img_dir, train_crop_dir=train_crop_dir, img_dir_ns=img_dir_ns, mode=mode, bb_dictionary=bb_dictionary,\n", + " image_size=image_size, margin=margin, bb_type=bb_type, augment_basic=augment_basic, augment_texture=augment_texture, p_texture=1.,\n", + " augment_geom=augment_geom, p_geom=1.,ns_ind=ns_inds[i % num_augs])\n", + " elif aug_geom and not aug_texture: \n", + " img_list = load_menpo_image_list_no_texture(\n", + " img_dir=img_dir, train_crop_dir=train_crop_dir, img_dir_ns=img_dir_ns, mode=mode, bb_dictionary=bb_dictionary,\n", + " image_size=image_size, margin=margin, bb_type=bb_type, augment_basic=augment_basic, augment_texture=augment_texture, p_texture=1.,\n", + " augment_geom=augment_geom, p_geom=1.,ns_ind=ns_inds[i % num_augs])\n", + " elif aug_geom and aug_texture: \n", + " img_list = load_menpo_image_list(\n", + " img_dir=img_dir, train_crop_dir=train_crop_dir, img_dir_ns=img_dir_ns, mode=mode, bb_dictionary=bb_dictionary,\n", + " image_size=image_size, margin=margin, bb_type=bb_type, augment_basic=augment_basic, augment_texture=augment_texture, p_texture=1.,\n", + " augment_geom=augment_geom, p_geom=1.,ns_ind=ns_inds[i % num_augs])\n", + " else: \n", + " img_list = load_menpo_image_list_no_artistic(\n", + " img_dir=img_dir, train_crop_dir=train_crop_dir, img_dir_ns=img_dir_ns, mode=mode, bb_dictionary=bb_dictionary,\n", + " image_size=image_size, margin=margin, bb_type=bb_type, augment_basic=augment_basic, augment_texture=augment_texture, p_texture=1.,\n", + " augment_geom=augment_geom, p_geom=1.,ns_ind=ns_inds[i % num_augs])\n", + " \n", + " if debug:\n", + " img_list=img_list[:debug_data_size]\n", + " \n", + " for im in img_list:\n", + " if im.pixels.shape[0] == 1:\n", + " im_pixels = gray2rgb(np.squeeze(im.pixels))\n", + " else:\n", + " im_pixels = np.rollaxis(im.pixels,0,3)\n", + " imsave( os.path.join(os.path.join(save_aug_path,str(i)),im.path.name.split('.')[0]+'.png'),im_pixels)\n", + " mio.export_landmark_file(im.landmarks['PTS'],os.path.join(os.path.join(save_aug_path,str(i)),im.path.name.split('.')[0]+'.pts'),overwrite=True)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/MakeItTalk/thirdparty/face_of_art/old/deep_heatmaps_model_ect.py b/MakeItTalk/thirdparty/face_of_art/old/deep_heatmaps_model_ect.py new file mode 100644 index 0000000000000000000000000000000000000000..a1e6365aeecdee40ba7040900f40212684cab17d --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/deep_heatmaps_model_ect.py @@ -0,0 +1,544 @@ +import scipy.io +import scipy.misc +from glob import glob +import os +import numpy as np +from image_utils import * +from ops import * +from sklearn.model_selection import train_test_split +import tensorflow as tf +from tensorflow import contrib + + +class DeepHeatmapsModel(object): + + """facial landmark localization Network""" + + def __init__(self, mode='TRAIN', train_iter=500000, learning_rate=0.000001, image_size=256, c_dim=3, batch_size=10, + num_landmarks=68, img_path='data', save_log_path='logs', save_sample_path='sample', + save_model_path='model',test_model_path='model/deep_heatmaps-1000'): + + self.mode = mode + self.train_iter=train_iter + self.learning_rate=learning_rate + + self.image_size = image_size + self.c_dim = c_dim + self.batch_size = batch_size + + self.num_landmarks = num_landmarks + + self.save_log_path=save_log_path + self.save_sample_path=save_sample_path + self.save_model_path=save_model_path + self.test_model_path=test_model_path + self.img_path=img_path + + self.momentum = 0.95 + self.step = 20000 # for lr decay + self.gamma = 0.05 # for lr decay + + self.weight_initializer = 'random_normal' # random_normal or xavier + self.weight_initializer_std = 0.01 + self.bias_initializer = 0.0 + + self.l_weight_primary = 100. + self.l_weight_fusion = 3.*self.l_weight_primary + + self.sigma = 6 # sigma for heatmap generation + self.scale = 'zero_center' # scale for image normalization '255' / '1' / 'zero_center' + + self.print_every=2 + self.save_every=100 + self.sample_every_epoch = False + self.sample_every=10 + self.sample_grid=4 + self.log_every_epoch=1 + self.log_histograms = True + + self.config = tf.ConfigProto() + self.config.gpu_options.allow_growth = True + + bb_dir = '/Users/arik/Desktop/DATA/face_data/300W/Bounding_Boxes/' + test_data='full' # if mode is TEST, this choose the set to use full/common/challenging/test + margin = 0.25 # for face crops + bb_type = 'gt' # gt/init + + self.bb_dictionary = load_bb_dictionary(bb_dir, mode, test_data=test_data) + + self.img_menpo_list = load_menpo_image_list(img_path, mode, self.bb_dictionary, image_size, + margin=margin, bb_type=bb_type, test_data=test_data) + + if mode is 'TRAIN': + train_params = locals() + print_training_params_to_file(train_params) + + def add_placeholders(self): + + if self.mode == 'TEST': + self.test_images = tf.placeholder( + tf.float32, [None, self.image_size, self.image_size, self.c_dim], 'images') + # self.test_landmarks = tf.placeholder(tf.float32, [None, self.num_landmarks * 2], 'landmarks') + + self.test_heatmaps = tf.placeholder( + tf.float32, [None, self.image_size, self.image_size, self.num_landmarks], 'heatmaps') + + self.test_heatmaps_small = tf.placeholder( + tf.float32, [None, self.image_size/4, self.image_size/4, self.num_landmarks], 'heatmaps_small') + + elif self.mode == 'TRAIN': + self.train_images = tf.placeholder( + tf.float32, [None, self.image_size, self.image_size, self.c_dim], 'train_images') + # self.train_landmarks = tf.placeholder(tf.float32, [None, self.num_landmarks*2], 'train_landmarks') + + self.train_heatmaps = tf.placeholder( + tf.float32, [None, self.image_size, self.image_size, self.num_landmarks], 'train_heatmaps') + + self.train_heatmaps_small = tf.placeholder( + tf.float32, [None, self.image_size/4, self.image_size/4, self.num_landmarks], 'train_heatmaps_small') + + # self.valid_images = tf.placeholder( + # tf.float32, [None, self.image_size, self.image_size, self.c_dim], 'valid_images') + # # self.valid_landmarks = tf.placeholder(tf.float32, [None, self.num_landmarks * 2], 'valid_landmarks') + # + # self.valid_heatmaps = tf.placeholder( + # tf.float32, [None, self.image_size, self.image_size, self.num_landmarks], 'valid_heatmaps') + # + # self.valid_heatmaps_small = tf.placeholder( + # tf.float32,[None, self.image_size / 4, self.image_size / 4, self.num_landmarks], 'valid_heatmaps_small') + + def heatmaps_network(self, input_images, reuse=None, name='pred_heatmaps'): + + with tf.name_scope(name): + + # if training is None: + # if self.mode == 'train': + # training = True + # else: + # training = False + + if self.weight_initializer == 'xavier': + weight_initializer = contrib.layers.xavier_initializer() + else: + weight_initializer = tf.random_normal_initializer(stddev=self.weight_initializer_std) + + bias_init = tf.constant_initializer(self.bias_initializer) + + with tf.variable_scope('heatmaps_network'): + with tf.name_scope('primary_net'): + + l1 = conv_relu_pool(input_images, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init, + reuse=reuse, var_scope='conv_1') + l2 = conv_relu_pool(l1, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init, + reuse=reuse, var_scope='conv_2') + l3 = conv_relu(l2, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init, + reuse=reuse, var_scope='conv_3') + + l4_1 = conv_relu(l3, 3, 128, conv_dilation=1, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_1') + l4_2 = conv_relu(l3, 3, 128, conv_dilation=2, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_2') + l4_3 = conv_relu(l3, 3, 128, conv_dilation=3, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_3') + l4_4 = conv_relu(l3, 3, 128, conv_dilation=4, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_4') + + l4 = tf.concat([l4_1, l4_2, l4_3, l4_4], 3, name='conv_4') + + l5_1 = conv_relu(l4, 3, 256, conv_dilation=1, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_1') + l5_2 = conv_relu(l4, 3, 256, conv_dilation=2, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_2') + l5_3 = conv_relu(l4, 3, 256, conv_dilation=3, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_3') + l5_4 = conv_relu(l4, 3, 256, conv_dilation=4, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_4') + + l5 = tf.concat([l5_1, l5_2, l5_3, l5_4], 3, name='conv_5') + + l6 = conv_relu(l5, 1, 512, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_6') + l7 = conv_relu(l6, 1, 256, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_7') + primary_out = conv(l7, 1, self.num_landmarks, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_8') + + with tf.name_scope('fusion_net'): + + l_fsn_0 = tf.concat([l3, l7], 3, name='conv_3_7_fsn') + + l_fsn_1_1 = conv_relu(l_fsn_0, 3, 64, conv_dilation=1, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_1_1') + l_fsn_1_2 = conv_relu(l_fsn_0, 3, 64, conv_dilation=2, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_1_2') + l_fsn_1_3 = conv_relu(l_fsn_0, 3, 64, conv_dilation=3, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_1_3') + + l_fsn_1 = tf.concat([l_fsn_1_1, l_fsn_1_2, l_fsn_1_3], 3, name='conv_fsn_1') + + l_fsn_2_1 = conv_relu(l_fsn_1, 3, 64, conv_dilation=1, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_2_1') + l_fsn_2_2 = conv_relu(l_fsn_1, 3, 64, conv_dilation=2, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_2_2') + l_fsn_2_3 = conv_relu(l_fsn_1, 3, 64, conv_dilation=4, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_2_3') + l_fsn_2_4 = conv_relu(l_fsn_1, 5, 64, conv_dilation=3, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_2_4') + + l_fsn_2 = tf.concat([l_fsn_2_1, l_fsn_2_2, l_fsn_2_3, l_fsn_2_4], 3, name='conv_fsn_2') + + l_fsn_3_1 = conv_relu(l_fsn_2, 3, 128, conv_dilation=1, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_3_1') + l_fsn_3_2 = conv_relu(l_fsn_2, 3, 128, conv_dilation=2, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_3_2') + l_fsn_3_3 = conv_relu(l_fsn_2, 3, 128, conv_dilation=4, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_3_3') + l_fsn_3_4 = conv_relu(l_fsn_2, 5, 128, conv_dilation=3, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_3_4') + + l_fsn_3 = tf.concat([l_fsn_3_1, l_fsn_3_2, l_fsn_3_3, l_fsn_3_4], 3, name='conv_fsn_3') + + l_fsn_4 = conv_relu(l_fsn_3, 1, 256, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_4') + l_fsn_5 = conv(l_fsn_4, 1, self.num_landmarks, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_5') + + with tf.name_scope('upsample_net'): + + out = deconv(l_fsn_5, 8, self.num_landmarks, conv_stride=4, + conv_ker_init=deconv2d_bilinear_upsampling_initializer( + [8, 8, self.num_landmarks, self.num_landmarks]), conv_bias_init=bias_init, + reuse=reuse, var_scope='deconv_1') + + self.all_layers = [l1, l2, l3, l4, l5, l6, l7, primary_out, l_fsn_1, l_fsn_2, l_fsn_3, l_fsn_4, + l_fsn_5, out] + + return primary_out, out + + def build_model(self): + if self.mode == 'TEST': + self.pred_hm_p, self.pred_hm_f = self.heatmaps_network(self.test_images) + elif self.mode == 'TRAIN': + self.pred_hm_p,self.pred_hm_f = self.heatmaps_network(self.train_images,name='pred_heatmaps_train') + # self.pred_landmarks_valid = self.landmarks_network(self.valid_images,name='pred_landmarks_valid') + # self.pred_landmarks_eval = self.landmarks_network(self.test_images,training=False,reuse=True,name='pred_landmarks_eval') + # self.pred_landmarks_train = self.landmarks_network(self.train_images, reuse=True, name='pred_landmarks_train') + + def create_loss_ops(self): + + def l2_loss_norm_eyes(pred_landmarks, real_landmarks, normalize=True, name='l2_loss'): + + with tf.name_scope(name): + with tf.name_scope('real_pred_landmarks_diff'): + landmarks_diff = pred_landmarks - real_landmarks + + if normalize: + with tf.name_scope('real_landmarks_eye_dist'): + with tf.name_scope('left_eye'): + p1_out = tf.slice(real_landmarks, [0, 72], [-1, 2]) + p1_in = tf.slice(real_landmarks, [0, 78], [-1, 2]) + p1 = (p1_in + p1_out) / 2 + with tf.name_scope('right_eye'): + p2_out = tf.slice(real_landmarks, [0, 90], [-1, 2]) + p2_in = tf.slice(real_landmarks, [0, 84], [-1, 2]) + p2 = (p2_in + p2_out) / 2 + eps = 1e-6 + eye_dist = tf.expand_dims(tf.sqrt(tf.reduce_sum(tf.square(p1 - p2), axis=1)) + eps, axis=1) + norm_landmarks_diff = landmarks_diff / eye_dist + l2_landmarks_norm = tf.reduce_mean(tf.square(norm_landmarks_diff)) + + out = l2_landmarks_norm + else: + l2_landmarks = tf.reduce_mean(tf.square(landmarks_diff)) + out = l2_landmarks + + return out + + if self.mode is 'TRAIN': + primary_maps_diff = self.pred_hm_p-self.train_heatmaps_small + fusion_maps_diff = self.pred_hm_f - self.train_heatmaps + + self.l2_primary = tf.reduce_mean(tf.square(primary_maps_diff)) + self.l2_fusion = tf.reduce_mean(tf.square(fusion_maps_diff)) + + self.total_loss = self.l_weight_primary * self.l2_primary + self.l_weight_fusion * self.l2_fusion + + # self.l2_loss_batch_train = l2_loss_norm_eyes(self.pred_landmarks_train, self.train_landmarks, + # self.normalize_loss_by_eyes, name='loss_train_batch') + # with tf.name_scope('losses_not_for_train_step'): + # self.l2_loss_train = l2_loss_norm_eyes(self.pred_landmarks_train, self.train_landmarks, + # self.normalize_loss_by_eyes, name='train') + # + # self.l2_loss_valid = l2_loss_norm_eyes(self.pred_landmarks_valid, self.valid_landmarks, + # self.normalize_loss_by_eyes, name='valid') + # else: + # self.l2_loss_test = l2_loss_norm_eyes(self.pred_landmarks_eval, self.test_landmarks, + # self.normalize_loss_by_eyes) + + # def predict_landmarks_in_batches(self,image_paths,session): + # + # num_batches = int(1.*len(image_paths)/self.batch_size) + # if num_batches == 0: + # batch_size = len(image_paths) + # num_batches = 1 + # else: + # batch_size = self.batch_size + # + # for i in range(num_batches): + # batch_image_paths = image_paths[i * batch_size:(i + 1) * batch_size] + # batch_images, _ = \ + # load_data(batch_image_paths, None, self.image_size, self.num_landmarks, conv=True) + # if i == 0: + # all_pred_landmarks = session.run(self.pred_landmarks_eval,{self.test_images:batch_images}) + # else: + # batch_pred = session.run(self.pred_landmarks_eval,{self.test_images:batch_images}) + # all_pred_landmarks = np.concatenate((all_pred_landmarks,batch_pred),0) + # + # reminder = len(image_paths)-num_batches*batch_size + # if reminder >0: + # reminder_paths = image_paths[-reminder:] + # batch_images, _ = \ + # load_data(reminder_paths, None, self.image_size, self.num_landmarks, conv=True) + # batch_pred = session.run(self.pred_landmarks_eval,{self.test_images:batch_images}) + # all_pred_landmarks = np.concatenate((all_pred_landmarks, batch_pred), 0) + # + # return all_pred_landmarks + + def create_summary_ops(self): + + var_summary = [tf.summary.histogram(var.name,var) for var in tf.trainable_variables()] + grads = tf.gradients(self.total_loss, tf.trainable_variables()) + grads = list(zip(grads, tf.trainable_variables())) + grad_summary = [tf.summary.histogram(var.name+'/grads',grad) for grad,var in grads] + activ_summary = [tf.summary.histogram(layer.name, layer) for layer in self.all_layers] + l2_primary = tf.summary.scalar('l2_primary', self.l2_primary) + l2_fusion = tf.summary.scalar('l2_fusion', self.l2_fusion) + l_total = tf.summary.scalar('l_total', self.total_loss) + + if self.log_histograms: + self.batch_summary_op = tf.summary.merge([l2_primary, l2_fusion, l_total, var_summary, grad_summary, + activ_summary]) + else: + self.batch_summary_op = tf.summary.merge([l2_primary, l2_fusion, l_total]) + + # l2_train_loss_summary = tf.summary.scalar('l2_loss_train', self.l2_loss_train) + # l2_valid_loss_summary = tf.summary.scalar('l2_loss_valid', self.l2_loss_valid) + # + # self.epoch_summary_op = tf.summary.merge([l2_train_loss_summary, l2_valid_loss_summary]) + + def eval(self): + + self.add_placeholders() + # build model + self.build_model() + + num_images = len(self.img_menpo_list) + img_inds = np.arange(num_images) + + sample_iter = int(1. * len(num_images) / self.sample_grid) + + if self.max_test_sample is not None: + if self.max_test_sample < sample_iter: + sample_iter = self.max_test_sample + + with tf.Session(config=self.config) as sess: + + # load trained parameters + print ('loading test model...') + saver = tf.train.Saver() + saver.restore(sess, self.test_model_path) + + _, model_name = os.path.split(self.test_model_path) + + # if self.new_test_data is False: + # # create loss ops + # self.create_loss_ops() + # + # all_test_pred_landmarks = self.predict_landmarks_in_batches(test_data_paths, session=sess) + # _, all_test_real_landmarks = load_data(None, test_landmarks_paths, self.image_size, + # self.num_landmarks, conv=True) + # all_test_loss = sess.run(self.l2_loss_test, {self.pred_landmarks_eval: all_test_pred_landmarks, + # self.test_landmarks: all_test_real_landmarks}) + # with open(os.path.join(self.save_log_path, model_name+'-test_loss.txt'), 'w') as f: + # f.write(str(all_test_loss)) + + for i in range(sample_iter): + + batch_inds = img_inds[i * self.sample_grid:(i + 1) * self.sample_grid] + + batch_images, _, _, _ = \ + load_data(self.img_menpo_list, batch_inds, image_size=self.image_size, c_dim=self.c_dim, + num_landmarks=self.num_landmarks, sigma=self.sigma, scale=self.scale, + save_landmarks=False) + + batch_maps_pred, batch_maps_small_pred = sess.run([self.pred_hm_f, self.pred_hm_p], + {self.test_images: batch_images}) + + sample_path_imgs = os.path.join(self.save_sample_path, model_name + '-sample-%d-to-%d-1.png' % ( + i * self.sample_grid, (i + 1) * self.sample_grid)) + + sample_path_maps = os.path.join(self.save_sample_path, model_name + '-sample-%d-to-%d-2.png' % ( + i * self.sample_grid, (i + 1) * self.sample_grid)) + + merged_img = merge_images_landmarks_maps( + batch_images, batch_maps_pred, image_size=self.image_size, + num_landmarks=self.num_landmarks, num_samples=self.sample_grid, scale=self.scale) + + merged_map = merge_compare_maps( + batch_maps_small_pred, batch_maps_pred, image_size=self.image_size/4, + num_landmarks=self.num_landmarks, num_samples=self.sample_grid) + + scipy.misc.imsave(sample_path_imgs, merged_img) + scipy.misc.imsave(sample_path_maps, merged_map) + + print ('saved %s' % sample_path_imgs) + + def train(self): + tf.set_random_seed(1234) + # build a graph + # add placeholders + self.add_placeholders() + # build model + self.build_model() + # create loss ops + self.create_loss_ops() + # create summary ops + self.create_summary_ops() + + # create optimizer and training op + global_step = tf.Variable(0, trainable=False) + lr = tf.train.exponential_decay(self.learning_rate,global_step, self.step, self.gamma, staircase=True) + optimizer = tf.train.MomentumOptimizer(lr,self.momentum) + + train_op = optimizer.minimize(self.total_loss,global_step=global_step) + + with tf.Session(config=self.config) as sess: + + tf.global_variables_initializer().run() + + # create model saver and file writer + summary_writer = tf.summary.FileWriter(logdir=self.save_log_path, graph=tf.get_default_graph()) + saver = tf.train.Saver() + + print + print('*** Start Training ***') + + # set random seed + epoch = 0 + print_epoch=True + + num_train_images = len(self.img_menpo_list) + num_train_images=10 + img_inds = np.arange(num_train_images) + np.random.shuffle(img_inds) + + for step in range(self.train_iter + 1): + + # get batch images + j = step % int(float(num_train_images) / float(self.batch_size)) + + if step > 0 and j == 0: + np.random.shuffle(img_inds) # shuffle data if finished epoch + epoch += 1 + print_epoch=True + + batch_inds = img_inds[j * self.batch_size:(j + 1) * self.batch_size] + + batch_images, batch_maps, batch_maps_small, _ =\ + load_data(self.img_menpo_list, batch_inds, image_size=self.image_size, c_dim=self.c_dim, + num_landmarks=self.num_landmarks, sigma=self.sigma, scale=self.scale, save_landmarks=False) + + feed_dict_train = {self.train_images: batch_images, self.train_heatmaps: batch_maps, + self.train_heatmaps_small: batch_maps_small} + + sess.run(train_op, feed_dict_train) + + # print loss every *log_every_epoch* epoch + # if step == 0 or (step+1) == self.train_iter or (epoch % self.log_every_epoch ==0 and print_epoch): + # if self.sample_every_epoch is not True: + # print_epoch=False + # all_train_pred_landmarks=self.predict_landmarks_in_batches(train_data_paths,session=sess) + # _,all_train_real_landmarks = load_data(None,train_landmarks_paths,self.image_size, + # self.num_landmarks, conv=True) + # all_train_loss = sess.run(self.l2_loss_train,{self.pred_landmarks_train:all_train_pred_landmarks, + # self.train_landmarks:all_train_real_landmarks}) + # + # all_valid_pred_landmarks = self.predict_landmarks_in_batches(valid_data_paths,session=sess) + # _, all_valid_real_landmarks = load_data(None, valid_landmarks_paths, self.image_size, + # self.num_landmarks, conv=True) + # all_valid_loss = sess.run(self.l2_loss_valid, {self.pred_landmarks_valid: all_valid_pred_landmarks, + # self.valid_landmarks: all_valid_real_landmarks}) + # print("--------- EPOCH %d ---------" % (epoch)) + # print ('step: [%d/%d] train loss: [%.6f] valid loss: [%.6f]' + # % (step + 1, self.train_iter, all_train_loss, all_valid_loss)) + # print("----------------------------") + # summary= sess.run(self.epoch_summary_op,{self.l2_loss_valid:all_valid_loss,self.l2_loss_train:all_train_loss}) + # summary_writer.add_summary(summary, epoch) + + # save to log and print status + if step == 0 or (step + 1) % self.print_every == 0: + + summary, l_p, l_f, l_t = sess.run( + [self.batch_summary_op, self.l2_primary,self.l2_fusion,self.total_loss], + feed_dict_train) + + summary_writer.add_summary(summary, step) + + print ('epoch: [%d] step: [%d/%d] primary loss: [%.6f] fusion loss: [%.6f] total loss: [%.6f]' + % (epoch, step + 1, self.train_iter, l_p, l_f, l_t)) + + # save model + if (step + 1) % self.save_every == 0: + saver.save(sess, os.path.join(self.save_model_path, 'deep_heatmaps'), global_step=step + 1) + print ('model/deep-heatmaps-%d saved' % (step + 1)) + + # save images with landmarks + if self.sample_every_epoch and (epoch % self.log_every_epoch ==0 and print_epoch): + print_epoch = False + + # train_pred = sess.run(self.pred_landmarks_eval, {self.test_images: batch_images}) + # valid_pred = sess.run(self.pred_landmarks_eval, {self.test_images: valid_images_sample}) + # + # train_sample_path = os.path.join(self.save_sample_path, 'train-epoch-%d.png' % (epoch)) + # valid_sample_path = os.path.join(self.save_sample_path, 'valid-epoch-%d.png' % (epoch)) + # + # merge_images_train = merge_images_with_landmarks(batch_images, train_pred, self.image_size, + # self.num_landmarks, self.sample_grid) + # merge_images_valid = merge_images_with_landmarks(valid_images_sample, valid_pred, + # self.image_size, self.num_landmarks, + # self.sample_grid) + # + # scipy.misc.imsave(train_sample_path, merge_images_train) + # scipy.misc.imsave(valid_sample_path, merge_images_valid) + + elif (self.sample_every_epoch is False) and (step == 0 or (step + 1) % self.sample_every == 0): + + batch_maps_pred, batch_maps_small_pred = sess.run([self.pred_hm_f, self.pred_hm_p], + {self.train_images: batch_images}) + + print 'map vals', batch_maps_pred.min(), batch_maps_pred.max() + print 'small map vals', batch_maps_small_pred.min(), batch_maps_small_pred.max() + + sample_path_imgs = os.path.join(self.save_sample_path,'epoch-%d-train-iter-%d-1.png' % (epoch, step + 1)) + sample_path_maps = os.path.join(self.save_sample_path,'epoch-%d-train-iter-%d-2.png' % (epoch, step + 1)) + + merged_img = merge_images_landmarks_maps( + batch_images, batch_maps_pred, image_size=self.image_size, + num_landmarks=self.num_landmarks, num_samples=self.sample_grid, scale=self.scale) + + merged_map = merge_compare_maps( + batch_maps_small_pred, batch_maps_pred, image_size=self.image_size/4, + num_landmarks=self.num_landmarks, num_samples=self.sample_grid) + + scipy.misc.imsave(sample_path_imgs, merged_img) + scipy.misc.imsave(sample_path_maps, merged_map) + + print('*** Finished Training ***') + # evaluate model on test set + # all_test_pred_landmarks = self.predict_landmarks_in_batches(test_data_paths,session=sess) + # _, all_test_real_landmarks = load_data(None, test_landmarks_paths, self.image_size, + # self.num_landmarks, conv=True) + # all_test_loss = sess.run(self.l2_loss_test, {self.pred_landmarks_test: all_test_pred_landmarks, + # self.test_landmarks: all_test_real_landmarks}) + # + # print ('step: [%d/%d] test loss: [%.6f]' % (step, self.train_iter, all_test_loss)) diff --git a/MakeItTalk/thirdparty/face_of_art/old/deep_heatmaps_model_primary.py b/MakeItTalk/thirdparty/face_of_art/old/deep_heatmaps_model_primary.py new file mode 100644 index 0000000000000000000000000000000000000000..f2526ad0e985d0c53d15c1517061d6aa104cbec1 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/deep_heatmaps_model_primary.py @@ -0,0 +1,392 @@ +import scipy.io +import scipy.misc +from glob import glob +import os +import numpy as np +from image_utils import * +from ops import * +from sklearn.model_selection import train_test_split +import tensorflow as tf +from tensorflow import contrib + + +class DeepHeatmapsModel(object): + + """facial landmark localization Network""" + + def __init__(self, mode='TRAIN', train_iter=500000, learning_rate=1e-8, image_size=256, c_dim=3, batch_size=10, + num_landmarks=68, augment=True, img_path='data', save_log_path='logs', save_sample_path='sample', + save_model_path='model',test_model_path='model/deep_heatmaps_primary-1000'): + + self.mode = mode + self.train_iter=train_iter + self.learning_rate=learning_rate + + self.image_size = image_size + self.c_dim = c_dim + self.batch_size = batch_size + + self.num_landmarks = num_landmarks + + self.save_log_path=save_log_path + self.save_sample_path=save_sample_path + self.save_model_path=save_model_path + self.test_model_path=test_model_path + self.img_path=img_path + + self.momentum = 0.95 + self.step = 80000 # for lr decay + self.gamma = 0.1 # for lr decay + + self.weight_initializer = 'xavier' # random_normal or xavier + self.weight_initializer_std = 0.01 + self.bias_initializer = 0.0 + + self.sigma = 1.5 # sigma for heatmap generation + self.scale = '1' # scale for image normalization '255' / '1' / '0' + + self.print_every=1 + self.save_every=5000 + self.sample_every_epoch = False + self.sample_every=5 + self.sample_grid=9 + self.log_every_epoch=1 + self.log_histograms = True + + self.config = tf.ConfigProto() + self.config.gpu_options.allow_growth = True + + bb_dir = os.path.join(img_path,'Bounding_Boxes') + self.test_data ='test' # if mode is TEST, this choose the set to use full/common/challenging/test + margin = 0.25 # for face crops + bb_type = 'gt' # gt/init + + self.debug = False + self.debug_data_size = 20 + self.compute_nme = True + + self.bb_dictionary = load_bb_dictionary(bb_dir, mode, test_data=self.test_data) + + self.img_menpo_list = load_menpo_image_list(img_path, mode, self.bb_dictionary, image_size, augment=augment, + margin=margin, bb_type=bb_type, test_data=self.test_data) + + if mode is 'TRAIN': + train_params = locals() + print_training_params_to_file(train_params) + + def add_placeholders(self): + + if self.mode == 'TEST': + self.test_images = tf.placeholder( + tf.float32, [None, self.image_size, self.image_size, self.c_dim], 'images') + + self.test_heatmaps_small = tf.placeholder( + tf.float32, [None, self.image_size/4, self.image_size/4, self.num_landmarks], 'heatmaps_small') + + elif self.mode == 'TRAIN': + self.train_images = tf.placeholder( + tf.float32, [None, self.image_size, self.image_size, self.c_dim], 'train_images') + + self.train_heatmaps_small = tf.placeholder( + tf.float32, [None, self.image_size/4, self.image_size/4, self.num_landmarks], 'train_heatmaps_small') + + if self.compute_nme: + self.train_lms_small = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'train_lms_small') + self.pred_lms_small = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'pred_lms_small') + + + def heatmaps_network(self, input_images, reuse=None, name='pred_heatmaps'): + + with tf.name_scope(name): + + if self.weight_initializer == 'xavier': + weight_initializer = contrib.layers.xavier_initializer() + else: + weight_initializer = tf.random_normal_initializer(stddev=self.weight_initializer_std) + + bias_init = tf.constant_initializer(self.bias_initializer) + + with tf.variable_scope('heatmaps_network'): + with tf.name_scope('primary_net'): + + l1 = conv_relu_pool(input_images, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init, + reuse=reuse, var_scope='conv_1') + l2 = conv_relu_pool(l1, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init, + reuse=reuse, var_scope='conv_2') + l3 = conv_relu(l2, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init, + reuse=reuse, var_scope='conv_3') + + l4_1 = conv_relu(l3, 3, 128, conv_dilation=1, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_1') + l4_2 = conv_relu(l3, 3, 128, conv_dilation=2, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_2') + l4_3 = conv_relu(l3, 3, 128, conv_dilation=3, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_3') + l4_4 = conv_relu(l3, 3, 128, conv_dilation=4, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_4') + + l4 = tf.concat([l4_1, l4_2, l4_3, l4_4], 3, name='conv_4') + + l5_1 = conv_relu(l4, 3, 256, conv_dilation=1, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_1') + l5_2 = conv_relu(l4, 3, 256, conv_dilation=2, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_2') + l5_3 = conv_relu(l4, 3, 256, conv_dilation=3, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_3') + l5_4 = conv_relu(l4, 3, 256, conv_dilation=4, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_4') + + l5 = tf.concat([l5_1, l5_2, l5_3, l5_4], 3, name='conv_5') + + l6 = conv_relu(l5, 1, 512, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_6') + l7 = conv_relu(l6, 1, 256, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_7') + primary_out = conv(l7, 1, self.num_landmarks, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_8') + + self.all_layers = [l1, l2, l3, l4, l5, l6, l7, primary_out] + + return primary_out + + def build_model(self): + if self.mode == 'TEST': + self.pred_hm_p = self.heatmaps_network(self.test_images) + elif self.mode == 'TRAIN': + self.pred_hm_p = self.heatmaps_network(self.train_images,name='pred_heatmaps_train') + + def create_loss_ops(self): + + def l2_loss_norm_eyes(pred_landmarks, real_landmarks, normalize=True, name='NME_loss'): + + with tf.name_scope(name): + with tf.name_scope('real_pred_landmarks_diff'): + landmarks_diff = pred_landmarks - real_landmarks + + if normalize: + with tf.name_scope('inter_pupil_dist'): + with tf.name_scope('left_eye'): + p1 = tf.reduce_mean(tf.slice(real_landmarks, [0, 42, 0], [-1, 6, 2]), axis=1) + with tf.name_scope('right_eye'): + p2 = tf.reduce_mean(tf.slice(real_landmarks, [0, 36, 0], [-1, 6, 2]), axis=1) + eps = 1e-6 + eye_dist = tf.expand_dims(tf.expand_dims( + tf.sqrt(tf.reduce_sum(tf.square(p1 - p2), axis=1)) + eps, axis=1), axis=1) + + norm_landmarks_diff = landmarks_diff / eye_dist + l2_landmarks_norm = tf.reduce_mean(tf.square(norm_landmarks_diff)) + + out = l2_landmarks_norm + else: + l2_landmarks = tf.reduce_mean(tf.square(landmarks_diff)) + out = l2_landmarks + + return out + + if self.mode is 'TRAIN': + primary_maps_diff = self.pred_hm_p-self.train_heatmaps_small + self.total_loss = 1000.*tf.reduce_mean(tf.square(primary_maps_diff)) + # self.total_loss = self.l2_primary + + if self.compute_nme: + self.nme_loss = l2_loss_norm_eyes(self.pred_lms_small,self.train_lms_small) + else: + self.nme_loss = tf.constant(0.) + + def create_summary_ops(self): + + var_summary = [tf.summary.histogram(var.name,var) for var in tf.trainable_variables()] + grads = tf.gradients(self.total_loss, tf.trainable_variables()) + grads = list(zip(grads, tf.trainable_variables())) + grad_summary = [tf.summary.histogram(var.name+'/grads',grad) for grad,var in grads] + activ_summary = [tf.summary.histogram(layer.name, layer) for layer in self.all_layers] + l_total = tf.summary.scalar('l_total', self.total_loss) + l_nme = tf.summary.scalar('l_nme', self.nme_loss) + + if self.log_histograms: + self.batch_summary_op = tf.summary.merge([l_total, l_nme, var_summary, grad_summary, + activ_summary]) + else: + self.batch_summary_op = tf.summary.merge([l_total, l_nme]) + + def eval(self): + + self.add_placeholders() + # build model + self.build_model() + + num_images = len(self.img_menpo_list) + img_inds = np.arange(num_images) + + sample_iter = int(1. * num_images / self.sample_grid) + + with tf.Session(config=self.config) as sess: + + # load trained parameters + print ('loading test model...') + saver = tf.train.Saver() + saver.restore(sess, self.test_model_path) + + _, model_name = os.path.split(self.test_model_path) + + for i in range(sample_iter): + + batch_inds = img_inds[i * self.sample_grid:(i + 1) * self.sample_grid] + + batch_images, _, batch_maps_gt, _ = \ + load_data(self.img_menpo_list, batch_inds, image_size=self.image_size, c_dim=self.c_dim, + num_landmarks=self.num_landmarks, sigma=self.sigma, scale=self.scale, + save_landmarks=False, primary=True) + + batch_maps_small_pred = sess.run(self.pred_hm_p, {self.test_images: batch_images}) + + sample_path_imgs = os.path.join(self.save_sample_path, model_name +'-'+ self.test_data+'-sample-%d-to-%d-1.png' % ( + i * self.sample_grid, (i + 1) * self.sample_grid)) + + sample_path_maps = os.path.join(self.save_sample_path, model_name +'-'+ self.test_data+ '-sample-%d-to-%d-2.png' % ( + i * self.sample_grid, (i + 1) * self.sample_grid)) + + sample_path_channels = os.path.join(self.save_sample_path, model_name +'-'+ self.test_data+ '-sample-%d-to-%d-3.png' % ( + i * self.sample_grid, (i + 1) * self.sample_grid)) + + merged_img = merge_images_landmarks_maps( + batch_images, batch_maps_small_pred, image_size=self.image_size, + num_landmarks=self.num_landmarks, num_samples=self.sample_grid, + scale=self.scale,circle_size=0) + + merged_map = merge_compare_maps( + batch_maps_gt, batch_maps_small_pred,image_size=self.image_size/4, + num_landmarks=self.num_landmarks, num_samples=self.sample_grid) + + map_per_channel = map_comapre_channels( + batch_images, batch_maps_small_pred,batch_maps_gt, image_size=self.image_size / 4, + num_landmarks=self.num_landmarks, scale=self.scale) + + scipy.misc.imsave(sample_path_imgs, merged_img) + scipy.misc.imsave(sample_path_maps, merged_map) + scipy.misc.imsave(sample_path_channels, map_per_channel) + + print ('saved %s' % sample_path_imgs) + + def train(self): + tf.set_random_seed(1234) + np.random.seed(1234) + # build a graph + # add placeholders + self.add_placeholders() + # build model + self.build_model() + # create loss ops + self.create_loss_ops() + # create summary ops + self.create_summary_ops() + + # create optimizer and training op + global_step = tf.Variable(0, trainable=False) + lr = tf.train.exponential_decay(self.learning_rate,global_step, self.step, self.gamma, staircase=True) + optimizer = tf.train.MomentumOptimizer(lr,self.momentum) + + train_op = optimizer.minimize(self.total_loss,global_step=global_step) + + with tf.Session(config=self.config) as sess: + + tf.global_variables_initializer().run() + + # create model saver and file writer + summary_writer = tf.summary.FileWriter(logdir=self.save_log_path, graph=tf.get_default_graph()) + saver = tf.train.Saver() + + print + print('*** Start Training ***') + + # set random seed + epoch = 0 + + num_train_images = len(self.img_menpo_list) + if self.debug: + num_train_images=self.debug_data_size + + img_inds = np.arange(num_train_images) + np.random.shuffle(img_inds) + + for step in range(self.train_iter + 1): + + # get batch images + j = step % int(float(num_train_images) / float(self.batch_size)) + + if step > 0 and j == 0: + np.random.shuffle(img_inds) # shuffle data if finished epoch + epoch += 1 + + batch_inds = img_inds[j * self.batch_size:(j + 1) * self.batch_size] + + batch_images, _, batch_maps_small, batch_lms_small =\ + load_data(self.img_menpo_list, batch_inds, image_size=self.image_size, c_dim=self.c_dim, + num_landmarks=self.num_landmarks, sigma=self.sigma, scale=self.scale, + save_landmarks=self.compute_nme, primary=True) + + feed_dict_train = {self.train_images: batch_images, self.train_heatmaps_small: batch_maps_small} + + sess.run(train_op, feed_dict_train) + + # save to log and print status + if step == 0 or (step + 1) % self.print_every == 0: + + if self.compute_nme: + batch_maps_small_pred = sess.run(self.pred_hm_p, {self.train_images: batch_images}) + pred_lms_small = batch_heat_maps_to_image( + batch_maps_small_pred, self.batch_size, image_size=self.image_size/4, + num_landmarks=self.num_landmarks) + + feed_dict_log = { + self.train_images: batch_images, self.train_heatmaps_small: batch_maps_small, + self.train_lms_small: batch_lms_small, self.pred_lms_small: pred_lms_small} + else: + feed_dict_log = feed_dict_train + + summary, l_t,l_nme = sess.run([self.batch_summary_op, self.total_loss, self.nme_loss], + feed_dict_log) + + summary_writer.add_summary(summary, step) + + print ('epoch: [%d] step: [%d/%d] primary loss: [%.6f] nme loss: [%.6f] ' % ( + epoch, step + 1, self.train_iter, l_t, l_nme)) + + # save model + if (step + 1) % self.save_every == 0: + saver.save(sess, os.path.join(self.save_model_path, 'deep_heatmaps'), global_step=step + 1) + print ('model/deep-heatmaps-%d saved' % (step + 1)) + + # save images with landmarks + if (self.sample_every_epoch is False) and (step == 0 or (step + 1) % self.sample_every == 0): + + if not self.compute_nme: + batch_maps_small_pred = sess.run(self.pred_hm_p, {self.train_images: batch_images}) + + print 'small map vals', batch_maps_small_pred.min(), batch_maps_small_pred.max() + + sample_path_imgs = os.path.join(self.save_sample_path,'epoch-%d-train-iter-%d-1.png' + % (epoch, step + 1)) + sample_path_maps = os.path.join(self.save_sample_path,'epoch-%d-train-iter-%d-2.png' + % (epoch, step + 1)) + sample_path_ch_maps = os.path.join(self.save_sample_path, 'epoch-%d-train-iter-%d-3.png' + % (epoch, step + 1)) + + merged_img = merge_images_landmarks_maps( + batch_images, batch_maps_small_pred, image_size=self.image_size, + num_landmarks=self.num_landmarks, num_samples=self.sample_grid, scale=self.scale, + circle_size=0) + + merged_map = merge_compare_maps( + batch_maps_small_pred, batch_maps_small, image_size=self.image_size/4, + num_landmarks=self.num_landmarks, num_samples=self.sample_grid) + + map_per_channel = map_comapre_channels(batch_images, batch_maps_small_pred, batch_maps_small, + image_size=self.image_size/4, + num_landmarks=self.num_landmarks,scale=self.scale) + + scipy.misc.imsave(sample_path_imgs, merged_img) + scipy.misc.imsave(sample_path_maps, merged_map) + scipy.misc.imsave(sample_path_ch_maps, map_per_channel) + + print('*** Finished Training ***') \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/old/eval_scripts/evaluate_and_compare_multiple_models.py b/MakeItTalk/thirdparty/face_of_art/old/eval_scripts/evaluate_and_compare_multiple_models.py new file mode 100644 index 0000000000000000000000000000000000000000..daf14528573d01919dfd9905af0bbbccf796504d --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/eval_scripts/evaluate_and_compare_multiple_models.py @@ -0,0 +1,82 @@ +from evaluation_functions import * +from glob import glob + +flags = tf.app.flags + +data_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/' +models_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/ect_like/saved_models/test' + +# define paths +flags.DEFINE_string('img_dir', data_dir, 'data directory') +flags.DEFINE_string('test_data', 'test', 'test set to use full/common/challenging/test/art') +flags.DEFINE_string('models_dir', models_dir, 'directory containing multiple models to evaluate and compare') + +# parameters used to train network +flags.DEFINE_integer('image_size', 256, 'image size') +flags.DEFINE_integer('c_dim', 3, 'color channels') +flags.DEFINE_integer('num_landmarks', 68, 'number of face landmarks') +flags.DEFINE_integer('scale', 1, 'scale for image normalization 255/1/0') +flags.DEFINE_float('margin', 0.25, 'margin for face crops - % of bb size') +flags.DEFINE_string('bb_type', 'gt', "bb to use - 'gt':for ground truth / 'init':for face detector output") + +# choose batch size and debug data size +flags.DEFINE_integer('batch_size', 10, 'batch size') +flags.DEFINE_bool('debug', True, 'run in debug mode - use subset of the data') +flags.DEFINE_integer('debug_data_size', 50, 'subset data size to test in debug mode') + +# statistics parameters +flags.DEFINE_float('max_error', 0.08, 'error threshold to be considered as failure') +flags.DEFINE_bool('save_log', True, 'save statistics to log_dir') +flags.DEFINE_string('log_path', 'logs/nme_statistics', 'direcotory for saving NME statistics') + +FLAGS = flags.FLAGS + + +def main(_): + + # create directories if not exist + if not tf.gfile.Exists(FLAGS.log_path): + tf.gfile.MakeDirs(FLAGS.log_path) + + test_model_dirs = glob(os.path.join(FLAGS.models_dir, '*/')) + + model_names = [] + model_errors = [] + + for i, model_dir in enumerate(test_model_dirs): + + model_name = model_dir.split('/')[-2] + + if 'primary' in model_name.lower(): + net_type = 'Primary' + elif 'fusion' in model_name.lower(): + net_type = 'Fusion' + else: + sys.exit('\n*** Error: please give informative names for model directories, including network type! ***') + + model_path = glob(os.path.join(model_dir, '*meta'))[0].split('.meta')[0] + + print ('\n##### EVALUATING MODELS (%d/%d) #####' % (i+1,len(test_model_dirs))) + + tf.reset_default_graph() # reset graph + + err = evaluate_heatmap_network( + model_path=model_path, network_type=net_type, img_path=FLAGS.img_dir, test_data=FLAGS.test_data, + batch_size=FLAGS.batch_size, image_size=FLAGS.image_size, margin=FLAGS.margin, + bb_type=FLAGS.bb_type, c_dim=FLAGS.c_dim, scale=FLAGS.scale, num_landmarks=FLAGS.num_landmarks, + debug=FLAGS.debug, debug_data_size=FLAGS.debug_data_size) + + print_nme_statistics( + errors=err, model_path=model_path, network_type=net_type, test_data=FLAGS.test_data, + max_error=FLAGS.max_error, save_log=False, log_path=FLAGS.log_path,plot_ced=False) + + model_names.append(model_name) + model_errors.append(err) + + print_ced_compare_methods( + method_errors=tuple(model_errors),method_names=tuple(model_names), test_data=FLAGS.test_data, + log_path=FLAGS.log_path, save_log=FLAGS.save_log) + + +if __name__ == '__main__': + tf.app.run() diff --git a/MakeItTalk/thirdparty/face_of_art/old/eval_scripts/evaluate_model.py b/MakeItTalk/thirdparty/face_of_art/old/eval_scripts/evaluate_model.py new file mode 100644 index 0000000000000000000000000000000000000000..a2159e0d2f2bbbd237f8b401053064de6db7a50c --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/eval_scripts/evaluate_model.py @@ -0,0 +1,54 @@ +from evaluation_functions import * + +flags = tf.app.flags + +data_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/' +model_path = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/tests/primary/old/no_flip/basic/' \ + 'tests_lr_primary_basic_no_flip/0.01/model/deep_heatmaps-80000' + +# define paths +flags.DEFINE_string('img_dir', data_dir, 'data directory') +flags.DEFINE_string('test_data', 'test', 'test set to use full/common/challenging/test/art') +flags.DEFINE_string('model_path', model_path, 'model path') + +# parameters used to train network +flags.DEFINE_string('network_type', 'Primary', 'network architecture Fusion/Primary') +flags.DEFINE_integer('image_size', 256, 'image size') +flags.DEFINE_integer('c_dim', 3, 'color channels') +flags.DEFINE_integer('num_landmarks', 68, 'number of face landmarks') +flags.DEFINE_integer('scale', 1, 'scale for image normalization 255/1/0') +flags.DEFINE_float('margin', 0.25, 'margin for face crops - % of bb size') +flags.DEFINE_string('bb_type', 'gt', "bb to use - 'gt':for ground truth / 'init':for face detector output") + +# choose batch size and debug data size +flags.DEFINE_integer('batch_size', 2, 'batch size') +flags.DEFINE_bool('debug', True, 'run in debug mode - use subset of the data') +flags.DEFINE_integer('debug_data_size', 4, 'subset data size to test in debug mode') + +# statistics parameters +flags.DEFINE_float('max_error', 0.08, 'error threshold to be considered as failure') +flags.DEFINE_bool('save_log', True, 'save statistics to log_dir') +flags.DEFINE_string('log_path', 'logs/nme_statistics', 'directory for saving NME statistics') + +FLAGS = flags.FLAGS + + +def main(_): + + # create directories if not exist + if not tf.gfile.Exists(FLAGS.log_path): + tf.gfile.MakeDirs(FLAGS.log_path) + + err = evaluate_heatmap_network( + model_path=FLAGS.model_path, network_type=FLAGS.network_type, img_path=FLAGS.img_dir, + test_data=FLAGS.test_data, batch_size=FLAGS.batch_size, image_size=FLAGS.image_size, margin=FLAGS.margin, + bb_type=FLAGS.bb_type, c_dim=FLAGS.c_dim, scale=FLAGS.scale, num_landmarks=FLAGS.num_landmarks, + debug=FLAGS.debug, debug_data_size=FLAGS.debug_data_size) + + print_nme_statistics( + errors=err, model_path=FLAGS.model_path, network_type=FLAGS.network_type, test_data=FLAGS.test_data, + max_error=FLAGS.max_error, save_log=FLAGS.save_log, log_path=FLAGS.log_path) + + +if __name__ == '__main__': + tf.app.run() diff --git a/MakeItTalk/thirdparty/face_of_art/old/eval_scripts/evaluate_models.py b/MakeItTalk/thirdparty/face_of_art/old/eval_scripts/evaluate_models.py new file mode 100644 index 0000000000000000000000000000000000000000..b30a333fbf2132dd7cc25e745f07526f044a4e22 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/eval_scripts/evaluate_models.py @@ -0,0 +1,79 @@ +from evaluation_functions import * +from glob import glob + +flags = tf.app.flags + +data_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/' +models_dir = 'tests_fusion' +pre_train_model_name = 'deep_heatmaps-50000' +datasets=['full','common','challenging','test'] + +# define paths +flags.DEFINE_string('img_dir', data_dir, 'data directory') +flags.DEFINE_string('models_dir', models_dir, 'directory containing multiple models to evaluate') +flags.DEFINE_string('model_name', pre_train_model_name, "model name. e.g: 'deep_heatmaps-50000'") + + +# parameters used to train network +flags.DEFINE_string('network_type', 'Primary', 'network architecture Fusion/Primary') +flags.DEFINE_integer('image_size', 256, 'image size') +flags.DEFINE_integer('c_dim', 3, 'color channels') +flags.DEFINE_integer('num_landmarks', 68, 'number of face landmarks') +flags.DEFINE_integer('scale', 1, 'scale for image normalization 255/1/0') +flags.DEFINE_float('margin', 0.25, 'margin for face crops - % of bb size') +flags.DEFINE_string('bb_type', 'gt', "bb to use - 'gt':for ground truth / 'init':for face detector output") + +# choose batch size and debug data size +flags.DEFINE_integer('batch_size', 2, 'batch size') +flags.DEFINE_bool('debug', False, 'run in debug mode - use subset of the data') +flags.DEFINE_integer('debug_data_size', 4, 'subset data size to test in debug mode') + +# statistics parameters +flags.DEFINE_float('max_error', 0.08, 'error threshold to be considered as failure') +flags.DEFINE_bool('save_log', True, 'save statistics to log_dir') +flags.DEFINE_string('log_path', 'logs/nme_statistics', 'directory for saving NME statistics') + +FLAGS = flags.FLAGS + + +def main(_): + model_dirs = glob(os.path.join(FLAGS.models_dir,'*/')) + + for test_data in datasets: + model_errors=[] + model_names=[] + + for i, model_dir in enumerate(model_dirs): + print ('\n##### EVALUATING MODELS ON '+test_data+' set (%d/%d) #####' % (i + 1, len(model_dirs))) + # create directories if not exist + log_path = os.path.join(model_dir,'logs/nme_statistics') + if not os.path.exists(os.path.join(model_dir,'logs')): + os.mkdir(os.path.join(model_dir,'logs')) + if not os.path.exists(log_path): + os.mkdir(log_path) + + model_name = model_dir.split('/')[-2] + + tf.reset_default_graph() # reset graph + + err = evaluate_heatmap_network( + model_path=os.path.join(model_dir,'model',FLAGS.model_name), network_type=FLAGS.network_type, + img_path=FLAGS.img_dir, test_data=test_data, batch_size=FLAGS.batch_size, image_size=FLAGS.image_size, + margin=FLAGS.margin, bb_type=FLAGS.bb_type, c_dim=FLAGS.c_dim, scale=FLAGS.scale, + num_landmarks=FLAGS.num_landmarks, debug=FLAGS.debug, debug_data_size=FLAGS.debug_data_size) + + print_nme_statistics( + errors=err, model_path=os.path.join(model_dir,'model', FLAGS.model_name), + network_type=FLAGS.network_type, test_data=test_data, max_error=FLAGS.max_error, + save_log=FLAGS.save_log, log_path=log_path, plot_ced=False) + + model_names.append(model_name) + model_errors.append(err) + + print_ced_compare_methods( + method_errors=tuple(model_errors), method_names=tuple(model_names), test_data=test_data, + log_path=FLAGS.models_dir, save_log=FLAGS.save_log) + + +if __name__ == '__main__': + tf.app.run() diff --git a/MakeItTalk/thirdparty/face_of_art/old/eval_scripts/evaluation_functions.py b/MakeItTalk/thirdparty/face_of_art/old/eval_scripts/evaluation_functions.py new file mode 100644 index 0000000000000000000000000000000000000000..743efaed013ebb381bd98fe53bed0e263d0f7320 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/eval_scripts/evaluation_functions.py @@ -0,0 +1,300 @@ +import tensorflow as tf +from menpofit.visualize import plot_cumulative_error_distribution +from menpofit.error import compute_cumulative_error +from scipy.integrate import simps +from menpo_functions import load_menpo_image_list, load_bb_dictionary +from logging_functions import * +from data_loading_functions import * +from time import time +import sys +from PyQt5 import QtWidgets +qapp=QtWidgets.QApplication(['']) + + +def load_menpo_test_list(img_dir, test_data='full', image_size=256, margin=0.25, bb_type='gt'): + mode = 'TEST' + bb_dir = os.path.join(img_dir, 'Bounding_Boxes') + bb_dictionary = load_bb_dictionary(bb_dir, mode, test_data=test_data) + img_menpo_list = load_menpo_image_list( + img_dir=img_dir, train_crop_dir=None, img_dir_ns=None, mode=mode, bb_dictionary=bb_dictionary, + image_size=image_size, margin=margin, + bb_type=bb_type, test_data=test_data, augment_basic=False, augment_texture=False, p_texture=0, + augment_geom=False, p_geom=0) + return img_menpo_list + + +def evaluate_heatmap_fusion_network(model_path, img_path, test_data, batch_size=10, image_size=256, margin=0.25, + bb_type='gt', c_dim=3, scale=1, num_landmarks=68, debug=False, + debug_data_size=20): + t = time() + from deep_heatmaps_model_fusion_net import DeepHeatmapsModel + import logging + logging.getLogger('tensorflow').disabled = True + + # load test image menpo list + + test_menpo_img_list = load_menpo_test_list( + img_path, test_data=test_data, image_size=image_size, margin=margin, bb_type=bb_type) + + if debug: + test_menpo_img_list = test_menpo_img_list[:debug_data_size] + print ('\n*** FUSION NETWORK: calculating normalized mean error on: ' + test_data + + ' set (%d images - debug mode) ***' % debug_data_size) + else: + print ('\n*** FUSION NETWORK: calculating normalized mean error on: ' + test_data + ' set (%d images) ***' % + (len(test_menpo_img_list))) + + # create heatmap model + + tf.reset_default_graph() + + model = DeepHeatmapsModel(mode='TEST', batch_size=batch_size, image_size=image_size, c_dim=c_dim, + num_landmarks=num_landmarks, img_path=img_path, test_model_path=model_path, + test_data=test_data, menpo_verbose=False) + + # add placeholders + model.add_placeholders() + # build model + model.build_model() + # create loss ops + model.create_loss_ops() + + num_batches = int(1. * len(test_menpo_img_list) / batch_size) + if num_batches == 0: + batch_size = len(test_menpo_img_list) + num_batches = 1 + + reminder = len(test_menpo_img_list) - num_batches * batch_size + num_batches_reminder = num_batches + 1 * (reminder > 0) + img_inds = np.arange(len(test_menpo_img_list)) + + with tf.Session() as session: + + # load trained parameters + saver = tf.train.Saver() + saver.restore(session, model_path) + + print ('\nnum batches: ' + str(num_batches_reminder)) + + err = [] + for j in range(num_batches): + print ('batch %d / %d ...' % (j + 1, num_batches_reminder)) + batch_inds = img_inds[j * batch_size:(j + 1) * batch_size] + + batch_images, _, batch_landmarks_gt = load_images_landmarks( + test_menpo_img_list, batch_inds=batch_inds, image_size=image_size, + c_dim=c_dim, num_landmarks=num_landmarks, scale=scale) + + batch_maps_pred = session.run(model.pred_hm_f, {model.images: batch_images}) + + batch_pred_landmarks = batch_heat_maps_to_landmarks( + batch_maps_pred, batch_size=batch_size, image_size=image_size, num_landmarks=num_landmarks) + + batch_err = session.run( + model.nme_per_image, {model.lms: batch_landmarks_gt, model.pred_lms: batch_pred_landmarks}) + err = np.hstack((err, batch_err)) + + if reminder > 0: + print ('batch %d / %d ...' % (j + 2, num_batches_reminder)) + reminder_inds = img_inds[-reminder:] + + batch_images, _, batch_landmarks_gt = load_images_landmarks( + test_menpo_img_list, batch_inds=reminder_inds, image_size=image_size, + c_dim=c_dim, num_landmarks=num_landmarks, scale=scale) + + batch_maps_pred = session.run(model.pred_hm_f, {model.images: batch_images}) + + batch_pred_landmarks = batch_heat_maps_to_landmarks( + batch_maps_pred, batch_size=reminder, image_size=image_size, num_landmarks=num_landmarks) + + batch_err = session.run( + model.nme_per_image, {model.lms: batch_landmarks_gt, model.pred_lms: batch_pred_landmarks}) + err = np.hstack((err, batch_err)) + + print ('\ndone!') + print ('run time: ' + str(time() - t)) + + return err + + +def evaluate_heatmap_primary_network(model_path, img_path, test_data, batch_size=10, image_size=256, margin=0.25, + bb_type='gt', c_dim=3, scale=1, num_landmarks=68, debug=False, + debug_data_size=20): + t = time() + from deep_heatmaps_model_primary_net import DeepHeatmapsModel + import logging + logging.getLogger('tensorflow').disabled = True + + # load test image menpo list + + test_menpo_img_list = load_menpo_test_list( + img_path, test_data=test_data, image_size=image_size, margin=margin, bb_type=bb_type) + + if debug: + test_menpo_img_list = test_menpo_img_list[:debug_data_size] + print ('\n*** PRIMARY NETWORK: calculating normalized mean error on: ' + test_data + + ' set (%d images - debug mode) ***' % debug_data_size) + else: + print ('\n*** PRIMARY NETWORK: calculating normalized mean error on: ' + test_data + + ' set (%d images) ***' % (len(test_menpo_img_list))) + + # create heatmap model + + tf.reset_default_graph() + + model = DeepHeatmapsModel(mode='TEST', batch_size=batch_size, image_size=image_size, c_dim=c_dim, + num_landmarks=num_landmarks, img_path=img_path, test_model_path=model_path, + test_data=test_data, menpo_verbose=False) + + # add placeholders + model.add_placeholders() + # build model + model.build_model() + # create loss ops + model.create_loss_ops() + + num_batches = int(1. * len(test_menpo_img_list) / batch_size) + if num_batches == 0: + batch_size = len(test_menpo_img_list) + num_batches = 1 + + reminder = len(test_menpo_img_list) - num_batches * batch_size + num_batches_reminder = num_batches + 1 * (reminder > 0) + img_inds = np.arange(len(test_menpo_img_list)) + + with tf.Session() as session: + + # load trained parameters + saver = tf.train.Saver() + saver.restore(session, model_path) + + print ('\nnum batches: ' + str(num_batches_reminder)) + + err = [] + for j in range(num_batches): + print ('batch %d / %d ...' % (j + 1, num_batches_reminder)) + batch_inds = img_inds[j * batch_size:(j + 1) * batch_size] + + batch_images, _, batch_landmarks_gt = load_images_landmarks( + test_menpo_img_list, batch_inds=batch_inds, image_size=image_size, + c_dim=c_dim, num_landmarks=num_landmarks, scale=scale) + + batch_maps_small_pred = session.run(model.pred_hm_p, {model.images: batch_images}) + + batch_maps_small_pred = zoom(batch_maps_small_pred, zoom=[1, 4, 4, 1], order=1) # NN interpolation + + batch_pred_landmarks = batch_heat_maps_to_landmarks( + batch_maps_small_pred, batch_size=batch_size, image_size=image_size, + num_landmarks=num_landmarks) + + batch_err = session.run( + model.nme_per_image, {model.lms_small: batch_landmarks_gt, model.pred_lms_small: batch_pred_landmarks}) + err = np.hstack((err, batch_err)) + + if reminder > 0: + print ('batch %d / %d ...' % (j + 2, num_batches_reminder)) + reminder_inds = img_inds[-reminder:] + + batch_images, _, batch_landmarks_gt = load_images_landmarks( + test_menpo_img_list, batch_inds=reminder_inds, image_size=image_size, + c_dim=c_dim, num_landmarks=num_landmarks, scale=scale) + + batch_maps_small_pred = session.run(model.pred_hm_p, {model.images: batch_images}) + + batch_maps_small_pred = zoom(batch_maps_small_pred, zoom=[1, 4, 4, 1], order=1) # NN interpolation + + batch_pred_landmarks = batch_heat_maps_to_landmarks( + batch_maps_small_pred, batch_size=reminder, image_size=image_size, + num_landmarks=num_landmarks) + + batch_err = session.run( + model.nme_per_image, {model.lms_small: batch_landmarks_gt, model.pred_lms_small: batch_pred_landmarks}) + err = np.hstack((err, batch_err)) + + print ('\ndone!') + print ('run time: ' + str(time() - t)) + + return err + + +def evaluate_heatmap_network(model_path, network_type, img_path, test_data, batch_size=10, image_size=256, margin=0.25, + bb_type='gt', c_dim=3, scale=1, num_landmarks=68, debug=False, + debug_data_size=20): + + if network_type.lower() == 'fusion': + return evaluate_heatmap_fusion_network( + model_path=model_path, img_path=img_path, test_data=test_data, batch_size=batch_size, image_size=image_size, + margin=margin, bb_type=bb_type, c_dim=c_dim, scale=scale, num_landmarks=num_landmarks, debug=debug, + debug_data_size=debug_data_size) + elif network_type.lower() == 'primary': + return evaluate_heatmap_primary_network( + model_path=model_path, img_path=img_path, test_data=test_data, batch_size=batch_size, image_size=image_size, + margin=margin, bb_type=bb_type, c_dim=c_dim, scale=scale, num_landmarks=num_landmarks, debug=debug, + debug_data_size=debug_data_size) + else: + sys.exit('\n*** Error: please choose a valid network type: Fusion/Primary ***') + + +def AUC(errors, max_error, step_error=0.0001): + x_axis = list(np.arange(0., max_error + step_error, step_error)) + ced = np.array(compute_cumulative_error(errors, x_axis)) + return simps(ced, x=x_axis) / max_error, 1. - ced[-1] + + +def print_nme_statistics( + errors, model_path, network_type, test_data, max_error=0.08, log_path='', save_log=True, plot_ced=True, + norm='interocular distance'): + auc, failures = AUC(errors, max_error=max_error) + + print ("\n****** NME statistics for " + network_type + " Network ******\n") + print ("* model path: " + model_path) + print ("* dataset: " + test_data + ' set') + + print ("\n* Normalized mean error (percentage of "+norm+"): %.2f" % (100 * np.mean(errors))) + print ("\n* AUC @ %.2f: %.2f" % (max_error, 100 * auc)) + print ("\n* failure rate @ %.2f: %.2f" % (max_error, 100 * failures) + '%') + + if plot_ced: + plt.figure() + plt.yticks(np.linspace(0, 1, 11)) + plot_cumulative_error_distribution( + list(errors), + legend_entries=[network_type], + marker_style=['s'], + marker_size=7, + x_label='Normalised Point-to-Point Error\n('+norm+')\n*' + test_data + ' set*', + ) + + if save_log: + with open(os.path.join(log_path, network_type.lower() + "_nme_statistics_on_" + test_data + "_set.txt"), + "wb") as f: + f.write(b"************************************************") + f.write(("\n****** NME statistics for " + str(network_type) + " Network ******\n").encode()) + f.write(b"************************************************") + f.write(("\n\n* model path: " + str(model_path)).encode()) + f.write(("\n\n* dataset: " + str(test_data) + ' set').encode()) + f.write(b"\n\n* Normalized mean error (percentage of "+norm+"): %.2f" % (100 * np.mean(errors))) + f.write(b"\n\n* AUC @ %.2f: %.2f" % (max_error, 100 * auc)) + f.write(("\n\n* failure rate @ %.2f: %.2f" % (max_error, 100 * failures) + '%').encode()) + if plot_ced: + plt.savefig(os.path.join(log_path, network_type.lower() + '_nme_ced_on_' + test_data + '_set.png'), + bbox_inches='tight') + plt.close() + + print ('\nlog path: ' + log_path) + + +def print_ced_compare_methods( + method_errors,method_names,test_data,log_path='', save_log=True, norm='interocular distance'): + plt.yticks(np.linspace(0, 1, 11)) + plot_cumulative_error_distribution( + [list(err) for err in list(method_errors)], + legend_entries=list(method_names), + marker_style=['s'], + marker_size=7, + x_label='Normalised Point-to-Point Error\n('+norm+')\n*'+test_data+' set*' + ) + if save_log: + plt.savefig(os.path.join(log_path,'nme_ced_on_'+test_data+'_set.png'), bbox_inches='tight') + print ('ced plot path: ' + os.path.join(log_path,'nme_ced_on_'+test_data+'_set.png')) + plt.close() \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/old/image_utils.py b/MakeItTalk/thirdparty/face_of_art/old/image_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..d25913c271e1c9cfb91ef5b24eb4181313ec8c7d --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/image_utils.py @@ -0,0 +1,590 @@ +import numpy as np +import os +from scipy.io import loadmat +import cv2 +from menpo.shape.pointcloud import PointCloud +from menpo.transform import ThinPlateSplines +import menpo.io as mio +import matplotlib.pyplot as plt +from scipy.ndimage import zoom +from glob import glob +from deformation_functions import * + +'''********* bounding box and image loading functions *********''' + + +def center_margin_bb(bb, img_bounds, margin=0.25): + bb_size = ([bb[0, 2] - bb[0, 0], bb[0, 3] - bb[0, 1]]) + margins = (np.max(bb_size) * (1 + margin) - bb_size) / 2 + + bb_new = np.zeros_like(bb) + bb_new[0, 0] = np.maximum(bb[0, 0] - margins[0], 0) + bb_new[0, 2] = np.minimum(bb[0, 2] + margins[0], img_bounds[1]) + bb_new[0, 1] = np.maximum(bb[0, 1] - margins[1], 0) + bb_new[0, 3] = np.minimum(bb[0, 3] + margins[1], img_bounds[0]) + return bb_new + + +def load_bb_files(bb_file_dirs): + bb_files_dict = {} + for bb_file in bb_file_dirs: + bb_mat = loadmat(bb_file)['bounding_boxes'] + num_imgs = np.max(bb_mat.shape) + for i in range(num_imgs): + name = bb_mat[0][i][0][0][0][0] + bb_init = bb_mat[0][i][0][0][1] - 1 # matlab indicies + bb_gt = bb_mat[0][i][0][0][2] - 1 # matlab indicies + if str(name) in bb_files_dict.keys(): + print str(name), 'already loaded from: ', bb_file + bb_files_dict[str(name)] = (bb_init, bb_gt) + return bb_files_dict + + +def load_bb_dictionary(bb_dir, mode, test_data='full'): + if mode == 'TRAIN': + bb_dirs = \ + ['bounding_boxes_afw.mat', 'bounding_boxes_helen_trainset.mat', 'bounding_boxes_lfpw_trainset.mat'] + else: + if test_data == 'common': + bb_dirs = \ + ['bounding_boxes_helen_testset.mat', 'bounding_boxes_lfpw_testset.mat'] + elif test_data == 'challenging': + bb_dirs = ['bounding_boxes_ibug.mat'] + elif test_data == 'full': + bb_dirs = \ + ['bounding_boxes_ibug.mat', 'bounding_boxes_helen_testset.mat', 'bounding_boxes_lfpw_testset.mat'] + elif test_data == 'training': + bb_dirs = \ + ['bounding_boxes_afw.mat', 'bounding_boxes_helen_trainset.mat', 'bounding_boxes_lfpw_trainset.mat'] + else: + bb_dirs=None + + if mode == 'TEST' and test_data not in ['full', 'challenging', 'common', 'training']: + bb_files_dict = None + else: + bb_dirs = [os.path.join(bb_dir, dataset) for dataset in bb_dirs] + bb_files_dict = load_bb_files(bb_dirs) + + return bb_files_dict + + +def crop_to_face_image(img, bb_dictionary=None, gt=True, margin=0.25, image_size=256): + name = img.path.name + img_bounds = img.bounds()[1] + + if bb_dictionary is None: + bb_menpo = img.landmarks['PTS'].bounding_box().points + bb = np.array([[bb_menpo[0, 1], bb_menpo[0, 0], bb_menpo[2, 1], bb_menpo[2, 0]]]) + else: + if gt: + bb = bb_dictionary[name][1] # ground truth + else: + bb = bb_dictionary[name][0] # init from face detector + + bb = center_margin_bb(bb, img_bounds, margin=margin) + + bb_pointcloud = PointCloud(np.array([[bb[0, 1], bb[0, 0]], + [bb[0, 3], bb[0, 0]], + [bb[0, 3], bb[0, 2]], + [bb[0, 1], bb[0, 2]]])) + + face_crop = img.crop_to_pointcloud(bb_pointcloud).resize([image_size, image_size]) + + return face_crop + + +def augment_face_image(img, image_size=256, crop_size=248, angle_range=30, flip=True): + + # taken from MDM + jaw_indices = np.arange(0, 17) + lbrow_indices = np.arange(17, 22) + rbrow_indices = np.arange(22, 27) + upper_nose_indices = np.arange(27, 31) + lower_nose_indices = np.arange(31, 36) + leye_indices = np.arange(36, 42) + reye_indices = np.arange(42, 48) + outer_mouth_indices = np.arange(48, 60) + inner_mouth_indices = np.arange(60, 68) + + mirrored_parts_68 = np.hstack([ + jaw_indices[::-1], rbrow_indices[::-1], lbrow_indices[::-1], + upper_nose_indices, lower_nose_indices[::-1], + np.roll(reye_indices[::-1], 4), np.roll(leye_indices[::-1], 4), + np.roll(outer_mouth_indices[::-1], 7), + np.roll(inner_mouth_indices[::-1], 5) + ]) + + def mirror_landmarks_68(lms, im_size): + return PointCloud(abs(np.array([0, im_size[1]]) - lms.as_vector( + ).reshape(-1, 2))[mirrored_parts_68]) + + def mirror_image(im): + im = im.copy() + im.pixels = im.pixels[..., ::-1].copy() + + for group in im.landmarks: + lms = im.landmarks[group] + if lms.points.shape[0] == 68: + im.landmarks[group] = mirror_landmarks_68(lms, im.shape) + + return im + + lim = image_size - crop_size + min_crop_inds = np.random.randint(0, lim, 2) + max_crop_inds = min_crop_inds + crop_size + flip_rand = np.random.random() > 0.5 + rot_angle = 2 * angle_range * np.random.random_sample() - angle_range + + if flip and flip_rand: + rand_crop = img.crop(min_crop_inds, max_crop_inds) + rand_crop = mirror_image(rand_crop) + rand_crop = rand_crop.rotate_ccw_about_centre(rot_angle).resize([image_size, image_size]) + + else: + rand_crop = img.crop(min_crop_inds, max_crop_inds). \ + rotate_ccw_about_centre(rot_angle).resize([image_size, image_size]) + + return rand_crop + + +def load_menpo_image_list(img_dir, mode, bb_dictionary=None, image_size=256, margin=0.25, bb_type='gt', + test_data='full', augment=True): + def crop_to_face_image_gt(img, bb_dictionary=bb_dictionary, margin=margin, image_size=image_size): + return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size) + + def crop_to_face_image_init(img, bb_dictionary=bb_dictionary, margin=margin, image_size=image_size): + return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size) + + if mode is 'TRAIN': + img_set_dir = os.path.join(img_dir, 'training_set') + + else: + img_set_dir = os.path.join(img_dir, test_data + '_set') + + image_menpo_list = mio.import_images(img_set_dir, verbose=True) + + if bb_type is 'gt': + face_crop_image_list = image_menpo_list.map(crop_to_face_image_gt) + else: + face_crop_image_list = image_menpo_list.map(crop_to_face_image_init) + + if mode is 'TRAIN' and augment: + out_image_list = face_crop_image_list.map(augment_face_image) + else: + out_image_list = face_crop_image_list + + return out_image_list + + +def augment_menpo_img_ns(img, img_dir_ns, p_ns=0): + img = img.copy() + texture_aug = p_ns > 0.5 + if texture_aug: + ns_augs = glob(os.path.join(img_dir_ns, img.path.name.split('.')[0] + '*')) + num_augs = len(ns_augs) + if num_augs > 1: + ns_ind = np.random.randint(1, num_augs) + ns_aug = mio.import_image(ns_augs[ns_ind]) + ns_pixels = ns_aug.pixels + img.pixels = ns_pixels + return img + + +def augment_menpo_img_geom(img, p_geom=0): + img = img.copy() + if p_geom > 0.5: + lms_geom_warp=deform_face_geometric_style(img.landmarks['PTS'].points.copy(),p_scale=p_geom,p_shift=p_geom) + img = warp_face_image_tps(img,PointCloud(lms_geom_warp)) + return img + + +def warp_face_image_tps(img,new_shape): + tps = ThinPlateSplines(new_shape, img.landmarks['PTS']) + img_warp=img.warp_to_shape(img.shape,tps) + img_warp.landmarks['PTS']=new_shape + return img_warp + + +def load_menpo_image_list_artistic_aug( + img_dir, train_crop_dir, img_dir_ns, mode, bb_dictionary=None, image_size=256, margin=0.25, + bb_type='gt', test_data='full',augment_basic=True, augment_texture=False, p_texture=0, + augment_geom=False, p_geom=0): + + def crop_to_face_image_gt(img): + return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size) + + def crop_to_face_image_init(img): + return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size) + + def augment_menpo_img_ns_rand(img): + return augment_menpo_img_ns(img, img_dir_ns, p_ns=1. * (np.random.rand() <= p_texture)) + + def augment_menpo_img_geom_rand(img): + return augment_menpo_img_geom(img, p_geom=1. * (np.random.rand() <= p_geom)) + + if mode is 'TRAIN': + img_set_dir = os.path.join(img_dir, train_crop_dir) + out_image_list = mio.import_images(img_set_dir, verbose=True) + + if augment_texture: + out_image_list = out_image_list.map(augment_menpo_img_ns_rand) + if augment_geom: + out_image_list = out_image_list.map(augment_menpo_img_geom_rand) + if augment_basic: + out_image_list = out_image_list.map(augment_face_image) + + else: + img_set_dir = os.path.join(img_dir, test_data + '_set') + out_image_list = mio.import_images(img_set_dir, verbose=True) + if test_data in ['full', 'challenging', 'common', 'training', 'test']: + if bb_type is 'gt': + out_image_list = out_image_list.map(crop_to_face_image_gt) + elif bb_type is 'init': + out_image_list = out_image_list.map(crop_to_face_image_init) + + return out_image_list + + +def reload_img_menpo_list_artistic_aug_train( + img_dir, train_crop_dir, img_dir_ns, mode, train_inds, image_size=256, + augment_basic=True, augment_texture=False, p_texture=0, augment_geom=False, p_geom=0): + + img_menpo_list = load_menpo_image_list_artistic_aug( + img_dir=img_dir, train_crop_dir=train_crop_dir, img_dir_ns=img_dir_ns, mode=mode,image_size=image_size, + augment_basic=augment_basic, augment_texture=augment_texture, p_texture=p_texture, augment_geom=augment_geom, + p_geom=p_geom) + + img_menpo_list_train = img_menpo_list[train_inds] + + return img_menpo_list_train + + +'''********* heat-maps and image loading functions *********''' + + +# look for: ECT-FaceAlignment/caffe/src/caffe/layers/data_heatmap.cpp +def gaussian(x, y, x0, y0, sigma=6): + return 1./(np.sqrt(2*np.pi)*sigma) * np.exp(-0.5 * ((x-x0)**2 + (y-y0)**2) / sigma**2) + + +def create_heat_maps(landmarks, num_landmarks=68, image_size=256, sigma=6): + + x, y = np.mgrid[0:image_size, 0:image_size] + + maps = np.zeros((image_size, image_size, num_landmarks)) + + for i in range(num_landmarks): + out = gaussian(x, y, landmarks[i,0], landmarks[i,1], sigma=sigma) + maps[:, :, i] = (8./3)*sigma*out # copied from ECT + + return maps + + +def load_data(img_list, batch_inds, image_size=256, c_dim=3, num_landmarks=68 , sigma=6, scale='255', + save_landmarks=False, primary=False): + + num_inputs = len(batch_inds) + batch_menpo_images = img_list[batch_inds] + + images = np.zeros([num_inputs, image_size, image_size, c_dim]).astype('float32') + maps_small = np.zeros([num_inputs, image_size/4, image_size/4, num_landmarks]).astype('float32') + + if primary: + maps = None + else: + maps = np.zeros([num_inputs, image_size, image_size, num_landmarks]).astype('float32') + + if save_landmarks: + landmarks = np.zeros([num_inputs, num_landmarks, 2]).astype('float32') + else: + landmarks = None + + for ind, img in enumerate(batch_menpo_images): + + images[ind, :, :, :] = np.rollaxis(img.pixels, 0, 3) + + if primary: + lms = img.resize([image_size/4,image_size/4]).landmarks['PTS'].points + maps_small[ind, :, :, :] = create_heat_maps(lms, num_landmarks, image_size/4, sigma) + else: + lms = img.landmarks['PTS'].points + maps[ind, :, :, :] = create_heat_maps(lms, num_landmarks, image_size, sigma) + maps_small[ind, :, :, :]=zoom(maps[ind, :, :, :],(0.25,0.25,1)) + + if save_landmarks: + landmarks[ind, :, :] = lms + + if scale is '255': + images *= 255 # SAME AS ECT? + elif scale is '0': + images = 2 * images - 1 + + return images, maps, maps_small, landmarks + + +def heat_maps_to_image(maps, landmarks=None, image_size=256, num_landmarks=68): + + if landmarks is None: + landmarks = heat_maps_to_landmarks(maps, image_size=image_size, num_landmarks=num_landmarks) + + x, y = np.mgrid[0:image_size, 0:image_size] + + pixel_dist = np.sqrt( + np.square(np.expand_dims(x, 2) - landmarks[:, 0]) + np.square(np.expand_dims(y, 2) - landmarks[:, 1])) + + nn_landmark = np.argmin(pixel_dist, 2) + + map_image = maps[x, y, nn_landmark] + map_image = (map_image-map_image.min())/(map_image.max()-map_image.min()) # normalize for visualization + + return map_image + + +def heat_maps_to_landmarks(maps, image_size=256, num_landmarks=68): + + landmarks = np.zeros((num_landmarks,2)).astype('float32') + + for m_ind in range(num_landmarks): + landmarks[m_ind, :] = np.unravel_index(maps[:, :, m_ind].argmax(), (image_size, image_size)) + + return landmarks + + +def batch_heat_maps_to_landmarks(batch_maps, batch_size, image_size=256, num_landmarks=68): + batch_landmarks = np.zeros((batch_size,num_landmarks, 2)).astype('float32') + for i in range(batch_size): + batch_landmarks[i,:,:]=heat_maps_to_landmarks( + batch_maps[i,:,:,:], image_size=image_size, num_landmarks=num_landmarks) + + return batch_landmarks + + +def print_training_params_to_file(init_locals): + del init_locals['self'] + with open(os.path.join(init_locals['save_log_path'], 'Training_Parameters.txt'), 'w') as f: + f.write('Training Parameters:\n\n') + for key, value in init_locals.items(): + f.write('* %s: %s\n' % (key, value)) + + +def create_img_with_landmarks(image, landmarks, image_size=256, num_landmarks=68, scale='255', circle_size=2): + image = image.reshape(image_size, image_size, -1) + + if scale is '0': + image = 127.5 * (image + 1) + elif scale is '1': + image *= 255 + + landmarks = landmarks.reshape(num_landmarks, 2) + landmarks = np.clip(landmarks, 0, image_size) + + for (y, x) in landmarks.astype('int'): + cv2.circle(image, (x, y), circle_size, (255, 0, 0), -1) + + return image + + +def merge_images_landmarks_maps(images, maps, image_size=256, num_landmarks=68, num_samples=9, scale='255', + circle_size=2): + images = images[:num_samples] + if maps.shape[1] is not image_size: + images = zoom(images, (1, 0.25, 0.25, 1)) + image_size /= 4 + cmap = plt.get_cmap('jet') + + row = int(np.sqrt(num_samples)) + merged = np.zeros([row * image_size, row * image_size * 2, 3]) + + for idx, img in enumerate(images): + i = idx // row + j = idx % row + + img_lamdmarks = heat_maps_to_landmarks(maps[idx, :, :, :], image_size=image_size, num_landmarks=num_landmarks) + map_image = heat_maps_to_image(maps[idx, :, :, :], img_lamdmarks, image_size=image_size, + num_landmarks=num_landmarks) + + rgba_map_image = cmap(map_image) + map_image = np.delete(rgba_map_image, 3, 2) * 255 + + img = create_img_with_landmarks(img, img_lamdmarks, image_size, num_landmarks, scale=scale, + circle_size=circle_size) + + merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = img + merged[i * image_size:(i + 1) * image_size, (j * 2 + 1) * image_size:(j * 2 + 2) * image_size, :] = map_image + + return merged + + +def merge_compare_maps(maps_small, maps, image_size=64, num_landmarks=68, num_samples=9): + + maps_small = maps_small[:num_samples] + maps = maps[:num_samples] + + if maps_small.shape[1] is not image_size: + image_size = maps_small.shape[1] + + if maps.shape[1] is not maps_small.shape[1]: + maps_rescale = zoom(maps, (1, 0.25, 0.25, 1)) + else: + maps_rescale = maps + + cmap = plt.get_cmap('jet') + + row = int(np.sqrt(num_samples)) + merged = np.zeros([row * image_size, row * image_size * 2, 3]) + + for idx, map_small in enumerate(maps_small): + i = idx // row + j = idx % row + + map_image_small = heat_maps_to_image(map_small, image_size=image_size, num_landmarks=num_landmarks) + map_image = heat_maps_to_image(maps_rescale[idx, :, :, :], image_size=image_size, num_landmarks=num_landmarks) + + rgba_map_image = cmap(map_image) + map_image = np.delete(rgba_map_image, 3, 2) * 255 + + rgba_map_image_small = cmap(map_image_small) + map_image_small = np.delete(rgba_map_image_small, 3, 2) * 255 + + merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = map_image_small + merged[i * image_size:(i + 1) * image_size, (j * 2 + 1) * image_size:(j * 2 + 2) * image_size, :] = map_image + + return merged + + +def normalize_map(map_in): + return (map_in - map_in.min()) / (map_in.max() - map_in.min()) + + +def map_to_rgb(map_gray): + cmap = plt.get_cmap('jet') + rgba_map_image = cmap(map_gray) + map_rgb = np.delete(rgba_map_image, 3, 2) * 255 + return map_rgb + + +def load_art_data(img_list, batch_inds, image_size=256, c_dim=3, scale='255'): + + num_inputs = len(batch_inds) + batch_menpo_images = img_list[batch_inds] + + images = np.zeros([num_inputs, image_size, image_size, c_dim]).astype('float32') + + for ind, img in enumerate(batch_menpo_images): + images[ind, :, :, :] = np.rollaxis(img.pixels, 0, 3) + + if scale is '255': + images *= 255 # SAME AS ECT? + elif scale is '0': + images = 2 * images - 1 + + return images + + +def merge_images_landmarks_maps_gt(images, maps, maps_gt, image_size=256, num_landmarks=68, num_samples=9, scale='255', + circle_size=2, test_data='full', fast=False): + images = images[:num_samples] + if maps.shape[1] is not image_size: + images = zoom(images, (1, 0.25, 0.25, 1)) + image_size /= 4 + if maps_gt.shape[1] is not image_size: + maps_gt = zoom(maps_gt, (1, 0.25, 0.25, 1)) + + cmap = plt.get_cmap('jet') + + row = int(np.sqrt(num_samples)) + merged = np.zeros([row * image_size, row * image_size * 3, 3]) + + if fast: + maps_gt_images = np.amax(maps_gt, 3) + maps_images = np.amax(maps, 3) + + for idx, img in enumerate(images): + i = idx // row + j = idx % row + + img_landmarks = heat_maps_to_landmarks(maps[idx, :, :, :], image_size=image_size, num_landmarks=num_landmarks) + + if fast: + map_image = maps_images[idx] + else: + map_image = heat_maps_to_image(maps[idx, :, :, :], img_landmarks, image_size=image_size, + num_landmarks=num_landmarks) + rgba_map_image = cmap(map_image) + map_image = np.delete(rgba_map_image, 3, 2) * 255 + + if test_data not in ['full', 'challenging', 'common', 'training']: + map_gt_image = map_image.copy() + else: + if fast: + map_gt_image = maps_gt_images[idx] + else: + map_gt_image = heat_maps_to_image(maps_gt[idx, :, :, :], image_size=image_size, num_landmarks=num_landmarks) + rgba_map_gt_image = cmap(map_gt_image) + map_gt_image = np.delete(rgba_map_gt_image, 3, 2) * 255 + + img = create_img_with_landmarks(img, img_landmarks, image_size, num_landmarks, scale=scale, + circle_size=circle_size) + + merged[i * image_size:(i + 1) * image_size, (j * 3) * image_size:(j * 3 + 1) * image_size, :] = img + merged[i * image_size:(i + 1) * image_size, (j * 3 + 1) * image_size:(j * 3 + 2) * image_size, :] = map_image + merged[i * image_size:(i + 1) * image_size, (j * 3 + 2) * image_size:(j * 3 + 3) * image_size, :] = map_gt_image + + return merged + + +def map_comapre_channels(images,maps1, maps2, image_size=64, num_landmarks=68, scale='255',test_data='full'): + map1 = maps1[0] + map2 = maps2[0] + image = images[0] + + if image.shape[0] is not image_size: + image = zoom(image, (0.25, 0.25, 1)) + if scale is '1': + image *= 255 + elif scale is '0': + image = 127.5 * (image + 1) + + row = np.ceil(np.sqrt(num_landmarks)).astype(np.int64) + merged = np.zeros([row * image_size, row * image_size * 2, 3]) + + for idx in range(num_landmarks): + i = idx // row + j = idx % row + channel_map = map_to_rgb(normalize_map(map1[:, :, idx])) + if test_data not in ['full', 'challenging', 'common', 'training']: + channel_map2=channel_map.copy() + else: + channel_map2 = map_to_rgb(normalize_map(map2[:, :, idx])) + + merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = channel_map + merged[i * image_size:(i + 1) * image_size, (j * 2 + 1) * image_size:(j * 2 + 2) * image_size, :] = channel_map2 + + i = (idx + 1) // row + j = (idx + 1) % row + merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = image + + return merged + + +def train_val_shuffle_inds_per_epoch(valid_inds, train_inds, train_iter, batch_size, log_path, save_log=True): + np.random.seed(0) + num_train_images = len(train_inds) + num_epochs = int(np.ceil((1. * train_iter) / (1. * num_train_images / batch_size)))+1 + epoch_inds_shuffle = np.zeros((num_epochs, num_train_images)).astype(int) + img_inds = np.arange(num_train_images) + for i in range(num_epochs): + np.random.shuffle(img_inds) + epoch_inds_shuffle[i, :] = img_inds + + if save_log: + with open(os.path.join(log_path, "train_val_shuffle_inds.csv"), "wb") as f: + if valid_inds is not None: + f.write(b'valid inds\n') + np.savetxt(f, valid_inds.reshape(1, -1), fmt='%i', delimiter=",") + f.write(b'train inds\n') + np.savetxt(f, train_inds.reshape(1, -1), fmt='%i', delimiter=",") + f.write(b'shuffle inds\n') + np.savetxt(f, epoch_inds_shuffle, fmt='%i', delimiter=",") + + return epoch_inds_shuffle diff --git a/MakeItTalk/thirdparty/face_of_art/old/load_data_module.ipynb b/MakeItTalk/thirdparty/face_of_art/old/load_data_module.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..e1574d19283731b7696ed270e6afb4b54eeeb4dc --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/load_data_module.ipynb @@ -0,0 +1,1470 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 135, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "# import tensorflow as tf\n", + "from scipy.misc import imread, imresize, imsave\n", + "from skimage.color import gray2rgb,rgb2gray\n", + "import cv2\n", + "import os\n", + "from glob import glob\n", + "import matplotlib.pyplot as plt\n", + "from scipy.io import loadmat\n", + "import matplotlib.patches as patches\n", + "import menpo.io as mio\n", + "from menpo.shape.pointcloud import PointCloud\n", + "from time import time\n", + "from scipy.ndimage import zoom\n", + "from skimage.transform import rescale,resize\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# bounding box and image loading functions\n", + "\n", + "def center_margin_bb(bb,img_bounds,margin=0.25):\n", + " bb_size=([bb[0,2]-bb[0,0],bb[0,3]-bb[0,1]])\n", + " margins=(np.max(bb_size)*(1+margin)-bb_size)/2\n", + "\n", + " bb_new=np.zeros_like(bb)\n", + " bb_new[0,0]= np.maximum(bb[0,0]-margins[0],0)\n", + " bb_new[0,2]= np.minimum(bb[0,2]+margins[0],img_bounds[1])\n", + " bb_new[0,1]= np.maximum(bb[0,1]-margins[1],0)\n", + " bb_new[0,3]= np.minimum(bb[0,3]+margins[1],img_bounds[0])\n", + " return bb_new\n", + "\n", + "\n", + "def load_bb_files(bb_file_dirs):\n", + " bb_files_dict={}\n", + " for bb_file in bb_file_dirs:\n", + " bb_mat=loadmat(bb_file)['bounding_boxes'] \n", + " num_imgs=np.max(bb_mat.shape)\n", + " for i in range(num_imgs):\n", + " name=bb_mat[0][i][0][0][0][0]\n", + " bb_init=bb_mat[0][i][0][0][1]-1 # matlab indicies\n", + " bb_gt=bb_mat[0][i][0][0][2]-1 # matlab indicies\n", + " if str(name) in bb_files_dict.keys():\n", + " print str(name), 'already loaded from: ', bb_file\n", + " bb_files_dict[str(name)]=(bb_init,bb_gt)\n", + " return bb_files_dict\n", + "\n", + "\n", + "def load_bb_dictionary(bb_dir,mode,test_data='full'):\n", + " \n", + " if mode is 'TRAIN':\n", + " bb_dirs = \\\n", + " ['bounding_boxes_afw.mat', 'bounding_boxes_helen_trainset.mat', 'bounding_boxes_lfpw_trainset.mat']\n", + " else:\n", + " if test_data is 'common':\n", + " bb_dirs = \\\n", + " ['bounding_boxes_helen_testset.mat', 'bounding_boxes_lfpw_testset.mat']\n", + " elif test_data is 'challenging':\n", + " bb_dirs = ['bounding_boxes_ibug.mat']\n", + " elif test_data is 'full':\n", + " bb_dirs = \\\n", + " ['bounding_boxes_ibug.mat', 'bounding_boxes_helen_testset.mat', 'bounding_boxes_lfpw_testset.mat']\n", + " \n", + " if mode is 'TEST' and test_data is 'test':\n", + " bb_files_dict = None\n", + " else:\n", + " bb_dirs = [os.path.join(bb_dir,dataset) for dataset in bb_dirs]\n", + " bb_files_dict = load_bb_files(bb_dirs)\n", + " \n", + " return bb_files_dict\n", + "\n", + "\n", + "def crop_to_face_image(img,bb_dictinonary=None,gt=True,margin=0.25,image_size=256):\n", + " \n", + " name=img.path.name\n", + " img_bounds=img.bounds()[1]\n", + " \n", + " if bb_dictinonary is None:\n", + " bb_menpo=img.landmarks['PTS'].bounding_box().points\n", + " bb = np.array([[bb_menpo[0,1],bb_menpo[0,0],bb_menpo[2,1],bb_menpo[2,0]]])\n", + " else:\n", + " if gt:\n", + " bb = bb_dictinonary[name][1] #ground truth\n", + " else:\n", + " bb = bb_dictinonary[name][0] #init from face detector\n", + " \n", + " bb=center_margin_bb(bb,img_bounds,margin=margin)\n", + " \n", + " bb_pointcloud=PointCloud(np.array([[bb[0,1],bb[0,0]],\n", + " [bb[0,3],bb[0,0]],\n", + " [bb[0,3],bb[0,2]],\n", + " [bb[0,1],bb[0,2]]]))\n", + " \n", + " face_crop = img.crop_to_pointcloud(bb_pointcloud).resize([image_size,image_size])\n", + " \n", + " return face_crop\n", + "\n", + "\n", + "def augment_face_image(img,image_size=256,crop_size=248,angle_range=30,flip=True):\n", + " \n", + " lim = image_size-crop_size\n", + " min_crop_inds=np.random.randint(0,lim,2)\n", + " max_crop_inds=min_crop_inds+crop_size \n", + " flip_rand = np.random.random() > 0.5\n", + " rot_angle = 2*angle_range * np.random.random_sample() - angle_range\n", + " \n", + " if flip and flip_rand:\n", + " rand_crop=img.crop(min_crop_inds,max_crop_inds).mirror().\\\n", + " rotate_ccw_about_centre(rot_angle).resize([image_size,image_size])\n", + " else:\n", + " rand_crop=img.crop(min_crop_inds,max_crop_inds).\\\n", + " rotate_ccw_about_centre(rot_angle).resize([image_size,image_size])\n", + " \n", + " return rand_crop\n", + "\n", + "\n", + "def load_menpo_image_list(img_dir,mode,bb_dictinonary=None,image_size=256,margin=0.25,bb_type='gt',test_data='full'):\n", + " \n", + " def crop_to_face_image_gt(img,bb_dictinonary=bb_dictinonary,margin=margin,image_size=image_size):\n", + " return crop_to_face_image(img,bb_dictinonary,gt=True,margin=margin,image_size=image_size)\n", + " def crop_to_face_image_init(img,bb_dictinonary=bb_dictinonary,margin=margin,image_size=image_size):\n", + " return crop_to_face_image(img,bb_dictinonary,gt=False,margin=margin,image_size=image_size) \n", + " \n", + " if mode is 'TRAIN':\n", + " img_set_dir = os.path.join(img_dir,'training_set')\n", + " \n", + " else:\n", + " img_set_dir = os.path.join(img_dir,test_data+'_set')\n", + " \n", + " image_menpo_list = mio.import_images(img_set_dir, verbose=True)\n", + "\n", + " if bb_type is 'gt':\n", + " face_crop_image_list = image_menpo_list.map(crop_to_face_image_gt)\n", + " else:\n", + " face_crop_image_list = image_menpo_list.map(crop_to_face_image_init)\n", + " \n", + " if mode is 'TRAIN':\n", + " out_image_list = face_crop_image_list.map(augment_face_image)\n", + " else:\n", + " out_image_list = face_crop_image_list\n", + " \n", + " return out_image_list " + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "#heat-maps functions\n", + "\n", + "# look for: ECT-FaceAlignment/caffe/src/caffe/layers/data_heatmap.cpp\n", + "def gaussian(x, y, x0, y0, sigma=6):\n", + " return 1./(np.sqrt(2*np.pi)*sigma) * np.exp(-0.5 * ((x-x0)**2 + (y-y0)**2) / sigma**2)\n", + "\n", + "\n", + "def create_heat_maps(landmarks, num_landmarks=68, image_size=256, sigma=6):\n", + "\n", + " x, y = np.mgrid[0:image_size, 0:image_size]\n", + "\n", + " maps = np.zeros((image_size, image_size, num_landmarks))\n", + "\n", + " for i in range(num_landmarks):\n", + " out = gaussian(x, y, landmarks[i,0], landmarks[i,1], sigma=sigma)\n", + " maps[:, :, i] = (8./3)*sigma*out # copied from ECT\n", + "\n", + " return maps\n", + "\n", + "\n", + "def load_data(img_list, batch_inds, image_size=256, c_dim=3, num_landmarks=68 , sigma=6, scale='255', save_landmarks=False):\n", + "\n", + " num_inputs = len(batch_inds)\n", + " batch_menpo_images = img_list[batch_inds]\n", + "\n", + " images = np.zeros([num_inputs, image_size, image_size, c_dim]).astype('float32')\n", + " maps = np.zeros([num_inputs, image_size, image_size, num_landmarks]).astype('float32')\n", + " maps_small = np.zeros([num_inputs, image_size/4, image_size/4, num_landmarks]).astype('float32')\n", + "\n", + "\n", + " if save_landmarks:\n", + " landmarks = np.zeros([num_inputs, num_landmarks, 2]).astype('float32')\n", + " else:\n", + " landmarks = None\n", + "\n", + " for ind, img in enumerate(batch_menpo_images):\n", + " lms = img.landmarks['PTS'].points\n", + " images[ind, :, :, :] = np.rollaxis(img.pixels, 0, 3)\n", + " maps[ind, :, :, :] = create_heat_maps(lms, num_landmarks, image_size, sigma)\n", + " maps_small[ind, :, :, :]=zoom(maps[ind, :, :, :],(0.25,0.25,1))\n", + " if save_landmarks:\n", + " landmarks[ind, :, :] = lms\n", + "\n", + " if scale is '255':\n", + " images = images * 255 # SAME AS ECT?\n", + " elif scale is 'zero_center':\n", + " images = 2 * images - 1\n", + "\n", + " return images, maps, maps_small, landmarks\n", + "\n", + "\n", + "def heat_maps_to_image(maps, landmarks=None, image_size=256, num_landmarks=68):\n", + "\n", + " if landmarks is None:\n", + " landmarks = heat_maps_to_landmarks(maps, image_size=image_size, num_landmarks=num_landmarks)\n", + "\n", + " x, y = np.mgrid[0:image_size, 0:image_size]\n", + "\n", + " pixel_dist = np.sqrt(\n", + " np.square(np.expand_dims(x, 2) - landmarks[:, 0]) + np.square(np.expand_dims(y, 2) - landmarks[:, 1]))\n", + "\n", + " nn_landmark = np.argmin(pixel_dist, 2)\n", + "\n", + " map_image = maps[x, y, nn_landmark]\n", + "\n", + " return map_image\n", + "\n", + "\n", + "def heat_maps_to_landmarks(maps,image_size=256,num_landmarks=68):\n", + "\n", + " landmarks=np.zeros((num_landmarks,2)).astype('float32')\n", + "\n", + " for m_ind in range(num_landmarks):\n", + " landmarks[m_ind, :] = np.unravel_index(maps[:, :, m_ind].argmax(), (image_size, image_size))\n", + "\n", + " return landmarks" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# save image output functions\n", + "\n", + "def create_img_with_landmarks(image,landmarks,image_size=256,num_landmarks=68,scale='255'):\n", + " \n", + " image = image.reshape(image_size,image_size,-1)\n", + " \n", + " if scale is 'zero_center':\n", + " image = 127.5 * (image+1)\n", + " elif scale is '1':\n", + " image = image * 255\n", + " \n", + " landmarks = landmarks.reshape(num_landmarks,2)\n", + " landmarks = np.clip(landmarks,0,image_size)\n", + " \n", + " for (y, x) in landmarks.astype('int'):\n", + " cv2.circle(image, (x, y), 1, (255, 0, 0), -1)\n", + " \n", + " return image\n", + "\n", + "\n", + "def merge_images_landmarks_maps(images, maps, image_size=256, num_landmarks=68, num_samples=9, scale='255'):\n", + " images=images[:num_samples]\n", + " cmap = plt.get_cmap('jet')\n", + " \n", + " row = int(np.sqrt(num_samples))\n", + " merged = np.zeros([row * image_size, row * image_size * 2, 3])\n", + "\n", + " for idx, img in enumerate(images):\n", + " i = idx // row\n", + " j = idx % row\n", + " \n", + " img_lamdmarks = heat_maps_to_landmarks(maps[idx,:,:,:],image_size=image_size,num_landmarks=num_landmarks)\n", + " map_image = heat_maps_to_image(maps[idx,:,:,:],img_lamdmarks,image_size=image_size,num_landmarks=num_landmarks)\n", + "\n", + " rgba_map_image = cmap(map_image)\n", + " map_image = np.delete(rgba_map_image, 3, 2) * 255\n", + " \n", + " img = create_img_with_landmarks(img,img_lamdmarks,image_size,num_landmarks, scale=scale)\n", + "\n", + " merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = img\n", + " merged[i * image_size:(i + 1) * image_size, (j * 2 + 1) * image_size:(j * 2 + 2) * image_size, :] = map_image\n", + "\n", + " return merged\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# not using in project\n", + "def load(path):\n", + " \"\"\"takes as input the path to a .pts and returns a list of \n", + "\ttuples of floats containing the points in in the form:\n", + "\t[(x_0, y_0, z_0),\n", + "\t (x_1, y_1, z_1),\n", + "\t ...\n", + "\t (x_n, y_n, z_n)]\"\"\"\n", + " with open(path) as f:\n", + " rows = [rows.strip() for rows in f]\n", + " \n", + " \"\"\"Use the curly braces to find the start and end of the point data\"\"\" \n", + " head = rows.index('{') + 1\n", + " tail = rows.index('}')\n", + "\n", + " \"\"\"Select the point data split into coordinates\"\"\"\n", + " raw_points = rows[head:tail]\n", + " coords_set = [point.split() for point in raw_points]\n", + "\n", + " \"\"\"Convert entries from lists of strings to tuples of floats\"\"\"\n", + " points = [tuple([float(point) for point in coords]) for coords in coords_set]\n", + " return np.asarray(points) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bb_dir = '/Users/arik/Desktop/DATA/face_data/300W/Bounding_Boxes/'\n", + "img_dir = '/Users/arik/Desktop/DATA/face_data/conventional_landmark_detection_dataset/'\n", + "ect_path='/Users/arik/Dropbox/a_mac_thesis/test_landmark_detector_art/ECT-FaceAlignment-master/imgs/'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 136, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzsAAAJBCAYAAABh4as8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXmwbdld3/dZa8/7zHd4943d6n7drW7RQqFlRBBmNMTp\nxAmFMJCAiEQVxZCB/CO57FSBFJSI5B9wMLiICbIo5Bg7lSqwCcgELOLEDA4pkJBotVo9vvHOZ9zz\nWit/rH3Ou+/2G3vQk57Xp+rUe3efvddeezh7/77rNyxhjMHhcDgcDofD4XA47jfkve6Aw+FwOBwO\nh8PhcLwZOLHjcDgcDofD4XA47kuc2HE4HA6Hw+FwOBz3JU7sOBwOh8PhcDgcjvsSJ3YcDofD4XA4\nHA7HfYkTOw6Hw+FwOBwOh+O+xIkdh8PhcDgcDofDcV/ixI7D4XA4HA6Hw+G4L3Fix+FwOBwOh8Ph\ncNyXOLHjcDgcDscNEEJoIcTP38F6H27XXftS9MvhcDgcd44TOw6Hw+FwvD5M+3E4HA7HlxlO7Dgc\nDofD4XA4HI77Eid2HA6Hw3FfIYRI73UfHA6Hw/HlgRM7DofDcZ8jhDgthPgVIcQlIUQhhHhBCPH3\nhRD+kXUeEkL8b0KIfSHEQgjxR0KI/+BYO9/c5qZ8jxDiQ0KIi0KIabtdTwgRCiH+rhBiWwgxE0J8\nTAgRHGtDCyF+Xgjx/UKIzwshciHEnwohvvHYeg+0ffy8ECITQuwJIf6pEOLBY+u9r23zm9r1t4EL\nx479Y0KIq+2xf1YI8UN3ef5u2dcjbLZ9nLT9/btCiOhYW98hhPi/hRCH7Tn6vBDiv7+b/jgcDofj\nzvFvv4rD4XA4vlIRQpwC/l+gD/zPwLPAGeBvAikwFUKcAP4IiIH/CTgA3gf8MyHEdxtjfvNYs38H\nyICfAR4B/iugBjQwBD4E/LttGy8A/92x7b8F+D7g54ES+M+B3xFCvMsY85ftOl/btvGPgYvAW9r1\nPiWEeJsxpjjW5t8HdoD/Fui0x34C+BNAtfvaA54GfkUI0TPG3Lb4wB32FUAA/xR4Efjbbd9/oj0f\n72/78zbgnwN/Dvxk294jwLvvoB8Oh8PheA0IY1xOpcPhcNyvCCF+Ffh+4F3GmD+7yTo/hzXM/6ox\n5o/aZR3gMwDGmPPtsm8GPgX8BfCUMUa1y/8R8J8Av2OM+RtH2v3XwCljzMNHlmlsMv87jTF/3i47\nhxVhv22M+ZvtssgYUx7r57uAPwZ+0Bjzj9pl7wP+IfCvgG81R15qQoj/Bfj3gSeNMeMjy//Xdvmp\n4/s4tr877euHsALvN4wx7zmy/S8APw68wxjzWSHEfw38LLBhjDm82X4dDofD8cbhwtgcDofjPkUI\nIYDvBP7ZzYROy9PAv1kKHQBjzAL4B8BbWo/EUX51KXRa/qT992PH1vsT4JwQ4vi75g+X4qHd1wXg\nN4G/3vaZoyJECOG3ZZ1fAMbAU8faM8Avm1eP3r0H60nxhBDryw/wu8DgBu3ciNv29UgffvHYtn8P\n6/FZhgMuBdd3HdvW4XA4HG8STuw4HA7H/csmNnztc7dZ70Gst+I4zxz5/igXjv09ucVyiRUWR/ni\nDfb1BWxY3SaAECIWQvy0EOIVbLjXHjZMbXCD9gBeOvqHEGITG0L2I8Dusc9SlJ24QTvHuW1fb7Hu\n89jQvre0f/8T4F8DvwxsCyH+cZv/5ISPw+FwvEm4nB2Hw+Fw3C3qLpe/FmP+F7A5Pz+HDV2bYL0n\n/4QbD9Tlx/5ervMJ4Fdvso/PvIZ+3Q3XeZraPKNvEkJ8K/AfYkPpvg/4fSHEv3cDz5TD4XA4XidO\n7DgcDsf9yy4wBZ68zXovA2+9wfInjnz/RvLoDZa9FVv0YLf9+7uBjxtj/tZyhbay2fAO97ELzADP\nGPMv3+S+Hl336Ll6BCu6Xjq6kjHmU9jcpw8IIf4OtoDDtwKvp58Oh8PhuAEujM3hcDjuU1pPwW8A\n/5EQ4lb5Kb8NvEsI8XXLBW2Bgh8BXjxWdeyN4OuFEF9zZF/ngP8Y+BdHvBuKV7+jfgLw7mQHxhgN\n/O/Adwshvur490KIjTewr2C9V//FDfprgN9ptx3doP1Pt9tGN/jO4XA4HK8T59lxOByO+5v/BvgO\n4F8JIf4BNg/nNLb09DcYY6bA/wD8p8AnhRA/jy09/X5srs57btToDbibULXPtvv6e0CFrVhmgA8f\nWee3gB8UQkyBvwS+Hvhr2NydO93338aWjv4TIcQvt+2sAe8Evg24E8FzJ31d8pAQ4jeBT2LLSf8A\n8AljzF+03/+UEOKbgP8D6wHaatt7Bfh/7qAvDofD4bhLnNhxOByO+xhjzOXWY/MRbAnqPnAJ683J\n2nV2hBBfD/yPwH+JnW/nM8DfMMZ88niTN9vVXXTr/8LO6/Nh4By2gMJ/Zoz57JF1fgJo2j7HWDHw\n7cC/uMG+brjv9rjeBfwU8F1YYbHf7u9v3WibG7T7B9icoVv1FWwhgu/Dnuefafv+88f285tYAflD\nWKG117b/YWPM7A7643A4HI67xM2z43A4HI4vGe3cNb9gjPmJe90Xh8PhcNz/uJwdh8PhcDgcDofD\ncV/ixI7D4XA4HA6Hw+G4L3Fix+FwOBxfSgx3l9/jcDgcDsdrxuXsOBwOh8PhcDgcjvsS59lxOBwO\nh8PhcDgc9yVO7DgcDofD4XA4HI77Eid2HA6Hw+FwOBwOx32JEzsOh8PhcDgcDofjvsSJHYfD4XA4\nHA6Hw3Ff4sSOw+FwOBwOh8PhuC9xYsfhcDgcDofD4XDclzix43A4HA6Hw+FwOO5LnNhxOBwOh8Ph\ncDgc9yX+ve6Aw+FwOBwOh+MrByHEA8DGve6H475nzxjzyuttxIkdh8PhcDgcDscdIYR4QEr5rNY6\nvtd9cdzfSCkLIcRbX6/gcWLH4XA4HA6Hw3GnbGit40984hM88cQT97ovjvuUZ555hve+970x1oPo\nxI7D4XA4HA6H40vHE088wVNPPXWvu+Fw3BZXoMDhcDgcDofD4XDclzix43A4HA6Hw+FwOO5LnNhx\nOBwOh8PhcDgc9yVO7DgcDofD4XA4HI77Eid2HA6Hw+FwOBwOx32Jq8bmcDgcDofD4XhjeOUV2Nu7\nt33Y2IAHHnjTd/MzP/MzvO1tb+M7v/M73/R9OV47Tuw4HA6Hw+FwOF4/r7wCTzwBWXZv+5Gm8Mwz\nb7rg+ehHP8r3fM/3OLHzZY4TOw6Hw+FwOByO18/enhU6n/iEFT33gmeegfe+1/blS+DdcXz548SO\nw+FwOBwOh+ON44kn4Ct8wtE/+IM/4AMf+ACf+9znOHv2LB/84Ae5fPkyP/3TP43WGiklQgg+/vGP\n8/GPfxyA97///XzsYx+7tx13vAondhwOh8PhcDgcjpY/+7M/4+mnn+b06dN85CMfoWkaPvKRj7Cx\nsYEQAoBf+7Vf44d/+If5uq/7On7kR34EgPPnz9/LbjtughM7DofD4XA4HA5Hy4c+9CF83+cP//AP\n2draAuB7v/d7efzxx1fr/MAP/AA/9mM/xsMPP8z3f//336uuOu4AJ3ZeA1/z1U/8oDHmpvJdCIEx\n5lXLjv57fLkx5lXbLF2kWusbfr9k+Z2+i/0ttzvezq2O6Ub/v9Wy1XHc9Js7bwNAa3uEN+rn7bY9\n/r2xC295Xm+2r6Pf3ej75bKj12C57o3ui+XHaI3QhjRNaZqGoixACIIgAEApBUBVVRhjCMOQOI4R\nQpDnOcYYhBA0TYOqG3whieMY3/fJsowgCJBSUlUlCMNb3vIWHn30UYbDIYPBgDAMqeuKPM9QStHp\ndAjDkKoyHI5nXLp8iZdefpH9gx3m87Ft46EHeOqpd7A+GvFv/viPWMzmnDl5kiiI6MYp506f4fHH\nH+fMyTN4QvIHv/PPmR7u8/DDD/PII+fRRhEEAUEQMJ1P2dndZTqfM1gb8fZ3vIPPPfN5vvbd78b3\nIxZFyXQ+58rVbS5fukSgax45f55zZ8+BMVx45RUuvPwKD5w5zaPnH2I6mfD5Z/6CCy+/CChGox6e\nBCFhPN5nb/cqSRzyxNu+irMPPownfKqqYrFYUFU1aIMUEvTyhpHMZzPyeUYSp5w+dYqqqnjppZeo\nipLNjU1OnjlD3EnJFgu6nRSlFBcvXiTPMqSUjCcT9vf3GQwHyCAk7fUIk5gr2zv8f3/+53zzX/s2\ndvf2ORxP2J/sMJ7sURQ1cZRy9uyDDPprzGYzHj3/GA8+8ACf+cyn+dS//D85dWqLb/vmb+SR82+h\nKjMuvfIKk8mETqfD2bOnqUvY3xsznk6pGkVe1VTaUNU1+4dj5os5aZry0EMP8fDDD2OM4bnnnufz\nz36B7Z09EB7dfh9PeEgNRmsW2YKiLPE8j7STojForQnCgCiO8f2Apm6YzKZMJjPm8zl5nuN5Pr1u\nn263ixQGYxTKaMqyJMsWlGWBkOD7Pk2j2d87oKoqgjAm7fTp9QZ00i6+H9HUisUiJy8ylG7wfftK\nq+uaWjVoY/A8jzD0CYKAtbU1wjBEKUVRFNR1TRCFpGmKlBKlFLppMEojpUfgh3Q6PXr9AZ1ujzTt\n0un06HZ6dDod4jTB8zyUavA8SafbodNJaJRCmwZfCgSGuq7RuiEMQ7ppQlFk7GxfYWf7KkW+wJOC\nxXzBzu42WinmszmHh4dUVcVwOOTkyZO8dPkqaadLv9djb3eXy5cv8Y3f8A08+OCDvPTCi/zFX3yO\ng4MD1tfXOXv2HF947ovMFhlhFHJi6ySdbo/5YsHu7h774xmLPMO0zysNhHHE5uYWURyzu7vLdDql\nrAqUakAbfCHppAlnT5/hzOnTxHHEwcEuL194gRObW3S7XaqqoVYNvh/i+wF7ewc8++yznDhxgiRN\nqeqKoigQQhDHMU3TUNcVVVWilSHwQ7rdDt1ul5dffpnJZIbve6tl3W6XTidBKUWe58xmMyaTCXme\n4/s+cRzjeR6Bbz+eZz/L5+fyU9cNTaPQyr5TpBBIKfE8DyFEu05NXdcYpRBgPwJ83yMMA8IwtOsb\nu1xI+66WQBiE+L6P73v4vkccx8RxRIBtK0kSev0+YRgynkx4+cIFmqaxz3MpkVLS6/U4eeokGxvr\n7O3tsX3lKhcuXKCqKtY3TyDiLpPJhPl8QdUoyrqhrBsMEun7LLIC4UlAorRGaY1o3yfG2N+qEAIp\nwRNm9X5dvo+0NihlbQ8pJe3XSOkRJ+mpIr/HBQjeRLTW/P7v/z7vec97VkIH4OGHH+bpp5/mt37r\nt+5h7xyvBSd2Xhs/CHzHG9XYrYz3WxnbxzaAO1j3jtu7yXY3E3I3a1fQ2om34XgbtxMvbwR3ei7u\n5nhvx623vXa2jq6xFDHL7Y+2cbO2pCfxpH/DdX3fJwh9Op0O/faFO5lMWCwW5HlG09QopRgOhwyH\nQ6SMUFrhex5JEhPHMdAjTiI2NjbAwN7uHkIIRqORFQjGEIYBvV6PXrdHEPjs7+7T7XbodxI2Nzfx\nPI8iyzFAVVdMJhOyIicIA5I0YTqbEUURWZbh+Q1FWVMWpTWQmhofg+/7CKAsK6qyIvA9Op0OdV0z\nm03JsgxtNL4naZqGxjRIT+L7HsPhkDS1YnA2ndJJuxhjDQABaGOom4q6UnhCkiQdgiCg8jy0VmR5\nTp5lVnhGEUEQUFcVlWqsISEl88mE2WxGURRIKanrmiiK0MaQzeeUqqEvRiRpwubmCaaTKePxhIPD\nA+aLOcYIer0+nbRHWVZsb29jDCyyBTu7uxweHjIarXH69GmSNCXLc7L5HGUMaadDFEXUdUNZWuMN\nwPN8/ACKLKfIC1TTEAYhSZJY4ZzlNE1NXVV4njXUtBEIBI1S+EbgSUkQhOj23pRCoo1Ca01dNwhZ\ntcajHeqo6wqtNZ7n4ft+O5DDyqiy92bblvQQ0v4ItNL2GgtBEEYr4V9VNUoZmsbQNA1Gm9XA0PIj\nEPieRLZ9WBrIy1h7z/OQnkcQBKtBgqZpQGskguUjaCmMtIGyrCmKirIoqeuaMM+RnsQYjedJqrqi\nUTVhEBCnEXHgU9cVWZaR5xlhWBF47cCGkHie3xrjBqXUyghdGpie5yGltM8A+yOmqirKskQ1DWVZ\n0tRNe0xitW5VV4AhCkPiJMH3fbRWNHVN096f7UOhfa7Y50NdVxgMTVOjtVrtV0pJFEZ0u12iKKRp\namazimyR4fvByoAOAp84TZGez2Kekec5nU5nJSKOPr/quqaqKpRa9t8ea9OolSBK05Q4jkiSeLWP\npUhd/iulJIoiwjAkDMPrjmd5Lo/eF3aZXq0npYd35FwLIVb3aRiGiOW5b5/Q9jwLPE+ujkcKgfTa\n42vPqd2XwBivvb/Fqp2maairajXI5XkeWmuUUgitkWFIEAREYYQQ7fWXgiAMUFrRKAV1TRiGRLFC\nFwW1UnieRBux+j3Rbud53jVhq48Oi8JredMuf1P3Kzs7O+R5ziOPPPKq7260zPHljxM795CbjfTf\njBt9tzKE71Ao3Gp/dyKwXquRfyfcyut0s/XuZPkNPTDHjvWNPK5beb6OCpfjfbxuW9EKnvblJOW1\nl8tRw+F4+6IdoRTSGnEIgWpaI8popLGGwWDYZ319nX6/T1EUvPDCCzz33BeYTMbWGNeas2fPcvbs\nWTrdIUqDMg1xEtHr9djYWOPU6S02NtaYzyZcvniBXrfH6ZNbjA8O8Y1gOLAj0oNBn7queOXCK5w5\nc4aTmxskScIiW1CWJbVSzOYz9g72QEhOnTnN2vo6u7u7rK1vcHhwiDaCsmrIioJsvkA1iqibkCQJ\nTdMwmYwpi4LRcMD6+joHB7u89PKLHB4crEYz67rB6ArPk0RRzPr6iH6/R+AH7O7swiZ4XtAaoqC0\nYj6bMZ9lJFFMkqTEUUQTVdR1w8HBAdPJBCEEg8GAKI6YL+aM53N63S7DYZ8LFy6ws7ODNobA9xHS\nrjuZzbi6sw3S4wyCU+fO8lVPPsmnP/s5dvd22d3fx0jN2vqIzc2TpGmX57/4EocHY06dOs3O7j4X\nL11if2eHJ7/6q3n8sfN0OjH7B4fMp2PCwGdjOEIpxXyeMZtkZIsCIwRRFCODgMl0znQ6pW4auv0e\ng8EAgWB3+yp5XjCfzfA9j04npW7sfVhVNZ4frrxxUR3SKGWFi7KGW9U0GKNXxqeqG+bzGVJY4RQE\nAUHYCh7akfampmnUdfe3UoqmaUjTFD+I8PwQKT2aWpEtJlifsUA1BoQhCK1Br7Sy4kNKpO8hpP1t\nNE3DbDajrut2pD0miiKklJRVSVkUKN1u5/kYQGlNXuRkRUHTaIwR+H5Ap9NhOFjDbz1GnucRRSHd\nnr3uo9GQKDoBARRFwd7+HocHhyRJhCfM6jwkaQJGUddWxFshwMqj6/s+URS1osNgtGIxmzKbTlBN\nw2w6pcit4I7CgCQOERiyxQLPkwzTDt1enyAKyYuCbDGjLAqMUUhAYd0SUkiEMcznU7Q2ZHlO01RI\nAX4YEYUhg16X9bV14ihkNp0wnU4oy5LeoEsURQCkaZfhaI2qqtndsWJ8Y2PDPoO1Bn1NCCwWi3YQ\nQFgPSOATBD5VVVIUOZ7nsbk5oNvt4nmeFXZNzXyek+f5Srz7vr/yQl/zbFcrL85SRFx79tqP51kP\nSBiGBH6AaAW4FHIlNAH8dvnyGIzW1nOn6pUY9KT1IGlj92m0QWkFjRVT9vFukNKK+7quWGQZTduv\nNE3Ic0FZlgAkaUK32yVNU3tPK4Xn+6SdDkpriqLAKBiN1ojimMl0ihFA1dAoQ600dszJ4Ml2AEEI\nqqqiaZqVqLv2XtKrd5B911z/brHrmdW/DsdXGk7s3GNeZeRyY6P/Zh6Bo8tvFbJ2u/3fbX+P7/+m\nQoM7Hzm6nfC7lRh7LcdqbrL8TrjVcd9t/1bXD0AKNNeu59GRySVL4XMjb9hS7BxtW2GQgQ/Ctm3a\nNubzOX/8x39M0zRMpxOqqiSKrJhJkoSTW1vUZcXV+RXyomQymTKdTugNupw7e4YTG5vs7F5lb2eb\njfU1nnj8McYHh3SSlH6ny/r6GlopXnz+ebavXuXc2bOcXB9RLBbs7+/jBz6D0YiDw0PKqmTjxAk2\nNjfp9LpoY1jf3GBjc4vxdMbBeMJkOmexyKgbxYnNTR574AGiIGZ/f5/FfM5oOGRjYw2la5599ln2\ndq8SRQFJlCKEIYp8Bv0OeZG1hpodpZepDW9qmsaGWQmJQKLqmsViTpZnhL7PwcE+URgRhCF+ENDU\nNQix8jwUVUmjNdL3qJXi5Zdf5sr2VZIkYX1tnSRJ0EYzn8+ZXlkgpEecpiA9amVIuz3GkzEISRgn\nxJ2EtNdjPMt45eIu+/sHvPWtT3D+oYfY3dnlypWrnD1zinf+lXdSZnN2d3aRQjMarZNEMRjNwf4O\nTdMwPhhTN4ooTvDDa+EsURjZEW0EqqqpZMF0NqGpFVVVURU5i9mcomrwvIA0Tel1ekSRHUH3So8s\ny+wIOza0UkhJkiREUUxe5La9qiZNA+IwxPMD6/ERhrqqyfOcvCysV6W9N6VcGv2S/mBEGMU0jaYo\nShaLBYtFjpQevh8hpMTzJdKDMIqIiajrmrIsKdtQ0LAdKe90OitPznKdpUEcROFK8FVluQqxEsLD\naENdK5pG4XkeeZ4xm81IkoR+v09/MKDftyFWAFeuXObqlcvW05bPqasK35NsbZ1ovTaCMLKeksD3\nKPKcSTxhKEZkmQ0j1UohpUeadvA83xrhGIoyRzcVvU6KwCAxJHHIYNCznkkj8ASMhsPW4xhSVBXz\n1tOJUURhALQeICFaUSgp85xFnqOUIopC+r0+w8GANE0JPPub2L56QLaYI6Wwx97vU1UV/f6QXq9H\nkedcvnKVvb391qNkQxSrqrJhYcasPAPLkDDP8/A9bzUw1TRNew9ZEVUUBfP5HKWalcftqPdl6TVd\neue0auy5kdeEi9d68Xw/sOez9YItt9dao1uhstzGGFB1jVLNNa+vdUkivaANf2s/CMDHBPpaP9pn\nd9Mo6lqRJB6+XIY069YbFjDs9fFbj7Exhk6nQ6/fpawKJpMJSqnVsQhhPaxGNRij6PWt2PQ8n/2D\nMU1TEwUBWhuKokI1DcK3oXqB71/3bkBrK5LE8j1ihaAQEiH0kfeWPcYbvXfuR06cOEEcx3zxi198\n1XfPPffcdX9/KaJQHK8fJ3buIe5Hcu8wxqy8O18OGGNWwvDoCNtxr9SdvGhsaIShrptro5PtS063\no5KLxYLLly+3yxSB7zMaDMnyjKYq6a6vkyYx29vbHE4X5EVNVZX4vs/JrZMMh0MuXb7M4cEB3U6X\nkydPEYUx5x96mDLPqcuSsijZ2d0mDgJGwwEnNtYZH+yj6ho/CJC+ZDqbMpmM6Y+GnDi5RZREaAO+\n5xFEIUVVMl/M2d3dpSgqkjhlNBzR7/XxpGQxm1PlJWkcMxr28SU8/4UvcOnSy8RhwNpoSK+bAoog\n9BBGU1aSKLJ5G4tFRl03DHo9PE+SxjGqUWRZRlHkrXHfRSlNVRf4niSIPDACT8YMR4Y8y5nOZwR+\nQBBFCN+nrCom40PrSUkTkk6HMAiZTKds7+4jpGR9Y5MwiamahlcuXCTudNncOkmjDcl8zrzIGU9z\niqKkyHIeefRxvuapv8LkcMz27i4yCDjzwDkuX7lKvpjgSRj2evh+YPNNvIiyrHn+heeJgohO2sEY\nw2KRscgLDscTBDAcWCM1iiLqpqLMi1YIVOSLjDLP0QbiKGbQ67cGUxsipHXrTamR0iMKA+I4IQhD\nqrpmMh5TlxXD0YAojAmCcCVkqqKkKDLKIyFu9uO3oTsaL7DiqK4V8/mCxSKjKEqMAOlLhAdGK1Sj\nqCobcrZsp9PpWKPV9+2nDRWyuRQ+xhjKsrw28l+UzLRZibC6blBKrfJPhJBtrkZs83XipA2fCsAo\nsmyO0daYn8/naK2Ikpg0tfdst5MyGPTwo7AN0erQ7/fAaCaTQ6qqQCnF+HC8Cs1b5qEYYxDG5oNI\nBGmSMOwP6KcpaI0vJUkYkrfiIgp9Ei+g0YqytPdQ3dT2nApBUZaopkYYbb3IqqGpbYhXr5OQJGkr\nNmxeimlq5llFtpixmM0RQrI2GrG5sUl30KMsC5TSXL26w3g8ZjKZgrYerPl83uY1qfZ8WoFitCLw\nrnlQpJCEYUSaphRFge/7FIU19qvKhuUlSby6dqbNxwJaYWu9IjZHK7R5O60HchmiZkPlroWrHW1j\nKbbxBFJ4q2ejMoa6aWiWQk16eN61kDypBVLY8LYgCAhkiCd9PNmgjRUTZVPTLBRSSZI4wvd9PCkA\njcEOUAVhuPLiFUXOxYsXV8cqpcQAw9GIMIo4OBxTNobpdEoQBPT7ffwwsH3dPwAhiGMrFKvahjsa\nY/ADnzCMWwHWHHn/HA3Uu9HAq1iFnbZb3PId9JWOlJJv//Zv5zd+4ze4evUqJ0+eBOCLX/win/zk\nJ69bt9PpMB6P70U3HXeBEzv3mOOj8DfjRuFWRxPfl3/fjtuFir1Wr8lN93eH693IS3KzHJ47DWO7\n5fm0K9xR3261vxtdj5t5e252vpcfYRu5LlF0KXiOrn885nq5rlJqtY0dObX/ryuFDUFYGgK2UMFi\nMcfzJHFkjTeBwfMkRit63Q6L+YymrqjbggiDwYATJzY4deoUeZ6TzTI21zc4//BDbG6so1VDHMU0\nZYVaxq5rRRJ1ePT8efq9HgdXLmG0Jk4TpC+hEqT9HmmvQ5BExJ0OQkqquiEvKhqluXLlKmVREgXW\n67S2to4Arl6+iqpr0jRm0OsiEVy9cpm//NxnqauSE+sj1kYDOt2Yui4psozFYg4Yut1+O7pf0bRG\noO+HSAGLImM6sZ6QbqdLJ+1SFAWhH+B7PkpptDGEgU9ETFGWVEVBXVcERhO0ORKj9XUGo6ENWQoj\nFnnO7sE+2hh6wwFRklJrTZ0XlI1Cezlbp04znc9ssvF0wf54Tl3XjAYjHnvr2yirhouXL2OEZLQ2\n4vDwgJ3tywz7HTbW1/B8H60NTaMwyrCYZ2AkaZISxSF105CXFYvM5nwEUUS/32M0siFv050xge+R\nxgllWIJlFYXIAAAgAElEQVTBGqZIPC9AoJnNZqvQo2WYTOAHBL6PEYamKanr0optIej1uoRhZL1g\nnr/Ku8jzBUVVIltPUBCEq9H0umoo6gqtJdOpDXcsihKllc2zaXNdjAGNao9ZrJKuo8gazXbE20Mb\nQ9MmnS/zRaznpl79X7fhQUJe+035vt96gqzx60lpvYWJLQxSFDl1XZLnAeEiQHrWK1RWJWmastWx\noiEMbbjfwcEhWZbR63VYXxsxHA1Ik5gosqKgzAvKsiSKo+uEW1EUeFLa36gQJGFIGsdgDOPDw5Wx\n3zS1DbOqK4RSqDaHypMQhwGl76GaGqVrjG6IwohOt0uUpCuDmlWOiLThVvM5dVXaQQrPZzQakaYJ\n3U5KGFohqpRhNhszncxYLKxnSnoeNAphDLotrrIMHfQ8SZ5nR0SuFZJxGCGAykBTVRR5QVXXCAFR\nFJLEMQKoWy+Rbj0ewtj8pCBoCwe0OTVhGLY5Yl6bQ3PtWbosQrAMm9TKDjh5nlyFEBpjaOqQyrfF\nW5Ru7PO4PSalFBht82l8z3pEAmHzZAIfqayAVI2mMQ2Z1q0wku3zXKOUQWtD6Ht0O6kNN8wWzBcL\n0jSl27WebowhasMfi7pmsXdApWrYNyAF3W6PM6dPIqXkYDzB1Iper0NVNSwyO0hQlxqMFZZLzxeA\nrdPw6siJZVjl0XwrYFXY4X7mwx/+ML/7u7/Lu9/9bn78x3+cpmn4xV/8RZ588kk+/elPr9Z75zvf\nye/93u/xcz/3c5w+fZqHHnqId73rXfew544b4cTOPeZOw6ButPw6I/gu97c0yu/WHX2rfJS72eaN\n5kvpJbvVOTwuQO+G5XbXquTYF9FRcbMSRjfZz3KZ9Dw86bW5OgbdNK3BELVGpbRGu1Z0044NazGG\nyvdsMrqAvb09yrJECuh2O6yvr3HixAnCMGQ+m7G+vs6ZU6fY2jyJJ2H/YIypG0JPEHg+vhQM+13O\nnDrJ5sYaRZHZCkx1Y4PpBPhRSBr6SN9HGYPCZmIooynrmslkhtaGJE5I4oQ0ivGAsigp8xJPQBxF\nhEHAfDbl+S8+z8WLr/DgA2fY2tpgOOqDUSzmBYeHB22Vr4CqrPF9D08G+JFvDc4wYjqbcXhwwHQ6\nswnRaQchsfHzcUJd1WR5DlIgfI8qLzAC/NC3xrOqkcSkcWwN47ZiXlGUTHd3GU+n+F5IL+2Qdnvk\nZU1jPKRWGCno9QZWAKldprMFi6yi2+1y8sw5kD67u3uknS7DQY+6zq13zjScOvE4oe9TFjkmCAjT\nHk3TUJYV62vr9HsdEKCyfBVG1emkJElK4PtUZUmeZ1RFTi9N6XZ6ZIUN6SuSGm2gqhVFWVBVlR2Z\n9kQbimMLQERRSFWVNHVNEIT0e13STopsw26U0iiatl8FWivCMCCK4jYUUKKUac9xySLP0cqGADVK\nYQDfjwiC1kvJtXyJZYjOtVAlm/TfNM2qiqFufx9H8ziWgsd6Dqyws6GKthCCQCKEBCOsUWo0jbJe\nTiHEtRA+KYiikCgMMcYauIEnWczn2IR3aYs+1BVh4DMc9m21RQzrayOCMKDfH1AGIUWRM5/Naepm\n+VABIIkiDMaKHt/2ryisF1VrjapKm0y/DMlqGhTYMCbPs/k3niAMfYZeH2U0nU6XwXBIkqaA9QIs\nspzJdEJR2kIMVVkCCgx0kpTRaESSxPaYVEOZ2wprtsDJtXBE3eajqNX1M/a54Hmtka9aQekRxSGB\nHyKx4YVLIWLzS+w6nifRy2vXWNEhhcBvw9lWHp22iAUrY17Ye6/dFq55zcuytJ7Edp1lfqSKFFFk\nPTAGWu+gh9EapW01N61LDNqKAW1olIGqRmk7aCTb/BYDNlTMsPKo1HV9Lc9SSiuWgoAg8O091jQg\nIAj81fUsqtJWzYsi0k5KNJuTFyXjyRilNUZDp9tla2sTKSXbu7uEgU8cRgS+z8xb2OIjdWW9vzYR\naRk03Z4z69mx2moZtnbt/XJX79lnnrnzdd9o3oB9P/XUU3zyk5/kAx/4AD/1Uz/F2bNn+fCHP8yz\nzz7Ls88+u1rvZ3/2Z/nRH/1RfvInf5I8z3nf+97nxM6XIU7sfAVwJ4bzrdIGbyZQjnoh7qZQws3W\nuxvPyhvNaxVvcPvCDHcbRvaaEcuSn9dmZr42AnjNs3e0otGy6pTgWgUxow3Cu75ogWqTyMGGW9g2\nVmN57f7ti80oTZ5nzGdTjIH+aI31zS3W1tbodntorRkNh3Q6KWujkU3A3tmhWCyITm0x2hjhkRIG\nHuujAevra4Dm4HAf6XsEUlArRaUa/Mgapo1WZEUBvkcYRdRKMc8WTKdT4ihGIKyo8QPqoiKfL0gT\nO7o86PVoqopLFy7w0ovPI9BsrK+xtjbA82A2mzObT1ks5sRJTF1ZAzjtdGylKClWVZaq0uaE1HVl\nS8UGvvV0pB18z6durFAz2PLG0/nMxv3HMbJpqLUGKYjTxFYzCwIQktliwcHhmKpW+IFHFCUkaRcj\nS2oDqqrIq5KiqmiUYb7IKIqaKOqwdeIU62ubHB5O8D3JY48+Slku+Pxffob9vR1ObI6sR2o+Ba0Z\nDYZIAbP5grKo2DqxRRx5VHVbXS2KQEiUsaPYVVlSlQVaKeIwJIkjBBoPSKKQwPdpNAisIAoDKy60\nsjktTV1ZA9MoVGM9J51BwnA4pCgr5tOZHRWvG4ywCeTGWAEbpW2J6kZRFCV5Zj04i6ygKKv2frde\nJc+3Cew2Z6Gy1dba8sJSSJtr1d7Xy4qCy9/KsvKazaEw15UhXg4QhGFIp9MhSWNkW73PhrI1CATa\ngFF226U4qusa1Rr3ZRGQJvGqulpZ+Ozv7zOZThFtwQtjNEkcUpQ5jWpoGltVbDDokyQpURjaHJfC\n5hKVbVWyILRejbIsbRhhK16aukaZa+aq9a7Zanmq9eworVDKHgsYwiikEyQIzyNuvUqmzatZ5Fa0\nLLIFeVZQlhUCiOOIOArp9ftEsa0mqOu6zWeCqqzJMyt0bD6MWJ2n5fWWUiKFDTu0HihFHMckcWQL\nRQjPCtumxvMlTdNWPvPsdV4m2Nsy3noVDrf03qyqp7XPUCtmFVrXR6qwmWvPVSNQjUa31eCW4tcY\nQ57nxHG8qu7mefbe830fqZQVA1oDYpVno7Wh0g11o1Zlr6VYigWB8DwMthpeURSr+y8MA4IwXFV3\nS+IIbWzbSRLj+T6T6ZTpbEYRV/T7fYIgZG1txOHhhHIyZjIZY4xhXW3S7ffZWF9jNp/b6omhT7/X\ntX03tnLlMp7EKL3y5i31jtFHMm2PRYLY95Dh+okujrGxAWkK733vHb323jTS1PbldfAt3/It/Omf\n/ul1y77ru76Ls2fPrv5+7LHH+NSnPvW69uN483Fi5x6zHMU/ylHj+1aG9lHBcrNwtluJluPFDY6K\nn9uFux397nZi4bXyRntrrmvvFuF6x0MGb3aObne8txKQNxKGgmtFCY6GDRy/FkdDH7XSqzkiNKJN\nONX2hWUjb1ZlZ5eaZpkcK6UATRsilBH4Qdu2YTGfoVVDt9vl1Mkttk6dIU1TlqN+ydoaEkGRFezs\nbLO/s8PJE5usjdbo9/okoU8UeiRRQFWV7GVzdna2Cb2IJE4wTUOtFFGQYqSw+QRNg1/XID2K0pai\njqII3Rh8TxKHEb6UZPMMT0i2NjfodBLqquDK1Su88MLzjMcHPPTgOTY210AYZrMpk8nEVuBK4jZU\nqSROUjrdLkmSopoa0OR5QVHkLCuJpWlKmlqPT+B7VFVNVdc07QhwpRvyosAPAgJhK+AZA8rYU60M\nVEozmR5w+fIVDidTPM9WVIrTDn4Q4DU23Kduag4ODpksFhRFxSLLSTtdRqMttra2EMaG3bzlgQfZ\nWB/x3HNX2d25iicMG2tD8mxOmS3o93oE3hq6rhjv74NWiNbAyYuMRmkbxuj7ZHlJWeS2sl0UkqYJ\nMg6pypLpbIr0ApI4wiAoSuuRicLAlmCuKsq8pKrKVgxoMlWTLbI2jMgKKYzGk4IoDO1oNhAGAWFk\nDdwgXl6TGbPpnPncFqBolDX2PM/H9wP81lsjpM2tMFgPRdgaiUYbdHPNoD36O5OyDUvCoIwdiV8a\nt4At1NCWDrf5MbQhYU07p5U1doWxo/9Nc8249TyJL63YMlpRtWF5Qth2lQFTFKvnRhRb8VvVDZPJ\ndPV7b+qG9fWhDefz/VWC+/jwwM4F5Ps0QbjyqvmtoDBtWJRuS1mLZWEH7HNDteF5y3vXCIHXVhuT\nvkdVVcwXCys0i4K8Lakt2hDBZShft9dnfW3IoD+grmvmsxme5zEYdIkjnzyz95FqFH4gwSzLK9cI\neU2UWrFqhULgSTpJQpqkq7LSVqA1BG3JbqFe/WxeJvUvy00vS5kvc3OWwmbpsVuGKNo2lqWipQ2X\nbMt2L+8HpZQtp15VVG1p52VpayFi8H20sd6YIAiRbS5S09hw3+XgkzEG35i2sptoK6JJjIamsftp\nlB048TxBSNDqCltVMDERdaNWz+O8LJjN52RFgTaGfr/P2tqaLdWtGybTKePDAyvegbTTZX044tLV\nK2BMOzdUCkqz8BatCDSoZdTAkdHSpaBBiFVo9fW2iH1/3JQHHrCelb29m6/zpWBjw/bldVAURTvV\nguW5557jt3/7t/mhH/qh19s7x5cYJ3ZeAzfKn1lyNyP/Nxqtv9n2N8sHeZUAevVOVuvBq70/161/\nFyF1d8OtjP5b5QjdLP/lTvdzdNnNjuNOvFFHxeStru+dnqubedpulfp5dL8rb4/WtBbJq9pdBSe0\nxp4N27CzY9qqQtZQLPOcxWKBwNDtduw8GVFIWRSkacqZM6c5ffo0abe3mt8jTTtIBGVR8tJLLzI+\nOOD0yS3e/vYnOXliA7Qi9CWe0CyyOXu7M8oipyxL4lATRQlRkhAKCJOE+cJWJgujGIRHluVt5SXF\nmVMnePGFlxhubjHo98nnGU1dcXJri5MnNpnNp1y8+ArPPvsM29tX6PW6PP74Y3Q6CZPJmDyzOS9B\nEDAYDJhOp2gDW1snWV9ft4Z2njHoxbz88svs7x9iDKsJDH3fR2MoypLZzE422rTGuDEQJwkISbGc\n+wSBiGLmRYEwUGcZFy9cYnd3B4Fg2B9wYmuLOO1awxtbinY+z7iyvc1sMUdIjyRNOXvuHMPhCUBT\nLBace+AMm+sjXn7xBZ793GcRWvH4Wx/h5OaI2WSMbkrSaB1fClt5azaj20lpqoKsyphMxwjpsbax\nQa+TopSdGFQ3im4nIQoCijxjMZ9SlSUntk4yGAyp6oa9/bG9roHHIi/I83mbEG7DqlRdsygKO69K\nt8dsOkM3inqVkB7bSQ2RBFGE3xq3ZdOQZRmTyYTxeEyelwjp4wchURTgecG1KlTSWmRSCmIvJIyX\n4Zg2LEjVuvVaLr2i9v9HBwfKNuxQG4MxEAa2IpqdPNdew7zM2ipsR+ZRQbZGn16FqQkhME2D9gxe\nECClzcGo67qtMuaRdDsgvLZ0sEe3m9LpdGw7WA/CdDIl8gP6gy5xFNPr9dt5ZHJUU9vfQtPYHBhs\nGeEgDPCk9T7ZSnqlFdqNptEK0YZv1U0D4lo461JcFUVBk2nmiwVZO/eQ5/sobUP/POQqXymO7bxY\nJ0+eJIkirm5vU1Y1aerbCZArsxIUGFt4wooM+7uznkTakMXIXhejkTKi3+uSJAme51PVNXlRopVG\ny2sVzVbzLPm2ouRy3h7rnblWKMOKCUPdesvKslx5gTxpS1tL4YGxJcWX8yc1StlnqRRtSFl7z0iJ\nhrZinx1AWlbyk9J6anxPriq5GSp7jo1BazsJpxFtsKUQrTfFlphYiuXmaGgdwobESg9CWwq7qipU\nO4eTMYbD8ZiiLJG+T7fbZX19HWNsjt5kaqtlgmB9QzMY9Lhy9QplbgeyojghTROM0eRFYcvIewKN\nQF03EHYksO1Vnh3V/v82L7kHHnjdQuPLgYcffpj3v//9PPzww7z00kv80i/9EnEc88EPfvBed81x\nlzix8xq4GwFwq9H8uxVGtzP8vVs3cJ1BvVp8tD/tv/rIi/Fm3Enuzt2KvmUbNxN1d9vurbjRg/xV\n67xOz9LtztHRF8sybE1pfd1I2tEiBUuvjm5FzvVC5tr3y5HLZflUW9lJr0ZObVKwHRlu2jktMglB\n4BEGHZIkYdDv02kn/wwCj729XXZ396hLm0MipU9ZlMwmY9aGQ7767W/na97x75AtpnhSkC9mHO7v\nM5seImgYDgaEYUhdGRZFwSCKCOOIRZYRJjFJYI2dpZGilOL06bM8//zzjHp9zp07i6kVi/GEXrdD\nt2PLsl65comXXnqRy5cvIgQ88cRbGa0NAMV0UjCfL/A8QRD6bYW1YpW87vu22ECSpJR1wdWdbeaL\nOZ20Y3NZggilDNAwmy0YH47xw5AkSRFGsMgyRsN1Gm3sjPPzjLTXY7S+wWAw4MKFC4wPxly8fBnV\nKB588C08/vgTpGnKYp7RtKEsV7e3ee6558jKgouXL7G2sc5f/cZv4MyZ80wOF0ynYx48e5o4Cvjs\np/+M577wDLopeMeTb+Mb3v21TA52uGQaOskJBoMBZZaxt72P5wmGvSFVWbG3WDCfz+n1+/S6XeIk\nZTydEwUB/fV1kjgmm8853N+jrEqSJGFtOCBOErL9fQ4O99je3sEYQdFUKK1Jk4jBYEAQBFy+fJmy\nKhiOhqRJCtrYvBOtaLRAiMaWdRZ20kOlNVVdMZ/PuXjxEgcHE+qqQUifMLLzIMVxurpn67qG2hDG\nIaORLYVclBkHBwcsFnOkkHTSHrK93wGSJG3LNnur+6pqR9+tlwO8viSMbFnnZdjV0kBehnsao2ka\nW23O/oYNoDENqzLuQtLOa2J/m91Ol7XRGkGcYoSdxDZJ4yOjxMsJVm14XdnU7O/vIxEMelZob6yv\n01SVnZ9JCHwhUY0NgTIGPD8g8EOqusQLAlv5T4CvNWFoq3rNsgXa6NaA9zC08yx5AZP5zIb7NU3r\nvRJEQUAQRKtnRtrtsbGxyfr6JmEYM55O2D84YDKbschzsryEBg4ODuzEq211PmD1OwsjW1UtTVMG\ngz5CQFWlbG5u2FDaNsy2KAqKLAdjmE9nVO2km3EY0ev2bKEMY2zCfivYZrMZi8UCY4wtjx0EtmR6\nXdmQUwOBH63mNbLCoFndC41SNp9mNUmmYDnZ69JjpLWmamqoBI22Ewwvn81+W/EtSZb7LqyAasPh\nrOcptNdZgEEg2omQtapXk6cuhWUUh4jAw1MSTUVZlWR5QRDY31pRVcyzjL39fTwh7Lxlp09Ra02W\nF0ynM7SyoYpRFLGxvsbVqzvMphM7KXQUU1X2HNn+sCpo4rWlv4/mjC6LViyXWWFm7kDt3B88/fTT\n/Pqv/zpXr14liiLe/e5389GPfpTz58/f66457hIndt5A7lYcHF1+q+9vF0Z2L7hbr8tX2v7uFcvr\nrdqXjte+dF7l9Vte9huckuVLajmD/TKEwo7C26RUtZwQTwjqpkIvGvq9LsPhkEG/3yYGWzf+9u4B\newdjFnPr2YgjG9oVtaWdH3/rW3nwgXMURY4Qgvl8yvhgn6aqGAyH9Ptduu2I4sULV+h0uwRxhBJw\n4tRpmtbI7HR6LLKMulYINPu7ewz6fR49/yi6rtm+sk2RF6wNh0zHB8wXEy5ceJmrVy8jpWDrxAk6\n3Q5BEFLXyxnYk1WoS57nDAYDtrZOEgQhs9kMgDRJ2N8ZY7QgSTp0uj263R7D4Yg4StqwG0FRVsRR\nQtUodvf3URqiqCArSrSGM+ceZPPUSbwoYnw45qWXL7C7vcuwP+SR8+d5y4MPkqYdFvMFB+ND5vM5\nV7a3eemlF9nf38UIWzHr0fPnOXVyiyjwCH3BsNch8iXPfu6zXLzwIlW+4LFHHuRtjz9KEvlUUciJ\njTW6aUocRswaRRxISq3RTU1ZFowP9tHYUsBN07C/v4+qS0Lfx5eSwPNIkojRaMja2jqDfhdjBIeT\nMdliTieNOXP2NEJ47B7uM58vKIoM1dT0+33OnDrF27/qSXzfZzyZsre3x2w+RxsIopgoStrJPzV5\nWTIej1ujeU5V1iilEb5HGEZ00rSd9DOkaTRJErfznBiSxIZBLuZzDg/3qar2GII2t0JKhuvrhG0J\nX6UUZWnnaNnZ2UFKyWg0YmNjw94Xgc1xmc+n5LkV2WEQIj0bDrasuNXoGl3XNlyuDXvyhGhD7Dzi\nuBXQntd6AHzKsqCsG7QQSE+S5cGqWli/32NtbcDaaIQQhvHhAfPZAqM02WJGHNrKf4PBwBYOqUri\ntIMYT1HaELSejrIoUY1CCLkyzhFiVX0sDEPyoqSp7dwzftAm8AuPYa9PEtoBh6woViFdQnjtJKkJ\no/6QbqdDXddcunSJyWRClmVI6eN5AUVRMT0YryaqDAL/2oCLJ63nQGuMVgz7PR44dw4pBbt7O5RF\n0ZasVjZfKMupqoKmUfi+JI6txy2OE8J2PqimaWzVurKkKIo2zPBa+ehldT2tDIFs87zCcFX6ennt\npJSEUYQfhdYjplSbe8N1z9qjbRtjw76MMIh2vaaxy201QjshsQoUtamtkGoHbsIwxPc8pBQ2PE2A\nEB6Bb89Vnttnp5AQt+W1/bpePcfDMCQF0kVK04Y9jmdTknGXtGMHZwaD/ipsr8hyW/J9OMAYw3Rq\nJ5NVSoFukOi2miIIA0ayyl87+v6wuub4kOi/HUIH4Fd+5VfudRccbxBO7LxBHM+tgDsL3zoaYnGj\nNo+2cTOD/3aC525FwjJ35Ha8HgFyPF/oTnizhN2b0e7t7oXj+VhHtzs6ukZbVvXo/SWEwAjzqjau\n95CxSo5d5ugsY8LBjj577ch1FEVI2mpAYcj/z96b/FqW5Xe9n9Xt/rS3iciMzKwmy3alhdOAkJgZ\nDBIlIyTzkCx5gBggxORJTGBQEhKyVAhkWWKA9BggBpbwEOlJ/AHIxR8AYuBXz2BXVWZlE3G70+9+\nrfUGa50TN6MiIyOzKssuXqxUKm/eu88+++yz99q/3/p2Joqk27bm9vaW1WbPMDqKouBsucTooL9Y\nLuZ88xd/kV/6pV9iOp/ixhGlBHV9CEGciSEvShCSj59c0bY1RTGjt5ZCaV5/+BCdGK5vrkmSJK4w\njvRdz36/Y+wH3v0Lf4H9dku926OV4vxsgRstm/UdHz35gOubxygFl5dnPHjtAdOISF1dbdHaRK59\n0A8cE8mFCJbBLgqMr2+u+f6f/oB+GFjM58zn51STGSbaJQcnKYmSmmG0gOJseYk2CftDTdMOaJ3g\nhWJ/aPHdyDA6Rut57fU3+Mbbb/P1r36VPMu4u73j+vqa9WrFerPhyZPHIaPBO6qq4lfe/RUevfGI\nPEuxY8dufceTjz+ibRu2mxXSWy6Xc2aTiqFtuHn8mM36lkmZc7aYYXSCGyzGGOpDw7pZsdvumc2m\nFNMqGEzYkcN+fxJJOxc0B0qIGO4YNAqHQ40dR5RWFGVOYoN179xNgyX50JLnKRfnZ8xmc4SQrNcb\nNusVQ99TFDlCabp+pB9GkkwzWsdqveHjjx9zaBqkNiiTkCcpIKIWRQKONDXAwG63IUsT5vN5KN6b\nmvXdLW3TUFUF09mUNM0CYmRHnLNBi2QtbdefVtrLMlDILi4umUwmCBES63f7PW3X4ryL7lcBzXHe\nneZnIUQwYIir2jLeN3mek2WhOB2GnrYNlKjgqmVJsgKlE7xXOGvZ74P1eV3v4/YNWZoAnt1+y/X1\nFUYKFvMpy3loNPIsxVvLchHziK6DBqqqKrbrDdqEzBYXjUXarsekwW3vgbhgeziw2W451A3eWvq2\nARmykgTBzRDgYBuaridJJJOy4vLBA5aLJVJpdvsd2/WGtmkwSiGMwXl/Ql/yPP/EXIP3uHFg7Eec\n86RpgjZBc+UJFLW6rk+ozBGtDhqZkA+WRwv3gPyM9H2gpe12e8ZxPCEiR9c0GU0ZwiJPaBaVUsho\nkX50eTvOm9Y6Rh+0K0etV7DtV0FPpxRKytPxnZBxAuXsKaIe6HtofbqGrTreV+MnngfmuDolBVoG\nSpu1wTkvNDX6ZMbgfaCIHj9H0CllmC4gUpvNFmNSzuO1uFgsaZue1SospJTljuXyjLPlGYlJ2O8P\nkX5rY4MWgmRHJ/Dj0yb+eC6PSI5zMYvp9HwJgcCvxqvx8zReNTs/4Xi2yXmeeP15jdDn2f9Psxj/\nMY3P86hc4an1uff7qb97wb6+6Od7GQ3OzxL1+qKmBc/+7Xk0N+f9CeE5DuvCQ/Z+Jg/ERtUTuewW\n6cQnGh9iGKS1FiUDVaOqKrRUsWARdH3Poa7ZrFfc3Fzj0cwXZ1ycXzCfz0IehXN84+2v8xd/9Ve5\nvDinPuxp+oYsTRFCUpQVZZGR5Rld23Bo2kBNKiu0SSgmE/KyjAJZwX5fI5XEjRacw0jNfDlFC8FH\nTx5jtOHy/IIsSbi7vWOzXXNodggFFw8vOD9bsFzMmU4q+nHgUB+QInDw8R6lNGkaxMZ93zGO9uS0\n1LYtg/WU1YSzi0uWyzOM1uwPDbvdjr7taJqONMtJs5wkzZFSs69rxl2D0ilJlqFUQj84xjFk2ORl\nxZuP3uDNN79CUVQc9ntu71ZstzuapmWzXrPbbLGxyfqVd/8Cv/hLv4jQCjt23F1vePzh+7z//nvY\noWc2n5KahIvlnEme0dYHhsahBBQx9+Ww37Ne3bHbb4O1sZckqcGKYPJgjMYkGVLpsNrb98HRypjg\nrtZ13N1ek6ShwJovZqRFznq74/bujt3hwKGu8d6SZylFkQUEsD4wRKvroijIi4LRetpuQMgE5wX7\n/QGpDfPFEucFP3jvh3TdAECSpKRJGv6bpqGYLwvqwzVD3zGdlBR5Rte1HHbbQL+bVNHFLMc6R912\neC9PNMhAjQoIgIwoyWw2o6rK4ELXBxpR33W40Z7uD+L9Q9RfqCgyFyooLly8F7Ms6E+6ruVwCM5q\nx9/EL9IAACAASURBVEUKrTVN21JNLHlRYoxBKokdI/LgbAy13ZFnGVVVkGhF37V0NqAwQ99TFQV5\nljGdVJyfX9L3LXgLzlOWJbbvAYe3jq7rab3HDT1WgpEV08kEBNhhAOcYrCX4mIwR4VDkaUKepuRJ\nStP15HnOYnnGcnmGNob9vqY5HEKOVnQOs9ZyiAHEaRqQUxsNHQKN7Tg/BQvlogzN0G67oe961nd3\nweSi7dBaBYQsTUmi9fTRcMDHhuqIWAQr8dAMZVkW9T5Hk4DQAIWGKdhJHylYT+3G3VMDg2gScPx/\nIQRKB6tnaz1CxEbmHtJz3+jgOO96T0D8rI3ucTK6E3KyyD46A44ItFQooYKJiYv042iT3vc9UkWU\nTgiMSUhsuBbtaGMOUPi8ddOx3mzROmExn1OVFYvFgrqugxZsuyFJEiaTaaQRp9RNw7AKAa0hi0gh\npMB6x3DvGRFKABcbOQdRv/b0gffpi7Svxqvx53G8ana+4Li/yv5pBfanNQD3i9rnoRv3//aTFuzP\n2++nFeYvW7B/kWP4ojqn552fz0vr+6lofD4Dqfm07T5t+88yObhPo7ivxzmZE1jHeO/6UFKipERG\nt6GQKu+RkrCC5010CgpUj7A6HXJFnNcUeR4tTQOfe7vbsd5s6fqBxWLO5cUDFos54LDe8uDynF/8\nxW/w8OEl3jnqw566OQRnMwmz+ZQiz/HOMdgak2S89vojRgSTyZTpdIaNbkjeQ9O0wbFJSMq8oMoL\nlrM5t1dXeOsopzmJUYzjQN+37PdbRtuR5gnLswUXDy6ZTScoAVdXj+n6ntSEPB0hiGniwbpWShXp\nRAbvoShyHrz2iKoqQyJ8WdH3He1mx2a7p287lArUH2OClqQfRrbbA95LsryMbmEpTkjqZs/hsOf8\n4gGLxRnGJNRNy83tHavVmrpuGIdgf300hFjOZ/ylv/irfOXrX+H9H73PD3/4Qz760WM2qxVGCYq0\nYFLkGC1IE0NiDJlJMCZkGRVFSlM3XF9d8+T6irqpkUqTZQVGJxzaBmNChkxWFCRphrOeyURSlSVS\nwnq9Yr1qGXqPcxdMpxVKG+TuwN16zXa75Xa9ivMX6BhAezjskYQCz2hJmqQ4D3XT4WwfDBy6jrvV\nmulszhtvfYX58pzHN7c0N3ckMfspSVPKsqQqQ3OAs+y2a86WC157cAkC1qs93lsuLy+oyjJ+h55D\n00RnOBfF/YHiZKNBQhkNJ9I0hHU2TUNdNyfUJ8g2gmV0sHEPhh7W3nN3i/egUkc9wxFx6D+BNBy1\ncgDOjox9h/fulDd0FO/bcaCp9ySJ4bArWC7ngb5mMpQUAZ0aeryrmE0rqojebVcT2rZBS0GWGJSS\ndG3L0Dl0DLf044gbe5RJUHhSoyDPGOMCSdcNoDTamEAR0wZfVYzekSY5ZTVBCs9hu2G92dIe9mRG\nk0TaV2MHsCP40DB5Z2NAbwdEKq0SKB3usyIP9ta77ZbD/sBuuzudayUVWimU1qGoDqc65POMwUXO\njjaeQxmvj0BvM8bgnKUZLd75iMYonPMMwxid+wjGA/ealqMl97GBObnZRf2Kcz3DEOZypUQ8pqfX\ngRfyExEBR5MErRVKy6CzAkYhTujpMDiMSJBahCwzR1iZCgB+dM3rY0aPRCeGTKvofhic5WwMjQ2H\nIum6kEVmTMJsNmOxWHA4HGJob8NqtUIIQTWZMpkEA5r9YY+O9L/QmAb3QKUk2smI4hzd1vyJKv0J\nZsErYOfV+Dkbr5qdLzDur7C/TBH+bAF7//f3G5/7jdMXKdA/Sxf0Wb+/f5zPe8VP0jR8ET3T8977\np6Xb8WGnX/j1z35Pn9fg4EV0xGf1Ofeb3mNBdaRNnwJHRbCUPZlMOIv3Fh1Fx0omjDGkz1qL8I5R\nS7I8RSGZTifM53OMMWw2a+q6ZrSWxfKM1157nYvzc5RS7LZrtFY8fPiQy8sLhqFndXfL/rCl61ra\n+oDSksmkwiQJfdcjlaYoZ1STOa215GWFSdOwckgQyEqpcKMlTTOqSR6QKA+r2zseXF5SFDld11Af\n6qivqOn6lqIqSFJDWRXkRcZmvebJ1RVFnuNiwSRlcDwTwkXKTXZKprd2JC8KHuYzirygyPNAh3F9\nQEWSDKNzqklF3wXb6bpp2e8b6rpD6YQkyVA6QZmMcRzY7Q5sNhu+/rVvoLXh0LTYYaSuW/ouCODB\nUxZF+I6M5OJ8yWsPL5lOJ6xXt/zg+/+L9e2WzBQ8ev1BoLx4T5ro0yrxfLGgKlOW8ylNW3N3t2K1\n3tB0HTpJKIqKIq9ITEppJ5gkQZuEfrR0bYdSgsViyXQ6OTWQUglSbSjynDRNaLqOzXbFenNH09UI\nAZOqOukt2mhtnWWBzmWtp+0H2nag6YJIvO4G7jZb6qYlzYM7WJonZFlBWQ0sFosQDCoFRZ5TlMEO\n/G61wo4D3/ylX2CxmPP+++8xjj3T6YSLsyV4GKK98dD1DENP14XAz7pu6PueLMuYzWbMlwuk0Cd9\nxH6/53Coo1mHOuW0hHstXJPe8TQQ0wcXuKMLmBAifo9EfUu00o45LwKBNsewShtRH8/oQrhqkoQA\nSR9X7A/7PWmiUVVFWubkeYY+UlgB7yx1vcc7i9EyrMJ7S2ICCjD2QWOfpQZBdFvr2pBp07VoPDpL\nQj7UOCKinidJM5QxCBHc2zzhv2PXUNc1292etutRUpLFe6PpOoSzpFojgWGwMR+nx/tAg9JGobVE\na0NZ5BilsKew0D40y9qgtQmNQaSEWRealmAKEYwpAuXqqWGAMQYpVWyyHEM/4KxFSXmyz6+b9kTT\nVFqTxNf6qM/5sTk4osDH83BEgrz3MVcqNAHHxSQXrfu9B7x6igqKY4RAoJ/FBw3DECiIgzKIMaDZ\nKIkUCiHc08/bDyRK441FYE523W0XPqN3/qQbMyZBCEldN2x3e4qipCwrzs7OT7qmrmvZbDZY66im\nE9I0pcxznHXUcYHACwUyoHPwVLsD0XzD+5Nb2/HZ9FN6DL8ar8bPbLxqdn7C8bINwPNQlBchHp9H\n0/KTNhLP2/bZV71In/OzpOj9WRkyfJHxIpTvZXRWpxXDuP1xJVFrjZaKMQp2xzHYQgnB09dEm2lr\nLTrLkELixjGUM4JYtCmcdUymE87Oz5nOZjR1KHKcc0wmEx48eMCDiwfkWY5zlsVizsOHD/nKW2+R\nmITNZs12GzQn3oeU71IHXYyQwWZ4KlUsEIJVs/XQDkMIsMxLqrJls1rjrUNlktQk9F3Ljz78ECUV\nZVlgx5HdNtgTb9ZrnLcgPcYo8iojSRPqpuGjjz+mbXvSJGWULiaFw2hddE3KTsUteLq+pWlr8uoC\nk6ShEWgObDcbdts94+hj8ZaSJDl9HxCdw6ElzQv63iFUwmS6QClNvbljsI6ynJIXJX607Hc1bgzU\nnKKoaJsGiUaVFcPQUZaX/PI736TIEv70j/+Y7/+v/8mTjz8iNTnTSUGaBiHxxfkFOEtz2GN0oOUF\nel7Odrulrmv6YUApQ5YXTKopeVYhlUIQzkXbDey2W4bBUk0nlFUBgujw5ZhOpyRa4vGs1is+fvKE\nDz/+mN2hJisyzi4vMRKePH5C20akQ6tYrI1IqUiTNOh0+p627en6ESkkaZrTdB1Prm8wSYKXkuXZ\nOZeXD3Axq8QYjXeOzeqO9fqWr3z1Tb75zV+ICMyAVpLlYobRmvpQ07UdwxDoc+H9wvULgul0ynw+\nZzqdhoZgDM3u0Y1rHAeU0p/IahmGgb7rGYcx3nMeXCheTxbY8R47Zt4kSUKapaRpBlKEINLRYTxI\n77F2POWfyBjkuTxbcnZ2RlVVCDxNtH8/7HfYoQMXclFMDH29ublmv9lQ1we8HTBKYIxEywzhPaOW\n+FRjJBgJwg5Ib2EEP/ZoKUiMASHopEAJH5C+NEWqqL8ZBpqmoe16+iHorJzzFKkhzTKUVuwPDWPX\norynylMcGbtDaCyOhXlodMK/aZpSFQXeh6DXYRgC0hDtvoN8MCzmDM6GvK04Nx7DOo/N5DHzxnvP\nOIbsoGNhfh9VO36H1gbXyTRJT9S7IwJ3nIOPdEcRm6djM3t/oclaByLotIgGEJ+Yw+P7CxnDTP1T\nd81gAmCxVsZm1+GHgMwoIZBGoYQISO9okUAne4iW0NoE9EWImAeVJLRdx9iP6KRAEK7nw6HmcKjJ\ns5zpdMZyueTm5iY4YA4Dq9Ud/TBwdnYWdItSYmO4q3UOoULejxAqBlM/dWQ7aaq43+y8orG9Gj9f\n41Wz8zMcz2sYPiGAfWa8LMrzZdDPnqft+XlqNP53Gt77U0r68eGvtf7kg9k+E0TqQXgXi+zw0LU2\nipJjYXB0o7q4uGC5XNL3Pde3N6w2G9I84/LikvlshlKaoR9JUsOjR2/yjW+8TVnkDEOLxzKZViRa\nB7ExliKvUFpzqJtI1Uooi5J+tOSFDvzwYURrg8eR5znDMDK0LdOyREvJrmnZrFacLRfkacZh3HF1\ndcXV1RVpYqiqgrPZhMl0wnI5px9aHn/8mJvbW4osYxiCq1aWZlGrE1yEAl1FMwwdm+2GzWYDKJSZ\nMyQBJTgcDtRNi3MeHYXOUoRipe166rqh6weyItCi8rQI52gMRW5VTVksFjgLRVEh3J52HHGOp9a8\n3tM0NbPphPliSpalrO7u+OH3/4T1+i4gcokmTQ3T6QQ3Oh4+fEBz2DMpS4qiZOgtSgpuV2s2my3O\nwWQ2R+kgZE5Mxjg66rolNRolXWwI2tO8s91uQxE4DGQxh2PsWm5urlhvtnz85Al121JMppxfPmAy\nm7K6viZNE4xZUJYVaZrRdz1lWTKOju3uwG63Y7XesK9bTJKR5TlD07PebDm0A2U1QUtDVVQUeQnC\nRz1Lx3a75ub2msNhx+uv/SWyLGW9vqNtasCjhQzIidIMYmTsW5q6posCdu890+mEBzEnCIJBRVEU\n7Pb1ycErUKGCJfE4jjQxc2ocLDpaDycRqTlS04QkFoljpFC50Dg5Sxspkn03nGyY8ySJQnARKGNp\nwnQ25eHDhzx48CCcs6EPdEWt8HbAxeaoaztEotFK0jSO/XZD1zQ4ZwPtdFIhEdSHPW5IkN7jjCXR\nCuHdqbhXPlhRV5MSpTWjHbEOHB6lTNTGQNN0+NHBGPbh0gRPCMtFCtq+Y+xbtPCoNDQWo/MkicY5\nQ5oGZzqlAsXvaHWcZQlSSZqGEEArJEYHh7S+O2qYHD6e51PujBJoFEo9neueDneay47Pv+N3Ec49\nJ7QtTVMc/nRteO/xPKUGQ8jWOc6pEHJ4RhcCRhM4NTn3UY3jPOvxIWjUHTWW9mQrHhAsHZ+dAuuO\nWiARMrY82MjbO6I7bdtgfTBCSL3DiXDtVVWF1Jp+HNjX7al5V1LirGO724Usp6JkNluw2WxODXrX\ndex2O/IiRysT7vPocNh0I/be4qsKxp2npu5+feFcsDE/5ri9Gq/Gz8t41ez8BONF1KVPaw4+jbb2\nov2+qJl5kTnCs/t+2YYllIU/TtH789bwfNp5+mm/x2ft94scx/OQnhe97v4qJABphokrmVKI4BAU\nCzLvPePgsDY4ASVJEl3JxEm8DWGl9eLynPl8zjiOXF9f8+TJE/q+5+LikoevPQQPXd2hVcLZZMnl\n5SWz6RRjFF2kNSXGoJVEaYEQgZ4TKCg9QjxtzOpDQzELouHRhrR1hOAHP/gBTdOwnAUqWdf1HPYH\n8iRjNp1SVSW3N9cc9nuUFCzPlyyWC7JpoOG1bcv11Q3b9ZqiyJiWU7RSzGdz8ixFcHRiGkiSMOXt\nDwdubm5o24bZ4ow0L3BeUDcdXd+jtCJLp2E13ENRlKzXWzabYC4gpKY+NORFRTWZUFYVu/0BYxIm\nqWE6nTGdTgNVUkgOdcPq9pq+aZhMpuDGSLNKyNKUer/n/13d8OFHH2CHnvlsSlXMTsX4/HzGfD5j\nv91Q5HnQn2QpWRY0C6P36DQlryaUZRkyahCs7jZc39xRLhcB3bAD/dDFRuiIXlicHQMNyBjcINlu\ntlxdP2G73ZCXFecR+aubOjZII8tIcdRK8/HHT+i6lrpuubtbs15taZsWIRVFUWKFZBgOtNGOWUhF\nnpdMJrPYRHjs2FMfDmx3O5LEkGVnzOYzbm6uefL4CUPfh6wZG9zWmrphtz1Q1w1NU7Nrdmituby8\n5PLykrKcnIrXoihIkoS2C0GXxpgTValpAuUNQmFqdEISLZqPYvBjw4PwMIbm6YhmSCkZhzE0u9Yx\nDtHtyhhEpL5pEyyQ0ySJWisDEBzG+h6TaKbVBOEt9X7P0Hfh/hUGKQR2GEMuincYrZhNJ1yeXyAF\nrG4lwgW9Ttu22FFQ5MFJ0A5Bi5LnGdU05BD1/UDX9zgRtElEDUaRZxhtgogfGEZL24Wcl6ZrGbqO\n1BjS/Og+N3Bo2kgrC0YYaRpMP+w4gnOAo+u70zyWpAl2tDjrolNZEPQDeEEMQw3zndYa1I8Hwx4D\nTI/W+p9AaISI1toSY0Kjo5SiiRbXxwbnONdKGRrnY5DoU1TnaTl/fE4/jQCQcfEETtbMLlDYvHua\nUee9vPcagRQwjB6ZqKCR8tAPI0Z5tJRIIkJqwfjQ1CulAiVOK1SaY9KUQ90g7jan66+MSE19qBGE\nUNJwfYX5fjKZIKWiidS+NAWldTD2sBZHQ927UzPj/VGnEyidx/MR6MZHO+oXPd1ejVfjz9941ex8\ngXHfZOBZ9ON+wXo/7PHZ1z+PxvYidOc4nt3f/X3dh5qf1Xm86LM8Ozxwfw3t/mc9NkLPHNQL9/cy\n46eJTn3hfTxz6N5HY6b4iWOL+lyKH3x683r82/Ne8/zv6Hgunq7cCSHC6l8UwtphPK0kSiHRRqKk\nitqHkJsyjiE4NE0ylrMpWnjuugNtdwAgTSbkqcY7y3q14/rqirZumE2mFElGbjLausYOfXCEmk5C\nArfwdEOPJ7gXeeforQWpKKoKJRVNt2ewljxPSbM8CLPHAWEleRqsdPu6Y7dd8+Txx1RlwXRagYKm\nbZGpYvHwnMnZnFF4btY39GPLfF7x4HzBxfk5o4bdfsdHHzzmbnVHlhnmy+BYNpuUlGWKHy1D1yO8\nRXiLt5LeWva7jmFUpNmCyfSStCwY+wEvBVlWkCUJqTFIISNH3nKoa/pxwIqgoUBAVuUoLXB+RElI\njUS4HiNGjLD0XYvrDtSbG9Y3HyMRTPIgYq7KlDQzQZ9ye83V1ROaumYyrcjSFGkUifFMpzkXl+c4\nAUKnOGUQpkCaksF5hq4Bl2AUJEqR6oREKer6wG59Q2o8+SQYTzT9AS8dJjMkWYZHIB2oRKCVxNqR\nph3ZbmsO+5YkzZjOpiSJpql3fPTxRzSrA1maMZ8sKfIph6bl0Fq2hwN3q13IZGpbhNAkSUozDLTd\nQFsfSKQgTRQTI5kUhuU0xRhN3exptnd0hy2FkaTlHOdHUqNY3dyyur1DIMiKEoug7nq2dcu+aanb\nlrYfUEJRZAVf/9rbJGnKMIRiOgR5Crquxx9RAykjdS4gC3a0JGkIjNVKh4I2Wg9bKxmHgJLYcWQc\nhpA+7xWSIES3NlhVCyFCeGikXRmjg97EBCMBpXRoONqO3XoTmzFPonWwabYDzgY9TZamaGXweJTR\nGOnCvpSKDW2GwJNnGX5aIYUDN6Aw+CRSXKUjNVVAORODUJIeh/SCbghidyFVMOBQkkEJus7SNB1D\n1zH0AzhLoiApUpROSLMMhKBpPEMfxPZojTYSo0RoQIwM85Qbo+PZU7tnay14YiEvsDY0Gy4A1E/d\nIiM6YrQ52YGPY6CuSSURhP27KNgP7mE+ICpSogwgHdY7Rtsz2PGEZkilMBFpQYGSIlhjCxFoazgE\nT+36vfc468DLgMr4YCLwiedDbAKEACfCHgQSpERqgRIKZHBFFHisOzZpkJjg0IYfUUIyoBmcJJUJ\niZI479DekkuY5wn7Mudq10eac/jHOsuhPmASxWIxZ76Ysrq7w3kbDFQGFTSUQjL0A9oYyqJCqQTV\nBh2bVhF9sh7rg9U8iBPK43xwKHSvup1X4+dsvGp2vsC4X5h/VnH7RYr/z0Nfe1GB/aJ9v3A825zF\nYzkhPi/a/0sfyec4ns8xPm+jczrX8ImDf7q6de93fPrn+6zv4dlr5dlG9+nPx7N8bGQEUkSL0HgQ\nx3Tzo1+OjA3YcWXzmD2hVIVSgjzLSZMUJQV27OmaQ7DOPVtgtKbvOtarFfWhxmhNVZUkxmCHka5p\nMVozn89YLOZkWRrzQdoYIBhQGucsaV6QFyV2GNFxdTVNM0yS0HV9oPHolEynjAzUux1PPn6MUYrF\nfI42kqatafsWnRomVYXJEj76+COurq+wbmBSFcwnJYmGphu5vb5js9rirMMkBqVD45eXwamsGwb6\nvg7BlaNnUCNtH8wCwJAXM7Jiio/2q1IrEqnJkpRU6xMn/uZmw26/Z7QOoQK1pqqmTGdTrLdst9uY\nyt7iGBj7hsNOUO8PbO7uaOsdiZJkaYIg5HJMpyXeO1brNR9/9BE31zcI53nr0SNm0ym96/EajFGY\nxND2I1lZYHSKTnOUTmmbmnrfMo4e4aC3PXtnaZRkt9+yWd8ym8041Hv2dY11YxDsz88xaYF3QUwf\n7Modw9CBUKzXO4SQXFxeMj+bM1rLzc0Nd3e3FKJgMT9jPl+idcp+v+aDj5+wbzqub1fs9jUoRZ5r\nRufp6pq2CZbEWWKYlAXTMqdIDXmm6NqGzeqGw26DkYKqmqCj8563lv1uixBwdn6OSVPatme12rDZ\n7OiHgcE5VJKwmCx4+NpDJtMpbdvSdX2858K9dqRLjcPA0PenVWwlJWmRkOdZ0IWoQDsKlL9Q8I+j\nPd6WOBtCJaVUwd7Y+3APRv1SnmUUVRnzd56aHwTHREViDOPQs99ZBME9TeQ5ozEIAWmSUZYZVVFE\n+mm4r1PlEVEbp2RAAWS834s8C1oeKfDWYceRpqkZhvE0f+hoBKBCaQxuZPAesAgfCnPpLXbs6dsD\nbnQYIUjy4JanlMHGhqUbBrwdUXi08JjEnCzMZURbhnGg60asD6Gi+GCBL6PV9DFbq227YFltHaN9\naqd/MoSIwaTD0NP3HSAQMuiMxtGemqejV8vxNVKC8zY2FME57pOITZhQpZRoo3mqT7E4a+P2x8W9\nSDtzHuHDwpNQT6fs48JYmMvBeRe0MHHxSRuF0h6ngn4tGDEEW2cbwBISrZAiLFhZL2n7Adl0QUPn\nHd4EE4ZJlnG+mHNwB/b7XbgOpAYk4ziEjJ2qYHm2ZLfb0nfdqQnzLjQwIaQ3LAQkaYZODV3b4BxY\nK+itO22LF8hj9s/xWfUZj9n3N+9zU9+8eKMveZwX57w1e+vP9Bj+dxrf/e53+fVf/3X+8A//kF/7\ntV/7sz6czz1eNTs/wXgeresTKMhnNDxfFIF4Gerbi7Z92fFpn+3Zv3+R93ge2vWi8/FZDeCXQWF7\n7n7984/9/s+fdozPO1/Pfq6nr/1kI3RcjdQy0NSOjjxHi1furYgGnYxBa02Wp7EpEVHUHl2jjGGx\nWFBNJzgbHZqEIM0yysmE6XTKMIQ8htl8xsXFRcw0KU6hgODRWp5WVsuiJE8ztu0WECFV3CSRc++Y\nTmek0QLa+WAR3HUtlxcPmM9ndF1L07RY68jzgjwPwvsf/OD7HA57pmVOVRUoLVlvVjxZ77m5ucF5\nFzJPIk1vNpmglSZmG+JcEF/bwTEIR1139P2ITlLyvCBJUhxhO8Enefnee5qm5erqmvVmC1IG8f9k\nwvnFBUIo6rphF7NzvLCkmQ46jq5nt96w22xQUnFxcYExOhRsImTL1PWB/X7Pbr/HOcdsMmGxWDIp\nSzrbMsqgt4gHw3w2J01zyrxEeE/XtcG+O1Qp9F3NbjvgvaXtn9ovX11dM4yOLCuYzZeBSic0CIXw\ngjHa2h7PYV0fuHxwwaNHj0jzjKuba/p+oKoqHs5f59HrbzKdLzg0Dbd3K9774XtYFJvdAeuhrDJS\nk4YVe4LYXCtFlqZUVcVkGihmbdtwe3vLYR8smMsixyQGcGRZxW63xXnLfDEjLyq6rufubs1qvWIc\nLMoYdBIE9A8fXvLo0SM2mw11Xd+ja46RVqbx3kVb3hqtg3bhuDgQ7MmDmUUXw0ibQ2gYlJQkSYrR\nGq+JTlxHjQYgQIpAKfXOhWLZOQRhkUIC+uQkFizQvfMoBCLPUFWJEiIiQYoyL5hMKvI8i25snkR7\nxvjd2JjDI5MErSX4EKBrlAoOaX2PFAFxOjqIBa1FWE6x3oHzKNlHp0J5Eunb1OGGHOs8UusYNJwh\nkOyjk93QtrhxwGgV6JN5zLzROoS69h2j7U9zlYpNmTxSb6WOWpKjQ1tsKJEnJFvHBR47jtGCumcc\nBqRSBIauiDbM/nTvymiGctyHtQGJO2bgaBSjjRk78bpQRp/CSwPd9anluJDPf9Y67xAuOrjxyfkC\njgtPCnmi20WTlrh4Yq3FOxtREsA7JMFwBUTUHwV3u0Gr0+tVIsmyjPlccNtBfdgxDD2JCbk8o7Mh\nrHVX88YbrzObztnt9vQxz+podS2EoO87tNZMihxlFKvViq4fggW7H+MCp8fF55SUIpgX8OLa5f3N\n+7zzf71DPdSfus3PYhSm4Hv/5/e+9IbnX//rf80v//Iv85u/+Ztf6vv8eRhfVp31sxivmp0vOD6r\nqH3e31/2Qnn+iv+n7+OztDxfZLzoGH5a7/Fp7/ey4yd5fxF28BMfy/Mawuf9/nlN4rP0NxG588+e\n+yNlQAqBiAnzIRTQI1XgqCuhYh5F0IIM40DTKiauxGhwPmSYXIpgb5xmGW+8+SaXDx+y3RzYHQ6M\n40iWZiyXS87Pz7m9uWaxWPDw4WsnF580pq03SR0pQMFG9bh6LaWirkPGQ5Zlsfi4J7CVgrZpwyqi\nt0wmQcwvpWAcA3UlS1OKvADvef+9H7Jer5hWFY8eXrKcz7F24OrqCR9erxiGkbzIMIk6rdQf/jfl\naAAAIABJREFUOep27EEItElIE7DC0o8uFlWCNM3Ii4I0zRiloKUNVsNe4E24Svq+Z7Vac3N7y3a3\nx6QpVdTjKK3ZbnbsdyEJvu9HTBJEyX3Ul+wPB5SULGYzqrKk61s8LiIHHU3b4JwL5gB5wTvf/CbT\n6Rw79AipmFQTprM5SkiUkMznc6pqBt6zW28Yh5Eiz+l78Fg652mbFmcHhAqZN03T0LQdRRnsxYui\nxNngwCQ4umT19F0wB/jggw/QScLD115juTyji9qr6WxOUZa8fv4m8/mSrhu4uVnxox99wOPH15i0\nwAJ5WVJGG1ytFV3bndzN0iylrEqKsqTvWm6iFmu5mIfAWhdQsnHsKYqMut4zm83J8oJD03J9fcXV\n1WP6oaeqZtElTDOZBNH/UYNzbG6OhXS4lyRd29B3LQJPWWQsl4tT4CcQBO5Nw+EQjAxCU5qQRLMC\npTRuPDodupjR408FsBvsKVfF9j1pFkxAtFJoY0iTnETrIPT2YIymyBPyNAmoh7cIB86GENDMJJRF\nCIzVwtHUe2wfRPhj35NpFfKORoE6Lpy48L0mxiDTqENxgeZlrcM7RSIVQpvwGg9Sa5ROQAjKPGdS\nVIxjdCnTGueh7waM8BgpyI0mNxppDGSBthd0UMHowdsRN47gLBIfHetytNE45+m6jubQ0LQtbRsa\ncnmk091fbIhmDdaOYG2wdfYe7yxSqKB1EQIrfTjHOgk20dFIwtlAPfQuoCJHWmpvLXYcwwKSUhit\nQyHv/VPrZRG2F/eCRSFgQ84FqETx4+yK4/ztrGW893cVTQ5cfA+8I/qmhGtJBgrgMQ/NCxgHMOqp\nA6eSAaErpaIoG5QSDH1HHxuiQLW0bNYb3nrzLV577RFJcsN6vaFtO6ztyLLwXQ1DQ9c15GNKEpv9\ncRhQUpzOMyL+LIJWKaBRL37u3tQ31EPNH/wff8A7F++8cNsva3zv+nv8/f/773NT33zpzc6/+lf/\nit/6rd/6377Z+Wt/7a/RNM0pjPvnbbxqdr7AeBmh/vO0Nc/7+UW/u18Uv4gm9Txd0Iv2+7Mcn+cc\nPLv9y/z+pzqe8xafiSjde9mnNYje+9PK3P3v6se1PseHfFh/PT00I2ITVtqOaKFEyFDQJUl0DFOC\nrvMxYyMkl/d9wzi0jH3LfDZhuVySpgmTyYSLy0vOHzxkXW0Z7Uie5UyqYDctPEglee21h7zx1pvM\n5vOTKPlod922HUIIsiwlSzPc6Nludmy3O0AwmQT6y9BbRutQyrDb76kPNW4Mtr0PLi9pmiakokvB\n+fKcLMvwfmS32/CDP/0+rz284K1Hr/H6w3OyRHF3c01d7+mahqKqyPIMKT1JojhbLJlMKrbrNWPf\nIwmaJS0T+ran2+0BERCBiDoJBLjAyR8Gi7eeQRlwgt1uz+3dHV0XVsCl1hRlRVaUrNZbVqsVSupQ\n4FcKYwQ6Cc2OinqNs/mc8+UZdhxou4aqmmLtyMePP2R/OCCk5Oz8jIcPHvCrv/IuP3rvfdquJy0T\nqklFlmXsd22gupiARjR1w2hDLlGeaPAjQgURtNEh5DFJEw5NzUcffcDi/AGvv/EG8/kZHsl2G5rb\n0Vn6rqNrGna7DR99+AFPnnzM197+OmdnZwC0bYd3kKU5ickZneD6ds3t3R1//D//hO9//z0O+xbV\nOfKyRCLBebx1yCheN5EalucZJtEMY8d2v6M91Dx6/XW+8Y2vo7Vmu90gJTx+/DFXV0949913WSyW\nXN3c8KMfvccHH36EEIqLi3PKsqLpOqSUXFyc8+abb/JHf/RHTCYBNarrmv1+H1fZYbVacXd9Q5Zl\nnL0WQnLTNI20KR/se7cbdvsDzkOR5+R5jvChCRqGgBIEKpsNVLhPTBrHAGDH0Hm8tYy2jxRUccqI\nyUxyop/lWUp7UOzWd0gBWZoFdEtCnySMeYbPTKBZAVmSUpYFIiIBzgWERhAobYNz2BgarGQwRgCw\n7ogmOCRB26UALUIBrrRGqNiESY3JFCZJUUmCtY59fWBsO8ospcyz0wKGE5L9EFBhO460bUNb7+nb\nFmFHMqPxiUZJFeh6EW0Zuj6EplpHmiiUSkEonOOEHFg7BudCF5ocrTRahVrbx8+nlD7NqUcrbe99\nQJbcGNETh5JhnnUexqPC3h8bpOgsF3OAnAvNjdQqONG5gQjdRaTq6bx+onSJpw3B8YngnT+hR6GZ\nC6HPwYY8siSEQMg4z0fdzTB6vAoaurB/iTEJJjEnqp2SkklZkufpid5nosbQ4dnt9qzXG77+9a9T\nVRPgPR4/fszhcAgOkvMcYxRt17DbS+ZmwXwyYWhbhnFAiBAcLGSguXrrECqgbs6Dc59dV7xz8Q5/\n+bW//JnbvRp/NqNpGvI8/1yv+XltdOCTOvRX40scL2pIPut1r8ZPf3yhFvB5zdDLvvQ5Td/9RuqY\njXMU2T7bLB23CWJfh1TylA9y1CMcnYiCMNqgjcF7x3a75YMPPqBpm5iYnuC853A4cHd3x2a3pWlb\n5vM5b7/9dRaLGY+ffMR8NuP84ow8S0+5IqvViqurKw77hnEI+T6JSanKKWU54cmTa5qmJ01zkiSL\n+oo13oGSmtEGa9XtbhfoRk3DbhdctI6OWRDQiZur4A43nVTMZhOUkoxjH4TrmebywTmL+Yws2jM/\neuMNHjy4pGla7m5XEW0ZouWzZ7evub1ZUTeR9y8CB7/vB1arDevVJgSHDo79IdCztts9XTfQDSGc\ncDKdoXTCzc0dH3z0YTBhqCqWZ+dcXF4wXy5O6Nc4hMDM88tLlNHUTQPAfB7ofP0wsl5v2O12ZFnG\nV7/yFQ6HA01dU5Yly+USJRV3t3dcXV0xDJau79nHhtE7h1GG9XrN2A8YbZjPZjx88IDLy8uT21Lf\njxiTINHgJUVeMp/PUcqcim5PKBARcPEgvPbm9par6xuGwZEXFUZndF3P//rTH/C9P/4Tvv+DH3F1\nfUvbDWRFsN82yiC8wI0B2RjaDjuOLBYLHr3xOl/72lc5Pz+P177j/GLJL//yNzk7W5BlSfyOB4SA\nd955h6qq+PDjD/mj/+eP+NEHPyJNE775zV/inXe+yXw5xySa8/Mljx69TpYFVDLPc+q6pq7raLm7\n4YMPfsRht2W+mPLGG6/z6NHrLBZztJZ0Tc31kyesbm/AO86WCy4vLkm0Yr8LDe3hcAgOY7Fw7fue\nrmvBe4xSpElCkWVMqpLFbMpiNmValaSJxmhJYjSpUaSJJs9TZtOK5WzCfFKRaMVus2G/2dAdDoxt\nS9/U7Ddr7q6vuH3ymLurKza3t7hhYFqWLBdzsjRl7DtsP6CEpCpLFrM5i/mcWUQSU5OAC/qjI6VR\nCkGmDZk2JFpjpAoIhR0Zuxbbd2gBWoAYR2zXMjYNbuxIpKDKUmZVEf/NWUxLqjzBSFDeoYFMa6o8\nZ1pVLCYTyjxDCbBDjx06tFIsFwtef3DJ+XLJtAr29XiH9A6FD2YbJiFLErJ4HpWSJDogMSaiWjqi\nM0qKU5PtxhFvx0ANU4pUB8dIiY/qG4+RQV91P0zzmIeEVJFqp5AiWM8HdaSCGLzqnSCYFQjw4W+B\nyqjjdkEbZe3AOPaMtj/pr4IDYQgq9Tx1erPWY0cX5yzooxV+1zSMQwikPebxnC2nzGcVWWpQMixy\n5FlGmqb0fc+TJ08YhvGEzk+nM6y17HaB+pYmBiWgrRvsMHJ+fsZkUpEohZYCJUASdKPOj3gfaKHH\nPKL/P4w//MM/5K/8lb9Cnuf8wi/8Av/+3/97fud3fufkDiilpK5rfv/3f//k5vcP/+E/fKl9v/fe\ne0gp+Tf/5t/w7/7dv+Ptt9+mLEu+9a1v8eGHHwLwne98hzfffJOiKPi7f/fvsl6vP7GP//yf/zN/\n5+/8HR49ekSWZXzjG9/gX/7Lf/k0bDyOv/7X/zrvvvsu/+2//Td+7dd+jbIs+ef//J8Dob74nd/5\nHR49ekRZlvzNv/k3+d73vsdXv/rVT3yW7373u0gp+a//9b/+2H6/973v8eu//uuUZckbb7zB7/3e\n733+k/0lj1fIzhcYL9OAPA/afhbNeFnU5WW2+zS06dPe92XMD+4jD19Wo/a8c/RZ2p2X0fa8zHHc\nR2Xu//xp2572F///SIX7xN/uoXDHJuXZn+GTTn1H+tWz10xYCQTig0UIEehMSiH801wJ730odqqK\nJDEI4RntgLUjOkkYuoZxCPavSkm6vmd32LPf73l8fcPusAckF+cXIdPFheybt956M6zuC3kqHAMK\nYymLAhkD+6pyQlVNGYaBzWZHmmZoFUIfhy6sbFdliRvHuFppads6CKG1pkgzijxn6HpWhzs8nrre\n88Mf/jBQjuJq8Gp1y9jXODuQpQlJXiJkWIGdTComVdB03N7eMo4jaV5gTGg82jZoPW5v12R5SV5O\n0CYFIekHy2G3Z71Zk5kUvKet48q9C+nhu8OByXRGmhbs9gceX19hreett86CoF4Heo4dntKm2q7j\njYevkaYp67s71psNxmiGYaSuGw51zdX1DXmeMZlMcQjee/89lFQUZYkxCYe2ZrPZggjNrfCCvuno\n2462aan3Ow67NfNJxahVdOQLuoDb21tub2/J85xx9NzertntGspqgkmTk9Wv8yHM8aj1Wi6XdF1H\nkqXkWUGaFQyjox/WrNa3XN3sqeuW1XrN9dU1+7rlKHY2JkFLBZ7QDDuPUJKqzCmqkqIoGMdgFFAW\nJdOqwA4j9b7m5uaam5trvHe88cYbWGv58MMPee9H73N3d8d0MuHh668zX86Ds1zboLVmOpuQ5yn7\n/Z7VasV+v8f7o6V0h5KS2aRCKckbbzzi8uISpRTr9ZqrJ0+o6/oT911T18GIgoCkpcacNBzHSSJN\nAsKWRJe1ULT60z0WiiFPMCoLQatJkgT0dFJRZjlGG3RcORdxsaNIg/sWdqRvDuztgBvaoH/TAjeb\nhlBIF6hcth8QkiD4NwaZHgXkPhgrDEG74+wQinwpgntjtDk2Y0QZZCjgjdZ4D3lRAIK267HCB7pc\nWQb0QAdExRiNlxIxOJzRJMJjpCdPNUPUS3nCQkPd1LhhxA8DIuYP5UUZdDttR9O2GCHARKQmnL2g\nTZSh8BdR6yeVwrv4bPLROCcu2x4DXJ0bEd6H8xvtm0fnIpojSIwGIynSDC9FtA23eE9Ae1Us6IVA\nOhfOnRD4aGhwmsvjPHx/zj4hfPceHkKK0/bhegkIT2hcPEgdDBC8Z3QeaQNK692It5auG0jTkKsl\nhEDgydKADCZaMgwWJQICJISmrmtWqy0ff/SEN996k+XyjLqu2WzW7Pdb9vtdyEdLNF0/0BwOnJ8t\nqcqS3X6HbiT9MOI992y2j3qfP3vGyM9i/Pf//t/5jd/4DV5//XW+853vMI4j3/nOd+4t1sB//I//\nkX/0j/4Rf/Wv/lX+8T/+xwC8/fbbn+t9/uAP/oBhGPgn/+SfcHd3x+/+7u/yW7/1W/yNv/E3+O53\nv8u3v/1t/uRP/oR/+2//Lf/sn/0z/sN/+A+n1/7+7/8+k8mEf/pP/ylVVfFf/st/4V/8i3/Bbrfj\nd3/3d0/bCSG4ubnhb//tv81v//Zv8w/+wT/gwYMHAHz729/m937v9/jN3/xN/tbf+lv8j//xP/jW\nt75F13U/dqzPqyXv7u74jd/4Df7e3/t7/PZv/zb/6T/9J7797W/z7rvv8q1vfetznYsvc7xqdr7g\n+KyC+2Uam5fR47yMq9uzhgiftxm4/5r7hfr9/X2W09hPa3wZSNYLj/2Z/3v23X/sO7q3v2ODJO5t\n+zLmAy+6Nu7nSRwzdOT968k9FcA6O+J8oKakSYpSMtI4HE2kI4T490BJ64eQMC9kWD2XQlIfDjRt\ny8XlQyaT6pSJ87WvfYUHDy/J0gTrJU3bn7aVQmDTFC00WidkWY4Ukru7Fc55yrxAeElbdwhgNp2g\npWZ1t8ZLi5CQpgleyyjaVrR1QxfpbM5Z1psV282Gi4tLhAiQ+9DtGfsaY4Ipg/OeJE0pq4KiKHDO\ns90Fo4BpNSEvK7RU9G1P0w40bUB5tElIs4IszYPDlLXBpjgaGgz9QN92QdQrBP0wgpAUVYUXsNnv\nqZuW2WzOZDKNBfxI3dS07QF8R5amDEKiY55L23bBdWro6YeBu9Utt3drmrZjsVxSTaYcDgeGwVJM\nCxDQRRcwYwx5XoWmKlKN+n6gPtTstlt0LL6CoxXgLPvDjvVmi7WO2WyKd7Dd7hHiQN32TGczlDGn\nsMEj3SvLchwBQdLKIIVmHD396ACFs4LBwWq75/HVDfvtHq0T8jwJdEGtSSJ6mCQJaZ5SFAVZEXKe\n+q6ljk1IVZakScpqtcJ7F5ylgLKoMInh5uaGfhjo+oHJZMpyecZisWQYBpq6I0szzs8vuLy8xDnH\n7e0t/x97bxZjWZbW9/7WsOczxpCZlVVd1V00fX11sSXbEkPbGAR+AF4QPPAAhgaEsNGVQQhbsmQB\nLYOwZCT6wTJ4EMISstyWLF1bwmYQLZAQPMEDQqJpd4Obrq4cI+LEmfa817oP39onIrMys7IGuhtc\nKxXKiD2ddfY+Z631fd9/2GykUlYUBXFsMYawCLQkSczR0RJrtMCcuhZrNFmaHgQz8E4qAEEIZBSs\nGEnmWmupXDkXzGpHn5deIJ5hsY0PJPvYiDdNZInjUN2xRngY+OCPo4XboxV5mpLEUnFTYQxwXUfd\ntvQGtHe4thOVtr7De4dVRpIghLFCBwVHrXCRQWtZOLdNe0iwpCZGayPcIucgVBb6AOOK0wTnkXuh\nPJE1oHSAaY1KaZbee4xriawhzjNia8jT+BA8dMNA3/XUpSjJRVphdfAcMhrvodeKNI6wRsQD3DCI\nD5cbcMrhvMZpMFpUyVACKXPXPG2UHmHCIhltQ1A3QsuUUqhBo7zBO4GueiUcmW4YDv2FoABnjQRV\nXqGNCAmMY/XjiasxYfWkOeD6+C6wNQ8GFOKN5BGJZzEblRnFe5F4dl6OI8AVhctz9b4I0uxJbOm7\nnqHvIEmI44g8L9htS+7evUteFBwdL5nPZxwdLanrMvg7RTJ3uZ6q3NFWJUWeUeQ5VVlTN+2BP2S1\nGcF5jIasf9XbT/7kT2Kt5fd+7/cOgcF3fMd38Nf+2l87HPNd3/Vd/KN/9I949dVX+c7v/M639Tp3\n7tzhM5/5DJPJBBBBlX/5L/8ldV3z+7//+4c1wYMHD/hP/+k/8Qu/8AsHn67//J//8wFJAPCDP/iD\nLJdLfv7nf56f/umfPhwHcP/+ff7dv/t3/MAP/MBh24MHD/jYxz7Gt3/7t/Nf/+t/PWz/F//iX/DR\nj370ufp/9+5dfvmXf/nw/r//+7+fV155hV/8xV98L9j5q9KeJQzwpIXt9X1PCnTejJvzrPa81Zo3\na8/qw9PI+M+61pu97lsZNN+NStiTgpfDFv/Yjidtf2y3goOAwPWJ7vGA8Xq/xuf/OLTtuino4+9H\nIFciKQvgelHz8UGA2jnhJViriWMx9mw7yXTGcUQcJTRNfc1F24KCrhPuTJHnRFYGxumkYD7JybNM\nFnEDdG1D09S4YUAZc1CCE0lrMazbbXYUWUEaC9ypazum0ymz2Zyu69lud0SJ9DHPU/wwkBhL19bU\npRD5ldHsq5L9dktsI1788g+C96zXK1xfY/SA0TYsEnqsMeRZThRFlI04p6dpQTGZEUexLLSajrJq\n8V6RFROyfEKa5kSxqIUNgdSbZQVGa7qmFVPUvqfreqqmZXl8zPLomLJtqZqaYjpjcXRElCbYKKYf\nHHXTUlUVeWaYTKd4J9CwQRmEFuTZrre0fcdqJZWevMhZHh2hjaGq6+BpEzM4jxsGoigmTqSvaZrh\nEalvkbluxcS0yMAJl2roHF1Xs9uLEtJsOidJUta7mt2uwtiIOMkxJqLrevZlSVlVIQCRxb9SSGUp\njvEoul6gcB6NsTFtN3BxuWG93mGM5eT4hCLPqauGoZMgOrIiHb48XnK0XLKrBXpX7vdsd1uquiTP\nU/peIGF9+FznmbxuVVdst3vyScF8tsRElqIo6LuesqrxHuZT4aAB3L13l/v3HlKWe/m8JxFGq0BM\nNxSFBMTWiLx527ZorZhOJ/S9KJu1xuAGx4BUI64qrrLIj4IIh+LK08yPfDo3hCx8D8qjtFSEogC/\n0spD3+NUQ19bOufwWgd/l4jYJKRxRBbHxHY0uJSgxQ0DTdcxOKjLEgMkaYICAVUp4YJcH68kHlBo\nY0mTRMQQjD3w7dI4Ddy4QMhXCmMNznvaII4hEtdXpHmUksDIjxUbh+97ssgSJwnKKLo2pmosddPQ\nth26bdFuIIujEJQDWmNMhNKWtmsFMhVFRHaUktZ0g8IN8rqy8HcHr54R+tWF760KfQfoe48GtA1Q\nMx9G6RA8CrxMoFiD8/R9S9v1tHVzMDlVSgIdee5S/VTXxngZkznwJ8fPyZXRqXkissM58WHSXl+7\nlsg5D84dnre8v2tJMuS+S3UxSJ5rhXMDeRYzyTPqqqbvWoauJ8kzptMpm/WOi9WK6cMHwXtIURQT\niqLA+4GubURV0A30bUO53zJfHjObTNjvxKzXOUkAjEGuVNuClPhf4eac4xOf+ATf/u3ffgh0AF59\n9VW++Zu/mV/5lV95117rO77jOw6BDsBXfdVXAfDd3/3djyQ/v+qrvoqPf/zjvP7667z//e8HeCTQ\n2e12NE3D3/27f5d//+//PX/yJ3/CX//rf/2wP0kSvvd7v/eR1/7EJz7BMAz80A/90CPb//E//sfP\nHexMJpNHAr0oivjKr/xK/uzP/uy5zv9CtfeCnbfRnlcM4HoG6O1AwZ6nUjMe9zwQsOdtb1bJeSfX\nhScHAs9TjXqzYOttBYnjtcbzvX+j2ExIyF0/Rz26+5HqzfVA6FD5CZPtAd7g/dUErK6yx1deD+5w\n7LiwckEu1QVpWxt8PUDIpM4NkvkMktBCTvbkeUaaSBZ/t9uJJ0YU0Q/CQUjTlMjKsVpBloqEres7\nyv2euu3Z7Su6rsMY4dboIMWb5znee7abLThYzBao4HJvrWUymZAkMev1mr7vMFaTRBbtjcjf4nFd\nh3cDeZ4xuIHNZcvQddw4PeUDH3iF1fk9ttsNWg3Y1DIE+J4N1YMoig8Qo2IyE/5PmtE1HVVZcrne\nstnuQWmWR0vyfEIUp2hjcU4gbgLdK1AeurYX+eHgNG+imNu3bpFmOet7d/EoUUWbzUL21z+i+pXn\nObPZDNcPXK5WDIiqlY0i9lXFer1mvVmjtOb05k1ObtzARjF+GJjPJmL4p7U4rUcWYyOUksy648qY\nMYojJosZaRSxuRTonusFuuS9F3PUNKWsK87PzinLlqOjY/IipygmrDZryaAPnq4fBEoUAt/5fAFa\nMzgk8PIK5xR9D+vNjtXqkqbtODmec+PmLaZ5wf3792kgfDYiptOC0+Njjo6WDA97uq4NUtltMOZs\nsF6eJwdFvxjvoKoatLZMJ3OybAgGh46qEohZmqYYY2nblrOHZ7x+5w77ncDRFvM5NhKlLmMSkWBP\nxWeqLPcCr0OqFpFNcIOlt4YszcBD2/fUgd/ivUdrgzX2IDQgWXYRdhi/k8MQyPCIyW8aR0wmBcYo\nlBohVwO+V/i+AyPyyxaNVWBwxFpjcDD4cB0TRAgGlBsJ7mEfY0VDy/LdS3DsQ3VHK3OQwTZKk8Sx\nBPJty2DtIdhRIYDxgLHyWTatOYiiqKCyNkK4xsrPMIi8tEcHCfcMZRRNU6MY8H0n0DJrsDrGmkU4\n1x9YM/3g8K4P1RYJ4lFjRdvitHjVeO9wPnzPQgXEEZQEw0g7rgkdHq9ErEEHqW3vAa/wxmNChUjr\nQb7flVRwu6Zl8F4gb97hBndQ6FNKhwkgRHljAOXfWLV/vOpzfd8Y7LjwTK7mtaDQ5gRm6HUQUhhE\nrU1pQuKlox8SkliJzxId80lBPRUhjt1evlveu+CzJrL45+cXZFnGpBDfpklRBFjzaJTboVDs9zte\nuP0i0yJnlcRYo2k78H4IMEcJdpR/IwLir1p78OABVVXxwQ9+8A37nrTtnbT3ve99j/w9n88BeOml\nl564fbVaHYKdP/7jP+af//N/zm/91m+x2WwOxyqlWK/Xj5z/4osvHvhpY/vzP/9z4I3vablcslwu\nn6v/j/dzPP+P/uiPnuv8L1R7L9h5B+1pELMnEcyfdPzzcnGuX+NJ+95s2+P9eLfak9738/blrV77\n+mu82XWfJAbwJieMB4fAQzYdnLEPKmmPPtsD/0bJZMUT3v8Y6Bz6FYKh6+ps14Od8QqH6g9SEfBO\nlHqusOKi8JYkMcPQobW6gtIEz5w0TbDGkKUJip6qqYmsxvUzkV9tG+ERZClpmpCkMVEsfg3eD1QB\n4920PW0vbuJxbDk6WuKcD2alMUPbsV1viSLx+tjvJbsuWcScYehog+QyClxYGA59T9NUByiP0V48\nMfqONI155f3v4+T4iLbe0nUVSvUYq2jbmv2+ZJktKYoCay1V0zDKI2d5Bk5xUV+w3ZVcXGxYb3ak\nccbR0SlxwOk7FE3bsd3u0VoWs+MDqJuWfVkFCeZb3H7xfazWa7SxxEkWKi4JWgs8sKpEQjrPchaL\nBVmasrpYkSQJddhng+TwNkDGTm/c5PaLL/HCC7dZzOdS3VKiCpckCSaydH4QaFuRiwyw0qB6gbYl\nCfPZlLYq8XjapqNtKlBOgic8ZV3x4MFD7t2/T5ZOmEwnIgFuDUmaEFcJW7+lblvabjj4LBXTOVXV\n0LQdLjjGt61jvdkKL2YfjGmzlDiJiZKYyWRCkefgHXnILmeZQMSiyDKfzdhsPVmTYEwIbrRwRHQw\nTux7WbB3bR/gbAn0HS74sHgv/kRJkuIHz8XDCx48fMjZ2TlaSRCaxDKtZVnKZDIhiixNXbHbbajL\nWvxWrEVjRcgjjiEVXxnvPG3fo6pKoJNdB/gDhK1rO6qqpKrEZwZCkBG+l9aKaWiaxOR8lmvWAAAg\nAElEQVRpgtYKhQuVAKmuTIucSZ4RG4PyQgBXzgmsqW9xSqO9wTtH7z2D67FKEWlNGsdkSSJwxkFE\nMwjJkaGTbLtUoAyRiWj6GoAkikmimD6OwTsinRxI8RoxwRzHHKM0Hncw2zTGSlCPpx962rYLeH4J\nBNGGLJHjjPf0UUNnNTgRbojiCO8VzWjS2g84L5w2Zw3e6OAV5RmUBxVI8Yjss0NktSU/JBLVHvEt\nGoxhcE6CHKRq7Dupchs9cqfUofoOmq4P0u+AHwaGINnvlQYtiYvBe7Tzsjg8VHHG9FX4OcACBJL2\n+Bx0fep5WrV+nAMGB1o5nNIYr4MMdgh2rJFKc9fR9R29i9BeqoLTPGdf5EzynLpuaZuKqk4obESa\npVxebtjtdlRVSZJEOOdJ4lhU7ZyIxbhhwA2O/X5PZMX4OAoKdSp8NgRyF6pV734e9P/o9jSxh6dt\nHz9L6/Wav/f3/h6LxYKf/umf5tVXXyVNU/7gD/6Af/bP/tkbRAreqvLa87Y36+eXSnsv2Hkb7fHF\n9NMCkbfDdXkS7Onx38dzn1Vhetq+pwUCTwqqnvb7F6I96fXeajD1rGDsmdcPmOmrSe4qk6Ufy9hd\nD1TGasz42k/K7o0LjHHfuIgaybBt1z1SpRtx2nhxbh/6XhbCgYdgrQEEViCTZoC2KZEnTZOIyGra\nejiY8/WBjA6iL3RycsLp6SnLxYJpUaA1rM4uhF+x37Eta4yNmc8XTCZT4jhiNpmhUDR1zX5X0vc9\ni0UgjlelCAZMC4xWbDcbgd85h/KacrfDDT2RMaLQNIhn0H43UJUV3vUcHy24ffMW2sg9m0ynWKvo\n24qqLEnSjNlUqjij0pSJE7KsICkm7Ndr9mXNeluyr1ocBhsleKWxsSzAy6phX5YMzpNnGXEciyFf\nWbHblwzes5jMOLlxk/nRkvP1msE5jLXEaUJkI/p+oGxlUZznGbNpTpomVHXN2dkZeZbRdz1N27Cv\nBDKmtebo9JTbt1/g9u0Xuf3i+5jPJ5w9uM/q4RlGKeq6Zqg9TgnHSBvLdDpFKU25r/BKkebS583q\ngrZtqZsmVN9k0VY3NQ8ePODu/fuUZcPJ6U3mywU2iuj6jjzP2e73lHXDdlditGIymTGdLWg7eSbW\nJsLZ2ok63cVqw263F15HEuG9pyxLdBAoyIsM5R15ljGfz3DOcXm5IkosiY5oupqZn5IkMWmSIVZI\n6vAMUfJdsVFEkmU0TcvgnChR9Q6jbQjQC/q+Z7vd0jYNkzwnTWPm8xnT6ZQosvJ5nk7oupbzXuA4\nKBdMHDVxZMjCc/dO+iBmnOrKBDJwJbwX+I4YrpbUVUXfdiRJEqB/KnhEiSpbbKzsjy1xLPLGSRwx\nKyYcLZZkaQLDQNcI9E85h+tqPBHKWJSX77xW4hMl1RVZqMbBMLhX4t3Sd73AWr2XYCuWwMYYQ9e1\nKE/wCDIHTpwfRuK+QnuPH0I1GRGUMMqKNLUV+WoThAP6Pqie+YFRnUsW+x6lHJExFGmGRipkQKhO\nxuz3e7yTypBBYbMUqzVt26IGhzcavBhjggKrsSai751UhbxDe1FRU4Hk75x4HXX91XVjYyGMgaDk\nsXsB/B4STn6EACLVHnM9nAnCCHQMSqGUO4zpV/PGNbiycnilUCEBNf6gJGAZgwkfxnsR7VCHReL1\n63qUVJjEJTpU8DxOWfqgiFkZjVeOPLEoRG0ujSMiI55W+90OY2OSJMJYzTD0AivuWuG7VRXGQJrG\nRGLCxnazod7vKfd7wJMmMWkShzFlwNOCMqAtSiP9+yvcbty4QZqmfOYzn3nDvk9/+tOP/P0XgYJ5\nnvbbv/3brFYr/vt//+/8nb/zdw7b//RP//S5r/HKK68A8JnPfObwO8DFxQWr1erd6+yXQHsv2PlL\n0N4teBo8H4/mC92+1DIAEKYyfyjKPLU9ztN5fN/4/8hJGAUARrgaXEmeAgwIuXn0e1AEM1ECxG10\nCI9kQpXJvqNvW6bTSVDOGQMqwelqJT4bzkl2sGkaiqJgWkzIiwnHyyUnoWwdWct+t6PvWpqqZLfd\n0nY9eWFIY8tyMSNPc5I4YRgc6/U6VHLEQf3u3bsoBbPZjElRUNcV682KuqopJjnD0DL0HUlkydOY\nZt/RtDUYxdDWdE1LkkQcLefEieXy8oK6rgGPsjLZmihhOp2wXB6jtWWz31E3LbmJBeJWNTw8v+Ts\n4pLtrsR5TV5MmcwWaC08lKYb2FcVvXNM5lOyJGboena7kt1+j1eQFznT+YwkTSnLmu1+L74uRjM4\nhzpAUXzgSxmU8my2G3bbPa+//jq3b99mt97w4P59Li83VFWNV5rZbM7pjZvcvHWLybQQhbZ9RdU0\nREZzubqgGXomiwW35kuyLKNpG+q6ZbPZBHNEWF+uKeuKoQ8L8f0Orxw2srLIv1zR9j2npye88sr7\nuHHzBKUVq8tLBu+5WF0Kv0cbZosFpzdfJIoi1ttz2kbEAcqq5WK15s69+5yvLmmblthGYhyaZwJ3\n6QX/X6iEKI7AwLbaiXO9UUyiCev1hr5rWcxnZFlK03RMl0uMMex2O7q+wwP7/Y6yrtHWSgKgbYOE\nuCzI67oljTOSNCWJY2aTKZNJwXQ6Yb1eM5tOeOmll5hOJ9R1xcVFTZqIytzrr7/O0PVkScpiseD4\n+BSlFJerTZCrrtjX8hzatj1USsdAaAzKDvCwJCEKAUgSRyEYsZIRHzrc4DEYiiRhNpuxmM+YZgUK\nR9f3aO9xPiQivCWNIrIkwtrokESJk5g4igFRSUzTDKUUfZAALoeSYRhCpTclzwuSWPh3bR3hveyz\noZLUO88wwsWujUMABnOAxyk98gilOiIKa0OoYFkSL143fe8wShFb4QdlaULepAeRFK8UeZ5jNPRd\nC4PDKx3EHuCgs6w8XnnwDjeICIJSGqMUGk+vpH94SZoopQK3RpJHIhstY+swiFiEDxWSQ9rKi++O\nVgHGaDTWaMygUF6D0nilcaPsmHegxntxjXN5jadzsAwIvjoHMQE1JsyuklxRCFSvJ7m01gcI7AFd\ngBERhuDTMybZun5ANS1KeYztsSbGaCVVzKJgGEDAlC58HiKsFRPqUXo8juMgUx1jtcYqfahOdn2P\nUsHE1AoUUgMojY6iIARhGAGEf1Wb1pq///f/Pv/tv/037t27x61btwAJCn7t137tkWOLoniDJPQX\noo383usVnLZt+fmf//nnvsY3fuM3YozhF37hF/jGb/zGw/Z//a//9bva1y+F9l6w8zba49yTp7V3\nAsV60rXeDpn/8WrGsyo71ysKX4iqzlu5D0+rmDy+71nnPm2bUoJz99dgBY9jsA/Xv3aPxv2jd8KT\n+jBmhccJbvz/Oi9nxMA778TCwQ9AILoSso1hPDMBXhBHEVorIdi2HUPXHbgJMvlKYDMMYhyplKIo\nctI4OfhUzGYzjo9PmE+npCFD7d2AGwZm0ynbzRq8I0sFDpRlKZE1ON9TVXucQ7K1wHwxo6krNutL\nTk9PiKOIpqm4WJ2xXq9QCqY6pyr3ZHHMYj7FKig3l7ihQdsIlCdJDHGSEFnN5vKS1WpFWZYMfqDr\nY+LYsliecnR0xHQ6Y1eWbDd7umEgTnPKuqPb1Ny7+5DV5Y7BafJixnQyZT6dkRUTPFC3HV0vppyz\n+QKrPOvmUgKV/Z7IRiyPjjk5PUUZy+fv3uHu/Xvsy4rZXEj/aZaKzLD3VIMsdtqmpR9K7ty5Iyps\nVcXFasXZ+Yq+7ymmU7Ii5+VXXub45IQ0y6iqhs3mkn1ViueNc3Rdj/NilJgVOSjNanXJfl9RNw15\nmrEvS1bnZ/RtRb3fsdlu2e83OO8EYmdEUODmzRm3bt3k+HhJFEc4ZAH78Oyc11+/w25fMpnMmC+O\nadpeAkQHKMNuv+Xe/Yfcf3jGw7Nz9vsajWc2LVjMZ0wmOUkSoRRBpnsgMQkOLwtbPImNWa0uODt7\nSJZlFJNcoKHeE0URVSXvCSVE9KqtD4v3LhDqhesjBHKtNVVVSQLBwfHyiMVizuB6FvMZpycnpAE+\nuN/vRK0wmIdOi4l4vBwdc3R0jDGG87ML7t17wG63kwpZ21B3IrDRdVc/o0HkaEIZG1F4i2Pxgokj\nKwpow3BQRpzkKdM8Y1IUFGkKveNydU5TVbiuwyiIQiASR4bZZMJsNg3BjpDRbRyFsWDk10WysNbC\n6Rr5YlEUkec5SZISW8PghgCdDGPRtTFHG/sIlOr62DUGWUCQTA6/A9orDAKRM8owGEevO1QwTBVv\nrwBDc8Kd8UCWxFhjYPBYY+l74T31TUuvFd6IUppCKi5tKxBBhajLYQ3Gi9dN55yMlcHo0moliZBR\nJUz5a+NmqKgr4Z0pL9WcOKjUdaEq1PUD7SAiCISgB69x4b4pzLX7Bf6Rqv0oUuOleh3mB60V2ujg\nvSPHx8Fk14zKdvrRudp5BcpgTBAOGHqBVwae0+BcqN5C0nkiE5HGMdNJgfOKJM0ZlCZKM7pe5hNr\nLWmWhmpqRJ7eCHOAxlpDVZZEUcR2uwXEvDVNU7IsJ61q+sHTOyWGutqhtcMNb74m+OTDT77pMX9R\n7d147Y9+9KP8xm/8Bh/+8If5oR/6Ifq+59/8m3/DV3zFV/CHf/iHh+P+9t/+2/zmb/4mH/vYx7h9\n+zYf+MAH+Mqv/Mp3/PpPatfXLR/+8IdZLpd8z/d8Dz/8wz8MiIz1W1lb3rhxgx/5kR/h537u5/jW\nb/1Wvumbvok//MM/5Fd/9Vc5PT19JjrmL1t7L9h5m+3tBCvv5LXGwOBxHOazXutJogVvxht6J0HO\nsyB9z9vfx9uzoHpv53qHY+AgSiA45DdO+o+fLxPpY6/rRf5UH/DhjwZf47Yoig6whTHzd4DHPA5J\nVIRMrBXH6mAk570POHRZgLhhoGmE7O2CVKtIwsY4J14TdVXh+pYsTZnOZ2RJInCjLGM+nXFydMR8\nNsNaQ9+2gVwdo7xn6FrSJCbJJWueZWnoc49WCM7eO9I4RQMPHj4Ii7yYpqk4O99wdv6Avm85OlpS\nllu6puZ4OSPPUnabFXW5CxNwzND3KK2wkWUYWjbbhqraUzU1fT/gvCdJM+aLI2bzJUopyrKmqmtM\nFKNNTN8Jr2S92dP3niQrmBRT5rO5yFFnKdv9nsF5jBWolLGWrqko65p9WdJ1HcVkwmJ5xGw+Y1fW\nvPb669x/8IC8mLBYLDg6PiLNMvquRT4+CpxwTsqqZL1ec3J0Iv5EbUca4FLz+YIbt25yfHJMksai\nRuZahsGRphlNuadpW4RzlRLFsWDxO0/VNAzOYW1EPwzstlsuVhdY5alKURjzQYGqbhrx0TGao+MT\nbt66wWwhxqxN07HZbTk/O6duWrJ8wvL4lGIyY+gdg1PkxYzL9YbVesvrd+9x99591psdHphNcqaT\nCXmeipqY1RRFgYmE7xWFqoJHPqt1WbJaXTAM/cH4UXlPlmW0XcP5xbkYdGrF4AbquqYIanD3Hzyg\n6wQudnS0DFUNud9d24UMt6brO+q6YrGYg4c7r3+esipReJKw0Fbec+vmzWC8m9A0LevLNXfv3mO7\n3eGcmPPWXUPd1CIV3rYAB9Pbg/w0UnGNrSWyVoJepUL9wGH0lSFmZC04R7Xfs+97mrrGtS2xFSPQ\nLE1I45iimLBcLphOp4dEhzYGY628Zy/9UEoxIOadkY3ooxijJUkQBwl6AXDJd8k7WdiLqlbgK2nL\nqDY2DmtKifiF845BjQaSGm2CfDUKa4xYa2rhFA3G0YfkjQm+YEMYz4xW6Dg6CIYoJefLArsSRcHI\n4joLQdxBjZWWAOmVcfQa70ZptFPhNTgYcyrAayWKZc6H5xOCiTGpNji8Ep8bqy02EpGErhep9bYT\nCWivtAQzSqOcwYd51/vA6wtBlYIDZM05E6p9o9CGxdgwVvtrHEwnAT3+uqO7VOO9G3AHqwCDVx6v\nVJDGHrBWIMrOa3SncL1COfkMZImnH6TvnQMbWeI0SIsPDq29jM1xTJ5lGC0cMK0VLvFMJhOatj1A\nSIvJhGXbh3u+Zlc14fojqPvp65CT/IQ8yvkH/98/eOoxX4iWRzkn+cnbPv9v/a2/xa/92q/xT/7J\nP+EnfuIneOmll/joRz/Kpz71KT71qU8djvu5n/s5/uE//If8+I//OFVV8ZGPfOS5g50nJW/H7U87\nfmxHR0f8j//xP/ixH/sxfvzHf5zlcsl3f/d38w3f8A1PlHx+2jX/1b/6VxRFwX/4D/+BT3ziE3z1\nV381v/7rv87Xfu3Xkqbpm17jefr6pdDeC3beRnvaB3RsT1u0v92H/6Sg5Wn9evzvp/Fc3mr/n7e9\nG0HdO23Pc4039POAmX4UfvbIOU+4/ihe8KSg8noAdOXHMRwgao/3Z4SnSUZUKjsmZAFNgK/FUSS4\n+5DN7ccAQQlsqe97yTRnKX3fst/WIvEcx8ynM4HZxDHz2Ywbp6ecHB+TZjmDExNNG17zIrjJp2ly\nUHyT96GI4wSFoet6JsUEo/XBwHI6Deprm0vu379DXZcsjxakScydO59nOZ8zLQrc0HO5WtG1FTdv\n3SSODdV+H6Rte/puoPcEjHmN8x4bJygTkWQFSkfsdhv2ZYnShjyfkMQZTduz3u7pekec5kzyKYv5\nnMV8IZO8saz3e5yHKE5I0pSuHzi/OOfickU/DDLRHx2RTwrKpua11z/PnTuv0/U98/mckxunTKYT\n+rZjt93R1w0+mFC2rXA6kiRhNp1xdnZGmqYUeUGSpsznS27cuEkUR8H7SKpvxho0Mavzc/zQE6cp\ncZ6hlKasKqJ4hDBB23SUu30IzHq8EvhMlCSkWUrTNlxu1tRNTV4UzOZzjk+Omc2m7MuGh2cP+Nxr\nn2O7b5jMhKNTFFPQhsELNr8bPA8ennPn7j0enl2w21copZnOZ5zMJ6RJgkcqiHEccXxyhIki9uUO\npQRWkxcFeMfnP7dHGc2tk5tM8oI0jrHWMgye+w/vsdlsAmxKFulZlpFmKXXThH2Kk9MTXn75ZabT\nKU3dsL68pFKlZMOHnroqSZOEyFo260vu3btL2zZMpxPSeHmAl6VpdjB1XV9uOTs75+LiEucEPtq0\nLVVT0XQS6Hgv1ZTJZBIU4EJVNnyHEysiB5HRhwqNVqLIBtA3LfUw0CiF8k54HVoF/o5Ux6aTgiSO\nmRQF89mUJE0PyZhx4ewDz+TxyrNWCmssyliiKMYYEXxwY0XDWJQO84cbwIiogFEGPy7CQ2jkvUQ+\nQy9VZqV18IRReCejnyZA3EKlQSuNHqWpwzjqB/H+UsiiO0mlqmCCd1HftbhOxrA8idE+1C26Tn4P\n8t6SSAqjrHLiwTMGVSFBhZIgyBOgXnoUMjDyeXqsgq6UvB+tNUZLYiZtWkpr0G0PoSrulUZpwAft\nO39lAD02SSyZK3lg7+T+qLDdjMagV9X7YegCTMxgvDwLhQ7Bow9V+fCedYC49a1IdBsNmAA3U3SN\noo97bJwIj8u0DH3PvqxQpiLJc5TytK3AgNMkxSjFeVmCk4q9UepgSbDbbimmU2wUoyD49eR0/QDG\nUlYNw+AZ5IPz5IkVeHn+Mp/8fz/JWXn21GO+EO0kP+Hl+cvv6Bpf//Vfz+///u8/su3bvu3bHlEg\n+9CHPsRv/dZvveVrv/LKKwf4+vX2dV/3dU/c/pGPfISPfOQjj2z76q/+an73d3/3Dcc+fv6z+qeU\n4qMf/egjUtPr9Zrz8/NH3ueT+vW06/7SL/3SU1/vi9XeC3beRruuff4kEvr1CenNIuHnCTqeN9B5\nvCLxLEL/WwlKvpA8n6dVoq7341ntWVWsR/dpVJjmr4QJrkisT3p26vE+SGnoAFG4fp7W+gB3GYOc\nvu8Pgc51oYLDOUagIF3X4QaBK3hjiIwN3jnCCaiqknaQSVdECmJEJVX6FscWpSOGvqNrarSKyPJM\nFthasnvLxZIbN25wdHTEMDjKssQNjt55yqbmwf37LOZT4sjS9D1VXVEUBUmyYD6fUVcdTd2SJin7\n/Z47d+6glHCEPI7VSgweszxhOi1omj37/Y6Xb98miSLWqwu26zWx1cznExSerq3o6xbXe7wyKG3p\n+07EB2yMDT/Oaaqq5eJiRdO05FnBZDoDpdjutmy2JdpEFJMZs9mc2Sxky62lqir2ZYVznjRO0Nay\n3225f/8+m80GYw0nJ6ec3rwBCl577TU++SefYr3ZcPvFF3nhxReYzma0bcfF2RnldofVhkhpjBLz\n07queeHWC+RFTrJNSOIUo2XRtzxahnsk1b62rWmCUWvftezLktlkIso51uLD56IoCmazBd7Bdr2l\nKiupLMQR++0W5xyTIifNUjbbNcNqRT84jo9POD49ZXG0QOFZby55/c7nOT8/Z7Y84fjklDjJ8E5c\n2HsnSnSruw/5X5/+U+7cvUdd1yRpymQ649YLt5kmirau2ZU7rFHMZhMWixndMLArBb4zX845PT2l\nqWsuLs6w1vC+F1/EKM3QdTR1w/n5BQ/PLkiShCRNDhXNJE3xSKXQ48izgvl8ymw2kXs39GJymSYi\np9x1GGM4PTlht9uyL3dUZQnCvCCOY6ZT8bEoy5rNZsN6vWGz3lKWZYDJtQy9o+sG2qFl8MJtSNOU\nyXRCkReHoGP0qnHDQJokh0AqCVUelKcLhHDfOjodKhrGUKQJ89mE2XTKrCiY5Dl5lhJHkYhkRDHK\ni4QycOCGHMb3UNF4dLyRz95VZXkcCvw4JBzGQa2lsqKC2tuoUiZJG41Co5RDOYXVRswkPaFy7K7K\nQCiUH+G/TwjCEDU0o8U4WBG4MyFo06HKk2UpRptDhVw5hzYm+OqIipvzHjrx1PHOi9x28ORCSTXQ\nOaSSpKXy1Tu51nWYsFIjuA35bHh5j3EsKpLdIEIDfajuKBP8dgI3SgKT8b6Hsf/aOD8GeuNYLxLi\nYV4JdgGu6yVxRSxBY+AuXUGbrwxFrTEYG9F1DV3X09kOY1QYK3q6xtEG6f0xKHbesd1t6PqBvJ1h\no5iqLum6ljzPcMPA+cOHuK5nMZuLWmRdcrF6yHa3I5tMSJKMznnaVgKzYjIhLSbs9xVN29OEBBT7\n+qnz8Mvzl99xoPGl0Oq6fqS68elPf5r/+T//J9/3fd/3RezVu9sef48AH/vYx1BK8fVf//VfnE79\nBbT3gp230a4vhJ8IdXrC32+l/Pes131SexaP5Vmv86zA4nngcu9Ge2JQ8ZT+PiuAfJ5rX3+/IQx6\nA2xvDH7GnzEouXbQAcIwmsqN51z5clybAOFAWr1+zXH/eJ/HYGeEt/WDg97jbRSgH1cZXuc82miy\nLMPYnCSxsvjDURTFwaBs6HqGriWJIyZFfoDGRJEVk8UArdrt9gzDcDAw3O92KGAxm8tifBgNS2Vx\nYq2l7/Yo5Wi7hvV6TVWVvPTSi2gNFxdnrFYXKDzTokDhefjwAXmekKWxyABvN4BjNp0TxxF92wQP\nDOidwCSGrqWua6y1ZEXBZDIjjjPadmDfVmw3W5xSzJIMrQ3b3Z6Li0uauqUophR5QV5MSfMCbSOa\ntuXBwzPW6w1REmFj2XZ+IQafTdNwfHwslag0ZXW55s8/9znu3L3L0ckxL7//FW7euoVScH5+ztmD\nBxilKbKMwYtAwIh/v3nrJr73TKdTqrJGocmynPl8ThQqGxjYbNest1uBEOIDXOsIjafsOogs8/mC\n5fEpUZTgB0fTdKRpSj8p6PuWiz//c5LYMJ3mYhLoQVvD8fSE//sr/h9u3ryJ1gMPHjzg9Tuvsdtt\nOT494faL70fphKrp8M5jbYRHyPqf/OQnef31O5R1hbaWYjrjxo1b3Lhxg0x1XK7O6bqI2WTCYjHH\nRpayqdAaJlNxbJ/OJjjXk2UZ2nMl3bwvWV9ecu/OPfLlktlMjFS7rqPtWnb7LdvtlvPzh2RZwnw+\nxbmBe/fu4gMPRL55jiiOmUxy4khk1re7zZUiHergtwJiuvfw4Tm73Z66rmnalq7raZuO7WbHMAhH\nKokTTJwJv6goSPNMSO/9ILwFOEDZbBQRJ2IImkYR1lgG19G3Hd6LUWQSx2RZRp5mTPOMxWzCpJDA\nJrI2yMNnooxFgLciXJc+jC9RFB34L1qrwF+5xikMY4kOFTI0KBdgzz5sHwMaJfAnFypAPmTqRxls\nqw1eaQm8lKLvB1FE67swftlHx0X16Jg5VjbUGIA5UZEcnKNtGjECRaSjdRBi6PqWqG9xfXh/ShMb\nA0bMPw9iLfggy+xRzh9il+uiL94HoYMD/OyNsOLx3kmlOibPM+FsmpamE2lswriLMWhjsSHYGYOn\nEc42jvt4Tx9ELYZhQGkJ6sw1eLN3vVT9fBA50FLFPyhyElQ3hwFrI4GGNjZwd1wAkPlgIGzou/7g\naZZnOfPZjH1dsd5s6fsOG0UiNKBHaXc5XoLxjklRoLKMaBcdoNbGWoZeINFRHJHZgihNiWwSlBt3\nnF2suFht33QO/sveXn31Vb73e7+XV199lc9+9rP823/7b0nTlH/6T//pU89xzvHw4cNnXncyEXPX\nL4X2X/7Lf+E//sf/yLd8y7cwmUz4nd/5HT7+8Y/zTd/0TXzN13zNF7t771p7L9h5m+1ZVZe/zCQu\n+NLDWj7e3gkk8Hnbm1XnBPhx1a4rqo0LgTELPC7YrwfI4yQ5BjvWWvCSZZHjgoKQUgdITNM01FVF\n17UkUSwZ4USkbdMkBjzFJCdJE9zQE8fibJ5nKUWek0QxWkGaiuvybrcJC40g26qFTJskKa+8/DKT\nImdz2ZGlKbOjI46Oj9EBsrZZbzE64uLiIRfnKxaLBS+8cJv1ZsVn/9dn2e933LhxTBRHcvxmw5d/\n+ZcxDAOr1YqqqsiTlPl0InC8rsYaTZoltP1AVUmVo20blsslk9mC+XxJluV0fc92XwrsBrmPu92e\ni7V4SsRxxnQ+I4pT4ijGKENdNVyuV0E4oGO+nBNFEQ8ePuDevXs45w5wJefhcl58//sAACAASURB\nVL3m4dkZ+7IkL3I++MEP8sILL5BlGfv9Xtyq25bFdEaaJjRlyWa9wdNzenwEBCU8rVmv1+R5wWQ6\nIc9ziskE5xyrzYpdWQoUzznm8yk3j1/EGs3q/Jyma0mTGSaKAakajdlbayxRHOOdVOW0SgOBv6Jp\napI45qWXXuJDH/oQTdPw+c9/mjt3Ps++3DObzVie3GQ6nVDWgyy6o4Qkydjt9jw4O+OTn/wTHD6o\n7OWcHJ/wvve9T2Bkl/cwVjOdFgdPobZtGHzP4mjB7du3uXHjBiBGkV5BWZU0TUPfddR1jXeO+WJO\nFuTKx+/J2dkZ56sLoiji5OSEyWTCxcUF9+7dI45jrDZMpjnL2TxIPSfkWQ4oLi83tHWDtZb5dEYU\nWZI0oW0bzs/P2e12rFYXNE1HWVZcXq7ZbvYMA8RRwmSSYm1EksfEqQ1ZfXW1QOw6hn6AkLCIo0i8\ncLqOQSt6pYM64hX8LY8s86JgPpsxyQsSa0jiUY1LCdcnKIqBLJRGHohHFuuDc1h1JSYwVmjUIEIm\ncC3xMgYbWsj83su9lgBEILFaKxgI0c5jymIHBciglHbwlbkKlB4JdLxHeYUfHN3QX0uSqYMgy5ik\nkYCnRykfYIxigqw8GKWx2jCYcXwcQp8tSnm06uRva6VvIfBzQbnF6qBe5hxt2xwU0K5XxeSec4Dv\nOa9CsBORh+BvcNAPolpG8B4aq2MqBGHqEETJ51uFYMeNnj1hHjBWnu1hTkEQBTrMDWICC1pzZdrp\nxVdJDxAjnM0x4BxFbJQD1/f0VtS3qrIi9mCThNPTY6Is5eHZOWXTEicpSZIc3r8bBA47NC1t06Ew\nLOYTtPHoBw+kmpkkGBs4QAHK6fsBHY3zkdyH/xPaN3/zN/Pxj3+ce/fukSQJH/7wh/mZn/kZvuzL\nvuyp57z22mt84AMfeOp+pRQ/+ZM/yU/8xE/8RXT5Lbe/8Tf+BlEU8bM/+7NsNhtu3rzJj/7oj/JT\nP/VTX+yuvavtvWDnC9SeVOF5nkX7G8jrzzjmaVWMJ7U3I5VdrzqM25+H+P922rMqZde3qcOU/tg5\nXMsshv36sWrXmHkbo5TBu0cgbOP7swEPPk6mMhmNmOxw7AhBC9dWQf0nSRKsFU6NLIi3REEtacy+\niSzqVVA0umoLlr1DdUH6U5sr40qlaUImuu86tNb0bqBuG5zvcYPFD+J7UpcNVll8X9Fuz7G942iy\nYDGfHXweptMpaZoSx5ahl4pKGjn6rkEpz8lRSmw0+/KCKB4o8mOKyRE4Q122dK1AMeq6ZLV6SNs1\nvLA4IYoc1X5Faj1RHhH7jmZ9QdfUzJOIF+ZzyqaiLLc03V5w/FmKzTM676nbnqqugyeEAx1xcnKD\nNC+Ik1yy28agnKfteoyRjHVd76mbnqpsiLUVt/A0w0QRUWxQNnBp6j3eiwKb8ZbN2YaHn3tIc9kw\nLWZkWUZmcrqy43K94ezsHKsj/q8v/xDvf/kVTpdHbLdbVg8e0FclRWKJLPRdxW6/phkqUd/KEoau\n5nK7pdxvUQxkWUxRJBgDdbWnbVsibUhtQh7nJHHMrRs3SJOEzXrNruzoGMiMJssTYqtp65Jd2VGV\ne5puz3Z3yd2Hd9m2O+IiYttU6A4wmtvvu82Xf/n7cX3F5z/3v/nTz97jcl3TO0OapiiV07YCXUvS\ngjjJqJuGz9+9x//+3Gs0zhFZka5dLqbcPF2wmCYUheVhN8HXLb7vaLxitdmhlWc6wrOyAu2cfD67\nDtcPZEUhrvC9LKKcN2gd0ZQNAFVTc7Fasdvtmc8WvPLKK8wXC1bnZ9RVRVVWLOYzjk9PSJMUN3Qs\nZ1NOTk5QKC5XFwzNDt/WzKbHJEmKENs1tIa66yk3HeVmoGo6yrqlbgYGpYiLhOVyQZymgX9jYXBU\nVYkL39W2bRjaDoXHKCUxRhehY4saDENnaANUzWhNbA1JnLAoUpbzKdNJIV43gScSGeH6ZGlKlufY\nAGNCKTCGgEtFBYEAZTRo4XCNBsMYIeNrI1LDWlmpBih1EC1xTrxfojiRAMo5McwM78EPjsELr4RQ\nsT5wUwL5n77H4ElTkbFvezG3HMUOBg9VLc8xCXLh3gWTVWVwvQQB9D2md0Re4HkOjzbiJaWzCGsK\n6ranbmpsLiavg4e26+mtpo80g/OgCV40MkC7AI0z2tK7nsgkKAfD4EVOOnCdUD4Q/B2Dl/sg6tAe\nFVsgFQXFpsa1DUPv6bqG2Ig/l7cGG0XyLLwEwF55lFYiJqA9PpIA2TuHcxJTKh8kpo0G3wFK4Gp4\nlHcYO2C0B+VQWrx12rbGuU6SVHlOc9lSNY44Meg4wSlD4zUMBld3OK2ZpRFZGsNgKY2n7iriOKGY\nL3FeU1YNHhFtabuOpmvZdzsyk1JMl0zqnqps2e1EFVL1PUNV0fY9rbJsVheUdUPTd+x31fNP8H+J\n2y/+4i++5XNu3brFb/7mbz7zmFdfffXtduldb3/zb/5NfuM3fuOL3Y2/8PZesPMO2+MwsHER/rwB\nwVvlwzwLrvakY5+2/80Cret8ki9mexLvyPNoAOiv/YznOLgGd7k6TuADPgQsV14T4891no8LwdPj\nHK0RcjBmuZJYqjazmSyY27ZltVqRJAlxHLPfC5F8xHKPnjtiFPhoUKaVuGenSUKW5SilD94efSf8\nlTiOGQZF4xq6FrrYgk+FK9N3bDcbjO8wviHPcyZF4Dogfbxx4ybL5VImNGAYOnBiSBhZTRwbXNeh\nQAjexRwTJ8Lp6QWGEUURl5eX7Pd7rNFoJfC1pqlF/joygTgulaHj4+Uh6GtaURWLoggHDM5Ttx3r\n7Z66LOn6HrwizXKsjUjTjDgN5o9eFLNsFBGTiuFk3ws8ZnCkeSGmq9qQpWNWE4agSpSmKUmc0rYt\nZw8ecvbwId45FvObTKYTUIr1ZsNms6VrO7Is5/j4hKPlEjzstjt22x3ODRSZ+Ly0Tc3ghgCHybEm\nAqcp9yXew+LoiJPTU5IkYb8X1TQJjAV+mGcZWSqqcCay1HVNWVbYTKAl1tiDp9J+v2e9XlPud6wu\nL7i8vEQbTV3XaK2YTgqWyzk3b92kKAq22y0PHtznwYNzLjd7jLGwiCjLhsFbnFMMgxcT1PNzPvfa\na+zLkulsRhpHzOcz5osZcSymlrvdmm5wdF7OGbzDWhOU2URBsO862ka4HlGQ2h2rb30wKzXWAopB\nazabDRfrS5xznJ7e4MaNG5yenrLdbkSgAMWNG6e8cOsm02JCU9dEVnNyfMxyvmC/29G1La6XxWGW\npsRxgo1S3ACb3Y7Vah3krQXeFkUJ80XEQitMZIljC0YTJxFq8LT1lcqhQjLpzvUYFMpI1cP3vUgm\nGy2KX94f/FuSOCZPE6aTQrhUaSKBlJVgfFRajGIxDI2CZPOhEqFlbFHXxiZrI0DT+5FIL5UCG2lG\ng08/OAbFwTdFa6kC6ZDEGcbxcXwtrdHeibaWC2NegGn117g4IxxLa6CH0bsGrmC5RmniWKqQ1xNl\nwyBCKkPfH4Q8jNFYN3JgRApd2whjB6wxODxN21G34r2UuBiHGJX2w4DVJnB7oO+lQoK74s2rIJ6A\nBuMd2iucGkR++vBPIH4EiGVkDZE1WKNQyuMHh8fRO4EADoMOQikhgeVCsMPIhZJn6FTP0IWAzkkw\nZ8bKWBBp8FKWQj5IASWgOMBQ8Y6hl6r1CEEcnKftBoxx4KAbHLoXQQVlIGkitFHgxGS6KUsik2Hn\nFkxE3fRoTXhGjvXmkl1Zku725FmBMZamkfFNDGkFimm0EvXH/Y66bRmQ8fS99uSWJAnf8A3f8MXu\nxnvtsfZesPM22tOI/08KfJ7nWteDpMfbmwVBb0do4Hn792bB0jvpy/Nc7/o1nwQVPNy7p/RXsNvB\nGfsavhxEJWgMXK6rpo3nXZ+sH69wjf8rpSDAXKy1JEnCdDo9VGtEPStltbqkqmratqVpmgOkbezr\nCGkjLCpGv4w4Tg7GhjLxjMc7hgF6J4se5wyR0UFRSngCWayZ5xFFMSVLC+JE4Einp7KQTJKEru1E\ngKCBwYeEshEceF3W0o9iQloUeBUfsOjjPdnv9zg3EKUJXdeyWp3T1pWYK2YpXduAH5jNZxwfH0vQ\n1vWUVYNSooamlKEfCO7gHbu9wPSsjURlKM1IkmCkaCxN09F3ElgkxosXSl/TD2LymSQpURTTdT1J\n4D8BgaAsSl9WW9aXa87PzijLUnxN4ogojkMfJWtdTCdkuTzDwTnasqSu64NanlKj+atwbeJJxLQo\n0CYCFFpHLI9yimLCfD5HacN+K+aVi8U8SL060jQmScX8r+871ts1VV0yyWYBxjMSmWXRKqT/C87O\nzijLPWmaBjCTJ0kT5vM508mUwXnW6w3b7Z6qrtntJdhJ0pz9bo+NM2wU03Ytl+stn3/9dc7Pz4ni\nmBtFQRxZZvMpeZaCUlRNQ9NU7DtHWVWH71/vHHhZpHVdL/uUwliBYhljWK835GmORotXi7aY2FCG\nAN4NjulsyosvvsitWzfRWvO5z32Wrus4Olrywq2bHB8d4b0jjgzz6ZTZdEJdiax113VMJlNAMZlM\nD3LC4mG0o24aTGSZJCJKMXhHlEREkZUqaV1SB5idGhx9LQmG8TvpB4FbaS3E+8gYkjgiioxIJWtR\n2IpjqdYUeU6R5+R5ehhrlBJ+SFEUkuhAvm8ihR0/FoSoRxIwLgQmKvhveeekT4ekFEFuXgwzYYRx\nXV1jHNeck8U/wQxXZKkVjivFMYHgDkHmPnjLeHeAjl4fg1GEQNf8/+y9yY9kSX7f+TF7++JLeERk\nRm7V1dRIRFMEBxhohBkeJBD6G3ggMBJE6Q8QoAsvPOisk/4CSYeB9G+IQ8xFh4HUALvZW3V1VVYu\nsfnubzWzOfzsvfCMzszKqu7mAqYBUZWZ4f78+fMIe/a17zb6ToY5whpD13ZvSHa11gT++QEap+Sx\nSluUFombU6AONWbQeWmJgHa1eCCDUKK2Ja2tpffywmGOvAuAceAC3zF0vLl4J/2728CS147jmKTr\ngU6AlJO4aItD9T1o79uxBpR4o4IoGNm5AXgZK0DmWJ2h/Wdnvf9G+XPRSsIW5P5yF+ZwrAKQz6Sj\n70OiQANWCmmto++gbVqiKPTkYCCbM/st+WFPnBVYazxAlpLXuqlpqgPb3Y44SkagKgmYFV0vwR9R\nIt1sYRtC190hyo/j4/hbND6CnV/z+CbMy/Fi932A50Nf712hAu+Shn0ds3P/+O861l/VGJNwjv5t\nlH7AGze6Y1nbqHNXGi9EHwHHfR/N8YLAHr3W8Q3rWLcu+nZZ7O52O/HeIJ9FFEWi288LlN/1zLIM\n5xx1XY+N1oMnQCtFGEdMp1OJyO172q4bzamDVE4WNWaUnegxorTDmp4kjkmTnOl0QlFMcCjiOOXs\n9AGnizOSOMUYC0p52Z0VqUlvMH1L34mJeDKZkmclOohoejuWKnZdR+MXvlmWUU5K2rbl8vKKUEN6\nupDFfxSiNUymU6Io9r6Mlq63JEkMKvQaeQFvjsAX5wG9oWk6ymkkMp8w9o+THW3R34c4Zeh6izHO\n79AnhEHE4JdqW+nBsUZ2jINY0TYSXbzZrMAZ8kw6QIzvs1BBQF4WBGFInIr8p2laqrqiN8ZLpMB4\npivUmiIvybOULEn97qyjnMw4Ozsly3KstWx3W6qqpjdGWJG+JwwDwjgUM3Og2G03XF69wljDPFwQ\nhQmgxw6MPM9xOFarlbR2K2nwjsYOjVyAoQ44VA3L2zWbzY7Nekt1qEmz3C+M3SjzOhwOvH79mpcv\nX3GoauI4Zj6fU5Y5ZVkQBhpjeg51RV0d2NQtbduIBKvIR9YwCCM6Iw3vQRQROEfdNNR1w35fEQUx\nWSJgM0BJCakRP9vp4oSzB+c8evSQsiy5ubnhdnnLbDLh4uIhi5MTtIKqOpCmMVmW0jYNy+WSzWZN\nEIQsThc+uS9if9hwu1qx2x8wxhGnKXmRE0QxYRxjrCEIQ6wzNPsddVVLea0xaEB5L4vgAAVO5Guh\nBzlJHJFnKaFnYAY2p8xzykLYnCzLiSPpjRnkaGEck2YZUSRdRBpFGEUEYeR5Er8EVvc2ejwDobTy\ncxeojtEcrxSjv0NxF6xirbozw/t5SXw5wRgsoDha+I/z27DoxgMdJ5H3Q+jBGFdtUe6uNHMASgO4\nMX1H7zdqxoAApUafi1IaqwTACPByY3FyF1t60xPYkCC0OBxdb+Q6hgISrZPfQ5kXjuK5Ub74UwpL\nnT0uUPXR4B6gg8P50Ic4jsiyVCRutaZRLdZqjBnaZSQYYQBysqmhsFr+rv2mhA2cMCxCpY2FrlGg\nsUeqieMvHUhhqyCkuy62oYZAmHFh3eIw8D8bEpluB2BkHVEYUZYlk+mUq5sVt8tbit7SdsaXFdsx\n+a+ppO/IGEPmA2vCMBR/aF3LvSUISfOUyWSKRXGoGxTdt7+Rfxwfx1/D+Ah2fo3jGCB8CHC5v7v/\nIf6dtz3/2zIqb3vufSblfd6ev0rgM+xeik57+MNwY/tl1oq3/JvWg+mWX7rRHAOdY6Bk733//jkB\nhFoWHVdXV6xWq/EYYRhKwlQrPpssy0ZJj3NulAoM6T5hFDGZTlgsZNG23e1EP+5NuCJvi+n8zQmk\nC6EsCvI8Y7ff4nBEccx8fsL52QKlFF3bE4Uxk4mAjqqSDpE0TWjbDmNkEdE2NcZ0OGfIs4RyMiNJ\nchrjqKp6DE/ouo7tdkPfG2azGdPphNVyyXq9Yj6bjp9JFEekicT3OgdhGHE41ERxRl6WoEN6I7lT\ndd3SW0ecZARB5KUpijTJBCgZSTvr+16KVrF0xnmzeYOxkMXp2DUS+pQnkU0Z+l4Suqxz1E3Nbreh\n71uSVJKYVBDSdj3Wsz+xS3AKX6go3qqu7fzOb4Q1hsNhjzOW1EcUJ0mKDkKskUVKlpecnJyhfKjD\ncrWhrhvyPKM3hiDQZFkKOAGwruf69pLb5ZUHGxOyrKTvLdtqj+164jii63q22y1VXTGdlMxmU6Zl\nKVHUUUTf91RVg7WG1XrDarnl8vU1LgiZzRekWUGWFyit6a2lahqquqH3i7e264mThLPzB8LqYKmr\nitvlDfuqpukMaZ4xKUuKoiSNY7RWTOczDoc9bdej6wZouL1Zcn2z9DvHifjQwhiM9UWelulsysl8\nxuLslMl0Ste23N7e4GzPwwfnPL64wNie7XpN13WkUcjy9savCS3JWMh5wu1yyaGqWW/XLNdrOmPI\niwnTxZw0FR9I0/fYpqFpW/b7HavVkrqq6HuRrQUKIh/RHGlJFXMKAiX9OFmWkqUxWTykqWkBP3nO\ndFJSZgVJImyNAB3ZuY/imCRLxzS+YWEehD4MAc/mDKlcznpmwYoPxM9B0r8Vo5WiqiqM/1ka/ELD\nzxOIlPcuPex4s+h4zhtYcolvVmicuwM1w2OMNd5cL0lk8gHceWKO+2yc9YyIP4/Av6/jxMkxNACH\nUcaHPXiZWhiiUSRRTKQ0kRWpXdtJBHbgU8aMZSxatpYRuNkjdgvncCN7b3EjDyrgkQEI+s/RkoHW\n/ppb2j7wHk93xL4oZFq2WKew9PROEUUh2ksUnZYIbdlcsBilsFqJp0l5Oba1GNMLuDxSGTh9d51Q\ndgywcW5ghTzbZD0Y506REOuY2WSGsYrles9mvcaiCEOR0dZtc3QT0/S91BzIJpv41sIoxB2grhtQ\nAWGckOeFFKyyZX84OsbH8XH8LRgfwc63GB/idYH3g4nh+/fH2xbt7xof6g/60GCBDznX49d72/n9\nqvK294KsI6blXa99n5Eaomfvv5eu7d4JYsbH3Xut+1K34Zw6L3ta+/jivu/H17y6usJaaTueTCbj\noiCKZPdtYHgGH8f5gwcopah3Ij0ajq3kPo1zFh0G9KbD2I6IgCiOiJIYVYl2vigLFqenLBanVFWF\n1oH3/ygPWuQcu64nDOR8mqbB9C0KSxyHlOWUbLi5+fd4OByIopC2bVivpYhx3CFsGvq+Y1KWxFFE\nEMjiLk0FrKAVu8OB3aHm/MEFp6enskjMEkzXslrvORxEAhcnOWFkmUwmlGVJ13fs99V4443C2GvW\nHfuqoapb0qygnMyI4gTnFHleAI66rjgcDrRdQxgocNA1Ndb25HnGdDJjMi0xPtI2ThOUFg/Moa7A\nOtJMwGwcx8JiOMthvxc2SSnCMB7DE4x1HPZyjedzzaES6eKryyuWq5X0JSUJURyMno62azjsd3Rd\ny09/9hPAMZtNmM9nxFFCXVVsNztwlvW64+ryivV6Td/3pGnK2dkpD87OaOqGzXrNcrnicKgJgoDd\nvqauWw51w3wxkUS7vCDNRaPvjCMMQibTKU3b0RvLcrNGBSFJlhEmMaZvEbJNksFmJ3MWp6ecL07p\n6pr16paHDx9w/uAhz7/8ku12w3a3o6oqbm5u2e8PPHzwkPPFGfWhASuL+NVqRTpNefz4gvPzc8Iw\npK4rrq+vqPY7/t53f4v5fEZdH7i6umS/2zEtSwKVcnt9jVaKJ0+ecHJyQhTFEtVsLOv1mtVmQ28M\naZ4znc+YzGaEYczNzQ3r9Zr1ZsNhv6c6HGiayst+HH3X4xTEsSIOYpJY4pdxliCQGOkiS8nTRJit\nJBHAnKUUWU6WpSTepySdQbH02vj0tjzP0aGUgIoPRuRPSvnksEAThML6uL6XxS3CwGKVjysWyZxS\n0cgOiyRtiFb2JZ0ozBHjMs6R3AGnAdAI6T1Iv8CYHhjAiyyslRLQMMx7Iq2zRFo8Rs4IuJF0t7tI\n/SHSOAxDUNC0rSSXGeM9XcK8tki/2CDdRYkPRochvZXXM9YXjXoZ2sBiiXzu7j06LPguNe1BFVis\nCUbQIsOAGrxMSL+OZzz7vqepamocxgk4Q91JngcPonIO6wwWhdMCbgMlDI5TA1snd5R+7PsZLqOl\n7/2xxx6fu7hsZy0EjLLHvuv93K1RgfQLEYVEgfjKuq7zioKMiyTj5nbN85evaZuaJPEbF3XN/nAg\n1NJRZXtDXQujG/uf9yAMpZesbtnstqCFuS2LEqc028O7O3Y+jo/jb+L4CHZ+Q+NDAcava/ymXudv\nQkjB+4ZisMnKeEMfPWje/feMMThzp5c+ZofeCq48Q3GsNb8ve8M5Ah2N8rQBzIRhON60jbG8evWK\ny8tLMcJG0ZiINvx5NptJjG+W8fLlS5ZL2cXGv/5gWh7ih2UREXvjczjKU7QOxlQ4UBRFyXw+Z7E4\nAzTG2NHsvry5lcWMk8CELI0pC+lqmE3nvsBzkNn1GNPRNJWwFMslZ6enUn7pFxRPHz+mLEuapiUM\nNQkKYyx13RCFIS9fviLNCvJyIuCkEE/D8y9/Qd00WBR126FoyfOc0/MzwjhhtVqx2WzpjfWenJBA\nBywPFdv9AYuinMw4WZyhdUDfWx/iIHI7YXE6wiAQOdZhh1Zwujjh0aPHnJ6ds2tqAXzOUtU1m92O\ntu2YTCbkeSnejr4bI3PrSsBEkWVepght29N3ht1BrlFelmwPe16+fMnNzQ1ZlnJ6ekaeZ6AsaZbR\n9lKw2fc9q+Utn332GRcPH3J+fs58fuKLVR3GODarFT/60Q/58osvaJqayaRgMp3w8OFDijynazva\nrqdtO9lxR7Pd7tnuK8IwZjKZUZRTgiDCOajrln1Vs1yu2XpfS28sZVkKyDQG7YMFri4vabuGB48e\n8eDJE8pygu169rsdQRRzcfGYKIqom5bd/uAXcYYgCJnNTiiLCVmW07eGm6trDrsDaZJxcfGQi4sL\n6rrm9etXbDZrqqpCKcenn37CfrfhBz/4S7qm5ex0gdJw+foVtjd85zvf4dmzZ4RBwPJ2xc1yw1cv\nXrA/1CilmS9OmMznTKYzwijmZrnm+csXvHr1iu12S9924KwsiJEEs77rKNKYMI1JopAklthk7Vvv\nkzgiiUKyNGE6nZClCWkcSzFlHJMM0tUiJc9z2YTQGq0CojDyLFgwbsJoH/due4u1RhLEtCx2296I\nCV0rgiAi0ArTSZmp9V6a4ecx0Iwej2FOVHqIix46au78jdYzL4NvZ4iVxliMuWObfc2ynw71OHc4\nHA4x/Bvb45zBmv6Ne8XxPBxF0XiuQ9CJ6XpIIQgiosgSxZbEyHzXGTmmGsIVnMxbeZZJcW/bYhEP\nisN5+XD/S/crpRQq8IwM3vfjnPiEnCMI3BhuE+CQdlZF4ixJFBBqjXU9nTUoFIEJIPax2lqDkXkX\nJSWrSg48ApxBZu0Ch9MiuQt97LhCY628+iDBG/w6w71kALBDkh8OLwe2BKlGOYXRht7IvNc2HUHQ\nESUp08mUp0+fsN0fqBoJlsnznKZrwQdA7PcVTV2RJVJHMJlMqJsad7jbCOz6ju1uT5ykPJrOSPOC\n3aEBXn7N3fnj+Dj+5oyPYOfXPL5O/nU83ueHeZtE7V3HfBcYeevE/w4Q9jb52tvO522Pfdd5fFOJ\n3bvOafyeUm9I2MDfhtWbqWvDc+8DE+tvTMMO6tcyZ+84v2NGSClI4viNSOnhtYMg8MZjNe4COudo\nmgbnHIfDARDZ1MnJCWmasNls2G63tG0jN3K/gzqkIUnfR0schZSFNMuXRUZver9LKmDrcDjQZCmn\nZ2fM5nOiKBgXR4HW1Ci6rmW9WWONIctTsjShyEvmJ3PK6QSU+CoqL/EJgoD9bsdmvSZLUx49ekSe\nZ6xWK+I45tHFA5bLJbvdDmNarDW0UewTbBVt13J6+kikXkhAQd8bNtudeCoCLTKoph4TnqrqIN0l\nxstbTEDXanrjuF1uqOuePC9JU+lasRYJFDCyW2lML+lOpme/27Jerej7niSJmM+nlGWOdYblekXb\ndbS+B6breh8OoDz46TBd70tVZZd6Pp+zmM3p+5bNek1d1wRagiqm8xnzxZymbVl7lmEynTI7mYOT\nJKfXl9c0TUUSh2zWK/7fP/9/CMOYZ88+oShLlAoIghCtFfW+4rPPPuN/pSLb7AAAIABJREFU/s/v\nk2cJn3zyjLOzhcQB64Cb2xW3N7cYY8nSAq0Dbq9v+PKLr/jq+StUnBP44ITeWG6Xa26Xay6vbri+\nvREZmzVoHfDo8SOePH1KlmXUbc3h8jXr7ZZJWfL4yTOefPoJdV3z+c8+IwwD/vH/+r9zfnrGermS\nOOUs9ylgmjwv2e/3JEnKer2mrVqRAwYB3/nOd8jmKf/jf/x/HuAoqurAYb/n4uIhUaj56U9/SlPX\nzKYTKdFVmrIsOVuccnFxgXKwXq24urrmxSvp6JnMZjx6cMFkPkeFAYe65uXr1/zkZ5/x6tUrDoeD\njyqWxWLvmQaNIktSJmUuQDxN0VpYjkAHJGFIliTC3iQpUSgBB8JgJhRZxqQsJIJ7OhUmNwyPfIMa\njfLeioGZAGedlzVpiYHufQiIA7RC6UAW/T7K+FgG5pzzoElYgLEnRx/NbT4GevABDeWkw3P9LCnG\neXcn4wVJmMNvtAzzCzgCp9AEoDS2N3dpa0fHdEZ0ZUEQSpw3ng3p+zEtzvYGqwPw6WkS9BLjWuj6\nDpwAM+PDF4IgIMsyOmMwbYexznNYd0EKWgd4kZhcYX/dbeCwamCqBogjoDAA0So6BwGQRBiT0bcd\nFR2draSk2fQYE3rAEqCVHSVuxxttxyEEwBvX2GktZ+bvEc7ZkWg6Bohe/zaeZxiGmFCuddf39CZA\nK01vlI/il4CIsG3pW0nTfHRxwe1qzVcvX9P1DVmeE/Wx9zpJFHXX9my3wsROJhNUoNlsdnJtPRBu\n25btfsf0sKecziiK8r33zo/j4/ibNj6CnW8x7ntt7n/v+N8/xLfztuMcS9TexTy8D+S87c/fRGL2\nLqDzrue8C/j8Kp6i953n8au9zZszfu/Ig2OdvUtm8zuC9z/HN661elPucZfwo9547ODpGG70w67o\ncHMedNZwF4wAsN/v3+i96Xsp3BykH0PZpyxU5CsMhZ24k5sYmkZM+GVZkmUp06kcL81S5vP5aDiN\n45ggUHRdT1Uf/HEAJecVRRFhfOd3ORykoLLrJPQgiWPquibPc78j/5DVasXl69dIf81Duk68QPJa\nIToMsNawXa9J05ymabBKMZmUhFHIfrchiiJOThfU1QG734nkJ4np+p7D4SBxzodwLNVr2obDocI5\nRZaXzOcLojiRG3RvOT09pap3bNZLr4cH0/csb2959fIFi8UJpw8eslicoAPNdreRDqO+p/GyQqUD\nkjQhSROCULozdk3Dfn9AK1kgzSYT4jhmtVqyXK0JAk1ZxMRJzMnZnKLM+fnnn3OoDiRpggo0682G\nYDR/W+I4YrVc8eMf/YjlasPv/sPv8eTJJ8ymC3CKrmnBOPb7HZeXlzRNzW//g/+F3/3d3yUINDfX\nl1KoenvLdrPzrfeG9WrJT37yU54/fw5W8Z1Pn7I4O8eh2W533KxWXF3dsNps2R8qnII0Lzg9O+Xp\ns2c8fvqUPM/4+eefs97uaDtDMZ2S5hmb9ZZXr1+jdMDFo0ekSSbpcJdXLJcr9rud/6zkdydJEpE8\nqYDd/kCaZjw8f0Capbx48SVd1zGbTv3PuqMsc549e0JT1WgFZ6cLSSeMIvIsY/HsGfPZnCAIuHx9\nyS8+/zk3t2vCuOTx00948vQpi7Mzemv58quv+Msf/4TnL16wWq+oKi8zRYBD4H/XsqIgiSJJUcti\n8kRSuUzfYfoOrSCOBOzkWUaeZ0SRsKhlWTCdTIQRnUxIM2Fbtda+Uwjx7ejBBzj0gAXeOCKeHBWq\nIYeAwfguQGYoHX1zLh3mGeWPN8RKj/O19SZ5J76SQA9FpoEknIH31lisGRbrMk8FWuGcEmO/lmjo\nINA+fMMSOO2Zo4CmNW+wSuPS3kvmwkCYLGMtZpjTPNAzxkDXjmxPb/o734r3ZDklANFZRxAHzOdz\njHM4u8d2HeP07yT6W9LlhlpmDyo1AmbwckHnw12Or6ffvArUUC1QoIBK1bTGUhkBacaHkgwbUE55\nX5D1X0I3MVyK4T4jsd4GjCL0c8jAtSl1pyAYYseH5wwBNuHRBp3pe3rj0DoCZ7zCQBF571ZTt7RN\nw+n5Ax6en3N9s6RpGoqyJNBaIqy1Jo5iah/Ast1uyYucJE7HjR6lNUpbmrpht9vz+vKK3n4zafrf\nxvGf//N/5l/9q3/F559/zieffPLBz/uzP/sz/uAP/oD/9t/+G//kn/yT3+AZfhzfdHwEO99yvC8c\n4JuwO+8bx0DnfSzQh44PYYk+9PnD39/neflNDKXUuIi6941fuk7W+uKFgYXh7j1Y7m5IdyzNm+zV\n8Z/vd+2M3/c3o6EpfOjRCQJZCLVtO96M77TljF6c2WzGYrFAa81yuRy10yjRZA+x09YafGCrNMen\nCdqnZGmdkiaxGEwTacCe+7jn2Xw2MkoON0rrmqZGB4okkYXZZDKhnJTESSxlg0jRY3U4EIQJeZ7L\neXjNeVGUGGN49eoly+UNFw8fYkxP17XkWf5GUABEBFHFyfyE9UFYrSDQ9KZnf9ijAoU1klDXm54k\nlXjgm9sbyrIEJWszhzBWdVVxqCp0VDKbzZmfCDDY7w5oLWxI53uJQCJ0D/sd1WFPGAWUZUlRSEmp\nMT1N05Bm2bgTG4QhSZpSTmR3PooimqZhs1pjrSVNEylEDUNeX15yfXU9XpO8yInSiAcPz+m7HmM7\n8jKnKAp0oDlUFVEYopDjmK7j6uqGq6sbvvvd3+J3vve7PH32KaZtubm+oW56Lx285eb6hkk54eLi\nEUVRYEzPYnHKdrvl9nZJU3ekqbTNr9ZbtrsDXW+ZTU84Oz+nKCd0Xc9uf+D1y9dcL1cYY1Fa5C1n\nDx7w9Nkznjx5wvzkxJv3V9RNS5QkODS3qzV9f0td15wuFmil+PL5c3abDbfXN6zXK29wjlBWAg/S\nJEXrgPV+izE9p2fnFGXBixdfUTV7vvvpd5mUJZvtms0mochznj19yqsXLzmZzclzKV1NkoSTkxNO\nZnMOhwMvXrzk9WtJkJvOZsxOLzh/8JByMmFfV3z14gU/+slP+OnPP2e9Xo0gIgol/jcA8jRjMZ8z\nK0pi/zscKkOgDMqLuMoiF2lfnvt0RQlniMKQohxkn1PZbEgkvQ/lJOVQaW+OFyZg3Fzxc9CwkSLl\nlmpkrbXWvgvMRw4b64GLG+c254QpkOdq78WRxXXgmYHhuKMXxGqcEsbFWd8zg99LGecojXE+jMBv\n8GgPtu7CDPxRncOaHtNL4eoYP23v5lw/yeKMEUZnCCfQdz4pY8wYJqJ1QOw7a4x1ngkaUt564lgA\np+kNSmsk4Vm9eU/2QA/nRkAxpHSOm1SA8wWgjJHdQ3gARIEWb1btiKOKRoPpfBKm9e9NHR/37r4x\nBttYh482wDlE+qYcXd974Omvayc+TpRCVHe+aPqoky3QMVKM6jDW0nWSvGYZkicVcRgRR46ubdls\nNixOz5hNp0zKgurmBmcNRV7CoaapGy+Ri8A5trsti/70LhZ7vJ8KEzXEygfrNUpH771P1/UXdN31\nex/zmx5RdEaafjhQOR7vlLZ/4HOPx3/9r/+Vy8tL/s2/+Tff6ngfx69nfAQ732IcT6rvYjS+LZh4\nG3A4BlVfJx07Zh2+DoS87blf97z3MTi/yTHcON/6MvfYlmM2ZtCv+wce/Ukd//W9n9fxdbn/+Upi\nkhuZkUE+5ZwbF8ngU4f8TXGQoUynUx4/fsx0OuX29pbb21uUGroVFHEc+Z1UQ9f2stPqHFmWkRf5\neDNP05TZdMJ8NseYDq0UeZ5xenbKdDpht9vJufqdYDN6cMTYXBQFi8UJ8/mMNEtRWo03aLx8RSlF\n0zRUVSWysq7l6vKKy9evscYwmUxEHoTs/IrcrpeFSxxSTqakeU5loCxzUHB9fcWLF8/9zrIEIOjA\nszqmZ7/dMT+Z+7Qp2d2u6wOr9RrnYFqeMZ3PSfOCpmoIo5jpZEISJ+AcSZxgbc9+V7HfbTG252R+\nwmw2HaNcB/YsKwtAZH4ivyrIihytAuq6YrvZeKAji12t4HA48Or1K1xvOD09ZTqdkWQxcRoSRAHW\nGYqyIEkzsjT16XzCylnT0bY911fXXF/fMJ3M+D//j9/nk2efEEYRL69uuby8Zn+QuOfrq0t22w2P\nHl2QJBIIkSQxZ+cPWa037PcVbSPJemEYgw4oJzOatmd6ckKUJARhyLD0O1RSXBrFMVmaslgsuLi4\n4NGjx5wsFmw3W37y05/wxZdf0nYdaZrS9R3X1zekacp0OiWJYrabHfvdltXtLavbJVor5vMTJpMS\n4yxd2xKFkq53OFSkWSaMzOUlV9dXfPLdx/zWd7+LMT1939K18r6Ukw2B09NT4igijqSfpixLdvs9\nv/j8C169foVCcfHoMecPH6GiDOUUL1+94rOf/5yfff5zXr2+ZF9J23sQhigcgZc5pVHM6cmCB2en\nJEEoC1Nr0c4RKOltiuKUk/mc87Mz8iwjDEPSRNjTJE7I8pSyKMmyjCgMUEoAUqDDu5S1MCQMQvFX\nmB6DLPiNtZLcZwzKyRyhfLKY9qWZKEk/7IxBWTdOgMYMn6TyzM3dpg6eSbLOy8i812Ngt3EO1BCd\nPDDdxxs7Emxwt+ATyZftDZa7DjKlxJPXtXehLFr7JDIsygjAMn2H0VpKOH08slYKFQQ4n/I2ps4h\nICzQAWmSUDUNXWc8MHP+tYTJCKMQcZpo8GzMCDz6Hjo3yvKGYs4h9nmQ2innGR18mI3SWBydtThf\nBxBHAfHg36Eb2TDlFdXC0KhR7idgRGTLInHzNy4NgY8ct6bHocCze72PodfqLnXtWC49yq89o+9w\n9NaDKCVqgr6XL2uclFhvdux2W+I45GQ+ZbvfihxZC9um8D1PcUTftuz2ewmaMY7eGg8gNUpJHP8A\n2Nq2xbh3R0/X9Rf89//+Paw9vPMxfxVD65x//I9/+K0Az7/4F/+CP/qjPxq7hz50/NN/+k+pquqN\n5/2X//Jf+Iu/+IuPYOeveXwEO99i3F/gf4ic7Nf1mu8b72OAjgHTh0jr3gW63vX3dzFc3/YavA00\njvKA++BG/jA+xh7tgL5xfs6NYGnoxvvQHZz7QOf4+MPNNPTt6GIgramqysvYGBmd3ifmZFnGw4cP\nefjwIdvt1rM64lvoeyNm6CQhiUIClVExFGMqJmVOmiTUhwPOOuIwZFKWIj3b772eXDOdTimKgsPh\nQFVVRJGYqK0xNE3DarVCKZjNJrJbPZkQRSHGmTFkIctytArZ70Uq1fcdeZ7RNi277QbT90zKCUEQ\nsN1sSJMEZ8WX1HbCIuVFTpZltF1Plorsp20bvvjicz772U+Zz6dMigIUpEnqe20adBhQty1ZkpKm\n2RjhLRK9jNMHD5nNZqP0pyhLTuYnIvHoeklEco6mkc+i73qCXHs5j8b5a9r1HcaXvU4msnBNkhRr\nHavVmufPn7Ner3n06BEnJ3O6ruX25kbAnVKcnJ5SegYoSRKSLGR/2MlOf5HT1A1RHPpwBd9O38LN\nzQ1ffPEFbdvx23//t/mHv/N7GNPx8599xtXVNU3bYE3L4bBjs1kRBpr5fA5AFMXkeUlTtyglEbx1\n2+FUQKoi8SkEIXGSMZnOUH5REycJyTYBLQxpGIaUpZSezmYz8jynbXv+8kc/4od/+QNWA1MTROAj\niReLBbPJlLZpaFrxVbSN9ADN5wvKUq6F6ySeVpL8KibTCZEOuLy6ZLNac3Z2yieffEKWZaxW8rNl\nTM9+u+V5J6D97PTML9CEGVku13z11XNevnxNkohv7NHjx2T5hNvNjp9/9nN+/LOf8MWXX7FareiM\nAO4wConDEOWs78qJmU0mnJ2cUKQJTVXTdz3KQZhITHyWZRRFwdniVMBOno+f8WQyIUtSiZf2SVkS\nBSzenyiOpAdGCpSEocEhC3NJChMpIzgni2QdChN6LJcdfIDg92aUugss8exEby2mPza23/XvYIfC\nyqFjZ/CqDHPh3WL6jo0RMMJRX9kAcKwbIo/9360dZVbD363qvZzL+O87wlB8c8ZHUYc6wCApj6Y3\nI2Os/BzZK4ni9zPsyNBjHVVTYa1fkFthfcNAo5L0jflfrsGdsE5pTeCBjfXTt7GOMDhm2+Tx2j9H\nK0UaxxRpSpNE2L7FGdksCnXggc4gQVMCJq33aFopHHae8UFLgapWilCFntnRPlhGZIGBViKVG2TP\nfpPn+Gdi+LJYut5AqAhROKfpO0vTdv7nSbHf7YizlNm0YHGYstlVrNdLlA5JkkgS7vqOvmvZ7XYi\nM+bYC6ZHsGacsDtx8mbp9v3RdddYe+B73/u/yfPvvfNxv8lxOPyQH/7w/6Lrrr8V2FFKfWOgM4xv\n+7yP4zc7PoKdbzHe94t+PD5ksf8uZuZDH/O2P79tMX7/fL6OQfoQZuj++FXA3f3zepdkDu5u+sfe\nmuPnHn8++t5x3nhPH/he38+mqTcWA8NiqKoq6roWU7UHPGNUqVJMp1MuLi4IgoDNZsNut/P3c5G/\nDIEHQ5KRtdYnsWnyoiAOA/pGe6P8jNPFKfv9HtP1xB505XmO1prb21tWqxUXDx5SnJzQdR37/Z6r\nqyvyPJWmeMS3E0YRyjCWIDqgrmqurm64vLwE51jM57RNw263Jc8zzh+ck6cZbV1hjJZCuqaRRVHm\nyMuCOEnkvaQJZZFze3vD9eUlm82GPI0xaUKSJKRZhkIWKrPZTOQbkZSP6jAijBOKIORkseDkdIHW\nAftqj7WOOItQWhioOAw5HPZsfaDCYb/HOSs77Vp27LXW7PcV2+0eWzdMJhMmEwGN+/2e7XYr5Za3\n1yRJysnJnCDQ3N5u2Ww2AJyczDk9PyNNU1mE+C6f/X7vd4/vwFYURgRapFKBUrIbrgIeP37K3/t7\nf5++71neLHn+/AV1VRHGATiDNR0Kw+JkTpFnUlyqFOv1hpvrG3a7PdaIlKduOvb7JdutSNC0DuXn\nJY4JwgBjLK0vecyLlPnihNPTUyYTAay73Y6rqyu+//3v8/LlS4wzpKnsn+d5zunijPn0hCQKaQ8V\nt9c3LG9uCLQeJWYKWK83VNUBHSiKvGA+n2GN4er1a25ub8jTlCdPJL2v73vZzRc6gu1uy26349NP\nvsNsOmO5XGKto64bXr++5PXrK7Ks4PTsAUU5o6parm9f8IuvXvKDH/yA5y++Yr/fA7LwGFrl40AT\nhTGz6ZT5bMasLEmiCNOJBCtNY+IwIM9iJpOMiZcxnpycsJifjHK6PBdZm8w/Aj66rsf04kUJ4pgo\n8kya945Y8D4SSQVTalgEO1nkBhKzHEURavTT2HGhGwQBWokUbJyDhkXv4OtzAlI0SnqbPHMbBHoE\nCsLqCAPjnPEA6UgSB/77R5Isq8bHCfNyx06PrIkS/4oWk4rMvffSK60RRmb4d20tHXeFo4GW353e\n9LJBFIXCzPgCHfGyBLimlU4sKx02LpAOrzSOJEnMSVlpEAQ+dOFuvh7kyMpfjkA7nApFDjfEWzuL\nQY2AJ41CyiylSVM6XwfQdy06iVFeijdkuol8zdLZO8ByHJ8jUdKBZ4HkOjgvhRtgmXN3CZxD6MAI\nbv2mWtdpjLXUbec3NgKslbCBRrcCAK1ms1ox0zMmk4KzfsFu9yWb9ZIkKYiTnDSO6aOYRlfsdju6\nrpPiXa9UaPvehxkYjIWqrgnjRN7314w8/x6Tyf/2tY/7mzjue3Y+/fRTfu/3fo8/+ZM/4d/+23/L\n97//fR4/fsy/+3f/jn/+z//5+Lz7np0/+IM/4M/+7M/Gzw7g008/5bPPPvvremt/Z8dHsPMbGL9p\n896vwpj8psav43x+Hcd4GzD5VY/7PtniwCxJeah05cRxTOYjUiWkIByBjtZ69B5EUcSLFy98F48d\nQU0YhgRBMPprBhlZEocURUGWpmgceSYlhouThbAhVY01lizJiMNoTH3b7XYsl0um5YSiKMYuoCRJ\n0DpE6/BoYWMxFkzX0TQtTdOyWW9ZLm+p64rpZCL+nb5lMp2QZznz2YwgUOR5zvX1tU+hk3bzOE7R\nOmR3qFksTnyxKhz2e7q25fz0lLIsiSK5ZlEkzFOahCxOzoh9KILsOrb+cQFlUaKVZr/fs98fyJKM\nNBaP1HK5xPQd+92O1e0tm/UGax1lKb6kwPsBmrbj0DRUTY3pNJPJhL7v2e/2Pl5bktuKouDZ06cU\necZ2u6WpJXZ6Nptxfi47/k1TS5wvMTpMCIOY25slfW/YbvfSURRGTMoJZ2dn48LwbHHK40ePSJKY\nv/iLvyCNE/q+Z7fdUddbjJXF28l8ArMpp6cL5vM5+/2Bly9fcThIoIJ1kMQ5h7rm6nbJ1dU1fd/z\n+NEjikmJ08qHMMjPYV7mFJOSyXROUeTScVNV3C6X/OhHP+b29laAe5B6liIhjlPOzx8yLSc4azCd\nxJdfvX7Np9/5lAdnD2mamuVySdf3ZEXGbDoh8T6WL7/4gu12SzkpuHjwgKLIaCspzW3q2sska5xT\nXDx4wCeffCKLryCgrhs22x2b7Z7J9ITT03PQmtVGUqSub5f87PMvePnyFX1viGMB13EU+lZ4zbQs\nmU4mnC1OmM9mxFFE1zbstx1ZEjOZFOLHikPyPGU2mzP1XpwoiQmikDBJiJJUFnyeeel7Q2ckBjkO\nQnQQ4VxA0xi8Y148gtYJi6OGLhzk/+ouWc0YA4PH7uhLFr6ywB28iBr9BhBiBBx4WZhncMxd2ecw\nZw0LL+cUzijA0jtZsgejbFf58xPfBl7CZr1M1TmJ5M7TTBb7x/tIKLQStsvhwAzx/X6TSsnrRzrA\nBSL1MoDre5HC4sA4bCd+HQI9/s5EUUTj/XjGWIx1d/5AYzFeKiopjOboHqBHqZ81cl5Ka0I0OhTv\nj7EW1/cEykgJqHPEgSaPQ5o8pW0S9j5q2w1yQKxUlWru5L8cAasjFs4cnY9zVhLicaM0zbk71m6Q\nIRwDxvHzDgLavsf0Bh1YYYqUojOWoOuJuhCtoa4qkiqhnE+ZT6eURcZms6WpKy85jIiTmLAKORwa\noigiihPStKdpO+qmFRBl5GezNYYwiomT9Fe6p/5NH/cVH0opfvKTn/CHf/iH/Ot//a/5l//yX/If\n/+N/5I//+I/5R//oH/G9733vjccO40//9E9Zr9d89dVX/If/8B9wzokP9eP4Kx8fwc6vebxLRvZ1\n33vb9+8/9r6k6/7i+13P/1D52jcd72Nfjs/xbeNDWaP3Pe7ON/PmwuBDzvn+o97F7rzvGh8zS+JR\n6UZmJwgCoihiu90y9D8MsoCyLEmShOVyyevXr9ntdm9IUwCsdeON0Rorbe5RxHw+J4lCbG8o8pzp\nZArA9eUVN75osSjEJ9J2vXS4dGL6NdZKBwuKLMuZTDrCMPByNwEczjnatme/31M3NdZa9vsDbduR\nJgllXkgEqu0oi4IoDGmaiqoSNqqua+YnJ2RFThCIdCuMYw6HA87J2g/rqPZ79jvx5ES+myRNM7/D\nG1DkObkvvtzvK5qmQxFQ5IXIseKcuq6paznHJI5J05jDruLy9Su0grapfeiBIcsyCWyYznEOdocD\nVdWw2x1QSpMlMUWe4awZ47Xr6kCWZZyfnTGfz8dEvqIoiKKQ6XTCZDKhbWtWq6UA2fSUOErpO9HP\nt21H23YYA0kswNIYR981IoE7mZPnKevVkstXr7i4uPB+oA2vXn1B11ecLs74znc+BbQvD625ubph\nu9ljHdRVR9dZOmPZ7vZstlvaTjqC5ouFLwTt2R12VIeKpq1ZLAQ0DfHfVVXRrNejbj9LEvGJKEWR\nFZyfPeDJk6c8fHjBNE85bLe0TYNyivlMWA9nLPVB5IKz+ZQHDx8QRSHX19fcLm/ZbTd88skzkSw6\n8TBEUSQln6sN++2eOIx4fPGIf/AP/j6TScnz51/Rtj3b3Z7tdk8YxhSTKftDzWqzoW176rrh8uqa\nV5fXWDTlZOq9eiLxzLOMPEuYTSaczGcUWUYUhmjl0KFG5RlgmZSykRDFIVkmPTqLxZw8LwjD6A1P\niISGeE+KEXmaDjQqjEFHdA7arieMQgIloMJv/qMQTwtqYKCF7THGYUz7S/PeKM1Sd54/Zy2hX/iG\nYYizUm6JdZ5Fkufre8fQaggrGObL4VU8j3HfK3L0ZS30vU9Uc3esUxjqo9fAAwphVAb2p3e9B2iK\n3lkvafPHUHqMrVYOEt/5IoDIRzSrAAKJ5lZ+HlW+abk31nu+Og/AxD/jnHTZSAiDZ1E8KBtBpB5A\nib8uStLYJA5GWJYoUGRxRJeltHVK1zQ0fY914rVySjp0HL6/x96xbnK9B5ZICctnffiDk/S9wKfu\nKSesmfI+q2OFwv37jlIKHYXSz+SlkM7/XJmh+8dpL1muSduEOAo5OZmz21dsNge6pkGnwRgqof3v\now40oQ8ZQd9tgjnEo9U0DTr4u7d0/PGPf8yf//mf8/u///sA/OEf/iHPnj3jP/2n/8S///f//q3P\n+Wf/7J/x5MkTVqsVf/RHf/RXebofx73xd+8n9tcw7nbFfplF+Dpwc3/S+pDF/NtkaO96/Xcd4+se\n9yHf+5Bj3z/O2wDP+67bewGZGyRs967deDO+K/8cb9L++/I0NSjXjvbffvl833Ye75L/Kb+GGbTr\nA2NSliVaa7bbLV3XjdKN2MtgjDEj0BmkbYNm3RopOhyazk3fgTOkaUmepV5HLb4erTWH3Y7L15f0\nfc+D83NOF2cUeUnfWXbbLdZCHCU4qzC9RauALM2pDjXlpGQ6nRHHKQ4lMblK0/U9XWdGKUVR5L5X\nJKJuKtq2IUtT/57vzKpt23I47JlMZ+R5IVGnYej7YgJsb+m8p6ltGnCQxilZKse31hJHCXk+xTlN\n1xr6zgEhURSSpgVBEND3js1uS9d2EpUaaqqq5vZWFtVFXoyBDFpp8qwgzTLZhe8NxolJv6oqlNYU\neU4SSSN921Q4Y0jjhJPZnHNvkl9vNmPn0PB5VVXFerNit9+R5wUsCbAGAAAgAElEQVTGOg77muVy\nA0o09EEQM5sWTMqSQIuvylkjXSxFQVMfePXyBU1bUVc7qmpH09Q42xFqR57FLBZzoiihaWtubpb0\nvaUsJ6zWW6xTtG3PZrdjtV5T1Q1hFJHmOU4prm9vKSYFTdux3Www1nJ2es7F4wucVVxf37LfL9kf\nxAuRZ7mkCBpLmuecnp7y9MlTnj55SpGXtPWOq8tLDnsBg2kco5wS6V0Qcn5+zunZKWmWslzdcn19\nxWq94uH5Oc+ePSUMAnbbrY9RN6zXa1arNXEU8uDBI54+fcpsNufy8vXI3NV1i7ES47xcrri5XVK3\nPdbCbrvj5etLdvsDp2cL5tMZYLF9R4AiTxMmeU6Z5WRRTACYVgpkA63I0pgsT5lNp6RpShxH5Hkm\nRb8nJ8RxOsq2rJMkLevA9A4dSGGoDmLvjQkwTha8PuSLu6lEFvZK+bnIAaEaPRvOOayTHf/j7Zgx\nWIQ76dgwDw0ln8bddYgdMwLDnAIIGPLzoTF3vkY1Plbf2wUSyCgkw5vSNYX2Equ7RbnyX86fi7Be\n/bhJML5HY2i7O7DjhrnTOVQYksSxZ7Y74jhGG+P9LgrbSzBAGEj3kDEW2s6nltXjNRnmMkaT/Zs1\nAcozS6IllBhpi4CxIVLa6mAEHzbUpFFAGodEYUDjI8kJnYBQBcY5lA8kcEfHks9aPhcV6COAOXyO\n2vfqWK8E+GV/zt0mmGf2lCIMY3or0dvWMXY1OSflpc5YjDV0bU1VhaQqZ1LmnJ7OaZqerh1S9CQU\nI4pCUIqmacfwClCj5+iYnRoKr/8ujd/5nd8ZgQ7A2dkZv/3bv/1Rkva3ZHwEO99ivA9wfJPxrue+\nz1fzTY/3QSDiA4/7LnD2IYDtm7zGu17rXUe6z+oc3xzUu67xURrbfaAz/vldsrUjacmwSwhirG0a\nLwXwDE9RFOz31ShTi30B6eAHgTttu/Z9DeABjz9F6998HEYEymvy/fvr2oZNLRHRZ2dnPH70iLPF\ngjAIaZqevreEPg0Lp/wutNwo87xkcXLKpJwKwPHgJo4StAqxpgHlSNOMwvt/qt2ezXqNQpEmybgT\nDLBcLgUMmJ4oTpjPT0iShDASD0PbSdndbrdlt9kRaEm2KooJWgU0tYBCnYRoFdC1hqqqqaoG0XsE\n9J2lay11U7M6bAmDkDzPsdayXN5ye3tDGIYUec5yJbK+QAcEYYg1hkPXiW9Ch7RdR9cb8kJ8RMb3\n7Ji+J45D4jhlcXJCmiQ0Tc12s2Gz2dC08hmnWcqhOnCopC8pTmK6tmezPrBaLTk5WeCcpshLyrIU\n+V9Ts12vieJAEsu6jufPv+TFV19ydrpgv9uwXt/iXM/JyYwiDzk9W5BlMVGU8vr1FzR1y2R6grGK\nq+sl1kHXG7a7PYdDhQ4C0iwjjEOquqLtOyyWQ3Vg73tuwki6TzpnaNuaphYZXhTFcs0PFXGccH72\ngGfPPuHi4oIkTlgtV9y+es7LF195EJnJDjHCyE0mE04Wc+I0YbNdc3V1hbGGs7NTnjx5TBgF/vqK\nv2q5XLJer8E5Tk9PefbsGfP5nM1mwy9+8QXOiSTLWkfTdCzXG5bLNXXTEqcFxlhuV2tWmx1OQVlO\nyIsCnIG+RzlHFkUUWUaRZRL4oZWPBe8JwphpWXKymDGbz0ewk2YpRVFQlAWB9iC47cQYbwwODVqL\njyyIfKy07Mz3xmGNwzqNtQIWlPdljGDHgQs8/6QEdFlrwfr1t/rlTSBrjzrXjubJ4/uFE2pFuqCU\nyNCGuXN4rICqu3SvN+dEec4dEFK/NK8qpb25PkRpdcTKOAYPkRk2FXza4XHsvvWLZeec+AKd854Q\n6SUL/GOta6SvKAgEXAqEkeAAb+jHL9S73nrv4WCqVyjrjsDNHdDROmDo2zkGfCMbNvh9PEAxGkIn\nIQhRKOmSYad9YluP0yFD9PUgY/PkznBV5dDuLopbDV1b/hMS0OeBolPj53V8XxoBtwdrkthnhXGz\nhlBp8D8nfdfTh0BrCUKoqwNOIemCsxnbTc16vZN4fqVHb2hvDPv9fhRZKqW9P0eN9yrAx/r/3Rpv\n69s5OTlhuVz+NZzNx/FNx0ew8y3G14GUr3vu/QX9u9ieD5Govesx7zrGryofexdL8zaw8k3G8XV4\noxT0/nEZbh9vH7/0ukc7m2/oytX4n6+93u9i1AZANNxIjRE50PD4oig4OztDqeUYRxkEAVUlZtCh\nn2dkCv0tRmKRu3H3VWnpwynyHOekZ8ffPanrBuuP8+jiERcPL0jTlLbtUAqyvORwqNlud2gdEkUx\nppeEqtlszvn5A6bTGVoHcj5RSBQlKBXStrIrm6WRxEVbx+pGIrInRSmpTWMkdM2rV6/kvXhZRhRL\nF40WtzN91aOc5cVXL7i+uiHLck7mC4q8HIFSURTkWUnfS7rRfl9xODQEOqCzPW0j7NlyuaalYTad\nSUle27LZbrBOYqDTOOH6+s4QbXwCndIBOorojcifHDCdzZhMSs/CtQSB9jHHE8qypGkarq+vWa/X\n1G3jywcVbdPS9s0oL5QkM8NhX2OMoussWou8LknS0dgdRRFFntH1HZ/97Mf86Ic/oG1q5tMJ682K\n7WZJHEc8OLvg7FQiu5WzVIcdXduyWCwIo4yXr6/Y7fY4p2jbjkNV0VtLWRZMZlOccrR9x2I2xZiO\nqq7ojUEHwtwtVyu6rmO73dB1rQe8HdfX17Rdy8OHj3j65AkXDx4SRRHX1zdcXV1z9fwXmL7lwYMH\nZGlK4JSUcRY5RSnSxvV6yevL1xwOBx48eMCTJ49xxrDZrEUKmEk7/e3NDTjnH/OEyWRC0zTc3kqX\nj9bCCjZNw+vXr3n56op9VZNkBU5FHA4Vm82Oru8JEvn5ttYShyFpmpGGEXkSczqfMi0LwkDhbE9d\nHTA2pCwLHjw4YzabjkEaYRSJTykWo7ZWwREzwRgLHcUJQRCJ581LnnqfQGZx4KVW2jMLWvsNDZk8\n7hbb93bw9ZDUhi/GHP+d0aDed90d0+IBjlLDfKdQ3oHvhujjo+OgwBl3J0XzgMb51LORJR+YdP/c\n4bXHOZI7QGZ8yATcMVF912PN3fu7k8Pdzela3cVBW+dwfU/Y9VjnqOsKHcUS2HDPd+Sco287L5Uz\nbwTEKKUwFgYv1Oid8f8VoHAvZe4owVNkcxo3AB4tTF2oFXEUkaYJdddh2o7evz6++NWpu2s5QhsP\ndBxuvEaK4662o/sTSkDREF5w9HkoJaEmAhI1xt/DjLWyIaACXBBgnaNtO8LIYVDEaSgbOVUlKY5F\nwXw2pW16dvsK46TzJ4pj+q5jt9sTJ6lcpyCQPiSf3jeEJfRHKYF/V8YA1u+PX2XD++P4qxsfwc63\nGO+TPH0TwPM21mD4/9ukXl937Pvn80tMxQc895uMt4GE4/FNAM+xzOBd11Nu3CMd8/7Xe9s5DfeV\nYYFx//q8AYTefpy3fWba6+abpvFafrkxRVFEWU7oOuNN0vLrtt1K2lSSJHeFn/6GFijZYes6O97Y\n0jT2/pwJznndfSg9Cco5eqOYTKc8PD+jLAqRGDhHOZlQFjnXl1c0dUuSJhRlIUWhtXiHTk4WlOWU\nvu+wjaQYGWvZ78X74ZxDq4Iyz3DWUTcN1aHyYEcWK23XsVmv2W63LE5POTs75+HFI04WC8Iwpmla\nqqbGWmjalhfPv2J5c8t3f+u7LE4WgOLm+kbS5v5/9t5sx5Ukze/8mZmv3BnBWM+Se2ZVV0PSSGph\n1BCgF9AjDND3utWL6BEE6E6PMDctDTQjDFrT1aWu6VpyPXusDK6+m5kuzNyDJzJO5qms7KWgY8jI\nzGCQdKeTNPv+9v0XFTrHsKomiVPApYWjhNs191TBbLuFCKIwRElFUzdY6wp9JSTZNiPPM1c+eLBj\nccGfQknm8wV5ntPr9zk8OGQ0SlivV0gJaZoQRQn9Xh8h4OLyghcvXhAGIYPR0HWJjOu89ft9RqMR\n4/GYIAjItyV6AP20R+kNK5RQ5NstZVkAhl4cg7E8ffqEv/r5zzl79YLDgxllmVOVOXVTcXg04+Gj\nh8z2JhgL8/mC1XJFfzBkNBrz7MUZv/3t52y2BQZYbzMHaAPX1RkOh5RVgZCC46MjFssFm20GCA8I\nLJv1mrpunMGBNpRVyXK95uzsjAcPHvDg9IThcEBdVWTbjPOrS87Pz9neXPHg9MR37UIG/T6TkTOp\nqKqK67Mrzi/PyYqMvb093nv8mNlsny9++1vKqmY46DuwWFdIKTl98ICHDx8yGg0pK2eJ3hjLaDLl\n5mZJWVe8eHnO5198TVnVTKb7xElKlmfMbxZsNlu0bhABWNMgbMBkNOZoNmMy6JNEIYNeQhwoBIYi\nzwiUo+0cHMyYHc4IfDhjW8w5Gpr7kYHrYjgnZOdkJlQAKCd0Nw1CKP99kM5dWjh6lFKiE+W3lCaX\nK+W6HrppXNfHf6Y6GpoX9lsPOKQQqEB6pzXTdVM6i2mcu5fsmjNOu6G17uhlou32eJqTMQbHXBMd\nhao1M9DG2XBL4WyxEbfFXqsnbBrtW8/uOEbrzpZaeyMMbAs2VEfvAreB4+ZOiTDGdzqgbhpsUWCw\nbDZb0j4IpWi0ptGOfif8nNCK51tac7t+tMdor6WwXZvl9bXCt83vW72kt6m2UoK0GAVhoEjiiJ5O\nqbSm8SDPoUKn/2k7crfLiH1tc05r5yyH/5y9BnrxOp72HfMtoRY83m6OOk1PbV0orNGGxggaaQn9\nwxoMVW0IrKVlRRrdYI0mjnqMR0M265wsK6h9jlkSKz/f1tgwRKqg0xMhBVZ7jZfv3r0bbzd+H1bN\nu/HjjXdg5weMu2Dkvp3/N1Hd3gRE3lYjct+53He/H0qFu/v47xq77j7teJvj3ffcu3SM++7nFmB3\nPKVcYfHabpy70+3/7/z39gm7J35thXOPvWfRs7azrtb3AFxHSxEIEWCtQKmQNvhzs8nYbnPSNGU0\nGvHw4UOEEFxduVTpKIq611zXTgPi3IMatJZo4+xwpYBQStIwJk1Slos58/WWQd+lzE8nE4psS5ok\nTCdjwkBQFjVBENBLQ6TUqMCwPxsRhrBcXpFlGXEcM5kOkEpTlK7olSpABZLlcsmXX35JVhaMx2NQ\nUxoijGlIeyMePHjEdNQnjULAcLWc8/LZM06Pjvnos884On3I/uyQJOmR5wWb7Yab+YqTkxOevvg1\nl5c3SBky2z+ilwx48uQJq8WGXq9HL+lTZiXXF9dMJhPSJGGhNUVZdtc9CgMOD5yb3WyyRy+KKWxJ\nLuHy6oKvvvoSJYMu6DBNU+LekMFkv3NcU8GWwWDAbDZjOhkRyppYCYI0QQUBCEmWb1gslrw6vwBg\nur/f5dy0ZhT9forRhqoo6U1Sxgd9JmnM5eUVm5s5/XAKVU253dIGyZpa8/mXX/LXf/0LVqsFB/v7\n7O/tYXTNarVgf7bHp599wsPTxzQ1XF3P0XbAZDbl2YuX/N//55/z1TdPaLQh7fW4Wa2coURRMJlM\nUIFEKUkcBUz3puxNh2TrnDQckgwTjo5cPtHV1ZxVtWbQGyNswHZ7yWa1QljN0cE+caS4vjpDKp9t\nFFoO94eIgwmHh4cURU6ua2b7R5w+OOWrr77gv//FX3B9eUEvTXhw+oDTg0Om6YCvf/U5VV5weHCA\nMYbzFxcYa3j88cd8+OGHDjBvtiyWG9brgqKo+errV/z2t58jhOTi4oKi1Hz4wcc8OD0lzzOurq4o\n8pyyyKjrihDLtB/x059+xh//7KfM9qboquLy4oyn33zN82dPiaKIwWDAyckJ73/4IScnp962F7Z5\njhUCoZwFuwoiEBHaqI6y5gK6pPuvdcL5tnPjPqAW1K2mU1tDZdymhAJC4TYpMBahDcIXv1bdOpwh\nfEfGWCStfb4rmpumdho5ge8iOMAiEWAkQvgOj5UQSrRx4n8XJOmWe+fe5zJvpMYF1dBuJjmQ5TZe\nOpjkqV9uotTaW20b48+18vNim8Fj0dbStAWx1qgowiqB1lBjaKxGoGh0Q6VrKqNpsFghaIxms83I\n8wIVRqhQUNeasnFBnA6QurnXCgtCEgYB1lq2Rd5tHLVulkIIkrjXvUZtdGfv3RjdokCXw+NehXNW\n1BptGpAaKTVhBD0ZgRJeu2VoTAnaIqxCWYnQwnuNe5c93HsjpesIltoghSQQCikUxpszNI1zrhTW\nUSCxIJWz2gbTaYdC6bp+CEtgNTmGwjQ0CEoDEBAKgSTEVoZIW6rM0I8VaRwTGoiEZTLscZUqVCwJ\nkYTKbX7tDRKKdUjdVJimRmpNIARJlJJXDQaJEAojNJDfXTHfjXtGv993VN134+91vAM7P9J4E+D5\nsTQ994GBv+9xH+j7fcddnvob9TT3nMubAN6999/5d3ese/b4HCXh/udwxYwrSIIguN1Z3PksZFlG\n5N3I2uT50WjUWUuv12uyzCVNSykosswV0kFMGEjngNYfMJ1OGQ6HRGFAU5Y8fvyI0XDI4mbOerHg\n+LPPEMJyczNHCUlvb4pSTkAvpSRNXOdCa00Sx+xNJkzHTltRFI4bH/hg0GdPnyIVPDg+QUjJaDhk\nNBhS5FvSJAZddsnnlxfnfPHFl1R1w7/40z8ljBPH169qqmrFxcUlZ6/OOnvrX/ziFzx9+pTT01PK\nsuyCNYUQ3tnMXZP2c+DsiPOOKhZ6E4GWztcKtAF0o9msN0zGU2azGWmakmUZVVW5lPCmYbVaEUUR\nk8mEvs+f2aw3SEqUClDSCaM32zVZnmMMHB8fs7e3z2AwxBjnRuQCSJ2Vt/v8WKqqYrNccvHyJV99\n9RX9/sDph/p9ptMxSiqybMvLVy94+uwbRsMBo2EKwhlSZNmW6XTK+++/jxDwN3/zK54/O3NgR2uC\nKOFXv/kt3zx5igojRuMJRVmSJIl7X5OEJEnI85ws2zKb7ROFEU++ecb19crpsIzh5cuXXFxcMBpP\niaKI8/NzXr58xfxmTt00HB0dkfZcZ6qqKozRbIJNR+WaHUzYbl0mx6DfpywL/vqXv+TLL37LYrEg\niiP2ZzOOjo9I0oRnL577z7fk1atXBEHgMnn2pvRGfV68etVpXnRjuL6e8/Of/4L/8de/5PT0AePx\nxAWfjsa8//577O/t8ctf/pLz81coKTk5OSKJH3FwMOVP/+W/5PTkmKYq+M2vf8X5q5csFzcoITg9\nPWVvb4/ZbMbR0RGTyQSLYLVa0Rj8Zyr41lyivCanJdC2c4GjTN0CG2tuOzJyh4bUWkULBFbarsuD\nT7G33KE2tzobQdctcgDE2z23NN/dKUl4bRDe8VA4c4R7h8B3Qn1H6M46szvnaqPBaKxugNZi32XN\nWBydKgyDjk4nhDeOtnT0UcBRSBtPJ60qF3wpJDJQ3WtK4gDpr2kb+qmCgDBwOTgap02zfr7VxmCq\nGm2dE4SxhqapsFZ0Do9O+H87Pzu90s5M3wKdXTaBp5gppVDGYNAOX/juVhS4jnIYhgRlTaMbPwdp\nZ7fdmkjgu2Bto2bnujr9le3Op40mAJBY1xGz+I6X8P/4T4vv7kRRRGOgrixNY5wRjpCgAhQWYRok\nlqoqKQrlNkECR7tMo4DRYMhiuaEua+q64urqym2WKEVRlViUt513QLJpGqd3FLYLh303vj3u1gr/\n7J/9M/7Tf/pP/Lt/9+/4kz/5EwaDAf/m3/ybv6ez+193vAM7f0ujLdbepHHZHd8FitrnuE8L80O7\nKL/P/d70uN8H6Ow+x33UwLv3273v7vXZ5TjfN16/3e+Wto+7QzfYPaa9UzXcPV9rbbeYtn9vi/A2\nXXw+n3eLWc87XE0mE8bjcbej2zR1F4AphHME6vUSRl7cXlWVS5NXqnNzuzg/p5c4q+sWOE3GY9Ik\nIQpDR/fywKAocpR3Huv3+lhj2K435GVBGDr62OXVFWdnrviM4oA0SZ2DWLZls16yXi+pii1NKckz\nePLkCdfX1xwdn7oAUKWQSlLVFVXldn9H4zFxHHNxec462zCaTHjvg/c5OjmhKHLmixvSNKWoSsra\nAZnxeIwVsFyvuLy+5vj4mN5wgJKSoqqwQC9JnflBFFFrzXabcX5+3gGh9XpNELiclTAIsdqw3mao\nQHX24ABFUYAuMRaaunI6obzAWEjilLjXQwjpzRKc2cRwOCBNU6LI2XUXec52s+Hq8pzLs5cMR/0u\neyGKYoJAsVquOHv1nFevntPvOzvk+fyapmnY29t3oaGDlEF/wGa15fr6hs0mR2tL3Vi+evIFT54+\nc8VeGJL7gMOk32Mw6BMnCb1erwM9TaN5+fIcsEgZIYSkqmuCMCDtOVe7i4tLXr46Y7FcOJcxY+j1\nejRad4nq1lrSNGEydbkzgQo8QA5J0xRtNIvFgjAMOTk5IYqc3bPTVt148B6SFzlxFDM7OGQ2m4Fw\n9LurqyvqumGzzTg7O+frr7/hydNnjEYjJpOpD9MN6Kc9Li/OefHsKdtsy/7elNn+HsfHxxweHrC/\nN6Lf6/Pq1UtePHtKtl0TBorZbJ/Z3j4nx66jFccxQRCwWq9ZLFbkRUl/MGA0npD2eqSxs+l1hbt3\nypJBp9nRjfHfbY1Lh7mdXxywcUL7wOtHpJRgTMua8p1kV5wbazoqWFsg305zLRHKa1L0jjhfOLt7\nYyxC+iIa3xHyGhFHNavRjcYqrwPyVNCOhuQPdgugdtYs63Q/jdY0psEYjdaN6+q0mg0B1ooO7LTF\n++486MCMK9rtznlZKwisMyBQSqFCFxpsrbOfdg5rfg30s7MxGoMgCAMPEgxGe3CJy+KxCILAgefO\nvWxn7hbCgRD3vPfM634taDVKRliElaCd7kYHgiiMiKOIMKioG02tDca6UOHd63r7voARt2tGS3Vu\nl6TWua4Du1ZghHrNaMJwC6j9u+ZcLpXG+nVGa0OgrKPe4TqLRVUT5AVI15FKBgP6SY/xeMxgsaYo\nKuqypK7dRpOQ7jp6w26UarVqToMmpAL9/et9lv3qe+/ztzV+7GN/12bzdzFSAP7tv/23/OIXv+A/\n/If/wL//9/+e99577x3Y+XsY78DOjzze1FW474vytjqa3aL+d+kY3b3f2wCvtxn3dV7e5vhvO3bB\ny+5zfNf5f5d+aPe63T5g93/v6+ncOR97y/t+ExXx7nlaaztTAmfJnLnQyu2Wqqp8iGbYFRp1XbNZ\nr2j38FyxEBDFMUIKZ1PdVOxPpy7p/uKCuqr44L3Hvnu0cTSvKN7RlbhCpCpLjNYMR31GwxFR7Cyk\n8yzHIjCNJsszVssFWjv77KauSCYTlzKvNRJnrYq3ut2s12w2a6bTKZ/95DOSJGG12aLCmLQ/JIpj\n4srTSJKEly9fUlYVg+GA45MTRuMR5xfnrjuRpiAEcZI4ip0X/Gd5jjaaKHYudmVV0ejGFUeBE4pL\nb1Pb5hXtFoOtA14QBI7WUlUYrbrdXqwlVIo4jDHGkG+3VFVDoEJ6/T79/hBtDIvVwu04ezAwGo0Z\nDUdIKanKkrIoWS6WLG5u0Lrm5OQxo9GA1WqF1hVlWXN29pynz75mvV5xcnIMQrNZL5ACppMxn3zy\nMaPRgLNXZ5ydnXF2dkOWGxrdMJ/f8OLlKwwQpykInObFF4rOJnniHPCShKosub665vr6itPTB6gg\nYrPJaLRmnEyIk4T1ZsPV9RVZnoEQDAYD0l6ftNd/7TPZePe0MHDXstGG2Wyf8XiMUpLrq0vnSGQ1\n/UGfQd8BBiUlTVOz2W4x2njDjgPGkwnaGDbbDU9evGB+M2e93jCf33B2dsbV1ZwojvnJT37CYrGg\nyF1XNAyVs8oVlv3pGGM0aRITh4Gnb+Zslgu01kRhQG9/j/FoyP7eHrO9PX++yncnatddkJLJdMpo\nPGE4Gjv6Gi6xxFq6DqZUbVKK+267Irruul13N0AkvjgEhDGt9Nzfx3jgoL0WA6QM3BzkaWhCSJ+V\n8vqmSnsss/O37nlxWiD8bQ4MmW6Oa3SrFWq67tPuaM+3m/esRVsNmO6cjdmxxfZ37qyxvY7IevvI\n3fk7iiJHlxNQeWqZtR3z2N/XXWNnve1ua7zNN23GkAeEQaCwAdSqcRbiXgMTBEHXqdmlOVtc7oy7\njm+e6++ul0oplDAI4wJSG60RWKJQkcQxcVxR1o136HPXpO3uy921QPhVxuGW7jjuvi4PR3vtTAuO\nbq+L7bLkhLUILMI6kwAhpLeq9tcH4yl5AJLGaoq6IqgEQagw1hCt14RxjziM6MUxgZTYwLlDZtmW\nXn9AkiaOplfW/v12oFxIiQrc87xphOEMKXv86lf/x5sv9N/BkLJHGM5+0GP/7M/+jD/7sz/rfn+T\nvfSf//mfv/b7v/7X//p2I8CPXq/Hf/yP//EHnce78eONd2Dn73DcLZK7RcuP79L63A2dfFNR/za3\n3fe3twElv2tX6oeM9jW2i/rdbs3u76/l6XwPqPv2dbC3/7Z8C+7cvb/jh99/faV/H3ffy/b34XDo\nc2Ga7vXUdc3NzQ3X19ddKKCUkqZpqKrSBVh6vUkQBG530ZsGCAyBCsizjO12w2Q85vHjR0RRSFFI\nX9yHmKahtK7wscYBkySKiOOINI1RSlKWDVrXBEHkqC+eHhHHEWkS+8LJgNUoLFGgiMOAKrNoU7Ne\nr4njmAcPH/Hee+85/rk2fmc1cJkh0GmtiqLAWstkMmFvb4+maXj+/DlFUXQdmPF47LQ7vZ637d7S\n6/WIoog8z9lutwB+d96BGK0Ni8WC5XJJkjgA2fPOdXEckyQJQjjxvCtgXCHZ1BVKtjlCAwdE84pA\nhURx7M0bBmy2W66ur7Fo4sjRCh2l0Dnb6aahyHOy7RattTc4cI5kWZ6BNaxWS549+5pX58+pq4o0\nDbwFb87+/j7T6YTRcMhwMOA3y9/w9ddf8+p8BcKZNFxeXZOXNYm3AC99TkyUuPcyCANi39GRUlEU\nJcvlCoskDGPyovQBt4K0N2C93XJ2fsbNcgnCGTf0BwP6g0w0+v8AACAASURBVGFH02s/f65zGRIE\nIdZCGDoKn5SCm5s552dnZFnGaDRwhg3jIUkUYbRmuShZrdYkccL+/ozZwQwpFdvtlvUm48mzF8yv\nr1kul9zc3LBYLhFCsrfnrv3l5SVRFNDvpfT7KbGnDxldk2cZ6IbNaklVbhHCEKmQx48fcXw4I01j\nkjimlyT00rT7HtW1c/EKo4ikN3CUxsGIMIoxxlKXOU1ZuBLP72ArY7EmREjpuwItA+o2LNgV1wZt\n/G077k3WTQq0dDdrXnf/aq2UbcuXarvOO2LCb3ewDXT776CN0zUKazogI5VCBs4kwc1J2smOrH8+\nduZX21Kvbo0SXKfIdACkfa3uNVn/+y0AdF1qOge7bv6UqgsD3X2O1pig7XYYD65boFbXDTQa4bNz\npBBo255Ha8//ehYN0AHJ2/XBeHD1+oaU8PP67e+3a0I7t7vEHOPc7TzYC5QiSSKSIiYPKurGdF25\nFsh152U7W4YOILb3c0AloKF7m91j5O0PuGnY+O5g4M0djDYIpXx3xzgDB2tpjEYqR89ru4+NCR3t\nr65YrdYEUUoYRoRKEUiJltJtLmUZ1jgtoKw1RdXSHW9/3Ll/aynsRpI85l/8i19R11dvvtPfwQjD\nGUnybbvod+N/zfEO7PwtjLelpN3tRtzbgbjnOX8XcHEfoPkh1LMfAmh+18fc7ejcPffdYLr2trsh\ne+3z3Hf8u7+/zXX4Fsjk9esohAtau+/atl2Asiw7sNNao+4G9O2+hiAIiaKYonEajMFgSJKkZN7N\nK45CjHUFWxSFjqIzm5Ftnbtb28XQWmMag25qJC4XwYahL55cUrnEiZaDQBIEiihUREFAEwQkSQQI\n6rpk09RgXLipaWrybE3T1NRVxdHRIY8fPUJIwXq5Iun1GI6GIGCz3bLebsBa6sZZHw8HAx4/fsx4\nPObi4pLzs3OqqiKOXaHe6/VI4luufVEUxHFMXTc0jQtoHQ1H9Pt94jhFqZCbmxvOzi64uVkyGo2c\nvbbfJY2iiDiOdz4j3i7bw1spnTGE21Vu8yYiZ1ucpB4IFoSho9UksTtHiWC72VBVFXnunN9cJykg\nChSb7YYsz5AStps1F+eveHX2jPn8Al3XKGkIg4DDg0M+/fQTDg5mZFnGcrni17/+LZ//9ktu1g1h\nNEaFAWWlkSpCCIU2xocyNsRel1AUhbPOrhqqqma93tBow8HBEUVRc3l1zWq1Io4T4u2WrMg5v7hk\ns90SRRFpv09/MNwp2h3tSKmg0x2F3vlOKsnNzQ1X15dcX11iGs14NOLk9ITRYEgch+imIcty8qIA\nAQ8ePeD49ISk16OuHfc/y3OWyzXzmyXb7dbZ4BrLcNAjTVMuLy/p93tEYcCg36eXJC4j3hqyokRa\ng0RSFlvyTBPHAcODQ6bTCdPpmMR3l9qSu51DwihGSOkpkDG9/pAoSd2mhDZQSaxt5yDvLqYNQpjO\njEApn3PSFu5eWmHxRaqSSOV3+K27psZa73Z2uxYEgfKUtwDtxf0IV9w6Xy5vQwwIa7o1wnU5HLBx\nKo9bYCIAIW9tgsPAAY3Wrlr6738QBF0B33WAPBi03unLauesZna6LfeBndfn0tt5uwVAdV2BtzZ3\nO9++0N/VNnlaXuXv0/0YX9QHodcB+ffEmI6O1s6hdd10h//WnLyjhWo7T20Jf7vWWNchM7dgSPtm\nlsCbDQhJGCoSI4jjijBQLifJ7oCo7l/uM2EtLlupZWbsXKuW6mdagwp5a1fugNfteyQEWOE0TMZa\npJBIZZGBRFiNMZpa1wipEIF0wEdaXH9OgLFsN1uCcMlwOCaJ3MZWXubefl44Awe/VrVUXweMcVS6\nO+vtfSNJHr8DGu/GP6jxDuz8iONNQGX3b99Fa7s73tQ1+b5uyvfRzH7MTszbntN3jbvgob3tvq7N\n3WO22pjvApi7z3f3fL+rW/amY999n1vwsksxafNU2o6CE3rfFgxKqU5Aq7WmqpwN797enlvIrSVN\ne4xGI+IoZLNe0TS1MwjALcnj8ZjTB6f0+inZdkOapvSSlCROiKPQ5YkUOYFyOp32se2xyrJEShcG\nqRtNURSUZYEUljSOCOOYuq5ZrBc0ZQXGZb0slzcIYDAY8MEHH3JwcMB8uWS93XA6nZEkCUVZslqt\nKAqnB9pkGXmZ8/DRI95/7wOwgovzC6RU7E332d/bZzKe0u85UX9d11xcXPL5b78gCAKUXPluz4Dx\neOK1RAFlUXH26pyLi0uqsuoKn9VqQ5omXYenqWuKIqcoCudUFkauCxaE6LrhZr5gW+RkWYYQgtQH\nlW63W+bza4oso9dzCeRxGFLkOavVkqLIaeqGqiyJogApYpo6d45vSrBebXjx4hmvXr7g4uKM1XJO\nL02II8nedMLPfvYTPv7oEwLljAJ+/avP+e9/8XNevHgJwYio14OyxlpNWXsxtsQFhXrBepLENFqz\nXC6Y6xuMtsRxyuHhCUeHJzx58g3L9ZpNlmOEpN/UCO2ykYqiwBhLv6+7z3qcOEv0oihomoZ+3+mA\n2sLn6uqKm8Wc1WpJoBQnx8ecnrowW9NoNps1y+WCbLslCAL+6I//mE8//dQF2lowtmG5WvHF119T\nVA1hnJJYQVE3iCAg6fVQSpFlGft7E/q9lF6aYLV7bqwhEAKDoSiccUKSxAwHfR48OGEwSB1IEK4L\nJX1hm6YpQkiSHqggQqmwc1mTgUIbZ33sgE1b1AsP/G6/6+3tXdHfdiWss1QOVNjRU9tODjggobVG\n+q6Jkk6XpwKF8MDEctv5aUM62yKbFhTsbJSIdt7ascreXVpcl8BpP27nOAdSlFIgXDegA1CmFflb\nJ/rXTlfUbgxAZ97m2xPfpn4JbgNErXUanSzLsEL4/B0XKOoAo7xtE7Rzsb0NJ7XWODvqRhNaMKIN\nzTQux8dfB60bmsbrXjrwtdO9sa/T11rA02pT2vs5d7mduR6c417orqOQGqk1jZVoK51RgQpcd799\nHzwgUFJiOsDTdsp21xTXcVOtUUX7d2MwAjo2lNFo04az4t3k8O+5dyiVEuOwqwM4BkIhXUdMGhpj\nKerG5UzpmnybMewNmY5G1HXNfHnDfH7N3t4+Rjc0dYUMIhc+rJxFuHuvTWe48W68G39I4x3Y+Tsc\n94Gh7+rmtH9v/3u3wP5dwcXvArT+vke78N53+/e9jjdd07vdsd1r+zbn4++M2qU93Dlue7tSisFg\nQF3XzonI75TtPlfHdfcZCoPBgIODA16+fMl4PGZvf49+v++0CJ4i5XaCXeExnYyZ7U0py9Ifw6Kj\ngEYrhAiIgpCttUhrGQ/6pGlKP0mRFqo8R9cVUZqipMv+WdzMqcuC0XjMYNAjDEMuLzcU2w1NWWKM\nJtuuaZqGYa/HwWxGv9fz9LKM8WSPvdk+2sDV1TXzmwVSKoLAdQI2mw3/6LPPCIKAr776iufPn7O/\nv8/BwQGz2awrqF3OUM3Tp0958uQJ7733Xqe/mU6nTKdTp4MqDTc3Fzx//pzlYuX0M1XVCdrT1IHJ\n2ucALW9uaJqGOAwZ9Pr0+/3OeSjLC+bzOXVdOxpdv0+eZ2y3Ga9evURrzcHBPoPBAGMM6/WK+fWl\noxYK68BTEHSFYy/tUTcl2TajKku0aTCmIVCSw4N9PvzwfU5PHvL40WMEgouLS66vbvjyy6+5uLjG\nGsVwOEWlI+bza16dPWc8HiGDkOXNnKouGI2GTksTKWQjycvKa2NGHB4eszedUVUV223mgIZw9rrC\nUybLusIKqHXD9c2cxmgODw6RSpHlGUa7zuR0usdkMkFKSZZlfP75b6ibmqOjIz784H1Ojo+x1pLn\nOWdnrzg/O6MqS/b39/nk00/56U9/5gBn01DXNS++ecXPf/E/uLqec3z6iDzPef78OdZCEIReEzVC\nCsty6bRAAtPpFZSAusoBSxJF9Ps9JtMxs5kzIYjCkEBIAqmIgrCj4rUieGsFVsiu02LqijBOqOqG\nsqrRdY3wQb34wl1KSRwnRHGCCkIsdJ2SuqlpgzKjKOzML9pCX2tPy/Igx+DNCqzr3kg8rQ392hzV\n9RqMsx7uTA7MTgenLeSNdt2YVmtkLbVusFrTEqRKD261bpz7otestceU0mVZ3b/B9nrHRnig42hW\ndxgK8vW8tJaOZqEzL3A0P/dZvI+1IISgadoOoyuyte/mWCGptAssFf4ctNE+l8ygZNgd1z3Wg9Lu\ntbXBph6wdnO7M1Jo798BiSBAClCBdWYAVY1pDIGASCmiMCBUEq3dpoQ1rgPS0uDaYaD73RgLVqPb\nHJuda6WFdA543ghDyTYo9hbsNo373JgGwM2ZKhQ02rjPm98wc+52mrLRUJT0/YaXc5BrSJOE2f4+\n5zfXLBYLlHJzQ1PXKBzd1wFjb+zQGKy9/by/G+/GH8p4B3Z+5PE2dLO7QOUukNm9fffv93Ugvouq\n9V0g6rvOe/fY3/U6du9791g/BIjtXpe7oGZ3F7X92V1M24XprtZn95x2OeS7XZ3d2+92ie524+TO\ne/Gmrk9bWA2HQxaLBUBXMLV8dKALGW31Kr20R1XW5HnO40ePmM1mKCVZr5YsFzdIJRiNRs5xJ5BM\npj6HZn6NNQ3Su7RZY9DeGhZckdlqf6Io9O46lsFg4AX2Fdl6Q+W1Gv1ejygMwcLF2Rn5Zk0chWAN\nVVWSxjH7+/uMxyPW6zXbogAVcNDroaR3hctdBkMUOZ3E/PqafLthNBoyn1/zq1//DZeXl3z00Uec\nnB7TH/SwWJfvYDWr9ZLzizOkFE4DEscuk6OukFIQJzHr9YKLiwvm8zlSuusRhsrZH3s6X1mWbDdb\nss2mc3fabreuuxOHRFGfMFREJnSGB1IQxSEW40HcGmM0e3tT9vamRHHAerVitbpx7nYCer2Uft8F\nkAaBJLUJ4/GU7XbFZDIGNFWZs1kt6acJH330ET/96U8Jg4iqrrm5WfPq1QWXF3N+9evPKcuG4XAC\nMmA+X3A9vwEhiZMeURLS032iOiBJYoKuaDUkcUwQhIxGU0ajMUoFnF+8ZH6zpNZNZ8fbUiudQ1+B\nELKjEVpcgV7VNePx2DmdHcyIo4jVasWzZ88cIOz3ODk+4vDggLIs+eqrr7i5vibLNsRRxMnxCZ9+\n+hkff/wJYRiyWCwYDIZcXFzx//3lz/mrv/oFjx69x2S6T7Z9znbjcogm4xGz2cwbZJQ0dU1TOypm\nHIXU1l1LoxvSNGVvMuH09JTZbEYQBfSSFKOdoUUYBJ09uRCCWmtEELgOCM5mWgUhSIU2lrqunZ6n\naVDGoLXtaGxKBTTaoIxBGNN1IYz1bmVN47sZbr5pmobS57yYxmnnpJ9z5I7vo9vw8P9vrQ8GdaAU\naxDGidON1u647AKCnXmHW6DRdjZagNk+pqwq8qLwRgPaAQ7AaOO6NjvzoaNTuXNtDQfoKEzGC/5d\nDoxS7jveeIDXPkfb3XHukRYr6IxehKW7CrcdDUtjPXVYurlMhQGhcFoxFYa+u9nO0+DydiyNNTS6\nRhuD2pnbHc3N7KylgG1NECxtLpp7hd/eWLTWYrXG+my37vprZxARKEkcuy5xWbowZ6eLugVNriMC\nSAi8BX+rbbLcar6sB8Oi66D4Lp3wbnUo38114NdKJzCSynWYhFTUjSbP3eexbmqCwL1zpnFGGH3l\nMn50o8k2Gf0kI4wjDmYzrq+uUFJS6hKLQeuaqiwQ1iKVcM6TaIwF+3ZlxbvxbvyDGe/Azg8Ydwvu\nH1rk3+3UvM1x7wNGb8Ohve95vgsofdf57IKMu4/7fcbu67h7fe9qYe4Gmn4fWLzvb/ddx7uA677n\n2z2/XUDVdmjcLnBMr9fj1atX3e1AB3jaQqClsblOhEuFD8OQw4NDxqMR11cXXF5dopua6WxGGDjw\nc7C/x/HBzCXc1yFJlLBdr92OaFWzqWukdfS4fj9FSeVyXUZDbzOtO4eyNnxPCkkUhCjhMh5evXrJ\n82dPaaqC6XjsrJbDkDgM6A96bLcbtnlBrS3DyZ4rxqOYqromUAGDgZteFvM58+tLHj96yN7elKff\nfMPZ2RnSi2LH4zF17QwPWrvuqysXfvrP/+Sfc3h4yGq18t0xt3pXVcl6tXJhkz5M8/jokM124w0H\negx6PcIwoNA+eFFKZ0MdBgyHA5IkoQWDSRJzfHzo3xun29HGIJVgb3/Ko0ePGI+H5HlGUWQILMNB\nCtYwHDjqncU6umA6QCnJdr3GGCfWDsOYfn9AGodEYUyeFcTTHk2jKcqKzSbjiy++5psnLxAiYDSO\naRpLVhQ0xpCkrhNVNwV15QBfmqbEceSoeTIkjFyGhtaa5XJJUVzx7NlzjHcUE0JSNTWL1ZK6rDo6\nY893uVr6oNaafr/PcDh01ylNKYqc5y9fcD2f0+/3ODo6JE1Szs/PefLNN/zmN7/BWs3edMrp8Qkf\nffQRDx48REjB1fU1xliyLOcvf/5z/uZXv3YWzIHiej7n4uoKbQ170z1msz16vZSqLknjkIcPHxIq\nSVOXbDYZgRREUcBoNODo8JDZ3j6z/X1G4xFSuIKs/f61TnwqCJx4v6y8I5n1BaR0QZs7WU3gRP1K\nyK5gF0KCuO1CtNbNrlvjHhd4YAWWwluCt/kryneZlJTOPADpLQV8CCfO5TCKoq5rgzEIK11HQUpq\n7RwVAZRyGiDdNIR+w+QWpAB4EwZjUD6jxnjNYBSFWAJU2yXwXaCmcboas7MRE0gHCrTWNEb7HJsG\nY918FsVOD9caWUghvOPkrY3y3Q06pRRhFHkjhNsOSNM4R7O6MR6MOtpWIARhEHpHNvd8bUetcwSg\nBY1O5t/ShJ3JgaMlug5zgESCcNS87v0Tnqol71kTvFm4o/O5TqCjRYKSgigISKOYNIkpioK8qjAW\nZBB1a5VSASLwVGclPa3Rv//m1oWtNdDAem3Yjitbu160nTv32ZQ0jb7tIHnNkOssSqq6oGksgYJI\nSZAKpPK6KGcznUQRo70p0+mEk5MjiqJ0gMs6Gl4ch9QGBo2mKFYYo9134Vsr6rvxbvzDHu/Azg8c\n9wGDtyn6fwiV7LuK7rfV/rzpub7v9rc9xu873vYcd3/a2+4Coru5Ct91rLvPvTt2u0R37/vt7Abn\nsgZ0fP0sy14DUB3Pfnf3lFsNT6MbNqs1p8cnHB0dISWsV2u2W6dLCANFWeRk2Ybjn/2Ejz/+iNFw\nwHK5pKkqbz5gQEjqqqapCken6w18kOaY4XCIBfI897k9za2YPwwJgwApJEYbvvjiC7abDWkcEscR\nk8nIdQbShCiKOT+/4OZmgQwiZkcJcZKw2WzJshzrF9T5/Jqzly9omppPPv6YbJtxeenoX6PRiL29\nPabTKVdXV11OUJZlrFYrBoMB77//vqen2E4w27qyPXnyDZv1iigMiKOQPM9YzOeMBgMOZvtMp1O3\nQ7oDNsMwYDbb5+joiDAMWa1W5HlGoFudBZRlQZZtEdIVh71ejyCQbDdrqqpESUEvjTG6wRpHE6oq\nF94ahzECxXazpSwrnj19gRCGychpT6oyZ7XacH29IE1HFHnG9XzB1fUNX339lKv5hoenD6hqw6pa\ns84yjLXESYxUiu1yy2azYX9/ymQyIYpCNpsNvXRAJJ0Go65rinLlukI3c6IoobE1CkVZFC53xRiS\nJPEdv5CWctXaoYdh6DtjBc+fP+Pm5ob5fM5gOODwYEIURVxeXrBcLrm8uEA3NaPRkA8/+JCf/OSn\nnJw8wFjD+fk5Ve2svP/yL/+K//J//Tdenl3w+PFD+v0BZ2dnlGXB/t4eg0GP8XBAHIcUmcttGY+H\n1FVJVTSEoeJgf4+9yYTJZMJsNqOf9lymVBzT9jfCICD0lu8WQd1oGu1ycZQPAW2BjPSajdoDfq01\nCpCBQgoXwihaypvFF87ue6+Nt+O9U3C//p3yHSapnFGC8dbQlk5z1QKc0APV9nMlLCgviHeFstN2\nOK2LwBrtwRhoXIGK8QAGp4nZnU+DIHAaDClcfk7TeFMAjfWaEGuMd+JznR6nsfJ5YabNctHuHITT\nchjt/t791BojbzeBmsZ1FS10TDhHbdOd+9ztGuq6HcbcbhwJqRzdrpuTvUbF3lL22s+vBazVGCN2\n1goDeA0RO6y19rjyVo+0e738vR0tzdPojMWFSCuFlZLYWlKtScuITRhQVCVSCAcU3Yzc0dcsr1Pp\nHNh0dta7zAUnJ7rVL2mt0WrX4rxd7yTWNp3lt5QugDVNEqzVbDJJVTrrfi2sA5faUyYbTUFBlmUM\nJiNGowHHh0fM53M3R+jGgUAESRTR9GC1zSmqhteN1N+Nd+MPY7wDOz9g/L6djDfRn77vMd+l9+m4\n279jt+bH6sr8WGMXOL5GJbjn9d8d33Vd732dQnQLC/f8fTcF/W6XaBestA5WjjZxS5m4urp6DYi1\nhc1uDoy1LpC0aRrWqzVaax4+fEgUhVxdnHNzc401hl6aIIWlLHKCQHJ0eMDBwT66btisFrx68dJp\nHQYDwlBR1s5QIB30SZOEMAo7C2xt2lDEpjufJEncTqp33gJY3CxJ4oTDoxlHhzPGoxFJEhPHMXle\n0mjnCjYejDk6OiaOE84vLpFS0UtD1qsVT7/5mlcvX/LB++8x6Pe4Or/g+voKYwx7e3scHh5QFAXb\n7Ya6riiKnLIsfKflmCgKWS4XGKOJohAhYLl09LWL81dgNaPhAGs0Zy9fslgs+Kf/9H9jf2+PXtqj\nLAu00eR56zbUYzKd0h8MHKjarNlut4SNzzNCUNeV7/YkDAcD0jRhvVqCdVbWaRJRl5ZVsaUqS7bb\nNVjr7I1lTFVuWCzmPH32lCffPOPBg2MenJygpOXi8pzNZo1AsV5tuJ4vubpa8PLskhevLgjDlDDu\nsS1KFusNed2QxBFKSa8hcsB3MpkwGU/Ii4xABcSx20l2VCxDWWs22RZtXH5SrQsGwx5KCYw3H2gL\nRa0b3ylKGI9HhGHIer2mKDKybNPlQw0GfdK0RxQqsu2W6/k1m/UaJQWffPwRH3zwIT/57DMODg7R\n2jD3VtJNrTk/v+A//+f/wpdfPWU0HjEajhFCUhY5URQ6sNN39tJRINFVwWo5J1SgJEzGQ44OZrz3\n+DH7+/sO4EQRgQqIQgdsat1gjSWMwm6XvGlc0KLA5U9J5fJsVBCi/P83tQvKtH5HPVAuVFEIiVSO\ndmSaWxtjhBeWW9V9p1ur5BbsuO6gow0qX6xjNOACRttA0XYDRCpHievsmz3YAQGq7dyIzngBb8Ps\n5qHbHJwuo0ZKl5PTWTAbhMJR95TC+u5L0zRY4x3MOuBm/Q6+QHs7/KIqaTN2nF7DUU5tYSnysjO7\naOoaEASKjkLXUrbajBx84W+M62p1NtQ4INO6zu3qfvDUqY66JumAWivet9ZZb3fHM7fz8+36qF/T\nDakg6LpLcEtjbmlu7nbj2QQdSnJOcjgHtjBsXRgDAqk6cGM8MNnd6HI5PbfLTQt4dgGbaMGEFEhc\ncGpV+c0eKTzo1t7tD5qmRhpDFEnCIPDdNhc8vFpBVRXewbOhqjWBp8m5TZGcosiJ+inDQR9rnAmI\no07WYCWB1yW53LOKSrv3/914N/6Qxjuw87c43qTrgLcDGd8FTt6kk7kLeu4DSG97/B9yzj/GeJM2\n6b4uy33jTYBv93a9c33aHbS7gGe3s/Omn91r3uoDWiMCJ14XXeemPV4Ljnatp/M8RynFkaevza+v\nePHiOZvVmjiKmIxHxKEk22w4OTpkOOiRb7dcXpzz1Ref8/LFS/7oj37KaDhwxax1u6/9NCWJI6yn\nfrX0FqkUUirfNaHb4Y/jiF6vx9nZGcPhkCRJeHB6zP7+GIGgrCoX7Ol3ZUejMSenDzg4OvLcfcve\n3h4guLq8oCxKFLA/mbBeLMizLXm2ZTwe8uknH5EmCd98/RXb7QYVBJ1D1WAwYDDoe9pYTpLE9NIU\n3dTc3My5urx0drYY4iig8m5rSRJxeHhIr5eidUNeZKx9+CnCEsUxURKzybZcXV2yXC0RwgXuKSUI\ngpAkcRSofr9Pr9d3BhBFTtpLCQMF1lBWBavl0mW9WNcliaPIi/AtN4slv/zr/59Bv8dsdkia9thu\nVkgR8Ojhe8RxwnK5YrFYsVxtuLycs1xtODg89NqKkqIsQQriOMRazWIxp2lqjo8POTk+JgoD8szw\n8MEDoijh5mbJarN1ie6Nc20Ko4Bt5gqa0ciZVFRVTXa9pShLoihmf3+P09MTDg8PO/pP09Rk2W2m\n0Ww2o9dLWa/X3NwsXUdLa5QUjIYjfvZHP+OnP/0p4/GYqqpZLpds1huybc6TJ0/5y7/8OV8/ecpg\nkPL40QNG4zF5UTDo99BNgxSQxBGDXgpojHb2x1VV8OD0mMcPH/Dw9JTZ/qyj21kDMgwIQkdds0hk\n5KiKWKh05ToEMvAgPaGpG7Rx2piOntQ0CCAOI091wgnE7W3B3bKIpFI+D8eN22wZtyMvRZsjowhU\n4Apio51RgDVOq2Jfd1STShLGkX8+jUXh7LgcSFNSosKAoio8LUrd7vh7IOPc4PRrc1hrV9yCFGst\nGFfo2sZ3Y9ou0q2ICNe0dk511urXAZMHQ03TYAsLZcl2kzm3SX8dpFBodHftpJRst1u0sQSh67pJ\nT9vyUZu0GUCNB5UtCGopbdoYDHRdM+21ZbWnv92lP2tvY+2Or3Y6J69baHcdl9dYA7dARwrh8jSF\n02/BrTOewHWYAiUJlXIW1Eo6YOzUONxGvvp1R2uU/+xx57jt7w60uuDUdm1pacdtuKrWmpAIISRC\nuNyfKHD0RF1XaJxZRhIlYC1NU9JoTdVoROBMGWrt4gAWywWNtPR7fdLUzbNFVTsDDetofAKcQ2cY\n0pj6HdR5N/7gxjuw8/c43gQevo969SbA813g6sc+x7+L8Ta6oR/tuf2iJ3Ze764uaLej04EdBAi6\nYicMQx92GXSLU1EUTti5Q19rnyvyVJv2GOPRiA8eTtm/NgAAIABJREFUv4dEcHZ+TlPXTMZjkiQk\nChVFtibbrPnwf/8TRsM+m/XSO4KtGY36HMz2GI+H3MznbDcrR7kKBMa6TsZ47IIT1+sNV1dXLJdO\n49OGbQ4GA/b29livt/zX//pfefjgAaenpwyGCcprA+rM7YJPJhOCOAGhSHpD1ssNw3HIaDRBBQGX\nl5esFkvGwxGPTo755OOPqIuCm6trxsMRBwcHHOzPOHv5kros2Z/uUVUVy2bOerlku15T5jmFty+O\nkxRd16wWWy5enXF9ecnN9cJRB2cuBO/05JjT01Pe/+A9NpsNV1eX3NzckOdb4iRiMBpxeHxEFEXc\n3NxQ1zWTydg53lV5ZxgRhhGDQZ9+b4C1zqpbKUWaptRVzXJxw2q1YLNaEwYBvV6f4XBAFIZsNxtu\nFjmLmwX93oB/9a/+lDgJefXyOTfzS3q9FCEUy+WGsjJYociKgqv5gqy0yCCkqCryssRgiJOEOImo\nqoLVasGgn/Lo4UMmkwlFnpGmfR6cPqQoCjbbjDAIvL+X69g5ClLN/v6U0XBIU9Vs12uapmJ/b8p7\n773Pw0ePODw47N63X//61ywWC/b3Hd1PCLi6ctTD4XDI4f7IFeyNpt/r8dFHH/HJJ59weXnJs2fP\nfPcgYLPZ8uUXX/D//Lf/F2st77//PkmSMhpPiJOEnnSalM1m4wBkmbNeO+AzHg94/PCYfi/lk48+\n4OjwEAGsVis2mw1BEDEZT4giwXbrrL7jNEERYMqKqmwovcYlimOMhrKonI2xxWfbeEG+8NoYIX2O\nigAlui4OwtlJt7Q3a21HAW27o0o6Gmjr/tcahTR1jcVgjXa5VrK1ZPYFtZIIJbs5pNa1F7M4Ybw2\nBquly8XazfXxmzPO9Q3A09PsrcOjwaK8MYm1msa7wtXaoKvaaXRM4x3erOtwVRVCWJdPFYVeN2L9\nvOXmLgc4GppSd2ymKIpcB0w7wNJ2jtv5bTQaO/ML42hbztbcIH3OkDGGqq4py9q9J77QN8Z1Q2rd\nYKyl1k4gbzzg0k3jpTsuyFgbswMgbrUtLlTVT/XcmjgYYzrAdZcZ4eZ5sEp5gOMtuIEGfM4NBEoQ\nhQFRHBIGiqpq0I1GKAHC5YUZTyOzttX8CHZ5fcJ/zhxob4M73WsSwmnBHLVUeiKCez4hJZFSPnLA\nWcavFkuqumY0HqGEIAoj7+jnDBwst25zdV277mqRMB6OaHxnsypyirIBGSDDGKVikigiiUKquqFp\nvu2U+m68G/+Qxzuw8wcwdrsIu+NvG4j8Q6K4/Ri6od1r+BpFwg9r22Xg9WN+67p7Gke3u4vdcTuL\nusU7DMOOGtY+T7vAAl0HqGkahsMhR0dHxHEMwuUYjEdDkjhC64rNakGR50z3xhwezojiiMYL1Xu9\nhPFgiLCWy/MzttstxjqHJcevF9RVxWq1IghCv9Pv3Ljawmw0cnqc9XrNer3m048/YzAYoGSIMZb1\ndsNmvcFoy/HxMScnp2yzgqKsQbp07qKqGQ7Hruh98pTNes3hbMbRwT7lJuPpk69pjObk5IiDgwOM\naVxmjxCkaex3kRuvDxrTctu1bri8PCfPXQ5OnueUZU4UKXppQr+fMhqPmE6nPHjwAGENr1485+mz\np1R1Tb/f5+DwkOF4RJqmrFYrlsuFKzyCiKquKL0TXRRFKBmgG8tmsyXPc66vr1mvV1ycXRIEjiqS\nRCnRXkQcRSgBwgrWqy3L1ZZt1jDsD/gn//ifkGU5z589Ic8cUJjuTbi6uuL6ZkEQRORlydX1nPV2\nzcHRmLwpaLSlEYYwUqRpiJQGY2p6vYTp3pRBv0caRwzSlCiKqIqS+fUNRV6gAkWAYJtlLJY3FEVF\n0ksZjUaAJc+3WGt8/pChriu2mw0v65q8KFgsFmjd8I//8T8iSRK22y3X19dUVcnR8QHvvfcepsz5\n8osv6PV6fPrppzx48ACsZdB3lEmLYLl0zm2//fxziqJkMpnw8OFDhJSMJ3sMByPOXr1ku74higKO\nHp4yHPQxTY3WNZPRiOlkxEcffcDB/oxBv09VVuRZgQt/DQijlH7fadCqukYFAU3dUDZOt9YbOBe/\nyIfKFkXhdBTWBWUCjmLmvu1gnXmB9joSpVyAqi+Pd+inhqpqyLMSrHc1U64z2n7nWsv5IFAuE8W6\nAMiWatVop5dBtkXuzmaKlAjjOx663Ve3Xtzu5g7tC1Wt645CB9YDHuvF+iACSSCFc5Yz7eYY9Ho9\ntI5ch853CsqiAKs7Km5d1+6aGBdm2QItY5wRAL570TofBn4+KYsKY2wnum8tx9nRSSEkSrkOcxuS\nXNd1B5AkyoOXVoNzS/eSUvn5TboONTj3M77dsd/dqGoBhLMA9+AGXnMWu10SdjYX21u8XsgCwliv\nn3K6rF5qGFYNRV5RlBXaOv2TEAIrvHmbtQQIrGitpN2zO6DjqG9BENDUzgmtBUdR4MBOVVVo7a5/\now1WaUKpnEbNB/42VU2Z52w3W0dj7vcRSqCERCO87si23nporxkyTeO6enVDHISYRlMUOUKFBEjS\nuIc2giRO2OYVWle8G+/GH9KQ33+Xd+O7xvcBgrelXn3f4++bvNudqF13svsed985v41G6E2Pe5vH\n/67jLg3hTcd5k3Zp97F3x+79d2lrd6l+bmH69nV77drzujTTWts5DxljXnM3K8uSNE07p6Z2V7jb\nxa1rttstRVG47kUcs1wuwDhagvI731Y3NHVJEv1P9s4s5LbkLvu/qlrznt/xjD2bGGMS/GIMRGIQ\nL3Ij4k07D4kBFYMICqIYSFCIEi/0RkVxQj8MDnzkRgQFJUrQK4cvJv3FJD33Oecd97zmVfVdVK21\n93v6nNOnpxi1C3b3effea61aw66q5/9//s8T8KavecwW46+XpOsluqnwhCRN10zPz5nPZigp2d3Z\nYWdnx0lNKxfZtNHTLMtZr1NWaYoWgt39A4bDMWEYo7VhPl9ihGAwGNHvD9DGkGUFlZMzPT0749nn\nnqesaoIwJun16fWHNE3DrZu3eObpZ7h58ybLxRKhDbEfgGmoXS2MkhYwWNqPzWhVpVUH8pRiPLLA\nS7si78l4zHg0InRqVWVRkGeZpbwpwWq1tNFJ36OuS45PjnjhxnOcnZ9RFDmer0j6MZ5npVtrXRNE\nAf3hwEocNw2BH9LUlsIjhFXMs8AqR2uoKrs4jsIY3w8oy5oyLwmDiCiyBqR5llOVFXEcc+36FXr9\nmKOjW2it2d3dJUl6nJ/POD46ZT6bc+PGDc7PpyxXKwzw2Jses5La6ZK6qVC+RAhNVeUYoxkOBxzs\n2Xsax7GTIW949tlnOTs7pyztMzebTjk6PmK+mKN8xe7ehCgMrVCDMfSSmJ3xiEB5pOu1A39z8iyj\n3+vxtre9jb29PebzOcvlgv6gx0MPP8jV69dBCm7evIkQgr3dXXZ3dqyJbJ47k1pJkRfcunmTZ555\nmtOTU7RuODw8ZDKesLe3j1KK6XTq1ODg8HCf0XCApyRNXVHmGVm2xg889nZ2ieOI2tWOCCEYDkfs\n7OzRHwyRvk+tDVWtqRtD2VigE/d6DEZjkv4A3/NbuELgB3jKGX5q0wEFS0dSeK36GnSLdYwFU6nz\nk0rXGXm2oZS1gg5C0BX5C2MFA4zZSNm3dK2maWhqq3Bm6+c2GSJzgU7b9tqusFWb1eHi2L+hmW22\nbfslpbT0JQcmjLEUvlbYYEP50huAJyXaNF3f29oge+ytehflDFG3gnF2/6ILHLR98J34CeDA4Gac\nvEADlHIrU+M7YER3/dr+boryW9qg6OpV7Hhr+7c9jmt90Ty1PWabcW9pyO01aLMtL5pLhEA4MNOC\nR8/ziKKoE/ho75Hdpt238xYSm8xS+6zZeibTZXNsRmfje7Rd84kQ3XVvv1dVFWVRYLQmVNZId71c\nka5T6qp2iUBBU2snAy7Q4MCOzYIuFgvmizme5zEY9BgNBiRxjBSCsihpmholBZ6nLvgH/Xdsf/iH\nf4iUkmefffZlbffpT38aKSV///d//zr17Ku7SSn5xV/8xf/sbtyxvZHZeQ3a/dbf3Iu2dqeF970A\ny72Oc3ufXgoM3G0f2+0rmeW5E53g1Rz/bsDt9n937wnBna74He9DRynYyHC38tJtlPKC4/kWla3d\nZjAYMBqNkEKSF6mVgZayMw+VDhzEoc/+3j6e71mzNwFxFFEP+1RFSRgG9Ht9eklC01iX+m0p4V6/\nR11rUi8HISir0qlV1ShV0eQ55+dTptOpzRiUpc00IfF8n56L0qIhL0qCsrIytr6tZUjnK55/4QWm\n0yl1WWFc9LksSpqqQgmBNhohDGWZk2VrZrMpSRIjpZVyHY2GnbGdEBD4HsPhoL1TrNcr5s4npMgy\nMr2mLCt8z7N1Jus186VdvJdlQb/fI0kSa0JaFrauQWwMXouiIMsyhGn9jsJukdU60rcURd/z6fX6\n3b/rskQKj6osKfIKkAyHI/qDMUmSsFjMGA0HtP5EJydzFssF6zRltV7jBz5lU5EVOUIKwjhila6p\nmspy9htBVVrzSE/ZBcig37dUKANFXnB06xbT6Yw4TlCeIk9LVumaNMvwfY/JrlVsa+oKXVf2uTaG\nxkXb88yq+0EP3w8IgoCmaTg+Pma1WhKEPpPJmPHODsYYjm7dQjcNhwcHXLlyhTiOWC0XzOeLLhN0\ndOuYJ598ilu3jmmamuFw6Ba+AQhFulpRliWj8QiPmAeuXwMMy8WMui4JQ59+r8clR6GrqpKmtvUZ\nfhAQeyFx3CMI7LNpy4cMQlnvnCiKiKIYISRFWVGVFU1T2+i1O39bh+OECFoHFa03asbKqrS1ogFt\n1sGqQlvfG/u8eE69zAYybG2O2chWKxu1b2lnuh3bpEAJj9awEbcARrtAjBtbpJSdgpzZpqg5gOJ5\nGwAkpT0nu1hWm0VwWTjJaAtcBKKrablQO+RASQt2usoSsV15shnDbP88hLcRarBgz4DY1BTZDJdV\n/KtdnU3TuIyRbqzUt5Okbkzdga/2mor2njjPoaquqbbU2jRWJQ/oDGTt2LoJTV0c460AQLe92B7f\nLf2tnXdb8YI2O2cBqNkEy9xLurEqCkPCIKCsGptlEs6sVTjBC71RhrTzTGsSWoNsgeYGlNVNgxRm\nU7/jroVoRR1c4K4uS5AKT0hCPyD0A9Z5RlUW+IEHbY1aOw9JiZHCqvgJWxeWpSnZek2v3yeJYkBR\n1oa0asiKgho7JgaeTxD4pFl+h1nStmefhdPTu378FWl7e/DAA69s21cTpL59u09+8pMcHx/zUz/1\nU6+sM/+F2qsN7r+e7Q2w8xVs9wIid80kiLsLDtwOAu6039vfv1uf/rPbvQDWnbI5r0e7kF3a6ld3\n7DtdRtOa5m3kQ9vJ2vd96rq+UKgLGyW3pmnwfZ/9/X2GwyF1XXW+KUZrlFOVwvj0B33Ggx6j0ZAw\nCOglkTW7axrKIKQXJ4yGQ/q9Hr7nsVrZRU5RlGRZymRnxxanVw1hmBNHEamTGE3TFN1oqrJivVpT\n17UzydwIL/Qj68+TpRlZmhElsT1XR9Woq5rT0zOWi6Wl5xhHv9GGPMuoCqsaVmorQ1tVFYuF9W0o\nitwCEa0JAr/LkAWBFQuglWnVtnC+qkp838NUDWVRUZUFVVVQFHbyTddpF2ltfUDqurZ+NL59Xziw\nl+eFA3DWZDUMQ4yBoihJ04zlcklRlIRhzKDXp98f4klrilgIxWK+YL1aYrQmjiMGwyFhYj2ItNZM\nJhOm56ccHx9zenpqF93C1pEkScLi+Jg0S1GeoigK5os5jW7s4hBD01TONyhmZzImjmOEEBRFQV1W\nZGlGHFuvorQoaBprnqo8Ra/fZ3d3hzwvKIscJQSebymHWWazRdb7xT7IUtp6jBs3bjCdThkMewwG\nO/QHA7TWzGYz0jRlPBhw6dIhSRLbjE6WoxureHfr1i2eefpZbt68RV3XjEZjRuMJWmvm8zlxr99l\npXZ2JsR+TS+JyZwJbRJHjMcD9nYn7O/tUlUlWVa76LRAKb8LFJh28akUCEndGMIgwA8sla4qLT2x\ncQAER8dqF3dK2gi19TYxG2qRkmgpqZuaum7sIrtTXDNdpN5z9KH296wtV2lL1EBhxIZ+VTeuFsdc\nzI5IJS3QceON1trynrRGbY9B+sWZHLm16BWCrvA/dIIHnbx8G4zpxqfaFsJviaS0INBmvdxvWLRi\nDJvBr1OiFNbQUgrVZaY2oisbap0N+nidUhrgAKIzGnXXKkCijaQoCked2573bJaTFlQ1TechhLZ1\naUJIpMt03K0JISydxdUg3Wn8b78HToxAWvPRrQ/tvcO68EhHGfY8SRhZ76E0y7GaFMZKW7cZIekA\nkqAD2e1cgKP+tffFdcpdC6/LrAm3bfssCG0QWmPcb8H3PMIgoChLe3yXFbTn4K7nlkKd1laOuvNx\nkpI4itBGgGjQ0iOvMiu8oLVTZ/Pveo2ffRbe8hZI07t+5SvSkgSeeOKVAZ4f+qEf4nu/93ut2MnL\naO973/vIsuzCdn/yJ3/C5z73uf8RYCfLNrWvX23tq7NX/0XbSy3OX26G4uVmYe60/+33vhLZmbvR\nyO6H7nenzNOLAOJWVKx7z2wKidm69h1o6cDKFojp6BHt9TPdxG5oo4myi5whuqnJMUW2DN/cgqOl\nmdSNlbFt+eqe79NFEoU9blmWGK0ZDIfs7IwJAsV6mdMfjsiyjKYsEZGVGvUCn144ZG93wsDVIfSS\nPmVeoJs5IOn1BoRRjJQeeV6yXqdUdY2QirwoqSvrNWEFGCSeFxD4gfUNcSZx7XPb6/XY292j1+u7\nKKBPFFu1saoGnVXEycC6p3sBIFivlsymp0ihQVdIajxfEPiSqsqZzc67uoQ4ScBFaAfDgZOGzu1C\n0RVr68ZKUydJ0tURnZ6cMJvOaOqaJEmQsZWOTfoJ/UEfIVy9RFkQBr6lJUlJXZUoz7qGV01jlbI8\nn6KsKeuGIIzxlWSyu4sxguVyyWI+73x/pPAYDsfs7u4RBgF5mpLnJcv5kls3b1IWtiZlPE5Qns8q\nW7FczImThKosODo95ej0jLwoUC57tLd/QFXXzFfPsFzneH7EydmULC/x/IAgjBCywoiGKEnYO9hl\nd38HX1owWGQ5TVUTBiGTnV2UUlZBqW5QUtHvJfT7fQLPZ92sMQaCMMLzffKsQAhJr5fQ6/WI44g4\nDJFKkuUpzz//PFVVsb+/w3g8QknJdDrl7OyMJEncfemTZQW6afB9CzCOT0955rkXeO7GTYq8JOn1\nGQwGxEmPxWLBcr3m6rXrXL92neFwiO8repEFw1pXxFFAEoUc7O+yu7tDGIQUeUG6TqmqGiU9PM/6\nnoAkCGNQdsHcCgoIVzNT1yW1y2pi3GKzBRdbgYcWBOA+F44S1WhNVbgMm1tUS+dj5CkP30lSi62x\npR2vlJIdNmga60/TLtBNo7vvCBfZFxiUkGjdQKMxdY1xwEgKgdUhc4dx+8Fs1B83/XBAw4Er3TSU\nRWFFErQ1tMS4ep6mcVQqnKSze99lf2wCxKqitWOiMe33NMa0dY/SAShD4+5LG5xoaVlSehgj3KLa\ngkXfV2gNdes7JITLYut2GHcGpy5LZjRaCzylXJG9pRwiBLXW6EYjFZv+iy0fs1YEAAdopXRzgu3T\nZrLZ/KObM4X9j3Dn5YTYrBmtMCDs86UVNNoQeK0qm4LGAkrRSJdRk278d3OHaDNPupubDPYZltJz\n2SONkKKTDAe9kaquayrdmtY6wKyEHd99Dy9w9GkhkMICN9NoBBIlPVABuq4pS0tjE1iKmqc8tDT4\nXkOtIZSGJPKhqMnykkYYpLj7fH56aoHO//7fFvT8Z7QnnoAf+AHbl1cCdoQQLxvotO2VbvfV1tI0\nJUmSl7XNV/O5v1Gz8wravSJHd8uu3Ol7F7jDYpNWv9fnr6Zvr2a7l4qWvZzj3k/tTxvt2xYSsHFC\nMC2wEc6bwr3fLliMEN0LB2Da73WgSLCZxFuxAemoJFJ2Cx/haBIGMNLt131fSLsf3dT4nkIKKx3b\nNFatyEoj28hZo00brAVj6wWU8tjdHRNHPk2d0zQlxlgX8qosMHWFbBoipRgP+uyORsRBQOCFgMdq\nXbBYFkgVoWSIlAF1bVguU1brFCE8JpM9PC8iLzRlYUjTmvUyp8hrPBHQixJGgwH9Xo8oDIiTiMl4\nwmAwRHkeRVlRNx51E5IVkqJUlJVCeQlxf0QYx+RFxtnpEbpJiUOoiwWRr5mMIvo9D0zJfDGlrkui\nOCJOYrzAxw98kl4PhLB+MHnG6dlZR4k6ODjA932m0ynPPfcczz//PIv5HCUVcRTT648Yjidcvnad\nS5evMhgMCAKPLEspihQp7ELSOKPIKAiQSKpSkxc1eV6jtaI3GLN7eIgKQxbpmqOTU164dcTRyRlZ\nViCVopf06PUHgGCxWHF0dMJzz93g5HQKRjEaTuj1xhRVzfH5LdIqJ+xFPHPzBb783PMsywq/P0TG\nA0b7V9i9/ABpLTlfFCzWDdNlzrPP36JpJEGYoLwYjQBlGIx6XL52ieFogPAEdVOT5TlVVRFHCXs7\ne3a9VGlMYwiUzyDuE3o+68USXVbE8QA/6FHXAm0ko9EOBweXGAyGxFFIFAX4nqTIU1bLGTuTIft7\nu/TimCJLmZ2dUuUZke8xGIyoasM6K6mNRPgRaaV59oVbPPPCEfN1Dn5A2Osj/IDFesXZbMpiOaOu\nM4IAQt9QFgvKMsVQI6hJIp/hoEc/6THsD9GVIfBClPBRwkcKj7rWlFXjaGaGoi4pdYmRGuULjGgo\nypQiz9C6cbLAEokBl8lqzWlbQpPn+6ggwEhFg1Xt0pWmqTRo8KSH74co38fzfatUFkco33q01E6W\nWQmrtuZJidANdZFTZCvKYk1dZWhdoqkQUuN5Ak+CYJPB0UUBVYWoG6R70ThTXDtwbtGm7GKsrVkR\nDrDY2qaSPMvI1qkDxRXC2OJ4ZQTSgFTg+wrlK0eFs2OXdkEaKawha2OMqysyLuNaUZQ1VWMNNhES\nbQRVY6g1VulLKnCiDVL5SOVZo1Mj0FrQWNVy7ODpgFJjaOqGprbqdVIadFPbfiuBksLJk/tWfSwI\nCH3P/r5dzZWvPKQxVgZaeZYmiEIYgTCOImj19ixA0Ra0CbNds+NhTWQtELNZNDBaIrDCCQplnwlH\nG/OkIJASX0p8IQncM6cEWIEHC3qko59JqTrxC6FswMb37XioPEkYBgSu9qg1VTW0tUkeRguaskE1\nNU2Zo5vaZtg8iZbQSCBQSF/hh76d5eoGoTV1WWNqgxQenkpoGo88q6mKymZPtaUENlqjlCDwBUpo\nepFiZxiTBAZpcjDVS87zb3kL/K//9Z/zerUg6/aanYceeojv+I7v4DOf+Qzvfve7ieOYRx99lD/+\n4z++sN3tNTvf+q3fyl/+5V/yzDPPdL/VRx555L770R7305/+NO9617tIkoS3v/3tfPrTnwbg//yf\n/8Pb3/524jjmG7/xG/nXf/3XC9t/9rOf5YMf/CCPPvoocRxz+fJlPvShD3F+fn7hex/72MeQUvLE\nE0/wfd/3fezs7PDe9763+/zP//zPeetb30ocx7z97W/nU5/6FB/4wAd4+OGHL+zn9pqddr9f/vKX\n+cAHPsBkYs2wf+RHfoQ8vzsN8vVob2R2XoN2N1ravYrl76fw/tX0407tXjS62/fxSvpy+za31yK9\n3H2/6JqYbRdtG8G9E13vXtdh85nYiuTd/iX7P+18JVrgBTba2FLW2gmyMRtev6H1jNCbKCiN8ywQ\n1KZ1qg/Z3Zmwv78PwGq1psgKlnJBURQMktBmjIxVehuPxxweHlJVlaNaGaazGYvlgqtXrhJGMWEY\nUuaFW8AFBFFA0kso8hKMYblcMpsvOD07wxhNFIVWhS2ObPGpkq6+xUN5ktlsxnw+J+z1aFx0eb1e\nA9YEsfWyOTk+5tatmwShZzMqniKJhxzs7RGFIeenJwghGI5GRL0enlSsC+vhMhgMrGzyakVZFEhh\nxRWuXbvG3t4eR0dHLBYLZtMpWZohpexEH4qyxPNtUXKSJERRxHyes1wuWacrpFwxmezQ6/dc1N/K\nR9s6JRvZjsKI4WDAYNjn/Pyc46MTzs7OrO+R9BgMBuzv7zMaj9FaM51NOT45Znp+TlWVjMcjHrx+\nncPDQwDO5mvqsuahRx7h9PSMz/7fz5HlOePJhCTpkfT6XLp0GT/wOTk+4fzsjHS9Rnk+tePzh37g\nousGJRVJnDAaDCmKgrIoCLyQ6ek5RVbw8MMPO4rZnNl8TlmW3XPeNA1FVRFGEXt7exSZrU+KopCr\nV6+SJBGLxcLSXdg8w4eHh7z1rW/l+vXrLBYLTk9PndyzZxXxsqJbiCll3zs6OuKJJ55gOpuTJIm9\nP0XBer3m+PgIAUwmY5RSFswXBVpXKGKMq9+QLQhxz+pyvnAKhRFC2MWVkBLlBWgNaZYhlFXk8luv\nHYOVeVYS3/PxnSdNVVadylgbVNqmmwm58b5qzUGF2CiKIQXCqaFJF/kXBmonNiAtnxXpfHqqrs6n\nArHJwlx4SZtR1VpT5FY+u80ot4LI2+OdgS6Tg/u3Uhsflrq2dUUYQ+WpjvbWZjZaulKjNUHg0Zkh\nS2UzZm5s7Ma6zqh0M2531GptwYkxFXUjnF+XU/nqrrOluLUeRa1HTt1oqLcp2jZwVGsrMV3XNZ4K\n0GgaV2tkgYe2WTopqV1tkDWLDQiwFL62H63nj3FUvBYQNqYdny2tsD1Xq+zm5hWtMbXZUMnsyXdx\nsguTxFYT7toFQYDne6iy2gTZjLGZOm+zPuhebKLOgs2cZ5/njUy0LTnbChAKK16x/Uy1/lHt3NT5\nQEkrC94KQ4S17+h/NbWuyHPBaDSicRRiP7CiGwZBWTco6eErayjNOr9g0fDfsd0ewBVC8MUvfpHH\nH3+cD33oQ3zgAx/g93//9/ngBz/IN37jN/J/xu90AAAgAElEQVSWLXS1vd1HPvIR5vM5L7zwAr/+\n67+OMZYu/XL68cUvfpHv//7v58d+7Mf4wR/8QX71V3+V7/iO7+C3fuu3+IVf+AU+/OEPY4zh4x//\nON/93d/NF77whW77v/mbv+Gpp57iR37kR7h06RKf+9zn+O3f/m0+//nP84//+I8v6vPjjz/Om970\nJn75l3+5e87+8i//ku/5nu/hHe94B7/yK7/CdDrlQx/6kFU+vc8g+Xd913fxyCOP8Cu/8iv88z//\nM7/7u7/L4eEhv/zLv3zf1+LVtjfAzuvQ7jcD85Us+v9KtTvVIL3W57k9GWy4+5tj3Q6SXs3xt712\nWqnTdp+tQSfaEIZ2ckAIu9DqZKU1RVXjKVu8aowhTVN832c0GuEpj7xISddrPKl44Po1nn/uGcbj\nMaNegicNQWAn0ChK8H1FEETM53NLsVKKpNcj6iWAYLles1yt8XxJnMQIaYuUtbFFqVEUEkUhq9XK\nqp/5CmlDkPi+XQBVlZWpXiwWgOjc6NfrNet0Ta+XdNzcqqpYLhdkWY7v96ibxi7q4wiA6XTKdD5j\nNBpx5coVhOczXyysapyLwBZAU1tvihbIrFYrTk5OWK1W1FVNnuVIKdnb22M4HFJVFat0gTZ28Zym\na+IooCgLijJHCIjjmMlkzGg0BKGotTUVFUoSNoaRP2Y8mbCzs0ORV1R5gycDxuMddnclcRQzcuIR\nnpKcnB5zenxM01RcunxggaGEJE5oqMjWKZ4n2d87IFtl/N9/+yzT6ZTRaEwSJ8RhxLA/xBh48smn\nuHnzBloboiiicjUPe3t7BEHAcrWiqguSOMKTytL3KkPg+6RlStVYepvyA56/eYOT83NmizmN1kjP\nQ2tYLVNqo/nar/06POkza2YcHOyzu7uL53l8+ctftMB60KOqLGhpjOHNb34zDz74IE3TcHp6yunp\nGUVRMhpZYYC2Fkl5Pjdu3eKJJ57g6aef5vjktBODqKqK2WzGdHpOmqbs7e5y+fJlvubRx9zzt6Df\nH6JEg1GCMAjo93oMB9b3qMwLbty4QZqm1LWlyg1HI/q9PtKztCilFGEcd9LSVeUAkVNVk2KTJW+z\nxL1er+OUt7Uvbf3Cdma9VbkSSlDpCrSrt3OUz6apKYvc/f61zQZ7VvXQLkBtxB/fx4hWEEFtqWxZ\nZUTt6oBstqatrdiInbTZ/e3gTlvXUzc1Rij3vc042GgNlTMwFQLfd9O8GwalkE6Z0MlXO9pce50u\njHfy4ni+PQa2EtKNbjYCDW68bIGVFhtDTCkVQjQI4WjBYsvQU9u6GCkUQrjsEoo8t/VgCIEfBAgp\nbR2S1lbkAFs3ZA03RaeM2aqdXQzs2WyLcIyA7c8bq/Hd3RtL47PjopWqbuu9HPjEUpKVlGiUIyMK\nGgS9qkc/K6zfjhMbaQGpdjVLF66xEBuKTStlLhz1wAWZ6qpCN2LrfgBOgOFCEHMLsAZB4LymDMI9\nJ02jndCGsDVrUloVSmOI4pg0TVmv18QknT9c3TQ0BpQfEPgevSRGBTE3z9Z3mzb/W7b/+I//4B/+\n4R94z3veA1hgcP36df7gD/6AT3ziE3fc5tu+7du4evUqs9mM7/3e733Fx/3Hf/xHvumbvgmAt7zl\nLbz//e/nR3/0R/nCF75gpf+B8XjMj//4j/P3f//3fMu3fAsAH/7wh/npn/7pC/t797vfzfd93/fx\nmc98hm/+5m++8Nk3fMM3vChb9fM///Ncu3aNz3zmM8Rx3J3X+973Ph566KH7Ood3vvOd/M7v/E73\n9+npKb/3e7/3Btj5r9Bur4XZjgS8GiBzt5qVV9NuX/i/GqrbvWhnd3vv9ozOnfZxP1mp1h+g/bsr\nlL3Hvl7Wud62q/YY20prgg3Iau/5YDggigIMUJaFUzdTRFEESIqipHImflVVO2ECq5i0XC0xusKY\nhtUq5YUbzyOE4Pq1awQKlssZQgriOOkkSQHmiyW1Nh21yiAsXeh8SpFnDEd9pFRUVd15kEQOgFiQ\n4iJ8aYDvW1Up31cYo1mvV6wWa9IsZ9DvU9cVpgTlSXZ2JkwmY6Io6uSZjdHsH+zxwAPXef65Z5FS\nsl6tOFotWS6WBL7HQw88yGq1pjaGs/NzpJSMx2OWyyVHR0esV2uklJ1PUWuO19ZPjcdW4Ww0GnUK\nT9Zkz3OF9RV5kaN1w2DQRyLsNnHsFokOuOqG2kWXY+WDNqTrlOUyYzqdU5a149YrPKkIw9BKY1cl\nZ2enzOdTa64XB3ieQOuass7RZUNZl5RVQbYqWa3WfO6zn+N8OiWOewwGI3Z2d0nTjCefeprnnn+B\n05NTG42vKtI0p9aSSweRvU5Vxd7uLo88coXDwwOKrGQ2mxH6Eb4X2IWjUsyXC05Pzjg9O2Wd5URJ\nQugHVE6QQUibjViurRhEKxM9m005Pz930WDwAx8DnaDDyckJ8/mCJ598irOzc+I4JghCer0B+4eX\nEErx3Asv8PnPP8F/fPE/mM3m9Ho9glYevCyt8IXWHOzv88AD13nskUcYj4e2RqduCDyf3fGYuqpA\nCEb9AePhGN/3WC1WnJ6ek6YZYRhZcCUVSdJDej5lVeEFAWEUWQW5rUJ76cQHMMZmjRzQ9+UmSq61\ndqpgm8VnN05JiXBSwdCaBtcdpQhD52PjK4Xy/a4mwtbH1Pb3XtdItQUUAK+NuBtDg60lauWFlRQo\nBBpbCC7c5x24qVsDUAuUjDEEkd9VpLQS901dW4EBwPcUGJchcVmaVrGty4y3IMj1rR37dGOsKtsW\ncNgGiG0mQblzbI1Um7px57S51rY2xkkmKwuSBNgMjam7e1fXNlOmPQ1OMKMoSoRSBOGmTsoYe19q\no5HGBaCwHkjKAV0pL0pNC4tUkMKpMYqmG9tt6VDT0QE78QuXPXEPiLuXbS0QXVbGsp8FvvKIQ1vf\nqKQCUblsDZu6nNvmQyFkVzfVgVYp3TnI7thtpqqls0lTd9e4DWjZDJZyINfvDKM9z8NISVnk3RpA\nKlvb01SikyVv/Y6Uk/GO4xjhedQGpPI5OPDpDStOpivgxktMqP+92td93dd1QAdgb2+PN7/5zTz5\n5JOv+3FboAMWrMAGSG2/b4zhySef7MCOVVO1rSgKVqtV971//ud/vgB2hBD82I/92IVj37x5k3//\n93/nIx/5SAd0AN773vfytre9jeVy+ZL9v9N+3/ve9/KpT32K1Wr1sjJdr6a9AXZe43a/i+vXAsTc\nb9sGGfcCHNvtdsDQTnZ3ypjc7b3tLMv9UOdeshlzB/LAxf3cDkDvdDzgopHcfe6vjcwJWpliuzAP\nXXF33dTW06IsuyiulB42a+KT5wVaN4xGAw72rd9Iul5Q17YIu6lrkiji697yZkbDPidHN8EYxuMJ\nw36fuq7Z29uj0Zo0y6y4gPIpygqVFUync1Zphu8pwigmiELqWhP3EnqDBOUrqmVNUeTUTU0QBvR6\nMUIYsiztDCbPzs4ch97GKwtdE/X7DIdDxuMRSRJ3C5OyzFGtN04YspjP8d1irqwqhIDhYMhgOOTp\np59G+R5103Tc3dVqRZpaCerJZMLOzoSDgwM8pSztbjZjna7Y2Z0wHAwoypL5YkZVVQRhhNH2eq/T\nNXEcMh6PmIxHLGZzwFIAozC0srbagFDoskIKm+WKo4iqqnnhhRs899zz+EqxszNhZ7zDeDyk37eq\ndOfnZ5yeHlPmGUr1WWcrVuuGOArpDWKk8PEDRWM0J2czvvSlJ0nXGYcHhxzsHzAajvC9gPnsFi84\noJPnBWVZUdUVSgoLjo0hTdeMx2MefvA6164cIKXi/HRGusqIdnpoA0mvx2AwpCorFumaxdpm+YIw\n7ChZSZJw5coVojCiyKzq3GKxoGlqVqulyw5UVHVhldv29tjf36dpGr785SdJ0wytDbu7u/T7A0aj\nMZPJBCMEzz73PJ/73Od48qmnWK3W+K6WpSzLbmEupWQ4HDIZj7ly+RL7+7vUVYUUgt3dXaIwQBrB\noDcgiiMGvR5SCM7PpxwfnyClZDAYcnBwwGSyw3gyYTQeIzzfZnwcRaesNhQ37SL7CBsFN9uRbyAv\niu7vdiEuhJUYtopkID2JJz1rWCkEVbUZx6QUoDdjnFQKZYv1rMFnbTMluna1e07lDAHaBSqUUla5\nDdMtaNvMSqtYZilbGpAYJ2PfOI8q7aho2mg87eoalbQl9DYlYc1IhQNPTd3RZ437DbT3qc2MdxmO\nprHGlIV9XgxOrlpurlc7ZtZ1DUKjtTNeFRKDpV6242urXrdhXslW5oVGb2pStRMZaCX7rfeRh9aG\nqqqRxqB8G5ywflitYALUlc2OtRRi6QQIbqciNc5nSiqFlArflxt/I9zlFl0FZ0cfFFJ0GauWEmhB\ni/Pa2ZLwBqwwSltvY3eJckCr7U17va14QGswao9gjHGZJ3vturnIZZyMMQjlxCGc6WvdNA7sWNrg\nhtpmny/f98FoCpelb5oG5TnQ6YQm6rpxQYCKLM8IwoA4ceautQ0wpXlBmlfWgPZ/WHvgDkoHk8mE\n6XT6FT2uNYiGa9euXXh/NBoBXOjPdDrlYx/7GH/6p3/K8fFx974Qgvl8/qJj3V6D88wzzwDw6KOP\nvui7jz32GP/yL//yis5hMpl0/XsD7PwXaC+1iL/f7e7VXotanldy3Lttf692O53stWh3Ov/7qc15\nqUzbtpOOeNE/Xty2s0hSyq5OxPM8qqKkcnz5dvFkjLYKN6JyNBVB09TEccQD169zeHjAfHaOFFCV\nJXVVMugPeODB6zz4wAM8/9wzpOsVu5Mx165cYWdngjGGXq/H+XTWFZHWtVUUI8tYrtYIKUn6fZJe\nHz+MCEKBH9jFft3U5GVO5fxWPE9ar5U8ZbVakKYrsjSjqmp2dnath0xdddHvIAgIw6CrD2id4oPQ\np9dLODk9YTabMRmNAUHgh/ieTxgnZHnB8ckpg+GAS5cvsbe3hxDCRRJLpIDRaMilwwMODg46etyt\nWzdZLpccHOwjlWS5XJCma6IoptdLrIKVMQSO4tLKTa9XK/Isw3d99oOQsqrJC7sY9YLARl+VZD6f\n89wzzzE9m3Kwv8dkMuHw8JA4DmnqisViznR6jtFWGtvznASshDAKkUpQliVFmZMXOcvlmuPjEw4P\nL3H92nX6Q0tdm8/mnJ2es5jbuqy6aqwHTF0TBAGDQcx6vcLohkuHB1y9fIXQ8zg7OyNdpURhTBhG\nNI2mPxgynky4dXRMXlZI3xqNWj+hkqIsGQ4GXL16lcZleWazqZXfVrZ+oW5qdFMT9xKnCmgNQk9P\nz5jNZvh+yHg8YTAY0O8P6PX7CCH58pNP8+STT/LMc8+zXK5ACIIwcIa1GdrVtCVJzGQ85vBgn6uX\nrzDo91mtrHHsoN+jqkqKvCAOIzyhaBrNOsuYTadorbl06RKHh4fs7++TJH2nUGdpVGEUId0Cr2na\nBXtbWK26+gvQG7CjNbWuLRVNWGd7oZxCltVZtsOAEx5pX2Lr/1bVzUbyjdtno20xvfUyqjeyzXIT\nMLH0N2El3iurmtdmMq00emWpVNqKTLRBFeXkl6uqQhrsIl4pPHe+LT2vNhvQYhXPRLfYpqEDUkYb\nqDe1J10gqx1b9cZTqB0nO+8cp4wm3Fhoa3AMjVGbDLjemJDahbuVZW7HkC4j4wJDxgWwnHuNA0X2\ngktlqW8AurEZI22gqmpbOyUlygibqa1qBwAuDuLbtL8WVLVAeHtc38wBXU8u7GNzwdoLZSyKufio\nIAV4ShIEvhOtEd1XcZkX0+6z29XWsRCuVkq7bPTGaNUCLtP1Nwy8C3Nh+xugA2tbqn9C2IyPUxos\nyxKpLDhF2BrG1Xpt6bTGSu/neY4fhAjPs/NUVbFerZgtU2bLjP9prc163t5e73KEux33fvrz+OOP\n80//9E/87M/+LO94xzvo9/torXn/+9/fgfPttp29eS3bf9a1225vgJ1X2O6U6dh+/6W2a/99e3st\naWy3R7bu1K979eH1AG9368f28V4KzGxHIm/v50tRCl/u9dzej3K1AIHvEzn6jBCCTLeLf7tAsFSz\nNtpXI4QkTXN8z+fSpUs88MADKCk4vpWilI3OBb7HpUsH7O5MmM3OuXnzBv045Mplu+DrJXYhW9c1\nq/UapayEsXFSqmmeU9U1cZIwGAwJoqiL6EnlWQNRbbnp0rPyp+v1ktVyBmiqqkRr6/szHk+4cuUK\nxghmsxnG8+mPhsRx2BVva904w9KKMIgAw62bNzuKmcB6yXiu4Pzk9MzWKBjD3t4eSZJwfHzMbDYD\nAzuTHQ4PDq25qpTkWc5iPuf46Ig4SRDCqtRlWUYYhownY/rDkeWm+76jeWjyPGe9XrFYLJzcK2AM\ndVVRFdbg1Ba0+xijmc9mvPD8C9y88QJBELrM0j69Xsx6tebs7IT1ekmWpQwHfaQUBIH1MQki6xA/\nWyw4Pz8nXa9ZLjOOjs6p64ZHHn6EwWAIUrKYL5lOZ5ydnpPnuXMyd3SlTb0xy+WCyXjMpUuHxFHE\najljejZFIdnZ3UMbQ6/fpz8cUjWas+mUNMsJo9gCWq2pG00QBCRJD900nBwfc3p25rI6DVEUojzP\nSnRHIbu7u53y3enpGUdHxwRB0AGdXr9PHCdorXn+hRf4/P/7AienZxR5gfCsYWlZ1dR11XlxhEHA\nZDzmwQeu8zWPPsrOZGIpWC5b0NQVlasnyLOcurK/HVt3Izg8PGQ8Gts6DVQXcTa5RDUaz/eJfJ+6\nsQphdV05GpLo/G/aiHe3SEeifO9CLY9xFDcFG/VHSWfsWGtN4zxjjBAYqbt1sMCBg6ZGN9WWoWib\nCbcvITb7BqibTUapXeFbLxznmcKmcH17rFOeQjqBgq62yG+DMHYftgbIUc+MXWhvJKCllS3GZgza\nsa3ZAj4tmNn2D2qzLQiceIlyAY+asqxojOqK4dEGTymXdTCd55j7GVqxgbqmKEtqR6OTyusAuJQK\naVGdBTMuQ1K3ipatx5AA3/Ot140Dcp5TUzPGKjBu5oIt+qIDPKZDsRcDWR0jgY0wA1091MaLyV47\niSedKIPAGodqjQlsvV8Uhvhehi7dNTCbWqX2+Wmfw26+2XpPa1uT1H1ftj47t81ht8139qHaqLi2\n98HhOxo3dvvOEgFhPccWy6VjK3i0BrZaN3goAs8jjkLWa996uxX/8zI7r7R9JVk82202m/G3f/u3\n/NIv/RK/8Au/0L3/pS996b738eCDD951m5ezn6+G9gbYeRXtTov8TYTlpWtQXuu+bPfh9j7d6++7\n9em1AmMvJ+PzUjS7LjrHi4HN9vZ3Ak4vBTRvb9s0j3Yh0C7eW27zpnhYOxpA4/ZPN+FrbelvOweH\nPPLwwwwHfY5u3SBdr5HSkKUpg4F1jK+LguePbiBMw97erlv8275GkVXPWi1XxHFMFCcYx+GepXO0\ngChOiOIE5ZzEW6fydZpabwUXFazrkvl8Bqah3+8xHo/oD/r0e32SJMH3Q+bzuQVMkaW7WcPPGm0a\nDIaqKmjqirqyNTpFnjMcDsnTDE8pJuMxvV6PLMuYzm4RxXFnVjqbzTg6OgIgiXvEcUwYBNRVzaJc\nMD07I12tkQj29/Y6da8gCOj1euxMJgxGY6I4RmBYr1asViua2i66A98KRgghKAvrK2MExHFIvz/E\n90OKqubo+JinnnqK1WrB9evXGQx7KGXP5/joFreObrJaLQkCj2G/RxD4KE/hebYoebFccnZmMyGz\n+ZzTo3NObs0c4JWcnJw5M9eK87Mpq+UaKTzQ+YZeIsBow3q9xlOKxx57jP29XdarFafHp2AE4/GE\nKIpZLJdcvXadIIr44he/xHM3bjCdzxiPd2iMFTAYjyfsTCb0koTVasX52bkFf1Li+x5lVVCul0SR\nrYXp9fsuk7bi9PSM9XrN3v6+BTyTCf3+gDTNePbZZ3nqqWc4nU1JnWOgNpqyrhFVhZAQh1YAY2dn\nh+tXr/DYI4/wNY89SpquOb51k7oq8ZNeV7PT5JlTvtuYYyZJwng4wfd8dGN/r57nWeCjVDe+tgvn\nsixdHZwFFK1sb1EUFuwYCJRNx0ihbFbXbd+ODa06m1VeMzS6pqpqqmpTVK6F7nx7OrCCdhVz0Ba4\ny62xxdLVLPPNqE3NH93/rW+QkLZ43vdtrVhHW3LUOs/znJSx6frb9r0FFC0AsTtUduGtTVfL4fs+\nWtl9tuNUSzk0jd5cA6VsNH+rXrGrvWlMl3FoGoPWXBADsKIE0tHMjAuINCjlod1+Gt24Giu6Y7Z0\nMaUUdWNV2ZTLlFvJ/o3CGliRBeVZqWklKipj8JWP78w0ta4uzA8WjLlrLWzWqX3eXjQ/ggOqbux3\nimjbM4YFkxLn+uosCSwdzheKJIqIo4jA96nqxmVrQGyBVemew9Zhp+3PNvjqgK5SLlVogyOWoum2\nakH71rm082QbIGvq2lonuO9WjmKppMTzQrDerJ0se+2EFaqqosEQxT2Gw4g0LwgWPr4fAG8Anvtp\nvV7vjpSx17t1qoq3ZXB+7dd+7b7Xn5cvX+brv/7r+aM/+iN+/ud/vvPd+fSnP81nP/tZHnroode0\nz69newPsvMr2aqlhX43tlQKxl7oWr/Q6bU9atwPJ7Yl/+xjbWbc7vXc/7cJEvDWZt67kLT2iXUgo\nZeko2qkTKdXK76ZEUcSVq5fZ399jvV5xfn6O73us1wuMrrl0eMDDDz3Aep7y5JNf5sHrVxkNB0gB\n69WSurKSwvP5nLzIGU92GY0nlFXFrVu3WCwWdrHnKVTgE8Yxvg9N1SCExPMERkNVFqTrFVVVEwYB\nnifp93uMxkMmExvJl1IyPZ+xWq2syJTnEUVRJxOd5WuM8yzp9xICp/a0t79DGIZ88f99gbwoyXKb\nXVqtVsznc0sxiyOyzC5wpZQkcYxAuEyLYLmwNC6tdSf7vL+7h/JsTYjv+1aCuaoIo5DJZEJR5Jyd\nnTGdTonCgH6/TxLa46xWK1u07HlESUKvPyBJYoT0yPKcdL2mKDJ6/YhLl/eZTEaAZrVesU7XaN04\noNNnZ2fCaDREKMl8YSl2s9mUJEkYDMYcHZ9xdHTCamHP7fj4hCzL6Pf7GARFYSWeF4sF6/Waoipt\nRNotLIuqZDIZcfXqZYoi5/z8HGNgPJkQJ1YB72u+5k1MJhNuHh1z8+iIs/MpVWUpKL7vE4QhURKT\nJFYsYDabW4ArbLS6dtRDIWyNUK/Xw1OK6XTK6ekp63WGcLUyO7u7JEmP9Trl2Wef40tf+hKnp2fk\nTWOzEMLRuJqGPM/ZmYyY7Ey4euUKD167xvVrVzk42MfzFE1tvV+SOKbfS/A8RV1VhK7ORwQBURR1\nohNZljGbzRiORmhjs1VUNvOBlJS1NThspbaTxALpVha+cVF8sItxjc0qtb9Xm8EQtsZBbICWpXSZ\nDjgYrN+IUp5VrzJWObCuKsoyxxOy84BBKoSwQgNuNEI5yV+bbdC2rirwNxH3urFS2UIgpCIMLFAz\nju7W1jhJKfEEXZZlA/jqLqjRbCmytYtd0zQg7BjpyTbbYvvfNis0YGsPgyDoVNyAC2CnreNpj2Oz\naAqh/M3CCo1SF4GSzQ5VaMMWyFFIiauf2Sjdeb5nM2XuubLHaSlZCokFK9pl67ZrjpTy8D2fvCi2\n5ojNXCGlcsp4sgt+tO12VU+3xeb62BOxgYlO/tmBOwce7csglDUWDZx8syorKwO+pcYmcZ5ud5gz\n22dDN7o7lgU7GwEDT0pCT3Xbbl+H7XmvDfgYbb2gtj/TxhpKGwx11VDo2qobSon1RLLPoMIQDH28\nMKTf65HEIZ76n6XE9nLa7ffzne98J3/2Z3/Gz/zMz/Cud72Lfr/Pt3/7t7/u/RgMBnzLt3wLn/jE\nJyjLkqtXr/LXf/3XPP300y9rLfbxj3+c7/zO7+Q973kPH/zgBzk/P+c3fuM3eNvb3sZqtXodz+C1\nbW+AnVfQ7pbd2B5o7pb1uVu7Gy3u9m3v9Pn9ZnXudPy7fX4vStn2Zy3YuB/Q1ybY79b3ux17+1gX\nudWuuUm1XRS0UV/jJhbl+mdXZ/cWOXAH23zHtMWiAuV54Irv661jbgOwxlFnfCXwPYkoBU1Tsbd3\njcl4zHq94vTk2C6UlKLIcuIkYnd3jBCwWMy4dLDHQw89SJJE9nsycoX0pYuoCwaDATs7OyyWS+rK\nLoDC0O8muDiOMNSsl2sWiyV7O/t2odTURGFIsDtxsqgNcRRhGk1ZlNSh9QrKMmtamSQJg9GIIAhs\nlE9X+MqjoUFLQeAHaN0wm1nRgLooLUgSVsJ6tdLM5wswkt2dfQSSxXK1AYvGmgAOBoPODFFJadXY\nFksODw8pqpLY9xgOh/i+z2q1sgt7PyBNU05PTzg+PqYsCvZ2d+j1eqxcXUxVVUiliNxiuPVi0XVD\nmmWs0zXK87h27Sr7+3sMhj1AU5Y5TVNZAYJkTL/Xp9dPCIOANMuZzxacnc7cwi0kLxYsFinz+Yrl\nzAKPmzdvsru7S5rlFGVlF+YuK9AWiAshumL+0XDA9evXLRAqCqqyIg5jBr0BXuCjjeDg8JA0L7hx\n6xanZ+fUVYN0YhmTyYR+r4dSiqIsyLOMqioonH9RURUd0EmShDAMaZqG8/NzzqdT5vMFnudzeLDP\n9esPsLe3x3qdcvPWLZ6/cYOT0zNm8znC9y1gFFDkBb7vcenwOlevXmUyGrG3M2EymdgsUp6xXpZM\nT89Qrp6hXeTrqkZj6MUxvu8TRhFR66FUFPa3qzbUrcaZdyIseLH1IHLjhePGiSzLNot9B26EEOAE\nCzbBCedZozfZkbqu0Wi0qe1iU2uE5+FJW9SOu2dKCTzham6EBVJNYwU5PGUVAm1wxI0LreqbFIit\nPvm+LcKvq8rS1NwC3oKp0mZ3XN1MpRtqlymxwAysAaeVkjZGO/EEc+G5ktiIvRTCPXd3WCC7wviu\nYN+YCxLdLcBq70cLRmBTyO8rhUZdCC/UKeQAACAASURBVEp12Utpsz2yaZBK4WlLPWvHeyMAl3mR\nUpJlmbsXtu+t2h7tcyCsHLMVdNDdscqytICiG8A3nkrGNBtanTBd7YxA4nuqo7hhmgtzj1Kyy5DZ\n+2FpYkopfN9DaA2NfSbLpkLrCqUkURgShj7rzPoxWRqnpTpqtVHaa4Nm0GaVHJiUmznO+iFt5sJG\naypXC2oz/xtGSVtLGUWRyzSCkZbO19I722NqbQNBgoD12o7ddmzwnbpoiYehyFP8ILDAXqmWAXjP\n9sQTL/2d16u91se+nUFy+2f3+vsnfuIn+Ld/+zf+8A//kF//9V/nwQcfvG+wc7fj3u/7n/zkJ/nJ\nn/xJfvM3fxNjDO9///v5q7/6K2sDcZ+B32//9m/nk5/8JB/72Mf4uZ/7OR577DF+//d/nz/+4z/m\n85///H3166uhvQF2XkF7KSrUnYDL/VDHXg4l7Ha61r2OcbfjvdQ294v+7wekuYPfSwPgwjb3A5zu\ndIz2xybuAGqE6wN32X8Hsrb2f+FbbrLdPqZxIMpgKT2tSpKdUOkAw87OBAzWO2Y+t5K40uAHHnEU\noaQkz1LS9YqHHnyA3Z0dAt9SV6waTk3uTBqVb1XgyqJguViSZlb+OQwjer3E1mS4z61PSY0xDVVR\nIAz0+z2UEmTpGq1rWunmIs/JnXTwcjFHKY9+f8BwMEQFAUWRU+Y5kVNBC4OAMPSZTafcunEDYzRZ\nmlFXFZPxBCWlNQSdWa+Z3d1dFqs5Wht8z0rmCqGIkx5hGJNlqY3y00aDG9I0o2oaev0BQRhSlCVB\nGDIajRCeYj6bc3x8zHq9IgxCQFg/oCxlna7x/YAgCh09RDggUJJmOeezGXlRkiQxB5cOGO+OkdKq\n1CwWM+q6Io4jJmOrHJflGcvl2voEzZc0jcH3A1arnOPjM2azFWXVOINW5ag5Vnq8pVq1Rd3Q1oZo\nPE/R7/fZ3d1hMLBF/HVd049jS2P0fNK8cLVLkrOzc05OTknTDCMFcRyxu7vLYDAAYyiL0kZ+gwBt\ntPUq0tZE1XM1F6289/l0SlEUZHmBlIrxZMKb3/S1XL58mbIsOTo+5plnn+HGjRus1mv3E7DZAWvw\nGjEeDXnk4Ye5duUKnpJEgYfvWZnbuswo84KqKh0wEJR5DhgkAk8qAt9SE+M4xg9DG2luC+TFZhHu\nQvzW50VKm03ZUr4qy7KT0G1/o0JsPEyElFYqWsgXjZvbC3qEQWOlny29THagSDtaKMaKYnjKAzRa\nbPaljVMwcwCi0Q2aTXZ6+2UzTDbKDrj6H01VlFbG2hik2cim660aGPt8tSOUAy5O5rjdt+9ksT2l\nuixcWRY0dekup7QA3OiOctaCmNYEdJNhkTYjI5STSravzfgqEKLt2xYtEGi0wQhtAR0KpQ1Vbfer\nMV2Aqb0XjfPWER1QYUttTdDAlnJdg2lsLeE2wNyeD1rwq11mqQ2bSak6EHH7fWmHeyltVoXunB2V\nTkqQoDA0ZsunSSmMBM+zxrFKOhlpT9A0to6qBYvb0tIYMHKzb/uI2vdbcHt7P42Uzuy2cWptpnsO\nQON5PhhJXTulOEdvbu9Ld6+Uj5KWcldWFUHggbBAV5eGoiyJ6xrf9+hFEYF396Xj3h4kCfzAD9z1\nK1+RliS2L6+k/fAP/zA//MM/3P19N3npv/u7v7vw9/ve974Lcva2H8mLvGvut93tuLcfA+i80bbb\n5cuX+Yu/+IuX3P6jH/0oH/3oR+/aj8cff5zHH3/8Rdvcrgh3v/u9/fp+JdobYOdVtHst8m/PdNyt\nFmUbCb+c1OLtHN2Xijrcra/3+vx+9v9y+nuv/r3afW4DzLvR2u633SlLtQ2Ebu9D3TT4QYDEFhHr\nyk7AeZZTliUPPfQQw8GAxWLOcrHA96xaT1FkRGFIFAbopqHIMjCaw8MDBv0euq5R0lJFqrp0Ms0p\newcDfM8jzzOWyzlNVaGUIo5C+v0+YeBjnOlh4+pX0Kb72/c8u+iVCmFsFDkvMozjeBsDWZqzu7dP\nr9fH930rqV0UlEVJ6If4nkLJAN3UzGczTo6P0E1DluVccgpadd1wdnZOWZZEUUhVl3i+pStJKVGV\n7dvu3h4CQZ5nVKXllwsXGZ/NF5RVxWRnx9ZsCEmS9AjjmLquybKMPC+6qGWapsznM3v/DEjPFkvb\nZrn6y+WC6XzJfD7HAOPxhL39PaIoYrVec3Zu61ZCVx8UBAEA61XKbDbj9Pyc6WxuOe6B4vx8zs0b\nJywWa4T0iHsJUiriJKFxqnxlaeu7Cgd6PM+j1tZI1fM8JjtjDi8d0jQ16/WKJIkZjsf0B0OyLGex\nWhH3B9y4eYvz83PKVj47COglCXEc22exqsDzCHyf4XDAer2ypoBaEwURYRi4iLFVwlunKXlR4nk+\nk50dHnjwAR5++BGklNy89f/Ze5NdS5L0zu9nZj77me4UUw7FqmKTknZEk4IooCEuCEiA0HstSi+g\n1kYvoCX5AtpQALfkCwhqaUNwI6kBqTmIYhfJmnOKzIi405l8skGLz9zPiZs3hqzMIotkWCIy4p7r\n83E3t8/+0xf85Kc/4WcffcTV5TUhQJblEWXy6KCoq5KHDx/y3pMnXJyfYfsOvFCz+s7iY45QnqSR\nskikUAXSvJjCD+u6pigKXPC0nVi0J6kMRCfaqDYkWUaRijZjcA5rZRbfDhZnwzSDPgn51WFmf9Ju\nOEFftRcaj3duGuhrpdBG1gtxHT0WOt4LJS3aKaeJQYU4kD/qL3wcuGsdwy1jYaaUZJuo0V0rhMm5\nDcbcmCC21RFhkT4mFlHRAOEYOVFTf8XUP4UQMBHpkHBO+eVgLV3X0bUdIQwHZItDGOhx3zdaYAsS\npIV2pg2gpkLH+zAhSMQgUemDD8cdEOc/ayW4E6Wik+QgAnw90rEO7yBjDGl87nxEVVCCiqVpCs5O\nJhLjNRCTCvDeTaYM4/buFm2gJoqYTEwd3hmjPfb4atJaMQaMBsbrE63NVdQs+VhcJgaSFJxHGz0V\nO8YoxObZTHqm46L1MAnHZHChRiqEOhQ70yTn2KMZKf79EbKjFJMGzhiNd/rodxLOKhlSWrRkKJIk\nJc1zhr6NiFo4MqhwDH1P2zbkeclyuaDIX223/OGHgqy8ePHKRf5e2vm5HMu79vXayMI4dlT70z/9\nU/7yL/+S3/u93/sHPLKv1t4VO7+g9lULl7f9/d0ZyTcVM/etd98+71v37vZft82fFyF6U8H4tp9/\naTY3DlSOudjHQaATxvSKS/a6a3n3fMYZOqUUzhicM3hv2Td70jThgw8+QAFXL17Q9x2z6oTEKPa7\nDXmaCJXFCRVtNqtZLuaUZUnX7FBBsm6cdew2G+wwMKtrSaHf7aJtcSruYFlKUeQkRmNtR9e1eOdJ\njGa72bBerxmiyD/PMsacCDtYhr4n+IBJUrROUEqT5wVaG4Z+oI0hpATRLKSFFHfPnz/ns08+Yb2+\nJUpuOTs9ZbGYs1lvMEZsupVSvHjxnJPzB5R1LY5YwVNXNcvFiu12g1IGbZJIhxsYrKPtOpqm4cWl\nuLmlmQjw0zSjGyS4USl5WVvrePb8OTfX15yenjCbzabE+jTLSLKMrhu4vLpmt29w3lPPas4vLpjN\n51jnWG+2NE2HMYa6nklGTdez3zdcXl5xdXXFi8trNrsdWZajdMr11S3XN2vazpKmGclIJ8xT2ral\n6zuslYF50zYxADBqdYymrCpmsxlFWfDs2RegJER1sVqilaG3cp67fcPzGARaRrOHruswSmg/wXvy\nImcxn3F6dkoeB4tai/34aJU+6j5UdLhKkpTFYsHjx4948uQ90jTl088+5W/+9m/4yU9/yuXlJX03\nkBcFVV2CkQFlnmXM5jPm8xl5nmI0eBWipbUTwb0xlHVNmRekqcH24lomFK4UcxScaGO+x3a/QylF\nnc+AwNB3KG3EBje+dNNEnKScdXGQK+YLCuKg8xBAOdHYGClADm+jtbM+IB6M6IVSBKUnqlPwARus\nIAZeRvly/0atzCicV2rqT3yQQbA2BkNAjX2P1qDumJ9MxYwgE8oLiiAOchGljtXFWKD4UbuRCnpg\nbfhSnzfqMXwsqvpBikYfBLUa6XAmXqMxm0WCQUer5vASejOiBuM+nHe4XpACdbTc9PsY/CmGLoLW\nEe2Ph2EQG+2XkBehKo6OeqNuKnAIzDTG4BXTdfI+FWrjkX4G9bIL20hfG8NQx4Ir+Nifez9VN1Lg\nfjmw+uX3nZQ+UqQIVcwYTTAKZRI8DmP0RE0cCxqjDXC4Z8b31cg6CFL+Ha51RPw0KlqmH4TnL72f\nGUsxFZEaJnOL43fWWHCjNCEaP0jtJjTtrhPKnbMO8jhp4Bxd25JmGdVsznw2oywPYZX3tQ8/fFdo\nvK69ePHiXnRmbCMt+Zehffrpp/zu7/4u3/ve93jy5Anf//73+YM/+AOePHnypbDQX+b2rtj5httx\nB/kmtOTu8t90u8uffCt62D1ozl0U6b72TZ3H2yJJbyq0jqH+48C38RokekzdjnS3402ol7fz0v7u\n7Gvkik8zpOFAI/Hec/H4EYvFnGdfPKNtW6pC0rWHoWUYOvI0jxkGPd5ZLi7OKUtZxvVtpGZ43DDQ\nNjuMVszrarJbNkYzq2ucHWTAEvnbzllsP9D3Hft+S7NrafYNWimKPMPlGVma4mL4YfDgrKPdNyid\nYIyEfzb7lmC6yb0n0RpnndDu9js++fhjnn72mVjOppqqqqiqEjv09F1LlibM6oqubXHOsTg5B6VJ\nM9n/cr6QF29Q5HlBmMs30q7X+ABpmrPd7/nss6dsdzuevPeEei6FQdsP9P0wfWHb7Zbr6yuxzz45\nEU2KdSRpSl3PyIuc65s1l9fX6CSlni9YrlacXogBwna7pe8tZVlRFgV1VaNCYL255fb2huvra9br\nDZvNVsTxnaNtLZvNZkJutAqjaRLOWzZbOQ+0ohuEVjjYHusd82JOnufMF3PSLGW9vmW9XvPBh+/z\n+MljTJJyfX1L03dUsxnr7Yau68RBrarYFMWk/+ljEXuyWvLgwQWr1ZLbmxu22zVKM4n/R12KuJel\nLBcryqrk5OSEi4sHpGnCRx9/zF//h//A3/zt3wr65cVGvKorFssFbd+QpiWL+YLT1ZI8TRi6lq7L\nCHZg6Fq8c2RVydnpKcu5BOLutztCCGKMkaakSQLO0XUt2608S00nFupjYRZCQBtFnmfkRUGaZ0LV\n67vJGhfCpJGwR4XU8fN+/PxLOLCNtCGPmgaSITqpjQWGFDoTcjMVOtIXDtYdDaKJ2T6RbhVkgIrW\n6KhjYaQexWMYA0fH7sbHf+sYBDkVV0d6lbEgGS2kk0T6MRVt76X7ivuK+qgQc7G8c1MIMkFc7EII\nUkjG4kJrQbps8BMCcdzXjfSyqViLtF2jdERjx2Vd1I44huhsN1HTgn7JPAItrnX90NO2HYMdJvv+\n0SbZhzDRL7XWJBiCAe1jgKhW0zaPO3H57kdqXogoSxKvN7G4YHI1e4kiNk6SRZT4qNefnNBURKSI\niGCilBAgI7qSJImEdw7je+plt9ZjhO7ueyyEg0GEGxFHLdk93LONEUUL8d4VOlo2vaOkOBX3QK0O\n5jpj0SsImiCVXdeTZwl5zIHq2paqqlAxJiHPM961n7/91m/91hTYeV/7nd/5Hf7kT/7k7/GIXt1O\nTk74zd/8Tf7wD/+Q58+fU9c1//pf/2t+//d//5emIHub9q7Y+QW0+4qZu9qctykOflEUsuPtvora\n9k0iU9/Udt4G6RHY3b5EXRlnjo8tGF/a1/G/FUJZuKfgCSGIRueeNlrfGmNE29J3JCbhg/ffj6jA\npWSclAV913F5+ZxmtyNPNdam7Hc72sWMBw/OWS6XOCeubmPc35jGXhQlRVngrZUU6xDIc3Eq03iC\nt4DMqusA7a5hfXvL5lZcU+qqglSyEpyCZr+XQitIgnnb9vTWUVUzrq9ucRbSIieoGHSYptRFSpHl\n7DZr+r4jTRJmVU3TNlRVRd/37Hd7mhhgmSYJ+/2O09MzANq2w1kPlcKFQLtv0BGtCCGw2+1J05zF\nYkkInu1+x7Pnz0mzjNl8zny5QBlD3/Xsd03MKPEM1pIkCd/97nf58MMPub29ZbPZoLQmSUTkvN3v\naLqWk7rm9PyMk5NTqqqm6yy7bUPAsDpZspzPMVqz3azpup6bmzWffy4Fq/cBNwzsdnv6ztJ2Ld4K\nzW+wLVkKWhn0RrPZrpnNFiil6PqObbNnsMNEjSvritl8hrWO9fqG3W7Hhx+KOcBnnz/jxdUV2hge\nPHjIJx9/woMHD1BKsV5vZH9RkO28Z1aVzKqKPMtp2oZPP/uEq6srADFIGGQmMUmkKJ3NZpEqNxPK\nUAg8/ewpH3/8KT/6yY/54gtJ3J7N5swXC+q6Zj6fU/mcuq44Wa2Y1zVZkhCcxQ0dPlJeqiLn/PSE\nhxfnlGXJZ598wuXlJWmScHJyQlVVDH1P0+xxzjIMfTQQIBpslFNxVte1oHRpyuDEgGCIz3ieF1RV\nTj7aTdthemYPaMHBhUopJUVInLkfAziTY+qrkwH8ODM+rjNShWzMR/LOE0J0XtRmKjxCOARo+hBd\n0ogIDvLHxQGz0npy+tJaUCWjdAwrdZOj2kSxixoNHQ60Xecc1h/TtCL6FemrPmbGGGNIygSlYOib\nabCbpOJiNpm7uC8jD6NxglKRunX07vDO4o1GMlFHtEToL8MwMMQiJ3Cw5dZaQXRxG0MuR0qqc44h\ndShjGIYe6yygRJOiVQwjPQShai3btYPYK2uto+Lq5aa1wSSS6eOcfPeThfcRKjchPHo8P3/0zgyE\n0dwgvi9CvEcmSqEXREYbTZqlJGmKaiTMeaTBHU8gBu+Z3kx3ru0xZdH7gIBSghB6a6Uoj8YdIYyZ\nQ3K9u64jjRb847PUDT12sBgdi/kQc6GcIF1KqYgURoptKa55/bbDB9EDqiSb+q937edrf/RHf0TT\nvDqY9ZepiFgsFvzxH//xP/RhfO32rtj5J9LetiD6RSJJvwzt7izu+DI7LnqUUgR3WOblDfBKatur\nmvch6lJmZFnGZrNhGAYunlwwn8/56U8/4tmz56wWc7RS7PY7NpsNGtE2jNRsozTnZ+csl3N++IMf\nsN9uWM3n5GmCGxLmsxl1Pcegub254ebmhrZthfKRRF44MtIwcbY2SxOW8wWpycCHSSMUvKPZ7WSw\njMya+hBwg4+akoyiqDg9PWO2XGDdwHazwcVZd0KgbRrSJKEqS7HIDbCczcXpbLul7ftpUKm14fz8\njHQ2p2l7NpstXd9RlRV926ICdF3HZnPLMAwsl0vm87kIYyNla7FakRcV282e3W7HzeUVWZqSZyus\nlZA8c3rGxcUFTdPwdy9+wtPNc7I8Z9GfYNKUW7uhXwyoVYcq19y6ju6y5/pqw37fMKsrzlTHi35D\n17XcXt9wtX3BzXDFJ80nQt/KC5x23A4bdr4hpIpu1nPrNwxDS1mmKK259Q39bGCYSXbIZXHLZtWh\ntaZYFLjUsCs6WnNJ17XYdOCD3/gQ8ysVf3f9Mz7ePaWpeuqqZuee8rn6giFXNLs9L4ZL2rIllIFm\ntxcN2KnjRXFL21p62/NZ9xnX5ZpQBOywAxR5tBDPZim2VLRzh012dP21mElcX/P5i+ds9BZ74Uiz\nHL1M0fMUl8FNuiFg2bDldtiy8nPm+Zy6KmiSFpMZsqXBVgk3Vct++JR20/DJs0/Yt3tWyxU749HD\nFZvNBm8H8jynUIW4QmmNSTQv/JZ0n6JQzPfXpDbHRlpjPwwkSSr5TKqiUDkMir6LBgWI/a88m4cB\n3DiIJYgN9Gg0YCISEleImpuIsigdrYfFvteO+VpWXMVA6EtpmsSfxyDTseA52AUTtzfSwBj1GRK0\nFKl/Qgb1weOtj8JzmWjQBEyfoMzReURTFGv7KaRWK0VmU1KbSoirF/RWoaIzJbTDns51GDSJS1A2\n6lpiseqcj4WYmnAMsW2WoFSHx2qLTSwknjQiCCNF0nuPM1JouWQ0YIiTTrGPVsagvNCmOtfjEk+o\nw8GFjR0u8djCEkK0jvax2IwQmhuvgfIMZiBJhdIWohZFRTqbFCQak/QoJYL9PjnYb4dJ2RSbAsbz\ndS6uP/X4QgWMep0QAi54cehUmsF5euVoZz0NA0MS6EtP19k4r6ame+HLGhwIo2Ysvlt8RGNcIn+0\nNhDAD4OgicRjC0J5TlMxIuhb2CQdWRqEKh2g7VwM7pVjEW2UJ0tEyzYMHpdo8BZXtLi5kdDqzNGY\na3Y6UBQz2vnh2r1rX7399m//9j/0Ifyza++KnZ+jvUn/8qb2Jqrb2+zzVZ+9al93//6qaNHb6oq+\nKlL0qmt5H+r0kqDzNe14Nuz4+h4jPQ43iWnfRO97CTn60meKNJVZz6bpCMGRZSknJxLGtV6v+eij\nn5ImIsIGoVUURU6aCN2mritOTpacrE5EJL/dcnN1hYq0ixGlKsuS05MV3ltubq/Z77YYo9H4aHqQ\nRL69hUhZOVktGXpHlm7BHzQKTbdns9kQglBhvPP0zmKdpyhqTk9PuXjwiNPTU4KCvuuwg6XvxREu\neEuzb6iKkr6esd1uOT875fTshM16G62Te0wilsKnp6fMZjN6pcQZzGjKoiJNM5rtnuvrK9q2RQUp\nyJRSPHv2jLbrSNKc09MzjDE8e/aMy6sroaZ0jpOT5cTtF3pgz7NnL/jh1U/4Hzb/M72ysAHuimWf\nv/YWur89vvPzo7dd8dmdnz2fcnXvkn/FJf/r9s8hBb513/7/Wv79L+5b+/N7lv8K7cF9H1qesgOe\nvnn9Pv7dItf8bquAgS9fjv4Vy79r/3jaq/IlzSs+v7vMPxugwL55kV/qFqlX+vVLvWvv2i9be1fs\nfM32Og3O3QH78bLTTJ9+da/xNoYDd7d/X3ubgue+Qf99BcDd83td+yrLfpX2umN8lUbpGNVRSokV\n651Quun6jP87OuRXnYvw8/2UDQOBqqp47733+M53vsP//m//NzabDd/+le9Ilkzb0DYNWkvwnIjn\nU+azmroSh7GnT5/irOVktaQoCnGPigYCZVxmv9+L/XNVSsGjIU0SgncMfTflgRR5wX57zfr2ljwr\nKLIcZy1dK5krWZbJLOAQaXHasFgsePDgAQ8fPQIEiZLZQCkUtxsJOR0GmUlN05QsSzm/OCdLE6Hw\nJQlpmmHShLwouTiXnJ+9FderqiipZzVplooOA9Ea5NE2e7PZiqsa44QAQltrJKDVWkeR5GIAMNE1\nMppmz36/56pf0yvLf9v/Dt+p3mN1csJsuaSqZtTzBXleoLQEnn7x7ApvE85iRo8dOjbrGzY3otV5\n/vwZz794KgYSdUmaZWKacCVOcz4EbMxkCXjQljTJuL1dc3Z+QQhwdXXN+lZG9NVsTl1VWOfYbtb4\n4Png/ff57f/8P+PJ++/xF3/+53z08Ud4pUmKgqEf6Nqek9WKxBguX7zg5uqaru2AQF1KZs58Pmc2\nq0HBerPh+vqKzWZNCIGqnJMkGSYRelOapOIWlRiss2y3W9bbDbvdjraTWdu6rqnqmrKsDm5pLuBd\nR1nm1FVFnmckRlPlOavlisWsoi6raE0rzmJd28YcoSUmMbRtJ2Gv1lEWGUVR4pylH/rooiUi/iRN\nmS/m0SZb8lS0Eavy+XwRqTkhUr6iWN46TCJ21soc9a3HtCsbNTsImkoQqpJWY8iloAYjuhJ/iG5s\nkaMV0VCtxSBAGQWR6um8JxD1KXIVju7jGDJ6RJFTAdwgmhqtNYkxYlVM1P1ANBLpJ3tsrYV2NYVU\nJhozUvecw8Rclb7tUOrgWEYQxz47dFHzk6BRDNG2OzEG0EJXmrSHYaL1KWUmiEOE/5IvlBcFCkU/\n9PR9tLD2Ltqsy/XPsoyAoh8GrLUkwvecnPBG1CMosewX3Ztn6PtIXRtpWkHOPaI8KNGyDMNAnmeC\n+mi5emO/7pzojcJEYVSRJng4Ph+pYvLFaDEYMIaRfCji/4APMRxUR2QHef5tvD6dtQzW0jvPbt9y\nfXPL1fUN+30DauzrDsiO1sfvYdmm0TrS6A5UzNE6fzQoGNoOFQ0LEiM5S95ZsjShqquo2exJEkOe\nS7yBjRqovreTi2hVlhRZRte3rNdr6lLMZ1KjyLNE+uhUjE2yvODk7IKfbW/4P/gHDNJ51961r9je\nFTtfs70OsbhbkLxqwHzf799mv2/S1txXEI3rvQmd+iqaojcVRa/67KuiVeP5vul63ff7u/Q2gwwy\nRkEyiomTP60z/X0QeI7c9WMdwLhN58Qu92R1wqMHj2ibhhfPnlGXJeenK4o8ZXt7Rdc3VEUBeLyD\n4AJZWlBVNX3fScBgmlKUFSbNsH1Pbz3aJBidcLteY/teHIS8I8tTyjInzyS7put7govXySRsd3va\nvicvClxwtF1Db3tMkpBkmViO+haPIU0L6sWScj7H5Dlt19M7xxCD/HSS0LV72maPDOOEQpIWKUVV\ncHl9xWa/pSgrVqsTirJCaQMx30arjFldMqsrksSwXt/QdQ3gyHNDmijaZsfN9SVd22ESQ3AOPwyg\nNRlQJIbWDgTfs7kVe++qLKmqCj/0+KGftAEfpBf8Wv0hZ8sHnJyeM5svmM2XgGK9XnPVJayqBcvF\nI05XK9q2Yd3csHM5O1VxaRPs7Rb2K+qqIAsZ7bohXLUUV4rUJXTDQBoUWqcEPNaLXfhFWPEBj1hv\nN+yf3+B2htl8xpITsiEVHdJOrMb/1Xf/U/6L//hf8cknn9D/eMO5m1EtT+iGwPMXz1CD4bxesb/e\nYD535GtFQUFZljyqHqKVIrUpydbQNA36aiC59cxtjjEJlZvHvBBFkiYkSQwNtBLk2u5aXGNJXUJu\ncoqiYKUWZDYj71LqpKJOaoxOyErF+fkZZVHIfegcF9UZ750/oSrziDbGZ0IPWG2FljibM/Q9N/0N\n+2ROVqWiF0lTur5jb/f4aJyQfy+AyAAAIABJREFU5hkKxVl1PmlrjEkpy4pqPifLMryLJgHeobUh\ny4s4cFTijDXaCx/1HVrCjSKFTE8/W2vRcRJEaSkirBVXubEgCWEUqkvxkCRjlhITNc17J4J2PVJo\nhWY1uUIGcbLDj8YIQpPqY+GaRK2NiW5vjE5vAbq2oe+6g/4mFpQgOqyDBiRqiryjDzIg1krsr0MI\nWDPgUxt1PQY3WBoahtCTZSlGGwbTEwWM2NGIYXp3HKybpcAcyFJx5xrif966o9wx6SMTk+BCoFM9\nVlsyk4suJ/QMYcBaj6QvKSxCxfQh0LmePk62qFiUKDUGGzMVtU1oSV1KUAolHnji1uec3CfW4VEo\nJXb0npEtIPfMpJ8JfrqHRjOD6a2gfHwjeCl2Yi/o4j4CCusldLq1lttmS9h2dNcJw60UTd4HEpNi\nTIJCzkesoIWGrLWKJhVSXI3vFvmeU/I8F4OYbXRq08IQCEFoaFp58oWiIKfrfGQFpFPuVtM07PcB\nHzRFkVEPBXmW0vUBblLKLheHPhXIEk1RpMznM5y16E6zSlKu7T8bKO5d+yfS3hU733C7z33tuL2O\npvXzUMte5Up2X6EDr0eS3qbAuW9/X4fWd1ywvS2d7+46913T+4rB44JHjXOm4zrqMIv60rkQkZuY\nGm6MEdveo+MNR0VYXdVcXFwwq2f85Ic/Yrfb8fjhA+qywNs+CoMHtMqxgyXVGUYZqnLGYr5CKShj\nhoxOElAaF8ThJ8synPNs1hu6psHagcTAvC45WS1RWgvS0cisaJIkEAKD9xRVSVGWODswuB4XHEmW\nkRUlWZ7Te0gHT1oUmCzHK00z9PTeMgSPC/ICDz6Kob0jyxJs6/B4iqogKHh2+VyCOhdzZqsli+UK\nax23NxssUJczsjwnyxL6vmdze01wFu97Em2wfcN+t6Zr92g0fhgI3pMZQ5WlpArUIKne1nYM3Z6u\nacH2KG+jkJs4+444jZ2dcnp+xmK5Isny+MJvefH8Oft9y/n5BYt5hfcDl5fP2W7WuGFg6AeGrsdo\nzaNHjyiLgma/lyDXXUvXyMCzH/rD/Rv/WO84OVkx5QcNPVmesjpZUtcFTdPgQ8/qZM6v/0f/gu/8\n6re5vrni//n3/zfrzS2np2dobWi2W/p+IEsTmnbP88vn3K5vcNYyq2vOzk84PV2KuUTXstvtJI9p\nt8dZR54VZFkhznsR/Rj6wGA9vbXsmkZygOwAylDWJXVVMpvV1HWJCnI9UxPIEzhdzbh4cM7ZySm2\nH9jerkmU5oOHjzg/WU0De4hidS3FVZ5l9H3HdrNhv9sQvCNNMlQCQTlQXibjUSSpoSoEtQsxvFQn\nhrzIKMuCVGuGrmMYHC6Ixkbs1EUr1ff95DQWAI4smdMkixlTWrQcHnxwBETUbj2oiFiMqIkx5k7f\nEMD7qNERvYagBPJHxOpi70sQwb53R+ixFzes8Y+Ln5sortdR9e6d5O2M9sNDRESO+/0kSRmRB+fG\nokpm+IdhILg4KaODGEAExFbbpCR5hlZiW+2CBHVa51HaiJ5GiSmA0h7CaNcvyMh4v48Ikg9R8+MD\nCk2SyDLOewZnpz52FNODFGXxY9EfjQhSHNwP/SBW3QHJ9Iz6KescxohGagwd7e0giJCz8rlXsVZ0\n9NbinJhEoNRkCa4B6w7vCINYjvtoR61CQAVPCDHUNHprq2gvPV53vKA+SdQCpVqs8EOAIkko05Qi\nS0iMFF/BeZRJoiOafG9ax+sd5M/4vuLIvc37gMLjEzGx0MpMBRpBTFFEjySITp7nmLEgV6ItM2ia\nIDbncq8h+hwnUwNJmoCSe8EHmYjTg8e6EO9LaHc77Ct5i+/au/bL2d4VOz9H+zqUrJ933Z9X1/O6\n379JS3Nf8XTf8q/a7t2C5Juksr1u/68rtiYqSfBMWTuRojBu626hOIqUxzydyRJ3dC+K283znPPz\nc05PT7HW8rOPPsI5R13XeO9omz3dmFXjLNYOLGc1Z2dnPHz4kOVqRZELXSAvCgnRjLPDottRkYLQ\niwmC7SVnwxjqssLGAEtjDDoxJCaha1qKoiD4FJMkuOgINBZ5RZ5LsTM48sIJkhRntQc7yCAhyOz0\n0Et2j7M9xiQkaYKzFqM1y+USax1d10XL6HSiyHk/5jVYtBHr6sYOjCJukOX7tpNr1InDm9GJ5MeE\nwGq1Ii9zeZHv+smtq08SyrLEGCPUkb6XIi9SQ8qy5OzsnPPzC/Kyou3EHGG73oq9ap5TljUAl5cv\nuLy8ZOhEO9Q1YoM8n8+Yz+e0+4aNHQRJMKOVq7hkWecIMOWDyGxqxXa3Y7PZopRisVywXK4AT9u2\nlGXFt37lW/zar/0aaZryZ3/25/zFX/wlT548Jk1Strs9+92eLMtZLeZcX1+LFfW+Ic9SZrM5Z2dn\npFkmjlzbLdvdjn3TTq5mWVYwm89RSjMMltCLIHzoe5qup+06ApClGUVZMJ/PKAuxBZeAeKFMJcYw\nqyqevPeYD957nyzLWN/coHygLkqWi8VU6CTRHtgHj4pBn33fs9vt2NzeMvQ9dSWmEzpLJhpTlmVy\nL1cVeZrhBgmYzesZRVFIoGmaTJMW4sKVElQMO00SmlYKvulZliTM6ZlVWkIYJU8m5sBYS0BkCC7I\ngBKYtHLjsmMBrZWaDBDEfMAf9XeHvmNEpI6pstMEiyw1rSP5OfIs+NEJ7U7GzXg8Y99zTGlyMaPH\neaFY+XDI/hmXHdc99G96Kgh1tGTWiZ62SRiLA40OMcVlDN+U2Z54nC8HkCod+5cRBfMRdYrFhtEH\nKpy1DhuPHcB5hx0s1snEhYnBrFIMSCArzkVjBw3RctrGYFixpVbRWIGI6x1N/h3nCXEUCBu/ulHT\nObEWvI/9pZzLVO8pwXRiHYpk2ygS8cTEx+80zVKKQhDYMt+zi4XfeA+HcHjnjKjZSEvm4NE2NbHi\n7sBH+2wfaZaIZXkSEqaDgohMHRgY4z00riuOeWYqtMdJPUFBpcjsenFALLMMraBtW4Zo7vD977+j\nsr1rv7j2Td5f74qdfyLtLqpx/Pfb6HrG9iqU5L71v4om577C6qsWP1+1mDtudwsvLx8eePPqTrGj\nD1aix9fhOEDQhzBlOxhjqKqKxXxOog3XV1c8f/YMrRTzGFh5e7um2e9JjcJ7R5amnJ2d8eGHH/L4\n8WPmsxpwk5Ymz3Oh2YyDIa2nUMr9fk/AT6YLXdfJoM17yS9RGjtY2laKHaUCbhjzLuRlaLQWW1Ql\nvPGiKMjLWnJQEhkyhIAMCgfLft+w265JtGKxnBO8vAQJMJstuL29xfpAnpeUZU2aZFjr6do+DuAU\n+/1WKBxakaaG1WLJfrdBqUDb7NlsNwzdmA9BpHgY5osFWZ5GDYoXi2tnUVqTFylaKZr9nr7rKMsS\nbeWFnmU5s3pOXc/wQdHsOzabLW3TCL2rqjHG0Oz3XF9d0bcNxBDCpt3HEFihyF1fXbLZbHDOk8ci\nsRspc0M/DRpDCCRpSlHV3HzxlK7vqSLit1gs2Gxu0Vpztlzyq9/9VR48eMDnn3/B//V//juG3rJc\nnOC9Z7+TcM2z1SllWfKTH/+Y3XaLGyyrxZLTk1Pqeobte3GXso4hFqk+BJI0p57NKMsSUGhtcT7Q\n9j1t29J2Pc6Lk1ZRFMzqmqosZIbXKLy3JGlCXZWcLpc8evSAxw/FtMI7z36zJUtTyrwgIIOgLEnE\nwc0YBjeIe5a1bPoNt7e3NLsdWZrKs7JYYCMFCCSAtCorZvVMvpOmwVt5ToqiQJsEUBOFVOs4gI+0\nMrE8300aLsmjiTP0cRCrxxBTJZqNfhCKlFaK1IxBpGOgZ0RHARdczFGKyIZSuGEQImcsdpQ6UI+Y\n+oyDjfNdrR/h4NQm68kA3caAUxhptjLhkSTpZGs89gdjUU8Q6+cQdS9aGXQi2zTjAHoMQvVm2reL\nRYyJSMNYFEFE5gAVAhoi/Usdjl9J3xA0cVLkqICKtL8Q4rajplErkdMEr8T9y0uRpJRGGdne4OU+\nDoz7VVG/oqa+VmtDUKOz24iAhalvPu7PR01MCIdJni/19yFqcvShr5ciSD736nAcaqKvSQio1BYj\n8iVfgkfWNcaQZxlFlpNmKapxU8EYontbkiRTgam1IDCyiBQ9B+p0QAJM5R7203lE+/QkibedID2H\nCblDQa7UqPtRkoE0DBijSBNNnuSkSUrbtbKsEYc6ay1N05CnCUYZuq4D49CZ5nvf+94r37nv2rv2\nTTStdeu9v2sx9JXbu2Lnn0h7Gw3PN92+6v7+vo/v7r5fakeHcYxCTRkSXk0zeOO6Ls7ejzOzgYO1\nbZqmIvTve54+fcrnn3+OMYbVckGR5+y2G/Z7CVVMEhmILZdLHjx8yPn5OfP5nMQYnAPnguTp5JVQ\nPbQgNUop9rt9pNNpyqrm5EQGxp9//jnee/I8I00TBhvY7Rqa3U6KHTzNbh9zYpxoA/IYGDcMuBAo\nioLlaslyuZLgQa1wbiD4yL+3FrwnL0WYfnt9xX7XMJ/PSJKE9XqN90iwaFkCMgBu25beOrp2wNte\niqo8pS5zHjy44PKFZ71e0/eSATEKwdsobB8zVEzM4knTOVVV0a1vJbsoE32Hi7bB4/WFSPNRir4f\n2O0b1uu1IGdlSWoykiRlv9tze73hk08Tts37BOfZbTfcXCnaNqWuSpRSfPH5nPU2QKROrbsHDL1o\nibyPFsAxE6UoCrw54+p6xhB+hVm1wusTnl9Zbm+vMebXmK+e0HRP+Iv/1/N3f9fz45894l/+y99g\nsy949uwLmuGC+eoEa+d8+tmaq+v9RGvynLFtHtJ8ZGibRhA3t8BaT9t1DENPkZeU/pTLWwnQtNYK\n8rFv6Ideso60QvmM3qXs2pxuMAx9z2o5J0k1kFGpJSo5oR0W/PhnGZ8+zUmMYbcJtPuWzCSCBJFQ\nz2qyNGoDOkXbeawTwX3fZQR/Is/DcMLVdoUNjrbJ6Yc5RDraGIS43ws6tbo+IckyEf67MCE1WifT\n7H0IQsGyNkebUgTzSslA2sg9ND7g42DT2sAwpHhnSHQSt6lkQM7L2kYb7304JNgPQxI1HGM/oePf\nh8GuHSQvaxx4AtN24kzChP6MWT8hFn9T2ClCpSVaUMu2JNdnBFpGpMA7K4haOPR7QpeLHVbU0QTv\no6lGpJUFYlEYDzGGpXrn8d4KOhsRlnGihyAULAksPWzXx8kCH4SuN/aNI/I6GgNYJwgO0ZQhKE1v\nLU3TMvS9GGiY0WHS4QOx2NAoZaZMGescgxNTABUncEbUaTQmsBFFkaLfCNKsdDSUiEWNGguWeE+N\nn2sTc3jixRl1O0fXUhCySDcLYqLgAOs9u7al6W8Y7JVoIwMELzRHpQyJTsHraMAhGUoRHCMxGqPM\nhChJYa3wTuH9mEEUYEjxKpUsnKGl7QLpIPeIvKOg6HKyPGMYLL3f0lsLFgZnGHxO6Uucc+zbPT7I\npJnWCrzDh2tWi62YcgyKNAP/33n+649+A/e058XlleSOeQVGNIFFWbA8PaGuZ7Rdz/XVNVfX1+y2\nO4beRrQ2w/lA07Z0vZUAVq0pykKYCW1P13cvjW/0WCweUfx0tEkHpsmH4/f++POYZaVG9G4szCO0\nd3d0Eo4+OTBBXv58fJbHSUSZK70/w/D4mKYZg8Mm7iz3pV186fNxUmHcrlJfHmcdLzMtNxXsdyag\nxwnOMK57DC2P9z8Q+Hftbvtv7j3Bb7h571+EED76utt5V+z8gtvXRTO+yjrHoZnH6x0jPT/v/t9E\nd3uTXuir6HLe1N60rbu6nbufyw/j7OqdBz4cFY7+0EGOvHqFULIChwGGUqKnUUpJkOX6lqurK4o8\n5+H5OUZrdtstQ9+T5xlZlpOlKScnJ6yWS/JotWwSQ5LoaEc9Iy8Khq4TIwEnmRlN12ISw8npCfP5\nTMIZh4Gui0JkDdYOtO3AbtdiBykuvGeiCymlSVIzzVoPvWhO8jynrmvqumLkiruIFhmlKLKMLFmy\nXM4Bz9XVNV3XcX5+hvfw4vIKhWY2m1NUNWiD64QP7qxnGAYW9RKCx/aDvKRQ1HXN1dULuq4lqIA2\nmsEOtO2eup7LoNV7DIE0zyiKHOsd+70Ub4KAqZjx4eidZcylL6sKk6R0/UDTdoQARVFidIJWCd4F\n9vuWn34E//3/+N/Q9enXvT2/VvvRv3275X742S/2ON61d+1de9fGptWe/7L+r6iLDWmagG9hBQ/b\nJZlW5Inis6cD+96jxiIpWIa2QdcVq+WMIhdzmvV6y/XVFYlOMNogdhCCbgYlcwGJNhR5QQhM4bog\n79yJZgkHyt1INw0H2ujY7o4HXsVaQR2KnXFM86Ui4b71xp+PxkljUfWq8Z+giTA6Bt7X3kY68Krj\ne9U5HJYLx3XWy+fiRwbry+O4MB6ytE0I4c/u38IvZ3tX7PwStp+nIHgdpewure11+7pv32+Dxrxq\n28d6nVcdx6uocV+33XcuL30WAhNEc+f3I4Iz/vu4cLp7PkmSUBQFANutWCb3XUuRJjx58pjtdhPp\nXoE0MWgllLGHFw84P7+INDM12dgaI7bN46GJa1JGF+kddSnISJ7nhBAYhoGqLAXRGQb6vqPvOhH4\nIiLjPlrLOucEmfBy/H0vIY16ovDEBPIQMJHy0DmLt2JpmqYFdV1zffWCq6srIFDkJUM/sNvtOTu7\n4Oz0nKKo6AdH1w0Mg1DY0jRjuViwvrkRMf12xxdffM6sLrGDUCWapol0G0VvB4ogGgBltFBXkJnc\n/X7PerOebGzxQbJ9BkvbdFMORFnVpGmOdQHQFEWF0Yautwy2l5lr69jsCro+5d98739hXv6Iq8tL\ntps1CpjNZ/Rty+fPvsA7T1bkBALb7Z5ds6Pte7Q2k2uV0vIdV7XQ38qioCgEWeiHgdVyyZP3npAX\nBR9//DE/+uEPWa83nJ2e8e1vf5sf/OAHKKW4ePyEerFkfbvm86dPJ0QvBI/RZtJwjc5zzooIe6RW\nJmlKnhfiKBapkABdJ2n1ve2j2caY91SyXC5ZLec8eviAk9WSqirEzrxrJ+rlrFqQJAlt04pdufP0\nnRSdi/kclGLX7Oh60Y8lWSov3XjvpWlKVVZURUmap+x2O5nxd27KlbJOwnbTPGcxm5MXBSiFNglp\nmqOMpmt7Bmsx2pAVOWmeH83MCxLrIeomStEoOEfw8dFWarqOKIUmhjx6B9bKrP04++t9tAQ28lyG\ncRZ/FNyP/ceRPiWI4N77aHQwzT6PyA6RMmnFgfFogBSiBfKI0BxTqkYnNqXEAGBEe1x0YRuPRxPR\nGHVAlEI8Juc83or99qjjiN5xBOsYbC9OZlZ0U9IPaRIjtFfrYnioE5TTDqLvm2a/I9KhldibO+dp\n+1ae1di32nhdRiqu9YFuGCTU1HvR+0Wk1B3pW0C0NjZaT/tI50WLAYBCoxJBQ6x18lxGSp5clQO6\n99JY96ivx8tNoiOKJMNxCVY9RhR8OFAOZYLM4wI4hCrtQqDpBm7WN1xeXXN5tabvB0CjIwIiJhMq\nasfCyJJEKaHxEbfrnZQFSdRjGhUYBgmANUaTZhnGKOzQ03c9SaIpilwG/16ot7O6Rml1QNz7AY2i\nyDPq2Ywsz7i9uZXgXiPB1PvuO3z/0/+JfbMk+FuhSesR8ew5qZas5jOurzLaoSEEH7Wmns1mjfOO\n+WJBmuUT8ptosUXvugE/DBJ+6yR/TUCsaOPPm8c1x787HnMc/zzSi4/HIMc/v65QuO/df+zG+iVK\nJK+sI+4cu/oynHO0vdfJEY6XvXtOx+sfF34vFWsyy3vvRPaIgH7pukyP9j8MO+frtnfFzi+wva6q\nf1M1/4s8ptchIi/Dn18+xntnNF6zj7eh1919GL/qw/S6GZBX7SuuOM3IAJN4+L5tT0XAnVyeUasz\nurS1TSMZEkacmOazOS+eP8PFYiFLJbNgtVrxwQcf8OTJE2az2eEcojuPc56ul4H8aIrQdTKT5RGr\nUu89Nr6U5rM5SWLYbDa0rsXZqIPIxCJ0iMnvXd9Hq1gR0k88fBWdi/qefugpjJm+j2Ho6bqWWHrh\nrOX2dk3btqxWS4qiimGkFRcXD1ktTyEo9ruG3a4BFGmWMZvNKPKcG+/Yb3fYoadrtzx+9JC+69jv\n9+x2O9I0I89EB2ISI05yRYE2iq4b6PqOzXbDvmlIjAjP+6FncJJqHwJR3wFpmjMOJJQSuoy1nt1m\nJzk1kb5jYv5Fnf0dafj3FPqapLKUhaBdfd+xu/0JSisWqyVBKV6oS7y9xg17FBqdBIKBNBGx/2I+\nZz6fo7VotIwxPHm45DvfKVkur/ns08/Y3/x/DPufsZoVfPdXfp22+QTcR3znu9/lg28vafsb9uuf\nUGYvJOfG2igidvR9h0kDVVViTELbdnEgJWJlbRLyIidLc4osI88yKdJ2O25ubtjv95Gzr6mriieP\nH/Prv3bCe0/mnKxSVkuD0Zbrq0u++Pwzhq5ldbLibPkAay3bzRa8JzWGZi90ydlsBkrRDR3OO9GE\naXGk01qRGkNZlMxnA2Uh1uLX19fsdjucc+RRqzbqeJRSzOcLZvM5eVGSZQVpJgP2dTSZSNOU+XLJ\nbCG0tq7rpgGyNoY0z8nzMGW1yH1tovbjMFMc/CAUDmvxgxRf+AOiK4P9mF4/Os4Fe9DxcdSHjf0N\nR8WOGosZP7KShE5mB2zXTboaRXzOR+2OIhoyy/pJkmCi06LQEa3QucbiJe5DK3FL03EWOYQxC0py\nhVx0lRwLzNGo21sbQ4SHWOzIcZgkOaDBgz2aPAlTsTpqQmTm+jCYbGIeViCIi52CPvZtxhic9zRt\nx77rJv1NmqbiFDgMsdDRaHOgIFrvGdwgqK8xqMTQ9z1KaSl8tdBX+24Q6/x41UOk6sQefurbx3eP\ndw7v/PS51kmc9ZeJBDHcHzcwunvK/70THZQLAa/AhsCu60iSa7x7wX73HG8bQlAYnZLonESn4g6n\nrNwrKsjMO34iVkkB68X63WRkaYLCoXyPi0YvqRJjEassDDtSk1Dl9aRpKtKcupiTpim5acl0Q6tb\ngveUacYsWzBfLlH2mv1+j9ZK8rLi/WutYxgsWZaS6Dhx0jYUxTmzWcl8VrFre3rvMdGFcd/2bLcb\nnHdUVU2eF5LJdnbKftew2WzYbBzeWpwdMMT8L61QYXSaCxMtTCKW1ERVOx7ojwXIfWjHfQXEm9CZ\nL/3u6N93C5C7DBIlC35j47lXMlR4mV1zfFz3nePL5/J246W3mRD/x9DeFTs/R/tFVbZvRCJes+9X\nFQpvKm7u++yVHcGd9jZI0d3l3uba/TwFz1dto0HBS7M54993jnfk2h8XO+PPQv2a4b2nayXzRcXB\nfZomKALNbo8iUJZFzIMpePL4CR9+8AGPHz96KbvHWi8hkl3PEI/KxDC50T3ndn0LPlDkOcvlksV8\nIbkjUcQ6DJbBuugIViK0az+FkXZtS1lkEhiZpiRpio3OVG3b0DZ7mQmPg56uaadix1oZAK3Xa5Ik\nZbU6papqmrbl8aMnPHzwkCRJub5dc3Nzy9BbylLQjdXqBONlyNG2Dfv9liw9o+s62q4Vq9w4yMnz\nnK7rqOuK07NTqrqm6xqht3Utu/0egLIsJvqCSRKqsqasSoqkg1sARdcPdJ240Dk70LYtNze3NLu9\nrKc0fS/I3O36hsQKpS7PMtLU4L3oZCT7QsdwvkDXd3RDHzn4bnL6SrOMxWLJcrnEGDUVwKvliseP\nHnN6csrt7S0f/exjnj97TppkPHr4mLqe8zff/zvq2YwP3v+QeT3n6voTbq4lQFSj2O12zOfziPCM\ndIMYbpkkmPg9uiCD3qIsmc0W1HlOmiR0fU/TtlO/kOc5VVVyulrx3pPHfPjB+zx8cA7BYZSi7xq2\n61u261uCs3RFzrUX3n3XttRlST6fTffwbreTwZqJ2okQaNuO3W7LfDaT46lnVKXkLI3Bllma4o0h\ny7LJzW7cpoQmJtGhT0Xnr4MOJssysiQljoSmc8vSFJ2KC2EIcl0O25bZegjTIH18BvGHAEvC6KAW\n+7ZxQDzSang9kh7UQejuFYS4Hx2H3uJgJ1J8f5h3iQgDk+5FG4PR0WfM6Ok4AoqgFaAnhzilACe5\nYRqFC0xF22EwdKT3ifQUQQSF1BsUoAWVUbH/M/rI0S1mwUi+kOjkxDFtRLfGgs1P6AwIMmaMkWNT\nniRaSDvfT9/riKiglBhuDINMVCR6On8TPCGiQyFEfVD83hMjCHk4+lo04KeLO6Iy43d3FDgdL2BQ\ncm+E4CMKKF+KGtUd0yDXRJBjvC8OCNy4e60UiTakaYJJjl38wqT1U7HYku2M6FxAqwP1ymh9KF7H\nbUfjBx8kDiCE8XsQ9EpP53JwXxNtmn6pwHPRzU6K1QSxZR+tzGVfzln6viNNTQyfha5pyWpDmWcs\n5jW3mz3DvkXhydIEHwJN29E0ewklzTrqsmK5WJKnQudWQdHFYpjg0UqTqBH1GN0RDwXE68Yi941d\nXoWUHP9+nKC4r4i5u83j7bxubPXGcUx4m3Lj/oLq7rGM/56iNV4xtjv8PkxIzavOYdz2VERyf3/3\nj6W9K3b+AdqrHoDXwZVje9viZ/zdXUj3ddv7OgXGXRj4vmN53fbf9AC9rmO5b9njbd4Hd3OE6Nxd\n7/h4784eHXc8aTraihZst1u6tp1yMJJoibzZbmjbPWliqMqS2WzG2emKD99/n4uLc6qqwlors9Ex\n+C4EZLY2CI/Z6ASxfpb8kO1ug7eW05MTHlxcsFwuaaPl7oiO9L2lqufM6lpE/8FjB9lP27ZxFllR\nz2pA0bRddDbyk9Byv9+z2Wzoh44Q5EXZtg1Ns8PagdVqxcnJCUmaYoaB99//kPl8wX7fcnV5zXa3\nI88LMSTIcqqyxrUtaZLIC9oPnJ6eorXYIieJYbFYMJ/N0VosuBeLJSenJ2it2e6szNT2PV3XUeQ5\ns3o2DV7zvBAUYDGnClIMEQYhAAAgAElEQVQqWuvY7RratiegsFYydpqmYb3eMPSCjDXNAoC+aQj0\nki2TyuCt61v6riPPEsnysANtL0WTc4LYDM4SfCBJxERhsVhQVRX73Ta+5DNOz045PzvHDo5PPv6U\n6+sbAB48eMiHH/4K/TBwdX3Dr//6f8Lp6QXbpuHy8orbmw1919F3PcPQU9e1oDzOR2OCqMMyKWSK\npuvwzpNmBauTM+bzOZkxODuwa0TnNETaVFWVnJyccHF2ynxW07R7vvjic7qmoSwybN+yvrmmbzvS\nxNDs9txe7QSB05oyTabnwXsxlXDeklclhdb44GjiPucxDDSLxhjBC2WnKkvJAYpFx9hGemdZlmRZ\nOtHbxBJdBs9FIbRKkxj2+72EK3qPSRKyPJdCJ84ET4PG0Rrb+4hOHNAd7x3KR+RFgdeRShbRTxkk\n+5eChZV6Ob/smD7io7mHFCZHg4dp4OwJLhpF8HJf7CeqicYkKalJZYCk5I9XgBaEwAAm7su7aDgA\nk1HCiOqM35WO2UHjwNpG+psa9x2Y8omMiZoIJRS+8Z6XvlHOxySaUUkxolLWRqMCL6J6YwSRUkpN\n7oygDyc0ISkHi+27iNnkQmc0aI/1OmbleEDofWmSgRI0d9y/rBuzlYK4xzFR444RACAcRNry3SpQ\no6A9oiwhHL77sQj2oKM5hRozeWLxJ5SwdDLB8EfFp3cOr0eEXbYTGJkG4vCnjZI8nzBiSC9fK28P\n6OJxIXOo1GSfdzUuxsTQ5mgqQQjR+lrjx9iB6XuVibTg/HS/D0Mv/Z7WzKqKqszZtS3eDuADWZZE\n8wjpG9qmxXYds3pGXYmlvNai0fTeC7UxjqrViHApJv2sOM29PPiPNdFUrI9NRTTuvnf58fp3C5O7\nxcUxYvSmsdvd9k1N3L4NK+j4WF5XIMHR/fWKfR3vYjrv0TXjH2l7V+x8jfZV6FO/yPY2Bc9xexON\n7W3P66tW+K/a7ptmFl71833bf5uCEWKX+IoC6r79GCODKcnMiXkiSSKaiNgRBxBufwikJqXIcn70\ngx9i+4GzkxV1XZKlCQ/OL3j48CEANzcy4LVxBjNLMqqqgjBy2aHre0FCmj1t3zCb1eR5zslyRVlV\nOO9oGqEEPHv2jO12S5rlnJ0/4OGDh6zXa3704x+w2+3R2giiU5UkubiRNU2DdZaiKKWAOTslTVOe\nPXvG0PVkSUJWFrRty2275+bmhpOTE+bzBUoZnj79Aq013/72t3HOc3V1JVkqZcVsvqAoCm5ubiiK\ngt3tmufPn9P3PaenK5bLBc9ffE4IftIgtV1HlsEH3/oWq9XJtM22bcQtaCfankcPHlKWJV3XobUY\nOzjnyPOSWTIHxA3u2e0X3K63oDTL5QlJIpqRq+dXtE3Lo4tzrq9lIGjdwNnJnDyTRPKm2dMPHbvd\njqZtUMZgfUAnKe998AHPX7zg5nZNP1gGZ0myjLIU7Ytzjtv1LVopnjx5woOLB2y3W54+fcpHH33E\nbicGDI8eSa7OX/3VX/Po4SO+9a1vsdls+PFPP+LTjz9lvxMXP2stv/qrv8pqtaCbaH+Sw7NcnQDw\n4vKa3a4hz3PmC6HRVVVNsAPPn33BJ598wna7FcpZVVPPKhazGqM1t7e3XF9dcnN9iQZOV0vmdUlq\nDAo1WZ67QXRqs/kCkyTc3NyIw10uOUjayOxzlqbk5ZyqKmmaCu89V9fXtE3DrKwo8oKyKqbvfRyY\nZlnGYrFguVwCsL7dsN83VLUW/VVES2b1jKqO1uGtFLAANgh9TVA4E1/sMqCxzk3OftPMurMoFaIO\nRov98Eh7sjLwNyOiE62kx2MF5Hw5DJiOfz9S57RWGKNEa2EMeI93cmTjoNPE4Yd3FqViIZVosiwn\nz3PSNIsU17htL3kukmXlpAdysQBRkKdCzdSAHUZqWIIOst/gQ6S39lg7urLFUM8gmr2xf0wihc17\nPxWOY18ZlFD0xoLXOUcXC+pjOmISUbVxcmdw4ryozJj/o6ecKqVEVzJaiMvgXNb3BHBHhVsc2P//\n7L3HuyRJduX3MzNXoeO9lF3dVT0CmNkMueGCH/jx/9/MjvwGCwKYBrq6RIonQrkyxcU184j38qWo\nqm4ATZYBlZ0Z4eHS3P3ee849x3svnlu6mJ6Zwziitaap56giSVZH5H617uLdEYGzkpxP86Sua6Gx\nIcG0C9IbN1XIgyJqneJANaEmHlCpX8skxLIqq0ltMASbAvQgkuE4SOchpORUp0TVmJKyKKUAZp0g\nfboUhFCfvZLyfDaJ9iw0Zy9Jg34YuGd1whC8GL16mT99EsRpmoZxHCcKJmkm5e35dO6887y/ecdy\nuWK1mHN9teXUjxyOR47HPUXdQIiUpqAspF9wt9tTlm95/VIzny/YbDZyjZqat+/f0Q1DSnTyPSWm\nvYUpp0SR5Ask8zjRSmNMfT4ZhYWootD8/MP3+qXfUD4v8RNxz1Of5Xn3OK4JIUxo6KfHh31Cn9r+\np4rV+ftL8YbHy+R9ls/OKPilsNWU6MQPfyu79emi9b/n8Wuy8//D8TmU5N96Mv/S7X8ugckvyI9t\nKwctlw/EGEUWNwcaYkY5wznL6eQ5nY6TqZ28wDzL5YLTaU9ZGpqmFiRiPufqasvV1VaC4d0OEPPL\nwhTClXdOnOLLhhilet+djngv/jLbzYamaVglP5L94UA/jBRFxXwuSE1dz5k3c9q25ebmRsxGC8O8\nmNM0NcvlAq01b9++xXlPXdfUTS0GmssVwzA+gMSV0ZP8dVVVSbVtwc3NLcfjkVevX7NYrPjDH/7A\nH/7wz2htePnyJYVWnA5H7u9uMSiCtRilePXyJVfXG+7ubrm5uWFM8qIhROqmYLlaApGuO3E6HSa0\nzNoR6wS16fp+Ci6kz+O8v/llHgGbegMWSwn+j4cjN+9vOOx3NFXNYjlPXjRQ1w3GqGl7680K52bE\nGNnt9wynlrJumC2W0hegjCjdpeC4LCVZXa1WnE4nXOK4EyOH/Z7dbscPP/yQJMBDSp4jb9+9Y7fb\n8d/+2//CsT3xww8/8Id//pb73V4oakbz+vVr/uZv/oa+77i9vZ2S79VqhR0tx9ORu7s7+nGgamqq\nqsaYklPb8v0f/4V3b99wPB7PQbqS5n2tNbOmpmkk6Zg1FYf7e7qupdAKmkpECuwoyNVcEpWqrLCj\niBxkE1mtJYAry5Llasn2aoMLnvdv33F/fy8BaTIALUrDaC3dfs84DMDZjDYbjN7e3jKOlqquJxpO\n7g8Z7YgZiqkKnX+nk2iB3OdSjTRZatZmxM9NKGyucmdqTkyyySoFLfGimJFf9jHRtLJ3j9Gi5Zor\n55fJUE5myslPRdAXrc/9CFNslLhsSmvK9PwxhXjKOB8ZRzEjFgNPDxoKpVDaCFqkQZmIyuiASj5E\nRgQIdNKcDSlglx4UQS4kPsx9jBJohySUkGX3fSrKeOtE+CKdY0kV4iTDrI3BpP8FUuAcpiBUaY1J\nSIxKz8yiLIhGCfoTZS7kc5nRCR/PqlzTPE6CKkpJQt77IdH/NE1C9wpTimCAD9M1uny2ZwpbvsZK\nR1CBEB2CWWVERZCccFlYk5VM//Y+yDEqprkhyXdGlwQRykl4hMmD6NzM9fB9xMU2QvA4Z1MSI71k\nMYtrkK+7mdAlCV7Pwgp5nToZtkYlQgvZbLisKpGYdsmjJ5xRKufcNO/TTmFTUqQ0VFVJXVccDjFR\nn8U6WhnQU59c4LDbo9GsVmtmMxFyUYl6eHt3d0a8gtD58rw5FwEVMZ4RiPM5EmmDCCKl/pFQIqMV\nOUGf0NiLdX2K/nZGAp9Gh75sfApf+enjS4vPstwnWDay0J9ln/49jV+Tnb/QeGrifynq8FO28Xjd\nH/v+8Xgq4fnXSnI+hcD8OffhUw+fy+8eUyUuH4QgwY9PFTOtFFWSaJ7PZozDwLHt6Htp9FQooSuU\nhTiDe898Ib40dSVmisvlivlshnWO9nRKSliSfHR9TwiRcrlkMZth7cgpec5YmySiG+lTccHT9j39\nqZPqb9lgR4fRJbOZNIPudnvevHlD3w8YbZjNGlarJYvFnK5vUxIkjexNXaeAsRRPoERtsc5CEEqI\n1prFQtYdYmR/OOC9Z7lc0fc9+/2evh/YbDYs5nM0iqFrKY2hrivuDwdC8FxvrthuN/z44/eSFDiL\n0pqmLuX8zOeEEKd1rpYr6rqSYGsQpahxGHBNw2q5oizKVK31VGWNMXKurHVopVmtVmy312ht2N/f\n8/bHH+lOrSh9VeILA1LptNYSjMcUNU0tyEPbtpRFweHUMliHj1C5rCDX45yffI+eP7+mmdX8+OP3\nZAPIvh94+/Yt9/f3DH1P33XUzYy6rrm7v+f+fsd2e8U3v/89//hP/8gf/+Vbbm5ucD6wWq148eIF\n//W//heWyyXv37/neDxO4hjdIKjGbrfneGop65r5XJLRwYrv0z//8z9zOuwpi0IU4mYzZrOG2awW\nquFsRlOVhOCojGKoKuyY7wEJKpSSSuxyvpa+C+/x1k0VRefEWHW2WLDarJO6Uz0ZrlrnpOk4irJZ\nCIH94SDnOyGlxRTQhYlymXsQrLW0/UDfj1LZNSVFYaX6XxY0ZXXuYUgV+se9CSSELIazR4rKKmjy\nMDhTXsiMmnPlPD8vLoshSmXFrvz7RMtCi09K8TDZkQDOPkKX5byE5EEjBpfnfRckZ2QYEwqTgpVC\nFQmtyGiDAiX0Sx8jpUkS+kkJLlevbVJuCyBUOFVI8Exq9A5Jdl4JdSvIzYHzIoTgvEuJmp5EQkII\nhNTLY6Kcj3wt8vWQY5Gq8nT+jIaAJJtJgCAIJwxTFmijEV+enCTqKRgTI9cIIaCSp4yIFKQ+J5M9\ndRQqoXguUYVlPblxKf8Rp6RPIQEzIRCTIWumjxlSspuDXpioaRmtUiobusZJ2awqq+SPlAQntMJH\nhY9xSqSMkuRWxYBWnFX60v8ShUEQVVJlNBodH87x832b3n8xIR2R6Xqc340xoSeOYRyo6vpMJQxn\nsQ2lVaImnpG9wmjGXgoexhjqsqQuSxQRN4hKJUZUNJUSpLUsIfjIfn9gGEZWqxXL5ZK6qthut/gY\nxVbASWJ/vtcUzgaUymapH8YxwnD7MC7S6OmeeQqNuVz+c8XgjzFlHtPHnlrDAyrcNOc+v43Hx/Op\n5T+FFk3ffSLhyXPng20/ufRfz/g12fkLji/N9D9FK/sp43HQ/rl1/JTE4kvpXr9kfX+O338K6s0j\nvxAuHzwPzhkX1brctJwqjLPZbOqZKIwhliXOHYQP7T0aaJqK1XJJYYSYslwsqMuSqixZzCXxCSFM\nqkOz2YxZ04hUdIS6qkSuuK5RKiuvSWX9rAIlCkhGFajUr2KtE8qNKSfvnt1uz93dHXYY0XU10URC\njNjRUVYls/mc2XyGScHC9DIkVcDHATt0qTobWS6Xif4m0qVN01CWVarcB7bbLdfX18ya2VQJXK2W\nGAXDIEah87lIZWdER2lNWRiWyxWLhFgNg/TniNmoBcLkreNTsFUVJfNG1MhC6AmOifIBQmOr5w2r\n9YrZbMa7d+/505/+xP39Hcv5glWicGW6zUSHyD0MqQJqjKKZNaj9nq7r8RHMMLDfH+j7HrRhuVhy\nff2M9WaNc5a3b9+SJT6PKSm040hVlthxRCHJ2OF4pOs6/vPf/i0hBt6+e8/N3V1KoOZcP3vG119/\nzfXVNe/ev+P9+/dJFUloSrvdjq7rOLU92hiurra8fPmC+XzB/e6e7777jv1+B0QWdc1qtWK9WlHV\nFXXdUKRg3BiDswPH/SH1RJVUydBVFQVFYVgul8yaGcEHBu9BMVHCTu2Jukk9WnWD907kwceRiAhq\n5EDMWouzlsPhQF3X0/YzxSz3ZYUYKRK9ZxgGusHinKeeNed7WSuquhK586TERgx4JxLgQWuU99LQ\nnuZjlmdWSgl9LEbCZGjrU9JxvveVNgl9OcvYXj5WpvsyxFR9NhilKEojTf4JrbmoDT+onoZIMvCU\nhnhJoCSgcwmx9F5hvdBtJMgVWpwyhuCF0hbSdmQLEW0KAknVLYrZ5VThV5KYqOQ4qojE6BOqIwmF\n0Pok+M8iDfHiPlFGFNIuK+jq4s/HnidxOvRz0KWVEjEECmm0TwnVhCBojfKBEJmEKfIxKHV+dhdF\nMSnS5U3Kc9lCogWKWIJL38s5nHqVcrKjFSYhJZLEJCHplASJHkQyp3zwfhEkbKIgKk1QChMlIayr\nirqpKauSYrDEKIhPDFyg0ul6JNVlk6TDRWhAEMjcWx6eCN4fJGBp/qiEpGktRQuRx1dJ0CCdQyNG\nk87bdBbCJFJx7to5J1ATalkYnLOMw0jd1BRGi9JnUaAYposevAc0RVnRNAXeR/p2YBiGSaBmsRRz\n6vVapO3t7j7NW0m0zoVIP1HYLu+9jLie59aHSMynisKXIf7lOX08PkWvPycy8ZPoiCz3YUL0c+Ki\nx4jT478/3TYQ+fBMTAs8sWdM4hx/rePXZOffePzcoP9LfvfnSii+pJrwsfFTE6KnUJ+P3cxfsr28\nvse/8494qo8rMZcOyNODL0aaupmUpHJgEy8etiho6pqr7ZaqlMBtvdlQFYamadhs1jRJaSxXOpdJ\npcqONqEm1UThuAyqcqU688lBqpf1vEHrgsPtHcdTS13WaG0mdbVhGNJLLkzy0sMw4JxnsVqyXC7F\ntZ7sSyFJWEwJ2TiOnI4Huq5nPl+IwlsKSEWAYMbhcKBtpX/kt7/9iuV8AUDfi8z1ZrUUsYNhYLPd\nUJRlQkScVCbRVHXFfDGnmTU466agJ2+vbVv2+70kCkrkeKtSzpUENSFRbwJtn/o3rKOpa5pmRtd1\nfPvHf+Ff/vkPlKbg6uorrjYbqfmleWOMSUlfqmA7C0igLbLAEiQo57A+0PcD3kcWTcNms2Wz2aCU\n4v7ulsN+x2w2YxwHnB0lCFYSkBZFgQ9B6I+jZblacX19zb/88Y/c3e8Sd75ks93y6uVLtldX7A57\nvv32W06nE0VSGDudTulaCsKyWq14+fIVV1fXeO+5eX/DbrdDJaraPCXqpihSs7mbZMmNgr4fuL+/\nJ8bAcjGnKMoJ7WtSUoISA9xyEhoIDOOAdZa6aZKMcEvbn+RcKaEVFtst0TuM0lPzuDZmSna01pOo\nwJiMcqX3IGKdSwFhpKqlL6qsygn9yL0wee7mu9kHaUSHRHdKQTRIAKVTv8Vlk7ZLyQ6pcmy0Pi+b\ndNSUUkR/pr88ru7mHhdTSNIwNYDLQjmGm54rmcKZ7+lCSwXfey9CDkrJYShNmQoWWkNMyYePqUFb\nabQBgkhYF0Upqo4hEL0X9bKQpJohV3XS9h0xIMGOlv1Ap2fxdH/oKVgKUaSRixQlGmXQQRESPQol\n3j/KS1BcGIMuBMXRQSW6V0J5VOp78eHBuZpkrFGoKenzJA0G+Vwynuk5rZWeRCQyDU5pQ1GUU5IU\n0jnVWuZUJhTl5ImU1Ggt+ymXRk1Jg74wg8zXXhMJqZ8sarnPiRLSFrlvp0oiBUYTwpnSdvn+UGii\nyiidfJfpXCbTDS+Sm8v3XAiBoKSHTNYZEqIi+53PH+qCBmiE8lZW5SSt7YMovMnsSPuX+stClJ4n\nQBQCFYyDeGoRoS5LYT1Yhy4KXCRZIWhMnQtznvYkiHTXd/RDTz8MbLZbmvmcuqkZnKWfiheXQkGp\nWKHO/SlnSmF+Z+e5rR5AEh+80y8+jxeJ4uPxsT6apz57Kt74HMvkqfGxxOxy+UsrjPz9JE7xxPqm\n/Xhik0/FQQ/O0Wf27d/7+DXZ+QXjc3AnfBm68znI9OeiQ1+yf79km3+pdT6GYX9J0vbR34dwfkHK\ngg8eGJeNfjrx3qtC0JkUH6BAZIW9TxQ2qKuazXbLdrvhsN8zm81YLZcQPPP5nGfPRB0rxjhJfdaJ\nPlaYguW8wRgNITD2PdYNk2mgICLz6TfGFGhdMKtnHI9Hbu922MHS1DPE5NJN9CCFvCRcol75EBJX\nWqhU6kINKosl2OSzYVPgaZ3FlAX1rEEKu5HNZg0ovv/+e7TWPHv2jJfPXxBjZLfbEbxlMWtoqprv\n7v6ID14SO2fZ7e6w1pIbJXNlvyyKSSo7hMDz62d477m/u6U9nohe+P35wZ6RmFxN63sxLAWhWZRF\ngR0Gvv/uO/7xH/6RH7//nv/4+//A9XbLciHJSKax1U2FNgbrRpQj0V5EsrvrRcghU3dcIDU/N1xt\nr3jx7AWL+YKubfnh++8BMW0N3lEVpRxXVLRtm3qKFF3XUdcNr169wnvP//MP/8D+sAetkqz5Islu\n9/zpu295++6dKJMpJSpnQz8pXFV1Jaag2y3GaG5ubgRdytd61lCWUv0+Hg8URmiNVWEojWYoC2wv\nQUtdz6nqRgLvSnrByrKk73ucG6jrWpqYtaU9HbFjL4lKWdJ2He3QCg3JGGZNI1SzWgv6GYVLr7Vm\ntlyI/4zWU2N1jHHqqYFUlUYCxFndUDfiu4S6oKgRJ18YYwwm9SJluhogSFjMbisSGKlMCQoSvDM1\nOufg9xxEq9Sfk6NTd9H/cblcpgBJP4rCh2TiGc4mnrJu6aNRKUDOdLqqKtBKDDK5uPeV0RRaT71J\nEanE++DxXur80n+kQQtSo4xG+SQRHc+0srIqLiq8kRj8FBcqpVBlkRAsCSyD81Io14IA5Bqv+P5k\nOeUoogsCJRAxFF7jg6ZUIo2ujQYPPohniiBsKRD3UUxSL5LTs/jAOaiz1oLOMtuS3OTvfEIbY76u\n+ZmeLpvOzwzitG7N44KaXHuTKW7wQQCo1EWyk781oEIgaEF0stAAiO9VUZZJolsQvpBU3WJKqkOU\n4485AUbuk9wvpVKxJPdd5f6qS9RiSnYmmXCmcymJakJ20k0gRbMSoqKqS5HoT+fRJ1p2Pk5R3RPZ\n8EypzkqY1lrMOBJ1QVNVrFcrrPeS6CTEVBvZXlXVhDDig2dMlFLnPS4E0Jp6PmO92TA4y5iUF/uk\nFprPv/z1wyJovEBznkRcpt9/+Nt8XS7HA9oZH1LVHq9/OlcxSs/Qo9jjaZTlw/Fz4q/H+/CYdvvg\nmHMA88Q+yKl9wh/xIjH/pYX0f4vxa7LzFxiXN8PjYPunTJIvXfZTicSfI+H5SyQ/P2U/PjZ+Dg3v\nMW1NX7wkHgctgm6kym7q+8iStVVZ4kOY0AqjNGVZ8ezZM3731VfMm4q//x//g//wu99QGIUPMSE7\n4r8SY6TrunPzsimYNQ11USY1IJteKjYFfXHq7ckCAcYUwqGOgeOx5ZRMNnWS2/XOQRRpX+n5yQiA\nVEwXywXr9YqyrAlEyqLCGM049ux2O9pWvBFGOxIVrNYrnj27omkaDvsTIUbm84a+H9nv91xfX0vC\nUpb0XYuzI0aJO/c4dOx291SzOdpo9vs9b9++ARUIhCSHLQGM0FHOkrHL1ZLT8YSzlpC8Uuq6QiOS\nq8ELd72pG0YnSlBZmatpZiiluLm54X/+0z/y7bff0vUddSXc8uBTb8ggQYn0H2SzVj1RY4ZBFNnc\nKJLNZVGgPNTVjLpueP3qN7x6+Zp5U/HD3RvevHlDVVX0XQdVRWlEHclaNx1rUYmIwnK5ZL1e8933\n33Nzc4OPiADGXEQT9vs9d/dCi+v6LgWnQukLSXksxkiTDFALYzgeDvzwww/c39+n4FiCV2stY/LZ\nWS4WNE3FOI6C/gBlYfjqt1+xWa4E1YqRsqylQusD42jxfpB7pK6ZekW0Zr5YUFYlwziCiiKS0NTo\nskjIGJSmoKobZpm6VldT/5HRGmfdJFZQFGISqo2hqiuKsqQsG6qqBpX7iCQJ8SHgbJ/OQ4Mpi3N/\niXOCRpmzT0x6GIjCFWBIdCql0aUh6PTsDudKrQSk4Ux1i2cE4oPeoPSsyUpRglZEpN1EPej1IETp\nO0H6M6ZCi5bAV6d5SBRlOV0YlNGJkpV8eqIkT5L4qZRvnIPd7OcSkCQj71+IWbI4TsmSFHuE8he9\nI/g4PQvPz1NBkGSezpPUtGNM9NfpHGhFVAk90A8RmMdBuvMe6x0uSh9VFh/JwhT5WRhjPCctFwma\nS8/wrMA3JYlJ5IEoyaURZtwDNa1L1CCtcfosK7jloxf71cfvl3MCJUGzQhHQURhpWp1FMIROlhNg\nRYjnPlFR8spQD4leJwiljhmFSQIHKeHK23wgtW2KiQWQdhBBByPg0akIJLRRZG4aRUTU9vLyxDjR\n5XwSYYnhwmcqiIpeFg4pa5He3xIZrOXY9mjlpRfJGCnQpXdeugWJUeF8pO16tNmz2qzZXl2xXq8Y\nxmEyurbWye+VCEbk636pSHe+Mo8Cfs5o70fjhkfJy+NkIY9LFbf8/WWs9yUoUEYPP/zs03HNU/Hc\n45jmc/v/2Xg0JeAfLvPw87+28Wuy8684nppYvzRDPt9k/FVPxL/UeAz75qHV0w+aPGIIk8+ASdXU\nrNi1Xq+pypLb9zfYfsCHQF1XXF1v+eab3/Hy5QsO+3tijPzu6695/+ZHQnC8ePGcIsl6ZorWIknn\nxpjVxiwhuITGBHwvgTbAYiEUMkGCaqFlxIGuFUO24KVJ14dI13d0xwPt6TTRQqR5d0BrxXyxSHK2\nJU1TU5SVmFKaktFaaaQfOmKUQGk2m/Hy5UtevnyJc4FDe6QfB0ySib2+vubVq1e40SYTzI7oPU1S\n0Xrz9kfa9sjr3/4uNfwfxaNBRawbub+/l4DFOalwJspeWZZ45+naFp/kjecz6fdRSiUEylFVEsiq\nKAIGWTJ1VleM48APP/zAt99+y/39LU1dTf1CbXtkGPos0jUFScaY5KE0m5SksnxvrjR7L30o18+e\n8fr1b1ivN/T9gd1ux+l0SmhapDTSO5JNU0UOek7XDzSzhvlywf544H/8/d8TgfV6BckF3ofAze0N\nzo1T4H48HrisakoTv2Yxn9E0QpHc7XbsdnJOy7IkeE/ve6HSIcqCWZ626zoGpSiNodmsubq6YrMU\nNTnvPEUyBxzGAQPO3EsAACAASURBVBs8wXnarsM6UeRy6TrPZjN0IahKURbUszqJM/TsTyLwsFku\naaoqqS8pxgsfFPFx6nHWspjNWSwWKKOZzRcp8ZEEJ1NbqqrGFKn/zFpUVAmVqsXF3p8VwJSSfg2p\nZJ+Df++kz06VQi8yShONIhjpofHWT1VukZVPwYM/02AhV85Nmhvn/q+s2gZnVTZj1DQ3fDgrsuWE\nT5h3PlXDzwG50XJvxyiN4iH4R4EO03blM41NhrhT0pjQrrycUN8QwQdMViJInlv+7M2jLyhiySzW\naMN8If1+brQXAfAZhcmJiiCwIhKQ76GciADT8zAnMzlslQKBnXq8MvXXaKFThphkvYsCPw6J0mgo\n4qXst2zHu5gSS/0gsM3XT6Sn5dZS6bxEYvI5S4aMGfZ5lO4IY+phgVAjibgioIIkuCKlXQgaFRwB\nT0QnJEYoYWqiDiTFNJjOiXyf/37uVbqU387XId/fGTma+p0iFNEk9NGgcDh7TigjgvyB0IDz8Pla\nlmealHWOGMvpOle1YtYIIrw/tnT9mPqVNEVVobTGhYAyhsJUGG2QcoPs42ClcFY1DVVVTJ5ldrQc\nEloPFwH+BWUrnZUvLoI+laTk5/+nUKEvGY/pYD91fGkB+zK++Ri75yMb4PEcfvibDwv1McPdf6Xj\n12TnLzweT8Cnsvefi5w8/J16/Pz+5L58bHsf25efdCN9wfo+NT61/FNViS95GH1Qcb18KV1UajLC\n47xw9nOAMp/Pk9pMxVevXuO957tv/0RElimriufPnvPy5Uu01gz9wP/5d/8Hr1895+//7/+LspDq\nl7NOgignvTMvXryQ5YcBbx3Ge6HD1TXWjYyTIpWeemuObYspKzbrTXqhMVVl67piNpvj7cjd7R13\nd9J/MYy9cPITEpARi8PhQFGUrNYbyrLC+cBgx0nRKCR+/3IhqFRVVbTtPimoCSVuOV/y6tUrqrKk\na1v0KOezqoWa13didPq73/2O3//+G0xRAoF+aHl/847D4cDpdGK+mHPqWukzGO103o+n0+TlMmtm\nSblO4ayfEJdhkMrfOFrKqrm4pkIbu729Zb/b4caR+WabPHnc5CWR5433DnRMlBuhAp5OJ47H49R/\nkgOwgKJplmw2W1ZrMSW9vb3lzZs3GGM4nU7SW5JUwjKlcLNZUVUNaIM2hXgBffsd97sDz55fYa1j\nvlyK30jqZxrH/tywTUBrc05UhkEQnaLAWcvNqeX9+/eScClJNoIfAVGFmicRgYiIG2hgtVyyXi1F\nVa8bCKlnqiyKCwUoqe5PQWz2aLGWZlZTJOpYPWuo6gqV0AGbAmFRAlxR1bVQI/uB3gtFcjqnQeTV\nl+sVy5WISpiEig2jpe8Hum4gQkJ4YEz9UM3FdXfeTYHx2VMkPEhIYoig5JyWRpSytNbY6LHepkTO\n4Z0kJEY9bEoXv5yHymyk+/DMpZdZmLcrXj4xoTIS4CugTv19xNSf5OyEwOYquIqCCGSqXoSpiTxD\nACIycO7j8F5QhaJQiXJWCC3WWkZvkdaQsyKcDw47jtLEn3oYMtpkkpqWJGeCDNRNI0mHOiNY4eJ5\nfKnC9rg6ngN0NwXhF2IGKafIQXQugkzP60R9DYlqVaUk1hhDXTWE1Gc3ef3EgHcX5oicUa8zunOW\nn86F95x8xOlD2bnL4uKHBbU8F5I8MipRyzRlVVJV5dT7xgU6KYapgrIRz5RIFYXiFgiijqYUl833\nWdQjJ/aXyfX0jgySVskzBMpwNgOOCjFFdo4xVX3KQqhtWWEUhHbnnKM0JSadb+/O91kMIq5RlhVR\nC21PG0OplCR7ZQWJAheDEt+jsoAxpKJMQVEWdEPPj29+ZLNZU9cV8/mMfrmkH6wUWIKY1GaVxjwe\ntM8nmt/0z/hxutjlOvK5y99Nv/+C2Oly2cfJzpO/iXHa58uk66l7Jc/1vK7LmOVxsvMl8VtOzvPy\nD3/zEerdLyzM/1uPX5OdXzh+Stb/se8vb7DLZS8n/5eMyyrm5f49vjk+NvKyH9veZYLwse8u9/9L\nx09Jhj52Iz91HT5VnRH3dp0achHeuVI4O6RqnlAOsiHcfD4XI8yrK5brNbe3N+wOB0Zrmc/nzOuS\nuhI1q9PhRD+e+Lv/9X/jn/7xH9id9jy/vmaxXjFfLRmtFW+ZwVJVNUM/MPS9cLGdY7vdosuS9njk\nbn+kHz2b7Ybl6ordfs/p2LOcR4KT6nN0Htt1GCLzsqBSgUN3ZLd7y/3dO7bbLeuV9KZ4L71Fh/2e\nvu8YVyvqqmG73VIWGmsHdnc3uPFEYQzBWeqqpGkW+Ki52514+/6WQ9uzWiwpTEFZidTxu7fvRIo4\nCB1KazXRW5TRrLYbFouV0ACrSlTJbM9uf5NQmoH9bocdHETDYrZE+YK3b37Ejo7lYpGCNk8MnuAd\nMWpCsIxjoG17un7k+pl4FsmFD4ynE8PhAM6yWc5Zz2c429P3LfNZQ9PU1GUJwGF3QM2EXti3A33b\nc9i3aFNjjPhaCAfdoY0o2b14+ZyqKdkd7njz9i3HY4u0DhiRwS5KCNIUbYz0jtR1magZA3f3O969\neUtTKEwMNHXNvNRC9arkuo024AIoLX0PMUiyeGoHYhTZ67Ju6BKqczgdiNFjjL4wSTSTMMLhsKNr\nDWVh2K5XbDcrrjZrFrOasW8pm4ZCa4wCn9zNvbMQPIv5XILu5H8iNDqw1lPXBo0SOtpRVJZiiFxt\nr3j54gXr1Rpi5Hg8cujaZEB4YBwdEaH0bRdrFtsXrDfbKbjvxo6+H7HWg9GUWpqqNYHCiIRw9oEa\nRpt6qwxFKUlMjNKLJgFvVmNTCdEUeWJHupdiwMaIdxHvpbJfVRVF6g8LLpC5YKZQE79dCv8SSEN6\nrquMiuiJRkdOCqYGcY0pxdA0TrSjlMAozTkwPwfjZ5RB9l2bnGxII7j0+Bi5D4JHJQQkAxPeBUyh\nUUHoeDGIxHzXDXhnRQShqBOFV5IoTaIt6QJTyHEFHwkKxtEz+oiPEoz7ELDJr6hI6K8pCnnGOi/G\nr4keHIgENFqX1EbjEzVVJLZBBU2hCoISJEwrg45qEp8I8ezjA+CDIwsDSG9NINhEzQKiF+rslJSk\nir5SBqVzr+aF/LgyKKPQOXmNZ5lpVPKpSWFrzH0xJHNQUu8GQeT3i4K6LGkqUWS0TgQEijL1LSVx\nBRAJ6tRAgVIBghPqZJ57RtQYQ6JH6vR/OdnNvTmC7IlXV4h+SsRlrhiUMvhQMPS90Op8ZFaXkth6\nL2IZiFaFGy2hMOcEKAR83zObifqi71pcWaG1YVEW7FO2WNclyhTYRN+LaFQBqlB4K8dbFoaybohK\nczieiF6x3VzRzJY82xb4MXB3vyMo6csKeOkBzEWGhO0EdSkb/yHqofKf+bpf3FlGJUQxoz1p0aDy\n/RdRMUxr+jAcySiTmrb9+Pvp0wcF2BSXTFWLjCBOwnyijJcmYKYW5k0+xpE+FatBsvOafqVSD8+Z\n1v9kbsZDKutf2/g12fkZ43MT6XPfPbWupz7/FDz5eD8+xxN9XDX4EsTlKf7nx77/3Houj+fnoFhP\n/e5z6/sUbVAlZS2p3slDK1M2dG6YTolO9gHY7/csVyv6oefd+/dYZ4WG1DQYpehOR969BW0ii+WM\ngOcf/ukfaPuO5XrFq9ev2V5fM7Qdb9+9ozQFdVUDMUnmOoauZXt1xanteH9zy+F4QhtD08zRRhpI\n67KhqUX+97A/cNjv6NsWo8CoiBt6hv5I8JaqMiwWUvF2dpiqezZV8DLnmgjOWbr2RHs6SPEzehSe\nqpxTVg3eRw6HI2/eviMEqCpx2T6eTtRlRXtqacqK6APOi/qTMRJ0zedzESawjvvdjtvbW06nI6fj\nkaHvefX6JevVghg8fddTFTNiUBS65Pbmnro2NE1B17aMQwt45vMFzayimdX0vSj39IMFpSkKSV6G\nfkAfBsY+JYN1xXxWSUIxnzNfzIUylJrh2/ZErQZms1kKkMWTo65nWBeIjIzWEZVmvVzz/Plz1us1\nQ6pG3ty8x/uItS4ZtUpPj7MWlWhs+dz3najL3dze03cdi7k4kEv1P/HgfZc46w7QoCI++S4dTy2j\n9Ww2S+aLJRFo25bj6YhzNlHVxIPFpeDNB1Ea00ooeC9ePOM3L1/y4vkzZk1NcA5NpCwLvHf0XTsh\nSk3TsJzP0FrR9x0xHYcxBXXdTD1Bp9NxKryUZcl2s+Xli5eS6ACnthWH9VPH3f7E3e4epTTr9ZrV\nesv2+iXr7TPmiwWn04l+HOhHhwsKU5QUhaYyBU0tvVuCcmg8gqiMdhAkxhQozs3tzp3pMomvJX/6\npD6VUAkXESUtQJuSqpT5okjB3iRkcH6eSC9ECoJ0ClRUph095tKfkVitpcE/911Fde4JyMtmxpxJ\nPS8xnM0PdeqDQCliQoOm51xGBRKlM+Rte0lUVTYDDTKnrPU4FwBDVc+YNzO0QnrlnIMohQvrvCjR\nBYUPI2F0ScDEyzFrSXi1Dw/6pIwxBFKQmk5CjBGb1M5iVKioyW3iMcYkS13gVUBFN/k6iaCEPMs8\nEbyfDEfz8316zicvnrwf3ntUSBLTF/0eXFDDzuc/TuuScU54pphUifqc0ip5wsYJ8csV+ZDQpeLC\ni6bVGov0YyqiJLoJFRT1b6HpJYsfWVcMqJhlsc8JR/RnOqTPyyakJb8es0hBNlZ1ziVxCY02JSEI\nXdpZQRtLY7DaTJRvuYecWBz4lGAoQRt1Cs69swxdK/epVjSFIdqUFKZj9NYRkqqcKQ161PgQUcbQ\nzOZorTkeT+zGI5qSwlQ09Yzt5go7OrruhPV+6s+JISS0DnlG5sQzZyqXI+b0Jk7/jhGUTqqn6ly8\nmH5yBvTSvZt/Kx9+DBVRGR68/Dhe+BYlNPUy4cn79UHoMsUtTM+PB19Ph/dhgfdJ5Oe8E9M5ycWB\naXI/Wt+TGdBf0fg12fkF40NO44cB/c+lfz0eX5qcfC7J+pJtfy6Ze+r7n0vF+3OML03aHn92eb0y\n1znTRjLlI7s7T42ewHfffcef/vSnsxlojJgiv0gds7n0G/zhf/5Pbm9vUUrx7NlzXr9+zWK+4P7m\nltOp5avXr5OqmlTq29Mp+c4Edrud+OOMluVaAsm+FyrTZr2laRrsOE40Jq011axJ/jQ9h8MBa0fm\nsxlFUdC2rSBWGalKPTtZ6lkbwzCMtG1H8IGyKOn7TigiVUVRlIyj9PLc399zffWMOvXj5BenUony\nolQK0INQNgppWi2KgmEc+fGHH7i7f08IFh8CZVnx/PlzrrbXiBaDYTFbU5dzofNZS1FI9fh0OjB0\nJ4pCsd5saZpZonBIgJuV7TL1p21P0Gmyt08IgeVyycuXL3j9+hVN03B7e8swJinV1FMlDfFFCt6k\ndwilpqb3oqpYLpZst1uc96J89uYtx9NpojEJpaY6qz4lFajj8QjA6XRitzswjpa6blgsl7x48ZJT\ne6Jre9r2gOdh43sIgb7v6LpOFJCMYb1eo7WmaztOp+NEQYQzLVMrhchpQ11XbNcrfvPqNb//+re8\nevmC9XKJHQfev32HItANPX6UZKYoCknckqhA37V0yUQ3q46VZTk1Kfd9h9aSvFxdXXF9fUXdNPTD\nwPF4ZL/bSc+PtRxOJ6wVNPM3X33F17/7hucvXrBYrTBK6GZCc4siM15In0FVFNRVKYlCagiPXq6P\ntzYlGgrvFF5lWekzcp2B7sn0Mvrz8zM1URfGCMKbqv1Zht0OIzEEyowepgJCDCKlfGkGykUT/OX1\nyImK1tKXMT3HEgKiL/rssjEt6kyRywmoSapbPiE9GgkicyJx6RMmBQxRXgvRo+Ml3S5TkKR3aT5f\nMG8aYvATMhiTHLsdR4L3QuszAZdQsxiTMWY6uSKqIIG+SsFwluuW4w04H89S9/GcwF3SsS6LdN57\ncJnKloNFQTtyUCqIRkShH/w+n7t8H+brJEnE0+yAy20/pj9f/jf1H8VAiLLlpOKdWnyiJOCp/7Os\nSnnuR/GNyeeX1JelQOAEk6rtmUJqkqlpKsbla/uYlp33/4EgB4h4Qzw/s70vMKagKkq6dN3GRP2r\nykqMXi/en857hnEkeJn7uihQwmychHHGcUQ7j0YxnzXY2DEG6XvLYhcQpx6mqhL6tAjPiD+c956u\nG9DKUFYl282axWKRRCpGod1doi95TuUoXuXdvnj3xxzGx4kFeEltT4t8MKZE4onvLsfDZOWcUH0Q\nnjyVqUxoykOk57yuz2z7YkO/pJh8yQ568tx8WQ3/3+X4Ndn5Vxo/hdb1seWfSqweP3wvv388PoWu\nPIUSfe6m+SXUtZ8zfun6H77Mzko1l8dcFAVlJQ2kufqvtZ5Urdq25YcffuDu7o7tdsNiMceNA/P5\nnOcvrlmv5hgd6fuO9+/eUNf1ZPK4Wq2xqflfobh+9owsYSpJlgQqRWEYxx7rRqqyoKlqnPMMw4hS\nGpMaT0OMVFWJWi4wCopC6D2Hwz23tzcc93tW6zV93zOOA818TlU1VHXDYrVg1sxoZjPKZE7pnLx0\ns2mdGx1FWST+NhyPR+7u7wHxBsr/aaDUBd1RmvJ1SjSstThvKatiSozGQXxcxnFke7ViuVhhDCzm\nC5bLJUoVFKZhvbyiqeccdweapoZEfxBp3oqmKamaGqVgGAbG0VLVNbP5irqu0UFe3NL7M2O1WmKt\nGNitViuePXvG1dXV5DuUch02my3Xz58DUu0O1jI6l5pzRf1KaU1di3hBCIG3b9/y9u1bjsejVPiD\nqMPVZUWMMZmgigKS0ZrRWuxo6fqBADRzQX/miyWFKfEucmo72tFhyib1/ZScUjIs8s9uChSKopAg\nPK230IZ44WWTk1AQCt311RW//eo3/O6r3/LqxTMWc1GsG4ZRpNSd9D4ZpVgtl6xWK8rynOz2fUcI\nIsrRNDOKQjyQvA8Yo1ksRF1uu92yWi3RWtT3+r6f+rOc82meKK6urvn666/5j//pP/PixQuZj1rT\ndR3H45FhGEUZrywoi9Q7kn4ryJtFa2l4Hr0jeJfMF2MK7M6orbVj+u0ZcZB7KRU6ioKybialvBAC\n3kqA70aLH+0D6oxUe0OiBwntSqdniXj4CLKpUkATQky9DUpkoVVCa+I5yNBKErcYs/eOPKOmXphE\nhcvBjc8JFLJOhGf19DM+JT9TH5A6N7lLlb9OIg8VSomJqbMO61z6reyTSEwHUHrqN7lMrjJaorQW\nqXGl8In6eNlEf+nrVRQFZV1JL9Nop4b6tKOiUpaEElAqeQWJd5ILDpDE0SdEAzKa9TQrIfcNnWld\nD9U4Pz5iQozOyJHKiECGFBRooxBz1vSbGDE6iBJkQiSJgUCSevZRenbyOzr1/IimtUw2rcQvqCyM\nKCSm60KMExshz73zsZwFI6bzkpQY8nmYVABjYhk4T9FIsSZTgmUOJkuAzLZEkDwPVEa84Xz6sigr\nVqslg3d0+xODD1CU1FUFSuNCL8lfWVEUojYq96idKH6ntqXcFZSlYbVcsVgsOB4b+nGYjKNR6iJ/\niJn5NxU8VP73hN99WJz9INn5oljjcTLyUAHt8XJ5mfM2kTmd5kuMk3nUg/knCcjDRPwD1OYL8ptP\nxWtPJfqfGn/pWO8vMX5Ndn7G+NiF/twE+CmT6/FnH0Nbfipy9BiN+tzy/97GU+fw56BZk2Qu5wbP\nojCTf0tRmAkhCEGqTn/7t387yQYvFnPKspjQk9msZjarcc5yf9wTgmUxn3E6Hfj6q6958eIFIXje\nvXvH2zfvMVrT1DMO+z35IRlCYLWeU5aGEBx1XVJXgizFVO3K8tfOSRA7ny/wZck4tMTgGdzA3d17\nTse9eP6s16hUTaxnM1wQAQIzFMwXC2ZzSXaikgevVgbvI846jFLUhcgzt20rUtna8B9+/x959eoV\ni8WCpq6JIXDc7anKCjt0FEVDXZcMY0d76jCDBBWn04nDvud+t2M2K2nqBqUQxbNhoO961ust80bO\n52az4btv/8RsVnN3e4PCUVfiwzCbSfIkvhzJtLAsaOpKGt2VvHCrumLJktPpiPeO42mPtS8xRihE\nw+Do+o62l3lRVvWUlLZty2gdx1PLMIgRawRmsznrzZbZrGG32/H+9pb9fo+KUJmCtm+pqwpj1CTk\nUNc12+2WedPQ9j2n04luGEWhSIlQQYjw7uY942gTHUaC8axGdTqd8KmhP1PE6rqe7umc/CglfQtt\n23Iax0mBTChlG756/RVfffUbZrMZ9/c73vz4I+OFep6gMdf0pzaJM7wR5HBCqXSix6W+CSfHmWlz\nm7JksVymZDByOOw5HA4puVAYUyK3nmY+X/D111/zzTffcH19TYyR/W6H94H9fs/9/R1N09A0Iqmd\n7+czpUaa6Y0pqCovQg4uUqTrSxBjXGf9VDHO5ypTrGS/CjFKrcpJYTD4gB3GCcnIlfm6EiNbccsJ\n5wDwojE8rzuoZEiqmKhXXEgwT8+iGJLxY6KwKaHA6As/Ges8KlFsmZKk+GC7Wqsp6ZqCXWOEIvWo\nNJvFA4CE0J17jfokT+6tm4QjxBNIC20uSpCWfXEu/4MzwqN1gTImiS6ECSXKggMxnotvl9VsF0SG\nOoY40aiysIrWUvDRRYEm4mMEZ1M+kJLQCNk4M1/zx0yEB5/FjweDT32u9ZmmlBNZQYgu3utRvHpU\nUt8LIaDVmEQKpFcMJYmjSudDJMlzEnyxTdnwBZIqptJRKfzFfuV7/XxscQr4RZDjXL3X2iTK7IWh\nptYMyey5KAoKLfdEniNKaaF6ejlOGwKBpBKoNFpJEqyNoaxLamM4DT03uz1D31HNF6zmG6LS9HaE\n4CmzB1FVMnS9FI283A/OOQ7HI9qoiWWwWCwY7Eho2+na5jGd/oeATmK5XSiXoVIx5JFEczrP0zXX\nFyt6MC80T8UiZJrjE/Pm4e/znj3+/PKzhEPFMN0b52t6Ph6l1Nkv7KII/iVx6iXi/PhYPpz3+Y+/\nzvFrsvOvMJ560MKX3Ay/bJt5G59a35cmOo8rIf9fGNOLM1G7tNai7ESkrsQ0MUvnrtdrXr16xX//\n7/+d+/u7xLUvJg8T5yzffvtH+r4l+JHNesWL5894+/Ytf/e//x1/8zd/y9XVFX33I5Gz9G8kMmsa\nlFKcjo7o4Xjas9/vcdYxa5I5YXrR19WMwijqqiYEz/504nTYcTodKYxKDvFJRQvpMRicZb3ZohT0\nQ8+x7WjHnmYx5/V8ST2bJ+61wznL6XjEWctqsaaua/Ztx6EfCBFW6zUvXrxIimjCrh+HgcN+j3US\nhM9mtVQT9wFnR8pihjaa+/tbbm4OdF3LfL5lf9jz448/8puvXtI0gl5kWo6CJPPraeqGEDyKQFXP\naJqCpqlRuky+OBGtpI9BFKYirjw7sJelASWKdN57Fss56/WKpqmTHDTs9wcA3t/c8OLqRN006FK8\nZbqupx8HrA8YU7BYLrm+fsZyuebu/n5CWoJPSkPRU5bNRBWpqortdsvz589p6pq6bek66S9yzksD\ntzaEENkdjmhdoE1BQWSwjuPxSN9LNlaWZqqiZ5nloihYrVYSEFsrwX88930452iahsViznq1Fv+f\nvscOI01Vsl6tWbx+zbypKU1Bd2onVCWGQF3VKKWlP+twxCs3JQuls1SJ+iTKgoqqqkVMYLwTQ8Ch\nQys1eUQZIyaEVVWzefaCb775huVySQiB9nii63uCD/St+EbNmoaqKFDJ+FMpjSpFCY0gYgE+WLrk\nw1KU4lRflgZnpR9rtNLAnudZkTxGIMkeB082YbTWEqIT+eGU4BQJpTHqgkKUelS0EppjvKiuZyWs\nMUgrPFqjtEdFLXQklWhOuek3ingFSA+N84Lc5iq0XEzOQZw6Ixz5o6xSlvthjErCBVGKAtJncw7u\nJtlpBUqfP3fO4UZLTlqU0hSmlL4QrTBFWs46vHvYK5NHTsJknQEXPNkPaJLCjxFj5FrkBMgmefec\nPKoUgMNZ8S7EiAoBlSS1H4g96KwgeYlsqPQcKKfrHS7eizmxuFTTe+p48rKXKmfThYnSA6QRwQC8\nF4whHa+o+llENERRlQVVYSgS4gX5WDMaIev3MWCixkehIUpvkMxTl4VDUsKaExfgwfnIIhMkuuWZ\nypcC/JC8ytRZBjx4T6ENRULlQUQXYpoV2YTZWkeIBaP3YC11YdL9oSAGCl0ynzUURmHHQfq5FBRl\nwayq6NoelPjWFabgeGon362oNN5HxnFkfzigjWGz2dAs5qyCSN5nP7XLazEJA8T0r48Uk5VSD1DI\nJ6Oby3vuC8cHc0PSrc/8KiLmwpe/+/TyD3ZQnf2G8n3zc+j9l8WTD2h06vN79e95/Jrs/IzxqeTh\nUzSxL0FlnkqKHq/nc9t7Cub81Do+Ny4rBT/lt1+KvPyU8TF63uX4ku1pfZZ0hew5IVSU+XzOerWi\nqqqpmfyrr75is9mINDGRum7SywXu728pCsMw9mgNTV2hjcaOI8v5gm++/kYkqdG0xxPjOLJaLGXf\nQzatCykAPSGUok4q+wSh3oQSlMGNI81ywWI+p+ta+rblsN+Jt0ShaYcObWC9WVJQTJXXpmm4VN9U\nWqONmDYK9UVoMuPo6LqBujDM6obgPW3b0Q8jTdNQVzV93zObiYv92A90bSt0DOfYrNbMmwY3DBAF\nTZgv5hRGsz/sub29Y7US/vX9/Q273Y5vfv81z5+/YLlcoVVBYeR83N68R6nIMLQYLcpZYiwp/1XN\nHGsdp1NHRDNfrCjKhmEYOaW+mJubd8TDkXfv3tJ1J4rCCCLnRtrulChZbppD3dATkEZ4HzqObUs/\nDPKCDxJo13UjXi6pAu6syPQO4zh5AU37WFWTkWxRFBxPJ+52O25ubzm1LdoUNIsFzXxBCFGav/EQ\nFdaLMd8wjjjvMak3wxQFdVWxXC6ZJTU5kCB9GAZRo0poYd6P9XrNer1itVxRFgXBR6q6YLPdcLXZ\n0FQV3kliaNtcXAAAIABJREFU1R5Pcj4iVKUk/VprSit0xm7sMMU50QIlRrLjSFPXeC+S2GchDDH6\nHK1DWTmO9XrNarVms32GUZr72zva0wnr3OQQ76xlNptRGYMKIiIQg0cZg7eZHRRTVT0prMl7nxgc\n3pLECUIKFI0YKWr9wGdLJ6pVDEE8QJTBmFI8bnQgFkJrVZFJMjob9kp8eH7OXQYLMUacbEBoRiqZ\nWwaVKCspuElBToyKAMnDSTxuNOcgRhst+V1S68pIx5milIK3IHQqpST49hFJSpydVOSUTmpsKcAN\nSbRgMjtValJuNEqJEtSULEllGzRKxwsjZE8IIt+ePXHyfqmUhF1SxnxSJ8zPYe9DMlDmIlEiJbiJ\n4mfkGRiVFHYuaVPppE9IRr4mJp2n7DuTBQDyNYppDuXlH79TP9anM30Xmfxe8rwS0YCsdOeJ3uGD\nTfNNUZZCFSyrktH3F/3iEvReRtk5eDX6nET7cBaZeRzcSm/T+ZwZLTTKSzZDvl7WWumLSWimt06U\nDtP8qeua2axJ76qAUwGjFT4VU6yzhNgkk90RFQ1NWRA8yQNJ01QFi6bhTivs2DN2J5qmZrNa4Zyn\n7Qcxag1Jzn4cqcoSl+5NlQx++76naRrm8yYVGatJtv78zj8rFk5/xnx/XdynF7wvSXbiR1CLiwQk\nCqCZX6SXUtcP2wCeWE1S/7scUtALD3OpJ3ZBkL7LncjbjpOiWr7WH2MMfa6t4fHnT61jQjH/Ssev\nyc6feXyMJvapROFxv8zHEphP/fbx3z/1m48t/3g8Trz+rZGdLzm+zyWi+fv84pCHfjbekwb3Z8+e\nsZjNpz6I2WzGZrPhlFSuMkUlvywOu3uaWS30lkIzm4knjXWW169f8+rVS5qmYX+/53A4EmOc+jCk\nH8Ay2oGubymNoBlKCQWrLCWYcdahDfgYJwf5oe/pe6lsNXWFcwOn457T6UC0Aa/E7E1odjMOrQST\nZVVxdXXF9voZUUO4qH5FSMpbM6nmDx0xRApTnI/bOal2G8Ph/p7d3R0qyjJNXeOsZRxHCq3QTUNZ\nFqlvaKQsSq6urgBSH1RDUzdSOQ4QCOhCaCL3h/vklTGyXC2ZzWoxD1VSvRvtyDg6hsGyWm1Yr9dE\nDF3Xc2rFgO5wOODfH7i5uWEYBpbLJdaOHA4HlNJSSYaJrlA3Dc1c/n3qOu73O7phmDyIqqpEmwJr\nHV2/Y78/4KyV6r4pKLRiVpskL10zXyxomgbnPMfjLXe7HbvdgcPxRIhQmiIZY8Kp7ehHS37jDaNN\nKmycUTRraWqRQhcKmwQ7Ikgham9KS0AVY0wUMJEWn8/nFIlSFGOkqUqMMngXaF1H157Y39/TnVoJ\nDo30Bwh1ylAUitksokuD8y4FyolaU5ZCZeFcMR3HESChOYX0T2lDPa+YNXPKssI7y+7uVlTXEkV0\n1jRyHERKDcHZFLAIdz0EzxgsJsn0epf6ZSRCw4VIcBalRVZXoamy/HFCDWMIBNQUSGml8EluSSGG\nkCbLP4P8LoKLuccnBRvqTDW7fE5l75iQUAkJwjUYnegz5LYCcoYmLKMztSYyxVUoZdBakpYz3elh\n5fWs+pXfJ0CMeCfPKe/knAk6ElJSKeIoPnjp00j3uNJa0ImLQDH360izfAolU89OTEiM7EOYkJpM\nu8oIxDkpCkkBzk7HKqdBPaDERUAH6ZOLJKpeIR5D2ewVmAREokohZfywX+dyHy4Dt8vz/ficftAb\ncfF+eVgBl+REfImkd0gE+oRylIhPpP+nLAWdruuKfhzxMaAwU8IuyovnOaWNTtLxcj96byfj5Qc0\nrCnZls9MEto407XO6E2+DmVVUhcV4zjSOT8hxznxrBIiZkqhLwamKcbokkCFD+gQMDpQJmWzSMR7\nK2j4vGa5mHFoe8a+xehrNsuFXN/dnmEUuqS3TpTsEgqotZHeJ6Q3s21bMUJVakJoh1RYS3fKxXlT\nU84Y+TBWkjv4nBblpCH/PeYv0qogsw0uv/gp49wzlVeoHu0XXMyntKyWHXuYfOffXKC+8VHP0Mfi\nt8cx5scK5R+u55yA/zWOX5Odv8D4VAKSx1MP048lRV+S6Hxs/V+y7OfGxzigTyVj/xYJ0Zecn6ky\nODUWx0TvcGIWmegDuXndJSEB5xyvX7+iqkrevPlx6pcIQfpYrB2TgWGRKEYiMFDXFe/fveW//pf/\nwrNnz6QylbjQ2benKisGHxjtmBqxBzbPF3gndKiqaiZlOOfDJJ9a1zVd23F7e0vfd9S1ONZ37YG+\n7xj6jmgDDocyhuvliqauObQtSmvm8znXz5+zWq8oyvIM4acqaN00zOcLqfZaUeVJcRPDMEw0neA9\nXdtyPB6oy4rlbEaMnrv7HV3bCj2wMDhn2e33KODVq1c8e/aMt29/4Hg68Zvf/IbtVow0rT1SlzWz\nuhGkpO+4v7slxsDV1Yb5fIYdB7pWGvW9kh4MrYRqMZ8vsM6n4Eqqvc47um7keDoQgqdparQWCoi1\nYkQ6DP2UVDSzhqL0E3XicDgxWocP4EMU9SGlhOZ1OtG27dTPUlU1BEdhhKZYJxpk23Z0XZ+WF5Rs\nsFYC2KIgREU/Wtq+x/ko1WtrkyrSGSUoigIVJSGrZ2IK2p5OnE5nNbxJYENLtTarCebrZZ1nTBK4\nldHcqBvu9a34IVmLHXq6tp2Qu7pqktBBmAJUpRV4psp9rjbXdU1ZVRRlJYlKKSajZVnirKMdemZN\nQ1lWKCUoZ3c8EpJiF0oq3oUWHxilQAWHcyPE1IeTlAu9C2Te10RTU5JwRxNQXpDLspR9MgmBykFk\nFiyInOlORgk9yGhNOUkmpxd+vAiKL9Ab/VgtLyYPjFwFVgqErHamTl18xoQGxBSsyONJG5P2UUES\nJZF/S99ORhIum/in/coBXmRqfp/EKgqVVMCEDqbzPudem0TD88pNx5QTHtK+R0g+H7IRQWnO/QKS\nZJ6r2LkwJDQ1Owmh2GRc61MyE7zsi5968dIzGoXWifSnFEVR4oM8N7MoxqSWmCrlk2nsxXm5pMdp\nYybZ6fSCeFAhz0nEp6rfD76LpEQlzSeNGLZevIfEb0dmYZGo01Vdok9C1xIfE7l+om2Ql5Y5mX2y\nct/MJR3t4XGGaZ/KRNWWgt5ZlEESPnmfVGVJXUjv5SkEVHo+DkOPdY3c74jRNc7gU38RMNETfRC/\nJaEIKlAF0jInCdCsrlgt5zjvCd6iY6SuStbLBdY6nDvQJWRcpX2f8LkIPikBCrpTTf2KdS1MA86X\n8fy7J8ZlcH9Jz1Lxsp/nnAxBRnP+X/beJdS2Lc3z+o0x33Oux36ecx+RETcizUeIlChaFCjis0Cw\noaC9siG2xIZIUa3q2LGnVYgUCDa0KAWbQoEgUjaUQkoRzCor0zQjM+JG3Ljnsc9+rNd8jzFsfGPM\nNfc6e59740amlaF3wj5n77Xmmms+xhzz+77///v//fru8bbC8jixmH47iYcepVH+lTAPzTcc0MPj\nS/OCxpMoTZhznkhewr5+3RjtuTjPKV8MmhVafpWWb5Odb7B8CHH5EIz4TROQb5JAvHdDP7HMH2bz\ndef/fxUU+tQ2Tm+4UzrAU/v5dVCsr/v6U8ni3LEbQlXOPqrOlWXJ5eUli8WCt6/fsN1uybKU1WpJ\nksTc3NzQNM300BQK00Cex8Sx8KJDZbPvOl6/fs2/+M/985yfn+Os8xLKMavlUgJQLQpTQUrYWcui\nWvLzn39J3/dUpfgYGCuBwbxH4+btG25v34GzLJdnKOz0oFPau2w7qX6t1muiWJKaOEkoqwVFWckD\nP04kKHISXESR9H+URcn+YYNykOc5ylp2+z3GWd9fYeiGnq5tGIeRPE6II01zqNluHjDGCHJlDIem\nZrfb4Zzj6upKkpZhQKH46KOPWK/PcM4w9j1JJIlK245stqIqV5bFRA3ru9YLB3Q4T0+pqpwky9CR\nhtEQecEJ4RA5jO9ZKPKMy8sLlssVZVkI4tQ07LYb9nuvzIcSD5v9gf3+QNf1DOPIMIqCVZzEWJx4\nxewkgSo8cjZ5GQ3S3K0nRbGa/eHg3ck1JsjTaoVTmsEnIcMoAZ01ln4wkxJXGKNJkpDlFVUlCoFt\n08i56NspqQCpAieJJICh7+xwOOCM0Lm01hR5ThZHorzWNnRti0ICEKwgnFr75AIY+t73s8GIb1o3\nUgUOioVFnlOWJUXwvvGogjFHuWJBnCx1faCpa2IcaeZd5XVMhEXbEbAoNLbvGcYerSBKUiACfOU3\nIJLG04SQJuvIN3AnSeqpjzFKRVOLTwhpnJspo4VCiFbEOiLSvqnczyeTp0tIHOxRDnqSMJ6CVTdd\nf0ckvfw+2dFWHU0CQ1immBCWQImKHKDErFV5QYJQkNCzos28t2WagzlKDhsz+gD02P+itCYiEopV\nCBK1l9mOxZsoCCFMVWznjsnb9CMJ1Tgab/appj5Ia0bG8UjrmyeK4XgDzXEwRgwsUROFLyi0hQMy\nvrkeRHABd0wMIfiDQOSTWascME7fGfpapvmex0GgZxo+meycPkueej0oaTnnBSmCGtrsmRSun/L3\nYEB/ozhiGAeEziippAWUFfqStQEX0se52hzP53yfrE8SQ8KjdRCtCIp/x+PAk6C0OqKdgpIIetr1\nLU1Te/NgeQ6YLsHaEesCddAdx7d1jAaMVxIM1DRjRpI4ZlGWNG1L3fT0XctiYcnTlDLP2e8PkpDN\nxCSUv0eNDaqK1itv9lOfbZinBq/AeAR2nH8G+uE73XPH6zG7qMc7ch5LPJNUqOOwPG5TBo+/n9WE\ntKjTNadtBiTRPU50ju8w550/FwMe7/mvZt583eL4s0nRDNj5B1HU/mWXb5Odf4DLaZD+FFQOz1Qj\nvsby1KT8oW1Mk4x/f16xPHo+HOUqwzrh/VDlBZ6sOp1+/4eSoK+zz6c+DGFbp+hYaBp+JDU7q5CE\nROji4oIXL14AsNvvaNuaosimxs/7+3vatp3kSqdqehSReNlNeUiIn0hd1yK/Wy296Z4YPVZFSVmW\nXsI4Fe+YtiWJI8q84PbdLUVRsFgsiOOYZndgv6+nSv04DtzdvaNpGl5cX3B5eUl92BJFeqItjFoM\nOc/Ozri4uGBXN3Rdj6hhxbNzKAaYph9oDzUAZ+sz0ihi/7BFR5o0y7Gj0CaMl+ht24bBK6hpHFki\nlefDfj/1G3RtSz8KYtF14o9gvUrYMIyChDjpzUiTmNhT3oahZ7vZ8bOffk5dH6gWhRhcds7T2ga6\ntockQuuYLC9I0kyoZY14ESVJAh3y8FOOLEu5uBSJ48vLS1arFSCeEA8PG3aiT8BoDNvtlt3+QNt1\nGCfO8nEs/Po4ShgHM9GupLqYTh40vXLUQ8vox8dms6VpO4ZBaF86jhn7Hq3FrV3oeIIkWSdjses7\nPz6PYz+IYZyfn6O1Yr/fc6jrabwHdEXGtpnGJR6NO+x2jIOYCOZZTpFLz1mk9aS2N44Dq6ribL2W\npKUoSDNxQx/7jkPTyDEOjXesNxR5QbJaURYFeZqwXi6oyhLjx0LbNhz2B6wx5EUhtJ2mpj7UOGdY\nFSllVpLECaMZ6ZsaN3QzX6N+CuZHZ7GDBOxxFIJ1OUlJEqNw/vhSGRNJitLae7n0gprpmEj5HgaP\nHDjFJFagQ5BlrEcY/LzHsbne+sBfxxHoSIKqSPqAlE+IXJgbUZPjvXU+QcOJhPIU//iwaAqi5Bi1\nD5rCXOPUY8+XORVpmicJanAxCujH0RuISgIX5mfZlqBHClGijDwqIZV7H5f5Srn1SY0zZkqmQAKz\ncRBxjig5mqMGRbE5dSxQj6IoRqlxUhkcvaR+oAOO4yhzq9/fQGF7D8HimHz0fX9MMFRAnOyEjIbj\nnsQFTqwHxIfKvffcOFVye+pZLOPDynWzVvpBdYSNvDqbFQ8kIo2yQVlLkp2iKEnTHU3TE2CfY1Xf\nTUGsHLMTCXCOx2+MmZ5PoV9LkM8RVRyfleHzIChqEHYxHm3D+x01dS3ot1KYUQQA+k7MRosix+gM\nYwbAm1K74zUwxjBgGSKIo9GPH4WyMs8UeUoax2y6LfvthvX6nCiNSJNYECilUNGs0OrnJmeP9K9g\nFRCQnUDTbTYPfs6LcT65CffOdK1myM1XFYHn99kjQMdvfL7O/N6bxsmU6Bz3JWzl+BGH008XZ+fj\nbB6nzLKN6T2njip+Ty2n2/pQ/PVcgVv54gbqq5OqP63Lt8nON1ieC+Lh6Qz5dPllIMDnYPWn1vvQ\n30+9Ph/YIQGYJwjh/7mSS/h78ll45sZ9L7F7xK2d7xCPSzDH0tizLNmnvjNM/vN1QpITKoeBZgMC\n0V9cXHB2dsbnn3/ObrslTVNWK5Eh/vzzz3n16hWHw4GqqoiiyFcfLSstvgmjGaR3wDuSr1YrX/WW\n4HS/2+GsIy2kubIsCurmwGbzwGbzwOXZCqUUZ6s1eVlRVStRZbJHb4zVasH2YcNmsyVJE16+eMly\nueT23RupylnFOMjxVcsVF1dXnJ9fcnP/h/T9iPHnM0lTsqwgTVPu3t1ye3NDVzeUWc7V+RlxFJMm\nCc5aoiQmjyMWVUXXdYxjT99q7m7vaJqaqshJ0lSoeE0tCYv1DfvWeAoRDIPh7u4OlObdu3e8evWK\npqnp25br6yuuri+Jo5jDfs+XX37B27evKYoKpYTGwCgPEDGhMxitUVFMVS2Jo4S7uwfe3d7x6aef\nchFfwl7QEKc60jQh95SuspQoYL/bcfP2xvfzVABTwjgPqOI4nQxklVYiAmDMpCx2OBzou440TXHO\noLTmbH1G1/XSlqojlLYY56RnJS/Z7XekUYrSMUF9S5JnocLoWHlqmSTURVFMiY7IQe+xxvgHfvro\nIRVpSXKGTgwwQ3CwXq9ZLUWkIMtT7GikD82MrNdr0iQhTSL5PxW/k+12S6BLNc2Bh4cH6mbParXk\n6uqKl9cvOD87I0tiLi8vubi4wIwj797d8ObNa/a7vVR1FwteXF+ilOKw24O1KOfI44jSJ4t9L/Le\nZuhhHNE6qOklOGfpmw7nhM5nfL+d1lqkwFdrskUJkkpMKk6SsCj/ukapyCcj1kvxKrTvAQiIrVOy\nb13X+fE+enpXQpSI4WjiA2uLlz72AZlzgkmBaAEI6jOjiSmFIpLrHMwjsUfKmp8DHb6iPRVlFCo+\n9ls8nu8iTlHqgCpEXvpZZKNlapX+EL9NrX113++J7+/pe+mDUIDzXjvjIIlVHKlHppZzQQYbTEi9\niSQnhTLnE76ARFoc1swDL45iAhyV5ECofaf9JPOALbwm594xTr1VTIlWSAzEHNi+91ya3/cgwXJQ\n6gzI+WnCE5JYrTQ4oWDKOuCUzFHKOiIHkZYxG3lrgyLPKfKSuu4Yrb8mStCWIEWuPW1xOl4361OC\no0iFPdLg5s/uKUm3FoW8b43BjnpKRLU7PqdFll96zaw3oA3fk0Ul1lraRApjwjoQlHcYBiLjGLQi\niQ06iqcxF0fiW7coC/ZFjlJOUHAHyjnpkV0ZrIO2luQqiWMchmEQGmvoU3s8N8ekk1AKHvFlihdC\nMhau1Ty8mF/5p+hex0ER/gvXhyeXJxERgcxmcUz4fIh/nu/nfj+hkm5C2ZPZ+gG5co8pbk9t96l9\n/KqY8vjeVyNNf5qXb5OdP6HlT5LT+HUTnvn6X+fz4fV5MhCUbEKfxuDlXUMAFbZ9DP7dI7oYPJ3T\ngGclPHHPuA/8IcWipyeH04rbHH2a71PYR+ecl8BNubi44OrqioeHB169+pJxHLi4ENSk73u++OKL\nyUukKCRYDp4mSZJI9fywI8tT0nTNoqpYlgUvXnxE14vZoxmN55lLH0Q/tIzjAM6yWi64vLqk70bq\numV1dilqcB5tEenrF6RpQpanRFp6g5I0pu86Dl7JKlDeunbgbB1xdf2Cum343d/7vygXCz77wQ94\n+emnlFWFHQ3bekO931Mfarq6xg49EQ6MpW9bkjjxVXDjfTgSNLDdbLi5eUMaxySrBWDJkoS4kib4\nxp93pxSHpqZtW87PLvjs+9/niy++YBh6zs7O+eyz7/KD73+PqiopipyubdlsNtzf3wvtyVnyNCFL\nYt/H0mNQZEXJ9nCg6zo22w2b7Y6bm1uMcXz/+9+HXsZC17U4n5zMA4CuE6pa3/dUVcn3vvtd/vcf\nyThq25a2aYRqp9SjCmLf97Rdg7NMkqxtK30uIgG94PLymuVywcNmS7w/YIwEOmYc2R8a6lpkvxfL\nFQpF3bRiGjuIV4ieqs9iOLqoKq4ur0jTlP1+i/FJTlxWpInInk9Bi+/pWi+XLJdLYm88uF6fiYKc\nGRl76RHL4kRMPxFaIl61LIpjYVFgJyPQzcOGQ30giiJ+8L3vcXa2YrFcUFUVi0XJr33nO2L4t9vw\nkx//hLdv3uCc4/r6iu9/9j3KomQYBm5u3rLdbImjiPOzNRfrijJL0VpJD04cIfaQjjgW5FMq9+OE\npEZR5GmDEVGSUFYVSZbRO4NC+8b3kdFYUJH3JUnQUUIcp5JIGKH7aK2Js3Rqoh+GgbZp6OqGzlP3\nnHMkaUpeKGIt5puhd8upIzVM6SCZ7iakwnLsEwnJg/YVWKclqXKEqrOfv7RHdJz1SmOKSKnJsDMk\nO1EUe5qSUOBGNxDoPsaYqYfCeSTKaYXzvYlJkngkQBISYYnZCUULlX/lBF+QYov0cyjtqXjWilGo\nR2KGUfyEzDj6JFHk4gMyKUjJUZgg9NtFyTGADeiKVdJKb0d7FBrwRThjDIOVH/GyOSb6U6KiJWif\nmy3OmQnhqTQhPb7yHt6fB8jWiQqgc84r4cn1ndgCMFFlA6pnnWX0JqqDGRmNIGwyji3aabIko6qW\nrFYtTdvRdD1mdD5BjqakR6tAqZSkWssgQqOP+8tRaEZQrGMy6hyPntNhrM8XpaUvTPxuUpRWPnl0\njF1QkYM8Thj6hDgUfK2fMyJFZMCakWEQZcgojohU7M9dRKzFoyrLUiIUbdNi6RmtPJsXi0qEWvYN\nTd+jdXxENWYFzDDewnyX+jhFqNEiuoGSz4Qx814MxNNxyWnc8l7dVR17u5773AdZOEeA6b09mI+5\nY8EikgLqSbH39Pu+SfLxVayf9xOlJ8O1X5nl22Tnl1ieo2E9R0f7Rbd7+vcvur3nkpyn0KenEqDw\ncAi9IlOw17Z0XYfW4r0R1gnVo1BpAk/JeCI5map8p8emmOO8j/ZzPkF9KOEJx3KqVBM+d1RhE4rC\ncrnk5cuXpGnKj370I7bbLanveRCa0wM/+clP6PveGyUG7nBHUeaAFoRnteL6xRVn6xXj0LMol5yd\nndF1Ha9eveLVq1doFXmlNwnqISRjit1uy93bGx7uN7z86FOR5awbryKWkBcpSsO72xvu7m85Pzub\naB5VteCw20kRSUUs1xVnF1d0/cjbV6/Zbvd859e+x8cff8JyuRSPizhG+SCjaRqGrqXMM4qyxHQ9\nbdsIjahztF5Z6fLykqoqefv2DVVVcX15ydX5OV3TsG8l6cIHkUVZkWQpUZKA0vzWb/02n/3wt3nY\n76iqirOzNT/87d/i4vycLEumwL1tapJIk6YxUawpioy2bXjYbOh6UfcZjSHPSy4uL1mvzths90RR\nzPX1JXlZ0t5KdTBNUqLSTUmpMYa6rrFWKveBcnPYi3rbz7/4gv78lVe8koRGKe3NXAXFkd4rkfqW\ncSXy4H3fYp0hTsWw9ZNPvkOUpHz56hXd/jBRmpIsI45TFIquH2i7DuusT57VhDgGrxBjLW9vboRO\noixZlk3rGiuy4kE4oyxLXlxf8eL6iqIoaJqG+/t7ttsdyyUsqpKqKEUlSUfkqfgxGTvStQ2H3Y7b\n23cYf72j6Fj9Xa9XfPzxR/zaJ59QeoGEPEsp8oztdsPbN6+5v7tn6HvOVkvWZ2uur65JopjXX37B\n/f09WmuqoqTyCFscR77BOFQ+HApL33c0jdBoqqoizTKSNJuSuWq58j5VMi+0Xc+onBhoOoRmFgnN\nMUkSIq9i5ZwICDyqgPp7IDTQN01NczgIoqAgTeWeyIqCJE1QkfTnDKOR3xVSsfV0NZSouTkFyvda\nKBcCLOmhCGpTOCn6hEAqTIKOIxItKm5HCk4I0EW8xCddKKwS9DBQikBU4eb9OkFuWscx1ntMTRGM\nU/IzD5TnNCCtUPb4vAjqT+H7TG8AoVBN9Dpnju9b63u4jgEraHSg1nkEYrBHyeq5Sae14tczevTI\nOZ8YeBGX+byPkoTMzj4b0J/wfkhWQvIT5H2nbfjjtGbAquPrLvQOqce+OMpFIrDgxOjYWivCJsbR\nj8Yfs5nOsSg4JuR5yWKxIk5ahtFO6IO1gv45F3yXLJFSItShBPl11omAQ0B1p2OS34XeJ5BjGDvW\nRhPSOH8uBuQrTRNP/xyxbmQ0kuxEfj6Q0+eTJy1BZKQisDHOWYx1DMYQG0ecRB7ckEEeRxFZHHOo\nD3SjxTiFJSLOcvJiweXlJaB59fYt+1aovTIfqinBOar5HamRsT9WEZ8IdEa8ouJjKw7nHE9FUu/F\nRhwTnnD3SQL6/qefY5OcbnO6l2bfMl9PBbNSNZdZCIjvEdE5xm0hXHpcOX6OUfOh5f2e5sf7HAQK\nflWXb5Odb7g8l+jMl+cG2p8WCFCdTALz10EGfJCPDTSqeSP0KZ0C3qcBzKeK5yoJpxPRU+soFQDc\n59ebr3964z6aUJQiz/NJMCD0xrx+/Zq7u1uSJGGxWEwN5rvdjrquJ21/aw390KG0Is8z71HgODtf\n8/FHH+Gs4YubG5bVgrZt+fwnn/OHP/oRfdfz8UefsFgsiLSm6zqKPCXLEvpOZJI3t1sxpDT4XpKd\nPNRwHA4Hokiz2dxzOOxYlDlt21KbkYeHB969u2W/b0jTnPXZBVGa8vNXb3j99o2vAEd0XY/aHYji\nmCL3TdHWoRH6k0IxDD2Hw477zT1pnFCtzyhLacBfrVZYa6ibA0kcsV4tWS4XmL6nPtSMw0hVlhRF\nyTiPM3LhAAAgAElEQVQa3t3csjscKJcLkiQDY8AeefDjaNhsNiwXFWMSUR/2bB7uGYaePEvI85S+\n77DGTglLluVSWU0yLs4vcSjaVtTrvvvd76GUZu99dg51zZlOubq65rPPPuPi4oLtdsd+X7PdbHl4\neGDzsKFpBKVpDjVDNRAngmYmvtpZVYuJviY9MbH4nvjKJtjJX6TrehFzsI7Ndsfh0HiUQXxyxMcn\nZrSWrpdertj3Y8HRHFD46d0k262AxeJIoRw8EmRGLw3rFaa6tuP29lb6fzzqZy3s93vKUnxrQGgh\nSazBWZwzDH1PW9eSxHtZXFFxcqRpQlnmaK1o6wMamQ/2fcduu0ErTRxpzs7WVOUVmaf+NIc9X7y7\n4eHhgb7vRZwjy4gj7ZX6xiMirAKNUE+CDzrSaCVjN04SX31OSdKMxHv69H3PMA4MOCKfvAaKlo4k\n2DHGAQbnjE8qjnOSGY302ozHxngdKS/gEVMUJWVVEacpaIUJKATOowoap0Jfif9HS3bj90TmJCep\nT6jnTAafzmEt0tuBzzmCwpV1aP24UHOc2+T+DYGxbGte6ZUAMyCaMqZlFh2HUVCUgB7g90d56ejR\nIE33FuvPi1SY7RT4BZnxkHyF7zy+BuNoGcdBBFiQQsxEz+HYAwVMKmzhGoSgL1S1gwBEeL6Ec6Gj\nx/2jcRz7BNRN8Z/W+oiw4VGxaC4ZfqQnnSI7znpJ6TCWfC+Qtd5QVeFNYz391eGTHrEKGI1lGEXZ\nMtIxLtLSf+MD90jHVFVFksp4HsaRbugZB6FFW2tBWZk6FeCkL1NZ6bnxB3Ty3HMeqRQGhp7BFEcU\nTf62HrEKnw2UsGACG2LtJIlJ41iktf1rsY6InEZpcJHFWumdMwIUHwUrnIy1LMtZLpf0o6XtO0ar\nsGgG61A6oVoVrM7W3G837Nv+UQIbxpibjfEQj2RpRut7ix63tbgpBniEnBDqqk8Xlj+0fChGmcb2\nMwXwx9sJSaCa3VPHN4N64/GY5SLOkUnZ9lejNGE7HxLe+P/68m2y88e8zCfKP66k5o97IH4IOZon\ncWFSHMdxorGFSSc0fE6qTf5hAo/lEX2773vf+1TFY/7eM29MEPJpFWX+2bA/YV/mvPJ5L5LWmsVi\nwcXFBXEc8+rVl0JR8bQQQQDs5NIsSQ2eTgN5npFnOSpU/Txnu22F6//RRx8B8OrLV7x9e8PZas3Z\nes2iKjFmpO87Iu0w44DWijzLsMs1lxcXRDpmu7mlaRuRQ45EtS2KoOsarBn9NlqMD7DHwZClOYtF\nxXJ9DlFMvTvQtj1xktD1PfvdHlDkecGgByL/vVVZ0spVYhik16auD/RRTL5csChWZFmKjuDu/oHt\nZkNVFBIQ+Srhfrcl94abSZxwODRsNlv6cWR9ccHt7R1vbt/y5vUbP440Qz8w9B3OjCgN97e33L67\nxTlBLF6+fMEwCLFJkgFNHKeAIsoLsrzgcGgYBjHzXCxXbLabaSz2XY/WOS9fvuS73/0ukdJ8+eVr\nNpst9aGh78WFPPJjLo4ikjjyI1coR5LkJkdPEHd0czdm9I3yIoGbF7mv0qb8/NUr3t68o2k6oT1p\ncQVXSJVy7Dr2h8NEzwrjtW1bUe8bpd8mBGmhdyCgq9ZasjSl79opEW/blqHvuLubKYcZAwgikvtE\nQyNePHGkfD+Hkx4ZJSpxSRIjKk7O08YykiSm7zt2uw3WDGJO6oP1oihYL85YL8W0tOs6dtstd7d3\n3PnEa7VaiRdVFJFE0sStnPO9Tk56lIwhikQevSordKRpux6lIpIsResEtGawYAdBC0bjGJ1X4PJJ\nsQ7yxyo09U7SAL4XIno83/n+mUhpUYZTQv/RUUSSJuhYgz4GhtY5ofzEiae0ecNP43sb0YL2+G/X\naFywTpk3ws8DDx8kK459IU8h8VqJ8IE1J4nBNDeGOVQRxRHa+R6bWNSq5Dx7Y1J1VOPCm5VOgghO\naHY4589pUPUSdSznAzI5DE83ioRaqMDfg0oERfrBV+H93BtFgr54ifhjQsOj/k/rf6Z+CWsfm4zq\nx5X7uUiB8fdl6CnF79MU7M2CSdTjKribvRd6miIdCcVQqSlZsNYK6uMUyokp7ejRDetERW70iatx\nsD+85Hd+/1/jbvNd1svf53sf/1egWrI0Q0dCLaTrBMEahgmBwTmcl313Tvu5STE6995Ykf4i30sT\nqJqRZpw9f09jAOOOjfiRL4Z4YHNKAuNIDJljLf1E+DlEGS+NHWlGK+azZrSeZiafGY3BKU2ZpOgo\nom476naLGNNGOOvo+o5k6EmznOVyRdMbDt6uIYw7CdYfCwwFZbZIR8EzNxzldH9Zj+acojJPJyGP\nz5Obrzv7+7nPnC6nMeExxpKfsAcywt3xO12QOVDHFaa/jxndMVF6eh9OUZ6nUJ/TsT9fb/bGs8f4\nq7B8m+x8g+U0aD/9/auSnV8meflFPnu6H6cD+kNIy2mTZgjItNZTD0+AvUO1YAowPRrkv4l5FWK+\nH19nf37R5bQKdLqEY2vbVmSgVyvOz89RCoahp6oqDocDu2Y/7XWg7CmFiBB4ylFRFN4TpUNrRV03\nvHt3xzh2VNWCH/7whxS5oC8OR1kWVFVJFIuamTEDQ1ez329IkoTrq2vUecLFxQUPDw9TX0ESJ1Re\nKtmM4kgv6lMw9j2R1qyXa8bLAWc8zSkvsTqmrAzR/b3n3Ydqs8IZw9D1JGVBmRVUZYEzRxPA9dkZ\n7969lYDZeBWvPKdpa/b7LTgJgtumZqc1fdfR9T0X5xeY0XB/uGez3WOtY7FYkGU5b9684Q9+/AdE\nWoup6dkZ52fnDGPH0HV0Xc3DwwNt25B4ZOXi4oJXr77EOUUcibqWGCBaFtWKoCYHojLX9R03NzfE\nSQodJElKqnKKQuSR97s9dX3AGEscC2KzXncU9yUg8qqB7oZ1ogil9FTVhrm6n8i5Gl/1zrKMxWLB\nar2mqir+6Cefs9sdRE3Kilxs6LE4NI30BrUdoVoX0Jyu63zQLNFGUGLTWjOMA8b3zE39BuADG3Eg\nV0hj8THRkYq6Vpo0TnBKM1pJ2BWCUEmFNCJPE5wPttu2IY6jye8pJHPLSvqIpGl9IMtz1qslRVFw\nf3crfT7brVdcs+RZxnq94uL8ws8bos6kkeA4zwUxapqGoW7AOHSUkOaFVOqdl0tOEvAS0t1gsIPx\ns4tGRyk6CuGyJDORp7FpHUshYirUxF7qmEdqZtP8pmHUTP0XDismqj5hsgA+CdZxOgXuGFHdsh5R\nsDi0lb6XIK0s84+bgmgVKq0e8cOFvhAfJM0KN6P3IBFBgqNJ5rzAI61B/vNaUDGhioWkQKhuWsdT\nhRtnveqVJDtB6jpM3cGA2TkzIXGjGYWSFv72SUSkRUY8SJwbY4iimDg+9neGRMPZk8KYn3vC8fbD\ngB1kvg1PEccxwXpEuXnm2TF/9h3PkSBImiMqpTzdKXzmccBrcc5TVt0sqdTeKNSpqa/J+mQseM+E\nH+tgX1/w3/6P/zFtL6bKb+7+UX72+p/mz/2Zv4CODmg3T1xlvj5KZR8X7ftrotn1ny+h0i/viSmo\nKDNatD6ig0H9zjkQdNKLV2jtPXK09Nt4RTvr54zI0+hk6FiwI1GS4SKNGZU33jV0/cA4iAWBbFNP\ndNRis0U/bLHOJ7daqOVNXbNYZaxWSzpjGa2jrg+M3uxUe2Qt9HyFaxXHMo+50c5CjjmV3QVaiOx3\nOPDpnD197edjKKz3XHH48TV4fE3CPjiPNoWxFPr3Tq/xlNjM5KfV/H83f01Nx3u6P0/FWk/9fXqs\npwnRvBjxoc//aV6+TXa+wfJcsvOh9ebr/iJcytOM/Lnvfeq7nkpynlr3qWVeJZqjPCGpcU7c2YXW\nZScutDRBH12YgzrMh/bvueN+729fZnruhj7d9py+NqdahNcXiwXn5+fEccTd3e300O77Xj7j0aph\nGGSijY4PijiOyfN8qnBqHWOM4fbuDoXlO9/5hKurK5Hu7HvKomSxWJAkiRd+0LTtQG8G9vsDy2VF\nVuToMaMsF2w2kgA5LHmeUZYFeZEzDMLBXi4rkiRit98JD9oblXZthzEWhyLLc9quE+EC73sTeNxd\n14l/DuKhohw+eY0mszYdR6LEVuQUZU5eZAxjPynXxZHQ/LqmYWglwV0ul7R1y+Zhw83tnTTVas12\nu+PnP/+5N4UTNHC5WHB1dcVoem7evObu3YHt5oGmqSlKoVHd399xc/NOkpYkx6HQcUpVCi2ubQNN\nSyRfm7rl/u4BChkbcRyTIKjYu3fvMMNIVS0oSzjsa7q2I0tTCi82kKYJeZaJYEAv12ccR7q2pWka\nj3JKYqAUUzLocCRpTJyIIEDTCf3MKcdnOubcSUJifIDXeilykOAlHg06eDh5DyLrHEpDpsTkEiAy\nDh3FmFQkgnXbkSbScGy9+aZQm45UH/FOicnRFNahxxHrvzt1jlhL4KZaobblWeKRU4OODLrtUXpP\nWZR8HKd8Z3VGqRLqceD+YU/b3pDmOYdhYGg7r8pkuEhizs/OuL4+56JcYdue+/t7xn5AVxXpakUU\nCz1Na0U29Oh+QEeacnMgKcXUNxpEDU3FPmgK1WAfpIYgOYqkX0LOaez7OECqx5pIRzjLxOl31opU\nsLXH8rVzRNYQ20Gq0c6io0QSGi1IkRT3NSrLvPS096NxoJwjQkmAPisu+KIwxgyicIhU0pXnFxlj\n0J4+FtAOrSNBY8Jc1/WSykU+UXEOZexkBAoI7ck58QnSPj2Tkjb48RoZQxIlgrkbxzgOuHEEa4iU\nIjeG2CfwytMdAZw19P0AQ4cbBhgHOX/9iOtE5z3QesESDQOq7Yj7ntI36AejT2sd6SxJCpS1yCux\nKaW8QIQkO6gj9W1K4B3Harbz/iezZ2XwMzqisMden5DUxUkiSJl6XCCT6ym/j2MnqJ/3cTHT8ywE\nziLNbXGMTvqkjJPktBvE8LYfRx7+6M/yw/7HwI+PD6sOzr/4R7i6/FtCcXWWYTS0o6EeR8YhKMxJ\nQreLY+788yzxvadz6lRQR52OJSBTHknXWk3FyjB/WWum8WOMAaWJIoW1EYP10tRA13bYxBBEx+Xc\nDMJMyFJirej9WLXO0XoEWlT3QEdCMS1ykdB/2Ow4tCK5rZSgS/v9HuPkfq7KirYL5s/yfcZalJfJ\nnoxy1fG5PPrzJI8dNSW37yEXs6TmVLwoLAHJUYQ8SYVM8snC9iO0cbat4/+nKoqKQGA7TbI8r8Aj\neY/jHDcN+fnrH46lTlGd0/2Y78NT605okzpS9X7Vlm+TnW+wfFUW/9Q6f5qW527s00EeqkPzJUyo\n4cFhjJkECxIvWRsaqI2Xo7TjYy+ID1VOTpf5e3Y2oZyuc5oIhv0ME928ChhoedfX11xfXzMMA69e\nvZL+l7omz3OWy4XIIB8O7HY7tJZKriQ4R+5r23akU3FGUdcH8izh448/ZrFYMPai9nZ2dsZyuSTL\nMsqyZL/b0jQ1WeJViqxlv9tRbzZkWcG7d3c0dctyteD6+gXL5YKmrWkaQT/Cw+vh/p5hGFgv1hwO\nB8Z+JM8L8D0+h8PhWPnyE7+1VuSF4wRrLIeDmGemaSqyzFqx2d5zc3MzCRIEsYbtdkvbttLLYcEo\nhbZOZJxv3vDi6ppFuWC5XFK3HW3fE0cSjO92O87OzkTtquuk8bso2B8GrMV7vRhRvspztNb86Ec/\n8v03IhtcFBVXL16SFzllUeCAxWJBUVSsz85IkkQQEy38bYc8GOu6Zr/fk6dy/rfbPbe3d7y7eef9\nPs4AhFJnjRTVnJX9iSHNMrq7O4ahmwxOw3gSCpj3wkkkUQieTNddz9/c7yg/OB1YYKR9AcP6qffH\np178Zsu8axugf2Kdwwc+/5Nf7uu/8wuuH/P1H1Lzmer0MOEXP4vRM6+HmebrbG/8Bb9X+5+wzIfN\n6XlQT7x2+vnTJ1PE8bjCtp86v8kz+1c88/q3y9dYsr8Dv/EfPP1ed7qu/wGSDeRv5fca+JeTiE2W\nEfk5/akANqDPbXPw4iUiE63sMbAfR6/gGMUUpSQAQdhCRzGRjRhHhbEygtuuw1Sjpz76bfh+uZBA\nCHVTIz1GhqbvSAYpbkVeWUwpoSSnacqubhnGjihVOBXLtupa5tispKoqb+BdT0qw8+KrtXZimEjC\nNnqEUnt1uiBdLsl+QHSmROHktIdnZFgm9HP2NycxiDuJS56Ko6x9PAs8RRs7XkNB9sIqzzFhHi/P\nx6Af/tzT+/B0wnOsCf0qLt8mO99geS7Y/jroxXxQhQrA6fJNPvOh/Xxqe899x1PQ7JEHHLT6IYkT\nyqLEWUtzqGm7juViQW87mXSsI40loA5JT5isTvfpQxDye7DxbLKxxrxXZYmjGOWgb4V6FqO927Qk\nPZFXwlmsl+RVjtOO7X7HqzdvSeOEvh+pqojlYil+LsMA1lDmKViRQpaJ3uDMgOlqXAxRIkF/7CxZ\nHLMqF3z88mN+//d+F+0c6/M1n376EZdXZ1jTYcaGw+6O7TCwqErOFhXaQVs31HXN/f0G66CslixX\nF+RVRd1bbu7e8Pbdlpcvrsmrkq6pSdOIpm3pmsZPkwnKDTgzUh/u2D28k94CZ6mKnDwThKg+bKkP\nOyINVS5Buulaemt4/eoNza4luc7AirdLU9fcvn3DzaufU+U5WZJQVAuIFA+dJLxv3r1Gf/wJPT1x\nEXG2XFAWGQ8Pd1xfSPPpz362ZX//jnb/QKwMMQ47dCgscSThmhmh7wbevL4XmVUdkSQRizijKCuW\nqxXoGDMaojgliuW6tm2PMY44SmCEWCVY4+iaga4dKfMFziqG3rLfN9R1TxwnhKnQWs3+0NEPA3Xb\nkcSpNKfHse9fSciygjhOGboe0xnGVvqLyqQijlK60XB7f0/dj/wgSihdx188P+NHscijdp1IGgeE\nUGvN4tLw7/xnHWn+tW/vb5dvl2+X/x8sXZPzV//tf59ff/gr/LWmY9Ubbo2lS0aGyOLMkeJlncW4\ngSzNiGLoekU/dKRZQpFLj2U3dIipqtDaCH21StCQw+EAriDSQflPYo5h6IUyGie+b1I8yPrDSFP3\nQk+NI7QZ6VtvBuw8zS1KUVjGvmPQGu0MWllwI844TA8qTinSmCSNONQbUqVYVAWxhoc7w27oPZzn\niJRDY9HKkkSKQQvSGUdyXHhqnvTfKhzjhPbAsXA691R7DpmJjlmHoDwnicAjOiVM74VFkMWEo2mt\nRzcdItYTYrp5HIQRdGc6jiP9TlQQxeg49JD50/LecorWPFcYfmq/T1/TnlnzLbLz7fLB5Tlo8EPw\n4lNJxykkO1/369LjnkuC5tt5av3ZC0RR5Ok+XsrTHWU956IAoeIy37/w+/xnnlDNX5vvq3lm30IV\nK/wE6WNJiIIDs5qaKuM45uL8nPPzc+q65stXX9K2HaMefDN2SbWoRGEqFnfxoigYho6+awV1UNI/\noTVCPTEjTktzd1WWnJ2fk5clD/cbokiSp6Iocc6y3295uL+jazvGrmO9XHB2tibPFrx7cxAFrr6l\nKAryvEDpiK7vaJqWzWaLUAgzFlVFmedUecbhsGe/eaBtW5RyGCydkSbXwQfWeZ6LAWSWcX9/x/39\nLc1hR1nm0njq6SP9oeP169dkWUakJUC3+z1NXaMUZGlKpJWYvnlqi7V26kfa7Xc0rcgw6ygWhSc7\nkqbScxRoEE19YLfbToaVbdtM17Preu7uHhhHw2K9YuhHkjTl/OKCly8/YrFYsmtH7h8eOOwPrNdr\nzs8vpt6VPM+lWhop7+1hPJ0jEvnnJBH38qyeVIMAsizHOekXcEBRFlSLCqdg9L4OiUdvtO8f0lFE\nWZQUeQFOsa9rtru99BL5QOFHUcTfVYpOKToFgx+PiadffHbuSHP4T/9KxpdfeM0udbwHRDgguMAL\n/UaEFNyj8R7HEnDgxFQT5yjLktViQZ6Kx0zXtTRNjbFGxreXk8W5iaMfR5pFUbJeLlktlxRZTqSV\n9Fl0e3abDW3XebPAnDiO6fuRNBO0LqixqUgTJymLRcXLj16KHLOOJ/8cx1EFTSlNlhUslkuqqkJH\nCaMdvbCA95lxgIY4FipoUO8y4+hDNlFRiz3lSKhuESoSJNS5ECwcg4Pg4TGJGjjrm9sRSk8snwcd\nnvhCp7V22p5GqIA4YDaHOSvxmdaixBZ6snDGn0/x0lE42Wd4rycl/D6acSruaH88wqpxWBP8aI7K\nU0orX3U/VvqVby43/SC+VX0nRSNP1rG+KOWc8ZGVoPIawAn9chzEcDRQg0fvqzM3F53LSwcfqPnU\n7WbHKcGmUNy0v34qikQVzopZp45nAgPWyrW2vq/NWe9NNO/X8D04SoogzgUPH6EOai3XNI5iv37o\ntbFTz5T2VEA7ekERIwGmcY5+HOlH751jRi9AoOiHka4baLuRtusZBnkPB6PR/OztX6Ju/4npPJyv\n/ie+99F/grOj72dJ+b0//Pe43/6TAHzve7/HX/7Lf4E/WvzrjNv/Dvid4zm2RqSvZ3Qn5+m8SiuU\nOxpQKhV85zTa0139yAonbJKdDn5TVgu6rWfP4MFfS515gaI8R21D79VsnE3o0eCpdcfnuyRNijSJ\nxYDam3Fra4jihCSR/e67jjjJKPKccVFhzEjbNVPBVCnk/pmxT8Jxhrb9I4IjSIlWM8UzjjHVUwH/\nc7FUuL+eQk6ej7+OSM0chQktOU8V0Gd/TeNWhX3mSIETeqfvAZzFV89t7zn6//y1pyhtcj89tX+/\nGsu3yc4vsXzVIH8OvThd5zTReR/WfH97zyUqz+3fVy1fRQ2b30Dz5CIkNHP4N9DEjg2q0TShhOAt\n/D338vlQwuOcC8/j48Mc/zz264X9GM1wcm3kf1GHUeR5yfnFBVVV8erVK25vb4ljjXLCOS+LQrxc\nhkE441YUniRgdr5ZXNE0Bw/tipcGTpFlBVdXQo9rmoZ3t+9I05QkTaUBu+8YR2kuL8oSE0Uic600\n9eGAsSOb3Ya2bSirArAcDjv6vmO/2zH0HZfn51xfXpJnGX3bkmWZ7IunKnR9j8FR9z3b3Q5jDeuz\nc1br1eSBJD1HGcoZ0tT3APjz1Pc9bdNwff2SzCtlhWtU5AV2taJMU/Is5bAXqpzSSqh7qyUPmy3D\nMBwdz/01apqWhwdJbvI8o+s67u5uvbz3dho/1h0bc8tSkgitexbLFav1miRJMcYbXm53bLdbiqKc\nDDTPzs7YFz1sELW30ZG5lMHT2ZwNJonSz2KM8+gOkwfT0Pc4rSaqSDD+DFW40Lw+jELryHygMlrD\nfr9n7/uIXNBoRXxZAo0jFAEmZUAf6L7+MuFnn0e+ed0HXEhiFGilWivSVIvJqw/wpI8oIc8z0iSR\nCm4beXl1R5UPFLkk7talDIPcF0kSTYIGGkcSR2jnWFYVRfWCZXpBahPazUDjTVxzch7uG/reURQl\narGgdY66rimKkuzqivzigjKviFORi06TlMSe048DgzHQJSQ+aU6jmKRKSNOcLM8l6EtStI6xCoZB\n+lBc5H1jrCOPCtJM+gUHPTCoAWelmV5H4Ud6e4Isr1JCbQm9ys4F3ww9va+QXiVjvfiB1tIjE0lf\nB4TKriL4zOCOil0KfBAurzvjBQqiCK1gHAYi26CQvhqcw5gRrRVFnvv5cxBxktD3EyrQ9tiMHhI2\niUE0LnZHdTZvOBzFsag0mlESBu2FsB10QwN9Jz1Sznm/GDBuQDOKdLY1vgdI5j1rRlRXY7tOzpGf\nx5um9b2CIqAQxmnw2xl8EUwByl8fZs8AeQ44nBkZQ/+U1r5BXw4yqOfN+3Ws3z9sCMiPfWoiJBGC\nMwUuSFir6YGgtSZK4uMzyYmHj/RMOf+c0zgniXzbS//jYEbabuAnbz7j7/3hP8s4ar7z4n/gbPW/\n0bQjXT8yjI5+1BiT4LxAgbUO4/4jhubPMgy/war6PZLx7/LznyYYI32YxaLi7//un+fQfP+9Z/Ro\nPgV+ZxIucM6roqqj8IUgAe8HvRNlMYmIxlkfmPwyze/S3yfKa2kqxawwN5nR0Hf9NH+FpW3bCaWO\nfNEs0HwDmyP0EoWiqPNiBYuqwtHSjdbPt9FEhb/f1TgVsVxUlKWYEg9j7wtaj6nxE+NFScHR+WTX\nWks4A6ch07zYOn/tueW5JOhDnznd/ulnw7V6Cnl5ihp3uu1TdOl0n57atw9R8E4/O38/JFVfdcx/\nWpdvk51vsHy9TP75z30VbPhVy1cN7q+7za9a77lqR/gJ1LTwegggj02gIcHQj7Zz+jNHdsL3nh6P\n/P/eAeCMwU6VWX10Jw8TuFZodfTzSBJxja/Kkrquub295XDYEylNkkjPiqiejRwOB/a7PX3f0fcp\nQ9+TVhVFUXgPFKmQiUmkGEFWZcXHH33My+sXYua52XJ9fcXQ99zd3lGVBWWZURaVVKqzjLKsGIaB\nu9sN+8Oeu8099w/3rNZLnDNi9rgXFTHlLIuyZFFVgGXXNnRtzcP9Pc45kkzMJuu25WG3Z7cTv5fl\nagUoNtutyITGMRcXl5hxSd+14H1ThmGgbVvSJGG9Wk7KWWmaolEMfUcUxazXa7J0nuxEfPTxJ6KU\n1fdY58iShCiKfbVRZJrr+uCV7ETc4ebtWzFxbJrj/WEl+SiKgrbrxJthtWa1XqN0xN39PXleEMX5\n5HVT1zV3d3eM48jV1RUPw08BOBz2lOPC/36gbVuyNKfvRw71gaZpiJOUNBeC/GgMZmjphh4dSfJU\nNy37/WFK7EMwF1SdkiiSoD6J6fqBumlomtarJoXGX6ngw7Fhei7lrlVQTfN+R0oRxUJfCCIfIXAQ\no1PAiVxzqK4rBX0vLubOCrIjJpkNh+2WIs+pFiV5lk2CG4TE0lmSJGa9WHK2WnJxfsaiKFHOcdjv\nqA81XduK35F2MiaSlNgXMoYhFBjcsRFcHauOfS+FgyT1zf6KiYIh8s4pWS4JY0DMRuNwCvrBeD8g\nf88AACAASURBVJQoEiEFH+SYUcQhhnHEuYD2RFOyrKLIV7kDosPUZEto2pYdmRLykMDYqeItje7K\nqVAjn9bzE82sATyUaSUVAidN2b4capyMgcgb0sZa1K7GQSrogoBbP5dJZd4Sqs4eivIJVUhsRIwg\n8sG68yi2SF1HKDAW249+jjzOjW1TM3opdQUoi09QBkEvY0kYQiA8jj1t24l5q0/ajTF0bcfhICIs\n1hkiL2NtrZuSPmuZqvFRDLEK1f9jISqKwCgwM7llQa4CCuf7Lqa5P5xn+T+I9E7PqiCnTThtITEQ\n/W/nEaDw3JieMRM6dUyIndIYpTAO+tHQDyO/8wd/jv/+7/xFnO+A+r9/+q/wD336H3K9/uvSO6ZE\nGc+Yo48QSuSpl8X/gir+NrFWDL1Ca7ExWC4X5EXBxdnffyLZMUTqd6cDctailAh7HJEJ532q/Jxj\n7XR8uOClEx/HaQj2eVzEDP2pZZljzYjeBRqbeDMVRU6eHZ/p/TCQzp75yqvFOSfzQt/3Exo+NwIu\niwLnNI4YWzf0xuKM9SyEjO5mg7GQpylZmlBVJW3XzMyg/bXzZreheKq9l5OArNYXUB8XlZ9CQL5u\nXPZVzJj58kht8CSxwb0vFj2Phz6UhJxS5k6L5qcF9G+ynG5D+ZvtVzHRgW+TnW+0PDUAn3rvqYTk\nqWTkQzfPU+t9CH78415OKw3hGIyRCnbw8gjrzB/6gco29z4Igd48uQmTbKgWzYPJ8Pf8OMPfkdZS\nCZxtYw7lSvIVPzq/WZZxfX1NmmW8ev2Kd+/eicEeItEpho2Gw+HAZvPA4bDHGEvXdQz9QHqeespO\nd/Qfio/fkeeC7KzX5/z0888ZhpGiKNnvdigcq0VFFqccrBM6i5WAwVlxjbfK8ubta9qmRaqLCo3D\njD2H/Zax7yCOMENP2za8ffuGrhUZ4zLPyfKMYehpDwf2h4MY1HU9fT/w8PCAc06MHauSLE0Yx47b\nd+0UsI3DQH3YkyThWoTqq0eN2hZrnRg7JokPvJUXLbC8u73lsN+z8GIMzokAggOKopyMOquqROHY\n7baPTGpFNS4lyXJ5uDpBd66uXxCnKXXb0W33XF7GXJ1dsd8f2G623N7estvtKYqC7373u7x79Q6A\nvh/Ic2mGDWpqq9WZJDuHmqZtWWWCKAAM44Ade4bRECFNuQ4tCZy1kzkePtlHQZQm4i3iUcnOB4Rl\nKUId4Ok3yiMF+ohoBpRy7g8RAjOhYnl1p9FMEuh5Ll5KOCtUjzim73v6XiS8Hy0Krwo2FxYZwXll\nMu1IPCV1WVVcXZ7z8csXrKoFu82Wdzdv2G4eMMMogazW1HYkS5MpgAkUpiDAMRrDdrtlNIaiqqSB\n2CM8ZxcXgKNpW0nSjKAobddjHOQO8qIgjiJGY+k7CbDiNMFjAz7hUPTDQNeL0WsSi8+Q0pp+6MVH\nxtogQiYJEI+DDpSa0BoJBmeceqUQ2lqQrPZBst+HEEqLYrF4sERa0IWjjHMwFZUkZBwNaEjjhCRN\nUDjGXr7POjtRfiaFKX30ZLKjmVT6UJLsDKNI+x4LQYrNPuH//P0zfvC9js8+PbDf70W2N46FsuXv\naTsMklj4qN4aUaE0ZpT+NJPinBjlGmPou466aeh9oHm/zbi9TzmrfkZzaCYPqoCSgVCGJBgViXpr\nDFFsSQ0ksZuQy+Bf43SEUcMUAMr59Ep3s54SuTySrTinfQbrJqU3ucYI1c2fG608SuvpfwKCBEqg\noM/KgFLS3O4IppuOduxpvTJcbyzN6Pjbf+/fnBKdsPz41b9Llf0N4tR4RMh4JNIw9V240IsxYoxF\nOU1elVxdnHN5eYFD8Q//+n/J65t/nGH8ZNp2mf4N4ugGfybkXGuhsRor403OdzSJ59igwOl9bIwZ\nsTZ+FBAHCmd4/mZZhvMiBb4yMCEigRIeRxFJKtc4y3NsOR57XwIi6fmE0qPYTdtPswztEx5RG8wY\nrKLuB5q2xtgGa1aURQHOSQ9rXpPEQgNfLYcJ2ZmSMz/ewvNDBVru7F4PscYvgso8t3woDptv87Rg\n+14Co0UN8bnvOEXonkJcnjuWr5OsPfXZp1Cm+d+/mmmOLN8mO99gmcsxw/MIyGnlICxPDaL5wJ5v\n6ymYcf49v8jydSDap9Z9D8p0AkU3TfNI8QyOVev5/p8qooX35j9z6DskO/P9CpUamPUxaI31E1lQ\nSrPG0HfH7RonPQE4kcq+uLjg6uqKtMhF/WsYSJOEtmlommYyxLTGsN9tsWakKHJPK1KUpRiCNk0N\nCM/ZjJbatFMFKY4lIWqbBh8hAY4kScnyAmMdDw8PfP5HPwYc++2O5WJBtVzxG7/5GxzqA+7MsVwt\nsNaw3zXc377j5s0bIg2/9vFHaBx3N2/54mc/xRjDYlFRVBdorWm61veXRBjj2O52NG2DsY7Vas3L\nly/I85yhb3n95gtu391Q5DlZmrLb7SbFtbquxVQwimj7HjOKsl5ZlkI1KDJevHxJ3bT8+Cef85PP\nf8JPf/ozzs7P+fg7n1KWJe/e3vDll6/Ii4yLszMuzs8pipz9fs/hsOc7n37CcrWiaWrqusYYQ5bn\nVJX0yVwZy+rsHDyVbBgN1XLBcrWWh56RsfXw8EDfD7x8+ZKHhwfu7+/hHNbrNZ+ef4LWit1uN401\na5XvoVKsz85oHrxAgYw2P+4U1sp4jNOE3owQ+mWiiPv7B8bRElcpqIhhNJKMdZIYBToGCN3NxpqI\no2fK/H4xo4x3a47Je6hcx5EEqlprlsslL15ce1Rtx30vSe84DuCEfhLuJenfkblKWykO4ByH/QGc\nYVFVXFyccXlxxnq1YFVVlEWBHQbevPqSw24n1MphxJrR02QcSZp4Xxim85nn+aRAqOMYEGrfcr0m\nLwucVpRVKclRL2ap8XR+AkXP0g8DOk7QUTLRc+JUvGyGcfSeVYBXv8t8v1ASJ1KFB6wLUsABzVEY\nLNb4eSeSQFgHzGVKbAIljen6T+hQpKZEBx9Uovzn/WecAqxPxiTUlr4Kd8Qk5PvF72YcB7q2wQw9\nWolZrLV26sFySqr2g3/dDIMXW5GZMCBqXScJ33/9N3+Dv/rX/wxdH6GU41/9F37MX/q3/mfSNKaq\nKlSWEbyY2vbwqM9m7qUmHjGWrm0feaZZNL2J+Gv/zb/E3/pf/zGMjbhc3/Jv/DP/Od+5/D8eKWUp\nJT19olwY+QLAiNYDw2i8CaTy41URRVqSTe0D+ZAoTcjOBMiFM8mkO+f8MyOs6JNHE3p0lMIph3IR\nyrvQz1GikDwEpNbY4IUkx7PtLd0gvkLDaNnVEbv6Y04XY8+ouysW8RuUDn5AAdURpCpLEhyGcZBR\nkkSaqsy5vDjj/GxF3bTE+nO+//Kf4su3f55Uy/VZ5P/FFNTLdffUMBnwMgZ9D5dQMCUJlj5MMHZE\nu3gqsgTamQpjGEjTlMViwX67Zb8/0HedPEP9s7gfena7ncxnlTyr16sVnCeCIo+D3ANhDBmDGd2k\n+hbigNgbLEfWgU5o+pH8UHNQDcYa0iTm7OKSIn/N23f33N/foTWcnZ+xXC0Zxo66rqfzHkUxajyi\nWFHsKfbOq8XP4pZT9ohSR3Pyr4qpnipsP4XAhG2ebnde6AUpQgX0e/4dp0nSaSwUtnUaa55+31Nx\n41PHMk+cnmMIOSfFhPCpP6ni+p/k8m2y80supzfAczSyU5jxl1n+3x5op5WEcGPNX5+/F6o888/O\nP3ea/JzexKEK9N658tW6+TMvTGBZJo2MbXN8QMdxLNSfYSCJYoqioCgKUQ27v+Ht27c0TUMaJ5Rl\nOX0my1L6rp+2naYp49hT5AXr9WqqdgYxhDiLp+MOvRhxlLBank0+RHlWcH5+Ln1CP/8ZP/7xj6kP\nB8oiZ+h7ztZrvveDX+dms6ftW8qyoOsb3t30tHXNbrvB9B2XL6+5OFuTJgmLsuLTjz8Cf86ME/78\naA2L1Zq0XGKd4vtFxW/+5m+TphlNKyIHTV2z2dzy9u1bhq7D2pHtdmDzsMWMhtViwccvX+CsI6kW\nRFlCc9gzdi1lWXJ9fU2kFfX+wM27G37608/J8pJ9XfPZr/86q9Watm25u79js9mQFy9IskwCvMbS\nNTXOORbVYkIH6lrkRdM0Y312wWq1oigrxtHw+s1bNpsdUZx4bx5HlhX0fU9RFN4vKeGHP/yh7wkS\npKauaz7ffk4IOvK8pGluOBwatpudBDUK7u8fAKGKYaUZWTnho48zx+7Si084B8PrN0IV8YHavq6n\nRFFr7av3shgz4oJDOkxUE7kPjnSe+WKNQcEkVx7HMdfX11xeXtB3LV3b+DEbTUIHIv8uzftSsZfe\nk08++X/Ye9NY27b0POsZzexWu7vT3KZsly3ZMYllF0hYspLYlkUCiEYhoCQGS8QochAKCImf+YEQ\njeAPTRSUH0HYBpsYOQTTWkksGUsBG2KwItxUiipX1a3bnDpnd6uZ7Wj48Y0519r77nPuuVWVyAV3\nSkf77LXnmmuuOccc4/u+9/3e9ylPHj9htVqiVJTrH6Rfy2pF9I7nz55xe33F0LUYpaiKgsyKX01m\nM4pcTFNds2cYeoL32Ezohufn5zx58oRHj58wXyzQxoj5X/CEGLBZxnK1xmYZLkRQPaDQNiMvCqwx\nKTAVSlteFtisZLkWidwQRfZ4sViIWafWCYkY6YQpAYhyP8cEyBgLWouRLl4SqJSwxIQ6jCiPkQlF\ngutEe1GJPjfepAm5SP02xNRon4IBec0nhFkzDCJlbrROVW8PLuKVJ6SE19psogNqpQkIitd1HX3f\nTz0PBj29dtwf2XUdn/vSin//L38fMY7zsOKv/c1v562z3+Sf+uHfxfUivlLXNbv9jv1+Kwhf2ka6\n0ehGj1b0fT/5hI3z+C/+bz/MX/8/Dg32l7fn/Oe/+Of4l/7Iv0BwN4J4Dw4Uk5R9VRTYLEvUK8gH\nT9Y7MqNkvBajNP6RWLgaL/nYCzomKMdrQph+v7s2RaIaq+FyLZTRON8To02mqYIY+RjRKZj0qb9D\nxgM4H6XPrxto+oGhH+i6gX3TMC+/wL799jvPq9HPUep9ut5jwyHRMUZQHUGjPDF4iswwn805Wa9S\nweGUsirpBpeet4ZF+dPMSz+tS6kWSJEXWGvou44iy8UwNqrUbyZCDNaoaXw4NzCfydpXpIR3pMR6\n76axFkJgVlY0+z1NUyfUWE+ImVKKuqll/T6dAzCfz7HrnN1uNyUyQo2MRO/TfZVziynRBugGl4oQ\nRgo6VmiNXSO+aavVSnzmonjvZJllNhcp6vV6PcUYkuCM/Y0ai4wZue+Czh0nH/fFBY7Hzv3/v872\nEMryUKH74ePKud8/1v1jHv88bgkY9zumtD203U9aXuc7PfRaSI/gN2OiA58kO9/w7XWTmVclSQ8h\nPnegxAcqDK+i030t20MPyP2Hd4S/jx+6u8ooL2++u3+8sbfn/vc4dojWE5XkQJEbExKh9iyIIU6K\nXEVRpAq5QltNWeagIs9fPOP9F8/ZbbcQ4h2xBULEDW5a5EMIBO8J3jObl2RZxjBIr441BtcPhCJM\n3itZlkGM9K0E78EHvA8YpQlOTBdn5YxHZ+dcxiBmoWWF1pq2bXlx9Zzb7Q3WKmIUSpddzLAqUhjN\nsppRZJbdfsf19RXb7U6Sqzyj6VrqpiEEz+AiXR+pZjPeevMtTk5PefH8BZvNhqZpWMwrbm8uqesa\nDdze7tltt3St+N+cnQkC09QdfdeRaajKklmRs0i+O0Pfcbu5xXnHxaNHDD7yqfUJp2entG3Ls2fP\n2O33nJ6d8ulPf5r1es17X/4Cz19cMpvNODs95er6BUpZ9vtdQig8t5sNg/O4GDk5PaeazTk7OxeZ\n66ip5rLQfvGLX2S/26OUxtqMN98U1G6/30/KVpvtBrXpMNawWgp65npHN/Q0fYd3AY9it98BsK9r\nDELJU0bju0hoano3sFqf8PanvpWL83M22y1lWUoPTVWC0WI82raEEKjmM/KioN2Iac1x9dgYQ14W\n0tOQAokktDY9A84dKWKl10fvKu8cLo1xQeQk4ZjP50JRnFUoJNHbbrepom7Y7bb0XYuKgRg8ZZ6h\nQ6DuGnabW9p6jzVKVP6KAqs1mbWUeZ5EDyJD32Mzy3K5oKoqQbmyjLPzcx49ecLpySkuBJquw3mH\nsoayrCirGVleTInP+uyU+WxOOavScx7wTtTrsqxAmYxIxDtxoB8XemU0JCl7HwM6s2RJNbAfHCGA\nNdI/ZawVFS8lCmQqJPqSSgptqZ9nqvyOP4MICzDOXUrobnG6kyoZm8q+xowCKjE5ygu9TSslPWvq\naD5E5holHEK0zVAx4t1A3yZvKO/ZJ1+okTYWQmA+m38oaBv//2t/59umROd4+78++938iX/8gyTE\nIUlU27R3km0xUh7Y7vYELw3pfeqH8mMPRVVSFAW/+aUf+NBndMOc3/rSH+DN07+BO2pIt91AO3jy\nvCPPZV7UCorkx5ZZQ1EWzJVYymTZgVYlSP5IKWSiJ4fJlFT6O7i/pqR/2pikvqlA6WTeKsn0CBEF\nFGas9isE+UCCOu0dPnTE4Ni3Hdu6oWs7mranrjvevvh3+bvv/kViLMaVirce/QfkmRQ+nPPE6BNV\nTqh0MQZU31AWBauz01SAeMR8PqcsC1wIRO+kQBHFv2vEXdww4L1O3z3iXRAwstAo7B0bhtGoFpJS\naHCYpXifSZGgm4orMUpvX1M39G2HTQIBfd/L8zj65gDei8pn3/eERl7rhwGfEvAsyw79T0Ux9d+o\nJFMofjkdmY+C/ipFlufYvCAqGXO9u6Rra25vr0Eham2DmGDf3FzTpf7SY0Sy73uGhG76tN6mWVUE\nMRK9eIwljunz92OOjxM3vYzdc/8494vE0+sJnbyPqtz/jFdZlNwXfrq/3Ud/7v982f4PfR+t4PWi\n29+b2yfJztew3edQvmyf45/3M/KP+3mv+v3+68cD+aGKw/F2/wE5/l4vezCmwEMdlNXG44w9Oq+i\n8L3ss+4LGRzvf/+BP35vlmXM53OWyxXBHxrtYxTJy0mqtyzQRk+BhIpgU9/B9D3T8Sfp6jGBi+K8\n3rYt+92Ovh+m5siiKDg7OyPLMtbrNfP5AmMM2+2WqqpYLVdSV/ZODEoV6Vw9pydrijxDRcX11SU3\nN1f0fYv3AyE4RmlVrUWq0yT5Sdf1kmglxaOooOs6dvsdXd+DsuT5nKqaEaLi8uoKbQzLqiLLM/qh\nIxKpEm2pbQPWGorVktlsztnZWepxEWrHvmsIbmBWFigim80WaxWDc2Q258nTp3SDY7VaM5sv2O33\nNF2LSWjE48ePp8Xl9PSEqpIgV4xKL9nttsLDNjJ29vuapu85O38kDa/KsMwLinLGbDajbhqqqqKp\npfdjNCF97733uL6+5vnlC3hDKo9rvZAgr+upmwalRBFKUDglY8evpvtudUaWi0JaINJ14i9xdnYu\n/V55jru+wRhLngsHPUSpAjvv0dYwm83E4PSohyZGqThnaaEPMFW7jwY+IXqCF9RAJxrDKATStg2b\njSj37bZyzcqkStZ3LVuiJDQK6v2efb0XXnuMlJklq0pymzP0Hc1+x/WLmqHvUDFgVMRgyY1hUc2O\nxluSSPYDwQtKOgaUZVlOEul9P1C3rQTxxlCWBWVZMZvNJEnRiqETRbvZTOTdXQrWfRBnCUIkOk/Q\nPdZkjF4ZpGRkrNwHkD6UpJY3piAg199kdhImGO9rJJkhqkSBGp/3A8csVfY1yoxJkb4Hu6npX5Sd\nhRCnICb3dh+jCAMkCpXSZpLN/vXfqPipnzvj9lbxj/3QJX/8H31GDI6+a6n3e1GTU4qmbqj3e+kL\n1FJQ2mw26TQPTehjwLOctx+aawHKYsfV1dU0J+52O9q2ZewFG+e4rutpOhljcfDs9jW7Wj7fZhll\nWZEVOcSHP2e7v+TG7tPxvCCegyAixhiKpPhotaYsMqqqJM8ygpI52Oaw251ysz3lzfMvURUH+pxS\nd4O28X6Oic+xwMDx7yoF2uro7+P8PiI44xxO6uPRY+HOQe8GmrZlGByDDww+4EJgCIF59St851t/\nlJvdP00kY734nymyzwmqhKgbhjDI3G3GXqPAYlaxWi54fHHGxekpi/kMrcENPf0gvVHD0KVEI06J\nhhT4xkRPxDtMTME6keBlrrDGYpQUyoZhSL0rB6pp33cTqqOUIMzBe0kWnBhSj714IXiCYhIwsMZQ\nFhXWapp0HYOX3sYxwY1RZP318RgNIRUzPEoNaGUwWSaFDWPJi4yoNW3f07TdJJ1/dnqCzcTMmpQs\ntk1LnluKLMemZ9ylNXBM9hI+JyyNssJaK0qoaQ49jKsP08+Of47P19eyvQ7aI69/uIh8//weSqqO\nn4OXneurCtavSnSOP3fctNaTsuhHxb6/V7dPkp2vc3tZJvxx4MKXIR+ves+rXn8VgvK6x3vVccZq\n03FFYayeHIsKvOwBPT7e+Lfjysu4HSdAYyIyft7UjJjQJRCq0DAMeO9EUc0L5zrPMxYLaZQe5Yd9\nkkMdJa+P6UVaa6wxGDMKKSiyvOT8/Jwsy6bqepZZbGakCTS9r6qqpDIjFTM3SONvnkn1re8ji/mc\nR48eUxQ5VZ5hEiXn8uaaze1tojxIj4XVCu+l2VQ8gAr6rqWp9xgjQeOu3qcKkCGzWaLe5FhboBLq\nZaylzAuqssBoRddJQ7ExGhUNs1lFnlm00sxmc4qiYLPZEgPsm4bb3Rbvek7XK+azis12A0R2uxoX\nAjZ9/9likYLQpMQGR5QJ6feZVQUxwna7YRicIA59L9/ZygIWovSG5EUhlebekeWlSFHP5/TOix/S\nvJ/QxOvrazabDZvdlpvbW3gDHj15ytvhnNvbG+q6JsszQCdpY6FOlbMZ8yCKbcpYQdMy4ZX3gxx/\nVIcrioK2bbm8vqIdekzqT+n7QTxIgjh6z2Yz2mQeOo39o+B6QkOjoIlhbFRNfiCCAhyes7Gfou9a\ntjGw227Z7bZCn/KeoijoM0ub2SOhDaFweufIlCb4guCdeDC1DZvbDW2zJ88068WCeVVitaLMc1SM\nkkjHkBCoA2UopD4KrQ1lNRMxiqqSanqWUZQlOrNoYyfPFJ/OUxlNZjOyLCcE6Hv5DBIDjCjBEYMn\nJGDLWjnO2JtxX45Ynl25vmNgG2JEhZjykkgixyeVqNTmgARyUx/HyI3nSNXxzjx1CKCP57UYE6JD\nSAnqGIDIe2IUROIXf6niR//sp/Be7usv/OKSX/3bGf/Wv/5ZCXJ7R9SSMPVdR/SB3Mi1cs6xbbb4\nkLzLtNAE+66j7Tp+4Pt+m//sv/l+brazaf402vODn/lbXN9c49xAXTfUtQR9Q6L/Td5kKdhXSd3L\nhYgPSEP+0HC7b4gKPvX4F3j3+XffmccL+y5l9kvsu0OhywefmualKJQ7i03zqgseHyNlKYINNiv4\nhf/1R/nff/MPEaKhzBv+1I/8V/yh7/3V6dlRkk0y5qoxIHLg4e4adAjYhKo2JqpTgXK8MwoUMaE+\nGpSBtH455+iHPkkd+0ndb/CixOa8Tz2RX+R0+Z/IuFBjf588JzGKsl2MnkJb5rM5i/mMi8Wc5WLG\n+dkp6/WSPLN4PzD0XmiOac0ijnLQ6fxDgCSIoI76YqfKfkrkdXoGjDr0ehhjxDPN6EmhcRyfovYo\n+7Zdw/pkmYRqHG7wqVfw8LlZLujNqB4p9Do5x2HogSOzzrSUD4NL9HOVCgCGvCgwmSCuogOROuJi\npGnqRDlfERDqpXOOrm/pmhajZ8ySyI73QdB7ueniExZFQKeqKmbzOcbYOxLYx2PloRjlOCa6r3p2\nv5B8Hzl51XZ/n5i+9/T7A8c93u7//Tg+ep0E5GWsoPs/78drh/M5ktv/Jtw+SXa+ju11k5Rj5OD4\n93E7/ttHQaqvytbv7/9QcvFR3+Wh8/vQg6wOFcXjB++YVvHQeT10ne5DvHdoa/puUPEQX3RMfJqm\nQSvFfr/DuWGiGIH0PFRVJZz1pma/3zH6nRz/I8bJz4Qo4rMmTfCrxZK3336bruvu9MhqJYZ1+/2e\n+XzGrCzJ84zb2xu22w2Xly8oi5yz0xNZXIPBGsvqdI53PV1d04fAfr/j+dUlm25PZi1ZZhKfN040\nuiLPmM9m9F03fU+hEeVSkcsLirISfnqApumJwNnZmahk9QPHKJwPHqOhKHPyIqPZ17jBkecFZTWj\n74aEhoh4gJjAJUnopqWuRXY6hIDznqaVfiET4pTwBB+pm2ZScprPBTHY70X2eQy+pMooMteS9GQs\nqhk2y6QfZr8nd575YonNXVqwI1kmTbfS7+OIQNt3UxX0ZH3ChbnAWJ2kjQvapiPEmEQXAou+n+hk\nJi3UotgUUtO8Y7kURTcfArfbLVfX13Rdz2I2J8Qopq9dK0adRYkxlpvb7ZEBnpo8ekZqgtai9HWc\nSIwBsk59JuOCFlMmMJoqjhx7raS3IrMGMjMdQymSEINPgUtHXSvc0KFixPViaFtYy2ox4/z0hNVi\njkaJy3nX0no3KTONDc1ZJqpq1WzO6uSUs4sLFosFWVEwm89ZnZxQzmZyTYaBwQ3Sh5CC6ix5TqE1\ng/MSkMYxeRlpHRKA+hBou56yLMk4qnKSgllUSgxjmhzEKDKCnLeSgFjFJBo9yRGPwgTp/0fVU5mj\nxn1kThBtqYhSZnr2JyrZOBeM84VRaGPluXUe7wJuEH+Sf+8/fnNKdMbtv/hrb/Bn/9TnOV9HDFLR\n9k6oTFoZ8iyXYK0faNouGRkfRC5ijAyDw9qBf+fP/Qw//d//YX7ni2/xxvkl/+w/8r/w9Pzz7Grp\nvdntdtS1UEV7F6a+w9EHzBhLTOPRgwhFhEg7tNRtw9APnC1+nu/+1pwvvPdjdMM5Z8tf5dNP/k2U\n8QwxEFLjfPBi+KmTKatHCiJZ8PgYRFJbRdCK3/ryH+RX/+8fmq5J21f85C/+i/y+b/0c25Hf7wAA\nIABJREFUj0+vDnO+YlLXiypRC/XxfTuYrCqtE7KXqD7TAsKH/ukx2UOKDs47nPPSWJ/WJKF61eyb\njqEXBUGRbJcChlZaemcUEAIEj1YyP52sVzx+8ohHF+ecVAVFljGfVRRFDkSil3GmlSSDNs2Bktzd\nWwNBpMszQ4wJoWHM68axFe/43OUpQRn7uySJMpKQec/Y+zQM0rNFjJMyoFzTUQhilHOOk3qkNoY8\nN9jMJjQryT8nWfkxJnDeowc3FUm8c9ikVOmdw/U9bugZho7tdie0cEqaphVlR+cIwQmlOjOs1iuK\nNB+bWssakr69UoLqVGVJVZV4f4iTjpOdYyTwob6Xj4qvXvbaQ4nTQ8eI8aMRlvG99xOrl6FSx591\n///Hxzo+zv2/P5RUyd9G4+JPkp3/X20vQ3SOX3vZYHxoeyjjftVD9joP4qs+56P2f+XfI1OG/7IH\n4/4xXjZRHH+PYzWR4+rLsY/AYWFTRwaQA23TYJROVXiR4h2DM4HlBf4fho62E1M/PS4qSAHQaHkc\nnJMgLQRx5i6ynJOTEx4/fsyXfvcLIhmtpCrmnKdu9kDg4vyEk5MVWsOzr37Ae++9y+b2lrOTE+J6\nTQgO13X45QrynM3NLdvbDd4NtG3Ddr+l9R2zsiQz4vXTtR0+JQNlkRPDQYFpc7shalHoOnv0iH4Y\nJqrFvm4Y+oC1B0UwSdQiRZFNycWsKihLUaOrdzu0VqxWK84vLvAuMribhFjNOFktefz4MVVVsdvc\nJsNKy3yxwNiMJok6uODFaTsEbJ4xXyzI84LNZsN6vkKpODU/d70E7XmeY0zAB1ngi7JkvlgQY2S7\nEypOUVZUsznKSHNuSPSItmvpuj65mEviaWYS+I8+FD7RiIIXz5f9XhK1vveYLKdTqdk/dQH3Q48P\nAZeUo1arFcvlEuc9290uUSsUJssJUdEPnq53+CA+Iv3gUu9YHB+ZVJI+jN/ROyYqJZ43aZ8xEdJK\nT6pU8rtUeH2U3oeyKCiLAmsEvcuysRlYOP7ODwxdQr6cwg89VhusER+V+ayiLDKWs4pZUVJk0j/S\n1QNd2yJ9A4dnd6SLzmYLzpIgwdn5OdVshrYZWZFjiwJjs0TLGegGoa2URSHy3EkliShBRmYMyktv\nwIHfLwmLD25CbUbev1wjpjlDkBNJRka6G0dGrmOVXNSwFD6ItPDxdVYo8UMZ3XXUoXIuedhId5Jk\nKcZD34xWSVQlSU+LurCgA35wDH1P17W0dcPnvzj2dxw27zWf/5Jl/ft6hm7Ah0RNHTygaEOH9+L3\ndbu7meakURmpLAWta93A+cm7/Gv//M/Q98OEcG8TFa5pWtq+w0ePj54QFU0rz5BNEvI2yyAlmSN1\nsh8cbd/T9UNKsOHpyU/y5tlPE9EoFVLQbfBDSIlCSnYIaKMxLuCDw2qDswYfPcqAHjTaaj77zj/8\noesSo+Y3Pve9/NHv/+XDOhHjpEimUAQ1yrfHNE4P1L7RIFbWqfQOrVO2pKbig9YGbRNCSER5GWsR\nknloS5v6L+v9nrYViXSFwiSKmIzD1D+qZKzlVlOWC85PT3jy9BEXF+esFnNKLZLUVo9Ikid66e9R\nSoQqlFKMD8mERR0HsyACDP6oX2NM5NLV8d7jBzcVVoL3tE2DT8mRtYYQDvQzlR1EUySgPTxjh/4Y\nUUxUHJBo5z02k36ukLx2xudyKhodFTBHNUDnHNZ7dBJQ0UqRZZY8s4Lu1Ht6Kna7Zuo7tEnOexgG\nhr4jEqRQlyeBBKSPFi2CRUVRkBlL3x2k0e+jMw9RIA9zy/0x+WExgpcF/g/tc1z0HpHK10kbXqb+\n+6qY8aHtftL0svN/aSF+WqJeL9b8vbZ9kux8DdvLBtTxILyfrDyUbb8qq/+42fNDqMlHIU4Pbfcf\nhIcqA2NF9LhKcv+9D53fq34/RoWO6WXj8ccqk/ChD4iSS9zmvuspcoHqy7Lk8vKSspRJWBslgVPv\n7yi1jf443g/SaJwq44MbJrhfpX3Pzs54+vQpn/2d36aua+kDSmpvm80Np6drTk/XFEVOXddcX10x\nJBWjxXLOYjGn2e9p+54hyXY/e/ac2+sroXdYS2YySqOIPsnMukBe5ei8YEiSu7e3t3RdR9O0bHc7\nlDFcPHrMcrFms9vStDt22z3beg9Kc/ZoTVEUXF5eiiBDDGSZkSB3OWe9WjIMHdeXl9RNw2q54uzs\nTFCwtsZHmM8XLNeW89NTLi7O0Eqq3TazzJcLihBQytB5z2KxxAfpL+iHnrzIWZ+ssday2Wx4erFO\nPQLdVFk2SVbZOU/XObQ1lEWJ0Zrr62u++uIFm+2ei4vHR9xzSZb29Y7ddkeIkJclBPH80YtDA+1t\nIz48Isywou/FN2Pwnm7oubm9ZVC3AEnZiMmwUSmhCp6dnbFYLNju92y3W/p+wOhDz8jxmI5BxAGa\npploCuJQf5BtH8f83RDmw8/M+Kr4Ex1oW2MQY7OM3B6cz90w4IYeN4wBb2rKLSxlnjErJUHKrZH3\nKSB4mnrP0IoXih9EmMNaEUUYJbTLsqQsS+bLE9YnZ8yWK/KywmQ5JrOgNL1zBFqR70WoRCazFOVM\nEB3uIls+iumkmsrTowz14Tk3KfGT+Uhof6NQCeM1GgMJc2zu+eEE0kehm2llkgFmkqSNY+Sh0ucf\nkN+xSXtskkdJ0D320oi0dCB6cMHj+o62bRm6nqEXKuHQ9Xzm91/zK7/26M49rkrHW2fvcHW5kfvq\nxLdM0FxJOtq2palreuWmnrYQgqDQmSV4Mb6VqrtIVfdHktTT/gldc87j9oISiXKgoe06TCYUP5cS\nnRFvHJwUL5xzYvSakAGdjGkVh+RdZIVHP6fkbzQMBGOIRgJ4o5V8vxAYvMPa/QMrBlRld7iXMcp9\nn4QGxnVhTHhTXwyj6pkkzcREvjkK1EaqI1pLz9C9ADAQaTpN2zv2TcNuV9Psa4Z+QMWI1SrdG0eM\n43OdEjpjqKqSi/MLnjy+4NHFGavVgiLPQIF1UhCJweMTau+9J/pAIK07/SD+Uz6IEEHaRlNi5wa8\nln46SbQ1E7qZrpUPcg/H9dCMYjreQxTfJa3FB8en6zJRup2ffKLuJjuB4OP0uSA9O9Zasjyjru8K\nBxktYgmjf950jDCOD1GtU1oMlKsiZz6bs91uCX5ATeyLw/XSSZp8NGot8pxZVU4easpYEUQpyskD\nrt7vJuXB8Tsex2bH/W/HP48To5fGQkfbfUTm/vaheCyhd6+zveqY499fdX73EZ2Hvs9D77tTkJYX\nXu+Efw9unyQ7X8d2fzA9lNB81CD8vbp9VJUA+BCN7XXfd7w9VFG5DzePf48J9lWpskaQ/2c2Y7FY\ncHFxLouO91xfX6OUIssMWSZymKN3jE19IaMC20gNqqqSosyIPjAcVXy01lSzksV8Qb2XIHaxmE/f\nucxzskQTqOs92+0t/dBxerpmPp/x5ltvkRvD5lbQorZtxRwUOff1aslsNmNb79ldfxWrNYv5gllV\noY0mOC8+LUEaULfbPbebLTHCxek5T568QdO0XD6/Yrevubq6pula1menItUbPJeXL2j2e6mwmxnG\nSH+Rc4533nmHDz74AK2UqGk5z+XVNU3ToZQ04WdFRlmJnPOBDjMkiocgSvP5nKIs2W53yWTUS19S\nJU2vi8USm2VsN2J42iWp2xg5BFdp0Xbe4euaza5mv69FwWi5pCzkHEalPBcC7dChlGGWEo/5fE6s\nhJd+eXlJe3VLXdeUZclsuUBnHebqhhgVw+Dohw3BSMDlnccYyLNcKFFHiENdN1xeXk29TNokzwhj\nUMaCNvggAeQ4rrQ1MHgJIlPfzYTUaJ3QEyUV4XvPRUgozjj+XULEQI5NCPRtQ8yy1B8QcH0vstBj\nwGEVhc1ZLxas1yuqohQaW9dS72t0jFgUViuMVhhF8qzKJxl1rfXUj2PyZBCaZyhr8ERceiaNVoSo\n8CiCQirnVtSWbJajjU1KSZGIJiZBAbkmJvUGjNVP6X3KbE6W5XeKITHAaF4j1y6JFyRU605QccRc\nEqeYNE9FkmjAsXyrSoqPqX9AH5zYSX1FSiXfHUQpkuAhIYrEgE8oc13vhV6oDRq5tv/GT3yOv/Pb\nK242RZorI//Kj/4aXfs+z29uUFHU7sYqtFyLg0BKlMuTKFQxyYLvpZG+blLxQFCr0ewZSCpYTWpY\n14nGNuCDw/mBMPQiWJJknqU/ok/BjZ7whUiU8m6UCr/0pURC6IUqFCPaaLJEd/XpOIMToZUYjCQL\n9qCO5XvHd73183z+3R8kxoNJ52q+4R/6rl9/uIiX1O7kGh76CZQSc9CAR0ek98qMfTth8oCZEp6E\n9Iz00kDknQ+e8LP/0x/ni+99J0V2y3e88VO8dfGXcH2HT/13VluiBq8EyRoTz3lZslwuePLkgjee\nPhU56bKAGIQaOgzo4FFJpGQqXCQ6pEKJOqQP43AjJucv9KhOJwn14JH7r3WSaBaFRUn+5dpGvMjF\nz+cUeY4bemKUcVEYUSK0mSF4fVjL492g/ziuGa0VrNH4JIM99v9I3xdTj9tYnNT3QgFZzxVd10vf\nXiYGxypKUbGqpKgyDOIbluc5ZSH2DM5J8jbOA6NceohiFj4MIvku70mJThIjkvFxOI/7rJLx9/t0\ntnG+Po5LXpbk3H/t70ec93GK2V9L8fv/S9snyc7XsD2U1Py9OPYxynOcPB3/fNUxvp6H8KP2uT8h\nHk8K9+WnH3rv/dePIV44JFLj3w4Lw933jrLTy+WS8/NzQFCF5XKJsdJvMyY1wyCBaJ7ncO+zSBPm\ncrkkDA6fDAy9F9UapZS4iNfiMRIREQIFlKX48PR9OyUAxmjeePMNXN9jjWG724rMc4RmXxO9p8wL\nqDyLxQqtoN7t6OqG5dk5b73xFtYa9rsd282GZi8iBEWes9vvmM3nPHr8lNOzc4iKm8tbrq5uePHi\nks3tBp0ZTi/OpSKf5wQnQgmL+YzTkzXL5RylAu9/8MGEgl1cPOLs4hFt13Fzs6HrHW2zo3MDi+WC\n5UJUzbbbHU3dJLnmSNt2bHZ7ZosFSluhfnQdKA6S3sDbb79NWSguX/R0fZeoRyZJ3/bJwDGhJUrR\nDQdO+ny2YDaboxQMyRciaoVJUqlZJl40ITVw+yDJ5PXNNaZdUpYlp+eCzrRtJwpL6fjOOdogZnlt\n26LyQdAmpPIrdEnH9fU1l89fUO9q6XUoCrTNkjN5qpxbg3PhII1ssjvjfnQpPw7SIuFAQZkW1JCa\njsdKvqPrZRxmVhS7AkzojTVC84qpGppllswY8iJnVlXM5xWZ1RBTrwGBzGpUSKgG0uScZRllnrOc\nL8QdPQoFUGlNXhacnJ5yev6E07MzFssleZGnCr9NFCEt3zlGDBqjhFJirCirHUQ/xFdj8KM0r9CH\nhK42JoAHdHcMNI7l7bVWRKMnilnUL5sTpYJOONwPUTmU4D2GUcJYEhCtBbVQWow9iZEYVYrzkz9O\nkL4Q75woWQ0i1TuqIxIjmTXkqQeCEPnOb73h5/7CL/A//tJj6jrjD/6DX+TtRy+o9zVD39C37YTc\nWiN+X+IVlOSAg2NIFLUQA14b+rYhREEwBzeMQCK9O/jmNK2gwEM/MPrWDF6+i9YkrxUnEt8I+jUk\nYY4oHCO0NgehiHGwKknwghezYSlGGaxKqmCJFqljFKGOGCQBQWiYGjmHJye/wT/xA/82v/7ZH+Nq\n85Tv+tYv8Cd/5L+lyjv5LDnwA0Gm+NeI5LbQ00KQlhm0mhTBjJVnw6dEAJj8k7Q12EwTAgzO8Bf/\nyr/M7e4EgG5Y81tf/lcJ/hln85+RZD4EnOvoO0nirDXkZc7JeiU+U+cXnJ6fYLUm+oFm30sCHlLy\n6byIDkQZk8MwEFGpGJAKbCGy73+YTf9n2LQvgB/HqBKtkzQ5RzFBKsbFKMm3D15mlDQfZXkm6o9R\neruOYwlNPHhLpWdgXG9HtGw0EpbnzUzPmlQchBo9qGFC3Lu2uxMDjJ91XBgNIdC1HUVRkE/7JcQ1\nFV0678A7tMon9HwYYjKgNRMa03WCoi6XS7quo5zNWK/XFGVO2zXc3t7KepzlE5p0LGQxIp/30Y6x\nyHkYax/uv7k7FtWD/7+/3X3vw/HZy97zUFz3Okygj1tsf5nU9Tf79kmy83Vu9yHRl+0zbvcpbt+I\nz3/Vdj+xuP/7Q9S34//fh3QfOv5xwvOyBOt1zu3+g3v/uGPSMe43Vi5Fa7+jbZuJ8pbn4qkzJjnS\nt+FFZvTesyxVXKmQFUXBMNJVkIp1CJGu63j+/Dlte5ASVkolt2aF0pBlhuVqzsXFKX0/EHyg3u2l\nIT9V76wxuGGg3tcSYCGBgRsGuqZjVpTMZ3OqcoYbOna7HdfX17i+TxX3kvliiTGG5XLNbDaj73qa\ntqXe1dxc3TD0AyezE5bzObPk50KMLBeLZPx4gXcDL158lavrK4qi4NGjR5ydnZNlOftdzQfPxHjT\nDT419ueCdiiNl8aaRGsZ2Ox2PL+8Yt52rE/PyPOcalahtUpIkkgzV1VFvbtmt9sTI/I9qxn9MEgv\nx+h4rqWaPppGGm1YzOes1yvm8zkhRHKbTb4OIo1bYq2VhOTykquhhm+BpmkIYT5JEbdtOwkUSAVc\n+nJ8PLhUjwsy3pOXJY8fP+bi4hEfPHtGXTeE9HqelyilJnf4ohABhKbrCPs9oWunsWytpbBmWmgF\nMUnjXQesleAhy3PyPI31KAmAVFMlQBqTkZhLQBq9JwTp7zBaYbNCuO95RpZUmMqyxOBwTvoNrBIZ\n89wU0sjvvSA61lLkOWWRpx4OUdMrjGa+WPD48RMeP3nKyaPHckxtJRnQSgJbbQ6N4BGsliQoywuU\nFjW1ibZoDFK3DnLP1Yh2yTWSXCTe8d/6EHrO0dykNXFapFWKfY/QYkgy3zrJE6gJ9TFK1NtEoi0Q\nlSBThJBUuyQVjDD1srhUeQ7eJergQHSeSagg9VsNfTd5pyg852vHP/NHfofgnAgn+MByXnJ+smC/\n31OWVuaGNGakmi6iIE0rgZ1I/YpZq8iMi/dQSNS1fhgksI+RvChwfU/wbjo3rcBaRaVyrNG0WqSK\nY5AijdUWo+X5GxLqTQxEHTFanpvx/kDECNNPaJ8xoENAm7SfMQQryphGifS01dKEr5XCpOT9D3zb\n3+YPf+9nWSXzSwA3JBRnfBZSAhPU3TVJfI4gJCRsDNTHBn+tzLQWTGQvJccz5iDf/Jv/z3dNic7x\n9t7VH2Od/yRM9zdgFZTzkvV6xcl6zfnZGecX5yzmSXK+bmibWsav0qkYQUoKhcY3Uk2NtcmPSdaq\n965+iA+2fwnQuPB/AnDT/Hnm6s9P494nBE5MmHOh6sVRNCNOhRWlElVtFCdg9L6RI43IEsoQQ5ye\nwfEaxlG2cBr7DrCTQIHzjiEKYlgUBd75KamSTzjESAdPGBF2kARIqMMxyNjIkgqqDx4d40T/VUpQ\ndKHU5tPc75z0xZVlgTFCfy7LCqV0Qljriep3nICNc8pYiLuj+voA4vMyKtv97WMhJzFOc9RH7/pw\ngf2h4vjx7x833jyOr171nm9GhOiTZOcbsL3OjX9VwvGN+uyHMviHHoCXbQ89RK9MYriLPI3ozv2H\n62UPzUMTy/3XjxGeY0GBEA7oUdd1XF5eopQorzk3TDSHEMVk1CWOeJZbqS5zt2pz31dnGCRZAQm4\ndrsdX/nKV5LvhJ3Oqchyqkrg9/m84uLinLc/9Tb1vuaD95/hvWO1WNI3LfvtDhWYKCZWC/JUlSW9\nUuR5wWK+YrVc4Z1nX0tlarPdUuY5J6enXFxc4AbH8+fPqZuG2WwBSDXQu0CRFczKOWenZywXc4iR\nut6L8ePZGU+ePCbPM57f3nB9fU0IgcViNnkR7Hc1dd1ydX1N3zlBVOZzodSNruptIzSXKItz3TQ4\n75nN55RVJTQEJ4t8WRaUVYWPopj27Nkzbm83GGNYLFeyUHctzo+Sr4LyxF4WZ630IcmbL5jNZuz3\ne4iiWrVPfjNDP7Dfy/Gvr6/ZKaGcDIPDI/Kx43UPKRAQJmTAWEPGAYEZqXnWZiyWS54+ecrZ2Tnv\nv/8B3ouy2Cg3PvZU9F1PUZaUVUXhZB+5RnJMk94TQmBI1X9jRpWjyMEzRE2v6xSoiciGoDlFnlPk\nOaOHVHADIYiKU2Yk4JjNKoo8mwwarbX4vicMKXrUmsxojBE/DW0NxWQeaiefDe89WZ6zOjnhydOn\nPHnjKaenZ+TzJSGMynCglZUANssTzUoSB0koR7GBsUKs0PoQCI0V2pHGptP+Ucn9kgDpMOMcGwFK\nnqVT0/pdaXqOkLMQ46S2RwzEOAoejPunXsAowVgcAtGrVEGfJonkpTT2VfSY0aw0EfJckAA2OEdw\nA855DFLJ16mvYjEvKTONGzrc0OOHAa0UVVmIqpWOtMv5Yd7VmjzLmc3nuM4xDPJcjD2FXT+gtEgK\nN50Ed03b4aM0a9six2gtnjbjl1GK3ktfhnMyfuvcSh9aoiqFEGjaVnqP0lyoEs1RqXjkvxJRWmSl\nx/4ZYQKO6IEk18GIHLLR8lNFIER0RLx38pwyL8iyPF3zeLS+cGQ2qtEqJLAsfd6Y1B6bzyaxihGd\nkNpVTJkThyB6DHIBHx8OPEOwRO9QBAprKCpJyJarBaenJ2Kwm4otbmjp6h19KoBELwF9mGiaCFKa\n5qMY49ST1g0DdV3zzvOf4H5Frh9+kG54C/hcuibSzzOi00bJ9x8TUKL0VMYQaRoR5AlRvNQOfSuJ\nknVc4OFgv3AI8OUcRgRe0LRDYcE5l9bVhIgORz2JMR5ogmOygyCFU++h0mSZJiooy5482TFM3yXN\nFkqlolGRTyqcTdOI8I6C2Ww2ifH0fT+N3aIomCiv+shE+F5c8lGoyiFZez0U51XbSFN91btfhci8\nTgH7oxKdjzr3DxXCv/nymzvbJ8nO17B91EPysgH2smTkddCZhz7n424flRgd//8O3H0Pzh3nH5n0\nHqbYfZxKwvHnPvQdD9UXkz7zUI1RCWG4vb0lBM96vU4N7yIBO/aldEOH88PULGn0oVFxnAQFIeon\nRCFykKJumoZmvycE8R6QZk1xoV+tVqzXK5bLBavVkvV6JQZvVpPnomBV7/eAomnqZP5mKIsco2cs\nl0v2SiUa3YqT9SnC8x7EeyNGytmMi8ePWa1WvPjqczbbHVUZOFl78SrxgTzLOT+/IM8KZkupjoqY\nguH8/Izz8zMUcHN9zc3NDTFGZjPxKri8uiL4gNYWrTL5zLJiuRI0RRTuBrq2Zrvd0rUtZVlhM4uP\nsFqf8Olv/w5sXkwLjXMe0rUdhoHdZsuL589puzZRDQqGQZTRhsFPgWzTtrRdj9aSRIaYUKQUaG42\nG7bbDdvdju12m76LBD11XfPo0SOYb9Ogkkl69L4py4p9LRS7sYfh5OSENpxMY633PV3Xo7VUCufz\nRRKi2EzUoJGjPirjtW3qG5ovDjLV3mM3O4DkzXHgm8cQpqRGRXDuoHgUwhhEjrBCnDw0YoyJqiIB\noLEZxkhPS5b6sKqyFF+nI+pm6FtUdGgUPkYJyq2lysTJPjOGPMuEIpee98xmnJye8Mabb/H0zTdZ\nnZxM46BPAY3NrPQlqbG3zqC0wqWm6xGdSY/sFDhNyosmJgTDIhSrmKrfdyklI2VJHz23MUjCp5VO\nRQ033Zuxej9STSXGPQogp8A/TjQpxoBGIenLeL0T/cV5z+A8zg1EHzB5jtYKFQ2B1AOTEhip2vdU\nuRGFqDTPFEXGvCpwfU7X1rjepAKLGLYqjVADtZrQrjzPqKocW86xxjJ4SXjEuyqijGG327Gva5GJ\nbxoGN0y0s9xmk0y1T+fRpr4uSexLZm1JP0hPmTWpx7ETtLxLtM9xnhRkJ9y5P2My6H1I4hQRIcWZ\nZEwr2JjVOtHXYuox0dj0HYuixNos3ftwZx2ZkD+l8EjOHhiV+gzEsSdDY62SPrqjIJuEPmmlhC6m\nZR89CuEQ+J7v/LvMyh11u7iz/jxZ/3fMqpKiyMWAeLVgsZwzn1fJv0bh3MBum5KcvkehpqSBKM8/\nia429D1ifSDFuTzPUVrT1SIP3g9vfmgNBPDxEfC5lKQJujMZhJrjsX1AL4JztM2ANoo8JSQjS4J0\njjYJxBwLnzwUl4yJ42icOm7OuSN6qr6TQJLmrcMx5L3Ry9w5DA6ThYmqKf46Yt/Qpc+UNf9Q4MyT\n0towDGy3W3Y7sX14/PgxKMPgHPvRXDvd/+hG6qu+E89Mioz3YpZXxVoPxXv3E4zXfe83eruf9HwU\n5Q5ejhTd33+8n9+s2yfJzt+D7RtFURu3l1USHkpeXjcxuo+q3N9eyQ8lUT4e+PyHJsnDrw+ck5Tc\npmoex7smBD0G6VnIMlFFGieUMbCR5MQJrScGqmqW4O6S1Xol1KVWGngVUsHKqtQ3IScPMDXnjpPq\n6PtiUoJ0e3srVI0EiQ/OSUWyKliultInZDRNXdO1Lev1CVVRToGG63tub66pyorVcklVVeSZmIC2\nXSf+QEXOarmQSr21zKoKpWC5WKJQPHv2Vb7whS9gTcbp2TnOeb7y7rt4F1ivV3gnijnD+FlVyduf\n+hRPypKmrnnvvXfZbjdk1vLo/IKmrfng2ft0iSY3ny0wmeH09ITMFliTYY3IHnsvlIHgPZnNePz4\nkUiOxojNC/Ki4Etf/grvv/8+m81W6Fda0RYl3g/stuKXUOY5VVmKL9Juz+XlJcaIgEGeFzSdo+9r\nyioTGeN+4Haz4cWLF7Rdz+XlJdvdFjcMZJkYj/b9gFaaJ0+f8pnPfIbfrn8X+A2hV2Q5q+WS87Mz\nsrzgxYur5PFTk9mcJ0+fsmvPZdhpTXRCF1utlpyenECMvPfuu3z1q1+lbVqR2tYGhWLoB/penNad\n89g8Y12csVqtAFgEYLNjGHoaL0a2owGrSZVekh8JSJO/0eLXoREBA+cGjJLkxzvZDUuhAAAgAElE\nQVSHHwRRMEYq9lWZp5Z/oYSM9DiRLm+J0eP7mtxosqIgtxl5Jj4Uy/lMaFzep/4cQUWqWcWjx495\n61s+xdM33mSxWhGVEiXATpLYsqqYzWdieunFS8Og0UZJ8oL0+4zcoXFe8GGkj0QIniwrEhUppiTB\nTcjNVIxXgniNtKMxMYEU1CX1qalybMQv5ih8SUiQIkSRIVdTv84YxAXe/8Dwn/7UGb/52Yrv+56O\nn/jxa9bLjr7vcM4L1QcJnIeuxfdyT7qmwQ09Wilms5KqOJFzGDqGoU2IjwclTfwmCaToPMckP60Y\nvMxTLhCDApU8X4aerm3JTcUiUViLvKDIi6Q+p6e+MbkOQltTSgLEEBxRSbCtEspRFlmijQaK3FIW\n+UQLPhhWzuj7eaJpjkISepyaIUZJAPteziEGur6nH5zcd6XQSubOuq6RHqEkhmFAG7CZJs+FdmmT\nt9jY8zTSDDUqJbWH9WNE4VRC1khzuSCjYggcp/VK0iJJdJJZtBFEM7OWEWesioE//cf+Aj/7P/wY\n19u30arl7fOf5R94+69wsn7K6dkpq9WKrChwwdH3oorpwyDCEsnDJoRA9DGhuTnWWIgkcQ5H03a4\nYcBmFpsXRGUIPrKvW3b7hln+K2zaP3F3mWSPNb8z3R+jNSr0YkQaBK09XjiPWRfOO6wyCbWTnsKY\nCihZlqXHMEzS0XKfx2t3WJXtUSFkVGsjiJS0tSZ9LlNxIZLwqRGVS+cXYULE86YW9U1rMNZSZMJ0\nKIucwQNGaI7GaJxLYkFVRVGW9P3Ablez2WyZL+a89dab7JuODz74qhTQUmEqxEBw8U6iMxZTjhOd\nlxWAj4u4H6c4Pd27h/YfgWa+diP54/P6OO97WUL2OjHkNzq2/fu5fZLsfJ3bq7Lkj+JQPkgNe8XA\nfdVnPfT7/ddfhUDdR5lijFMV6KG/u+gZ/QhGIanjJGSc9Men+n6VdlzJ5Bzk1xhlYZJ1LtETxkpQ\nhOgj2iqskepf33fECGacYUPADz3NfkemDVWeY1HoEDFRYYIczyjNLC+pqhm73ZarBHdPvT1RFKYC\nhiwrmS1Oefzkbba7hsiOvCjJMoHes8qy2VyzWs2TTG9JjJoQDMv5ik0PfTdg0Sgf6Pc1i6JgUeUM\nrqN3LZtmx26/p1jNqVY52/aWYTOw32zxg6MwOUPjeffLz9jvG+qd5/s+8z2cnp3xhS98nsuba05O\nTlivlzT7mtubG/q2oZivWK9L8sqgbeR684LbzSWVLXhydoZRmub6FlcPKGso5nOyeQUxsFgV3L64\nZL2YsyhK1vMC7z23L/bUW0Er9psGNTdUVYUa4Iu/+3mReN5swPVUywWV1ig30NZ73DBQWUNuNdp7\nQj+wnC+4ybYMLhDIUTonak/ndtx89ZYnqkRrzfpkRZ7luL7DKLg4O2W5XHJycsLN8pa6aRl8IETF\nbV3TDQ4qaLuezvcMXc9+s8X5G9rki6R0oO52fPDVD3DqW2R8Jp8XazXr5YKL0xP6eseXPv85Ytey\nKHIqm1HZjHI259mLS5q6wyV1quubDY3rOT09ZX2y5klU8N4HVGWJ39f4qLCFwYUBW0rCJKbrE1+K\nmHrOMmvQCCXIGk1uhWoXQsAAubHMypJyXgIRP4gi2zD0eCfBeOwHijLHliVlJkhnWZbMqoJZWaFR\nEhinBCUrClYnpyyWC04fPWZ2doGezfBZnpq5c4pCnkeTZShboEyGUUE49kodPdM6PdeREJMbuz1U\nfmOIEA60NOec+FvFcAhK8BgtNL5xXnFHClCjbHlwkGGwGPEwUSq1oo8mpBB1JOhEZxycyPom0ROA\nqyvDj/xzv5933xeJ7L/5y3N+7q+W/Nd/+W9xfqqZz2aUZYECMfZtasEWQqRSEVXkqbINfbOXfgwf\nCQkFm80qylKMJHuvCMqh8pyyLLDGMK+WFPmMtq6PZKcFNdw1O1Q24LTl5OSE2XKV+v8E6fQEXBxw\noQfliTjqZp8q6ZLwhOBRKVnUgyPXEvR7FeSflbndWqFO+gjOFykoPCjDTTLe3tM2LX0r1DcXPE2r\n6YdBkm9jRJ3Pe8rc4ANTUmISmrNYzCjmOUPsabotKpfgWwJmQcW00oxCEiGMlGlJ2oQiKOuGAVAe\nYyI+AiZDJ/PMGCRBR0PUQmPTRmSqRQ3NY5TnO978bf7MP/njfPndAuJzMrPj7OSck9Mz8rzAORja\nlsFF2t7jQsQFTaREZZV4oiV55MGD8zqJMohKnfMDLmZ4ZTC2JOQrBjOj7QYua0enC54+/o9o3vt+\nBvdt01o9L/9D8iRQELyUNrJoyVSGCRqj5PqKpw0UhdAWdWaJrsdHL4qFUdZc8WsyWK3AJFrg0JMb\nmfvG+z04hyP1uhgRAfEx4IYDVKtCIPQiFe3SWjrSIRk/Uxtioh9am6G0oFK73Z6iLKV3S2mwmvPV\nAt/W6C7iVUDHQFkoIoa8LCiqBaaY0YcdnQvYvGS1OqGqZjI+ghcfNh8oyoKoEB82fzfBmXyFwkEu\n+/52F128m/SM7z3ed3xNGDCH4uxD20jTe1nS8lAx+qFE6vj8HmLovOyzX1Ysf+g87sZp35wJzyfJ\nzjfB9qqBeH+fj3vc+//G4z8EZR8/zHceKu4+WC9Lwg4/R7Tnw7S38a1x+utxRdijHFNPwRj8TNxj\nmCgnY0/F6Bo9Vi1HNKgoymRkKc2YIYxu0vJ5OtEmiqJgvV6zSAaXMURUkhwuikyqdnjKUigNm82G\num4xyvLk8RNub9+hKuX1zeYW5wa0lvPY1zW32y2b7RZjM548fUSWSaC1227Z3G4YugGFJsscRSm9\nNavlkjzPaduW6+trXrx4ka6hR6Um67IUqWaAm5sbrq6uqHc7MiO0Oq10osH4NIGJ+ldRFBitaTYb\njDVU1RxrM/a7PdvNhs3NrfRnWEvfddz0A/vdDu89X3nnHWazGavlAp08WmIMbDcboXvVNTiHLYW6\nV5QV+0aa+Hs3YLqWTAZTakA1nJ6eorVOdDtPXbdst1tZTPOC/U56FMQbxNP1g/Q5uVtYiSdF0LKY\ntUm5x3nPfDZnuVjx4uqK6+sryLfTGC2LgvVywfnFBVmW8eLFCzabjShSTapJehqfMSQTxeDwbaDz\nyaU8KcsBPHnyhCd1w+3NhqHrkwN6ouuQXNw5BIGixGWkDhoimTFURXlENwnTYu2dBxUmlbVhELPL\nEKRgkVtLYcRnJ89zMnNEZwHyXPp8Vqs1p6ennF5csFgumc0X5GWJtjYhJoY8s5I+qIPEqzV26nMb\nr+FIdxnRAJ28gIw1E+Upap2QhkOv3PHcMhZMlL0XCIwV1kSp8ilYUUpNPjshvV/pA/UqMCpYpbln\nLEGn1//Ln7+YEp1xe+e9GX/9lz/Nn/6THxBDoKkbgk/qbofTYSS0xxiJXox1QwhYbcgr8TmxmWVI\nwZEtC6rcEr2gHWiNyXLKWSViGsKlE4NP5xi6npgVZEWBIlLXO7zzYhbZNcnzJXkvWRl33jsG7yap\n/tGo1iSqkU4IolAIR1W+Q8+GNZY8SgA9ynGPiahOqm65sfiylH40oiCdzhGSsoAP0v9WFXmSzE5S\ny0rmmsVywWoxZzYrya2dEp3D2hEQFprieFkZ16epWj9W58d7rKRRXyXXd3W0joxB5gHJFxqhMAQC\nWZ7x1tM9MEOpOXleoLWh6wfqpqMfAgHD4KQwNgw+iUeMpp1q6mczykiybgWBVqrHB0+WZxRaY7QV\ng9e+k4DceXLzHp9+44e43v4gi1LMjqv8bxxdk0MP2viMTLTQaR8g0bAFCRIxiHF/nShsIx1RenF0\nQnySz90YAzzIyJhuhKypKfkdz0WopCMad7fXTmtSshzvIDw+5FORNc9zcu/po5beyfmc+XLFo8dv\ncH5xgTbSD3p+fk5VlpycnDD6t42fP9kGGD35doHEL8eKbK/aXoWCfCRdTamJvvvK/eClx/pGJxYf\ndd7H+xzvO1JVv5m3T5Kdr2F7Ve/LQ+jJ/d+PUZLXGXzH2/0qw8d5GF5333EROU5gjqHel1UcXl51\neAkM+8pzu5t8KeFkTJPpqFQkE9hBonbkMC+XS7Ism34/nuCOucV6pDx4N32e9AVIZdlay3K1Yrlc\nJuUuR6ZFua2qKozWONcleUzDzc0NwxB4/OgJRZ6z3W55dH7G9c3N1CczJll937Pfi9ra2fkFJycn\nxCjJ2c3tDV3TQlAiP2sN8/lMvk/w1HXD4Hqur6+SsMAWaxTzWSV+KvOS5XpBCIH9ZsP7779PVZac\nrk+SslNDvdvTti0xRLphYF/vySupMm82G0ptxdcmROq6Zr/fo5RisVigtRb51b6nSw7jN9fXzGYV\nxmih2RSyePVDjzWKGDz73Y5ZVUyyum0rUrtd1+MDzBaK1WrN2fkF2+1OjDxTX47WaurbQSmMbdls\nt+zrOqE6oNJ1bToJErQ5NOQqJVXmpmnoelkUhV7i8Z1UTd0wMFtWPHnylPOzM7qu49mzZykYEJEA\nlWg1Ixoxem0oBXEI+CEkKhLsZnMA5vMl5+UcFRW77WZ6P1GoOCNFJ6Q+lOnZGSWoU8KgOTQSj5tP\nwSgEUQ9EVARza8ltxnxWkqlAbg1VKT09ZVmQZzL9V0XJ2ekpjx4/4vziEeuTE4qyEuTGmGQuKRQg\ntE6LhsLaLD0/muikanuYB9T0PcbAWacAKEYgxIkKM/XEpOT7uOCitfgwjfuM88SxzL38DId5gkTL\nIR4JGJCc6o/EIJRGaektCSHwxXfKB+epd95dkFlL3/X0ferX0YYsK0CFyUskxTcyb0RLyEKio2bT\nGBT1NMjLAqWEahi8S5LhUMzm5GlcSpgo9Ds3OLCWQGS/27PbN7S1BNfODSJ570QcIf6/7L1JrGXb\nlp71zWIVuzon4kR177tZIKeRAYtCNkiAQSmLykgYCySyAZblBhJyB8lNJDrQcQNZNGhYthvZQYBB\n2cAChEACCRkEPVpWWg/5Zb7MV0Wccu+96lnQGHOuvc6OcyLufS/TzmfddRWKG3uvveo51xjj/8f/\np2dRqsskIYBM9VKokGh7Mcyo+XwC6ISeeEzMz/iE4iTFGyNEI4QkazSlqShKQR1dUeBD6rlSoho3\nFgPrVSUiKt6LnD+SZG+3WzbrFWVZyPsgBCAlMmln52yJef5OCe/yXZjFSOQe+zkxN+bkuSOqbove\nrxjlOLORtNLSj5jUzISiGRgnzzA6RicJ1DA5+qSE2TQNTducFEJ9FDTHlFgrVLaqKAhxoCgtF/YS\nbSwRxbFrubm9435/pB9FSS/Eiar4H7BGlPmEo6pO138m30kCmkUYBDXN5tycCgNz4TK/PwtBBmP8\naOwV1lJYexJQOV/i6ZnRqehhjRHFP3Uag0qrRNU9zW3nEtQgc+jQSx9lURSzII3qm2TMO6IUrNYr\nLi8vKYuCpmvphwGlFUVZcGhamrZlHMa5SOl9LzLuZbGgZoZTEeWsmPvU8qnvPxVPqZTkZSTkKcbP\n+d9Pbe9TSM5z+32u2Hx+vp/azpMJT+4r+Dldvk12forlcw9cXudz3/2sWf3XSV6egyvPj+ccwVm+\nCJ4ajI+PWYKbpXLa4++eOTbZ6DPn/3GSqLRGpcBHXngpCDRF2lo2XWRGBLKCTA4Qc4A0Tg5tHRHE\nTdpPZPPEEMXALSdI280m9WCIGpMxBdaKTPWYDEIzX150/SNffecXJAhMAUXfy8RblyKTXJYlwft0\nbF68UNZrfvz++zNiY9CUViQ116ua7WbN9fUNw9Dz/sNP6HvxuhE+s1CYrNFcXF6w3W0wpWYYJpqu\nlV6ZuhYvGh+4u7vj4e6erusY3URIRpV936OV4nhsuHjzFmsN4yAS2G6apPm9qhj6kXEcGPox0Vk6\n6kp6cYaxx7sJbyXQ1FqoCzoJCIzTBcFH2qnl+sM1Xdcx+cgweUxR8e6LDW/ffcH9/b14+Oz3KKUS\n31wEAQDK1YqTSd0ASrNbrxmGcW5OrcqK1Ur6SkQ9TZCm+7t7mrYlRqlsuxQshxhYrVZcXO4w1nJ7\nc8vd3V1CaCTwtFa47z4JWjiXgqoogTNK/Hpub2+5S1Ll4zBiqorNdoNWmUo1SWCqJQiB3GOR3NkD\nECSB0SQpYnWqoAJ4b4gElJZ+H20UhqxwVbBe1ayqCuVHVmXBdrths97MCJ5SsN1sefnqNa9ev+Hl\n1RXrzVYSG2PF1BYlUrNK4QMiSACgxN/DOS8msIuEI6MHy8IOqfK+RHFy1Td/tlxfKelrijGKBHKa\nNZSSc8zqQDE1xCu9CKpiWPT7JaGE2QsmHaPVCUGR+/HP/vGG//I33nw0E/1z/3SDRucpRtT40viX\nqStRqlIFXSW0KIRINHpOZgWNU+Izk4N7o8EpvFPoGClTP5J3cn20UomWpyXBCAGlk+/S1M/BoPce\n7ybGaZwb4AVlEvQnpuwpG6nO5q5xnolTYLyseE/zvKZVQnxSomGCUJ0MCqPFs0WlRMIo8SdSSuGN\nptCnFs8QBRWLQdDbzaqmsmI2GjMCM/8nEgcZhDsxAU6mvDm7jEQxCI36JJ6QCgXWGEwhiCIZUUy9\nRyFmkYaJYRhFvdEHsjx5ROG80DCdD7gYGZxnGEeatuOYguyu78VANanrKRSFLQmlxkUF40Q3DCg9\nsTNbMJagDO0w8nA48P76hvv9nnGa5P6k+5Qpn8ZatF5Qpk4XJSFanERM0jpyHEu0J0n7c2rMz+/D\nPO8oJderKKSY6EPIU1POvlMylufLJDCSUELSeMhsi8eFC/1RwkOUhH9yE4Uv0JXQ1Fd1hTU93vfy\nPEcEaSylgHl//8DDwwPTKBLwfd9D8KxWa6q6ZhMCw+gY2g60oiiqZ5OAPGd9HcTjG30fv36M9tTx\nPB9v/ezLc+e+jPs+/hHnYdnP1fJtsvNTLp9KeM4fnOe+P18Xnk9GPrWcoz3Pff+pY/3U8S0nxvOK\nyIkW8gTCFSPnez5Pks4P7dH3i+9ilF6b2VEcZgUYk1ywQzJuyzQOIKEGw+xen8+h7bq5UVKahVPl\nWeXKmBy7MYa6rtlud/Lydo5Q2iQ5q+i6DhscpO2KXLJls17jnGO73SRZaIdUwy1FKUZpLiU7dS1+\nDSi4vb0V1GQcqWwpTehlmVR/NF3fEaJnv7+XxEQrNts1dVWx3W6oEqVEGjPjfP7b7ZbtZovWhr5p\nhNp2fcM4jURrKNYVRVJCaruOtu2wVpqY26alPTYoBcV6g0HRHg/c3dzOimZKwaurKy53W/b7IEHX\nMCQlKqF7RO9SFdHTDwNN2/P+wwe6vqes1qmCL43umbp2fX3L4XDg5cuXklyOA33XUZQlKDGUbbte\n/B+0QaE57I+oWp6j1XpNVa0SbULuz+HYcGyOjKmhWKrnsn6RvGZijByPx4TUTWw2m1mhrSgLbGFp\nOlHuI+YmedIzI9RG5zyHo/Q33T880G5F5amua7kOxiDKghFj+tN4QpqKc2WbJNustaZIzc5LGo6O\n0rtgdBLU0CItXRaFNH5bi1aRVb1im+S7s3GrtZbNdst6u6Veb6jrtfSdKeb+JRmY8m+lIyY1NUt1\nNicvJ4XETHM6pXBCR1IxG5+G05/F21MvkqM58M0BUo7S0uIzvUkxB+mnpurcoC3JVU6iZOynBu9E\nvVGoJA+s+LU/s+c3/sc9//v/eTHv51/7k/f8m//KAaUsZVlJ0q6FzpelhMWIVEsSnMaCzFMBZ8SY\nNktoG1MlgQMJaKOCoJQE4EiASoz4IAmPJxKjOqnAJcEKHz0+OMZpYBh6WTcJiIjAQyA4L5/nZJys\n5hfmYDVPsTMqlz5RCT2Q+yA9O9aI55WABwZlrCSYkaRgl84z3besnmYSDfKkpJeoTjo1poMo98lD\nkOhnpyBs7t9cJjtmgcykRE5phcGcIDYlHjyFFVQ0BEGblGKmZsUo/Rxt29F1A+PocC4V7ZT87YHR\nC6rT9gOHY8fhmBOdjn4YxdoghqRMZuQ6KYVP5+uSv05dKbw2uKjohpGx6bi5veP2/oGu6wlAUEjP\nkdJpLiG9n7Kks5wrs8F2GhhzkVJuRqZoy5hLRp9Rzj0jjT4lwzlBkXlG2A1aa3lGOSGhqNw7dUJl\nT2hOGvdKqI/eObzWs/Jpvl+5WCm3SJ/W9W6eg+uqoq4qCt2llFPNQh5N23B7d8t+f5gLhl3bEkPg\nldJcvnjJer1J97QnBxnnQf1pvuXRZ08t35ROJn5HZyq2n9je8nieO47zzz+3zafWew49+jrJ3s/7\n8m2y81MsyyTm6z6Yn9oGPH7gzqljT21rGRT8LMunHn6QwKAsy7kqk5v487+f2tZ8vOpjvu9pclYn\nKP7ZCefsGi2yn6X4AYgR3vJ4bXrBLqvgy6Xv+1ThJVXj9XxsMcbZw0EcuC1lUaW4M84T9ZR8EV5u\nhO6VEyxrDXUlEswvr64Yx1GSIK0pyhKFJGFd3+Enx9XrV1xcXjAMPW3b8sUXX7BZH9AIL3m1qiXR\n6TrGcWC1qhmdo6wKLs0F4ziyWdW8vLwU/4FE1dKFme/VixcvWK/FdyebIvZdRzf06Kqg3m1Yrddo\na3jo7jkejwzDwFE1tE07m5qqGOm7TuSr725RSlGvauHfb9fSiO8c8Sj0HBckCBvHgfZ4FIPREGm7\nnkPTcGwanAu8erNDmwKPojkeubm5QWvN4XBAa8WLF5eUZUnXtSdOuFI47xin5GmhIk3Tcnd3x+pX\nRHp7tVqjE/IzDENS6XFy77UWH4iU0ANURYHWcgxTkrnOCa/3UmnNz1aXm3GtRQOjc4IQBfFMAogJ\nYTrs9+yDpyjEk0RrTWFtamb2izED2QBR/nkaQSGIsWNOzmYaVx4DVtANa6SxOycKzjvW1rJer9lu\nt7Npo9F69i+qqlpkrIsSW1YJzYmpAVsCUZ1UkawtyfLYmbKmlJ5NGnPF9pEvhTmpqxHjbHS7pBku\nG4VjEDEBlSSYzdkcsgjLZ7qb1tLXJ3Gi/C4jE2Fxn7PcrsnUFonSKYvAf/fXv8v/9rcu+Nt/Z80/\n+Ud7/uSfaDFGKFplWab9GZQWqhwqJtNIg7GiJhaCw08BFwMeNZuUxnTNUczzkqjrjeATzTbGhF6H\nJN/tcUox9gNjGIhRxnbXtQxDzzD0UgBx/iS8kKS+Jye+PII8kpAMkS6fQnaSF9WyGGR/gih5YUWq\n7Ggv199rhTUiFR1NgCKK5LGSpnBJbtOcrHVKjhXJhxSjRCWPqAiJ5qhjRCeRiKiVoHXznK8SkpSL\nUEKBXMobk98CqQ8EpRKiCNKzkeiUCDVP7oFBJYTCjY627TgcjrRNl2T8JeAPUaFRuBBpuoHDoWV/\nOPKwlz/dMDE5T34T5aTLGENQGgeopCznnEehKRGVsUPb044T/TDysN9L32GIJEtQGW/GUpQy+iVx\nOSGnIg6U2QqnN2Eeeyr/Jn0pyKabZfizJHZGwUSl1D9CV09XN80wOvfD5fejyE5Hm5XnpLCipjHR\nKkdCEpiQcSeJkE8iCjJuZcw6J+a83ju0EjnudV2xqmu6IY8P6YU6HI7s9wfatp2PQajqkX4c2XiZ\nZ1frNW3bz8yOp+hc57HWp5avmwzMSA1hhp+fSjjO47+ntpHnxc8lI0/Rzp7a73NJ1vLfzyZcP+e5\n0LfJzs+wfNNKwNfJsJ/7zacSnq+7/+e2k9dfDoY8sWXX4kwJWyYPXw8xelrN5FPzymkievx5pnWc\nmgtz1danRmQ1NzfmRYQEqkeoDogBYBwHjBGPDjn3jxPQ3FCbG7AVSuSiUwDtvWe3e8nV1RXb9Ybm\n0GGMnSvK282GH/7uD7h/eMDHQJn8Aa6v33M4PGCt4d3bd2y3G25ur9Fa8+7NW8auZxodm/WG1aom\nBEfbHlEqcaRLURoKwbN/uGe73VLXJWVRMPQS2Bvk3pV1xdXVKwpbEMaJwpzu6TiOWKPnJk8fAx9+\n/J626bj+cE1jSzTZPFWC5GPT0A89dV1TVCW2kASmGzqmacBaUR6anAQx0zTysJcESkzfFH0/zEmH\nNpbXr16z3u64e5AXf6aOGaP46qvv8Pr1K8ZxFOSlqiBGuq5nf9hz97BndA6tIze3N3R9zy9ffAmI\nZ0m/H+jaZn5xlEWBNQXGTBSF4eLignas5+clhMB+v6c5HjkejrOoRUzVTxdEbrdpmhlJVFqa4icv\nKKIYgRbo5O+QE+Mq0UOsNRglMs1EP/evqCRtmNGMQhvKQoQAJHiB7BJvFuNA+mOk+mqtwZqErDhP\nUJpqI4nObrejruVcy7Jkvd6w2WxYrTcYWybVJE2MoroUUEIPUkIX1UafJH3zWFkki3LsJ/QGOPne\npORMCiYihVwUJ0pSVvjyPvWsmCTPnMcnzFQ1SfROiVY+/1xEeYQfzwlZary3VpJB1Cm5muco+Jf/\nxSP/6q926fkrF83aEiD6EPAxYIzcL6ulIIIWkZDgYfJCzfEqopSVanfqhbEZ3UjU0aHrCek5Ingx\nnHQBN4y4ccInxHgKPc45js2R/cMD7bFhGIROKpLzcu2EKpbU7SYJAiVeFdltFyKDixiLSEAr8AGm\nKZySpYT8FEZjdUBFEcUorRFfJmuIwROtoTQL/5J04aMPyB1O7IC0I5WORcUALmFwiR430yXzY7Xw\nGloiOydBAhJSk579hXpoRhwjISVvkRA8JvV6knoO27bleDhyPLTS3J6EFVCaEKV/aX/o+HB3x/39\nA/t9w6HpaPuBiBhhSu+NUFC11mA0zq9p2z+KNT/Gmp+IWIGG0Tv2TUPTj0TSczJNuAhenQqIeY4o\niiyEoU4XJmEdMk7jXBwQUOv0jtVaQwjJh8pLcq5P73ZSYp3Eu+e+JRG7OL3jl2NDPlyMrRSIl6V4\nfU1+oh968UKKEZJkfhZTsdbOVgzL8Sm9mBo31rCW9eq6YrOq6YcRBvEuGvqe/X5P17YzW0PmsirN\nLdLzuikEwT5WjXjNFadx/rkYKF+/vDyVGD312/P47klhh88s5/t4LiZ8qkotXA8AACAASURBVID7\n1Ll902L4p5CuNL3+zAX2v1/Lt8nOPwDL7wXC89SyHPwyIbmTghdLNIpHE+DnKyCn3yzRmscVl+cH\n+jmqlJOV3KSZm9AznW21WslEnHw4gNks9ORcrx+JHki1mRnl6fueoe+FZ77ZYIyh7TrKquT11Sve\nvHrNZrOhro+EIMhNXa3EjPKwp21brJEJvG1b7u9vhea22XJxuYMI+4e9XOdE4yqLAmM0k5vo2o77\n+z3DOGIry3qzQRvpyRGhBTnvmM5hCg7vPPVqxWqzpqwqrDZi9Hl2f6uq4urVK96+eUM3DqzX0px7\nf3vPISoudlvqVyt0YRmdox8H6vWKt1+8xRjDw8MDt7e3TFPB5eVO7o+S+qTzE8PYzyo5dV2z2mwp\nqorY9USkWXt7ecF6s+OYEJ++b6Wp/9UrvvrqK4qi4MOHD3NQvd8fUEXJselwU044DP2x5eLigs1G\nKGPZKNZP43x/bVLzK2zBi8uXfPWLX/HhTno1qqpK/jQdbXPEuRGty/QiHUFrCufwwc0vXF0UFNpQ\n1TVKWyYvvSG5WXl+ThfIqHNT6oNI/RwZp0jCGDI+JEjMJnogQWRuFjfSLIFSJwUum9TXSmulaq6g\nLiuuXrzg6uVLdtstRVEQgfV6w+XFBav1lqIqKaqaaCxjiLjJS4O/MRhToqwE/DGEuZ8EsrP9ibo1\nFyBCeNQbACcHdjfTUM38HM7jOQ35mPrxrBUTzeAXSFcOjPFzm0CaNRIykOaEOYHUM4XqEX0tioFp\n9heZm96R9TOqq61JlLVE+wlCBcuqkMrq5HMi1LHJe3xUoG06tlQwmSbpTdEaFbzQOseRaRyIzqGD\nIDOEQPSBcRjo2o6+6+i7Ea9GXPCijHg4SK9b8nnyPpAV8GazUJeRMrkebmmOGuOcxCuliSF5+rhp\nrjLNfVdB5LO9mwilFHpE+CFiNGAEIRJVt1xU8jNVLj+3Pro5UQYwKOkpyok7i4Aa0FF6gQSGXQSA\nKt9rlehyjwuC8zuJhFwojzKSPGVFQOfkHXF7d8d+f6TrOkLMgiYWhRLxga7jhx/e8/7mlqaR3sIp\nxETxlAKIj3IsMXn77Nt/i4fjXybGF4CnLv8G29VfxBgHvUd1oyBTWs+iAz6Cj4ImWaOxZSl0ZDvO\nwyK/q+LiOrkY0d5jg8dGGYcqjSmDwqVxmH25jFbURUmhTUKFRcggavFJcm4UaeuY5b0fv9xV2kG+\n5iGeelurqqIeS8rC4N1SGEG8pfKYz+/YucgBxOSTNQwDzss5b1Y17hJBlg8NWkPXifHq5JyguUoK\nKbmPMAuZaKVZ1WvW6zUP+/2cKmaUJM89v1/LzGB5Iix7LqFYxlrLmO4ckXkOBfpZl08lgv8gLN8m\nOz/F8nUers/R3J7azucqDs9xNp+qKnzTJU9MS9Qm02TGcUQpxThKj0JML8rTfs+ynUfH9vj4Hp2D\nerr2Ifv++PhiAu5jFCrGKdJRiVss1UdtLbSNyKGGINWzRN2IiWaAOjWl58kvV+NBoP7JToIk2IIY\nheJRVyWb9QprNNF7VlXFi4tLtpsNVZLiHScJWnStUlDSU5Ulq6pAG8WxOcy9Oraw4lI+jjTNgRAC\ntzc39F3Hql4To9DGjscjx+Oeh8Oei5eXbNZr+kHMUqtSjlsUkSLGGoogiYmbPN4FjscjdVkydr24\nrR/FB2S1WnG5u2C1WuNc4LA/inS2tojktQTGXZJs7hN1a71ds7u8kMRtf8/N7TVv3r7BFlbuiY4M\nk9DGjocD3jvKshD50DdvMdZyOHb4ENnVNUoJUtb3PcemoZwcV1evk9x0S1EUdG3L8Xhkn6Ssp34g\nBGmQLaoKbQqU0vzSL/8yq+0WnDyAWilxu1daVNicw2rDdr3h5dUVb9++RVtJdna7HX50NE0j/iCp\nB2qcRDI2U9ACiQbj/fyyLQrxWXIhiMR16ueBbMiXqV2BohCVsRAkobDp5VukBFcrKKqCqqjmRmGj\nNVUlz5jWOlH4hrkAkM0GpS+sQMcgnlLrNa9fv+bq6koSYSfUJhc8UYnkcVGvxMG+lOvowyjV90xz\nioiKl2c2MFSkYgcKZQ0aQRpNjOLMEeNJ4hgIXswmY4xz71oWmIghN4tLP8lMU1ILHwyE5mRScqV1\nzICFVNjTOA4hmZkiic5SRjezciJxpvAI7mNmmo1O68c8L2aBgLRuDrJzx1H0HryooGVlNABbWKKS\nwH8aJ/wgHlERJeIU3slnIWCMyIMPoxdE1Dl8P9IfGw6JsuOUoA7jNOKnQPQK7wWR8SGKz0pI1EMf\ncU4UCl0SZMnja5wmXKKYqUybikAURE3kqWGzWqG1EXnlwcvzDNiiwATQAbwL+Hyr8nVJfZW56p+F\nMCTxSMIGKWgWIDNP9pHciHVCaEKa5k/qfpDocurUlM+y2q1I/Tv5fooSm0aKC8TIMI4cDgdub+7o\ne0kiTVIX1FbeG/04cnv/wO3DgX3Tcez+OJP/YxT2NzHF/5Gu8TSPYWU0k3vDw+GvAJldYOjHfxel\n/18K89chCoplsMlcWBT2vAtJZENjyhJbCmJuTC4sQkyUKOmL0USkB2fyDuu0+HKZx6aZWSJd+vjM\njIxrTeojCgl5UfJMRXnLKnX2riYjQo8/H6eJjpHVMMwFxFNMcCpkhODmWOAxiyTJhQfxCZuGgbHr\nhaFRrNisa5pWilrT5Oi6aRbLmX28UIyjYxwkTqn7gdU4zWp6RovfTy5q5OM6NxjN8+hzNLP85+sk\nSnlejIvfPrXO8u+nEprz6/UUcnMqOn8+UfncOp+LHX9eUR34Ntn5mZevCxs+xRN9ajvLdT73YC35\nlecozHPbPF/OP1tKTi+pX7likj0Y8qDPNJBMqcnQ8qcHVaaVQJ4Uz9Ep+epplTggBUMxrRPnCtPs\nV6ok0cjnlJv2Mw1vmlwKgBaUhxjFn+Zix9Cnqmrf07YNh30BMXJ1dcXlxQVtu6dtGzZ1TVFYxnHE\n9NJkXlcVVeIbyzWW4+r7nv1DxGrNq1ev0FYzTaKANiVof7vZ8OHDB/HfSApQbnLSX9N1NE0jydHQ\nybWWyzSfk0vNvy5xyadpYr/fc/HyBeM48vDwwN3tLeM4iht4WfDq3RfUVZ0oekJXE+TAstlsKMtF\nj4qbZrTr7uGB9x/ec3944OLlJW+/845qJao3TRNpuiZ5C7mFuk9k8h5blBSpSuycJFHGSmIKUJUl\nFxcX3N/f0zQNu+12fva8cxz3B7yxbC8v2K7WvHj5irKquf5wgzWG27tb2Ekl8E25ZVVVdF3HQyt9\nT85NbHcXXF7uWK/WbJJ4gNGKvu/pu07Qn0JEG6KKc6U/Ixwhnhp1nfNoE+TeWwshchynRe8NWG1Q\nRihMZSGJqYgEmLn52DkHwVAYK0pydY01lmkciTGw2+2wxsxI4+QmysqilMi1btdr6qLAKJG+3dRr\nXlxeskveTM6JcEKIwgFSxqKtlSCvKCnKCrShUEooUPGEjEQUidiWSsunoAaVOwqS+lg+5+Sr451L\n1C+TZNqTJHRcVIhTEhKiSCUrrRYUU1k1hESNUQgtilPFllmd0cxENp08oXIhxy/8tGKIyQfjFMRJ\nUSUhQxL2oX1AazkuFz2BQFRpvo1Ck5oFFxK6pZQce5gGpmHAjSPBO4w1WFtQaIVPyTgBdHRiHro/\n4CZH9IG+62ge9rTNkWmcmJTCliV+ivTdRNuKv5QL4PxJCrkfRwbnGCdB4l0IjONE23cM/SAJECLW\nIGM5iDy10nOiXRUF4xQYhhGCx08jhVGslcW5SB8dSmmqspB7gxbT0ETJzO8LpTQUKqELKcFR8oyY\nRFMTbb2FAAEz4AHz8yCppVI2zalZ/U3PYiz5vaWVwRolwg8ZNUpJd1kUjM5xOBz48OFaZOuTIIEp\nNEpbQowcmo6fvL/mJz95z23b86P7v8ax+3fmd1Fd/s/s1v8eqESlyjTM+G9wSnROy+T+NFr9VZzX\nSUxEi8CDMagYMLbApmROnleNd4FxFDXHvu+xaS6xifbnUzKpSap0c9GjmK+f9x6FepToyLMpohUZ\nBctomaDFCmNPAhCnJFISTs9cwyGmws602aBTL5BSKo2xE61cLY83MTNkPn1sczEMYmNwcXHBqq6I\nSlNXJWVhaY8dx2NSZwsRbVIyIVKR83b6fuDh4WG2nsjXc6b28biYmwu3coqnou88HyzikiVdd7n+\ncpuPPk+XbtkzdP675WfLvz8V/z0VHy5//1SStDz/z23/fF8gz8i3yc63yyeX8wf7PEk5X++p7+Cn\nQ3CeSzrOt//cPnOgkD/PDb55OW/8y5PH+fk+PuZTonN+ePP+1YmyMn/+xDXMK89VF20ETq/ruTpv\nrZ1Rm0wlmty4QJByVUex2ay5uLikazpuPlxzOOy5vr7GaHj16iW/+AvfARzX7yUAqS4vqcpK/E+c\nUHxsVYg/DdJ82fWSqIRpxGh48/qKly9fEIkcE8LiQ+Bid8GLqwv+v+9+lyIF1tbamRIkwVXkeNiz\n2W4kaEx9DSEExkEMOqOXap1diCEQRd2p6zqOTcMwDKyqms12x2azmZNBawvKomK3u+SrN+/YrtY4\nPzJMAy44jLcM/UDTdXR9x4/f/4QYA+++/IKyKiUY9J5hGumHQcxCtcIUFojsDweqas20k4SsXq+4\nurqiXq0ZJ5ccwBW2EFPE4/E492pBavCO8pItViUvLsWT59Wbd0QU+4cDD/cPfOjuYCeSz+W2pCxL\n8cJoGvFtAKqqpCzKpAYk1fghIVf5GcuJvrZGKuFaerwmNz0ywZwmB4wopSlTFdpag85NxPN4EoUz\nGW/MTfKZ8qaioDtVWZ3GXvpPIVXqEOPsH6UVSQa5ZL1asVqvKbUC7zEK+WxVSzV7GBNVyWGMFapM\nVWHLEm0LQXFIzd0qU8Vk0WluekQbmk8sS9Em2CSN2yXFDSUISe650zpL5KbxPTdqqJn9EUnUzHQ8\naVKQb5I55nLeCCHOx5YRo4x4ndNCMiSk5nlmMQdxSrpUFM8TgiAWOaiWa3KiFYUYiEGa+/M4JYJy\nI2qa0N6Lap4PqDgRncMNA67rmcaBMAlV9eH+ATeJb1PfDxwPR/q+l+TBVhRBMwyOtpto2oHROYZJ\njDy7YaDpetp+oJ8m+lF8gSbvRazASYGnqldMLqFNIUlBxzAbjsYYKIylHxx1aSk0FFqzXVcMSb67\ntCLy4IJch+gjaqYWSyLlAihEKtvq3GciQXlMfScSZZ/+nKhPai52zUEcOVk6rTv7paVKvbwDZPwR\nk7hFSq6VFsSu6wZubm65vb0lorGFpSgSjVNpmrbj5u6O99e33D3sObg//SjRAejHP0Vd/RqF/a8E\nbbSWorQEBo4HPlq0PkoSnhN3UqN/SH2wMWKSX1we296LeEJ+yAorrAOl1Tz3ZLQlK+ehFIW2iAhm\nTKp3aqbwGq0TwnqimmZ+xRwMxzjLVsf4WOAn02yXcUIWFyjSdc77ytucjbv1Qq0xjUmt5Jhyj6ub\nJvHc2QkF12gojcYaLaI6vaiu6UxN1YaAoIHaGKFjOpfEfMQkVie64Hkc8hRasvz3U4jJcwnK+SLn\npon6RJ07v255vaeSpOVxnHqUP/7dcnkK+fnU8nWK74938LU3/Qdy+TbZ+X1azrP05f9/3YfyfCA8\n99tPbeu5AfEcyrM8Rq01q9Vq7tXJn8fFi0VeSh/vYwkLZ67x547vfNA/9f2nzisiFLXVasVqtZor\nO1keOSc9QgEiNe+GdD5SI5aenDWb7RpjNMfDgf3+nlcvL/jDv/KHePP6it/5/vc4Hg/UZcG7t6+5\nvLikKmvxXRkGyrKiKksJNCbp7RjGUWhF1rDdbimrkq7riFF6SrQxXFy+5NXVK74bv8tmveXy4hJr\nLS0i3wqiJNQ13WyeRjzB8SFIQGyNoShLiroCrenGgWmcZolPIFFuXGKOSDNlDJFxnAgB3rx+w6/8\nyj+MH0buHm7wBAwW5yWoOjZH9ocDXd9xcbljd7HDefGfGMeBthPkSWtJXIzVBOfpe/kuAMemZbXe\n8O6LL1ivNzTX1/TJQ0cpxcP+nuvra1E8M6Jwp5Ly1Xq9pthKc/1ms6Gwlqbt6YeetmlofANAYQ11\nWaEionbXNATnRJa5KCAG2rbh4f4eENU0vMPaLM0qbvBlSrKUlgQoy5mHRLvxTmgaIQSm0c1iGfYs\npBcwMlcUNT4oyLKwQFmIsl+mUzrviE6CbmMLxmGc+5AAqqpOMq3lbO6XUdbCpMBDK/qhlx6WFPQV\ndc1qLcIEZV1jbAlai4QuwpN3PkhwGuPsQi/ISUpgckYSs5R0mkPymGROfaQPwug5WM00j5BXDOkq\npSAVlftuhLqa1d5Uoq4sAyZgNkaUhOc8CVrI5JKDZnUKnjlNYadiSw72RJRi9u6JZwgzgknEKApq\nOXEIwROcp3ATOnhMkO+cd4ze4YaJIaNzw4CfhJ5zfycUTe89wzDSdf3sYeSLgOomQYiPR5q2oxtH\nDk1DN4z040A3jvTjxOCcjMWU6DjnUNqw3m1Z1zVuGPFjpHN/GBVv0OpHhCgCAc6JzPI0OSqrWZWW\ni80GHxVN1+OsRa9X+KiYJi+FnqwoqJZCEYJu4f3sa6NJnjsI3S4iiazJ94PF8zHf75yonJIgneiJ\ncxKuVFLDjLNYjYpqfidk9CWEyDHR15qmZbu7pFqvqOoVAc2xbbnf77l7eEimlYYx/CpPLaP7F6ir\nv4E2hnpdi7Lh9m/xcP8jnPvy0bpl+euJbndKuHOS4xKa7QVqO3umEyXSWopkAkzMRYCTwmEIzApp\nWovkQEi9boWxs/qgSKLHee7K/Vchj20tlFKpKcj4y2IFMv5VHijzuWXRkbIsJZmuKlarVeolSwiP\nNkR96o09CYMwF0RCSnamccI7zzQOECJFIYIYIXrc5BNibFHGpvlM+soioI3MONPkUgHq8TO1HOPn\nheblnPHUd0vUZ7nu55bPM12e/s1T/37umM+P5yk06jyJWm7nqXjqueP6eUV3vk12fh+X84fqU8H6\n10Vglr/9WRKpzy355ZEd7Jf7zl4C55PAcqCdQ6dPqYd841JBXMoZPPHbFPiv1+tZbSxXwPL5ZBpN\nXStgYJrGxCmGaRJTOAlcReoyy/hebHe8ffWSaZSAOYbAm9dX/MJ3vuTNm9coBV3bMQwDuwt5Ee+7\nA0MvaEtd1xRasVqtqJIi2/F4ZBzH5BtToRAKVdM0fOfdF+wuLsAHhlYCVZcN69JxAfO9KGxBvVqJ\n0pox2LIAYxjTS61rW6ZBDDBXdQ3Ozz4czonk59RFjocjIXi+fPOWV1ev+PEPfkjb9XRjj1LSL9B1\nHV0viYWxlhdXV7x++5qubQnBz9/56NE2B9wGZWC9qalXK5z3tG03By3H5sjN3S1N01CW0qfSNA2H\nw56+H9is13B5idaKuq6FelAIvevu9pa7+z1t19G1DVUtfS2AiEZUJWPfM3Y9fduirRVUx1qCcxwe\nHrj+IOsfD0fWlcdaaT6eJieyp8aAEr+LGCPjOBBiCp61PiU604RznjK5dufYQJlMkYqzw30MER+c\nIDzpfpZVPdMqJCCS+1dXFUVRzFX+MSkJZpn1LKebRQ+sNVTZ/NQHJucpC6EHVqsV682W7cUl9Wqd\nqGtaekli6v9ISQ/xlDCcxruZn0OAGFTql0v0sIzC5LlAS9VVoWdp4piSidw/k7MnhZr7dQLiN7Os\n4Od9zp+dIzbpu9wHsKzgZm8XdYYiaKVQkUUAduoZlG2lownLz9N8FPxckQ7OQQzJN8bjx5E49Ggn\nQec0jmK4O01Mw8TY91KBHga88+z3e/aHYwpyQyocTEQibnJ0amL0gbZtORwbmr6jHwb2TUs/DvRO\nUBwxvwzSSA9JPjxKtd8YorW0+3+c37n+yzj/y4BnVf73XO3+Q5SeCHhimFCpgV1pWKeEdxg9Vhuh\nPRqTeigX/jpKpWRYIX1OohDnTaYF6USDBJT0qcSU35pkSLpMhjOamINapSCm9TKtVaUES2sDKs7U\nxpxohygSwBqFJ3JsW5q2EXqc1hRFiTKWvu24e3jg7uGBYZyoViuKesXx/sfc7j9+3Rj9fZRS1FXJ\n5e6C9Ub6KH/pF/4sN3f/MYfDP4O1P2C1+s8J/n/BB7A2oU7qhNTnY8+BdE5irNHYjOakZyo/50pp\ngtLpPJMy3YxWyhXIHjqKYr4nWYp9TvxzUu+9JIiceuJIaPIp/kgiHjCLT+RtZuGV0hbU9ZppSvfd\np2uvDUqnHj4jgh/ZyDRGkSUnFQzGYaLvR7A9pixTL2yJUUokzpURFEcL+ozShNS/lBOfJfJlU+Fo\nGa8smSrLovJTzJnngvvnEqL8XUiqmefrfJ3lU2jSU58vE7RzlOib7vv5/Xwcd/48Ld8mOz/D8tRN\n/xRq8txnTw2w5ba+bjZ9nnR8at9P/Xa5fvar2e12NE3z6FgztWcJVS/3n7dxmjyePq7njl828On1\nZFNn58npuJf0u9xHNDcsJjEC2VZgGJK869hzPO4FJTgcMUrx8vKCL96+4Zd+8SsO+wd+57f/Lvv7\nO3brNd/58ku+ePeO3XpD27Qcjod5+8fjkfcf3nN9c4MtCl6/foXVUiV1bqLr2jmJHIaBQORw2HNz\ne81+f5CXQ1QSuKTKrJtEeW2327HdbhmdVHkBLjZbXl1did+PFjO4th8YhpZp8rP0sZ8cZVlitoqx\nH4W+po0gUJPQ7cqy4s3bd4zjyP3tHYeHA2OUXp22PbI/7nFOOPSXL17w1Vff4e3bt1y/fz+bdU7T\nKIGfFqM5DZii4OLFay4uXnJ3fy+qZcDt7T3HtuX69gbvPS9evGCz2XA4HFLFWDjrhbVEH1itVnKN\nh4H7+ztpvp4cEUVVrXjz6jWDkpdxmRSzxmlk6Hu8c1J5TCat49DTtB3X1xJgj+PApgoYXeDTC91H\nQXKMLVODv2dM1ENllKhRoRcVNHkeJQCUZ7QwJlVmA9PosVb6flCKoihZ1QZ4SPdiWbUVZb66rimM\nFbGHpCBmMnJjkp8Jau4BqmxBZQ3aKHEntwXb3Y7tbsd6vaXerFnvtpiiOJmH5r4DpMJsSJV1Pk4k\nApyq8VqjokaFQFD59Z6oKcsxmkyBY+QUkKYCxkxTnSWkJRAJOszUWbVoHp7HfDz122lrEt1Qi5hC\nEI+TZRJjjfSJzfNTmkZyz5/3Hq8CMaq5ETzNYIiHThQkawoELYaI0zgSnEPHKMga0nA+tT30HcpN\nJ/rsIJ5Qbpxom4794UDbiIR007T00whK43yg70e6UYQx+n7koXc0/UDTtBybVhDb4BidYwpB0Ljg\n8ck803mPKQtsUWMqCTSjNjQ9fP9HfwUf3qSraOjGf5v75re43P4lkdYOgaKQXi6RI08UqaJIyHkt\n84iKGKPmcSL9P2HRGwEoZhXIGb/RGuaAOSVJMRDjoidCdJFTL5Yk15FEqVwge4vUekaHlsapISqU\n0cSg8CHSDz0ueMqyQhcWHwLH/Z73Nzdc39zRDyO2LNiuX8j42v6v/OT232eavpoPzej3VMWvE2NM\n78kN2+0Gtfc8qN/kizd/nrevFePoaduedpCezGhLSchURCclxcJYiiKJjiS1U4Ukf4kNjQ+OYTqh\nxNbadP3CjOhkimmEWYY8+1mx6Es9qRTmqybqglon0SGtZrppLi7k9Zey38ttuJRcGCNzTlmWHI8N\nbvLzWAZOlL8QGMcwi49oJQmQVprgHH3Toq1iXVhWVclmVVMVxWniIPXaEufCEfEUFzxCZxbFiyUa\nvBRjes7L5qkE4vz7c8Rkif4oHq+/XJ6L1577/lNI1Of28dx6X6eQPm+Lk2roz+PybbLz92H5vYQB\nn3qYnxtA3zQj32w2vHjxgpubm5PUrNZPDtI8ET5VKfncoH7q2J7IZR6t93iCyS+BJZ3h1F+UJ/lM\n/RHzM5WCz0qqj27CKE3fdRzUPePQs1pVXO4uefv2NZeXl/yd3/zb/NZv/V2a5sDLFxfsdhsuLnaC\n0uwP+MlRlyJd/L3vfY8f/fBH/PCHP+DqxUsuL7boGHFjT9McAWnezup2KkLXttzc3c5NpMejJA5D\nonZl1a66rjHWEkahUuUA/nJ3QVmWeOdompbD8cj19TVBgbWX+HCg61oKpVnZknK9ZrXZEGMUk7Zx\nwPvAyxcv2e12/Pi3f8Bh30hPSFkyjiPHY2QaJmm0D4FVVbFbbyBIY+g0TdI07USdSptCKnIx4scx\neT6Ir4dUYhWHRqR0Y4jzM7fb7bi/v8c5x3pVoxQcj0cIMZlCioHjNE2M/SDBWSkGrHVdooYU6HjH\n0HW0xyN9L6IDq7pO1LZI17YcHh5oD9JUnBMI6RHSiWomXhhFIejPuDAyDSFKxVJJBK91PjaND+J4\nD8xJSEThnVAry9SbI4pv8nyHRC8UNFQSvSq5iQcnPhIskEprDWVZsapX1HVNWZWUtqCwFltYSiNj\ncnex4+LygtV6Q71aU62EKhdVxAWP0kKR1LbAKo8yKdCPT43lhHVEaX5mEVh8zC+Pc/+PJDWJ2pRy\nm9xrEIiPPLSUUlhTEnFzdf98Hslz0lwN10/Pb8vf5Ur1jPYgEsc56PLeE1KQHfLcqkw6WKETSgN+\nIIZJZKKdQ3kvcXmUJGtqOoZjg3YOqxRKGQorSSGMDMNEO4w8HBr2+wP9MND2gwiAaEFkj20nMuyD\neDrdtSPDJL03wzQyTKMknUVqdDdGks50fcZmxATLxbaem8QBjoc/tkh0Tks//Rku+Usi4hC8GCFH\nT2kqSR5gTnSMEYGYTH1SSoEPuBiTDPZjL7ald4uwCJeU6YzEZDzm/P6lAoI6/WP5nJ3ee4t7mwoN\nEUERbeobmYZxlsE3RQla8XDYc30rPTpN14uU/KrGFCLesbvw/BP/6J/jt3/3z9J2/xh19V1eXv5V\nuvYGrQ1lUVCXFevVCmLg/vY+9YtGYlCYGCmNFkEI78R7Scs10EVBvfwbfAAAIABJREFUaQuqOnvZ\nScITRFpP/oAUU9Syd0bQUu+WqndZPCik4B0yXc47n0ijMk9Zk7zB5j4zSTQFnRF57iVyJuP944Rg\nHlvp/uTCACi8E7Q35ow3FU+0VmALMc5N7y+tRDWtKiq8n6TotipQqYBQJWRbay0y5sHLvJKLQijE\njDklvqnoOMcii2P9VBz0KTTnOdbM82yafN7fLn8Qlm+Tnb9Hy+cSnE9l1M99fv7ZcvJ/6v+fyvCf\ngkIzspP7IbJJZ4a+8yR48hE5bTcnPI85uadk6DGVb/7px8cYFhXfvJcEoS/OOP3m8baWL9qc8GSE\nJ1dxQoC6rigLi6ImBGnQH4eeNkplbLvZcPXyBXVV07UNP/zd32XsB6zKfiMTpTXzCz8jXcfjkWF0\ntF1HjLBar9hstvixZ+iOjMPI5eUlEBn6HqXkmnrn6dqeL7/4DlW9YmhFcrpr2xRsFxhrU6NmR4zi\nkVPVtXgJac04DLRNw+3dPde3t3Rtx/ZiNzdt9l2PrVaU6xKLZpommuOBIXhUWbC7fMHFxSVDP/KT\nn7xnchPb3QZbWfZ+j0FTWouyhg5RexOPnZHDfo/SEvBJvChyp9YYxn7geDyyezGi7JAST3kmhmHA\nB09RFlRVhS0KfBBjz77v2W22KKXoO0Fm1us1WhsxW42RqXBUVsQW6npFSChYfp6m1EcEUXpi6pqy\nKJgml3qy9jh3BUgTsEnVS50q2cIO8RR1NTcHnyrHuTqaaSRxfsHnABpIfRfSaFuWpVDTkghBjEJT\nmsdFgMl7tIrUq5LNeo21BYemxWfaYpH7z7IfjJlFJiIxKYRpirpis1qz3W7SdRVUShclRRR3+5gC\nIGkeR8w8F1VSlaqnwPycL6lhMZwqtHPRYw6Q4nx94BQUCZpyQr5OEa1UuzPdxZwFv+fBihh1nqrZ\ncoxZ3SlJKedEKSpJUnJyloCDpfdLbvhGp0ZyL5L2iiy2oGZ0wrkA0aO9+OIE5xlTr44fRiyI2l2q\nanvnGH3g2PXc7w/cPuy5PxxpB1FI63zg4Sj9N8eu5+F45Ni2STZ65GGQ5CYXc6ZkZGvKApWtAIKm\nSKp07dhjrGazkR5G7wWhRLc8tRgzUNUlfhrQWIKfcB5iLAQpmEaCr5imkV4FqAqMKgnhpMCVixxz\nE1Sa20jBtFKJaqmt0KUAkifXKanmJD3+6L5rol7ch7OkGtL9RBGNTgWzmNZP9yDJmltb4GMU+em7\nBz7c3tH0AyQfrgj044jxkaAVtnjPu1f/Cd55QWGUQsdVSso1RsF2VfPy8oLoPd/73m/TNh3BhYSq\n/PO0418kxH+Iwv5f7Db/GcbcEIPH+RE9CtUry0GTrksW4RBBiMcMCkEQwGkZR3I5FFFksxLSq0/j\ndPbhURQ29VF6l+S7tfReBY9OtGhjBdlZIiSn/Z/uy/x8J9qaTmi+UmouCKGE3mhCSkC8oECZ9qu1\nRludFFMdfT+ynoReraJQ7KqqpDCWdpwIPqDsguWhlMBGMRFl0xyTkz1lPqa8ngQeHivCnT93ef2n\nYqXnFpknTgqDT20jf/bc7z+1/eeO81PrfhOE58nt/ByjOvBtsvNTLZ9DSL4pgrJcviki86kH+Py3\n3wRdyZXjJU0kTw7Lga6krPIRinN+TqfJWWgsQluBZysfuZK6PKZH5/BEEJSq0OM4zv06y2PNEx9I\nMmWMBLNVVQKRaZSm4RgCKiqKqsZaQ991/M73v0/THLDWEEqhEATniEEMzMqyAuUZncd7hzHSOxRT\nj4y1Bj9JhVMEExRleqnmRMx7CZ6//OJLrLEcJ1HjaY8Nk5uoSmkiH8aR4/FIWVVsNhtW9YqyLBn6\nnuPhwMP9PfcPe5phoKoqobwlTnVRFKzXYrYWRsf93R23hz3RWnYvr1jVK6w2XF/f0DQNlZbm1uCk\n0hu8p6oqQpIRngbpmRl6UQ0qrYUo8tqmsJRFgUbhxomh6xnHCWWHxPGWhu2Q7ndO5qZp5OF+ekSf\nzPcuG89VZYU1sn0fI5vtjssXL4XzPQplDUClar5Wcr1Xq5rNRvqm3LFhTDLTkVMTbpY1lQZo8Vix\npSCdLqSem/SftWJDH6OakQqfqso5EQAJdJ3TWFPOBqBlURAWNEVI5o9OgsbNpuby8pKLy0u8E4ly\nSeDVnOycI6chRKGheU+R3OfrqsIYi3iwOKKaKKMouykjUtoqFTDC2VgV2tZJrdDo5Xfh8VjMCYtS\nQm0jN+9HCTKJc8EiRFHwOl/yJ1k84HHh5FRMgSwZf+qxWSI9y/liMUskhCEFxgkuWKJSUgXOMtLM\nMsryfap0o1ERVEiGpJMjODEI9aP07gTvsFFMH3s3MY0jbZd8oh72POz33D/sOTQNwzThQuDQdLy/\nvePh2HDoepqupx/HJLkNk5FG8pjQuphiKa//CPeHX2OaNtSr/4mL3f9NWZUUbTP3KErgOTGOA5X9\nfyiK32Sa/pFH1/71y/+WorBSfLHS/2KNRhuVlOeCoJxOYVTA6ohT4KLc08lNTMl3RhKWfP1FTVGQ\ns4jXEBJdUVBfoWMlh9wkMKDnBFk+k+RXmuDUo+deAktJyqVvI4sbxDkZVjnRJom9KOnP2zct+6Zl\nGEZsUVDWNWVVo4sijQuNJpJTrxgFgVytZM4VzyyLRsx7v/zyC6w2vP/xT+ibDhcC0/RP8dD9TbIk\ntR//CJP/Vb58/avEMOGmkChgNm1fimdL5VM1X6dE2dIn9bUlbWtGL+VgZx8iGb8GpU7jqCwKMTfW\nco8VUtDMXl3W2JMgAcyIXd7Wo3EbY1I5ddRVRVlWlGU5z/MRoa+ZRKuL1qITvTyGQPCBqHPhRJRD\nvXNM04gy0q+zTsJDh8EzhSiC5VpLX998LVJOdhbnZPQrHyvpXM+lpPO1XhZml/Prp5Cf823I0/bT\nNfR/DmHKf58XifP/L5+Hb7p8MiFTv7fMpL+Xy7fJzh+A5Tmk5VPL+eBbbudzCM4y6TmvViz/PzfR\nD8OQPBMe69SfH8fzcO5pv4+OLaExM8Xk0cCVyet8YJ0G+hOVEsWsVJVlpk8Nn2oRJAXGMKIHnQJH\n6d8Y+p5hGISfrxROG7qu4+bmmuP+gSxaIKbhEnBMzjGNo6h3aUtgxCjNar2h63pMQi+myTGO0+we\nfx64ibGomHy+fPGC/X4vjf7dIF4XKrJer8Uo1Dm6rscm/nxVCQXi2By5ub7h7u6ObhiwVcVut+Pi\n4oK7+3tRMFOa3WpNUZT0w8Tx2EjitNnMVa6ua3n/4/fpRS4BedO3tMeGECKFLWm7RiqBPiSp5hUq\ngpsm6S1CYW2BNRbvRFJaKyUIiylEISolL9paTArey7JgnCaaQ4NzjtVqBST1odR023WdVC3rEmMN\nFUl2ua45HJtZKQ2Yuf3WWsqywDmhm1S1qAUpJdX7vDjvcN5RaKFMkOSmbVmx3qxpmm5OOMSRvSAq\nhQ+Px925r4L4yJyooGUyOfUu0zxkXTd5pkl+X9c1L1++ZLvdsn94EDRMsZBv1mgtNLccFMUgTd86\n/f/yxe6cT8kIc7KEEdNQYwUdCoGPxngek0aLNLE/e5EqpZ6mkKnU/JypboghIkqJTLEKM6d9rsby\nGGFevtiXRRP5LDxaB/X0iz/PFzxVpCF+tE8fJsQE8dSfmMer1UnGOEoCG5wjTo7oHGGShGcaBrxz\nqAjNNHDsO45HoWoeDkcR3mgajk1D24tU9DEpq13f3XHoe0YfGH3AxZRkVZbNumaYpKoto0EzuT/B\nT37wXxOjNHc0zZ8n8l/wiy/+GkVZQnru+r6bjYTrsuSXv/Pn+PGH/5Rj+y9h9A1XL36dt6//G4Ze\nrpfRCmMKCiMUsKJIoh6FxWpJfoL3TNOA9mpOpiY3ESKSIMVEcVsY0RIjXimc1nMyJHWtRf/O3Ds2\npzsyfxs9923l58AYPTfWE05JK8l7Tc/7OJnEgvRJXl9fsz+2RCMmvLZaUdY1RV1RlBXaiv+PCFCI\nCMVoHHVVs9vtxOvGO3JfnbWGV6+uiDEm418pEHTTX+Dce8f7P0Q//uusV3+T4AMBPyc3GRlVC0EM\nv0i6hWr5GOXJyf5cREzshHwts2gJxLnYZguLnVLPn1JzY79K52Ks9NDkZX6Xno2xiMxv0zjiqgq9\nWolCZF3Ttl0q4iVauRaDZGs1IRV9vJOCYR6fMUiSFkPAT45QOKwpWK83bDZrzKEjJkl6nZO9dCB5\nxhFmyOk58c7Pan6fioWWhZ7zdb9ukD9vj2zY+3Hi8hwr53wb58e2vBf5e3X2LCy38XWP+VPH81SM\n+fO4fJvs/BTL14Eel9WA8+9+r47hqW0+RkKWDWUn/khcRBZ5biS9dLJ6TW6o3e/3DINUyZd8+uW/\nExH+ycF8fj2yFHWKNeY+mzjLU58m+BQmnQ4/Lr+PcxE57z8jTFmQYG6mzGe/mLi9D0yTpyh8UoxJ\n1bsoVSKlFZMbedg/MA4dY99RFAXj2IsnQhI5mMaRQ2jYbLZzAFrWa168fEnb/lBemEoxTAN93+GD\nx5pUrQ4xVfb9/FL4pbdfEoL0kgyzV4A7VfKNkcbj1FOhjSgjDeNE07Tc3u952DcYq7lcr7l6+YLd\ndiP0BBWJ3mOKAoxiCJ5+GuZjKrTCDT37w5Fmf8/aFmgVaYeO/fFAN/QpwBcVNI3QKypbUtuSvusY\np5G+61FaU1aiMDdOA1OIVOsNLkbiNDJ5SXZG5yiUpqxEcrkqapHcbTpRmKtqtNIiR+o9IQamQZLL\nurJopbFJ+1f6mzrpzUmFR2sNJmiMNZRlMdMsClskIQtRKsqPnF/0pmmtwWiMUhRlKb4imaqTnl1j\nNB5BMHKVlfQSlvj6HfBbAnaok8eE9x6f6G4S4Mh+p2miHzy77ZaXL1/y4vIFxhhJ4LzDGgtGpz6Y\nOF9nmygpLihKK94iSoFzk1T0p0Eah6ua9WrFerPBlhUuRkTa16JNQS7YZnUtKUbo1PhvZrrYSbJd\nJyU4SXxDzAlMqsgrJYymkM02E2ibAaA0gNX80lYzEjfPYTHO84ROrsEyduI8byitMMqIcWVKrgDU\nHPsJIqfT/KGSkaYLXqrKc/Ag6IXzglD4hGyRAman5LkngBtHdIjgwqy+1ncdXdMw9kLVvO+O7Jsj\nx2PDw+FA2yYFtbZlf2xoup5j23F/OBK0ph1HphCIShMLg0Yl41fDbndBPY4cm0ZMjLXhbv8fzYlO\nXu5u/gN+8Rd+g6q6Y+h7+r7DTRNd28r8VG1Yl/dsVn+BtuvxIVCWFTHWSfFL5j9jkslo8t8qylL8\naKzByGSJcyElupHJpbk0JcYkbC96katQAFHhdES7gNZBnjudqVcJgcmXXGuUkiIS2pB4S3J7yShi\nkiQH4qyOKG8+k94gSieYSWu0tbggdMHru3uGKbC9fEFRrzG2RGmD0WkuqurZV8toi0KLeIGxlEkl\nLMbANI0Ya4lRo7UlG/CK0ltBVF/w1BLCO0E7Yja/LbCFqAVGH6TwMo3pfeXmpGH2KyIK1Qw5vZCe\nXZBeRempC3PSRfq1XG9BUxSn/qeQlOzyH41IgmfyuCRUELVJoiZIEpuobi7K/CxqoZa6rpJAyoh3\ngpwpxay4N1tBpH8HwEcgKSaGKIbT1gdMqVlXJZu6pLaKfvCo4FDRzOM7TRxEz+KdL8+eC2mW1npG\njef4KeZiS+7RO8U4H6Mk8VEc8aklJBrtR8uimDsXez6D4Dz1+Ueb5fmk6UkG0CcK06cruDje9PHP\na8LzbbLze7R8irq1/PdTiMqntpGXJSqx5JouB6NWZ9ByhvVzZgHMdOBlFTpm+cukvpKrJVEcjafp\nlDzkfS8bF5VWj6rISxg45v3n6VMB+PzOknNAAjfiKZH56NosEjeVHdRzokSQ/6JPsrwnIQLhAHvE\n8yFVqFNfg1IG76A9dqjoRGHIFqzqSvpfppFje2CcCt69e4ufBvqpI/YKXQgaMQwjYYiURY1HMQwj\nZb1Ba8P1zQ2XLy4oViVDOzEFlxqKC0DRHI8cDw1dJ34adV3z7s07rj/c0LW9OKmHrMxjBDHabXDe\ns9qupcFWGUxZcexH7g8tt4eGfpx4udpx9eKSN69eoY2GzYaHuzuRXF2LEMCgA6HUlLFkXZXUGmLX\n0Dctm0JRWUXwLYe2Yd8e8XhWVYVWEMJEaS3b1YpVUfz/7L15rGXpet71+4Y17eHsc6qqu6uH2+2+\ntq+HEMeKlZsZEjlkEEQiErFACUOIQAniP4QFQgJEBCFSADNFAZGQSIBCCEKCQKTgTGACCRCIgdiO\nnXv7dt/uGs+0pzV9A3+837f2PqdOVXdfWyIXeknVXXXO2nuvtfY3vO/7PO/zEIeRLqEq7X7PyWpF\nWTbSXN2PdBFOFit0VeIijMFLdVrpVKGz1MWMylSMwaGCprbSlOqcox33ODcQCLjoGMNIk8ZQ7vvp\nE41iHAdslXyJrEEn1/KiKPDes9tt0doSokhJl2WJ6c10flVVFEm6PHt8eB/oB+mHattWGoiFrJYo\nGInakWlfvMF6/0e49Avgh7ja//vQ/EGK4hKlFMMwEJyflANREqS4IM3n7957l7cevslyNufi8pLn\nz87xMRkmFgVBi0y0lK6lKX7oOqyCcjGjKmqsUfixh+jxQ0coNGW5YHmylD4uLG50KGUI0RCjQVtR\nQ5p6kpJsdPZ56sdRqsZBkiClDMYKCua1n4wlD1VSIHhUokHlOWukWQiLyRM8rRXi4yM0ptzjI0WL\nXPWOMTL68cg53SR2k08VYaESJkMXCSqiFBdUkMRE1Kr8pIwmcywFgVE8cYZxxMeALSzaFngfRcrd\neXCBMDpqU0pgOo60uz3XV1dcJxRus9uy2V3T9h3t0LPd7dm0Hft+5HKz4Xy9Ydv1tIOjHRxFU2Pr\nWUJj4lHAL671JZqmmhEHh/JCn3p0i4oma3rJdvs2VfkBQx/ZbteTylfTNMwWM1ZNQ9u2jM4RxxFJ\nXEZ6N8jjzqpeKRD0EUYvctZF1Ogoz8rHSEDjg8c5iDFTr6zMMZUQxlGorcpYQjA4r9CjQheaGCwE\nC0FDgOACg3cUVY02JWhLVAVBFTfQGaVIhQbp1HFIMQcNViOqeDESoiaqiDIWWzX0QXG177nuAp3/\n1fh+QTH/GbwHHTwKT2UDyioqWxKNYawCZTngnOy/XddNwXqmynXdyOMnFzx+/JS+9xhbUpSGk/En\naPu/64XvqWr+EsaUk7CA0Snpj0GKFEPHOEih0SUfL9lvCxmPwUnBRSGqkDrio6Do0Q9oLeibMhFU\nwKXvtrSW6D19KwU2rYwkGNGLHw8QnQMvCoNmKjwYfFBEZfGZ2GcsUWuCioSk0KE0GKuT6AL0fUu7\nL2jqWuIGawg+YIxOVFxRHxx9IEQpMIHCRc3gAkUIlFrRWJgXimUFXetwHpSRvSNEEQEhjTe0Eiq1\nAj8OaCUMyCnlCxGjsiKmmcqqIR5iJXMUWyX8Ktc9pjXuVcXmVGJ54Xc3w7ybCMqr4sK7qGkTK+bF\nN75x7l3ve1TzvvN3x/eZC1LfrokOfJHsfEvHXajF8f9f9pqXcSxf9r7Hfz+GVfOGn382JTv65ZMi\nH9baG4nTZIwIE1UNZLHKUpL53KkCFML0O6UUhJufl68rHAU+L7vH46Tw09CvY0rKxF+eFqID596l\nJvZssjgePbccbJVlMdGuCA6lAtYaTk9WPHhwn65refpszzAMnK5WPHzjTWIYuD4/lyDNSGA7jAOz\nZsbV9TW2LOlGx3B5wXa/5+OPP+arv/yX8fTJY6IfqeoaN/TY9Nz2bct+37Lb7Qkhcv/+fVarFbvd\njt1O6IPHQhHNrMFHESUoyxKSEtByuaDvRjaba7a7LQrhlJ+enjJrGrb7HR988AGPnjyeJHYzMrVa\nrejbDq219DqVlfSzDKOgKM7RdUILK6yhTD01KEVRFhNvfb/f45xjGHpS7QzvHc4NRCKFFcqdLkr2\nXU+MQssrrGz2IfmpNE2DUloUqjoxqvPeU1ZVSi7lWsbR0fdC+4tG0fbiJm9SALJYLtKY0WLkOIgr\ned/37HaX7PY9RSH3enZ2Rq9WAMyaGVVVpWqlBF5RyYboQ0s/DNKTk9BP5xyjj0keNzUFA1fbH2P0\nfyfw1wBw/u/g+fW/z2r5Iwmt8+nn0kMy/ds5rC14482H3H/tNYZ2x9OnT1mvr9Fa36CsgSii9X2L\n73vc2LOYNRgtKFZhDE1ZMp/Pp3maE5Dgk1KSlyJBZMT7gDHSpJzpci/Myxingkmef/4I6cnz7LAu\nHUQaEv51C+090FdkHsfjN5/eQ6lD706e61qLRPRUwTW5UuuJR7056UHJs1XixO6cmOxKkUaCRu/z\nmjgSvcNqTZV6skJwjIP44wQvRpqFEjPNoevYrtdcnF9wcXEhyoIKhnHgerth0+7Zdz3r7YbL9ZqL\n6y3Xuz29D2ALtC1pbEFR1yhtRXFtGPHBp2KQII/7fYtJc2R5coIPnlnzU2x3v/zWOtlh7d9MporQ\nD4Ncc0IaFosFX3r7bdbX10QFV1drvA+yBhrxMMlKWU5JAlBoRWkkgYjlKCIISKwkho+C1OaVPqtg\nKnVYoydz1qDEmykekLlUYE9oaFrnwxHzIK//SsQNhJIUyLW5jAkqbcivkD0yElRqzk8y5tpo1vvv\n5oOLP4sL78El1I9+lq+8/Y/T1I9ww8jQi6BKVZZgDfuu5ZPHX+Hi+gepim/y4OzHccM4FVAg0rcd\nz5894+nzZ5xf/Xp2+9+ALdacLv9ztrsfZ9f9hnQnI6vVv0ZVfB03whjH5BukZE6G3K8ivV5A8n7L\n/TtJHMQHFJIjZoRCKY21KqkrSrFD6Gmyv5nJ8+rYiFfGWYgxIa7yUHOPZF6b8r4vZr+5P04KDiEE\nfEqoj/f0XCCVvUBUJk2MOH8zXvBJKpsjpOnYKFgpRWGl37SuKoxuGZxHBS/movEmbS3Bf5NkulaH\nAkxOmG/hJcCxJH3Ac/OQ+II7j9t029vH3VQz9QJSchdt7S5K2+33jvn3Lzn3s8RXd93T7dfcFpn6\ndjq+SHZ+nsedA+9zDIZXJUj5OCQz+sZCkF8/DcB48/y7jnEcJ3Qj9zLcFh2Q3hTpKzg7O+P8/HyS\n6zwOZqZ70Co5oN+8p5c9i7tkQz/fcfv+jisdAIGmEd+C3U7QhgmUTeVKbcXnQVybB7wTGdni4Zu8\n/vrr7HZbLi8v2W42KBTz+ZzV8jU+/NrX2KyvGAehhfjRsWcvgfY44kJk2G5xIbA8WfLue+/x5Mlj\n6UepKq6Cp03Xs96s8dETiCxPTnjzrbcmdbOrq2uMUpOhmkjHakbX4YeewTtCjMyXC17Xb6TEwVIl\nqsliscCYgqurNR99/CE/93M/J1SYkxNCCJyfn099LUUSoui6DhXl333fUxUWbbQEwzFgrfDQfeq/\nKYpiSvq8FyPNcbTMZnMWyxNCDOx2+6kvJXPb81guy4q6zL0Ge7quo6sqdrs96/Ua70cePnyICwGM\nZhwHnHdUTU1VVty7d49mPqPvB7pBDFNn87kE143IRNuklndcYfMZHTUGW4AazKRwJcICiV7oPaMT\naoY2BQHouj4F+zfVfaZITStQM3r3m18YtW3/Kxn8a7jxG2itaZoGa4QSOCb1OID333+fhw8fEkLg\n0ZMnPH7yhHF0zObSvzQMUqksjCQKfdcxdh2l0TRVLYl+UaJimBKWLFm+mM2oSnk2uX8sNzFPEsKp\nWpyfW/CHvhXvPZpbkrRHlLbbVNcQsmLai2pGSqlDUpnUF0XC+7BhT4Ii0QOBrMQlc13QBYmlhW6T\naYZeZMTSVxOIzuNGh0cxjh1uHFN1N60ZR8HdsN8Tx0ES7LpCI/PDBE9UQeg+6Wt3Q8tuv+H6+oKr\n6wvWmyt2eyleDG7k+WbN+dUV19drrhNtbdcPuBAwRYWtGkxRisy1toJEOM/YD4zeJzpQQVXXEmAa\nxWq1opnNuLq64p23/l3+5t/6xYQwm57tavVv4txTvI+UtmI0IxhDWZayTqR5m4tVIvoxHLzJSBQc\nJep7KEHFnT+MBZ3FBIj0o5vW5FzkcsGhgvQ2CuuAtAKLFEi4FeRlRkFWEjvKcFDKYEyBNdIfNxXs\nlCS2xNTBpG0ynRTqmc/eMgn9VEpTlwV1UfI3vvEHJdFJRzd8Nz/7zX+BL93/EbnK1DdSFgXRGj58\n9vu43v2u6fxvPv4pHp79vdSleKUZY6hnDU3d8LPf+Kc5v/7HpnMfqx/hjdXfz7z6V+jie8yav0Zd\nStFsGKRwk5Md7yXZEbNaNyWsQq89FDlyT4pU3A8ItzEaqxQGjTWKIVHLfHCUyghyk+bpMAwcjD3j\ndB+mLCiSKbIkIpk+d5daWSo8AIqDV1UeC9Za9rst4zgmwYNU8EiISlY/lGRI5ndeR0bXowc1oZLG\nGJaLOYvZnKrY0rtxGipyXSJyIUwWYXzEEA+JcEribogGHIVfh3vLPUDHyEiOtVRCtdUdr3s1mnIz\n0bn52l+IBOKuZOf4cz9LrHnXe951H9+OxxfJzrdw3EZpXvb72+e8bNC8bOK86jX53KmKwiG7v2ug\n3379VKUJx5XXQxXOFrLx1fXBo+G2kejhc168j9vXfYzy3DXxclDzyvtWt2q/t9aHfE3e+xS8quQH\nkZo107VqlEj4pkqnigHvhgnZslYCw9lsTtf1wrv2nrFPyjUKxnGYAoRmPqe7vqLd7yjrGXUzY/Qj\nJ6crLi4u6PueWV1SNxXWirzobrej7Tt8jDjvKaqSZj7n0aNHPHv2jBgcy9Mz5k0tnOtsHKk1u/0e\nE1LvDZLABi/eLcZalsslTdMwpCD6+nqNUprZbJ6QEzX1NYXUS3FcRSdG2RzLWaqo2dQzZBnHkXa/\nO9pA0kZfVxPScXZ2xmyxYN+2KL2evv9h6DGNnzYgYpw8hKIP9F3HVRQ52PX6SgLQJE9sjMEHg9aW\nslTM5jOKKieAnm7oQcFyuZR+hibTEqSXZ+gH2r6jH/pp2DiC9TGMAAAgAElEQVTvabuO9WbNbidy\nvG3b0xRjGueCPBS2oKobzi8vGYcxJQ8WYwpQGmsQj5PkPC5VzwFobg5QPNF3hBAmCkyuqObEczab\n8d6Xvo+6rnn0+BM++ugjttsttpCELJ+nFYSimCqDxogU96yZYY1JinEHT6KqalgslsznS4qiwruA\nG700Z1uLLUqR+425fyVVXVOFP6SoQimFsdKnkyuhx2ppst8e1phcsc3BAhx68m6vF/FoDIaY1dbC\n0e9DquYnNCgp48WI+D4poay4cST6MK2LBJFN9qMUNMbUByey05mmlQJ5N6KDxyiFDQEGQXLQGh0D\nynt8rvxvtrS7jqvLS66vr9nv9wzDSD+OtF3Hvt3z6PKaxxcXXF+v6fpBek+0xVYFRVlLooMS6XHl\nkvgDFKagtCV1XXNysmQ+n7Nbr6kr8f7SRpKI0+Xf4Nf8it/NNz/5u9nuDLb4r7DmL+OdoTAWW9mk\ncigocFEU9N3A06dP2bV7tts9XddPKLIx5uDtkgtSqWrvxpF+kPWPaEUVTuUihkq9MjKehR7lQKxp\np96O3DMhZq0q0SSTaWyitAYUOipIPYkmNbJL/4uZzicKShQCktib7I0ktM4Yo/TsKHkPZQymqOiG\nt9i2L9L/2vHXoWKNNaO0+CioSst2/CU3Eh0AF76Pzf73UOp/Vb6LEPHjwGjf5/z6H7lxbowN6/ZH\nee3kt2H1TyYfL6HRksadULATu4JwnOvldzmaL3FCY1TiGykl4iHWWEngE+KiUJOxaBZyOC5MHEf7\nucBZpHEiSaU87/Sxsudn5CS9l4riT6aT+l22SQBhkojamr8h9CHriCUmxFVBuqcIyLroRseoFUMv\n6pqmrKmrktmsoa4r9qPHqQNqGKPQY5VSUwFWHs+hxyYXcyRuIq15IrryAqp8a3zk1x4r1B1O/3xi\nAIfzP1ux+1XvxfG7pOu+jRD9fBKUz8Ng+tv5+CLZ+RaOu7LxTxsAr/r9qwbT8eJwFz3tBrVDmRde\nf1dylF933P9zw4ArndMnQ8uD9OqhcntczYW7p+xt9OY2Fe/zHNPCkCuERwt/zFcQAyF4uq6bIHNZ\n/AWdIC9wiLGjthZbFpiyxLuBuq6xWrPbJNWiqub119/g9PSMrut48uiRGFtyqPJYW1DPZxT7vfCL\ni4L5yVICdGt5/OQJ3jv6QShvJgkMdF0vrtNR+gCikk3//PycYRg4WS44OTmhKqwEZlpRNTW6MHRd\nx5hUc2KQhCGGQ8NnVQo1zCXzQe8D8/lC5LETTaBpGrTSbJLqGyHSVBVQpYquNPMOXYc2mvl8RlWW\nrK+vWa+vsVoa4r33lFac1rfbHTEEyqKkLAq6rhMEyMrmabRwtfMG3457+m7EGiNIhFGTyWrdNPR9\nz/V6LQZzST7ZWEv6Kun7AecDbSeS1sZaqqZmPDIwbPd74jqw2W6S2EZPRLPvOowPid4mDvUgTu8h\n5iZaKE1BVdVUTcOTZ89xzie5ZjF5jVFN1BiljNybGmiq/4y2/0dvjOHl/L/B+SeTKlums2XUFODt\nd97m4cM3OD+/4JNPPuH8/BzvHbaoyBTNwtpJCtcag9UGVYqULCEwdD0qeOZNzWKxYD6fM5s1VFUt\nakjeM3jPGKC0pVRzjSFGJmREIR4fIcvCEpOprfTBqTspaZI5BC8+KzEeFKSOEZlcULlRMFEHmoWs\nE2nTJtzY0CVJzgagh0KNRpq2g/OEUa7/UEV2QmvzIgkd3ADepX6UZLqYaG8xREoUhTISiA0jUSui\nEXEGP3r6bmC337Pb7ri8WvP8+XM2m60gZUrRjSPn12vW2zWPL695diVzLCL0WW0tyhQEJfN39C4V\nTiThLG3JoimYz+YsFnPqStDPYb9nPp9TVRWjcxRJjfHsfsf9+/8lF1cXXFxe0LZiSjybNWS57LKU\n7y14T9d2PNlt6YaB3W4/UZUmr6QYc5iMJzJEafa3CnSS3HdlQVUUWKOOhAZ0SnaD0D8xlOpg6JnX\nfWN0QhfMtKcI00Bk3kWUwMh8N4U07tsSbQumOr0yKXESQRmd5msW+oixl/fSR2IjCWk4W2mUcsR4\nM/zRaoNVA4XRMq+MoSpLLttfeeeeNPpfSVPKmpRFGtbXb3GMwORjcN9LXVlsEi9QSmTcC2uTomXy\no0kjXelUlsuB9Y04PBLxkoSEI1n4bLaMUE0zaqPgIAKQ9u1caJE+3dwnJ5L2k9KjyeuazCOX/MUk\nVpBrcU5U6oyWZzlRe8eRGCNlkvA+9uGKMSZpa0PQUpDJvkrHtFfvI8pJD27X9dTaUFgrptBVhd11\nOB+Iyie0JvfU5CTuqCg9FYUP3l8T2pPG+iGskvhCHz3246TzuLh7F4pzV5H7rjgsRkHo7kpIPi1x\nuivGU+nq7opLvxXk6GV0vC9obP8/O44TnpcN+k977fFx1yDK73WcGOTPy0afx7BxrrzeRp6Ok6Rc\nBc7VG5H7LSeO9TiO9EMvMqLJ0yTT3XKvx3GiI4u2vgENv2xy33XP+bid/Nw9oVK1akp4Emp7dGoO\nHvu+F4nhUoL/zDGeFv1ckU73Yo1luViIwtHFpchzGsOD+6cs5nO22y0ffPB1hn4P02Ylm7Yxhtl8\nRlR6QsJy8HB5eY4PjqurNWPXTot+34sK0uhGYkLSjLVEYLFYcHq6oqoqvBsYx0HMQ6tKErSiYL/d\n4IMo9gQfsFYoKn0/igzoODIYpuShaZopkC3L5DOTqrXbzVa8guxhw1JK4YNnu92ilUq0OM3lxTmb\nzYZZXTNWBWNhpPEYSSy894xupO8ETYkRmrqirGup1qVq/JjU49q2palqitN7E7VysVzQzKUPar/f\n03Zdum8rXhsh0I8OPYyUabM2VtzOUUJl2nctNLDZbOivHdfrNdvNRr7roqLtO0xKXIpKkkCAsqop\ny3ra8Jv5jPlsIdKvLm32OnHVD6yBCc3IP1gt/jnKMqI33w3AsvkznM7/MH3fT6ac4zhOiXkOat5/\n/336feTp06dT4it+V0zjlYmCaqjLCp0qwdHLuNIxYFRDmRCB2WxGVZUYrWUMtB1jVGhbSqKEmlzJ\nx2HAOSfc/mn9kSq7qEWVKLLv1k1kWXEIdg/V1pt9PPnn07pwtF7EFJTkDVtBQoRIAdvRepY9blIB\ng6ghCIqjUq+IikJtiV6arVVwRD8S3Yh341Rx7vtO5rtKruu6gNQM71Vi6JpIUJFhdHSDox89Y1T0\no6cbPa1LHjIE1tuWxxdXrLcbNv2A0xpdVRhTpHlgspc9zmv23XdB+CZ13aVmdcNituD+vTOWyxP8\nOHJ5ecU4DCjEgDYEx3w2p06B36gNi/lCxGRS4DefzfHOJ8NZCWLHIMaiYyf9Z33ybpr6wHKymZ6/\nqPV5dAjoKM/SjRY3FriqpCoEaVXJNwclfSfy8A4G1FoaSsS3JiEGkqykP1lZMvl6YUT4whj5o4xF\nKZPG11FFXBlJaPI4jX5KiGUMRVA56Y1EH3jtXuR73/vz/NQHv/HG7vLa4o9RFUl2WytKrbFasay/\nfsdeBMvmA04WM2zaP53zeP/XUQzEW1LTi+b/Yjmf0UdFPyT6ldboQhKW6AVNnwb7tJfnd4hkL7AY\nAzEF7qjcs5YSFKVR5L4aTwjSe6aTvHRIprrZYFsohiJDHb0IBwmymgQyDk9aUPajfR8Q9GUcKZIB\nabYiEMNjTVVWFLZI9xFzNH4jQM8UWp325WNJ+RyTDEMviph1SV1VNFUlxZhhBBVEbCBdM5PnmazL\nUd0VS6Thk1GqePwzuTI1/Z7pmvJ38ap47WV0tRdeczSOj1/zadS2V8aYdyQ6dyU8St3uWfr049s1\nycnHF8nOz+O4nfB8nte87N8vmyjHfy+Pmo77vqdtW+GoHx3HXhnHyU+uBq5Wq8nDo65rYoy0bct2\nu+V6LdV7kIbpuq5pUqUdmCrB+XN0csKeFs9bvH2OfncXvS/f9+1n+uKkV2lxV+QmTW5UZOQIKZhW\ntXivdE09wehZ3ajQQoVxzkMQI7V5I7z39XrNOI4sl0uM0njnWK/X7Pd76sLg0qZBQgCsMTTNDBci\nVS3u2ldrUUDabw2FNWyurnDDQFWYhPT0qaFfPIHm8zl1U3OyWkmfTl0xDD3bJP29XC5oFjOh6nhp\ntC8rqZraoyQl33vbdYQwpuSmJARBQEIMMJthjJildl1Hu2+TL4SeenJCCor2XUvdCG3Aez9tZs6a\ndO1WKvijE/8brelaCeD3+z0heMpKeohknIpaUN91bNcbvPfUyYAuUx+quqaZz5jN5zx6/Hi6L+f9\npGYXk1JYURSgNc0wJJ6+nLvb7+EMdt2esXXstlu6rhNKplb4EFAmUhUFaKG4AKxWpyyXJzjnqOqa\nhw8fMp/Pefz06ZRYxyimd8En3rxKhn9JJVC+E8fZ2b/M+2c9fAiL2R9gHN1UVb09v42Rn907u8df\n/+Apjx8/Zr/fo1I1WqUNOYaIdw6rC8rkfeK6TmiWwWNVoLIil22NEXWyGNFaqqeCYkBQmqKs0Toh\nGCFV972HGNC6EPngvEHrQ6/EARWO0xow0UNuiZXoLA2cKX435n5OdpiCu5zwHK8LSqlJ9ALkGaSy\naAqckspjzNlnSv5CJAZHGEX6Nic90QmlzTuHGwbaVoRIbHKOD6amV1GoicYQlMjx+xgZXcShiaYk\naE8wBcGWeDXQ+l68cq53PLva0LsRXdcs6llCuBSmsBhtCcD51Q/zzU/+RZx/gGLgwb0/yTuv/35Z\nY1WSwveOdr/j/PlT2r5lV5diZGxsUo+0jP0osuTa0pQVoxWZcqOk7yF6jx9HtBFfp3EY5E9C7XMP\nh1Jqoqx5N0rimZJaFwNtOOPp7vcyhh9gWf2fvHv2H7Oct5BVsEgiOTFOxS8fhPqX/Vq0Fhl4MbjM\nnR6STBstdEptLKgk42zsJDoQp4KaKPWlVPzgn8JhLOgYMDGgoiSrf+GvfoX/4sd/iPV2xg9+38/w\n9/zaP4brv8aHz34LWjkenv4p3jn9wxAriBKAGyWCDPfnf4nT+V/lavfVaVxac81X3vlPWDQLyiQY\nI8/8krfOfoyPL3/06Nw13/f+H6ayNXEQXzYfQkJODNFaBjVOvkJp4IPKlLG8H2a6eXq+h5MPa4ks\nEjLPQlZj00kK/HAIHTYhrFp6fHwq/E3F07S3TiF+KmIcKHBSYAk+TB5HIfW9OeeYNTNoGokvQmaH\nJJNTcgIhc1yQNM3gPCF4fDIijVEKmNl6oACqsqSpK0HJXI/SgnJplVCbvH7kZzhhHp/tkJfHCW3O\nzzjPBTgwVF5VxL3NlHnhc47O/2zF3rsTnZfFn5+l4Px5j88T6/7tdnyR7Py/cNw16G4jMcfHbfpX\nVVWcnor/xnq9nugwx+cdkB4ANdHUqrpidbLi/v373L9/j8ViKb4pCXbuum7a/HJVpSyFOy5uyPIZ\nuTqdk528MU6V3qM/+Z6O/8DNReHYJOt2cje9x7H0zlGVJf//+DNdQjTKoqAuS3rTEkOYGnPRZgqQ\notcUqU/HJad65xzGGK6urtBas96sWZ2cUBaa64tkGpie52w+p+ukQV4q5XB1eclut8P7kdfu3yM4\nh1FKApB4aOQcR8fp6ZlQ1qqK1emKq4xOdXsuLy5o93u6bo8tpQm2bXcorVieLDk9PcUaw5Mnz/j4\n448JLmJPC5zzxCD9Jaenp2w2G0F5BukLoWkkkUvVvKIsKKsSbQz90OG90AFDjCijU/KyYxz7qZE5\nq+x47+hbqRBba3HjyDgOtF0nz8TK97fb7eh96rHpOkF1mobFYsFqtcR7ETRw3mPLgrOzMzbbLW3X\nE5WmHwS1WiyX4pmihUYGKiE+shlluXGQzde5caIYKZ08dbTCFgW2sDg/TmPswf0HnMyfsd/vWa1W\nvP/++zTNjKfPn6fNL/WAHTTckY1QxqBJvHdrrVxHKkK4cSTqw8Z2LBCSCxgA19fXfPjhJ1xcXAhF\nMHHnlQKrJSCR/jNLYYxIq8aQaFgKjVAIbWHxPsgzrpuEzIkvUUiV9KxwhnfTLDJGFJvK1CdxAE5V\nqqwfz7uMtIr/TZgeSZ7zoI1F6/wzUVtKZ6VUJxzCkCNkOlNO4hS85Kot01pzY86jxDsnJnlpJJjy\nbmAcevzoyIIk3o3Sw+MSrS04vB9F2SkGQrQoXSakRxO1xqskj2801hSoosFhsNsO7I4x7th1I9fb\nPZfrHfshUM3mNMs5aJGk7/s+JbuWEB7yjW/+68RYpqdZ8uzid9KUP839kz/J0O+5voxsry+lAHV5\nTgCutGa/2wvq65fJGkCodkopCQpHUUXcIRTXkKmECT0cuh43jvgww/lfSlk8oak+kO8oRJwZGZWS\n5DB4dITAig93P4GL3wnAVf/38Xz/I3z1vd9CWQw4l/caM1GjsgGo8z5R2XITvVCYchw67QPaoBOK\nIyNDkpqQ5riKAt4ZbSfJdY3OaZAIiUR18NVRBqUif+GvfA+/7z/4rdOe8tHjX8FPfek+v+r7/2Ee\nfv1foq5naY4VEIqpiq8RHxsXPF/9jt/Fhxf/IBe7rzKvPua73vmTnDSfoExJWYoZclQlRkNl/whv\nPvjfuNr/Juazlq+89+cw5gkXlxrViYJY9NKgr5IymkqiF7LeTjnO0dw4LiAIEhLTXpynVEhrgyYj\nnvFGEUbFOPXfHCMVOSc4CAuALZLcvE7y72lCZyR2Sp5UFjeRgmcuhnnvxajVGOkf7TuMAmsO1HKf\nk51USDHWoHymqI5Jdl5NyoBi1BsoS8usqSgLK+tC8NiiFLTUpfUirW8kOuyUuNwqpuSnfBy7TGgx\nh/UoTAavR6jiK46XJSXHv5uQuc+YHL0qyXjVa24jOq86Pg9D6dvt+CLZ+QU4XpZV/0LCfjnBACZk\nR2udqudhorsQj8w/M/c0bYTy+kg/dKw314xuQD97ChzoX22q9ufm9svLywn5OZ6MNxAYlQwyw120\nlRefyV2T77NMrrxYZXj55vOdQjJUiFMQkA3MgNRjI6pEqGTGaMSjo7SW2WzGdivKMTn5y70/wXte\nf3CGcz3rFNzVdU1TN/Rtx/p6jRt6hr4X5aJhIDrHfrNhX1qaqqQorFx7BJtko511rFYrTk9PJ0ph\n1/d0+y1u6Gm7ls1uwzj2zBYzilooV7OmkQSpruj7lsePP+HRo0fcO70nqmxVhcJN46LrOrbbLRGY\nzxqW89kUkGf+NDBJng7jmBIFN5nLXl1dst/vqapCemymavBBBj2jTM4dVLHGcaBtW54/f46yDSjL\nOEi/T13X3Lt3jwcPHnB9veb8/IL1ZsO+a/nO7/ouikJ6dZRWuEGCtqZpEBqYIGRtJz5FSmv53jgI\nYuhE2WyaZkooxtGjjFBBq7pmGP2EtpzdO6MpFvS9CFMslydoLb1U3nlMqjor3LRRqeTEGWJM5qXl\nhIJ4n9WUItqmZ53+5DGqlaauRCHtp3/mp/nkk22iu4kohLVGxCmUxpTSl1MVJUZphq5Hp96PmFCl\n0haSVPcD+/2e5Wwu64IRCqTC4KMkJ8M4oIIENtL0rSbzU3UUGERuboSZYpPpM9MsvFXsOKwDAcEq\nDuIHt+d9Dkqygtz02eFmoSQGL708SMqUQmIIXnpxQpDPS2ICbhgJXuaxCl6at2OQeNka6qIEf1i7\nxhBw0WOVEgNNY7BFKVTJZLCplGax3zOMgeeX13T9yMXlmudXl1xcXrLveurFUoQclFyjH4UiaNFc\nbn/NlOgcHxfXv5HXTv4EwfVct9tpLZZnb2h3G9odQmXdb2WMRVD67ZTAPqNt97Tdnr4V1DWLWigF\nEQkm991v42LzY8R4AsDJ/M/wpdf/KbQaiKFg1JqQqH6KyFX3e6dEJx+t+x6ebH87p8v/9Mb3mZH/\nG4g/eawYoeopeS7xaP2X4FRPwyMnOuqQcUPUmETJIwJavmui0GNdjNigBHWN8pl/6sd/6IXn/HMf\nfTe/9Mu/hKr8mLoqJpsCheyFPhX2jNIUhQbl+Z7qj+PcH5X+ybrB6mRbmmh/1hpO5jPc0FPX/zff\nNf869x88YL5YsN+dMvYdF9c7oVomBEYS9qM5xbHk+1FPbN7PYerP8Ul0R8nEO1DaESlsrXQuR0z3\nnXt18phSSqHigX6WxVOqshJFNnOkuhhFeCIXUoEDqqYk6fTBoZysv4W1YKCqSumRVWoqNmqtIQQc\ncSoqCIV0kGkcDr16GW1yqaBbGE1TldSlweqIjwENUvhRIlQQ400K4O3j1QybeDRmX4xPjou4x6yZ\n49/n93xlDJjiiNsIzM/nOH717WvM7///xUTmsxxfJDvf4vGyAfMqWPNlgX6mheQemmMEJVeBs+Z8\n9tnYJRftTLnK75ch5ruuI5ttdl3H1dXVtIjclo6Fgzra5eUlq9WK+XxOURRcXV2x3W6p63paXIlM\nm9pdz+F40r0M8YEXqXfHCV4IYXK3R6kpoA3JdDO7aOvkeN+2LW0n/SDGiFHklAAZ4XmH4MEommbG\na/fvM6sblkvpc9hsNolmJoH+6kQUzvY7Ny3UMUZms4bLy2s219dJTvWSsqp5cO8+z549oUvXUxoj\nJmXOEZ3HIqZnTd3w4N4DVicrhn7k2bNn0m9CRFmTNhuhJzjn2O92RAQJWMylF+P5swsuLy8lqJ/N\nKKuSIqEv4zjy+PFjzs/Pafd7yqqaeh/2+33iV5fMZ3OqopQ+ojT+shTv+npNQGiOLinWlWXJvKkp\nCqGzZcRxPp9jCsu+axmGQaq1SrNer+m6Hk9kebJKiYC812q1omkaum7Ax8DV+pp91wqCc1T9tUnk\noKpqiqLg/PyC7a5lvdnQdh2z+WwaM2WRKubpM8T8LzfJaupaDEtJ1dSMwOQG277vWa/XfPLJJ4QQ\nePr0qSRAdYU2li6hqUYbIg6lpaelKioRCojQ71u6VkwBc/Wzrmuaqp4SaYViuVgI2gZ89OFHdF0j\nAXYKaowW4QORiAZbFpSFEfPBcYDgCc5RVnL/2VMlU1TLusKWJQrFODocAV1UVFWJsqXEjCohtEld\na0oWj+Zk7pERL54XDfaOkZYb8vIckhY510yBtw9C78rRU4we52UtMlonF/JUrT1yJD9Gl4FkpOim\n7zh6JxS2KIEfMRLGUSgyST1M60OTtklSu0opxljSx0Iqy0aaxbVVFJX01RFh6Hs2mzWb6ys2V5dc\nX5xz/uwpl1dX9MMgyWgE33dAII4jBkE+m8LQV+6F9RmgMB1nqwXOOXbbEa08pRXjVGsrum4QhNOL\nrWM/nvHJ5b9DO/46AGbl/8CDk38S2BDIvk0m0YdIBrkP+Ob6DxGpp89d734L19vfw1v3/hDBe8pZ\njXdG5g+Ri/777rzeIXwvRZGLJmb6u0qJjkKeb1EUaGuIKmF5WoRLjNIom40pJbmxJhvVyjjRxkyi\nDjInbEo4kxqfzwqCIiDhXES2L0UMcHE9u/PaTfEO81nFMHTM64q6Eu+1EDRUFj86uZ/CTCh8DsKL\nokDZ5DOnNRqPQTObVVh1StcPNPMZy1lDXRboUPPg7JT1TmTPQ9uhgmBXxMB+txN02hxoeYLUHO+j\nh4CVeGwszvSslVZopDgX0nzJqIhOvUV5TmdJ5zw/cwEGEJPYMRUO0udmvxuls5sYU4P9OA4UOcFV\najL3Lgvpsdms16hUWMsS1fn1MUpiVpYlPgrd2ns3WSJkkaRmGNBAXVUi3jGf0VRrdoMj+FFEMtSx\nF46MJ60NKib10RhvrG3iDxQn1PN23JTRrjglpupGvHIcBx6r2sr39WKcc9N246ZKbT5ehq68LG66\ncQ4vJjzHheob9/iKGPaua/h2T5K+SHa+hePTkInPk53ngZhpZjnIPA4ajhMRpRS73e4GAqGUmtCX\n21XW/P+YJvltmenjnx0P8ByMxhgn2lwOfne73SRdfFhsX5yEnwa75s+/CR/fTIhuVJOjrOpZm18l\nmkKW1jzoN0HXO/q+o64q6rpKxpIHKom2hn7oqcqCwhaQgu66rmnbls1my/n5OY8ePZqEGjabHVVR\nUJU1buxShWykazvC6AjAfrMhOM9iuaSyBa+d3WPe1FTWSOULj0G8NFSEWdMwn80YBkHRchKag4Sy\nzB470qC6223p2j0nqxXzxRytDZvNmu12y7xZcLI8oakbfBBH9NEHHj1+yrNnT4RakJLpzWbLbrcl\neE/T1CyXEhjvd/skTjEwOsfoBjFvS0l3Fk3IvhJayaZZlIKe+CDO8rlRurAlKMV2u6PrepTV0yKf\nqYJiTCrXOwyDJEnp2SojydRssaCezQHZlOu6wRYlu/1zLi+viMBiucQaKw73aQqKb0VSN0rAQoii\n5DWMI/hI17WMTgoG2+0WZ3fTOHn+7Clt13Nxfk7wDnxBiOIzVFqTqOpCTaqqkqIw4ueS+rHGUQoM\nCiiMpbTFJCEtSJEo400N4iFgctFCpSTfOUyiEtalFTpk9o13HoKjMNKYHHNCouW7WiwW1I2ocvl4\nhKuITJUEWBwayXNFM1M5pg02V9tvze/bVc475698YDrv+DX6Bgonv8sKWimoCqIEl8+/SYVjqmhH\n78CN6fs+CI9AWi+sQQVFCIrgLcJqTJVyI5TAwkolu1AlFjOpJaIC47hnHPaMztG2HZvrNY8+fsyH\nH37Exx99zNMnz2i3G0wcaQqNsQoTBkxM71lVzMqSsqqYL2a8U/4f/M0PL+n6sxvr4le+40/zpXfe\nYOgHnj6J+LHDG0GkC1MSnCN4CXx1CDxd/xtTogOwH34t55t/izfP/gEKa8A7SpNUtpT0ll3sf/2N\nRCcfl5sf5s3Vv42KAauS8TKi/Hd//EnOdy+u42/d/ykWqX80j6GsrJXaHm4ghTHG9ExT8eIIGZwQ\ng0lwRJIcYwVN08Ym814xPlUKYRXgieneRMUMtC5R0eBD4Ku/6AP+6//+B29cd1P3/MBXHvEzP3XK\n9fUVhVUUVmjGWlmhL3oninCFmdYMIpN6mRTd8p5kKHAtv8oAACAASURBVKqSqqqYVSVt11EUJaUG\nHR0aT10aTk8WDH0n32NCGEOQhDykPp788G7MrUzhznMw+VJFFVD6QKNVx/PriHGVIxKloLByj1I8\nEGENYsSmIp54z7kbhuN5HmXU43j+ORdQCLqC1ahURB3GMUnUI71gMBVHffIxirkPV+ck107JUi6O\nhCRPLX9GSltQFYblfMZiVtMNW1mbteXY8m8qusCtJSNR1tJzi/Igp6La7aLtYc17OSrysiJ3fr+7\n0J+XFYdfVTC//bNpLX7FNX0qwnTH5/xCspL+djm+SHa+heMF7uWtjPv4+CzZ8PFi76fqqbnx/pOR\nGkw9Jcey0blKcVfmf7sf5i7U5Ph6j+/n+PfW2qmR/IXXHCU7dz2X2+9/+/lMgdathOf4NbLc5PeX\nVepG4slh0g9Dz263Y9bMmM9mNKERGWIiPni8E6+CGDy73ZaL8wtWiyWz2YzVasXJyQmz2WyqwHvv\naLue+WxFVddoFVOv0yCbV6Jy7faSCJ6uTiiNZXFyAtFhtZIKvET6uHGksNKXUtcVF+fnfPLoEVUl\nEsPCvR8ASWSlHhrZt3IPVWqKDSGIFPXoiLXc0ziOxCBc874feH5+zsXlJfOZVP67rqfreq6vL3GD\nCDEsFguRi247kcbuu0PSrZX4ANU1favp2j0RpMqdKvNFCuS6vgMvm1hZ1lR1jY+RthXpXX1rnhRF\ngXOO6yRp3SWRgyYpiEUlycDJ8oSyroSGN1/gnGez3Ynkr3PM5gsWiyVFWdHuWwYniErbttSuFLqT\nUgzeM4wepQy2rFFGqosHGp9HW0VZSBW06zr2u514WFiDUGaUGHpWFX1Cr5qqom6k4JCpR250hyrj\nUTAoanQDWilmzYymrnFje5hvPiTzP1AJZbGJgqpQIjcbo/RXDCMqBooyJ3kRa6X/ylhLWQqCJb1K\nh+AiU2V0qtSKEpYSM8NwjNjIf6TYkCeYTzL3hx4mUlU5J0jHNcY4JTsm/T5t1ER0NFNPwHGQZkzq\nAUgvEPRWE6M69KCkT8gS1yoLFyiFMloatInoeODtE8IUpHofUqVXEGFyL59WmEQvQmeDw5H9fs/l\n5SXPnz3j+dNnPPnkCU+fPmN9cU0cWhoTaWyJKUR1bXlyQpWQzjwMyqqkaWqqquR3/NY/wH/3l38H\nHz36fpazx/yiL/9xfugXf517Zw/Zbnf03Z6+TyIVWkMsiG7E6ghoAks23Q9z+9j1v46mfINZ07KJ\n0pNnBYDA+0Chr154DYBVlyjvkly8TokIFMZwMvvTnO9/O+fbXzad//b9/4lf9B1/mao8OazBR8Hd\n1N+pzRE1K0lNW0HJTE6CVTIp1QfJY52V3IyZ/i2yaxndkFGgjRHZ8RBQBikWoFDRo5zjd/+2v8LP\nfviQn/7gIQBNNfKjv+vP8ubrNY+/uaDdrRHVDo8pFGUh+5yilPl6NDYzBVXbFMTnXUcpUb1La/Iw\nNIJgKYUfB4IbMCpysmjouzntfs++HXCDqOtZY/Ax3CgcAhPiIHeUjsiUNGaJ9pAVzDgE51IElLFt\n0/xW6rDXyt+zEhqY5K03obhJ1TD7ymhzYFTk8eyJjKnwmdU8cxwzjiOFsQfmhw9Tr6t3HoxNVGhh\nPwjCLJ/lvSPaQhLl1K/lnWPoexkPCuZNzXzWcHm9FaNbm/o4Q0aUZc77GDEZzDgeoyEmE+h89t0J\nyM2ffTaE5a7XH8dGn5ZM3FVQv+t1N+KrvM59yntMv3/F53+7ozh3HV8kO9/i8VkGw6syeXhx4B4n\nUZm65hMl5TihyYlGlnfMi8vLUJ3j68gVtmM49c6JkF6XA1Gl1IQKHNNH0t298v5vP4e7kp3bMOux\nyeik+58QHVmUEqXleBEjNzVneede4PDU5N11LdvdlhA82hoKW079LN/8+JsMfc/l5SX379/n7Owe\nJ6sVb7/zDrYouLq8ABXZ7rY455nNZ8wXc4ZxZLdrJ0rAZrNlGEfG10TNyBrN2HukD3ykS1LK3juW\niwXL5RLnHM+en7PZbHn9jS/z6OOPcaNQ1lRC1sqqEHqUgrqwVHUpYgr9QNd1kGhuXdfRVD06qaet\n1+uEAgpt5tg1fRwGrLHMZzOqqkrJYyDz/DNqaMuKpmlE4jZT04wR/nYIaGMoC4s2mhBEgQmlKKqK\nsqrZpwTKWvEYGZ2jH4aJPnF9fS3jbL1mdOPkFaSNoesH7t27z9tvvw1as29btDZcXV1zeXlF3w+U\nZcViMaep6+Q71NEOkuz0XYcbE387Ct0p+ED2HtG2ZBwcVaK9KeQ7mzW1UAiRjbeuhO7FFNBLF3GI\n0s9R19L/NQxjUrOSxEMqmyL/arQIeYzDSLtvqcqSk5MTtFLsduLflBGvsiw5pBEI4qO1GF+mHgUF\nuHHAKCAeBEOqSgRF7OSZcdyTA1FL70luIs8eJPFoKouBpzjRT0kFkRjVpHyksm/6S5CeGI+q9XIC\nqJygTFngRImRgPioaHF0QYf3PVprUiIWUpAnVVyhixLV1A8SQpLtzecqTVQ6GfoKPdagiKMHFQgM\nBCVrrCksyhYY49HKocJAcB1hbNGxZ9FY7L0l/axMvWCW2WLBvfsPeP2NhzSrFcoWkyS7UnHqaXnf\nBH7g+/5DoYGmOWmLLyWjY89qOUPFezR1AzGwXYt/UgglMSq60aLwRA7rvhyB02XNfGaJfsD7kbK0\naK3wLlKd/EUeXX2NbvzyjVe9ufyjlFpRGCNzA1FXK4uCqlT8ph/8J/jk8odZt1/h9dOf5ctv/c+U\nVlMWIo2u0neckdsQEsU5UZuy5UEumGltUox5lHCnPyqNSVRqkE/5EFpoXj4KMp73RjIlyfuk6Jd2\nBKU5Ww78e//sn+Anf/Y11vs5v/T7H7Gcj1xcLpjPG4xWuLEnFAqsmGMafUCkpG/TiI1BXVNVFbaw\nUxGAI+qUTX0uIUSGYWDf7tkPPdE5DLBoavrlXOjgu70URkYZuyHeKg5OhYOkanjkbZWRBhKiw4RQ\nyDwNQXrYYoxYbaY9MO+zObaYCh6ImI9WKk9cWftNkgIHSOtBONr7D7UcjcoKe0qu0Y0OX/op4c2U\n+awSOc1pBcroRFE8+AFJnGKIJqCi0BXH1IOq0NRVwayuscbQjQ4dI8bkawzTGhCCFDzydeqcLE8F\nH5Kp6Gc7bicfdzFZbtPTbic+nxY/fpZ48fjcPPeOE56XxXd3JXR3xWQv+8xv10Toi2TnWzheJRP4\nqsD+9u+P/3070dGp2Rq4gerkJCRXmIBJ6jGjAq+aFLd5pnednxfDnNRIv0UnTe/ptRPtBqZK0+37\nO6an3XUcQ8TinnxY6DJydfw8pg0SAOF6m5hRHgm8QxSxhJwIooQuURSWRb8QBGGzYd5If45WsNts\n2Vyv2e92PH36lLOzUx4+fJN79x/QzGa8+9673L93xvNnT/jk4w9RwfHG6+9yenaPfhjY79tp33HO\nEbtI33X44NhuN0TvqAvL2PdTn0xVlcxmc0IMPHv2jO12J/0u2rLb7bBGgh8VA/NZLUpwVUFQgX4Y\ngch+v2W93rHft5RlORlHSiVfMbTS02WtpWlmsnFZO3kBETzL5ZKz01OM1ux2O7q+mzyW2rYlxsgq\nSUPnAGQ2m7FYzBmGkRBcksqupcKntSiPRaF2oJQowyXudFGWDG5k9CLtXJQlm82Gru/ZtftkYNpI\nEtq2XK03fM9XvpeHDx+y3mzZbHdiAprkra0tpr6W4AN91yXD1tyUnZCBFDgoLf1Gi4UgQT4q2l07\nVS9j8MTopdKpFN4N9F1LCB6jRYwgKkFfjIbZTHx5jNVCw+t7SXSCeFKVFECfAnGpaOZAY9Y01GVJ\n27agk1mtTAzZtBJdXhtBM0ptwAd89BTG0tQVfbdPxvQSdBbpT9M00meXELeyaqTvwQeistNz01oT\nVUpuoiR73JqvyTUnzdXUf2RSopMAXuHz373BpriCw61Fjsgm6Xw98f1zwi0nKzkzSkifK9pZiSpw\n1PxuDASNitIwLoiPKKmhkMS8KCmMRRcBNY7E0aFCADQuoT1Sr3ai7uUHXBBkRuvIYl7Da/eYVwX3\nTpf07UDX9mw2W7puoKgqXn/jTb703nu886X3qE/PwNjkPdWJMlxSQCRGdrstQ98xm80IIbDdbtlu\ntwz7LQ9OV9xfnXB2dg/nRj756DFNIbLNIUZ2+44vvfbn+PDZb77xfb19/89zfyV+UmNfE0LBbCZU\nyWHo8W7kB9/9nXzt2Y9yuftVVPYTvnT6h3j79CcoCjFWLgo7+c1Ym5GByFfe/IuU5U/I+q9UQhgP\nFfOcIERjCOHgySb9PAVVVVKWlQhlKOnJkvEkJqIZxVH6kBhLxhSn5DYnEzGEm/TUo75OFZP0cjgg\nGd///iNQEdlCCmZNzenqhKYu2e/3MuYIhOAYR8RDzerEoBBkzBiFsQpr9ETtVdqkREP80ook4991\nHX4c6KIE21orbFXywSe/ip/8xj/E9e4rWPW/MzP/PHX1v9xgN9y1Zd6s2x+O9FgOxQZE3CCmJMZo\nTWGtiKukQmDeXycGSYgUxt6Y/7nPMFNdJ8Qpf2D6mYjAlGhrEo1Q7sEHoaIpLahXSEiTSd5eJNSM\nxNYwKSkzqccMDuhzXidikscX9N1S1yVlaYlt9ptL9x6m7DshUbln5jAepnVKKYhZiS5/1qtRkVcd\nt3t3Pu/xsuLzK89V07fzmd7z05ClHLe97N6/HROeL5Kdb+E4nix3ISgvy6hfFvgfT7yc1GQEp65r\nZrPZxPMfhmHaQDL6kROBl1UPblPC8jm3e3iOf5/7M7IsNTAlQFnFKy+YMTUr52u5fV/578cUteOf\nyc8P6FW+L2vtpB6TYXE3SsNtYW2iGok3TAge50T+GXVoBBzHkbZrUXomfPnlgn3XUlYldVMz9D1R\nwcnpiuV8wTiOfPzoER98+BEPHrzGl7/8nbz77ju89x3vszpZcnn+lLFvk+zziu1mA1pTJaWvxYkY\nk5Z1SYg166srSqs5W50wa2pCQk0k0K+4Wq95fnHJ6vSMt995h8uLC/q+pzlZivFn6l8pq4Jm1jC4\ngadPn1I18nqhsA2cLE949733uL96QIywa6Wny1rLG2+8IZ4tqalVxpEEXYvFgqqsJqnp3XbHZrNh\nkww4i0KqmWVVo4DZfM7Z6oS6rvnoo2/gx5FZM8OUBd0wUNUzhnGDT5zyvhe3+Swfunowp+sHzs7O\nWK1WvPvuu2L8mXpmqqri3r17zBcnXF1doZTi/v17rNcbvvHhh2x3O+4/eI2T1Rmz2XPatqfvB8bR\nTfNAkcQngKaqWcYFEGi7XhIvbafEvdu3rK/X+KRYZUuLsZp+cIxJ0GK7ucaNYzJDVIzJK6isa05O\nTojK0PUdfdfSdz0+HIIFeytQiEm5aZYSzr7rWF9dY4tDYcNmBEZJoGKNJDkKKXJEHzhdLXn4+htc\nnj/HuwFrDoa2RVFQp2urqkp60WYNISqiCqC1KC1ZQ9RqWguE6peL7Wkt0tmNnKkfIAcOMofvpsnK\ne74o13o7mJM+kiRfmxS6QhDVJxEBCaQiLSGGw5p1tHagFNoKGhi8eBkZlYKuIA7vbpTxbkNIvQJC\n6XIholRad6JUeBUjIfT0SZHSRyfritYUdcWJUcwXM9599z32ux3r9Zb19QbvI6f37vEd738nX3rv\nOzh57TVMs4AUZGZ/HxGKEe+Qy4sLtpsNy/kMrTUXFxc8e/qU6EYqYylsyf0HD6QvLhr2986oSqFz\nXq3XfOnt/4g/+78qfu7jX0+M8OW3/iJf/d4fg1Di/EhdWIqi4vR0RVFYdvs9XdtSmyvuLf4ZGfcx\nUlhLXS0oUwO5UYIoW6MJ0YvYQwiY6DGpj2cSjIgpMEp9ZtYajLYpiY6TwlcW4LGFBN6ijqdFjcsK\nMqxTdd8WQinUWaQlITpRI300RsaJQgRG3DjSJzlxVRSYjPUrNRXR8vzzUdDbuix4+MZrPH92D6XA\nWo0xYoo6Dp5glUiQa50QhzSmvMcDKiEeJt27JNQiX65Rgqx4kZlWIaI0bNp3+dP/4+/H+6QMGX81\n1+G/xdgfoii+yZgoYomjQPayynTLaV+NGQKN09wUSpoYuEatiTEljROdNJv9HiOxiQnhpQ8xixmI\nwEdIhZmDmIZSUsRSekpTMIWoPBpjUAl1lmed15UUF8RUcEh7cyDinainKW0wxSEhdk7UKZ1z4it1\ngHohUZJLa5MqWwmxIwQHJEZITpTzQpPH4tHaM0mV5wSdHP9EElfyRuHneG37NDraMcp9uxj+eROI\nT0tM0kkvpMJ3XecraXC3fvZphepvt+OLZOdbOD4r7/LzvDYjGHBQQgOR2T07O5sU2HJVOCc8+bXW\n2iMzsMN73p5c+b1fhgAdK5Vk9bZjVGkcx2mx+rTs/m7O6yEROU6MMg0sCx/M53NWqxXL5ZJhGLi+\nvmboe5FttiLHawtDUZiEQAV8cNJDMwxTv8V2uwEizp3SNA33799HKZWcwfPGIZXHnEAqJUHzbrfj\nb/3c3xLK0Q+U2KpgeXLCfsdECeq7TjZ1LRUkUxTMmhmz2ZxxHHj+/BmaQFkaFlky2Y34LmK9ZxgH\nyqri9Tcecv/1B3z9a1+TILwTX6CyPHD8lYLHjx9jrGU2k6bg3XbL5eUFs3rBrJlxenbGOIzs9ttJ\nWadtWy4uLqirkvl8JkmqE9nnrut49uwpwzCw3SbRgvS5OfHc7Xb4KLLGRWGZnZ1SpIrgbD7nwWuv\n09Q1ha2oqooQ4fLqiovLK4ZhpG07qqbhtGkoqwoXAmfNGW+99Ranp6cTchhCYLVa8cbDh8znSxHi\n2Lc8evSYbhhZb9Y4H3j65JkopnU9m80GrTXL5QnvvPMu1mqePXlMt5EeGJ+rl2gKI2Nr6ATx6kfP\nvhvohwFjZSxWtqCpajFJ9d0014pC7t3HyOgjVVVwdu+Ms9N7bHc72nafggJJUG7Pc2mi98T0u/ls\nhoqw2+6Sl5UgQMF5MegLIVFIhJ+urMIPI9WsQinLYr7gdLVic3nBevP/sPcmP5Jleb7X5wx3sMmn\n8Jgys8asfr2ghZ5Y8oTECpYIISQEYsV/8pZILBELEBsWrBALYIdggRACoVY/gURVv67qoboyM9Jn\nN7M7noHF75xr1y08IqOy+0ldkDeVEeHm18zucM65v+E77HgMwiurqswZGNjud4ze8cq8luAiRtCI\nM31RojBPKsg+RHwmGpOlAAQbk40fUUjw6/N8Bib4TV5TnhZU0p7vrTs5AXwqLayIQU18A5gHIPln\nIUofippCLLe2wCtNjKLQqEGqx1FgLYFk+GrEiDYqCbLKohaj2ukh7wnR4bwjkCvhY+JhDbihp+96\nHu+3FGg2tqLenFFWC16+fs1nn/+I1eYEtHRSoh4wKbDEapSXAD8GWXeUSubNVSWKkKs17foE3w0i\ngLLbY5TmbLPidLOkrhcopTk7PaEbRv7dzX/Bbv+fgdJYG/HB0nVr9vstainqnWVS96utgsJQqQLn\njKh0KZUUrmoKownOE4KjSBX2EMCrSNQixFFYCfxDTN2GxJWKMXFmZhV6Nc2FxDs1wvXK4iv5/kuH\nRIREtNHJd8WCLTD5s0yCJSVlLaU1BHkmdX0ncu1p7S7kouLciGeOGpDBFoLw3M7Pz3n16hXejYxj\nL/dICbtNaxEqEMGCpwJCWmsMklRnLkwkG1oPDDHS7Pf0XUsMDp2Skj/95b8+JTqHbUk3/gdU5X+c\nYNgxoSUOxr2S5KcBHyLoOCmQpvJDMtENacyKQqNKMNNhHEAFCmMpCkNdl4yjmp5/hIhGEdJzOEPB\nRCDlYAia581h8h065j4EVMyJiSi6jeOI0bko4icPHvEXy0XbgDIOFRMSIyXGfpSOcfCATueWkkds\nTngK6qrEKiZpalKqG3PamCTPc1KXCzTeewzi/TMZE6eTivEQg803SSCe/dWT5OC4wPx8LJQu4Hds\nv09X5rmE51Ohc/9f335Idv6etueC/0/N6D8G98qdFJWqLn3fT94v+b25LX3cnn0usXouyXmu+jA3\nZpwr6cwn7e/TCs37Zrx67uLME6cMx7PWstlsuLi4YL1eT4IMKjKRk4dxpB9E1nWCvuRFPgXrOfjs\n+46+71gspNptjOHbm2seHh7p2xY/jgJ70Ca9t0idJospLMM48M27dzS7B+4f7jlZLzk7P6OqK3Gt\nT742o3NJQcigTIIxxIC26RyN/D/6Ee9Gygi2LDnfnKALw7t374S/MvaMvQSdy5MVy9USYyxtI12X\nt599xqKu8WnBzr5LSinatuHxYcv19TWPj48452jbFmMMpyen1PWCcRjFmLC0xBDoEsRgGHqGQbyW\nclcRoO06ei/QqeVywX7f4Ieetu0pbMEw9Ak+1mGTX1EI0HQdbdcREBx/UZRJ6hSU1gzuoEDXNA2b\nzYbPPvuMl5cv6XpJtFeLJdvtlqubW2xR8OrVa6qy5urqiq4VeescsLx8+ZL9fpsSaikc9H3P3e5O\nIGnpeo3OofoBWy5Y1Av0hWa3F5+du/tblL+T7oAmKaI53DhMkI6T9ZrN6SnnFxf4AP3QC3dGI0Z3\nyk4wVJXn0DQBJeA22ky8KK0UhZaleG4OrJNBrQQtEPzI0EeWtciHd23Hfr9Pc01I/VWVE07hrOWu\n8OA8g/OgNKYAkG5pjp+mxCSK+apOyfvUQZGythD/YSq2ZPjZfH15fpl7uhblYofI5IZURJ2tJzEr\nr2m0TsF08LOiUJwCNZP8UYakxhacGIjGKCptPgW9IXjKqiKkarb3Sgq4ygl5Okj3LGpSN8dNgWOG\ndno3pq6l4fTyNSEGjLYYU1BWNcv1huV6zRgCoxPPk4h087QW1sXQ94lnH7CJDB+jcCuWVY1brRlO\nWsau5/7ugW7fUFcV0YnR4jh0GGNFfhzoyiIViaBeiPR81/fc3WqcX0hgb8Us1iwXlNaiKeV8xjFJ\n4FfCUwOGocMNwvUJo3QDjBZBEms1RqVAMkr3zXtJILQ2iRPniMZANFidTZylc2+NTZ0ZM8GwZcwI\nHMwkblt+T+4+TM8zBc4LXFYlyLIPYUqesrqjyd3BBLWcquxpJMYoJPyyLDg/O2W3vePxMXnrGElG\np+MjpOQXUPKcOX7G5WdZCIGxd/T9wHa3o2sEAquRRKtpi+cmByAy+8ZIh3HeDZ0meNpCnAev0qmI\nISUnUfgtIUs6T5LKhw5LhsXnLr/iYHERUudZIIzmyfdpbaaEbpqrkalIqZXoKyoj18SNjtGMqCLL\nXaupM6uUKEqaiWsVwPnkniVxQvRJWjwGvAuTKqoo9VkpVJQCRyxKcGPq9mm5XlNXOd37fE2YrVdi\nHyA+bpHjNeipipqaPvNw3/P/T/yQZr873u9JZ+g7kp3j+O1j0LKpi/WRGPT4vU9LSJ++/SF2deCH\nZOd7bcdKZPnv+UA6HhDvDbSjBGOCkuQgIFXV50TCLL94nIR86Dvnrz9XWTg+nvm/jyWqj6sDubqV\nK2zP4YmPj20OY8vnqaaF6HDuMcbJhPLx8VGInk3D2PWQAixiIESPj7nFLso0udKUZSrzcVdVSwgn\nrFZLlsuabbNn+7jFeUdZFVJFTNe0LKuDSowR2dGbmxvubq4YuoaLsxO0NrR9R9s2uIAQVlOA2DQN\n9w8PfHt1RVEUvHr5QiBzCVLXdT3a2qRCFSnKkt1+z/XVDU3TYI0SGWOrJ+GA3W7L9fUVwXt5TZEg\nU57FcsnZ2ZnA3pybpMnFmFKCitPTU16+eAEx8NB1aQxJ5yB7IvR9T9/3kxFphjCKc3UkmjD5FTW7\nrTywrKVpW9q2pSordk3DMIyS+GnNcrlKcLuBsiy52+7php4QAg8PDxKIJ7hQTuYfHh7Y7ZvUmdLp\ngSSeROvVGq2NVHPbDq1EMvzy8pLVasV+/yiSy2GVBx5jP9CnQNnagsXCYhIPyRaSOGx3Mk7atqUv\nu2mMt02DSxwr5yWZPT094fWbNyxXK373zTt220cRbkASGaWt+O94P3UvtDkYLWY1w+dkksuiPJi9\nGoMh4oNg7+u6InrHcrGgsIV4SbUtWsNmfSKcLyMd2a7tqBcL8cOKkX7oGUaPsQU2VeGdF0O+yRw2\nBUQ5wJQKeOrkIJAYrcU93R8FfDKHp9k+VdKfq2rOg0NNEkeIKVBRajqGDEPKvj/ipSIk5Bw4zQOH\n4MS3J3jhXYSQvHe8n2CNzolCXiAdr9ZEND7ElAxK1dojQbQyMmZMVWCqeLg+CERSgmOL1hJ8YS19\n1DTDIBVrAiGIL04WqRi6DmKgtDqdj8EnE2OVxqzRmtIWFMbQDgMx8Q4l0BbIYV2VVKVwNjOpv14s\nKKzFak1TFtSqICZfIbluImRSW+k8+3FEKzF+rMuS4L2omAVP8BL8o6LAfWKAMCdz54BX7qdNvJtc\nyMprT1EUAh2zwhUrkvz6YUwcoEQ6dYMgkcyDg6BQIQXMOqmvpTEcESPfwlooU1ButHRRE4wqJAjo\n4dmTCoQJlr3ZrFmtVrKWu2GCkiol3Yic+Mc4psTX4YzDuXJCP+RzzfN6v9/z+LhlGPqpcOaD5+dv\n/2f+9Ff/1nvPytr+twLXSkIpWWltUkJLpp2HLSf74aBmmK6j0YiyIFEgdOm5mtf0eYyRE8ipoBly\nV0u/F1+IWmNIBZnDGHDhkOxYrSDdHx8kdsHmAmcubMzjCRBvr5TYcDhWP7opLoqZR2UMRVlQhRpj\nC8qyoF6IGAujy+2StCYkGKCaCTugkolp5pORziVMyU5eC/OCJmNGii9yOZ6Puebr3TE9YL7fVKie\nTaHn9ss/fyxunPbJv08X9bvgZ/m+f1e350Pf94e4/ZDsfI/tuYThQ4P+u7o7sqDm6oCZgowYw8RF\n6TqB5IhnR5za5sfj9HgMPlcF+K6f83YsY318rjkBS59CQpZM60AOVtKRTMFMRLCyePl7njzJ90qV\ncHQj+2Y/VWS8F9K3Utl1+NCmTocgRRyAqAhj2sZMYwAAIABJREFUIAQhwPreo3cdi1XL6VlgtVpR\n10vxbVCOEDUuL3ipuoZKEB4lFeXddsv93T0Q8EHTdYGbm4bdzlMWBdYWJIwP++aRKxVo2x2vX77g\n1csXeDew2+5FqjhV4NfrNRGplN7d33P1zVdYoC4rytKyXCww1tB2PcE7xiGwWZ9RlQv6ZuTu5p7d\nw466XvDi4gVFUdC1A/t2L92wwaEKRVXWnF9cUi/XbB8e6Afpni0XC1Z1iRsH4uDpxw7cSGkNi+Va\nfAtsxUgELUadpqpEXQrF+uyMarFIfiQKU5Rsdw1t0+J8wJhCCPJlCVgx5fORGBTD4NntWqqqYhg9\n/eBoupHHfUtUlt1+z+gDy+WC9ekJGE1V1SijaJoddw+3bB/v0MawWlYUBsLYUWjF6WbNItZ5ZBKj\nSA3HCFZrKmtFqQxPcK0oMSW1uqqoRHVuFGW7thcOjilKxjBQFCXr9Qmr5Ro3evYPW7pdK5CkFIxB\nxMTAoigoM/9MKeocbEQkCB8dehrFSWHRCjTTWpG6tkrUgmLC1CtrOTs7wxjNfreFECiLgpP1imVV\noWPE9T1+HCm0YVlVQsKPstgbJRwDgp+McRWpY5MTDdJcDsgDP6ZOjAIjagET9GwiNMdDpVDlqj9B\nChAJciaaA7P1MEFsMk9oevKnzlKMWTlKIIAkSN1hwqdvjLm6fThWWUxiMqlXaGUn5tEBIZeDGFLA\nlxZVY0FbuVZGY4sEm82KdgBReCjSaT6si86L0Wt0TuBGCG8jOMcYI2MM9MlQMhbCfRFtKU3oxd8q\nOlGWshqMiiI/PvYoHSf4LEQUyTx2abG6BAWFjWjtiTawLEiS6cWB+xhEJbAyBd5rxkEq69aIN5CL\nAa18gl2Jip2enltKZMm1mowviWlNRyCBIgZTUhYlhSkoTUFpq9R9MVhdYLVFY1AkKXKtRZ468zpy\nYWwCI+qkoCfdH4VKKpBpD6XQUeGGBJnynugHQhiJwUOU7lrwTng06cwiYKxhuVixWp3wuN3hUxcz\naMFeBdT0rMl+LyhFYcW006TxM6nCIebd+92OrmumoqAPnhgDP9r87/xr/9J/zv/2y/8Q52u0atgU\n/5TS/q8EkvcNKukxqOSmBQctNrIGovh9aeS5pTyYgLYKjSFqi4oiVmDQMp5UpDARq5NEszKMMci3\nJNRBBILSuAABjTaFePIACpEjj84Rx4TUUAo/jnitUEZDEqXJUDellSSoKYn1bmRwg/B8rBVOYFo/\ncidOY7AaGjyd9zjv0SpgU2LlvZgFl0axrJO5tVaS5EWPeENJTzWStApjXnGeFlvlZVk/QlJbyTGI\nNIjm8dGsW5TvxQxNk9eA5wrgzxbFYyQe9PyJWW7leInL71eHBFN8luZxmZoKa/m1DyGGpmP5UFcp\nMn12ujz55Y81ov7Bbz8kO99jO24rzl+ftzPnlczjpOLQ6QAJBlRKYpKhVsz69pFxHFLFSKAKh47I\n/LME8vHc9l3Z+/G+35Wg5WOfJ0Sy8/Fn5f2Z5GFBuAFBRWbF4SfX6rkuFDAZq/nZJM/BSk7+DpUg\nwVxDxHlP043cP+xZrXcoU7JYrFgu17RtT9sNUg21EvxVusJEkTw1fsQ5S3Setu0wxtD3nsfHlrZx\nbHcjL85KjCnEV8V7+mbPNgysFyU//cmPIHrumy3DOKC0pqpENe1kvcEWBU3bM7QNYehZbTaCi0+V\n/XEUMQGjNFW1ZLFYYHXJftdy9c0V292On/z0gvOzc5TWtF3Dbr+jbVvGvicGKOsF1lb0g2PXdDgX\nOF0vOFmtsCpgg2LEo4OjUBFbllRVTTd6TLHA4AlGYRY11WqFrUqK5ZLz01NKa+jaTqraaPb7hqZp\nMdpCZdEhG+aKItXJyRlt18nxjQGtgxjADp6VNmhb4lGMiTy+2Ky5uHyBKaRqOowdt/c33Nxe0TRb\nlssl+JH99oEHq4kxUJeZoCyDUhuLVjbBPMAQIDq8k+pu33QpMIWzs1POTs+4f3gQg9QIOkkHl1XN\n5uSc5XLN0I/c3tyyf9yhxohVCqs0Ko0bMkTJSQBUGcOyLLGFZUhqcdGPQqQ36uCnoRXWyIPbGkVp\nLF4rxr6HKMnf2dkpRivaZo9WiNiBMaKM5QM6ijdKXRQU2hCdm/hWtjBYAyoGfAzJ5yTbTagUeBzg\nP0TB8hOjBMAhEE1KPKJkODF6CUbJD9c0p0NWVBOY0hw3EWOu3D9XkJG1JHtXSQWfKZGJMc93lT8+\n/4FJnAKthKocUCmgyCpyJoXwksBrY1DGYBQU+dhsCUX1pPOcpXuNSbCbIEGvwqTunHTpCB4TAyXJ\nGStKoGq18GP6tmfYt0Tn8MZQGPEY0SEw9A3D0BPGAZWCdKIjhpGhG6CwWAp5LkSPG1yCxjnKdE80\nQrqutGNTa6wWA96qqvA+0PcDWissjmAUAwrnIxFJgoLv8X5I3byQEhuNSqpjGY6WDSaz8IhGkgSt\nhRNVmJLSFpS2pC7r9KzQMhe1QSsjCY+Z2QqkYpGYSSYYp0kdM5UDaSvPBSXHlQP5GBxuHMUA1HmC\nE6XIGL0k3D6LBaSiWlRoK8lVWdas1hsWyxX96PAh+2MpESHI4gM+Vf9DNv4eiUqn8a2I2RDTjakT\nW07dAhnHGjV6/skf/Vf8Kz//7/jd3Vt2+z/lz3/zZ+yHQNTSwRDzL3UoODDZCwEIpFApIiEJKkSi\ncqCC7BQVIWrho2iNVkFkmVXAai9BfNRS7/ARkZNXiZOjQBl8EJtQZUopCgIEEVzJogsAhTYoL8+9\nQCQYSUyzUp0thB+njAEjkuGDGyhjjdWKqBUqiFx0THBWtMVoS1Ca3ntccBQG4cUi61aIMjYrY1kt\nK6rCYs2IS3MGZaZcQadqilaipDklAplclCo1ijk896ly7XFccmzd8VwHe45Umb9v2kcd0pzD+2ZJ\nzJSYyT5Pis/qoEiZt9zfmZ58z8R9H0LzzI973imav57aRr9XPPkPafsh2fke24egY8/BtvLrz/0u\nRnEfnk+evN/xJHnusz6UFMyP52MZ/ned44cG9accw3FF47jL9dwxzSFu88+cX5P5Zx1fEzVbyI4X\nrAyNu7u7QynFerXkZLPh4f6erm2xRjMMUt1flBXKSCna+0Df9VJ9jjFxJVru7++pq5ph6HGuRMGk\nlue9xxZLLi9f8sUXX/DPf/VLhmGgqiqMEU8Ko20SGljTdaLEtdls2Gw2dF1OqnqRgh5HqrJIEC6N\n94G2bdlut4zOsdlsqKqCpuvZ73fsdluRUvU+SbwqgTalJKMoCtbrNYvFgr7Z0g9C0s+QHHQh5xGT\nbLfWYLXAZirhQhWJm1NZi9WGTmua3X4SRdA6SQkjPjWjG1kuF7z94kf89m//lrZtUAjfJXs3nZyc\nTF2Lh4cHmrZhsahZr0Ulr2ka+r47nB8R5wW2d3t7g/cjRmuapiGkKEHNgjOfzCedgO/RUYi7o3MU\nlcBHzk5PWa6WXN/d0HQtIYoi3eA8q9WKVy9fUtc1tze3XF1d0fe9QChScKSNRidlxPzwAihzh0uB\ntgY3zK6T1hg9C8hzwUTr2f3r0NpM6nlK5ShfpLQz96dKJqKLWiTIMwzW5O9J3YmgQYWnlU4FqZuS\nYXUHcnkkc3hSt2ZaGvLv45N5+V5nO6lHzeV1BV50WAuOO+L5vVnCXGAux8UQNQUHYo6Y4ThJjtw6\nCZ7Td2TVSp8CZm0syiY58dxVMAVkuf+jddv7JKSSFKo0KUBKyY4icYpixEUBnZkpoVK4YUimwmIo\n2ZPUvKIUs9wgynFj8mYRzpFwkXQav8YIHE5pkcoex1GSLGOS2hgopVnWC4wpWC6F8zeOTqrWMaJI\n3TItCRuRVFgRSOnoEj/KineKMQZtrUgMp3sokEAJjA48zAMX0yZT2yxEINGdniDCSh18nqa1Onu1\n5HE57aumrs+ho8dh3KWkOET9ZOxMwWSUseedEOdVRBLw1C1bLZesV+vUzZXxP/FLVR7lKqkTzgLj\n5GWT52zu8KxWK+l0pOLlMAx45wlKfMmWZs/b8/+Hvx33InzSdigtPM0c7krdYd5tSFdRW+nExvxs\nTPskAr6KyWA8BDCH65ivs/cePwa6LtAPKXFLn519brICnUnk/TQD0rU+dB9EAc4So8KNPknSgzZ2\nWmuM0cSQ5iVP14dcwFDExKmMaJsEKkzqqiXhFO890Ygpc4a16qKgKivWmzX3+44MP4uz+6G1JMRz\nf6APbfN16EliMvv7QzHNfJ2YF4OP457Dvz98DJA7LynpVXn/OP3mgASCCcv4Hed2fJzPHffxvtP5\nfuSz/hC2H5Kd77HNH9jH26cmP/nv5xKd+cM///wEn/7MZ35s+1By9rH9P+U9z02M3+d7Pvbdx+eq\n1FOM/nFiFMJBVlOpA7k0L3YSqIjJZggBrS45PT2l69oUwLjJzFF8asDoEqu1wLKcw0hJnLZr2Dc7\nqrrk9PSEsiwYneDbI5G6rnnz5g0vL19MHBRRVKvY7xuCj9T1khgiTdNye3uH94HLy1diOvfuWx4f\nH6dxYZMiUbmoqRcLUDAOAzFGlssly+WSpmm4ub3n/v6evu9QGsqiYr3eUNYLvBt5eLgnxsD5mcg+\nGyMP1X2z53G7E3nbssJYS9ePYqZYiApSUZecbDZYpfn25lZ8ebZbRmuwRrNa1PRtl6RDRXrWBzFh\n7YcBYwq+/PJzfvKTH/P1N1/TDz2LpXBvjNW8efuas/NTTk43IoPdtzxuhX+zWi1pGlE8m6t7ZS+O\nQBCH+7ZFKcV+v58gCTkB1lonvrvIxIoaUCSMgegjq41wfDLvabfby73i4NN0cXHByekJQz/yuN2y\nbxsJ+FR+EgkmXCkJeMdxnB4Q8n0konyY3VubAqtkYpmkdmNMvI2yYCDgRoc2gv3v+154FVpTJw7V\nfj+yWi5YLGq01hS2wCjN0PXiYq4NJs2jSFYjCkRt0DEQEombJ+tUEiDQRnoGCToRpPGTzkFPHIun\n68ChaipwJelezROZSCT4gz/PYb1jMlg8VEcP4iM6BXjZB0yCpkNxA0iwWoWJWrq8+bBSsKRiOrdC\ngvh8XWIErwxhzldIwXRIHJHMmxQYjpCyfchdquQjYrQEbkyXAaO18K0UjF1Nu9/TbB/Z7nai2iaR\nuIyjpDxltJgtio+Mpx96IqLiJibDiuBFYMX7I3+P+D6/NHNBowKXOp3CixO+XNt1jE7gprK/nItJ\nEExjxEDTe88wjsQgPL6yLFnUS1k/TfFEiEA+53CNyYlO6uqYxDeaCiRKi/aBF18UZXJfQ+6HNdLl\nFal0gXyR5pzRmmhABS1cN6VE9jlGCm0ISiXOkXA3gvPY2rKoF2zWa5qumUQpdIIu6uz5pGc5fhQV\nuBAO3KD8LM9iCfVygUk8HlHyc/R0BNL8NjJ/18slt9tOxByKghARuK+aTlnmSO7+AiLgwZQsEMX7\ny3k/jVfvIiQ5b507dEqEWsbR0fcjw0gS2ZDrKwF06vbqo85EctySDvlRkZIsIpkhiGmtkcktc3Za\ne+LEbcry9DGNX+e9cNUSNNxay6DAO48bPd5ohlRUHMaR0opa6dnZGV9f3YJL0t1KiShEThlyXMGH\n45JPLeAeJ0HH23HBZ/7e9/YN8989AyxLYztOyW6OHfXhGsf4e53X/1+3H5Kdf4Hbc52I+QNcFpJD\nMH7clcjbsdz0e1VTgPenyffe5glH3j7WPfqU1z7lO49/fu4759dufpyCmAlTxTFXE7NKXX7oZlJ3\nYQ1nZ6LMVhQWpVJA6jzOjyyrJVppfOo6VFXB+dkJ199esdvuODs5Zblc8vLlJdoPtI3wZABW6yUX\nF+cMw8DXX38NSnORODXOhUle+/b2lr4fub65xflAVZa0nXj+3N8KZyub8S0WGYriJ1Wa9XrN+YV4\nRDw8PNA0e2IUhSE/llhjWK0WLDcnqRIdKQvL2ekpFxfnRD/Q7B/p+gEfAlVds1yt8Sju9w0xwrjf\ns1yv2CyWrOpaVNfahvOTU/quoY+R1XJJsVim7kOGL1h8P7Lf77h/2HJ2ds5ms8EFz2qz5vXrNyLa\nMIhv0MXlC37y059SFAW//vWv+d3vfoc20slQSoxMnXOMzgkswkoFebPZ8ObNG7744guKomC7feQu\nOOnMgXgEtdL5GIasqPY0ia6qiheXLwCBHjVJ5U2CCuHIvXr1lh//+Mf4AA9X1/R9T11LYuFH6RRJ\nlwLpFKVkO+P4jTVJGj2Pp2pKikKMaJM6BTqrOkVMWbBcrymHkma3h+gZ3ci7q2/BjxRas6hKxnGg\n61qBtrXSvct+XEpJ58enzkEInjCODD4welDGoqNFm7Q2xUM3SpIdkn+KmSAzYxhn1d+k2MTRGhFJ\n1Ub95LUnD/+YcfIZjnZUKFKWqbkyrZO565T9i5juU/Qul8OTg3qqHOtDdXsK/lMgNlVgtZ6UoIDE\nSYop+RPok58UmwKaQPQj3iNKbum7xbfIS9KSeFy5um2UmMOOVjMYg/IjY2voFRAEetW3Hd4l2LIb\nCa6nUOJdMwSRxI4xohJ3XzoaXs4l82Jskcw1EzQoRDmhID+7YSBEkYT3iRORO78u+U3JrZNOZVGK\naEZUMDiR9h+GMSl5SYJijXTMNCJgIV5PsmYVRSn3mAS1mRLLKHCyKOyU3O0JKUlTPmB0wJqIidlc\nMiVrPsEblXRoRXHPT/4/KkR0THLqWeEw5UtCpNdYYxm8wEOtMVRVzWqxwPtxEi8w1ojnTBI8yHM0\nBkm2fYignhp1ZjXQbhgoyoNPXIyRwhrxu4qip7Bc1JyerCmvbhHJ6yB+U0kKMhdBxNsmFfbSXCZ3\nUbQRzo16ynkK3gEi8ex9SLAnzeTLjSQwoilgpnEeExHfWksxNzSfdW9zsuNC8skxFqMltfDe40PA\nBek6amwqaCT+VTx0BYWmk4vHYeLuFkVBVRYif67EKsI5h/MmISiSMlsh4+vs5ISysJNfG0quh/A1\n54Xhj6UFzOKJpxCxpzHb+52eeaz3XDF2/jnfZ3uuiP59Pus5ca2/y3H9IW0/JDt/h+14AD43OfJr\nc0nZ3B5XafHOkpV5IMokJS2SMVU1Q6qIHDh9U3NdvX88H/r5Q52n+c+fOvA/NFk+1C79rsTouWs4\n3yZyME8nbfoWgCdJUH7ASEIjD+MM07i9ucZqWFQVL19c8vjwQNO2hFQxrutaZJmbhrbZs1wuOT0R\nxSuCZ7VZ8uLyglevX+K7HV1bUbUNbbOF4On7gceHey4uzqgSB0ZkoEU2dnWyYvBC0re2oKxEMtUa\nw9XVFTEEXr1+y/nZGVofYGgAj49bbm/vqKqKxaJmt9tijGG5XOCDF2no4ASHbTXLZUXXA8oTE9Sq\nqEp00LhU5d2cnnJ2dka9WPK4bym3DaassUXFcrnAakW337PbbqmLkvOz01Q9FPL7brfj+voa7yW4\nMLYQhatxIMaAKeVB9M03XzMMA69ev5rMTj2RN2/fcn5+zvX1NXf395RVxS9+8Qu+/PLLCfvd9h1N\n2/C4le5cURWcX57z+Ref8fbzt/Rdx83NNQ/bR9wqmYRmjoCO1LURSI+1uHGk7bqJFJuNc/dNw9Bs\nafuO0Tu0KVitVrx+/Zp6seCrr77m3bffst1thSQaDxgD5wS3rq2R6xrj1GG0RYFWhwfu1M3QEuyZ\n9LAkdT+cF8+oSKReLVifrBmSJHjTdOgYKFYLirKkHXsZQ2UpTulKQYiE0dHuG1SIVCdrirqaKrB5\nXmirk3Fjgl6N45P1ROaZTwnDU3nVQ1XxYPiZfSYzPA4k2QghJA7LDF6alLXmc/24i60mLpBIw6s5\nTGnq3imZ/1EESWLWBogCC5ygUKkyr7VAyjJ0zWc1vOm8tPCTclCX1694gMqidFrThXiebp2ITziB\nBWW55xgDYzvQuTEJQ4goQ12V+NWCOA5EN9K5ATeK0uE4jgkiJRe0sBZCpLT1JB3svafve2J6hkSt\nDzCytCS6AG4cGfqBvs+Kix0+Jt+gJH8uXYpAUZUUZUXhA8M4ilpf8GSN8hzQm1SEKWzBqlxSL2oW\n9WKCrWW4WwgwDCPkrk167qnUJtFaowtRaTNG1PkiGoxCW1FLtGWFLcrJeNSFkBIMkXTWMRJ1OAhI\nxECYJR4hdck0iuAz3yZig0aL82mSbS+kS9UX0inUepJfFg8qmdOZK6G1JiSz0Rzs5o6FzI0wBfX5\n2W91kag1kggvyoKT5ZqqtHSjw3mFLkrhm84+N3tLkeZviEm0QGuMEfE1NVUGJMDPa5AUyBzjaKjr\nHHv4qSMqQ0W6PWVSMRQYYkFRFtjkQeadJ6bOuNLZSFhEK2KMGGWIhInHJXNGzrPI3knGQjwIHIUg\nXdj5vA8xH1uKcFTq/ATpBPkkN57nrdWa5WpJWVhUMwqfh5TYQTJkDdNalT9vynqm7tnH458na94s\npnkuqcn37fj937U9t89xsfy5z/9QbPX7In+edtg//N4/xC7RD8nO99iea1Pm7WOD/gk2eQrIw1St\nPBByBT8tMpEHzG5uEcd5f1u+lQzh+tixfGz7lIn+Ka/B7zcRnkuEPlYN+XC3KQeRcn3zQznLbebX\n8uc1+x3bquTVq1dcnJ/jnaNtm8nlexxG2qbh/v6erm3k/ePAy8sXnJ6e8OXPf87PfvYTYgw87EQ4\noixLqlLUzZwbeXh4wBjNarlIXR3proyD4/Fxm6RJBzabDav1mhgC99c3PNw/8uUvfs6Ly0u0EiJ6\n0zSM4zgdW0jwkaIspy7P+mSNCw6twfkRFIxupG0b7h7u2W0fOT09pSxtkih2gKKsahZ1Tb1Y4UNg\nv98zDAOreslms2azWeHDwe39ZL3Bu1EIwVoxjoG7u3u+/fZbTk/PGEcHo0MZQ1GWnBZiZnp/f8tv\nv/4GlOJP/uRP+OnPf8o337zjcvtAURjevfuGd+/eAYHPP3/L5eUFZ+en1IsFq5M1TbcnIjLct7fX\nlFXJxcU5n33xljdvX3N9dc0wDiKFbSQxbJuWapB7XhQli8USYwxtBGJHTAnZ1c01ANvdIziBCBZl\nycWLS7788o/4/Isv+Oqrr7m/fyCESFlVIn2dAkzvk1RpzFy8RB7XOZiXP2IU+EtMBFsbCvF3ymM5\nJTo5uR3dSL2oqOqKoW/FIyiSYEKFBLQuUCQ+RV1VLBdLNus1JycnlEWBUoia3ziC7gmMDAFMUULQ\nJAzbVHtH6uzJ10pknFEhVZcPMvNP5OmJEGeBwCyAmCqhOanIiY4WiM28UnpIngQCNsUkSqPJYgOz\nwhBTvJY6NZqgAyoRlIXHM1s/dIKAZHJyEjOZBxIpFCeSODmkaxMP3wlK4v+YPHSUeLMQ4+TXY63w\nKvq+Z7/biQpblO5qYbWQ0YNU1qvSgi/okoksIbvYp2uNqLNlKWelNQ6IM7humCWIATGRjc4Jl24Y\n6VOhZxgGdu02CS34pJIosDyTZfdRVNZM1ySkANWHg+m0VP5Ffc2aMsGOiqT+JgmPMRZQYgyaRQ5U\nUtgMIZmEJhggipC6cFqJhLuIGRy4UzHke8KkSBU4EMszr4wYp66flmxk6vpFH/AEnEmCFUG6t1Up\nSox7Y+hjFFEDLUT/MKv4R3UoTuTrLj0r4YRlvx9T2HSuB16MStLLGhEiqcqCzXrF6XqFu98zZu6X\niqmTItfbx0NHIndac0d0Gtsh8+CkMzyMoxD6E2zN+UJEd3JiFn3qBsqYF6uG3DmNub05zU+fEse8\n5qVpmZct6XLFiA5hSrRUjFRlKYl/KvJmr7w8mZ4WYSMheIaxTwl4nAonkuSl4hKJb4gUGRZVxaqu\nuX/scD5IMmc0IvYw68R8QkF34l/lI5olG1PSdJR8fAj6JkuhOnTc0tHnPz41RHuugHz83c8lXR86\nt+/6/PzadxXQ/5C2H5Kd77l9KCA/hpk9eYgeZc259T3fPz/EMxQr6+Ln9/+LHmwfgo597Of3IXXP\n7/cp3zs/x+/qHM2vpTwUDgtOrhzl65dJoiHBDxSe7faRsio5PRHezXK1nBaDtmnY73fJJ0G8XD77\n/DPevHqNMcKleHi4Z7/fob3jxfk5MQbubq/p2gY3OoqioG07NHB7e0uMwqMZ4sjt7R27pp2cwr3z\ndK10Goqi5PLFS8qyZL/bsd3t6dpmGktd1yWPmGKqykoQPdC2DW2XVJ1CoGl3OC+mqG3b8PrVS1bL\nBTF67h/uuLu/p2k78WIZpfN0/7DFeZH4rKqS1XJB2wjMRkVPXVr8OIrRZlkSQ2Doe6y1rNcr2q5n\nt28IzlHVS9abDZuTDV3f89VXvyMqxeXLS169fsVyteBnP/spV1dX3Nzc0DR76ioF9+l8uqHn7u6O\nm5ubxEeSjsjmZMXbz9+kz1kyfDWw2+8m+Akko8lQYrT4CWXxhxhjgkpUKfCSB/A4OnQUou2qXPHm\nzVt+/uWXLBYL/uzP/hl3d3fClyhLsru4xLiBrNEZkqfPpGJE8nexAjfJD3GRX49YY0Uil/lDMzzB\nxmf52n7oKK0FZRiddBCLoqAq8jg/+PcooCwKnB9nxP2QAichuevkJ5I9PHJwqOfrlPepkh6TgMUB\n0iL7HNY2kz1JeL8DlOds5mXkIHa+VuZ0K/NyIwdYiMiHx8QzkYAnpAPI+ZXAr3RKdCQBSWeSjBcl\n3jnUydNnTZ02CYpj4s4oSCaa6ZxzNy9GIYDHVGZXEgSrFFATBWbmxl4grk3D0HUE79l7T3ADXdvS\n7Lb0TQMh4MeBrt3j3YhGoI85mRP556SuJWQcjFLUpUjehxAYvWfos2eVjOmuH+i7gX4cUwAqBP12\n6FOnXM7ZGuGZlJV0UFRKgPNa6r1PcEuDTsp0ohpZYlVKZJSIC+QOoNzyzMtJ+yTCuzC55H7rNA7B\ngJIuo7EFtpA1zhiLUqL2mFNRpY6eN3H2jEgJX/buyQIlIeQChJrGgy4S/E8pyqKgrmqBoHXdRIKf\nc7+nzs58fGstSpzBT935HNgzK27GBM1jDyd+AAAgAElEQVRTMaC1xSIy+CerJZfn5+z2PTjpgCYy\nx5P1ICaejlYieBGSeWjmhjnlMUqjjHRMQrpngcM6MlfSy8UHuU4KN1NGjCnpELEKN61ruUOV9xND\nXZl4whcKmKAnk1OHTxyxg0hCyImQkoJKvpM6ddIEgdFPVhtZ+IJ46M6EmOZimoNVaTk92XB9v8P1\nwqUSNTnNpFKmDvM8/zylkDkRmXVOzDzBjfP17vl45wnaJK1RUwo3LWo54VHT8RwXcI/XzA9tH/r9\nhzozH0LcPPf+P+Sk5kPbD8nO32E7zqTnk0Gpg1EmHCbC/D0Zn3o8iXIwJjAlccBu23Z6/VOSjY91\nSp7b7/dtdx6/5zhB+dTvP96+6zjmAdTTFvKhCpU/Q8jyFTFG+r6fEiCBeYjD/M31NeM4sFgsWK/X\ngASmSgtPpK4qrDG8fvOaN69fc/niBdfXV/zNb/9aJHmJ/OSzt5yenrDf7xNUraXt2unzttst+534\n4RSFBMl931MWBUVZ0Xc9d+09Qz+wKEsuXrzA+8Dj45a+70ApyrKa1N6apqEsS5SC/X6fIHqB+/s7\nrq6u2G63kwFm2zZ0XUvb7KnrkpPNisIa9vsd33z7jm/evRN1tX0m0joiinJR0+z37Hc7Ch0Z+w68\np0w4bqPEjyEkGAxEXl5e8uLFC7b7hn50dP2ALQvWmw1VVfHw+Ijzjqbt+PWvf01d1/zxH/8xm82G\nq6sryrLk7OyMruvo0v3a7Xb81d/8DV999ZUEIDGyOdlwfnHOxYszXr95zcnpCd47HrePNM2ezckJ\n4UQ4WwJhLAX37Ry73W6aV/n+GGuxmxfTGBudoyhLzs8v+NGPvuDzzz+n63ru7x943G5F/c7K2NqN\nO1zibOSx50OYKrwk/55xGFDlgqqupkRh8qpSTGXEuRFjDtCGoZdAIo1NoxXOKbrgwRdslguKLM3d\n9zT7hu12K+daiHpetTFURSkSsAGUMlRlhbYWP68SKpFtloBQpad0TFwL+dfBWT07tTMFkdM68N68\nhicwOMhNpCdzNs/PODkl6qTwlFXikN+p1HWIMQkH+BQcAmjhbyep+hjzupJCm5io1ilPCWRPl/T+\nFORqzcFwNXdKQpigayoXvzM8L/1nlQGkw+DGkeAdVmtUUTAEz+Nuy+3NDXd3N2wf7hnaFh1i2r8X\nFUVrpoq4+IEImT56NwV7GZPjQkyEbUfTtjRti3OBcRRY5dCPkhTOPIWqqqKsRF47w6WyvHaMAlXK\nQgw+JT5ZXSsnOrYoKHVJSTFBlJQ2RATa5EMUDyFrJcFRKVHRYj6q7ExpTamkpKYTRK5M3aBs2Kqn\nezF/rqqUmEu3g0Nya7zIGmsR9QhRuE0Z0gyRrN43jAMWMUWt65plvaRruxnv7fDsycM2P4czh0Mb\nTUx+MqRjjM4fYGjpT2PlGS4JuaZEs6rh4uSUb+wVIUQcMiaZxQohzrgmSpGwX6loksUaxNS4MEhS\nmUQHcqJhi4PfEnk25OehBhWEu2StRo9SIBydmErn8w4pyY8hcRGNxRZieOoHgV4WwZCHp6yHMTdF\nU7EiThC0yKEzq7XGFgplhJcTg598otyYVAmDwIXdeIBfFlWgtCXnp6esFjcM3jNkT69cCElj7Emy\no7UY5aZzY1acPhzb+7HVcSflaXE7r295/Xx/MXwatzz9zOe27yo2f+r2KV2a70p0vu93/0PYfkh2\nvsd23K2B9zkkz1UCYjyoteSKwYG7cxh8uRK0TlCUruumif2hrP84CfrUpOP3yeCf2/djHZ2PdWae\nS5TmPz+3oDz3PblyZxJBM/+8XC4nOEGWg55XpcZWko2smiWE2pqqrBiGHmvsoUqnFc4N/PJXv2K1\nqHFOJI43q5W4yXvP3f09X3/1FdfX14zDQNO0LOqaly8v6ZqGvusZBpce1pGisKxPThkGz/3DPW3b\n4p1nv9vyx3/8j7i+uaHrGqqqFDjSZkOz23Nzc0XTNCwWC2IU93SBppU83u2mblSGmfgghoEnJyec\nnp6wXq/YNzseH+65uroSuJUxhAijF0LYcrFAGcPV3TUhBK6/UUQ/Tgl433UUVroR292e7W7L6Dxn\nZ+cYY1hvNgyjoxtGlqs1dV3RtC1XV1eAmmSvY4zc3d1xd3eH0YY3r1/T9b3sp+DHP/4xSin+8je/\n4eHxkbdv3/J6s8EHz7t371BKUdcVxupJVjvGwMWLS4biHhB+xmq1whpL10kAU9cLTk/PpsApxMjy\nZAPA6B3BO05OTvjpz37Gl1/+grdv37LbNZPE8z6JN2QRggyZBCaOgLWWuq5QLiUpXpzYy3IhalLR\nMyQ4ojEGa5L5qDWUZSHzgMi+2SdJWYctCnzuGoSAi+CMZhgGCquxyqLRUxdHzx68OlVvgQS7igl2\nhQTwea5NMKLDZwQtCUZOeGwK4JyXqnGMUkUm5u5HSIHEofMzn7OKQ2dbKsA5QVJP1o48v1Xq1CSk\nE0oFsiz0BP9LcK+sGEVUhKCmJDIHLoc1JkGzZryfCOIgn8jtMSixd8lrT8zeQAkmpXXi5OjUAUrm\nmEpECkIILOuK0mjcOOL9yGAt49BRbGXseOfpuw439ATnads9fhxEia8opmRH7pWfxCukeybHLF5h\nbZLTFr6n8xIUllWFNkaI5tk1HjC1ZbFYpM6eIitvZcGCEMTkWltLoSRwmyAwShFJCanWFHYxma5a\nW07JellVVPVSxDgynyQF3mg7jTUfD0pySkmgnKWTnQ9oPDpG0Acp35h4HbkTKHGsmmJLGT8pkdJ6\n8sjR2lCWmgzRUgpCcHgvqpJlUbKoF9R1nbgno3jCzZ4388KlrDF6KqwZY5K8vZN5lvdLPlMFaTxl\nL5sYKLVmVVUUKfjO8y+qp/Ph6OmXzjEH9AdFLoXBWoUpJMk0OpsUyzMtXzeYS91L/GByoWXw01w9\n0AkPvKSZEjbG2iQLP4Pbo4R/iCJO8NaUMCW+zTxiUlpj0+d7mCDnOsueJ/hbCOB8YHQHmXRioDCG\nzWbNclGz7wbcKLPj0Fl5BmUzu64qPt3Xeyme5POd34PjNepJPBOfchvz503neVSk/VD89X27Ms/F\nVfPX3uc6f/pnf2j/P5Tth2Tne2zzoPm5G//ES2I2UeZ4SaXUe4T7/FomjZ6fn/P69Wu22y1d17Hf\n79/rHs0/b/79xxWH4+1TWpXfZxIcLwjHE33+2scm7PE+82s6/47DftJlydcxq13lFnQmikuAXFOe\nrimsmapddS2V/vV6ze3tDfvdTsjzzhHcyOPDA33fcn52yssXF3z29i1nZ2fc3Nzw9TffMA49Pim/\nKaVmBN1I23aTek+MsFwusday2+3Zbrf0w0jX9wTveXn5gtVqyV9f/zWFlYCkLMtEvr/h8XFH28pY\nWAHL9YrFYoFz4jezS8edK1nWWjCas7NTfvKjL1guah7uH3j37p3sZ40Qf7VNxFhJGG9ubjg7P2W9\nXuPaPft2S4yRk/WSwkCIjmHseXi8Z7fbU1QV/TBwc/8g/KQEGRtGx+BGum7g7v4e5x2b5ZKzszOq\nquLbb7/l/v6ey/MLgqsZhwFrLa9fv+Yf/eKP+LN/9mfc3d5y8eIFP/3pT1lv1nR9x29+8xtOTja8\neHEBwM3NNV9/LZyai4tLmn0DL2XcnK5OqaqKu7s7Yoypsgt934lPjk2VeCRQ2mxOePX6DW/evMV5\nxy9/+Uv2+1bI4CFMQhF1VQGHZCePUWut+GwoRdu0QJINTve4sDZ5wHj63k/J0WFMSzXZO0ffdyxq\n4TyFquTu6grvHUZZrLFJRarC+0hQQXyDxgGtNFVdE53Hj6Mkq96DyX4cTLAehcR+OeBVSjg7+WEv\nHhVpLqqDwqFWYqTq8VOSRwpy0qRMAaZwHOTc0ucEMfac/Gp0Mh7ksDZmSFlOSFFJ0CB1uPN3SOeD\nVD3OfRo1dQJIcMAAU4dsvraJZHExrRdoSXiUUsLvCHFSs4sxE80NueNDgtPEEPHB4ZHOkHOOMA54\nl6TtRxEIsNrw6uUrLi8ucOPA2HcMfUe3b/j23dc83N/Tt63ctwQdavsenQLSiWNTliJhjyQLKps4\nKoONitFJESfElGCkc62qClWJwuNB6TMm6KrH2gItmfLkdD8Vn3InQ2vpglRLiijeTpMvTeqmGiPJ\nedN1IsetBVYkZq6RsizRtsQohQ8eUSYtJknqQ3dHAG8uKVHKPJV5LIa3AVWUonTXd9JlSomaNPgi\nPvpk2FtOMDbvB4ZRZPG9V9xcL1hVPTEihqdJTVBrUjfvYGugj8ZPThQFrSH7mFRMyJtWCuU8dfI/\nGgdP8ANDcFSF5TRBgEPqYPqssgFoM5NCR5JT7w+S9lofCgA+eAxqEnQoyxKtRD0v38txGBiHEa3L\ntOodjCSz0ENW1czrZVFayqKUcZ4SwK7vOFFlkmZP/Kk0x7UuJqU3pWceX7P1LsvX20I4X6NzbPd7\nKe4OAvcNaY2oFos05wIqGQJrpURZT8OqriitwOSCjygrfDGlFOMw5PbyxBc8dMqYrt0ctpY5cB8S\nAziOZ1SCEM6LNu/HOrlLjSSqOUGdjac5lC3//ClF6e/a77mk6/i7P7ZJzeO7eUH/ULcfkp2/w/Zc\nsvOxLsR3fdbxz/PBmzsWOXl6LvA//v5PnSR/39vfdTJ86JoeLwJ5kwVKFo4szfzcRJ6w0zHKAzVJ\nd4qMpUiq7vd79tsdDw8P7LZbhqFDKVhWFY8Pj5xt1nz29jPevH5F0zRUpeV8c8JyIV4wRhvKsqau\nappGEo/lcsntzQ3GWBFEuLigqir+4td/yXa75fLlK37x+rXgpseRr776ahIdKJPcdNt18uCqK871\nOVVd4eNM9UYpmqaZuF6L5ZLVag0x0nUdi0q6VMvFghgCbXs2EWeXyxUxwuPj45QorVYr3r5+xWq5\nYnun0H7EWMvp6SlVVUOEspCuE2hGNzKOjuWmYBhGrm9veHjcsViu0LagHwYxQQ2Bk5MTXrx4wXK5\nRCnF2Ua6l3d3dzjnqKpKHOe95903kpR9+YtfcHJyQpNEI5bLBScnG5pmz93dLXd39zRtM3UvulYS\nEuf8BAEJIbDdbqfKqxiU7ijrijAMeZBweXnJy8tLQgj8+i/+gnfvrugHx8PDI1rLHGybhrZpZuNP\n7kWWCV8sFuz3uymYz5ygnBD1vXDBrElk+RQ8CHQIRMlpRPcR73yqmhc8asM49GilKLSWoMAHiiyL\nTKqupsArJyjiYSEyZd4HvBKhBIueODJZRjiEgEvBHUiH4+AjqCh0NRkaZpUz0T/KnmEmJR/J6FFJ\nIJ4rvRkOlxMhmdcSwDKr/mpmgUTuDMxeO8bSy3cX6eeQgq5MWD90it5bW3j6mnjcPHVSjzHmW5R8\nXXLyp6YgIIQsNhNSguMPogxR+A3L5VLmdWGxRhOCTxLTjof7W+q64tv6HdvHB/quS7/zIu0rLTG0\ndfTjmDo4AWUs9XKdEh09wc6UVhhbTt2vGCXB9DFgYvILyjyMxJfIKly505cFXnICO4dSV1VFvViw\nLNaY1KmZOg6CAUwDS4mSnjFoY9Ep6FXGJh6H/FsOcwZXQxLt/H05qdBap2QnfY4MhgmqHJUS1TBr\nsUahvXym01rGgpJOaV4H/qf/81/mv/wf/k1uHk64OHnk3/83/nv+8c//x9SlEcNXEUzQ03w6+AJl\nyNLTZ7IYKs+5RZKgVIuSPOG0VhRGsygKNosFZ+s1212DazuG4IgmdyohelEjzPcg890kQc8BerrW\nRiSogxcxHKNA2YOAw8HfRsaAMRprZe1ZLpfU9YLHvaBJhn6Yum7OObxyzGWwbVFgnU2JWZo/qIN8\nuJp1gpSeEqkhFbVM8g4T89JI9iQSY2iVBC2Yvl+urUoGpEny2zuMd9jkW1SVBZ0fEwRzxKMpk9ok\ns4BdkeCCshA8WRPSkvjBgu9xcjLv7GSe4WyVYTqJo886DpWOk6PnitLPxVefEuf9oSYpf1/bD8nO\n99g+lNDk7bkJ8X0GmpgF7iey5Pxzjj/7uUnxMYjZ/N+fCkV7bpsnIR/6nud+f/ze4+N/rnP2XEI3\n/w44QAUPpNSDclMOdLz37Hctu+ATrKGcIEpN0zAmiVY/GcZ5fFFwdnbGxcUFLy8vqRcLbm9vsdrw\n9u1bVBQRgq7rMUrR9VIxPCRiKkGbahaLBff399zc3VDXFZ99/paf/OQntG3Hn//5r3j37becn59R\nFMWEGwdYLJfsmwa0SEaXifS72+1o25a+62cmfiloHUcIkfVqxelmzaKq6Jo9ViuWdYWPQspvu459\n0+DGUY6xKlksKspSuAM+wQJXiyR33CajVWOp6hp6qSCuVyt2qiUEkpqYxxg7wYjOz86p63q6L6Wx\nrC4uuLm54f7uDu88ly9fUpUl0UsXZZk6QVop7u7veXx8pKwq6npB27Y8Pgo/xY0jRVFOvClggtfo\nFIz2wyAcncIyOuE1LZYLxjSeVsslb968YblccXNzyy9/9edcX92gtWGXEiXISYlAPfK/tdaTwWIM\ngd3jdnJAt9qImljwhBREGmPouo7oDw4vzjmCl8TFJkjUOAz4cRTPoLLAuzFxJ2R8dX2PSsGzSzj7\nvh/ou47SWFAJLuY8WRrWK48bRoji5yE+M2JI6N04VagzFEhgSymQcY4441BMczGIUIg2AuvyMSmd\nkTtEEiDmhEbBFAPMob7TnFZPIXDzNSAHUCmPSKIKeloDQjgQqiFilCh8TVSg+WfmcDWEA/Ru9vup\nwJT2zmM5xkhWBJ5gRDFOxzwlSuQAVarQ0rWQIN25gT4KHBWl0UVJUdeUw0hEMfaGgZ6odQbogQGT\nQTraUtoCW8r1Cj6i0WA0RqS3MKh0T+Q92hj5vMy5QmG0mRIZnaC7IMGpLYrUWdAYoyFKh60qS8py\ngbGl8HCmG6om0QGjJVHKiY4xFmMLdEqgchcgd6JjZJJ2VuHgXaNyRV7pVDk/JLgyvw+FBKUUOng0\nKWFGvIWGQZJH5wb63uNj5J//9i3/yX/97xAS+f/28YT/9L/59/in/9HfcL78vwmhQ6kDbydDwJQ+\nmJhKRH9AceTj0lMadBgPOckiKlGWUyKMsFkoTlYrqsKg2mRQa8whkcKjVOr+ajVB12QdlY6jDzP4\nVOpMyIHHdE9E5MF7hzFSlIvRUFUlRREZhpGyqACFd36CzvtJPGVKDQ5doMThyglz9Ad56BAPanWH\n57JNvksZ0q/SnA2TkbBNrxktQjNKKUYXkklzTEXfDIeToo53A1pF6rKkKgtM73BeiilKWwxMULvM\n23kO8jWftwcY7vvx0fsxXuL7zd4jv8sxy3sf8d5nz9e/D8Vdz3WVjo/9OTTNh35/fAzHsdXTff+w\nk6Ufkp3vuX0MgvX7tgfzvsf773a7KZiamwTOK5Qfm4jPfcfHKgbH+z73vo/te5ygfMr5Pzd5P9Sl\neq6LNT++XOmdk227TqBKGV6UoYNuaBl6SQ5Okn+OUprdbk9I3itVWVOXVSILBC4vL7m8eCEu9UpR\nWMvJZo1Cc319xfX1NcMwslmvBLYBPNw/sn18wGjNarVCa83DwwPffvstXdfy4sUl5+dnWGu4v7/l\nm2++ZnQDdV0zuoHdbkfwnjoF0Rku1bYdOhF99/s9796943G/IwQv554kX60xVHXNyXqNUfD4cM/N\n9RX73S5V0xVd6nDs9w1KwWq1ZL1eYrRit32k69ppzDnv8V3Lfr9ndB6MTlK4hqKsE85cs1xIhXAY\nR5q2ZbVac3n5krOLFyilGUdHYQp8TKFmhHFwk1KZ0ZZxGIkhcro5ZbVY4Zxnt90xDCPLxQEK59xI\n17b4EFgslrjR06dOjbUCT3LZ8X2qzCqKsqCqK9Ynax57GRenZ2ecnmoeHrb81V/9Fb/97W/RSmBp\nZVESQkxdrHGqNOa/i6KgLAo0oubXdd0UrGSxgegNi9VqMoht9nv6YSB4WYpFlU2SWE0EJdLYXdey\nrCsxYk3jORPmh2HAKuHSjMmTqe972q4TmeOUCFltBGaSwvvsSz+F+zGKP4l3RJ8kZlNwGaauS1I+\nTJ3UXOEWz5pc3ZzYyOnfavLfCbmaGVOHJ3lsqBwskNaaIOpmMPvcFBAfFo/0Rzqu/KJKXSqV4EBT\nd0EdOA45IJRLfJD4lWPRGHOAwObgKCcLEpwdThHyvUiZV0wmkEkRTCXDVqPlWJ0fGTshfg99LwIi\nbYMfBkxZsTl/Qb1cMfbD9PtyK2IlwzDgB0mMJMsz2KKcOkvOeQnSkuJZTPfIFjZ1RGTs+7y2pr+l\nup7ggcpMyY21FmuKBHXV0plRB/5HYUti6saQg0QlgbXRkuAofejIaGMliE8V+yy0IBDKJGSQgvR5\nJz7GmJTGSL4v+kmXThvLYmnRNn1vSnSMlnvuU7IjUMKG/U6+53/5v/7xlOjkLUbN//HLf5V/+5/8\nZSp2jQfoU0y8LfXULy+mbur8uaZ5mq3LtZeEIHcNrPl/2Xt3X1uybM3rN+eM53rs13lm5snMqsqq\ne6+6HYRoBwmvaZAwcBAeQkLCQMLrP6AtnHb4D5DAwcPAAA8DBwN1I9G3m3uvblVlVeZ57+d6R8R8\nYIw5Z8Reuc/JrCyMKpSROspz9l4RK1as+RjfGN/4PhFWUE3B6XLBvG252+2wVlTgUqVaplWcV1Hp\nLHhPcJF6qRwhmDi2daYhSlXXMWCxzmGtY+gHlNLUdUNhauq6JIQehdCv7WBHg9QwoeIncKIkmSAP\nPg95SaR4x5CqmiFSQ0PsydJpTx8rXnnPDgEp/irKIq5/pqAoK7TxDM7TD/IZkg9hmvveiWCBRtHU\nJU1VURUDQwjScGQMyiUBkyRyEt8/rVUq9ntNxl165tOY6UOxkOLeVx1fcz8++e7xsYT5+Jr756v8\n++M1KJ/xABD6Q+K56WvuAZ97n+3P7/gJ7PyRx8fAxmgI9oFSZBqsxMlCyovJgrDdbLFZzWmITtgx\nMFFjGXacWA8j9u+rMH3f4P8xg/uHVJB+KBj8TsZ38vfphpdelzZWINOL0sRNr3HOiWFe3KhNUdJH\n008C2VG7rkpKLcHPsyePWC6WaKUpTcHp8oSmqbm6vublq9dsNluM0jR1y2w257Df8/vff0OhFZ98\n8gnL5RLnHNfX16zXa/HlqSu8d1xfX/Hy5bfc3F5zdnoWm+730vMRU9zTvpBhGLLowm63Z7PZ4Jyl\nqqus+maM+Hk0VYXRitvbG26ur7m6kkrFbLnEDzHT7z2Ju5yktZ0dWK9ucV1PWRQ5OHdBNh7nA6US\nVaemKEFr1usN/eCYL5c8NwXb3Q4fYDaT3iJdltI4XYjM68Ef2O92eBsoTCmULV1QlxX7/YFu1zFb\nztFK0x06tpst3aGjOjlhuVjQNi13dytub24Yup7TkzOcDeIwjgTByTBxt99FSlsQsBP7AYqioAiy\nFC6XS4bhmpcvX/K7r79ms17z/NmnLBYL9vsoFBLIwUoaW1VV0rax8uIc+/0exRiseO+wQ6A0hsV8\nzvn5Gfv9gdVqxSGbm6ZMtQTKyYeFKKteliVnp2ccdnv6w4FBacrYEJ0oOdZIT0c/9HTdgUNVYMyM\nQhuqwuBQ4p+D9NFo6aAegzMl1RuhNQnFLgC4ibxzNKJVQaPjFqJi436AUarXj7UQjQCfVOnJmXwk\nY0zMhMt3lid0prSlAPheQK0Uo/eY+IDoCIDk+9EoLSF/yrKq+BlVqsDE98BngVqpRCgBTQEfwbEe\nfxbBUfCpkhPGIDgCN61NbE6PggaKSDt1dIcOa3ussxJYDpagNPV8Qd3O4t4gxpipQrfZbLi+uWS1\nWrHd7Dgcuih64CCZNXqPMQ4TZGyawuC8Q0VDR6nQjZVGUBJgpupI7DH0qGjyaWJ2PYEdkQAuolpa\nGdXSXJQkH4N/Acg6CsYQ+3WITfdhAj51BJLaSA9aau4mr+HRgyfvZTJCpkI/zntKpaTy2TSYwqCD\neLyI4hr4WNHxzjJ0O+nbrErqunpwzykKw7yd453n0EsSKO8pscKRkmcqAs0kpEF8/irNl3Tv8bpK\n6SQDiLMyhqrCcLJYcHpyws1my8GL4ETCOuk9AOkdS2a7jL9P/9daqqgifY347TiRHs/AA0VVlTT1\nHK0Vu90epQ1VlOIfPZvIMXkx+aw20+nlfryz+OBxwaO9z7Q2qWY5hqHHay2+gtyfNxl8KBUpdQUm\nsjPKCIyLwqFUh3eBUMQ1IsVAzuEV6KKkLkvauqIsOtQwxM8qCQCp7ISjKGms1n3nOAIL6c9xk7/K\nQGn8rhPTJCdf7lVL4iDJo+JDR/pOR6H8Y5rbeL37eaAPHR9LhP+Q1/25Ah34Cez8qONjQfp0MDwk\nN30c+Ct0DADiZEEGt9GGruux1uWMW9qcfZo8k+zkx+bMh2hk6X4+BNi+D4x8CMR86Gcfut7HJtZ0\ncn8MNE2zNal6M630qJiJS+AHQhQnqDBFiQ+w2e7Y76VHp42AYblcMm8bFrMZs6ZiuZzHwLFkMZux\nWt+xXm1jX4Vk9eu6Ybk8YXV3y+vXb/iLX/2SJ0+e0DQ1t7e3WWhiGSWZt5sN/dCz3qzx3nF+cYZz\nErCWVUlV1WhECrZpGunBacSodBgs1jrm8zkAddtEbrkYT87nLYUW4LTbrLi5vuZwOHBydibKc8NB\nnLERU9SqFP60HQa87fC2R2nZtZOqnTIaXZZ4KzQYpQ2z2RwXAu8vX+I8nJydc3Z+IXK4uz3iul7g\nfeDi7JyL8wtRM6sqtuuNbPhliVaK05MTlsulgJi7W6q2Zh+V1G5vbliv1pRFgXcy9u9u76Sq1nXM\nZjO26x1pQvR9z87tpU/pcKC3A9Y7PJJp9Ajnez5r49jRvHnzhq+//pqrq+tMc1Sxl8U5L83/VY12\n0U3eGBaLBbPZDKMNfdfRHQ7UtbwmDtpcUTBROaiqSk5uFwxDTzIPLrR4njgvVRatRPVNPEBq2pNT\nNus1V5FGWJclKlJGrPdY63MlWOn9mYYAACAASURBVPyYSmZtCzHA0EpJhlxLRpm0KXsBHMYosWP3\nqfFfXOe9E/UkrXRs1I8UER8IRoLk5BXkXcg7r+E+SMiBgop9HV7Azrg+CjiSW0pBxXfXB6kmib1k\niIGMd7FXJatn6dznkoJQrcaPnL6TEEL0+4iVD4VUlaaRHhPAQ5A+JhypJSipUBEpc3nNj4GjteJb\nNViZr0IRqymKmtDOKEpNWzcUWlTBBO8IOHLW0h06rm+vRbL6+lpk0Fdr1utIldQFWoMyPgfmIdJ8\nTOwLk3/b6JdT5LGY/oiXicJ6T1nV2TsnN/tHUYZsGlrEqk0RJYgT6Iqfmwic0rgLae32Hu0DqtBR\nDUyazYmVrwRkUanSJt4zAXBOxkVVVVlJDgXaGKqmETEMU4B3BC8eWISAMgpTGpTy+Fb8hKqq4D/5\nJ6/4H//XkQIGoJXn3/9H/4a6qhmqAR8sAX+v0iT9aaNSnjxvGffpSgJ2ImCI483oOK9cEPpqiP5l\nSjFvGk6XS9rmmrv9nt5ZqdYQe9uSVYX30ggfh6iONNQkI57GavaY8x6vIuOhKBnMIHFHFK4IwdN1\nA1oZClPgghJVx1idTJLl6fqpopzmayDJsY8GoClBAOL9NQyWYEykTablKO3NSY58VFOdPDQBzUY8\nmGBAzIvlIgGpqHkNRol6oexhShJMUfY6x1CkWOsoFpkAnhxzPFDV+TAoeFiU4MPJ5fT3h5PS038/\ndN2HX/fhGGvKfjm+9seS3T80If3ncPwEdn7EcUwhu4/aHxYF+D7wcFxyFO+U8J2fp6rEtHoB5GrP\n9HoPXf8YeP0hoORDv/+hWYGPve7HZgymzyh9vqQ4kxq0UwZfKZUrIuBFzUUnTrBlt92z2+3RWtM2\ncxaLBc+fPePi7JTVzQ12GHjy6AlVWbDf7en7A6vbO5QuOT87jw2dB9p2xtnZOf/Xv/wXNE3LL7/6\nJY8fP+Lm5prNZpMrAacnYrbpg+PQHeSetKZtG66vbxj6gUePHvP08VMUipvr69j0DKcnUv3pezGV\nfP78U4ahwwObrSi21VXNyVzAmbM9Q9/jvcv9A/v9nvV6w+3dHb21tE1NWZQoFH13QCtPURpKU2B7\nH6s0gdOzM6qm5na1Zr3dYQM084XIVw8uZugEALVI9v3du3fsugNfvPiCr37xC9q2Zb8TL6LD/sB6\ntYIAi8WCp0+fMmtn/M3f/i3b9Qb9/Dk3V9fc3N7w9u071us1RWHY7Xb0/SC9Qf0g/UN1zep2nePj\nru/Z60PunfBhVA6z1qG0qAydnouq23az5fW3v+b1q9f4RIuzVqopsQHa54qFoqoEEJ+cLCmKQhp6\nI42jqgp0J68tiyLSRQKr1a3QBGPfQ9s0GLVPk0TmsneAUFISTcYNlvasZTFfsL69g0g1I1IzrHMM\nivhMOrbbnawjpxKciJyqRPwqJQecF+GAWE1QQWg2eeP3ZKNSUKhCgiNSwK8ANGHS5J8c6RPIibFP\nTtLIPE2BknxOAuiQFM5iRSXWubVSsUFe5Yz/lIIl56h0mfQYY1Zcx0yy0Jo8KsvMJgCEj9UsYiUu\nA53Y5xKCGLH6ifSx91kpLcTKaCDke1U60t6UEjU353FOnn1RlbnxX8WgzkTVrNSIJJnrQFWKqtbC\nBx598gmb1Yqr9+95++4d796+492791JFjGurCA446VEy8l2UZQlK1ORyrxlGZKOziprQ1USAI2BK\nMSsNgZhZL0n0IZHXFhPQEIhCAyb+idUPFZu/w6RiFr+nbOLro9x1gOCi6lbwY8DrJvuiGlW+0neQ\nPHNMUVDPWspaaL7CSlN4BPDFBo/onRSy0EsIS/7Rv7Xin//T/51//t/927y9OuHJ+R3/5X/8v/HL\nz97QdXL9Rs1A3d+/3XEgDCKKoMY+HR3HbpZ4D4HByjwXSqFGFQpvpUbTlBWLtqWpa5SS+e7sWBWa\nhNVobUjUS7mHQFDJwyb6+2hhiGhtKIyiit5KfdcTQqDre5QSG4GyLCRh4hw+SkULiFM5rNBmjDHS\ns6iquLdGml9ZlBRGxorUimW9yMF9mruT5GS61rEpZxZTmCQsgpbFRPx2xNTZG0cwskamZ3usljc+\nv7HSkuaeVGWP4rYJsJiq206PjzNn7idK7l82r65MQdL3Hcex4P04Ttbkh5gu03s7/vf0czz0u/8/\nHT+BnT/yOJ4EU6rUFOD8IQM6ZdyADGr8ZKM9PrLx2Y8cnx+r0Dz0uv+vjx8CdKaffXofoyLTfYnv\nVMFJamXp3EQ70jr5D4gK0G67j3QiR13XnJ2d8fnnX/DVz39GbTTffP11zLh73rx+zcuX32QTutOz\nJV2kvy0XJzx9+pTFfM719S2/+MUv+OTTT7i+uuLVq9fs9zuMMVxcnDOfz+W+glQgVqs1/dDx/v07\nhsHx+PFjfvGLn/Po4jG317e8ffOGy8tLLi4e431geyeeOmUlFLN3796x3q45dAeqquHxoydY66ij\nxLaKkqS9taJ2E/Z0vaOuK+q2iUINJe2s4eJkQWVARerN7e0qA8emaaS5OD77qpZM6bt373ny7Bnn\nF4/oh4E3b97w8tVr3r59y3a759mnn/CrX/4ln37yGe/fvePm5obnT5/TtjPJxgYI1rPf7nn9+g1/\n9zd/x3q1xg6Ob37/Dd++esWbd2/oo2pQ6huYt3NOliccDh3DIBLcSaLWOcfghhjQ6QiGBfj0Q8di\nMeezzz6jbAXsvH3zijcvX3HY7SgLoep47+lsJ5newbGOghBaw+n5GWdnp1ngwk0ok0op2krkqYUy\nUzN0PTdX12zXG2azWeaMT8e01hL4WgV4jxssh8OBq+trFvM5Kds5uIF+6KmTSmMIDAht5XA4sN1t\nxZQYCTKM0gQtfzAFxH+nAEakezsJLLSYLJJ6KCbzsCzKMeuuEq1MRyAUr3W0gSaaivQhjaHAvWRF\nBDhT2g+JCqVUVvvy6Txv7/PsRyX/WH2JJRw13n8WKQjJFyjLE4yeI1oMIhM1zbso8BDFDqaJFBVl\npuXZpMx0lLGVV+f1XEeqWJJWlqyuj+aN0nchZooCxrVSlKagUfJaNziqpuX5i8959Ow5X/x8x83N\nDbfXN1xfX3N7d0Pfy/cn5qNyvbIS0+EEqELw2EGeW1GVcY8xVGVNURQxCVDG71DlpnKlNd4zKrRB\n9H2Kanfx/zrK66bA1kQhlXubVASTPr7aezHGNHrsR51W5lNAHZTKcvxN20Zz1CpWdTTWWYIbwUEg\nkAxynfMMvY336UFpqrblP/2PbvgP/t3/iVevLYW6wdoeZwMhyL3XE1W0NK/dkXhCutf7e2QgAUYm\n8YDWImutidUmNNZ5aqWYz2bMZy11VbEZ7CQTHzCFXNuU0rhv+x7nRFYbHedZpP3p4OTvMTmjlAhL\nOOuiYqnlsB/wTrNcLmiaGYfDLf2+p6irmBiS+0/AQSWzXOWzP21V1RTRvqCsSuzgCIFIJXYEo/P8\nNFpnACx9tC6Oj9gJN8jaZ+1IdbNOqvCjNYesW9YOdAfoikBVKGpVCqArDXVdRkPensEqUSmMfZWx\ndDgmTMLo96Mm32/6rqf9O9P1bHqk5M39AOzjsdIYy9z/+UMx3rH5fHrd9P/f/z4PAa8fl2D+cz1+\nAjt/5PEQ0k7HDxmQ6fzpAp/OOZaZnr7PVNtfzgvfyT4dH1NQ86Hy6h963kMVpI9d4/g4fv1DmYm8\nwUw8MqYbTApC0vlTRbIEfJJyVsoG7vdbkpCBtZab2zu6/YHFYsGLFy/45Ve/5PT0lN/85rd889vf\nUhj4h//gr3j58iVvXn5LCJ7nz55S1w1nZxeEpWU+n3N+dkrbtvz6N7/lq6++4uRkQd/1vH37llev\nXmGM5tNPPyGEwLt3Yp6pjYgEnJ2f8tWvfsG3335L3w+cnJxwdiYS0e8vpaIh0qAN69WaPjbhr9dC\nZxmGITbmy/OxgxX1Njcwq0uGfqDrhOu/WJ7QzOb42zVd1+Mn2bXu0LHRcDJvOD9dcnl5zepuxf5w\noPSON2/ecBh6vIfZXHjmTfSxQRdcXd9wd7cWRbrC8PTZM/rB8bOf/4xh6Hn16hXWWs5Oz0DB7373\nO77+zW8pjOHRxQWLWI1aLBc8efqU09NT1ttt7iFoa8PZ2TlKafrDge5woO8Hdrt97ocaNwjiM5Hs\neoiBvHOOfuh49OiCzz//nPc3Mu6S/1Aeg87H4Eb6cJxztE1DXdeUpaGdzxiGQdTgrM0bZlkWFErT\ntA2A9GZEelIyHuy6jrqpWbYti2X0mIFYFarQqkJ5nxX8fDwnKSQ573DWQVFJ74OQhghB/Gv6fsie\nOBKgW3E+LzQKCSJCbGQO8X19VCQr8vwpIrwg05BCLKGk+Zl6yXIDt/f3QM+UAjL9k4D+NJGjYgUm\nROCQqDDEbKzoXPtcnSNK8Boz0b4KQqnzKQmiiNSyWGGKGl2oRKmTc7SK0ttK4WKoPF2Hcvg8DTpi\nUC8UuZTFF7NI55zQtXQyPpY/SdNKR1BkYr9VUZY5Yy/PRp6dC4hfkpdqtCmkp61qWs4vLnA/c2xW\na25vb7i6uuTm5pr9fsd+t8XvNvFZOULwUZ2woixiMq0wMf7TsX+twrkOEGqajlWdum4whYAmrUtM\npC4OzuJMiBn3sRcraqZFoCRVIjOp/ARG+lquBsXKzjTTnxN5jFW/rpPeOR+k966oqwwiU6+Zd56A\nxxQlZSFiFahA30UPllgtMsYwa2cCPtQdq7uGzcbS+36sIiXZ9vj6qQR22o9SlU6p1EvmYxE1jveQ\n9napnA6HAWsHgvW4RAdGU5birdY0DWXXTUmU+f0KY8TDBwHL3nt0mNQu4lzRKnrOeA9BaHbW2UlV\nDKEOa421fRZBappGkoDp+U8+Z5qvWWHRjFUPrWWdtFZ6JKtSem50MfH98z4KJVjK0kRVuAofkjy/\nQhsfk0yp4hKTEikZoaQC1fWewwHaqqQ0mvlsxuAVuyFwsx0o1gd8XAPL6YydrEExa8PxoZQA6ykA\nmsZh36WEjRW96bXH14/X/hANbXo8xHr5GHBJv5/GaMf3+7Hq1MfuZfwd/OiM+p/A8RPY+ZHHMSiZ\nBuBpUqYAe1oKTeccZzwTp0LWk9jgF8A6S6FMvH7MVAkRHR+zN1qP56dsUi6PhqMJFydwHuMx25Gz\nHiSloe8CtWPw9qFJeHzOMYCZ/m4Mjh6ogkkXdPw7MRAIZF63NiKDm6th0uSKVzFHrCGIglg8LWeT\neqswtWHXSYB6enbO5//wUz779FMenZ9RlwX77QatLZ9+9oQXnz6n7zuurt+zHw7MZzOCVgzecXlz\nS2GEMrE97Lm6uuKb333N+ekpShveXV6x2uy5ePyMZ8+fU5YF337ze96/f0dZGpaLGU+ePGGxmPHy\n9bfcXV3y9Okznjy6YLlY0A+W+WLJ4vSMWTvn5OSUwQW2+4OYSDrH4Bxd3+GcRRvp+2hrw6wuWC5a\nKqPpdmucdVRlxXI+p24XrNZ72WxDoDYFTVnJa7dbdn6gwnN3e8N6vxUltt5zcnLGxWLJdrdntlhS\nVDW7g8jj7rs9t3cCoKq6pikbvB3wg6VUim++/i0/+9nPaNqWq6tLNpst7y/foyvDiy+/5Fd/8Rec\nnp7y5s0b1ocduip48eUXvHr9mvLNq8y9FnU5w9s37/j2m29Zr9bST9L1KC/qPgBtU1NT4rxld7CU\nTYU3EEr49MULvvrVV6im4ObqFoDF/ARlzwhhTYjBinOOw2HPodtjTEFT1wQVA3VrOUQnb6UkEKmM\noikbmkaqaYB4XQSZq2XdxCBc46yjV0NWcjKFjkJbPgZKRmhWLjAMltvbFcNg8c7Tdz2FMSJNjTQ5\nq0hDGgYrvVhBVO763lJUoiIYrMXr6H0THNKXoSmNllaLSLcKKiZQjEIH8YTx3sIwVoNSYKVSASXI\n5yRlhQmTxSZWaCKhTKhrUpHS3qO89EMFiCaT6QphpNkpQOlME/NxvZPqlVCHQvBInYARdCE0qLxf\na8l0p3sLOGxwYjoaVFaCCy5EGpTITKf+iFERKvmqyLW8k74YCFGRMWRPIqNjdSP5osS+KIK8jw3R\nMytWfVJcYSMTy+gGhSK2JqF1QVka0FDUNe3JkvMnT9jvt2y3a+5ub7l8/46+F9NSO9h4yYDH5sBd\nAjVNoTWlUpiqIXu2JNpg8LFaBJ5BaItKxb3ISI8HBrw5kiRXWOcxpsDGipN8ZSKJrQCckwqaHaT6\nbMQM0ztHVVcsFgvqtiGEIM32waN1gSmLXC0bRQwUIagskhEIDE6AngW8FnCH9gQvzxKtMHWgmTsG\n5zNNtaeTT+tGnyypmo39KibSJwuEKZAOk/vRZE6kCmRQSTwAghVAVhhDWWq08yzbmkfLOdeLOdvd\nDoMAT6FNyodywGEYCKGPEthaFPNMjVaFUAWVA+MoKoVyBWUlPkfBaxQFZVlTloqqbOi7Azc37zBF\nwXwmFLpCR5n0ALgIzonrUVBE/mqWt1ZGocsC1Q8yYBFhmNDUsiYFj4v7sg8eHxzWpf6xKIZixypG\nYbR4DYWk2CeVLYPI94fgsE4xWIMN4LXGlBWmdFRVTV0WMpa9Q9mBUEjnl47f0WB7YTtoMS6eopEc\no0TgHjuDsuCK8CRTfBXjrRR2Ta6hVIzn4jox+S3pBO/vg4iHsEb62XgtGaP3PcNGsYqUKJEETprx\n47g8prfBJOb6CNgB9fFf/4kfP4GdH3EcI+SU2Ux/v585kOODFZAMUhj/Hcbfe+8AE7OAgEseEz5y\ndyWfO2bA7t3pEcqfbPaTt0uZ0wR00uR7CJxN7/1D1aHvyx5Mfz7NOBxzY0MGXnJMJ27KmIUJwEzK\nWloboYMgnGWjC3wkIrhBdp66aTk9O2cxn1NXFacnSz559pSz5YK6LLBDRz8cqErDo/NnPP/kGb/5\n9a+5vbthv99TVmK8d356ivXSDNnOWgY7cHN7w3a3Zeh7/p2ffcGb12+p6obFcklZN1xdXvL2/SW2\nHzg7PeHzFy948dmnWDvw29/+PZ88e8pnn70QoNN3bLcHhsGCUpRVHb1ULDaq3ngvlAHrLYMd0E7h\nqhKCpyoLqqpk2O/EMBTxkmnqVtZDH2JQL7lY21usH7CHLcrWuMOO/aGjrCqqWmgwy5MlbTuXoAsx\nM+1tNPMDuqFHGU07a2nqhm6/p3OO/nBgtd3x6SfPMUZzdXnJze2duJiXBe1ixmw5ZwiOy9trgoJn\nnzzn5OyUt+/fMZ/PefLkCX3fM2tneOu4vrlms95QFQXLxRKjC7arLTo2HGuVvC0sZVVQF/I8Ts5O\nePbpM+p5y/urS3Y7ESiYNXMY5vSdKPkURZHFIrz31LWhqstcmel7N5GerqhLQ1VIz11ZlvitcPSN\nMZRFMm0UX4q08dtIfwOEUlhXMmdcIlmNVKuhH2Te5yy2VAJEZU4CcG8dfddn2fVuf6DreppZyJLK\nzg6oIP1VuiiAgtjNL/PSgcuba+Ld389myrrA6PuRKq0urYHcT2mq1MA8LkEqRDABElRFCavRE0OJ\nEEGQ8yXO0DkQUSmJEWs2Pr4P0ScmAa+cVIlVYBWSaEG8QAxp5LkrAVQqcuGjUpuO48noiXJcGMFO\n8AHrhxQbxuw/+R59CNKYHkIUpQnj0h+IAgsC8KbJsTGTriPukipFitOUUShtqNuWZjbjjHP67sBu\ns+Hs/Iy+O7Dfbdlut3T7g4yL/TbKMo/y4hrpZypNAUHHZxmTYxGciTFsiGBLCy3Qj/0ZCdsqlADK\nCAq99/fkybPZph/lnJX3aALWDphg0FpR1xWL5ZzZfI4PEkAf+k7oZW1D0zaUUdhEdDFGpb4guuaI\nB43DeenZIiYBhXpZyn4SSsqmobU2Wg/Eqg6B0I9VJoyJz17mXtorjdJTtqQkPuP4yvtlpNNpLVUV\nHcArjYr+Mp6Bpqo4mc04nc24LEs0h/ic7ldLHR7BzqJ1mHpkQhjplyAN+spbnFc4F/AOlBLhAR0H\np7U9duhZzlrK0kRKYayGhnGuhqRYGJOmaWymfrVU+QpGxrWzNgPmgGAkHU1EiWMhnZfzm/FZiWeY\nePToCBqKoEWExTkSDTHEGMA6T28HnPcopSlMQWkMZYpdlCROVZS697EiRjJjTqBlUo25F8dkwBIT\nyen3GSMcx3pj7PLd+Gec9ON5MenycKiUEwfjdQPjdaaXDkfnxL9P7uOHsHrCg687QnR/ZsdPYOdH\nHPdoGA8c6eejilq49/OPnXP8Pul3KZgPIeS+k0TXktf475ynVAqRphPqhwzYh3//UDbgeEIcP5tp\n5WZa+n8ocDquAiW2yfTa90QZ4kKarpNc5nXm26degJABUtM0NE3DydkJjx5dMJ/NRK6yqQk+8PrV\nKxSe0miMhjIaJK5WK1arFev1OqtdEQKPHj2iGwJ26Gibms3qDu/FR2G73fDixWdcXl5GwQnPzfUN\n79+/J4TA48dP+MXPv+Qv/+KXNE3Nb37za7TW/NVf/RXz+RLvHVdX16xXm6ziVpgK5xx3d3eRNiV0\nNaksCE3AIwFvClCtdazWa7a7bQw2NX03cLB7hmHI1D/vPZvNmuGwQwdLZaDvHLpqmM3qKDowkwqb\nlzG53+85dD1DCNjIMS+KgradcXpyQmGEW44Sk9y0qyWX7OSB5F3gsN8LHc9abm5uKMuSzz//nMNB\nJJqLouDx48fs93uapsaHQHcQ8YHFYsHJ8iTPi9Tz5pLBqILZckZZ15ycLXn26TOauuHu5gbbWYL/\nTF7vxyZu8QURFbzDYdJYHD/D1Fg0ydjWVUFlRtPQ1M9h9OgeDpEOo1WU/XZ5nLd1w7xt6O3AcOjv\nJxliY7dJwD7TaQwqJj8gRCDWs9/v5Rn3PV0UTqjK6H3hJPBPTuiAVERDkEb6tLEahUogwIcHV4bc\nczMBFcdrg2JS/Tk6d7yGJ/tgJLDjYwNG2uwTONLjGpd/HogzPYzfFXItF/srEtghhGwaOM19SvA4\nSRBBfkapH0fobukyIZ+dZA8UEkQKkBiB4LSpPUSwlcFSyrhOAVB6diqxBmLViRF4eq9QTiosieKj\nlRYqVFXRNDUheLrDnvVqxer2jtXqjvWdjpLB8n7y/UhwqYJkwDVqEvTEiDRSC2VuGHlWblzP5ZlL\nAJsa9FX8bCSAKSgYH1wWiyBIIKrCSE/WRmSuMwVQSRJBpLQryroWRbi830xH5zQLnSLp8TtLwarW\nGhc/j4mUvbKqcLaOvS1DFjfJe7ke6WqkzxjHWUoSHlM9854cf68LgYdBmWjEKSn+whja2YzFYkHb\nNCjW4zzJa4EIWqio1JZonc55vPEEr6OBlmLoO5S3hLLI65myo32BHQQ8lGUZvb+8iEtEhUdUrFKR\nALt8N+ln3jucU5kinMCOtWLqqUjUdHkeKdkzBfJTOrrgkqQSGNkrIVaV4tYvyRQPmBwPDH3Pfn/A\nDnG9jYlPY4xQtLUiiL0uqf9KKnh+MnbSH8Y5qsafjdXccV5O52f+nrgvtvBQ3PQh4PFQrPgx2tq9\ne33gd8fx2Mfi1nvnqg/47HzPuX/Kx09g50ccx7xIuB+wH4MdP9nkjq/z0DWPJ8+03+S4tycdIw0N\n0oIriYeRXnd8qPtze3IdvvuLH3BMn8H0/kcRgZBBT3r9/cUhbQzpmUyvCzmHq3R+LhqVn49SiqIw\nuUfHxs3KenF1b5qW5ckJjx8/4fzilKqs6PuOw36HtwPBWq4u36FV4Ox0ycXJCUVV0Pc9L1/e8Orl\nK/b7A01TRwleWc3rqqKpS5wTrrJ3Unl78vQx8/mcsizE86Q7oJRiuVxydnbC40cXfPrZp8xmMy4v\n3/Ob3/6G3W7LxcUFh0PP1dU1u31Hd+jZ7URAIfhbhmEQgYHY1CuAwVOVlfSYEKjqOlYQxONg3x1E\nfQfp8ekGh41ASCsJ3AfvCK5HFJEkuCqNwZQlQRfxuwwMfUevpJpx2O/ZdT2qKHAoDn1HYQzLxYJZ\nO6Pb7zns94QgXO6LswtOT0/p+l4qJv2BEBTK6EjN6tjt9+y2W6yVPqh3795ye3vDMNi8gZVlJepV\nQTZjrXQGH9772Ccg4z/4QFmXtHVDu1zw+YvPuXh8zt36ltVmzdniFFuJ34btLZv1mt1mQ900FEWF\n7Xu22y1VVd9b/KXxWTjnZRkDsxgQJwUgn/xzctVxBOeiaqXBkXnxZVmKOps1YEf+e9/39H2HMVCX\nVZ5b0gRsxrWHmPm1NlaeepyT84dhoGma3Fsi1B9yRSPXj1LQ7RMVI8Q+mjivY4Z6zGyOKZUUHKcG\n47SWyPIUMlgJk0k+VnUlaeMDsfLhwWuhHCValVKQfi4rxhjUqknmM2Vzub+eJrApKl1uBDRhDKbU\nvSCfnCjR8ftKhSYma5pcMymHqVgtiZLPQWgnyRNIqek9jfeY7zsGhqkSEKIj672KmZpIyYYAsdbk\n7NibY4ymqhvKQvpSmrqlqVvquqE0SnysDp34/MQKbwgB5cFoCHkfiYDaRIWvCHgURKU5hw5Jljv5\n68jzTCpdkgCS7zAwuf8w9mGmfSAnxowhIIkRFf9dRIEUY0p0YWSs93285rQiJsBZKZX7PtIQEbEO\nqWI5P+QxgCLSwoyIKhRFbLyvKPoOm4LAON6883HA63vAVWk9qgfG64b0neehqiKNFFyIhqQR4M3a\nlpOTExaLBUNxAwxERJrHp0hRj/ur8ilREDLgxWi805S6oG0b5nMxevZWzhl6i1I+2wmUZSWiC1rj\n4rW0ipUYGA2I070T1dtidU76phRey734RH+LgD/15GTsGe9dEksmz6MEiEI3xKqmfHE5ceEdY44m\njB5j1gIao1WkBhbSRxSkZynFQvIFyrggJ2butxmka4dYRUnLV7rv7772/jFdFx563XH8eHzuh47j\n637nnJRc4X6K++jN00n53/k10+TD8WeLF/0+sPSnevwEdn7EkTNYasz4HQOVKfA5HtjHg2U6gI/P\nTZUcodDUEgy1bQ5erLVZVll7/AAAIABJREFUHcdGvf7pdcjj+T7ouQ+OHj4+NEGn931cvj1+JseA\nLr3/tJowzewo9V3VufvPQ+d+KKFVjNmWlFEuikIC/P1BNo/5jNOzM05PT5nP5yxPzhj6A5vDmr7r\nIHh6o1jdXHF7fc3pyZKLk2XOKgbnWN3ecXt7KwuxMbioaHZ7c8vT5y8oCs1+K7LSpig4Pz/nL//i\nV+w22+i/EBj6gbpueBpB0NnJkrZtef36NX/3d3/Lt99+y+Jkhtaay8tLrq5vGaInhx1E/WfoN/mZ\nyYbVxSBYvFhU3HTapqEoDNY6DuHAoevE3yME9hwYXECXZczIefruACEwa2uWsxP80EEYmM1nUNV0\nLmD7ns1mi0Iyq03Tcrta03UdldYcDj1DcLSNGIg679hsNuJ/086AwONHjzg7O+dudSffoxXvkbPz\nC05OTiiLksPhhvV6jQ+Bqqq4vb3N46frDrlvpo5UMa00h/2ew+6AQipI1UIAQd3UzGYlZS3gaDmf\n8+jiAu8d11fXmELzy6++4vrNp4CY/ukQINIcBtvRdZ003FbyfrlqE0TOtyyLPP6ckzhcKalkJGCf\nhDGmoF+pyIvXiqJw+Rpai+eK8YpeH+LrpV/G+zJS4qRCI/PAx00oSvsigUXf9/HeXW5UTlnZIjaL\nB+9RHpSOctFa+ngkga3GXGeI/SqoTFeM4fAkEZHYY9H3KldLJIiUID0Bg5h8SWA1epYEyPLL47qZ\nrqVQPoC5n+VOIghCXUrXHYGH3MPo4SGBiwCmqZdGup90zzl4TX9SEz5SXRnE9GV8L8i0HNRYhRb6\nUZLsjtUAPa3Kp6qWKIBl2d4wrqEKjfdDrKxIlSMosN6BD9iQzCIFTAmw8gz9IM8ySI9PXbfMFw6j\nPJvNhvVqzW67E9PqAImO5n2ICl/yXMXRXkBOUDFAtx7rPHZw0QhSPHeS7Hj8oiE8lAQDO9l/EshW\nSlHXNfPFQq5ZSM+ljxXc2ntm8/kk6eeiGIFCaY9SRQZt8iwSbTC9U6riSI5f+YAqwGsLIeCtw1cu\n0rMc1np619MP3ZgwDKnyIc1UGn2v+oEBTRFBfAJ35ORj8FJb0DGw9AQBF8hcaGrx2zk/PWXt3wMD\nGiii3KDR8p30RypdIb1RkDGXKGimKKjrhqZuKUwZK9UHrPV5DwYRVZEKUvpSVAYe8ug0yo0xBZB9\nvQhiYhsIGBPjo7QOEumAXtT7RlGl+/LdMifGOZemZTKqDcHlz54U4oMPmQJcFAUFBb2FshJFNlNo\nhsOAT0Is+f3iWhPBqp6C0/xNThkqfvzc4btrw4diuw8dU3D/0M+nxw+9ZgI4k9uUa6a/T0DNvfjq\n6BofuteYSvpB9/KnePwEdn7kcVyunNI3UgXmWPb4h1zzQ5mCtFHPZjPKsmS327FarURdy1oxMMyg\nayIIIBfO//4hZcyHjo+VXo8/w/E5SUpXgtUuK0SlbK7W5MbB6TXGhSDxlUfqhvdOHNzLAqVShshm\n+egQAienp5yenvLo0SMWyyVo6S95/+4Nu+0GrcQnpa4r+q7n/ftLvB2oy0eoIH4lRQwI9/u90LOa\nhiIGt4fDgfVmzedNSWkK9rsN1g5oDScnS8qy5K//9b/m6vKS3XaHKQxNU0Uz0IG+79nvNd++esnX\nv/ua/X7Plz9/gXOO3W6H1kK7k4bzPd46uqGnqSXz1/c9d32HUpq2LoEQlZMqZvMZ7WxG2zR03Z79\nfs/gLG3dULc1QZlMd3JOAra6qlguliznDd1OYXukR0gbgpVmUWdtBDo12hQ4Kz0NpSnYuD1lKQ3F\nGsVmtWa32zGfz3n65GlWM9tvt+w2Ig8dIqB58fln/OxnX6KM4dtXL/Eh8OzZM54+fcpf//Vfx4x8\nj7WW05NTmrrmsNvjhxikpIZvNQqDAMxmMxa2QWmRrF0ul+z3e27vbtiu1zx7/oynj5+gh8eACBrM\n5zN5XsPAzgnYfProERePH9OkRum+Zxg6hsHnz2GModACRipTZFU1kCCmqiq8cwKWJ142OkqgA7jB\nMvQi7tC2DXUp/UE58xsz3LnKO83KEaK5JlgsB3Vgu92y2+7QSgnAifMrrRJ9DNYNE7WeGPBMg3DZ\n+Im9CVE04IH5nv+OBBQqUX4mCaE8v6eBTvpdTn6AKqKyVQixypAXCFCR7pYCW6XAJFPQiTx1GOli\nQPSYSQkUkatWfpJs0vdVl6afLQkTyH0qMROd9PTcf22sAEzA7UPPKT2Ph9bk40SS90EEHVAiIa6I\nKl9BxCQY6c5KpUqZeF/lKqA2lHVLXYigi1T9BvpexG5EnlwR8zM56AxOqnEheBxCyZPe0enaLfdA\nEO+hAAQjFCatsxzB+Hm9H/u14lg2RUE7m3FyciLgV4U8hkCAgXU2VoyiV1GRvksd/YxsBFzy3qkH\nBTSpUikVCk1RCjgL3uCCwkfvltI5fNMQAuyHHdoUUmmKtL8EIAkKo9UIdiLgmFZ4QiDaooJRkkwg\niEqflixF3BNlHJcomnrJ3775pxyKx8B/yGb4r7nQ/z0gqpRMKmL6SB3OuYDCEqxFOY/xgb4foqGt\npet7vIumqKZARBIKqrrBFAYxqI3zNT9H8RbCOTFWjhVr7xw2egHJV6hzYmdMiQgbw0Tup1Ya6RtK\n56U+xpCBEEEooEVRCLPAGFTv6Hsb6Zw+Cn6Qx02hDWip6LRNy3w+p7pbs9uJP5o296tHYnD64Vhm\nnHvyPScxeY7G8RTEf9/xEEBKP//4PdyPDf+Q9zy+xp9rZeaPPX4CO3/kMaVlee/vyVImsJOOadXl\nYVrZwwP4PnVGU9c1IYTcgCwLpcoZ5pQ9zJtKSFzw9P7wHfL8R47jCtXxPU2rUFOgIs/G0NS1eLOo\nwGazGSlYKeCYZEHl3OhhoZJgwkiZGQMmhfeWw8Flh+SqqrNs5vn5OYvFkqoWn5Ob62u2uy2b3Q6l\nFJ88fcrp6QnDMLDdrLF9x6PzC+bzluVsljPACmkK7/uexXxOO5thtI60oiGai/aUbcFuu2WzkQB/\n5x2FgtevX1OWFcPQo7V4QXRdR1GIgtDq7o737y65ub6lqgqePHnKZrOh6zpmszmL5SmDdVh7ibU3\n7LZbFrM5i/mMg9Fs1xqc53A44L1n1tS0TctitmDWthRlwXYr5f2maaibFm3KKFM9SEYXqWjUdYXW\n0PUdpiyomyVV0zAc+mjGKsFN31tAsboTsF1VNW07Y3vosFFparfbsV6t2O/3VKenlGXJZrWm6w7c\n3t5yG3uO6rrm5PSUX/z8Fzx//pzL6xucc8xnM54/fy5+M7F6abRkUNu2wXnHan3LbrfDWStqPrHi\n13WdbMxIINa2LVVdsTxdMmtnuGGgP3QYZaiKkv1uz2q1AiSYL0wRDSTh9PSUx0+fcnH+iKIq2cW+\not1+J9TArqOuKrRWeQ7WRZmrjyOdTgBPCrQT4LXO5ab3dDjrsHpAackOF8ZABEiJ9uHiHCEGsaY0\nOfAX5SNRYdvv92y3W7yVfhU7CP0w02oiUEg9NTgf1bHiEhGJ+0nsQxTJxub+6SoSghcJYsZ+GVEx\nG7PBiTKX7j2fFzS4qTKjzkpXkvGXswmxJ0HJepbNUZWscam/5hgoHFfP418ATVDuXtAj2XYVM8Ei\nVH2vujP53ApDUH5yj/fXcRHVTEkdyerHjzGGgikjH8FKavfPn83LHz25bkJ6KXufKGLeeQY7yOu1\nYuhd7mEMyDqp6xo/eFHkKmqMLlGIP880uCVWIZx3eOXBSZIKLbAl+RIpU0RqVYDgYhAJ4rkjc8oj\nRs7p8+bvRPh6udevjntFXdepsyJXlJInVQiB3g7oENA67rkGdIjU7XsBpXyO3BMVYkUn5wQ1KvW4\nGJHC1oXBlAWFk4pVUZaYssRYS1Bu/D4QcJwqpYmK5SOVT6pgCqcCWSwDSLQ3rWIlNCZKXKwWKaX4\nX/7P/5x/8ff/mF/96l8CsLP/Gbf7c+Cf5UEqU1f6x4wuMuj0PuAFBaOVkkrO/sDh0NHNhhz4m+gx\npxAJahM/v0dFVUEXq9viWTbYAeP9vb06MNLsfVAUapRZV6mXKMYnaQ23RXH0PYm6WZLRDh5s9ANy\nIUR5cpOvYa0RfYJ4viZKWtshem0Fykqoe1VR3KP6St5GFOxCuF9bzImTtDTEn+d5HSQGCVrFinA+\nM71yfC4xXgnpu0rXjOCMWCUvJj3M6f/TeGr6s4eOj9Hhjq/70HUeijk/9n7T9/xzO34COz/imCLz\nnMU4AjAfAwfAZPEN9655/Nr0Pt5LBjm5ZSslWf8U3E2DhHGzAqWm7sDy+8z9PQoI7hdB//Bnkq6T\nsoipNJ2aBZVWmQaUGsDltPvl4uQGLNdFAqwcL01+Hp+5MQWz2YzT0zNOT8+Yz+cS8DoJurfbLbvd\nDmstVV1xdnrGl198zunJCVdXl/T7LXXbcvrsKfO2Yeg7jBI1Gsk0BU5PT9luNjhrcZAFAZxz7Lbb\n6OMhC/cw9By2W1zfURQFTVNTVWLK10eflPPzUwiBy8tLLi+vCCFwcXHB40ePo1fMCmMKlicqupdD\n33f0XR+rQh3eOZGSxHPYHygLQ1UtaZuGqioAT993bLYbAKq6xegig5ZkqCrUDnmmwzDgLSzmLVVZ\n4HxgcKL65tICH0Ta+Ob2Fu89J2entO2MYrWitz12kCzidrul73psK9zrtmlo2xlAHh8iZtCyWIjB\n6na7oe97oWwWBbc3N1KBaxoU5L6X7XbL7c3NBOwIhWK/l96mopD3MaWhpmY+n9PWzSgYoJTQ4Iyh\n3+9Zr+7yvKzKkqquMEXJJ58+54svf8b5xSMuL6/YHfYRTMh8HOxAU1exwbeKwEfLc/SjR8W08puy\n73n+T5MZKYtqHSiPyf4nEggOw5B7lFICwDlHKM1k/sW+HeeiuajMgf1uL0GpicaWxsQm8kkjfaJT\nxWpFiPNTJl0MVLUj2XoITUVeF4gqZ1pBVIiTue1Q/tiFXCKAUUTARfZa7GnJ5pKpWqDiKVK9SmCN\nCMrSqpVc1O/TNFSONBLFKqs5BqmKpM+tEl0uNdWnc1OfikqVJsnMS2VC5+SRfEYmYU/8dwy2vIrS\nxikKiq9Jze4yBmL3VARF8hlVVv+S7z3kqpFK/ykFOtEphVI59VkKwcdeG6kSKWRtqaqashwgDCil\no8hLUveKVfMo7hBCQEd1UK1jVSGOZaWFXpSArEqgTcfG9ty7KQv4tOKnUJRxjFd1TVFVsRne5eSh\nT10jsafEDQNK2RgIj0IGxwGgUgoVPYPS3qLSd60VRPPkwgd8VeJ8FeePR1uLqYQG65zDMhAGG6+t\n43ct89FEsKMjKE6U0hARhcgc+3hOvEfCvbEqc7/g//h//j2Oj83wT4B/hnc2qolFUYfUU5XMXFUQ\nq1alMQqcHSnv3kufpg9C4ev6Hmc76qoVSqD3OAKDHXK/YUoceevEs0gpnMkdPHgf93JMNO11so7F\nOZHEC5xTaFXETx4hegY6sfcmmpL62IPkrCQiiqDi95z6db14Dfm4tlrL0A+YUkvyE0kSiaAI2Tg0\nV2JybRumQGeM29JaNcZFsRMxzjOd51+u9XwHA8S18V7kEv82SeIex4rfV3n5Q8HJMXD6UNz5EHNn\nei/hw2/xZ3H8BHb+iCMtwm3b5sB36qr8h5Q20/8/dE5qUk7vMZ/Pmc1mVFUllYTdVhY/FdD6vgjA\ndDDnzfKBe5jOsYdeczwJj0u4x4AnBOHTJvNLrTXeBQpTTPjsAe9TBWwMOpJggbxG5GdDCLH3QN5X\n5H0rZu2Ck5MTlssT6rrJJo+HrpPyfTRLm81mPH7ymM9fvOCzT57Tdx39YY8bBtr5jKqUhdg7oXTg\nPX0MXE5PTrm9EdlpY4oJyDWs1mvKspDeoNMTVteX3B32NFXBs6dPCEE2FRuz62VZYoeBy6tLvv32\nJavVHU3TcH5xDsDNzQ2r1YqyrDk97TFFNQGQcDjsxRclqsgd2gbvhih8cMZyuaAqCwhCj9gfDljv\nKIP4VDjnhS7SNDSNAGB5RmK4V9aS5dsfOvqhYwiS8LdOguCmajh00r9TlCWzVqpdzrrYoG/Y7XZC\nKbQu96E8evSIJ0+e0DQNq/UKBXk8H/YHrq+vuLm6Yhh62rYlhMDbt2/v0dJSZWy/23F3e0vfidIb\nhWy6m80G5x2L2RyApq4po6Wc9AcNwk13nsoUNEWFQWXet7UDRSFNwrooqWKfzeGw5+r6mru7FTZm\nfKV6O8TNXnoNyqqScdP3uRk+zxfvow+Oz88pj/UYpBsjWWLvPdY7HOQeoaIoIEBRCqUmyab6EHKa\nwocg7CAltL6u69ltt6zXK07WC7RSlFWJMoaySmaccm+SZJcMq0hCS2+KzEFQyqN0wOuxMpRB13Qt\nQZIWxEBAkuuj8WgCSJmeFFI1VzZUrQxFJOWHENCBCEhSVSD1aEQgosgmltMewBRMa6XwObBOYCH+\nCSGGMSksGavNciSZ60QZnEjVxixtCt4y0IlfxnR9VEoRdCBYS6YgMYJFFe8lLoP5fPnAKWzyjD1S\nkzU5hGiAGAMw53ERbFrrKIoRACklND4dP7cx0s9hWyeBpydSe2u0MjnJlqqQYby5CMImgguxukms\nCEEQLKEA77GTqo9Go00hwWjcC7RRYgxqtPhNeekJkWplGMUDyhKczV5MI4gKsUpd5HGV1owEQFPl\nM3jpdYtPX76/SOsyRYlxTprwUz9ZUWIKK35INiFQFWWjR8+mkYUQgY6LssxGxqGK9CwiyPFe+p6S\nUp/MxZLB1nz3EEqsdzYb06KOx2sCzBqMmHoG26Oi0IApJIFlY/V2fzgQvMWHJiZvLB4dFV8TRTEB\ns4nAxySyT+u7sFoM+IBTGnS4l7yxcawn+mpWkoyxh3Ox70xJsqEoCqwXQ1wfPEalirlUqA2BUI7C\nOYRI802UTgQQFYWhn8YmXmTbcyJCjbHIdL4m0JMnZfB5nX0IpEzn5PdVXPK9HP/7CIzAdxPhD73v\n9GfpNQ+934fu6WP3ew/wTF7753b8BHZ+5JEGV1EUmZef/TP8aCz6sfOPB/TxcTwAQwgZ8KT+neVy\nyXK5ZL1ec3t7mxWpQpr4OvGWU9UH0kIr73F8jw9P3oeAzrTkejwhU5XLxX6XJOHpvUcblQ3YRLpy\nrOpMD6lAWJRTOSgoi4L5Yi7SnG0b3cDrqIhV0XUdb968YbVaxYZdWaDbWcvp6SlnZyJScNjvePv6\nNa9evqTvDszbGjcMdHYQxRdn6aw4epdFiVEzdrs9+92O+XxBU7dUZY3RJlMJ57OW+XwmGf6m5umz\nJywWc969fUs/WGbzBcvlkhAC7y/fc3d3w/XlFV3X8/TJYx4/foxzntVqLaaQzouoACIxnXt9ug58\nYD5rqZuaJ48fc356wmIxj14zQvEbnM0ZPRVpFd6JNHUZwZKKmVc79Hhn44Zo6Ieeu9Udfd+jqxpM\nkU0qg9KxN8oym80pipJhsHSHHl1FYBFBDCFQ1zWLxYKz5Qnn5+exb0ICot1+z7zr5Hresdtt0UDT\nyGZ/G6tH2+02UzhTZWe9WmOHgaoWdby+t3RdjzaGxXIBwPLkhPKuYn/Y0/UHjNbs8Wy3a84vzjhZ\nLClNgbcSgPZdL14Ncayu1muCeoMpS373+2+EYpeap03y2SCvAyJeIcGhcOvHbNlYOYjAR0WxC/lJ\nHveFMXgFNvYh5aoQKsoou1xZSN4vuWIbwYBzklh11rPZblmtVlycn9POZnJeXB98UJi0USrhvuMl\nIPDB5qqIKIuNviUhFyemhsnxs8YKzDR7opNAQXpNBCEhRGPQFADlKhNjQJ3AApKhVTkgUKROZaUn\n/T0p2cQY4Kb1KyWEZC0cA0YRR9AjCEPlIFrl38s9uEB+n3h6vA5MJN1IWeFcdSHE6kLGSRnoaMh9\nZ9PhcE+uOwGL+GgIIfbsSOib9h5nxazR+gSqNME7nJVkSSBQIoFoWQqwcdajlMFboZPN2hnGyH6W\npPa7vsO6IVdlUnIqj/EQMvjxEzypgpdAMY5/ob9BoRV1TKwIthbKlR2G2Pso1aNkQmmCFmqnVhhV\niIlpytCnDLtOY8GkyCyPO0UE8j6C5/i9BeXj+A5x/Ssx3gl9rSgpyoq6acHHsW2lbyVV1NKzJ85J\nmSdSzXLORb8iMvBO93FPPU1roQESmLc9/+Dzv+HffPNXTI9K/d85MZCoXWmwZVzsg1AOc/+aydW7\nqpSqswsB67ysDy59Hzr7twWk56usKqrBRQCbpkqai7HaE2KVJd6KjomBxMSQfp0kTCB0thSfTCsb\nRBDivMNEs8+yqhicgMHETInTQChu0TNnTK7I2mli4iZ4T2E0ZWnok/lVvIDER6N4xHGM/3BAn2o7\nHwcx3znrKAk8+UUEfuPnIr3D5J5yckZeFe+DPJdTsuv4vT50L9937x/6fYj3/H2VpD/V4yew8yOP\nKWXtGOAcI+iHQMtDx/0KzDS7cP9nwzCw3W4z2Dk/P+fs7AyAu7s7drsdIBk6Y3TedISnGjL3H0Za\nx0P3kY6PgbIpsEmfPWWstdZZ0jRvxM5RUkyaTmXyJO+gohAJX7mui42Ucp91WXJx8YgXL17w/Plz\nlFLc3q5Y3W0ko+88XT9we3uX6X6pSXw+n1EWhv12y29+/fcoZ7m7uebm9oamKim04fz8HDt0uGFg\nu93QdQfxJqkqNus13svmUVYVTdPIZlBVkoEaBvZ7xLhTKZ4/f8YXX3zBt7//PV9//TUXFxd8+eWX\nnJ6d8c033/LtN9+y2a4yx/ns7IwXLz6nKAzDYOPmVOOsY+gteM98Pqfve4JzdN0e7y1aw7OnT1ku\nl3grwGa/39F1e6wbso/NcnlC284YejGbDMiGYZQootmhw3tLCELButvt6PteqG6ozKFWaPaHA33X\nY4w0ExdFwa7r8cHT7XZoo3PTfmGkZ6aua1wEkdvtNlZQCoZIWWvbNvPVQYwFBaR7mqbhcDjQti1P\nnkilTFTeRI65LEvZKJ1DG6m0pvlwdnFBcbBc3Vxjbc+8adlsVqxWtzx+dMGj83OC95nqZ62lPxzY\n7/a4EISfrSQQePf+vYDqqoLJ2GqaRpphqwqigWEIstGGXipGSdkMpD9KJlYMyiOXHSA4R2E0qhQZ\n6+CC9A1ozTBID04C16YwFFpjROM3b4gp01kWUg3arDfiXzQMEgCFAD7g3YAbPKYsMKbIwZNSCmLQ\nDEJ1KgpDYQrZ7LTIVnvncA5CFE1gspaIf8q4LhQxg+/Tz0NACPZemr6R9SnJDYshoUNpqWIpyHLV\nQSnwDmcDJLpbocDcT0KltWlabU9rmdYpMBap8HvrWypeTNa6BPTSOma9ZO2lV2zMfEM4SiDdp8jk\nypZSEcRE8JiAbeyzSM31CdAouTn5TG6y3xAFCpBsfQLRGkWIprhGKTH9dRJI+qgypiL1SseAuCgq\nqeR0fe49TRXssizRRjEMBlMIdc05yzD0IiXOJJgzk89IyD2YqTfNaPF7SdXwuqpw3otfl+vZ7zco\nDcuTJVVZ4fFZotrjCdZmKXdjCpQy+f1lD45UtpC+l3EPEglzjTFSaYvNH/K9BelJQ8XvG1Ee9NpR\nViWHqmKrDbhAH1GvXDdSBINCey+URfS454Ug7i5KYXRBMgFO1aSilOSf1tJP4wP8F//4f+C//Z//\nqzyKmuJ3PJ39N7AFgoi6DN5Filii+sWESHCEQrzQrLVoxvkgYNJKr2CQz1mWRVzTIlhCrAvmsxm9\n9Tn/mYB4mlMgLAidnq1zoAqBBBHoOWuhLJj2s3g3qrKmayklPayDc5iyilWlqJIWjdT7YcAO0o+W\n+gkj1B290ZSmLDRaHQB5TmVRQIwvdBTf8EF6vVxQURhhlDz/6BGB1vHxMRAxBXXH9LE0NtM4jUsG\ncXjkf4+PT01eF1scYppmGpk9dD9TdsQxrS39/Vgh7z6lTe7yzxHowE9g50cd0wmRKFPTQZIqGGNf\ninpwwB8f98qFE/Q8HXxJKrLrOi4vL6VxfrHIm1LbihO8BIs+unKr0WQxLkBpMqlYxlXRhXk6Yx7i\ncD50z9NJMZWRlmdhstt4WtgSHcsUacMq8wKitaFp2uyXU5YlT58+5fnz5zR1hbUDh8OBd+/esVpt\n2G2lSXx/6BisxVkn3hHW0jQNjx5d8OzZMx49eoRSinfv3nJ5+Z5Hp0uct3g7ULQNz5495csvvuDl\n73/P1WrN+m7FZrPOgWVZllRVxfniguVyycnJCefnFzx+/Ji79Q23dzcE79hvNhSFYd7WXL59y1//\nq3/Ffrfj4uKC7WbNbrvl/fv37Pd7tBbRgMIYzs7PaZoZ796+Ybvd5wWw7wWwrNdrtus1Q9fJRhcr\nPJr/l713+bFty9K7fnPO9dh7x47345xzH5VZZVeV5UJ0QLaQpcKiYxpItEHuYsl/AUI8GshCNOgg\nhOhAizZuYRpIGBUSiA4dLFUZG1dm5c285xURJx77sR7zQWOMOdeKOHEzs7JA8kV3XR2deyL2Xnuv\nteZjfGN84/sS69WKyhqGQkXzSA5c6AXr9ZqDw0OpkOz37DZb6lqkqlerlr6Xcr9XpbTNRgL/1WpF\n0y7YDqLgQ0zUlTxrH7zQIZSm1tQ1R4dHfLi90apaKH0m+77jZz/7GZlG2dQNR0dH/LhuGIPn9atX\nrNdrrm9vuL295dtv37JYLTk9PeXoaE3X7UsAW1VVqRSulyvs4SEH6wNiTAzeU7cNq/Uhv/tXfg9+\njvS5JOlx6jpRb+v2u2KKmsF/P0xzL2hTrvQreQaVas2+HZjJ+LCuhbpW/HM0a5kbfudN1U/m83xD\ngTJHskSy9CgEfNK54hwxpidrix89yRqqZiH0tZA0iLdUStEYx5HdHvp+mMyItSrlKgNaZQNxKncu\nhw8AknF3zspcVVDgcwZfX5WrJ2phX+h1Wc3LmZkMfa68WAtEoUaWe1GRMqUkqH6VSVJ5sg6MSjdr\ntSMvV7ZUSj5fh0rU/tdgAAAgAElEQVSFEVmX66YuoKGsayWYU1f1xBQ6aCUlB7Sl2mMn+tVEQcsV\nstn6mSYBAin82NLflxQwJg0UpcpqS+CSKxpTincKTop5sK6pKalXC0oHswqEvGdMQic2qMw34NPA\n0Is0+ThKsFnXNRbDPsq6k9KgjveTj8rBwZK1Kk32fV/EVAr4ciJBnAMqoVUGEf3QRFjdNFS1jMGm\ncrRNXfa2XT8ACT909H2Fc4aqqaltVaomfT/KvArSr2itEYAhgz8rl0v+O4NXgyQuEtJorr0zKFAy\nKUr/hwllfFilfa1WB1S2wiRD6ANjPYgRcfI6r+1UQZqNpTznM2XV5b4aM6Mc6QAzSTy2rLUMw8jl\n0Uf+47/99/gYJET7G7/377K5voGteCAVSe0nCdScPDSEkIhjwNZ5rAuY6Pa9JsAQmt4oSaxhHMq9\n80kqxxGtDualUZO5uTID2nsZAlWVExnTupZVJoVBoPdb1478nWWOCADN4hgTa0TvW5DJHlGabp4D\nlDpx6W20dlp3RM1NVDDpp4THlBSCnNmYx2gvKUf+quN5teMlAar5Ub7L7HgeH87/fm5vMn/PrwM+\nvus1zxk5ZR+b/e55XDr/+/t0/AB2fsMjD5DssixViapIyBbqybMB/NTn5pcf3zXoq6pS2WKV8t3v\naZpGytQY6qqWzGzIm7xw6xMSVBXmaQ4a5lmEsrD9evdhDojm/58zSSFEpU9MwWqeUDkbb4zh4uKK\npqmE7nRywvGxVCKqytF1e/WEuGe323J/f8/DwyPb7Q6SVflMCWZWqwNev34DSehTh4drDg4OMBge\n7+7YPNzjjGHsOuI4slwsOD4+pq4qNptH9vsd3suGmyd7bnrNSm/j6Hl83OK9eFV8ur/BjyOVNTib\nWNaOysKu73m4v+f09JTXr1+xWLR8+HjN3f0nAVCNgIH1wZqLiwsWiyUfP94w9NKTlZIpinuywQSt\ngo1YA1VTY62h6zvarhZKiK0Zhp7dTgwlU0osVmuWywWPj1u6rqfTfpJMD/NDD4iPjGTQPLZy1M2C\n0Xt2+z37YaSpapZVLYputuJgdUi7WLIfBPBv9jtCFCrEbrej77pC7To+POLq6oovv/iyXFPTVLx+\nfcWbN2/YPD7ys5/9jLdv39Lt9xweHtK2Ld57NptNMcRcLpc8Pj7S7UUo4OToVKVoLUdHR7iq4l/6\na3+N1YHQ2D58+MDuF5/oup7lcsmyaYlhFL+GBPvNFozF+0MAqVSZI7phJKTEen1Eu1iw73pJGihQ\nQOeic47K1Yg8+AhBqnB5HchNvuV4tgkKdXzagK2CA2sdQTP3ee7EF5rvM4C0WqV11lIZS2UkIALh\ny+/3+yLS4ayhqiVYHzXYzkLYkilPT5OJUSSCo9Hvbqz4tmSK23wty8HLLPCJMYKfKBf5yEAvB/OS\nVQ4lqJfqSiBGeVZZRcMkm1uxS5CZYsQPo4CHlLRBfAoq8rqZ9PPm9LR8pclYbYqPRWihgB59Tw62\n4GnSq9DmTA4445S5lZ8UOpvV8ZOrDUFlxZ0xOIRWmvSel16qfH6tFGWaXwyRqOur1fM7dT21iaKo\nRd6LooC/XufgMIy6PgvIqusa36gZ8zhio8XaVqvtWXzG45z0ey2XLc6ZkqxyrlIzR6cJCOkDqSxK\nRzI4C432WgQ/Enyl76tZuWoCb+PAOEjlzDZNUQsbs6y1BuMWxK+qmoSCUtIOJx0fGUCWREMRKsjj\nNleBjNYjjc7vmp/+vObn3x7xl74cpAraVBhnGceEiRGrwTZmEpqIs6qmcdovYy3Ja09dBv3IPDUG\noeclR+1kp66M5UdHHwE4PFixL6IAKGCeaGzGSL+MVXlnQCvlNXUtdEVjLN3Qi5Kdc1RVw+CUEquA\nKFMK8x49jqOagVKU6WTaTbYaEpc4FSnIFKsJNOR1Mql/V36PJBa05+hFholWdyqVqtb7LPRXsrif\nvs6pIIH6pCl9rq4qVosGu90RktgImCSeV/LxU5LpJeBQgFf6tUOi/0+Ol6hj80oNz/aG51Wk5+f6\nruM5+Ml/vwR4vm/HD2DnNzxeAit5UsMEduaN+M8H4EuUt5fOnQfbnC427w/q+16EAGxfAnP53KwO\nkzfliLWSqc1u3uUzZp/7PCj5Zffgl11PzpLOZbiNMaXvQpozRTd/HEfOz8+4vLws1antdkduOr+5\nuWa33RQJ5BCgbRa07ZKmlUpQXTciM9w0dFo5SSmx3WzYbbc8PNzh/ch6vWbhDN1+x6JtRcZ5v+Pb\nzSN9vxcaElMfRtM07Pd7Ukp0/cDK1Yze8/DhA6TE4Dua2rFerWg1O2pS5OuvvyQGCdK//uorRu95\n+/YdY99JxlIX56MjoSJWrmK72bJsl9J7o3LDklFdPwHPbdNQVzXWQoqecew5XC+1fyzR9U42Bc3Y\njmNgu93R9RK0VyqJHFOQHF7MOTKRT64XS+q6oRtG+nFkGIXS1HuPHUSJbrESc7/tfs/9wwO7XUdT\nt4go6w5jLavVisurK3704x/zW19/Tdu0PDw8cHNzQz8MNIuW1WrJOPrSK1LXNYeHk+Hq3d0nqqpi\nvT4QCXMkSBTQ34tDtrGs1od88Vtfc3l5ybePYkT67btv4b6nVqA9DANd37NsGwWuI8FHYhJwtFyt\nqM2KdrvBp0SzWFDVjVQN1cG+1qpNVdfFH8bngDNFajOJD5S1QYHL8/lTsomzn+eAbAJTTiVXfcZE\nEtRWQu+KRuR9XSW0JKchh4XiAZLBjqgI2ikojEKpSSE9CVhRemmKCWGZDXivxpPVVB0Rel7umUgF\ntEGa3h+fZSPVIwVVsYplHVGuPdMmm+leCQkspR8ggXVP8jIhRgbvS1BgsZpVFy8O6yxOaZMxyffM\n1LQn1BVtNshgSwBLviKFGzmBRe6XmlE9mDLL4i6ZBCymWY+IBroheKmyz7O8U/RdvkMGNsz0Lsr6\nGkTcwlamVD4MhhA80fsCHHNPUL/f0+07hq4roEKuNxaFSaFZZvqw1XWwIpmacRwYx4FEFJn1RUPl\nrM4h8T5x9UQhTNqvY61h9EEqdqEmhSC0Vq04VVWNa0TVsHJSspN9I5B6SWxgoMnmvEh8F1LKStCi\nzqUN9TmBN59jImAnVZ2k3y3FIBWFJH1NGZZGA91o+Lv//r/AP/iHV6RkOD7s+Q//7v/KX/+DP8Em\n2FrL2PXqgRV1xmUBAluqglknjZTpUkpjS1I/MUnHkVYaZA93hNlcWDRtWSM+DzZNqQZbZ8o4nRKw\nQhsEoSOnhAqeqFeX7tGuFhBXYTHDSPa9CV7iDjF5rZ7QuDJ4mQtNxJj3/skQPSZlmSSh2KZoCpsk\nC41k8C/T0BHjSEpS8bTOKt0yaAVHEgkxZsEBU67HmlhMR52zLNpW9lLvZTJJhoUYwzRedMC8lGAu\ngE4f6BRPPT1eiuG+C0DNz/2rwMWvqt4YY4iaiMhV+lgWjgzS8rlVmS4v1Qay8H4i/yxXqqfvIp+f\npmT49/D4Aez8BY85mJkPDGtt8diAqWflJYT+q4482Oel0XnmJMbIECPOhNI4Lb04U8CVefJCb5Dm\n3Hmm+OlEk81v/lnf9b3m3y8feTGcZ3xy38bcaLWua46OjgpAWa2WBJ+4u7ufyUWLx81utyMGCfas\n0UWtbjhYH7JcrsiS285ViNFbRVUL8Ou7Tt8fWB8ccHZ6CqGn229pm4blcsE4Djzc35XMJfr9slT2\nw8MD+33HcnUg/TEx8unTJ/pxxDBi7ZKE0FLGEEmLhtdvXnN0eMjNzQ3OuUIlCl444K6ShXa1WtG2\nLV3X0XUDi8WK1Wqt9zIqHUC49iDZqkyDSVFEFIQ/LxWalKTvo20brKtp25bdvufxccMwjEUGOwRP\nZdRI0Cj9zViauqGqG2KC0Qd69eQB8CHgU6LSTOYwjux2u+I31NqFiiLIWDw8OuL07IzTs1PWR4fE\nXmh5d3d3dF3H1etXQCqGdyH4KdPtXKGsHR8fs16vhd6om6Z4SASwsFotOT8/5/z8gm4c+enbn0IN\nt58+sRoqMIj88mZLip7Xlxecn52xXCzYbPZY7aNpmoY0VmAtSSmgEdh1e/pxJBlDVTcYoK4bYhD+\nOyCBnjVl44/afwE8kU2VZ5fynjtxsGVilD/WWlzTiBS20oZkPomx7tw0kSdVBgGt81nb6RwYR6G3\ngjqn68YmakZTlVrAWuaUR5LPwXfCpqS9Lg7MJMIgKWGtSuSKiwKe4uuT6RgpN7fnikjOrEqA90Ty\nWu9RLkBP7UkzZTQFEDmr/GRd0tfm67Vmyj5Tfq/3DqMf8IxmYijJgxRzgzkSKFtbTvGc825nFaY0\n+30MMt/yOiufJZLwRgM4ksrdajWpqPeFqKqUolQlzf9i2mh0/R37AT8M4mpv0P4qeb7dbk8Ycg+D\ngqMYGHQcLxaLMn5FCSsQoqj4WVeXpIsx2txeV1gjvWoGARMxK35Fr1LhRgBOiPQm5/9R0ZQKU4lR\nZoqyhleV9m7Neseskyq+rSqMsQTyOFKQU8CeJTfGZzBaAtQIKWpSLyR94sp9slbOoePiv/pvv+K/\n/59elSFw/9jyH/znf8j/+F9fc3xWYV3Fxj7S7XaMPuCSyJCbUseTsSuJRa9VuVyfy8p+ObDU+RVT\nEUKwKQMXWC1amkriCVGSm6hkTwZpMuLhpHrsTpXiYlDqqxdAR+7zYxI3sFrtd3X9pIKZP6VyeQ2b\nfjYxWDJVNZYerSyega4BXoF9UjZHpuyi1DWve4AoglaEOJYYZT6fczW2zKMUNRayKnCiKnspKZCW\nauOo8YOxs8pHmqvWpnIvmF1fWV9QoZXZWvtSleN5PPUkGTKLE58nv+e/e/JUZ+eYA6QnCaSclMnr\npn7f/PP80nJmM/v/9HK1+vn1TTXD7+fxA9j5DY7nA3LaGJ5S1L4Lkc8pbfNzvYTy50cGN/OJUiZB\nFEO/eaN/VkAqSjEmZ4BUnS2mQrNJulDPv9+vOuafPxdpkOyg0BKcZk6sZvmHYSi/b9uW1WqllC0x\nSX14ECrZdrcrwZnVzceaJFQAdU+XzI2Au2HwDEOnKnVL2qalbhyDyhQP2utyenLC0eEh+03g8PCQ\nRj2S+r6j77sS6FV1JQt08Gx3Ox43G6x1fPHlV5xfnIsIQi8KRU2NBoxBnMg1o5SrEe/fvePh/o59\n3+M1e9rWTcmWWOvouo67T/d0XS/ViyQBiGTiJCMYYxKp7UVLP/T0/UCKXp61SYzjQPCjPguvIHNB\nu1jwuOlksbdWrk3vd22griSrGWOQ6kAlQVXXd3T9QNcP7PqeGBOr1VrUfVwtSntdx77ri2JOP0gv\ngHWWAxXQEIl0odyNMfBwf8/t7a0kBJTW2A+dglvZvHr1EUpJmkyPjo6o64puv2e329Dt9tjoWa5W\nHKzXvHr1iotXrxhj5Cc//Qk/uf4J/C70w8BRvaCqa/pxYN93HK8PeHX1isuLS5aLlu12r9UMhMfu\nLMY6nDHFQ2S33zOMXtgCVn01XIUfBvzoJyqNnRTaolblgIlCk9cQ8saVm4pngEEDd6nWuNJkm7Pu\nMQaMEf+nvDPHnOU0iSzLLKBCgpyh74sHkfcepwbEWZYXo14oL2Qnn4CONKmQZYD10loloMWqBU0q\nQgLzNTGGOHnK5MDUCt02RVFpiwkNXnKQJaaDEqe5CeSkTBN7ms3H5AywiJ3kynfKr8mKTMwCgxkg\nm98LqQ5o1lTTozlgM8z6hNR3xJb3TMmqrCYXoyimlQCugE6t1mgAPAEeAag5uIwhVyaU6haTBjDi\nPzMOvfpPidBLULAT/YjR95XxBiUYBelzy2tTULATU8BYMWusqpqkCZYQPW3VkIzclxADQftAvPfq\nz5MwTmTaZX7rWuOcSlxDXQlY8SkKiCrPxUiFQytPyfS0FlzVyFzTGqbJ6mTWCYSY3FaRQZjLYgKw\nEygAl+qeMTqvs7FoDPwP//D8s3Hd9RX/x5/8Dn/rb/wp1royvrrdvhhxYpNSrrTCogISsmnVs4Ay\nCdhXVJRIpbotvzalv2WxWLBUhcoMXI3OnSKdrOICMSSJ4bUXV+wfPKP2VxqN+GcdNiRETCbGSJ3H\nagYxKlwiRtuqeDiLmiUOkApRiFMF5zk1LCjAJ6biiSSqckaEeMaRvh9o6gWLZb4v0zqZx2zK4FAr\nSNmoN19Jrm6UpJGTXj2bLTCMEfEZpJA79c/I+1Ka5jbzConJ69p0PI8F5wDmu4DDrxNfvQR6np/r\nl4GqOcvmVx0TYM2Kod/9neyv+F7/PB8/gJ2/wPE82C+ZsvlmywRS8kY7r/LMaW/5eA54nqP5OaVt\n+vlkAJcpIVkaN6siPTdcizHiMarOlkBFcHO28yXgNZ/M85/lxXe1WhVZ7Nwr03XSwNq2bRFRWCwW\nGGNKz9F+v2ez2dJ1++LrMAyjNrq7wiUOUdJesiHKdQ2DZ7ORStBiIUpch+s1+27Hw/09Dw/3OGtZ\nH0hVJqvErQ/EeLLr9qQkYggxSu8KSEVou91y//DAMAycn13w5VdfcbBe8/7jDVsFY3WzKEFaCJ6m\nrqirmsfHR/rdlof7e+Gaq6JZpkGB5PhCCNzc3HBzc0vXDTTNgt1ur2BH/C1CEDpA5Sy9RXti9jgL\nrlqUaoIfxUCuHwaMtSwPJn+RRn1gmqqGFOX+pkBqHNGPkt2xIk89hoHtvhPltUGeRc4AWyub1Haz\nYbfbS5CkGa9+6EkmcXR8zNnZGSenp9p4K1Ss282GDx8+cHd3x8XFBYfrQ6qqou879vudyJM6J30m\n2x3WWg4PD4sS3aebW26vr3ncPNAA66NDLs4vePX6NcuDA37x7i3/5J/+U96PH+B35Zovj1/RVBWP\nd5+IPnB8csLJyTFN04gB6jCU1Jc02QrNr7KWpl0wjKM2RafSEI5SDIfBk5Khsg6qqS9Asu9xNt9m\nQCImNt0buvGU88N/grOTp9R8bjpnC4UtrxuTnPw096XCMqtymKnym0pGV/qoHjeP7PY77fcSZayY\nwDhDkghpxrFHM9G54iGKUoUupZtfTkaU68tBpAGTxOzV6nvyTpopTmlmzJh/mZlcU1XIlApHzliD\nwZhYzFNDUtEAzViXNUvvx3RPJ/pbyW4+jV6EVhMz2HjWc2VMMXLM9B+rdLjputKTe5FQsQGtcOQQ\nyphSV5BKRx430asARK4OKMAsSa4spDAB4xhCeW3wI9GPEAMxqIdW7lEhiZiJIEd89BPwjgE/ir2B\n1cqvj16fU2QYE5jcj6a+b95TLYzSnaRfbxhHhnFgLOabSFSpR/CJLkbqulH2g4Ab43LfC2Slwrx2\nJR3/Q99ha0c0jspKdcXYqpi2kquC1oCVqo8xVscQE9DRKggGks37nJ28dlLk+PBz1S2As1NYH61x\ntcNWQmd9rO7ZbTZEH4ghUFk3o66aOW7Wz8pVnVk4nfKchtyblSt/TV2xWk4UXpH1d9NYT6bQUaVf\nbJLGD34CnoUdooAlJwSyr43VfWyevMzCJLLHpVJ5B6HJJsgjtdADDaawTJy1BJurN0G9b7R/tyiv\nilH1OPgi/Z/XkISOf/sswTubZ0bHb5bqf5IQZsaGKA9C57Z68mQAJcec1TJ7Jgou42xuU86W/8tn\nUUnoUrh7GjcVmPksVvzzHM9ZQvP48Fe9L78+/3v+s/xEn78OJgD6fTx+ADu/wfFZVeUZsocpW5AH\n37xZb36O7zr/83M/f/0cuReqxoyWllWyxOXaPAmS8vfK1BUBK/MBD0W+89n3eum75gW0aRrOz89L\nn8tqtcL7UM51eHhY5IyNkeb7zWZD1/UMQ88w+CkDqb5AVZUpQYnaijRoYgrmYoRx7KUfpetYrw+5\nunpF7SwfPr7jw4cPOGe4fPNaRQIWbDYPkh3H4L0AqrZtOTo6ks0hqMTv0Ishp/csl0uurl5xfHpC\n3w8ifTwMVJWjbYUK19Q1Dkdby6axfXzk3dtv2e02VHVbqh+Z3pjBbgiB29tb3r97X8wju64TypFm\nDrO/UnRWq1B7SAHX1JLANAZnDYP2cHV9j6scfdcRk2UYhiKXXTnHuN9jogc/EoIou8UYCTERk8En\nI9nAUVVsrDirO+uk6Xgc+XR3R98JUDBGgNA4jiwPDnjzxRdcXl6wXCxKgOmc5dtvv+Xjx48Evafr\nw0N2ux3bzZZh7PHB0ygQvLm5wVoRHmiblsf7e37x85/z8eNHxnHk6OiI8zPp82oXLZvdjvuHB7a7\nLbtR5Nevrq74y1d/mehHfh48JkHbtCKvfX9HUBpezo4Og1ANrbNUjbi5B4SSI9co93c0hr7LykaJ\ntqqV4y4gfEpwKI9dq1QxLflf/q+/x89u/jUAls1H/vD3/yNOX/+RzD0ZGBK4WNl0SBSvkzz38xzO\nGVJnxC2dlKkkSqgxQnvzQXrfbm9vOD07oV0sWKhxaz5npodUTxq9U/5W5XpyRrskQ/RPeLZ2kaRW\nHGdr2XwzNjxVPiKDm4wQckxR1iENYLBKjZLkh/eeOLsv4reD9nlM370oDWlwp0n+6bCTgKsxuQdp\neh5mlnDKqmn6tUmJz8QXMgiKSe5/CgJgMTn3bJCanGbzcw/VjKZpmSWTQijgLlfrSVLRC6LPizF6\nniB/PLK2luerfRjZVyqEMIk5hEgYRqUoCm2shG8pr5VjkQL3QWhJXdeVAFySVNIXN+QeLyNN+tkE\newrWheYWgtCXmlormHbKsBsnql5JQXnQSqXIkqs0eVbxys/DWin6mQwY5+paRiqSCjzJlJ/k84PD\nOIej4t/529f80f9+zPz47a+3/M1/5Y66aamahqZpWS6WovJnodvsGLqexJSEJGUhBENIWf46KdCR\nMTANHPQ7K8DXH9fVpLQq89sToxUtECjjwpCwMZtriuRztn8gzcF4VBxvtIdOq1rWSnWujLHJSBSE\nNlx6vUBVEs2kMKjXbN2sh8bO7/9EgbWanJgqUwrGjM7luUAIT+exJCxzBUnXiDin0EmVjJSpbDNF\nyAxHilKmzPc85qY1bPZckgKalIglGzPFXilnL/Tc4n2TTWufxm6limQmFc7885eqP8/jrnkS+s9T\nZXkOjp4fZW174TPh86rW9+34Aez8BsccyOQN9Pm/58cT1DybrJ9lAXl5QOb3ZcnHvFDk95ZFyUyA\nJk+wGFPhmM6rTznjkly+nqcTfc5Lfela8pEXsqqqOD4+5vXr11hri+KWs46joyOqquLg4IDb21s2\nmw37/Z7tdst2uyOEeXNsNTlg67Xnfp/KwOhHOpWDjiGr4XmtyDQcHh5yfHSEH4fSR3J1ecGbN284\nPztls3lk8/iI7/eMQ0/btpydnXF2dkZb1+x2W+7uPhUls9xX1DQNy/WKx8dHbm5uubu7w1jL+vCQ\nq6tLTg+PMCZSE2lVrrWuKx5VhtlWk+w2SPCa+7qsNSoBO3J8eM7x8THX19d49XGpm5qqEsAS/VgW\n9OxZIVWaAUMqHjvybBq6rudx2/O42dEsl3Iv65rROWJT4/sd+92GvO1a1HdAA5KuE1+Xernk7OKC\ny1dvsDGxUTW8cRip6irXBFksFlxdXfLFF1+wWi3Z73bqgRRYHqy4vrnm8fGxjEdrLd988w2/+PYX\nIqN+cCDVlGHg/fv3XFxdcnJyQtvUXH/4wLt379hsNqxWK377xz/mRz/+MYfHRzxsNrz98JHN4yNn\n5+f82cd3AJyfn3N6csLDw4MY5ulmt+867u8fiCoxvVpJIBFipB9HfIjUVpqhQ5pkYVNKIvIQoxiV\n9r3QIrTXKJhEnYOHymBnZnbWWP7RN3+nAB2A/XDJ//wn/ym///t/mKdtkVYNMWhvh1Cwuq57IkAy\nnyuZSkVSE74QSDZQV9J35sdewc4nLu7vOTk5oWoazTBrY7kCp6zylAOepBUMp6bEZW2YrT0CyvXH\nQdWLchCdN3Ao9Lpc6bFZvVITHBoTIrpklMpRwqhyZCpBh2FuzDhVpCQIiBT/Ew2ccv8UM2BXstgI\nMCv3cXpqJMKTfqDSDD6rpj/v1Sl7gSadQggiJGCzl0v+jrGYcUrEJCCmrO1Mia7Re1KIjKo6Z/M5\nVFEvag9N7rXxfgAP4zBQKV13HEe6/Z5xjAXQ2iQALEZZR5I1OGdo2haUHmsMVLUqaoFWt0Qdq/Od\nJth8AeXDMNCPg+4nlrZdiBiM9jtmLzjpuxO/HgEPVQkxc9BqrcWokp5jCvIEqAWMjVgTSVlGWgNQ\nY632rxQIq4IYs54HDZjj7BlI8sjyb/6tR/7L/+Sf8l/8N294+6HlX/3rt/x7f/cfAyMxytxrc7VF\nqXkPCcLoSxVgPk9kbNsyF9IUG8srrRibJi9zIc5A2qJtOTg40OE79biUKi45I5/IstrWOHLPXX5d\njJExJEwMOKe0NmLxzUopqQhQkPWHJOqBgI+BFATM+hkJJM97g5iJ4qKqSE7Xymxu5PhlXtUoFaZn\n87jMJyuU4ro2U7Uoryl6n2WeCYhLGZyQ+4ks0s+ab/h3J5rnf+f/l/Umg//PjzwmX0qAP3/dPBn0\n6xyfV1ie/v/8Oz+nzr30mufnmH+nPG4Tn1c1Z3mv7+XxA9j5DY55dWa+yc2rJzmQm+upPx+sWWHp\nec/P80H7hK4y+1k+T8mY6uklM2bKIh69gB7nJKsp5o4Jl3Xwm0oa3IexAAcbZCV2bvILCTGqEVle\nXGRzqKqKxWKBq2seNpsSlK2WS1zdEiJsHrZ8uL5hs92y2T6y220ZvcdpwF9XNaMfiUZM1YyaiK5X\na87Pz1ivDthsHrh7uJfXRUMyke1mgw9R+3FOuTi/YhwD93cP7DYdF2eX/KXf/kt8/eWPsBjuru95\nvNtBeKCuLa+vvuC3f/t3aNqWu4d7bt5+YvCeZr2mOVizHAbthQkMceSbX/yMT7ef6PsNB6uak5MV\n5+fHfPnmC6L3PN7d4fsOUzXYZsn9rqepKqKPdMPAGD1VW7M8WBFiYHWwImp21FrH8cm5+BKYmraV\n5zsOEkAkIitJ3hEAACAASURBVE3b0nWBg+VKzUA9y6alrWqMJDxJYyRaSzCGMHq6rqffP7KowI41\nhoaFBbts8bVQN6KpGL0nOodxlSjeMRJMYrk44PT0itcXX7BeHxFD5OdvP/DQ96SYcJqJWx8f0zQ1\nV68uSSFw/eE9/dBxdXnJxeUpXbcTgOQ9h4drVgcLNpt7fvKTf8Z2txG360VDVUu16+H+HkPg9OT3\nscYwKn3s+OyMH/3Wj/itH3/B2fkJ949b/vQnP+X60z0n55dYM+CsBCHr5SHjbuD6F+/YfXogjgNp\nsYAQRa0qieIaQebWfujphp5+GKgaj8FhDTjTYF0ijLB9lEz2vg/0YwIXaKKo9eQeNVGLq0lehB2a\nuqKpDX92/Tc/W08Gf8zHh78C/J/iUaMSyD4lhhhI44hJiUXdKCiAGovF4ZKlwgnX3xjJahulhSSw\nKVKZGpyjGwe2ahYbQiCMIlYRImL0VwkgG0uPhyhFOSw2y0mnRLQeV6h1kuk1aggKEmSIQS2F7x+C\nBMmucpO8tf4RmpT0aqHvkeSnEr5iUNNTAyEy+oGQ11ojgbkxYONAGgahitmpNydpCcc6q4rDKrJg\nwJXsesIlMBERISBnbBMRFSbIu30yxJDBXVaEkt4Bl7TvKIHve8LoCT5SgShdGRFok0A+isJciKTg\n5f6YbA+QwY9kvIMfsKkS4JnX+JQYhk6rGgLXci+N9A8OkBJ1ZTEp0u+27LY78cVRUCUZaIP0d0Bb\nQRp7xi7C2AuFOIOF4BFRAmnoTzpGg3XYCGkcSV2PHQONUpkGEiMBu6gxbUu1WNFUDfXiUCpCxuJd\nS2cWYCqwFZVWgkfvSdFQJ0PjalwllDcfdL9D4KoxkWSTKHCJ7Fmp6GXqk0fGTlKwjBXaZlLp6qwo\naLI0cYjgE//Wv/GJv/2v30hSzY+McSQaI9Ve38u+WIFbLVmEE3yyjMniuz2j95gQMarWJvt/oxVP\nQ8AWAJSMhRik585KkB5iwBkVP6ktqwNJyDj1C/La+2IwQmNMgcoa6soRx8DBwZKUAhGLtWIaPIZE\nSiLvPvod4HG1JThDTwBnizk1CSrriuGx73uikWRbkQY0qEpkonKGgFZb1fgzGSv7dcZhKamqZaCu\nRfAGTeRiDFVbY5xUArGOqL16zog4xjD0ouiXkvaJRUY8o410acSEnoQlppHgO6IfC9AmGumZ1Yqy\nNRGHIdlUhksWL8iVHIzSVpXyGImQMhCYV50mcCtAk3zBT+M1jJjXFlAx9T9l77J8rwxapZ6PZz2+\nC1jN4835a58nYua/g6f94F4psTarfZb3p+91aecHsPP/8vF84M19HuY0jnl2dg5yvosqlo+XypD5\nZ+Wz0qQok1JueJwoHbkqYE2uytjSF1M3NWH0+H4oNLcQUuH7Ck1EmkmdE7rIvFKU1ZyyN4q1O4Z+\nFJCzeWQYRxJhlt2VCe+cY1ktqNSPIIOgw4NDaUzvO7qhV6Uvr0o/A95FFosFJyfHnJ2fU1WWt99+\ny+PjA1VV89VXX/DlF1+xaBdcf/zI+3fvubm+YbXwXF58wRdv3nB8fMTD4yPX19fEKO7R7WJJ07SM\nw8D19TWbbke12fFwf4cfBtp2wWq15Msvv+L0TPpSdn3Pft9hNNC9u7vn/uGRL9+8wQfhsruqYrlc\nFqqaMVLV2W42dN0glYVhUNqXw3vxsNnttlSVwRysCm0H7eFp6gZrjPDkh0FoCxZCTNo0r7maMNLt\ndoRqoFKgG0IQN23nWDYtVdMSDfjdngTUTcNyeczx0RGQ2O22QuPbbvFBmoxXBwecnp5ydnbC4+Mj\nu92e6w8f6buO07MTrq6uOD8/5/2799zd3eGD5+T0mKurKwD2260owy1a5saNm80j1hoO1wdst3u6\n/Z6mqlmdnHJyeoqrLN++/Za37z7w7t1HxgiLfcfj44bT01Pgp6SEjMWup7IWU9eslguODtccrJYM\nfc/gPQ8bqTbd3d8x7B7wIbJcaXUgiIJRzhxm0YhcARt9YBg9tfd4a/BJzBuraqJKSGYVard7cd1w\nZjfN9RBLskSyzDLH26bB94P0rSi4krn/dH2QTO/UaBoRpSWMVAeGYSjzNB8hRNIw4mOcbay6XqBU\nD/2pVcW5/NkhiLRsylUsM2VcjXypKeHDfN8W5UNZo1SmGG3KthLI5k32CZ03RqUJaQXICNjJpprG\nZrk2rX4biiBBYaaV6zSgBrNZHyulWMxN0esoctga2OSqELNXWTNx2k2aPJasnYhJgMzPGEUoQKsJ\n80oOeo35HqUMTKL44RgoAMtaS9u2BWyNQ884io9WU9fynGMiJhGpGAcRMQmzzG1K+furY30CYiAM\nAWKl1Dul5pjMFMhKbUnulQ+kYSQOnujFtyk5UWqrm5qqacBZqRo1DQfNgqZdiqJaVUHl8Am6fiiJ\nM5vE6NjHBD5QGemnaRpVXnO5Z0fqGvNhm/JjStO4S0arg0aDR2uJes2miAJoVSCp6EPMe7WAZWcy\nNVF7p1JUEC8JP78c6Zcd22EgxEEqKFpxyzLLNicmcyUzooICWt0ofUqUKmr+DuVa0hQAJ52cOYh3\nzmqBJ88bAf85AZDnbVJJcFdJ75GrqjJBowb8ztgimOBDwCJV76JoVywLnjJKnlQnM4OljDf5+VSF\nlXU0U9wyiyXbY6TsSxQmCp3VPqyYZD32wTP6kSZ4knGE6EUsIkWctcXkOVeKn1DpshR4ppTO4y39\nI2va8+b9qdTxWVRmzBOgI9jHPH2lLt3P3/vZv3VclE99FiP+MmraPKacA6SXEvBPXp/H1kvf5Xt6\n/AB2foNjDmDmDz8HKC+Bk1x2z0eu3Mw5rbnMnF//HIXPj5f4nXNU/7yc+VwpLs4WIWMcde2KaEAM\ngX4rvhzDMBCiJ2FKP4lzjpCyhn/NweGaplFZaeWd9/s9u+2WELTxcBzpeqn4HB0fioxwrcG2ykuT\n1NvBTNzRcRy4vxcD1WHoimiBNQZroa6FPnd8fIw1cHN9zfX1NZU1nJ2e8MWbN7SLhtubG37+zc+4\nu/vEYtFydnrMV19+zfn5BaOPvH33gW+/fYd1FYuV0h8ihJAYBs9+3wMW7yPHRyccHKyp64r1wSFt\n3QpF6Pqafr/n6OCAFBN3Dw+sFkvquqbrhTc/l5kehoFF0zKGoMpzkRBG+t4X474QgjTvdzuapqJy\nltEPECNtI+7eq4MVllSUtkBkkK26dkv1TkzlQtAmTifPfrfd87jdkoxhsVxSGwlkm6bhYL3m6OSY\ng4NjnGsYhoHNbsN+3zEMvZoKLri8vOCrr76irkWU4f7+gYe7O6wxvH79mrPTC6ypePf2Pdvdlrat\nubi44OzsjPv7OzlXEaFIStObkgWr1YF4+DQNFxfnLFYrxnHg7dtHbm9uuf10TzcG6nbFfrdjt93y\n5ndey9yIkf1uh3OWo+MjKpNEoECrUClGdv2WjVLrdrsdcegxpoIkzd7D0INSjubu4XlezXsVqhSp\nnCha6YTLMxZjLX/w9d/nj/74rz6Zm6erf8LpwT8uczml3Lyfm8oFPLV1Q9Sm77mPjwTBEx1E/FHA\nTHuWVjUkO51V2fJ5MKb4vox+pFYhEWsh+qgqT7EE2jmAKRumtVrNyQGLBm05wNeqdK5Yl46EhHqb\nzDfiCZToL4RKU3os9HqY51UlsCjfKVG8eTTsImFL4Dqtm1oZwBSgYRXoxPR5hvT5v0WAImdM57ld\nObkx8txQijBxohYTQvHIKdeRqw4z8JPBTgZ5Uw+Y0CZdJePCjyP92Guv38BCvcwyvTLGwNAPeAU/\nWWRB5plSJc3EHpA5qOPJAEbEExKxBN1Jq/2BxNj1pGHEBAEU0RiSq2gWC9rjY1ZHR6wO1rSLFc1i\nSa1qahHDmBJjCgyjJB6qEHGN+EYl/Y4hJkyMGJuEkudUlEBV2IyaZpenUHD39MwytgWr5bUo7w8S\n6E5AMykVSsZooVYlS0xWvMlCIDIlZkyC2joWdUNXN3TW4vWZi3iLfJOceJoHkTk2sEqvE8EP9Z9x\n0z6e5bMTFKBrnq0vVeWoXKXJLS/WBGg88DzWVgCWkyqVc1p10fGrr8mxQwxBKrBRlAFBwE5VVZOg\nwDT8ZayHzFh5ChQyUyWvC7nili/Hl95dAT1+9EQvsQI5NrJTwqVQSWeXWKoWzlEnit+QAE4ZozlX\nVBTzcu7IzKsgU0UjJwZmVzI9k5mYSfHf0teX552evf2XHBO9j6fAls/ByndVep7HiL8srnyebJ8n\n5///cPwAdv6Cx7xH56Vy4fPfzYHJnH//XKltfvy6g3j+OZ+XM2WTzQtkDIHxiYZ9Q9uKiaYzhkXV\nSFDeSxN2Pwwl0wKoGeYRq9WKw8MjhnHgwwdxe+6HQd25B2IQznZdOapqRbtoubi44OjwUBo6+45u\nvyelwKgZZ5/ECNGP2mCfueQpNyOWpAmr1YLT02MWTcvDwyNvv33L/d0dX331BVeX57Rtzf3dJz5+\neMfjwx117Tg/P+WLqxMuLl9hbc2nT5+4vb0nBqEWBg/7fc9u19MPPeMYhAZgLJcXV5ydnKjctYgq\nbB833N194u7TLYfLFU3T0nci1Xx5ccE4jGy3W6pasn8pJbZb8bypKotHNnBrk4ojbIVvj8MHAZvG\niHFb1AZdkyJ1vSxGm4P26cjamsv0pgTjkvUzWu2LeC8Z+d2+Y7ffi8SyERpCpcGuqyvWB2usq9l3\nA8PYledqLazXUtH58ssvuLy84ptvvuHh4ZGu6wgh0i6XLJcHOFtz/+meb372c1KKnBxLpSjFyO3t\nLSF4FotWqGqaELBWAJeAhkTbNlxeXoqvz37Hh/fv2T3cMI6eEA3NYknTtgzKNz86OgRQ6XFxKj86\nPGRRW9arlUjdapCRKV0gxoQCACSDmyWb55v188U/BKmWOOcwwWOcUgBmPXTGSlD2V7/+B3jf8I++\n+bfZD6d8ff6/8S//9n+Gm6lVlQxijEVFq3JiwtkpMCmJa56uOWK+ZwUM6OtkzksgIGNxpzLf0lvg\nqkqCNz9VlEReGELyEtwlyXsaIHqhpJXeFc1ET2BwyoYa0CxsKoGjZDlnL5qtcVNwmjQQV5qSVmqM\nYRJJsLYEGdmoUTK3lqcLhSkBxrSW6mwx0ydOvUWpUHWf0IQ/W2ODVDqmmg3linIgqdcttDcNpEMg\n+QAxK6ihdJVcuUqlWduYUmog+KA0yaRJogFrW2II6kW2Zbfbyt6iVfZuv1chgURQg0cZ5xJoxpiK\ngli+JdbqGLNWgVdUaeqxAC5rTbkHY5TevjR4aiMiJsmKD9rq8JiTq9ccnZ/RNAsqV1O5mtrVNHUF\nrmIIgc4PpD34UWhIKUm1xOo4lMqcExBl5fm7Sio7GFcqT2CyCrfGh7OKTyqFHjUdlXGJzg3x4NH5\nlMrj1AQmGKVARh+kOpaeNfvHhLOGpqpoqhrvXKl+mZiKbG9SP6UyvkzS+y+U4GQoZr1PKoyzBGaM\nCevmQWuuQMlzJQrI9eNIrQF+3gtijLhqFhukyQBcfLhM8QErczXfjpwwKCM+0dS1iFaYKQWRRVJy\nH5Dgt+kznZPn55wThVVysU1e42MosVCIkYQnYtTYeBIlsDbL/U9xFMY9uS/WWCqn4irGPFlj8h+B\nn1OF0GT/rJI0SbN14Mmt+05AYDAzFcAXSjh8/t7nrQ7PwY6cavou33We76r+PO/Pmb/+pdc8B1Hf\nZ+DzA9j5DY55FjX/Ox8vDcL891yQIL9fZByVGjLPeuYgJslmmXNB+Wfl/Giy4Jd+h8+BUvCBFMeS\nkR6GlqEdaduWtm1o64rD4yNO1WVeqFQiJlDpJnR8dMRisSAGz8P9Pfd3n6S5MaVCkasrR9O0xbvB\n1Y7KWsniDT27/Q4/ikwqGgxIptFgjC9UHTEMlQuOQRZt5yqODo9YH6zou5Hb2xtubj5SWcvF+SnH\nx4fsths+3Vyz3T6yWDQcrlccHwmFqm1X7HYd93ePxGi4vHpNIrHd7Xm4f2TwI9ZaFosFBwdrrDG8\nurqCGHl4uNdMaeDuds9mc4+J4NaV+poMnB4f4YeOm5sbNpsNJ6cnOGfZ7XbsdlvxTlguGAfPwcGK\nGGG/39D3CvDGkWHoSCmwWDQcrFakFAjBqqpYQ9O20vCrVZ2YpqA8+CAUucdHfRYVzqbiH5R9IfIm\nEUJkv++oIizXFTFJE2y/27PvhJ/uKqkCrlYLjo5OuLp6xdn5BSEE/vRP/5THx0ehQ9Ytq9Wa5WJF\nDInr60+8f39NZStOT05w1nJ9/YHrjx9KxXAcRsbgadtWjQUrDg8PeXzcUNc15+dn3N8/8OH9e969\nfUu/vWe9PqRdrVkdrLF1Q/ewwWIYhxGWcH/3ieEusqgrFkcH1FVFiiLDHGNku90WPxKAtqnBNow+\n4seR/V5U/iyUIK/Mw9l8yo3ZyRuSFcnriCk9K9aJL48h8Qc/+u/4F3/89+UZKS1uvjmXDVj7Oawx\nNHVDss9eZ6bgbN74b60VoGMke59pR/l77rZ7VUGUcWYrVbSy0mAsPlN1qZD4hCof5fjvaTLFqS+R\nz5S0WeUkr1G5MTx/9ZRP9nwdLbH91AtDplaRyudVVU0yKJ11Uo7KlSFrDFGrEjGf+7OkkXmSaS1V\nIY3y5rmi/Janm70ai6ZEbg4Xar+8MXvn5Kx1rs6g9CdSyl0bem7NTsfJRydLUqeQRRD0Z0QBKdaz\n3+1E7GW3YVTQ3StI3+92ZT+YKvkSURvtDiIh6m0piU9Nkt9oCaGYmI7jiCFiTaWAJIqp7jgw9h14\nqJoKnACdul1xcHTC2eUrTl5d4apGALWXilZyjqpd0BowvgFrGfoaYywRkXNv6hbjHBEISX1kosFW\nYIzD2EobJIzQPzOtzFgVXsjPQ0CF0eeVnxv532rmWcbvLLtvjRWCU0yF4j36QUAOaHVH5nIYR5yR\ntTm2LX0Sb6OQJJhOwVOqA1Zl0mHyuMqgwDwdgMXEFzBIdUnGLKXaOgcBEemdGceRumoxxpY1KsRA\nZZoynjPgzaazYMq1lXmhn5yTaYUhEhNVVRej3nLOILLOKQnwcKUKI++rqkr6/DRhIZQyp/43ec7k\n69LKkMYUuYckJ3Kcs2UPqaqKDNOmxLF42VVWQI/JiHIWS1mTr2ti2cz7r5/40LxQFXkafwEzQ9iX\nXmtU7OVFkDS7v/Bkifrs9S8lYr7rM1/6+6XXfZfIwS87//fh+AHs/AZHWXR+yYDJ1ZX5615CztGL\nCRlZfSQHq0nL1iZPtgn8PP+srDKULDyvCumrnnx2oZok+f+svpKFBdqmYbVs1RRzzenpaaEpxRjZ\nbLbc3z/QdVKVub654eHxEWttUf6JwVPXtQCntsFaWWzHXUff7QjRqwLZgHMVq9WKZdtgF1Y2DVWC\nsojsNAjNIaWENWK0eHl5wZdfvsFax/v373n/7luGbsdXv/M7nJ+dYY1ht9tKEy+Jtq5YtC2nJ0ec\nn1/gnOPh4ZrtZocxhrZt2e577u+lUtO0Da9ev+bV5RVtu+D9+3c8Pmy4vblmt92yXK4Yx5Ht5prK\nOS4vLnG24tPtHc7AF29e8yd//I67uzvaRcvJyQmr1Yqu29M0Dev1mpQSm+0jm+0jxlh2uw6p4jj8\n6On7DkgCjFZLhn5PSpU01xvU60WUtsIwamO80Aq8PtPHx0dWy9UUSMXI6MXTQKhFAkiTtfgogU23\n37Pd7fnEJxLQLhasDw+xVcVut8M5x8XFBccnJ2x3W95+KzLfuR/JYhQkHtC2i1LtsdbQtg3dfsfd\n/T3bzZbVSr7bdrMBI+p7Tg3ujo+Pub+74+TkBO8Dnz7dcn19zTD0LNoFrmqoXUXbtBhXk9TH6Pb2\nGo7h+uMHDm7g8GDFojYkPxD8QF1XKgyxJxkrPjkgWc4gVcYcdPvBCzVMSU/zpMVcFTGEQPICMoZh\nZPAjIZv2GgNWzF9dmt4vxKBIljnN6lrSHyGN+m3dsGxbBlV+82miu2RqVzLmif8NxmivCkVmWc6f\n6PuOzeOGzWbD0dERi+USDBqQaKMqkoCxVYUDkg9q3pckoz7fEBOlojLdj2mtKZWn2RtSSipJnZ6s\nS1NmOCnwyf2Fpqh0zWmuc5qSBD5VES6QIFJOmRQsPQVF+eNm67iV6LEotymo1KX5SabbOqfytpOi\nFxokWgzGppJQyD01GRjloDSfL2o/Qqa6Je03mAI+AUZGqTJZM857T7/v6Pod0Qcqvf6x79lvpW9y\nrm6ZqXHD4Ms4Dt5Lg7sx2KT9JRZCGBl7vfYYSVEUM5MVZkCIgdEPIhk/jFQ4VeFz2Kqmbpe0q0OW\nRye0h8dUVYMfPcOuY+h6YhBRAVdXNLWY+VZVU7L32ApT1VR1BcYSYpJEmhXFwCwkYZAAWJSUs9Rz\npijNnqPmEfK8RsFnirMKzayiI2dW+pcKmox9T991hDAiFEbJ9McQCWPADwPRB2rriHVD9CNDUK8i\nAylm1UGDwYn6mgb282iizGH9qdP+XgDjLGnuYaSVmKiiIrHSHhRd6zNdzCuNNQHOildSrmIKvUuE\nRUIQEJN7FMusTenJ2gfax+NakQVX4+v8XbK3kgCZXGGWaysegDPQYq2BkNdDCoiJMVHVFcbWKpyQ\nRQ5y0WNK8jhrCRrXRI0jQoy42ijFz2GsnYQ5kPHtZtXgQu17oVoyB2yfH9P5Sunuye9kZZC1R82c\n5wpxs2f/y6o0c4DzWVz3WULn6Xnz8XKc+PQzXnrf9/n4Aez8BkcOxF5C078Ocn5Kh0D6XF4CMbNe\nnjmAepo9nQUTbpqgE7UF8uo999mpqwpbT8FJpvMMw0Dfddzf+aLrf3wsBowHBwclyyESx0K7Gvqe\noetYLMRrpq5rybLUtQRXe8mij+NIVDqWfPlIU1dUTU1MHmMblqsFTdMAhr4bxJiz25UgPtMGrTOa\nwex4vH/kw9t3hHHk1dUVv/97v8fpyRHbzQOb7SP9fkfwIzY1HK4PuLg4ZxhHHm9v+eabb7i5vaWq\na7p+ZKNZ0oP1IWfn51xeXnJ8csI4jDw8PPD222/Zb7ccHx1zdNSw3+0JIXJ2esbF2Rm7zYb7h3sO\n2gWPj1seH7eMoxcTy7pmGKSalo1Vu75nu91KBq5u8L5X4YBUzE5XqwUH6xV17djvgvLwJ3+KlNQD\nBpEJbduWqm1VKEGoAou2pamFxx+Dl6ZPfSY+qvRuXRMxhGFk3O3Y7fcYYzg+OeXo6JjVwQFj8Dhb\nc3y84vTsjBAD/+z//lP++I//hP1+z7mOv9ViqdcReXgQYBx9oK1raufY7/d8+vRJNmNj2ey29H3P\n+vBQGq6TyFhLX88Dn+5gu93y/v179vs9i8WSo+WCmBK10t28BjGX56fchg0A3X7HmiV1JVULP/TE\napJZrusaYysa9T4a+p7Q7ekHL3R7J309TV2LB1FMpOCF0pWd3tOs0TYEhhTZa2a912ArhkhE5cKr\nhhjGJ71/c9NFnRyQzflqUUzMWfoyt6194v2SPTcy7aGsQWmisFpj8T4IlW0j93yxXIq3Tgx4VWLz\n3itozv020tWQAd78esuaVNaqeXO/fH6arYnTNSSizcAif9f8/wpl8jroHFYrHiEFjPVMDueTSEoG\ne1HBRyJJ3KHVIT+jSeagJvE5j31uJ1AACrHcX2OgdhXRSMAohelYQE2yCZu00TrEzzxBBFxHfY+C\nsDiBmmR4QnWS7Lgrr1EMJlLUvgfE58xZ6cvrMl3JSUYbJLQles34B0mYINSl4KUPMthsGJl0bYnq\n96PAxBgRL1BPrX4Y6MZeDB2NBJEpgrEVVbukXq2p2hWmWkDdYk3ABSOqkTFIX4uRKkdVN5AEYPsY\nZhUdpShVFmcMtspUJZX+Dol56GZtVUhWz6cUSjcjarVMDTLLXjx/uf4g5n62cWDo9/TdXoxDC53P\nEMeA70dG7cVM8/hAQUsy054diRASxJycQMaj0b4eTXTmdcE6i6u0SqwgOSmoS1oFFpAyAbcxitmz\nq2u5l3l8WeldiUqta2pZP5uqxvtYql2yDkw9iolEiFPAnq+lqprieRVnf7JctHMOZoIP2Ny7pPei\nzFUFmHneGZmnkjRtMVYEN7rZPJ1XYXKVKIudTAwaYZpk4SOTy735GUtmpowZ6ZHLlav4ZL2SivSk\nivv5ANPv9eTnz/715wQPUyxnnvzs+XmeU89eAkzPz/H8/anMhZdj2ufx5ffp+AHs/AbH1Ej9tL/m\n+eB70nz3AjqHXIKe/p0H6rwBef7vuUz1c+Dj3FwcQSfnbMOcf25Ek5izTX5anMFUDfWixdU1/Thw\ne3/H42ZD0v6ZvpcN9uBgxZdffsH5+VnJfPYqSSwVI19kqyGq+WFOySjXFslQdjupsNR1zWLR4qxl\n3+2wzrFYLkvgAbIIDmPPx/fvub9/YPQDZ+cn/NbXX/PFm1eiyvaLe26uP2JS5OxUVMEOD9cMQ8d+\n33N3d8/DwwMhRlZNSzcMbDcb+n5ksVpR1zV93/PTP/szut2ex0ehiYjZaTVtwG7J6ekpbbvg8e6e\nMEbMwtLv96LQ40cWi6UY6qUp05Y59SklmqYpJfkQovQy9TvadsFytRAlrnHAe+lrck/6vCZwXFc1\nddtg6xrnPbV+Vqt9OEmzXZm+GDWbOaq4RIgwjCO9H0H9Meq6JUXDbtszBg8YVqsDjHHcffrEhw9i\n8nl8fCwy4nXNxcUZV5cXOGv49OlGKn2NZX10RtPUbDZbxqGnamp88HqPFlJpWCwIIfLmzRsA7u/v\nSVpJ3OkYWS6XLNqWwQescfjB0w0DKQYuLs7ZBjHgbOqKo6M1J8eHHB6uGfue5aIVP4+Y1MeoxW5k\nDvRdh/F+yqKnUKpRgwptgMFqAFaryEap1CYYRpES3+17Bs3GZnUjYxzWaTVgthY4rSw5q71VUSit\n1hhRkTOw3++fCCTMEyGSsZ7RPdQ9ngRjlP6QzN333rPfic9V3/dSrbFWaT4iS2+8V/UiodoEo/4q\nRuiOqRuKlQAAIABJREFUOWFR1kGDjsepT2keLJZK0AyAJb1hGd9I4CH/yEIGFqMGgbEEMTFl5TUF\nXwpmcmCTUtAAigKyUkxqMjlVw6Wy8vnmXzLtJvd7TH2Z+etnUQNK1UbXYzUPNSaBcwXI5O9b6f1E\nA1LKOq4BYtkUYGL9KdBKpqhRJQVHMQb86OW69NkOQ4cfegxQFZECr5l3yf4nT1mTMxiLxhDGAaIC\nsaiUOSvndjoOQwiMQ1/8dEbf49TcMyGN365uWKzXLNeHNKsDTNWAqzDGUSVDayxhFGXBMUR50gp4\nbJVEKCJJYJ1Bn2TuRZGtEAdV0SwpWGAessap4T3/bApms0JYrqrqnxQ1oE1lbIcYCN4LhW0YGfue\n5D2pclRZHMEH4jAIxa3v1fw0K4epJHNKGnDlvTkDajX0TGDKt3xKpZr366RcbeRpoqPQ7qwjBqE0\nC+Uzy7+LsIAkvOT7iYdbJRLTzjEOsVQ/ZO5O1dBJbGBuNGrVKkHHevb4SkodqypJMgVRTIuFXmv0\nM3JFypfzyt6a+32iUpq1j/LZIcmYalYpCpqUigUsVc4xmhkdDgGMzk4910mfhw4kok1TxVDXkzzv\nY5jTifV7PP93SdiUkGX278+BwpwW/FISPS9Tc8BRxsNsP3gOUr4z7nwBcD0HUC/Zpvyy9//zfvwA\ndn6DI2cR/Kzhc8oiPN08X+rTmSu2mZkaT56IBooDsCxsc9qGZoAsRER6MSuJZLNJgBkuePJ98iKV\nN+H5AJ8MQhtWB8tCnfIh8OnTJzWz89qs6kvAv1i0LBatLgQChvb7vVKF8iKnaTUjO3npQUJkJ0ly\nzv12CykpqBDucFVJVmvsB4xJNM1CzB6D52G3Zxx7Dtcrzk7PeH11RdNUPD5ID5ExibPTU7768gsu\nLi5wznJ/d8d+34nPT13TWtX1R7NTKbDbbfj4UcBl33UYDH3fUdcVbS0mn1kFq6nFRdsaq/cosmhb\noVYZaYyUXqiWEEOpkD08PIifS11DSgzjQFVX+OgZvfQ01XUlWTo/MPR92TzbtqVpWxKJ/V7AWyLR\nNrIpGCiu1hlAVlVFQDaVXMXzMVLVDZUxspkYqfIYLO1iyWq1wtqK/X4kpgFbCYXQmIrb2zt+/vNf\nsN3uuLy85OzsjKHvsNZyfHzE4eEKYwL7XUdVW+rGcH56KjLZQ0+KkcpKE6/BsFwtWSwX1HXDYllz\ncnLC7e0tHz58VO+SJKp9SNWnXSwIuz1d17Pbi4hGiIHlosXuZHw1dcXC1SyamkVb40hUldOm7on2\nF3KWux9orAQJBiM+HLaibRsNWrM3hvSjZaPLPD9jglHnwDAMStWCUg7IQN8qKe7ZupEDbFFmmgQA\nUhL6WQxaIdC5GvQ9hec+q/oQk0pCe2yMmErAsVBW9+x2e/4f9t6l17JsSw/65mM99uPs84hHZt6s\ne+sWVYiyS4ARSKUqyT0a5iEkJDruuAMNGkju+V/QgB496CHRBARGiI5lJCyMkI1kl6x7q7LyZt6I\njIhzzn6t13wMN8YYc6194mTWJS0kp8klZUbEOXuv51xzju8b3/jGOLCdu6s8F0Zbi5wvF7VsSEhZ\ngjP87nrR2xuRaek1Pr2Wj+Y/iUyVOdVao8UshQJBJIDVmgiS+c9Cs0Msm4ExsOoO9YRcUobcGM7L\nWJiL+8ooS1nyBRabTweAsv9yjfIrLtiPsxRKszqkUmQOWzl7w/vIBii9hcQYAJkBEqS+gOVOMp/L\n/cvEgCAl7keUpVaJUkIOkUEIEULkzLy+JwBhGgeEEMszYaCkJBtbYBeYQFQc8uzTYWvYpS3I2J6m\nCVF6svjaS/DKRgK+btCuN1hvd6hWW5D1iHx5MN6jQgtrHSbpVWNB8NbBGu5rZYmkBgwS5PK+E7G8\nW7MC5d26CC5nJn658c/msaSgpmx8AwoIyrKmZuIsGCX+L08BMUygZGFcxQYcalEvwDaJW5sxnN3I\nKRejD7MA3SX7YS1M5nuvDU6LtAqSGMkaBPOluYU5CMgWAsw5h5zYflpNATjrksq7EBL3aNNmswos\nU+JWDoXogCkuslnAzGXDcTP3+iElYRnYazaFx01Gikl+N5NznIUV2ToRrJ8dX4OMrbr25XMab1k1\nlzNWainlONJKQUmhchxA7PglI28YBFnPDnspq504wYBlv2rxj6zztICd5dU/G/TrLFVG3jPjUD/3\nPBl+8TmZDJ9K1fQz3wZEnsv+LLenpNRynv62zM0PNasD/Ah2vve2zK4s5WbAk0AhXzK4wGUDpyXD\nW4IEMBMJky/2tTyGFfbWwYKYEkJE+gjALBf/pYxNrUQ1a6R/eu/RrlpsthvUVYWcMrqpR9ed0fd9\nkR0ZaB+YiLquWb7mKwEnDt471HUl9yAJMEwitROmJ3KtkGqRg1j45tMJYQqwznIjU+eYWcuRu3Bv\n1/C+wjSMiIawkqD8eneFzaZFmAY83H8Q6+NP8OnrT3B3e4u2rdmeWXS8vvKo6wrjacTxeECQACLl\niNMplCwCKKNtWqSUUDc1au9hDDCOPbbrNVatF/e4gChZl5VkoqZxxHq9xna7RdM0CDEgpRp930N7\nZIDY9SvGCFc5lhhQFs0yFwLHGEs2zTuHVduWprTMrnKNFBmDGDMyRUS572wjbEtPHeEuxYAgwXkw\nWyoBe1XVyMSZFu89xoEbyfmqQusbeNvg3A3iYveIZtXit3/2M+yurvDFF3/KIMBw4GUoiwsUu6iu\n1i3iNMlxKs58yb7rpoF1Hr5iyWRV1/j1r9/gcb8v70sICXVdF5MMQo++79ANzKaut1uo65C8dbBW\nFziDzWYFwLD5g2RpQowYh7G819YbsbPlwNB5dhOcnEqlNJvSYKARQUgKKlIf3s80TYgXjYDlfTRc\n38L10+Lus8BEEObWOlPqYzgTN0IjNWbyF1kUkYYoI12iUyyYYMlk8H3kZrNDP2AaJ7Ym9+w4aAzL\n55Q9nycoiyzvvbHSRNRYIC+yMU8W5DL/CGnK91iAAxGMkz8L6JDrJ35mRqRRIHFkk6wLxVRke9rf\nRiUp+eIeqNRnEbxbvRco90sDYBhxUJLsSnFoK4u83FcCUows38qcEdMAFpaz1YY4aNe6Ke6tI3Ui\niYGK/j1L48kyTlLiwFoyEEl6PSX5rEoNVR4XYyxSqzCFApKmkS3G1YlNA1Mj6wyMQSYjBMfiaROn\nlvRzDC4yYgws55qmQvYVS2QNlqxFVdXcq6xtYasaSY5TwLzne+i0SaMBiFNI8hwIxnoOMrWWTALN\n5ZpbTnWxfjJYoSeASOoUVF6m1u6GimkEUZkZoVmelCNsjMghcDYnM3kQpxH/4E8+x3/9P/1V/Omv\nX+Av/fZb/Cf/3t/FT26/KveajMqeqJAReotNOU8B/Fad2tQ1kwNwUwJeW8BOSpeKDZXTOsdrB0oN\nDteVWeeQMjuz8fMnhDDJPMKAJhNKi4jdrmZCy9on9+9jVt8Yg7pugJxLtlTBebFfBoqNNHDZbqOQ\nbjJfeyHlAIiZQi4ZPSUSCmCSNhUF8AFCBOQF8SvZMSWJMDu6ar8wFy3IzD12eP+XMuAySes8+iQe\nuwQBHwOMb8+4/Obg4S+qs3m6fVf25ukzvMwm8X9WjT+enP8PdfsR7HyPTXXqSwOCp4P+KTpeWlRf\nbmaWWpQ/FxKPC7CjfwpTsQRZBoX5Ww7cp7VFMcai3ddzViaFC9VrYXY8YszY7/dIMWKcBgRhC51z\ncMZiHEfEmFBVHlXFgIck9alskPcO1nGjU0KWni+clRlHvkdNw2YI567Dueswsxgo1xoEVN3c3OBW\nsgOnw5GbjzrPVsmSbTmfTsg548WLF/jk09e4vbmBNQaHwxGn05FldsbAOoOYIg7HA85dhwyeYCH3\nVGUIVeUxBQ6G22YF712ZFNq2QdOwJGoaB8TAbmLr9RrjOCLFhN3LFyzNigld12MYekzTKK5jDsfD\nAX3f8+Qt7Jyv2MK1kron7eVijIF3Hk3TAjACgHjBqeuaA9kYgMTXxm48HpwZGEuQlIlgrENdc1E3\nQRczDrARAoyxGKeAoR8BVLi6alD5FsZ43H/4Bu8/fEBMCZ9+8ik++8lPEKYRXd9js25wOh9hDddk\nGcrouwk5BdbpxwBjUEDg8cxua04aBFZVjaZp0XU93r3/wM+LUEwObm5uIAMaarYwjgPr053F0HcI\n0yAfiVJ0G5BTQr1qEEIqTTVZThgxjJIxWq3QViskDchBcN7CcjwGL9p55zz3syDABXGmyhmWMhw5\nWGuQYiqL+NJG1UACTqOF9Ly4Akxi6DvsXVWyp2zmEWCNw6xuR3l/yWqmlINS0Px+wxg44+bCfZmb\nNAM7DAPa9Rp1rZ3cJcOgwAEQa1lwNs77wu4aa+CML3OUXqtuGuARhJ2W4J1lJgZ+mUIhzXILYBI2\n1cKwS5MCnUXgoRbrZTw8ZR6LdEUCcmPFVCAxmCPNMbP8ypSQXxZ6YrC4tCTWECCL9Eazc1YhYpGp\nMSvsYBkBG4ssZgB5AXak2KJcP2cQI2cKZAxS1GJrlq3FGMX4gGU2KYbScBlEQM6IYcL5dMZqtWIp\nlUgUrbEwmTMKVuSTlCLfK5IsBbIADcCSQc6mAPgl0AGkhxMxgWWsyJw8z8nWebkXCr7lnhqCcRbe\n1DCUkJFAmTM3CmgNLEvo5Hv6nHRt0RoNjfwV8KhSYMkhMOCeJYd8vxNAHIQb4myEZuH0v5wi0hQQ\ntUdR5Gf1p1/t8Df/y7+OMXCt39uHHf6vf/I5/qu/+V+g9ZNI/2xRLpQMJ3hN48AaZZyU+qyyNuuc\noT83C+Cd5+smHptP3z8GjGLLbGdQUSTkIDgvcjXRwMUYMU5sGFRV9YK4WPT6sQ7W+nK+zlo0dYMU\nJiTM1tFKhipQL8BY1rflmhZCKOReqcsFf49JMXZZSyFitrdneM7EU+F15q0QPZLBSEnmAak7MwbJ\n8N+L+Uxm0KM9ppx7pjaHlof4WMkzf+g5EDR/TlUryx0+zcyU5wkB5Itjfl8Z2VNCfnlsnZetXZ7D\nEgABGpv9KGP7/8mmYAfgQfG0kSiAj17spdbyIr2ohcmLl1N3pYws/37xCpGyabP+lOcwU1gRYAY7\nT2t8tEDRSgdhrsuoyqQWQsQ4cYO6/f7A6V5joKnZnPmvKRFonDBNAdZyYb0B1x/knAoLTlj0/DHC\nOhlTgv2maYStr1DVdQFdRMAoPWqaxmG7WePu7g7X19fIMSGMU2FzldUexxHIhBcvXsA7h8pX6IcB\n3bnD/Yf3GPoe1llc31yj73s87h+xP+xZ1pYijHW4ublG27bCdPHk351PAgiZ8m0aj6vtFVh2zMzp\n+XxGjBG77QZN3eDQddjtdrjaXoEy4eHxEfcP9wghYLPhfjzH4wn7/R4xBOyud9hutogpoWka5Jhg\nLddIxBAxTZyl8TX3qkgxYxwDvK+w3rCzm9YAwQBTmJBilKL0WEBoXLC8LIUzmIIU5HsvrLBBShmn\n8xnTaFkeBwYi0xTw/v0DDocT2nWLzXoLYwzevnmLvj+D8oS6sqi8gTUr5BQwdCeEMOF0PiEIsFhv\nNlitVng8HoruG8Rj2PkKj9+8w/F0AmCQM8v11NyBSLpuo6zVzMTnhPNxjyH2+hIghQkxTEgpSKDG\n8icrDQkzpGYJwN3dC2zqlzicTuiHQQIoDbUynDNo6greV8g+wxmUIDOlhOQsknfCeJuZjZVF2hoD\n43iRJVIXroScFKywLXyIQRovmhIYEBEyElSalWURcs5yICsyFRJGTgwXQTRbuy6DvxC0586Aq12e\n+6OIlCYJINEAjPu/SGpEMj9LEnMGIvOmjSt1TlySL2b5RdD895KFggAABhFahzNPl3ORM8T9ycAU\naf+cUZIshVHwUuqT+TNC/CxlHRlaRK0mCCR1Q3Rh7+4wz2cgknoFzR7MwMiIRJRoDrZzEpMAInjL\nzD2pAYbIhctNyWyFHmPkLLcSbpJ9CJJVVsfFIP3R4jTBtC0qmZtjZKtoI6YaxmiDRXGv0gDMkCbG\nJJNAYkowYQoTorqBOZaYxZBALsE6zY5ozxdbFjR97pkIjjiwd0ZvL68TlOhiTM3f47E3m2DM64mR\n4N0oyC+70IFHi7ovBpuUM0zOQI5A0n5H+vtQMjnIGXEaEYYeYRiQAmfN/of//d8oQEe3w3mNv/33\n/jL+2r/1vxWwV6zDC1g2DIQ0zUlCMhEVN8NyPdbBOK3ymcFO1vXOWiF8OJBPyQiZCWDRaDhnQiDO\nZHujzTXdnIkV4GWsQ4hJxj5LCpV40OfgjDikyb3l3jWAcY7rvoizZZWv2DDDLS2vM2qxh44pgcYR\nKScYw6SoEQmesab08vLOsbW1s8hiiJREEsrvFFPDM/Fr4TyKeUTOQiJJFshZw2BH6mMNNBuvjWYJ\nJPHcYoiVP42O14uxqb9fToZz9u27tqcA59nPSOOop9mYp8d/5pt6Khfb00NxCKWAZgZq8/Hm+jlj\nZpL9h7b9CHa+x3bBai0LBz9a6E2Rej0FO+Uz9vki2ee25QB7mlkCADK5FIir5zzA4Kzv+2IZXFUV\n92ipanhpHmqMKUXr/bnH8XySa03FE7+418g+uXbDIMWIKA1B5YSQ9JqlW7FOFFVVoZkaZsstM09E\n3IXZWYdVu8Zmu8HV1Q7WOhyPJ7zJb+Gcw831FVZtixi4tud8PmMaOFtxtd2We+y8KxKs+/cf8OHD\nB9zff8DpfMJ2e4Wf/OQzxJRwOB1wOO4RYkDdNmhMi6qucHN7wxmUEFBFj3EUIGcITVuj9hWud1e4\nvb3B/fv3LKkbR3TnDgAHltM0ofIOv//7v8+W1t0Jp+MR9/f3ACAW1CMeHx9xOBxQeY/K19hud7i/\nv0eYeEKvvIWBLYslEWG1XsMYUxqtrlZsftD3vVgWG9HWB45bhNmbgbCBdR7WASQSlpgSYDhQiDEV\nVut87pBihVV7jbpuEGPC22++wf39PcgANXFj0K4/4euvvsLQ96g8H99ag6pyCMTSF6KM+w8fcHN9\ng91uhykm9OOI1WoNOIthnEC9xQ3x+X14eMTx3GG9XoNAiMQ6+mUdi4JdDg64xuZweESsNAs5M5kA\nu89NISFnoKotbCaEFBEij+sXL19i27xEzBnDOJaMqrUGzgDeeaxqzkRSzmjk/Z4BT73oVzErt7ME\nqKofh4KdyJJKZe4ocXCZozTIdGwHPglA5BojDsBJs09mZuUIGckY1I6lleQckDO887yg08ziTdOE\n0+lUQLq1FsY7jBGIlGHUjthqEbW8xE4sr42Zm/QtsjUz+8jBhLpQPZ2v7KI7vLI8KlfSPi/EfLFO\njpCobN6PAUrncpKGoqTOdMQBLEGCOgvjUIDIbGCg5BOVSIDrRjTwNGIRfhHnMNCxlns0EYESM7BZ\ng2dj4J3jRpGUEXJCilzsDsns5CjyNe/F3lua3KpEDZyRmEJAWNhFa66DUuRsUYhc9yOZCWXAAb5d\nXKQ+s+neAOSs3Fq+GRxUpQI2eJwwQEs5l0yxAnu5RJC1CGFCRRZVxc/BGDbb8NZBM42cIQOcglsF\ntcbBZH6uxn68zpU1kUikiPM6qjIm/T1RXNQf8f/IqBueZHTEsEMzaoYyHAhAQs4sWctTAKUEkxJS\niAjjhGkYEMcBiBH70xrPbY+nlt8l56AyOZUDkgB2R5cxA7FvAL87nolFLRdRsJOJkKIYBQhRo4ZE\nWvSfRWbINETiAnzvuB9Vzmw7bQ2cq4qhBEt1hcCEw9CzuZA1Yu8t56HnqqBB5XXVglzNUcczRCJe\nwzvOVCNnOGPmuEQIQlZYOFjDMYb3HpC1DUTcl89zJjyECeM4MIHnlg1Fl06zgBOzBWstrGQUnTZa\nhro7GvjMmUHLXyomKHPPICWpy9OSn833Yx6rT+pjFtmQS2Dw3SBhGSfORxXi5Nks0oIMoMtG8stz\ne3KUJ/9eZm4Y7Dx3Hksg9EPcfgQ7/wzbc3rNJeuk0jVdGPT3ZaK+KPT7eJ8fD7bLl+HC5tEAdctF\n1EEZPhK3KanZaJoGbduyRXTdsHVqJgzDgNPphL7vmfkW1rBa6GdDEOmAOp/IQsLsojChuvCQsOYA\nM9BQHW3GGAMX4pdJnNlSL0zYasUZD+61kzH0I/p+wHa7Le5ox/0Bh8MBx+MR/bnjWoz1GrvdDne3\nd6CU8Pj4iBgjfvWrr/H27VuEEHB1dYXt1TVubl8iRpY5cWPSa2x3VzDGoJcCewDl2tUW9vXrl4gh\nYLtd4/XrV6iqCo8SdFvH2SwYoK4qrNsW7fUOm81KzvWEx/0eo9TwWGtxPB5xOBwRY0Zbc2ZtGEa8\ne/cBHz7co61rUII03IwALFbNCjfXt+i6DjEkrNo12naN8/mMYRjhfS0Ae0Llaw5yJajUPiTOsWyK\nJT+mWFhHthIDkcHu5hpN3aJpWgTDoAUgPD4+4v379wyamwrTNOHLL7+U4tuEzYq/wza5gDUObb1C\nXG0Bk9E4tpMmAh73R1jvMYWAX/3qaxjn8fnnv4WmbXDue7x79w7nc4e6buX8PXxbo11vYJwXW1oO\nwghc4xLihKGf4F/Pz7CqHKpK5WA9+iEyU2oMImWcuxFTuOJjVB7G+4sshS4mzlrUlUdTV3xPkwF5\nhxwdgrNI0SORNudzyETwy4xNSnDGInumzOfu4osGdsRF9JX3qKU/VZgm9EPPhINYwRZJjJ1BMPKs\nO2fgQCUzQ/KuWgluVNYyDEOpFyNihtNZxxJ3QCy2Z1KGjGq5y4QkwScDZxgIQ+04hsZsu7xkBMs8\nSZfz53KOlBsHDSQsFvba+lll8ef/QXbK9TEXH5brJ5QaFSvXps6Uy2V/PgGldvlyFeBZyZ6pjXEq\nGZnZdZKxBGdmx577klFMbB5CBKtBeExlPyZnKVZnSU0IQWSMSeYsK6593HxTg0x2ohIwRQTvHKjy\ngDTDTDFyMJozrOPgiJ2XRbqDxIGyZQOcJE06kzhppZQQEtuTa00MiErWGUgfPUd1NTRSB0Fi3w4j\nBfhQKwAqc9S3rYFzJkrW1wX4weId4HGVxeAnC9giGJGrGUqc0VHQkwXUxQgKExBGAY8JCBMojIjD\niNANmMKIFAP+8F/5R/hf/v5fwdPtr/zu/yNkk8hanZIFAMRkwNpcsqNQObm4zDkjZgXQei+eF/7J\nn/8W/o+/82/jP8Z/j/30n4Ha/xbGjJjt6+feNTEFtgq3i0yJZudSRghgcC1zf8qWZaKG0I8DYiIY\nqctLRCV+sRDJW1aCiclLiglhHDENPcI4YmlCoKSZAhwvkmprrfQGE/BhDYwQsVYIJLWdVpfBcRzF\nQZRQWQdfsUvbR+QXZiLGOnYRRArQhrxsDGOKS56xYIMeGCSRtC0rDnRWuQQtl1mQy0/q73/z7al0\n7bnfPbct16jfJEv0bb9bxqzflUH6SJn0A9p+BDvfc1tqJ1WXuiy8058rw/uclK30ctD9aRDBa0HR\ny7N+fbHQGjDTag1MNjCZ62GW9TrOucIwO8eysPV6jZubGy7+9hVyIhyPx2LpOwxDOV9XVcyQEgMS\na02p7cnC8s0DXlhcmdxyzmUR4njGSFE281uqy+Zsexa2MWIcA87nnoNgOf8YE6qmwWeffQ4Q8HB/\njw8fPrANb+AF+Or6Gp999hl++ls/hXMeX335K+z3R+z3j3h4eMAUIpp2hdsXL7G7uUWGwTgGZsqI\n6zzW6w1W6zUOx8NsqSr3oq5rrNsVVqsNunzkoE4C0vV6jU3bYH9/j74742q9wd3dLe7u7tDUFY7H\nA37xi1/g/uEDpmFEW7dYi601s1wVTANst1dsXX0843A4gm1TWdoyTdwHY9Wu8cknn2K1WqPrulLM\n3/cDDocjAGC1rmGchyPCagVJ5bOTFw8NXmCzBOUxE7p+KJkdGC4S3ay3GKdQnmkIE/b7R8ScUDcV\n6sZjDFNpSOsrC2c9tldXqKoKIXAvl1XTYLfd4ubmDgDBwaDyNc5dh/uHe4xTAKzD/nDE9c0tNlc7\nWO/x9s1bvP/wwM3jhDRQ6eNqvUbdNBj7rpgzKEs8jgPC2KH2OwBA01R4eXWHm90OTV3jeDiirgxc\n1WC12SKTwf40oO8Z/B72B0zVI85dhykGfqdFGmmtQeUsajGOyIbrSbIx8AbIziGmhMmwdJCI4Ke5\nZieGCCPBPcuWJHNiWE4HcFYNsExIiNveMA3ox5EBkZv13gx2OLAykBoGCezY1lgzL7JISeYiy3yV\nRPrEunmuw/ANBxtepK7GznbSc1ZqXliXttEcAJsizV0SMgDECe1ykfxuTbsurPJtBTzKmD6djy2K\ntEuDHmNKeT3f+5SfHNPAQhf4OWOSpUeOMblIETV+4W/wD2bpmWQJIGBP5noGGAHTOGLoe4w9NziG\n83yPIQYVmQvfSZzZuLZEpGpqSBCmYieszLWOrRCnYviiRFeW70/ibFl+J+dOKSJnvp9zY1tTQFCS\nfjopJ5ZJEiEbvvuirEFOGWPKCCmhyovgj+brYXCBsq5pqiBpI11DoJKApXkXJNkm+ZECHSc1L6qI\nMBp7p4ycuQGwZm00M8VrqNhpJ83sRCByZoxyAmJCnkbQNAEh8r/DiKnvMXRnDF3HYIcS/vgv/d/4\nd/7Nn+F//vt/BIKFswn/4R//bfz+T/+81DelMqeqnCzDlYyljCS1nS427wtjEH6pAQD/zf/472Pz\njv/e5b+B98Nfx6f1Xytj30vvMBh2JMvI8HBsqFPViABSVYNd0jR+0feG5x9uF6H20LbMu3OGUGsT\n5/e48h5xiAtAPsGYuX+YkXoZXUeWoISIs0FBrrWqWMYOcVZUwyTAFCkcADFA8uU/daArc5KMDecd\nnOF90jjOdWn81vCjSdpEl+Moa6w0Y17UHeISJFwmcJYAQ+qIFoTM86Bgrgf9NpCzBBlPSfGPszof\nH2tJuj9Hmj891rdlU58CvN9MPvfP5/Yj2Pke29NB9XTALQFQjBG73a5I355b2JeEZPk+/3JxUP7V\ncuAnAAAgAElEQVQj5ywToIAna2GNMvQ8GWjQozInfVlUrpZlUmNGboK1FrvdDqvVSkAPF4SHGAoz\n46yXWhz5rvRFMcZIMzlZYKE2l+KmJBo2I4WNUM9TgJkc5+Ekw6TXF0IEBe4LYYzB3fYKq3aFHIfZ\n0jdn1HWNq6sr/OynP8Wnn36GqqpxOp7Q9T1gLB4ejximgKZd4eb2DtfXd2jbNU7nHvv7B8SYUdU1\nQozo+o511r5CjAnDOKLv+iL7U5lYU7fIOXO2abNBXdUYRT5W1zW22w12Vzs45/H27Rv8+Z9/UbJM\ndV2L1SdncLRfjyESa+oWp8dHxJBQ1y2aRhpzxgTvKmw2W9xe3yEmrtNpWw5gjscjur4Xt7fIXa0N\nM7ucXQzSHE4DCA2GCKP0TNKMnWriuV7nxMEcMrr+hGHs0G7W2G5XOPcdusMZ4zRK5oQd0tarDbwz\nMLIoAg513bL2P064u7nFN998g1999RWbURiHkzjkrTdbNG2L06nDV199jf1+D1tVsJZNBGLKIBiu\n7apqnI6PCCmADMFXXE81jqEs5ACz4NvtlqVwOUujUIt2tcJqvcE4RaRMmCK/Ow+Pj6jtB3TSCBdg\nY4TaV2wrYFSiY/nfBHZCc44L3A3EJpgE1PCJ5MSWvVmlS2I84Z2DcUvXIl4w66qBcx4pp2JOUEvx\nrgaBzIo+aTSYJQjNLN8pc9UTEpIy1wZFmaO02W2VGgBivS19cy6zMSh6fUaYAmqIirUzET7KwMhJ\nyu+fYSN1/3quAp5USmUsxJZYzApAAHFQphemQAUq9RK21hgDZM5K5ZjmBoYyf7L98jwfk8y/pEE0\nzfK6ZbG2NqRUPRwH41bstRkIpGlCDCPCxMCSQbOcq2QMQRDpWkCOCm4E+FAuttRs458QAxUTE8j7\nnGLENE4FBKs7mwKcJWPLmV7JsIAEsPJ8TZDanSwW1yJhSzmX587BII+xSBlTlMz9AtwmqQ3KYeLs\nlZkd9xjwyPjQ21myM/yOgxTSCgC1RuzYjQ4Qyd6gyNS4FichZQMrYEbHD+8vS5bpSd3UNAExADGB\nQgBCAEIETRPyNGI4dxjOHcahR0xBmutm/Kf/7n+H/+CP/ld8+f5T/Pz1l7ha78GOcjOBqVn1jCht\nJuYxaTRVuHCas+D5A6TSLA0uLwPeKf8hhvhHqMzfQZGMSj1p1vtt2MxG13/rGFxbfW/lvmv9bogZ\nIRFi5GfA/axICBgs3ieU62Kb69nQgUh7+0jWxcxZrrnfG2etyQBTjFIvym6Lms1p2xbISSRs4Kyp\n7MNYlrY564pkTWMuKy52PIexBXrl/aLOWqAkKbHBcznBwFhtEm1Adq63/Daw8G2AgHmWua5vOWdA\n5hUZ7hfffw5IXMro8NHvLz9nPtqXfv7bJHDL7z53jCVJ/22f/aFsP4Kd77GVjMy3IGkFOprtefXq\nFY7HY9HG/0WDb7nP5Z/L4z895nJi5X2y8472EQF48uy6DudzB20ApnK1zWYDIs70HI8nTAKEqqoq\nDHSMab4umaD54FD6A+w0YzTykMAEpTkiCEg5ApkLJb2vYPzMKImNDdvagie/6901QgjoTvM9dNZi\ns9ng9evX+N3f/T28fPEKKSWcu47T976CsRar1Qbb7RVubm+xWq9BMDiezjieTli1DTabLQ6nE/YP\nB5zP3ARUrU6ZLOT+ACGIOYCvQClhGEb0PQOWaRwRQ0BTs2VyXVcYhh5ffPHn+Prrr4qUUDtgd+KA\nBXBQYo0VqaHDOAbEmFHXTlx5LJyk4uu6QcoZ4zihbVdIKeFwOGCaxPzYWP47ca2Pq2dran1uM9tO\nBWzVdQ0Yx4tbzoCHdFmPbJAQue8PSwxWMJbQDx267oQMgq9aPmZVYb1ai7Qnc8Bua1DmItUU+Gdd\n1+N0OrHdtTXoug6b7RU22y1iTHj4cI+vvvoa3TBge3WFDOIsUgxQ+VZKGePEP/PewXknjeky1usV\n1HjaGIO6ruCcQy9NVK2rUNUil0gTg2uJuvphQEBXrMm1OS6bdACQHiewMv6JXau8yDIAIErB8JLI\nyFHAjrUgl+ZMjLVzUM0vLqxhtzcACFHd83IJThS4LKUHswyObaNL/mMJcvQ78gsi1s2rIxLbokeW\nrmk+pASgmHdiZ+mMzjVlnjKzwEOo4zJPFV09MdjS/Stjr8EU6OmcuDw6FSBUXM/A9TIQIKXyNL2f\nRMz2qrmAAhqoK5ZZBPJEyMYgF1AmAaJRoGMA2Y/KW7lEXwNYPqbW3aSJTUIoibRNjAIMsZmGIQ7a\nU+KmlUmd1mKY67iIinVu6eGyIM5iDIiBC++hgFT6qKjeHw5ipCCBalo4dRpicwcDZKQCqjLUFIKB\nDANYztJnyQalTBJccq2Ztg8I0nwzTBN8ToCzklmDGuTJWDazpbgca4mSl2slgeeVbLIElIAS8NrU\ntazNmettSGTSUAmT1DSZLC54KYHiBBpHvsdRQI40Bx2HAeO5k3qdCZEim/OI9O/V9Xu82L1DFnvz\nJHK9qqrEeMcjZwZ+S+Cl7wspOVCumd8BrZPTflTPbSl/imphGEYC6AhUeu5k4gbVY98jhgl1Ndfi\nUGapOEkaqR9HdqacJhjrC2mpyRBj2NXROQt47dfHzoEGKO+wtVYyLlbGhbhLel+cV+umKiYoGvir\ns6ZLkXvTybppDApw53NgkoKXPCN1O1LD4xwgDVWtYfUFy/ikwavWKRViGSLXY6DJYMdCG9I+BTSa\nkSnzUnk8T0jvAtaBGdl/N0i4lE1/W1boEnzN8d/shPeb7PPbAFO5rpJ9mn9X5ucf6PYj2Pke26yT\nnSVrS+ChqV/NPvzkJz/BmzdvimWnflf3o9t3D8CPB67+vbDNIiGbJXIok65mdc7nM7qul67bLAva\nbDalgJ37w1iZ9znA77ozy4OkFgiABIqqTeBzscbAC2OtQSkoycLAhdMGEDcjndTtQiPLKyFJUKGM\nVV03OJ3OePjwAecTGyfUAixevnyJVy9fo2kaHI9H0Zlzt/lXr16hrlkO5D1Prue+xyBWxgWREfdd\n6YYB4xi4x1DdcrYsMvggAu7u7jD2PSDA7/Fxj9pZluANA7brFbbbDZxz6I4HLuKXR2UlzT6FCV3X\nFfCRYsLuaoe2XYEIpdkpAKRMsJnZ/6auARgcD0cYY3B7e8sA8Nxjvd5iiiy5U+mdF3mTap3170tr\nXudrbNoGTbvCOAV03QBjLNabDbabLfphZGvi3MMYQt14GJNxOnXo+zNiChy8ydhvmgbb7ZV0Gw8w\n1iOEhOOxRxgHeMd1SsYYrDdbJGITAOcc7l68wGq9xrnv8c0373D/8AAYg/V6jZRz6YlTSRO8STq4\na+8jaw2mMAAG2F3v8IF4nOjilnMufYqMY/Z1miYmIbpO5BPK+xm4irN8KQT0fS/ZBS62TjEgGZbT\npBjhMEs0jASCAaaQBLJjUMqcncpUGEx9h5c2vk6bf4okK5EWIGuNAp4w9SoPySWQVLCi9Q2MQ2Zy\ngqspGISpuxdpcGOoLNacuFj0h8kGtpqZXcOrLIA8y8FEk8TBv10AGczzgpzUMkjSxbS8MwCyECdl\nGV7Y8fP+cslAWJqDLZ1fNIAuhf3WYaZKZZ7Kkk1YzKn6byvzqpMsV06ETFKgT7NVdnnGMvdHyZSZ\nFBkQGTbdgM1SYyOGFbKPnHIxL0iR5aGUc3lm3JAxX8zvahQwDL3YuS+cQeXhOXWYy7nYPbNcSgE5\nZzkMAVmcM3XtSlgAHYaX0itpbo9AkhniNYNl09M4IUzcFDlME9qcYJ0pAS0Sv2eW03VcM2OAZdb/\nOamOkXv8lEkH5cV6w+oCkzOsgsKsEsMZ7EB+hiQqghAYHIWIOI6Y+gFD16Hvekwju7ClGLk20RIi\nSeYLktiTNSsmdtCs6hqr9RqVt5gmNjqhLMG9ZCcIkiEjgslZMiGuNAuFMYW0+XibsK7/LrsjQgks\nyOzF81FdVWwqMY7ouzMoJ1jTwtVaxzNLlpLU7k5TQD8M8L4uY043ay289fCVQ/Y8rlixIuDsIh6a\n5zXdh8rSrLMM2okbx6bMqgMdy1onpoqKFHPJQFOZl6jMczrHM+HrAMSSaQQgLSTk+YvENBVyVl7y\nxHOsNRbZZm6VYT7uWchJR0V/cmOMsr1KDvE8rVnIpWR2Tql9vD3NppSf51zmrGWseZkButzHc3//\ntuzN038ba4o09OOQ9NvB0j/v249g53tsKgsALrMvOgCXOte2bfHy5Uucz2c8PDx8tC9ZO6Aa1ksE\nLqu80FhG/Pf5pZsZWt1iCLIE6WRXo21XqMXiWQuSh75n1l4a9k3ThPP5LMYFNZyv0FYNnHdsoXys\ncT6fmOUSwBYzS6X4XgjLq8WGzpZ+BkaDwsRNRVnPzgXMmoY2MKhr0QfHWTYRU0RVMe0zDgOGgc0D\n1us1NpuNNOpskXJG1/foxxH9OOLNN99gGAb8a//qv46r3Q6HwwHv37/HqevYbcWyhfLp3KHre6SU\nsF5veBLObLtpLDspcZO+CVfbHe7u7vDrr7/mwFnkX1frNfb7R1hjcHNzi5cvXqJpGty/H3E6ndA0\nVWnkN4UJvUgEuYfNgKZu8fLVa9zevcTheCy6ZGulwSMsnKtQVQ2Mdej6AZvNmmuqjMH26grb3RUe\n9o/oup4DHpEROGsQJZjTgD+IZMBYB1sZVHWD2lqQGTDFjKZZ4fPPf4YXL+4whoj94YApBLRtg7rh\nxfN8PiFl7q/UtC22mw3W61X5szt1mGKPPkRQzOhchxwTrrZrPIikDyD0fY8QE7bbLe5e3GG1anGQ\nrFtIEU3DgFafe7tpcHNzi/V6w/UJMQCkRa/8zjlnsVqvkPOe76Nz3Cx26NH1A3ImOHB2bAwDPtzf\n43Q6o2lXAIC6bmAzg6e69ghak5GJA7ZMJRtHlsEOCYtqnYUHUEn2IUauUeL3WeYOXtXlXNnEABcB\nAbvyAQJEdMHVIPYJuXJJugjIEaBR+mkRoF5iJIyn/vdR3wqzCFw0uJUgNetCnedGxEXa4gxU5kUS\naBNBGFgOwJbySYDYKUlmQc4K6ZzHgQwpkWJMmSOzsuNLOZkEkZRJ6hasMLRzVkQDFJbwmPJASOfX\nBfNKkDpFsaPVewX5rdbReJH4GppBU4qhNBeOMcIjs83yvHskYmesHAMsjNiQy/MRgKH3yUh9VBKX\nNspz0KIum8MwgMB2v9bNNvNWOstzHVMCJQBwMA7FIVML+FWyowCm3O+SK1B5jpnrtGRgOyP9ScT0\nYgpMRESR8CGxIULOmCWGurYluWY5ptX1jea6BpTxxD/nGjIU4qyATtK4k98xyomffV4AHJLeRjmW\n2p08jvxfDMghIgwjxq7H+XxGfz4jTCIJpISYI8v3pOKIrF10yeJna2BR1RXaVQtrCNM0lHeMCSzu\nx0VQW25Zw41h+2WpQyEiRBnnr2++RIefylECXqz+Frx7j0gWRGwYkTOxIYRk7KuK55EoyoT5dxVq\nZ5FsFGLFIqWM7sx9zKYpgohd1BQw6FZVHr7yiKL7TDEgZannszI+9J1MibOkpKYX2j8osf0/SKTq\n4mgocjKeC7WhskckJrU0qwlj4PIy7ppjMe29VMjExHbp+t6o1JTMbKrE84IqUKQtAE9zBbDoPDXH\nXLR46s9WET4Dapbfe57kfi4Tsxz3Gg9eKImAQloo4P9oM5r1Lge6BCwaU4JlfbBMwGAxPPUlWw7Z\nH9L2I9j5HttzOkbNqjyVs2lmZcnEKtvBPvyqKwYPQAAwbgY0AKLo8Jum5iAqjEV3DdHue+dYRhAC\nvPfYthus1xuW9xBhEpa+73vkTEXLmzMXsk6hw1lqVJq2wXZ3hc1mi4SE1WbF3d4rBztV5fpDmHA6\nnjiQMhYpBVB2sEgwJoEoipWjLmKAQRLbTMBagjWZpWEEhJAxTH25j21V4ZPXrzB2J4znI0zOaOsG\nu80Vtlc7rDZrmKrBvh/QtCucQ8LX9w/48t07/N7v/R4++5d+jqZpsB86PJwP6PsOu6srtE2DHAfk\ngYqc7Pb2FtvdFZqmwlFAR86Epq7QNjWq2nGmBsAwTYhTEHlajRgztpsVrrZX2F3tAMoY+h7H4xE5\nr7FerwFjEGLGNCVkka01a4+6afDpb/0c69UaX/76G+Sc0a5WgDXwTc21INYiCTCMKcPEjC/ffIPN\nZo0Xn3yCVdsi/FlC1/dwYvnZVA4+RyQAm/UKfT+CyCDkzDbLlmBqgomcbQoJSK5Gu7vBpz/9GV69\neo1//Is/w3kMCMagqSoEcBNT4x02foOrqytsVmusVy28d6icQXc+MigeeplQE1Zti7qtMaSIOlj0\nw4DT6Yx+GODqCq9evsR2s4ZzFufzEefzI3IKiJGDwLZtUVcN7u5e4PPf+hm26y0eHx9QWYtq02K1\najBMA+raoV01GOOEUTjRZnuFMVscDyeMQ4RzFUwkjDmiG0bszwPIemw33Ki0bbbIQwNDBIcKGRmt\nb2DJwVvPjHpKsJYlqvAOCRmTTciWde4RGdkC8JabSUIYXHO5DuliDJF36lxSNy2z4IEXJxstPHmo\nBE0DVGsty+tkHrBCjGsROPf0EW29yq2kbsa7WfoWo/T6EfldVTd8Os7BwrCULkVxfOLmvcY5kEg9\n1ViF10Azy1PA0lW1ck2ZC/8BZlCN5VJ/rgFRFlQMBhT3FPaVx9IsqdHaRHFEA8HmJO5fHPyxVFcs\n3C2TBhSpuEDpeWeC1H5opnkGp5as1FmxbClndZYzMCaVWhpIA8o4jQjTKGRXhs2AEScsZdE5kxLh\nTNYpHDknhDwiUkREQrIZpaFm5toJtvgPDETF0rcfBiTK8FWFbJjFjjkiW15/EuReFHtudaljAJQp\niYSPx1YGIZL046HZJ03rdECchcli0GEyYZ0N+oHdHEcYlriej+gPR6TDCbjpwc1VGRgmjfWIGXiS\n50bWIouLp8kES/wniB3rlnVV7O4FtocG15TGcYR3HikEIAcYZDgoQ00Y+g4xRDjKQJoQhh4UJuRp\nQhh7MVth+fc0BgzjiPM4IYxnfleJDRoSDJLxDP6l3oWkl1n2Dqgcqk0Nv64RpxF9HNHHAcarrQUH\nksYzgcLvkwVZQrCA8R7ZcePOaDn7+8d/+T/Hn/wjD5yAT5r/CI/NGcmwLT0Th17s2tniuXUtPDwo\nERfekwOrz1ghQEKmZQOQqWCowmF/5qbR1iNlIGQZC6Q1O4TNhptq73EGAASKSK7GlHoEG5ErC+M9\n4CsEACT923zdwHgmj9QxNojSAAJ0Kuex2Wzh6woPDw9szV5nhEAIIcNbh2y4ts01FSrPwLCqa1hX\nMYlm2EEuxIA4Tcj1BMQaaQJqu5K6QgdrWQVhrRVDEJ4fyQDRZJBhC+1kaWk+J+NWFTka54GlkgyX\nGJRcgIElYFL+RrPOl6Cj9D5SAoW4DrIcKFEhf8p3jBpJLfPTl4BJj1nOxswyZb04ddM1ZEEZsDSb\nwYAAk+fv/xC3H8HOP+OmgTk9GbTLlKHaOi9lYLpdgGbMxgSqYwaYTTFgC1rnWMqTwqxBBYBxmuDB\nmaTNZovtll2xpjBh6HsM/VTYZGsXR7QSQNEspRmGAVMMOB5PqOt6Zo6tuQBuMVby7vPCGURWFEKA\n0QI9YS2VbayqeiH5gWRZPBegTzz56Gc5g7PiXiDHA3KOqLcb3N7e4uWr1zCOpwHNXD08PuLt27do\n2xa/8zu/A+ccvvzyS/zpn/4Sj48P2GzYnrryHsOR3ctUWsjZnbY0rHx4eMA4jiBi44FRmvRVFdst\nU+IgvOvOyDnh5uYG6/UK5/6Mw8MD3rx9i5yZEVytGkSpJ4kUME0RKVfwvsaLmxusVy1CmHA+HxHC\nKAWaTWFleVJM0iTVy1iasN0y4JimCX3fM5MsrCAPI7XEphKU1lUNYxNCTAz0xBxiHCdMIZV9vXv3\nDg/7PYgIq3aF1YrNEtRoQf9r6hqVc/z8Q8DhcMDY9bDGYr1aYb1asRyhqmAIxfVPe7I0dYvdbgdj\nDA77PQ6HA0v5pgBf83PtOn53ttstPv30E3jr8HB/L9fJco+cuZfMdrtDSoEbYoIzJRSoSDK4Fkoa\n9SVu8tm2KzRr7pvRNDWm4LhYPEmGMQONMWLbLS5XlDm7KQx1KYC9WAQvGbtSI5F5odWgzS4kCVVV\noQcDhSyWuEvren1zlSmFkTlI3uGZGcwfzUe64C219TMxw1JN51hGEwuhY+E9ByNaMP1U900SAEvp\n8+K4c32MZnWW7CIVktPMnyWVTKFIuAABhqwXeiLjoDKPIM223JoB18wV1zUxWIVlhEHE94+MXoOA\nEt6hzG0CDDQDJiDOSTPNFBMocU+WLA0rjV5jJlFmzedR9pNmO24irnVZNqv2Ig8FIJlQlBpMddpL\nKZVgRNehOSu0cJ3LczBT7ptkzxWYlv2ATQcuTAnkGZGsG7xGydgxxFkTeUaY2HWuO59xPp3QdR0X\n/TvPYEyOUTJrSGVcZhByCszCZyHysp7/7EiqzDiRuKASE2dpmuB8EnObIPNvKnUpY99hGnrkEBCG\nDsP5DJO5eWicRsQYZK7kInUuzCeR9TDoTEJ2ZGthfCWZBFOeW1NV2F1fYbNaIYaAw4HrTHNMPG7M\n7EZmci79avQdtcSSRSIWpIXEsuR+6NH4XwIAnH1AzmwdrRJL62yxWtexzwZJXD9FKp+Td4rnn4yq\nmtsrEAGu8lIbM7+PGqRUdY2mqaDSUN2sNWx+l5LUlnIz0SLpjAmuuWxkGmPkdYAIzapF29RomhZe\n3V4jmyCBILLoKBl1AytOpjwHzllm/k6UnoJ9mWOTZGJZ3srgYdmvLRPLPVmSmMt4NJJhniVdVN4T\nnmOW2R2UuVHn2ucyLMu4sHyu7M88+7nnJGNP1xZC/ugz/2+2C5kxzb3J/kXafgQ732O7HBjLAOPS\nSlA1qsfjkfuiyKJ10am7BDJGdQUlU6pOZsoHGXM5ALkIkSeVmBKqtsL19S1ubm5Q1zWmaULXd+j7\nHuMQLgqZ5+wUH3u535wzwsB2qZ1lyZkXBqWuqlKn4axD07QiKWCpGShLQ9EFkDN2AZpsKezNMMhe\nJsQQinWq9w6rFUvVKGeEiX++vdri9evXePHiBZq2RUwR7WoF7xz2j4948+YNQgj4+c9/jru7O7x5\n8wb/8B/+A3z1q1/BO4vd1RYGXM/Dzmlb7Pd7dH2Hh/0jVpv2IjBRpzqATQXqumYDAxg0bYvb21u8\nffMGTdvAWoNzd8bx8IgP777B4fCI7XaLlCLaVYtTd2bnMKm/SClis9ni9etXMIbw4cM32O8fBcDO\nXbS1/1BT1yBKmKaIcRzQNDXqukLXdfj6a+4lBHAtk/ceFuxUZJ2DRS51CwD3SrIwrNPue7i64b5I\nKaPve/zqV7+C9RXGYUDTtrjabbHbXcF7h7M0c1UJzTSO8CJh8NIgNk0BV5stNps1Nps1vPOo6wph\nnPB47HA6ndj8oq7x4sULvH79Gqeuw8PjI06nEwcZBqgqblqr4Ojq6go3Nzc4HbkRJsGgbWoOFoMU\npVqL83lEMFLDFAPLUYaemz7WhHrt4VyDYRjLu6qs8dI1URfdaZpQe4tMLbzT90dAiFXHIXEfFPvY\n5+cNlJdC9edsfGCksBmoq7oU4lrwQq/zhoJYBSr6b7Z6n+cdWaMXgf9sZTsv5EuwMwfHKgnhIEfk\njs7yM5ZArQSb0PmKi5j5+jHPcTovFpHHIhCQn8/MIv9XgJPMn0aNF5IWdy/YT7WR1rNRqR9fwEXR\nut4nzqyU9FeR3fBe1ArZsHGEMdJFnoojGpsfGFgidu+Kga2LE0ukTOI6uyxscYqc3WEnMM6qIM89\nlvT81OQkSxC1tJtNKTELnjMycS2Yytr44s1sPkIqS8slQIOZDRQ0+ENOYj4wS+cyEVtMF6CjGTe5\nR1ovZTQ7J9bJlUElrl0hRKDrcNjv8XD/AfuHB7w6nbDyFWAF9CofsMjmERHgOFNJGcxg51wyO0/X\n2XK9KZdzSsOEYCxn2NKEKcwtBEjmunHg+sHhfMRwOsIS34sURSqVCUat4I027VTFBa/H6ljpvGcy\nSc7JyHq8XW/gqwrd8YTudMI0jEViJJ5+Ak4zbOK10HhF3Zz9smBznzGwrPl4PJRaTuPYuS2lBC9r\nszVGxiC/TjknjNOElKQJbM7wAu4VGOQcS+0dy1stmrYWadkiKyCEai0GPdM0IqlDmzosyjj2Yh/t\nvC8SOAItDBtqGDCYP3cdk0oiQQU4OzGKrL7xTXkHdC62hokGzWp7X8G5qhCDKScM/cC1PzmzHJzM\nHHtJb6cLdY783QIg6b/DgIh7Hc1U0xPp12Ircl5TKJ8n64B5+oVy3Mt9PN0nyvNZbs+dR2ld8i3b\nMtPz9BhP4z9azLP/omw/gp3vsS2lat+1qSvJ6XTCOI5zELNYyHTMGrso0F3uY8FgFhvLlODsvHgZ\nA6xXK9ze7HB7e4umabgOp2NpWphmB7gimRNmjKRhwjIAYv0vyz+yuArFEFiPLayKMioA4GoP7zxM\n03BviMSM2MzW5nJc1czr7UspcXdqaUYWY8B2s8Xt7Q22mw2Gvsf9h/fYbjf4/PPP8emnn6BpWu4d\nYQ1WqxXCNOHD+w+IIeKTTz7BJ598gq7r8Itf/AJf/NkXOB0PuN7t2GlmGJjt0jqQ1Qr+dMT5fML7\n9+8LQ7rMwmmvis16LfK2hLbdYrVase2yb5Bywv64x9T3eNw/oh8HVLVH62pcXW3RT4PIhDKsBaJk\nfF68vEGYRnx4/w7T2Ot6yjpjlSp5dsDJWaU0qWSbvvzyS7z59a9xPB5xe3uL9XqNpmlAgfXyKZPI\nBQDto8PBMLPAKSZETHCOnXJgDB73e9RNi5vbWxDNfT3UdpybzwYJtpih9s5hd7Ut/YOatkHTss2o\ndx61r9CfzjidTtjv98hEuFmxxE+zN9rzCYDUmzXlma3Wa1xfX8M5h9PphK4/wyRC07Toh2AQ8bwA\nACAASURBVIEtpIntd4dhhNvw2EwhYRx4cbaGiYG6qtC2K27CKhKUIEHF6XQCwoBKMmRWxjiMaM/F\nHY+b1Ws1g+ZlTVngmAy4tG3mJpDMVmuwFiSLWRwWLY89bqa37JC+WKDs3GdFG/gtj8GZhWWfmqfN\nMi/NVTR4VHtXaCE1wDUrzsJJ/3HOJjwlLefMzIVcQkHkYpEtvXpk8kuFkbx04SoMqYCmUttSgnYF\nMpq10FiUg4iU2bq+2EMD7MJltDdNqRTBPOfOQS0lK3WIfC+tmjSAOEAmlv9RiqCo9SAMiCgScmni\nmUvjUxJQGcX5Tk1kiIitqYtTJ2CsGBdQxjSNGMZBrNc5IIzqiuksLJyYdXAhNmG23X5637m+Kc73\nxJRHwQ0ks4IdKu6CZvEZkuepjpXOWni26JCWBCOmccT5eMT9hw949/Ytbu7u8MJYmIqzO7BzRkKf\nr4JrysR1PCnNWR0BZySZKHYxlH9LE9aciWttElu7T9OAYeo5Yz1NIBCGXhrohpGl0d2JAyBKRaLI\n48kAhs+NXfu4LhXijmm9gVHLY8eSJV5HDZqqhncO0zDiJE2v4xSkPQQAK6NMs4kFnOtzUrMTvp99\n1wEA9vtDCdgZiEk2T+ToxTJCCJecWZ5MORUb8iz21dbOII6fK68Dup5qXQyEcLDyzjixcJ6mEakS\nAsbYouYgokLAAiyFJMlEeun1p81FWf0hUqqUCunrrcVE/DNOwLN5EcvtSRwFeQ7QdcUvMkZEEICb\n4FwlJKsrxj3PqXD0nVvmkud+hh9naea5uNC50LpEMbEuZNPyGJffnbe/CHwsz/vb/q0n/tz+l9e7\n/N5zxyIhQHT9WK4R33UNP4TtR7DzPbayEJt5QADzgF5mfIwxRcL29CXjnc0SsTJiCyC5HGAGKC5A\nEEcTAGjbBrc313hxdyOBI7Pkx9MR08QuVnNwtGiWJWCGffbnmgAQwcmEqoFQFiYxSu8dp9pqa5ET\ny5T4pDkwq6TwUVnjnLjwSNP4MbJeOyKAXC4dug2A1brFzfUOdV3jcNjjdD7iD/7gD/DTn36OqqrR\n9T2mkLDdXSHnXGy9r693ePXJJ1itVvjiiy/wxRdf4HQ8lvPuuzMOFTO1h/sH1BUXom+vtgWQMRiK\n6CWboHIS57jR4/v37xBiEKtosRi1gK89M4lxgpbcZgJe3d0BlsFLUktiELy3uL6+wna7xpuv3+B8\nPsBall0ZQwiB2cCmbrhbugFCTmLBGXE+n0Ue2SEE7nmk/WSMMRinEVOMGIYR4zSxbrqqEDObFDBb\nnKA5eusqBm91A+8561XVtUjL9jh3nM05Ho84HPYlWEfmwsimqXG13XD2q66x2axZflnGbcTpdMTp\ndMLxeELVNKg869E/3D9gfzjMvYCA0vdnHLnW7LPPfoLr6x1CCDifTzAWqF2Ltt1gGIPK+jEObMKx\nfrkBAEzjhL7jxdxVHFhVYoHatuxE6H2DY2RQMwwDakeomxrtasXyQ2Okk3hGqriAlcmCixdZQDwv\necZyYF56XGiBrmQT9P6lxE31CrBOWazH68UCfpk5XmZlhLifFy4BOx/NQ1iAsUXWtWSwQiwBtxfL\nWpCBcZLduSBoqGi+P1r4JEiaZzNaxASLQv/C8pTwAjBL6IgyvrLIu9R8oQTGaZ4fOQvB81Ymvh4G\nD2w4YgUgWec4sIQ4z5W80+JcCDAmc62DPC9HC1c3qTtIQZoUal1JzmL5HLi/TowwIldbgkpt4jrX\neM7PQccBUSwZ5hBGjMOInEzpdaaSN+89y7+yyh1pQZzxfS0gEHyqbBWdZH5HMSEorpmS1dFMHD9P\nMz9LAxhYua8ODhxgNzXXTcTArloPH96jbhpUQsy02w2qtkHdtmiaGtZ7Xv8gykKF5JJFowzJhGVQ\nStIENQOOnczY0IYlgTlEjD27p+UYMU0Dxmks8kAyBmM/cKCeAuI0IIwT19RRugDPnPHiZsFEgPMW\n1jMAsY7rY+DU9U4IEKsBuEUYJvTdCfvHB/TnDqAsLngLEsBYlkpaMfaAEaDg4a0HQd0i2VXydD6j\nopkQIZAmIgsZqiBXpe0K9tXYQoa2jIN53EcBGwa8nsUYSjNTu6htI8oYRzYKopXazQPjNGIcJybF\nPPc7SzkVsx3KqYxJI8dTh1A1K1KXNAXl3nHD0JTYTCaECGOskGe2WGsv5Z7Oeemzw+dWVTUqXxeS\nTufnMh/ahaRQx3eZCnjNJWs5o2k467N8l56CVRQQm8v09l0Zmacg54KcWsSVz33+ud/r+f9FErin\n+/xojXnyu2/73g9t+xHsfI9tmd5bZmqeInnV2pfAcPG7eUBLl+EFW2AW+1oOamZdmblLgd172rbB\n9e4Ktzc38JXH6XjC+w/v8bjfI4Qoad7ZHlhNCXie5peLpVI8FKIEwlpUXK5XAyfMgRl0YU4RwY0y\nmfOCUdkaznPI472DrW3p9zMMbGMdYwBlTStnpBSwXq1xc32NzWbNwQIIr169wO/8zm9js9ni4eER\np+MJvm5QV1XpC1TVFW5uWcL3+PiIX/7yl3h4uJcFgHtRDMMA5y1yynh4fICzFqtVi+12U1LsiTKO\n5xP6QcwarGFL7vUWzlkcDgdUUjuj985b1h1Ha0EpwotjjTMG6+0a796/w8PDvcgGDNIUsdntcHNz\nhRQDzt0JKQU0TVXqMFJk1td7i7riwD+KPDCEgOPxiHGcYK3B9fUOu+0NNptNub99z7UxrF2OqFct\n97UJE9t4Sn2J9R7WcRO33fU11pstnOXzDzHi8bDHu2/eIUoxJ9f0cJbKGGbblbVjmV+Dq/Uaq1XL\ngBdcbxSGHvvDA/puwBQiVpstVps1EhHevH2Lc9dx0CA1RBqkdF2Hrutwfb1D2zbozieEMGG9WmNd\nV6h8LXatXkB0wjRMeLl9DQAYxxHn8whvHVbSYK4S2Ye1BlfbLW5fvMK74y2PdWPQ1DXaVVt6H3Hw\nnDDFBBMjyx2EyXdwC6KCoOoFqzKoBdjRwBGg8u+cMyLmxWMKE4hcySo9ZdaWRItuTxk6A1zU8LDE\nBnMQbMyC0Zd7Nk2YRg7QbV0t2MnLOc7o4v/MuVwwfzJXkJ7Pcm1crL+aOeO5hRGrZi8oM2tfOrjr\nsYiKU5CFZhzEtMGr62CA9gOzbm7GCnGdY4e9dBH06XO0EngZcF0FxzEsZaMUi103kgR8AoAox1Jf\nkEJkeZtm3nhSR0pSnK2d6iH9McwsoVzaSmsdAkuxWMqYci71JOXe6b23lgveoWuG1C+VwcL/i5mN\nCZTJTdpINKsz2sygQ1sBECRzoHbcHs5YGErw3qJpGqSUMdCEMUQcHh8lMzvicDjg7vVL3L18hbsX\nL1CLNb5mZgx4TGYBO5RIZH8ovVzYljtybYWC4JRAia2+h+6Mw/7Att4xsKWxBtCODQymoZN9Tfx8\njBMVg8r6FBBmdrIkIBuex5zjzIMzfE6JuPjfVxW89HpBzjg8PuIf/7LC//knfxVt1eEP/+W/h6v1\nyD4k8pzYvcyW7K8BEwFOiIUxJhyPZ+wPXFsaYkAl7xBbgtOFm6L2n7JmOR/IfSoKAVnjZVzxWmMR\nQ8I4TCXPOU0jjPOAqEmcgp2cy9qt761zFtN0RooRTbNC5bk1QBL5rzEG3izmEMOKgigql6qqUDcs\nj7fGyDw0ylqyQgwJvdR5GsM1w14kbNqLSK+3Vjk2pPF03cAYixCZaNQ4iC3yCbBGJHu42HS+4ucl\nvZCUFBG78TLf0SLDQpnr/Wg+p+/angcsT+PDy7n1/8vtglg3v9k1/JC2H8HO99i+DXFfyDcWQcCy\nB8cl6JAJc4GmZY+FnZkHO8sonLPMwsYJ2+0WL+7ucHtzDRjgm/fvcTgccDqdkDKhquYidz0P3uYi\ntFITIrUCkYIw/bawmMYumWQxMiCaA5WcEWXhzilIDQHBe55Q67ouzcS0/sI7B2dNyfIgM7uy2+3w\n8uU/Ze/NYm3L1vuu3xhjdqvZ3emq9a1b5eAE22ASlDgxBkUgEYiISBBBjkB5sBASSJAHHvALeUPw\nhARKhMQLCoqERBLFUUKCRYICiQUkIXbsuLm+1/e6TnWn291qZzMaHr5vjLX2rlMXUySRLtQsHZ1T\ne6+999xzzTnG933/7hFd1/LixYrKOn7sd/8ojx8/5upmVUJF66ZlHCf6YaSuG07PzpktFuy2W54+\nfcrLly/J2UF+EtQmT4L6YUeMgd12g/eTZA0tF3SzGbvdrmwMxhoiEVdZzs/P2W42eO9pmwZXV+W6\nTCFgsJydnXEbA6uba5q2YblYsN3uePrxR/TDnsVyUUT+864lxcRHHz3l8tUrDIamrhmGXqhgTa1u\nbxXWGerGUVVitz0MkmFR15ocHSOnp6dYa7m9vWW73TKNA3EamXz2YzJMIdAPI1OItN2Mbj6jnc1x\ntqadzVienNC0Lbtdz7Pnz7m+vub58+fstjvqqi4UuWFoGUfJtHGVYzYTJ7pMt2uaRjdapY6lyHa7\nYbW6ZRgHrLUslgtOz84w1nF7e8s4TrimKfeD/I6juoRFpe317Lc7QvA0bU1bd4JcDZPkTSShPFjj\nOFmeyL0ZImGKtF3NYi6GDm3d4KeR/VYarIcPLwjVuT5v8seHAORcLIdxThqwnTQ5Bskyyrk4Ge05\nPu5znq0xagBNKTyyjiRTRcZhpGmErpdF/a9bcz43MSSVAhdUXMthMGEyZcjYO2cpQxnPNI6Mo4bj\nMsdVtlDGyppmLS4ZUvL6tQY4WMoeF93SrKQjglg50fJ/x3mJByzI5A8cv/RwDuaAZh1aqcO3Plhp\n56JSGnKHusT5u1P8oI1bOlrjjFVtjdFQZLVjijERvWgSYwji9KX6m9wAxSjUHVSLkY7WSmudNgfS\nOI0+6H0GycQ74b+5ySnNT/D4KaolsdBZjTUFjcm/b0bdc9MASlfSXlxMNGBKh9weMX8Q6lp+n025\nwubovTkUrdY4nHFK9xFHsLZtBQ3EEsOezV5o1Ne3t9yubnln9X2kGFl0HfO2lqYm0/e0yfIpkrxc\nz4zwhCBidV9eK+GTwfuyLwYvltE31zei9TFR1ueqVmptEn2V6liCBuh6k4jRk50IMaZkO8nAT4N/\nkT1Y6HSC9MYg65+se1Ks7/d7/sL/8kP86b/+R0lJ9se/+Hd+gv/oX/1PeefBh8DhHrMJTJKra8tz\nK43lOIzc3N6wWq3yzV/0a1MIBAOVcUorjRp8S1l30cweozbyde2KuVAOB3ca3D2ME7t+X8yBhmHA\nVmIJne3rQQJTbfSCrDS1npaFEKmspatrGh2aBqVcO2ep65ambgobIkRP3VRUY4WzWXcjtL1+GNju\ntsznc85Oz1ivN0xeKPSdGtZU6oCXkV6ra9psNiNqo9O2HU3TigZoGst9m5FUDBKOG/P7bAqqXFAd\nrMr6cntjIJrDMLqscYd1Nw9UjHFf2KiUc+Buw/M6FP+1bKD/m+O7vbysnXoO5pihoH9nbfXhaz7/\nDf9RNF//oI+vmp3/F8frb2JDzuHJ01DRuByanfw5+fpDHsTnmygN1lNdhNGFx5hE13WcnZywmAsC\ncnt7y4tXl8V5aNZ1ZfHKWqEDJU0WMnH9kgl2/lxK4vB20ANETDoseMe/sbVWaWk5xyIJXz1GwiQO\nRdnMYLUSzrEfhQK2WM6pqophkDwaQAXop3RtjR9HwjTw4OE57777LtfX1/hp4uLiAoxhmgKbzZaq\naTjRIr3ve54+/Yhf+7VfwxjDcj4nhECvjU7TVJwtT6it4+rylXC5UyoZQ5NOo9q2ZTaflQn9bCZu\nZDdX1zx+/IiT5YLTUxHgbzcNu9UGV9fMF0tub27YDyM2CTz/7JnoaZYnC05PTohJ8mWGYZDP3a4l\nZdyJoHOzWXF+cU7XzWXCN/SklFgsEqenZ5wsT9lut5ycHCh8k/4e2Ylmv9/L5DlFCTIkEUhMUyBE\n6GYzzi4ecH7xQDN7WtabLR999BEfffwJu92eBw8eSGPQzoghlU3JGKOFeoerRE/UzSSfKQSdINa1\nBJ6OI5WT19ze3nJ1dYUfPaenZzx8+IjZbMarq2uur6+xtsKFqE5sXp8RR99vePLkCdZarq+FFjJN\nEwbYbfesNys22y3T5ElEqhB54/ETlktBudqmZbl0LOdLzk7P9TwDq/WWV69e4RQd/OzTTwHJqmpO\n2+LKZyopHHfDgPNGHaFk6FA7K41kEse+ylXS8Md4x0wgPyuZopG1FjHEslZkqsgwDoWKOGpWy30k\nJw8cZFM2d57KspGme2iKMUqZufcQ6/cLGU3wmobuainwjNVCwGBthbW+rF2Hc8pFmtJpCgqsjRpf\nfBz2WcWBDEfFA1iTsEYdBVU4yxHaRZRCT4hZqTQLJiUqI4HF0hyoo9kU7qDaSZEkAjKRtar14shA\noKAw8v2M2igDQl3TdS3qhN2k9Dmqo0Xpj8aIk5feJxmBCsHTax5LeY9zoKeiLzGGwzqbEgarDZIU\n7sZoPgiZVSBuajFFNUyIEqpJYooTMRxcBPNehDWlUEtavJkQyeV4/v7GqIYi22Mj64KZKb1Nr+Nq\ns6Xfbvn0o6eMYy9J9uPE/o3HLOcLXEHRpEAetakZegny9OPINIgOSEIvR8ZpEqOBaZR71agZRojc\nXt9ggMWso2lrrHPCAmg7xiBomzXSBBkS4zgQ43QYKjhpbjC2DAiSmo4Ya4km350G60Q3Yo2FKNlr\nz57t+e//xk+URgdg05/yZ/63f4M/9vv+M3B638VEsvn5sOUappiYgrhaPn/+nMvbS3mNtViXC9Ak\neTzG6f2TCjvkeG1o6lo1tL40wWVYqYOMSdeYHIURY2QKgcpYqsreWZti8Dgjrmy0dV48sNpMSTNz\n0BVnBLubzWi6Flc7aRCSaHYyOmtUv5MwjH1PGCfmj+Z0Xcd2vSUFzetTK3xrHbV1VFaGTNYIgjlv\nWwaN3mjaVtkJgX4/ChXcQqbZG5Mb2IOpilGamtOgWwMEK+uCS0KrjBgZcug7J/S2wzOgb9Zr1+xy\nFBHfP2DkJNl7HzCUoLR7Hz9eYxUUPHwNX3De3+Vj3wvHV83OlzjuczaPaR6gTcARPeP+TV8+Zgyu\ncvox9I47dPZEcQLJBUwKnjFG2rbl4vycrm1VB7GWvIVwSPzN08FceFVVVTY1YwxNIxqNrusIIbLb\n7RgGDV10VgS3R+csjc9R4WasuAqZbJeq6e5JTAiqqlZUwpGQAt9PHmct0zRxc32DVRTgdHnCNE2c\nn5+xWCy4vb1l6HsWiwXvvfce3/rWt9hsNnzw/f8Yb7/zLiFEnj1/ya9/5ztsdjv2+wGM4eWrV3z8\n0cekEFgsl0yTTKtBio9pnFitbrm+vmK32+Gco9OmcLvdcnVzzTRNLBZzmrbBWT333Y5XL55zefmK\nx48einW1GhzsdzseP37MG2+8yc3lK169umSaJk60Cc1Ut/lsjrUVfhpp2xkGix9FwDyNnsEP+DDh\nKr1vCGBssdXc7/fc3Nyw2WyZzxacn58XtKpRtOfYoljsNGWzFspNwrma5bJjtlhydnFB07W8eHXF\n04+ecn19Sz8MqucRV7b5fK4ol2iy5P8N+/1WGrYx0DQ1XSsBtHVdcXZ2xvn5ObfXV2zGnugcznZK\nJ+uxxvDw4SPeeef7qJua58+e8/LFJW++/RZ13ZDSFmMNi25J13VcX1/z/vvvU9c1u+2OQZHBtmll\nWtmIGUeIQcMMPV97912iz5SMET84RtuzVv1WVbfs+p7Vek3XzZiUvgXgw0Tf74vbVd/3oM93UJG0\nc7a42U27Hd6PLOYLOqVYGCSf5Q66ay11Vd0ZPBQjEKrSmXjvmbetJNFrIZLvgbz25IJFnkNzZ5Qn\nNA2DNdqi5MYgrz33MeQy5hRq2DSpFiSvRLkwK+uTPP8+qu2x0QwtIyhAvLNz6qZqDOZA/ih7rzEW\n44yGPGakKOM1uXFCg1yF+mWSKeYRRDU1yOtjFOdGsZmVoh2d+sd8HUqhJ82HSbr+mtyQam5PbjbU\nujfmgsvKZNlgCNMklrjTAXFwRuyFc5OS6YQ+TExpJKR4CHdWXU+MEjLaD/1R8ytFpjvSFdic03LY\nJooGKDfQBAjpEFJ6vH57fzBdCUrbEnBO27iMRIqPuLy/USk8SZrEaERfQ7KQgjQGJCwyZKtchZsJ\nrbXtOtrZnPV2w/XtLZcvXjL1I1fPX3BxccHF+SlnJ6fMuo7aVSRjGKNn6Ht2my3Ddku/EzfR/W4n\ndKZxJEavNN1Bim1jCuVtdX0jWspKUDSMpWpqZsuloDyt6AkF5YCqNqScI2OFuihI30GLk6zeG+4w\ntBR6lwyAKlcx7PdcXV3yjQ/fZfAz7h/ffPYDsmcaU/ZzrME4h60q+dtK2ut+13N5fc2zZ8+56q/L\n+5V04Jj3zRqh4CWEiSEuYrHUH7K3TwyDNpKTl+c/BUGASAxDj588bS3si1KrGKG+usrgNCtsmiZc\nFbC2KuWzn0YqbaysMaSYkVM1MMBQVTIQHccRP01iMLPbSZaLMk+8D9JM6gAgjoHbm1uur6+Ffq7I\nocQYOOqmom7k/RBNVrrLYrGCkGVUqNzbR+teRs5zuLOs24ZoZOCr5EpMuEdtM4YYDkYPouW5i4Yc\noOnjdRaK0OoLRkDH6M53+9j9IxUY/DW0Yu7+/wE8v48cHVqgO9TYe3vPV83O/4+OSvUaxygOvB7p\nOYhQDzdcKXhiFJtT+Yx+HrJYXkIAbXF9ysLqhxcXzJWydXt7y36/k+mCdXce6HwOxzdpLr7bthXX\nriQL3jD0ZYqckimZEgkVKR5NcfPUeNQ8nRijFHNNg3OtNjvZ9SgU2k70oTRdOdshUylSSmUyZI2h\nO5PG5+bmhqurK9566y0WiwX9MLBeb7i8uqTve7HDbmo22x3X11dsNhuWyyXZUIGUcE5ogdM4sgoi\nxHbWUqmVdNaiDEPPOI00TS0Nn5XJfsJydXVFXVcsFgu2mzWXr15yfnbO+dkZJyen3Fzf8Mknn7FZ\nb0TAimG3lQBXgdRnpGQYBjGMaNsZeYqS1Kq2rmpOl0vh48dE3Tjm8xnGWHbbHfvtViadarVtraWt\na05OT6nrmtuV2JMmRAthnJPio24w1jKMI1MIjOs1V7e3TD6w3m5ZrTeMw0B2GzJG0K7sCEQyOuGU\nhd7VtSRyO8mFEb1Oy/nZCcvlUt/7g7W58LcHINA2C95//wPe/+B9nr94yb4fBBlqO6U+JJwTamWe\nPH7wwQcArG5uMEbMHoa+x3jVvOg0f5wmnJNm6lMvE9HNZsNsnNPUgZsbsfaum44p2xYndS3Sgke0\nWFEMJUKUENfiyCYFaFVL0CwmQpC24FgzYXX+fWwGkqkax+uBMYa6qVUULGLeVnnnYRiUFnVYX+R5\niofJctbRaIOTnysplCVEsKATEc2PEYTCHX2/EIRO5cMhK0jWJ6EWGeXYJ5BgzujLekVSqg9WrkfK\n+I4sZqnQ5soOq6udNkXarEhPdDwUQkTp6saV0kHLaI3Y/hpCQSwyOiKOa/l7iV6sUDWUMhS1cM/T\ncmMMXhGaZIwELSrSlc0RisOkdThq0fUgbnIGRJdIVWzI8zmL3mYs99oU/CFjSe+HcRqLYcGBQnvI\nUMrvUaEkmkxzPjhqWZt/t0gKHAp4c2h2CoqDBEWa8rwf9orjaXUeYh2QB0reTEL2rogEbWY92OFe\nlQJ4OZ8JZUnzwbbrFfvdhuurS5azGW1VyVrsHNHAmELRPBEElTgW2RttwmSAJ1Toylr8OEoja6Rw\n9oPcGzFBshZ3fU3U5nq+WHB2dsr5+Rln50uaVtgHQQcQAQkWNQlxjqtrcFY8NKwp4vmUEn6aGPZ7\nNus1q5sbllXEmkA8QnYA3jz7TOoBpSBaV5GSuHISJmkKGsswTVzf3vLZ8+d8+vw5o5PwTusOAxGr\nLnBGQx/rulafhaBrv5h95CgH0ccI9QsjrmogOqBpmqicK+yF/dBzbHRQVVVBlELwuNbRNg2T/nrT\nOIL3nJws1FQFgjYCbd0wX8yEwl5Xd2qfjJy3jTBLQJDsTHePKXFzcyONjiJSIPtNXcvAQbSXojFq\nmpoYAleXV2y2G1mvjKcffAlEvl+DpZSKYZL2nhKUmzJxM2EiHCl2DhQ2c5d+Jn8nMk0x3TWX1EFT\nfp6OGt6jpuc+je2LND3HP/N1Tclvthn5bqjNcd34/5Xjq2bnSxwxBnUBQd2xUuFSp5SbA0phJhSD\nw8chUxLE9UWEyFYgZ928KueUPGJ06iiTmuVCdAfTNLHb7RjH6bBh2WPqzPEDdcjREMj5UHhN03Rw\nRrG2NBt3JqtJaAuHDA4tukzeeC2uqspil6kj+QHP1KdQBS3stFjSzXxUWpJoVBpmnZgPTNPEJ598\nwrvvvsvbb79NjJEXL16wWq24vV2VCdbQD6xWt+x3e1mga3eHx56dVoKfCJNw7I8pfFkQnF83TZOG\nTbY412CQonsxn5FCYLvZsF6t6NqW7sljok+8evWKq1dX+CkwaxtIhv1+YLvdMZt1cq17L01CpiPq\nf13dUc9q6qYiOc9kJxbzObOZGCd4r0VfEn7xNI5M48R8vmB2KpPRYZokTK2Xa7BYLmnbDq/oREzQ\nj6NqdgLDOIneZZoEucj3YKIgGtY6vZ8r7GRhL+/Xft8DicpVzGYz1fKIQcFiPme/27Db76RZtpbd\nbstmvaapK05OT7h48ADnKm7VZKGqG7AWP0oYaJ6eeu9ZLpe89dZbkpsQJFjVe8+23zLu5LkaxoFd\nv8eHieXJOaenp3y2k2Yn+EBdy70ptBu10Uam5pOfuF3dst0KldKr252lKvd5du3Keq3l8oSTkwUp\nePw0sNtuGadRQ1+FLkI6bI5QzI3K85mfCZkSV6Qoltvz5YKw00L73saTjwP9VbZPq1tx4ZErNSMP\nW5KiNsEEjHE6uD9sZjHb02ZrWzItLegkWNCVYFOhYh2mmKZ0N6nQJrIA+Ej7kVlStI47YgAAIABJ\nREFUUpIXZKvMEs3hSdXfMq9AMr23kucSQyp0QFmfYmlGsjtl0UrpMyMD9cNAKkUR40uqvDTV5ii8\nNWnTGJX2ZfT9E83OxBCE6hcnFchH0VwlawlRLKmncZRiUnVQeS2agi8uVSFFhnGg7/di1sKB8oyh\nnEOm5sUUD9dQ6SkpRQ2GlrX+QH2TrBQhCMjvG+Kh2REL51I/y752VGhFDUPNzoJWJ+UZfTPIPZGI\nRJsgaS6UXq9cqNVNRdVIRps4MQrttt9tmHY7wjgK5TklojNEByZmDduCMTzkwfwllYZpV3UNJtG2\nNW1bU1VS+E6DBD2DuOT5fmAaR7zqsoQG6EXGtN9TNzXzxUx+Z6valhLEm/T9SbgkzX5Gaq3TbLsk\nKOKw3zPse3a7HdM4ctK+4Pf8lr/Cz37zXynX1ZrAH/jtf1YofM4SMLgqFZZRAoxzJGtZrde8uHzF\n81cvuV7d0pweoU75zUqyrlkO9C5iNiqAlIS+NgyxRCWAK691lSv1hzGGpm2ZzecYZV3kAcnrWCtV\n5WiamuTUPVJRoso5ag03tRioZAC6XC5ZLha0TVuGN845NbMIB42ZWn5XlTSS0zix1ciOPOAwJKWj\nCbKWzWYwSfPJfGGQpCQmCdM0ysAqIx4yEZDwUGM0RiCWB0EYZorooDICVNeTm82k+EyBQY7WQV2z\njsDXMng5Wui0YbrbUNxvLI7//4uanv8nx3drnO43OV90Ht/Lx1fNzpc4/DTStQ22rhiHgRBEtHdI\n6dUbOkb6/Y4pU6n0IRXhf7YYTViFgINSD2TSpYhOFHvRruuYz+cslktSSqxWItZPKeGqWjexuwtT\nvnFzPgsIqpMnJYJmDOJBbzhqdBSylVCAcp5SpJDHheQMGGstTV0z61qZrgadJKsYNpstZGpERh7y\nx2OMLBcLum7GYiF0IO8nNpstwQc++OAD6rrm6UefcH1zK5uXTsj3ux23qw1XtzdMfiouWt57nFVB\neIwEL5sWWsw3TVOmS4Nm/GQahhQ3aitd16QU6dqGpq7YbFb0u51Mwzpx95rGkV51MkJzqSFFQohs\n1ltmsxnjOOGDLws3iP4jhkhTN5yfnuEax/X6lTijnZ5poxMZx75Q4oZhKBPZxWJZNo3rm2vWmzUp\nBmaLJRcPLui6Bbe3K66ubwgxsd317Pte3kNrSnhjplRCvleiNsJ6vlYa26h2ovv9DldVtF3H6ekp\n5+fnzJqGtmmYtR3PPv2U9WpDVUlRenu7Yr3eCP3y4gHWOZ6/eMHTD5+y3e7AWsZhZJimgkylJBS0\nt99+W/VJQpkLXkSuiYhXMfgwDvTDQF1XPHzwAOtsoaVVVcXJ/JTlfIH3UhC4Spod6xyTD2w2G7Yb\ncT0ax4HUScOV0+V9CNoQVpyen/PWW29JdtJ2w267VgehnmEaaeqaVi11LRQnowN1yxyKDn0O88QX\nYLGYc7WaGMahIKb568pzffTclOHgfQoFdzepdPTHmLvFU550hkwLS6LvsVH0OlhBCa1qOQovXzU0\nMSXIdqu68Uu4qpLm8mkUGoWV5uEohb0UBOWUD+hXMpp7YS1WjReCOpRlZOd+Y5iDVfVJUxFybgbV\nyjglkpVA3Pyx7F5Ffk5LnaIIlxc3tpQiYQqq4TJl3Q9egn+naSw5PBkdSknoasMwluZj8upKmVKh\n2iQSOXk+57/k/JxMec4NxYEVkBubcOe6xpSRu4kQfWkyY5D1PF+z/Myhwy1pmAzO5t8vswbMnfeZ\nlGluauaQgmYryacFTTDM6lquoRG3yOiFAhjzNZgmgoXopJn7uc/+PX7u2U8yhiXn3Sf8gR/8z/nB\nd/6u3uZJHOdMhdMpfx6yYVRD1Y9iaBCTNDxavkYjMQHz+RzXNBJsre9vRq5z45gHjZLvotfBCOth\nGieh2Cm11nthOVgS/9rv+JN8/+Nv8vc++t109ZZ/9gf+R37gzW8RgsXGOsufpNi1FltV1F2DT4mr\n1S2fvnjOi8tLdsNAU4Ii7z6v3k9Yc7BejtrAoo1tTI7gPcMwIiiw0Uajoqos4yhoj6sMdS2GO8M4\nMmgjnnNwcnxAXlXqytE2NcFpSCeGtq7FCtrqc2akaXCVYz6bs5iLMc/+yHAjF9jTNBXUWAZrlhgS\nw7DXTKQRNKenrisERxYEvmlqPT+o64pBhwYZJY4pavZTtr7WX8IKXa3czxzovQdVlCI8RkOEZVot\nezaoS2Q8vLYsb3lAHDOGo+cD9zU6ubG+j+Ics3DK8/kFKM/9IdjrmpX7x+uoaK/7mt/s675Xjq+a\nnS9xpCiThLZtNcSwL44gZXNPwhUfk3DeRYgpgn5jxNlECsmKQ3uEPlhK/1LB96zrWJ4saZuWFAK3\nOiHLXFSs1SFmUr65nEL2rc8b5LFpwrHrT8oTE3NwWnPOYpylMjJNldfrw1SmWxlWFk1HXVd4PzFO\no05Xgjo4HZLevU4oq6qirpxOBxOPHj3i9PSUs7NzMVxYrZl85Pu+9h5nZ+c8ffoh3/nOd+hV4G6M\nYbfbsdlsuL5dsR8GnMLxGa2xZXIiTcWk7mCYJKhM10lA5iCan7oRikLXtpwsl8xnM6w1hACnyyVd\n23Jzc03wnq5rmWtoppkCzggyZZM0q0HRqxg8mahoMDh1MQLRZ/T7ATdTcakWj62eG8nQ73esblds\nNtuC5lmrAaD6Pfb7Pbe31xiTBDm5uOD09IwYHT5Etrs9IURtuMScosoBeTqxjbnIOULEjl2tZBJ4\nEKHXTc3J6QlvvPEGDy7OISbOz07wQbjW0zhSVx3TOLJerQnes1ye8eDBBdM08fGnn/Ibv/Eb7Ps9\nTavvw5SRL8lCmaaJd955h5QSm82G1e0t+92O7W7DOA3EpLSgICGJ8/mMiwcXbHY7Vps1PIa2a7k4\nu6BrWtZr0RoZry6IRrRrgpZN+nAnnX5WhOTF7Qq5L87Oznjv6+/z3ntfo60rnj/7TPnogfXqVqxx\nQ5BnPQ8dcq+jg4yMOhQb2Oy6pQVq13X0gySAo5Q++fpjq+c8b0hHG20sP85ksOVos7RaiFiT+eXS\n0GQbabFOPmTJGIzSVyymqiWHqzhEyjNUCoV4SBkva6CxZTqajgJD87qExpQm85pNNWUzgjzxJMtI\npMmIgUK1VZOHhPDsU9JT08YmXy8ZeChNN39dSkQrz2dSylQ4Qoec6gGCBgxnfY4gPpLd4Uw2c8mN\nzsQ4jNK0p4QzOTtJLaS9hFyGdKAzNk0jfYNeAq+p93nAUaiI5T2P3C2GKIGnUV3WrOY8eT9JoxMO\naFr+fgVNO6pfMnUxRcpQJVOAslOYNAIHCpyxqbiJxZQOWipMEc4bK5TNWZpRVY4wjYTJ01QVfmiE\nDhYmhuT51st/if/jk/+gnNNN/w7/3c//J/yH53+Y88WKSMSWnBspUI2aBXSxJYYK2iZHHzGlJCWy\n0r+sc1RtTds2JGfValuNgsozKxbkyQgtzGlWU/ABP0188+lDfvbv//OkMPBPvvMzPD79hFr1qRb4\nXR/8NX70g792NMxwEiyKoKMld0b/HY1htdvy7NVLPn72jBfX1+ynkQuXjSFiQSdlgBmIuo7k+0Ao\n72j4cbalFucz4ywhRB2yHAxGsqYu7yPDMBTHUBBr6dLsWG0y6pqd8eXem3UdlbWKOE2MOkCta3mt\nuHMK2+NgkGTwwUvTrc10VUkg9Rh8CYMV9Mcqkie5eFn/KAYKlGZitV6x3+9LplAI4toXY6SqXJkH\npaMBBYBLiVAa9FQGJAZ5rsQSXDGelJkrx2iMDlK4KxdIJNFlkdfNu82MrI3pzvd6HRUtf/yLmpl/\nGHSz1zU6xz/ve/H4qtn5EkemwrRty8mJWtymVCa1x0Vjpo4VeoIe+XNdJ6n1GYKunIUUGQexS+xm\nLScncxbzGd57rq9vuV2v5UbUJidMXkNAjYr8Enn8d/xw5HRmQKd9nkTAWRESkhB3oSQPqdVzDJpH\nYZSulmlw1lrx1UcamUEdc6ZpEjcTgyQ4jx4SRTSZuee5WGvblkdPnvDm22+xmC948fw5m82Guq75\ngd/229js9vzat77Ny1eXtN2soFGvrq6Lo1rTNOWcsgMdQNvWGCrNY/BYpy50s043L1/g9DB50TM1\nLYv5XKh0fsKkyNnpBWdnZ1gS++0GaxDRZN0QwgAxUamLi+RtjBCDoD+uYta2TEFsPWNK+GEU2tlm\nQ20d+91OJq8kukb0PMMgoXK3t4LiSThaoG0r5TnDarVi3+8JIfDgwQPOzs7oug7vxXFstd6IC5ty\npdumlc21bJBOsiW00CsuX0f36nEmzDFP+eLigjfeeMJ8NqPf7VkuFnz89ENW6zUn8zld07Ferdjv\nd2py0LJcnnC7WvPhh0+5vLyibjuMNhtCN7Cah2BxtubNN9/k8vKSTz75lBfPP2McxLGqrrRYAYbR\n4OqK2XxOO+tYrW9YrwWpWcwXPLh4gDWWzUaa46pui71s23WKjunmrpspinZELRBmiwWPnjzha1//\nOl//+ntKExlomoqmlsJ9s1kXyk9uZuxRgZLpF87VZQgxjmPJo8hHvr8dlmQP60lGhMqs9zWbXJ5W\nosOP/P5VdSXZFEaKOGNtkcpaTMn7yIL3egqkyupgw2HVOCMqKkjKWT2mNCJwhBzltqds6kfnp4iJ\nSY6s+bsz5YyCaJAO3xdFG7z3dz9uMhIRqaw7st+Vwj+FJLrIJPRPq4nvMQo1KRqlE4dA8l6S2zPC\n4gN+Ghn2sqal4Asib43BT6PooBTRGYZRTT4mooqvrTZSxd45xZJnYoyRPC7nSER1GhvvNDp394xY\nmtGM9uQGGrI2S4KCs5PaOAmiTC7oUV0PKHUoKcXSlDfJIkW+q6ryLOaLXZBJWxXjjGTVaS5mhDCV\n99PEIN1IAExSUTn4ypLqQFvXxK6TRjF6huT59W/9Qe4fPnb8wic/xu98789jKhkagkzfbTIyrKss\nVVuTgtWpvFTCPiVicpimEq1XpltZGVREtNHU6yPGMJLNY52T8GkjA6xpHPjrP/c7+VP/879Ddlz7\n67/8h/m3fs8f5wff/lvYBCkJ/dMeDSaMSVhnyj5Y3MCMODr2uy0ff/aCp59+yqcvX3CzWTPFUPSC\nPsSDPsuoSUS+96MXnaxz4GxZrw2UOqVpatnTtfmMUvHLM6+NTnZmy0L/TEXneB2pHMZIHp/eNczn\nHZVa5U+TuOmlKM9jU9XUVaW0MbkOSZ/jYRxlEKwB0i673+nnx3Eo1GGpuXQlMXINUPqqrS2JyGa9\nYhh7GbEYJ/bgUaiNhupOw3DcWBhjsIqMpfL/R0OAhOrBjiYSZbXLfycOuNBRs5IXxOOPHX2V4fXN\nw/G5fbdG5osQme/2utc1S1/2a7+Xjq+anS95DBp8lZuYvhfO/aGxOOTSZDvoXEzkwnM+n9MuFkTv\nxSDgaMpqrAaGnpww66TR2Wy2bDYbnZpIWKjX6btR33lrHBjJxM4lwaFLN6VIzuJbyBPTw4JmjZiW\n5iLZqvlA23bUdQMchM0xRBUGHyMalL3TWKcFoXDjSfK1os+pSTHRtQ0PHzzk8aMnXF5eslqtaZqW\nJ0+eMJvN+PVf/zYffvi06I3GcWSzkSl90qmd0QIzU9iMMXRdx6xrcNYwjgPDvgeTmHczurZjHMc7\ncH1KIvaczTrapiGGILku04h5+IjTkwVxuuDVixeyOYwjhsR+u+b68iX73Z6mrmjrSrj9/Z7lYk7X\ntSwXC/pRsmNyczgqGpWpe9udx1UVi8UJBglY6/e9/Ol7nGpkZrMZZ2dnNE0jwubgWSwWzGYzjDHq\n2rZnt/P0amW82W0xUTjXISWF/D3CtD/kPh3uXdlkrRas+b5NKdB1HY8ePeK9r73HxcVFmZhvNhu+\n/e1vY42Rpqtt2G7WJMRW/OzsjG4+58XLS66urkDfo6qqSVoEtEp7yYOApml4+vQpz58/4+b6mhQD\n8/mMxXJO8IZ+3DNNQhM1Fvp+z3azEmQEWC4XnJwsmUZf7vFuPsOHRBhGYkps9zt2+05+XyO0ppwA\nPgWPcRVV0/Dw8WMePHhI27Zs12t6dUC0VUXTtdRDL1fzaMBw/LdTx6WmEdej7MTlvafR5yrb6xpt\nSvLze9xoysT87gaUp4f3s32AglRZZ9VJ68i6Wr8mI7SZWjKMIzbVOCzWFaj4ALNw1yDhzpERg/zv\nmGeYMnW2+SV5t7/3pRmYyd+7uM6BNGkhmzRELRghU9Xy16Qk4vHgvdrVCi3YJ1+KfLmukCJl6JFS\nwqTc9I2iyRgGeZGiRSSYYlTTjUOI6TDmaXTWOjjJu1KdQl3XtFVLSoEhNzXDVM43B+nKfZEtoJwW\nqEIRS0Z1MuJCIFdBKcqi68n/Riliihrao8myIm4mARIHVIpyaWhyOn1dkEW0qcvvh6s0ENPZcv2l\n0o8qUDsaaMUohbYyAox2pEHRouQiVR2piFQmUlevL6iETiuWz5h7978iEKbI5fRj1kk2FOAUoVTO\nm+5PlmgtlVWzCmswVhzSbFUBFmJknAamcWCznfizP/tHOLaWDqnmL//Cv8sPPPmbitokYjS6J+v1\nNga15jtCfeUcPfDNp4Ff+saGTz/9DV5dX7GfBlI66ETyfqu3vdCpMh0sSLPvtBnJ5i5eLae7tqPt\nJPvMVk5NM0TvKMiQhFgf63iNyfmAh1FFrVEDIXiGYa/viWHezklRHDz9OEGIBdGxWhMENQaSQWTU\nP8K0qCpZX3GWyXv248DgJyY/EXwQpzdnCvLTtjVNWxUNtLOOpOipgClKX1eNm7Hmc+vM8XG3wJdF\nKd/BQok9eFiW18ZU1ih9M+98z/xMJ22UvqihOG5mjveKYzOS+5//zRz3f8b94z5C9EVNzv197Ite\n+71wfNXsfIkjJbFSzkUCoFCpXM5jKHIYBtbrdXnw8+fatuXs7IyQEmMeGijVAgNdNyvUqUntGtfr\nDREUHRE9AWgRpa4ixzQk2cvk35UaCOSpiehHZIE0HChLco4ZOoW2baibVpETWRjzBKg4pagnfXQy\nNa1sdmZT4acDjBHtQ0o0XcvpyanoXaapLIybzYaXL8Wh6/z8gocPH/Pssxf86q/8GqvVhvOz01KM\niYORLp4J2ZwUtamcIyqKVbmquLe0tUyZFgvJd7i+vsEZS1PVVNYyei/TYaTo3G7WrFa3VFbcz5rK\nsllv6Pd71QlEFd/fMg491kSciZA048Yauq5WVyxJ6XYGgd+V9jifdyzmndIyYLFYslwsxZ5zs2O9\nWrPbbvFToFmKRqaua5bLpWp6vORskIoAeLfbsd2NxFjRtg3tomOzkzBOo9ztoC5rkxc0qzqySi8h\niilSuapUpnmwNZvNePToIWfnZ9R1UyyXP/zOt7m5ueWNJ09weVMdJ0yydF3Hw4cPAclc6vtBE681\nqwaU0igFSFXXnJydah7RM/b7vVIfG05OxJZ6sxsYJmlITk9PODmV119dXTEa4Z4LyuVZr1dsNisw\n4gQ0BUnCnrLtei92sUttyoYx0Ktz3jh6Noqw7ftBsmeMYbPbcnP5CqfoS9O2GB9KA328UR02L5Bt\n1JUJvbViJQuC1A1DKEjQsdPjYWhhSwFvyAjC0ZSyJJ4fU99UdpvEoerY1S3T6qq6Ksion8SxEGsx\nIYgLmc33SG5lZMpr7P1NmQMNRD8Qokcyu7TJ0Imx40BHMhnxMRarQX6VtfgQ705BjVBURPgv96bY\nAFdlgBG8aAeLEYMWQ7WiW3kaE0vx5Qn5vUqJsZ9Yr1fsdltSDOL6Vcs6IW59U6H8+hCYJl9+rhha\nGEBoa1YdvKwz2MpIoTxRzjWmbCUuUQTWmvIe5XsnxkgqpoBGjO+KNkc0bJnelifNsoZrjshRc5zL\nuZRyQaiNohG3rpxMX5rMI9ojHCiaRQNlSvsq92QFIIGVGXnwKYhttRVaXJW/wiUJD00SRE0M/K7f\n8lf5lc9+nOOjrbb8U+/9LO2szTeCnKu6pGESgcNAw9UVdduJk5pxRGtxVQvOajOdm11hNlSVxkVo\n12dtJehACAz7PdMoWT/PLi/Y9OfcP15uvsY0tbhG9J8hSCFuld6VFEnJiBJW6HS7ccZ/8d/+IX7+\nG/84YGmrn+O0+aM4++3D74asiaW4jlFcxLTnc84SvDTHwkxoSNEzjhN1JXuwBKvKQG+32xWaWb6/\npJbImlBTAkglM0lOonKijxmnkSnK+lrr3jEpyjKNIyTJAexa2fumSbTBwyAIqbFiB96kSF01dLNZ\ncfgUw478OjG4aNrs+FmVgHIZ9oqRQPCToEBaX6SU8FG1Oqh73XHBn/KAN5AvcLmlkqxc0VA+fnwY\ngzSb5jBckW+ZV7tUwB9jTHnLXtewlNHVvcb9GHV63eePj8+jv3dpca87XocW3aetve5n/sOgy/2j\nPL5qdr7EkRGa/X5fpivZNvm4Iwe5idbrNYvFgpRSERRmVGhUhCBoTgNGXnOqmpEQArvdjvV6LWhS\nNxfKVfQykdOH7LAO3p0IiBA1a2sOxYAkcHPngZWCNmGtw2mmQFXXVJUUYgItT0d8XoGeA6Fw/8uC\n20qDFKJn18viaq3l0aPHnJ2d4ayl1+vXzWaM00h/NTAME03T0nUzhnHkW7/+bZ5+/BG1JjAH7+mH\nkd12W9A0dLKz3++L+cA4DHI9wkSnQsambZh3M+bzGVMvjmuL+bxseqDIRwiMm4HNes00jNSzGdvN\nGqcNxeQn5rMZlXPsNhu22zXOJTFHcE4oMZWlaypykzCOvQaEBlJyRKTx6JRWJrkRex600hBstzvW\n6w071du0bctyuVTns/YIVTT4AON+z3a7Jajbk/eJqmroOjFhGEexITXW6qTRalEcjt7+3OhIQZVC\nAidOO5kjb61lNhOt0jgMeD8xPzkhTp6PPvqIafLUdSUb137Pft9TVRWz2YLF4oT1ZsPt7S2TF22O\nWCWL+D+Lsqta3peHDx+yVXt1SMxmMxbzjvlcGpPc9LrKcXp2yvJkwdDvGKeRdin3rLGW65trXj5/\nyfX1NVinovBEVdfUnWO/2xdkZLlcslgsCGmP0VyMyXv8bsd6s2XfD1jrWC5PmM8XPP/0E6axxyIC\ndhMTUzxYCCfS0eW9S0nLf4sroCzFm82GcXSq4zCf+1opOjmYRx9P3zIdzVpMzCLz9Lmvz1VTbjqO\nN7AQpJCvvMc2jUx9QwTjy8/KrpOUn2r0Pj/eII8/I5a/JlpFRg5C+2xxf7y2HhcJh3PPhX8oaMGx\nY1RGurwaF4BkbUgOEUSyFfOB8pVRlDw0SUhx6sfA+nbD7e0N49hTuwrnLE2jlugkpc9KeOLoDxPr\nTIUJ2ly5yik6Ihbno9pQ972gtdm0JKYkuWTJlnsmswLyfpMbvRziHLRhlV8plY/na5VMKrbBog04\nUOhSOs7MyA1NLBbzqG15JufkcElrDyVDGYxkswtjMFS4ikKLjEkyhpKiBVadCk2+/0JA/SDAGFxl\n+Se+9rf5g7/jT/LXfvmPsO4f8M75t/hDv/1P8OB0Atfq76aaVCcIkyXx0eX38ze/8S/TTwv+6Q/+\nNj/2Q3+XqmkF0akbqrojAVNGz9SunCgC9nQ0jY+I/f8wjeKopxkxJ80L5s2K3XjK8fFg8QldM9wx\n7zjoonSfVrTEqXOfsYb/5qf/RX7+Gz9Uvs/gfzvX8U/z6OTH1dpb93N3t6CtqoqA7Fs2UdabqpLh\n1DAM+ODp2qacS1U5RmUXHFPafQgatpvzbgx1OlAl8+8k7pxJHGYbteqvJaTZT+KkmZLof7uuKbrX\nXm30M+OiqWuMq7RukjymBOIOOsgfr+HGVeV0AKC5Uy4bIei1AFLw7PsekwdyMTL5RPCHodHx+pI4\nMojiaF015g7LpbxzalKAFcMWc9RgmJiHN3eBnsNaeNgB7jYqx3rLQyN0v+k4/n73B2i/meM+OvNF\nzdAXoU35c8cf+15teL5qdr7EkW/0XPQ3mteSp31ZA5LRlGzvnD+WtSVZEDgMgzyYSFMya8Vi2jnH\narXSAmj83M+t1LJR+LCWyh7cnYC7G6I5dmbL6et3O3qnjidN29J04vIVEc2Onzx9PxTr5Cw6lJ8j\nTU5dN1S1pa3qsqFPYRKbVyvT/cVC/Pj7vme332ORSTvG4sNY9FAxRm5ubnnx8iXeB2mQqopxmoTq\nk4XCxhRIP065iIpiO+o9Q2/o64rZrGU26yAmpmlg2AvlZD6fM5vNNLRwYjabUVXy3jRNS+Uc81lH\ndmdz1tK1+ntUFUPfs99tSDHQ1GKFGSYgSgL1drfl/PxUuPpRCxbNcajriuVSnGp2m62InxVpWK83\n7PcDMSa6TmhrZ+dnWOc4OzsDsrZjxPuJnep2oi6+1RHlTbKY9hij+STWamBqPGi4vDgMBe9Lo3ug\nvVAQiJOTE548ecJisTiIrseJq+srnj17RqsoYEqoxW5S44kz2rrh0+eflHBPjC35Ql3XMU4TkxfO\nddu1nJ6ecHt7y3a7lWu1kFTtpmlYryVMNzfRxsIw9qy3a5qm4uxcrtE0jVy+uuT5i+dst1u6+YL1\nesPkA8vTM05OT5UzrtNLbXb7vhfb00hB3V6+fMUv/uIvcnN9yaxtePHipWg0hgFnZJOvgHik0zmm\nl31OfxHFAl2a11Te0xBaRTvuuvSUZ+1oc7R5EqjUtvJz0rG5RLyzoUr4oNXm9iAa9pNoynCOOgRq\n3cCFHiXEWOfccd6w6h4OfdlhY9Q7xxx+/0QqyI7V84o6jc2FvH6XQ2OYKIhFDHKOhdpm7Z2NOK+/\nla6vRpuRbP5QWaEVBaUO5rVXhgOCxlnnGHYjq5sV2604CjadOImJQFIpKTERJs+YDVmKsYHoDsiF\nKLbsCdM0FdvpaRKaTkrpSD+SilanUOpMpkL7QsdJKWnordJ2XJ4oy/UMus7YypTrnj8u18KI1jrn\nKGElK8dEpexYjM2oYyQruzMqkxEbQBmNYpWdHfNEQC7vQYgRE0wxorJK7QrymmpEAAAgAElEQVSq\nHQnjWPQjkajOaPDjv/Uv8eM/8JcJYUZX7fReqjBV1tUcbOStNfzy0x/hT/zMHycmKWn+znd+Lx/e\n/Aw/+fv+HFXTUrcdVd1JntLQMwXRR1pnhD4eklD6gppdOIcxTowmFPUwBupq4vf9yJ/iz//tf788\nA8YEfv8P/9fkSIGgmrOYjHIEFTEwQrkipZLH9L//4o9w//DxRwjpt+LMNxVxoaCy+RmrqooU5R6u\nrFODINHSTqMY2aSUCjU1U+Dy3zl2ITvLZZMUp4MtYxX1V5Ra3v8DZTPVOkStKqat7J1Ja43KObq2\n1fgEoeCHGAV9Amn+c3NW11hnCzIqurWDzsyYrCekoNiV0iGd5glFdX5t2pbGR/zgVfcXsfaAMOZB\nj8w/lGJ2aEXK+nhA/iiNeV43nQGbDutpHpwYHQwc1tmc33NY1+6v47K+HQY9x8d3o669rhk5/vv4\ndfebneOaLQ/G73/N/e+b/32n3vsePL5qdr7E4awrE9EYNWm5qohoUrFmVri6Zr5YSLaAFz1GXVUy\nlQyB3SDQa/ATKSRcXbGYzTk5OaFuGqUj7crXWnV7EepRrbB7lCA9Mn2B8lDHkAM/ZdM7WAnLA5jF\nrs452q4pUHcWpo6j8NCDD/ggFLuUJAOhUrpLQos8J+5qVXUQKg7DQCRSN5XC2h1+nFhPK3a7HcEH\nHj98xDtvfx+LxZL15jmjF03I6AOXr15xc7NiuTylaTp8Ri10ymkz9UrtaIVLrkYNCrdbkzCpxlqZ\nCm/XG9G5+Iizgkw1bYMPgbbrWJ6c4MOE8xOz+VymVE3NbNayXC7w00BKnra2ED3TuCf4UTJ81II8\nEQnR6883zGYdO0Wdok7ODYaT5SkPHj4U5zoDTddRNx3ei3X3fD6nm3WFmiCbECyXc4Zh4Pb2ms12\nQ0qS3yFFlsEYR9vNWZ6eAIb1dkM/9NqEZLvgWAqopM3ipMhd01iaxoGRxO0Qxf1oMZ/zxhtv8v77\n7wORvh/o+4HtZss3f/Ub7HZ7FrM5VSWb6DCMxAQnJ0suLi7ENGF1y37YEZPHJEPElYymCNhqLE6A\nPngNltvjvWNaCAo3jZ6tUvzGYaDrWvp9z+WrS4Z+x/npCeePhGpiMOx7Qb28DiGGQfKFTh885PTs\nDGMsIe4AoS9apJEaxh5roGtqxsnz6uVzXr34jF/71RkXZ6cs5jOa2slmrAOHw2Zhiq0sIG5mGuoX\nDHg/0QePcYZm1oEVlDLplNaQQz1joasl8oZ1ZG+f/xhUuaxaQZ20645epvRlfTBGQgl1HZtUH1Y1\nO5IxnCQJMbbWEY0hGavWtodsnMPmhzogfX6DTinT5TisURl9yMXb4Yrp1xx83JIRDUXSpPjc6Bgj\n1tjolDUlpFkPh/UuhUytmZT6I+Gh3gfVHYxsFSF2tVCBQ9/Tb/f0/Y4UPE03p5u1BTlBn4cQAv3Q\nM2kTURrLnCZoMgPA65/AOAyMmmOS6WbWGnXvM6TgmfyRkxOmNBiyfglSEGMoRXkuBMWOP4koG0Fj\nEoaYcrNEQZ6yDkHfrXKuxhqM0nqyG16ua8p9p41scQazDmurI4TlYOBjxFZUGmZHOV9xuqtw1uGN\nJVppKHyYiF70PQlB5Zp6wOAojbPOC6wzHDQl8Bf/7r9ZGp18/E8/9y/w+3/0Z3jj8Ygzoo0ZQ2Q/\nTuz7QfLWnNCrs4Pftz79gJ/+2Z/gN158wNsPP+MP/Nif44fe+T9JKWCjw6XEj/3W/4F3Lj7k5z/8\nvVgz8Tu+76/w1umvqFW9x4cgiAQVWKdUsIpIRTSO6CoSls1uj7Uj0HL/SM4LXbZQBrM2CyjFtcEH\n3ceqGldVTMGz20vu13w+p1vMSNo45P3TWkvbdpBgDJNo2Iw02tkww1llOAxj2V8N0gxScpAoVtxB\nkTJjoW4rCYpuWqXFBkVbDU3ViEYTg3PS+Hgf2O325VmcvDQ7Lql5ijFU1lBVhqZxVI0aTFRWBmbe\ngqkxJgDyuyZCqQOy+YBRN7WCABU05tCglAXtiI4mjbz0rdYknE3lmmH1deb4mfncivf5piXdRdi/\n2/G6BuR+M3QH+T9qau78yNc0LMdfk79f3ivu4lvfu01OPr5qdr7EYZItizhYJh/BJebLE9rFAtZr\n1us1cRhYnJyStjsihrqqaeqKaRhkEUmJ5EdsSmClqDo5WXJ6fsZms+HV9RV936swry6TUClQIyl6\nKiuIToyJYRDKkCEnDsuUs21rlss5l5eXIgp08qRnBKqbSzBkpuENw8j+dlusH40xRbBqiJLW7ieS\nmhfM53MqJ7SmYRzp+x1t2zLrWpKJGAtNJVoY34tb0Xaz4+TkjK+9+3Xef++38NnzZ3z66Qvx5l+e\nMoXAp89ecHl1zbtvv0OK0A8jox90obElLd45K1bClaFuRZdjCMSt5uks5uL6E0MpfC3StIYYeHH5\nknGaePLkDUxdcbu6FTe4quJkOaNKkcXJUigA0w7iQAqJsYcwDrRNJQspkXHqFe3ZMYwjb7zxBvP5\nks1mx7AflO4ilKzziwecnp/z2Wef4U3iyTtv884777PdrpnNt8yXC2YzcQq7vnrFze0Vb735JlWd\n8CHhw8C+31E3HSDakhASbduxPD2n7lpevXrFi8tX+BCoSVqoiXFBRmuM5qhgrOoX5PomI3k0McJi\n3nH+4BGPHj/h4sEjVrc37DbX9Ps9V69e8cu/8qu4qqauW0iG1e2ay6trSJGHDx6xWJ7y2WefsRs3\nRDORbCAYi9UQxFEF3sYKqmMNXF2+4nZ9izFi4S0FsmHoJ/a7gbEfiF5cf/w4EsaBuna0Vc3jR48g\nwKxtGdJOXHuM4WS5ZEoQrWW2nDNbLtn2e0ZFS3f9HsseoqeptOg2ln6zBT9JAzIabFpyspjTNDX9\nzmjgqRUHQx8ICSnYctCvcyTn8Mg0bzP0DMMoFubOsM+BntbS1K1qvY8cgJRikTO4xGZZtS+2IokM\nQBLAQTZo63CIU1YMCW+zeByMSdTq4JiAcRjotxu1dK1oXS0Uy6omWktyknCfjMEFo2iMrIeHovge\nCoUWGJnjoW5hUZsQAKsosPzuOnm1YJwWFs5BCCQ/iV16JdfPKy3T6tpkjNDPQohMo6d2krNFjCQ/\n0e97gh8Lui10tZH9bss0TjxYPiSlxO1ux263xfuBmAI+inWzc2LscdAfDBq8a3XNlUDaadQQRGul\n8QmSieIVIXBWmg6L6ERqNbiJMTIFQaYkRFqQD0EAhb5jkgTNpiiUo8oJ3TE7W3mv94uVgMqYjDQ4\nUZqdlKpSyEjDa0s8QS5wc7MTY8KilsuaHSYoUd4ERXOSTTfqqlXa5mFaLm9rbm6sUsakqHRW0ePa\nEK1YHVcGnInEbCt9hBodJuHKQqhrbOXKhPrZzbuf26dDrPjOi3OWZ59hWoiTp9+P7PYT4+AhBXyQ\nxg9gtT3nv/zpn2KYhCb74fOv81/9hT/GT/3Ef8wbp98qA4swGd578kt8/xu/JC6WcSSGgNcMpRgT\nM7fAuoq6nWNdAzhCcgyuxTQzBu/58NlL3jr7M3zn5U/eOe+m/hu45lOgxtVHRWsqvxhhmgi2ompm\ngmjMZiQT2e73bHYbZm3LozcfMetapmGAJPXBfr9nNpvhTM1uv2PoJ3lOHYRhKg1k5SRQ2vtAMpka\n74hTorENTRX1VKKU9EkCd21laOcd7WIGzrIfBrb7nmkKdN2MbjaX4VKIhf643wtV+ebmpoSaphSx\nyVEliUmonaVtLN1c1gCPxwcntMTREOjY7np2vWH0jpQcxkQSAWMUUQ7ooEgbt5SQTDE15CmFfryD\neuSMLmmWAtZmbXTU/UGHy0kDqI2Vn2c0pyxRKL1yreS5KC3RF6A3r9PnHDNxvoja9kVfl/99/Pf9\nnxVjPASmmqOfkb73G56vmp0vcWR4XoR9gSlMGLfgzYsL5os5N7e3fPzxx9xcX3N5eSm0r7oq3vq5\nAMramXEaWSyXPHjwgNOzU9abDS9evChiQXHCOiTLOycalQxJCzXO4L00L9mOuW0bzs/PeOONNzDG\ncHl5KXz8VFHXFe28LYK/lBLb7VbE2sNIihRYvDjIacjc8YS4aJV0Sivi8YZxHFmtVlRNxeMnD3nj\njTc5mS+pXMXTp0/p9wMPHjxguVzy937h5/j7v/QruLri6++/T13XKtQeJG8GpWz5TBOMxV7a5LA9\nA9khpwTZzWYs5mLbXVnLNI7EmVgNt5XA/jElRj9x6irefOtNUoLtbsvLly8Yh4G2rjhZzNlt18ya\nmqnf4ZRCYawYMsznc87OzqSJ227ZqQ7r4cOHPHjwoFhun5yckBLMZvL6um756KOPePnyJU+ePOGH\nf/iHWcwv+MY3rri6umYYd0BkGPbsdjvOzk94+Pgx1lZsNldM3tO0HVXdEEJiu1sxm805OT3FOsf1\n9TXPnj1js9kUCqWPgeHIhU7yeiwJS9elYhEt6JogedMw0rR1yVz49re/zWZ9CzGx2295/uwZ3k80\ns5n8bCuuOsYYlstTNSZQm+x9r2F4mjYfEsPk2fW3jJOn7TppmLBsNlu2261YP3cdDx8+4vHjN1jd\n3uqzk5jNOrquIyUJHf3g/fd49OCCvXLdnz59yu47r9hstjx88JCT01N8gtYHFosFMUlz383mAOJq\n1y4YQ2LwggKIiNvSdUKjO1kuWSzmbNZbNtsVy/ms6NC8hrbGmPCauwJSCIcYRMzuPbvdjhhFi7Xv\ne7bbDYDSPbxMzA1a3MZ72rpsq5vKFFKoGjr9T2g+hIiKK1fhlaeedQnRSOje8QYmzkjy3uj+fQeF\nOGysIrLIVrjGZItdWygbQuFIpfAFaWaylUL+uXc36rubeEwJE6PSCQMOQUr6fk+YPLUTGozQWYWa\nY4AQJmpX0VROdBeqo9tNsp5UzrHb79n3e1KKPHz4kMVyyWq1Ag42+iAubeM0Yby/E8KcB0W5UfHB\nl+fKaROSzV7yW5fDpDNlyARwNhaaUdS9JQsSEkfmBCR1EDsULjEK5XWlpiQpIWYyXVv2ioxCHWs5\nrbW4uik25O6oabHWlXeobVuquiYjTIfGW7NqFPkDQ0ie6O9SorM1dT4X7y3ZLltm76kg9JUx4jRn\nD1qsZASdyhbIKaHW4lqcHf2sD978Fr/09C4lrKl6vvbmM9pOBO0+QaaCWSf3hjARRDf2t371nymN\nTj5CrPhff+Gf41//sW+K7rWqCFXFPu0wMQgq7RykRjWZqTSdPkbMNGGjpaqFdSDNaeD6+paPP/6E\npfkpFu6WXfi3SXS0zV/i5PSnyFRJkz5fxBrdg6dppJu1dF1L3ThhCESh4LVtK+6cmm2TA687tdoX\nhDDfiwFjlXpvnQwLjYEkRgjxPv32aNARlZ45jaNoWdXp1Nmq3NdVVekwVe6JafLs+6EU036cCkJr\nFR1cLBY4D01mm7hM4Y+EMIp2D4sxNZha9Uo1bSvIZt5/ZK00GBPvXsNjBEQzyGJek2QacK8ZETOE\nrEIs7wmQ871stuTXAZn5v9h7kx/bsjU/6Le63Z0m+rhtNu/5vSpKdpUlI2NbopAFElMkhAUzi7nl\nCWKGGID4I2DMgIFlWWICDJAYeEDpgSyB/arq5atsbt4m7o2I0+2z29Uw+L619o7Im6+KFAMScks3\n782I0+699re+5tfwv8PDp/zO4/tgZN/3mPnPHqtjzoujGGvnj3kAbZ5d49iuSOcKHN8fPe/HdvxU\n7PzAQyrqNoTg0Q1EZh84wc2ynGAhTYuu63BxdgatJLn7ep+CdAgBQkks8mVK/IdhwO3tLY7HIzRL\nSBIPg953ngh4LnhiAZTnJOEbAgWY8/MzfPLJJzg/P8eXX36ZFK0WiwWy3KTucNM0Sbhg6kqGVAR1\nXUeBD4rJuipJqaZN1VpYO2K367Hf77Fer/Hy5UucnZ8S5j0A/TBg1+4RAvDLX/4Sn332OcqqxNub\nd7i/v8fnP/85FqslDnWNV69e4fb2FiYR1wnepHRGEq1sTCoUb8LMqSkKSn6b5oic+R0hCByPLerD\nHs45LKoKje3gjkc477BYLPHJZy/w6Wef4dWrVzA6w9XVNaGCRACcI+6Ud3BDh5PVAur0BEWeI9iR\nyOCeBBJIWlqkhIeUwA6o65ree0GQLu89vvr6K3z4cAspJa6vr/H+/Qd88+r/wDdffYndbocs0yir\nHFpLKlqfXmO5XOLu7o7hXT0CBMaxhXWETy6rBbIsRzcMuL+/x263g3MOq9WKoInMTYrwRdqcR6Ij\nuMljZ2AYYggB55fn+OTTl3jx/DkW1QI3Nzew1sEohd1uh8Nhj+VyhdOTNV6+eIGezwMJExTo+x5f\nffUVPnz4AB+AcrGEc8BoPZQyUCbHZruHEBInJ6d4+uwZMmPwzTd71Icai6qCgITRrMSjswTRXCxI\nWrofOmitcHJ6iqdPn+JL+wYAcDjWcAOtHa2jtLKFYZEHO1o0TYsiO+EbTGEYiJ/Wdh2sJdjfaEeE\n0WK5XOP8/ALLRYX9bge3C3BsXiiEgFAGWpmUJMb+oAsBo/PoB+JXHQ5UgJosp8Q9b1JssY4x/QEQ\nPIX4GBQiJtrk8D515oIPaXIZi1wf7MNOXUwCAD43msn00ZUdiV8z8YQoc48yzvOOYeRN0RFhIBP8\nJR08dponHTEWToMs5p94BwSe3CjqliKEpB5YmAxaaeYRWNhhhFICSudww4i6ZvGXgSGmWtNUxgcc\n9nvUh0OCwu42W2y2W7RdS+IZUZkrFjNcoJLcuHuQKARERTYWRlCTgtUwEK8uFhvOkaS59w5OK3hW\nbfQ8pRZSEESNJzA++BmMaJrmRR4QGQrv6H4zGbKynJk40kRw7msWmzRUTDDUUsWCx6TYHic6qbCO\nfDChCCopJ/Uyaz1N31gAQXDBJoRKn0NoCQlqcNBacqzSqWidSYDc3gwg2VOG1wHCZPgpuVkY5asl\nF9n/4I//Cb78J38NTb/kc+Xx7/2b/x1Olo4UJfm5ns+BkhLWhtQw896jG7KP7PTAYCuYLEv2CV1r\ncaxrBEdiLFWZQc38bYhXolj0AFCai4xyAeQ57rYbfPP6W3z59Sts7u+wUv8JTqv/HF4b8tUSEt6x\nfLqb8SqiUIAi5cRCA0WWAwisKEkcYCUlc3XifUXrN8iAMnJ1GFoW5cpl8ChyksTPsowFQALfeyqd\nPynJg0azCm0syG3wkFrBmJz/GIawTU3ZACTZaYSQuHPDMKRJbyzMjTEoC4Myz1EWGTKj2dgTKeZR\nTGRRJeb5zosYmsiIR7GTE3dJohYAr1Xw9CI+N0Jq0/MCQ0MlBKZ9ks6xQGCoaWDUieCCJ5q9T8f/\n84XCX7X4+Bhk7fsgbx/72Y/9+KnY+QGHtYQ/VVoRzMN7tH1HybkxpJiVkXpWXdfI8wzeWuZmTOIF\n4zhCGYnT01Msl0v0fY8tk8nnGyZ1NcTDxEIIgmr5qeCJm7lSKnmxrFYrDMOAt2/fIs9znJ6ekloZ\nY/RHO0ydRQ4WijcDALDjCDv0kEpC51kiNsZEeb7p1ocDhKCJ0JMnT/D8+XMoo3DsarjRYlFqLBcL\nGG1wdX0JbTTevXuLr7/+GkICSksc6wNu7+6x3W0hpUBZFRASbBrI0zHvKGTE0WvwBC3EFNyHYcRq\nsUCeFdR9shbOE8RrsVhASondbo/gAxbLNS4uryGlxmazwfF4RJYZlFWJTEsIT3LSRgAyOFycneD8\n/BTCe9T7ADAWuus6RAny2JGq6zrBB8uSultd12G32+HDh1t0XYfr6ydYLJZo2xbb7Q7HpsXoHHxH\nkMOioALp7PQcTdPgw+0ttrs9RusghGITP4Hlisj2Tddhf6CpCAD2sqEEdu6lE9V7nB/hR0qwZOwG\nMw8hylyv1ydQis7P4XCAkhLH7ojddo+uHbA8p2nV1dUVvvztFyxtmkFIhdv7O3y4eU/kbKMRBMEH\nAyS0KeECMAwjTs7O8PTpMzx58hTHY42+H2CtA3nTkNx6fSB57WEYkpT6sWlg7YDlsoLWGhcXF/iL\nd1TsNG0LEwIykyMrMlajAyouCuu2xW63BQRxfJzzbArrETzBOKwLGAaa4F1eXuLFi5fI8wwCAl1L\nCntN26EsCihBcMKRN/mTmoqY/f6Iu6FH25Mwx2gtirJAXTcQAFanE8EdSOUCJaSclOJBp27WacPj\nbt4kuRxVjESYOphytsnRa7CCW0zWIhcOPn2SNHUJTNBPmz13ecX0GZKpcQggfxiQxYgIPC3yidsi\n0mcO6bXi9DbKIuvIcxxHQJBsvxI0I/KsrBW8Z1K8gBtHDAwltcOAEK+pcxg6gp91bQsB6hzX9R6b\nzY74iZ69P8wEr4tiBlFBjWKyYiJ6eJTMIBVGIRCHw/mZCAMwObkLwAvGxwsytKUChwQJfDxB8fDi\nwRpwzsF6ByiJrMiR5UUyV/4Y3CWuD4R5p5f4JCKaUovIzZGp4EqcTJMn6JjjP4FhcoJJ7ZJha9SE\nojXsPMGJHHO1qDelIKOhrPMIDtM6ZjJ/XAee4z19BxZD4KIMfL5eXH2N//If/qf4kz/9u2j6En/j\nZ7/Cp8/eAqhIfEIqSGMgeT0hBPS+JX8Z9mv5mz//Ff6HX/3739nv//Vf/irBO+0woD22FAMREMoC\nxpBpbTSOhRAA8w6V1tCZocZbUWA39Hhzc4O/+PprfLi7gwdN001u0FvH3B5BMd1PqmHzdRb3voIb\nNt479G2Hpm3g7Ig8o6nK0PdJhChNfIWgSUw/qapGKGjONhcS1GiJe4Rjz7Wp4kTi7BDPk/aKKNSU\n53myqaBJKMlAAx7OhzT9DN5j6Ee0bY9hGBNaJU5NTU5Q2ujJp5SmIiSqxSqNAAXqITvidgYkbrEQ\nkifQLsnNR8ccSV8c4JInTS15nSWPs5RjOAAEeaT7i2DrwQt4ISD8NAGZogG9mwwPrlx6j3Q/zo7H\nXJzHj/ldXJzve83ve97H+DuxQfLgOXzdw/e89o/l+KnY+QFH6pTZAIlpytEcCdJTVQSJMVqjKgso\nSSNtH6cwQsJoA2ccdEbPHccRx6ZB3RynsX+a2pArwdyXQ0oJpBjE3Rs3YhwH5AUpjyklcGxI6rcf\nOpydnaUii9SmKDmn5CaOYOOmAyKwI6CqShRFgaqqEqwtwshIunVA33VwzmK5XOLi4gIvX75EVVXY\n1Ts0TYNltcCnn36Kum7w9s1bbLcbtE2HD7d3uLu/Q1VVCMHjw4cP+HB7i37oGX6gU7cXArSJ2ugX\n4iC8ZEUhSlSHfoS1HgIS69UaWikc6xo+ANVigZP1GmVRkNeAc1CGihrnHG4+vMd2f0jwQiDAZxpa\nCBQZiS9k0rAJaIGhI4WzwXpW0aJumXcOZVkizwu07QZt26IoCpyenmKxWGK73eLD7R1CCFgul7i8\nvMBytULT9jQB8oEVwOjaVIslTs/OYPIcd/cb3G+2BAMAGewJIZGXFarFksiebZtgUoZhPgAS3j0G\nsVhQK6ngZlKz0YcpGp4uuDDwnmTUrbUwRYFj2xLPhjfLsijJ9JUV0mIxUh+P6IYBWko4qdAPDkM/\nInpZ9F2HAImLi0t88smnWJ+ssNtucTw2xB+CSGayd/cbHA81tDYoWcWnbRsorXB9tcB6dYKyWmDo\nR8BQsZIL8n3S2sAHmniUBRmw1ocDtpstdacB5swUKCoH60Gy3rZHCFQgaW3QsMz34VDDOodh6NG2\nHZqsRaZ1SsCHYcDySOZ7d7sdPhxpYja6ERlDD+uhIahImIocSFbQCoAMDwsLij+BeH7gIshT95u6\n3QGT5wMARGU0JABGoKAx41Z4xmoTTkixPDACQeGiqBR8gIMH/NTBjvEHmMtRh2lfD7P/9fF9KcAE\nTIpA02b8cGOPUCgfWHUSAtowR6Yn+Ew0J1Sa+rGWC4Eod+vHkX1SqIPcNA0ZufL63NcH7HY7+t7R\ngJAnEtH4NU6+rWMJboYyzyfrkmGtEQIXQoBUE/QsFpmQAkqoaXrEBWhUTgshsDIZn1MxkYYhIqCG\nrpXm5hpAppmCIaQpwcV3YSpCSgilIbVhf7LJXd45D5KjF5g72yvD00pFfAs/jknwhhS1JtgauIiK\nn9tjZpSKwB4xU9fdBUfn1TuowI5BnpREfYJNsYCCmoryWOhHRcEq2+Hv/9H/SPcIAhA0vCcPpIAB\nmSSOR5wKeS4oFHvJfPbkNf7Dv//f4p/98/8A/VhAqxH/7t/+n/A3PvvfIQRNFrwQ6d4uMsMTHQXw\n9QLfvzTdkhB87qA1XAh4f3ePr169xpt3H9D2A3SmAUWG4AiACJRoBybTx3sqSVnz+rbOQweCtxKE\nO8pEgzl91KgUsaAMgThofE/03ZCkoJXSMFpAS4XBdXDSEoSOJ1SJvhIIqkXFIU9irIV1VOgWZYnl\ncomiKAkdMIzcAHQQzLGNDYOyrNI1iJ8psIiIkIq875SCYiNTpTSkIG5eLHa1yRGg4BxxsPp+AJSe\nCakwXdAHEjmJ9w4XfVHkPdAiosJEkMcOxd2Y4PsUO+PESEkAQcBLsM5KLKOoAKJp0RQP56XG48Lj\nLysgPlYAzX8X793Hr/N9k5uP8Xa+8zz5SPGNnvBTsfP/t4O6KR6W9eUlSy1a53DY71m2OINWCiVL\nOEc/CQcBJT11LfIc0si0kRJsxk6TGzHJRYcwc0wOc4IcHQTPGXkSkKOsCkAA2+0G9/f3WCwqaK1w\nPB5JJY1HwdMdTUlzJKty5EWeZ6iqKk1D+r5H27Zp+kTJPXWIVqsVLq+ucHV1idVqhX7o0TQNhBA4\nPz/H9fU1bm//FI6hXTt/4OmKw3q9AhCw3W2w221hR4usLMl9mZMIA5MKvXTLxYYMJyZdR14Hq9Ua\nJyenLFNNRn/VokJZLeCdQ9eTT8ZisUReVtjtD7j58B718YjgiEc1DD16rZBrhbAo4JSEVxJd36Po\nyV9AMOTPscnr8AC3TwWC1iZ9nnTOfMBqtUJZllguV/DB43A4JI6KEAkPKyYAACAASURBVIakuJVC\nXhTIyxKjtfhwe4+6buCch9aGkyWJarGAMhr9SGpAEEhwlghH88wyjIExruFY3ALg7iQVsllGuG8y\nsWWHbGuTQ3fTNNQ9VBJFWeL09BRd3wNCYLlakTT3QGTuLM8gAjCAE34bkOUKPpC/QllWePH8JZ49\newbrRhxq8hiKSXtUURt6UgesqgX6sUPTHNH3A9b5CheXl7i4vETb97jfboArwpRLFSeRNEFi/Az6\nrkd9qOm+c5MPS5bnyC2ZigpB6ymqIW53OxybI5mwBpIAbrsOY99DSIHM0PSIPmuPa+bsNG2H1mhK\nBJWB1Aaj9ei7HpkxiJ2LCGfydMMTNCJOTjg5DLNCZQ7PCIjyv2AYBSUTLrJLKVBwAj0l4dZRsulZ\ncEQpNXXxYhyKayZQJ15zghxhXA+6j6nWmWvG8c3KhYII7PHjZ+8hpglShFzFDjDAmH6eWHmG4cTu\nNATgrQM8yVN75mF4a7kYbdE3LUPGXJIX7/oe9fHI3X9SeHNU0qXvBkeNp7n5IjWDpi609zRhJrNj\nO8XRQBMy74knJTg5lZIlfuP1EwIONMWwboT1JPf9wLhQxISLLyCvS6VjQ2hKHmNynBoaPAVJkxtN\nnXLFvJs0YaNvR2tJKX5thQBBpqsMQ7LOpzhj5MT7ideC5c3SFM/PbBCk8Kzi7ZJanfUOwtP1i3zY\nWDzEyebELWLotHM0YWJY4cPkLLDx8xTrRkucucibcp7Pr+C1KhX+nb/1v+Df+pu/ws32Ja5Ob5Gb\nPYaGfq+0hhttag7EuKQTN4mvqVJpUiq1htAaDkDTNHj17i2+ffsWu/oIB1IjC1IlTm5wniYnfCJl\nmH8jOjwCXPDAOGJUktZ68DBaQitqsJqMYvQ4kOpc4Js+qqQOg4UISJBQoyWbmjuCYUtJhYdAmi4J\nQSgTAbp2AMMsIYgvUxTMuSQIb/SwIjichnUEIR4GiywjqegId4tfTkn6LGVRsNErwY8Nq8QBVLzE\nwkUwgalpyLNPG/rsVgiWV49xSPC9yPdOvL85d/DgSWdUI0R8D+rRxCVNjwECF7jwUemN4xzdSEDw\nbLb7lx/fx4OZFym/C1b2uHh5/Ni/jAf0eHIkuRnwfUXUj/X4qdj5AUf0GBmGAf0wpE1FQJBgwUCS\nwxl3zYaun2HcPbyn4FgUBYIM6FglZRhHMBU1TYtit21OMIvBOzp4p/Fp8KiqCsvlAsslFSfH4xHj\nOGKxWGC73aI5tpxIqO8UVUJEp2XyYLHWJqIjAIKq1TUVTF2HPM8hABhtkBc5VusVLi4vkBcFS2C2\nEFLg/PQcp6enuHn/Hl9++SUuzy/gnMd+v4e1I4qyQF7kJNfcd2Ra5hzGkcijEERMDiCp1ulzg7pn\nfG6ttUAQqKoKV1dXKIoSdX1kkjgZV46jpXNiPZarE1xcXqMoK2w2G9x+uGOFJUEqTo6NIoOHagOC\nVpBZhq7tMRQ5jFIw2qAJ7AfiJz+VOaZ3tVpjtVqD+FEtpFK4vr5Gnhepm7zb73F7ewvrLBaLBcax\nh+9cCvYCAvtDjc1mg34YYLgrC0gEIWmdjVSkQNDmA4gJL80JsvfT2onu7VJqbuQzNMZFEzoyh5WK\n1tHQ94D3KIoczlo0zRFd32O9JJjd1dU16sMeWZYjWyxSUdvxWokJhg+A1BpKG4zWoh9GvHhxjSdP\nniDPC9y/u8Pt7S36vuOpIik9RXiQgGABBZESnWpBELPFcom3b77Fm7dvgCtw91knfPg4DDAZ8Ygc\nw5m01rAcCq0jUYLRknS49cT1qHiiud1tkWcGF+cXWJ+ssds4bDYbNF0HhIDBjFA8hbKDxejiVA0Q\nUsPkhgQlvEXbthitY04NxRYX0l5JCXxM1oBEVo7dyBDoZ2lTAt0PUiAlSS42SNRU79BWPm1mPhDB\nfj41jvBU6UmcIaqpBs+QIxnSK8Xk7yEfCKm7GhBi7kubKP9TQmDEw4QWguKZREhk9Og1orQmfx5n\n0wR1DsdzfH37roPlKY5nj7BxIF8tpXiCYam5NAwjJ/YCIRDUCqDueoQ8eoaikVeW5SKHJjwhNp0E\n0p4QJ6pSCTjE6YYniBcXG3IGU3bBpdeNE/M4gRBympgIiRlfiBMrGX1IBPPYJmhz4ug86u5G3g79\nbjYp4WuiuTkgNcHbQqAJqfNIUvUBgFCKPZsCTyFi0sUFmZjELPjSI+laBZfOYzSjDD6wYt/Mx0SA\nz9ek/qaUonM9jqkInX8/70npS89hliBpcjvS1NqObJug5IMGgpACi2zEL5ffwnvA+rlwQ5Tl5hjq\nXOJXxWJHaQOpNJ07pVk1TmOwFnfbLb59d4O73Q6jdzTB5WaV957joaObX6Qu3uw8zK8fQTjb9shT\nEYfMGFRVSWgSxU0BN7s3uQCh+O9oUsJFpOT1i0BFolCKJjgh0B4c1w4X+SP7RcUmxAS7F2mPmXIX\nTOc4TDB8FaHUcX2DPHqMoUawURJZZpDnGQt+CHhvCZERBKTykIqaNYfDgfYspWmKxOuCBjCxdORT\nKhjihtgiQlqjkKzcJjDFLkTtNFq9SqRqNE3TJN8bpDbIMFEuk1JRFc9YeKhaGePf4+Nx8ZKaS3+F\nAmT+nP87R4oVHynAfuw8np+KnR9wzIn5UkqMfprcKA7MyeWXTR4Nd3ecdRwoPXSWw4u51wTjsR8p\n/YCr7bkizrQQp41MKYnlkgjbeZ5jGMZEmm1bwhlrrWFUlpJbIcRMOSjyA+YjWKRpTlRIM9okGFBR\nEGm8KApUywWMMajrmpImJXH95AlOT9douw7/269+hfvbDV6+eIm2aTDaETozKI1Cz5KuQ3TaliIO\nmeH91KmljssM4z/rapDijMbZ2RkuLy/R1HWaLBVlBaVMmkpVixWurq9xeXmZVNTI3ZziXp5lMEpC\nK4FMkdS2LnKCsBUFiqLEoiwRvMf93R07PgvkeUHTkLxIG8uCDWIPhwNNIdanOD8/pzF/T5On7XaL\n3X4PpcnzKISo8nZKxbVzuLu7R13X3DVUNI2LJHfn0HY9um5IiU5yk+fupR2piwpQ4BrGEToEZBn7\nZ6R1iCSwkGUZnHWo6xrtsUFVkdxy27bouh4AFRrnZ2eoqgofbt+jqioIAF3b4tg0/Dg6RvZm0iaD\nkOSB45zD5eUlVqsl7jf3+Iu/+C1u3r2FtSPOzp7i/PwMeW5QH3r0Q4fASV0QSKIay+USq9UaTdPg\ny7/4Eu9vPtDaHS2G0UEp6pQL7oa3XYem6zAMA1brNcy4os83Djj6I+pjjbZt4D1NkZQxsNaiyEpc\nXV3i2dOnyIxB0xxB5r2khOSFYJiOhDSGZxtDSoQUS/T2TY+u7+k5gYwNAbBXhoPmhAaCRc15445c\nHATG8VOFTQmNl1CKfU7CdA+HMAHb4lBgutfB99gswQwBdiRIrMgMFyEytjYxVS7gWOR5QhMYvjTb\nGHlRTa9NEwr6/awTz1MkDmmEeJtNxBHYFwyYOtXi0WuDEtq2a+EtdeBjY8iNFtYOENBcDNDEp+sG\nUtkyOXfrOUnnOE6u8iNDO+nv0VpK1DJDkCsX4UGxi01+aP3QQ+dkmiihuINuZs0lNgcdLbqeYEWx\ngJOaYG5CKQgVO9iTOMG8gEkToPT/k3hEePT46bor/sOFDxdhSurE5SPeTuSLABJU+JKvnKHOPwJC\nsAhxuhKv7QziGHzg4pt5ZHGawr8THI8QJ2nxYOJ4jFcTr4umTCPHt3kjMK7juGbFONJnhYb144M1\nR+pqCp6NrwHw944oB2J0KCWTiayzLk1QQwgY7Yh+UFCKBUWkgsoMXTetITODIEn97/3dHd7f3aPp\nBzje46InUurux7/jn9mRElguUoMb2RB3IIi1KVCVJfLcIHo7RZSGgEieOLF7H3MKasoxSoXXglES\nRtHEL4oHxPxkHAd0XcufSaZ8iO4Vm3KOWPRQkJk4hNE0fBgGDKxuSIqT9FmMVpO/XZEjz7MEx3Yu\nYBypWFPaAyJgHKnh5INAxdfQZBlz3zw3bKbJ5eNzSma6KfQ8+Ht+CYQQUCD4Jdc1lKuAlnv0zCJu\nYnxBkV4vPIpVj6/rfJ2ne+d3FDUf4/J8DLr2ePLzmOMz/91UmM34oeAy70c+4Pmp2PkBR/SfCYFI\neSYEHJpjmvAASBugZxxqWVWw40i48UgAxxSkwVMKzf8f1X0k436jIgoA3o8Fj4uRgqMQIU1ivHeo\na3IBHwZK5pfLJSVNgjGwcnLGBiZc8NAPaBpSi1qUFYyh5NZZwvKWLKOsmRAsBI34AWC73eKrr77C\nL37xC/ztv/Nv4PziDF99/SX+1z/5E3z7zTf45MWn6LuOuuHHI6rFEsvFEr0dUTcH9H03wUOkhDZ6\n6txJwcpBElJRQg4l2J1awDvC4T99+hTr9Ro3794xLIykL4P3qA8NrBtRlCWurq5QliVev36N29t7\nOEswHvipG0nkTQ07Dlgul7i6vkKVZyyvKcnc8kA8nyzLiMMlNbTOcKgPCY98PB4hpcLZ+QWePn0K\nALB2D5NlqI8t7u42OBxqnJ1dwnuPpm2xWi6wWq2JSF8fcHd7Dx8EyqxIDtdlVuDq6hpt16OuCbII\n3jTsOGC0FibPZuvWpmvfMc+IEqLAnfCHAgZExPapSLfWpsJ3HC2UMgTrDAG7wx7jOGK9WGK7vcfd\n/T0RtYEkQeqCg1Ka+RL0mZQWuLg8gzYKr169wldffYlDvYOUwGq9RFUVGIcBbXfEOPZAEFBOcaIk\nsFwu8fQJXfO3b2/w9dffJKf69XqNyhkYbaCkAUAy6YfdDoe6xugcVienKKJAQfAY7QDrRkAK5EWG\n5aqCNhm01ri8vMTl5SWUktjc30NI4PrZNYp9wXLhFrkhQQglBDR6AA154QhJxOPRoe0G9P0IHe89\nRxvPV7f/GK9vgJ9f/zOYbEOFPd3ycKCAHTch5xyCCDDcwQ4edD/EjWy2WckwFTqpWTzrOEb1sxBj\nwNhDjz2kJaUpIQ1xi0QAWHlKyuhVETf32abNr++5Yx64+y84fk3TqWkHjRLS8bt5VjErigIiBNiR\nxFS0EEQ2D1G+nwxxw2gR4FFmOaxUaEZykt/vthg4OYvTF+ccd5GjIuE8OQRPRSb1tDjFH2xUsJJw\nvZ9NYyyEAPKiQLkgDk0UKRBiUmckcrxPMuTDMKDrO3QzhEBR5EzynpTgvLcYuNCKDaqYmMcutvch\nqaGJQP5Kcwno+Dm0NhAsZDBNouOfmACz8zy/nhSCiy+dYrEQPAEfLcDS5kJOSm6B2PE8rYwQNhZi\nCPRvLchA1EsgaAkI/bDwfnSEwMapfipkH/O+QghUnHieLEAgy0leX2viF2mlIUKAlkDfE8TN43GR\nSK/jR4cBBNd244BMayyrBZSiCSBdH17TrEIXpzuQGmMIODQtPtzdY1fXGBhSp4WCUQo+kGhC2/fM\nTWHuViwM6UtN01/vYAPgbc9rhmBfZVnCGAXniEcbHCEznJNUsMThhZTTH1YzjcquxhhowZLPKvr1\n0RO1pqmLtUPifxZFgZUkCLrWU05BRQ/DoXODLMt54ifhHdAc2zTd7ntCmxijkRmWvgaQZRpFTt6E\nQhBcbxwdxsHBGwHjSb/PWovtbgetMyxWa2RFwcbWpNI4X08JYjv1VXjdeDyOXymipUJIMBeMz6Mg\n82bPBY8WAkFJeDi4aRj28AVn6zj9iq/xnFf3uNB5PFV5fH983xT3+17v8Ws+KIiYK5ie86gQ/LEe\nPxU7P+CI/jdp+iKQyK5AIGKdUgRTGUesVyuSfK6qFBzblszrCIcdEtY/TnJyTUHfRiUasEqPJayt\n4U4zQEm/kGRaqrXGMAw4HA64u7tjbo1GURQYx5EDoqHOkEeaaswDQuxknp2dIc8ygr81DbTWWLJ0\n8nJZwXvPEsgdsjzDsVF49+4dzi4v8Hf+3t/F02fP8OrVN/iX//LXePXNt+i7niYuLRUIzhN3yRiD\nDRt59j0ls/HGL4oCfrSp6xkTgrKs0LVb2HFEUVawdgA4SNtxxObuDrvtFlJK5Dldm7ZrcWzJONE7\nh91uh/fv3+Pbb1/heDygWlTQWsLbEQgEU7DwKIzGyxcv8MmL52jqA7ZtA6PPkZmKJkLDiDzPsFwu\nIQIVugTDcwkatFyuUHLheH+/SZ4eRVWmyVkI1BXuug5D3+His0/w7NlThOBR1zWsd1gul9S5Mhmk\nIkhU23Wk4nY8EgxCBEhJfC6TU1IUoTVASAlqXBPWWgSey5Oa4AKr1QrPnj1HVVVo2gYtT8hiEUQd\nRYuyLLFekwrc4bCHECIpzd3d3WPoO/JyKio2m83gIAHh4Sx12MmHJ+Dm5i2+ff01dvsNyqrA1eU5\n+r5BwBLDQF40/dChLCriskCiKAo8f/4cZ+dnOB6PePPmDV59+xrP/uAl/gX+FJ99+hmMJphDkt3G\nJMc6Mqdj324BgAxdswFKShRFxsmhpILs4hRPn13Be4+b9+/gncOzZ9fI8ww3N+8hBHB7v4ULHpkm\ngm68R7OsQFktAQQcjzVGVpmDpILg1f1/BuAf4Wb3b+PLu7+FN7t/iD/+/f8Iq/ItQ9kI4hGhbWC+\nmNQqxYAIm/R+BvcEJZbUXBGAJOiR9x6OQFbwngQ2ur6jyQFIIIMSakXKjCJCIgN/BgtvY+d+ShKF\nENAqSq9GyKlmaBZDlHzk/4TUcRUQBI8LEyxI5xngOIkWSOIonu/NmOSPwwA7jBDMe3AhoKlr7HZb\n1PUB4zhMxQzHWOLZeW4aaYIVIU4eKeD24wA7WvRDzz4iNjWwAOogBxFggwUkYEwGw7HGe0cFi5ZJ\n0ltKwHqCR/Zdx9K/nuFUlEgqTbwPFxyCY+gpiKPhGFoaocyxGRaFEeY8kpj4aDlBv+LhPMktOxvI\nlFprGMNQrdRUUtzAYnhcnKQBwLx7LCaZXvLsYaEIXotgQ8igTIL8gaWHRSxWnE1755R8fhfGE7+z\nZQjug/1PiFTEGlZdk4LMUIWg85GXFTyiQtjIamch8WRJ1l4j+IBubJOKmHAjMi0RvMPADUuCmHtI\nJRgKF9J1DAIYnMVJXqAoKxw7i119xO1mi/3xCEiJLC94j6PCXvI0DZCzjnqMylR0C+b1KUlWD24c\nUZUFIiRMxGmZdRj7EVqLB8VwbgjB0TRNOmcJ/u1s2nOj+hlCgHMjojdRVRTQXIDHz5UXOSpN+6aU\nMqmQjqPF3d09ur7H6amCMZM4QizkxnHka8ZQsFiACJrqemchJKnexusfEKdDBLHsB4v9gfidy7VJ\ne1uE1tJ+lcF7akYQ30ck6GZ8TIxHwXN88Z4REzxti1MqPkfTJEhACQEomtDDWVaMY3GEdN/wFH3q\no6Yjxrt5oT0vPub3bjweCtZMMM4HE99HcfnxBCmd09kHImTRNJlKzxGg8waufX6EY56fip0fcEQV\nE+cJVqE0dQiBDCFMpFDvPerDAY0kKefMGCxWFTJDBmS3t7e4u78n+dAZFwViUl6bj7ZjBzPPMphs\nPtqlJOTi4gJnZ2cpuIUQGGJWQkqVNggyHQVDQB52imMwiuprccqSsQTx5cU5Vqs1xnHAmzdvkmmq\nEAI6Az7//HP89T/6Q2ij8ed//mf4V//q1/jqy69IhvfkFEorbO42uN9uyNwsBPR9n7qg5OFB5zma\now0+wHriURhWGnIcnDXAXUyJxbLC06dPcHF+jrquqTOlNZy16DvyPJJC4OTkBIvFAk3T4P7+HofD\ngTvhHiJQ11QgoCpynJ+ssVxUyLVE07a4u79DnmkY8xRFTpyg+nhEVdE5DoE4DV3XsZmnRFktkOc5\nur7H7d0dF5cB1XKJth+w2WxJHcoYjEOP5lhjsahQVRXGccThsMf95h7OWlRVBWMyKG2QFyWUydC2\nHfGohmGWYCIlJTGxd46EGkRKcAh+0HY9jeO5+7xcLlFVFXNsPPa7Pe75OpPh6wGHwwEhkFLfkydP\n8fKTT7DfbrFcLPHm9WscjwRTVFrxJh5ILSozXLyymhMcLi8vIKXAu5s32GxukecalxdrnJys+LwC\nw9BhGFpSG8xzLJYlvBVYnazxi1/8Ak+un2Cz3eDNmzc41DVenvw1AMBytQKKlr2kiEdWqSWii3fT\nNOjHETebV7TmGN7hAyW1eW6Q52yu6y12uy28d9BK4OVnn+Ply+fY7/domhqr9QJN3+N+16WkPgoZ\n5dytj1KsznmGSim04x8jdH/vQYzp7RV++/4/xh99+l9BeBI2IQgQZn4P3z1CCPCgAkoBE+x1Nk4R\nQJIIlrNN0I5k2DnaETlDuiYQBgDmnZBEW3xD+usBRCo+Pm3c6WPQa3G7NHVP05oNpGQUosEg/d47\nz53k2GkMqWACCNaTZRlyRUqTfdOg76mYEBAwGUGuxnGEsyO/zjSViQUj8Ug888oe+uL0fc+xEenz\nj26cFTISJiO+Y+TaaD0Vs4Md4fouTXPGcaRii93qk+qZngqVKPwQY/+cGxHjflJanEHVQjp/MhUt\nSqpp2geBEEn1POnRLFgwl6SXESqLiccgGfoWEJM0PEjGAk+IEQtKS7wcKgxJUpkmiPQYBer2Ty30\nR3vfR9Y3vE+yzI8TxXQPeJK7hrXAaGEyhkkpmV7fWQvnuGAE5bHU5CclPyqSPYwgtUPnPPq2wzD2\nUCLAmOg1h4TUoKRQQmc5sqKEMBn6use2brA9HOE8eL0RVDIApLyXvstD/7MIr+NwDoASXSMFTKZh\nNE2plJZksO19gh8rTeI0diQujhU2Ff0x9ktJz4uTGkL/SZ7wOuYl0WcYhh7CNhiHAaLg6+E8xnGA\nUiQRXVYltDIs0kHcUYLJ0/rO8hyC7RdI+S8gM4bPpabiW0kUecb8RgUh2H8nBERfHJOVqKol6vqI\n7W4HsLKhlCwY5KIsPJkna0aeOND34YiY7ishBBVYM9l+ipUBESobOdJSKmoIcRQTIp67wFNLQbQr\nxMJrCqFhBgebFyAfg649/jsecb3P7/X5/fF4IvRXgck9eAxmiy2+Lv/tP3JP/liOn4qdH3BEPHlg\nFRnjyeGXHOajKR8F7TjxORyIjN8PHdarNaqqwnq9hkMgIvSMnBqhGRQ8xYMN1XtSMSHDrAnyYYzB\n6ekpVqtV8leZNj+PvqfkLRqJ0Z/Y2TSION48NyirCk+eEGG8OzZYLBZomwZaUTehrg+4vb0lQv04\n4pNPP8XJyQmarsWLT16iLEv85osv8ObNa7x+/YZMG4sSq+UaQz/icKjhrEO2zCCExJ4V7AAKtBRC\nZPLzAZMe56o75GxPN17fdwDId6DMc3Rtg839HQdqUmgbho43AoPlcsHTkiM713tkRsHZEcFZnJ6e\nYLVc4GS1RFVkGPsOd3cbaAGMfY8iI4+V2OnNGZIVPY4kE3cXiwWurq5QlSW22y2OxyOElMT3WSyg\nswz395sJAicVeQXYAS9ePEOeZzgc9vjw4QPqQ80O9zoF7rguSDjiiH4cIAX9LnaU4vqgBMsCCFBi\nMo+kc0hu1vFnc2GCYSRe0TiOEIIU2OIkqigKrNcnJLQB0GtIRXwXluXWhryRxpEaBHETBQBtJFar\nCpeX5wjBYXN/h7ZpsFhUePrkGufnp/j93/8lvvjiC9x9eA8fHBaLEtfXlyjLEs1hwOnJKS4uLqCU\nxnazxd3dHcDXBgBu7+6gt2Na63FziPfCsWlIrnck2FtVVTDSoO1aBO9Sx5cMSHtsN1RQlkUJo4lA\nS9OOgLLMcX5xDqFb7LY7ckyPukrceSZFO0eGn6CNvRn/OoqPxJld+3ssu0vd/djZ9JHyQFea4Dbg\n+4GLBg92Pg+eIGwgmFuAR5AyddDpD73faEccjzXWwxlPUem1RTR2BCAE3ZvzRJzC1FSMgTf0hxs3\nLRAh+XRh8unCg8/CnVeB9Nr8immKFH9IyF+6JwS592EYBlqjQ0+ddk1+LtazeS4I5x8CS/U7C42c\noV8+8cGiKMJoLbo49YoFh1aIju7zIsUYzcUKNawowQdNA1gFK8ZeH0h1zxjNhcYELZonQPPEPyaM\ncW+Znz8gEr8nKEssjuZQtng4LnTmU6D4+Dm8MfG7AOqyK00FXISPhcDiDry+uAEYJ5BJoCAQPAbe\nszePg2A1tASjhkf8Oo/XxvxngQnyjovPNFnkz0MKqRrCszCIojjnGPKljUYAYKWAHT1IWMtzowPc\nJArU8GA/FUDC2gFdR142QklIaRhmRrFWSob5SYWiWsAUBTwEDk2H++0O+2PDstQkoUxT11kRH095\nXPuYIGRSqSn/DMQNFooMLo2huK34vjbGIMto+t63HQkm8TkehyHFwLQm/AShmqYC5IujlGS1SOIz\nSgyJUxwf5+yIEDLeOwyCJ14PwS1NmoIF0DTUOY++79ivkDhRRitoKaEU8YWKzKAsc1KVkzT1paI4\nJvoK3gvUTYv7zZanojpJwo/OsdgTcakgRJpoRzXXgDgBojgXC4gI44xwTe8D8dNYpdJzMQiOq9Q8\nosmHkgKeYyU8+WhRgyEesxtrdr7j+p4fjwuhjx3ziU587Px7xN99bEo6f+zj13xQFHFh+GOc5syP\nn4qdH3BEKc1kjgcP52TqfD80BFUY+g5912IYetQ1eHxLPimr9YoCr7Xoui5xHKylQopUZ4hnEYl9\n1loMtqdOPUM38ixD3/fY7/eomZgfJziU7I8pwGlNnAlgShbios/zPPnk5HmO+5G7ct6hbhvygbEW\n79+/h5QST54+xc9//nOUVYnXb98gIODu7hav377B+/fv0bYdTJahKsjMs2u7JFsdVd4ICkYwNMqJ\nJo8HOzpO0gXxRhwFYMmJlWWscZEXKIsCQMBuu+XiTKBrR3SsWFPkBlVFSjVd16LvWoRAU6sIDQgg\nk7kyz6GkwPFwwOGwgx9HZFoh405a349AAFarExQ5mbTWdY2iKHBxfo41w81OTk5wc3ODD7e3cM7h\n6uoaZ2dnKIoCzey6lCXBAuu6RlURCV5Kge32gLquEULgIjdC3HBjaQAAIABJREFUlRzGYcRofbre\nHgC4cwlQEvK4C0xdZ/mgG0p+CpoNCak7Lhh6t93tElwGAGOsCSu+Wq34c0rc3NxABI/tZoPb21t0\nfc8kXpBfFDjhHwnLjUDJQZ7lGMcebVNjv9tiHDosFjmWqwU+//wzXFyc48/+zKI+NsjyHM+ePMXl\n5RWaI8Ez16sVvCN/prfv3uHYtMjzHHf39wCAb799jbNdgZM1TfNMlkMISlyEECjyAibPIItzACDI\noxUpcRIAlJQoywL7fQ8XPJu0Suz2O+i3GsfjkaXANZYLDcgcu+2GjEy52HHOorMWlgvbKBcb4JHr\nfwHgH3wnzqzy/5M5dpQ8Cyk4SUKCv0aRglhcxDGKCIRn51wGMswKhtl7xIlPhLPEa4u0PiZTxyBE\ndON7uFnya0nO++L7pPfg1mZCRPyODX76OX0674nrEeF46fnxfAQmXnvi5zTHI/mHhcBxIsB6Aest\nRjukIiHKHntWU4KQEJ5fk4nxznkMdkQ39OwnBRhpuGOteRJqmNvGimGzYmU+VY28H4CKBs1CAFmW\nJTf6OUQknvsp4Z2JTADTRC5e71is8ORlXsA8Vt2EkHCYfkdvyQWImPx2QjA8rQZfPy5CMStkg4eY\neXRxhwXzZI7Og0vJUkwQBZvcguMZfIB3gf2LojXC1GSOfDI6p44nA1MyJ0EiGs4R/ybeL/EFnGWP\nJEUFq4CCFBoSiuDhgia7AgJK0aQfwSEEh+AFRrYjoLb9NH1DIKiRMBpQGjAGZbWAzgrsmxGb/QG3\n91vUbYcIqaOp2aQcF+WLAwDrSOwEoM8DAHoSACMFxhCgJK0DY2gdErSexJECo0oiRD02XT1/1giD\nIthShIpOBa9k+XolBcZAaaK3DlCxOOH8RpDcPnEiiVfTd0OCZWtDU/25L1/Xtei6lsU44v1CHDmj\nFfJcIzOk0gawRLkn7pULAWBxja4fsNnucDg2WC4rZEXOEucRdkm4Mc/cLfGooeAeFJoMpYvTUFZu\njfdGhIQGACO4cAJNNknZP96DgKJbEk5QY8U79vyJV3jqVD0oKuLxuPh4XPQ/Ph4XJ5jdn/N49Ph3\njydA8Xfzv/+/dPxU7PyAI5qj8b6REoW4YGLRY4whV2I7oFoucLJaQ0qS8X33/j2EoGKnKEtEB2MI\ngSzPARBmvGlbMssCLcjY1YcU0MJAZZKdi3PsdjtsNltWyqJpRyyQjEF6j6goprXixNnzdIRktU9P\nT6CUwps3b/D29Wsc6wP6roOP3XHecM7OzvAHf/AHeP78OTbbDUFgbonHMZdhzUyOPC+wWCzR1HWa\nCkj2F0iwO1ASJ5XhzUigbbvEkYpGgVoRtnrU9N1yleFkfYL1cgUJgX4csFhUCM7iWB8QvIVWJEm9\nWi/hvUPXdnDjAKMklNHIMgMpqLstQkBzrNEcHPq2gZIC52enCM7BKJnG8CIA10+e4Fjv8OH9e7Qt\nJdpnZ+f49OVLhOBxf3+Pd+/e4cgTskgs7vsBd7d32O12ECLyYBoAHtfXV1guFtjtdzgeaxBJOyc5\n6cDqT97DsYR20zSE6WbPBc/KWEbqRwFtCq7xnEeiNglbVFwIkMxuXhQ4vnmD5thQd0vJhJPX2mC9\nXuPq6hpGa9y8e4s8M/j221fYbncIwUOzRGxMDgNAqljMf5CCNvxvX5GgQNe18N7CMaTv4uICv/71\nr/HFF7/FoW7w8sVzPH/xHENv0XYdynKB9XqNw+GAt+/e4ubmPcEnlCKhBgCHusa5qHB6eoqLi0tS\nvtvv0LYtTGZwvbxGsajwYXsCABhHh8AKTwDzrzgR0pqmVNEfqW1bvH37lknlBUI4weHYYle3sHaE\nXiwBNit11iJwXNBGJ5iVsw5K/HNU2f/8IMbk+lt8cv7fIDppCSl4aiNTshg73Q82My5evZBwYcLB\nxw49uEuf4GDccY0JR0CYqXHRVDh4T0TcIKZONj8nKjdOUx2k38WO5vT54nNDKqYi7AT87pg/nmOT\nSsk6pr8lKd5F/S7vPU1F3Zhgmg4Ef7VM2B7ZuDDCgT2/P6muTcm5VAoOZMoYTRAphmoYo9ns2MBk\nGZSauJsPigGeHHZ9h6ZtkxhI5ENInjAYk3FCyLLS7K9DE7T5fQuejsRzTdBozJKZKCUci505vAWY\ny+JLeDC/hq9TlKiPkrze0bVQKhaqZPhEhfUsW2OYUOQWcdpHxWm8poITRtB6FIpgtlFanJJtxyR5\nNlIN7HmS1gJxIkIQIJaQhJpjuwQStwwYU3Eez1U0tQyO4k5cs0oqaAWeOhGvjNadhXfM65HTdNxa\nS8m+iZMUugeU0VBZBi8kZJajWq4AZXBsDri93+B+u0c/OiAz/PkF+2eJdA7BZy8WhgmODKRzB7BC\nnADDvwzyCJ8Usbnl0HUDdrsdhmFIDdjY6JymMjw1ZOEFpRREkcFoDaUEFVUg827wmpZGwAgFo+nD\nGGOwzBcwEe3AcTzGfWrshAQta9sGBxayMYYEGpQiVAnB1wzKskCmFXxwpL4ZJJwDXFCw1qMoSmR5\ngcPxiN2BDMOzPEdRlhhYEVFKKpacGxhOSesvTlCVUjCY8rck1a6m+2foh6R+SEpxSUw6XSvB6zs1\nISRIFhvxpqWGBSkSkqAB0nO+O1Ghpf6w4PhYsfL4OfHfHyt4PvbcxxC2uUjV973+/P+/r/D6f/Px\nU7HzAw4XXCo84ijYMbZ1YAWhrusQQkBR5AjB4+TsHMvlkjD7B4dj2yDLMlIROR5psQl2oq8qnKzX\nMEXOGygT8rhTOAwDqqpCVRRQkhL+rm1xd/cB+/0eeR5QMU+kYJMvIUQiYhJhnQJPXZMPSt/3nOSQ\n8ejxeMSXX36F7lhzQqwTadEL4r387Gc/wx/+4R8ihIAvfvsFbm5ucHl9jf3hgGNzZAU3D60zKGVQ\nlhU2dwTbouSQoCViHtFTIJHwARg6EnmQQkNgStLj9xgHMrlcLRcoiwxD32K/2+Hi4gK9DfDOwhiN\nsixxerrGek0wv932HnYkT5vVeoXFgqBtXdti6Fs0xxpCBGRGoWBiZ0BAXhTIMgM7WrS+JfyuFzge\nifR5dXWF58+fYX2yxv3dPb799jVubm642FskPLZzHjUbvGZZwXCZDmWe4en1FYK3OB726NsGUnj2\n1OEODqij13Ud6qZNCk0iTMFMCvkgeMZEF0CCcIUQILWCNjqtFSEkRkswhf1+h91uh7brKJHAtCks\nqiXOzs6xWq1gmX/Q9wM2mw0iodU5n6AvESPed47H/uyzoBQO+z1fVwetFdarFdbrNbabDX7zm9/g\n9es3+PTTT/D5zz6DMTm2+1vs6xqnzy+RZRnqY51k0QOAtu0xjHQetDYoVImirJAXJYbxgP1+j93h\ngLwoUVYVvPOo6wYAcKwbaBklWGW6l7umQ24K6jJyARNCIOnq1QqXl5fI8xyv397g7fs7FEWG1aqC\n2B35XFgoncOHgL5rJxgS49YvF/8FAOB88U/x8+v/Hs9O/imKvAag0nWjzqxPCk2Pahye3MlpwkMr\ngZLlCLeYdfin7t9E+iUITAZjNCIWXczuyyiCMJ8UsHo1ItkurkXwWo1wSnoYc1FiEiyZ/BtInniO\nMacii986TSWQYkX8DlHdEpIguaEMCMFhHDryMOsagjWKKBds0/9rQzyVYbQp4QzciW7bNpkwx8ZV\ntaiScaIxGlFQIV0H/q91NCU7HsmLiiBUxOMxmZngrmrqbNN19FwIyCRvnA4vU1IlgARlmsjKco58\nSmsmHjHJgxAJQikg0xQhXjtK1JjbEGK3G0CIAjoUn6NpqrOWIUNU8oh40QIXQt4lzpDgn9P9xV8L\nAdLHwoTilJIP41fyF+Lfa6UQHnEVYsHppSSJcn6vMLnyIoioIEhwOAQHQJEnkif1LsvqpW3bQQiB\nsirg3Ii+b+HciCwvUGQ5tGZfKD2ZDgtlUC4WKBdLNEPArq5xd7/F4djCgwqIKP8ci/QYV+cdf1I5\nDdP0CgGZpgmg0RpaSRgjUVVVQmZMUy/yI4sG0FGUaH6eYqOLYJmap0RcILPXVbwHHU84rLNAoOZY\nZqhgKvIMucgYZjeJmOS5gRAaVVnCsdBZQHggxiMgIJVgvzoFk2lkmYaRESYaYN0I7wHvyOJjtB5L\nQ9LeddOgaRqUZQGTEydyt9sjBIGyyqC1wWAtQoj8NxJviT44Md+aKzDGOBMAGEPQf2G5MGbhFec8\nkhh3nNDwfS+FQJCR3UjmuTEWAoDwscj5y6c0H5vOPC5gftcEZuKBfVyhbX48LoIePj4KE3y8+Pqx\nHD8VOz/giIEDeEhwkxFm5mxKNveHXUrMoxpJURSpyxJ/NjC5XGsN0bZw3iURAmPoxo3v0/c91us1\n1qen5PVRH9E2zYRfn93Ec2lOgtuQ/0R8zziRyjlYGGNwPNa4ubnBZrNBlU9FCQKRCReLBc7Pz/Hy\n5Uvsdzu8ffcWt3e3KIqCVMYkfUYXyJzM6AzGZPDe43CkTozhAsLaiWSrlYIX0ZiMgrHzHkIZwFso\nPakQCcHu0mTFTYUmcyKGYcDQ9ejaIwJ/Zq0k+q7DzjtstxsmKgssFhWuLi+htcLr169R73eU5AWP\n3BjkhhSpjnWN09USUgjsdnt467BaEO9qHAd4F3B5eYUXL16grCrcb0gG+u7uDiEg8T4AYBhGNG2H\n/X6PYRiRZcTYUErhZFVhuVxit9uljjLhqgOCIKnzwToENtXruskhmzgbRApVmskRfFAgR9pg4+O1\nFCjLnCVKHQIclusTnJyc4M2bt2jZdFNJmaAIcap3dnqKrutx2O8w9D16LvCzLCcDUgHoLEOeRU6Y\nRHMkQYCiKLFcLmFMliZTbrS4ODvF7/3yl/j8k8/w57/5U7x+/RpZRsVq03Q4HO6w2+5xekJGtV3X\n4XCoMTDRnAQU9ijyJYAaRVGi1AsAIq33+N2dszgcahKJuCefHes8jJSc2DlY69G1AzZ+l4jIq9UK\nRZ6jKpdQSmGxWGC5WKEoSuTZFt5bCATyerG8LQbPviSA5WtAnUDyT4nmds9O/mvk7YJMYxVJqwdB\nUMDg/KxIfMjPiFOFjx1CSO5aT7AwLwS8ICPNCJCJ8WPyzQgJJkW+V1QsuRkEY3rL2Vrz02YZJx0P\nN+u4JqdiBQAcAnsJzaZQYu77MMGlRPrZTFiFITpRscz5SbUrcVsYrx+TPG00IJBMVV0ISfY/TnUA\nwGQGWZEjy/LUKRcCiIbPUxVCn9l6j24gLqYUAppFZYqCYZOSfJQkJ1okWjGm5EbPoEbpOkb40+xQ\ngopygjWKKVn+iHv7Y5w+eSNN85hYgMTnWkv+OVJpaJo5TNddUpEcPDAGnxKheM1pYBEY4iMx+2ip\nEz49nt7bMOci/ix+5shzwqPnzBO0ObfJMTwq8JQkcmA1F5gpBsKR1kbwVIIHh77v0NRHHOsazpFQ\nT24MmqHH0HfwzsIHByGQREvmCajWGsvVCkYbtPs9NpsdtrsDBmsBofEgkZ19l3gkaFQaAND3LrIM\ni6oANjUVuZ7WldESWkvY0aW1G71uYgMr7jtxKj9fA1pr5JmB0RLeOggZYJlbJekSzqZLgpVdc4iS\n1mFmcrie9p9YgBpWZAMkTJbBDSM8Q3hjDI7iSt4JCKOQZQoZS04Hhg+CG71SKTIGHaPyrEJ9OOLD\n+1s0bYvFckmiQlKgGwZIoVAJwdYY8sF3pvURrxdzwAydi8hnhhBs7TAwzWxqbgXQNJWF1eha8YVU\nIHsAunZR4IV5iPQKFA+nC/+de3S+vuf/nk9U5jEzfq7H/358rz/+Ewvex5C2x8pudN2ne/f7pk0/\nhuOnYucHHFLrJE8IJrXOIWyxA+utxWhHnJycQAiRDC3T5s5Ev8fdNx8C+mFg7LLDMNgHCzXi6tu2\nhRISXduibRpWrBpS5x6YFj1B1XrgkZeAECJB7pSSjEseEq8mBkStVOLFRKW2uq4pKe87SPZ9cd6j\nG3pKzjBtopHn4pxDnk86+DHJoM8auypRfAEAKGg5VrAS1kIAMEojBDCEj6dXoI5fkWXouoYCfmbY\nm4eSE2vHlNB5R5scFZwD7NhDKSDPiNej5KRWFTwlIX3fkxCBVJCsYKS1xuX1FVbLBbz32O12aI5H\nHA4k5FBVVZKMJsxyj5ahiWVZkpGkHanYOTlJpm0RQy842YyJXD+MaJsGXdvOEgFyhRbsRUReDQ8V\nm+h7PDId9JP0pnMOSlNhkWVZ4gpF5aK4XpSiadAwjuyXVKMfBtyxuWrs4kYlNqUmJUDP/hJlXqAw\nOUGLXIDwAZcXl/j93/vX8PzZCzRNi/c3H9AeWyxXa0je4LabLYZhxNXVNa6urvD+5j12ux2OdZ0K\n97KkSQ5ARXXGG+vhQPwnchyfJ93TvxEAbwPcSBu40QoIAU3TkM/S5QUuLi+xXCzQdh36foBSBlIe\nUdcN9vs9opxz09QpwRiGAU2YIEHxPBJMzKb7P97zWiogSO6OB1ZaIvduCaSu9iOAQ+peesHJn5DM\nB5iudwhU7IQZbn+eLAaOTcJaCO0gfYCQM1gV/x0LJ8QNdTqh8CFu0OLxh4wP+U6XEqC1KeKEZ9pi\nEd+dYmvUoqNiyzPHIxZI8X43WhMkOHiMMhqCjsRlU1RMChllmx08d9JjI2i0ZMgbVabyPHsogxse\nJRrxu/uZ/w6vyRhzHnSRw9R4IOPkKalys0Qk/lxJkgEPXO0JMRUK9FiR/G+klElIIHWLAbIyoGoP\ngJvtKzJ9i4CHhQV9Jk+mooiKodN3DpJXRZgmL5EXiACeZtCEh6aLIChbABDIHFhGgvrsnFKTzeLx\n/hi/32M1ujj90VoDQkKCPOpi8p3nOYSSpJymACk0xkGhaQfIUKNrG/7TwjpKyIsygw+ehUXsLFZa\neM97N691rQ2ynFTYmq7D+/cf8O7mBrvDgWSJBaD5+gXPk7D4XTGteYGpwaCUBmBRFDkywzxbUJEb\nv1fcv631GIYRnifzc5nyedH40F9J8HnjfVWQT5LWEmD458B7lVICi7Ikz7os+rERDFHEqaH3cLOE\nfBh7OOtwPBLfl8R4DMqqAFt2wfB3yLMMeUZeO0opDG5AEP4B0b5alAhCYHfY4diS4E9W5NBZhmEk\nmWyPWAhHvhgVT8R/Il4N3Xd0r4P5k3MIl+AplwcJ+sRDCMEFjaAxjUcCpEzwNsxiF/hzzBAW6Wci\nTZvnRyxo5oXx4+nMvNj/PpjbPGd8fDyeIH3sePB+eLhf/hiPn4qdH3A47x4uKHx34USYRoQ/xC5h\nJKlGErCa3cixq4UQkv4/vd6YNuEY3JumIciQJ3Wb6BEwDBZtOxmcxmBm06Y7qbBM3TOflFEibGf8\nv9h781jr0uy86/cOe+8z3HPvN1R9NXZVV7XdFQ9xup14zGRMBzIoxoIoJpESCH8QRZBAiEQUEgQI\niQgBAaSEWEpIFEIMFsRTbGwyOTjGju1O23E8dHvooYZvqO/OZ9x7vwN/rPXuve9X1caUkEij2q3b\n36177zlnn33evd611vOs5+n7G/4ss7phuViwXC4H49LdbsfV1aV0XnRjiikJrUkDufN2mNfY7Hb4\nqubWyS1WR0dYZ+h3/QDrJ+2SWjVWs8YQCg8GpFNuPbYqGvlxGPK1RozTQi8BerNpmc0blkdHVDok\n2fdlcDLinGWmaFaKgb5vMQgCUzkdkPQSvPtOCpFSAIQQ8Y0E6OPVMX231yJTVOJKVzglGVq/desW\nJycyB3U4HNjtdxxaVdzLIliBkcJnPp+LX05BrzR5KRtaSonQBzabDftDK8msJp3ee6xK35Yu/oDs\nGeGuJ7IqTmlnyBjETb6jqmqOjlYsFgvxXdkfhrWZhsQj6XxRz3q9xjvL4XAYELUQApFIVZeNdtxE\nZP2KQpYrTYEYlUZjuXfvHs899zzWWF5//XXeeus+s2ZG08y4vLwmxsSsmfPiiy/z3PPPYxB1uO12\nM0oD58xisRj9EAwDB3s0q/VDMjCbzbC+Yr4tWqqSs1kr8xmr1Yq6rtjudqxWK1555VWee+45uq7j\nM5/5DOvrtRYYklTutjuRaC1dw0nCLpu2kaHvNCaUKeUbVKJUmiXZYHMeWoF5smeVRHfaHUxJEiVj\nRG3LxShIac54V4bBb26EU3Ql6dxEMUTO1mJ9JTMESWdrrNDxynsWOsrNzZPMjfc9bOzvcpTEVR6r\nykiqIFeoakw2V0kUkyYjhpTHJL28RopRYrQWGVnnBvp+9AxxKsmcUhKzzhiGmCLqadJsct4xm4th\noxh9ltgpr1rox9jJDMQkuUxZvWycGxAzSldfOzrjvjGqQkkj5olOql5b8cKxWjhMqFxy4W8c5do6\n5zBOVajSTQPCImxQ6JGlcCqUN2MnyfFAqRmTLac0qikSOD3vbAqKpJfKOryzWAwxgYny986ZG0Vw\n2Rem72WKdt1AvYzO/mT1GXIe4zxV01AvliwWC5pmRlZ0tg8V//13/G7+4T/+cmK0/JqXf4p/6Wv/\nS2ZuS+ylqJlrYt9t9wP6XFfVkLhmkjSWvKeqa0H9mgZnHRdXax49esTbbz8WFU6jpqyUuac0mKMW\nirS8VZm5E2qZ0ZmpopY2fl/XbuLtp0ilUB3kntT7Z0ArYDKXNc6ZSVyOeG8GhUFj0AF8eUyYPK5p\nGmZNwwbZG5KupcJCIfTQ50FgIqRITJndbst2J0yLgjZJNBxn7kQNtqGuhJFiswUnynXi6SV+ZSEl\n1roPV4OstWe32wzLf4xNZX8s91mhspXPYYxfTtVmy33snB/Obyg6LKDFjwK5lPykFDlGcxYzXEvE\nYBfxKy8xkUkx8vnW9BThnCIuTxY+4307FkfTgnbaOHk30YIb99Gk0Lox9/cFWuSU4/1i5z0csR8X\n06TJRQlGxpTALt2eqpaB5EN7EGUOTR5TiiJjqH1LqwmYTM0Jz7/vpNBJceJqq/Do3uwJfU/lK06O\nT1gtFnT7A5s+0iuCYZ3TLlTSgFTrQG4xdBuTrhBU/W2i3NbUNd5a8QmZNzSzmqap6fqWK1Xq8lTs\nDwcO+wPWe6wVBMPiqXwjNC0j6lXZGO4+9TSr1RFtd2DfHYYAVYzTnDPawZZ/U4hY49T7RLqwaPJg\nUDWmEOhVdna3E/W1ZjajmYmbfR86QpvpY6KPpTgQmdgQxOTPKxe6mJeSHRi5VrWiUaGXhLCqKhbL\nJbPFAs4cu90Bf+TxTqQ3N5sth90OX1fceeopVqsVbdeTu56IIcSEdY6ua8k5Mp/NOF7OyUnMT0Mf\nBKkaZnVkhomc6HTYOupMQ1YZ26HwBsgZqx3igk71UZMp7XhCJkbDoRXFodlcDEWdsZxdnJOjaLfm\nJOafUhBLQZhSoG0PmKahD7107aJIsiaV1k1YMUNEWnhdG8BZbFWBs4ScaENHJLA6WXHrzi1cZXn7\n7DGf+dxnWe92PHX3KXb7A32MrFbHfPBDX8yXfMmXUdcNb73+Opu2pY1RXNrV42O5WLDXoVprtMtm\nykRBpk9ROr61UsVColI+fFa6oK8rVicnPP30U3jv2d9/i/lqxcmdOxydnHB1eUkf5T7LSa8T4ivS\ntWLY6OYVMNINjCudvAg2DwPA066ZNDwsMcvciymJizUykI0hW6Ggid2N8MSlyBHEwyq1ohhnZmtV\nCahsyDo2ayTmDM2VTlUiU4QYCV2H9Q7bO5xk2UJRy5Web77R0SwhcEjky6ZeYlYRM2Dc1K16rAxI\nJMVzUhGIspHr/4zR9y93BclAMloIqoJURqSm5T1akhF6bLYejDRgxDleZxdCxCId99j3dIe9DkZH\npVA21E2FVUmsQdHQysxBNjfRiJgifezJJmF8xlYG1xhcJTX4UAjacX4pY4ipzDyUofryxgTdDtGQ\njcVhddUYDJq0pgwTvxQphJwgt9lQWYdnZBGY7BQ1QJt1ggaTylyXJSXHw/N73DrasFq0uCTx2Fgv\n1zhGItLxl4Q1K2KabhTA8nqS8FnDYMRprcEmTzRRCtgs6zfpGkhJVkQWIzWcsTijVCd9X5E4SAub\n2kESdNq4iqqeYf0xP/6pr+X+2Ut86Rdd8fW/7meZ14G/8F3/Aj/44x8Zlu3Pf+4r2W7/fb7pq/4j\nls2a1ZEZZOU31xd0+y3eGppGWA6ZTDZqDuorXDXDz1ZUsxVd8rz5IPDJX15xdrGnCwmMSobbcsfL\nPZjMFGk3OON1JsdhDVrAoE2uXvMLLdatk3WbIKRE1/YcDj1tJ0ixxci8S2ls5UKRVKNXMn3o5P60\nFUbGdeS+ipHQ96TYg8bSyjtmTYV3hhjlXGLocc6yXCxEPVXXb2luhSjNg/1OJLu9Khg6K7N+Isag\n97c2fH1V03cd3s5k/qqgYrUjWlhvt+y7FlN7ajwhJnb7AzFkai+0+2JgK+IHKivuR5Sr5PrmhiS7\nyPYXJzOGokUK+HFNl6JdC5gJGunKI9LoHlryPQmW6r2mzY1pI6j0u0rolJcvhrWMhdnk3hoVGxle\na8oymhY7N8VsRoEt+a/C/riJ6Ewb+CW2fiFS2OD9Yue9HUkGS61u5EmdlGURSPVvkCq+mUlx0Yde\n4WKj8sFZuyLj8KUb4MoyxD66hEvHShCPEIKYo0VxoZ81ntu373D3+JjdZsv19bVIUqvqy0BF0+Kn\ndHMK1U06jk75zUJj897L8P7qiNiXwskSU+DQCvpzvV6L8lqM7PbiOF1ZLypbOvxY+YaqagArniYm\nC+e18rjs8VUlCXInAb/SLqgzVmVlrdDkjCAWIvMdiFYLwyRbfjH+22w2w0CxdIFlI2j7wKEPdDHS\nhUSl5nYi4SyKZlVVEYMiaEES37qqmM+kq2uNdJmqqqZpZO5qu9txfbVlv2u5c+sOdd0Q+o711TXr\n9TUpZ45Wx8yWC/q8JTsPvsJVkSY3HA7S9WtqJxLWrbi2pygKMDJzLB3PmCTYhajD1ka6lCkXSk0i\n6ZyrMzJonDSihZxIIUmRZT2uqiSyZUPbR6wVm7SMoWvmP7+5AAAgAElEQVQ7zh6fCpKWRI2ndMrK\nXMeUrtn1Hdv9lqyu8cFArwO33ss8gVFKANbi6lLsCIUl5sjTzzzFyZ1jdu2e+w8e8PjsXKhGVcPm\n7Irl0YqXX/kwX/HR38BLL73Mo0ePuNxt2fc9AckJkw7TSqGs7uraSY9RisNI5tC1ugFB1wW6thuT\nVTJZEdnZYsHyeEXKmT4n9l3HxXqN8Z7tekMfE3Uzo/Y1KHLQ7nu6NhKiwbsGY+U8EpmQC8UPjHYb\nnXBSGBolmEH5LKnZPGYUF8jGkKw8XyqUFyV1WQQJtOrhUV7XGAgYbFYefum2G4PTDZicpWHQtsS+\nJydBR/pO7lUxPRZ3+RB7iqLUKHhgpeDLU3TBKFI2QSek0hm7hHmSQGCka2pHHy1rhD+fotIonS01\nFjllYk6ytk0Z6paCoLy/pP+NrbAV2GSwblSVFG8YcEaUA2PX03UHlSZHzQ6dmDZaM1aLrigrGYZP\nw0ihHHMk5h5slsSysbjaYHwGUwoBnSnRTnNUA8SMeLVZX6lAhuwTMcsMkgeiEeRHkDhDpZ91mS8o\nrILGVUKxSqLeVemsgYwkWircWBylgtYkvPN84pe/jL/w/d/C+eYWlev5HR/9Ef7Nj/0tQWwRGqRJ\n+vkqZdIGuZgml4Sw3FMTVNIUtLKUq4YcLd/xw9/AP/yZr6Rykd/20R/lYx/9YTJR1r4zYpxpHN56\nHEZiWQ6EHPmlh6/yic99NbOm5atf+1GeProkGUc0R/wX/9O/y2cevADA9/0IfOkrv5Y/9+98F3//\nx7/sHdv666cf4c9//3dT+R2/6Uu/m2/6+v9ZEInrS4gdVTWj8gZfVaQkqqFVs8D4GlfP8bMV9fyE\nv/rdv4n/7Ye+jhAbnHnIcfMnmDffKw1OvRY56yJGPVuQWOycx1vZ503Ospciss/KiJUi1xhxuncS\nJ8Rf6sDhMIphSNFcFDmVgqymyabQZ5PYAJjstbkCJkkRFDqZBy0JcV0JIhdjPxQ7hqwsiZk2CKEI\nQsSYBsPrw36PIQuCZKcJuyik+QH1EuTPOk+MhtBlYs64Smbm2hBY7zf0RGzlSDHRHlryoWXezGhq\nTwxRG1+BqjLM5/WAVqQo94dTdb5Rma7QQsXMuIgYFGTHaiGGKaqTOkuozbQiRJC1irXlmiMzjmOJ\nMT6niJGMyIlRNG1Ed0onvSA3aIQYC5IBsULW0uejtD15ZG0AjiIopduGrrl3zgZhxmLqC7Hgeb/Y\neQ+HQMByo46LIY//aqfCGMNsNhtg0ZIUTOHEKazoFLItBU75GuRCNZkoIgQFlq7rmtVqxa1btyQp\nt6N7tnQwx65jgbUL5edJKcpSeNV1zb1794BMr1BmTIn1WnwsBPKVINF1B/quF0MxLdJKgCjJUHnu\nlAKnZ6d03YG6qSYStxPX7wlKUc47EcdELTNQHGazBmf9DXECkFmNnDP7wwHjjFBT2pb94TAMsJbh\n4pjF+C/rORoylcL8fj7j9u3bWP18bt++pY7nlssLUZa7uroaJL0Btrst6/U1l1eX6pKug8Xa4Yk6\noBlVJrNuKuq6AcwwUzQINMRIZvQdmq6LrP4BMcqQsdBMGPxCrGHY9Pogyav4MmlX0DusceLRo8/Z\ndx1923J5eUnoe5z6QZSC2RVETT/TolgV+sBsVsvQbhRDuif5xjI0nrWjbEkpMNfZmmeeeZbbt+9y\ndnbG+fk5MSaaZs719Zr20PHMs8e8+uqH+NCrX4SxlsePT7k4O6NtxSw2RR1G73sZSC7KYEpf67t+\nTDJ0cxBU0tDUzTD4ndKodtZ3HVfX1/QxstvtePjwIc451tdrjN7DddUQohjUbtZrTs/O6LpuKCiK\nhwoIclpk6UMI4kpvCz1CZw8UjTEmkbIVOtdQHCgTPEv3XNmJQzcuTzbGJw/hsucbPkslapWHpZzp\nQ+RwODA7WhIy5L6n0qTAWktEmgRSfEnCPrzkE5SM4bULllGufS4yxWpWmm9SJ6bdTphwyrUgcs7r\n88Qx3mj8KEnkdM157ylzFUXmuKQdTGJMjFEkqWOZR7DD+57S7W5SljVxGa7zmCAIvUdl7e2YQBT6\noTEGohQ6MSWlV9aKesg5l2HztmvHBkjOEjt0tss5M1A1UwqEFPDOkxaCWFktOslZ5hDLOkKKRUH4\nyoxP5rKd8Z9/5x+iCzIj0seK7/n4b+WFW2/x2z/6cazvwDhBJYj0Qc4tJxHQ8M7hrdOGn8YrbSIY\niyBaZQ0m+Nbv+z38wD/+zcN6+YW3PsjZVc3v+urvlcQRq1LbXt5v1iLWZr7/p3873/6j3zI89n//\nxO/kT/7+v8SrL36Gv/+TXz8UOuX4uc88zz/4xId/RUZOHxb84E//Pu4eP+LLP/A3dZ5S0MCkn3sz\nm9PMZ0I3q2uq+Yy6mfEjP/XlfM8PfsPwXDE/y8Xhr1JVXwn5dV2zpYtuhwZGHmiCmkSnpGIRI7JZ\nSBjl3gshiEpnyhwOndLPA8YWI+40NACEbiloQ9/3MpWVBYEvFEZjBAmXpmdLCD0OM6De1nmCzrch\nSwNf1XgtqJ6kOYYgdOticj69lwqLwmQ3mDM7Z4cmiPeeQycCPDiHb2Sf73tRmUs6b9MeOtq9zNA2\nVU3lPAhYTQwJ1wgVuW1bDoeDSoePxrzltcq9+27xq/xuuPiM35bCpfzNsOchMciiFzUrryDbAXXK\noIUuQyyZTir+SseItkzPhhvn/444PEVpzLv/rTGK3kyeb/oK0/f6hXa8X+y8h6PQtKVbIpur1Y1C\nGpsiH1qGIstQdNnESyIrqm4W78swoZMunm7e0w22DOEOmzcMjtxyTmKUNiTIkySzLNhS4AxIkiau\nBSLPWczHTk5OWKn875ufe52cE/PFnL7rub66AlCfHknK9zrj41wlHN0gHYOSHBfBBLkGiYuLS3a7\nLbduHUuxoj4vRSWl73qSzVRO/APm8znee7a7S5VqztRVzfFqxepoxeHQDVKhKWVWq2MZojRZ5K9z\nousD+4N4Fkm3thLfGqQobGZzTE7S/Q8RZy1HyyXPP/ccd+/cwVrDxekZTz/1AsvlgrcfPeIXPvkp\nurbl5PiEe/ee4+5Td4mhl4T96nJAmJIOBbeHjsvLS3bbLbWv2O13YuJ65w6L+Yy+D4PYQkppEJsY\nWmvGsN8JgpbTtIFuhiRS+NqJHIrxnJd5giiFqfy5HVRt2oOgHMvlkvl8Tkb8RZxzzOpmnN0xiNz5\nYsF8PiflqH5Oe66vr4bBV1mzhpTGIDkdIs7JQBYzP+Ms89mM1dGK5597kbqecX29Zn29wVlPXTdc\nXF5xeXXNS1iOjo4xxvLmm/f52Z/5Od54/XUga7EjBXxQp/rDQdqg7eHAphWhhflSZFrrqlZvjIqj\n1Yrbt++Q/FOAFPQhRsLhQNt3nF9dEnNivd5QjOZCTHgnjPP9/sDZ2TlXFxdcXl5yvdkSgnTspOhR\n8z0vc2NTOoHFDBvzQCfQ5DCaKEagKvebrPjmGKUHGoT2I4mz0CxQmlgeAJQ8xIaUwFnBf8oOOSTl\nuoRSlrm27XbL6taJoIIhQlIjXxVUCJrUZmvIRgoXl0vhkgeDxGlBJe89Ddc4qcSy0Z/nKcJjnhzO\n1YWUJ/LJKdMTJ/FOrnHfhUENrnw57zFqhNp7JzNrRcpYz67EKFHuUqUrleEucWyYc0ALuDzSD2WY\nWU9zkrA1lTaTch72AGf90FEthVVdNxgjlNUQAn17IPRCKW4PLV3fi4eUUep0zpgkFBZZT0LLxQiN\nDmA5XyhK7mh8zczXQwfdYLHeijongphl3Wd+4pc/OhQ60+P/+Llfx9e98ndG5TdjiCbT04vqYBZ1\nx9pXYtRsRAwghKjIF4O3TAHJdvs5f/cnv/Ydr/W9P/4xfuOr34bRQs7pXIY3Dm8c1lj27ZLv+olv\nvvG4tm/49r//O/gz/8Zf4vVHH3jH8wL8/Gfv8DVf8nF+6Ke/7l1/X46P/8Jv5aXVX8FkmTOR+RBJ\n6GeLOVXTYLzDNzXNfI71nn/w8dfe5ZlqDv3vZl7/xaFAB13njLO6zpQZ3qwxQdFEymxWoZwb9dIS\nz6MQIl3Xi3x6SpLww8AkGWavkJm0EDtyTkqTK/M7ZcZDUtpB7KGuaLz4/jV1DUbok67IYFeeyjQD\n2r9YLOmDxMvr62suLy8xGJZHR9qIldcThVSHs4IYVd7dmCeuqgp7KJROaRJ32ljcbDZK2WtpD1Jo\nmyz5TV3VgxR3jJHDPmHM2EgtP58WXjcaJXo8OTsz+YX8rIQOM87mGCOGotlmYaVkQxFWSZQ4PLGB\nyDcLEECofADT15ye06SRznAKpWnzTlTnyXmdcZabG7+7gb7n0sL5PEf+FX/7z+zxfrHzHo9xo1Tq\niJ10+3LGVW7wkpFh9ZKAjCjPKP9XuLXj5g3jTTY1cqzrZlD1KufR9zIsXgGb7WbwUMlJ6B3lmCJM\nRRmoFF4omrNYyFCms5a33niTO3fuqO/Ojr7vBgSqnI8UMZEYpVObhs3f41w1JH273Q5BjCqyIgJe\n5ZGn1yJGMbTEi0pLzgxdmap2OhwtCVDpOBXxhxgjs9mcu3fv0qvPRUb8Q2rjBmEJGU6uZEA5Z3KQ\n+Zji1dJ3LcfLJdUz93ju2Wd57cMfxhr4iR/7R/R9x9njHY8fPaLvW27dvsW9e89wtFyw2+9oD3sw\nhqOjo2EIerVagSJ2VVUzX8D11SWHfcut4xXz2VzV/SKL5Xzo6JbPWLqulhgC1+u1+nZE7XI7jMkD\nJB/1c84xSkLk7YAmCto3FssyhyMo0/HxMc888wwGePjgAdfX1zhjBf2oPEdHR4OZpnOO3W5Dp4VF\nzplK5U0H5SjnxMk7j2hijCLbbIzD+5qj5YKq8rz66gdZrU54+PABbz86Y7/vsNayWe/ZbQ+EPopn\nQtvz5htv8alP/SIP7j9ku92wXCzwzhMLTTNnHIaoks9dKx3PxWIhst293mMhYUJkNl+wWIg5Kcha\nS2FHNtDrZ2C8Ey+kPrLfd2w3goSdnp6yvrpiv92x3W7F2yImjBe58q4TuqXcDw5rJIkJfdROK8Pa\nt5rITFHfrBSm0uwwxhCN0tGyoCpZJ5ELlWFEG8YCohjOjopmBcnQjU6bNTFG2rbler3mTtfhGhFt\nSFlmMQzgMIShS2k0dikNBwOTGDNAT3oU7noeM4Ubca40kG5uwLrBZ5hu5kJZlM8xq3dFTuJ71Knv\nk6xDKXSSiUODKRkIORMIKh9bRFyk0JHY5plNpHurqhHjxCK6UaidGtiNMSLOpLOGXmcgxK/IyHxL\njBLnXYaU2B9m/O2f/AP83Btfz6LZ8Otf/Q4+dO/72O337PcHUdZSCrMgY2Ik2VQ1tZeEJSdR/XRe\n5j2c9+Rk6UPHtt0LzTdD4+VxJluhGJOxzhH0/VrnBvW2w/78HfudBIwNjx89IChSI74ynuwyKYg0\nujOWxquMsDVqFBpFxW5AH8tnnzm9bgipesdLbdoT9ptA5QWFD0bQcW+EbuWrmtfPX6YNzTse+9mH\nL7LvWl649/Bd38bC/Qwfeuk7efT2H+EXH30jKb97GpRTx2G74ZY2gnwln7+vG3zVgHUY63G+BmvZ\nbHe07dW7PxcHSa4ZhQEKHRO9GkNBnZXQ6ByDh7izWDvOVVhr8PVMPrPSYDCCelpnleKclBaZMBEw\nZZZlTGzL7A9Azjr/pPHBWSsKdlniQExCX5e5H51xxDKbLVitjkk5c7i8Yr0WcYaLczE1Xa6OqOtm\nUJ90Vhq8s6rGq3R27cWDSryfxusxn88xTprAF5eXPH58xuHQEWFo+lW+wSCG0L0P1IsldV0RY9C4\nvOX4RIR3iiptMfgtTY4pNXt6DEVFQUAoBcr4uZVRAWEcRly2KtQmM4Wi2Kbx06hkNdKwSBPpf110\naED5POvoyZJGcyi4UYA8idhMCxpZe+bJJ/rVHeVF3stj/z8+3i92/l84nrwhjDoHz2Yz2Xy7DmOc\ndlZGuedSNDxZfZdj+t9N07BarfC+pm1buq4bUJ6Ukgz/9x2Hth0UNDII9cHJZmY10BUFM0ANOw2L\n5XIYyNxuNuSUmSk16+rqiq4VJ+ZmVk/miLJuyCJ7HOJI2Sod7aLm0nXFtNSrEWqg70WGedqBFinN\nmuV8yXw2oz30bDaSSJp9j3Mwn82p9H1fXFyQUuaVV17l+edf4Pj4mOv1mjfeeJP2cCpJT1YKlyJv\nbR+wSRzRSxeo7Tq6PrJcLrn9wvN88KWXeOXll7n39F3WmzVvfO6zQnNpW+6/9SZnZ2esjo545pl7\nVJWn6zvW11fstmtiCFLgkPFVzb5taTtReKoqP1ANnr53j+W8IaTIYb+DzICAHQ7iteQVgcqItLes\nJ0XJjCgsiQKMfAYy5i1dwQKhF2lda6wKSIgCW6EslTXUHg60hwOnj0/JKbFYHUknvRLlH2PM4DvS\ndx1TilFxpi4F2ljsCEJVaIf37j3D9XqLtY7bd57iaLHg1Vc+zG6/5f79R5yfX9B1YSjo27bnAx94\nmQ++9EEMguq89eZbtIeephI1vaxJZ45CQbN22pkbk4DK1xj2gmIEoQLJvdTSq3GeDDsX8YYsw759\nACxX12tyNlxeXRP6nqvLK/b7HSaJMEGMyt1OCecambnRfn9OGZx0KN+NelA2t0KTufGVss6kFMqU\nDqcbM9Arx+cZ49KAQJSO+viSxKJ4ljNYsDq83nU96+tr9ocDq9lciy6ZhTLWDevHaJNHkDV5PqFA\noD/LMps36UDKvMJQuUh7tHxrJic3OQZO+VDsmKE7Gyb0NXGNbweD5BijJItOZiCnSmkBoZJKVjfx\n0MgjrcXVFY3K7FdVM848WqviMpZkRTL6xvnasTvtnRmG2W1KxCz3QwhiV/DX/t6f5pcefjUAZ2t4\n4/RP89Hn3+aFo28jZo93ikoVmnGMck1dgmRkLs8YqnnDYrFgtTqinjWkLJ5jOScOuz39oSVn6KL4\nPsUY8SnhKi/iIYDLWuzExKt3/y6L+o+y6+7ceG+/4YW/RdeLWAgIrcn6hMlW6IExknKU34egaITE\n3BgV2ZGLPSSJd/wbPL18k8fbF2+81hc//U+Y20xKZkjQs81Em2UhRcPt5g287QjpJgr14tMP8JXn\nn/uaf8IP/eTX8MbDp4ffPXfnMxybv85uu+abvurPkvJ/QzYnfOvf/ovs2ls3nue1e/8L1oqUvVcj\nWF+JtLTzHpzDVTXGeXaHjgdvn3Fv9W3ATaTKcEXtvpOUMsoqHohCA10IgzUqWGIN3goqWLnR2b4g\n895JEeLrhkMrRXEY/GGEdjLQOdUfK6Y4sFAKkuO9IipWB/OjeOxIU0aMrOuqJiWv56CoyGD6KT8T\ntVXDer3h4cNHPLj/kOurDcYYFosFy/lCG5dCo3PWylylLSqA6P3ihgabfIGrGqz3rLc7zi8u2Wx2\n+h6Fgp1NUROUZmnXduOMrRWKdNd30vCsRdG0+C5Npd6HBtPnKXY+H+VL5gwha5AtzW6Dsi3UxHSM\nX1PUGY2FY7PoyaJl+nrlGZ48Stw1TBruk8c+KTjw/+R48rEDY+ALENp5v9h5T8dk0Zs8bKKlo1lX\nFTMdYBdfnUzlJ1K4SvF6NwnAd5PWLDM5q9WKGNPgjgwMMy+H/QGXx5meQidJWWWHJ1KT5TWttaK2\npsWPJKYtfddTKwXv8ePHw/D+fDaDrAaHGLo+iMKYQu4pJCrrhk5kSsVHR86jruuBAjjMAGjhJMmw\n0PkWi7nINa+O6TqRYBZ/mw1dtwekY7/Oa0IIrFYnItDw1F2c9zx6fMp6vWGjsygxp0EgouDNtvY0\nzZzl0ZEmyxl327KYNTxz72nu3L5NXXk212vOz854843PcbI64vz0jIvzc6yBo6PlsPEkVQbYbLek\nGCTxqGtWxydsNmuqesZ8sRQecntAzNlm2n23NM2MFCObzUaQB5XVbpoGYy1tJ7LaOWdF0kQW1wz0\nBumaGmNxAMYOZme9UmCM0+QzF7pWGCSY9/s9p6en7FXK+Xh1zO3btzWpFDPRUohJkp2HjnhBIp1z\nN+iaA7qoG8l8Ltf78mojlL1mxp07T+F9xdnZBednF2y3e2JMeGcG+fUPf/g1XnzhA/Rdz1tvvMn9\nBw9ZrzccH8nQch97GaqP6qWQESU5OZPBL6nQmxbzBVUjKOR8PiemxG6/k3utaah8Tdd3et94+hDY\n7vZ4HwSVubxG/K86SUAlDAhCozSPlMRZvsy7gXZdrdHC9PNElgndQAQjxoiTcxb+t15fIfUr1UUp\nFYWAYJ543LDJaVywxb8H3bTtSLHd70Vqd3VyS2bXkM/Z5zRIwk/psal0I/WV89C8GeXNJfN6YpPM\nw/8Nj7/Bex9eY4oQGU26Rndw5xxZi5+bFGAnjRftVBcqC0pFS0qnK7LbxavHOSdzJ04H4iezOuUz\nLpLXMTqlqQqlTIpqEQ1xGuvk+ceOsDHw8OLlodCZHj//6N/iM2f/Cpftb2FWPeLLXvgrvPb8t9H3\ngd12iwkRbE8fA84ItWjWzJmvjlierGhmjc59yPXZrNfs11u6w4HQdsQscco1nno208R7LIyJkcq0\n/IGv+WP8wM/8e3zu4is5mT3kG7/4b/AVL/0jyB4TjQgq5EyMvfSVU8Yk+XzFrlPo3mUOpSTrJRlE\nqVgWwx/86H/Ft/7Yf8y2PwHg9vwRv/cj/x1WhaZiyBpfragYWkvIgYozPvYl38UP/OzvHa5f5Xq+\n5WN/j9ligW8M/+kf/Wv8wA+9xqc+veKo+qfcm/8tfvQXfh+PN1/LndU5X/Xq3+DVZz/Jv/4Nf5Lv\n+Yk/zpvnv4Z5dclHP/CX+eK7/yvzZkkza3Bq8ls1DfVshqk81tUYX9GnzMX1hjfu36ff/yB3mg1X\n3X9IzK9QuZ/geP6n8PZSaKgxCXVsoKjpfVNQniwzlZW3VJXH2aJ6NtpO1FqIJ2PpQmQ/WFoYVeor\nybgd0FR0DrAUOcWHyjsrRTXipRZDECqVMdIMrDym19zFGpyr8HUjypJIwYuxbLc7Hj16xIOHj7i6\n2gBS6BTrjcpXeo/IjJAkzVHBX4N4igkFc7/fk4FAQ107UoL9oWWz3ZMzOOtJqCiKEfS7cqM57+HQ\nslgElsuG5fJI1e5KA2CUUy6IzmBwWhBpbib50+MGrfYGLqcYizGaDxmNsaPKIEYU56z+m02exOkx\nDhbRgfJCNyhmZiyQmT72V1l//EqFzxBvf4UnGs7lV/Fa/6wd7xc77+EwpnzoU4hQNhfnrLpsN6SY\nadsOw8gNNWYMQuV4srgZX8cMUO5iscAYQ9dJJzqEfth8AR1kHT17ph1iUfwZN/LyGGut+gYU2lRH\n6HvtMllOHz+mD0GNROcAtJ3wx6119G03DMdDmS8q3Tz56bSjWihXOSYwY0KSM2rYxkDfSkl4tctl\nxXPPPUvdNMRwYL/fKLpgBvh9Pl9greH07Iz9/sCD+w/p+p6joxW+Eo+fGEX5y1dCMZpXjuViTlV5\n9tstGZjN5qK85EQq/PzsjK49cH76WDrAObNeX2EsHC2O8M7StS1Hq2MObU/fd7TtgRgC87kIUwjC\nI/4B1lVsd3tWx8c0VU3sOg77HbNGnNkPu90Nf55KC9GYRE2s7UQFCxi8GKyaqyYtOId1JdrDUnCq\n6lzxdBoKc03QY4zstlspGHJmsViymIuJ4n5/oFep6/I4UeYzQ4fs5sA2A6UzpUhOQtmq65rj42OZ\nQ2g7lUuWNfPo0SPuv3Wfq6trurbX55N1XPmKZ595BucsDx++zZtvvMnZ48e0hwO3jo9lgwwiXWuN\nxQ8Fh56Ls/gsJsAi/Z5YLJeibOccs/mCECLrtQzRFtXB1Mkz+Koi5qyKbSIZXmhVpSebks694LTr\nKJ3sPkTSEGHLes1KQ1EULhVqygQBySUJnyrtjM8jfze5t4cFoIV8yaFk29TNXuf+sFgjg7LkESkS\nLps8c9/3IloR46jslrIOu0PJ2G8M85ZlZ0ouW3SHGJGcSUwaY5+oI5l8831NqW1ZqngRdBhimiKZ\npYDRa1cMRSWpcZDNQA/O5QkZhSCKepmoGmrRrp1imY8Zh66NsUJ/da40YtU4tCfEHkLWRNXr55oG\nBKrvg6xTwHnLrr3Nux2H+CEO8cPyff8M//izf4rlYsezx99NtpaQM6nrIUvS7Ouaaj5ntljg6gZT\nVThvB2lnnNB4N9ci0tKTqSrP4viI5XKJdU6Kk5SIep0shg8evcUfvvfHSRFcziJGYb1SmBwmRnpt\ngoSg6FBiEEOwWSSWx6VooHhupVEO31jDF939FP/Zv/iv8bNvfwRjej781E9R+QzJiuJblGRdUEoD\nDpINhJz5bb/m23n53i/x0299DUdHkd/xGz/Jc8+cYlTQpa73fOSLvwe3+ydcnp7zgz//HZzvvgKA\nB5fw829+DX/oG/5tPnjvZ/nDH/tDrLcVfXtKd9hQ+UqotnWN9xXOV+KjU0mRY31NALa7HY9Oz3jr\n4SNOLy7x6a9yb/FtGDfDOG1+KPolSKKbrNuSqGaZoTFljkZUwYrQSmkYAThlhXRdpGt72k7nuZyj\nSOyXa6t3mSbdMks4bS8URUVrispfxHpHVXkapcznfrh98b6mqhuck3ulaYQKtl6vOTs7Z73eEFMS\nM+e6GRB/aw3Gim9NOS0RA0Ljonq5dT273V7icLMgZTi0Uuj0fcS7Cmv9MKcnSC/D94WKKzR5ieV1\nM2N9fUnfd2Ozzgq9vjT7pg2WdzumtNoCQpf4D0VKvDx+lD6xRpQLrc2C/EhFNBQ+w8uVHLC0qp6I\n+zeKsCdi6BQNmuaS04bUk99PG2K/mgLv/w/H+8XOeziGRV8alqbccHlI7Ky1gsD0caAJyXGzWi+F\nwLsVPIU6MZvNKBSi9XpN3wuFSG50UfZIOd1ASaLy5Y2xoL8rFIvpV6GE9H1PiuKi7K0jhsD9t+5z\n7949FvMF1jrarqMPsnFXlVKWjHRaRUa7cH/R7oDRAZAAACAASURBVL8agqk7eM6y0XahFX+gqlBD\nRiWsoqbmrMNkM3Dm79y5TVOL7GVQikRVSaDdbHdcXa15fHbGbrvn0Hac3L7FyYmq0xUtfWMwTvjC\nue/pQ8teZy12uy3z2YwcDbvdFkdm7yxdd6A97HnhuefotZCZ1TWzpiGGQNe1QgnrxaunoBzFFHS1\nWuGqCmMr2n5PM2u4dfsW3jre+Nzrcg2bhhBEvtsqHOOrUalOnj8I2jApKuu6EZqLtZi+H5KyXGB0\nWxSQHOI1MCpCkUcRCa8BvxiXooiMKNztOBxakVe3U9XA0aROZL7TIIBRFAVjCBhkFmw+n3N0dMTp\nxRVt23K0XJJz5urqiqurSx48eMDV1SUh9IJmaXC+fes2zklB9NnPfpYH999is74SqhGGnNSjg7Fj\nKfQCOawmxDFE9rs9ISXmiwUhC8VwNpvR9ZHNToqdkmxLkpqGtWls8VxiKEIsRfVQJXRL+mDMIBM+\n0Dk10bNGBum9mw7gTzeZPCTiMSVc1EFkJ/47w+aeslDksripywZohPI0IDVKNdEiNWr4sUkKLYvQ\n41LKRKNCGEbQtN1uJwWemEgMayqrWaApO2xBZwZkifLD4T9LM8gM35f4qZt+SkNzZqQEl6JkEjNh\nQGHJpWlkx+e3on4nhbbExxQFwSxzjKacV/nGlGRFCyg7IkLWjVQb7yt8VYnUeF28yoTv33UHaOUz\ncTZhvMf0QZQSUxpk/kMf9ZwdL979ORbNFbv25IndxfHk8YsPvolnb30vVqlAXQiErqPyjmNnmR8t\nmS2X2FqoVbbSmGCRIsg5Qgxsdltim2kqz+JkxfGtW1R1NZhHxkkhEvtA6Hr6Q0e3b+kPHSmEoZFX\n1R4TPRSBgwxWi36HUqmMqvchAggJuS8S4pEDafBZ8rbj1z73YwTdJ2I0inbonSUQJdmI706GYdbs\ny1/+JL/utU/THB9x5+mnaIMhklivb/Odf/vX87OfWpHaH+ek/rGh0ClHyhU/+ov/Ki/d/VOEroVw\nQY4t3juWyznLxYKqaqiVNua8mCVZX2GrinbXcn55xcPHj3l8fs5mfyAoWuGs3JPFCUWKCilEB2Rn\nuLfkvThr1XA1k1SJrxy+qKJZSx8jh7al6wMhpGHWJpWbMgt6W2SSJUlW9DQlkpEmQC5D8wRBWnLC\n2opaDbfLLC2I9YGvKxXTOOg51ex2O95++5Tr6zV9kCZlpQqEU/S30nwAbfqmGMnWYJAimmzo+6D5\nRU3dzOgSXK+3rNcbUkq4qpF1FAUltUoLjqoGCBLP2rbDuR3OO3qlhU8VaKeCBaNS7ufHK242WUqe\npoIqEs1K61tjo4pPKJJDuf5J6JgGgylxlDHGjQjNCNXcKFjK7ybnNRGHHn42PaZMnifHJJ78G/l+\n8lxjGfXEv194x/vFzns4UkqSF5ibamnDwJ8O/k+79KWjUBZVKT6mEOW04ClF03w+p65r+r4fhqCB\noVApFIzSNRtkpWGQni7Ls8zElGIsqqRuGdytfEVOYpQY+0CjAU86IBUlaLqCJshwCKOakh2auFZ9\ncIyBYEYFOu9ndLRKiRJUSc5pNnLqQ2C9viZ0Hd6LaII4N8tGMZvNWS6PWB2tBorR9XrN5eUVGMvq\n5Jinn74nA4mTJCqTxQiy7yH0HA57Sbavr8VI1RioHLvtFpuS+ApYy+1bt7l7+zaf/uVfJMaAcZ6Y\nAmghF2I/XNfFckGK4sB9584dnn76abKxXFxeczgcMEbmubbrjRRVTgqathVUaD6rMGpANyTdIWrC\nFnSdOUm86lo2X+3UMEE0ZLO1mJyoQ8YYSeAw5gZd586dOxwfn6ganlAI2vZAuz+Qc2a73RLz1I8g\nDUFfVG2srvdRSKP8XYyRyovyXVGZu766lnmgxRxrDefnpzx48JDz83PWmzXWGpbVUvx6Qs8LL7zI\nYX/g8eO3eeP1z3FxcUYIgfnsGENW6oUOlpcNaTKEWyJ3TJHUqwEcUpBb5/G+4tCPYhAD/TMJXRAT\nh4582SBjlAQ2JkmO66oiZxFFSEmGtI0xwvPXYilqd7/yblAhyjmLX8mQdN9sfiQteGzS+yobnd/J\naqJqMDaT3dhjLLXB2NkdeeApC9VIaEaagplhBAJ1FBQVo53ItB/1vXhiReW454yQWBMGiQmSrGXM\nxLSyrEE5JAErDaHBCM/aYfMuMUQfOcZCfV8FTZPPR0QBrDWDIEehtRXJ/ZKAJ5LSaNWzx43oj3VW\npbhHiloCnHa2vZNmjK88ddUwmwmC0sznOC+UTdceALkXUgyDv0/p8FLOORaqLpgQsWbPN/+GP8vf\n/LE/QxuOAFhUr7PrX3rHfhNTjXcVrqpFWj20tF1HSGLg3Mzm1PM5Vj1g6qYGTYGsr6mamkPX4a6u\nyG6PbWqaoyXzkxXNbCY0s0mv1xhDDpH+0LG73nB5fsHmcKDtehY6tznTea5oMsEh83IRVYnLmCgz\ndFHvLeecmuqKQEUEjDNYX/rgUnjHrJS1LLHMGeUCGl1FRhNElbC2taeaN1TLGc1ijmsqnIXr3Yz/\n4M/9fk4vjvQqfpj75pvecW0BrnfPQE70fSsiPBlRiVweCc27qqhnc6paE21jsL4mGcv20HJ6ccnb\nZ+dcrrd0IYqB71CsK3prBN3w+uUURS37kzP6O+8GBL5Xo2wQ1F5mauXoup5929KFMPiYCfIzkTcn\ng9GZTpQ2WHLqlEjJDmszpyLXL8WAvO9R1Q2NJE0zU2q1nFffBx6fnvPg4UOhIGeoq5pKEVDvJ2wD\nvQfl457Ib2vOJNdL7vO6bmiaGdvrLevrNdvdfmiiSmGTIStiBMQ+QMr4alSAPbQtdKhRejfkaiW2\neO8HGvaU8fLkMaXWjgVPiar63kzGZobnEPNuDalapIiCpRbw8tGgnrHDvlSOIS5O7skRNbrJpBjj\n5v99ITL9LEY0/mYDXn43LXMmz/v568F/5o/3i533cDg/3hRZO95Tzxvn3KAgViDS4ndSKGwlkR0D\n000Tp+li7vuew+EwFDrTY9iktUiIMeK0u1leoxieluIJZMC8nCMgyijOsu9EatjpjMWY4AV6Ldjm\n84Uk7tYKTU+7Vb0OAnKjS2IGqNgYM3RYC9pVDEyLRHcJOinJbJIxe9brK9r2gDWJ1eqI5557nsV8\nQUyR9WbNo7ff5vT0MV0fWB4dU1XVMKTc6bUrimBF3KGZVXhr2e937A8HUgw4N+fOnbusFjNMjhgS\ni3nDU3duq2fAluVySc6Jvc54SFIuxc18MSeT6ApdarGgrir2bcfV1SX73Z5mNmO9XnP69mP5m6MF\nWQvjGJNSL2pikg2tdENjzITQE3oRElh4STRDkOHUhFIQ7MQ1Ge02O0fV1AjMn/BeEv2qqoZZMGMM\nu50o7m03YgJXCk+MGfxgyporm5V0y9KgtAMMggTA8H6qqmK327Hf76RzWFdkIvvDjtOzt7m6uhoK\n6SKP6rzjS770Nc5Oz3n06BHX15fkHMRXxGTx2MmJvuuFa65qUNgRZRSOuohiZMQZfLPdiqyyFVU+\ncfqWYkc68R0pZ7xSfGwlHWzxycmIaLR0zr33pKyUDCuywtNNJ0wSBbmvxdOpqWUWpGzyzsbheqY0\nbv4MG5qheCslRIq6KF6VjdCgEso5kbxVc0I/IEwZcb3PKZKMoXKGyotfimVCgQD6vmO/23M4HHBV\nhfeBFKIIFBhD6IPYiqr/VxE8iX26kVTknHHeYNSLIwSRuJ/S1JwqBGa9jiFECvV3spMrosWwToxN\nhH5UACwxReR2s8yRlEZLihDT8DfOa5zJiT50Q/OpzCo0zYy6ng1dYF9XzJcLjo5PmClttlNz2tD3\nQl0LjthLx9Y5R4rS+S3Id0FlkyI+H7z7w/yRj30znzv9CE21ZlZ9kv/xh7+PkI6YHi8//XcEKUaR\nxSxmszZn6vmCLiS6mFjO5tRNjatVlS1nQtdisNhKkvNoLPPjFc3qiGq5wDcNWEOl92k2ELoeZyyp\nj9i6Ztv3xKs1nWk5mjXMjo85Pj4WxkHl6Xwm9UHeN0DIxLbjsNuxuV5zWLdUVuSaa7scYoO1ljgo\nzmUeXTxLzTVHzQVRGzuLeqaCNloMW0fMCT+TuZFqOeOzF1/B+f1n+NBLv4Sdb/FNzf/5U185KXTk\niPkYFQG+8fMvevbj5Cz+ahZD1dSsVsesVica42dUdSNsOqCeL2kWC87XO86vNzw6veDtx+dcr3cY\nW9HM5Y6P2t0f/ZkEJRz25SJLX9ac5g7o70sDB1BBo1J8JNquY78vwirCVihrPec4NJhyDISg9OMS\nC73ODeo9n7XZEGNkVjccLZcsl0uRDg8Bo8amGBHM8FU9nMujRw/Jbx7YbneAoapqqlp+PxVOcUqH\nTVmbUolhX6jqBmO9FMzWY11FM1uQgPVmy3a/17zAYYwjqaphjBGcKP/FXnITKbT8gO5UtZxH1BnO\n4hFXELNps3qK8Bh9v9M9T9CnzJMl0XRK0huISk/MSQqKUiChrAFT0HgrBf3oSyfrppQ0aBMp5bGB\nYpAu8+dDZZ5EdaZzSDf/frKXTx4n1EJzQ1jmC7nAmR7vFzvv8RhvgrGLXSu3twwvD1zynAfKxZOL\nS5K7wgcZu7ulOCiJY7k5yzDd9DlyLtA0NzrEIN4L9UyQnEoNDnuVDC5JOqjogMqpWjWkrJtmWOd9\nL0m10/cHpQszoaRwkwsq5zbO7PAE4FqCfpkZKopf0iWNQ4e8bVvx/lgtmc8XNE1DH3reun+fBw8e\n8OjRI9qup6prqkoKzcurK9q2G6h9KaWJqIPDuky2bngv3ov88nPPPEPlDbvNGqL43jjvOT8/Jcag\nqi/jkGPX9VxeXHG0XDBrGlKUIc+mdty6dYvTszMuLq/YbXYYI3Sqw2HLZrPBO0Hvcghk7TDJALVM\n5hT6VTHLjCETNFFq24NIdKskq7WelEe6oCjDlM1sXIMyb1AU8wz7/Z6giMThcOCw39MqIjlQHZ9Y\n8/L5FLECSVbL5lACaRlILudTEMcYA7P5Al+5waPncNgxeqskYuwxZsbxsRRhV9eX7A87YuoxRlQC\n60qkRWMftJBNg9GnUBzKPcKgzJUQSda+66WD71piylxv1qT03HjfpCJbbAc1sJiFQpmz0eTdjTM1\neRoPxgLGkEhaRAkyNCrF5ZSGu6GgEeXvYs4iNiJ31tAdTkZMRsXjBKVeQUgZZ/J0mxTp05QwTjrN\nOeUhwTFWPHLKPVuocaUbHbrIbrdnt9vSHVpmzZzgAt2hJTdZ5kJ0M065cOflMFa6gnIUWkmRlh8N\nFct6enIiaTgPM27EMYqssZHWrhZvAklNqYDe11KEWb0PrHS8S7OlT500u81oF2CMIeak95JIOxd5\nf2MU8TCOumlYHq04Oj5WMReZnYg503Ytru+xPmBcD0E+B2u8epmEGyh+eaMGmFV7vuTFj9PM5mx2\nht/yRX+MH/n0f8IhfABDywdufxsv3fnrWCseQoOqJDo/UVWCIPoKkd3UuaJKXjuRpXCwFlvX1IuF\nJOurFfViiau8vEfnoKklvjkn67yCOkG92WMXV9gM81snLO/cZn4sXmZ+1nAwgdj3UuxkMCkT2g7W\nFZvY0+024C3L1WKYPS12ByH0vP7wRf7y9/8RHl68gDGRj3zgR/iWr/qvqc2BbCzJCDnOKCWL7LDL\nGlPd5r/93j/BL7z5it57iW/57X+P3/O7foKLq3efibp38kkeX79GznK/feDuJ/lNr/11bTJIzBM6\nrx/Qb+trME7XpCVlw+7Qc3294fTigtOLC9a7nUiyFwT9Rkde9n5rx51xKPY1LhRRDGOMiPrEoLOt\nmkTr/AkoqkOe+LCV+SdFbjKDN1Tbd6QUsRaRJ3cGh1GxAZF6JkXNBaTgbZpGcoWU5T2lsVAoptF7\nbZJeXl1j1z2QpSisqgGZksaBojuU7ECaUTnnQbHWOTcqjYaIrWq6mIhDMWeURizFjvgSFen3PMS6\nyo3y0THFgX0zjTfT2aehsNFCZtpg5olGy/C58S74SaEKDCi3GX42zI4Kgw1nBJ0cjWXHxrC8XB4+\n8/E1p1nV9O8//4zRez2mFHA57wna+wVe9Lxf7LyHw5jpoO3YwSwGdAKbBqwtl9dQhmnhZvUtXYWx\nC16gVSgqWv2QsE/V20oxM5jsGaMqaQxBunBnq9oPryVyvu3g8l7XtdzAMdH2QRMSueGKq3FOiaiq\nalZpJOKkPKoLyaUwN27AUgjJzxi6vZSirHTES9eEUhyJw7kUkkWswPKBF1/khReep24adrst9+/f\n580336RTv5TlUrxtrjcb9czpVLtfP4eccM4PXOSu7+k7mUuoKq+mmXNS35JixCiHPXQdV1dXpJRo\n6gbw6oEiRoqCGHXUlScnUUg6Pj6maRp++dOfYbfbc3LrDs18ofNFV8Q+cHxyjMVw6DpiCENyEkJA\nBqtL8h4Hmo5syJ6UhELgvHy+TjvWIcpgdOkMAeoNwvAZlgQXgxYseylGepk96rt+oDxaa3VdjQOP\nBfGJqn6WUiIakdodN5JigMfw99vtlpQCTVNhDGw2G66vrwZVnJLAR13rJycn7HZbzs/PZMC0bXHe\n0TQVVeWIST1VQk8maWGS6MOYQleVxyF+Sn3oiBnaIOhnFwKb3Y7T8wtivAfoeszFeVw45jEX874w\nvBeZBYkiv+vGgWPjDM4XkQQLpdiZbG7T+7fcL2VTKfdQmhRROUnCkY3w/zHC05ZmQxIEwU43qptS\n9oMKY1ZVoFzU3MoQvg7YStOQaCLmcGC72bHf75nN5hhbTDUNRpHtqeIdky7mWOSM77nQ124kFEOM\nGK/JDQoiYqCZk86CldciDc9X6GxJned7XZcF5UrqVG6MFI1+EkPLz0UxTMQXnCpQOZ3ZMcZgvaOu\nG+bqyeTqWhofqaILPdW+pq8rfPD0Ok9nyWSnA/aT9GGgHsdMNiL54I2l8p7FbM6Hn/+n3J59Iw8v\nniWl+9R+zWF7xOJoJcmcsXRtP3SBu17k2fu+x1UelyoqLFiHrRw2RtquJ2LwTcPSOpbHxzSLI9xs\ngXFWOsXOQNXIvJHz5CAIiM+WZrWnPj4m+pqju0+xuHOHZrmkni+o5zMSnXTWk3hcuQyx6wjO4nY7\n4lVFnjc0t044uXMLMeftEZ8v+Na/8ic4vbyt18fxk6//Zp6+u+Vf/qr/gXYnaqZefdGyNTR1Q72Y\n832f+Oah0JHHWr79B/55fuPXfYZf/xWnfM/f5R3HV3/4u/jK1x7x2UdfwbL6HC/f+oe07ZZ9KxTE\nuqmZzxf4qlEPHZnTwom8MtYRcmaz2fL4XBCds4srNvsDMRcJfjfcu8NeXNZdurkWSvOhUFnHeB9v\nZNXGjhTlNvTs+sDh0I3rP2f150GTZaEDhtBjyVS+oq68Fjs6P6RNzZxFgKJYTZT9sY+9xD49ZV/X\n9DGybzdcpTUg6qPzXuS5m6YZaNlWRRYkJ7KCJscwFIyQReqcLEbkUaT7jbXM6oauD5xfb7nebKRI\ncKLAllIiBrlGZXYv5DhI8Dsnfnoxjc1S+QzGYqZ8LjfnVMw74tKTv3/yGJ+v/ED/FrR5pxiiNRRR\nApIgeUWVzRtDMY62ptDWxoKrrJFhLx+2CXPj31/tOb/be3jHcw0vPy3YtZX2BVzwvF/svIejJPEl\nkS+0rBIk4qRLPyQzE2pH2dCl0LnZJygeNVNE5EkkR/7uphwqWVWZ9KiGmQ5HJg0oTuGvlnOu6xqT\nMm1slVYng8Sifa9ywuW9DNx6MxQ7aKJUipnpeU6vE9wMKEa7yeU6FepaKYxilEFcYwwnJ8e88soH\n+dAXfYjlcsHZ+TkPHj3irQf3WW+3HB+fcPvObWazBfvDnq4Tr6HZrMEPXNw8dLxmjQwY73d72rbF\nGagbMepr2wOH7Ya+a6m9CDUUWpdQuiTwWudJBOFzVzVdp4VTDMznDcv5gqvLS+6/9RYnt25zcnyM\n9RUXFxds12sqL93D0He07X5AjaDQG4WyM3gaacenFKJlTTiPdATL9UsZq3MhJXmUawshiGpPipNB\nSy2eSvqX04i2yeZhVR3spodI+RzL5gyZytfD5zz9AoZix2gRXQzf9vu9oI51pRSrpP9dU1Wehw9F\nuGC33RFjoGlqkV6tPG3bD+dR/BooaGGhFXiPi1ZmAbIO/seIbxpSFn+loO9X1mzCO/GBkO6oJ6RE\nXSkFSu/3EIIMoedMLmKvShXLJKzzNxocaBGfs0i9yn3/bt29MT7IvVauv86TlEbB8ImpYlM2Kjlu\nSh9B4oF+FR/PbEq3URs1w/4mTYyYpEMcYxyQvm7Z4XxF38mMk629PlaeoyByWq3Kc6XRx6K4sw+o\nk5EkSwqSEhtk7iaG4vJdGhQSLSibLUoJS4mcxCvHOotNhtRPRTJGRUpjRun90XckDbL80s33SkXU\nGRFr8M7jaqHlVE1D1cyomxmu9oRgCTEIrc9Ls6EIykTnMDnhssPYMDR3ymcqM0RgkZkvA6Q+UPuK\n49URGairUy7XLbudKCUC+NlsUMfLiip2XU976MW7B5mkCkmG07NxZBx9zPQxY3xNU82o50tsPcf4\nRmS4bZTE01e4usa6imgD4h1i8csjFrdu4+c9i5M7VEfHYjhbN0RfEQ2i1JY1ic4GUzVUCZrjHfV6\ny+xoweLubZZ37uK8o+1kbvPTv/j8UOhMj098+mv5g7/ze2kfPabvevyspl4uML5isTrCzxp+7vXX\n3vG4nC0/8wsf5A/+nrf5R594ne//B+MM1Aef/kE+8qEf5YV7T/HKcz/MxdkjNmsRy8k5C/VrvmA2\nK8WO+Oj4uiFhwViSdbT7A6fnlzx8fMbj80uutzu6IMUr1moBKQqDRSHSq6hLNiLmksvMnG7ZVjuG\nKZV4r3vqBA0qVKy+62j7nq7XWSjjKGgxA0IeCb3EM+edIJaVo3iySaEjHkbkTFPVHC2WHC2WA9Wz\n3A++qodbcbPdst3suLSXQ7yczRbMF3MRJVDKm3MqflM5nBH0OaOxSLL3Ae231onAgnN442jmM66v\n1pyen7Nve6qmwVc1bQjqKySIj8mjx45VSjGmNE2Evl/yljLHMy12Srx9kvo1rqWbDb5SkJp3PEaE\nKEp8y/p5ZhWgIGWhoZW9AYPLZVZQC2PnMKYYCEt8T4pCl1m/gh6VY1qMfD6U58mcbNro4d0KnfK4\nz/P48R1/4R3vFzvv8ZhSLIDBoX1Kl3ryb4eu3gSVScrvLr8rdC5rK0IYzRjfwR3Vo1CEsvrYlESs\ndCtTzoPkovd+mGUpyltO6SXy3HI/FUUYwxiYBD0S5CDnm13bcmdMZ5fEQMyCkaBeiqFpoVfOv/w7\n/f7/Yu/dYnXLsvuu37ysy3fbe59bV7mq2nZCbMtxW1GI/QCOEgRKIkWKQEqEgCAhgZTXPCEh8QQB\nIR4QeYkEvPDAQ8QtQQKEBLIQECexDXJMFLvbTndXQ1d11TlnX7/buswLD2PMtdbeddo2HR7SoZbc\nVp29v/1d1jfnmGOM/3/8/0lpDpeXl/zkT/4EX/vZn+Xi4oK312/57ief8PHHH3N3f0/dNOyUUpGB\nvpdDtNJBRZPL0HfxGLDqf2EU6Ug0bc2qXWEMPDw8cD7uaZylrlpyThwOR7qzmBWu12JUlpl9O3LK\ndGcZVF63Dat2TU6ZT7/7CUPf8+L5C9brDcfTie50ou966l1FipGh7wjjqEiCVaREXkEkYZX+pShT\nufcpqxKNJmcFafF1xXa7nb7rw+Gg39VsTldoa+W9u8pOiGLx8gHpUooZnSRkj5HHAv0XlbEng7HM\nCGNZF33f0zTt9N5EWXAUKo4WEsYYmrahXYkh7+vXrzkej7qmRQxAvKEc46geOlbmSMTcU+WwbUEz\nrao2OSrnCOduElcYxkA/jjRtSx/L41V62Ht8XYvAwBhEGGMllEY5ODPnrmN/PHA+CzI2anFvncem\nKEIEbonYJG0m2KlLO6E3T+JLSeqTKdLeJe9XFMea0sAlZkFVrCJETw/ylFT9Kqurd55FGLKVwXBp\nOkoRUTwr+l7m98IYpIgMURLPwYkIgB7+zorPzZzQz0IL5TOSRTGvrI9yeC8pvCmWQg+mYk6fzygS\naYr6ZBLqp3DS5bOHJzGy0G+ss3jjqWI9rY9lHCqUn+n9kidp97qpadqGpm1p2oaqKQ0ko+aaot7m\nvFdUqCIMQpcrs0lLSfipeZWNrjWZP0sxsl6tubrY0dQ1K6X35Jg4nc8cY6BJiEhBkK52aRgVgYao\n/kNjjNiYMBHGBMMYGUIiIQqOtmrA1mTjMdZh8ILsuBp8g3WQbYCYyclg2xXrq+c0MeE2W6hbct0Q\nXUXEEm2FjJ/IKHzOgI1U68z66jkXQ2C9keeodhdC0608Low0u8eGoOWqm8z6+XPe3j8QUoJ1Q3N1\ngW9a1hdbfNPw6tUZ/v4X//bliwPrVcO//2/8Kr/wh/4nfvF/OZFOv8RP//h3WLXv01QVZKEGD0Ov\nDR830arqtsW5Cusq6rrFOK9nmSFlw/E88Pr6htdvrrm9fxDjYeuk4aIUNqNL2Fk7iRJIF9FPybjI\nNOjOn3KDeQ1L/Jx+Pc3/jeqzxtT113PUzI0FaWRFvLOqeqooTsoag5wovmnh0za12A0oRbPMf3rv\nqQehv3ddB/09+/2B80r87pz3bLZrWp3vNVnOMe8dVSVIcNL5o5zjoglmp0ZpSOIpZp3H+RrjKvan\nM6dzh/OCtBnr6MZAN/QMvcxUSsOwovJaxJmCjIkSovPaMDJZ0aQvNo2X//6dkJAl7fBp2q+3Xv9V\nHjdHeWOQAokC8qghs8Y5Z2VdoTN5GbTR8DgneldR87Tgedd7fve1bEg/QXHecW+Wf7YIzz9U15fF\nzg9wGTMXKkVlrXBPzwUBmB77GGZ8nOybGT0p9AtjJrW00uUpqMfThV2GGIsowG63Y7PZcDweJyfx\njGz+ORDIaxT+bQiRqH4p1ljRpfeOtinD6q3LbwAAIABJREFUkEE2ruELykcZ2bRTEgZT17h0uJcb\nFnj0+Se1KDObU5bP7LznWSl0vvY13v+R9/ns88/5+Dvf4Vvf/jZv376lrhsuLi9o2oZhHDgeT9zf\ni56+3CpBOiRZS6IM5ixkRwzSZaoqx7ptWa0acs6cj0eGvmdzsdNub+B0Pk6qdcUHqMxo9cPAOHSM\nQ89ms2a3u2Cz2XI8ijrcs8srri6vCGHk7vaW4+GIQVyw+74nDAMGdJ5KDrsyXD9GQWJ6DfBLb4HJ\nHE4L2oLWbTYbXr16hfee6+trHh4eZNZKk39nHdk9LkQK/bJQG+WQcxgLKcSpM1ZQneWAsQJNjzqQ\n5cAufyPrSL7X7XqNMVbFCtRwtypKf5aqcmy3O1btSr0brsWXZ5IEnt2ywUhX36gU9jgSdZ9MnkKK\nVvnGUflKRDbGQD8MnLqeTGa7vaQPzaP9LTW8+ht1Z7CG3bZhd7FT/6aKw/HIp599psqCHSlJB84l\nQ58CObvpTPBOEhBZ33aihE3I7uLQmVzQteCxRoddy++nA0lFKHKafE0Uw5ySp+X3xLRDjar/FINR\njVOLIiUlEcLouk79dqRY67qephIkDqtceqvGmvox8qPDWFHiRQK4pH7MsaEc1otDV+9BQUSMKlgV\nqmtOJYmaqWpLqu+yK1v8Ycahm9Eea1VC2k6d30eopLN4X9GuVqw3a9r1mrpp5ENFTV5KYVxVpFAT\nfC+Fe4TEIrkrUPmUKomqojFGUUTHuhFJ+9VqNdkNxBBIcaRT7xA7BLpzp8qMBR0TFNx1PdkasnUy\nq2VGxpAYYyYmwDhc1eB8DcaTENl/UaSzgjqYauo4YzNEMHVLu5NEmaoh2gp8Q/ZSJJlKPoNDGg7S\nqLLY2rDaPeMqG5qmpt1eYtsVMSeMydiq4id+Zs/v/31v+da3X7K8/syf/C2aq0vsegUpYddr6osd\n9XqFbVr8uuXP/XO/yS/96j/GGGa57o9+5FN+7h//HlX1Eaf7B65Wf4cfe/YrHNw9tX9FXYmxbxoF\nyUwxTs2NumnwVaUqpuJzVjctYEVlD8MQAvvDkeubW27u7jlN9DWhvBUpdJAC3GkssiVNNpZEOctn\nxkGJW0s0wTmP9/OMW0F2QpRml3dKt1TJaues+sQVD6+As5XEHm0gpihCDMbO679yntVqlpoOQc78\n0gQo+2n/sKc3e2mYtsXgtKYy9dRcJKt8tvdKgZeZ0xhGMHmymxDvohqMYSxnjHUY5zl3A2/e3oAx\nchas1nTDQD8MIuRTZqt8RV1VeOcoarTiqaUy2skSwihCAPnxUP+7qGwlZiyvdz3uabO25HLlMDRM\nmD2lGJIBQ4mxcxOZKa5bZoZj1kZJTkXY4PHrvqtZ/Lt9ht/tWj7GqJz390W9zPT/fqiuL4udH+Aq\na8mYMuQ6D/8PwzB5rJTHwLv46CCIiZ8S6KqSIfntdqvKWEEPajN1HnPO0xyPdA5VhKDyXF1dUdc1\nNzc3fP76NefjgZzTFGDKYe5VUSnGKN4wQTmvmhC0TUXbiHN8CAFf1fLfWhSNBW1CNoa2bnVw8DGH\ndU5W5i5zztKBMoWFr/dIkkZRZ3vvva/wsz/zM/zcz/8cFxcXfPLJJ3zjG9/gm9/8Jjc3NxhruXx2\nxXa7JYTA+SxzOsfTCYMUEtZquElioBkNIiMcI0MYhV5QraZCNcU40cmstaKCdzpxOkpivtvtcM5x\nOp3IGeq65f5+z9ANrNdrLncXPH/2jMo7jvsHdpstV8+fCTXuYeTu7o6+7wRJWq0IQ08YB6yBpq4g\nJ/qhp23lgI1BCp2u6+mHUWYzMEqjc6J6o0hLKXbathUjU2Pg9oZ+HBj6QFWliR9eDrClt85yvXrv\n8NWs7gOz7HJR0CMXZatIUSQsf18OljIAXops5xyrdk2MidOpYxyleItREg9nPat2w3azw/uat/tr\nxjGqP4mDDGHUgnMM0hkthVaWrnYm09Q1qZ07xkLPSiL64D3tasUwRpwbcb7i4vKCPipip13Ssm66\nvp+U4shCd9xsN/jKUdUe7y1NI4VSEWzIWeXfoyFqkVn8eEhSQFWVekuUbqO+V+cczrv5AOXxHtJK\nhnK4FqpoUuWxaIx04+VUXXTu3EQhK4nW4nh7FKdKA6fvpdgpyY80Dnps47DeISmcUOQm004WVFzR\n2hDloSnkyWfIhZpJSRTmmLosWibp3pwmqs8UT5IoT+UshU9RtyxrNsQ4Oc8XtDjGJDK+Ta2IdtIi\ndS7+J9PQDNZox3+1ol21+LoWdNuAcR5fV1R1La+js2feeyKJYAryrYgX8/c1las546ylbSRhNFhq\nX+GtqHKRREXrYb/ntot05zPn05lxHOiak87ZiWu8sVb8U4yVBHwMOrNkMM7h6oa6XdGsVhhbkbMU\negZB6WI2mIiikU4Lp4T1DVWjMw9YEfpwFbauydYqVUk0ComJlAYhaRlD1a7ZZJ1jq1tw0tSx1uKM\nIabIv/Vv/6/8lb/y8/zKr3zIZjPwz/7p3+DP/wu/zXi+oL68YLQGv93gNhvsakW0BtqWn/7ZPX/5\nP/hF/uu//jN877M1P/7V3+Sf+id/kd3FVwHD9dtrPv3kU06nE5v1mtWqofKilpgUZXDeUzlL3cj3\naK0HIyhD3TR4XzECGEdMmdO55/5hz/3DQYwuoxh1OqW8JtVOFqqmUs1zxhhJdscU5maRdFTkTNcG\nqdEz1akZbCl2slFDY0RGH2On9VrQnFKcVF72ZUqowbCoMJIS5IjXM1se62nqivW6eWyuicFkJoNh\ngP3+yLYZVAa7Bs5UdYVL8j6qqkJWgZkQ7aR5Q0wR7+U9rtYrNrsdKSGKclGak5W1hAyv317z6Wef\n85X3foTNbgvWcro/czwcGcaRyouIQl3XWuhoXhTGqTFSmrzDMGCc0O7nxIRHjY2ns9SPE/+nRc3j\na/5ZaWbMCJCZYRqNb1q45inqPX7NPDeCSr5YqGy/2/tYXu9Cqn4n9Orpc/5OxdH0uN+9fvqH7vqy\n2PkBr4m+ox3nQh9bqrosF9Cy0FlurlK8OOe4uLjgxYsX5Cxmi6LAlqfEqLzGOI5Yy1TElEFyYFJT\nca4kn/OgeXmd0sUcx5FBVXSwFmcl+RU1FqvmnQZUIWsIg8C05nFy8n27C08eNz02Py6AlkiBGIg+\n5w/8xB/gp//gT/Py5Us++eQTfvmXf5lv/NZvcXN3BwZ22x1VVYnxZT9IQRBGrHM0C8W6uYUsCVMI\nA30PY87ip+HluytBEURyOITA2HecTwfGcWC1WvHq1SsADoejyr8moWZVKz78kQ94771X1FVFdxaO\n/XvvvccYA2/evGEMkb7vcM6JipH39N15liw2YlYXh5PeE+nmhrEonjmhIOhasiplnpPQAMZxxFhR\n73t4eCCTxRhyGBB4fKbPlIS+3POnfk/eV9N6kcJ9lrMu66bypfiJjzr1SxSyrP+ChLVti7WC6nRd\nJ0E9QhgHXOXZbFoZAHcV53NP34nD9aBrxBmR7R16UX+KjILAFI65SmDvdjvCRosM5xhjoj932GEE\n51hv1tQZtpeXrDdbttst+1Ojy2SWMfbeqwrhSE5CcUw5ce5EQryo8r3//leIMfLw8MD+sBfVNmT+\nJeaixibUEePm+1Lu+9PY4KxYfpYjscxuhWBwmkAnK6pQkkjNRVrSDCdpx1hkutWOVJ/bqRLZdKga\nMMlOaFBRgwwhTvL0YxC1Q2MkcWh0H8sGFwW8gkpZHdLXyLeICqm8Ud2TPIoRJVEoa7Ks26n4fEfs\nWJ66j2iwC35+QY3L40tBs6QDl/+exAoU5XaVJL0FbS8TWqVZkOuGsRaENuj7dt5jSIxKoXwaF0sS\n7K2lcvo/6wRFNSJJXHvHVimzq5XI8ufP7rjbH+id+MH0/UDXDZzP58kTbRxHwjHSjQNoYyNFLXis\nJtBVjbM1Kcn+s8XVPWXGmEi46fszrsJVDTEbcgTrKvBCXwvZ4ayYR1ISZCPUSFm6AWMrfBWlqW08\nmEpQHZswzmJy5IOPMn/p3/3bxDFg8ygzP77CmzWr7Y5kLPV2i2kbjCKK2TuSs/zBn73nj/z8rxFD\n4rd+8+t0p8h2d8n5fOaT736XN68/hxy5unghFLWqmtAwk+W8rFX0xPlK16+jqhtcVRMxkGVNjGPP\n/f2em+s7DocT/TiKfLQVJAjnyCkCMkPiFh3ylMCZLMp/Svs1rqDnKvbCjIZbFQSZtlHW2TxmT5ai\n3uaceZRvpJQwpEmhNSUpdCxZ5hHdLCDQNBUrXd/lfE4pT7lBN/Tc378ApMiyToqaqED4ZrNh4zbz\n3tGmiDRqgxQ7cQRkDq9dtay3W5q25Xg80w89USXhx5A4ne/57iefcjqPeh/VQLXrGMYBZ92kFmet\nIaZADHEqzOSslNgRY6TrO5wXSuvyTCpn1DIGvOv6vST+xkiM/kIBYGZkO2dFt0talAu7wk5zy6VQ\nLs9ZgODvX9wskeL/b64Sa1l8tn9Uri+LnR/gepqcFOh3SaFYVsuFwgNMh2w5hEOQAmSj2vY5Zw6H\nwzTLMI7Do45loWSsVi3r9UqSjxDo+p7r62tSSpzVI6UEMO/d9J5K4RO1MMvaWZQrT3MZOUuC4H09\nuVrnLLCqr2qGPnwByXy6MawxMo63SO7kVRb3kUwIcj/W6zW73ZaPPvqQDz74gJwzX//61/mN3/gN\nvv71r3N/2OMrT9u2rNZrYozsDwe6flhwndFiUA6aEIJwl43BVV6DpMVooZpSYuh7SAHXVFQ61Bhj\nICv9z3vPs8srXr58ye3t7XQvU0o0TcMH733AT/7ET1DXFW/fvub6Wowv27bh9advyNlw1lmikpSc\nTieOh4MOKQsNCCu+PZJk9xLEDTR1g/OZLo/0wyh+L86pAo0HmwRZ1LVwf38vZqvHIykl1itxUe/V\ny6cE2jJLsyxOloUwev+s89N6Luu2XiA/4gECpi7O1IaUZlSn3Csxxw2cjoLqCFo5MgwDtSZmTdOQ\nUmL/8CB+Kyo3mtJIVc+GuKaq6M/nqauZ9XWKd9C4kTVfjG3HMRD6Hus9Q4jiS7LZiUGeEc8UgNP5\niDM9q9VqIQeLKKZaw9D33I5aVK9a3nvvPT748COGYeQ73/kOh8Oe4qHhrBRnAGMYSVboipM6IAuq\nQIknThKrhULzdP8KQmazIzl1oi+FKMtEX9GDJ42IkuxnjCJBiTEz+e4s2doz2iqowdAPVFUjohpT\noTGFjSm+ef3+zYQqLd9DfhIyzNTNlPdXXldvODO9R2aRFgp1kj0oilQQXDMV6WXdlXhb/L3GwVDm\n1sZxmD2hTPG8CELjcmLcKypTK6zzMhsVggxTW1Fps9Gp+IHR5EYTKDt7q0yUoVIE5ow10lWvXJkX\nSoy9FChVVWN01mKjXl1N0xCqLbv9UYrq+3vGINLDx+NJmh/eUqcVpvIYRXWqqlaUThQmz00jaosb\nVRlMJRGzyJzAjNhLguio6hayJTkpDoz1YqgbI8Z7LI4i0iGzTjUmCwIEBuszMQdJ7p0DxMgSpaIC\nUrh7mbGMITDqgLlra+qcqFYttq6xVUV2hoiZEsiQZC415yyUwqbm4fqG16/fqMS/Y7USsRpR2rPk\nOBf1zosQgRQMBVHxE72cWuhWg6py3t7fTbRmaz3Yx43NctZZI+cMKSlV0EnhZGaJa2MhZFl35e+W\nhXhcoJQmFpXDjFEBAGOM3Cen0tZZRD4E8QwyN5JF6Uuae16tF5xQD+3sa7dsvp5OJ5lH7LrJU26a\n83Vi3QCw2+24aq/UJy6Kh5Q2ZGMaRb01JawKCLRtS9vW9F3H6ShIjcxHOU7nE599/obXb9+w2rZS\npOT5XPfO4yoRuMmZiWmSg4jKiMS2Nu/0nomoUDkrZ3GdCTlZjAks4973K3IK4qXRS+iNKpWPNphE\naU37q8aQraozMotDSLg20gDT9zTN+EzoPV/Iscp7XCJK/29par/T73PWZk42T15njrtTI/mH7Pqy\n2PkBLmuFP1uoI01Tk7N4U6QUNPDokGAuA/rzJloWS9451qs12+0WZw2H/YPMWSiqUhRTSiLgvWPV\ntGIep8OOOWbGOHATrumHbnpt56RbUBJc7yu8q6TjE8S3okDaBT0o/P4xGWJ21L4h9T0xWTLiuZKi\nUbgfNfmzU8FkNUmZkrCEKEnFCCHjjScRJ4pGCIFzjLz33iuePXvOs2fPePnyBZXzvH3zlo8//phv\nfOMbHI8nvBMZ0KZuMFi6c093HtTsURAsg1DVUsw4C5XzGOcm0zzvHCEGTA6MQ2DdNGxWDY6MTR21\nr2idDt6TsJXH1KLSY51nGAsNwUBKrNuWj95/xaoVI9O+O4uUJon7w55u7NntLuhjj8uGdlUBkaE/\n0dSeuqpFqGCMOO9YbXZU3nM6ihlgVTeAIQ/q4eEyxISxYtbYNEJpI4sZYxwCp1EO4jQkai/dTGst\ng2aFVaVFgwFrMzEMQnUIHSHInJdxhmEcGdJAbTOGANmSU8BbISvkmDBJqP0mJ3EBd0YSHTWyi8lM\nh5mxjq7vCHGgyAfHNBJzxFkzFedd13HuOuqmIVOUszK+qmhWK6q6lsFiLMaJmk0stCgL1hkyJUkY\nyUmVyqzMYMQsjtthHDkdT9zd3nH9+gIAE8HbisrX1L4lVAlvxZDV4YWaFhLWwar1bFcXvLh8IcXl\n/ZHuKMmBmOCCJwKDKjMJ9asUjuLBI/GhdG2dMULnSEEk31HhCufF8DRZrJuptHJ/5P5V1qlRoUBm\nxdSOBKLSNNO/ZDxa0tHsHDijiI+qGzk5ervuxP39NdvdiroReXZjLXHoMVUlh3qUvWCtpbILvrd+\nb/MlQyaTDU9JegE01k2SuFnkvR2JbHT2D1RhTZooeeKDqPS0GYhkSZSNkSQ2W/3cSX1JIuSk8z6q\nPGktKUCOWV/fYStP1Ta0uw2urYkGRp1XjJrQpGwYY1JFPim8fFVDiowpKIXP4K2XPWB1qFyTTOdE\nyc04S8wiuFDZeioWnYHaOWrrWNUNdTXyfLXitF1zuNhIUwtD7gayPROMxw0JW4uqmnOONIh88OFw\npBt6YjK8ei/Re0PKkhSalDAx4nD4bCTRQebGjJF9lYwnW8i+nmZTjHNkK8I1SVFVmUkRX6psK3Ay\nU2hNBbYhZS+Ki1kFRVTJUWZ+EjZBiBmrxpC+3eKoyHVD8i3RCwKessEkwziKhC94bNWIImTVcDz0\n7N8+kI4jl5sVq+ypE6wrj3Hw3bsX/G9/709ijOWf+Klf4kc3n+Gtx7sK5xusqYnGEz3gG8ZkuTn2\nfH77wNv7A+eQyNaDF+pWVoRS6mAp1nNWFUSkiExRmhp11QjiKr+hqjw5BTkjccj03byHoFCiFjGi\nkiJNtw5FZQ0SKQRSGvGOaU97K543tbeK7lisl80YU4LRkFUMp+s6EdPpBqHCaZrojaOpanxVQSvb\ndrtesx5ahqETE+xRaOIkQXW89ySg8hW73QXbzQVxTDw8HBmGROVbqqZlDImH/T1v3t4Sk+Vqe0G9\nuWA0njGN2KrF14Mi5EaFRjTGpUxACkBjxTdLci5VwMPqGi33SIrygvCRZ5XIiSa8bMKYQtHnUfGR\nyw+mgFaaSaWlhKCYgHFgkSagnIuyFpJNWKRYQ5XapMGTiUY+U06FArt8A3M+WZgVj0cnlr9fROBU\nLExkzqlQax8X69KkKJ9vboLpHPZCYOeH6fqy2PlBLl1L5QsvCMHUXVrIHRclsImSsuiKGmPYrNdc\nXFxQVZIsHw8HzsqRddq9x8xc8kKvATFHLBQhMR4VpKhpmmkByxoWuNNph74MOlojQy05hqkTbYwM\nDI7jiHWeEDMhytY1xkkCM6EoikgsIPZJEpt5o1kMGFH+shRpW6H7Vd6z2+149fIVL168YLfb4Z3j\n7vaOm5sbPv74O9ze3kknrG6lU4k4uA/DQByLLxCTQlH5xK7wmo3Bu5muFUMgjD1V5disGy42a9LY\nM5w6clDpZu8xlS/fMM557u7uxdvGeZXshFXbsl41DEPPw8MdYxhERrmPHM5HXFXJEL1ztFbksEXx\nLFF7FYkYAzFlvHVawMIYZr6uKBxJt04GwVU6VCkJxccBm0lBlapyxiLDpzCjkRmR6vXekbMmfupT\nIPMLIzGL70JIQRyvjUeKE53P0U5UjiqjaeUeGxSyV5pUTCpi4SSxM8YwnA7Cl7dSkOQcZeasqXHu\nsTS68w4zmmltGWexXgZBRIFMKUM5kUdZ1yFGndHRg0oRPG+ka2z1fm7XG1abDTEGbt7ecDxoKCyd\nXadKP2ONt5J4mYlaJvNFbb1ivdqQE4z9iLOOi+0FTVVze3tLyiKNXPZaoUiVn4k0tK7Yguwskn45\nFBPWZnJWKfEs6mlprhiUeqAiBIuOn6AdKm5gVdY0S/NBDmhJHLJ+bqvxxU3yzJGuP7M/PLDf33Nx\nsWW1qiGLZPqkNkb57o3SWNJUpC6RQ1tU5BbH5/Q7M1M8LJrY5aTvcT7sc87TISyDxwUtlns1xkCI\nQbvmVrsxaG9CjZOzJj7oEHbOpBBkfVi5D7ZyuFoGqUV5Tple+r1lxNNnGAVpLUqCzkoBEHXuwkY7\nUZImEQSN/TJEJgna3ARTxb4sDQXrtEhW1bTWe7ZNzcWq5XzuOJ07hmHAYTFjJJ170hiIfcB4R8hw\nHgeu7+84d2diSBw/OrNNWQROpsaczi+UNajrIlHojlrQOUfTthRTXTmnVExHz7lkIFuV8DYW69Uz\nxjhkTkhWpy17QNoWcjakhDUe52ppHFYtLhmsrzFVAxpHhJJtVfGwxlcWXzU6/N4w9CPnY0ceE42p\nqIwUjZVz/Oo3vsZ/+F/+BWKSOdv/+df/Zf7Cn/rL/NGf+lUqX2NcTUQKquwtMTv2p47r2weubx94\nOJ7ohpFkBR3BWL1HRXxnUfCj6CYonTBPKEzOivoUZFI3aMpCsStzdrK+56S10EXnnoHs8WyhSNyT\nExZt8ild2y/Oi1oVLTOC5ASlI4/jKHM0Q5Bmm3O45Kd8pKll3tSt5Z157wgnsV2IIczGxQL3Yq2l\ncQ3rtcRKoSgfGfqAdRVV1ZBx9P3A+dQTQma93rDbXVI1K8aYOPeDqsCqrYAKQ83oh6ImVvKZ6bww\ns9gLpSigoG4zamH0nJ2jkpmf+9F/lV8v0Z/5eUvzZQJ5TJ5oxga7/FPKysjkyYbHKeIjsSYLZZlM\nskX0x2gR9XiGZ/qsy9lIypEin+Up8ihx/92oUF48Zi56lsXdu27KP/zXl8XOD3AtC5by7wKJPuWF\nTpzzdyxO5xzb7VaG1bWj0ql7fXlMXRd4/bFEapmnKFQ0kAO/JIoC5X5x+C6G+Oj5y3su8r/kzDiI\nWePFxYUMkodxevz0d7l0KWcTxPLv8pqFF/3oZ3nuZFtruby84KOPPuLVq5dsNptJAOD6+i2vX7/m\n/v5+Cs5100weIGU+yiDynkaenGyK7wx4heiLcdo4DoIShEDOcLHbcbm7oHJWJC2HAZsSTVVNUuIx\nJkKQ93pzc4M1orwXgwyZr9YtQxiJxzgNcvrKE0+RcQy0jcx2eKVG1JW4vJe1MY4iaOGs0FYKLawf\nBoXg5VArSOLSA6fA7ykp1VHvq3ynUui5HBfDjsvvS76/ogzknFfFNpXknrruS0RSaHXTjI8xU5eo\nnCnLtVWK3lKol3Vb1meRWi0zESnleSDeLBPA5WwRU3E/7bVsVE46MI7o3NzjzhfMqn+mqnnx4gXr\n3Y77+73MpChtz0xNBTcJOMh7nw/X8rqFHnp9fc39/T2HwwFg2q8p5ulvpDB10z2Ry0xnx/Iwehd9\noHyncydvypBUoIFJUnpKg8zi77N08EEOU4t63di5CCuoDnkepg9hpDuftQlzZrfdyWyZFmJoEWd9\nNX1nOakohO7TMmNmjCC9BY0p720ZG3POQqkzX4yzj9aVVNUUhFDea6HPJKrSKNAkNC4FDEqH3Dus\nFSGLInph9HtyTmSZFy+sa0j+O2dBpUUAIc6PMXOsdYq0lfhX9k2pU5+eBUkbQPPalkKp/M97oUNV\nladtGqEENaK6mRDxjWQMYQgM3UAfA32IdEPP7f6BfhzxznP7+pr185dsNmKi3FR+psXa0pjQoiQF\nhpjoz2dCjNKgWW9kv8ZEyGLgaiXLJJukkvhGEcRE5esJDc/le0aLAo1vuTQPtfByTuiSzlf4lHC+\nwlpPUWQch3GKcU3dsmpqdtudmmQb+nNP6AdJDO0syZ5S5j/7H//cVOgApOz4L/7Gv8If++lfx7qK\nXAoJIw2+ECJ3d3e8eXvN/cPDFC9sVZJFLTaiNMCKauC0pg2TATA2T2duKWyZBF3svH606VLMmWMq\nvAqm4mqiziOorbzgjFSIYqeg+HXl9BwUFkRdVTovIgIXKcziJKPG36ry0hjLsg/qWmiV2+0Gs5L3\nJeh4oNe8xas6nElzvtK2jdghuIq+6zl3HQDtqsUYz/HcczieGMaRummoqobtVsSAzp2oEHadeOuE\nMBA1RhVxqClU5rkBXfZVCYOZPDWUcp7X2dOrxLApJs2h6tHvyzXF4/J7fUzSqsUYMOkxDrI8GyeK\nv1ELgNJ0MNI0sDmrVLWlqPQv87B53vYxmvOuz7S8JsQnT3/26HfvupY//2Gc5fmy2PkHvErBUIbs\nl4nKMjHN2TwqiEoi5auKmBKn04nD4SBdOu/wTuYfRGzA6eFg5kM9jFMigdHExcyGprJJF13kKcDO\nMwJlzsF7z2q1kuReg12ZfxjGB00+585EOYila66c0zT7BxVEq8xLSDIqB0FKYXov6/WaFy9e8PLl\nC66uroDM+Xzi5uaaN2/ecH9/D8gsTwm+GTN9bmMMVe2mjnvZ/DLYKUmF0aQt6XxUTDJPsdtuubp6\nRtNU9GcZmB+GAa8HV0HRUhofbXIpCgXhapuG9WrF6XTQoCPJSOhGFQcYWa83iCJeNSn2lULVmTIU\nHqirlqqqCCnLcH4vHeOMFCljCFMv7dU3AAAgAElEQVRHuaj/FERxOYA9zzIIRzzjRZXqC+tz5jDP\nSmqSXEEkF0o985rLWRCKqqoEedH3H1MmZ0lmloOfs0gE034oggdSeGixo9LXBaUs6Gh5fM5Zueay\nnubn0aCdFh5EWaTGY5j34DAM2mGupgRps93QtivuHw7T/QMeKdRVlUhVlzmknBMUaoQWAof9A4fj\nkZub22mGC+2WikeR1eetZuPXPAuYTAfXoimxTIJL0SGCKIvDVQ+rCfFAaWOl67c4EHPOgoShg7RG\nEJZ5rkSS9IJakApdQdZA3w8cD0dOxyOjxifprAqdNdVCYRQkKZGfrEsoiJWdv7M8x6VHXHqNE+UQ\nfxdH3FiV2M5CC5HH5CkuxBilqbFoNqUorurTHrIGX1UYBKX16pNTkB3n7Iy4LO65fGbNXinJ0Czj\nCywKQU20dRh88vKZvIXkGUpSGkP5nLNiZYm5kqSWGaWK5Gsq76mdZ1Q552wsIUZOXUfXDewf7jh2\nvSjHxUSFJZwH3n7vM6gbLq8uubq64vLygs1mTbNaUdcNzoryGNZAiITzmfvraw6HI7EbaOuW9fMW\n3zaEMDLEkdpVKqOrRYwzRCPGr9aX2Oz0O5f1bIwhayxAKZYTXchKDHdVhUtZfbOMFtJZaIHGyeyT\n86yalmdXz1m1LWM3cNofiGPAG10r6kuzP7d8fvseT6+bw0vuuhe8ag+yx60IDiRjOQ89b29ueHP9\nlv3hMPscZfQza/xRZTYjWbdS0Arxp3TxBRlO2QgKozQ+Y4UAPhW5zin1V9ZACJGqMCqszpcFpcyb\nUmdrv94YvJX74nUmTIqiNMVw7zzWSWNL0PSg8VhloAsS5B21Ijur1UrtLdacvTR2zqcz9mSIYyib\nE2PdFD/FbF3MeMvaPJ5O00zcGODUdRyOJ/ox4uuaVbvG66zZOI6TQEqJHWIajTbZvtgYmgpNRVqg\n9IUWBeiyQMkLNGMZk41h1pj8/kXDo38z1w5mwvUWvzPKLtDGnfTkSvFTPMOmB05xflpDZvGBeFp0\nvAupyY8e9854uvjMU264+N3Tz/m0GffDcn1Z7PwDXKVHO8PXjxdUjHEqVkKIhLAYilRaQ9d3hKO6\nyfcdxllW6/UkZ7ukXhVRgSmxNYhbs7wZQTlKYDOFwvbkPesPkyaJxhhWbcvl5SXWWlH9SZKcp6S0\nIJ2HWIiFyMB76KfEtSRkpZtaAop1VukloybJhpAS282K5y+ecXV1iTEy/Nn3Z25vb3n79i37/R5j\nYKUiDOM4kmMkZ0MOAmXP3i/ui99HiqQgcL4r1BkjCNZqteLZ1aUqp3Uc7u/pT8dHnZa+76dO8TBE\ntjuRBJciMdI0tZp3WvquU7foiv505u7ujv3+wDDKIWKMDvYaR9edOZ3OkqxnNbB0ImMsBmyZTlGd\nmNRUNMr/oq6xghKUQhPAe6tSzrOHkajSeGKKU7BaBqmqarSbaB4VGc65CSFyTuZMZI0HnKumpG1S\nGxoLjWfmBJfXMrIhJlPRHBOumt+3MWIUKt/xPH9VUBiZs0hUdas+EI4xDCrV7sSIMgpVqaAxZQC/\nrIUYi5u2UxU7OB5PPOyPvHnzVlR+qtK9rMQ7oqqkszkYMFKUOaX/YaUoDCFwd3fL/cOe/X6vNKWZ\nDjIhEPo5k+7jgrwsfYi8G6fv5TE1QfqS5eePCp2yzxDKWZF9NRNNgxndScIBz0Y6zwYntoLWSJGj\nczxMcyw6AI0hRWnG7Pd7zuczKzVPJqNoxCw8EFOamhtlLRZZWufmhs/TA7fED1GzehxHy2MLNdiY\n2UxR2HgzqlyK5JQjIer6MzPtZ4rVJbnMMnNjysyfMSo4UFTx0IZEoSNrEWIKaqyomO5HFkVbXjSI\nxAvFzEp5+jzl/njvSLWYV5ZGV/nu57kWP8XbRILssStL2yRynoeya50jOZ9OBBNwdcVl0+qsS2J/\nc8fDqWO723F1dcWLF895+eoFL1++5PLikuQswxhwXkRAbl+/4ZOPv8Pd3QPDqWO7WnPRrlhdCFLt\ns5uUMUWsRAtGk2So3szeK4/FdtxUAAnKYYhZKTtWFOSs81ifpuZaQswt66rC5oyrWyorSpUmZrbt\nmv1+T386QRypvcdbhzFCE940Hc93N9zsnz9af7vVPbvVXqYmnMdVNdnXDCFw93Dg8zdvubm9EwU2\n5/GIkSxGTaCTnqcWcrY65L3wbbK6nyuv+6+gmrJAnAoGGAPW+Wm9Frnpfuipou4LI/NiIYhimXHz\nEJ+sJyOS0k0jsyAxyRybzdTes2q1sRaFftb1HWGM055/pBZLxntp0u12Gy4utgtjaTgcD7RxjXdu\nOmckprfUjTRyre7Jfhx52O/px5H1Zsu5Hzmeem7vH9gfj4xBkLxsRHTCKsuhCODUdSN0SUWelvnW\nfK49jpclYZHVxOOfL3IhkFmox8+1fLb5dZY/m5CgstGngMaEsGVjlN4nATmbmbq6qMekCBIuLWiT\ni6TxQ1VUixJfZlGhUT7mF8/4xTt9VOxNn88U+t489/N0Hmf5d9N6/rLY+f/XVVR2pn+XzbM4oMvC\nKAtmqYefc2a/30+KQBPkrJ3uAisvjSzLYbHsyEt3e+7GLjf+UtnlUZcylaAklK31ek3OmfP5LN4D\nVcX+eKDA64O6NhtjCTHgbTV32lMQ7X+gdrNMdkn6QhilY2sy1oHHihN55RnCyO3tNefzcVISO3dn\nMKgIg2McBhlCnCh781yUcbP/UNmiUYePQz8AeVKgcV4O5fV6jbeO0/FEfxZ55gK3e22THQ6HSdih\nrqWwub+/53w6Yo1h1TZ4Z3AY8A5I9H3H/f6B/fFEDInD4cR6vaVpV1jXkFKQIc4I3tUUn6S6qagq\np102le00MlcRU2YMkaA0tEJvkM+ucxalII6nidqQs9Wu90yVAJ1lCUyJXXFpl88qnXqDDIfHmPFe\nUSRTTO0Czqg6my3mnRUxTtm3OlbPKJs1VmRtx1EST8yUUNd1NSmwiUz2Y0W4QQu/kixZN8v5Tnsg\nW7KxZCvf9Wq1Itdz8VCK3EZNAyOG8+nM7cMDN7d3E52St7Dbbdlu1zRNjV9Iu4OhbdopsRDkz3I+\nnxj6fqLJLPe5AZl5AoZ+oI9islcQvlIECNI7PHq/BW15ZDy6iC1JEVNJLBUhjImIdnmzeMVMB+N0\nmGnBU2JEacxk8efJpgywzol6SiKx/vDwwN3dHTS1DPgaq6pmI1VV47wh5hGYTUvLGithshSfBSUp\nqEU5jGe0aommlPerCFeM4pe1+L1TFLwUM7KXZI7KOof1xSR5RjgxhjFmTRpRqp0RT5qqFh8rVXD0\nmtgu0SaREY5a4OUSckWpzZUZMXEjcjoTmReNAFcGxbWwEf8zp2p9ZlJKKwlLU4sPj6B4Bm8s2UtM\nyEkGmxOwXq3ZbHas12tOp07QE+cISShtx67je9/7nOvvveZT71lvNjx//oz33v8Kr169mu8jhq4f\neHt7zdtPP+XN2xvu37zheHvHw9trvvrVH+Xi2SXZe1JT60wmWJMIQ+B4PjMMA03TsN1sqOtGxGGS\n3L/KO5VGFtRSBsjlcxACWIfzFfWiwWYzeAwrX0tMAPIY6IeRt9/7jBrLt7/1LV5/+ilxHKgrUSBz\nRmwNGu/45//4X+M//u/+VTLz2f1n/+hfEwsg9Q+yTctgDKfuxGevX/P5mzc87PeMoZh4I7N8GKwO\nnxfKdklyy3qYZyQzvva6VwNpGSOdnf/WSaEzhHGifPXjSBOVVplLAa33xAlqqmCtCC34xfxdDKAN\nzO1mw3azIcRIdzxx3B8YxgHrPU0rcW9Cw8lUvgIvVM+2Xelc5ciYh+m9VN6RnSUEM8Xvpmlo1yv6\nvgcMQ4icu25STh2HyOF8y93DgYf9kWFMYDxkGEKiG0aqzITWOuuoq4oYR/onjZLlJXFC1AETQgMD\nJk+j0hRZpvPZKLrzpNCZd57+d4lFfLHg+b7vZSp45j8wRsxmU8pYFQkwRkWirFUrEAMpEU1BdJib\nSos6Zy5Ent6D6V9PPsX3Q6iMPskXH798nR/m68ti5we4lgnNkoJRKG3TAexm/51CaauqalKdWkqk\nlp+XvymzO7OB6Jw4LBfetNjlH8Dsw1LMSIuEpnDM4wSvO2vxlSS9pZAo3X2s4fhwmjqJ1iSycvtj\nmnnH8LigKwVZSeRyzjgvPhLybyn0VquWGEeOxz3eOunghIHj6UjQ4dOmqsk5M+j7isOoJnkgyZGD\nGInMCnclATZZOv3W6pCls5NHgCRAVihKxrJqV1gStfo+OOsYlSpV1w1f+cpX+OqPfsTNr72h7zsN\nShlvDetVS85RqYhChSvJyzAMXF48Y3dxSYiR42EPWYqH1rRkNZcU+WPo+o5usIwhSZfeAIjxZhlW\nB0nqrHdK14kYDOe+o1dTtdKhCjqjVNYeRoZkybOxnXOOpPSz0nkXCgaYBM4WV/B5XqfSTp+3giSk\nHMlRZIqtLaLBxVhPEtoQ4kQlKd5CQtMUKemhEzWfQh+E4i2jyIF97ItinJ1QJJMtYxbJ01QrfUIp\n+WnxOTFq/OlrQoyMw/horQJcXgq1p1mJg33Ve7bbrUqCVwzjKMpwXhJgKYpHkSpXGkLZMwBJqUlh\nDIwqRuC9iCnEOKNnPNlLyw7bjJwWuXoj66jMN+gcflFcSyZjjSTEycrwd0TFI1C6mj67dDWl0HXG\niACExpUY1YQlZ7pOip3r62ts09Cu11RVTbCBYegFnaRZkLM0JhlDSpFxnGPTXMDIPi6vVzqkE6Vt\nsaenYiclYohTvJopZLMIQN93DIM0DiovLvOlAMLMYgrJGEyh/HqHV++hsgZLkVMp0recqVjG5Zzy\ntD8n6pzRBMcI/GQsOC9DwSaJ6IArdDkz2xMYVcFDEQ7Zc14/v6pMIehu7YXCm3MmxEQIQl21zlPX\nibau4ZUjIfS24kC/P5/xrlHq9J7bh8+5/fRzPvnmt9ls15Mcu6sqqrqRwm0YaXLmdHvLx13P4fqG\nTz/+mOevXnH1/LkYcDoPOk+zPxw4nI60bcuHH33Es82WTdOSc6JRFKA0NYYYGBmkYYKZFmoaA3mM\n2Czfl9dF1RiPC4lVW9E6jx0DD3f3/L1f+zvcfe81//l/+2P877/+lwij4ydf/CJ/fPdXBSGOkZQy\nv/Azf5Pd+tv87a//MYxx/MLXfoWf+bFvYV2D9Q22asGJPPLb61s+/fxz7vZ7ehWisLkgbkk90rSg\nhil+Finyoqw30RktpFhoqYpi27lJWtayMYYwjNO8LDCjxFYad86UdSnpvdXE2KhMvkEFgZyghW0r\npqrn85njYc/5dCLFSNO0NKtW8wShjRlj2e22PLt6xrG/1D0qthYhBFIje7htalxwUxx1VuhpzhfD\nUyvqpGMSlMqIwMxpGDicOo6njpSNIGlYQsqkfgTXUVUjfd9Pz1323nQ/JmRnPm/mRL6gI/K+vZfm\noclPHzc/11PKluy275/kWygwuQI5cy4mthsS32z5XXl+sjYWzcSaELVOFc60YNTDLYucragPWoNN\nWcU1RS025+U9eFzolDmu5e/eLbM9x1/5+dyQ+UehyCnXl8XOD3CVxeJs8aR53Il8irpMj59oV/Nh\nXgqgpf/ONGgbH4sJLJ93mTTI7x8valnIcwEyBdJKaCkpxinZKLr65bHl8B3HgbZdMRnSaSTNi6Hg\np5thNjxdCVJSiexjzkzy1IJgafKgz3E6Hen6nr7vgDxxjQVZMoxjZAxRFW3mD22WwSbN97/yEtyb\nusY7P6EQdV3T1BWV82QnikUmzTM9jXeKONRUVc3l5RUffPghzlnO57N+PjNRS1IWkYEQA2MYKL4v\nIUa22wu++mM/Rl03XL+94ZAPFClwCzRNTbtqqCvH0MugcUy1NljkPmv2h1D11PW6+D6MA+Mog/PF\nW6monpGz+lUEMlL4Lf0dnbd45VVnK5zzgtyBDCoL/9xoJ7Go+DQ0leqOJnmNMjOTDJP8d1kWmUXR\nEiPe+em7sl5eI6XEMM6Fx7J7LrQiEQMozYSy9h/NUszAkv6tBm7rZF7GiNfI+dxhq5aQMsfTSQZr\nMyTEZyekCHYerhXjXkddy3B00k6+zFNIAh3jqPs0iwmhzjLpLXq8VrMk7CFGbAw49ZgqRZmoIso9\nz+aLncUYIzZYJUTMRVA5lNPi3mEtNmWiLXpm2mnMMsNjcoQk+8foOivxQ+5fnDqJKYm0/u3tLdV6\nzZWZKVycO0F6nJ2oXFNMQv62DPFPBXBZV+6LCpXLz7uMb0YpIMC7CyFdBCktiiEMxutrGKHVzijw\nrBQot0ZkksvcSNL7nZcxWN6YqjEWSexS7MRJJj3nUlCWgmWO33IPCqpTzoKghdYivbKStBlFm0si\nLUbRFuctFkuMGZcBL/e/CCtY09Cs1lhXSXGdIiEmzn3Pey8Hjkfx7CmzoimL5LxH0Ni2amhXG6qm\nJpN5vtlxPJ05nE68+eRT/u9vfYtsDO1qPRWGxlpG7eIDvPf++3QPe1bOY8YRX1UURNthVK7eE42V\npokiizFEzqcT1oryYVMLyp9DhDoz9gOtsbQZzncPfPz1b/B//NLf5L/f/0X+1m/+S9O6+ZVP/jVO\n6av82T/87zGmKLNNGH7io2/zUz/+fyny7MB6jBfJbuM8+87yn/43f4Jf/j//MCGO7FZ/lYvm3yEz\nTPLnOYnnlfFytiVEnpxH61LWQUhRFefyxNiIMUjRkuYmjlN2h4S0fopjvqqUTtYpIuiliahUU0PC\nZBFkt5og55RA6czeOUxOdOczfd9x1vO+qiqatsVVFTGGSZ59u225urrk2bNL4r1Q6sWQu9OcRdZY\n0zTYs31Ez/feCQ1P48wwyBzwGKIU48bSDyNDEAaD9Z6Y0TM+CQsjZcbTefLvqarqceGxyLWeXnPc\nVC8mRXIk3SkIWpmHfFzoTM/xhWf94rVk0BhEITPn8jpa5JT3ozQ0QFVj5R1JQaL/NqWAkueNql6b\n9UcW1A9NEFAJBnrolWA7fdLvX6gsm9RyKx/H36eF3xdRoB/OAujLYucHuCbVNTtzxN+1YKbuKDJY\nWvj5S6RmSWkr8wnLpG7mbsu17Hi+K0Eo/y7ywEu1tqZpqHxFGEf67kxezBeU1yqPLYPhKUugzhh1\nizbIYPBjJGuiy2mCeHFxwW63o6odQ+jpuw67UJMqCms5JcahJxTaicpb1lU9cfRzbiVhiiWpnRWV\nhGdcfaFQ9F6NWldroQKpZHLlPc4J/5skymxh6AhDh8mJ9vKCnCVpv7i45IMPPuTZ1RV//1vf5P7+\nHmsNbdOwWq24vLwQo75upO8HyvC7qKmNfPjBV/nqV3+U/cOBG3OrSF3kfDrjnWGz2rFerTAmcz4d\n6Yce60VxzuTSldIZDAw2Z00oZjPPor5XTGi9nSXPk1J+jLNUdYXLfkrk2qahaaQzmGxUumFUqLxQ\nasR81lS1FuSCQtVeZjZSCJPBZJmJKvS4og5H1rkjXYd1U0/S586KbGuMkahSok+7+mXPFCnhMM5y\n6wXdKrNnhW9eeN4gSULbtuQMfSfzVLiabGQuYVQJ8zHLwO3N9Q2r+nYyf3VO5qzO55MWO3KwyGwQ\ndOeTFnxyWEnNYHUAdT4UZsGLWWGvqOvJvi6PkyRY6Frzfl6iO4XuNR9qJTjweH8kpmHmkuALEqfJ\nue6faSCWmb9ejElzacKkxDCMHA5H2oc9q/VGJIiL2poX6kqZcxEkUdHJLOpsBoNRyo3RWGatnRXb\nFCkscW6maMgcUFHKK7EmqmhGNkVtMEoBvmgSld6sFM0OYyMxjGhuIXvLe1LQmQu9TzEmxkG63O2q\nx7ctNmWlDOmtzzpnpF36qMiBJDGihrlMHpb/kw6+znTlMu/oFKkzoFLij9SmNJ8xKrUrxOXZ58c7\nlUEm6xD0TJ+rq0KPFnQyxCTUSjU7FtGbgX7oRaAmJdrVSryuDIwx0NUDl+stx/OJm9tbbm4C564j\nxxPBWsKUpKlgjzEc3rzhE+85397y/PkL1tuNIGV1LbOpbUPTCmrqakvVipfaGCPhdCL0A1Xb0lYN\nlbGEHBmHgXw+M/Q952Hg9Wef8+3f+E3GhwO/9s0/w9PrNz77Z/hTw3/EK5X5LsiaV/+vlCAiBUH2\nFclY/pP/6k/zN37tj0zPcbP/i4xhzbP1vy4CCdYRg/o56XxX0DNlSjeN0IhjDMRi0ugL5TgQYpzQ\niqlJVwxkddapEOIEXSzpmnyOynkqL/LU4jejibDumRQjtvJYZL5n7LUxpYI5xbLAkMXEWhud2+2W\nq6sLNpsV1jLRPEMcgUhdtTSK7FSVn2I0mVlYwcwMkK7v6fqBjCA4xnrUGQeMoHvnrud07sE4Lto1\nbbPi7u5I13ULRH+Jej8uSEpzt1xPc6PJc0ybwiUmmqwx0pipXjBPnvt3uqbcq9QeZv65FDh5bniR\nKWFJ3l85N5niJEZ7HGYukuYupRZHpUCjNHmk5ikfvzz3O9/n4t58v8/zVMH3nQXlD2HB82Wx8wNc\n0+C2XQ7nf/HLn5GSGb15Sv0qSXpJXIGJMlGSgfJcv+dCxxYX9lmhqCRbq9WKWFVAZuy7J0nFnOgM\n40BGDrkYRXUtKxJTXrIEOekQSUeqco7VasV2u5U5ICIhyuC5kGmYEtKsh3x/Pk8/b5qG9WotgV0/\n/3a7oaoqzude1W80gBm0+y6mjzGK23vfd+y2Wy62O3F8DyNxEI69yYkUpfsYx0FktruOsTtROzVN\nTYmqannx4jmvXr1iGAZ++7d/m67r2GxWrFYtlxcXbDZbDod7eS9IUn/uBk7nM855PvjwQ1arFfuH\nvTxGpZXP5471SpLppm0Yh06H80fqSqgoSSkTpUtsFZVaFhPL+QPn3ISGpUKJ0aTHO09deU2KdDbH\n2UkeOKkc+aNi3c7qUk7pf8vCW9b2cnh8kcQt5hLk/ToqX9HUNVW7UhlRGeAPKlwwNRAWnXv5X8Za\n8faoqopRh6BzSjiVDZZ94vCupmmkEBsHUQcqdKR+GKe5JElQ5/2ScmIYZe/d3N5wuTvgnOPi4oJh\nGCbndJnfETQsek+MiaHv9b0IIuOdw/ma0cAwDFPybqaDusgJC4KWs6IUejgV1a6UEsYmpcwsDvkp\nBhQhWhnqdtOJaVRRDTAJcegu7UalXJGJOktUfJIwsxdIRGdq9LBWWUNNXAYOhwMX57PMvjk3PS9Z\n5rim7/FR9iD3wRk7NWKW8WuKQ9oOneNSRrxDFoWCokpJu5cpJm1ezLFsSpA04TQGlTdXBGYM075x\neI1HJVuQub8xBEzf0/cD1TAIYmKLb4c2G0aZKVuap5b9s4zHS+GOEtdLU0re46KQc4oBZMNSAKZ0\ny2fUT2b6ChplldaWVHEvJ703BBonMw9t29LWjdBUt1rsKbo0jgPn85mTItjee7CGMUhRUynS+2y7\n5StXz+g/+JAUE20l+7AU0UHv3TAMjDGSx4HvfuMbfNY0rBQFqpqaWvd0Vct8XLNp2V5u2W23hDHw\n+Wefk2LkYrfjxeUVbV0zdD2n44EwDKQQOR0OXL9+w8PbN/z+9z+k//olT6+UHdG8xPkD6P5zVuaf\nrPWT1D22Aldzf/T8rV//Q194nsP5z3O1+jfBpYliVIQsCuI3FfH6vSZt9uQkazJSUGHdj5ojJEVZ\nrC3CBOIXVQ7bQleTl0kqhiAzgPLaJd7rdjUFDZXZyzgOgiRps65VqmKMkSGOjFmU3S4vdzrDu8JZ\n6LsTXXea1q2soYaqetzIMUZnluwsnJMyjCHS9T1DSKKw5mTOScSaUKRx4Hjq6IeRpl1RVbI2QogM\nIVDr/HLWZl9BxpZF4gRuaLwxE9IhP0tZPOEooUhjzBRrQKhiAPaLOdEjitvTwuEdSMkyFlhUDfNR\nV6oUxMX7rfzc6P+JL5kUMnJvKQ0rLZCltC3o1lzs/U6FyPJ3T9/n7+VvnqJCP0zXl8XOD3CVw6oU\nJCUxexf0t0ziCopTrtKBLCo2y052OSRLQrv8WXnep4vQFTWhcpCqAkxJSPu+p6nFeK1tWkn8dWBa\noPMiax3ohkH8NGKaEpclbOx0oHIesC4D/jKbM44Dh71QfE7d6REcfXGxk0P1dJKgzVzgpVSUtYRr\n37Yt6/WKtm05nTowRhSAfDXRRwrK0fc9okTjeHZ1RVPXnDvxCOn7DnKm0qLP5qQUCkuuPGmQzjSa\nYK1Xa7bbHTlnrq+vOTzs2e12bDdrnl1e0jYNnQ7g+srjUuLu7S3393tChJcvX/GV977C2zdvyTnT\nNA0xJc6d0AB2ux3b3Y6qchwPezrlJkddL/LfeZoDsFpElsI1KDpoNbEyGLzVRNKYKZBWlcwc1HXN\nEEZMKMVE5HQ6YrGq+KJoRWZ6/sp5qlrk0QE9YAwkfX9hnNZWWc8xSreziG2sVmvado2zksBnY7m+\nveV4PIpCzzDo0GrCWv9oPaeUtMAUAY22qTnp3y2LhrRoKLRtq2irSqEmmReSLqzj1atXZOclaT+e\n6IdRvUXmwr1pGl68eMH7P/I+KYs0dnlPVSX0SO/9ZOJb5tBKQ8F6xxhQWt6MmBTBC4kPZi4wUi46\n31N3TvavdPgNs0jBMt7cHP5p3j78i6Tc8P7V/8BXX/x1ssmkKGhHoXwZW4x+jaowRjF+zBnrhOZW\n5n9yhhRGEd5AUJeC7mDESLPQnzYbQXdqXwmqUJqnpTArcsKKeC5jmSQJj8VcymcTp3GdT1miTnFq\niy58U7T5MxXds+pXSmlB2TXTXJYxhnM6iSmuneWiJ4TaOUGjtFgIIRCGAYwoSRrnJtTnfD5DSvgy\nLL5ogIUgwguP0JxFwVPYAYZ5VqgkMphSEM1/I0IEigYawDlRr7NgvVMhETHADaGgBmnar8umQm3m\nuFDWfmoadqv1hJymLM2uvu/ZNK0k7WiyaPReG0uddc5Ii6YQi9lqYAiBc99zfnGmH0fGIrhzOnFQ\nb6rbfeb+9JyL7WdsLxsuLsH0XYQAACAASURBVHakEPnss8+onOfZ5QXPLi9Z1Q3jMPD29opf+eaf\nYH96zu978Wt87f3fZF05fuT99/jaR3+Xv/vdx4XKi+33+NH3bzCuJWVRO3NT4uikaPEiTIB3PJwg\npi+mRpmWbFpRTtQcYKKlL85jV2ZmnAzKL9UwU4xYdJ4Wue9CIcwTJf50PnM8nejO3ZRXW2OJcdQ4\nK2s65JEUhQVgDVTeytydMTgDlfdCc04BQ6appeHUaDwTamnGO4evPHVT8fLFiwllGPqeYsQLQoVu\nmkYsIPTzSKHYTmvIWq8FjQqbDINQ06qadr3BWMf+dOJwPNMPI+ch0PUjOUPTrthsdhpbZV5pYpeE\nIGdKU08FYn6SA5XCo5i6ChIqtFKrpquFpl1QlakwohQ9X/TBku9+vlIpahdQztPUfy6WdK/ngsYX\niiNgBHmFIJLqi2f5f9h701jb1jWv6/c2o5nNWmt3Z5/u3rrVUUVVRdAEi6KpwoIYVIRgQoIiUKgx\nkWhCSGxCjM0Xo5FUQGNMGUxIMEaNKDEoUEqwaCwolFQoqCsW3MKqe8/d55x9zl7NXLMZY7yNH57n\nfceYa597gaMfuOUZN/vsu/aac8wxx3ibp/k3VpNHjKg3mlQsHvJ8TqhrTUmQ4O++i/O1ivTLPf3h\n7x/C3L6Rjs+SnU9x2EXwAPOGvdzUYDb9attWCc4zv6eoEi1NQMsh/6ZZv3V80rg6H9Dyt/Ozb4ox\nUvEt11QSgv39vSYWZiEYsGhbardlmgJ9v5LAQSvs5XMLgdz7Ql6XymmYAsfxwKtXrwhxYtV19H1L\nIhHCpEmVSJSeTiflcIh4QjFkPBwOstCp2SpWCJaiKKQwOJMxDixuQWKXCeqdAy/3+Hg8stvdcToe\nMIiyjDWGFCNtY9mu16z6njgNHLqGTS+KaaLYtiHGxAcffMDLly+5vHzE48ePePrkEa33HPd7jsc9\n682KbrXm5vaeu7sdMSWurh7x5ptv8vTpU37yJ/8qn//c58UvYDjhvWO9esQbb7zBZr3heDxwPJwY\nh0CMuSrDee8ZQ6j3vDxveWbzGIgxkScdQ4vuS0YCNdcIP2rVd/igsqJGjFGt9exu7wTSoRAwA0ya\nwKYYFa4RCCpr7T2YZoYVyMApVV0NKp3HOKfJR8dmvaZINd8fjurPtPCEerBhlUBQ5k4jcMjGV/+S\nrB0EeX8ghglnZPOepiAk2kY26GEc2O2kM+DblqtHj4jGEm9u62dlEAgK4JqGZOAwnLjd7bRL5843\nxFrtk8Q4LYIZYwKZIokt7tdQ1JGFrB+ixTkRm5Dq/nwrU+2WqeeC/rJswCW4vzn+dr58/Qfrfbve\n/xr2w7fzi9/9D0URK+fZlE47FjPUwdRnFmzGxUQ0Iptb/EAyWWAxJqtnVamgSid2d7djs9nQ9yoJ\nbqx0TELENTpeS/CgFcsZglcqm/MaVhMeTXYwqW7gpdtagRuLqmvOM1wzhlDX2dL9k6QnUm5gSUis\nc9Wsb9khlYREeBw5RqKepyRUxSU+xohkldJVc8aQFolO5ZalsqbO1dyHlWBMgbKcc3pKolNeJwUe\nQAtjWDBO7opRWety7ixlfSUBZGIKDJNA1AyGZDxhnAjtVBUHvXN0rmHVdGVaE1KoMLeo0OFCopaA\n3dAGRRBo8Fcq7yFGMScmqy9cVAW7JAW14cR//xd/gB/9q7+BMazom1u+/zt+hF/a/FlczjxqZL3O\n+wN3pxOD91zvv5U//BM/zBA2APy1936Q//ujX84/9yv+AGvn+We/97/gD9495f27zwFw2d/wO3/g\nP6XpG3zfYRtHUX+TfTHjvKfrVvi2Z4iJkD7k+eMv8uH1d7M8+vbP0jYDGOEUoTCtpGulFIPkHsUY\n9dZn9ZgyVfstxlg5eiVBnMemY1SUh7xOznc8HWGQ/SCEwGShcVm8shCuFajpaumykkhpwuSkHW6B\nveUcK5TYOycKcV7XFhWPKTw7Y6wiJxD+azNDU0E6JsJjtdohFquJoqIZYxalRi00jNPE8XjicDxx\nmgJBuWQZlGcridP1zTUxprMCsVVvrBLLTEkTmYcBUl2rFiyfbFmohgCGol77cF2S9WfR2TGLlSoL\nbwaFC9Y/Zn6Oy8Poequ1LWymSs8bwGkbLjun1hpyZWQRJdCqS01wOOsQPfzar/97Lap8jet7cLVn\n5/mk9y2L+t9ox2fJzqc45mrYrD62THJg3rx90bv3rm4CszxqVAWaArsoAUHU8XwOY5Cj/G3mKiDz\n4FwKHZSjvH+aJsI0KaSowdkZRleSr9Ie7jpZ4KZ6vWpCqZuqsZYpiiRwLGpzQAyRGCfBjduVLERZ\nF7JW5EL3+z3jMNRq8kN1kHIdh8OB6+vrGhBXg8mmoVWlttNpqFVbq31fa4xgz4eB0+HANI54p/4J\nRgK4i+2WJ48fcbndkEPg9rrF5Mg4DlxeiBO3yO3u2O+PPHnyhMvLLc+evsHu7oabmxtCGIW3k8V4\ncZwmuk48i7q+58MPP6wV8ePpwDgOdF3H5cVG4IQpcjweOKjCTYyJ6XSi73utSss9FcllV6vWKSWc\nsTTWg8kEZsf1YmrnrSO7+fmW4KMYXUplKHNxccFak9ppDAq5E8npMRhiEghgSrLR5iTqQ0Y3AGdF\nDS1ni3FqNAqkEDjFQJoip8NAynA8HisxFeZNphQBUpqNeMt8ck64VzGKtPdJ71XTtsr3kO6S87Ih\nhhAYmQn/KSbhU1nHqtlyeXnJYRhroWGaAktpZ4D7+3vef/99KQ7s9zLeF3Nw2aUdhoEwagVfk4ii\nfFiqcOfHUmRhnsd13ch6r1NecOQAIiU+yjnzwd3vfW1d+srHv4Nvff4j9P5WVoRSTU6pcjgWeRWg\nAbxJKh2vik5aNQy6tsjePhP34zBwv7vjdrVivV6zWq9ou4ZxGshkWlqKf4oMEoBUu34lOLDq8XMG\nXcwZZ6hwuMQyGFGlQKTzYTQQSDGK8uA00TWtnD8rjCtHoo7dAg+s4gXW1u5X6cyVgBNdy6xrHiQt\niRyRz01Ru8Oi5Fbk98taWkw2FSMjfzQJqQUzYxVONaMFijDIa0GFBs1Q5omoSYIhpoxJCeOhyHJJ\nsqxzKyfiKDLAOWci0jn3J1We856+62ibTvl6JUHOeCWRlzGVUbiis/gMTc6cpgKrzeQYYRohRawR\nLtF4OkKMeOvoGo/xHT/x5e/hj/+V31K/3mm64k9/8V/je79jx+eevE96/hwDjCdZy60x/M9/44dq\nolOOn/rqr+Lj/Z/k8eYrvLn9iH/7H/vX+VsffQfBrvjOz/8M2Y2YtsO3PdY3RIVoy3w1tG1Hu1qD\nc9zfH/jwo4/5xV/4fdzc/QeM8bsAaPxf5c3H/6ooVsZEyOmMTC7eKRZvqd2IrGuZd4127zLOzIbY\nVrWiY0pYY2kVdTFOwimz1mNtzSpqcUC2lExOQWBjSMLdOIt3lpRVeTVZ4dQYUc5snEjA5wzOGYkD\nuhas4RSKr9xAo3trBoXmyrwvokIFCirDoRS8TO20hxA56X6YkQKSsZ5xkmLXfj+LIaVYDHStIgHE\nV+/u5pYUJ7nfOVdj7IcKuOlsPaMmOvMKV/6eOyJZCzH6chGtOFuoLWYBZZun31zcW3bgv37wr4UM\nLTpow/rsnFI0yJKQpVRl+yFjKYX1rPt7kmeY5u4O89c5Oz7p+l9PeM53hPkLfu3j75w0/f15fJbs\nfIrjIXfh4VHgECUgsgoHK+T5s0qCtTrhoA4yXcDQzb5UA+WzSlVw8Xn634ILr2pVaU6kSkJTAl9D\nrsmO69q5+6PJTdO2TFNc8JOUGI9APoyer+DvKyHcGrq+gyTS1sZavDECG8jCWTmdiqLLYvFUiFvh\nG2EMMWd2CpkpG7CgN2Z5YknMtI2ehUQZM9VU1Gib3jkxEbSgyVJDo8pr2YJvLNMw0fUiPjCpx8E0\nTXRdp8+04XQauLm5FXPFvsO7hsM0EmOi71c8evyE7faSYRh4772v8Pytt5nSxDCcsNawWnW0bSMQ\nmDhxOg0C/zFOqjlxdp4v39Utkp3CYzHMMuQVJmldHR/OugrzC9OEa7y602cVC5Og5eLigjeePaPv\nV9zf7ZjGgetbFbVIkTFMlabAospeukDF7dthCZNU14OOpRgj4zDhTwMxZoH9SUlVkja92rlad25+\nWr6bc05hj3sGhXyUTS+lKPPFzKadgeXiL3weq2MgxsjxJBDKYRDloQyzAlcSedXr6+ta9Xca6GXt\nzlgr3B1SFpKzFf5R46WyOoUZYjDXJqRIYLV3krJ60dQK3jyZS+G0wEdn6ENJXg1j/Pxr607KHWN4\nTtfc6hZm1LtESLJGq5RlFckKnyprQ+06aPUwl05BFNibTRIwOGMZh5HD/T373T2b7UagnNFLh0Vl\nhUtnwnv53Bimuq0uYYP1+lOsClJ1k1/UeGa1RUqrTMZZCIRpQiTAJ8I0EsKoHkdzhbYkOktfM2O0\nU+GW/mfUinEJUiWwKORoMYxEjY1bLwFlNvL9aqffWkyyPAyIRMXuPMAogWKRfV3GHyVpnq958cvS\nEczSQck2Y5DPpXDzFI4nRqQyhqc0EVIgRIsNIk08TRNtM0gCVYNGDdYqcKeI81iVTLe4kImnkSkG\nSS5jZArCEcl6XafDnqCd/LbrcI3nL/z0eedEvqvli1/+Pr7n7T+FoQMyo/WcjIWYeLl797X3ALzc\nfRPf+eYLck70jec73/qb5MZh24bc9tjOY7yVqryZAzxjHW2/wjUNu2Hg5fU1H3z0EePpb/G5i+9l\nf/puJhO5uPhZOuU6iXJexDiPNDMkCfXGYdCEOorUflkbyzMqgWnZ55KO66bz1ZJCBB5KV7IIGEsh\nAsBkUXZrvKVtZO1zztKofPqEKC2anFSN1Kn/UTGknse6s5YxTIRxwtjC8RQuU+nUlyJuKQJMITAx\nS2KL+JLHOi/QxynUOKLwdEKUbs9pODEG2Y9ckLXXW4PzrZpGS+FwGAasiRTRjiKQEmOsa/uyw/tJ\n0K1lZJYUnlbXuuXanPNimdZxvjzHazHewqB0+c9l6ZQTaWda366LrjFz0iUnSOqjY8g269pTT4fs\nXwsRGiwxL6wFylq9vLrFfTm7vNeSsq+XqH1jJjRf7/gs2fkUR1mAkp0XoLIhliCscFnK62MMWkWe\nuxilRbqcXOdBzXl14WzwLjZQA9rtnOF0SZOd8paZa+NFJjNniOdt3PL+mJKqk5gKcbDOCRl2ARnL\nWaURc8GXC663aRriJNKaKUp1KaXE8SBVebJAMpx1CkvSQAZqFSdlkZ8WuU29J6qiFlPEJFs7bI1v\niCkyDoNAWdpOKyiimtM4h3du9tvBEqaR42HPeNqLOlOIGJMrnvl0PBKT8Dc2my3X16Km9tFHH3F/\nf19lmEtlCizb7QVPnjxltV5zc3NLiBFjs8h12sx63WsAC/v9XipzQNN0eD8wjFHV6WahCqA6tIvS\nWzhbhpwVsrYt3hRJgx2T1Xhylr4FJ8/dWoyTDXK96bm42LLZbPHWcn39MYbEFCfZ0LOSz22B+CzG\nnZLNyZmcJEAqwgNlfNfNKZeqpPpIWEvWDk/h8zwc/8t7IIpox1rdm0UQZu5cDBHjJeErS3jhnJXE\n8P7+npvrG46Ho84VizVp0YmQZCIn8cMwxuG0Mru8vpJISKJqqhACWEZ1/LbGzFwc7dLizAISltU7\nad54C4dD/mnGaJd7J++DTfsT7MdfwfJo/Qds+p/TRLQQWJkx60hgb7WjUaqCMBdfymsMmiClRHK2\nqpRlMg5bOSD7w57Dfi8Kin2n8saSIJaiRLlnQdXT5iXM6QavcLSUhINSlKvMfM/nW5TnDoOOryLT\nbxGD0GkcK2dLyL8SQIYg8KBJhSOMpyZ2zjqy0SpvkhHkrCh0oQmVqLXZ+rmS4KqdgF5d7epk7Xoa\nR86uBq7GFO8po3fZ1MLFvJ7Lly2cJzAiV1uglk5UAUsRKutzLN4maKcIjMqBZzVOLJhKsLFA0iSB\nIQVQnhk5iydWma8lKMqCOijzyXlHMI5xyoyqqFnU6bLOjaz+V6RM1u51NAZiwucTn3T0bsLFpLDL\nTJONeAWlxLc8/ll+/vqbX3vPtz//skaWonLnjSM3Bts2+E2PXTWEOBGSSE9nI4lGaxu6fkUwhpu7\nO776/vt88OFLdvs9ISVa99ewzuDcWhKRPPMqi4pXgerNa4PMmxLsGpDvHxNTDLq+yTolcLG5OBpj\nlMRdpfoLLI6UZl6ajruuEVNmY4x2YAwOyM7i8GKxoIba4rkj64tI6YsH3hRGwhRovGO16lh1vez5\nja/m3OXIeUZ/BDN358t6nnJmDMLXAnBefJoShjCdGKdACALfzRgtIhm89XR9T9cK13e325GzQk+L\n8mBGY6io66fATbMO/vJ3LcrlsuWUeZZrccfUDES/l5n3i693lLlo7CIVqOdZrNn627L+fsKZWK5j\nIElQuYZlr0WgtlKgKO+RoaVVMe0eG+oWK+dffPDX6vCUveTh777ecbYmf4MdnyU7n+KYxQEM1syV\ngtLFWcpJF7JnjPksoCuHLGavZ9jL5Gf588Njft95Nj93cubXWt28rfZBDbkab9bEKpcgqRCkVZlI\nz/WQUDxNkyy+ja/tbqOVJlMmXVI+z0G8YFarlZDgQ1Szt6T+MCJXOY4T0xToup7NdsNRDVadN6ht\nGm0jHZicM+MwSLV2CjSKTbYa4AiHxNF3HU3jxA8mRKbxxIHIMBxJ08TldsvFhai+jeNITtCv1lw9\neoRzDfu9iCzs7u4wKbFerWmblmkaSRh8I4lX3/diWDqNItH68cfVz2a16mU8TBPTNGIRdRvvG6xx\nou41jTS5qV4FQhQu+Gov3BmF+6BjsPgXJeUQlAAvpyJvLuIRCbBBuhyb7ZbNas3FxQUY2UiMpUpz\nE3LdGEOaFf1mqI18rsVUXLkxpgZ1y45mzgLJKryguUsJRc1ozGU7Ol+MS1etSOTWMb+s0GnlL6WM\nder34eT8IQZAJJFjjNzd3XF3d1eVD0vQOePCi4eFxzlZHg0G64TTULuRcTb8LQIfTdMQw5KobGuA\nUmaoNdU5oRYoiqoOUAUnBKddlBdLQcHopmd49/G/xZde/jfE9FS/x8B3vP3vYMyCFL9ID4QAOxP8\npXtqaxepVBszVF+XOn1zxi52z9IxnKZJDAr3e7q+k8BajX6t3hfp4M6JSc7zPbc2aUCfKkegqEyV\n7mEZaykX2EyeuRJp7oIWOGQKsQbXNTk0iZBSXSdS0A5JVtGDXDqhkuDmJMlPsQuIITINo3idIAlq\nKAktZSzGB9wt3Q9SJmdX94Pyu1qx1vtRFKxkbJdwp5SGZ/lwScIcNCVBKkp6RYLfkZMIyKBjaZa1\nXkCiY1Z/LGrAlVXGOgVJUCxF+W6eb3kBCZSOgSWPSeGkRW1zllA3uj40zpODyNHnmMg58oPf9hf4\n0f/zV5FLEga0buRXf8tfJg6akILA4qLwSf7J7/xj/NSLf5Dr45P6nn/8e/4Mn3v6knFSnxtjsI3H\ntQ7f9/jVJV9879s5nPZ81zf/LYEMGSk+NG1H2/UcTic+evWKr77/Ph9+9BH7w7H6nAgKQPlDSdYp\n6WQ4SXQ0ETFIIQNd74xbrJGaRIcYqpF3Ua+Tgpc8u2EYGYepmn+XO5N03wJovWez6mlNEGNno3St\nlMBC4x1N61mterxC20ThPJ3PtSzPzRjDdrNls1nPRuBW2XtpXs9ilEJGiIFgCmRT7mVMmRgFohxT\nlO530+AaTxglARqmSdZoYxljrJDRpu3o+xXGWu7v9+zvd5Kc2SXEd15znC18NldjnDkOMmVbXPz7\nHNPUE54lOOU1y2Nek8+PXFbvurrOf32t1CYv37D4TqWgNX+iLdMfNSU1uj6I+n5N3WDOs9JiXSmd\n74fh4sN4crn2PDzmhPF1KF9572fJzv9PjrOqtT7zRgPaMgiWSmtFPark63MCo5CgTyBAl27J8t++\nVkKkJ50rS6W6ZGa1ovK5szSsw1mEPOi9VJIWECOaplZNpxhKGLqoLsv1xSAu6+LZ4hmHEzkbhYjJ\nZhcqzGR2q49JlLaKQ3TXdeBm0vo4TWBgs91yPJ24u7vDWPHwsVa6OdY5Tscjd7sd0ziy7lds1htW\nXU8YJ8YgJGLXNPRdS6vSxadxwhp1iz4cRE3p0SVrVTsbx5HNesvTp0+5uLwSr41uxYvra8IUWPUd\nbdtijbTsx2zoulWFGIUQGMYTH370IZvtlq0mFEL8DIQogYFA8xxkQ4yZaQwMYxCz0a4HA6dhIBQX\ncQ3+ZkEGUwOKGCM5zp3FGKQC6VRBZ73ekC0004RvW548fcrjS5FpHVQKOqkcr/cOF2YTz2mkSmCX\ncVSx07nytClGm0CF3JWjqgguxveyQECdHTMJMufMerNRfs10NidiSnhbdwmtMFr6rme1WjHYmfBe\nrjfGyP5w5Hg61UR42VWVUxmtkM8coBACrSY08txNhUNZa+n7nrZpIMNhOtU5Z5a7Ttk47GJDYgFp\nWGyE1hiSNahk2uIa547Xpvtpvuut7+Xm8E/g7JonF/8LF6tbYnSUzhDVsE65Lyp+UJJjazUAyHmG\nQziDya7CrOZEiPnfUiaZOdnZ7XbSZfWepmsF1qPPar63M3FfuDs6PmwxZp0TheUmW7vjmlBIV3dO\ndsofZwxd23EaTnX8PFwvS+Fp2TksvjhLvzRKV0Jx8ZMqU1o/V7uDdkBiEr8pETMQBTRnxWdJukXC\nl3FuhhbPnclCXJ7X1VptNYZqgKjP3WIV1jfLb9c1WaGaYMAK1BBT5rARf6OSOKZEslmSDE16xKTQ\nVmnylOeKccqmijMURTBrLMFaTDakSYp6aIDq9LsJ5Uy6DsZ5aPTZa1LwHc9/jt/7A/8Z/9VP/lO8\nuHuLb37yc/yO7/2jPFu9YhqjSHBnMDFjEthseGP7Mf/er/83+N+/+mu4GZ7ySz7/f/Hd7/wMUzRM\nMTME2Wv7ztN2He/ffyv//h/6IV7eyFr39OoVv+ef/hG+6elX6dqO1XoFwN3dHR9++JIPX37E7e6O\nYRwxGZzxNE1Lo1xJ+Y7iWyYJixb/tLBEko6Us41wZLToRE7YeZmpcwpM5fUaYyXZqTHDQkI9z2SP\nrm1YdR1mClq01JfIKkzbelZdR9s0GKMcOLm0WbCDuZjQtoJeaBs/z9EgrxPkQjpbC1NKiwQ5V9jd\nNKXaqfZeCkY5GzG3Vr6wcH1kjHsvhs9d19M0rSqqnhhH4fPaOQemwEenaSIvusUPj4cxUYW91s7L\n3CVZri/n5yhdmdeL01D6Mui9l1jLvn6aB6nP690VDGRVjSniMWVNntch3RtKoPngc8rr6pJRihkm\nL1s9n/Adz4vo5wX4ZU74dyNs8I1xfJbsfIpjhiPYCtNYBqKzUeDSVHROdsrvSiz0SYnM18qcv1an\nx5o5GLbWqgqTyqcu4A8FEy6faSs5dXZwN1jvQRd37z1t34uho3ZiSsDgvRcOhp030nEc6fuOtu0l\nUBhGNf/L9F1XqxBiDjnV726txWjgW4j0GdhsNoyj+D84J9C1Erje7weO+wOHwwGv0syXlxdYDKfD\nkdNwpLGzJLCzlqjXvVp1jOMJ7y1dI/4PpYPgnOPi8oKLi0sloQuG+HQcaBs/izJk4TaNIcqGqF2a\ncRKvnevra77ruzpOpwPDMDBM4qcTg5rQJln0ZaMQAQFrDZeX4nVQSJ6i5kPt8BSCtfdi9EnOwk/S\n5EFgLrYa3rVty3a7AWs4DgNWOz2rdc/9TozbGi+GpNKhczTWkpxlGIa6iJaxXzk7xqoAVAnKpRK3\nFMmQe9/Q+JYYI6fjsXJuSkI+j+Hz5B5jWG833N3cSlK8CKCXCUWZCs55lbruMPZYZkwd90HlyWMQ\nwnleLOhFncjY4oklc/l4FPhcUVRsmgby7F/V9z2Prh7hrBVZ7BDP5/yyiKFwwNnuUrsm+cFWqLlK\nkZ4WA1/q5iXzxdC1J543/13lx8XY6KZr9LlIR6asVQpqq90mhxHctwGI0vnLYL16w5RqZ04UP3BT\nOj7q4XU8HJQH4LDesWFNqx4eSZOHSrpfFFbL/ylFofIsS6GmrJ1FhrqsFylJ0DiLPAgW33tP17ac\njsez9bR22eq80G5vI0qS03QuXpDruilVbz96uT/GMjZD7bAklGCt632OgRxDNS4unSXp6nicK4qW\npZOviYyZYZtnfB3tylgzc5us1vlLtV2aMgnr2ioMknUNN85jbOH0pdqlKutHTEEKX9ZAlqKFTdq5\nSEgXQe9FVYdKiRQk6M4mqZu7JSdLiKLmZ4xAJIPC1iyybjW6T4YKz5Jn9Cu/+Sf5vs//H4QpYbzB\nNi3eerJN6lUjyXrjZZJY61g3B/7RX/y/Yn1DAk5TIqTMlDNZOYTWebp+xY/80d9SEx2Aj2+f8If/\n+D/Dv/vP/0esVxtW/Yq748CLFy9476tf5fr6mmGQrq/TolrZ48vYKDD1gtzQxYsMAl1OGdM4DF6S\nxSTrTZHkL/ArOZdIgHtdH4dhqDYNAj8zenopQkHUrqPVIk9S/pSsxY1zrLqeVd9RZKOLLoZ0+OZ1\nXKDYjXjuZDgexE/HOjfDxY2pnCNJdiaBUZUClXPEmKshtfDEiny7yJDHBxBljKVtnXbEOym2Rllr\np2HA1q7OQhRG16MQQuUaLREAy+OseHUWxGtxqXR9mO9H6ZjMBYe5kHZ2bp1/5SejEvFJn5F+6Gvv\n+aTrmRtN+azLIo195RhRFDLRxGq5F5wX6V773l+nwyP//2vdszkmfRhnLgtS32jHZ8nOpziGQVS1\n+lXPerUhaZeiQG2WFeuCxfZeuCBnpENjcE6mGcwDaMlJeNiZWR6f1JosG2dGCMUwe1uU8xYXZSFb\nz74US9Jw4Y08e/aMp288w1jHq1fXvHjxguPxWOFewzDQKsE8RvE0KXr4x8ORw/FACpGVKjfNymMR\n5zytlw25aRpVbTG1JUFcPwAAIABJREFUOhtj1EB9y263wxjxPIkxcjgc2e3uMQjUqe86+r6TRTaJ\n7PTpeKTdbIU4bkwNQtfrNV3nOR73OOertPHt7S0hBJ4/f5OL7QUxBu52O25v7vjyl79cO3cpJg7j\niTCNPH32rCZfl5eXXF5ecnN7wzgObLdbnj9/zpe+9CXl6AgUo5h5RiJR4S0C9TJcXlzw/PlzvPdc\n39xyGgZZeDSRLiIXZWy1TUMKkVGf/6xK57EIEbjve1arNVMKTPf37O9u2e/3XH/8cYX0XL35NtvV\nhjBOdRzMi+9cZUsxEW1ccGbOO4rFFHMeq/MGskwCZrGFWR2rdjj1vc5aVqsVr169ks1/0QU66wKk\npNASR9eJ8WrFTVtTPZmKhO68ypeKuSGcJGhpmo7VakOnsIoik95rkg0Lh3ig73uuLi5IKXHY76sA\nyfLePJyzBS52/ovz35f7JLdDA8zaKJP7XBK/aRiVOC1zkCxkV2Pmz/FVwl4inxgjyVhSNgL5lFKl\nJN/OYdN8PeW5W+UTGStV1hAC+ZSrua9vG5pGA0F7DtuduylzV9A5x6jO7XVcaOKcYhIVNfWVCWGq\nRRO3iECsOT9fgbmhnbOkm3bxYJpf6zVAG+u5ypozw/cm6fBZgTGmEEkuqvLWLOgyjaNA9zQkkU55\nLI/qrBhWn6AmM2eJz/xLTXRmGJ9873lPED6mIedEgyYZ5Z7ovRAIG8RY7pGtQ7+81jmLsx6LxWbx\nrLI5CGcnqedRtNwdW1b+lkKWNsYohA+mlAlZkmdjJAgPyq+QW5DJLVWyewkldEZBnSaRosF4gfaW\nJKGIWpR7N4VJ4bgJ0sgYE5M4dmKcx3tL2/f064ZgnvEzX37n4Uzjb3/1W9gd1jx/2uKblrsPPuS9\n997jxYsX3O7uiFFgas446eBQYLKybzrb1D2zcOysmblcaQpYHEE7cUlhlcZanG3qfEo5Y73AAXPO\nda0RcRrxYCnf27ctq97C/SjIizwrXxaxHWNQH7Cetm04HvdqehxroVA6SNT5JomcFLV2OzFO3m63\nwFyssqp0KXyiAMbV7rCzJWYwtSuxRLdE7Zw2TUPXJYyL0lVwAmku4jSlQyxeefPeslxLrRE/J6td\n0+V8eu3QTsn842z4Onct50RJujOSQEih7ZNPe55izJ355fz9pIJ0BslalA8or5PzBaQTY6qBdFkz\nmfeq8sFlLSVXXrXFVlGDs2vVz/ukvKQgBT75+PqJzDdiogOfJTuf6tiuN6w3G66urmjalpubmxr4\nA1XRp5DxAJXb1cTGOK0QCnyg/K+WdKESm4VUaF8bsZWgVt5iDImG4htgyOQ8QQrYLB0Dj8UBCQm4\nDSJXuVqtCTER4kGCHy+BwMXFBW++/Tm+8IUv0LUdH718SWsb3n/xPjGI2VzT9OJ4HSY+fvkBT549\noXGO29tbhuFEJNOu17RrIXjaGLHe4zVBaJynU1Lk8XgUbK8G+KvmyOrzGy6fPcYEx3svvsKLlx8q\nATnhrSjYrNdrNpsNm/WajOdwOnB7ONJvtlw+f4PVxZYUI8f9nuk0sOo6MCemEGicY91vuNpecdrt\nefLoKU+3V7gYmQ57TIise8fl5VquyxqCsRxiYn88Ee/uaS8eY1xDwHM4Tdze7phOE59/8218TAy3\ntzzebLi8vOJwPHB9fcOYIk3XMMXIMQSGlPH9mnfe/QJvPH+Hj159zP40cjiJTGrbeDCGKU/gPDFL\nJdPlRMiRaDKbizVXV1d45zgcj9zf76UaFjPHe/WLGRLh7sSUDwx+h3WON5+/xbQfeHUQpbkYISSB\nt0nVMZHiJBygHMnTwHqzYrvuaLzneDSk6YQ4S0RymsjGkpP4LFjrpPPVemyKTBoI+rYjO6/GrCJE\nIfNG/KkePXrENAzkUuGPwseoldaYcLaoY0kXo/yp63VWfoT1xHBifxhErY+skBzhZ7Rq8LdpO54/\necx6s+Hu7o79fq/GthtyhnGK5GSwTUfXtDx58pRk4f5wz3HcE/PE3E2apYJFdUdUDB2I9wUep9C/\n0vHM2ZGNV7WxJF2VjPgImUwikXIQiJuRQAWXwSRVIUzEZLDG1YKLGM2WyqUkgM45jHdka4gzZouM\ndFYxc6ctKcciJYVN5gjGaGEBhtPEdbzDGE/b9Djb0fUWkuF0OGEw9F2Ps5ZhLB3dhHNGeAZxVmFL\n1mqyoW4UeeYalXWwqO6N0zhfqytay0LKT0kkqcXEMkINMKRDXZQmS2BSfEFK1ywnkdA/nRLdaq1B\nviRhIpSCJATaVTLOQUzEoERorJD2w4BYCRQYaLlOUTIrHb+SrFMgLQmw8/5AShivsEAn11jEPnCQ\nTKrJMTaB8xgn88kqlzKiimwOGiOctKJymZNwdVJORBfJDZAtP/qT/xD/5Y/9Oq73Fzy/fMXv+v7/\nge/7tp8SeBlSaPAxYL1W44kSYMWoBpoyTryV7hEOsoeYAyajELFWFbwGUjgxDNK9cNaAs0xBoNSJ\n0nWTYDBZK0qVjSc5RyATTKa/XOOuLrFNR99OnMbmbO/smoGrxz12e8FtTHzx577Cl77yAbf3AzFa\nKZo7x2QN93libR3D4aCKmz2r9ZocpDPfmJ6AKH8K16UjW8MYI9GMGqOKL5xz0LaenBJhDFgLq3XH\n1dUWS+Lm9hUmHFlZkexuDPQaP1x42DgtAo1H2i6zWSUtwMle752j6y2dT4Rxz3C8J4TIeiPxStd1\ntAr1LEXX45g4ng4QBZZbYI6+8WJfAEza6ZKClJf4RQUKYs5MMRERVU3rFaI+joyjFn69pzMrwOOm\noAlLwxQmhv2B4zAwjCK3XYqZQZPBM3g/YokASX3REsYIDNZaxxQDfd/XYonM98KQlMQ8LeMoaRzO\nifvy9bnw52ZYVy3qlYJVlrXUZIGY2hKMlfykvJ9c17AlMqHwnSy2SvDLmqeFDZOxFqaQKmfS6Bpm\nLVgSNotXVGJWcRM5/UVbR88bH0Lp6vnK3kO918u/f6EcnyU7n+J48uRJhaxJ8PqKcSh8B18XjLwY\n9MlIQ7Io8chrOEuiC4fg4VGSmeWxVPyov1IIiwh05Dp6rW7gVgMetLLhlD/TNK345oQgC5T3HEPg\nfr9nd7fjxYv3uby4kMpciFxdXuKM5XSS7sYwnNjd7wDEpFO5Oat+Jd42vqlVpAs1/BsnIWFaDNM0\ncTiIHDBI8NC0Dd41lVR8Oh45HU9MowTd3nlW3YqrqyuePHnCei0wtKMu5BjDZrvl0aPH9G3D7vaG\n+/t7Ugis+rYurFfbLVdXlzhjuLy45NHVFWGa+PjjAzElhmni1e0tL168wHrHerPF2ki2hjfefItv\n+qYvsHn8BjfXN9zdXvPBz/8c+90tT5485dHVJT/91/46w/HIqmk47O856j0rHK+73TW73U66WP0K\nMLx48T4vP/6Y/WEvC75CCEMh/iu/oBjSNt6zWq/ZXlyyWotoA6cTkyYHzXHgchtpfMOqWxFWIpCA\ngadPnvLsyVM2F1vGENh19yqw4YnpRDiecKo6aLLBN5auadls1qxXa5wRTLYITowUEqzBqvRu4SqU\ngO91PsZyca2CBloJH4eRaRSsd5E5BykodK4hE2coljaFEnn2gUB4VUSYYqxzQ5SFAiknrJuD3s1m\nTdseqklgGY8iBSvjrlm1wmuyokB0uL/n/n7HMA5YZ+lsW7/P0vAux1Qrn7Ni1aLAwQxXSORZaaeu\nGZKUxKickRgrt0heKeapGIstWPAC67EZa87FEooanZHI9ayrlvO8xshyIYlXToEiXOLqMzTAxP39\nntubO4yxbOOG1bqfz5eymgLLNcQokBhnLXivPlChepOUbojX3+FmCGOFWOh3iQoBHadROIbTVDvi\nAuNVvo/Cp86hxSyCj6RJqgYeRknKSuoOIagyoohqFH+oAotMMRAmURxL+pzOu/VmrsDqvS4J5bLD\nU5K8UgJjMWcwwseZn6vOs+KZVs8mz78kuig0xaHvyeLvI89CuRki1UfTtzRtw1//2Xf4T/6n31zH\nzId3T/jhP/k7+Y9/6Pfz7qOPhEytIgcmS2FObuksHV7hV1nmZFRivIzVTEhB90cRq0A7tRSBhYxg\ntJVLZnOm6RraviNZK2aMjSPq/fUW+u2afruh7Vt+4w/+Df7bH/0HWB4/+Mv+EpdXLVjLV778Fd57\n/31ubu8qL1D20CxdJ8usrue8ePI0LWOaSDHU6ntKCzGiAnPSwsJiQpGzVb4gNG3DerVi1XXCdU0R\n7yzOeCzijVPe7ozB6w/eO9rG0TZShCgQXFxl5+EU1t20HZdXV3RdLwI448j9/lB5xDmBNRlvoqqw\nIv550QGyvhVhGDB45xUiOdW5Y6x4+DRdRzKGoP465T5kRPgjxllcZxqFrzuMqp6osMnaBZXeHqgi\nYUqSqDuzUC40MxdzGTUVmGmRaMlZuzhnDZu5Upz1x1x+qJ2dkgCdd3DOujgs1sv6jAtMe17bzdfk\nz8gZnKHCmyXRosZvJSwsnSCTi5DPImHRM+Ua3y0q4Xn+rOXXryX2co2mIAseXOFyD1uuRd9gx2fJ\nzqc4TqdTfeghRaZRKtGC9XcVDlHa/TkLlrjEBedY0/+PBo5ZBo3pbIN8CDWS16hI4rLVqoFAgYaE\nELi9FchT69WEzjm6thVc8GrF5C3Hk8DaHj2+ql4B1kpFblSsvfeetl2RUma/3wv21ktnBhAui8LW\n1us1bduSUuS9r75XVVhA2vQmG1arFU+fPOXtt97m8ePHGGs5HA6MH42cTke6rlXuy4oci0BCwNvi\nhxJpm47L7RbvReig73saxf2HEAgpcxpGbu/uRIbUNFKNNbDebHnnnXd5+513WV8+YbXqOex3kLPI\ndzrLq1evCONA27aMU2AMO3V2h83mgn695tXNbe1keO/Y7Xai+nbYA0iFrcgvK7SwBIG28HE2G0l4\nVivAMk0nTor9nqZJ3q/Jg/OOtmsxBvVD8fSrXrooMXJ7d0fWz2h9Q4gB64oGnnKCGuko5JyJOo6s\nK6pZ5zAsa2clrjLG5kNDdN0UYzoncC9FPoqQR4X86T2YJulSyoYlG2BKs+mdsU6qhEGUgIopa4pZ\noUpZlJ70ipqmYTjJ/dvd7yo3ZxwPNE1Hv1qx6nsNZgO3uzsO+zvG8SQduK7D0CpkLtZgp4ifyry3\nIkWr173cFIu3y3Kjnu+lBCflvgiXJ1XPqbK5mcW9LeuLqbua/CwkdYvNJQGDRXh9vrTUeE2fVeGJ\nFf6Wkwrw8XTk5va6ViSdd5WHJ2O5Ue8t6SRM40i/6iv/Qbw5oiQU9nWBizNOVzlvypLshMA4zhK0\nKZ0n1mUNyRq8zRAes7ifRd2PZZmTGKWLrQhBiveVc04CuyzchMrfyaI45byFYJAil3Z0UlHvyhib\nK5QNTYLFSLbEW4ugSse24ZPXc1OftTxj4YIJV2eZxM5Tb650F4+esm4XBbEf+6lf+tpYiMnx43/z\nl/Hbvv/PSGAXAzkV42nIVq6lwN0sIo4Qs6h0xRzJJql8byYVQ2Rb/L8MWG1sGRRC6PAGjJVAzjUN\nVtUqs/ckZ0km41uPbUXGuO06ur7lX/ntP8nzJwN/4s99MyFM/PLv/sv8pn/kL9G2z5jCxM9/+ct8\n8MEHInKjymTFQ8hp5yxoUaFw9gr0VsZLEd0Q8YayrztbxGNEJbOsSRMiKOCcpe9aOuUATuNASpHG\ni+iDReWkdWo3jcc3UthovMhKO1e89bSLrHLW1jpWq7XAGXWcipjISY2UJ4VZyprdNcIbmkKo328K\ngYyst2UtbduWfrVCYGxDHZfe+yqQER/A7svaH6ZICFELAFKAKsmPPGYpWC05SvPqNcP5A3MRxKi5\nOSadxVUPg/GUpKtOmTN1Xp2/rsZP5KqCNxdzXheOepgEPDSnXh4P4cxG5/JyXirqjELWMYtO1Hmk\n+Mmfc84zUkuD+l3Na0vAw2TnE8/1C+j4LNn5FMfNzQ1AlRRumrYGIzLh5r3yk46HA+nhRPi7O86H\n/znR7uw/XzPZCQpFK7Cxgns31uKMYdX35CSQkVOBExlL13WMp4HNZgMmc3F5weXlO1xeXrDb3VV1\nJWklZ9q2Uc7OisPhyOl0JMbEul/RdZ3C4STwWK1WbDZbjEEqxbe3IhhwccHFdsuql2TqYnPBs2fP\nuNhuyYr5vd/fc9jvGU4nNuu1dKMMHI9HhuGEs4ZV12lHCzarXhTkxpFxGOgvOwCpiHUd94cj0/09\nGcPl1RVTkmb0er3mybNnXD56JJ2k3Y4wjXjvuLq4ZByOXH/8ER9/9JJ3334TkMAu6ALvrCQm682W\nvuvxTUOYBG4zjfe4RtR5Ukp14zXWYk4nQpBW/WazqYv+ZrMhacJUOoYpSas/qNBDv1rRNI1Id5aA\nfxJBhpyEM1WCTJCgP8aICRZjRabcYGrCUV2+kQW57TrZ7Eep3EnCpER3rayXBKnOA3LtcFQeAlBk\neYsyn5jgcjZ+SxV7Uh6TCFNJFXucJkaVyDVGJMinKRKSGoRGUemrc8JavJ2XwtvbW27vbjkNJ6li\nYpimQL/aKC/McjoIR+943HM67rAGVSRsyclrJyEsNpLyXY3K02qnJJ9vwOV7WmuFR/MAWnA+n5dV\nOTNv5tULae5gBcBa9VwyEoALfr1UC6XCKxV3/SA7B+nLwFs6LBKwF88rDIRhYreTQK7rW7pVT9O1\nda3BgG0aLGIGO40Cl6l+UugGrAlrEcIoFVNji2DCOUY+KRcuWOl4eC9wXpEGn4UMauAVprrWgXjz\nRF2rRNkNao/NJKbJEFKqCn7ee6x/qN6WtWtVVAYtPjtSLN1IuecwCzJQvq925+a1u2Dxz1XjCk+i\njoQsz8pkVXAqsMOcyczj36jIQf3ZiiS8bCEKw/Fo9ViuolS7P+lwbUOz6lTG35DzBKF8bhmwUnSL\nCR0rSbs62kV0InIQSSK8YBGIW8qiYFc8VhyyBmaDUQK8cZZsEciit7x3/RbGj7z9zpF21dP2HU3r\ncd7hDPy23/hT/KZf8+d5+fJDhuFE128x1nB/v+fly5e8ur7mcDgQM7imlWTKzZ2pECNd2wnfxdq6\nZy75VKVj6Z3DNk017E5ZiqFiC5AJBNqmVZ6NrBPHwz37/Y44TeoFpx0xa+lauZ+i0CnPt2s9rfcY\nE2jbpl6HtZZWfeFW6zUZuL+/rwpvk3ZcxkGsHUphcb3qsCS8F8RBSeRyLnwc9BqkwBni3KkwxtI0\nLRER2gk14Ud5TGkxJnSeMK9hhUOXMQKvLxRjfd/DgmxVc7RiEWAKdJPXk53lz1nn5XItS2pMbMzC\nvD1nrUlIZ486M+fOx1LtcV6HisjA/LnlGpZ/y0fkmuzkWqCYD1PXn/nnZZd3GfvVPSCX61vuFVr8\n0tMvIXxlf1iGnp+EuviFdHyW7HyKo2C7i59O08ybM1D/LosQwLlTxTywzoKVv4djObBLy7QEB0JE\nzeqXUd8hFdXFYE4xcTye8P5AUtfz4mwPCYNI0NqmERJlkmCjVN3v7u7YbNd84Qvfwttvv8U4yibw\n8cd3tXq63V6w2W5nyEcMGgSKxsg0qchB29L3vZIrvbolC454tVqJakzfShDhPG3TknPi/fdfcDgc\nOJ5ODPr5MQS2mw191zGNI/v7HePpJEo1qx7vLX3XsN2uyTlxOg3iReAEYrDdbokpc7Pbc7ffE3Om\n61bs724xvuHq0WOevfGcBHz5vfdom7W05RXzPAwD+/2+BiqihCX3OxWeSVb8v/V41zAME8PxRNv2\nvPX8OdM0yUY1SiJqoZqoXl1dsVFJ5rL4H/Z7Li8vaxJ0HAaa/Z6YE23XcvX4CV0j1bDaZSldFP3e\n0zSRQqwVvJIMm5xFSMMUjxwYFELnjDhu96uelETlKSXptjhb/KaSVuzBmHnMZzXaW8wKimpUSXZE\nvEB4EmU+lT8xJ6YwiTO7cUoaz5zGgVEdvjOikHSaRqYgm7BUsmUSWSeQvcZJojtOE8fDrSTtOdGv\n1njf4grxXpPn29tbIWGPA1ELBUa9WYyxpMaRk8OGqX43UULTJK8G8Ys/D+f4ortToVtnnR551fnG\nNxczikSssZlArvLlYoZITXZAmYU5a9Ah8tTZObwFZ5xKJFPvu5FvI8paZFKW58wA+0PD6nBgtdmw\nWq00eYmEqShQakBhRL0RTYbKWuasE1f3KeCdr8TwQEkMtVijflWlQlxgh0txl5KQlMBKTDHluwgF\nKCukLtT7Ho3652iyl+RkYAzT5JkmCYbl3Emr8FZ4avo0jMo/G7TbabImudQ/OaWyymKMrK8iLGFx\npgh9lDUkL8jgJQxkTqCNiFJQ/03tSq1quJUKtf5s1HSURC0UoJeXslTff+0v+2n+x7/4S8gLCI6z\nkV/3D/8Mrm9JMZBtxudGIFSaMFICzAgpR0LOwuEpPmC2+L4IdMpm7eTZRMyJ49iTbMfl6sisUmdx\nOk2MQtzeu32LP/Anfxc//9HbAPySb/vb/L5/8U9x1YPxBqx0TqdpZAwjCUmu275jSpGPr19xf3/P\n4XhknCLGzzwmWSdFghljaLsO37SEIB2SaZzo+/4smPXe0Sm6wyj8Srq7YEzh4BZDUI/JidNxzzQN\nDMeDSlYbvLcKW3M0Xs7fNp620bGgnK2cEbl336gQi2e13rBay95wc3PDy5cfScdIrytG2e9SSqpe\neknbeO53N8TS7VaomVE1SOMWnVkn5qxLbxfnG3IMDJMgKGTd0TVF5yIOko1VQVv8ZKST6ayOu5Sl\n86fjJ2nCM89dhaYt1kNr1WcqL2Cudbwvk5Pzzs0SUi0S6XNXqRwpZ+20l3VW371Yg8tREp35579T\nl0cnW40KZ1gupQBlKpO7cuTqz8Zgs6liKYYMdfqVZ6OfUT5vcZT7lJc/L+7rZ8nOZwcgCkylepHS\n+UCBebAtValifn0yPexGzjj0rz9RlhWLebGFHBNGN0hrcg2yS5UyYyp3whqrXJBJ5YUV8ZllU69E\nwSnVBMfYmXDtMGw2G956+znvvvsuKcWqOnZ7e8vV1RVP33iDtms5nU7c3NxwdzcnQc45pjAyBDFc\nbdumqikdDgeFLkXaVhR2Tqej+Af0Hc46TscD16+uORyOtbMWQ2AcB6yFrhcfnGE8MQ5HyJG27dlu\nVupBEPHWMg4DKQaa9VqgctlwOp24Pxx5dXPD/ngUAubxxBgSb1w+4p13Psd2e8EHHwjWe91NVY1r\nPB0ZFNa36VuphE0B5yIwigO0EYnRbFy9t9MUmGLk0ZNnPHv2TAUehirBLd2sDU79XjCoL4FUGCdV\nCHz06JFAFoaRZrcjpEi/WvH02VPWqx7nVR49iZfRertle3lJ3/fybJwooLVdx83NTR1nYjCI8gN8\nHatBSsu0fvaZClGq4N5LFdYkkYZFIQvOAFr1FfWrmUzqiymstYtFe7H4m1nZSjoL8lmNKaa0iWEa\nSU6TKCs7WcrClygBsEDAFOfvfd2pjscjOQ4kcoWACFywAZM4Hg7Scby7o2m8dgg6rJMkIMRA5x1t\nIyIhXpMdAyIHj1yvQzoeoiTH+dqR89n3Xf6ucvUWG9KSnyKQDtkSrbWiUrXY7OQKSuCdIVoJdtXN\nLpOFyCq6xkrEEBfv0nEZtYtYobzZ4LJ6ujBijwe6+3vW6zUX6w25ly6lGFYGopdujm8aUowMCpuB\nYq5oK77eWatJzWwoW7hbYZBuaanYDoMouxXeTjF9fdjZXqpkLtfuUqHPOm4MmWTBZoNBlMxyUYdb\n8IKsNdiodVo1Rs3q/C5wHFvvbZGDr/j8B5XfrMlH4eBUl/gsRRIMZO3ksEhY6/pNwdxnRFRiAbkx\n+oxzohjUZpOkol78hqxAD02G7/lFL/g9v/VH+SN/4lfz6m7LW09u+d2/+cf4/Ns32tGxmMbhTYON\nCwPklEVmPUaIENMk41ZlpGVKGnIQc94CQxqC5z//3/4FfvxLv5KYPN/z7hf5l3/dH+GNq1uKT510\nvmRc/8E/9UM10QH4qS99C3/oj/1a/s3f/WOqoS7PdAwTp/FESIFGk50xJj6+vuZ2t1NiviiLGWPJ\nce5S5JzZrjcLqekoiYATOHPSYNl7WZMaLy0ygWypgmCUvcY7x6rz9H2H95YYJsZhIIRROC9e9jpn\nDQ5JfAp5XBeJupZkICbERLntqwomGA6HAzc3t3zwwYfYotiZDXESnqf3vor65Jy5398LjG+aaFcC\nK/fWzInKohMipqJx7hKUTCEtii55AcnS/c05tOAJhDSblWZ59taIMq2NFpekEDrryM6B/zI0kmRD\n/kGkutULabkukolZuodS2EhzsS3P12tqC6R8j5krlM0c9xSPnk/q1MDrSc/ymBOgXOeDtJTm66i3\nVUtdy66N3AeF/JWkxBpMKmtbVt5b+bxU580nXk9dK15Pzh4iCX4hHJ8lO5/iEMxuVNnoc6JrgQGc\n4zfnwfL/ZuCct07Ng43ywWcsOpl5USHAUOUyDVax7ENNGLy1TDEyHKSqJq1cW6sQRnkibSNdhsPh\nyJe+9CUOhwMvX34gQf7lBU3fsT/sOZ6OpJTY7/fsdjucc2w2m4p3DwmaxmGtYRxPHI+xkoqXMsvC\nifL4xnM8HHn16hUfvXwpRPW+l2rwXvg6V1dXXF1d0XYN9zshkraN42K9EuiadYTxwMmUClRmPA3s\nhnsuLy8ZxoHd/sDhsJfqXkoMpxNPnjzjW77127i4uuLlhy/50pd+lpwSF6sN0zhw3N8TRvGDKeIP\nBQNfkonD4SjBrm3o2p7txSXXN3daWTas1+vKlTqdjnR9x2a7UWhOZJoCu8NOqmAh6jick6Yqgz6N\nYAyr9Zanz57x/K036dtORCDM3IlsmoZHjx7xhiamH370UjH7cnRdR8wBVMY4pgQ5EpzDZZVaTTKm\nku55EanQZg0sTbLkGOBs+8qzIR/zFmMM1ZunyLgXKJpVefSSgEzTKGOFXGEtMSamMeIvBBrlnMf6\nBt8kYspMITEPxs9KAAAgAElEQVROkaAKhU45WKXbNU4jnTdStbUSGE5hwFjpTB6PR4WGDFrVnDeT\nlBIhB7wpcCqr3hgSDHmrASISxDs7z+GHnZ3lXD/beJj/bclpKVVylYaoPhRyD4pJqJxHeBoRl4wE\nhaWDW6r+KNdCV41UqjqUzk7Ea0Jq6uvKdYiE7n5/z+5+xWa9EkiRchmnaarzom3bGTaz8OQp93JZ\n0a2JhTGYwt2ijBWRhT6NQYx5BxVAWXj4yDmW0C6z+DcJ/sv9zFnheYghY85SPJJuyLlcehnLMYn6\nmJwj1ftijSOZGbpTnod4K0kUs4SPynvmNT4vgtxYoZdWYVLScUupKNdlHgY2OZ8HY6DCOZr0pKJ6\nZ+W8tkBm9VS/4fu/yK//vp/mbt9xuTrgLEzaaUtagraNwziDS0b93SSJt8mSghX/npjECwwtnJHI\nLuODr4Hcf/3jv5U//zd/oF77T7/33fzwj/5L/P7f+cM1aJNnA+/dvMnPvXxdVvrP/5VvYwp/mqYx\nYJ0G6CNjGJjihG+FA3majlzf3PDx9TVDmHCNx3dNLSKV8eespek6Ys4Mw+msWCc8HBHsaLzYKBiD\nGFcfDyICox5DXdexXvVs1z3WGqYwEpLIla+6jvWq03E8VQJ6EcaQ+TCRUoEjZryzrFYXrFbrynuN\nMbLfH6XgeHfHFAIXCl9exh2iytbWfXkchMsDIiTQdp3EA8bV5GaeF1k6iQsXTenACxBM5iu1o1oK\nZTKutUhlRXChyApY7UDmnPHWEEtBK9vqLTeP57Lu6TxwpVg41Y4Ui3UjFkGUJMq4czMm16lylrjU\nGSTrZUXrsCy2vd75KFBVYyQpLK9ZdtrLJyyhnoszvDaWy2GNqTnRLCYjv3NYrWFk4TyZZb9meY2v\n/9vyt2U9/IWS2HzS8Vmy8ykO5xpyng0cC9wmxqhJgwo816qi+j88qOLBJ3R7vsaxfM+yqvrw9wUy\nlFPBEReDQW17W0fMIidLlkVMMLCi7V9gbMUToUx27xq6tquBSogCL/rgwx0pJy4utrz7+c9pkBE4\nHPaVC1QgSXJ9uQY50XtSI/jbIt1d/H5kQzHEaLi42PL48SNWq756BDVe/HEkIRqYgJwiq1XPkyeP\neXR1SQojcRJ5Ye8FCx2nkRAD3k5Mp0DjGgl4Y6BvG/qmA+to24T3LdYONM6yWfV8+7f/It568y2O\nxyMfvXzJMAw8vrySaguQYsQ3lr7tGAePyZHT8aRVKwngvd6/mZPg6t/9aoVzjuvra3a7O4yRjWm7\n3eKc4+7uTu7r4VhJ4QXq13pfxQ0OhwO3ux2RzNXlJW+9+zneeecdGue5vb2hX/UcDh1+nNRzqKPv\ne8ZppG3Fq8guTABDmsRsUyEVKWdizKSmGgfgnFeneI8NRSFMytSl6iSbTQniBJpXKvURVNlpNgZY\nttQLb6dA+aSDFCmI8AIhm1JkDEGkgIFJZYYFniWKbBGFCnnx0WialpgkYOi7jq7pCSmqV4hISa96\nCRDG4VA7BsJ/Mjq+BJqTSExh1MKBwysEpPENjZPv5Ba+KnUOL7s3D6AEy78zmZxeT4LkzRK4JoQX\nlLIhZzXSRKEc+lmLOqx2bBY8CBR6WdecrF3sIgE9V0urN1earz+EwPF0Yre7o9e5vtlsBMOfElMa\nhZPghEy+fG/UxKcoOVVeDJokLO6Ld46sSV3MJdmX++esB5eZ8pz0lMBR7q0Qx2fom6lV22oCiUDt\njJEOydz9iRQ+w3L9LUFwGd+S9mhCs3hN6cIJaFCMQ0tyapjNRWX/mJ+xrVXlRVVX70VRgMtyMZhq\nRpq0EwRLo8ZYyPjIOps1MZuRCEK+N9bgG3h8dSIllGAeVUpXvZwsZGvIsSRnBuMMJKvy4pYwidRy\nrZ0nI3wcQ/2+f+5nfhUPjy998M28uH+bzz/7CLKtzcbN+pODw64NZCdwqJjE42aMowghKFwvmcz+\ndOSjV6+4290TYqRp12p8LM/XGFOh1QYq5yVFEdAwOk5mr5aS5EUpwsQJS8Y30kXZbjdsN2v6xjGc\njsQp462lXXUCUfMNkGbPFX1e8/rhqkCBwLBbLq4uanErJfEGEr8lSQRWq3XlrxmDigTZyscswi+Q\n6Vc9znt807LebCqPDkWwyLCS8xuVOS9zkGmxblEUAAWKGXPxWlJVWAzZWtq2g3FiRFX2c8YZ7ZJq\nN6bMmRrr6J8lmqZyfkpBQwsiqXZJjI6vuegxF4oVGmzKqZXHZmYpaplDZa5KkvZ6ArM8tMOyKDLU\n19fOV+lQamcQVUxE/XOyJjQWbFJlTgqETeI5TCYyF9stGZPnrlbp7spkWyICZujdJxXYvh78rrzm\na3/3v7+Pz5KdT3EsSXKFJA6iMFKC15mEWiporzcTa67995BNP+zsnA+6QkgWaFBWrKqxTjo88i6p\nvBRIkZ0Nw4pCSqpwoyJpamgbMSQrVZTj8UiMka6TzsDTp0/p+pbx5lq7OHf1Hi0r0eWeWWtJdaOe\nZZSXXTJrLev1iqsr4aIMgxiFFsJn0/j6WoC2a/GNqItN48ju9hXHwwFvDV3rISfiNAo/J8N0PJFc\noGs72qbn+fM3cb4jpMzhJPwb7z1W/VTeeOMNpnHk/Rcv2N3ecbW94Mnjx0zjifv7Hc4aLi+2GGB3\nd4vN6rhhbVXy2Wy25CybZ9ztOI0i971erXj6xhs4Z7m9vSGlyHq9xntXPUCk23OSjVgFBQwwTZH1\ndksGbm7vuL+/5+54IBi4vLpitV6z3mxZr3oePX7MxdUjTsPAcBKvodM4iPO3meE9YgLXcTweCUkI\n3X0viVHORtTMcmaKEZeNcA+cVE2naazBsbUzadtaCXxySXZyVp8ZWyv7RbXIqMhF9dRJqY6Xco0p\nz9V/5xzGWWKKDONIyjI2hnGkmZyoIapsd2d7fOv/H/be5Me2LEvz+u3mNLe15vXu/twjPDKSSFJQ\nJIOaJALFgE5CCDEBCYlBTSkJhMSEv4QBEwQS3QQQVZOaUKUSJSBFdlRWZjQe4R7p/jprb3PuafbZ\nm8Hae59jzz2rAp9F4Sdk4c/Mrt17mt2s9a1vfR/1oqKqRUq2aZYA1HWFUZb+JHLn3Yz2UZUlR3V6\nIGEsSXxE8kzcmKMgQyiEugJgrARIEvuqaQONm90Yqw7j6PDeRYBkqqbMFoA8pzJ6OSblOTUDLEMM\n5nt8GCdqlEqVA3mdjz4No3SS44PCRkUwM6sEwUTlUD4QXI6AULPKmDXyvPqu43A4UBWxCbpeYEqL\n85MqmtYGW1jpaYlBVwKIhEuvM4iUgqUHFF6tMyjzflKUJKTd6HJAl4CpdDvnctTJKHUK2ojBgBD/\nSN+raQ0WPzMgjkN5Xl48epz0JqaKjlKT0XRS0ZNgSJPUtIR+nCoYaV0b87OW557GQ5jD0DHJDdOz\nCnqSL1chA17fFNCkKk5AKt05sfWzPUsJqymLZkQ0GQBt8r3JYIUA6TLvtBLxiyhRLRsQklyRKoTA\n13bIeBgN0RBVTl3z5NGOf/G3/pz/+2c/evDSf/Nf+YeZStcPTqhirgOlMKWouPkQODYNN7e3tH0n\nwXMEAyVZFvWz5WLBcrXKRti5lyVKHZu47ogEt6Nzncyp0aGVoqhLlouFiOtsN6yWC3zf0p2aWPEx\nQtPWOnqI9dLPSurLsVSlrB+L5YLlYlJj01pEU/zo6TpZb6s6Km4aiymEQi1GvGME+0xUkp2qJbLH\nGcrKZoXPZL4rAjlT35ixFoislSQ/b1OP0jjNgbgG5Z5VrWPLW1yvFSiT9oPUmTivhASSFts0VlVM\n5FJf9BRPJMBFEAxJSxKYo2I1yY8RUFFzSmua1j56jcWEwoqRsArpXaaqVapopWTi/YTm/d/Npk+8\nZTonIHgf1Qvj+UY1woCA0QkYQPGebHYUQYl3IygVqz7k+yZfE82P2d/mcwzT93NAbc4YeADMz9aO\n38QK0HfJzrc8BGWdgvJ5xjvfVHKDKQ+RVBni/p84aOalxfnEntCWOUohm42ooGXMW84hoXTGZvR1\nHH12fp5LtaaATSkpz88V58ZxjCpUJ8qyZLVa8eTJE6y1vHr1mv1epKqtNQ8oKOlck6iDc4721ErA\nPePjp4Ag/Ts5VR+PR06nI6fmiB8DhU2O6BI4pftiC8uirjmdGq6urxjaE+tFxWa94my5pLIWN3QM\nTSMKTtGcdHOx5tnTZwzO8/bqlmPTcDp1EMQQsbAFfdvx+uqaN69fY5Tm+ZOnbNZrXr/ec9zvqOuK\nsizo2hN91/Lo4oK729s8Fqq6ZrPZMAwjh6bBn1rZkMeR7XbL5eUl17c3WbAhqacdmyNN09B1HZvN\nlqIQ7nMKAq3RrFYryrLk2Mh7tl3PaBTDOGLLAlOUFGXFZrvl/OKC5njkeDgIQq9FpCCLAOhJRt0Y\ng6WgrivOzs+4OL9kGEZubm4zjc4RsF3HoooJmNZMRmVBRAtGh9FlRKWU0CFiUi2zgoxui3O6IzVa\naz2NiTQXEm1Bxo0mya4Og4sVr6lq2Q8DxMrP2dk5VV1TL2uqRYUxmnF0nFqZp/3Qw9jQHI9ivhep\nfikgS0qDKcnoul7GnnKgRAFKIXLI0mMh71sWBaWSeWeNYXRjRgvnK0CSqU2Bw3zu5F4lJj75fGNK\nr8v3PZ6nidu/IlLAZsGADyIfTpSEDT4qYwVBGzOtTSl8WsV8yLF2SL8bp94+q0WCtm1b9vs9VVWx\nqGq2222sKkgyIAmDyWBRCCFLDadEPlHX/HubboJuM7DETE1Sxd4jPwkWCLJt4loTHtxbHXthlCLS\nXuIdysFQTHkikDSOPqpvxyTemCicohmMYug66emZrc/zL2PmSdv0GVPfwMPnOQ9E9CzYSmGdTwlf\nSM3ZxKb4eZI0qwQFUF7la8/JjUp0otjXoKaALZ1Vas9QMXrTSqGj2emYED0vfi3Bh9yQHpTKvUAg\ne5FKNPA4R378z/8f/K//148fXP8PP/ycj55eyVj1ibqoUdrwn/57/wP/5d/+t/jf/59/jqpw/Bv/\n8p/yH/w7/yDaPIQ498X7axgHjDVUi1q80+7u2B8bRh+iwqSAlSFIBSRRvYwWk12hWsYAVCcaoezh\nqdo3RvlxrWC5qFksazarFev1mrquUIBzQ64wGq2yT1nXtQTvZBxZKwqm9YL1Wu5RXdUoJhENH+DU\nnKQ3bXRSUR9cnDuG5VJMRPf7vawysZ9RKJgCXlVlSVWVAsToJHoSjW2VjqCuJ5Yd8nhLflBpHILs\n69ZarBHQ1DnHXDAkm/ImCmQEYrVWhDH6YHkBjlKlZgxxnZknDWqSs85Uwyh5rb6W6KgsT22Cye+T\nqq6kxDtHZhGc9qIGqEjVmMS/kdU6r7kxuZjHfEk45v0KiMpnNsWOUlmdfp6vkZD7EpWCyR4t+gXN\nEYiQ/Bz9dB1SkuabwYNpzXk/IUvn9utUeH4Tj++SnW9xpEFNTBq0Tq7cLk++efVFUOiUEUMahCpS\nephNwoQc5u/f+8wUDL6P+qYyrwQsCUKbfq+1EY+VcqrOjG5SKkrJUkIZtBJ0X8fGSUGSeprmFKWi\nCx4/fsyjR5eEEHj16hW/+tWvCBGJLIoV1pocHKZqwWKxyKX35nSij8nOcrnM1zFPiowxdF2X+f59\nNCDT2lAbw2IxNZG70QmKaDTN6cjd3R2FhvJsxcX5Gc8eXWKV4urtGzrnsueF0CJWGG05dkeurq64\nub6lbTuKshZ5aGN49/Ytf/nFrwhu5NnTp2xXa0prGboW7x1alQx9S3M8QPCs1iuur65QSkkCWBSc\nX2wYXeBwamlPDV03UFUVm80GrRVt1+W+qHohCNvg5Lq11jx58hjvfa7yPKT92ZwklVWFL0SdZ3t2\njimEnljVNcvVCm0s9WLB2cU5j58+EWltNxBU3OzrWgJOI9zpsqq4vHzE9z75PiHAZz//JTc3N7Sn\nFucGisJQlTYGf0LpypUHJwirNTYmHTrOB/lKshxJBSl4j5shSGamxJbGSOZoe+m3SPLc3jlQKvPM\nx0CmTWw2Zzx+8oSz8zPKqqTrW25ub4Q2eH8PiFSr4YQbE/1RgliRN29oTw1+dNN59A5KQcVFrlbQ\nfjc6tFP4SCcyRlPF3jQJ4qdar0YxgZNfb5qfB8o6coHm/SVfW5/if1NwIdUAUTlLwXBC9XwMlhWe\nMCpQY0bfdazm5N6iTKmSTxi9JwxDrrhMG7T8vu969n6PQlEVZV4DUu/G2IuIgI3UL6koK7Gaj5Wv\n+drovc9jPfjAXBGqsAWFEsGVvhOqqh9dRGslMDVao8qScRxm6m8SuYvSZAq+lZzTA8pHquiL+amJ\niaS1NnsjoXWmgJqioAC8G2LVKsVWs3JM/D6PhZzUJNNQMaFOW0QKvGImAmlPiFUuTYJ3DdoKbdak\nRD1+5cr5MCHjSYKXIJccvKjxEdUNc7UwfnSI+XBGu42G4EnC2BJISpCcx1s65whso8XYdB5s/of/\n6v9CM5T8vT/967ix4K99+hf8zX/3vydoSZpyj5CV+7y1A//xv/8/8Z8Ufwtb12ANXk/Jp0u+TUpA\nBGtl/9kfT9zciQAMSmGLkoD0BVojtgBJae1wONDFdVaR+qviM4m+QfkavMePTtbVs22mvmqlcL3I\nP/ftMb6XmNB2Y5Kl9pRlSVUV1JFWLMqk0kvTdR2qFVBw7mXWRzlpbYSyG5w806quAZHmJ4QchBPn\nqDHit1ZVFQEfk0IoSxspcUkxdBqvIUgcYa3QluVnUsmReWkoLFjrMoX9m/zVAhPQYOIe4UbyPJF+\nqBE1xt6ulPCoCKxk1swEAPtYlZt8q6ZxF4igc0jCNPEVMWbKrIOUKMX3SmebEp2Q/yTD1gIQzBKe\ntB5lkCI8KMnM5vz8PWJClef49CcqVmV9+mGQ/cLP3zNM1O+cQOazf1DA+bWSmL8q4XnwDH8Dk6Hv\nkp1vccxRhfRvYyxaz0zlkrJLHNgpOQ8BkgxlHlDzpIY8Lh+gevK3MyRzPmHS5EJF2dCQA8AJ+VVZ\nVjPEoMGbKVBO7+v9iAqBshAhAUmK5LrarqNpGowxfPDBBzx99oyysPziF5/xxRdfgEKoQWWZ5bkF\ndQ8URcnZ2RlaK+7u7mPzpvTvJMnkhAbNdextNB4ty5K+l01ncA7diwrZer1mUS/kZ/G6j8eGrj1w\nahvsYsFyseT8bMtqtZTgTCM9DeOINQV1VRNC4O3bt7x6/Y4vv/yKph1YrDecXV6y2mxYLGpevXqF\n6wfOt1upHh0OOGs4NQfqylIUJvquNJRlSde1ebwITQ/W6zVKGXbHgyh/ETg721KWJXd39yit2J5t\nMcZwfnEuvkP7JYSAsYbLy0vuo8+ToLwyzoTeNvnuqKqk3K75/ve/z8cff0JVLxiHXgIplPTnVBUf\nvXzJhx99xHK55Pb+Dh8Ci+WCzXaDsYKGSUJvuLh8xKef/oD1esOiXvHnf/4X7Pf7aEAH6NTHZsla\nPD5MJfgwQjAoTGzQN4zKR1ldLUivir4840hRlpSl5XQiB7op2Z/PP62t8M2NoVfQDw4XtRCsLbi8\nfMzTZ895/vwDttsturA0zZGb2xu++OJXfPnlX9K3CwDcMFDWikqXkuQEScaGrqc99TRNQ/AeawuI\nnx+8GHQm5JlYIRhHTx9ns3MjupJq2RCbgeeTPk3zh/+dfFbyBsRDtDMnQMRG37iRZypdiCIWqkCH\ntB5NWKZG5SoNQRSQQjQazUIH8X2zPKuaNuygJGESt3mF9l4okSjCODIOJ0KQXiihpS7FZyQq4Hk3\nRvAiUpl8wA9OaCQzml4CTES2WHj/Mgema9fe07Un2pPLvlbBRwpXkIpSURQimZz6w5BrSkbMGumT\nKIxQdtxsrRWa2VRlTEFjUrUc+p7gR0xh0XqJsh19Iyp0af0e/TxgSF+S5GWapjVoM/lrTa/3kYYz\nVWBRCluKN0xAKiiRs4i1BUUlPW5oUYWT+6cZjAB0st/4CdGPn5UpQtrkOSAnEfsLUv9N/HfqI5uF\naRIIGoPyfqpyRXAjBEVqllAxiamrkf/o3/5v+Bv/+v/I6C2bdQfKMPopaVJRRVQZlc03VaQXqbg+\nyPdpffSxl7YQepe1dH3P/rCn6wcZOVHaurCGul6wXq0oy4LmeOT29laqPUURKbVCUxvHAaNi/wTS\nLxG8xxrDalmzWa8wSjH0HW1zlDXCe9zQypiNiVEInrIs2Gy2LJcLrDUUVmTuFdC2JwCub645P9m8\nOCilpGLfSwJkjM1BbQDcKGbM/dBHiwFFWRXYsqAqC5bLJUUhwjYi6tFnBscEOBYUxZgrryKHbmVt\nUPIzrQxGaZwfo5WCsAKstdR1TRfNrft+yJRUP46zcRIBLa3x1sSKxJirHw+Ti+n1aT4FiF50NgIy\n5K/AlEDpFGbNYnR5vYrjOPn1xLma+ggTCKwk3ZmH+HM6nIqJmJ7N19nEfRDTTbFbosvK56RPzCBg\non4qlYrtub+IWKHJl6ukV+jhx4YH0zFV6ObHr0NH+6ak57tk5/8nR5KhDCRkoaAoZAPsuuQsrDM6\nkAfGzAH8QeY/O0IC52YowfS7Ce1Nwd78mL6fkq2UQKQKlLU2K5ToSBNLVDHhW/vEUqHvW/qobJRU\nTrbbNU+fPudHP/oRPgT+8I/+kLdvX1PW1YMgYBmlnPteSuabzZaPPnrJ559/zu3tHculKDXVZcUH\nH3zIxcUFZVlwPB55/fo1t7e3gMh8e+959eoVx+OerjuRmniFDjfSnE60bSsL7KKmaY40xz2FLbi8\nPOfZsydsNmuGvue0vxdpTG2xJnB+ecH5xSXH44kvv/oFd/dHDqcTj5484+Pvf8rT58/RtuD1668I\nbuS3f/hD6rLkuLvnzZdv6doTu/6ezWbDerng1JwIywWLxYKubUEFur5FoVhEt/jDoeF4PFCWBWVV\nU5YVx+bEzd0t67Mtv/u7vxurXyeOhwP7/V56eMqa9nSk6zs2mw3b7RlN03B7d8fxeKQsa8qylDE0\nOs6fPOF3/tnf4bd++4eslwtur6+F1x+RKGtLrC1yAtH3Eppvz86o65rjqeHUtZJ4GMP5dsvLly95\n+dEnLBdr9vsDn3/+uXDGPdT1AqvBe0fftYzOYbUR5b6Y+Lu+JxQRQo50ohRIGi0UjDHV7eM8SWpT\n6d9JICBtnmKspxhGx/F4pD21WLsG4MOPXvJ7j/8aLz/+HmfnZ/ziF7/gD/7gD/jpT3/Cu3dvGf3I\nciH0Q+J8Ht3IMHQxEClZLZaU1YLr61tcLxWqsixF1Syq/CiiTLCHwYucurdi8AqCwA5DdDqPvSO5\nT0lN1AgBFgZB9GZI/DS3eLDlpmqJrDETz3uSFf0meeXpHYSexQwMDaigxNxPI3LhKaAN8szUKH+Z\nPl9ahRR4oeQQogGmD/hYPb66vsH7wOXlJWfbMwpjGXqh4AyDVDdTz0CIRpPJ2DHRWlL1SAUyJSfd\nI6MUBJ+pr0k1S+i0NgM6MIl6zKuiD4CWkDjwsQIZP6MsCqpFTVnXFEWF85Eiai3apIrbiAaccoRB\nZ1xYEHWfJWNNUqYKCfydBUmKnMjMn7O1ZQ7QQBD+wTmpglsrz1Er6bPQolK5WC2xhXhIJdEHrTX1\noqLvO5HCdw6lxwwipH7ORCFMVR2jlPjpoAm5nyEl1VOQlvYqUqBoDdrl2zBBzUrlACwFjZqR1XIA\nNUofDWm8y7zRyhCUJ4ToW6em3ot0niGCJX50kSIlYjPWFCg0h/2R29t7mrbDOY8bOsqqZr3acLbd\nUpUFfdfJGEJRVGVmDrhhIIyD9NTYQipvkQpsoneO0QY39AxeVDwTM0H8Z4SqZY2mLkuWyzWrlZhr\nGy33bXAC6I3Ooes2PmsyLSygUMZyODTs93uKomCz3VJWNUMUBznFPXEcR5bLBSb2ty6XS87Wa3xw\nhNGLB9HQP1A9NcZQlnWkISqKopwGZjShzfc8RLDEBUJwkrDrqQqdlOKsFQBUzmlipoQU2Gsw4aFn\nDmFSPBRgZVrLsoWA6G9PwG5OjqbU5GtheSCvpRBEXGP+81hRTgAQiki5TMnRw3mZEmuTK8ETdV+n\nqtFsLkdSEHP/Kvk8CbwmcEn+bvTJiiC2KmSA/OGVpTkk0yWBYlPl6Nc5/klJzG9qogPfJTvf6kgU\niMSVBp0d7+V3gihPDbGCts1LgxkVSPz4jB5+c6ID00BMTdHz18wXBRRZdz9t5H3fz5TjBtzQgw/f\n+P4qwiL3t3c8ffqUi0ePJBi1lu3ZOYvFkrdX7/jTP/1TDofDA48ckbmUhSIJFCQBg9vbW25ubmJw\nBn3vCCP88pe/5IsvfsVud0ff96xWKx49esR2u2UYBq6urtjtdnTdCVRgUUuZvyqrvKhrrXny9CnP\nnj+j61r+5E9es1nUPH36lCdPnnB+tsH3HZVRbDcrnj++hCDqQqe25/bunr/86ktOreP5hy95/uFH\nPH76FFtWvHr9is8//5zvvfyYoe/44pe/YH93i4n3OYwOjce5Xnx9+g7wXL27whgbhRxqkTq9ueVu\nt2MYRp48ecbjJ89EUOD+HmMMv/d7v8f5+Tlffvkl79694+7ujsN+T9s27Pc7Xr16xXq95oMPPsJY\ny+EgFaKLy1XuiRgGx9A6DvsDd/f3vHv3jvUn3+P84oLROc7OL3j0+LGoiRlNcxIZ1l9+/jlv3r5h\ntd5QRm8UYwzBj/T9wG63582bt1TlgtPpFIMIy9n2jOfPn/P02SOa/T6jlgrPoqwoo/pP27Ycm0GE\nLyJPfhxHunFgGHsCAVvoHPQm2qL3or5XllPfmJj5FoiXSGzSRRS1Xn78kuf/wvf4R/wdfvzjH/O0\nf8LPP/sF/9vf/bv89Kc/5W53J5VAbaQ5tyzpWhn7ZVlSFwus1TnZKYpCVMS6TpB7YxDWyiRBbJTF\nDSOjkSpHomAWsS/BFgUJRV6tRIbcxaQNQNsYDZop4FCzjf/9Km+a+2nOJsPGdGQRkFSZUBGtj+h7\natRNiVY0tPcAACAASURBVKSfBeAoNXHaST09IledxQ3UfA3TOQDwATEACfH94g7TNA0KcqVWG03o\nRaTCDxO3Pz17baX6F/zDzTVVevpIC0rXZLWmiL4kVSXKVkpJYpMCrySznz4rVY5Tj0TqNWAUKp+K\nlEMVn4c2qVovnkq6sKLsFzy6KKgLi4pUt/HUgBH0HavzWuOTkIO1GJXoe4LgjuOYY5IsJ52eZUy8\nMoprDBqwWrNcragWi1zV0TH5qRcLFss1RfTlkuRckmDXSUDcxaDepf67YcB7ASyIe1zMdSEGYCEm\ndX6cPMAkgRZFOGEX+Bw8xk2FpBb4fpA2j/kevD4GnipKHcu8SIBhVEBQEcKPgS4hgPf0bmB0A2EM\n4rGi5D2GwbHbHbi/39N1A7FvPXqwrSgL8YW7v73h1J5Y1HVkFfS46Iljjaa0pSgwQgQ6hO5KUDjX\ns7/vc/BtjcEUJRAwVq5jsViwXC4oIg36+voa7x1VVQrdN471ZZwbq/WG88sSfnlH1/dc3dywXa+5\nvLykWiywtqDre3b7Pfe7Hd5H09CzM9brFZvVkoDn7ZvX3Fy94cWLF5TWis9e2+Limipr6YA1vYy5\nLMIC3gURAEixNnPgJSYgwT8AItLzrKoymoNL8nM8NQKoxDE2NxB9/+ubEp70vQ8+Jl8qysXrBwlw\nGm25Ij1LxuexU/at+aYkAhXBiK/HY5J4KGGS6YfKfBkOmM+DWdym1CSIMQe+c5UIMSr2wyCVKaWj\ncbCwJfBjtA4gWlWpLNoyPZt09f/09uL8usd3yc63OFIzvJj4ySCqqopEqxlH/yBAmScx0/dTsyiz\nSZ4oLe/3KLz/9bUNIwRBa2ZGcqnvJaHg6fyU0lRl/VChJyIlYlJpWK032Q/ncDiwXm9Yr9dorfnq\nq6/46c9/xul0kqSjKlFKksCmObJaSf+NLQox4XOepmm5vbnlsD+CChyPR4zWLKo6o9dPnz7h8vIR\n1mqapuHt27ccDoeMOp2dn1FVJVVVUxZiLno8HNHG8OjRY16+fMn2fMvbN68BePnyI168eIFSsNvt\nKFRAa1kjiqqia8VP5/r6ltdvrzj1A88/eskPfvuf4ZPvf0pZ17x6/ZZ319d8/MnHvPjwA/7B3//7\n3F1d8eGzpzx99Ig3b9/Q7Y8kFSY/DrRtw6k50DRHnj17Hu9Lw6k9oZRhGAOLxZL1ZkPTNLx+/ZrR\nOz766GOMMfzkJz/hs89+zv39PQrxIVoshGaVKBnj6Ljf7Xjz5g1N0/D0WRGrYIG6dtTes1gseXT5\nmI8//phHTx4zDj0aODUNXXvisN9zfnHJYrHg2DTsDnu6vuPZ+gXb83NQ0kO0qGuKouT6+oo//uM/\n4hef/ZL9/sBnn33Gfi/mmnVdY7SdxlpcwFNTt49fY/QTMnFTSDSdJFZgrcEWhTTGxjFcFAWqLClj\n/0FKoqWqI+a3XdthjOHFiw/4/d//l+ifKbj/O/zsZz/nj//ij/jq1Wtubm7juLPo0kQxgBE8FHFO\nq+DFE8iPlEXB+dkZZ9szvFfcXt/S6i7SY0IOtBUCnvno8YMW8z3fnGhjz45SijGE2Hs1IZ9pW9Jq\n2kjH4FGj+AAlAZG8HsQddL6upL6cIPyyXAFJnysqUl42QS/UMxVR9QnekCQoVw5SDCkQPyF49ChV\nqKQwJ+uOipXWDNnHYEgqiEldzDnP8XiiLO6z+V9hLZvVShIOPZNfjueepe+VuMmb2D+Y1rFU2Ruc\nyImP7/UppqBjDhK52G+VBU1i8iXPQxQYnZekRKd78f6REzyNG8VzTRsxlCxsQWEjpQiNN0bUu6Jv\nmMs9FCY+W8GgfZaNna35ic6rNaYosFYSYGMtRVlGpUjLeiOmwCHR7uJrbFmhrYGYRKq8b3kGY8AY\nlC2wg/SNODfSdz1F2cdme1nPpELis8Gx9+PM6DXkqqgEYZHSFZLRbawIyTCbBYjziDkm7GGih6fX\nK95LhmY8pa83dk/VuBCZCjIXNM55bFnQ9wOHw5HjoaHverxXLFcblssl4+jZ7/ecmobTqc2Jbtue\ncMOAVlBXJaUtsIXA8wow2mKM9BYaLdWe0QlVUkdqcV3XkXlQ5LF7PB6Js1aS+6DxXjGEUajWs/F3\nak8cDkJZG5xjMHB7e8t2u2U8HnGjUE+LsuTi4iJ7lJ2dnVHXJcdTw+7uFud6zs/P0Rr6oaVpDvSD\n9Kam+953ncjm20IqJ34OqE6Kjul5GG0IJgAjISRPmJCr8MMwUJYVVSXeZWVV0btBlCCdjH8RAkzU\n2CjmZwyGCZSZnnFapzQBobUaawmRGi/jiwdzV9apMEvMQ8oT0kqR/Y3kz2ZryTwp8qBnsVeqBMdg\nSgyI1awK/V7iBVH8iZQIZUgDozRep/tAqpsSF3wZa0oEPTIdNrF0EEBK1jEVe5NUnmJ5Ln1DrvM+\ne2j+3/d/n77/TUyavkt2vsUxjuM3SISSUULnuvdoZiol2PLdbPK8v5WmEuZ80/96ovP198mjWE2I\ncxk3xKSslY7UQyReO55gC+pSkBf5XI1ShuNRzBOXqzV+9Nzf3XE8tdzc3NIcG1Ts0UgXJ2h7Sd+7\njMwHHzgeG9q2I/kQWWtYrVfUZRU9aAQZu7i4oKoqmubI/f2e+/sdw9BP1ykXjfchVhYCXduzWCzY\nbLcUVcX9/T1ffvUldV1zdnEh0rY+oAtDaQ3tccdud4+1JcEH7vYHXr+74v5woFqtefHhSz54+ZJy\nUXN1fcu7myvW2w2r7Zaf/OQnXF+9Y7NccPnoAlsY2tMRN/T4sWIch1gF6ejaDqWIgYD4GIyjZ3Ce\n7XbLkydPKauaV69e07Yt9WKBtZbXr1/zy1/G5v+2lQ22rnIyXRQFL168YLFY0LYdxmiWi0UOhs/O\nzzg7O+esa/FFEncImSI2OMduv+Pu/l56s6oKDzTNkePxKMnSYsFyuWSxWnI+XlLE3onb2zvcEFiv\n7yVYi6o/WomZ5+EgqnE+VkQ0geBHuqHNvWyDG4SGMdXyJTCaNZ0mMGC5XMbepy4HLilQSM3i4yg0\nnkePHvHBBx9w+fgRy8WSz1/9Apbwk7/4Ce3PT+z2R0Y3YrTFlgWekcFZus4JFSiZ5AUgSBJTVyVn\nmw1nZ1vaUz9VS2PzutUGigl1VhGl9wSMKSB4Rjc16KrYaeqBMlZdbUxYympSbUuS6vN7kQGSOAfS\nySYqBpCD8xQK5rUh0iPma8kc7UtriVA4VF6q5K3DZI4eLb5FLnZGBQnSt6NUJPRpMWoNSNJno7Sy\ncyP7CE4QFNvtVsQ0ylI8c0LIQZqOUsPJSFNrSRzSOEk0tETn8H7EMUbhAo8bB1EBjJ4pPkRVwBmV\na36P038lwZpJTwek38XP1cAMRVmhYk+XS0kAsQpkDQaPGga0l+TMjx5NwMQxn5BiAbZkzR2VAFFK\nJ0U5qS4Zaykr8XwRL5RCxGOsRRlNUZY50fHEfaissGUp40BLJdVYKxSjUSSFTVFgiyonlc45+q7D\nuYFxcAx9x9C39G2L870g9nGupuqNxJwJXZbqjkhYpzntcUQ/lvBwLyPMek+DVGsCPivxKRUyyyBt\nnj74SKObPIXwgRCl01MDu6TgOleGCBI8N03LsWmiXLNisVixXG0wpqDrBrruxNB1MSFV+HGkb1sU\ngbKwIuGsI+lQR1U2ibvlZ/F6tNKYZNQdQceyKOSFYcQNjiYaj6Z9oiqKuEYE/CCVWjfEyq+xOJ+q\nuEKlr6xls93GnrFRkgNr6YeBw+EAiGrlqW3ou1NUlpRKtdGGoe/ohx4fpEJfWOlf9WPAGivKrTY8\nmCtaJfnzCcR5IP8cZA3y0aR3iNLvfTS51tpIBd9axhSHpKqQl8A+EEB5Gfsk9dmHPcrChpnWx7Io\nOLVpPQvMIyvpyZsqULkaThIlUWTcOS6nDwP8VEGa5mum4eUKUUqK1JSozo6UQD3Me0IUk5piPqNV\nrsB6H0QEJs6P1PE2vR8zSer4Hg/OZ0qqpvNQD+bc++eZrumvOuZ70W/a8V2y8y0OH70LZJsNGWGc\nc+wzfS3wYMC9n0V/05D5Jmra+xn3+7SWQFLpUHnjSlUAGz1Z5o7iWqnccFhE2sNc6UhoNo4xeIa+\nZ7e7p3eOU9vR9wNVpDnFoip+HCOCU7Jer7FWmuaTTHRSYgtB7td6vaYqS4a+wzmR3Oz7nkPsUdnv\n9wyDi7QWkwUSfPDUZVwcncd78vUdjgfevnvLq9dv+OEPpEdjcA6GDu0L9Gg4HsXstBtGvIddc2R/\nOqGM5cWHH/Hy+9+TROf2ltdv3zA4x/nFOW/evuHnn/2MYXScnZ9R1xXt8YAbB8rS5L6RwNR4Kr5E\nyaeoYhwDqu9z8tINHcfjAa0VdV3RdR1vr6959+4d4+hIkrlz48P1WgxWq6pmtz+wXq9xo9AGjscj\n682WZRQoODppqG9PLW4Y6NuO3W7P9fUNu92Ox5eXbDYbQba1ZrFc8ujxYy4fP2KxXFDVNefGoFxq\nvrVR1WzLarVmtVozjiP3d7ccDkcIYkC3XC4pjDSoD9Gd2xgTq1QD1hZUZcnoPcM4KcmMo6frWvRg\nMFE5KRlJuhgIp0RHON3y30ePHvHJJ5/w9Nkz+qHnz/7sz/iH+5/DX4e7+ztKXwr9JUHEKSCJja0R\nOIu/SkmX9J0U1qKVpu86Rjd5SIBs/NbMnBJBAkFiL58tCE7ECNq2Y4jyrgEYg5hWity3BPcg0unG\nRPpZDm5mvgda896OOa0H6TWkZOdh8pjXi4nd8GDjCiF9lsobcOZ+Q3Q8Dyj3Xs9hmIILrRQmbcwq\nZN+VRM1puw69O2C0VFSGYcjrQt+J31NKKObc/yxHG9ewJFdvrTw/Pw6MwyA0qhg06ejhNCV0k0fT\n5MujorwuWWbXGou8bfS8iM37QreZfLOqRR0bhiczQ6OjNPjQM4aQkWmlpdfBFkUMcsjBRlJfE0aA\nidce+4WUUKLl84QGZIsyiiDEseSD9F34EW0sOgbVCZBQRhO0IO6pX0sXIkdviiL3k7jBCRAwjgx9\nT38yKD2BEaOLYzIGfDI3A9akwNMzxkSHMEqlO+43ajYW50qCWVkrfaloNhzXixRAhhgQxww8Jp4m\nVpIgKIUePdpE5DzIfjjGt9XKgIfDoeGwP9L3sg6dnZ1jiwofooGyG/HBSx9aSr6DqDIWUeUtnZY1\negp8vWeMZyrBdym9ikmZ1QdcP9AcxbNn6HsxH/UeYx56ZyW03qipb8v7KenYbDY8enxBbTXaSqXI\nFhZtLEnp9HQ6SbUjSM+oGzqKXGESY9Pj8SBiKUpnq4myqBh1jBtsSVoO0roi56Bzf4pWUTBEiWiI\nioleKpEkCnAIonbnEi0uzWtLfraj9wIcJKVZHh5zGltmDEQQzMZ1mqSUNwvYA0SaF7OkJgIXWj14\n/7SWhvmeMPu/EGBUZF+b+d9KNWXqZ/MhrUGK1J8z79/xqTduBnCH+fuFiQ7HNIPyvEleQ3MqoYBd\nqaKUut0exp85lsxg2TeDP/+0Hd8lO9/miOhFCCFqw5MD/UmFzU2BRJiioRQk5EX+vaQFHiY57/93\nGojT+6XNQs2+n2R5dTZmHGJpHQTlkgSkEl+MSLVK1ZjU1AuKpollciWIvLWWYXTisqykcdRFzu16\nvebp06d4L/KTo/OURcV6vaKuFwxDz/F4zH1EQ9fR9108bwliEo9c7pXcT63BdULFW9Saqihx2klZ\n2Ria9sSpO3F/f4+xhh/81g959OiM0+6Odn+kbw601mAYpSoyjByOR5q2xRQFZ2cXfPqD3+Lpixfc\n3N1xdX1N7xz1ckHb9/zss89wbqCuq1gBE0+WsiyoK8tqtcymrIFAUViKsqDvu9j3IhKayWPo/v6e\n46nJngchBA6HA1fX13RdlxutrZGEJ92biR4yKZLVsbm7aRqur69pmhOjVoTSZo60UOlOnBoxxSwL\nMYM9OzujqkSqerPdsFytePzo8YNgylpLoS3r9YZnz57z/PlzyrLm7u6Oq7fvuLm+Ej+VQlNVJXW1\nRCvpcdEKqUoBrh9olyNltaCqavphwMXEGmTDHPoBH3qK0meZ8qTGlWhASiUPpoL1Zs0HH3zA2dkZ\n7enEl6++4ldffMXVYh8nU6QqFSUDqbrUM4wDIUR5dfUQqXrYJxJwwxCT72FKdtJmN0MX03z0XhL/\nJF8LcGpbWi1VOtmkR6wW2kMIKtP2UOQK0HzuT347D6s2DyhuGbFL2UxCIR/yzQMSEAY9W1+Umr0m\nVgOYKBsJ1gghgI/KTDbOTabNm4TEh7ixx4BT+clTqe1a9ocDZVGwWdW5ajkMgxjCEiJVq8jSvfO1\nM/27KIqomgZDD2Gc+nFSgpSSmvl8cU5U2jyBzLeP1ZayrLCIN9FItPNRWihf8X/aGKqq4vz8IvdY\nJR+RYRhomiOpemkKi/Zams0TTS+auCa5a2MsJgaq2ljxNIvmlyIDLH1lRVmKOEIZFdZixarvnVAG\nI7KvtIkJtPg+BRX9lJJqIqCCivdWwigTQJlBEkwfBSaCxwcnIhUh4HqkD8aFnIyIkmL0xiLR10ah\npEVamg8enIyN9xkK6d8p8NOIzIY2ZmZ2mubkKJWjIAkeyudkR2uFTf1p3sdKT8y7fKCwJW6QdXd3\nv8dFZb6iKPCEDBjJ+DHo4CXFimppRkcGQgrStYqN5mECT5SiLCKVsagyPdL1Q/aT2zV7Um+KtZay\nqrDGoHQyynSSSMUKntJyTl3XofQKgM3ZOd35Bd610nvU96JcCBybE/e7e5wbqZcLNisRapHA2VNE\nMOXudsfhsMePI2VRSf/VLAkN7803OaR3TGmDmQlqqFzV4AEzJc3FsqrwPuT90TknnlAhxEpJlGz3\nkijPwZevHXn8TPtCZtGoKZmZV7CBGWUtCReEqXo6+6x07WmN+aZj9B6Tk4rpfec1lHxOPgkSRKGX\n2TqcZeDz9Yo41JTkJFraZMSNnwC5h/FgSMWc/NwyGJWvJz6hHDOSx+L8+E2s2vw6x3fJzrc4VEJc\n4mBzbpzQazVtsqmBOy8E6v0FJMTtMzCf13MVtzxdZ5t8SN++VyVKTXZ5siihQOgQIorqooxklOyM\nqGIIwgPu+05kao1FGzHgS2hmMqQLiDFa13esV2tsKf0VxhjOnjzhk5cvs3pYSuiGQZrbT23HbnfH\n6KQ3qGtb/Ogj3U4c4130T5k3aOfKmTLU1YL1ZkNVVnQnqTIBHA9HfGxQfPnhS548esxmXVMRuG4b\nusMJrOby8jE6BN7c3OPcjtEHNtszvvfpp3z0yScM48j9bo8bRzGC05qbm2sO+3sWhWW9WVPXJW50\ntF0rlaaodjREVRtQ2MISgme320f/w/RcYGw72rbncDxQFFWkVzS0fc/gXAz+5LkaK/SHEHx8Pi56\nHfUiXnA88ujyMZeXl5xOHVdX13j/jmq95NnLjzjbbqW5vh/oTieGrkejqMoqBjSBruvY7e7Z7XY5\n6CqUJnhoTx1YS1VZSmtZ1BWFNXTdieNhz+nU0HcdWgdOp5K62qKUou8H+tjQX1qLVtC6AaM1dVVT\nLxZoY7KpalkFxqDoh4G27ej7ntOpkfuVDUJlg6urmuVyyXKxYLWWvrLrqyuub655++4du/sD4YWN\nfxPFOJQkoCjFMIossWdS80qHjvNXIRKqhRUkvu9EnS1JZoekvBPARapVSk7DONA0pxh4TgqMcv4e\ncFir8TFNGIPQsPI5RPEG8aOIyHpCBgVeze8JkxlrCAE/+gm9j+CEUjr/PJVpMlKe1g8lyL+onQlA\nExk1iGixXKwEk1qCfGVFiEXPjPbiezvvMEF6bAiSbKfzdONIc2rQWrFalCyWEsQNztH1HQEoY+lD\nTBZNrCTIvTczEYcH8vpKiURwTASGfmAY5Fm74GKTv5guOyc4/NyTIssLj05k2tO9LQqCMShrsVVJ\ntahZrldsz84EDIjARvCe5njE9T2FsVRVTeEdyjmpDily07cbxoim6yiUYfEhYG1BWVaYwuYARykt\nn1FLtbWsykgFFJoLymBCKdX5iPAnr5nkaeVS/xMSZPVDl6t3WbI8KiLq6HUlEt1j7GWQpMZ1CkdK\nqKcENkkr53U/fUm2Idcb0ph9iGSncZlogpmKFhNwH5PD6TFrRk/ck7x8zYO/WKUL3mXFQ601vXPs\n93sOx0O+F7vdHm0tHh3FI2TMFVroanL98R5o6SksCotGMbg+CrGEuDbWbLZr6rJm9CNuHBm6QZL7\n/Y5jc8QjIM5ytYq9rip6Nw0i0x8TKe89bd/Tx6q+rSqRuweGvuPYNIz9kcPxIPdJa1H0vL2jaRqq\nxYKVMXRDJx5nSrOopU+3aRoRXIhCHCiVafmAMDrcCDZaWOQqTpR+Nxod6WXJp0qlqrmaKK7zY54U\nArlCH2I2m1TL5r3KCUxKMZNO1OcIwaRKbwIYZ2WROBbIcVo8uQjsPDyvWbqAghxHTalS+ofKa6BX\nkYj6DbHdPKl4mLiFXBkNQcavtaKk6bzQZ6dEJ94PmXkCzCSaaFD4TKmL9ghxnX7//udELvUz5isV\nuqCa/WT+/B48t3/M979Jx3fJzrc4xhCkEU1LA12I6JrWSe7USql6GGJyESsvQbrjH6iVBGnyTBUM\nlGL0cTEgokwxuMmu4t5HioT4KWgFwzjgHZRVQT+IyeXgRO3JWst6vWYYBNG3psgItXOeoTsJfUgH\n1usF2hTsTwMuTrx+cKLRb1MCNLBe1dS1RakAfsBqRV1oTs2e3f2NmDPGikXf91HpKFL9lMnqP0pp\n0Aa0YVEu8KOUX40RCVqRlJZNe7s8E2W183OcGwmjZrFYs6wX+HHk7vaWAsWnL14Smk7Qo96hhoDV\nBav1OZuzC/qhQ900FGZJXYqfzvMPvsd6e8lPfvoTbq9vMVpRKGgPe7rbd5wVcDre8+TlCy7O1+z3\nOw5tgy5K1Bi4u76ViooLVGUtAUZ0dLZFIVWJQa7XakXf91gjiag7CYfcK81mteJ0kgpbUVqqaEwX\ngseWlqpa4PzI4dhwv9tz6nq6weF8wNgSbUdxcHcDRo1s6grtHLu319zf3HJ4d4e7P2H7kbFp6A/3\nHLuGt6//ktvrtyyWa467Pe1xYH/bMvaa+rykLjVhbGl21+yN53Tq2N/e0p92jH3DCOA3bJdrrq7f\n0XcnIhuHY+xrOh6PtG2gKBYiZxqgtAVN3JCUChSlGIvK+BjQxrLdbun7PkpcK6pqwdn2ArusCcDb\nd9ccD/fs7+9wfc/Zckknnnr4oWEcRpSxoC1973HeoYwiuIj4G4uPG3rCl63RLIua7WIZK1sKQyzq\nJg8YyKo4YwgUxmDLEteD84Gud4SYCBdFTfDQtQPLZUHwClKAERF8mBDBoixEzMGN8XcBzxhFBqRv\nIVVQZHGIiZoymQOfEx6l0AgqDsREKgEiJifWIV5fSr6s0jPRAHmNVqDtVLUwUfa6HxzeC6UJkH4m\npehHqYaZqEapkUqK60cOoeHV1RWqLGOFUfoJ6rpiUUmvFq6nqEsqo1BhJIyj9ENpUb1SSvoi0BoX\noNAGH4RGFMSrEassve9w44AJmhBVpZQWmMnFNbJcShP50J8YQgAtc5dS+guCHilKMKuS+myJXRao\nANZYCmMZ+wE9jBRjYBk07b5l8L1UP6ylrqTS1zQtGE1RlSgVjV61VNq11nhtJJgyBmvL/HO9rKEq\n0XWdFQ6HtqUoK9bRLHqO+CovQ8xEyHtMaLtSKAuMPaBJpKHgRblMxmsVkxNJfCU4kwTTuoJhkIq8\nd2JO7Xovcusj+MHjB3lWEmOJ4EMekwnJL3RuRvd+CgqTWaz3nuCk721wUsW3tkRZK+pm2uARfydr\nLEFL47bWFm0cgx9wfpRAsmspl6upTyRA1zt06LAhCgKFECtVUJog4bz2eOUIcWUY/QC9Fo8fpai0\nwWojic5GRH2Uht1hz+G459iIfH/ve0KlWauSZb2giv20aBgNkExerdAgXUwO0sSr64rVSkRqur7j\n7v6G7rSjGxyb7RZPYMCDNZTLpSQwWkyWVVSQVFGSu217Tu2AVhXlQkyzjTKyJoXUXwZVYSm0prAJ\n2BnxricEC2YCSlCI71UwEnDnyoNQN1UQARirLUYPnE4nNDC6QOd6Ij8Oow1WB7yJVHtjCUzGpGmN\n8pF6NhJE/S0kIQ+Vq/KJTqdjf1f8ywcAsYw36UlM1LUIM2f/pICs+wlbjjlL/rzpfZD4zkilNgSf\nKWveT4p2uoz+YkGEH5QxUYkOqVQq6TdLuBQKFNK/pQkY5aMNgJRxRidgmEZh49qvg8Dosm0kAYNU\nNw3SYxdC3FHkYybZbHLyCYmpMD3rb/QR+g05vkt2vsWRy+4JTY09Ms6lygkPKBTpdfNJO3+vuLQT\n7fsAvlaCTK+d9/P4yIcnzNywx1EUi7LM5o6z8y2PHz+mrpe4wdGeWk7NCdf3jF5QzNVqycX5FmMU\n9/ujBNtFIR4YdZnd0VNfT2q67Lr2AWXnyy+/5Pb2NlOQ5mhHEkoYo8tzXRe5YdIqndEepWNoNzq0\nVlxcXLBer9lsNtkTSCkwRrFeLnj8+DFd2+GGDqsVl5fnlGVJ0xy5vbmibw4URnE8HHnl5Lp65zgc\njxRVxfMXH3J2fs5+v+f65oZXX33FZr1itazZ399xfXVNYS2Xl5c8f/6c9WotFAA/MvSOMHiGiBQX\nsZI3joHgBjyaJ0+e4H0QVPFwFKUfJYaowXv2TgJFUwoNrOvajEbWtWxGw9AzhJCdtb0PGYkuo2Fj\nXdVUi4WgdsHRty3v3r3lq82WZbXksNvz5vUr3r19E9WDnrDbH3n97jVvXr+laU7U9TpW0jqSb0lC\nxLTWmVrUddI/U1UVZ2dn9H3Per3mww8/ZHA993cj0rMaaNsTXTeQPGl2ux3NqUFp8aLqYq+GyipW\niroWT6KqWuS5VBYli3rJ+fk5dV3Te89hv2eM3hfGGHQpjdzeylwzsSrg3MjgHe1poB36jKBNAeKY\nnfjHlgAAIABJREFU5533XmiZIUS1rhpr5F772L80+oBXOntVTdxqSdSzTLafOYgrnTn1i0WNijK0\nSaY3zvLZjJ/QwTntZ05TeH+dCHEjzteVfpi38Vl+pCbloLzmpHNNa1MMuDKdLoTcV5KakudUpGG2\n3hkt3H6pIEZ1NVKvkwikNE3L1dUV4ziy3YrPyWKxYLtecXNzg9aTKW9Wr4uVETeOGCeqdaNzE/VT\npQqSoz2JklbX93TNSeSqYyIjiSPZiNdWZVyjlQiLaAGTQggRYdXoAMpLMOXdmE2a277hcL/j6s1b\nbq+u6U6tAD6Ij9OyiO+nDUVdwTAKJbgoxBRUS9LjQ5RbVpLolFUZf6/RlVRv5v0d1tosvfsg0UnJ\ne6Y/qrw3JcqVJB8+N50HyHuWUVoqZFUlwI/VjK7Cu4Ghb+laqbwPAVzfCyXVCQU6ZPNIH4OqycMH\nFXkMKibkKs2Nh+MvhEAYyTRWOddJLjzEXoiEVefeoBzMToFoulc3dwV//tmP2B1eAV9SVSXlYk0g\nmoOHBCZIsjH6kdEN6CJVREMMOuXe1GVFXUn/ZVmWBAX3ux3H44F9c5AEDWkWSevBShf4IAI7qhcG\nQFrHk7hEugajNauVA64pyypXdPtuYNefaI732CiZrrSlsCWbjVQ6m6bh7u6ORxfnqKBww8CpPeGD\ni3RcHatIMo+tnpRb8zyyBUH7WPWR1UPohh6fDCzjvTVp/fCTwIeWMP1rRxqrSkvCOEYAByXVW4vc\ng/dl5/Pfhwg6zdatb6JiPfzZP74i8fUKBhOD5hveQSrc5IRnPnZl/3QzldIysz5Sb/f76zr5sx6K\n0WSx9vDwDFSspqWx7X36nvfeM/U4SRIq5sFfv/Z5nKrgwff/tBzfJTvf4vimAZA2ZJirsk3N1A/6\ndJjKj8ngUQWNVz6uZw8n0Dd97sNBLD+vqgrnBnwQ/q02iqouefz4EZcXj7H2hi8+/xXHwzHPm7Is\nWGzWnJ+Lmdp+v6Nt2/h5Yq6YqELpSP4nkuBJH0tZij+B9z4jkUliVqg7Ostvnpo2NlxGmcRxFNlY\nFdBGOPVdN6AUbDZrttstdaRPNccj97t7AFbLFctlTXM80DQN52dbPnzxnM16xf3dLQSHAtarNcu6\npLCavu+4vb7l6nbP6dTyyac/4Ec/+hHr7ZZf/PIL9rtDDoT7rovVGsfjR4+oIlVBGkwHCmOxtcUo\nj0coZkIdMmijIhc8RIW5RiiC2lBVQl0pIjpblCUEFSkoJivoVWVFFQ3dutR0asT9WivDerVCG8uL\n5885u7ik7xz7g9wLFxyLZUXXnri9veZgdri2w5jAZrMiMOLGgd1ux/XVDbe397Rtj9BGhP7VdR1K\nGfreUxjLYlFHGkfBer1iv1/mMZFkUC8vL7m6ekffnrBWoQ0E76QioDVVJapHbnBC1ZkFaDL0HwY8\naQ6kcbVYLHMi3fVt7OERakuiSmy3W8zGAW/FEZxkQhc3MK3R771/1FLKmyxK6GTJqFWCLKka+LwR\nR68PQkx8ZaOwRvpJgKzGNo4ij+yjiabWYFRAqSJfn1z3NL+tNVlwJNGE8joQ76dm4ngn+oNslNNm\nmv111Nc3TfJyMzfWe/jrLMUSgw9tbKaZJqBn6omZEkiYKktJOEBka4VCMXrxXrq6mlTSFlFZUNsk\nY/4wOEiIqgTliWKnBVlG53sjPYFDrCqL/K2Lgi1FpIG5uGYnquHQD6JONfZSsZazRGupNumipEwW\nA076srQSn6rrd1e8e/2auxsxnlUhcGyOnG1WrLZnnJ+fU5QFwzhi3UhoTkL/LQqW63Wu/vbDGGm8\nBVVVZ9qaUgoKG2mJhtQ/YU0M5meByRRIkft0lNY5MPPeg9EZfAtRBnucJRYYk2kyxlgoKhHOMEId\n834UKWo/wmDpVJfHh/j9qMT6yQFZ8nDSsTKaKNI5sILcuyZKe1PAq5V4jqT10ZGA7zkVbtoXQxxv\n6Rr/9t/7ff67v/VjBlcA/znb+r/i0fo/4xRBF4WISxijKASgRwVFYQ1BDfH95BOtNizrmuViSVmI\nKXPvHMfTibZraY5HxtFhCiM9UyEwjGIS2lsRozFGerJSk3hRlCirMy0zhCDiKDZBKCFTtk+nE3dD\ng3ctl6sVVVUTlGEMg9BOlShZagK2sPSnnqHvUaHAGovRlqqqJv8cH/AIsHU8HrFxPmgj/kSZWRKT\nEbQmFTVMfK5yHfNnMa96TM84jQOlVPxbj/cugzJai/6a1jobws6fbVqRkgrZvDcoL2cpCfraIvf/\nJXCfkoyvA0RxHsXqzPyzk3CAc4PEVosFdV2L+fhul++5jRTnqe8mJvwP7pt870bHGCZPHvI5vQeA\noRJbLe+3wYMigQ6z+JFprqT3iBdA+IZnx3uv/008vkt2vsXxTSjCnD+ajfH05NqtHwxsOWTzT8WZ\nqbyY0JI0qNMxXzDmi8D8HOSFkmAtFjXb7YaiKNjv99ze3okJZXNCI0pTy9WKJ08es1zWnJqGpmno\nupZRWRilCTmrJUUTvzRhjdGsVlsJPDtpDk4Vob+qyS1dQ6oMGZPU33p8GIUvXRjqWmhzVVXFysCJ\ng9bijbOX5vNlLc2dx+MRPw6sVlvWqwXNcc/u/pbVoqYqSsrCUFcl1mj6ruf25o7b2z3PX3zIp9//\nlOVyya+++Et+9rOfc3d/z6KuGceR6/s7dvd3mIjirZYLdKSgEUK+L1aT78E4iryxsQbrC7SVxuvj\nsaHrOoqiZLWqAc3pdOJ0EkfpohQp2a4Xqe2qLKljxSYFdonmI9WcwHqzwVhRohuGgfvdjuubGw6H\nI9WiBO85HY9cv3vLxdk5hVYsFyWjs+x2R3a7+4gytoxjYFGvuLx8zPnlI+7vdiij0EhSWkSPE+89\nx+YgyHqs7KzXa5qmIYyepjnF4DfgnEcHhVYmUvECxtQMwxgRdqFj5qpfrOy4UShs4+hRyuTxrmMP\nQkq2T66XBKgq6duG7iQBwpOnTym3LfBzEYTwPS5WlbQxFIqZIbAkShm9VIJJGq0pi4oqqhdJlUWC\nIaMthCCGhDNEPfUsBJ0MTwNq3n8XA/HgA10nnkcS2EovCYAfQ5QjjairNtkDKwei8f0IIQfq00Iw\nuwxAem90pmXw3hqEytt6/tGp/5gvrv8mh/Z32C7+ET98/l+wrL6YMjGtQIux5jiODIOoD8qHhgdB\niCfE/o9k1CnBUnrOwXu6vkcbEZ2o64r1aolS0lswjkMGj3KyE1T0ZVJxUxfqCMpm/n5WZDOGIl1e\nIQlzvVygtObUtvSDSFi3bZsb+a0xFKVItY8+JiSLJaYo0IVQ18ZhoNkfOKkj796+41dffM67N+/w\n48h2vWa5WFKUJfV6xfrijNXZmfRC9h3GjYxBMYwj1WLJYrlEW4t2Dswg1LuipFosqOtFlCJXkizH\n5yfKbSpX2hU82BMC5B4AMQYNua9CkoeIkCOVDK+SKmIEANQsOFSx9wsDtsAEjx09ZRxu2jnaro9q\nhT43XKMQKp0KjOMk2JOqkTkpSaBDpMxByAIdMCkYEpW/UIow+ugXFc8Pcs+Hcy6CCpLofvnuE/7r\n//lfm00Sw679G9Tl/4nV/60AT7HfrjBKQIhYbQ0EoR/rqLBWVlRlyaJeCJUw9p+2bUvbtgxDn720\njCqipLq8j499GGVZUtUV8lQCtpTE1uMZnGPse0mQ3MjpJMDj7m4Pu5iUD45x9CwXS+p6kWlPSf4+\nJYzGWLquF8EbpaInXhUBIlmj07NN1MGmaVivVlMMouS+pweaKKOpcpjikTF6SRFmsu08DJbT63Ov\nXV4nVF4/VAiYGB90w/BXBNphWri+luC/V90LaXzEv0nj5a+IT9KRnhlESfl8run3MVGdXVdaezN4\np8U8drVaYY3OYyQnf/m2TInOw4pKiEt2IMxfO0+JUoUrpHk1KdlppSK9MK0N5Grq/Hnky/Ih9hHy\nAPF6//n9ph7fJTvf4pgjl/CwhJkQznnz7PuI2/t0kTSgxWE6DuRvRCdmWbx6SHkLIUS1LnHhLsqC\nupJ+gevrG/a7A/u9mJiZqCy0Wi3ZbDYopTgcDtzf3dG2bVT6ESno5VJ6FpLsbyrFVlWSmDbsdjv6\nvn8gJZvQjoSGKTU1JSaESCkVzSalv0hkjVfUdY3WkiS0bcPhuKeuxES07zq6rsWPI4fDnsNhhTWG\nzcWWs82Kvj9xd3ODjU22KpbotTIMveP+/sjd7Z7lcs33P/0B27ML/vLLV/zhH/8J766uGZwTD4Iw\n0rYnrDGcnW3ou47z7Saugl42uqri2DRRtnSkjw7sNvy/7L1Jjy3blqX1rbWs3Ht7eYp7bvGKeJGB\nyAySlOiibEAHIdFCiB6/AX4CPcQPoAc0kOhBihYtJFqIFsoQkJGZJK+Id98tTunuu7JqFdmYc5mZ\n+zk3MnlB58K1p/PuOe57b7Nttoo55xhzDENpHdY46rpivz+w3x9wruDi4pKiKLn7cMf9/T0xKsVB\nK82dLoY5WO66ThNox253RV030jcVE3VV0fUDdx8+EKJ4GZzPZ/q+pyyt0H2GgRgm2qagLh39uSPG\ngXHqqYJUqb2PpGRp2w2Xl7eqlPZeOdBRkZmaWpu/YwgqljDpszW0TUtT15JMdx1d11EUlrataZoG\nuoi3UiF1haXdNJRFiY/CuR5GL7KkKaMwoupkrRV1Kg3opHdH1PqiFZnruq4JkyjYXVxc8OLFCyb3\nQecL8yIfkvSjPK0EWytiAfJ6SWqsK7FuqaRbRTKstdiykM0lLhzwHGjlxCxThoqYEQ6ljWjAFqOM\nl0SiLBxRrdyD94zDRFkmbPafebI556Qpb9qPm3pXFf71/4wElmL2twQg6ckCM4YX/G+//QdM4QUA\n++5f583+3+bv/6v/Lm1xJ4Emej/jInFvM3KQRFUvyk2X2k2SXgFnLKJztrw/GVkPzucO5x5kXUCq\n1+PQk2KY1RuzF4grZAMvCkepDeMYUZuUZGdtnizIaFmW+LLEGKiqek4uU1SUKQSSJg9lVVLVgk5P\nIWCLQhr3jRUvGe/x40ScIueu483r1+JBFbx4fl1dcXV1CQmub6+4ub1hs9kABttXDONAwOBCpGzq\nWSraFYZK1TyLsqKuW5GvVzGC6D0oYhFJOBylK5YmZaMbRsoV8axvnZ/3QinOggOo43zCgIWilN4N\nY/Kc0aQk70bGYV1FWSet8BvMNFFWg0p3x8UTC0F2c6K9cP/l850x0kaRgz1V+RI2xEp4Yt4JF2Qq\nxAAmYQtLFq+wej1SGPAETQr+4T/+23zqOA//Ds8v/zsw4m/i9JpsptjFoKIF0DQNlxeXbDdb7UWV\nuTqMI+e+Fxp1CBjnqBrxj8tqb845NmYjiY4T8+dCx2ymY4UkdN4hCwfot50UzRmmiXHMMiGAcVR1\nTQKGcQJbzGvdOEyE4JkKR2ESKSSc0o+dc8rKUGQuKTqj68gwDKL6V0lhLYY4xxkZWRAamY4Ia7Er\n3y1rLIY1ff3j4Dj3fqUYZtQ4P1dQBbeipLP+k89Nlq5cYHoitLKKj3J4lRMqMw8j8+Tz1rHc/NMn\nRaF1MflJsSgnL5pMrRGsLKSyLtgsbIZZ43KpK7CSq1oho/myLDpmEqqIJ6icicpISMv15GsxUYsX\nOc7U0SUKknq9erK8N37quf2YUR34Kdn5ow5jrW7kaa4qYcwSAKjHjlMqRkpP1HAeJTxrKDEPqGVz\nWcOMjwdbejQJAFJUZauqoHAiAnB3dye6+2ehJNVVTVWJCsjl1RVlWXD/8MDxuOd8PlE48VvxSRCM\ntTdOTnicc+x2W66uLnn79u1c4QddqDTAyMZ/ucqR0a/579p8ahDU4vb2hqurK4yFkzZ4Hg57yrLg\n8nKHxdKfz3iVYD4dDxwfar788gtevLhl27aMfU/h4OWLZ5we9oQpEl3JOHr29w+8ffsBTMHf/vN/\njT/51Z9y6jp+85vf8odvviUBhRMUrHRQlRXby0t2m4qHD+802BJVMvFMODGNI92M3IwawDmKMqlj\ndsvbd39gGieuXsj3Ox5PvH33ju58Zre7mBdBP00EDepkoxsZx4GU4Orqkt3ughACx8OBlCS4E2+S\nyGefv2K7u+B0OolRXRK5zbapefHshottQ+HAjyesjbSbmu12S8JwOJ45ngZs0TJOgQ8f7nnz5g2u\nsAzdILSzVqg0dVnQtlsKNeE7nztSSlxdXfLVV18B2S9nxLmG3XZHVRa8HQeMei3cXF9xcSlJ38N+\nz/F4YvIHpm5kCkG56RlySLOZ5zhOgjz2A8ZayraWpEEplVVVc3V1La+dBGmUwKkAhEbi42NqxKz6\nt2qQRiulPkTGYSKVglfkal+mDZkkVdGqqiCLasTIOIxzsj9THKygR2VZUJWFoqQyXw3LRpLpVylK\nX8W6ojhLlerG6nQdyd9hTVvLlcdMFZWML1+KyF1nwsJ6Xfnu7j+cE518jP4Ff3j/H/Bnn/+XczI3\nqUrUgo4tiLMYT0I0BmelgikVxYQJa7lXWdPKqhClrONRlAMnUXu82G0pVVK973uapmG72WBtKYhN\nYbUab/ExSeW066mVHmpg7nEpigKvRRvrrPReaUBQOKGNJiPURWsz5ViNl00gzEIRovg4NQNFWTP2\nPc5anj97RlkKxXSz2XBxeUlT17TblqqutGk5URqHByoMLknhKZiM7FuKQgJS6WVU1bUcIKHJZFqN\n1dncWrWVjFFK0dpr6LFXU6YkLx4gWqgzBlMUWuHVpErX7wTS54TDGiiMBroAzUA91LL2hUBUiwNj\n46z25VyBtcueKckxM/IkY0g8SuY5EbPRpAZrRqhD0XtilB4/DFgnPlVGk+wQ5HmFKKazl5ueTx3W\n3tHUJTGBTQlDvj5NBI14FFX1lovLCy4uLqmqmmEcORwOnE9nQQZ9AGdp660o5VlDCkJpLlRNs6xE\n2bHQey/zRBC6fuw4HA50wzDPY6f0Qa2ViDx5nv9qSOtDEu82J/8OMTJNfqZuVqWj3rTYohQVwCgq\nhHl9iElV6zBCo9PnksdwXddMo58rros3laCBkBEEpWUbK0H3CuH4FIVfYhdLIpsCa6Ct98Raq0JK\nE6MJOeZ/dKyR9HVfWv7d8rqFzpWWleejz1q//1PHI8RlLhQt58ufkT3TksquZxsJr55KH33uk5/N\n34El8ZlZPnkJV0RLpBMCYJW+mH+5+vLz65fvKQlTVvVd0d9+KDl9hKr9eI+fkp0/4ohpVY9Ii9lX\nQjTYJ+9BoVirG2zwK98dDZaw4mWQQVZWAz3Nf1NuaFomXIzaRLqq6K4TCpfpRqcjk59mJCXGRN91\nOCfB9eF4ZBp7MTVTyd1EdsaWpt3nz5+ripb0jBgDFxfyc2MMXdex3W7ZbDa8fft2bizv+15pXRHn\nlqpGRr6y+3ldFWw2LTc3t9R1hfcj+8OehweR0DTGUNeV0F2mkb7rCH5it23Zbmqury+4uboQE8s4\ncXtzyd/6019gE/y66xj7kb7vGYeR/f2eqqz51Z//ir/7d/8eu8tL7n/3O8ZxpCxKQky8fPmS8+nI\nNJ4Bqd7tH3ouLy/nPxsVATj+7ohB+NpTEDNEax2F+mJsNhtsWXI+n7m5vuX5s2eQYH84kFLk4uoS\na9wsW17XNSFJ75UkhiJHao2RCm6Ch2OWTTWcuh4fPJdXV3z11VeECG/evGG/37NpG55fX/P8+prb\ny0uSHyiqmt2uxYdLymNPiIFvvvuW33/9B969/YC1NYfDmRgNh8OB29sb3r0dJGA1CJXwKHLZu80G\n5wqOpxOn05mmbvjiiy/p+45N2yKVI8em3VCXBa+D9KDutjt+/stfcHN7y93dHd999x3v37/HFmLM\nGnoJdsUrpNAKYzVXa4ehZxgnavWnGIYBP46k4KnVHPWbb77lrX0Pv5I5VZQOMzpyH8Z6zhhUIWwu\n2qlCl/f0fc/p1FFVgWGQimvKvQ0aKDjAFdpL4AqtBnusRVFQnz94haYY7elLZOWimZ6GBNjBRBG/\n0N42s2pKNykXTB7LZqdH+9xSLRXq1+NqpFGPn/zaHMQM/vNPrnn99MWS0PjF2+JRP4ZeQ6ZGmVzl\nNHL9KUQm9R8rdA2KqmrlY2ScJg6nkyBjZcFuKz0ROWjPsr85WA8h0Hcdk4oOTJMYi1KW83Wk9LjJ\nXQL4VbJrHVXdsGlbYpJClY/Sixi0T6OpGyglgQtJGr/OrqCqPRbD7c0ttRoFZx5+3dSURcnoA910\nIldSjRGDXFuWoliHSivHSFE4nAphuKJE3Oa190YMf+SZsyTdkgCkRwGfMVkpygFRkhd9TVbITJpo\n5V6UqKaSyao6VBRzTRQJsjgJ/lMSaozuYyaCbVuhRlkrct9K5014AkLlzGaqeU8T2egl6E957OTE\nK2bRHxFyEHNUbWYPQarbGanSqn1KkeBlrw1B1OBI8G/+G/8n//3/9G/xsOoxhIFd/V8TfdBiiop1\nIP1BdVXTtjV1JT0u1hV4Hzid79kfDhz2R6Zpmv2gmrZlu9nQNrIGTb1IPhsdgykkogmc+p6IJDnj\n5BlGSez7ocdYS900us4NGAZOJ1k/zqeeZirnNaqqGpqm5uLiina7oxtG7u4eOJ3OapjqZlPmLJIi\n/W9Zxjvq2MuS/pExBCJiU1FXInXtp8d0+Xmuz1L4ZkaFjDEQlW4ZF1n/p8yXEOOyNmj/TwpL4Tgj\nIWUxUFir6H/6KE1JSaX24xrNWS+C6zUxR1QLivKpAP5xsP8xAvQppg0wf1+Z5/LfaZo4Ho8qCBGV\nkfHXo175vArEzIUqY5KuAR9dsN7L1dxafePcW/qUiZTL5HlKrpkB82v+muTvx3j8lOz8kcenqgH5\n70GRnQxhZkQjv+aj98z/XBwtPjpfnqzroCnldD5JoyioN0hBlsosXQHWcDyc6bqBLz//gi+//Arn\nCl6/fs3d+w9sd/VcJc5cXOHPN1grQa73I2UpC2jbtvR9z4cPH+YE5v5e+oGurq5ks68zRSrMUPO6\nQt3WNbvtjqurS5qmYb9/4MOH92pgKmom1ojDcVPVBO8xMbFtW9qmpK4rLi92fPn557x4dksIE9bA\n1eWOl89u+cPXX3Ox3WLaHadTx+lwoixLvvzyK375y1/x7v0df/lP/y/+6ve/582bd3Lvk9CPNpuW\nWIpfCkRJwsaJrfKjv//+e16/fo33nq7rOA895/N5pl/IxigI2P7hgfPpzC9/8Sfc3Nzw4cMdYfJU\npZgEpiibUKYv9IOIXEiA5udnCkLtOR2PIoTgCsZRFMgudhccj0fevH3P+/fvqaqSn3/1Fb/65S9x\nJvHm9bfsLmo2mxvKAqZp4P37N5yHxLlLxGho2i23z17y+edfUtcF3333tdIXR4gT50IQhPydLy6u\nKOZqoCME6UPZbLa8fPly7qPqu54UxGRv0wSuri7ouzO/+fUH3n+4Yxj6WbSg7wep5CaIIWCd0Bms\nNfS99OnMSb5WrL2fcGVJ07TUZUE/DLx984buM61iKeqR51f20IGkTukfU8SENqbu80YqzeMg1A9b\nyPM1iOypyOomlWROlE1NXVdzVU+ofuQSKDEmhn6krlTtKHrtyVkoPk4pe8F7UNlY55wGfetmfVkZ\nlhN8el2KMUrD9WqtSenpxi7vvd7+L3x79x99tP68uPpfyT4Xc3KmSRtGqso5YVroIqtETHk581po\nlsZer4FO/px+HDgdzzw87EkpaZVXFLCCFyXGfA0GQ7QeV1Rs6g3JJ4qigjgRUvbpCoz9OPd6TVVQ\ntESDxqqhrKTA4EKgNBEfpzk4qeuWQp3qs4mlSSJNXDctVVNTt41QUVWG3DjHeRootKdOkqwl0M/m\n08LgErU360ps4UQm3agkdEbpFIVy1sHscWJxtlAlsaTPVpFHRYRCWN6/TqrzuF76AdbUQ5FnLtTQ\nNfcWJOLSf2UXiWyXPE1MOFcyjiNnY+fPDl70v1MOsBRxygmn9yLrLCCV4zHTIZcicnKVC4xx9oKb\nx1SMMA7EZAjRS9N7ihhbsNsN/Kf/8X/Lf/Hf/D1+/+0vceafct3+Z7TVPwIjfXFlYfMUpSwKMVqu\nSqqyYJoCXX+iH6RwNnmPdZbL7RVVrSavhQg6dJNn6gfGoSP4oHLBotJZViVlVeGjKDL2WYXSWOpm\nI4jpKH534yhFyinXSoxYNuS5vtns+Oqrz3BlhXUlXT/RDwPDNM6viRGOxxOlM2wvdmw2co7j8cjx\neKYoa9pWEu5z3zN0naidRkmufVgJVujhnFB6XXKP15kUREkwplmtMD35k+mHuQfVal+r0d49VslE\n3ldywpR0zcjj/pEc9cqINK9jMnWkQODc4ouYwZ2/KVLxlFWTz5uLKzkuGoZB96xPJxOfum5ZKg3R\nLLSy/NlLMeBR2icFibngFElWlHll2khCKcvxknzGTyRPCyX2E+0WP/Ljp2TnjzjWAcUPZb95U8/0\nrqfKbLAAqnnipIzw5MFljEpzsmTwmbIwX4NOBq1YlJUTmsaqb0BEBwZub2/58quvuL25Zb8/MGh/\nTkqGc38GpQwN4wQ+sNnczteeE7istHZ3d8f5fJ4bZDOydHFxMau5ARowe87nM9ZarnYXtJuNVMHa\nFucsXXcWjv40EmLAGqiriu1mw/Nnz3jx4gVv3r7m7u0HpmmkrkquL6/4V/70V3z5xStxs6Zkt225\n2G24e/+O3/3616DN8WFKbDdbLi+vubm55XA48P27t5z6nmkKuLJkW9UzavPwIL0vRE9bOoJJPH/x\nnLoW2tTpeOR4OMz9S6MuaNk122rluapqgr/n9vqam5sbYozc3d1xPIoRXJg8rhDqyzAMnB8eBNVI\nIueaUqSqa+qVh0Zd1epF0lIUE9ZJAnp3d8eb19/j/cizZ8+5urqkco66smA8t1eXpODZ7+/58OEd\nDw8PbC+ekXBsNhv6IdK2G54/f0lVOQ6HPfcf3mFIbNqGz16+5Gc/+znb3QXH45m+H/Eh0rTiPItg\nAAAgAElEQVTS9zWNng/3d1xMG7yXRvAheMZREJftdsvxcOBwONL1PafTiYeHPZP3M+2zqSuprIek\njeKC7CRQwYKgUtLC5xclrZpqW3Ox3VIWlsmPDH6iLMSosrAFIco5xuABQ+GsIhuL9KoJeR5nWfSG\ny8tLrq+vmYJUrWOIuNLMfRROG6BTEpGBqi7Zbbe0TcO56zidjtDpPCglcEpBKnxNXeOcIQTwcVwl\nOzKpJZlYVa8/UbnMm5Jschm1YvVaQCvLWDTYNPPrZOOM8waaUuL57n/k5eU/4M3+35/P8+Xt/8AX\nN/8zmc6UEez12peD2+yJNdOQQiDoWif1TqnOJ0UCisIxjMNsFoqByQeO3ZnvX7+m6zpRY6xLSf61\nAALi0SRV+YKijIRkedA5lGWhc/EnFhK05b4F6xy1qmJZazVxRdFVT5wCpauwpSRZk1KDyrLi6uKS\nF5+9wDhHP0wzsiKJtRWflrrGFm6uoi+qlIJUO1dIEKJV4DAJ6mKNEwuCBJmbYlKmqVmsLZR+luZi\nWq7SL0FMfPK7Zd8x2nReGBG+iKAUsIUGFhPz3iEfmEUm0oyMZdWpFCVoMtZR1CK/XIW8X1hS8Pp6\nr8GhGkMm6YdJikBZLTCQJKg3xmKY1DRV50SOzIzQE532s8UUSWFSREGDzaTeTkof/fLlO/69v/+f\n8w//9/+D93cP0nRuG+k/SSKyUVjpsdy0wk7wPnA4HBk6LcIY8V263GxF0a/IcuGJcZq0n3RgHAZc\nQpTatN/KT9L7OIWkCKIkh9ZVhBjpxp5pnDBWkpSIJA45pk8JpatJ8auqa/anMzGeqeuGU9+p15UE\nt6Jk6EVso5T7mXturMpMi5+Z9Jlaa+jHkdaY2RDVq+HzmmLrvaeyxaOkJM3zH0W8hUaYfICwINfr\nP5K8uzlxWQsfpRhVUIZHxZ2UhOXgDKCiCkkTGMvjWCyPz9kjilzoSU/j+x84FOl7WhBi8aD5KNtB\nE5GVx04+Mhqdv3++d9m24GkRe7nKp4iWrMDOQFgZi2ZKsklqOxAz/S0p3TrHkZoQRfm/lJZr+RS6\n89FdeYqe/YiOn5KdP/L4oYEAS6KzrkBkf5g8qPPGY+Ym0hyIrD7nE/xSCWbsDKku1QAJ4sLkNXAQ\nM9N8/qZp+OKLL7i9vWEcRt6/f08/DCqrK/SrTOpPunE3TTMnSrX6CZRlKQjD6TRXnPM15IbMHHDI\nNcpmXpfVrNwlAgaGrjsxjiPjNHI6CWJRlcWsjLXbbvnqq68oy5K7uzuRuHYFFxdbvvzycz777DOs\nMVRlwdXljm3bcDoe+d1vf8P93QfKoqZpWpp6y7aV857PZw77I3f393T9wHmQxGzTttzc3AgFwnsJ\ntOuSTV1yuWt49fkroVANIhrg189SVVeqqp6fjbWWUT+7bVumceR+GDns98To2W4vSEnlRFVyuyic\nNPo3FSBBcVmIVn9ZFFIl0iS2qmrKqp57DE7nE4fDA3VVcXV1yaZtpBU8BrYXDRfbDfvDPYfjAe89\nW30OZVuz2x3px8TF5SVXl1fEOHF3d884jYvJY9tydX3Fq1df8PBw4B/9438i9IcoSV4Mifu7e4au\nI8QovhB6H/zkRca1LMXRPgivPMWAswZjCoyxojIUI5hEVZS0mw0pSS+GKAhJddhHjzEWHwKNPrvL\nq0uCn3jY35NSYrfbybwrSzxeTUrj7EFllUJqZcLOeGoICZw0v1dVTd22mHGajd/Ee8PPiNFChzI0\nVcW2bdWHaKCta0jHeU47VxCiVGzHaVKlpnXCIgFFP4jkLRZSFH61cUr3yBt2fCzLndedmfO/KkLM\nkui5WKKJjmy8BmtVNjZJkvV3vvpP+Hn3X3Ea/5zr7T/hZveXrKnlacW/nwOUXL1NEavVw6RoqdDW\n1BxZUV4fAuKVJ6ilrJU5lYocjyfpV8s/2W7lPp3OQptxhsmOOhcqfZc8k3HUnjW7+LLEJMpsk58k\nANBk4GlvVQiBMSsBYh79PFO/qrKksIUqdInhaD7EL0Uqr64oRII+ihqZMbl6Leiis07XXYMp4pzI\npJTwk5cgzlqKsqApa8aovjRGei6dEyl9rBi8rilhM6XFWSzFo6BGAkaVFSYpZXQJxnyWe9bvHtMS\njIbgF4PQlJQmI35WLtPNkIRlKAr1wIpM0zBX70WyV5KRXBiScSWBvlEEw7lZ3YDcb7GmJjqYhSMi\niaRJWPCRFLw0wBsj1x9gnDyTGpQa6yidUMJjEAQGm9FS5r60KXjxwUGQR1dIohyTiAf4EGbJ7qA9\nlNM0YfUapaesoCpLXFmAKwRXNtIDO04TwzTR9f1czEmZVpjRNqDdbGg37fxMJz9xf98RE9T1QK/G\n3eM4YYCmLqXvR60snlLRUoRhGClKUYULQSXkq4p+GJiUdp8FYvLalNHuVd6pze0qYJDH3ZNC8Pzv\nVWElxLCiui29PdmMvXAypqa0xDk5uclUr7wGrxP8XJgtnJ2Rwsx0yQnKXx/IP/GY+dT3WM2xxwWo\n5fULXdTO8V++//n3TwtZ82dpoSpXpWSP0DpBzPfeyDiToUnWG0nJkkwUo9CQhEq6UqLJVO31d14z\nb55ez6fQpx/j8VOy8zc4PpUBrwdD3iCeylA/fq0u4k8SnXmCPRlbj861nmxGt4Ios8Hg5mZNax03\nNxfc3Fwz9IOosx0OGKCqJbCOsSTGSQIZRXjKsuTt27cqeiAV0WmaZpnpXJXI6ljWioJbDk5zYNA2\nLZu2maltoqjVzWhOUj6rcw5bPzYwzdQpY4woMZXVbD5YKc1i27ZcbLeQIg9393z7zTf0XU+xLWmb\nhqvLK8qypu978ZPpRB70dD4yTp6yqimKgr7rGMeBwhnaywt2bcXFtuH6csdus+HN6+9J6g2Sq6kJ\nZjnott0QY5p7tO7v75nGicIV7O/v6YeRYehVmUUEJIxBmllSYrtpefnZ5/O97JRWILQmMU4EqMsl\nQS2KknEY6c5nvPdcXl6KmEHb4IzQq3YbUUo7HMBPnpSgbRqadsMUS4rs3J4i/dDTd0f2Dw9YDKUm\nuPIspQ9pmoSKMI4eY3uG0ZMitG1DiGml5OO1EVk2zKqqOJz3ZGShaRucdXT9QNRNwRnxsXGFPnul\nHqHV5oTHhBwEllypt8+mbbm7e0ff99zc3LK7vJRJokF00n3DWLego5m3nhYJZ9k0FrpYiCqDrXM3\n9xIYHZfeT5SFpdRG5HzN0zBIwul04/OBVArNsarsgpaSRM46Gz5GlOOdSIWlKOxM3wkazApP/nHF\nc71prpWAVquNFshXgcmjah7AInRwvftLbsw/lgRLm44z/oxeQ1571htliolko9Jx04xc58QipvDo\nPTkwEQpVmK/Fe3nduespCymiVJWMU4uYXKbiY+ntvMZEff/axK8oC5E7D9lfZBFyYLXpS6VZxR2U\n5oSD0on3FYjvlXGWaPTORqk0O12TY5agt04C6SQO6DIkVdnNWEXbVK0PI43USQN2XQOzTH/G75gR\nGmlMlp5LtzT6k5uPmUUEogpwSH+FUnAUBbDWPbqPJq2oc2lJbmc0Z44BJcpKqqJmCkOZoCjKmWLW\nJwhpwriSxNJPQ5T5npXmZGxHXQqXHrKMHOSsN/cRheCxoRDqm0naL5+LddI3l1LAGin6DeNI13UM\n48TkA9J2ZIWWmGlAOoYzLVDQS0tZ1oARdNgH4uSluT9Jw7/X9Vv6MkYpOBp0fSnVb0xoq1GDcR8i\n/TjKnqB+UBh5XU6qSldQNwnoqeqKuq50/FhG7wlTT1EWJEaGcTGtdE5sJUpXkG091+hKfm5RE5qU\nUAQygRFUwCBjzGr/aV5DckKRaWxCw9Smd6kfkbuo1j07c5LwJFaaizOKwEXiHDs45zSZnbuyVqTd\nx/S4/L3WBWYp9uj6uFqLfoiNsz4eMWf+ha9e5sOSgMXVzx/3Lf3QNXxMGzNzgpbXbjPnP9LHA6jn\nkCBR5FucVsDTnGDm4tPHasJPGQNP//30Gn+Mx0/Jzh9x/NADXyc/eRJmyVRgTngec6fzu1fVhCef\n/6nz5cG+jMNEdj8WygH4qFB2IQaU3k+8v3vPfn8QOeNSvF2IXq9NZpWoAUkV/nQ6CopQlsQongLC\nY6/nSkz+WVVVHLWBvmnEjHHTbNltdzSNBAmn04njcU/XdRLUkXCFY7sR5SVJAhbJyePxNAct3gfK\nuhJEoiiIIVA1QokjJe7ef+C7b77h/u6espDAZLfdUdUVfT9wd3/H/f0DPkQmvTdZtWgYeg6HPdbA\n9eWOq4sdl7sNV7uWTV0ydOeZbpeTHWmylQqtVO+kkX4aJ6ZxZBgHUFj5oe8ZJhEcKKuKGDx+mshq\nSYbEZtPy8rOX3N/fayP+SGJpLK7KCqO9C2M/YFX0oevOnI5HDIm2bbi+vBRPoORxWOqypLQFzghl\ncZoCkZGiFoUsrAQR5/OJ9+/fcjze051PqnYlCVVZVriilGTOexWdEF61qPQFnj17Rts2EANdd5Z+\nH60OFmVF2244dwfhvFtL20gTrKhvTYJOFgVa8tekT/oEnJPm6DBvaobtdsvLFy959uwZQ99xPp2x\nxvG3/vTP6K7UnNBHvPY+SaVdQs6YG5hzkKdzzFor6k6a/J3PZ47H40KhU3UvSHOyUxW1UqZEoKA/\ndwxdz+7igrqsgU760LzMucJJ43mWVgY3n18a3LPIiROZZf1dnhcyP616n6xECPIfWSBm9Neufp5Y\nFVlS7q/JY9Bg3LpqG8m0txktSE8oD3qu+e+IwEKWphXamZvXwMii7rWuHoYQiEZRB+dIRtTwul76\nXip1qTfWUTiLjVYCbE2mUxLUzeh15ABo5vyvkKi8BufAzRjDNHl88HNAVjrxfapKlf92sj5nsYzj\n8YgrC0FOilKMGNWnIiHUJhOiIvdGjU9ZktGc3MgD0aRnCd4eBRigRrePq8ALfc2Cyv1mBMSs3itr\nVB5f+hkxgZkdRFgfeczMyM1Kqjx7dySl0GAEHTHoVErylyJEinHEOnWNLwpilMRgmkR4o0xOJJhZ\n6HO5vzMmWV+l8GAkmcnCGM4K8uYnobYZS0xG+/iELSG9VZpyR1GHPJ07xnEihHzvJuqqwOJEetqJ\nOeYUPARDCAkfk/aUIEiPitEEFQmagiQ8uYATtFBhtSevqmrpbXSWkMQjpx8Gzucz3dAzKdokAhUl\n1hayRhSOuirZbiNwP9+f/ICGcRBRlrYlsVxbXh8qFWvx00jlrCKGi7peTphFPESokuIjVii9rhAF\nSVCWiJw4JRUQWIWOmV4GhmSWOZgDdGcsyWaU4HFwncd6TnhCEBPNFJMUC9ziIzXXhpkXskcJz9P4\na3mpJm//j+L0x6hNXjfz+P8karX6/BiXPpp1YSj/9ylisvpSmszkK1++wXwDnqIrsoXnVJ9EXL1s\nLf6Re31mQuhH15Bjukcf/yTZ+bEmPD8lO3+DIw/YpQpgHm2sa25m3lRz5WGdvT+qHeSB9C+CC81j\nnrZBBqn4s0RpLtQgURITePPmNfuHE0F7KowxSnHRgLRwJCx1XdFoH0hZlux24i0ghliRsixmkYI1\nDaQspUH16uqKy8tLQQRsQWEXBOh8Ps/IxWYjsqxN03C5u5hfczwK9acoJEmJMdJ1Yty2aWo22u8j\nEpUVBsvh/sjXf/U1X//+D/jJc315zaXKGx8PBz7c3bPfH2d5Tp8SdVWqi3rP6Xwihshut2HTNlxe\nXHCxa6lKy6BiDNZKT0BWHjKympG8UJIskgj4cRRVoMnPi/k4iUJfWZbSBBykN6koC6WiMVfQglIj\nhIsucP+mFDnQQilSfdfTtC2mEuGCqR9w1tKqslRVOuh7ohevHD9NeB+ZhsBxf+I8BqZQUW8vsVYU\ny2L0HI97Hu7vVKGuxiTx0Nlutzjr6PuRU9dr43VBWdVKPwpsL3biIRPE56koHGGUPqymadjttpzO\nDbGTBFOqc6piowtzNvD0IRImTyqSBswSTM5BvIHLiwuurq5wznE6nzmfOy4uLvk7f/7n/LPhawCG\nQRqKkxWPmyVQFPf3rCTkZphflIKsIiqn04m7uzv8JApwTmVkjXVAkoQJMdg1Bvw00XcdMXg2bSvJ\nnx4hBKwTV/S6VdWl3pMmj/eLSZ9QHryiSmbe7NciJ5+qvC2BcO5bWAKAwkilPa4ChCV5kXUnV/sf\nrT8pEg2PQuIsn/vRkqS7dFRkIKsIZqRvXcSYESY9j1flLGsl2RA6iuc8DBhrFp8KK8l7NiWMEcYp\n6B9JVqyuhYWqUq4DoiyhDwvtVpTxhJ6VgLIoZ7ngPCeluGEVVZBCiYuBoq60gm5mV/kU4owEGic+\nTbnSmqvgViWj863OlL98b5YiiMzf4D0Ui9jGI0q0SkKbFDExI/1GTUOZE9r5OZtceFuq7UsAo+qE\nLGPl0TPLRQENbo01uKrR7yEFhBhFcsGVFc0GyqbGjxOjdRLw+0gIA2GKlDDPf9knFf+KIk88o04p\nEa2afaLoV/CKdEnyhbVSAJyRFvF3CiEyBRGBmXzQpCFhYxJ03EoymCXHfRAqn9f+mi6O0kdkwSua\nk2leMxKYE6ukFNi6pd1sqSsRWBG1wZ4hxNmHbJwmfJCeOazFKXOhasTTrCwdrhTBgWEYGEeZd1OY\nOHcn6qKgrCumMahASJzpmU6Ty6HvKTfNQgmLk16vJJNOvausNbiymA3RExqwp4XKmVKa6el5Dcjj\nZhYRWKF+GY+Z144nyA4sPjl53fPeE32Y0eMcN81jcL3eKCqaiyUfBeJz4XgdY/3LBurLe3Ki8zHl\na0G4Ae3/QmmsWV1RaI/p0br7MXrCcqblT8o/W/47q2rm4pV+RTMj99mSJIs9mBm5nL97Xut/6Juv\n9pen17l+3j+246dk5294fAqW/BTCM9M4VlXYjz5L//+vG4oLdQ2yTM5cLdQgwBhZpCttDM+9Km/f\nvCUEaOqWTCHxqscvjb4V1sJmu6HZbPj+++/5kz/5E5xzQgFQzfgcvIAswnmh2u12xBh59erV/PfT\n4cTxcGQYBrqumxEg5xxVXbHZtNrU3RJCoOu6Gfpu21YTnY6H+z2OxG53we3Nc25vn9NUpVDEHo68\nf/uG19+/YegHri6u+cXPf8lut+N4PPPm7Ws+qIFn07aYAE1RUZQl+8ORbv9AjInb21uurq6om4ay\nFG38t/cHTvt7Upj44osv+Prrr8VAtWnEs0UltJ3KIO/3ezX1FPO4bAqaotAJs4/Idrul3e1EwMII\nRQJjuLu/517NXTMqmO/tdrulKCq+e/09VVVxc31Nu9nMfQjlMFCXBVETLuMnfIqcjx1+8nx4f8/9\n+z0f3j1wHCZ8rLhCEq3trmW3aygLI6jTMBLUp+H25par6xsS8LB/4OHhgTD3sAhKNkUxsz0cj4x9\nx/l4ZBhGYAlorIoBlGWhG1RkGHM/Tpobs5MVek7SoMxoL0cIi4Fl0zRcXFwAcHd3x9u3b5n8xKtX\nf8IvfvkL/vD7dxCgU/UkKQCv1MFk5ihiVmDjomRjrTSRl6pGdzxKklyWhaixWUlsUGWhLKOeYsT7\nCT8NFEq/yMa+c3FhEknj3W5HUQlKEINw9/NcLqsaJkOM05wgxBU6PAdZMUgSt/LZEYf5lCPoZatM\nSwBIzAsIyya43nfTyt07lwX1JY9oc/Ov11XKNAfiVgUC6rrWjTnNZp7zyfVtEQmubUhYGxVZg+Qj\np66fxw4Y4qZhlt1OE/0wCXVQjY2bppnd4rM57zRNs09YFlBZ9zWtKVtTnOTcq+puLnBUdU3d1Niy\nkESnrigKWXNDyGplksRLVsGj+GoJlpbEO83PZ10Yy6bM0qwdJvGtshpkzfLB1gg100BpMv1vSXJj\njILisFBs8q13T/agjAmtn7HVADVpYUcU4tbBj/b7GAh+wodEso6irGTtunAUpeV4ODIOovh1Oh44\nHA/0544pJAqE3lmUFovFrhTAclHJpEgyBThLiIGYqVL5+vIAjpJwpUxj0zkufVuC8iZyolsozTbp\nnplmitmoqI4Psi5VpcEZp8n1pPueFfSmLOZna4yoB7btlrptVEHQM4wiXhCSIBdk42Ijjf1lWdG0\nG6pGPeqmCR8mzidROOnHnkGTnRgCPniRYbclo1Halq4DeT0IkyemqJ49jhjT7MEjhaViTvjxSxN9\nUKqn9x5n7ILKBkHsm6YhtWmeQ85agjEzBX6N2GZEYRlhy3xPaUFa11TXZWyZ+W1Pk4UlIF+Q4acy\n17l+JcvMsl596vgUyvLRT3IRIX/+Mur092g/zeIt6LSndvateoKa5EJWTnDyepq/10f5kBYxVv/U\nWFCWfYtIfy+UOi0gqehFUZj5HDPyk558V2MePcP/rxw/JTv/Lx4/lPQ8naTrCT3/TgsQ/1IQYZ78\nZI6+AWMpjNPqr1TIt5sNNzc3OOe4u7vTDX35/BAC4zRijcDnTpVbcjJT1zWvXr2ae3RSSmw2G6pK\nNrLzucN7z2634/r6mufPn5OS9GwcDgfu7+/pTiLBmY91I7b3E9M0MvYDTdPMlddxnCDBNPr5Z30/\n8IuvvuCzzz6TXg8nBql+GHj9/fe8e/2aoR95dvuCn//85/ziFz/ju+++4/df/467+3tpGC5LQiy5\nvLlg02y5f3hg6M+UznHz8pbnz59TFIVyoyP7/YH7D+9wRL549RmXl5daURaT2GEY6IeBQlVtgveQ\nEtvNht1ux+FwhChVMJOEZuOnSVWoCrZtQ1GJD0+KEYzlD9/8gdP5TLVKcC52O1E3G0YOhxNjP7C7\nuOD6+lqkshvxU+j6nqosmcaBh4eRcjyLItw40SfwU8IHwzBGjoczwd4xYYgaEDRtRVkVxOAZho7S\nGjavXnF9fcN2uwUjQgh5PPTDwHTuhdaXEm/evhWFPgvn04nz4YAxCWcuCGFSvr2MA6f0uJR6oh8x\nSA+ODxETvfSqWIcrSoZJmn+9+ldtNhuur68pq4LT+cTD/T13Hz4I4rjdsN/vRU2vlqBhUofx9bx0\nWr2UDckQs0oN4gnStg11U4nC0tjPVXGMKNvIJpMR0QW9CNOEnzxNs+F8PM6bSF1VFEmagoP3Eqg5\nR7vdEPyEtSeZkymBs8KJD4GYAlOQoKVwEpx5RSByhVUkeyXATopszBu7JhexWK4ZWF5jdVvPQUle\nirSxOVdPNXSW+5eToVwhXCkP5c93RmTD61oofkPfi8lwrtrmwMTloN9A7ufBELFgpCrqved07jHI\nd+/HFr8NpLSlqhLERPDiZbGWyp2m6ZG4RRZTmRNILTxI1XxcKDNGvIzCJL5AkcCon4E1uKqkKRzb\n7Vab1UVwIWo/HIAp3KwQZZ4ED8ufJfhxriBF5gApB6dryjNhwthcOJDnW5QO8YiRHh6nctaZhiYI\n5uMCmvSSZAqb7iUxzUjOOiib6+F5XBkryterhFiCJSMJTlnRKsrlrAhtWKuFKxU4OJ9O3N/d8XB3\nT9eflU4sPQUGMYqlXPZGKayocaizYkybJLh3Wdo7JWKQNTYpKmydzLu2bdj3nhQAHGVdsN3uBP2O\nEzYGYhSj0qi1AKN9ks4YTscDo58E5UvIdRqne4X4feU+wLy2SWETxuiZ/Eg3eYbJi2ePLSnrUmh5\najmQZeWDj8QUZC7EwPF81vs/Pz4RiVCKZhZ7yahvVqnLr99sWjabFmuMmu52RJIgmpqQxiQy02vq\ne0YZnbOrXiFHd+qoqzO+lDmUkfGyKGRdeyQJLayETEtMy2Baxl1GJ3OxZtVvaHStyW+cY6jVe/M8\nFlPp6nHCs0pYzOrUf334nlfOpSjwqYhsmQ8fx3358/NcBvORhPdyfOpnH1+RBIcsRar5XI/SrY/e\nKImWID4z6gaKhuYizw/fkafMpZ9obP8/O54iN4/48quBsKa0reHPvPECKru7VJrh48BhppxAjkJW\nR9KNDpI2x9fa17Lb7SiKguPxqMkOlNkXwIr6VYxJekmIGCP+NSnB6XSkrmu+/fbbRyhDprNlullV\n1dze3nJ9fQ3A8Xik73seHh4Eqh9GTDJzldUYZnUS4fOK+dbhcJhNSFNMc9+QOG87Npst19fXYtRp\nnPjThMibN2/43a9/S3c+c3mx5Wc/+xk/+9nPOZ9PfPvt9zw87MEY2m1DWdc0bcv1zSXDeWT/8ECK\nkZcvX/Dys1fK+U9UhZXG+KGnKgtePLvl5z//Gd999w1eN5ppmkiIwMOmKohhUhqhCBU0TcN333zL\nOI5sNhtcWdIPEVKkqStMEvfnsY8c9ntcUdBstnTaD1Q3DZdXV2zalqIoGKeJ4KVvqW1bLi8uMAke\n7h94uL+XYFjFDLz3eBKNs2zahqoqSabgYnfF8+eeh9PI4GEYPQ8PD1RNw3a3wzmIccTaJIkUUs0c\nukE8TzAcTmf6YSAk6MdJEt4Q2O12ODXQbbYbNhrE+3HAB0839Bjg9vaG168H+n5go0lh3/ciFFEU\nWKu9MONEWUsvlNP+GWMMhdIyq6qSQLXrOR6PjOOItYb9fs9f/MVf8Ff91/BnqMJbUtW3ZUMlLaIF\nIIpTec62bU1ZlYQYOPcdXd9JtXOaqFZowDSNiKSuNvn6IBTGaSLVgfP5NItKVGVJax1pdd82W3Ep\nl+qyoA2TboquKEVCPoxKaYuIIWBY1h1dMZTRrmpYlsIuSnHZVC6X/zKQY+bkbllaYoqEFSqQPz9v\nssbkpEjflJMWReRyllQo7SwHH8H7WZIXndtL8LGca71OxrjwylOCYZyI8czkPcMwMk2ChF5aJ2ay\nxjANHeM4zu/PykzeexU4qBjH8VEfZUZ6pmmaTRjLQpDn7B1kjMPZpI3wCR+FxjRMIzYslJ+UkRnj\nKLAUuTH5E/sFGhzn51nVghoYY0RiWOWlF1UCFa4wSoXVIlf+jsks3hu5oJTvrNaL54A8pvTIZHZW\nccv/1b/nhGweC9pD8yhoSmkN9Gh/npvXopyA1s1G+xdgu93RtBvazYbDfs/heBCfslyY4/sAACAA\nSURBVHESw1VrZ4WvkIQSmKXYc9V5HdfJ+EuInHVU09sgZr9WxCq6riOQ2Gw32LKirhtBsP00m9H6\nID1AyTgiloiorgX5P1xQwQilNxZFqd9xQXVmZAVB61OMqgLn8THiY9A9zQIq8azj0cdI8l734kRK\nC91d2BDLPcFAWTXSq6OI5VyhNxmh8tR6PUXpKLz0SPkQgGwiLl5IuRfKsCoCabBeqShH4YpZgCh4\nDdJXaKQrCmxKGO3h+ji5Xx7aY8Rnea0xhqooKKwV/bSlDrwqGKyTncdqbGvhlmXO5bUmD5vHwf36\ntY8SHRYEe500PU6mPkaE0qpfR84fl+ez2oOM4SNXRQOiIAjMPdlGev4iuedJ1t5HBYxVASUXMhYa\n4ar3JwFpQcU+lfk9RXMe35+Pk7sfy/FTsvPHHDop8kCc0/88mXQcyK+1JpqiVu5yFQ4ZsDbrwK/e\nuDrPMvDMMllzNm6Wy0lJGoOliiYUn7qqGIaeu7s7uq4TaL1uVClr4YeLzGbul0CvN7DZNLx+8z19\n1+NcwcXFBdvtlhACp9OJuq559uw52+2Wruu4u7vT5vphXnw27YZtu509H7wf58UppcikG1nf9zOi\nk3n0VVWTzfee3T4XhGG34+LigrZtGfuOt+/eczgc2TQNn718xe3tM47HI7/+9a+5u7sTuti2pajL\nebMcpo4PHx4Yh562bbi6vqJtG6WfaUI3dEBit9tydXWJtZbff/17bQIVb4daqTK7ys3Usxgi1kiA\nlxXmnHMMowStLsuQ6kYjgf7IThPUfH/rpiGhssFWHL0z/fBwkOBgv9+Lb8/pSLvZ8OoXr/jyiy+5\nuLigCD3ldKJtG7pu5Hh6YIqGaYw0zZbr62ec/UQyiaIs2Gxb6rogxomUAs+f3YJP4jWSnd6DNM4b\nY2mblkldwKu65sWLF1xeXfL27Vts4dhVl4IyDT0GeZ8z8Oz5DX1/xoc7QBLftm0xZsA6mUdWx6Th\nscmZqLGJUlFIMmYm9bZAN5DT6cSvf/0bvrPv4c9kThSuwOlzXapUAnIao43Nunnvti03N9c0Tc04\n9uz3D2oYGyirku12x9X1NV7V9vJ8qyoRJ/CTFwncyWtfjxxFUdA2DWIW2c2UztzcnKV/kwpA2OzX\nZApp9ldZ16B9GaREUITKFJK8FEVBVZSaNFqlVEWllcVlzUI3TGPnZCYltEk5L15LWGAy3YEFFXq0\nTK1WLmtUSaoQ5TSfvajGcU6Y5nPEldkyWmmEudKcksgiRyCFSEqi3BhCED8qlgZgA3M/Qe4JrKqK\nTJ3zwZNGmKZx3t/z63NfTxZ48d4zjRMJkY8uynKWK58lx0mzWqLQI5VWZcW/RK0wJfhOPA4OjMlb\nyBy8yziPy3i0eletmQNK7wM2hLmvAg3sRj8JMsbSM5qRvxDSoq6llJUY4rxlJR1zGWXK+8tHiY4x\nj4Qu8k3MRTqJnVKO1iT5j9IQ76dRqsvOYAtH7ayIGJQFTdtQNjXlfs9w7kjjqhdGJa9nwYYEKLIV\nFLFK6u+StPcjj9uMOIBQt7quI6VEUVUYVxC0n2XsOqLvCX4SFAxDNIGIIyBIT922lEU2gc3nYaYw\nmznZWVQkweAnka4e/SSKbXrD5zVIqb3GxJlim9f8lLwaQS49sTn9LwpHmQoVEZpmDz/5TLPstdOI\nidIjbI3Mh7quCF0vgheoYmz0yzliUn+dOEtq58OqGqufJnKYbmBRnJ2D+JVgCp8+JGZ5LJ+fk7Wy\nKHHWLUkuy5oT5kzbzPPwUSHZfhyIS3Ic53jtU4H6x++ZS0M/+JpP/m7eXxYlutzXlZkAj4vjq/Hw\ntPBjDCDxBAZsElXMYCSBkRct17CqQZGL5iLQluafy76q3NofSnTSIiDzQ9/7x0hv+ynZ+SOOPMEe\nH7lqx7ygyWadvQoSom6Ute8fJ0Prz+HJxGFeNFaVkNWv8wD100RROU0WHOM0cv+w5+HhYUZKimKh\ncqx5rlJFWDXxhix/fKbvB5wr2GwEsZDg1Mzo0el04vXr1/N5rLUzfWXTbmjrdq6w5gpHjFHpFEk3\n8oVqIp4+rQYrYI3jq6++4vMvXvLs5pJN0xJ84MPdPV3Xc3v7jFefveSzFy/wk+e3v/0Nv/7N/01V\nFXz26iUXFzuw0A0Dp/NJVOYOPVVVsdttscbg/ST+NJuW/nQSaVMrAgjeT7x795bXr1+L8lJVEEKi\naVu2ux2Mwqsex1GanKNUVna7HdZapmmiO58xxohXUFnRbFrKqmS/38sCnwMqt3gXdX0PCTabDZeX\nl1iTRSISh8OB/V6ebX4WL1684LOXL9lsWsx4ovQl2+0F586z3x/phsAYDU3d8uWXFwRruNvf0U89\ndSUc9slPnE+i7FaWFa32xuwutpzOZw3ekppkVmQJ6HYjSdrkJ+qmYVvXTFXB0Anq1XcnCmuoypKb\n2xustfS9VAlFttuJZ4VS1UqVr81jNZkcbBYUTqgXfd8zqj9FRhKMMXTdQIfQP/JYtKVW/zXAnelc\n1koypEjr1fU1L14ECme5+/CB81m8oIwRxbRsNjqOoyKVci9SSuJgrv0gwQe2l1sKn+kgjqZuMMbh\nNcgPMQoN0llVpRK/kmkSL56ylEqlcwXYFeUjrwZJ1OmyeWD+Ppmzn2lQ86q1LBjLKrJGceYAEQ0O\nPq78rSus89qzWseEulQ+QlWCBmNimpkNR3W9WaFU8391vYwx4nQuZdpFjIlhGOeCSr7XTVVCWGSt\n87zLR9XUGCtBZVmJvG7uD8xrYL7vJnliSFhncYpAWzWodIVTY1s7F7rmYEvJgVYrrykmfPIELXDl\nolQ2xrXOUeTgy+SvaZY+lfl3Zg7SFqqPmRGVuVK/8srJQZass0nFE4w2hOu/c4U6rbYa1vuS/D7T\n8Wz++Wr+pCTUy5wIkpQON3lAaUxBm+eDFPucFTEbt7ugqiqqWkRnzvsjw/G00A9HST7Mo3ukwXxY\nIVAauNmcHBYFITj1mXEEFgrhNE5MUQpu0zBAEL8vg6qOGUsyloD43YSYwKrXFUnHpZ43SD/MfH+c\nm4PyafKM08DgRxGrsJIIE1fompHxFGJ4NI6kMJowdumj8X5iGLKqpKgRppRmCttcENJiGtpL6BTl\nWasQznRVDVbk58yFgq4X5L10jvREWCTv37k4gzGPxTI04c60PGuypHSaA/S8hhgdk8YsNC+L3kdr\nFaFblAmtEcq1MUklmBW30HN/JHONWcbrfN71uH+8uGW0YwnJzPz3T6U5ub9tfd5EEg8pt/h4xdX9\nz4yWGTFaxX+PC0GRqPfI2GUuMiM7P5CwaQEve/fme7z+vsu9yJ/xhGL79DNX9yeP0R/j8VOy80cc\n6wBi/nfKvOz8m2XDA2YkB12gjXodWEV2HkG9qxhjPaR1+q7g0/xeiCEJbO3EE2AYRPp4/7Bn6IdZ\nQlU8FzwhjMQojYpW/U2Mlc/2IdB3uogGcaEXGect11dX2vAmQe/5eOTuwwdOxyNVVXJzfSsIkbFa\ncYJz14sizijc+MzQiErhK8sSi6Wsq9mPpSicBhCGy8stL1+84NntDZu6xE8Td+/e8fq77yis4asv\nv+LVyxcQI7//7ht+8+t/xsPDHS+eP8cA0YtUaHc6czweCD7gjCRvhbNMQ09sKm6vL7EW9u9PTENP\nYQ3Bj9x96JnGQcxGy1KpHAGTAiZ5TscDfppmWU+ROjbc3Dxj8p7z+w9ERCr5+uaWqmnmqtzQj1It\nxnI+nvF9R1VKRXoYR0qtUG+2W7yPHO8+0E9SKQzIRiwIgKGqK4rCEqPHkijrlrrdMMYenxKHvmPw\nkbLdcLm5xLU1x/5MP40iN2rE8+b+/sA0TtRtzWa7EZSwrtgfTkJFMqK2lF3lMZa+63i4v8MYw7Nn\nzyid4f1bkdsurMGVIn5x/3Bku72gbS949+49h2OHcyXGyriTe5eo6gpXFoToiWEiWUtRVFSVmL0m\nItPQE6YJkxUCm1rRzAE/arXSGcpKJIKF5rMgO9bK/CsKS5VkKdxuWtq2ZhrFi8lPfqnwpYQzBmeF\nhpXpPxiYgufcnziPAwUSYNmZriIbdeEMVI5tW+FMkJ6naRJVrCSvE3VBzzR6SFYTHofVPokcWMSU\nMJroECNBx0A2YrQYgpceiZQWusRC/ZAFxWQoWoMHp9XwlMxCgdPtUQJeCfxDWgIsg/S5yH2VqmEI\nce6zygmsmFdm/504yzTPIXbe3PVeg6AyBt3Ec3U3RvWLOmKNI/jIxW7Lrq0UUUj0wyRmsFESnA3Q\n1Co/bi1TGCXYxVBV5awKJ7QZC8lQ2BXVzBqcQ+hSMWKUsmqU+idIueiYSSLiiIh3icgiLwGCTRKw\nOKfqYwlJBtQnI6lc9VOufOEKUQUzTqi8aenHyc9uTkRTWuSXrdIMiQg15+Oq7KN9xgiNZm1yba2d\nEYwYl+xoBnTMoqSWFNEJMZCQQJ8ogarX6rIMKUvdtriipG42bJst51ZQ6/SwZwhB5PZw0q+jgZd1\nFleaWT0vktRPSMZJMmIwm6wD6zAq+BCCpzuf6KcglXcDzjiVmleJdmulfy9BmAIW8cMpcoJmsmee\nUEtNkl7LonAUhfb/xcA4DvTjwOQnosmy925GoeY1SAUeUkxaFAiSVFpRiMsiEjFE/KRoTJBnk/2g\nYlBxC0WKrHEEIiGCsQUxGfrRM40D/Sj0a7mfSZVYEeQ4yfrbdSfO56OgWeRkWpL05LOHkz4Luwim\nLL05eZzlddZgYkYZNEmY14p1ATfptTls4Ujas5vX2Bm5kAV1Ho9Jk2p07lk1h41JaONSLM6rx+Mk\nIQf+ifT4VzlRWP04r0P5e880txVKY60jRE9RlIuwQ0qPEs2FBpfn2+P/rufkI9VGlvtnEfqotlaS\njFK9RYtSkv9oCKvPVJ2CdY1L1wsz38flK346mXpKR/wxHT8lO3/E4ewqS85Rw/z8H3PbZ2oCBkHB\nteKCKlMZBDqPSQzKFJbHLBU+OQ+kZLAO9ZXIk8YSgtJ1StH1TwlOp06rYx5nnKhx+ICtE86BdxGM\ncJZjslCWVK7CFgXOFZhYsL/bY62jrWqe3dzw6sVnXGw23N19YH9/J43Hw0BVWH725edUdTOjD8Mk\n3PrRR4yR3ouIIwXEvbqQQHYahVZSFzVNs6FuGpVBlmb+umn44stX1E3B1J15OHpOhwPv3r7hsH/g\ns+fPuL7akOLA+7dv+Pab33I+3nGxqbm+3FIAw1H8FaZhpJgsbVljq4pIZBx6Sme5aCps9Ny9fcfD\nh7ck7ynqijFMnM9Hpmnk8mLHWREaZwzjeU+aOvrjSb1ndOFAKnZVU+MHQ7XZUrQtF5dXXN0+oywF\n0Xn3YU/Xe7bbLdOUGPoTxTjRFCXGWLphZKpG2dCMITnLYei5Px/Z7Xbsbm+gdNIjUsC5P3M6HyVg\nnQZGZ+gCdONET+AwdXzYH4gPlt35iKtq9g8HQdPKHZXbcBhP+Clyc/OMpi65uN7hnON8PLO/u6c/\ndVRtQ0wjQz8oR95zd/eBu7s7vvjic159/jmn057jX5348HDP1eUFTSvo3h+++ZZf/OznPHv2jG5I\nVPdHSIlzd2aKSZK4JIGgsTAOgwSKBgoHTVPQ1I7z6YQfzhTGgoW2cmybEhM93enAGAXZcQ6cTYQk\nvPlEpNDN0BpLXRmqwoCqsdnkOe0fOB6PHPYPxBAoC0c/eBrtISJEphxIO4utCoKNjHhGIsnUOFdx\n7AehrwApeZLvKSxcbhzbuqXr4HQMdP3A1MsCInTFWiu2HkOgdAZrS1zhMEYSzMlHgkkUhapIpUSy\nhmigSv+cvTdXlmzLsoXG6nbj291PfyJukzdbA0MAAQRQEDDjB5BBxFCR+QD+Ah0FVFS+AAEBhKKq\nePYq80bEiTidu+9utQhzrrW3n4h8ZWQ9gUzuNosbN87xZjermXPMMceIpFIVeTOWgmW7UdYMrLb/\nkgolDkBSAkQiOo/IksgJ2YAyv4PbxiGEojVDMDo852ZcWhslS8+HSJuplGRAKRJ55ZR19KzyFCnQ\n42BHAEhCFElnSImQBPrJIskBSUjqcYqJ/boqUGXBwlsHFyKcC2ibBpUxi28NiG6U+3qiZBNGSCTn\nkdIEiIS6rqBEhSSIiisqDeHJyySC5qdUGtDkwxHgERIlJlqyJDLfESkShAjI8tJUbQl874HgyaQ3\nQQArOgyEQkoSSBJSUHUz+GUvyVWzyIkikwJhtGE1qAQpU0lICiOonNmqUrcKajJNLwlKNPMzyMi1\nyQkVP9sogSASUw9pH1OC1DsDcjM8CQkQ26BBLSsoVcPULXTfw0aB02QRLPfSCaILZqqd0pJUG0NA\nRKaHC0QE+g6pEaAhWTc9+MjiITOii9A1+d/kwzPTgG5LQEhZwS8UCiOEKGqMLkWkaBGTgJJkkKqN\ngNECsw3w3nKFjcQCUuS8LfK95POSEFBQQIiIwvO6xLLLUhWp7aaqoQQBOCkISFHBuQCtDaY4EUVe\nSSACdvKAIDEaIWsEGEwOmOeA2Sc0VQ2IyKCYQVtrhJQwDAGQCdb2GMYTum4DyLYoKNZtC8wVArJV\nKSBY6c57zyIRgemAEQmRBTUAGSLNf16DqJKWPd8S5dVCwCei9svKAJPF8kkAJFcmxbkMNMDjMrGh\nqiHpfqoMsVm5WBQrybOI+9OQVQfzXFiSMtAyCAmUXiCkhCiI9YG4JH0xBkgloJWBnebFWDsS6EMY\nyVJ1zuvceYKTAe9c5aY4I6yw9bx686uhBKkqJgAximIUTXOBqMxJJE5s6foiTfBVhYtBCy4giZTj\n13OwZZ3s/DUmPL8kO/+C46uHnpbB//ZYyrbLe4l+o8pmlmkpgTf3jNStOct5suQm32KQJySuLvfY\nbDbw3BCcaRlN05TzDIEWF+eX5sdM92jblhp5TY24AXPYGc2ViiWkR6qOhICffvoJNQdmwziiH0Yc\nDgeSkJ6pfK+kRhISs53hrcNus0HPKmVS8AaaArruAkKQ5G+37QAQfeny4gK73Q7eOhzGAfPQ43g8\nYOxPqOsK290OIUQ8PD/gX/3jP+Dnn3+GMQY3Nzfoug7WOvR9D2sdlDalL+al7zEMPTabFrv9Dk3T\n4Mvnz3h++kLn0TRQUsA5y7SKEZlmV/jZzP2OMWKeJvY1Ig+i3e6CmvzHCUoq+BhRVXyvhgGvr6+U\nKFYVvX+euTm+RdU2AAeQBLwLVHVdvjdTF3Jvk5YS7+7uYaSEnWfqbZktZjfj1I8YHanZRR8w9SOO\n44SX1yMgFGbn8f79e+x3O1xeXMBOE66vrrH57jsIJLx7d49gZ7w8P6Nn8YmABGUqaKOwaRv4ENH3\nPfr+xChywtAPeHl9xTgMuLm+xN3dHeq6xvGZemC2WzKabRpS7itIk5QgNgxVtnLPkpBZsIJ6Kqxz\nSD4iKjAdcYembkmsYJpQdRWAofgODRONP+89kqL66G7b4fLyAhfbLZ5fDc8FT4nO8YhxHBATBSBK\nZs57DcU81KZpyDVekZhB8NykvqoIeKax5eZvyWaMNUtSE8ARIaUr3691DSFqCoiSP1svgJVcaUqF\n/plyLwmvEVppmLWUKwcYZSMVS26BtDaXXJpZ12vX+u/8eXK1CWaqSEoUnCSGYItfTNlYc98QCyxk\nmm/8M7Q5IfDp9T/Cp8N/jK76hF/f/C8waijvcd5hnEZGdInKsqkbpoug9B1IKYshrGMKb4oUWGZV\nLSkleShBk9eKd6w0GBACibiYQMGrcwraOTJlFkCSElLRZ6aUgIp6qKRecZbzNUcSJwlBlOugBnzq\n3wBQkkgpUYQnAsiAkwJvACL34yxPbznOAxVIWUQJ0upZfAtxzmMsv1/K1ThaPctMASzN4ZLV0rIR\nbZLIoVn2PKKkbkH1QwhcVaAxQyqbFTZti6ZpuPIZvzF+QGOOz3utwgVJPZVgSmASy/yhameEDAlJ\n0/dR0/0Ix6ay5HejYaoKUlEiKCWPcR+4d6YYUlEyLkmRjChYkYFKTvh5ToiQkffzQS6KusebYxVf\n+LDQV4WU5NWWr18ulCkK5rmigfM5K7gCRXQ9pp4JQUbVq0qid9RLGMO5ua3RBoim9Mwt40OWBGY9\nRtYU0UJD/PoSzwLo9fvSm88rFaU3AXf+/Nxzt/5efkRn3y1EhnqWX6QS+6flPeX+re+hKDFZriwt\n18I9tkqyHP2KSrqu6PB7pDz3S+Nv+MZN+mpZfAO2p7cv/+o19IeZQEgF7Cm/f7Pe/5kRefaav7bj\nl2Tn38rxzw2Nb7wj5WbRZdNQSkOGBJH8V4Pp7aTTvMlkxSBtDJpmg6qq4VyAtR7O+aJ8lnt0CBX2\nmB3JB2tdQSlS+Lq4oAA9ReB06EvTrOfytNIKXbdF120ghMDd3R0A4OnpCeMw4vXlFX0/cKDqoKQi\nxV9JSL2uDCVhnvqBum6Hy/qS+oNYHKFqKmy6TfGj2e/3aOsa/emEOI8Y+xPG/gSlJK6urrHbbtGf\nTvj44SMeHx9JCrvrcH9/j6Zp8PhIBpnOB0htkATQTyNmS/5AbduibVrYecanTx/gncPl5QUqRe7T\nztui4NQ0TekFII62RPSEClJlR8Gwt9HFxQWpqLE8NUBVn2kiY9XT6YQU6fszir/ZbSHbhpJD77gf\ng5KpypCL/LbrytioKgNgg2Atjym6ZzF4yEjNs8PxiNM0A9LAGEKbxDQXtPzi4gJXVywtDVDTv3do\n20sM/QmnwxExOPYZEWSCKklWWBsNrRSOpx6n04Bh6OGdQz+cMI8jKW9pxUIWN/j1r37E08Mn9H2P\n2Y4lIc/jO/fXhGwAaB1VdHRFwbUk5Nv7QMaw3sPoBt1mgws2sX18fERwVI0BKIHv3Aa5+hoCee4k\n73B1cYmffvgR2+0G1tP1t1VDFDDr4GeL6EktS2uJ/X6Hy8s9hFIIwVHgwD1wzhIKTNVX0nlOCaWy\nE1jaVyZR0ERjDJq6QYpAVQkAAwkbCAq8I0NtZROVElKRKlISi8yy90uzPmN0EBAwK0O+ZfVYkMOy\ntuQgSqBUZ94COWd8ciybXQFqaACecezp8xZEcL32lY/iH2dZ40Js4/f9b//qv8Pfffovy3v/zw//\nDf7zf++/wqZ6KPeFwB7AKO5xSEBk1Dx4ByGAhhMaSIl5GBA5AYpCQKYEoyRVLDw1hoeQ5fF9CdCl\nFHCeAnmlJerQQBtDFCW99FXFdZUKCZlKU66f+z1SYrGTSFS4FCOE8ICUkFKzguCqD4GTyIRQktrl\nQ/MDXgJxwQ/0bbKaf/6Wg5/7HpZnvHz3OmjNyUf+WRmbkuiMSVCikxvl8zhJbOSbYqJgPUbyC+KA\nLfpA3jCBkqesoOecy1HxckuxqM+JnHhnxkOkMS0F0bNzz855r0Eq4yc3+NM816gbMg8GyAA1Rs8e\nWh6ZrLhOJpb+DFLUK4IBq7g5cTVBYz0PVvMwVzwZkcjJWb5G75iBkcdPCZj5uxmII7yCAVC5ABGR\nBU4kJzzERGQDZUEVxBipIlxkkvM58Zio6gpAzWqsnq9/WbvP0VycH98IjtfBeE4K1uCHiImBVjq3\nM9m/cmNRRAmstcVsvIz1xPdrlbwT7ZMqGEu9dalwyEzf/OqMV0eIZbzlFycGVmqW9AaWNSR/9wI2\nfTv5+9aRVgOpfN0ZWvX17QY/X6RziXicjb9VwvQ2IfzWZ/6VH78kO/9WjjUlZBlE6+AgJXIjzqhv\nqbQkQAQqg0upYAy4XHuOquRFJf8oG6BlNMNkmdcQVwotxMcNIcJ74oQHdk5uGkLOyNnclWpE07To\n+wH9MJCamJbYbbckAPDuHk1TsbJNhLUWh8MBDw8P+PLlEX0/Qkjq1SHKy7I4CyEwzxOC89hsOk6s\nLlDXFYZxwOvhgKat0TQNtNEIPkAnpqQoTUIJx1dEO0MpiV23xb7bIoaIl5cXPD8/Y54t2naDd+/e\n4f7+HuM8UWCpJNq6wnZ3gbquMY4TjDIwLYktzHbGYRhwPBxKQkPIUioLv1wtwnlzzyiSNoufCDWt\n03OY+wFfHh8xDhOk0mh4Ic6VmcoQAu2chVQCTdsg+ATrKSGNoCDIR+KmS0YbtdaYpglNXaFrN4hG\nIzgLgQSjySQTIWB25E9yPPWoNx1fB/kT6aqGUgaX19e42O+BmHA8HPDy/Izh1KNvN5iGnuh8SkAp\ngU3bcg9CRFVpKFNx9U4UZaIUqY/LcuN9xc370Ts0dY39bkcKYc7jdDzCzhZGG5aOpgDHB5L2DTGi\nbmpYR8Gd9xFCOppvUgGJ+hjauoVRGsF5BOeZpkMTpWtabGxdAh3aNCPcDOy3HW6uL1EZqoIAwGbT\noFZEbwmB+01A/RAXlztcXOwxDCP1LqWIFAWmcSLz0tkj968Ioc6UgSIHZ5HNU2PM6k0UhNcVJ0XJ\nU/8c0wyyU0RZDwT5kEg+X1InO6/8CBEQpEcI6iwIpQ2eziYEQp3z7zJNgzZiRs/Fuok213toY8wr\nW0ErI/fh5LVPsjoTv3C9nuXEiBI5f5YUFYu9JPAy/OEs0QGA3v6I/+PDf43/8Kf/vqwtCcBkLWQv\n2LBWkMQvN/YarRESiuv9OM9IuRrBwbrPle4cuIGAnhxE03igqkBChA6q0Iwl93Bl7yLEhESmL4gI\ngIjLNUJQMhBk4c8nJMb7ieqXg7AsJ53VrRKvA5Gf8zp4T2lB+s8SjK+QY64EsV8YmE6VY52IVIw6\ngVSoLUnkoFLy73Ny/aaqUpLVRZWLJyT3OyXE4JEC3XORmKIUiRpqp7mAcoqrJYmFLoramjiX087B\ndk4qlj+Uk0SR7wnPA7kak6Ce1XbTQikNUxkSHOF9LCaHGFJZN/jqIARJvWtj0NQV6qpCQoJzJEnu\nvUdIKLQi5CC3oPmr58K3Oyc7Aqn0f2ZFPB8C9eqAEjBIWpNJ8IG6saRcEVMlUamToB5SweMXNEuR\nk73MJhGCGB7GVJApey5hNf/ZG602BFbNS4K8BlTyz7ICWVGJy2Ofryk/q1y2joXcSQAAIABJREFU\noOrC8hlLAopSQY5pUWw7i7H4jfM8k4GxEIsQSn5dWoAcrP4+q7Jx0J/yclc+Oy94qfzzjI7G702J\n+rHrLanI5nG8BgOy6mGJjd4ASin9eeCcV8wz2fizX64AgfW9Xb9o/c/lMgWtUeVj3r4vX+JfL4UN\n+CXZ+RcdZ0hn2aS/NXix/G7V9Jk4OAzMgM2KaZIVmXIzcvk86osvvOUc3Bhj0DZNQTfIryZwAESB\nTaZImbqClNTM3nGV4Hg8kncDgGEY8fLyitMwoKlrXF1d4ccff8RPP/6ArtvgeDzg9PkLhuGElBKe\nn5/x+nrANFGlSILcgrMnT4KAjxHWkdfBzfUN7m5vcH11BW0MJjuRvwcCdGUQRaKqSxLkLSCpf2fs\ne7hxQtfWuLq8wMVuj6qq0Pc9Xl5ecDodySujaXB1fYWmbTE7qhi1mw5N22K720NpxUGzQt2QGIKz\nDv3QMwLDAhKajeIiJYlKKQzDgHFc6Gz5mVZV5n5TZGCdxfF0hLUeh8MRMURUtSjIqZSyUGcSIsBU\nGiElXJypwTYlJHavjJE2rIwSZenvpq5wsdtCVhpKkNlm17Vo6pr8Z16PmGZLFT7vYWdXfD3yBhK8\nR/SUePSnI14enzAPAw4vL0iRfte2FTYtedvEFHE89dSknUjqXClqppVAMRQdh56b4yPmccDL8zOe\nX55YupQqWSlGaCVI0IL7QpSSHGRTAkVGkhaAIA8KITnhMwjZiBECbnYY+h7zOBE5nueN1tzLkNKi\nJiVIvrPSCpUi885UAkfBDdb5fjtSyDMKTWVgtEIIRBNNnLw4O2MYRszWQStOAAU44cmbGpgnvjSz\n5kBRa12QQAkBLQkdR5II8RwwSSFQALUKtPPc/UptiYMIojsarozRxp2V2vJYWFNpSwDDgWVe5taB\nQ94k15tf5vYDXK1WC93mrDIk3qyJq8rSciQ89f8+vnU8nv6DgsQnTgi9DziFniplEHDRQ0sFrRQS\ngH4c4T0lymRAyg7nTAnMifYyi0X5GY1JMGU1ICVKOkymqMTI1QrqUwnJwSfASU0NC4ID0VzBhyJV\nKTbLBJ9HyCpTXA0ivj097yQEKZBhEXZZGxKmhJL05vtNiWDkc6a+ILqz54H2eVILZNfcEsSukXJB\nyVr+ztWH0LMs7K7EkrmUBOfrQSQvmeC5As1BafAe3ll4N2OeLTwL2Rit4J1g2h8BD0IoTpjZq0Rq\nCKHoytIS88XI+58gwE+A1m3Jy0OIkavVpESZabIQtGdF7nNafKr40gTTzFk5dNN1MEoVUaBpnqni\nyH5XsoxTTtDKOF+SHsFjRMqcHCZOagusUOaXdx6iNQy2cZUOATHyswIDKZKa1l3w5OsWPIRg6it/\nd4wsriEYTBIByhBVeLYzZvatQp4j0oAYBMwmiOfXQI9+JViQq4BCFPAnZTW7tL52WpuykmSmL0o2\nyvX5u+LKKDSPWwY1vCeRICUVAy0SMctg57MsgfybhLOM49W15OKLWD2G1cB/W+0G33dSkY1Fpjsn\nN5mds6yZ50kNfezyvJezSl+d6fn7GJxaDf5V3oNcRBJ5DKbzlgrK6VYmo3/mO9Z//zUevyQ7/8Kj\nIAur489VdmLKSjyrjQPnSByhkeoscFkGmICQaeGFY1lwm7pB8BHTNMNax+pArOKjNbquw9X1NTd5\nEoVDK00VBF6UZvYseX5+BpBwe3eLX//mJ3z3/j26rsM09nh4eMCffv4Z49CXBIAQIYO6krDWQbJM\nrHcUnApB6GpzdYVf/+Yn7LZb1HWFaZ5xGnq89kfoSkNXhjwJvMemadF1G7R1jcgmk21d4/72Fre3\nN2ibBv3piNeXFzw+PuJ06iGlIB+e/QWVmCFINEFXXDEypN3PCUrXdeSnMs+ltK2VgjEKShMlKC/W\nIQS8vLwgxoj9fl/45BmB1FpTBS1E+Nlinj1m62BnC2U0i0dUZYHM9AfLdMK8wI/WUi+IJFUtMGIZ\nQuREdsI0jVzRkzAVGbnd39zg+uoSbdtACmAMntS+vGOfEAUfRg4yAuwMCEV0LzfPOBxe8Pz4iMPh\nBSmxR4NIsDaiqiSqaouqoqre4/wIJKDOY1CQOoxICdF7HF5fcOpJ1AExwM0z+v6Ecehh7UwmquzM\nnWlrRmvyQlltlM57WOvI3V4bkPwwqA9MJQSlSSAhAs46MrQdJ6560Bxz1sFZMjesmHIWfUJSEpVR\nMEog+FSaPv1sEdO4yIjzrqEVKTDNdsQ0DXA2PzeJ4CLmiWlsJmC2rkiI5/Ng5g6ipO9ab0SZagqA\nPZiI8hiTBMQiJ5y9qdYgiJQCRtXwTDUsrw2RPUh4A1YKgCzO8FItFYK39LSCOi6r19k6lrfpP4f0\nrYOAhLQ610yFAic8aUVNEeWz8+v3zd/jW8e++YeMsSIL2oYY4SPx5WEFXCA57soYBERY53CIkSvF\nC6VFMdqqhES33dK5xSUgijEwEEGJeGQqFqlZEa0yRrrXUbLIQKQqhpOqNF5npF0pXZrOke9HIlAo\nq2qB+94QIyc6AUV6O3HVKFFwmO/esl9E/giWp14h7JGBjvwc15LFyzjIa9PiEfWWwpbYQDWJCMFz\nMo+TZSzkOSWoh8tzhz7fv8DqlUJJxJRI2XGeYSeSb8+JqcwBZ1rO3zPqngBWNc3XtASMpJy1GL4W\nw1Xug0rIniOC5+BiFuxDgHWOgSJSe8wqe0iJR1023KwK2OVjICEcNpxGyiafIhcGClIgclIDfmZc\nTpBsPFwUAMrsWP7rnYNoq/LMiIEQGSCh81Rcict9UsRTWNYP8m8RhQqfgYsQAlALOOfRn3pUusLs\n5/JMs3Ryph+HXG4qSQKPx7TENXlNWYQ2loQopdXvgSL1nqXll9+Js4QTyEpkTH/lJCb73Kmy/qL4\ncOVqzrKeLYlTuc88nqTIMi7LerZUrs7nRHm0ggydqa+Uqjq5zeDsvAWL1CdaH5f1d53g8H8FuNK7\nPm++Z3yf36y+DJasM52c7bBq39k5519L7kP6diL2t3D8kuz8Bcc3s9xvZLzrjSQHTWk12OgXKAkP\n+YlghdrK1aKwoEJCEjqSF9u6qqCkxDSMmCeLwApoWgpUlcam2+Dq6gr7y0tYa9H3PYZhhHOO+1Es\ntrsdhBAYxwnee+wvL/HDjz/i3bt3SCnhTz//CQ+fPuLh4ye8Hl6ASAlDCLThVUyvco5KtmSWGGCq\nCm27wcXFHvf3d7i4uMA0TTieTjj2J7weD+inAd9//z2qhqosQgBVbbDbbbHdduhfj2iqGu+vL/D9\n+3tsug08e9c8PT3i+ekJITjc393h+++/x+XVNVVAIgkGCFawc85hGCcM04j9lkQJdrstZmNwPLxA\nCImmadA0LZAIScwB7zxTr03Xdeg2Gxh2Y3fOITKdw/vA/HNSjRrniSRrpUJd0/3J/T+0yfjSYB5j\nxMgiB6aqIK0thoZKa/gYEEbqc7HW4vLyEjfXN6irGsFZvrc7+py+R3/qCWEMAW23JUM47+C9o2pO\noubqtGkRo8PpaPH0SBW7/bZD29bwjlA9xdWbTLPIaFVKZNKHRBuqkhKWxQysnYFIPhSZLlCZCkoI\nzNOIuq6x224xTRP6/kT9FJZcx12+R4GqgdT0SfRAoluRhpHRFbt8k9pXrnxVGfEEME0jjBMwFVEN\nY6RKk1YJbVOhrg2iJNduev0EGUcET9SPXAEzSpE/U3/COPYkL6o0jKkwC0sV1wB4RExyLpt7CFmg\ngDelLM28ku/NDa0AUNcVrxesqLYyQqX1YyWHzOilrgwj+EsilFH03HehhYQwgmXOefNeIfaFnrYK\nfHNVCohvlreF4pKTmUxTWe+ROTjPVZQl0QePCVEkmQsav9q8b/f/O76//F/x88t/Vj7TqAP+3ff/\nA/gkKWjNb5YCPiYk5wDnoJmKZIKhYC4EVBUBH0IAiZ8NREKtDTz3LGRUPd9PY6gfxxiN3A9B18/q\nUCEiqbSAxYmq9d7OLJvLyUM0ECYVf/PEMuEp0WcEbhommEWU66PqTyyfvf6zVNe47ydlGhoAKB4r\nnhvzF/PHEBcw7cwnpMRIq3HwBsGOHFTSz1loJidaHHQWa5AUATa2jSxDHrxHZIpoCsRQmKcJ8zhj\nGmcSQWF6dirXyntlSgjR0dgUYgnS4ptrUhpCEcgDn4oCF3j/FEIgpMgUb89zlcQHfKCkJQuk1Nlb\nqdwA8pPSWU4aYI8xMhA9oz0nkohfkP3E358vKXLF7U2zOkehWRI9rycAyj6zpjHGyD9TElooGCie\nm5T8CiWhhEKIJNMsBahamFCSnax2ZxgUPPXUt+vlVOY9SWwrBM9USgZM1tTB/NqzYzWO1pTZfKml\nb5mFLAhsQklcpJTrgjAK4pL/mVLpERMgUQ+tFLB6FmK1tuQk9O0Hyhz854Qkp9KrZCcDAuvvpqVa\no2HhmUxfW699QE68qNL1raN8SykpLYWlUnfi6S0hEEVOwPmc+bnmNXqd2H31TM6u/U1c+jd4/JLs\n/AXHOtlZNr5vbwxrRCwjX+v3r+lvPgbAu4XOxovPGnXJgUv2FtCsyma5ypBpK/n9VV2j67YwdYN5\nnnE8Hpn2daIFJUbUdY3tdg/FTezb3R43d7fc8P2E5+cnPHz6iKfHR8zTCKUkNk272iCXBbmu64Iw\n13WNi8tL3N7d4vb2Fjc3N3h6esKXL1/w/PKC0U4IKaCqa1xeXQGMntW6QrfpUBsKTA5Pz7i9ucYP\nP7zD1X4PO094eX7Cx48f8fxEogT7/R4//frX+O3vf4/dboc//elP6Pse4zyx+gx5f5xOJwzDgLZp\noKRGZWryagE3p9bUszONI+aZEMZsCqqNwvX1Fbbb7VnSIgQlOpS4SJiqhlACse9RVzWkXqhGmZ6Y\nq0ULlzfBOgdVt6iaFmqesdl06HY7NJsWznkM44hxokD6h+++w/v7e6rUCFH6r6ZxoMDBzvDBw4WA\nrVJwLKE9TSOyZ72pNaqK5E3HYcA4HIHoses2uLm+xOvzC6QkepyUAtbOSDGUakyIHjppZE+Fbrsh\ndSNGZoUAjNHUE2M0jKGN0pisirdB3/eYZslBGm2ezlv4QIIPs7VFRYvcxhWz1AQ2XYeL/R7dpsE8\njSVAoNdy1UlJNE2FdrMpYhAiOQSVUFWaUF6ZSrLhvIUKDiIBWqrCyslz2NoJzltISVXAqqqgdAUp\nFZRIiBGYZls2aBcWQz7kDV0pQq7zJqWWfVcpxVKlCeBAMotJ0GaOQkciCJ8lSpViyg1WtKW40EGi\nQKpTASUymJIDsAy6ZKxTcEVCIDHqvNyHsu6tF8U3+2Tm26eUzowy6bQX81Ck841WCgGRqBoghMB/\n+u/8t/i/v/wX+Pj6n2BTfcTv7v5HdPU/AVAFBc9BH7muJ3KET4CXgAsBJniiCgrJv6d1JsQA79mQ\nttaYPdOqUgSyCaNSEErCB6L4CJETYOq909qUJEFJBcMBVwwRPjmuPnCfS6Qm61y1yQlJTAHOzVQv\nUFx2UGROGhOh2lEprupQtSlGpthKiewOn7gHRUjFgg8ZQV9MpJWUIP+CN2AdcvUwne07b491NS+l\n3ATPSUmIhZ6UOGhMTFcN3sE5C+8cgrcI3iE4D8vgxjSNGMcJ82jJmyYuQeLa1DIm6jGReT7lc+Hq\nDY038qYSSkMIiQgPFzy8YxW+nOxDFCGcTAmHICZe9hLK1T/NdMcYqF8miydITqittSU5Qk4csEiK\nryumyzwi4Z+Q6Hnmyq2UAkJrNpVkARe5VH+zUWuWS88VuZhI2S5GsSSeIGqcMQZICsIvFY4iBhBo\nrVHKIIaAtu2glMZsLfphgDAL+0DlZIfXtZIo5QB7DX6s14o1nVUulZK4mv8LQBRInVQYaKWKGqFg\nqjTFSsuzToEMmpVWpS9J5Tm3qjbmGC2t1pskMuWLqneZifJVrSWPaaBQ7daxnIAo+wH16thSiVz3\n56i36275nsVP5/w3fK5n17D63eo1CkCSLHF+PmtxDlixxWsGEeR5onNWaRIo3824zV/t8Uuy8xce\nZ/x45DEjzwbNejOhyXE++QBwg7dESETb8d6XYCQvZBm1zkEy2OuCGsM95nmijVcQpW3N4Ze8Wff9\ngMfHLzgeDySnGmNJqoimQR4CTduiYsrX3//jP+DxyyO8mxm9o14XrYhyJoVcXStN2K7rcDqd0LY1\n7u7u8eOvfoX7d++gtcbT0xM+fPiAn3/+I8Z5go8RujL47vYGVW1K8NC2LZSSGMcetqnRDyd8/+49\nrq+usG1rPM4jXl9e8OnjRzjncH9/j1/96kf84Q9/wN3dHV5fX/Hw8IBPn78gpYTtdgtTVQgx4dCf\n8PT0hG23pUrPMOB0PME6S02mKeJ0fKWkgbnXPtBGfbHb4/7uDlIqnE4nOGvJsbpu4H1PyYuipnNl\nKsjDAe2mgZSUREWm0EmtYaSBkEBVLc3PKSVUTU20t6rCvtng+voau90es7V4fHzE8XhE07a4ublF\n27YY+oD91SWIWkDVrKqpqeH2dAL5I0bMdsaxP2GcJ5iqRlVX2G+3eH9/i91uh7atkPyM6D1+/OE7\n3N3dQUlgt9uhqTXmmYQOjDG4v7vBPDv4kIowxm4zQCmF26tr9P0Rh8NMjciGqizeOzw+PmKeZ+x2\nO1xdXZYesHmu8aV/IjnpbDbJSfs0O1QsC5znlmfRgKvrK/z000+Y5xGfPgxn3OhMVbq6vsLtfMlB\nYYK3M4s5RARncTq+wM4znNvSc3AeSnCgJSXA1DoARU4UWDZzyYCDVgZJS/gYMHsL6zyUdoXmkZDN\nQcngVAR6VogJIZCaG81ZCsAzBa7IEvMaQrLXjOry+pOTbCU1kswIO8q4ympWiUpVZxvwWeUZ6aw6\nIyDOqj35dev3JGTls4xKpq9em4MDur4c6FMiF96IfeRgE9yrJKXHH979T/j9u/95ldgsgVGMCSHm\nfpolcNJaI0HAh4gQLaoYkYyBiAEyeBhohEgN5VJpSKVhHSmxIQQkTgyW5FCCbYKK8lbfj6gqEs8w\npubzlQxMpUW6f4VKZ0qNAErfc4qRKqGQ1FslGOkXEikqBCEgAyVUIUaoIBAlJ5QpS4sDSOErLFik\nXPFjkAUK1INYnQFVeZzRHiMLUr4e58s4iUiFZyUhmSTlU26sj2VToL4/+m5nZ3hrEYNHjB7eOczz\njHEcMY8Tz0NfxjtJc4uzsU4qejxWVtQowQmolLpIa9M8SQg+ws4O1npY7xGFJK8tKWGkLD14eX+l\n9duQZQOASpCfSQYnJVBk6LXWCDnZ4Uo6P+iiNidEWt1D7tlhA5fM6qBKk0eCAnlqaRLRUHQvqIqs\ny/gm6trS6ytV7sOjry+tfpI8ibTRPDYiK2vy+pZlurmXUCqFtiUgc2IzcKl5XklJFX6lAM4/UwyL\nTdcqqVkfRTU2LhSpZTwBWfYhrdazeZ5RG0r6hASEJOEUUcYgU3kj9y/HACMVUvRIMUBoAXDVjICv\nJYkRDIrRTEkkBFIKILkCn7UPuQpb/p9AMBqfKysAsfT9TdNUKl/nynCpgD4L8LMkOVj9XwHB8W86\n1slSrvRkZcsMVK0KwatyWEwLFVrE8/ktuKqUzYf/zR1Dfz3HL8nOX3BcXl4uNBIp8fr6iqGfyr8z\nX3S9yecJdta0l0utUqIxNS6bZuW/4cumvaazRTZkQ0rQSlOixP4B3aYrC4b1DsNExqIAuNKzyPvS\n+YBoZkzLyh4mfX/Cw5fPOB6PiMGj4UWd3pKghEQMCdM8QIAqFOM4YdQjLi8v8Yc//IFML7c7bDYt\nrJ3w8PCCv/u7v8MwDKTm4izaboO7O6r4HA4HbDYbDvIijFbYdh2OrwccXl7ww/07BO9xeJ3w5fNn\nTtxekVLCbrfD9fUNhJD48OEDPnz4hKeXVzRNg81mg7pp4UPAaegxzzOurq5gjMHpdMLh9QXWzqiq\nGlcXt6grjS+fP+J4eCX0SiT2YZiw3+/Rc2k/+9x0XYfZet5wNKqKks0EgdvbO8SU0PckbJCV2wCJ\neZwgFVBVXemV0nUDHwJeXl8hpMaPP/6Im9tb2Nni8ekJLy8vMMbgt7/5Dfb7PcZpQhLA/fv32F/s\nmXaWME4T+mmE0BK7iz1eDq/48Okj7t/f4ve/+wPevf+OZLNDJC+i2eLL58+Av4KUAhcXO9zcXODj\nh38CkgeSKkGa957HFCXaWjXUX7XZFAnZaZogBFDVNYQAXl6eOamZ8eN3P8Bow1TKHn3fQwixjPsQ\nYQxtFNMwwmiNy90eIQlYF2BnB6kT7u/v8Zvf/w67rsOnTyNOw4DRzmi6FkIA+8sdgE94d3+H7rXG\n589f0PdHBOcwTj3qSrPwQUBTkwElADhnkeJUEt0MOlTG4OLiAhfXV4hI+PzlCT542OMRzi4JURYc\nSClREJe3LylIZc/NUFIwz19wb0Iqzcdaa9xcXeB0OsJ6D8hztSspSKEKaQFc8u9ozZGQTsE6S0mT\nTFxFpJ48AQpaNhUp2JVGYix87jy+82vzmrIOetcbfV6fUk6WVvfiLPkBuJmYm6j5nIEl0IEAkjgP\nCGLixv017x8g2pYAdKWguc+RQAPAxQARKLnQWiMmkIFhpPXQCsvXKLBl879pIjn6xhgyEWUpX+sc\n9QBpqlLKGDFbzxLjpNwWY8I0WVjrCWlmipw2ClXNiZ0FbIwQdUN7Qn6eSqExFY79ACQUsAoc1CFI\nCJ3grUfV0Npt55nAEQYCMu2TknQghQgXcsWLxoxY3efENDS1CtwiN4BDUnQUfSjPdC1gERMl6Tmp\nswhc6Y0QMdM2WcwhRu7RISAlBg/nLPfseLjZws0TQrBE+VWqUICWpHpp7RKSgu1Mv0tJUGO90qgq\ng2NPvaSQmhQndYXj5PByeEUUBM5EgBNcycDAApJISQIokgHHECNqLeHmiSrvUqLebNBueJ3nivzM\n8v+bzQYBqbAslCJqFlUSqQqvBIkk5DmvVE6QA+ZphmgEdF2fVUOLmW6ec0KibRsEVqojlUAaU7mi\nq9R5wEwUUQmfIhqpuZfJI0YJpSWMqQqFMJ+PFw4xjmVtIvBCQBsaN/3Qw9WLfcAC/Z/T8Ik6Tede\nMaihtIYPrtx3IahXZ5omWh8Tjdcs5uM9MRUAQAtiawhBlW8FjRACtFTl3PPa5tk+QCnNQAVXdFhZ\n9KuqG7DypFrYOeVawgJq5P2hYeGnvu/P2DhnanTyXB1RCEJ2Uox8LaAkKy1Vynw/pVypy+U1O7FR\nqM5GtSgiJhK5Qrn4/JQuJElGtut1fTlyq0VZxs9A/XLef4XHL8nOX3DESGpj+/0e+/0eV1fXOLwe\nWX9+LoHAwknNmbbM/caL+7SuSlJT1zWqyixNpWnhVOfFIIQAby1STEUIIL9+mKfCNXe8AOekLPOC\nMw86IRUDzO1uC2PIA+f19RWvhwMcI9pVXRd0UzJaAP78xCphmQZgtMHt7S2ZjTY1DocjPnz8gOPp\nVDxVyODTlj6itmngrIVhtSutFLSQfF47fHp5QfAew9jj8ctnBDfh8+cHnE7HUp0CgHEc8fT0DOcd\n+nEgZR2tIaTCNJPp6TiO0Fpjs9nQwg2wsIJGXWnq35lHTOOEoR8IAZXcF8GKWdZaCK5oVVVFn1Ul\ncrSPhBCNs0VKgJQK0zzBWkdu3VICgRY2UjYLZWGkBCnheDpBSo3f//73+N3vfgdTVfjX//qfcDgc\nMI4jqqqiSlllMM0TavZXklIjRgpwQ0wQSqPZdNjuDXRlcBoH7PZ7bLYb1E1VelrmecTYDzgenjGO\npMA3TSf86Y8znp8ekYJH7Ii29/LyjKfnFwzDiNLsLgnlzg2ZJDs9QTKnPbtkA4B1FtvtFk+PT3h4\n+MyGrZYS0rpm2pojZT+mFSh+Xs4nOD/CuQkaQNeSp9ThdMTnzw84HF8BAWy6FlorbG9vAfxf2HQb\n4MVhGI4Y+hOqSqNpKvzw/h6//c1PuL66xDSOJTBw8wTieoATioRkAFMRJfPu9hbTPKPdfIS1kXLB\nFW1DSQlpsqLQDFdQao+UKsSQSrVHMbIqhYIUWWmJgiTJEr8EhDJ3PAcaKxAly8/nNYmqtRFqVrwW\neaSQgBSQdYTzM0sVCi0kH3njj0yRUuLrDXotI32GUvIuWdDT1d/re7Q+hJI4PwihP6NVgBMlNl9c\nU0hiWoJxuQomUoYz+f9DiAiIcJ6ohlJQsKm5H06GUEwlNSP+mZ7mnCNapaSkvGkbhJhQGUN0IhYP\nyWpepaEagHQS3nk440igQCt451E3Daq6omtNrJzGVQc3zwiOqnVSaUAnBMnS00GTql8IBJ4FjxiB\nUKSzAbA7fDaFFBQBI9s0KgFIRslFdpKPrJaWCGtWq0pcShE++1OVobBQW+JKGlpy0JapazT+qH8p\nRFJh89zrSBWRmWibkYLPHLwXs1yuBKQEEmtIQBTszcNBYoIsiVahSSkFrSsITVL2wzDCOipHSKkg\nFQk4OJc9aQAkUTxrJMDVCAqWQyAFs7xPU+BPSU3e25IgdoTgeUlmo6zE92bcZ7Q8z7csSexSgvYe\ngUHO/DYfPHxQZUJIJYtITq5qCZHKuh5CQJJAY2oAAuM8wzvLgAat2zGSX5mMDhU0QhKYZwsICaNV\nke93hbJGyW+mlAEkAOOVo8pnfKNat67wrKLnAvRqkokHP7Psc5XjIZGoUqKNIXAuRpgVTbJU36kA\nXWjhbV2TkTcDc5meme98pq9SwhC/TnR4Hc/XEFMs1RKpVKEJ5/OsWO0yZD86zjrLGoil/yd/JlHT\nVuPhrGK+und5Tc0ZyJs1NH+MWP2RSCx5ns9BlNeez963x0I9TglYr7N/C8cvyc5fcAzDUJDo7Lwt\nIEuwkZVE8lGaC7MC0epnUqiyWMUQMU/Ur2C5udUpBW0tBdvMB/fWFdQj8MaQIgXbi9GgL7xa4pUv\naCz4LJRWHGhWiDFgHAecTuQcr0uCQ+cVRSDjPCxNrNl7oes66vvZbXH34exIAAAgAElEQVR9c0O+\nM00DcTrhcDri48dPSDGi6zYAEqq6wtXVJS72e0ghYOcJN7trVMZAAOyg3UAiYZonAKTW0w8nTP0J\nr68vsKxalk3nXg8HxJRQNzV2ux2qukbfD2ySGTCzVCZR5BSM0dhut9jtttCK5GiNkTgeXjFNI6yd\n6JkZDSlQkF5CvUK5l5SsqKLIYz2rsFmLmIDTqV9JU6NsCG3bwge7LOxCwHqStL24usD9/T2qqsLx\neCo+RsMwspHqHgIJxlTY7bao2wbZRz0JUWg5IpERXFXXUFrjeDzij3/8I56fn6G0RNeSOezY9/jy\n+TMhY+oC0zTiT3/8I4b+hG7Toh96HA5HfP7yBcfjCdY6AJI9i0YAAhMnk4TcTth0G65ySkhZU4Ov\nIJWsl9dXfHp4oLFQGWy6jkxTqwoQIyQHdqWqUlUI0REaDaA25Mc0jgM+f/6ITw8fMU0jNm3Lz1dg\ntyNa2jyNsIcTS2E7CChIJXB3d4Mfvv8Om6bGF++Q9W6cd1CKVJpSog2YmFNEMWraDbquQ9s2iIkU\n6ybpS0AjSrID2vwY8bXWwdWeGB+JmqAFsgLjSj2ORSRyhTgDHsuko79KpYdR/aWHQp5VS+Y5wXq7\n0DOcgJQW1P/E6m+r6k3COZInJPXQrJOIM/rum0RooWcs//kWEpjpgIUDs/zmDUKc70wOlOj/F8M8\nXlM5iDunW6WF/rSiA8YwUyBAjwLTPCOBfHgAVsyMgFI0Bmc7wzkLIYDZefhAwZJRmihCTAeujUHF\nxr0ZiYUjqWCtHZnwsoiLcx6Na2AqQryHYeAkeoPcgyWlIk+PBFgkJCERvS2UTBKq8SWYy8Fx8dzJ\nqn18ryU/T7XyIIlM/4uBlNKIXcX3NYFQ5LCSEQbduBK4xYiQe15SJJNWwRQub+GsLQlOpq7ZeYa1\nVDl1bl7GL6hKs1BplnMkwYbMl+LAOkQIpQDBlC4hoU1Fa42uUTUNAgRm59D3A6x1BbUGwLYMS+Ca\npZ9zL0/ujyJgj6ildVWhMrTPhxgKfc16UgJMAFFFJfV+rcf+OqhefkbhaYw5KQ/wwZOIgFrGc04C\nl0nA/k5i2dPL+iOyVPfynfNMfVGV0di0G/YpSyzqECFqqkBZT6AoxTeJnhXvnc5ZSCFQVQYqZLEE\nkudXyrxZF85p/jxruUpH913y+p5FOtbVmAw05PUv0wuj91RtzAwaTcyYfC65T9loAo2NMYtoywoY\nzgm1Z5Pb3GvEmcYZJXpdARGSJODzvt2s2gbyZ2qlFqU4cLLzJknJwMS3qyR5bVxee57gLD1n6zgT\nSZTqvBB5LyAvx1iozTTP3q7hOfnKlL1yjvj6HH+p7Pz/6MiN/cfjkSWHA+zsC7JgmBaxDkjy5p65\nkmXiRVcqNtbSAPMhwIeM8C7UmMoYbkAkqdSsWuKzC73Myk30Z/3/wEJ7oUomLVq5kjRNI6Ype1Hw\nhAFIQYd9VEKghSF6MgKsqhqVMbi8uMB2t4OpCIH5+Okjbm9vIaSkpEcJTPOMreyw6TbYtBvsdzto\nuai/VMqQfGtKqLcdjFboexITIFoBJXqL9LJH2zasHBMw2xk7saNEp6rw8vqK19cjhmEsKFDTNAAv\nEFprXF9f4/r6CjF6HF+f4b3FOA5w3nGElRg5JUUmCmAjb9JZJjlBsAll07bQMQJihLUO0zTidOpx\neVXRc/WB/R4yrTD3GiyB2NXlFX7z619j223x8PAZHz9+xMcPH3E6niCEwOXlVQmk9vs9rq+vYUwF\n7y2gNKSuIJVDhMDsPKKY0bPpZd/3OB6P2Gxa1HVNPVDbDuMwwNoJRpOwhXMOD58f0DUtpCT/iMPx\nWEr0uRk+N9M7T5v+MPSYZ0pWqqoqiaAxxG+HSHh6esbD58849T31CnVdoeZISQht/htIqCsKxrMv\nh9EG266DFAJPz1/w+fMDjsdXCABtW6MyCjF6ZIfzx8cH+Mce3s0wSgOJqDWV1jBKkkdOf0QIW57d\nC2eZqAEUiMzWYxgmOO+hlEZVVZhmQiGFmklkwPOmCKKYaq1LkjLPM6Ys1KAYbVtVMNYbTw5ctdDF\nPDgHOlks4Dyox9kmnquQdV2XdUYkokytHcpDCNTHIkn2lYKNUAKvGCN5Pf2/PDLS+C38MAeyX9En\nVsjvP4ckJvZkkiKVjTl7i5RIVkiQv8t5kia5RwNMqZE+FvS3gEE+IqpQaMg5IRCC1ALH2cKHyMEa\nrctNQ3LEFHxKKLUgsz4IRpaJvEfzxWOaZhL0cA4nnlsXgT6nqioIhaK2FGKANBrRcyUgQ7pKkqpc\nQvFYIW8ClGSQ1NkkZXH8XFKmwgRCt4tXEKgImJv0cyKVDR1zMprVwGIIiM4j9+kIUA8G2QVYOEvy\n94Ebtr1zmHgNJ7qaXVEiFSc0maK2Gof84SInkSI3mtMvAgs/VFwhVnWDqm4xWothnHDse6KFcuUm\nP+9QQAdR6GFIaTESTREheFI21Rq10aWy6r2HdQ6WkxNwtVBE+WcD2bPAWeQ+I7rvawAtpgghUXoP\n87qQp0ru7VvF55TIYekNynvKkuwnTghpzosggSRZ/IDNsBkozf2880S9VABg7cz7fgXtCFChvZAq\nO/koY2ZFocp/Al+btbb0XEEIOF67ssIp7ZeRBSkIBHTOwTpHxuic/Cg29y3rXK5I8rwnYMIVBTil\nVFkbCRR2pR96PSaK6EkGjli2OyVRzGRrlh0nwImEjGIgSmWOH/DnEh1gAQ7K73IVZlFZ/HPHWWUo\nZaGrLMTPFR6eL1ImiLisr/jqc3lMrkG1v8Hjl2TnLzjyQvfy8lKa0VJaSrP5NW839NyMmCdTSgkp\nLgpuuWRa0NzV4M2JhuANu6pMQXUzXJVKSVaAvHpCWXSklIUjLCQZOVYVVXzGkfpo8iJXVYZRDg5K\n6IJocXCEsFdVhf3+ApsNyUrXdYV5nvHl8Qs+/PwB4zTh+vYGu/2+yE1ba3F1eYmL/QUtbPOMpqmx\n77YQKWHqB9R1hUobxJjw+vqKcRxwf3tPAgbzyAH1xOg3I5aKqgzbrkPXdQgxwtqFXqe0ZrEH8gES\nQqJtWlxdXaHrOry+PFPfzET3IcWIylQgAzZaxHLwDhBKP44jK/ucUNUbNE2LZkO+PUpxX87KkC3E\nhNJUyeOH9tVFfKJqWnz3/j2uLy4x9j0+fPqEh8+fWT2u5cb+K3gfyn3f7rZEo3GBfDu0hk/AZD2O\n4wR/OKE/nTBMDv1Iik91Q6IJgmWcIQTapsVm06FpGry+vGIcJ+y3F0SPcxMn8gpNQ4v7PNuS1Ofk\nP6voVJXBbC2qeYbSEk3boG1bzG7Gly+PeH5+hRASl5dXuLq6hNKijD3aQEwxumyqiuVqHZAiqor6\n2qZxxKl/wun4iuAdNm2D2hii5XgHOxHP/OXpCTjOUFJiU1fwwcIIAQSP4XSAnUa8vjwhRuqjKH4b\n4DktNIIXOJ0GPL+84nYYIZRE3bbQ4wzvqXGWaFFsfCgoINJSFREPGjMTUqpgmhoyy6mKRWEKIINE\nMHKvlS6IY67MZunppTF72ZBpnSDVsCz0QUm1AmKCkoSE6mySGYjGQhtjbsKldaeMWxG4yrWsZWvE\nc318ze3GV79f/Wv1omWrLj9/gyou6+gqGWVAJq9R3PPN4xqIyD0Zy3dKKRADM0IkrZnW2hIsAUAU\nAUEswgmUPNaQ7FgfEzCzoATRYcgfJavDeefJZyn3gTBKLZUBeE3JAg0JJGt/5N41rQz3ZCVEHaEZ\nXFBaI0oBDxRBmZBo7ROc2KTo2XaAKTP5FvP9XALOtFRsUm7+zwEzeQYFwbSitCSRXE/gZIB9RJyH\nQFzJCZOHjrWWVBkdq1ayJLNzDtM8Yp5ILTJ4EvFIiWjVUi37Z67MRQ4yhUrLs87nxFSmkChBI8qT\nQt00UJWBHQa8Ho849AM8A2tZYnlBxTmJY+R73VBP9y8Vz6YsGpSpe5nuDUE9ZCIQ/bb4+qz6bgCc\nBeR5+KcyFRbgo3w3gxNrShtAPjfZUywnGrkym9cW7x1CTNA8Zio2Y1bacNUkV0M1J/b0Oad+wG63\nK//OogvTNCGBJNilWpKdvHavq7SZlneW7JQ+r8B2AqSumcUWsm9dBnac86X6RswHz1U0t1ynWn8n\njVXag6rS/zXPMzRT0bNSLc1rqm6ve4uyOAKp6vHYEDQPIhKkUEX5NFdwPfvBlT5HwZRTUH/zeiE8\nr3Tlyt7yXAlMWK7lrILOiZGEIPn6N5+bxy+ywfFqvCBXStffdvb5KwGJN2vut9b5v8bqzi/Jzl9w\n5EZ+yz0x5EhM0rhrBbU8SMqCJ1JZBBZOJpWjgWzERYOaFp9zCkuIATKhTFqAnKejJqQ9I0ProARi\nvVAyh1gslDuiusysBkTSpypKhJDKIpB4c1NSotIGuqE+it1uxzLEEc/PL3h+ecbhdMTDwwOiAHRl\n0GxabLYdqucK1nm8v9+TOMDxAAngYnuLXbfFOA8YxwG7roPRGs5aDH2P4D32e1JOe/78gJfHzxj6\ngTZQJCijcbHd4fLqCk3bYhhHDqhfyrNKidSusnHffr/Dzc0NttsthqHHw8MnDKdXVuUZlwVditID\nlTcPKVURLCgBkjAQSiOOAzaiQ7tpoY2BdRbHY18COmDZyMZxhDbk3eK9R1VVuLm+wcV+T5WP4wnT\nPEFCYr+jpPKHH36Fy8tLQArsLy6w3XZwzuNwHMhg1Bj4mDDOFodTj8enV5yORzhnMVuPlAS0qbHp\ntti0G8SYcDr1sJNF3Wyw3e6QksDh9QjwaxkjoibMpoaUujSBxxjh2L+DNg8Dz7Kx8zxDKQGlJba7\nDqauEJHwdHiFjwHtpsPlJVWWrJvgHFG36qZB15G4hXVUpcimr0pKpEj8/+GYMA4neDtDAaikBMXw\nCXW1CA5I7rsyRqM2CgoKF/sdjJKYhwHzOECmhLrKQVamSNG8VABCShiGEeM4I8aEbtPh6uoSx+MR\nk52Ywx2R6Y3UD8dN1AWZJcUtgYhKaQjJaKM6b+LPyl+ZtSMQoSTguWhRtLwY1s5rjjELgisENRu3\nbUv3tG7hZqKykdEgoZ2ODRCtoQDbaEUUDDakXKrDywZXepNWTeJvjxx0kS/SmyAuZT54jvAo4Eir\nTZ712M6+j15DSmwFgHnj+p2BIWqFEoyAL2sxXdJaHQsoFKjV98UY4FKmzkRASihBvU4QWF0D+foI\nHyAm6pfLFS3Dal5akoiMCZHnUSjV80xt9t4X+Vw7TZjGsVSfjTao6hobrZEC0W6ESJCRqkxaUcCP\nyEGpOBcTSCkhFtraCtwNGaleqvgiUW9ZDISkp8jB1ZnQTiwAjZ1neOdQawkoojhH5zFPE8ZxgB1H\n9uQKBZSjnlMyFEWk4DGS7ejSpwqS8Sbwj5u1AciYAEmJCKSgfkqlIJTiZFIVepOpG0QhcTz1+PL4\nRCBWSkXgIAoAQUAsVksMRnoUE1JWKFNCwWgSQMiUzxBi6TWSUkIm8tuhBnEaw+vxezZOV0g/gRdL\nH9yaARJYiAhA6TGiNU3AOodhmEhp1FQlFlmLH4VA1yKkgqlI3z5XGYKPCCEhpsWUN4/J15dX7Hc7\nbDYN0+dpjmdgt9DyAfhIcRCJo+jlmnN0vZ73hSq2vgcsFLBKjNZAcR4DGXhIXD0LKRFNMIhvBugA\nCyA4R95pvH/kuEcpWSq3+Wf577zXx8iUwrBQqpumwbbtynUtXoUOUmQLAK7MCazAqm+AQ4KeP53y\n+Tr65yo7fPve/GwBK4qwAsBS9ysAaV1If/N8MmOIvvs8QfvW8c9V3/+/ePyS7PwFR37Qa5feGNKZ\nH0AOBM4WOCLsL/8WAkKosnBkM7j1YsiEAgAoQWb+fMIaIn/meSmcFnbASA3NyVCMofQIAau+IQ5K\nU0oILpSANUaB6FNBHLuuw67blmZyAMW3ZhhHDNOAaRoxDAM+PTyg223xffM9bu/voJXC68srpBJ4\nfvyCoe/x7v4etzc3VNmYLGqlUWsDCWqcn6YRpiLVtL7vMZ0O7EdB8srb7RaXl5e4vb1Dt93Bh4DX\npyf8/DNJUm82G6SUME0zQqDgoes6fPfuPX74/ntIKfH09ITHp0doDpQLJUTIomK0LIAeUqbCMc/V\nImhSX5tnCzCNQEiNqmpQ1TXLgeui0BRigE8JCYRmGWNwd3eHu/fvMI4jPj88AEng4vIC7951kEpj\n03V4//57qjI1NS4vr0jO+ekJ4zTi6uoSCQL9MOHQDzj2I46nEYfjAC0F6SJIDSE0YhAYxhn2me6n\nFhIXFxew1mMcRzw/v6KqWlRVQyponqgDhFar4t3ifChSsZk6JaUu92qaZ+hJY55tob95F6CkwXa7\nRbfbQmoJNxKVSCmFTdfh7u4WMUYcDkcMoysS30op2NmSStueqjgSCU1doW0b1Ozlc3t1jWlD43PX\ndtBdpmUotFrhcreFTAlummCkxPXFJT4eNzyPA5JMhdLiBQVAIbG/h9LYXVzgZrjBn37+GfM8IQQH\niEhBtqR57oPjRBhlrYgxYbYWQg6onETcRLR1DaOXNQBiVbnB0jSuCIJE5mXT7kbBP8xSkVoLXuSe\nNmMM+uMRdrYrT5AJwXloTYa3dVVBNERL1Yyux8gUqFVwklaBx5rXToHKsjYJISgwEV935Zxt1wLc\nTMvBCuhNORmiNQp8H9WS0IErz7wK5nmXYiwVFcTcwE7fGIASEL5VgVPMs5eZvpgDtADALuM3/yn9\nMRBIkWg4IYaiUla5iBiAmlHkwAptSi33sKoMB5MGWjMVlQGZYB3Rw0wgZSVjEJQkJTFBkrwpcPUh\nRaY+kyS7VqYYT5Oi1hK4SEFgV1px/QUb3VKMnkqPjuAETzAtju7dwmzw1lFlJkmS1RUCwTl4O8NN\nMydDtqD2NH6WPpl8xASEQOshbXUCUHksxQWY5ipI8J6tEjRXJrjvVdL9gZRQRsPagOeXF3z58oUU\nJEug/NaIhIUuKPrk+wqAe8CoqlPBnCmjUu9WNiKVilrQMwUUEGf7eP7/pSL7bbQfoMTDOQetFBJL\ni6tMXQS4bySUHhWjzKpHlxTyklwnT6wEBolpmtHU1JeTq/Hkk8SeZHWLYZ5wGkixUhsNxWyVebZw\nwZORs8zS9Vg9X7Vc45uK1nL99DMDw8sYJY55LdF6UYgkuiSBwIoTCWMMXAxArpCtkoJyX3ksKCnJ\nuBdE6aJ7s/Qyy9VnrsVF2qZBElUxYE+JhCnatsVuu0OjTVFQzX57QghUhuw4nHMg3bucyKxGGldf\n8mq3/Dk/1gCR4Btd0ph8vd/KN0T+zqWSVu4N/fSrt7ytyP+tHr8kO3/BkSd03vSFEKxr71c870V+\nML8nJztnnM01eopzZIICiHCG1BVVtpj9CBJvwACkhOeyupDLORZ6ASN21Fek0bY12k2DcerflJwj\nN9VqtBvqsem2HbZdR7SiELgxHXh8fMSp70kNR4KFCnZISHh+fsbN3S1++8Nv8cN33+Ef//7v8fTw\nGU/Pz9h3W1xfXaEyBkN/QvAe224LIQQ3sJIUadu2eHp+Rts2uLu7g91uWJqyxtXVNTabDTabDgkC\np9MJz88vGIaBVJa4t8Y52hS6rsP79+/x/v17SKnw+fNnPD09ASAe8jQOhZIFUOBKtL7qLNjLPzPG\nAELArhaVaZowW1cakbNvQVVV8Ky9nxE7rWRR9bu5uYGWCj9/+gQpBG7u7nB7c4tms0GMJMk8jiNS\nEri63qFtWxwOFrN1cM7D+whrqar1+PiIl9cDTqcR3ieoSsN7S2aNIVGjbum7Ie6xkhpDP+H/Ye9N\nfi3LsjSv3977NLd/nZm5m7cRkZGRkAkqUDKhGTAAKZlSEsWAPwAGNeMvQPwTzBBSAapJTWCGhFBJ\nRQqUWcoaUFRkZEa4hzfmZq+73Wl3U4O19z7nvbCIQlGUVFHyI3lY2LN3z733nH3WXmt93/q+/X7P\nODouL66oqgVd23M6nQV5iZ3TgPCl5x24eaJdVSUmGojKNREvjeVyOXXJqjKiA5E6MAzUsTBcxd/r\nuoHjsaUsa7xHDBnTs6eUFDpVzXq15GK3oYq0hE8//YQ31R4QzvvFdkMVZWIVgQIlMwRaifBEZWLT\nANBQlAUBzWjFXDJEdKtre/p+oCordhc7ilKua8CDBmUUJggPnzQTk9eSwUTfB6H1JJTPs4p+HhIE\nAqO1QmVS8u+p+6i9J3g1e05jR3TWbU3JWFIimjYyeV3f93R9FxNr0D7K3CO+XSJYYHKRITMMUwGT\nCrj3bZq/EiefxbPn9B1RUhIE+8kMkrzlZMAXG43yPUIunoSGJol2CJK8+H9GRxKmJo+CLMGsEoKg\nAhoDIc49uBBjpyBm2miKMiJgWlOVFUFmvaMPjyR0QYmKlQ9B0B0rVNNUsyqg74tc8BBAqwKlZU6w\nj02r1FjRSkFZ4LxD+SXUC2ykFfsQpg601hFtmKS4I3wjqzh15Z8nQvHeOitFW/BTYp48g4ZBut1J\neWuM8tEGE1WoEuIzCOPA2TzTYYcRY2ICnBE+Oa+zUjjI4LkUX175XDCrVO3G1yKhQF7vHd4pTPKL\nU3G4PigOhyPfvX3L7f09NnrEOe/xcSYkPZ/BS0Fp9EQJJEjzSyPy4WVZCHJByMqT4sFmM6okKJWb\ndLLnz0Lq+jtBs5hRNieRgum5trGYCaHMz0WaiyoKiSXOPW1suOgHJ+icPBPzQgKIxqeOxWIR10gg\niQlorVmtVhyOe9q2ZVivWFRl/g7DIKpzphLBGQBjCvyY5nxkJiojhc+exUTplJkzEfOx8d6nvSMV\nHAnlS5LagmyZvGbTrM+Tc8+ayxIfphnFuWcUs99J6EyatxbT60K87mJzNM0VC32tYBzGX1HeTd8r\n0ZYl33ta8M4/q4pNpDk6Pn8e57+bP+uc5vs8zAVBIqWA01K8J1QnfV01/f+n9DX/a9/7X6Ui6Pti\n57c40oLIA4A+kLj07/vd51SMHNC8RetCOme5Ip9D3AmelM6TtF+S8ohQAYIPmcOdNOifd5ESBzl1\nSIqyYLlast0JDe3+/i4nRrnTUVQsFgsuLq7YbraiBJckPKPjtXOWw+EQO1viqqyMYr1Z5/ft+56y\nLnn14gVvvv2Gnx/2jEPP5UcfcbHd4UeLjTSlsixRBLquJXjPZrPB9kIZe/36NReLku58oGmaKJu9\nyp0cO1pOpxOPj6LUlmZsUkd2tVpxc3PD69evuby85OH+ji+++IKmObNaiZRo13W0XYvRqTAlJ5qQ\nuL0qzjrFNRA7nun3+n6g6/uoIraAEHJhZMzkFwBE2pX4NtV1TdMKl71eyPxRWZYM/cDheOJ8blms\nVtzcvIjyqAVGi6+Pi7K5TXPmu3dvuX33jlPT44OISJRVxfncoJGiybogKMeqZrmoWVQ1ygdOpxNd\nN1BXC66urtmst9zf35NMPJNbPCQa01MOeuo01nVNvaikK2gUzgmasFwuJWfRMrA9jsPUQY8JWZWk\nRnWUTraW3e6S87mL13ISUUDBerXgg5cv2KxXdG2DHQc+ePGSQ1QQIgQ2qzXLxUKGYoNHBY9BURXi\neO+co2vFf0WQjlqSKdVHWV5RuTufG9qmQcXCWQooH6lDKmX3eUZj3nmTjd4AEfXwnr4fJAFVCh/S\nMy9cda0UKsphzzdq70LmsU/nFR63jvS3xDsfYgFpjFBsUJMwQTqv1ionrlqJcIbRE3phtIEwxTrp\ntk5zhSrHvN/QHdQyD/E0uU7Nnvd0NhXIsH/qSD497zxOKp1MJ9//1vPrn/4zKhWF8j1S4pEQh0JL\noTVXJQohfW8vyKxJjSQpCp0Yt4sPS6RECmXLMmobKTJp+D6qDQJlWbCI/mopZnZ9mgMlyls7oREv\nKikK4rPigXHQjLHQSTK6oQjRlFJQkOdFjdGakIfbp/uX0H9pCmi8NrnYTrS1ZAILcm7nHCr66fhY\nuAi9y+Wie+j66A0nLIN0t3OxnmJATsw8PjgxK82JWixugkfrUnxSglD3VABdFHlWpV4s6O3I/cM9\n727fcTgckJhV4EIyPp0EFgS+U1kufL6MQwgi3FKVYuLtw1TApT3414h4zClMU9MxIqAhxMI3l+6A\nffK5/OyDhNnzVRQFpQqMg3uy95RlFRFE8e7S8b4l0RKttaBRIYh5re5zQmuty8qXWmkxeB0G6hkj\nQSjXA64oMg1KK57Gk1mCPI/tsqbUNIMUUh7jpkJXTQbEqUETiE1fHwh6ahKn33/+fD//eyqKnqNs\n6c98vWN8s1YxjuK1VEf2SBIhkGaApWvEN29OGUQRxQnS3+U512recJZmjZp9xnSd3nfMP3OY/S/5\n/78nLmqNjhRspYly7CDUXZ6gj4EQCx3/ZJ2mM/+mz/W7eHxf7PwWh3dBBG9iZzYdKXDNH560ePKW\nLi1NklpUcqsOQWQ9dV5ISZwggCciNWJc6UMa3nNiSleV4q7sWukuzRTf0kPm/ORbIApql1xeXkfV\nsJG+s9GDZs1mu2W72UT1MgmMbXPmeDzQNGeGfsydVOcCOlIxlNIix1oKJ9Zay/lw5Hj7wNVyQ60K\njIdVWbNZrvDWsj8eCMHL77sR10qQXywWrNdbetPzar3hsx/8iNI5HlSJdYV49rQjdhwpK+luns4t\n57ZhHC3V0EevHRWLti3X1xes1hWn8yN/+dN/wmG/Z7VaUqDozmfGvmNR1RSFptSFUIeMgbLAOofR\nRnjOWuOIHFcPQRms96JA5F3sWGv2hwNK6zi/IpuRFAMyDF8Wkd7iYX840XQtjgF0QdMeOTZHjqcz\nx+MZ5wPXNy958cEruqGj6EscUNQ1xoki2vHUsD8cedgfsGNgsdiIxPU4gg8sFjXrxZLKFJRac7HZ\nsNmuWVYLjocDXdvQdx3rtajmoaAfepyHerlivVzRtG0eWBVBDAmkzg3YoY1ynCXr9RJtouFtLMS2\n2w3WDQTtcIx0Q4vRQpVYLldsN1vqxZK26bh9d8/93SP1YinysqVmY0wAACAASURBVEZhqoKirNCl\nph96SqWiaMMlpdG0pwPODiyqAgZBIIwxLKolZVWL7/s4sFwsWC5rFlVJaQJjOzCcZY6iMguqshZv\nCQ0uWGxMNA7nM+dWnO7LcklVLdGqgDDEZze6gccOf6GNzBnIxZKkREuRGoJ03J0N9N1IFDyKg6c6\n2jFFylgh81AKMbiURGYqBrRRKOUhSFGq8BCiWpN3IpVbFBSlYbms0SowjD3JuC6ESAXrA0a3GGWo\n6kqYRCEVFUlhSmYnjFZiRCrEqifx8ckmnREPcrKjUhhMBUUQxtmTzTu6mguSEH8/bs7pWka2xixm\n+ogMCL0vGaqmonxS3JJPE3z0PVMKF+cAgjjzIWpuIcs8xwxV/vABO8K3+3+Xd6d/i+vtN/zBh/8H\nhRkptMbaMjdIUgwuosiAMWl+Rj5P0IoyBIJSjNZyahqJ11YQlLquGb3DBk+tPNa7SMVylJWY9tq4\nF8iGY0SAwAlfX0XaSxKZCIDX8hxI4etnRV3s9Kb9LFLEIPqpRUuF1L12sQgL8T0SSuO8IGHjODLa\nUSS9QyA4Geh3fkIbpFjXBBW7+D7S0zCRwuRw+LzfuhAodezy4yNVUfZQE2ltzgWOp5Y3373jzXfv\naNsuqhHGPTtuxioogpb93Ad5dmMdnTvkyRRUaYNHY70VRM0FrItkJaX5lZJczYqYGTIqVzPEfUPl\nJkhQoDBPSv/gZ2aiQT4vQGkKaqPBdQxdSx3nS0tjGI005IIX1EvUPqtYWKWuvxMUujQQm6SjHVmw\nyM2oMRZJOq5dEC+nvuupq0WeRUzNj+CCGO/qOLvkZS2Qv0ucfRO4OA77pzk9nwu7ecEjlM+EOoR8\nbbSKf3uedIco7KAEscXL0L7JqpeJSRPvPxMalBodPjaStDZUZc1uu4vNNUvTNGKe3jWCsObPKt9v\ntHMFtySkIahkSN2m9J+SuSYTIIarCMIk5CYVkypLY6e4KUqMst50jE0+v8RHlClgdIhNuxjfJfBE\nU+C8OlNwnS5jjE/P0R6lZrNYv4P1zvfFzm9xpE5HWsR55kbP/Cpm3Y3UlSIksQAZTPaJUz77/amt\nJBQ1leF0HecWCpwPDNZjrXDARYVIY3SBUp5gZ74IKj7gkWYG0u1fr7eUxYK720eOh4bCLLi6vOLl\nqw948eqGi6sdzlq++eYrDscDj4/3HPd7xmHAe6irJYtygdElMmRnWNQ1y1XNMPaoWAwcHx/58mc/\nx55a8I6L1Qa9VtRxjuB4PrJcL1Fa0bSNDPxqTb1ccXF1jdaG3XbLxc0LHr99y/7QcXd/oh9E9Yvg\nKQbZcNuuEwPLAH3fUdclm+2Guq5Yr5eUlaLrTtzd3fHVL79kvVyyKHcEZ2nOZwqteXXzAh8sLnkr\nFAWlVnkIs3MDwVlU8JRGOMG9jwWtMVSLBYWR2ZXD8SSITdOwWCzzOhF6l3SchnHgdBYZVhcc1aak\nXBQ87O84NS3npsO6wGq9ZbVZsb3cgdEM1tL2PYN1KFMQvBN/n9HR9SN4RVVUrJcrzu5IXZRcXey4\n2G7QBHQIVEazKAu8HTgd9zTNCaXEq8gHx8PjPafziaAUq/WW9XpFP4yi5qeFwlUWOiI3HUp5ikJR\nVZqqMrEDKoihqysU0A0NQXmCcnRDx2a1xijDZrPl8uqaslzw9vTA27f3nM8d6+0F50YKrHJRUVY1\nQXkG21NVit1uR1kWdOcT59MBRaBpThxPe9hCURUUuoxZunTDt7stm/WS2gBuwI8jtpNnujRVLNwd\nHs8YLA5AK05Nw+ncMgxeOvLVmqpc0ncWVBApdRUI0YdBq4nbHnwgmWWqEJ9oLZvWODraLlIcrc+K\nVM5LEqyDIEvWOYbYTZZ6WjapoKIh4ejyxqSjNJkKDm8DxijKwlCul5SloW1U7k6mOCXCGV3sCmrp\nYiuX0d6kCoa3EbHTmS4D06b4RLQgTBtzQr1ycRKRbvm96SUqdfHzz2OXNMXTNHMT31grlZUNp01Y\nMhql5qyiaWZA6HKRcpiibUyiPCHPdajZ9YnAGRD43/+f/5a/evcn+TP/X5v/jP/0j/8rllXDMI4T\nGqfT5xc56YkSC1VRossCVUiz5NQ0hEbQFYnTFV7FGWOjCYXCOkvTNrR9y2azwTubfZAUCqek0Ana\ngVeU0TxZK51RCVlLY55fSqIA6XAp0QmTYpxzVuaIvDTlFBHt8z5eIyWIV5wdSl5E1lpcHNZPssZ2\nHDPibaIghsejgiYEg0KKHUnWwQYpyNKn9MFGryBpCBo9eVIVRUE7jLy9veOXX3/D23e3MWmXktzH\nOTcVf6AjFVKjonqVrLPknWS0lviqCjyK0UuRIzNGIugjDcuEQzztfMulkYw2obApOc01dHpOZIXH\nIl7ew0ZDZnyiJUmSXhkDRYEdBuwwUJQFBI8mNdFg7IbZMylrzpgoXBBEzCLEQtY6l6QM5fkNkwR+\nFkNyjr7rcKs1porFTkICQhDPGjdCUJlWmVTb8kyOEV+c0dqIuMg+mEQx5tfvCeYbMt6QHu3c9Hhy\nBMmHUh9GBRGYgERDJzdYgnqayEv1IGI2q9Wa5WKJ0QVDL+qrXdcxDqMUDqK8QojmvHNascQm+XwJ\nPX2CJkmZJflg8BAFU0JcKgGh06amkcuIZ2AqNwSJDOl7qcATAReFFDw+4JUUPio2lNxcmETJXuST\nUgfpc89EtEgjEVOD6Xfx+L7Y+S2OXwfjzQucJw/RrKCZV8sJGk2QbPrdJxX+k3OHZxFSgogdBbUp\nVXL+LfIQeVZiCwFjhGNeVRUheA6HPbe374DA69ev+fTTT3jx4iX1smZ0A2/v7njz5jua04nmfGQY\nB1GmmRnnFYVQA5SSgdu6qjk3ZwIOHYuEX3zxC96+ecOnn3wsksm7HUohxY21jMNAtVwwdB2YgtVy\nydXVJZ999imXl9d4a3n79i0/++lP+fqLL+n7Nkovf0hdFPRDx+l0om878JKIlmXJ7mLH1dUlICpD\n+/0jTVNye3sr16KSjpdQPTyLxYLVoqbtzpzHER/Ej6WoksKeYhxlfkUGFlegDEMvgXq1WmXeblHI\nBtF1ItucrleSuVVKcTye6CLFo+s6MIoffPgD1psN797doTDsdpdU1YLdxSWffvo5V5dXrNYbxtFy\nf3/P6Xhku93hVeQ5e0HijCqo6op6UUFYYceBi92OqjQMfYdCMY6Wru148+233N3dEULg4uKSzWbD\n+Xzm/v6eYbCsthuqukZpQRhWqxVVWdG2MuvVtqJUtlqv5ZpqjbWOpm05n8VUdbVaiWndID41xGHZ\n1WKFsz4ar2ratud4OEqncbnEWc/+uEcVhovLq2gm2or556Jms97QdR3v3r3ldDpxebHj4eGB/VGK\nnbKspFiISIdWiuVyxWq1AtvTtg1t103Uwkj3kMQszihoocj0w8DpdOJ0OrHdbiL6uBaZ3dGinShl\npS7lnMM952VnI8NIsRDJ02lGYxqglw5/8D4nD+PYi4x0ofMMRFKFSpt/oqDp2Il7wnMHyqrEO/GZ\nSCpOqWs+2JGi7/NcWmrgpHhVlmWkF5V453NCm4Z05zHyOZ32ffHx18fW6XdT7RTzhym5mCVF8/j7\nq+eS30pFFEwzH+/jxye/83kCowW2A6349vGPnxQ6APen3+cvvvyb/Ds/+u8Jlpk4xURXSufLFEEj\nMyTDaGnbjuPxOCFBybgyDn+3bYsNNsvUJ2Ust5pii9AkRUnOmCJWb1EoR0sh3fddLtyyBUK6tiQK\nldD1pOiS6+Wcww2TQ3y+v8TuslKC5lgrxrhRsMELRPmEquYTEvR8rjVeY+8dwQp6JYwHuek6KQUa\njXMRVY4FR1XVDINlsd7S9T1fffMNv/zqK47HEwGRpEbF7xH8kwH6Mg6WCzIgnlTJeHpO6YTUwbfZ\nD4xYRE5UXPJ38hGFDHFfN5EWOuUCT9ftnFIos4wBayOK5qcC3HuPT8psRosMuXeMKXYUk5BHMRc/\niWs80VbTPJi8Y5oNjKJL8d77WdLrvcuD+a5I3kgiJpLUYN2s+ZHmeqy1UkdojS4EtU6D/XJ/p88l\n8dHH84T8Mx+L6sSm8YpMiUvXTmJNpPQ+izky3zRL8GfnlrWnpSFUFjG3uCCEwOFw4HA45D2/KER6\nOsXNNCeXBE8UKjJuEuKcK7Nf+TMQcMFNQgZKpUdWrncqytKzGXM/Fe+9MjoKL4jNiJ7L7Iep2SMN\nphDHEAPGxNbBLFwm5El83N4fF/PvPYuzvyvH98XOb3E8H4RLx/OfJVUSmIqXOXyfIOAniysFwAxd\nTh3hRHcLs/dLvGgFmFI6eIVJwU6Sr5TMrBcy81HVC/b7A94Hlsslf/iHf8SrV6+oqxprHV9++SU/\n++u/5Pb2lhAcy0VFVVeUZRHZd8IF1oVmsVrloOac4/b2FheszIMsF9h+4Px44PZ8xzh0fPz6I4rS\ncDwcOJ1OGKPpukC9WrJcLlmtt3z40Wt+/yc/4fd+9HsUuuCv/+qv+NN/8H/y07/4R2gf+MEPPucn\nP/49Pv74Yx4eHvjiy1+w3z/SdW0MyJZXr15yc3ON1prHx0eOxwPGaLbbLVprtps1ZVkwDD0+djkt\ngU45DocD7fkYi8MiJ37jOHGTF/WC1XLN6BybcskQi8uyLNntdqzXG7bbHW3b5s7Y+dzkAGnHkfZ0\nilxqxaIqqZcLFvWKQldU1YLCBFabLVfXN1xe3bBargkusFltOJ3PjL0leNhtdzzcP3B//4jtLS+u\nXrBebaiqGlNo+rbFGEEB2rZl6DquLnYslwv2hz13d3cMw8DFxQUXl5cslytOpxNaa3a7LcvNhqIo\npUOuNculXLu2bRlHR9N2nM8NNzfXQkccHUpL4QWSTCyWq+xgvl5vqErxZTqfG5wNjIOlPX+F9553\n727pu4GqrkR6ehiptGwyq9WKvu9BaTabNavVkseHBusclxeXfPTRh0+ewcvLCzbjhv1+T9c0LGop\nvBb1gsP5xLvbO+7vH/DhRj5rUQjqmlSblEJHl27rHMfTicf9XpKCQuYtTFFAvP8yRDxtwnPUd85n\nT9QwUVbymfIxRpO71FGHkLvDU4KUFLOiAMJMulWpOLBcLyhj5zx16ZNEeFkU6ChLrZT4Usw3/2EY\nniSC87imlKJOUq1GoU00U/T+ye/NY9xTGsRT8MWHpxK9c/rb/FBqygLCLFS+r2R6Eh9nr58nVBN1\na0p6c2GXNv2QkoKIykexhneHf/M97wrf7f+NfG4XfStUZIik+zOOk+x0WZZ0XR+bLoGuafLMW2GE\n7uhdoBlaTsczuhREwhhDXS+EQunJdgcKnVEOKYIDNjq8Z4XEaKAqqlfxGY1rLckdj7MB/smLBlTy\n75g17SDJfKtYPI+52ElNPK11br6l+CddbIfyk7ywhAspttJjlChyKpK8UlLpIJuhmkTJUYp+qPm7\n/+vn/Omf/yHnw8cY/99RlpayrhmtmME6H32QYhFTliWFNpGWZ6MogaYskvpekYfmrbMyu+KT35Eh\nif9ATEBTfuBDRM08YHLCn5P3mHAGpuYnENFhH5sJaS7Y4yOyI3Nm0bTYgDJTboBKxXRK+OE5JUlm\naSc/m4R2SrFToLSoUo52iOtVXjvakdPpJHthlWYGI6pjR1wIoKToFpXBAmtdpuIpLUXvEL1vRhep\no7NnFDRFAXXtc6MwhKh253VcJ1PiPxdlked5VrR7P4tpXW4wzEWkgCyMs16vqaPHoLWWh4cHumjG\nXRQFFxcXVFWNjyIxCdkM8UIksd3U0MiCHLPIFEIUKMl1j0KZEIvviCyHeM+Y7ndqoM0bE+l9E912\nLqOuENNlrwXtMwp5dkkqmyEWVhN6I9cv5KD6vCGVYuPv6vF9sfNbHvOuwa/799+EAD1Bf57+K8mx\nWs3W4bzjmbi7AsGnc3qCDTgcRWmojMYpUQRKQWO9XnN9fYVzntPpjNGGFy9estltOZ1O/PXbv+bx\n4ZFu6Gh7gW0vLrZUZYGLyjrBB8pShp43u23mZstGKqafn33+KfWipO1E3Uwbw2q9IgA3L1+w3W4Y\nh4G+79Fasdmsudxd5HmXQmsKbRj7nrd3b/jL//cf81c/+ynD0PH5x5/w4x//iE8+/RjvPbd377i9\nfcf5fMJ7x3q94ub6ms8++wRrLW/ffMfj4wN9L8Fu6Hq22y2bzRo3joyD+MEs6oqmObHfnzmdjmgF\ni7qij0PtZVninFDZRNJXOuPN+cx+CJzPZ/q+Z7fbMXY9j+aBsqx48fIlBFF8CcsFpdF0Xcfj/S12\ndNmYc71e8+FHH7HeXcoG5yEExbJecnP1gusXL3EO3Oioihrb72lODba3BBuwo6XUBbvdBev1ms1m\nQ2EKRjvSns8ANOeG4B2b1ZLXH73mcrelaRuI6lH9OHA8HjJNUxmhl5zOJw4nub7OORmmdo7T+UTb\ntdJt11rM3lSJHseo9ako6wVFVWdzt/V6w+XltfD5B8tue8lms+Px/oHTKfkFSZGD0hRV9BlZrQSR\nBJQxbDYbXrx8QVmJotX19TUX6zUffPCSq6srrsyVPCNBMbQdp/2Bvmm5ubjgxfVLVlXB6fGRoRsZ\nBpcT6KKqMEUSBIgmwVrLRg40Xcv9wz1VTDBFllXJpp465WHaOFJrYt5RBEimdrI52kxdSsPPIEpy\nJg68FqZAGY9RGu/TILMj08BSXPEepzSusECVkwEb710IYaLoJARIa0EOIrVkcBY/kLvfaY32vagx\njVUpqm3JQFmL1G9Gqmdx8Vd4378mHj7tJMZu+HNVqxxTnycRz873np8lxavnifrzQ4oqqVDmyYAP\nZHnl3ern733t5foL1CzByQ0qiCpf8T81DQQn9ccQAqN1VNUk25sKj67r6LqOYiGo6mazQcfkXEyQ\nEeRDCVpdRiXKvhtl9jKKVKTzQWAcU4JM0uUVdCAaOz5nIiRTRlMV+KhGlorkoqggyJ41xoFzETpA\nBqY19KPsHT4EXIhIgveAyAj7EKLsv1wvXZhIPwrx2QsQVPJ3lA766KHwYC2q71DVFf/1f/Of8Itf\nfhDvyH9Eof8Wn1z/CUUh5qVGF1mU4omCISlBfKqqlddUCIx2pB8GxtFC9MabF+lzhoZRGl8I4sKz\nZzSvx6CedMrzuVJDIzhsiHEheFza9+OcrlVxNhdBLbTR6JBm+TTLZZ2VxlJhI80LlVEdKR5T9yBJ\n3qu4fjr6oc/Pk9Ymq8SlH5ZRMMZ7T4iDUdnsUylCEIVaXci8pffEQsdhrZ/ETpDPbApDWYvxchEl\noX0IlLUwUvpB1p28H5k1k6Wq4xxtur9pvw5a1rKe/Txd7+VyyXq9EmEa72mbJnpFtbmBOTULWspS\nZ2pvmiFM9EhNpNQyfaZEW50KsmlIx+MyNcynEBESch0vcqQXpuIoz/d4n5G3VDBPSLLCR0qmNDLk\nmSF/pvnnUaRkM1H7Enr+r9LxfbHzL+CYupPSfUibSToyxE1aWOrJvyXjUc3TbiekDmGABP9qlfm4\nxAfM2ZDPhfMUWrOoai6iqlqCdJ13PO4fuL+/5+Hxkfv7B4ZhpCgLdKlloH29hiAdawlaosVfljVV\nVfP4+DiTuIXtdstut6XrG9pGvHJMgNV6zQ8++4wPPvwANwzZJK0sC64ur+i7jm4cWK/XMltgNEPf\n8dWXX/Dnf/bn7O8f+OD6ktcffcBiWfPwcMc333zLL37xC9r2TF1VrFdrttstn3zyMcvlkjdv3nA+\nnwjeURaFdCutmOb1vQx3FkaQiqosOJ2ENrGoq+h9onB2ZCSwWm2w9hSlXIlQuyivtZ1sAMlZ+Xw+\ncz6f+fDD1xRGcX+/x3svyliLhSAT8d45bwkEqrpksawJLtA3LcfDicurG17evOLli1dsNltcUHRt\nz3G/5/b2lqZpcNby7u1b9vs9i2pJXdUA2bfGzFSjhnHkcrvhk08+5sMPX3M+7qNPjMt0NO9DVLNb\nZAO5c9vQtB1KwWopqIi1lqbt5OdAWddxhszjAozWkTwyrLMczmfKsmSz2dH3I8fjkbqu+fzzH7Ja\nrTgfz6xWybDXsVqtObct56YhENjutlRVxbkVNcCbm2tevnxBVYoHUWk0lTG58DZxgLbvWvpWAv1u\nu+XVq1e8ePGCAk9V1+iiRJsyo1DGiAhISN4jSrrJLtK0uq7jcDhwdXEpBnObDculUOtQMhPko0JS\nCIHERPfOZc+H9D4J2Z1GxCMtNSYioTQoVUyohkqbuInPuyG4qcBwVsQggveMw0gf1ZbS7IHzcyW2\n4glNLYQQkbop0e0iZUgZHedbFME5+l7iUxHlWlMc02UhHPFZR3Xe2BHJ2cT7TgnCs7gZi4w56yNt\n/uJDJkVoGjbPaA9K5A1Tqzw8Oy8zdSaAIPIK762MVHhyvdM5AtJl/fj67/Ny9xe8O/yN/JJFeccf\nffI/SWxXCR3yUzdURd+h3KxSeIckfH7MjYR07bp+yLMTISImC62wlcOOjkEPjO3wJImtqgrvHG0Q\nU9+27fDeYpfrXIgmiqT3dtp/YmKaiqF0zpzE+4BXEyojg+pdLNQCVRXXcVRzc97HuQCfO8XDIOqJ\nCkTYIq4LFxXukl9QqtxUmCg1IVK9NYqgPd6TZxXLogIUw2j5B3/+e7NCRw7rf8Kh+y9Yb/8HiqKk\nXnjUOEnmE8CN0mxQQGlEoTGp/CWhiVTcify2UCtlD58bhCOzNZrctNNeZcEg7zxeOIDx+saVqyDN\ntQU1K8aVMDyASBXNEqHyXDoY+4FhUFEaW8mszjiiFNHwe1pXkqBX8T7N8g8lipmjtZRa59g5RMPM\nueeV85Z+6LFuUigtCs3oIiqaqLUz+llVVVQLoUE3XRdRvhAVYn0UIgny3MXrVhWloFte4mNd1yzq\nBaYoJyRHqdykSqp0wXu89ZlmnlRZByfNVTsKuyD7ZUFsBHhOp9PsPg/5lhojhqzZP8cIUyOpXGa1\nOEIcxVWZHpoQNln8EenNBcV0H3wsTUJ6SFJNEz2xZI4nB6gpxMXYlhClOU6jFQStJeZEVm2IxXM6\nZM2RY9R0qKd/zWed//m7dXxf7PwWx7xb+Zzi8b7fSwHrOW9deN1RGpHp5/n8z86Z/i09XGkDz9x4\nJQHD2VFyBS0doPVGuoHb7RZnLX3b0LUtfT8wjCN2dNkzoYjUrXJRiTs3ZH6qUrEjoiWAN+2Zpmky\nNU9rxcXFBX3fcTwcxTFeiQLMcrnkw9evIQSOxwPn8xmtDdvtFmMM7fEgyfjlJXVVYfueu7dv+eIX\nP+cXP/8rtus1L26uKUvD/vGepml48+YNTXNktVxyc3PDNooR4D2H/YG2bYAQIXVDVZZScBQFx8d7\ngnNc7LbUtUheGxMH3gtJMoZBgmNZlDlojqN0tVTkchdFSWGgWm9YrZYiYtB1LBcLdhExaxqBwReL\nWjZ4Z9nttjn5KkuhVnVtx+F2z+P+EVBcX17y4sUN69WSEFVivLV89+YN3379NafDAaUUb4ee/X6f\nZwuccwzjAEqGnJvmDEoGeXcXO16+fEFdVXz18Mj93X0uxLIxqDFC84jc72EY6PuBxaJmtV6z2e44\nHPaM1tH2A0UhviMzzZg835O+o7WeujYs6iVff/0Nzjp+8uPf59NPP+N4OFJVtcwaGcMwDNF7RBCz\noiy4vr7CFCX3Dw+M48D19RU3N9d0TSNy1YAK4v90f39Po1pYQVmUbNdritjNu7y4FG8UO+CcZxgs\nw2ixCUXQOlIJInVA2mT5e7go6wyw2+1ExvzhkcPxlJXGQLppLm7U8vcYI2InWWmRPk5eH3Maa5rb\nCd6BjzMZSuXZldTcI8zOq6KksBcKXqIspbhRLxcioJDmJOLmqQtRXsv0ypjopk5220lkSoW8jvLJ\nzjuwU7KUO6VmulbPqSTTfMAszs1CZgj+aQxVKs5sRy66ehrv5ALE+SclETPVSKiniNGTQkcpmfr3\n847oFGNVfN9UlKSX5OsdRv7jP/ov+cvv/ibvDn+D3fKX/Gsf/88s61us16JiF2N91IkAJvnuFNud\nkjmLdD998BBGhn6UdRKva1WKafFoPX03QDjTtX2mlBWFyMArJYPe4okj9gD9sJyoU04SemOMqA0i\nyWqeU4uvS4ljoiISELXJREOzosIma0koaklhLSAFndz36KESUpGlM2UqFY6EqTstKoJpLkX2shBE\n0jcQ6V2JRj06SlOJUpop6EfHP/7Zmvcdo/vDnLAqIyhO33dY6+J8isRkQVKriNpKAmjMpNY1pJkl\nEm0vUdRmKF4IUREset0ZPSXtweOdRkXkOKFYxMgZouS2T1R1RW6DOOeJY31RkS+gjQymW2ejUIKK\nc6G9NO0W2yeUrWzKOU4zdllS2TmGoadcLCjKElMWEakbMZW8bxH3g67v6PvUuJHPoTSIz4tc3+ST\n4/GURYk2htHKzM8wijdRLpADufCxTmi7xvhs4yBNDRFBGu2EPCoVUSSdpuwUKFFYFIZAwXK5QClF\nHxUSE50yPet2tAx2jD5bPsfAuX1FlsOOC9e5MBNZmeJDHlgIs9xNQdb5mzV+lEo0xhj/tY7I4iSV\nHWLBEdwk0S5v9tSXR2vx1gp+NumdBTym90rRLH+ukHJIfiUO/tojNat+B4/vi51/zuMJivOef0sb\nwHNqw5MjTBzy+MrcjXx+zLn1sqDTANrT8yutqasyQrQbLi4vKEzB4+Oew/5A13UMo40mY1YkgKOy\nTHJNr8sKFwNjQmEUimSMOPTiNZAUjcT7Zsn5tKdpZHjdxIKrXtag4Xg6cjwdGa1lu16xXq8zhaYq\nJTGty5LmfOb+7o5vfvlLlPd8/PpDri4vGMeew/6B4/GItZbLix3X19fcXN+wWi0Zx4GHe6GtNc2Z\n4BxGaRa1eNdUZcnxdMIOXUzel1RVSd+3mMKwWa/ZrJbSXe06rB0p9NTFEplU8Zyp6hplCpyJqm3R\n/2W5EA+jy4tLvvrql5RlxWazoa5r+qGnKAzr9VWmEq1WxXp93AAAIABJREFUsknf3j1wf3fL23fv\n+NGPfsTFdkNpNH3b0Pcj/SAeF/vjkbdvvuVxv4/dchj6PicVaWNVWtF1LV3bUBUFVV2yWi8pq5Ku\na9nv9zRtEwsxSWbruma5XKJNgXUjx+OJ5txinceYgsViSVGWkZMvm3Bab6UxBEQ6dr3ZiqrbjPq2\nWCwZB8c4DFxfXfPpJ58CcNjv82xIWvfee7SRAuXm5pqLi510Be2AUnBxsWO73tA3Z0EdC40Kir5t\neHh4oF9JQbJaLtiYFSEW66UxjMPA0LWcTi2nc0c/2LxpeR8Ygsjl+hAypQhFTAwkuVBasV6vxW9n\nUUd52khB0rNH189Q1rg5p83TuslNPj1DwjSIiaNX4F2c/YjPX+rChZCfQ3kD8hqFmat5/ChFKV4h\nOYFl8sfQ2lDVdUw2osljHIRPghoptpi6znLMQtGRIisXIbPP8ITiE2cTp4JnjpykeQM124DnBUgG\neSZ6hUoEjakKeR5X5zFXxZaqTuiPApTPyXO+R09OMDtHbrVKpC5My7/+8d/hjz79O3ntzBP4JHCg\nfFw7z94jo3UIUqziuZ33GDcl0EWUUwawUUijbSNqqxRGmyg4Q57JIoQnxauYyFpBapXc79FNNKbi\nWbGTmld5MD8IMpnMnoOf3O61LnAzKl6qD0P+DIKapDkTFSW9hVoTJaXjazUBFSl+eSA/qCirK8WF\nCBMUoBICK0n0w/GI5v8G/kOeH4vqH0mSpjUGQUqtdfjgZt9RYnuil6b5uqIwJF8r70Uufpqhlc/O\nk7Ua8vWbP5iJYup1wKQmSn4SpvmJORKqjEHrSIObPbcie+2FARFnTLx3szkRsuBJMlpN55XvO8kr\nF4XOFK1hGFjUJUVVUFYVPs4PUsp3qBYLjC5iI2VC/0xp0KOskxDRqIRCqHjdZd22NG0b48b86shz\nM46OgEiXG2NoMzrpRZkSMVxOTJLUZBGkcrrm6bsOQ08Z6bUpx5hf4+RH5pwVRG52D4HZjE8SiYjF\nqNMoY+a3PccLeb2f4lOYhCXkvOHJPJVKMdGDikWjjhRwn5o3YtuT65MUC2eLjoRyC7qTYgtCvU3h\njhAFrOLsd1CkubHfmJ+mrzcr8H4XC57vi51/ziMXF79hkUzV/PsXlA+ThrpCFrwPM5FBlTZsmG/M\novgRVRARtRQdYWgZ5l6LYd2ipqoq2qbheDxyOp1y984ojQvyIMh7CDLkgme9luJBITSJwhQ4a6MZ\nZBwZVQnuN9JFSRLSkUokjuPiL/HwcI/yQVzoq4J6ITB70zasVyuurq+52O0oi4LmfOLbr7/m8e6O\nTz76iI8+fI1RjsP+XlCFceTq6pKbmxvW6w2LqiZ4T9u0PDzcM/ZCszBaUy9qTLx+4zhyPp0oy4LN\nZs16vcQYnRPDhASVpfDjQ0TR3r17J4XASuQ01+s1VVXTdj16oTP9SGu59tdX12ilaJuW64+vuby8\njPfNZ6OyNBi53W7Fk6hpAIf3I7vtmqoytM2J5nymt+KKDYr9fs/+4Y7bu1sC5HM5H1XdCELR0iXe\nidpdoSUxSoZxXdtwPp/l3hZCcxLof8lms4mdWpkJ6PoOU1SCYhUlwzBm2pbSIomsrZVBaaOp6pqr\n62tWqyVNc6ZtW3a7Hcvlki9uv2S32fLDH3zOarXk669/ycPjA2UpMsbDODKOPd476rpktVnx2Wef\nUlYFzf2JcexYrJas1gu0UXk9mtjdc066h2YbHb61xo4DbdMI+uQcfSPI4+Pjkabt8WiKUtqX/ThC\n6EUaVYs6kYoUsBARjXG0+OBzkpha84JuGoKZob1zNANykvhkUF7NJJGVSP8qFMoHbEz+k2GiMSp6\n7MS5lpzsx81/Rrux44gbLaMa6MsObXQ2GZ3T5QCKsmChlrhIZ7TWRv+MqeunTZzb0EWmbyilorJu\n2ggnPnz2UdEK55+pH+UiKBMyJvTmeXwlFkchiaumhIa4scc4mwqojJNPNaeKaxWUqIcxvSb9dfpT\n8IkJ1Ymd6/h3Q0x058VwTDR8CNH7RX6mkqSwClEVMH1HlX8nzBKO6WpEeoy16Dh3QWxgpCSsMIbS\nFKKANtpIZUqD9yoWOn2mps1nCKyTxF3H86SfDclLR8v8T0qW7WjpmpZhFE+poiiksaHBeyuqawRJ\n2OL3yAIaKbnyTmYnIM8byBpw03OgpOALUThBqYSCSCPCjlbQyFJoUcMwsu96vvz2G9rT/8ay+vdo\nh38/39+q+As2i7/LMNp8ZZNyWJqTK8uSEJPAp8jh1LB0cWBcBId0LA6n75LXak6mPZNRcJhuako+\nZz9KhfQcfUyCJkXhASt7aKmBNhaDnkV8nseoHKoDuUGU1M6SoEMeqGcqyKRok5kqrSUeuMgOMMbg\nxoHRjqjYUKkXNZWq6NpW4iOIDUFZonWXv7fEgCi2EGQtDsNI0zQMfS++acFPD5w8iPF7JUnsKEBB\nnPNyLq7zMRfk6XqlQn0uVpBiW2roHM+nrP43/70waxDqmA/BZLgs6y9+luCwLvnYTIal6fqiZL9J\neUSKWanRI/c1xtGIcmplYrNDYQojND1jpMj3HusFRfJmincJFZuK8LkK29OYRlxriT1ZGEOaGfQB\nogL5dBt+TdP+6Q94+qLfkeP7Yudf4PE+Cto8iAJPJDlluE2Rjfxm605Hg0Hv0lpT00OVyn2EzlFV\nJev1ivV6BWiGfuB0OHI8HmmbZqbCIoEuBYDET7bOEVSISEWP88KFtV7oTFLcVJP0rbMUxYrLyx3D\n0NF34rNTGkNZSqfMe8fDwwPrhRRQ5XJJ34vM8HK55PPPP+PVq1fyuVD0bcfxcU/wnh//+Pe5WK95\neHxH2zYoHbi83PHBB69YrVbYYVJOac5nmtNx6lQtapZqgfeO0/HIOPT0fcv1pfjGmAj7d22LHQeO\nR0dVFFxdicyxAoZe+L5FUbHdFRmlAJEELcyCpm1FGWixYLkUZOh0OrFYLDJq4r3PKlnSUXK5s1rX\nNdfXV1zc3uH8yGq1QCmPHTucC3ETMtzdP7A/7GmaPc15j3VOir26QOOAUYY8S0NRFjgVKAqNHTqC\n3+Kt43w6cdjvac5nCY5e5MuTXLZzLtMT67rEBihK+R5KydxK3/ckGkFSX9JaUdfiOn1xcYHWitNJ\n5HRTgde3LX/wk5/wwx/+gMNhzxe/+Dmr5ZJFXcu1PrV0XYPW4sPx8uUrPvnkNd+9fcvDwy390HF5\nfUFZaMaxZ7QDw9AnLWHGrsUozSren65peLg9s394ZLfdUiiFHUb2+wP7/YG+H6mWS6paip3RWtzY\nCzUkdtZJcrGIHHXfd9l3wcYZMCDK1HrcOJd0nZ7/eVwQqpSKCcdMXjklQbMNxTnHOMhgeVWVFJU8\nUyakjd4SnCcpS6VnO4SAj89BaCRRS+hdUgabJwlJdbDv+zxHJHmmeGgM40jlRpm3Y0Ja0iEJCPn9\nU6EjrRT93muQOOT5as1i3tRJlOuSKIGa9P9nSFGIA72zpnlKusVTRT8553QPyIVKAluSy738jsB0\nKelJqFMI6kk8D0wx3qcbCdEmMiaYairaAiqOBoW8duRcPusyJKGa0MfEVal8TZWSRLbXI8UwUpW9\nqOxFWlpVlgxDjz6f81pIqFtKllOn38Z7lTrdYUbdyWiCFaqn89Jccz4QRgthmvGCgHaxE67EdDbT\nvOI1FV+mSaBB1lekrulIgQoiPay1iclZMsoEi8coz2K5wHo4Ng1v7u74xRdf8tXXP2e7+BOWq/8c\nZ/+YqvgnLKu/h/MtXSurxhRmmleJ9yBRs7MEu5/878T0WT67mKwWM9GR9KD+6hHwhKBzx10xzWvM\nC/y0FrVReT8NIamMKYrSA12WPYbYEPFBiorYOBkGi1NkBblEPxZJ/6nAmZ6X6b1l35cCf6LIk4uG\nVOyURUWhS+z5LE0hhFKX7mdS2QuIIagxRSwiwXViXBoIIqDhemkUuInVomITQD6bxKqxLEFZTJTQ\nfh+TZk6VnRd0kpvIPW07KdDSta3riuVySVkushjDvPjScZ420xWfvR9EXzXAhYB3wg4wOppJa5hU\nSabiqCxNFnUojCHeUZIYjjYR/QwhI/8i5JCirSCdiVnT+x5LpFbGc2V67kTuI/Vq5PJpUWnzCq8D\nKtPfUlSfjueFzv8nqtu/pMf3xc5vcfy6G542y3T4GDR17NzM4dF0FMZklbPUtUscX4hDZvHhF7h5\nwEWusVKTV4IuZeC4LMucYIMonxwOB/q+z4nQol4IH3ccGYYxI0dPYXSheywXCwgiLTkFYRNVfyqc\nC4yjparkfb/9+ivGvme5kgS/LCVIBdJAn6BA4zhwOvYYrfnRj37E559/TlVV7Pd7zs2J43EPwfHR\nhx9wdbFj//jI/viIC47tdsPV5TXGGO7u7rKMdfCeKs59pE6oDCxahtbH2ZOe0fZcX23FgK5r2T8+\ncD6dMFo6YnVV5esXQhC0RBmGoefy8pLVao33XpARFbv3ifoRO6GpO/7DH/4wS8Ou12uub66xzvH4\n+Mjd3R11XecO3Hq94rPPP+bVBy/YbJZ4NxAQBKwKcD6fOR0fOe4fGccWpRx1pbm82LBYlOwPZ4wO\nlEZFxRjN0FlWywXn45HtbsNqveR8OvPmm2+yxPAwDLnYHbpe1OIeH1ksFlxeXrIYJiWgw+EATAPR\nKSFMXjqXl5e8ePGCcRw5HPYcjweWyyXb7ZaHhwc22xV/8Ac/pipL/uHPfsrxeGS1qBFj0oFhaHFu\nwIcRrQyvP3rJzc0F3737ln5o8GFAaY91Pe0ZmvOZ8/Ekm7bW2HGkWq6y/tHD3S3nb+U77TYr6rKk\nHzoOhz2n8xkXAtViSaHkfo8x4etHiwtQKqGm1XXNOMgz3Zwb7t7dUpfy/aV7quNzKs9R3/cUUT0u\nraM52iHSswpTFkIlQAZifQi5G5vUq5SSxMU6eQaLoqBQBhPd7UEMOFOxkxsp3jMqxfl8po5Soym5\nWS6XOZkBmctLKnDL5TI3C+Zd0BQvjJLn3xSRF54LAxlmTxQqo3WkxkoyPxdD8BE5TJ3bKdGZ6Dbp\nO3ifyWpyXSAm//pJ3JpoJE+bSokq9zxpSfcjvd7h5F64p9SOdM557J9flxSr02fOr4HMt3+OGKR/\nT9YEQtkiJ9lpXaW1kqh7Ot7zRFGTGY2BTmu0ESSyiNLgpTZYe5DEKhZC6Z77MJlxztekfEmdP4cd\nRZ46qbQ553BIQywfPvlCeWCcyftCSJLMkTEwxkRf6V+9vtIp11GiPlBUk0dciOqUShmqomRwgaYf\neHN7y1//8gu+/OqXjC5A4Viv/h4F/wveTvLZ1lqRk0bmcYqiyEIizjkKPStunBFfolHQanlG5Npr\nbbE2qaDpLACTjpRc5300/jwVMkKLc5FWqzLtta4qdGGmeb1UBOcGVMgqmePgGApRkUzzf9PQPlk9\nrG1b6krMnF2IyMBsbaEECS4LETfw3lEUBeeuwXmHLgxBKVEkReb71st19p1Jz2dSVRVvHBeRGKhq\nRV1XkTIoM1vG62hM7nI+0LedFCIxGx+GEa1N/h5pbRRFkeclM7qZFCGfFInTv6V42I9DFkSZs3Hy\nPhaFedJ1t25EB2Fp5KIPydcUgSqe29kRmxs8cr5lXaG1NF60AlMkQ+Ei/inFjlEK4jVPCrepCTWM\nEYlFx9lP2WfFo07EEs7nM+e2EVGF0dGNDsZRik8vokfO+cgUiMVZIAoSxOZHIgcgIjSyxlKTZxbL\nZk2l38Ri+pf5+L7Y+f/xeH7/M71h1ml8HuDHvs/UDVncUJiCsjIi8Tn0cuKiyJBsWRnS0LcdR+Ea\n1xXbrcwQKKU4nU4cDkfaVoaUi6LAWQk4RVmiorrSEKU0p66SqOhonnZS+n7AORtVnGoJIMPAOPZs\nNht2ux1922UVsNT9kA5KzaKuWVQL+vOZoesotATZi8sLPvhQEJ02oivvvvuO7779Fu9Gbq6uuH33\nHc3pLFS5iwuqqsI5y9df3/L27VuaqIN/dXmZv//d7Z1cq4iaGKNwfoTBy0C70XRdQ3M+5wR+vVpn\niWNRM2rpup7m3Gb5181mg1LkAfAQoHOiOrdeb9hebOmHkbvbO1arFS9evMj3u6oqyjqqwwwD53PL\n5eU1dS3CBVVVc3NzxXa7ZYxDnDIUbhgHi1Ke7WaB1jvW2wVD9xLnA7oo6LqOtj0RAtR1xaIWlTFn\nK7y1osD28hWreontekxRRETOTGsxytwmJaKyLFmv1+hzz6npsMMgUt2Rx79YLCiMxhcFNzfXvLiR\n79I0DY+PDxwPe6qy4vryEk3guH/gcrfF2pF3373h8eGODz78kNEOuLGP82VLqn2BsyPHY8/NzVUc\ntG6pqpKtWlMYze3tWzoCp+ORLpqkbtdrXr58iVGat1bktr21eDdSaFjUJXVV0rQdx9MJFwKL1Yrl\nasWmkLkpGd5NiZwEf0Xi6itpPkSqXNu2LCMqVVcVJ6UyNcbzLOnWGpQoIIY4ZiMoLnnQPL7lrOud\nWnFp8Fnhouxv8oASaqHhfD4zWktVBRZxsLZpmjwvNR++7TrpFK/X61zMZ0W3GGPq5YLBWQZrKRB5\nb4xmcBY9DiitqHQdqZGK5AMEMypH8Iyjy4PazGJfQgV9APVkxuF5TJ1KnOcFyJNDzcuh6T0SMjPv\nZM/PPf8vv06LGtjz352QJkVQ0mENCkK6j+kTpMQgvV/qRj/vkv7Kd0wvTRnIk+EvkWCeDfA771He\n5bVivEgD60Ek8hM1tfSB0ntMfK5tFCpIyXaiTKnUmEMS16bt5P2DrFtnbaZm5aIPKPSEsmWjxdm6\nVXF9aK1ycTenVaXk2/mADR4dhU2sVwzdiFIidlIVFaaoaAdL0zXcPj7y9Xff8ea7d5yaTkRjCqFY\nWu9yoTld79RsKJEeXqDQ00yG9KzS5xKFOZFsD/H6+1yYz7205s2FdOh4XgWTaIcSr6CoA5wNV+az\nJtMMX6TPxWZE3/d03YSyjaOi6YOgyfHeFTERDggrQ/bTcdZsFAGaEMITnyFtNKWq8pxq8skZI/U0\nyV8H79GmiAatE8KSZk+VUnT9KLNQusBoRXBCPXN2zJRGKYKjj1lEWUxRMIyWsetinrFCF4UgOuN7\nBvJnMbKMnj5t2+brN/+96T7piIrKvQjWEQrZ55arleQ0fYcPk1Fv33a5wVSWVfzsVmZ5jXgartcr\nVsuFUNirUozICyPoVqFjA1qagZKLRFGIcSTE+5Nmg4IWNIZALBIDi6qWHFEpuf6mwIcFq7piN2yE\nuu08TT/SNGLkfTyfcHbAuSSSMnkDaaWpigKtHP0o+Kt8VkPnRkJGeNK1e39s/l07vi92fovjeZfv\nNx6xkEmc3CevUYnvKvKCNiuNeEzQ4BJ3usw8/5S0pOq6LAzL5UpmXUqVTbCOxyN9P6CUpixKvAuM\nfsQ6RaUUpa4oioqyFHRmLkdZ1xXL9SZuXEnGssK5lBhL96EsxLTw4mJLWRjefPut/Lw0YtK1WrPd\nrLm43LLb7sB6fvrtt/Rtx26z4eaDD/n4448oioLHx0eUgoe7O+7v73F2pC5KDo972ubEh68+oFxV\nDG7gdDyyf9zzcP/IMAyUVcUqCjFst4LYHB73eF9KIlqXBC8KQi7KW3vnaOJ1ats2J4TGmEjrkqTy\ndDpzPp0jtUsU7E6nM6doLumBUyMBa7PbMlrL6Xjk3Jyw1vLll18yWhvnmBzGFFkEYLVZi8pR19EP\nA86N7C7W0Sz1kdPplJPQYeg5n440zYnLi6s4GyUF2OhlzqeqEoK05PrqiqJYcI+IF3z0wYfstluG\nruN4PIjRqNKURkJA3/d0Y4sCNtst2/WaEDz393cczx2jFVpJQhMDsgaWyyXX11e8fv1hRNpuOZ9O\nnI5HlIKXL25YLmq2mw0fvX4N3vEP/+zPeHx8oK4qhqiett1sqKpSwqqXIt/HjfHx8Z6+bUUlsBSK\nTt/1rCqhZNlRzFU32w2vX79m//CItQ95La+Wcg1wlr490zYdhdG8evUKbQrK5ZLjwzI/k/lZnVGQ\nUqJEnIt6fHigKktevvqA9WrNbrejaVpRdxuees2AJNABGXJ1cZ0lURGvyMlDol6l5FNF+kIIPrqk\ng+4TLUJRVQWlqVkuU4dVPG9qpSiaJtMRlZmGhEFQiMvLS7bbLcM4cjgeORz2nM8NiiD00Ojj4rzD\nOukwWmtzXDKmiPMeGuLnU2HyspDk0aFCol7pZ8WczoXB++gpz+Mo+Y48jaXpmk19dCJKNC9WIlL+\nzyiq0kB+mL0u+Om9tNZ5DsvPi6sU18NTqRnJjqZ/T3Q3JZWbDBDnD5G/HYkul18Tv/tTemTq1k/U\nnTT7pZ1j337Gn/7sb/P1/b/N5fo7/oM//B/5/dd/H2ttFrtIBZlRmsKUsVEV5Yqdg6BysiziC0x7\nWvxaqbBhhtrNrmxc65Mi3HNvEKUBJ7iaQ2OUrClLQOkCU1boosKpgmH0PDweeNgf+O7dO97c3fJw\nOMSZnFiwOI+eFWUTkkH+WVGIAme6WT5E5A+ZG0x78hgpqfNCV/beqVh+fiR6nkr0JTVJHRsn9zsp\nPQaFoJveiyJYnE3JcT9+L7mmEqtNIU2OphFhl7IoWEZz45Rr1PWCEMQ4XD6Ljs+loSzBRmGZLD5U\nlWjnOZ9bqrKkNDVKabwbSRooo7OZ6krsB7Vti9WTgmNCs4yWAtc7RwhO1NGqEqzG+YBShn4UcaNg\nFOAYbVQBjOa9zslASVFVFOVk9pnVApWiNAV1VaO0Yhj6aKsxi9spRhAw8TUqCjslZoPRWnzDtMyg\ndW0bUZkJtUt/ehf9oYKnLArW6xVVWQFeCjonKIrkZWKsvqjraEItxZZ3jnEc8OOI9oE20sJtlOQW\nxDcqvRYFd4+PjIOoyCltqKpaZrHrBeuV2E3YAM1g6YaeoR/YH/acm4bTqWEYR4ISVGcMgW4YCFqK\nY20qzGCFMmen2fHADJ1UgTna87uI6sD3xc5vdSRawvNjDu89WRAq/8/T3wsThSMXUFoSm74fKZSK\nSfxK+Nl9Lw+FtXkovaoq6qpGG421kwGd1qLypVV0frYObWSokmEkhDSnU1IUiXcLZVmwWC5ZVDWP\nhz3j2M/28dT5VWgtneY08HxuGo5HkULebXcs/yl7b9JrW5rmd/3eZnW7O809594bEVmZlVWVyAas\nKtXEAsklfwMkBgyZAQMLgSwx5AMAY08YIDGBCQMmjBCSaWwGGCy5yq5yuSozMqO7zbnn7HZ1b8fg\nedfa+9yMdJUzLVspxZIibrfP3muv7n2e59810uzc3Nxwd3eDNZavfvoFx+ORdQ69vLu/4+7+jv1+\nT13XeDeyPxwk0wTo+w584JNXr9BK0Q893djTdh3dIGFn8vmWqmpYLMQW2WbhZlEWrFarHA4qeTDW\nGtabNavVKtN05OGxWq6oKqHeoabsEqHfCJXhPEHt+55T287WwiFFNhtJV+66jn7oRbcTkoSwBc/X\nX3/D4XBks9nw8tUrNtc3NM2Sx8cnjscjfd9TFJbF8gd4L+drGMac6yAamt1uR98PVFXP6CSrZhwd\n2hqZAFX1LEJXQIqBqiip8yLYno70XSdC42HIzV/WaKXEohG77LqpedpuOe4FHfRRUZSNHAfn2O52\nlGXBYrngB9//Da5vrlEKHt6/pz0e2T59oO/6HNRWcrVZc/fiBqsV//RP/pif/fRzgve8fPmS4Bwa\naUa6rhOdjDE0VYUpC/bbLfvdDoWiKitGN+brW/H9H3yfzXrN9mnLU86IOh7FDr1YCv3jerNi2TqG\nrqAqLWPfklLk6mrDYnOFD5FTP842zTEEgo9ir6vOC50UhIqohEKwPxxyqvY1TdNwtdlw2B84nTqU\ncheF+Pkx8HEhOFnQPi/cc4GNFkQknR0dQc6VGl0WImtZRCtLgdAhE0LlKOqCumnoJuciPSWni5Wr\nMYb98cDN7S03dy+4eXHL+/fvefPmDcfjEa0UZVmKa+M4itmHMRRlKWhPtgeX7K1smkCYM1n01JzM\nDw/536xXmIvcXzw0mmxx5X1yA3jxWJ1Y7DOF7RKJmYpSOfDPCtNvQ3ee/b06v++0vympHCx6YaqQ\n1Jw/NL3X5a9M+ycn9flnTv/GtDLIn6QQ+/n3lO/EbLIgNJSp+Mh6hYmprxRDqPif/8Hf4TRI7syb\n7Yb/6e//l/z7f/0/49Ob/4fE5KonH220aGPQk8nHKE2DmnKdJuILl0tZpjGm6fQy5VXlAyiFfAgU\neWItzX6ar8lJ5C2eYxq0JelC0DKt0LoAWzLGRNe1HPYtb96+5Wm343G749C2uBDQ2qI5051UONus\nS/GWf53ONRd0JrQQQZVYzk/OX7K/EzJ1gd6ln79uJvqUOGGekZAp/2lCXmy+gH0Mc0OTYpo1cpc0\nT4Waw01tRjlACuGUFMPoQGmMtvm8Z11ZHtQ0VS2XXRItcAxCHS2KkpiY82QE6RH6vHN+RktEI6xx\nGekOIVHVNav1mvL0KN/DOVKZ5mbO2pgbjqxjQZq9ui7RRtMPTvabRKkKyqrGGKFbNcPIqW0l7y0E\nJDxYHOOUNjg/zlRKcR08o4KSJWZIUeiZKmcPns+x3DMppikPdv7u0/kriwKtFzCh3SHMSNh0Tgpr\nWS0WWGtED1zXWW8qNE0FlIXlarNm0dQYLdf8MPS0p1YGCVFcCoNzxNHnDKVzgys6ToMzI1ppybRy\nbqYxDkNP37UURUlZlBRlgS0bTFWzWS5ZvnzJMNzz/uGBb968YX88gpJj2A8j3jt8ihgkYJrC4L0j\n5JDzkFSmPV5S1y6HKvxabt81O7/E9vHi+BdOJX/Bz8OFoxET5ztTFVKiXjS8ev2Km+trYoxsn55w\nwwgpCWqSgxZl4iFhWMYYyYopShEIJrIzi1zIQ84K+JhrHgJCabA280Ll5r0MaJSiT6gV3geKuuDu\n7o4YI7vtFuc8q2XDerWiqooM78rE/HDY8/j0yDin7JpQAAAgAElEQVQMLO/vubu7Y7VazWiVtZa+\nayFFFk1NsIb2sKf3YnX64emRWBqSVpkzDUVOC1doyrKiqmqsLXCj0HJsIdCwOJeIG09RliyXC5pm\nQUoyAavrhtvrm0z1C7hhYMzWnIvFAq0l6HKi+HRdJ1P0DGNf12uub24gox6r1YrlcsnT0466rti9\n29P3IshcbTa8fPWa9XrD4XDi7dv3PD7KwvH69Su0tvz5n/+E/W6fudJSpHZ5Sq+UYbfds91u2R8O\nJCQBOipouyEvuieCh7KopNmpG2LweKczTdJQmAIKSNHjM0JzfX3F5mqDc+K21nc9KUYKU1JndDH4\nkRQ8V+sbXr1+JSGxMfDVl1/SnY7UVUlVigtcXQni1jTihteejvz5n/0Zp8ORxWJB9EKxCt7LFC0X\nanVVc3NzQ1nXvH/3wO6459R2tO2RLmvPlk3Dzc01r1++oipKYogy0drt6U4nlq9WACwXCzYrx2A1\nVWHZ7Z5wEZIticrQDSOHUzvTPX2cXG5inrqeSUUpT/uM1hLemI9RVclxtsY+K1QvKUzTfT/d77Kw\nmXlBPk8gL9zHOCMM8++T0Jec84xmFDpbWYorUimi29V6jdGafuhpu3amlU6DEued0Pi++YbVes3N\ni9vsarjMKKI0f8bK4AOYp81aS0idCxIuqJUWVKCwkKlIMUbREH3UyD2bhM/i3cmtSF1+SylW9JRz\nktGKXHBOg6J0fvll1/DseCk+OoYXz+5vnQBfDJ7O5/D8juLeNBW4z2TBz97/+T5kvVR6jj5dfMjz\n16szAsTFc1oamvzyS4QqF8zkz0FrfvL2b86NznnT/MOf/Hu8WP7fMAXG5us16qzTVDqj/FL0RwWa\nyTUt3wkqzY2kSpEYJEhYCusp2yNPhzN1KcSsydHSNCVkmdM5gFUrDcaibCWGIEpM7ZyPjN2JU9uz\n3R/YPe15+PDIqW3p+xGfZNpttYL8e6PtRZMqjfVEXxIwR3Z2otQpJYYbxsr5VQjt0miNKQqil8FX\ngqz7en4dnTVKKjuaTc58kRQSMOnVxAHNTjqxKVcoSbYMyP1vL5CwSQZmreTeAaQQcE5+Rs4VOBew\nOgo6rgw+OZbLFW4cSTrN+zYMg6x9nIv9iS4nIdJGsuSYqE8JN8qfu74jpiRDQSfDpG4YGNIwm9cY\nM1nCR6IPJEQjaIoClZvBcRxxfsD7qf4QbbPRMtyd3SKBpESH6XMDPq3BKjGzXC6HzxMiP52j6dbS\nSs3U4inXZtJyDX0vFEMtKE1aJKIPDOM44amQB0RNXbFc1DnDZ0HT1BTGEINHGUNdlWzWa1arBUYr\n3DjiXM68yjbXIYoTYHCeMLr5WTQ5H077H2MiJC/sn3xMpmdo8F7YHrnhK+sF1WLFYrFkUVUsFw3q\n7gWkSFWWdH0vQ6pljbGafvS4rKWySqioY/QUVoLNvT8fu4+P5XSl/rpt3zU7v+T2z4OwL1/zbT93\n+eulmHOaNlkNum64utrw4sULoR8NA13bzsXkZnPFYiU6g7aVossPYvG7WC4oC0E8tDaZly3pyV3X\n0ebCuc3ObCaLWsl0hdEJvzaFgDWWZlHP5gdKCR1mvz9ye3vD69eveXh4yNN2zXqzQWlFs6hnW8zH\nDycO+z1DLxMbrTXXN9cYo9nv97x6+YqmqfHjQFNVeK2I1uC6lrfbJ/aPjxilePHZa4q6EcpXFMTE\nFgVVIUVeWZaM48jD+wcOh4OYJBix63VjT0pijqC1mi0sAcqizE5kCT+O9L04pU0uapPQcUpX7seB\nkCKVKVgsl1RLsZU+HkUof319zWot2p2u7/nZz34GaF69+oRPPvmMly9f4X3g/fsHTm3H6AKr1ZKb\nmxekoPnjP/4TnPPZaKLJZggDboxUdUHXjuz3Lae2z/s9cOoH9oeD2I4OnuAS1xtFU5aAGE1cbTZ0\npxMnc6CpKuqyZPTiqrZYyIPej47T6Uj0ntVqxWq1QutCMi1iJMWK16/u+dGPfsT9y3ucd/z4z/+c\nL7/4GS/ublgVC4IfqArRhNRlgRsG3r15w5/96Z/y4f37mXoxTxBRYgpRloTc+C4XK7TR7Hd7trst\nT9stu+OBSOI23xNlUcyZH/f391hj2T8+cdztaPIUNCaPSpHCarRKbJ8+0I6BaArGAN3oGeO5aJ3Q\nCCnqVf7OUegYUa6fspTgwYkKWdd1DgeVimhCgi4tQD9GdWThiqQsBkc/H5zIa9Ls2PVxenaIkdE7\nGMgZT0ITWayWNItF1lcI4jE5AQrNSehogxsZnka++OIL1uu1II4vXzKO42xoYrLFurWWtm3nZskY\n0YaMo0MjDX+V7xMuDArIzcpMAYkyv1YZ6ZZjEp4VjtPEHyVhhaCzQYF63uyEyMxCygXspQbkY9qR\n+uhZfPmaS27/uVDPv9dS7HzbGGvWWly0VJfnTyk1uwROje98nSV5f/Kg6xkrQHYkF8Tnxm6iv+kJ\nsZpQi9yETO1jJDH49bfsMQxuRUiJwTt0zFodBNnJvdW8r5PNrUQgSfGu0PPnMu/T1Oxkcwl1Dg8V\npCfSj16eo2Uu3Eh5CAU6cTYsiPI+IcY8iOjYHU7s9gcOxxNdNzAOThpOa1ExEjg7y6ls8JMywhJj\nxGDOzQ7Iv/OxiYXBcp5ea2MoqpLCFvShm8/v/J21NENiwlM8091IflNisuSemladEtrYqZOdhyhy\nmaT8uZIXpkhzhhnkRj/vr/cBh+QNpSjDvzb2UvSWMnRxo+S9DX0/N2SjGwl9fNYcyNpm54K2aRZ0\nXSvHN1t4hYzWHY4nTm2Xw1eldOz7npM7MelalJqczDLClSClKeBSvoLSojs6Hk/4sM/XnNguF0Up\nA8nVCgforqdNCdcJRViMNcx8v/hsRz0ZFZDPYczN7mVm1DM9j5KmUo6nY+jz/CA1Qk9bLDLdzDHZ\nsNd1TVkUeDdSWCMB7DlQO6pE0oqmqmiaCj862qFnGISiHmPIDX22sga0VRT6bNN/eX1NmVIxDzEE\nXbXzoMw5D24aniVxCO1HjrsdfXtkfXUl7Jnba6qy4PFxy+PuibpZsF6vafuB3f5IP45Ch7aWLvWo\nOST3/AyT+3p6Mp1jEn7dtu+anV9hmyaCv5i3mwueb3n99DNVJY5OU9G2WNRcrVeUVmyf3755w1df\nfokbB1wuQFarlQgQTy37vUz5u7ZlsZSi5tS16Mz5rKsmF80LVM7AKKsa73N6fPCUppxF8uM4itVy\n6HHOcX19zaff+5Sr6+vZDeV4PFHWjYSOxkkwbVivV1xfXzMO7YySnPwgvN/B8fT4RJl1Fk1dC3VC\nJ17e31OWhWS/HA8c9lse3r3l7VffsHv8wKJpuL26Fq5unjCHmOhHh9GWpmoo8nS76zqeniYtj83i\nyCTao+yWMmWx9H2fG0XhuRptpJjQmqZZANLA+GwWoJSaH6zrsmS5FJqeQ1zhxnHAFgWjE6FgWZZ8\n/vnndH3PJ59+j08/+4y7uzuWS9H2XF3fMLpAUUjWTkyKH//4S3bblk8//YyrjLI8Pj5xOkr2jNYl\n4+CJAbQqUMriHLSngWFwLBYFVbXk+uqa2+s11lja04nlq9dsVmtO2YJ8GAasUZTGYmtNaSzdqaUf\ne7q8QC7qGrTG2hLvI6fTEaMVr199wuvXrzDW8NOf/oSf/exzFJHrzQbvnaAzdSUwvlLsn7ZsH5/4\n8osvhJa5Won96DCy3+5IKXE8nrC2kAUhJoIPHA8nbJ5UjqNYbWpjICq0snz48IHTQUwZPv30M+7v\n7vniJ5/z5eefc9gd4A62Hx6xe0VVWMrFAh8MNiba0XFsB9rRoYt6XixTEoTTGkPI9/C0oEx8dGuM\n5FM50WfV2dnMFtIU68HNDUm6LPT1ZVPFvBDriyJ4ojGkJPRIPdnQy1Nlfp6kFDOXPnFSJ5qmwhrD\nfr+XPIvctPh4Tt6eirLROVR2d9xut/z4xz+mLEt++MMf8sknn3BqW4ZxnDVjwOzG1fc9TV0TlcrZ\nFzI08IUMYeYJd6ZdfOvCeDEx/Lnn59QUTIWoVmcQKDci+QefP4sv/v/xM3gqJKbi8tu2S2rx3Fhd\n0J6eoW3pYxjp55F++b0iV+/ApV5oMkxQTGf+fAymz5iO0bnRnZuf+bOSmCil57baKSV+48X/gVJ/\nm5SeL/E/uP+7khuVIjHrR6TximJ4k3WF6pneSWh8QumKM/UMlY0aopRIk21x1GByYSY0P8u73ffp\n3D0/ePmnNGYUilqufkOMBBfww4CLAz4G+sGzb1ue9gd2hxOnrse7jBQYQ9nU4vzXd8J2UIqqLGZH\ns7nBzI0FSeXBQczowLnZeZ5Bk8+QlgI8oWbUTK4/iWsQ3YyEMU962klvO+mQFKJJiyHgBYYBHbIG\n6mx3PjXxftIypcmEwONcmPcxxUtzB40tC1IUjREpoZWmqepsVJCpb8bOA7vROWmUnMsapZgbUEHG\nlTZ5cDNlMmmMSbOJjdCrPXW9YqEW+ZrTs8W1PF9Uzv1LpJSF+DEQxyHn+SnKomBZN0LRHtwcreB6\nEddbW5CurylXK8qqlOFJdh6c7JFTvkdTSnP9IUOmjCj6QMr/fom8TdvUwISsKYohMLQdhEid4yNk\nXTrK/i6XEqbtxBWzTyLjtwo26zXrzYaqKDBW1o4xyHA15WnBNNAw2qDzczjGiBsmNsZkNy2aLe9H\n+mHINPY4D1zFwQ4mI6mYImS3RB+mhjPRtSe6nG1XGsP11QptICSwRUVRyBC06K3Qc3NMhHfiAKun\nIdxHz7jnz7dfr+27ZueX3H7VEz4trm4cqZuGMjcbQz/wru8otCGlkGFQeZg1VclqtcqIycDpJOhM\nSomqrihKS1LiKBXCyDju8c4TY6KuJSzSGAtK+OchBLSyVJn+opTKU/cCYmSxqHn58iV3d/eg4P37\n97x7944+P9zs6opvvv6ab755Q9u2bFZL3r59w8v7u/nYjP3A6SiZLiEE7m9foCALvMWhxBjDfr/j\n7du3vH/3hu3TI+/evOHtm28otBZHMK2EyraTxWcY5AFX2AprC0JM7HYHTscDp9MROAeDheAYRsn+\nsVbT9x1lUZPilI0inN/1eo3VGjc6hmHEjX6mCQz9mBcKKcCrup6djZJW3Nzc8Nlnn9F2PR8+PLLb\n7THG8MUXX7G+uuKzzz7j008/Zblc5WLOcHV1zcPDI5vNFdfX1/TDwNPTjqZZAZr37z/w+PjE4SBZ\nNUVRkGJPjImyWGBsRYiJru1xLpKCRlFQNyvu7l/x2atbFIo3b96QENvo40FQmxQDp37I+Q2Z9qFk\nIR2Hgd1B7LzX6zUKTZftQddXGwlITZH37x/4+uuvGMeB+/s7jDG4cRBr8cHjnbj1OWc5nk44N1Da\nQoJls9NTVdVYbSispbQFt7d3vHr1CW/evuGf/rN/Rn9w2LJk0Swhqax/UPStaHzWqyVXmyy0zwW6\nc46YVbX90NP3EL0s6iE3LNpAvajQZUXvIx8ehErYdR3J51BRYyjy9NYYxYhQSIOTZIPJ3cwaw2LR\nMPQjh0PL8dSRyPbA8XkBntU4c4Erx/081fv0e5fibjUX3pqcyUVEEdHmXFQo1dMsGuqqpCjOlrA3\n96BUifdDFs7KewQvtrJVXWaB8hueDgPX+x0//OEP+d3fv2Zzc8fnPz2y3x8Zh4HNbSAGwzB6tB4p\nbcLahNGB0nia2lFXNTbf91No4yTOVkpLDg6TAHd6nf953ERNiJCYhczITnZ5SzExhdHMJg8kQtZK\nKJhdxs7ojGzmosD9+RnV1Jj8YjHuVKQCGF2c/z4X7s+RfXIye/rW9WIurDlTRc4oV7Yyv/j8hOgu\ntdLfijVpPdFfItd8zn+w+lv8o8//Q3xsUAR+4/7v8fu/9T+iSMRss335NnKd6ZmubGar6wmgStMH\nndHLlIgpzPsU4yQElybexZK/+0f/EV8//lUA/uix49/5K/8DP3j1DzFakIDBOcI44PqBzjtciPTR\n4Rkw9cDCeKrNVCxKyVKWEaM1zkUGJ8emriPWakJSmYoTs7Pi2e0vZq2MTPundVwaoIv+DmMMda0g\nJcahz4V1dsiKEWPF3l/uNzdbtcvJS/k6k5DMFOS6UtpT62ngmTOIsnV0RLKstJZGPoSEGwOvPg3z\nfosrnKzvLhpsKbRAGcYLJas9dZAShZEg7+VyOVuiS/OiZt2L9x6dncFiRrBDCDk4epCAT9J8L8QQ\nGZ00a1M0gzGGMIQZNZkYEjElCNlcwQdB2eTJS2ELBu0oiwKyFg6lCSEy5OJ+Qm1QirLK9tnek7Jp\nkiBwU86ffH5ZlsLa8G7OL7yk6n+sj7RGkOhpcJCSRAZMP1PXmdGS18gQA8FFqtJyf3/Py5cvWS1X\n6ATj0HNqj6QQM5PkHHx6GSKttZq1jtN+TXQ658/6HTmeEmRqrSGR6Ib+mQW8MCMKbGFz2LN8r6Hr\naYMnRo93okXW1rJsGlwIDN6jCNKcmQJlLc1yQZ91szDBes8bnDOV7eNhz6/H9l2z80ts86TwYpL2\nz9ueT+OeOwIpLfDqkFLWVTiUSuiqZnqAKSVC/EUjInGxLT7Rdf0cCjjRQuRzplRk+fuYHaSmRVxp\nyYOZ6HP90OP88+mI855x7Hl4eODUy6T46emJU9tSN43YBK+WvHv3ME97y6KkbY8UhSXGlBOTOyk+\nY2S9XnN1dcVisaCua25vbinLkp/+9HPevXvLV199Rd+daE9HEatrRV3XdF1Lk0PAkrFitqDH2TxA\nZR2FNZbCClK2WIlD1qIp6bsTzo2QLSVF7GlZLoVqNXGWx3HEJ2l2JsF6VVVYa3l6eqIoBWGYBJIT\nGmaM4fXrT1itVrx7957dbp+LbjVTiIpCKG+2KDOEL6jchAA8bbe0p47CVlxfXzMMPQ8PT2y3W2KM\nLBbLzEVXHI8nirKgqhY45+kYMMZiTEQrS10taOoFRoupRQyBvuvYdT2Hw2HmPTfTeVwu0VrLZCdn\nXBh1FvhKCFs2wygKDoc9fd+y3W7xzlHXFVMI3kT/M1o42CGI1fFhv6cwBq0kNM1aec/Neo13PvPE\nFVVd5e9iAU3bHnl9/Qlt19O2Qw68lBrw1cuXXF1tMFrc/E7HE9vtkyxW+TvGEFA5D0PcdiwhQKES\nqijABfatnC+5NxVByWR1suw0xuD9iDVGXP3yYlhmdO/65oaqqhmGkaqq5HMnfvWz6JWJEpUyJ/88\nrT8eFEMP/8l/PvyLPIoutu6X/LlpewP88fynlz+Cv/4rvuN327/u7R8D/+2/7p3gb/K//yv6pOO/\nos/5VbZ/8fu07+F4NGym+iHTCGNK2eI4OzumSNd3KJVYXN9gNHOOm6BOgj5rreecJO8DNtsvxxxG\nKs6kQZq3xNzsTFpO51aoRs/7MjdL6ewGmPKaOlmVi45Jib7KFNze3lLUNfvdgVPbSa5PHjpKMe+J\nbgQtsbzGGKq6JsXIOA74cTxnDGqh1i8WC2xhUIMSY6DcNPxczlVKMvwxCpJ87kRfnr7n8XjkarNh\nuVplV76RlCKbzYbb6wWbzYaqrIhBwpbdmAOmfWAcvBgk5VptCqAGOR9VlSiKdGbS5NdMjda05iYl\nCKLKYYsSgCtI6rR2hOiIY6AwJVrZZ41QcJ7T8Ug/9FRNQ1nV1HWJO3WSa+cGYlKslwte5IiMn33x\nJX6MmTp7NtC6PD4ylLkcyv16bN81O7/E9pdBdC556PqCm31BMpf+OEOoGUQnxYD3jmqznieZIE5b\nZV2TlKbrO0YfQGtMoTFJiqiqmmLYM00i92DG6Gy9mUAn8X4vbZ7En52oypwXAonR9XRdiw+e3X5H\nyBx9UqTQhlWzoNCa6AbWGQFaLhacjkdur2/FxWkIDL3Du0hVigapbhqurq+5ublm2dS07Ym3byRz\nJQ49oR8Z257oEsbUKFMRVcny6p7yesUQA0PXo0yByhAuwUPwYvdYalZNxc3tDS/uXjBZQgrP11CW\nNWVRU9YrirIiuJHd0xOH/YHgPCaBG8fZ0c3qJIFnwUHULJdr6uWC1XpDXS9E+3A60RwPYAxRKRar\nFUlrnAt8+hvfJ4TI9e09y9U1x7bj/fstISRMuaSsB6HS9SeIgU/v7lgtGp4eP7DdPnE8tTK5CU7S\nw43B4dHGkNKIY0TXCuUiKgQW65LluqSuLARNfxoIY8B3I93hwNidSHFEq0izqLl7cc3V7U2mWQXa\n/khMJZUVQWmlLeiErc1M2yitIowDeMeiKLAkGD3jscNMqWXk/OZs1dlUJWHoRXCexcrrpeTq7LZ7\nUNL0nU4dw+h4++4Dp3bIltcl1lYy1Y0DyUNdNqzXt1RFyfFwZLfdZcvrE8MwUrgq3zkaTIkqSpIt\nsGWFdR7tPCl4UhoBj8uLso+I1TBapo4RUlAoCtCJEEZcABMV2hoCojGp6oJmUWBNRCXHqikZBpcd\nieDfCAmVszrE4SpTWKKXnIxv4L//Txc068h014ecx3GZrE4M5wmbEoc4Y0zOhrDUhdiwziHFStx7\nJuqXnrUdmX9tDVoZdDY6uH1xy1/5K3+V1WrFw/v3fP3Vl7x7eM/pcMJ5J6ixH2dtgM1IsUpiLFHk\ncGMFxOhzNke2nM5ojOzXhBhchFP+gudomooVrZ9lfE/UkMvJ7JlbLq+YHtVpet4yOTNdDKE4I02T\noH76GXmGX+bdQGLSUuR3UuR3zPvyMf1DnV3kZqpbfj6f92BqfC9/8vJfMyVOCWolaFDM+ysak4/X\npTA9/7VQX2ZdiFaZEjvlqJ3pdagcDBunOAJBgaIX5AFUzh/Us3boklUYI0yaiZQSf/Kzv0U7fsLH\n2+v1f8ey+IcoJdd5DBLim/IxUtowjCNDpi1PtDmtZO0qi3Ie1sUoeXNd11JUBVYbMHpOoDcZnQo+\nzDPp54GUZNOe6d8V1orTlVCeu1mjIwVmRvYyMiTHSUxzpjOglNh5k88TJLQyVIWlsAbnvQzgEKMd\npgFLdtubEFjnA+1O8dlO8VsZrY6ZPpiSRiWLthqVBMXyQdwt+2ZgtVqisn1zyporYsBHQVMjCedH\ntBO0Zbr+lFLYopTco2yHDGIW0XU9bTcQ5fGaB5viLhaTz0ZAF9d6EgfJEANktNBYRVVbdLkiEXHB\ncTy1uKHHOU9EUYSCMha4bK5kjKG0Bl3XaBJ9brCmQaV34iZW2pKqqAkuknwi+YSK2S1STa6RMgSL\nSoZfZ1Q1ZMRPBn19bhync7hYNNy+uOFqJaHt4zjS5xpJ5+JuCh8tjSIqGGOgc45+yAHNtkK5xDCO\neC/Mh9GNdG3H6KS51Dm7TGVXuUKXQp3WiWQTVSnoXt93M5I7pARKjF5MWRFCpHOO5Eass4LjKo1N\nwuIorKEwmrYbaA9b6qrg/vaapw8PBN8xesn1iuRrLT85z0/HX7/tu2bnl9g+duv52JTgY6RnnibM\nL8pNUG6A5gVLZyFtgs1mc+aVZr5qiJF+GITWpiT9mKQyPK2pS3PmHzvwyuc1Qv49e/lgrKGqSrTW\nODfO8LueFoAkk4zpAexGQX3KnEbcVDXr7PQyDgOLpuHl/R0316KraZqGx8cnhmHEmAJNwhotNDoQ\nxxitOZ0OPLx7x2G7ZVFX6JgY2hY/Ct/f2pK6WaK1oV6s0VXNMHagDbYo0THguw43gi8KggaVIk1d\n8fLujsV6IRQwyMcqEbzQYrQpSChGF2b4VqVIUxRoJftbZDTA5/csqppmtWK53lA3SyKKoe3YncQV\nbX8QvrEtCgle1YHf+P730drw8uUrlBYntQ+PT1hbcnV9TVU17PZHTm3Hqql5cXeTgyN7QvRAICZF\nIojtrxvRVoT3wbu8iAQSDqU8y2XBzfWC5aJCeaH7WG1ojwdOhwNu7FEktFVYq1lvViwWNT4EFsuF\n0B6ynankyiRccijLzGWuqoqTd6QYMEp0P6QckIuIqI0+J1lXpYS4uqEXKkKeHi5XC4zRtG3LarOh\naRa44Pnw9MTD46Pk1nif7dGLnOsi4YLr5Zr1aiP0rnBg6EfaUzc3OzqHe5qipKhqbFFiipKqaXB0\nuK7n1PX044gLHm2EkhSjON14H7PVqzQ+RltxJEvSxiUUIQntYnQjIMFskpwdqAqDRvF46jgBf2fo\n/+IHy9O/0GPoF2y/6nT7K+AP/xKv+0t8n++27zb+i3/Fn+f/4pf8pbb2X9L7/GW2vwzaI4hvC3zQ\nmgiylqk4GwtJ5ynaqnEcCaGRRltP+iqyKYQ0dSiheckQY8y1jJ0bVaEoXmiOUdl0ZyDEKZOvwVqh\nlQXvc7Zf1spYS/KR5F3OzEloG7PlOFgl+T5lWaBaYZic2hZbVOI0WxQMw0B7OlKWQnkXgyE9s1Am\nzU7wnqEfZABjLaUtCUYGQykkVKFm/ZCeaJYZEZqYDsDc3IQQ6IYO58TxcrFoZiaEMZqu6wSN6Tsm\n46NpKGWLApcRpdE7fIxiha8NWhtiUrlZGXCumwc5SpnsMJfdLLWwRrBCe1eZElyWJTEyazOHYWDw\ngZCENowG8jUiDbCEwRZVmTOuhMJXVRXDMHI6HIgp8eLujqv1ihg0x9MU76FQxogmb9IqZqTn1237\nrtn5JbZL1Oby119EZ7t0YLuEU6eAujj9XoH3Ak3f3NzkhuBEezrR5+CpKQhr9n9H3HnEFcbMD6lL\nqt30+S74mUussw+93Fx+5hFDmoWmZVmSIkQTZ56pcJlFlLnbbhn6XpypYmSxXPLy/n7WTYTgqUpD\n9APeu7nBi95z2O84bHc8fXhgs1rx6tVLPrx/YLvdidjOe5p6wXq9IUYR3rkQcKO8bzb5FXErHjcO\nnIInBkdRSL4OWrIEnHOQJ9qjcyzyxLc9nTgdD3jnhfuaubmFOSeKTxPFm5sb0XBUDdoYRufox5Eu\nm0EMw4j3kbqucM7z8PCBEBL/5r/1b/Pi9o6b2xseH7c8fXjPYfdI3SxZLCq87yA6jIqUhWK9bnj/\n7oHRD1gLq3VNMWUqVQUhyueM/cCUuuyDQ4XNbwwAACAASURBVAVPaTSrumTVCCI1+gGSp64Njw+P\nONej9SRUP1MG9vvDnJBelqVQtzI3fuxHdAqiEcmLi2hjTuKm4z1FFk9qLZlO2hiMnR7OEoBnbEFR\nVrQnSblerFbZ1lhyi15/+ikv7l7Q9SNjdsqbDCG8F4RA7D7FcKOpa6qyJGZ3sKKYwlF7WRDzPTmJ\nS5umpmpqEZkejhyOJw5thwsR75VYJyPFwMSd1lnzZYwIuuGcyXAeBIzETGucON5iKSvmI9/0A39Q\nlNznyamfsidmjbfCGoWdpuxJ6B4aRESOJF7PyMNEy4AsBp6EumEWsdp8XRhjMPmcRD9mnUBu6PIk\nGiWp3JPmQmnN/d09f+Nv/A0+ef0Ju/0TP/7zP+cnP/kJj4+P9H03G1VMocSFFe59YUvK0goKXRYi\nJ0jS3IYQJuxjptLKczPOk1WV6TmzODbJNDqGeEa4MqUjP9zkZ7IKhfjcLlVectbezBkcINCKmtCh\n85BqOrazkcQl/YWzuUzKWSzn4dYZ2Zmec3KC845chlyKMoZnBcPFd4KJ7PicLjL9+XzsIE1NvTbT\nLqC0NOlytjXGSnZYSjKt1Ur0KjFkU4KcwzY4R9cNtF3HMDgG58RNTE3anHTexYu/EzvuxKzjn/Y3\nwuD/XQ7+v3m2Hhb6z3i9/I9nqrXOa4/zAZ/SjCBrYzieTpINNZ8LOad1LfTiKVw3hsjT0yMxRppF\ng62KLMIHq8UswY0hG2ecaciTtXOIftatgISOlmU1uyYqNelDhO4cor+4eMj3rRSnVsvQUKFIMYhR\nR16zF7VQdL0XHWkMGflMEjasjUEbi8lifOcDQz8SkDDKR214aw3kKISgDcFEjJpo6yY/Nz2n04mq\nLsVtNRa52M+h5FrPDnwxBvqhF/vonMc16WAuaxpZawLjOBCjPC/luSrojsv6YK3F1lyozXKMxIkx\nkgaxMI9JnOmM0ZSZIj09/6b6RlxTZY0NQSjoKWfNFMU0nIp5iOkZhn7WE02D4qmZmRoR8iU6/ae0\nRj27cNVMfUsexjBS1yXGrnPenmdIkgE4RXpkb0R01ndaa3M+2TnmQ1tLWVbYQjKFRie64JTELryu\na6wpZhraVMPp6V6+oOLJc76iqkr6fuB0OpLansH5WbIgTZGdn73DOFJlc6WEDHEXdSP7Mo7sdjuJ\nLVgu0LoioRnGERcCVsnPkIflE4r967Z91+z8S9i+rcm5bIguG47LX1M6p41L83Lmay6XS5RSUqx7\nT9u2szhtErfNVDWTnZFcnJ09yrKchfeTAC6OaRbtT5avPhdBAp0CKaIUEliV3Uqm/Z2sLZumma0j\njTF0Xcfbt2+5u7vj9evXfPXVV7Nl7dC3tMctbXvCO4ctRedy2B94+/YNY9/zw9/8PstmwTaL9aYb\n3lqbESiZQvgkhWUMXhrErKlQSiYxbhxIMbJcSV5I3/ZimTtKs2OMIEJlWQOKoR/o244YI3VTs1ou\nMAg6pLWavfiVgvV6I9MWUzA4z6k7cMqaqbtXr+eAvL7refv2HV9//Q0pRn7vd3+PV6/uRcN02tN1\nB4LvIRYcdg+cjnuqEqyuqSoFyvG4fYdzLUWp2GyuWK5WeB85Hg8YAt1pTwg+pzdXhBSorWbRNGwW\nDdo7uuOOcRhJeKpKkZKjqgxVtZh1Tkornp6e8GniXINRklmU8nTQ+0DSEELkdGo5HI5479ltxfWr\nqiqquqashL+MUhRlmbncIS8qshwMbuRwOkoe0+YKbazYaypFvVjQLJcMLi9O1rLZrDi2Le/fv2dw\n4lqzWi1yOnjCOzFBmBZYWSsjtzdXuFoWw6IsuF5fs1xKrlLvPce2Y3840ruAMlboFdM9FXNRp1Iu\npERYH2MOsmMKWMviXaCwRRYCa1ar5VwwmZxj8pXWvDVSWPi5cM7UFq0ojBE9k9Yz30oL6Y2oPnKN\nSkJ5lVyIyeJXghG1Bkui1FBYCRwtikJyPWIpmsDgsxg2877VuSHQWqZ/Px073Id3/O6nryle3rF1\nA49jz9dEtlvY+z5PSCO1gboqMMpitMVaQ1NalouaqipIRAmx8x6jzgUHWUfFVESLv/H8/JJzcaZD\nyXMxdyc8f7aq6bmanoc9pwu9wfTcFeMXEdUrxbOhz6w7UGfay3k7NzvT+13+zExrm+gyuSFRudgj\nnS2mtTLMPmzp24uGiXY0N1cpoYy48U20u4nCIn/O9tlKoa0Vq/hMQ9HGyr9PFMaUCEGK4WPX0bY9\n/egY89R+GAZGFxicl+XFnAuuiUaHEtrppF/zFw5eYpObTRTM/4njv2aIf5uQPqG2/xt3q/+KXVlD\nFKONIue6jc4zeo9SmlIpFouGTitaK1bnMe/3JBovsv6kKCxlYdlr2G63lEphFdKk5eZZa00oNEOM\n+JQorWVRlfNaKJoSzeSGaE2RJ+hxtk9PKeKcpifgfcrW6iafxzOVrSoKqqoUOqCDlJGIorAURqEN\nRGXwqsjhmQmthTWhrc3nSK6lYDRtCLiYiCoPM3IWUoohh5EmErkwzsPMfhwZ3cgLe03d1PO63/ci\ncreTs1cS6pVPEyImzmhTsT2xTuQOkKbSOY/OznBVXVPXga47ZW1uEnvxi4J4uh9G5xnGjlPbiSPr\nao2xBXVdsVwt8bmh0bacA41Fm9yJKY+1TAOFadirlCJZK4533tEPvVByi3JGgIC5npjQHDFmMbNj\nXQieyY1RQlHl/nR+YFUsxRUuRdquI1qdh3iTAULKWTiSY3jKw+nJfCZFqbuKskYZixs7umHE+UBp\nhS4tNU4xN1RxXkPsXD9OTdBEwayqckaUtC04dTIQ3+8l3D3Gszumc462bVkul6DlXIqpVUkC3r57\nx+l0YrVacXO9Ikbo+hZ3arO+Sec1iTx0uMj5+jXZvmt2foXtLzQm+JaGZ/q7eWH9Fq51jJGuG4A4\nW0v3fZ8ntueAQKXMbDPpvac9nuaGZGp2Jl5yWZbYqpzRC/mcMDcv0z6Ku5Tl9vaW1WrFdrvNyAgs\nFgvJkFmtcMNIWUio6OFwoGtbfH6d1pr1es1yseCwh9Phka7rsEpzGAZ+9Fu/yfGwz9N7ef1ut+Pp\n8Ynj8SgPpvy99vs9n376Pe7v7zH9ns51EDwaaIylIOtHUsqucjXX19c87Xc8Pj6y2+1QSrFarVgs\nFpIHUpQ4L7kPZVVxOg4Mx5bCaBZ1LRbCeRHzwaO0oawqQkrUyxV+t6efMkdsQQqJupSslacPTzx9\neMwLXkUKHmLgsN9z2D9RForXr+4oy4LtdseyliyTcRxwbqDr93zx5Z9R1TWba9nnotC07cAhH8f2\nuKdZLKgLTakhFZplteHu7o67qzVp7GldT1EVXF0tIEWKQmFNyc31DYvlCh+8mB8McXb6UUrlxjly\nPBzEvtuUKAV9P3A4HmlPp3xxC5q4XC6ziDPx+OGDONqVVRZAOtF1KU3ft/z0i684Hg5SRChFSLA/\nHPEhcDy2vH33wNu3b/nw4YNM6BYN5uE9b95+DYihgl4sMAb6oWW/2+PcyPEodtqH/QHnHbe3r9jX\nsnjbwuQGqaLt+pyv5BnHSMzfQWPmqbXznkTEFBZbFpzdfnwufqQ4ImkKKxlUzaJhsWgorGFRN/le\nv+Tgk4sH4Z2fhwz5hleIRW/+w6TUEG3GOVDy+XR9agxUFunm/IXosoNZmBdN3TQ0VUWMVqbJMc7s\na6Hk5aC6kFCjFJ//3z/4fxn7gdevX6OQEOPlcsnhcKCspBAJ3uO0pyzl+gLmqWXhLUVhZkTQZLtu\naRLOWTsKhZkm5OpM+eXy0Fw4f5EmDcS56CYXJmcx7XS8yIOcc+Oi1FlQPe+DOj+Pp0/9eWqyFB8p\nPUf0JwvZ8+vTs0JA5SacTH+caCAKxN45f93LtSRdIE0piQV5SgmNkeIpNzzzdZPd00SnpSXLRWWq\n03QcAvjoGXKO2H534Hg6cTgcaLsuT6g15BDXmLRMc5USfaSSwjchWTCyn0KhJVM3U5SC21jJd5s0\nIIX6X7gu/lcJXlSKssoTbp/p2IWEaKI1Scu5cGFkHAvJNQme0IfcUOSQ0nAOu05RtIw3NzcSWOkG\nxjGe9S/TfRWZJ+3GyDDg8jh/vF5PzUtMYTYmEWqxbPN1rbVoU7zCuYEQHCHoOetnQqNiDLTOYXLW\nG+l8bVmbtW5GmgLv3YyWJc7WxTq7FMZo5lDOEMVdEi0FKSkS/MjgRvplQ93UMxsjhMDQypCSC+3X\nbCQwZWRlytTEHpn+bRwdw+CwXpoIawuqqsiRFcNMvSrKKj87+3n4qo1lyM9f5xzheKSsaqqq4f7u\njtVqzeFwwrtA3TR8s3tH17aCLkbR/RS2JGVtzDwEMQZbTEiehG2Szm6sSimwSDbfRSMxGTeAIEVG\na6Ewh4DNSJDUDmuWyzWT5boyhuV6zdB1uYbT1FVF2574/Kefs9tuqSoxGmqahegTk8qNVsiITqKs\nSkoD4+hICcqyoiwLrI3zfl7WjRPiNv2+aZp83RSstKaoavpejBIkT7ET5K2qiCnSdd3cdEUr91Fd\nV9xcX0t9cjhkJsQVNzfXtH3PMHpObpTB2mSqw6/n9l2z8ytuH1PaPv799JpfZGpwabMo3XqNcyNf\nf/01WsPj4yPH41EerBnqndw2yrKiqRfzRT/2C/p+YBh6drsDw9Dj3EhRFOKCtlqKGJIJci8yF7aZ\nb64YJXH3/v6e3/md3+Grr77iJz/5Cc454Xj2A7un7RzK2bUt6/Wa3//93+cP/uAP0Frz8PDAj3/8\nY77+8itOxx2LRcH9/b0MOKNweQtrWa+WBDfy9u1bVBLb3xgCRmmKymZXmEhVVTw+PvJm+54xjqyW\nCypjCcPA2Pv5HNisRSqspS4lT6fve3a7HcfjkaZpuL+7Z7PZcLPa8OHhgccP73n88AE3jpTWUJcl\nJNFHpZgYvWNwI+OHB2xZcfPyniEE6q6lWjSURcVmfcXT05btVs6VTIs0r169ZLNeEVzPh3ff8Pbr\nLxjHnhcvXuCHgUJ7Xr16Rdu1PL5/4P3De/70T/8R+/2ev/bX/hrr1Ya2bXn3ZiuUMTdy/+Ka3/rB\n99isN5DEZlKplJObN1SlNHIhTo1nIEXFJ5++pG97jkdxHluuJCOorHq2hz0mJAlRtQVjL+4wvuvo\nTlvG6PAIwlc3zRx0OvQDu/2Bhw+PxJRYr9dc375gvV7z9PSYs45KVusNxlpkSKi5vnnBy1efUNUN\nx2/esNpc0SwXjMGx3e/YHQ8y1Uwx24lq2q6j63vKumKRjQ0OhwNd17Lf73h6euRp+4GxFxe/6GV/\nu67lbfcGpbRoeYoGkMXHh4hJBm3KTFODbuhR0WcLVQhJXNmkQIGE5DJoZWdL0f32ibeFpetbtttH\ntIIxBMbRo1TKqdky/bO6uCisP1o5JkqMnDimP1yiCPJPOlMFLTaLaY0SOmOMQabg2TZ2eq4sqwZj\ncvOeq+8z+WqidaR5UPH4+MiXX3xB37ZcXV1hjGGzucY5T0KKhsGPQhPxEVVmm2c1hd45Rmso1Tlw\nUQHRx7lgncxbpGmwTKr9jzWRl6GfHw+MPm5knj+Xv+WZO6NB07f++aHU1HZefs507C/Rm+lnpunx\nt24Zbbn4C2mcLq1dz7uSG1pBULIE49n+nOl+gsxqhIKplZWmSClQGhc8o4/EeKZmHk8tT7stT09b\njiehBvkQxILf5MlyXZOiTIJVnkyj7Xxtyv5NdD1QBqKGqD3RSIMRs5PUvM8I8iPaU4WPloKMpObv\niIEsPxE74xQJYaSqllgrDeOEZo6jiL0La0EJdVUp0bkuFjW7nTT01tjcjAqEKSGNE/th0nycs23m\n6+7ivBPB5Xtpmq7PbId8Xeh8jlTWwIxBKLhmvkYmy+vcaGUURqy6z/WBICmCUMo1l0CJRsPHxDD4\nee2frvuY0b2oFQY1h5KmqElKcuekgBaUd7FYSDOWgmh+0oz35QHMFFT581SlMXj6oceeDPY0Wyqx\nWCyFbuwcwzhKNltRXmSXnRugZrEkxIRzHmUtWtusca1Zb664ufFsn/bsdju6tmXMiKNSMmwtqyJn\n5HW50arm+5AJpfIuX6426zyNmFVEybHxIWLz+Z+exfKrHAllDEmJE+zd3R3f+973uL6+YjJDWDYV\nx+OR9+/f0/dddl6zPG0feffwgeg8db1guRT32ZDRsJDgeDpyOBwxxrLarKkKhek6OQ9GLMhTBnyd\nz8fbmJm6qpTQm533qHGAUQLQi7JmvV7PQ93tdst2u53POwiz4ng8slqLG+/pdMIMIyhZT/q2ZVws\nCD5ItuHNNfvjgf3DCWUMpqwgnA1jft2275qdX2L7Nlra5b9d/jq95uMFfH645ZTeCZFZLpc4Nwgc\nnyfLTdPI+5BdRKIkWffdkLM9DlRlSWGFr/rixYscANpzOOyzjbPAt/vDPosIme2EYxK9hkwMFf3Q\nsdvtZgi57/u5YBGx3mJ2I/Fu5Ac/+E1+7/d+l6au+Pv/19/jD//wD/nmm29oTye0TpSlYuh7onP8\n9m/9kNWiYVEVGBJ920oewyhIkc5UpMtFvaoqHp+e6PqWaiGBpIXWHLsWokwnlk1DU1csFg2bzYay\nEaSlbmpG50hRvq+xBcpI7ssXX/yML7/4ghQCd7c33N3dsVmvsUpSlVNKNMsFaE3b9Tzt93zx5Zfs\n9kfQht/50Y/43m/8gJv1zRzO+PbtW1JK3NxecXd/x3q95I//8R/x5s03jH2LLQxjf+Jw2Im+RAVO\npyNjd2RRGU6t4+7uhqE/YbSibmp+cPU9qrJms97w4oVYRKaQ2D4+sdvtqMpKdFPOE6LHKHlgdv2R\n7dMH3nzzDVZZbFFS2JKqqlEKjqeW9w8f6IaR9XqDtZbD4cAXP/sZu+2OuqxIIdAHh61KOa6ZXvDN\nN99wPLY0TcPt7S232VK8Hwaedjv2u53QzjbX+Jh42h143B25vlqzub4GrdnuD+wPJ37zhz/k9Sef\nSYDq9ROPT/K9jqcDIQWaZUPbt1irePHimk8//YTb2xvWywWQ2O929G1H254w5KyElRQkRWHAgS0s\nIUFEg9KUVYNGjC+SLbH7Yr7HpnU+khGAQlGXxbcU4Qo/Oo6HI4umwXtHXVbc3b3gw9MWpzy1rXAu\nEhMYW2KyNigEN9/HMZ5pUM/0H1oL7nL5rLlALmKMRPX8maOUUJ1i1hGci/T0DDFJKYleQDO7nFlb\nsKhrovfcXF0xDgMPDw+EELjabFjUDenmlrbd0/edTJaTuC2lxEz7m5qs0eV07jJnOYVIPCeEzkjV\njI7o503Ic5Tmcvo+8ccvG4Cff0Z/3JjkH5gn5FPDNYmS52M4XQg8L0TzK7ik53zbr+fzlafmgZnq\nNNEt505zekdzRqOmplEp9axpiPn3Wovmad4XpcUuPchwZswuXs5HCYc9dZxygPKpbYWKkyb0yoBR\nKFugihJrSxJSKIeMwk3Ut4QUWiGms6ZRG+mHTEFCHEKnYi0lKYxICZ0zYbQ2EqyYC0rRqkimSIie\nlB2l5PQlitKwsku0EXdLQW7GTG8MeYAi10BRiNbneDwS3JiLMjOX7FOzJOwGoaRKwycC+7Ptr5m/\n30QjvWw0J3bFdFxiTGh1cc0moUlaY8UFlKkxSjMSN9FjdTRCtbto2nOoESBWw9YWGC/DJe8m7Yae\nkZeYJiMBldE4CQi1tsCNntPxhNbCbhCBveJ4OjKMIwpm9zH5/lOuz4SiiraG/HxQKMZhwLWyf94F\nrBVNadta3DCQ+n7W4FhrKadnmCJrhmIefEZ2xx2nU4e1JS9fveLVq0/YbDa8fVPRDSPaGE6nlnEU\neqWEngYZCJCy3kkOm5vorxfDIa2joPGkOVB8Og/aGoyy5yxDBLWsqorb2xt++7d/m7K0kv/34QOL\nRUNVlrx9+zXH45EUJYA0JcV+f2S3PYizZWFolivKuiEhIc5jLzXI4XDicDhS1zXLRUNlS6qqydqc\nSW8tiLj3jsPhwG63k+Z9ChaVVxKCuGMKLVnudzl3MiSs63pG+H0IDKPofIM/I1zGBqq6Zr1c0rcy\nAOlPR5Zrw6KuWC4arJZzRR4Ah+zQ+Ou2fdfs/BLbt9HXvg29uWyKpj9f/gcIIUGJg0eRqWdQ0LZt\nRioqjJG8lAm6tTlM83LSNLoR784PY2PMLMxfLJc0C3HR2udpODAL3PtBCpMxB2F5FxgH4Z4u6ob1\nes1mveHl/T2vX79ms15TThbVmc7mhoE/+sM/5J/8k39C33Xo3LwVhaKuKxRiFvC9zz5DK8Xbd+8g\nRT777DP6ruPD+4fZb945T6kNIXoWzZIXL25YrpaUx5J2aDns9xACcZQFzRpBdIQnHXn/8EBRlZxO\np8whrjDaZJF/BUnTnfYo4PbmhqapuL99wcuXdzRVhfcjp1Om0xUWUxYcOxHWtyexmiysoRt6vv76\nS/50+yfs93v6XkSeL1/ec/fiBUolvOvZbZ8IbqQsZJE87J6AxN3tNTc3G642CxL3KK35sHukKMoM\nn4tDmdYGhTyEj8eD8J/7ke1uS3tqCc4zaE3fdcQkU6uoPK07cTwcOR6OvLi9Y71aU9gSrQwhiP1l\nSlJgTvzox8dH3rx5g1GKRV2BMlyvlxR11lodjuz2B9puQBmh92ljhC6DyhSMIO5nxtANA198+SVv\n370jkaibBUlpnnY73Og49R0ozegdXd9ndzmVJ9HHTAERWsbies39/S23N1doDcfjcb4vJqOApik5\nHvc8/v/svfmPXcl15/mJiLu/NTeSxVKpZatt2e5uzNj9R8wA87c3BmN3S7Kl0lILi2Rub79bLPPD\nibjvJatsDDTTgIWpC7CKTDJfviVuxDnnu6kW7mSiPJvNKKsKDi33Tzs22x39YFF5jkfoOomaI46I\nilTxKsV0H47RdU3FBkNpRWY0s1nD69evqauSqix53mz5eH8/IRLWjjgPHnFwOzcg5wLXe3BKDpNU\n7OrY8Ex7S0iOOHHK7M/iWCBO4qO2JYgGgUg98EGm5pf0N9EFiE4r0e1OJ6E23cbcBWctXduKpWtR\nojBUZUVdNXgbGHob3essOtdTs2Vj/oTQhWJhxkskJFkLBO8jtUtoaTqiHpf0jQl90VKwKmXO6Fi0\n6Fb6vK9eNjvpfb5sDqemg5f7szyvH0B7XjRe577x07//5FRgajVD+GRO/gLSO38lITkCZUwp8UrF\nNTk1XmLOIla9Xib/w8jx1NF2vRhv+EDXd2x2B05tdNAK4DFkRT49L1n4hoCO60QKbOskr2p6fUpI\nj8mhK33NI5x+FScFAel2Jqtafw52zIyZxOtKK7wTrUsKzCVqRsRgQ01Ua5PN45BOdG7pLCTa8ZvU\nvEJcH+ke8NFKXtaKsCcijc57hnHAOTvdq0m3cbkWpLRMTfq5+XUTKuQTsXBq6tO/Sc/Lx+Y2UVx9\nbNDz3AByXqto6V2EXNAw60CWNlmm0UYxjqJZzbJMrO/HxMjQk75Nnr+I5e040HYdKPm7lHOXkCPn\nrDSd6KhL1CQ75ikUM96veZ5jlMF5jx2kOej6nlE7JDstBpKrs74kL3K00XTDQD+Mwjpwci+2gxhi\nWCcBofv9gRDeyxm5O7JaLZkvFrStDF9Pp9PUxHjvo/5wJM/yadCiLj7HdM+nnDh/YfaRGtZhGHHW\niTvorGG9WrFarZjNGpxzfPvtPR8+vEeMajKCDzw8PEIIkk9nDKeuZfP8TNv1ostRCudhtztwNC12\nlLUqZ1wv6JL3HI5Htk9P4qQbaYZaC7W6qiqKvKSuHIfD4XtnhphKGcRC/oyoXxpLzGazSNUbCLGZ\nC4FpuJ72EqMUq+WCPDc8PT3TdSehdxvDrJGm7DTIuhP3cp8ynf+srh+bnT/h+rSB+X9yfdroTDck\nkMXAyTzP6YZeMgeci/bLZ6vFM51CvZhoJPe0duwIKk5a43QVoKpK8bqPHNOiKCaBW15kWDubEJwh\nFsBVKU3Oq5tbaWwCXK3XvH71iqqSfJzgJV36/bt37Pd7hqFnGHqUEntpydwwzGcl68WS65tr1usV\n777+mufHB17d3VHXFcf9nv1uy2G/l4LdWbSqmDUNX3zxU95+/jmb7Y7DeGR32DK0HSYEsa7MM5aL\nOfPZjKHveNxu6boOlYkWpixrQlCT2F7oA2qi94nIP0MbmfgR4eMxTj7yEMgjbaiKtpN1U2OynKfH\nR7788kuGg9jw1nVN05QUuaEqc/LMsN09M2sqyb3BMw5SMM9mDVdXK2bNTCabXgqGm1e3GG1ouz6a\nPBQcDiceH584HN7Rtj3z+QI3Ovq+j8VoNzW+RV7gM7BeuNGZzrm9fcVqvqaqanKTA4rBOvrBURYF\n2hh2hz339w9sNhsUgdV6TTNvpJDMxc1p6DsOR5kMBzg3j0ooImVdoZRoBrK8IARxetkfBLqfzxeU\ndY1SBuuEItPM5jjv2e52HI9HjqeTZK9EUwAFHA97tIb5vGE+ayQl3Q4on0wAAn3f0XdtzLdpaY1o\ni7yVKaIdLcfjifuP9zztWhw5uZgaxecZD4N0r05UMUNWCC86BDc5s4Ugk64sM6xWKz5/+5arqzUm\nM/z2yy9xo6WomomfLkwahYr6gomalSbgITqPeU8a50vPdXZwFG2AIYTokhQLkrQHaKXJLsTUxObH\nOhEymzgNPmv5zsWM1lLE9H1P3ws9NbkajYPldDzhnRR2RVFQVzV2dDjbRnGwwxiHIQrjvWMYwtQQ\nKqUuLPZjMeqBlLMTUYBJ4xJRLn9xeBtj0Eh48Fl7E+1lLyiB54bnPC1PhQBKHNnEneklNexMW3uJ\ngr2YunNGni/DoT/d66ffT4vqXDifNT3nn+uiJawPCdmI8MjlWRHXZRy6M4wjbdsxjJZuHGm7geOp\n5Ri/5oLCes+p6xmtQ2kzCZYvtV+yHsTaPT1LrWOujP804ygQLly6psZQJbOMy/ffQDjrQJTWotWL\nf84zHbVWca1ybnjE6S+j61pABlaZkt3FgwAAIABJREFUkbUUvEYhhh9aIeuLQBfPMKNVbCKSCcS5\nWUnamCzLor7GTa/3spC+vK88NtLQPJfI3nm9ACq5iJmIwCUUMkzrMw1JZNourqtZ1PxEd2iyTCIe\n8jynbTv6YcQ7J8PQzOCdi4iWIuiIMMV9aVrLpMYyn8xBjkcx4jHGcH29pqoqCQntLAmVlabPkGXS\n/EBcj5drH8kVSrVFe+o46RZFEFOjcpx+prWWrBAtTd/HpgsxzBiGUfQ4XlFXNXleSPD1didD2qBY\nrq8milhR5Ox2+0hh6yZkIrnEJrRWGy3WzSFIox51Ns6fjZbSWZlsnqu65ubmhtlsRhGpyQ8Pj2y2\nwjBYrZasVitCCOz2e7wPsTnJZWB3kID3EBAzEKWwo+hQTaSR5VnUnnmPiYPtgOLUdlhnqYeROhpJ\nZKNldC663AbKspr27XRupDWU6rm8KFE6n0yshuEccD0MPSEIVdX7ML1/RQxMT4Gsq9UbjocjQz8y\n9B15WVKXJYv5nH67Y/TROdN7nP0R2fnxurg+pTV8OiFM7jVlKSKyEAJdFwWO3kfHEDUVJ5PzD1LA\nCBsiTaEizcB7xhjslQS7zjuen5+jQE1PGz5AXgj0n6YJfd+TmZybm9e8efOa6yhee356Ev3I/T2n\n45GPHz+QKfGb/+7dO3zwvH37lqoqhX7kbYRqSxbzhjefveG//sPfs90+87vff8msrGiqmnEY2Gye\n2G6eaU9HvJNJ3nw+4+b6mi9++lPKquTwrZggKCDPjGxkKJqmYbGYU2QZx8NOKE1DD0oxW8yZz+co\npej7IWYPyMS56zqcs3Rdx+k4EoJjPqvJjKFrT1PuwGhHjBPdQVVXoJQEbppMhIbe8eb1Lc2swRhD\n09Q0TUGea4oYuPb69SvyzMQDYKCupJFLxU7yyg8eFo1QxbQ6kKkMOzr2+yPv33/g+fmZ1fIKZ6Ht\nB/puEPvYUfJ2qrLC5AUmz8FpaqOpyorMZJwOLUNnyZroRqctp67HBZmktm3H8XQk4Lm6vuL1m9eU\nmaHvOo6DwzuPKUqq2tINEoSWCr4s2ko3s7m40BCmPAdrhTYgaJWmrmuKsqRppLkvTieUlnW0iw1P\nWvdKxak9gdVqwdXVmrquyHPDfNawrObstzvee8cw9qCgKHNmdc2ulOyoIrrbtN2Jh8cnnp6f6UYo\nmposF+RqsHYK1nXBS+FiFCbPMHkW3dnO93WarNlR0IU0SZaiQUf6KdPE7Ry+KK9H50Jd0/o8rRNa\njIrDY6FeBCeZRedw4TNiEf9wyYaaSkU1jd2kIeiHgXHMMUposcmhUalz82GMQXuNsw5nhDJT5BIc\n6p2n7wfg7BxZ1zXjYOm7AetGrLMYZzDekWhhghKPDPGQlmcep/pI0GFyPHypyUl7ZPr1A+iLUi8O\nfunrfngI9YIGd1F8XjL7Xv78tO7O6PynlLrUwfzQHn/5HCZlTrjYp4NQ0nT8empypsdWgroRxGDg\nMvckmQ9YZzm1HcdTSzeO9IOl7QfatufYdhwjFz/LC1CGvJDvSxbUwdup0RG73Hxy90tNYFppibIJ\nEqZ7LnNCWq7SVmh1/j6lJh0LWvY+afYDRimsVmRK8rmSo6a85Mh0yESrst1uJYagjg2vVozBT5bb\nMmm2jMHjnWWIwcW5yrBWrKS1ig1iePmZoVS0eo6Zd5NmzEd9jTRm1g9RAwcpYDYNKrXRE+YzIYak\nYloK0oQgah2zbuJ6N1qhsmhwgAwstVI0dYWv5PGccwx2xMQwUudE5G6DB1PEzBzZa70xBKMmqlxZ\nVQxDRzsMOBfQGna7rdC+Z010VR0Zxj4iSVa0c0jTpZTCYqebxDmLyoXml4YUXT/Q654irqE8L3BO\nBjz9MFBUors9W0Bnk3FAWVWifcwLfIChFbfPMUYgHI57ijiUrCpperbb3cS6SNrAZPesteT2KOuw\nozQWOohf3Tj0ZNlZP5ia3Pl8zmq1Yr1e471ns9uy326n4W0za3j16jV1XXF//5Hj8cBiVlMUJc57\ncTLs0t4oWtAsOupZ58mLgqaZk+cZh/2eEMS9syhKjFJkRYHrExVR0Pl+FNv3PBeXzrKsY7SDrFtp\n9F5SexOil/ZyF+URibantCaLerf0da01Lsuw44CiZt40onUenQSxZ4aqLJjP52wPB4mnCEHcal8g\n038e14/Nzp9wTdao4Yc/8B9Cey7Fxel7vfdT4rhMS8b4dQSijlCzoMjJclEyUs4cWzUJMWe5kUwK\n1GTLmaZNbdtGSDMQgoSY7Xc76p3klQS4cCLJcU5xOBzIteFw2DMOA/PZjMeHBx4fHtg+P/PZZ5/R\n1HU8mCpe3d3y29/+lvYoE43kFNI0FTc3V9zd3fHbf/lnDvsdGYG+azEqsNvuSO5IRVHQzGbc3Fwz\nXywgBL7++mu++eZbVAFXV1f0xxPPDw84oLy6kklG3xNCYD5vcHsnB6tUGdR1TQiIY8xg8W7HZvOM\n95Zh7LHjSDOO7A57yiyPkzMRCffDgI2wbZaJyNLE3Jj1esVPfvKWq8VMChPvWSzmXK3XALx7944Q\nPHd3t2IcMI4ipo2Fz9PT07Qmurbl1HXMV2vK0tG1I84JkvL+wz2b5wNFOeOLn/4l2mjab9+x2R0Y\nhoEsywnBU8+X6KIiK0tKHTAqUGQlp9OJp+cdq8WS+Vyeu3UeZ8VKc3880PUdZVUyXzTc3d1yfXNF\nrjXPz0+EXFFUM7I853DYM9iR4+lEUBLaWc9mlGXJMAx89913k4j2ct2XZUnbtlRlPTX3eZ6z2+0E\n4h/EVe1w2DMMnbjvxGymu9sb7l7dcnt7xaypuFot+OInP6HOK36137Hbb8hyzRdffM6bV7esZjMO\ng9yb8/mczGUMg7zG0TmyvGK5WlLNVwwusN219DHN3DmLyRR5Li6FWutIKc1kMuecZOUEKUyccxyP\nRz58kGb0/Yf3tDHnwFoXHf9gtC6m0juSe5pSZtoLxhgcXGZ51ElMlf5UWOHPblTT/qPOFtQTjSEI\nlSdR84Zh4HhQhLqM+4KhKEq0vsjSiAdlUeQTz7vrOpRSlMW5QPDek+Wauq4Yh1GCXyN6JdNyS1lF\ny9PYFDgnE9RsanpSISzF47mB4MXvZS8928eemxs/7bOXSPn3r3NxO9GKkoZiak5kb+XF186F+/RI\nF3+X9nAd7Z8vf/RlY3R+XuHFY4CDSPFSnB/LR66TSgVZODslgiD2GQqUp+06trs9h9MJ6wPOS5ik\nC4HBeXobyAzkxpDpTCbycbCRdJBKSeGVLNW9s2RGcprsaGNDESlZU38g+hRZn1HUHUKkHl4iZfK2\nSt6QoDAqBMkn8oHgZDqcECQFBB2RTh9Ai85OaUXfi8V/WaZsHT1RcZxz9H0gy/SL0Ek3SDC2c4Gq\najBKGvkQpPn3Idpe5znaIFqTcNaJpmJyQgRJuSfyd957aSouBpjT+ogaF+/EQS7lXqHEgTKd2855\nQWqURkVdhEIQzDLLIQRBDo5CddIRhRXaaMDoqCNUMfNLC7JrtMZF+nZVNZxObXz+on95enpmFgOk\nvXeEozgoXr7eoigxMX8r7SPeB4qqRAOjkeGQP8OpGJOR+5y+E4MLkwvKkWeylyYGgLWWsixpFiUh\nKLp+oDu2orWM++PQDyjdYa2jqiqqsmSxEEe0w2EfAzUFwcjzfBreNk0jNsvhFKmO0uwk06DLQNI8\nz1mvryiKgv1+x+FwpD2dGKNj5Xy+4PWbV9R1zfF4YLfbkxlNXc/w3tMNPd0wSANgMky0XS/LmnEU\nh7UsamS994xW9G55bqTei+eJ0P1zlDZxXQg9zzmNbmqK3KDDmZYpFE/57PsYiN52I9qkuBHR9qSs\nujzPJUcu7kfC3olD0lxC31UI2GEgN0YanjgcqMuSRXwOXqbp0Q773zBl+Xd6/djs/L+4fuiQ/XTC\n90OoTvpzEpwBcQpupyJbIaI65x2MxEUrdo5T0GII4hoVJ3ZaaawfAEeIm75SKtK35OZOiAaAG0e6\ntqWqiikXBxWw48j9/T1t26ICZMawmM8p85yDteyjeUEepymr1ZKrqyvW6xX7/ZZx7Lm6ekXT1BRx\nQpdlGQ8PH9ltNhJ4leccD3ueHh94vL+n73tWiyV5VmC9l3wXLzfzKVIZZrM5WWEYTl0soM72xi66\n/Yjz3HIKFNvtdjTNjNVqhbWOru3Z7/ccDgfAx6kGk2hUinA5/IdBfPudG2jmC1ZXaxaLJTrP4oEH\nQQWqqqDvWu5uxa77HGYmepEQxEK8bbtoMT3y8PDI/f09VSEw8X6/57v3HyibOVprmtkMpYRettnt\nAMXV9S0mL9jt9tigqGYLTCF0ATv2zFdrXr9+LdbR2w3d/sgJEZm3p567mxptctq2F5eV/Z7n52ep\n9bQiL4XWd3N7y+3dDU8PjwQNWgn1b4gc6+OxRfQeZqJG1HXNbicuOpdFyeW6dzErYz6fSyjtdsvT\n4yOZMWSZFstQpAAYR5mm3t7e8td/9XOKIscOHfvdM28/e8Vs1nDaHthuBRG8Wq/5u7/9Gz67u2Hz\n/EBzEFOPqq4Ie6IjmhRMzfqG2zdvMOWMp80+2qlKQrm1jsWsnCzWk44shECRi7W5UlKY9OPI4XBi\nuxXbzrqWkDajBYUtMo3JC3wQDvcllUIoBYokjE40tMspOuo8Q9dKk84XKcTOAn0HU17X1DQgyG40\nkuLUdtIQ1/UUUJvnfqKujnactCCJajMM/VQc5FFw7IOXQjFOjqW4EEH8MNhpypplmhCEnulVon6Z\n2Bhc7Imcm5hPG51pH1VZpPOd99xLu+dE8dOZ+t73psdLryN8Qr8QqtsZiZqaExVDTDlT1S4f69OB\nl/zv5XkwNWWiTDq/ZvWySE6vJ6H2UgBz1mBcNEvpa977SHuMpgY6ZgPFQsRoO92DySzA/8BZ5COF\nlriGCJm8zxoC0mwpxWSOoOK/C9NZlpq2+B5ERpqI7uW1a22wwZ8RyEQDxWAiIqQAp0R4bp1HWUvX\nnfBxcCJ5IiYWthbvz4iBtSPG5NR1/RJFUBoXREOY52JPLHRKyzg6TEgF8CVVMXwPIcwzyYuStSLr\nJQ0gJrRIR/vvIM1aapy0TgGbZzQovRE+mjP4oDD+fL8E71AYjFGiW3KOse/RWRYpehliQgBKp/sm\nUe7iilPgrIuB1AVd1wplahQnu+12G5vDnLKscd6TZfnUPIyjpSyrOBSRjaeqZEgl7pTjtMatgoKE\nBmryogQtWTdJJiMhrdJUWetjXWIh6On9gth864xu6LHDgLeOTMmQYrVcMmtmEzrx/PxM3wuFWxzn\nsjhksuf3Pt6nTV3H8Fx53vP5nOVyCcDz86Pkx41WaJFZxmKx4Pr6GpMZsWc/ic75coAkDdeZ4WCy\njMVcGrK2bani/qiU5niUx0hOmsLcGdHx7EzMndFK8G1y05SIkRgqSkQDVdJxnqmW1vWgbGz6/FTv\nnRey7CLJpIGIjnpnBblvW8a6TqUAOuqgq6qgGSsxgJpnWB8IKiPLCv7crh+bnf8J1w9RGj49HBOF\noCzLaVJlrYsbhpoEjzaiO5kxU35OCtS6vKmN1vjYxJgoqJZJ6yhNi5Kbar1eS6EWM0eUlmlIXVcT\n+uH8gHPSUOXa0DQNr1+/YjGfc9jt0EqzWi6luBsHdICmqpg39ZkKFxu52bwW+2U78k//+I/sdhvq\nWOB77zntDzJNtuK00/UtwyBOVVVV08zmKKNZLOa4EHh+2rDbbsjynMVqiVKK/X6Pc+MEuWZ5xjCO\nfPfhfjK2KYpSUCidoYDts2EYLMYY5rMZr1+/4vrqagoddG5EK01ZlJR1zdvP3pKVArd3Q491MahU\na3bbZwk9tcOkIRjHkaapeXraROvro5gbRN1QezrR9SNZXvG0PfDh40e+++4DqEdevbpjvrqSZgpD\nllV4FPtjxz/9919OLmh5UQgPP4Nm1nB9c8d8seJwODAMjv3+JAL+IfD528+5u7tjGAaeN888b564\nf3xg9I7eDqBgsZxzfXvNfDGjHwfevf+Otj3hKbF+zzhKRsdo7fTzy6ri9ZvXfP72M37961/j3AgU\nKCVZFkVRThu5tTZaZM8YR8vpuCcEJ2ick6KK6LJD8JR5zj/8r/8LN7dXfP3VH2nbI6vlnCIXvYnW\nYO0QRaoKFVychLupsRiHEWtlGpt43SIGFhqVwzF6O92rWhuq6mzjmZAn+cupCrzgfDtQmrKoWS5X\naK1ZrVZkWXHBJ7cXRem5ARS6EOk/om+J75VzPk64434RbYbl8riLmt1NWpdzwfYClSBwbLvJWjZR\n0XSWrHmFDqK1TAUTkmKtZFYkM5KgZRCircIUhqosmc1mMpnd7nGuk9RuD0ZL6rbzQpkYrTQOKkTt\nUSr0ZTNEGTOhWFPxHPdLrZQEiWgiDU2+UwTxTMYEiX513m9fumhprQn63ECk77lsmi73608R+sug\n0U//n4peOKNP/xri9K81OpAyXWTQRVon8tZMk2n/6WPG4kShMZlY2Gqt0ZlBxcb7kvZCDNJMrhXS\ndIaYJu/QwaCDRwehrAQX8BEZUAhqmDRGIcTPAUFuJvRGBYLSEdlRGIEu5DX6EOmSGbk+G1JoJVoc\nkPeja/s40MsmlMEoTZkXckZGgwGCoIchhkEboymynDHPxTEwitSLqB9Jg8Jzc62mUGjvfOotZc2g\nCEknJR/JGeEJCZnTBC829d5rec/wmE+aWji7qWp1DhBOGhuFBAzj5T1tyhI7bzg0dQyHNVNdEIIE\naxtj5NwPyGcYknmJ59S3LGZz5oulIBFdyzAGEdRvdiilaZqa9WrFbN6w3x94ft5IaKiWHDCFmoaj\nqVZxo53E/l3bsnVbzGrFfD7DZBVBeUIXIurWUzY1VVZhMoPqOpyTsG/rJf7CuZhJpqBpRNPJHobR\nTvfw0PfstlvyTLL9UjH/+PiIc56+76I+V5CxIjIp0j3WRpQ6NQ5J19J1HfvtLg6zpGYR7W1DVZVs\nt1vGaGVdlsU0MO66bhqQ5XkuDmejIwSFtXK/FUVFXTdIIPeRvu8lhy7qZELU/iRUatKLEaZhh3Nh\not/LEKnA6DTwkYGjc3K+aHPJGMonOluIe8nUlGlZrzLQGhgHqeHGvkOrEAdQiiIzZEaTZ/JeZ6WE\noqLzCb38c7r+/J7xv4PrJc1C/eDf/eCEkgu+7oVQOAk2E6Uk8Z2T+BClCbFZSpaCWmuOx1MsSAZJ\nlM4Myc42TXrSBKJpGooIa6vgyY383DzPqGuB/4eUgOwCSotrDc5HS+wFTV1z3O0x2rBcLbler9ls\nnrEXMDIhMF/MMEZRVkL1WiwX9H3P119/RZnn3N3dsFouceNInmdTfs/hcJCsHUCbgcPxyOG4Z75Y\nSsDpcSf0qQDX19dcLeYcdzu6vgPvxGggTpT6IVmPCg3idDxitJk2AdnsegkhvVrz5s1n0pRFaNxZ\nDbGYv7t7zU9+8hM+PNzz+PjIJoaKGmOYzWfUlUDVXTcwjo8yybQSwPbw8Mjvf/97hmGkKEvKogIC\nx1a0UeurGx4fn9jvT3S9RRnNcn1LVS8YxpF6rjBFTdf1nNqOzWaD84G6maG0xg49ZZHz+vUbFosF\n3jv6TqB4sfjUzOdzrm9uKMqc5+dHHh4+cjgd0ZmiMgXGaxbLBTe3t9R1zWa35/Hhge++ew+Ao6Dv\nPX0neRZVVYrzXQhkecZqteSzz9/SdR0PDw8TvUQpKPKMJiIedVnKJpoXBOcJzlOVJbc31wxDz2m/\n46AkZLKpaz5/+xl/9fO/5OP9e/a7LU1TcXt7zXzeEIJjf9hyPO3RBvI8YxgGttutNPLRcEDSrAGE\nTqH1QNuLPqnU4gxVFBnRcHjS2UxDhEh5iDexwP/RwMJoTVFVktt0c83d7S1lUUY70iBhckp9MulV\ncVAhFKGQNEIRSUgJ2sleVflzoT4Vv0qj9cUeJE980oZM1drl/qNlGm+DUOYK58jzQrJ/4uErDj9p\nGi+TZuHfDwx2pJgOWSnGUmFQlS1b9pM41lqLD6IB8UrFMD+HUQYdAxJ1bDQmd7QfQjlS02DM9O8h\niqZTozNN1Zkm7vJ2nKfwL2hvxkQkIyFjnJG0+POTs9MlqpKe46W7W/r/S0rcmer2Q2dBakZTQ3pu\ndIT3JYj+OdMnucal9aS0wcdCyXsfPQwE1fdKR4T6nMMSpud4/jnBB6wbXzR73/+9rNWz3swj7n7x\n+Yf0uLEJmF5nem0R4Zje2rPRBiCUO+dwmUYTdStKYzg7jNo+Du+MaHustZMltCB5UpxqpTm1EpOQ\nQrPzIqe0BXZ0eHRkExRi1hHi/ZaZOF0XupXSGh148Z4rxZTPkj4ToaXlEx1ZpdY8JAuH71Msffys\nnfexyYxvnEy0zlk9gFFQZhlFWaGVpl2eOLbdFANcZNL99j5gFJMDGRD3Xbk/u7ZnVtXx3K9jNsvI\n0Fs2263ojZQSC+S8Qi3FqKRtu08oo/KZjeOALz1ZLnmA6RrHnm7syfuMLD8Pc5JuJLM5Jste7Kmy\nBhzj6LBW0DyTyaBJKS2I8ziK9XZuGG3Pw8M9eVawXq+5vb2dnPVS8Llzh+iYqab7KlHcdofd1MAo\npRj6judRdK82Du/W6zVN00zv436347DfxaF0gQbsMDB4+719RgZv7sLkKZBYNULPE6OBpmmm91Yr\nMEXOYGUgpOLayxAqccDHz1ZNg22TZdRlNJdoj9NQpSgkLD09djq30qAD5LM0SuojoclZGTpYS4j3\ngqBoUb8W0R9x/xUTjWbWgDL0/cif2/Vjs/MnXJcUCvh+w/PpdTnF+96kMZxh9/Ohl2gRsbAwcuCk\nzj81StK5+2mSk2MiopKms2HacM5TDihiwnWyb5XCS+Gs2E6DZrVeooD9ZkPwnjweFloJB/TVrTQs\nh/2OuqkpipzNZsPpeGC5XsaCuKRpGsqi4CEKC6v1FcvlUgqdyMPu2w47DJwOBwZrqeqGxWLJ1dWa\nqirxztGPA/v9AWcdq9VaCsvcYPse3zTYUXi2fd9TRFvVuq7IiwKtM5kC9j2EgeP+IJabwU/UiJTG\nnbKO8kzCyMqqYj6fMw4jH99/4On5OTaFHhenhevlNePoJitk7yQ0sKorPnz4yP3DI2VVUzVzPIrD\n4ch2t6coSnaHI5vdjkPb4rWmqmuaxYpusJFaUKBNjgMRqmY5OBuTkQtCbPIyrTntt9LsnE6IO47B\naMXN7RXzRUPfdxzbPS4MlHXGrKjQecZ8teD27o6iLHl6fObbd9/y1R+/kWI+Lwg60meUTEBNliff\nABTQ9R3HwyGG+tVTFoaz4rCVNuA8zyI3uGfoO7wdI0dYplUKOfyLLGN9d8t/+k9/izGK9+/eQXDc\n3lyzXCwYupanxwe2u2eGoaWuJRdhNp/Rdx1PT090WqZuh+OR3orTVNPMOFpH58C6kUIFiionL0Rr\nIjeIFLQp7T4hsBNKEyfrwUuj18xmzGZzqkqMF0yW4Z1w7asSsbHmXKApraaCJJLNpsmbEmDgRZEU\ngkyBgw8SvHjRiKW9ZdpfvE8qldi0yf4iGqEMpTXOBbp+ROmOWdTDZHmOjtNDG7VDSmlCpNH2Q08W\nw1qNyYSeFIt/Y7LJyWscXdQeRnfBaI/rRycTbS36hKAUAdF7+EQXu7Cb/hQROf9exdfGywZmKtRf\nNiFS9J/fSxXXr+ylZypgQv1ePt7lZ3BhasBLut3LZufcjP7r50J48dhnRFHL1D4IiiIogppQK2n6\nLp2YLs4MlR45oYCXqFQiNiW07Py80+NP5hHqrGlIlr0JSUrRk+lzCAgy6kNC2s6Xung+LiI/IRX0\n8oMIiHW29YFMRRcrkz4LoRv1fY/WJmoEHBqPVYJ+Jhq4aGECoxVqU8BjMj2hl3mRYZ08h0T9k6JR\nRPLOWbIgSK8xMpzQka4WnJiGTAhuAKUMKtPSZKQ1EVLTHT9/hGKUeujLZlO+5/z1dKYnhzunHUZr\nyqKgLApQgaap6YYRN46EuDNlxjAEhzZpMBoI3jGOnuDN2Vp5HKlKMY8JkaI39AN9L8NEMQhxzJuG\n+WJB08y4v3/AjhaUBNZWVR0/2Ng0Fjl5Hpu/uNacc5y6E7mTMycFijrn6PqePDYfac0WRYFHcexb\nTicxtSlVHe9rWXuz+Sx+1kxusQoFKnB1fcPd3R1N0/Dx40c+fvzI6XSibU+xBiokF0hJZp53Dm9t\nRNrFocx7kQEslgtmsxmzpkEpOB5PdF2Li45zeRmby06QRm3OAw3nJJRXRRTzdJIB9Gq1mnSsUpOU\n5JnUUMPQE5zIFay1U3xCHo2jTGbAJov3EPWD8nYbk5EVRdS+yb1YFCWZyUFroYFaOzkrhiBncFDy\nWWilZF0RsOMAQWjjyXnRGC1D80CkuDnyLKOpSkYPq8UCF6BtH39gb/v3ff3Y7PyJ1+VB9W/9m8vf\nXzY66Wax9uyaAS+njCKUjI2VkklI24qQbxwtyd1qolwET11VlJXA/G0rHu/ehWgVqGQ6GNQkrh7H\nEWN68aH34rokYW/y80drJYdDnTc1QmDWzNBawkC1UTg7sj/sUQoWs7kUfka0NIfDnqenx2iHWJBn\nGYfdjr5tyXUSx7oI1RqWywW3t7fc3txS1jXH44mHD88877di2by+pqpq+tNhogISg+mkeRwj1xWq\nsqKKWTXBSWGuEC1HWeYxg6UUKojSLBcLQcHynMzI5FApxfPzM5unZ9rjkazIqaLAftHMUMFgx5Fx\ncPTdSADKIsNZ+O79R4bRsVw36Kxgfzjw4f4jXddTVhXum2/YHw6044DKDPP1ijEEnjcbtFYTHTHP\nc8qqIjsdo5GFo8gMqqnIjcb1LfuxxxhFcI5MK0JZoBTM5zXODez3G0bb0cxK8qqgqErqxVwQnaZh\ntz+wOxx42mw5HE/cXt+IUw4ZVS2ugc6LjbEdLXVZkuUZu+2WL7/8klnTCKQef+E1dpTgWYC6Kiky\nw267Ybvd0LUnlsulCKKHXoRv25n/AAAgAElEQVShwXF9veYXv/hr/vo//pxf//Ov+Pqrb1ivxfih\nqUva9kTXnRjHnrLMubpa8frNHXe3N9y/f89ut2NopLlvTy0+W1LVDSqv6AB36PA4oQwh1KExTqq0\nMtRVQ1XVZCaP1K5isvGcEBatxVWubshyoccMo5XMiMBkzTkdUlqjtIkHklAgz6VnomeFKWCRqFEJ\nITp1eY+/KOzT46ZmTKb8FwV7muy7ODDRUkiO41kXWBQFZUR28jx/UXzJoD26QY0Dpm/Jy5w8TjiB\nSWCtUFEfMgpNyDmc9xSxIPXO4qMe0YeA9oGgPF5JYrgKUaF4sUemijlZx0q5naplHTNJzo1eel/g\nPBRSyk/71vTv+BT3Og+YJp7/Jw3lRFmMvPkforC9pC5fIjlcPD5cNjspFFK+dn4vfAjxaakJrUso\nwxQSmPSdJBMA4p4txToXr1dF5DCRo7VWQnVTekI0L1/D+f1U0+NMToEqNj7qHGCZmsYX3xcf00fo\nJ6RATZDvVQJwOB8/2SzDZLJejbG0bYd1Du1lr9FEVC4IrdHEdZuon2VZSu5ULG6NymQwl2WEIM32\nEMR9MhlASL5PshE/0yu1MlMD4YjP/wxaRTQwar3CpRugivqfuEYj2qg4r2dB4M6BpMmswWsX3yd3\nRj4JZFpLiHZ2jIYLLrW0mPQ+RvDFRuMCn2VU8Vztx8goqKppHezDHu/tZDDinQPvWSyWVHXNerVm\nvz9EO/74viBUcNTZPVQ+ZD/tET44nNeU0TobJFvPjnZqUAnEYtxQVpphdJh+YLRnWrAYB6xA64mZ\n0rYtwyB6o+fnJ7TRrNfXrNfrqQbabDZTAKfSgtx57xjtgI4NTpblMNEdTcwQXFAWJXa07Pd7drvd\nZIghj60mu+amqckLM1Htg/dxjajpvqzrhuVyRZ4XknHjPU3dUOSiJxp6yXZCwTCM0+BCKYXxEgib\nroRQidNdCSihZjtLnheTnsp7j7OW0VkJi42DqAkhv9hXdbQ7N9qIEZCLg3AnFuaZ0fSjmM7o3JKV\nlbB6+oHZrGYYHSFSG/+crh+bnf8Prk8paz9Ec7s8TNL0LMGczr2cUiZu5ZmLLofe6Bx2TC4jirqu\nhUZSiWh6HHturq6p6prT8chut6dtZTomuQViD+l9oI+JxInfed7AjVhVbzYUmUCsy2YeixbH0A9i\ne62UmAecTjRNLUFT1vEXf/EX4vKCQKn73Y6+O7DdbcmyjNVS+MP7/Z7T4cCsrDAxAK2uK5rZfPK8\nd85FnvHIh48fyMuSq6trZvM5bXvi8eODpPtaQa7KsqBpGozRk3iwLCrm8wVV1WCHETsOzGYzyO4E\nlq1rlsul2GTPGq6ur8mzDG/PYnI7SsCqQrjVRZaLLW+WoVEcDi1FUbBaXlOWHcEHTJbx3fsPPD1u\naBaS9+OcZ7vf87TZSlGV59w/P+KdR2WGoqy5urtl1x7Y7J4FZSJQqVJE/Mbg7Ag4VPDUVcFq3oB3\nHPd7WjvS1JVsWBpMU1AWOYPt2Gz3HE8HAo56VjJbzFhdX7G8WhOUYrff8f7jvdAbdMZisWQ2W+A9\nDFYsb7PCxEayw4dAVQvf+HA48PT4yGIxjy40UpAImtbRRWe++ayhaWoeHx95//49wfvJlns/Siho\nVZZ8/vYtf/mznxG84w+/+x1Pj08slg1lIZSEYehRBLQOrNdL3HzG1XpF01TR9llfuENBnpfUdUOu\nFCdrOQwyAbZ2oB0kvNQ5aWaKomA+m01UUYIiM3mkwNhU70QNgKCXAck8SQ5R4nQls3Q5rM5UI22M\n0K9UILlvSSEVJheeEPNspDgQ2pHDXehIXu4p3xu6xGZn2o+IRWUIImhGGp/J7lTryYBAHBvHFw1H\nMgIZrU0knWlKPqbpZ15gzID1nsHKv61CIVkiWcYQm6xzQ4MUziZa5JPQmgva3sVrDJevaxoYXaAn\nsclI+6fskUQE+3If/b4JwuVefUY5Lqhg03M+08sum8z0PF8ibukcuGyMLhuiC+QmfT9Ck9TxNU7Y\nX6K6BR+NWVxsihM6I8OoRAm8RLrOK8NPzaDQ06JjWIAQtaJkTIGhad2G6VnH34f4PQiiIg/qL5pR\nzk1SCOBEg+AjNqQw0iwrJRTH4GPDg+gPdUY25hN9McQizhsj+UpII1DkudB4nawrGdZZyXQZegxO\nHstkoglxEsCqtCYvddQQDiSLaKUk0PbSGh0ds7603LtTgxIkBDM1ikSL6uRc5zWYaGdNDOxNuNg5\nS2vC2KZmVivihD1EDZ2sxbqqaKpSGp2upx8HcVzMhS4b1JlpkoamoZQPr+9Ec2eaiqKoJEtr6HFO\nELsh0r0JgabZsdI6ag8Nm82WruvpYmOTGcPQD5xOB/ahj69HRPQSNVGCzzHx3jivcyZ6odQ6sXHJ\nhZIffKDre0F642e5Xq+xTvLXDocDp9NpcnxMl3OOm9s75nMZji6XS96/f89+v49DLH/el4MYGiVk\nyhiD0YamrqMGTJrkxIBJ9UhZ5pM+JzMm0tA8p5OEeafXOMkJ8pzVckVV1lMDorWhLHIgTCiO1oJQ\npb027TMTWuv9tBf4ECZzCOc8XXdEqcCiEd1z257oe2FTjHbEhZSDdLE3xv0lDYIIstass9gxDU9E\nF+SMJ/QDzg1kRSHurmVBN47yiN7jxh+bnf9fXP8WovMpT1tfFh0XB2KioQ2De1G0yCDszAX+Hl0i\nWjeGoCaRnUD2gojc3N3ITXFBc5jP57EJMNNN2cdJReJ2JoQky8QJ5fH5GZ8Lr3+xXEQXDyl2Etox\nRn3L69evuL29ARX4xd/+gt///vdUVYX1jufne477DXVV8/b1Z8znM8aup2tbjocjYbQ0VU1RFFxd\nXTFfLGmaGV3b8vj0DFpRx5v67dvP+ckXPyXYkQ/fvePDxw9UWUamoYpOYsvlAusc49hjreOw32N0\nhlqJnXCe5/TdyM3NDUWeURYFi/mc+WxOHRGdBL2nQ+B0OnF/fw8hBhJqoThsj1vu7x+omhWff/45\nq/V6yot5fHriv/23/xO0Zj5f4kMQe1MURcxUyssCE4ulxsxZrNfcvXnFH/7wB8ZgaYqGohaKneQW\ndGSZZjFf8/rVLW/fvCYzhsNuy+OH9xy2G/xiwdXVirKuRXNU5nx8/x3PT48ydTRgsoLFasZP/8Pn\nDM7yuz98xdffvGO7OzH0lrzIWa2vyIuKru3FItM6bKQAmIh4iWW62IS2EXGSIDSZFApdQtxk6jgx\nLPOC0+HAYb9ntVyyWMxlOjqOzJuGm+s1r1/dMY4j//Ivv+Y3v/kNTZOzXgq1UANVWaC1om0PIorV\nQkN5fn7mdDqxWCzZR7vkxXLJvF6QFwVjPxCQhlXE24F+aDkcdlh7BUBmcow2jIM09X20pA1BCb85\n2tAK/UtoWunezPKcqq6pqjpO3OR+VhMbX9CS3OTTNC1pI2LJLG5BZ3fptHF8MnlX8bH9hMZ8OplP\nj62MwYQAwcUGMeUiicauHwdCzFwoyvJFAZmes0d0Pn0v963OC1SW4Xyacosg2BjDMNoYTJpTlflk\nBey9x6lI2UmFIy8pUKmRk/1IGo3pcOaykE9F1AV97KKROHPV/fR46bGm3VjFz+UCEboszi738LSP\nnxF0pkn+p78+bdJeXvKZJT1bclALJJvp9D1aOF8B0ebEx/EuunddGBqE80NHyqR89bJZm0wDIDqD\naQxnxCrtc8aIcxshBtzKgiWhX6lpdhF1EngNlLGxCQrTmknoWFAKvNwHLjjwQqUJkdpqY45MZnOh\nh104lOZ5jh0kQ8w5jzdBbJcTrVSpiHJ7yjLHWsUY7Xy995gi6WLl5whtWR5f6JnDecAQovlCckRU\nRnKglDRoSokznTRJkSVh8ultwLnJJMEpCQxNWiQdNR3xk5lMCqahRVwvRhtykwkyPFq8kf2lLkvm\ns/nUuEvo9UheyvuajCtCREYuaXfOOUwm1tdltDjO8xSqOsTmcGDoReNpveMnn/+E5XIZkeCnCcUZ\nxhFlO2GMzM5hrNY7xlZso1VdR81HRHuj/XT6c13XdP3Ax/t79DCSZWK6FAJR8zpOmq0sE+ZF3/cc\nj8dpgJk0MXlRYLI8olADd3d3UZ+z53g8st/v2e/3MfJAaIGzpiYvSoZenN7GvuPgEnqSsVqtmM1m\ncXAlzcgYNdGz2Ywiz+n7E24UzUvK7skyOeOurq7IjJgjWCfNQVnk8fW1HI9HJA9I2CTWFWIB7c7D\nVecEicyiNXqey7AtGVmlwNAsy6NG0k9SBe89WZHH/SpqRp3FjQ6U7CHDMKDSME0l582OEKQOE9+S\nPp4DjuBddKZUtMcjp7an61v+3K4fm53/idcP8c4nqsQEpXsJMozdvHxNig9t1AWHXjaMohQB9DBI\nUXE4SMBWUeT8zd/8Fck+eTafsV6vxW1sPud0OvH8/Cz/NpdNJE1ylVIxyHMeN6Oetu/j4E5htJHp\njR0xWjOPNtXffPM1u90OCBFlqvjyyy95enqirqXZcW7k+vqaL774gp99/gW//B//RBuLXTeO6CgI\nTGLCtm05nNqYPWDQWUYzU9zc3PD6szcslgs2T48Mo/jbB2A2n3F9tWI+azgej/zxj3/kq6+/YrFY\nceRE141UVc3bt59jjOGbr77l4ek7mrri7WdvePX6FZ+9eSMOPl3P09MTh/2e9tQyxsnXfr8HJHdn\nNpvx5s1nzGYzrHO0vUx2fvub34qeJ3g+fPxIlmX8w9//V563G3bHA22cEBVFgY6W3C5Ox29f3fHX\nv/gbTFnzx6++4tWrV3zxxReslyt22y2/+92XbDaPrJcr3ry+Yz5r2G03nPYH7DBQFznVzbU0DFdX\n5PMZx3Fkv9+QZYa3P/mM7eaRYexYrRf8h599wWLe8N//+df86le/5OFxS5ZXBK/ZbnYYU0EwdP2A\n84EhNs9N01BXJVkmG+/j4yPe2ai5gWq9YhxSEX6mJmoalosFXXvCW0dTlqyXC8os47CT4MC7uztu\n726oqoJvv/mad99+ixst/9v/8b/zX/7Lf6Ysc07tkXG0dN046aq00jw+PPH1H77iuN0zny0wpRQS\nbz/7nHW44tCe2B/k4Mvzgtl6RVY3HPoea8cpVNRax36/p+taxnjoGmNiWGo84KO2IWmREgWhLCuh\nIUXdinMOHQs4F7Nzgg/oTE9aO50m83FvkKnei03kBXrw6TVx/j9pelJxkbRGwTm8FwOCtPd03Ujf\nn/DWUsRQ4TRx9MFNLluClIy07YkQAsVyJdleSmMMFEVO6UrREEZrdaHaljLtjc/N4z7ZE8+v47JZ\nSMXb5XXZ5Fx+7dPrEo0RBOZfeywp4lWklv3QddZRnifTCY23EalK7/kPPZfL5nSik/j0mGHSiSR6\nsEtBplGHEXj5mXvvJrrv5K4WC1sVFG5C3OLjc2Ft7lIophK754jARIVQtC6X14jRsd9++b64QAwh\nTnSYLK4nhXPnhjwJ0C8/U9GlxPNOe2nACXgLgx4x44DJdQxNlferKArcKIOWcbQoFCN+KgyTmQfq\nbKmbzAWICF5mNFnIMNZjghT8RVHSD10MnhwZR31xLyrJ+4l0NFk759eWGh1B9vIJaSRqS5yzECKl\n+gdsyyVUU5o+QiB4QcC9FRfCFCw6nflcuLbGz2UY7XmtTP9WfpZ1Zz2Xc448y88OcEaTZRWzcU7A\nR9tmQd+P+z1t2yERFobr62vquub6+prBLafX0DQNqMBgjvEeseR5RfCXCIf8vigKCpNNdYr3nrpp\nuLm5YbSWw6lFqPhFdO3s46By5MOHDyhtmM3n3N3dsV6veX5+nn4dj0equmY2X6C14d27d5xOJ2az\nGdfX17x584bdbscf//hH7j9+lEYnBakOlv12xzAMse5ZToPeZNe+3+84HvZTrMLV1RV1XdF1Ldvt\ndtpDZC0qlssVP/vZz7i5ueFXv/zniTFTlYJenU4nttst2+2Wqi5BBcqyZL6YC/XOnodfaS/HiGHD\nfD6XHL5of53YPH0vMRqJUZBsrau6jkNsce/z4fJAQVgw8VzwzgAuIlBaWEJazKoY9YSkqbhniGmU\nIHN/btePzc6fdH06AUxff0lfS3SKJIpTaQM1KtJJHNaP08Gj4rSRSBGYoGlrJe8myxgiB1brBOtr\nnPEUEeLU2jD0I+MwonTAuoH7D99RlgWreT0d4CGIC4o2muVyEWlWUuj148DoLIfdnqauQK2xPupE\nyoLgLff3H/jw8T1KhRfW1e/fv4/6BsXdzR2rxYw66nTuPzzw7VffsVouqOoZ1eqK16/uOByObLY7\nHp83aGOYL1Ys5kuyskLrjKEfmNUzdIDHjx959+23PD9tCEGh84L56orZckXwjsNxwzBaikIg/uub\nK25ub6hmBc+7B/G1Xxb8zec/Zz5vaKqGPFfsts/gPKfDkbG3GDSL2RK1NHIAlFu6YUA7j80rTrpC\nZw33z/ccN1t2ux37w5Esz7HW8eFpQ+8VX73/yGw2o5mvcezpRgvxsBYv/pJX19f8/Gc/4+bqmv/r\nV79hsznw87/8BTc3b2jblo8PGx6f9hyPA54TSu/QumZWlzhTcLId1npmTUOxXGOzgtP2wGG/k/WX\na3bPe3a7luV6yWr9hr5X/ON//5J/+h+/4f27DVle0XfEDJ2Sulxw6AZQBRjIVIZWZypSbgzBDQzd\nieAtWVmQKU2hRfQfxh7KjLIQ69P1es3d6zt++ct/4mn3gNaKYpZxGg90myNFVXJze0e1mnE4HHlo\njzCfE+ZzivUNg8qxg8c6TWZq5rMVruu4v7/n6fmRh48fefrwwHa7pf5pTYjat/vnLbSO0XnaATaH\nkc1pz19dvaUql2i2jIMU9wDKEC2aYwI3iJZg6IGAtg4/DKDEJJdpUi/5F3YcGbwnaIMlUGWawiiC\nFs2H1jDaAWuHCVVV2oAJkcqWMne4CHKMCItP+gJJaQ+x+PUIFS1TZ40HVig9JmpQnA8YLUhmXZWi\n4XEWow1eOwY7oEYlSeVliQec9dGUQkLwht4SQs8xP0lCe1nJdN0HykqzWDYMY4uzA32vaduCIi9o\n6prZArbbHQyDODPlEREj4J3HYCRjI4uUoQtKx+WwR95yoWEEkj5F9t6ghKevORcMSf+U9md/oZlR\nWqO5HESl95YJNbPWslwuub6+RikVk9X3L5rcy+eWqInyeFJsyMPL89A6u2iwRDivAhglSKMPAZzo\n4giRLBWf3wB4bcQKOdLSyjxOcLXBerDKkOk8WsjmKJ2htKxXyXUB74RmK5QphXcDIbU3IRC8RRMw\nyhOUfN15T6Y0mVEM1ok2DYvOMjwapXw0Igjy3BBaWiA1up5gIg1Ra4IKWG8J1mNwBKOlYTAZmcow\nOqfrLXnd0J46dt1AoTRNXWGRgNDKyJpRIYgGMsuZZSXGOU6n/mWjmttI8wM7jtjRTZoGrQryvCSL\nAxv5LD0oh3Ud/dBjrRDxtBFams5MbEoFocMnamsDeMahZxxdHAiIyYIYiGiMKQSFi1TB0UrTXeV5\njEhoBO1wfqJ/+nHEjyPGOyqjGRUcTxLbUGTFmeJZFFid4azsJUYFcc7aHRgHS12LDqUfOvlcnQUM\nVSUNTdeN3N8/olARNZdwWoAyV9xczejrjF7H4hwtmlXrcbFWcUGjc0M3BjLAO411AyG0sv68jzbN\ngWHsp+yd06mj7TqcE0SlqGqq3ZGqrKK2sOTu9hVlXkn22eg5bnbUs5qrxZwiM/Ttgeexo6hEp/R3\nf/tXqL/7a54f7vnw/j377RNKa66u5sznS06xcO+7E8GXWKsnve/N7a0gJZlhdCPdrmcYevpxRCmh\nl+WFWGHf3t7SDR3/8tt/oR9PrNdrqlpc0+6f7sXCehwoGzFNUlmGC4HuKGZF3juKoqKsRCM0xjwk\nlMEFRVZUmKyQ4FIjTdbxeBLX2SDmJUVekWc588WSvu/o+0EGxsieAIExOvEKKtRPwwKd5eRVhVdK\n6j8rlu6ZVizqWtBWH3h8fsZ2PVfz5odL43/H14/Nzp9wfX+K98OTwUv70U+Yz9NhmX5/yRcWeH9E\n63wSDosTYKJlmKihkcIoM4blYsFsNqfvBwZkIyoK4aKeTidCcEIhOp3iDSwb6yyiOX0/TuGJqLMV\nrEx6ZWITkojOGJwb5bl5SaoeR0F92tOJ169fT6JnYzKcdWw3W3Ybmcg00Zo33bC73Y6Hx0fatmV9\ndc16taaZLxidx3uZpK9Xa4auY7Pb8PDxXlzgSrGhXK7WADw/b3j//gP76Ay2XIpldbKbrhuhuZVV\nhejNPW50nE4nOjrsYOnbjtxkcdIkga39YNntD+RlSZYXLK/WLFbreHAbNrsdp9MRlEzsu75Hm4zF\nasl8sRBxoxMYWTjDJcvlnDLaiN/d3fLm9Wu0MeRZwT/8/d/zH3/+c4Zh5P27dzw9PNK13VT4VVWF\nNnoSI452xGSGLJNJ5/4QnXskCELQsv2ByILk/v6Rb757zzfvvuO79+85nnpMFuIkUtM0c66urlHb\nPV3UdSmVMmqSUYUFH7MkTAznU2fjixA8RmvyPJumQxKc+h39MHB9tZbwVSeN5Ww+p6prdvs97z9+\n4P7pkdOpY75cgtbsj0cMUBiNLqQYUplj1szw1tK3p0h5GCTIbS0anCwv0INkkKAlXV6bjOubW16/\nfcupG2iaGUVVwgGy7BwA6KNGJ/OSZaGUmig/Ok5b67qZpsrD8H+z9yZNdiTZft/P3WO+Q45AzT2w\nWws9o5m001fV16E2XMlE04aSSXxSj6hCIjPvGLO7a3HcPSJR1RStnkxkGSvMUCgAmTfvjcH9nPOf\nRrpeaB4xz2OaJlTI9cHFyeuUptCgAg0v0IpCcaOzt2jEmhYV6Qdq9W/RBjdR3lgS3JcpcaRJONFS\nJAvVgC4Fp7KY42WNw9rYdIgI2zvPOE0M45hoEipM1pum5nzO6bo5pLzPaQBTFBVKnVfIgwoN1xKM\nZ51FuUVXs6YCv1lzA40UT3LXipZfypO0jnJuFp2F/NWqOfFvgzYTArPSUURHSWNMoOcNISPjsx0g\noTux2Qn/731Y+tf/nvoz4h+0isYEiz4oZqok1C9gLcu5WWhj8hMXuqSP7yTYUUdb5XgO0ltLDWHI\nv7EWzaJPUiqeRCf7QjRwkDssUSPf0LejWYbypJs05eyo1AAt1s2A8ykqIM8ymYb3gyAWwbxhtpbZ\niVZvtqJfyrMCo8EH7ViRFzRVjXOK2frQFAcHNq3Dz5b1SVDE4FrlCA2mhxjQukKI0jMV7lN5fmcU\ni0V5pKSCkfft41UI10ZrnNei5wG8FYTHO8/kBL0axwlrXbx7cAGpKfKcPMsQqqusEVPXydc5ubeN\nVnhjhKoUbYW1ZZ7l1ZyzWDejmjo8RgaYyfOMbWBYEIIqr+0V50RbMs9RnyE2xJQFBSEbxi5hq2J8\nIlNd6wQBzNBkeY4YW5A0MXHQMzkxikEJDaysatGJjmMQyc/ge7x1lCVkWrPZCC1fUEShlTdNk/RX\nYMLgaMZaE0JCt+Dfi1bRibOas5IjppSiqiqMyZLFeFmWgfY/MYwxK0wGYN7K0KrZNMGBtEn65ePx\nyOPjI0UpVLbT6cTpdKLv++T2R0CFnPd0XZ/0OItWVFGUUrvpkJVjgmY3UhOjlmoOYdBVLuGx0ZBl\nDrmFWmdJpqCVws8SZyJ6wwxtjNDUQ20ZjRfGcWQYR0yQL2TGUOa5IEDAdrfjl3b82uz8C46I3vzH\nNDxrYSyrjXVxDNIQ6B060zKpUoppHkJTItQJZy3Oxj+/5bOXZcntzQ37/Z7r9co0Dgl1KgoJ/quq\nAjcvWT5ZlgVERhCd0+lI23YizNs0VGVFm12Z55m+76nLkjKTgiYzGuUtdVUxjgOXy5nD4YBSipv9\nDY8PD3R9nx4aP098+vTEy6dPaG3ShHqcRk6nE9fLJQQjSiNlsuCGYyWAMwZvTaPwZ43RbJoNtzc7\n3r1/R1UVnA4HXg8Hul4Wj11ISN7tdtzc3HD38CDTlqoKPOUz8ywbh50kbVuqDoNFptV+tsx2Ere0\nrkPneXDrqqjKgsu1pW1bzudTmNpndF3P5XrFeUdeiovXy8uLUNjGnj5Y+OIhMxl1VXF7e4tSiqeP\nH3HTwD/99/8d2+2GP//pz7w+f6K9nMkU5GXBblOzbSoUlnGYcfNEkWdyfcoCvEvNSV7kMCvs0GPy\ngsxoZuv48P1HXo9HDqcTXTeGCafQWIpKnFeyPCfPM7q+fzMlVyoETk4zCmkAMq3JTJZ0G0Jhio5j\npA35eDxyvVypypr9/pY8K5jGEZdlZFoCcD89feLDhx94PZxorx3ffvstWhmu1w7tHduqpApJ39fj\ngaHv8c6x2TR89dVXbLc7bm5vKW7KNG2dp5luGDleWs6XC0W9kRyOshK3Oe+TXblJ+o7A+9cC5Ztg\n0BEpZdGi/O72jroWu23JieqZZhssXUVfl+noZhhc1Va/pEAywS3NLa45UZfDKj00HFJ4qeU1V1Sn\ntaA+fq24qxlpdoNzUsxRQIVCyUiBJg21oSjEKVKpxfUrvtY0joxB2xQNF7Jgm1oURTI+ie5EPpxf\ncR9zK8RGvXm/Iui1yVVu/Xl+tKa+GSTJ4azDYtN6LL9rCDGlb85TPJefr9PeBxqSFPGbzYayLOn7\nPlnL+xAQ+1PBo0mHsSqQfzwM82/+P13vdcPw2ed985qrf/fer4pqtfRYbtUQJSqZZ/12U2PH0iD+\n6HvSz1xauHUz6bxfXPEUP36fb5CviLiBUx6jFJkRZMp5HwouEcJvNhum2Yp7mlqocPM8k+f5IvRX\nUhDGc6eD2UZpHYxzQNoIjYIVQwQbs+6WgYK4SMbzY8K/vdVjxSO+D5Dw3Dfnw8XzF1kaKt0HcRiE\nUniMGDeELBPrpPDuuoxpu4G6SgYYYr4jxXc0FXDe03vZX6XgNWgj1CRtHFrP6fkSe3jREM7zzDjP\nQj0NDpMKob6LHTcI6whqXgAAACAASURBVMNyuVwxRktwK4SwTGkS8xAqme6fz85TrIuUQpz/nF7R\nmhf3vGm02FlQtnrTUNWbQJsf+fTyyrVtxRApDHBdllNVBXmepaFapJ69vLwwjH2ghDrMJPqeqqrY\nNTXbzZaikGf5h+8/8vLyKqGngYkS65VpmiiKgr7vGMY+PRc2IOH1bodSSuyqNxsAjsdjGhZvt1u8\n91wuF2HKhEy+NWVVXHBN0lOXRbEMLpTUBnq1ZkXTDAn27pM7nFI6rbtyv/hkqCA/w1EUpVDnlcLN\nFulJVRpIS5aaNDl936frNAwDeS/DnaIuwj0QGANmcYz7pRy/Njs/41gvfD+1GX/+dfI1b/8uUiRi\n1g2A0dEkwDBOfVpU1xNlWBxX1qK/fTAReHp64nQUnUae51R1JTSyPON6vsjPMYaqqsmDwPx6vXK5\nnENysg6FuLiWjH3P0A+wF11OmWd4Zxm6K1meYa00Q13XcX9/zz/90z9Jdk4Qdtt5ZhoGxkFEhfud\nWFZHusboZeEuyoIsz0QkzWJvudvtuLm9kwnTMKKA3XZDtt/x7vGRd48P9MGa0s4Tm6Zhv99S5AX7\nnTRDX375JXd3d+gso+06rpczl+4kk44wDS7rgt1mx9APDMMoU3jn6caRth/Y7LbScFlZnKdx5HI+\n8fLpE5drK1OqWfi8Xd9T1TU6M7y8vEiR37Yh8MxTVWIgEc0l8izjfDrzt7/8hdkpmiKjPR15ff7I\n9XwEN1MXOVmm2W8a8kwx9h3OzuSZoSq2lEVcHMXRTGsjziydo242bPc3DOPIy+HAy8uR4/nENMkU\nrChrjC7Iy4qyrDE6o+vaIIaWjc85ESsaDVqFbAzl0EhxHA0L8kyoXLLQytQ0Zhl1XYe1XuzAyxqF\nZp4sWmdM48wwnnn+9MLx9UQfprrffvMdddlgA3o4oOi1YZpGji9PIu4Mk8/3X37B+y++ABS2nKCD\naZ7oB8v50nI4yOvubh8EsZtGrle5d9IjrWIxE3jMQSBalgXjIJt+1MXttjvu7u4oipJpmkPIr1BX\nIpolxZ1PNBPl3Js1YLEPNig1p2YIFl3JuuF5U+wGPUp8Dd6sNz8ewogtuwsIo7RSS90thZlzHmPk\n/7X2K2H+kgk2Kpmo53lOpkiNh1D58hSUPE2TaOuspa4rCS8NU1JBDsyb95jOh1ppFlbNUGxAUsH4\nBpUJ9vXhz2ujgPj5lGKFqC0FWrym63Onkc9SVRXOueQIJefHpN8/bz4icpLeG+vWJhQub/60fO51\nc/D2nMhXJp3Om88VCst0HiIyFh3c1l8X3Nb0yj47PJ8mTn9TgRwsbT+/j5RKmjUp1OX1EpS0ek8+\noFrx93StQvNEoINFbYEN+11E0y5tyxzE8VobrF+aHTFuEC2SN2EggWjuVBhQCNXOpjBWGJmHScwK\nWPRSy3Po5N6KhVyw8I7aHXGhk/ceTQAUYuG7FMSRrbHESMTXFxv1AHJ5kMc6MD2UZ7Yz4yT7njwz\nor2Y7Zz28xiJkGWWqhK75MnJOTJGJvVFHppQ7dK1LIoSpeSczdaReYTiZCQXbJ7noOnJUSoTa/95\nFoQsNHY2iNuNMWRlHk7R0jAu68SiG4wDHaUFPYvNTjK3mSIlkjCArYV1Uhb0o7g69n3PNE/pOlhn\nUVZJGKZ3KVdQ1huxv5+mKQxhcux2ptCaYrejKiuMztjtOsZRmsT4PE/BlUykBzpQ/aAsJbMHZEBT\nVU36vFGfeD4Lav3w8BA0P+dlOOKXEPn1r6Io2O1kmKJRKZAZVGiMdUJ1tNbYZP4ypKYzy6TZiZk/\nsu7ahP7FNS7LxIo9y4RyGNfqec7phz4NpaZpwgcTEaXkXEuNkqdzM1tH1/1qUPBfxfG2wVlPy356\nCilftky+gLQwri0aE9yo5QZObjlhE3QqQPmTTQWXMRnb7TKxOJ1OvLw8SwbMbifWiqV0/XaSsKu4\n0PT9wPl6TTdudBaxVnJadpstFyscz7qq2W63aO85nw5cLhdpioJIvKlrfvOb31BXFf/Lv/t3OOtW\nNLeJqq7YNDVFbuivLfM0idVmVib0qmkattsNWZ4xDOI6kmUZX375Fcfjkb7rmMdBDBaamtubPdum\nYWhbvLWUeU6133F7s6csC+7ubnn/xXvu7m4xRnM6Hfn46YnT6RTCMQXabeqG3c0dX77/gsvlwulw\nDhO1mWG2ZGXB7c0t1sPLywtte8HjOL6+cjkeZVLpPefLhfM1NJSZLGh//etf6fue6/UKePa7LTd7\nEUSWZSk0LOs4Hg601ys3N3e8fnri5eWF16cn3DhQZrJ5l0XBdlOhcIx9i9aKelOzaWrsPGKnGZMp\ncSszhqkVPcf+5obtds/HT5/oPnzkfLrS91PY8Au0KthsdzTNFmPE4eV4fsFZ0XZZOxG1D+M4YueR\nbV0HhxYpQCPNQgcUUnnRi8SgtDzPOZ1OojdTSuwuJ4u3UGQl4zhxulw5Hs4M/UiRF3zxxVd8+/U3\n7Hd72vOZcRba4fF04nQ84uc2bErShNzf33N7e0d77XhyTwC0/UDpK2livCcvSh6/+ILNdss0zVwu\nV7puQUKNlgnkNI1yj4ZiP8+LMIE0YbMuaTYbbm5uUErTdX2YGMukOWWohA0/1oLx+Y7Un4jwrKfM\nqVjQCGXLLUXrWzpb/M9Pr1GLeHkpupbfhbYmSOBidKB1FqgeK4Qwz1FeMTnZjCesTMLdUlBH0Xws\nZGLBNo1TsNFVqdlZu4mtG47Pm7OfanZiQc+PPvaPG8h/eITrsjYzSE1nWIPzLIjCtdjYX6/XEPwX\n7fvdj743vmd5+R8jbCreBenzyvtORXJER9TixBmbnYiufN7AfHbCUGv2XEJ84sd2iUK2NMzhMwfH\nrrWhw7phlv5yuU5KaQhOcSr+QLVciXR5QlPivVv+MoFYOhXCrCbezrkwqc7wTnLRZF+KZgvB0c8L\npVIDZV1T5jlte6EItOXMBJtyrTF5JkZAw0i0mtY6k9yrcD4i1SwGrXrvAx1PzquGhDquhxTGB9er\nhFq6oJl6e38pJJDSe5WuhdhSC7KLAusc/TgwjAN1U9M0NbMd5XsVgRZsUCOURcFYDMElVYUhhqwv\naM08u1QYe2SY6mYvWXpeCnfnZE2d+im4bwlDwIXASmlYQrPtPcM4kRmHEkAjUbPSgCEMixZ3MLHi\nz3Oxto8FfVFkQcBfpYZnGAa6rg0otIQ2l1W1BOiqmE0YEOOwbsYhSFEUcp2tNAXjOKIUXC8XrseT\noP43N4E2VvHFF18mpOV0kuYkIn5KkxqS7XbDZtOgtazz0zRjtKbveoahF+qXd9R1Ldqdvue0Qnqy\nLMME6YEY/EQDAUVujKAt4XkzJurcliGX1hpvLWP4TNH8QJ4dnzQ8cU22IQNnGRiBCpTSdQNuAhtD\nhz0quWYGnXlVlRSZXKM8z8LePzOGPKJf2vFrs/Ozjs/pBm+D5n5EM0h/UMRkdh+mYmiZIoLQMOIU\nJc9KynKZRkbLxdnKz4rTryxA1F3f0ffX4CTVJ3qb0Zp5HGRDUzrxz6/Xa4I7Y6Mh70s2ts2mZtds\neS4K9rst2+2GPDO0lwuHl1fa65mqqmiams1mw3YroY95nvP9hw+YAC3P04CdZ/bbLff395yPB7rL\nNUDFOXmRi83vPKcNTocpMniKouTx8UEg4cuJvruy224p8oxh6BiGZpk+FDl1VbLdbnl4uOP29pay\nLLmEKcvL6yuHw4F+HLm9v6PrhEd7e3vPuy++YH97zzBZiloWmWy2TF5hAZ1nYGXTupzPXC8XDiH4\n8/b+TqDlQRCdPM9l4l+WDP/hP8i0yVqaRlxdttstSnl2223QOZzpri33Nzfc39/y/d/+wvFwoLuc\n0N5SZpqiyNjvtzwEe+tBCX850xLoejmfAKiKkl53zNZx7nq8h6KqMXnOOFmuXc+16+mHCYdis60B\nQ55LDkOE8u0UHX3EQKMsK7JM07cS6LlrGuEIe0eRmRWM7pKDYFWWNFVFFXRn59OJaRzBiRFEzNso\ni5JhmDi8HjifL3jnub994F//079ms5GQ16nvcdOEnycupzPH44H72w273YZX+yqIXdvy5ZdfkWcF\nHCXhues7dq5AmxydZdRZxddff8Pd3QMvhyPH04VhmlJKeF1VKJa8GRM2ElbTuaiDMFlGWcr3WSvP\n2zhF5GKhB0kR4VMTFAvqWOSm3IXPJuMRjZDi/i3dC2Ii/UKDdQH9jVP+9a+l+CVM1sPrBy2RtQ5j\nXJrGJvtek1EVGc5ktIEGN9vVBDTLWPVp6Rwl7eEqADPPc0Y9vFlJ105pa7ThR6YE6zUVn8Tw8d+U\n8mlw9Dkysry2ErH1GyRGpeIsNnZ5VlCVkmQ+DKNQg4MbWDyPP9nMvEGb1g2PYy3y8fx0j6pW1x0Q\nHYt3b68db1GT6MKlwjR4+exrRGvFRAi/x2YWv244pVNaf6a3zfWyx2mtsE4FzZVN70EphUYtOVer\n95zuxzf/kr4grR3WWrKAEseTqbWG6OY2Txid4Zxh6C1+duwamZAfj4eAMueAe9NoaS26FqOUeNB5\nG06I5E9FFCTLMpTRQSOrF3Tqzf24nEPnXaCqRmq5BaMSKrS+h60V2qicD9CZiMeVC/odLzSka9tS\nNzWbjThvxfuzKuXevLZX8iwLxkAea0PjpASxkUSimb53MgzSYqDinOThzdNMlofn1HncPGOvlqEf\nqGpBgbLgJKkD0iW6FRs+u1ya9VrmfbA4Xw1KyjJP4ZzW5lwul+TkpXVGURaU44RtO9r2Qte2jGGo\nVFTi+tpsNqkAL6oKgjGLyeW1m7omz43oSBRcr1e6rqfvB+ZZGAEa0eWI2cgDd3f3NE3DbrdLcoGi\nyNluxWF1GINrqlZpEOWco71eOZ8u5HmebKABmqbhdn9DVZS8fHpmHEZhjIQsoTKEkNd1Ldls3gcJ\nwGVZd0IDY+1C/9UBpXRhPwLSaznnmO3EPM1vnlsZzi1D9IRCqnX+kTR1Wbi+4tS5oiCiKPOCpm6o\nyhLnYRwGCTSdfqxZ/CUcvzY7P/v4DLf/fzmWDUcFTrVsLjFQFAiTkOWm3G53lFXJNI3Bn92glWG3\n3bLbbgHCwnilH3qsFe93pWT60XUdRmvKXC6zNgKvWmulYB4XWk78XWuxWrzZibi/61qauqbIcuw0\nczlfAkoB++2Ob7/7BvCcz2f+/Oc/k2UZXddR1zXXy4Whu+LtRB7yNvq+p21bhmGQDTNM82JxpZTY\nYJssp95Ydrst49BzOBw4vB4Ay3bTME8jnz4+0V4uyae+LKXReXx8ZLttcM5xOBzo+o6u7Wj7Dq01\nt/s9u92eruvZbDZ89fU37G/vOJ6vnK8teVWKk9AwotqWcZrowzSsqmvwEjS63255/+4dNiv4+PGj\nJISHhTGLifTeczwe2e/3fPXVV9zf30kROA3Udc00jLw8P+O95/HhATcOPH/6FMTlLk01q7LkZr9l\ns6lx04gNyc7WznRdSx/OucNzPl9ohwGnM+7v7ymKitfDkU/PL1zbHueN5FlojfeRuiCp0NfrhePx\nmArWpqrIi4rdbkeeGV5ePvE0dGmh9DF0T0sw7DSOiSq0LOAw9gOnw1Gac5MxjhPjOHFzs6epal5P\nR06HE0PbU2+3vHt4x36/5+mHj9RB7DlNIzY0/Q+3dzy82wKeYRo5Xy7c3t5JY2cMHOR5m2fLMM20\n/cgwTuxud9y/e0dRVpwuH3g5HgB4vLvj//yr2JiPXbTOjUVpLJoWY5F4zwKBSrqh2eyYjkf6vk/F\nujYG7RchfRRFZ5lPG9o6ZG69QXm/6CHeojJhPVne4NuhCqSGZ1l/luLbOR8cASWfK1Rfb9Cc+PMj\nOudNxjwHjcDkg5h6lAYuoJjgkxlI2jhZGro8z5eJ+efv97Pqf908pMI8nJdo7PCm+Daa7Cd0PJ+f\nG7Oi/cXPGD9z0h0FRGcaZ9q2lcLQZKkpiinv8fr/o88hk3PP55XB+hrG/08FIyz0sECHWr+2d+Lq\nJ9N6v7oP4muHJoW1wcDb14gB7ToI9n2IPoj3hlM/bnoTXuNUQoO0Egcu7+Veik2JVirl1VhRq4CL\ngbzrxiqiHCS0Rwo4S+E9VSlaAz+OeCwGCdidZ9GcZcbg5hk3C/3Ls0GbDB1cB7VSSfTvJnGXynON\ndYYpZIjEHKFYtGdxmBGvY0Tawj33OaK4bn4T3cjOSTP1o9sxXGNiY2UUeWZQPmcee5ydmexMP4i+\nc563IUzSpr1RxPQ66EQ1RZEzzRGhtUCk1wkiPQVr/WmKwxoC2VEFep8K+tRQUCsnroy55HFlY5ae\nF+ccPlDr4hEpu1EnIoyVxZ5f/s4lJCFS1LPMY/KMqiqYreXatpzPZw7HA2VZU2/27PY31HWdaFhF\nUQCOeZzAh7DNqpRIglkCOuP7iOd/HGfKvGAc56BDktyb5+dnmqYJQaGCDMVA6GEYmPfbVUMTkWWx\nfo6hr1VVpXyed+/eyXoR1rr4q2kaNptNYs3EgFRrZd2Pttep2Z8lIiBSw9fo2nKPLRb2YqzhgtmI\nR3S1y34R96vMhBynwEZa3/PTSqeYByMC74Vyr5Sia1vRMPUD02zJfwyt/xd//Nrs/IzjPzbx+qmv\n+XxKuYTHqfTv60LKOUeW50zWYmaLd4L0FEVFXQk6YJTYoCYe5TzhnHT4JjPCZfYC8242G7z3TMPI\nMUxW4s/VRjNNLhWoRSFBbYfXA33bcblcudnv8N5z7VouF4Ev97s9v/ntd3z33bf89S9/4emHj2Ra\nHpyHO7FpHaeRUamwkF15efnE5Src9zFQW04h+GsYBt69e8/XX3/Nw8M7Kby7lqZpJBX5dCAPdC6j\nNfM00l4unE9Hyjynriq2W3FHqWtBKAQW72RhcZayyKnqvQSK1hv6YaCqasqy4XJuefr0iXGa2e5v\nJPjzdMY6z+SEy12VFbvtDhuDxnIRaX88ndOiGN1crtdrygRo25avv/qK29s7MpPRd53oVcaJ18uF\n9trSNDV2njkdDijvBWFQChUWuSrPyE2Wrp3kJMEwdCKCz6RBdM7TjwNeaXb7W3b7WwZr+fv3H/n+\n4zOX6wBKplhZXqCUoaq2eKfpWrGrNMHfPyYqZ3lBVZVkWtPUDbe7PVVZpPs8Tp/mwF9WiKNSkQmv\ne5om2rZP1MfdbkfTSC7T3d0dxhjGwEWeponKSQbEX/70Z47HI0We4eeJeejxdiTPDV988QW39zV/\n//vfuJzPQiPYNFR1zTCIWQAK+mEU2tu149qPbO8esdZzvlx5fnnhfL5SliV3dxIqWhQlQyeONbH4\nzZRMPxdaaWwKTBDbVhSlTA5fX0X0WjUNzlmcl9z4WKD7QP2Mz1vMXbFOzBDW1Cqi6Dwdn+fF6LRp\nvf179ebvYqG0RoY8HvkSySlyyif6WtTdeLsEi8r7WQpoofpN4rRERAdIk3ETXITi947jFETSBMTQ\noVMuyupneCnC1gjW5+usD+hVaii1hDYq/Y8pbAqZ6BOmlmvHt4iUR6GvgoSkx0DFqGGJ72s9nFk+\n/5qeJoWw0QqHTs3Euqdbf65lD3AoC17FQjncA6vPvv6l0g9co3f+RyihC/o7kluYNNeRgZYQCfIf\noWlaRyTTpIl+vO+0XihxsTHXK2QOBWrVXEYWxJoqZ8PnVM4xz0qsoUPBWBZSCFtnUSrukS40MhPK\ne2bvuFxairwgD2uOuK2J/kwFdkTU6RQF+FEadudnYMm5io1jFN5LQaiDbfS6qYz6qeVc6zfPr9CJ\nrF5RAEPnGbV4scsLPonEemCeZ4ZxSPqM7XaL1mKJXxUl26bmZrflEGhS3ji8mxit6Cu9B21ysqKg\n8uA6FwJUbUIPQJFlUUscr4fBa7nvEsK1WnPErc+hlGOa43P2li5rvQSTekVC6a5B07rdCvoWg80l\nhyxQxYI+qu963GzxhaUfevRVKO51XZNXVXj/cu76YeB4PnE4ONr2inVzek7F1UyHQZKhKqr0Xp3z\ntG3P8Xgkyww3NzLYjU2b1nK9ts0G62zQTGXkWcbD/T1dK8ZKUXMbMwrLsuR6vaahTrwngDTwiW6O\nsakwRhoOZy3jNOGdaJBilk6WZXTXazLHiTVicmjLA/XMOuYpuvBmb6iqaaCTL7b3ka5qMkOWG5w3\nq0FSNEQQHZhznq7rGAdx3J2VZRreIvS/hOPXZudnHJ83O/DjyeTnX/9T/PA1veQN/UI5ZitTxa7r\n8E4SmTfNJonRrtcrh8OBMRXdmpkQHqYURVVR1zVFuSTvDuOQXDzWwmOtl+lp3/eMw4AxGVdjGMcB\nQuMgFood+/2eP/7h97x7J/zUv//t75xPJ949PnK9nBf6ATl6u8XWEmw2DoOEQBr9Zho0z+JMstvt\nubu7o2lqpiDUy3PD09MTWmu+++YbjJHieeh78A5jxHKxriuZ5ukY2BgspXtxU8mzjCxfHOiUyciM\nCNGPh4PYOFpxhBvnWbjc3qOzTKZboYmbx4lL1zH2Pc46zpcrHy8XjocDzy8vOOfYbreM48z33//A\ny8uBuq6CduiO6+USmpNMAsGGkdubPY/vHrHzzPV8FTexsghTR2lIm+2Woixlw0GmS0rBOM8oM5Gb\nLAlIh2GmqGuyIqftBw7HIx++/4GX1yPz7MjzijwvUSZjv7+hbppgHz4GW+wd1s4hwHMIk2aHUmLH\nvNttaZqKeRLDiKaqaaqGp6eP2HkUDVfTpA1nmgQx6rqOm/2O33z3LVUIaAPP06ePnE9H5llSpy+X\nCx8+/J2XlxeapuGH7z/QVCWZ8hg8VVVQ5IZ5nnl+fuZ4PLLZbFMy+uV65XS5wI4gcJUwQK1z0Fq0\nYPOM88FVbbejDtarSiPoVKRV6qVAT89pQGfKEPBbljUqbHrWOcZ5om5qeZa6YdFjIPqFLM+TNkDS\n5QP9Q70tmv1n64pHJuGydix0IqUzFCsdTChOIxd7rS+R9SggBz4UvVqHzA+fmjGlNG6ewcPbCf9C\nnYqN34K+LGGmsdCI6988C201FnPWWrSVz7Ie9njnkl5l3bDF9epz2tuaVrQ4kH3WfMRfcUKqNMqL\nhTAs3Pw8l3nlPE2M48KPj+8vruE/pTn6R5Q7pYLlcWpeefM1n3+t6EZAOY1C3Pkin9+jw+d0b94D\n6VMu90mcRLtVcyZ0TB0+U7Q3Ds2v8jgX3qdSqZnUWmMQypE2Bo9LYbMLRXJxH9OBTvdWLxDOS9T4\nhOYUrQOSFSzDccxqZpwmirBGZnmOGYbQ1C2fzjkvGjot5+RyuYQIhi0u2KMrbBJlT7NFhb0xMwaX\ny/WfJxsKwNCA4HBeobyW51H/NHqaCkgsVmt5lvTyuZPoX7FQoWLzp3wyWLDWMylptywu5FtNmEG0\niMM4sgs/fx4nfMituru7YzaGru3C8EWsq62VzJqiFERWHNxccK/zb+7RiOQZpQItSqdBiPfRfW1k\nHONzTGqmkkmS1lgf3e3kOVIBeRinmTyf8V5Czzeb5g1K1fdBvJ9l1HmG0pqu62Q/rypmrxMLZLPZ\nJNfSLBNUaxyF8dJdW/qhpwxISFmVaf+BIAMYhH4V7fCnaUpBp3FQWZZlQFdEK3x/f5eaXu8k4qOu\nGzIjaEekFsZBSRyMiJNbn5C4aOW/bvKk0Skoijy9B2dtcPkUtCn+jGEYk/ZK7v2FKr4gsC4N0QVR\nXvYIGRJE6/23a+RiTLKscc5FUwSTnmEx44DtZoPqes6XC7+049dm52ccccNdbzhr54u3KI7coMsN\nbt58/XoSmRooJVS3Ptj+FkVBUzZstlu01jw9PXE5HZN3e2bEvz9yOvNCFoumqTHapKbJBoeS1HR5\nJ/zXQJ1b8+yncSLPcryf6dou6YoeHx/53W9+w3fffsP5dODjx4+8vr6QGZOg66gDyrOMItcMg6Nr\nBQ2RjcBSxiZsHMmD3mOz3eCB0+XMy+sLXdczzxNPTx95//4L7m63TGPH6+sr1hjK7VYQnU1DXVUY\nLf7ybXvFex8CAMdgBlAEA4StiAuHgePhyDCOVE3D/eMj+5tbrJeFpx8G+n6QML28kImwMbT9iefn\nZ16fn0PjaBm04ePTE9frlfv7e/b7G9q243g8Ya3j/v6Bpm7SZGeaJuZpwtlJrCwbyWp5eX7h0/ML\ndbMBJXLmZrNhs92wv72VCZ9SdF2XXivLS/Z3lVAMLxdG68mKiqKsmazjfDnwpz/9hcPxLAYUpsRj\nQBmaesP9/QN5UdD3rUzMlEyWXl+fGYMLjlJayhgFdVlwf3dLXRWcjwfKwIOuqwq8BFHK+ZbwNB02\nsJeXZ5yz3N/f8eWX72XidznTtReen584ny8MQxcS4oXGQaCQnY4F7x9/z/3NHuXmMCn2HF5fBfU7\nnynLmmEY+PTpmcPxTNt10uxYRy41uzQZSnNtOwaHTOemEQ90IZ26vS7IZ2wmZHOZUiMQqROxqCc8\n72I/LdlEZVmJ/ohQcIaGR3tDlpOoQN5E7UVcN5aJt3MO63mzyUHI0/ARsQmc+s8S1VEqFbqRHoX8\n2FR4x58VC+X4HoyRKeastIQE2sXdRwdBtWdpghbkiITyRSqb6BCnhEAvG7QFsjdTYZBcEe/eNgJr\n29blPCyNEoQS+B80OrFGjYW9IBWGTEumUpza4sW9bxpHpmkOE+4s3QfxWDeOP2UAsf46pVRCdfyK\nzrZ+jfRnCFqXQEOzC90rfk0sbPCkpjBe088bKmtncsrVe5ViO6I4OjQK8ftioSTuYqRmSVmL9yrc\nBy6J9uN9n1C/Ff1rPdCLiUE+VGBexXZsuW4u/k0YinWBGlSVZRB6v0XXEoqkDRoR9g/DiN34kPXl\nJBAzz1DaoPRI143oIGhX8XwEClA4Eek8xb0wfkZUbDIXtHW57oFmaZZ7dZ5HsB6rLdbqEO4bvlWH\na+wJDY/8nTaGTBvJ39GKfhy4tq0UmOHciijfcLPfMTpHYYK5AWBnyzgqJmfl53vJ06vrCg+hYF4c\nFpNmyxiyTNb39C50fAAAIABJREFUmC3T9T3OO8oyT7eU2IN7QDQz8f53AeEyeUZd5OTBQS3SpyBL\nGsiiWKhZ1lpmZ9HeUBbikrbdyn6ntcFasVruuo5hkEFt0zTUjVhmT8OCDhmb4YDJWvQkuTCx1smz\ngnl02Fnqj0gvK4oiONFekFDPPBX3RZEL4yTqnQPStWk2qPB5FOJaK+HuMY5BkZlMApKNDi54wTK6\n66SuyrNQt2ypqiKtobFhjKj4NIxc2yvt5ZqYAHG9ic9CXFdFDqHSeVVqMSOI61eWZWBjxIdeNUXL\nAEdrzTgHdlG2IE95Lg55HsUQKIK/tOPXZudnHMlpiaXh+UeUtsivjPSQtIiGY03HWOgl0jjEhmgT\nXJ/KqqS9XHn69MTYd2FyIw0DCmY7SyZNyEgBEcF1V5mOiG5G4Y2WTIpZ/OgFEs3TdNNay9j14GGc\nBO3ZNA0P9/fc39/y5RfvmaaJv/z1rxxDvk7kvZZlyeFwSE5G49jTXq9Mo3BGrRV4uq4qMmOYtWZb\n16lAe/r0KYRznZhny+Fw4HQ68fvf/579fkd3FaGcNHMNm6pms2kwWtG2knsTXUnOwWpbpit5EvaJ\nZqnldDpIunSYcOx3e8Z55Hg8cTyduVzC+86EQvZ6OPD9hw98/P57TscjzlrqumH2JIRtu91SVRXH\n4wnnHHVd8fDwEALA5gBTFwzB7jErDUPf88MPPd9//wGPOO4xTpg8o9ltub29TaGbWZZh8oLT6YS2\nnn2zoShKXl9fcdeOvBTRZdXUzN7RDzPDOFNWDbt9xTwjuh3nqaqaoiiJo1q5r0VfczmdGIaeJdxQ\nUQRayX63o8gM3eUc8n1kIlYWBX13XabwwTGp74UyUDcV3333LTc3Oz5+/MjlchJ783EAPJnWlGVB\nXklzWlWlQOmZ4vHxnt98+zV+njgfXriez3z/ww+cTmcR0VcV02T59PzC4XhODoPzbLFeY31IXPGe\ny/XKdL7y8ekj5/OFyc6cgsHD+XxJYlhxGsxSIR83Sud9oqJ1fccY3BGnaeLp6ZO4zs0SvJnnBc7J\nNRUqzIq+pCXo8a2mYzWhD/qJ2HglNAAp7uLfy/RWE/Nh3tAXUqPjEzUhzVN8dPoKzUNAmPBLJojl\nrZg9MxqvwdkFMYj2+EotA4/YhEhTLgOHmC0RJ51xnVxv3lpF0TvpM6y/bkGqFjc7QdsiFWihYKTv\nXzV78XuMMmEiKwVOtEtfUCyfCkxZn9cNRUQsFvTic6Tmc0Tup443bAAdM34i3hKbgZDRxuLaFj//\n+tvXn1GncxUzh/zqc7zVZq2LovjMxuBg7z3GOQmItJbJzhLUGQrzmCOTDDMCeuH9MsyDqNv5seue\n6D8US3iqvJ85GPJ4L5EExphUWGqtg6bhMyaFh2GaGIYpILJy/uJeqpRiHASxjzpZo03QcAUtmHPg\nlmJyXQBqpbEJPfVp6q0D/Sruo6K9yJmnAeUXmqPzkX5HQM5W19k7vA8W/UZjVIl3NlBwj5RFwaap\nyfJMrKPniazIqKsyDPhm5nHGhnU4Uq+maaTQWmIk8oxxHIJOJOpAXEKTw3xBzrW1oVmZ0Wa7QrbW\ndLzVras1XqnkqhobqWkaWWzTXdAyqtTsZFnG2HVMXpgkeV6w24mRUdu22GEZ8gg74BqapkrQBic2\n/2VVyrkJbn3DONHZXmopJZ9fBW2YGDotWppINxzHgWkayYILo/c+NVhr451zeaYum4DuG8n7Cdkz\n0WhJaWluBXUU98A5UNTi0HW33VLVVWqs81yaynkW1sow9AxdnzRAseGIz096TzYGqbJac21oXpfr\nJGwaw2wtmdGYTKONInbKCfmFhECJyZRZOZAW9MMYqIz/mMn0X+rxa7PzM46fojH8o053PY1a871j\nR16kcD6dNjO0TKzyvCDLTGokTqcT5+MJa6ewAYjXvAyGNFVdJeRCAspamcA4T5bLBCJ1/WbxvY/v\nTWudAq6mfuR4PDKMHXVV8fj4yP39LXmm+fDhAz98+J7j8VWsrUPoZyz4+r6nqWuGvudweGHor2ya\nBmM01+tZCovQMCoVkpPLiq7rOByOQWczUxRSSO92O6qqpK4qytwkRznJ/SnIM0PXdZzOZ9q2DZOR\nCec8dV3RNBvJLNAmOdC1XU+mNflG+M+3+z3bTcPxbOm7nuPhwOFwBA/v3wsF7X/79/+ef/7n/5ux\n72nqiqooQCl++PgpBXSN48wPP3zk6ekpCSvLUqyVVQH7/Z7cZFwuJ7qroiwKjscTp7M4lf32t7+n\nqATqr6qKpt6AMhxPZ54PB8k0sWDyjN3tHU3TMA4jzh+xXlPXNZvdLdvdFq88Whd8891A349Ms6Nt\nezwK5+S+HXoRwl6vZ+Z5RBuFczND12FDvgOhyN9ttuz3OwkvdS40AtCHjKOY7JznBU0jxXw0yrDO\n8v79l/zu97+jDA3OMPRM85hEt1lR0E8zPk2IxbTh/TsJji3LnLzKGa4nPpyOfPr4iaqs+eL9LV99\n9RW7/R7roG07+pCJI7asOR4Jih3nmbbtGK3jfL0yTEK7i6joMtE35GHiH6+tUkG4Grjx4zRyuV6B\nDgl8m3h5eeHT8ycJwlM6bUraSgK3C899PFSg0MSp7VoHwmeox0J3DQF93pERCxAJz4waoIQqqDj9\nX1FsnEu0t6QfDEW8tdKYZfMypIGl+fEqok+BihMcJOPGH4+0lvk4fZxwrlytk8tm+UZn89k6ul43\n1xNIrz4zOXBCD4qvJ2gkQRqxNCLrYZPRRqa+s1CGo67o84080vvktaMFtPw8pZaf+3mj+Qbx8QFB\nULGoj8hIaIZWX+vCaYhm1THYc5ptMrVYD9OUdCxJG6bC3+nQEKlIX2Gl82GFJoYfL1Srt5qgNYVx\n3WwL6vH23pTiWS/3GtLI+GCGodL7WfRr3nm8CdoYJTqyuJ/KNFtoaHEfNQTKV6LlyRBjDkYEUZth\nQlevFOIqZoTGbAMNVCtNbhQuz5lny+ycTOaVIndvXQ+N1rjMpMFBLOCJ180LIjmj0nqPt9h5DI6J\n0RI8nPtVuGtCjUIzBKBzA0ozjT3nc7A7N6IJRME4jcxuFvpZZsRhDk+RZeiAAp2vrQxBAZRmtnNq\n1OI1jc2vRxAbuReETgvB3KUfcSquAXpBWXVgrASkNFKhBAEWW2M5h3NqFITm5VNWD8gqIPuXp242\n1HXF/f2t7DvXiXFeQpwjLRoEgbXhM812DsYigpIM/cAY0GRjDEWWU+ZlMh9wzge9jQqUbUvfd6lp\niIYx0ZxF8mjmEOxucd6iw5owDDOnoK1aNyVN0+BxuHExP7lp9onyluc5zs5czh3TNMp6gg/38ZDo\nbp8jOnF9W9bMZdijUelZXx/xGfc4UD7RLaMpQnz9WAsuNWrMjPKBxhafu5k3a+8v5Pi12fkZxzRN\ncsOk6dpbe09YXINiMF2kcHjvk/h1HEfIPXqehXaCPLjWuRQW6ikT9el8OtO1rTxswp4OrlgCQ8dE\n5GEc6dqrJPdqTVWUZLl5w4WPQVpjmGjO85TShMu8oKorxqmn2XzBH/74B7784gvmeeKHD3/nn//D\n/8HLyyf+mz/8kZv9nuPxgArTs0vQpFyv1+BkNLDfbbm7E3vm5+dPqWiJnyszGXYWJyfvPWVZst/v\nub2948svv0JrzePjIxpLZgru7u7Y7/copXj59Jym6afTkb7vArpVcH+/Y7NpqOuKosixVgJUz5cT\n1lpu9jfs9jfcPzxwd7Mn04qh67iczrSXK8rDdrOjqaWheH09oIDbuzvqqmYaB86XMz7wh8/nC09P\nzylktWmaEDpZ8P7dOx7u7ymrgu7acj4fybKcu7t7ru0FO1uKouLu4VFswYeerCixXrJiXl5eOJyO\nKKXYbvdsdzu0yXFecT5feD2cOB6vyK10pu1HnLdcr1e80qA0XddyPp1xDnY7MXLo+47L5UTbXlA4\nioAIFnmOyyRHx3txVzJai23rPIsD3jQxOcvVOvruGpC1jt1uT1XXicfcdR1eKR4eHri53XMJ4k5B\nSaxMicOCHYPMrJ3Z7R65ubvl3ft3IW9BND1td+V8OZLnOd9++y1ff/0NDw/vyLKCa9vz6dMLqOio\nJs5zhVFYZXDWi5ZrnjmfTlwuF+q6ZrYSIHdtf4/yrUwDhxLnCybfUBYyTTxcjlzaDsuOH56+o/7T\nA1pnGJMxjRMfno6crv8tipjTkcuU1c7MTvh0k62S4QFIMaW8ToUBsSixGusjGiMITK5yCJQi7xyO\njMwFS1k741LGggxQgOSO5GyWeF3OWYw3GLvoSRSgZ41VNa0xWBfQKCdfv1DWQgFuPb3V9K6gGCrK\nqsJo0RpchjPteJWJtiqxesPoN9hpZp5mTGYo53wVvvqWnrRGckTnt9B/8V4GRImGJzXnimkW8ksW\nmlEsANahfudepYnsND3KeQsoQkRD4rIe35/Hr1yPYsUaf+pbWhrERmehisWvVQl9WnQtNtCknEP0\nG06KUBcMHbpxZhjHYP3qA5oFaAMqAzTdODFMLZPrAc04bZjmgdmJdkIRmhSXgcsCPVlQu9Ea1JAz\nz4LwWiuZGmKnLsYRKKThFdENzlusHQSj8BlgkhObfCYC0j6ns+O8wlsFzuG0wvk8aAfAOFAWBmvg\nIIL2aW6x/ro0vF4sd533ZFrc06Z5BjdjLjuGuaYrNCZkkOS5sAy6sWeys4RHWrc0GczJycv6Aq9K\nMptJePQ8BT0EeGXxQVkT6T+4mBDqMDrD+oqqKkBPOAaxafeazAbXNySDLTLaknYvUOmU1tK0aHFI\nc84yvhQM/pZd05BnuVBJVWxf4Xg9ce4u0rCYDFVYXH/m2g7oIQu6Gp+aOotitME1zwg7ZAyUTjUS\n6K/CQpi9wanfy22WmYCKZJgsmI8EWl/MxonPWGyk+n5iGKe0fkW6WN1URMMIQu1hrQuIuTyvN3vZ\n42L+TUIczGIMM8+C+IyBHgYk5C+6nGVZhgrDvTyYGWV5tP6PWWqkQUA0pYiDBe+lNolRFpHaCiQT\nE+dcCAndJblCbEq0liFkHH7GZn6aZsa+X1lx69RkREpbURQLuqh/bNO/LFAk2t6aZrn8s0vNTGyc\nIsslonHTJCwW0pontNN5noO+lkQxjijTL+n4tdn5GYfzswhIjQSHraeU60OpxSpy7YhUFGXqzOdh\nFLRhkmCq+FKJZgAcDkfJehhHtFLkhSzweVWw3SxCcOucCPr6jnmWhzgv8uSnj18WovjQRTFhnL6c\nTicu5zMGxd39LX/84x/5V3/8A946/vKnP/GXv/6Vl9fXIJBXXLsWbQy7nUxIPn78CIi24fHxEaMd\ndSXGAB8+fBB42jsKrchCkVhVNb/73e/YbrepUZqmSahMhfy7nQbKuqRpaskXCgL/T09PPD8/J9e1\nabJM04XHxwce371nu6kTSjCv0AflHXVVcLPf0tQV2juG9kp/uTAPAwYweYFC8fJJXNW6ticrKtlQ\njKasa2bnMJeWvh3oBimY4+IY83Zc4FlHY4nj6yvjOHJ3c8O79+/Qz5qX5xfGaeL55YDWmu1uG4wK\nJCxWZ4Yvv/yar7/5JoTChmnvJDz6ORRG58uFy7XFeUc/DWEjGENOiGwSu/0uCHkd1+uA8+JUZ7SI\nPxUec3cjoapdy+wc3s207RWjQXvJuhj6Hp/n6DSZDGhU01DkuTS3L88cL+eUadB2HU/Pn+j6Xqyy\nvacfetq+o+16ptmRlxXv3r3nD3/4I0WR8Zvf/Y79psbP0hznZcnd/T0mq7i5ueHm5g6tDV3Ip2iv\nfXKmQSnhHquMKWxcfd/TT4I49X2P0ZpM/w2lWv728j/+J68D//P//jMWD4BfXvj0v/z44T/3G/iv\n8zj98kyT/kXHy3/uz/vL023/Jx1atWg+iWNYGJYAWO8S8jgHOteCHGqUMlgvTaOZBKXzflVkGxnS\n2kAbjSGlZVnSDSKK3wTzmDau18ZQNTUZOXlZs8uK9J7mcUrNEnhmZ7GTo1R5MkPKC0Pd7NkHa+lp\nGsHH14iDDILJgNR3eV6w399Ibl9ovmIDEunxTdNwc3OTGqS1Y2Mc5EaDKBtQomiRHV8rNjmR3va5\nq2WksMUh0WzHpSkDvF8anOQkiDRd4ziSKf3mNdZotLWWzORoJaZIMStxHEfathOLa6OCwY75/+W+\n+//y+LXZ+ZnH0jH7wJX/MbqzpgOsO/W7u5qbmxt2ux04x/l0luwapSiqEoIoug4BleM0cb1c6Lo2\nBJ2Jz7xGgqHwnnEYU9gf+EU87ReqWgp689EGdclHic5s4zjRdh1lVvD4+Mhvf/tbtDY8Pz9zOL3i\n8exvbtg2lSBR48Dj/T3v3r+na1sOhwNFUfDw8CALV0iVvl6vvLy80LYteZ6z3+3Z7/dUVc3NzS3f\nfvst3nlenp+JIareOc5nCS/N85y6EZRGKcXxeOTvf/87Ty/PgKfebCitFUqVFZSkqmqazZbI73Wd\nT0LWTZ1RZBqNYx56ulb89w1QmoxOGbqu5/h65HLtGOdIc5oSN7soSywi8ovmB845+qFntpamacJ7\nKfAezucz1/bCNE48PDzw7ddfU1Ulx9ORoiqpmw1fffVVQA5l6jdNk+ROFAU3NzseHh6oqoq+F3vl\nNthF990QYHVB6vqxFz3JOCax6N3dPXd3ErZqTMbLyzPj2KKVp6hLMbpwlmkcAtdZY7MMEyfTzjGP\nA0OfS0MUPPpzk+Ez4dZvt1u2ux1ZntP2PdeuQynF/vaGyc68vh54eTnQdr247hRyf4NGBzTGmJzt\nZsfd3T1ZZri/e6C7njgfDthxwNmRoix5/27DbrfHZDmXy5XXlwOn8yWkO4ewRW2ws2NmwmlNHe71\n2c0hKyLyk/4vfv/uf2AYbkAJxSkzhrLIubm5ZbfbMY4jh9MR5zwPD/d8++133D8+ivNP3TBNEz/8\n8JHnlwObzYZ/82/+p8CdnxMaXBalBI2GDc9oQ5HnQZA7B/63C8/5ojkQytgctHAqOC/NFHn21hbZ\nzuAdWi8bovMuOWSJjkc29DyTz5hoYkCWGaqgt4sIk0ImetM0Mc0TMSgx0bk0gbq4Ed0X0HWdGGYM\nA5nJJJh4t8XNlmmUoNo8pKivF1UhP0WUTyUKSFy7bKDpGS3T8VicCOVkmXwak6UJZkJVVugOkATU\nfjWMiAt7ROzDzZGoaJ+zNyLasyhslj1goRfKVDt9rY8vHdCnQGWTibrHhfPqvGOaLcMoyPs4rjj6\nkVLmREOjdIbDMEwz52vPte8ATbMTZ8V5nlLWkwlUMq3kGjtvUxp9kQt1U0FyvBrGCedAm0zgs2BS\nEVGWYRyCi55Oz01mDAq5p/txSK5yOqxr4PHBQrosC4o8J9OgvLh9zc6mEMh5njlfLnTBvSuuw975\noMFYypgyl6I1N1AWhrKqhCJrDOM0M4w9wygGPNZZsoAGjJMwKrTSZLloFXzQuc2zQ7hditnJ986z\nleGkXwfHEmjnNWWR46y4+jlrRRSuFHmkpq6KWdHc+UX0H7J3jFJMw8g0Dey3W25vb9htNpSFrNXK\nyXB0tlaGXG0L2tBstkzW8re//Z3T9YpNgcYZaBOoqnOoCyScWijzQUunpK4QJogD56jKI97+nfNF\nkNahCnoa696wVha6o1wn0ed4vF2MTgQhjkYmEk4rIabidhaf0a6/oJwnD8PFaEcOQiWc5hkV0OYs\n6Et0JrkzzolhhjG50K1D6HPUFM5zzLkJdK6g843rgtZiLhAp81mWJeOmeRrJMgmurQoJzgahGRZF\nIeybhIqL5nUKYauRSWNnQTp1Wm/UymzApvO3dtJcN0WJkuwNSoX7Sy/GWVqHZiczRHORaRoxAXUq\niow8z5LxTKxdjcmYpgEVmjiT5/TDmOqfGKiteVvr/hKOX5udn3F8boPqAk3Ce/2jhmcOziTzbEPK\nvGzw+/2e9+/fY7TivDtzvVwxWcb2RgrFYRiSS1lEO66XcxC5z7SXK0Pfik3qMAjP00q2znrhwfvE\nG57DDRvfd5YRHuoiwaXRFvn+4Y73799T1zXn84mX1xemaQqanhywmMwwd8K3zfJcin+7BO0N44ib\ne+wszdvlcmGz2fD4+MjD/T1N3VAUJVUIgry2Emh5uVxkYhJCvuq6Dk5kJATneDxKpkk/UJQlWZZD\nXPC0oqwrKRicLN4ikj9xCg4rj7c1RWEwyuPdzDwOkAWagVJgLUMrlLZL15MXhWQVOE9e5Hg0l7bl\neDqhlebu7g6tdcoMauqGL7/8ko8fP7LdbvHec7leuFzOlGXBfr+n2W65nI6C8tzd8fDwwDfffMXx\ndKJtrwzjKDqPYFdcliVFmadmsG1bQeIuIsiPgmlnHeMwhQRpyZHY77c8Pj5wc7MnyzR939H1Lf3Y\nUWYZRgs9YhxGLuczEGxatV7EuFqRBeWvUogRRiYOZ/F+K8I9C1IIllXJff7A/f09wzjyww8feX05\nYK2jqmo2TUPfTfTjjPejFBHWUZYVj4/vaGppdL8/Hvn+w/eM/RWNY7fZsN/vyLOCtu14/vTC09Mn\nrpeOYZjeOBR1XY8Fys2Wm5sbiqrm1F5Zu3p57zH8hVz/szwTuQQTNk3D3c0d2+1Wmsb5FQ/c333J\n48PMw/2J3W5PUZXB0OKF2xvNu3cZ//bf/q8Ya1GMeBcyGXJJPNeZwyobQn/LQN+YmVTgarPQC4wx\neOVwfqIwlRTmfmJmJg/FZXIlcyGMVi1p2bKZvdVC4H3IJQnNTuBkF0VOU5XJhEVqW5Xot7ERN1qQ\nYWtFO5TnOU21TcVbZXq0PXJ1V4zSbKtb7rZ3uNmKbTxLsxPfa6K/vJFELP8GS3OT6eWzSRGgyANt\nLzZIb8JN143bKiB2PdmM37v+JcdPu6nF8xktuNc0tkRzSw1XfJ0Q4Ll+DcRMzzmPTRNasf4dppF+\nEAviwYRhllvyh5x0ISid41WG0TPjeGGcWlCGqrwJBhIDztkQ+LkUWDiPdTNeOzJlKLKCKjzDzjl6\n1aMYsdajjVCivBYzCo8KzecQ3KkUmTLkRtYFrQyzmpmmVs6NisWaIO3WS7Ofm5LC5GQGNLJ/jNNE\nkdXU5R2qUuDPeHuSeAClwI047zAqwyhphk2WSXjkNJFpR5kVbMoNdd1IYWctXd9TZgO9Fp1FbIoz\nbYlOazEkGSVFt8sANHjFZGc0A4opDAji9bXYWZ4hTU1dbtHKMWY94xgslhXUZrkvlZbGKot5ZHZK\ntM2qKsiMpm9b2suZjJJa37Ov79jttlR5QRFIdSjDaXPm+eWFyTpubu7IihLmv6B/+EjbD4KaFDGL\nDdF/TTLwUUrLdS+rUM8s+Vc+DEHyTGjvs51DzeFTfRMDNmNTsBhg+PCMSoir5AeByTRFmaX7XyuY\ng6GBICXCDnh8KDmfO9quYxjlHovUtFDUyHMZhgVaS4izCgMBa2es9eS5o1KGqiopqyIEkxKeC1kP\n1mtGlpkkzG+aJlF57WSFMaPEvjwP7Jg5PIfTODKNY7K0jucwrlNjMDBY/5sLz2FcxwSlcW/Wls/p\na280O6EBEre/uA/LvaxNRNL0/8PemzXXcaRpmo+7x3pWACQoSkopa+vqumubnzF/fK7mbvqup6pS\nOwkQODhbrL70xeceEWCqKnvUbTaV1goziBRxlggPD/dveRcx5HYWH+/RUhl4mUSZbO4kFWWBNknQ\nQ01rnPCk/txQ+T/68Xuy8z9xqMWmEWJVb5nsKKUiH0akAdMGmBKM9NB0XUfXdrLwFTlZ7IRoM7vl\nJoMx7z3BOxEgaBqG2Jq144j1gYmkG1uoxhhKLdXsfhimyqMkP27K4IuimConZVly/+6eoix5OR55\nORyEiK1U5B9p+r5ls94w9AKVks7B7aQY1jQN3nvKXGFMMT2c79694w9/+ANlUTL0/UQM9t7TXK4c\njxL83+z3vH37lvv7e1EjW685n16mZOh8PosBWQiMwzhB9FJSoLXhfLlEyWDPtblwOh3p+4Gqqtms\n11R5RlmI4hbeYYcBPw74cWToOtqmETU2rTHKcDyeKKtqMnw9na80XU+m9KQ25SPfar/b8eX7L/n4\n8aO0oq1l6EcUalrMsyyjH3qUVrx7945vv/0jm82Wa3OdkmTnPSaTeeC9j50rkdU+HA4cnp85nS4R\njpVhh1EIn87HTVQEIL799htub29wznE6nTgeX7hezgx9R65rQNT5RKzgEivlhqyqyKNCTVmKOpqz\nIyFK1wLTAj65O1tL07Y479lutxRlSVlVXK5XPn165nq+sNls2O32FEWJzk44Fxh6UVOq15rVesub\nN5LsNE3Lw8MjP/30E931Ql3mbP9WgpihHzkdT1wvV3nGkGqi8aliO6I7i9eG1S4Tg12tGeLir5QE\n0Lkp4nPx2tslXdP0HFsREAkL4vY4DtK1ennm5fhCllUi3TqRgOdNL/gQK3pmMo5MBnHLTsTnvBUg\nCksEtJ7FUSayePx/pU2sNn/uw/L6SAF1SFyUmMDKL+ZKImou6sydIhcVriQg9HaGQXx+7iw6SSlh\nlmucDfLSOEvgMycn6fxn5bDXil5pLQUh96bXTYnfryQzeiFssPysf/9Qiz/Dq++eSPshcYN4fd6o\nSfFK+Dk67hWpvaNefY2KbR5PCuKSWpla3KdF/2g5t+KdDbFDhJo9kGSuWjwqSh9HFS0/F8VYzKs0\nhtIR0HOip6JARUyUPofgTIOxuEeLoYtzWU/7lIyTdNxVCAQlSb6LhPAU4JbR6ywR6QU1EL/OB7wK\nmMAkzuBjQDZYS+4SLzD2DdWC8B3SfUpJ/QzJTYUjHYVYlvN4+mHRMY1E/pQAlEUK/l3kkSB+QrFL\nJLy9gDFJQVATQtSuU5q8KFAKxqFnGC3XpmW1XrFei2CRxovmhVLkJpOOyzDS950UTjdrts0GF0SY\nxUeZZ6U0RivINQEzjb+IDSgIry0xkvzwKzi4nbsgyVxTnuNs2u/mbsQsQz8OA71Rk/G3KN1Fzoi1\ntG0DKLYedtV+AAAgAElEQVTbLfWbW8qi4dPTE33XTWiXsixxwc/nHMw0N02EyfkQIipCioVFUU7P\nburuOJcTgoOkhJdn8V7OCYDRmtGKHL6gHXKMmRXl0j6dPHeS6hwwmTMrJbYEbdtO++S0r8TYJ3Ep\nXRx3Yxamu25WW1tC5OLsn4vvKin4xsdZq6loldajiSca7+ervSP5pwWRbM/yfNG5U5P4xOdr6l/L\n8Xuy8xuOX6sEgqiVTJvvIlDxE/HUT+T10+nEx48fySOxbxgGdGbESycznE6nqcKUggaBwmmCd7TX\nM33b4p2VTQLwWkeiY/SriK+fulCBqTUvidgAWlPX1ZTlbzYbVvWK3W5H3/eiyNZ1jGMvBGAtG4lS\nit1+z8uLJELOWe7u7rh9c4eNDvbGGHbbPTc3O7quj1Asge91TcunT584ny9UlRgw+qjvnhztv/ji\nC25vb2P72TBa8ZI5HA4iQznOpOkk6JAIggCH4wunkwSm/dBh7cBqJde22wrRssxzsjxnGLx0yKJh\naHdt6NsumonJQ9+1Hbv9HqU0TdfSDT0uiNFlqui4CF/bbDZUMUFICasxhrLasdttJ/W6PHK6hHuy\np23Twila/85LAD9VhkZRmWuaK6fjkePxRHNtGPoBZ1uGYaRte9BQVNKZ+PLLL/nHf/xPhOD55Zdf\neHk58Hx4putadAhQV0AQuEuEDxalyJoqRPJ1vVpJouA918uJcYjGhn7206gqgRha53DjSFCwXq+p\nVisJ/r2naVrG0cWEc8swCoG1a3u6fsAH2Gy2vHv3BZvNDu8tn56eeXh84vHxiWBH1l+8pa5XVGXF\n5dRMDt13t7c0ZUc7jHB9ApISmELleupQtG3D5XLGORsDuQTpVBgjVXrvZ8x1ghakgoPJsymwTGpz\n1jvO5zPHlyMunKf7ZhbYZqmIWTIj994HERWY5/Cc8CwD9un9SsWAaxlcps5N7ORoHUW/wqt/F/Iq\nUYJ1VpqKy4XcQ14TXOMlkkj0aeMMbr7ny87YUuUJUgd5/ixJ2EN8Hl53VlJwmTj8y+ueVLHMnyul\nzefBFGQvx3t5rQpJIowWTPqyopo+5/NN/PW/fQZRY04MQhynJZQnBIGuqMWeAHOyBwq/SGJCrJ76\nwBTITWp5i+9dUJDRSkjtxLF7dc1KYEbOSdfBOvEGYdEJfHXzXxGbl+O86I6FEBNShcdPVeg0/knx\njV85Z8IyUFoktV7MnYPyGOUizEhgZdbaCR6UZTnjQjYao6YC45S0AVmWE5xAAE2Uf0+w7kldMMKX\ntNaMUdQjqcX5EF7xUMrKwCJJlsCYiLIgJqn6Vfex7zuMKjFGTUUCFQLexWJFGivAZ0vIJVPRJs9y\nyjxj7HqulzNdNBm1i+A3rcFSOM1QBNqmRWnNqqq52e+x3sfCn49+X9GwV5l4jbKWj3aM8MO5oyl3\nf4aTKpVglzJmNkJB58JQXMO0ZnbAygg+x+JxbpxEa9LaNHNLsmmdLcuS7Ua4wDYqWQ5O/HOyLEOF\ngI5qlD7M606WZVAzwbftMMY56SNvSJKaLDPRSFWurYpefDL3JIFTSkWzWzVJTUsSNMPOkt1FSnZg\n9lRcdn/THrLsVKdnIiWGaWxRr4s96Vj+23JdkvXTT/5V6XuNnpPtVNT7HLb2am0LCmdFAbEoS0yW\nMYyDwFThlcmyUp6/tuP3ZOc3HD5VQEiKT3O1KGHLU+Iz+mFusSqBfbRty+l45Pn5mTwuIrLABbKi\nwCNEc2NydMJR5wXJCCp4i+0FJx1FPOU7cnGkZqo+zYGDUtLiJQgPAKTy4Qk4t6EoophCXbPbbKdO\nxafHxwiLgcwonCKqvCnysmAYRrpYsajrmvu3b2kuF54+PaGAqqrYbLcyJjHwa5qG56cnHh4e6Pue\nuzsJ3MpajChXdc0X799zc3NLCPD0fJhNvqI/zTAMNNc2+up41lGoQVzta/qupWvFJ0YR0Cqwqmve\nvbvn9vYObY8E7wjeSbI4WtwwMPQ9Yz/Qdz12lEqoDSMeRb2q2e13oqTXd3hrI7/F0DUN17YhzwvK\nIicEz+FwiJhfPbWORU66nOZSWVXyXdZxOV94ObxgtObd/T0hBE6XM6fzmeAsRZFxs99zPJ0kIWsb\n0ePvBSZ5vTQxuBejtXWx4uuvv+Yf//E/8/b+DT/9+COHl2cOLwea5or3TpK9zEhFzEs3aLvZsN1t\nsLHqZLKMsiqpyhI3jnTG4LRlGFz0DZLr8kGgmpkxuCAdqaIoCN7x8nKQhVTBalWxXotx3Pn8EmF7\nHaMNVKs1X331B7799o+A4vlw4NOnZ5Ek7wbudhu+/ePfcn//Hm0KmrajHy2r1Zrd7obT+Yw9vMA1\nLuIqVnu1qLydTieOlxPHlyPeeYo8FygK8rosi74JfnbWHkdRy2muF/q+Y51vKLJMlMf6jktznZ7r\nvu+5NP2iG/EZbMoHjBblLKXSRmVxTi82/rmTlyRjpeI/b3ZzMuQnP54ZNsEkkyvdnrhCpEBZzX4r\nAryJm6aKGVE8QhD8+1TNjjwDbAzIAlGZbN5w0/rI9D1qCohTZydt6AnK4yXCIxDwWgK3xGXRyrxK\nqInVZe9VVLGKEJZ00svOEExy3mkMg/eEPJDHhCfThqQ0N8Ea0ykugv4pGEFNwU769+ncEO5BDMFl\nLFILLX3uFKToaWynRDHMvB3rPKNzwtFxC4jVItlZ5iMC0lskkJL5SEK9IJGHEHCLZPr1kZ6ZOUhb\n/iTOj5KG33z9i46Wx0fzSY9Ssqe96kR9NpYogfLgPQFHUCLrm9QGE/k6wYaGYYzFNj3tqSnxSgli\nnhd4RCVuGCxFMQea6TqVSglP9NNJ2FykIKAVUYXttQfWbHArc9vZmCwvigHOiWqe0YqyFOifycT4\n14+RQK+YxiYV69I4hdgJ8t6RF4JU6NoG5x3DIP5d3TiIT4sR7x2ldYQmZbR9j2o12/2e3XbNYAV+\nenWtdJhit04rgzHgvZ34a9LlzqKSY3rWJCHKsnj9Ppvmj4tzVI8Wk4nxso4dljzL4n0zFJmh7zRt\nJ52hpmmjshso5THRB885QS98evyEcxnb7Q23NzsCjq5vadoGuoDOMoFZRb8zQFQ3o3H0OI40eUPX\n9bL+9P3i3qmZF4zsAVn8SUlf23UUeUGZ5yIoFURmXywK/JSIN01D17WIia2eVBaTQJEPwtOx1kZl\nwEIMjJV0NIWmINBjo820Vs8d+/SszrYDU2cSRK3RSxLrUZMCp9GzwIDEQHEtVH5SVEtQvyVE1zlL\nFvdzo7Uk2FFUYbRWiuWZIfvra+z8nuz8lkNrSPKPQMyi82mD8FENJCiPHWys7MimkGlFXeaMETJQ\nKYXWAWWiFPQg5PZtVVGuVlE8QJKEMfJz8B5NhskNGiWLY7A4pGXsI3QLAOdp+0GChgiZ0dYJzl8Z\nrBs4X07Uq4r1ZjWZYgbn0Wi65ooGqrIgOEXb91g78O7dO4Zrx+V8Frx8nksA5Uaq3HCzEQ+cVVFy\nvbT8/PNHgc0pw/l84XK9khV5FB/IuLnZcXf3dqogbTZbLHC5XPj+ux8F9mVGRtczup5+lB8XPGhF\nVpSs1ht2uxvyPOenH76HELi92VHkBq0D29WKu+0aEyyH4zNFnpEpyAMUHsbeoq49vhsJ1jN6T+c9\nQwiQG/JtzRBGrBvIgqdWgTw3nI/iDbRZr8kKhR9buqsj+JHtZsVoRzabNauVkNivTSOeMAGMKSjK\nFaMNPH060F7O/MM//AP7/Z6macDB2I2UVck3X/6B7WrN8fCCHRO53nFtTthRNPRtNFMrqpp37/f8\nl//jn/ji3Zd8//33fP/Tv3I4PhGUp14LT0rGvyArK4qqZr0VL4C+7Ti8PGGQDpHWgX5oomu1paqr\nCVa5Xq+5v39L14vc9uVyYRh7gvVcji80TUPbdex2O4Ia+fL9O27v9lybEx8fP/Dw8MjoYLTw5e07\n/uHv/4mv3n/D89Mz//Lfvufp00deDmeUyrl9+54v//A3fPHNH/n5wzMfTh0Xq6jKNWq1wQ8Wl18J\nkXicVQXF2uARr4nT+YXn5yPnw5mxGSZfDIXB+VF8PLR4UGUKcgV59DI4dg3YgUJBqTWl0Qxtx+Vy\nlfplJoTV87WbqnkTRjvCeCBgx57gbVw39FRxS1W/PG66AY/SUjgJTpL2VFk3xuABOzhAgRPYEiSJ\nVzEM1FrjIo8PpRYmowkSJ38PsYPgfGBwFoM40wcVvVOMxiAdIjPIJuijEILSBmtFsS+vSqyPG7U2\nqMwwduNsXqhI4r1onQv2fgryPZ7oSq6XfEhJ6rybYcBOh8n7R5oaEcKnohFqNPN7DdOQxdsrzRjX\naT1lXoYp2E/tpWXyl5K1VwnQrJI0w5s0Jga+mc7mztH0WQL9cxJ9SFXag3UwOhvJ6mCj6bOPXb/g\nXUykYtdkau9EkjwJZibyyEqBj/fbT98vHQo/BVFGxijeLxsc3kMeg6SJkxqvwXmLVpCpgPh7BIxW\nuMGTofBKE2Ln0HqHi5VmnWucdVMyJp9tCCEjaIXThtF7dIBMKTQeZaQI4XrL2PSsqppdvWHsBvrB\nkpmMwY+4IBzKTOu4zrSsNxu8CcLfGzvqUMWinqOsCnzrGFrhT5isIi/m+5Qq+EDkR4nKafCz6Wqa\nI1NRwnlYwDJNFjvIQ49XnqoqMREmHrSPvCOBKukg31PkMm8SF8j2ge4KmdpQVSVtWdI0Ddd+oGx6\nrJfu1mazocwyQt7RO0/R97RdS9ecyDMoq5LbTcU4FHRdI3D5Yh2flRyTF2g9MvSnGNA6yAOVqSRu\nWXTefIQQ5kVFXgXgwOACvQ3oHC5tR6kHqjxD+VyKLbqgqmqy9ZahHlDRJHwcYOgDeZZLAhA5JMEE\n/Bg4NSdeDh8IoWW93rDbGL64X/PpU8/legGfk5eGOi/RdUVZVnT9SNt2gJgGV6YiaCm25CuR2C6K\nnKIsRABlHKTwlGX0zjN2khQmCL7SRJnx1B21kQ8zYqKyaz8OjD49x4E8qsupzDB6SSD7vmcYRTI7\n10rOCQQKOEKmC4KelhkiknBau7x3r3g2y0KF0RmiCBy7hT7EuaooTYEJYpprMJigyKIgjlEaO4yM\nfU9wFjuM1JXM0booWRUVJmiwnqHruZ4vaA2VKRgir+iv7fg92fnNxwxfWMI3UrLjFy1GmI3hZJ8M\nU5WhzDKRILQ2kt8LtnVNUYks72htJJf5Ce4i8YmaqpfzZycITBZbpKJrb8eRQZtpo8liVVqqcrBZ\nbwSiFIKowoXAeiWeGOMwCr+lrKTrMQ5UVcmbN29E1rgX1+GmbTi+vHB4fqaOWNXVWpRMEnQvhMD7\n9+/RGuq64vHhQToZUaUuyzRZJrCuuq4BaC5XnBt5OTyTZRY7zp+1Xq/Z7zOMEXjc/f07NpsNbduK\nEdgw0DYtgwnUVYHaiDJb37c8PDywXa+43d0QQhBy+SjwkaoSJ+dj1zF0LaYquXtzx/F45Hg4sFuv\n2e93HJ+f6K3FB8f+9iY6DEtHqE4eO1U5BcKJwJmq9kPXs99tudltRZHvfGa73XJ3d0cIgeeXAw+f\nHgnA1/f3vH//nsPLCz//8pHz5RLnhsU7qSQVRcHNzY1whu72fPu337CqNzw9PfGn7/7Ew8Mj3gfh\nVlW1iGVkGUM/oBTin6BEavJwOICC7XbLfrvC25HT6YyJyaiYt2re3N3xd3/3t3zx/h0///xz5GAN\nnM9n2k7uU16IIMPd3R1GOf74N3+DUpqffvlvPDw8RCiG4u39W/7zf/5PfPvtN4Tg+fHHH/jTn/6F\ny/nI8XhkVZfU9YqiqGiuV3744Qd++uknmuYauyNi9JllGXWUK82zTKqMppiSiK7rGCNczxiD0YZx\ndKQ0IAU9ZVmyv9nz5vYGpRRNIzLrq9VqqgJOFdEQMNFwMsnNz+R5DbGrmoL1qTCygFHBwjAuRH5G\n6jvFYggwVTIVaiIEz5ATWRu01qKatYBbKaUk1vZqDuunKjvxsz1WSbXPxEQoeetMcF0Tu1LxfDJj\nQEc+j196OcydZVkDP4O/fd4d+XyFjb+f5WBfQ4Pl3okCmPr8zYv3L/8+wYKnz51/P8NO5vFMAayP\nUCFevX82ZF6Oc5gS2/lIXb34oglaM30/c0fM+9dwtDTHpnYKCSU2q7tJR+W1QesEmfFm0bn6NZja\nr4/dzMOQQpn6TKBBp04GM4wxnf/sIzR/3xJGJkINeirAzVXrIJEebvKiSlyw1CEfRnl9FhP+9B15\nnoMPYl7px6njmCBE2qiJH7KU9H01JvHPSURAKTon3L9h9LEbMgu2hNi5804+oyzLKdlxUe0xxQZ5\nluGyADFoniWFNaNzYg6alAKD8Gy6rptkjcUwsxOo7GpFFoVBiijkM8P9MvpB/GfyIqeqK272N4xj\nwPmTWBUEUYcMXmGMIDCSMWuac5PACRCspY0KmlVeRZEiZtXXNAdi2m2Dx0VzzIT6ACYBgKRCsoRW\npfuSYOzt0EQEgnTr1qsV9sZjrcChD4dnhmFgs9sLsuEqZtIiNJAzQc60wfXS4RFVNbm+y6UBPUMa\nE1Q8QdIGM0znmOa3IlBV+fTadH2pSJUMQ8eoupZ+gEn1Fmaea6ZmTk2ah7EeMo1pSnCWBYjlIYWs\nIN3R2DVO+0vaF9P3J2sIMTqX8w8hCLe2KLher1TVFpMZuqEXsYUQWK3XXK4XRmcpypLNbvfvrh//\nEY/fk53fcDjn0VrauwqFSM7HBZvXpGIQQi8Qs/PoOh9bg2SZEKrzHB+IvI4KZUxUWYuKXC5BYfz0\nQEjCs4BdTxCJBJuQFuboHLmxU7BnrYWYYOxWe96//3Ka6MFIYJ5nGZfTGescVV2zXq/JjLg1v3lz\nx/39Pf/8z/+vGINaTdu0tK34nFxHy2oVFdSMqM2s1+upiv7ycogkeQlil4tlnmdsN2vWqw1dJ9df\n5Dm9F87MMEgAvVrVbNYiXa2UyERmmWEYBk7Ho5iUReW6vNDUdRkXWSWSlXFjS/Cjy/VCXW3Z7LYM\n4SLjNvTgHfvthrubPR8+/EyZZWgCQ9/RtS1aKb766j1FKV5KpjGM1lGUOSZTQIR51VU0fVXRC2CE\nzETHdgCPyTT3795yODxxPJ55fjkAImudFwWXpuHjwyeRBi8LbrM78lwkqwWmo9lut2w2G+p1RZbl\nfHx84OnpmafnwwQzclYw/GVRCT55HOn7FqPEKLdvW/p+4PZ2x2q1irj2Ee8tRVHFZOdCXVfc3O64\nvbtht9vx+PhI0zR8+vSJ58MBH9zU0dpsNmitqcqCul5xPJ54+PjA6XSScylXfP3Ve/7mj9+yXq95\neHjgX/7ln3l8eGAcuyhasWW1WoNSfHp85rvvvufx8XF6nhJ2eoiKQQDPZUO9zsmKQFEqPB3HXUvn\nPN5pxgqCkU1egnOFcyL0YepA/ybQ3kiw1bSOvvecNx0f8mdaLKHQNHWDdU421QyGGq7blv6tGPMJ\nRFCSA63BRcUpCSqkyuuNwhsJjrxLggQJbhO3PgtjsIxKZIKNls6u8yJVqpVHmRRpp2p+VGQ0iXwM\n3olEtTRfPMnrHhTauGjwKCTm5CSujZ66Gn5l6aMMslKBstSS/IWA9wOgUToqURaOrvNcbkeyTQt4\n+lIU54Y8TDykdIiqliFTnyupLboz03oXVYhixV2pCNWL9/HXwnm1SFbS4qkWnz3JIsfCVAgz/xGY\noCry9lTRZ3pv2gPiF8TOSYQDTqPMpCDlQtpTHG2UfAfpyDhnp8qwi2IyMlQR1qhCVEND+A4+0K5G\n+nJkbB0YxbAVmWThN8YkWius8XgDwYUpeXQKdDXSbHt0JJl3q5FhcALbcYGAxeV97OgpvAu4Ua7T\nTcm9zGdt5iTQWU+IF+uCwGkUIlOOipDERD2K0OK+cFjtoWpwEiszFJ6+GaRLFfmjKE+WBQiaoe85\nZmcyLeucD07ev1KURYE2BmtH2mpkGCxj9hoOCLMhr4oAcWsDQy9rRAgiz5slgvfCcFeu3ZAXSdo8\nBrTGkhdOCi87cF7hrDzfWjusgU5bFLLuyNYUGExHY8aoWlrAvuB8uXCiZ1P0NNlA42FtLyigKzqu\nu47GBIZRgbK4TUtRltiNQa8r1KajO7fyzGmHMVaKjAacg3GQ5Gw0gTx3JAluvKcNI1k2UFWWYT0H\n0BMnKRUMEtw1SNJmFwWdJNjSD330sVmqoGXTZ4o34SCckdCiUZR1zW67pe+lq9J2PdfmSkDho7xy\nXpTRA1DTNC1tJ1YUWLFfyJsGk2X0w8Dx+IJOBUijF/czch21mYp7WZJjD/4VPyed81L98TUEeoxx\nTT4lojOP24POU3WDZNm4LET4EKK0/AK2HIhz5bVQBrGItBQMsW5OqlP8VUfD7wRb1FqzWtUTt3jq\nZDmHNpr1aoWxjrZrsU4gpcnA/q/p+D3Z+Q1H6ubIQ7FQ/vFS+UkVwPjqCNOYW9cm4iidtZjVSqoe\nkRg3OjHgGruetu+nDSR1YSbc+nLjVxCk7ymv835KugASzjPPC+EV2B4dSfHv3osIwMvLC8MwsN1u\nWa/WWGc5Ho+TG7HJhKS+3+24vxe4Wd8LmT5XuRhQRhWw4/EIAbqux2QN/djjA+RFyXfffcd3330n\nqishsFqtePfunbRotaYscqpKEhM7DnRtgx0F/2yjm3VVVazXW3bbHUVRTgTLpmlpwpXjSaBTmkBW\nFWRZIUmmViT9+91uS5nnDMPI2FnarmNVb6lXNf3DJ47HF5wd2W03bDdrmuuFy+nI3R/+QPCWtrmy\nqku26zWb/UoW3mtDUWRkRSab1dihXEbmrAgzbNbiW9E2NE3P9XyibS7keUbf9VEnP/D0/CTteAWr\n9YqyqhiGgY8fHzmdz+IZFIgwJMNqkezU9ZqyrPE+cHg5cjqdeXh44Phyim7gTjqIWcZuu6Oua5xz\ndG0fZTWlSFSvalarNVpr2ijaEBC5WGysNhkdN40jxhjxEbpeOZ3PdF1HXVes1xvWm21MRnOKvOB0\nuvDTT7/w/PyMjovzzc2e+/s31HXJ+fzCL7/8wsPDB8ZROjB1XfH2zVve3d9TlxXH5wPH4wsAu92e\nu7s3rFYrDgdJpH0zYJzi//4vf8nN8vrv/O4MPMz/+0/pL5+AP/3lheKPf/kl/7sc3/EB+PD/92n8\nb3Y4LvxbLpv/1r8P/MzpL3xu9xd+b/+dz///cvyl7/kfPVrg5X/RZ/1HOQ7/Cz7jf87dWFtFbUUi\nO3FKYC5O6Cj+IijbqJSYunPDwDBYQmjJ89lvKyUMxhiqsloUHGK8pDS77QatFJfLlW6QGKHrRwKK\nm5s8QoMDw9DTdcInzjQM1hEQryPnfeTTIeIY1k5iTj5IYj4GEWxYKmX6GGssk7x0LLvANnWDY+KR\num7LzvSc6GsIbuJxTX0dpVAmFgJUTHxSd5j0kjjmCd7K3NGV75qTnZRQJn5Y6kinbts4jlPHUyxI\nxA+xGy3N4RmllfCktKA//tqO35Od33DkeRFhB6KsopWaMOdqwnrLaxNBzA0CRzNRttZohSlyiqoU\nqFMgGsj1WOenxEeZVIlM5OKpbiuPxaKakryLE25a0DNJRCHhpCUhKqML/Zs3b/DeT7KIRVGgtOb0\nfOJweGGIGNa6KFivpMOjlJ6U1IRfI1X78/kcyamBLMuxo+PleKQbutjiL/j+xx/54YcfMEZzH6Wl\n3759O7Xiswjra5orp9ORrrlyba6URYmzjiwTw8lNFFFIA+2cmBU6O8bWrEcZTVFK8iQOxnF87UhV\n1ZPHiLVSueyHAcbAy/HA9XoRP5zbG0Jw/PjDj2gCVZnTXQe08tzd7Nlvt1jl8c2V0Y0oA2WWo410\n8QIK50ayTBI5Ow44O3I5n2iuF7abDe/u71mtKjRKIFbRW8dkGpPlKK25XBu6fuDaXBmt43S+iCJd\nHJO6rlmvNtEPaKQbWk7XE5+ennh+fqZr+2kRtk54ZFlesFqvxXdDiYqaUYq6LFmtapx3tK3FDS14\n6VwO40CuTay8Oa6XC09PTwwx6WkaMb4VhbkbdrsbwWxnOXW9oq5KHh8+8cMPPzL0gxixAvf3b1iv\nKi6XI5eLnLdzA2WR0Xcj65X4M+33Nyg0TSOd0dVK/Iy++uorlIbDi8iTc7b8n//X33PVPSiDycUb\nqe0GjqczXT/ErqNU2py1IrMbOyXeOYoiZ7/fsd9uAHg+HEScI8tZrzfcvX3DZrujbVou14YA2BDo\nRk9Vlvw///W/It4mqfsgc9XaWDXTc3CQKpxaG0L0SQixQKKNjty8EJN18ZXJsmyCQThv43qjUi1k\nYu1b60CpSS5aBTV9R3LqVkhXJctm6FJuNEnmGojGdQZ8VAccxRfJGENelhJkpEBHRbWitqFrW97d\n37O72aGAvutxzlHkuXQ4/Gfy1MqQ6VkKVdSd5q75q6BqAYGbjUiZXMC1+jfs79T8WpAEP8Q/1cSH\nYSogLWF0c/dIDoEd+qlF8AomFosSqSIbgLC47y5BrZyj6zuUjjLHkQw92pFhGJkuclKAjlA4L6aF\nHoV1gaYfOF5bmrZHmZztfjdJITsrc8QY8cPR0ZA6zStFoChytps1yd9N+AbSBXTeYRNETWuRc0YJ\n6X4RVGll0NGrJFWkxe9LfWaeaSYDVWMMeaZQOIKN/lNZDgSKLGNV1xRFSTf2nE6iTKa0nvbBZJnQ\ntx2gMEagcN5aMS6tSuoYcIYg3FjhHCZotwESvHAW9NEmw/tA24kSY/ABE6v8MvXmeynCOSPgFgp8\n6bnKyDJNVZRCUAeSsIPRCu9t9LoKsUugRckvCOR7u92SmYzj8YXj8YRCsd3U1JUYlO93O+rVKnrR\nXXk5HrhczmitRVkrzxit5+V04elwpGkGgtfC3YmEwgTLS/DMNM+SQbFSMI6ClsiyjA0VlYs8sInz\nByMSb2SZPAfOOfooT41SlFUlqAqbjE1nuG9KeiRBEDU7a6V7ObQ9KE1V5OT7G8qi4nK9cL5cGboT\ng9tYAYoAACAASURBVHVUZUmR51jn6fuW4F20+RDlOJPnZEVJUJqyqvFTkiC8aVlr5LlK3VQdE56l\nKmRKgBK8bQnHW0Iks4jcKcsSFdfEqaOitHQzQ4zZEkYnhAmCnPzEiMmJD9FiaNGhTlDhxKNJCZZS\niuDmBMxkcyKZziOEMO2BbSuG7ygVuz0rlNZ0zy80zTXGjRU+MMlr/zUdvyc7v+Goq9UsJRiic22a\n9FrSkvQQGJNLkOMdduyxRpGwvUWRTwZXwzDQtC1t04oq0nLCynSOWPCIdXVOApT4Go0mTA9fJM+G\n9FDMnSitDWW14ubmju12xziOHA4H2rYTBQ6TcTweeXh45Hq9okLgeDxSGEMZsajPz888Pn7kfL6w\n2+358sv3lEXJp0+fGAdLWVbsb28wJuN8PdMOHXVV4b2Ye2ojxMrb21tZxD9bEJrrlbZpOb4ccH6k\nba74aFq3qldsp46EeJz4KFOfHnqTKim5oV7Vsmhm8oDbcaDvWorckZmKLM8wGrqm53g5cT41vLwc\nyHNDvdtRlAUPz098+OVnvv76SwyB3Cj22w2bVc049DS2RylFUYjyTr1aUa/WlHXNMDrhNZkoNezd\nBJEb+p7y7pYvvrhnu9nSNA0qaLa7ncDAYvUpBR2jldb96Xzmw8dHztcrRV5we3NLXlaSmPnA5drQ\ndj3n85Xj6YLzgSImJ77vMUBV1WyjsakbR9qiwNqRzMjYaa0m/lZhArkRArdzsmiuVjVd109qRtfr\nNVbSOspK1NZubm6o16sIFZC5Xtcr/vSv/8rh8EJRlGw3Gzb7HXdv7nB25Jeff8TGgH63XaFC4KFv\nqKqSuqrxznM4vPD09IRzXkw/b2+5ubmh7RoGO3I+nem6gbXKWasSbXKUE6x/eLFcnhxm8BSFIi+y\nSD6NQY8WEzbvNUVuWNmMrRP5cH/q6HpNlhds1Yb77oZ1tuV01qiLBEjtYOnPV0LhKB4N3ke4Q+RH\nOedQY4DRTb4OCQKTZZo8zyCYuHESu8Fxw3MeoeeEKSHJYhJlbYKJEGEks6LWOAqMyhgVhUnk+rz3\nEwwsrSWZkcCvyHNxaVdhEYyoiSMDir43C8NkT1Hlc0KlYBw1+jqQdTm7ouRNtgECXSfBQKp0LnkZ\nQDSanDkT/9ZPSnZS8mfM7DnzOcZ9mfB8zmNaJk+z/UsMgHgNnVt+hopl5/RMvw4Q07lEWFrq0CPy\n1w6RIXYx0bPO0fbi+J72g76HYQiUNhXNmLr7KlaBJahSOAyD8/gm0Jx6stagjKG0BXpUhN6jLDGY\nluTZJJnh4PFOjDGL0lD3oiRlrUG1HnqpNrugyVwgfJbsuMGjbEC5NAcVJpNAehprLyakIukuYygi\nG2pKdsRUVGBxRimySNrPM0O1zlmva+pQYq5wOB1xTkxYffCQebK1RtkCrTK0DgRv8U7sGLJcUawN\ndZVjtGIYFVkr45yq3YmDJD+go+Gn8x4aj+rEZyQZkcq91iSSlkCiVVTeSnDSNB8AHdCFp6gjZCsk\niKlCk4vqYEjPpJrgfFkG+cWz21ZU3S3ZRQLT4gKrjWEfKt5mO27yPVVVYMuB52zNo/0ohb9r9G1R\nGdWwI+8Vh9OZPnZDklHsLGef+HczzDbLxHDYOcM4yBrkC8uwGsiLbOpqqBR0q5n7NI42FkXimlXk\nouTayR7okhrcMDJkwwSRkvlZYJRjHB2DHXBhROuaPM9Zq3rqxlzOZ+kWdR1Xo7HO0Xcib11VBakp\nUpYleZHjfBCoprOSQMQ1jaDEEFfrKArClCRIIUb/2bqVkokl/9JHHlqKbWQcBJKaxGiUjtWLRRVb\n1ogQEQ9zsTr+Mr5vjg3nusysvvlKXCT4xbnN4gZd13GOY7ZMwtbr9aTKW9UVTddzvpxj3JbHvcNN\n9gN/Tcfvyc5vOKqioPNevERgqggsq3/BR017bzCRq5PkCGUCSwVgGAXX2Q/jRHZTZu7CiF9HwmnK\nkQjUKlYa9FTKnavEqFj18lGH3jvKspTg8OaGmxsJjD9+fOTl5SUGp3d47/n44QNPnz5JxSzLxfQ0\n8mcUgb7rpIIWAm/evOXrr79GKcXPP/3EMAzUVcVqtcGP4mDsfWAcHefzJ5qmk6rBes1ms2W1WlHk\nOetVTVHkeOtorlfOpxNd21DkOUUhuNZqVbHb7dlstmQmmYZaktuxSHvLAiAkPENZFJhoCica/x3N\n5UpZ+KjZL4pQ/dBzvbb8/NMDgwtsd3vKzYpr33I6HTAatpsV+JHNqqbMMtwwcHh+xqxKtvsdqyAO\n8pvNlvV2w+g810tLVUjV28Wuzjh0KDxv397x7l4SHZDN5c2bN5RlSdsL2RIFQzdybTupSmrNzx8f\n+fTpiSzLuLm54+7tvUg5m4wxWPK8AJ3RRfLhfn9DWZY0jfg7jeM4ERWLosBFU1Q7jhIkZyYG2krm\nrglkeiaQrmKFtKpLNpsNeZbxcnihbRv6YeD29pb3799T1zX9OGKdxxghhvb9yPF4wVnPdrejqmu+\n+eYbAF6OB07nM6C42d/w9k6kx0/H48QdOhxeOJ2OfPjwETuO8T4XQBDu1eXC9drivEPpTCq8JlW7\notSrF/dwMUfU0yYhz88sECCb22sMtVQfM8pSDP+u1yvX64VxGDBRtrrvo2P6QkJ6GVgvhQvS75d+\nUamgkY4JxpoI5q82s7BQiGKqyr3qWig1+0WwfKls3npxfRMEJRZY5FyTJ4+QjxV66giBcBOGIZAV\nhqKopipomCrXskHOnxdebcjq87VrUV1fntfn45iw6nM368+Tl6WnxOcwm88PFds1E0QZ8bFJnc8J\nJrx4fUqJUkFqeb6fzxs/JWezepNzfjIQnUx5F7j5WVEu3jv1eq5O36ckifKfJV1L4YBEFkrnkUQk\n0u8Us6nm8jpeXbOe9xrZlH61bxYTUU8IMyQnqb5Nr1n8V2TQJWRLEuCDGikyg/aO0Vk8wn2o65pr\n10buRvKpkv20yPKYhCbYlMGNfoLmOGvRRT4lOH3fv5alVpKQSZcvQFCxEJDG0xPCzM+BMHFyUfMz\nr5TCBxcT4TQXYbAWneIGhXTMvTjdy3OoI5yJhTS0p21a6qqmKkv2263YHowjo7X048DlepEYhC11\nVUTbBs/h5YnL9co4jmRFQVWU7Naevu0nmwKFwmQik0xgsW4FIHUiROFVYpgCOw4MwygJTDbpkEfP\nGzXBtFQsBKfxF0U0KWyaPKNUYEcTRTgstO0U4Fe5QSuJb3Ij6n3KWtxop+ezLiuKvKBt2ih5rRmH\nfvZEM4ZxKKjXWzHzXq9RRhOUwnpHFm0spjUidsLqqoIgMtkxDyHB+cWLR963NPxMa3la45YdoNT5\nSVLqAgM3uM/XIqWI29LUvZk7y9HoOiXDMcBbdp7THp32mbSGJAXGlKRdLhdOpxPDMIj67mJNrqqS\nuq4IwXM8HTmdj+Sxy5m6cf/GY/8f+vg92fkNRyKjAa8md5poBKGjJnWVqi7I8jlIApGR7roON0hr\nVRtDHj127KLS+WrRiEfaZNOR7MkSuW56ZQgTvMAoRVFU3N3dsttu8d7z9PTEOS6S67UQyR8fH3l4\neKBrG/b7PZvVirEXWJhUweRhGMcKEFnNVV2/UlyblE1GSd6yXCo55/NRWspGuCibzZrdbsvuZifJ\nl3U0tpeuR1ywgnVs6pXwiTZb9rs9ZS7kuqHrY+Bek2VGZEydiao9evI1ck7M31JnbKqmA9Zbumbg\n0+GZ0/HKpb2yWm0pyxwVPGPfoYLn3ds3ZATwjvVqx3a1or1eaNsKq2UBz6J5XV6UjIPl+fkZ62G3\n28m9dl4qOy5ws7/jy6/es45y1G0UBfDeS4ev7bg0DVmeYzLpiFy7ju9/+JGmaXlz/5bb2zfs9zds\nNlu887S9ECfzomCz3nD/9h1fvv+a29tbnp6f+Jd//Vesc2R5QZ6XDIPlcrmiYovfhyBmfONIUI71\neiVzbWwIIVAUBdutwAftMLBer9lupSN1PJ+4NFdu7/b83d/9PW/u3tC0Hd3hMD0zAA+Pn7hcG/Ki\nkkQpKg1dLifOpyPn04mqrsjzO25v9owxobmJCdswDFybTuJ+pSZvpdGOwlE6irGrzkRBahgt2ity\n9CQAkow+l9jpbAELWJJpTZbF7oio6iyN4ay1XKLXk9IGE9+r43xIcIYsy6aE4vMA/tUzvQhMfy0w\nf0XyXcDi/GI1SOmMbHxqwo2r2PH8/HNlo4ydgvj3WS0u+YyEScUqff7UhYkbeohzxyjpjlkfYoIl\nVeWlolEaIxWj988TlOXP8rvUX9hh04b/eTIzfd9inP9HPjcQ8LF2ukS2fX6oGKSm4P3zZCu+SP4/\nJLNQF7s68RzEsXk6v1fqaVFCYobyS2L1axIMyQw3xATq1bUGSZCcC5Lkh1cMgVdB0/KeTKp1+vUo\npPem5Hapmie/FxECmOHc6fw/H3PvHdYHjJbZrEky1dmrwC1xJcqylGuMCprDIFXzTBucGzFabAGU\nMpJQegmmh8yKZYNSr4JTUVNMHFxFUBodu7LJL0yepRHvmYoTCSs6zSUd0KRO7JzQJS+vENfa9HyG\n4CHOB2OMyE97gbZpY8iMxlqBG1lrWa9W3NzcYJ3j8fmRa9dSXhvyrFhIOMei1GrNMHSxS9hjUKIk\nFuB6Kem7nuAkxURFELxacjniWMR5PI5u6mppYyZD5HFwU1FIqeRB9LoAQywAj2NUzRyGae3Iixxt\n5TrHcRTrgmFgVZZUxWwIm5sMjWJ0HjdKd6QoDWVdcXt7g1LQD+KRY+0gfoQ4mvZEVlas1hvW240U\nPzFsN3sAjqfDJJaQ57kUWCOc3toxwhdFyEUrxWAWqpnMa+CsNBjEt2ehvJqSnc8LPUtPnTTmqVuV\nnjHv5z0nM2kvkWJS8iBLz1U6l/TcOivGxCrGoiHA5XLldDpJt0bPUutJpa2qakIInE8nXg4HnHPU\n9QofFP04J3h/bcfvyc5vOPI8nx7W5SZutEEtNqo8zykrCeaGoYsdDlm43Cja5s4HNJmoEEWIm3fu\nVaUv1fV0zOjTMW+q80OTRBM+Dx5MlrHdbnn79h5F4NPjI0/PT9SrFXd3dxRFMUkGX64X0tcUVSUw\nGWfFw2BVC2SobTkeT7yNUsOpkqK1Yb3aoFB03UDX92SlBIzDKNWQosioqpKb2xu++eYb9rsdzjnO\nl5O0o7sOO/T0zZWu7Xj79i1lIWaXRS5a8KkyAcTAsiTLxNDSKMFA27EXLXscRpeURU5ZVdRVjR2v\nouyFpm072q6jH3o22510dVY13SiVw8JkbPdbdpsN1+Yii7wdBUIXHNYGuq6nUhpnPefzlcu14XK5\n8u7de1bVirbrGPseFeBuL+plRZ5zvTSMw8g4Wtq25ZcPH2iaBus9ZV1jsgKUxo0tz4cjbT/w5ddf\n8bd/9/dU9YrD8wufnp9RAd69e8dqtaLvBzCG1WbDarXiy6++whPQ331H23ZxIxR4WZ4XSNJaURYF\nRS6eUEPbsV5vpHKqLAbpDG7iZ17PZ/LcMAwd1+sF7z23t7d8++23fPHuPc6JIWaeixJfXdf0fc/5\nJLyusq7JqwpjNE1ziUngiNJwc7Pjm2++5ma/4+PHB8axR2mpbI0Ja4zGOYvWAk84X1oeH4WfZK1l\nXa8keRvtFCjYhF9OASBzLT5JrYa02SMQlbQRDEOHcxH2EZ+tZCo3jiNlJUupjUWKPM+ndSARQpeJ\nzK91HVLVbfLR8YtzCcIHSkfiAEkAHcRLJ3YXls//3OX59YQiNS1g9pDRKkJbUnKlojJRhIlpZaZz\nT5vrGI3zrLWxMp08ghTEZGjZ1TImBVOfdcRD+LOxWQYVn0tHqyWsK8yJTbrOV4H14h4sx/zXEtBl\nUjSdWwShyWi9lnmOnyhzzafAV/xZEpw4IERtmYOpMRI9N9zs0zL5M7lZmjrdy1fnFmKau+AzRSTO\nKxj09N4Q4pxKfkzCAVCxUPY5DG9OeqPyaEwE0uYgX6NQmKkIMI/19J/p+6fEeVEFJ947a52sUSHx\nzvQk55sSn1S48t5OvxNO5MyXCCFEBU8pLMp3DQSXYFkW73JMhJAuk8sQiN1fPV+jElXCsijQSjFG\nJa+uHfBBZJtTQjbNN2abh1fzKV6HyIhDrjKBAQZPsD7u9WJ+LGJHCqdisq0EakQIVJVweJqhZegG\nLk1DWYjpcxs9/apSkp+qWlGV7bQOlVlBKKAscorcYEfNGMSeIotml+n500a4V4UqBQ5l3TTHlVJx\nXdMSNCvhAWsjZrliQCk8ZFk7IhHfS0fT2oGylIKQMnOhKHXqpNBpBdFRVa+SiUyLjL8PATuOeOeo\nipw3b+4Y4j56bcVQdBwH4R23raScWuOcp7m27Pd7bm9vMcbQdg3WzrLbbVzP2qZhGHo0KiJBDOP4\n50WrZXEii+amyw5Lmp+v1zTpCMua5+P69lpNLXUNBWKcSQdQK4KD4DwhrtfLQliqi6dzCjAJLUic\n0U3JXSrKeS/y4HUtsP/ejpPQ0NRxtn5aGz4XSvhrOH5Pdn7DkdqQWZaJyWLEoyqkbZ/nGfWqoshz\nyqqUh8g6hkEIkVkWiZ3Ovd6UYhtZxQpqWlDSpjFXW6LXxrI6i2dhaz1BFQiJ7FdJgF0UvByeJ8W0\nJAqglPiIpKpKFRei29tbjs/PXE/C20lV2iaqiCVPFqlg5wTnuX93j0G/atkqBeM4sN/vqauC/W7H\n2zdv+OKL9yg8v/z8M09Pn2guV+ww0sZzkWaMnxb7tm2n6g/MVUVJ6Ax5bihyQz+0XM/DHLAqUSYp\nS+lOaLUhjyIKLgTKqgaVs9vdoJShG0euzVUI+bGd3nWdeD9Yy/H4wuFwECIpinGwZJlnGHuOLyfa\nrqOuV2zWGwiKvhVZ2f2NcJm895xPF/qhZ7vZEIDrteHT4cB6vWa3v2G13qJMxvnScL48cb5eKauK\nv/uH/8RXX/2By+VCPwxTxa+u63hvrvR9N0FeTqcTh8NBxANih6YshYdS5AVFmUty4CwmklVfrHBK\nxkHgDnlhWK/X3N7eRjWdHh8C1/OZ4/GFEBx3d2/44osvMFpzulziQqmp65osy/j+hx/59HwQPlOc\nX+voxTSOPd47SYJvbri9Fb+g0+kIyOZwuV7xTuAjAciKHBcCl+ZM23Q8Pj5O80I2AKl0j7YnjCM+\nQNu2UZHOoRDJUaP0RJr2TuRqjZ65bpPCjrVoI0ums4L1HseBcbQRBhImPHYK5maol5+e15QkpGO5\ncXrvyYtigit4YbCTPHYmiIz3E3w2BSbTc+9mX5LPIVxSZYz4b+bAxuik+zsHvirCJhRhCoIAXIjQ\nl5jEiI9EYLQCE/VhNr/TRoNP2HPZ1LVm2szTdyy7A9KBm/0t0vmnYOLVGABGJUz9n3cNPodhpfuc\n7tHnHaTlez9PDl99ZixBLV0vUocnwfW8TcltFAKI88nGJEZFc8G56stU9ZbgaIamLJOWKVmVDwel\nIpTRv7qWFEii5sBdK2EELK83FcskUJfzSfd2CryQz/MRBvc6UZyFLqYxDGK5EIIjM9niOqQinfLE\nZbdP5oeKXB9iByyaO3oXiw2FwGxDFN3IMoyxU4IvkKtA2v5EhbRkdGIy6yNHKo2tMYYxCjfM93fa\ncSNnRVTEyrKc5uloDComJFol7ykt3+/cdA5LFIgIhVhZJ5xDaSGga2MIPmCdj9PHi6luvLeJA+ec\no+k6VIQd13XN0A+MdqTpWoq2mPZaOw4UhUDO1uu1yHR7j7XCH92uV7StyDGHUURr+nEUvozWkcsi\nQkMmMwQr8KqInELrjCIXn6th6KaCSRo55z0hQr2yLKMqK4l7jDwzOs6blCTneUGeSRFZoP0O7cPk\ndaO1mdbTPJeiZlKqlXVAeKVFIdyu/bjl0lw5HU+crxeC9wxdx8toGa3IsWe5oSjzaW2eEupB1rOu\nbfFeDNgFFhnimM4CBBOfEiZoZHp+gAkNMHduzGJN8dGQ2S7g0eUMbfYWkpmtFrigNooQYWlZLDKl\nlUm6QmqK5ZZFo8wID2kYBlFXHUayLJ/ON0ljr1YrdGbor1eauFdKN0+MiwXiPRde/pqO35Od33AM\nUZUl04YQJ0vS3dcasjxm4EZjlJKgue/xEVcc4uahtUbnxatWp9aKsijl4U4bPWqxqSXoynxMedJi\n81oeWZZNxLPL5cynT5+4Xq9sNhuqqkIpNalpXS4X2cS0nvgQUnmLrrnBczofaTupjOR5JklAkIXA\nDgO77Y7r5SqLeUyk3CiLxjfffINR8P6Le+7v7ymKnE+Pj3z88AuX82Ui7jeXK33XxQVdAuHReqo6\nmoZpPau3eSFseu/YrFdstxtqW4AX87YizyZIj1KKuq4pS8M4jLTtBesC1XpDXnqyoqBpO07nC6eL\nJCMBaJsO56wQuLVi6EXj/+bmlioTg043esbO4l2gyEq2mx2res3x5cT5fGG73VLXonT08cMHXg4v\nssDUstA2bcfj4Zl/2N9w9+aeoqo5ni+8nE4cz2e0Mdzt9tzdvWW0jo8fH3h+fma9XnN/f4+1lpfD\nC6fjC/04kEXi6MPDA99//z3X65WyLFmv19LJyYt4j3M0RF8iqSoWRYGPFVOtNevNhrs3b9jv97Rt\ni3UW2/ecY/Unz3M2GyGgX64XTqcj/SCER601z4cDf/rTv6Iw3N3dkecZRZnz/ssvIXgeHj5ijGG3\n23F7c4PRhr7rOJ1Pi2LA3MVUWkWiqePl5YWXw5Gnpye6rqMoxchVTHkdXT/gAtKGjzjrFGhnWSaw\nK5jgLPJMzdw7qSbHjUPPkBiV1NFCiHLgojS1rMy9CpgXlb10TBW8ZZcnwRxipxgWweji81LCM/27\nUiSAawooTYK7Te9LQXk8j88Xi/hvwfvJ3C5xfZbnPnUZtBKCtdExTouka3nDlAwkMYbUUVhey1JM\nIG2m86ks4XZ/3nVJ15GSBonWX3dB0pGqnNNnL/49fceUFIYwXfOfd3BCDPhnUrBafOB8zouEKf2E\ndB4qKsAl2LLc/4nw7P48Mf6zhGsqaM2JlA+vYTGJ/5E6KKQkZfqoeGYJk7ZIjtOPrJ1zMiTtIDX9\n/zw3me8PaY4GvJrvXfqs6d6kxC0mkC6ADpKOuVhoQPxHsU5UKrWeXRd1LACKX9n8zIUQ/aqMBKTO\nZCToj7XiH6O0+EO5VABABCMCHo2O9yR2KM2ctBRFwWQm7KUbkdATxPFwbk48jRHertJiHirzR8j/\notRmUAZwntFaNGEq1iil5BmP81S6KAJVLquKvJCAtO068iwnz3KyzOAi/G29rgX+Owr6Yhh6sqyg\nKAvWK+FlmNFCP9I0LeMwoGIxSSnhGaUkXk/mvdHgNS/IdOIxSZcwSKswxiQCibbOiaJZJhzaBGke\nIlkfRJQki9067z02SCdk9jYSAQGtA0ZHyN+UFMQ1Rwv3STjSkhD3XUs/ZPTWT+tacB5rRy6nU7S1\niImJHaVwHRMPgSELLynTWRyzFcHPMK5ld1BrPfHAUtHr1+Cdyz+1luJ4GUUBkqJlCIkzKPFKWlcT\nbE1PxZ35fmitJgPTpReQ0SYmi8Jrlf062nHE1xRlIXDNsqAdJLYZhkE4oXE++yio8VnT9q/m+D3Z\n+Q2Hs27C5WdZRnJK1lEFCYWY9jlHa0e6pp0CwuSiG0KIJL1CNmoXpkq7yA7OeuchYYk1U1U2BU5T\nq1zNUI+lUoZSahIm6DohqL+8vOCdEyWyWIHt+56XlxfaSBBUSiQvRQlMAv0Ec7F2FKLkfhfbwssO\njopt4XZayHyEDu12O77++ivGvuOLL77g9uaGoe/58OEXPnz4gB1EonkcBrquwY6W/W5LZjTXrsU6\nMXQr8oy6qnBe+EDN9crhcJIFo8hZv71DUWPHnr5r40YYcKObsN1FscY6z+XacL42DKOl70c+HU50\nXU/bDxGSlCAmQlT0Cq5tjx16lM7Ii4pytWMcRq6NdJ3KvCQvCuqyZhwsDx8fGUYxWyyKF4q8+O/s\nvVmP5EiypfmpKldbfQuPLaNuVV1MN2b6F8zDAPP/33swfYG+VZVrRPhibhuNiy7zIKokPTIvplFP\nnehkwpEe7uZmpFKpKiLnyDnsX440jUjN9r2NG2Sg76WxvqoXeBQvLwe+fJU+l3qxYLFcczqded69\n8MvPP+OcE5pYVfPzTz/x+ZdfaM5ndKYpFxVt2/L161e+fv0aBQ1EnGKxWLCopenfR8Qiz3MIhr4V\nFErQqpz1csndmytW65UgLKcTbSveO03TYK2liGpuh8Oerhtou1aqf0WBdZbvv/+e3W7Hx49/ooj0\nte3Vlrdv37N7fkQpTV0vuLm+lh6wy4W26+jajuVSqHOL5YJ+kI1d68hf1ppL03I8CiIZIKIvUfnJ\nO6G+WY9HSTATN57MCN1Aa4ONlMXgYnCjJyREOPOeREVxzmKdleB+DGwTPcmTZZKEpyBuTqtKScrY\nSzMGlHr8vBQAKq0wTA7bc6rXK5Rj9jtF+nvGODahxAFptB6D8JDwiRkS8jrTGAPZObqg5n0KIa1b\nkjBnRpMbTaY1NlZctZKeqG+ltk2U9Z1fW6JbfRsYzL9PY6rUJLCQ+had94QYySejwN9K0uQ6XidT\n02WHMTmZ7+nz79PLAxNKpki5R5iuISUbSOCY6Gshal27WYI9RxGlRef1uM/phyFM84Q4H5x3Y7U7\nnduEQs2uQ2uUHy9gKiDAq7n0q2sN04jMx+jXx5RwSSA89TcoNSnUqZgM+1cJfMClQM4HrLNC1QlT\nn4yJFCHnYm9sZmLRK8SEmVilj2piGnRmMEoU7VKjfKrEyz4b1/oRWVRjT45SRARH5lsZFVSNMZG+\nLUiciWIEcvOCmDfH3tAiUvPEe0YGzjkb505OkWcoo7B+UoNzXuZM6j/1XiScA1AGUcUsq5Lm3MRe\nxmbsOSnLgqHvpfdU6aiuZ+n6gWG4oLShrOQ6ssFCJgh127ZxDc3RWmwZglJUZT0isAE/FVCUOZ4N\ngQAAIABJREFU2CP4RDF0DmJ/iDKCTjkXGPpBFClHgSaZC857fJRWD3mBUdI3o5TCR+oxSvxxEkLo\nfRDhkEx6h/BAlHf3sSjrvBOELBOpaus8RstYEjTDEBj6DmcHdKToyhwQ2lyWZSwWNd6JaI807dcy\nrl33HyYwcypqoo4Bk3pvjI/Sc51pQxYT1zQXvXPRnkSD1lG4ycaimxSwAgEXEfX0nkqpkbkw32Om\n3qFA3wtVTyxEBDGVgmvsew4+ivychf2gYsyJjXuSHveN39vxR7LzTxyS9WdRmz+MFZNULvMxQQE4\nR0WsV5s2Uh3K8xyvIqojJbKRCiM0mSk4SsGWQPryoCXUBBgnoMDssukrpSjygtVqSZ4bHh/F4d45\nS5EXZEb4vYkr2nVt3AjMuIm07YXj8cjQdQQ8xijqcokKjqwsohrVeayWi7dM4Hw+0zQXAo4cqdi8\nubvjarPGWjE01Vqz3+14fnqUXou+Z7NeEfzUzLdcrliv1/R9T16UI/1JFl55kA9DT3M6oZbL6L5c\nE7ydAiIt9A0bApdLy263QylFc7nw/LLn68Mj56bl3Fw4Hk8YI+9R1wvyKLetFCyXC0mELg1KaTbb\na6p6SZFXnA5nnh5EwW692bDIcuqy5ng4cjyesMPApWl5eniijGia1lo4tG0X6Q45WVbS9Y79/kRv\nLU/POw6HI4N1LJS4pP/9H9/z8PBInue8e/eWuq55enri4csXnp8esc6yWC7IXE7XSQN9UeRcX1/z\n5s092+2WIi8wWnNpGgiOuqqoIiLiojdFnudcLa94c7tmtapw1vN198Bu90zXd/RtF4UXZFNvGkGO\nfCDSCVasVit2uxd++ukniqLg/u09yhjyPOPN27dUdYX1nizLKauCxWIpfU+HozSSKsXd3R2b7Zaq\nrED1ZHlGXuRYsqgiJ5W+uq6j6pD4L6WgIcTnasQC4qZdlAVVXYGHS3zugvNkeaRgadmMdXSZFzrP\nzCtEpcA90eUEASpjc2qq7Mlmo3B2/jxP20UKLtMG5VJgSBgD7LnKzrdyp2PFnbQUTMFuen/G10gg\nqcfxmRAMYFbxZ/qdFq8NbeI5ujQWUsWVXoAc7ycKn/y9n4oxQYK/dC3j+LrXTevzPof083lD7/z6\npKF7avRNyYtQeD0qqJHKOU8YZ2/+KtlJrwvf/Hv8XL4taEZcY/Y36YXpdXOUY0yEZtfh489T31MS\nA1Co0TeI8e+nr7Q3fPtePkgF1hNlmf3clDqMZz3do3Rl8R7oJB3+G587nxcxWWZ2DtO9eY0+eu3i\n/pWSzzC9Ts2FAiRuDUGwFYNQu4ICE4geYZLs5Fk29jWN6Jd3MwrQhEqbTGNMRp6psQneGDMWKxOF\n0Do/jkUISfzQoYJHBRH+ybJMGuVrE/fPRD0c6PsOoU3nJBaa99JXImi0xhTS/+adyI0PyZtFC/26\nSNK+hKiUBtoIbUv6Q5MCnaVcVmRFjukybN/Tdi3HkyaPPj3OOs7nhrLMop2AmEAfTydBZYxGVSVB\na3rvKcuMvieafSqCEf8mpWJyokUYJTjxXAKLj35AeEHFhJ4XKZOFIVMKN1j6YYholgT9aa9RSBLX\n95L8F7EYnOc5XouQkA2AD2RGvUL1FILk5CqjH3ouXTf2QwUEWSryDLWsCVhBU1XADh68Ax0ENQwB\nG3Sks4nKrhsG6rqku4iSa2KTuNgzmpKX+TOY1mdrrawM36DL8zVOYhJNEWmOSUwpFd1ISZFScT8W\nhCaJElg7YGciD3OGQFpHUhFyRM2dQ0XPJ1nbZH2uazEQz3IzKpp20TTUZJoQBTkUajRsDd8897+H\n449k5584UpNYkv9TCgbbQ9Sk937a1C+XC9fX10LH6nvsYMlNJjKSVUVzaem9i5SGqS+l7+1sg59o\nKpIQjYTn+D9Z3JVJlIkw0reWq5rVeknf9zw8PIzJQJHnKCU8z+WyxtoeWSK88KDzDJ0Zzs2Zc3NC\nWUfbtpxOJ642G7leFTge9nx9eKDrRC3t/u6NPKiZVEvarsNjWdQ1Hz+IHPF2c8+irtgf9vzy+Rde\ndjtRV+ta2jwbA+26qlmullIZKwqqxYLFYkFSubLjwiN0qffv33F//4Y8z2jO7StFO9lXNcaAc4HD\n4cThdGS3P/D4tOPxeRehe8NytWCz2bJebyjKChcb0bM84/j4TNteePvuLd/9y5/wPnDan9ntdvzy\nyy9Y67i/f8t2fcXbt2/56aef2a7WPO92nE8nbOT6rjcbFgvxa8rynCJu0FW9wHvF7uXA8Xxm97LH\nBUVVLwTmNjm73QtlWfLXv/yV9+/e8vz8yN///b/zvHtC4VnVFWVV4ryj6y5sNis+fHgXE8cN6/Wa\nIvKjbd9TVQtRuOs7TscjwzBwfX3N+3fvonCBwtoLu8ORl/1elON6QQkv5zNVNCG9v7/n6uqKw/lM\nUZbc3NxS1TUPT4/s93vevn3L3dt7lNJj8tX1A7vdC8NgyfMKaz2n8wWlYLOtybKC6+sb8baKQX5R\nVdTW4ogcczrKSnqxAFxAerGsj/xyMSx0AbSTqmRWFNSLBcvlEjvYV6hDEghItCtr3ZRU6EmRbFLk\niZuyFeGE6W8Zud1JnShV7+Vnc5noWSXde5F4DlHUOL5u7nydaBLxLyLdYHZIhgc6Bqcx8I+ryfj5\n6bXpupMBqlD4GJOF5Nujlcb6SJFQCSGTpKPvbZRqVbG3z2GMitV0QVSBV+j2dLqzhu7443R+6fVp\n7F4ljInOpEU5bz6+PgQZw1mx6dvC03gG8WdjT8w8KfqNQ6vXicgrqtuMDvY60Zld1+xeKDVPPuT6\n53NjnnDAhP4R0Qaf9obUAzR73TzZGX1clB7v6+yEZ585uxQ17Sm//lkcv18FPiEmC5PoQh4Yk7d5\nAS992IRMQlI4k968WLgjJvnWgvKvnoX09/K+0/0YcChlgYy8Fn8V74UqltgIkxCDNN+jZqp9xN4T\nbwlhoi7leU5hMnSlZ8jnRaSIPUCsqOfC2PBB+tp88JQ6R+X5K1nhYRjosyF6smQEp3FRtczH3p5E\nRcLIeHZ9RzBBKGlV9H2JzedHc2RRV2gNTXNB6wXrWgynm7blGAVlMmMIKiYgw4DRikVVo+gYnEhs\nC8JjmNPU7CACPSK1LT0ko3BSjFHEA096tgY7gBfhiGEYcBG1UHGfT1LV1sk6XMReEhULjanvpVey\n5mWZxqs0h0wUQBBvLudsXIcluRR1sYqqFlPmrh8Yuo6hvWC9I89iAVUXBCXn3fc9mVYsa1Gc9bFP\nt4vofaLtz5OddC2paDX/fo7Cpx4upRRGid9VimHm81lrFSnMHu8CWVHIs2AjghZZMymZGaXV3eT9\nI7GeIEbB+2i2HiILw6Iie6eqKklqQhAD8lb6fVO/ZQKBNYqghL6bEPnf0/FHsvNPHE3TAKniCX6w\n2L4b+foQyHLheCqt2G63OGu5RBURCTq3UpX2gX4Yoma7BLzBSRVJeanOaZP4slJJ1NFtV6EEvnVe\nJCS1Zhg68JJ0FZG+ppVit9/TdR15bsgykWZWWrHZbFitVjw/P4/V67IsWawWLJcLdg8P1FXFsiqp\nyoL9/oX2cqJpGh4eHqZmyxjgLJdLvn79QtM0tH1P113QNmDtQvTcnSQ+l0vDTz/+yM8//cBut4Oo\n4d9eLmitubm+5uOHj1RVxefPn8mzHIJUyS4XQZuEjlaQZYbr6y1VVXI4HDgcdjjrYmPkVnos+i7C\n1QLdn5oLzgWur+8ICKfX5IIsXF3dUNcLCNJUOjgvrt2tQMR/+vNf+eu//pWyLPnH3//O89Mz7eWC\nAnIjvOSyLKKYQs+bN2/GwCwlO4uFjMflcuHzl8+cm4aqXvB//l//N1mW8/Pnz/zw0y8cTiequmZ7\ndSPj0w9kZcFf//xnPr7/AMFT5AXbzRrXtVQR/ercwKE5s6iraLp5HdGMktVySZ4XtJcLq0WFs47T\n8cjT0xOXc8N6teJ6e8PHjx/x3rN7+sLhsMc6x3q9Jjean38+cT6dKcuCT58+SS+WMSyXK9phYFAD\ng+0ZDpK8b6/W3N5d0zRnPn76E3VV8vT0xOfPn/nb3/6dm+0VWVZwOJy4NI0ow5XSC2Wdp+t7uqHn\nfG44nRqeX3ZUZU7XdRwOB/Yve85NwxCRgi5WOpNzu9YmChNIBTmvctbrNdvtlvZy4RhlrT1KpNLz\ntCmJudzkpxC9FqJxXfIcSAmIj0plI4XTv5aln3t6zJOcFGiOSVUK/L5JCNJ7zv8dOU8x4fFjsPYa\nDYmZC9/Q1oKErPMEaPzSUyA+Ucz8DGkJhGg66r2NwYxQQ9ImOyFRlmHox76Gb/tgXiFCatphv6UA\nvkI3vMcGEVTQRmOy4lfo0Ni79I0gxGuaVkLCGMf/t45vUSFBy8QzTanXCFF6vSRffgwYJJGS76OD\n2oSAeJGK/VVClhC4b87rNYXmNXMgoY4TfQyRov4mSJG3EJTN6NQT+htz4X+QpD+ey2w8BBXyKDWF\nG3JeAWXy19cxR/W0GhNx70NEZTq8r0aalO/D6EUk72nHfhmnVNybAMq4/mc43Y+vnxLKNFcEb5iP\nkrWO4BVKTcilVOYlwIUp2R4GWRNkv9Z4LYiH8h4ctFEUoMxL8lwURIkUxK7rwOejEipKRVntnjz1\nuxQFOqJ3Q1S7LMuS3GR0l46h60RoqDlTFTlFkeGR91BaguPVaiWxRpDgOQSheBVZxqKsqKuKphtw\nAZTJQBmcBTszoPTeoxU4K+ueyWLRw4jEeBKxEJnwSu6Bl+JNSv6zzKCyLMpOJ/qZxwaP8kosOfIc\nE2Do+1ExtcrFL4hiQrwXdS1KpH3L+XKmaVtp3rcSnGsldgtVUWCUUMGE/WIYhkgP9J48y6ii+EOW\nR/Ej7wg+i9YWkzDBfE0Bxnsxp5bO6W7zdckYMYRWzuNiopNk1UHWcu9lD0lm6/3QSY+RMSNSl5gn\nbaSUD8NAarG4v78fe4jOkZo2JWXCDMrznBAkEU3vkQobI6U2TM+IignvH8jO/yJHdzmPE1gydSXu\n6CpyjbWK/TlCdevaFu88i7pmtVrHh1+NlY4JoZgqvnkWF9EgtAbRw/+mCXRWVVCxImutJYsuv8kb\nYH/Ys9s9jdWX9DAkyLhpGg6HA0qJb0m9qLm+vmKxqOn6lvu3b7i7ukZ5z/G4Z7/fk+eGEBzr1Rql\nFX2U+N3v9xwOB4oovCCVX83t9TX3b+7iImMj/cmOqnbBWS59jx0GVsslm82W29tbtDZcLi1VVZFn\nBYMdaNuGS3MiL0q22zWr1WpsGj0c9qw3q3GR6V1P20rjZRWTP4Dvf/gJT+D65pa3VU07WILSVPWK\nqqohBNpLR3tpGfqewXm6wfGnP/2J//Sf/zPGaP7bv/0bf/v3/86mKFktFvi7O+lhGXp2T088PDwA\nis12y3q9Iig4x0Q5GXt9efjCPiqO/W//6X/nu4//wi+fP/P16yPNpePu7p6P331HVS8EITme2Kw3\nFEXJ49Mj+53Q/2zXcXN9RZnlDHbgeD7QtReWyxVaa06nE1orFm4ZFXT62JujeHx4ZP+8I3jH9dUV\n3338yJu7N1Tlgv3LM12kB0j1KYjzdgis12tu72549/49RVHw+fNnVtsN2+2G8/nM09MTT0/PHE9n\nPn36xJs3b7i5u+P9xw/Yoedvf/t3/vH999zc3PCvf/4Ldhj48uULKM2bt+948+YtTdPy9esDRXng\n+uaaq+sr0IrDac/5fI5O0CcR1zg3DPEZ6odU6ZJmcB8Dn1QpTeqE2+1W0NIUfKsY/Ed0J88yvAox\ngNGjI3aRFzgvFb4sUzHFkP60lIQbY0bjOZ3rcYNMG2aqDqagOH3mVPmDJGM7rySmTWjezwFTKpPO\nf77B/ocs67QxqzCKn0zVRUlo5IdS2dNZJtSWSKdVHrzzuEizNbPEKG2kLip7ydBOwf1vCTkIPU4C\nz1fnP0M25rS2tOcm+sbrBICYlPwa0Zl//1vJoyBx01x4/fvpPUZsbYZkzH+fhC38rKl/TNaYUb3i\n+c+Vm779zHlfV4hmlxMClWAjpOdzlkumMcWHcZ6mz0hKX0nyRq54Sq7Ej2YuRjAJHcwRwfmYqljd\n/5YKl4iAqWgnfzv9LJHsnBekQOnoYh8YaV1Jqc5kGVlEUIcwjZmLSmgKPT7XzknDdlEIJSnRY0MI\nr1DY0aMoKDIkUZkQo6kHKKGqgvLOJNHlXWIArghBg/IjAqqUir28Aa+FupZlmVDAouBBiBX5PDNR\nYlkQsCGaW6aYItMGG+X9lUriSHKf277jZbenKjNub68nip2W+5ZlGW1/EbqsUiPiFbxU/fOiQuc9\n/SAS6b2N/jiESKWKggLZJJyh4rMmSndTQpApUVrLMiNJQ1zvur7DOWHIeJd8Bf0YuKsAi9WaoqzI\nigKUootedKknOfVWKq1QWoL3zJhId1a0StH2ojxW5IrgNVlWsKgK9M0VRV6iskxMu5uG5nJBKR3j\niZx+EOYDSsQLhqGn6/s4BlPf4BxpTnHdfG2YF3LSOp9HLx+GSZK6yHKUkSSMeG+kp9YxuC7SLxVV\nWVJGC46u6+j6lq5vGWwvNOqYrIkNRcf5fOZyuQCI2MFsfZHnxaFUMfaVe+dGRc8QBMWWJCzSTWOR\n5vd2/JHs/BPHfGILVUN6BxLXFiZJZAJc2obFYhkNIFdY6zgcBJlI1edxQ4hqJmFic0AIURkmbni/\nUeFLfTYSkAl8KdLQophlrWWxWIxJWB6NTC/thcNhz+F4wGRa+iHynMWiHj0zbm9vWC0WXI6nyK9t\nMaZmtVqxXq+kemYGqkKgc5BqRKpirRY1b97ccX11xTD0tJeWpjlLc+CsUjYMA7kxrNdrFosF3geK\nIuPdu/djwN73PYTAcrViu91ydXU1wrhpQxAubxYrgQLtCie6ABSn05GHx0dB1KxjsVxTLZaYvKAs\na6x1HI9ndk/PnE8NRXTtBs3N7RtA8/PnL/zy5StlteDu+oqiKCmen/g5VkeaSxPHOON4OGCtSFzX\ntZhgni8Nx9NJaILnM1VdMVjLf/1//l9++vknfv75M9Viwd3dPVfba5q243y+4H3gz3/+E1VZ8PXz\nL4KuDT3BWT6+f0dVFjTnM8YYyrJks1mjteZ4PI7jnCpIdhg47PfsX/Zorbi5fcOnj9/x6bvv2G63\n2GGgvbSEqMgjfkQN3eVCVdXc399xe3cjdMymwWSG1WqFUmqkPL687FDaROW9guuba1CB593z6Inz\n8eN35HnB8+Mzh8MxNoLWVJV8PTw+kRU5q+2GRZYREIQswfKpUDD0cj/D2LMmm5HzHheDcm0MhZLK\nWF3XFEUhiFusVvowNwlWUt1TQaB9EPUkY8Q1XFhZcdOLvOi4AZVlSZ7nolwXm1XnAf1YyU+UK+/H\nJGceNBoVe4R+g8I1RyIS0jvfZNOhtXhfSGbwa8QgBSuJi50qk6ipuJJeo7UmM+CZJQjxb/LckGfV\nWARKzciJxiPr1+um+/E9mNOjXicl3xZ2Xgk7KIUiNuzOGoBfrddB6CAq/Pp90/cTEpRQnslPJ5lh\n/tYxXkd4TRmbAn0l9J/xveZ9N1OAba0Vb5IwBcavaS369XkibxqUjFcKTJjO+pukVYH2eDUl2umV\nKu03aW59U41WSqO0BPE+fIO+xPn2q8Q1zClikoQY48dEY7x/RhO8IjlwJvpmMreVpDfex4iY9n1P\nbcwosEPoxznXRWPlUcE0/l3XdcJoMImiOqehpoRFPNnSs6aNj70ahuRFZO2EzGaZVPtfJ9/z+2XQ\nIYpmeEmYtLTJTvdyFjM650dpdK0Vmc5iHBHpVQg9SxtNYXJQjr63KJywPYJHaYV3xCq/oapLrJN+\nOo+sMdY52q4DNflnZVqLxULsU1SK2EfiZV3tB9AalX8jia0VJhfFVqMAlVC2KTEVoYRiRA6NEhRM\n1hKNyvOIhLgx6fNO0Bad5VRlSZ4XGJ3RqjN4UdRr2w47DJjORMaKiDxoo6Pqm6EYMtquoz1dsEHk\nqctc7mmel7LW+IAPFUX0JqrrGmM0+/2e1Wo1qv0NdhAEWWfj3E9zPiH54zMzeybm613qFauqijwm\nrKOSr4roCSIko5Qk0VIwE1GNPJ/Mqtu2Hf2BZP3NUIWo6BZFMfbfXC4tKDX66CRZ6lRQSvvOmMDN\nk9VMYXRCXyXOogfC8B+uif+zHn8kO//kocaF1BFCrNBgxBAsbVhx0ynLig8fPnB9fYO1jqenJ87n\ns1QporKJaLkjnEhEwSTEXhOYuOQwhStTxUyqbzZE47CyoKrKGapkxwdADLqycVPr+57T6Rib7lXc\n+ARO3u12lIX0QgRrOV/OosqWEpNcKmWp6l1VFd658fP7GPTd3t5wd3s7Bnld13Jpzq8kq5vTEaUU\n682G6+tr8jzjdDrhnGe73b5KMFerFXVds16vKauKruukz6nryHJD33eURQnEpnMvjsZai3LX168P\nvLzsaS4XrAvc3kNZ1ygjMqRNc+Flv2f3csAOlrKs2GxFOa4oSj5/+co/fvierrd89/EDN6uaS9NE\nBRVZFJSCIi942j3TNBdQiuV6TbWohOLochZLoQpaZynKgn7o+dvf/i5Ij9Isl5I4PDw+8fXhkd3+\nJcpXLwjecm4ajscjuRb6XJIADd6T5xmbqmC5XMSKscU5FRsNo6KLMbQXCeJvbm74lz/9iY8fPrBZ\nrTFaszscaJpL9D2QnotL0wKB+/s3fPj4nu12Tde29F3HKpqHJr+mtruQ5Tmr1Zrr62uc85zORy5d\ny+dfPnM4HqkXNVppHh4fedo907YdeZZLQnxuohz5AFpxOp2w1nLY78fmy67rxiA/EMYehtQfoFQY\nkx+hTmQoLWaqOlIZhmHi7yeOUYjBvtZ6NBpNamvpARRn9hgEosafhWgKmXjb1lpclsuYh9/yW5gC\n03kQniJkrdRYwR+DXTVV4OVcwxjcfRu4KyX+7WFMeObrx/z1UTnLeYIJKKNJzeQ+THQ8Hb7tB5Eh\nMVn2jcGdYrGoAcXxdBqLDkkdKA7xrxOEGbIwDyjm1Lcp2dFjocdF2sdv0b6ksyopcU2V8G/X8zTs\nU0FJRVLTr+mEr1CcEQ16fY4QwcL5ff3mvk8qbNOcm5+bvNck2z0mJCZJWMSJoph6hGZzQ2stSNw3\nRbIQIqVunANhWkPS+I+J5aSgNqEwxPusx/9Pz5FH+ykpTeiWMRP1KL02vdeYwKUr0goVojqfSG6J\nuuIQaZJJDlpN6FPfyxzQSWQhzi9BDDSLqhB1s9jLllCaLMvIvEjVJ+PhdH8zk0GQQuaYCI1Jjnh1\nFUUh/SWjeWRU/lJ6vCeC8plXohzze+F9AO/oQ+zV8370eEvJvCRpuSQZyuBcG1FX+RxtDCokJTPF\n+XzG+5KgPMMgTedeyTplsgwf5HnNYvLog6ZvLrHaL4IE6fAxYUNNBZcsSmqLzyAoRFo7xRLOOTov\naE+WmRjYy3OoTIbKonGsUjhnR7ZLQjpzZ9G6jgI6FUWe0V0uDH3H5dJHKmGGKwVx15nCeIPJBXnK\nsoV41zjpuxm6VpD+IGtHQNBDoxVZVsT+wJQQK9brFXkuZqsuNvgnxHAqeE+CSkl4ys3mVZrrIFQ3\nMe6swDlhlEQaLinRUYoQdf9TgctED6Esy+iHAdv19L0YuSuVEpOMLBbeAempvVwIIVCVFWWZz2i6\n4ldXFAVFWY6For7vx7aEPM+j4mlKExTDMAnk/N6OP5Kdf+LwJGlacS4Xj42o5BKEriFVC0lg3t6/\n5dOnT2RZztPTk0xW50CD0XncjBwwmQEOQ6xc+xBVUObUg1QVmgIAHzxoye7LqqAo8nEB1fFBUYpR\nx75tWwn2YuVliOobWWZweUbfDXRNw2azBaU5ns6czw0qQFlWNM0ZoxVdNFIzJkOFgBtEIadtLwTv\nub7a8vHjR66vr7lcLlwuEqAfTyfarsXj0UYzOMtiteLm9ob1ZkNQiv1hz8t+TyBQ5DlVVVBXUjGv\n6jpeS+ASRAlriH1L/eApK1m4bVA4NDoo2t5xPB55eNzT9h7rNU1nWXSOalFCNELtbaDrhNa22my5\nf/eOu7s7DvsDaM3D4xNPzzvph9KGrrvw8PDA/nAApakWJcpIf80PP/6E947NeiM9Os2JvruQFWKs\n6kOgXq1FGjNKVldVzebqmrKqeH7e8bLf8/y8QxnFcrHg65fP4D3n4wk3WPFbMDlN09I2HV3borRh\nvdqyWCzpu47l4iJ9TFqRKagyQ9CK7XpJWNa8e/uG+ze31HXBpT3RXi58+fqZbmhlUb3IXKzLivVm\nxXcfv+Pjdx9YrRbs93va5kLA00Wp68fHR5x1XF1d8+b+ntubW46nMz/+9DODdRz2B7recnO15evD\nA4eXfaSnGNCK86Xh6+MDj0+P9LanUKUgoW3H8XQigED5gx2DCYiBvVHisRFCpIGIlKdCjUhiZjR2\nGDgfjzRneb8sz/A6Gfcmmk5KAKL6jpd+Ep8ECWISlTYmUYCK0qNZhtYmKii5MREYk4ZYAZzjLWNw\n730MWF8Duen5NzH4HOlBAcSGnPjzGJRFudt58C5HGP8jfk76txAV5Oep2d3Ih49fIQhiIklkNNxL\nZpCzpLAoCkyWiyGsF2RtpLfNEibiPQxevrx8QKRN6XgfGBOrcVzUNGY+yjmn16qY/KrZOTsvBAxR\nJXodcE6UOcY3V4oJEUrvr2aI2OzvE8Ik38cgXyLRmPBMuWZgQlPSWMTYfPz/t/f81ViplNkgZWBm\n/w7CnsJ5iF4u6VqmZDRJTU8DmvqLEr2JGOxKopOasV8nhSOaOEtKp/Oezt1GmpLSUgRUTk++U5qZ\n8pxU+MV4Jibbekqogxe1SGet9K8o0PFzCGJ8KEhMOsOIQnrP4DTWRwlqGBVTjTYEFTCRphoJGSRx\nBGN41bMUgiQLWjt0DDAlIUIsDKL59MS4iP10WqwFpuRQ1LZ8NIkcnylrR4+hMhQUWYZr084WAAAg\nAElEQVTW6d4JuuYd0XxVi7JbcDHuUKhC45QkdG3XoY30GTob6IceFZEKEz8frTBVTl0v6K2l68XU\n0xlAaYrCxP1VevNSIu2dqMqZLM6TOGoqjmNm9CiyIImlGxN16yxVURJCJUuXFkETQeGnop0bhD5W\nRkltvagRr6QhzikpyhQRLVIqItS9RUdJ8twUrFZrLs2Fc9NwaTtA4XyyKYjroYeu83R9FxE1Nyb2\nCka0WgQL3CyxD9hMfIDKspR4KiLZCckkvjZRoE0sGHufZNBlkQhxz1KI9LgIDWQxmRG2UN+KJUMY\nKZNJkU2SyVSYExnxQFkWZLkZk8ksjktZSqsDQQzTnXV0bcdAkHmd5fH6pnUo2ZJ823P5ezj+SHb+\nicPpWEEhVmtg5NsmcyyDBCR5IfLAZVnSXKRKrjNDVuUoZyCYcaFWWaQEGINmAGfxOFTk/MY45lUF\nT82oE2WZUUaDKqUUQz/EZk0VHXOlgdK7HkUQ/qYVc0g/DFg3QJFDXQEaH+Du/i3P+z373Q7rHOWs\n6dg7MBi0l8bo0A8UJuN0OXDav7Bcrrm7veXdu3csFgu+fP0MwNeHL5xOJ2lQ1Ip26DFlwfbqis3N\nNXlVcmkaDqcj59OJqi55++ae6+uteBzESqMPcD5faC6tqMdgCCpH5zXlYkM7BFQWIFg669mfLjw+\nvvC4v2B1TbW+Ii9LBptx6RADtkphXUZRXliEjLu7O77781+o65q2H0Ab2r6P5mOGr18+sxvOHA5H\nrFcEpVFoWuulF+p84Xq7Is8Nl+bI6fCMMYar2zvqxYKrq1vyekNrPfVixbv79/zw44+sVivOTcPD\n4wP7/V6qRqpg//TI45fP5JlBoajyGh0MfevwVhIdrTWbmytWqxuuthvc0KGDYuguFJmh1LDINWVe\nsszfYiJ10CjP8fBM2114ObwwuA5VKoxVZMpQ5RV1XfLp03fcXt+wXq5ZLRcMXR/hdc3j1wd+/uln\nTqczZVXz9u1bPnz8juVqzeB+oT1feHh8out6qqKiyGuedy+cj+cIs1eUixobHA/PD7ycXgTdu75m\ntVpjred8bjEqYF3AWi8u4sMgyYl3eJQYvwUVm0tjoIXGDz0qgCHQNQ2n3rLf7Rmso6xEjj0FT846\nbNdLshQcBJGhJaIfbrCx8CDFhmGwoiqXTWZ4gmYKDVUo7pNJZZHnUiFLFe4YiGtif37wSGF7fODl\ntSkQVSl6jgGsIyoypsDeoYKlUAXBxABZpaAxpjNKKrUKZLNV8h5BiS+R9y4miLmofakYPCoJFoW6\n66OZoBYEiIiHBDnPJO9r7dT8H+J19N7NMgBFcp4PKIIy+KCwNow0IAgQq6CCOAnqpDAQzQGDV7GB\nWp5HnVA0H9AmG4MBqW5OaISJFOGQ8uQw7vLjGp3GSgper+Ww5UuNyVIIMfBiWr8dYjMQtBrPPwW2\nKn5WosTFdGtEShIiYLIMgsd6F6v5GSEJG3gwQaiPxoN2ItkbiAmMkXuqSIhPSp5kDtvoSRWURpk4\npkohbQQu5lWSTCe1v1TT9zEpTahfMiJNgatU/OWzgkJ6QCCKS2hSsWmYqelpJgqmVNUl0OzbDmPk\nt0bJtQ2DJeClqT4WOXwggrVBlMdwOK8TpChBbF4y9APBOowSKrd1guQMwYILZLOg0sTEcxiEmqfy\nKFRQKorsQo8UhlKQ77wbPdvmNLg806hMUANJsASpk4DfxefH4oP07xWZ9OtYC5fWUuQZRb6kcxes\n7SA48kyKG5lOz5NnGEQcQusCE5Wbi6ygzKUoKndPs16vaLteKGsg+x2WPAtoPZArxRCvAyVYW289\nymkyl8xeJTnMtUGZXHobo3pYkgR3vkcN0WLDO7qhHwN6rTVFVRFySdR939McDriuo65r8iJH5xl5\nVeLifLWIrYQNkClDwjtVVHlzweGcQpmKoAacF/pz13VoY8njGPjgcT6IuahzmCyjbaWPJyGIxIKM\n0tGnrcglEQ6R9mw0QxCGR0K3UtElM4Y8FoWHrsfbgboSGwWthSbX972Ye4eoIqqVeJQpUdsbBouz\nIjajVUZelK9ovSFA1w2k3rEiz2PxvKWLKE+er6hrUanz3o9iT2074JwIpyhZchgiSyEhPamPM4kn\n/J6OP5Kdf+LwXhbNPJMGZmcdrR3ITTZWh9JG+P79e0Dx9PhI07Y0l3bk51+aDnDThhA313kz9Lya\nl16XoM25jCEEqiqPZlFiLtW1LX0v2Tw+sEjVBCfnntSmhiFp/ccmuhnMvt1s+PGHf9CeT6yqihAC\n7eUSRQXkOki9IIWYpnZdRwC22w3fffcdV1dXfP78C//4/h98+vSJ5+dnhmEY+0nKsqQoxJ3YZBnD\nKL/dU1UVt7e33L99R/Ci158q5iJvKdKUXduLSEKU/r26usYOjqF3GJXRdS37/YEffviB8/nMzZu3\n3NzcUNc1qd8iz3OKqOiWZRl3d7e8ey8+NglWb5qG5nzmEntyCJZ294WiqMjLBUFp+mHg1DzRNA1V\nVXF9c4Mfeg6HPUPfsVgu2YZA13acu4HOBVZXN3z33SduNjd8/vKF3W7H8/Mzx+NRKuRlgXeWx6cj\np+ORm5sbVsslOC86/AFOpxNFnnF1dcPt7Q23Nze8ubvhcHjhsN+hioL1asn11Yb1cklVFLHXDC7N\nhUvT0FlR1Oq6ju/+9InT6UCnOgzS47NZL7m6uiKLHkzW9hwOBzFTLZccDge6vme1WvH+w0c+fPjI\nYrGk7YVLv1qt+PGnn+nanqvtNVVVsVgs6DuRPs+LPDZRep6eHnl4eGC5XLPdbri+uuJ0akaDvNyI\nqd/pdBJ/nSxDG0MXN+ss9vcMzhKs9OMoJU7eKiKSp3PDuTnP5JAnuop1Fq0mBaH0/NnBilLi2EPj\nRLkIRqpampeJy018z0RtkJ/w6rkn/Tup3URkVsVgc0QTYuClZn+fqEZpg02V4kR7SvLEcyRiLNnF\n0qVSSU4/xB4LNZ5vShgSegWQR9lTcQzvSApbae2Yv9776WfpnEaeOjNa3FgRlzGy1o7CBhBBjNk6\nnK5dKyUmhjD6U8zXTIl3ha7jfFR+cr9GZ36FXszHd7L4GJGWb1/3q6+EkQX5v4t8+OAlYf4VshWD\n+lHoATXeR7l+TeQ14ZJzfYQi5rQjSfYmV3cfUiNynCeoV/cjnd+418x/n34+Dkuasx4fHM69vucT\nLW8m2DDfu2b3Jh3JhBebqIhuBKoYn5GEKLjY3zGJWNjx+ziHY8LqffTpMTORhSAFShX7+vQ3554Q\nn/GzCa/GP6HDEGlaXTcmzMlO4HK5MESkWsf+XekxTH1agcwIFTd9rtwbUUuNNc1xHI1iTBiFSaHx\nVSmUPGMwISO4KYkv8oyqrBm6IVb0iT2cW3RUZauqWPG3lr4bYlCr2Ww26DxjfzgynJqIDpQCFPZi\nPuodBFzstwLvi5gQeKyNSYi1srfnybBaepJ8NFMdrMU3DcOQjaadyceIHNqmxcXEox8G2qFnuVxS\nliVlLWpkbSwgN+0lilAUrBZLMck00u9yPp8FIQ6wrGqMFksMYhLifezNUgrtxEiW4PFWhB1GumVa\nS63EXmVRxEJaorhF65Bzg4nxRErgfFx7jZn6k7VWLNbriSLnJoRU/p+NNEEXe1S7TkQIkqx0+sw0\nP1NsmWU5RVHQ96LO13Ud3g3UVT2a6QLRFLeLCW5MaBRY70aD0hRnzhVGv+2L/D0cfyQ7/8RhEAWR\nIQiEa60EP0WWy6IOr+QBT6cT5yjFPFhLP1jatqfruoi8vFYYAsYEIC0a6ZjzjImfI43wiqKQvpm2\nlX6HprmMG0yuzShQ0F6a8X2t0XRdS9/3FEUeq1fysK3Xa77//nu+fvkC3mNCoCrE4MzkhtPhyPki\nDfyllv6JtGiv1iv+8q9/5f3H93jv2e1e2L8cMOZnBO6tsHZSrrq7u6OPvTf4gMkyPn76xHq14e27\nD6xWa3bPjxwOJxkvY1DKcDyfOByONG2HUoY8K9msr8izgsVixTB4Tscjx+OZp6dnTqeGEKCuF2MT\nuQRzGYfDAX0SdTqloaxE8vFlt2P/suN4PHJ1tcF5F41ULcvFgrs3go54tHi8NC2Hpx2Pj4/85c//\ngjGa3dOB8+nE1XbDd5++4937jzS95fufv7A7nvlkcuqqxLqB5nRkt3uhOZ9RBLIIe/ddy/l8pOsu\n7HfP5EazXq6w/YDW8ObNLYu65vb2lru3b9ne3GAMPH79yi8//khZ5SzrQvqwVivWqxXGGJrzhZMT\nDyAJ8gPXVzdRPtiw65/pLz15lrFYLcFIQufP4lfx9PTIy8sLPvLpNxvx8rm9vY384UCRGTarFff3\nd/z9H/9AK8XtzbXInFc1XdXivVRWjRIjtbZp6LuO9VqS4sul4XB4wdkh+gSJGETbtmPlaYjKhhIA\nKkYTtcHirENnkT42C+pDpFeFmMCQTARVQAU3yvFqLVQFa6UKPAwDQUXZ1JRMzJKdb7nNY/9ENBJO\nQdy8T8fHqm6izSRaVVL1glnMOVKS0j9fqzW+UlcLirlJ5TzQnQfwOnpWGK1fbfDirSF0o/QXSd3R\nOaHChnrx6lqS2eLkmzJ5FEHqA3Ez+tjUAzUfD6P0uCYZM/V7OP+6zydJ/+vZfQAmueUQRlQ4BTrz\nQtO3YzmNv5D7VErY5uP6P3iEGSVQErskLzs1yY/vqSZxAM2k6JYoR8R+J61jQ3sI4z0hokXeg1cT\nzQXnx/GF6BOEeYXEEBOeaZ69FrwYKZOzuem9H3tF1exnooI4jU8Kjrz30uge3/e3PKfGZn/vGXte\nIroT/Bw5ks/NiwJ76eJ7qvH6EkoiyY4Z+4N8kLVh3hWVaU0fUbXgXQyOY1Kk1NgTYeL8mt/7FIia\nLIn7SMLT9f04n1MA2ndiHDkMPT392EMGkGcZyuRxXZDz6K2gyUbNxiiyPaQ/tMAYQRkcQXx9fEAh\nfYneerq2w1onHnfbLUUhxVjxVnGjKEIbi5RFVbPJ1gzWcWouhODkucsM1kd5dJLARio4SMCdF+LP\nl9ZWofNqclOQZYUk795jBzGkFql6O3rE1JX05yT/GB8NTQNS+BBTdDf2mmRZRhstHpqm4Xw+07cd\nwW2lp7eoyUxB0zZ0XUuWaVbZgqosxnXfejd5eQWx0ugHUYZ1Q8aQChSBUVwhS8Viwsge0NqgfDSh\nReGs0NSKvKCsSoyGYeikIG5EOc57O+47Y59MlpEEOowRo8+0N4uc/+uC+lzwJhVtnZM98NJe6Dph\neyyWS5b1YoxLp0KUj9Q2SVgvQ4ft5ZrTfNZajzFjKqD83o7f3xn/T3Akp3bvReFHAgORWKzKirIo\nWEQDzHPTYExG2/Wcm2ZUALtEXq+LD7kepRwlYDGmihXsAeeGsSlSsu9spnaU+OxSFUqVpn5WVdZa\nqjVv3rxh6Dv69hIfjol3mv6dJndS9fqv//bfCG5gvVgINSIzlHmFtz3aaJpGekGMMSg7cDyf8Xje\nvnvHh48fqOua3eNXnp+eOB6PLJYLnPOj4skwaLbbDc4FjsczANvNlrvbW26ur9lsNtRlxel44nl3\nYLfbYa0jL0s26w3CYdYYnbNYLLm+vqGq6hGStdbx/PzCjz/8zOPDM3lecnd7x/X2ijyT/iVJOoVe\npbV4Bd1cXaON5uuXzxz2e4wx3N7e0PctXXshywyLRc2iLimqnKqsMXlBb6Xp0PmBgOev//oXnh4f\n6IeeLM+5vrnm9u6O5XqFv1xQGtq2YRh6Ao6X5ydOhz1u6CjLXNSKAvR9S3s54+2A7TuGTFPkGTc3\nW5x1eGu5v79nUYm8+aKuCMFxOp45HPbSG1RVLJdL6qoij9LIzfnC4XBksJa8KAk9NK5hvb6DoOi7\nnufnHc3hzHa7AaWiMpknG5ScVyvJ8uPjoyA678XAFOD5+QmtDVdXV9zcXPP54Umej6pmuVwIunU+\n03cXSRidi3xoedaKPKcsCg4vLzw/PXM4nsiM9DWJyEc3Vp8k0J2KBtY5nE9Nw0KhybJc5ExNPlKg\nQFSHfIjUNMSg02uP18SeOUkAlNZjEGWtheiGjtFjUJgCuOQzAxMtSse1Yq5c9St0IdIklJooaSmI\nDDAG8uPPYoFBttjUrI0grlExKaE6EkCDmyEYsTMGII5RFj0zJinfIdixGTjPc6HZeD8Gtq8p3Gr8\nmkv1jhQINxM2mCVfWqmR3pV8a9I9TTnGOE5qShxA0qmR7TejdYyHTwaX8TpitRIYE1NFUtFKSIyg\nFwmtCmEe6v/6eHUPU6gfFQDS3ybkKCUZk5fFPNlKBDY1vpZ0FiGQ5IgTGiNJQIhIUZgoiiGMlDEf\ng09B7CbVvzS35u81qhEqNSa9SXth/LtY1Ev3MUj2Nf5exAVmyKWK4ihaoVU+PqMpSEtoXGYMKiKb\nPnihyMXrQ4VR9tYGCbjzrKAsA207jGPkfRiRsQjpxfsXxykmgfOCgtAYDWJCSqSKy7xWs8BSaFGS\ndM2T8jR/tdYQmQCqaSRotlZ61bKMIq8YBjtWzWFqQpdevJmkMZEWaD1oNdJhhT7vxgJplhWYXHp0\nBjx4NyV4xsTn0I3z3BgpYqECwyBoTlHk0RTVgfLRpHlFNwwobegGS9dbjFIimpBBjpagXJlR+AUt\nFKjkuZP6H5NwgxnXyaQuqOiHga6TAm1ZlmzWKzabjTxrs+KxGBX70U9msVhQlgWrPGMYLFkmhdym\nbWPRTqwUlsslJtN4J4qHeWZY1CspcIVAF/uVvZfigQlQ5QUUIgHe9YJ8iOqZ9Iqa2Acpa3IgUwjl\nLP4/xD5urTWmKFhWFXmR07VCNe98Wm/kGouioK4Xkc0zMQO892R5Pj5rcr/zUZEtzZ2U5CQE8XI5\nyz23fUQca1arJavVSnqhrBsRocm0WXp3+qhqm+wT5onRqBw5/KHG9r/EUZbCk+z7XiDZWBHNs3yU\nTU6vuRw60aofBtq2o7cWGwMlrc2YaCSaC0wVHIGaxYzPuU4qC0bQm6S4kWR3jdckrfS2nahyIYTx\nvNbrNU+P7ZjJp8UoTWqlDEVWsFmtWS2X/PD3f7B/eeHqakM+oj4ZJjP0nYs0Co/ODGWEVB9//pmq\nrvnu00fu3tyhgqAgyRPFGMNisSTLsvFBdc5zOp3ph4Hb21s+fPjAzbVQzFarNQbF4+MzTdvRduLA\njMmxXjjymSnIi5qr6xs22xuch8PhyH6/5/n5mZeXF9HaL8Rn58OHj1SLiq7veHk5cDge6IcBrQ33\n9/esVkuUgv3LjqenR6yzvHnzhvV6wZcvX7BuYFFXbNdrFouKXAUufU/opWkywfc3N9csVys+f/4F\nbQzr7Ybr21uU0nz5+pVD07DbPfPysuN4OtCcTzw+POKGnroqKcsy8sctx6Pn0kBwA7nRvLm94f7u\nhpvrK1Elay/SdO96mssJk2sWmWwoV5stRaa5vtpwe3PDYrEgeM/hcOD56UVko/Ocoizi+XuZz3nO\nbveCdY56uaCIhmnWWuq6RNylZUFfrVaAeO9k2vDysqNpLuRFwdu3b1ksak6nM+3lwvXVlUhvGsPu\nfObp8YH20nB9fSXJu3dc2oa+bUdvhs+//My5aXEusF5tGCI9YRiGMYCUDVSPz9QwDFEMRJKEPCJa\n26steVZwOjfRp6Ajywtxi3ZOWEIh1X0FJUjBU6rw+ihpPhWvU3Bv6Z2L0u/5eC4S3CZ1Hj0mKYne\nMD8kyJtUsJJbdTLqS8dIq4iIhkvUIx/D5BR0Rv6VIlX0kwS0wvsYDTMPxkmZBamBPF2iNhkmywg2\nYH1EpWNfjCBQqVKvR3rHOEJK4Z0E6z4EyF6jKkorMm34VulZ6zEsneg+3ySM3x5TFVwuzJMC66io\nxERxG8dSLuDV+wTCSPFLt/r/F9FRr2W8E5rgx0Rnum/zBu50TtIDkJh702f5EAhOGqkTbpLUB0UR\nyo19PTre1tTwnb6SIpqKgbIIeUyfO0d6xjFM1LD0OiViEL+i34UJkcows898LWettEFnZoboTQin\n1hqMiXRrTzBRrW1M1lPiJoliVYnEfpa1o09domRrrdFBj89NCGH0pSEVLsKUOAjFKJ6DUjFPnZBV\nEBNb76SSP/phzSiec5WyosjHPihSMqONyDePr58kl+dUVFAYo8S4c7SjSMkpOCdGkGUpPaxZZgga\nCA5np+vNIjW7bzsul5bdbodSisVCbCJEjEJofllmGNqBoesgKIoiZ7PZIAyKM857CjJ0luFCmuMR\nDY6+gEHJczwGyd7RWzHsNEZLwpdl5MaM/SZ2yBh6MSPuu56uiH1DAZyd1g9tDCElTkHovMTCRZbn\nLNcr8jynac50fc/uZY91nnYYWNZlXH8cXst6lWKQMhdvOh/cWEhISmVVUdC2ORfdMAxqLMLF+pHM\nF/QohkCAzChcZPrUVU29qMkzTXCWECyESOUDlMpePbtah9drgRamw0RTmxQB05wZ0Vsm/76uE3P2\nLDdRHbcepacJse+t70cfOEmEE33ZYPJsRLrmr0v7/5xt9Hs5/kh2/omjKtNDOtANA3mWUVc1m+2G\nm9tb6ko8as5nCeDbqHXeWzsaySltpBLCa8pEOsYm5pk5aJrUxYwr38eqRJIlbM4NfSteNCnQStVa\n752YXlpLVZWY2PeS4FOpPEni0zaiMLZYLFhEnmuIK23i8deLBVpptpsN6806Gjue+Ze//Jn3H95T\nViXnw8uoTJVnGVVRslyv6LqWtr2gtYp68Ge22y3392+5vXsTJWs1g3Mczw3HpgGlWa42mCyjrCqK\nsqRrB8pFwJiMohRll3NzYff8zNPDI49PT6PvzNu377m7u+PNmze8HHY8P0kiNDhLludcbTeslgv6\nrh2D4LIsWZia7WaNd47d8xPeWW5urri7u8Fay8vTI8fzOdJbdORqZ6zynMfHB152O3wILJdLFssF\ng7PSl3M4sHvZ0XYXvLfS//LyDHjxg1CBIjesVjXr1YJFXaKBrmv59PEDf/r0kdVySQBebE/wDucD\nl8sggWNekOcZV9sNi7pgvV6wXCwF0Wkanh4f+frlUTa/1Yqir3DeUhTi7D30lq4buLq6Zr1Y4r0o\nkKkYwFrrxutar1dUVcXj4yM///QTTXthvdnw9u09V9stQ9/x8rLjdDqyXq2oFyJsELw0/Bst3ghl\nIY7Qh/2ey6XBWYt3jufDkbbtqMoFw9CNTaTJd0DOOed8Po+L8RArccaIaEhZ1VHa/Arn4HQ+iwdD\n11FFZSLnpYpKDHLn1VtItNEM61IDtsiGJnnqYRjoBqmWFVEoRJ5nkc+dc/+/TV7SWjBVyl9T09Lv\nf4VaMCERkfmTfjr9LoBKkdKrarSgLXOKW9rQNBPSnN5NUA+YECcJQrKQjwE+TCaJCklMZA3Ip0p/\n+mKiwsj6lqGY5FxBEDlCeJU4ZZFuNyY7StCqV4GzipQj7wlxHOe9FvMxTMGhnyEc8/FGzfW4GD9j\nor9NCWPyz0lV30T5SX+XghUb5/bUrxFNWZkofGr2WaiUjAQJKsdkRBrD/XjtWrQa1ERv8YSJajlD\nIbTXeCWqZ4ppDMdxQY3oWvJWmlMkk56gnyU7Ux+pG6l7IwI1u+/j+McEIn2eUmo8b0xKkJJhrRRD\n5hTRPBPvOEE9pn1Ua40JBoUf31MFQQ/TdfmofJbH4l+WGXwAh8LhMZpIWZ+ZujqHcxbjPFqJClYy\nZ50LTkjCYqZ7PlhsDNJlD83HuQhSbJtQzJSs5wQje3eiW8fsVD4vKoN5I8hUSiAA2lasEqqqBq/o\nuo7D4SgIenDkhZFp6z06SAFUK0XXtljrMXE99suawVk6O8Q5FAjWCaXNeZRyIpYR9d2VMQzaCpXL\nWZwdCMGTaUORZ7g8h7IYx8BE1LzvdLTDGET5lVkPi1Zgh/hcCM2v66QHKs8Fic7zjKIqSTWCru8Z\nXl44NQ0323Xs/bFxniiyPBuRDZWKEEF82oTBIj3IRglSk5bV5GulEx1Zq5GZYwcr4+hV7EeVHhlh\nhHRSyFKKssij11AWEw0/MiQCicKpxqJ6mu/WToWI1EuTkJdkDyFFZR37eoroHzT1D2klcyWhQOKH\n5MiyXIr0eSZosPdiWB730/k6NW+5+L0cfyQ7/8RRFMUI8xOgzEvu79/y4cN7tusNw2B5fHzkZb/n\n3Fx4fn7GA2VVjdUJFVVuEp98zhlPEzzxN8uyfDXB0iRN/FWhzC0RmVvHMEwGV8F7vJ0y8tT47/1i\n5BoPg3iCVEVBlmWczw3741eGYeD923vKQtRttFJoI5W05WIBePa7F1bLBcZoTmfxTfkv/+X/YLFY\ncDweOB+OOOfHazHGsFouR6NO6efZsVyueP/+A+v1Bu8D/WDJs5ymufD5yxeGfmC13VIVNXlyVO46\nBhsoq0qMvgIizNB1fP/Djzw/PvKy2xECXF1dsb3astmsaduWx8cHnp+fyfOc+7f31MslzjkOhz0v\nL3uUEoGF25trlIK6KtnvX9jvX9AKEVMwhqenJ37+/FnMwbKMEGCwDqU16+WSr1+/sHvZiSdRrH4P\nztLGxnprxa+orquonAJFrnG249xfUMqz3ay4vr7m4/t33FxvORwOvLm7YbEoUTpwaRqa5kRVVrK5\nOEeW57ihJ8+kYqd1yaKuKcucEDzn05GHhweeo4Q2WtTtlqslV1dbttsrfvzxezbrDVfbLXVZcmnO\nHA+HyAVu8U4aQm9vrnnz/7X3Xl2SG1t28A4Dl758d7Np5mpm9CBplv6z/oue5D6NNI685CXZtmwa\nJHxEfA8nIoCspqS1+CSWzr7TQ7I6KxMJBALH7LP31SWEEPinf/on/Pzzzzg/P8dXr1/j22++BQD8\n+u5X3N1+xsP9PVbrDZSUqKsaeZbi8vICpjdYLGYQANqmRlWRVLFW5EZuhh5KyniejHVQ+Qx5Posc\nYmstGj9wSYmIRDHLqWsjKPkrigJFTsp6FkEmOSh6TehhPoANgcl0oxee6gThYjLIJgYAACAASURB\nVLfTOq/INgzoOnPycCBMaGduNJoL1e2wB4gxm6DqfvzfGByGokd8/2fJD9GGMFKShIvdm2nAT58v\nAEedHzl5H0p24GdlEPcd6xyko+JC3w80NwPfkQHGoM869F0POxhYBI8QTed0EnB/maCEmZpRCjom\nIrE7AEg1NRcd+x/TRErQCUSYB3LOeodwGzt/04d3uM5hQD2co+f//ryjETow/hMR/EhIqdNOjo3+\nOaWETLv5QojY0YufEf4OpM5Eit40UyK9Yhp1abxCnhBejUvSQLn/jOBHFD9vYu5K69kHb5FiOKkw\nT65ZOJ9wiHLaELT2hT2dPRWT8xgooIE+Frs8YpydE25cgy7OqPnESoS16Dxt0vl7jEy9iTLae++U\nkfJI/iV+jTgXboOxMyglJVp+HkcpUhd1DuTFAtCMinUxWBRSApZoP33vGRoiVPZHU9LpLFZM3l3w\nBiLVtHENE93LWHrOKiWjgTGUhrUDtPTiBQJwSkEpWlNV3cIY6rYHlkbftqjqGtIbkyZZSqpww0Ay\n8MKSF1+ioQSQCCDzz+i272C6BhqOjLbTBEWRo6ordB3NaQ59j6En5T7f+qSEXioINTHTDCRZoTzD\nZYhduURJEnVSAkprpA5+nmnAYb+HVNonaxntr56GB4BEZoyA6zovJCOQeY8bpTWyogAEKdI2TYvb\nrvXXh9Zu07RRgplEnQB/91FB2pIQTeLXRaq1F7Kge45mPcc1KCf3RqBUT6lmQ9+RKamQkEmCLEug\ndUoy4s7Beo8m5/fYsHaUUt4rycZ1L+XI7hFCkHCSj3vgP7+Y5dBKIU01tB97CElRZzoyio3PyrHg\nnec5rKAYJQrsuHHt/5HByc7vgPFqIkmSYDlfYLPZ4E9/9Sf81V/9Fbquw6+//ILtbofdfo+yJF13\nnSRk1uSo8he5vlIgkVThmQ6r1nUNIUi9KlBijDExmA+cznH4UaNrupOHVXiQSAnkeYrVaolEaxyG\nAU1To0p0/NzcG44KIbDbbvHx8x3WqxVevXqFoW+hpUCRZyjSFFlGZpVaCbS174K0RJ/77rtv8ObN\nazx5M03hh5TruibH37rGbrvDcrXEar2CtRSABGW0qqpxXz1gVsywWq1o0LPtcXZ2htVyjTRJ0XUd\nec88PaFryWAuy2mj67seT09P+PDxPfZPW7RtS8G8cCjLA+7ubvHrL78iKzJcXV3izZs3WK/XqOoK\nP/7lLzjsd4Cguaxh6GGGDnPPc93ttsizDH0n8PDwgE+fPmG/38fWb+cfJF3XYTFf4OJsg+VyiU+f\nPlKVX0qUVQ3jyBsgyDoqr+wyKzIK/M2Aw+FA81WtwtC1SJXE5vIcFxdrWGvw8eMn/OWnHwEgbnpV\nXWK73SJNScZ7uVoAzqGXJDZxdXmBJFHYbZ98V01ic7bBYr6ATjMs/VzXxeUFhKAuxeXFJdJUQ8Ch\nmM1g/JBo33WYz2d4dXOFq8sLWGvx008/4scff4QxBpeXl9isN0i1jvMt//iP/4jPd0/o2g5ZmqPr\nSF1nMZuRz4KzaJsabV1BwqHIUrhUI9UJEp1AKo3FfI4sowFLkeQxgAv3RphvSHQClSQo5nMkaQZj\nHIIocqiC9cMASIk0SWPAa6REkOkNbtxBMSxUpgNvH4Ie0jLRsH2gpNgY2ARe8zRIDLN307mJcA9O\nK+qUcAECluRz/WePwdGX3Z3Q4ZgiBrdKAH5uKb7e/4/UsZ51MuBpc9YiKLSFv5/NZpRMe8qENYac\n0KVColXswpDyEj0wjQPSNLjDTyWbzcl/D8bESnw0/4TwM0ZB6YtUk0YKmwtZ3Pi9HLxfTwg8vYKc\n0iQ//GxPj5Q/58/HpJsSTtqXSc6p0lpQ7Tp5necPTn9nGgzHWQ2l4vUQPkR8jtjlC39FXMXJ9Qw/\noi4IBbcUIIUBZGMMDMbjDfQ1mnUbk4+wjp+vyUDzO2EhuDDDMnYkpucpBL4hUXDOAcZEFc/xnDkE\n1/jwraQcaX3C0xlpXYxUtiRxvqATJIIRu2OUQI+3xZjc+cTaU1LDulRR0t16nyfqolkHyMl3EULA\ndH3cS1JfKITQkHZ0pDdmODmXWZoCEJHuHDq51gR/nYGUvLw6XSxIgAyQYRAFU4RzdAy2R99rCAkk\niadn9UT3btsWysut6zQFpETV1Bjs4AulBVSmoRQFw0lKhteDJRNX50iCeVbk2GtFsyiDV85MNKRy\nvtNI39kKCUhK0oLqV6CPmb7HMHToBtoTtJLIU5rJTJSXSfaMFdN3GAwVrMJQvrUW3UBCFNppv4b9\nPSB9IhUojEIiL2bIMjr3+90O3dDSNfXPCO0NTbuemC5ZliLJCrRNg6qqsdvtMZ/PPHVfY7GYIUlT\nSgS6jiijAuh73xE2huaJExLNgHOReZMkCYrZnGpQfr6uHlrPEBjvqfDsCH+cC5126v4obxpKM8/K\ns2JKEpcQoG6SV6JzbvQ8Snys1/c99vs9qqqCs3QNA1MIIFPR3hr0Zuzm0DybPBFY+SOCk53fge0D\nDbInSYr5aoWzszO8urnBq5sbfPjwIQbibUu66ZdXV7DOojxWGExPkq2KXL9nvlLt4KsaHW0ENGRW\nI/dD5VprMuM8HKKD9Hw2o24LgOpYoumaL6pyUkoURYHLy0t88/ZrvP/1He7ublFVFbI09W6+BeBS\nJN4PoyzLOFuxWCzw+dMexWqJ+XyOcrfDL7/8gjTVWC5mJDVcV4BzWK1W+Pbbb/Hx40fsdjssFgts\nFgsIS+3R9XqNsizx6tUrnG020S355uYGxhh8+ECSxIvlErO5RN12pNhiBrR9h6fdFmagoPZwOERp\nZ53Qhkry0jt8vv0IrRVWqwWaRiPP/cbQNOj6Hl99/RY3N1c4Pz/H7e0tfvjhB5AxImnaU1sb6P1w\nqZbEX079pv95T7NAQlCrGlJiMPRQuLq6Ip8jB1RVhW+++Tp2tQZjiO7muyiH8oj98Yir62u8ffMG\nr26u8fP3P6A87NB3HaQk5a/Pnz7g6f4Om80Gq/UCy+USdiBudd93UAJYn23w9PSEPE/x1Vdv8a//\n9d/i8uIGT09PaNsaszxHmmrstk/45S8/4/7+AUUxw1dfXSNLyVdpvqRr3LUd3r37BX3X4+HhAYvF\nDLM8g+kHlOUBh3KPzWqN169f4eb6Cof9Dv/jf/w9/uVf/oVU1Ooa33//PbTWsQL1+cNH/PTDDzi7\nvEGWpmiaGg/3D7jzNLPzzQZpmgAIwZ+EteSx0rY1rOn8jInxNEy67tY67Pd77HY71HWNY3WMa14l\nCbROEGg9xjr0xqBqGhyPFZqaREJ0Qg8zMhu0gB150DpJyAtEynEg389+AOPgbDCZC4Fr6BxMZ0qc\nf5Ap/yAKVftpkUOIcfDbWkuUETcWQr7o4HjEBIj+5mS/onmKMWB3blRg81PkkwB3EnzL0YxUCPh5\nuxkur29oGLhpYb1JslaZl2NNEKTznSJaR1AGCgFf7NL4QFJrmhekfY8qjYlOY5EnUSqKoAxDH2cC\nYqJDRxg7EGFeg74vBWzT8zT+LuJrSAEt2MrI2IV5fr6f768WiEFALGBNukVwbtLbGa/rNHmUUkEJ\nFTQXfhMOQb3Nd47CewoLB0GUovi+oyrZ1IHdOYtekpH09FqMJwfxd0IyFsQTwsfRWnKAs75ij5Nr\nGmYHQjctfMe47pwXBbEOSUJBvQnXyprYkRmT7pim+M6Z9c9L4zuIIwVSSkBp4Tu0dNYEREzspMBJ\nsiKEQCIV2sFQRV/4M+2ou2fsMPl8xAQ0zkeIIQanlFR4E0tPqQ1UVescUt91GHrqBhkvBkDHo8aE\n0JDqVdN00GqAHQyUljD94IVIfP4Nyu2lFOSJAoukkUi0Ipq91pjNFjFwV56REejvZBWQQWmaNQ7n\nkq6hhhDkOWP6IXbszs7OYYWEOlbk/aNTOAc0Xg5ZCIlBSAzOK6c1DSVdvgvi/FoSsBAOSLWCGwxg\nLUSaRTuMJEkgHMm0hz1Ua9qjARHnoCLdVpKoUCIViT8MNQQQqcRKJ1hvNhTXNM0oDOGAth+wO5RU\ndJvPkKQJAAGpUkjroHQ60sVUAvI+SiA1QP7XCkr2Y3KCARAKdd3GtSIE+Ry2bXtSTCC6o4uFsS4k\nUJ5iGZJF+h7UtcuyLCY5t7e347rzs1mz2cwXjUu6lk4g+EOFeW7nyGMxdAGNMWjrBtbS8fZmgIWL\nxx6fRUBMfMyzQtsfAZzs/A7Ux4o2j3WK880a52cbXF9fQymF+/t7fPr0GdvtDtZapFkGay3aroeD\ngE6oi9P1RFMrj0cUvqNirUWSpticn8FZi77r49yNlORHM5vNcNjv0dY14P87TVNIIaNoQfAhcdZ4\n6k/hKVp7ci7Oc+RZFhOpRCp0fYuuI2WrNE1xfn5OMss+AQsPTfhh5LZt4ayh4f+2wWqxwOXlJS4v\nL/Hzzz/j6voSaZagaWrYrsdiQUH65eUlXr9+TT93DmmS4t2v71DVFZYLL1ecF9SeryqUhxKb9TnS\nNMVuu/XUryEmSqG63NQNyd+68AAcICRwcXGOxWKO1HOZg39H2/f4b//ff8PT4xMAh8Viga+/fkvD\n+yCHZiFE1Kr/5ZefUdd1dFAWQmCxXCLNM1gn0XeNF6wwcIbkg+/v7/DLzzltvL6zYxzQtx0eH7dw\nzuHy4hLffvMdiqLAu/fv8MsvP2O/3+PsbON1/J2njR3x9NMDijzH2dkaVzc3+PbrNzRrdH6G7XaL\np6cHnJ1tcHNzhSxNsN/vcTweIEDqd9unJ/zzP/8Tbj99wvn5Od6+/QrL5QoCNAQ/m83gjMEv737F\nX/7yE7RWODvfQHszv35o4ZzF5fkFvv76LRbzOX74/nv84z/8Az59/IjZvMCf/vQn/PnPf0aaJLDG\n4POnT3jabvH999/j7OwMzjkcj0cEPnvbUOctzTJIQfNIVVXhWB7RDy3Wm42XKO0hhELb1Bj6gSqj\nZQUpVfRneHx8RNu1lICClGWUsdBpSmpqmjwt9vs96qZF1/uqm05gnEXvq6qU2JLDuNYaiVQwZoc4\ni9L1sNZFjwwhyPtk8K1/IZKYkGVZhrquyWl8EmhNk5uAQMUTPgEkStQAOJwEaKFDFO9JnHZhpklP\nCLqllidUhBDEhuFo5xyk73CFTmUI1p0bqXNFUeDVq1fIshzlYY8P799RByunfa4fhijP6wVbMQx9\nfHiP3WbqJAR6klIJUVqEIN670hi6HkPXw3h+v5MCQisAno5EShKUbDgHdUKPgg/EfVBvbJwdinNY\nvhnkXHBL9xQyX9gP5+l5dyMG9/DzMeH9MHbvAMTzd0phfFaMgoASngb4LPmYvja8P60LSrYtHEzX\nAVL7xNh/vh29NkLwFNQGA3XLGIvWdUh8RZ/oey6uj0BhievLGpih9+penvPvXPRki9/XQ4U5LuDk\nfTBJZMIfBYlUafQ+cQiBalyLUsbujNIpkkxh6Fu0bQelaugkhZRE5ymKAm1DylkA0R3h576EgO82\nqpPuWxCIkH5mRw0S/UCdSSEEEp0DoHmprg+zOBIqIa+5ML809SGBonNQeJnf3nczlMrinGHd1OQP\nBOlnJSfqV8MA8jGykJbo48KrVfZ9B2sN5vMcUpK3Td8NONgjjCU7hCLLsF6sUOQFjiWJA7VN5wfW\nibVQ1zWSg4ISS6g8Qd2GRIDO5WANIBUkHPLZAkII9MMc1hiUVYPqWKLrDdq2i/ObAxTslO40KXIE\nWp4SCQSsl84WPuA3UFJQspbnQJqhrI6R7imVQuL3kH7oYscsBPKhi07Xl/y0lEwghYIZLIwT0GmB\nVT7D4P3yhCLa5rE5ounIcy2YmyaJRp5leNztY4AfxF6kSvx+TbNGkBoqUVBphny+oL1X0HohCtsA\n0w++cxdESawX2nBegMqbgEYhKBWTtSCkEArgITEKsuVZliHLc+iUZiIPhwOkBM7Pz7Fer6C1RNe0\nCOq74XqEGZ+x2CbhhiHm98+LadOOtJJ/PEobJzu/A0KAtOG9OMHZZoMsS/D0+IiPHz9iu9369jrx\nRyNtzW/eoYozDAPg2+BhwckZVSlWi2X0EAkV8tmMpAnh29PhZ0EKNrRMIyXHGBg/p/P4+IiubfHw\ncI+2bTArivhAsZZ8NOqq8cGAxnqdY7Va4eANG0OCYa1FmiYYhEOek09N1zYoigJXV1dwsCiKDKvl\nkpKuuoVWCW6ulwCAy8sL/7lA13W4u7vDw8MDNmckETkrCiRZjrqu8fDwgLpqcHl57QN+oinNZgWS\nhNyNy/JAD4Bu9DUZhgHzooAuchSzGXXGfGfn8fEJ290WTTugqmsYO2Axn+P1m9f47rvvkCQadVPh\n4YFMQa0dYhAK0OhDmmdYYo3FcgnnHNpuAAR1+pQUcdB96Hvc3d1BColZMUeez9ANAw5lhdu7e/TG\n4F999xZv375F07Z4/+uv+PDhPW3o/RzWDFG/n5RdMiSaOOZ928Zh5sN+h6apsV4tcfP6FdabJfqh\nw8P9He7u7rBczOCcQVUf0XXkRH1xceklvy2atkGe0Tntvb8NnMGrm9dYrZZQCoAjqtJyMcdyucRi\nXmC3fcRPP/6I9+/fQQqBq6srVFUFrTVRBwESLPjwAdXxiOVigQFk6gkLFHmOLM2wXBDdru06Molr\nW88VBlbLFfbYQ+sUiSYKSKAQtAbIiwLn5+eYz+domga7/R5KaqpitR2cbJAXM8wXS6pIGYNjVaPp\nuihG4AAkSQpKZujh6rSCVNN5HeA5RyxQcMaBc5LMDsP+0yD4eUdhatYGjIEtdRJH4RIhROwcBDhf\n8I7BohpfH4bQ/bTH+D4Yk6AwcwGcBqpSBUUqeZIUCZ+8WAt03YD7+wckSYLd/kAdzRMqEuL3GZWN\nfAfADDB9T4mJ1gBo2NyH43SsvqoplYT1Zsd93/vgwRNXiNUEZw1Cy0FKASUnrwnf0Tk/W0JKWOHY\nyGCWaFPPZ3Gs9b/vK/2/1eUZuzWnHRT37Fph0nz6gsJmnZ8SmFDRhPjyPcL6gKBO30hY8wGMGYMo\nR0P6QkoomjiZdBZH6l3omoR1Gjptz48zrh9PpzqRaQjnOr7faXCkpPfMmtwDCB0fgZOkOtwrztqT\nzqY1JNELKajD4D1JjHVRTpv8UvTJPRe+JyxgQetkGGgGMEPqZaYRvVCMCSqMdM3J9V5O9oBg8EsK\nhFQ0E2Qx4OwYbFua3ZRiLE6QnwrtD4MdkCSkgAohfBJk4joP1XwyRg2dHAmpxuQwBK1CqLi+jHOA\nceh7g64lg3MnaE54GOizyZNJ+NlSWi9VVVPSYXMM/QBIEYfZScrdG2XWFZROUOQphn6Gvjdomw5D\n3/rrYWAGiwEG1ou9nK47wAmSuBASdK/6OaWwhyVJgtSzNGAdCmtxrEhxk9TXAOsM8jwDROZFhDpo\nLwIx9Y/pe1JGLfKCmBYqQZKS3cUw9BA6iZRsCIXBOpimBZoGUlKRc7BETYPfL5zvqJKgZKB3jZ5k\nqVc0DbFNSPKd9cqbliwQQgEm3sMAzTkpP1+jdPRyCh5yU3pbiEXyPI8FNalVvG+oKEWxoVQSbdfh\nWB3RNfW4l7jTAkygU8aZNnFqiRD+/beKdH8UcLLzO6CEQO8f3MI5zPIcXdviw4cPuLu7Q9s0xLv1\nHNnBULYshYi0By0Vhr73dKlTukvf92i9c28wJ12v19BaYzmfQwmB/X5/ktR0XjoQcJCSTBmDNLZz\nDn3XofaVzViNBNC1LXHiDamgGGOQZmQ8mSYJbj99Qu+de+u6gek7ON+Wv7i4gJICj1JgtVrS8H9d\n46uv3uDq8gpNXeNQ1bCWKARFQWpgbdug8Wpg97d3SLMMN9c3mM3mGIxBu99jfyix3+19EJ5gt9uT\nGZdPsIwZMAw9juV+3AD8JgQAl5dnSBLPUbcD6pZmhR683w9E4L7muLg4x6vXr6HTBG1Ls0WkalKj\n67xZZd9DeIrb5dU1lKSKyna3RT8ckCaUiKRaw/Qd6mOJRJM7tVLkYXCsKlR1i/v7R+zLCpuzM5yd\nXUApjafHJ3z+fIumrbFIlqibCsI5SAiiJaSpp5sRysOeku0sRXmkSvdiucR8PoO1FrvtI969+4CH\nxwf83b/9N1itluiHFtfX14CzuDg/9w/pDmlKM1hCAE11xNC1yNMUF2cbbDZrdH2NpjkiUSlWC1Jz\n67sWjw+PuL+7Q3UkJT0pJG4/f8bQD5BCRqWXpmmwXC6R5zmOLQ21Gh8UAAJd24LSdApgAi1Ea4k8\ny9B1GZI0hxASddWibUnCsx8cpFLoOlIdCl4dNLxs4oycUgrz+RypFyY4lBVRSaISlsQ8L6C1xLEs\n0TUNtPR8aQv0vkr8nHokJXlLWGMjjW0aQE7FB0JnZEoL0D7QC8l0CDBVkEZ+PoCDUXI4cNWnnxFn\nOmJiNvrnwDkKOmT4HjYmTFEswf/ycyldJUaDxrppcHd3CykV+TdZopiE66Y93Q9uDOrjjIMxIw3N\nkSGfiXz1HkQfGzszY/U9rA2S6JdiNCEVIgTWKioMwQcYEKMAzEiLooCJAvnx2oTre0IxC7MzzxJd\nCzc5Tv+ek+RAKQU4TzsD/QkUyDHQIAYh+c6MghG/hdPcJ0Qj0g/ujwElJWmIQgCYCG6czAhhDJzp\nnJtnnzf6N4XzE9aoc6cHJGhAxv8OJQOnnZvxu8XOpHXk5wLASAnhJdqVlBiEiLM4zjkYEe6jQOMT\nGIZR2jvMvuQ6oXVhibYYu5tSQDj6jsPQQyLx34fuvSEEfc5AWuogkSktJc/Ki86E8xL+GRTYYJ1P\nmEg0KDyzw7UM5y6cn743MKam3/fPEwAwWp10BIUQFADHazQm+mT8C1hQUhAScucmBqc+yNVFEhOo\nwSfwAkEljoqmUgDK09h0kkApR3uL0j7J62E7omVp391tux5100C2oHk9n3RZJ066d+H7WO/9ZKyj\n6+O1zQYBpG6U8A7nww4DsjyFsUPc8WhuZRhnYjDuUYHpkWUZHYdPeMwwYMhzqLSAThJ07QBrBp8c\nSySZwSrx8s99T+yWoUfVtDB+bwt7Wbj+g5+vcqC1EkyMSQKbZha7vqeESIiosBdv3XDvCFDBxe8/\nQvp5MkUFkMEMxCKYFB2m82+JV4sjereN6p6BWt11HdquIdP4tkUQmZqu45EtMKGbRtXFcU+Q3udp\n3Jf/N5zb/0vByc7vgSVjLyVI4z1RGo8PD3j366/YbbdEWQk0ECEoqQmVUwFfmbH+oR9oasK3LBXK\nkjxiwsaSFxmMNUgEqXYFP5KmCUIFXpdeehMySVSQvusBUFA591ShLMvizdMPA9xAniBBIjNUyuAo\naAiJWNu0UFSexdD3mG9WuL6+wmI2wyzLsFovkWcpyv0OZ19/Tepdx5Kq8B0Fi1mWwTmLwQwx0ZFC\n4Juvv8bXb9+iqmp8vr3F4+MTyrKCc8DFOZlbOuuQZTm6rsVuu8XxWKFrqTU7+DawVgqzoqAZqlc3\n6LxYwaEsUR6P2O8PqJsaOk2QpkR9WiwWuL6+xmq9xP5AXjfHsiQZ7fIAgBK7qm6wWq+R5QWu1xts\n1hsAAu/ev4O1JLGpQK7Wx77D0HU4W63QDxZCKtR1g8OxwaGq8bQ7QKoERbFA03Z4//4jBbmavHiK\nPKcW+GCQ+Ipl2CutJQlPO9D3drBouw6z+Ry53+j3uz0+f77H7e0thqHDbD7DcrUkXneiIQRZpzw9\nbmGtw2q5QpFnvgP4gO32EUWeIksSZGkCKQZIZFSDFgL7wx7HvcPj/T2O5YEeEk2Lh7s7lIfSK14Z\nVEcyf9NKI1tmsMaiqUsaPIXwxmYGfddhVhSkumNDlbODEH7+w6stmcGb6sUAnaqhh0OJ5VIgy3Jk\nWY794RgT4ED9nC/mSLMCkA11W6310tTOC27MqWPZ9ejqxg+OjoFfAD0nRCwYOPh7zVfxpg/4KfUs\nGg5ipDqFynZ4ffhnlHn/jSGOUL1zCB2eWI72gW2ootP/C4FtrDCS/SaeV+GFGGeFqGMw+q3E7pPf\nM5qGAh8SSKEZCRICGOBcMGAMSQDNVkgpYvchcS76VAATEQXhA/awzXoncho6d3Dmy+TE+WRWylFI\nIkgwh9eE70j/TdSgqaHytJsynQE5OeuhUXTykD/tCI1rxMFZb2rr01MXolEPiTEoDL9zkhC4cC78\ncYVuVbjmCInS2BML31NO3tPBofcmgS50BCadx+eNmtD5m9LalA/YR2+Pcd34sxyTqvDz2G0MC2ea\nx/nKvTXWe+k4r0w2yuiSxDZOzpnzCa904/qiwmBHzzBPz7P+GIVU1BGR5FTf9+MchVJEz5LxWP3M\nlvCUJcDff446gqHTZEfvoHCPWyF91d6OFXGfKJ8IGvgAvK4bAECSZtG/bjYncZ7QnZNyDKIdgjS3\ni8klpPDdLepQhvVICdUAgGZ1Uk+5Ukr5DkugMypY3yXr+h51S7RtqUXsmjl48QF/T3QAkjRHoiWK\nPMOsyH23waI3FlL0EFbAQPm9h2AFIL00OnV7ySfI2QEDlDd/NpP7iI5TSYGiIAPUYRji66KiLEXo\n9HdesMkYQ2I2fpEGawGZUkGs7zrAkQCR9h6DSUL0r77v0TZkidF2Ddqu92uHnsXw68NZwMV7X8A4\nAH5vQzeZk/OzhVrBd3DHeybQaKcdUefGookVJGLRmwGwLq7ZqAjo9wkq+na0MsK8kxCjN44d/B4s\noLU86TKPt2MoLk2atSfPHhf/hPrKsy3vDwFOdn4H+q5BmqRYr5ZYr1aQUuD9rzRvUVWe96lpyH3w\nqkTCWSiVQmtJCjmGXJWVEJAWXmKanHmrikw4szSFc6QkVJYHpEka5aHn8xmkFDgeDbrOwjoDO4Tg\nRMQHRjAhXa6WdGPrBEdjaLBNSmjfoRBCxFkf62lyztEsS9/SUFvbtpB+I1osFpjP5sjTDEWWIk01\n+Q7VDdq6wtC2OOx2aNsG8BKNzlm0XYvqWGJ/2EFI4PWr1/ju229xtlrj648vLAAAHZ9JREFUsDtQ\norHdoe8NVusNZsUMXdtBK42+7/D09IS729vYPZNCev8eFROXr79+CyEEPn78hOPxiMPhgGNNbtZJ\nmnizzgx9P2A2n+HcU+vKkkQPnp6e8PT4GJOd2XwOqRKs1xs4AGmWY7XZQHtj0yTNUe62OB72qI8l\n6uMRida4vr7G/f0j5oslyrrF9uEJu/IIB4nFcoHBGPz8869o6hpXV5f405++QZ5KnxTU6NHFDU4A\nkeKUZ5lXdxNoO5KPXPjOiR0G7Pd77Pc7OFis1msoTQ/M+XyG2SyHtQa77RZ93xHn23d4ysMejw93\neHq8x+LtVxCw6NsGQljkfvB8u93i7vYOXdvi86dbqhhZh/12i77rsJjPkSQprHWoqzp23PpuIAW7\n+y2K2ZyMUOs2qgXleY40TdC2jXfbpqp/eSwhlUZ1rNE0Hfqe6F86SZF4H49ADSUfowXEwyMGnzSl\nXm46TVIorf3QPd2XXdtDJRrL1TIayZKXhfIPS4rS6OFChQQAJ4ErzeORt0HwhQHGim4MdibBqPGK\niSH4CYF18NBKlB4DzvhZIvzfeAyghOeUPjZNZVwMqG2kTvgk6tnDakptoP8+pStMA/FQHY7dK5/Q\nKK2gExIpgAM6QbOJEFQ5H4YeNk3jA/PLzw9JZaBLUOcuSTR1SBwR3siVHQhupyO9Z+yOPcd4/OPZ\nmX633xrYnyZMU9rJ+Lunvzd2eby8tBnIeBmnfkqx6zD5nJD4jq/zXTrQUP4kDhz/xY3D9+F9aSh+\nYj7oLGzXxZkXolWNSRblUKMa2vPvLsXYNQt0N/qsLwOeSD3ziUCABJlXOjGhdk7Pbfw7ksk3xlBy\nO1m/MSmM15ISnqh66MKsKs0gwBcjpJJIEgljhD+XIwJFc3rehV+c4bsIM0BnBeVnluR/w8yE1jpS\nA4M5aFxLhtLcoIZFwaaGlKPseOgaBvZG3/cYhBm7gJieJxs7Ts4HzPEZL0hxlRJ9gd6QD9DxWCFR\nCdGilEYiJHneDF6XUihIScfetD20ViT/bHw8Ee4nb+KJ0DlUGolWWM5nEEKgaTpKKOAAK2HcWBwB\nACcdrA3myiIKFbjQgZmojxnj6YXGkFKtn1sJNPrBmuglkyQJtFJRqTF0tYSDN5r1dgRNA9MNGLLB\nJ+t0byk5etVQR04iL3JILaE7jb7t4meHTqKxo5my8jS2kJzRWqZCR+zS+GcHJcH2ZJ8Y1+PYBaXP\nGcbCs3NI0gTaf9aUYhxUJq21kFojkUlMtruuRxC4CebxkVo4Kd5N96VwP4cChXu2H0ypbUxj+38E\nTXXE5maFr16/xs3VJczQ4+e//IT721skaY7l2QpCKuyPRzRVhVFykx7WYdGYYUCQoQ0bYuB5ZlkG\nKQRK32WwlqqcRZbh/Pwcq9UKRVFAQMRNeAic7KB8AuGdnNP4oDKeIkRZusNytoxqb1VVEQ3IWdQ1\n8TtXqxX6NiNlsp4G8JOElKueHrdItEKSprBDj0/vP6I6HnF3e0eJT0Py2Zv1GpdX51Baoiz3ePf+\nHbqmxeubG3z37bfI0hSPj4+4vf2Mtiaxg9lsgfXZGYpihrZpcKwqPNzf4fb2M/b7PeAcORUbi8Wi\niD5Hl5eXyLIM9/f3KMuSJK/9DIgQwnuueKMu6yKVzTjaKI/HIw5lSQpTOokqLJvNGb56+zW+/+EH\n/PD9n/H4uMXN9SusViukOsWtA+qyxGG/R9+0uLq8xMX5Ofa7PW5uXkE8bHF7vwWgsFwsoNME9/f3\n6DqiEdzc3GCzPoNWDvvdzg+k+pa2L4NLQRLSpGy3AgA87bbINBnCSr8WtFJk9Lrc4OLigoZ3hx6z\nPIcQFofygLIqqVuYJhjsgHa/w9PTI9qmxnxWYLGYY+g7dC2QaAFjSLLy4eEBXdPg86dPuL9/hFZk\nFvvp40e8SlJcf32Ntm1Rt22s5Ddti+PxiPv7e7S9Q17M0HUdyuMRUggsFisopan7dTiiqmryenAW\nD4+P2GzOUZZHNHWHJM2QFTMkaYbOdYBPdChxoHtnPp+jbmqkqcR8vsB8vsBsMYdQGtv9gWaDvGns\nLNWYzUnA4nDYeY40oD21BgCEn98JVAHjSKmI7juHth9QV7WnsYxeIdNkB26soAFjYDhVywoP3SRJ\nqVI59L4DAaJ9xIfnuIf8FiyVHiEkYGAhQzdH2C+Cx+cD+CGIBxCPJ3xWoOKNylYx9YLWpBSUZSlm\nRUGfBwPVCE89Co7bNiY/oVMTzkdILqcPUq0VrX87KtGRTC5iABrPxSRAGL/LNGmxXr54Qt17Nmg7\npRnG8xnOkZCY0rKcw4mfEnm8CBhnfJLjT6Ubj4E6JqGCOuk+Oec786fBECKpZDxHxtD7C/8MMRBx\nnZDhIQWrxlOHnCOaqxCgOR43PSenIgjCV5uD503s7EwS9nidwkqJ6+lLJdAxuRk/UykFJcdEMQSg\nUoZrO8TfCQmaEKcdyXDtjAHNtkgS4um6IVbPnbMgj51TYQ87eAo6HNTEf4gSEMQZi5Nzc9Khseha\noqyFDtX0+g7DAKl8Z2dSjdc6gdJ9rL4DoxBESLiSZCx0TPcHKiaMc0lxhtT5+x2AU+N6HwyJFpTH\nisSIsozEkrRCXVNiRluKhrEGbUvSxlk2JtYOY9JM1HtJdO6BZqTmsxm0TrBzh5hkqJCQWa8cKEKn\nLxy3IYNfB0hBs1FTOuIwkO8OBGAG2tu1F25IEhKSkVLSc1NSISR0HcNcVNd3sasfYqsizZCmGRzI\nP6dryQYjdHaUUlBaejlqjTzPMAyDt7Po0NRNpMqFYpTy3cjYhQzFMSEAQR1U6RNWOymUjYWX0YZk\nnNWS8borJZCmXk7djsWvsBfT/RKOPYGYzH+G86WUpFknS8UXkkcfZzfHfeC0eBETHt/hm+6Pf8RE\nB+Bk53fBDgbnZxu8/eoNsjTFTz/9hI8fP2K1XOLtN9/h4vISh7LEP3//A4a+RzGbQWmFpm3JNMzz\nhbuuoVmMLEWaZhAY53eCAVZQy3DO+c5JHQP3zWaD3M8LNXUD+MRJCcClZB6ZpRQIB7GDpqlhzICm\nsdBKI92kODs7Q5IkOJYlaq+EdawoyXLOIUto4LxtBI5li77q8P333+Pbb77Bcj7DYlagrSt8/vQJ\nWivcfb6FcBZZnsVZjaZp8OnTJ3Rdh6eHR5yfn+P6+hrL5QKPj/f4/PkOh8MBeZphc3aGxXIFCIHy\nWGO/3+PPf/4J+/0eXUPGWUmiYZzDcrnC3/zNv8Lbr75ClqWo6wr3t3e4f3wgCtvhgLI8oh9IMEJm\ntGHvdges1mtACDw8POJw2OHu9jZSDAovBpHnOVarNd68+QrXNzf4T//5v+KH739AXhS4efUaNzfX\nmOc5YAaiHWYZ5lmG883GV4YyVMcjdtstur5HmufIijnafkDbket0PsuprZ6ksBC4f9qiLg9IdYLV\nfO754USZXK1WuDg/x8XFJdquJQ8jLynZti1myRzz+Rzz+RJ5scDZ2RrGEJc5KzIcywO22y2OxyOS\nhNbh8XhEc6xxLEuslkvc/PWfSN7aDnDOoDwc8fhwh91uBwBoW1KzWcxnSFSCqjxCQOBss4ExJspy\nZ0UOoTXMsYIxDrPZHMoAxyMlNFppvH71BlJKPDw8ou87TzURCJOSw+CDWd/KJ2nNHM4RPbRuGlhr\nsd8fcDxWCN3IY3WE0AkWqyU252d49foVHBSetrt4rqi6KTH0xkt53uHx4QGpVsjSBM46P6tFFc0Q\ngDg7BgSx4utnf5QSIwd7Wi2O+O0HxfQ1yqsuOU8zQaiIT7opp3SZ+Cb0zxAA+X0kvO45Ter554bX\nAFT8U0rEKqudJBvhN8LsgzXuRJGKkj4bBU0Cpel5UQdAVMgDMHmIj3/o+CcqQEoRxSeYQrowc2Eh\n4zU5FYegRIUOXP7Gtfmt5OiLZAehDhsobtOKqA90hTsxBEySBE6Mg8BmMD7R8RIDnnoXvgd1IpQP\nPOizQhJlrY3qcwCooIWQfFMXNAoQOE/lw0ThT4ReH83LyPDdJzLbdA4UAINxiHpMWpQQGHuX45IL\n3jnP13ugs2mtYbvTDphSOnY2pz8LVeiYdH/RAYSf95Mx+RY+IUvnc09xSkhNzUfbJ4mBoVk+EtYQ\nXnWR1KpoPiSsQ4EUGs4XiqTUcf1Mu3xC+dkeS8XMaTAY5jnCOcyyFN0woJgNaBo/V9iPht/TIDXM\nrjjn0LddlGTXfv3T6VEIjkTWDbDGBX/geAxVVcF4hTsKqFNkmcVgiOIOUKLRWZqlrFtirWSphlYp\nqEmb+a4GzfUOhoQMtFJIkwRJQjEHnPEdAV+AteP9iFBUcPB0aCqWeEIqBjOg63ufvFCQboYew+Cg\nExUVNtu2xXxeYDbLY0efjNCPqGuSuR+6AS1EtOhI0xRZnvrtkWbZut7LzUsHY3tYN2AYBPoJtQ3W\nwQoDrch4NM9z6qKAfJ7CXhK6i8PQkwiL9OqY46qN/xaSFOGV6Kxx/iYSsWgwpTRnWeKTcAM36WTT\nfTKal0JI2gf8OQnrJxQgwu/Fzmy8n8Zk53/1bIqH/8fMcSI42fkduL66wNXlJRKtcfv5E96/f4+L\ns3P89d/8DVabM7Rdh7v7BkPfIU2Sk4qjtVTR1FqjKAo/K5BCSxX9D8LG95xCkqYZTE+SkdvtloLx\nLI8PlK7tYhWHfpWUecxgsNvtaENoam/oRe3XNKNEJtwI2+0W5bHEbF6gLEsY0yNPKWlZLJY426yQ\nZykkgFTrOJDsQLMPidZEtfKiCnmRo+0b3N59wvFQIstyrDcrvH37Buv1Ck1d4/HuHl3TIk8z6CRF\n3/X48P497h8esN+VOJQl7h8f0Xek0FXkORaLBc7Wa5ydn+Hq8hpSKtze3uHu7hZd1+Lh8QGfb+9Q\nVhWEICPEYjaDg8BuR35FaZbh7v4Onz9/xOPDA7TSuLq8hBACux156aRpGhXvnh63KA+lpyYk2O12\n+PjxIzazGTbrFWAouckTDeGAoetxPJS4vXtA1RponfrvN6Buak+10JjPl5jN6EH967t3GIYBi8UK\nmff7qesKyHLcXF7hzZs3+O7b73DY76kT1rWYz+do+w7v373D5uIC1zfXSLMc/dBju98hUYqofMc9\nHh8fsN9tkSQai9UcDw+P+PThE+CAWZ5js97g/Pwcy/kMu/0T7u/u8PnTO1TlHokmvf/ysMdiNoMQ\nEnd396iqCjc3N0jTFLefb9G0JEiQJikp1TkgTzOar9lucay81v+6wGKxQFVV6PwDWUZapYNUZKob\nFI7yIsNsMQdAD/GmJeGM6ZxHUIHr+x52MJBKYr1e4+zsHE3b+w5SBWMM1us11mdnsM7h7v6ekuKu\nhwQirUJJkgaODwVf56JZEg0hHXHVQUmOEipW6EdjuFEoQEyCnyl9apqIKCnRY3wQ+V+MHaOTQB2O\nKEDxPV1UPxIhuFTSy+s+e8/nn/GMtnBC24s/oyC89aasFLArL7stoQXR15wdTRO1ppmG8Ewns8IQ\nMBJCMhUC5NOOyxgEhI7KF7Qzf37CvJPyXbAphJxSzU5NM6fUq2lwQInSKWdrGiCM1LEwh3VK45JC\neuW2sT4qhBiNLRUF2+F7C6k8zZGoQ24SYAhIODGhF3olwdhhkf5nYqTdKZVASi8C7kgRyhhKDKWU\nsPK0UxIMZEfDziQGVEopiD50jkIkO5lLk2JSBDhN4pRSJEpgTyl/oaujY9dinE1wdrzm47UIifz4\n8zCMnmVFfBYO1ntGTdaPUqeGqUrQuVeKZiB7M8q8S0kS34OzXkxBflEw0N4XBtaRqqCd0ifp/Ifn\nOUDvGwLmQI0S/nxTUdP5zpGJksNKSjitYK0OyzwmolJSx9lRCwY0Y0OCIsLXi/qux9DTkLu1FrOi\niGuN5vsstBAANLquBVzoYAMKdE1JORF+4N/CmN6rKgpASGRJ6jshBrYHTJh19OpvQkm/F4U1OJ27\nhI+PBpKUtgmAFDpRCHN1zjNSwj2jhISTk9mruC9YKCEhU5IiT5IUWZYgTRMcy4On7qvITFkuZnQP\n+OSXigQGdd+jcuMxUvKT+o6khBs8RTHs2/7W01LCwndXPG2fujoO0xmYcZ+njkws2Fgb9/ipSIzW\nGiJJyKPK2JN7CoA3babnQCiI0dwrJbRKqyjIEY3oxbNi0CSjed65kX73ssAXf/dHAic7vwPffPMN\nNps1qqrChw8f0Hcd/t3f/Xv89d/+LT5+/owff/wRf/nlV7Re5rdqGgz9KDkdBhBXq1Xc/Jq6xrE8\novWmT6ToM7b404RuWqt1NNWUQmIxn8ebMsuyqOvfdS3alro4EgJLt4ybLZyLVScamCS/kmnAEW6Y\ni4sLzLx8oxQCfUfyzcJZrBYLLOdz1E2Pcr9D07TY3Kzw7//u75AmGvcPD7i9v0VZldBa482bN9hs\nNhCONOAFgKenJ1RVDTiHqmrQ9Tt0/YDDocT9/QN2+wM+fvyI2XwJrRIUXoDg22+/w2I2w/3DPf7+\nv/89dKJ8lZ1a2U1NPgwCgpK083OkWYbDoUTXdViuVui6Dh8+vMcw0KxRURRYzCmYDvSCqqpQVTQv\nslqfEdVPEnUvyzJ0bYeyLNG2NXItUWQpZEoKOBfzOf7Lf/mvMFKhWGyQqBRl02FXlqjbFlVVYTmf\n4fr6Gtc3N+RI7ekYbVXDGoPVfIGbm0u8vrnB+ZqM0f7hf/5PVFWFwRD9oakqfPj0EfPFAqszMmtt\n2h7HqqG5qJtrlOUBTVPh9vMn9H2Hq8tLSCm9uMMAJSjJWCxmyDIKcO7u7vDTTz/isH9CooBkuYqS\nlk9PW3z+9BnbR6KyrVYrbLdb3N7e4ebVDTabMzgIHKstgodAWZaoqxrn5+fIshx91+Pu4T5yrK0h\nsY2ghCcksF6vcTweoXWK2YISqLqm4duhJ9M/a4m6tlqtkKYp3r1/DwdAKonNZoObm1fYbM7w+PQE\nIQTapoOzFmdnZ7i+ucHhcMR2tyOn8NnMz6W5SFWgPypWzaQQsFJAOukr7GPwHLq2Uf7UFzCCL8GU\nhhBoNcBYBY8BnJ9Zmd6PwKmXyTQBEzHoBCDGIdi455jThGL6HmPwedrtcC5UYGWsOEsp0fV9NB4W\noA5QUFVLwj5lAr2LjjEkflmWnrjdn06vnHZlwrFpRUHdWDAixa2YKHqa57QzFemDPiEUfv4DmAwB\n21P38immnSFMXjc9Z8Ng4vl0jjyGhn70/wiJJnWmxs8EEOl0oQo/0h0nfhbPkh1iJ07niibXMgbh\nkgIr59WZQipEfDOfjATltLF7JIQ8WQPTZDBcK+ouBhPVsGbInyP8bpxdcM+TqDCzYSkwnwR4J9dM\njSaIFFzJ0+/oVzzipaGgrm5qFMV88n4Cp/ePglIa1hA11BgD7ddNmNswbjTVhe+A9cMA6elFAoA9\nCRDjZTj5mTEGoiePH+scnA8w0ywjGm6WReoapIQ1LtLGhZAnzvXaFxSDlxicRds2aFsSp9F+fyLd\nTuo40yyQi8lhUPSyflYmy1IIOC/UQbYJUmmISefVWkfzdp2F0hOxFb/9kFmwg04yZHmGhVnQfnYc\nMLSGhvbhxkRMnCaaQtDsWOj4OD/zRLNJQKJ1nF0K3eIkTcfZpmGATqhgHAQGkiSBm1AKYzIkaFav\naxt6ZkoFpYl+7QDkWU6+PP6eJXNPSjJOvJPg6V69OfWO8uc9dJspvvIdLl80Cl5O4zpxEFJBaxNn\nNYNlQ+7NX+n50I/7ibXo2y7OU4cO6DAMsIKSUq29gfkQuuojnZqEK8IG5/cfN9Ljpvt/XNqT60Zr\n5nSf/COBk53fgdVq9R/SJP2PYcYDAK6uLnF2tsG7Dx/w8PCAh4cH5EWOeZLA+lay9LMzIcAJDuFt\n26Lre2/81cQHSwiGAoVFSRX1+8lluaFOiq+8RH18X1VumgZD30NJifli5nXs08hJBmhjbls/bIlR\n2SiAhAhmUIIC42rosdtuAWeRao15UcCaAXVDpp5aJ3j95hW0VNQlOhxQ1kecn53h/PwcFxcXaOqa\ngltr0dQNwmBn17UojzXqpkVZHlGW1IF5eHhAkmRQuYaUCrPZHJv1Blma4JdffsHd/S2SRMY5Jutp\nRs4RZzrLMsyKGVSSoCyPMMZgsVigPB5RNxUFZmZ0wp4GoV3XYb/fI88LWOfpNz4ATFMafq+6lgK/\nVCPTJDtLCjtzHKsKaTGnjVglsJWnnHW9N6AUmM+IegZHlVQ4h3LYY3ACcimxXm9wc3ODIqVZpO3j\nE4wxNL8zo81/v9sjy0afAUp2agAW9urSm8hVOB5LjIPgxMmWfgBZTx52zjmUZYntdou+raFnuf/O\nCebzJQ6HA6ojJefL5QpJkmC73XqBjhR5XqD3gZ+1NhrRDmbAYrHAbDbH4+MjyrIkkYuiQO+rfn0/\noO06COG8x0ONWUFiFMIHTcPQw7oxKE2SBMvl8uQBpaRCkVMCm2X5pJpMtfYsyzCbzynJ7jrMZzOI\nNAEmA+6Bqz+tMIsYWPvAyLkoABCeBdMHe/j5tKI9fQ1dh/GaQDyjVj1LUP5XCFXG54wE4ZMfTDsh\nv/kG4+unvwuczl8EWfuu66Pr+Rhg0H5kBbw6mzo5D1M6WhAaCNSh+B0mlfxAKYIYPY2mgTIdtk/y\n3Okxx/eZfLfwu88D7fB3098Ne/CYIH557abD7aczFuIkQDhJdIRAmOE6vXYiJjPx+8nJZ45fEZPQ\nBEJgkjj9n6uvdL5Pfzb9PUeL9TeviX9BTBzj63/rcyY/P72mv/0aTD4nJu6T34Vz/menKbKJnRL7\n5bFM3ktKAWsmyoT+e558v5Pk0s9O6PHemh5zLBRM1hQQEkU/RO7MiSRw5pkYYfZNSAUrT9ddeH6H\n76w8rSpNU1gbTEUthHSxqAG/puKx++MTGN+v993YxM/BhVlfIQWEflZoQDDoHGDsmBCGdw+dG6Ud\nqZolCRKdQCkLkh+n6xSORWC8Z35rvUzXZFALDPuKtUSJhRCxc09dNB0ThUBzc+a0MBGklqUkkR4S\ngRigzABjKG5Kk1Ge+3nyHfaukNxYa+F6G5XfgPGeDu8hBJ6Zbo7rI3TMx6R/XHBKKWQ+pqBjMeh7\nha7r/PGL2PGn7z9SHR3gxTZGqXYqBKl43Z6f9+f7pP8pwkKK3dTJayc375+/uIj/l0P8bx9+DAaD\nwWAwGAwGg/EHhfw/v4TBYDAYDAaDwWAw/njgZIfBYDAYDAaDwWC8SHCyw2AwGAwGg8FgMF4kONlh\nMBgMBoPBYDAYLxKc7DAYDAaDwWAwGIwXCU52GAwGg8FgMBgMxosEJzsMBoPBYDAYDAbjRYKTHQaD\nwWAwGAwGg/EiwckOg8FgMBgMBoPBeJHgZIfBYDAYDAaDwWC8SHCyw2AwGAwGg8FgMF4kONlhMBgM\nBoPBYDAYLxKc7DAYDAaDwWAwGIwXCU52GAwGg8FgMBgMxosEJzsMBoPBYDAYDAbjRYKTHQaDwWAw\nGAwGg/EiwckOg8FgMBgMBoPBeJHgZIfBYDAYDAaDwWC8SHCyw2AwGAwGg8FgMF4kONlhMBgMBoPB\nYDAYLxKc7DAYDAaDwWAwGIwXCU52GAwGg8FgMBgMxosEJzsMBoPBYDAYDAbjRYKTHQaDwWAwGAwG\ng/EiwckOg8FgMBgMBoPBeJHgZIfBYDAYDAaDwWC8SHCyw2AwGAwGg8FgMF4kONlhMBgMBoPBYDAY\nLxKc7DAYDAaDwWAwGIwXCU52GAwGg8FgMBgMxosEJzsMBoPBYDAYDAbjRYKTHQaDwWAwGAwGg/Ei\nwckOg8FgMBgMBoPBeJHgZIfBYDAYDAaDwWC8SHCyw2AwGAwGg8FgMF4kONlhMBgMBoPBYDAYLxKc\n7DAYDAaDwWAwGIwXCU52GAwGg8FgMBgMxosEJzsMBoPBYDAYDAbjRYKTHQaDwWAwGAwGg/EiwckO\ng8FgMBgMBoPBeJHgZIfBYDAYDAaDwWC8SHCyw2AwGAwGg8FgMF4kONlhMBgMBoPBYDAYLxKc7DAY\nDAaDwWAwGIwXCU52GAwGg8FgMBgMxosEJzsMBoPBYDAYDAbjRYKTHQaDwWAwGAwGg/EiwckOg8Fg\nMBgMBoPBeJHgZIfBYDAYDAaDwWC8SHCyw2AwGAwGg8FgMF4kONlhMBgMBoPBYDAYLxL/PzgTqaCr\nwYYRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "########## compare gt and init bbs\n", + "mode='TEST'\n", + "test_data='challenging'\n", + "imgs_dict = load_bb_dictionary(bb_dir,mode,test_data)\n", + "\n", + "name='image_007'\n", + "name='image_008_1'\n", + "\n", + "# 300w data\n", + "img_path='/Users/arik/Desktop/DATA/face_data/conventional_landmark_detection_dataset/challenging_set/'+name+'.jpg'\n", + "lmx_path='/Users/arik/Desktop/DATA/face_data/conventional_landmark_detection_dataset/challenging_set/'+name+'.pts'\n", + "\n", + "img=imread(img_path)\n", + "img_bounds=(img.shape[0]-1,img.shape[1]-1)\n", + "lmx=load(lmx_path) - 1 # matlab indicies\n", + "\n", + "bb_gt=imgs_dict[name+'.jpg'][1]\n", + "bb_init=imgs_dict[name+'.jpg'][0]\n", + "\n", + "bb_gt_margin=center_margin_bb(bb_gt,img_bounds)\n", + "bb_init_margin=center_margin_bb(bb_init,img_bounds)\n", + "\n", + "\n", + "\n", + "fig=plt.figure(figsize=[10,10])\n", + "ax = fig.add_subplot(111, aspect='equal')\n", + "plt.imshow(img)\n", + "plt.scatter(lmx[:,0],lmx[:,1],edgecolors='none')\n", + "\n", + "bb_plt=patches.Rectangle([bb_gt[0,0],bb_gt[0,1]], bb_gt[0,2]-bb_gt[0,0], bb_gt[0,3]-bb_gt[0,1],\n", + " edgecolor='r',fill=False,label=\"gt\")\n", + "ax.add_patch(bb_plt)\n", + "\n", + "bb_plt=patches.Rectangle([bb_gt_margin[0,0],bb_gt_margin[0,1]],bb_gt_margin[0,2]-bb_gt_margin[0,0],\n", + " bb_gt_margin[0,3]-bb_gt_margin[0,1],edgecolor='g',fill=False,label=\"gt_margin\")\n", + "ax.add_patch(bb_plt)\n", + "\n", + "bb_plt=patches.Rectangle([bb_init[0,0],bb_init[0,1]], bb_init[0,2]-bb_init[0,0], bb_init[0,3]-bb_init[0,1],\n", + " edgecolor='y',fill=False,label=\"init\")\n", + "ax.add_patch(bb_plt)\n", + "\n", + "bb_plt=patches.Rectangle([bb_init_margin[0,0],bb_init_margin[0,1]],bb_init_margin[0,2]-bb_init_margin[0,0],\n", + " bb_init_margin[0,3]-bb_init_margin[0,1],edgecolor='b',fill=False,label=\"init_margin\")\n", + "ax.add_patch(bb_plt)\n", + "plt.axis('off')\n", + "plt.title('compare bbs')\n", + "plt.legend()\n", + "\n", + "del(imgs_dict)" + ] + }, + { + "cell_type": "code", + "execution_count": 137, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/arik/anaconda2/envs/tf_1_7/lib/python2.7/site-packages/ipykernel_launcher.py:21: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", + "/Users/arik/anaconda2/envs/tf_1_7/lib/python2.7/site-packages/ipykernel_launcher.py:26: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "diff gt crop to ect (landmarks): 135.274497693\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABL4AAAG8CAYAAADQEmygAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXmQZVle3/f5nXOXt+XLrKytu5mZngGZGQ9iMWAwYpMF\nGJDEH0IRSBCB2GzZRraFjQJJNoFBoZAtQAprAFsjG5CwWGwJYzMmJGNAlgkkkBgjlmGYXTM91d1V\nlVWZlZlvu8s5/uN3zn2vcrqHHpjursn+fSoysvK9d++76/md3/e3XIkxYhiGYRiGYRiGYRiGYRiX\nDfdyb4BhGIZhGIZhGIZhGIZhvBiY8GUYhmEYhmEYhmEYhmFcSkz4MgzDMAzDMAzDMAzDMC4lJnwZ\nhmEYhmEYhmEYhmEYlxITvgzDMAzDMAzDMAzDMIxLiQlfhmEYhmEYhmEYhmEYxqXEhC/DMAzDMAzD\nMAzDMAzjUmLCl2EYhmEYhmEYhmEYhnEpMeHLMAzDMAzDMAzDMAzDuJSY8GUYhmEYhmEYhmEYhmFc\nSkz4MgzDMAzDMAzDMAzDMC4lJnwZhmEYhmG8BIhI+RJ9jxMReSm+yzAMwzAM41HHhC/DMAzDMB5Z\nRPk2EXmXiKxF5F+LyF/eef8PisjPi8hSRI5E5M0iMt15/4dF5KdE5C+LyLMiciwi3y4iXkS+W0Tu\nichTIvL1O8s8KSJBRP6UiPySiKxE5DdF5At2PuNE5H8Skfem7/4dEfnPLmx7/u7/UkRuAb+TXq9E\n5HtF5IMici4i/1xEvvB3OQ77ad+eTdvzGyLyR9N7X5f26ytE5G3AGnh1OnbfkfZvLSK/JiJf+hHu\n54GI/KiI3En7+Q4R+bqP/EwahmEYhmG8PBQv9wYYhmEYhmF8GP5b4JuAbwF+CbgBvBFARCbA/5Ve\n/wzgJvCDwPcB37izjj8CPAV8PvC5wA+l3/8U+CzgTwNvFpGfjTE+vbPcdwN/Hng78K3AT4vI62KM\nx2jw8CngTwL3gT8E/B0ReTrG+A931vFFwAPgi3de+wHgDcBXAc8AfwL4RyLyyTHG91w8ACl76x8D\nU+BrgPcCr7/wsQnwbelY3QPupGP2nwN/FvhX6b2fFpE3Xviei/v5FhF5bdrPv5q29UvTev8AML64\njYZhGIZhGI8qEmN8ubfBMAzDMAzjQxCRGXAX+OYY4w8/x/v/AfDfAK+KMa7Ta18OvAV4PMZ4V0R+\nGPjCGOPH7yz3duB2jPEPp78dKk59U4zxfxWRJ4H3Ad8WY/ze9BmfXntTfu05tuf7gJsxxq9Kf/8w\nKhi9JsbYpddejQpXr44xPruz7P8N/EqM8dufY73/HvAzwBueRxj7OlTM+9QY42/tvP5B4PtijH99\n57VfAf5FjPE/fSH7KSL/B3A3xvjvP9c+G4ZhGIZhPOpYxpdhGIZhGI8q/yZQAb/wPO+/Afj1LHol\nfgnNxno9KpoBvO3CcreB38x/xBiDiNxDs8l2+eWdz/Qi8qtpmwAQkT8HfAPwGjQLqgJ+7cI6fjOL\nXolPBjzwzgt9uCrg6Hn281OBDz6X6LVDc0H02gOeAP7Zhc/9EvApF177cPv5PwA/KSKfAfws8L/H\nGP/5h9kOwzAMwzCMRwoTvgzDMAzDeFRZfZTW0174Oz7Pay+496mI/Gnge9BSwl8GztBSw8+68NHF\nhb9nQAd8OhAuvHf+PF/3Qo7DR+tYPUSM8R+LyGuAPwp8CfBzIvIDMcZvezG+zzAMwzAM46ONNbc3\nDMMwDONR5V1oo/Yvep733w58qojs9pz6PKAH3vFR+P5/J/8nlQB+BvDb6aU/BPxSjPHNMcZfjzG+\nF/iEF7DOX0Mzvm7GGN974efO8yzzG8CrROQPvNANjzGeAU+jvcx2+dydfcg8136+fWdd92KM/3OM\n8c+w7RlmGIZhGIbxMYFlfBmGYRiG8UgSY9yIyF8HvltEWrRM7zrwSTHGHwJ+FPhO4O+JyHehpYpv\nAn4kxnj3eVb7kfDnROTdqAj0XwAHQO419i7ga1P/rfcBXwv822j/rg+3T+8SkR8DfkRE/gIqhN1A\nG/D/eozxHz3HMv+viPwiWnL4rcC70TLPEGP82Q/zdd8DfKeIvBdtbv+NaNnk17yA/fwhgHRc34qW\ni46AP86HCmeGYRiGYRiPLCZ8GYZhGIbxyBJj/CtJ9PoutGfVM8DfTu+tRORLgb8F/AtgCfxD9MmE\nH3a1L/C1v5R+PhUVm74ixng/vfdm4NOAn0jL/jj6tMYvfwG79fXAtwPfC3wc2tvrl9Gm/M/HV6bP\n/xj6dMd3p237cLwJmKflbqCC1Vc8R6+wD7efDfDXgNei5ZS/CHz17/K9hmEYhmEYjwz2VEfDMAzD\nMIwd0tMO3wv8WzHG33i5t+fF4pWyn4ZhGIZhvLKxHl+GYRiGYRgfivzuH7kUvFL20zAMwzCMVygm\nfBmGYRiGYXwor5SU+FfKfhqGYRiG8QrFSh0NwzAMwzAMwzAMwzCMS4llfBmGYRiGYRiGYRiGYRiX\nEhO+DMMwDMMwDMMwDMMwjEuJCV+GYRiGYRiGYRiGYRjGpcSEL8MwDMMwDMMwDMMwDONSYsKXYRiG\nYRiGYRiGYRiGcSkx4cswDMMwDMMwDMMwDMO4lJjwZRiGYRiGYRiGYRiGYVxKTPgyDMMwDMMwDMMw\nDMMwLiUmfBmGYRiGYRiGYRiGYRiXEhO+DMMwDMMwDMMwDMMwjEuJCV+GYRiGYRiGYRiGYRjGpcSE\nL8MwDMMwDMMwDMMwDONSYsKXYRiGYRiGYRiGYRiGcSkx4cswDMMwDMMwDMMwDMO4lJjwZRiGYRiG\nYRiGYRiGYVxKTPgyDMMwDMMwDMMwDMMwLiUmfBmGYRiGYRiGYRiGYRiXEhO+DMMwDMMwDMMwDMMw\njEuJCV+GYRiGYRiGYRiGYRjGpcSEL8MwDMMwDMMwDMMwDONSYsKXYRiGYRiGYRiGYRiGcSkx4csw\nDMMwDMMwDMMwDMO4lJjwZRiGYRiGYRiGYRiGYVxKTPgyDMMwDMMwDMMwDMMwLiUmfBmGYRiGYRiG\nYRiGYRiXEhO+DMMwDMMwDMMwDMMwjEuJCV+GYRiGYRiGYRiGYRjGpcSEL8MwDMMwDMMwDMO4xIjI\n14tIEJHXfITLfWFa7gterG0zjBcbE74M4yNERF4rIt8vIu8QkUX6eVt67ZNF5MlkHH63n/4jNTyG\nYRiG8eEQkbGI/NfmoBiGYRgXiOnn97rsgIh8tYj8+d//JhnGS4PE+Hu99g3jlYeI/HHgJ4AW+FHg\n14EAvAH4SuBJ4HXA519Y9C8AHwd8CyA7r/9UjHH1Im+2YRiG8QpBRK4Cd4HvjDH+lZd7ewzDMIxH\nAxERoIwxNr+HZavd5UTkLcAnxRg//qO5jYbxYlG83BtgGB8riMjHAz8OvA/4ohjjnQvv/0Xgm4EQ\nY/yxC+99NXAQY/zxl2p7DcMwjFck8rt/xDAMw3ilETXj5SMWvdKyv6flDONRwUodDeOF8xeBCfAN\nF0UvgBhjiDF+f4zx1ku/aYZhGMbHOiLyhIj8kIg8KyJrEfktEfmGC5+pReQ7U7n9SkSeFpGfFJHX\niciTwB20JOU7d0rrv+Nl2SHDMAzjkeFijy8R+dci8tMi8rki8ivJprxHRL72wnIP9fgSkX8C/DFg\nt73Le1/6PTKMF45lfBnGC+ePAe+OMf7qy70hhmEYxuVCRG4AvwL0wJuAI+DLgR8Ukb0Y45tExAE/\nA/y7aAbyfwfsAV8C/EHg54D/CPjbwP+WfgB+4yXcFcMwDOPR5GKPrwj8G8A/AH4Q+LvANwI/LCK/\nGmN8+4XPZv4qsM/DbVzOX7zNNozfPyZ8GcYLQET2gCeAn3qO9/Z5+F5axBjXL9W2GYZhGJeCv4Y6\nD58WYzxJr/0dEfkxNHvrzcDXAH8E+JYY45t2lv3u/B8R+UlU+PqNi2X3hmEYhnGBTwQ+P8b4zwBE\n5B8ATwHfAHzbcy0QY/x5EbmFtXExPoawUkfDeGHM0+/nimb8P2gj4fzzzS/RNhmGYRiXh68E3gJ4\nEbmaf4CfRSPrn54+cxf4/pdvMw3DMIxLxG9n0QsgxngEvAOwpvXGpcIyvgzjhXGWfs+e470/i5aa\n3AT+/ku2RYZhGMalQESuAweoPfkPn+MjEbgBfALwjhhjeAk3zzAMw7i8fOA5XjsGrrzUG2IYLyYm\nfBnGCyDGeCoiz6A9VC6+9y8BUlNhe5qWYRiG8ZGSM/D/PvD3nuczv/kSbYthGIbxyqF/ntfNpzEu\nFSZ8GcYL52eAbxKRz7QG94ZhGMZHkbtoZrGPMf7C831IRN4DfJaI+Bjj8zkr8XleNwzDMIyPFmZr\njI8prMeXYbxwvhtYAT+Unr51EbufDMMwjI+YVLr4k8CfFJFPuvi+iFxL//1J4Drwn3yY1S3T74OP\n6kYahmEYxpYF2n/SMD4msIwvw3iBxBjfLSJfA/wY8A4R+VHg19FU4NehT9vqgQ++fFtpGIZhfIzy\nl4A/DPyKiPyPwG8Dh8BnoE9yvAb8CPBngL8pIp8N/CLae/KLgB+IMb4lxrgWkd8G/pSIvAu4D/xW\njPFtL/UOGYZhGJeGi6WPbwW+SkT+BvAvgfMY4//50m+WYbwwTPgyjI+AGONPi8gnA98KfAn6qN8I\nvB99GtebY4zP14fFUoINwzCM5yTGeEdEPgv4DuBPAP8xcA94G+mR8jHGICJfDvxXaLDlK9NnfpGH\ne4B9E/B9wN8EKuC70noMwzAMIxN5fv/k4usX//7vgU8Fvh74FtQXMuHLeGSRGM0XNwzDMAzDMAzD\nMAzDMC4f1pPIMAzDMAzDMAzDMAzDuJSY8GUYhmEYhmEYhmEYhmFcSkz4MgzDMAzDMAzDMAzDMC4l\nJnwZhmEYhmEYhmEYhmEYlxITvgzDMAzDMAzDMAzDMIxLiQlfhmEYhmEYhmEYhmEYxqXEhC/DMAzD\nMAzDMAzDMAzjUmLCl2EYhmEYhmEYhmEYhnEpMeHLMAzDMAzDMAzDMAzDuJSY8GUYhmEYhmEYhmEY\nhmFcSkz4MgzDMAzDMAzDMAzDMC4lJnwZhmEYhmEYhmEYhmEYlxITvgzDMAzDMAzDMAzDMIxLiQlf\nhmEYhmEYhmEYhmEYxqXEhC/DMAzDMAzDMAzDMAzjUmLCl2EYhmEYhmEYhmEYhnEpMeHLMAzDMAzD\nMAzDMAzDuJSY8GUYhmEYhmEYhmEYhmFcSkz4MgzDMAzDMAzDMAzDMC4lJnwZhmEYhmEYhmEYhmEY\nl5Li5d6Al4Lf+fmf+LTNZvPF9+7doyhK9g8O6PrAnaP73H/wgMPDa1y/eZPZ3pzQR87Ozlkul8xm\nU/b39iD0PDi+z9MfvMWtW7c4OTmhazvarmO1aVivG1brDccnJ5yfn9GHlqpylEVJ07SMxxP6PnB8\n/IA7R/cIITAajdib77F/MKeuazabFW3X8tmf/VnsH1zh3vEJd4+OmExmNJuGoigQEc7Ozrh16xnW\n6zV911FXFdevX+PJ17yGmzdv8NRTH+D9738/p6enxCg4V+AcVFXFZDJhvr/P/GCf8XgMwNn5gqef\nfob3P/UUd4/u4pxn/+CQ+XzO3t6M0aimqksO9veZT6eMxzXTcc24qghdhweuHx5y/do1qrLi5PiY\nZ599lulkwnw+p/CeZqPbWpYl4h3iHFVdsTffYzyeUNc1e/M59WhERFhvGjZNi/cFo9GI8XhMUZbE\nGOljQEQACCEQQgBARJCor8W+h6iveXE4IMZIiIEYIzEGJP0jRvq+J/Y9oQ/EEICI90JZFjgvaZmI\nOF1PDL3+nbYjpnUAw3cRIw7w4gh9T+g6+rYn9D0xBErv8EUBugpEAl3X0TQb+q4jxkjhhKqsdF/7\nlr5tiSEgQOg71uslIQQK76mKEuccfd+zWW1o206PRdq2fJwi0PU9TdPQto1us3PpO/TzXRdo2oau\nD0QAcfoZgegciBBipGkalssVm82GECO+LPHes9ls6PpAUVb4wgNCH3U/+6j72batrl9EvwPR9YZI\nCBHEUZQV4Oi6nj7kbdHP5UX0FEaIpHMHIpFI2J4zIiGmH4QuwrptOTldcPf+MXfv3ef09Iy2g4gQ\no55z55xeV/mrHHivr8W4PaZlUVCWHu+9ns4Yh2Vi6CBEisIDEREoi5KqqhARul7HkRAigh7bqirw\nTgh9R9e1lA7GdcF8PqMsHH0IlFXF4eF1XDVCnPu5v/UjP/Ovfl+DpPH75tZb3/Jpi8Xyiz/wgafw\nZcXh1Ws0beDZO0fcPz5htjfn8cdexfXrNwghcnLygPV6zWQ8YW82w4lwcnLMB97/fp56//s5fXBC\nCD1d17FpGtabNWdnZ9y9e5fFYoFzjtFkgveetm2Zz+esmw3PPvssd+/epSh0/Lxy5QqH165SVBX3\n79/n7OyML/uyL+Pq1avcuXOHZ555hul0ymq1YjKZ0LYt9+/f5/T0lOVySdu2TCYTHn/8cV796ldz\n5coV3vXOt3P3zh0enJ3RNC3eVxRFSVnWzPfmHB5e5eDggGpU03UdR0dHPPXUB7h16xanp6eUo5KD\nK3Om0yl7symztB+vevXHUVcVhS8Yj8ZMRyM26zXEwJNPPsn1a9do1mtuPfUUJ/fv88QTTzCbzWib\nhsVigfeeyIayLJjO9pjOZtR1TVEUHOxfYTaf45NdXi5W1HWNeI/3JXWltkbHwB6cI4ZA33WQx5gY\nh/MtescCbMd/5yDGYewdbFUfCH0PXaM2hIAIeO8H2x5jICTbMnyHbNf10OtOKCMUUYbXuq6ja1r6\nvlUbl7679AXO6fr7vqdtGppmTQgB5xxlWVKWJTTr4TtijPRdz2a9pm03OFFbVJUlse9pm42O821L\n6Dsg4tjaw00XWG06naf0PXVd472nz7Yn9IgI6/WaSEScIwS1Dd57yqpCnAw25nSx0TG5KPCFJyb7\n47ynLCsiECCtBzZto9/TdUTAez3GIQba4OjxABRFgXOOECNdr/MJEcGXRbL1+dRHQjr8O6ch/dHi\nvSfESNt3tH2X5huRk7NT7h0fc3T/PvePH7BuWiIOfEGIQt9HxJcUZUkIkQKhcA6RNJcJep2UZaHz\nJ53k4L3DOaHrWppmgxPY29tLtrWhKDx7sz0Iahe7rqPvO0Lo9fgWTu+VGImxR4iURcHVq1coy5K+\n7/DecfXwkMlkwrPPPstms/m5/+Wf/JbZmUeAn/3Rv/tpfd9/cdM0eCcsF+fcPzri9MEDiIGqKjm6\ne8Tx8X3atqGPPaeLRbrfIIRI1/dp7hHY39/HOafzjbrkxs0bVFXJ8fExRVHw2GOP8apXvQoR4f/7\ntV/jmWee5fDwkIODA46PT1i2HTcf/zjECbefeZZbH3yKrm0pC8/rXvvawa6sl0uapiEEWK/WdF1H\nVdXs7x8AejttmobFcslisWC92RAi+KKgrivqUU1VV8S+Zz6bMp2OmM0mXL1ywOOP3eDwygFVVVGX\nNQ5hs16zOl9Q+ILSOcajmulkQlmWLNYrVqsFTdumsTfQdy2jquLq4VXm+3N8UbDZrNUGoX5UURTD\nOLa3t8d8vo94T99HIoIvCoqyRMQRox7rttc5bFEUVHWNpLm6KwrquibnoMRkY9qmoes6HOpHFkWB\nd+BIc0vZ+i6h73EiOo6FQNd36Gio9sil8UTHMLVnfdcOY71L6wIgjTk6poNDEKLOrSN45wa/iRDU\nroWgdqzUMTbbrBACfd+pP5ZwzqX9gBh0+/M+dJ3akTx/Hvy2vqPv9HNd9o2KAhE3+Ax939N3ndrA\ndE2HYdzrcc5RVRXee7q+Z7PZ0HYdfdB7QP1K9ckCsFiu9F6JEe/VVrRNSx+Sr5mOax+h7TraoON+\nn+xHUdXqb/SBvtdz0oYICCI+2SOX/LNADDEdu2RDk28BqOPhHIOpl5D2r08/+tk+9PQh0sdIGyNd\njJyen3Pn6Ig7d+9z8mBB10VEPOI8RVEOdjES8YXaFJ/8nKLw+l5QW0RUXyh26js656hr9fFC39K2\nDV7QuYREiIG6qplMJnRdx3K5ZLXSeUdZFsymE6qqout6Vus1oe+p6wqJAeDn/ulvP/2i2ZpXhPC1\nXq8/p2ma79lsNjoItS0BwXlPPRoxnoypKhUY2q6n7wPeFZRlhYij71t1vvudmy+tO9+8IQkmkQjp\n3ZAmqzFG+hDo+n5wqH3h0+AX1DCFnr29Peq6pu87mrYZ1tSHgAdC39M2rYonSVwREVyaNDdtQ9M2\naYITiFGAgHN6oxVFoc65CCHo5xeLBcuVOjciopOiNMkaBJE0gIXYI4LeHN5RuIrae+pRnQbdnj5N\ngv3OhDJPJp3TyZak3xmd9KfBK8Q0AOabT9cj6TiEEBC3nWDn5fOAIUDcHchjPiMPz1pV0MjLyHCu\ntutzw+8Ye9hd5XCGYzYLxPTdSLrndy9AURlk2M5d8SatJxu83UX0s7o+ScvjnDoYaaB2Ljlb6ZyG\nEAgxDFuYj/v2m8DFiHee3vl0Pl36fmDnXLl8uNKxCA/tVTKaTu+jvNzuD8lgBiCk9fdpgjGIiVn4\nGgTAfIzcsF1cPLc7mxB3rh9Ezwbp3G7Ppx7D3YX08w9fO3oedpZL14awe13kz8vw2u5J0wnCdnnS\ncdg9JhnnHBJ0XeoMR52EbKW2YZIThxOk74QQ6UOPF3Ai3wyYQ/Iyc3Z2/jmr1ep7mqahFBVsQ9CJ\n03g8ZjabMZ5MVBjYbIYxt64qdTralrZphvF99z6JQUWLPBHL43gmpPf7bjsRGsZbERWa0/quX79O\nXdes12uWy+VDAn7+nSeNbdsO43e+Dtu0nW2aVIYY8WxFnGxnQMWY/D3r9Zq2bQEodj/r/EPfWfoC\n8TohF+coypI62aThOBAfsmeDfXEOV1QUhce57fHZtTExosej65IoVlIW6tAAg4133g3L5oFY4jYQ\nksWNfMweGgsukIf8PJ3V8ZytuL5jI3btUB47dm1DRo/Zw9+bbdZDY85Dpiave2s7hrH6QzZ6az/c\nzraFGIYg0rCdaZzOX6Vzjq3T4L1P43lU+x3y55wums7V4Kg5eWg7iqJQoc67wcHbPQ6RNN8KgRB0\nrpTvn8F+iOjk3QkSL9qq7bqGdcaYDldefvv/4Xw8PKTreSYd82yT8lzjua6P4f3turdvyYVzsv0r\nxjy/y+d8ezzzT94MLuxjnjdevK6ea8zJ76cxx+zMI0Lfd58TQvweYiAEHd+bpqFrG3KArW2bND4H\nDSamuWEOLmZ/Jo/pRVHoeFsUOFHfRJ3bmtFoBMDp6Rmr1Qongk/iTdd1FF7n6X3XEfqAdx4pVSgJ\nIQw2o0v+VRzmyHpfRHSb8rWXhRyXgg86N4vboLITqqpkMhkzm04Zj8eURTGINDEGEJ+EG0nz0K0g\n0/XdIC7FGPLwNYyXak8D4vqHxvt8vLLPF0KgD0F9sBSwBZ2fQQ9p9ig7+zPciRfGH93/rS1x3uNw\nw5in81gVkYb54DAO7YwF8KFjef7KPCikMVun2g7CMCAP40OeIxMvjB87vhAwiECS9m0boN7u53bM\nSSvQvSDPc+PO+OjSPsjwJdtrhN0lL4zbebze3fec4JDta2RrN3f3Z9cekHZ7sFfDsVJRb/c7Q1B7\nyK6PJhcO0I5/uOPOfBge3oOH/B8urHr3k+n4CioaCuncyO4cIwzrekhoi5EYIlHUBwppXBEkBWB0\nqd0SwTwXcFFteAyRIGqHJd2vDyWmiHvo+7bH9OL1JRDji2prXhHC1507d2iahpOTE0bjCXhPNZow\nGo+Z7M25fuMG48mUxXLF+fmSzbpjNp2yN9uHEDhfnXF2uuDsfMkyKcFVVYMIXd+yWi3oes0kgohz\nOpHrkqoe0ejkeqMK8mg0YjKdUhQFTbNhs9EIzetf/4kcHBxw5+iIkwcn9CJ0safpWoqyYLPZ8OD0\nVJXopMyX3lMWBX3fcXJyzMnJCcvViqZpIAreR8qypK5HjEaaXeWcY7Vec3TviGefvc3doyPOF0t1\n0FKm1mw2HSKMse/YrFf04xonmuEyqmum4zHz2ZTZeIITWC4WrNdLqkrV3CJFS7q+Z1RVjEYjfFUk\n4c8lxyQgDvq+o112bJqWvg+MxhPGoxHj0YiiKDQ61TQpSqLiGWwNSo6AhOiQGIlJ7AgxDIJUxokO\nBl6c3uz0ySkM+rp3yYlT5Vpv6i4JP7ruPB+O5MlxnmDvTHqjfj4PourMQQzZ0YiDQKPKfRJjnA44\nLjsLfYpCp4wiEUdPSFlEnsJ5iJGmbVP0RCcWWfDKAzhpa5wLyGBQt5EizQLrcB4KKXEhZMuYolbd\noMlI2ueyLHHea/ZWmugXRUFEBdCu7+j7QIg6IGbnO0+w1alKw/QwGRcQde5DiDgXCVkg2hG0svET\nBHExRcclGeY4/F8jNIHYx2E78uSqLNX5JmVE6D3shonX4JJIMsjpPGx11V2pO/3dJ+ExOeLRRZzX\n5UgGBhiyBKTr0YjjdtLgnIPgkkDvksAeKEt19PuuY7NZMZ7OKKtXxDD+yPOe97yXtm05OztjNp9T\n12PEV4zHY/bm+1y/cZOD/aucnDzg+Pg+q9WGg/0DDg4OaDYbzs/PODk5YZWyrNquxUkOUrSsVqsU\nIa+IUSP2wCAYrddr1hvN9ozRDdmyIsLp6Rld6JlOp3ze530eh4eHvOMd7+Dpp59mf39f17cTKV2v\nNbtsuVwOQZCcWXZycsLxyQln5+esNxtAqEqNhk+nU8Ypoh5CYHG65P7xfW7dusXt27dZLpcURcF0\nMmE2mzGbTilTdk3XdawWS7w4xnVNVZZUZclkXPPYjZvUVUXXtqxXKwTNcBmPRnjn6EQoi4K6Ktnb\nH9P13WAjQMeAPvSsl2v6EFhvNnRdYDabMZ1MqOoRgqNNx7ltu0GYy4Eqpym/g7PX58zfC9Ha3e8c\nXksORYxqD1RISOsdAkz6seea0H+IqBbRcbXrd8QrEO/w4nUMzc4GOSiiIqWkLK9dcSxGnRL7tK6Q\nri0VFtXuO5GUMdYODqCOrX7YxTwzr7xD/DYLWecSSYDteyStX+2HBm76vh/G12FsFME7z3Q60qw6\nEaJsxcn2x9RjAAAgAElEQVRsS0KEpmtpuw5wKfq9tTHDBNsJXgq8Kx86RznCPjjXOZgZJYmELgmh\nMjinMdl3Yp6LqPOjul4SY3f2JzsgMebPCdFtt2FX6xtsdozJLsXtvqTMHO91Ae/8IGLq+dKAlB5L\n95C93T3G2e5nMbLv+0GMz8JaPsZ53mg8GjTNRue7nZ6zk+P7HN+/x2q5SOcWHpyesNqsAL1e+yRA\nNW1LiNCnJABxnvPlMgVnJkwmU7z3rFYrqrLm+rXrXD28Stt0vPMd7+T2M3fY359T+ILVYsVmveHw\nxiFVUXF8tqDZNIzqkV57IbLZtKxXTcr0ylmMTl1w74gimhHVB42QilCUJVVd04cAXQto5k/sPR61\nMzeuXeXmzescXtlnMh7hvfoqIUai80jhBoGuaxoCkcI5mqIgbiIPTk80W6nwGrxN94ug132z2RCD\n+lY5c6jruiH44r2nqWuazUarN9KcmghdoxUNkvbFF5pxluf04SE74FNFwzaQ4gtP6Ur1VZzXHyJ0\n8aHEhzxG5rkpxDR2PiziD74JMY1nBYhWRHhx4JLwFSNRhB61xzq31oDBw2pX+pXmuFWq5snBB/WH\nHIgjSrZD6rsgkrJns/KWty1lHHlJwX3d1z4EzURDSPpLmvtvxzYVoPT1LCCCBs48OSjm01ypH4Jn\niODE44qtgBdCHP4PDDYMp1VFpOPcD+JxRyCNuXj6LF66bUAiK1/Zn9DxlcGGqM+XJLIYCMk/EbcV\n0+KQYnFR85SdIHrMayHGmKpRSoqiTFnfEZGt3ReRITklEnARggMf1Mcg+R2gNqNwDof6qwBdm7db\nj6uIJqY4BzH0tMiQcVcUnqLwmtXeB/Vr03q9c0kmVjv44YKIHw1eER7T008/Td/3rFYrpn2gGo2p\nRmP25nNm831me/v0MbJcrdlsWspyzN7eAeA5PTvj6N4Jd+7e5+7dI+7fOx5U1b7X0rQ8mYPIqC4B\nj/hIi4pczhf0afIyGtUa+R+NabuGzWbDdDrhDW94A5/8KZ/CrVsf5O7RHZarJcVozNn5Od7poJwH\n465tIUZGdc1opGUcoQ8sFouUSdAQYk9Z1IxH6oTkLINAwC0XrFYr7t474t79Y5arFSLCZDJhb2+P\n0Wik2+0020nLTtTByKV6hfdMxyMmoxFOoEtlePO9ObPHZ1RVzXK5ZLMRRnXN3mxGWRZ0MaVnNr0e\nM4GiLOm6XjMkYqSqxxrBKUtiDFpS0XUq5pGjmqID0e4NHLaR6CGoEfLglpyDnQlln/alzzeg80nw\n8qmUwBHQ8zqQhCBSlIi4MxzFSIBUNtmrnOPZEbE8MXj6TtNCcyYFbJXxsiiJvoAs2KGliZJEMiBl\n1ukwkQ11jt6JuJS+qpkN+bgobhDhVJwK+CTI9H0YolgxRgIpe8J7Tf8Nkbhea6mq13I7nCThELp0\nHFWockNpoTpfyU4Of6fBDo3kR+d174bU32RUup4Q03dEhuM8RPIhCXhaTik5KkYcHI9s3MkaHgzC\npUuOpy/cIJJpOu/2XzrpyTZvB+OcMRFTFmQmRnYyblDRMHZbpwVo+63j6JxQpBKgbIx9KoMNfUcX\nesroCGj6u/cMWRTD/SDmkDwK3Lp1S0uNNw1tH/BFxWzvCtO9fa4cHnLl8CoxuDRGq4A1n+9RVRXH\nx8ccHR1x584d7t29y507dygLjy8102WzXrNYLAA9/3VdI606+jmYokKx3sOTSc3h4SFlWbJarVis\nlszmcz7zMz+TN77xjTz11FOcnp4Oju1isdB7MWqQRkVwdYLH4zHTqQZCmqbR9S2XOi7tjK35p+86\nzs7O6EPg7OyMO3fvcOfOnSSieeb7M/b399mbzLTkPvaEvqNOWQVd0xCDiurj8Zi6LNifzwl9zzKV\n9ly9cqjbVBQ0mw0OGNVazj8a1yyXiyQAbjPRNCOiZ9O2hBCZzw8GgW6z3qTs65bNZoOIGzLKni+7\nJ78kTpKDoo4Wss0K2yXbJRUoCs1K87tjijoAeRzM3/C8GUkhIGmsyZlvarPQCG0qxw66wJDBIyL4\nskIkCyu5ZCbiCh1b8sRZnFAWFRLjQw5gzFkAaUzbzu8jIfY45yl3MsZzNl0EfN9RpOs0i4okO+W9\nRoeyKJOdGl9pqZSWq6vD7pyjy5kXg8OluJRZHoV0rFV460JPHz39bgBlV8RKgazQB/rQAw6/o0hp\nsE52slNCsl0y2FsnjkgchKjsfPiUQRjZlis5SZkSyf44GOYeIkIQIaSyUJIDVzjHZrMG1JnwhVdn\nKR1ntQ96TqtSBb5sb7Jtyo5Qn8oyRTSzpm27YXkRN2Tfj8fjVJJlPAqU3qXyoQVHR3c5unuH87NT\niEHLhfBsmlRKWFc6/2w2tH3Pcr3eKduNFGneW9cVZVnR9z0PHpzinPD4449z9eo1mqblfe97H+99\nz3vpQ6QoKhYLbXMxGo25ceMGi9Wa5WJJ6IMmBkSd/y4Wy+FeL4qCIELTtMNY1MfIJl13dV1RVZV+\nvvD0QTPWsmA7Ho144vHHePI1r+Kxmze4fvWQ6WRM2665c/tp2s2GvdkcqjGh7WjWG+h7zR5KQkrX\ntUmHEC1/K1Rk7/sO77RkT8UwNyQtLJdLQt8P5XL52K1XK8qyYjzRpIKyqnHes1ptaJtNEvEKptMp\nJOE/Z0nn+z6LXSL53vcPZ3VngSTkLOPU4iWdxJwRpmOYDFly+X4X0QzXjOAQt824yVlqOial8c8F\nnPRD8Ffn3v0w3weG7XfOIymQElJAqO+6FHgI6UjnnKdtY/EIWsHhHLiIxDgIg+oWBSQdp7hjG0Ez\nivPEewg8X9BKsu+yzUNI2eptKvN0kux1yjBOwZdN0wztZrL/1DRNOk/bjL2HMo1jVN9IhNj3RCTZ\nPEGClqvnSqCc6ABhsBmDf7HjN0W2CQY7khfJyyRnUZF8i+z5bAXKSOkLqqqkLHNppQbAxPmULR62\n29Qn+yAx+ZsQUymrc54qta7p4zbbUa85FbvUtvRJ1NOWA/2wvNsGgNL12SfxzOfMzogG8rz7kHP5\n0eYVIXw5EaKI9ocoS4qqpKxr6vGYsq5p25bjkxPWqzX1aMRsMgdxPDg51aj3YslyseT8bEnfB8bj\nEW3bcX624Pz0nNVqlerE02RIQir9ckynU7o2iUWFYzqbMJ/v0YWedr2hqguefO2TfMZnfjoxRm7f\nvq19wSYT2ghnZ6fszWas1kvOF2ds2jVF6RiPx+zvzVOkQ1itVpwvzjk/OyP0gdJr+UaeQLZtSx8i\ny/WaTddyvjjnLPVnKcs6CXJTRqMRVemoSqGuSspyzGyq6cSEnnFZsjcac2VvT0UvSOVdgbIsmU6n\nzPf2aDYbiIGqcJRlhS+EPnZsNhv6kCbGVUnbbOiqipxKVFUV45RZ1mzWqbwxpkhAuROhDhA0AhCG\nVBkgMDghajDSZFgc4nZEo5gGlaTuewqNBjunzohoWV6um9ZZqQwDcgwyZHsNDk2KHIckfOUB2yEQ\ntiUifcrQ2A4I2+w1yVGFqPvYpShTHhclHe8uRPAaqYoh0oWYJiSizkufo7ZxiCRpXxkd4J1P+yyA\neN13rwKX4HBRo+i57CSfA5eELxEIvaNPGVLe5VrwtK1JNvIpWgVCHwNFipjk4+CKQqNCyZnIJcFd\nrxEjEXfBqGkkJKT9ImWlSVpHjKRaeG0koL5XHshFyzyByjs67ylzFCPVpJOz7sQnI0SKlIj2SyES\nJGV1CmhpJMQgOCnUqqfssxgAr4axbbuhFAuJ9EFT7H06/3rMtK+bS9F/cSrmqVgrtCHiO+0/V3hP\n7APteo3spm0bLxvaX0oncypqao+tPK5u1g33jo5ZLJdMp1Mm4ylVWXHv3j2Oju5wdvqA1XLJcrlg\ntTxnfHiok+v1mvPF+dDXSwWukHpU6D195cqVYUwpCs98vsfBwcHQo2s8nvDGN76RL/iCL+CDH/wg\n7373u3HOcXh4yGKhgZAbN26wXq958OBBymquODg4SP0e94gxcn5+zvn5OZumGRyZnBGTs6XW6w2h\n14DF2dkZZ+dnxBCZ7+0x25uyN58xHtdDpK/wBZPRHjeu30BE+7LUVcXedMqV/TnEyGa1gqi313Q8\nGcpbzk4f0DaNBoJGNXVVal+X1Yqu66mqmrJsaZyDKOrwI1R1NfS1OT8/p201aJD7XeV9gu2EOf8/\nVztkMUdSdNoNtmkn0k6e6Gqmg/fFh5Twh7gtp8llinEoadlG6jNDlk76vI4RW6E+C1ld1xJTZsI2\n4r5T+h4Zxtw+9aHU94WuD5qxQKTIGadNoE3lTxIjSKm2MDuVD02GNTiwLW9QJ5LUWyRHrEPcltHi\nHL5I9kkEJ5FY6NhKCg6EoLZ7KOkbnBEVSivvAQ289CnDDbdtreCItG0/9OES2ZZgwjbS7CRlFw9i\nmGb2RUkR+sEebY/7YPfS9ucAYZkyF112mEMkup2A0LCmdFoeirPlYFfu6ZLExpQokbc9hH64RtUu\n6ZxvWk9UIOw6VLDLWXApAzlvu6hrmoNf2SblLJcsHhuPBm0KTCwXZxzdvc3J8f0kzJQ6poQ+iewq\npuCEtmtTK5RepznpvqjqmtnenMlkjHOSRGXPjRvXuX7tOk4ct2/f5tYHn6Zre65ev05V1ilg7nns\n5hPsTfc4OjpmcX4+9MPq2o69+SzNj1Ro8M6n4KyOLwHwIhRVxXQ6YzKqKb1Wiqw3uh7vfcomnnDz\nxg1e85pX87rXPslsOmY6HiEE1ssFZw8eELqOQhyh7em7SLPZMKoqSq/zSBXPg07nk2DUdR1tyiob\nTadMplMm4wl1VRFiGK79IJIEbD/M3fOcrvDFUJGR+16BaG+xotwJouq9Vniv/uhOYEXHaZdszwVh\nPmjv4piygXIZouTsmJ1gy27A5aHSskTufxtj1AwfUdvk2LFXMc+aGQamGGSooMnzVpfGzyG6TFpO\ndJ6bmuwyZCGB9vsNW7uhQeuCXA6ePq7rSuI/4tRXSDYzH6vc+kb9Jg1GFwWDaDUkFvRhJwtYRTHn\nfSpTjEOZZhd7uralj3E4rqHvadLYqkkFfluVgyCS7FKIiN9WhTgnhCw4pp1POqZuU8g2Z9uuYahc\nGo5WsjdpjpGDJnrM0rLp7xj6FPBPh17UF9Zr0ON9vqYuiKJZNMu2XIKKk7K9hlz2Y3euq2x3+uAo\nXO5Tqusa7Fae+6TjmQM6McahLLooS3w6/yEEws5c5sXiFWHJnErpKhYdzNm/ok1uq7om9IHlesXJ\n8QneV0ymKiSdn51yenJCkxobdl1PVVZcuXKIEzg7PWO9XLNebWjWGzZdq9eoSOpFJ5R1RelL1qsN\nfd9R1SXz/T1Go5LzRUNVF9y8eZOP/4TXMpmNeec73smDByd6gfiCxXJFCD1d37FcLXhw+oCm2TCq\nKw4PD9jfm2sUs+1U+Do7o9k0eKcNX4uy3irWbUdoWpq2Y7XRkpiuj9QjjeRNJmMm4xrvhKqAUek4\nmE+5crDPwcE+Xhyb5ZLpaMy1gwMOZrOhLCLGQHQO71W4Cn3ParWka9e6vlqbxGvKZEBEnfeq8GkA\n7IceZKO6pi4LYuhoWp2UI7resiyG1NLY6bGOkhsKp74izuNFoxShD4NOHpLx1d4fqZeSS2UMMSKF\nGxwDBHoiMWhWWkzq+rZ57zaCoJGYJFol4SVHUrKzoYYrZVOlPmi7Dedz2UteuQ4oyZFIEXYQfBJF\nQoQoHucLxHkiHQFtIO9AP4dTQxW25SFJ5dJrFIeXIhm51F9BVPzyDlzo6Xdn4KkZc3bDBncsOS+6\nrTkTLd13qVl7mqHrcU7ZYE3X0CVHSR8gQHLAwmCckO1xdJIjIVkAlK2DkLLPiKKOSY7mOI1ca+GJ\niluRNOg5T10E6sIzqgrqwtNIq06omtZ0OiIxbkuJ0kl66PyrAQsUvfYAGlLKsvFEBufSuZyZJoPj\n4pJxHrL8opbYaJmMG1K42z7iuj5F9TUTbr1caGTReNkZjUYqRDnPwcEVrl69ysGVK1SjkZbxLZfc\nPTqiLEvm833qquL8/Jy7d26zOD+n73q8CFVZPpSttVwuWSyWbDabwYHX7EBt+lukBrm5FHI0GnF4\neKgi0mZDWZa85sknecMb3oD3nre//e3cvn2bg4MDnHPcvXuXnOl1fHzMvXv3aNuW2WzGY489xmQy\nGcofl8sly9SguKoqqqrGOU/oc6nkSsuiG82cWq/XEGFvNmU6mzGdTagq7cXivVDXFVfmc25eu8pj\njz3GarXi7PSM/fmcK/v7HMznOhFtVVD3oiWNZVHQtQ3LxYK+1W0Zj0a4tM+5FEUFJq/OiFcnpiw1\nsyGXVzabhhAiVVUPD53IIt6QeRO2vSqKoqDwfjtRCwEJkZAmdnlMhYcdDiQ9MGWnjCL3kgkxDOVp\nOgnd7ZERh7Fu93UXGT5PhCg7D/HIJR1dSxGj9lRLdkaEIcP04SzfFCQh90LJUX1PlF575MSowY8U\n7CFuy01IItNQj5Ii9CJBeztmZ8t5ikK3vd2JrAtahgFbG5szGLocvIthcPIk2RTnVHBW4UxFtbbv\niG0uC9o2rddgRkh9hvL36aTdJzuVAz6QY+3qLOqpiEN0fojU7wiO+RrJttJ5jZTXVU1VbBvsE7St\nwmBE9cv0+OcMgYec2UDXqZkLOUNsEK108S4Jl2VZbK8Vtplnuefdrji52yYiv6dOva4/l1DXdX3B\nBhovJ+vVkrZtWC3OWS0WhNST0DshhC4JndpGJMRA6LYPgtIsdM2mKX3BJJWdF97Tdg0xwmQy4eqV\nqxRFyYOTB9y9e8R6tWY22+Pm9ZtsUiuV6XTG/v4B63XDg5MHnJ2q8DW0C/ElwQc2Q+9JFYP6ItL1\nDQgUZcV0tsf+/gF16Wk32j8yiw11XTMejTjYn3Mw36MqS1arJc16waIsEQLL8zPWyxVCZHF+ziIu\n6Vu958v5Hl7Sw7H6DhoVsEeTiQoxQXsYO9HKjJyVAiocVFWVegeG4T1JIphzjrIoUtN3hj7FxEhV\naYuZsihomw2SRC7ntG9lUZbDuYhsS5VVoNbSz22gPw6iU4qLD71/IY1TYdsHNE+U8y27K4rlADxR\n27a4JCDt9mYagjB5/p7tGUkISa1gnKRezU4IQYUq8R7vBAna93kQuIZhLotzW7HHD98T0jw/DJ/L\nwQsVvFKbmpzYkMa3nDEkUR8OMuxv9ilSKW0Iu30kHX2XtiX5G/m/Dwk0O725dd9dOjZx8A2TCUZA\nS/pSqX7uNYmAl5SFjKRkirA9V+RgSwqIyPb4DHOQuC17z2KXJqrpsQhOhcxIxIkG6JxzQ/BleJBL\nYHs9pdZAsCM4xnR9Jf+DkB8Gt51vbPd524pBM7lyZVI+nwytDvJ8zKes9GxrgG1FFPk6fHF5RQhf\n2tdB65CvHB5y5eoho/GUPsByteL87Jxm0zCfT4anED44uc/52TkhGX5i1L5XRcHpgweaidRvU/Hz\nCc7N5JwrqCsV1tbrNQhMZzPm+3s6yHrh6vyQ1772Sa5eu8rTTz/Du971Lp0cVzVN29F1PaOx9is5\nfXDK2fkpEmE6m3Jw5YBxPaJtGtarlWYJpCe2VPUolb6U9H2gabSuv2lb1puGptNeTaPRmMl0wnhU\nM6pLysLjJDKqSmaTETeuXeGxxx5nf77HarFk4z17kynz6UwncajYlHubZcNyulpydvoAiZHpdMJo\nVBMFwiakpsMldV1Tl5WWlQBV6kNWVZWKO8PEdDtQgZZU5t42OUU17vTPcCkSEPv8lKYsWkUkbJ+e\n4ZLjQsxlB24QHXaNw+C4DLqU9mgaJhE5JJJHvSzYsO0dEuP2CU05PXa4NpPi7nyRoubd1hlK11ZM\nirs4P6jv7KrnIWhExPttNEIiQdSFkRh36qazjE/qFdKnOnod7cRpBCGKaDPUPLAhQ0ld6LfHJhIH\npzc/JWVbuiGD8ZQk8IhztJ2WGg0imcvN9ZNzlLbPpQy8qKl6Q+N4lxyU3eiWNmbcOf45eoL2Khm2\nX1KnABEK56nKgnEqGV6tG7pua4yy47Ubjcl1+yKa0TlcE1GzJ1w2HNmWptLTGLphff6h8qbcGyDt\nf3o6jXdbYSyEkKJRKnw1bUvh1aCtdpqTGy8vzunEZlpUXLt2nRs3blCPJmyajvPzBcuFNncfj0YU\nXktR7h3d5f79e+khOFo2OxmP2J/vcXTvHk3TpFLvdjjPw5OK0kRiPB4TQmC5XALC/v6cg4MDTk40\niHLz5k0+8fWv5/DwkLe+9a3cunVr6BOmy8B8Puf8/Jx79+5xdnamT9rd2+P69es454YnPC4Wi6HE\ntih0zPauoGlaLfFsN/RdT9uq85VFucl0wmw2pa61JCKGnsloxJX9OR/32OO86vHHmc/nHB8fUzqv\n2WHjCaUvKMTRIQ81Ll+caz/Js9NT6qpiNp0ymUxZb9YIQl3XVFVNXY+Gp3BpL5KK0XiMc15LJJMg\n4Jw+iWvb77AdMl2y2JidnaEEMkT61FTay/YpeQ9fEzvZvCL6pCQYxKI81kNkpxplsBm7Tdx3nZic\n5RxEx40YdrPNUlxYck9EXTiXfsTYE9M1lMurs0iTbUy2SeLyGB7Q7Kj8PikzeSvYS0x9M31EpATc\nIKjlhy/sTnRFhIIdpyw83GerD6kZNwxlll2yL0PAIE2Y81zAFZ4QGB4klHtVxSyosbXNRJLYtpPV\nCymbLfVyTGLfVoRkOCaS+7ENdn7rcObf3rnUY7Wmrmq1ZzsZfqBPfx4COnEromVbL16dleHcZ6c0\n/Z2zt3LZMjBcizFksVHtUBZmszCc51Z9sq3Dgx2cEJ0KX6vVaujTYjwahKBP5muaNRCo6orCa/A5\nhJ6m1WB712sAU5xmdlXViKbT/joRvU6m0ynT6VT78XYdZVGwN9ujLFX0un37NicnDxDxHBzsMR6P\nOT9f4n3BdDqjbXtuH93h3r37LM6XxNhTlhOuXr1GXVdDibL2QtR5athEmq7DFwVVNWI20/V2zYaz\n8zOOj4+H0n4d3zXLt65KNps1t599lq7ZUHqXfJGeru0QAouuhyAIWjoZ+p4mbhu2xxgg3bt1XVGU\n2hOtTw9zaZpGm/WTKiNSZnO+B8qyTJUpY/1O2X2wlD4gzTk/BFIQSZU1eu5c6VMgolChKMrQqyv/\ndJ2KcSK5IkC2wfoIsSeNadvxIgc8ssjv/E7mzWBr+q1fI9rfK/cZVP9Dt1FEK6SySYqqsg3jRVGU\n6anrW1+tT8EfDXZ4CD30pFYy2z5Wkj479F6E9Eheoe/bFJRINjGE9NY2YDyUxvUBetmKc+T5eXqC\ncad+TdvpnDoHo5xLlTLZl4vqEwzZvqlnoiQ/dLdHpXNFaj2k8ekcoNAWAymwnoOTXT+UkmsJawEp\nSCN9oO8Z/FPdfL1HSH7VkFWXMrIYtpdB/NoNyrt0Lkl2RYjDHHH3oUNZjMyliVlEi3m9MaZrQtsQ\nxF4g9TAX/CCK7c5HiLnFTe5dlkXZrd0chK+i0KdBJ70gxCol65SpLzoMKumLxCtC+PJen1ZSjkZM\nZ3tMJlNwntV6nSLpzfB0p65tOT9bsFic07UNbbNhvVoSgj5qkwir1VLLK5w+ulaco5BicNizKFEU\nJZu2o2k7RqMxV64cMJ1OOT8/YzqZ8sQTH8djjz1G13W87bfexsnJA65du06M0Gx08J1Np9y7d6RR\n9k3LdDJhvrevj13vQ4qMdGwaFcr0EfZjRiOd3GuT5J5usxl6yyCSHjM6ZjweUdUlpXcUhaOqPPt7\ne1y/epUb169x7fCQ0WhEaDtcr48nFTRluC5LbRzZqyjRdi3rdWC5WLBZrZhOJiqujSc0vdZWF76g\nrtT58M7pI8lJj0pP0fbcnFCbLuqAF6OmLW82mt0iTieeMTqKXWEiGbe2a2m6FomkBuMyLLetKdYU\n2K2SnRyOh5rJ5n4XpPe3EYB8uiEn+ORUVBkiubnB7vDUkFSCp9dkUGdkZ3uIjkjOmpIhMuHTz67T\ntCv85Me6e+9xMIglkgYyT66PT0p9TE8EYztQxTxQRd0L5z0SSeVUEedTqWjQrCzdPk+LOiR90CyU\n3Bg+94HJjkJMUQsV9fpBBMzHfutQyVa82smCCKl5o6Tz+HBqt8u2L1mjbaBq+B7SYL3T+Fmd95pR\nXVMWaxoXhogIxGQEXcrUSj3VJDcIzQO7Xq/6NJqYDINuikvlU323dVy3acDbLJLsVPR9l56wpMKW\nd55NsxkaXfZdT+ugLwtKr857NujGy0vTaTnrZDLi4OCAvb05fYis1uecnZ4TI4xHdRKqeh48eMCD\nByd0bYtE7ReyWa9wwGwy5Zlnnx36UfgUtduWNoVhEj4ej4cnJk6nE65evcpkMuH4+JgrV67wute9\njieeeILT01N+/ud/gevXr3F4eJXz8zNtxD+bce3aNX7nd97BcqnNkEejEdPpjKqqhr4YbdsNY99o\nNGY8GjOqRyn4AZtNm3oxtvSd9mSZTib4omAyGTPKToZA4UdcvXKFG9eu8/jNm1y7cgiAC5FJXVOX\nJaHraJYrqrqiKtU2911Lu2nYbNacn50SY2Q+m7E3m2nGXddq8MS7FG2vhozUwqdGr6n5b9/ulnBp\n34lN6qGZS5Nj1Ad0aO+XchC+gOFR6E3T6MTYCdvSg2yjXHrq8ra3YYwxla3kprI7/TrItiQ36Y3D\nujSQEJOglbKD0od7NBtOJ5vaZLmIJSDqEKcGzrn/Imk81kzZZBdzk+cYUwmHZiTpU5K11MTHqCUx\nIkje/tRHU9Kj0bXk0xNCKp9jaweHn3SMcl+5PmhGGf3OE0qHQEgOLKRspMFB0XOmNlIn5MOT0YZv\nyAGYFD1HxYEyOoKkCblLAbTI/8/eezZJchxpwo+HyMxSLUdgAILk2tra7f//Ny81AcwMRrQqlSrE\n+8HdI7KHe2b34WDEGSbXZmnori6RmRUe/igHICQLcgntp8SKNQUmS5kpegsqOWqV+JJ1XbLimrbh\nPGaGeUIAACAASURBVFbrQJgLs154KJJGg1j9oKQHD0TReslKLFUCV1uih/N10qXeZzr0Qq2unF1q\nC7CrMQspWYzjDEsMmrDVTdTG8p3QjKWvx6/j8M4iBlOseN5VNWdgkT9CDOiHASCDRnqCph2Ac48Y\nk4BOnDncdR2G4YwYAtqmgfceh8MBd3d3uL+/xzAMUmvWOJ17DOOI9XoN6yx+/vAB//jnj3h8ekKM\nAavVCre3L/D997/Hw8OdBMJLfiABc5hxOp/RDyM22y3ajgGiOUbcff6Mzx8/4HA4SJ1hxRTv0Xh/\nG+YJ/TRiOJ2AnLBuG6xXHQia08W9VyMAVYgRWaZWWsvfdevYPnlxeQEQcDqdcBByx0CmDotqKabI\nQfc5F+WKZt6FmcFFEyPIsIWUB9DYAu6XvTgp0V73xTpoSxXcz9bIXIPImQAWhU3SPXxV3Cig92w6\nPZ5b2Fj5lEQ5xsDYciBGipFjejKXBWMUbJGcLmMkg5BzBUnUQ+rcCDHWPTKAYnWUmmVkz0yJ+wse\n+IESA8MKKnanpCKEEite0l6B61FGnRBfom4WYAwyP2Zpv699AB+aCc0nkqrKSfLdAEKkAJus5BvK\nyi/nXsUeGqWk23A+1zPXvEVMj7VOlE4sZsjG4PmSmsv1BCCEHBX1LbIMTSmTpSExJ7kIOPi9sPnf\nJJkA/gXwFaI6S6pbhZVoWjfrWdKw/wTO9cxZ9ytYEG16+hfDxwRY1f5Ln6vmZwPIPF3Vp8jEo0xu\nRo5lANgvdfwmgC/nOF9h1a3hfMMqqIEDC0OIwgo3yCnjeD7geGSmwXmL02HA+XTEPI2I3uHc85Sq\naR45xNUSrGN2IRuSfCJeaBsJMvTe4+rqElfXV4gpwjmPly9f43ff/Q7WePzwz5/wpz/9Ff/5n/+B\ntm2xP5yQYsbF9SVa7zGPM3Lk4PNVt2Jmux/R9z3GYcA86wQrgnMNOgm012kMCtaohN1q4F3jwN+m\nBN94bDYddtsN3rx+iVcvbrHbbIGUEGcGkCgD4zAgh4Cu8fC7HaY0oh969OMgSp7EoCAyvLccqmcA\nChILuFApzToZCiyoSiEiphkZLAUuEs6QEHMsLG7Tcj6MSmCdoPGQopOzWukiLLHs1lhWsxlUlqFs\nwPXLmyvLDNTAYEXjNW9saWnAF39fN/UaCInK5kpulMl8T2bUhcnY6qfXRcQuXodtjrzQsXSWQ6Sj\ngFTWebEpElv/YpT1XJgaqiq3lCEbabb1aVOwZOVZ6cCNDDRnTBb3tGALrTHCqphnoGISdQaDwKzC\nC7LQca6LhkdX+a0hwFJmW01Z3Bf5XFTvnyWTpc1HaebkZi1FJKMw38XWkyurrxsknbDGv+KNyTIs\nmLQIEVhxJZPeGEDNlTUDN3tFxm0dIEMduIFw0Cw0zYbw3mGaZMhACMjJw3gP7zzGYRRbLr+PJCyV\nNRZTnpFiVYV8Pf6dBxWm1/kWMWb0w4j+PCDGgLZdoWl4aMjpdML+iYGbrmlxf/cZjw/3mIYBzvHm\n/vHhodgbm6Ytrbw2r1nsXxxyfEbXdbh9cYurqyvM84zdboff//73ePPmDYZhwJ/+8le8e/ce/+t/\n/Tesdej7ETkTrq9v4X0rkwy5udluL+Ccx+FwEqVXz2SE9UgJ6Dqe0uscgyt1SlwWpjMWS6K1bD/3\n1mGzWmGzWWGzZYDu5uYaq64DYkKMM3IIIAKmYUCcZnjvcHV1AaTMVs55LhNNp2lC1zCYwMAxT091\nAlaT1AOtS2W4xDwjhAhrOe+L16+5buJyhiGLVdsh5oQpBhjvYL2TXBC2MPDf6FrJ67iV112C+QvE\nGxkC/mdxBBqeMljWNAKz3LKuZ0CCdxfgVwbICEudUcJwQ64sujUO5FmxoPYCoyAWLKzzaJARY823\n8taBw42FvU3KiosVx1l4eX1QVY3oeqSfl2szMZC1BPRyVSXoYS0rlBn0kimlyJCZWyjqbEOYpgk5\noCi+ah2odZgnbVZiwxjzLOMr5wSTCcbUhtGUa1StlvysuZCYoBrKDNQR8fykSYKnISoylPdjSo3R\n74uDMwyUFfCMJCvGWAYpy3thW68xan0K5eeaTVQBcFtAcq4xXPPmNBeLizY/4zgKWOvgXCs/U5VY\nFKWmTuqsGbFfga9fz8FWwjoUgRXAhKbxaMTW9/TE+Ydz5EzYpoMMLuEMo65psLvY4fLqoqj+9Pt+\nPBwwjiP2+z368xkAg0khBNzdP8A3Ddquw/nc44effsKHDx+RQTxt8dVrfP/977DdbvHTTz+wIlbA\nkmEYcDiesT8cQNbiStSQMSU83N/jn3//B06HPYw1PFDL2rKGNS3n/zpr0TUelBLG4bwgqnl/3nUN\n1t0a3jdA5nxGu1DeWmfRrldsvd+skQWMy5AMMAHXOSKGyfYU42IvyGvZPM8YxgHONdwbTBM7dWIS\n4tgBxHEE3YoJIrag6r6U96m6BihQjcz5R4SFLQ9Kdiy0MDmDMbBc6wDqOlwtcgBEicOglinnVGsD\nkBFAAEn+sexlM4SgJoKBLYB4Bqtqw5xkSigDSJz1JO4b8HtSZTDvzZlwMM6CJFUs5QXJQbwO8kCR\nhJxqHVe1E2cso0y+TjGyra/YRFOZJFmBvdrHRNn7J9RsL64TvL558uUa52zgHU/XTLn2gNojal/A\n0SRcX5X8MwuA0AiJkiJHEBSll2a5lUvHNYjfSubakmsMjqGFLVSuM+l9oXWY1OIIuMw5k24xYIVr\nKgsT2NGT4EitnXX/Yo2Bpg8niOI+BMBCAM6qcFe1Nj8HYVHii5Cg5m2L9iBxFEOKgXtXZ2GjRQix\n3uO/0PGbAL6MdfBNI7kqLUJImOYIIouuVYDFYBh73lxPE3LiwMSH+3s8PNwjRbZt7PePOBz3haUM\nkb98YwjImTDNLNU0VsZAdy22uy22ux3bK6YZV1fX+P3vf4+mafH+/Xv8/a9/gwHhcneFu/s7DOcB\nq90F1t0Kh8MBKSSsVyvkrkPjW/TnHn0/8GTAKFa6nEHWAtYhIiMFZt1zyoz4eg+fmb0GeDRwmjkX\ngG2Nt3j58gWuLrfYrDt0jQdSQJhHODJwxiIZizAOiNMIysx49EOPc3/GHJlBVOsIyUIxjqPkOlUb\nV4wRwzAU6fA8M2tuU0LKXDByypjDtAindaXB4ImEAHJVQjDjUNF/Yy1aWdR1WqPJGTlwbsByA75U\nihVV1qKAVFZWLQ62LJYEoIwClteOOZbgYQhro/kahRS2HKruJPMlyd+TAYwV0CZxyGBRHGUgEy/q\n0vaAm20GzliAlBHDzBtxElWBBtBrExIrgKfNCK+XHBLMQgBbgEduZGvcIhl+LueYwdBrooVGG6dl\nI5lSRJC8OlWwKCMFQLIxn5V12Wgv2S+Ux5fNg7ATGrCZSTkL/dtCPkDl0kisWrAk435Fku6sgyFC\nlKkpy6IZEzdmDBTm+vqyUUySHeCMWbA2bAH1MkElzGwr5UvNG5zGNyVQ23uHlEbOg5NJoyVQOAuL\nI41nDnyvNt4hyWbs6/HvPa6vb0TxtQYADMOAYWCmuG07rNdrhMCWxIf7B/SnEzarNWKYsH98xNP9\nPTe53uPnd+/x6fNnGZNeN9oKTk/ThHGacJZ1NIQgQNINjLV4enrC5eUl/vjHPwIA/vSXv+DPf/4z\nvv32WzRNg3fv3mEYBlxfX6PrOtzf3/MUuIYb9KZhG7qG2et3FkBRf7AlYZZNe10HkhcwiKi856Zh\n1db11RXXmasLrNYdEzTzjDGf0bQN2qbhKVqnMwgZm/UKMayxf9pj//QEQkbbtjDGoGs7OGsQwoTj\n8Yi2bRDmgFEy74hG/t7FCOddUX7N44RpnrFeb2XKVkJIqppVEqVuLJfTiEKKTNAIwWKdQ9t1ZTKa\nXCxQqLa+YoOJEYmWEx8ZKFU7w9L+pq+ds06xej45kzevTgan6LrynBWnzOrfxntmdBPnaQJqNWxB\nVhnxVGwQ2pAZyzaVmAN06In1fF25SYlIeUJGLMosygYps1VnnuU9pYxCrJd/X5BEGcL2c3NEMkCk\n2lJIplJXMKo261p3eYiIhh5r/UGuNSTGgJjAtpwcgWyk0a1KvVKDlmCeBBAv7aj62BSeP355ECS8\n20nuqgyDKPVIr6UoA1lhreoug+Qcr/eL95+Jx8VrfSOpxSTfNwYA2IprfFvAsZohBIQwl8xJwJbf\nafaZ1nC1eH09fl1HEFteCHMlMWWtUFCskXVy6gdMIcKOEw6HI4ZhhHUe280W19c32GxYHTz0fbH7\nPT4+yoAqUbSAydLj8Yjz+Yxvr69hncPnu3t8vrvHNAdsdzu8ePkSb968wXq9xsePH/D0tAfAe8Zx\nnHA6n3DuuWZdXVzg+uYa6/UGfd/j7du3eNw/gFLGbrXFxcUFtpsNDy1pW3jn4ayHoYy+H9iqTgaN\nb2VqK7CyBpvNGm3TMRE+zeX1Y4rIIcE2Dpv1Gr7xknWsKntbaksQG/g0TeW7wKpY7j1G+bmS1Uyw\nRMyBrdi+rD9sj+9Wa8zTDM1sNDGChEwm4smWOqE2L4h3k4EcImbpn0qOl1rG5fVBy/5kaevUZYn1\nqQwwmAIoFmJGPwjV3kdVYipOICEAkpLfKWMWKy07IxhUJFsHQ0EA/ZyTWBWrqvlLJRaE5IDloHyd\nQJiD/J0pH5UP0oB1SeUVcqisq4sVPYRQRBH/AuBzw8M1GIAzMtSj5HOJs0usrIAOnqnECSut+B6Z\ncxAkSmpfTkKMyzRDsV1qDa8KPelcxBJa13jNHdafmwp8AVCXFGmMi3wmAquZvWOXVdt67jenKD3n\nMo9TY4sgIoNFxJBJcNrryuf+8sjlNqTyXyR1HOB9hDFRJjlKd2YIiTI4UIf/Kcn3SyNfvwngSzMW\nNtsdvGsxZ2Z0nTWIMeN84kDeODP6GOYRx8MRnz9/wt3njxjOPZwzyMlhHHqM48CqI++A2fCI4P4M\nkJGFAjzKmziU3blGRquzdPfbN2/QNh0+ffqEf/z9H7i7u8fFxSUOhyOeHvfYbHe4urwCwCH6AMG7\nttx4j0/7klmSQQiyGHJQIltuvGUPtrMWnSDcmYA0VLvAZrPCd99+g2+/+QavX73E7c0lVl2Lp8d7\nDH2P5By8cbzwjiPbM2SxiiFgnibx5Cae3mdNWVjsAjTgxZqz0sI8y6JrZfJdwigy6o4MnG/gm0YK\nJRclJ+Gwvuugqp0laAXUL55+Wcs/YYSJ0UFk5OJJL2qzouyiEpir4fJloZQvI0GytKDWNm6S+GVk\nmptsxImYZU8yXargNtaI5YJVAiCUMcBJJldl6WCUGda4v0xURgCTWEGNnG8SFJ0/q6j9BMQjo5NX\n+HlSVq943a8ba1iOnmrhnCW7q7Dvxj5TXYUQihJPr4VOm5NqDLXklAkfUmwJkotVNv8ZRMvrmp83\nMIAsppVByEk+m8JyWXV20ogpY4/6evo78FLLbKLI+9lCKerIRVHOkvmWpClMMZfcobLBEWVpTqFY\nOflGaErAJl8aLjBhkR+goAEzW7LJySqtd5InyBaklHPJeXLW/UZW8f83Du88rq9u0HWcu0VE6LoW\nISacTieZeChh487j4eEB79/9hHdvf0SKnHuVU8I8sSpj0zRFzTQMQ1n3VO2hG72rqys0TYOnpyeQ\nMbi6usJ//dd/wRiDv//97/jTn/6Eh4cHfPvtt3h4eMDj4yNub2/x4sULxBhxd3cnYfWNZC0EPDw8\noOs6tG2L87mG67NdDuiHAd432Kw3WK0aGLKIgVVI8zyXYNdvXr/GN9+8xnffvcHvfvcGL25vMI4D\nPn3+jPPphMv1GputR5xD+Ww5RriGyY7z6Yxp6Nki6RycE6YxR+jod1bFJIzTiKenJwHvWqTEFvl5\nmnBen9G4Fs57bJsWm80Wp9MJ534EQOhWKzQy+TkGBhMTAHLP8wTJEKznRsvLUBYjzUMSG3jI/N3W\nOqHAgpMspmoTYNAw6YZQHut9s1hDUKzWOacKhkeuM6yatZyXkdhuwxYaAcc8T0yKOSPGjBDmBRiE\nZQHgxiPJtCYBR1IGrPPFpoDEYH/ADEhtyJAMFmORIXYiK6Af4r8QJkySMXA1z7MogWUt/zJ/Kka5\nRjwlOCRuSFWZDJkYqWux1lu9Vkt23FqHkAIoZzhjucbmiDjF8ni1lmRtXHQPIfuDSr3w6zn5DqqN\nNElAr5HTSgBciCXvi4iQQgIowVmpS5HrYgTf1wDXuHEY+PMIGOachW8aATrYGn8+n5BiVSzy/ogB\nWx1uUc65MaW2VkKpKsiUYAqBJ3A38rfjOD5T6n09fh0HrxUO88Qgge7HJyHvyz42ATFxDiNAWK3W\nuLy4wna7RYwBh/0TR7rECELGTNMz4DelLPdAxnqzgW8aHE9n3N3fYxxHOO9wdXWFF7e38N7j8fER\nP//8Qd4lsfIszIUIWa9Z8Xt5cQkAeHp8wv5pz/Vy1aFbreC9571xSghB7fYTKGccTyeM44RV1/La\n5Bt0bSP9li0qKVXV6KR1rR1TmLE/7JEh08qNwWazRdcGWOlZeD3iMP6qzPdC1vP7sdZKM59knWT7\naNO1ME5yB4U4GdMoPYcANmJvJCUSpB8CZB0CAQKaRHELxMVj1AFhrBFS1CBRrJlbEo6v64KuqdbZ\ngnXVrOJcrhUR2Ma+IGcU3EGuEysV2LKW1XhVJCDKXv4gYmurbpAY+PljFsImoyrpRIGUMxYWeu6X\nng2NEjASBCSIdRNSJ0kiU2TqIYjJf2MJTgZusVoJMDJYgO9zBo1jqiCkAlTWWiCyfTDKgLQoSmho\nP1P+8fOlrGS5fldd7UxEjFARnoz6VCpoEBgpsYKwAHTEltMi1CAe/hUhuZ8Aig9GrfYy0Ie/GxUY\nLGoxljxAa6mwLVVIoo8npddQ7i3tyS1VQA5A+V7x+hERYi73jhG3jA51KxE4eVE0f8HjN9Eytd0a\nbdfCNy1i0oaTw89HmUYS5iAIbcQ49Hh8uMPHD+9xOhxgDOBsK0FsgthbI5kSLPVkcIBvWOc8mrbF\nerNFt1oBOWMcJ3i/wc3NLa4ur7Hf7/Hzu5/xcPfAzdL1De4+3wMwuL6+wW67w+f7Bxye9iUkT6dJ\njWIltC3L4I000coVG+vQrdecW2Qt5sAs+DDasgHabbd4/fIV/viHP+DN69e4vtxhvWqRYsDY9+hP\nB8SmhckGPQb0pxO6phFUmhnD8/nEYbPKWqSEeZ44qL7rinKAmcRQrocCY5mqQggLhrFsIBMr1gzV\nSVoxJiQkCX21xfKYcy7TNoypY9T1y5kEDNKpV8qqaHZSFla1MB9YgGrl5/VgQESWDf1b1EWEQS4F\nzKrP34gCzUjIJ5Tpl79NUOZb3oe8jma5ZLVUgD+/glQKMMGYwppzI4MaBmytVruCxuvPszLOZJ6B\nm88mmhizYAQIMScBviqTknJesGSugFogCV+ELtiLe4E4g205yYTPZW3OSl4YLYJ9n12LunRTBlJZ\nnCWTq1455ByZSSNmzjW8lNV3sphDN42xZL0gay5X9bmXQgyS+6AGNKcUMYcE5119t+X+4qmMOsRA\ni6taS2LkDYyOIx4DNx4ZhCSNyTRNbAcwXxVfv4bDOQ/ftFit1zDGYhgnzlcMEefzgKf9HtM4g8Ch\nqf35jPu7z/j44QPOpxMazxaVJODnMk8qxVQ223po1shmsynKjJQTNtstbm9vsd1ucXd3h7dv3+J4\nOGK73eHq6ho///wzmqbFq1evsdls8eOPP+J4PBVCIWcGmKZphjLW1rqy7qTEwHbTdrjYXWC31enC\nkTMYZY2AS7i8vMTvv/8ev//97/D69Uvc3t5gtWoxDj3mkS2gIxk8yYCMEOby2QxxwxRmrndty4H8\nnDnEWS6r9Rrr9bqofgEGFSuYXqdvKVvetG2ZEMzNvuQkLRocSoRs5DturYDr/6q8Uhgkydr8LFNE\ntogEyXMxVtZ31CEeqMwxoNkZMoUYNZQ9AWxzzxIinOvesKz/kQT0ImjgeWVehbGXfxWwh2zawbVc\nak5KicfOE4GMEwDJlGBdyBqbmTmCcVQsrXyXxFJX1VqBxZpvrEzVEgCL7ScC2AnzrrkjIcZiteOJ\nkjXbxZCqn1jpYExVKQD8fKo0KHVH1mxlzivAyA2W/jwEBiMh4NdSqaXnIPMHLINbCIDJXBuRweSI\n7Be982g9h5DPQbLRFmCVMTrAga2KKSUkeX/6M20U+M/4vglzwGwWdXMBaMUFSaj7KyvkTFV28X5M\nv2f8HU+VXHG/iTbh/6lDASS1ME3TKOQaN9PjOGAYBwG5mdTMILZwdw2ur65xc32DVdvheHjCYb/H\nOA6FCfXOwZARBSWrdnT699XVFUKMeHh4wNN+DxDQthz2bqzB8XTE/f09Hh4fOdw+zLyOC6FrrcV2\nu8XuYgdrLY5HfnwIM09AVaXaNEkPEOGdQd+fwYM0eB1cb9ZYtS2alsnybrXmOhjYbqhxFDlzXwJk\nkNj0TuczzMRrlm8adG0L5x1npUFy9gQ0J92zy15Z64Yqn3XSrXcO3rcsinC+EPwAFfu/tZZtfkQF\nyHqmFJbrq8NulpEfgKz1us5QBRYI0muwdeJf3Cz6T/eYGagTB5FLbiKvYQws0UIp6izfVzFw3WIg\nxLDTxBr4puXfF4BOHqfiA8piD0cRCESpl0Z7Ga2ISXbyUrOMlWuREnKMSFHOR+XxQSTTFL1nkjrK\nLyzH25ig0xhRsjdtykhJe7PaufF7SwWU1HOmofspaeai1l6Uc1oUaKQq5uc1FtAcrqVdv350uREK\nKKV9pBJUJKQS3y4KRhkwy0LSQEpvmoR4MxJwr8NNUAe25CxuscQD0kj2IdozxxhBC3FCBebqvcUg\nLgOL8pvye7UYp5RAERIfYwGwclOHxKTMcUa8N6r99C91/CYq2maz5dGxMOiHHsPE1q0QM8Z+lIlb\nZ2YjDTAOJxwPe5xPB95gW55EFQIvxGRVjSKhrJlRzJgS32TeY7PZYLfbwRAwjgOcc9isN7i8uEKY\nIz59/Iz7+wcYw0zJarXB25/e4c2bb3F1eY2UgEcZD6xKFrMyML4BwQiQJFMmHMHEhGkOcNZivdni\n4vICrW+QU8S0P4gChwvUerXCzfU1bm+usVmtgcyB9PPYI0wDjvsnTCNnrMzjjDCzt9dcXsI7buKn\niVlXsgZNx2h/nFky3HgH13j4hhVnijp3bYsgi4hupr4cc0qEoo4hYsVcK6H3MajlgpkV670smHxU\na1oFDwpIspAQ14YkF4RaUesvrSb6u2oLTEg5Cp6lgIduYGXCp6LzUAAHZRE1xsI7X4A5UBZmw4Cs\nZUWPSdDcEJRpVIsgQVLU30oY5WJEMXJprsgYWM/vwRbkXQqaNYWVdmJpzGXBW0h988JuAlYM8GIs\nzL82GMrYiBKlLH6qTNOssUBiT+FipixQyF9ObWRGhoMV6yJYZczSdJFaM58DZsh61mrRhzJopCBZ\nVSd6x1ZDDYjNAmLFmJhtgsr95XmJLSxGwvgpU2mKFLxj1kon6MgmZfEYbpSf20qMAJdLVaO1DoZm\n7cFAch3mOWDVZJD5ZYvE1+P/7FitNrxptxZ93+N46hEF3DweTni4f0CYAwMgMeJ8POJw2CPOs2Q3\nGFDiHLx5Got9KS5Yw3mRG7lZrXB5eYmrqys8PT0hhICLy0vc3Nxgs9kwufLzz6LcWuHVm2/Rth0e\nH5/w3//937i9fYHz+cyj6odRprkZUVHx977vB+QMUX6xfXMcR7QwuL66xosXL9E0DU6HU71fjYNt\nDZrG4+WLl7i5ucGq6xDmgMeHe+yfCPvHB/TnE4gIpxBxenoSRZnBbrfjnLMQOOyfgNVqxUHFIWAY\nesQY0Gw2aLu2TGPMyBxYvLvgtZ7YorBercr4dShgkTLO4xk5i91Y7M6sxmEW2hkLOAt4CTmX+qLN\nQJaNYQyxABjAcq0XUkPZ9ZwxR542lZICM0vmlP86i8JhyR5r9laxTSYeWAJp5BS80alpzlfrpeyZ\nOTLAOQZ7YpBswFKdWDW+3HQaHq6RcwZS5EzOlEvzGTXLxjluPLR+yfvjyH0qa1vdaEvIcqg1Rh/H\nn5XPp5JReq6UJEk2l5w7Jg0ss/lk5Vxoha8gmyFuWLN8ZgUYC3hJEHVGzWMhiuWykjSlJWgYcp5S\n5noiT8jWIwtmRQnJ8LU2xqAVKy9b6mNpGMhwg4mM0lTpeydRoxtTg5DrHkVvDiWTntPkSwVYzjxZ\nTMH0eQrl58bYMmkLqM+TBHDUPZq1XwmWX8sxTBNiCBItYss9oc30PM8YBs5E1OY3Z4O2abDe7PDy\nxStcX93AGsL+6QnH45EHTZE6CAhJiE0n0/2ICE3r0XUdPt3d4eHxkaMcmhbtagUAOJ2OGKcRDw8P\n6IceIAbhwjwLEGLRNB7rDYNU/dDj4f4Bh8OBB4g4XgPmeUYQ+6GVfL8TEaZxhHcWl5c7XF9eSn9B\nvHfzXiJSIlIKSNag8R5R9scca9HAOFFpZR4KQIY4tmae4axly71v2B4PlCnyhghhDqyKo5r/6j0r\nzthG2EiMhxIOfB6VDPaeXQExp2qly7nmCcv1ZeVwjbewxLmNyYiSKGUBKVD27LU/yYVMXf7TY6nS\nYZAGxTkCCGmFVNZjzYXKOUkGl2YcqrqXVWf6fLqnLYSM3FMgKutyUZpRTU7UjDIlexSEMzKpkPsT\nAXeAsqd2lvOI264ravUZM1tb9WMbkgwv7jvIUB04JuCVklVzDDKoq36flMhWy2SSno3364ATscYs\n94pzjgeiLPf+xpRaAK09tcCX73CWPT7KkC9ICA3qeayt6zMAKhNPl5R2i/9WVH6qhGQls8bgUHlt\nnaSpp0zvEb49rLz2vwJfmgud879Ottb3xVZHdYJ5cMbmIiJB6o5e+1/6+E0AX9vdDiCePrg/HnHu\nR6TMG5ww88182O/RNQ1abzGNA6ZxgDUE1zZwziCliHEaME0Dck6Y5olRW8vTQcY5IAee/OMFHf/v\nNAAAIABJREFU+Fqv1zge2Za42+2w2+2QU8KHDx/w8eMnzHPAxcUFrq6u2XdvHa6vb4BM+Hx3h88f\n73A+nWEMYSvTKDkEe+IAuMyAQwIkoDdg17TY7nbYbPi1jvsTHp8ey9j6VbfCxW6Hy4sdvLN4fHzA\n48NnmJzQeAdvCNPYc/DcHHA+D8ghM2glFgn9QoUQ4FqPBi2ss/DwDAQmVguFeUaQL521Fm3Xwc6V\n0deRwCnxws92hYyYQwlabtsOznvOB5tDkQ4r0wVZcIDabPCXkZuH4lMGCkjCqNWiUcksuy0yYlkj\nFVlfhr6nxWJmDSSeETKZhBecktcBMIAFFNWV9R7O8Rjg8roZyMZwjohJoCRKK3ZhF0aA+yKq07uM\nvrcgMlGxSAhTDGNKRpg1fH4hzW1Z8I2Fci0pRp5kKs11YYpFBcH2pSRBl3WsurOurMJqP+ExzMJ4\nEXGumBRNLdhctFj+G2dWe2TIOGDr6nXU7DYI0ARVHdTnqTk5/GFSFEBRGwQhxIwxsMriI8Mkts80\nEiTvnIe1E0LIlfmhVIqNMiVWNgvW8uTLFFNl7EjZwrrJMAJWQu5x6fWgE3e0OfTecYAkxLKTWDFm\nZ1tCpuVmlg1G4ik/X49/+7HZbnhoRSY8PT7h4WnPIeJNixgT+lOPc99jt9uBMk/uHYcRgGTNOc7G\nmMcRY98jkC2AMk/r7TAMA49bFyLh4uICu90Oj4+PyDmj61psNhuklPDTTz/h3bt3GMcR1zcvcH19\njc+fP8Nai9vbW8QY8f79e3z69Kl851+9eoXVaiWT3UxRFbRtW1SGnAXWYre7wHq9xjRNeNrvcTgc\n2f5BnJWy23FOS4wRHz9+QpxHEBKa1gOUMPQ9iABPBkbA9q7rCqOeUsQ0jbJxc+hWK7RdAxDb9cgY\njNMEPw0gw0HIjW2RiSfR5Qw0zmO728E6hznIaFVZO8p4esdqcLV78WbPFELGNL40EmpbIVRAYY4B\nTpoBQDgB1HUOkE0kEhMDSxXtYuOv1rpYJuspGF4p4aU1TdVRbCcUoM8IuOE9rGNwfZ4nIONZ/MCc\nmRTgz8VrpJHJlsBirSSxGs1MSCWxbxI4oD/rOdG1XIOmuZsqQFHJ+kg8LGeWfVed4MUKAiYzlhYQ\nfjcln4o4kNcag6jKMFqAZtJYUOQmi2TdLWCOTEb0RkiGLGu42IbVBlJsJFhY5qkqu3R4S0YuWwlt\n9ECAydyAmCRKC8MZX2zFciDifNYYI4yGF0OtmryuG2N4X2CrYg2AZG4pePcFEKfvA/UUVuCLmXZW\nCHHOUowJ3nMTP5WGisq10nVBQfivx6/jmMWGvCRqrWMQJovNmqfwMsmYU0IC0LUdbm5u8OLFS5kw\n/4jHx0f0fY+cOIvRkJJyscTEZHDOabda4Xg+4cPHjzidT6ySajo0bYc5BuwPB4wjkyM8dOVU9s85\nZzgHrJoV2qbBPM04n894fHzAPE+w1vH7TRMD6cbAWY43GccJKUY0zsGs11it1rjYXQDgfavuOccw\nYgoBOc5IUVRVkVNbXdOgaVqJUiH4zsM3HlEnEVPAdrUugyiMtZjCjDhNfM5TKuDgerXGar2C81zf\neR3m78w08eAUcpbBwxhgMq/V3ntOM5q516hKmkqUFEA/o7haeO0DohHBRRDlkypzs7pBnoP+StQA\nCwJ/SVhrX6KW60K45trHCOhVyBolfoizFzOoOBfUvUKyhlMBlOrkW977kqizMiu5tG5AMq7IyPRH\nzbCufRf/njO3svdwxkqOWifK9FwGfSzB/yJsyBlG10pVpGVVUzMgGQWQVBQoCgkQFsR+AbM0vwwZ\nUcLkjbcIMYhyTFwqxMS7uoy0B1xaJHUwC5/ELH1LXePBf7WAp+pvtP4UwAuGB7pJn6JALZHU8gyA\nLGdWC7FCi1pHhIVlX84Xao9dQDTZS3HN8nVNysscN/AQQPKi+NLzyflljeXeJ4SIaJg0+iWP3wbw\ntdki5YzTOLO6qx/gmw5t0yEl3oCP/YDdao1V1yBMZxhLaNtmoZQJCNGwxa8/wxiHZsUjgqcQcTyP\niGkE2ecjgu/v75BSYhtLynj//j0+fPiA/f4AIkLbdogx4cPPH3B1dQMig/c//4wff3qL+/t7pJSx\nWq3w3XffYbvdYL9/YqUV1eDrcRhxPJ0RE9s4mqZFiBH7x0d8/PkdHh4euClqW1jDLEjbMPs9DD2m\nnm0n1gCX2w2sqZkjzng0TYdu1fFNOfPEn6bx5Qu1Wq2wvdgiI+N4OODp6Qmn0wnOcKYJ5AukY7Gt\nMWiaBpsNKySOx5Ns9Bn4ieKj9k1XA5VlsVlaGI1RlRRYqgl88UWsTQIDEvz1LUxAViY+SQBvtZ1l\nqzra+nxlo0EE60QZwXQEUoiwkvXFG2RIVkq1x5QQeCtFMiaEwKPSibjI8RJnQYsCoc2REemqldD8\nWuhQVF4ASoYWjAh4CWXUe0hJwnOzro5FEqD5NMvQSSzYomLP0QIlnwkLBQQ33x2/EVL/Np4VYyJ5\nXykjgmXRUawc3lpY15TxwDkDFl+wDOWzcqAjy625cQJxs2GIVPXLf6eRY5AWjzjg3pgayu2cLQpF\nSC5NThJoL4oSfd2kzwtpjnJiljHVnAHOHaJ6ruWNJ/Up5cqM1ZHzDpORaxV4GID3FrOEgCOzyqJu\nRhKyqc3z1+Pfd1xeXgPgTdLT0wH7/QHb3Q5dt4IxPPjkcDjg5uoarfc47fd1PHjbopWsqHniNe10\nOmKcZ7GMe2y325K15ZzDar3Gdrt9thFRgPrx8RH/+Mc/cDqdGIS6uMA8z/jhhx/whz/8Ad57/PWv\nf8Wf//xnnM9nOOewXq/xxz/+EUSEt2/fQkPp25YDsp+ennB/f4/1eo2LC576+PS0x6dPn/D27VuM\nPQNym9UaTdNgu9lhs9kwAXM64nh4Qs4B2+0Gm82KyRWR2He+wXq95glfMaLvexhT8/dAhKZrsNms\nkVLC4XDAw8MDpjABBrBK2kyTZE8GOOsl34L/Ny1qAxlTVMX6XUwy6j2lBGvq+G+zaB4AFJZ+uZnm\nCbe2NC7IEaqgBRaKnIWSc8mMppIdkgrgXTJZxAaSc3q2DhrgiwmSyu66apEFxzAwo+Dq56CFgjjL\nvdPYsoZTRmWjEZERFrXPcaB+rtMcMxlpjlPJfFRVFqAlRpsc/qzjPHFY9KJBWR56T6tajD9Phsn8\nGT1UXSd7Atlwq8qr/I2op/VaOedgnS9sNe/v1BrEmTE567l93lhYww1MpqUaj0qzAKltei0MMhwI\nyWRYqmAqT0OujRi/t1j+bqlyU7UXf54klikFFOv7+PIcao1e3n/aROdUrcU5N8UOvFSKLPdRbnnv\nfD1+NYcqUMp9kzPGYcTpdCq2eFaQBoAsVpstrq6usdtukVLCwwMDX2XyonzfIATuZrNC161LdjAR\n8NOPP+L+4QEAMZAkg3mMtZILKDZkIY41E2uaJsSUcCHrwtPjIx73rDZLWUncCQQeyNGsVrDOYZwm\nDP0ZXduivbzEZr2GIYtz34OAMrUuJxQwSNWUU4yY50lACoLzDm3XMkjiWQU6j+zkadoOG+nbVBE8\nTKOo69jhYqzB5eUldpcX2O52aJsWIMI8zeiHAaOIErqO4MF9GEJA4zsZfISyx1b1mx4VxI5wxICJ\nsxaN2CYTMkKaip1Q87Ey5UK0GyK25stSYL7YmwN1T1xBL3XayPOmqmgzxjAhLrXJELttSIiNFDOW\nwy+SEMLc9KWyY9Yjow7yaDz3oDEExDBxADwI3N5kxCTiiZmHdVlrypRcS1aIZn4dHRDF2WLPazN/\n5vo+ydTawGua5jlGybGWxkP7nii274VS+8t9g05aNEQg79A2LSYZtBOCKsj4/tSislyudb2V/you\njlJjFtdNwa3/oWQyMEWsDmCleYY1sVh6G8mMjUKUlRgcw1lohVBZCAySZq4VAI6e4Q9JCJIsa4aq\n40q8kBCMHPmi9zlP0p6mAA+DtiWewooZcZbJm7/g8ZsAvpzzHNI98cVZrze8mMeM+/09Prx/D0e8\nCFlnoaGlMbLlrO0atG4FMoT9fo8YAoY4YU4JxnkMw4hhHBEzsO3YfrLdbYoaxxBhHCfc3d1hv9/j\ncGAL5WrFbPnxeGa2/fUr3D8+4O3b9/h8d48gSrHvv/8e33zzDfq+x+l0hoZDTvOMYX/A/njEOE3Y\nbLdYrzcIMeL+4QE/v3+Lx8+fYYzBarWCbzyahhmcVdfxpMicYJFBWSdVsZ0rZ6DxDdarDS/uIM4Z\nMxJYn8GWzu0W290W682aQ2jP52KZke0uT+nqe2Y3iUBNUxqEaZpqSGSMCMOAUa6TKo1808A7D+sc\nL2ZQdlw2aQWcrBNPCjNdEPA6DlhXk/I8+r/yvVaW2JARJoKEkRa/vyjYdNR4TgkhQ7KzFLlfqsMW\nOSPg4MRp5oU0Jga9nHOcpYIgi64pQB2MYeWY4YBHBoX4b8sIYLGZMGvD14q98BK0L5ufeZ75OosP\nXeW3HBJfR9SS2KuqnUQ39ArqMJvlvAeVMMoIskbCd5dhhRlcXDizKhuRLZNYt+T5udCK9Dxjwa7U\nfDA+ql1FgTgSW6g2KZp/UJl7FLYpFVUf1WbEsgXVeZ56E6TIa8YClIkCAcnCILFNU+8vuaFUbacb\n0efHlyyG2ie/bPyyXF+e2uSlWCX53imKG+f0jL37evx7j/V6jXkOOB0fEXPG5dUVtpsdQoj49Okz\nPn36VBpPDSqPMSKHyENI2haNs3AEDOcT3j0+YQqiDrIcVD0MQ3mtq6srURUfi3qp7wfk+3scDgfs\n93sYY1gp1ve4e3iE9x7fffcdPnz4gL/85S+4u7vDxcUFbm5u8Pr1a1xcXEh9iuV7r2Dbw8MDxnHE\ny5cvcXv7AiEEvH//Hm/fvsV+f8R2vYH3XGOahidxNY6tMd7yeO1x7KFB9M5YZEP8mGaZBxmFeGF7\n2Hq9RrfucHF5Ae89zqeT5GpOMK4DDCHEiGEcsN8f4C0VsMtaW/JYsrCcYxoxjhOGYYRvPC+tK4fW\neTjiBsNQZdmXx1L9m7Pa38SejFxyxPQ1NYNRFVppQST8T9Y0ZZMb38J5+wxw4N+F8reFqIECJI5t\nIUQ8fTIlhHkWewXV9bMiNuW5StNFCuQzSZKS5KoAIFNjCmIkUEyATHSknBGREUE880rWZK2v9aWl\nXltTGqglqKUsMYCqGDYLS4UAVWrZq+Pls5x3tldqHYs5Ic7h2Rq7rAfQV1ZgMgMEJqNAbIcxSqHr\nZwDzRTpUhkPy5RoCC4IExdZiBQhsvC+ZRAkBGbLPkALC17rm3WhzyphpKmrhnGveioJi/6LIyrUG\nLRvfwuanhHlmZWXjGwFYK7i67Ky+1phf19E5hyEEnI9HPN4zsR2bhGmYZZKwg3UdjE2YwowwR/jG\nY3dxgevba8AC9/d3+PDxA/p+QoyyZvoWxvKgkRiD7MsMQoiYhzMOpxPuP3+CyUC3WmHdWnStQ9t2\nIOswzwFzzEjZgKyXmtTj3E/IOaFbt2i7FYZ5xvF4wPl8QkwR1poC+HuZdD5OI+Z5RNe0uLzY4Pbm\nEi9ubnCx3cIggJLswSkjziPCNCDFBG8MrOfMKSXU1Q2QEofKj8OIeAqYRgbFLnY7vLh9gcurSyBl\nHI8HHM8Dno4H7I8nTFNgpfSLF1jtbrC95nzMaZowDD2GgVWs2Rg0nRP3DOC8AcjCGAcI+cUDnZRs\n9YX00AwpnoAoJKw1CEiYZp6eOINjLnImWNfyNbMWKTBowzLcDCORNNzLyf4bpsShcBYylXMDiRpR\nJbK1hoe35cy9TzILFwxP7i05VFTJXZL8YhBbPHWKOVmdWpuRU+AMM83tggFIyKkURfE8YRxZEeR9\ni7bxsIbRIsoZlDkyAMVOCkxzQkgJ4xQREortb45co5z3vHZbC5DBpL2HYdVayIREFo1tQJnPaSFE\nsoUlz24RbiJhkoomEsLMgJvWjWmauC5C+r7EIKWRPjVFrYW29CVEFkQyrEoIkaxiD43xAtWMMyyc\nJQRkY8pQBrUQ5sTDKrw16LzFqvFYNx6nOCEmJf65vvLOg6cI134qF4Je1wNrm0Lg611Qe0++v4rK\nq1gfldCLSNkAxiFEixAijMlAIrS+4aiEacYvTbH8JoCvvmd7yGF/gLMO6+0WRAafP93h/ft3OB6O\n+PbNG3RtA1pcIJ5gAdlASBCid7DG4tyPmOYIGIvjecA4jPBtx5kr11fw3uHz5ztMMhnnfDrifCLM\n4yjB7syunU5nzCHi4vISZAzu7h9w//CAOQRstzu8/uYNXr9+jRiZce/7XtjrhPOxx/ncY5xnNE2L\nly9fYre7wLk/49OnTzKiPmDXbbHdbrFZrxkAE3bGOoNpmDCNU5GzO+/L+O2ua9F1K1hjMI8zVK4Z\nNES53TA7gox+GIQ9ZMWPFcaVJzPGYs9RmyIZXnjyOLKcEjwNcI4R8xzhmqYAVUZGM1tjMQwDq4Mi\njxw2uYaqh1QlqjkzE8SBwIzipxhk0VlMIVTUO9cCsWRJ6/XnLAVjDawzZQMPoChwYOrf5VTZcLsA\nC4MUtxASFw9h2YxjuWlOxBM5SG0iEOYcshhCLJmyWIodhTe4zBqDcsmdQtb45aq00nPEjZKFNRkU\nqTwOAOaceSKJMibcEdTGxRAsLBIxJlfyCgDORkgZGYELclbmIC+89bzZD1ioz0T5pVS7Wji5qQNk\nhy/vhZ9L1XUK8EltYLWIsEIASlPD9kz5LMrIyz3Zti2ahsGvEHlzglyn12hBB0IB1oxhS5M1tkqC\nBZwqSjmRtEPOb87afHC50CBhnT7D9yT73WNSNi3zRgGak6DPLQD91+PffpxPvQBEj7DO4vb2BYyx\n+OnHt/jhh39iv9/jP/7jP9B1LWJgAEOZSN6/ZLGjafYDT03t+x4psU3/dDpjvV6xRf7yEt577Pf7\nogI+Hg8Yp1EUU6aobu7v7zHOCb///g9IKeOHH37E0+Me3jVYr9Z4/eo1vvv2dzgcD3h4eAQyZ4pM\n08Q1ZhgQQ8TlxSVevXyFtuuw//hRyJwDDBlsNhuuMW1XNuROsoOmcWCrdIhIxKPH24Zti6u2w7pb\nC5iUSih6zNy0xRSfhdH344BMGevdFo33XAsHJlxijnCJbXc6QU8nAHKGhEUW5jbGBBtZUaz5Rxpe\nrNaGZIkDxYmXpWegFqp9MMaIIPagFOIz4LAGI5uSXZhlmpToNwsRoAysKqqNBCyrzblkPWYGpJAW\nOSRAAfaj3FfzNMPZ5fh6bnKWgEi1Cur6yioCBYuykBLkuBHKKcGYzArllABhs6ttwyCkgCzTK5c5\nKawesvC5gRFQktf/L1hvQwKOWZYRpFybkPJ+mdCZJgZvqt2CFVVc60XFrGukAGj6MjGlQvjBaM6O\nAoIoTRHXzwoAqfqLwFlw/PklpD/zd7kQbwSxOnKNWTUdzn5ESkxSQWohl0EexpKzKa+jz1GInnLI\neViAWvo3eq7r3kOnvHFtZUu2Witr+H1KdQ9TwLycn93zX49//zGNI8ZhQN/3mEOQgR6aG8s2MmvZ\ndj+HgJQJu46zfb33OBwP+PjpE572T9BhEFbcKl7cKTnzGng+n9nO/vSE/f6AOAdstmxjb7sOMQH9\n+YxEVlwdMoQnAcPAPco8R3Rdi9VqBYAYDDvze1eSUO/DFBMCBXjH8Sgvbm/x5vVLvHrxAtvNGkgJ\nYWI7ZIwB86zTbS26rmMgSMATXYPZYswg0/F4xjyPMIYfv92yCm61XiOGiMPxiOPxgMPhiMfDEYfj\nCdY5vLi8xu2LV7h58Qrbiys4a9EP3AfGBBmQYuGdQes9v6Z3vB5mBg9jkLpheY8c5iBkSs0X1u85\nq/kEwMg8gTwJge6cgdcal8HqqMDAl647vC6I6opUkQoh8JWurUrYDBRSjmselR7DWAjhXqc9suWQ\n78eUEpPvxGAdQMgJICOqLHltBUT0b9iqGQsgp5movKclWOvRdStsuhWQE+ZpQhTwMITAQ+lShokE\nEANfc1CihqNeXPZFDAH5eSq9AkeGRLkGSV06qLKnUiMlCzlFPqfZSqakrKEJNY+Yl0+tI+wwIbOo\nb5IRZlWNx4+U/0/PVGlLBa7qCPScat+pGadEAEXNHM0FmCNwP9yIMo6GCdov5mSw1OYZ8EdXWVlO\nCUlAUs13q58Bz9ThfK7k/hPCyFpTBv/EGGGjkX7agSgIGC29o/TDSL9sT/ObAL72T3vMIWDoe6x3\nOzhr8bQ/4O3bn/Dup5/QNQ2uLy/RtS2m6QyAgR+yBkmC7kIghMAe3wwJuks8qltHBG83O1xf3WC1\nWmEaR+wfHzBNI0/niKFMgNJ7f55mhJjg2xZXV1e4u7vD/cMDhmlC07S4vLrC7e0tAODu7jMeHx8L\naHE+90VG6Z3H1dUVXr16BWMI+6c9DnvOFmu7OhpYJ9aFEDBPEybLCoFxHEE5w688rPNYtWxv8U7D\nvgm+AWLggPkcE6xjlnucRswpFLDBWouLix2Q8zM5v298YRVVwTKpJcU5xMSLcBZkvuu6km9S7R5q\nSZCmXxoULfY6pYQAUeewCklzU5a5VQCHkxebnvwsoTIfOdeFqoQaW5aELjeMUOBGrrCOGgcMrCMZ\nj1xHw3JjQTIe3sFY+TwAIhi9r7ZHYW+ifr6IEFMZ58v1TRgbAcVIADUdP6yAWbGZy3k2hGIRVHCJ\nGQQGC/mayEhmZ2CyqAaoLm4Ghm0v6fnoXyKdMMQMjkpXDREzEwC0HmagZMvkrM1ftd3ISX7GQBe2\nGyyE4yLPtkQFDQ0WxQPC5isbQgJYgp/HO4+2aUrDbijI5qEGcma5wmwlrUpB5CwKQT439T0KkyIq\nsAp+VcZNfx9CkOvDhYKcFAz5v2qL4fskZUhIaga+Al+/iuPu7h7zPON4OmF7cYGmafD4+CRZW+/R\ndSvc3t6iaVr0MojE6bomIenR8Nqs+Vc5M2s9zcwsA8DFxSWur6/Rdh3GccR+v8c4chYWTgQ7jsKc\nM/DT9z3Ow4S22+D29hY/v/8Znz5+AgBsRSW8k7yUTx8/4fHxsdyXzGgPCCGg61Z4+fIVbm5u0Y8D\nHvdPbDchg7XY1r3YMgCU9XbszxjHM0IYYYnQOMuK4zVbQL3jfL0YAt/KOSGFKqHnicSjBBLz+tW0\nDVZrDlTWUFmyhPVmjSYT2oZjCurkxud2LSIqNcYv1GFq7chqPZwJSYgO5FxymSohUMFLtUAuJyYW\n4MKY+k9JEV3fygbRAlayDz1bYHhjurCeo9Yk3tsuMkKSDjrhd5aFJHDec4hzAW4qGLV8jwwKMaBW\n3r+oWq2sXyly80FiqWTm15T3kZFk087nSc9taWyFWfaobHASEFD/21jDeTBKTKECObze17gDtQ1p\n47j8LKpiI1TACsilJALLTBtIHZQalBn8I6obfY4LiFBrZSE+oI+X86A1JnOd1sZebcNaYwgBBcqS\n8qaNg14XLN67EkSq2Cr3wAKgWqq+shJNBfgKpW62bQO208qQhsW+SAFoZ2uG3DiO/5tV7+vx7zj6\nccQ0B5Ax2Gw3sMYWAL6ipLl8P6zn9bJpW5xPJ9zd3+Px4QHjOJU9EN+TNXfIOVdcAsMwou8HhJjQ\nrlbYbHdYrTdcX4YzztMAsg66PnE+4ySgF+cVtm0j04K5pqQY9NYtayrvkbh32G63ePXiFt++eYPX\nL1/g8mIHA+B8OBQbJ4H38V6AJmOMEO0j5nkSQE+n8kUMw8iZTADW6w5XV1c8TMU79ANnOz897TEM\nA/pxxDwHWOdxfX2N77//Hq+/+QaXl1dw3iNMU8kyIzKs8rIc0N94V7IgIXvtnCJimGVN4encOlVQ\n1y/td7S/UEDIGAvjuC4woMPrTpLMyGmUYQegGr+iil0lk2S9gtYhJUukZqGsaVRId0DWWzAhr6RB\nWWa090qJc7N0vYbuZW0hAnSvrCQOIS9qm+7/F2pfORerrpPBNuwECiEgR3YohRBEVc2SqKV9XN+D\nWaiLkZ9bIbVvCUGV3BmaX4ZF3QHqeqxrO7Suk6ivcyph+qxMXk6xp/JPrzNpOH7OC2fJ86OqsQGt\nFRVYolKLyBiYxDl+5bUgw2CkZlhr0bYNmsaDSCMbopBpYt/HF+BoASolW1tcWKmAayi1UN+nEeJS\nixoTjlTu6Zz5O+usxSwqNRXNeI1p+B/Oxf/N4zcBfB0PB1YVGR452597vH/3Dv/8xz9w9/kT/us/\n/xMX2zWcJfSsQYRvWlh7RpgnsZHwdMZzf5YFVS8wB4evVxu8uH2B6+sbGDJ42D/heDxgmkakGJAj\nj0sHgBAi2y8jB7jvtluQMXj77h2OR5501Qo7Ygzh7v4OHz9+xDgOICJMI3vJQTLSfmF72R8OeHx8\nwDRNaJoGXdfCWJYN82hg3uwcTxbzNCKJ0qttPFZdxx741ZonQuaEOYQSmJty5qDHnNC4BilnHE5H\nGMu5H20rfv+mgcmcaWGMTPUQpFin+GmzrxYdkwHjDIfcNZxTZqwrqiqV+RvDz6GIuBZ6XmBzkUjy\nOGBVfy1AE/1y0iKEnhgsIcoCalYGVP+XiD+jMUYC/JXRX6h3SIAVYgkpEY/YpQyEHMrrExlYMCvn\nxfc8S5hzSrrZJlGBsNosSdAjj7KXEcBGZn0I+FWKl5XznnX8b6wLdfm8wrzL68co+QjgDBUTmG0n\no1lqBjbx8ygzBaICyqi6zSyurzY/zJCgshMQlkRUWgCeLfoFVCNCNnVx/58exyV5YeOB9pFaZCqL\nosBXzpZtOQoIyv3DNkcnLL8WZQHPkg4MWDQioqwgAFaayUyVO9GCUEBByGeSN7tUQsQUi+2yaTwz\nZVI4dWKnApaUWDVDxvPkmPTLFomvx//Zsd/veQNoDLq2xfF4xN///nf85S9/xX5/KIHCfM0lNL5p\nee0SNWqIbL84nc8LFpgP5xwuLnZ4/foVrq+vwRktD5yRIkDXPE+YA5XHp5QwDAMa3+IFFkAiAAAg\nAElEQVT29hbTNOFvf/sbT2ZsW3RdVzL53r59i0+fPpXaoYCXPtdms2HArW3x/tMH3N0/YJ4Duq7D\narXi3KZx4O+D5cmWh/2eA+opoW1adK3HquPw4JUog0OIGKcR3vPI7VGAO8jzxBRxOB4KeNCtujLp\nNwNwRDDOwlre9K9QG7ggIdAKglhrQDLFrm1X/Jy+eWYnXDZ+iaicg5zzs+wU+eG/KGGW3+uiTlIw\no6AUDGAvB32w1YGeAeJqfwEWG9qyicxsgVAAhnQyI68dnAVPMl2Z7RZRbB9aC5bhyjAGKbH9Q0FG\nay3HGyiQlnXgiS0B8zHwhMjSQC0+k2a0aeOZwUo+k5+DR6WGA6DASjLdKGvYf7Goy99EaX5i5Nqp\n9wtAJc9NJzXajPLZl5M0y1HApLy8Ss/OeczLa1GnLaagUxgNrJFrmiQMOucytdk3TVEVsnIgIsZc\nlOLctFQATO+5rFECudYUoN4T/Lu6Z6HyWbB4jGTbCUHZtm2t40BRwZc9FbLUXv5bVU1+PX4dRz+O\nCCEyUb1ale/+WRRg4zSLWjbJY9ZsxZ8mPDw+4v7hAf25L/tjL3k9rJLi73bXrdlCPgwczZEzvGQI\nc5wFYQ4R4zRjHANcw3vVGCOmaS7gE4NerDQBGLhAzkKSmAKuATVvdbPd4sXtC3zzzTe4ublB13YM\nuoeZg+hjhjGJhwxZicggg2niaZY8RTHBOQ/vLWJM6PsRZBj03V1c4PrqijMyFwKAaRpxOp3L5L62\n63C13uLbb7/Fd9/9DuvNBsYYjOOI0+GA0+kEAuAbXzLSjOQdMuEiBjLfIIcZOUVe35kxKHloMalW\nyD4DEQCUeBXfNLC+5T1h4LVvihEp8GA1VaFaVfOirsXPgHq7eA0FI5ALiFP32qkAKGRlnZDBG0S6\nxqLUDkg9LsPGVLmUnr+PTFTuuyWopPXSWla0LUmjEHlYQ40QSEWJW/u7Rc7zM1BNzqGq24S8UrKq\nqsxqniGgYBZH0+jlULcLslmQP6kIUlSJlRL3aJpdl3NerM307JqkUutq3SzXftH36Lmq98fi+eQc\n8PRhIVvIwFEGskWIHLrflJwvqnUFhJSp1OFM2k8VBgbGWFHRs4JRFVn6Gax1Ulv0vWn8jThsSj1b\nZCDL/RpFuZdSQtutMAtp+Usevwnga5Tgxs12CxDh/u4zfvrxB3z88DPmecKqbYCcWQU1TWyhE9ZS\npwAVxqDvMY0TkCVsD8xed6stvnn9BlcXlzifn7B/esL5zOPSDYAkG/gYJGDVexgy6DpmYT7LeOCU\nE5pOAupDwN39Hfb7J+wP+wK0jENfgTzv0XWcpzIOIz59+ojD4YCcIRNeMoZhAGXIKG1WWu33Cc4Q\ndrstbq5ucbHbiv86w7kGMQPzFBDCCCfhhyEGJCQBxzoYaxBzhHEOrvEgQxinCSkGbNqOw4qbhrOc\nFuqseQ6ICqg1PAq4adsiz3bOQ9OaSMCVILlUzjlYzw3dLIugstKlKUgM+MQYBXwzspg6RAIvmimr\nknOB/lflEuT8Pstpykum4Au0Wx9DyhxTscOllNi6IXkeMI6zQ6wti6Q+Z920qsy4buJLuLwwyyg/\nU/sf20K16eP5BEnrAW/u1fYiU9Ia3yDEgDzWIFsAooiCoEv/qgwANO8mcJ6MsEp6vngzEyqTZ7jh\nzGCLjBZ9Yww8UWGcTQE1IUHCz4uFXAiol5z/KxdwTFzpVV25+KtnCgcQDJilMtIQW+cY7COSe0GL\nKAFWiw9fG5Ln5gIHZLIC2BkkqgHBqmzMKQF2CeChXqeUYBJAAkRGwxJkBrVkgpcx9XrHxCkwWTYi\n9LUh+TUcOSVYY3loR9Pip3dv8ef/70/48Yd/omk7XF5eiKqJcw1BmfMCHX8vjNgLYuYN/jzPMtWN\nJ8JZ57DdbvHNN2+w3myw3+9xd3eHYRhKODUyxCIcxZLG983lJavEfvrxR3z48AGr1aqQBc45HI9H\n/O3vf+PcK+8xDAP2hz2c82i8Z7t508BYg2Ec8OHDR+yf9kgpo2lZqXM6HWGJZe2GCDkG9Ocjtus1\nXr64xvX1JbrWI8UZbPcOABzO5xP6YcDtzU1VGYSArm2x2W7gG4e+7+EFoCIBo0JMWK1WuLi8YPto\nCuhPZzRthzDNmEYOGoYhVi97ByeWF+u8hKkCIB54Ms1zCShv2pbVCSngLO8XsibVXBQB/WOs2W1g\nYL+ymxXAYDVykfYAIv/VhsMIaaFNrNYkoD6m2OtlX0ECoH65QTaGYIivi3UOhOXIe35dI3UGsm4S\neMqhBtSTgPkpZ1ErBOSUZHy8hUHNxQLUCkfi4jCwnkG3tutAxAp3HfeuDVKx4ch9nlEDchWEiYHD\nlXPinEsFMVPKmAPnerGNnhXZKWXo9BFDBs6yXgEAsuSPamA+A4Vc79gqZhZFY6EcI+LpvXLdVJ1i\njUEEnyt9nBE1MMk9w0Cj3DuiZEiZp3DPIcEIQJlQGfNS2xYN0bKmJNm/CEFfhq3wvUWlZ5Ef1jpj\n2GblZA+loK42q/UeSkhC+mgQ/ler46/nOEiuY9/3aJor+MYDklk0jCNO5zOGcUIG0HYrXFxcYrVa\n43Q+4/7+HsfTmUOnQfj/2XuTHUmybElM7qCTDW7uHlNmVtXrBbkgF/wF/kiDX8Df4m8QBLjrPXvT\nD2/RRONVvcqMCHe3QYc7cSHnXFWLzCa46GIWUKEJR0SGu5upqande46IHJFUNIgiYZ5ntG2L3cMD\nTqcT9yAYXMcJGWJsbtlIp2kS2xMBvGLCkmlivyyzANJqPE7Qdw0SogdVyrESHTlnCVkZ8Hg64d3z\nE/b7PWIk8WFkzfPW4nA4ou9bpBCxzDOulxtuhurjmALXTQNA/HQBjlE1tuH97xtY57EsoaqKKQpw\n8L6BMRatZRjA+w8f8cMPPzDteFlwvVyxLAHX6wUhBux3OyEH1vU3b0B5QMYWQwDgQLsvemDFwH5T\nFTVKwlYCWepq52ixU0O4YhTCgeuXbzwa5zeAQYbNK5mgj0eTfKBY9nRcOFgxC2NMlZLU12raXveN\nTX9Db0Xpge5q23vCR0EU9mgFUMXQJpGr6LWDihtW8meeZta+KYn1B0EfaxysLchFLWxyrckrULQB\n1ji/xz5Lga602aOVRFDrkJiSJDOmOq2hPsjqV806wMCYIAKnIuS49FDfgHt3wJe+V2Zd77897ol+\n880Xr6vWEiqCgIBf9u73uN83jUfb6iQXlZnCokuvtXlueTwFtBTY1f1orTVW5drduW5eQy4ZpjhY\nuyUNueeqn3NJCU3b1mTvv+XxDwF8WWNq/Pt1mvDLZxoNj7cbdv0gCP7E4izQUyQXSTVUBYYU20GQ\nyVIMUmQh1rZk0989v4e1FpfLtY6feMfELo1M9d5ht9vBGIuUC1zjcb5e8J//839BiIFpk13P+PUU\nsZxpaMyRjQBV2kRhSNq2ZbMcI3755Rd8/UoWHgDCsiCA/kK9oLw0oL8ieo/DbsfGpms5WpEyjKPE\nURPlYuKYZska5QuJOO7hvIPvGAlcQOBwXiZYUX4p07vEyEQXAaNipFHkbrfD/rBH23aS7kQPrHkm\nu9gNAxwKR/tSqHJuYldrQhOwqnYAjgtWHytn0Xg2btkUoCTkYmp6V0ZiIlVhsazFvgJf6pGjH3JV\nPBmzGkNaizpmiUJGeR33ybL50aDayvB0kcJdjXUVZDKa2AhVGBjJF5TNq23ZWAm4V2pjBABuZTNE\n3WfkXI1zMtZImamzTOO0zqHMpTIudeNW1h+gVxi2bDOXaTUTzlW6zHOOEg9dzenNyibkXGC9BaT4\ndy2NJms8NyCqO21cVjXXVvK77hV85goWFl7H+8Ifa2Oi/yeNjjUGtvA1egksqJJ/YZXMphBRA329\nlspcwWR5XlPvIW2uNFpZ71Fl5xW8Yz/n5fseOS+IISHEyOc3QNs2CEGk7ciImako1nkWJ9+P3/3o\nHde7znjkccbLX37G17/8G9J4w9O7JzwfBiy3NxIBccYSRwTMQGeA1iF0DkvJeMkBX+KMKRd0TYOQ\nMqZ5Qds2+PEPf8KHTz9gnie8vV1web0gzhG7vudIdSlwMOjanmCP93g6PKDrB/zyb3/Fv/ynf8au\n7eCdw67vcdjvkULAv/zLv8BYQ8AtRXRDj2bo8fL6Cmstnp+f4foO12XGy89X/PLlM5v5xmIKMy7j\nBY11eDw9wLdAwULzedOi6XZwjYH68g3tDs6R6btdZ4xTRILFdQ5wMWHJBTBMd23aHofDDsfDA4Z+\nIGlzfkOKAaeHBzwMe+x8hxIL0hSQl4y/hjOWGIBS0LYdHo4PNYWSTG5BCAmX6xt806Jre7TWUjlm\nSWaxiiXw5EqqewHHp9f1XlOgvIxrGlnfufax8SFDnkh0FaARRTAE/Faj9Awghag0BotKx/cQhob1\nupY4a9F4By/ghCqidN3RfSuGAIQka7NBhkeB+JEUUSnJOHsKM4opaLoWvl19UWKh3ymUHHAWKSyY\nJChFvT6sMzQ39h2S5zjObs+Ez3GaMM0JCxKyNYC3SCFhltrCGVnbxH9Mmx5N0zK2oWK9ACgEbJeQ\nMc8RMWaquqyXAAE1LF79U4rJSMaQgCwWOZEgcnAoVjw/YeGMg/EG1vlv9n3uM776nFC1wTATTWbT\n8VJDk39rkS1olAwg5QI/dOiOB/iXV5TrFTEnNA6wjafq3XA8xRht1kj8EeqD7P0kaxrP/coYg3m+\n4XYbYZ1D03VwhkQtLK9PjDOcI6iw2/XIKeFyOWOaJnRdh91uR884AABT+MKSMd5mONtg6Hf41ab6\n/fjdjuv1Wn23jLV4fnpGkZ5impeaLgiQXNd04dvXr1KbhZrqSVLYiTKrE8+rR/R9jwzW5ONEs/HO\neLSdF5XMgphWz6Z5MxZvhITVPqDv2dd0QiiEEDbm+b6m+R4OBzw8HHE8HuGcR1gWOGvQ7w447kmk\nm1Iwi2/zMs8oKYuqlY8b54SQFhhr0BgDk5gk7xuq47quRymQEJcsUyfiA2ZEAdxb9MMOp8dnPD0/\nw1sn6mVe15wyUgjo2xat8/xcpohsDJxxoE1KJsleigAoBb6hKtSaDYmekihoHcErJRZEbJFlXeH7\nufpNNd4zqVfAjzr5oCnxZk0L/1ZtVGtVV2CNR2EiCaoKVAkbeezqu1XUIARS6wpAAgBmVR7XQ8Ag\nnXbQ1Swnhs2gKPpF9bLTJHgUSQTMVQ3ErokTVvQCFsAlWzmLLXgPsZfZ+m2yr0h50+cIWKbiCCCL\nWvCbZEglNTavL2X6WybtJbUPktdgpHbX664ElY5U1su4+Vle1t9eZ/Xf78QYKhFR4kx0DqX2Fgk5\nBeQcYEyG9wyxaL2DM0bSHYv0nusKvwUOjV1HOlMuiFKD6Dnpl14DKp+VpFO1snp8ic+XFVzGOSRj\nNVCS9/Qw/M3Vxf8QwFfjOWZojcE8jri+viGMIxprMPQtUmJCFFOlKM2cbhOWmeDSPLOAHcdZikVH\nRUZOsMZhNwx49+49ms7j7e0VX758lfTFAtuQQdCEQAW+SuF42zjd8PJ6xuX8irbr0DiDrvXouhbO\nN5inXFM8jKWsMsQF07yIDxlVQ9fbDS+vL7jdrvVGiyVXlDflJKxGQtc12Pcdjsc9+q5FSQlhmmnw\n67ywFQEly7hiXaQTYK18uBkN3IphJNMCM7qmw9PjM47HIwwMpmnC5XrDdR4xi4l+13V4enrGQX/O\nmGqAH2KiXwt0QVANDxkRKl5KZZlUPq2zw1LlEpQyRhgqjREuiIVjZWRshYEVkINPuPnASxNDue6q\nuFrlnXwOTdeqo481RYbjdKvM1QpCZQFREyXwhdZZ8brgyOZVWQELX8RbC4ZNgrFAttWXLGUCTppo\n6ayTURh5aWrUD/GXso7XJBXEzHPNBevoomxsypYUJFFtKTvDRc6CnweKyzIje8VcX/M+jBQCbKYg\nZoryHliLLOOcWUdx+CQVECSLbcTQS4z/K/AFKgEgIQVgkwes7JMmdjIBU5b3oveXgRNVSNeIz5d3\n1RPFOlvZuAJNMmHxog1ykSAMTe/UL03OKTKCtDZRBUUabI46KqBaUIxFSAXzEinhh5GCD8guIAcW\nIzFEtN6yEfx+/O6HMtpN0+B8PovPYkTXtrDG4Hq9omkaDPs91APl9e0Nb2emL2rZtoQg8nqLEOhP\n1fc9np+f8fT0BGMMLpcrXl5eagKjrvl6HsfDAbthRzZ7nvHLz7/g88sbrtcrnt+9E68HAnVFCyqR\nwocYMU2TGBUn7CQUBQZ4fX3Fy+srAJJEWZuGpkHXtFiWGV+XBc4YdF2Dd49P6/onHpMhRMTAc3XO\nYb8/IIEgx+VyRUqB/lsNfSGt8Ugp4Hy5sNHJBafTI/7wh5+w3+0wjiPe3t4wjjeUAvz18gLrqAo4\nDTucHh/x8PCAkgqmccK0LLyuEOBH2UxpNgCglAzx160KJ5IZdk3E3RTCrYxeaoOgoP/2Z6wxMJGj\n+V7UTVuVrI49VhYBwFoN3xMPBOhQlUzfMq7bwlQfxxjDFcda+oHp4+je492vCl9VTuu4SkoJl+uN\nfi76+zpajwzI6A5JFyFI8oaMKaudgF4f2NVzxuTN9TC6hpNA0tEamPsxC11zgdUraNsG1cbA0jMx\nRx37W8fMt9cMhsSYqb/z23x8JcKyER9kI6Ek7CWqWkvG0ZNcE2cJNHjv4GKqSjW+/tXHbL0Xk9QS\n6hHKOnJzJlCyX5vSus/Itsn1Ya1TUopCUC1Q9Ybew/V9kZuB/99803B9P37Pg2UuPztW1KxhmnAd\nR1xuI5WQOXNESUa3bpIKH0MQ/pzrUNfQ37TrOaXB/qTg5fUVr69v+PL1BeM4IRcDp0qpEDAvQUax\ngRASlihEudTPBeBjiv+jEu9KgtN4nZ/lruPI/+l0wuFwQNd2Ffh2difTKiT4p9uIq+x7KKX2d3U/\nA+AiAX5XgSTPUW4lnUtBmObVasV45JSxlIC2IdC72+3Reo8wcaxxHEdR5YqKCkDj1OM2AsisL5OF\ndaKSirRFKVI5JgMsoGeXQlUaPsJ0PTDIY7PGmQ3p7qwnMG4BY6QWLaiigiIKLuvuR+rW9YCpuwr2\n6Ppr4eQ8+U1jDXRSMpdN0AmYOQtwJD+VIhYptBzYgmtc/5JY1PB3dA8JIYg3l2BKFpX019ehvYex\ntoLyOjW3KqpBfyxY8UpeldZJiB9VtTI5dDVZ1z+l1RCQkOejP3cHaMl101RiKo7jvUclUCdkdF3+\nFei4/RwrwCZ72/Znv1VQbf+8XwkUEBNPL2TYAuio/dbU0kpd1nUdfDMhFr0zSfIXYys4WSCpxY6g\nHYytQKKeiwJUig8Y46qfmJ5rzgVIuLvuzjLFfDG0Cih59dZu2gZ/6+MfAvhqG45opJgwXi6Yb1cg\nR3Stx67vaEbYNmhbj2ku3EDOZ0zjRFO9EIWhKPC+g7EigSwFu77Bw8MJD48PmJepjiwyaQhomhZt\n0wEAUiSQphL7abzh9fUNr69vQEnY73r0Hdl4U+gFtoSImIuYw3Gm/jYuWEJC3w9omhYpF4zTBefL\nGWpYmpN8oAyfr3p1DT2eHh/x6cN7PD4cqQqwHAUoqWAOgUy+8+haL03HdgbfU5VSgHmaMY0TW3hR\nED0+nvB4eoI1NFU+X254PZ/xerlgWQI3wuMjDqcnHB/fYTfsME4jwjIiRCaX+MZXpV3XeljnUQrR\nm7hBy/XDpUkcq7SVi0gxRvxKhHUpBdEAyAQjuGE6gkYhyNyygfISOs8OxVjkWD2nZIHH2mQ4BUks\nATEu3E4eY4XzKkNBBA9GfAqyqAwYV27qiBtfT7l7RgWFSiYSHwKjfNl0tmh9A4MicuiMnHlPitCM\nDWjK9G8QHxLKnzjO412pDUMGpGjguST2OChlNZGvSZPCnEdQDVCMhAaUtSnKRk3m69Wr19SAG28W\nxZoWaQYbAMwoQ1IEMHKo/NNvdCp1AxVwUw3htyq+Ffxq0HiPZeGGaU2B1cetf/JUdCY0Z0k+kctI\nPEw8ZmAkZZonpo0Iz38dd9TihSNHFjnxsVPO6FsBqC2ZGmQaQqbotBL5fvzOx5YlfHt7xVkArePD\nEXvxBtntdmjaBrfxRsPg2w3zzPFCbUKNoQdPiBnjSF/H/X6Pd++e0fc9brcbXl5e8PL6iut4Q+sJ\nEPVdJ2a4qOveEgPGacTX1zd8fXmDazxOpwcqPWVfUHA+xVTBgUkSw2BMBfSWZcH5fMaXz5/pVSav\nWz+3MUYYFOz6Hg/HAz68f4d/+uOf0DiLRsfTg0ZVF/ExtHBtA2uc7LEJ1jqqgJsGKWdcr1dM8wSU\ngq5tcTqd8Pz8jGFYPWiu1yteX1855hNnnB5POO4P+PDuHZ6fn+Fdg9v1tvmMAV3boZMgl1a81kwt\nqLkfwhL41veXPlkrE8z3y1bAhSNhvJ5bMM3Ihz7NS20sjKH6LJVNBLmCFQr+6Jon8fGa3Oacgy2Z\nQMmm0ajn+S3whZWdVSByPX9pYvIK7CuhU5TA0T1U1LyN41j2drwmpYiUhQ2WNVFH5FSR9u15VV+v\nbwr6+6JfRvgTfcoUmFFg6lt/tlzWdK3tY+t+ab75nl6Teg5lff9IdtxvJ9vrzCOTdLEEvmDZjOXE\nBpZ8U6lkViO+Z03jaVBuZGzVkBzKm/cFYN+ipBoACeQRWrCs+xH3OPOr+2F7bFUM+nf1WHo47ED1\n2FzvPf2+gmLfj7+PY4kRudCDqut7wFpM84zL9YrbbWTfkDI6TzP0EAJu41TtV1TZjuLReu43nQBH\n0zTj7cwE4evthsvlipgyXNMA1iGkTA8xqRtzzrRFyZugCEtwZtgNaFuqNccx1BpQAXPnjPiathiG\ngYnw1iHL5AdyQddMeDMW4/WKlCKWacIoXsht08LuhNhOop4Xr9Sk5HLKcI6EtNpZeJkcqSPqxtTg\nkqEfqoH37XrBeLtWr8iu7egrBq6hyBEpBa5R8plNpqAkMZ+XSZ0EgpBF7Cus83COdaaxjvXrZh0z\nG6WQhRVYwsJXooLnsP1E6kgZQKuPOmpYyWABJGVNy1jXHRiVGWi4hkWxso5uCAFD5Ifnagj6Abhb\nr/QeqIqqQq9cyJoTI/26rJBKtb+627+EVDcbH+YN+KY9Q01nBMAgqm0+oQB3efULBUqdOkopyURT\nhnW5TqfoXqw1VE5U7t2RSNYB4Bj+Oo4q/pLy/PRtW9dnrRHqZ8R4fLs/65/VIuebf9++1/e/J52X\nWUO06pUqbHlIqLCe63pJHA2pXm9kQ4Wy0WkW9kzeuxoOkCT0Z0uCbKeE1pFaD2NKtbMxIJm0JWdt\nsSgpYxEwNkaGOPV9i781yfIPAXwRiS2YxhHj7UbVU9Og9R4PxwOeHh/x+HiqLG0MEUneRKc+TIWA\nh28YERxTAqxD13U4Hg8wxuDrly/48uUX3G5XqEl508gYX85IUkjcbldhty+4Xi9IMWLoezyeHgEA\nS8xYxhHZuGqyWArnYKdplgbJoe16GEOjxduNpvuajKQ3vX7wm67F4bDHp0+f8MeffsDHD+8JTl0u\nZIByqgVvIylQTGUki5NyhhH2yBgjrA3HOLqux27ocDwcsd8dUApwvl5wPp9xvd5wvt1wuY1wzuPw\ncML7D5/w/P4j9scTrDGI1xuWQK8A5/ncbUPD/cZ7Kr1gkRIbNXrIcOFNNZp+k0Ql64MmcAKlsmPG\nelhvZGzSw8CQ/QypLm4GqzqJG8FaUG6/APVNwZp+pcWvNETe+4pyb/YPAmNJmBeISsw5lEQmB3oe\n8vMZkhaFAlPW4lXZD31s5zwZq2FA6wlaztMkzD190XLkfHoU2W+Iq+GxFfbZSQoYTxbIMdfGLGeO\nn1ZvAuNkdHF9D2r0r5jy282mljJHbTQBhd8yFeACVgWDkQuwHbGsf1GgzAhbVL9XTc2oNzObpsRw\nc8zZ8OcMt3tT6GfQNg5dSynwlfBnjVyu2kPBK42DqDQ2o6pWmlNgDRswhsb4uGfgVMXBUdI1GY7q\nEJq1otAbZ9cNkgJoES2jwgmMB7jv3it/F4cWKsuyYBxHpJTol+J3OJ1OeHx8xPv373EdbzXR1hiL\noR8quKLrWNf1uI2jpN4yjWcYmOL48vKCr1+/4na70by48RKU0VZvsHGcEANVvlRvcfTj4fCAh9MJ\ny0ID/SUEuKapKhBtdOd5RogRXUfSJkqCkqrAKlNuddRuQTYWx+Menz59xE8//ogfP33Cp48fcT2/\n4nq9Yp5mJGfR+gbe29qgcBSE62Mj5qtt2yPngsvtRtY8RY7BnE54enxE3w+4XK70BxMlw/V6w9v5\njNP7Z7x7eo8fPv2ADx8+YugH3K43TOOIuCzwxnJEv2HCEdPGCJznVKqCFwUw3onpu6i40sp+A4D6\nLWntUKROUOWfAjtaGFbvLHBsmox13qiJqbzz1lUAZEU8dC0jMWEyYG2p/64sNZ9vW0Ar4M41aFUS\nrSBU5YwAqJ+ZjupsR3JKob2Abxr0sj8DoA9X1NH+XFVi8zzDGFOBr61qbXtt9PPzLTCTZN9yvoHL\nGSVuVbNYAcXNY2tqlyocVuBLf0eVuLx3LdbHqtdmM2lBfuK3gTkqxyFfWifInl0McjZrqpaMp3Zt\ny+TspsFkJ8QckSLf06zjRGbDpquhPuilw3EoYebL+t5u1Xuo9d+vv/S+1aY/y/vUPJ3uQFFdj5Zl\nEcXOd8XX38txvd1gLX0XjWUPcLkRqBolaRBQX1WQHLiN9b1smobATA5Ajqw9AUzTTEJmmjAHrvdL\njPT3Ej+esCyYQ0CUmlA9+LQ+tNZSASwhJigF8zxjnmeoMTpDsDyca8WnuK8igySgiHMOpe/Reocw\nT0iytyGxVleVmNaBIUbuQ0UCMVKs/ouNJKl2XYuhHzjpUkpdp+gZGes9rmOUphR6BIqHlS0eNmsd\nV5BlisZaUYLZNZHWGCPpgwGxpDr5Y8QriapPKmmKELoEHIRENisA7gQA8rK+EH1cD7kAACAASURB\nVMi6Bx2oHBJfT8PAF4i6bV3gJTRJg5OASgTU2vobAgBgf+PkiY3sN0Vr2s26WRW3CrIVBdIEUEqJ\ndYYAW5C6vGBNYwQILOmUTBUa3C3BWwN2fmXxGi5FxwE9sssIgcmld9cpr4EhMSV6Pzon0z24A8d4\nXmZ9KrkephQUyPSQeI7xxfKqbkcqt3tcKRIkUC+3qZYu2/5yS07pzwG/Jrb0uhk2M6IiN78R9s6e\nUkeL26bBaBdaNhkFRgmHFmBz/2lY0L1/2laVVgG9It6Xzm5+Tq5bWc/CWUvgq6xEY0oB8zzB2rU2\n+Fsd/xDAFwDklO+bEYlCf3g44uPHjzidTvjyhXH0qRT0wj5YyxS/sizCjEPMvIHOc8F2zuHl5QU/\n/5XG8mS+TTWDU0muIvXjNGGeZtxkdLLrB/S7HXbDDrdxwjSPmEOCcW31sEpJNiFRBWg0cEoJaVl9\nswxAE1oFMmSTeXp8xE8//IA//PQjPr1/h93QY5YEmBQCoqV/BTcgypKXEDBNkwBqlh4pUsRGMYkd\nBhpnPjwc0fc9Yoq4vd7w9vqG2+1amaemafH8/A5/+uM/4dMPP+DhgaqD6TbW98U5VyOBm8bVmz8n\nGUMshQkmBbCOwELcLGb6YdwuwhWN9x7ON/IasC5uKSHMi2y2/ECyltaNREYRYIUZ4sZVN6iyzohT\nMg3BcETto2qvUKpSbbvgKYPBh9sU5pXX0E1kw9gIsKnmiYAi+R7eO85wy3iVLt5MgUmrpwHoLVOV\nSCuNwmsor7GgVJRfr3FMZG3IpDFm2SS5ZnGTRLddqOUa0WZN7k+5Ejkl2fw3zQx0ExBQ0dq60ed8\nH/m+ZT++VQp8C1ZasCFR8NEWA1cssrVV8dV2raRdilS7rtrscPQxXFGTRo66eKfAsGxYUJbF3ik/\n9LxKWVXRfF3cRNXLztlNlPyRSoHGewTnxFsoU7W3iZ7+fvx+h/eugkCq2up7eiEej0d8+PAB7969\nw/ivs6SkFfT9AN/SC26ZZ1znG0IItfHVtb7rWqSU8Msvv+Dz5894fX0VUMyj7TqkQrVuSRkQk/Jp\nZpw8FRwG+8MBh8MB3jcYpxnTTPKiLVxLwhKYCDYvZOqMrb5VUdZdHU3MOdV1kGtDQj90+PD+A/74\nxz/hxx8+4eFwqKOW8zxLcdagOI4F+4aflykEXG43ABAT5A65FNxGpo61bYv9bof37z/g+HCEtZZK\nBEnVYnoYTZiHYYd/+uM/4ac//AGfPnzCYThiCQHXtzNu5wuM/Mww7GAMGM/NDpBmw5EMfZGi1bsW\nBm01JyYWsYIMVR1W1MPPi9+XjNiXlWHOKcFhBbIKmHBYE6FkbK+aG+vPmdV8fOsxQtBnBR+tXckV\nrdJpyxArEKYKNdQzkL/VQlbIisyAjVq4y09zj2ZCW+s9rIHsK0lCCcT/JkuisIA32kBs92cl0bYg\nl6oC67iKNNRD28PaVD8XtfiXhkGBWOc9TF6bwYIV/FqvG+7+f71+G38aszYYqvr6rQbEGBnxsQY6\nesRfF0BMFL9+E77SdQ29gRpevxwiQsqw1nMvMaaOYvJ5aHtvJaCnbVoYQ/WhnoOqAJ0GL2iD+83e\nWOsF2atUaTrPU1Xe1DGVshKKWu99P/4+jre3NzGNbxCkTr9crpjmRUiKhKZVYLNgWajgtZbqWx09\njMFgWZSwCdwzxhHLEsRaBKx/DMegoqi7QswVaI/ik6T3lvcew7DD4UgF4fV6xbws4k+Ya9/ispU1\nmPdsThnTONYAjb7vkGX0fpkjxtsNyzzDW4Od9GZKLhTDCYbbOHIdT0E8kSEqMoKE+2HAw/FARbUQ\nVNO81ImWtmlQcsLtOqGkiNY7NEOPthFBQVxQxPMRxbDXAgnOKGIBRb6rutYo0W7Rtp5+ZL6FdfRu\nZJ8hEwyqBE5M7t5aqmwJ1RXoErW2qJNQyWp6nFgB0/RnAfYXHEPX6Yi1Xq+j0lh3B+JW634EbRe+\nqdfrer1V9mKdzCmF90pKoubSfuqOmKAv86ryUv2UWXtAeb3c1CDAmUGJ9KOzwBoS41YLGb1mgF5X\nwKWMAAG/UqogjyrTKnlilR6RPWfTt2EDCm33D+0PNbRsq+CqvV9RYQW22/Gv9hr9+2+ppleVpe51\nttYnHOVc70eAI59916PtOrjriIDV5kdJ+G3vhgIZ078n/fSo/XfKKG5LNq0julp/8DE1iIB+YSlG\nqMXQIl7r3xVf/w0ONpS8KYeB0euvbxYxBlhrsNtR2hpCwG0asaSItufYYYqJzPgScb1NGKcZMWW0\nbYf98Yiu73G7jXh548hiCkmkqRGNc1gWRuR2XSdpXy3GccS8RBjn4I2RJMMWl+tIf5dAUMEImkzG\nfqrGkTSK7CSZwVQzW5iCaRoxTRNy4ex417YEvX76CR8/vEfbNnh5fcXnX35GCgFexm84SpUFXAuV\niSc6r8WVxTwHTGVB09Ao9fiwGgePI88xZx2fAwCDruvxfHjAn/70J3z64Qe0XYdpmhHOF7y+vmKe\nZwJ5klwiyBFi4Ox8zpyJBwxyCDDOS0GvjQoLe5jVQLCmmcBWk03XtIBxEp8aaNKX6bvRNA2a6vGS\nkbOoyYrdABciR5aUy5JSnW9XUJMjDeXuw2uyLPSyMFV5rrAG/LdCJqs+lqaAyULpLEpaQTAAsgls\nvFqcq99bIpvguBDUq0btxrFoLgUpyhhG3RRk+t8wvacYI+MrsSo++HObMVBIkWxMHa3SzdM6xjBD\n0mWs9zSDFEBxw8ET8d8sqtvQAnO3kK4bzPbr28XYGE3HkqYEsuDW4l9l3hbW81ou1jKxtGVgQ30P\nirIf9EKgKlBKAwXUpAjzTtKK0rpBrck6W/+aQuk21g1f71syQNKQ5YJ5mmFAH4wcE8I8o6SIVJIY\nbH4Hvv4ejr7vRZU7oe97HI9HvL29VVKC6yRjn1VJUUrBfncAALylgmV+xeV8w+06IsaAYejw+PiI\n/X6PeZ7x17/+FS8vL1iWBYCGmzS4CXA0DANOp0fs9/S+uk0j5rAA1qPvBsA4XMcJt3HCsgQUAL4A\nxjikVDDNgSO+hQb5+92B4Jx8Hr1v0Pc7nM+vVK2FwHHO4wF/+PEn/PTTTzgcDghLwC+ff0GYFzhD\nlVDbNnDGICwB1+uE1lOZOkemk2lht0306WXf/PjxI06PjwjLjK9fvmBZFvF3NJhnGiU/PDzghx9+\nxL/7p3+Hw/GIzraYLjdcLhecXy+ISyKx0zTwTk1mI2JYQRYF8YwCVKWh50pMCEsAIIbN2nCVQrWw\nQQUSvGdapI6QKVFUSsGx72tRn0uBSYnpf0BNPFMVgxaK63rJQ9drTTnTY7sWbgvm7bFV6elj8Xf5\n3ir4XgpQ8goMsSfjn14bPGHLwzJXUq6+d5uivJ7vtpjenM/WJ0T3mbvzU/DtG5Krkgt6rYxh4rP4\nx6XNaEX1WasNzHrNNBLxV+y1fl8an/r/mz+BjZ+JUcYcKCVRRYyCYgki5UwuvXWWPq6Nh7cOKDNS\nSMg2w/mWygFg8znIJOSsrfcY1fapnoO+NiWJjJB3ytpvrx+BNLdONMi9CmhwUVc/2wpqKrD5/fj7\nOK7XK7quw+l0ErIl1FHxAtZefd/BOV/Hk3VdIIi5wMk6wJTFBpMoxeinJ+E/zkPNDo11yBk1SVXB\nDyr3TX2svu+x3zM463q9YJqmSmAAZR1vlkqx5IwwL5hEIKBhC/thh77vABRRR6uFh0PX9VV0wHTL\nG1LKuI033G5XhLigaRyDTQ4HHHY7HPd7PJ5OOB6OyDnj7fUFL1+/IoaIpmlwOOyx3x8wzxPCPMOU\nBNf0GDqPoW+xLAH0gw6S7qsJjFzLU1gDsXR6wTdUaje7XvoHhjkBBSkGpEILG446GhgdjFZWdKPO\npRchfauC+ICy96DXszE6am3EXgQC0oDqLDknVRdxuSOha4wBbIEptqqj1MZDfgL640XWxrtz23gm\nbgH2gtX7qxRTJyOc85sJDKz7nRI0cl+kmBDF5xQZyGkl3lF4CrqfFYCElV2Bufrvde1bQSP1VnTe\n8/2jCqAqE6wTsl2vh1nPU8mJtRVbSQIFy2LO4mu57j8r2UPPaT1+Uz0Fvcz2V9/H5nkzCgw9jYCs\n11NGUa2DdQU2F1iT6jn0Q4dBRC5LXMHFel3q64TsXQQai3x+q7pYr/MmeVhFGuu+L9e1sOdJ0rNb\nmOr1x9rCIMWEsHA64W95/EMAX0tYpOFNgClIOQgrDwxDJ8AXR7Wu1yt+/vlnAMD79x/QdS1gaDhM\ndmAGCjDsdjidHrHbHTDNM27XK6NpY0RW6auYOXIc8ojHx0cploGvL2+YZjYenW1QAJxvt3WRgsE0\nz5g3KSl606o0uOu6OoqSJHZVkQ9Vth2PR5xOJ7RNi7AELNbhsBvw/PiIrpERzMBxOG2mvPNIKWOa\nJixxpprFN4glw1uHoR9wfDiia1ukVPD6dqmjMgZUMShz6JzD/vCAdx8+0pgZwPVMv68QA5Zp4mij\nZzpdSfQlg0R6Zy28IN4hhlL/RhalJQaEJcAYMjqNjGHUVJSsMk4ghUR2ppAVaJ2H8UaKeiOJi0VY\ndMC260iGLj4ZQNINRhcGYZYVRNLTLyh1oea6abaKTx7G3DUjLGBNHW+1kpChzQ+j2mWcBboYS58h\nDxwl6hg6ruP4MbfZAE5Br7iZQV+N+1E04r0IGJWhCYtZWaVNsc/7PdSmZWUw1iRHgIoFq88lBonc\nbLWRoFouY20A2QhvGQQFtFaDZz22zZ7ZXNP1WE3sWXQUQBQNuVB+XbL4DqjPl3MIYZHfFLUW1teT\nCk0hFaSih8OqXtiqCNiIrHPw3ikAqaqIrSya75szFsVkbgSgJxFKwTRPmJeZaj3US/z9+J2Pcbwi\nhIjr9VybkNW3ytY0qxACbrcbvn79imVZMIh5vBZTjINfkFPGw4nrd9d1BLLEE0w/P/ydDO8b7Pd7\nPD094fHxkaqo64gQuGZ47yq5cz6fZU/k5/l2uyHnjMvlgijFoXNubUD2+8rSK4gzDAPT+IQ4+fTp\nI96/f0+l8DKj9Q7HwwHHj3vkxGtQQ1Pk3PXaRACJlSBKWQDIKExDNZu1HiEk/PnPf0GYZ+SUpFlj\nUq6aJ394/x4//vgj+qZHuC24vJwxizUAkLHvejS+RQkJS+bofc4F2XBkvzLChlJ99QTZglfONfW9\n1NRWa1wFKRSY364Bup5ZS48W7SZsyYBxbDYMVbYrO74J5YCRcJB158iZexg268qWzd6ywVWNXEGR\n31owBLiBNlncG6rTmLUwoEl7jBEJVGLnxL1mNRAWvxysnmVbYGvrZbgt7vXftuPeWu/kXDCLKiPq\nvlX3Gb4XecNS/78RInxOd7c/OPhqZl9VGkIq6X6+fRzzzfN4vdZYiS+pBgDDxzIlM10r8XtUfzTo\n2gbz5BCQYMxqfL9tcrT2s5v3NOd133Bus9dtgD7nPVKOK4CqqrwQsb0DdF/LMj623+8RY8Qt5+pL\n+y0g/f34fY8ff/wR3tNXN6eEZVZFVaF/jtTpAASwSQI8AdM4YhpHNE2D/Z5EiXUeGWfMS4BziSON\nIWKcF8BatP2Atu3EFzaJqffGi84Abd/h4cBExqbxGKdb7X+cdazv8vq5b9sWu2GHw36PtqWi+XA4\nUNGI9T53oiBDL2C/KQwc8ZymmOYJ43jD29sZ18sF3ns8Pj7g+ekRD8ejqK2f8e7dO/R9j8vlDX/5\n1z/j85fP6PsOH969w+PjI7x3tMO5XoCS6VV52GE/9FQ+l4IAjutZsBfyfjMGn7MoMhs4ARO7vkc3\nDMiqQKrBJwXF0AtJf1bHUnOSz7D39GGSuiCEBeM4YxaFcy4F1nt0XY/WWbjGryEZhgq9wtQN1q8W\n4s1lAFE45axem7LXFJoAG6yAJkNUAGz2NmNMNd3f1rq2ChckFb5s+gvtMQRAgjynERBRjfkBAe2z\npiRqk7OuVXrPwaI+bs4KzhcYwz48LAtCSEBZfalUebvdM53zsHbdv61dUzJzKfU9q32gvKaYE0xB\nJaC2ymaA/Vsx98otay0/O4WQoqoHYcvd7/KQvaQY6dHUnmXtrywYZEdbGU45xZIRMv+MJSOqMjMD\nzpK8PBw4dRZiwhITitnWCBxtNUb85bIGt62Jw1YumIHcPwr6GiW8stRHELD1G5sCeQ2aFA1rqLZH\n+Q58/bc4vr58RSkZ8zLj5etXfP7lZ4zjFbvdDjAG0zTCOaqA0nZRl0jOOQRcxhsmHXc0Bk3TSmFB\ngCiGyEIwZ1jDlCea5rY4HA7Y7/fIueByOePzyyvexOy97Xv4pkUGMC9BzM3Jqsxiqp9zFpNdJrDs\n93umPgrbkWRuWm+sRjyedrsdTg8P2O92UOl603jsD3vsdjvkGKk+myaauxeaB9NfRYrSxSAjwTct\n1BzSOFc9oXSURRfDxjPxxVmLru2w2+2pjGta3C5XPlcteFkkNq5hoRkDQSljkKQQLEki4wt9oax1\nyNEioKAULrBORgorQCWPrh/OLIuCNRwnMNbDWQWoxGA4KnBINY6yDnpkWYSzMSgbRof+YxCmlyxJ\nkXPLed0o+POyUBn6a209XLa+K6WQubhnP2TxjVH2DYJeyryrr0F99YUjK9wyyLZwsZZNBAT3YJRZ\nFsVDXFNQVonwKmFOkkLlHNnlEtd0lMrGV8ksr28yNDYMIbCxln/Xza+ySXJttmNEW5iwlLUBWVVg\n98dvK8Fkg1FE0li4bOjLKT42yEnCCArDLjomHU1LoCDAFMBkaa6UMStk/WTxhgKBm+Zt/ZPnsaae\nqKpPIodLro2JV9PTDMqLLe835xy6vheD86vcd2ux8P34fY9ffvkFKSUZO7ng82fuM13fwzlbFV7j\nyLGTcRzrGlBKqV6N08TRRCP7iAJW1+u1gmj8vhVQpanK22G3Q4ixEjjnywUlF3TewziLsCx1ncul\ncARFAOtpnvl4MkKjjLqOn21Nyr332B8OaLzHw8MRj6cTYAzGcULjPPypwfF4oL/W5U0AuwmmFHRN\ni8fHR6BwLH8MAXEJAFZfzbZt0fddbYg0tdEZi93Qi9k+R0KPxyMeHh6q0uztyjGXEDi6CVBF4C2T\nnVOMSCHDdCw2ARbamihrLLiGWSAlg5DMBsBakx+BdY+5S4mSdXtrnKwFc5RUyqp1lVRJBffzhi31\ndrvGrQAI18EkJTH30JQzU/+gXlME2DKlG+JxacR9hOW0jsvrM8QNiLWCHMr65prsaCAqNAEzi/iZ\nku1RrxbpSjbkTCmFxsY6fp8J2vC5MxOdZYSeahMBewzHcBX0yhumve6fm/tU92q3AbcKSr22Bqvy\nTb+Hcg8IEoRy9X+2K2wF3erelVFfLQlvuEKTawb/yuho5mumb5CtPqZt61EWaXbNr/c57x0JvUoG\nUfGQU6qki556BesMx6tyWUcmt/u03p8K4KIULMuC/X6PYRiwLAumaaw/u1XhfT9+/yPME5YJuLyd\nqc4HEEOoI4JdRzXHOI4IkYBY5xuSxUskCb7Qc6vrezw/H9G0LWAslvQVyBxphLFwrhGSgB5g9Pu1\naOw6lq1gbSoZr2+vUrvlOoqoo9se3MtamUR59/yE/X5X1/gQErrWyngi1+VGvE0NClJYME8jzpcz\nXl5eAEBIxYRliWjbBu/fv8PHD+/xcCSINgwdGu8wXi94/fIFlyv7kIfDHu/fv8N+t0MKM16+kChp\nG49+GHDY9egajxwj5ijKFJCAXkJECECT1JOS6uOmaTDsdmg7VXhZWoWUxCRAoCpy2E81ArpwT1eg\nG6jcP4GMEDFPM8brRbyLV4K261v41lOhBAghi1Vlo2t4JWEFvMA6UaLTBasIae1/VlVTrqPnXj2Y\nSqm1PNPshbjJa2Ju9Z3MHHPMkPXXr16L1pia+qtPWiQZnqIAWWez9AzWkiCW81OiRQUY9KSMVYhS\nSgZENbhVd6uHJO+jdd6QQoO8ee334/P0OV5BLuPWvrOSTcZg28FsgTaYdSRRgT1NAq6gklzzUtRr\nuv5qBY2M7OlO0qa5z9HfK6WCGLf7KvtSayy8a9B1A3b7A0IqaJYg6ZjCplcwMSNKP+vE5qXkzLuj\naAu3Kh+9Zzoq71Def855uXc2wFdZR/eb3FIEiYIQw92e9bc6/iGAr+uViqR5mfDl62e8vL5gWWbs\n9wNKSbjdrmjaFov4exnn0DqPRrxTruOIy/WGeQmyjtA0MsWMa7jicrki5wznPToDWMNExK7r0PU9\nmqbBPC+Y5jPe3s54O18wTYuYrTtkcPxjFklnTAkhpNVUXkArbmo9mrZl4ZPHO0bVyULSS3O82+3Q\n9R2M4eMHaxGXgHmckEPAMi+4nc9UlBiDriHoBUA2swYNCmIK640oi85dBLd8UJ2YAy5zYDqlpw9Z\njgnX8xtTGxZuzk3TVIbT5Iwc5koEFGMQc5DFeBOFrsVozkiRAJy1Hp1raFq/MXylb9Sq5uKpm8o8\nyUsh01lS9QrTD3IFTmpzoQvsWpTqKF0tjMs6q10KakStshW62AmixwYJK8AEbBbYygigLtQEVSJV\nA1tE3BDkYjqJ25ipoy4ypa5npf6dpfqaPFLKGj2/ldfGTTMUYwKMKNhE4q2jj9VnABuGw1gYSxVT\nTAlJZK22EWNjbAp9AVO3GxOvkSzIqCf+/wn4umMXhL0ywj5YayCJ0RsGgl/eOYn3buHGUUIINvPq\nRpVfson4e4Va3jzvVvrN5lmThLhxq8cBPefYtHjnYH0DWwzCsohXWyD76Szl/m2LaZ4qqPr9+P2P\nl9evAPiev7y84Oeff8Y8z5LoaHC9XtA0bSUKVL2rCovr9YqXFxrBazS7lbX7Fjmyp+MkpQBWItx1\nrTfG4nKl2fvb2xu+vLxgXgL96gxVo3OgMqCRxMRFjPA1uUfVTKooLqXgdrlKkafAlEcxwCDPezjs\n4Zzj2KPhejFPE97e3nA5nzGPPPd5mmCNwXG/Q9Mc0TgPOAeXMxqfUfJ9Ot8WPCqlMHlRPvOqbui7\nDm3TwlkCi9M4oYzi9+SoIjXGcFwxJdkfCOCkuFTUJ+UkwBcBpeQdkveA7wHbbczq/cYGIFGiLyMv\nCoTrNdySGXWMT0egjYwSWScmxOvP6RpqS4Etm80KfC4osFT3GVXmKhDE/ZnXUdYqAdWM/NJ2PEGv\nQYxiTC9qYz6UgDu6lwkAT44nixKMwBqJET6GehCu6yDWpCzxedF/X8kV9Y5MMCbDFQdrufJvw2u0\nICeCp3uDAmuxqgrorymgjwKbmdnEqprm99b1WYGllLPUKCvr/9uH3Fd2TdTiWBGJrwoY5jWRGUC9\nRzTBOloZk8mrDQAgFgy+Qds2BF3l7aeCMgKiFFeWHdh4yVgDk9d9cvsat3HzKVEZocC8jk+rCsw5\nVxUt34+/j2MUle400Ual7XvWLp41+H6/B2AYgCKm7daxOTYo0ITvJXgsS8A4McxknGYm0hf6v6bC\nGr2Aa+4sY0hqLL/WiVnA0omArLUYBu4fulY7qx66pvqXjiNDuTTsC7AYxxFD36NxLKa9E2N1UDW5\nzBOmcRT/Yk+1UKEapx86tK3ndEFKyDbgdo2Yp5E+X02DvutwOjwzOMtavH75shIrzuHpdEIjYLOB\nqfe+DHmI33EHtRfRpHvnxfuwG9ANAwCGoMUUEUoWZa+wzdJDKZGRNP1QQSqQkM9IMoZHQhXIcI5A\nf9f1GHYDmq4DnEXWngOoqYsayARd+41l4NOv/lMOVfYF7RNKqX5gOXPKQUERJRDWOlxJ+CIemfxX\nrZuz7nuy9tUArVKQJOgL1lI9lakapr+w7NlZe4IMTW8sK1K3AfhLDWLRPTjG7Rg9oJveCmgVVAuY\nTBFBUsUZoN2HXMtSwaiqpHaOIGCRPlNVyEX30nU8ki+TQNGWQNm+htrD5CL3hBEvMwXQZPS1yH7j\nqCxL8h7pF9WZBL0Ai8ttwevlhr5rYY1F1/U4HiQYQkQ/MVBgkVNGRoZRNxVnAefYr+cCbEYeSWA5\neY2RHsjqhY31fTE10IcCImPteh+A4Ke16+/8rY5/COBLfTtCCDImNNHgTUCpAqLE8zzRhNcYdH2H\nYgzGccTlcsX1NmLejNQBlNjOMxd75xz6pqkfUO8AL4UT2f0Z13Ek2z/NiDJ+UmCxhIRpWRDETC+I\nOaU2ALUZGXq0XYucE6ZxREpU5lhLbyJjmVSlI5DWWszTggU0pzclw1uLMC+IcUEKAUmMlNWzBECN\neFUEvhSygbVYcw5dS+Nmb1ePjgqShACzTXMZx2r6TplqC1u4/NoC5DBLGomBl6YqJUqBAY47xhT4\nAZc0Gl1c2GA4AFZAE9A7SZMRzRoBb40jiw4qkLgurX4hLKzZOCioxwUbqOiCXctXblPSgxQDY3SZ\nvAdy1HuLcuPV48lI4wDcswH6uwp40qwz1hHELeNR6s+jPlfJBcYSVCEroq0B5NxVtVTqIgrZ0FNy\nAML6s2WbhCIjKdLEkWXnyEvcsCd1HzSUMlO9VWSmneNJTBEy8tljY6CNzXYkprJT5t675r82zrIF\nw7b/XuQ6umJFyblJPqkg3cqkNI0XxcsFsZrxS3NZFR+bNC3jUGQcqXzTIKzgNK+8Al8xqu/NPbfm\nxaQ4LpqEVrCEBfMiXngN14JxGhGWBcp8fT9+3yOllVGkt8lIZdR+z3QrcD1ksR/gvcdutwcAjONU\nkwlvtxGAQdv0MAWYxhtuohDrug7DMFT2zDcN2rZDAfB2PuNyvWAcJzYpkk7sIX4TSyD7lxLJBdln\n+DMeTdugazs0ktaXc5GULz6etbJn7loZ1WplfDMSoIURL5QFr6+vOJ/fsIwTDGQ8AjQPXsRQu0iE\nuDKIMQYSPQBy18EaNiq7YUDTtDCGqoZlomG/jm+mlHA+nwFwPNgtEpfdtnXsvZSMZZrYRHl+/rIU\noVn2f6qFohATDRUKjaE3IQQsF8WmMuoF0tBAxiN9Q4WEXfcBVSnFELGk7Wg67AAAIABJREFUUNMs\njayDEHVWyZBikGtCLitAY8XAVx/TWMsR+8yYe4NSC2lrHNcjAArny/JVFUFbRVH1hBLwKYna2AuI\nBrBIpUqB/o96HqUAsAxUMNIQVSAp//q5tl9br66t/4qu/2qoTsVRqoz+qiz+BvM3WJX68rogzQLS\n+pNk7Ve2fhuzrmMs22uju/rW96vuQ/JVmycYwJEAszBAXkmT2twIM94KqKUjI0XuJ92zf2XwKyBn\nkXEpU4rM2Kymw7UeAPeZsLHl2pJZVJL5VcllICb3c03967oOowYofTOa+v34fQ+t4NiPWjhjkQ3T\nzq23opRd36+qTC1r0rm1VNa2XYdxmvDl5QUvL2+YQ+DoY2HFknJBmnlvTDP9K7egqSotFcACgK5r\nYYy5C+RiXUNVVLAWb2+vOL+9Qq0vtN7r2p51jrWS7mg2yamlgvd918qaBwHjWrStZ3803WBNRgwN\ngWlDL+dd32G/G+CdxzyNeH15xevLC5Z5Jol0OHDc2NoK0qkyR19r03gMEn6WAaSYYZ3nVIzzKNYj\nViIZiJm9AjLHNKsPn117FsIb66iZvmeCPjEgwztA0iidc2i6Br5pYL1DKkLQAzXIyzmPOtKna2uR\narOIMlh8G7X+VvCrkuWbf9+ukdv7Sq9RTfOtiBfqmgfommhhXVOJoSKTKqoatsZIkjtBfE66JJSS\nACGs9Hm3653+HVj3R2cIqOjeQguJgJxLVSKyR4r3exGfoE6dEEwsax+4uRZb+4CiPZjuPdJzQPoX\nJccqAVE2ndl/hcjX1+okNbQACHyTqrJZiXgNykmF55pyQUz8uk4z/o//8B/xX/76b/Vx3z8+43/8\n7/+EYdihSYlesNOMFLXvp2qz2j9YAw6yGpmiyvW16z2bhdjyVnxArYJa63vDq6j/6bUx8l5VePFv\nevxDAF9t2yKmCDOPUH+Fg/ihnE4nkXYHXG8XnM9vmKYJwzBgHEecz5caAxxihPeNSItpOj+OE0op\nGIYefT8AKIjLjJw5OjhNM8Zxwu02YomRzGiB+HhZxFxQcsASeLOlxFncbZHBsZIdhqFHKQU3keoq\nk8NFxKAUV5PfSi4YbzfEEOEsjS475zDaEbfrFbfLGTlFdNJYWGFwjKMv1jRPlB1mgk4pRXoM7ejf\ntd/v8HA8wlmLECibXqYZKTAwwMqml28cX9x1bU2SMSUCUQCEYpHkWsEaZC/sqbDIBZDGSMAZa2qz\n55umJmfR5N1CTceLIMpbbxNnJJFPxw42RXdKCRlM1DMCLNHcUBoMAcWsNTSkRJGiVuCMLYChY48A\nNDrdbD7PJBzW8ZcV6CFopGCnFt0KKBWIr5UV5shsNiPnxJzfySiTzsEreCZKJFVAWFOlxyiipJPN\nXTeV2mDo+Tiet44D0yjf1utXjVX13PQGNuv/EBwS/E5aiqqs2wJ+uG8wttf/V41J+fVC+ZtFei5I\nQE2+UsatHsYII8XirB96NI3HEpLSYWsTI9de1XLKcqniS9kwvX45058CBZuNQjcXbVFFxSFMlo6W\nOQekuEb9kk0dMI435ByFzfl+/N7HbjcIiz0ipgVd3+J4eMDzu3d4fn7G09MTPn/+ire3M0M9phm7\nYY8vn7/i9e2VJsCABHYk7HctSskYxxm36w0pZwyPA/b7A/1XpgkpselYYsDr6yuu1xsAAkbWecQ5\noDUOMReEaULMGRkGs46OlUIgw9LI+PT0BGcd94jbFVv1pZCasNZhGHp4v45ghrDQMxEP8NahJEbL\nv728ovUEzA77PYaBKjHvPYGgZUHIGYsY3KMUNI6ej7vdgOPhgMOOwOH1ekaSxEyTVUFAYHCaZ1hj\n8Pz4hL7rUUTFYlDgbAdjOS6XnEFbGhjbCBiizGikXUAp8J5EUD/08G2HYryMTqyjzhqYgVI2BFSD\n1nlYz/EYHbur3luGCgDfWI7vNH5VZmlx6R2sbQCgjoarmpr3xuqlBVl/nPNCeNx7fG1V2sCvvcfU\nX6OOlm/ea6qkHVBYUBvZI5zjvqjjhrrmlQ14ZK1FkS9VChtRoWkgQSmzqBzumwgat6/eeDrOG2Kq\n511kH8Nmn7DCeJuNWllBr+0+tgJx5a5w16MU8bwR/zZtorZ70hZAypk+d0pMlVRgi4NrSF44mxGN\n+IxiDaxpG/r/tF1b93ndT2A2+3/RfQAy2liqcs1XHzrxRimlNlA6xoj5/vpSvcXPftu2NXG1ERDs\nfD6jFDaGp8cTwjLj9fUVOvL4/fj7OPb7HXLKcM5LCrtFTImAmBWN/F3aLGueELKsVwVt1+D4cMTp\n8RHnywW324jbbUQG1fAFqCPlswRYxChkgYDuIQZJNiTo5vyaxq5Aas65GttrUl6KUdSL955/1npg\nxzofzqHkBO8tvLNonIVtLBW+jnVtCDOJe0ni9t6j61oCUx1J8pjZnx33exgUvHz5jNs44u3rSx0P\n3e/3OD2cxGPMo/UeXtajpuGI/G0cMc8TVXC+RdfvuD47IXM9gaaYC8KsFhmG1ipq6K8qX8tpFfYb\nksAodi2qsK3K50IvL2cNoiXBprVqKgk5ipl9oS9Y07RwTSupnIK+5ax4VlX9WQgxUNb10cDUnsoU\nIdfLCi5t179VmS3+vCnXSRtdv7hlbkbDBajkxIPU/JAUeQNJ5E2rYkxeZxHwzzorBL2pCi56Goc1\nwV5Uqk3j5WdlT5PrLrb/9/V7XgEe9Y0EUFXxKUYROqw2JxCVkn4etEfg/pbr9/i+m7v1XN9fFVhA\nwMN6XgoQad+xPvTdtYSC04lWB2rrkzQEQIDX//0//F/4888LgP8NwP8M4P/E55f/Ff/xn/9v/E//\nw38HC8DFjfK8aB+jvZYIbGSiaKumq4ApUEdhneXUzIJSexZ+qaKRD6rdD+1zDHL+/2ek/h8C+Hp8\nPGEJC5Y4w1qLtuvwcDrh+d0zTqcHNE2D15c3vHx9wdvrGyYpWKkQm2XulAVQ0zZoxNRdTSPVB4XM\nAkT2zgSPeZyY1EipCKz3MD4DMQGW8lRtdABUeaUCPlQF7LDb7WFMoQfMPNfmXUcrqlyyFKpAcqkL\nQN912O/26PqerHlai+emXRViTs28S8E4jbheL5iXGUAW74ce+2GHw26Hk5j1T+OIy/mM89sbZ/el\nYPLOY7zdEOYJXePQHXochlbGGdiokVUx9cOfYkFa5o10Uj5sbYeh38O2Og+/RsWvEfNWRh+BooiU\nXRebkiXBEJRkc3RM3hPrBBAS36qNFwo2rHddoKCkiKZKyfdRv1EXJGVW+K1cATlgBWeULd7+G7B6\ntZTIk+EYIypQJBIlSpcVLBSmPMmoCRRMjRE5JnlMQ+N02dQAebEyVlPkdVTAxuj4jq0m17myAqk+\nhrGr14iCe8pabZey+1l3GYGJ61ivFmkaBLGODm6VFvfX6lvW4W7xVICwCCinozzgqDFs5r2ThTE1\nLHh2w4Cu6zHP8nqxqhUqY1c3PvXEEbPHjT9PyUUYrfWU9D3XLwjDkkRqXAz/nmJE41tocxOj+h+1\n2O0GpLQaS38/ft9DvUqYFkxz+P1hh4cHejwqA/76+lIVSqo4GccJb29sPozhuLrzHMNO4hvHQp8h\nKwVGVBmWEvVl4aiaGpwG+vp1/YCuH5AtsIgpbkqpMrzWUh0wDEM1sV+WBYuMRKrfFsB7VkdSut5X\ngqPrWgx9h078VJwwk2TZd2gbh90wCPC1JihfzxeOd57PWGLE89Mznk4n7Hc77IcBp8MR756e0LYN\nlmnGX/71z7jdrtjtBxz3Bzw8PAAArpcLxttVAmRO6JNHXLhvp7BgzAlNK0mOOeFymVDOGU1HFRkk\nZv5wOKDtqBJTb415noE7r62MGO+Bd6rz2joSFkUlp6Nj22bBC9CRATZNEPWGu/eTMlhZbb32W/BF\nf5aqAT0z/dm8MsAlSyrbZt8Q1TMtCzQBrHCswRp44ytw4mCQkkXJmsJraNCuIBLWv0cZF40xwhsL\n51vkYugrWZQgkP3UOMCwlWDsCf+NlgUNrMvIRckbC+9FsZLlNW3Xd51BwgbkEmBsqyhT9n6tuzcN\nhL67eSWt9LrrXnjH1m8IK1SCA6sivGzoDDUN9g4mkpTS9WG322HY7TDNMmq4UfVtz1FH1SwIzDn5\n7JElT7UBhHV3QKuCe/fnvz6+Poc25mqp4JyDd7TrUIXPd+Dr7+fYdX1dx5t2BTlCiBU4nsTw3hjA\ne/UUJQgAI+mszmIJMuIYInsc71FgBbyPmJcZkwBYTUNAWMcXS8pV1aN7ifeeKjS3qgoB1sm+cfUe\nq36AWMNULDz6nnWXMwY5ByEiHbyoQkj4e3hvgdIIsFKwLBP6vsXj4wP+8OkT9n2PcRxpOTBN4mUc\nscyz1P8FT48P+PjxI96/e4ehp9jhdr3BO4e28ShoVp8ma8RwvoVvWxjnkdOCrGSysZUMhvVrEqtz\ncJ5rixHVsI48GhhY56GWF2bz+d8C1rAWJhtYk5CSJAI7BeSlNla1mJVwERk548MIgJTpw+b1cSFj\nltJ/WCHqUTIiWa466rmtzQEghSBgvKUHNRGtO1JfASLVBdS90Jnan1gHOMOpmJACUkhATrClVIuB\nlAxDQqC1sygNY5DaJyCJJ/ZWKczXt4Zp1SRm8fviZNU6XaW9hVegCmsfqF6cKrTQ1OPaJ0GlF+xn\ndMxpO5my9iYrSWGt7n331giQd5bgMARIVYxgUwvIUp5LQUgcb1wkyXWaF/zy9QX/+te/gqDXv5cV\n5N+joODL6/+C2zihaynoaZqGdhnzAgeOGUN8Qq0R1aZzd/uHnnM95H3la1Og08lrz5v3Qz02IWCj\nRU4OKS3YmM39TY5/COCr6brKZoYQoAttI0qpeZ5wuZyRUsJuP6Apu+pZohHdLFSsFO4Wy8x/V2+f\n8XbDPE2ihqJpnIHBtATYJcE6NrLLHBBCQtt1aLpe0Fka8XLqSjYR59B0LQ6HIx6ORxjD0UqAkfWN\nb5BThI45ee8kRngv8nlXDYrXus5IUzWgaxoAZNcbKcZjihinGy7nCy6XC6/HbmA6yonn8eH9E96/\nf4fdbsDry1f8WZqRruvw/HTCw8MRzjm8fHlBWCa03uFhv8dxN6BvGkSbsEBAQvF78laLt1TZRtdw\nbr5pW7RDj6bryCLDIIvKoRRuGmS8G46NQBMRC1zDhEeAJsrLMiPOC6aFsc0wNI9mwACvmRGfMlgr\nBTpHGI0UsMUART64KJDoVwX7ZbHaAGR2s+BVs/lN0bw2Rq4aPGqkPBVQKrU11aS4SOiCMZBkFRBo\nK/dKwXXU0cDAAnZtCHJi48VRh4wYuRGxOY7ckOqNoz4EqhRgmg2Aeq2NlbFVcOHdsuk6kR/r5vDN\n4i7NnppkbptFFlcQJZZlM1Rf37YQX9VTdWOB+dU5pJKRo55PQpRZ/pjVe4a/512DYbfH4XikGnOa\nyV7dKQhtfX+TzK+r+qBuaLnU16ZAdckF2eT62WWhsW5glbm39+lxMUQsdoEz9LbouhZhaRH9NyMx\n34/f5Tgej1iWBW9vb4hxAVA27596oNxgjEHX9QKG8r1njUll1DAMeHp8hxBniS2PHBMwDmFZMM8L\njHUkRPZ7PHQdvn55wdSFmsYVUwKMQ9dyfYwxVH8JYwyMs/Uz1XhffX0UGGu7TpQEZg1tEaXhfr/H\n8bTjY0FCF7oWQ9vBO3p0WBSUtkFqWniL6lmWEqPnx/GG168EAH3T4v27Zzw9nvD0+IiH04nNyPv3\naLzHX/7yr/jn//TP6PseHz+8w9PpBGMNLucLR/BR8Hw64XDYwwhjSDxb/Jr+H/beLWa37bzv+o3D\nPLyn77TW2tv2tndiJyRuQkFBKk0JTaKqEnABveECUPcFx0LsRBWUFlUkUVCjQJFQgSCBRBA3VA1E\nRJWKuCAJsdsmdpw0NXFiJ3G8T97Htdda3+l933kaY3DxPGPM+a29HS6QZUveU/r24Tu8h/nOOcbz\n/J//YRRfQmO8TlwnYoo02burqWlX0uBXKtGZlLFFmqeb7qn9JZ9LZ32ZEEtAwZH9fi8AkBaT+f17\nlaUC5JXZZK8cmTjMYH/ebxBmtPQQIttUYQzZM2MJamTJfU4GXh5ZOp4PGbjIOhSmBOTABDGUTlC8\nJg2S0CR6mZlVZqwhBdljErPkIxf7s7fKzK7OSZl5bVtK6QrQkwd6WpskXSZLc7h4XwXgSur+EpcT\n8/l3c3NpnhpiLPedGCVIZ/mz5WM9/d95yJk0cAanzQ85LVklOVF91GLk8mbP4+tbnHHsdif0w0Ti\nQEwKCjJfX2WfSzPLILMsjA6scjOSz7mwsu820XdBwLsMDqsMjGEYlOVS4SsZuhaw/P3jm+aYpkCY\nAsMwClsoJmFFpljqhnA8EuNUGOwGU+wynHXCDHIiVb+9vaUfBqYY8UkYOWLMPpbwkwyG53uYfLm7\nDOzK2uEyswOKHUlSVqiEUVntv8TnKF+XwpD01JXHORnOWuvJk+Q8fDVJWI9TDArIix/fpl1zcXLG\nbr2FELl58oSr62tur67UO0/QaGcMtXX4xmMS3Dy5JE2Bs9Mzmrbh7PS0BJL5SoA7IRx0gKGu5R5N\nGJyvqH2F03MpG7X0EKLuUeadelJlOaOsM/mdyT/LvpLm/14qE7y1JAc2is9sYZkZq8bkiOcf5l3e\nV6KuEVm/0YU0EyVMkmFGTn3MS3wBeJ4C4ZdsL/T1533AKmEh6bBZwDnIbIGUpAZ3OB3WO6mR9Sss\nhvY29z9ay0cSSQeLwyC2RMKqzr5ZAvoZa0kkxhAgJIZxvPM15tR7fWEiE0VZTlESDJV9F/Jemxm0\n+t6zD6UQTOa18c5wJKknloJTJVhEH8+qX2jxolzsy4qBYRCbmKSM84j0KtnPLSZhNIYEYwgMIdAP\nE8e+59j1dP3AG28/1kf9wadWkR8CoO87dps1MPLSV9/i6uaq/Ebta85WDhuMGv4nYVuWlsOQTEKU\ndALohmlOwp7f1OxlNwwjVTUtFFeBGC1G05bD9BSQ9nU4viWAr77vGFQiIekbSf+NRsNHuqPIRqYx\ncHs8SCyuc3SDph02kmq4Xm9U9qjRwV68QIZ+ou8FXDEWVus1290J0Vim+Ig+BOIUmcIoFNeqJiWl\na4aAcQ6/QNQzWhpC4OrqipSirKlKv3XG4p34fRlj2KzX3FcG2zRNGuGusqi2xeji5K2lcoYUA9M0\n0B+PHA97kk4SU0qMQ48xlpOTLQ/u3+Pi/Ew2lvWayju64579zbWkjI09u82a3XZL2zZ0+72YVCZo\na2HNrFYNBnSiKckoBfmdEkm9WOq6wmS2zWaDr2rMIhklaqtQZrLGyLnMRsImF90K9ah+PWT23vFA\nfzjK+baGum6o6pqqrkoyzgw45ekC5GlK1qDbiBrQzgU0qexi85RAj5neqjIU/bkhA2fiEYXJCJp4\nXsnfGJUQSrNhnWwu+XFiiDqlSKWBzhPllBEj7hbQZXGOUoRP46igWSjJpilFCHICYkoLDy9NPivs\nAwF9infM4vGjPkeR12jxYs1T8kR9L/k7ywapbKi50UrzdH851YkxFOBRhm9mZl4tznlkNuksySeL\nRDFhX8lrrD1s1luGIWBdJRLkpBu9FlFiRB1JSdmLZHaXaPhntpzQro2RJs4mARScFhvZ2Dsz07Jh\ntq88vhYGyjgNWAt17WlsRV0JAJl4H/j6ZjjGcaDvOw6HA9M00bYNu91Wot2PB25v9wqKiXT8sBcJ\nfVU37Pd7UoKmWRV/na6Xn8ukXbyjphjY7w+lMDuxlu1mx5PLa/me96JsUEaxq+S6HSaZ/lrn8bWA\n7BksT0kShUPcq3+VhpV4p8XxhDGWpmk4OTnl/Pycza6VQYJ6f63allUjQxaLStKVit8dbrm5ueHR\nO++QNHnWaWLfarXi7EyArt12y2a7ofKOw/6Gt8YBZy1dd2C3XXN6esrZboszcHN9zdtvv0XlPfcu\n7nF2dkpdV/THI6mYCIs/jPynhnaot6dzltVmTaVBEU5j40f1RSsM0+IPKYxaMY5HQQhTmNd5LR2H\nQRgFg/gkSrpxTVM3IoHUijav/eQ1LK/N+Z9pAVKZp1lg+tmRSjOxlPJlFkD+7+UXLNZnBZqWzGMB\nQeZiPMUs85ZXnSfQwlSlFODlMEaHRnPxGkIoA8T8vLlGWQJiT8vTZ4+rVFgjT792SdNasK+MubP3\nlr3iDtrnIM1rZmaBmcW+ggIIufFcvselxEMkla7UV/LRiPHwFMRPb4qRMUSGMXB76Pi/fv0LvPb2\n2+XxLk7P+PCDE5KxMtmPFBaC1SZOmkH1OcKQkvj0OWW1V3b2CpO1aHzPhnVmksw/W8oqM+AbQqCq\nJCTpeDyKaflTn8/7xzfuMDhlUlTECMM00A/SaDZNQ900pKvrUk97V0ktN4pTdVM3tFWLwXLoOm4O\nR4YxzAbpQWvD3Kybu2wf+R7z2mit7ilRyzAdHifxLMXKupHvk8p7CV1BGFwpRtpGFCVNXWMtAnCM\nExBnZmsGknU47Ay0dcNuu+Pe6Tm7Zg39yO3hwOH2WvbbYSwEBWcdvq5pnMdbSc5OUyCOEySKn2S7\nakXSHYOw6kMArLI0N6xWa3zVYKOEmhm1CpH1wJSExRTygHtmmwpQQCE6pMXan9llUXuYpACayQmz\nyYDVdcd5jBfQ3SitKqFkGQXJc89SkHe9esrz5/9PiRQSJkkqu5jpS0+TP/Ol/1geKheyhksF9BJv\nypR/LXdr6tEocvDEXNfL+jbKYHdUdnsUOxp5HZMM1aMEeuS0xkHrqLJ2qxFcsjClSFBVzzgM9AoK\nDTrkjjCb9gNJPTQljRL1gLZKOJChlLFLuCR7NkasDprkdaTCAlYkUUgHSUAsh1d/YQF5nXMUH00W\nQONCHpqSVWAuEhCgS4zog+wrMRCTYZgU9OoG9seO47FXi4C8932amfEF8CkA2trhbOCLX36JqxtY\nyiGH6RNcHY882DpiEL9S4wzR5nOQz0YC43DeYiaR4IYYaGph1Yeo1gipEMKEBKHrwjiOVFkObI26\n6X/9jm8J4Ovq6kokIocD1jouLs65/+CBUMy7nv3+wM3NLcfDgePhwO3NNTEmVquVaq+leK1qMRYW\n3Xoo4JRcoIlpGojRMo4twzjSD/rVj9I0I1GzojM2jNNINwyElEpsfQE0lMZ5HI/EEAvDw3vx+RDa\noS0bkrGmyFCEWdCTUuJwOLJZrws13jtpSGRRGeiOR21eDJXPOnTDei2ylbryMllMkb47EqacyigG\n97vVqdAYQ+Dy0SNubm7o+57Tkx3bVUNbV1T6c0G7k9bGBueqMkl3vtIvj/cVdbumqmtiQhInpkCy\nUFJRVKKY5WYx5iXMlGYBnQzFkGO8gyLThqquaVcrmlWLq7xuGDOghrU6SZFFzQquxB2wS89VBrwy\nYFaKyyRgVZ6wLo8ZtNGvxMIUXSbGWQ4nA3QBvZxzWPU3iCXxY36/JENSw/ksd13KN0qzlN8nWR4i\nYJdcy1ZBsEnZEbnhSqWoz7LIGHOimFzf+bHl9Uc9LzqzMbNE0CyaMrSxyO8+A4VFl+9mdkEypiSd\nzVIjFqCXFAAmN1N5pTXClEtJ2V8JppRkE5mkKQlasF3f3nJ5uxfz4apms97ifa3gmG6446jmzdoE\nGgM+Rzmrn5dN5Z5eUr+FCTJLm5bnsgCv5El8pnqPpYAyRhiedfTCynh/GP9NcVxdXdJ1wh52znLv\n3j0ePHjAarViv99ze3vg6kq8vPqu5+bmhhgj682WKQj7tW0kTVGm5DP463Vd7A/im+J8RU6NHceJ\n/f7A8dgpICHsRVdJ4dYNg+wzJumgQIY1MQj7cZpG+l5keZv1Gu8k6QvQ6b0tiYYpQt/1hNhzOOzp\nug5rRdK4aVdAlIm691TOkkKk7w50Xcc0jZiU8DbvHxLUUFceb2WkEcaRaeg53Eq66aptWW9XPPeh\nDxCmievLJxyOB/a3e6ZxZHV6Sl058X9BYuNTTARE1i2R714KR5X+N21Ds2rlnDa1DD2SyIT6cWAK\nE85J4p7TgQc6ATfMEnTQXiyKoawk7YXSLHjvaZuWtmlFLmoNxxTVT80VP0n0Me7sEGZe3/K6u2Qp\nyeBiHiws2VJ32EiLtQfuAkd35W66x+TmxmS2QiohLoVNtDCjnoKyLp5iwS2HGEtgawm0ZGlonoQv\nGVfLvwXK3+bvZ2PfLP2P2tCUodeCqfX0kYyDaGcALWkTZud9Bu5K2svc2sy/l19TeJeMXZh0U46T\nV+BrDJFf+swXeP0pr5UnV58gxku+48PPMk5h9r5T8Kr4RhoNHLCZyU1hkMhgxYnEJs3Dptlb5e6w\nabkf5+RUyzxwEgbOLF3L5/3945vjECN18Wscs5phmnSALNJHsY6Y6+SkaarWOpq6pa4aYkzc7CU8\nRQbCVpkZ0x2J2/K6n+8TtdkwC3C1sJfm+zkpKGb03sz+S1VVKeNIGCuyz8nPDJI8mUM7nJlrXoUo\n8M6yXa05Pznh9OSUTbvChMjh+pqpO3C8uWZ/2FM5T53B6ih+WY2vWK1X0m9UFauNeCjXtSRRTioH\nBbnuxV7CsVqt2e52NO0Kaz1WGUEpUXwPrXoly99qba06taQ9fRnOlnXKUKa/KXNSdfhh50FOqeSt\nyCqTcaj5rgAoKVff8e4AIGVliPYT8ySlAGYoMFX+DSp7Xdz7izXeOlu8LmXNT+V1Z8ZXVmEYNEAl\n7wU2YpMlGkMKkXEYVYKqxWyaA2FSCsrym+R1aV2fgdn8/GEK9OOkg3y9DoPKIZWBlH2ITUn8NRiV\nzltrIcQSyhIXn20GbTKrmvJO5VNBr30Bc9QyJ38mZfhiofQyWeq6YBRrz5eteqS11ccKMqifkgzp\nu3HkzcdPeHh5w6qtWa/X9MNI10903cixH+iHSe8Xy259ws3hE3qB/RACen2Ss92OVWU5dkceXT7h\naTkkJPrpBcaponKyDwWSMr5Mua6kR8x9bR6oRood0zTLGvOX/L44lZkxAAAgAElEQVTUQLOqQMDp\nDAZ/vY5vCeCr6wbGceBwEKngxcV9nnnwDJX3vPPwsXqrHBj6gRh0sTUU6ZwzFpzRSOm5CFgWFPkG\nd158s4yxXF1f89bDd7jd7xVhtwWN70dpNnJaorWN3LxaPOebNeuVa2V9dJ2kp1RekqO895ASx32i\nPx7uGEXKtKembRoxAtYJobcGY6IOZqXB8JoulFIsho4QGYaO7ihmydM4Yaywy1bnp5xsN8QQ2N/u\nub665PbmlhAjm/Va5S5CK87yAtH5BmKKeOdZrdes2pWa8mlTpqbM0TimJIDWlHQSknTTUx+mvHgt\nBtJyk+XpCAoApajRxxU6o8DXNXVT4Ssnnl4xagKhsCas0paNsnwE1BEJD0nkDajpr2z0s+Qwf0kD\nNjOhltI8mZTZUiTfSUOBsqjOkzZlemnEc54AG5TRlCCZWN7zNGWPr9lLC0MBw95rI3NOTDynaaLv\nEyEOMoHRFBR5p/KZ5ES0cuoVzCrN0uK95P92OcVM/zAvlGK0j4BFi2ZPGiDddcqpM6XJyI1YBrss\n86YTUm4IdUJoDKTZWydEYapNMZtARvbdwP/92d/ltUXyyb2zcz7+sY+wWm/w44gZBpFI5vcYk0w5\nzWzIapibtiXrQq4T8cqxdYVJ4tmW3edm6rhGNSvQ6rwnxqkUNdaA85YqigFrKlO4949v5LHf77Vh\nHWjbhnv37nFxcY61jqvra25uboT5Ms33ekrqHWkEVDJGpOhiXo6sNWroSkpK7U803pewkCeXl1xe\nXnHoOqyVVFwp3C2DnTgcj3Rjj61zhLY8bvZaCVOQ6PcYabTw7zttpJxjtVphrRVpQT9w+eQx0Ywc\nDvJ+nXNstxsBvtIC+PKWGGQiWleVpG75SgYvafaGCSEw9h2dgWmUlNLKeer1RliNxhCGgcsnT3jy\n5DHH4wHvPPcuLthu1lgS49Bhmoa2qfHJ0nUdISYqKwmo1jv6vsdYS93UtG1bCvppmmZ2Q0rc8WCx\nVgqxci/L4GrJfMj+HvmzzDWCVwlpZhvEmJhMVIN4N6cjKruClLRBXAxVYLEuUH6eQfC0BI0ys3UB\nPD3N9omLNTo/XjYWFjPg+b2JPGneX/TFlAYg5PVVNmdpYvNzRQ3pyfuAPo9T0E+sBcSzK4U5aCbv\nIfnzyA1M3gflPCQIi0YhpSJZz+85A1/vYjmnLOGfU9qSQWWjywafp9buu+dyCZBlpplo+Oe2MyGk\n6SnJXvPo8pqvvvXeXiuXNy9g3HOsqoaOTphXk3i1eAeVVUsF/XzktITF0Cq/RsigXWEWZA/aDB7q\nZ5Xfk8v1H/EOs24G3IVR/z7j65vnqJumgL9DNvkOAVdVYObE3nzb5loqJgH/a02H7sPEfr8vJvR+\n4fWWZZFLsPru/ZCBL6NqlAUUsLjenMvNfSq+c1lxgN6TIQQZoqREGEfxElP5VMGG9He9d7RVzWa9\n5uL0lNPdjraqCePE4XCUoeTYMfY9KURsZe+eAx2ArNdrmrYVO5W2KUETwzTCOKqsS9b/ddNSNy1N\n29I07QJYN+SEZRmoJumzngL8SeoRhbwPtBbOg/u0XGNU1bD0/VKuGCmZUhcmYwTeikUsqVhEKmVz\njvuCXKvr5p9n7kDK7CJrZik7Quqoq7p8PsJC1UdRRQXl9SVhmZsF41bXdmMM1qudAyrxLLYigTCN\njJr+WbxwUySqDUvBA/VNLENYJpVFxigSuuOxY1I7I5RMsFSrlDXdikWB9I8zW9oakVumFMswKu+V\nEgqhPUc5n/nIhIL5frkDPRolyZBRT1P26byny5IcF581ZWAfTR6gBJ7c7PnFT/0mL7/5Znn4B+cX\n/MnvfI6UYBxlyDJNUfvLyEeevccrbz7k9vhC+Zuz7Y6PP/8M1lqOJf73veWQshdL0rdjiXskrVsy\ncz2/3XlvlL1er4unhidOB4CkHEjgmMalZ/LX5/iWAL7Ep8DTdR2JQNM0YAxd33PsDqSUqKqGzXbL\nbuhJRrSodeUZp+yLgjKx8hRkZu1kc1FjoG1bdic71tstTy6vuLm9lQ1IKZ1GWUSH29sis5TCWG6w\nYRgKqJBjr7MPRt8P5OSpupJCetTEicFa0MIlG61650kt1L4qtM6kcqvKil6+qjxON5Vx7HHeqYm5\n+LZst2t267V6cgnzbb1qiFPg9de+ymG/53g4klKkbRouzk45OztToEnkXaLn142278VkMoH1FVW7\nwkwTEYruGQxDiKQwygzBOqx3YOWmsUb10dZjjE7OrS0NiSksK00kTFYjijUVJeoGnNTjysrkwTqn\nvmAisZRNJmJjBnOAmBTQy9LKMKf4GQuZxhzl95f68yWbL0WdMCRTFm5AvTqMlM55Cu8NqCbeGH1M\nBaoMefKf/Q7MbPZr1KzSOVKyTJMpkpOnk1BkalxTeXmdYnDrsVY8FEA3n5gKg042EFsArRjnhLmM\nVZXFUad9hQmXUvn/vHHmv7kLKGv6SS6+8nSMRUOYFHx66r6XDSi/elOavhilscpxv2NMTBF+5TO/\nwxvvjDydfPLFP3qV7/2ujxZQbRgnDsd+BpEXr9t7DyEIA0yPMvnU584FRbQTmAghs0Dz789TuIiw\nxqJzOhURj4M4CcXbWUN07wNf3wxHNoHPZtCZ1bdMGmqahqZt2e12eC9hH9uTHX0/cnN9Uyby+Rp3\nVtYuEozTKGwvZ8Vna7fDec/Voyccu45xnHCVXDsC5vYYZYMNcaSikntJJ5+ZnSSeK5LwN4WJGG1p\nejMQnpugLN1wDSVJLjfGVl8nKTNyLOvVSuSN6m03jgNjlKSfZrtjt9txfnbC6W6Dd06K1DFSN451\nW+Od5dE7D3n1lVeovMjht+sVp2dnnJ2cFpDFYmjriqZuqJxlCsKMS2mS+PnNGqfGyi7LUIywp3Nw\njfMVdbvC+Wped6xIYmbQZAYC8mebkhrnojNc48qaugQdQoqkWoJZjNOvJB4j6Q7GL2u3kcW+rB0s\nQA3kNJc1De4y0XKTaIx5NxMZpBA3s3xJ9qbs05F9rgTLMcZBDKURsM6RQtAEMkSOk0T3mP0px3Fk\n7EWmO6VUIuKNMiyisuTcNAlTSxvh/H5CSuq7qMwDTWzDyOcWonqxmCy/zJ/XwjCXu3tEPg/5PC0Z\ntvmclr3HzJ6WpLsSfnkreo5S1NpOLihjkk76DUnB05RE6vFYdCR8reZimAInmxVd1/PaO5fsu0P5\njcbX3N/Uwo70HmMSYTJF9mPL9ZK0bjB45wvrOF+P6enrQN+L98K6zEe+Zp1K7t/L0Pj94xt3tKsV\n0zTRKWDQ60DOOk/XD6REkREn1BBbr1fva5wmok/DwOF4lL1DWYMZ6AAZaLqngK98WDPfL7LXyT0c\nplCeO3t+ZSAhGmVvIsFU6HNNQSRu3X7PerVis1nRNKqCMZnlBbX3bDdr7p2fcXF2xrppiCFw2N9y\n3O8ZhwmTIi4JE6jKALu+H6eMm0lBkwoWVh4RV3laNfBH629jLdZXyqqU/iSo0mHSNdHkdEatQiWs\nKRQgufJ1qZFjSmLUbq2yNynDWQlcEqZQBrwysUI+y3z+TVmfycSAvIHoz3PNnEHDDM4UGw5SWcOs\nF69PawwpTEyjPLC1ptSskAMSdE1cyBmzQiSrFfJzfvmlV3j59Tf4zm//Nj76keeYBpFSp0lYPSkl\nwjgw9F3xjYNELGnAsvabJOFSIYlnV9f1xWf75Tfe4tU3H3K2XXO2Wkv4AXn9p3yWKaYyTHHeU5EH\ngQvliAOSDG1mBYwp+9MySMUIE0Lq9afWxnnYJL+ZWcjC8Jt90O4MaaJcb+g1FZMCq0mVKTHST4Ff\n/NRv8spbHcs+5eGTT/Bbv/cS3/1tHyAh19QUpvKyvLN89EPP0A9nDGPPpq3YrVtWbcNuu2Fb+o/3\nlkO6hRdfltTnBEYZnmVFSyy1Bflez3tTPhZ7aMYHSEZZlRUdiRC+vj3NtwTwlXvtzAbquiM319dU\nvmK9XmNtxf72AAj7qXIeQ6CqajABNwyEUczXJTlF/LMkFcUwjsqwsmj0rVX0+Sh+Ps5jrJdGe5zo\nh4Gu70qhZszsyZAytVip9zltURK0PGjzgkE3FC3oQsCqB9icilcJpbmuRYecEs6iDC9ZnFIIUEwm\nASLj1INp2e62PPvMM5xuNuz3ex4/lmn74bAXBH0QY8HKe7bbDRfn51xc3KOuKg77PXESlor3Yho/\n6WQ7GUlHcd6jL1oWBjWpx7hiFJmM1XMBxsoCJkbw0makZBYTeAPMN2gu/OVnFmfAWQE9MJqy5DIl\ndYm8Z1bUwqiXXDzL2ijx8SqPC0rHdmI8HEAADWaJxlK2EidtOp1D2AWSlpFNLDNwmRF0A9IkieYU\nEENKZz3EWOLJUwhY1FMhJVI06kUlm5X4d0hiW9DXkKchMyNpkQqpC1T+XmYkvqt4tlaZrzpdMkYl\nQrnp0qn4gm2WN165QVVzb+1T5//dHjVL2vfydUhjoolrxhQvL3ITovfJlObUk34USvCx6yX55OFD\n3ovq+/jqBbr+QxhrefHVN7lemD82vuZiXWH9wtDeGMxiuvR0w5AnnfmYr40MXC/NMmUj8d4xRjHl\n7LqOY1VRea+Aq+H94xt/CAPLFkPo/f6Wy8sn1HWLtZKOeDhIM5ubyaBA0jgMKgec025y0ZylKiHI\nfd40K9artUhgp8DxeARjNMbcF4+qYZiAUYo9NFwiT0p1QOKco3KVhK1YV+7z1Xpd5JbZRNYi3ize\ne0Z6KiPvo21FninSlSihJVD2scqrWbaTyd40DMXXBeB0d8JHnvsAxlr2t7c8fPg2D99+m7feeIOq\nqkgkhqGnbWpOdlvOz884OzvFJuj7gXVTc3ayU7q/pJMlghjce4tx4vXVNk2xGvDeFe+USMI4kZL6\nyivDMorhL+rRQb5P3Z31Z2bk6vccOJcWjZab14BkqKpGBjZY8RORT1j3u+wbQtEOzAVjzJUyUm3P\nDIF83Nljlqzexc/vsGQX35OXcXdiO6+383BPwBA7DzwyABSN+nrM/l2j+owuU7WW/5bBn9ROhWEC\n5f+XEs7MzFruBXnQIEBZxC3e68wYXnyvnAjm88xcMy39VfP3M5t4CaDdfZ2RaGpiirPPpZExTj+N\nHPojx15S8eaQoa/htbJeUdUVL7/xkH1XsWxs+ukTvLM/8vwqW2Igkp+nBuO5+c0NrVuEEJTXvzi/\nBchbXEvC+O7p6opa2YqZxfj+8c1xrDZrSZy9NQzqQSX3XmAcRnBWzN+lkMQaw3EYpH6tKvEbRGTy\nfT+SEsXsfhgGkZAt1oslWwZ0rqprnjV56BHLwM8Ykb/fu3eBIUmqolrEhDASp7vSSe+91MN6PQ6D\n+Dd5a2nams26ZbtesdtsODvdcXayo60qxr7j9uqK66sr8SaOosqonKV2M/s2xshqtWK73dK2Lb6q\ny33s1VOzaRva1QpADf1FNYMROWkCorG0OoyaNJDL6AA6qpQ0JleAclknvSRzG0mpDCkP5JN4V6Vs\n0qL/yKBXvmfzwLis9Xb2H1STfVPWxoUHl8ksoyRrBbH4z4oXrf6mtXgnX9LTBEKcMImSTEyuxQVB\nUn/maQa/UmIKE9MoIOaTqyv+8t/4r/j05z5Xrtk/+6f+FP/lX/0xTrdb2nalLNLAOA2M/RyqJeuq\nKE2cs5pUP84sL2XDPr7Z8zP/0y/wj770++U5Pv788/zFP//9rOqmrPB5vzcGxkGYkM4F6joW711h\nIitIKDIMIcbp9ZnZlfN+K3ulYGq2sMvmAdXyyIqfHBqRmctI75tBN+378ikNITLFQD9FukH8z956\nfKVMr3f3KVf7F7g9nrNuVzrgjwW0NMbgDKwbz8oJK98bw3az4t7FOev1mg/cv8+b77xbDtn4Gu+c\nkDliAGohGkSRZBqb2WuCXzgriizS7FW57OXKfe8kVTZME+MoAL7Nw8ivM7v4W2I3y35HBtHKdsee\nvhnwGzEMHoYDl0+u2R86plEomNMUsaM0x1OQBdB7L8lwOu30zktTr81LU9fUVQ0Yjl3Pze1eaLAI\n4IRRlpGytnLBlcEOMk1ycVHkxcsqmJAjVWOUVETITBN5PRmF9c5TVzVNVVPXXicuQaYnVowIncYR\nhiBSD2LEOsuu3XC22XHSrrEhcvPoEZeXl9ze3hJD1PXXiFeLc3hrif3I7eU1FsO9i3usV+uSjFLV\nAtaJSWoPQNN4nBNmlatc8fYyNoNhrgApUpzN1OkMCN1B88lAiE5x4zwFt2amDTtnBDuyFus91jpi\nntgaUxJS8sjYWqNsOe019L3Lc6ufVkzqQSBThdnQUl5DLqpzEaFDAPRlkA1sRa6QMM4g5rvy3kKM\nmJBEjqFxyNbKew3ZQHeSzw/k+cuESD1YplHA1kGbTtAFyxqMEwngGAJTEBnuME3lS+RVUa87kW9E\nvZaJAYIFW3ZRYeP5CoNMugnSzCeTiCnIrMpQZC1EBb20yUwhqoxTaOaS2ukWfgh5K8nSI2EliPw/\ne6IILTik2chePL0i4xQ5DgP7Q8eh6+n7kbfeyWDW15jGDz2vvvmI66fMH/vpEzw+HHiwabTokdcU\nraLtCigmkhqeRoJGhFfeidxVQdIQIY0yecwSn8yi81bOUU407fsO59ayTrw/if+mOG5uxRsyg7FZ\nql7XMhC5uRl5++23OWrDL35ge9lTpqiDjorVaqVgs/hs1boHJJVNOwXBp0li6K+urkRy6CshxSYp\nQoJ6ttR1zUQQSYOyTnPx4Z0vrGJndD/Syi2zvLLZfuU9lSYR9UEGRTnpq9bJusysRcLr7RyyIdIb\nYSqGcRIgqm05Pz+nbVtub2+4ubnh+uqavuuYgpgNhxCoK8/Jdos1hqurS4a+I4XA/Xv3ODnZsdms\naZoKgxja3tzekJL4stS1SPanaZJzUVVUajQfQqRxHqwRz78QGfqR1E/CfFZPsxjDu4yd70rTpfHI\nTD3xojQFFHNZ6giYWhgD+XEKuIRFuyBtUmTvysV2ehroMkafdwY1lj6CGfi5U2g+9fP8lSfrgrWl\nAtCY8jyUdShMkwx4VMaSh3X55/3xKEy7MLOvls+bhyiyhvXFyyr7r5jF8y2Bu3EaxTTazpK7Ajqa\neXpeAlWeAv+MMeXvje7V+e8xM6OlfMbFn2Rm0C0fL4NyUwhMaeStx094eHnJ6WbF+cmWkCLd2HF7\n2LM/HOmGgRQjF6cnPL56D6+V03PapqEbRi5vLvlaXiv9OLFJKjfNsKl1hYU46WckrHBY+bacw+V1\n8TS4GGMkKTMmByNVVYVp5gFilpq+f3zjj0MntZz0J4HsAzcF8SAlymfpq4p2vaKpaq73e6klrahO\nun7g9nAsdiu+8pA0MTIGsv9OPpaMSphnd8ZI02+NMNmzp+HZ2RkX52fc3t6UVHWjwxJvNbjHOVVK\nyGOc7nacbHc0Ta1g0kRTe1arllVTUVnL1Pc8fHMvRuxRfCHjJEBN5SQt0hmRTacYMSprPD8/5979\n+5yentK04t+cg618XYnnb7tSRtIERljQzlelfjfam/iqxtWWEGLpU0RJEMrwc06wFJZvBE18n9Up\nWFsAhNxjFHaQgu5irK6prXLGlTU8SyVlfbN3AH3yOpEgZUNxY4rfclnTYsA48SqMKplNSfefzIqN\nUS1UZlltCrMPV1CQdRplbf+Rn/qb/MbvvMKyVv6Hv/Wj/NhP/U3+67/+H3KyFaC27zu67kjfi8cc\naZYxAqpAcnKt90MZDE/TxH/+P/8CX3rpyZ3n+P1XP8nP/R+f5l/9ge+TzyYJu2vVNiVMIZNL6nFS\nJrErAz1hg6dyXS/ZYElr+yXopR8HBiN+ZWm5v+YwLASQTIaQorRKubcNqYC9mfBAZhSGQD8FDuPE\nsRfg6/WHf3xC4+HYU/u6gG9CGBHQyyKvy1WOVVtzenrC/Yszzk9PsM7xz33fd/NLv/Z5rvezHLLx\nDQ9OsnWRXE9BPcaXDMfM4Db6HCEFbDDUdVv638x+B3mMGIJiJhXj0HM8HhiHnqzR+Xoe3xLAV57E\nO+d1uj7JTUFOvLA6eZcG2rmKmAzTFOi7gRgTddNSt40wtZJ4ljjvRV8dZFLb1i21bwgxsT8euT0c\nCTFpQZt9hebY7iV9uBTBunRlM0jx8UDkBADO4Z34UokXmSnNh/eeaRRT+6Zu2G42rJoGY6AfOsYx\nGwGiN25SY9oo6ShNw26z4eLsnJN2gxkDN4+f0N3IRCXGJHRYXWB929I4meRbZ1Xbbli1LU49aJx3\nOuWZU4rqumGz3YlvUl3LeVcJZp5yiMeaejUpO0kWHlcK8yTVq24mc1KJDtd145CNShBpS8rGkSqr\nNHnjRScrZKDNlM9gyc6R35OFLm9MArLlBkAkIQbKRNy6uYDI9M5gND7YmaKXz8VLLmozqJeN+y1I\nDLCCb1JMjEyDxo2nSJxGncQESAJ6xRBJYWIMU5lkZZZQysONGAjKXByGQUCvEBhjJCTIRo3RZLqv\naAhzk2GKzwAIJdouzpbq9k3EEDFGUrDIxYl+TtlXJyG+eqkUCK4UCsnMm0pmv1Gav1lOOKXIMAXe\nePyEd65u2K7XbLcbpiDJJ/tjz+2h49iNupnmguG9p/GGyOM/zvwx1jRRmAfWzrglRtYHi7BLHIZp\nFFCjrgTQU2cAee15ugcFrB2HASo7X4dpTtmUS/V9qeM3w9E0W0KY6LtATJa+D/RDYLMR2bhx14SU\nAA0tqCvadUsIUtT4ytO0LXXj2R8OJOvF169qSM4yJpgSVG1L1bT0Y+Dy+lpkLtMA1mC04QnTAITC\nChYhvFRrMuGVJtYaK0zMMBKMK6CYuHGgqTxyf1WVMEDGacQi0ojVqhWvlLoihUDXSwCKrM0iyYpR\nPLxIkcpZTnYrzk5PuDg7pakM/e0Vw+OOR+88Yr/fLwyapYGocGyblhAFyNuuN2w3WzabXfGqGYNM\n6acIE17CS7Yb1rsdq81avEqQYUVIMI1iO+BdjXFOkr1CzzQG5G5Vg1WDhGIYQybXpPw9HeMmIHlH\n0kluTIBKYnCO5CR5K+/V0oyovM9oWqQWlRQz5IC1FcaKv0YMoyYjyWcYQ5CVUjpJYB405+eRrSvN\nkhcFPZMx6mOyYO0miFMgBVN8baxxxDgxDiPjMJD9CUOQJjZOo7L20rxvjD1THElBGFgiDYqIRUQq\nQz/xVQsMk0jjY8oBJJqQCYTczFlDjBNTHvbl8TkCVi4n70b3A5uSrItm3qszew2c7GlG2ICy/RhZ\nqwlSMgAxTIRA7oBwTkDBGCIxCePhZn/g7/zqb/KV114r68CHn3mWf/6f+W5CHNkfjxy7vjBynv/g\nCeP4mJvDwmtld8LHv/2D2Glg6I763fdubI7DyAQatiN1TD7/codHrJFmNk5Q+VOpfW3EmkklWvL5\neCsN3zj09N2BarPCWbA2YZggDpK6HQfq2kB6H/j6ZjlyYNftXgJGRpVsZw/TiKzzJ6enXFzcA8A9\nfiJDyaoiIon2x+ORmCK19kjjOKncXThIS/B3Zm3kewoKuzDOg3zvPavVipOTEzbrFd3xIL5cTaPm\n9RXrdkW7anEZbO3lHtmtN2y3W5paBhkxTDRVReWtDgw7pqEvrK7KCkGgbmoq9ajVSh+ne5bzns1m\nw4MHD3jm2Wc5OT2T9xoCyRrZbxphe0mgVqIx0sPUTYP34m8bY5RU5CpLRR02xDv7gHgYa/qdcTgv\nwV1Ja+W89zrvsV5ULVbtbwTzsIUFNK9XWqvrYF1+zRYQTg4d7uc1PlOHUiLbiGSATOGJMlzNP0v6\nu1aTi3O4TtJhRd93dMeuKEJkAAKjpvMaI8O4L7/8Cp/5/Od5ulaOMfEbX3iBl776Oh//2Ed18HdL\n1x2ZwqBDQ2GYZzawsdITjuPAOIp0zzvLW08u+b0XX3zXc6SUePGtF/ij199iU6knlXOsVq2E6Xhb\nrt+mEiZ6XXtJXm4SFV5JKuW0YnKvlmZQsZy7WBDFcm9ENYQ2OrDUByk/zw9Tes3MEsvKGWtIk9hV\n9OPE7bHj9igD+vxpfa0+xftKE0gTOQgrez2nFPHecrLb8uD+Befnp5ycnNC2Lf0wUnvHd3/kPq+9\nlTh0A5WraWsdaCbpzEgi43VVThGOpQ0rTnNRAFFnDev1irZtiTEwDJZpYq4VhoGmzhJixzD0BA3+\n+nqrWL4lgK/Vao21PYnEOAXqEMQDZRJPJGMEFHNWTD7rJoEZOHQd/TAUM1bnPWEvf5PpvSFKMWGN\no21WkrylG9Kx69Ts0JKlZnlSvJwwmsVNcSclxaIgj5qJaxGbbIabM5VWklC8c6SYk33mm1IAtRlM\nE78V2RxtkoVh3TZcnJ5y7/ycVd1iUuJ4e0voO7rba/b7PU1TC4SsTB2TWtZtqxtGha8q1psNbdtK\n3GqYYKBMdOqmpl2tadsV682WpmkxTiSgEUl2STEQgcqobhjKxEHSl1CNPLJBuKyb1iluKYqNgg0K\nqOgEJpWfO1LBsU35m8LIQkEcWZ1kw8mNQkIWJxbGkXpO8saUAcKcIrKcXucUTq2nFfaQ92ZCNluM\nWlwI2BSVOSg5PrK69v0ggQzThEJTCxNHTT+JCoiRfa1CYe3FKL5xwzhIdDGpMIrGaRQ5ZBSzReN0\nQ9bkGJsSxkRU2FmkKOr1Xhh34gewXMS0WtJrMoOTyxQPayzGyfktJtNm/gpkueVdM+NgIQYxOr7a\nH/j5X/4MX3n9jfK4H3rwgH/2n/wOYoRjP9L1I8OQ00b/+OSTGfz8WuaPsTDNDMIuoGwI4ndkFHUu\npYhBJ0wzI0L+na8T8V4S1ovIhWXTzp/TVP7m/eMbf9y79wyHw4HHj685HgfAMY6BcZL7bZwiVd0Q\nQsKGQFVXYNDir6NuGoyVKOhhHIjW4qsGowmOYxRfxGa1xte1sIr3ewET9DXk+PUYgzbBchk6rMpx\n88DFzfsCRn0lhflRqQxd7jGn7EvA5eER2GTEoHYMYmqrsrLESEUAACAASURBVFuT5NIXujuMYw8p\nYEk0TSVF170LLs7PccbQ9x3XNx3s9xxvhBlQGWG9miRrjqcV/652S123tOsNbbuSQjtGpn4EJrz3\nVPWKjRMT4vV6zWqzoWmlqRNfw2xiH4VJGsAmYXjLdqnnBitSRy/nrfg4kffmueGARHJOJ74KjOme\nE4zR/5dflZZM9xYzG/cCi/0lM3aD3u9RQlnSzIhyJqrPpSv7Y2YEJOT8572zrJ2L5wH4o5de4cVX\nX+Njz3+Y7/y2jzCGgImSYByt/N449iWRkzxsSAJm5iFe0iCRKY6EFIhEXn79DV5/+xEfefYB9082\nHA6HAtLHKElbAIMy6kHAJ+tUggrYBcM7jbF4aebfTYliaJ+HVabsL0m9S7UWWNRZMZtHW+Enmgz2\nqJ1CNnnOrOlc72HETDoGMUCexpGf/5XP8uKbd/1WXnv7E/zSZ/8f/uR3PUfXDwLsRVnvpxh5/oOn\nTNMJMSbWbcu2bagMNAbMqtF3+DUGMHrNe617hC2Q2fCiLBC3NrluDFY8UdULdWLUwB+xRBDWsQDf\nzglzEiZVA0xyr9tEWzdiUv7+8U1zJJjZNwgYksgp6BO73Qn37z3g7Pycw/6Aqyp8LXL4mOTeG8aR\nbKkCFJYyKOtRPWJBvWUTd2qxlDSYIyaStUx29jW8C2JEvK9YtQ1t27JerVitWgww9D0xTGIXovee\n194oqDR+OI6MQ880dBAD66amqtes6obKCxnAq/1IDAGLoamFPd20LevNhu1uR7taU9e1+Es5UX3U\naljvawkGMM6xahoBveoKw8zAyb2E5txK76GpsIAyqiYB311WlVjxcUwyCLDeFdBLFBIoQGUyCp+p\nOgV0h7x+z2FOGRQqg4CceI/KG7PqIGZvsHmYLr8blQhg+fKLL/OVF1/i25/7IB/98HOkEBiHXmSz\nSZKfj8cjx8NBgf9UGKBRB7AZ+Hr1jRwO9d618ouvvsqH7t/j9vZWghWGvvQ8MSa6vqPThEexORg5\nKjCafVJfeuPtP/Y53nx8yYPdVoZlGPb9QF15qkoDVoyhbWoBvKZaBpLOYrzj4ZNL3n58yTPnJ3zw\n3rkSHeZ/3PVSo/TWSYeMxsygMYv+U/ZuZTfKb4DWY3mQgxU/TaOhW/04cewHDn1P1w1YDGfbEy5v\n392nbFdbal9p/6f1QnnoRGUN66bm/sUZH3j2ASe7rVpJSP2XCROVM6wqX3wwIY9BRX7po+y/Jpnc\nueKUiCN+01IfGCP+6nfsHvQI08TY98T1qoDlKaGAmRWM4+t4fEsAXynJpHG/36tWuKbve27tLdY4\nmZaolMtVntqg7Bih4FeaQjWNc+w7KL1Pv6yVqYOxlr7r2R8OjOOkFHRJ/sgMjSXotfSUyEi0eJFl\nffZdaYWzVhYaNXfIIFoMSqXNXk7DwND3dE1D2zYF8BL5pKDAziGF13rN6W7H+ekp67Zl7HoO+wPT\n0MM0ENWE0irokYtNEBnMZrOhWbVKGa5LsS26+KT+Lp6mbmjaFU3T4KtaatIsS9BplXhQJJzPRuSZ\n/mnL1Do3F845nXhmVB2kSM0Iu1J/jUogtBQkGWVAoGMU/W8zT0Gyxl4/GX23qXxGAmZJ+p5xBm9l\n2hyCNH7eO/W5kuI8LiZDxog5vkF/FnOAgprPxsiXX3qZl7/6Bv/ER5/n25770CJBS5ll00TfHZnG\niSLWV4BU3r4UQSZJoR/UB2KaAi+99iZfffsdHpydcL5ZMw5DAZHQqXyW74I2JMbhjMPZeUaUUiQa\nK422TuLzoAnd/FGAR3bGVBqnpKhi3hzk/9Cznb2y9D3Y2TvM5MckLAlQWgRASDCEwM//8md58Y0j\ny4bkjYef4NO/9UW+56MfIkTknowKKhr4yLP3eeXNt+8kn5xut3zPRz9EpcblX9P80cyTT2f0HksK\nhBllD2KKkfIS6MpNKjD7BKASZmUN1nWNs5J6N02jrC1upFZGzvvHN/7I/kp7ncLXdc00Tdze3jJO\ngf1+v5Bp2SLbGtTfK8QoU+a6ZlQfPtMo2KtDk7ZtWa1WYAzDIKDEOI5UXrx/MshudZ3MhXJVOUw2\n7UXWnxwWYVKSAU4Q2Yi34ncR1U+uJHcZqKpshq6MgcOB25tr1quWtm00adhRV8LM7Y9H2qbiZLvh\n/PSEi/NTdtstlTXs9wcOt3vS8YAfBqyzNFVbzM+nEJUxJOf25PRM9o0kMtJ+GLBB4tattVSVyFVa\nV1HVtewz3hU/qWmaGZJG9/RxHGV/iFlGKsOvcn9iNHBFjrkIzg1J9tjTtCpmxq7RQU0ensg+oyEc\nCqjkuMT5MWcJS9I1BUQm7X1Tgg5iCGqH4EVuotdHfGr9yH5aS2nmk6sr/t2/9p/xK7/2a+V9/bkf\n+AF+9if/Y+6dnakJ8KjykuPCc0OnyIhPWlXbIl0MaSRiubzZ8xM/+7/wud/9Ynnsf/o7Psa/9y//\nWU7Wa2E/AOMoxvczw1n2ZGPnRsAx+26GqS+Pt6yX8rDqvdbAvJfn35n/3uKNU1lRggx85b7TyOdi\nFVRE1+6kQTTZCuONR5f80Rvv9ltJJN558gKPn5zgnWNUoFWY8hbnDLVzIuw3hhQSVVOzXm3ZVZZ7\nZ2c8unx3Y1M7j3dyzjNDHhshSZ3hrOxDGIhGzukwDMI2LXunmUslZMjknBNvUAW7M+NQgjYk5Xu7\n3ZawjvePb/xxenbGseu4vrlRKV32qxVAixDZbDacnJ5SVRX9KIwaX1VgLCEGRk2zrepafmcQICzE\nOVBDWEWmMPuluJNruLBeChVWepxsxXA47OmPB66vrhj6Hl95KmcZDAVYMcYwjQN938k+ZQypbbCm\nxhpDP03sr68Y+yPOQFM5mrqmrWtW+m9JS1TJYxRWkAwJJbBkvd6w3e5k7wACCe8rWj8nOjovYGCW\neNZNS9WIZGyaspRUEIs0BZKZEJX0Qm1AKsyt5XCprPDZWsRm8AykPr7L7kpk43r1hspbRQbatKdJ\nzBL4DPqbxVpnUq6VTRmCRLK/rjz/oydP+Hf+8l/jlz/9qXJt/fD3/xl+9qf+E1Z1xai+S+ItK6nO\nRvegbuwU4LDCiouRcZp45uJcH+m9a+VV5XnttdekTuq7ch1mkoaEmohMMKbA8dBxvb9lnEb5TNXb\n9I97DjAchqH06F7Tp6sc3uYcwzjQti1TlKatj5Ff+Hu/ypdefrk82vd+9Hn+/b/ww2zaZt5jdF9P\nKll82m4A9Lqw4udllPUlyq5565dLwiqzPXtiyfseQyjA9DjJ8HScJoYp8LHnnuUPXnnjTp+yabc8\nd+9eCbCI00hCVASVFyD3ZNVydrLj2Qf3ODvZUXmvAW+h9BUh5PT4+RDfSijMNH1/CaNe0+pRDUxp\nlD08mQJSjuPA0rfLWhkejaMwxl1dFfuEsJB7fj2Pbwng67XXXqPrjjx8+FD8rkjc3t5yPHZUVU3X\nDTy5usI6R9OucMjk43A80k8j0YA7dthB0iQyKyjHqibANzVOm9DsX5FS0sXT6BT+rkZ+Ltbmlr80\nu06AlGma6DuJGm5bmWRXXrwc5EYK9N2xUORz4ZtiZLSWFCasVbmnMQKcpIR3lu2q5cG9C5598IDd\nes049Dx6+LY0IyFgEziTqAysVqvy3qy1mlwGNzci31kNKyqlC5+cnXJxdirTGpVUxJRkojyNopn3\n6oMTxEfKWPVCsTKBBAkIGLRArrzQkaMmbkRNVzS6SaDpSjkRJYMmKSlAFdN8Qxnx8spsoqK9XxSF\n1kgDZ1AwQqlMJk/V9T1ZZ6kqmTrFOGH6voAXueGwqsfPYFJI2XPOSPJL0cjDk6trPvmT/wW/+tnP\nlOvkh/70n+Zv/af/EWcnpyV1J04yAcs+PDEEaZZDEHp38W+LjGPP4XDg7UeP+Zmf+9/4rYUZ5Pd+\n+7fxb/5LP8imbVT2K+fILFiKMUalBFsBY+0i5QekSFapilMmW+HNGd1iDcLgiHEGwlJuMuZFTjZ3\noYibhc8bLBqigEgudZKR/Xn6aaKbJl5/dMlXXn+d92pIHl+/wJPrE9arjTIPRIKTG4ePfvA+/bBj\nHAc2bcXZ6ZZ7F2ecnJ7wwZff5s2Hn9D3Njckja+ptGkwCEiIyTHWCWd9mZrm9+FsTh5NZZ8x5A1T\nPf6skYTRFMtnGkMghF7ZhQ1N3Yg3x/vHN/z43d/9Xdk3DgcZBjQNXdfT9SORJMOW21vappVGsvdF\nYj+GAOp9lFJS2djAxu5IQD9ISuFut6PRKPv94cDhcCCEwGbdYJyVxiXkYtSVIvyOIXsC3HwdksR7\nL68XVVVxenoqzck4qsmteDB0xwMGcFUj3n9hIkXPoOzEaI2EakRHW1ecn55ydrLjwf17nJ5scdbQ\nH/c8fPKE4+2eaZpYGaMFqSvgYVgEU4Qk/pBPHl9SNTVN23Jvu+WZD3yApmkl7OF4JOp5MxVY5xjD\nlGEmTUtOYNW3BVlHp2ksZrICetXi5RljYdJlFmaWjKRFsSvrl1MAJxYQJzcwufUQAEUYxmUYgEx9\nS0lglG2UxLxc5GoTmflqbJbFiGwutzRLv673CgUp/lxB2BD/1l/5Sf7B5/6A5VDgU7/+o/ylv/43\n+Dt/62cwlRTE4r2lScH6POMoHlCrVaPG8kgy7iT+kD/x3/1tfuuLb9557N/5yif5b//3X+Y/+Fd+\nWGT/SO3k9LqMet6sdcQ0hwXM8kT0NczvSy5myrDrLrD17kCRfO0DJdXxLkki+7fIZ5Mw4hEZMqgm\nn2eIiUG/3r661Ud+b9ZB1wfOTlowllFZXxZhE6YozENrDHVTsWrXnJ2cEUzg+z7+UT7zj7/EbTc3\nNrWrONtU5fNUOC+/s8Vzy3uzui/2XSeBSzZfq4s9xorcuh5qYhhLfSpgaaSfxIxcvPKaklr7/vGN\nP5p2RYhJ6mVNTjRWhs3ibSSyJ2st+8OBdx494uawp9XBQT8MHNW2pWlbwDAMMlDL9V+GjXO/k6BI\nmwtIjPrgZhBX695pCvTHjqCEg3GQNOJp6FmvJLExRqmbjA6Kp3EihJGuP0IKpBA4HvYMxyO1M2x3\nGwkxaRuRhMUgaYDTRGbDZrklamUi/cgZm82W1WbNZrdjd3pKu1qJLDQECR0bRmEXe0dV13hfESNq\n9K6s0jzgQOrNcdIer27mujypQkLXqBxEhjLnEurZC1LfWuR86lqYdDgKijEW8D5DW3b+bKKaZNiF\nXctiLzAL5o2zOSk9kgiSOhki//aP/VU+9etfYLle//3f+FF+5Md/mv/xp39CxONBkjpTCHjvaetW\n5KmHkWPX6cDIq1Jk4uxkw/f9iT/B53//R1X5IbWyNT/K93zsO1hVljfeep2bmz2dmtpPGhBW17V4\nlerwJ8ZIMAZft0zJcOw6Oq0bHpxd8M7lu+vxs80Wa1HgSwF8I+BMVXmq4KicgL+BJN6n3vL3fvVz\nfOWNw51z8cWXPsn/8Hc/xV/51//Fcu+ZvPoaqTPK+TaL5Mb8+SrYRalEYLYmiWWAZqx4G4cQCuGm\nAK7KkD52PcdOvCKff+Yeh24nCjbvWbUtCZG4pxiIcQIm2qrl3r1zHlyccb7bsFmtuDgXMFwGf1HN\nhVPJtsl9SK4nvHphOytXf4yRoNLW2evLYJ3B45nGQS2Napyz3N72yiKVdSMD5gVooyrDTENOEf76\n9jTfEh3TO++8o8DRiouLM7y3CsjMv9O2K6qmxlcV++MRUcmiKKwsdM4YooEpyWTeWlckk03TkjB0\no1yg4xhK4lV37DU2XajnS4PRghQbNSm1OcFRvi8Nr1xE52dnbLYb+uOBy8tLKdqD+HY5l80i5yLH\nW0vtK3m/4wDRstmIv8rpbsN2taJtatI08eTRI/rjgf2tbFImqMmttXhvi0lkXdecnJxw//59Nput\nfK9pxECzlSnJZrvBOscwTISY1H/MgYIpwzRhq4raWyRuW7y2ZBI8KpgooFKtFHuvaY9pHEsCSqYG\nZ5TYWCVeGvVNybuzso2yDNIYoTNb65RtpItP9gTJfYkCK/nZsjZeKJ055UO+YowMfU8Yhpkdh9KA\nrRT3OeZZaKXxDkCWGQx/6cd/hs98/kXubESf+1F+5Md/hp/76Z+QJLcgevu+O8zAYszJi2iSjRpN\nTiNCRw/89M/9r3z+99++89i/9/In+e//7q/wF//c9wsl2mgwQl0pMi9/64aBZgxqBGnxzuO8+NVE\nxcuMyU12EnwrNyi5cUgR610xQy6AlzLnsgTFGrRBWBwLACwoJTqERErCcuhC5DgE+nHijUeX+ptf\nwwCyG2ibVSkw8mfslWZf2QpaR1t5TrYb7l+csd5u+XN/5p/i//zU53h8tTR/rLm3aQtAKs2lNms6\nWTNGf6bXk1tslsK0m82DSzFpDHXdsFqN7G9uuL6+VpBCPBfCNHFzewPkz/v94xt9PH4sxqPGGAW+\nWoLem3miO42BWKcyBZymQJ/DI5ilyn3fY6ylqiUGPZvKyrVj6HoBe6YpUPkaX4u3QzYLd77CGEnM\nAU1mHSZtVBw2qSxbzcxrXxGt4/zslAf377NerXj86BGH2z2YWWpfq9F9BKqqpa4qZXu1eGeIk8ik\n2qaS2PmzU+rKUzvLcDjSd0euL59w+eQJBlitWpK1dDr9B4tXhsn5+Tln52es1muwjqZpBYBftexO\nz6hrlYVpwZn7hGEYZIruZs8Za3yRY+epeZZjm7z3+koAd013Eqml0aSypJYpCthrs+cUzDImqbmw\nDkXM0sLA5CcRX9ACdKdSZIqUMYnGMMreEIP4FSYMf/iVl3jp1Vf52PMf4WMffq6kbAY7y5LCJIla\nWaKej3EapakdBv7wpZf51Gc/y9NDgRATf/83X+Bzv/15Pv6dHyOlJGE0fQcIM3YYR4ZBmHOb9Rrn\nHeMozLApBl576yGf+8LvveuxY0p86ZUX+P1X3uRk1ZBSpHKezXZTZFExBowVT55GzaTnpEWVEqXF\nniInEJglnLIPc4cBlso/5kO45ZHcSpbvy0cr7GVQT1Zpq0ISZssQJvp+oDt2VGWY8TVYwNYzjjBN\nkRCNhiGpBUUU4+tV03J+esaDi3tcXFxwc7yh8p7nH5zw+lsd0ZhiAAwU+4QYIsZmaaxcm8Ho+07q\niQqaVqrG2BZM+R1pQmpfM9QV+5uOw77DOcMURklenUb6QUKduq67c029f3xjj/1+zzAMxdt3LDJu\naUjX6zW73Q6M4XA8cjgeBXj1FVOEfpzoh4kpJbwxAlzrkDORZh+iNLPSrTF3QH+bl7Ulezg3/6Qi\nu5eacS37QF2xalu8y0CMgDDjODKNI4SRaeg4WCdhK9awWbds2pqT7YaT7Za2rpn6jkPXMY299lHK\nkPeelQZrnZ1f8MyDB9y7f592tZbB/HpFu9lQ1TX7w4FOky69r2TQbT0Ji8xIjAbGKPPKaAiJ0TCU\ncWIKEV8mlwalxmhtl20romIdJnvX6EA+zeuPLlQJtfqwCj6mperFlDoiK1JkP8uMrqwKEdmztY7a\ne3nKJCy7FKQvGIae3/vil/iVf/Bp3msv+PRvvMCLL7/Cc888IGpqvFikGBnmdR1XN1cc+kPmpUl9\nryzZT/5rf4H/5m//Ip///blW/vhHP8a/8S/8INd7kTgeu6MwmsbIMAZlrnuqpsFXVZHu5rqmH0eO\ng6SwD+PI93zkg/xOfI3H1/NznG93fNeH7msCeijgkXXgk2NKgWGyVN4xpkCyCePgpuv4o/cYlseU\n+MKLL/Dm4ys+eHE6z1q0z0wsQ0+kfindYg5tSFlqikofTfm3VcIHVlQiNloYZe8ZNV33eDxy2O/Z\n3+7ph5EQpHZYNxWprvXSEW9HVO6+WjecnNzj2WcfcP/+BWfbLava44yRpN4kg5ek906WCs/eWvr+\n5v9VBZSQbWLM+IBhsYVqvxjJu29WJEjfI0O/cRQpZr5nYaGWsTk47v9rBfz/d3xLdEzGCtOp73se\nPX4kCLhKGkg9NzdyE44hYFzP7fHA8Xgs/hORkdRJ8TWOI6vVmpOzMwyGru9JxuC8Z4qBw6HTTSZS\n1dJ8TEEK0pjmaFGrfgm5Mc4eHLOflTRHTV3j1Sjy3sUFVeV4NA4ipdMY1rqqaOpa2GXafFsjJvNn\nJye0bUMME4ZI7T1tU2GJ3F5fcTUOEIMYp+traKsa38hjOwNWafpeZY0PHjzggx/6EGdn52Cz6b5V\nM8iazVY23CkmjIs0TaOSLJHfWOdwVU1VN9TOafKlrP11UimloYAjRgGqGNUMWM0hnVdz+jwlMaKz\nxlhSTk0xRtUkaY7vXTwmuUGxGbkm70rymCkzPPOGlZQOiprY5/QY2eysMihSylrnSKdRzsKQUE+s\nEJnGqQCg4zjyBy++zD/87X/Ee5lC/vo/foEv/eGXef5DH+B4OLI/3IrBsKapjONI12tqjpWJ/TAO\nuujA248v+e0v/cG7HjulxJdff4EvvfQq26YmRmGMrf5f9t401rY0vev7vcMa9nTOPtO9t6q6uru6\n2+0RDDGDCHawExQLRXKCIhAZWsQ4A6jtBgck28iJDEkkpsiKgCRgSCQkIkEsRUSC8CExnrBBwYHE\n2PRcXdVd1TXd8Zy99xreIR+e511rn+rbbfKh6Y66Vut21b117j5n7/Wu932e//Mf2kbldUK4tsbS\n1oGq9tN6q3OFtcrmKp+reVtzol1HnqZX5evMJHUx5Vko4wYQQCsD6okjSXVlEoHcN6teVzGz70eu\nDz1dPxx9/y/SkDgpFKGsMQEAChBVectyseR8u+X8fMvZ2RnWO/q+5zd+w7v5+Cdf5HrfUbmKthb/\nIHkJjSNOGefMvBaQZsrouipR0ItFQ9PM0q2SWDMMA+Mwiv9AVbM3hr7r1QPDKmMCxq6DzDtpW18l\n19nZGX3f89Zbb7Hb7VmsVpNpcEqJ/f7AGIRJPIwj+/2Bx48fs9vtJIHLewX+pTg4PT0V5lXOXF9f\nKwjgGfQ1+r6X4cpSBg2h7zUGPuG8rJV4NHkuwLObZBVSbBgnZ4hzjsuLc64uL3HWcnN9TV1XNI1M\n5mVfEKnlzWFHzpm6qlm2LctFK4b5KeCdZVHXNJUnhZEnN9c8DiKh9E4MXM82JzgdpNicIAwTM61t\nW84vLnjmmWe4c/ce7WLBGMMEBNaNSFSiTusxhsVqRVWJxHGIs2S0rhuqqqZoDmORUaiUcmYJeB2E\nzHuXc4V1qqKTMkBBzw2VaVtjSWYGUTJC9Zce6Rj8smC97mdy4smWd3sAEFOS4VPOPHz8kO/7yI/w\nvx9JUf61b/92/uqf/ROcbTaTvDGEMBnGznvJDFQELaI/9qlP6588fSjwyZdf5l337kwS3f1+L8zt\nGBkGGc7EEKjVBLof+kku+tGXPvclX/vTr7zGvdPN1AyfHEQOXAZJMiXWWqaqqLRRvv/khvsPH3Dn\n7IR759vbL51vF97WzpPq+dJW5aioP3qBW192LB/ydYNJAlylUdLydl3Hfnfg5mZPHANXJ1vefPKF\nssRVu6L2tYARQyTlOLEnnDE0Vc1mteZsu+Xy4kJsJpZLDuOBEgbkrGGhDIjCIihedbl5Cvsqyzkj\noKkw9dZrsZaQodisNhiVXep9S6Xm3YfDAesM1hZ7DVlXh8OB6+trKgXf3rm+8tfDhw+nwZ21djYi\nB6pKhtPr9ZoQohjgH3pyUo8plcGrbS0xSP05jIOGTGjdzJxeWmipt2XG2uwblElkJxZxOfNSlCbY\nl/24qrBa+4VhUKC+eB+r7KnyApL5isoZMbF3jhwj/X5P7A5E9aE1oMl8FbUmMy4XSzYnp5xuz1if\nbmlXK+pGJPTGOUJK5DEIWKxgkq9rmnahzPw826pQgHJh8AjDtrzfI0kjwqaatpOJ2aJXRnwrFTyU\nr9H7Z+Y9rJTAxfwi5YkjLL8/Vg0ZAePK3y+k4smgpfQxSfavMAyyf5chyCc/qa/69P36Vz72cda1\nlyRmlSPmlIlBQmz2Q0dI8+DFGENTS7ibN5k/8u98D6+99YBX3nyT7XrFdrUiBPHVDSGIfD97AdpD\nYH84CAijsliMME9DjCp/jAwh0A/jxKD95uefoRsv6UNg0XgWdWEORvFwQwC/lNNkaeQ0Xd1aCMEx\nhMijXfclP4s3Hj7hmfNT/UyZ+hw5ZmRNGCVPGKMJyRTW99R4wgRqmql+MK6wJwRIe+3BQz73+Tdw\nCBN/v9vR7Q+EYQBVOk0gpy6MlBOVd7Rtw2a95Oxsw8XFGaenJyzbltpbSX8XA2YhD0Rh8UmIS5w+\nt6iKqjJYiilBGCkefF57G6eAa6l6UhSLBAPUdUXlK8IwkNQf9BbIpcEFhVlWPLTlv2eYooS+PNfX\nBPAlBpAyMe/HjpwFjGnbBWAn5DlhIBr6QQwZQwEpcmYII8Xv4eLykvOLC/qu58n1tRjfVxUxZbqh\nl9QrJ4aRZZpRpAnkrF4JZtooCxhWkOIYA0nR36RR6MUrrBS5zjmdvtcsGmlGmqYWX6/DgZzzNClc\nNA05V+Q4Qor0hwNjd2DoD5icaOuKZdPQVJLQWBXkN6v5vTU0bUvTNDpJOWNzcspqsxGPJDLGScRv\n3dRUWmjVTYurHE3bTmlWSRsV67zQka3TgpNp87fqMVJ8vWyJA45RGGg6ObfOTY0HSjGmSBjtjKrL\nJGbqfabp+4y0yFGDOfJaQqYmWY13j5F++TV7dn380y+KMeSzz/L+55+TQyIIiyOnzG53w0E932Au\nHopOvQBfL09G7E/ffD/xmZc4WbTc7G44HPYTfVRigXsOh246kAdlkEVtAl/8NQwnX3nrAXfUDNI5\nK2unrsX81kpiZ9s2YhjaCuMDZ3j46AlvPnrEne1GmhKdLk01dp69IN4OfE3th1HzYFvuX2Hf6deY\nWTaEThaxDqIVmnocOPTalBx6MHBxsuX+UxuSNbWv1e9Hk7C0JzVZTIOXbcPVxTn37t5hsxbJ2qDG\njzkGKmdZaKpPSceRDdxM99x6BWCT0KyV0S76+xhVED05hAAAIABJREFUQiJGr+M4TKBh2a/6vme5\naLWo8+LDlhLWMxmp5sQXNLjvXF+5q+8HhkGks7v9gW4Ypn3TYDgcxM/Cea+U9kCvPhTFAHQcA2OQ\nZKg7d+6KMfF+r2tlga8qhmHgcDioLLGmXaj0YBjVEFavwoTKRaQnxdg0kY9JAR1PVv+gkvYoFPTM\nYiGyzLZpNPlIJU9W2LnOyvS0bQQAyymQQ8SkRL/fc9jtGPsOkyKLtqZZrVguFhL+YYTZnGKAyqmc\nqqJpWjYnJyxWa/HsWi6pVBpWNTWL5ZKqrglRTGB9JU1VVdfi9ZXmhtDo4WK9MqlTxlplZuZRWQKV\nUOuNEeaUggYimfFk43Tbn4GqIk0pib3WFBhrblpmZ1l9tnWjOW6IZKhS0lx18JVnWf73feRH+Ht/\n/5c5Zun+9C9+hD/wx/5zfvK//XPSAKq1Qt+LGfHE3DhqjGOMjMPAvfNz/c5PHwrcOdvy5MkTusOB\nJ9c3IiHV1RNiYhjmAUuvpsMxBvkcpvf19NdOKfN4d5iM8neHjkW7kKMYmTpLPdPQNA3ZGH7yZ/4R\nH335s9MrffML7+Y/+Z7fwXrRTkX/bY+v2yCXKfdheiSUPXY8pNEjPVvdp3XY4oyw70IaCSlzGAO7\nbuBm33Gz79jtO77+2Sv68XWeHPmtrBdr3n3nDjkxyUtTSoQ84gzUTcNmLSEPdy4vOdueSYpdhhSC\n7AE6sHp7oh7Inl/Yb+WcdCbLxD/NkldjLav1ksWiFVCrDFiNkTqxO1A3wnTx3nNzcyP+Y02NdR6r\nUs8Qouxdw8g711fH9fDRo1sDxALCOAXx67omZ9jd3HDz5EZkRNpHoHUyCLOk73sGrRUnyd3R3gGl\n0S8BH5rSrftVUT9gis9luu07mGf2VzCQkwIpIRBjUPaHWIss2ob1aiFhCsZAEhljGCNdGAnafDuM\n+BdV8/otViuL1YrlesNyvaZZLnFVjdEheTbFaD5LarjzOOfxdUNVN4CcAVNTjoZqlWdNC1xjhMEp\nbDg5M4uxt/QO874yG+Iz173liChfo5/rVPOWzzXNQAtHQMNUA2pnUgbPgCSfK4MmBU10HwaGrqPv\nh4lR/O5nn9XV9PT9elU73nzjdQEowxykJIxisTdJJE2xjPI5KGDe69/ZLGq+7rl79MPAMHSqbhHF\nCsiZEqL251GsWswwqJezpJdL783sBZ2FCV2q3tZbFnUDJE0fLtJ5S20tydlJSSSpwgKIJa9s4xhY\n1l+avXv3/KTMqm71gbIuxNC+gFk5l0G3PEtlsF/OmGkQpqBXCcq53u/5S3/j7/DPXnxx+u53tlu+\n4fkrwiC2EhPJI0fQsAlnLU1bs16t2G5PuDg/Uy/VFb5yspZCJCQJGYoamDWB2kriiFH8K/sx0seE\nd0YsXFAvan0TdeUnSbFRpnpZ9wVYbJuGVvEP8YzUZ1zvRzBS90yPQnkmM/9C+pmvCeDrZrfDWMNi\ntSRlYVRMSYAFeVXWlvUOPw5K6bVUlSNbI1rwmGgXC87PL1gsV/TDSAZ8VWG9J2gzkwBf1/iq5rA/\nTJvGtPk5XYwRihmunRhfiZjVR8rk6cDqu47dzpOTIMA5JdDpibVFHlYKvSwbUAgMfU/lBRgKfcfQ\ndcTQY1LCW0Fml03LatEKBdJIwVeSmgB8VbNcLlmt1qw3Gxarlbxn58jqLeArAUrEPFNokXXb0LRq\nVpzlwZKnTKnCMSoQNjOv0M9AphcW58XvLJckJoTxZZydNPeyh3iO0xnLZz1dRo8HOTVgOsQ5OpDM\n/OVGaNhMfz6DNlYlmw8ePeI//CM/fMsY8rt+27/Mn/+xH2LV1iXXlv3NTnzacsJoqlVWTywpXMRL\n6+7Fl25K1k3Fm2++KUko6n0mn5ccEF0vJvVjiBw6abwF+KoEYPwSr20M7IZBmz7ww0jle6XAWipn\n6WNgERoSmUMI/C9/52f46MsvT690ywjyCEK8dcrnWQtffnaZrjk1g5T7l2/9NTOBmeIJgxYF8qyM\nQQ7HYQwiNe4Hvu7dzzJ86mWubzUkG951eSUAVErEOAJRzC69Z+Er1ouW87NT7l5ecHm+PfJUC8Rx\nnJJPpsIvZZJJaviZJw+Msi6zrhfxXJOktlI4tq345Bwz94wRI9kwDsQYaBpJPZFEs1LkCNjrNVL4\nNsPunesrdb3y6ufFH2t7xmK9ZrfbTQCG+BfKffJemEnVEKjqWhIKj6SPMUni4+XlJVVdyyTUWtrF\nAl/5SV4GRqXgjv3+wDDIcKb4yd0CBAqzEXTgIs2IjLQzwVmCs4zDwM31NcPQc/3k8cRGdMo2rOtK\nz7NIjANphN5kFm0FqRJD/N1OJvPjgDeG2jsWyxWrtmHRNFRWzLSNFks5RhkUtS3rzZq2XbJcryVQ\nwlphqZkKm8SI2SsLprCNKz17rEq6HMV/MxPjKCl4OU2m9cZabD5OVnZzcRrlmS77PMYRdSBSwKt5\nsluKWnML1J/BFztJg+R6myuTFtLF/WMqrI1I/j7+iU8q0+ttUpSY+am//yF+5WOf5D13r+j7XkyC\nh3EysS+AfE5iGZCSfM7P373iN3/Lt/BLv/o2/xX7Eb71676eVeV5/bXX2O323Ox2sqasUQNtS0yJ\nrpem5tAP4tES1V/HOd519x6vvPH92jjPA4fz9YmAv0OYpDb7Q0/bdjhr8VYK6mZsGceRZYz8rX/w\ny3z6bQEl/+wz389f/l9/lj/6+777C56/AoTd8gGTTXgGwo7qvRn4MiJ5OQKGSoMcY2JU/8hDHzj0\nI/t+5DCM9GMgYXjh3l0O/SlDCDRNTVs35DwbBpOTvD/vJOhhs+b8bMvV+Rnn2xNWq0bYLF1PGPtJ\n1jwPVOReHqdjqSiK4rPi7BwEQIpoXjmLtpHmp5O/45wlZ8s4jHR9xyouJzanMIYMrRUAvDCYDUaT\nwv85NsF3rn8h1/X19bRPlBRGp75WVVVRVxLg9fjRI25ubsgpK6DpVFFR7D6senLJaxQgv8jAZ7mx\nLY+S1HDTnqVrMSvgoqBrjIGolg8GsfwYhyzNuxG5FCqJkiG+p21bVqulrFnnMamwWpShC/pzC/O3\nbWratpHzzhiqyrNYLthsTzg927LZboUJ3DTa23n1jnJgHMaCryy+qvFVoz0EOIpahClErMjSpDYV\n1q8wuOwMPup7zxSlip1ki7noQo8v/SyzKlyMTuYL2JYLLQ8dtggaPw1JJ+ZYLpJn7Z1SIoZRzP5j\nIIU4DUhiCBSnyQ+85118+2/+LfzCL33hWfAbvv4buFgvuLl+xGG/J4zCuPa6Poq9Rk5R96uR6JzY\n76TiDynhZinlKTQh5UTX9ez3O1AQR6RvQdsDIYokPbtizpPPc/HiNFYGTpMsL0OOwo6KOvQxRusG\nJViUz1mGfRGynddxyqzbmnddXfLKW7fPLmt+gG9673u4d7ZVhU+5cRyti9kup0QSyBDryAvZqiyy\ngMa6jo0T5VbKmZ/4n/8uH/vMQ47PuzcffZhx/DwffOYMU3qLnCBFnAFfeRZtw/m5JGVvt6esV0ua\nupLArRCmXyQJtEvJTWqjYvWTMxy6gU+//oSbftB3F2h8w+lSlD2yvsv6F8IO2ZJSOOp7mJj8zjmC\n2nhM/pFFEo3WWfn25zkFuJkv72HzNQF87fZ7lssld+7ew3vL9fUT+qGn3PBiOuirirptGVPCVzVV\nHfS/ZVI/YExmsVhKEkSMohHv+qkAH8ZBElWAynswYkp8bETL/KySOZLzlUJMix3DPM2JMTCMA/vd\njjAO7Ha7OW47BuI40HcH6smwTlIYTc6E2hODJ8dItz/Q7XfYHDnZLDldrUR/70SqJU19YFCzb2us\nTEqMxfua5WrNarORAIAyYamqmaljpdAPSXy7qqrGWkdKYmxf/EpAgYsxYoyaovsKO/mfqaRxeiiV\nVaMFazZowkxiMhpQn4Fjc0iYJ1LyeWqzUl6zfNHxn81jZApLqXjPlCTBnCXp5fv+8A/xM79w2xjy\nZ//hD/CHfvS/5Cf+ix+dNqihHyBD5cTErx86urGfpD3loLjcnvBt3/RN/OOPfqEp5De+8H6II597\n5XPslTkStOEoxUnWiVSIkUGjcIdhZAwiV7l7fsEbD55uBgliBhlTIseE1aQO74XRUTlHyHJwGWf4\n2z/7S7z42hc2JX/pb/0Mf/T3fffceOg+DUxxv3DcIGaMKbLT4omQ58ZQxgEKbgpAVuKUQwx6wI7q\nbyPA86AH7gvPXLE7nNKPI7WvZapu5AcSE8iAtSLX2p6ecH6y5nS1ZHuyYXt6QlNVknank8kiQc4p\nq5HrDC5IQ8X0Ho6NlG1Zy9lgjJqNOj+ZaI/jSDEhLVeM4gVXAMIYgnh86Tonu6kROgZs37m+cteD\nRw/Zbrc89/y7aJqG119/ncOhw1lJkLvZ7aZmpa4b6makaVoWSzFRH4aBlGXQsV6vaRdLDl3PzY2Y\nwDqNRhc/FAHlXeVJKXM4dBJNP0VDZ01lK76FArrmHElxBsSk2BSW8TgYwjhyc3PNkyePeXj/gaQf\nHTrqWny3UhJj1G44MPQdOWZyClTWYEbxBjrsdvS7Pd7Cs3fusNmsWC+WWCOppN1+P61ta+Vp91UN\nGOpmwXpzwsnJhs3JCcu1Dlq8U0DP6IRZQG8xRJdwAKNoeXn+YjH/TeI7EULS5tBNz2dSA2OS+qYk\nZnapmc/pYkmQ1bC2/CoAfTlzytdOicBHZxEwGRJPXmHMk3oBPxWUsYlPfeYl/VtPZ+l+9FOf5Gqz\n0CCE2SdO3teR35sW/iINTfzQH/h9/Km/8j/xj351Hgr8uvd/kN//u76LV199ld1ux35/oOt1EGIl\nHc1VlaxB4+hDlLSpmBjGQAiRMQa+7YMvMAwf542HR8m4yw3vu3fFYYyYnBiGXgdyjiEEvJVwg6ap\nFGyKPLjZ86lXP8+X8ly5d36qfz7vf7fPF/lvpTmdJadHTeg0J5PazFgFM41jHEZJ1wqBfgx06i/T\nDSP9GBlCYgyZfuxISd6HyYkQhAU39j05R+rKs1quuTzbsl4vOT3ZcLpZs16uWLQeayJjHIix0wHI\nUaKyghBlFU1nvdooFBaXtUYYMqCedExrqniIlubDe8/Y9VOQRnlNAU2lFnLOkazH2jR9fu9cXz1X\n13VTf1D8cWw2OG9ZqDVK10uoUd/3FLNpYx1jLwPRylfYpaPrxTOpMK8KyAUFTBMAx5o5Cd2UdO4k\n4IHUoX725NPhQK0BUSnOybBGmWmVKgpqZey2bUvtBMAIY8QB3snw2+SEzRlvRJbf1pWY5Let2MZY\nQ7NYcH5xweWdu2zPL1itN1SVWlF4h1HwfuoXtJYSb8dq6gOcE9ZcJkEsqbFHKY0ZslV5Fkx9w/wL\nHf6Xc0Nl8dMjZHSIW3qOKP/NIr6SMA1WSyFs4IhRq+qWDMUCpICXAigKwDj2PWEcSCEWp/zp9VKW\n+vfHf/Q/5SM/9qf5xX8879ff9o3fxI987+9l1dYYRsZB9iBnMpUX0KtpW+1lBNgn6sA2CuM9aUL0\nOA6MMU62ApnMOMjPNQ2CMnhnaJoKMU/vSUH8SL2zkC3jKMwsCecR0HIa5ivgZ7KCjggIaZPBOVlv\n2Xv5+XTtusIcNEoaMYbv/rYP8tP/z6f51KvzZ/FNL7yHP/g936kgmdy78r9yledFyXlSQ+R5+GXV\ndzvl4i0JlIAw57DO8PnXH/Arn/oUTwvkerj7EF2/ojIIaJcSlYWmbTk93bA9PeXOnTucnGxo6lqH\nKAdiDHImTD9cIiUjtgi94B/eV+CkD/mlj32Wm74B/gqlp+vDh3m8P3C2qSYm26306AIoJvGAtdqP\nloHpOPRHZ1m5WepnetQjGfVKnV73y0z6+poAvqqqom1bttstzgv6KqZr4l/QDyM3uz1Yz0ppvmXK\nkXMmJJnCGyuHinWOm5sbrq+v6YaBuqqJKXPoB/pBzNe9dYxjmAvSibEiD4T4AuWpOC6TEaHO6qTA\nHDFjYiQESc2wRlJQvE7hnSbAFYDAII3MkCI3caTb3WCyyBYrZ1ktllxuN5xuNhgDQ3egP4gEQeLK\ny2e2oF0s2GxOuLi64vLqktV6TbNYsFqvWZ+cgLXTwZlCkMOv8uJL4ZwYMCLTkmLwOCeTCMMh5Uxj\n52lmoVQeNzBalaIflxw6NnOLt1XYREUmdzQtLS5iZv5qubRozCjSrA9pCRhwrhgWJ1JQ/5Ux8Csf\n/Rg/9XNPN4b8uf/zQ3zms6/w/L0rQdpjxlmHxdKPA/v9gV2/1/cyN0YxRj7y7/1ufvyv/ST/5NgU\n8r0v8O/+69/Bw8eP2O93EiscpOHISf0TGmEYYjWqOiZSNup/1dP1Pd/87mcJ4bPcf7sZ5HOXDGqK\nXKjpzllctPjoqKKk3SQyWDGC/PTnv3hT8vrDJ1NTImCv3j8rk5n5o9eu42gapv3gNBVRBBbj7JT0\nYsjkoNP4IGCXGEEO7Hd7drs9vUrO6soLCK133ZR/5kjtLcv1gqtLkTWen2xY1lJU1XUl4HKU7tQZ\nAQLdkdfFhJGWdeQcEMikubF3x4yPskzzNGk9Tv50OjHLCCMwa0FZ/FacekyUgiHrKftOS/LVcZ2f\nn3NycsJyucRay2q5pq5bQgzcv3+f119/na7rcVVNG5M+x2FOcdJDv6oqTk5OyGSeXD/hwcOHkgbZ\ntjL5HsXzouxxIUQOaj4t3kiV0NbVbFZWjMUlofgXILYYFltrJnleCCM5ye+3p6dsT0+x2jxXXuRY\nY9+rtApijgxDx82TwLCTKb03ltP1ipP1imfu3aHxNTmOHDSFMozDZDofY2a5WrK9OOf09Izt2Tnn\nF+ecnm5Zbza0ywXeVWSgGzoFYzK+riThctFijFGavtDxfSUSlOJIJI0hsyRoYtIYkWoEaVak2ZGG\nJWmTl8jErFtRngdToHu3IIf62kbvyZz8e5yOVs5nmM96o0V3kUJnY0hBQKtn7lzpO3g6S/f5u3dJ\nJcHNOpF/IxLUoet58uQJ19fXNE0zmciXae0P/we/l8+9/gavvPEW55s1FydrOgVZd7udynKjykNk\nECVBNi3tcqEs2zgl6u4OnRhujyPf8p7n2D9zh8MYaOuKyhjCGOj7kXHsGXrxsTK2JaVA1MGhGGQL\na/nBrtf3+sU8VwrwVTpE/VxNaVTL4GUGvCY213QK6FUK7bJXGzedOW8+fsLnPv8mlXOYDF0/su96\ndodOQoxCwFVW2QgZ6zK+MnjryFHW1Hq55N6dC979/HNs1ms2K5X6gg5heqyJ1JXBezuxeMs/j/2E\nvLKzchZZirFmGnjJe5uvzOwd2feSsFfOmc7Kqiy/LyE707o+eqEyMATLO9dXx1VV1bRGcpaENAg0\nbct2e8Zzzz3HK6+8MjH2rK80qTCprDFSNw1109AMAzGLx1vOGn5SJPK6LrKVPaAAANY6NU2f5d/F\naL9I5pumoam8JjaO5BgxJlMVSfOiFQ9j9Z303hOHPeMwSF3vPU3VUPsKl8WEv648TVXR1NUU4mSs\nZbVZc3XnLs889yxn55e0yxUYAXNDzniEdV0k7bEMw3WYKgPzUooWoNdKzVUh/+5K/YUO8+cE5WJu\nXj63sq8XRmYqnAdjpnAVYGbLkY5C/lRwbaycRQpyk7IMbM08T8mKfw3DIOFaUbwEpXbV+lJ7sxiF\n+WNSxBrxmz7dLPgf/syP8skXX+IzL3+WZy/PeP7OpYQ8VRX7zYKTkzWDqkmM7heLdgHZKnt30FpG\nWF5RWWCHzrHbq/exEQBTzkuoVMUAEhxSBh5dV1MfhNWeFYTMOauhvvok54Qz6cgHTT8MI3LZlERu\niDVYLZSdAW8NOOkfvLF447BZvsYby8lqyff9G/8KY4w82h24d7Hl7vZkkpuCme5pIWToN6ZIWAtT\n8lZw2ozxyO8N01lU9vjXf81Aro5tW1PXnrZtWK6XnJ6ecna2ZbNeTV6ZQ7cnDMMk+SxSXFu8x8Ic\nqFaAwxQjr715n7eePObtPR1k+vAhhiCs7JgTQckGzqqH2jGIpcz5cRh0zUV8JYnfxX/zlvcdZXBz\nxGYu6XVfxutrBvgqh3vXdVzfXNN3vXhydQP7TgrqxDVB04UKm2IYB0JMWONYLBdst1ustewPHftD\nJ5MW5yfmTtQbF2Kc/TZyRti4pYmN6j8yb4a3b3QpoOXB8DpFKQtMQKmGuqrUlFi/9ygShDEI9bBy\nFm+ySNW8p/GOunIsKkkX6oceYpTJwGQUWU1A4WKxZLXasD075+ziQmOAl1RNjfGVNF8ZgqYfiUlk\nS900OlRx0yESs8gtrf5ZAa+i0lILIKZuJ9rY56IWFHzEcQskAaaCcP6zPDV2hmOTwfmapsJKvRSG\nsdIrCwCJkFYNWX03xBBy7AeGfuATn/iEvtrTN6qPfepTnK1aUhBphxQnga7ruDnsGLNQy3NKWKWG\njsOIyYkf/Pd/N6+8/iavvvkW2/WS0+VCitc4AuJtEJMkynSHDoyh6iq8JnxIs1IYUJF+FFPLFBPf\n8p7nOAxX9OPIoqlYNH6SVmBlUpGiMKJSTqQcSVkOKe8MY/A82v/zGUFS/NzKppuE6luKhBkQUgr5\ndEeZCoRJlqKTeOscRl/3jUeP+Ozn38Ahz91ut6M7HCSaupglZqXTKviZyHhv2ZxuODs74fLijPPz\nUzabNa2XtDsnJ9jkx5U1JS1pIZGSpHQlbQSMTrpytuKzkp0CqnZeeZnJ2wsktjkVf64khsfGO/VW\nYnr2ZY3oZEUb7AjEkCmJfO9cXx1XXTVY49jd7Akx8Ob9t+h7aeD7fsD7ijHsefz4CV03YK1jsVzy\n5Ppa5PfG0tQLVqsV9+4+izGWmxtJQAJo2yUpS3JwUB+qMUQB0/R8CzGSx/GWkeiUuDVJ+1RSUaLX\nkWa60qKlSNKts2pE3qgBdlZvscBhuCbnhDOWpqowlaepK1pfUVmLQ56j/c2OLl8TVQ5BzjRNw3K5\npGlEqlsvFqxPTjm/vODq3l02Jye0TTvJcjKBjKEfhX20aBvqtsH5ilTkBN6RTVQZ8swWnkCvo2GW\nfC7K9E7C4h1jlDCWMom1s9fg24GIp4IoWdnMZjZsLQyHKYzFOcYxTsh+AR2FpR0Y+46hPzAOA2EY\neObqkm//Lb+VX/xHP6DDn98B/AzOfoTf/K2/kZNly4MHDybWRyzpV+r3VQrf3W6Hc04BkyzMwpQ4\n36w5XS44HCRkwVqnJuji52jHwPX1Dbv9XsA/a3CHPdWhVeBLzqCYxH8t6XsuseSrppkSBW3KRJPx\npsJZQwjCRmu8F0+Y2JHCSM4N1hpWk3n700G/Zy7PpuHDbfbi7eK61BHl/jknSdwpy/o21kq+o5Wi\n3XiRQT3e7fjv/8bf4VenMAC4d3HJN7zrLvvDgW4IgKWqK/rQYV1SMGokRxlGXV6ecufqkjuX55xt\nt2zWS5xRlgEimQ/aPOcYZL1mYc9140g3RnwQaXyMAlgUc3tnDcvFkspJYnfX9awW9eQPaQys12us\nMRMo7tUvNozDtB6Byf8WpP5LKYtXYZDiaxxH2rZ9x9z+q+i6uroixii2F33POA4Ti3zRtJDh+uaG\n7tCRYfIVnvwAu56qRoK6Tk6w1vL48WNJCo5RZVVy5Zwm5nrOWZmFfvKcymScEWXHMcM1xiieXlmZ\nilMgl4R2tW1LXXmMfm3fd4T+gM1JvIBiIEWPq2saX1E5R2Utta5dYwy+qjjZnnLn3j2eefY5Tk5P\n8VUtoH2Ws8DXYkVT2J7Wiql4DiWMKAFRBpa6p4jfmc5drZvAwFQGLEfG4rIHWe3xVAI4AYRSAYpU\nUPvKMi9B965bQH3xCBOT/VL35ZTES/hzn+N9730P73/fe9X4XfaL6RnO4rcs/rKZGIR1lWNQexAB\nH6XlFIllXVl+3de/n2984V0MfSdsLFVFgHg21U0lfZHuoXVTUdkKb2Uo1fed+Dll6X37vudmt+Nm\nL8FxKSWMc2rC7ifWdvG0HJN4IS4XLd2yFT/knDVQINMPA7326SHEWUWhn/UUREZWm4Ok0koZJklQ\nmyVY6UNLyE5mHgZVTszh7202vNeWsILZ49kW9t4RQJNLGESh+FGUKSJjvAXmgHp6yS+rMkfjHPeu\nzvSp+SLem9sTLrcnrDYrFssF7aIRDKD2GJPY3TwmjnOis1hczwogqz6l0otGrQdqnBJ03vg1gLcQ\nJYlZWqM0JXBiZwKAgOAiIR2HgWAQqyLrKX2dMeCsm7wGC0Pylj3Bv4DrawL4qusGYyyPnzxht7vm\nZrfDWis33nlC0NSimxvGMFLV1eSVYa3FK821aVu89+x3e66vr6WpMULxtWWzyUY2oa7XWHXEjwoz\nGbzBfKPLvS7TEyiAzzzlk9eMWliFqQlP1jKSCaNscCUdxRhEM99UrNdL2roVECcnchwZUsCEgaHb\nI1iSwXmn0jYBYZpFy2K1ZLlZsTxZ066WuLrBVh7jJH5VGgUp+I0TlpdE0UpkuRw0SpvOspnPOnkA\nYShY4yaDSAqbS+PGpZeYWS63wMLj3zP/i5EPcSrEUfCrfIMS/4sCW5LSBU4Po3JAFF+ysZf43nHo\nZcIeE88/84y+3tM3qoUzvPbqq4zjoIcXk+FnSIFo5vRO5z0phik1K+fMybJh+dxdNcwetGARlmJK\nWQ+6kWGUKU/XqwwwSwxuAVxThqj0VDH1NNTe0lYLMIlxHATcSVnTeBzRWknbiVH8E1NSFqE0wova\nf8n3fvf8ZAIaJ3r2cbOY5yly8bex6leSlfogMc12MhkthwWoCeTf/Nv8sxc/M33nq+2WDz53wTiM\nZPWRgExK8nlZnQa1TcP2dMPl5QWXF2ecbNY0jcbMK6gl55ilpGvNvhWJGJLIXFLGWk/lPBJIIc+n\ntwBuYrSgnl7TM50zdVWxXi7l/aY4yVucPn9ZJaxGn4dUfHt0TRfGikxz5j3knesre7WLFucdT66v\n2R/27Ha7iTkrk2bLzW5HPY6MIWpqoJ0ThlFZ4G+kAAAgAElEQVTWoDV0Q89hTOxu9sQgPn2+qqdp\nYVLpXj+MdF0n4SfOCeAdhNnRNI2wpXKeilxZK7InpiQMKWG5Jkh+YrjGGDFI02uNISC+LCGMupf0\nelZUrBYNq7alrWtq63BZ5IVhHLh+MooRcTEg1gAViRG21G0r7OHNCcvVmqZpxYvLWrKx5BI6UsBv\no7J4Vwk7Sila5ayRZ75MzpWLYGZmtKSNachEiio91EsTG2eGizyDTh9Ek+evPQZWCsBWXqN0TJM3\njrXKqoPK+Tl5L0ViyKQ4EsaRMPTTpLQU4j/+Yz/MH/7P/it+4ZeOpCjf8uv5wd//e3jz9deIRymO\nhfuUdOhRfqYCemSVipTgHgNTMMo49GAsh8OeQU3MY/HqSXECi3Lfk3c7xpAYY9AzRc9NsjLQIsZ6\n9QARQCilQI4BQ5YG2NbEKE1IDIGUJY4955qUMqvG89zFOa8++ELPlW9+4b3cO9/eknYeSxuPr3xU\nU82WCcJoFBa6KZ3rPGgB/vLf/N/46KcfcCzlf/3+h+n7l3nf3XN9nuT9DcNuAgdkb19wtj3l6vKS\ny4tzTjdrmroiK6gVs0TO55wIcRTT+Jxx3nIYen7l06/yaCf34ObxnsZXbFo7TerHcaQuoTPekaKA\nd+KNKgPIyjsWi1Z8bzSowtq5QDquQ8nCmJzOmFSY9AZnPUb/6ezXRLvw/4truVozjiOHrp8az6Zp\n2KxW1N7z6OEDHt9/wNB3WISB6J2jU3bOoesIMeHriqV3LFcr7Ykqrm92dF0nlg46QBYGZHlWUFaR\n8s+NndKmyQmT5KBJITCmqK/rlX0ve7TTsBF0TYdR6l5CwHtLo8yuRdvIoMN7BYyln7JVRdM2nJyc\ncHn3LveefZbzy0t8XROKqTsGV1USsuV9ORQAGQR5J56FhYWftZYS8GRmYDnj5jNXh59o/5LJWIvW\nzmYCsqB8O6lxUxix6LlHnvyqMvmI+KAJjBEMcWIQ3X/wULyEf+7npvv/Xd/xHfzFP/sn2axX8r0A\nnzVEQH2mUwikQfycnfo0UungOI2Tl2Wla8NKkyLhYdaQc5zYTkUWjdax/aEj2EjbWtp2QVXVwj5L\n4slld5aQIiEHla6O8jlk8ZkyOYu0Uzu4KkHOllhb2tpq+FRJzbSaKjyoSX2a6uMinyxSzxxluF1U\nICEmtR2QPW4Y7SQB9M5QVYaqttSNp6q9KDRsJiOgH2j4XEblvvOga0KzyBOYWO67yG/tVJOUykEA\nLyu/vJtYcO+6d8G3fN37+ZVP3j7vDN/Pne0pX/++51mtVlPyaHnFYdDwlT5M9iikrM+kkg5QGxYS\nwyDpnItFTbYVwTg6ZeDL9fSerni7WSWwoF5cmCOCyfR8ZaLWOL4q7NHZ+9h7R05eMQ/1+SvPnvY4\n8ehs/3JcXxMn2aAT8vENAQ+ss6zWa+q6YSh0/hDo+oF+HKh12hgnDyUByepK4qmvb55w/eQJMUQB\nz7xTfa8saqIRr6EwTkV31s210NWnSFrlrd42iyxJInOxE0IQBFnfUxhHSEke1Fw2atngak3eWy8X\nemg4UHCDKA3+GA3EgPGepm1oF62kdaGGecslJ9tTtmcXnJ5fsD45pW4aNRYuiYpibm+9bCy+qsQk\n0vnpvcrGlCb/FWPcrU3LoPGuzFPykjZmjSLkGDWI1OfqVo2bp01I0lOQYps8MWWAqWlieo2jSX1S\ns/mMGiAGpQePytiSxiSqj4wF3v/u5/jtv+k38Yv/19NNgk9az4P7b9B1B5wtBqFuAt1SioxBDx9r\nGDpLSIm+H4jakIUYJ8+44tcQlAIsk3aRxcU4EoaonjaSFjmW+GGYQadC1c6Qc4QciXGUZkWbbu/F\nzN6MMGpzJpM82cDJmU1b89zlOa/e/yJGkOfbSTI6XyrrKete2RKyHxoxsXbaiBid4ByDXzodwVh+\n4if/Lh/7zCOOm5K3Hn2YcXyND9zdQopkkyUyNycx1140nGw2nG3PuLjYslmvFRiwEKNOF+XrkxYw\nQb3CjHWQ4HDo+eWX3uDxrqRbBRpfs11JokxM0vzkI9ZhTvpzoP5o1lDVlaSWpVkvDwpAWyMmrmXd\nHv1/ng6bAhzO/gLvXF/5a7ffY62l1wLNGEtdS0JdAQ5iTOz2B4YxTKwLax2l7qhqCRIJMfLwyTU3\n+z0pQ+3EHF/2VZmi5dxPEl/vK5H4KSME1FtC/b6EJVmk4EbWZS4TZTE+j0aHM8WjJQuQMQy97pMC\nb0yDlbpmtVyyXixY1rWY1qcsdKossoxxTGQnANlyuaRulJWaRlzlWW7WnF9ecX55yXq9YbFc4qpq\n9mMpUhQjASrGWlxVY32l6a4FrNApKqiyWllaanwMKj8wBow0+SGEGfAwMxtukidmpkh4udR0WCYv\nAh5qMTd7RmaslWGG934CUoSNNyJmsAooaWBGMUFPMZCjemXIO+Jss+Yv/Ikf4qOf+CQvv/Iqz925\n4s75KTc3Nxz2B8bDgcNBvEa99zRNLYC7TvvFXDYzWktvjbJ5BgUwZ1ZrCJGQmRgkIJ9hiCPiCxcY\nCps8SxrcGCXZa/p4CjPOGLAJsgBtIrkRqZNTRp3zjuwlXTAnYVsUs3bIxBT4jm98N7/w8Vd4+Y3b\nnit/6N/6rgnQgi8EvY4nx0d96HQfjC2ApBTqpoBh+vO/+tYD/uknv4jfys2H6M6WOB2MiIwn4rxj\n0bacnpxwdX7O1eUFpycnk8lwGLpZaqQsCmOEbTVqnWiy56f+4a/y6MZyfLb14cPkw56LjZ/l8an4\ngLmptinnSDEX9r6a/CPnifvcnL/dD+2WTxGFhTL7NRUJ1jvXV/7qh0FYv7oHVnUtMtr1Cmsyb7zx\nJruba4wm/9bOU/uK3f7AOASGIRBiBntDILFer1muVhMZ4FFG2GKxmHEXI2o0rEfBLsOU7EsZMDor\n0mB9lp2R30sCYwmNkv6KFCfzbe+kN2prMbpvm1qAr6ZRxo76SzUtq82a9XrD9uyMs8tLNmfn+MVS\nPJNSwtqMVUZm3S5w1qmCYXJwxCh4B/IM2MLIsrO3cBkWlfNiCipjfoassfo8l3H6bCeAMTLIzIUx\nNO9NpTbHmCk0oAzbc8qa0JrES/gXf5VbXsK/8AP8wR/84/y1v/hnhE2nvWIOkRhGeXFl7nnDDMql\nYq8j79FZuTfWGvCVbJY54b1TUoBTVtA49WZhDBriJvBcdiIJxcjQRSP7wMr3ddYQTJqIGRBJWYC9\nAip5KyhjzpbaemLlJuKH0/M/xlaGwGX8pCA/WZJnx3GYBlljGKXvT5GS0htCoB/cxG41CKDTtg2r\ndUOzqLAuk3KY6ghDkavaSeg9nT3lbR4N5cXNR5Kjj/1AU0637je2gFFlYJH4j3/P7+Qv/PW/zcdf\nms+7Zy/P+F2/9Ru52G6pqpqEJSYYx6SqnjRJTKWHKUmgBmcT1njtPyGbRAgRjKWxNcnVhGTYDRHj\nKjaLFdeHD+vKlJ4Ovp/aS22X1XLIZoPJRq0fQPzM5gG8sUZCgsr9oeBhpQ+1JBvFRiYlkd06O8mE\nU5Y668t5fU0AX48eS/SvV4R1c7KR6HON9czKiBnHkRBlkRYPHrC4ytLUNZvNBucc19dPOBw6wFBV\nYhhZ5AN13QjzputhHMCUNBC5rE6Bi9yE7BT11JlpEgTUKsusFEjygKnmHMjqOwYCzNVevIzqytM0\njUzfKwvI5N0B3lq8tZPfV60x9Iu2nYCvbKBuWs4vLri6c5fziytWp6fUVa1GfF6jgYtO3YCVYtJX\nNVYpjM56MaU0whQojcTkH2DBpiNJwhEjZvqlH5stxvlHoMmxzjopQFkAgWyyPphH05fS+Ml3k0ML\neWhTluIzRQEPU4yzTjqMoECcUYBSQMaRP/fH/zA/+Cf/a/7BP5k3qn/pG76JH/7ef5sKGHphWlgr\na6+uHL6qMEZ80QxZDgNlUmQEjAzDINKXGHVC4iTtaRSar6J7eGdpiyFkJ0wyay3GlfMrqSQKpdUW\nRL5MLCIuy4Q+64YmZCcL3kFyxDD7FRQjSAP8q7/hA/z8P32JF187bkreyx/8nu88SuuYJzrld5Ou\nHJQqXCZe83rHCEstkyavFefFZ+yVN7+4CeSj3Yfo+yW1U7DVZOplw3q9Yrs95eL8nPOzc5arlhQS\nY99xiEEKIGumZJICAIzDgPWOqm5IOfFz//fHebzzvL0pebTvOFupT0qaadYV84SsGDqWZ18YO9L8\nMjUZTMVU8VmZfTyMqjeL8b+8rrsl833n+kpeb7zxBs452ralaRrW6xOcr8T/sevU76ASADtG9WmR\nVKkQhQG2Wq24urrCWseLn32VQ9eJV4VGbxdATUx9HXYY6PtR/LxyVp+VipylbC0SP+PyNMG3xqg5\nr+xrzhgq5ybGoStedkn2vCLZc87R1DVN02BdL34TdUNTVZpaGqfCWsxjK6wHp4mNTdtSNzXJQKbi\nZLvl4s4V9555louLK+q6FjlV8Wi0ZgK9MJaqlgQvX4kZsTkuIo0ySbPF5iOAHab/JoW1AH7yz1KH\nFtBDWdtHk9uMAnlGzoopSarInIFpopvhE5/+NC+9/Fk++IEP8PUf/CDkYqwvTVMchC2QFEwah1Hj\n4oV5SxYBtTNSWKY4YnPmvc/e47mrc8jiw7ZsWwIwIMEXYQxSxDey9oAp/bPrOvn+sQyWxIah1Cww\nf15T4Ql6blnqLFIFAe7SDLYbIGaVV2RIYNVHJ2UpxAEpbpMMESxm8qCBjBfv4ol9IMCYNAN15fjd\n3/6t2LohhcC9iy3PXGynn7Psj+UeT83qdM/zUV1wJFG1VoFVbVJzxjgzyU7efPhY7/HTZR9dP7Cs\nPCbL2l4pYLs9PeXy/Jzz7Rnr1RKLYRwG+v5AilHONmX3Bv25RGoji+31Bze88sabPM1nZYgfYgyO\nSiv2wh6P3k5nRoz51hkj7L6B48TgchVpbPnz4uFVBrRZytEJOCyM53eur47r0ZMnc+1rLctmxen2\nlOVyyTgMPHxwnziOeAU2vBXLlBSl+Y1RfCLTLtNHYVttT7csl8vJGubhg0f0XT+xMsozNyfJm4nN\nVXk5L5wx0otUFdbY2b/UOvVHAln4Av6XobUzRry7nHistm1D2yjbq/Iiqa9rVqsVp9stZ+fnrE9O\nWWnKfN22YB3GV3hAFIfCYKvqBmvEp5KJPa+NeRmYODvLf23xF05T6lx5XgoZokgYYT5DgGk/5agu\nm/a9KUQLHajKXqSdnypUtA9ST69PfPpFfurnf56nJfv+7C9+iJde/izve/fzMizXIYPVAJViNF72\n6qxMGpsFHPfWaY8mP2XlRbWTc9TzHJY6QJPgM/n5op4fyVgJPFFv2jhGQhjoh54xjpOSoUhG8ySf\nzAKZmfKZiBqpIEnGyTkwAV/OYq0nJQEvzdHGNIU/xUgIlZYDVgcKQb1Qhb08DAPDUKl6Suofa8W3\ne71eslpqAm4uPVYZMCsxJRtlLpVbfGSBYOfzRxIJlX1rCuHDTISL43K9BJnEEGgrx/f9m9/Bi599\nhdffesh2veByu6GqhbkfgiYqJ5RxnRhGkZUe+k4G9SnpgByc8ThXUfkK54yAcSZJiririTi6ceSm\nG+j6kefvXfDS599i1809XeMbHeznCVQs5Altb6befr60dtO9AuZnrXgkk5nJBhRGvvR+c4L9l+/6\n2gC+Hj3SpmJJa9uJRZWSFG3WCWOrTCInL4QQGMee1lrWqzX37t4jpsRnXvoMZPCaYlK8w1JKtIsF\nS+fxhz0pZ4ZBpqdeqbaTWWQpODgyGzaGQq80xuKto1KzyEoNHa0xBOcE1Ue08LUeFMtlK5uZlbQs\nUmAcOkzKNBrZ23iJkvfG0NY1TSVG3l5NH+u24c7duzzzzLNcXN1htTnBVpWY0OsDXAzsZaig5pY6\nEZQHIGszUjYG8KYYCIvHFxkicggnjQyW9z2nQpRNbPZTuV3A5qOpS8558hwoVs3GGFIWECOhaUlx\n/l4gE/sQI702B2rzJaBRGEiDxsFG8eRAjSGNgfPTDX/1T/9xPvniS7z08ud45vKMF569i7OWGEZO\nTpbsd3tKBem9p64amaAM4sXRD8OUygVw6PtbEhFjPb6uVbdttVnVZDOdDnV9TV15+qGfPt+gTJC+\n7yZmg7XFdFkbOv2ZUmEkGiuzEaPNsDKtrBHZjTMWi8EZy6Zt+NB3/zYylutDxzOXW+5uT+XAziB0\nci0Iiu8KGZlQGwEi5WibJsnH5AqpN+aDpfgyvH7/od65pzclwziwbhaaltdycnrCdnvCyWZD27Y4\nZwl9x9D1twwgvfUU2nRhq8QYaZx4V7xx/yGfv1+kL28zfxw/RB8aKlcArZFx9HMkfCqgV2HbJHa7\nnbJryjQOjDkyfiyFmT5v6JosAQzHpvg2vzOJ/2q4xKfLqMl8o7JvYV10XcdQIsGrSmV/NUMvnitd\n17FcLlmt1lxd3aHrOvaHg5gQ1/XEJDvsBUBbLBZsNhth4AD7/Z6u62gbSbpKiB9XCEHWvZX1Q2n8\nC7CkE/vaV5Pvg7eWbN1UqJap9qJt2Ww2ku4Yr0GZvCmM9DFjc6J2ntZX1L6iqSraupY1XFfin+Qt\nbVuzXK+4unuXq6srLs4vWS1PKFHXgHo5WvWJLObAxfPPzl+jTowFKLOID4yhmNqXgAjd/wtzzVhc\nZW7vLwWMmMCAEiIR9VzRn0ml8SDuhAD3Hzziez/8x/g/fuanp/XwO7/zu/gf/7sf52S9UuApsr85\naCNoZPChMp8wDkQNlxHgC7J6Lda1x9u1MLhCIKcKs1lBTAxdz83NDfv9XkyHF4vJzL4Mkx4/ejQB\nr8UPbL8XKe6ofnBVXRNyxHlZZ8A0/BtiYBh6DnvxWMnIWR5TnD2DxkHDFDLeCwgTppmGoardPIRC\nU51SpnYWUzlSFKaIc7OBsHOGuvbcu3vB2bI9Ah31KgAlBfi8bZw7gWLWfME5gi0AZ2F7yT5rvOOZ\nOxf6Ck+XfSwrw2pR0zYLFssFqzPxSdqenkp6qbUMfU93sxcrgRAnJr7Iq8T8N5JwlZiAYwxvPLjW\n7/MlfFZ8keuKcb23UjNKAyUgXmHTdN2BIUmq55QCR/EdynMjbyVp1modkHTgPg8lRSLzZVafvHP9\nf7gO+/3078YYTk9POT87o64q3nr8mJubG/V3dOplJ/e8eL8WKVGfEn3oiSGRE5ydnbFoW87PziEb\nrh8/1sCTNO2LZZ1MM8vpsbztpWeMFaBCnzMhGBiM+vgmrfEr52h8xXLRUptE21Qs2oUM5NsG76QP\n2qzXXFxccHV1h7PLCwHp6gajyfIxoewgVZEYYZA553XvKZ5esq4LaGKMkV7OuhmI0pS6DNOeGdST\n9fjvSY8hXls6+5i80MogP0blBSsrqCT7FpkYZN3r83z2WAsm89LnXtXP9ul7wmdfeY33PvccQz9q\nTyq2CXKUlf2W6R5EL0bnXv3gADl3SFR1jTEFkBD2sTMNrXPkmKYbbo0Rqx1jSEDf9Tw6XHO42avs\nfiQEPc90mCMnNdO+b7MpkyX5oyh9R4FWdFoh50yUexdj1BomzybzOWMskj7vKgFY1Uus+E5iEEbY\nMBDSUepkEq+wtm1ZrVYs2pbKOyE4HA9VpnOl/GylZp/rhnL+lG1Whmsi1zRYjDMz625iqdsJ6AxB\nrG5ijFxuT7g4WU/yw5QNY0j0Y+AwjIQIQ4h0/cjh0LHb77nRs3waCGGpXI13tQZOgLOZuq1pFisw\nlmEMXN/sePT4mt1BfJufvdpys2849B3WCLGCzBx8Igt/eo6Kd3kZLhYiw7E1hTz7xUpHveeiqJJK\n/1UpQ74wJ4/P8S/H9TUBfJ2dnWthIDevqmtWqzXGWA6HXrwsUlS674KYxDRyUObNYrGUYtJ7Hj94\nwG63V7NvKShK8dcdeqwT/566bfDe8+jRoym9a6LypTmGWjYEmayi9FIwWJNntl8BzFKa5AR1XelU\nXYCvZduybFvIWeNKR3IcMHHAWZEspOiw2oxUzlI7mdSUgnCxWHBx54rn3/1ezi8uqNtWAgAO4mVW\n1RXWFzmasLow8yRQAD0pRHOSCYHIHjLWmUniGWMmplnilXWqIsXnTAcuCZNGEfuQ5ujt40uGSMVj\noJhDCtutPHQpZz7+qRd58bNiDvnCe98t8o4QGKNMzMmaZliK4pQYw0BWuUBW0MsXWquFuq351m/4\nAN/4wrsY+04OhCjeBsZA3fhJPiOsr5qmaqlsNTUOIcTJiPHx9RN2mn7WK2hqvee6rieaddSNeNTC\ndRxHutWCYRjnwzhG+l6m/f0wyGZ4xIIohczcxCSRT2bxAXPO4o2ZpnLeiCREJlFqal1XXJ2f01Ri\nfH0sb5zB0KNkzQxTwqPeb2uLr1Exo5avmQwgrdXiTQr+e5fn+h2e3pTcuzjjzuUZm82G1XpJ29ZU\nlQeT6budBBQMUsgVVqU1YhJeGgrZ5EtCXk3C8NavwQKIKVNXBqIYo4Yg0wxbWCNHh2aKicN4EC8L\nX83sT5hYN8efW5ksTRPEUizoPXzn+uq4Xnjh/YzjyKNHjxhGeRYXiwVt20ojkjPX19dst1s9k+Ct\n+/e5fnTDMAycnJxOyY1vPXjAYX/AaGFW1zVdN3B9c4MxhrUGkCy1WL9//z431zu6fmDUYmIc5/3A\nmgRpTlP0Ol0rXlYgOFKMAbIC3FZ8KEDAsaZp9FfNOFrGYWTsB+IwYjIsfIXztQxilAlWezkzshWW\nmfGW9ekJz7zrOe49c4/1yQk2u4nZJoy1Gm+cSuoFpPDG0g+SahyzMJYtXieqQJqBjcoWFsz8nByH\napREy8IUKy1C8YS8xQCT8Q5FHiPsWGEp6IgEMHzvh/8oP/3zv8wxG/Tv/dxH+NB/9AP89Z/4b+Sv\nZvHzMsnK50FpsIIMVHSa7YxMvPtBPLFWixZvLcMwcHN9TU6ZtmmULTYKA0/39nI2Wmup65pameoi\nbwwT2HF9fc3jx4/Z7/eyv1eeLgwkEovYTutmVIn/GBf0KzHOL0lmIAzEru/oNCBHvrcDHCmbGWjM\npdkI6lmYpiLZW5GhOG/kfpqM03qhvIcvAL0AhbymeqF8xreljnODMrFtjSEpC0Om8Ux1hXWW5+9e\n8us/+AH+6Se+XxPDfgdF9nG2WvLue1ecbs/Ynp2xWC4ZSZJO5zx9N9DtD+yur4n9SF0Lo94aQ38Y\ncKsVMWT2+5EQA+1qyWKxIJGpqy9t6F+O75JmVywwJusuo599VjbxPmJrHeSCNIwK8Hk310dfYBSd\nEsnMLJ9JFvzO9VV1FfZmXdesVyuxbhkHnigbrPgLOu/wlSdF8XSNWkeW/iPlzH6/V0Zx4GRzInVq\n05I3UWsm+XuK/ZOS2jckR4xGh8KJVM4TI+dHGMOU6GYMWGeUfSJDjspa2rpi1bbynKSBRdOwWa9F\nGl/Xkxn+6XbL+cUl5xcXbE62+MpPChSsxSnwFLOZ/fqMVYuBODNTdc/wOhyQRh0KOFe8XYuB/bEU\nuFzy2RmwTIb3+pDJHkNJDkYtLjT5sZxFZEySmnweSMhrW2dl4J8yX/e+9+p3fPqe8L7nn58UC9Y4\nag0nk31v9h9zx8+3gi8UFlYUfy856zM2GoiWGIL8Xe/0PaoXsHF6NiqoZYUlPMSBfjgw9tI3xyge\nxOUMKes1F7liyqpi0LCAckZP+5m9tZcXdZYw2Yrc1kyAijNGY7JkeGStIenelpwlOEPKtQKUeSJB\nNHVD20hPXEAui5lCCPS2MqtXymDGzWsDjqTzSbdWYS5ZJ4Fkpf8vPTw6WJOk1XHCG0IQlVDW8zOk\nRIiZMWbGmDh0I7tDx/XNnpvdnv3hwDDK3wU5+ytXkRpHSAOMI9Zk6tpimxpTVYwpc9jveOvBQ+4/\nfMhufyAhwQTWWdqmkWekqjSUS4em5d2WvqbgGApwTc+FLLaJWWeY67NwxAZEPzen4Lb4UM690pfr\n+poAvi7v3GHoe+7ff0tAI51GCyorHiYhjDi/pm4XhBgwnaShVJXEpi/alsPumtdeeYX+cMA6T60p\nI/0Y6LpBjCaNUEMX6wUnpyc473ny+Ak3NzcMvUxSj4vu8nDJQSC0T6uHxmT+lmQRxJzB2UlyUtVu\nSlsxuonFEAj9QEoBmyPeaIJKU7NqFywXCxovExBjDKbyVE3Der3h7OKcZ971HBd37tAulySMmkTK\n59AsWrzzGmssG4CY0tvZJDiLbAArD0ZUhF+kbAUUmE3DC5JepkSTAWvOYNxEKRbgSRI0shrqQ5mc\nFL10kXJkyOpRkzIPHj7i+37wR/ipI3PI7/z2386f/1M/xunJCdYaKjWbT0NgSDJpD8OAiQnvVWIq\nownxhEri01FpPG4OHlPV2EbM/+pKUlC6gxw4kroZ2Q8HejuyXIrH1KIWWUoxGe6GEgvsNfEpEMOA\nUIPlwHCFbWAM2TtSZfh/2XuTWN2yLD3o291p/ube+96LF5FdVWVWZlUWRTNgApSrXIAZMUCeIDHJ\nSZXEJLHLE0uAkEeABLLAGGQJ4bQlmhFCMGEIcgoLzyxZCNmQWVmRkW1EvHfv/ZvT7ZbBWmufcyMi\nSzUgFCnFO6mnyHfff+/9/9Psvda3vqZzGiGSQbbhdDYxhIwhPZmO03kqbGxPG3GMiRZPbmoKFOvm\nyXtGG0VgqVNoOoumszBWAZpS1/iiQUycFbPDwFepTvsVG0FCpmMaMBrg1JGCQmaUGhsTSPZQ0Apf\neecF/plv/Dr+7z/+uAnkF58/wz/9m19D3+/hJOEyZ8xLrE1Cigk5ERVYgUyGNYOmWmukHBEigZa6\ncci6wRwCGYsD+NPMH4m9xtMi9gvXRqLusZkMZV5vWm7KWJYDYpEWmxnEzdyU6fp850JuOMpoqKJp\nA9/Qr98cn93R7/d138iVrcepdswOpnWD2V7smxFjxH5P0+y27/FwOuGH770H7z36HTU0zjWYpqUy\ni4Vh2/Yd7u7u0LYt7h9OeHh8xMhsADVki9kAACAASURBVGI4Wp44J1jDzYde9xwCxVALscxSewId\nqIiW55gS5TymEQh+QIrEZlG5wBmHrm2x29GkvmWpS8wZvW3QtA1s22B3c8Bb77yNd770JTx76zms\nc4gLFcNKa1jr4BpXDe6pzqQGphaL/GfLypIFTtU0q9ULqXqCgE2IDQFq8n3EoM0AmxYXWpgIbFEr\nC5XWTSCLd1WhZ+97P/gh/rfvfhefJEf5e3//W/je//t9/PrXfg1amwrK0YAkse8JTdc1yNdS89AF\nOZHcUFNypkaGdwYlFTTOEpNIoU6pY4qIfoGfyce06zrkvqcG0lJEfAgBPniWP1GOcogRPifMYV79\nT5QC8aGJldpoC60BZ2kHkb06F/J8ofTrFWg1ukGBRgyBJtkx1uSxbXAQyU8sDZ6g0BhiyrZNg77t\n0LqGQDb15ELU36OwNnTSpG7/oPqPrIW31C8FamXcGprKU/1e8O/8W/86/rP/9n/GP3l3lX28fXvE\nX/jnfxtvvXiBvt+xLFehxILoC3ykRGG/eKQlA1kjR8DPCbLnOgvEpBCTRi4OWnUwdocUA1rb4dnh\niIfrJ/isGEdJdznXhkvuQWryDZSif0NRiCEh+oi2MXUNAj/Xlv2WtudRzqGwW4pe2Tsy7X9z/HId\nsr90LYWeTOOIaRyxLAuzhMnPRwJFxiXyMARrXV0odRZc710uFwQf0LUdJ0FS7W+0rl5xSRhBAKqC\nhdcsGjqTKkBZCkaQ1wAFhkf91hDD2PIgxliqcZy12O12OBwO6Pu+hpJ0XYfdbo+u79F0xGrWlgJj\nChRSASfLG/YLYq8uZqZUmZZa14LKLBFwXpfqWyRTky2wLsCFUopZw7QPifkTASSKazIB8TchGqDl\niOF6FKAOszMbkossVKwGfusbX8df+L3fw9/7P/8yM59oTTDmj/D7/9Lv4pvf+DqzwntmzIqvMu11\nliXcWikOdMmIChX8pxrVwUCe/8jDCmapGQPSoieUyJ60iozzYw5IJXLAVkBMtLcsy4zgqXeJPNjP\nDDzGmNjeg9pC8l1bhyAFqta5dVieRTJI24BR5CtWDA2QYCzZu2ggg/rlwuAWWHJngHo/CPNKmH/O\nGjilYWSwvxlEq8ID+ArCyX6ysr3ovcu1VvQ9igSuYP83GTRmfi2lHyqkTASFYRgxjjPZVqQM8s3i\nPqwUzCFiHAnsOl8GnIcJwzjRoDOmem21VjAgXCCVglQScibrCV0syRt9hE8XnK8D7h9OuA4TQswo\nCkiE4MFwz+WsRQCgYgKU9CUreUHWIQG+NJ8XWiqozklY2V6iiEjsZfpEDSP7Gg8bP83jcwF8pZQp\nftt79F1DprtsDpliJGNGBczLDDM58hUBXYhd1+Hu9gats7icTnh4/QoGBc4YjtW1mJeA4Nn4dZpQ\nFBBLwvHmiOPxhg3wLc6nE5Y5kKmbgF7gDYwXO2o6DFHaQf/eSnwv6AtWa56MW4g3WCoMUkSPkhOs\nIgPilgvgrm2IfeAainLVGh2bRB6PR9zc3ZFR5IsXaHZ76KaBgkYxhF43TUPpKCz9kgYJoHU/Mxpc\nASwxFS7rhIWuBaUMEdtr1UzTJFKvX1PrVIiKtkwLCmhhIYBkbdiEmi9mvVnMIXPGH/6Vf/dj5pD/\nxz/4S/j2X/1r+O//1l+HBhn3lRgBNghEydAlsypCrQ98ocXQGZItGF4k21akr3QNnWtAHgNNpYoS\nmk9+WrAOsBYc70RgCJuygyc1WoNimVNi2iwxkZRiGaFMlQwlsyTLkzYjSRpAyj03ysK44ilfzmws\nTBscGemvwFdiKYUPnpsh+l2Na3A4dNgfOrjWoGrZIVMwXYGklXVR6sTEiB9P3chIdw42gqQrXer0\nZJ3GCUst4d/+N/81/Jf/w/+K7723NiVffvkcf/F3/zncHA+AMog5I8UCHxNCSggxVRo22IeLNOgR\nWlm6djbRxo8M6xxgWiTlMAUP61rcHY54/ISmpLUNnDHV20wBdeKz3SCAzf0KMY2VD8dAhFbIWrNJ\nZa5+GkSpp8QaSR9Coq+90aD8chyS9Lt4jz1Lh4TCPs/E3myaBiFEXC6XKjdpmhbPX7ygVCpr8f77\n7+Ph/h7EEnWcCEnXWsALgIqmLnhYa3E4HGFsUyfL3pPhvdYGKfHAxejq4WXFa1Ip3k/4azxIMTxg\naZqGjXOfyj3Afk/WULT5rmlx7PfY73r0TUdm/Pzs3t7d4Hh7i/3xgP3tEbcvnuP22R2aviPT+mLg\nlPjFOPLf1DSpD7yWa104/ILYoWIeD6VX5iMDJCkKoESDgtVgdevJocnmgJ85lam4zbJOgopnvX1G\nAWJ6iYSFQYLv/+BP+B8/mQ36J+/9EF/91S9X0/+aypyIRazAhSmvzWKo7yz5MlqjCKB3FsfDjiQo\nhhJlG+vYkiE8+W8p5PfmrK2BG/QxZNK9DpvomiZkZPLHZEBIQFLx5XRZIUZq2Yxd9zoyZO5QSlpl\niroBQN6nwXv2OePQFQZSrDUYR0qRpLQ0mgxbZ9H3PW6OB/R9C/MJSm65jlVGz8COgEKafXoIuXw6\nPS6oeFhdj0WWIU1602j84V/88/j+uz/CT95/hZ0zePnsGW5v79C0HXLKWDw1Kh4tGT57j8ggHwGX\nwJwDShnr54qRErliVrBNC2N3KMVhmmZcrwFf/9IL/OP33v+Iz0qDZ/sGMthLPJWvzRlP2XMuKHpl\ncMW0MgDkGVGKZI3GGsSw1mFPApewnhvxuClFvdlmfomO1jVUA+dMzan3eFwWjFcKp7DWcmdAz2PK\nmaTvIbKPlaaGOScgg1jxIEnYmEYEH9A2tvo9arVaMmT2kiPmjLB1qA/Q4g8JqjEVP2yiulAZVR4l\ne4yEraSUyJN1v69kA6U1GufQ73Y4HI9ouh2sbWivM5aH4gx8q8JDDd4nIDWjnActJSW9v5Qrw1fA\nq2qDk+j7xHRb1pvqQwxUQEQYRPLMSM1bNiwXranh5xK8/i4ZWiql+VybmqCXC62T3/kb/zH+4I/+\nPfzvf39dE/6V3/nz+Lt/8z9B1/eyDNCh5K8FTltoy4PVnFBiIPYQ9wx1DQT1b8ik+IgxIi4LG49T\nD1dSRoqUQFtKQfQBIXmEREDX+XLG9XLBPE2cEhwq2CX+gCFEZoKtSp9UWO2CUm0NaAbFUkWWNyrF\neyQPa4wmabw1BtlmFGsA/kx1YAYAWSGpxMEC9G8G5FdceOBsCigQgd9U0Rp5cz5lPdVaOnK6iTSH\n4EBqhDosU9Cl8HpJ7xebPUrM8BMHzQzDiMtlwDjOJCmXmyQrxJwxzDNO1wGn8xXn8xXny4hx9vAx\nIjEAm4r4XNM9PvqAyxzgjOVe1UCnhGFekB5OxPKcZgzTBJ8SYlnrHmNoL7Ds/6YYqCRLibWnq8Ak\nUFleUlMS8MYSyZJh2PKCFyXyL2WlXUqR3jfk55Unt/SncXwugK/L5YrAxuC5SFKVr39k8Z3mCVlR\nehQVPy2eP3uO25sjSs44n06YpxHWOPI8YplUNarmIj3mDJ8CCoBnd89wOBxo84DGCSdE7+uCIg+Q\n3Cy6glpk0ksgioPjdK6tVlYO8XcIIUBzM9I6i84ZtFZX8/q+pVhgayx2fYe7Z8/x/MVz3N49w2Fj\nEqmthbYOUAbKAqYQkGPZJFLxxJZ+N70HAb00e6RprXmilCsAUFk3Yrhei1P5HPRUbCnFMpUi8J43\nmvpaxSb7qFOKnGVa8Gczh3z3h+/hq1/5MoNdtEAJY6lOgOUcK2oCjGnYa4NQbqUKXNey7xoZQmtD\nTVnbdnWhoJh5KhR006KUlUYefMCyTOynkGqjokARxaSTF2lC4X2a0z9BDZq2tDBrIxMtXc+FUgza\ncVOQS0Fr6b5TvCmTGSQZO1YgLNCkPnPT5lyD/WGH475H3zpoVer1JZCKV7ayuTfUOoFfJ1JkQE+c\nPflsum404j+EzfkXyUXrDP7g3/hdvPvjn+HD+xOe3+zJBNI1yEVh8QGLT0hZYQkRPlBi6zRPWBZP\nFOtE587o1QCSbPgyrLPYNR2gHZZYcJ0WDJPHV7/4Et/70c8/3pQcOkhTQnsHLfASBY3Kb6MlXfMG\npTeLPTWZum4OOQoLRFUvwVw2G4IAaOXT3yTeHH+243w+V0Px4/EIkopFki5PY/VkG8cB3gdYZxm0\nOuDu2TPs93uEEHA6nRBCRNO01Ydja64rwFfMCfNCcfYv33obu90e4k50Op2QkvhMFECv91iVdbEE\nwmoD54gJYrWudRywAa2VsIoLcopwvE+1rsGu6bBr6U/XNOibthoc97sez188x1tvv8Tti+foD3vY\nroF2DlwXEoilGFypBvckP0bK63DEmPp8GUNSSDnE3DfTlIH24rLS86WgzpmMdFVmWSfWaa7SmtOH\n5VnF2qjwo1xnvmVt/r72K1/md/HJbNCv/spX6PqVxFHyImGmz6SVhsG6ZyFnKKPRtQ2MUZBMEuss\n2uZIDUVKyA5om+5J2pgwdram9QQuefZ9JNag976yrowxyDHzmiL1xAqUCQBGp5P9VVCgmd2hFWB4\nX5ZzaVjuaFWD7Ih9kQs11uKHo61B17bVc4g+R4J9wvroiE37EVbrOmV+amgv/qyVESWWk3xkGn8z\n2KUquleb4Uym2yIJe/vZEXd78oVtXAvnHFIM7J+5YPERU8rwi8c8zVimGdEH8sQRumAh76GmaaD0\nDGUM2l2Ppm2glMO8RJxPI87nETkV/NrLI2bf4TLOKDmicY58a/KaAqwVqjxI9owYIwxIslQbtVqn\nrZ5D2xRICsspnLi3TeMW703xc8l1ePnm+OyPF8+fIeeMZZmhlMIyz1jmGdM0IfEzRMwZ2iei9xjH\nESGyzyTXIFn8ErGyHXPK8NmjZArMMMwkMrIHMBBRU+m42NPW0YCchz6qMLtYi9TxKfPSWUvgvl7X\njsP+gNvbW9zc3NDzolT1vux3e/T9DsY17EFJrJYMANowa8TVAepmKad7mWyzAK6pSxLQiXUQvG7G\nECpjG8rU9yyNfmHpothviJR++7MiP/8EFugVfy+iVpH9hIESbTbp77r6fZVS8Pz2Bv/Td/4m/vjd\n9/Duj36C3/ja1/DNb3ydAT4xzOdBTBH/K8BYGYCTfDNmfo2wz/i5lnABZBoYhRAQlgVIifvUjCJp\njrOH9wuWxSNEMrGf5wmPjyeMnAjsfSBQnUOeBPiS9Z1Y0+xtlWntTwCMydCKvEXFhoZSHOn9OWvI\nX5n7odZZNM5BQnh0kZ6N5XZKgE8KrNJKrfu7XN+c6xop/RFlahUGS7ln4iEANiQObP6ruQnbMmiV\nElCYvVIVoDjAq4BCaobrgMv5guE6YPGB6w2DUjR8SBjmGfenM14/nnC+XjGOC8Z5QYgc0sO/LxXp\npws+fBixhKWuFa3r8fLmBkUV+JRhppn24rymOceySv6tXe1WMlvdCLALkEOfXL9cCkxRtcWpwzs5\nT3xqLXtEc2MErRUSmAgTI5GNZK/Cmrz6aR2fC+BrmAaUlFlH6qANbfA+hOqlJDGy3pPnV8kZ+77H\ni7deoOs6nE4nnM9nELCwovjSjJPpLMvGckJIASlS1XV3d4e26XBzc4OcM+ZxgCR3rNPJUuVziosa\nMMglDx+wAYdY0ifSMSnMrbHo2xZd49Bajc4a7HY77HY9ySMtyQie3T3DO1/4At566y0cbm7Qdj2M\nc4A17LPE8hKQVbxh9gCtGUkwIgC0qWiefhiJCpfCrE5cCOzamnIDqKh5LhkllrW50Jq00kXVB4wK\nVawPIh+FJxKZq1yl2DcKBe/9+Gf8qk+exr/7o5/gSy/fRsmFWQ+OGV5S8NOiJtMZxcaQ2hiUTBMJ\nrYGmccgcUZ8TaeNbo9G0XfW+EvgjMVgxDFcMw4JxuGJZyOA4BE8bb4oQjzNkMUgnPziU1biZmkLe\nQunEIUdiqgHcDLJkZvXyoP/fcLNrGKSMLCctihhgMTbkxVZIOkTTRWpmSTJL3l5VrgtwvK1cG1oC\ntV6p5bUpUSvVmQzbE8tONJRMqdSWko7qQbEsBGK/dXfEy7tjZSGmohBCwuIDpiUixIJxXjBOM5k5\nTyPmeYEYQBptYU1DppjGwugM5wwOxz16UKN2HQa8fjjjdLkipoQvv/0Mw9RhmGZorShwAqrSt+s9\niU2jsW3QikyLVKW/y/WrCTV5NaDVmq+TNUg51Z+1vffzFj1+c3xmh6TkCbBkNIVR+MVXCQoxthKM\niWhLR76S/R6H/R4oBcP1imEYqCHgJkIphcAFaSHchOPEwUzmD6G1wbPnz9G4Brc3N8gp4XK5IiXy\nAJJ9hMAABsLkf5uGlgALkjyEEGjNYu8FJTgBFLq+J/P6tsWubQn0cvR+yduLWDvvvPMOJQR/4Qu4\nffEMru0QcsYcPGIu0OIXwvuNSFcYH4IAU1ob3iekuSDGNHmFUGFevbfYm0Xis2VYInH2JSYoTfu9\nUmL4vwJkcggoDwanSZIBAgK5eSy64Ld+4+v4V3/3z+G7/+CjcpS/jN/7F34H3/jqr1S5h0oMNlmS\ncVtjKLGWG6jExb7RCq1roFUhELxkaGPQugY5RczLDESSIWaQ/F3r1XekStZKxuP5EdfxUhMe53mu\nzLBUIjIShb+kiBI3AGJhL06TkbRmiVMiz5cckSOdJfB8XNipAJB1htHkLeWsZkBqBW8IjFVojF6b\nk0TsXK0N+r5D33donIXWBSqua5xSeo2a5+ZSYQXcKmirmBku/jFYmcnG2Lq/U9CAhnTLKUWSK8YI\nrTSapoU0PIv3mBfPRsTkO3q5DJjnhZ7dyxXztPA1JElhw/5fWBbknOHaDrfWoCsFc4yI84zXj484\nXQYsPiKyD5FR5C4Hvv9p3Y9cO3LBV9a6kCbomlLttOZQlIzEkmphd8jzIn6kCqDntmloeKpIqiap\nfJlZ+m/8JH95jq98+UuIMeJ8PuNyuWAYrpjHsYZV5Jw4+ETBJIusChbvaU03Bob9F42jWo+sRKQO\nAQAe1JaCnBVyUkh6lc1pljoL0EP1JMvUmTFiFPtoyXCzNtY0fHe8T1hF7J1d1+HF8+d4dneHru+5\nRtLo+x0np+7R9j1s26Jog5RQGS/GGJJWsqF+TquNitnUnihUa0p/JaAcIPUlrYtKpFlYn68KRoH3\nIK5rUx0U8Hqk1MqMAT2iGaUCJStDld43hPggnpNlBeFoKKrhnMZv/cY38Nvf/Ca2vrdKDNBjop2K\n9yapsZOAXilRUrqA/NwXpBBI4q81SorIISJ7jxQ8D3dArK0YkXzANE0YrgOmcYJPZBbvfcBwvmKa\nyE/Yh4AY6Zwk9gYLMvRnH2FRYARmoWUG/2RgkXNmY3w6r23j2JcxI4dAljOFQCKtC4wuyBqAoWug\npY7hVGUokpKWkkEz7yJ4JIOSXFfzsIDqIpG+cp9VFNUq9XsoaEwbHhKoTe9Th4UynBDrC7qvQkwY\nxxEPD484nS/Ul0Cxr6lBTgXDRPvC+/cPeDifcR0XLGFlCGap/QshzAkKp/OCEHsA30FNng/fxgen\nE17iCK0C3zeUakw/QxI0KTHbOWJzZ/bsljpM+g7qYYmRZ1NCMar2tgQgy2CPJJ4U6kYKKUnUlHtd\nQFmRSiqZFX3Ke83nAvhKjFz3ux12uz2bwSp473E6nXB//4Bl8bCO5X0MVOx68ivxIeByJhlL13Uo\nUFUyElKBD76yPRj3R84F1+sVIUTM44L9fk+TzH6HxpIEIMXIk0yeQGShE3OBlktFUDPTTummUNA6\nwhRFWly9TmTatqH33Vg4o9E7g7vbW/R9X5MTuq7D3fMXeP7iLdzcPUO321GRpDVgLLQB564AGpon\noroW0/Xm5eLoCUUeADItwjKdpOZ/y9QCnyXFC654sfDXlYLKZd0smHUAmeIy7FXo4taJAkBAmtCt\nlcGfwRzyV2mjdkSptmKwx0Wxq3JG2rwSUCmyOSeYwuyriviDAA1jYHmaEDx5aYGbNZSAgoQCKjh8\n9JjnActMBbP3y8fMiDOzFeUcChiIzfmoZ1UKf34dUGgBkmmDoYhrrRRMyTwFAQwKbRyaDKIzFy1V\nphoTAXpNg8Ya6FLnXKxrl8u0TuMF0BHPhcpQkg06oxYXWgPWGRhnaoMp3j6Jp0DUuFHjQSaQmhdi\nlmvGhDkSpfdynXC5DrheR0zLDM8bLSChEC0aZZChkBYPY4CdatGDNpHLtOD1/QM+ePUal+uVwOxC\nlOyODaWtNXXapnKun397aKX5eZFzQ7NASWkUma8xhj3VWILAm76zZPwoyZ9KofoPpe1Y883xmR4p\nBFhr8dbz5+i7jtYTbRAXj8fXD7ieL1imGW3L3lshYplmPL97jtY6jNcrzqcTVCnY73YImZPgrOH7\nPcFYB8TEzbGGVgbDEvCz9z/E+Tqw1LDB7WGPQ9dgWSaEZamsL0oRTORBZ2limFVE0IDTCpnNhFGZ\nJAEApf9KQ6OUQtd3aPi+tE2LZtdht9+hb1pYNom1fYebt57j+OwZusMNtO6RskXOCs7s2O+FpQuO\nJVlQ8IHWVlq7NEswaf8hHywyMoaYqacEKyynAuRiasNgYMgLj4cjMmShxs3Uab3KhOoVXr8zJ1bK\nkxVSYMm34gGJJXkzNzHf+S/+Q/zhH/0HT+Qov/8v/g7+6//0r6HRgDEKRWtondD2xGorCgglw1iL\nfreDsho+hBqMEHh916XlAZHCnAuS0kjQMG2EyRGIgAqcslgC7w2ZAfSA0ibEOWKYrhj8FT7SoC/k\ngFgiIhKySijDBKfoGueiEFJCiUBAIjm6UoCySFmhlIScWDpeMqzRaJzhIURCa2ONuldFIYalFsPE\nlqdz1JoMZWTIZCElqdYJpgwwcYbWFik1EJqJKiyrAl1jqx3E+DInZiaJl6Qu7AlaSMpZCmy7h3Jk\nAWA04CjylBs9BeUzxvOAMBFInQoAbcnn0RmU0mEOI87zFcN1wKsHYmgOw4BhGBBTgmsbWKuQ8owy\nz2jZoN8Yi4Nr4FyBwYJhShiuI16dHnBaRoQCJBgsKaKYDl3fwHEqXfAeChm6AEY5GOWgYYihAI2m\n6fg+o4m8sgaNKViGMw2s+h6d1ch+RvILcvCwyGgNMef7xsFPI6A0rKM9KQWPkiKSB8pH67w3x2d2\nfPGLX0QIFGyxzBMeFqoZRS4uHkniRVRAnk6Ja1LNMujWOJJBjtMaTmE0D9NFLWAYJKC+hJhEKxNG\nK4W2aYnpxYNsrTX2fQ/nHLz3zEDJLLcn/8jGOjhnyDvWWuwPezx79gyHwxEAJXQjFwK3tIFpWri2\ng207WNcCJqPERAbpPKQnwiyD4fwZlFKA4V6mkEWKzjTSoMRLBo8SAwkMpFkGIchknBr6lFc/KoBd\nELNIJjWvQ6oCIWDwXWFVWiiWF2ttWK6POowtzH6iYTAqiKO1JnWLgGdKbT5zRlKFrLgK7V05gwdA\nzBLlQbrWlNyeY0D2Hjl4qkWVRokBJUTAB9hcyOIgRSTvkXxEmBf4YcT4eMYwDlhSJK+wkhFCRgwF\nMWSEUBAjhWWFlOBjhI+RwrMifW1eFjJl974CX5Q8W1aigFKVkX5z2KFvHVQmIN+UTCz1VGBigdUF\nWRckXaAU9+I8uKEwFoViwIA+eUUbrOmfqhoLKWK44WkiIUpGyasdD4AnfczKCCz1/tDs64XCPr2a\nWOoFhD1cLhc8Pp5wHScAgLUNMZ+UgU8LzpcrXj+c8PrxjHc/uGBatiyuFvve0n0H8kEmSycP4O/g\no8nzPn4L49KibRwc+2jSR80oWnovB9s49okk4DJGAsQJB1C0iiSScaaSCUwVIEv8NnmNsVpRYmvT\nEOFIKyBRgigUu9tIB7kBbFGB4U/v+FwAX8/unkMxw8U1rqL6w0AMkJwlcpfADonVtNbicrlimWdc\nr1eSdrQWPsQa/eoDNeGGPa1CooXYGAtrCQA7X86Y5xlt29AEU6k67SiFpmnBe2bs0MOqKrtn9RJR\nWqjnxDLLRQGKfECM5khQTXzeAqIX7nd73NzcVINL5xz2+z32+wNc06JpOjRNB20saXJLQcwFyuiq\nlVdMvQUjsQpswmjWKSltsuDVgFFzLtwFDNhq5YVBpRUVXXrTZFR2G3gpYvovBOBR9IgVsE6/+oRp\nZu6wbwAyvvmNX/+F5pD/8u/8Hv7Z3/4t5LxOhYS1qZWiNBz20pBpd1ZANppSbJSwKMAgFTG+Cl8/\not/ShhpCrFOcEBakQmzDaR4xzxOmecI8TZy8E6tHTUoJwSeWsgiTqCCKhEmtBospEWOgUs+VbB5A\nUgqZTRYLT8es0YgZfK7AIBf532glJvVqpXRrMqy3mowgVeGEGBojA0W+l4Eu4cJv01kqHsaAmCGG\nYeHpl2HmRSpSHND5TSFhHCecz1cMw8gT91UmmDIw+YDrMOF0HvBwOuPxdMW0ePiQkDI3PrlAG42Q\ngWn22GWN1gIxZjSwcFlj8gnlPCDlMx4eT7gOI5YQeVIkE7gGluWuKSXEOlGUVUc9+dylrBu5TIFS\nShQLwJI3YWrQdClz888mj3pznrEWtDlRGumb47M/Xrx4AWOIYZtSwjRNyGnkAQg1FU3TwLmmSpfE\nB2yaJkzzXNO1nHPIQSZg2wKOAPqYaD0WhlkuGfM8o6QE7yz7X9D917YteY1F8voSWR8AKox5rykM\nBAGKPV1Wr5aUUjUatobizROAzGutc5Re13c9SR2dw26340TKFs46GGcBbVlyKJ4rVIjLWrMC4wpM\nta0TdZkMKpBBeSmr55gwK7XR0Ax8yc+pew5Yes8O8nW7AupQoTJM+d8KNw9EUDI8xbR1vwcXfne3\nt/gf//bfwA/e/SF+8N6P8fVf+9V16LJhC1hQgqK2BlkBFoX2N6OfWCbUJL7CxSH/nhwT+at4D6QA\nnWNlq5cqhyV5uqRpXS8DxuuIcZgwjhOB6zmx50rgvU0YcBEqEwCZefgUE5kGFxBw6mOABsloleKw\nlULrljXE5o4pwyPAMdi1WiOUV/4JwwAAIABJREFUKpuX+79KDvlYmcHC1ABoQ5UwhnWwsvXnqYbD\nWoY1zIZXdA1joXuGErQVsmc2eiHZSfAeyzLicjljGAaEmPgeIr/M2XvMMeM6Tng4nXH/+IjL+Yrr\nSFHwVJNR7ZQL8PPHKyY/18+1a3f48stnCClimuZ6j07jhOv1inmekQjFItkTy4VVwZMkPknuLJWJ\nUE/A06FLAXKIULK3mqdp2FJHhvBxNlfhZ6I+V1o//dlvjs/0MFyPAQSI+mVBjBHWWqScYMzGn0or\nalZlEK04xdokaGPhrEOwgVl9mQfwJEFXIG8lSmKk2g8o1R/RMJtDmI0yYDBGU+KpZ7Pz6LleosS4\nw36P1jkK59AKh77H7fGm/gzx/LPOwFgH64iVr4xlHy8Lrcn3FykjQ8Eqw3LCrQpCCk4epAsMpTWM\nIhCPZPCkdNDGsDcmvUbAjcyA2XbMSPtDrowYYipLkj37PYH371KYjbsSBQRcq75iZR3eiDKgyvb4\n50g6seLfBR7qiMxRXk3rbESOa4Ku4pqzxIDsF6TgSc5oyE4DhVQfKUZkZryOw4hpnChBOASMA9Uz\n3nvEAsA65AJMk8f1OsGHWMGuZfEY5hnT4jGHgMUH+EgD69kvPMglhpxcb/JW43WOz6FjH+2usbCK\n9tD9rkVMlHwMpWCtRoHlZEIiTpD/XEaM5B2Joupgn5sjAnWVAJWrDUuV5cr9U+iKi/UDHTyw3/a0\nXItYJfJeVjZV3yyLJQScLxe8en2PcZqohrMO2hH5ZPEer+8f8NP3P8TD+YQffnDFtHT4KIurlAmH\nA/m6OmdRlKhOPlndFFJCg6Z+fvksVaWldfXiTIEseHIM/Jwb2rPFF48BQFEMUO9GAThiZWC4TqKU\n0S1AvGGKbob+5GO+nsNP8/hcAF8vX75NN2UK8MuE63Ug+meM7O+l0bgWu/0eXdcxkEDN5+VywjiM\nmCcqYBSj9omR53leEEOohu5UMAqdz/LvzVjyQtTSaNlYmAz2AEG4GdiqqDHdOA37eykuvrSiQlIK\nRVpj2YiY9fIqsxylbXFzc4Ob45F9wxy6rsP+cMDheIRrWijrUJRFhmbHJdbCawOlLU8s6BD2j67v\nkxqnTWwdvY4LcGGGKTHI5D+0yPPGZFaftAIGvRhMygzsyENZioACPPHghkJAlGrazObqFCxR8J3/\n/D/CH/yVf/+pOeSf+338d//VXydzSN5EVq8QjgCuseEBsZCENTGzSyYKmoG9Uujz+mVBjpHzOACV\nC4IP8LPnhJOAJcxIOeA6sL77csE0zfDLwuAVbwI5IcZMjMK4bno5ZwTR8xvURTfGhOBj9VXTmoIQ\nWCSEyJO1bC3dc5aSvWDWhQjIyJmugVDNBdtSvHmC5RG0wfMnVWuvKtdZFn26ppv0NWZVrM2LTFXE\n54bOrTWUhhOY6XW9XHG9DJjmhUBMpVGKgo8Fw7zg/nzCw+lCBpDXEddxZsBrBfZyKThfFizB851w\nQtf0eOtwpISYZUEsgBlnmoQuM8lRCqcpQnMkN7PnSkaJ0jioukduWXmMV0NkV0qVCmpnlrMaptWr\nIv8m7JxQp7QCPFNDx8/kthJ7c3ymxxfefgcSH//w8IDL5cJAt6+NY9u2OB6PaJq2To9TIsnKNE2Y\nGPiyzmFaKGVP5YJlJtP8UhKsc9CGmoMCAtMUr8WLnxE8GPii4YvVaxrV1oNC7iXNhYtzrkouTJUn\nb6aYoGLdNQ3ASa7OWez3e9zd3eH2cEDjLPquw2G3Z3Z1R0Mi9rWQSTY9Lmtxr+v7oUMCPKRofyob\nRgX6BSgSfyeaVlqm6bMsRUvcOTgJFes0vqxMbQFUlNEAP7tkX8BPPksTt0bgaVOkKaPxja9/Db/5\nja/TpPqjhuGFp/28hxheP5UxKKrUxFkJZRG9ZwZoMJQKIvuvLIuHTjT5BkoFsrz3WPwCv1BjkVLC\n6XzC9XrFMI5kcM2ejTHS+hJTpOuSFFKOPGgjiD2jnhyAG5RpY3zsrEbRLIfJCcaQ5ClbDTj67JZl\nhfW65YyEgpLYaBuGrrXeDL2KNJmSvrjWO6tXEHhtXYEzxZuQ9CvUyPC9yyBXKRlZLAmYlRajx7xM\nuJwvuF4vWIJHTOTVqYxBygXDOOHhcsVP3n+NDx4e2Ztzqcxj8hGidfzVZcESOwB/G9KsjMu38aMP\nXuNXlUZK9PNyoTTnaZopWEZTPecaB2cb9l+LSGEdLmpjKnBIewzdS1UqxadEBnLybAvwJf5vAKrv\nqtRu2+frCQi9AcvfHJ/9cXp8gPceD69fYxwGCOsCIIBLgF9wUJHnYT8xXAHUgJRCSdIMzFCaHA/X\nsPoGSeog3W8UyEHpqy0FoBhd5bBSSYYQsDAgR5LhBl3boutaHoYYGBQ0hv7NOoPgPWYFgMEp13To\n+h3abgfXttDGsm9ZpgCjTNI5xaCQ4u+ToS9AdavIqaXOpH/g+hO0DhtFYWHbBD8Bu5BK3TMERMtP\nnhFdGStPUwBlr6LBdU2t52P7LPKb4s8g7x31/UqJCci6nClpcQsSyLnb/G4JUSmZ683goWKAlq+H\nAl8WpBDg5xmemVhh8bicLxgH8iQNIWDmZOkYI6K2KIbM6k+XCddhxLQsmGaPkRPqx2XB5ANmH7CE\nQMwvZoAZS6EFxhiEmDHOBIwZRf5vmj+jQoAP5O3bO4ND18GljHH2yA2x8mICQiJQV9e1HyC2Hu8B\nubA1AKALIJYKtL3LhiP7x8b6QHpexQwx3nPkXqvXXREbvIB6dPHCBIREQn37NM94fDzhdDojpUI1\nUtdBaYNpCThdrrg/nTCME8YlYVwWEOj1cRaXUl318A4x4f71Gb9I3WS0qX114bUglQ0QxfcMhe9Q\nQIs1huw2UBD9QpY3pfD5K9V3WGlNpIXCtjxQnGZJ9kiJkydLDRVb95QaMMT9bcmruunTOj4XwNfd\n3R1ijLhez4gDUfRlESQaqcV+3+Ktly+x3+8RY+AEFPbEGKc6hZWJamIpxuIXhEimdMZaNFpDJ5Gh\nyTpEN1SKEaGQX4YxmhFtmhXoGkULENOFGFzkD8EGuLKgGvBGxaaIfIM518ByE9M2LY6HI57d3WG/\n39ND6Rrs9wfc3Nxgdzii6Xoo65AZQMi5AHIjsvZ8u1nIZ6kAXc6slSdEfauVj5EKaGpqNpOXunqv\ngJUUpwJiCfiFrXxUNp28pjiVgnUaqfUamQqe4DBg8PzuDv/L3/1b+OMfvoc/+dGPyRzyN75eWUml\ngPxNpLCUaY9WxGzgDbbUS0kLgzRXCrSQpEDa+MLsLPHSiCFgGSdM40TGwmFBLBHjNGG4XglY5WYm\np8KgF0lKYxJWQ6H/z4VqyAkZQoMmCWxMkf1gCjclBtmQGWSOHo01KG3dWmGgoJ0mU0imZpN/CBVO\nWZE0k6jkvPnyM1VUZh+2zeVELSPqUUGvWsyI1E/Va6qg1kaVz6f41WQULAvRgs/nC4ZhovuKmWUp\nF8x+wf3phPfv7/HB60dchpmSYXgaV3jYA6XwOCbWwP8dSEMy+2/jg/MZb9/dIuaM2UeiuCuiccci\nXivUdDhneRpakNh3qTYIvCEknlo6YTVsz4zct4qp3IY8L4jZIWmPBCCLd2D9xk2DIo/JG9zrl+O4\nublBKdRkpBixeGZYaUW0fG1g2hZvvfUWjscb2pOGAdfrFcsy0mScPVrAU+DIMdIkf16QcmLTX5JS\nJ76/xNeKBgil+gLmTCmhhkNH6jStrOuvNWS83bbN6ikJaRByHSrIVL9rW5RU0DB7+O7ZM7x4/hx9\n26GUDOcadH2P/fFIDLemXZtuDmKBMnVJ39LbpRFQPI1FYSkHN3PCCksyIc4rK6UWb0qhZFUHJZQY\nRWDaBnWDMjQkEv8jKFmf2KeFz5GqkghFQAjH05N3FKc/slxGmhajV6nMFqXOMWw+I8tslKqfR4E9\nyVIB2ICZLgP/PZDXSg4BihMhxRtsmSaM44hxHGmf4X3jfLliGAfM84xlWXhdfJqyWHJBKjRtJuNi\nSowi81xm8hpKm10WYhaSX6iDM5pkj95DG42+K0BjiCHHktKVpbUOBcRcGgDttZCGlRqHLDH2tQhe\nGVz1vlFKMlHoUFvwVD39O/8354RUKIjGWQNrNcYxYRwHnM6PFAYg/kiGWC9LjHj//gHf/Yf/BPeX\nS/2ZrXW4aU19rzTYy1jiJzcrs/8WHi8X7CMB2EWxJQQA4xwzbSjNtbENvd+4RrsLIJwZvKTnWa8N\nBJ8/OWWllJoAXo24N1P3lUlp6jmTwc06CNymmr05fhmOD37+c3jv8erVK4zDAIXCgzjUgUjBClz5\n4Ang5jWNZEy0PiQTIZ7FUg/XOqQOHnhPYIDVOYfGtbDWfeQ+UmisA6AwTRMluqbEapeG/YO4Z7Fk\nqdGwoTZKQYiRfnbr0LQddocjdocD2r4jKxpDTFnyH8vVLxeQe5aHqvJ55DlQ7DmcGATZ7DnrGrep\nXQU9KYD0Kgr0swsh9DwY4XWc9446yNk8L4m9krhAhvRBW2aLSB2FQSNML7oG62trL4QN8CCfm9+3\nAoOVkfqUklKtB2LwUH6B5vCkFCMS1ythWTBPE2b2wg2ega9xoqFKoFAPSqeP8DAIRWEJAafzGcM0\nYZxn8tVdZgK7YoCPCT6R1FEAyxgTeuvQGoMM4MevThiXsd7fre3w4tBT/8H3bUwKqjTomgYxFywx\nUhqpIgZ4KiJhTeteDiJJZJbMak6ITkW2BoJLKUCTa3wxYajgDF9bvdYBqCCnXgdmtf5YB9PC3AOP\nX3LOnODL6auuhWsaGOsw+4DLcMXj+YJp8ey5HfgHfTKLCwAO+z0OxwNiinj9+ozrJyTPW9NWw3qp\nD9dE0bVvp/ecVwBZhkh53VNqP1fWEIm6txZi7dFQivZ+SQRf7Sv49YwpiFxaHg+Rln6ax+cC+BLm\nSQxU7JBESAxC6e/H4w3efvkSNzc38H7B/f09PvzwA0zjWBldACVBcY4IFY8pVkq84cbAgVPxvKeE\nptqkSnFPEgEpkrXRLKNYNfPOWrSupek+UJlfWilEljIopap8sWkaAslQ0LoGh8Mez+7ucHt7C+sc\nGbXytL7te7T9Dq7vYFwDpS1tXIoLK02GwyRHZET3Iw03tpOTDfJN52i9wbcbgBRTlQlj1sUlMxKt\n6lRfFgx6hBkTo8KSAa1K+9crs0g2kNXcUnOIE5lD/lPf/M26cIER+JxyzRcEODuR0ekc2bC+iE8Z\nf23xyClWr5ESI4r3QIxQKQM5I3G6SQwB02XA5XIhk+sYUDRo0jssmCZPseghIqbCyVfUlPiYmD2X\n4QOlcvkQEHJmppV6cm7l/LXOomvJi6vEQH9aSk4xmpIhs306WZdCICUJXVgBTjpdvLAXUDoZA2OC\nx8hiJoi/MMmofqB7xZCwu77nek9xkaIUMy9Y/uMXj2EY8Hg643y5wvu4yq2gMPsFj6czfvLBK/yj\n7/8Ul2mqz31rGxx3DsLGyrn8qRr4YW6rl5GxhajHBMPR52MWoGmIGZNjrM23PMuKpYopszF0SVAc\nqSdT2MJsCaMNGuvY+JHM6wtKBQflytTLrD5yzvjcboHGN8dnd8QYqsQxxVQZkxTuQKy+w36Pt1++\nhWfPX1DC6Acf4OHhAcNwrT4hWmmksIYlkDltrFIq8nEhz6MQI+Z5rmlFAqgKEQaQwmSNYwfo/rGc\nqiWeK9Za9iKizxIjp+9p8o1p25aliw1KTOj7DjfHI25vb3E4HmFA6WIFCtpatF1Hr29b8iajiQ3k\nQRdzYBrG5mrWKqCGYhm3rDWam5MCsMSkAIoZmLLPcOOeGXwmJJp8MADeS7DuJcDKUKiSO7V9vniw\nAlmnpOlZ1056DwJub19Xeb/1xVGAOtbUq1KQAyXoppxoP1GGTIczG/wmmswiyd8jdEpQmUycY4xY\n5hnjdcD5ciH/FfZOARSmYcE8esxLwBJoYBNzgg+JbR/I+NgD1LiMI/zCpsMotXjXmhqCwkyB1lns\ndz1aZ1FyRPQL+YRYB6czoibQJdvMYxYpG9iIfQt8FQ0UaTBAoKLaAjCZm3IBvzKvy6U25HR9i1xN\nrOunAL38yxTtf8pqNE4j54hxGvB4esTD6ZHAZq1hXYtUAD8veDxf8N1/+P/g/qJBCdEsOYnfxhkT\nji0nTyqFWFvxT25WpmWBtQ2K1hwdb2Ebw43uutfWWiknHrqp6u0oz4wEMSmuDZWWuoz3W64PpXZM\nmRsTac6VJGuvbMoKCGwA5TfHL9fx85//HDFEnM8nhBjJd0spRG48SywkC9SazcQDUo48BFSM+xRI\nIrzarHlaG2Kea7A3LXk8FH4+m6blxFlqH+k5pr6maRq2bQBL/Sk11BhJDrakptAkr2usqUnzIttv\nuw67/Z7+HI7o9pTkKMN4KEqWK7yQbwcitJ7ruscIYEVrMD87SnoZlsxT0Un7TVn7AADrGsQTXkpR\nlOdCozDYTes9+Oc+BflLKStgsgXc+PkSltxW1rg9qA/LtReTz8X/WveWggIk8nLLKSMF6lGU9AUp\nIS8L8jRDxYjCNUXk0AM/LRiGK67XK8aRWF9XThuklPeIeVngGQQbQ8YYIqZ5wfk6YJpnzMFjCQFL\njAiJZI9kn8PvX2toa2lQZC2yAn7y0w8xLg4fXVdfDxOe7TqS7mYFkzVikZg0Ov/W0n4jMtJ6zlGg\n8tpL0lCQhtECPiqliGVcFF1fBR6i6E0NwLec3vS4UhcYCXKTa8eMPsZLa8q7XBsO8ppmCgEoIDly\nUQrTMuPxdMHrx0dchwnQGrvjEdk1wE9f4RexuHqWDd/eHDHNM37tV97Buz/8OYZxVTdZ06LvGnqO\nldRfVI9qlhiWQn07gVGG3yup3rZe5LSe6FpHyRBf7lvZrzRUZSvScDJtehf6xhrMpkQuup7zCi18\nSsfnAvi6v7+n6NDLFY0zcLbBMs8kG/AeCsDN4YDj4Yib4xGLbzAOV0TWzgNgTw96qGrBoArHeiak\nDOiU0TlNmvRMkrWYUt1UBNTSGrCGGR9GgCGRp5GHS9O0aJuG0HveULqmIY8N7+uUzlqLrqUEpNYY\naBTs+g7H4xGHwwFt1zH7qsBkaRRIM29dC+tamjqzgXrBCgjRerrdPHjf4EKzZA2t6Q5d0/fY7I7T\npSSuvWBlapHvYqnmwSQ34f+f2ZtqswAJcCKbgxSFtPBZKK0rY0gau8K+UbSnMe3YrN4tSgrqUpBK\nqpMjRRUlFQQpUZFfPQMKnSe/IHtPX+drWmIEfIQKlI4VfcA8TvCLRwwR18sF1/MF0zwj5gxlHZYQ\nscwR8xSxeAK5QkyYfcDkPU3fA3lwhJQoUWomhmEGEPMmFZHRc8vMt75tsOs7dNai5ACruPiIGVqT\nXw9tBhTqIuwI8RKiexNkH8JTZknOov+K3JZXqc09UhNQxHtEDrWy6erkGWKmSg1wjYnmjWyaZzye\nzjidz2vyiWsAreFDxPk64INX9/hH3/spLnMD4L/BdvMs44TjniKuk/hl/YKGxKfIPhKb98lFi1G2\nvjdAEVtioRTOkjM1MCh8PWQaxws4g1yEz4q3HZl2EqBtaDOq/l2yt/LvBnuDYVNIyblUqz/Rm+Oz\nPd5//+eV7UoFWYfA1P5lIfbX7fEGNzc3OBz2NSFr5ih6Yy3atoH4fllO8/RB2FsMDqUMuFKNcYch\ncaMi6x2b84okl4tkkboIkNV1LU3glSYJALOajVYb2QoIGGPQq21beo3tsN/tKN21aaCVRvABIUaW\nvli0bYu+36NpO2jb0PAC7GGiFbSl50LWLwKXS20QeEeoU23NPniSNAu1RrZvn4WMAskqpAotQWce\nyhRigWoFGGA1VAU2vxd14q/rM49ajdU9pvCuJEMCQOo4el0pZD4IZjMzIF6L7gwgkyFtCB4oJFGl\n4RYtzCVS0qJICAppOoCYEZYFcab4+GGccLmccRmoAYmR9iZlDbxPWJaEeYmYl4DgA+bgMc+0n/hI\ncuorEjUvy0KmtoVYs8O0YA4BjSYDdKM1kDL61uEwLdh1FIigckanLFLWSBnMVk6whtbdLAVyIelP\njBFKubreVe4GJQwIjAg5sYVlGbRXKdaryHSdC3pQQ6tkIlV7XQ1qmbixN46eP1NwuV5xf/8K9w/3\nGMaJaiNjYNsG0xJw//iI7//op7i/nEHN2dOhyRK/hd61HKhjOO14xC9qVrQmloM0Twq61k3yOWOI\nCJnZeDxI05qaJOTE9xSqhKsOj9TqWwYAbduShFmvHi2FBzWGLTIk6VmacAGgtz5/29rqzfHZH/ev\n70lGH331RoVSMJnu8pgShSIoYpMSS0c861AHD3X4AAFjxDZEg+aeCWxnC8MDl47vKXBqnwDTolJx\nziJH6lOkxzHsneXYD8yyub5zloAvRyBdv9vhcDxifzig3+3R7XYslVfISnwcDdlBKGF0PYWL1lVj\nHcwLHE6fm3sL3l8k0a9AVQsV+tZVHpkh1h+K9g2u6aAyrScbCaM8R9s/W0lcUU9ZavIehaklz7Mu\nq89e4lRGnozQJ+b3LemLdRiUqXdJzAomEIIH8RPtGTpRzUBMPSDFgoU9ch9PBH7Ni8c4zcTWyhmL\nD8zqWjAvCy6Tx3X25H24eMx+Qcy5gqsZClEBWek6RDHGoNvtaI02GvMSMEwDPnFdDd+CjwbIGTEn\nuCKDKx7uty3a1sE5XWsA6Q1TjtXzTO7tjHU/5luBzp8CAE0AWOEQHS3pjXxvCQgmSJhe/ar5Qq7A\nJwNdtJbKDUlemGRHQ/27NhowGtM84fFyxav7R1yGERkK/X6Hru/RHfZ4dnuHh9PHWVxt02HXk9Tx\nsN/DaAU/T/jSO3cYpw7LktiTiwC/xZP/s7Ua2pKHpHUNMY9LWdUlpVBAXSxIsXCfxnuGIQaX7Dt1\nMKjY4ikXZsKD04ANlGIihSJAWhhgRSwdQLWrZiaoVhofbR3//z4+F8DXn7z7AwBU6H7xCy/hnMM4\nEtUwBQ+jga6l1J0QApaZJAPkqbIWu0qm5VqziR7JzlKk5J/gSTffNCShNJqMxKWA10pVs3QAteDO\nLJ1srEXjGm4uVgNTeW0B2Iw0sJeGRd+32O0ofdKiQKOQ5rdl8/1lIUZaAZQmOaRr28r0oukJyJtM\niSKZqb+mQJd1fkpvSAorXrBlGi6LeiZfDHkgKjhCH2K9KFzoFggizF9U62u3nhXixSIFmlIbNtlm\nulKRLXABvLkPSpEJTgYS6/7BFGj+Jq02RUDOZPwr3mIpQ6UIFT0MbxyiQ0/eI44jwrLAzwumccT1\ncsUyUxMxDAPGYUSICVlpqAbcsHhchxnTvGBcaBMZ5pkm78tCm4oPnEhIs2TDBYQPEcM0YwkBVhFl\n3GiS87TOom9GdM6hdRqHvkUTM7QnWa41FiEB0GT6rrOqC7Ww/4oqJJ0VJFKKA9D0r2wmaFu6b520\n8UZRtpvHkw1DPON4mqi2Mc0WISScHs94eHjAPM0wxsG1DYxrEWLCeRjw4evX+PHPP8RlnkCg18eZ\nXEVRipptGpwvE/60hkSmRfJ8p820XZXCqZtA9DRNMwpwlqaYKVLqY8m5FkLSKlhOMiuZ/HSk6TDC\neEkJKXJEs7R8ajXlBt+3VKisMddvIK9fnuMnP/kJtNZo2xZf+cpX4FyDV69e43w6YRwHWEt+WKUU\nDCxxvFxOWOYZudCzptQKQrvGAZA1nzwCUynEKMsZTUtGpW3rKntZFQH+c01hU4oS/zzLKJumYTYW\nNes5s3yfwQgYXYM1BDxrmFUswS8716FrScKYYsQ8ThBjfNe01ZfFWEeG9pDELRpu8HCdIsq1ggY1\n4KUYPGk4ckFKpcqzhLW2empYnvaST2TKmUCvQowvxfubSNW3jR8tX7S+fdJzVNkPzH6Gop+DXNso\nbkA202bIQEVx+MZTjzJtV5PxzDJ4MpinxMrIRWYOESUGYv5xYErhZiZ4j+gDricapizeYxpn8vCa\nF95j2FDXaFzHCdfrRNL6acI0ewzzhGEYMU5jTdb6MI48qFNoXANjGvz41QXDvJGgGIeXOwddMsbZ\nYpoDdq1D6ywaQ16h1iyw0Gi0phQvnZhVoiCjJ/EYE+CF5me8l2sBcSRtS2omamKgaCBDl7HUAQEN\nGLhiNitoQxGmGQB5GSmrSeKvNUIIeHh4jdf3rzEvC9quxf7mFsY1SKlgPF3x/ut7/PT9V3wGPnlo\norRG13Xodj2apsVp8hinT5acQFMj6GNGUQmlxApKG5WhNd/7kRpeDcX7hxgopwoM5019qLUCSYM5\nOEABXdPCCuhVQTLUvXndi1eoQKSwUJa8+Ti965PYKG+Oz+ZY5glKgRJmWT4o65sxdK2NNexJnGst\nU18ktTI35QAD9ZnsVwrXezJwEz8vMmMHm5CDkxBJwdI0Ldqug9Yafl4oEIVBLhqWEPuwbRoGY1cm\nrbMWu67D4XBA13WrRFzT859LXbYhCXIkZeSVO689ydoXYFPjr4ypLWBRQOeiMr/k/8tQHmtvULbP\njDLU5+iNx6N6+nwIAF0Knsj1n/iMST8DkU4yiCW/dQOe1YO9uuh3rs+uKoUG9TGRaX2kPSMXGpgk\n71GWQOCPpE4WhQwaug/zgtMw4PF6xTBOCDHhMs/cjyy4ThMuw4hxouHIZV4wVzCV2OdZkeVPLoDn\nz9u2LVIghYR2BrvDHs5RyNxplvCPT15XiyIJL3mKSdpzQimJ+wa6ty0lFfB5X6V1AkgVMIuW6yul\ngMR7jPR89WrzAEKGJnJUySMvoFvpd11T61UVkOzpNU7M3JNe13uPy3XCh/f3OA0jUilwbYcCYucq\nY/Hb3/xV/F//+F2cLyuLa9ft8M6LO1aLaOy6FruuRUkJyzhhGQs6q7GkhMu0ICROhJwmtOOCFy9u\noK3hB4cVVPLGARpMGg0FSzZAlb0m92pGLlsly4oTCIArtjlQ4AAFsTXK8itqv6PFO3WThPlpHp8L\n4AuFUvv2fYtd1yMnimbf7RcZAAAgAElEQVRdOFGh63porTFPE8bhivP5EfcffsgSx7XYKBHQlopc\n8sigpItcSHYWU0TxRBnU2oISIg3EKB+gR0uBNw02+gWDOG0rRpFUaMcUARQ4YxFTIolCIDCubTtO\nCHNVM2+UQqNVTQohTbaBtgZN22J3OKA/HtHt9rANNU2ExGeS2CVmMJUCeWPinSXnsWQx788fvzeV\nYpN/zXKSzWpQ1BpTq3X1Eow5r5RlMRXcTCJrQ8PeV9auSYrbCaSkocgkRPzGxER83b7ARaP4zZTq\nkyNgDCroldgYkh7gFANUCNAhUMxvJBljCsQMnMeZvHjmBeMw4Hy+VE38PM+URJgzQtFImkwir+OA\nyzDiOo44DwMmzxOU6LHExCwwMoNMKcM2DQ5dj2Qt3vvZ64/p4l8eeqhSEJMnaWQTcOyJPTjNFF3s\nrKNpDEseis51AaNGUXNgAUsi+a+qgCUodL/b2hjyordB/7GhBddiQZocLuC1YYBHkwHlR2UV87Lg\nfD5juA7IuaDbd+h2O/iYcZ2ueDyfMUwzfL2wv0gHr7Hrd+j3PYYx/kINvKmTu9VHKApLTCmotHqt\nZJErckMiaSSZpx0aQPXNqxsfvyYllpYRi1TSlFJKdVopUhQj54bvy7qhM2AAviZvjs/+EABGa42+\n7xFCxDBcMFyvJHM8HABVcD6d4NkX49WrVyglsYEoDSqgFAx78sQUMM8Thagk8qIKySPPxCxzLUnc\nSyLTYTJAIQYteYskJH6uZNLeMmAlJqY5ZSiNGj3vUUgiwd9TZfTcwFhr0DrAGcseHJn3JGKFPXv2\nDPv9AcY2yNCVCZkyB4SUApUjvVcA0IZZZ5ohjvU5ySqzDMWSIToKYDTbA3BkOE95i5LCFpQULI2K\n0evX+XtoeFWeSPGrZ1L++Ne3h6qFGe8x8vu5OdlKzrdTfxqeWeZ1ZqQYEIJHSlSflBQRZgK1cggo\nOaCEREbsMSCFgGUaSYYyzzidLricB1rnvceyLFh8QEiJjJ95kPHwKEywBdNMw5RpXjAyuytFAgtP\neUQBJXTqxuBnr68Y5o9IUNK38eE04+2dQ0gFw0S+dLu2waHfoUkKs0/YNRpFaxSWJyZeO1erBDqX\nJKsnJhb9FzAS08jXW4MaAChpPvnnaFSZ0dZYGlpX1jj9TpY0gcAbkZ0oKIRAe8w4jlBaY38kpsk0\ne7x+fMT9+YwlZuz2O+DhF7O4mrbF4eYGx+MNrLX4qjJ472cf4DpsJScN+tbx0IjuKx8DDT643ip4\nOuyUhunpAK8KaLlJlnOyMscyD1/kOY+bVEgBup6wSyS9m9k78nV5HymtUpU3x2d/5JxYecK1dGHJ\nnSWw0lhHzBptgUV8goh9JXJBKo0LAzL1JYglIWcFrVz1LbaWmMFyH9C9R8z3nBO63uF4vMGu7xEW\nz7YygLUaTeNqiJgAB3T/J8RS4Hj979uOpNGlwIcIZSOawv0C358VpOWhBSD1D7PglUimVraUDDNr\nByCD2Y+w6KmB4AWG0CoAMoza3PsFKzifn679a88iv5tZSrxHPmEGKzZiB+q+U5/9zTNf6+qSQUmF\n62Aecn54yK8LWWyUFDfDk4AcIg1RUoQqTNpg6eIwDDifz3g8nfDw+IjLhdLQQ0p4OF9xfz7jPAy4\nTBMxwCLt4T5nirjhfi0xk+3144B5WS1H+n6P588PAHudOscS2RiwYke/YF11lqxjQHukVqDzUBL3\nOIBRGVY1CMg8tIuscmLpHp9kw6Fy0AoxchCXIlluUVvWrVybp9LGeh00PUPbwYEStnGp7S7dI3wP\ngPtaqT/AVjeXccb5OmIYJyil0bUNXNfBcsIjFNBYh2/++pdwf79DiBnH/QFdS+mn1hKjv2scbm9v\n0ViDeRhxPV8oNGlcENLHEyFfP1zwzlsGoRD7elXcMOGEQa1UAiuC5DkSiFBVkFDucbqvmSnM+xbV\nUXQ+jTGUDqnK/8fem/TIkmX5fb87mJmbe0xvyMzK6q6BPbGa3RJENQFCoKgFoZUW+ga50o7JbyEB\n+gRaUdpoKe34AQguCIFEt6pBdVcP1VN1VVYOb4jw2aY7aHHONfN4+V6SgLpUBVRaISoz3/PwCHe3\ne+85//Mf8M4SZ8BR2aTez4FmPC65/s6vXwrg62q9xlrDetVQ1Z7uOIjUcRxxVtBSkxPHw4HT6cB2\n+8DhsFfKo6Y4xkSOGQdUdSWTMZUyApSTo3gkQcAYp0a3xf9DDozyvFk3rVqnIE0tppAhSGMLefbw\nijGI4WwIGIM2MZXEXis1ufYVK69GkcqmaVYCFrTtmqvbW9YbBb10opKMeZTMUF5D0qm8wWjQhTT3\nknKSyEkPCIVny31aJi1cTFfKlfX7S4STKSMcUwpYM7+PvPG9UBD38jsKKyLPXl5KpbwoEW2Z4GRt\nvMg6KV5+72JEOKe+kMXQPojho8mS3BhDIPYDse9xmpYVNPJ1GkaGrhdtfCcJoN2543g+E9Wbq+uX\npqSbIt2UOJ0F8Dp1Pf04cBrEkHhUbbwYQep7bh3ZOLL3RGP55B26+JenjidtLZMwk/HJEjQZLBsj\nrKnZh0Heh1R2M6MJhAX4SeILoOjUfJsnowCunBi4vDC5MEuhIuAXc5GxJJ3oZ6lS1jK1Lu8/ZExM\n9EMvCTIpiam0MQzjyMPuwOv7B46nDldVPHv6hL9+8cC7Ds+mrtis19zcXHPz2xv++E/+6lFDUlct\nVVWRc2nAiuRQgGunP7ukvBkyOCeSkyysQFOSNE1hThYWSTk0UfZKemTwmFNhPS6NxaNCDLWjK6Dg\nXITleWL69fWLcT25vZs/G28t51GKyhgDm/Waq80VYRKA4ng88bDdsj8cZunhOE6zJPJak3incZRp\nZww4Kz6SWJEpx5QwQQAqk2WJSoS97G1SdEViSgJKta1ITBRkmyaJLDcYVm1D27b0GurinJ1ZXtXF\n1L5SGZizSb1a5Kuua5HXq5SzXrUCQDgL1ulaT2DLpJr5fiaLDGH26QIgakG1NODlXCrBF8KGzPNZ\nM+89Wdabs28yWi6kMtbM7KY3PSgvi9+U8/w4p82FuRgFFwuD0hAu0/zH59ibj5MUxokwBnkPjSVm\nQxgmuvNJgS+Z3ucQCNPI2PecDsIS7E4nDueeUyepjOMoHpGDxsZ3Cm6N08T9ds/p3DFMgX6aCDHN\nw5QQdIBlLW61FqDJecbMuyUo4SPGVOEVsDFAqg2uamjqFVVV4yqNJy/gV3lH8vxJYIxdfL5K5awx\nalkDfGzO2GypvJmBrYU1XBrYZWiyiFv02JprjMXLrchOjXGkKInBwzhinHDmu2Hg85cveXX/wKmf\ncN7zjQ+/watDeKvkpK4arclqBXw9/TDynV/5gGF6xuFwFM81DfyxRDJ+BmCNMVS2xruKFHtyHEVq\n44TteckwvGxA3qiOpI6R5URhv1trl2Tg+ewtthQX9/qjP7sA35wlR5UIfz1g+YW6LuWn1jD79Tjx\naqDdbJhCnOsPGRR4bfJhuYOUQV6AVzIpmZmFXHnZ8+f7Rb0FJbF4whhYrVqePLmj8p6dqhMugYEi\nd6xK3ZlL8Eqah+hlv40K6hlj8JWAb8aJjNh6d7GfK2CkycOFOWLtAiCnAhIrkDGfJxegrrwDF4MR\nZRVnY+b3xOjbVbb2L9dqy2diLlUjBRUwy88qP/fR+r1Yc7IX5vk1LIOTSEyi2Ejq1SdgmhMrDWOV\nFRzk/JiChqFIjxLHiRQDQwych57j+czxeOJ4OHI4Hjgcj+wOkv4rDK+ew/nMw/HIqe8ZpsAYkwjG\nrcOtGxkehEBU8Oj+/sgwPLYc6bqPuX848uz5DQYhMozjSNd3eGtYr9ac+y/vq5t2Q+09MU846/He\nKmtQ6pDKLcnPIUwEIgSxQpiBL2NwroBO5Z6X+y8Y1P9ZW1JNNDUFtNKvS5msLb1NGUqYIrG0j843\njEpaM/P9N9vDGFGW7XY77rcHguIATd1Qr1qqVUNVN+L/hcVa8Vi7vbmGbNlshDGnU2+8l4CsJ3d3\nWGP44vMXsu+nd4esDMNHTNOaCglQcb6E6y0syhJYEaOo2i53jDKQQXvrTJ4BeCjrXkg4l4MUIfV4\nShBL1gPLGHkNVg343+z9/66vXwrgq1Ez6so7oQIOPdM4QBYj+LZpxIC869nuthwOO2k0VMJEgmiS\nGj1GGmuZUmZSk3k5Q8wFiFP21TxvhCUti5JqpVPpSv28Vo0UTzHoTaQUzzJpH/qeaZww5Hnh13XR\nzHsqf/nvSilerbi6uWa93rBab2ivrqibBqwhomBWMbI0ekAUaaN5/FVWdJ7vfIQOeQlsGXOhl1+M\n/eRKszYbY2Y5pXNetPv2cQPy5j8z+ZGBZBl1zlT/+U8vv1cXZhLvqkSmuD4XGFJec56jfnMSOVsK\nE7kYVOdEGibCuWfqe7xOZ2JIhCkxDKKNf9geOBwlBaXrB7phIKZMN44STdv39OPIoRs5DRP9MNIN\nvUSnJzlQEnn+94hhylEmAavVzAIZQ+B0PvIuXfxQWSoDAQkCSPppeE0JrZRSWjZsmSJpAaLUiFxG\nyWr7DwbjndLMDSZlok3YbC8macumb3SwWE6VL6VClWIgPy7my+Qup8So6WLlhuyHgcNZaMGHU0fG\nUK9WPL+54dnnD7zevkMH3zS0q4abqw3OO377t77D69cPnLsesKSQ6IdRQxkCmJrGWayT9MaqbliY\nh0qfzokUxDMlxYQpyaYqbZ697vSwlA1eDSOTBCfklOTeL8vJXTArL5pop2ag1lplncnfFYbR19cv\nxlVXIvF21jIOA+fzefaQbJqaq82a4+nE6XzmdDxxPnfkmKS4t8VXpRT0C5U/KtXcFPNP9b+Tomth\n1LhscOoLRorz1L1S8/pZXmKK78tETolV0wgLzIqkYAoBa6u5kfLeSyiKMpKttXgbcM7S1DXXV9fc\n3d2xWrW06zVNu8ZXNaCgh7GScljAcB0WZbjw0BPvPFFsXspSSmLdYqJsZgPZpUm/9DrMM/vHfnnf\ngXnAcsnoupQjwsWepJ4VS81qHq3PlMVTpzQh2lFidWCkP1HPJ/FOS8nK2g/C3jRJ9uc4BYKmNsYQ\nZgPGpF5Zwzhx7s4S9LHbcRoD5ynR9T1Rg1CO5zOH45lz39GPE30/0o2TyFOmiWwsyVj6MGGNw9e1\nMIJSxK9Wak7v6M4qjXgHi3Yq4FGSyHOMk2ZI90vnShPpcF48RAp7WmNZZqBFPldDsS3GeD2j8zIs\nY2keFkm9XdaEnjMzS0pH76V5pAwSzDI0Kwb74zTNDXE/jOxeP/DJp59z6gey9dTtmna94R/9w3/A\n7//hn7DdLUOTzfqatm40ia6mXa9omhX90PPq1ZmcxDdvGEe6YSJGAbY5H6nrlufPnymgLKl3MSTi\nlOeBozFG5EtxuTe990yDSpj06LWFqXxx9mTMLKE0RuWSzumZWoYwMkC5TH4MmkqezcKoK4DI19cv\nxlU+i7m5nwEmZUaph9YwTHN6Iwack9p/WVTMzXpUWZx3lrpy81Ajk+dAqfn8yEm8ZmOiXbc8ffKU\n25tbTSYOhBRnz7tiHu9U5p1TJISkNaikWYvdS2CaBrwqVNp2Rdu2uKoSf0DrsNbPpvpJh43yOqSp\nNs7N58EM1Gr/JUIGZUkJAixnQc5zKFEBCQtQSOln8mKUXoYg8mN1T0LOqtIP5VTOJvndrLHz98zD\n3QLSl71UzzDIC7ClzWJWQDBGAbEXexb53AMy/MoxkSYN2AoijR/6nv50pu86pnHg2J85dGcOpxOH\n45Hj8cy569gdj2wPRw7njlPXc+x6xpToC+BlLMnL52mcY9WuRSnV93R9R4qZYXi75Uh3/oicr8hA\n153Fh3IaWa9WfPdXn/OTz15zOF3uqxs+fH7L0HV6X6tXnJfzxHkv/3ROwTQYp0S0zGnYRVWCDtxR\nAoDNyHoxmVCCvvTzzskuwxf5tJUN6zHWk62fWWBZG56ZcZyzdloZ66x4wek+rFNJrPckDKdu4H5/\nZHs80bRr6kZSS63zOFexalbibWcsY10YWYYUs/h9r1aiRkvS3UktWGFdtbDS5q747Wd4SmiQlzCx\nnLWzl2xUCycZuibNbTHiRmDBoueCuZDxxkmsXIhSC7gyglIfzixnUxnIXND9KDFATvey/DXw9f/9\nijHIxMBUhGliHHo18nWsVw1NVdP1A8fDntPxIBJHL4W6MQILC9cr6hTbEWOJ/H5MAZ+nknOBlRXw\nsXidVnrkeStfqZlwKcBVnoIY0FVVRdu2ykCSpMQCanlFvutaCibv3Czt8L5itWrZbDa07Rpf17iq\nwvkKozJESsPh7Az+lEoxJ/WBKLTH8lrSksiY4VFTkfU5U5nEqMShFJyyJSzMlUKDFDZNejQRuZzw\nzw1Jef50aSy8pKtcTkzmKQvLVCzrplQAlzRTBPQwUzmjTNhFI2+04UwxCttrGEmTSIcEdDNMIXHu\nR3bHMw/7A/vjka7vOXeiiR9C4HDu2B+PnLue8zhy7BZtfEwip8sGfCPeVUNKwjSqHNMgG+dq3dI0\nDSkldtud3m3v2NC0IUtkbbLibKYo0zA17rcefeNEynmhiS8FgMgyZAribAbjRLxk3qSPs/xTv4wt\nzclFszKvkwufnMtNzigzgqyx3PK/YRrpjideP2zZHY+EDFWzEuaVNfwXv/vr/N9/9JePm5J2w/vP\n7mjqWvzwVg3XV5tZB5+miWmS96LrR6YkTcnhfKapV7z3/A5vPMYIgKXmF9qxo1R3S7aJHM18D5v5\nM0iUuGO0SddzYC5sDGZeh957JibFz5e1453HVyIhJphZkjXvN1+DX78QVz/0umdf0Q89Y99DSnjn\n9c9XvH79msNuTz8OQBbJqxXQx3tP25oZhC4AcEkHzVmKujI9LyxZAWUDOauUxZXCR4YnzUq8WS6B\nnTCJTL+uK66urri62tCdjrMkreztBfiqlfVVJpuVNlbtasXNzQ3X19cy0KFMNiV1tbBJiyzHOwdB\nTLsxWYpoa4Vtk5OaJcfZU2KWrxmwfgHlo54tRgEwSQVWDzyzAO3l6/JMKf9czl1Zi6UpKn+flI3k\nFNAvoR0LKJZmwI2LyX4ZyDySrZQ9MANZgQz1Y5niRBgSYZwY+0FS91TuFxEPk34YOZzO7A5Hdsej\nAFxTZNeNbLeS7DaFIEEghyPDNJEynLqeql7Rh0AfAvsxMkzFVwVWzYa762uG/sxV5VlfbXDea70D\n72LReu+J46DS1OKjJmdZIpOymYGVcjikLAa6ScNTJF6dOVYe/bydzY98JcufP57G2Yt7TUEva2dg\nTE3DKKFBOliWAYMtaYYKgKlVxRQi5/2ez794yf3DFlc3OD9PcPDe85/9zm/yxYtXHI4n6rphs2np\nDgc1kZdwiidP7rDOsttt6fueGAOnbiDGFkkUFibEOH7M69f3fPDB+/p7CNMF5x4xG5OxTGnUhDxZ\ne+PQ6+9fWL9Lw33JzIpTYd4sCY8SKmAX3zld54XZGdKkn2GWRkQBM74+Z35hLq+s3cIWLpYnZSAC\nohwZhoFx6DWNvgwLdN81dh767rrAGMb5+Zu64VsKbMQYCTlgMco0kXNoCgFnHTc3N3zj/fdZ1Q37\n7ZZz15FypqocxjtSMXPXJnkcA5EsqfKukgY5C5M+TiN5pfXaek2zagloEFO2Kpx/g1FV9ntfzPyL\nHFB+6BJQYlQmt7BSChlhDoEErfeyekCqHNJkSuqsNQLozX9rmIdQhoU1KYBikdyj57muz3IOKSCz\nDEOlVk8qRZwVBsg5FeI018XFIH4KhhSDpP6GhIkZhyGOgbHvOR4OIuc+nej7nv1pz7E/c+o6jqcz\nh1PHse95OBx5OB459gP9FBmmiK1rsnNE67TvMwp4CCC08hWuQYLR0lcPS+IUyA6OJwlzMcZQNRW3\nd7c8e3rHq9cP7I9H8SCta3n9LGd8GXTFnDU1HVIywjZLokQxRkJVUlwYRkZhjpRQkoe8hpQMMUJU\nRUW2lpIuTGJ+Dus8xlZk4wHxsWQevmTxwzPaV+lQ3GJxRlj3qbSjxuB8RcRwGkWGuOtGbHTc2hVX\nzpAnCR9LlYJnlSc7Q+1rpilwOJ7YhDDv1cYZwpTp+pH7+y27/Y6un8QexRV45x1KmGalqjErRJSU\nNJhtVN9RuQ9T0r3COozN5BQwzsiXYgMpBUgTFMdwQcfU9inP3tNxCjLsm89pM6+7nKKEuOSL4/tn\ndP1SAF/jMEBV4TZOitmUcM6yakTeUVcV+/1BYrzHUYuvhXLnrUwzrZdkKd9UmGlaClvRIgEX0+eL\nDy4qk8bgaOoK7+o51hctBgsQFKN01a6uubq6Yr1ec9jt54bEKWtnbky0+QGIIZCMwa/XtE1DUzdg\njJga+0CTMjNkezklRXy9SsOFYWGY6I49g0dlqg4Xi39p9svLloll1ibmLXfxPLE1F4fFpQcFFzp5\nnQwTsTq9LFOq0vgVUG7W2s/HRQEHgKzsppjmxxZDdQMCZqi8LwfRyMdxIOkE3kSJmw9K8e67jsPh\nwMPDlvuHBx62O/FQmUaO55773Y7t8chOPbz6cSLkLGxBlLFjDdk6EpnXDwe6bvHsWrVrbm9bcso0\nTU1VecZxnIMP3qmLr528T5fvd0rEODFOA96K3MLbmpAlNTTEILLdDMYuEc3FMNeYjLdFXlJq4JLs\n8RgElfdc31db9PBLA2pKNLR+hsXlUNh7pXBLeqsaxjBxOHXsD2f2pzPRQN2sqFYrjJO4buccv/u9\n7/D61TXHU8e6bbm5ulagwFB7R1NVPH/2jM16zWG343Q4MqXI7twzpcdNyTB+zKvXO95/X7T/di4o\ny/BGDosExGlJkJN7WT0sLphsy7oo+vfLe1OKiKqqQNM3rVnWQElA8gpSF+CrTPKLWfbX18/36vue\nlBJXV1czKOWrinULNxs17bVmBlowCNNWp43WuHkNlf1X2JhxXmey14lnj1VvvhA0idUizMNcs1JA\nyzpwxWcphPleGYeBlCLXVxuePn3CerPmtN+zpCNZ8fJSNliRf4zjCGR809L4SqQrSFpRzFAllckI\nRiQ+YArsKV6sTOHF788aMWaW40mmrpLqc7F2cgE/uDhbl3NIcKLFa+NSIvKmFGWe+JdVOAcDMINX\nRn9oAbyXNaePRan81kriWGGCyg8RKVDUZCljcFmaJW+thOFMI6EfmKaJFCIpTkyDeEXmlIQ9mBLD\nMLDdbnn9+jWvXr0SfzhNFD4NIy/3e16+fs3xdGIKgb4Xb5ZsBHQ8jiONdZjKc+gGhqkB/lfKPtcP\nH7M1B5q2ZbVezwlPVe1ZtRv6txi0r9srVquGURlfxgkjKMTIME1Uw8hgQFrk5RQqwTwCfEGMamhr\nDUVmbm0mJGkYuAhByHOtYTEaJiDniU7jlVVhtRaTzzcraCWT5kSRtnqsrYhZazcsfSfSniFEDqcz\nxnra9RVeg4AKy4ScaZtG9nBnaeqK1ZM7sYYwYtL97NlTnj69Y/twT6c1wjT1+r5/WXIyDN28pmuv\n95RBWZCyZmKwhCzSkyEGBT0uZV2iJIjFfzXnGaDOylAnFfm+ANmuGNeX2lJBbqfnyux5ZxDfKLt8\nll9fP9/r9vYWYAYuC8Mj5SyD25QJMUsK+BRm9pCkA6K1u+xj+/PEFNe8Wf989vrItz+4VZY7oCAY\nFN/DTLNa8fy993jy9Cnbh3u2D1tOxyMYAecwSy0UwkR3TqRpZFVXmLal9pVavYj3pEH24RlsRQYM\nUWVombDU7pTasyBLZUCfHu358vsuVdhlLVrWzawQkTdVHmfN0oDreVD6tLnfuRzuK6uurL2yXCwl\nQEUS5At7szxO1mdSgkOYGd5ioSGvU0gRQXyGi32Ole8NU2QaJ3JU0ABJDO6OJ3bbLQ/3D5KK3nWE\nFNifDuzPJ2F9HU/sDkfuDyf2pzN9iCTrwFW4xuGqmoQhTnEO+nJ6/0xjwGdhDb33/Dmn7synX7zg\nXX2J844YJ4ahJ2fxBF2v1zx58oSVstGtM0xTnO8vY0W6GMcA1uKNofGOzsu/J+/Fa1hrKGchprCs\ni1SGZMray4BRhnUCm+Sszo6F6aU1RhaoAJtVoaS986XfXAlXYa4n9Iwq94z2zMmISsYqltCPEz/8\nbMdxGIATfPaKm/UVv/mrH9CuJqZ+5FTX+LqiGwe+/4O/4H63Xdb/9S2/+1vfpalqQhCQ9OH+gd1u\nz3/4s79kf9xfvP//A3AE/jvKGb5q1lgM0zARC4CVROk0TdPMFJZX5eb9pUhuxUbIzMCk4Fzi1Zes\n1GMpRfFjNW4JINJAwNksn2W4aYBUwgJD5Gd5/VIAX2EacVYodE51p8Vcer1uaVatFBBRUXdbaL95\nlodYKylF9arFOM/RiHmfNAgGrJujS4tvj9Hpw5SjxJRbgGqWnOWUidNEoQCGKTOOI1XladuWu7s7\n6rpmv92RsqT0uAt/E+eEdllosLKJy2EBsgGHEGbtpfMeV3mRyiijaF6saFOl79kiGdCUnwuGSZHX\nYMxSkCIH6WJgb7DZyKajHcWlqv1tDcmbwFfxdCka4kfXZePyRoNjyp9dPG/OSSJutYmMetBAMSiX\n2FwxgZzIYxBvlWEi9D1RN4MxBo59z+F45HA4sN8fOBz27PYHDqczp77nVLTxhwO704kuBMaQiBis\nr/CV14NTDzwy9/cHhr7m0rNLmo6Ou7s1KSXxIul7DOmduvj1ak3tPcRI5Qx15dRgVCSwQgSRA7aY\nQeYk07ughtbOObJL2OzQsZcwsNQ/wRo9EGwZayn4aReK6iI1WvTwZb0saTx6TyheZkpzi8VGASVD\niBz2B17dbxlCxLiKdrWibls1gaww1slBlTO3N9eila8brjZX+rsm6trjnef25oa721t+9Dc/wntH\n/AodfD98xNC3NM0KvMeX373cs6iMtqThXaBbZaKRtKhREwH9azO/z6KrRxsSB1Q4v1DwcxaQ3juv\n72VZF7omv+5Ffm49kl8AACAASURBVGGuME54lfR5Jwm9bbuiqWth39aNpKlOA935hHWOqq4FRHUG\nrzKO4qU1FKBYi+26lolh0Gl2ypnjeWK6mNR3PvPcWayrWa/XGIskAU5hxmWmaWIcR1arhtvbW54+\newZkxlGTuBToMRhJ6roAvopfS5gCqUlzMuHYj9i6oapXNG1L04jHV71qyAoa56yegTkDi9k5LExe\nQM8XaUrKZF/+XBuhvJxHsj8peKjnUp4bu+WrXCoumddgKYZn0KtchSLkSoOoQ6GcCl1YhllFUnDh\n8ZX0HJmLRyONinVOfJyCmA4bZJgQLcQxkiZhQw39wKuXR/rhrMmfMrHfHw7y78eDTO7HwEM3st3v\n6M5nJmU6+KqmWbXij+I9wziRUlTD4S/LUPr+I5p1CymLpcI0EULk6Xs33L/c03eXEpQrPnz/GXHo\nBSQhS9O6EvlF09Q0TY21Il0Kmi5GyiqbUPaxLaOpOAOtmISNi7+PfGBOGq1s9avUGiqT0n2xNLNW\nh0JG7wkKMzlnAVhzxrkKa70AcBpbfz53fPLinkM/4Z3jyd2dsuUF+KrqRgFQ8XYtCVVN03B7fSPD\nVVAG5DVN03B9fUWMgWEq6/MdTIgQoKoxOeGMnwOVcpT7LMalmS+DFAEFyhBQWSQlqVrvY2OERRwL\nwzJnacKdk9ROTTEu67qwZqyy0ZOmOZYm8k0w4evr53eVAKtZxqjhIUWuiLFEDH3fKbtWmvYySDY6\nvYwpM8UJ+F94c184dR/R9avFOqWuiSHSaShY27a8//77vP/++0wh8MWLF9xvt0whUNcCoA/9QFNX\nKm+UUCgTI/VmTdvI2eidw6pXceU963bFZt3SVJWccynP+7g1pV+Re7GwdmNKTGmimMSXtL5FTv2Y\nyVyeT5wnMpe39qPbfHafR5U7ym/Ndl478j1yVpXepfyGs38ZRpO7AyksfsLCglEJeAhMYRSWJsI0\nRvuvEAJT35PGQaxKmhpTecBgU8ShgLemIE/DyHZ3z/39a7YPWw7HE/0wEGLg9fHIq92Wh+2O/eHI\nses5jxMhZWzVUNUtpqp06ORkgBOihK5kcE3DqlmJggnDum15+t5z7h8euL25Y7f/cl/StmsqX2GB\n5CPOO9q2FUmfKp+spkkLMMb82c3vMUvtG4oMz7BI7pCAtrJPOcCmiE0CWknLaJbn0s/6crBmrFWQ\n7PI+kP7eWo93FdZL3y0s2Aw5yhdao+RILiCRMr6kzTZUtmJVVfy7P/4bjsNj0/n9+WP+9Ec/5dvP\nriDLve28469fbDm+0RvuDh/z/T/6c371vVuMQc/ehj//0WfsT/bRY+Fj4J9TWNVt0/L07pp+6AUs\nVQAvhgA5zonexT/OX1iqzIN87d/mEC4nFhveQlIGYoyRXDlhddrHa/Gy33fei8VC5aUiSJLO/bO8\nfimAL5EROXxVYcn4ylE3solbZ6kqL5Q/jdKMSSaZlSYUFu14idycYtIDR01vnVEZHyjng5Qyuzea\nklWd+FazwhhDmBbvImNkUjMFMaq9ur7iyZMn3Fxf02lqUspZ6Lp2SaOqKkmkiGHCREl2sAZSFDPc\nEAZirFjVGzabNat1i/WVeKBYj3U1xUkjlajjwnZzTjaTtNCGS9ODIrfy6y/NRVnoUA4qocbmZDBG\nIrVnkAw1o8/lv8y88QhrhlknXx6bTS7EY526l3QZTdG6mPaITjlSNMWZNGvk583RyIYYjNEo4CTT\nspCUNhwYzmfOhwNd19EPA8fuzKE7KfB1Eqrw+STJJ0c1HB4G+ikwxMiQMtF4cqXvn/c0qxXeWc5d\nxzhJ6uPQv6Mp6T4i3TT0w5mgzVTtPd/99nv85KevHunirzZXPL+7YhoGrCspGv7iq8L7mhKsMIas\noKYg7CmjQIw0nillmSDp4R9CxhkhmlsvzCZpRihjeWlGrAfrwXiyFTlLvvx857QTBR4tc1GOMWRr\ncLYmG8uxFy38F9sjU3bc3jY0vsYYj7cVbbOmrmuwjqpqMMZR+R5jNCW1qkRyaIxGZJfYb5ncLFry\ndydC1lWt/hQ66QtiIBqCTOCk2NR72GY119b0FpMXCalq4I3JWF/MNovHV16ak4v0I50zyQQRYe+I\nEaukPaIeGV9fP/+rJBaJFFGK+LqqGJkIUcAmZ4ufzlLsz4W4ZZY3ee/ptWEtcfFOJ2dJgaLDWyb1\nU/iYh2PP7fWGmCZIMvhJCYlfB0mwA548ecL7779P5StevnrBMAzz4KGs1dKET9NENIa6rmlXK1Ia\nZFCQItMUqGOiqSrW7Voi7TXSPBWACWZ2lnGybxT5nzBVZC+Y8Q5r9c7PoH6RRhnSy2TdzIxfQFOv\noKDB5XVYlsdkyr6PMjYVVLsAx9CfajLCaMq65xkNgzEig5T0rIV5iRZ1MrEMc5FYlqek7erjdUic\nUmLoe/Y7Sa8dhpGu69hutxzPR3b7Pcfzma7rOfcd+8ORh92W/WFPnyzR1cRkcHU7+4LZqsKpD0jd\nbtgd9hxOhUn89n3OmMz5dJhBEl9VXG2u+d5v/zqH/YHT8URVOdarFpOSeKJY8UmxTpLUnJOhoqsc\nxggAE2NShlpWu4bSIEC2EtleGLLlM7EmUeRGycqARfFD5kdpI2+NwxinbK+FKTujmcVDUWsRoyP9\nrLJcaz3H88C/+eOf8Op4mt+VZ7uJ3/udW6qqFjZcu8ZXnlWzovGOV6/vOZ3PIslqhLEyhUDOke58\n5HTY83/9++/z6v71xXv93wP/Gnii/y1MiFVd09Ra/Fujg6lImNSkWVmBpRER6xQBYMvAR1Ic0TWk\n3mrOqrRHaqcysin3XmHOc7HmM/miZrqwTXgLi+br6+d3HQ4nAb5iFDZ4Vc+fuzXis7c/npimSE6I\nx6KTPVkUKgIMDemrQdl+mqj8InUNOiT1zvHkyVM+/PBD6qbhk09+yueff0HXdZLWbYz4WxqDt4tH\nlrMSmrJqVur3JfdUOSvbds1mc0W7WmOtI4yBiPiDefV2AojxwgZF95aY43wvOye+kmDeuHeVkZ8g\nG01unyW/zDUZ6PrQfX1pOwoQk2dFShnekC/CPopPXs7CfjFmthfIOlSSx4kRfQqBoAmMZfgUlUUm\nBuMRwkSdDTZlUBlk1rOMKTCNI+dzx+l44rA7cP/6NcfjkX4YGcaRcz9wPp94sdvz+f0DD/s9XT+I\nVM867KrGVw3WCxtWghHk9Tore39V1WzWG9brtRJKkDTPZsXWGH77t36DH/7Vj7h/WPqSdrXmg/ef\n0NQ1dtWwXm/Uu9oBlt3+gMmR7f5I1/V0XT+D7QZ5z8vpHWNknCaG0VGpRDZ7LyCcDjsKQCogSsRE\nAfB8GahYkYha9ag2xs6J8zJQcGSV1MrfSe9UVbUEw1mv319UGRMkg1j2WHJ2MwaQS1q9k5AsV9Xs\nTh2fvnrN2zyaz+NHpLSmVenylBLHd/SG3fgR47iibWpSmOhzZn86vPV54SOe3GwUbGwIk9YpsTB+\nZd+fI7nMorgqJv/iURwpdi6PQS+Py+JSLW+KrBmrNVtZT0UJkRGP8TLkvZRrO5X6/yyvXwrgq123\nNLUkOqYwLWBTipxPJ4Q6b2iaFasYCEm0676SD9TMxqFGEelxno7PqO5cUMsSfVtT0o8f8+nrI9/5\nxt08UZfkKTsDX1ijmudneOs47g/0wyBGo16Ar5JOmFJiHAYCmbb2VG1D7Z0+p07/UqSqHKtVQ+Ur\nkqZHkc1cTBZmFaDGmHJzJqWJlsNJmiG3FKBlUZSm4gKlLZIT6XGMSg8vFoAp9MlyrmiTYpbNroBe\npSmcz5eUH1Els9AfyHqIpSjU7hgmCnRfkOaYgk7EhJ8pMoJIjhGiAD0mZtIk+vjdw5bdbsf5fKYb\neg7nI8fuxOGkNOHjid3xyP3hyGkY6afIqNRWrCN59dIooI4RM8bKetqqobKeQywF97smwjJlE3mT\noapbnj17yvvPn/Hq1Wt2+yO+8qzblq7r9IwWWnWIkl42xcgUIsGJqWjMGWsFbJK0GG3enMVSpJ9i\n+uiywC8pQrQZZ0G8w6yCX3ovWYmiN0ZALwG/1AyzDOq0mMhoLHbxz8q5qMMhy0GB8+zPPX/wV1+w\nO2s88uevubu+4Xd+7VtY4/F2wuGwvkgnDee+o+sGphB4dvdEblUy3bnn5YvXDOOghyuLhOVdslEv\n4LAMdqJSywXEiEElBBlAKMyYkgxp1BomkxDjUks5mLURKx4tKs1JodD4dX0ZMzPMiim+SdrAZCOh\nkhRZ2NfXz/u6vr7SFEQ/T6mtEXbUfr+X4YExXF9d6cSeuehC9+EQJ+RuFe/Avhez4JiShh8oOzjG\nd07q+/EjkbeXtKucKYwrOb8G7m5v+eCDD3j67Bnn44lPP/2UGCOr1UqGRJqelXNmGAb1KitG9xU+\nBirvtbkAYw1tW9jTTpjOMZGMw9gyVUSKIfWgKYVTmbrPEugCZGlRWuRqlP8vi+iCYnnZpDiMLp9l\noFK+ufQ1M3sgy9DKZAr/VBoSPVPIkhq2IAHig1HAraCeFVKsJaZRm5ucBSzX4U5McaHwZ4VgUmYc\nBvb7Pa9f37Pf7+n7UUI8jgdOXc/Dfsd2f2B3PHA8nzn3PcMoe1u0FcaB9dW8N6CvI0YBi3xdcXNz\ni/WeV6/vedc+t1rVTP1egg2MoV413N5c8fzpU643a7bbLd25I8WA1/feIPthDBAmxzj2TFPNNFmc\nTRj1pQtBzpiUxPaggL2FzZH1Q0lW/FtsTFibZvmJKR4/aTFxXyQnMokv0fPGuHn9iOOo1kK5MKPk\nNpGmRyb4/+rf/jGvjp7LKfnr/cf8/g/+gv/ye7/ONIlZclVVHI8n/t0f/jGvHu7nd/DZ3RN+7z//\n++Sc2T6IjPNf/9vf59V94MuT938G/CsWyUlLVYm03+RECHK+hBCYBhmu5Bi1VizSYIQ1crkmynqx\nRs9gAdBjEAZdMSonS8hAGcZc+ksWhnKIEUeZ6pd9qciPvr5+Ea5hGBdSqpf1YHU4X1U1dSPAVxla\nF+uJnLI0/mrl4mebhLfvC4Y8e/OFEGY5//r6mvfee4/b2xvO5xOfff4Zh+OBlCK1q+azptbhvDOW\nynq805+ZM9MwEKyhbSrWbfEkFnAFRPI2pQheTL5LbxBVspnnABhmsNZpI15Mzy+x2uUcKCycxfLk\n8tyZV9TFNz8e7qeLR810nnkIX5IpRfmjVIhoFv9gBcsMGSmqJW0xh1FCtWKQcKsYpMYULSbyijw5\nZlISW5vsRGVRkuPPXc/heOJ+u+Plw5a+HyTdbxrZH488bLe83B+4Px45DiMpg6881tfis2kt577n\nPIxYLG27xlmxCWlXK66urmhXLQDHY8I5w6pZkTPUtbDM/5t/8o85HI+8fPWKcRzIZLwGuRVgo6o1\nWXocOewPTNMgRIBxurAVEBDRKPAVEkw5MxjwZEyKxKki1DV1JUCY8xZvnaoWEznmeZ+0RofIdlGj\nWGUbFlBG5ONOiSFuDrgS0FXM44u5vdEBdc5iy2JLl6v3R8pprr2K/6S1lu3+P9LvpUxTib3J2H+1\nb5qzhqt2Rc556ZHe8dh2VdM2la57T3ZZGYLLkG4msmAwqdzfeR4RZiXdmLyoswRktuoRpt6oOc+v\nt+wFl3WdyFrtPCSeh5R2Cen4WV6/FMDX9c2NTkUqxjjNNDuRfHRkNZtvVg2RpA0Fs0xLpgtBpHFT\n5NwPskBjYRfpRqo3d46Z8Svpwy2VFwqhoNK6UFLi9vaOZ8+eq7fXA/f39wzDSFULvTLpwhKTyEGZ\naYZ17Wm06fL63M4KsFb+XDZu5iIyhKTyy6I3N1AIPMXfQSfx5WsGpAp7ZwYRywGyFEtzk482PRda\n+tmUuUxFgDJWKZ5eiyyFmfVSzObLYQB5SchTKnHQyXdOUUE09TaY5ICxGouMldRDifktkwHIITGc\new77Ha9evmK73dH3Pf04sD8f2R4PHE4ndgcFvk5nTsNAMI5sHdlJQW6cg0kSbHKWybjDCCvWJjbr\ntWxCleenn33OO42EK0+IEyJ7q2naFdc3N9TWSjNBFm8XbbiygRwzIScmEEbZODGMI94YsnPCYLCl\nsCnTZKvx8QKI5Swmg8VnJaasTap8VqVNzMUI0ooefimsShqKSgSNsvRMJmcp9oURMSOa8gHo5N77\nin/z/R+yOz+OR94ePuaP/uJv+Z2/9yt0pzN1XeGqmlN/5v/58x+xu9C3317f8r3v/gpVVXE6VvT9\nwOFw4A9/8Bf/STp4g5Fm1oBRvyWRjk06KRE2o9Npe5kKqpkA8wTeWIlOtkBWWXKO4k9gnZotZ9W/\nX3jl6QFhKPLGSDaLROVnnX7y9fWffj158kRkRHVN13UUr51pmpjO49yYtm2LUb+UYv6dclL2i9wD\nLkhSrJhjx4tps9wZad4z317kTCHhjAQl1L5CGolpLirubm959uwZdVXx6faBly9fcr1Zcyl3n+/H\ncmCo7L+pG+opUFW1es+5eVpf1RKPHaJIb2zOcwFV/AFhAZdkWAEouLHI5i+/hDlZ3s9lXfHocY+a\nnLIWuZDALy9Mzi7tHE1apsrGKICetIAzEUwZqCTxQlQfinTBFkDlAdMwMIUJSXKusU4HPkl8vEwS\npk4MiaEXgOv+fsvDwwOHw5FuGDj3A7vDAnzd73dsD0fOQy9yFO9wTYO3NZiKjDLyQlIWocdgiCHh\nK7i7uaVtW168eOBwfIs8fn1NW1ecxkzlJHRn06643qy5uV7jjOF0OHCOIoE03pNjICV5PYHEOBmG\n0dIPHu+lGTfEmQ1X9q7SIuYC0uVLEwOj9/by52XYlpMM0EpCllFmi7UeZ70wWLQIl3osU+QthW+Y\ndJ2ZzMzk/+J+z4+++IK3Tckf9h/x6Wefc7XZUDc13ln+ww9/zPZoeASSbT/m3//hD/iNb72HMYaX\nL17yyac/fetzwkfAtwFYNSueP9kQplGsFOwgAQFBmuYYpG6xMHvOFqZJKoyvMn2fZfhOgFxdGyEE\n9fNy8/S93L/o80pTJ7Xu/DkV2TBqqn3h+fL19fO/sqaqNXVN28qwwXvHqm1ZbzayRl68nM3U5/yN\nguHrnuico/Y1Y3hLInZVizdVGRrHKFYs3nN7e8vd3S1gePXqFdvtVnxwrZmH0yBDF2cttRerDaNn\nSRgHRgOrSoYnjUq1qqoWpleM5GEgGYf3wmaj/B7Kjlp6C22kKcmRpddZmF7lHDFzD6O9g54ngmXo\nAD/rgKn0ReZisCIP0OdU2Gs+1sw8ZC89moBhFpICJElYNTJYTuQwkmNQ8GsiBdkLZIgyMI4jKSW8\ntXhXie+tsSQjLLIUZXcbp8gQMlOEkAxDTPQh04XMGCPnbuT1/sSr3YHjOBKMxTUrHEbCz5xnTJkf\nffqS4/k432eb9prvfPMbrOqaq/WGJzc3eO8FrBp6cuUJYSLlSFPXNHUjzNW7O5qmZrvdcj6fZ4BD\nWH9uVu7EEOi6jmHoGdTfcgkfKdJt6QtiTkwJbE7YFDn3PdlYbtcrnl61pMZT4+fBRqYMgph7G6f3\ngtWESKspqCUUojC8vKsU+KpEGu/EIggrKdUCW8o/jXWi8kBUX0ateYTdPHOo+PGnX/D5w466rvTd\nfXu/d1V7KmuoneF6VX/lY5/fXXN7LV7GIYWvft621ds361pU/8cYiRT7hwuySZkSEklF2VNOa10P\nS/2lvbPaUNgCkOnrT2nxkjQI+Oi8KsgU0yjz/v8/rl8O4Ov6ei74C8IZ1Wh1HCf8OKpfhFIgs9V0\nqSyAfAGBjNzswr65AISy0uiV1hjmUu7tTUk3jKyaKzGSjYlxks2tqio+/PCb3D25ox8HXrx8yW63\n05tBUrnCFKicGBxP44gDGi8bTjEs9b6iUtPIVbNi3bY4KyyERBQ0u9ysuSC6eqNfNjtZFsE8ZYUZ\nubVG/DSsXXTYha1ibQGwlptcGio1WTV5oQSnQh1eJrN6xil6vkzbDZkQgzJjyp9LUkSMcaELhyDF\nbZkkqw9NHAcxqK8rDJUANDljy3OGJKmKfc9hd+Dh/p6H+4dZH9/1PffHAy+2W7b7PcdTx3kYGUKU\nUIFmhVEpqWDkBlIkazpI7SphHuoBcHN9jXUS3fxV2vh12zIM8h6uViuhiVtN+TPiIzcMw0y9zVkZ\niCmTlM49TYFxnKiMwVRiCCnsIfWj0ztUTLIl4cTADKxkFlkFIJverNu+KKq0KXF6eBgnkxOnsj9i\noBjXo8yyBTwW0E4mMo773ZGfvnzF2xqI/fkjXrx6SauNt60qfvjTVxz7ije18H/0w7/h2+/f4SvP\n6XTgz/7mp+xPjq/Swa+alme31wxDL++NkU1dkkfivEaMsbPfCyyGp8Wk1ZaJujV4kzFJmHNyKGY1\n5FwmI/NEMTPvWb7SxoTCkCiPW4q6r6+f/3VzczMX4WJoPep+NDEOI+M4iiw3Z+IUGIMUuMWjyJR1\nRCaESKeJcCIhk5TEnCXxrvIVMPHugIsKcrhIcotM04j3XiSOH3xAXdfs9ntevHxJ3/fcXl9pU5wh\nV/OUH2SSXlWVpAjXNS52MwOsrmphS69WwuASBEvp6/VczFz6LeYyZcwJYysBL7ToojQUF6/KYDU0\n5mL/YQG+3ryybkhZwa1y2fnv5dQrSVoX6Iv8fZRBCiaAEfPYaRoZx2L8Gufz0RgIxcNqmoSh45z4\nfpWKMCUBv8ZJGbwib7y/v2e3O3DqOpUz9mwPRz5/8ZLDuePheODYd4yiVcW3FWNKnMdEW8Oqcozj\nxDiI6fFqtWa1aoRVZ6CpKq43G6re871f+w5/8aOfsN1fyFCaNR88fYrPsGnFy81XFetVgzeICf80\nMI09Q9+J/0xdMY0DKUxYZD+KyRCCY5p6xuCocMpwTbNUXml4aj5v3gAxy+doHz2myIFLlTKDXsUP\nz1XiWaqMFpFkRZUyJq3PlyY3k1RuL8/xanvQ3+3ttdpufyRrQMo4RbbHPW87j3aHj3jxRRK255yI\n+fbnvL1acb1uqStPTHm2O5CUUDmNxQbi8YRcAMRMUn+4cv9bZVF4Z4hGTaHLmlOKW0nTnqVaufir\nuFl2vQQ0fVniuIAFX1+/CJdIryqePHnCer1mmiac99zd3XH35AmH41Ekrmh9pUwM6V2zgqZSnzy7\nW7M9DnT9si80Vc219Mlf2l+rquLq+hrnHPv9npcvXjIMg3qgqgy5gD9RQJvKe7FpCCMxJ4KFrGyw\nwvgvUl6MUalgJCugJb2C+C7PlhBaHxVZG0YS+KSWKhYtBdjS0fllKm/OgHgvl/T6ZXBfXm05by6A\nMeY/osi+5r/JOsBNaWbFzGs1ix0L2gclTdCLoTC+Jt1vRx2MnGcj+Og8yScmBWaMc2QnASYRiNmS\nXYWpM6aawDckVzGkgVM/sT2ceb0/se8mbF3T1ivqnIlR9sOqqvibv/4px/PjuvjUfcwnn3/B9777\nHchBzoKhZ/dwz/F0oKqr2Xe63WykLx0GIXOkTO0qRmU9J00ynlgCCYa+F/XUKPVRjEk9sP1CZpgm\n2be1/xjDxGenyDkUoGfP07blH/29p9zYBmMzNi8pm4Cy8HS4iAJhJaV6ZpVLT+N9hfdyrli1bBEm\nsfp/UUAf9XMzjmJoL38rnlnWCryyPZ74H//l/8Ef/OBP5zW0aTecu48FnLvo956uNzxdt0KIMIa6\n9jy/uuL18fFjDf+C5ze3fPP5U5qmIQO1t/z4xZ6HN4Zbhn/B3c0NV23DqchIjfhaF+8tLvkt5Zwu\nPY9+zQmnSkqZl0tZT3qu5BTFlsiaud6CJRAj6+dv5/OmSCrLqvrZX78UwFfbrgGZLnd9T3fuOHdn\n+nGUaNQYGUPgdDprOtIECANMNOViKmy9J8Q8I9NCqVUpkxYgsoi+Gnn1bolZD5pyEELg+fP3+Pa3\nv40x8MlPP+HTzz5jGAdW7UomANNEdpYU7bzpVt7TNivqqhYzVCOSlLquWa1arjbXrNdXWOtUeiJI\na13XwiCLkZQWoKuk+xmrTBT1pIHLlEVlFaVSIF0kXgEomg9lIrIUcHPxhRwMi7HkpZ+X/LsABFq8\nOo12n0aSpmDK5FgTsoo+fhIj3yKOyeqXkWLEhEgFGPXLyEJ5gpgIw8j5fOKwP7B92PHwsGW/2xPC\nRD9NnLqO7f7Ay+2On94/cNgfRR7o/Gzq7CrRxotuevF3WTcCVm02G9pVM0++r69uiEkA2N/93m/x\nw7/+ES9fPdbGf/PD56xWDet2PUfYOmfZ7nbkGNgfDpzPwgyBxeyzmMcXmcI4TfSDxRkFFJ0TLxW7\neOGAJHNhwaOG/xdNSKEIl0STR4eGsWCcgl5ycFRVjfFe/0w+kQCQomyhtqD9kdnnxYovmfUVu8NX\nU4JTSNQrKfrHlDj2Z96qmx8+YhxWONPQnc/sT8e3Pg4+4umdULnrqiZMkZwmZeIUhmHSeGozb+RG\nN/FicPp4amIFILAGWwyykUOiTOXL2lhMV+XtdM6qdE79BdTIOSkAUpqXr69foEvPk/P5zG6343g8\nzB5HIUh4xPl05nA8qCdQ1uTElaZ6ln1rebzs1ZFpSuIl6Swr76j7hnH6Mli+adeyzi+o5uWMqeua\nb33rW3z44Yf0fc8nP/kxL1++lLCVnJlCwJCVOSOFYm3tAng5p8MPKZZXCng1qwbnPCFGDfEQg3VX\n15QAiKThIinHWZaec5LiufL69hWAQia85uJ/KV/4pigIUqjACxB8EaLyBuhFXthFOScikDURk1LM\n6XqaDcEpwNfENE5M4yjgoMqei39YCGJMf8kwmBQEI6tX5hTYbx/E02t/4NWr17x+/ZruLD4rXT+w\nPRx5cX/Pp1+84HTuOI4DyTnq9Qbftvz4i4dHTNXN6opfef6Mppbz5fb2lrquZUCUAjc3N6yqGmLC\nXt/wT37vHzJOAz/9/HOmccQa5mTFqr6mqmuVbBu684lx6DmdOg77LUN/JocEUcBcUqIyRm0XrPjY\nTQPDLvIyAuzqGAAAIABJREFUJJ6uap5ctXhlV837G2aeABfPFcwFc0Mli9Z5Ga65Ipd3sxTFWZnE\nO53MGyuePs45TDKYaICkt4nI/m1QLyyd7H/y+Svu5zPm7bXazdWG9arBWUNIX+2TFmKibQz8R+Rj\nt1ctq6bWYVEUhkAUQDXr637zKvVeAa6cDoisszMA7TwQBMiVQa0yLC7A4ZLKPQ9VNNinyI5LfZGR\nga9VllfxxPn6+sW4nJPE3efPVR1yOOCrivfee49nz54xTpPuhKpC0XG8VhvzLumdlZCTm1vGaeR8\nPosPqQ4AizTNar3jvQRvOWvZbnfs93t2+70+VtQmTtmHReHhNH109nVNEWsWtnBOEtzUnztubm51\nqOtmVhtZB+4g4JYVbz6v974x5beVhv2S0SX1WKlvzSPSCqDegEab7qJmkb+bz4oL3B4WELk0/JcD\nFkmPVWCZBUswc0OjRvZJmWvjIEMgZd5Iql2AnDShWZhDCUMwkWSkbnROfY/Ve81XApT4JhCSpTqc\nyfaB8xB52J+53x3ZnweS8SJfrBzjFBiGQQI4xqznyluGzKePOHdHbI6M3YlxGDmdjoxTYBy8hPp4\nxziNIqEDTn1PN/R46wS8ykH3rqj7voAfIcjv8PLhRD8WWR+sVy0fPrvC5MRkrbClo+yVL7pMFzaI\nokoAuvvuY77/t/f807//noKY8qFJcFAZGi+DM2FIetw8FGBhMamEvgBaxU1aYw30zHI6cDELi++C\n5WfnT97yP/3L/5Pv/+nnXAKK5+6f09Qj/bj0e+/d3PCPvvNNKg0X0laO3/vue3z/b1/y8rA89v3b\nW/6r3/5V2tpR1xIM4OwV//gffIc/+LNPeHUx3PrG86f89nc/YH88CfEgg8niB/7o1mYZPJb3otzb\nBgGo87zWyj5SPlMBfAu7Wh4vq2hOdFSMoLwzOS2DFauAY0ll5md81vxSAF/H01GR6J77h3setg8c\nDwemKWCsI6YDxnpiFp+hEMF7i7GVFvieupEEucPpTAgagUuhz2Yt3KQKl0SvtzclkmJi52StMAVi\nijRNw6//+q/Rtis+//xzXrx4wel0wnlND4kSIerVq6HxFZU21Dklxr7jlCPN3S2bzYbrm2s2mw2+\n8sL46YU2bKvV7MuSoxT0MUqzY/WQsTpplYJYPL0Ky/1SA1yYOjkv/g92BgFEygbMjYw+wYIQX05T\nkJ8riDLzBinodKGVJvlwUklXgZwmWcyalJWUOhxSJkwjU1C/FWOpcGTrxecrQLKWbAwhJrp+pOtH\nzv3IsevZHc8czj3ZGE79yP12z8v7B14fT+y6nmDA1TW2qjGuIiL+b1030I8TdVWL0XPVcHN1zZ1S\nf6dx5Hg4qMZdvM7ads31TcW3v/NtXrx8yRcvviDGILKipp7NrivvAUn+POwOjONA13VM0zS/zyFG\nnSzl2bjZxIhNib7reWkMd5uWZ9cb6srgKyfsL2MIJAhycM+fh3orOC+piM5eNB/O64TN6+9YUfma\nqqpxvsb4ap6klEbVGg+aDGl0QhbjhHXqReRkSvOTz764AL7e3kBsVhWNF5nV2H+1SWtVV1ytV7ze\nffWEv20a2lUD2eAqkS1P00RMyNTJiGzXkkmpTCzET6YAuAXQMsWo3HkBczXRLMWkTC9Zh+U+L7p2\nq+Cfr5aELwwYJ2srZQEorbESwGEtX18//+t4PM4F18PDA69eveJ8PpOSBJOMo3h2hTDNU2yMUVZW\nrQCXmafaYZokSUqp/ylFQkoij3WWm03N7tgxhYvUvXbN02vP+SRm5Ck5htgTQgSksf3mN7/J06dP\n+cu/+CF/++Mfc9jtef/954RpElZXVVKPvXqmKOsm59lD8MnTazZXazZXa9YbCZhIKTGcO0KGqgXf\nNGLcmxJT1DCYnBTUFSaaMeC8gGZFUvOmFOXLcvrlehP3TTlTafojdmmCjHY0ZUppANTYdfGkMLMc\nrAAzAtVPCpjkWR5OEn8vAfSEdQzMCcEmRdIEI8zgW5GM5ihT8b7rGDr5bJyrGMeR/W7Hw/29+Ko5\nS9O2JGfBW/7m05ecuseM1lP/MZ/fb/nd3/h17u7uuLoS1t7+sGeKiaYW9lflPbWvWG9aKu+pnFN5\nkiRsGWOoVpF6Vevn3HM+nxnHkd3uyOncQU54J/dhzpkiCEoxMQ4jYRz54Yszx3GaP48Prjf809/4\nJlfrev4s5b01WDOxWq3mvXJORCs1hp4/AsR5lcCIlLP4gjj1NTLGzuekGA2bORSiNKwlvfB47vmf\n/7f/nT/4wZ/ob2kRxu8bAHIjyZilBry9vgJe8K7z6L1nT9m0K4w1fPb6xOH85ee8atdcta28bznP\njOAy1BJPTKnDirl9NjJrL3JG54RNJ/2BnRlfzkIyQQE1BciqZai1NH3yPnv9PqMdUHn/nHOaHKuN\nycX3fH39YlxWWTrr9Zr1es3pdCJFGY53/cDDwwNd35GRs8dcyFRLT2udE2VIXWuohKHylmmU+6Sw\neb0OO6Ia6a/btaTK7iVlNqrZvfflPhSw1VpD5YQRjzJ3iEtt6azFXSQvzv5BtjBoCgih9572JgKG\npUfcEIW5da8tX+biNZsZnCr/fTloZO5GHn/f/IPL/+dFgi2NUWF5XbL11fs4ay2ogE+xj0kxiFS8\nDEtikuGvAjtOgT1yA6YM/x1YT8yOPM+ZLb6WIBPxNLMM40jXD2AsQz+y2+549fI1u8OBYRqpVys5\nC2OSvkm/hqncH+8A9cNIzp7z8cgw9GrAbyEFutMBjJFAtZz58YvXHLtFLrlu1rz/5Frn3Mr4MZCM\nvOuvtmf68XHC4bn/mBf3J37tG0+I1hGjI8fIGCLd4cTbbIRenT7iNEae1PV8NhTQZR5Eq49XAUIL\nuaPIGN8c5GO0V57ThMtwXxjHAgbFmelEhpTFviEn+MlnL/n9H/wJbwKKGfFi/a+/9y3GYeLJ9RVP\nrzWFPgpRg5yxzrIxhn/2uy3bY8e+H7nbtDy53ogFijHYHHHGslk1eGP4b3/vN+ljIruK957e0XjL\ni1f3jMPI2XbkKSnzUIb1JahOhohfBpz0lc8D/ZwvwoAuQN/LIeN8duQ8+0cWqWMmY5J59JjHaatf\n+hX+zq9fCuBru9/Johl6Doc9h8OBvusEKbeOcZqoV5KMUtcivdhcFPObzRU3t7dgDKfuk0e6+eLz\nVejEqFn3s9v2rfThu7UaGVPM1sV89Pr6ivfee4/D4cjLFy85HU8UPXTxxMgxkrOncl6apBQVvMpM\nzrDSaYsvzbZ6JU1TIJqM9Q2u1omrTtwlfSpRTOVKCpBzC+hVaMNQilKhfF7S4GUTYQYGoGwWzFOU\nuQBT8Eue8HJhvUmfVJaNkYNORki6aLMgzGkaZrArhZE0jcRpJIbIMJwZxhGTDd5VRFcTJKaQbA3J\nytQ/pMSYIOCJeAKOgGXIlnH6f9l7s1Dbsiw975vNanZzuttFH5GZVVmlqqxSlZBUJWSVpAdjWw3G\nxsgY4ZSEsEWZrJINfrSx0INA4EeDjZFACPvBDX4zCGQ/CCwXtrJKyLgaNZWVEZFx4/b3tLtZa83G\nD2PMufa50ZQETkVCxkpu3rin2Wefvdecc4z//8f/B15e73h+ueFisydg6VcrYtSGVMGfKSTef/iE\nm811fb+Plse89+YbtI2j9Q4TI/vNhuurS0nYtOCbFt942saTQuR4vcYaw/W1AFveOQECQ2TSEbhp\nnEQiPOzZbneMUxB1kLdVHlxm41PODDHyZBMOpMHn3F0u+QNfucPxqkci32f/A5NMZXudvnnFF62y\nHPquyeEiM/B1Ft4eSIMrW1JUijqWUuLmc6rrIeXE5WbHX/sb/50eFvBZTcnpYslp38n9bmDVfD7L\n/vrdU9bLHgP89qMXn/l1q75VZjJjnYCNMQZSUfBVIsdQZtOKFFh5jFt7jzk4IORwFEbeelWHMh8S\n5b+tNbfif6X5mEdNUwJjNW3Ofv+NIL+8/vmuZxcvhTRwjs2w43q3YxhHaShx7KaRpm1pVguGJAk4\nd+/dp2tb9vuB9Zn4boUY+c53vkPIhoiBCOMke3DjG21w9jjnhBXV9CrvpPjc73ZYa+m9KJYjEyEk\nfOt58NabLI+P+d6jR3zw8SP2U6RfHzMEaKxjCgJuONvgXcPZySlhGgjjHuKIMxG/bMEa8fzDVFPl\nEEZiRnwxjKimMtPB+O9MjLjDNEYgJw12KARKpQXn80eUkLZ+T2XdkaVoy5ics9LGFDWxrptST1mM\n+HulEjqRFESQMyWGgFV1sE0Ro9HcU5iw04QZR/I4Mu1HwrBnCkGUcsaK8X/TVFKlEkQK6u2MY2p6\n9r5nYxuuXMuUIzfbHc/OL3l+s2VrPJyc0XgvaqCcGUJgs/t0RevV9ptsd1fcOV0Rw57tZsPl+Qum\nKdB3ov621sp4bEycX19yfnFNjuCMI4cMFq534IOo7MbJcL0NfO/hS/ZDMc2VGubOqsHkQI4TKWUm\nI/fB8z3swpJDJv7p9bf4P77zMf/qN97Go0EelOEfKyCwM/hsVclQ0rbQJE1wxuA1sdcaURDjGrLz\njKD7oBj9BtFbYJzHGV89V8T+IOMx/Gd/87/nH/7jR8wA4t8B/jLivyXX2WLJT752l8ZbjIn4BN47\n7q2PPjF2Ar/EvdMT3nvrgZzP08g33rvLb37wnKvt/Jh3jo75Pe++xXa7YTdMGOvpfY+jJU3bqp43\nJGW+0fFeENcUVxN/c5b3rChVMOr5FQMmBjm7sWTrNIETUgqEKGqenALORkyeIA1Y0+NMIMZBwF6T\nCVnqsrZfMIyjGOJ/ef1AXEXBO00TwzDomFjk4uKCYRh5+uQpu+2WnLSpRNZU2Q8L2Np4DykTkvRH\n0zhKAIWfVb62qFdTpl+KF9dut2O72TIMYyXKa7+qJZB3VryMjREfIV2L1pWRKQHfuraj7xd0fS8E\niPY7yYBXYsjoCOOcPlpqLek9jJGxqkL2FhISZiBd/iF/HU45yNcXtb6pnxc1SyE1tXdhPkfqL3tQ\n8hUyay77MjEL2BUr0KX1uY5il19FwEixBDHG4JumnneievXY3BLLz7ACshBHQshM48TV5TVPHj/h\n0cMPefboY85fPGNzfUkYByxGTOGjEAKNMWL7YlrW1vKPP3jIZ9XFb7x2l8YYLuJAmJISYg0xZPZh\nFAX1aPngxQWboeWWumn4Fk/Or3jzbE3xl3I6WrqfJnbDHvibvHquXe++SQxHdI0Hb+Rs3n2+2fuY\nEHGJKoXLyL9hNk23dXQ+z6ONrqgMtVTHzuCWfs41jRL9DquG99YactS+y0jSelZmzVrPxy/OP/f5\nLhdL7q8Si66na50GkHjtg5OqmUXtvl7ISGN5TkJYiCqyUaIy9C1TCDjvOT4+xnnPfr/naNlzs1qw\n3+/ZhD2WJPhFUeBZK+b8Bze3AbWz0fu8EJF1BeT566pCTD5TRuWh2L3Mim+CpjUfiGDK8xDiM5HN\n99dP8ocC+NrthK0M48A0TZJQowBPBrLJON9AzjSxpV947t69C8B+v+fOnTvcu3+f/Tjy3Q8+qKho\nrsAPuv+puNhb+q7l3eNjpmliu92Rc8DqSKSzoqIR2ap4oRytjxjHkadPn3B+fk4Ik7Jvmlik6hiD\nbhxGlAEpxuoN7p0cPtXgHarM85DISClBmG/acmOWMblcmBZBJmbW/FDtdesVVrloNYh8lXEpLIl+\ndVkk+hXCyFObmOL9cksubISlMOqzlPUwCeOgpvVRCvEgY48pBGEgxkHeG5dI3jAaTQBspJBMxpBs\nxnWO1ra0EdxmT3bXDDFzudnzQkGvIRmaRU/rLeNYRkKlgPid733EzcZyuOFfb7/Fhx9/zOl6yebq\nghAC11dXbDYbQhiZxkE8uxYLUXfkxM12y+X19TyqWFRCKdWXM0YxhHz8/OqWPHjR9dw/6cnWSuJL\nDJiceL6DId2WBr/Yfotf++AFv/DjD7AR0NHGEl1b/D2KX491okIyNV6zsGYe6xoFSZ0yJQXsQosA\nWz+OLb9GRkZRLOIDY8kJ/trf+J/4tVuy4E82JXfXa37m7QcSYaz3b9c03Dta8+L6k7Pw909Pef3u\nCc45+tZz9+MXvLj6tDn4I5atl6YkG2Ulb8+pF6TWFC86Du/VV6kKU9UjxhSwtqwlhQTNzJ7U0UlT\nvlU9kBQAL+bgmcKuHKhUvry+8GsMk7wfKRJykn1Z2UTjBGz3OlLYLHr69Zo333pLVB0XF5ycnfHa\nm2+w2WzY/saOrGrL4p0oTJuVJtfImHvftpoQKSP40yhj+qIg6wCYsqhGfNfSLjrOLy/5+MkTrq6v\nwVjatlOljO6tmhxqsihlQ0rkEAS8zonGa2pjkD0w6Rkh6hSLCBmLuevt4qgm0x3cskKcpKokglJw\nqQOhroOZqT0gUfJtuNmW7yk/9OAqABnlK1JERs2ErLLGaHpq+TgQAmncV6+ROE2kKZDHCaZJXpcY\niOOoKgV5o6Iyy5IIJQEfGaCz+Jjoxwl3cUUwl1zuNzx58ZJnL8/Z7kd807I8Wkua2m5LCBNDVVF9\negG93W25ub5ku71hu5XRxGkUD67FYqFqIsNvfPdDnl+8qN99vDzmq689oPGeqzDWWPeUAh99/IL9\ncDtYZJi+xeVu5PWTnjBZUgyQMyHBLgReZeIzmSdX3+R8s+XOaoFFx6D0rKn7p4GSMFhSokqirTGG\nxnky8xikgF+OVBKznITKZGtBE4PriFIWoNNkw0ePnvGrv/kqA/+XgCXwTX7i3ikPjlacrpYKWJbg\nFzkLfu7d+3z7g6c82xyMqJye8ge/8S592+CsJbYOZzJ/aNExJcjGc+fkmNZ7Nts9w3ZDniLGO1zj\niGjgjRZyxohCsWila61lDv8+VKjoWYGAX6Qs/p0HYmtrLRFRG8raixiTyDlADniHBrSkmdCRlY1v\nPKOOQH95/WBcBqrS0horKeYxsttuGYeBm5trWZtSMOCsofWeKYiNSds2dK2MFhVvwkn9B601OONo\nnCh+iyecd47lYgnAdrsV8QAG64XoKGN/5bJFtQXVQNsbME5UtdZIwmPTtTIu33UCPihRUc7PAjwU\n4KvURsXnt5DqqfysVwCxqhgzatdBSRYuHHs5o0xh6Os5AvO0ixZtuieV75f1Un7PdACwZahEtAmx\n1nfl86b8nAKyVTBOfXNBCWUBWrJxZByxvMYWUg5M+x03mw2XF5e8ePacxx8/5uFHH3P+/CnT9gaf\nJ1aNxTUti2XPYrXEtb7W8b5xLBYL3n98zkdPfklfj7kufvPBA37sq29zfX1DnHZYoo6IesYhklMg\nZ0OMgc2wQ86L2yDWbvgmhjWNE4FEq5NMu/j5SrNpmjjqvASZGAFTeXrFZxLcd05YLhe3gM2kfeQt\n8KW8z17OaKfj8tnIOB/WyHh3uffKuL4vScJWgSdTxQBGgR+ZUgJjM+++/ro+v09/vm/fv8v26hxn\nMk5fF6cj53UKy1LFI6WmOLynszEyEdQ0UjNEGWtunCHniDOJRec5XotSc9jtxSIoHNZo+Va9dLhu\nXh2Tz0C2r/g+1rNW8BB1TKuvt3NWLYwkkKHc+2XKK0W1JDoQ2Hw/rx8K4KvK8QDMLOkuqK+1jrZt\nGKeoM+xLzs7OanLbYrFgtVwxhcBuq5u99h+53i9GPy7MaqMJWM5C4w1hyhXkKtI/oxt/38mm//Dh\nQ548ecZut8UYq7HyXptvWUxePYOyqr1MShicpH54QYrDVFJ7jCpwLAY7b/YpAUU2b/Ug0Hh3c7u8\nOTjHbjMn+fbHqkTRUJv1UraV11mPqfnwuPVDbs/Jo78vBU5Qb4BcGZNADBIdn8I8Iy9y06jssSZn\nZpEeJ8QI0iHxyjWqViWuIUSmmPHtNTEbNts9L19e8vLiiu1+xDWOtukwXhRYMYjh4jSOXF5f8lls\n/PXNJePuhnEYGAY1rsyJYb9n6Fr2254E/NMPH3K1uayv96pf8ca9M6zNFfgy+vo+eXH9CXnwbvgW\nL64G3rm7JoaRFESxNqSBz5IG3+xHztRfxxwg8+XgLh8vUb+uSIXtLAkuZsFYy1yu66Fg3KwWQzZp\nU9R69f02gOV7j5/x7d/4LT6rKfnJN+/yxtkJp6slJeWwJHcaa/hDP/o6/+A7T3h6MN/+2ukpf+Qb\n79F5GdfsGs8v/PRX+JXf+JCnF/PXvXn/Hj/xlQdcXF1jcyJlg5RSczEnBY8UPUnBh4MNAJmSmtdP\nAXVTiqommUd8y98FCIA5OMIUwEzHvryXBBpT5t9TUX+9sia/vL7QqyjvinS7aSWGvXoXqS/LdrvF\nO8fJ6Qmnp6dcXV3RNA1d19L4hmmauLi8rI95OOpXxrWK0Xw5S0Y1hy0hKRILL48VQsA78WYZh4EP\nPnifzfUNKSZVFMOqX7DfbakG4bpGp2EkhVjPqkZHrueGodztWgQdFEAm55lFJX/yrKiPIVdROL56\nP9/+vtvAV3mMw3/HXB1fbl9aB8i+U0xbFTgwBZc+CGpJCQqJUprDKTApcWasGMGLwmwuQK0TH75S\nWDedjn87R0/Dbr/n+qrFGwj7gYsXL3n59BmbzRbjPN3C0znHMI3kKZBDoPOfr2hdL3o2m5uqAolh\nIoSJy4tz9rstzjnef3bO9d5zSM5cbb/Fb3/8MV+5f499GNXovIzMfLZnYtuu6RonZv4pshuLmvjT\nG5jr3cTZaqFAv9XGScmQkqh1MJ5iD5oUo19jmb0lq/pDmxDrvJoSe1V8lwACSRYtG+ZHz55/7vM8\nWnScHS1ZrVZMk5gtQ1GiOXoyf+zH3+FqN7CdJo5XS/o7K9Biv20aXCcBNoMfWC6WnN25w2K5ZLvd\nk5+9EHWBkXF5uScFaI0JaaJfaUDqGnj1fp5v7Fvr6PZl6v5jjCMnNzdUFHKFeqbXn2NuPUJVSXx5\n/WBc3kndmnUsylnR80BmHAdyinhrK0jirSU3DRkxxu878Q6Nuq9JKIdAR8XvTcjITJgEQFv0HV3X\nMez37DYbwhRk/yOregNBiQppkbI8Zs4a3JDICnqRM947mralbSSMS/ZOJQmMvQUwzOv9gPA42LNv\nLRp0pA2okJRRle8r50j16DJlHI650MtwEIcin1fFqjXl3JGaz+j3lGmB8uRENZbnn21V7ZaoNgb1\neeg+l02qPsEYQ7YGlyGhKjGk3tW5OGLYsducc3n+jPPnT7k6f8q0v6KxkXXvWHYLfNuyWh9xcnrG\n6vQE3/Vg0HFrCSz4C2+/xf/wd/4e/+z9uS7+yltv8mf+xC/Qd60Q/vsNy0WLM5YYYLvZ41Sh9uLm\n8z0QnXMsG0si0bdiwbNqCwTxGeda18gkk4Jep8ueB8dbnl29QnCbX+Kde3d5497ZJ2qDkr7u7Aye\n1rFu7+v0hTk4h4o3mHH2wNtY91Gtw8sUhvA44kOZ9P63Bmz2fPWtt/m5n/opfvU3f1lBHXm+1v5l\nfvpHv857b77Gd/bXpBAhBaxxNN6Kb1clB9V/sZFJL982AirXfl2eWx0pVGuJ4p9GirTecrTq2Q9L\nnj57wdVmo7WOWhMZKFNXUsbNeAHm8KzI9fcufdEs/ikTLQmjgUzStxwA0nkm+wuZZJm/V7Buy/d7\nhuWHAvhyzomUTg/8ppHEiCDGPVVZRZBmdk7CkhGH/SCx4+cvzyVlUQt6G3Mh3+pm1GiioiSYRIb9\nKIdKzppW0daGJMVYm5ScM9/73vfY7wdyyrfm5a0RAM0ra+OAMI7i3WSo8/kWORALQl3Mx3PddF1l\nzQ2ox5Cw7VXiawyxIrmvoLrADFllPq0RydX6ThcUWZsMFOBQHiXPm778M2tDX4Cvw2JPmMpyyKcY\n5I9Kh5Oy9Gq8JmCCE11a9TMzjmgacvbCsDgDzuAa8abKiD9WDBPDfsfm5pqL83NevnjOzc0NCYP3\nC/FKCBmbEx5h0ra/Cxsf40RII+O4x5Bpm4aUIuN+T5wGxmHgw+fnbIZP+rc8fPqC105XamYpiGEI\n4TPlwZv9N7H2mL7vRV6dB2D4zOe2C5l76s9Q0p2sNZDnZv3Qe6WyI05ToIyCXdbJiKO1+t7Lvyu4\nqKBsSlZ9bmJlEIQIszx8UpQIn/5c133LvaMFXdtqYSXKP5MzzjuygX/9Zxac3+y4GUZOj1acrlcU\n83lvDU3b0LhT/uTPr9jHzJQNr927Q+cNHz+RdKJhPxBCUtVdqkbWYvL/iv7LGDW4vs1UKBlUcQHh\nH8s/bs+2FyChfk73pXJoy+s/gwzGzFLiQ+jhy+uLvbx1pJQYwwRZikkyFUhxyFkUQhCQSoNNCmi1\n3Wx5+fIlT58+5fzlOblZVTCojtOndBB4ILHYMUa5bzXZtXzOWiseVimxWCxYL1cM+z1PHz/BImbg\ncp4IITMNltaL74uokg1hHEkp4r0V70ono/YCgDW06jVpbdkT9NxyYlxsnKvjJ6BpSvbAx+EV4OtV\n9eLh6MlnAV/lNYJ6urxyCbBelEAV/dJzUb6vxG7La1zOfpvSTAgJ5SoNlTHiA5o9LmXaPqvyyAKW\noGoL6zzZGB13AWMcw2bL1csLzl+84Pz5c14+fcb1+TkRWB21AiiNAzlGGgNd17E+WvPicsez89uM\nPPwS90/PePO1uzx99pxx2JNyom0l5U/SPAc2+8j1fsOnAVmb4Ztcb66xfYPN0mTl8PlAVs6wajui\nc5AjrY88vBr5rAbm7GhJoyla7mCUu7w78t67A5+pMs5Rzh5L8ZYscffWWowy8M67SnSZ7GUfrYEk\nVFDt7dce6PP69Od553hN03iWywUhNKrWNRX4yjkTU2RdzhVnmVpHTBIqtGhb2rZh0Th23rPoFxyt\nliyWK7xzXN9c03WtpJYZHfpUEFZsL9RHpt734un4u145o7L5Wx+2quAWr0jIyWOM+FZS102uZCTl\nHcm5WnrI2WVfUT5/eX2RV9t4rdeAnPDeSn1tDFMMgJpKZ51DKeCObWjaDt8ISCZp6FFHIp0SwrYS\nIgWc6yWNAAAgAElEQVQYa7xntVxijeHm+ppxGAABt0oRYkH9ZeW/U4xkcgV60WS4ovRq24a+7+h6\n8U/2vhGyyDeYbEB9ZQvglZWUL3VUAZ5AiXVNk4TifSd17CE4Vq1ayt2e47xiCul/0P/oJ+r3SQk+\nA+mlp5lXj5I3FDIlS8KdevDlJLYtOVnJQMu5epMZ50WZaiw5TyT1lUopM01RhriNPF+jylgRbkRa\nb1j2npOjHsIJy65hd7oXsB3Dcn3E/dde48233ubk3n1ctyDmxDROhDjq+2/4mZ/+CT54+IiHjx/z\n1msPuH92whQmrq+vxVbm7p1K7myuNlyeX7HrJXjJec8/efycz9pb752ucVnq6dVqQYgTq67h7HzL\n+eaTdiZ3lkvurRY0ja/AV9M4/vhPvsP/+U8+5uH5DNC9e+8uf/rnv65hB1TCkQzRRbVKMBKIoH14\n27Z6JolVBEqgVOLFzaquuck32gdorZESlLFDTL2Hcpaaggx/9Rf/Av/Ff/O3+PZvzM/39//ET/Kf\n/rl/i0cffY++bdhOIykayMUmJlBAV4Ocl23j6fuOVn2fZ/JIVJmS/i7p2MM4cnNzw7jfYVOitQ5v\nHd/+rY/4+Pl5fR6t9RwvmltEiP5QIaRyljXE4flwsDRu/XteN866WiNa5l6mWLqI+r/UAeUBDqxb\nvs9k/g8F8AVyIwZVBlmjQUKRqjoZdVZ+UOnwzc0NwyDm4RfnksT07Plzbq6v8G1XZ1+dteoqkWm9\np9N41xAC0ziy3+/IOeE0gaRtGrzzOpICbdvStS3b7ZbddguozN8csBE5YowTtZc12JxJk45OOhmv\nKLHVXdexXC5lXt43qnzP4CTdxDlFYcuiIWthVW74Mitfj5fy4fqnfOCTYyeyPArDUh5fwibnG/7w\nEDr4CQfFl/4QS2WNchTmOyqiLIbiaoZZUGhn8dlWabL3B6lP3hONZ0iOqIddRmLgd9vEdrvl4vyC\nRw8f8+EHH/K9Dz/ixZOn7DaycTTe05KwajrvmoZl1wnAZA3/zz97n8/a8N96/R7b6ytyGjGI39g4\nBHKEnBPjuGczfDq7vhu/SQwdfdPRNLKpFzP7zzSinAJHqw7rxTz0/Zc3n/nc7p8dsVj0B8ojfQe0\nqC+sfCkDrHN1Jh5jSTlLapRzB7LskswosculETbGYJKylKVOT2LsbLC88/pr+tw+4+A8WtI4S9ta\nNUb1OhOfNBVOZuFPj9fys+oGKoyNa7xE/+Ys3kve0/c9znt2+z1HqwXHqyXjfmAbByR2OtVR09nH\nohwDep+WGqo01WRyJTZ1HLEcmvoN5WsNoiYw2gSREzFSPW6yzr2HaQ57kPeHL68fsKsohHe7HdM4\nVoCz+K8YYyoJMk0Tl5dXLJYvqyrr5cuX3Nzc8OzZs6qWOrxK6lrXdRX0mqap+rzEGKs5dflcSeJa\nLpb0bcvVxSXbmw1d29L2qzriGIa9eClZGaMX/YBlHAaMSXjXSFGujXrfdSwWC7quE6+LchbocyzE\nDYXhrudIaSIOgaf5YPk09eKrIFf5+9PUYeUYszCvt9KbREemSPtNJYEKCB+TMO0hRv3vqK+7E5/b\nkkiUDCYZceeNCeOyjvoLUJNAPM7IhJQYtnvGcWTYD1y9vOLRo8e8/+GHfO/hxzx79oKr62um/Q7X\ntNiUMKrgaLxjebSm73tOTo75yjtv8b/9yq/x4ePDMbsz/vQf+3napiEMA0Qhg7yX+2McRwnS+V2A\nLAP0ZTTTGmzf6uc/fS/uvaV1iPeOafAry+ObwPmnxK6/dfeUt+7fmffOPI+FHwKaUvR6TQUu6g9X\n0wmN0eRsVUHOxExTrRlEveRpGjVPVm8viwBkX3/3HX7+p36Kb7/KwJtf5qtvvMm9kyMFkGG57A9G\nNZQwtOU+lsbTWEuwtgJkjQIS5J5xId/vTCaMe6ZppGs8p8dHxBR5eb1lt7kR0MBCHCeM8YA7IBtN\n3esL215+z3K7H7Lw0nDNFhECJFqcM5XdL+unEKYZiEGN9HM52yxkQ4yZoGNapWn58vriL5lsSDhn\ncA4MiRAlbGO72TIOeySBWmqinBLOe1arhabTRxl72g9V1ei10beqyEgxQUpYhMRxzrG9uWG72aoP\n8GyPklLGOR0jRO4tOU8Mp8fHeGeYhh3eSopk3wvwsFwuOT4+5ujoiPXREf1yISR1ApynaaV+LyBt\nzuJ2BwUsN3X6IMsHX8WhKolYPnB4ZNSSjXJc3Cb75S9Ri8m5OhvV53SYZC8PFIv9DQX0knPBuwYt\n+CXghUSKLSGMJK0bChkaU2aagvRlRmxDYlUoD0zqORlTqqPY3aLl7M4Jx0cr4ltvsLvZcXl1zeZm\nh2877j94wLvvfY03332X5dldbNsLeToNEgI2jmQS4zDw9R/9GrvdjlXfM44jF5cXPH3yFJsSR/2C\no6NjvPe8fP6SF+tzwjTRth0Prq747vNrHr741i1yxvBLPDg74/7xSupuazk7kxTRYb/nD/yI5x/+\nzmNe3Byca+s1P/e1N1m2jQg+2kbuLx0D/5M/8x6b8S1uxsDZ0YI7R0sl7IU0tl5HE41DVHd6j/uG\npm3mlGrfaMeqxEsRnJTxRl+sKsrYbOmNpIfOqsAHI17RYRI/yaqaNxyv1vyX/8kv8t2HD/noyRPe\nenCXr7z1OjEFhs0JpyfHxDDhdIgmpkAeQ62hhAiRUXRLxqRYLWlKTy5gtYRTWGshRXZIzWJTxnrL\n3/0Hv8WjF4lDccWYvsXlfsvJyukkmKqzKvaAvKZGhRe1mIJPqENVkZ2MmVVdRmxzqMFESjGmhNFg\niDIOTE631t738/qhAL6ur64IIbC9uVL/DvUkiYEpCNLulJ1wxmhaRcIZy6IXUKA0J23TCOJLxjtL\nbj0EiXdfLnp844VlVRY/RxlRc8ZqbLSVWdYY6dqOZb+AnDl/+ZJpHPGuUUaz+IUwK5+qKkoUX94W\nhkIMI7uuw7eysJtGDww0utiIQkfULyX+20ojUInRuaiT3zDX/y4fLw1/XXilrcl5Xg62oO5a3CYj\nTIXe0K56M1n5fUx5LH2cpEkmcpwLW55mM++U5WgFke2LAFgWZ8pqupzkADHW0hwkwzgXcbpRpJzZ\n73dcXV7y5PFjnj56zNPHT3n29DnDzSUNEye9wzU9/XLJ6uiY1fERrmnFhFYVRH3f8VvffcR3H74y\nH29+ma+98w4/8u4bPHyYaJz6HmTL1g20XgrLq+HzEwmdMzQu43UMom8K6vEZ8uDW03uLM4Z113D/\naM3zT/G+evv+Hd557d58fxlTFQ+mNMEHYyWuEVZn9vqy6mGkyVJqKGmcwxRzyWrOmOf3XO8itDCw\nmtj51bfe5ue+8Q1+9bc+2ZR87c03uX+ykmSg5Gk0zbFpmwNQSZVd3stoUeOoFZAWIK6RJJYpSJpq\nTIkwDeQw0jeOk6MFu92Wy+sNm82gz1vT3Mo9XTZ262TtaQoX9YCVgc+UDGWcKulmX3wBnW/qWGmJ\nX5bHlMPVFU8BY8hRfSIQoD1bQ8KpQmVu0L+8vtjr5uaGGCPb7VZJllyZrppWmCRpL+cszYSxeFX8\nAhXAOjo6YjKNhEwAXdvQejEqX3QtxlpRig17wjRBSvJ5L+x6ClJMO2PplpJOt7/ZcnVxKTHyVkee\ndE/Z3NywXq4kLCVFOivrfxpGnM3CauYs3nfWiDdh30vxqMmjMUa8LU27qWvlsBN5dVReP3gAiB2S\nKNz6nleLok/7WinQhDm3JdGvAAM2YbJBRlP0bFVGfQ4EkVALVx4/TsQUCCSiyQSkuQkxMkUxtY8x\n0i+Wsja176Jp6Jz4qEzTxJQT027Lw48+4snjx1xfXmByYr1e4rzj7OSUxWrN0ekJJ2dnHB9LmM44\njbLndx2LRc8v/rtv8fGTxzw/v+RoveTunVNWqxWbzYbNzSltYwkxkhPs9jtSnLDGc2wtnH+2N8q9\nszW73R6fM43x9H3D8WLF1e6TTPxJv2DtxHjae2V2G88f/rEl3/6dJzw5GCF/5/4d/vQf+DpLBdLK\nCGk+kDEVFXEhqOq/D0AxITJujzjKe13OHx0XT6Kit9kQ9b3KMVaM1TrLX/2P/jz/+X/9t/jVAwb+\nZ3/89/Bv/ys/y4fvf5f9sGGc9rTdmqYpCjNttJ38rkVV6ZwnKgFa9vAClFlrGTVlb7vdMe4H+q7j\n6GjFr/zGd3l+NdsadL5h6Wbj7HJP21Ljlfu/surlHi6NOgef06VgJbW51J3VdKKQJ9q0GIQULjWX\n1zM75HxrBPhfRkPy5fXPdzknitNWFYbljBmDhHCQE423ImyNCd9Ylus1R8cnDOPA9fWmCgGkfFJF\nU63BEzlJXdi1Ha3zjPuBzWYzqy0x4ieXM956TXMEm4GUaVpH1zbcOT0jxYmXuy27/ZacIn3XSjuj\nYMEUgtRy1hGxUlo68Y+to1b63ILWZMaUnqPQstqYW26BHTnVVUW5/40RsO6TINf8dwEBUKJePmm0\nP5E+5fBrXj2HSr1rrKNtWvXPVGsOMtkpGYbBuKjfJoVmDYnxAurLb5rIeSLEiZjF+zfEwDQGwrRn\n0mmF3WZHt9zTrU+IKbM+OuHB62/w4PU3ODo+wbQdeK9Hc0uO0q8aEsN+qKTrou/ouxZyIuwH4jBy\nbSyt2h2cHq3pdDS+63qurq/598/O+B//91/hu4/mvfXt+w/4o7/3R8lxorEG5x2rvqVx4Eg0xvDH\nf+I9Lm42bAZJLbx/ckTbeB1TT0r6awphltfw3smC131TAUsh0uUWMErIN40S8KUXtZbGt9U6RMBb\n6Qlkf7caGjJPfhnfYL3HNa5+vnB1xuk4sI4VTuMopKH3uJxlMkmtf9557QFv3D2TbjUlnHOcnpxw\n//59wjQyTnvpMyhecIeBL0WRpXYXByOVMx4ViZNoxUr4WU4BSLy82vE7D4t38m1xxRS/SYqtLLPE\nwb0mXpEJ2Rty+Z2trWuvrp8KlB14Ueva9s7q1I/gAjEGmJT4VGFLijrVlVKtr76f1w8F8LXb7ogx\nMO4HQVUVUBKmzdL3PYtFDximLCyFHAiZTpmOEMRTyns18LY6M+4LMtzQtl4AlyAJHqQS5YnKfQ1J\nmTUyCqo5dmoUaYCs8akGVI6WZONLarTaZBrnSHFEgB9Xx6UWi56+X9A0rahymgbXNMKCHhaTulqS\nvg6lsIGZpagjI8Yqo2QPvk6+f16M+kIfsCr1sV75WNlgDso5KopsCow2A3GyBUgDI+xyVBNii0mB\nmGdjfOMy1otaLeUgPkzZkIIwVzNARo1wJwe8TfSNYb1omE6WeM44XvVsbnbEnFkfHXPvwWvcf/11\nTu7ewzSdsGthIisA9vWv/wj/1d/+X/j1fzpv+L/na1/jL/47/xrn5y8J413unZ3ivWe/3XP+8ooU\nI1OMdPuRf/b0s5MG7x6vab1Rya9h1TU8Pt9x8Slx6XeWS+4dLWjUINg7wx/5sTf5v77zhEevNCR/\n6g/+mMa1z81FztQm3enB0BxIg533Qk+jKipNPnHKFmY1YK96d/UikKJFVVPOVul9vT+SFF9/5S/9\nOf7Kf/u3+dXfnJ/rz/z4j/Fn/ujv48P3v8P1uIcU5N43DqNGm/I+iL9e34tZaknFETZCTgfnrKrD\nRA682WzYjCMmJ7rW07YNv/7+c55ezE1J6xqOFnLAHtz+AtZmBdfyrGopd/V83x8eDPJMGlV/1hGU\nfBvAkvfO6s/UuXgrBwhYSfyLqZZ8X15f/FVAq2maKmuYUibo3tv3PW3TStKsMSpb76ovV865pnWV\n+6YAqZ1GlhcwIGmxKoosM6d0NaK+Kuxx0zgWfQ85cX11zfbmhtVyhatNi+zJ+3HELleqzM14a1kt\nl2w3V5W9b52EtqwXS5bLZVV8NU0LVkyJy7hZUcMUPiXfWhGyR5TzwZhZufWqoqt+zIgy6/BrPu0y\nSAqgMfO6KyoZMKoeko8X0+YENXlSfC9bSWZMiRz2pAAmyhgnzmF9hBAhyMdMjMScxSunKGM04dFa\nJyBZiISUuHv3DGsyy/WSm+2O7W5gu9vTLha89vqbvPbGG9y7f4/j4xMyEq4zTQPkjHOWGAJf/+q7\nsp8aCEiowZMnTxjv3+HO2THiVxm4uLjg/PwCyFjreXw98vzykwTI3eMT7h6vuSLTtvM99DPvPeDX\nP3zK+UEy4Wm/4KfePGXRCvkgCif5b+8df+L3/Qg3+4ntOHL/eMHd41UdX5hBz1J3yPsr9hBSszir\nY45+Hms0iGVD8YosKuRDXzAKs4w2mxnAanJVRmCfDDGx7nv++n/8H/D+w0c8fv6cr733DveOj3j/\ng/c5f/mMm80lUdUzojKwWvwXPxep9dquUT88AQesszWVtG1buq5js9+RwsQ2TZgc6buOv///focX\nV3DIvA/hW+R0w1kz38uz+kqulHIlEK2pL2P92lxGHcsZVRj5CsgdgmJyjMtrpSl6Kclad76CGjGr\nMuxADf7l9cVfTSN9xW67YRwdYYq3Qp9K6IRV8r5fLDg5u4Nxjv1+R4yTAFbOgpd6KOcZkC6qD6c2\nGCDq0RCC2IcUcExJbOfmYA8hTgVwapsWaw1hiIRxVjaVx01Z1M8piyItpkRIGZSYL2Rs/Z8qnwxq\ncWXApFIHGVCCn/q1ue4fUJSS87o6BKvK54qSWPoUU5NVD/es8m23RAkUvyRXH7B8PmkysdhYaD9S\nfIpDqESqcU5+j2wwrgHrJagqZzBWkwMtKUcSkZQdySmZg6f1Pe3yhHUUkse6hsX6iKPjE/rlkqjE\nVJ7GghECkjxpyFgnYOrUNhigbVrWixXT0cC0G0ij2jRkcGS6RgiLtrEcr1e0TcNf/FN/nI+ePOfF\n9Q0P7pxx7/SY7W7LdrsRJbzJtN7hbUtjITYtOYpPpQH6rqXvOryzpBCI06Bj61KbOPXaanSENqO2\nHwpEYo2kAjp5kyQVWAUl1lU/SKtnjfe+qpkkrEvqF1+JfPX8MqYGhmSS9J6ganFVh6vFQ9O0mKj2\nO7dIv4P7LkPXd9w5O+Hm+oLra/GltLaon4uPF2QiIU4yHsuccJ1ixFgh3xMQp8AUJjbbLfvtTvxZ\nc+bl5Y3e5Z8urkgp4Z0/OE+M1k7Syomn6QH5r/d3UpFJUZXmNJM3heSyWhuUOnWaxHynWl4ouGlU\nAJD/JaiLfyiAr2kctem2NF7H+1LGx4Qz0pA450lpr9JFkQ8DOAcpTQzDnnHc15uyADJt4/Bti/UN\nMSbGIhvVmWlr5SW2VlQhkj6YpGC0jqDeLiYzFxd5npM3qm0qZUfXeM5OZKFYch2hbHSMa7lasFgs\n6BcL+n6BbTqIGatgWJUNk/WQU3S53NBC/9SdvdzoMxNJPRjm6wDAqAv7k8CXFI7u4OYWeaPc4zOA\nJUzM3NQbndd3xipjIgslx0BwljhN2OhwvsG3ghj7khBh1HiYRCbKYZNj3byctyyXPdw9ZdE13Dk7\nZbfdsdnsuLm6wXjPg9fe4K133+PBm2+yPr0LTSuJktNAmETamsn87O/9Br/9O+/z8PFT3n79AfdO\nj7m8vMCTWKjPVdM0XF9ec7RYYo1lCoFxCnzw/JqPX3yyKXlwesb9kzXGCAPjnGG/H/j9X/P8o/ef\nfqo8eNE2NE7m2Z2CJ3/yZ99jMwY2Y+DO0Yo7R0vZyMiKT+k4h3UatSxX04jvQqsNrvNeY29LIooc\nEtZbaUoOwNXy5xZAqg1vTNIIUjx09B45Wq/567/8H/Lho0d8/OI577x+nwd3jnn86GOuzp8x7ndV\n8pxyIMZUV4hF58Zd8ZFRb5ZXvGKaRub6Tc4MxmBSwuZM13j+3q/9Ns8u4ZYcOH6Lq92W05VT2S4K\nYs1/J5NmM0gq93hr/WRmdqawpmXtFCZHwNhU138JbZjXoxZkqaBv5pZX3pfXF3eV0cLi5+icgCdT\nCLJ3dx3OOaZxJMQoDb4R9aGojcRTRcbTRmjEq0hIjQVt29bRtakYEuvnMaaSK2U1OVvG5g3TNLLb\nbuqIDFn9G5IEfzTWQ4pYDI1z9F3H8XrFtN9iclSPDfEwWi9XdDqi33UdXduSjMVm8E1blTCiporV\ni65iUQY4TAXK+RNnyuepS1793Kv/riEuCrjNTP5M5pRiWdaoqSOZZZzUKriYHGRvxO8rRryqRNtU\nlF9apFlpqoKylWIaLHuhjwmsgDZ3+iVnd8+42WzYbHfcbHZcb7acnt3hK1/7Ed5+5x3O7t6lWyzI\n1sq9MuzJUYriYbdjs7mRgtcbphglBXrYYZKM4bdtS4yR8+M1p0erCvzfv3uXv/vtX+fhs/nMeP3O\nHX7ux96BlOhOj+sYbc6ZcRj4wz/quNzs2AwDi8ZxsuhYLnqsdfiyv6qHooCeluXxEu9X0gRmqTPE\n50bHSbQBAeoorvitNNVw2LmZqLNGGxEnnj8lgctqQI21VkNT5qI8KYETiwJXLRFijsLAk3n39fu8\n/eAOXd+SU+Z4veLu2Qk31+eqhgmkJMBXMe8WE+CAMRFDMc+3eJMl2U5JnkY9Jb0Bi4xnNQ4uLq/5\n4NGnM+9j+iYx+2qQfVg7iWo4USO8a0F2u2G/vRS0TsoSZiRggSm94UHTLi+YTgnp19jZr8mIMfQh\ncPbl9cVeAnwmtttN9bGNKTJN4iks/aQATOvVijv37nF0fMyL8wuG/Z4wTgLieo8x0vCmEIjaVBel\nf1MI+ySpa2hfU2oO8exzeOcxWRr9onzMwGq1JOlYZYxRkoj7TnyWlSyIBUwDxmkStZNv8UhDLQRf\nng+QSsrP/l2JJOCPeiIDFajSMokZ+CrffkCQ6HV4lkjPZjB59mTV76zkjTxmPPhZshcmraHLflQU\neSlID5KrV7HsRyVFsvweCUM2sr/EJIEtxlhiAXmMwRivPmgNTsEDZ8QjEYrfc4PzLcZ7QoYxBK01\ng9SZiDJqGsSawakC3DmZxjEYvLV0jQQidE3DsNuTsqS8eifj3zkFuq6pvmPvuQe8kx/Q67h34wze\nwjRJGELjHZhMii0kg8lWlOs5iQ1D02DITMOe0YiHaUyx1tNWAZNieSM3gsgpLCU8xdR+vVEPMmOl\nRxGy5RVlMQdhKXYGnereSn3Ly+1ViTXrLI2Rx7Tqk0fxMda9dYa9pK5PVojCo6M16/WKYdgyTUlJ\nU1vvzaw9ctAUxqijrj7ESiiVQKIpBPb7PTebDfvdvoJtq/bzw3GKqizpvmHqfT4vj3yw9Oa6ak5V\nNcZoyrKre4B1pv4+1lpSklrKcKAaZZ4Gqh6vn1P//f9x/VAAX+UgKIaKaDEWYiJm2aSmUeaNiRFr\nZwZjmjLTNLLfb5kGMSeXTSFJStdiwXK5JsTE1fU1YRpJKcjWaKQBLyqPovrwztE1rch89yKPLObf\nVtUjBSRyRjZeh6VxluViwd07dwjDjmncUxIUS6Hovdfxu56270hIIoZTuWZh4XOWRWQosmGjpn2q\nxarodFEdmIMbfwa3YAa4ci6sohZqh9Gk+n1GdMj6+VTHgfSRKspcDo3i1VT8Z1IUjxZLhuTnjUqT\nO8rzD0m8PoyOeybNdIxpZApT9UOYpgnfdrSLjqOTU+IURS68FWPI5XrNm2+/y2tvvMnR2RmuX4Bv\nMJoyGbUJzSlwc3XN2ckxP5fF82W33dE6x7Tds2o7nBPga932rPse72WUaT+M/HsnJ/zPf+//5sMn\nc1Py1v37/OGf/CopjnjnWC0XWGfYNY5F4/ljP7nk4mbDdj9ysup57fSYxjk9AIt3FEhqVOLequf1\ns3I4JQVw1LTZSMHQ+EbHRmTTd87TtV1tSMTPp0hwvaafCPjqvcM2vgJi0uiYiuSD9NwxBkZ9D7zR\nGfpYcBy5n998cI837p/RNAJUnxwfc+/ePfa7DTEGEZ1l9R6xTkG+wiCoL1fUuXR72BRpSEJKkv41\nTeQYsTlzfrXh/UdP+Cw5cIitegdRm/WyptFDch7vmi/ZC3I9+YyeJknB3xIoIAVLUuBb2dPi/aAs\nSEwJUe67Cnp9CXz9YFwFiBLlkD1o/EWNmHMW1nwS8+HCjksKn7zPwzAyDIMAWs5BFt/G46Mj+q7n\n8vKScRhIMUqKnJrNgz5kjCTQ9SgK0TgFKWxTZtF1pDBJYwt1fHG56ElTEJC7bVn2PevlkgtjSXGq\no4BOi2AQxrEkPSbjcFnH1qxDh2aoygCoa6Ssn1pEJSn4S7E5nyfyBbUIZW5MXlV9fdooVgVdDkgY\nO1P1uucpeKxkTFVV5qxnvAXbkAsDmxxOz3aMpCGBhH6UBMsYE5OCLjllphjop1HsCcaRbr3kaBgY\nx4n9MLIbJu7dv887732Fe/fvV9DLNo0UzzFgktgj7G5uuLhomMZBxvVJNC6z31xBmsgpiQIPQ+cd\nR8uetuuIIbHZbPizp2sePX/J9WbH2fERx4ue7W7HdrulMaJ+b5qGFBM7b9mZyMI7MCs12G1YLHts\nPbILsKKgoY5gFVV5Jqt/R8Yg90Y5B6UQTjpSooov74XAegX4KiEp5XWu4/VqeJ/reWV1LcoYakoJ\nr2CggDsJkyYZ8XWWIUxMw0DbNqzXS+7eOePyUrz2IGFyrMSQVDYJciSniRggW0vjWkwMWksh6V5h\nZEyBcbsljiOOhHeG5xcX+sJ9RhBOyrhbUfGmkkXkMnZSWgVd9AdNyCEwIPdi0NdEzhinHl9O13/O\nytaXtaK+RdnISFfOcn7Jmv7y+kG50kECtCiLJZBj2O+ZpgnrxLze+0bS/I5Pcd6z3+7Yb3akScCm\nklZHhuScGCgYZBzeayp6yjKeVNKpEWKnhGfJuLPDZEuK0vs01tA2DacnJ4RpYhz2Oj7Xc7RaSeKk\nkjcGSUNNMeoUisHYkgYZSVFBh0NLCComQVISP+upg80z0aittcmoIrKUaweAWD5YMdp/1Kb84Jip\nSjC4dU6VdHFyrrYV5esLWJKLn5E+11TWWUaJWz1yoj6TsnemJNYtOYM1JOPI1uN8Sc0rIQeynox7\n0xgAACAASURBVJ2CkjnXV4OYIMTIqHtizlFA/Rilj8mZcS/pf42z2JzFRCZnCRDTGtkhPnA2y1ia\nsaoY1N/XuxKYJmOMOSNTFwbS6CB6UiNkXNO4+UxG7E7CNMl+5YUcSVF8kOOk9bO+S0Z75FTURfX/\n9EwvXpUaNNeqorhpmvr58jkB9PUZHNi6lLOrYAVY8cKWWv5AvZyyCMGNxVSLnnLfBvUHlv5L7gEh\nYlLKEGVkeblcsVofcb25ISRJRLTOicoNlKRLpCD7dAiB6CPOTRXkLWDnNI1stzs22w1TCPJ5Yzjq\nHO89uMOHzz4ZjtM6GVM2BvVxtWBEUGByRuXT2AL4pYSxomrHZB1LtoCXuiCCt4JleGdkpFXJFrlX\n7Ax8FfCYkk5ZQtL+hbbDf+HrhwL4mnRzTVbeAINITlNMTCGx2WxpOwWbfEkzmeaFVYr3nITltAoI\nLJccHR3Tdj3nl5cVSPJWxyEPv5csY2BoiqSVhT6FSRZTlhsKp3JzIykg9fsNOOvp245OD4n9fk8M\njuWik80lJXa7Pav1VJO0QopkBJwwRozfs5lN5FIWDxmrPyslgYgwdj4oKtsxx12XEZVZsXJQqDE3\nIQVJP/yYvizzjLyx5R9AYU1UoVOYeAXipCDTg0D/DimTtQCQWFlLkw2+6aQAKJuYEePAlliR8ylM\nEls+TYRxIkyBfgoc6UF6dHzC2d37LJZrohOvtxxGTfITdDwV6bWCQFnNiZd9z/F6zeboiDiMDMNI\niInGSrRs03ZgLGEKrBY9f/7f+AUev7jgarvj7ukJR8uezc01+0FigrtGIm5t39JZR4qw6jssMgq1\nWvQSrDCOKnVPUO4Eq8mNOopY5NslCYgkx6Skws1jVbYaPbqqhijm2aLeEzVeVX959WkpgIyRptbo\noVFGgZMqvZq2pdHGZb5n5GsLq+CcZbHouXvnlJvrc66vZa2VSFx5njN7F1MkhKkyITmVBtVCzoQ0\nMk2BzUZGjJM2LS8vr/Ue/KymJFUvmUO1Siqgbs5qglmh4SoDNlUKnOr6iTGQvcVaX1M1p2mqxV3Z\nE8r4DApWJ2MwzqiXBXXE58vri73iFPR9jcRmItrEMAzs9/uqxBnHqa4jA7OBuhFz1DBNmAyrxRJ8\nQ+MNR0drTk9kTHq3FXWwMxanXmGl+I4xkiL4DEbVMTlnYfinkdZ72qbl5voavIa86H276Dt2NxuM\nAm4SwuKq/4d3Yr4dJxnjn5SpL+QFJlEty0vDkszcVB+8TqYwhYoFJ/KtM+RV4IvymLfOj0/e84fj\nkfXrmEkW5MiQdsCIX5PTYs4crk3kLJ1iRNj8WBl70AZMx7yteoXEGMWv0HlsYzAxMI2RMUwylm89\n1svP7pY93XpJo+a62VhOT++wOj7BWMt+2pNSoh19LZr19CMR5LU2EUymdZbj1YKz0yM21xcSyrOX\ngtibzNGyZ310RIwJb4E48c79M9q336BtO1KM3GxEIRz3I523dN6RncUmj00tuZV0pqb1tOpvlVMm\nBqlfkqaTWWNoND0KZ8VaICU1Zp7rgzL62Og4qbUO37S4RjxtnBrbF69Ta7z4sLqS9iiEF/o+GFPO\nI1H7JQ0oCOqLKIbGHSZJcqKJI0YsQck5EgI0rafvW46O1xwfH4lyJkxyvjixe8gZrMuAKCZC0PSq\nplMiTOuVnEnTxG4cuNnuGYcd5IBNsG5KJ/3pzLs/MLKXe7riw6Ii5JOg7+G9rnczpZsvtgUmHyg5\nYK7jlFApfkdSF2eSNeiSUaDA8uk/9cvri7hykACLs+Njur5nt9+JsXbORAzZSULjcnXMcrkmZ7h4\nccHNxTV5CPhkBMBH+gFrhYBMVmraVlW/KUZCkj3f5EjrBbBQBwvxGnNIgIKxpCDKMWsNq9WK46Mj\nbi4viOMoSuKmobEWmzImJjyGznk662AKosLxDa6R/SslISVLwIVVL+B6Y2pfbsveAjIOZqX2lb66\nkIVUkkNqKSUtK4xcdtm5NzJa55dQCJD932KQSTZV/KY5YbL0NMaUOjHp/iggY3SFcEJ+L+Zpn6zg\ngFGFsChI9Y910PQ1dOpwHxXv41hJiJwzOQZR4OWIUbWyRRVjWdQ5MUam/cC42QppZkXhZTPYlJiC\neIcxTdgcMVnUrmGcyOrX5byY/odRFEaeiPFJe8uIybDwAdeCwbHoF7RtJwSfAkUmB4LcAqQcyBli\nnMhxIqVQPZWLZ5oxFso0h577Ub0cE0iggG9pfUfnW1rf0jZdJazE18thEQN8q/1KmczKUd9TLNY3\nkrhpHVgvfzRB1HoJAbI5E+KkgDKi7IsTOQeMEigFbBRbFgC5H7p2wXp9TH91xW4cCSlqT2EVkJrD\nsA6VhzmLD7mQFhJeI16NQdajb6vykJj5N3/2a/yv/+h9vvt0Flf0zrHugBxk8irb2quZbDSIQYBi\nqwhyRDyPsVH/qOI9WgwiUnEkbMr4HPE2qq+3JybIsYBcCZzY48RsmGImW4+1IhL5fl4/FMDXcily\n23G/ZbsdKwOd8xyr3bStGJWGkXEcuLi4qExzmEZVchXTucx6veLO3Xss12s22z3bzUaTGUpalKvF\nIdweO3HKdMao0mGUUVQGpSLPKEOJjIw4jWLd7Xbstzssogbouh7nnKS/hUCJOB1DZJgirmlr8Z+S\nDP1ZZQUgV0PerFr3qKCWjEXKazhLhoVDOewvZn+oTzYmRn/fGFM9bArKWwu0cuDozy9Gm+KVIk9A\nRheCBgMElQsHUgiEOM2MbIZMImVDwpKmoOknwqJIKHA6QJo9eItzLc3C4lUK66zD2Qbbtljfss+S\ntCJsiSbqCNoo77uewPLeCnjXOE/rG5Z9z6ZpmfYjcQpYK6bSMYw439A0jiU9wzjyro4W+qYlxAln\nMn3XkFKoCqo+tRpZZQiTpFZ1TcOib0kxMhgYh0SYhHEoB7fIgxNEKIVxRu/XwowhDYx3msyo4Ffz\nCgtfDncBxGbflZSzMEJ6XM+FhDZuOWO9FDoGkfraDCmaA9PjWqUIU6KG2qvVkvV6xX6/1aZjliRL\noRIJUf6OUSLmi6LgUL6ckqR4Xl/fsN/v9T61rLvPlwP7kuRC1gYHPRyVGTog4eV3/qRPkTBz+jFr\nKrBYwMQy7lhVLroWy3hPXXPWSsppnD0Evry+2OvevXuM48jTp0959uwZXb8Qj5WuAyseXKvlioxh\ns91wdXlZGd5hHMUIe7cTU3rnuLy55p133+Wdd97Be8+jR4+4vDwnhLHeMzFGxnHUBCCjQILBOUPT\nuFoIxRhkndnIcrlUD8pE01oscHl+wfHRmmKK3DUN5y9eECZpWI5XK06Pj+malqvLSxnbVGBiHEeG\nKWCblqbvAZhCkFHm0mhUxQy1aSmnhSkMqxav5bq1Dg6a/bKGy9eW16J8PIR0oBRyJBOqoiUp2FZW\nUkSKO9k/FKgZBmFVYxlnm5Qp13HwnMhxJOdB1m/TalhGaTqMeM8oAm6dE9ICy6q3uh87KaadFIsp\nw37aq1m+FJuDkXM/hkBWtYUhgY3EHLBJSKUcRnpvWS96MTgeBgnnseITGIc9YFh2HneyZlyItYNv\nvJwfaYIwYhedBprIa7letMTjtQLrct61vqHrOna7HTcbSYtMIciZbWU8NOSMyY5sBHhJOdcx/7Zt\nNPXTq/+pVaW6eIt51+rZ63U8QsaoGvVrlPff4lyDsV5HocJcJ2i91LStnOU54cv9EmZl5WEDUZJX\nS7N+dnbG1dUFzhkd1bBYS62XpmlUpa40+9uQq1LQ6304hpHrmw032w37YSAZsLah9/Dea/f58Omn\nMO9WkjyN9dVsXtRsVA8ZKE3yfK5YrS2dNeTktNnN6kEpZK33ribBjuNI8W+ScTPxg/IaUjAESZ/u\nu46YYb8faNXD7MvrB+PqF2JpcnJywmK5ZHg2SdjJFKQ2SYm+77hz54zFYsFms+HZs2eVhEFBYuss\ntm0qQCMjxZJ65xtHMBKUks08ipR0b7F1HEvHyXzDqJMQTdOwXq1q6qP8PFmjwzDWcfiu68T4PYsy\nVGpOWfMywjzvo7PlivQNZRJFQKYDS5MCaJUfXRRYUAmUOppVHkNJ/WxzEbjUvaQovA6VXOngccRj\n0B6ATq++W/K9VvdI5yzJO+kjFHAuRLF2ZKJ68U79ceXszMaSdVyv9mKF7I3qn6Ygm8EI8JJSVaKJ\nf0+GbMjO4pCzPznpUcMkFgw2Z/H6zLJnTtPENOzFwkdHNMM0kIwhRIebbCX9C0mUkxBrWX8nbx22\n6/FOktStFf/TGAPkKGCIQSZ0YqrTOMM4iFWE/q4lMKsouuYzP9Q7o6Yylj7aOdq2o+s6IUn0scxB\nv10mJw6/p4BkqJekMVaEArneTXpflfuhEDwzMZ717DRKCxo9E+XbRTXlvGO5WLBerdjvd+x0skz6\nUDWwzxlsxmVXbzAZ5Q/1niy/93K5lN/P2eoZG8ZA18Cf/YWf5sn1lg+enXNxecGzF+dsxlRfO/lt\nEK+urJNVxlRwMFupQYzJM4Gvkys5yX1jyaCEUUnOruEbI4yj9KVew97KYxdPaafBc9/P64cD+Fos\nRF017NVccd6wGudxrcMgng45ShRpo4bdk5oVj1MQVZGa4i2XK9arNcZ49pst+5utFJuU0S6E9TSe\nGNCoUS2MUKlyinITMY+lOSuy4UbZaB0yxBorhsJ9x831NSlG+r5ltVjQNQ05Rsb9/v9j711+LMuy\n877ffpzHvTciMrPeZDdbbJAWBBqkIVECPDBEQ4AM2APPPDAkyp54Jvu/IOy/wFOKgGc26IEH9lSC\nJ7ZJC7RFuU2ZTaqLXV1dVfmI173nsR8erLX2OZFdMCyIjS6g8zSyMyvixo1zz9lnr7W+9X3f0o69\nTMOoaRXkXjt+lKwbK+D0QZTUWdklVTvc9qBvlGEUuHDaWXHYA71NC/JW1RR9cHa0X3uffdARKZBr\nrKmG/rttmlNVY0ub/iAFkxYxWTaZ5htWHTXXJt0r1czxkQ3MB7zvm5Q1hECIItehbUzuSYAVwK0I\nuyEL8CUU3Eyq8vW8rEQn99gXZTSs0nEmJQLi9+FdIZe0C5Zy9byr+M5zc+pZkz38sK6O1Dt6F7AR\n73JNsoVq0ioyJO89sQusSyb5BjcpAGXgoQS9dm0BzWgkkHQ9XdcrYNfL7/NafMSe6KM5aQnjwW8U\na+u+oVfSqKtYdwaRVInnCTrBQztQKZPzquyGDEVNIdXnrSAb7zieOF3dcHt/Tzag6ckmKUwTA4Bz\nFqNX73ZBzXlSWnl8fOR8PrOsq5r/em46zy9/9D7/8mvpwB0xbMW70/LZ6SgZp934TcyvnURf1BgT\nqDpoomYCnuigC5UuVGEUFK8dKA0wwcQzniJZAd5F6ZZU6dhWnd737vjZH5Y0WYHZaRJvAL5IHVfm\neWZeZrp+4Orq6kkB3potKXF1OnIcR6iV6Xzm4f6e6XKR36UUFI/ENyvkvXMNZBBQfpvcJeC3fD97\nz9APkoQCaVkJPtAHz9XpxGEcmaczKa0cr0/0vUyyXZaZ4J8x9v0md/EihRIWm3si4+h6NU7eXScb\n1GJHkwK/dTxppuwB5N3f7T1bF7Q2QLoqPmCJaAM7dO8IVmgYgcDeRxNsNP6UrEmvduO3igr5t1Mv\nT1cbG2xLzrcphcJenuXHNKGWOCUDWAwsl0lskhzntLJMF9I6Qy0i6XaOfhwIOUNaFdxBfKWoLCa7\ncdqU0KaVDwHf902qGTRm1HHEl8LwpLGBSpwkuTbQp/k7Oi0XHQrq0BosIrdBjJiLMmH1nlnjz8Cu\nZmhv10qlkDZ52qYE75ZAW08eiflo8S2FkcajAtVXZYVLbrGuUgSUbOszt0KYIoWDMKePXJ1OPDzc\nq3R4H9vkWtYqQ1WK80zZtec/qPQnpZXL46NM11pXYVwPIgf+D/7Wr/A//sH3+fPPt8774D3vjSqT\naQXTth4tJzFvyFoytb2WBgx4m7SMFNN9L2BWaNewQhVwvOtiY3ZS5XoKC0KaavZwlFzVZ+ldg+Wb\ncjx/8ZzD4cD19TUFWJaZyzSxLAsou/jFe+9xffOMWirn85lpnmR/VFYLu4aC5c8heDECD74Z0TuN\nGQayJs03TeqIMn/6Qbxv87rl3Lf398zL3Pbyy+XCui70XUdVbyvn1E8xF1zePIdLFfZ+KVB9wLtK\n8VpLKAmhseOdB6e2Jpo3UtnO8UkDfwOwWjanoJTsKU+fv1rNiNt+zmkeLYA4eJXCGegkv9wHZ8FH\nnmED0TQHt8EArtJ0ZLUKA9q8qJzajojnl6N4lYdpU7SWTEo2DU8l5XaepbSBMN7JxE25L+hnRia1\ncyDWytwFpsdHLg8PzJcLeZlF+ZTUFmZZqDkRUD/DWsir1EFGymiAZN15nLlt6IfdM7vmVJqFR8qZ\nnEXKtywL0zy36esSY01VovHUSUMgrYmURPorQ7gETO2i2ED0nXpHalzRzbL9cQ0k00F1OyC1yOQb\n8dQNdgd9O/ctKG35iXOO6oRcYcwpy9XM1Wp75iSeDMPA6XjifDmrz1vR89Vau5Rm12L2GcIqy22d\nGuklqN1R1M+dUiL5RF6EEPLhsxMxBv6sJu4fzlzWSeOW1BlVVWF2uNZ81EfT2XVQYkOR+OB0eEPw\n22fESYPfhnetqxAyJK7Z9bJbYU0mj/fvzO3/tY8uRPHr8J7ixHsI0IQCXC3kdWKdF1z1DIcDz589\nA+94c3u7mdUqaHU8XnE6XUF1nB8eebx/gFTaCHQv7Q3d3ALFVfUXk9HvpmWmCiqOp1EagxqSx+jp\nfCAhgFXfiUnl0Pc83t8CwvLpQ5DfW0SX3ccoVOJa8aXQhUiMShtGJ33oGnbOKZCFbtCuAVyUXffC\nlSZPMVkLQC1ONP9WTNSqIMfWoK8KVNnX7Ou2dz8ZKawsAAtOUpBs748z7X1UujACckFjHMlZCsgV\nYpCJKCDdEh8h9kqZtXG1IjMzQ32rlGxzQaeJ+FoIyhrwKE04JdI0M18mXMl0ei/QgJPU14ViXQ2Z\nUFKLx3fG4KktiEcvUym9rzgn0zpOQ6BEYfbF2FG1u+GRBDb5QjIGl8usRfzGqrLaBHwUGrt1S7yC\ngpSi8olNuiOa+J6hGxqFGjURjkHowVtnJOyMRDeDQlkDXunpEmgq6nuE0yk8JpGquylEwqSTzklu\nfiMgUsa+6zmdrjkcjiwWEDWIefOU2a1FmZ5aW3JlRqzScSk6tWXzo6sF/sPf/FX+hz/80yd04MEH\nrscg62MX8Jptlz5T0qG0DR1ZoE6RUGdhT337qOKZ4Coe6ZJKgVFbMdeYMm2qWMT7SKkGWDtqylTe\nAV/fiKNKotPF2JJu2CVDuTDlSUbCe8+LF8IuWZaFaZqal5t3kuR+8MGHnE4n0rpyf3/P44OYmnc6\nadg5GXzdd50UPM4pq6bHe888z2oYWxvb2DrOe4BMPDcu1FLojwdOpxP9MHA5P1BrZRgE5MopsawL\nfRfplfFVNSGLKoEDm+ajwIszcMlihonwN3lJ22t5CmzVFlP2hcp2Pb8O/JKmlknyzadDEu39eygU\nA61to6mrXafgiRVK8eQkwJbtYcY8qk73zRiJ3S6RVsDGkm2R7kmBmJIBFhpbqxZ4Tv5ICK7bxCgt\n/uZlIa2zmqRLJ9gtC3W+kFJmnSdKWihppSyLFIw2wSpEkaArUBW8JeLCBBj7iGfk0A3KgFfz/5xJ\nKZOSF7+yWmSa6LqQsxgRO7cZ4wrrUM5NkX4FwwwsM8BNfOG6rlfmoBQkDRx0WyFispatvDAPUnSf\nFeC1uo35YXfVfqbZImQ1ytZraxMfzQfOOUcMMkji5uaGZZlY12VrdLTpo1UBqkylkLKA0M47Sg2N\nTR+7jqP3jFV26FQKfd/hYsd/9O/+Bp+9vOX7n/6Ily+/4vF+FhCx1ubtsj8aY1jX9pNyy8AvDE91\nOp0xtHwSJM5aUVnUYFiATnk2gq5bmxAmvdLarpGaYLw7vgHH9fU1wzjQ9R13D48N9MrKtnr27Bkf\nfvgRIUTevLnl8fwojFQFh22JFd17LTZEZWU6B9O0AE8ZNM57WIUhZAWxgWnDOMgeUWR41LIsvHz1\nEl/F3sN7WJZVwRpTb0iubIwQV4S1VKrm0KVSjI218we2D2ANEwOuwEH18gw5nsQJ2xGa9zBa7zyp\nVXbgWN1+pu3XCjbv9x5j/Lu6sb4kHzZgrYJ6E1fVD0tI2vZF+/2gbRXvmoLA/nZOv1c1nlptZcqC\nsiMG1LrJ6tjey1ObfYxzFYo0RMIwCBiQFtaLZy6FtC4s08QyT6p6Wkmr1DNRY4jLoiAKrqqdhw3P\n0ZZ7uy96DZXAkGshr0knhcofkZcb0WQV4oAzv6vavK98kCZUyispZXISOXcXRJXSq39XFzplEm9N\nfOd3wJXmWSho6vfr3HnNuyW/l595qm6pVeSQVYPJ3tKhgXsGUmVjGOta2d1LqjRJD+PI8XAgZ/ns\nshejIKIoYmy9FKB482nmCYM5lNKAY2v4OcSfLRdHqGKbczocOI4D94+T3DNXtekOOJU067ni2GST\nweqprd6vWhOJ5UOQBp76mzmiPJZ6nvv4VtG44sQqSHw+wzvG11/K0YpRZdoQdt0y2TBSTqzrzKGX\nbt/z589Z1oWXr1/ppBExs+9D5PmLF1J8zytv3txyebxgBoXBqJM76VKIgjp3sQNXUXKidO/0dUZ1\nFc8iSSa7KB4fpeY2PcvYAEG7ejmlVtz0nRj5uVoF6Y9Cc+80uam7YmP7f6CaT9FbgaJRhmUD/4kC\nhL2/0G6heocrrgWRqn5Su9/45CesU1nVZ0xPSX+fSstc2ZBnSy6D+HlIDDHatRrAejFal80NKl40\n8nFo6LWM+lZgphrIYsCJBN6qSH3Uz5Q1YAXncDmQnAA5eU2UeWlmxEXvS1pn8rpAVmlmXsnF4YpR\nar3KNEsbQW2sIV8rQwgQZFMMIQpdFHCIwWTVYJ9LJaWVZZlJScZD4yEYO8uowVq0lZRacR50Al0M\nkehVktL1WkBvHRKZjrh5f7VAoqAOahLZNPhmQeq062GBUG+wJDBPS0/xPhAwLhed2JKtmx44HY+c\nTldMy8w0Ty2wmjRYco1tfWY1+zZQrgbZdLuuoxt6cBtVOi+ZQ+f4j/+dX+eHbx748y9e8sPPP+c8\nLfLMyolLEGrgl0qATQaA7TUSSER2K1JbioJl3iNyV0t6qoIKlWUpyvyh0a8lMPt2/V026SjS+f8p\nB4l3x/+/w9gsXewU0EBYjNA8vWzy4/F45MXz57x4/pzbuzvWdeX8KOO++64jjCMff/QRPgQeHx+5\nv7tjnmcBGAz40GfJmF5emysSN4oWt5JUmWzWOvVVQY8QvDZHZJS8efgVLU4MuCgls6yFISf1PAri\npZSSeGX1IlWrCJtZJNSuNT7e9uwyPyYB7wSI/zo219vd9720+eteJ5R//+R7zvZ5v/sdoICKeIfU\nImCNPM/b/uGLMJjKDpgzaaYT1EcBGkuirUrxDVBovpm5khTYlxpl8wfMBr5Xy1N8GxBQ+l7kRklY\n69P6KPd2nvHrTCkyNCGnVTw5aqGmRHIZnzI1JEqSPblorJKml0wK80DnA0PfKWgjhVWmNqk8O9BL\nWBvSvLOcKjSgT9nXVMgquXNOJZS+va6LnXbne4KPWkRaDHFbkWESi7oDJ9GOs+2fOzDoCVPDigyU\ngaw9C4tT1uzb1o6s9WEYuL6+5vHxYQO6NMx5v+U0GrwEZMwFV1zL97xTEGEYCDGSSuE8TYQIqUoj\n5MPnN5AT6fLA4+2MegW/nSbp73/6bOwx3z3zqwFgSFO3WCNIpcHzPGuxmeSZ0PVn91EmwUnhwu49\nS1HZy7vjG3GsOeFXz2WeeDw/cpku5JKJXcfN9TWffPIJ1zc33N7e8fDwwDTpVDwvz47579UqbJbq\nnPqMxua9tzUerC7gyf4Ltr4SqSR8DIyHUVhfy8K8LExplinj49j2BZuSKiwkZSmWSl5X3C52FSCV\nKpJwQvvs1ty02NeK++p2cmi3A62s2VGbP3CtsJ/CzT5G7Rsrilu1JontFWzxy1nOR6VWv9sfaN8v\noF7NVb2TdQ+zWGK5q527geBm99JUMLQaocXTsgFm0rBQ8FEBEDlvK4OdSqKz+nWuYlRfZCBWHyND\nH1m7QFk8K4W0zEznc5N41yz+up1DB5mETTZdi6oT3AYO6t4sTGbxPV3X3Fhd8zKxrlK3JPUPLbUK\ncyl2uIBI6II2OTSvSikpOCbgbN/1DF0vtYupV7qeGMXGyGkj3mSLWAPBGRCmChXz6LbXO2EdN0sF\nlZ8Xpyus0vZfvYNP1qYNDamaFNa6DRYzr7DgPUPfMw4D8yx5lPc2TVi9kdlAWWvkV+/b/d+v5ayg\nYXuGMVmhYBR9jFwdRk6HkS7cseSMKXms0eRkMe7ag/r7MbZj3YGAaCxUm6HqZMjPmqi131RwO+AP\nzS+KXhuvkvwQ3gFff2mH24FMbaE6W0SemjI2QevZs2ccT0emN9KJn+ZZRvEOA8fjFS9evIAKl+mO\nx/MjSYsB3Q2b6ard4E5BL+dd0yJbgqinows5NHmgUIcHmT6YBA1NOXO5XLAR4Mu6Uqsy2bJ4GUX9\nd16TmMWyJWvSTRQvMd8Sw7LbpA3NNsrw9mD/JGXYwCn9AMZCMUmIfn6wrpJNPPHtM9dqXVp5fa1m\n5G3SiC2pc85rou62B6c6ahSQpJ0X1jHxbYolzlTWYhaJvgdV2UZF/MNq2ajTtWQBh7ANw21SFydd\ngNB1+FFpwpcLl/t7Lo+PLGomXdKqengBwrzAbyrFA1xtkksJWEk3mQ1ktM3HZIUlyzUoWbTVuWSS\nFqDTNElQyWoG6XYeUipLqtB037XCMHQM/cDQ9W3Eb2d+K7ET4Mu6F7rJNeaY38bUovr3UmVCC9Z9\nt4DSHrwd4Kmfzen6d5Vm+hmcY911SGoRI8lxGLk+XTFNFykga5XNUm4aViHt6fNGB25GPX1kjAAA\nIABJREFUpMgzaUWJAV/Jr+RVhiV89OyE8zCd73XzFoCtYgMi7MG1GOlpixD0iwL4llzEwDuL4WMr\nmr11w6pM3Vnkj/n5SaKplPTmNeOoqbTEx7o6746f/WHJSNQ1VZOsNftajJF1SQx9z9XVFTc3N4zj\nyO3tnXrO3eOc4/nz59w8e8azZzfc3z9wf3fH/d0dNWeGrpO9qEgjwDtHXldijMoKlZBuoNfQ903m\nJFIImbyYU9K16+h1CvA8TeBgmi+ULB3YEDzzMlNLYugjcNKkRCUJ84L3kdgPKoORxLs6jwu0pGYP\nShgbq01Qwj1pvOz/Zvdz9u/9+7z9Wn342VUsragX41qNd7ZP6HTU4K3hYXuUeaN4IBLCtmttgLQ+\nwwraVNfeFpNJ1JqB3DruxeXWZCnF0kkt1mrFV2GXxSjxswZP5x1jCMwh8lgrbx7PPDzcwzQRs3hB\npXWlzCuhQhc8ZK9MHWHGllXyE5OVeOdAJ/SaFNB7K+5Kk4uv66LeQas0Vual5SAGVnplC5s8FNQe\nQKc5Chgszb++k9giOVFsbC/XJHpbgwQFGbc4ItffECiTWbV7USUmGlBXtdCz/MpAS189hdAATrEl\nknXrvMSG4/HE6XTCe6dS8tI8No3VItJ8SLMMyilFAOiQUltvXSc+NPJ8jsQC05ooztN3MqX7MI4E\nf6eS0F1Ro89ZxXIeK2RQ8GAH/urXy46FUIrkFPYcSJxbG/jug28ggtdnpFO5qTC9aAUNKu96d3wz\njtdv3kgjPHgez2dW9fa6Ohz55Bd+gW9/+5e4u39Q0GvS/Vd+1qkXkw0VccVkWdIgtymPzjkdjmBS\nM09kqyWaN6J65AnLUbwDsw6HcAryWm7kfWi5pbGTTW5b1MvQ8jHJmjxeyzbX3qVuz3QVQKnYrmuN\nHX3xHqhCzx1tOtRdI2TfODElu3mhbWmoNnEMAHM01YmzvQlt8u9qO7vu1WlzRBlXBv4ZSGLkDOel\nEVJVadSaxbBT6Ng1qS0P3X6hMK+cgntOAT+qsr2UzTWdz0yXSYdxCcVgnaVRX204VlGlSlrk61or\nGugnLB2Rp6es1iVlX+Mp6FMkD15zJj9euKiP5rIsTMvMksToPmWxKAkxSH3VdeIVVjbwcgNLaPVN\nHzvGbmToRgaTOirTK6hfl3c2rEvrQu+3/dRrw957qpndh4BX1liMnQ5c2TGQTUWF1mzsGl92v3Qp\nWN2Kgl+FQvYQdU/3mocNaiGxKJmlMcd2INYemJVmu7Dunwwk2w/dqRVXpKHnqAQX6KIMX7s+njgM\nA+vDheoy4oG2XWva+t75StJcihsOYHEk50wOTiaJpkJKOhBI47fEzrLDJCwfs0EUitD+lJssPxfA\nlxUe4zg2eqX5qYQYGxUzhsjp6orrZzc47zlfLszzQk4ZFzxXV1d861u/xDAe+OKLL3l8PEuHr4vg\nthE4VRNM+93DMDSJY9KkaG9onZTmG4I+UEo5PpyOsmlpUnV3d8fZVzrvOA49aZkpWSahLMvCqp+r\nTWGsFTE2Vu10hYIwiHBOOg9VfbscOFcA61QHzG9CzOBdYwq0hKzapm6B0oAque72gGxo8S4I2IZu\nYJ8FHt9cuTYQawdSbRRfB3jNgQUkaFRMwOQaGiKx03SGwNv7OAQMs+tmD3tR2i7ovTVpiHlFgYuB\nIThWD52DvFyYz1DyyjpfmC8XlmlSo8YFVxO9dyQHKPDk9FwE8CtbB0KLAOkSiKF+qQpaLTKJclll\ndLVRg+d5bh2iPUgV+76BrotOrixFJlI5nEyIC5EudE1+YkFj3w2xrrl1QryOkpeOjiOVii8QC3i8\nBl3p1m+yShq1HU0k2oSbagMYDPwUgDOoNxFVipLD8cDxciCXpCwV9S9RPyNbW945UhWGnXW8q27O\nsYusOdH1PWCm8tLBokCH4zgMPLu+5vXdA3nJO4Ba2QPe3MxktZZaGjXaK1gphpjGEtMkwHs19tQp\nPC48DQr7YkZCfaMBy9TS3Jhe7yY6fnOOvSeK7O2eUENrYgCNvWKNj3VZmaeJy+XCPM9cXV3x3nvv\n8fHHH1Oc4+HhgdvbW87nc4tjNlHRvC5yzpxOJ47HI7XWbaS9Ft4xRiqFNUnnUCadFm04esZx1CRZ\nvLde374hAEOM9H0v/jAenj+7puuidpNRKVwiadPACpY1FVzoCLVaw7nFANBiwYqHBmJtLK23JYx2\nvM3y2n/tCVBmvpDt+xsoKcwBSZ5zFl8Qr+wYOx8x59VBHQWCNmj2df/WbXeUmnGhYr4g7M7HOtQm\nNwkibN5imsZe9DxsQMrQ9czzRM6FDs/Yj5xix8E56rJSl5VpmqQbr+tnXcS8vRaZ1CxxBaJNqq4W\nx3TYjgO9kVvOoIDmum5edJOyhFbNX9okUu+b9MN5Mei3se1ZY7Wtwa7TBks/bF34GNnKWbu4zSwM\npx43zptM07fCXDrOQV4nOnOMaeFxmF1vbWXJ7t61hL1SizEIKrlUojI2j4cTp9MVVX3tpBkhZvel\nCPjVwLQ+Svmjk8BLTqw54byTGJOFieOdzHX3WXNFJz57V4cTx9GzzKWZiG9MFk2a2voWOXzfhR3w\npXJ9A52LrOtapPljca0Up89CbWxzs7Uw4KuZiieRZvnqVGb/k9Lid8fP7sglk0pmSUka4A7Gw8gH\nH3zAt3/pl/j4k0/40ed/xO3tHTkXDocDAMu8yN7oaHteqYngA3h532VZaUxYpLlqckZjS1XAV1UP\nFJEQl1pQsw+JCRnGvlM1QpIhSZ2wb2yfzTZ5NWxyYQOCci3SwFamj9NgYo1Srw2UTR6sckO2QUBm\npbLt/1Iz0OLO20oWt+WuxlZyO+ZOtcyU9sfAeolpxjTz7T1brHBKOsC8+nbqB9t/3bYTmo1Liyda\nl9hvMyYV0H6+ltKGW+gFQFE7zLB8TSvTdOZyPmuTfiWvC8t04fz4wPnhgeUintXrPDFfLpSUCA41\nfQdjlHov3mHUQqDiQqB6Yf6sKSnDNLGuWc3qV6bFhsVszftMbg300As42vVbI6+GqlOrC1n3Q7ET\nEK/IPnb0Xpr3NlzO4opcVq+N+q6RAJz5eNo19rZuPM58JzsZNCa1UMBULE6hrna0DgFtvxYVkxIb\nqgxiKUV8uIyJ67zUQz7I4JjDeKDvOgEki+T+213eQGdjXjrvG2DY+Z6oioCmyHHGVi9qMVOJTqYv\nn8aBF9cnXl2dmKaFZGtYwdusg5fwvinZLMYKWUTsGZIXv2GvLK+irK9sz6QNPsAkmUWVRLvaxUGl\ntNxjWdav2fX+8o6fC+DLuhFVwFa8D/T9qIBUYJ4nposkdufzmTe3b+j6gfv7ey7LTPWiqf/o4495\n7733+PKrl7x584b7xweWZcYYSRYAAFyVJK3re93stXvCJh8Q8seW8NsUpLpWlnUBD4erIymJIe6y\nrhRf6Q9Dkz2FIBTJ3jqozpPXxHyZwHsOvZhIZtPKB/Xk0EBjUhyvrQ1ZtKkVC3VnOmz050IVBL98\nTfAoT0E/b8i63zYKY+rUWpWpg248ToESOa8NQfOIGF0kKS1wq1dXM0/3IkFEE9+sCT2KWHv7LOZL\npocgzfIZik4UMbTdswWbZsSZEpd5Uv+uQnCV4B2HviePPXXpKcvElBPT+UEBydQC+xCcmsd3rasm\n7L3NuNJpAVCLeINM08y6JuZ5YV5m5nliTWL+uK4SSKgy7Sf23eaP5dTsM9nENOnKhRgY4sBxOHI4\nHBjHA+Mw0Pc2StaRc8WHqgFhA7jaBBT1sDGgzYeO0PV0/UDoegWVFYBU5pXXzgUqoZTmYtqAx1pl\nEVE3Y2Eq3sl7Be8Y+56h77nESF1XQCjzxfs2ydG6ZM57LUod5rkUY2yMtT1VPlpXEhlGMHQdz04n\nDv3AND2SyoqLDlw0ggEGqm6E9o0h6P3m81Qx5mPWRLCwrpBzJHYmRS7bZ7fulyad0YdGA3aO5lVj\n7//u+NkfxoRZFvNG2abWeSfS3Zwz5/OZruu4vb1jWRKvX78mLSuH8cD777/Pxx9/zM3NDX/x2Y83\nXy8z/w5BR8xvRroOlcqDGoiuJAW+ivesmvBknbjUqWQaZI/0MdAfRpZlAirrspKoDENHPw5MlxXn\noR96xtOR0MWt6Nfcr5RMXsRzo2QxQa96XlWbK01+xgYwlVIgbM0n2MCs/y8m45OCgg0s88Ycrttr\nTDq4/QZjGpeWPAK4qkXDrsB3zrXpsSDgUWMgK5M1USV4P8EFtuKnvVetkpBXMMam31dQFp5KpdSV\n+f6R8+M9LmcdeOMgZQ6hI49H4jLzOE+UlAXsXFK7BlHZO47AaJM2V5WG1C02l1K0cbJwe/eGlKU5\nsiwLyywNlnkHevngGY9HAaLUDwpn4JEwobICb9EHYifg6TgO2lDZpjqGELBpaubnJWwNp3t91D8y\nCMQrqyx4Yxz7TZaCMWODXlOZqm3MXJOVlqKmwKVQs+7c5m1aZB+PMTIOI2M/MIeOxCKyeydS9pyz\nDGQpCec8XewlBgQx+t1gPKcMmA6HZ12TAGTG9HOOLvQ8u3nGi5tnvHp9S6pbPmUNoIqVcLbAdv5F\n+iwI000NrksRD1K9tz/BmFTgrRYzDy/aADNWpOQ8uaKyJc8+x3t3/OyPjz/+WJguw8Dr2zc453jx\n4gXf+c53+O4vf5cX773HH/3R/8E0ien9OI70fS++jykJG75suU+vTJNaZWqpD45h7PHBNbC71tom\nrtWqgLpZuziYl5nsPUlZhrIfBNZlwZeMH0SC5oCaMmlZWaaZeZrJp4R3Qj4wPybpFMigL1Re1hol\nGBvenl8BncByL2FrST6Ink990uBwjVVphwHDG8hsjcU9y3jv3Wmy+mrN8taQt3poixcGrAl50oTD\nW11qn6vU2u4NBngpeMWusS3iFXnOxSM2t5zAIo+AbAocentPTxcCDD3RweIc99OFN2/e8OUXP+bu\n1Svmx0eRrOZEXheZDhsCfd9tPo616jkY+Cgs0VXB2EWHwq0ps665sYRTVoCsyt4m67hXduzOAsZv\nYInViARRd1j8MjVLjB1dGAX86RTcChHnZApmUOsWq0mwpn1QtrbcUM3Tw1bz+CD3qjp2pXDLL56A\nUE5BVefwxVGDx2WzMBK1jjSCIqWK5513njWtiDVEYBxGjocT8yTNJmvifV3Tb68wsOfX8qaSMwb9\nmYezjx6HkHhKqoxdx3EcOam/m0JerXlXvLJ+d8+HFT61FIor5AIle2qQWkuYZgJqbefW6bkuW9zS\naxW8gZcBt2r+oMMUfprHzwXwta6ycV8uk3Z3315A8gCxwDRP3N7fMY4HAZ+Aq6trfvFb3+I73/kr\nlAKvX79mXVc6DRQpJek86Kx02aSEpitWEpmcN+r6aqbbiswKuipmdsZ4SUnkar0y0vK6ClrrA7V6\nmaLgvHoyCAWzC1F0wv1ADAIWic52JRVHDTbdp6pR3parOznxBo44Xzeww9no4HbFsFL/J0oTawfp\nK56Yzuv37CW7XF9f7dpXa926KPYD1f5bi3/bdC2xrdoFaajEkwJG3tqZ6WX73bUZK2v0km6JBhCJ\nRGrMjIB2s3ZGlnmm5oyrhZJXzg8PXO4fWKYL6zKLL4tO7gwGaLndZCsN3BmPp2sbac4CegiQWpmX\nlWVJUoAow2JeFlJZ9TXbyHivoA5BpnnJRynqlwVewRMxsdfue+hUSmnmjvp30Eko+p7W6QIwPxbp\nr6sWPnSE0LWCyLX/Qd4Vshbonf57uy4yaayGoBINS1KkSyCsFDG5H4eRLjyKv10pjT6+p6ybD5J0\nWHRAhRPZTdA/zrv2zNlEIQESHEMXuLm64tnVicu0cF50/HTYrmvRc5LuSpSg0D5jVR8kAW1tapFQ\ngWWKTUW7nEUDVi3Y1HhjbcraLpQqkpqs3gYO90Qy/e742R7WEWv0cifTWffSPjOAF4aUgGCPj4/E\nKN6R3/3ud/n2t7/NNM+8fPmSaZrakAlbp5bwgezXMcYGeBnoa0njqkbEePWkKDJYItdCSVXYYwrs\niz9DxtVK9JbsVwUrfOu+WhIvoFAguLc/9/b19qCz7dVybM+p8xsj52mc2f2c/dTu+bbPaq8x9ot5\nYuzZYCYh273rDjR2LTY1vrG0sxs7yjw7yTaRaMdQK+x2Ov356rRBtGe2VSLC8qxZJEb2+yUe1eYB\nMk8zy3liPS+UZWYq4seyXM6czw/Ml4m8CKN4nRdK0p3Y2OTGTPaxgSgOhMFjxsI5SzxZV5a0cj89\nstr4+jWppGQzXK9u85FrzKzdfZHCUewWOi8+IiEEBm2oCOC1yeO3CY6Ww0gnvrRG1TaSPlCbTGX/\n+dA9vnqvLIfakmvtIrVi1ryFin0dOQdCVZ9NJ5iSnlvfj3Rdxzxv7A1XnTaVihbShSUp4Gs5lTfG\nNo0VLQWvSo0V8CtVYtGz6xvee/GC+/tHLusG/NpzQkULV2nESYqmhSZs0h9XlNVBe+asQdLeqjGq\nN/Z+2fkFVRxtmmctVAIEAxbfxZlvyjEexx347jhdXfHRRx/zwYcf0vUd0zQ3o/BpmgB0kqLUK/t9\nNugz7UCml9dC0Ma9+UkmHYwAtAI7KBgloFJmni4wDoQY6Pqe5SKKmOLFZkReqn5FOwa+xYWiTKWn\nfCoDuqpZ32Kse8ulq3O4gnggQbPMwLnmkygAQtai3l63qz4UvGvgckEZ/BpH2MURA9y8umpZveOc\nsFQbYGV7kdVEWQAUebFeOShsv8febM+ENi+y7TnWRlJRsKKktr+jYDgKYMu12+o8y6W9At3VB7IX\nueLxcODF8xf0IbCcjqzLzHQ5CwNslum0OaeteV1tCi0yVVEZuKI+WZo5famQdCqsySPNdsh5T+gj\n3SBTCNst0eJA8gN5bdc5OmdEBxrzN8ZI3w0M3YHBD9JsiDLUJXYdsevx0cDT7WrILqiTbFVtVar4\nIluTxabaG7vY8o5at8azY8sVRLVn4GTQ9VCgZlxxrWGjrm9Ys/zTz7/iRy9f88HzK069WCOlNZF3\n06/ltlpc2cBXA5haDqQXsXnYqXrRe60RXaSSSXllCIHj0NPHsMUKZ+mPxU/9gjVa2Mgmbz+l9vlC\ndMROHtiu69nsHeTayPkXrbUsD8gqR/WE8tNt6P9cAF/j4cCyLDw8PIpuWNlZy7LS9zJK1LprwyDJ\nTqkCPvRDz3vvf8B3vvMdfvEXv8Vnn33Omze3zPOCj5EO7SIq1VeSCbHTDkobX5N0M3DIw23dkFqa\n6bdQi5U+rEBOTonsUJQ8EUA6+Kv8e+isQyevFQnMNr7WABbb4M1c1h4IA3akKNtv+FWBBgcuKCj2\ntgG+Bo+3/jwJAhoongBfOwBIX9komVKAFAG9nOnr7Xrqb1O07kngKbvOjJ0HuwLGSTEkQWoz+ETr\nsmobmZoQsgO+RGLh2iacUxIQMhelAs9czg/c377h7s0bLg8P5GUhp20iineOGNy2ScrOpdLNrXOw\nqlfXsq7MS5KiJMlkrWVJrApwNRp4cLqxq49I39EP/Yb6G2hUJCB77VBF7ZAMYaALvYBVXjoj1i8S\nn5leOye6gRuIaZug88iu6vGxIzQdvDBd9t4OG9Bo62ODOvFbV8T7oNMzsxQIdVub1v3ouk468sPQ\nZMsWiDbmYWlUcVsrHptQFFuXcqPAo0TAokmOJ1fH9eHAzenE7d0j8zpRVH9e2RXhRn9WZmJ7vnMl\nOSk+gnurq6TnJfIS8VSRJWxsku3czCRcks9VQdFdMvauIPlGHFdXV0rTXpRpUUATfh8CXZSCN+fM\n9fU1p+OJaV7IOXM4HPj2t77Fr/7qr/DBhx/ygx/8gFcvX5FyZhxHYoycz+dmcO/c5hd5c3ODdOrX\nJumPKn9PKilwztYR4p+x+paISMGBgqorvT7v6zJzcYVx7NS3rApjIIvEGHZT5lqS6ogu0vU9IQb5\n/bs9fwOqFDzTa7eB4l/P5Nofe/Crfd/Ac4H3QRPKBn7tE7gqjZW9xMVkZbXqGHbvxR9zB56B7Fn1\nrXMxbyi3B4OcsoWdnYm+flVWp0rYvPPtGspCqZQkciNfHX2IrG7lcpm4e/2Kl199ye2b1yzTRMkL\nOc9N4i6Swn7XgRa/sLIDakp+KmW0NZJLYWZt3l5NHhS7BmC1/Sp2gPsJf8FtIpZMlx70v23gguUe\n9nmDV+lT7BT0MuBLrmWbzqnX0pJq8xt9cu+tmLEWdTVWlbyX9yKnKrFTVpYjP7mXUpzmUvnh51/y\nwy+/5Nlp4NgNytx0u/MxuYtrxa4HYfm7bWoqlebNCU4B6krwkYInZeiq53Q6cX19TQxRZKy7a1pb\n2mMDXGhr1emcRVu3Zct6dj9j9yy2Bq19BgMQhbGxPS8iwy8kbUp5A6bfeXx9Y47SLD8KXd/z7Hjk\n+YsXVODzzz/ncpl58+aNTspLXC6XZrXSmLZsoFfXdY0pLHErUotOo6W2WqLUquvbFAmSd61pZV5m\nhl69U6nM6n8cXMTYPZY3Wc2kZbRSntQ7T1mpIgfzlJKQyXCugcmyHtUcREGgluM7BKTXP87L8Kfa\nmjDGFNtqEkdV1r0cYoVCA4e3fHf388417ylA8lh9rX1eebmA7PLv0oZsFFC/sV29sq9j2l6pfo9s\n+60BCHYtqXXLqbVGYt900XpT5IJ5+xndl07q9fT+e++xLjPrPLHOF968fs3LL7/k7s0bpsul2c1k\nazhXATGXdQUnTZeURdWAemo5RSNNLSJ9I4n/PgapYWKvtg2KbkpLeKtLnVOFSdjqN72XxtA99if6\nMCgZxBhhMrgL51v96i1XN0sZJaDgrFY2ttdeym8+knpmurd6LzJAAWbFa3NdZll/3gt5gB1rqzgt\nNAo5r7y+feB3fu/3+cPv/Yu2jH7jV77LP/j3/ibeBd3TheRStUjZ2PZbXhKsiae1ucmA5Uuy+gIG\nhgVyhuQLhxi5GgdO48B6ngSCrU5ZbrSfF4ah3rNWk2ldrvmd/DEmo5xbKcbed42kUYuShFRObQM1\nnF+aZPmnffxcAF+H4wGb/DaOB7z3bQQqwOFwaEnx8fqK0/UV0zRTqFzrhJRPPv6E6+tr4HMulwvL\nsjLYpBLd+EVap7ddb6hzjrSuOCfU4L7vMMPUUjK2QBrdr3kCVeZlRgphxYarUNPXFaKDsdu6uSKD\nm1mXhZwStYuyqQVBqkNVZFg9tXLr0LqmN29pvSY8BmZ5p6+3zbwWBTXe7k4qUmyBAe0MvD3qlQ0Y\n2yfpyKeVDVN/ednLFZwUNY6qoIb9THkSFCRoagGj/6uA8Tabzt++U8QXo1o/wOn0GcQ430yRc948\nUvquw1WZeLIuCw8PD9zd3zE9PJDmWUYBzxPrPDXZSQwmqdko12JwLOcn+veZlLNI4ZIY14PoqatS\nlisQu0g3bvRW581XaJ8Y60CBsF1rowZ3sWMII33o6aLQg33ocD7Kn7Azc1SvKudDGxjgnPqoVI+M\nAo7N4HgvA9oYW8ag2xLv5sRiHXIf8F5YJ947mRJXSyMXlJr5wecv+ezla55fHRiHkf4yMS0y2Yzd\nRm0F6JMgsSu+2mrU+1mdxwcB/VxwFMT0+dBXrsaBsYt0HlYNYjhP8VDLBsbK75TPVVFz4aJQmE4c\nsilnRueOKv1Z19wAc+uGNN+VKAxHA2jlV73VBXx3/MyPfhikEAX6caQfhpZYxy7QHwZc8JzqidP1\nkeHQs+SVbuy5fnbNx7/wCe9/+CHDOLLmzMP5DE7k8rVWliRguD3zRUHaYehVjiaS/mEYOBxGQnBM\nkzBCCA4XPa6LhM7jk/j45JpZ0kL0AR8Da1pYclIafmVdHWMfoSAsofNMnpMU+kVYS06fIZsF5IIn\n6J4jHna2C++BLNcem7pDhyRm7MAoLbpal337acLex8N8vRR88xK4WhKGFkMGhlQdVEFBkz0rzLy9\nHJC4m9lYwCbp2BcoperYb3sWC+C30eMi597aMe2ZbUkqktDab1QT2hgcrgvUrHuSE7lqKpmlZNKy\nsExnLpcLOWdlVgnDb5MmRdZ1k0DWUlkWBb20KJZhBEAvHXfnorA9ukg3jCoRCQ04TSlJUYK1APRz\nGCgVPL2PdD6q1GGg18ELIUQdWd5rvFEvkmASl/BkUqM1zkqRDjqhx8VO4lCI2oUv1JqlGZWN0W0J\nOe0+ETy+7wg71kN0nhA6KoXbh3v+y3/03/KH3/u/2zP967/yy/z9v/PXG+sAzU+cFt/eO0InLDaq\neff4Ft999bby6UIntgixp+Ikxjthg18PPacYuPcrk8YBa0gWzdWaZyYb07G2SObaCgOxkIjB43xH\n143E2OPdKqbDuTCOAzZQQLxsIuU8UWqWtRvA67OBK8hMsXfHN+VIKlWv1XF9fc2LFy/o+55XX73k\niy+/4v7hkS+++FL8ukphSUmGl0ADv5r3sfpPJh1g4b02B4rkXgaqhOApKWOTqGV6oDVXdcBGKUTv\nhWCgLGWQdWkDL4p37d8pKYs9Z5yT98wpgRfPPYIjrwkfJAYQNmZnyeqJa6lf1YzySWPfgHNH2TCU\nBlq1fb9WKmHb+LEm+pYntj1/B6q3+meXb7bYpa8zmxUBFOz7mhNbHWa7v50jWkftn2sF9K3J7yye\ntRxwi1o4K5pQYoDUOCXv/BydkDNi8BzGka6LeKckimVmni4cDseWrz4+PLBMMymLNK+qR63LRbyK\nsTxa9n+r0WoFX1UGqufsnOTXVpM4b8PUrKHrG7BkgEqMHaGLrRlsZAlZwwcOw5EuDOqtazWPyuid\nNaWkXjEPrzYpXSXzoofafv5JfNdLLPuw7P1mPxK8eG0tBujZ97tIKR0xJdIadAhKJqeFkuF3fu+/\n55/+yZfAfwP8beCf8M++/w/53f/pf+E/+/f/bV0rDucq3gWtPbSWM8KILo49w90rsGu5l3cQqC3P\nCs7Rh8CxH7g+HLkaRx6nmTWXtpZtf3Fe6yacgtX2vULDqfTSyvXSGrRu67bqfzxRI9U3AAAgAElE\nQVRt1nuVOkb1nRU13B6Y/2kdPxfAV0qZnGSTPh6PdLHTkaqrjjwVanAIga6LDUAY+oH33n+fDz/8\nkK7reHh4aEnmvMwCQKhW2ejDkmyGNrEkqRGx8+CDo/My2agEz7oKwGKT82IIOFfISXympnkiRk83\nDOS0UlSWUhSYKY2lRJPr+RC0mNDOci1QXZvqId4iQnWSvcA37yqHU6N3IyHaxq9GfU5YTtIVLw3l\n3RffBqI1M++sQaruKY5mSL+fXsQGHPjt/ZxXWq8XoNxYdb66J52T1n22TYA9Mu53bZW6dYicdkrV\nxN5rxSObiQR/C/L2cw5F14OHEBi6jqvTCVc/5HQ4MF/OzJczl/Mjd2/ecK9jg0uemLU7U83jLYv3\nmmzKgct0YV7XBgLZBuJDJHpakYCD0Hf046gGta2k0k6QeLlF5/BasIBrXjbee7p+YOgPwvqKIlEU\n5F0MHZsW3jp7WtpKF0dM772uJa+TuYy5tZkqbjIKR21eR3arS5Z1K6bFAR+LFpny+aOa75aaeX1/\nx+/87u/zB9/7k7Y2fv1X/gp//+/8pvoJ5VYAiKmk2wVHuaehgXJyxawksSPgJOF3nlIdpawsrnDo\nehnJrQmbTHLRtWVMD3bMK+dxruofOSepl/wWENWQv8nWnBaUu666czLdVaRuob02xrh1K598gnfH\nz/K4u1yYpon7y4Vvf/vbXF2feHi443I5U0KBznE5X0g+sfrE43pmLgvXL655/70PuHpxw/3lzI9f\nvuLzL78iIdKTej4DsORMdY6k5tVe10J1lVwSl/mCXyYgE+ORvo/kvJJzpejUia7rSXWl+ASxsrJw\nP91zOhw53JwoFKbHR6iZw3BNH3vKKswCHx0+AUuhdwFSpqwrru+J0AAFVxxkKf6j7acqS9jqB4sv\nQHG4XDUBFjhFptXmnzA4thgiTBspZmqt5DW3giNGQ9G2QRSNqVlVXBAczkVpyhSNbRJgJF5aZ90X\ncE8HSVihZMdewlqyjHsn0/ZBx9YAcE6KN78voqqyLMo2Jc35DH4Vfylf6K8PvH/4hGcfvc80TcLU\nerzn8eVX/OhHP+LVq1ctltqE35wzfd9zuVxwzrVzNJ8f5xzDICBqLpXsRqp+HuvE930vrA9n0h8Z\nziH2O9YV3/44b1BYjw8D/TgyjkcBz3Yy+tB1EDtSlaZOoFBdlXWkXXgDO2t1LLmjhIjvBug6vBZA\ntQo7WCwHKoMa0DugZPGpTNqUxIEfevEwzbI/h2heZ4n/6r/+7/inf/Jj9kXIH3//H/KP0v/Gf/J3\n/wa5JI3JXsFBHQSUi5j7tiaexhi3MfhlOQZ8lALO4Si+kHxmrpkbX/ngEDivgax+nE6nj6Vc1F9G\nPWfqSoiDNusS4msU8b5SU8JXSU+66KmuI3YHfOjI9cK8Js7TzOn6hmVZcCUTx47jzYmvbt+QyoLr\nKr0L5AJLrjhfICQdPPTu+CYcW24buL6+4fr6mjdv7vn007/gh599RloLDw8PrS4xKTzQmMKdTlMM\nQXy41mUBavPVq1WkeTEEcMIYnNIMMWpjT+W+GKhu4FfWJn/PuiyS31QnygW3ErXxvySRxE3TzHKY\n6bqAmgSrHx+ATVd3uCrMylyhVvECwibDK6vSQLCCmOY7nfoqDC8FfIqCaLbnQtvb7RnGmFtAg5Ot\nxrCvuA1zMiDJ/t3KLcvPrAFSN2sNy4u91Sj66r2X1DbFcWud2LEpaNpXWnyVU9kYX/JH1433eKLm\nugoOOUTup5NqC4vUJiHSH44crm/AB2I3sazCaErLqoBllqEttbY8tTqZamwWK64YPWFTHkmNJk0P\nAwQtT/cNvPKaO4TWJA7N61bqhhgjQz8QuwHvu6asEQBIpxz6KMwuZWH5GAmxU8DLHBlEVilSTp5c\nO4uXW7zb9nvDDRzCprfmTahZ7HjQgSfLxLrOrOvMdIHvf/YZf/i9P0Hizd/Te/j3KLXyx3/229ye\n/wbPjj2lZLwSNRpD0W/XCasrdY14U4y0xeJwFB0qlvAIRtDFwGEYuD4eOR0PdHd3+Kyf2SG5lZrr\ne3s/VQnIULasijR5P3tujGgiJCBje4n1R9cNQGAYenKaVH0j+4MonGwY30+30fJzAXw9PDxIoriu\ngnB3XTNsLaUQguf+/g6cXPx5nalUnr94wUcffYzD8YMf/ICXL1/x4y++al3SSRNKCyw2JarvxUjP\nO8eiDKwQvcjMFKgQg/utW+r85uGSixTA6+LxVyfGcSDPE9O8kEqmDxJkSnXNsNUmXlinpiqV2Iza\nc65UH3AhblJH5wh+A6gMoTUlhgEo9iB553Whq1/UDtFH0XqlCuhmvBUbAG/tyrvu/3ZY92S/6cjX\nFUn3AZM+Go5F3VwB9qHBYfp4+35tHhfNOLEaEq26aesWV9qUJBtdXtRfqdq1xjGOI4dx5JNPPgb1\nZlumC/e3b/jxjz7jx5//iIe7O5nuqA92Uu84mdSYFNwCFyKD3iOh5pohp38il0HZhCahKBbtNRES\nIEU2aQkUMm1sDzYOw8DVeMUQRpU6+lZMi5+XXRsBGV2wYkTOL6hviayTzWjYDIoluFaV8kpwj1GM\niamSIC3LQl4WqvcQo6xF79q9db5CFSPh3/nd3+d//5MveLso+b30v/Kf/t2/2daad6g5shTGJqvZ\n9cKoVYzH3wa+opfhCB4tmEJhCIWrw8j14cBd98CS5+Z3Y0CbAFRRADgtsCxpkg4kTzpwrYAu24q1\nDmjOjpyD/SR9JyOOa63Ny02yv93z8u74RhyvX79uhYb5YU3TxO3tLdM00V/O3N/fE0LgdDq1fezm\n5oaPPv6IeV74sz/7P/nss8+ZpgkHTZZmhc6qzK6u67i5ueHqeGSeZy6XC7VWBjUxtlHhdi7FFxb1\nBAQ0OZE1ldZEGQrD0G/MKl1XOWeiC817AT2nZVlEMt11LfZVICEJY9S9QR5/D1lA8y0UuLbvOh/a\noA9rpjjtssJmZFvUn8z2b+e25scWJ8BMjO0ztCmpfhNCViQpxwDkBk64ViDYYUnl/miAOlsXs33d\nbRIU+7rJsR25nds+xmWdxlerMSGkSBVj+LH5YzndB1JKLPe33H3xnMPhwOFwUCb6wjzPbb+wJtzb\n8lDzjbO/cZ619tq1Z9eksgE42wTKGDspYIJvnpFtlLrG/4AyijUXsq6u5BTagWcvXxSgC40B1hHW\nG6fylYCZ8UsxICzdoDlX1CaBmTinVZgL3rudJL7S9z1D9BKLk7De/uzTH/EH//x7fF0R8n/9y9/m\nzeOv8ew4ALK2RO6JgGe7Z8ZYCLYWngBf9nm0gWfn0+Lx1RXdJVOXRTxYg3nQKODrNqsCu7+uZrLX\n9eXs2ari75QScQikNUnMTandc1sLNmnT1qvlKDkVcrXc7qfrt/Lu+Fc/uk5Mxg+HEy9evODx8cJn\nn/2QH/zgU6Zp4fnz5/LCx8cWQ2zQQa2VrhPT6a7ryCkxXS7knOi7jhiDAktwOhy4urqi1sqbW5G7\nRWu+QWPUQKaSddL4wHA4cjweeT1NAhqoL6qnENWrbpkXGSw2XZjnEe9HkUj3nfjeam4ZvXrGGrhl\nqFjWCcreqyoF+b5mXrUCZZvCDpvlpA1baQFJuv2Y1B3zZ3bG2tqxspBnzECppPYy0uDRfc2pl6CS\nDWghxlhcO9VBix9ldz5ssQmrUVzbA1s88rsGEgbs1fY2pb2nU5ZqwCuZwMJtKZnLLIDMMi8s88w8\nTTrsxnF69oLxdEVeV9ZlYZlmHh4euL+74+HhnvPlTJo3r10fZW3mUnE6dMv2u0JtSocWo50w9Szu\nGqMdnEoGLcYYW1g9epWJZFODnU5ddAoISUNdhqQ0wMtqE7V2ccG3u4DJv0On/72Bpi2/oBK8MPgt\n5qHnHjuR+Y6Hg0xWrIXgnJa7wtBO68I8nTk/3vP6nxmz+G+/9XT/FgC3l4WPXtyQkijGthxoA76C\nEm+yDjZAr6G3k9J15HCidVQwKkYvBvzVc3088fz6mpe3t8z1zFylOVeRYT7mx+eqE5KIepQWtWeS\nX+MbgQEnthlTWenXqj6iCQdqJTXSd5HHx0TwMkhNyEm5gXi5vmN8/WsfD4+PlFxE76uAQc6ZeZ7F\nyyN6cskM40hQJsZ4GHn+/AXDeOCLL77k009/yOtXt0zzzDwvG0ilkgIreKyzGYKXzuoq1GGbulVK\nIXgZmW3eGtSqshIpbK1OrrWwLguHoafrImsMUAoxRHIW4+LoIHlJ4uZ5UQnDSoiBWHSCEcIsqmpC\nHirNjM+m4JVssst9gbIR3BvltAULecj8DqCRHxEby42Krz+m77MPNoWqXVsaGGavkc3dnlMJOTJt\nsOqo+dwedpGTBJFC1g1zcyjdk+2cW5gzKuUON7Bzq2ydlmb8qkHVew9BjBOdQyeMiKyg5MQ8T1L4\nDQPD8ch4dSXqixBZ5pkyz9sGhW+f3/vI2PXCXCvqAVWFIlyQkcHBigPAxaAdp9q69MZUNL26914n\nOHb6fZFKiK/DQD8ciaFXavAGigU1ZfT2tz03scNHCS7N1H3X5ar6PMCus+Q3n6p2Pt63Yih1HZ6K\nN6PMkiS4LhMlyd/f/+wzZXr9ZFHyz//lb3N7/g3eux71plddmjK1Zx+caIbEO1+v3T7hqhkFi0TR\nA0PXcX08cn08MnQdfpqgZJGNFV0z3tagQ5ZkFQYJ0hGh1hbIbWqKLCcnoG0B8HRxwDuRrpUiIH0X\nezEHTeb5Jj5+uWoC5XkLvnt3/KyOpENLDloshKCMI02yQwhtutY4jnSxo7seee+996m18heffsqf\n/Iv/hzdv7ri6ump7YjMjLoVFZb2dTvGNMXK+SHHTK3iU0tp+X9/3MqEvLVRfyKStA+5souzSTPKH\nfiB3My4L42opMqa89B02dGWapma63ysYawmZPv0kn8Fn2adavMgN8DIKP4CvUBQIMUGZdbj9bm2b\nLybabGpAg3M7cLnBC22ftWZLMbkF+tyqT9n+ECBu+63SnKjtZ7YiSF/v3I59aSXX2+9qQNdWGLU2\nzQ6QauaviCGsnE9p8jljVZiZ+bysXOYFfGA4HCmIJ5fvZLpuAz57Y5GJr9ZJQdmUJSFdUqLUJHv7\njrHbQrI2vUxy6rWx4oMAUiHaZK3QAKzO93R+aKyxoOwlK/JkmpYAnl5/LqgUcvPxshzCAdbhd5qG\naLLvfAMFt0EfDu9hGDx9Hyll1AZWUVC24KuAi/O8cLk88sXtnX7Yry9C7qeV929OCrjt5YzQd4Gf\nPKy8dRgjGFAGPO1+UytdCByPR54/f87hfsafF+UUa7Gj16DW0taHDGvRwTrFhk0YOC1rfV0TQyfN\nXGtOmdVHjJ0yAgf6btAmaVabBbFaKLL6CO5pE/Ld8bM/TlcHuq7n+bMXLEvihz/8IZ9++in3d7eM\n44mhHxoA7nEtNizKwDocDhyPR2IMzPNMTqk1uM3HyfK058+ftaFY9/cP237E5rGVUyYGTxfEb+n6\n+oar44n7uzvWlAhI47MiU8pTzqzqZThNM5d5ZhgHDO42tk/1oUnBJdeXvLOq9MpiQKmodF9AgarN\nSVN7CMAjvqs4qMEa6PaMKhimdYfz5nGsjVj1OrP+JWxSSWqbPS4NGy8SYl/V6qJIY9O3GCWAoavS\nBDYFgmMbskID5iy/c5rvu9Z0dXqdmspHG/tVGco5bf5/Ym6+ZyAXySOtWb8uKm0NdONIHAauw3P6\n2BENONT7nNaV6TJxe/uGV69e8ur1K968ueP8+Mika86sQ2IQ2Tx1U394L7GjWGx1ns7HZkfUmEza\nPAvRJklu8kTvozYBuibFN+WMGNtrTdOyY2WhWWNb162vci5b0z9uzXKNdwZ0Wv6QC9LhQ3IFY5H7\nEBgPozDxfRBJi9m5UOj6AWrimI4cTwf+rV/7a/o0/xO2ugbgHwPwy598wth3zDhwZWM4t/uuQBM0\nlhu2LlBToCrDTiRFKuSYIRdKKqyLyOwPfceLmxtuTice5plZbVeCj7L350SqlaBCUFoa4wle17IH\nF0Sh4nWoXqnCHvQh4HPB+UDwsiYM7LLpzcbe2ySpP93j5wL4mucZh6Pruydd9FwywctdHA4jh+OR\n8TByOBw4na64urrhq5ev+PQHn/LjH38JChrEEGQD0PcxoCaol1PwXrsoE7VkmSrhgJLxBE7HIzFG\n7h8eWM9nLVI2E0kx75Oke1lmajky9AOpE8N0ActcA76idzI6dlm4XC7Mx4N4iTlHFwLZTLI0eW0K\n+FpVKikjsJ16axktFkTDW1yFav4bssVnNafDu2ZyaICD1Da6eLUoMemhdXHl7QtNEqmvtYe6/Wx7\nMbTtXk0I96b3zowJ2wQV+dY2sdGAJitgrAtiW6MFHP0MoEWG/XKZwthkbEIOoxTprM6LSGdnNbRP\nFcbTNR9+HHj2fGaZJqbLhcvlzMPDA9PlwjwvVJvE5j0x9tS6gZFVOyVZg6MUBnpN/GZAaECOdOqQ\nJDf4BvRGCxxKK7Vg0UXpkhhLSzTjKjt8a6qJU3qwM/M18wfxW7FhNGBAN9yCcybR87uCSaQu/dAL\nIO3EH8gr/Tyvi5hrrjOX8z2v/vh7ekO/vii5m1Y+ee8Z4n1C+/00OrCCzrVS81YwOwVJDeT1ui5q\nlSSlU3Dz6nDg2dWJ6+ORu8tFJ6pCDY6a2RUktU3Nq8iULV/Y1rR3oNMblzXRBceaM12WaZFd1zOO\nA30fmeezGnNGnUq7GVQL0Kkdsa1f9e74GR8iFRGWTs6S1F8u0vEeD6P4AjrXwK9hGHj+4j0OhxN/\n+qff50//9Pu8fvWacTzQRQH5g/cU74UhOS/UWjgcRg7jAQfaLZ9bIpRTouRE13V8+OGH9F3HFz/+\nMfPjRHXC4AqwUeSzsC8F+ApcXZ0oaWV6eGgyley9Tgdz9DGwLAvTNDGOI8Yg2lieyDOuNYNIZjbT\nYEvx7d9FfSJylgEvmMm2MYwAVxQwVillKzyU/u/1l7V9KGxd2Fpq8/AqbkscAe2WPjmx7W8UrHrr\nHu+ZYA0cczTAf5OfWGd/+xnvPZWkRY21YdQHDUmijSzdANMs8kmTAKSUmKeZdV1wqXC8eU4cj9y8\neJ9lXViXlcs08fjwwO3tLQ8PD7g4syZl+/lAGAa5ZmuiMOOdTiLTPdrM4/UDbwVJNCkqEjfC5hkZ\nduCT954uDPRxFD/JTr287P44a4zsGiw+tFi0l8u3zn9V03gfMAm7rD3Zs7NOWDQGVey8TCyOm4G7\nrSuXV0hiG5HWlcv5yK/9G7+qd/Pri5Dv/MLHjJ1jXZcWz+R+F/q+2+69/V2toDbpozC/iqtvvU7O\n7XA4yMCL0z39w0RV2ZkxTcyYuuWa/mm7wzm0gIsSe2om58KyLBrPehloMwzNa1b8nKTQyCU3b5WN\nPdkyo5+658q741/t+PD9D7SxMfLZZ3/OX3z6Ka9fvW6qk6QsC7N4AWG/d13H8XjkdDo2tldOCaji\nM9wGHoiv6LLMzPOkTI3I8TBq71v3feeaMqCxoqrErcPxyGEYmS8XAEzqnnMhOZ04Oc9cpjPzdKBc\nX2FDpvAKMrldneKk7tEixRI3yZONhGAlv4PiBLoVywljXlZb0K1f4nU/UncTYD8ZVW1TKriqth9S\nnNHGXxno4HY5sHNqF6NxQc/TtegndUR7iHcetXaO20fcDVhx1pSRYqXoBWjAV92GtOSdFLVNhXW+\nSUlT3lQELgRip56+ek4hBroQd3uN3mek8fTio4/44OGB169e8tVXL3n18iWv3wi7veiEwFxkhIjT\na4azuCvKptKmPYYmYbTJveJpBV7N6Z3TScAxtngSQycyb2dNG61dDAiromay2xlwbehVKRVcwaZD\nyjqqQNpyGm3ONZWRsq4s/hhQ1/U9/TgQh6E9F7VobC95a3rVQOzAuSO/8W/+NX7rb/0m//Mf/uda\nT/8W8I/x/r/gr//Vv8ovffQR58tZWFVsdUsxP1N9pmQdW6yxfysxod22QimJ4AUHEL+vpI0bYXYe\nlalWl4VqVg0ae6qMu9TnHf3dNJStNUasxney1sy4vmapZ1PK4BJ9Z8Ckb3maQ20OdhY1P63j5wL4\nErRdLuSqSf48zzJtMcoD1A89XR85HEae3dxwPJ64/L/svUuwpVl2HvStvff/OOfce/NmVlZlFS25\nDVKrETbGUjAk5CCY4oAxtmYOJrJmOMDhIQgHUxFMgCEQBB7CVIAVPIKXACNZdrSwulvV6u56ZN57\nzz3n/I+992KwHvu/2a1AQbioiqj8K7Lycc/jf+y9Ht/61remCT/4+GP86Ic/xDSvePbs+QaZ1AVG\nIvgmCc2AcZSgcl1E28t1htR4xxBwdThgtxsBlqmAy7oCLOwhqPA2Ke2HNk6Ea8Uyz1jXjJBkWlMu\nDYCbNSGZ5hn7w07ay3TxijBk9M1AALZ21xIHYQE0EAvQ5IREbwkkk1xEj4SeOApPBAwI0/sjCQpL\nBSa+DTQZwMMOfPkUDRBIAzHWHnG5l3LvjS3VWEf2P/k+WI4ErZoQYJP34H83qnab6vikAq9VJhkl\nHoAqfWasgJS1/ZSSJUFhgLoe+77H1fUz2LSPdc1Y5hmX8xkPxwfc373Bw/0Rp9MJl8sF65p18mIA\nlerJECt6Luh+AxHF4UZ/buYsWG5gcyAhISotPqjYsOnaWVUlpqiVGfl7UGcO1xQLClDqT9VRSO98\nY4uRAoOWoDKCXkdrrfVWm2FQejIh0oZ6zYxaVpS8oJQVu/OIf+bb39Kn+NOTkm9++Ero8ZzVaZOC\nT5YsqQ4aM3ijX/qEEQgB37hEcCziLInBuWJU1tfN1QGfHx8wXSapFllVr1TkvCKRVhGp+mdi4xyC\n3lOGgKW5mr6dvEAYNzuEACw61SzGhJJr+6gg7TMhJhSbyvcF04LfHX+6w3Qg1nXF+XTCss4yCUl1\n7KJWsDudvHh1dYXrq2s8HB/x3T/8Ln70ox8hpYSbmxsBUmxQigWcRBgG8U/DMIC54nwRvSYruLAO\n4RiGAbfPnmG/3+FyPuGynLFCx8cDLiBeoWBqFWbA/voadc2YtUUGyixd1hVcpKovU8Im7PeLa/TF\nTdsAqeZfCCoqDGzWOTzhqKz6jTCdxZbMiJ2zg0STUgtD1v5hOo21NuaX+AezN8oqUzYa1+J6kFtG\nEeDuSk9BfZGCWG8HYQ6ebRgwrRVi0/aof27gF6PUAGvXrOZvLDFVLROAffKWT4xWYEKSO2GzjocD\n9v1zZwUZI2+eJjwej3j9+jXevHmD+/t7HI9HnM9nrMuCzEBkAmJCt4sYFMhZlJ1ufkCq3E13xcWA\nFcxBUB8QW9Ji7SRdGtF1g/shiqZ71fRXrHhTWe2wBAJyz7m9VopO5tOi30sDRmXCqLCautRJxb1L\n6IcBfdcpy38DFJUVKCu4MkrJGIYBv/wX/jz+hV/+JfwP/8eva/JjSciv45/71rfwzY8+xPH40Io4\nIfhzMu00F8tmafGX5x6wZR4UFV6JISBD5jJa6+nhcMDhcMA4ngSQqBUU2fe/AV9P9sUG/hLgNKJy\nBGeJT9a1ui5kLtI+K+1BvbMFWrIs6z8EFXk2TT7wE0Ds3fHlHy/few85Z7y5e8Af/+BjfPrJJ5in\nCSn1ClgtKn0CBZvEbuzGEVdXB/T9IPmH2hgiQpc69H2neYjE8fM04fXnn2McR9TK6PsOpbDuOW3F\nDQSKUafbQVik84y9spoXTE2Dl0jzFuhk2QkXHVDk4bvZAC1sNL/QtL+4Vk+UQUG6CXUBS4F7U7TQ\ngrjEmtTMtsZ+muVAs4RmrwlecCEFrQBSn6XAsFXA1f/oScPZWgoAyPAS2nyx5j9E/rn2qxViDSwj\nb/XkoAzSWoVNpoM97DtNQxi8iQsVkLNzdU9FpAwn0eIU+70pXOv7bDq8XE8QpjkR0jCi3+2wP1zh\n5vkLvPf+B3jzRootl/MZ0zRhXiaUvIrv1Zb5FCNKzUg1wkkWrLqSWnBPsdN8hoDQhtiYVJHnLtE0\nuUkBNPKpnq1dUtbdltEl6V/w1xiKwyzDbCJM56v5dtenpsbATjGiHwYMuxGDShIUjTMMSN0WXWSa\npqy1mDr8R//uv4W/9jf/Nn77f/1V39u//Avfxt/4q/+q3OuuA0WHOJ31ZeQIO8y/bYv6QnIxP67X\nq/uLBIMDs7QI78YR+50QZmi6yOABlYywjrWkHUVVhxro6CG5Liv+KwhGDO24kbZVhmhaL+uKWgNS\n3CGEpDJ7tbH09f5aZ9MXdXwtgC+uIn29LCvO04Raimh8lYxYk/RBQ0CZ/X6HZ89uUArjhz/8Y3z8\nRx/j4eGIvh+lrU/1s8BazY4yPbHrO1xdXaHvOqGQqoBkMrDJxpBC9ljfd9jtRozj4E7BKwVFv8Mq\nqjHg6nAFLhWP9w/Iy4qx05HilYUyvObG+JpF2Fa3sgA2IYox0N3M1ZBupURCQ6iqQffGKMvdqShg\n+NRJ3bzy2ybIs43m+ia0AdEIpKNZgY2hblCYb9xAisyzjh1nm7y1Ea1HhJcneAM2aABd1b94NcY+\nU14kv5nDYhE4ZpL1Ym0nrKCfjYdlkoBbptEUFW8kxNQjdYSetMUoJXQxeWeLaYvldcX5csb93T3e\nfP4ar9+88eRkXVcQbBKOjRdgFK46EVKE3ouCjsLM2lZJkicKNq0kUJRWRwXVUurQJRGJhApLCjVY\nqihgC+At5GgOgcygkep5kc1xs2cLiM6AMQCr0ryLO4oQAmKX0A3CeLF+dNZrRq2izdUF9Nyj6yJ+\n6S/8OfzKP//L+O9/5ycrI3/xW7+AP/vhhzhdHpFrA9j0TDZrZQOCMiBuAA4CGNjMMcp0sCBC+6Ws\n6CPhMO5wfThgHAbw+YJaiyYaWhHJWQWzeRPDkMRBmqhZski1auBoiaIkc3bbqt//VhGxwMdaDGKM\nqDX7vnh3fDUOa3s/n886Sr74GjTWTowRNzc3uL29xTLP+M53voOPP/4jzJtIO04AACAASURBVPOE\n3e4FUkqYpgmATljSqcD7/Yjr62tc7fcAMSbVT5E2NJ2OhOAt4OuygEdhEe52I3iZUIsAXFHBC9Y1\nbIn1frdH3s+4i1F8iPqknAsqL5j7hFIKLpcz5vkg7EcYkKbThBxsJtWirML6NyCIzEcIAxPaXl81\nmXF/Aqi9liQhaAC11TKSP1tbiJyDCNWT+jcFlRQQl49n30vGFrCAje1zuUkOCFMLTRdGvrxVObEJ\nON+6xuaTfIVogYW9/c5AdAGYxL+uiwjeV7W3MZC0BAy9X0cKAYPqrEGDUmvXWeYZHzw+4vHxET/+\n5Mf4/LPP8fr1a9zf32NZF4lfAGWNiEbKMp30o8nvSylbtrEyu1wDRarsBgYJozipfEQPip2w7xSQ\nkfZGS8CUyQTxdIGboHDVNu6wSWaitsyw3T+04lAIQdtQIrpBijrD0GMY2tRje2ZgVptLHgNZYvgf\n/sbfxL/+t/42/rvfaUnIX/yFX8C/8at/GSkI6CzM5eAJSK1ZAG3WQon5SH2/MGe8Ho8QxCdxFs2U\nrD0zKSUMw4DDfo/9MGA6X4TVF1sct03K7V7pHXkCLGyTOAACBgaZZC5DnAKGwW+H7x0yTZyYQFEi\nR66MbOt0A7K9O77cY+gH5Fzw+Wef4dNPPsVFO0csOS9ZpscJvkzaUgSM4ygsXm1zzqsU5wMF0RPt\nOsCAThIQ6/hwxHS+oHMZF8K6ZlTtRJDYUhNtEtbx+XKRWAmiEVi4ooSISFH48LXKdNpVJ8wuua1H\nwP9AaN0nzS6VNhSJVJidjAimrBfLIfR+EbN3d7CCer57NIcxFj2w+V7NdaR4Yx0F8ppgbVmbogtD\n2cnasSGAi7ZbipNxv+E+Bm8xXEgDQW/TbL5li9nJfRTWq2CDNmWTW7toIJfh0K93OxEVwDIfDwU5\nGGhFFztXPaVAQKjQohIDFLG7usZwuMbti/fx4TThfD7j+HDE/cMdjscj5umMeRItt3Wd5R5mBum0\ncpH70Na9KL4iqZ9htkxI/EZKHbq+Fx1ibgOrDIaxbiMPBxAQomhDO5MsWOSvMYszjiXW4MrObLYc\n1RjPwRhJwYa5iHxL34vfAZFodVrCEQg6NgsMKbQ4cYQI7714gb/z7/87+L1/8B38/nf+EC+vD3jv\n5oB5mpGXrMV18nw8EIkmsvlPrqpjvWEFAu6DAoywIIQzooqySAtmIFLZpYix73HY77AbR/Tn809M\nmU8pIYXYCu1cwYFVmkL3pfmjTdxDINUvbYUVz+VZ9UPZBjyQr03TIf+ijq8F8GVtCKUUTPMEIqm0\naZgregkFGMcBt7fPsBt3+OMf/gjf++738Ob156hFFr6M+xU2iPVtg4FhGHB9c439fqetI5KQhkAq\nvCe9rYCwAt68eS1aPSY+m6JM7lGQDBpUBWpBMMDok0yEvCyL1QxQNWFZ1xXLMuN0PmOa5g0tXijC\nEnDCA3uw6H4ZVRaAb/aqQsUihkhq7OU9UKcStwvTjDO8wbEFafZWm4SH7XSSBgZK65w5EAUwdMeS\nZSDccC6wfYtxCjafzprsaDVh6/yrqJ87qCUAmVZStVpiIJXYGq3YmnPzAN0Q7YAUBgE4g9FfqQUg\nir5RDEhdxLA/4PDsFs9evMSLlx/gvbs7fPaZUIUfj0fR41kXlLwqmCfVftFHkECbtdoDDtpmosKP\nsd9USayaEbxHXlp1JTkBm7MLUtm1a1SQ0qrzZtxNj4c1IFBsEcRS3RAmRnMWQe+zeWphASSvjshE\nSjGkxR6lA6QKnLL0hQ/DiP/4N/5N/LW/9e89qYz80i98G3/jX/tXEAKhHwbEmnxNgdrQCTts6YSN\nIGiAUZqBUpYGrMaIwAG1iDHfDQP244hx6EG6R6TqpFRjBR6qVkKwqTI6cwLsIqsEEdFMypCozFjX\nBZUvGPpeEiaQti4EB4Vlf0ATNtsK74Cvr8LRAJ3qzGIBhQSMmnSc/NXhCh999BEOhyv8vf/z/8L/\n/r/9Dt7c3WO32zvoZcFAziJK3Pc9bm5ucHNzA7BofTEz+q5zbZauS0hBGFnrMuP73/+uvB6SWPfc\nIVOjzMdAoNS5vRXgXZiHMYRNkQAesEu1PuN0OuH6+kYmkRrTpVa1JxUcirQwVmMuSeAvYLHaiSLa\nkqQ6UfJ1lmBbsK9BvQ2CQdvHlcxstHRAEqNm+7zFIyjjjsjf50EiEUwIwyrdT5g1Br45uG/uhzyQ\nM4F2L5BolGcanm3CkhVVGstGQHcGbHIuWO14UDxLbQdM6Dc4kLHmjLzIZC1jL8eUMFyNGK+f4WWt\neP7yA9zd3eHNmzd4/fo1Hh4ecNEJpMsikg9LZqQ+be6haSSq5paK03epV/0xa4UU0NIYxZ5Y6JRf\nVpYjWxtKaEUTaNJKmtRIch5ANhlrM5Y+qiZMKUWTVo1DlAHWtGGCAl+jyD2oTy6lBdsWT1QWUEem\nl0W8+uAD/Oe/+Rv4e7/3+/j9P/gDvLja44Pn18qoX5RpELTLX/0hd6iqqQdAmV5t32xBLyjwFYm8\n7daAT6ge32G3x2Hc4Z7uUMuKUCIoJERL8qMUq2QCsEVRrALEFduJ2ICwCqJqus3zgsv5gtRFH4AB\ntU9ecAzW6hbACKKFU94VV75qx+U84fx4wePxhFpZBk5UelLEmKYJtVb0Q4cxDCACYkqYLhdfP5EC\nei1+9l1Srdo2Va1LTb+OmWUAkEpW5Jw3ub2ygBRozsuK8+n8pAWxpKrsXAAxCiFBJWPsO0uWFl2b\n1A1mcBAtv2YzKuomwaBAiExNa7iyTHWkVtCvoWk/GqhPZG1bWr5lLdwokCChqNrvjR0nf7218Ok+\n3PjLTclDYjbV4UKtDiJh+xqgQduaA0KbJTQi1uuz05J9CdW8FNyqDcJ4klttfLddg+RDDchx4FzZ\ncgSSjqMg7CFVSwcgQBQXLTqQDiwJwLjrsT9c4/a9inVZcT6f8HB8wOPxAcfjAx7u7/B4fEBeZyzz\nZLfGb5blGqTDTFKIDmKJRmFsRfooP3MfYXmlgiZWNLaW+RjMp7RuIgGPghZkWrGgloKiOYzhj10n\n3WBEhKIAY60FuWQf+mLPsrW6OvqmuVUBIoGrMAARGAgJMTF+8Vs/j5/96EMc7+9xfHhwXVcqwurL\nGktC5WdIQUjTbG7t/J5ISTHDV5cMrGAqqGsD4AiiHT30EVe7ETf7He4ee8x5QuaqeSJcpqZkiTWc\nEbjNjwHJeQJ7XsUkORQgAOHIoulVa8YyX7DbSe7cJdFsQ2VQtXjoizu+FsCXOXgiEXeUdr7iiHgu\nIlj64sUL3N7e4nKZ8Mc/+BifffIplnlBUK2fqq1tQAucowradV0nkyN1Ko5VaXfjqBtIxonWWvH4\ncMR8EXHgmBLGYcCqQoNkziMKs8MmQ06XC7LqiZUi5xFT50hrqUIjnGYJZk3E2+FewFAv19ayygkg\n7LVuQ+X06Sd6j7aVbgv65K3aRsItiWitHva1rTIu6DltkniSJN//rbVtSA+2gUhavdeEgquxzgzY\nCtLhonmTVGeCX4PpwACGx2iVVHv9ncpvv/x9waslVXnWFAKSTu2UlkDy+1QNcIQAdxXipIJVE+xe\nUMT17S321zd474MP8WfOov11d3eH+/s7nB6PmC4XLPMF8zJpNasiBBOLDICyvqzqLhN5OuSiHjNI\nK6JonXR6L8XAVAYKlzYVzREqGRRgDDJLLAgywp50wgp5m4TpcxkTUH5ZwkTWoqnLL6aEvh/QdTIS\n28ZVsq6DGAO4EGpZkUvR/nih9v8Xv/lv4+//w+/g7//D/xsvrg947/qAdV6xLqtPi6yAM8uq0e02\nh1cCuYlnGzUY0EQpF9RVggppT2N3fPvdDsPQYZlXuWcExBTQUUKXZOR3LlmnkhQwR2xbH53lqNRx\nr6xVXV+l6ZSVIm1O4ygTlLZtapas6wr7iet8d/z/f5iYsP251uwFjnmSvbTf7/H+y5d4/uwWp8sF\nn3zyCR4eHhCDtJpwrf45so9EEH/oe/SpQy2r+xmurO0pkmwICAYwF8xzwZs3b3C5XLDb7dANnf5c\n2IYCQgn4ZYDNvCx4fDxivlx84ui6rogAkgaPzIzLNGE37lQns1WFwfD2CimcaNTotpoQGJpYGAtr\nU8xAW+P+d/vdhqcoaEGbYN+r7A4+aAqhVfYnY711/1cCvM3ireNpa6O1nliBxnybVGxBci+5KhvN\n/AwzatFpyht/EqmBejaRibkFjpaQpW4AtCBj/q4qgM7aUpv6Aftx5zo9pVYFwwqIVmFhhYjrZ89x\nfXOLDz/6Bi6XM47HRxyPD7i/v8ebN3e4uxN/0yfogJKqzCRlmMautc3HpBNLNXlg1YWMotdl4BMH\naY9vAbHqBlnioezwlGyqpPkAE7ZvGmMAUNY2UIgBhBS9ym5C8xbXMcvksKBJOJeiwKZM7SXIVOYK\nQmFGVt9PIWIcd/jzv/ht/JM/+0/gzZvPcX58BNcLVkBAW7b2cjhTBqotae1RWwaHaMRs1lOR1sOC\n4msYICQKGLoeN1cH3Fwf8PnnHY4s+yZAElCm4Kw5XYSwyWUAvJRLRKLXxiKTAZaqO2BtjjKoQiQa\nqrPGmz6nIwoQjSLLTt8dX5Xj9ef3yHnFfnfA82fPMV8WnM8TrNVuXkTXL8aIoW/C9ss0YVX70SXp\nTBg60imRAupEyYYBADYwiSF5xjIvogWlTNHKYv99ChYLFrNmAd5iaO2yXAtyliIw1agC21kmCS4L\nlsuMaVkx7BX+LwW1yjAWxNCmiVvBj7VFngBpEZcT4JrdppKBSB7X05MYX+W6/f/yHm0vBtp0YdbY\nDCabUZvvIAHNwGi2TRmllnJJrKlhu+0tzcUK4BIr4OrFnpYxVBQW3MR8p/R8KhAXBcA0lrXFiq2g\nW5BrVoxMiwV2L2AdBgqMVWMQQTtfqudgQQuwDEZhIFICEFUSpqKGihg1ruh7HLqEw80NSl5xuZzw\ncH+Ph/s7TJcTTqdHTOcLlmXGusyoqjcYtOAb1U/L1D/JCS2fYwVtOBCYi7bRq0YkAgKi6LH5AKig\n+a4ibFqsZ1ZNKdaOCwNEa0bRnCYlKfZc3xxwfX0jLMicsZYMQLTBx93gLX3VghSGAq9yb9cq+X1h\nsePSx0rgpN0mldHvdtjl4jHARBeUsgIrnkxtDCp0HzXnJATEbbOgDxDC0zWqw9S6DiDV0QOAWKUt\n/tlhj9vDHq+HHueLgOalQnJyFkbdyqrZFqBFkg6iK6nyMlTkaYXqoG2tUtBLsQO6gkAB0/mEvM5I\nUQbDERgRQqiRdsw/rSX8/3Z8LYAv68ntu06E51VPRHSvCEjABx+9wu3LFwAFXE4T8lpVC6mH9cbK\n5MQJpWb0fUJPMpI1hoB5uuhUL/nIPinDJRn1WILWSISgFbhaqwQnMSJ1BM6rIPJEiCTJSKSIWirO\np4tO3hE2QU5RaKqsi56BmotoixWpmghFvW12BDHYcKQfrQ9Z7WlQDSEBx8RZ2Qo2bRGrJpgulh0C\nMm+qDqTNCqwbjdRY08bVbH0RtJpiyLWj6NTaVjQYFMBPny/IZ2d4wKYgGNt/dj0KesAqJrqJJSAm\nBTNMMFBvHRe5TpZvC9oqYyy6aievSZ19PpsTjca204kgIBAlBU2AfRq1UvIeXrx8idNJHMP58YiH\n4wPu7l6L2Psyo9Ti2p42qSVoUtEFmSYSSaohBG2F1Eo61FCKI4OCMtGrI2C9piAAV6NAB7dDXqCx\nKlJZEczJ6u3v+x67/V6AQBVitPVlWi92y6CJg/mLqmuohIga7FuVvt0xvv3zP4+fefUKD3f3eDwe\nYVPOciWn4Zo4qiQGzQnZVMxgz9memV1bJEkSWPai6bulGDB0CYdxwO3hgOtxxLzKpJNiVZ0YJJGS\nBklZV9CxyeoYrBoSEwEUEZJVtKSVRwRkB9ScsS4XdJ0Ep1GdXLBnTqQMgKA98u+Skq/CMXa9mTPs\n+gGFk2j/1YL9bocXt8/xwYevcHNzg9PphE8//QzrmvHq1StM0ywJw7qiZAG/1mXFbtypFh6wrDPO\nl0cHbzSFB3PEbhwRA7nO2H4v4+SdJaRJM+o2gCIHNAIRyrri8fiIZbpoRZBFOL9WpGFw5sjlckE9\nXLuWoxc49HO16QABCV2fkFGBKkG5DIcRG1CzTA1m0vYAAGb3Rf9JA3OvRkNtl/oWBUyIsBlMYUmG\nZ0dobDQNCIm8XVIG67UIcduuCDRg2go1egoaRDbGdNWANSprm98+b7tHQexyjNEjU3af1uj/ogvX\nGAgiS2JVdrlHay64zKu0/QRpA4lqc0VvUuvgWSZ29vsD0v6A/fUz3M4v8f404VFF8B/u3+D45gdY\ndUjLmosnSkHHwYvvC7Cx8QbgEUmBJYSEpK8tQSZo+T111rSBWq0t3aaUia+VRJpq9fcBAK+iT2Us\n+mEcMe5GYbqwVrBhgGtjKuvHwlaXPDzlX8WA2HUKKJqOD5D6Hv2ww+HqRqUkMkgHSFRA2WN2z5P4\nT4IDdtYy1eIHS6JF3N5bl8jAVHlvUvHwq/0eY99LIsASE7H6RuKWFMdAiJEUdNT7G6DPKUpuBWjM\nIGL/V1fXqtNUkNei+rTb6ceNoYxQndVihc13x1fjqLmg5ioxrjPbq8YEjGWefVLv1pZJazyh65IU\nU7qEPjUQ3vKPlJIDocacYjCyAstdjEhdB4bsj3Va1JyxtreztvkHB1oaqN3a6Uye5XKWIS2LTpjs\n1NeI1mWVnMQ+nwi1KDM1MCILtqVGV8+5aWr5PtRq/hObbofGVw6OQd4k+YvaDmYHsyqzRHhq0+Qt\nFVxJWZf8pFDi4ablLOpPGFBpGS0OKRi29avtIuz95uTknF1CxJhaP8XvmE8LZp/M1ipo5Yfmef7c\neXPiZLrKLPlDNX1FgEmKPLWykH2jkQECQt8jpoCh73Fzc42SV5xPjzg+POD4IIyw6XLSjhtoLkJ+\nvTEGz63g7aWti8cYxHWz/ti0pNWfP5kSzNvLZSmub3ICIjQWO6CDwqIP6Eopoa8igdOPA5JOTDXZ\nHntYm0ffgCiFVM32EwUUbzGP6DohBhRlQS5L1zqxNMaBsn9NWihC2/YtdoKBeFYIaWsuEMnUZ0Cm\noBbZqzEE0Z09XInI/eMJmFa9WUFjDGmNJASPbVrhPoCjpt21gEuWwTIk74HqueVcAC4o9vMo0HOp\nbQ8YXvNFHl8L4CsFQzo7B05CiohJFu717Q3ee/USHIGT9rf23YD97oBlXoUKHwiliN4KINRHoqC9\n8quO1oaCXVGAL63AEyCsIDado+ZIuAptN8aI0PfCFKma4GqgKRMcszslOcjbGJkJXFkF1BfM+muZ\nV5TCSAGqC6XURS4IZA6R3a4JIKj/ZolEEdDKAn/XNTED85aBJpIeZBfbA1QbSsURuYI4qDGwirsB\nZYqGb5IMcxiAgsAGhpnII7QSbrRfT2LsvNgNGtdWadkmbQHtfFt8TLqJK3Ju1yk0U35iRMXYsjhn\nvy5xoNsgt/X1S+Avk2okmI8xInQJVylhd3XAbX6BZZ5wPh3x5vXnmC5nGRd8OWOZZ5nWVLI7M4Lq\nwJC1oZqTCJIE1irJpDPzJDiGg16qp8KbJEWvz6aiCberavpliVr1X7LHEvb7Ha6fXYMoIJcsNN0Q\nMIwD+r73gRJsToYUbNV1p82C0ttPAhIhyp5IPTDsMnbrqsmOnM2aZ21dKQJMwsCuxgYQsEABOjTw\nren5yNpLkUAJKEUCqMqMAYzDOODZ1R7X+x2O57MwOrRXnxUEY50iJLl5kH3GVvWUikhFBsFakQFm\n0zUQ5zrNF9SSZfRvEsdgQuEWym2TKn4HfH0lDl9jRDidTtjtR4z9AEbFzc0NPvzwQ9zc3Lg2V84r\nduOIUadAMjdbP88zQIS+NybhinVdUEpBlzp0XZLWxiQ/b4xQQgidshqlQCDBakVdK/qux24YkLO0\nLHKR3UZJtOaM0ZxSh2lexIyQTn2rhFoDpmnyVrlZW7P7NQtLQMFYsboZsUS1+6yghvyKMUlCUVv7\nvNxEWd1sBRvAr8M0KYV62n7uwugW0VYGB20vtEo8y95kFpkDEAlY0D5FgXtr85B/FX+d3HYbKGA+\nsHobWBPeb3A91I9xSzw2U7PE+BjQoxP1YN/b/IbdA7HRprlJ3i4pNy14oUJstFx3gDJHeUWsUoQJ\nMWG3jxh3OxyurvH8xQtMl1d4vLvGPF1wOp3w+HjC+XTBNC2ucSIxg9iyrhPAR+yXaYHJfTcfZ20o\ndhhbiwFvzfCkenN/PTGgACuSGdOKWSrWfUoqBC+TRdcsmkPS5jiAhL4i9zwlpEC+PMQ/S6uouLUg\nsjp290l0KIdhRN5nlCLafOWxYCmLggzsoFyKSdbNBpD2mMNjEvh6Mr/U99I2byy1lCJ2w4Dr/Q7X\nhz3uhgG5MmrJuv4lKSy1aBdB8LXk058rQCyJB3HFLkSUUpF61QAlASjWNSOlbgMcGoOlAb8MSCta\nKRjH3ReejLw7/vTH9dUB87LgeDxiXVYskwDWqSOAqrc5WtcCoPGQavF1XdI/2y+ZVC+xRtNjNQHt\nVsyWtSHtSR1ClD9TruAiNtH2R1K2v3WecLO0ACQxFzLBgnmekXUSsrVZmjh3ZfggkyejuLd2n5u2\nXgOjyPcHWR5mWsAENEttbZAEz8ycraXnHFp86l0b1XIWtHsTNnEloDnGE4Pvz/BJ14ueJIGkc4Xr\nk5db3Ge2cfsZVtD1fI7beXu+pldpLeXiu1jF8dtn0eaesflP2O/k1yL+R9tryLNG8Y2FwWxsJL01\nIaDrZcouEWE37jD0I/puQJcSzl2HeZ6wztltERsIx+1eBc0HKBroZT7PQBg5PxtoZbG/rws07V9b\nGFtNKhCUnCFt5Um1LZkZy7oiMevwFNFNjkkIDJKLqB/We+h5sj4TwystJxOdNM07QnCZgq7rkLse\na7ci9R3S0iGsy2Y52PpT9nOArFcDAqntMbsJvv51LVNMEuLY/g4B4zDIwKXDFcb7I06TSCz51g+i\nxVl1n1cHvmzBb5jOJOD6OI7ohwFTnZy0AwZyrd566gCaA40Jib5YytfXA/jSGxwAaRcMQD/0GA87\n3Nxe49WHr9D1CefzGakmcKk+oQSAOw6ZnDgrLTjqv1WtsouI6ND3GLqILsmmYROHVdbNk4oHszNU\nQgroBwG+8ppR1qwtIk0zJoaGXGvu7oe8JuMyTZKQTLO3xKSuA7ho/3uRfnMCEIJOSWE464Yh4IhZ\nbzWmsO/0zYxGz90YYjktrZKQbfiNxkm14NjaYjRh2CD5wg5qdH57LxtsDjmvEMnPYduqSFbBYGjg\n7B8g12nnpI6mPRf5Lt44K4WDYCBWVODMnps5QTsHcfJ2H9nbIO39vPl+e6+wlqVSQhTQ9QP6ocdu\nJxN4rq6ukNcZ59MJj8ejV0qW+Yya7fOaU7LpoKCArdvV2+bCl6xBhd3WFttYVV7DgGqVBtFDo8Iq\n3qh1klpR1emHGND1nQBcMaLjTlt4A7ph0Aq5sSH8EbeVw+1nrEmuswxDBMWK2HWiFTaOMo65FIQ5\nuhMToE41UQB/zqSJZqvQbQIDew2J4Q2d6EagSDU1MWPse1wfrvDs6gqf3d9jyqtUi0x02faJ6ptZ\n4OQCoSoIWrggmDCsDiAwYFSSLBEz31ZD7EYFMu0lcmf67vhqHDalNISAx8dHdF10IPjVB6/w3nvv\n4XK5oJwrdrtR2pBTxLqsqLkgdQnM5JNix52IaUtLqzzoTnUeTcB77GWKVykCWJneA5iRiwQtIYgI\nKqrqRKq+zzwLyGY2j6tobtkY6lqrF40MVK6csK6rVOkvF8zT5Czj6AwbLUTUiqoTl3RjK9GWBWBn\nyEAJAEAD2wktkN6yseAJkEE/0HZDewk/+S55V0tueHMfm+CLBaPwhN90OcyeU0g6ZVGAkm19hdV/\nmq6H+S0rfGw/14YQwL+adYALwFD2GipI2d4S4NpQFxiS1hICiD4HYC13wUVk/ZbpueZc1a6QT0cM\nqu3R9wMO+wNePOswTxc8Ph5x9+Ye93cPeHg4YppmTXK0QKK+M4QIAqNUuUYXUeZWePBn+MSfqh+y\nhFz//sQfOFDJ6i+K2kRZm2Gj7WVsKRC5wHBlGfrTki9qSQ4Tqk6zKizMDYSgIKwy2GKHEKX6Pu4O\nCkYvwDxhW+qTS2utVPVtg6znb4lC0L0prWbiC3OW4imDMA7S7vjs+go/7Do8nM7gKiPn4yBxbClN\n3wsee1gc0nQGAxjDMHr8C7ADC8uyqP6sDCowDTTxf7I2CgOVVwU6e3/tu+PLPz589Qrn8xn3d3c6\nHEhYFLDYoFbJRYYBw9A7yFSK7CFLzEUSRAYfCcOviVlvC7YOimjHQNT2+BgiYh8QqgjhCyBSRL+x\nVm9FLpogc9ziVVJ8WdYF0yzAXS3FC3keb3uMLUVzKy4ZT8cGdoEbG9bMuBzyM4tZAfMv0O+Bg9by\nM/s++bkzi8iKSQrGGKWyfVJzCu2b9TP0775tn9oJ0u4YIUjoyVcrIjzNr9p7Noxg84PVcpOmy9cA\nfQPZzC630xWAsoE2Zk+eRuctx/D8hqvfG7lz2o7OAFW5yzIlVou/TBpf9Bh3e5XkAfou4fH4iBOf\nUOfFhw+Iv9vG58aqDX5TDXyRXwr08hamk/zWcjCTN4H+K28ejOXmySQmxtFlWaS4wuigNtK7V9pa\nsWT1J2QUNEcDrG3UWOpouWCpKKlH6lZ0fY8+Z/TDgm7pkdbFn4flSKSAU21dvm0NkTDjbQ94is6s\n+4OaT9S/912Pq8MBN9c3oPQZZpbi2pgadsF1Q36hty5vsx1sIn3f90gxyZCULCxju2c2KMZBQs1W\no+qYfZHH1wL48ulxISAvM1LqsN/tcPv8OT549T5uX9zi87vPMfYjdsOAkESryQJ7CYKAdVmwLotU\n6jbIpjFdui4hdTLaW1qUIpZcxFGYsB6RtzFEQNqqAK8AgoA1rFgY/WOAiwAAIABJREFUKIsI3LGK\nvVGKvtZq22mwzZBz0ekZE5Z5VjH+7K/zvnSqru1lCxbMWv1vQrqOhIRmWIGnRtsqIJ6y6IbWjKC1\nFtqpYlNNUeqxoNVoqMxbYO/W7LeNpUYtBG9jcTBQBFxg1YInPzOXtwW9YnCnZyiQ0X+rGhunaSvH\nl3NVFp0h4o1JZB/FlZtApLVAbp5Dq+YzCmdU1vHMVZ9qEObF1dU1iK5xfX2Dq6tr7PcHDMOA0+OD\nTH9apD1KclthGwVLHzXZIjMmwYAk8h5+CqYbZevZnD218yTyZ+nnD3Os2jYVZPIJMyOvKyKza7HE\nmBC6DkBFzuxJolUDLURoFSp5Pla5YQYKCXWedEKLBOMr1rSg63pEHSXsiaI9g6erR0FfS69tkRGw\nYYqFGBE6oEK0c0CEru9xdXXA7bNnoB99gkueURmQbmb2qmjl9oy9ImJJuZ5GCAHDMGAcZAQyswSO\ngLQoWyW21oqK4uswCo8clULbB7TdIe+OL+vY73YgpazP04RaGV3X4cWLF/jw1Qfo+x4//vGP8f77\n7+Pm+gbH08mLGsu8gJkAksp7XjO6G52+CnirfjLKfWgaWUBLTFpbMzwQpqBTHAP5lOEUE9DL77UC\nXCqWZQL1PZIOnXgaucn3yITGgmWedRrXIgL1ujal9U+nlmpAQ+4fZA0rRGM5GkANMNiuZAG2Glhi\ne4q1Ysoa5BnI7J9vSZ0KeXCt4iekLwRGw/6J4JSeXrIVWlgBOwb5ngNBWGQUQGHT7ukpVYsPLEbY\nAkFeDfZfcGArqP0pZd0AEmK3A+DABhtLV28kIfg5t1YRgjGjvVBTpY3RJgza+7th1Ap6BFGHrhsx\nDKOzv+ZZdBctcK1F2iuS6j6m1Ou0WWGxV26Tj0WYuEMMwmwN0firlrBCtVg299/uDRglL2Ivd4MD\nwrO2c/V9j67vkPoeFGTCVylFtL30ufpUXCKTx5G2RU8CNKECkDoNwqNM3e26Hn0v92KZZ2FKaHJX\nS0VmaTOzpMISrBhs6hxt7jvrXBnyfW1yBRVV9njX4X/8gx/g49cPfi/GDPzMMKKLSTV75Dtt7PsT\nYILF30cCrq+uMY471FqkI2AR7TfTuDUAtIEAwjKm0IEqEMMiPi4lt0Xvji//ePneSxz7I3bjiGHo\n0aWEeRZbnFKHZzfXOFxfYdA9LUOTZkjn4KZTgzdSCspsaS28AIfW1gTApVqMRcyVXIeyJNEMzjmj\nUJZ99ySJtf2sUASLuP0yz8Igvkwer4nf0nVt+oZUQUGE78X+wiftktpDkE6x52aJ4fEgbRyM5Thw\n4IaaQ3XbDJDbDfln1rzF4mXzE0Cr0LOZNbtqGe6x8Q5yjRsBke3wFi/Mtvv+5LzsOwA5D80v5PUk\nerFbAM7ADr2W9iNzwAwrPFknBvCWb3QYidr1eReP+Bsi1qnCyqWjdn02BdJkeGqpAEV0w4ADrpGi\nnNeyrFiWDItpQCRj0baXYs9AAb1arbhszCZR/VStGxlG50Oool+JP7ftftB70A8D9vsDxt1O2zaV\nOQ9G4Yqo4GINUtRvbZeNie1goD8qggnzCGip38eQAliVKd6p69Gp3+zzim6+IM5JWocNXdKHSNx0\nUxsi0GIOAz294KTXGQIBMSLo8KwQNI+hiN/63X+E733yiT/53RrwM+NepDR0D0BzXo9r2IYnVN2v\nDQAtKhdQsg3Nk5hNGMdSxKquhWO5/Reb03wtPNnhcACgQUYMSH2Hw36P25sb3D57hrysOD084qN/\n6hW+8cE38PjmhB/98IdiTEtBgbQK5jWLkR+kZcuOGMkZYEbHN8No1YnkzqJZE2GhCSXf3h9DRBxF\nr2mNCwAg1yLMHIquIWKAmAvIkSy2ZZHxwOsqQaqJ4kUiIEQUr1jIBkgUUZSBFQAXPTQAACH4yHgz\nbnbIRzZgS15uDsSCe30tWnVWgkAY/qR2VD+jMhA3RhuGA7fvbO1dFvTp9Cs7j6jgWt0gaNx+IzM4\ngIsDys9EL6qWp+9lNCMmv0yjxK47NBFQbkEx7JTYqjji32TKRVHhdzFYpRbUzGDVtXLEPpCzKQIl\nDP0OV1cCsox9j2N6wPF4xFRnPWdpZ2xIfwtuSZ+lUFSzTrQiETXVdWUVe3EazRlaoF74J6va1h8+\n7nbo+w4MYJpnxJzRDQOGEP3+FLs3pI6SnoQCykq0IF6C92BrgBmVCF3tUfsVZW16dmvJmNcFtRYU\n1dqTFh+R+7IpIwBQiBGRhKEWaOMw0NatPnPRVpFXdCkBIeK3fve7+O4nb/z6x0T46PkOMQSRUDKw\ni2izDhoF3oCHYRwFRK8sbNJ5QQgRMsUz6cjmFvzYqHnEtAlqfgo+8e74cg4GIgXsxx3Wq2sMY4/D\nYY/dbieCnqczpmnCixcv8I1vfAOffvoZPj4cEELwCXt9NyASYTcMePbsFl3fYZkXlHWV4IVM400B\nkgAAusdBXkUD1H7b9KXQii+mB9Jpm1POorWyZmH2+HSqtwBVo7bnUnCZJlwuUxPIpoAUI7KufdI2\nbliSgAaCQW0iAGl9J5nh1RZy+94nQNim/W87gl0hMN+39j6uOobeATjzXxaQapL1U/aPVcT9b/YX\nTY7CBiUztpy/+q3P2zKTik5MrgrMPR3S0qra8lptJaw6UCUJeGPV/J923m8D4damaOdprUuW4Pr9\nBANl1X9P2O32CCEhdT1SGgC+Q85H5CwDVmTqrtzLGCKIkggb67VKUpulSl4rYqyq7ZbkeZWKUrNO\n81RRYqsLkCWsLZ+MMQrwNQ4YRwHY8kYsO9SIBMif9U1eAFF/L7hlEECOLTmL2s6r64gakNSlHugE\n0JI2jUXYmaUiawWeeSM87M9AWDUBAkLHKM8s17beiDTWUzHfGgSkSzHi7/zd/wU/eFMA/CcAfgXA\nb2Oqv4YfnSb8/PUVpgVaPNwIUUN8s4VOhVntgfheG7pkgJexcWISwXAr4klMpvHCRnfu3fHVOmYt\nbqMyhq73qeLd0OPFey/x3suXGMYd1pxxOp+w3q2tY0WnfFMgb5XfJpoWM1oOwFCBdI2rkhaAWYEr\nMETzK0UQZCLwAsCLDmqTtwCaDORiEAqWJeNyueBRC0FcK4pqVXocy8YSZoBN28wSCFFWhdpOjg0o\nUaTE/+jgFzUQrHV1tKMxjQVQMbChdbnETdEWhoBtfBA1JrVcgH6Xfv7me4yxSZoQCRAXIVMt0faf\nAST+DXBwqAFW7Yr8TxubZm7LRNhFr1Fj09ryMLFR5IBQsKKP+R0DiuyavDXTbIhhM4xSs2o8VR28\n1Z5dTNLujVow9EJKCRRFk9HaMqEII1iZ1xWo5PEASOP7aHpf0Dij6FRllX8n41Q0EFN+NxKItq6n\nhGEYsNvt0I+Df73lrlD7aZMWbdhXNNCGms+39RAsl/Y4xJ6i6IYBAMcOIWaELiGWhK50UtDpOsSu\nQ8rCpJSgQHLqGKTwZKC1tTtKoU/kYjy3ZsDa82VGBKHGiBh1iiWA/+y//Z/w/U8XbH3PZf01/PGb\nB3zzgxdtbUPys+D7QPJaRkWoIgEzTwumacaiWIThHBQCatXp4TotmnUqK0NilvIFy7d8LYAvAF6V\nSL2gjFdXV+j7HtM04c2b1yBmaWO6vgEtwE4X/vF4xFoqUt/hxfNb7PZ77PZ7FK64XC7IWTQfWj+9\n6KskGwvdyyaTMazxiSictwzEgNR1qEWdSEpI/YAuJnCtWMLigSoHPAlkzQjVUpEpY56B8+mMy2WS\n9hnaMKJYEpIKRqWim5EUQYe0q1HTegikVXm0DeypiQWnG3BP2DgNYLBrZEjSEpo1VOCqaVTIBUEz\nFgFeDCyAarKETUXGz4afBvSOFgdlx7ljsmC6JQyWQFFU3a+i1ZL6FE2gTYIgoN3mM/Q/9021nZP9\nPHji5/+DZj9wU1z1OjTil+uQtrZSmsEvDMSux/5wJYLUpWKeV8zTqqBKlBGygGvf1KK9+MwiQukB\niCVkeo+1fbNC9ENClL5z0GZiY90keXr/ur7H/nDAfr8XxhexjryWl1WltAeSoEjup2QboudgyVpz\nRKU21ool+4GAWqNMqllXpD6jV0r9nCfpu09Jggi9zcESAGXCsAYPFMThMMlEuMosQFyVJDBAWk9Z\n2QoxyGv+0//6f8b33nIMU/41fPJwwjc/2KFkEXU2dqAJBtcixlwGJRQspWJdFizrqoMzJLmV+yd9\n/uL0EqpNUNM1X2vBqi2Y3l//7vjSD2ddxYjD4YBnz65xuBJ25vl8lumNIOx3OxWf3+Fqf8BuN/r7\nr66v8fz2BcZxROxlUvB9vcPjMWOaZBIwDYMwirXtK+fsoFdMyiwGif7jZvR0CAoKVAEvbAJVDIxE\nAWtMAhITUDWRskCESKr9lRm5FsyqK7NMC9Y1u8ipTRc0v8Ysw1HE96g/CDLimtgS+E7Ga9lhyADU\nHeg/xyeC9maPDaTaMKeCBWdKIKa30hqzu2RTmLbPUL7VmEZb/9YKPAZQbdjM2sIGWPxv723CtQ58\n+eusHivfaQGzVmbcP+lHwSZH2jnIDZSf+aRXbvK6zQfBf6fN+dVaN69jzGUCewIDxNhhGHaYxxWp\n66UtO2QPdAFLbAooCzAbg7QcClOvIhHANj1ULkInH2dlgo1aqBKFRGlHahqgdq031zfKkB0csOls\njcQmhE25uN0NqjkHkMtKuOCvMomtFd4sLFPx7+yG3hdFKQXjsMPcX7AuvbKliyeWLeFRrc2wbSlF\na2nVRFz8WYvjDIT8waef4x98/3sQ//JX9Mn9FQCMx/lXsVZhMrg+EbUkt1bGigquGSWvYAIeHx8V\nnBY/uwXCYuzUvxsQrGy4WsEoyLlIAbUySq426O/d8RU4RPd1El2vGDH0PQ77PW6eP8fP/Jlv4sMP\nP8TpfMHrN29Qq+zRNa9Yc0bXySTgcejRdQlgKby2Cd5wsB1QPT5AYkkFNgK0KKg2H0U1XpUZSEQo\naxbmvLV3b+J0Q1qYCbmIpuX5fML58RGX01mAjBS9OGzT1UWvdhOHOjtK7e+GvQhlQXkhQMFwK12A\njZHScoGgewHMzR4D4Fo2YuHkMhoGZBiPjVUo3T2O5zRPwS4/RQXibCBGy6W0Nd+mZvp1tIK7XEYb\n4gHAO2dkAqMacjIig3+pa0FBNaK3xXrSF0sGYjwvtaMqpYxKCAhqXhujq/kfApTFylo4EPavtMOW\n0trQjQQRQxTNr26BDOsUVlCMCUDrUKlVGGOBJXeTjhaz9+Y3dVmor5f2xgAbVOaxgj33YGCOdGL0\nw4BukPZuu48xRimCk4BuFYyqXVU27d5IBk9JLlrE19cwa3su6kbqgRCZ0Q0dau0F/K0Vce0Qhx7d\n0kshf1ngsp6AX5dN3GbN6UGkbfysr7Xn2EBeuwd2mp+8ucfvf/+P8NN8z2n+VdUNlH0QkuxrKVpa\nfiyTGUMIQGXkkrGuGaXq89d/48xY84r9blAAUYpCeZVBPT4p9gs8vhbAly3IlBJS32EcR+z3B3Sp\nQ80FZV3RDwlcCqbLBdPlAgJhUC2v1Pd48fJ9vP/BK+wPB5zOZxwfj7hczljyKuK+Xa+jT2VctOmd\nmFaKofNxE0Rn7Rm2IMh6s0suInZHBFInYtO62nLYaAexLWJGXouKD59Ff2XNWOdVW9xIwRFjd0Fo\nntbPTfaZEsAZJV8kLMzA67d7ciJWXYyIACwKsyjI5BGyG8a6MbDessJwZpm0ZIjh9KoLCF7+eXK0\n79hWu4MCGtuKk3yNCUTCxRGbY9T/bXRYzPk9TcPUWKoxZmZvzzTx+LCZWkWGulk1RK2Wg/5oyYoD\nHFW0oKS6XPSztRWVAmLqVOS6R5d6xNihrAt8io5/IukY3erOzpkTygJz2i0XFYfUk6sERlFnYQlm\nu09E0jo1qN5WPwwyGVGdBIO9MpiL0HRNLDrEJvTbDgUOgohXsgJQNs1TAq6CEBKiVkFiyUglC6Dd\nd0irsFh4rRs2iUxHjSq2zGiMkaqAW6uK2V0jr/IYi/HHn9/j7//Rn+wY5kW1CVhWgDik5Ptma8uz\nasYsy6qAnNyrYvsv2PABSdpKKSJgXAoyC/DFjJ9gkb47vrxjt9t5tZCIdErOAeNetOimaULf91iW\nFQ8PDzgeH7GuGX3XY7/fY7fb46MPP8RHH30DV1dX+NEnP0Ktoh8prUqi0UTD4GAKIGs1qL5eC8oJ\niIRKoWlVAZI0qFYfVHuPVNOrs+JLreCSdbBKVdZQS7BLrTJh8nzB6XTG+XzBNM9gAtZSwMRIXUIK\nUb5Dx9AaMypLdUH2hbJUKTbky0ACAG6bWL+XRJDiia13uInZwX6ZoGq2LgBRWrUFJ2avODOahk07\nGoDlScBb4JejSYy3zuNpHmat5Y1ZpR6P9ZUkGm6mOxLU51YtDIkgefV2DLldJLaB7Jql3SEaZlUF\n+3M5wyI+NJjvsZN90pJQEVOSGER1KBkK+sfkQujr2phJLl6vBZGcMzKKt1FQlHHwMUSEpGL3gA66\nsRZYbUeprGx0wERyrf0oUsQw9P6rH6R1HgrEgrRqzoxlWVR0OCKiAwVPSb0lRtqEEyhUcLXUruqI\nd2nDBSK6rgFcMSZv10ypQ8nZ45mgMge2JxOZz5BnKcUwZcJZgQ5tvTX5gIIfv36t//orb1mXvwQA\nuEyTfCdsXYYnLVpbqQAG43KZkXNxwNXWsAmI2/mVYuwSFdsvjFyaJMPbTMJ3x5d71Jyxrgsu5xNK\nrej6DiNYWLfrguPjEa/f3OH+4YhlXbxVtdYCmwJrGm9VmYAGMBkYbr9v2x9zkfejVmXYBJkgn1f3\nMUlZHMbURDDmfAvh2UA0bUefpwWnkxSHbm5uZMKdDkJKXUIkcgavtfWJjmM1hEPNfisGIKjf46ZB\nZbaXaMN+hfgcK5JYzOf5jZ6rAW0eE6qfCvqZDJEbASAt8AY46X+W1LdaydYmWA5C6pdaymARqeUd\n8mxMWF58iKRyG+0/MhuzsaWWvgAb+2EkjOzZncUQ8npF7Bg6AATt7wZymc9Se+i5IclzLlljV/Vh\nQdcMij4rFv3IEDsMw4jdroAQUYuwUsdxh0DRZSEEjC/y7DX3tcmb9lzs+RmL1XJeZs2rNAkN1Fi5\nQUXmoTmSFU8M7JGhIsH1veTRNKa3DW8xWQkDDxuAygAL861W07LzJkTJ+UNCSB1CEjBN1ltEiB1S\nylhzBbD6UtFM3oFqwwhcP1wQRc9Dg8ZiRtZxuR4An94f9Ur+BN8zz+g33QQ2xRiam1uslqIMQQsE\nRG1nZBByrVjVF5WyolQpruS8IrPkqRSs9f4tvaN/zMfXAvja7/cIMWAYRoBE2D7FIJpWRfgUQ+pA\nzJgvF1xOZ+m1TVJJ6cYRt7fP8PzFLWLs8PD46Oi/CTRKpUNfr6judrw5IJtOJvBpQBejjO1WIxIp\noHDVUfISIm+F9AORTE4ha5va/MdS8ctcME0zTqczTo8nXE4naZNLMs0pmKAcw5lg2DCcTNfehOm1\neQ4AYDpW7NZPft9oySsdObjeERlIArQWDQOONhNfPA7U/nBWwMNAA3NYHtj9RED21Mj79WzAKmyN\nOQCYiLvfT7jjAZlKFm3xPdngAYgI0l6KVsGXtyvQtaU22x5Wz+/ouyFf6lQNd2NNBKq2GqwGemqA\nHPwaCDGIAO/Qj6gFumZEUBCQSo5UWopkQiB5RtrmF7Qv3S6bLYFEkIRLq0E2PUwAmaZ3FpNMOEl9\nUoFh2RMGstnrWJP3WhkUGIGrJEQxoE1aBIjM2GsLkKkz67REEGtiI5ouuWTQuiJEpQN3vUxbLCtQ\nGnPOnXmI9kUacylt2EBeDxhYn0HjZHxyZ5orP90xTMuMzgS0iUAkY5bteQcCIkUEEs0aH8nNQg0u\ntUofPwpK6fTfCnIR/T7T6BEGYP0pwOG748s8Bm2Bv729xeVyARHJUJJFxH3XdcXt7S0IwOnxhIeH\nB1wuF8QYcNjvcThcY384yFQfbVGZ53mTLEOB5t51JsVusFd9xaSwmrvNRC+0ZFtYnc0WhyDFmi4l\nZLWDUUFx1KcBiNnfdWVpT3l8xPF4xOn0CIawwShqC3GMVibQ763KamZUBUGYGQhRhF63AK4bSPL3\n29RDZ1MS4UmVXhMRG+1NNolKf17tPDZ72sH8p1fp58IMb71z/2CfA0XJeaOVxf6pLhoLUn1E36sK\nqpsml36Ms7ZgDNSg7YPK3NuAJiEETRi0ldWTPkkCTHfZWzLtZ5urrJrAsgr3h2CM5w1buwpI1HU9\nxt0OzHBh9EGHlYAZ67JimmYdNiKJZYgJgSJibFqNLTGCtIbIAxPgR5nUkkxFnzYnVXIBX7uU0Hed\nJ9xsQJa2bhkzmovkVeQTz6wQQboSpJXfqnDMBUySjMnkZtHXrKWgrFFBL2n97PsepWQB0rIwqaT9\nOIp9NzaFxoCsjEl//Bq72TMwbRQw49Wza33Rb6MVVwDg78qz1+SqJbW2VSxuUX1KIkT3qQEmbp5z\nAVHBPM/Y7/eCH9TqWrDBgDAFEmIU0MFYDO+Or8YxXS6YLxef8C2tiKJLfHd3h8uy4JNPP8Ose9UL\nwkHA6L7v0Q8DAhHWaoM7IghPweztdPYQAhIAE3gPCmIEIqiaHqzIayCF2VoZukLKMJTXOnuMhBHy\n+PiI48NR9DEPB9QgAFcBq30yFr2yFNl0bWWNhxARmLRtXvTHpPjdtIjM1lqBRPKMlrST6rWaO7Fh\nHp5vWM5ioBvMtmgRBVbgKdJZQKSsJELWe7r1Fa3wIB5m67NBASGZT4ECKXreBjSEoHkoe/sosxEt\n5IlgC1p7OtSgd/m+BMuW3MNxI1a452JLbUivrzG3AS08beILk0cw7V0jDJQ16znIsyImKbB0PYah\nAV+BAsZhlGcOAeXnZcayzMI0VlvLer7Q6cd6+9xdy3lWB8mkLVFy4b6TgT8xSUdWYUbOK5ZlRkxa\nYAxwn649gw6CbQeBOXMwRigfy285nN2l5wbRAiZ7HgTEjtEp46nUiiGv2OlUX2mLJyyVQbn6unBA\nUe8v6zCjWisKVAY12PCvTfxD2m1W5WcfPX+mZ/fTfU+nkk6Fo+MN9oxF2kKRAh1g0HXBbY/lNmtp\n64BIJRFKBVNASgJyzlkYx1/k8bUAvm6f30qFo+8xzzOYWXWwFjBXLNOM9168QB871DVjni5YFtHX\nSl2HlCKqtjYu6xGvX79+0lpnkbO0J/WC4q+Ljzq3ipxU3BRpRpBGWz1YgQCoBkXVXugaI5K2ZDlT\nSJ2RBTpu+KoET8u64nw643h8wOl0kk1dk4q2Jj9vASFaGxuYJfhj8kopDAwhgIm9RcB33RaMIgBV\nK0bWSrCJ+Az4ss+QX2xfYnCDaDmpMbAJFeZQeSP22yyenigs5zNgixTmF8NkFZjqlYqG8Bu9snoi\nYhYTT5yEOKen90BEfjUcpU3y2bIrOR13Gi4VA0uSsH0GECCsaBufAKhBgnBjD0JYWNEmT41ZnHRl\nGRPc9xrwqnj2uvh0wFaJwiZw1l/6OAIxTBqRdV1Z4tB1MnaXBNmyRSCgVJD+bUtIhIKs+ndcwUae\n1oqE0KU3CS615ydaWS3hA1WpikRhfKWSkXKPmKQVpx9GAYiKML6qOihfO0p7lgEFFiy0KqLTzPV6\ntpoUBMKH/y+OIdqztHdQW5MebJAwuViZFDFGcGWspWDV1pIYWrCw5oxSLaFJCKEAyJLUhlZ9eXd8\n+cezZ88wDANevnyJ+/t7PDzc4e7+Dt1Z9so0Tbi+vsZuHJFrUV2vGYCOhIdot3z22We4XC747M1n\n3h4XFGTuuw67nexvYwcbQdX2lbQTUmPkAE9Aj+1qMfZHCAFInYMhQEumG1upvZ4YmOcZx+MRDw8P\nOJ/O6PoelWRP55w92di+V9ixqiO2Obet9pQdZJmIayO3CNyS/S34SxrYScy0QaysdOIFD3PZjX3c\nDvVCm71v7e8OymhC4Qxs3uxBtaH2fgPdGvb00xnKcjvMz0ibC21eU4lE/9EHZWxaMDXlgtppFQ8D\nsbZ6WnbIzT5t29artqcWaq0klohBk8quH7DbFfXThL4T5vzQ9wADS5oBCAAGZlCS9hOJVfSZ+8Oz\nNRW01UNeY/NGhJ3fOUslaGveEzkDsmuo4KjgV0qqowLXdRMgUOIIae0L4JrBLG2KghCyS9RUiJsh\nBKSuoJYOOa1ISfzsbr93DcdaK9Zi91bFVjfP2BNg1lbhTa+gnFr14k4gAfV+9oOX+HN/9pv4/e/9\ndW33+EsQ//LXMYYE4uJx4za8qPZsCS7kn0gGsqSYMJWz6PitIm6flbFmoFfO0uqWugRaWtEopQ62\n6Ywl9u748o/H06NPW5UkfcU0T8KmjRHnecbr16/BAK6urnzoREo6EXsYkGIENL5qtqfZHYt1BQuS\n1ZZCEKKO/t2mvWV9d9J2yVKrrzcBrZVVo1NoJRDXi1EWyunxhNPphHVdN1fKqCUD1fSIZCxkUEaZ\nTdoVUm9CUia/S1hUbQtmK9Y2v0Mb4EvAXfn36uCJtMZZ+Bl0kiXb8JaqPtbAMLCzirioj/PCjOZ/\n2Nh0LUpb7kSb1/n7yG/D5pZsfLm+x3SRxD1QY5uy5W6W07D7P958hrW5GuAJLpu8EJscyIC1piIG\nFikWP3drR9RiBgUSYMQD4arEEi2UV/bp9ASxOSEk9U1W4IWyj40wIV+dug5EMhl3XdfWFgoWqR5d\nD2TnzSqbovFUjAn90GPcjeg6KTZflhW1rJimM0Ik7Pd7dCmhqjyCa1hDijtSJIxtXRkLl1vRjmDS\nXAzAQFgtXpFuhkp6O41UIyxoBPWJMQJF1lbhFVBGrnWJsJX2uK19OD7R4iHJ64PrfAUKCDnjZ16+\nh3/2m9/E733/J33PPnUYYgSliDmLdIsVVETPWHTEq0rpRBJSRgxBus5Uj5l1Ldm+YQjAhxjR9R36\noUc4X4Av2Nd8LYCvD169kmpF3+HTTz/D3f0blLyCAOR1weUTIzBQAAAgAElEQVRywrd+/ucw9D3K\nLNWweZn1YWWUqeL+7g7TNOPxcsGbN/fYHw4erIbYqihd1wFWddTAxkaO22EGTQLXqIZWDEOKURDb\nIv8WFNwpWamJJSPEoAsr+sYWYXYJ8G0i5fH4iGmatJ86oARFW2sBcwJIhVehLXtG/4wJwZv12A1Y\nIe2rdvBLDnpSrSARvDckiwAiqRzb9Xjg6oCGJWibTzVas31f3DiPTVXEK6Z+yPY35H0rHePwlbXX\nuKMT42HaV83xb96njs28iONym+SyCWoqBXdTQbGg2AEnmIETtJygQA9vR5PX1iYLpUpnqcwLGEXe\nftH3g6ylXPzv1mbbDz3SFLGsizyPQBr0sgc00EqIOWADf2S96r8FQpcCxrHXCaSEZZU1Oc+TMB7H\nUSsn1S+cCEAISJRgmle6E5oGhAJUDgICCrSqQ6n27HSsPXdIfUFXK/qSMZQdMme5U0zgLEmJdUlW\nTb6ItU0kbHRf2JIuFfq05BAQ5kGSv//sey/+RMewix36KFwCnwJnzzJU/Tu54ZeplB0otOltucgQ\ni84GEWg1pEJsyzAMmFap2G+Pd62OX43j537u57zV8XK5YJ4XnM9HsAYh58sFh4NofuWzsIotoV+W\nFaWc1DTd4+7uDvM64+r6qrVQhYiUgvuZZV6EbRy0mAF2VqCI1r4FrrjdIm2hI6XwG8AjIDmK6NAR\nANNLitYqr0FuCD1yzjifz3h8fMS8zJIoxyTBTFEQ1wT1xcB5SwLQgJuqiRLQ1rJU1QEEZeZAJ95q\nMWTblqNv9MmnXpZQ4AFM4MioJNVQvVme0Gx3TxO/h98TA8KsZRQhuGSBtzD4+8Vf27Sx7WGfwdww\nvyfPZ/M5IURPPgAbfqM6HsUYGlK5FvfLYHu9gpfGYrB2vfb9/PRXlfbWaTaR9rfPW0AqE5hPKXkb\nk7DuIENN6oChk3VFKYEVtJWAtzrYhQ0gKoUu8W8xBoQU0aWErh+EuZwSQiCczhfknLEsiyQsSUCs\nFFSjU++gADUa4yvLq00CFl9dEWTio937zXPy5uFQkdApS7FHzRl/+P2P8Qff+z4+eHaN51cHYZet\nBUFjNYtDahUmhBeymDVWgO8pB0YBxECADj9CJfzaX/6X8B/8l7+F3/vur/p53fQDXnTy/LeAp1Xc\ncy0IpQG7Ub+w0881vS4BP5Lf/1KKCPbrv/f9gDityFWEzEMglCog97sCy1fnmOYZa159XUs7Ick0\nVbAM/qkFQVuCze73XY8udWr7ZfLp2/E0LLdAi1MB+H4JLN8VKIiwdgiopKyUuBnioWvcCACyJgWk\njcq2iZoH1VoxTTMu04RFmWIpSYGV0XSu2OQrghUTgrOoYiBYqlU1jnTLYPbYugqp7csG6DQ7H1g2\nKwOeFxmjhQFlNRE4iBYscYA0Par9J/+aJ/dQPs/sRPVhE8G6H7Z+xXwLS0Fe2Ep6PZAcqm7tONCK\nRXbd2DDMwA0D4Zab2CRq+LPKzlQNeFrMr9qmR0BLeKwAoUCkFeydxQaVhWEpslS5eBODQS4F67xg\n0eEhYGmXDSBkyt6xIh0iApjIJN+EcRxBAVjXFefzRUFT9m6UqPmDtPZBiRRyn4ZBJsF3KaKLAX2K\nAHVAiNrSW5DXGWtOiGnwFl6RTGCUavGBse+S5oOtpd3yYjHKYdNdZe2ZouNsbDSpuujnabvvP/r+\nH+EP/vD7eP/2Bs93O6zzirpUWRNg1dAj3+cOyimxQwajRWXAW0swANVoi1BMImf8+r/8L+I3/6v/\nBr/7veZ7bscdXu3lPmt01taSrETJ3RjKwoPGi7IZTdKlMvTf2nC1qrmSeZZcCso7ja9/PMe3f/Gf\nRqkVp9MJb+7uMM8zpssZXP4f9t411LYsu+/7jTnnWvtxHnWrqktVrW51tVqtlhw/MAG1Q6K2CXaU\ngLHBhpBALAxOsAO2TIITK3YIRDF5fTAxNiGEEDAJ+RJw4g/5ZLD8iCQbJQ4hsSW3pHa/S61u1ePe\nc87ee601H/kwxphrndtl2flQdEHfVZx7656zz97rMed4/Md//EchLws5T+yGgYBwXhamWdlay5KZ\nLpPG3TEy18bd/T3TfGHc7wz9V0r8bq+IsWAVA1o3Jh6suJAqmCFGH3g0yh+tqZCkCAVtbYphnRa5\nmJBebQZGOJMMVvxdVPD8fLlwOp/Iy2LBlY25xwLnoKyurqfBWg2OIZiGR9BKMzwK4rCKxBoH6acH\nkV7V7K+TQBMH5ehTIHobWakEJ78Z/bOPKdYLx1DCFZTZVDm8cukJ2nby1yN0zisXODUZvGLf2yPU\nc6woffcymzcyQMtBLK1GRPdoJty7SeBwx6dtKbLpXW6bJKQaqNWBPK8s2PvUnKk2zlanMBkQmktv\ne9vv9xaoNzozQzQYSUNiGKPqo6SBnBceHk7aVttMzD3QqdPrqhKSsUfSmBiHkb1peoUQuMwzc1YH\nMU1aMd4No2pbhZUC7Nme64qtVQ+/tyvw2YONrTip0cmx5CDWSk0DaaiM+8qvffWrfOFLX+G1Jy/x\nytUVZVooc6ZldQ/eJKQMCA2AKq4145++YVwgvWfeNfhEMj/xe/9F/uL/9tP8/a9skpLdgdf2o9oD\nu1QNaoQYzbBXBVZDBaSQsEqpJXO6jnX90R2rVs0KQhxSD4y2x2PQ98XxnTz+uc/+DqZp4q1v/Cr3\n9/ecz6deDZumiYeHB0LQ0fIP9/dczmfmWTUrzuezVcEi47gnpcTD5UH3plV/3VY4EOZ21A8HQDyI\n96NXftGAJwQFz7SFDBafFoQGkC1n09XS/d81Tex9S60Me02el2VhNn+ZrN0/10w22yyihRgdILKe\nj3hyJdYG+D4gEQB1jeO9mPFIJ6auLRXelnEIKkpeW8VwL7W/MaHl07UB4TcKr1bbXL7t/B4BVtEr\noBu/0/Tce8Jjf2tjHD05+scdmjw2aMVAk9CT06U1as5E2qNnuz3n588RHvvL7Xk1s80xmB9jXUMO\nXClwos/z5uaG+TJRysI0lx6z7IztnlIi7UZaEM5nnf7pCV6MmrzoUhXzdU2Lh1YM2O12pFG1vFLS\nlv3FfOP5fKa1xvH6isPxmpiSthEb0DpYC3CKgyb90RjdxWxyq9BKT7r8r+6LxJkfQhw0Dnnn3Xf5\nI3/6p/gbf/fv9nv5O37rb+VP/Rt/gJRG2rKAt/Y4e6ZXux6vF48Z9P5qa6l4rAjUOXPYDfw7f/Bf\n5htP7/jiW9/k4e6Ob33r1/m1t99h6bGX9AS2lkoRWJqKPpdgoHLT8F7bSXy6poKX8zyp/ykqei4x\nmui52gWWdZ14xf7F8eE5clZR8sPxyM3NLdcPD2ASEOPhoJqLbdWd0+KFtmyFEHubMKWQoGsSt6pt\nR12P3sF+6DkMZnO2QuwxKKNs/bwtw1Z6waOzq6IO/0qshVXf35fzWYchBW31rlULI9tuj1VbyP2E\nAjJkO79eTAUHJhxE6rGm5QQqV1INOPDzXIsY2G+oRMDKxvHPbeJ6W6ZVBZr3+OfWRjZw2d/M32Nt\nl6MXb9zPqb0w/0jd6Mdax4i3YdI6nuLx6lpM2UbWCj5ZEKyv57GfUDabxgP+eyFs7p2xips/tx7f\n6/m3snaIBDt/kWDFlWbMX23LqwZozZeL6VEvlFwtlwxd380Be1070VjAer6lZlLQiceHw45hiJ1l\n1oGqJjpZMOdeLMAkY6IItErJCyUIIQ3sdiPJu5OAsszMQRjNf+mwB7Hnjuon14CqtKwDeBwYwp6J\nLQvLo60IWCsSURWaZiQUe1bvPbvnj/3ZP8ff+rs/3/f9Z3/Lb+ZP/aE/QBxib7fvD9oBKHyNeOym\nms+1GrDp4Bf10fNPIfHK9Q3/0b/2+/nK2+/yhV/9JqfTPV/+6lf41tNnWocMfVXg06dDjKaLqWsq\niJBSYEjqg5ecdapjCEQxjbNSVuadTXoUL5SZDtgHeXxXAF+3T55wOp34+ltv8c1vfUv1V9Cqd62F\nnYzkJXM+nZguM0hgfzhwvDrycD7TRBh3+64r0asseM+8Cp7WWlnyArnY+8eVsWPgWTP2lea4qxid\nglNa1QcULEKrHrBWZFYACjrSLIEUhGTVk9a05eB8vnTGVwg6abKiNN1aLPiLK2jlul7O9lnBG+mB\nYg+kFT63c1KnUWuDrKyb2nzKJd34g0I/XlTXwMq0lqCPR6d/ngNhXuXeVN2h/7tX/2Xd9AA+unVb\nFfG2AvCkcdVx2lZberXGAbLmrQTaFiH2/pqUmoD7YlpaVs3wSYStrCLCtFU3QZl2tTP5it07FzrG\nRItL1WHNrWraVA2wnc/akrvMGSrEQUXvHUihqGNVEVPt4Y8xWquiov8+kc21H1TgGGOirGBoCOiw\nh6TizNRCsCA6pGr3WAGwmLzFQvW6Cms/eC5FxeaTrNO4qk0a8fsO2mrr4GmzLNKcve4Pbfd7enfP\nv/Wnf4q/uUlKPvtbfwt/6g/9AWuRsf53HAjt8tJ9/4q1yQQtR1q1qxkoposgxEhq8OT6yJ/5V38v\nb713xy9/XQGOX/3GN3jr7bcJQZM56RU3BUXV8WhLS0PXrzrlRCm1V0PiMHSgzneeT+kUtBqiwHft\nVO28bARNXxzf0ePdi7ZqfPmtr/GNt7/FaZ7Y7RwQnbi6uuFymXn27IHLlEnDgScvf4Rn9xP350JM\niePNLTTh7t07qsDueFCA6b5CDBxvbnUCzvlCWTIpDiQSoUar7CVrTRFk3rQCBgV652UmGRM2VGUZ\nxtoYBl2PS4qclollzqoFKMaQiQNiAfoYD2aTK/PlwunZU87PniF5YRxVryuK6lmUy0wYBuIw9gpg\nq5WlZGpUnxdCYyfVo2y9mY2ukSW5qSBUqfiQDYd7XYQ2hXVQSZ0v3T96NbQ1IZhgvE8NTLhOiXOb\nG61ZC1iTzlBoW9+LmHC8t0gLYCxt98ueHwCYfqF4thPWhug+rcyRMte5qlU1UGq1YlIyBlhVkGVW\ndk8TyOLlCQ2mnWntQGOp2RIt1T0seTHm7qACvaWqL5kXvHILmPCsMhLzMtNm9SetNepSSMFbjbSo\nFaNY24lOk1pqhiEhx5FDCtR5JlYYow4AElHNm/Ny0bVA1omKqek9r4UyL8SaGIbEzZVNFKOATCwL\nxLkysiekxBgj1QYFaHyDFmzEtE2k0SQQJaHaoa5JY0+jVqSjpFqgynMlU/k3f/Kn+Ns//3m2k3z/\nj3/wE/yX/8P/zJ/5I3+QUALzpBOpFLxTAFClNBopqv6lx2aPJ3tHqCsMNwDXobHQ+NRHPsL3XN/y\nxa+9xTvf/HXm04X9zTVh3DFPCzVnqIExJq53BwKNvMxIqezGxM3+isPNE56eLjzkSht2tFo5LQsl\nRFpKhHFg2O9pIlxO73GeJ87TmXnJCqKMA0vJJm3wQuPrQ3MEZZgcYmR/PGq8tSw6ba0Dmpk0jGvb\n8GjDvKrq7cQg6gc6kNpWcFqDmRVAeS42BtYcwV6XYmRMaWUJx9BjS0sy7NydhWKSJ+KMrcD5fOZ0\n0oK9M4q8uFGMyboWgGIPDwUxcHahF1idbRyCMbLWuAqLB71Q3MFvQHxCXmsbi6jyH/Rszb5v900B\nwoAEl0JZc5HaXOC9dX/V74msxWbX9K0oC6e/v3+mrEBfj/gc8AgYq2olVGw1+dbnZN8LxtKy8xPL\nCVVf2hm6Qe1mzwc3LfBV/Q5hjZeLacW53wpWRChVWxurFdmbgXzZOqumy0SesxXa9Fxdc9CH0vn9\niikQU2AIUX0bel9jCOx2A0NSUFdzCI3ta60EqYRgA06q7oFlir549LyBEY0pkoMxtiaWZeq+dQg7\nJCZSSM53MB8jKvETkrYwBosAxFv+reOjtt5irC0pFoOIAWYiNIF/+z/8z/iZn/9ltn7n7/3CT/Dn\n/6e/yp/7Y3+Ih3DPdD7bVG9d3w429sVhn6fDGWzVNMvP25YRaRiE7cmPv/wKN4cjX3rrLd566+sd\nsKRte6hs7fXPLJbfbgbfoENS1vsQOljXh8vZV2tepNFC2wd5fFcAX9/45jd5dveMX/lH/4hv/fqv\nQ6uM1gZWSubmeCQgLJMCBmkYuLq+4ng8sjs8UBGGcUeuRWm4QLTNmOa5L6hcVFQ1sjK3erC8cRi9\naoE5lLaaY+x70ar8KSUz8iuCr4Lg/trQUeiAtmwF0SDcWQZaebdfduHaCmIViBgVxNK2B3RiUXXU\nxxFsF9SF7kCaF4iNmliFGtZNF6Jpa5lgpgNP/nO84uDfr+jniYFKZtQbysrK9rtbVleKSf8dwuOJ\nKfbVKxlmbO20t8XY9c5bxbc7+Lb5kb+rNBsz7HVxZxboWqrFacD2vJulaVsQp7FxmArqtaLXHyJ9\nSpRWufLaEmpGe5mLCZvOxlbT9y25EIaVDbICWmqMWytgE91itAqJ7QMQdSohaoDRKsXaZxV4a1BH\naoHszk8gJBuJLQ40anLdRJ9THEZryVVquNteF6buwweE9d47NFWdQq397xLM4UrtYtF/9D/4c/zv\nzyUl/+c/+An+/P/4v/If/9F/nfP9A3matcIJj7WFzFwHCeqj/HmYpo/CtGvwE0TB44Dwfa++ys1h\nz6989Wu8887b0ArUCM+1mPWKS/VFJ5okJnUOPlkFS3A1UXXQWCejRYnajmvtkK024qCT1kqp6/p4\ncXxHjy995cvc393xS7/8y/z6228jouObMZDo1Vdf1VZ4tOq+Pxy4WgqHw5Hdbo+kZMB15uF8Yb8L\njDtlsAxDYrGkIpeiE+hwhq10wdlA6O3xQG/t2AbcnuQ0DJwfIqO3jiX1JdX8CLjJEgieSDRCVi2n\nWgrzNDFdLpScTThWAzcNtgq1CFmCYlqy6usVs11RMBZA6AH7OsDXJIObFlgeDfYVBZrdHG2Fg1dv\nuRF0d60rqtoYa+fBijA9ODSfLRt/4D579dLPHwasNwvfLUfpxRi3OQ6+h1Wcf73Jmi45w7X1ChG9\nfbFm0+R57jxW99Ke+76ztrKxkdWWtlY1Ti1FfUgp+OCPWivLPDNNE/MyW/tKWYtXpfRkRFuaSmcp\nxBiJwJKEEoQogTjanMRSSSKkXrgqOgiIxlJ10tO86MWkkCEOFksJcUxarLHPUSF+LTQJ2iak06Cs\nqGExQRBjfwSVBtDfdctvN616khJwHRRB1+/nv/BFfvpnf47nJ/nW2vh7v/Dj3E0Lb1xdA415miit\nkmsmSrQl4QkrvX1DP3LbduQrXZPX5Cx5Ud2v3TgyJi1cNS/+IWvhLVj1vVlrkglVWImK2aaHOwO7\ntqL3yXyutv+o33eQQYtBcW1VdibDi+NDcURrVyQomz901oSyKad5YVoWhn01Np8CYJOxKRSY8Ge7\nAip9cJGDQH2f8FwMu9k7lq/EqJIM7lecUSziVpxHX7Bhb5m/mKdJtZTnedMu15epSYEUSvEivImb\nt9a1DJvlVC6q4QLo/TCzGkTzlS0bTe2YwVY2bdDLsbrnzBz7NbT1ihrVikVmw80ed9DJ30VWBpD7\nyQ68bfIPNrmUgOkmbwyGg14bQIwOKqysuy3YHjyvcrDG71vR+9r3v/ik91U72q9V7P2E0H1OsWmf\nysqz4VYOuiyZYs9Tn7MV+kshzzNlWUwn2c6p1rVV1RjE3u6YS8YHpwyDgzBr22o0ba1aK7Vkaq5W\nMC74ZM5cijKQgFqzFpYEpA0mN1cRcT2x0CVRSjHmawg6uTclRCIpqI8JMW06WuhYpWAMPvPlPr6N\nZmvV1l5rKwj0ha98jb/5d/4Oz/udUhs////+OE+niSe3tzQal9NJASO/Z+53LCaqRph43NuyPn9n\n8jer1klT4skYI1eHA4fdjhSEpRQk9IremltXqNKIHXTVzy652FAu76bSG9I8D9yA6qD+nM3rPsjj\nuwL4+ge/+As8nB74yte+wvl0ZjfqtJ5WMkMMvPaRj3B1dbSxt5ps7MuRYbcjJu2RlxgoOXO+XFTA\nPkaGpOOA86IaPUFs8khchRLX5HdNSDrohQG+8MiZ9KqLqIhsKaXThz2Bef7oLVn2/7XWDnx55VGN\nswdf1aYvGaQTWk8iFBB0kCkgLiqpXqR/pjO9EL2OauCVO5rOHPPpJ/1c9W/FqLHN1mEkwJMkT2o2\nAIhIZyJsDYyi8ZsqTP9a708LoTuGxprISBATpfSA8rHmQTOwSrAgEa+WtK7PVq1SsqZGWl3o2gJt\nrS6viZrSs6uBF9IqgbTqsiyZPC9rQmWtKvMyM50vlA0q3mpjqYslyZrE1s05Di7AiC06Ksm04kpZ\ne6przZSsk7500pZWaxqVKQZlSSY9R4YE1E5L9qpMLZm8GC3WqnsxqZZXqRi6p196vxt9qiLG0mh6\nno1iYFeDZhR8S2C+8KWv8tM/9/5Jyc///R/nbso8ub3l4f6e6XIhl0qkdiDLQzttuy3QQt+Gtnrt\nua970zUPWoMxJo77PYfdjmCGu5n2hK85WwprUuoshKbgtPe5e0Ln4OE6pl7ZZs6Ys01JMhZIdyIv\nju/48Q9/4Re5v7/ni1/8Iq01bq6PFBNdvbm64mMf+xg3NzfqK0ynwnUmYjL9CnRq3un0wGF/3Z/z\nMOyIcdZKWNUAb4gKnq4LYE0pAJ6dL9xfJl46Hnjp5tjt2hYUj1EF88dhpBigkVIy/7gmHuDYtHT/\nhCXK8zxzvpx1UtzVoQd70FY7WjTZ1rYWPwdlWFUaVYSIT5BbE68+UdHsqINIvaXQgjevXgPsggly\nyyrB2yvWaBLmYsj2I00AurZiMxsZngvO1jvRobWeILIGbfYdbwva3r/qftrBhM21rePh1f+V3OiT\nMKtAKyaj4LZytUuuJ+q+al0Ppg+aTd/Tn4y1/RVjkZaajTGA6T7NTJcL8zLhxTtfXyVnUohm03XK\nrPu4aIlKC1VbuzHWd4iKLdVGXrK2uOSFEiA3ZQDmVpFcKKkoELvT+EdEtYtcHNt1H0tttJxpIZJC\nNd26YDIQtp+ilsAcBOptuxKsyKHFoNakxw9C6M/yi1/9mt3L3/ncbv9dANyfF25ff4kQAg8iOnEs\nZ2KtXfgbEWuxpCeoW82f5w9xQAptQRtHFV8ex/FRq2qKcfWrpeBAgk/L1gloOqTJp4R2JrV9eI9t\nNss7RE3skrG8RNZ9/+L4cBwOdIEt1RCIw0BMA4TAvCw6GMdiO7d7OetgkijBGLxmZ9umaGABjnc5\nPDtduDM/8uT6wPMBR2utM3NSSgoqmI/wPEIPefQ7HqP759Va1JecT5xOOozBi7jBwDHfP9tzbX39\nbuJ96FNu10+WR6fhBQZpngOFDdjke9QLEY/SCZS9YxNWZf0c9UOijCrLpeqjc97cBXdNG2mTzjJy\nLEvcRkjfv2yva7MvtZDc+rUE17HdDAZp0vSapa1+VS/WmF5mQ/pNsBbLusqC6Odrq60YUNVsYntz\n8NGGlrTWtI0w65ADgFxyBzB762Qv3up9LcYkDi7p0CqlendDRWJjCK5TanIvKADrOUsuWdu0bXiL\nA56uozy3C7UW00xVNnuMgWKgn89BUADQ7Hgt2tUUgvlAnyicDGy0FtsQO+MLW2f9oTZxGWj9WQto\nsVsJCjFmvvz1t+x+vL/feef+zJsf+95e4JnOZ9MF1/seWYk3zWy/7jVnPkq/H486ayyEFHSQxWG/\n4/p4JKVIWxbzl2thUde4MqiDrIyzVhvZgC9a7Wt4mxtt13tDGZ2NZr77g01qviuAr1/8/D8kLwsP\nDw/sDwdFkGedcnd9PPLG669zfXXN5TIRciURiYMiuxKT9Uxrpf08TUhMGsQHFY2rVXUQAoFhXIP2\nasFP7IG8JfnA04cL99PM7fHAS8ednqgbAHMawzAwDgNzW3VduqaVeAXFwZQ1ecbQ6XmaOZ1OnM9n\ncl5I1mLwPKiz1QQx6oufjrYAiPQWlO5AvEoBIIEqrVdO+uaXleWlG25tRwFrNuiBu4FeLeCTlvQk\n1vP0CZGr0zOorFZjGG3e352Hn28Iqwj/Nplzp0bQ4Bc6uNj0JnXhZW9L8c9tTXWbpKPqrE7DWhsV\n0KI7C1pTgeUWqEWZYv66Vqux8IJO2lpmyjJ3EKvUogDbsnSW2Iq6W0XC1s46MSNTKkhojFFbFbVC\no5OtookNtlrMUC3kkleGlFVzaqucm05R2e/3MA6EYFUh0SpDdE9hz2vJBYJVSCxJ10masVdHNBUz\n3QG8+ud6QIVWldmlD8kqd03f50v/BOfw7unMmx/7qCY/Ijom25iDAW1l0lHMBgj3pNwgWUuGwFof\n/QtBqiYeh92Oq8OeMSVOeaGqqrLtlNUx4C3P9qdq5hStYta2vh4PZAWfHiOow/XELSZZRTZrfTFt\n60Ny/NLnP888z9zf3/P669/Dyy8/4eHunlYKN9dXfO/3vsHxcODps2fUWjRxDdpSEoKDmZrETpcz\ntGsrRgiYfZqmhRIKu3FgiEnbrPvoZ10905L5mc9/mbfee6+f28defpnf+Vs+xRCdVu7tIjrteEhD\n1+SKUacd1fDt2lZA9yFuGy7Thbv7e+7v77m+ueqVWG/ptX88SlZEpLd2OOORWgk9UNtkCI/At02y\nFBzcav11HkzqfWkddLZdvAn2haA9CjRjLLvupNpw818bEILtWbiPsSOgoJZXnvVl78OQES2irRPC\nWm93D20TEPZL18lOmpxsfFFPTq098vkpXOtd6Ywuv49Bo/9exc6WmGS79mpgm1bM3a9ZjN6atlCF\ngMp5tp40lQwtRQSbyFUzNUQiyqpotVGsmDMvE1NeyNIogk6UBG2dyRV2sBtGgkRiHCi0PiUNa4vI\nxq6uIVBDYAyROEQrPhroFQLijSA9RhADl7Ty7kBnb+PBC2uRT33/J+0u/m3eb5Lvb/7hH+TJ8VrX\neRTqM53MmmtZW21sHboQj/gN7aDT8xp34mWXLidwfX3N4XDg6cOJpRTlLNpUYARrDWpazDItyGwA\nZrS9qh8r2+20SbJ9Ap6CbRJWxs77mIAXx3f4CHEV7dzBB2QAACAASURBVM6l0ES0rXEcqXjMrH/n\nnJmDaknO0wxJfUerK+AveKeBgVCtMefCz37+q9/uR374TXajFw28JfCxTtgqQWIxtVgXyyOwjTX5\ntvdf8sL9/QNPnz3l5YeXGY1k4OCX64GFkFZdvEq3u14sZEM28GjMj8b6vYDFl0JPxLc5kQNe9osb\noHq1s3Y1qv4i6/Rabdsy4MsHgRgAsQW+V0stvRBCt+/rSeh9a+vX9jztHkt0Zpqs7+FnvLmmDspV\nL6TwuG6DxrqPJqu3jd+pFYLQqhbOFeBcuzQcIBMD3pppDFYay7JoN5AzyUx7yu9pNRCEUkBsmqyg\nxWkqOQuI+pcQ3F9pTJ9C7MWceVa97mmZu0ROiCrn4p1UtWRqCXqNBswlnxzpcLHY2g7B9pYxxmqB\nmtaCjEm74Llp8BxUetyiRXy/0R7zW4HO8ncJiR/45CftOby/3/nhH/wUT155hZRUCuC9d99lPl/0\nXtueChtb7zEQ9tk66Oh9YrvuebTLbBwGrq6uGIeBdjoZa/wxYK7DDqqm7jasrPmQA11otqc2n2P7\nORpJprRmufDK8vsgj+8K4OvXfu3XiDFyPB55/fXXiSKc7+/J08Tt7S3HqyvVHZmVudWc9t1Ud2eI\nCYmRen/PvGQOFvAvWdHkeV5IoTLG1APtapCuB7EeVE1L4Wc+/5Vvcyaf++E3OexVlHfrSByA2Vbr\n8X/buPDW39+rJ4rCz8vMw8MDz54948nLL5GGgTQMCoyABUjWnmBBjuYgpmNiYEMwmqY6R92gPmTP\nDWxEDBS3hL0H9a0bVAf9/ND7AhhFGMAZPtU+21vBKvQK1XbT6e888kiroe/Cf+biVDWfrePoR1in\ngfk1umN53JrKOia5rT3SDrQ9qsIbGOUJTXdUFbTlcAW91PgXCkIQpemWJdNypsaootOsgbPY9ZVa\nehJZSqVNswJSIVBbwcWD50X1pVJVoCsvOj1FAyAb5DAvTPM6VccNsbMTljzTaF0vrA8z8ETCTHyM\nkRYCrWnQRQzathIgpojEwar2BqY6yCjWWKjK2jRfZLYW8EqFBMI/lXP4AZ68+oqu+zRw9/Qpp9NJ\n9XPEJrNtVmTr3uHbEwSP0javJiLshpHD4cBuP3L/9Kx6SPhoY618lFJ03o89FwETcKzUulbp2rpR\njGWpbNOKCbc2rYCloK1yua6MjRfHd/741re+xTAMvP7663zq+99kv9/zLfkmtMr+cGA3jkwm5KrV\nTGWd1JxNo2JkGLT9OEqgFLhcFkQy02Rafk2oyUZbW+ANoBXDiAT4mV/6Mr/6XmPb/vvWu3+cv/X3\n/xH/0m//wUdC+bBqgWxFZD34cEHsXmhprVewm6gW1Ol85tmzZ93PSNz3ZNqFS4MoU0dE28m0ncpY\n0OYjH+k0bhIDj8adSeyJCngcFzaZzdbf+vvI+l74t7UosBWUdY2uzmoLOtylTxjqvlffzX2Wixrr\nuayv8aRlm3g4a1u8RbVqq2C1Sq0nHtVAOG1rM1Bom7ioA8BFg1t7/LVmlXQQy4epeFJYmxU6lplp\nmql1Vi0n9L2dmbYtkHkiLcFYstB9mIQFnWZYWVphaVmrt0RlNc+ZZVJNl2mamIoCXwyJuBsJw6Dt\n31hnp92/YGLbYnqHbon9mUmtSCmq0YUnwKH75G5TwwYw9aNGej/wpm0WdELkP/OZH+T3fO5H+Rs/\n9xM6bMAm+cbwJ/ncZz/Lb/r0p1kezqRhgLiupWVZrF3Y3m8DEKzrVh79/5rEuj9oXYz++vqaq6sr\n3r271yShbZL0imqqCaQ42j5aAYj+1aox29f1LJaMV/NTfWqegSA+3CCkRHiBgH1ojnEcqa0ymT6f\nag8HUhpNMUQZj7XBNM9aoDgrK5emU1hVC09oyfOJuHaTtMbP/tJX39+P/OKX+LHf9uke41YwyQVN\nXhfTBoQV8AKxKXsed9FjVppqNIYYKblwd3fHO++8yyuvvsLRpiDrvrXCX0w9wfY1q6Gbxe/B2tg3\neULPFWw/bn2MA0Fd19WACy2CahG5s5gciPJsQVbWGawsL72+1hlffm/FWVgeXztAYclQL/o0jXbd\nfUn/D7zYo7mS+yzMn27Ay7rmKX5fHJx0tu+qwaZM5IqoX2mrzq0/Vzdl2HWRNR4vOaveoAhYuyQN\nmxi6Fl5KUebVkhdGGailkpe5i9qzuV4vtpeayVEHa2n+U6kBasvMs/pTj58jgULo07IV+Jq4LDp8\nR0Jg3O3Z7fccj0ct4ixLbwnVgn9mtxuRuMkxPfc28LK5dnSpFClIrKZwsoJZulY9TvHvo7FObatc\nS1sZUr3lNgZ+6NOf4nf/6L/A3/w77+93PvPp76eWqnsqRmqr3CNMp7PpiLunaR38bDQejy7zs5IN\n4mlrxfbtbrfj+uZap2c+e2r+QM8xeNG9ib6vA1lBdMiB7ZVqoFYxcPoR4GZxosu4qB552JzPB3N8\nVwBfpSid8Y033uDNN99kOp95uzXOTZOP0+mEtMo8LZB2ENOjSTZpUGHfaGOgEWGeZ0ouOrb+MlFT\nYj+MlFRJrlNnVTMAt04/80tfeV9n8rd/8Uv8K7/9M2pkcECk9VYSZ3U4CJFSMmHgYH3JNsWvNRX6\nFVEncn/Hr7/9Nk9eecJuv+8CxT71QnUiTFC/rcZHW8627Vd+GY+DH52gQV+ovYLkQVXwwNUnHzqF\nem1D2bK3NPC0qolsjLcZ5hii9sX3z35MwV+Dy5U9g53emqiYcceqE3auDvD5+3j+sF6L/rxWbdXo\nwObGaLhoIBsWV210gMxp59SqLR+l2GuVrptbJgpWZSm9JXc25pc+14U8L9rC4q2botpsswW4cTDH\nL5a0UMh57sa4tUpoQpXck5lpnrlczlzmWa/bDN/u6or9ft9HmrcNUyDtxj5tsBvXEJCkCYy3/ulU\nj2JUXr9b4JxiMQfhbEB9TlploTXXHFYDawDVD/3gp/g9n/scf+Pn/uS3OYcf/ZHP8pkf+H5qrQyD\niQtHTQhO9ydNlhxEfaS30vpa1POomwXUXT+gwPFuN3I8HjkcDrRnTym1UJo6vhrWihq0LrYqdv+d\nZeDgbnNm2XNEkZx1nTSsDdqSv2xtdC8mbn14juPxyA//ps/wPR95jWfPnukzbY1lnnn33XfVRofI\nfn8kSLDq4WIJ7l4Ds92O/X5PLY3z6UJtldPDictlAoyRwcra9cQ5iHB3nnjr3fd4vv230Xjr3R/n\nvfsTr71003+3gxlVNSFXRvEKRHVAyn0MdC3H1hrzPPPs2TOePn3K/cMrxDEaOG5gj2jSI6ITlvp0\nPWyqj0Qdf217bG03ZLPvzCq4DxFo0vr5uR6eiFDnreVnLXzYdzsje8k00+TrFVf7Ffezj4I0T0rW\ns7HvYxOelFnUmzakm6oeZLZN4QZZp4Rtj9qUGVWtxVxNdthaI6y61ttR+5e3m7gFswSkuA1pzfR4\nrDCxLApCTRMx7BD0NUvOOvG6tzrS10prhflSKEvePh5dI0ULiIsUslSQQCURS6PMC/NF9eCmeSbX\nRkmB3ZjYH47sj1dIiCzzjDQopTHNC2lYiFfHFTi15xnFNIliQmKiNm1/jEF/3mQFHYOxOZy5ruwr\nW2+e8FkiggFEgUAMib/8l/4L/vCf+En++s+sk3x/9Ec+y3/9n/wkDWE87pEhghUiCcL93Z0mCb04\nti6Enh45MOe6PLb2na3TbB2Ou9GAr2OPn3IuWqyLygRttdh1r8wQ/32wJC1nY9mvrMFo8WA2zZ3e\nEtW0EOf+JZp8wovjw3Gkw45lWZjuZs7zxGTaQztR3dsUR1Lc0apwOS+ILJzOM5c5Q4iMpTI0TQAH\nHOQxwF/g2WX+x/uR936cp6czT26uNI5v2ECLAlnjUmmNUBuJQLP8IkpYta1QW5YVvSZIU5Zx0ULK\n3f2ddqosS5/OJ8amd626bCLltbWuxyugqHkQldIQaE1fR3DoSM+h1NwLMRqXN8vZrMXX8jjsjNep\njC7lYn6pmd6Vxf86sS/0hgG1JRXqoiCBGNhhhVx/r+bv1asf9O+F4F0+svoSE+7wtsNmP3cf6YNH\naK0rlXnrvLa+W5nWzpHWEG9tdIZwa6sI+qaY1Gq2dj0xtpaeZy4rc6qhIv2eLyzzrOC7QM25+4Jl\nWbo+c/fPti5qaRSEVhM+gA266ba5IPq9ghCa0HJW3bBlgSXrEB/ztEMU0m7H4eqaGAaNeUqlhUQm\nMVUFDwcrzCtICaEJYxx0IrFYQQzNMqsNQwlSV8ahuiBfOvasdWnq+auf2DxMXdvNrqEJ//2f/0/5\nI//un+Wnf+6x3/lLP/XvU1qlSiUMkd31kev6MrUpKDfbFGXVHTZtzt5q6X+ZjwTElO1bUI02m7tJ\niMI4DtzcXHM47EkhMueqPla0OBcouiyCnns0H60aksrMzMtMNpKH2CTMGFC2N2o7vMCiPwu9S/SD\nOr4rgK9hOHA83vA9r73BYTxwenrHcrlQ5oWWC8s0c24apA0pUoJwyYoUz7kwgE7PijtSHKEFpmmB\nZs5kytQGc23qTJowsIIlDvze/0ZJyXs/znvniZdvkhqQWsm1wLJou0FtSFVUewiJJD4ZxRyJ6AKi\n1g5YldY4nS88vXvG6XRimmeSj6v2li0bLd4BpuqMJ3BcWCnAZsCqtS32xAfVH3FbbUnJY1FU+/3q\n4qmeZISNdCTdAJRadey7GUANrhuh2X2QlX2F95mbARQHqmjdyDjQp0Fh6JUUr144yFObrJNRmrUv\ntlXe0tse+/Mwh2Wa68bcKtYWpwBYtHuiH2UCklbW0PaTjY6WGQdEjCqq4FI1/Q6vSlzOF+Zppli7\nioNF3l+fp0rNari8XY6iTsPtsgKEQiGATYms80ybF6QUChVJCUJg2O+5ur5l3CnDUUIkk5ibMv0G\nA2CrXWtowmBU9GYVEg1y1EGok9DR2oja5ObJaKO3hlY8wTUmGBr40DAHEfjLf+E/5w//yZ/kr//s\n6hw+9yO/g7/0U/+eOlNphDGxuzpyVQulQWlCniZ7jqYzUHX/S1vZI8a7xBehnotOrtGkIrLbDVxd\nHbi6OpJiYM6r+LBWQzPSVDclgGlVqNC/AgEYVbzYutS2zyoqVtmAJWcLLjTJLxVy1oQk54VSXjC+\nPgzH1dWB25euee3VjwDwcHfHfLkQwjrhN+dMSsbIzTP3Dw82gERtAa1umDSNy0UHrujfhWXJjMOA\nguwKfgwWbEgI3E+znc37t/8+PZ159eaqB9fZAI4gK7MH1IYqC7g9YhqDBnGlVq3SGyPodDrx9OlT\nHk4PHK8Pva0++xRjC7hqU79WzY8EYz+F59i8LsZrUSM+Odd/Vg1BkA0oF+xDtO1P+nV4qhXE21pU\nXyyX2idHdvapgwa9QFO7jRUDnMXQLGVW2X0JYkHdqielQPUKqpvhsgSp2FRE3+XYzwxgbIWK6j5q\n+djuvTSt6GJsMWd7VZ+sW3vCAisbYNuGFAUdJ1/NX5qPS0HvXZ4XpsuF8+XMsiwGqtLPUyd1Fcri\nDAwDCaVRy0JehBKVFd4aVGYkV+qSmS8L87RQaIgoE6w2iHFktzsSUyTFAapOSIRALnqfV87Dysgg\nJFpQP1UtBnIWYetrVtskxQMxa41SN6N2WOObjdAvldJ0Sz65eYm/8t/9RX7pV77AF770ZT75sY/y\nyY99tCeWIehEy/3xqBPzmgK7p/sH8rJ08NPBrt72Yt9rnVHi0f7K/BOBIQ0cDgcO+0NPDL1FWJMF\nj4d8kdBzrz7oxhgewjppu0+XawqMZR9qZEfOhWmaWOaZcb//tqLni+M7d9w93DPPE++8+w7vPXvK\n6XxiGPf6/GxvCEItTZnCQM6VJVdCLsylsiuVHJVZHKTzzhERHv4p/MhL10e8tbqZdly1/TfERK7e\nVm0DunrirUiLNDHdW/pXiJHcVJ+4Tyd3u1+1gNuy9C6Bap/f0xWw6/eCjQ2JsqEePVa2omOIm1xn\n817qBlrXnnINRTDgyu6XdnioRhOgxeqGaRStYKJYLqF2yBnUaoyaxZx+Gn26fVsF8aMVRHteZL+r\ngNvmuqyFzU5fQa8m6/0xQoU012PapnomtWKvabV0nTTXKlY3VntbdIfszPeItN5i2nzgl2sfW5EZ\n0EnClwvz5UKuufsW17sNfo1NfVZuedW5Fu268ZZ1fzYV1LYvmTpr4aiWCgJhCDAMxHEgjAMyDOzG\nI2nck30gQkoUGwBBjMTB1lgxX1l1enGfWhgCwaZd9wqQ5c7b4rmzDNnYT2UwBs0jcdvtAKL6nZev\nb/hf/pv/ii988Uv8ype+wic+9jqf+PgbveOotqqs4mFgdziyv1ZNs7IY47IUhNbbg8XCiGrMZoVr\nLd4Jto4bCn6iIVFMCn4NKXUWWb+Kvl/WYXwOkCoWpnHdynNe9UnjEJAUlBhhsUUz7EJlI/hAj+8K\n4OvVV17j5vqa2+tbrTqezpRpIaKTC3bjSAy6IOZl4VwuvPfsKXcP90xzZl+uGJoCNSKRWmGZi7Gx\nMnMptEWYS2GslaEKxVoEAdvI8DD/xs7k7nTmydXRtCha19qQoCwPjMJLqDZ2dBMd2dEMhPHJWrlk\nLpeLItuLjtyWGCkW+Af0/fuUITYxOgZcBwOGnCFAQ+oKuEmTVW/Fkft+7XRj2YEdQNBJf354HUMD\nT+0pV8qjj3sHataEptOYrWoiAs2px+446KhxgHWIgIFlKwNg4y3bBhRrm3sg5qDteeCMiM1Gp5rT\nKBvRRjDAUhOsVc+laLDNpkIvMKSET+Eom8qJ3jPVepmnmdkSkup1BLswD6pbVjpqs4qwUpgt6TJc\nZ00sBbI6irIstKzOS6KytsKQCMPIsNsx7o/kbKBkStQ0MFd1Zilq8qiiyZpQJRdQDduv0Mf1BvG8\n0apRPUXdJAHmTJwNIs2fuy6sV25u+Sv/7V/gC7/yRb7wla/wie/9KG9+/HVNrpuyJ5ug4NfxyGEp\nzHPm5BXwWnQalqDXLd2VUzfnpcutgVd1jOkYU2TcDezGcdU/8E1UNYHy5DyIsOqgqgOlB5w+TaeZ\nPo0nb/QEyywQuSpQuSzLowk1L47v7PHGG29we3vLMAw8ffqU8/kEKAvs9vaW29vbDnJN88Rlmnnv\nvfe4u7tDQtKJRcvCMs+UmtXPLMXAqULJjSVk5jmzLIUomRhg3MdOjnzpam9n8/7tv9e7EW+n6Gyv\nUrQSaq2NDnY5ANQZsR7EAy0vhKTAVSmZaVEQ73w6k5cMB/UZzYR1Sy197T9qPfGAelPpXu001iq/\nOSfxKNKsRtvYVSzg9CCzJwj+rs9HU8Y7lue+39bqfg3N2FwOVLifW9+jNeN6BVjbHlf/5Ofb2aRN\nwR4P6qHHy/31EsQlqCxmrt03NGd/V9VE86RDWUwr8NWBQw8oYzSjayzTou8VUCHbaqyf6TJxOZ+Z\npwulFtWIMjuEQEqRnBXQSSkiRA2aWdneNWnwWnJlKRUpjTJn8lyUnZsiYRgYo7DbHRhHZTsO48Bu\nr23kUYLGOUGYc1FdxugaXdITpCBiNlMBsBATIUWa8izw5KPZs908EmNx059Ps+TQ157aXv21H3jz\nTX7gE9+nDLqSV19tzHSCkHYjh6srLtPEZZpoeVmTfvvYJo9X5bY9VeOtFWBVcLipAPM4KGBsxUR/\njg4+xqjOXVnnQDQtKPuMWj0JejylcWWZtb4WVZzYWqw34MOL48Nx3D17yjTNPH36lNPDA8u8EKMN\n7WqyTvtGY0kFPxUsXZbMPM9MKRGppKggkc4b1tjn9upgn/T+fuRmv9P1Z2CQYO3rQIqRlgZaLhDi\nhvneul32okdoG807WbUj52Xp0x0Bi2HVBpV5QVLsk2WbxdHepg+y2j7PktzfNYuZ3eY3BwXsd2Tz\no6b2tNsN6e/W7Ye2jltxooNW9Byhx5J2/RJT30trnPsYMFEbWp3ctH5c9U4Y/65Fp5traQ5CuY8U\nKxJYUNpB+BC67+nP0btP7N456NUsv1l9tudyap+8C6SWQojKOBRgXjT39CEA4JOclYE8T1MfnOWU\nvWaxrraJa2Vc9be0nOSFac+N9NJrX9u5FOq0QC46tRhoKTAMO8aba463txyurhn3B3a7A8H0uitC\nATKNpUyE0ggmXK+FKieWNCSJ6YSpZIskm6r6qHjWl9+6ZjyoEbrtrcHYiiWsOYN9+W359Juf4Ae+\n7+MsdSGXxWy1aa/ZsxpSYj/umMcdczyzWL6YNIG17dWDDFtoVoSzIMPlkzw/qbYnVZvPzre1VUbA\nDtWnXaeIllItP7K18VwIFjwv3RRUPYaLIizt8VClD+L4rgC+PvHxT7Dfj+zGHXfvvUvJWjUfdiM3\n11fc3lxT8sLpMnE+n3jvdNHE5XSitdB7lGvJGkeamJ/3b6uwX2ZeFuY5kaikFklxpYaLCC/9k5zJ\nYderCh1dB4Y4QFRgRUJT6rBgBlT6RgpNyYvrBAdda9M0cblMvXoSRChNq/1Sa5/It/bm9vAbM8+W\nIFhs3WmprdOOg+kauePqUzEaurWsyvrIGbkxxjZUB3J0I7YOROirqrEHRHfPClJJ6CmGrG+LMTj1\nMEbPVqVJnnciG8fhNz/4fXwUmCpI9sgplILUntn1n22nOmqAa+PoLXD1dkYXElzmxXTjdIy8ip+r\ns8jmLPK8KLhmLDevSIR+/3VtqIi+gU2tAhYYeAupMfjqvNDmrKAd0FJUoOv6muPNLbvjkbQ/MA47\nBKX5FkRFiVvRxCaJGj+Jqh9gRjtJIMZBR//GqFohrhm0zUs7yERfuwRdWT2R9esyB8HGQXz6k2/y\n6U98H6VmlrIgFNufxajIkFLSls3Dnvl0Ivd1Yduoi/XTn78DycH2MLb+Wmg6XjpIbx3yJW1YXj9c\nW0HbZGuns4uxv9bfs1bGqI6B4MGk9LWnp1y7joE+R14cH4Ljk2++yTiqTuPp4Z5WK4f9nv1+z+3t\nDS/d3lJy5m65Z5kWTg9n7p8943w6sdsf1a8EDQpdj0nZgMpeLaXSZi16TLvRAAuQw05TDxGeXO/5\n+Ksv8/W3/7hZxN8F/C2EP8HrT55wvR+tNUQXjbfUhyGwN1aHFjfQoH8TgEhYWcbVW69NY6PUynm6\nMM2TtoH3irvrZ5SedHs1vrFONvWgLHgrm31staTGP9/bRPz1nUFjQAWibSbffjQeB1Pqi4JvVnFP\nZG7VgfOm1VCl7ev5u9tdQSn3D5bmiFsMNnbf/IGKLHW2Hv5K2YTHosmja1uqn9gURLy91Zmq9jy7\nr+l+SI1wXrLZPwU7dIz8wjRd1IaYfbxcLr3lPS+zVWCxgNbE6mtFSKoRiTJFqvh1GngfAi0ra60t\nlboUyJWyFPKifjglnUB389Ith5duOd7esL++YhxHUkwMMfY2zSVnzmUhxVXjBxEl6qLJSUrqYyAQ\nhoSkwYx3s7/aCt607RpS5plrX9XWwCalNu81MiegOUTQ9VCE0hqtaBtNLiu7YBwGdvs9aUhMF1Vo\nq2ghTgG4x7pvbLR4ktDlMcQAC2dfxhhNVNoZdp7g2xRw025VuYxGs6KX70F9NiuTs4Pf230uDuxq\nErksNkmWTUL34viOH9PZ2oUXnZbnxd2cMw0FZh1kAtbniw42mueZSwxITUgKqlGHdFD1yfWRj7/6\nyvv6kY8+ecJLRyuweK5gybgDX6TGAmbTV9kRP4/gwBfKPvV16mtvnmfOpzOXy0XBXVvbtaiviXVt\nca+lUVvu+1ykGupeug8SEaq07lf1rqjNDR34spyDjpL3fQobX2P30YehBPT3FVASYjP/1u2iCYDL\nqgPZvEJjH+WSTK0DVOuEvH4e1pXk59IafQ9vn7ECWrUz7MTBvOZAhmg+ZuBXs6nyLZfeqSKb9+yS\nLQ6Useq5SYAYouUnC4MkCOrvL5cLp9OJaNq2y6JM4mL59JKXDZtay7q1NRXCbxpfhw1A16qvo9q7\nHILd94raq2meKZeZUCFggvMhsT9e89Krr3H98sscjlcMacc4jAyWmzSEpVYueaaei2e8SIgMSbuB\n9EZqq6MELbTElAhWcMHXeXNs6TFDGXsEti1oEgji0ipibtvJEHQwSghGKjSwKufui53AIFUlDIaU\nGFJkCZEiuYOruq7dR/vn04FGUCa4gsDRYVO7xyuJpxnD2a/Hu9pijFpTq42lZQKtg9IeszSagZl9\nC226wB4XPx9tvA/g+K4Avj72sTfw1qPTwz0CXF9fcdiN3N7ecDjsOT1oUDlfZi6nE8tk7CgJtFKY\n54l5mXFmxvZhqYi30nOjCFIicTcwjANe3ZAQePn66jd0JreHHStarwYvSiAMwWibhRZ04a2MHQ3G\nYog2pa52Qy5G552miYfTA9Okeh0hRqJYCxWNQLS+diE3B0B0M0hFKwEYIhzUIHjCBFUDRbSHv1nL\nQJBg7JxNVQMPnjbOw5MGRDOApu5oK3Dn99hp1f23Dah6VKm091tjNPFMRn8W3j+AW1kIdQW44PEG\nF1EB27oCec1aHxX48sl9q5PvU1Eamjy0akKRKmxdrHocwoAgLMvM+XxmWWa8ZXOeJpu8pZobPuXE\ntZ5a07VRWlPdNrsvQiBUZXvVoq2UTnutrZGbOop80VaUKNEq5wPH61tuXnuN6ydPOByu2A17xjQy\nDAOESKYx5YXz5WRAqRrMEGJvN1WdFWV9xWEw0GvoOivqzD0EwfaKO2uDMrUPB/zRIP0Zf5uDiIFG\nQArallqWTnNvDaQ0kgTGNFiFQttj1v3mwGftAYMLlEIzYy6W/DaKO2wDBHp059dhDi92fUAT7aSQ\nnLJta8Khr3V/6H0oxde9BWvNhCJrs+ruC9Trw3K8/vrr1FpVJ+90shHvkcN+xzgMxCDkJRtbz9qL\nLUHRhFWHWtRatWq+9TOo/VCmF0yXEWmNcYjd3ikrK/C7f9v389f/ny/ytbfX9t+PvvKEf/4zn7DW\npm11HLAgZb/fW/usBpV1ox+11fvqY99D0ClSn/KPgQAAIABJREFUBjTN88zlcjHQvvbXdiF2b8+P\nNgk5WzBdqxbNZQNuiagOmPXLrTZ+3XOWRegV2B7Rqn1Y/URTD+fXuT1i1yZc/cG24GQGR+3pJomR\nFaF//L7uxwREDDH33/82zK31BGzLABK0ZXNthViZ0j4BeGUTr8CXF2Bw5tfGjuVlUajFpjEty2xC\n1xeKPesGnM8PXWC2tkII6OTAIN0Old52X/uQBG3fX/WhYvPJaFl91qSM4pYbrQkh6bTGYRh57Xve\n4PrVVxiuDsTdgARtkxrTQEAoy8LlcoHlBDER00AcBkQCpTYImrTHwSQcxJhtsjqNDU4JuFSCM0Hs\nvocAdZ043drKLlY5BX2xANKEXBs1awGimFZa12VtrU/lTkmHkDgAp09mXWM9tsEAKLwAI48mnGr7\nkMZEtXlSsUYbPvUbmk0AbgyoPquz09b2r5W56euq7/MtUNZj3A88D3lx/P88vIVpiJHdMJBnje+U\nLWwDdYJ0+7g9uqbrNEPJSIocDgewuDtGZXj82D/7g/y1/+uXH/mR7335CZ/7oY8b/tL6uZjWBzEG\nhjSoDRIx0MIAno2WnQ9gCli7tcf8aCI+zzMPDydOpxPLsnCwvCW0oEBZUPA8hEiVQrZ95GdVN62N\nzm7sd8KJTvbPrrkVNL5cjbXb8k3u0tb4s+vrOlDUfZcCI7XZRF6buOv7uncvmP96v5yo61zZa/oZ\n+fk8B2j2OLDfB/cv7hNZwX5t01nb5M13dF9sz8TXynayY3Nvad8LYCCe2sIA1KyA+en0wDxPCoQC\n0+XM5Xxe2dSuDSYg3hYKqjPVWgf9aCipoFr+ZCCbNgRFs4n6vWVSCaMkyvqVEAnDjqvbl3j5tTd4\n6bWPMO4O+ralEQmkISEpEVtDlonm7UEhQoikYVRmmCg4hdteEcQGLWBgkUsO2BURzLk7889jB10z\ntsYsdvH8wXMa/70gqqPWSrX4cdZCi+MPtVILkAsJGFMiDwNzzbS8WAuor0M7ia5/ZwPSaJqWRdev\n03NwfdZojLb6nAZxsz+cWVhtHaRoYHOtmrPWsoJ/bdXu9uFc2aZR9jiPD/b4rgC+yqLi8Ke7O957\n9x2GKFwf9uzGRADOpxMPD7pJaZUhBg67kcM4kotOfphzYZkmUohsK9k9MGgKSpxpkCOxVQ5HFWQN\nKZoOhvBjv/3T/LX/+1ceJyUvP+F3/tD3Wa5rNPsiUCspRVJILNPEGqL615rsuIZQN/a2emstTNPM\n/d09Dw8PqtmBovQ51C7mOAzKVFAfZtNCbGN4oO1j7hEoXmnYnI5CHau2xraK+BhsCn3zq/FVa9AZ\nL0mn9iGqJbJWJI0iLSsoVjeOpF9Ad17yKDnqL9uAYivgBa6xs97mur4FgASa6e/0Z18d3NJKSW89\n2TiLFaDYVE+sj8Vpv9Ia98vC3d0zLpdzb/UspfDwcDLgapMAYkPaRSgUdRZVk0vp1rWC5UbLMkMr\nNqo30tDPXaYzeVoIVikPaWDYH7l5+SO89sbHuP3IRxh3e1pu1FwIUUcBDzEQ84IkFS9EhGbJzDDu\nTO+LrrXSbBJj8Gq9B9a0btz9v56gsDqBHos4AFa9CmbrHUHQNsuaM8s0k/Pck0adgNmoSyECu2Gk\nDCNTWWwEcCOZo+0adEH1+apptjT0emKQlYYu2iKWhsGSrbJeh+n7CF71NBCtFtI40JoL1GtiEgzs\nKFnB1JwzS5jJufW99nz+7IHdi+M7f9zf3zNNF77xq7/K6f6eq6srduOATgyeeeedd3j27D0ul4kQ\nEuMwcnNzw83NNblUHk73QGCeJ3a7HUjEJ7IJYuOhlaV5vpzJy8xhN7DcXpEMxAkxcEw7ft9nP8PT\nhzPv3Z+52Q8c93tK1QCmGLjlyblT9Pf7PQ8PD8A6vtsHJ2wTcFpjSIMGMGWt0p1OJ95+9x2evPKE\nm9sbdvudtkwDoC0Q+8OBNI5cLheWfFFfiidqK7iGsWrFgqNHrClZGcO9dUWzBYczANhWqNlMBkS0\nZW4IG429utrV7SRb1drbVM8t8GsdQPFzdqB7cw7G7goNpJrNK4qEqQ6VAQ9ZzzMIWo1vkJfZ/M4a\n3HZWsU9HbqtvWUFS/2oro0yglsJ0XkysfDLxW33feZ71aykdyGrWRqFWK5p/b9AKecns93vGUdfA\nGrhqobDQEC+Ct0qez0wPEykMjLsrdvsju+ORq6sbXnrlVV5+46OM11cUadzf3THlTDQR4rQ7EHd7\nHi5J8zVraRzGkeOw60WcUiqIsD9eq+suqrXTECtWeBKrybNodkwz7Z3ez1iVUUIplLzQbJpZCFHv\nlxWf5kmFmfMyU1Lt92GZZ/K8kJeF/X4PpXLigfkyGd5pAJc4iPbYphcroIVhIKak98JAvRB02Mzd\n+cywO1giVnoCmVKimvZjFAj7HTEG7u/P5JL7e+ScGYaBZp+3LAuzTVeLMSLWntyAcbdjsGLbiyEq\nH55jiNHalBXWr6WQi04LrojGGEE6Y/SRtIXZ22WZIQthiExLZqmFgcHaiyOHNPD7P/ubeOfunqcP\nF24OI1dj6iB4Z0SavYsS2KWRcRj7vvEY5VGM7kUTE/duGBYTgtcaKLmqyP3dHQ8PD+z2e0ab7hiT\nsRutZUpzMaGxatTFjW5ka43YP3/N2cTuTfcp/j0svpcGPC7A+yu2BUefpPgIpLaiRbHd3QeweO5I\n/yC8kNA9kOdWm5yp3z8HzCzhepT2NP8sYRW8Wgdudb/JOtGx6xGbP0P8mbTNNGC1kw5iqrl0ZlhV\nvV3zesuimsTzNJGX2QrCWry/WOuqM1pXvwVQum2qzmLuDO9GrZky64V6kUUC1Kj3b8kLS56ZLxPk\npuxmEcIwMOwP7K9vuXryClcvv8qw21OWwny+KGCMMMTIkCIyao7ihQzN3weGcad5i95VjZkkAtKn\nPGpqsj4UaWshvx/NgS7Pf+0ZbQr0/Zn3zFPz0rosLJcL83LRjh97VSmVkgt5mmmlkoLKN9Wy6LTf\nZkSWmg2sDYTkWZYX3Z//TMtbouV0j4abrF0otVRq0OER2glVKLUwxKHr2uq08EZK2hGE+EAm/fxS\nbFCb+fFHOfkHdHxXAF9f//rXKTnzcPeMh7un3Bz3JAoR1ffZ70culzMlKxNHhfkKuWRmE64nJGot\npGQ/31A/QxBqVXQzL5mpFAbRMcLzosh0jJpIHPZ7ft+P/DDv3j/w3sOZ6zFxtRsNPKubs9bRv6od\nFLqxAF2MGti1nqCv40t5BPaAGqnz6cydgV9X19ekQVkvLvrapOl0rTQgTYUJgUfORY+2CfZX2q1u\ncE8+7JUOCkozTSc3rI21cqLnuh1l3yebPHcdvWUsrOLBakDUOKx7xdoDtmDbxvGK/bGt3q8OOtJ1\nUtCAwk2BM+h0k1ofc6sKoPdkrHWwq/bkwv4Ga1NphOazM/R3FhPyLHmxpCiqds75RN5MdFx7u+kT\n1hZjA9KU8ioRrY6UymK6560uZkL1fHLJzHlmniZarsY4C4Q4Mu6P7K9uONw+4XD7hDjuKZNq4+XW\nIASGIbEbEiSdwlWLUbmTgmfRxtK3nkhGrBHXVhHqMBodKHqE8zdRJc9WO1jYiidk3oKyMdHSoNQO\nes2XMzkv/R2rPbdlWijzrKL8KVHiwGz3rk+WaW7aLdnxs5ZNYita09Fe/8QwDCYgXWgmOqrTgmzy\nUK1WZVM6eRo0kXNg1+9RbaXrtQR7fckOeFjwYRdVqp/ZB+skXhz/dMeXvvRFlnninbff6Wyucjxo\n4HfQ/S0ijOOOBlxOJ05nbefIDlqHtDJnOuvVkgyzMy70nnNmEg0qh5QMqJDuC55cHXnpuFMmc95O\npXocvA9DUqBt873ekmKt650lYl+qBeHBk+k6tco0KetrmmdtSTEw10w+Ht6rPTP/4SK1QVlera7B\n4iPA7VHxxC6lOxE/rNVl/Ze/0MBjtddUbUHzc9uKQIoVDZolAE2KuTYF4yjSh26IJUfavu6B4XPB\nLm5DNkxkC3x7W2KtpqOlw1IEBW9crD4ghKQT/KoxWqkeOLO+h4sw90So9tcqI9mAHH/Gdg6t6qSm\n5p7V/FiphVYC2aZyOYBScyY3TUJ8TL36LfObSyFTqEthmedHa6UJxJTYHa/YHa9Iux0MAxJg2O+R\nZUFiUv8ggoTE7nDoyWCIqv2poFbUjwwGTvHta2TzGPzG2/8bo68zH9TPiAF/6pG8Dagay8FEk5eF\nPM/M80Qtes9q0YJFWTJlXvQre7JBjwEKzRgyrYNfHl+F6LpmgRSCusAhGXssKVM5Rs/aDUgz1p37\nGcvPXbfImYVigY/vpxi2OisWv9p0aS/qqc3YMFVeHB+KYxwGypJVj+90ZrpcaKL2QWLSyY6pkLOt\n2dYQaTbNFbxVLtfCxQop+/PQW8dCEMt1Eq/cXvPk6tAnr4Ugj0yu24wQgk3Pdl2mDahkX851VFPr\nAIEuWBeq93aoeZq5v3vgfDqRX3pJ24djsAnYNincCuEx2ZCuXAwQek6/DjpLOJg8i5/bI/ALN53W\n1REwIfiw2sttrNrtkSDesizFtrfvOwPDNkBcZ3FLMz+0iTvlcTvyep95dK52gajP0/frcieiNmtl\nc9kzEr22zh5uKwiRgrFkq+YpODBmD9tTN/yarHWzmaaTuk1lXjWqCqKLkA047yzwfi0a0+u5NGvD\nV5awwT3WDYGyVs2bB/FJlGK6lKZZN6ucT2zBlFCEKJG0OzBe3TAcrgjjERn3hFBJNVDbpHG4iOlD\nBtXzDrFLNjQJOjEyRF1rxiDEmMXNfPkadaz3Znu4aL1reGleUx4zazcby5+34grqa6bLWQk66PRi\nQWgFymVmsUEkZXEAWAys026VlXWcrWCpeyQYG3KrnbmuWyEOzp7zuJHuy9T3KB7SguqAV+iyNt6+\n6QxP/YzIOKoucorRQDTAmKilbFn3H8zxXQF8eWXudH+HtMqQomnurAY7ugh3FThfdMzqNLEspleS\ntFAxDoMi1K1CK92ZuB2qtbLUxmWC8+XCbjfq4gmRlpK2RRF5+eaKl477TvUDq+56ZbnpeQ1Doizr\n5oA1SHJwqJnl0hxpAwqxNnlM08zp4cTlrDoeyiiwNL2qZllIuvFb9bat1Wn5tbWMTiwRE+e28xDo\nRlbC+vuAGkQDvxSscvBgs8EcmPKNY0anT71wx2FVourBuZghYd0s3kvf+/Xx06h+s/AEx5lYalD9\n1YFmY93dQOFJS7NKiFdJNue/ssDWvmV/jedW7j368zTHUkshLxOw9szXkpU+3J2zOwo1XH57q7VL\naj6XdQ14C52BewHTlymFXDPzMmubY16QGmiiFWCJieFwZHd1w7C/IuyOhGEHMhAralRFtM0vBBIj\n2k6xBheVlV7u1UPxCY/OJLQVr8vAA6D+oLqDf+Qk2qa9+NFLV3HOvCzM04XpfKaWrPtcTA9mzuRp\nYrn4oIe1RcxXkH6mdlhJNVAuhF4NFPH1ZVPpQDXy4gZ8tgRLH29b16clKT4FDOi06O2e7kCaa71A\n11Tw9s7aWp/0KLKC4i+O79zRrDqaUiQG4XDYczwcOex3pq+krIxxjKoHOU2cH+5ZponShBQzcVCh\n0P1upOJJiiUtQXDmUq2FXKqNf78wDANlv0ODLgMAglZTlUDlOhnWRhlC30tpGNjtdpzP586ucrv2\n6GvzPa9oVwOSJGhCcj6fuH+4///Ye7tY27LsPOgbc6619z73t6q6uqvadpQ4jm0SxREKAYmXWIig\noAAOIbECMi2ExJvb4snwQowFUkSsIPIaERGkYLAxBOcp4jGRkEJiu3FijGO7Ldzt7q6uqlu36t5z\n9l5rzZ/Bw/jGmGvf6o7zkKJKqrtKp+695+yz9/qZc/x84xvfwPlyxqP6CIeDienX5tVdZSCUQkjV\ngqIh6t2imrlLGlIa1H4drZrXjF1PCNg3Od7FfBHBAmMzd35OWHGHvK4KGOooFOjfdgMwxot7fAZh\nn/h83fkYhQ5WgQNuqoiR4/T/3prQaqH/M8aCs+18OhtaQ2IRxP0D3K/QFwNqGi4UFUbrQHOhfH6f\nQI5C2Ypv4+4j2WC7XC2bVW5Timqyt8IAALKwrVNR24ZSN/TS0LZqGaQnjJIwHY64/+gRDvcfQI43\nwDSbPzkpJG+WRPIea0o4TTeDtRKJrYGnkhNZF3vmq1ytAD4MPsfOJIT3Ip4BC178ygBUhaLGDdoq\nUO1+tXVDOS9Y1wU4AF9962189a238fnXX8Mbrz4O5levPRJnpOH3PaH09iMT6Gcbl2XnTIDFWjyz\n+5jRquj7w32N+wYRiyHyDrTeI66eWPvEx338UkoNgFzZtgIgdFxeHp+MwwCMhsvdHbZlsYJaguUk\nyryhNWgvIV6dU8I0ZahPN1RjwWtvWJYVy2nDfJhxmCaoTgCcyZp3e0d3f3J/mlm0tqjE9qatfBj4\n4rl7bsLwb3cuBjrnydZZLQXnuzPO5wvKtgGqSDKhm+tBax05K0lZEoVW+4zx3sYkaYyBUwBffuzz\nltDecrCaBakuu64TJMbUfB+1vMK7EFprNjWXJzJAY48BnakMBpTXz9X1wvb32+9cV9/z42464hJv\n1RVwXSUHst22UYrGB6eBLevhv9TZXZxe7mwxt73up2gjDR/zNknzG736JEdB7y5iX+J9KoeodJ5b\np4apwDR5tRlPrkPR1AHMkYOJGLvQfOGGEozlDU0VOR/oiwVpmnG8dx83Dx7icHPfcpk0QyZFPtlE\n+t4KFRW4VqcJc8rIvQe5xLNESfuBXYlLxHMaubLNHYp0/fgYDzCX6fx78MhGi2q8rjegVtRiw8fK\nuqGwM01zRpYM7exq488qWws9HvIcyZ5yD0ANgsiPQtNtX9wUGSIRShMgO71j323MBZ3d5oVR1xNV\nGDvOtpm1Q095Qk4TAcIUoBggHOz00UJfnwrgy2qD9nU6HXHv5oSb0wGHeSL9zgzGPM82hWjbcDmf\n0UrdVVW7MbDmGRureGboLVHxMbMW9HUsWnBZVtzcFAPLDm7oMiTbOSES4bQzqjxnLrycEra2ciws\nq7+O6rNVjFKmYC+HtXWp9WrnbCTUjddkU7eKxUFCD8IgUDFYWTGClX+kJNSvsPa5lEfLJ4CrBGQP\nYKgOrGmfoGi4jWsRYA86uzAp8fvimsc6KiT2YbZp/XytFXL07Y8XIk7KW9lGBefqxzuH0UaLCRhR\ngtXVNkb0WrA/0PtIBpydQ4cRBq3bVK9og2w9QC53pJXT3fxzWq2xBqyPmiCe2vn4Z5lmkD+8HaiX\n7HtOcd9W06yrvWHOBwKo7ige4HT/Iaab+5DpaOPip4TpBEja0LWiEdxJOWOSjDQNOr2K7bYkyXrg\n2TbFux/330CbwLmuFpwBQgPs6nrtHBBsDbaOaoNWcw5tKyjril4LNGd85Zvv4nfeegeff+01vPH4\nEepqgF9z7ToX+1Qd58A1nXKOaYxer7S2fVYvVOIR75YkghnmrZhsg4QMELer07zt92trHJdsmn2J\nwIf317vj8CmPrbtGwodSvJfHx3DYNCPBzekE1Y6bmxvcu3eDw8Eq6a0WaK/I8wxsimVZTPOiNUBy\n2PZ5nnE6nbCsDZ02fJ4zessWiIqtg1orGhLu7s44Hmbcv3ePiS8bDywqASDIWZG5l7yaXEqJf+ec\nQ9w8bK6DLS8criHpIJYnE6qKZV1xdz7jcrmMgk5OMSI7pscxOLJK764dDdgFZjuwLSXTmvRkCsPn\nxL7jn7r7f/yAuib74LN1a4+ztoUU+zYObmr3yp4f+EskQLMP2444ix1YF/6RPxa1gTVKRlb8nqoF\n/818iBBxF9j9cmBK2nVBDDu/43YRCrRaqPPESba1GQuEhYJaTMy+8b1ce8MByJR4HqrUf1EDjDAS\nkpQSJjJ4W/MK9QWtmhZWSgfPkwERTIcT7j96ZD5mnm39p4TpcAJEDFzi+aSUbf3TD3S/j+5DHACT\nhDFCahdN6X59UFtFjR3dXd6AoKH/3WQLwDahDumVz2T4mbKuePfJu/jJv/bT+Hu/8ivxuf/iH/pD\n+E+/8Gdwmmegs02WCXjEHb43Pckgq152DD71LM8vYyeCb9dvEx9FvJVKAE1QzWxrzDblLICskdzt\nBYu92JJS2k0DBGPZoe/60s98co5aCrZtw/l8NiYxEHGKFegnixl7Q+qKnoC52dTwRtEUwOKsWhu2\nrWArhexyh42s5dzZoQJFTqNNzW0pGG87kFprQSkbwV3QvifuNftcpZ2L4r12NG2ms8Tv1VqxLBeb\n7rgaYzpNE8Hifc5htt2iQ7WOFcD2Vna5CsB9mrjNB672kzOm1YM8DB90FeBh5CQAdrIbzCfIfAk/\n6sSI6CgYoJf3OgSwwr15Bdv7vZbx+aq7vKv7LRhyGur54j4X4amP6yFrWAwkUv5esLD2gBljbSu2\nMsfh7/igt+ZFFNejVteS4xCVELXfUEoNoMQHVPmasCfFPMnBUSj2U9eB0Vq+bRtK2VioEeK0Zjvz\nNON07z5u7j3EdLoH5NmmFSaBzDMmAWpJaL2gqXJgkE0oFPpoG/4ili/T5193qPDhBCDJTIGA2HiM\nvI8Bbu1ahnf5mqKH9q+2BjS/p6bZ1baVRbmM//edd/HVt57gzVdfxWcfPUQrNQbW2BJLALW9hA/f\nw6GUxJhZthHgYGEEOSIj5yArjy4s9PgSwA4Vu2dNjInnRczNc1oMXfD9ROHegYm/7/ZjMI0/uuNT\nAXwJOpIopklwPE44HSfcnA42AWHOASgk2ENe1xXbukYiAgZ7U044HGZblKKDSt67h8ZQNZHx2qid\nUQr7Vu3nHsAKKfrZMttdcGIbP9r6REJw2CurKZn2SdoDVKoRIKt4RZxJkAidyIrLcjEEvnXb/IFm\n817tkw93EklsYlK0V163Ovp5f2sHQuPvOyaQMDqVCOp6nEME/uKCgClArGE07H4mtXvgIospEX2m\ncYxz2AN6UM8vwmmJANp9czLp0J3hB82Z6GivoaGIKkklWMaWPNNjAaemtCGUrhrtb42Al31ZYmfU\n3RXbVhiINq6BEvfWkDPez+5go1plOhK1wWiKZJmgVyHbS0VCrFBEkOcZp3v3cLx/H9PxBOTJKu8p\nIx9MY6FUQVNOVZEMmRKyO4neGbBbRV4h1DPZJSEM+gfNvF+vQV9PnULKHtK4aOfOcXQ6CVQKOVZr\nMeul4MnTp/jJv/Yz+Hv/96/GOv2X/rk/iP/kz/9pnI5ztIyKr4vOpMiZgg5SuWZCnKdgrAivPjZO\ndx2gtXCvu1isOcJEBo6ghvabwAdk5Gwtp4BT/wWHgws3DwZZ55d8C2Di5fHxHFEhTYB06kjNE+bZ\n3Kxr/8zzgRNaTXtymicDksWT0IR5nrFsxSaGThNSOkKg1GhUBomWMCzLgnU9oWzD10iygEY4jKFr\nQ+aY+5zzAH0JyooI1nUN4Mvtsus0uJ8A3xN9+A1nkIgAW9lM3N9F7rUjibU82Jq11t+RfJDd5Uk+\n3DzIt/2+2wdg+B1ntZgZ3DG+9rm6GukftB+9NWtvSAym6ev93voRwNfuzRy3SDB2qL1nM+CBe3/f\nvhD+Ua/93B7o8PcVVoMTARIHamqr0NbR2EabyNzy64npXFdtb2rFAE4dbLVSc8MSEdP8skS11RYJ\nnPsnS+5sLeWUzCY7JRZmAb3QZCK8po1VC4sL1VqGRCZ4bdsYXwfc3H+AfDxCXSsFsFZ5MbaXMoBP\nKUMkI4niapoyb5t3tppO0J5ZgnhycP/oIJgnHJ4AOuBFgM9e2Pg9Kyw5c06b+5oNP/FX/wZ+4R9/\nA8D/AOCPA/i7+MVf+zH8xb/+c/jJ//CHDVimP+x6PR1R2KoSw4h2Z37NZDT/MpgSu3ZGMZaNT3W0\n3x0tjK5VE/Fg3wG8MhL/+TAbO/PuEv61c4+IXN/zl8fHf1wuC5ZlDW3EKTl4b9GfTZoWTDnFQKcE\nW/dVMHRzhdO52XliLDFbXp3xrcX6ZH0ljaQ6Sg5K4JuMwEobEzaNNjsK/J4H+MHtKeqFCEuUW+/Y\ntoLlspgm5FYwzTNkyldm3c7FERLmWIlM0Exdrb7vXhE46zh+X4fbsGR/2N7IUQia2/UMnnCAQHwj\nZ/iHS4Ff7tjXo6VsZ6VkPCfPXWLPBagyrniwn4f/ivyFxZQozfCzEmPN5BdmzpRsYLNtXoxXFpoG\n6DWkRqwoAfTGAhy1iv2rslBfWFgZ68ty7VbKYK92ift8bWH8ocATnLgDUcDfthj4parw8ZjK/DJP\nMw7HEw6nG6TpAJUMPlprXcxAVkAb/bcIgDxyKAjGNE5vkbW9keO+0g/FWpfoCNovc8cKnEjjbC+X\nM/D7bD8j665VoBT0Qi3i1tC2gqfPnuG/+O9/Dv/nr/5avP8f+/7vx4//8L+F02GO+xWhBXPnq623\nK2YozHa4H7b8iuBUM+2t3nb+U2DabvsWRv/SFNjIVmrsgd5YxOO97d1A95QmSsbMfmK4Qgw/guNT\nAXzZxisw4WlLonMWHA4TRBKWdbVgvDVsq20mANY37qOvQTAq+2QqYIJgSlbNTlxYDQIvMZgD2Ewn\nYx/8MtnwCYi9j0Sj9zGmNVO3Zb+x960n1lvORIQb5ypBwQiy/H2Wy4qFrV7T8YDRHiAB4rjjsARK\nrthdyYEscTbWOBzci3jNHQBsk8ABq3iBofhQOGdtOA9V6o+l2Cxh6P33U7LAVFJM3hKClH7NAXrR\nTXkrKTDabuwESVVuwzBZi4JYcuTBML9nQpxqYCDBKa0t/u1tJl0RbSaDrWOOI5xEqzEZslKctrJy\n0lrFuiyAwLTFuvXJm6CkOzxnINOJRuCuYZhdZHDvKHyRGAvNfneio5gPR0ieoUgxrMBaWWZkWMXJ\nnpnpSth7pRCzlhhA4GseY83sgomxdkKNx3YoEywfzQymTYKGPdsLO7aXbu4cKrRW/MRf/Wn8wq+/\njX1S8gu//mP4i//j/4r//At/juLz+6Q1FOuSAAAgAElEQVSUQOEu7xWfjCQARzdAIaEHBtikl7qr\niHiKLFCr5FMDAp7gsM1rC5BhjDIWiqmqmsg9ADx4cESeRi+8MriK6uCLN/Pl8bEc58sdXOcRapNU\nUxLT5fFgSMSESIuN8j4ej7ivwLJtsT9CawGKPAnm+YB+mAmmEmDzmJW6K7U2FA5KOLhgPVkwos0h\n2lhb18yPMX0nCjAYor1+XFXYw2zu2CNi7bfbVnBZFlyWBVutuJln2kurDjeCbx9qpZQPF1O+1d/3\nxx4AAzyO7+PaeTHXDGZvN+O1ijDo4zWBiYwnHgoA+7Yx7MaDJ2gavk0IzuwHvOwBMNRKcdxRM452\nCHXNJ9OnNKYcyNSyxKIzMQl20o4y6vqPnSCXt+TXrUTCUWtB2dbwQ2Xb+FWw1xj1go82SypTIsgH\nMR2djOtnx9+x1hO2W7Q6TjPR90GBlJAPM6bjCTKZCr6DYkkSkCekyT5L+CyjJRxibV4EsXoHwGKU\nJN09xwFXegwyfL3/viUY6CYoj964V7zo1aC9shBmLSe9bOj0M7/9ta/j7/8/vwrzLz/Cz/0R9K74\npV//Ar7y1tv4zs98Jgo8LkKvcn3vvMDnyZr4moS5jUY2RS01dD27s8l5PZHU74M/2HQ8AzPU9qcg\nfIaqxah5mnA6nnA8HimrYL/rlffpMEe72Mvjk3FclhWlmGTJgweKtVRqXpkt85DD9YhysgFWSYBt\nS6Yt2ppJnYglpK1a/Nn66CzoXaK1yVi3lDGJ5NVszJTnyFdsnVYMi0w7JzYFuGMU+dWBHrEdm+Va\nH8mJCMtlwbYVnO65FIiGZIZPAEw5g/y0yFk8uc/fIkTag+eAgwSD9SruF/q4hvF7ow0sfI76e1i3\nChwQ8GvFLt9QAn0+9c/ztr7Te+ILHXyEWG4Z4T3vTxTvIVfsrgDp/Dpc+kSpGZkygKFH7MCKd7k4\nCwjQwXbtVhxRFlFq45CsAE1HMd8KHyb/0GvDRubX4UA9UZIdzN8lJMkWk3v7ORTaab9lP4XagC/P\nZWqt5rGp+9haN5YyrDNp4kR58WAgACzGQDljkgOgps/bnUiwA35jzfiC2cVQytz2RWhyj3p5vOHA\nJOhvoA3o1Z7Nzu+A97qXir5uqNtmcgRkHP/kf/ez+MUXcptf+vUv4r/6n34eP/Hv/xlbJxjajxLF\nQAZCHpdcra/E9FGDV4GU0bvnN/3q2iIWBHN9J1AkI/Yo/Y/nqSPGM1xFFaitYuoHzPMAvhxs/CiP\nTwXwtSx3DF5sM+7F9oSLQ7IJsdVuFcaHDx9hPm5Y1hW12ihOqwx3CwIpINnnjpwE65QJZFgFRdkm\n4EmJV1NacnCAQBMDQwf+vT1Ej6PaHpUYVQJSI2lRLmLvGU9gn7gnJLvkpbWGdV1xOS8opWI+3SCJ\noEGHsc+Z9Eer8hmDigi4jOxhn4Y44u0JkU3Qa2HkJe8W8W6z7H8/qdpEvhe+70ZmVPF1/N89QAj5\nJYS4LxDJxz7A3H+0AwgOJgCAa4olaunQysONBeg07J6M5KJXM0jeEmLvZQ+31RpOB6zYl11VpJFa\n3HoNkXtzRNQBOp9xujlxQorrtQAQtjTwunyMtQX/A8QxX9iugS8PnFXQmqImjhCWhDzNSHliBUYJ\n/iKA0DxN9nvagH2Xzu7JqdoHs8aEhM52x3FvPqQF5/fYNb1a3TkJA7TYIwpohbaC3opVqbYNjfpd\nbav47W98E3//1/4xvmVS8htfwFe++Ta+67OfsWSAAX5y0Nfvm7pYKRkP4pR1c55KcNiAL1u/qjs9\nBAW62LU0dz7cmx3GxEC00SIqJr7smzM/2A8PgoymEUGh0JRfAl+fkMOq3DQxYs7bJ6l1gtbWZmiB\n3el4wmuvvYZ764anHzzDVhsBBur7TAnH4xzC8zkJUgZBcrcRjcNAUjB4tnWyFtxJIjBz22BVOAsW\nTUPSpvXsk1r1gC8N+xmAfWus7Gusu7CvMHtRSjGtr/MdXuF0u5wSetLYU35fnF22B9BebJ/ff84/\n9RHMqvQhm2/gH3aA9gBCbLjJ/m2UiZrfn53GUhL7fh/ANiBhI3R3DTGpypMSZyUrnIMWYWkWY1iL\nGsuo0ea3WuzZe5FAEe8LRUzh8imLBoANllBrFWVbAwzx2KIWe1/JcnWvY+x8r1HcMMZeRcYohlnh\nzkD8bduMMd9WyhWY7y+1AKkgMcZI9DEQAwm9pGGgUIbMtt6lW3tlrYXnleCFyE5xevNbnQzH6+fN\n2/QhEFW8cKJkc3UDwDzpQG8GcvHetFpRy4qyXLAtF5R1wVfeeovv+MdfWHw/CAD4+jffxecfP44W\nQvPNDpw6mz7FOUWS7pPDk83sawDeevcJvvLOO9i4b53hZ2Cz7d9W2Z7auwGyilHkijbfbv5cXNOr\nIOcJ6Z4Y8JWMhRlFQZFgiL5kfH1yjq1UQBJefe0zeFgbnj1/hue3dygcoAKAXSpWzLQpvMCcBOVg\nxdXBzJkicTcGj+UrLjw9BXDbaFtsgptLbrRWcTzY2jA/wemw2pHSBMdp9uBs7x1dOCGbkhEApzHu\nfEDvHcuy4u7ujHVZoR3IaYKioShZ9tKtBTNleCFdkttnGgO387s1bD/1YuZor/rd1rnlB/6vUbAN\nBpz7APcDvUd1w22XAShetPDYWKzrZH8OzN+EuZ6RknZgDG1/dMzwOWZJSI72BQNsZFeZ56fAaI/v\nPQAwKJmq3YspY1gXAGj1NvkaQw/82TcO6bIOleF3ympDTtIBOB4OUeTXBit20DZaQanv2vU8qOqh\nFeq/W6hnZS2OViDpaEDqODIxSSljSvv7rsOHYpBIsgJtByq+eEQRzHp/4V1ido4GLgoB0CBK2MKg\n1INCew12HXqHNMsNE69ZuxVXWinQal91W7EtC7ZlRS8Vv/3W2/gHv/br+FBuo4ovffkL+Orb7+D3\nvPFZ7C6Yy4T5PEahvTeEzISL3ENAXMB+vfZuLfNQJMYIrk8GKGoTlJqgRL48bqy12XA/dMyM7Wx/\nS+AdtvSMRJCSAdcd3/YR/DM7PhXAV62GOs4zg0lWRa3qDvQuOBxtolrriuPpBm+8ecRlWfDuk/dw\ndz4DIAsrCWa2PE7zDFHgNE0oh0MElA5oAOSIMGFotRrwxU2nXFAeVKQkNm3BT1wQSHpXwtA+nQrO\nFNHBjsnJgkn+LKddBZ3VvfP5jOe3t1jWFQ8ePWabpelpjIpRJjhHaiSNZKKYdwTyGEY4AzGVZU/T\nt1Yat7Bu/Pl7DpSJJykaCYNNa2GQaFG9MWUgIZLf1dooqAhpv98DO6HoZRrVEvtgjlSVmDLW6ZzM\noXnVyZy997uD2jpWmTDArO562uF/KunFXdlnb6i9A3KtetviTkOs2/vUWkw8ngwxZ4T13kPXDdpR\nakEtDZI52WPnYFVsncT3mhlcpx170gsAYEBrxm6GY2E5kXEA2Hk7+OUsI0ljKq/2IerO4yqA8OQJ\niMQkYNCdc4jgQZXJCKvtBL+kWxtKNsjIBCmZmDgVuCwLtoslJV/9xjf5jt8mKXn3Cb7zs69yTWh8\ntq+9SFo7CyGsYmSCv8IW264dbz15iq++/S7W2ji5x4XD7bnZND+1aTTJgOAORSE7LSdgzgkpTQS2\nDRTvzfY/YD+DMEQzM4AEiQlgL4+P/9BmVclpMrcqIpFgrBSg959t24p5znh8eIzDuuH2smCrFwuS\nsu3p42nG8XTA6XigPQemSUx7o3F6XK1A65inGUAyELs25NQJqGoA635OjT5lmqYorixliban/bEH\noXpr6F5swTVY5bVDQNBaw/l8we3trYGB4AAIBdBGpTC53UgO+qaY6PXiOQy26DWAEa8BtSUgKBEw\nj585tLQfcBI6kBj2J96fvmKfENm9MDBHIcBOJFrsBDD0OnY2JIBwFk3EzpOnZUe//uyUE7RoaD2W\nYm3c+ypDbw2oziZvEXtU2vjKlsY948hf4wBaJxsomMQiu3P2IlI2cnU843H/vaIM3icvrlQt0NQh\nMgUbtkvBpD2E0ge3kIWA3lG1I0si480YCbXRBsY6cKBygHR7zSrTVRxPNeku/FA1iM2TvFat8t76\n7k/bX7VQ9L9YMlK3FZfLBcv5Fsv5jM89esg78XcxEhAA+DsAgDcfP7LnxfYzazMCxcYJdIH6XGRA\nJlAPkgXI95+f8VM/8/P45d/8jXj3U57xmRsQbOZ9qxU121CcBI0ko6zeKYC4J7K7jx4XOAtTgWAD\nmf9KmKYpgO+XxyfjcIDrwcOHUAClV5yXhfEColA/YcLhMGOeZ0AVxymhThPKNI1iPGPNaTKxac9X\nemsGSFPPp7fhH7wW7Z0CebLpX4Xsn1G0QAANjtbHlO4kEKWeUk5A66Fv5QwZk2hZcLlcsK4r7ZTZ\nbW2Wc5iQvO4GXChcuFnF7fwOuNBhM5Txn9vnva0fWlsadtpzFwAW2zrCRduifvMx/I7dLAJYwFWn\nARFBasg6ewjDPkgnCWHsPRuqZIUmJy7EzzDylwSQZTSkW+y67DXaG0prnARYwu7BQTK2tisLbEPD\n2AANi21aYEHuAzo1qTyP0Z1Mz0jFCID6wCYR9G52O9YHHDAUQL1ThgWbVi2XaXUUszqJKwCm3CO9\nSMxdPUeyoSkK6SBzm89gB0u+yDwfto/AKteL5e2DoRidIxivAUZ3ijC3MV/juY1C0CG9sLhF0Ivg\nVy8byrKgLAvatuF3vvkOP+3b5DbvPcV3fe515r8OvqljYLvr8kWTQleY6Q2awogoXfGNd5/g6+8+\nxVqs7d0KLzt4Si2/VDVmpXACZIcGdpEmFqXAYRO9o6vFsqV2GPHbpmT2PrQlP6rjUwF8zZMZnTkn\nHBLY4giixmR0TDPWsmFZNqgIjjc3JljvfekAAwFgnjKOh9laShToU0afJ2zTZNOPHPzq3cA2iFVu\nWZWzIWx0AGYpIQKOxbYK2zRZVX1dl2BPmd/QCK6d7RUChQ66iL1f2lUFOqt767LgcjlbawMMOEkY\nI4Jph1mRNvQ9gA0Hj+KcLfEGkhkQgiwezMH/3CVP/j7XDnE4j2sIxTGJESQOR+KVAVgCEpRijPtA\n93CV3KiCFg9uCYTvb2w5GfeZz8xaICw5S2IGrVUTt93WFVptigvcuQDDibBfvvc2wKfVhITd4Caw\nnYF93DYefgCi5qT4fBiwg/o0vVUi5w3KlqbhlxnUsNq/VXMUwfZqQGmuCUHDznVjIsYN2jOcyquK\nAB2V00FGq8t4xsZmtGc9tK5AijUD9j6YecIoSj2a6iYmLL1Ce7VrbV7J7kAt0LKhb1YB0VLQtxV1\nsWmO2+WCNx//k5OSz73yyMBOP7fYWxhrxtelJEiaKHRvgZUo8P7tHX7qZ/4mfuXLvxnvfswzXr+X\nY5ukLAE8qnDaVibwSodqbboC5MGs8eEH22aCncYwRGjvYJz1YBi+PD7Ww4Gkm5sbiAhONyfM0xSD\nKXLOmOcZt7e3OJ9v0TXheDoi18wgvxgwyqmux8MBx+MB88Ep4MYChlrrQOXkOHS1xEYkKvY5NZsk\nrB58aExlaxS192nGrXWsy3LN6nBNjZ3tji+2VoSgtux0IRRXyYq3jBjABrNRtP/CIosDXzHZN1CK\nXQKys4F+XLWNyAvglQjty7BPysvyXe4+Klq5MRhmgt9tT73oqa6BOP+UfREormdXDDJtQQdyeH/J\nhDUduJVTsbyowndnm723xvS+A76qM4etEHeYD5H4+TQvBzk12v39uTIKcA0ST+40DQKFJwn+fnU/\ndIUi+pwKlrPFFrV0QGwokIOcg9lgnLrK38sp4TBlTlW09tjszAdG5rq7F64z4qDpHvTaPY5xf1UR\nk8uaF1lM6sJ8jYFhvQ4JgsYEcVsuWC4XrMsFn3/8EH/se78Xv/SbX2Qr5g8C+DtI8mP4gd/73fiO\nV18NK+3i3037WIP7Nc6pjSl0Ju1a//LP/i38oy+/g31Ly9J+FE+WBW88OKGRAe1JIbpCsoHv0zRj\nu+wLlJZwDuaNXmk7+b019nmHF2NzSlaAe+lnPjHH+bKYryHLpVab8tu6AbiZcdyUMw7zhMM8GZiR\nM1pOqDmh1im04+o0sS3f4v7evGUfQE40CZ1J8vADgGCeZhwPB1hrEwurO5vae+N23Ov+ev6jUcTD\njv2o3axCrXWwSClgDlB2BpYoB5pCPUuaqADarO0LtG+DaSlIUSh2c78HPBxYvm5DGQWLrg58UXIm\ncpR9dMZ/+bmERAY4lEt2+UyKXA0g0YD7Vnfgm73G2bg7oMX3d9x3Ha2LtDvC/MV1trZlxbos6NX0\nRFNn0Z5MYm9xhANg7mfYIu+6tpnrxgsKtZah/RXdVXaprVobrLdG+pTl61zG+w1pk7THe9VOP9eb\nsaGZmHRVbMU6sI5z3Cy7P9RvBKdNut/ru0fqLbiRz4gDWbvHj1G48pzGwdDocum0pb0PP6psjekN\niQMEvItFq8m1eF6j2wot1JHcVivony9YLxfUuuGN3yW3eeOVx1YASQNs7b5+lPfUpSDYNZJY2HfX\nKQBub2/xX//M/4Z/uCu6HNOEzz4YfivnoefVWoOEUP0UhAHr/Nl9vnqUIaitI9XGIX/WWdYYw36U\nx6cC+Jpme6BTFjy8fx8PHz7ANE2om220aZ6R5xl1KbisC7baUXvH3fmMddtYcZTQVZmyBWaH0N1R\naM6YU0Jrk1U9phxVtExacC3VXt97bDYHibyNJEHIDJhtPPyyxPSpAIocxo7AiXbVjSArCFD7nnIC\nV/PpLdQxa7UisdUli8CFAYS96Q6ceSsWL9UCVr4OnKTk/cLYBVd2bteg194fDcOithFBgVyMe2N/\njvMIUU5H6Py96FA82YB4yxAgorwV5mikD+ejBL/Szph5tUmbOSpn2oqCwo8F67pivSyWeKpidiYf\nn4G2ndA9kf1eK+pGIWEGmp6MuuHw6SRBH2YyapM4ZTgLePXCjYgTU0ey1bo5CQtuCIBptwpRBxqa\nOQoBjvNI1LzlQ/g1ciGOmBcDWn09DAfvwfxwBg4k7r8crDUhfrad9N2EMragSKuQZn8q2VG9NauE\nrCt02wz0KgV1uWA9n7HenbGuF7z5+BH+hT/wPfjSlz+clPzh3/fdePPVxyFQ6dOQPOBQwIIoDMdg\nWnMpkj4I8N/8zz+PX/2td7FPStb2o3j3fMFn7x8taaDot7VMAsBkSUnOqDnTEZNL4Z8vZHx1E4e0\nVqLEoIHAp998dcHul8fHfZyOk9mPVvDq66/jtVdfgeso5XnGvYcPcDrdwwe3dzivFaU2nNeCpTQs\npaDWjpYqlELVB0k4SsLBB5QkxTwRs5aEooqiY4oO1ATQpexAaAeABEhscWoMKg7zAfM0o9aC890d\noBQw9+CkN4ATF732oQTwNQHKNjWlbRARoCnaVlGXgrpsqMuGtjXMkw3CyFmMZZysYAK+t79/txMP\nGyYsnCRJ6D7N132ntx6z3GK/C4hm+qDEZELIlBoBm9D3mL3vCMUW6WHvAGASjN3l07t8mkjagfq0\n4707L8pfuw84AU/+mvu9HXinTIx669hawbYsWNcLatkAb6vg8+ytQ5oVm/YTf70638j4atWKNjnn\nCNKddeysLm8bcdYReE8cyHRmtSdgxjKvAMxnNW3UA7LJbF2sna53AytLaahNkLSjoaFpQdMN6Cuw\nXYBs0+JmsgUEE7Sx1YJsAKtc89lgxBoGvgIp2QowQf5raYVgELgEwi4JSlFYqZDqQsIrUCumdbOJ\nmKVAlwX1cof1fIvlcod1vaCUgh//s/86/tLP/W380pe/EB/5A7/3u/HFH/oTaEK6sFV7aBs4JUys\nmJF2rV1JMroATTJSnvBb33gLX/qND7e0AIqlfgFbndjKNmGm1IZqxzwdME2muZQ4UU4Z+6SUoSmj\nqgD5gLpVaFVUJJSe0DRhq4raFJAMERu6Ms/HwXR5eXzsx2VZrEVdO7ay4fndnTEtW41YQmBdH1Oi\nFrEnwSKYYEyu2hK2agCZiGkiQU2GYfO9M01kqKrJbYh1iXTa/MN8wDzbsKB1W42NlgRJU+QFArfV\nFLl35qp2GBsKAcYqAQ/D9ptJg5SCspFl1LoNVErZWGNpgOIpWp3diI8SRuAXgYzx+x6z8j2uQaZx\nzx0Q8Rh25CEdPuUbOiy/OyvPz7z9U3dOLM7CY3nP7ySx/dPsXrDgxJha8fY71mvwlRyUJKgExggG\nehmw1HeF+7KuplOdbciIMD7vsAJbJ2Gjs03P2yFd20tVTcc0ZxbmbSr9VmwqfVfX9vQ145fsrCFb\nZw195IScWGJgJYsqLNo74OW6kEqwsHZgqx1zTpQDGRMutVdAK6TTN/CjPVf0W+nDn+0FnmOTHAEJ\nGSF/ptaENXy5cnqyOdqhU6y8RtEerfRorhtpepgoJtmCskG3Ci0bKkGv5XzGupzRWsXnX3mEP/o9\n34P/67e+TW7z2iuRl2URNOzwAFssA/x1YgpjOegAcP/Kz/4t/MoLRZe1/yjePS94/d4hpFZS6Il1\nynEYcce0BhP9yBiGpIzNIDbAolRrWVZ22rg81Ed5fCqAr1ENVjx69AAPHz6wDdGBGdmmCx1OwK0J\nKN5eVujdGbe3z3G+nIN2ZyKOiVR8W1RZbLcoBFkVjZsCQk0WsUqptnblSDLZIz650SdlZLEKSsoZ\npVWsFKL1KqZv1CyZ4A6giSK4AYwNgxr2WzXa50qpMb44H4+AB1+ZyQjohBhwqt9Evs8+sB/B/fAQ\nPqFoMOXs5w6GDL80En5jQVLwWNXlha+uhehLOM1g5dhuCQn08dA7n42Gs+kCRJ8eLHmK1ghVVlDM\nYTj92KWpjAJuPddlXdEochsAIR2htiHw2NnvbpXrFoCYT71JOZv+DSvnhcHL0NSxaY9KTSe/Icbc\nbWiNQJQ7DRqgrgS5WAlu7iTAxEmB0hWFGgnxeaH5YkKKSGyF7LAhV/x8TfsHQzaYrwMHMt052CKw\nm+itqF5td6Crj8oUOfQ2udS1vVpBd4HHUtG3Fdg2YCvo64btfDbncD5jKwuadvz4n/2T+Ev/y9/G\nl3ZJyR/+fd+NL/7Qv7oLlCxJdn0mv7825WSAXR6ICdfW77z75NsmJWv7AkqbcZwzNbhMf81aPXEl\n7J1yMnadV+FByi9s6mOhpobCkuoxPVJiT77MRz4Zx5zt+azLggf3vwsPH97H8+e3KK1hOh5x/9Fj\nQBOaTNg6cHdZsazPsLWGtVTTWuwVWq29aOodc+s4ehADo6CLCHqy5DhNDm4RxGheje/Rzmg0dglm\nUW8d0zThMB8w5Rwgvgcyvfv0JksbchLIlBlwd2szTgf4yGoPwHMSm8S3NvS1AWtDOa+olwKdLbDu\nKUNTQiF4nFyFeddG1aFDn5HfE147cY8BqvtkZa8iqmLCZEUPUEOwawBNMXkI1tI1qrvObN6Bhvzk\nia3LrkUBgNNwR6KVqfeH3lEJGDkTwVv2wVwEfFbg/RXfygRorE1xQysbWl0Bgkx+XlHB7wKtHXVd\no6VUVW26cGUrLAslFogipnD5AB/VHi3wee/Ddzal00fYCXPGLgWw7b4zaRNFk4YmBONbQtGOrVhQ\n20XRtKLUBbXcoZc76HZEnoA0z8gNHAiRgAaOMTG9s1oX7NsrLJYw26nimlZkKjhUGQWoylbfPpLr\nZg8j9Wa6Y7UA2wZdF+h6gZaCXA0M69uGdj6j3N1iO99ivZyxbjYQ6eY44y/8yA/jq2+/g689eYLP\nvfIIb772GCqKItaqk2cDv7wlsWnHlCbkzIo5LIYUCDomtHwE8oTffvt9PoFv3dKytYo5z8HoWS4X\n+l6xdno+m5QyAVBLThsEpQM9zSg9YeuKoglrE1TNBL4EIhNSBkqpePDgEeb58E8yfy+P/x+Prdq0\ntNIqbu/ucHd3h8Kp35XsUFrA0P1NYsXZlARpshzGwudO8ztazaoOdqh209DKKUWFwjXgUkqYphmS\nMgesmOaSALTNdr4iPlSB8R/YGRDgg9tdYF84V8Y8lZNnXTog5Zkx04jPAMagiIQvipSOUQUYpoCm\nHa838h0xGYvIGfzHOyJAxLr+eYDpOxFY1PE9f40P9yLt2c6MWkfmt3roLikY37Mgqzuf1HXcU0BC\nD9TuwPD9UIU3cQRrrBlA1EpBK8YWd43QpGImXkYM33nfQ3KF7c/OBNYouph29cThBt3F7Vlc8dbE\nVhuBvx5rQcSS2CAaQCmqbovB5IdMX8pZrW0HLppcjRWSSlNjEImiRYfV8KU2kbiarVWYXhoc8Nr7\n/j7iGs9tVIPxLMxz4rn0Hvlhd/YwgBS6kV5E6iRHNHbTsN2xbAZ4Vete0c0GqLR1RTmzoE8Jl8bi\n0Y//O/8afupv/u8fzm3+9J8wXIHgU9eG5Gxdxmkj5uGwN+z3nq2rr7/7BF/6jQ9rJANWdCltwjH0\nhSUKZd5KqwCLPNaxFK/zlct4qVRjyJXaI45ttUdx9qM6PhXAV6chRhLMhyHm27VDpoz5MKMD1u/c\nOkozEfjnd3fWkpas7722iimzbYDorcAqJEIQI7Fi0LX7MBBA1QwEnDHUQ+8lsa3Bg/eUJyLvGCK1\nqleBqCMK0briCDIwjPUL2TBxHYIbhY6k4FArJM3hPKL9yhcrQRaJz712CBbfCxkycuW0pA/QC9gl\nK+543OrzvN15+D27As7EgaidBpqDZ+r5zQDpREhj5sU7rTUMnDooyde6oHrvIIZkzlqE3XctHIZN\n1+hMvHJUSGwErTmMVqrRgasxkvz5+kQuF7tNraHvhxh4Pzy16HwcuWoyJohXt1Li9BO2lxpfnK2N\nFDP2qgjZRkqn0sWE05taNb/BHEaMtt9WcxStAhwdrZxiH3ppcAfcr1gaY71Z1d8CCPGVAmHbrk84\n8WDAHEGPa3dqsmgLJoMWcwag5kpfrSJSlgXb3Rnb+czJMQVdFDeHCX/h3/s38DtPnuLr732AN155\njM+9YtWQlDMOhwPm2aqXRSTWj4BziRYAACAASURBVHgAKLugI3aRrZdvPHnKK/3WSUntHUdkBitc\n32zHUe1Y1hXLtiLB2IIqXuEkhV0VpTZspWLZymDscXKkMOmepullJf4TchiYIJgPB5go72Zth9lG\nvbfWbFjF5YzezQesm7FvnQXSu8Z0xWPeMYFDCF5IJUfYaG8lCHDGyp0AEO2Mrn3iwvIepLpOhwcd\nbqN1JzRvYIFpMgDjc0cL8+4meGWPoHvxyU/NKEMGPwAeBIl2MhCcvZOinXO8pcS1XDGHHVzisb8/\nUSEPUIyMtBcmVe6PIWQ/PtN9/ajGY++B4nA/3VXj+oTxgLFuTAets0Lu/sXDTvXAufqk3xbX3DXZ\nYB5WkP38lK2FHif4tfq/nTVsa9OYej7cxKvWvQ89nbi3ErkZ74vrPJpjFK5LL7BEMWznA2J9uH93\n0J4J0bZuWLcN9/hcfPKXtcEIJE0cRuNJLCdn774EHVUUqXqroyApgiUNtvq0XiM5gSBYDEmBpB0z\nFGlXlOo8T9RqzBe2Wi3LgnVdUcpm+p6MPbZS8Oarr+LN115F14babGLrPE04nQ443dygtobz+Rzx\nkLdzKeMrLmDadbue7/zc5/iDb93ScuCQidYbKrvS5nkOMfrz+Yznz5/jdDoZu0zG/nfpi2VZoBAs\nyxqtzp1+OE1T2ImX04M/WYfnCE0Vl4tNy5OckBSx71OeDFDxdrWcoc0YoJMkdCJfHRrtZx6PuR3T\nlG0Pz0M6xZmggISulun2WGtb1x6ATIA8MiYI29ofnQB2SNjE8R07tCvtBm1da5h6MjF7vqbznHOA\nSiYzsZ+qGG++/xBKvXgxxT9YWKAYL/PzlVF8eeGZRNcLEQQvCgyQxM4hvfB6ZyyxRgMvBKnIyCHh\nJKXgHkUbsuUvGACL27o9gLgDglrZ0KmN5YNUKHZtMTmZYn7PW9nGhEY1wNI0v3oU2MYglB6TFoMF\nrgRBPEbBAEYNRxWCr+3qxkZ7o5qtbdp5n1jkYqzhwBdnBkO7st3f9DHXdUXZNhxbNf0pgl4GtBHM\nZSFfmVOG6vQuB1WxdeLAbizSBtp0n+zOLiGyu3zYg+c1nts560tLQV+NZYxa0dcVdVmxXRasd3fY\nzheU1SYlKxQNVnD5z/7dP4WvPXkfX3vyAd547RV87pXHpp85ZxxvjjgeJvP322bX1AHJu2BNd1+w\nqZpepPvGk/f4om+f3xw0W9zqUy2JSShgzE+K8p+OE5CtG6J3u38AmHNWVFHM24acZwMsfR1+hMen\nBviyAPQAiKC6oGfvSHlCV8Xt3R1ub+/QuuJwPKE2o6nPByP51s3AIjAA9PHSSLaZsxpdOPR7BCaO\nugt0OhPXQiObCai58YveWFgyU7XRGPahlbT7Co0SNZDBX+Mi9DsQO5IU7T0cSFQXfC/QaQyRY3Mg\nedol2N4Wqd5KQpeVxrQlqLPBdqAX6DwSGVbAjrk1nM6V8/D7pp2Vy/11G9ugMwC1N/LgbCDxSmfj\nBtJf6sloShnaBa2VQMX3DtnHwpeNLQ+tQroa6y8Luph4fS1l9I8z8HCadi0FLu4Y2l27RNWdxbKY\nJk6iwLmDIIkGVxtbA9m+AKHD7z61yUZFxyhqsr7M2UjILuvuPgCWTNZmbDOjPy+mAdcacqxdpa4z\ntRG85rITBr0GvuxoQAQVIgMI3a8NtG6AmAslt2azPfpwEFqMPdcL2xs3E3xczhdc7u6wnM8o60aW\nQ0UTa7tp6Hjj8UN87vFjc5DdEvg8T9RgyliWC5wRCSSINNjURq6hZMBBzhNmgo/f+dnP8gq/dVIy\n58ESAfeI08G9hXk53+E4T8inI6a0C4hgVfZlWbGsGy7LBaWQtaCwfZcypgmYpnmIhL88PtZj2yrm\necbDBw8gIrhczlhXA8MggmVZ8OzZLZ4/fw4AuH//Pmrr+OD2FvM04TAfUaqJtnobS20NqVobmupO\nHN1bb3EdnImaPSi0HXuhfWU72jRNpgkGYNtMUNUBNBf0dRAqEl7NI2HXAf04WwrxbwdydMdWHYzG\ntrMRo9UBH/JrwczZ7aFErRkA0e6N8Xa7SmZiIYLThXfv/2JByI8oTNA2OQBnhQy2XYyLpp8LZGi0\nVri/S8lj6QBcrFXe0xf6SrICvA2+lo3CwB0iGiL4tSt6sYEfLobeY1BKDYDLq+u1blfaTa1VLMsF\n27Yx1rgGMgx86l7huvLH3sbYe6OkTg5AtrFdfdxHYcEDJn2jfv4NUgrWhQLxlwu28yVYv5asGRg1\nq4vgMnbTHsLwoUmmLJooEyAxzcsoCLnvUOWELbobf57VJzX3AOWUha22mthzJci1Lgvuzmecz2cs\ny8KWsk4Q1xht82EmADBY5/PhgNPphNPxiGUdwFKAS2JMOiFg5zGS77vf/3u+C//89/1B/PJvfJF7\n/Adh/uWLuJmOmLOB2a02bE0hyYAvaztTbOuC8/mMmS3NDpb48962DedlgQJYliUmz7ZW0dWAtUy7\nIwQfXx6fjON0cy/WUcoT8tyjTb0vC3prkGnY4VrF1n6tyJIwTyOWUQCVgJk/4X0RxRjDVnj1fS8C\n5ClHi2RjYS6YODubL2lv241R7KC4F1pcbgIYYJDnMl3J4OmM9WmjHBS3bc240gs+mUXpKJqYbQof\nQZts1y+hkzqKAONeB+i1z132L3A34OcRh3dfNKBpTDJOLvLdPSfs8CFc2ad6i+V1LkJFUxe2JWV7\nJomxad/lFV649UDfgHybwOh5SupsnWe+2jrbFmuFgLPY+7BVVpQYWtMun7K/3kbCyLoSiKUtcyKF\na3gqvFU+RcFCEvG23plTIIotfr975IKInM7fLx6EeNG4ohQWKfilrZudZT6jPnhEbZJz78ohXD3s\n9P5w4M8f+Ys5DRxcdRvvxZTuAwMGYw4c2DW0JEmQ2MrIa25vsZwXlG0NokTXjgrLazpMq/j1x48A\nMi6TJORpwul0wvEwUXSeMVTTkGxR36N+PRxiMtHef8dnX+dVf/v8xte37SmLKebZcILKokpZFxzm\ne8gH5ttAaHGWUrGsG0QSDocN84xBhviIj08F8NXQkfKM4737aCq4vWzY1g21KXJq0LTivQ+e4e6y\nIk9H3JzuAci4fX5mTy+gokgoZpGSjaeuIgCo64JORof9gnRrHUy9R2XPjVm0lXWyWnieOWdMeQJU\n0Io5EZL5SaNV2vud7spuz0FNq0ooNMjZUxAZARVgwWRtNrIaMHFYsNVRVVCalQ8lcWqcUMuLjmbk\nOclEFh3YSGMzWGIisSmYfbhbJILugJV9XU078cRgeDZDzJ1hBWc2cIy5a2nQIUZlxlu1iRQ1sLVE\nncnF50FtBNmdnwUKW0zV0lbNYez0CbRZ609rhQxAsTa+XtG0ooOaJ8keUnPQ1ANvEdTesayLJbkp\nUZKG9ycNQ6pggiA+6rzxa+ieNbW2Hp+Q5UyFAL0ERvFWu11ZAK0NZVuxrBcsywXr+YK2XKDbBplm\nezwOUmqPaolCY3oO6FCwuzeR9IE0dyYywjWk1N2R1sgEs/3g4pgx+YSTTdqyoK4LadoVZd2wnC+4\nu7vD5XLBVlaUvqFqR1NFBdAl2fUmS0oa+c3Tccbh5giBol4aaq8echnDMhJYGb0COUHnGUgZ3/H5\n78Af+QPfj3/05Q8nJafpiCmSDHt+KSVMecaUZkATeunoVYHJJjbmaR4TI2VCKR3rWtEbUKu1pLYA\nNBUZCafjEfPhJePrk3K01nA4HPDw4UMkEVwu1jovYuyf2jo+eP8DbFvBg4eP8Morr6JD8OTp+8h5\norinMUhyzpBugV5tLdguSZIVH4AdoDy0At0ZmF1z7acJnSDuHvjyJMYTEft1b70byQqA+N4+IPRp\nRiGa6z6Ar+scduLMRExkQKYETRZwE1K6uo9xLtiBehg2xHyHxD7ds4z4DpE8+feTCUEhKvG7n1mL\nGUEvr5r7NRAUifdP7pcAwGyhs50tnRGvOweo4kUPVbVgl8G7mT/7t09vbD6JUTnUBGwBcTCnMYZQ\n2BCdXTI4gD+7Xy3ijIrSCkozQWCv6to1X7O4wuvGMxg+udO+S4Uxm9i2h0hGx2G+JkGyQvIErcZs\n1PMd5ttb3N3dYVkuaNRplJQhTTGpYuJ7VWdgQZFzpxakt5x2v4H8PIEyjmEGNYSH+ZpgJrQGYUGr\n1Q1bqWhlRV8X1OWCui7om0ka1Gp6npdlwbKuNiAm2NRMSHm/TYvG/MvhcMC9ezc4HA5WWCobh930\n8KfqcUE30MqBABMtM83Y//jP/zn8l//tX8dvvTVaWm6mA16/522HdnVNOyZIFE8Viq0WGKkhYz6w\nNVmtld5ZYa1WqIixpNnC1JmIz/OM0+kUenAxDfrl8bEfDx68GmD1+0+fQ5uEvWiwAr0nmD6xXVgs\nhnSk1KFZuKcB+BT3YK2AIMC+aN8tn2F8nlNCTjMEFs9o70gtQXXEPur6GMkkXxLj1ASEPlKwYtmC\nliJfsS8Bou3SWy+T6xOlTOaPFW8NSMn0Q9kgHAacnk94J8LVtHQQ+OgNRiLAAJCAXe7SR2zu+RCd\nYAAgYHJP4M5bDwU++MrNvn1/cq1KL8wIu1BUzb/wZ36dgET83LVBtcZ9AfMbsEsF2k0Dl+BP7w25\nDy1iLzrYdFvTCISaYnDTitY3+1M6uo/H5Zpq3Tpbeu/RWr1umwFogtC27mDHCdsX3cYYKcGuR3uz\nXMl1PIHwybU3y2VUd5rG9ntNgJ4TFB1ZBVItHysqHLBzxnJ7h3J7hi4LJGdkmI9ghmryErshAZo9\nIcWVfpdoj+u3Z8w80+Mn948Qk8Dp1nKcuda80yryGupJtnVFWS/WVloq6laxLivOlwWX5YxtW1Ba\noc/p9mwkoYtYXk673lQNYDrNmG84bKIV1F6ttVhsjUsfUxbFNJvQs6DnjDZNUBW88cZ34Ae+5/vw\nK7/1rfObzPjN2qdtp8/J8puk2VhdDYAKskxIMkGSDRVEFqhMaEVRislHqQpq7ShNI4f9KI9PBfBV\nu2JKCTf37qNCsKwFZWuWgGZBXyvOlxVdgXs393D/4SvoXTHlp1CLNCFIbI1LmJJTzBUinYEkJ0eA\nNGBDngj4UBdjl5QEHZnJhaoaWpqz7bPmwR0N8C6ytG3p0dYI/t3wBhoN04VJiYonu88a46rN6SCn\nYPMQagsQDayKxFokiDQAN7b+szLhNjWmE9GBKHAN4vBiRAQqGq0DCowJX/AgXEagKwNR761TfJwR\naPKWFkTlgKXUqKjae3HEOp0dfNoUwJ9xHG8taHWz8bKsIKPtKiHhjC0oVAVar6i9ornByUyurJfN\nEhKnlgtbbEs12ihc/JhtJBh0aX/4zk7S3tBdWBjmJDvUgJ/eTKfBE5fkKYAYZTcx6GAPfe3Aulxw\nubvF+flzbHdn9GUFpkOIdtpnu/inMRKiug/YPfSH71RVT84ZXEjlmleFViaEtaBphQtjtlaxLYuB\nXWVD2xa0dTGxx3W1nn1O/iibVQ22uqFqMcYbOmpXNAGQphjaAFUgK+bDjOPNEZKFLTfLGGABT4y7\nAceJ4JcAXRi6iKBC8B/92z+Ev/w3fhpf+eZISk7TEZ+5d4SN/bUKp4Gz1GNQoNeOXl3jZ6TM3RMf\nSWi1oVVLQJrbi3AIijwlnE4Hq2y+mHW+PD6Wwxkdh8MBtXUsi1U+8zQj1QaVjnVbIQLc3Nzg/oMH\neH53pn20Z+jC4/M8I8Y7qwfJABKrdx4cXmkrJGjyFu+hEVjKBsAAbG9b8rbBxoERDigBXiQYQNeL\nwKozhQFfv4AF3MnisACNeuhdSE7BWpOUjPrezW6JKjIs2IfbSf8cxSCa+HkYqgKf5ORFEuV+ivYS\nsTOM693pgXW9bt9SB9TczkZSYBpRwsQjydDBNH/mzyXFnbBCj0QiEtotXXHQbAUVgpogy9VGmLeY\nBAz6YBtFT7YnW1h7t/C3Flb5wTZqGzmM1AaI2dFRqoEWocklAxTzFk2Xf/D7PJ7wAB7DNtaKrpXF\nM5ZUWP32Z+TlPMnZWKmlYCsV9XLB9PwWt8+e4fz8FnVZoDebyS10E+u3RTSNCYsAJPV4Jkk19oOi\nD7aGWIHDB6X4UDBvu60Ux+5KAWZOaSzLgrJe0BbzM3Vb0GuNZ1NKwVZNBy2mX3tAI8B8PCAlIVsB\nmHLGzb0b3Lt3AxFgWS64nM+WXOrOWjvrIA2gOZJf+twkwJ/8o38E/8cvFnzjyROcTsfQlfN2d0ku\neD32Te/WZuwxhjNEHdRKKaHWGoDw2BdkV6aEwzzheDxAeQ9eTnX85BwPHz4GIOit4XA4Yls2BAoL\nA5ESdbnEE+9kCXqHgQm+ywOAsLobAJcN6eid3ScpIbU2hp8AZu+zJd29Esxo/JnnJ8Bg+3C/xt6M\neH/EtoIhIJ5ksI4BAlNqtibnDPWJctwPHcx1eF4iI56D+FkNkW3WxGMvh78ZJzP+DrMjI3cZftFA\ntDbSk+hdtiMFncnPQ6FNg6GV8kSgTmNfD1CfwJDH7LwOA8+aFdedaKAGNkFgOo8c3NEbcxgO2YLH\nE+5LXHiePsYtfvMp8ATz0zS0E9HZisg8VjTBJ8TGxEmCqA7YhD6Y22sMm6Pq8iwt1oTC4t2yE7N3\n2zu8k8XLpt1pn1tbQ+krlmXC+fYWd8+eYbm9RbssmKfDmFJK8DLkYkA22y63dp/rz8NZiZ7TCATK\nnAZq7fpJxECtXkiCcL20inW5WE65LajLgl4WaCko22LAVzOiTK0dy7qFZp4DiFU7KteDpGy2m3Y9\nzxOOpxOON0cgCS7nCy7rwoEXHhtpyDQlcVamLynlHgW21vEf/Jt/Cn/lp38Gv/PuC/nNgxvLpfO1\nvlyi3bHhBg29KfezaRbvpWQAH9QGG75Hn+7trB+1r/lUAF+t2WZL02SaOeuGVjum6Yg5M7noNk5z\nng84zAfkNAUIod0rv3yQOQPaCXJ0C3qFvau+iqJSMEJHB6Y84AxdCtJBb25uAIABMY0p2yyIZllc\ntGtxHIYKERjG4QwSgIHxaAXsrEaDAvzKwF5SQpYJwKj4++/sDRYjShDbgsa2ig+/vgduSByIYbDs\n59QJNvgEuxAtZmIk7pT9PagJ4kmgVbqNWqfJ3sMMKx1bN4FdOPjH62ls4TBggsarNbabNGgvUAbB\noKPqO+Arpi/WRmxFQz/NdBM07h/QgvG1Z+94AqFAjBF3na5oM1QNyrWCWk97LS8aiwYXtDftLgO6\ndk6d5+JJqiQDZWutWC4Lbp8/wwfvP8XtBx/g0SuvYj4coExYY/QaHbLAvqf+gBn4iP89wDo6bphD\nVtie0mLBl7XlFH41nssZdblYYnK5Q10XoLnegE2HcTC2tm5VDXWYkD36Ysm25GSMt66Y5mSV+OMB\ntTac785YLtYakAKAUk7+9CBuLGJbk4JabW/+Kz/wA/gH2vHO+09xmCekaRr7KGcmRBr7p1LjrZQG\nn4oEIJ61V+V7Z4A3TRwL3QPEFbHJr8fjIajML49PxiEE/5dlwbIsAICUJqha26FNNjRtR2+hrq1a\nEIMeeliqsKlsO2Am1soODeo7sObFdeBJuye181Xbo8b7GvN4B/rsgLj9ew5dKB0BrFe9Ycxh0QEm\ntW4aDntReL77mCakDDjVWmLCNuyuy8G1wKTi7xb0uh/yd1cGz4AJOQvHRgrvl4M1rns2CkauxMKq\nNDD0cbwI1MXkDXz0vD+b1OGsAIWd1t7vhW6Sa7X1xpZ4B/yrgTytG7uLrFWtnKTVfax857+7icB6\nbLNrd3bg3r/cpjqbT5Xabt6GAb+X7ts7bfrufvM/b3l0LcmRBIPFFeW6tDWRU8Y0A7nMQDHdlbu7\nWzx7/308ffIEb7z5Jm5O95AmFqKaAYWSqrE/WJzLDgbq8L0MzmJhiJ8IW0ucEdGafe66rDbNmgyY\nbV1wubvDer5DWS5o24Lug116JYDbYxqytzEqPIaw9T8fD3avm02xmgkY5ZysnfDuDufz2ZKiNAb4\nQBnbwPVGya5Pxp64rCve/+ADvP/B+9BWcTNlHA9HXLYNebK2+fAxTUNiwfacDTFyX6JM7B24c/sw\nTfOVZhvUdfISpimz9Upjzb08PhnHfDgAqti6t5Mg9mdrjKMhxsyAxjr2YVuNjEh4LAxEvO57zG2X\nt0uHPAvjFOavaGotZLXu1gjfa2hMOstqvH/ARv5vLzx7niOuYTXaC509m1IyxiX3Yp5YuKdN9wJi\n+AyPncapjUPdz304jnI/4hBh99ftciPPXayDgQUI91+6s0v2QTRbLJp35x0hTi78Kgb0pdKB7l03\n9nPzT5Q68fjA2WzVBm9ZEYB+pZtv6QHmjBZ211eM6+5qLd0cmGD33P0686bWQ5NJo4totAk2sp2j\nVX733EebIP1UvM7bGZ354/bXQS+YGL7no8xnfNCNJFv3rTYsywW3t8/xwdOnePb0KV59/XXMhyMw\nT8Ha0xCwHs9fnMJLcFAcENyvWxEORzC9M96Y+HstBbWtKN5iSr205XJB3Ras5ztslzubINxa6KjZ\nrbYOq9bVBrOoMeZgaSxUvNCZgZzQuxUbp2nGzc0J8zyjloLb21usl8WeqwKgHrmS9JF2a9NnGkDt\nvq/rim3d8C9/3/fil3vFB5czJu7lLggBfcuZW2ydypimlo3asYi4qNGHpzRzjSGYm/uiy4c36D/7\n41MBfHl81FpHWVasywIgYZ6POBxnzNPJKOLNEN2ymd5SqSUSDw+WmhsqMjk63UaCLdTkiD0QxlcC\nWaXWFAPaYGWxTcWrrv59B1VcZyExILF/92sjEm0gw3DuTbnra0VCQ+O1d5gKIOcJORvwZfduz+qR\nYcxFg0EGNwZ0Et5u4U5mL5zrbR6Q0X7plG1/vdBJ+Abl3on90FVp8EnLB8Eu0EU1A4filODOw57H\n0JABJwd2e2ZNyPIyPSk00x0RaoK4KG7uiPtvDqNET3vvPYAvq66O9eBj4y1A8DVloAZPPirS+8oI\ngJiUCdDZsUXG6cAenFtC4o5CAphSDzhEWfHN1lp3SJz0tWFdFzx79gynd97BK699BvcfPUKeJ+TD\nERVK1obrunmw4ppvGkmbGdcW9GFnXiCem1Kvy8DFUk2Act3WENhflgu2ZcF6uUU536Fti62dxkll\nzC5FMkE1agOAiyVRByFbVcRuog2guHe8QVLB3eWCu9vn2JYV8AYlIYDrQEBXeJXemTkC00d57733\n8N57T6Cl4t58QJonFB2i1JkAuW0y02wrm1WBKid9+jP2lirvc1e1pDHnCdtWsGf1pJTICEoUrf5o\nJ6C8PP7pjuPxiClPKGXD8+e32DZjbkkSTNOEm5v7OJ1ugJTRu+L29g7Pnj3Dtm6YpiPbOqxCltMY\nchLRuwzm5P64Aql2sbu3J4VGlki0XrmWoNleA+t92Mq+4OHB3hjjbf4sxtHHSdj5pd05dmp+lFoM\n2ElD4ytjDhBo+Az6GR3BMzBs3xXTTHbR0QtAXujqiYNewBjKYmw4TyA8KN8DOB4cVlbBA99TENQH\nIK6/yUSmemZFgExZwIGBJ+KtimpVeBdS96mD2kwrspOB17tpSdowlMYiWL3ye63tz32wttZ1pQ6V\n2Y11XcN+AD40pxCQ37e2eiIxmA9dO2qAbZbYeBzk068ksjbs1p/FSDJNNqn6MKPUhtpN8Pb9997D\nN772dbz++meRJeN0umctkWzHEgbVCUx+uwfvVggSAomKFkkJVE0MmkllK8Z23NYV22px30b/W2rD\nui64nO+wnO9QN6vES7NZkrEGMZgGSJkM+DyE9yFIk6B3B64E82QtHeu64jd/+6v48le+hsc3B7z5\nyiOCvhTlVos3E8yHJrCKLwm1N3zw/Dm++e47ePr++zY4IxnY1XvHlGySnrCFzEbBmw7Pho1MTwMP\nC6/XtN6GgH0p1cCzKcdUUBEwxmSbHBMZXycvj0/G0anfd3d3i2VZ0LqxsQCMPdo65hnUybLvS/ZC\npb2P7/1EsHVocVlLoGAUUAAEEBW+g7ZSUgr7sG+RD51IwJOTka+ELMbwJYTc4Xq90abO2Dr0cbui\nJ43k2eItwFmNQHgVFkqYHNFPxTVc2S1+FvOZ4YPct4zE3HUWxSpBFi/yZ/YMdkCJeM2YMbC3VO5A\nouvPaSPf4slF/uKtm9QJE9WQXkn2wRZ7k0FMPRdIbZHDaG1DJsCLGXUM0gIsH9vWLcAKEaAnY0qV\nagM/ig906UBtNoBpXH9nsWWv++Y3z3WeqMHZneHM8yEI0uh7DKwf9lZVwu/as2DbLQR6SKi1o1YD\nbm6fP8eT47t49e238fi1zyDPM6bTyWx6MhJLSrsCGBR5mixk93zGiyx8Zp3FCmUBo7ddLriZnnMr\nBeu2YN3WGChTazUftF6wnu+wnm+hrUA6W/pdtoB+QByUc2Yan3sS2HkztyE9xIZ1TTPQOi7nszGq\n1w2qDTbs7bqwb7nNbu2zAKOt4XK54MmTJ3jy5AnQO+7NMzQlxgJGIDDpiRdiBRfgLxW1VeTsWMgo\nmHp+o6qY8hTDVhysd0byR3l8KoCvB/ce4HA4oJeGdbHNnMl0Os4H3Lt3HzenIxJ7UO/unuPp06dY\n1hX379/DlCZOQrKWvw5gSuyX9yl1Hlh60gBAUrYR37CHnDMrlV1jkpYDay42XGvFzATEf8/fe5/4\nmvC5uB2xagcDQ/+/U/39y52cqqJU0xSppULmOXSfJHdkjgqOoNqv59tEPkJnARoE7IW6+6iEe6XE\nQTyJ79spJvcQStZVH+2hLNqHTpQJ93ow7/3zOTZUJwARQAg/RaRDNJOmaq6lawcKK8nVkgsXHoRS\nvH4rqNsG1Aavi7gjNrBmhVt9F5p0EHO0HviEkQqBi3ZasGBJrux+7xpAtWdHlkE3htP/x967xmqa\nZeVhz768l+871+q6dXX3NBBnGDzcjAFFiAkESCJLkSUnUhRh0kK5IAVPI0WKovzMn/wJ/hEHR5hY\niiXLMJYtnEhgGwcnwSAM1xPcUgAAIABJREFUKCixmJmeCz3dM9Nd1V3nWud8t/e29175sdba+z3V\nPcRRaE1LXe+opqvO+S7vda+1nvWs5zGCNqp+nDqf8Igjbyp7xsG/fJ61Dt6w0xO7oET0/Yh+t8P5\n6Sna5R6qukYIExYHB7BVhbqpUdd1di81gHQkSNhxMuooRUkSW21j+epogGUh5xHDrsM0jBjHAcPQ\nYZiKIHPf92xfPfaIYw8KEwveC7jHnSFO+BOMmDA4GXu1rJXnnRS+7HZkDbNuDBG26w2+/OZX8fV3\nHuPOwRIv3D7KgJlmKuV/gDXshKfmFbtdh7OzM5xfXKAbehjP9HrEnLrpEyAFJf89iCYc66XwMWgy\npvTe+Ri0rypM04hEDOR55/JY0ziO6PvumfbKh2Q7PDiG9x7jELBerWCdR9M0qHyFpmmwv7+Ppmmw\n2NuHr2ps1lvsdh1gDOqaRxvHcYITXbA0A9iZhQH4WSHA1vQWpq44SYMUN3lqQgAxFJaQsotDCOIA\nx0lfCIGfbasjuqWwAYB5MXMjWZ/jT4AI7iqLN2EUMDtrCUmMUBUYawson+OLVb0ZSehnzZFcu1gr\njud08w9I9CwK0yszhOT1xRSGbjgfZsAPs8Q9kYwxcNIv5VzeZ2VMRSl82FnQwTif3fo4OeQEfxon\nHpVPBcBikEZZwlNuvDidLMnNlDF35Y0x3DgJIYMZzCgNGMcB4zjk+MO5C7JDX5DmgV5nvW8UaC0d\n+8QaYincAExCZnqxRAEfd7kVckNkBqQ2TQsiLsB3XY8nl5dIifOe1fUKt2/fweHRMZbtHhfXkggT\nEeszxjFrSKacH6i2Dcm9wSyWRMRjjePA4/tdh6Hv2aFMRsanmAQM22GU8ROiyHmE4bwghDELahMA\neA/rK9gKAlDxXT+GUZ5Pk+PD2eUl/upnfh1/9MZX8/PxnS+/hL/y7/wIDpd7cqKkFs95nYDGzmAa\nIy6fPMHjx6d4cn2NUSYEjBQ6fM8JE9CVGKU5hbKEa1+u6fzaTlNgV2Hn4OAwDENm5lTC9OJ7kT9L\nf/ds+3BsKUVM04irqyfY7rawxqCpK1BysMMAxJDZibBWhiF0nZzVKQLOl3y4NDsAAISZ6UHMkyra\nQNE15sY6IvfovF6Z1zEWyHrAJuemNxspkhLdaMCooVgQtmokiEaejNjPzBu4FKLZcZob35HXetLX\n3Yxx0kHJ65u8qQB3831WcMvywZCMPSYBFoyAF9bY2XmM+dlXprHRr53FMq1fCBrPZaxdjm3eKAIR\nuzcK00s0EnjcMcRi0BZirtf0mmkNo8AXUGLj/H6I0rQdhh5hTDLp/946Rhu5hAKEFjDUZIAyRa5Z\nVDiapJRUnWKejEG+PlrLkbKyJJvQRr61yNqFwxBmTZZHaJdLhBiwd3QIV1Wompq1DzVOybVMceSY\nEuNs1LHUNKUJbTLzDSEijmyE0vc94jShH7qseRZlHR1HlmqZBmZ+WRJwUgChSInrXr0rrMkNfKMg\nnbOFxGIMvOPa3RuLNEVsdzusV9fotjuAkpBxCErxsrNroXW3F6dvYy1i4Mbt2dkZLp9cYpxG2Mqz\nHhhQmp5U+lz62LDrfMzAu7VFl04fNW3IhhD4OKwRkzolK1gQPQO+/n9vt27dAgiMAK82TEdfVKid\nR+UY7GqaBgdHe6ibJa5WG1hnUTc12rbhLnzfIaaEcQpwPiAmRvoNpDspWaoyQowxgHt6hIkXuEQx\nvz6mBEeiCyNJrXU8mx9moIkmHmVh1uAwY11JdzrJfkHn42WUERLUoli9jgMXJS41MmojnysBS3E0\nWWNvBLhcEM1PtLZXcgYMDjwZGRZ42chiRgkmSjcjaTdl9nAlzNycklBLKaPngEHlK+50EYF11pAX\nqXngMELxtjCsxSZaBJQSj5NINwQSMNSqN0UOtCw8yGwdXSCJIGMUI6Yp5N3noiFmtoUWJ7rfIUQB\nvrhDC+0IkRaAUuyJyCIlBfH4/CUjjlcUMmMhJhmZzIw6WRwzu41ZcTAmmyhYMrCWUFcVUtMgRcIw\nBqyun+CtrxH6vsOTJ5e48/x9PHfnHo6PjzjIgQX5DfHkD0jOV+ROgiESjaopu24WPTTphnTFjTGG\ngJiE5mu5OJq6DuPYiyhwACgCJjEzAnz/RFInIgPj2LjAOsAZw6L9KYFSgHHqmOrgQDg5PcPPf+bX\n8LmvfT3fut/18kv4K3/hUzjY85m14lRc1bCDjhN9n74fcXV1jSdXV9h1O6b6W4/sb0ZlDDanLKY8\nFDriWlVOFvmiDwVjMU1B7icDl/i+UWFIa3l0NYoz7ST35LPtm78dHh4CAEIM6IcBbWsEMK3gRFDe\nOYfnHzxA0y7w6OE7qJsGbbtE2y5knWUgs+t2cKjzZ3MB4UVjDrmxoMzCOEl31RpYKqAVmwZKUkyF\nFaRC/ApMzMGfua5K2Uxel1SY9maxIsmttbPxTJK1T8aoko5ZFUCL+ZBlRCZ/tyTCKvhtDLPFzKzw\ngDGwVAq1/MfcZB1oDC0AIse6MGtQzM8lUIAvCzDTFZBRaN5/BuZSFoPOZClYHo+wXHQQkHW7KCSM\n3QgVNdZrool6GHoWuA88/lh7cdWLidlLw4A4MbPYeY9EiRtYkkSmGPnf0kAAIN3UdGM0SQXYnfdw\nXpwrwwTnNN+gYiM/O0e6bpXzrNdm7qbMcdGawoggYtCtaQymELDrOmw2G0wTd5avLi7xLd/yrfjY\nx15GddeA6gpIUQT/JxAAJ1qrJKCXnrOorLlUGHTKYGTQi50Yp3HMCTtJU3GaRhayF0MBZuemPErC\nTGrWQ2ItOj5Cb1lIHMJaGIadPNsNj0fGgJ//lV/D5796BeCXwZbwv4Mvvv0qfukf/y7+q3//LxQA\nF/NzKMCWsQgxYrXZ4Mn1FbZdhxiZrSwZFN+7ge/pyjvU3sPn55Y/mQGKip3CBagj4vxhSswMrOo6\ng6NN09x8PoQVGENAXftioPFs+6Zv9+7dw3azwfn5ObxzrFvaNuI8L9MtIcJNAS4ZWW8SrBS3Vpqp\nAHK9YgS40QkTBUYg7C+AR5nq2TpJRDeYwoA2X2asKo1FKM1zXSp15FeZYl4ICQzqiBO5NBiCMjgF\n+IJ1uT7BbKqG9YIo1y38LJin4hVvuXDP/zf7hSnsZa1dyPCUTKLELnkoDGPoGkgEkxhnINmXiMT1\noNQBKcrxVpXESyp7Iwzb/BONZVrDkE7YyLkT9jBLtDDjS5sEyiiOIpyeJCfn66FglugYjqFMqci5\n0NpFmzQhBHGAn7h2kZM2BdGMVgaSAp1W2KNSoyprLvO7jEw7iLmUOnjyOL2OlposjZB1teQzNGY7\n57ieSQl1VSE2DCwOY8B2vcKjt9/CGAKuV9e4c/8+jm/fxq1bt+ABRDUBSQzPMGuYRActQXRSuMk/\nhayPqQ0YEmBxGgb0uy026w3XjYEZdMoOjjFh7HfZaCCGCc4IOEnq+Mg4W0haF1ueJgPBAvCem4I8\nrRXYWdXr6GDEdrXDbrvBmw/fwemTazy4dYgXbh9JOqXPpMuuoMYU7XJrHGIibHcdrq6ucHV1hU5c\nfxlnpMwKTYlF9nnajckNVkwa1K0UhifItEkXo+qBco0zjCMDpZGfoQSba5wP2qn+IwF8HR8eI4SA\nzXoNpdctmgUWbQtnLfq+xzAMODg8Rrtosd7ugMRuA5mxQ8yimWIE+l4YL8TOFXUFm6zM05sbQNH8\njzWFrqhrnS7G1tqZqLEt89BzsEu2mwt46QUUNFzIjwY3RuT0d0pJHMcx09itOjcCpYCB0EpTksCn\n9OOC3AKUR9p03Ta6W/NNuyR5b2cdi9nYjJn/VxYgkFJyKRcxIHGDMchBICn1llJ+LfHJhTXE9GDD\n9GjVOFO7+qzlouh+jIiTjJekCAQByxJJF0MKPMvdBtCUqb2RkuhV3QS++OEPCJPysTigG2thYtFM\nMcYUcU7iRJyTg5IEREQZk4x5zj67e8kCku8O0rMq3T3jYCFB1AKm8mioBSUDoh7bXYcn5xfodj1W\n6zW22w1SiKgMgLBk9yCl92q3J+iIKJ/HMI2ZUajofgiTdKWiODLu0G13Qt0F23L7CrAWcRzY8StO\nUCH/CNWkIXZ109BtjfwbJWFLKQ+7cjLFVrrTMOLnP/NreO3r15gXJV94+1X84m/8Lv7Lf+/fgrE6\n/z7nfPE9HEPEZrPB+cUFrtcrjCGwwKvBDTvvJOYCzoBZdTK3b2XM1FibgZB5YQ4A48jFrDpv9eOA\nqtJumS2aCSnwWMoHHCSebf9y2927dzGOI87Pz7Fc7sF7L82TBbyrcHJyivV6jVtDD2Md+r7HdrOB\nc6wt2fdDHpEehglqf81W0w7BOzQtYeHanIw4KVSJElxiDQdnS0eaGxyjFMFc2IYQcHh4CGsthmFA\nSoTlcglAE/XEOg6zAkdBBwDSaChxyDkHb0vsQWZoMRi/220xDAOWdY26qgDvc1xz0mmNGj6I1yej\njSQFiQAYYxm8h/yIlBE8DzdGRGsBRSqsZ8aDJu9TmIF8QNYuNODkkc8Bg9ZzVjZEx0nBoWxHTyTs\nXBkXlOZPDMhrHxFbxDvJJWIIAtyU8UXExOC6tSxIS7xeO+tQVRUoBvQhctzuOkwpYhT2Fmv9pRIf\nwd89TSOvSYZHVJT5p3mASQU4HCZ2g8uNihnLI0h8AiSnmDH7SIoV/p2ykjhXsiSj9c7Cw6BtWxzE\nCIcOUwh4cn6BYdeh3+4wDQOcAZy8R+Ons47j6TRlNts4jphGZa2P2RVzGsfCCp/YvXuaJoCSjPB5\nWHHmJXCjxlm9V/maJBIh92wxVxqIMFLYJ9FVswZpnODaBpV3oBTxxsNH+OybXwPHF7WC/ykkInzu\n66/g0fkFnr91iws2z512GMuuXMYgpIir1QqPTx7j5PQUwzTBNxWM9ximkScJYDIbXoN9TAmN9ahF\nGzBMI0sVVD6z9PT5H4aBQQy5fuM4om3bDGLo8wEkeGuw1y5Q19X/90Xx2faBbHvLFnEaeZ0yyI10\nZScSBIwAm6kYqEusQeNklArcEM1sGpSaxUqdwuLrut7PGF2zRoqT8Vt9P8A7cJM9piu0LI6mVCUE\nFKBEhOllp/n3st4ym7XIiHhTgawyERW8cwI46RhhAd+0P67gfG5iP1WsmHk8mQF1T9cuum/5pfJZ\n2ty5gaMRsqZXdhCU82yg+aroCOY1ugBfzPZk0ICMjorNaxgZY9R6SYEwqWFINSIjs8JASYAkA28d\nyCYEAWeC5NjM2B4z8JXF65NItIQo94+ROpIZYQx8pQyiGyEsZEBMBCBV1ytSwpS42TOvZQroZ/P5\nlx/O7lXHf3I9Y1HVldx/FkQDdl2Hq8tLdP2AzWaNzWaNF8cBtbWwiaWEMrOLCAEpn0+tZ5iVPQrg\nx/Ew1zRSM8YQ0O86bFYrbopZaeR5lg+KRIjDiBhG0ZGMiCr6r67ypmjuqaEBQXdNmm3J5PiUpSkA\nDH2Px6en+MVf/y188eGjfO9918dewn/2b/8Q9vdUQ7I0cQzKswMAwzBitVrh8skTrDYbyW24QRkT\nj/07iOmOsMlgACsMLWbwa7x00kwpGpIKQA8jm8VU0ONTzdWn8s4PaPtIAF9t02AyFlsCnLGoZK6U\nEqEfemx2PdbXKxweHsP5Gt1uJ05YcrEFtEjgYMJ6Tuyg4Z1lqiYIbV0DzokvYumeE5Ho/RTaLBEE\nMUfuuE/ThOVyCSsduLkOC48FUr55MnKmt64sYjeGB/kX+q+8EYm+1KSLFyesEFSdFB22JluVzj/P\nSFBiRo0u9dpBeroQAYve5h9Q2ZuCJ+TgBhIqJrRDgHxMCvIoo83oPlAJnlnsmeRADUo3Xj6PUkIU\ncXJeTHj/jIoxhsgWwKLzRRCmgb4GkhSbwgyLIWTB4BADpjDmgidRCVRJBHf5HMvoTmLnrRiD0IVt\nBi+TiPeqLoD+CRQwpcKmUDH00nmX65hUvQoFJErc1TAG2e2zriqYhYqDGmx3PbabFcZpwDQy02Dc\nbXF8dIRF08BbHneMYFbHOIzijsV6KqNQfkuRMmIYB762iR1jxm5A33XMbPCOWTF1A1fXoqUngqdG\nRoVIgQA5DmPF0cfkAgXCiEqCnGYdOQKmccAbbz0Sptd7i5LPv/0K3n1yjRfv3M7PpbozGjHA6IcR\nF5eXODk9wdX1irVTXLHUtkaSxMTqMJk5Kd0p7/i5DZO5wS7RDskUYl4XNKEMMcJ77qJaa9i9M/G9\nUvlnIygflk07YV3fcwdS3DmHYUSICWdnF7i+XmGz3gJwGMcR4zgiwWQdiJgY6CJKGKYocQZAYFag\nsQ5t0zDQG5mhkoRZk2NMAgDuOstCmGPIOI7QLn1mG6WIxlezJg+vSe/XdAE4MUFMeY0yUsjcGJGB\njF6HiHEYswai02dFCx0FRqywo/lEQse6VcRWo1gZWaFcjAH6X02IJTbIk6dNFF1PmYkJVL7iWJrK\nZ5KOaChrWpI9ThiLNkWSgoMg443q9JhBJRkLHCcBpcBW6sYij2tLQWIl5pE2qUjcORMJU4kbKeM4\nZSAthoB+GjGEUc72zeJNr42CVXIouagCkMEy/h03FjRepaTixTG7Sum3WGUTS65AVBJzC2Usl73i\nBhzrWDELkkfRh37EdsMaW++88zamsUe/3eLO7duoRS+vbmosmhbT0GMcBnRdh91ui27Xoe86blr2\nXY47wzBwgU8lJrOFPLPmvXeoF3vwTQtjVTPVwjsRpbYcNEmKWyN5j8nAl803mIJ83MAwiHFC33X4\n2qN35Yz/yFNPzo8CAE6erPDguefyyHKSBpLzHgmE9WaLxycnePfkBNfrDYuSV9wQSjEIa8fAJOmQ\nq3EMAGOZAUCSDyTwH2bWF3H6aZredwzNO4fKOQR5BrgB7FFXFeqqxrPtw7F1ux26bouu2+VnOOsQ\nE8urDCFgklrFWqByVkx/CHVVwztXjOdnwJe1FiQxRZuJpKLjqYCn3vsMlI7jeAP8mrO/dJuHklyz\nFHyL12AzIwvMjlcBfW4cB9kPm5lAutKr1rEVkC4/q8JGgSnNUY0d3BjWQPJe0AsS5fIvNcCgMKo1\nFuRGaa5d+E+EMJkij7YZARuzFExeR4UVRaVxr1pPPJY5A8diFBBrJjUjIEwKMbO8ZC4fRpnJ+diJ\n2UxQsCyV+BIjQuJpFm3I59ig10JBPDkOrWPZUKS8h78qQR2oiYRoIMBXSMwiU6Yx15TlPjJmpktH\nej1Qco4E9XcASaPI1DaDYgCw2XbYbdaYAkurhHFCGiccHx9h0bQ83i3raCA+D9MwYOoHTMPIDsBD\nj34YZMJnwjixjpiR/IRSwjSM2Fyv4J3lz/TcePBVDeM8u8cLEE0i3ZIoALo2WyPO3Ax6aV1OwqBM\nKPI1yowyxHpsu/Uaf+PX/xm+/GiLG039h6/il37z9/Ff/KWfkPMvz4pR5qcBDMsnbbc7XFxe4uz8\nHKv1hgEpr8x8AfJgEVOEDDTn2odAcL6CMYSUWA6CWcrKwOTvnkJEjFOe8lK9Upa3NDIFczOf+dPe\nPhLAV5QHehwGqDDiOIwAbQDjsOl6bLZb7LodyFh03TbTvKdxZHvUyNTTkBihdZa7C4m48O9BhTpo\n9QnlB8llQXBkjQ4tdNXJSgVonfdAYitqFbYHkG8apqI6CRhGJ0K4KyBARm66UAkmN4AolFGsKF0C\nZaOpO+B8xEQp/XmxMRoun0bhpeOtK1Re+WXVTrOdyIGEFwB1OWGnSRb15kBCs8VSLHflmBgQijmh\n0+PNi2beP0bKIaBXkDn4fOzWwhvH3yUuKMoAM3IVc6dIaMgAj/CFGDHKaEkIOn42YpTuuhFQpgBS\nem1S/ieBOzbZQcWQaAtoQsrjKazNwgy0gMgjGFoE2jJqZMjm404aFcBBgYFMy9RrvWekI9+0Ppsb\nOOew2XUYhgHnJycYux5X52e4dXyEg709tHUDL6MXYwzsmNX3mHrWUxn6HmM/YAwTi2EOA4ahhzOi\n3yJgWb/rUDnVN3Eye8+jt76psVi0aJoaVWXh/CxLSobjfQKMTcyicmJ/rf+1wrCCwTSN6Lbb/9ei\n5PRqhRfv3M4xluT+JRhMIWK92eDx6SnePTnBar1mW/DKgYRV6IxlNhxKcgO5hs4aAbOKZbOKjGpc\nH2Qkp6lrBifk2QeINWS8k6KZR38q77MQ8bPtm7ttNht0XYfNesM6DJVF3w9IdA3rKux2O+x2Hba7\nHXzVIIhO4zCM2G63PLqUlEoOTDFg0TTs4CUA8yR/vPMAifNR5NF57swbBOkAk4ycVJWH91y0brfb\nm+wuktExY5l5AgZteQRhps+hTQSNCRJQUkqIJiK7xMq50EJFWalPA2Ik8VSBr5LgIq/3UJCJ6Mb4\nJG8m92K0aOcfExcC8hJNunK8i0WAGSjHo/ubR7I1aU+R3fqcywVGmo1gWDVLkU5m1vwwDG5RCKK/\nJmux9XzskQsSZ8SRDGxhzt9ftKsU5FLDFGUSq+5XiFMe9VDgNUlBoWA7rzcx5w8F7KLZ3xPIpAwM\ncgOnMA9KLmAyG2/uFqiFZ845EgrDQlIBayyqymaTnrZpUVWewa++w6OHb+Hq8hKHBwdYLBZo2wWW\nyyXapsHQ7aR5MuLtkzO8e/kER22NW3WNcRqyRto4DPDyxZrzDQNbxYO4e+2bBVzdwBjAe4fl3gKH\nhwc4ONjHYtnCV44nVgGRiGCGuNVCQUZFdCS+dTUoRGyHLbarNfas3qO/g9JcAYDfBgDcPToQKQNm\n9vdhQltVqOsKXYg4v7zA2w8f4t2TU/TTCBms5efFOXgwNMfXHBmAVDY3A16Ur09KBOcNDBxiCojj\nxFIeMuqctf9ihLcOlff5nrPWZofKZ8TiD8+2Xl1jvV5j6Dte24SJM06TjIgh5wjOWnhhFCZhdRrI\ntIQwHwmz0URIEyeW8eJIBdQiAJNofSk7kMf34o1GCeevAohbcxNgAq/d6jJ5A+TKmf/Nn2VGUJit\n4ZKbkegBa91SwCktT2TaJiNbhYTA8WxWu8y/WOuXVOJO3lcqOXpMWkeJvqw02vXjiFIu9ufgWIpR\nuzS5WZHPTT5bkiMqozfXL9z4ZlawmGtIDZNiyK6OpRWummDg10gsTURZNiPXMGLENQVulOnoqp6F\nUuVJDWf4pzFpjI0C1nGjliQeaWyfZDQ/ISFSYEaq3JlkZ6CXNpRAAM0aVCRrMxkYJETCTBNZHdVd\nrmWsddh0HYahx8XpKcI4Ynt9jePjQxzs7WPZtqg9T1sF8HM09D3Grscktcww9Bj6gbWHw4Rh5J+x\nfA5f6DBO2K4Y+Mp6vM7B1zVcXcNYm7WSq8qLSHyp4UAmA3lWxtONlQmgWW3DbEEHQ0AYR2yur/Dm\no8f4wsOH+EZN/cdXK7x457l8vdQwQOPHOI14cn2N09MznJ2dY7Pb8nmXB1TXB0cGaUqyDwXczQw/\n0XXT+RcWref8MRExIBsj2rrJUgyJEgxsdo78oLePBPDF3cEe19crIEZMju3lh4Fp44O49Y3jCOfH\nPOYQ48RaTZEtwRndBAAD72vUTcUMDmXhxIiqSrndSUiCqBYx8KxlBcB7vrmJCLuuw/7+Po88zkQF\ndbuBbGuinxdVYrFD62Q2VoCiBBDxDaikK74RS3JbOsK8qGm3HynJg5d7QgAsiGYFikBL/NtZ16U0\nSuS3chw5+AF58aIkY3M3nbxUKDIJqyqJpofuiXY/sruSjgHqXkgg0A6KnvYkoq+qE8IihoB1FQca\n7cRTEf/VccgYuaMWpjEHu6yvIgVFCBPGSdxQDOuoaJepdEyY1myhlWIpQNh9jJMWWTZmBU25ZoEC\nUnYn03EcSdLzuS0LEu+EnCfDbCRjDKLjgK9OGlYYX9ZZ+Npj2/Xodh0uzk6xvn6Cs7ZFU1WoREwy\nWdYLUa2Vs+sVLtYb3Gob3F4ucvGpwo51xYVfGFkgs+u22MnzxxbDDsYzkOTrCgeHB7h1fIzj4wMs\nqxbWy0IJyLkEu3ICnNzIGI4Wg6ypMKDf7bBZrbHMa+o3KEoO97nQBrLGi5V7rRsmnD95gnceP8bZ\n+Tn6cczfx4mBjiKW82k4I+Pnw0AKS3En0hxLQAMSjZ7KV6ibBlVdYRhHfTylyOZnLkZOPKvKZcDi\n2fbN3cZxwjCM2HUdmkULUxt2cKUBvpIkM0X0XQ/vtxj6Aez2SRiGkTueoYAz0xRwdHiEg/19JIrY\n7XYIkRlli6ZFXXmowKqTxAjWwRihzSOJ4Dbr/ICArutw69YtKNtLO7fzzjxJ0QzME1BOxDMDeTba\nmGQ0UoW9NedPMYoQcXpPLNNuvDHMwp4zT9RtEFLsAFJ3yEeY/H/8l5v1uAGcgybZIIkfs9jyNJNN\n/04SF0n1zqC7wZ9jAOl2zwovW3HnUw03grLDuYOdYspj4WQigo3CtA6l2++kLxRZ/H4YBoz9UEYS\nZdSCixIeU5umCVOaQJaKu5icW3b2DZmFkJtBKPE4x3q54jxyUvS8tPGmoIi1bsYIV81GzHS+ZqwK\nPU+RRwKTIbjEl8VZLUosap9QVx61d1ivDDabDa6vL7Fdr3IT0UjsHPoO3TjhN15/iK9fXeVr96/e\nuYOf/PPfgb29JY+OTA0/C2QQwoSu69BtDfoemKYgudYW43rNDUxvcTgcwligbj1qVPDWg6yyGiDu\nXTwi4qRJxJpZBqCER2eXeHhyhoPaYWmB/cri48/fxRsnr0px+aMAfhvW/By+48UXce9gL1+TSKzJ\nU4EAa9ENO5yeneKth2/j9OwMExFsXUtXnZ1+k8BgLo8A8brBZqKaowQRIm+hWkLGGNAIjGFE01RY\nLBaZrQNiGYCqKlpeKUZUFb/uWYPlw7VN04gYGcQiGUkjIE+KQJonBgZWRu6thUhHcEPCJ5fBU84a\nFcQXEXYiNpbQKRPwM6nrghodqZwHwKP32kgwArryv6UuUPBCPruMkhcAyUixb2drNLR5MTPz4E3Z\nw6xzixSFIVVMICA9Vdc8AAAgAElEQVTAcWaomlInSEWfv8YItaq4NPK+GQElNLiRxAGNL9mhEWVS\nRlmw3DxhoCd/JKTWMBq/ZlqV4LpQY2LSGikVZ8skpIUYI9dCzvGaRDoNwGxedYoGCts3xuLgqGYY\nWrNoXTRNI99js6kjnV4obC6ZhjHCWNafyc9B8lr5nzGaA4n7fGSN4sjDhUzosArgG+RGCkhGOBnU\nmjEG8mSFISAqeKv3j97PhtdrX1fY7nbouh5Pzs+xurrC3mKBZdugqSp463is3or4+sTaaKQgo9Z5\nEi9Z5H+At+zeTjFiGkds1iu+X6Podsn3G1/BOItm0WJ/fx+HRwc4OtpH29Y85SNPIcdiwMaYpUwY\n/DK5ruH7h13ix77H9dUVHp2dy138jZr613jh9i0Bi/m8Rb3nKWG92+Ls4gKPz05xeX2FcZqA2nOe\npuwya2AT1+fOuQzI8v3Bz8pcKoHkOWDyT5kwsMayC3rFrvXQ+8hZ+MplY6APavtIVExJGF/DMGB/\nsURdN/CC7hrjEMFMp+1mg3EK2GzW6Ieei15XIWt5yMLhnMNibw9HB/vwzmIcdlitrjGMI7x32ZVR\noQhnAUoGGWIyJherxtgseNi2LS/+mhTPXq9bKQ7kd4DY0qKsB4KKJ0oswp8RW0CLiZi1R+SNM+BE\nQRNAE9pCU8x/oL8XSqYm0bL4W3CcwKzg4bdYQX+JtbRmx+i8gyGTKadEKqqo2k46VlI6y04DhwVi\nJFBkcMyBxwGQ31/ECHXvGVtLSCFhmMYMcJEIzjhnpbvCBck4MuU16hisUGJHoQOPYWQhXRnr8TKS\nkNkPIeSxEV14yjkjWfRtphPzWB+fd+7AT0IJFj0AfY/R8VQNLJDikbsCzpURRr0clAhkRYgQPLKo\nAd9Ytp93lUfdNGjqGqvVCjEEbFbXuB4nTMPIBZkzgDMYQsRvfuXdG0XJx+/ewU/94Hdiv21AlNC2\nNeqmBkV2yZyGFm1TIfQj04qjiPTLkYQYME4TxjAx01KtnGeMQwV/uduX4KCudAZvn5zh4eMzHC8b\nHNUefdfjzl6Lb3/+Pr7yPkXJn81FiYh3c1UO4x1CSrjerHFydoqzi3NsRfQxO9jJMYfIwqJOEroY\n+FnzlYOPETEQxnHISZm1qvGiY8wWTdugbmoAhi2igRn7syQX3rPTZvUM+PpQbNo1jSHAuxp13Qjr\nwsA5j7ZtUVU1QgzYbDbYbDaIMaKSkZFx5Odbx5AODg7w/IMHOD4+ZgevJ5dYXV1js91J4XGIRdti\nGkYBp4q7lHM26wRyvmkxygjt3t4eJ7tjGUGci9kXsFxjCcDpp8lNFydmKCVt1w6+xgwUcG1WqMw/\nW4ssa51GDGhDRIE3aH9ckrX3xBP90AxqaXJMeXSSZLxbx+10X/S/SQsXafiU5ouM9EESt9ykKDpa\nRpouYSqAJb/K8ftIO/AMiHWk2lkpH4pFkToYBh4Nj5M2U2asvAx+8etQGbjKwzhhc4AF6acUMlsL\nMm7NfXFZdewszqMUW5MUP9rsSzOnUHZqNjkWpcjSA5A4xwl5lau6kIpgNSygyQ+lJC6ZvHCzBbvH\nom1xcLDE0LHe6jAM2O022G53GAYGen/jzVM8WlvMxzjeuHgVf/+P/hif/jd+EETsxFirRXpMWC5b\ndMsa/a7LoMBIwBh1/4DF3hLNooX1HglAoACKrFGWAMBYOA92InWF5bLa7vAL/+A3Rc+Lt48/fxf/\nwb/2Cbzyw9+Fv/v7X8QX33kl/+47XniA/+THfjADDxT5ua/qCsZa9GHC5dUVTk7PcPHkCsM0wtUN\nAI4vOvYyjczys+LmmGLAJMVEjBFIicerpwiBqzPYqEYOvuL1KWuRUsJux2zQ+YhR21Q42F/mNeDZ\n9uHYtts1drsdpmlATCGvwlnjVgDQuqqwXO7h8GAfxhCmoWMpFxlVbAQQ5XVZ1CIgjElZoPTeYeaW\nzfIayviaZHx+vrYDsiRLnq51gZmvvU839gUsT0ZkLEz5PJ2uyGss4UYDnkgkPJKu1QVoyfuS9O8M\n4lk1UIGR5rS2/6Ueek/tYnKDFWo4RfxvK2A71yeqPVkmWXS8Po9wEuVjyCQGbXIQwXieEEgCqKSU\nEIA8hq+xknG5hDhFXmIVcGHEntcqrR/EEXMcBoRpymSDIEYXJOd4FCYTSyvo9ASzj1SnTFnFmQkr\n9YdOqAj3TECimH+nDO4YSy2ktcyc6HOj3kQBUJ00l+WClHqGmBiShKkbiYTIwC+oKw/nl6jrGk3D\n5irjOGCzHrG5YsMtdWyMFd//1jADaTVMWA0D7i738PzxYXYrTsTmd1XlAUrZOdM7y2Y0Xc8AGnED\nJcYJIRICRRhr0LQ1YlyyJqoToJZSbk1FSmKgU54to43vEDEO3NDvdx2GvsOtVkfR37+pf+9gj5uk\nRs6pPPRkDPoQcPHkCU7OT3F59QS7YeCY7xxLFVlhEcfE97m1AnaK6YE09TUHnkLRSGUtSyvgNE85\n1E2Dum34XqACwM41Jj/I7SNRMV1fX2McR1hrcHzrGItmIYkmJ4g8YuikG79Dt9timkZ4X8NJ0cuJ\npUFVt7h95zY+9tKLONjbwzT2WF8/QaKEodtJxzgJ3bV0oxWM0kJZ9Xs0uTUWWO4tMIVRQDemnc+T\nEMamdARDRtXk83Oh8j7Hz4utdGRRxGjnnXhlqPAiXosoobB/rKL8MqaiY5oSIPizJcqxKAB3SQ0z\nvObaEopUzGm9hJnQI0knJAhQFHihp9mRcWhSpE1+lhIHIzmnhgjOA2pBqzor6haR7eSDdD+iaH5J\nULXGICWDOCUR1ByzvT1F7lZMUqSO44hI6srH4xM6vhNlhDE+HTBmx54zBL5RBBhLOYgQCbNMOiRz\n1piBjjvw21Ocsb2MyxRl7tZaUGbc6egK8ogrkYj7S9fKwaLOiQyP/cZpQnAWzoDBQOJi65+8/ggP\nrw3mRclXzj+NX/nD1/Cf/vB3A4bvcVgOKLWtha1kkZahMOoILFpvLYxzqNsGi2ULW1dIhhfrnOzw\njZvvA2OZ8r3Z9fjv/8E/vVGQfPvz9/GTP/RJ7PkKr/zQd+Izf/AavvjurCh58Dx+5sd+4Aagy10W\nXvjXuw6Pz8/x1rvv4vTJE4wp5oAAARpUZNqpQ9fsiWTtIL5H1R4+UcpJUwZjrYN1LmvwDcMAgEeh\nVVxYmXm192hUMPzZ9k3fLi4uEEJAXde4e/cOFoslNpsttttO3OkMvKtgwIYqqxXHpbpdsPsNdI3y\n2N/fw7f+mW/Dt/0r34qmabBZrXJScH4a8lqiwIM1ACVxBbZOOoUWJM6xYeL1e7lcYrFY4Orqim23\nI49NqslCHpfWZ2p2fLkjzTuZkzHVfJrrUd58Z3kvjAr1OtaYqTwAx42c9ys25Dm/0f0HZiP+0MWO\nvwcAiVYVSE1ORC9Qj0lAuRAnWW9JWFkRkBFlq9+c9VYY5GH32sIK46aBESt4EmcjSfuJwaMUuIPO\n2jQhn5n52ArHEdUDo8ys0PGTKMYtKoewcA7JEpJl3ZvsupiBu1n3nZR1Uaq/+bUkee0kHe0k7xM6\nER+nmLoAYlUvYFkBOt1M94vgvRP2Iec6eTXU+JbHvRkIc5VDk5pcDFkZ0V0sWkzThKtuxMP1Gk+P\ncRARvnzyCt54913cWS6QKKGpPZq6YXZZZdGaBt6LALcBEjyiMEKsYWZz01aomgqwBkGyDSNxzlgH\nJ86syuhN04S/9qv/K77wtZsmKV85eRV/7w++jJ/9iT+HV//N78fZaovHV2vc3l/iwa0j1EsedwmJ\n9V1qX6FZ7uHtk1O8+egd7NYd3nl8gq4f4Ko6j0MaknFfw6YFZMCO5Pn21yKX3U8BdtIsTVvk4l6v\nQwghGzsByBqlTooa71mc2HuP3W6XQbNn2zd/26xX2O0YxIoxovYVINrCIXED0Vc1jp+7hefv38fR\n4QGGfofteoWUuGgOYUKIHo1vbjQweI1I+Z7KzT0B9UMI2ZSBQBimEYlSaYbkGIDcNFdd3nlNlBvt\n86pF0zlTQCKVi8i6UlTYWOpiStaxOZIwpRjUVhYxyntm9Q4ZZPCLA4fULUBuxGhtkl80+yxjDDvA\nEjLRAaKjGERDWJsqN4+YF9bCdtPPVqHzBIoma2GmJNMus+aR7i+7CsfSKJGGBUsIOFjDNcEkjpjT\nFIoDpDRkQgw8Dh4VMA05ZigIwS6LZYwxymsJzNLLWnDQWkZAr1RG6yEgGBulzBr4uR6KGWDlS2Vy\nzQky4CnuYlYAATz5nJh8GrlRI4xmyQ2Ms/DgmkLQQgy9k+mTERR53QwhYJKYPyXCP33jBF+/us7X\n7+N37uAv/+CfxX5bwxjAeZPHyOF5AsMY0VhbNgghISQS8x6eSLHeo1m0qJcLwDsoN4WAPFqvP8xp\njt4rRBinCV9/dIK3T85w1HgctzWAhHuHS3zi+ft4/f2a+i+8gHuHB/n+MWqy5R2SMVjtNnj3/Awn\nFxdYbXcIJJNrCj4bCyTOJa2MkirhIhGbxJAAmtPEen/elzF65xxC4PuAzZwqabZNN5xDrdWR65v5\n3p/29tEAvtZ84y6WS9x+7jl4V2G1WmG77XiMkThJcN5nHQ1DxCg+ygPt6xoHh4f42Msv49u+7dvQ\n1hXW11dwjsGhq0uDFAMgyZ4mgRkFz6AXJ1B60RMl7O3toapYB2YcWTAPtji+3SwqZLuxUJscRgBl\nkrAbmOoeIYviGyhhNMkYZ4os0q0MlCwaKWDObF3Jf8kQipn/kvLPzDxzniH+XEgUenD5PXKHBNlN\nUvVKNMnGjfdDxMRzJyKmnChGQMAtpRkbwDihiLITlFJYGUyksk+ygA79KMyImH+O+chhZBFI7YZV\nosukVN4oZghzlgEJsDUvVIwsMDQvPOQkhxjyfVK6KHKc0tGXTCD/1wq91lonDAi+4sr+4p9DDBHA\nRaKcO+jl5sYYfOWwWLaoKoc4ecTKI9Y1s91iwMl2i7evV3i/ouT1s1fw7tUV7hxy19iSznGzBhK7\ngHAXIRETA5JxMN7DOg/rHXzF4vfJMJ1Z78d8HGpnLNf2r/3qb+K1pwqS109exWd+7/P4mX/9e7Cs\nHH72x78PF5sO5+sd7h3u4cGtQxhXiRi+MEwMd9pXux3ePT/H1995hIenj/Fks0EgEkYju6xocRdF\nfVLHbq21fCwyCqldzKapb2iRRdE44DEDyoBqEC0N7qwUkNN5y2Mp1n7gQeLZ9i+3XV5ewnuPo6Nj\nPHjwgowRTVitNggxwTifXXvHcULXDQIS+BxnAI5FB4eHeOmll/DCiy8hih5e2y5wfHyMcRhYdNpX\nzCryrozzgbXgvPPsBDlNoKBJhcfh4SEAZGF9YwxcXUD6vJbMGi4AikHIbFPQy4pAuDZObvxekicd\nsXCyZlvRvjDihAwZLVHx1lwQmPJZ8hfZPxEWlsR2Hkc0bmRgJxWwJ8dJKiOLpE6+8hmaYDIwFZBi\nyOdCAezMFqOASbrsggTBEMfUovsYcl6RZETZGMhzHlgLcRzfEyc4BlJhK88LKGsBIw0YdW/U/c8N\nKwOiMppUAEA+l6xLo00lygVP/g5ApuP5/HDRKNnGrChWl9pS7HKn2GR9FWm4pTnbjc9vDIkbCIaB\nJu89qCb4yqGhBntYIsaER19Tl6pvMMax2eLWXgMnXWrrTf5e6y2qmgtv6yymZDCRzcL21uvreZzE\nyJrqHI938r89nKtAIIQp4O3Tc3z+q1/H+8a8k1dwcrnCi8dHuLvX4u7eIhfdzjke1xeweDeO+G//\n5i/jX3zpS/mIDtsl7jeemy6AyCKU9IrziwQnjDoDKSZEs4tShPcVM0krzmsB1WSjnJuO45SdZNXs\nQh8xzhME6AsR/W7LI5HPtg/FNgxsHBRj4HvcGiQq66DzHgcHh3jw4kv4lpdfxv7eAk8uz1FVHsYQ\nNusVUggA8fjsnOFb1hHIfc+AlrJNiVSD1CHGop3szE1R6lysmxLbFDC6EUzkLXk9EWMYI4ZFM3WU\nXA8x61S066zj/cx1C5DlIySvSvLw5JoFEDav1CM3wDdT8l/gqTWZbpwj3X0Fw9QURQ2nkjQk5pIB\nhe1G0lehonGs8iswAj8SKITsWF+0HKPo8Inubwh5HJQb/5DXibPzODHoldgLXU28QgyZZR6lMcDO\niAymMCMnygg/A14cY3VmRWuxcg6Vh0eko6t6/tgxkhs1UstI4ylRiW38CRqD+QSzEHuZXFFiAdSp\nXmIqMxZNbmghoYCXkntXUs84Z5HChOgdgvcIVcXNAAqIFPGPP/cW3roCbjQ2Lj6NX/nDL+A/+qFP\nSulJsOBxRGcsrLeAaUEhgtoGROxYHTm5B7zWNB5VXbOsCzIhWoAvYRA6boJzbcPx82K1xv/wv/wf\n+PzX385n6+P37+KnfuiT2Ku4qf/Lf/AavvSepv73A6aMImshEVJCP+5wcnGORyePcXp5iU3f8f5Y\ng5gIDsiGczwpNHsejDbiMxYLdYL1lecmluYA8p36DChzPY9ngxtmeo9/kNtHAvjqug51XeG5ozs4\nODzMrmlpljho92IKE2JguqL3jotxEQJ0vsJibx+379zF7Tt3YInQ9zs479EuFmgXLaZhmCWExcYT\nKAu798zQUKTTWoujoyOwrguLojtTNE/yImsMLJkbCWbuiqivKJVOjfOexwflPBARdyiMWNBLsqPJ\nuXdeABEt/LVBIiONTxchkOcntxJFcysHOe2yzxZ8+bkCQPk45Kkp4vq8sM4Dktb3LBTJYJaBzNNH\nWXz1OwwhTNItiay/YmAQYmKnQREppJzQc9c/zoqhadLEMGRAiMGxWDoP1sCSFRFnLpAIlO1udZHP\nyLmEC+10RLGFNWA2mo525q49xOggRZBUn+X8gYMdpKCTc20FEHKOwaPCGLQZfXfWCRCqgpgsMqnC\nL4zxyfVxFpVloCY6h+Q9UNc8oksRb207uULvX5Sc73Z47nAhNSuJWwmPzqByABSg4+5DMg62qmCc\nywGNYxxHNrWRh7CjjOPimVLEW6cX+NyfUJCcrla4f7iPlIC7BwvcP9q7cS9by+dPo+iYIl574018\n7suv48nlFZ5cPsFuGnLgTUQwMfJ+EISJIklAIllbFEwGSKj4TduUZxAmF6c6okOi91Tc8BT4RhYa\n9sJSDWGWtD3bvmlbCBHe1zg8PMLhwQF2XQ91eTXWwxuDupYR1sBAfLtYomlbHonVMQ5jZYy1wd5y\nD/3Q59hgncdisYQBwTuOL8xW1mWX8v1in9JJqaoK+/v72O126PteunIec90W3jiWaALC63Np3uSO\nurWsOyFddgB5DXey3vFIv8m6UWaamE0CZSkSCgtVvn02YpiLcavsYejidCOulf/SU3GTtMGe3zuP\nqdolB81YxzBZ9yzGAAo6fI2yr/LIRYiwtIwFkkkYQ0IvrraqC6LMMx77kPfGiHHk0ZNpLKONOhZf\nVRW853XXGIACCStHig+TEE1x4ZozuxQMV6aGmqJo3NIYqhqfGptmrS1dxXLRKE4feTyVi1R/4/or\n6GZsabyozowWiNaIGy9Uy5ITa195WNPCe4+56xMR4f7tY9mr9x/juHO4gKu4qWI9yy+QIZxcbXC6\n2eLe/hIPjg+YjQ0Pb9jhkYXspThHEuNGLjq893lcGHAgYlHvaZzw6PRP1lM5u97g/t4SFpXofLK7\nosZfY7n4+at/7x/hc185w7y4WvWfxjTtcH9Rc94yA48TUPRgpO9njGFdyKrOjHfnLBZtC986ATuM\naJFSzj9HlW+YJo5V+qxbK6AGx7Nx6NFJQ/bZ9uHYhr7HNA4CphZGVkycDfq6xvFzz+H5By/gwYMH\nqLxD3+0QwogUGYAfuo5rCvu0xmJCHlGSmoDZHIWt3i5aOO8wCHPM4eb7tdBVqFy3G8BTbmLwz7Rm\nsU5Zs7N3GmbzO1k3ODeKgE8s8i2ANyCcVu3UPNVAUURrVsFABIJvnmBz49tvAHckjFVdKjNoqKCT\nvkYrGFmPZUWWJiabnlit83T6J2nDhddjkhG6FENuakdit2B9dkkaGNyf0LFKjgOT6I6OowBbfDAM\nsClYJzGSdPRTYjdRMYbT+MFrtYWoUUGJCerwmE+5gFlJgC9lf4VZzOE1UWVdODdO77lf+AO993DW\n56ZEAb8sA7eaH1sDSyJZQ7FM1sxyAeMtKlPBWIMYuJ6pqwqp4XNXUcDJai2yLe+tI75y/gpO1ivc\nPdzjdRl8HY0Tx2J4kLMwUBkUg0hSr3huaFghpMAAyWhcLeuvsV4MizyUEDGGgL/+P//v+OLbG9wA\n405fxa/8/mv4mU99NxaVw8/+2J/D5bbD2WqHe0d7eHB8CCtNUmudNNgZWP3aO+/gK289xGazxenJ\nCS5X1+jDiGQIEBkmkyRm6b2jALCcW9Uhs9YCsnZ4x2xhK88t5xH6LPC4NCjcYHs9/ax9kNtHAvji\nLrjD4eEBvHPodz27p4FQNQ0QCclwYq6zzu2iRdO26KcoCwplVxHjPLyvkCKj6Luu4+65LY4EWd8C\ns+RdASlnc/cNYNBtb28PnXwOkQJZyDcEv1YR71KkG8MAghbrpHrntgAzSCUg8cJi4ERXBmBb8xAC\nECK8jFkpbV63khQ9VaQYCWLiJ8vW3LMiQ67AzfjDDzpJp2quXJzn9knFAbX7VFgJ6sioLjJGz2V+\nXoiFd7NNblJcDsMwYbfbYBzYxCCL9EkXKSiVN0TWlxpHBNFjoXw9iJkbIjZOMIgT61FpB12b48zE\niNK1MLp3M1CvFGgpGSSKAnzNOyIRKsepn6BnkQigSEzZNrp4KvDleNExMooyS3Ky06QCpoCIJEuR\nlRIL7/KOQ7RNBeE3gLOg6GAN4cHtIznv38jFah+uYraSzQ6OBierLc6ut7h3uIcXbt+C8xVgPdPW\nq1pAPr33k2Bd/PzwsbosMhymgGkc8PDkTL77G4Bw6y3uHSz4XEubwkgAtgblmTEGm67Df/e3fxVf\neOON/CmNq3DUsiAzTBFqTUEFsQurRAMF2347FFFsdv5p2oYt7FPI3TgdgQZYL2yaJgEQ2iz46h0X\na9YahDBCdGWfbd/kbbHgMcLlcokpBFxfX2O1WiPGiGWzgKsqOFu0SpqmwXJvH76psVlvpQkRkSig\n7zpsux1gmb0VIjuKJlmjas/FyBRDdrEDIAD4bI0mZRwz6Na2LR4/foy+7+W+Yt24aQrycgY4rLk5\ntqJdvbwOh7GMuelaAsq09wQODMpmiyL8aryHtw62kiIhaoxE3s8bf2ZNH/13OdKnOu+zOGtmjSNO\n9GdxdHZO+GdFM8ZmfUkGmUzu4NPs81UvsWhvpcDuWswSHrBar7ETLTZnmdrvnGU9izRng+ko46zo\nEeCLzSt4vyIRphDQ9X1hhjnWgpkfi64daQZk6GfS7LifZhwruKbXQs9B1AaLnHNBiDKT3DufO7pA\nEWVOWYRYrxtKkW1MLgpivNn4MbVHFSLGgUXXY+Sxvpefv41PvHAff/zuq3IdfhTAb8OYV/Fn7t7B\ng+eOxGWRc5/NMOHv/N4X8KXHp/n++OQL9/GzP/H9ODrYh61qLlSsRTJFgoBUrNQawBk8vlzh9GqN\nu8dHuHO4j2HgQvKw+ZP1VG4v2lzMOqJ87Hr+feVxcrXGH73+Op4urgBCF1/BGMWZTIAz1ggluLoS\n4NnkhpoXN+Zx7DBOE2rPjIKmZUfGcWRWIaWEtm35Ph25284izoFZyFY1MmV0ixKGoc/36bPtw7F1\nux2DUNbCNw2sc9IgZZDdGYO6XWBv/wDLvX1Q4gZsmAKMMHpSCLCEp9bC+RoqY/TW5THXGCPatsVi\nsUBKLKqfiOCfMjshKYwtlEE/qyFgcuyQm2xWGznRy5J8Wxj1xpVmvbE2xxM4D2ccjJP1WRnL+hhb\nm4/nxmaQx68hMU9HC2+AYKW7Uv46+xgu9uV3RsgC6b2NFztbn5NOcIQIl0GzeQ3DDXuScUDVazSw\n7JA+irvgKEZschrVnEVlaWLkkdZhnDCJnrMxJk/HWMusHF7DDdKoGk3cqNfmT24A6XmRc601DCnE\nR0m+Q1r2os1sDKTREsW9UZrfKLqdyt5mXeMy3cRML4fKV4XxZQvoVViCrH+Ym3S50hQAUXMFRlxh\nrYeXBhtZC3Ie0OazSeiu1nKF37+OuNwNuHe8PyuAjeQoWrtbBo29BwwzfBX4ggC1+Ua1zEpWTVFk\nwIsdV5OMY759co7X3nqva2Np6q/x/BE39e/sL3D3kPUaNaYxE5trp20/4Bc+82v47Ouv5yPbaxa4\n1VjwYzRzB44J1kaYRFlaiZMi3n8rjuDOWUwy8eZ9xcCXXBs2gSv3XUoEUNEt5SasSvM8/ZT96W8f\nCeCraRq0iwUWe0vsdjtcXl5gtVqBAFRtC2P4NcM4wgCoqwrtcomqXYDWO9HcIYR+wGq1wvX1Cv0w\nwjuTC5Jhu4GRzoHaw76XrqdAR0lCvfdomgbGGKzXa3aWtEwzB252s40BTIKgr/qgFdqnnQMF+X1A\necQKtZSfVSvuFOIARAzsIQR4ARaQP2o27zvbtMDnH1sYk3LSNF/82ZVDH0AImFLQsOyKIiyw7LBF\nqovGL1XbZOjP5bhABXBIYgOvf5IElDAGrK7X2G42rMUkOiJVVYEdJ0IuSkPgEZIYUqbixkiAIfiK\nxchDCqBI2TihHwaojoiTsQ2YkgzkYwWJUq4uyEmSBOQOit4jAAm4ZjPKrlg7zex9Uw6uCTBFJVKL\nOU7yC/uLP0tpw1LcerGWlnGJkIJokVBZlCEybpxVwIHw4NYRPvHgPv748dNFyc/h2+/fxYu3j6XL\nAAaep4C//VufwxffOcn7+V0fewGv/sVP4XD/ALaq4auGda6iUqMjQFE0V1if5Z3Lay5Kjg5xa6/B\n1Pc4XCiT5BuAcAdLaPcyFw5gBxgFi608T7/w9/8hvvjmBebdlSF+GldDh7uVBDkZQknC3HTzcS+5\nxzVZS6L1pvM6wBQAACAASURBVOCWOirpfaquWUrjZ3o6ryNN2wBQWjEb2hvDI2vzbsmz7Zu3Hd86\nRl2zPuLFxQUePnrE449VBV+VbuUoI45t2+Lo+AhkDIMkcl8O44jr62tcXlxgt9vCW4+UEra7Lbrt\nFjFMWLYtKmdhKKKpivabgumJUXrWpiR2/qsYRWGjCilgtJuvgvpEbE1CVMZWFHDNei8AppiQbGFK\nZdAkJSRr2AWPSodRWcU2BJiKx7SirOMcZ24+NxrbAIlnRtkDmtLOY9wMABMQR7sCqklJJOwuo7EI\ns7VQvnbWa86gBRhUiCgOyLl9kYgbHuMoWpQMTu22W1xdXWG37WCNRdu28h7P4vMiMDzKqH1hSiB3\nzVlbyWWmX98P6LpO9Jg09vF5V7BCO+bq6FXYXdp+otkxmvwzPZ28vhc2No9X0ntezw0jZtnmNdOW\nEXpnLRsGQbvwVoTxScaYWBrCW5vBvxSDHJeDqXiUJxFTjpQF/lM/8r34ld/5LL48E4z/+P17+Muf\n+k60bZMZ4dZa/E+/+3/jj09GzNfuL737Kv7W776G/+an/xKM57FFjjETpqDGMTyatO4G/NI//D18\n/qtlpOST3/ISXvnxH4Ajwq29BT7+4Hl85X1i3sfv3sG9w718H4UY+ZiNOLASwTuHx1k75v2LqykR\nWs9FUAIQ44AQCfWiyVfEaPyyFgmEcRoxjkPWLprHGHVvbOqEKREb8Uw84UApoW5qhSplLdGCVXgT\nT6ezz7Zv2jb0HQCD5XKJ5cEBEiwS7WB2rB8Xuh6bzYaBclmju2HAxeUlKE2A5h+R1xdAQJFUwPDC\nAi05rDEm1yvjOKLrOlk75npQKQPu8KXpmqckZjknAzYcs278DJA8WPVnxZxEGKZRmgMmBiA5mBiB\nGLkJlLcCsD/tEpfxChiADBKFG4CXNrgViIIA90bybDZa4s+IKEYlzBaOwvTl/eaRapfX/Rz35B06\nJq+7SDBALM66zOLjzx66EevVGn2/kxqGJS+U/R1F1oVrUG7GF+1GZlenpI71JuvuGrCQPq8fY24E\nqK7hvI5JWptYCdsQHETMunTdIFJTsln8MYRCmqbZ/VVqGSYNcw6QR9b13lEtavm75h4ErXOlwLQE\nx2hpBuJi4BFGMjzea5UpaQzIRiBZ2JQAQ7h/61CuxvvXEfdvHbCxDFhqgveJSR+n6x3ONx1euH2M\nF48OYH0NY724Onq5tzmOppRgkfLYPYOnRvImw8y+ocfY93h48iezjC82O9w7XMKkiCSTSOWOMkIa\n4Kmav/6r/wSff+Mc8/i4HT6NKexwe68t59aJzIo09r1hIoWV/QQxGYElPJCbckooadsWkDqFaxl9\nviJiQnapJiI435bG2Huwkz/d7SMBfN2+/RzqugbFiIvVNc7Oz7DbdbC+QgTr8ty5/zyqpkEQZ6O6\nrpCIMMgFY0wb2O46vPHmmxjHHsu2wW67xm7bYeh6OEPFzne2AJv3uZCKfLZti7ZtMQyc2MYYYaua\nF9Knrv3T3ZjSpZZxE2MwBR4TVFdAKDKuJTrp+F9xJKzGET5GVAoQBXZGtC5JESSAVzIZwMj7pMco\n/6c0/By8xOZdZ9/NbNHTgt0IsMQWvTPNK2tlxMZkGrABMlONYgIFdXtkYGjujqXzw3rexn7E9ZMV\npmlEXVVcIBHTfo0xoMDuHsPE1zxEtkY2Vm2Fo9RblD9bqZrjNGUrZhaKNhm4K2MoHOQ5QBgB04rr\nmXNl1DEJc0xZfQZFYJKBTQuKRkYwZfE3gCUWV7RyvpJht5SiXWVvXDeoiLsFF3meA0JKCSaMMOqS\nKeNN1hgEiPYAEk9GGoP/8Ie/B7/8u5/Flx+XouQTz9/HT3/qu1gvwFBmoP3N3/osvvzugPmi+4WH\nr+Jv/MYf4L/+6b+Iql7AVg2GaUQcBkBGdBKxW9hmu8X/+I/+OV6bzbl/8uWX8NM//udx72j/GzAD\nfg4fv8cFSdaO026ZK0LHmpS9c3GJz73xBt6vGz+GVzCECrXzWQ9Iz41zDoF4vM1bB9/U8N6L9fEI\nihF1XWe3Rk0yvXe8RhFhDGNOelQ7RwFqZw28t1zkJtaqeyY6/OHYXnjpLqxz8FWFR4/ewfnlY/TD\ngMYscLU6x/V6h+/93u/DLetBjvD49AyrzTVCSnhyfYVxGuErh0gOm90a/9cf/j6++Nof4dbhEQ72\n99EaQj/1wMDW9dVyibZZoDIOqAxicphiwEhl3Qo1YUCNvWaJpl7i3ZMTRClMDLeFASvahImB5azX\nBWCKIwwYxPfWgtRJzrDRRyS1qq+EESaFixTMMSTsdjtcX6/g6hbt3iGaegkih3FIcJUDHJCMjE7K\n+HVCccYCARSY2WYU3Jek2SDBUJyNexCCVWa0CKlHAQJhZF3mz20qL6Lh7PbIo+YRYRgBIiyqChQS\n0jBlTZT5GE+cAnarNa6ur9GIC2vfddis1xi6Dou6xt7ePloBrcdpQuUsFyf9gDiwu6urKm6uUcSY\nAiKx8PnQ7zBNI8ZJQRlhC3m1fU9AiMLKypVX7pimRAiR5RtAvM4Za5HAzJAoGi0JzNLzZMUZTTv9\nnA8kLREF2PKVjGcHA2M4qXa24lEUIyMyCaJj5eEM27gzM11H8Q2cNYjUw5KHdRzrvMQZoAFhAGEE\nYkCcNlhUDj/zE9+Hs9UWF5sd7hzs4e7xfnkAHVvWv3txjS88eoyn1+5EhH/x1VfwpYtzfOzFB2xA\nRIS+j+gnwiSC1ADwi7/2e/jSWyqmL8DZW6/i7/xv/yf+4x//fhACfupT342/+8+fAuLuPYef/IFv\nxYQeICCaBnXlQZVD8g6maTBWFUyzwO279+Rd719cJe9BtccEGVWlhLpy8DYhjgNiinB1JfqbBpvN\nFYbQwdcOblFhAjfm+qFHCoT95QHqmguUbteJE7flcVohynTjiMYyUG9hMKWAKUaYxvOz+mz7UGxO\ntH/a5RKL/X10QwBMJ3k1YQwD1psNVqsV+q7D3nKBtm0RQsRus4GhCBaZmI3fzmqUedMh60YZg8Vi\nwSSBYcB2y7pvmo/PtzwuCb1nbhYzThqMkDxX8+pECRZOpo9NxpwKIJdyjl+FAK9rlMQIALlhr6C9\nUxu7P6GWtsYiWWmmaKNFmiaaLQt3DApZKZyTNSXVFR6z+guloaLMFiPAhgXyesP1E+eSxexkvFG/\nUCJcX66wXq8RpgnOGVTeI3qHuqpAIkwfQ8wNtJhNRJAJGTxCV+U6RkfNxnFEPwy5jgFYk5fovfdB\nktFKJR5obVJqvLnkQMpxyVnHJAMF0MCmcbnBIteSCRRAisILSwyY5XrIitOkbErosEqqcLx+seYj\n5/eT5NWZ4Ux8bQLJ/uh1tgbP3zrEJx7cx+uP3ysU/+3P38NLd29xvSsap1aA5b/1zz6LLzwqDf3v\n+daP4T//d38cR0eH8FUDsk401dhhM8aJG1UwLIBPCe9cXOP8eos7x/t4bm8hmETAc/utfOo3GPc/\n2CvnIvHYPhG4AaWSFADeuVrhj77yFbxvbRNfQaA610LWOEBGWa217HwsMgnK9KoEHB3HAVMIWeda\nm/lqDGdlhN4YIw6jUQx9xHRG5IWausYHvX0kgK9vefllLkphsXpyhaHv2Z3AVwxaRMJyfx8xJlxf\nX2EYRyRjECKh67ZIcULFtlkYug3e/tqbuDo/wfHRAfaWCzjHhQNS5AfN2Iw8e6di5+peAQwUMYQJ\nERGLugZ5iyfXK4TI2l4G4ICgyCp4gdGkEZCFLHdR2C0CmIFFUjOkJHofsiAYgdvD9P+w9+6/tmXZ\nedA35pxrrb33Oee+b1V1PbpjI5KOg1B+sHFsJ3aQQhwLjBIhpPzSKBE2RnYLwX/Av8BvkAgLkb8A\nCQLiIQVEDIJYIijq2DjpR1VXddV9nsfe6zUfgx/GGHOuc6u625ZSqpbqrtKte++55+y99lpzzTHG\n933jGyumcUQ39OiHHdwdRh86WdjOAd6D1RT9FmDFjaGpcnjF7kmDRjVPtCmJ2DD2xiKRMv3YGg4D\ndS9jrq2MYtgKxCTMelV6pYSko99hLHURY+FpnHA6neD0QYsxYjqOWJZRzt134n3hSMGGhGWdZQx4\nbp5emcUDxry9CjPy3NRkWVspUVgMDp20/3FOSEmAoRZwlTHS6yO/NmCZBkybAGJBljUY5CKTJpmb\nSgFV7WcGgpLBmnRaiBORCztF6wEooi8j6H0IlZGugYWKmKXCK6ijI93Jw5NDdl7bTSOAgjtnA377\n3/g5PL054fnNiEcXezy+e17XnfMy1OHJ1Q2+9f3PLkr+8Xe+ge88eYmfevcAFMa0ZkzzipSEoSQW\nmfR//t/97/iD92/3uf/BB9/Ef/W//CP81q/+PL7xK38ef+9//X9eKUge4W/+3E9jzTNyEm8jTx1c\n6OF8AHxAdh1y6MA+4Ds/hl3JRICaiiOzmFmSPIeSaIi5c+gHrDljnicUztgfBhzO9zD1nnn2eC+F\no7EfNgBB2olE4ZljRlHTaEckrQr4/I0gXx9/vOPx4zeQc8bN6VQn23Rdh91uh2HY4Zwd9vs95nlt\nLKySEETSPgbqwcqQHY9HEDMCOaR1RR8Czg5nCGfnCrZmIS76vnor9H2PAm2LWxbZy8DIWdQgy7pU\nkDZzab4fehh7W9vkgM0vrntU2BiWGogsIc8AEqr77m0PKmmPY1Ub+NABXibp2VG9NzcKADuYWePM\n5pypnTeT7W2beKPsZ4XMskPJrOAzbcC62y2BzLYLkwyB0XZQ895b5hnzOAHM8M7XFkUbHCC2B1w/\nU1xXrFyqkb0piXmjDrfwmFJsbS7cyKDt1CNJQGO7Dk4VDtsXYmnLZxaj4WgThrm0EKLsetYBLs2T\nDHU6sw1JkRaIbU6waUmpwCTQeQ9WY2wDUolIixEH79tkayJXlQG2dsyjsuuBUBy8H2oB+PbDDm+b\n59cmOZGCzuP58Ud7Tn788hpf++q70j66LJh0smHOGcTA08sbfOt7H+CzYtS3PvgGXp7+FTy+c0Df\n9fitv/KzeHn1Ak+vRjw863H/IENfUs4gHSjERG1IQEoIB4+YMhwz3nn8Bj58+ju6TqS4Ar6JIezQ\n9z1MlZ/Vf5QAmUJdMoJ36HtpoU1J1MFd1+FMJ7eGELCoP+DWm8+mBcu+Y36wUhymnBCyh1rzwVpi\nWdfX6+Mn47BnlgEsyyrTg8cTYoqQiagdXr54id///d/Hd779z3FxfgAnUY/knOFYWmV93Xd0mAMI\nztmgFABEKJDJ3eQIu90eoetwvLnBPMskW+INofsKeLZVd0Fz2e0eZlv5ds/VH5Z9gGnje5XFs2qe\n4boO3W6PgZuvYSkF0GfYQDPAaqBXrp9FFZtGT60d0T63CpCkQ8YULlrr1Am71N7DCGwDEuuEPpJ7\nZCp/a4/Mqvit55nlNdYYMU8TJp26bKhdignHmxvEZUHoAna7AV0IICXISxYxQIxRyJIU5dwrEWSq\nPvN1XivAVgrXiY1wUGUdabeFtfoXXR8OdbiY3rvajmkEP7WBNswM8mi1K6MOB5MP7qqookkmqNaa\nxckeRFxExUSbVtm22CRG6eA4GZAjubP3sodKnBBlrNcuIvOnzI6QkxOFbskgZCHz/+H/iz/cGMX/\n6bfexN/65X9V28/l570Owfvd//H38Qcf3Sb0/8n3von/7L/5B/hP//bfAHUdAJJhRbpfkwlACuM4\nzfg7f//38K33v1/f72e++i7+9l/5WQze4c37d/Cnv/IG/tkrYBzRN/Evv/EQj84H2atLkaYfpjqk\nzpDHwoRPXv5opXFihmfZ+z05AWeZ4QJ0Gj1rO30H1wtpl3LCNE+a84q3uDyTfAv0Cvq94kcoOaPX\n4V8gwrqs9Zp+nseXAvi6c3GBnBJuLq+kBWEc0XXidxKGHVwp2B32mJcF0Ek+wjIYwEPwTh/+HFFA\nWBeHZQronEPw0jLW9QM8IB4nClboDA2ZEMeExCJhndYZRA6+SOI7zpP4N3hq/c6lVOVYNfzdMDHy\nuiYY5aq+8RuArJQiABkUwtJ4kHNGiivSGsG5wMOh80H7kL30PZOi4rXdQd6HXmVP9CHB5svC4piP\nVQtydhA5lclqULPShRxKThoQCrZm+845aaMB4J0ADyUS1mSTt4zVWDHPoyT9IWiyF3USzqwJtwRz\nZNRRv6uqZyz4liKGgiLRtUKwaBtmUpVBBmc5ewGFlIEqm5HwBg8aoWQFZGlKsFIy5mVRA1nSCZtO\nGZeiI6r1+3UTs5Y8abFrkw0BMfqUvuugJvfSs00gNYhX42E1uifaFEwaREJwADwKJbk7TtYmgjDF\n5BJKAhyxAnLA24/u453H92ET5uQlVabsPZ7ejLoCPnvT/cHLa3ztvfeQS8ESE9YkKkCnK+TjF9f4\n1vc+3edemPFPP/iGyH3vXuC3f+0v4OPnl3h+fcTD8wGPzgfktGKNKwonFHht1/SA6wDXgV2P4jqs\niREqAvvZ7IrvRMXQPIfU2ygXMDn4LqDf9fBdwDwJE9J3HvvDoQ7BsPHQAMG7IODumnSYhgDG1jLr\nQAqU6rUnRsmsz/RrJv4n4djt9hinES9fvsTV1TWWZcFOGfJh2GF3OMdut8M0LyBAgXcHjren6Vnr\nIQBc3LmDi4tz5ChA1tnZGXbDDkmNbc3nLqcEeGHSCYyYM06nEZkzuq5HpIjTmqonCyDxLJfWdkFa\noNthbdJbhtuAoaHrVCXl6tdla2kt8URiBcAVyFJ21DtQCIATY36YnN6URiyTkuq+b+x7VYDZtbqN\nflmh9enG3wagOXJgCebSKkKy16Kwgi+oAEEjDqh6pxCJ19I8zxjHEZyyDixoU8+a105RA3spME6n\nk5hLs0784uafIsWXtpMTV+BLzPCbR6ap2MS3M7frQgCxA6maWAbTtP1XGP2IWX2dmKwdv6tqj5hT\nLXDkJVv7t3jvhGZ2DVRwyqZUw7Xx63aPtwUKs7W5tARC1CICzG5btmXkuXjPAB4hldtrxIquzVoj\nBXfeevCjPSffenAXRA0sMiASmj89/TH+LpfjgncfP5B1EFfc3QU8Onug612GIVjLsBUe5BxC1wNe\nDLzHecaHH36Er90/w/MXLzHnVlzt+j3u7XeaVzUA1m1ABAM3+q4DEckghRixPzvD4XDAbrdDTgnL\nMuuQhKBA9IplMS9ZAT+CThkzsL6+n6DBIFYg81PP1evjizpiySAwsK5AyljmGSVFeGL0nhBTxjRP\nWMZrjDeXuHfnDu7dFcUfcQfigkDi3cqsrXuaBzKbaTkjAUIKR8lLu85jLRnHaUJMSYl6qlP9SNvU\nbN92m2e/2LOq9sEGMJEOWHIKdOTCIK+kCxHIKzCfM9Z5xjyO8D6A7jF6H9CFDuw92AsoDxKCnzZ7\noIBYXGMToO+vRH1LzkslpbWgQm2XrFia+jUpoS88vvofUfO9EmBEQCdT7Fr8ErCwVPCLrUNDlf3T\nOGKapVbxwUn8uDliWcQ3MsBBbKNIFX6xdrqsq03JE48mzhlyJ6mqrHKMVTlnsU0IHCPv5dq0XBSA\n1Y9c9GObjQDXycfOC3iUU1JvZLlGjgm5EEyRKGDaxr5AwZmqhnNC1osyXb7H7Ba81i6w9VG9vsRT\ny7sWd6rnMRd4RyjegYqY/3siMZuHk/+8+K5RXuBQcO98j2/+6s/j6fUJz25OeHRx2JD5qHERJGTK\nDyX0v/0NfO/pC3z1nbeRcsG4RMyLtJg7QNYEgL/z938Pf/DBpwn93/2f/2/89q/9BfjQ4d/71/88\n/t4/+MevkPoP8Tf/tZ9GzDLZ2YcAT72Q+k58k4sbkFwPhB4X56aS/uz4WAeLAeCsgGcpQAbYeckw\nfIDve/iuR4b4QK4p4uywx+H8IMCVKhCXZVELBKtxrKPJyH2xwPHOVQ9vlM+3pvlSAF+lFCzLiqdP\nn+L58+eYlxnDsMPQD+h2Oww6Zn4cJ0gP+05QzLRIUDD5fxYfj2E34M6du7g4O4PTpKML0rboAcCm\nRrJM77JbnEvBklZMy4xpXsRbihwWkkBlLIJ5axCZgkqOLQvO3DqkzasCrJ6sro0ErUzKq0xMLQRQ\n2zwaC0LVKFA29WaaK8CJBQ+uAaWGkhpcdFOy10P7fmOK5Rrp5qnfR9RkzcE1ppghnwtBAAboz0GZ\nHmNDc86YpwnLPGMY9iDGK2NThbnKRdsTc25eF9vJWBCj6RijJoehMh2iCFMDeg0OxAznSY32oQxD\nq9FMxq0XEUxa+DCDc8Eao0iYU0boevS7AYHaCPikxRSgni5q5uhIpzQGMam00dRexzt7b95CXjds\nSXDq+gDq52ANAaI80bUByKxdC3bOwbGXncORgF4OVQ1n7J2ZQtckSAujN+796KLkK48eCPBcGKk0\n74Sia/vp5bV+/w8xnTzNePfxQ0QuuH8Y8GDfGZYNooCUo5hjKhNfQGo+PSD0AxIDl8cjptMJd4Y9\nrpdPs/F9v0PwvtXfxjY5AQkqWOV13HeUIiN0A/pBGPoIAWgJ0LVFSDHrBNEEU3tZAcilTZ1zasov\neVfzv3t9fLGH7CULnjx5ipcvL7GuK/b7g3hwhIDzO3fFtylrm/uwAzNhUsbU2qttv7p77xyPHj/G\nnYsLHG+OePniBdaU0XWlJh8udMhFFKslMSg5pJJxHE+4OZ4AAnYHB1eANWakNaJImaMJq0jiLUEX\nKqIx1dtpvltW3hIVSzCtrjBIo7H85s3i4YP+jCqQXQVBWjFiL1J9xZQAps37b2NiO0+osbECN0Xj\ni7XZ0+2R5vbQOO/hGCjIIBY1EnWuFQWpgHNGSsKgA1DPrRnLMsNBJrTO81w9uGqriAIhKSdM04Tj\n8YhSknqrNGLK1F9OQREAlRXd/mLoaTOBCsE5C6ZtqIBe/KZKUBY+xoh5WTBOY2136foeNgQFDNlv\nFXi0e+IhpJsLFmM6eB+Uo/Kaa6jBvd8kq2aWT+2+tXVinmZNcVRKAy6hBbT3ToEvhqNYgcTtWtyS\nYqb4eufxffy5r72Lf/r+p9tUvv7Vd/Hmg3sCPBbxvAGbEYQcD+/86MLgKw/voet6pJSxLhEUV4SD\nEE0W46XtpsUFHzrsD2fIzqMUxsuXl/j+hx/iySdPcM4J988PyAB8kHtirY1UmlJDzL2N4BIvWnJU\n1YdtIEInrSdZrSy6rpJ9Mcnewqo+8UGM9mWKo6ukoqnqiWVvMODs9fETcui6Iif+w2LVILm8+Bgm\nOM5w3mHXd9j1vQyuSgkEQuh68fG1Zx6K8wDQBnJkiOL0tCxYtKWx54JlmjCrD1Tw5gNsgLm7tf9v\n1bdg3FY/coEDi/IMAmjIeUi3gQNQSBTPUPA+JxnEwFna8oP3qiB24BDahLxXCXvGp9cvi3BAgKhW\nTdXawgAZ+zmNRQZkG8zPdHs/t4EdBlRvPRCLtkQ6asByMt9icG05XOYRKEA3yJCnrMR9TNKGn7ND\nyh1AuKUytnZKQPbtpINUTInWJvpmNawvCvwpIAcvPrq1piy1pgNp90kxBZzanWi7KgFVhT6rotSH\nDr4LWkcr0VPUSxotFpPzDdjyjcS3DpYQukrkm/qY9edluIr+0o4UZazAUKUeeek6AYH0/khtUuBc\nEDLfOWSX4FKG4DYSc99+fA9feXxP1ziqEMLpNEkG8PQ466L67LrkoxfXeOftd7AkIfNjkvjjCHAM\nfPziSpVen0Hov/8NPLk+4a37d3EvOPzWr/4cnr64wrOrIx5d7PD4zoAYF1EVMkt9RgQiD+c7ON8D\nfkDxPZYCeBfw5t17+OTqh9Q2SuQRGChCzFt9z6WgkEPfD+j6AeScKgxlWOD+bI/hMIBKQYoFMSkY\np2rSpFORzceaCPAk/mbelN+WTH6Ox5cC+JqmGafjEZ88fYrj6STosQIZzjnsFQGV8eMFfT9oa9mM\nlAvWmOpkjJwZw7DHg/sPcXF+hmWeddKSTnxUZRYDiImRi4AtBYxYMuZlxnGSiSxDPyClLLLMIklf\nLoCXXGzD5t6eNtJaUIzN0J7yzOh10/Degx0gLYWubTCGkKuiqE5RqUWIyY0rFo8ts05aODg7v02w\nUIoSJgnbAlyW8GJ7zqqKkmRLAwcXPTdC57TFS0fTCnYSkMoq5sDLgrxGkeNqQFyWGeM4IWUpEI/H\nI07jiHmWr0HvTy4FZV2rV0EuZsyomxu3aSqW9MmmnZBSrPJrMcSP8vkzkEtzeySQMvsGPmqgBdVk\nIWsLzDhNGMcRICeeL6757FjgvcVe2f3wWpR4U3dJIiCB1lelldfpPHIDzfxZzyEXDQ6yNqr5pKCX\nAAhc5H4SjJlxAnqxMF9MJPLtkmuAAFHrgdfr/vajBz+0KPmZP/U1vP3oQVMqQIJLKea9wnj0Y4qS\ntx/dh/ceU0wYxxMcGLtdj74PG4m9rH9SAMyHICaMfY+b04gPP/kY33n/fdxFxOJWLKWxK323w53z\nnSYqgGNWklGS0OA9XNfBK8AxrSPmaUHwbcJQyQ3MHLq+tkkJMCttYz64WuQE75FZPI4kIXAAZ02e\nXpF8vz6+sGPU9urLyytM06Sqya4qYmwS1jiNiCkhdB1K0f3c2g9sIEcpePDoMe7cvY/9boeUCnw4\n4jhO0qrrgyQKnDGvI9a4qEF3RswJ87piXmcxAoZDJoege1ydAAwt0LEFqrZrSf5cl9cW2K4t1sqG\nQ792G5KqrbohBGnZFYqzKgqgKiq4pkpuZvqtBREb0Gt7kP1fz4GV1UbdKzfTpjbqeQMSvLadgC2u\neQTnsCyLtKzNK8raPCO3HpIpCcs9LzNurq+lNSWJekuGGQBRmfjT6YTj6YgQXGt3AZBLRkoZmWXC\npdPXzKXU+GBmxVvlsSmcvHdS+CYdKW8qBFh8BljbZ6zN0e7f9jwYVrhaZtHuJDknccY7bd+z6bei\nAnMVEPOVZU8FyJvCc6veaxinKZ9L3fMNxKyqcr0vzC1nsO+3Nkkjx+zPzIz/8Nd/Cf/Ff/t7+Cff\n3XhOpOQB7QAAIABJREFUvvc2/oN/8xdQckGMMuXMuwDvOynosqyVx/cu8PV338H/9+FnAGfvvot3\nHj2Qe5czpmlC4BW7MtT1Ix51qtD3osgMXY9hf0BkwovLa3zw/Q/x0ccf4zSdAHLog4cPPRIDsSrf\nFNzTutOKOTB0Ypa0Esd1QY6x3q+sRfSqPmCWR2YFcHMp6LxXv69Geko7iqugtrUyeS/+k969Vhb/\npByH/QHOefRDj3lNoGXVmiVrLZIBcjicnePBA6lVUoy4vr7BfhgEHA0BHFN9vqLm2axEfcqiaDyN\nI1LKGAZgnhfZEyXBk2ENzgnwrgXrNp5YvWAH689ZzQKIz5hNbIyU7RuhSTRMPVX3POfUUFz3qA0h\nU8kNbvlyPer56Gtuwa7NnmN7mE16bK/fXqp6VwGVgG/PmPi7GgnNuk/1fUDJTsFGHZSyuTYEgLMA\ni8u64LA/A5FMt53mWQCjYlOGS7UQmDet2lubgJJiJfeJSIUWVM+91RNc8067Fo5MHQYrVxQglVhZ\nYCRLa/tMCtqdTifpniLJeXrXBBg2lGDrdeY9dEq5DC8I3jpRjMh3dbpojUVObHhQgS9XY7/aggIg\nzfNDXSuerJbTz8r6Miz1jIxJ7sTwXkmgAlYvOs0RqJ2vkTVv/hhC/53Hj+ScGbB2fmaCad6eXf2Y\nKZLHEV994xG4OKzzoqR+j9A59J0DYGAmt441LvAk9U3oO7AjXB+P+PCjj/DVix2ubp5hvlXbDLh7\nR2xmZA8QXztRzRnQLjHcfL1kv4koxabX6/VlyWcJqIpjsHaa5awEoBKo3iO4UGOcES2f5/GlAL7m\necE4Tri5uUHJBbvdHl3X1zav8/Nz5JxlBPk0wbkgXksFkKdCkss1ygZ2585d3H/wAPu9TCEYxxHT\nOOLmeMLQ9/CQPl5rfchZ2upi0laDJF4MKTP8EtF5j13Xo1dAwhgRKQJcTWgs77cHcHu01seWGFcA\nZpssoyWeRjuQBRCdFPcqkGVFAgAB0hTQYjsZA8BYUGK2r9kvA78sqd4ksEQGCLAqPkkSMiJwkp7+\nol4U3nmUJKqFeZyxTJOMBo4RKa6q9BIPG2kpkiJ0WVZ5oPQhA1CDxDzPmGdB6533tf0Em2ssI36j\nfhYBYIRhU9bBKTgEvW/k6vUvkKlRxeYzYwMjkioSwIAjdLtBx8Du6nlaUAG1CV12/clZcOgaqIXN\ni0PAq+AD+r6v06FSkmJLTB6FCakTU7yrbTJmWGkTbmQ6pAM7LbTyJvhr0BFD5eZ1YGAa6WbGAH7z\n135Re9nbpvv1r76L3/z1X0ZMCXARFDrtzffgCMQkDN/je3fwZ7/6Lv7wg08XJX/2q+/h3UcPEDVR\nOJ5OGIK0bMocg1wnVBlT5LuAbtej2w0Yc8aTF8/xne99gA9/8DEIjDcPHZLfYS0kipUQkFNRA2oo\nSyav6bggeDUG9l5abscJMa7w1Am4ERPIlII5o/hS94llEXbEkUMXOjGx14eeLDn0wjRWVYYz5czr\n44s+rq9vcDqOyDkj+E4Hl+wRQg/vgnrurHj+/DkuX15if3auXxdV3zzLjbRC83A4wziJOnhdVjAI\np+MJsU/SXlcYqwIwmUud4CTeCQTXBSQqmNcTFkc4VxNc3/kGfKEx1hVor4fuWaWBq0aD8KYnsrYy\no7WD1ORalYvOQBEYcEY1+UfOAGtbvdtOcLK40QoLamcmr2V7YePftzxNLVa2BZi1ijmIatMGjBCh\n7oUGRE/jiDQvVeVl6mCLETlnHI9HjONYk3nvJUnMzIjrKt5edfqqq60lDPGQtFhkQJV9fkteW6vJ\nBkAyJTSrjwZv/FT037fxgEhUy7vdDszi++VDEOUwrFVV24p0vzGlF1l8cCSfKUYtVB2cMuUuyFCH\nCqatCWmJ9Vws9nr1FbKiK5kXjRVszlYZ6h4J2ECefMs35tX1V0E8Zuy6gP/or/8l/OD5JX7w4goP\nL87w7hsPMAwDxEQ31+JJPMZQCTYC4W/96i/iv/6f/s/bMeq99/Cbf/UX4H1AUSXFPM/YudTAO1lE\ncD5XRabverjQgYkQU8H3PvgQf/BHf4QnT5/AOcIuBCkSnDD0nRNAm4spLMR7RzKFDJSMw36HlFdM\n04i4rrcK25SiDjWQ9k1TkZinDwHo+k6930qdLiYTTPX+6ddRJI4H13Kn18cXf4Su12eyQ84r1jUp\nQS/G2csaQeSw2x3w4OFD3L24wM3NNcbxhMIQIsWJzy5DgOqiscP8iNe0YpwnjDpBkgHpekkFgVxt\ngxdbF21VZKlBWu5vLsGNNBHghGEGuL62r2nL42b/ajUL1al0LrSOBatVrOYwwln4XVf36Qqob38G\n0L2Ob4cNar9vaX+zvrE9V7ogBFhAyShAJXhsuqQQWjLgyzuJccuyYJ0msbtIYpmSUkJS/7LTSZTa\nuSRMNzNOpxGzebNZXHQtjozjqNN+7Tyt3dJAcKmxbN8UA/xYvw8s77UFvmp9qcllVR6DN9dHCXzr\nSslZ/BLVMiZ0EhO2YMi2dm11qv5dO1NI1VsGhrrNVFBTj4fQgUh81KoARIkWmQYsBD+BtZ62XIel\nfqn8kAM5/Ux6f+EdCPJcoEibn6gqbQ05JfQbcfT24x9O6P+5n/5TeOvhvVorWazKSe4PAT+W0P/K\ng/vwIWAZI6ZxwjqP8I6wR48u9BUbsOeE9FfoA4b9Dq4fcFwjnjx/jm9/97u4vLzEg1CQQ4/sgjxT\nXSfPsra9ykWFAqFNQLEL0iFXsghNlmVCKQl9Jz6cRuxnVZMO/QAisxSKVcQgpGioMYct1iiA9nke\nXwrg6/nz5xjHUcapuybJL0oDexdwPI043hwxTTN2wwGuC9jtD0iFEXPBsiZ4X6q07+OPPxF5eIqY\nx1FUQzlVtqyUgkV9WCqyDvHhkqTWYVkjHGW4YUDxjAwZH1sUGbeWENokgjX5b+iVBAjHIFVPscUU\nDQSN/ZY+e0FdU2UCzJcFmjSr+le9RCRwWdLTWie3bEorR1o+KptUA8esqGkMiyx+QZBLlsSOlIFk\nnfBgMl3vPFAfKvNHEW+DeZrE8ybppAzd0MdpwjzP8kB5NWOHbA55s1lnVQU4HUtso+CJvCLa0oNP\ndUKIgl/GiDjXEm9CLSoZBZkTkk6DtHvGkILNCjfyHv0wiEqApO3CwKNtIUObAEFOkmrXdXBep2lB\n7nsqQPCkQVg9Wcjp9JSClItOrJQpWjayWOTLdo5yjbMm3QQgEwAU9aaSFh7kDKeJ0rZIq4qKqijU\n9y4Fuy7gm7/+F/HJy2s8uz7i0d0LvPnwHrqhkzahlOUaFCsKdV2p6fG//2t/Cb/7P/xDfOt7t4uS\n3/i1X0Idd6wXwztfN9JcIGwRozLx5APgAiIDzy+v8MFHH+Pjp88wzqsOehA2wjmnCZ36VvA2uVMQ\nSqpouJTgtXBwjjD0HXa7Hl0nho8xikLRkhBrqU1JhluEENB5We85ZSQdnCAtjmaiKiOQt+1ir48v\n9vijP/pnIvOfZqzrimHYV5AfAGLMWFdJZGNM2Ov68QpMe++BGCtQ8OTJU/TDFc4OB5n4ScDN6YjL\n64JdP9QR6fM06Z7DlQHtuw59PwjZMk9gAg6HvdIp1tKo61b/39jgDe+hcYEZ6psiPlJFJe/eOqhr\nlNqAFiULsKE+X6xm+gbmOiVeCrDxAaMGYJRGngCaML/K4qOWVLC3N6bdJk/JHspt8IvT2M/qRaIt\n8E6BucxJvVJ0uq/GoXVdMWtLmZ3Tuq4Yx/EWObQldkwBwAB8F5ChCidjk029tPkzSAxfbb83tayx\nzKbyzCWKL1PObUjBq8UECViFTbv+lhgz9j3nXNssheW1GGN7pBCAlvBbUSJTIsVTrgBwWpyl9CqB\nVHRt+EqA2XSora/Udv1s24bw6jpAIy+2XitWDNpr3j/f4+5hqK9X13eG+Lqp+sv8PT2J59XF+Rn+\n43/nr+LFzQnPb4546/4d3DvswPr5sq7pUgrggFQyYtb2KO/gioyudz4gdAOc77DGjJeX1/jgww/x\n8bMrTCtj2O3guh7zLAo0LhnZCnEtKmsOQDqlzAkYtiwLlnmBA0RZ0ffo+iDXukgLSSFW3zkBvmrO\np/eksHiqOAjg7rTYyxmt/YoT4jrLQJfXx0/EkbK0SFHQgSGhQxd6rC5jRUHKjLOzAYfDAV03IDN0\nmIHDsqyIMaHvOgTvtJVbwZfchq7IwKcFIMgk13nFVGbs+x3Itz1E4SDxBN50lzALmc1O9p8t+SDH\nBgjRX4TN3vUZn9vUX5Wk0b3dKbghahV9DoFKFm9e1n6s1UX2OgagbEAx+/v2qJ0qlfABsmEm2q2C\nLIoX8SrWYTAkLYspRqyLECI5RUStE6WLReoYGYIz4+b6iHleal1hUdb2OItLUZXCpmaSqX6NHLFh\nXNzuln1yfWnSnNhV30S7zmbJklQNiI3ooV0ZFQMEj343oOO+dqDUjiTdyxqB32KVkOOyX8q91enA\nuYjKWNeWtGd3MtAH0rkTU/PfrMpk/f5t3VSQBeDT2sqTkDkoDoWK1t0ydMT+s6+ZAKGuO+0esc+X\nmfEbf+0X8Hf/+//jNlnytffwW//2X0ZMUf26Je+R2tgAaMIb9+/+UEL/6++9h7cf3pOhYilhXTS/\n7EJdj0XPUYgXFcyEUFtN15zw7OUlvvvB9/Hhx08Qi8T7EHogBHWAU8281TVseRIDxJL/get0bVl/\n4lHniGsdn2ICs4BnWXMTWaexquSdC+hUtQkoaMmsILirHWCf1/GlAL7e//4HiGvEOM3w0KkWWVoT\nuTDmecbx5kYeHlW85KwPgoJEDKDrA8h5jLOMDT4/P8PQ90gpYnm5YJlnaZ3yMhKnJhpsk3M8Qi8T\nD8T7J8M7Rupk05ZcTJvJLOmHbi4GplgRUjdx2YgsCQQJA0NcdKFuNnJqAJwpeay9xXzM6nKzBLFI\nYAUgQY4F8CG+PQWFsA1UDbBzqoep9ohq2qLv2hgV3WRJmSBJYC0hlmQspqzBQVpK5CGLMkZ1WSVp\nVDPh4zFJawfL+ZesKojqF5D1oUw6uSTrQ6hnRJApOFFaKYlkNDM7CxxChpAWIsJAQTdKNSjP5gfG\nOvLWqbqOUEQsrO+lbFZoY5hLbkqACiA58/vYbOoq/TVzekfS6uiDAGJwvjJ80PbUoidfpej1lnM9\nH1TfL22xgQCCkijnOhkMxUY5Nx8akLZP+NbmyCyTQLaA3sOLAx5cHAA0Rsnk0KybZFQ1C2nixMw4\n2w34T/7dX8Wz6xOeXh7x+N4dPDj08GRr1SbN6USqyjQpSwM1tQwCHpL3mJYFnzx/jo+fPcPV6YjE\nBeTFQ6UGdwZg3gRsT5IcTtkoMMvQiCjrwAHYHfY47AfxZAHXYs9aYW3dSlttY9btmhIA5zu5Bya5\nBmvwSZVJen18scf3vvc9TeS8tK9lGdcc14QuAKfTCTc3R3jncXFxgb4fMM824c9aDUwa7rHGiMPZ\nAYezM3ShQ1wTQA7TPGJZV+yGQX1RBMgnEsVG1w/ohgEgQlaz4KIA0ylGXC0R532H86GHqYRZ44Yt\naNZ9iKl5M1mc8TZMgQHmNn2JzHvOElpuwIqBGLL2Ezxkv1R3Zfl5LQ4IqOAQeONNUhQ82RYsqKdS\nn0anymljETcbXP1+U4hZMi7/LCqZrK2NpnTlnKU4WQVkap8lV18Vm5zIzKr6tcRdhtnEbC2sEdbm\nydtf9RQl3klhpfuV7qMWmwRAlCmdcVWmn5rqaat8Sps98FYRUHRSYG57uQsy5bj5QEquEoy8MLa9\n6zXP6XTPQ91rrY0DbOfBYM61pddBpxxiO/yl3cXbRaahr5bjyOdyzsBM0mnGHoBrZJkq+Li9KgBR\nOq9rQnBZJi+TTlKTgCgCeDVDRgF88Hj70QO89+YjgEUdbvd0OwiBvBRgKSux6jx874SQUhNgeI/T\nNOMHHz/Bs+cvMM+LxkoxZQ6deB+ZenNLdkLXk03C9J7UT24GuKAfBuz3e3SdqWa0gHGE0HlYG4wB\nkd5rDqTFKFh9+JwVzuL7YwBoTBGn5VRbH18fX/wRU4b3DF86UQkOA7o1wi0RoKjqqIBpWvD02TP0\nXZB8WVU5KaXWUsSsIH+q6xqa9TEAFxxyAdKygnPB0Ilqkh2UDJR6qQ420ThwW/UF1CpB93giZzNo\nNe/jTY1Cde0zmneWESfeu1pLAFoPaZEure4Ev2mD3rZx25l8mkLRAVwav25/dwPwiXVqoNOWwNIG\nuzg9/6j2K5a/MRcBH5PsTVk7VdZlFn++GJFiakQRM+Z1wTRNQogG3eP0PCzXztrumHS4l/2bKDil\nHswaeyxGO0+bvF7rETKyQ0kjwU9QUJA5I5Wk7bNofmZ1ndg9p+pta3lAYa4x067hqyS+M2VskHhj\n4CfrOiiQ4RriV6yt5MLIaX4j68ImCEst5lp+QaidPCZ4ALSFnEUhJq8hn9GXRmps2/Al5olXqSnY\n6xCbUjAEj9/5t34JTy5v8OTqiDfu38HbbzxA1/dSzyV5/qy2TUVqQMF+6LMJ/a9+Fb/x136xxl4Y\nNqEKbfvMch11IJ0L1YaAQofEwNXphI8+eYLv/+Bj3IwTmEREwPqsElEVuQAaGxgVCCsQAs0VIasc\nQQYagNEFj67zGIZewN0sw+bs2qUkazuu8jXvPLog3StcxMrBQGqndTR9xtP5L/L4UgBfT58+ayyz\nmuVVRLMU3Nzc4ObmBs45HA5ncC5gmsS8dl5mNYMlDN0Ozgd0XcDZ+Rnu3r2DLgTknGR8J0TNQYWl\nXRKtdREqY/dBiul1XrDGpFMHZapRLAWXpwV3hh53DzuZCMlQA8btObMmK1IEiEGkFPSaGoOZ6oO9\nBccI1h7R1DmiPBHViRuyPAzQsbR6DeXPjMa8bgOY1RS3FyvDNtiWqBooBguY1utewRX9nNskSxmD\nHJOyJBmchalc11XbfaIylRkxrpjGWQoQ3SwYqIb9BJlCklJUXxwJDM2omSvoWYoyCc4rYFjExJ62\n/mimlpAAZEq1YqyQ98Km6GZcgFstd3CkE7laAVdZkm2xtlEAOA0EdQKK8yA1CDWje3JiKLhVVADK\nkmNjzqnJLzRp3twIATjRvBHkxTbpwCuLhBTw3LbXAgIImn/R9jNZewgDUvj6DFHK6fvDjLeD3reM\nooH3Kw/v453Hj1EKY51PAKsfTm6SYitUcna6ph3IB7kfCn5lANfjCU9fvMSL62uM6ypGw/Iq+vl+\n2Ebcni2ZasYKpArT1/cdDrsdhr6vTD1Bgz+jPhtyvrQBCkszSFZAw20ASWNKjN17fXzxxzTO6Pse\nd+/fQc4FIXRgVnATwOk04sWLl+iHHrv9GVIuuLy8xqhG6TlneOdwdnZA6DpQCHjzzTdxfn6OZVlw\nPJ5wfucOMgtZs6SE/S5g2O8x6bh0uADnO4AJyxqxzCuyDK/Ftz65wdU01fN9dH6On/vam+g723MA\n1N/rFiBViz3zxrgoWyGsoO4Fpa3Ltic2cMfAPRkGoiA5W4BsGIgNkpEW96Z4khi+2Z9gp3JbGQZw\njXPt6/q7xZfN80zOwbEUR9a+FmOsnzXGFfMkPpGyJ4uvRfP50sS6guIEaGJcUBBzxLTMWNcF4GZ8\nL9e4tS1XE2TdR+Ck6AwKSDG3yZE5J6xpre0vvsYEAchMzRxzugWG2XvWGMs2wa8x/aZs9sFXbxVT\nVpmKwBJtIxrMzquCb+QV2N/4d8nF2aQAEq/g20TNtri07CFZfzKswNbU1s6B6lLIRdRbtw2eqV5r\nae9fwH6H4Ip85sLwLqDvbcED0HWAvq1HawfMOSERtRYi39amtK8qQAgCOVETS5ujw8044aNPnuDm\nNAKqUokpgSnBabtjLUbr+mjlpTyPBaXIQKWSIrouYDcMGIYBNs/UyEmw+JOK8tEUCgJwteeBVWUs\nxYsjIRlBrYBMccWsPk+vj5+Mwwdtpy5iu2BdIpZzigecw7xMYodwfo79fod5nrCsq6qExTScnENc\nY1UnWc4aOnn+QdAJqDIFNzNXM3zmLQDSiPqWy9r/2iExRdqqna7LqnhVBbGB3S0dbd0HgNiSSP1Q\nNrWCvKMM+mCtY+w99WQ3RK+RMzDiYZvHKokpjhZc90VA9NIMAb7stbcWMkU7IrLtryR+UWnVIRRx\nhbUvJ/WLzDHW/cV8smQwSlGiXsEaaNcJS8xJJSGzGdVrTQjUfbdwUW9qGWog3s9al7JUaK2GaF0r\nXIqoePWcrIuGyOnAE/G6KluAk4Ts9laHKiB6G3TftC1aHHGtFV7ii6sxyTkdnBKkG4ZB4mOlXnDS\ngqgKJ4srlTawe2s+n43Mry7ZpVm61AmWpU32LNDPRagxr3qKaU2z/XwAKqFP3tU6uzCD021lpZRc\nrq6bQyX0Rzy7usGje3fx8GwPlAibLGr3varhbVUoSQYnrcAuBJ087zHHFc8vr/CDp0/x/PISiUsb\njqFXgrgBuKR1X82RFMyu758ilhRRcgSBMfQd9vudAF/OoeRY158jqkIJmSAuogjvXc0PSim1zvFO\na5xyixH7F358KYAvch6d8zjs98gxqUmn3PCUM8abGzG99x59PyibumBeJplWQIy+D8Kq9T0uLi5w\n9+5d7IZeZKmHHR4+egByjOubE5KOwXVBp7GxtLO40IGcF9lflE3NO8YaE7795BpX01jP+fHFHfz8\nv/QVdNryUOsNFjUQHCqIZ4+7I+NP2oZe/73u9oAg5cq+a3taVSkVNYBX7Ne69yTxUpZWKx3baCvc\nZg9LfV9LsDesNsuVZ2Oit9J7DX4ore0FEOCCc0HRKSRSoMiUk3mesC4Lipq4FvNPUTZZ3jffAuYy\na8BZV6zrgjUKmGbBzdp0pHU1VM+myr5aq4dOTGRt2RCFkviBmQKjCwG+C7X9rmi7j7UabltPtq1z\ntQhRZsu+z4oPA92qNxcJ+GXAl7Q/SoAEt42LtGVFQKwsk8BMFq0bsSwfnXNVQUMJdAzxZyAtmFBV\nciQeD7YCN8oCECFpy09Kqa7j9nw6MbmOCeQTOteBdCqlbZ7mOVK2wJk+C5b8lJLF60Z9TPquE5Ne\nVqNFLYLMdNirwWssjJfXRzx7eYnjNCNmCXb1+bKHDyL35fopNwW0qkxKTuqNIq3Kfaf+ak5UhjJN\nS9aMtUQL+6IF3UatARaVRheEITFW04AwBmNdm1Lo9fHFHo8fv4Fh2OHh40fo++cQAIKxrhF9TEil\nYBxHnF9cgBW8mucJk7ZGknMY+h5nZ2cYhgH3Hj7EnbtimlpKwYOHD3Bx5wLdxwOePn0q7XhZhrG4\nVOA90HUDvJeW4WmS0eYA4aMxYlx3AP4ubFT28+Pv4B+9/xS/8mfeq60RFkG2iZzt8VTTSrM+t7Uq\nwDY5e65d/ZqQLBprtD0M3OIBQWIl6Xx7G+lu7SQwAKueTLve21bI7a9trNyqIVt7xqsgXnuO6+Qp\njSMxri3OrEtNeHNJiAo8dX0vYL15bDlCYUmt1nXFtIyYlknusYLWtzzMYC0yGyWvJdheWhyFONhO\nJ1Z/Fp3uS0ESXiuSUslI5bYX1quHgWFVSexbAeR9U0vUeKPJcgGjU7LFpjXZjrgFvsBNybvNYQSv\nkvKxONIJla4VJpxrPEddce2wWLltm6pg6SssvQGd2zXgUobvdQozaXsnN/bZQC2QKU3EEyfGKNOq\nSJQWhQu6ENB1cn65MOBVYQ75jKYqXjPj6vqIp8+fY1xWBQ3V/4cidl1XP2NdG1yUZzLViILoLC0l\n3gvL3qmSWH5WrnNKkkv5PqDECEBbbEi8KkH2vMjPdOq1Ys7QjgghOJgzheVfr4+fjOP8zgVKLpgV\nUF+WGYsOMwjBI/S9eIX2HQ5ne9y9d4HdsMM0jwKYqSdgKgUu9FIu1M4OgvnNha5HTFEm0cWIoeuR\nC+OYI1KccTEMuLsblLwUANwpaFWJDEPHtN3ciHNHbmMboT5hsGzSTkX/Rgb6lrpXm89eygmuBNkL\nySq7DehltYvmb5YL13838GuLz28zPN625UHOl1hbR6mRMKTdGqVonWNlGKNkmeItxH1SBZC2Ka6r\n5o3WGh8xjpPsVUHAZ2nl0/gAbGqOWG1HuJTayVG7J/JtsNDM3+0aSCdSG/xk1zVmjW+pxTQD+c3k\n3AQCrXMINX8FACrt+r26X1dbg6pqNvN6VX2T02l/AaFTD2Ml2hgsnRfUzO0B1cMxC3BlggK9Lxb7\nbxP5VEEkFOliaqm+5Qj6PMBqpw3hUpo/7/bz2ed1HEAui9+jyxVcMrWec/IZgbzJZWRq8LuPH6Ew\nEJdZYLoitidcWEQLGgOFZCfdx3314aIQ4LoOxRFOxxnPXl7i6eUlTsuCDK2pbkOEt56BCgxqfgYD\nfolFZaidJn3XYRgG7Hc7+OBUYKFPn97famVgj7LWrMz5Vp0TjJQpLD5tn+PxpQC+3n3va+hCwMXh\nDJcvXmIcR7Cyp/ARa0yYxglh6FFAWNeIcR4R4wqA0XUeXddhv++xOxzw+I2HGPoeMa5gFDx4eA8P\nH91F935ALh/j5iTMsI2vDS4g9ENth1jjhJSLoOUgfO/5Ccelh4wylaLk2c3v4P/69g/wl7/+NThs\npnAZKouNV8dmk27JtDGEm82XWfuXJXEy9ZSMEOWGmJMVB63gr8CS0Tx6tHenyr7a+1kbSf1u+3kL\nJoD0b7cctZ67nbwFg5JSBVuKsvJi6jhXc1xokSWsl/anQ9R0VoBFyCYVY5SxwVZIaHsBkQQ1A6B8\nJ+2phnZXuav3gBNTyDWuOlXFijXUosV3QVl4AYxKbsby243SNjKTmNYEFUBQnyrnTZFFgFNjUcgI\na7IARo2tdy5o8WFAmtd++RbW7Zpam4d31oqSdZM3s3szc1fgUwFdufVk/SebgGEAospdtf2kLQXz\nPpIRwwxpO+Esm3LX90jGsjPDPLVAVL1IrJU0pYwSIzxloEB9b2RTvhXQmWEadSaC78R4eBxXvLyF\n63aRAAAgAElEQVS5wcvra8xrVIZHJNWi8JN0THIeks9tQaLIa1orpnkEeFVqdEHGQ6MUARohDJt8\nFl2jxfwi5DWMdSKI2q3vxOif1XzUkexHOcdarL0+vvjj61//GYQQcHZxjhA6PH3yXIdtAM4F7M4O\nKJlxdXWNy6sbLGu8paLYDQP2hzMFSh3u3L0rBc284Oz8HD/1Uz+lah+WdpUiPpJrzGKGv9tjN+xA\n5DBNUy2SMwPjugD4L7Edlc1gPL35Bq6mBfcPO5WZOy3ilbHzXkkQZQfrI2/ACCqrWgrqPiBWARmh\ndHUionldCWCv/AnJI1mAuo6rAlJbw5kZZaPAAnQrgrGfZQOWsUxF5hZjKrAD3sSu1g4tiatN9RUQ\nKueM0+mE5TTeUhAZiy7XgG7t4YWL7EVcACxVPTavS/Xg4tQM302524Ugih2v09Gcw24YYCWeDVeZ\n5hnjPAmh0nXohx4+uHouDahpnidd38n7Ft7suZvCoxaikGJ5Q8TUYka/r+s6mBl213W6TqUgyeV2\nAWSFBoCqArQY3HIXrnua5TFZJ082Fp1rXrO9/6Zyru37SiYxc/Vdqcp2WHyFEgyS23R9D8db0Kwp\nJ/qhl2m6OWGZJzWPZgy67y7rjJRWUVztO6xLrJORGSweTIOH73tQ6DDPI55dXuLy+gZzjNLa4wgZ\nt/duA/5cVZxoTuGN3BJCSgiVDrudGQev6PtelV/ycyuXes1zEaVh0OnP4Ky+KgUE8VrxRHUSpyNp\nFcs5gXNB3weE8Pn6rrw+/vjHnTt3dNqfTACU/DOBHNB3PfaHPULocOfOHdy/fw/7/R7rsmAYOty7\nfwdwjOPxhDVlBJC2kUHqAJAALk7MrqP682Rtr/zDj17g+pZy+AI/+1NvIZCBIaQtf627hBnqr8r1\n+auAAlHdK8ACTgFQwAJ6Xhs7jArqJKS0IuWIwF0j6w30INvRS4sHClwBm72ATLFqexa3GkbrgLrv\ns4FOuZL2Xp/VBribT7ECHbkAybxy5bVSkmEp0yTEvdmF5Jonb9SbFoud/DmRPt/rWsl7I0NoA3wZ\nGOaD08EjoQKHprKSHDUAkFzdyJ51XbGmWPdTH6TTSfID3W91z93asWwJKFMyW4FRJ0FvSHwTEbiq\n9pIWPCPyXZD9ykh8hsYuRxvfSa1BSxZ/qqJDAKzdniTDqIpEi316cgVK4Wm9A60bUcxP+/azZ5ZA\neRNrXyVXQCQkvRGEFOCCfj7vBXhxHp4YKYqP4i1SUGtlE3OknGXSZM5yv1gGwKWcQavWja51F7kQ\n4LoesQDXpxHPr65wdTxiLaI+6xT0Usy31r919Sugy5akQSwcmAs4S77kHKHrAoZerDmYhRwhrdFK\nKfDkNr5eWkfZGlWFvFdyvzerBS5biOFzOb4UwNd7772H4D32/YB1WTHPC2JKcMsKCh1AhGVZcJom\nJE1eBdUGmKUFrtNEI3jCukyIUdpa3nrrMb7y1ls4no64ubnG9c01phhxHFc4OHgi7Aab7hWkjWIV\nw25HDqkwjssEYeJvFyVPrr+By2nCg7Oz2y2L7Noi1Y2xACjajmcgGSu6D1PzUBsTD0hAW1bpL781\nOaryh9oaWt+nGeubSmu7J8hi1WCzpW02GNqWILGiipMotOqmWUwRxoqME0LXwxNhTDei0lqM3ZIx\nqGJub3JhkfeGvqsPa9KeagvENpJe1Fk2BUS9mtBazrq+V2mrFgNewMw1rbU91EA0AZ+cemx5laM3\nb7ain4lIFDtbZqZdw9tJvrWxCIDmK1JfyAOhyYTFF6gT5DxIkHPahpJzEeBL++OVPm7vYxGlFGQ9\nh6xtF9Z/njKjlAQosGMMH6zV5VWm3T6PgZ+f9W8s5WspWvqqbBgs03GIXQU0sxamQT1OiOR8YhQf\nNsoZPshnXRdJBoiArvMIynBnLlppE3zXIww7UOgwxREvr084TYuoNb2NpFclizxEmuSQGP+ySezV\nf8VBJpYFDwcxM+1CQFAlQ9938H4Ac5Ex8ymBPGBqNEC8nZz0Q9ZrY8yUJUUEUUmkuGKNS/URfH38\nJBwOOTMuX17jxfNLLMsCr1NanfNY5hXTNGGaF7gQ0A8DDoc9yghM0wTmCEauCen3338foQu4e/ce\nHj58iEePHuF4POLu/Tt4MD4AiHB9fSN+QczIDKRS6tRQ74M+VqbU+OVXzvdXAADHacH9w+EW+ydY\n8yutihvQpHBBMYAEWi+QcogkahYG60RDaUWXVgIBF6gE3RctULySXer7eGMbN1+38zH2EJCJYvUu\nKJhjbCJq7DT1gRT84DZFyMgf80y5BR51XSWtpPDiCszU95EzthwRGYw1JyyvjJR3YHS6X0uSqox3\nF6pZvCl813mWFkn9edbz7ZRlDZ2vRQjQwMrMZdO26D7jPG+DdvVab9pQzKuKyCE4V/MA0vLSEnMi\nS+1J2/kVTCuoU7ZsL7N1VRSE2cY/hrTm2blsfcqIVJkkrMXm8wCchdgRL7WMNaZKutSiVV6pcjPQ\ndpOSc23z8RAvLCk8xE+LnJBOfemqN51zrN5uC8bphLQsGLqdkGQkZBOTA3nCbn/A/nAB8j3G+QqX\nNzeY1ihcifPiT8ZGNMkVsol2toalJUrOn8iMhWUQqoBWLMXHMMgAFR14AWYhCJextWXqdDQzHsam\nALal4PX1xcMlY40LSo4I5G61jr0+vthjmk5YlgU3pxtM04hSMnyQ6ap936PvBfR686030HUdjscT\nlnnGgwf38ODBXTx79gwffvQxXlzeyPPhxOQeoDZZPASs64wYs/pvOXx8vWCKe7yqHP79736Cv/hn\n3kFhgq/7snpPMsm5bUCPqt7RfaB2ExQGUYGZfzPZPoMKykRVWzK47pVeGXt75gHxbpKWKa55ZNFY\nQqoSIid+fkSqMtnEOsvbpegvkH829YoDeY0t27yWJSc0JVROCTlGcDJSB1iXFePphOPpJMR9XFuM\nfcWLr6CRx1ancJTaY9VpwTHGW/FKCH9pDZWOgRZbQEI8Ba1PvHdgEjXxvCyIa9wMGhOgXTytXK2R\noOcioFfzjnyV+CgGonsvOze56itXY48SbQUQ4MrivSqMt+CY7P1c1yvMM9nIaLAMl4IC9+aNSV7+\n3WU9fVOC60A4a2/MbZqhAGAbf6/N58oGRJXbk5Qtly+liPl+tXGQnw0hSIeJdq3kknSdiHeaDyqS\nKAVLXHU4wgLHCSBoJ1qUeljrIGdgs+7lRr740KEfdpiPM66OJ7y8usZpnAFTY5OrYK8N/dEFXLMx\ns8gxEQep2otTwtB38NqJYu3x1sLbdUHWaWG4Tu73qpOHzfczF+niIoK22XcIXYeiwwc+7+NLAXw9\nffIUxhpfvrwEF0bXDToq1WFNuoHkDN93OJwd0HUdxnHEpMxGFzx2uwEheJxON4pMniFqS+Q8zyAC\nLu6cg11Adz1hPI3o+x67/Q4gxjxN7fV8D3JArG1KP6QomaUoYRbzUwYZYaEbywawUnSeUITJhLls\nEcw0cttWF7XXf1lVrVSsD1rZQHIASdEvLYjb1wDApfZ4A+33+j3GACjg03xGJMDiVmKq3K5uSKCW\njDMROGUsy4zj6YRpnpCLFIjEBTmtKDIvS0IUJ6wpaq+znYO8dimMVDKWuKrvyqoAV7jFgoQQ4FXp\n5zfFCIiwRGFaLOCUUuCCQ9f16LSt8VWT4cZ8cVX6tOS2bIJGS3y3yoDtRC4pBB24tqAomFWZbZs2\nZVJfUqWa0w1PNh4PafeASZItObA0fFP0opTWwgcrLgmFbepim8Jl9799TVpTU0qNSdj+KozipM/b\nq4FpzhnwwlQRMbIHOBC4ZPUpcaDMFQCTFMEhpxXLMiLHqAx1Yw+d9+K94wOG/QHdsMecpM3x6YuX\nGFXtZX5pAEBlk9TA1B4MEMN7sQAmU3SRlfAM72QYRqcycpv2uqwR8yhtTxzaNQghtHHxhI0UXZ41\nBiN4p6aQHpwloSLmNpDi9fGFHh9+/yMwi7Ht8XiD/X6P84sL7Pd7cAHmuAqIoubzoRMTodOk/l5e\n7q34JexwfXOlhtMSOz755GNcXV1hWRbs9gKajeMoyenGd8LGSQfnQQHo6778v+GzRmXvhw7GVLMl\nQxUUMUm9JMOOWYzw4VFQajJtbZBGishjLgSE7JMNfMk5g3KS4kYNVU3VDDZCvrUjyN8UtNJoYWAb\nWZXOTg3l+da+qp8AAGoMsHZ9hw3wlamqfWw/bu2WXD+PmBKvSGlFLgmG/TMzZLKyPKt5FVXQvE5Y\nFYjw3suesOsw6FROY6+FlZcEU9oaV8zrjHE8ycQuRwhdwND16AcdlOGksIQC49BrUmE4K4KKDR0x\nYPJ2i70BZM6ZqqiNlbcR845M9we5xyzKa7D6i5IODSFVBhKjEOrZWIyQW9vyiEog2CjpzXk3AKsg\np0+Dd1I8lM392g7s2cRdbPdwwCtbbQoEHxw8OpTskJ1DzhHBq0m/7vWlJKS8og+ElFYsSn5KSiAK\nRiG7BPgKIJxfnGN/OMPNtODF5RWeP7/EOK/S9eUc4L3kaZvc4BVqqD4DlWjU9zrsdwghKMjRY9f1\n8E4mjo/jiHE8YZ6nW9fT6V7CLKCWB9QEXVQrokx3td0sx6RDg2Qk/ec9aev18cc/vv2df14xF+8d\notqAOO/R9wG7IcA5xjSNmGfZS99952289ZU3cHV1iZRXXF5fYpwXXJ8WRG07tP1l2O0AANNkSkqg\nMGGKC4DfxWcph2/mx7i7H5CZpM2NCJ6tDlCgixmAq22NBVQVmXWanvlqqbpR9h/5nlwKVlUQ76xz\nAhZ/rF2S1K5lQ9i/stcZgNP2FI0RFvZcY+itzU0UqkpIK4BmRAhv82VVuFks9D6g7wYh28tYFVoG\nWhMg0+hzgoF0KSXxVzPrlaz+mJsYugW+tjvHVoFVa5kgir6g7ZJMQMxSB6XcrF+2vsTBK4nvvba5\naQzUeg7A7byjvGIrAFTSSkhjf9scXoMSey+AjHc6aTAg+K7ayXhVfTETXFF1E5HGp1oM696oV4JZ\n2rMZYNhQnVKdWXJRkJEzKOtQNxMFwGqo5pW2PbYgJX/WZ9Z74AjI2YFSgjd1oA6+q4BqSnVPd04k\nJ1yKDD5IEZwTgvpBih+c5IrOy+ASqRmK1r5Su/iuR7fbwYUeczzh+jThOM6IuYBc0HVO6oUHVWe2\n+tzM87XRHuRYO4LU17MLMhE2eCHFlPw/7A+Sk2RRM+ackJ0ovsyLtNXFbMiEPmOoQ75Y/c8+z+NL\nAXx99/33wVm8f/rQ4eGDhzg/vxBGIyWsy4qzszNhXbse0Jt12ytCbn4IHilHDL2AHOu64tmzZ8g5\no+87nJ2dYc3AcRTFSfBiIp7VYNA5h2EYqgF2I9E+uyg52/Wo40nJTqXJh9lawJSFyGQJbcVCWkLF\nXIOPJYvVXF5fvEqJhcaFWHzfRr0tCf7sQ+WiMIxDjDBd3Qjry0ng1mtswYvJElIAVMC6qa45YZom\n3eQ1YSuEnKzdLVUkPmUBwcirrJLVMNFJG0FMCfOyYF4WlQJ7GQfdBQG6OptkZWbBct7WTjHPkz7Y\nWYqWzmvC0StA1YJ8BfKUsZUb0q6WI/3MtRDZFh7uUwWKbRyFHNgJmGIBuJD4AAgLw3CuVD87s2oH\nTAkhcZ3JGC09n8+8p6r8IgLr+8GK4awS6cLKTGsKwqTKPdTfwSavFYZP2rkNPJVLY/J0GTYgTLRT\nMJc8IOSIFQQF0rIhSV/JDqvKtIl0Gpw9C149cEIAdT12hzNQ6HG6OeLpi0s8v7zCsoo0ubZ8KXgo\nY4K11dMGS5AFDFnnnhiOC5ypBPqAoQ/odJgFEbBGYfoM/H61lag+1+oTFpwD9arkIwUcSc1TN2Oy\n+XVB8hNxvP/+BxVk3u/3uLi4g7sXd8EEHI9HTNOEYdhhdzjAK/M3zestprZ5ZBTsdwO6XpSuyzwi\n5Yh5XnBxcY794YBSCl6+fIm+73TvUV8lnVYcjMlzHocwYEy/A1nEvwKJL9/Ew/MLnA2DqBvVu5EA\nYdD12Ca1xnYXY+QV6CFDrPTvFYHRGCBAsYFTAigRBLApxAiVAW5FTP3SBvyqDKzKd4xt/RMdWjFa\ny4coLws4NSDF3qeUjBxl7LyB91Hb8SRZlBgRtY0TzgElI2ryNy2zMMBdh27osD/sNXfoGhFkzz90\nyEyKGCdpr0tFYkzXi8prGIZKghS7wIq+EaO2Ehm4Uts8nWm1cCueeNemDcu+TNUoXxTCaENzNH8w\nVlqEcwznGXBSBNWMdVtM3spi2z2rBSe1fzevQ/s+yVM+rYy2n6fN31v7bQO+mmIX9WvtkFZ70qJa\nVG1iIWAKkJxWzPOIeTnJT/Qe6zpjWSeAWKcpBsRcakHHPmDwPc4v7sB3PY7Pr/Dk+XO8vLrBGhPg\nPQoZ2CutOXXaGLMWt1rUMxCcKsnV55FLwe7s0Eg2EgIqzWK5ME1jVTxL7MSnros9tQT18zJPN71W\nojCO4JwRfMDZ2QFd6P64T9jr43M+Uk7w3uPs7KAdDhFR87SuEz9iRsF4ugEADMMOoFLz2fqzTKAg\nPpOeHIZhh67rULSVLsYIYkLwHZb8o5XDN9OMi11fyWxCI9/b88wAVF2rNU1x8ixImGg/YcCR5XCA\neOsty6wWJ0kA9WI5bYYMvrDCWusLIy8NhNH4tB0eZcpj0jzX9lH+ETFGOSIl7O0z6ltBWy5DAJOc\nw7qK4ntdpbVRJhiyKlzsmRRSOuYoRvEUpG4pRfNsAZ1ijJjXRczyc6kTX8UzyyFoh0gIvv5ZDOkJ\n8E690WKdSmzm46IG6+RnNmSIxfEtgU8bkr4C90qytFplqyLW4VvepvfJNS+qJnWb96vqIC1ijZgD\nTFQhr8ValzGMyKJKkLXz2ai/ofufKry4SIeJg9SHgLTqbuvk7f3f1s4pyRROO7NG5AvWwC6op5yv\nZCQzw3mHDkLoJ2LAdQCX6qspdZCQLVwy4KROWtYFcVlQSoSjUJ+LwmpJETxc1yHs9gi7PTIRrk8T\nXlzd4DjPKCBVOmqLsXYCtZi4+Z1ssJa1krJ6oJGQPAT02k1j920YepSSscxRfLdzQSIhPm3PsSmy\nYFMK4pavMYFV7PAnzOn+hMeXAvh6eXkpxWoBHt1/gMPZOc7PLxBTxM3xiHEcMewGdMMOhQjLkjDP\nq4yPh+RlIrNNYrRHgkQHH9QLRJRdDx48xG53hjUVPH/+EiE4bY1K6qegUnIUMMt0Cg9g3w2Y4qeL\nkscXFzjf76yegD349vCJYTYAFBk5alL+LYxKt1saDMk2ttkMaoNvm4xGoFq41ERZWQy3QWoBLUy2\n77tFt/TnGSyeLrz5JGQ1SANWbiWyjoCCOmExlyTqmeCRI2FV5VZMqRrGJ1UMGTpt18vqg1wKlmXB\nrCOdQwgYBlHl9SrftAdymyzmkrU9csY4zdIq64QR6fu+MhXmy2W9/QzoFCW9Jqxybl1X4kfQTBNJ\ni5hqdFxZCDlM+ksQEKqysLzd3MVM0zZi63cXf7iNJ4wFf1hPtYBwYGhRtfGDcQ5QNy5JvvkW2+Eg\nGzxY/cz0PKz1yZEDO3tfrlUtmRTdPiT//+y9edBt2Vne91vD3vuc833fnYduSUjq1tQgg5ghtgGT\nKju4MIOd4BBwG2NclE03KeKKU/kvfyR2pYI8ACGlIhBkRMxUYAsFA5IlO6TAxCaopdbY3epBPd7x\nm853ztnDWit/vO9ae5/bty+kYlnt0t1dX/W99zvj3muv932f93mfJ+NLk0BFBpqEcxDDQAgdfdfT\ntmuGvqV2Elx6HauSESUvFHudfbfeY6oKP58zW+zQJcvRyYrrN/c5Wq4ZhihjjrlgZwxmqKh9BsDz\nunLWFBaWbOaJuvLM6lqNKbR7PoijT9vKWFpd11uaCLeOveb1bzSRsRhMyqyGQS2AxUqYz3GQuHv8\n8Y71eg1GmDlnzpxlb+8Us7mwsk5O1ixXJ8zncwDazYaT9YZW3RjzfiyMjRMpXIkyEp1EH45k2d3d\nYWdvl67rOTo6JKagIwtGk2gVoY5Rigk1PLm4qLi2XrHqR6vsczu7fPnr7ymNihCDdOlN3q9yrMlN\njIhNFmsjxo6Pge17JWXzE2Q02TAmPeJIlcErAb6MGpFMD6M3znRpZ3Bj2jlQDKvgbFv37G0Ooy+a\nzIjRYEZWWxbzzUywIVEKg5zsxqAC4PoY5xydCtwmI2BL1/dsOnGHdDrWOt/ZKUwda7a/nLFWBOmH\ngfVmw/JkSUp5zF9Ar7oRndC8h+bvPS0QUx4FyeeQcfQzm99k0Gh0UpI4FxgbUAZtgkxdNGMEBeBF\nD1g1uGICp/mBU1Dr1jWRplfolus8ufgC0pitazg6Eo+ffcooyIWXcxaX3PZjbuMQJWtaNb3U8csY\nw0s3bvLC9Ruc35tzz7lThG5gs16xXB7TtWuaWUNMgbbb0Pctxhjm8wZnHUFzI2Mtrqqo57vMFjus\nh8TB4RHXb+xzsl6rfb2V4krZCzElKcJSjqkpE4hxxhaZDTFDGei7WPK2LMEQY1DQa80w9Cp8L8B5\nee0Ui76NnDczjoqpjEKO60lFn52x1HXN3s5u0Yu7e3z+j7Nnz5X9Jwuh53zMGkNdVcX1VRq6js1m\nzfXr11mv1xgD8/mckCxtL+N3lfPSPCEVnSdrHVUlBW1hQ70Sc7iuyFkfk7265HMKeqW8+SZlk+CI\nOqsuMmM579P9Q5PCXPeIE3sGi+QdYhTr4iLQD5ABNKZgv/z9djHi1tHvKdAj/yavmb8TGVjX36Xy\na73HrC26ee1mzWa9ous6BSosJJHTEGMxMRcTUxL5c9aOtSmbjKD1Q6TT0cS262Sf8HVx4fXeU6nu\nklWAKDOjcp7Z94OY4yjLK68lX3kqbeCbEiNvt38ri46xhjF6kuR8KFPY5jG5Cct4q6GvQufWlhwo\nN8ZEV1rqJe/BGKfxSAG8ybVEY2+uX+Vjx601cOt1z589N9unLC4BqlJWRCjNmah7dgjCQs61XD4z\nBoM1juwIacz4fnkiJuuZCfDpMZUhDkGBu1y2JwXlZNQ9RRmvD6HHKCiVq2VrLa6uwHuquqFp5vhq\nxslm4ObhETcPj1ltOhI51rvS1CezFVH2tV5n+RxmvJ5p1IIWdrpoD2eAVAD1RLvZsDpZlUmqfL7L\nZJLuBSkEiEEaLkZ1s63BWS9kobvA1///w1mhk7rKMlssqKoajGEYggjGrta4qiK0LW03sGlFt2kY\nInm3H/rAZr0pKHcMshln3YSmmXH69GkWiw37R8dalKpzT98J8qtdjUy7zHvJ5d2a66uWZTsWJed3\nd/mK+++RTT1Egu6uOUmFCX6QxmS3IOMmYz0p/0Jvxky/lWQ7b3YinD4BoWCr8CiBg4yP5c3DTB47\nFksJ3cBAaZWCWtvymuMYXokcegOOMIgp9MeoYJavKgERDPT9MHG40sCoIILXjnoGwqJ2S8auSwfG\nUDcVs/lMgM/Kb22ChSlnREiz7drCOjNGALi6rqjqqiSi0407ZZF950vBMaAC5yaPchgwDusy60dP\nJuPGtgWGmPG8lWtTzpYER6PuTzFkN0uwdvyzKR1+obWmybadg7YUcejYgwYbHeuTKxSxzuCigHbJ\njl2RXCAmY4i6ZsmaCpOEYut7IR8hZdaY04WSsvbLGHhjkI7CZiWdyhgTTTUXw4ZBtN7qLCzv7JhA\nOIv1FfP5DnXdsFxu2D88Yv/giLYbFJildISmLJcMDhrQJEI+i3eeedMUbRVjYhEedt7pCHGiD33p\nfNR1zWw2k2KzFCXjufB1XbpX1lkyHy8XbEE1Arw11HW15aRz9/j8Hbu7eyhGymK+oNZRxq7rWa8l\nzjTNjJOTE05WK9abjdz/dmT8iYi2sGoqCzuLuXRtvbje7O4u2Du1x/HypHTlnROn4IgmbEEchDCp\ndOosict7HutmGOvZW8w4u7NTBEVTGsfmsmB53m9gUoykxLYuV8k+tZbRAjuhI3yiLVJGHIrLT1S9\nQgqgDJREKx/T4sRO1nkqsSLpOIP+pwnaCHyMsIoxZqvwL8KtaRzTjjGPJLitZK3EvglYlK9b/pxZ\nSL0P6hisLDAxxpmzs7ND7W8BZszY2Q4xstH4tNlsqOqaupoJgFFVJb6AjselWLQ5rcluWxNoSeNX\n/oyj67PGeSaxQ5NgrRjKfpzzi3zWjU4lWkbGREoQlcVBckV4OMfkLVjSaJwyOnZnLMW4RD/TFvs1\niQZJ5atyfaVAiYUpKY0DHTd04zoVBlVeo9NxJ8CM62W5XvOuf/oBPvrEk2V9fckbv4jv+4+/ghg2\nbNZrrIW69qQU6PtR2N7a6TUUIKmqanZ2d7Gu4uTwgBs3b3JweETXD+q27KQxZUYXSrkIetKTNEaz\nUY3EiwZrDUNniumSuDEK6zvEYbyv9HzVdU00VrRNY1BjPR0psh5njbDJdJ0bRCMwDr2CbgbfNCzm\nMxZzYQLdPV4dx97e6bL/d10eJUfAVC3eZf145rM58/mcvu+5eeMm1lnm8wUJS0hHpP0jrBF5BlIk\nDD1xEIDbV55gDX0fqaJh5is2t2EOn9vZYd6IXrLORQnwlfeHSZO0gNhJMv0MqCl2/LKid2RT2QKC\nlaaDzfl6FCApSV463fON1ja3RKyyd4yfaQphoDEiliIof74CfkUF5V0e786jlIZoowwJaDxsu424\nT1phbiZ1IO8HadwPQfK63GQxJrsoGlJIBVQniZ5xBq3ypFFdV1rD1PhKjCimYJN8/sQQZMJppYYd\nWSe5MMTy1Is6qovhRz4fCsa7zIjaPqdOGcJyisZJFVsa+WZyrke5FzHQEi1Jgynvm+uZTBqx6phr\ncGNTY1xUkBC2LMq8K9iY5AnJpGIalRnQUu8gOUAIakCm0ytRayUNhKXRn4zU88bijBuXDZRcPNc/\nJte2RuqtDCDnJS6mIl50OaPI9BATIXTEIFImySKuwp00zSs/Mq2MMbjK4qqa5D3NbEY9n2vjLlIA\nACAASURBVGOc5/jkmOs3Dzg4XpZpFtTVNE3WRMmxipZknvyReOwVwJVb26iTY01d+1GugUTXtmII\nVHLY0fCggF6aZ2XGXXa4dl7JN0mGn6cSTp+L4wsC+NrZ2ZXkKCVmjcyuZ0e/rEk0DIG+7Vi3PV2f\nO5ladwMxJNpNxzAEdnd3qHxFU89EkC0lnPWkSHHliElsaYmJ0EshYo2Om6W8UYxjX/ed3yWySwJO\nL+ac2hF70BgTgUGWoLUKSo0gQulgMCb7haFiKJ2gMtNbcDAdF7OZ4i8dfxcFJaeALKM4u8mdDhQA\n100mFxL5MPpeAn5to+wxjU6CI+CVi58MOmwDeSU51IIkdxDyZ8+JsiSgBuOqsimIoHwgJAFj2raV\n7jyIK9J8JuNERdh38nlNKhv8EFWvJgQZDVAHpbqqZW5bPw+M3eSxBzAeohuiGyYQFUgyRjoz2dUR\ntKuhqp85iKSUypy/QcYZpUi1ZaPPRYWwvkLpiJcR0rwAjbx/ZsSVpMOggoeihRNTDhYC5ObPI91A\ng9Mok89bBnjyWpDvPWHfoQla6aQpo0mLN2cddVWTLMRowMFL1/a5cu0m5/cazswr1qsl69WaYRio\nqwbnxI116HvplEjvcBqTMEaSpdlsTkyJw8Njrl+/wdHxEsktxjHOUrSZQtQfI7wVdyJvHbOmYTGf\ny7iJavE4FQ+tKk+wkb4byj6TC1jv/Rbolc9TpqdrXT2KiiKjN5LUir5Y09Ty3lkb7O7xeT3On79Y\nGDvWerpuYAiJvh+0AFD9KR2jz0yrqcZPaSgYy4XzZ3nta+6lqmuWqxUnJ8eqr5U4Ol6yXq9IKTIM\niTCkwtCxWMRiQfZSZwwhGUJKNJVnZzZnVteTT64AkjJrkskAfAaapqCX/nkClktdMt3rx7iUdbfk\nXpT9aBgGbBioaMp5KcC53nMFbzGTPUNjVkKFV8e0t/weM8Fpbjn05dBJutvGmAwU5Z9sHBJjVBF8\nBZq0MZAMo9BtDKKb0nZscpJaVczmc2bzuTjupTh+5/y99FzlhkEfhhLrhCWXRzrCpCjUznNmQ6kO\nSPmSE4Apx3K3VVjESX03Nlnyn7O1u7zUWN5MGy/OGF64uc/VgyPuOXuWey+eV0Atp826dZVN2JTX\nywVkFrXWZYgzdpIki67cCzf2uX54wuUzp7h85pSw71Mvos+5UWJA3CLtZL2goc7oe8n13F+u+ezB\nkjfce5nXXbzA3/+F9/Gxz9xk6qr9yaf/Fj/2z36H7/za+zm32zCfz5nNatarJf3QkVSndNNuWFRW\n9Ga0OK3rmtlizlPPv8SHP/Fprl65yvHJUhyYvTiHh0mzLudpBh0zLa5zlqp2ytjRIl/HZr331FVN\nU4u0QtsqS9HaApqRVIQ6DpCCNq5U9BmDdwafG3ZyxqX47jq8k7G3+UzGa6cF9N3j838cHhwRY5S9\nZrPZKi77vmd1shKdLkMZB8x/XuzMOLV3ipASvnqRZ59/gbrxVNaRQiCEiEGA5DD0k/HvyPmZZb/d\nvIw5/GVvuDhpkmiBS5qMKZoSG0AAo2RtybWyedA2QC1rOGX6IyqQrtp247j4tGlixn1P/5/h/pzb\nFeBLn1PyO8aMsfyne3yunQTIkecH1TEbd7V8JK2bUokLyYi4eWxq1UAKtF3LRjWbctM+7wtOmcTT\nBkBC6sviBqlNr6ZptHk/0/zSUszCyveS/VSa9ys2WvtajTF5AsHquHb5JkmirdRask/kGBhDZhEb\n0Zq1pgBZOVCnSZ2YL1POd6dTLclaskRMqXesxJhkjdbUCWcd1kldkPUm5XlizpBNDxIUDbGy9mIm\nXuS1IeDr2NxJuKjyKNYWCZFSd4UgriLGCJtvspa2AdRcR2lTJ0JuFiZd4/J5BAASsy5hXHV9T68A\nUtcFmtpDsgxBgS8i3jeq7yVFgtMcwVY1zWxBM5uzibB/dMzNg0NWG3GVTqUO3CYfTI3tinad3MRS\nL1UVXk3dIIqTcdNIXpLGpmEejbbWFtfn3EScvqeAdTWmEo0wITnIXWdIxCFrq37uji8I4Msreo2O\nlACq1TGQdYdkLMoLwJQEeZcJDFsE6n3lMRjuuXwvr3vd63DOcXBwwMHhATEI/XG5WrJerYhDT4wD\nAU1YkwITulFYY2X2mzHxbuqKWeVpqoktrFG9jrF8H4MCOn1gRHQ4IGJ6wUjxY8eaeUR1gSx+Pgyh\ndE6HYcD2Pa6qsaU7Y8DlZFJpnTmRzltqXsx2DDT6zK2yZPzMAgylmMaxx0kynxN6ywjEKN9GH6Fg\nm3Y1YyPFU3aKEs0WQcOHYRDacIplVDELQfrKM5/PmM1m2y4j8oGwToHDOBXPFTaFsxavAcPYMdHO\nox8xbs+G97HX8y6Pc7gRoMrPv4W1Mw3+yUwE7615ORZuBFAbi0x5xJXDI64dHHHPhXO87uKFwjLL\nmwwKrBSduHzhyrkQkeKUZKbbWQFkiFEAOwMOT3ZvmYrbwzZDY+qAkpP8XKha5zHO4+uGw03H88cv\n8vrXvYZLF86wXK34if/9fTzy6cfLa73x8nm+9s2XuXR6waUze8znMwzQblqGvi9CnCGo05FxIjBa\ni3Crr2sef/YF/uDRx3jxxassVystDkfgK4MRZV3o95XiyeIw6s6mnZcoeluZbp676NYK60vTAxJp\nTHQma2RqhhBU3NFkRxpNtoLS/CUg1cyaGfPZvIzX3j1eHUe+nsMwQBDQ06szYJXp4ZVn04oO1HJ1\ngjGGnZ0dTp06ha8q2rblgbe9jde97rWcrFY89cwzrJYnqgGRWK1WkBKz2YzNZkMMHSkaZXI4LZIR\nEXf9PCEDSlBGw72xaiwhQvPRJKKdMhBHIGm6J8UQi0PWBOaYPEaeMwyDJkQSU/u+ly555WiUhWtS\n1DEFtvfhSTcylfuRUpDc7ryTUhkjzPvxBOGSxsJkpPjW50+bOHkvy53LbLvutVgKKdIH6dZH8hj9\nhtVqRd91eC9aO4uFmOXEFLHIdzBOESEJomRx9mwT3jQ1TVNT1RXOj42e3LkqzpMZiNM4YqCM0DnG\n+KHfsCSgt1uvHilknP5IJ15Z7Vr4WAXPTtYbfuLX/yUfeeqp8jrvuP9+/vZ/9q2c2WuIxhCy2UzM\nBXG5EC+/eFDWaU6UD5cbfvSXfpNHPjO+x5fffx8Pfds30zgn+7ulNN9iSurinLhycMS1g2PO7e1w\n8fQu1lq6EPnZD/5bPvnsc+X1vuT++/jEk08hoNf3AjeBf0LimBduwv/yW3/Im++9wA98y1cQ48Dh\n4T5939I0FXVVC8PYz5hVDdbX1PWMIRn+7v/2a3z4U2PMmvuK0zXUXt2C1codKyBjjjWitzXqpjgV\n24tB3PHEQn7cS5yzRM1tsjscjPmtyF/IyOJUikHuJ2XcMTbSUggM/YAz8vqLxUL2Mm0q3T1eHcfN\nm4clP44BiEYcTlOkbwNLVrRtN+o77VjqusEYS1PP8b6BMEhOEkVXdMijXYMADLkxM+YojsonXjf3\nGLsgAqfmM04vFvjKFD3UEAYI0tT33k2ayqa8JuRsP5UaooAlMRbOR7Ynybk9cEsxLXm5Q0fu0q0x\nZHy3KRs4o/JjrBr3qFsb9uWHsWmfz31uzOR6KMUMhqQRFMjj886qm7vccxlwyHUABexxVOpoKDIu\n4mI5hFgIG/3Qg4GqrqhnDVWdtR8n3yONgGcGzbq+17o3UXkZa6xn2SxldEkEig41UAgGmaWdR8sF\nDJNvbxnNUQAF9E2pW8YGdDlDo550MpM5n8xQNkXuJqh5g/4Cq5I9o/a1mKmE3JAzk3wFCkOLlGXg\nR+BT3jSVdVXV2zEyg163q21u97iyvlICO65vkenxWleKdueVm4dc3T/g4qk553ZqMcBbrVmvV1jr\nsaYCEqHv6ftO128RhinrDGPwakyBsZycrLh+/QbHyyVdH0hMGJhxG+xKt/mTRfQhF7OG3cUCEEZX\niEEaJnpfxyh6zPknNwozKJ2ntQr7T+N7XVcqip90qiWDo6m4q34ujy8I4MskBVlM3lvlwocYCSni\nKo/zFSlEnE04J6yVlBK+rjl15gx7p/aIJDbrDXtnz3Lq7Fn6riekffphoI6ROARiH+i7QN8nSOIO\nF5PM74pxlW73KYNZaXKRpdueXVFMSkU7whpDshS9L9lzxxtY9+CxcwBj96N0ICibfUpyMw29UCqj\ndvqs9+Cs6CHpRirCk7c4MAguPH504dGXc1xuTH2e0+Q5v45YDWthkjs7GUzLWmUYotZv5GIhqr4I\niPC9cyTrSLYCp6LuRgJXkJYMKcp3bTdrun4DJCksZjW+9vK6VkG+7KxR4DZ1WYkDMQ0Yn3CVwTcG\nVwn9VhLvLACp3ZWUxwgFMDLqFiDB0pGwuEzdJuHQgBHVMUU71c6IZb2Nhspm23U5SdZUZKcn6WyJ\nPtVq0/Jj7/3QVlHyFW96E3/nu76dU7u7yFjTwEAesQoqVBwLIJcvoICMebZbGXVJkq0Y4IXr+1y5\necjlc2e4dGZPxirEKkRNEFQaOUYGI8XKSwfHXD085vzeggunT2F8RRcNP/Nbv8vHn356/MwPPECM\nkUefuI4UJl8G/FWevvIIT1+5AcBbXnOJv/4tX03sWtr1khR76kqo3wDGeVzT4OsZrl7Qxpp/8NPv\n4yOPjUVJ42rOzMUVK5pJoQ2g40Qy3uRktMQ5LGockES/K3eXnHGy1pFOzzAMtJuOrh8KQFg6/WrT\n7awps+5DGFRrRxieRhOp0A8y4hgD1kDtHfOmxvvMAr17fL6PzWYj97tzBVDvJlbjuVPadQOdsgDz\naMN8Pufy5cucPn2a9WbDwcEBy5Nj1quVuAtvVsQU2VkscFXNcHjAyfKYtt1Q17W4r6U8AiJrcIhB\nY8WkC26MCldHaZRYS0p+BJJywsYkJ5yAJTmRzIVz1vwzCnxhKCK6UV0dbdeJDX0/0PeikeWacTQr\nd6dfduQ9aFJ85KQ25cKDaQd31K5KarOelNlUOuCqXZSTxykjSsR3s2h/1pUMt7z/mFCnBAQFyLQA\n6joBM/thEJZQZnoZQzcMzHwWjt929M0gVnbVyh3Tqh5HHDPrpozGKIBXGAEpjaPaMAoIp20G61gQ\njOyKqYlKFjXOBZnoDIpeS2ZU/cT7/iWPPr3PlCX16FMP849+7Tf5e3/jexjI5jtyDcuo0y3ncsoI\nzNcwf9+//yu/zUef3H6Pjz71MP/zr3+I//ov/VmJl3b8/DEllm3Lz77/9/nEBNz64i96LT/wLX+K\nn//gv+XTzy23Xu+TT/1NfVQW7H4Q+P2tx3zmpYd5zwcf5a//2bezf3Mfa2Fn54yAzqs1xhjqusFX\nDb5p+Ie/9q949MltBtl6eIgQT7hnlhMaucEyGzuvcyZMw8xmGYqRiTo8O48wPXviAF3fcnx8zNC1\npemSUhItpJgKc1CKESPg1hBUyiARbB7TytqkAZLHaxGTYqRru63C7+7x+T28cwVoGfdii3NemakC\nXl04f4FLly4zn885Xi7ZbDZFUqPrek5OTkja6LfEYkYkGqI6Ps0Ijscg67RxlqaqqL0TQCK5ksNH\nBfNNYQ7LsdUUV+29aCzBRJwZR9/J34uUX5axOTDudZkhaweZVLETwEExMDKjpYBheVO6NdzcApaN\ne/72Z5+ysvN3yfVcSio0nmOiGRs25TUUzLFOtNNSjHRkN0VKDDJ2dF+PSerUXptIgzoB+soxn89p\nmhq3pYukccqqeYZ+F8lD5FqDxAdfVXh1GizP1P04auyDcf/O0yYge7fT3ALdx0bNLG4BF0dztryW\npsBnPlfyufPlyPHejKOJk/NuJyBdnmg3mTWWr+kU2ExJ9Tn1ejg1TkioSYvWf24758h52vSz5/9v\nrZU4mpN456Rp7R1eTWmaZoarZWT/eNXxk7/4z/noY0+U7/S2L7qXv/ynH8Dr967rCu8tQ9vRdl0B\nz7ZzIaMkkJq6FhbWpt1w7fp1Xrp6leOTdWGFW0VAp2uydEKNYgnW4DR/q6wVokDlC+HD4kvDpRCK\nkBzIYoqkTb5Pc97rJs0cY1T33ADW4E3WrjbE2JXm6Ofy+IIAvrJwumiXqFNTSoQkYoIgo44hTuh/\nSq913lPPZlSzhrbrWfcdR8slNw8OSCHSdb10Qo2V2enlmvWqpe/1YjuPdbJhGyLZ5cLmhFwnC3NS\nKpunCrpHg7jTmZFyq3CMSakkK1mkNo8s5jQygtKNyXQVyC4NBqLa2A59Ly4UxmAqh60rjJd52xiG\n4uS3RSFGtSonRw4URQNp0lk3JuNiAgAJ282UIJI/M9ZgVEQ9CwRGpMMv2iH5XGgn2zqsr3FBP48W\nNNJlySciiTV3Lxb0eRRt6naihk5aACr0lZP2JOOS2ISrHFXjcJW4gRmrAu7WqGBtLGOeGKfCf5We\nDklQQtSEE+nyk5KwyLwEg+xSIuOSNU6vq43gbQYzZSTCRJPrTfmyJvHj7/0gjz59wDTx/siTD/PO\nX34ff/evfrcKtGR9HJktz+sxBwIyJJeZGBZMisJcBJarDe/85d/mw5Nu/DvufwMPfds3CDhUZRBI\nPmcKidX6hHe9/3f5+HOTjvvrX88PfOs3848/8Dt88pntz/zIp3+IlI4Yu/HfCnx26zFPvPgw737/\n/8Nf+Y/eROhbnUk3yr4Sl9aqnuObOdVslx//pffz6OPXtl6jDQ9xsF5zdndGoYdr0C7FIlYZDw6r\nAJewZNSBEgrTjIQyQAObTct63TIEDT755ktyUrOjGKqLlEJPHvm0eSWGwNCJs5whaUEiguYxDJ/j\nafi7xx/3SGSHH8umXeG87NcSZwbRfEuJqpkRMGz6gT4mcBXJ1ay7CCctm03Hqos8f/2A4GdgLMHN\n8XM46Qzt8ZJr15ccLztCsAr0eu02JwIK2NgElcQxG8EnBeBz8pMSQ4x0wwBeR++tIVgYTIQojJoy\nzGEAIx3aoBFGvZTwzpIcqDKHCuQ7EpGuD/R9YOiDNIuQbrPdjVQYgjH0Ru3InSnxyaRsvjF269F/\nl1s05RNfGjsmSeKKyc+VB4yyZEZNNpxKDQhw3cdAFwf5Rt6SvCM5S7CWYB2pqkAZWSmDYWTxWhlB\n7ruWoWuJYcBbqx14hzEO6yph4VkYAGKWGrAUTnMasCZRVzLi5lzCmHG0IiBCty/uH3HtcMm5U7tc\nOr3H6IKINN802ez7gdZE+rZVAVlprCSSxJoo38U5K8zRKCPm0UGykqt4L2n4MAQtahwv7h/xkSef\nYtyXAb6XmBIffuJBnn/mOS5dPEfUoitm0wBGh0KLVcCvAyhsgtiLqdAL+wf84eOfue17fOSpB3n+\n2g3uPX2ayjgdz5DY+Y8/8G/41C3g1qefe5h3/ebv8cRzz73s9VJ6AfhvEMHurwH++W0ek/jEZx/k\n6c9ewEeLtxUmeGys2J03zOYLjKuoZgv2u8RHnnjyZa8BiS4+yLKT86gZgqwnxA3YWsCofibZ4l4N\nZbSoMk7uUzNEEoFex926zcCg4t7RCvAVgMrlUSDou15AihixJsm4jHU4K9oyXdcRYk/deGazRjr6\nOlpvjcH4L4hy4T+IY1Y3MhrV9brvW6pG3Dfn8zlt1zFbLLhw6TL3vuY1pJQ4Oj4W4EvNkdquo910\n9L1c48zuzyYIeWIkb53kvDAD6TCpV1C5iDG9SWPQmABLmk/qH5M2FkOSNe7cyAwqcHh5HZ0cGMTc\nJwaRkzFDhx0qjHNiHqHNepiA6mlskORXH5stsn9OhxXzv1ttVIPGzAwkxRF4kLiTYZyUIfzyu8xI\nhVxLJKnDnMQF4wIMVmoZjJpyGfqhJ4upZ+Omrm8JSSYZZrOa2bwRjWGXtTFGlhNW65gYRskX3f+t\nNeoUKzEXmz/3pDGrNUv+3mZrPF71saxRdrA2IIp2cT7HlPicz4E1Bm/cmF/jila2QQ3XjMWmXDPC\nlf0jrhwcc8+5s7zu4nmEUmJBwVWTqR55gibXosRy7WUtTUA7pyAjCWTqkJRQrbtx9DSKlbwCa1Zz\nG3K5JazrhDbNDZiI8xXWV/iqoZ7Publq+ezNF3jN5Qvce/E8P/ruX+VjT9xgGqcee+5h3v2BR/jT\nX3wvl07v8obTp4FE127o2w3OimNrlgcw1uEqeY+qkRonJscTzzzPH378MV544QqbTSvaxXozZyA4\nlrpbLpAxRlnBDqeAps8xWet4iQFi7JenY6TkVlOlgmXoOWGcmimArjGQAmGI4jCZWZxQgMkQBnU6\n/dwdXxCRLAxDYcYMfc9QeQqdlaSgRaJuapxLDGF024kxst5sCCQ2XcvyZMm169cFsXeetuuJCVbr\nDavlCTf39zk6OiaEiHOS+PqqYuh7peKrVbw1ouWgLlemLMpEiAkTk9A5s3aKGQGxrPVhMpg1Ih9b\nSHVKSsRSkKiQcHVTCtrJ61pBWZ210HU0Oxks025JDDqaOXZs5IW4ZbNEkriUqbyjPpRsDGPnJBdT\nsTw/A2RGxSLlPGQL34Tof0zCpoome1Jlxg06SHGS26opJsIgAF9Q1L7Y/KpemLiPTAJiOUcTcIik\n4uiWqvYyCkkufkzZVF46OObawYpzewsuntrVfxcHz6EXZ9AQwvj9VehPNmKjlGBlJBhDU9dUrhJR\naF8RXSWBBoNx8n0ycm6s5cX9Qx556mluVzD84ZMP8uSzz/Ka8+cJJAYGAuoQqOBbpQ4wmQ6bQUeM\nIWoSTYIf/cXf5KNPH3Jrx//H/+m/4ke+88/IFbYU1hckfupf/B6ffH67KPnUsw/zrvd9kMdvW5Q8\nArxTH/sYr1SUfPq5B3n+2jnONbY42VhnhQLezPC1BIbrx2seeezxl70GJNrwIP1Q6T6sqUvuGGEm\nNG8BBvNGDjKGkgxU2jnLATOExGazoe06yIw+BMw2qmlg0BHaJM6sKQWd+R/n7VMMQnNOAhg0TU1d\nSecoTAwM7h6f3yOkXhM9w8n6GF8LczZpMYsR1s/Zs2fwzYyTTcsQIWJZbXr6mwe4wyUhRFZt4MZy\nQ7p5SF03hACrLrF/dIPl8ZKbN/c5Ot4QgiVGg/fCeE1xECaIOuBar7FhABds2YtzYhhiYogBG600\nPawhWhiIEEUQdbS0NmTTkmC0QEoWrDj7JAODVDOSFCPlhADAHW3bMet7KWKGgImRyjmSMXRG2LrJ\nJLE2Rz6o9C0EGLLKH52yj4FCCTaT50yLp4KY5QJMGznWKfiSIn0M9ApoWWOJFqIzRMk2dcQR+hQZ\neikmcvFjSITQE4ZOXZegrkSDRhy1HN6L6HCIQc1tAtZqI8Pa8tGck6Kirpysm9jLmH+yLNct7/nQ\nx3nsuSvlq7/ltffw3d/4DmrvCrA4dKJFmhPaOAxlTH3oWyAyX8xIcdDxicTOzoJmaJjN5sIY0lhd\n1bXGL5EScNbzzAv5/b+R7eObAHjyyWeYk+iyq3KIylIwE70qK2Bh32GMMFgCpjR9nnrmhTu+x/NX\nr3N5vtAxTBEYfmn/kI99NjdGtmPfE889+Aqv993Af4sxD5PS37jje750/Yi3XDqN9zU2eWyq2Fns\n4mc1xnmJMTdu3PE1uhB03CmbaiXEyl4BrQzoWlmf3qqra5D4YE0SUBULIRGGvB4NMTmGaIlhnAXw\n1gEyjTBEYQwbEk2lo6u6IcQ00LZrDJH5YsHOYoH3jqEXQe5adb7uHq+OwzvZS0CkO4yzNPM5u6dO\nM1/MCUdH2Mrjqgqcl+kO1UlCc2Jxxe7oW9FENdYjUxyKNigQa5LUI+iY9ri7GhJWQa+kYL6ySLV7\nkRv243MmL53ZQhkAwxSxe8u0uZ1VA3OzvtNJlUGkLZwAAMZrIR2NNhUptVXO48xEt7cc+fvmn9Ix\n16Z2rq9MwiDNqy0WV26WGm1+al0UkY8S8xfOdRw6TWCd/niMjVhtOBijDfSo4I02NDLwlVIsTq+F\nEazN+0wOMMqoQmsX0TkOJCLGy/SGrw22MhhP+a4ZrJPajVJ/minQFBMW0Q1NYjatIJmcTpfXRhp1\nGsWdUgBXmww+ZS1DeWWTnEwWgUR5lSA6Odnw47/+IR6ZTq/cfz9/5y/9BU7v7WGEp8iglzBrFosg\nfh5Llcwl23hlcNZqI1qhLyDx3NUbXL15yD3nznD53CkdB8/7sSsAkUyxJEKyDEgO/tLhMVePjjl3\nepd7T+1gnEyyvOuffYBHP/OZ8vnffv+b+PiTtzZ1/jwpvZFnrz/CL/xf+wA88Lp7+C++4QHSZkUc\nZGy5ViM6a0XQvp7Nsb7Bz3bZDI5/+J738rEnxvea+Zozs1owjmzoAqOrtf4ls0WdzcCXNkJjlHtM\nFnvRCSVCINL3omnatsOoNzo9kgLRVoD0QqZJSfIwXd9lCkE1mu9qfP07ONrNRpPJyMqoaGwjo03O\nSJJnreX06TOAJaQb3NzfV6HZwLprwRhxXkiwXJ6wszihrmvazYb1csV6veJAQa+TTUsoOk8G7ypl\nhvSKcOt2aq1shnkESgtmY2X0LEZLNJGotNeoc83izIiirhZjI0RhUVlykjqOwI2A1yieaE0iWkvb\ntmzWa7qupfYe+kECk1WgK88DGzDOFKQYBeEACSqTSJLdHDNgVCCllAPRpFuSOycajKxRQCFGhpSR\n5DyuYlSwXZ5rjcX7GsNQaNCkpA438nmEDi1z7TFFnS+uZYzEC83XaScz5qCfUjm/WZ/EGitjc17Y\nRLkzFqN0T07WLT/3wY/w6UlR8uZ7L/EXv/4BKmPo+kGKkn5gGAT4EpFZOZkmJ8AK3OTyzTsZr7NY\nGl/T+AqXZ+CtyyG0dHueeO6qvvvtE+/Hnn6GOgi7L1oISc6dBSrraEpREkehSENhF0r35ZBHnnqG\n2xUYH/vsgzzz3FXuPXOaYD3BytjVlaMlj75CUfL4KxYlfwEBvn4HOHfH73XtaMnFe8+KUYEXV5pm\nPsfXtfw0FVdevH7H1wgxSgGfr0lJlsyW8xWIs41TgDaFvK4po0Ehiqh510nXTsmm+Dy+8QAAIABJ\nREFURadoSpMWR66AMeLUWEAvI6llFkhtvIjpz+diU587rXePV8ex2WyQLrErWg+ZDQpC727bTtyX\nUiPGKFFYgf0gwFh2VOyHgc1mw8nJCavVmtVqzcH+AesT0ZBardbFMloEcwVIyeswC81KHp6Tf/mc\nLxsdTHlEJRUR39xs0SfoiL0apOhrRDOKaGeWtDHi5Bry41Sdcb1es1qdsLO7QzOfif5DjCLMetuC\neoyJZLdBk7u4k0elaSvk5d9vCyQz45jf9DPneIIxRS8pO2aJVXithU4kBNHYCykR2R4Fyd/fabOr\nqWtqBanFrlvALLGnl+ZSbiTk8TbwZX+IKEM49CQM7/ngx3j8hY4txusLD/HTv/X7fOUbzrNbVSwq\nS98NpBCLI2DlxSI8JSkarQVXeYxJDEHZzOs1m7Zj03Vb4yK28kWz0qpOlI9Z6+l3GPdyEIc3qGLP\ntWvX6PN1TeO6dMr4cpr0xihNyTKWqcDXjk13fI/TlWd9ciLi7FacEp+7dmfQ6ZVfL3Jud+DG8Tvv\n+J5ndkRDpa5nVFVdBLaNc9TzOVXTcP707h1fw9lxbNWprIIAWppjGHlMpaOJBgPD6F5W3Oyc17FE\nZSSQY0qeVtDGWh4nJmvBSeGWR6OiNmhMkrVWe8esEe1TZx1DJ2LFdd3g72pJvmqOnJuUPc7qCLV3\nJGvowsCwjtw4OMD6ClKi64PUIkC76VgeL1kt12U6pbKeZGJpBghzV9akJSkbZmT05K05JDAqdWJt\nbu6bYsQiTb0MIWk+nQ2qTG5XyE/I+3sGvfIPiklFkaHpu4449IRewC5bV/imloZ0CoQ4aP6kGrn5\nndO492+PL6JTJWP8kLhIee+cl6Wsz1zqnxytZB+T4icK61+bxwKI5e9jx/9bJ4YXQVsoypQJcZAS\nKUEKMrEytK0w3JSt5Csn+o9uEtfyZ1EASFUW5b8UwSZ8baX5UFusB8yowZT0HEedXDE2a1LLtENK\nMMRAH6Q2M6g+aJAcVVxiVZoHMUzDyGMr77V2MaANC6f7lGin5bWS43Hkx977L3j0me0G+0eeepgf\n/dX/g//he74LrObdKYIZSEmNxaJgjU7dfiGO11MFpIVoIjHq+GTNO3/l/VsTLF9+3xt46Nu/kVr3\nPXHDlXrGYSAkhmhZrXve9cHf5ePPPlue+/b73sgPfsef46d/40N84sltZtcnXjZeDzJivz3N8unn\nH+Y9H/oo//lXvhaD3LvOibmDqyuqekZVLzB1Q9Xs8s6fey+f+Mz2e22Gh9hfrzm70+i9mFeq1BdJ\n9xKrEi2WPD0m6yGGqIC2GUdwQyS6ROxjmWjpdfw2g1x5j5I6HYTNNQjwFXWMGuS+TNoc6zcEBdnc\n51i/5QsC+Oo1eJOErreTEt56BiubfB8iybQCMtQznPe0fcdm0xKSCAoOMeKrivl8wXK5ovIHYAzL\n4yVHBwdFlE4cA8X1L0bohyCW8caWjSOEVGajhbUFmFHgNKWs/5HU2U70WCyq85VcCQaJXKSInlUg\nYaK6GdrR0aQkRPoc47QT37acrFacajuaxY78Pspit1aKmFwgyUYRtoA0kmqpvAzoHbsmOQm79ciB\nQzoT2xV81K5U0elKE6HkzNzyHo8lqKaFzFjLjZXR/ZSyqHoowrCz2YxZM1MArMFVfgQF04g2SyIe\nCNaBi4DDV1YJC4EhBMTBLPHuDzzKEy9uFyWfefEh3v3+P+CBy7vMK8teU5frVjkvhVHltYOg9tHO\nUTU1WCmUQ5ROTxoiG7uRDm5ExpC0owaoKKXFx07P4Csk3v2KK1dekBEK71RoUTp6lTU0ulaTuo9l\nvvsUwHz6xTuDa1eu7nPeSYe41w31uZfuDDrd/jM/i6QcPwg8dMfvdW5Rj3P0VUU1m+GrBuu96NZZ\nz5ndOxclItiojjioS55BRxvH2XcZY6rwzmgRHIUFZoyMcHlHH2RfCQnVx1F2WO6MhoDUdmMClYXz\nMyMgA91oklZVNbP5nLqpgUTbtnj3SsDB3ePf99G2LcaI3kLKFG/VQqgqL2YiUZxyst131t1o245e\nx7ONMluvXLnCcnlMSnBysuLw8JBu3YvxShqZq7nRAZS1YrIQuRVAHfKePCb2MccYl3fqkSmcwYqU\npItq01RbIg85boNMEbClG64jizr2vl6vOT5eclr1Mp1zIgBfVVsAcwa6cjTYAukmMS+Db0weB/qL\nzFZ9BZ0IOVcj8BU1L7DG6OhYS9u2RZui0j3BoN3KICOCDJPzEcf3816aK00zE+ffulbnJYszYqQS\nk4DmlqQurY7oXanzMqg+dKLtd/VwxWPPX+XlXeL7eHH/EX5j/xCASzsLvuo1e3gjpj4LJJYOVnre\nxkDdzJjv7lHVTjryqht4cu2YduhVSFlGE92gAEsUlontLY7AfefO8vTNh3RNfRPwf2LMD/Pm8xeZ\nO8PxcskwifoZhM1tOOc9lfMEBdFKI0DX8p5zvO3SJR679rCe4/E93nrpEufqmn61ESMf67HGcbqM\n4t1+f3/bG+/j8c/+sGotfhPwG8CPAHDjeAlA7Ru64Yd0leX3fJjXn93j3E5DM5+Lm7evpMlSV6Sq\nopovwDl2ZzX33XOZp1/aPjfwMLWvpbkIWGeU4RULM0EMfC2V89RVReW9jH7kdWstrqrUxdixCa2Y\nKwyDNDMLy2NsSGbAFpKyylW7y5sClEuOJc+p6prZbC5Mv0FypyxYXG85wd49Pp/H7t4ebdeyXJ2o\nQUiibUUb0jjL0fEx1oozpwja1zq2lTg+PuHkeMn+wQE39velEatgjHceUhJZkBBFqwh0hMzgJqlG\nlgAJ0WCjrr9JbMnTEiEy1jomj95KkClNdWPK8/Pjyn6vgIVgayIWv9ls6PoevCc5R6Xr1FgrrLEo\nWrOj/MuYwd6uVzgdm5fvECcPnAJlChwY0XBNhuw3ot9BnQ/7YWysxKTNZIlc+btaZwu4nRSgjmRG\n2vj/EILq9QXZJ1Szz6kAvlPGaxGQz/ULOdaNo4f58d7bcr5LN0nzgJf2l1zdX3Jub4fLZ08pwCrs\n8BB0SqjrRSdQGxpikBBV3yx/R8oaqLynqWoq57HGEoaBqkyvqPC6Fe1n45TBe3DMR56+fYP9w089\nyGee/Sz3njtPMoZgIgOBENU8B9GoqrzHW4lzIQoAmHJNqtfBkPiffvm3XwawffTph/lHv/YhfuTb\nvlEb/3K+k5XsxyaDw/FTH/zXfPK5463nfvLph/nJX/1NHnv22Zd9/u3x+u/lTtMsT1x5kGvH57jn\nlLi3JxK+qtSkq8JVnmo259rRko889tjLXgN0miVUWKPrGslLDaaMGkojpCx3YeiVRkoYgS+kqWm1\nsd+2vWAeKanRir6+HQ15spO35FDS5MmaxqW5rxp2JkVhtX2Oa5ovCOCrdEVKp81NNp6aZITOPQwD\nIbV0fS9Jhq+IwyCC8zEwtD1DXNENgcPDJSlJ8dluWpJqISRtG8QIMRqGIWLSQIaaRRx83HpNhl31\nc44CjgLUyeaqIyASIcqiNHlx3Qo6mZdv7rlTT96olJDa9x3r9Zq23QACvMj8vNDvrc5iT0V/M5Oh\nFCUxjkKDss8idw8Z1crfduuakDdJEFqzIHjEKMLwUzeIFMVVous6+XdrqaxsosMgxUHwnjAI9Tt3\n8vMIpEHGgXInvqpqvJdOvHeiYyJOIU7BL3meteIIKF2oJLpKOeJF+cxXjpY8/sJtihLu49rJI1x7\ncgXA5VN7fN0bL0ixEyIE0ZTxTphWs8WcU6dPs7Mzx6poaAgDm/WazXJF6HrCEIhhkC6xd+r8Z7RD\nlji7W/OmC2d58sZDLysY3nLhIhd25gVQMTFJVy1I8IsRhqSWwTnpCFmzLApQYywXZzP9jrcvMC4u\ndkhdkJl3Kwy/c838js954I338dhti5IErIAfRUjUtxQlPMwXndvl3vOnpBCpKqqmYTZb4CqP9TXG\nVWx6EW997YXzPH/9oa3XgIepXaOji6ms5dy1skkYktbIaFJdC+XYpMgQRQzYOyfsjtlMxsfatbqg\nRGXmbSdNkaTgiCQjlXPqFOrwVqjGxMCgwcJZSZJcBibRjqzzxan27vHqOKajz2CovLijeV9jnYhF\nb7qWvhOQuq5rhgghtvT9QE7Dr7z0Es2swTkvScamxaRxZDZrSOUxsgw25c9gdfwhRmmuGEXJYxK9\nDmsM0QqT2es+nvKoRhq7drfGGEltJB5JQZJU1NeUeBCNAPG1CqB2Xcf6RNwOs9bm0PXEWQCnvZ+Y\nO+NpLOAnlMYJ9rUFem0dWnCVpkpG8SbAvfwCHTvMybsysKH8m7Xi3uqSKQB2ER03Y1KfUB2rFMGq\nK5c6MuYYY3Ws3nlP9MrS0dGzQCSLlk8bTfmDphi5cbzWv9+5S3zt5CEeubLmT73xnOrDGDZdj3WG\nuqnYWcw5c+4sZ8+dYTavJRdQnceKG/Rdx2q1ls67NdTzmRQiyZR9ZrPe8J1f/Vbe++EnePLag+XT\nvPnCRb73a96OqSpsiKJDNRkJyvoiIIUwee9K8hmysHoeI//+r/8y3v1/P8qnrozv8bZLl/hrX/el\n+CQgWUhJ2BfWcWHe8MCle3js2sPa2Zb93Zof5sve/Fb+9oPfxd/72V/gU0/l17PAHvAz5fz14SHm\ndcu6G9/z9Wd3+U8eOIf3XoDMppG8oPLS4KxrsI6T9YYXr17jHW84z7Ubj7Psx9doqoZT80bWoQoI\nu6yTkhLOiPOidcL2cqrDRG7EGdWbrSXGZIfqtm1puw7jrDi0JmVlqsxAlnzILJHKO6rKqlao6PiF\nIM6qdV0zny2wzgsgPww6DeFGYP3u8ao4Lly8wHK55MrVq7RtK1lSuyEdHqK9MmbzGW2rDfwhcnx0\nzMnxktXqhOXRkuXJCRs1Rcm1h7PCJgwhM1xj0W0yuZFxS71irej1ZsH6ZJWpmnUb1dk1x5Ko7Ctj\n8r6gOVGOGxOnFQF+hLnkNKb0w8B6taLdtPimKc0WA0UPd0gIe1RBtphFVSY1TGErl7Mq8Trv6bDN\nJC6N/NwgApWnSFsFl7y1jm6FWJpZQ9+K2Pek0Wm8MLxFBFzG08Ogo2Amv042Nooqil+NUytVLc2j\nDFKk0fDEGHBYqV+V1eOdNGa8V0ZWEMDNGsdqveI9H/o4n35+MrVyzyW+/WvegiWJJM4wlO+V10bl\nPZVOKsiIoby3aChbaez1Lat2LWzTZJk3DZX1wgRMmUknYGquaZ74I5rln37mGWzX6jisUQfbQAqy\nFirnaHQvnU6wMKlTDYYrh0evCLB9/NkHefq5q1w+vSe5ljK+rBEG99WjEx599vbPfezZP2K8ntwc\nia/wOPmeh5uB11+UKQ/rPJU601tfYb3H1w3PP/PSHV8jJjFHIeOcKX//UbZFZGmEFeyd6L+RhBWX\n79UsI5MSDMryE0xhwiCOuc6x4xhjDKAmYcZn99AMESS5V7XR2MxmBXD/XB1fEMBXVKQ8o+UgKLo1\nhsViTh3FvdFYy6Ztabse5yt8gj4Mqsfj6IaBYdMyDJH1upXNTwEayXl1vFA7b1lnw+KVLZJRzlTo\nf2WefgIk5c2rbLOadGi40IJj3JJjUt16/btuzfo6psxr53NQYChdqGKR25GidHhSZpmQi/9MSU6T\nOiSNc8Jot1+eJuM1E3YAKQ+8UP5eAssE+Cp2qylTMkdUPhcaUzcNgy203AwI5oIzlQCgbmpGgqJ3\nWdDV6uOtglvKfkpyk4ZBrHxF4Nfp7HhUMEo6oVFdG28ebfSL3bkouXr0EP/mmZt83Rsv0MdAVJez\nqvL4uqLZWTDbWVAv5vjKqchlolmLQ9zqeMn6ZEU00DQ188Wcqhb2yDgKG/nuP/k2fun3H+eJq2Pi\n/ZaLF/ner/livPdFN22IIowuenJ6ruO2oCe5kM0jshYu7ezwJRcv86nrLy8w3nbxHi7Nd4iDzPYn\nC8EYzs/mPHDp3tsWJX/izW/lv/prf5n/8X/9eT799CsXJYaHaKoNm0lB8UXndvmOd9wrDL5GgkPW\n9bJVDc7Txcjhcs0LV6/x1ntOc/PgWdbDpCjxDXuLRoK2VeFP67QopNyvljRxYETXgSQpuShxztMH\n6Yi1nehqiGnBqDfA5P6wqh+Qu0l51NeaoGMsos9T1QLaZtAADNYLyHcX+Hp1HBksHZ1rRIDXGKvs\nH4OrGlKiOP9hTAHfre2V6SevN4SA6TqMkWQzpkStI2HZCRCke5Y7bWSN29yx0zGGsSGhyWUUUXmb\nbNGyjNZq8WFxjM5YpejJxa/JHXz5a4FpdJ83ZEmTVLrKYQi07YZO40wWTd0GtlLJAUtClP89MQlw\n26DX7YuUO4Bj+pxcIEyvXS7OnIJcJiaiAjiFnTCJM3HyQxKQILtlZbDLKqAtoHxVGhph6BhUcDxZ\nESW3SL4SFEgLyhI8t3trs+EVusQkXjx6kE28gE+BTdfJHlR53KymWixYnNqjms8xtUcxVEiJM5cM\nx4dHrPqOoYeq9sxO7TJfzJGmnTCrm7bFJssP3nORazePuXZ4xNn5jPOLBdYYgpX4YZMwxktxqXlO\nzkFCilQu6yRK0ZKdKq21zOqKH/rGr+LK0TEvHR5xeW+Hy3u78goxkoKI/WMSySWsq/j+r/8KfuZf\n/yGPTQC5d7zprfzgX/zz/IOf/xU+9dSTk1UQgZ/k1i77unuQ7/szb+fk5IQdHznVOCpfMZvLCKCv\narDSNK2bmqGZ0YXA9YNDnn/pCjdu7nPWDzQJkvfCKveVsugEIBZx5jEfG1nFWftRcpcwDApIjM6M\nvvKsN2varisub85kh62cN8l5EUAgqSuaxG+Xgeyca8aIs4bFYsGsEYOXtuswCZqmYb6YF0fuu8er\n43DeY6yAQMMQSSYxhEA3iNaOc56YEjf3D+hVWuP46JiT5ZKh65S104mesPdkHVqb3d0MMHHRy2tK\nnHJTydNLrq0OjdGOoEvEKBFgMopnc6NWXlXS/FFwO2KKb3lKlP3ZksTFPSWGMHBycsJ6vWK2u4OH\nEmOsCmbnugVy/JDXJlFcfdGaDcNkYmXSdDCZzTWORebXu/29oEFW8+ss0WIwZVolN+6tdZgqGyZl\n92GVahkGiWkTQDIlaY7UXhyjZ7OZjh9XVFWtjLyJXqyR3MCYDE7aUvf4SrT9QgwKSkj99nMffJTH\nX+zZdrR9iF/8nY/y5a89xfGmZ7ep2Js3gDCJnXXM6ppYeZ1iEuZPXdfMFjPqppZYpz+55jEdtKkV\nkEpBSGONjoVK/jR3GRC6fbN8YRLHxwdgLEbHfEmxvGawMg0k7utjrZ3KtZQV8vxLdx6Rv35wzMXZ\nQqQNjCNauW7Bep6/fvOOz33lzx85txu4sXzwj3gcXDqzoG4khvi6Lg1+6z3GVURgVt2Z7Vziiupv\nF309Y3TM3pQx+MoLmOmsIYZe0kojdU9VVRjv6bNmoCjnF2Ov0q7L61b+oo1FXX9e8iFDQoyBBBxL\nCEu9+fcwVv8FAXzlDSTraMQQ6ZXV1TQNPiHOPNbRtivaVsfFjJFE7JbRixB0FEAY5Lp5ZghZgSKm\nDCbVt1CQxznZeFIcrXlzMSzgheqfJFs2QLS7nheUeFhYyGKS0uLTxTx24YN2QqLJqK183lg2VenG\nt5uNiNipM6EA0cL0SZiRkVWOXASNbfixmMjFSCr/Tgpbz08ZeTa6/ZTZewWYYlIwawy+xhis3hAJ\niRPTrv2I5I/OMKpSBUhSObL93JhM1qLdYawUY8PQ0/ctXZspzyJoGXSuPQxZpF46Wv9fipKXDh/k\nZDjHzBs6ZW/NUmLPOWa7u9SLOa6pcZUX9yuDbHDWit5cuyFGQ7WYsXv2NHPtyAcF+fK1+y+/4yIv\nXT/kyo1DzjQ15+YzHbfxEmRUVB9E08emXMxasFb7Y9kAQu4DYsJpUf39X/Ol/OwfPMonJuDaWy9c\n5vu+8kshRLVIUTq4kzXwPV/5Dv7JIx/lUy+Nz/nSt7yV7//Ob+HHf/5X+fTTT0/W122KEhKb/kH+\nyp98E5uuY7eC8zsNuzu7NM2Mejajrme4upZz5iuicazWLdcPDnjp2nUOj484Wyd2Kvmddx5nvd5P\nKuBsRH8F7WBlANhZMSCwILbQvSQx3jnqWthYMYmWRtcP9IN092xSgVjDqDWR7wEz7k8CvDEmlSry\n6Jx0+HzlSxcQjAho13eBr1fVYSh71jAMmL7DZJMTL6BsTBJ/siZhTBTb5ynI473sVaLzFBRYseMb\nkanrtrBjY0QcalGWhjqHli1WC4mgychWEROjjNJHiDbf+3LkZoqsVaOdljxaMWV5IQUK24VLDEHZ\nBxv6rmc2m6m+lXb7SjzJJ3GsjOSP0hm91XtrK6ZMmyvjA0oUMmnyb3rPlcYLI8jnvS+FTtJx+6zZ\nCYgoqxHYYmRojzoYTjW9sn238073p4Z6PoMkbmRd69gkiKEX0MvG0vTqh8AQBlknKXFud8Zb7r3A\nEy/l0b87d4mXXeBUZWQsqO2oYmSedvHNnHqxC1VNchayRkyCRdXQhp507IjeYJuanbOn2ds7RR6F\nKvo+IUGInDp3jteuViyPpCljjGHmG2b1jPncaZzOjbwsuT627cqVdwaSJUWRayAFUpTzGXSNxEHc\nIQX40vWaNLfRc7KY1fzNb/pantg/5MXlij/x5vv56rd/Mf/dz/4CH31i6ub7EwiL+Pbnb7Ne85pd\nR0qGuq6Yz3dY7OzSzGcYJ80mV9W4umZwFcfLI65cv8GLV69x8+iIfhB3Tlt5YSPo/SugsCngMIxa\nND7nJpmlEkVOgZR0vKnCWEcI6uTY9Qz5HOS9w6gbn67qGAa9zxSKLve6PicIMOa9SEBUda1GQIHa\nVywWOywWO3rV7gJfr5Zjs2npOjEKcd4L8zzJXtWHQB+EjR4iLJcrUkys1xv6rtNR7Ym2oeZpwxAh\nDaqvk0eTgVv23NxIyczhGKV54hjz+lQaFRKDci5f2NBABh5ynMmNev2V1kP5PSexKCbWmw2r1ZpT\nQyhslTgMpKqS9W6E6TSOtZewWiqCkCRYmknsSfkm1QAmz7mlOaOHMCqFfV9qIM3jYoglXkdjGHrZ\ny4Pez1nTMLvbSqPFM9hhG1BMY3yxVpzKK1+JPvFk3NE6B8iUiIyXSiCXEbSID16r/aRuxnoFFG+7\nenTCYy/k/XGacx/zwuFDvHB4XL73Paf2+Lr7L2FiFC0yK3u2A+pKxrRnuzvsndqlmQnLNSZxpWxX\nazartezlXU8KEWeEnWW9MMBy/Xp2t3mF6ZWHZXpld8ago/rEAFH2OGJElH8MWEdykwmWlK9/Kvvx\nhVmj3+wVJlhmO9BLTRpMJBknrEabONPc+bkP3Hc/jz09bfZPxuuXMl5/75nTOGd4/uYt35OHue/i\nae49dwpfVbiqppnNqeoG64XxFa1jtemIQ8flM2e4cnCHaZYUtSlqGYFcZXmRR+FFriWzvXJe6iut\nk+tGXLjXG7qup9fmq1OTC4Ufyv1lgjIPnVWJGJ1scQan+WvQPNgaSmPnLuPr39Exzh3LRpP6Aes8\nrpYNyFcVQ0z0g8ysRr3oxVUw7+QZPUqTTVABlVQAH91K9f0S2fJUWV8qbCrEKt2AtGts9LEuCtDi\nbCLZpMmNWNWD6KtEDSxZwDjBOHIIpRMdtAMjH98QtJAPBkwMZYxms2kZhgEbvFqdJxKBWN4DKCKV\nLy808qYCYyJmsx/tLd8163al8dcSLDMAgFKBQTfzVFwcZSYecSnJv9PvlkdAc/Ml7265ABH6rdBf\nfVXRNDPmiwWz+RzrLCEIM8EYimVyUkfLfL2Cgl9Bb+qzixlvvucin7nyxytKVn1gVlUMoafremEJ\n+Ip6JgK5rq5wtcep5kvthcp8sl7D8hhipF7MWZw5xe7uroxFTjOTKGKYu6dPc+/FJUf7h2xWG2rv\nqZqKZjbDGMOAWJ4TZYzRRtHoIURlvOmaT0aQsRBJzhKtZVZ5/tY3fBUff/EKT93Y5/WnT/PApQtl\nfEOEMmVEVzIAWMwbHvpz38xj+zd5dn+fL37TfXzVl30J//1P/TyPPp5HRf/ooqTvB954RgLqbDZj\nZ7FQfa+5UN9dBb7C+ppuCBydrLh6Y59rN25yvFozxCSUYVchbDm9j6zF2YTVMZEM3lpj8F7Ygtao\neOoQ6NUttuifGEPX97Sd6DVF3QNy8WfLujSloDfjzbFNU8+mA8ZQVxWNMrvyPmCN6AjWd4GvV80h\n7IqJMGgUu3ljs4i77KtdP5TOb0yJYRANj6lDZ4xJ738dIUmpxJxx/NBsXXvpviVdo/JCZVS87Iej\nwYI4No2gREyi42GI2CgjkFYbIUnjVWbzSjGDPi+pw5jJ/1w60OMYJvRdx3q1Yn1ywmwu+lcxRAiB\nlBOmSRMp7yM5kaI0gbYLEPnNtCDRuFLOwxh3CptYny+aHQo0BNm3KwWuZCwFkg0iNaDBytlRHHza\n2bROOs9VpUWJE83AumlY7O6ws7ODm9WQIkPXsbIyBhJ60dFKVgodASTFTSmojqQl8Z9+/Zv5ld97\nnM9c+aO7xLtzGQHqU6IdAsHK+I+pavxsjqkd1tuiE2JSoiHhlkdQe+grqp0FO2dOs3vmDEZt44V1\nVBP6QQx72o6jw0NWQ8/m5BhnHYt5w+7eGXaancJmCJntpIXo0Pe0mzXL5Qko8FLVFTbU/L/svXmw\nbdld3/dZ0977TPfdd/v1pO5Wa0IDSAgNBgrHcRIMSTl2lalQmAoWScUUlI2Ck+IPMzmplAET/Ffs\nMgnG5Ypj46ScUMSOXZUEwhCIC5BACFBrREgttbr7TXc44x7WWvnj91t7n9t6wrgSlVSl3lVX/fTe\nOeeec/bea/1+3993KPHxu3bgH//L9/PhFybpzRsefphve/sbmYcgzbTT8ycTPXZDzz/8tffzzGee\nA+Bnf/29vOnpV/HBT36C603ddyB7zIO/v4UX4KmqRKa8WC6ZLebqvymp4DaWaW4pAAAgAElEQVR4\nsrPs+8idiys+c+cud87P2R0O4BglO0kHpyUV2BkzykrKbemsIVhhq8h+EcUTMEZldehgJWX2Xcv+\n0DLo4M1abc9z1qbGKkMrjYO7ieRQrlfxM4WMd14ZJNXkEwZ4L/WRDxW9hrS8fHxxHFdXa/aHg1h+\n1BWx7bQ3kUGH7CdZrFbMbgQ6S31tUD8qpXwWSR4g7POjxM/CQJR/07pI/1tUBimrzy4TQIU5ZgUf\nDaNzPqoRj2rFcX1OGtxTUt+ySPDlRclA3/fsD3viMChb0o6fb/QTYyy1pv1DO/Ox1yg7R+lDzPQ+\n5OOX0fkRsJUnvy9T6mN90VQGSBm9N+3RPsTIfCmMm5yOXs8e9W0pTkxsTRt2zo57SgG8JM3R6rCm\n7Mmy3g5DR4oiRRWLjPJ5pKeNQ1JLGbj/QCk9wP+MKC/+DoUF9uLVd/Prn7jL177qFkMcyDrkdSZj\nwwJX1zSLBfViTl1X6nELcRjYNztcCGzXwjw0VqweZnPxri29slxXmT//dW/gn/z6R/nY0Z73Zbdu\n8Re+5k24ykG00o8VL2fkerEZyFaHCgaKdJzptXOWMLiH53Pe9PCjfPiBCpZHeWyxUMJDGlNKk81g\nMzermjc++go+cvuzn/uW17+B73nXN/OjP/k/8Puf+txKlhcuv5tXP2x57aPwsSNSwNNnK77la16r\nfl41vgy6Q8CGiuw87TBwud7z3Asv8vRDM642dx+sZtH7q5A/rvnVZSiqFu8knMDAKHfHiKVKCFIr\n9H1URYukR4sKpbCK9f6CUfYqlm3XFS3eGiCSlU1vjEhjqyocrUufv+NLAvg6RjjH5AqVGwydFNtN\njAzK5CoN6BAnr6eykJXdoUg9xr83Vpv8QjOffpd2LGWIoIvsZOYIRcs9+VvkwgZIBfSS6Q0WjIes\nWvbSFYySDSeFVQHopiJfI2WtTBmmDUaMBtu2Zb/b03cdLgSlDUdStmMkb1Y53HhR5olCD1Mjn5mk\nhkIOKFKZ4qFSvD50g8rTRGbCEuW77pk2SmnyDFEjdUF8V4yi2c5ZrC8eLGbcMIwxOF+08bX6e/nR\nLHy1OqFZLDDGSLy6FQDM9z1x6Elx8nwqE+/iHZbJ5Bj5c+94LT/zGx/lD+78UZqShkwmJtVJA85X\nsjh7j69rQh1G4CsNkWwtrq4xPmAz1KslzcmKermQTc05XFA2XMowJNrdgWQ9V7s93f5AqDzVasnJ\nyQ2quiYHSy8VkfjrpEzuB7r9gd16Q99K1HwIAU9pmGW6vtkf+Af/z2/zoedfGD/d6x9+mHe9482c\nNvNxaj3GUQfPLkX+/i/+Cs986lkA/tdf/TXe+JpX86GP/wH/Ok3JjZl4rlVVzXKxYDabicyxlklI\ntg7jK4wP7LYH7l1ccfvufe5dXHHo4jixPy7jrSkNyZEXnj7CO0flix+NMi6HAbJIHIusKcYS7dsd\nNSVqrqpAl1W2ZxyEXVZA8Gm6qsySLLHzIVTMZjOausEwNedWpTZem/SXjy/8IfJ5q35Nck7iMBAZ\nsMNAzoaYYN+Kr+Kg11DSqdoEZMn0Og7DKD8sg5dj4KuY3GZNdRsBrHT9fY0eXQYiup7mIh0RmD5m\nGabELJNTmwyusLis1WQfNGI+y4QPbUNSGlMfSzNvteEfhmFkPsUY1eR+zWy5wDtHp4EAVE1pS47f\nuPxH94mMsLamko3xc7/kE19rNsbHoQOZ0iAVgNJM4AzIejd6f9ms1H41eTYyQHHeY7zuZyPw5UbT\n8wKeOfWFWi6X3LhxA7wY1PatxNL37YHeHYjJIqE2dvy+yr5eJP3BGL75q1/N+fYJrtqeX3nmeT5z\n/hKDed7NoycnnMwaYZ3mpHWAnPvsHLaqZJ+sPGFWU9dBQJOhxVQBW9eEnKmXS5rVima1GoGv4D21\nekxZDLEfiNYQthvyhcPVDcuHzji9+QirxQlVCFgMXS92AM7JZ9lttpyf3+NivwMMzXLOfDZTCbkM\nHP/BP/1FPvpiy7H05qN3381Pv+/DfOefeBvFVgIjwJfxnn/4S+/hQ89vrz3nQ5/8Lr0Cjpu61wP/\nDhKacvT9mf+U1z12ixszT0qR2WzGYrlkvlzgq4AJHjR5FWfpUube1Zrn797lhXt3uVhv6FPC+gn0\nEvmxHUFckZSopEs6f52Ge7LNDNqYlevROS/+gNbS9T3bzY627ckwMgtH3yBrBXBT0KskODrn8FbY\nLcISlf3FquphuViMNgggAKcPnmyEad5qyunLxxfHcX51IQyiVAKx0njujHWAgvaxqEqUaWhKEFWx\nMCnXqfiNZlWfFxP7MX3UMFpeHMv+UpbkQpfEx0sAfDuCQTlJ+q1ADmZa07UnG3szo76nZVCP1GI2\nKSs0T4N8k+XeOBwOEkJSArBiwmKV7ZNkYH/cQB870RekyxwBWqVPy2XIIX1TzrH4xU8vdW1rKRzW\n6f1jCvimQKGVJN2UMzapBU1KDHG45vslOFoeR+flM2cDFrXB0OH+KKv3gapq8MFjrRkZ5W1rGOgU\n/BZb9zRkeg0O6/uBvpd7+ub8Qb69HwF+gQcqVy7exaY/o3aiTkp9j3OGhVkSZg3VfI6ravAOG9Qb\nswoYL++57TvibovFUi3mnJydMp/PyUb208I0upkz3/PnHuaFO1e8eO+Km3Xg5qyW4Z4VQMYkDZ1J\n8hltUjN/Zf0lK+fbAFijrOI4sdSx/MfvfDP//W/+Hh+8pmB5hG9/+5s17E0B2ATZxBEwjRn+wte+\nk3/0nt/iQ5+Znvvm130Z/8l/8O/zt/7Rz/D7R2mPn0te//Hb7+K7/9SX82+//iZ3Ljec1J5XPnrG\nycmKupnJ+a0qnK+wocKGQJcM6+2Wz9y5w2du32az2XJawcwHsvWiZvFB75koiY1q1VKu+dLD2+I7\nqYqTIcVR0SJ+ctKPxpRpDx1tJ9dOUra+1Iji9W2NAuW5AMVHA0LFPASg1JAgMs55mrqmCpWGNHx+\nhyxfEsDXS4+C4IuHQiQZg9M4791uN/pCxSi0euedLLxRqJ0l6aaYvEFhOGlR44pPQwGkspiJ6g2Y\nUiTpZPwYlMuUhU4nJHqBSGqLdMYmG9HRO9mgTEaMG7N8LpsMRs2CU5pe1yCSAPBSSINOgbKYRe4P\n7HZb+kNL8BVD1akOPUhhFTXpzuolMw7mpwv0+E/HfhPlv9N+OY5gxgal3IQjgGZUJqeImDFWQI3c\nA4ZkEhmHGxzOOwYSJGXUOW20clI6s1E5Wk3wQbyzrHiuzOZzVqc3qWcN5EzXiXdb1/UMXU9vOww9\nRj1OrHEjoFHOfU6J2lu+9WvfwPm+53zX8isffJbnH9CUPHLjBvMqyIadyzXj1WPOYawXGaYX3y/r\nLH3fSyHrPbaqsSHQrE6oVyv8bIYpPjK1JKTFmDAxQ6hpYsZdrTFdT3WyYnF2xvLmGc18hqsDXR7E\nUDhlTMykrmezvmKXBoYs/lLVyYrZrJFrM8om89/9L+/lIy8cOG4wPnb33fz0+57hu//Nrz5iahhw\nHj+r+cc//6t86NNX157z4QdG+36upuTdvObhU26OwFelQKb6X7kg1GbjMDgOfeRiveHO/XPuXlyy\n3u3VpFqAr9IgG50GeTuBT3qJY/Ta8ToxE6bfZH5d2B05Q9t17JUCXEDC4sllTB6ndTkNQBqpxd6V\ngkakPej645yhrmo1RvfCssiasKLG5pIS+ZKq7OXjC3oUwMOVoBBlh+Zs6IbEZrtju92K7CRnLV69\nXity/4p3S8R5vQZLGtwIhE2yx6kRKevuNJkuLBNjJlZUykeJjC95DhmSmZqYVPYmU9SNyq5hAuIK\no8VgGLSZslkkvvkl63zXdWy3W7r9gSFISpyzDheKZACl3puRDaNDxKPJ/R9+GH3S+F7HhXocQ8nv\n0cYrmaMErjz5SJY/y7kR1q98504HLE6ZcGrKj8F4Hb44CR6xKqWfzecsT1YMufwOCJ14deAsJgpT\nx+qaUVWVpIQyGYvnlEjDwEPLhlc+dounH3mU//H//l2evTcV3A/NZnz1K5+Qz2iK9FUHczqwibqv\nGq0zkrHCssqQrMWEgEsZ1zTYpsFomp8BsvMkZ0nJYm2QKXTf4+dzzKyhni84uXXG/MYpdb0QJrW1\nuO6AQcNzUqJ3lmF3xRDk2q9OT1id3mBW1cSUePb5F3nm08/xINPgD99+F/dj4pHThfqpChvx3r7l\nmU9/+rOek3lpilY5vgX4JcSPU47XPHLGn/nKxwg2kbOnrmc09YwqNFjrSbnw3S0xi4Tp3uUVd88v\nOL/csGt7im/oIJRfkfFoojcw+nuVZszosNM7R8xRBlBJDOdL7eKcBKR0/SBJflqDjinEUZJeDSI5\nSoBJGR8E9Kq8k0m+sj6gNDqWpq6Zzxej/M3ohN9YO3oT7fcHNTx/+fhiONquo+8HkcKCDhkS3VCk\ncox1cElIH1ISnx4fgOITmbFOHus1TS2nRBcTzhiaph79eIaXDhLKeqqAWEwWm64vt/EISDLZibF1\naR6M+DqV5EVjBLQxxXcyFwBIhrLRSB2FcZhoaPcth/2Bruto1G9I+q2BaCBbi9F+B7UEKBXe8WBE\n9sHpjY+p7iAMsDTtkei/jJ8RAUTIefIb1tfHFIKFJgerJDFhRm/LpP+GUbWONQpoWVLUALMStqRy\nSO+8DO59oAoNdSOqlappkJC2nvZw0CHPpFoRcJFxoDLEOCZE35hXvO6xW0eqlT8J/JR+3gcrL/ZD\npqkCQysMVO8syTiqZiZexY0MWHxwI0EiVGLMvt3vuNpssBiqRcP89ITVjRNh8JZ+sNQtMXLz4Ud4\n5dWGq/sXrC82xDSw8IHFvCGEwMwYBlOuM5E6Wh3mmzgNF+V6FeLIoCb8xmaamecv/4m38+J6w+31\nlpt1w635TBIoU5wIHeWco9iuNawWc/7Kn/1GzvuOi67j1U8/xc3TFT/29/8nfvcjL/JHVbLcudjw\n1I3A6mxO0zQs1XOxrmdUzUxUaaBJpp626zi/WvP87TvcPb9k23YMKeOsDOOlllRTJGvw1hCcqs3K\nMDVnJjN7SSSNgySHD32PtXZkA4Oh6zv2XcsQxR+aorA6XhN0mGONFTJHYYAV2W7ShNPYk5KQfbx3\n1LX0cikN1z3BPw/Hlwzw5ZxTgzgxAR3iQK/eHb6q2e12XKzXbLY7hkEi5iU90BBMIGOITtBN2WyU\n+RGVuVTMcDX1wKkBdrnhktwl44JbUkiOzdopIBCF8quAmqLWhqzMq3z0GoVNpdTjMpFR9hVZpR84\nCgX+GGjLWUz4D4cD282W/W6P8xVO/SS8MRA8xYPLkMYLveikp4WqNGEyYSj90XHzUzanlOSGg6OF\nLhfqcAaUpm8YzYRTjON0pGy2ZfOcZI4KtyibxjqHQ5ITfRD5YDEuDlVFMxMZQ6hrYaE5Rx8jVdcy\n9C1954lWfK/EhPF6wlH5LDkZjHE8slrw+NlNnjy7yT/5l7/Dp+5PRfXN+ZyvevIx2QCCNDbSkAjQ\n1rY9zSziYsZlg7ce4z02w5BbsnVU8xnBe2YnJ4T5EtfUAphaA6HCBk+SiDiMqwhDpj7d0GTD8uwh\nFg/dorlxg7ppsE0FSRefLGpG+kgMHn9oBcEPnvnDD3F6eiqeI8PAp1+4yzPPfnaDkXLmQy++i+f3\nW15xdlM8SULA1RX3Di0fePbZz3rOZ0f7luOzm5LXPnKTP/PWx7DOUOu581WNcYFQzXChAhcwxtLG\nxPl6zfO37/HCnXucX67Zdz0JkctOBVABnRyWeO2alnXD6HWqwLcCGWVNKdKQru/Fd2J/4NAN4nnh\n3NjgFNlA0kKk6NmDpjhaw8j8ymSCczRNzWI+J4QgRVUWBp11Atr2cWB32Y7sx5ePL+xRkpZm2uxb\na6ei0AdOT8+4XG/Y7/fCmFGWx26zxTnHTE1j27anqmsiPfv9TpMe5Rrc7XditN00FLPxKgRJto1Z\neFjqHzKtt1FSiIK7xtqQ6XRkiCq98vbIC0P3N2vGnsGol4q1Voz3C4MFM8oryzDHea/MxoGmaUgp\ncdjv2aw9+xs32O12OOdYsMDW0rhLkp3umTqt915S/wr7Ghg/20sBv6lYFnbZ6KdiNarbTPsESRjf\nfd+T4iDMrKambzsZSpQiWb+Lqq4wJtN3Bw77fvRrKYyZMqQqbC/vxRC9rmoxRVdpZ+0cXa+G5E5S\nH72viH0vvIgRLLd4XzEMiSEWOZEUtRZD3w0s6oZv/7fewSeef5FPfuZFiB2N9fTtgZ1Bpfw1F1eX\nox9N3w9sdzsWqyXGOm2ILL72HPY7+gS+bvDNjMXJicoqwgSyW4sJFXXVQIbYD7iq5uTsjEcTVL5i\ndnKT+sYJvpqRnWPImWRq8Q7ywpr1OXISH+XebksVAqtHH+HmrVvUIdC2B86ffU7P7YObhOfWa0Lj\nOXvoIdm/m4YXPudzJEXL2uPU4F/GmL/Kax9/mP/oT/9xXrx7j8b0hOHA0LdYDMvVitlcEpYxBq8e\nK65q6IbIZrvn3uV9PvX8bV64c87lekfbi8F2qCoYilLAjNJYZywWI55lmuTmDICHLMbW/dBR/GjL\nNT4MkWFIHA6S/DoOZo2mtxqwrjQ06u1jDacnJ3oflORtAUFiGqh8zWq1ZLVaYqyR36GhT0WafWh7\nLi8vubg4p+/6f6318OXj83cMw0DKCe89h8Nh7EmcLdYNWmcf1TnWiin+scWKyHHlNUcmMHn0n0sx\nkspwzrlxnZX9RvaSY+UKoAB7EpC/1N7WjXV6sQEAscJwToYfZdSRynqvEnvvdJii79Hq7+r7nv1+\nz2G/p5nPMc6Thoj1R6BTHhRYMyoJZrwn5TNLn1IGREl9VQGptYywVMuXFIuhN5NaRb7t6Tsd5Y2p\n7FlaC5bfYaVnMMYQgyiMTMzk7EaJPEBMAykNgDIwi1dkVcvj1LpkvliyPDmhqhuMga5rwRiVOvak\nYRg9e621mIikbxZATxU03/TO1/Ezv/FRPn77WLUCn1MO3shAJOasHrlgvQyfEwbrAlUtti1WrQ9S\njHiTsaEiGZHp1qsV9WpJWC6UyWZVyaN+0ykz6yO2qtj3A3G7Jw4Zv5izuHnKYrHE1YHkDEOOo3WL\niZncR/rDns3Vhna3wxhLVdVUOoBBaxZKX9qKfJ3Kkr0ZGZV1CLoHl2G+wwaPC556Neei67i72/Lo\nIw9xdnbCi/cv+O0Pfoh/HSXL6TyIhUlds1yumM3mVLWa2fsgFkWuwlcNXYSr3YHb9y544fY9Lq42\nxJTF9gYr1xR2ZBqXQJNjxqZBk37Vl80Yo4ExaaybqqrCeemXevUL3e9b+iFhxl7YaHq9Js/b0hcn\nrMk6uLHiD11wiqxSU2Ooqor5bM5sPtf+f1LWfb6OLwngSxYNObllcksWAGXICYekbA3DoM+Qk+Kd\nHX2lMJYhZaqqEqaVnux+mNLbco7CKEEvNGclXndQbX2ZfGDGxXUEwzgGtPKRvtuQXMZpUVwK+EwW\nWUq2o6+SvHOUNiv65ZSnRibrBCUVzDpnFF2j73sO+wP7/Z5mNmfoe/quE6qqLUCZwVqVihijF+8R\n6IWCVCigpyP70rSXRixGScE8wo8Y2TdZ7PSLvxaI55KxEPs0/c7yLGskBr4Ukkr5zohHjjAlxB8M\nq01ZkDS8um6oZzPq2QxfVQxxYEgJ6xUgUyZR770Uk2R07DSClHKO5IsvFk4WOF3M+fY/+Q4++eJd\nnrt7n9S3uJxJ7YHWgAuVbDyiNFTd9MAQBfAcMjj1YohYupgYssH4mmo2w9dzTGjAibcUFnKooKqw\nLotprR1ws8zsxk2Sq5ndOCWcnGDnC3KoiMGRcGK8jpHNokqEDPX+wMw5qjqwuHWLxekpQxzohp77\nn3pev/0HNyUv7Pc81jyKXyyo55JS+clP/iuaEnNdI2/MX+X1TzzGu77hq3nuxds0pmcZxFA+BE8z\nm9PM5oQg2ndf1RgvwFdMmX2754U793n+9l3unV+xPbQyrddJNoDJZpSlefW6EKalFj/HiXNpMhkt\nDbTRtWTQJvvQtrR9L2mu6r0iiz8TqJ1EQum9owpOjVml0LRKa7HGUIeKxWzOrJlJgZSjXOtWJFQp\nJdabDdvNTtNjXz6+0IcUrX4sfKUpdTI1jJHNZsPV5RXDEHW6LZKNnBIh1FRVpU2DNCihWXDz5uk4\nnFiv15zfvRh9AUNgbKgLE2mUBeprF0X8OAgxk2wwX1vDZDhzbD48FfOFri41CUzy8xJDDlzzESPn\nI2bslEwlEoyWQc39U1RKfetl7VKJexkTFtZyinF874y/YkrbmvYhkXqWz3Rs4irDFJ3OM9kLiFQm\nX/NmK6ACefJYmQZG01TT6yDNutL8jW44amovQOhsNqNpGvqcsTFKga8AdgiB2AcB4wxErvu45TJc\nyRxdU8IECqHidU89wa2TFffunXNxdcWhFY9BX4kXSIoJ5ydmRYxpBPHF40X22D7DkKSJcc6ppKLG\nWD/KYo1z4hPmg+y3xuKaGc3yhOUgKV+hmWHqhlzXZKeS8ujFi0sTtmxOhDiwuHWLKgRmp6eEk5UA\nLsHzxKteqeftcxgOP3KL3HjcyQp/sqKez3lqTIJ60HMSb3/LK3nv+6em7smHzvi2b/hjvOLWTW4t\nKs7vvsjVxQ5rLFUl8qEQ1BohVGJm78VDMg2ZfddxfrXh7r0LLjdbDt2gNVLAWk926qsyJkmbybfU\nZEwWe4zCpNSrWvYDa7DGac1X9phE1/cM5Vo4qjmKBKr8f4wwhuWm1QKFAsI5nIOmrsTQPgQAnA9S\n62og02a75bDv2Gw2tIdulNK9fHzhjyH2FLuNYs8ipu4ybBtiMY1O48C71OEAZCaJU5E+IYOQUq8U\nyZFIwuRp19YlrgM+ky1MkdsXJpOqWPJ1tjFJB/RGByeaTi7Lq9TsKSvoZMovK/tCpm07drs9+/2e\nRdfj3EDXdgSQ4Y/IXkgmM6VhF9aYfuKxwS6KlHxtrZfHy7/no++ufBdCUNA+SoE7Y5QFNr0C3gUG\nBowpA39JUXbOEZ2Y0he/Luu0tiRLsIeRoJvqSEJvVOZYVQ2L5Yrl6oRQBel7gmNIkfawx/UD1kmQ\nm4nFY1r9wUz5kWujcaJaubc5cLHrODtZ8c9/88N8+t6DlSuLKtD1ndYsGRvcGMSFMcK4s07WFe9F\n4dJ3wkBzDlfX1PM5zWpFtVziZzMy6L7olfUmdbhLUGdD2OxxVxsYIrPTU+ZnN1msTqhmjVi3pJ4c\nIzYbbMqkbmC/3bBLUQYa1uFW4rcpvanUIOvtnr/7L36VZ56dZIlvfPwx3vW1X0nlgzLfvQbZCZPJ\nNRWds/zE//FL/M7HPz4+761veD3f8G+8U//fH1HJcuuUs3kAsgBztSR2OjWxN04Dd5xnSLDZt9y/\nvOT2/XPuX1xx6AYiQroRq3oFi01hkpdaaMIgZNhuR0ZxIemUAKSRBepk6NXrcL/40x5LlY8HPBJO\nJ6EpxQ/VOx2a6g8KUDrvhcSg+1Aaom5ZLwNf/5+PIjspSLpVup9NmZzEpHqnRpFVXY/9rrVm9POQ\ntS3igpiD13WDsYa27bi4uuTqai3gV8yanCALrDMG560YgyN6cWlBjgp4/UEnCIW5lYwhJ/uSZluf\nqSCWgBYSkQ2T11dxGRYlopkklCmTdfIhe5NG26tmfr/fc2NsSAZM2+GUdWWMFZqiiSNT6RoIVZqr\n8c/6PhXMMwZSLNThgooVtpd+F0Y22pjitemLfDVHrLKjPzvvcTHSc/QYq8wY745ARtlQnPdUdU0z\nl4akbmqsD+ReWA0iURHQy1cB34UxYe+YeiybPuN7cWVCZAy+rqibhjc0NY+envDinbvcP7/g0Hek\nlHF1pmv7Ma5e0iTlWuyGiOkjxkWyS/RDphsSQwLjAr6eYUMNJpBtJWmezpBdBa6SDd8J5dvUmWp1\nA8KMMF9ANSeHhuRlspGt16vRyOZtI34O89OHoGok0erGGX65IMceP/Q8+a9oSs5u3YR5Q3Vjxexk\nRTWf87T/w+J2E2954+O8/4NHxo4PP8xf/Pe+jlunC25UmfP7t+naXgDsqqZqaqFNh4oQJOo3u0C2\njiEObLYHbt+9z91756y3O4aYNV3PH3kWmdFo0dljMFMvRytzssLOHCd6TooH571M1qKYPXY6iS/X\nZcEBBFwraVtZzUileTU5jY3+uBk5z6yumTUNVQhjsep080spsTu0bDcbttv9y94rXyRHCEHkSikS\nslwvIXhmZkbfD2w2G4ZhYDFfEDNcrtektsVYM7I7YpQ1AGOYh0Y8HuqGw6HFYNhvDmMiZIkpn/zB\nrAJfMrhJyYwx1eJPSanNj0AcxuJ9bEpgBLBylqm8wl8KeEkXI7/N6rV79JoaOJIRMLCYtBtriIM0\nJyLfln2u73qMbTFZvkNTgPwsA5DSYBw3I+U43oPKe6SwgR/w2DLNLGv2CH4po4prn2NiFpeY+CKC\nMcXSwFlskrUg6qCmFG1e/bAK8FU1tRj6OhmmOe/HYIw49BSWdDG4l/eAJm/JGiHpspJGG7wnVA3z\n+Zz5fC4SJmO4f37B/nDgMAwY34lv55HsNg0DfdeNIIkBkvcMQ6KPmZQtwQVC1eBDQzYy+LNO9k5s\nKcQdJltclalnidkglgzGB6J14ByEst5GMkbY0zlBqrHzOauHH6YKgbBaQd3Ivxt4+nWv5h1f9ZW8\n73eus7Ss/R6+8g1v4IlXPcXusKe6cQO/WuBmM55+5BbvfNtX8lvv/+znvOOtb+Xv/M0f4p//i/+d\n3/z19xD6PU8/9jA3FgsZECoAarH4yjGfzTQ5raIKDb5qsL4SVgmWth+42u25f7nm/sUVu32vLIeJ\nLW9yxCQzsj+lf84FD5B9Wyu3TB4TsryyHYT54AEN3dE95lo96MyoMPCaAm3Ua9Ya6NpWGDzFZwxp\nZipfqTdmhVVQRJpiQ4qZfXdgs9myXW/pe/WeLcZPLx9f8KMwj4ahHygf0woAACAASURBVOsT5xze\nWAVfiz8xjKhRFk8pq954RofzVocnqOeOJDROw/SS3ngMeo2qD903ysB9HNgX+SLTGh211yj7Relf\nZL+YwK0SFJ9zHpnGRpt5+T3yP4Xxtd/t6doW5wLd4aDySQEoZN1EOGwl3Vj3r2Npe/HBvCZpzJO4\nzZQBfsxHahX5ERPvaS2VnkcVK2QF4AzXfIELEH00JBu9OGEkOBiraiIjAWzOF28vq4yvmtl8znyx\nGMElrCV0HS5U+NAz9AHb92QTcRaMjdcBzFwGRXLGbi3nPHp6SqhrvumPvYmf+bUP8NzFVJufzee8\n/alXcGznIUQG+b6HkoKci6+bhL5YhGk95FYkkbM5s+WKerHEzxbYqiGhHnGVqF1MEnsVm8FHqFYn\nVCeSUro4O6M5vUm9XBJmNQQHqYeYcBlchtRHcuVx+wP5cMB4R33zhNXNm1jriFEG1f/N3/sZPvSp\nNcc2LB954d389Huf4S9//dcytB1OkzSN97gqEOYzfvJn/09+7xPn1573ux99N138df22/ihKljP+\n7FsfBcvI5pdzLVYC3lcy1DeQjWPXisTxzr1z7t4/52q7o09ZhlJmEtKXIZmzxTjiaHKZ1Z9b9xmD\nqlH0/pdhitO0UGFgHrpOgS+xG7KudPuTPRFaswlxyCj73eBM6Y81ZTwJGF3XNbNmRlVV4zC44Nuf\nz+NLAviqqkpAL/1ivZFm14eMS2lk+szmC0QmUYrmPBbdfd9zaEWyMl/MWSwlSa7tOmIW80/agxbI\nUZg7yVAFhzduNBwtEbMlDt0oywPUEHgc2R1PUPQh4/Bap8q6aeRsSKZ4diBm5VbNK4++h2lCw7Xf\nIaCLGNwfRm24JANirejyNe1hmv6MYw8t6I7ALqbXhqnJyLn8XWnGykQ7KzVTtrY8boZH4NdLm5IR\neJo2ExTJ9ipnjLF4psjNXjT0TimczWwm2vi6lujjGHWS4hVQqeh1sUuDI6U4NXjTLifXiZ5LZwzB\nO+pKiuZZXeOtV5Zb4nJ9xa6LtPuW9tCS0kDspejuh4G27TBqKis6dKNypCy/xQV8qHGuIuMBJ2a7\nzpJNEAaXs6JbTBZCIsyWmDBgXUV2geQkGjd7mS45I2wvhkTKPdYbZosbuNDggxPALNSggOBTr301\n73j7W3nfb392g/GWN7yBR17xCG4+x5+s8KsVbtbwyltnvPNtb31gU/I1b3s7f/2v/EV+/hd+mff/\n7u8xd4Y3vfopVsv50XWkhZ234zTEqnljqJSVoAmNbTdwud5w//ySq82Gth/AWJwLk9eKySMzsyRs\nCTBdrl4FegtoyzThEAlWONoUxFtjSMU7ZTKoFvqvF/aoKa+TtdmIkpwHSgWWhrgObpyAGGNAGzIw\naqDfsl5v2O8O9Orp8fLxhT/mStUu61kaEs4H5rOazve07RWr1YqbZ7dodT/Z7nba4AqAJZLzjYDu\ntWW5XACMkrqzszMOhwJ+ZZUfM7E9xuI5j/uMUw+7pFM5aVpKE1AaFgHKuBaUIGv1CI4VMMkiPkTa\neDsoY/Fx+iu+IgbrA+3hIMwXHCnKZyweJEnornJ/qnmvcw6SeFcKE0CHKVzfXyjvC2ExF4uAcZhS\nnmMEDBwbjzQxsNMRsPVSKeXxUKd8G+O/W3v0I8ClvE/dB5zDVxV1U1OrR4YLAZcSPkaJB1fQq69r\nlaUU4PyIple2Wd1gJRVJga/gqWuJtm/qmnwk77y4suwPrTCEupbeWrr9QX52BwnASQqE9QPee7oh\nEqPBuYq6XjCbLUWGmS0mG4KTMI2YweO0kcw4Fwj1jFol9rhAj1HppsSXZ+smwkY25FBh6sji9Kbs\n101D8kH8p22NC5kf+sF38yM/9hO89zenJuGdb30r/9l3fCuX60tSU1PdWBEWc3xd42YNf+0H380P\n/43/lvccPefNb3oTP/ZffS/37t2j7/Y8tKzxvUgsivl+0lS7YrK7mM3AOryTfdy7ClMGKxl2bc/5\n5YY79865Wu/o+4S1QZhdviRPx/GaLU11ke7I3+Xx3Ep6eId3IlksQLbznhShjT1t29H1/eg1V8Ao\np7WZtWW4ksYGvOtbbXwc2Uo9W1WeeVPLHqMyFvG7lb0kDonDvmW/P7BvD4Ch8c3LISpfZEdh9Y7B\nTuoPmzH4FHHWqTQLUor0dqAbEkUAKXWsADPOGsiWiNSpKScydmShF2neS2Xmedw75FWTFSZTyoyK\nD2Bcm2PKEnY0Dl6KrYvW76VlYEqBzEypxIVdlU3CaC203+9pDy2haujbTokOFmMcZHkdawQQKu95\nYiEXT0d9P6nck/naY40RBt0EEDGBX8dYGYhEM5ZBufpFqp/WKKHXnqXUlOmIOSPfvRI0lN0vZD5N\nxVMli6+CDPAb8fmy3gszNGcFTYLauwjxI+u+agUF1z4yjyocsti12DFsyXB2suLPf91bePbFuzx/\n/wKGnsoYUncgWiNWLMaOjOS+H+i6nr4XhuqQZAZvkb42IT6nEaiaOfViSWgWuKrB+JpMEgN6HyAE\nsQvqxX/SRkO1XDG/2UE2NDduElYn2GaGqQM5WEwWsMxicNlgY6JylmqzI3SdsIvPzlg8dIbznq5r\nefbTL/A7H/l9HmTd8syn3sX9lJh5i2sCYTYnzBpC03Bvt+f9H3vA81Lmgx97F1/15V/O73zopfL6\n7+MNTz7Ot339O3nuxdvM7cDSR/qhxTlL3cyoVclifSW9XpCgLoylT5n1ds/d++fcvnvO+eWaQ9fr\nvTp5CpMLm0vqhUIyKWowjuqj4zpo7CWsgOLGaP85aHBX19H1UfEU2deK1N4YWWdykuAuUbX4SdFS\nLrssvWxdVcwbYcJ7p4xA8sha+3weXxLA13w+Hz0TCmUP5zDOUTcNJmZO6obl6mT0uyqNg9VJSNcJ\nw0Lo4NKAxzQX9o5z3LhxQtvW6snSiT47gzUZ58u0rRz5WnEtSztaoDAtwqWJSBGJnncjeKRqw+n/\nq1G6AbKz4yQRU7yvRCZZNhp5rKEkWBYJymF/IA6aeBETeRhw0UuhbGUaLaQ1NWssE3+Tx2nFuBMc\nTeOvbxBKw7TTFGf6Hia6dM4ldnu6IcfpkUohy2ZS4tKNs6NOvmwqE9Ov+Jw5fJBNo2rE923QKar1\nIh8JIRDVuNx7T3SOYTBHn5GjxaOAJ+KFEJwjWKvmsZ7lfE68GXHWUNcV99dbLtbS+MlG0dJ1He1B\nwDCjBph9SriuA2s0KcZhvcFXwnLCeCTyWRaKlGBI5cyLtNO4Cl/J7mOMI9tANp7sBDgqi5sUHANp\nkGvGVzOy9VhvMCOTzOFNJpP4gR96Nz/6Iz/Bbx41GO9461v5z7/rW7n7/PMix1yI4TF1DXXFD3z/\nX+LH/ubf5TfeMz3nrV/xZn74+97NnU99GjN0PHYyZ1HXNHUl6aY6NXPO4UxFVQsoaa3TJEuZsKMT\nvmFI7HYHLi6vBPRqxbzTujK9sMqosJo+gtLS5Z6IqRjXSzFUzOw5aspLmh5Wo5STGIUWKcjYlIyP\nL7HWEwhcpF82Fw8iuVbrKjBvauqmGj01onr8dMNA27VK7z/IZNZf95x7+fjCHTdu3CDFRNtJA9l1\nHSFDpcwe7z0P3brF6c0zLq/WlPRYWT8E+Grblu12h/MOrHhNVlUt0kYfePLJJzkcDty7d4/Ly6uR\nOVUaZe+mKZ5IrArwb6aiXtmFjM14KXzs0Tqr+48yqGRgPskW5Z6cWL/JoqbaWeXmZmwUjpMdi9fX\ndrNVY13dFMo+d0yhl1pcwlpK08JUrFH+RqZAI7AwAmUFoDKFU8O4H127Y8qARo/jvdkaS9ZashAr\nk/Y747wzZzUfR8E+h6/CCHqFKoh0JWesCzgfdV9Rc/gQlM0prLysnpGokbpVoFL8T/x4Xr2xOLTR\nyommrnj4oZvUdc1qteb+xSWXV2v2ux02J/Gb22zZzRopK5OY5ce2lbUxVOQorKWqnlPVc7CBrpcJ\nr7EJ66CPEevAZEPOFozHeahq8Y8ytiIhe5gz8p6NTtxGia0DX2ViFtZDdoFkHMW82lrDyUM1P/bj\nf41PPftp7n7i0zz1xGM8+eTjXFxdsY89MXjcfIata6gDOQQWyyU//CPfy3Zz4JkPfJBgDU89/hiP\nPvII73vPe7n9wm26tmMxq49Me+H2+YZnn7/g5ixwdkNStDIyLDHGy0WISK+6PrHZtdw/v+LO3XO6\nbsBgCRqCUKTNhW0iLBZpOIqvTiaP0kfM5F8qgyinwSeTBCUOiX6QPabsP+N1YA3OHQ8ZyyAwinee\nDdJ0KFBW+TAaCWOEPdR1HdvNjsPhUOazxJg1TdJR1bOXga8voiOEgLWRti0poU4DftTDOFnqqhbg\nwwUycGhbrjYb9vudypyz1O2jOkV9vHTNT0nqHjmOVsyXsIWn4cmUQg+MPcc0FBFwzOQiK+fa66SU\nsEXKaHSYkVF7k2mFLrYPY99yONC37eibN/S9DGlzpkiFSZogN4JLU59R3kQZXkt/ctyHyL2bYibG\nY5RLP6sxMrTP8hmHOAhzrtSDxozBAMeDe/mOjKpSIkOv31EqHn2iDChSe2HAyboQVFFSz2ZUTYOv\n5T7NBuhV3lZCsrxnCJL+nGMeg1SOyQ/lv9YoOKHXwLyu8c5RVxUPn6y4e/+c84sL2v1O/LHrRjyx\nh0hOxcoma12ctTZOmChqmX6Atk/0EUyocEEAL0xFtkHWf2vABVDmrDVRwM4B/GzB/FQHevMlpmrI\nvmKwjqTEEeeUiZcBl3AYZjfOWGUIVWB+84z65JRswXWB2+utntAHW7fcb3semcsQy99YMluuqOYz\nPvb7n/hDn/cfftO/i/9nP8d7f3fqd1796CN8x5/+49xczjgJifP7LzJ0AiRVVUXTzKjrZvTZdiGI\nGsnKgKIbOi6utty5e869+xds9y2p7LHqo1fYh7I3lFRWR1YSRdZ7sdx76NCzMIntyDYWvKEfZH/o\n+p44pPH1Rx4OUNIcC5DsfSGgSNoqJo+YhNF7oqkmVQugCgZ3zdvy83V8SQBfJycngCDph1ZAhgQC\nfnn50m+cnjKfL1SOIiAQGGazqYlNOZGHXhK5hl7Bk4bFcsljjz/Gdrvl+Ree5/z8XAxzjSXFSE8m\nK8vM+MkDphxFhiiNeR4nHnLz6iJiI9GAxQm7yxZDxiJvPAJl8jQtgcLE0kjzpGlBaZJbjskvSb6f\ntj0wny8oAY4pJdwIDohc0yh9VejveewdsjJauL4/TI8p7+eIZjtNWRhvyqR6M2uMSPKSpJ85Bb2s\nFZ31NJEpv0yTq4pJ39ik6I+1BJ2UhKoGK+keQ0I2FW1SQwh0djJzdvqjXzwYNbF0ynqwjqCJK6ZM\nkOnVwNixXMxxzonJ8XxHaLZUVcVmu8ZZR9f17LZbiRC3lj5nTN/Jd+wdOQkjzFmJlC3ZUEnWFOkQ\njyQxxhiyccqIypgh4ZzQZ5OxxGTwHKcbyiaMh5gNNqlptdNNyGrAgUmA4+TmTX70x7+f5579NJ95\n7nmefPwRXvn4o+y3O9abNVUzwzUzbFVB8CRrmZ8s+fEf/0Gee+55PvLBj7GY1XzFG76Muqq4c+cO\nlxcXkBGZicrGiJHb52ueu3PBrZMZT6wWo5eSpNsEYcdluYK6fuBqveb++QW73Z4YZTEV9NmSs8hL\nnDUj8JVTGs9puUCF1SWNaIrDCC6UBj4jzUxJxymFpDUCsDkri77TzSPFgSlGXtJGrclUOp0sP0EL\nFatssxjFF2m73bJvD8LgUHZCUM/Cl4GvL45juVwShwjmgKQ5RYb9nj7KlEIMzS2Hw4HLy0uuLi/Z\n7nZKZxfZbDFG9yEwxMjl5SXOeZbLFQ+94iGeeuKVrNdrvSZ2DIMYTpdhgEHWojJYwCjIir02YS6D\nhjLxTal4Wfnx76PuRQI0mamQtyIbOfZbnBogkegn9PMPyrI+kkodDgc2mw2H3Z7FbE6oxUjWmCyJ\np1bBHP0MFod1ZkxTFf8K3fs4HvzoFB0/ek3ao30Gpsaj7DUjOJa0CTy6l4yCWCZnesAM5mhwdJ01\ncCxxds4RQtBEJjEizkaM/jNmSiszZQB05A13tA4VKXZ2nuygyErknhcmQNe1FJ+W4CyrpSQpLpcL\n5vM5y8WCpmkYhoFQBWLbsl9vxBc0J/IQiGpw7eYnmt6XqXxD30ZsdlgSfUocDgMxGYx1DEOSoBe0\nBsiW4DPeZeazOTFUDM5hTYU1AePyNAhLSeR8laXtJLihFO7jtZym+uaVT76S1zz8mMjwjMH4GtfM\nCd7jqhn4AMaTsQwx0/WRJ554nHldc/eFF6hcwGXL3dv3WF9scNmImW49Z98N/K1/9n/xe3/wyfG8\nf/mTj/Gd3/hOThYz8VgxyqzGkZLh0PVcbXecX224XO9ISZOYlZExMhkpsjC0XnBkBtmD9DopoGY2\nCoxdW1GOWDWj94oM07yTAax1IgITX0o1yqYYdmeCddOP91RFrqPvM8ZE33Xs93vW6w27nbAzvQ8E\nX0kgQz1j1rwMfH0xHbPZbKwLoGBLWQM7BvphEEXDrGG1ukGoag7tgfzCCwxDT4wHURtECfDp0iC1\nhw5Msr5eSkmGhrYAYHlskI2dpO7yT0dAkSl1fllzpwG3JU++kEdr55SUXpLeVdZ4PDzn+vM6Van0\nvUg4c0r0bU+2Fm+EeVv6hOIT+dLXKkvuMTGhTH4mksAEEE2MNzMCXGbcYfP4vcl+GoXFNH4PR0BT\n+f1lMKV9n1M2LzmOQECRFWKMDvcDdTNjPp+PqpWUgSiScus9LlSE2DP0Hb4P5GGYQmnKZzBlv5nO\nmTUCpDYh0MwaZhiauiH4gEFq2fVmQ9f39DHL9dZ3I9gfY6Lte/yhJVnx+krWKfAlPthJBwWuqkWJ\nYjwZJ7QgtWDJRsEc7+VC8Albz6iX6iHmK5KryL6Sx3grCaXGCgipxA28ZbY6JVmPD456sRQPSq2H\nXvH0U3omHmzd8sQrX8Gw22DnM8JqRVgt8fOGJ59+8g993utf/Sp+8Du/jZ/7hV/iwx/9GGfLGW9+\n7dOs5jO5j3SfMNprVJV4Zxon9UCoapwLYITFGVNmv2+5uLzi3vklV5st/RBFoVS8nvVOM0rEOLZc\nKfeckc1Irm89XyXAoYBeTnssA2rBE6XvYEoDLn2x95ZQQC4dXHqnQV0xSv9kRBngNJTBW8NsJoMn\nq/ekM1bN+T//x5cE8GXVcC31UdlDUkCQIQ1RvHliYrfdcXH/gvXFmqHtCSpTc14uLGekYMgJ2kPH\nMCScq1jMFjz28GNsZhu6fUvsRDYo4JcZjQ5LyoIcBWVPo0bcWmHepCTTuqQoaUqGmCxDhmLBLWWS\nnEBvnE4yBCzKGsGLmwjDxdtE/PCNmPMpq8U6KbhTiuz2G67Wl8znM0LtcUZoutkKAEXZ9FyhK790\nMgIYSZs83jgKIAOaXmeRwjtGrCi7j15LKLHZqBkuAupg5XEl2U68CXTK0gN6bke6ZVZQSE+3sRYb\nPNWsoZrNsMETs0ywYxKBQHn4GD3gpGBM3tP34oHhrcdZT7Ky0ZW/82o8mU0iph5rAt6DM1B7j5uJ\nafmsnrOcL9ksF2w2V3R9j8sQN3t66/EJ6AZsFTDek5xjSIntbgfWUNUzznLCON2pkkT2Co10xNTH\n6Tk2YHwSj5IgPiXZitkwyEtkI9SKWBgTxmAGKW6wgYzTCb8apmaDw/Kqp57iVY+/Qr0aMsbWVIsT\nbKjIVSN+YlaSRkwy9BEef8UTLBdLNldrbNWw33dc3V/TbzqqZGlcoDKWbuj52z/7i3zgE58e7+Uv\nf/JRvusb386ybnC+wdogr+8CEcfm0HP3cs29yysO/aDSYQtWNg+Z0KFTOhhHiVrrWOMm/x4jdN0h\nR8qDpDlOCvRanaLJhi+MP4mcdrrwyznR6WkepCmxck04a6mcJXj5cXof5gxDzDAk9bE4sNvuadVI\ntExjgoK005ry8vGFPArYbtDlylpJPEoyKGiaGmssm/Wa+/fvs16v6dpWveqk0KjrekrSMcoCsSJ9\nvXF6g8ViQdd1zGZzTk5OqEKg61oF//NYkI/AUNIVzWQyAtqbXCT2jIbHJUhFJFcWYxI2GTC2BPqO\nU+pS3Av3M49JW1En7JmkkeECVpXhQfGnyzmz2Wy4vLxksVjgmganw4LBDBTfRlsK8qzT9CTsypLy\na4wZga/j/ecaEHzcbJQ1CihstwIESiE6+S2Wf3NOiugYB4rsedzTTGF3lu8tjY1jVVVUtUrpFDBI\nWYyo+16kAwJIlil+YRZPbGVvLVFlqhlZTKz1uv9YYhyUESieIMbIOusdOOsJrmK1WHF645Tdfs+h\naxmGgW53oHUWmyOxChgjyVzpkLlz7z5d13FoexarE87ObrGYr4S9lzPZCvBlcNKUqa+LyDQ7kQo2\nC2LwHHIemzqli2NU2p20yPZO0h69q/AuCGCsTMBcmkXdm7KClC5UhLohO4cPtSaAOXK2DL0MZnKW\n5m1eL5iFiv7Qc3H3nHjoaYKnUv/Kn/rffplnPnHJsUfLh557Nz/1c7/F933LnxI2sfNq8O9ERn8l\nMvrL9VZlJkE/n50CK6J8domPlzpl9JeTC1PvnzReGzIflGQ9I0oSYbCkSCKLUTTIAMcq4JCLR3iW\nQJucwEot4K2hcpX6f3mq4Kk0YW0Yevohk1UuttvuZcDpnNafso74EFgsFpKc5l8Gvr5YjuVywX5/\n0Pp3WvdSjLStpEtHTcr1IZBNJqWBKniWywUheGFwxIGYBrFHIWF9GNc0WS8TxvhRhZLUpd6ASqjQ\nIZ3W60fBIsnI4HS0LklmvA+SICyoHR2WLF7CuNGX8tg4m7Fukz+XIUjX9bQHITMI89VKSFlvJaXY\nShq7/JtRcEesBTIyyC0D0BGKKkON8Z4se14BjOzRe1PPL72Xx/0jTb3m8YCk/LkoVsrji2KlWGPE\n6BgGO7FvdF+xalguXrcVTVMT6gqrAV8oaBGqQKgq0tDLgNg5knOiBho+C+mT80ipWWWIUikQirHY\nushEhdgwbyrONwfWh46h7xm6SKvG533X0R06fNUJ6IXBRwFQY4oC0FmHD5UmVFaAJyZlGSmzNqZi\nc2DFmspW2CoSVPmECyTrSU4M4K134IxE/GTIaRgJJL5qaLL681YN+AoQpvarXvsa3vmOt/Fb7/ts\nG5a3f+VbeNVrnuZTzz5LWCxxizl2NsPUFU+8+ine+fav4rceYPny1W97O7dOT/jAJz+BSwNPnt3g\ndLUQoEcQITJZwCXvqCunXsVegadACBXGCts4YWj7nsv1hsvLNZvtlrbvBVByHqshO7l4F6ODfb1X\n8wjGlqGIXrG6X0lvU2xcvA5VpB8cUqKPUa1cxLvUKvhVWMlW+6VsBbNAgeZegW7j1KbBiaqlDl6Y\nbYUYoEDxoB63D/Jo/f/z+JIAvnKO41TbaMNZQA6MYTGf451jvd5ydXHFYX+Qxcw4lSMEKl/hrVem\nh1FNuiG4wKye463HYmnqGSeLE/Z2x36/A5IUJGWyfDSBlrq+zJ4zJXYXM5ntGiBlKaxdlkYj6lSE\nAhCh/7/sCjJ6FwDMqneLLtLZgM0CAhi9cI0yA4Y4sNttubq64ORkyWze4CpLjtCjUgsn000LYzOS\n9CIv5sC2eM1MJ2BsOIrMRuwtIuQoDZtujsfSyKzfh5CZjN6EKg1S4C1F+cwpq/lwLlI1uYFjHCjc\ntpIWEuoKXwWMTrZShpgl3WqIiT4OuhHJlHZk8FyTr3miS+I1QPF8MSPTIJEwOY5MIZEhOerKUIWa\nOtScNDX75Zz9/iBecTFih0Q69AwRjB/I3hKNYd91XK6vJN451Dzyih6/EGBmAgEF5S+m0wUeTZkx\n0bCq1Ah+3MRVfqJAI+qFJz6gskFm40m62QigKQCYQazEpBAyUoC7hG/mIqMMmrRo7Bh3S3Y4F6iq\nGVU9UNUN7eWew2ZP6gbq4KiNo7KWn/inv8wHP7nhpU3J3/v59/P93/z1GCsNRzaWiGPXDty/2nL3\n/hUX6y37biAZOzaE48bA0Z6vtU5K+i3446ImXb+OR3CWseAsTTCZ6f62R49OAqOmFKXps+CtpfKO\n4B3BC509BJnyGQP9MEjoQcz0fcdh39L3EXJJRRE5bVPVzGYvT+K/WI6DelkV6at4awHG4kPFfL4k\nVBX3zy/ZbDb0fS+FrvdUocKqhKkwsgrjpUibcs6s12u22y05Z5qmARhZX9YyDjNAqeMPuDSOje3L\nsEH2G2WrZJE9piL3GB9bJopTwtXk8SLNt7Uytc5MgFop5sq9h4Hdbsfl5SWr1YowF/aOsNbcyIY5\nlhwWKZgwlqe9dHpvjO/n2pELq+0lqax5eqysS+I7cmx2f3xfXWPFKZO4nC+AQ9djcpGnqLRVE2TL\n91UYNkUCGo/eT/FzOZZSp0Ea15HBbaeod2H+SnNlTVZwRRnAxlAHj7eOpm5YzBfs9nvW2w27/U4+\nG5B6SekdNFBl5zrun5/L36XMyelNbp7d4vRM/MpKyrVxDme97InGSIJY27NZ7/DBs1ye4JtArdeZ\nRZiz5oiJbnWAVflKJ8dB2Oy5DG/QfbvsRRbxoBH5YahqsloWYI361gmwGlzAu0BTNdjlDWahotu1\nbM7XMGSsgj/3rrb83sc/yYO8XT7wqXdx93LHKx65BS5gfGDAsd1tuHP3Hrfv3OPqaiMJiwYxr0Ya\nw6QescLomlj749BIayAhgpRhWx7rUatMP0NmGIZREmydHRkrKcn1mq3BotrElLAm4Y3RvcVTeYfR\nAU5hshsjgEE/9BLu1PZ0XYf3nqYJ2sRZqlCzWCxZrlY0TYN90GLy8vEFOQqY2nUSFCKgiNRwKUX6\nvsNaw2azJqVI1Yhcvq4rVicrCeW6vODy8oIYe+klksi5TXaj96kZ/XumAUJG11ArzqPTcEH7gShD\njGSEoZmxJGNwTIzadFyL6f+MwSpM/YOwvhKx7C9Me5v3Xj9rl5c1aAAAIABJREFUT9uK76V1HmwB\n2qYgk9EKxpSh5pGEs7RNeSIK5DIQZcKqs/ZdRc7MuIdc24GmHkbtX4z2Q9a5MYjopT5pY9djjnq1\nPH3P0kfo8N4dgUahUgVCHveIUbXiPYO1I2vMOSeD4OKvjBkZXkb3D289wTlN4RPGjnFyvTV1RWaJ\ns5Z50+CaLfZqhzGOGKUfGPqBw/4gYFzwZCOWLbbrhD1tzDj0SVmUUMZKem2Z0aHDX5Ksb8UCwDiP\nDzU5y17gfAXOK8PcYm0Yvz+TkMAvXRqty7ig58J6BZQyZFlnf+C/+B5+9K//bd773iPrlrd9FT/4\nvd8Bw0C9XFEt5viZSutDIHnP933/X+K//vGf5D1H9i1f8cY38jf+y+/l8vYd7ty+LZ6tzkqYSBWE\nxT3IdeO9x1nk731QRrfsa0Z7sQwT2+tc7At2+wMpalqpShxzHGf6k7VSLp6hU4CRtw7nLTkZAb5z\nxmaVTDs39j9yn2VVswiGgsqhC2HmGCQXTCQVCBhDxpGx3o1e215VLXVd4XWQUuwwuq7j0LW0mhr5\n+Ty+JICvUjjE0TxWm1kjE62bZ7fAOs7vX7Db7+j7QfyMRtlbNbJ5JuP7yWg2p8z5+TkXFxd0bTd5\nAGmLXXx+isnwdOimooVxaQrKwLr4nRT9bVbgy1Im8GUyAVan4uW4NmUBQe3LXVEWuvJz1Fy0bcv6\n6ortdsNytcRVHrJ4d1hrCYIcjr+jIMYj20EXUCjowAQQjHTpwrg7ep/XNw+jIE7hgklB2w+9NJRW\njJBBN0Vl1MQSHGDNdL5SHCnOhWYpE2JTsMOxqUtZGtayMBdWQQGAivTkeCOJueyb8ocx8TFpEZwj\nLk/PAytmf9bShMCiaTjMWnb7PV3X62JnhYnY9bRx4DAM7NqW9W4LzjFrFpzf/X/Ze9OY67Lsvuu3\nh3POHZ7xnWvq6sEZcIwTJ5B8ISEhwQYLEoScIEVqBBJ8IG2DEAFFifhKgAAJDoGIEEWRFRFB4hgs\nFBkLQUBxyCCn23bb3V1d1TW8VfUOz3ifO51h782HtfY+53mruvMlTbfUdVpv9Tvc5957ztlnr7X+\n6///rwuMrzg4PKCZOSojksgqnx8iXx3SQL9v2bUdJhnmzZymqvW8lQmiyUEuOCNCSXJ50o5KCVPS\n9UMGaPV2We0WANYFfD3TAF1pgDEQpHix1jNr5gqgQVPPWLUtfdvJNJZK/OTOrm/4pW9SlPzyu5/n\n+WrLowcLgrHFcHi13nB2fsH55RWb7Y5+GGQUsCw0oT6nVIJCfp7yaWRB2AgGCCgL4zMpuYjFGllb\nIeiGnxM1fW6TMVijiZ2VgCBdUktdeWZ1TeUcxia8UtdlgmOUKXiDTLORzvygxaF2Q53QopeLBYeH\nBzj3PbGNf9cfXdcBkKIRf6+qUhq3paoqTk9PGaJ4f3VdR0LkqnVTiw+UGf0IY4wiWdQueVDZ49X5\nNTvdK4ZhKDGtACZO1l1ew/k9E4Z+GOV48kVHmWIxuM8eIwbp4idlG90OW+WQXCeRTP6ZcS9ECx2f\nz0nZX8ZZurZjtVqxXq9ZHB1BVRFC9r7ypFqBP5OBAzHLjco2zU2UzEKDEchKuflDnhxGAc1SjJJ4\nQkmups2ooL6RQAHrbgFvYfQhE7meFB5V12m3vpIx5DnGpEmnVeNQ3nsKaP7Chc0d/eAkCRYAUv49\nxyDvPUawjgLSy2ELOG4BYxJei6DKe+azpkzYjCmwb/fstzu2uz1XacdGvQN3mx3nZxc8Xr7Pdt9x\ndHzM4mDJfLFgVs/0POT7Dn3Her3h/PxC96VDThcHzJqZgo2TsKGenZnplLx2oBEPuhSkoeiM5BHy\nGZHSTTA5/lbS1dYCxpQpcoambmh8A83A3NbMnef67JL9eotVD8yUIuc3O71mH+/R8uxqzSsPHoDV\n4izBer3h2fNznj8/52a9kVQme8pEis9RZk5kdkpMQQuKXNyO6zRpXmZ0AIowyIVpmdej5DUja3IY\nAsklXDLafIvS3bdGTYVr6spTOTlXp34/wuiSIqNt97q2JS5Kp78iJbDGM58vOT4+YblcTph7nxzf\nDcd2s5VphvtO9qsZeKcxRPOEFBNd20nuvt0ym8959PAl7j94QNt1WGNo93vaNpXmpTCAda1WvjRf\nphtVVpZYY4R9GCV/Tykb20vzIFiZKieWwCPolfMkNFYYwGQX/hw7NN+MMYo/VoRkRTJf3kdBgb7v\n2Wy3bLcbbThUAmClONpYRHmtcfkZpMS/KYCVv894rmNcMbkuMSNzjfz91d5lgpch0wwl/hin3lox\nCOFA30c+Y4xbSb9zZrSB4jP6psbZYmpfNQ3WO4I2doLm50b3q7xfZEDDWUfIzXEzAnjJytQ9Y63a\nh3gZtpMiKQx4zTkr56Bp8NbJ0K5myWy25WA+52bW0PUdDsOwb2nXW7x1cu5dj/HiyWussGJ3u5YY\n4ajrhW1sbLH8MQlxVLH6e6M2DdZjPbgowcRXDcY7kpGaxSo0Csg9R2JkbuLnaaFYkcbLvROg5ujw\nmD/5n/0JHr/3AU/ef5+XHt3ntZcfkUJku95QHxzgZ3NMM4O6Bu+JxrE4OOQ/+U//OM+envHmG28y\nrytefviA45MTPvjqm1yfXzHsOw4XM2ZVReMrnDX0JJ5er3lyccWjkwNePViqfF2HqXiROAZjSVi6\nEFhtdpypxLHthqJ8SowNkRxfjDGTxVj4imrBImovydcsSdnseeBcWYuZuRmjNkOyT2SeOoyCXrnW\nHSBFbLY7AqwzWt+MXsdOG2gxClA+DAP7tmW/27Hd7/5/Gdj1PVEx5WR1HBXvdBy3eKocHByw23cl\nscVC5WTiUu6SeS8op+TKYzc+hIH1ZsXF5QXX19eSxFlL3wtryGki4rXzFnWkb57kBWAmwNaLx5Qe\nK10LpRWTtDDJAFceZa1JGCo9yZuqlQ2kmD2SN9o86UEfmhDYbrZsbtbsj3bUzUzRXEQ37r0uGv1O\njMAXKCTyAuB1+7QmYJ21t84vH0Y7TUSR5ZCmPjQqJdKue+mkT7rnTr1FUkrCnsnfzU2M817o1ojP\nS8wXXV4/AQVLELK2dGSttSQ7lS+oyZ+aTMpfj0BpvsbWQl058BWNTpZq6pp+CAXdb/ueYbdjf7Nh\ntdsyxAQxYJJhd33Dk3cfs9+1nN455fj4mKOjQ+qDA5pKRsyTDH0IxH3H+vKKi8sr9kfHVMaxaGbM\nmoYhDUrnzhukBM1IZEiAU7Avy5dSooBedgzW0rGRQsiqYbPIUkRyIn6VwrzyztNUDbX1Aghi2N5s\nGNoOm5IMUUiJ56u1XrePL0qerja89OihyDaNeMWcX13x7OyMq+trGfuuRqsmqigrqjGjG2XBpCSU\nfEavh0Qsm3mZzJPp7brxYwxDL2BsCEGBUXtLJoX68BntbGYPr8qJmbWMA47aCRGpW+xb+n6cipPX\neZ5U6pxQ4WezOcfHRywWi+Kd9MnxnT1yAyPvhzLdzSpTR/bOm9WaXdcSUqKqa3xV02T/DGtKgpDC\nIImjT1gsXdtycXbOdrPTuCIMzK5rCWGQpAWXd5myBoW1XCtA1d+OCS98//xPKQkLNiXxhcy4V36O\nFaZAsymNI5JGZlbxmPwDRodzJJECmmRIcWC327JerznYbTGzRr0ek8qCx705j9iOMSioNpqkTrvl\npaGlCV8BFpAEqxRo5AnIqdRZ5Q1LnadxNQN7ubgoTGALzotflTdUVY21QYff+NK5LZ5e2hSybixI\nJgsn34G8DUuS6KaeX8JGMEaLN2eonDKk1BstGYs1lawFK80nG6J07LXDulzMZOS8DuwxEXrTYZMl\ndQMz3ZtqHLvLFe8Nb3P5/II7d+9xevcOd+/do7qbmesihdiu1lyfXXD25ClVVdO4ima+4KSe4Y1X\nz7YkDRLZCYkmEuMgTBAjsvkYImHoVc5TxvMISAnjiHMr029tjCqVMmoGJM6XtfPUTiZJusrSGMdX\nv/YGb73/AS4MnByIZ8yD4yN9w4/3aHl450Q8xSTDp217Lq5veHZ2wcXVin3Xg/X67Ok9SpPCOaoU\nWPdwyUuyp4+uby1Sck/QEZWBL+Bsr/4qIUI2C4vaVMsr3gjtWjyhXWYcesk5kzQKay9MDotMXuvb\njqEfFCQ1eOfJMKMwvxYcHR5xfHSI95627eS5/OT4rjjOn4skuW97iRvWU/kaG6NMX7UVzniIyrgJ\nMG8sy8UBx4cndF3Hdr1le7Blaz1910mukzKYY7RBqE0BMjg2AjV5a4ogMnFt5EdVxISURqN0/a/s\niJlxpZuz7q95j6DUDcL0iiaVibmF1Wxk0nxCJpeu19dcry6ZLxp8LQOfYhjEF9k25Ma1ZWrREm+Z\n3Is1SIkipSGcUg5jmgcaIEqRL3562Sg8s6PVNsXo8C4LkUHVOrKHS4PLkowCBhmoK1YtqeyBQWOQ\ntWLV4puaet7gm4pkrQCD6r8UEdn6EMU8Jk8c9s4TvVMGmAAgMgVUvGeLl7F3wszSxggx4ZJTtpmh\nwuJNzbyqqas5y9mc7WLO+mDJdrcVYkiIpF1LsJ4hgq0qTOXBiQF9PwxcXV9R1Q0HRyecxIjX5kHO\nNSzooANRr4yB2qr3l8XVYgBvdC3Il5S1kjSoR512L/J8PVxNwqu810LSCZwp8amXX+OzL79E1OZX\nNBZcTTU/xNQVVDP1FnO6dg02wCuvvMqd01Muz8/x1hGNY73aslvtsH1iZioaLI1z7NqWn/wbf4tf\nfef98jx//2uP+CM/8k+zbGY432CyhYvxDFg2bcf59ZrnVytW2z19TCQrOEbO1/Jze2v9MuZlUkdI\nfoBJWscaQjS6lvMKktxPA7eY0+dJmU7XB+IhabTGTUm8vITUAc6Iz1flHbXiH179jAFhQAfJy7pO\n7Fz2+z1dP5Ra9Nt5fE8AX/nIUgPnBf223kOC1eqG86sr1ps11lkWizniyZLHkHucHzsFVeXV2N0T\nQlCG1Jbdfl+kKjJtUCb3FLpiiGL05rKRnS8dvFww5UOQeNkkC4AU5VdEfIaMkU1RWnSaEE+Txdy5\nj+BN7tyrdDB/Xt5glVFiMLRty3q9ZrPZ0CwWOKRwCn1PbGalCxLDoNiBJp1alFtrC9g4mrxmE/xY\nNvWpvj0fUg8oA2xShQlw4MjT8IYoCR1Txlru4DudsBWUKeO9YDX5oc0FBfnaUphaWcOfixScLcw6\nGOWBzsmDTRSmQNbhWzvKX1JEEsrJucs5ykQuY4Seauua2ld6DgJ8dUOgdhVpSMQhYbys12QMQ4g8\nf/wB50/PWB4ccHJ6yoMH93j46CEnJyeydnKAubrmw3ff5cmTpxydnGBDYu4rmjt3qOsK40dfkhhl\nsk8fIzYm1WSLlHJQLwixyxqZe2J6LckJIEMcqlo7BKYYXsqUKoM3FpvkWTCDdBLeevMbfP39D5iF\nntODBdYYHt051hXxTYqSuycYX2GrmsEYbtYr6cSfX7Dd7eQae6sgpMGEpADYeM/J4IA1CkIJKCZ5\nURTppvpBFLDTiTdaCDKBb7ffE2LCGKc2NrJmnWQKheburEgb60r8FlIIhJioa09T1TS13P++lU68\nmPJblT8qUGdlKs1yseDgYKlsr0/kJ98tR1019MNA161xrsLaahxJXc95cnbFB0+fsdp1VItDZocn\nMsrZe6pa9oy69jSNx2QQop5LTEmWYdfSbbfSndOmjK08Q7sn9j1dCPS6h2WDdVKNpaGuLXPv2O/3\ntK14gjm0a24zg1f2npAQ2Zn19BiIYKN07qJ1VNbjktDjMxs2ZkIOkvhYJ0VMigNdOyjo6xhMIMRB\nWWgDq5sL5qslfikDLayXNm+IA0OQZy/EYWRhuTGJSinRh4Go3fGc4BstHEhCus/7rnMoeiLCMl9J\nwdcrIOZqx4wZmETbtsLoHHrxpVjW7FtLvxbpfOUrgrFst500w5IYoMtwgApfz6nqOa5qpAGANAKM\nUWaxgnnGGZy3OK+eNN5AHwlmILmIqbQgiiJ1c5WBKhKsdOK9cYyG9+rByQDEwvJKKcffqkzrG4ZA\ndAsO/CEns1P2+5a7660kxs7R9z3rzYbV03e5TnC1PODo+Jjze3d58Ogh88UBi4MDYopcXl7x5P0P\neP7kCcZZNh88o7245jO//vu4e/cuy+WSvu8JKergBs8QA+v1BtP3LI8PWSzn7NuW6/0GV3m8hRCE\n1WisZaidsL2RgQP1vGEIHanvmVXiZZNC4GA2o247qrZls7rm7PKKP/Ff/rf8nX/4D8tz+qk7d/jX\nf9dv4VP37/FDn/ssX3rrx7X5988CfwtrfoLv/8zr3H/1IYNxGN/w/sU1X/3Ge7z3wft8cHbGpg+Y\nZo6xlsZCjL0Uz5r0y6REkaA1JdcTVpVJMAwdIUjBO/VptA6SM3RJTPRv9nt2+0EmZHqwtpL4M0QB\n0bzDqwTAkvCVUy+uJJ+x23H37l2ODg8BuLm5YXV1Rde1VFVF08xUMiZ+kikMzA5m3D064Pj4kLp2\n7HZb2s36Vp72yfGdPdY36zG3UqZeVXlslMEEwvqSJoVF8tBZPaepZ4Qh0O5bLJaDxQHOWG7SDaHv\nC0SV2UAjPj8OCJFSemRcoR6HMclURmmYWJn6h9QaJiX13J3K07PQF8V9kgIXwhIVT7AkfrJFoTIy\nVkBqnLZr2WzW3Nxcc3JyxGxWY6KFXuWURjyTbFbcpKSeX4kwDKVpbtXbNRViQ1ZDkCli+n0AxMdL\nq6oXmvza3VYwAm0aD2FgiEGYwk5ABfRnR6sWnejoRLqXYvY8lIa6814n/Yk3VLIj6zkiw8uGQeSf\nQwwl7kwVA66wZrU5k2O3FrjCj8hyQ/1OUcAxb636NXmsi1TOs6hrDhdz8aLd7mQfMQYbEnHfEbpA\nciJ37WJgs9/z9Ow5zXzO8fEp9x91zE+MrF8lJmTWsjMWh0p4SRq/YmFFN42wj2OSvENvhmInpqiT\nwGKcNruxRF2n4/+kqabwKsbo82MT1g/4ZiZqIV9jfV3qawGGxTMyhkTdbMXX0zq6fUu/7zARauup\nradylp/8X/4vvvLuhlsWLo9/nP/+53+RP/EHfx/GVgzJIg0iS9sHrm82nF9ecbW6YbPby8Ak5wrT\nuYimMtA86WqWtemMsrrGOmXagIkaQ0x+MlUenHRtZEZYBtHk37SZqI1F4xCv2ko9JSuHIamVixCI\nIolWFUhRh3d1XU8ICWf9yFj7Nh7fE8BXpTKKrutEoqAdMeuliN1stlxfXTEMQT1zpFtWNw2L5ZyE\nMMPmi7kytTyJUQ8rk1S6whDJAUKYSYm+GxA/QemoeFeXjnxmII2gThqp8BmxTWO3eQhGC3anDF4J\nHhE1k7QI4p2APF1RwfRc9IukT1Fdk0bwSF/c9z3r9Yar6yv8rGHBIc56+mGg6kXK6dLo/ZKlXvJd\no7KzwuR8oIBeKXf10/gQ5cPkn486Hne8Ht45Ui2GhF3XMgy96MO1I1v6/maUsQ4qOXNeGDrWe6pq\nZPFVKofMAS7EIL9yJ0j/PhmjxsK2TMrI5n7Jy7ADoXCqaX/uGnllB01IYUIEkgArl1umQcq9kckd\nMcIcmW64WCy513YkxCi7Cz27/Z7rzY719ZrNxTVnjz/kg+WC0zsnnJ6eio+HFXli2w9cra64Pjtn\ndXbO9mrF6vkZL73yCkenxzTzuTBTjABYwxDYbDdYZzk8POLo+JhZM2MIA70COcLgCLqGBNjMHlkx\nIl54Oh4bXYfOOBrvqRL0mx1XF+e89eZb/Nm/+FP80q/9alkCn717j3/jd/42XnvwkN/82df55W98\ntCj5gc+8zssPH2Drhmg9bz9+ny995U3Ozi+4urmh7YXVaRnHxVs1Bo0hkCcmI9iUFp+uBIVM7TVm\n+vcZEJU1u29bdvtWDSalU+aMJgVkvXz2a1Hvn4kRJCGo51tDXVWkENjtdmw3W2IpEKUgGkKPtYb5\nbMbBcslysaBpGlJKxdj8k+M7f8xmM1zfs9/vpfutyfkwBPrtlj4E2q7F6GubplHvHMtyeUBKAqae\nnBxTN/cgTDruKbHbiTQrx7LMLJvGiXxMmwoiO8ky3ttM21K8TH5uGEL53BFYFb+WYRi02xeJ1og3\no3YUcw8mxahxKTIYMcw1pZCx5RzatmWz2XB9fU21PGA+n9/6Hk2MVHV169yyH0T5c4kpY2yzcUya\nJqXVrWRQ7sswkS7qC3IRoUCAxAZbYnBOGKOChRmAk8ImlvHxpRHygmFsKPdo/JwsZ8v3Mid9U1Nj\nY7LULRekE3ra9DCmUKNyIi95igfE18NaKY7BEENiPp8zDAOPXl0SQpCpm5uN5DYpcnOz5uzsOR98\n+CG+8hyfnIB1NLMZ84XkS23fsd1s2HctF+cXXFxd8s6773Dnzl3u37vH/GCJ854YB/btnvVmzXa7\n5fVPv86sfp3q4ID50bF0vCtHTJF2v2fftsQU6dTeQDyEAjYmls2MeTOnspa+tQQ6aue5e3yKx/De\n2+/wx/7Un+Or71wyLTLeu/gC/+Mv/DL//h+4y0/8gd/Dn/7pn+eX3x49Wr7/06/zE//q78NZz7YP\n/Jmf+mv80tfeKP++aBpOFw3Oq3RHpa/WqoR+aodRQOVY7msGDabJff69U5/QkBnu+l5iqyExJUVL\nNVN/SGdxSPc8M2G0H4i3juN7d/DOstnciIfKXibO5ola0rwd6LqW5XLJ0ZGwiOu6pu9bum4vvmmV\np6o+abJ8txxd1wlgY82E4Vcp8OUnuXWcNPvkmfpwu+Xm5ob9fg/kdRaIRM1TpGkoe+ft/NwY880V\nKinHnbGZn3J8IMcJ9UskanMQMqNAcvBYPitpnu2zz5MxpUFNKcylnujajvXNmu1my3K5FCmadJFH\npq0RpkpSBUDZd/Pza8b1PQJZY8MbhNlWhrykUYVSLpExJcdPJntmJgGidI93ZmJdk2P0RLVinaOu\nG3JdMoRAMgNW2eDGKngYx+8orNPsBxUm13FChMj+gqVJrzYIEyCQSY5gjGXodVpsDOXvpNFicNFQ\nKdDe1LVIzOtGhiaoVUwA2r5ns2nZti37vmff9+w2G0IfuHp+ztmHT8F6jo4OWSxlQmWtHpl5omhM\nYGPHvt+yXa0IERyWWdVQ64RGMc5XVUei3NNoLSEFsQRJWRb/Qu1J1qSKkgprMc6LCsVV6qUmQ1TA\naf0gcdgZR1PVVNZjtGG92+zYb3ejvYOulw/Pr/jlt97l4yxcfumdz/P0es2j+3e1UBQwarvdcXFx\nwdn5OevNRp59JZPkQVsxRNXi2PIsSeMPmT5vEuhkbmu1bou38w2TWZHKOA5DYAiDXFNl0KUkvpPO\nCiFE9oREsXJRA/uqqqjrCm8hRmlaSmPSae04MPSSaw5hkPWlkshxguy37/ieAL6mJoJZvhZCoA+J\naAb6ALudmCM6X1F7RzNrmM3mNLOGGBNNU7NYLKiqSjvjsRiqynjgXrXZkJJT2cbUR0Q7KcjGP4SI\n19Gy+bAaCGKEYDJgRHmfEAI2iHTMWdFmZ7AhGpUDGoVic0wBAtJxsagnVwRMFDqwUSJpEq8Ho6yV\nzWbD9dU1VT3DOJFWmc7Suj3GWCplw8iRAKtFyViEZOQ4vybrhLMX2S0Jock0aUpymxPKvFk71efn\ngBWto9KNW95ELrQxRv0ulLWlfy+mwHZkdGkXSb7dyEZLuftSfGE0aGtNUTYIZ3BJvDjyOHO5/IFU\nKNWU5KGcC5Sxr9Y5nFEmQEBGxqpRfZ2g9jWnJx6Mlekaveihj3c7bjYb1psN2+2O4WbL5b5jd7mi\nqrxOdqlxVU2d4GQ2Z9e2rJ4/542rFe+9+RbzgwWz+UJeZ6Uoa9uWfdtxeueUT336dWpjWfiKWn3J\nsol/sJZgZOJoQu5BCIE+yqQR6TqOY4VNgrn11CGxujrnG1/9Cn/yz/0FvvHBbfP6b5x/gZ/6O1/k\nj/3YD/OF3/+7+cmf+T/4lUlR8ps+8yn+3R/75zFVzaod+K/+yk/zy1//evn3RTPj3rIm5+hCEc8F\ngVDNy9pUoKvco9LlU58jkhRb2vEzKiOJpXsn3jNWR/9aK1ISp3R8Z2TEgDVK+ddn0iprofLSget1\nEk6730GMEjBq8UbLPk6Hh4ecHB9xsFjivFOK8P7jE9BPju/IkZPbzPAD6LuOfb+jGwK9gptdH8oU\nphACs9lMxpcje0QeBNF3QbEYSThEAttr8jLKal88pkn7mFwnEir51j2vJO1m3KXFNFvYtPlzQPa9\nvB+Lz2Jm8lL8GjCJiCWYqHukDpZII3l3TKAirXqiVasV1fJAfl9VH2mI+Gos5GIcC7mp10s+omhj\nbgELhlyI5Q6tPOdTVrK14/6cr62wzBLW+BLHrLWkEJVlRgEGRcoYxULBjkBZLCxf/dxSEObpX+of\npsVKKbQYk1ABrlC2gx19JMt1TS9cB+lmw4RZkYGySXJrrcNUhhAqQozMlkdy3kFYxH3fs29b1tsN\nNzdr1psNIUTqpmbfdVjrmNczlgdLfF3RtT2b7YZ233G9vuFrX/4KmdE0X87F3HkY6PqOkITt2u92\nxK5jfXXN4mCBMUZYkLVM0J57kan0CiK3bctut8WEJNORl0uIkX1I9CHhAnSbLc8uzvnbv/B3+bW3\nv8GLRUYi8eazz/PhxTU/cPcu/9Ef/BHeP7vg+WrNS/dOuX96RDWbYZzlJ3/qZ/mVN54zjVHb9guE\nuOfhnbrEPQGRHMSkDGCZtpXXrbClrP6/KZ2wvE7y+nC+FuCv6yWNcxaPxViP93Xxc/TKesnG9inl\nmKMyIaO5Zgjs+37MmRTEqutam10CjFc6vfHk5ISmaQq4PgyDMivqT9jF30WHcdJ4bVw9WrLUlfr3\nQWa+WJul9pYhBFarazbbLZvNRtdCxTAM4mtsRFmQm/ExRFCp7LRJPwXpb+09OZcqf58bx9LUzbJ0\nqVekSM/WKCX+iFGeNuSVoTV57zLUocQeU2LSdrNhs141CFR9AAAgAElEQVRzeHSE8ZUymQPBiWck\naQQAUxwVJwbK0CqbG58lfk7rxzj6uU5qyvEaUL4T0RTWMXG0k8ngntVJetKsmTRVSpNWXpt9idHr\nnxu4GUhJk5hRJmHqNbFGfYiVGBBV8ZCtZHJzNgVpauXwMcYd2WssubYZr0MQQzH17zQkq1PNrZUa\nJomdzRAiW9vSdwPbPhDbnsoaTpaHGOdo11s+fOcx6/WW4+NjTk5POD055ujoGLdcYDyEOGCdZdjt\nWZ1f8OTJU7quJ/UDi0pkl1VVEZxV0kcsXtzGyETIPoHzAgxmICqqtULGBLIvVjS21GwJHeZSSaNI\n/KYl9pO0oW0c3nogMq9n1FXN1fPndLsdJoq9g9V9+dn1ja70j7dw+fB6w6OHD7G+JjpP2wUuVzc8\nO7/gIlu4MMqQU0ySUwyBVDABxTrKotRzdlkWnwkLSW1cvPrWSYPMWLEw6PqefdsxDGJVnwG1GITB\n562R4QOKazgd0lV78WkmRrQSpq4qalVe5aZnGGJ5LpzPg6CUbDAFP74Nx/cE8DU1pK20G9K2Lbtu\nICQIyajZZ4exUrz0gxTwi+Wi+K7IZq8Ia0rq4TFhIEVtuGbIxygTxqBms4ooM0oNp0m7JBaSyEQz\nUgwhJ0iJGJJI71AUH3kcxyInadAbgS+j3zfEqN13AWVyIJrKBJ0m7V3XcXOzpp7NqRcL8aAxhs5a\n6TxUHufHDqZ8yUgYFKy2U38AOcYEb7JxlwIn+wpMuytyQdMLgMQYsIx03g3FcKAwv1Tbnidwle+Q\nUAP7QX1ncuAdfQVEUhrVvDyzvyjacTk/ox5f8onZuC/fK0gFzJMOjSl/zgEYcqCUJMCYqBpoQdxl\n0obF1zM1ihc0P0bEDLBt2W53YozftiJHTBJQnfPUMzHABFhWDbv9ns1ux2a35fzyEoyRyTDOly5z\n18sAge29O6Tdnm615vLuHZqZSHbqpqZqaqFbWzHvrCrpfHeDTIiyMTD3NbXzpCDjcMPQQ4ps244n\n777LF//+L/LW+4/5uKLkjaef58nVis986iF/9A/9Xj64uOL5asPDO8e8fPcu9WyJ8TV/5i//z3z5\nzTNeLEqexT0vH0uSJlR3RslxCOKzYCfJVgzapZcAFcPAEAa9l76sceccVV3T94N6H8kQBe+zh4Bo\n5iunXUoMxEGTu5jpMBjE3DTFSNfuFegVJs3IQkQ9VRKzWcPh4QEHywV15bVj0hNDLOyST47v/LFe\nryWxshZXVeLV13Vst3v2vUzPGYYgxq4psd1ucc5xenpKXb9S7uVmvaZtd6Qhj4CW9dC2LYMOOhin\n1krheit50+MW+BUiiVAKmCnjq8AlOSboPrttO7rtnuWs4UD3kQLokKfZao2C+IFFUgG+xDtI+9C5\n6GD8TJGpdKzXa5qbG+azWTmfPM2unjZGoCR1U5aNVUBH4rJUVWUykREY6SNFGrzwftq5zJ9ljMaY\nMS5k+eiQ+ltsZPSel3itXdGu66gnnf7MtAshMPSDAhGjLHM8xt+PXfkMfLlb9zh/33G6Uu74lujP\n9OUlJpk8/dOoPEnYsL6qWCyWVHWlAGCi7STWdF1Pr997uxc5tq/EaNk5R9/17OZzuq5nMZsxr2u2\n222ZVmxiIvUdqe+kaLcNz9//kGG358nxY2bzBmNl+tV8Mef8esXZ5RWfeu1lPvt9v46qrthtd9ys\nrgl9D8fHVBFi37Pf7vjGO+/w/pMnPDw6wYaON954S8/644uMs5tNKTRfvn+Hlx/c1S67NLKenF/z\nxa9+jRdjFCTa/vN0nQDWU/Z+ZGrbII2wPPW6TK02tuQX03WZC1vnK1KnnknWi7m0HdkPaOPT5WnY\nSF4noFfCqo9sJLFu9xMbBiNTuXMSog9B09TM9JpnU+uYpPFj1b6iaZrR4uCT4zt+LA+W5fdVVTOb\nz6jrin4YPYWzOsUoiGFMYrNZs15vaNv2djMhjZK9EKIMahgGjAHvxynpef+Z1gyAskPD2EjM9UqM\n5DFVyQhzx+hoC+O0eW4Y5Xplj046pEX2qLFmisWexalXlcGQQmS327NarTg4PMR4j69raR7qlHYX\nI2gelhDVgnx3nfRoc52Rrwnlu+S/J0ViGuPDLeZ0rh9KU2OsL7xzUKmdSYoMQfz1xunEE2JABqoG\nsZIpE9vVXmcc0mXLfqDVouaYaDyZqIfQpn3OE1Cg3FqSs+W1olqZmJDjMcaNAxP0vRMiS7NmzLOd\n1tfZWzcqQaRpZnjnqXzFru2EjuocQwwMMbI6u+Dq4opnzYzDwwNOT0+4e+8uJycnzGaNWC9Yx3a3\n4+mzZzz54AM2mx37mzVx39K/8grHpydi9p8biFEr4xTphoFep9bWdS1AIok4hFvgqdwDaUzEZAp5\nBevwPg/9MDJrRe95ZSwegxkkl9/drKGZ8fTxB7z3wQc8vrjg7nKOtxZnLY9O/1EWLqeYqsbVDUNK\nrDdrzi4ueXYuw1RCTNJUVfaZ8oHFG5KMBeQnRhonVmN9tnER2WpSQHzMoQQkN6Is6nt2+5Zd20Iy\nMpggJ3tMCCma5wlT1BQ5ozHShHQYmlnNrG6wxtL3Le1uJ/6iRmyI3KQRi4GmHmugb9fxPQF8dW2v\n4ISnqhs1DB1o25Y+JmIyxfh+CAO7/Q63kQt///595vM5q9WK/X5L23YaVHwpILq2FQaP/i9PwBmB\nHpUtGMjjrFMSPxUTxkWUE9EUk0yjyMUzL3Txgc2+oxsCy6biaNZMkv4kSArjBCGjoJdBu4Eo/IxS\njxkT70xrHEJgt9/L1K3NhuViQfHuGkKhNgJjRyZvuAlFks2tf58ys3LBkYE3GIG+6TjVpDNuMwPs\nRYZDSTq9ww6uyANyoDAhlHMDOa++62jblrprqZqZTFK0moyGgSH0k6Q0lq55PpVpkZmTQasSBUke\nzOTftRghA34Gkhnjk9JFZdJV0iDndP3I9bSIb0hd19S1aM3jINToGOT/pVjs2O13dH0PIBJGK15f\n+76jXwpbbLPdst5siMMgnYq86adEby1hGPBdz/WTJ7TX1zxdLJjN5/iqopnPqJqa8+trzq6vePXl\nR3zus5+mqjz73Z6b1Y1seienzOuaNATa3Z5vvPceT56fcTKfkXY7Pnw/Gzt+fFHyfLXmM+YR1jpe\nvneHVx/eR6xELbiKxxfXfOlrb/BxRcm+/zx9mNFUXta8Bp3C9Mr/byQFCzHoPbF4kzuBkhTl5K4M\nRrBWWWMI+Gu9sHfCuEps7rAo+mwN6oeU4WqlsA8DKQkV2qt3w/Q7SREocqLFYoa1MIRupMxbR1OL\nn8Anx3f+yEDWfLHEe0e/70Raq/dXtMQiG+j6oaytxWJB08yK/Gi/39PdtDRuXiTZudOeJzhmQASY\nxA9b/jw9crJtUiw/l/fSDMZM98h+CLz5fMNqtyt/d/fwkN/8+iPqCZtpHECfBKsHghbdAXQynymN\nIpGUoJO1xmSn3bds1huODo9kAm8G5Mw4fWq6708Hmdw+39w9vw1wlZ8ttYH82TqHDYFIfs7HfSFf\n4wxW5Ote17WYw/f9LdZO7rrnc+r7XmJM21LVDb6SPTlay9ALKDb0PYRUCo3x+/KR+yqnm4uWSSwq\n0pMsEbBQQC/5fQHntMtS8oISnwU8abtOmMKVZz6bCVsgRpqm5uT4ROwGkrDj276XiaJBitG+7+mM\nY+4rSPDgzh16ZQ2RIvVMvFj6rmXf7hnigHeey6srtpdXdOu1+H4mkfP/zC/8fd784HG557/xs5/j\n3/nDP4Y3lvVqxdD33Llzh+PDQ25WN/zZv/rX+ZU3Rzni5x6+xG//9Cv6p48vMh7dOZGpWMWiIsm1\ns5aqrnl2+aG+/uNjVB+CdLHh1v0b5U9uBHlz0Z6vdxrZhplZKeCpIURhSgxCzSdPg4wxSG6TEg6P\nsUmeaRNxCnw5cg4oTcChb2mapoAWKen7JPGA875iPp+x0PxOCpLxGcjFoq+c5qefHN8Nx3K5LPdI\nbFhEImZaQ9M0LJeqTtFyOOcvXdfR9y0xyuT6qbw6JZnenoJMs04hiCdPTCVWyGT7cHtPVuCl7MIp\ns4wHQrZmIefM+iwo4GCTSMuSTq7NlYBBnX6NssTU6D6bxYuawOrPC3unbVtWqxWL5RJTVcwPDvDO\nlyaEtRYHpTEgU81BvBkjMWbgL+h55BgyAlpo2JnWY7fiTxSblhhHf5Mc/7P3c99Lw8Or5yMZNNM3\nt8YwpCiyeCNxSjycxePLVxW+eCYpqxRlw+mvqD9/26dpBL7yUIu87wjwZXWAkinnWICREdEEk+tc\nAR8NgLEj+yuqaklj4gKYz2YcHR4V9lBIUSSQux1XmzWr9Zb91YqrJ894Pms4PDrk6OiI+TxPiBel\nxWa3ZXt1xc3Nmv3NDfvrG66ePefeg/ssj4+YzRbCHtK8o+sH1tst1sDpnTs0d+8xn9cA2Jhzl1Ei\nOsQEaWTcJcAkIzJGuAU0WmOZuYoKQ2o7rp6d8f577xGGwJ/8yT/PG+++XZ7Xz91/wL/9u387rz54\nyD/5mU/x5be/uYWLqRrwFfvNljfefo9f+tpbXF9esm87xjpSakpndBCOPneyhCaKFmtFmaQgV0rC\nwoIM+LoRxNKhXSEE2q5j37UyUd55AfcyHpGN6jPD2AjD2DkBS50Vko8xUHlH09Sypjtha3f7FlLC\n1wLQg8QkY2E+n3Goz+238/ieAL6ExmsU6UXlT57ZzFJhaLuBth80uVAPERLHJ8fie3B8zGq1IoTA\ndrtRfxZJMmUzzObdonf2aigrfigTlg9QEtIJoCUPEWOCm7u3oAX52IXo+oE3nl5zvd2W87t7eMhv\nff0+tXcTKR4KgCnNVrvKYlwp5pPJaBGBdudBZSzCZOuHge1ux3q95vDwUAswFLzJn6MbN8iGmHXE\nOYnX/0ptlSbnPJ670Xm9SUGhwvzCqIdLvFXMlKIvia47IdMqYp19baJSOwURTwrEYWQ8/RDE/LHv\nerquJQLWe4ahp+s6HQE94LQjk00+M65XZAmT7vuIgMs1EC382F0HNybHaQxUWAnkMUrxaH32YzGY\nkEaa9NQzDaicY97UVD6j40LBbduWfhA2UIxi/tx2LV3fk4fIFwNNjMgoUKZGEnpr33V0Q8+u62i7\nju7qiu76mgRs2z0//f/+Pb7x9IOy/j73ymv84R/5PdiUuLm5YVY33D89ZdHMWG82/IX/7X/nK4/f\nGV9//xG/95/4dfqnjy9KHtw5AuMwNmFLUWmk0+ErPji70td/k6KExGwS3KUrlZ9VVDqkCVD2SiCR\nJOKVIqxX6ZrXgrrrenb7HSFGkXM6J0E+Tw5NiP7eTmWOmYZuVOos4If4/Vmaui5M1EyjdtbSzBoO\njw6o6xproO/3IzvAWuq6GiU2nxzf8WNkblhCiCoTqjieH4BzrLdbdt2lxAdGICt305umoVH2TGwj\nrrYF+JL3HfeQF7v1+fe5IHlRihHj6PEFt/crSea08REjb5/vWLcz4C+QmZTnN1/gS+884Z/63CuQ\nEmKjlcBk42Jd20mlXkhsCSnqOHYtLKIFxHRdSwraruPm5obDw0OOj4+pqhrDuL+KXwpFQphSGmfl\nTgCclHRaY5oMOhGk+4V7JH/23ovMMASGQSc7ZZBI78nQC9CcTYGrqirFoYo9C3Pb6AdmULvvOrqu\np1aJKkDynqHvGTqJMRn0HiayuNG75oW4ghk/B8bhI5nRY7x+/xH4MghrqzSCyqS2LEPNRW0uIKOA\nVYoS5jU1a2b4uqaqa+azmTR3tEjsu479XuQseZ3KaPqkvh1aFOWkuu9oWzFBvn98IkCYst9iCPx3\nf/PneOvJbQn8V9/6Av/Fn/9L/OgP/aD4w4SB46NjDpdL/qdf+Hu8/Xx36/VvPftxTHqf3/jya3zt\nw48WGb/+lZd56f4djftdyYOctbjKU83mPHxwT6/0x8eoSvO9NPAxz1seqnB7bx6baZOGX7kHMmim\n76TbLvdBYkkKofieypIWf1pvxRDfu4Q3kt+RkgzWsYZq1ugeIvd+3BsMTVMzn8+YzebCFuoHhkF8\ncOVnJMZIB398bj45vjsOa22JGfP5HF8Jk0UY4ofKAAsqnRfWTtvKFGBhDo8yucxmClH2ViubeVnL\nwxBwblSojHuS2KzkpnU+5GfkecJlNYfkQtl6RZjDZmSn2LE1aHT/CEleW9AbmwWSEjvKwAUjMXe9\nXnN5eYmtKrCW+XyB6S3G7rHWiEXLpFEopunCrH/RYzEDdbfjyficT/9OakeKTUsI4pOZWVnGWjkP\nBBCMMZJcwjvxM0yG25+bVLLonMjGSGJSn/d79Y4sLFBjSCpbzmy1olrJTXxGMBEjgzisFQmgiaPh\nfZ4IHHQ4WHZoQ9/DWk9R7cQAxuCsV1ahJYVECEkGZFkHxlL5msOF2IIkHN3Q0w+yz53udqw2G1ar\nFavrFe1qy/lqw3X1XABDZ6UxuFzg65qlr6Ges9vvefrue1x8+ITZYs7y6Ijl8pC6luFzIUS2ux2b\nrcgoP/N9n2PuK5ZVhfOeOjeCMvCFDMBJycgEyiQNrjAEfIJK2UkmoQ0ImGFoEvQ3az78xtv86pe+\nxF/7P/82b72/4lY8Ovtx/tL/8w/44//av8Af+Zf+Gf6bn/2/+fItC5fX+fd+7IdxVQO+5nK950/9\n5b/OV98e66ZZVfPwcIZzsthsQoFKsViRidNp0tgiP00KN0jsyYOCsl/xFNQ2xpCGgUH3DafT5q3z\nmmsYHE6HtimeQDbFV5A75eFvInG0KbHbbtnvdvS9xJf5bIZvqpJvpBSZzWbcuXPK0cHhJ8DXP46j\nSAoNtF1LiDJ+fHEwIxnHxdU1ZqvdbWswqjfNwEmIsjFNC0xjKAytW0cSYC2oLFGAJ1OYJhBLB2Vc\nkGNhkN+kvHeSKUx5gb57vuWmrZk+VOc3X+AX33nG7/jsIwKCZOtACgVs5DuAjDcPJhCswyJsk6TA\nFCRMHJPsbHS7Wq04ODigmc1oZrMCEBKTtBnzicMkec9ta/nPtENCyt2hsUuUNfW5cKEUMEGlaNPJ\nXU6ZTlnCKg+7955B5T/W2FvfYTq1Mg2SYMcQCINoM22MIj/ph9EAXZlCPWrIGeJIf9VjKjObAoEZ\ncMkIfTaGlA1JgsvQ9xgj9NJcNBmVO5BuM/FSivShJ3XQ9x0OS+MrUq2dWx3hPl8cgBlpxsPQ0w1d\n2RSFDCCG0z7J5JXMaotJPMSGMDCkSD8MhQU5BJlE9p//9M/wzrPtrfX31gc/zk/97M/xr/y2H6Td\n7eidpz+/oK48f/Xv/kPeOtvzYhCovvom3//Sq3zlyUeLkt/wyqu89OCuTL4ZLJqKYazFNzNs1XB6\n8q0pw7WvxD/HqHQr5MRGgVTtFhooIK0E8jTp7Bkxp8wBgUTXi0FwDAMmJpVmpWIIbp3BytfFGTBe\np+kouA2RFJKCXo6mqrRTlgpgPKtrsCJ7rNVgM4SJQaQaaFd5NPEnx3fFUan8V6RgLV0/sDw44ujk\nFLynVdlbjKN0JAf+y8sLel1buYufjdLrWryEcte6ALkpr79QkpciX9RfuTuPlalHL7KgpqBwjJF9\nP7BuW+Av8iKT8vzm89zs9hzMalJOqMpOnoRsn+NaTJgw0PcCtNhc7BjpOlpjyjTJvusYbm64vLxk\nsVgIs6qqJqDUUIqsW3Fk8udyztYQh6kERfs/oMVBHlwxmsdD9tDUyZE5bOi1GoaBFBO195PPkYlT\n1guLIkZh4mBHKVBQ5mj2UbLOkSaG+qDdWk0DTEwkjTEF8COfQAar1JiX/P1H+aN8Xzu5/zJRuG07\nAdqNRfCnnMS60lACg8URQs9m07PdyhQx7ysWzQxiJPa9dsS1OYehso6qmTOvGonJCuaK4bYyFfue\n7X5D3/cYYzjwnoPlIUPf8+D4tEgpSYknl+e88eHHS+DfO/s8i2bOS8enDF2PN5ar/ZZvPPvwo69P\nia8/+zx//F/+/fzML36RX31/LDJ+w8uv8m/+8O8QQNkYnWQ6KgKqWiax3j895XOvvspbj7+g611i\nFPw483rGQplUSvaddNxHn7gRSM3gkYClBnkmc26a2YQYSz/09GFgiEnlRhL/QxggRpw1xCGRnKwJ\nZy2VtTgGTApSEBk1vtfBCEnjjdc9Kj8z2dhecig1qy4xRn42xnGYxCfHd8dxtbrGWku9q1kul7jK\nUze1ThRPdN2eYejJvk7WWnoMfbcnDD1loEfS3IoxGy+Dm8iyr6S5pHgeTptvysHKAwo/AgzlvTbj\nVonpvq3SxphbCAgAhNEG7VSpIj6HiTF2Re1EWyMm/ynBbteyurmhms3lV1WX75SlxL7KOXeWuIkX\nnnx/eysfhEltYka27fTIceZWk1UbqaJ8TsQUiHG4Fa+T1aa2NnWwhqT5uOwJlVpq6ACb3IwN4pPY\ndR31LGCrJLJnJDIYbZyENBrnx+xTDCNJYbJPZWmjDGSCcreSrA0JLVaa+nYai3OLRdncWmMIy23i\n8Wmknq6qGu8qDuwC7yuGKMyvru3Z7XbsdjvarhW/1DAQkzSC54s5tfouDmqRsN3tuLy64uz8jGeP\nH9P1g6qx8vRk6DUu33twn2G7E+uWhw9YLMUr19fikVc3IoGsrAUPTSPe3juN1RY4qBsq7yEmyVm6\nHtP19LuWZ0+e8NaXf40v/eIXefPxR83rU0p89cnn+eDymlcenfIf/qHfx4eX1zxfrXl4eszL9+5R\nNwvwFRHLn/4rf4OvvXPNtG7a91/g6c2el08ONM8a6xdj7QtsefnkEIN4tiaLVxA3E3vyxPn8K/s+\n9r3UxCKrrXBO/M2yvNg7S5WxkBgl5uT1EgMkWzzIhr6j3+9U3ZJjkEh1s8LKGLnex8eHHB4uqevq\nE4+vfxxH9kXBGtpWTFmrxZLFfEGnnfm+74WKnsbNe7vd8vTZU7a7Lev1pujQAU0iPc7J1K6h61DV\nGtn8Lyc12bQeBE0OIeJcLh2MJhc5AMgCskb8kySAyM/u+4Gbdod04j9alKz3rRQlKUkBb+Ktjcso\nYp+lceI1pN8Z3cD1XXP3MSVYr264nF0ym82YzRqGUGO6Fki4SlB+DCUpDyFoQq+J+qRLXVhLmmhZ\nQeZugWLa8tGAGgn9QAiSNOedO+voh6EvgFMpKBRASnrfjT7ENrPEgrDCMh05F5AxDKBFmVMqZ2+E\nEp2nVCpCJIVdqf2yLGcKdI2d+BeDpSkmlGpQHaV7j1GpEEI7lomDKIiHUMdVlmcx9Mbj95KgVr6i\nqWrqqi5mpAZEY+0qkrL4AJk8aC0+GugGQt+XiSgpBAiykbkkfiEuBube8cH1Db/6+G0+blN/+/nn\nOZgt+PTd+xAjfbvnbL3mzedPPvb1X3n6ef7jf/FH+ekv/hJf/nAsSn7jK6/xb/3o78I3M4x1JCOB\nzxqLqxrq2ZJoDLN5w2sPH/He0y/o6p0UJc2cyslUEmeFaSAFpFFpy8iWMcbgbSXgKJGURkNx66xK\nnLyCGo7UDwqOyVOTtFg1OW1UhkvxZ9NAkcKg3TFHVcnaqKzD+1yMSqFZ+Qos9HHQgrnH2lre31oq\n70qCa40lpsAEMf/k+A4e2RR32O3Yt514MinLeKeTtPKwgpgBfmC32/Hs2XP2+z3b7Vb3I5VMVHEi\nmR+lCVPAPf/7bdnF+P7wUWbUFPgC7XzHSJ+r+G/CpNx1PYezhkgkW8DmhLp0F5N245NIDbzL/UAt\nIILIr302UU6R0Pfc3NxwdXVVJl5mYNCr7533oyy7FCIpyVjvIuGwDAyFxSkNoFEullBPPwUKQ5Gb\nCQuYJCa902mZAP3QF5gvqGeMNbb4r+TPtspsSiWuTcC6GOk17lg1J6+cg9ARhkA/iAm5DK9x4xpJ\neZCAMoa1oTKuA5E0jndDwLKx+TJlIiUwEWOyvE4l3t5hqpowxOLjBQMxDMShZ7fbYo2l9hWL+ULO\n1QgLzmpBJA2GSOgDmB5b9QKgkKiiTJAMQ0+b9sIU63t85dnttuz2e5yzvP/kW8sLU0y8du8+fdfT\nbne8f372LV+/3bf8Bz/ywzw+O+Nqv+fuwYL79w+xS4drarCT6c91jZ/Nxa+yjzw/u+B3/sBnOb/4\nB1xtxxg1rxseHIvH0qBTu0rnXCdaCRNl9IET79J0a01Nm2gFCM9AXBjltRJXtLPuDLNKpmV5Z2i8\npfGGxlm1hxWvncY7MTuPQWKbA1+LNN4oOC9TwgeElCFNlNxU8c4JiJyEaRZesIz45PjOHrvdruQw\n261MMrxz506ZMnt5eal7nCvM9ATsdzttsIl9hncOa2t6bY5Clk9bYp4kmxlFef9APW5NHkKSMCGU\nZv10jceUcEjcWO32LGc1B01dXpdVDyZarMkZqjSag/JwDPJdC7STBDAyirrEZEv/XaTzAooc7PcM\ny2WJIynL2fW1uWmY4eiEWsHkFxh0H59IGhXEG/3N8iY/xmdnZfBTillCPdYZMNaXlO+h0+6cZVA5\nsyhWLCZYzUklf40hyt7XtlRtS9114GX4FSmz84S5GVPQUioVAsJYq0y9vFyJhyNoksFCiXGyD431\njdSKVi1zZFhBJJLVLFgjDDVriSE3fSGFSDCRWV2zWMwxRv49TQYAxBgY+p5919K2e40Tsm/1YWDf\ndXTWcVA3nCwWPLpzSrvvIMnQD8VDNZ+R2h5nSTc3vP3lL/P4ja8xVx/LumlkOERTFwlps5xxdHSI\nwbBer1mvb2jqmjvHJ8zrmpjtWx6/x5NnZ5wu5vgQ2F9cUvta18U3sXC52fDay/dIwEt3T3n10T2G\nIE3DaD3RVbz94XO+/PWv881tXBbUzhXGt7MyuMJMgcicV2m9SIoKWGpjn1GSX5iDKmMW9rMRML2q\nQVnjMSWpa/QhUMiY8cnMyyznOoEYekxKVN5TVTMF1AW8DQS89ywWc/m1XEAK7Hcbvt3H9wTwVYrc\njOprwhdiYL9v2e12MjI2JQUtpAPQth3X19ekJGEUK2sAACAASURBVHIMo1LElItapeM59dhwLm8i\nutDkwym7ubGS/GTkPcnki6llqLn1Gy1mrEykG0qi9E2SvG7gYN7oe0dStAJ+odMubn2uMsy0eEjo\nREjtijuDJLMMdG3LZr1ms16zWC5wlS8PlR98Md3NzJgwDAxGde1GpH/5kAQqjEl57qIooFSkKDlR\nD0GmZg49TqmZQ+gVWY7K0hE9e991DL12J72WYU46006LBVL2edLEM+r0IxWmW2Tz9FmnjAwoGAO+\nxaaxq2OYnsfI6HLFx2YKeipuF2LpSpTtwo6dfHVD1wCVFOCgsBXQDa5DTDLdYOmdyGlq38r3gBLg\n83ISTwMzTrDBkNqBoesk4CrQEoKg80MYGDphqfjK8fT5ty4y2rbn3sNDUgjssbxzdvEtX7/pOv7o\n7/3neLy64tl2w4N7J7z08C525iVQ5euTRMZT1TNcXXOz2fHs/IIf/PWf4ur6V7jZT4qSZsZLdw7E\nTFi7GjrhV9eiI0WrAWEyUKEUqXK1JKkTvwKvdN+8fsX8NZYLLHTfWN7Le0PtRN5TeYd3lmwn4CzU\nlcd5hzOI6aXP3gpCJR7UQ88ZCWqVd+RdIgc6mbqXxDPhBRbiJ8d35siMluyjVDcN3jnaruXy8orV\naiVAa1WNwDuyH3ddpw0Dp5ODo+apo+Rv6u31EWYtt7t3OQkf/0z5GZh41+lrctLZ+Mxq/ngm5cFM\nPDco3oeMSTWlL6EAEwSiAPGlyEi5byAeIDGCEfbU0HVsNht2ux37/b6Y91vXUdUi+RRPRVMMafNh\ny7mMDK7SSOF2AyLGpJ1GU4qFbMQcQyjA15SNk5sjBorxvnfu1j0o4KLJvffMThtzkKASicp7Yd1a\nQ6++fdn7BZRNkd9b+y1FlqpxxarXh8GUzzAmEUnqZZPXjxdJixstFnJSInJ8mXwcDVhvqUyFj1rc\n5LiTEglLFwKhH/BWJTi5ykjaxFMpiANSaxlyThAGYteKdERBFAekMBC2W2Lb4qqKl3S65zdbf68e\nHXNY1UTruWk7Xj44+tavPz3FxsSDgwM+8+iRPAML+HB7zdmTM157eJ9F48E6bFXjq5o+Jvq248nz\n51xeXfHaSUMTW4IR76+mkdH2MUX6/cBiNitrwFmHr10pPnMzMa9/GMHMvCam3nzS4BqZji4DtmGQ\nQSnOUXlL7SyVg9pbGm+pXCIOwpRxVrxV5rOaQUFTAY6FPT30Ar7LXjNToLmeNCRHGVSMEKOwwqZm\n5p8c39kjTwLs+55qGPBVxcHBATFG6rrWvSbgvez9mdkDIzNJcgmVtpX9wxSQq/ShU25m5GaKNAcy\nEJSZtjbnr1IPS1zrB77+bMVqN7FmOTjkt3z6vsQao6CRE1PtvKWPTDCpQ4Lm8IoxKeAswJQx4iuZ\nhzZ0fc9uu2Wz3rBcLmUwQ24aoCQAI3tfTLmB/VEuV9KTGZsG2cc5lb09RzshGmh9oe8V82sUdMux\nxE0aLkkTQwHnKo1NUms6oDcy3RWTGXZZRhoKYcO0XenHD73atXSd1DNG9+Qcn9V4PtcX0/gm1yYz\nugwxmltgmCk1Tt6vspe1nqcySVOkMJFFFpkgRFLS6621hhBSHDZJA0gaXDmeKSFlGIoqZwiBru9o\n+44hDPnKy1pJ2brFFBuEEIIY2/fCoO0GmVLch4DpOug72s2WbYz0Q8/Tq0su1mvu3Tnh9Vdfxhor\nk0I3axbzOadHxzqwZcf/8Dd/nl97752yVr7vwUv82G/9Qb7vwQP9m4+PRw/vnAggmFTRgw60cxW2\nqojG8u7Tp/ozH183DTEyU2sEO8lhSqzJ9xZTBuckzRHyJPtU1tEgXtBGrDdatbeRYT7iET0MgTCM\nz2JMSYBNI/5ezlKmCTsr2IfEeKnPq6qirrwqW+S58lbYhbP5jPl8LhYfRtj/43P17Tu+J4AvkE24\n72VyWjZp77cbVustbbsnjzq3OqIzI9DDIIWuQZKazObJ3dcUpXgu8hTnGUKCJP4dY19gUpTIX0iy\nbWNZrFMDQS2JgLH4mdeVvtvHP1SLWa2sIw0cOuEqL3TlNso7R0mQBbRXMVnSyY8q9bLGYKIk+vvd\nToEvQcpBvLKcmqZWVUVFhTFWu8XaMdDUPDJ21lMMGrCkMz6pm3TRi4wyafAOaghtsTKhZeh1MgVF\nipoNg8Og0p4MVOWpMXLSgMUZlRKq1NFroZn9MzKwgIIjSeniIm9xJNwtY2mbs8RJ1+eWEbEG65I9\naEC0RnYMo0wBWSNOWQS2eBQXD55oip8OKjkRVl4oFGm5NlJZGv3OmcielN5unYC2PYbUDZoIBxLZ\nl0SA0TQEYTgpE+HhYvEt19/LR0dUakAajftHFjEPD4/AWF4+vcPLD+/jFjVu2fDkZsWHj895+c4J\n946Wwl5wnrpuiMZwsbrmw6dPub6+5tHRjKWN9CmpEbwUIX1m+9l8/1XmidFJdKYAVVa9+mTyXSws\njkxxd+qNE0Msmv8UoyaMSem+4CtHU1maSgoTp5u7M9Kptzia2lPXKiPRTolztkxhEllJpNZJWk1V\nU2kAihMPolyo98PwSUHyXXJk0/i23eOrmrqqxCfxZsu1ekRKTDelM9+2UlBWlZ9I6U2RimXz2pzY\n1ErNd84V36ipsTaMAMkt2cW0sCH7ScoeOZULLmY1h82Mm/ajTMq7B4csZ7XGKVm9IQlj1ekeY22e\naKrNgDxN1aDJt/w+d+zL107Ccuvalt1my3axLdcoA2CkJJ1fTcCn311cEcGYVBgq0sU24Ch78VQG\nIHuwgFxZruicJ+mfQ2ExaOEYwgSgikRjJ58zsiISjBO3EJCt73vJJ0JOUCVBHIZQPC6ERWEVqDe3\nzo80BTZHdltprui64VaeIX8vBrJG8xaneY5j6kHpsXRJ9qKqshgqlfcH0pBKw4gEoe+J9LeaR6D5\ngiYbHhjQClPzCvG2UQaHeqEOoccDtRWP0deOTvihVz/Nl97/qAT++1/6FI8WS1LbQUz4BK8eHvMD\nj17lV59+9PW/6eXXebA8pO2FDWCtpTfwX/+vP8cX33yzPC+/6TOv8/+x9+ZBm2RZed/vLpn5vu+3\nVHd1V/VSvcwMghlmBgYUMihswbBOKEKyAoIITEhuRxhCaBA9rBIhY1kGWyEiMKABhQIkW/94URgp\nwoAswOyWAisExrObYZilZ3q6q7r2qm95l8y89/qPc87N/KoL0B9qz0RM5Ux3dX3L++abefOec57z\nnOf59m/8Og7bjtB29NueG7dv8enLV7h28xbr7U6S9LYjtC0hyuhHHka9b7IWU0oUlwUAsAJYG03O\nTUxBV6juaXaPLcfrx8Rgr+u0KVkSJY84V4je0TWB6IqCXw6vTO3oHSHOtbliBdi8N9OWiUEqIuh7\ndZTa9phJnJ8K+A7D8CDOfDYdDtG7UoapabRKs29qCjhn+YVXIGOqQe4dSyxFG6QGcmUFbyz/rY+z\ngQ0TiO6c0wkVBUt1IuPFO2tOdh1npFlOvpP3feo6X/aGx7H2iS8CjFiUKFoDuQzZJZJzVbtXdICV\n3+odziWcCjQ5Jy6Om82G4+NjVnsrlqsVXddpLi/NjaCxpRibFgO67n/MJ1I0A2NGU1BAZ7ZXyy+d\n0fyKIarI+GTCJWONcs9CjPhxrKLk9YS0BvAh4hCdYntNqWEGjbFCOkjjIA69Jm5uOfDsGae+9ARe\nAlN8wXRpLbeY4qftW6bf5bT+ssthY5suyGdVEQSklyeiCOM4sNnqJIfzdKGRaxvV2dYHmrZj1S4M\nZhTplToCKWvdcozgHDE7XDJHWqkLh1Ea92NODCraPoxD1R8dU+bW0RH/87/+bT76ysv1fr7+4uN8\nw3/wpYRS6Ldb3OmafPeYLkb+p3/zu3zs2llNyY9ff56fe+8H+e6v/Wre/OTT/MF9dCXf9NRTPHFB\nnINNcxuEURfbDhcbdmOia4w19kdrS9aRYSYQfLbw6vcND3BaexatCy1XyVkaUF5ZY3Z9hN0luZTU\nh+bi7Ug+U7wwNH30OKSJb8Z9ArSJvnETorg0agwEc4CMFJdpm0a105wa2KUz2tmv1fE5AXxZ4TCO\nozin4RiGgW0/cHJyKgwLFL60zkAdZYw1YfTOVyp40A5KTmcLEoojpWHqxJ/ZTWddat2ISpb59OoK\nWBDmVTGdkqmTuuw6Drrl/YuSgwP2ll3tUsAE3pm4r/NOC5QpeLmMOaBP3Xrr9ChgYJ2l9XrN6ckJ\n3aLFBU/ImZBS1Y0wy+Qq9uvsekJxCnrZ54J6jSxZli5KhjIlaDa+aCBFHpOOlknHwbtMMUBC2V41\naJRJMDYrUCQNc/m+gWVeqdBpHGtwyzkJ8GMdLifUXSkkU3VIkqA/G+k8U3RiiOPEitDumW0iHpQS\nHPT3VeMLT3GWxMj5+oB2XFAtGCqib9dvzEk0bvQamUmAsMXGSbssCHMt9aNarRdNksQOW9B7YS2Z\nKPylg3N86VPP3rcoeeuTz/L4cp8yCChEyjy+2uetj13i96/dpyh54hke3T/HqMBSaFsGHO/+57/I\n+z46uXO99Q2v4zu/8evZ2z8kxpbjoef6jZu8cvUqt+7cYTf0NN6zaCLtYiGjTnnSw8JJJ9HWg+lc\nO4T1GZx2O7MIVso1LxXU9t7XcbVxHOl3klR41TnIWYoO7z2LpmHReNooTA7nXJ19b2KgjVE6HzGo\nE0vR5yGRsywW6cRHlssli8VC2F66pkoqChDI/RqTFZOvbXfkwfHvdrRtS9/3bDYb9mOD847tZsPd\nu8dstzuapmG32TLkUrVH+r6fsbxKFR+2cb8QQh1LAnHzWiwW1amqangx7acwgSS1kBVYewbMz8Tx\n8+Tw6Jzj9Rf2eOH6Kce7iUn50GrFm5+6KHtxUIaQ7qsuZ5JzOqLnIAZckJErvLIdc5HkyKmQrD6L\nQdkGxnYbdj0nx8fiJFdZkEI9GcdYGy3eydjDq5hrGuenazElUHXkcPa4eO+rA2OMga7rGHa7ib2n\ngGGMkWGUrxdl6Tg3CdubA+I4yniJV2eplDO9duRj05CTijanRB4HxrFn3O3w3tM1LV736drJTZns\nZkwN52pM8E7jxuwzTo05BRmL5AJyjr6C+LYz2W+GGAg1NqgQei6k0cu4eZYxFl8czmtCnBJkGX2w\nsadhGEjjSANEBffMfViAUR2rLALY+JJpYyAgbpCMib/5dV/Dj/7ar/O+mS7XW594lue/6u2EXEjq\nlupTIRR455f9WX7md/4tH7o6/fwXPfk63vkVf47tbsuQM03XEtqGn/iXv8QHXrjFvGj58Cef57//\nhd/ih57/z3AhsB0GsaK/coXbd4/oh1GaUt7Tth3Ox/rctU1bQWRjA9sCC8FVTVJhMOj4Io65HIL8\nrKz1cbtl6HdQoIkyKm8juwHPoo0s24aSemIQV62cBkpJLPYWLBcNMU4OXnMwaz7a1LatxBc1zqgi\n4UxMANsjqibRH4cMPDj+fz0EiHJEnb44OTnh5q1beO/Z6d41v19y7wUEGwdqnluK6ejquJk2wsu8\nTsiWs2sntn7dwPBJk3i+TkQvcgv8D9xXmmV3nv2uwVjAXksVA9nkEKZK1n3EJ6pQvGRWMxDPTfvQ\nbrvj9PSE4+MV+/v7LBYdKTXSLHICv8wlWoozdgyUGVP6VdcBKRMNLDJN4qLA4fT5DfQSdvA4jCK7\ngYI/RfSQUk71s1ZQysleU3KSmk33Bstni06gFBvftHoFV3N5kdmQ2DpqHKuAttWIcyDPG/BlQNdZ\n8MuaGvdrsMknGrUx663/osCkLtZi2mES/4c8kgaJKQFHcgMx7Gp93TYNbWy0/pb70PhAaCDHWOtI\nHLggbuwxQelHhiTxP1EIzjM4RxsC2Xs6CqM245xOYvzM//GrfPzqKfOY8Mnrz/NL7/kgf/Wr/iPS\n3p7k3f3AzaNjPnr1/pqSH7n6HHdOT3nnn/sP+Zl//dv8/iszXclLT/Pt//HbCU3ERgENgIxNS9N1\nFOc52Z5QyDx67iFu3L2/jEsIMu3h9R4WLSunUVyVX3EQVeLGxhKFxa3rC2u4yDUfNU7bXpByArSJ\nmGfZgkMF7eWe6rKEUXMEL1pgwQfaEIlhcpK2kX7nHX2SXArVBTMEQtb6fA7u3//xOQN8gSDAUTfI\ncRzZ7XaSlNrUkoIHhobb+F7JpTIrROdqUbv7KSWC9yyXS0II7Lb9mQ2MWYCZtmkFpuYbvvVnDTzB\nqWhqqT/vveP1Fw554frRmaLk4b093vLURVKSyOGKdL5BOzjTepUN3gl7hCJIkIE2tSugm2EFwRTR\nX6+li9J0LT4GuuWiAk1zF61511DGJLx2gM7qplTGAVNgE0bYBHxVEWAf6kZ+Lxps7weTYLEl/N7J\nWE4qqW40RRM7djvtSnhSKVUsv6Qkuh9aWHkVkC36AQUQNTMCCaDihClXeR48NELWTrshjHNitXXS\nxVHFXFVEe6UCankqTAFB3XWDQgFM2TxytYA20C2XTNZOkHWXvRNdljxYB1iEdHEBZ2wxJxoQrlA7\n9d//1V/Dj/3Gb/K+y/Mi41ne9RVvryw0im6KeN755X+Wf/S7v8MHZ0HgLU8+y7d/xVcyqIOQw7Ns\nO979v/8iH/jEDeYB6PdfeJ6f/vnf5O/+9f+UAty+c5erV69x49YtTtcCWkfniVHcp2x1ee+JTZS1\npcmBdOCKsAV8JPhAMLZXmbBJWVMSvaMaB5QCfT/UzrcU37JfeApN8Cy6ljZAIM3YLPLMt03DopNi\n3rsy06SYEktjfS26jq5tifpcySW18UrRS5VZfGHJPChIPjsO6UaqrmMwm+bMqEwhc2By2kgw5sVy\nuQRgu92y3W7BOdGpUwdB06jc399nf19YlKYXNgyDChqf3QfnI4/zRsOc3WU/V1m3+jNNDLzxiXNs\nhz12Y2bZRvYXXXUOAshl1JAhyU92xsFy+OxEFlmfN++hCZ6iTFqHMBSUR1BZqQb8HR8fTyMW3nN4\neFg79h5XRdP7vidTqqmA3QOvbq32+dDzLrnUURDRhnRkbXrYtfKzQgOonVPHpMNUdH8PzlPKxMZL\nSWJYKQWGAbfzNXqjBcSYJj3JlAZp5BRJ0EMI5BCQMVJhDgVtHhU5AT2vqcliYyfoWZ79O/W8ppgp\nosOY26wLNcaMWXMWTYYKEhd8cDhlG3ggj7kCgsXJ3vrSzZtcuXWbiweHXDw4IBVNzI01ptex5KyM\n2ZE0aEKcc5UbSGNiGQL/5dd9LS/fucOVoyOePHeOJx+5oHmRNHtGRFfIOThoW37gK9/O1dMTrq3X\nPHbuHI+dO8eQM0NJ+CYQu5brmzXv+cRHubdoyaXwoY8/x9XbR1x4pOGVGzd48aXL3D0+ZduPpIy4\nWqneiQHRzrk6VlZHhrQ5N9eI897XnKZtW/msaSQpW6zrxHlxHEd22y277ZaSUwWKg1OWthfga9F4\nso/CJMaMlzzLZctyIc/JmAbGIcFcg86L/pi9H8Dp6SnOOZ1WCHXNDMPUvDXg90Gc+ew55vv3oPqI\nXbegbRvGYdQcUtIe5wIxNJrPNQxOXe59EMbrmGqNIlp9roIvaNlcUyh5V+r8tf6tTpowxZ7hT5Bm\nOd0NCnzNYpc1+ewzllKF7nNOZIe4QkKVp0ABkOImfa4CbNcbTo6OOT04YLlaigMr8joptzXGCKA0\nH9Ob5ATqh0Ry4FwKQffymmLnXDUljUVmYJgwZgbGoVfWnbos5mnCwhqXo431laIMf7kHIWoerudo\nWgG18W2HkgY80IRIEwIq8UfR+soSXDdVnIDqNs3YgGCsZc1ZmBg7VltN+5tcJ7k2eq0oOJcJXpvM\n1mZxTsc5lZmVIRVIZZTYO4hj4BAb+tjU8Tg7q6n008jqHD5JblGygzGT+5E008iVukeu89hvGdSt\nsu06Xrlzl/d96uPcF8i68hzguXT+AimNbE/XXL5z949d0zdPTnjy8Bzf+zVfzZXTI65vTrn46MM8\ndvFh4iJC1Phe60MvEi5Nx8lu4Oadu1y9cZNnHz3g9PQqm3Gqm1bdkosPLevElAr1Se2ociglT81M\nk2CyKSpZl0hu6ifH5mlSbaf3xNZUqVJAxcAuR9UtDt7RRBG6F2/UDBkxDGgaAb+cE3azNt2i5sBj\nTpRR1qutIe88Y6KasryWx+cE8GWHjS2BCNL3w6CdSLCuaCnixuh9ZLFY0sSGlDO73Y5xHKUTHaWg\nTpq0dosFDz30EGkY2W37yhwy56qJUqwbAjNQSTvQOcuislEMXxNQZfYoiNE2kTddeoTNrmfbD6y6\nloPlVJSUajEqBY2XjBIbr0guCesJWfihZETjI1STYFeyjoIZACPivuv1KT56QmPODNpZVF0SKRp8\npVNPc/VlYm65aXPNWYTrsxMNkHGcHBUpNlM/dyjytVNl9xOoYrJz4edhUDcOP2c2ADkx9oMGG6EX\nD81QwcBkRgfDACpILg9tJDuxPfY+4n0Sg4IyjTTUEZTKDHO1UyxdE32YFWSxUTqyMNFMUF+E2OXz\nOh8UnzTgS7vLOQtTz3sdJ/X4LOKXaCBxKlR9+dZNXrp5g8f29nn83DkJPtLaEoCvCDvDO2EopD7J\nGtIl6INXzZHEKrb8V+94By/fvs3Ld25z8eAczzx6QfXvpItVchGwKBf2Wsf3vf3t3FhvuLZe88j+\nPo8eHpLkYxNioOk6bu22vPdj9y9KPvDx57h264iHzh1y5fJlLl+5wt27Rww61hp9Q1Qr5SpcrZoB\n1c1Su045CTOQKIWro0ghl0UItmjnK2sRGOM0vrvbmcW8PsAqBuxjpGs7sfj1GVdkDDfGIF15LW7a\nJgJZExxbr06ZktQCJMYo+9OuxznRihJ3pIn9N6akY1NnQeAHx2fuMIA1Kiup5FLBqXEY8DNgygCk\n/f19Lly4wGKxYLPZkFKiiZHFYgFp0uJq25b9/X2Wy6VoUs5YYPc75mxa2Ysmp0M75sXTvb/nvWd/\nuWBPfyeNqcYRAdIEdJAixYkTouq8ZC1WUoE8jsSgkcTAZa/fRPbAGCLRBRnTSKkCSVYEGRAlQveR\nroiOZQUXsukgKlPFGg5ozNVraKOKdeTMTfIC9j7MromN5ovpyXRdcrGxPo9pGcg5TyLGKSX63U5d\nuYQ1Kqy+qfGSxhHste22WK5QWbiuClObY6SMkaKC/vNRxxngeeZrU7e1xuZZrLQxzcik0VOZB3gZ\n0zbQMjuSHykeoi/cPdnxYz/3C7z3hYml+8VPv57v/fqv4+G2kxhfxPHWqYxERhjJw1BoGuno+2Ag\nnd0beOrhczx57rDGlYnJJm3DSbxXPuSF/X0unjsHIZAo4nroI00TafdX3Lp+Xc/w/kXLK7fu0nQd\nL376ZV741IvcvnvMrh8pztPEhhhbzftEXybGyKLr6Pv+DLBYSlH31jQZ7iiY1LYtvsCgwvJd17FY\nLIgxst1u6XdbSGKy4KIaIHhPsDHHKHkBY67mCMEHYgwsFgu8dzIuvNlSSuHwkYfOAFq2Vk1HbLvd\nVlDdiv35aKM9FwauPzg+Ow6vmqMy9Ce5QBoTWfOgaV9wtYHgFCs4c0+dh2FqltTD2diyAhbIvpUd\nmhvOdhht6huA5ZAm7qptgVP+aL3ItjoEok1EY5EVyydrQ8Ua5NLYN/kO8erIpOxxOraI7t0pJXbb\nLSemTayN0TEngmobCaAr+bUZSki8hBABbyy2PDUfNecyBpd2gGTvR0fOtJFusR+rLfodeZS/e6fs\nZ40Hfd9LnqCMNlRGB2/1ouT2wWujR+NMUda11UbWsA4xUHT6YR77ZT+Q2GYkAVsjdc3gz+y3dpud\nOnoZi9t5yZttPUk+IP+IYLrXmldf1zu9TkwkgFwURy2MJEqi7qEOlL00EUKcs71MSQlRdW+zo/Ri\nEiN1wMRULXr90yBmLcUJseTla9f0090/Jty4fZen988RiqP4wON/gnzL4+cewjlPbDxPPnKeS+1F\nwqrFLxuIXlZHgayTP95H2m7J6Bx3T465cvUaV69dY7PdcnGvYTs4kvci49K19MMgpYd34mcwm+Zy\nuIn0kDVOFluLmp84Kjs950KIk4bsOIp+p+AXCmaXIoZnSB3YxEjXOGITdCJIADBXwAfBJ9om0rZq\n7sbkYN40UucYA7IJgWXXCWGgaQlR5Dv8awx6wecI8GXitUUXmhSymb7X4lG7AE4TeIdj0bY8fHjI\nygqNYZDkNTbaAckUF2jayN7+voyx9FvG1CtFUJNNA2p00zJtIemSzDoUpaCStJq4i8iod66OHBaS\nBiTPatHQNUHHhRNDKuTsMbeVoHxcVwOX066ICRlrlwIvD4lzk2vlKFpYooUuP5tx0I+cnKzxPtI0\nHV23wLuIK4kh9PQh0rTSSTHxYB+8zL6PowoZTwFWwAUF5PJU8GTtlozaYbEufBXmK9SkUkwJbHSA\n+rrzJK8K/zkoeaQfChFxpKwdce1uGYVY7p8g8lZIpTpaZt1QDXhOAKqaIOg9nJJ06j23IsQCpWJc\n0jVxxg6QrzkdSSyovlNNQAouOCKy+Zh1LKlQhgLJ44rneLfmx3/hbFHyJc+8ge/9+ndwsFgIlZok\n90CZcdXpAyAGoldYzWURyi0QXOCZ849y6fAhhiTde9OMKThhvOr/surMXTw45LGHHiZ5T/LarfAe\n37W0h3tcu3JZz/D+AejFm7fZpswLL13hxq27bHR8iCCvlz3kQWb3ndORlKJMEmN15Qwl6PMiI0nC\n2rCAICLcSbtxbdOyWi3wLpP6DXnYEkkEoHXSgY/aOY3BEfNAG5BRx+gIInVA2wUWrbDxhr5nHHu6\ntlVHmU6KDQXscnHsegnOOaeq9RSir+CiJXXCb/bzuvfB8Zk+nKu6XAYW56SFZhGDkqx7Q9u2nD9/\nnocffriONFqxKWP0kqQYy9h7z2az4eTkhN1uh3Oi02PHnMl19pSUZ1yTwLM/NwfA5qNR8z3UmhH2\nPj5OAMs0BjFpT9nXpCRy4v3jJtFiA6SSe0qmFAAAIABJREFUF+284tUoRgGuvu9Zn57KyIPGFGN6\nSaEfxb7bACr97+A8KU0aFwVrIFGLPkvQZeuegDW7ZwaoyX+Ls2EphaxuhyULG8trl9nADQPLraDJ\nuTAmEehtFNQLUUXER1ebO0UZADlNejDFtMBqDHEWPGockCLAv+oeutlndnU9Tp8zhIkNWMdXvJ8K\nuUIFSgny3kG1WMiSp0TvSM7x47/wL3j/J68zZ+l+6KXn+clf/w1++C/9RUQkVDvGfpIAEBH/IpmF\nxhjnE6kk8swQwWXRYRnTYDfQTtEuR42ZPgizq4RAVumIED2ha+n293m6Piv3L1ounH+Y6zdu8umX\nL3Przl22u57iTHS50VxDn3Et9KqGDhOgVJ1b81QEW7E26WRJk8NG2kEKAkqmicKsizGyaLR5AjTe\n0XgIJYEvtDHQNkHzI0fJoinrQ2S1t0dsIsvV3kx7cFdZpdLQkZxmym2yNhenfUEK2qY+Qg+Oz47D\npDamEdYwMYp1jLZpWtpWHR2zjmEXYcg2MeJDZBzz1KSfNUVKoYJSNV8vArAEPwPYiw5SFWvQTw0X\n0Yv8I6RZ9g9YLTr92akJ4pkaFQaA1YdcAXnZZt18W5dmS5lt9dZ86HuRaDk9pWlFfiDkhtGPxNmU\nCNjzK2xsx7Q3ihTF5GxqeRhOwYFcSKSp8aHGNRb3Sym0UbQjswFVuk9nhHE39AKQGQHCJjkkxlhN\nVAguVNDRHB5jOxCU0ZXGERvQzCmrJMokfB5CUOAuk3OY8n3vEQKEglFuJmxvCabTOrI2lSZzryY2\nKpJeixclCHhdX9Pv+1LwbVAQjEkncqaRlnUsj1TIOnbt8XWdlpTIapJm0gcuQ+4TKavkDUXHzeWz\neZeJzpziRY7lsb0DXfF/RExY7ZFV3oAx8fhqn7c8dokP30e+5a1PPsuFg0OGMUMQvcWwaGmWS65u\nTnj5xg0eeXifx88dynUITrRg2471bseNW3e4cvUqN26JrmTOhTY2NIuWpm0nYFnr6uJFYzWb9I82\nFr3zIkWkRIuSRQM6kesI4dTgDELqyEXXoK1PeS6zstNjjHRty6praFzS+IysYB1vbLpWQSyVc1Gh\ne1ljI5qi6cSMZ7VasVh0mo8FzRsV9H2NA87nBPCVcq76Jja/OmqgN2G4MYmooHeRGBv2Vyv2ViuC\nM9E1ceKz8TUbr2iaSIgN237LZrtmSIPQ0mcuIrYhknMVdSf7quml4Lni4k4psLLTSzdWdUFyFo0Q\nJ6Nzkt5PAsOyHwVcEMRdJiJqFlMfnCqc74ogxFoM5emCAUmZmEJS9ejr73pOT9e0d47ougUlw2I1\nucHknOvoo3RvxdnD9ElSTjIGUxNz7V6r5XzRjS0jD6XzEmyybnYpyb2yoDKmVMfF5uMF8yLPmGNy\njrNCI5s45Ehsm1kRpyODBXVfK1XPRoT787T5FL0w2mHTrb0ClE6/7ygKQlI7RCY6WV0xTedNQTDn\nqEKlrtwzxuclEFjhI64yyLx7FynR8xM/+7OvKko+8Onnefev/yo/9I3fQDE9kmK6VgqqUZRNoGBc\nzlMhaV0453Ah4PKonRVwLmjMEzdEoU4HfIjEJkII+BjxUQQdSwzERUd37pCnovX17h+ADg72ePGV\nq1y+ep3j9UYSNqdGFF7o72JOICyttm1F66wIfT9n5NnJ6iqXVADTS3HiAGM9WpG2WHSslguGYUdJ\nI4FEF0WToPUQnIyFRe91ph264GibQvAFSHgnAsRBKcmujbRdw97ePrERkeRd39OPvRTOxRFcoiSh\nZzvv1NlOdI5StnEqpTf7+JoHiQfHv9th+4/zIoSeFPgA6ji1CK/KKGTXdXXM8fT0hNPT06pPtet3\nLOJSx1cE+NntxIG4MsMqO3B8FVg13//kmX31+d4PJPMKRM33Uhvrs9dNKeno22RkPQdQjCpaHNP+\niHWttY1SpDtZO/gzYxBjRG02G9H7aFtJlPb2KnjTtq3usZM4vemDpDwxtErOGC/OYVpgsSaQWbXF\nQtVhGs9cTxMQNg3Ioe9nwJcUEVUDCeoYpIB+otE1jjIiPQwDTbuYtLr0ohSNLZb0Wyff7k69T4Wz\n99GuORPgVe8DZ783NzuYDmlq2dUJQZtfs3s2dY4lR8GDi1KAfPrGdd7z8T/kfizd9734HNc2ay4e\n7JOdgVauasnYnpWd6nciDqAJaTo4Zy5mEktEpy4rixwtGkLNa/Ce0DQ0XctLx3d55fiYi+cf5onH\nLhAWHe3+imfPHfLlX/Q2/u//913K+Naixb+Lt33hm9lbLfjwR/6Qy69cZTeMFDyxaWi6Duc8vRbE\ni0VH07R425u9r4DXONoIs1dHPQMhZb0Nw1BB027RslzKSHM1V/CORRtlXKmJdDEIqwuZahHTFGg7\nFQUO02uHEGjaRowDGjFRGVTewBjLu91O1/58nGtykgRm5x/q3jPfDx4cn/nDbkUpE+NmAjBVf86M\nUHRPH0dx8uzUbTiNWRhIFYyVF57YQb7mnFKjaJFbDGzXvSkb2F6mfq7uQ6+/cMgLN47OOG8/tNoT\nvchUROcFzuTGRXM5VGaj6KRHLuLeSBG2i9Mi3lhohVJH7iV3l6me9ekpx8cLybe8o13kyoKso3S2\nH+WZzIq+X2001ks0NdYdCPiQTQvJNLcm10aHo21aefby/ZtTpr0ljptBaxqrJQqonmJxqsWmusbO\ne0ITCSlM2pEpiyZmKeRh2o+ClxgncTtOzRqSfl/3W4eCp2rSZWBXjS1CZvBW8yhZpP7PCdvLGGTG\nMpa7hBJQBOSwOGuTKiWrBpWGJjFtEOMAnIKsOVcBf6fgo1PgK41S3+GcNuI94lTrtAkUcLSkPOJw\nPHXuHF9y6Vk+cPnVQNYXPfEMT+4fiIxMlimqgOc7vvzL+Ue/+7tn5FveeulZvuMr386YC0POYsYV\nI2OBv//P/gXv/egfTj/7ea/nO77ha3n44FDyPwdHR0dcu36NazducHR8TD8M4lIZhGwTQhAZDZww\n3KxRp0wuh2oSF2EiBh8IzusEVb2DGJuxaAySKRXPOCZ2u15H3DXOApQsqyV4ujbStRE/6kQQet9d\noQmBrm1o26ijwE6lYARkTcrwDzq5FWPDouuk2VYEnMuUmo+91iXN5wzwBdIRHBXISCnPHuSJmdJE\nR9t2LBdLSs6cnp6yXq+1G1/IeWSxWLLoFgp8SJGy3Zyw24llr4w0WLKgI29Z6bJZi4MilNmCmxaQ\nBoxCrRiUCSTJaC5FOqJJ5qcFKFKLX6Yu91SIUPNXoAYPX/wkhjf7Hm5iBuRUdJbeAJEsYF2SzuHR\n8ZFoKGnnw2lnpuQiIJLTDSqNAgpEs4Qfp7EtL0wm27h8mDETrAuTEmkYlPaaSSrsmHKqdE0rVqxg\nsST/XrZXYNK7ETvdgb7fYe44IU5OVyjQOFrndoZZ1etbBEjNGJtwFhg0cJDl3hlFF6YNiFmAqSDY\n7GeKSlI7BTPne0EoQLFrJEEaJ6LKTRN46ep13vOxj3C/ouS9n3qOV06OefLcIcL8Uyaentck7mmd\nF+muFC9rOFME6PNFEVFde07XUFCqtItIlykS2wZC4PLJCZeP73Lh0fM88fhjtKsl3d6KN1w4z5d9\n0dv4vVcVJd/FF3/Bm2iC59OXX+bmrdvsdj1o4em8V5FKSTBCEIaUR8Wv08RgmcZt7R7a2pd1hVP9\nBidFx6JrCMGx245QxCUnNlHHTwIxKIVX3XqC93SNsL3Mz9WEQWMMNLHRrqw41iR1UZFO/E71JQKu\n0ZEmJyyvMSV8lufLnAFD09B1C/DBYLsHx2f4EFAccOIsNWYZi/JeRqpLSvgi4IgVJc45jo+POTq6\ny2azrgn2OI50+wsWnbBBhmHg9PSUzWYDUBOfe7UQ50n53GTE+XImFpxhfOk5g4LxhWq3bu81H4uz\nWDM1TCyx0gZBmQAt6t8zOcse57FYU9Oxeu7zIsPAqbZtqzZRSondbgfOqbswZ8Ts5ZpOvw8Tg8DP\n3tPcGufXq5RSHW7n35NRu4nNY6MXwcveXFliSBPDKzs5G5A1jAQF5haLcQZQ6qarTS6n5+jn98aA\nHWwMUdtds89i/3bG/p0BXq/6HNYIcqXGqvqzVt+oeL7lJLmoyH6y9SA/e+XuHT3L+7N0r69Peeri\nI9KYUHH7rI24ov8YE15kdDNZm3FOBf2L/j07ePnuHW6cnvLkuYd44tw5go/iJOcA5zkdB370l3+D\n9734Qj2Tt33e5/P9z30z+3tL3KLlv/7e7+CH3v0P+d0PTEXLF7/xTXzft30zl1+5xsuXL3Pz1m1p\n7sRAbFuiyl2MKekIUUPbNhPgOtN7tVEp0U0xxkipjlV93xNwLJZd1dWaG1UE72mjNAqbIIYoTQg0\nTp3LPMToac8IABfarmVv/4DYxpoH5uIYhpF+t2O92dDvdpQCbScsA++cGBRgWpNSbZYiMbvrOhZd\npwX19qye0IPjM3rU5ykX3R8llogBzw6ARmVZBBCTParrOg72D3DAer2eRnF59X6hZMV6lDLfS6av\nSyqoExOql2rfb5vIG584z2Y3sBsHlk1zRi+yFKo8i4EjOB0YLAVi7aMI6GXADLMpCY0zNl1jTQfR\nJhZTrngkjCQfFDTrFvLZdR82EXcDkSswnydzh9pUsDg1CvMyae2R0oh9+KoriwAzTdOw2271IsrL\n5zKZzcxd4qWZNRnO2D0RRrG8r/ODVGfOEfuGnKUBmrM08rOeEyo9EvQ9JNUv+BJ0SkMYE05rEfvs\nc+ALBUrk+2qO4oowsKAyyiy3jqodZ7HL2GTOmVM6Z1jxRakVUkroOGNxIodQEnmcta40FpvjsPyK\nTSg5Ab4QYNPhSLlQxqT9FgUAA1rfCani+7/qq/nx33q1bvH3vP2rlTUlk1HRR4ov7Lcdf+PtX8X1\n9Zrr2zUXDg65cCiakilnijb4m7bj3f/yl3j/J86SD37/E8/z0z//G/zQt/0nLBYL1v3AtevXuPLK\nFW7fvi35DVILiOOhWtIVG2ONFXvQRSP3fkyYiVu081YmncPp63hMUy6EqMZdjr7fqbFSqrmFSTVJ\nXdOK2YA2nhxozSN6X20bWS4XylZMysCXU7M1bDlHjJGuE+b7oDIBPggZIieZcjHNwNfq+JwAvsZR\nkPEYO52nlgVqYw5jVldHBBxr2gYfPEfHxxwfH7Hr+7qZ5ywBpdHEZ7fbsd2s2WyOhO7XNDSuQVix\nWUEvR3amAaKbe8mKmQqIcGbsQMIANm5QA0I97tFqseRXQTwZ60KYYcbkUdDHihJxXzB9MXUABGX6\nTO+j2bhs5OoywjioKKroGDVtI53GmSBkoxbZaRwZnQBfzrrJBj5pMh2bOAOWpg3TLFCzbijBUTdj\nOe+ps1KLkpKV5t1UvRCjD2dvUdI8LphpTUVwLTYnLyBlmsYeVb8sZ6/AncKVLoG6AcotCnX6TIoR\np9faz+6Ridbb50XZSlC8BA8DS0lOgRQ3FYv6u3NquQUF2bQ8V27f1q/fvyi5dnrCUxceoZAEjdd7\n4mohqPbY2RxjsmoNZCUEZN39pBB76egO10/XPPHQOR4/PJSiJGrJ5gOnY89P/spv8v55UfKnvoAf\n+M//Cu1Cnqf/5rv+Gn/np36a3/3gFIDe9gVv4ju+5S/x4ssvcfXaNY6OjxlHsaP2MSqQ5CipEEKk\n7TpCjPTDQD8MEzW6mHW0E5q/NwegzDAWShpJxeGjJ7ZNLT767YZ+uxa6bzBml1PxUJlbbzQgeOdo\nYib4jNnVi8h+w2KxousWOOfoB6HfbzZbSVRHoRg7FelvmgaKx2kAH9NISNOoo/OerluwXK1IWfUW\nHhyf8aPve5yO5Akgn6qgbPBe9rAQcKGpYI655R4fH5FzqsVwQIxUHI7NZnMG9GprQUMVvocJ4DFW\nFlDZGr7GFl7155kOtjYk3OznvY6dVcZQkS63YN1OQa6isa0Iw8o0K0E0njSRsRF87yTuzZlIc9Zu\nSgmvgJaBhIeHh1WnK45jNRwRqYJcWQ73HvZ6muLr55TvDcNQ37O+/xxEVCZWLlM1ZyM58lf5/jiO\nch18xhfRycQJyFkc9L3kGtvtrr7XNI4pL+adw8WoI+i7M/egWHgxvKyi9tRCZc74mv/u3JXPrtOZ\nMUoJsiTKLORrpx5wyUG1Iyg4L8nypccu6BW+P0v3mScuEhct2RXcOLkHl5IpXuNwKeSSNB+SEX6c\nFwCsyBo+7rf81G/9Wz50+aX6Dl/y1LN879d/NftdJ2O0wE/92q/xwZfuMC8yPviJd/H3f/bn+Ht/\n83loI3vtkh/9we/kDz7yYf7goy/w2KOP8Ja3vJnj0w3Xb9zg2vUbnG43LJb7koCHMI3oog0yZdfk\nXHQsagauehkJNeBrYn5Mel8+xAqIGdPLgK8YoFWTk8YH2uBpFOhqvDrzWXGpz2SIkb39PQ4OzzHm\nkaPjI46Pj0lpZNE2de9wzrFardjfO6DrOm0WbjXnkTxFtIbF9CCGhqbpdMRrVwumB8dn/sjjlJcu\nF0tWaq617XthJiqbw7nJ1dx5MeFarZaMal5gDvQWQ84cRYFQk16pu6fUDSULiATyp8dJMu2FrQQ2\nMuXYW7asUqxNkDHJMy9ruPKGJW/SZZYVSCvF1z3Y8nacpKC+1ksZn5KeS6lak8M4Unbgjo6FGRdl\ndDnGFsfE5i3FinRXzxtQkCVNufUsZqZxpHhfQa+so5AGfJWCys7IvdBLh42FCvtbAI4YzaBFmcT0\n9X3mDfxSPOMoOk8GzqfRNJiM9aXM5WFQvWYD2IKCVBPQWY0EUODLW31SK0L9/8TINqaWSaxMbDxp\nhhdD9gygDNbY97W+8Gq6YYQTkXsRHeSATMoYCyynoOANXL5xk8u3bnJh/4DHD2xMkTMNtilQ5pqH\nOUQyJwad6ihFzD9KYa/p+Dvv+PO8fPsWL925w8WDQ1538SJegTpxezeDGDvnzIX9Ay4+9DBjyfRj\nIntHUX3XdrXkxnbDez52f0b0hz7+HNfvnnLu/AXu3LzN5cuvcPXqdY5PTkm5aLMxVFajGef44JWg\nocSOomw47FzNaXkkOSf6XJYjeHGUzCkpHiLnmtPIbrshjQMuZxnj95KrNU0k+kDbNkTn8BRitPFW\nkU2IIdQRx5QGRtXGJnqa0Eh9j+0HVsfAbrtjHAdhoS66mtfc2/x7LY7PCeBrOwjFN0RJRHbDwKDa\nK9ah8Cok3jStWpcPHGsCgRfL0RCaOqa1G3o26w2b9Zpx7Ek506n9avBRSV0JShK3JHXcEMHzQvGN\nfK1OGsyS0Nk8Qy1m9O+VHWS/Zv+adSL0NxFtFdl8YwhYiEgKbKDAiY07htqNiDWg2SvJ2MZIQYQk\nUx5xa1icLFnsrVjureiQQGEoblCtjaLZ9DzxxqGFoXXbtcPBFFjGXqiXozqd1E63c5XpVWeeZ4Cd\n1xHPnBPD0NdOhHX8nfcyZ67dBx8C/dCfPUfn6khfglr4eeeqQKF1b6xwEY0Mh1MmlkVTc7KY9Fg8\nFQPEwKuiiafd70loODkRsAdB4L2CbE4MQnQdSJekIEn6Y4+e13Vw/6LkqScuEBcR5xvc6GpANKcY\nKZZUH8CYH86BVz2bImv1eNzxU7/1f/GBl6ei5G1PP8v3vONr2Os6WUPO85O/8qt88NO3ubco+Yn/\n5Z/z3/2t78aFwv5+x49831/jDz72MT72qU/xzBOP87pnnuLGrdvcvnuH05MTdn0PXvQpYojgJCgI\nBXgSK93udozDWFk1OO1QqECjPC5CmU6ukLTrGL3opsTg6Hcbhl7s5T0qxB9kdr1Tu+WmaWg0mOKE\nzSLC+lEDi2exXLFcrkgpcffuEXfu3BE3Sg0IwzAyjtqNPTigiYHddi3mGXo/JXDJ+vMh0HbS5U39\nWO/Pg+Mze6Qk+m8mGtyrZlee6ReaFot1eG18MaWkxiACkPggz+F6s+bo6KiCXl3XnRlZM7e1e8EN\nmIEjTG2Te0GRew8D/u+NM5QpFklT3vS7dPRCk9ysCb30BWTPzJi8o5qmOKHbe41PxZnr73TelUFT\nCicnJ4QQODw8pNERRwOsQPZv10kCbiOF9fO76XMZ+9MSfxsfnV+7NCZxwFWAbRgHaYDMgMHgfU3Q\nrO9QijCEUaFhgjBRNRiRYqrjZsYaqAHALMSR2BBn66Myhqi4W72u9r05QGlfv7eQNcHr2lgq9zLA\nDNyRTr4VmsIALqh157SYguPpJx7nz3zhm3nPR17N0v3Tn/8mnrzwCDlnoutwgyTYKY/Cei/KAB97\nzJnWOQht1Fg6MVH+4b/6HX7/yglnRvZffp53/8a/4oe/4S8y5sKnb93i/Z/+JPdlOH/4Oa7cuMnT\nr3uaAdGMufjwIe0bX89iuY/3gZOTNbdv32W93gDKKrFCsh8oxbHolnSdsNllnfVQTP5AmZExShPE\nT7qSZkRhwOyilSIh58x2u63rOIRA23iaoILAtaMuXfUm+OoGLE3HWEHhbrEg5cTx0THXb9zk9t07\nlJK5eP6hOt7Ytm0V0h+qu+lYG5Zzdsm9Y40Pxhw/u45WmZreB84fHvLw4SHjOHKio22LxRLngugd\n5oKLkUXbcHDuIQqJTb9h069FJ8mYvBWwUU0ma14U4eNEzbFlb5AGq8NLbp6z7O/oNLPL6pSu+q+C\njEHJZBCtyywgSo153hOkm1JZICFECJ7sp9jkQOqm7ESDVrorkDM5FEqQH8hqtlLI5LyllCOCb2ji\nguBFj2jndjg8JeU6lbLbbYFCizzrpAwpVWdd0GvgpDmdazPY9JNhyEmc6xwK5msN5KgAxTBK3iev\nx+z6Twxm2z9KUdf1rPIuFHyUT2fTONXmUmNLiBGn4Ihy6hjGzDj25DxiLn91pNXr6HiR3EMkH6fp\nFrk1WXGlMkka5FLBGNkDBQCr/gpBroHzZvileUMpFC+fIzBpb5ItVkOJBTrPycmaH/vffp73fmIa\nGfySZ9/A9/35d3DQLcDWnzZLvBrPWF7hCgS0We4C3hcxJ0tZwcnA6x59nEvnzjOMW/Kww+lnwheR\nrchJgVhmYJLHx4iLkRQ8yUEOjub8Oa69dKRnen/ywdWTNU8U+OjLr/CJl69y6+6aYYTs5DV7CviM\nS4MKzDv29vfxLoiuV/FEFxlM/7KI6V6fM2nsK6bgvYz0xuApyP1fNg17e+ICu9usGTfHtGXA+SKs\nYgeNp06zOEZCyiyiZ9UVYqPMCwdN41m0Du8Su2HLOAw0bcdqb19MvdoF215ArpQy2yGz3W4oY08h\n07UdbZaRbJw7w+B/rY7PCeALNOEPghwX54XpUkTrSzq1pnkgXfR+2GkH3+GCdabl4R2GHZvNjs16\nI/pQ0U9ioTnJLLAXZwOQRG4sjpJQpozSEBV4uXcUwToPs7Hy2h0+eyi7S7zjoc5pT517g8wqso64\nn0z6VKrdkYWN5koBn2avLyJ89vecPL54cvGw23F8esLqZMXecsWiaUCLeWEviLimC6F26nPOOBWF\nBQOjpPg/47RVCsMwStD2njImTTZH+n6YADE7s9qRsYLNChzZpaSwEMqvrAHVUnMIYJjEdlgrgOl1\ntVuLvpZ01n1FIp1umjYqapwChzvTnTfqbdGveQ0C1hmBupfWz2OgmLjpGM3auv9W2Ai1t2hws/d5\n5tJjf3xRcvFRyCPRN/ikotaa9KQx4RLkJLpYpKmwyrkg5payTv/B//lv+NDls0XJB196np/89d/i\nb3/jXwAcL9++q0yve4qSXPh/fv85Xrp6hdc9c4mcM0MaeOThAxbtsxwenqM4ONlsuH3nLuvtdir6\nitCaJahn2qYjhEjBMVoXM8yE6710PMQWusgmPPZq5Z3pGplfX3aim0RRZ6s00jXNGbaX2foKcJ0m\nLn5xEETfoGla2q5RZxTH8bFoOJ2cnMr4b4gU1QdyTq3ol0tyzqzXOzabU0rJrJwAelZAS04jf47J\nWAQPipLPlsOK2+I8YRgpZWBMiWEYGVLCt46SxOlxPqoo7nbG3Ep47zg9PeX4+JiTkxNSSsIAm4E+\nxhqzERc75oV0FW7XZsD9AK/56rEmQ1Abc0vGzWGpjmZUlzdNjJle11ycJI55tTSXfStbt1mZRaEE\nhizjkpLcT0V40j15vV4TQuD4+JhuucBrQmqfc7Fa0iJMr2EGLgUbB3PG2poEh+3c7tUumrOHxWWr\nr1fIdGgMgHbOVQcqr82UVEcw1NvKOt963VOyQnC6+nKNk2qHFY0Pc41QSdCtuDKmzzx3mB/3Apui\n0zQzX5kVuBX4AimGENdFX1RXygA06RzJe04hix/8tr/M3/sn/5Tf+/DE0v3SN76Zv/Ut38SYNZ7H\ngPeQk8PnUHVwoDDsJhaHjEFobB0GSIkrd+7y/pc+zX0BrRef49p6zWPnznH99FS/d/8i4/KNG1x6\n3VNQMsPQV3fepmnIpbDebthst2SErS4yAo5+GBlTpomRVbeiWzQiRm3yC/oMm6tZ8GKoIs6IMsY+\n9D3ee/b3V+zv77NaLCklsdtt6fV7TSNNlOhGPAPeeaI2a5RXQU0oSqFVfUBxGC+cnpyw3m05Ojpi\n2/esVnvsrZaQBtq20zHbJW3bstsNdU+R95X1YeNIElOQyYikWkPOc3aneHB8Rg8nwIY5/RprcNQc\nWvbGTBM72mUnjmpeWMmbzQnr9QljGsWdLbb3jMtnBbMK1dUwZ0r2AuLMjzI1gSV/nTVWVDPRYp0B\n7ybKUtwkNzM1fApem5B1RLgyjuavPz0VBvSkkgFlXXlPKNM4oXOOvu85OjmuplYPPXSo/kAS52LT\naM2EinrLM902DQNoEyTPGu0SYxi1YR9CvVZWxww7YXIaE8/2jXm9N44TG9RGpc2Q4lX7uzNpnFlc\n7gXkaGOUcTyL2UNfnQzTmGb31+K4MlfLDNh2k1kNRaZcTFKlLjy03qq1jMbsYGP+4ezIve71NgEz\n30WM5aYObpNGWSkQHE3oaDv4b/8A19q8AAAgAElEQVTp/8r7X7hHr/jF5/n7v/Jr/PA3faOsv5Sk\nvi4zkgOiSeeLjPaBsBxTHhUDkGylZIm7yWUlv9rIPaJVHLyMhzpReAkxEtsFLgZKDOToGYMnRY9v\nGhZ7K559+in9lPcnHzxx8RGuvPIKL1++zJ07d+j7Xp8M2ePFiABtRAorsG3aqvGWs4GmoiM6jql+\nzekESlHWW3IF58TNM4bAcrlgoSPHu5LFkbGLAhA6J8ZdOuYYg6/kmbYJxDjpmgavwLfmQHurfcJh\nZLlc0i2WAnRtt5yentL32pBE6igbb86IFq4fZQ+YN71eq+NzAviKlvg5r6whEVFPKnJfUEE4pbYb\nWBJjAN8qyiubUtvIiON2s61deOcbnBfRbJcSSZN656BpAo6M94U8yit77eTpFqLBwyIISDExdWFA\nmiWWHNrXKlCGIvou45QqagiKJJU6slE7zZq4WwKvxQtO0yvrYhRljPnJOQN9t1wKY0psNmuOj49Z\nLhY0TWC1XOK8FxpwkgejaUplDFhh4fLkJjIPAnbOYImwzPumAsOuqA18mkZQDKxJ0sGwUcucp9E2\n61KVIomc9wiSXgw0Ujct63rqZoOejasYlkFaZ4sZr91xsK57qDRgY3lldcqw1y4m0uuFaWggVy4G\n2Ln6WSyYYswiirAQDA7VrpJT63mKFCj3LUo+/038wF/+JpJjGl8KQUVDRbSS6AUMS548qkAiSivP\nRbtrjst3jv7IouR9n3qOa6cnPHH+Ya6fHuv37l+UvHT1Ks888wS5jAypZ8yDFM8hMObM8ekJt+/e\nZbPbCV29aaCIsKODqutVgF6Dva0fYzMIaOUJwanY9I40DDhXaJuW5XLBatnRBE/JiWFIUnh0rY49\nglIkxfPBFcR11YBqeebbtqNbNHUULRdHTpn1esvpesMwJkKY3MAsibKf3+122pETcNqFQLeQAkdG\nFkYt5CGr5sWD47PjcIsDsvecjvL87UpkIDKgY2Qx4kNLt5CitWtbck4EX+h3W8Z+CyUT2oa9g31K\n8Gxu7Tjdisi7i7Abt7rOWpHAUA2xtnOEJhL7Qt+bwLFpOSUdrZCOrUdGJgxI99NOIu5TNSaZfljS\nCOOw0QZGQIYSJK5kG02RUayiD4XXBPZV+lN6Drl4hlIYnTpYBdMBA3QMYyyZ480pN27dJDQCZrVN\nJKCJ8rYn+wDBE2KDuHDpPlr8pIWke3QIU+xtmoChOQOZ0Uu3XhxVAy4HsUDP1rhRuVbn5B81W8HY\nBU7HLdDxT2UmuBTwRUbX5FRmjS8cmSA/SiHjGVGXIy3EXMi4mVs0rhDNCIUCJUnzCg8uUEqoRUZ2\n1mCRO52yiMib4Y/3Ejd8z9ToKyIWbA2YrMWkx/4uBcZqteDvvutbefnqda5cu8Hjj5znyQuPgjWm\nvKsFas4qxpttOBFyAD8GXMrTGEwuRGRs/PZ6q0/X/WPHiyc3eeSxAx57/Jx+/f5FxqXHzsMozKex\nH8RZNTb0KbHXNNy8dYsrr1zhdH2Co7BcNIw540iq+xqIraOQGMYdwygmByF4PGIPX8YR1zT44BiH\nkc12TU6JRddwsL/H4eEBq9WC4EQ3MruMC5JnNk0gBGVU5Awzw5jgG2ITKoPYIRqPQ06kIdc4l3oR\nzl/o1ILPQGgUgnWMKcPQi24pmRA9TdfQLResVit8CAy9aAf50NA0C5xvKWnE+yUxPmAWf7YcXoHW\nxWJBTok7d26LfMJ2VxstsWlpu5bFosPYsKfbNZvNMVld19uuo+Q4iVqb/LAyW6RRbkPOWpQboFBz\nVNtaNUs2sD/PZSYkDzcmKzB1eZl+RvZDBUqcaUIV7UU7ZaAVzPDLxvisfzwxc9FGoQL7wTOMA+v1\nqTYOnDQmm0hQANvALxsjS2PSJk+odYHFybnuF+i+abmYsXFTYnAiuD4OOoapNZTUQbL/T8YYxux6\ntcOwA9CxRbnKRRv1Eh/RaxuiOfNqw1y1BSujNnhyduQ8AyizyBHY5ID32qR3epfVfVGuv977SgTx\ntWPvrLulscFcx+U8Ms5lvFM3x5q3TutHwCf9Xqa6/L187Tq/94d/wH2bH598jmsb0X1MQ08hVZJD\nfXXdtopPjAVyERuV4gouSOPcTFaclf/Sr8ZSbBH/B5fU7C0EfHSS2zSBl+/e5pWjIx577AJPX3qS\nbtHyhkcf5su++G383ofuIR+4d/G2N76JCw8/xAc//BGuXrvK0fExwzjKZw6zqQDtMpmMSylFmYIT\neGoTBc6J9JA3YBYY9P6TEy4nQvS06uqKEg3GYYejSMwAAb2CmCE0saGJQRifwdO2Hu91ckG1QMVU\nqGW1WhG1DisFNWLaMowj/a4XdqMTqZmmaXBFteK8r8YMtu4fML7+fRw+UJyjH5OaY4gnQXFOxhuj\np1t00kGPjVAJ8wgUyiA2nyllmhaiX5GLI6VRO34wJkGUvYrQpZJxeRSthxCqmdGABBRzJrINP+PE\nijV7fPa16wATuCLBJs/+Pm3yFihKcZpcJml8WNddOyaCYsv27LO6XaCAhm44MlZRqvuING6cgiTW\n0YDiRLxut9txcnLMYtHSdcJAaJtGAMWym823uzo2N/HJOPNZ3JnPS50/B0haTJq+lnQZxjNjKnK9\n5JWnwFRm17oo6OR0fCXUzrONY05AmY6FhCB6LSZiT6n358y4ibJunDIlXg18TWCWv+f+2nvmDJSJ\nvYWbBENBLM3rzxbTiDHgUj+8gXwU9ldLfuT5b+Ola1d5+eoNnnjkPE888rAEw5K1uHRCcc56Ar7g\ni5Mmj47ruCSUaonSXkEex7X1Wj/F/YuSV06OuPTYIzxx4Y8fu3z84iOkPDCOPUMS0MsHD96x2/Uc\nHZ9w9+iYvh9wvsH7UHXJgiZ/IcroyKBaMvX62mVxQEnK+Bg0mYeubdnb2+PgYJ9F21DSwG67JTtH\n7Jr6/JaSVNxX1lPUkcm2bWhiY5AAbTuNW8r+IABX0qI0qsA9lPo82RqaRrRUmLYR5thiucB7L8mp\nPLEzWrqrQf7B8Zk9EkGAzkHudcJDaIitp1l4uuVK1mqwRoJj6LdVEHQceil8G08bPFtkVCSVTHAC\niQyqiYAaTYxpFDMHHYVyeN27BEbx6loqj6/TvW9iD9lh/+XDtF+ZgPL8h2ytGcPM0n1j8FKbPsLi\nkjFkrw0UdF/TRFfdVlEgx8gERUfNzRAkI8ne8ckJi8WC5WLBouuIXpjEfd7iyXgy3UIEVoWUmmrD\nYYorci1MU0Q6MqkCWl6bDVYkoEmZOVf52WtZ5HCqgWlmJPoppwIge0pWweGhx1zYfBNpYmCMHrfd\n0fdbhnEQ8nWQRp1dFI9H531qR94j3VmJLVaUynV1xRjFCBDm5YwzmeQyow7oOKS767zDZ3fGtQ1t\nyKXpptZ4RpmN1Ba4dPFRnrrwqGqkpSlOel1zBDn9TN2zxAul4KKHlHE6UuSzMuiApx99RO/b/WPH\nhUcPybHw5BPn+ZLPewMf+MQ97lz+u/jTb34Lly6eJ6deWMJjkqEsH6bmyvExJyfH6topSzKNg4ID\nDV3XAJndbmBQPS7TvnN40NxmGHvSKLqywXsBvVYrzp075PBgX/LAfod3mbbxLJSNlVNit1njGGgC\ntK2YlyyU1WmOa7Z+Y9NIQdH3dVQnxobV8qxTWrdYst1u6wiwxBTp+BtLrWmiGkU4egbNpSQ3dk4c\nwr1vqA7hD47P+GFsXx88m+2G45NjNpuN6A8GaV6IYZPkReLoKc36YejFGVTrnZKD5sM6ZeIU+ALp\n9TnkXwZgYduBsX1tvwWLFxV4MHBlBpLVr9e/WVNa0tHiSq1JHAq6K6Zv4SgZMGfsLjc1++0s5JQL\nYx6lL1AceZc1v4qs9vdYLBfktp3YUw5cjOTiGKG6rE8joPIeOWd12WOKD7PPZNph1X1ewROpWxI5\nj2cKfIsoxva2/x7HgTqa72atd+/JRWJjQECv2EQKYsRBmTTZnJIjUJ3iNHoVhMdurtZ1GtG0ZppP\nrVQDMmtkFGva6+RQ3ZqyNsF03NBqpjQz2rH4YmAZGg+EkCRjlZa4Ay/fvKlX9Y+qM455+uKj4DNi\n7Thd11KKOmGKPEtt5BXR/MLlyng2wDb7wuWjO1w7OeXJhx/iyYcektgfAs7kqJ2H4DkZen7yl3+J\n93/y4/WsvvSNX8jffue3shc9P/Suv8oP/YN/fMZM5Ys+//P5G9/6zZxu1ty6c5u7d4+EbZwLQRsc\nUz41sb1ijIyDgEilTHWo1RBRGe6SH5hmqWo1lwJepVzaCCWz224YBpFyCUhNI5iFOPo2QdiOjWpa\neuekOYOnaWIdT46xYbFc0nZLcsls1mu2250yGaVZKDrpQjLougXLZUe/W6PdnUr6wE1yPa/l8TkB\nfJnAMKknJ5lEdyGwWCxZhkC3aOmWYvFLESeuvpdkchh6+t2WXKjCwyVNnXBwqpOgYrBRQDCxWi0q\nABfrxpaSJLGWINuuIe4hNqYn/K7K9vLmpDA5eU3UVN0IFcARW13ZgDzaMTZ2kbwjKUtXVWH1KV7o\nRiWvhwjjS/OxBiFAA4A6zo2j6tA0LNoFy8WSJkZNApPoA3hPx7xTPNGPLUmDKXA4Lc5kT6xVEpVa\n7PTzpWmscxLsLbPXLFOxVowdp1txZVbN2WZaUOgFEfOqzOhg6HN9GO3cJ+ALrK1gYz/OuiX6feu4\nOA2AZ8dRtIejD3/ORYB+6/TMb48pRmv1aC9hSYeBXvYnwKWLF7h04dEqsDtVuQp6FStsqJ2iglKY\nnMz6i3yAdASt+Lr0JwFajz5MCY6nHnuUL/28P8X771OUfMmb38KTjz8qoNcobK9CFq0X71hvtxyd\nHLPerEn6vjYp473YrS8XC0YFvZKKTItAojHwZK2nlGVOPye1523Y21uxv3/A/v4KT2a7HjXYOOnC\nO9kPchIgXBiMQYvvhQLlToSbZQUxjtrBU4cSodAH2q6jGjIUEZgsKakJAxpEgnZQvOiE6SiK7EWj\nrlF1yamFLg+Oz4JjLpIOHt/oKMpqTxIDZe6dnIhmV9/3miRs2fXCxDDwJ+XMth/qWJ69/lzMXjpr\nKgTv0ZH8UNmDk4CkHPeOwM27aveOQM731Dnz2L5n5wK6nej+7LGkVQE0ZdlKgRLwzhwR5bVqc6Oo\nNhYG3BvbWBoI3kuBd3R0JKBXjOwtV7NzL3WvdctF3a8E+Joxi7OJ+0rnMZnWpxU2yr6cN1Tss8/Z\nCrZXz8cyJ5ew+4wqamd2t+vVPEeK0hA8YZTiIeVRhGG1aBVXTOp+b4WEmzU3pGHjatPG/nsKHIb6\nz+KGXLQKWDrt3HtvmiY6Vq3vM4FeEzMcY2tbM0Ajq7NTdrOGmjIGHF4B20KdlyzGI/T19HwphCwx\n59nHLvBn3vAG3vPCq+3m3/aG13Pp0fNyTt7z/d/yF/jxf/bLvO+jM4bzm76Q/+Kdf4U66ppF17Wo\n09VyueTk5ES1Wu35nfRDm7Zh0S2IMdAPA7vNto4jSVNQXI9lJKiQBnGvCw7291bs7a1YLRasVgva\nJjLauNMw1sZNEyNDSqRxwLtE7DpWqz0ODg7ErCEb032sOcw4JvpdX0cll11XxyXNdGlMiSZn5vlQ\nKTJO0nXdGR05+XM2VDnLiYR5aK6PD47PhkPGlz0pjWx3W9brNcPY40MkONEjFXZPot/tODk5UQMO\nzSH8BEiFILmOdMtz1d2lNlfBBOZtjE+/KH/WXJ4z+2VhlrPLD1KBsRlaYuvTC/5tU8aAjBCmXITI\nqiBc1ve2RnYsAlBpqYNyeOrppSQtCe+FFOAcnJ6ecnp6yv6eNKNK8Oryl5XJqc/GKHnfmAwsmWl8\nZdPwS7VeqSPtOuJpcUWkXM46jE+uywqwOSobTfb4pPWcjM5LDedwLiiHU3GrUSZsxmGYnl00Vz4T\n12c1iN6+orpgTrdk+2xS42ndUmS9hDql4KsEjbfxdwzAkPfRE6lrqDhw2eGym6wSvHwW3Gyqxs7J\nYqeDJy788c2PS49dwLWB4CLOZ9xoAvS6RnImjyIhIdz7LIwu77VuzjWWn+x63v0bv32PZvEzfM87\nvob95XIW5STm/OQv/hoffPEW8xHM93/0XfzIP/kf+fEf/G4ODlb86A/8dT76iRf42Auf5JFzB3ze\n657Gh8iVa9e5e3SX9WYtZg9upgVdtE7HiZ5x04Bzle3lvCMQ9DSs8RFq484kemTaTEYL2ybStQ1N\ncKRxJ/rG44AryjpWozDRkwzqRO8VF9FcR+vXqKxiaZ40xKZhTEkdyo8ZhkEafNGTxkRKuY70d22L\n855hlHUdjVWIvHZxomX9Wh6fE8CXXGAJ6Tl7XJQZ1L29Pfb291muFKncnIqA9m7HZrPm9HTNZqsd\nErVfdRRZMEltyYHS68iEAx8a6XJmKbKbHFRgO+JcQdipAnRNjVQLHCowrkDKnEor4pBT4WLJ13w2\n24KBbZS6/UlBBAo8Cb4unVl5eNFOrNfRrUmclTquUcaxBj2Hg2BouszOHx+f0MaGRdfRNo1s8OqQ\n5YO4U4QQVPhYx+sM1IIJmDrTtSn/H3tvF3NLmp0HPev9qaq9v++c092n/6Z72sR2jCBcOJaIxRVc\nGEVIiXITkiA7hgsIQnK44CcBgfixEEhE3CAQXHFnC4QUCWQhgYQUiISUi0iOHbDjOGPZnunp7unu\n09/f3ruq3j8unrXequ/0OPGFx9PSnBp9M2fO2d/eu6reetdaz3rW8/RrbA9NrRUoreufmeC887zm\nZddJkZ5waxCGssWw1QW0qc9bh0Y3cwMhREG2XLIWCUxwt/u2ierzVGzjaehD8LBgtt2/l4tQm3W2\n0ZJmr3EOzsBT77vrpmsM6N1uuDEB5zmbNP6OnG57tUARUFExbQUZ+zlodqGFD7TTTAxMqPGggfLr\n7zzHT/zoH/kyoCX/Jn78R38EX3vzNb13gr/6038Gf+1/+iX88q4o+fF/8o/hr/4bfxFwLOpLzaiN\ngSnGEc47nE5n3N0/YM0ZHOERLfT5XI0qXm+Bv2gXTrxZKlcdi2UgqCnBOcHheMD11RHXxyMOhwO8\nc0jLgpySAtpk8eXKgsNA7HEcMU0jrq+uMOq8fVppbiEiyLWgrBQuZTLgUFoGxCEMIzv7y4Ja0R1W\nTasohIBpHBWstgJ6q2JpPKBMjsYg4YwZ8ur4vh+W0NKO2uH1qzfx/vvv492vvYfj8Yj78wUvXrzA\n5TLj5uYGyzxjmc9IaUFOK1otXWA3p4TTad5ALWldH8QE7dklLz0WRN1TbFRiE9Yv1l8B8Lg4AfCl\nPWkbEd7Ar5ep5/sEft+wkF3nvcci3efphsgkrO0MXCz+cB9T5zuYeHwDua4V5/OF+h+G5bzelEHn\ntXHUqEmYSx+RgWuanO/2VjsVER2v47l2cV2NXUU1Ka3g6UWNXvO8A8d4rVsv9vYg0SMWc+Q+Difs\nxBYtJp0gxNg10EpJMNt2w6zMwcw61kW0EWGf5xwgrt8Dfr7qhOheJBqLAnlcjJ9qCjKEaWvmCPen\nrGOJ+/tvDpf8u85BVZDL9TxJHKlTzgmK9tlaQWdO25rr7pHQeNcAV7f3/Q/+7L+An//r/xt+5bd2\nseNHfhj/zp/7k33cQpzDsydX+M/+0l/Ahy++wEdf3OGDr72Df+zr70OGyJGVXT0GAOI8ro5P8NHH\nv4Xbuzsd99qacdM0YZwmjhWXgrSsHXh2ArRSsKpG4zhOMBewVgtciLi+vsLTJ9cIjuLZp/MJNWes\n8wXz5YJaMmIMgArOP336BEMUHCaK0McYkXMmS2ddIY3mFuM44v7+HvPMMdBpmpRVx4arCdcvy4xc\naaJyOBzo0BV9fx7s2bW8ix38wDzQsbliQtDObU22V8dX4BA2FZZ16dpAHJHSUXFtri7rgvPpgtPD\nA8QJhkHlXITNFSemUexAPWLN/5oNIzf7uJ7TPgJG236/26Xzu+d72zv4AFajVEpDM7dfjVl9BFof\n1FLrbuQO2kxG30FaVbOu1sj4gQFf6AASGtBKU62nBqQEOZ9xeLjHk+srah3p2s4poahphNO5z1LQ\n2fh7Z2Ob6jD9YoGxiK1Zak0ej7wuX9In3p6/x06L1six/ZV/rnr9OXFRq+aGRJ0ex1q9P6LgoQGW\n+xpLekUoCp64rWlh/7Hv0ktMq3d0WshAtB73OQhfrfNh9wjQGGI6clbvOjyWo9E6RmztcF///egV\n11og8PA+UqrF9NGUiQuviGluqNr79za+qsYIAPBf/+//z++hWfx/4T/6s39az4RPxIdf3OJXfue3\n8N20i//2//uz+ObHH+OH3n8XpRW89fwZBv9DaGjwMSCXhrv7B7y4ucW8LIAIazxxqqtY9bVDfzZy\nziTxqKZw1TrUB9+NULgWOT1jtdAYAsYxYBo54thawbpSvzg4QRxGNa7Q93NkjImZm7kKwyJpzhT5\nO5YvQTDPCZfLGTc3N+peHhQI5Yh9jFGF7gfkUjAvF1wuF+5X4wgvDuKDxjHpz8P36viBAL7WlTPc\nPgwYpwNef+M53nr7HTx/801cXV8jl4RvfOM38e1vf4SbFy84/+6gybCHCAWEa844nR5wvmiwabqx\n14aSq7pWbN2OoiLGrXF+1pBTo8nvg4brxat1dB8nzHY8ZjdtGxQnGUzbShFWMZ0P23qs9tGxQU1s\nm2t01xADQwz7UAAEKtpbC8zmHAIE7Y7WXNHyGdK4yYsIEzd1hGi1opXaC3RqiG0dFNu0ewLmbMQE\nEC8clfQBQWgsUJZEnY6sIAd2wolNUHbAVLchFwcXHKLnGFrl5TLeHQPpozFDYC3swMN7xHGEiCCt\n1IayQk7aJhj5uEtqgVcTSu82+ioIGELtg42pMaigZe0oFVkBIUYFvnhdSEGmeyawgaBGbW67dQVL\nCnjbydCFBjdva8z14qbVhuZkK2d2ARRNOyTG2kPDX/mz/zz+2l//P/F3vrErSn70R/Bv/bk/yS6b\nUoKfPrnCz/+lfwkffn6Dj2/v8N777+Lr778LCQHe70f2Wu8iAILT+YzT+awWv9QrEec58nQ4wHuH\ny/mMhxPHLs0ZDwoe2GbeN/FWMY0HvPb0CcZxAFrD+UQh+ZxW1ELgq5WC0zIjeIfjccJhGjGOQwfb\nUOk2d7nMaLVitNED54FAVqlZWpdcmJQKkGvFvK6o1rVx0K6/Z3ESAgNXyXDVIwRLVpyOSLUecJwP\nCHCvOvFfkePFixc4HA744IMP8CM/+mN4+913MIwHXOYZn376GX73ww/x2Wef4fb2BpfLmSYHu+Rx\n7641zwtOp1MHeQFNfIoBLa03MEwr0bnd+tfDALI9e8l+Xgbe906OX36Px2vs5X/fu/X239F/NxDK\nN82etKVfreOqeyecM6MgVGHHOQB8nbJezprMeXBffQ2b02UqGSElFBjgYiNaW2dCALVX34wFWuN1\nizFaLxfzPPdrFFX3Zc90y3vGm36WB4u6R0Ci21zLQox9LBtg3MnWzQ8eEWO/B/OlobXc7cj3qYA0\nMjnA+rSDXbJrjpG5xXFomxIyR1i/+37sykYdk3sKEypu4DhR0hwmKUPBzt/0uCx6EFQDAq3ACADu\n15jS12qrQGGOYvdjW1Qg6USXiGh8vr4a8R//xT+Fj17c4pObe3ztjdfw3vPXezens6+9h/MBH7z7\nNn7o6+/D7+7bns0A2GhIwPF4xIsvvsDNzQ3my4zWamfdvv7663R8XtdHDojBsWBbFWCKIWAIdHSM\nwcM7jRMxALVgSXRuTctFNSQpRtxqg9expsNh0qYh9/hSSmelzDNZZpOCXjFGGjqMHFWbpgkAcHtz\ng4fTiY0aXvQOgA7DgKvrI2IMWNcVDw/3oAERWWJ9XEZH4xhruG6ZnxlD/tXxlTh265ns9KgO9Vw7\nPjBPTyljWcgoDoEMDBPoro37jxNqwwXvIJF6ptkJSpGejzvZTYYYkGJg1R7o719Puobgl4WqK5ld\ngALlAV6nWbSQ0aY3Y4iZXYmEPmoumtMLthqlMxsN4BZBcOGRdEwDAT+TaLm7O9CAC9KbTgQMpMeD\nDhyBgBb0nF52wnz5/M1YppaCmjJqWZFToUwHNrCKjYzH77FpFrOOKDpLWpsapwjQqkPzDRDVKTZ9\nQF0e9p6w7r9dgA48WXP1pckU53oc2ti4W/PIKiZoM4O1suvx3xq6j8bVdu9vpIRHwJzlC04b7N2k\njMDbf/iv/Qz+8//hF/G3f23H5v3H/wn8lZ/5F5Gbihd58Lt7aIOYNUttDZIdp72CahbbtW6izSfg\n2y9u8Svf/L01iz853eO9N95QrFHwnX+EdvE3P/kEX3//LeSakUpCaaXnBOu64PbhHl/c3OCyKlMz\n0pyrJOYVIaoWlnNIOwahNS4IrAIxBARvIG3Cus7IOcGJYBxHXF0dcXUY6SRcMpY1kwEWIg0RQoC0\nilqzXhdDC6rW1tYYcRiGiMNx2q199FHq+4cTUi46GRdg2uA2lm3C9SmRaQZBH7dnXCPYbE3M7+Xx\nAwF8PX36DMMw4vXnb+Htt97Bm2++gxAjbu7u8Gu//uv41rd+F59//hlSWuHAZIQjVQWtZAgaE4yR\nwm3LZQYqGSCQzV2KSCVHsaTS8jc3oObCwt06sq6h2VhEU3DAVQWurBDaxuFsQ9kXIFvnYeu6im5q\n1k1/VOjswK+qm5YzQKNytLInxJxI4HZXxd5YNyrRgf6KhASvo3I1b12G1oA33ngdT66ecETlckEp\nBaN2Np33BFH6++7APGjhU/fnys23ebV61005BA/flLWERgcTdVxqjfa/tdh4iwZGFN4nBQuD5wja\nMIwIcSB6rvPLJWcmzLWiCIV5kZLOtdssO0UR+f03p0wbQ4OOIInb7mf/Mdo0BAVmhx5VGFogPiIO\nA6bDgeNuTrDFEgI7OWcGU+0GcJSDHQwDRJlPCAtL7YbZuulaDj2g6ffXTrq1yDuDTKAAGG/U9ZMr\n/Cc/+6fw4edf4OMv7vHum1sVdCUAACAASURBVK/jvedvcLWJqM4LeuHx3tvP8fUP3oMbBpgVdlVa\nbs0FqID3EcEHrGvC7d097u5PWJaMlCt8GHF1dY3rqysE79nVTglBtvPLaUVTpkz0ypATQAI1kIKN\n4irDy9xGW6UTkhOui6vjEdPETZsAOAvfy2VGyUwoU0oc5/UePg4otWJd+Z4+BAzjhFwKlnVFUmef\nUgrGYdBiO2CMnKXnelX30pIQ49ABrxgHoAlEEoOKUHCS9/cV8PVVOH7qp34K4zjinXfewWuvvYHT\nPOPDjz7Cb//27+BbH36Iz7+4wbIs3LcUaJkGaueklfdyHAKGGFBKRVozWqNgKUAA1XBss+i2fbKq\nhoXTHHcPYvGXy6PE3PbWPeD1SLNwF3u+G/DVi2UAu0/pyZC1CAk6bIA803KyCpyNzejr9yNknKim\nwyD/nqO/rVTM84Kbm9v+/6+urjAMBBuWYcH05FqbBV6v9eaQBb025u5blfGL5nqzxM7fxh6dx6Pr\nYCxj68TaaGTKGUWFZl9mRBj4lVoBYA6Aeq76mXlNWOeGUDKmaSITOedtL9eCr9YCX8l+zUB3me1u\niyJoWjiQ7U3AKwwcm/YxQGSzn/chIISIw/EZHRjFoQmL4nVdMS8LlnVh8r0ytooVg1VBNUiP3QZw\ntZJ6c4eFEnXnIOVL8YYzLraYdCSoGfjFxtb7b76Or7/1HF1nTM91z0wohc+BCIEw6p0KCujkmxNz\nMTFDlNZw88UXuLu7x7KuEHEYJzpe7ccGyeJkHCm1UEeyVUTvMMbA4qBVDMHBuRHBB+S0IC+z2rhz\npKTpupnGiDFSF3UIEZCGy+WMZdk+gxopDSHQ6j2EgFQqTqczWLw6VNB5Mq1J4+SMYRg5yXA4II4B\nDw8PdCg/Cw7TBFras4gy9igdHm3f8N3MSBRc/G57wKvj+3dcX1/pnxqWZcY8XzAvCWtKaA2YNLfI\niRIPNgXiMx1Wg8pwVFDbKuheEGOAMY4IsGwMpNoKWqldCmRr7O7Et4AeZ+x1wONa5BEO08hKLlWA\n3FQaRRuzu/1s04vkb3rNbZtDjy2lFW2AK3heqXUZvGd90MjiR2vIreF8PuP27o5MlDjgyh8hEOSU\nsGgzRLRZ0HUxd+ez//M+n+e1cV1P037RwDJKEWxNK76HXTsAek8eA4YKDFV1HayC5lSnuANROg6p\nWtNs6HggkN/bKlR7GYDWLAZyWTOtta0hYnI2trO3Zo7RtZMkHncu+L72XbmHKzLW6w0CYlbDGWCp\nHD29p3bjuVZKq7g6TPgv/vK/ig8/+Q4+/M6neO/5G/jam2+glqqakgSBmriuS2fxt18XD6AIpBgh\nADrpxHr00/NFz+H30BK7v8f77zy3btPvQ7v4daxpwZoWlJohXuDEowlwmWd8cXfbwSIfI1go8R1C\nCDhOB4RIzba9oL1NLNlYLFCREuNRLQmCikGnU66vr/HkyTUOYwRqxuWU4BowDREhOHgxEC2jNY4B\nU9SeNcmozK6mWqk23phTRsqp1yf8CZimI2tXXczeB5V3YSPP1rL3HmOMCDEos1oNvFTD+2WZjj/o\n4wcC+Pqn/8RPYhgGvPb6m0i54u7uAZ/+7jfx0Scf45PvfILbu1tcLmfE6DFGJqTee1Ty2eG8w2E6\nYBgmzEtiR601uvE1cCQBDq40BhlQp8I2M+e3Lio7yAOKI9UVRvVE374AbCBTB7h6MNqS8z4W2YsY\nhyAUuDfmUasK/DjpW1JtGqh0s9bJKQVEKlAFHkoxlo2RYI4k2CWZptEBoeDxw8MJ0A3XOY42huS1\nCylwB9eFnZ32EvZFmAVNs2e2sRcvAFT4McbAYmWnq1VqQRGen71PCFG7p9Qia7bpy7ZxeO8RbIzQ\ns0vedM7YRSLiqAUpOZRWEUoBvLL8SlGtELXKbZsA/+ZQYsUgRzy9XnMLqDY+6XX81sWhd/F9iIjj\niMPxgDCMENkCRS0V67LwR4GWlDPymgDoqNKO6cECSzOOVlkQqPQdkxomNpsGmz09rD46eLohe/0Q\nB7z/1ut4/+3nDPYa7PbOhXbhyVZrXb+s1aZ2y1n57cZb87hcTri9vcfDwxkpUXw1xAHTdID3Aeu6\n4HI+o1bazdemCUNOHbzypv0gos6OXEvrssD0HJzQgMEFWn6ba9w4DpCGLgzse6DZbJdFNZWcD1j0\ndSKi4vRkm+ScaWuvoOnx6grXV0d4T3HzNa38vmFAzivWtCAXdt1rLfrZYctvatOxRwNYv5R9vDq+\nD8dP/uRPopSCu7s7/INvfAO/+61v4uNPvoPbu3t168zKGlHgXrthZOhmTEPEs+srjOOA0/mMhi82\n8EmTUismSiloso3hAbouxEDrrTninENzpP/b373MJn6ZSfzdGGH7ZD+EAOzAnV7U6B5sYYlxb2u6\nWJyRRtFVVB1zwEvfTUT1RxQggybxQib1+XLB7c0tnLCje311BWPX7sEQ2286GwDojsr2dzln5Nb6\ns2sJZggBUhta3swyXr5eQTumAJkE9SV2nXvpWnYJfEvIFTTvLrDavIDdD6HwNMN12zVZ6EhdqjUX\njDFBVjA7yATsCcoT9Irj0A02jFkbYyTrazyq9pgyDCuBrzDPiOvAOLMmpGEgiyFntFw0rjZqqtSq\nDPiMWijwTi4cV4Cz5okYI3Ar2gBrkGxFkjnYNi2CbEm+vH6teUPHLmH+ZWCnxq6unwko0y2w+L29\nx+U8o1Vqeh0OB4QQscwz1jVRTLiyIVJLoZtaoy7KdJgwhqiGKtQY5Tk3LPNsjjVk9E6jMv+FchJa\nnS7rDHPmenTu2DriTp2f53nBuZzJchSB95k6YKAhiul3HY9HAnc191xQtHhNOWNZ1p7XUStKCw29\nrFag6mV99Py8Or7/xzAQtE2JsivrumKeF6ScOruco1x1t7aYy5jLrbl6kylSmRuFABNXN+DrMehp\ndc2mc0xd3Z3uMCwGbT8bu7ZtjbrexCnIGWhem8hw+gzpntmgoJWBRAT24QQbdxbaBCQ7GAKOvfd/\n5Yd5xykYaY2sr/t7TOPYJVqC6j4awGe5XNvv2VYU9dya33PfONEv2p8jcRt7EgK9bi+z5XYal/s8\nW+w5rB0PssOYcUUb3sS0bApI4EdBVvWBtG4x2pwVN5Y5YPrIBNVtf5Xdj8V09M/Zmmu6j+s/UnbG\n2F2AMYJZc/aissdh/ScYyI4GzW+2tdga8P7bz/H+288V5KFrtU0n0TkanJhxunB2DECt+rSUtvqD\nIKIAeO8fAWR97a3X0BSbEgg+ePdN/PE/+kfxq9/47trFX3v7OXJJyGUlU08EYYgoreHhcsbd/T3m\ndYXlRgY8eh+0kTcCwv06pwxzbrRryEZY0+e3aJ5QMQ7U0bo6HrUBMsILkBYaJYiYkL3s2McF3guB\nqGHcDIS8p0GEsttba1jmFWtaOVXmPULg9w9xgDibTNBGq5AFX3PRmpygmlf2KVmRQZuIHrUmjTff\n25rmBwL4+uCDD9AasKwFH330Mb71rW/jk08+oa5D5sKzxMAJkxLvHKRWNO9wmCYVGh3R2oN2V/mw\nPEoFGujiof+ntYacKXAt4noSZkCYU+aQbinbwtbj0aZom+ujAsSgLNlcRXaBpid9lYg6BeO0SLJN\nBlZkSD8XaQ0oWxFlNGd76LgpcU8R6zaDv59Sxv39CeN4B++JFB8mBhW7SJ0u25o6DDIxdbY5NvSC\npGQ+zPzmrSP7xgwA7NI02Ly4beZBddly5m6VS+JOB9t0t02d8+QEohqAXDcKuYBC6x0UyjQ4MJYV\nGlFyAxpFGqpon9ruu36eaBHid8KAXkXMj1dX8CHyPjinxQjnor2y0ez9SimIy6JFiQJfiQlQXkkl\nrSX3/606WkKB+4ysjlXOWyBQJKWZbs0W7my9NT1/KzIAdOq1Lhx0VBHbehEthu3+m2gzX97UaUsF\nh1VfQkRwPl/wcH/CPC80lxhGjOMBgGCeZ8yXC9ZlUeZi5VhQrQgm0BiMGs8OIQ0onIrRZ7TKxC5E\nUm1D9H1NcZTFtN8SC++dxp4lQAR3Bamq/TXQ2QI+BOpo6JgTtDA/Ho+IQ0ROK1LKEChVvRbMxiLb\nddvzmlFC6bqAvFUqOvoK9PrKHJ9//jmWZcFHH32E3/wHv4VvffRtnC8zQogYhhEHHx5rM+razJl7\n9TiOePr0KcaRIIPTkWPu/+3R+EEpdOVzsIaE7pkAXBUdU9pYSVDgy9bvyx3rRx353fElgMEKcusS\n6/7d31fjkYEVtTUmWECPl66pDkjvout7to1F0MErAAU7515NilPJOJ3OMEH2IRKw8CFowUdGLIWK\ntz3TiUPVWNeLsWoOWrm/rtVGaQJXkFruhf9+rMXtYg1/yJDeA4gvX7cQud+zYFAwRoDoPaImosYm\ncsICrxXfx7QtBAtzeEhVtqnX99Q9KUY2TeIQEQYVog0ad/Sa+RgQI5lyIQ6oPirrOHBfbJWFcAyI\n68B4nKilmFNGXlZkizcpo9aMooBTNXdHYRKrXDV+dx3TFT3/pgLIsl0s/dmBiLWR0du2pkzbv16Z\nEBXgNWtbxNFUB3sWCbU6gc8/f4GHewp/O++V7TWh1IaHh1MfL7FPM91S74RjH9OEwTmkBI6KKAOc\n3znDiSAGj2kcCah5gmI5ZVzmGetCNkBQXSERMwDafXEImZyiz5UIhnHqrIlhGBA8c4PcwduCNSWc\nLw/wnmP04zgCaLhcLpjnRXWM2KkHbKTJBLjbBrY7Gz36h+1+r44/zOP08IDaNvOtlFYa8DS66EJB\nsXVd2VQE96CcMpqJYnvmSYBqGjqnTRkyvyzZsHFwAI/qjD1Iu48d+4mGLXd8Ka7os7g1JchdpVbU\n7j2ArdnbDMgQK32AKt3ICM7BKaAuCtbmXXyy/cUmaHJmDAnhhu51gTGklAIHwepWBJWvMBkbCqNv\nzGjs2L0N6Kxca/4AjJUSI1Lwym5rfY8TMVF+uqfWziY1bUr0nVHQeL9k10zW/dMMWmqlHh+cMm0F\ncM3DVQ9XA5w67prmV78fu7qSb7uBkIwpBpRZfMYuz3eG+vX7Lk2bHND74qm/5XXix+k64xsUnXTS\nNzVAUW9y3wbBe24AmrGc3W7U0mIjTSt1uqdCpWWsGHDb169CJ+0GfPDOc/zEj/7w76lZ/O7z11RX\nS7r28r/7038G/9X/+EuPDFX++B/7p/Dv/+V/WbFRHWXVLz6MA0otOJ0oz5JLhQvcf9nEZDN0miaI\nAKs200stBtvBblJTBnVnbNWCIUZcHSccDweCucEDtSGV1Ikk0kx/W/EIAfwQMQysgw7KgPRC84yS\nNxkie6ZolMFYC9WW85FGX0nF7Bucgp8EQkMIiCFytFiATYJDcwRbg223uL5Hxw8E8PWdTz/Fsqz4\n6KNP8a0PP8Lt7R2WZUUDEMOA0mxeGzAQBK2h6SzwOEQ8ub7CME6Y57Un1tCEPvjQtTVahWqMaIKe\nM9zqEGPrm1XVxEnE6w+A1hREMZo/XRlfDibb/7fNAX0jInCHx5o/lkQCHVB4uePf1xpsDNI6pIDT\nnYUfoei5iGqGOL5eQMtYEUAcUk24u7snmuscKY1d4wxdNFj8dn4cy7DEdddd1ABn4E1VtlLD5jjD\na1r6dQq6kZjwvG2orB83sMs2Gzq+OBYlIXSUGkKgKmhBUUpBy9Q5K44PuxQb29AumlCcRBRktGIE\nwm5aHEeMKlwb1E7axwAXvCL81o1z/PdhgLigGztf1wDaA/sAH4bu+JRzxmrje2lFWhasywVpIbhU\nTOBdO4CqsQxAGKQU/NqKLOnXrycetlnVjaLMQsLAV309rKDm6AlXD8dbjRVgaxIWTLB1pVsDTqcL\nzpcZOVeO4hyOGIYBKSUsM214pTERSXkFGsd1Q4gsMLyNeqrmmmBHE/bK7tIiUYHIhqrjPfr+QkHY\n4BlA8EiElMBfKWTzBc9uvs2z2/WzgnxZ177eL/OMy/kBgobjNCIEj5RWLMsFtbadu2PQx8DYn1p9\naALqLVl4dXzfj7/xN/4GWmtY14SHE5mv4zCohlKAuUW1tgEodJBLnbU4ThOCd8oCtL2XKaSNpgE2\n9tFgduIdkIGN5QWYTo+BQ93r0Uaiewf9JWddjQ3fDbjZj7GYdtfGKpVesCu2rfuF6/FBoH7Geu6m\nkSj6Sw3UlDFdqlqB3ApcrciNFPnoA0SAeVkYf0PA4XDE9RMdw2lAUkdMoKnDmV4D53XsQ/dz1cxg\nt7F2kxMmhP8QZtzumti1Mw2+R6/3uyIJwDiNGKaRxRAvLHUwPK3Kc8rKDoiAr4BraL6o+2Tp154A\nKO3H7dyMSex9wDAOGA8HjiooEwh9X6Z6hyhzQpTtWkVQlS3YVF4gSAS8QxwiR0NLpTPhsmKdZ6zn\nGavMWEH3tVYKGe+O99Ip45YNj47ao5W8iw8vs0Baj0EWZ2qzse6XQUVLnPlepWllVOsWZ/pbG3tM\nOnj86aef4nK5oLVGIGucMMYBD6cTlnlzcISA+SAaRtVeGVQDCKjg1A+1Mk0nZQiMLcMQEbxHLRkp\n07hgnRfM8wVrYow5HA4YhoEkBcvTQGevUnPXSjleTRxhubrmGVWuH7pwL8jVxla4r5zO93j27Bkb\neCK4XGacTmeN/76PNXKEJSjzS4vFZowOhxi/DF68Or5/x4vPP9/tQWyaOWXWBHUYnc8XzJczSiYA\nK6prKIXPeWf0gdqjUjIkCUIwbcPQ9fzsYEjyfW/sTez+7zum7e7vrBkA/URnurJ1K4BrbVR8sfqq\nbXC4ja61RjijA1/amOd+qiQABUTQOCZXd3u5gJIlztFw4lJmCKj3553Hs2fPEHTUqxYdA1XZCjR1\nO9cG/Ma01pzYGg/CZ7gzmL2H+IC0Mqesueh4PTpo18f+dqPy2xZne4rFf7e1kTW37niIgoTO8X6X\nSgaseA+VzWWtmRMMX6/18T20PRWA7hMKevU4Iz3XQM9RCAZB45p3NClp+u/mTBhUrL3pOQtESQ4J\nG3t8RyjZA4oda2WSYc0fA01Me1pURqeJaE3a+vcE0PW9TLuKNC6uqX/vz/9J/Jf/8/+BX36kWfzD\n+Lf/PDWLAah8DUkDz66v8PP/+k/jo5tbfHxzh/feexfvvfcOwhAgkrWOZuPEe4cQIs7ziofTGefz\nrKN9lExy3mMcRjUiiZgvZyyXC5Kyp0wHvNWiEjuAjdiLkj7GIRL0mkagNazL3FldJRP4Qi2opamb\na8A4cOQ+Ro8hDgiBjbazmrCgtd4gs0VpBga9GYMGiEOu1L5MOSE0z+Zr8HBio5OUdLEJpdD3MAUv\nhU28V8DXH8Dxt/7W30KtDSnRDVAg8C4oKs+NwvugwI7pVG3AUlCtEDTqcKiIBJNMEEHuWEqDCoTb\nqAmwahIeQ+Cigu7ZjsW5KGjlUVFSonOVgl/cxFwHKHjsihDrZLRmjFj9t/4nGHV0v5aaBhVz2YCC\nZnbORfhQVQMmFLRrtaHqZ3ppCB6Gnugmx3c7n89M1sKA4+HQO6XrupCWC3VycTsRyB0bImcaEsQQ\nVGNLr4057gk6ZbtfIy0MjRlTFdGupW3Bzatkn1hBSYdNcartcZg4049tw221Ijcy+ciCY0fDB+0e\ntdbHzsR2Y/2zD2T62PkOqtk1qFuUDxQvrOD8fS4JTUGvoJuhDxzFbJqsWBdlCBynozNlQU4ZcRxQ\nEgGwxXNWmt2dQo0GDVBMdkl5ba0q6FqAWnrwtTXWgS/tfG/dYBYyZAV6eAskthlW1YVopCw3OLhG\ni+XgPVwJLLCaahMZ2wuCnDLu7zmCIuJwOB4xHY4ARMWlzdpdOmvDiyB60yeBMjctWlYdSVaNnziw\nq+Gph1AytVxSXrHmpGBEUV0+E+/munf9fXn44DFNB2qCDVGvKTUlyHYRgnXLwr/PGWta0ErG8TB2\njaDL5Yx1WRgIA2n5QxwgEAxx4Bh1rn19W7H7Cvj6ahwffvgh2RXHI8ZxgniPZU1IuSDlhCVldWX0\nfc/rYydCpo4IXXLvbm8VBFI3YWkQ2cYBjY1hGliPigp9XrtTlhYeti73rK9HelTAbnThMfD13Y5H\nhXAvVPgdbM/jSDN/jPnaOgjS+uimCPUwAwKbLbDyguHW6/Mr4iADE+YlX7CuaxdxPR6PGIYR8XDA\nsixdFDwOqiMRB/goqNocSklFnQOTMer+rSxMlLftHLXYgJ2JiAhcKZumov698w5BQn+NntjG1BOC\n4ldXVx3o8PrvJWXc397hdDrRDToGMqBbQ80FTqURWmEC7R2bSsV77qWeQJjTcaVhHHE8XimTlRVP\n0ZGFXCmcjEINTO23ofjG/V9jvzXVfPAIwu+DWpHWxM8UZSJps2ypFd5AQIm9sGD8IKsXlSOSueQe\ny/t6s9XTTLPO2HgNTsKj9djZCb0zVkFDTwJmJikALdaKNBXnpzs1vEcuBTc3N9S/EmE3OlAQf12p\nyeW1eVYqO98xOByPR4wxwgxRxJFRHNxWgG2ivmyalJxxun/AsnDNSqN236S6p/bcl0aJiSEOGMy9\nFQbuHvD6a6/j6dMnjI2qndoKxYVvb+9QCkcfjwfuQbUVDMOo8eWC+/s7XC4XTIdBRzpZAgQF53Pe\ntABZK4Ze+L4Cvr46xyOXQbc1H7wTNVuIuMyLSjo0ynk4QWp560q0TbeJ43IN0CmG4I1dzONRc0NH\nsUUBbees2bKN1kMer5dtEmMDTQSCJhW1bPmltI2tyV9n4WJ/19U5tOBHlf5dCnx/vWxvAOfQwa/S\nKgTKqIKglopzPSsAxbj65MkTHf8tWOYFrTaME41HRPc7Ef+le9JZZQ2P4in3kKqsTO5X0v9tY1CZ\necj+3lqTzBz8CNBsxZwT6WzRYRjI1nWcKrHJH/EVIgHiHEFDa6Y5yp1UnYLhXm35ZCOQb3uu0/Nz\n2+tEdjlob6o0lf9gbdUU+GMzhk1/H2MHS4zVVXJCWjOBd8mQujHYmpEQ9NXMwaFaUjtAVbRqM0mX\n3dq1NcIG2w5E09hk7/706hr/6b/yp/HNT1/g4xd3ePf5a6rlpb+gEi5w0iOXiOD9d97CBx+8B9F6\nz2JSH7eHIAbWG8uy4v7hAefzRWs+wMeAaTrg+voa47CRGUzqR8Sh1YJcyCr2spvWQevxOPrAdZ11\n+kc1hWspaI2Nm+DYyJqmEYeDThQZcac1rOuKtCbMykh2IoA4xGEAtJZZ18TRejXaWnNR2Z0Vi/6O\nG/iMxGHAcZoQAsHpkjOZqjl3Xbyt1uHYfS0V38vjBwL4+vzzFxQUna6ImocACIWk17TQKloEXgVf\n7eGqCmJw0TWsacX5TAc4JmIOVVi0G2uIVNdtrj7GqMJ07OqLG5FyRnU6etWkd2NkB6q0nfNHT7i7\n9t1LRcqucNn/vXVIBArGgSN40PODbuTGVgKfZ91kdWilCQooJO/E94KfoIaN1nA0tDlu3t455FKo\nw3J3i3GMuD5SqK/WiiWtHIEJ2pkex9613osIh8Bku9UCrAWtbHPyTNJyd5my3y1lR+FlPs5AMNDK\nWBoTZDgH+EjWlLJ+jocDnjx7hmEaScX1nnToh3si2DHCq85Xd6FsUES90tVSRw7YneFmzzFJbpAh\nRg0AB9VbIbqdG0XRvXNdeNe6sD4EVKiorp6TCB1KLPB4H6jeKEBVRgQaBQsB2t7nRVCwQlqFkwY1\nidw5NtFty5h1zcZCe0d9o7s+Ar6ahi/nqCsGTwyt6dBvtfOnGK8TgQs2WikoOuZYS9WYLjidL7i5\nucXF3NVAhkapRZ3QQIcigOejXcjgHcyNyjvh+SiDw3uPcYiYxpFMOwVJl8uM8+mEyzKjoPQO+DQN\nPbCYXgEFJZmAVR2dCpF29ofjFWJwSCo2m1JGE8HD6YSHhxMqGsaRs/P2THO9UOfl4eEeaVkQ46g6\nXq0/txY8jWkmwuLXKQPo1fH9P0hPFw3shaLcziFGB8kZS8qdhcSCeBuB95qMBO/pLqoJk4FXrbZt\nJEkcDocRtRQs8wWlLBvrBxon2lYM1Vo5Etc2AIadYx72WWbS0nX59NgDOfs407+bxZ9Gpk5pW+Ol\ns3qcrVcdCcTj99/rZUVzFmzG+qnIpeooGMec2VX2cJHjALe3t53VMkwjzpdzlxkAgPl8gT+K6law\nex9GugzFwZMJljMS1q6TBAB5TcgudWCij0NWMkNLKf17jcPQXQBTStRvk63JNU4jjtdXuLq6YoKr\ncQ+1cmx7Xjhqo0nrFCOC82ihduMW0X1URFC9Qwwco+Z3cBrvmKQO44hpOuJwPKK2Rme30nB0poWm\nzaJAXa8Y2AwstaKqQcz+/vi+vqh74yAIjlp1QcWQVwiSY8wW1R4pOfVYbXt4rRwjt/u8F3rmuoI2\nZAgwBpFHQK41x4qOyIj3NvPSmdk+tt3aNSODoto/Dt/65BP8yt/7Bj794g4pFawpo9Q7jCsZMsMY\nQaa1oNUBJWe68O6KjeAAqVk1exym6YinT5/g+niF1hrOlzPO5xPu7+9xd3sLacAwBByujnT4dJ7S\nAylT8845bbwJZtW+pBtoRIwjSm24ubnDze2NMkYclmXGF1/c4HI+K4jmsYaEWhvdtePQRfrtmXBi\nosMc0Z8vCw7TsbOKWzVQnEXzq+Ord3BKQVm9RVALn9NBGZ4mc8FGPxsRzFtpemGgvYeoGx73EgPc\nAWAYRz5rWkC3tjUACYxvDZIN3NLRe6DnjJa3MHfU6YwG1WXa6xLbayrNfzVOlNrYOJWNJbUNthBk\nQN2kAUSb49u0h+sxp9cIXvPlWnG5XPDFF9asJkiUS4FfFiTV+JqmCcE5OHFdEsecK+2olQ72FhtE\nyEaLwryR2mwUES8l92tleyJ272exyzmPrCPXlvv36+2dNvRD1wt2gYwq8Q7xMCHWAU3deZGzjrI3\ntEoHvaoajdwXfL+cPce32I/WAbgNJOuLkd/ZewzjhDiOuo8BEgJNuqYDpsMRYRg4r1PN9TwjaaMq\nJTYKs+laIdF1EQAZDAMewQAAIABJREFUd1AnbMYhNGprMk/Y6uOq9amxrSx3biLAxt1C/41+joyv\nH7z1Br7+9htkjUFLyn0cFMAE+XXREhfT9VtTQamUAKABjO2rwPl0xt3dPU4XA74E42HQRtWEnDIe\n7u6RUiLxQ5v967qi1Yyoup1O9YrF6nNw3P5yORG/UDKAg61puj8eDgccDhOcAGldcX9/DxGQwaxN\nQVtr0+GIcRwY21PGsibqh11dYRhHiPOYlxWnhxMu84X51zjicJhwfXXEOEbcfPEF7h/ucHU8YBoG\nmKRLrU0NZCpyKd28Yp8bfq+OH4iIFoUaUS3PyJUU/25nrlTY1hqc58ZZdWOVSmbHNAyY4oC1UQRO\nDG326kKxA6p8oMNPWkkv9ApeNEWvUyoQ4SJtIgSLGlHd7rIBPlRbJ9/RqrbtlkRDR98JYrsu5Ce6\nKW8F8xZQ+Acys0pr6h5cQac+2ZyhemizDdZ3G/ZaK5rwd6u1j1pFLTbjzqCTEmfoX4QbjONApk/g\nCJgLjtbehSwjjwYv5k7lgEAmDkUYnbUfOVLmVNNEEopkSCXzwegBpI9yqEa0oPLeoZWMnFdNlANa\n8EAQtCiIxwGHp0ccnrBTGpSWOp/PyOcLBjisVZAzg2bUMYHWgJwy4BqceNisOefYA1yM7IDIlliE\ncYCfRkTt9rbGTpuLI9eUM0qxvh9EA/ROFB5QTQenDA9oMRjggutgqN1+BmBB9oKchHayOqZX7SdX\ntMTADQsmNm4CLbi8BRAGQgPFpDW4ym51qcpMUlCVHRIy1pqujSYEw1SZkjbcVQUxhXFknlUQvFSU\nsiI3vlerhWLwIgi6sRurS4RiqyJN13RF1K4YR0SuMI0DUimY14Ujh5czLusFpTCojDGyKI0e5vrW\noN/LAalVOqk50c7JBO891nXBMmcsC99LxCGViofLBRe1E2cxl1FLxqAaZCVlLPOKlCtcGBHiBO/I\n0mgNaBoQomexm7VzI/bcvsK9vhLHniXZQNH1VDIFshMZXwY6+V3SzdgTlBEc4dyiAMbG1tp30Q0E\nNTe+lNatuAAUxGKRby48aFWF9f0j8EsMKNgBZS936r/b8fLrexNA48E+Qbc0k1dFf//R28oGwuhI\nXlWh9Kp0JKcdVu5XhRbqELQmWFrCw/mMcHPDa+/4vF8dzUTCkRnmbK+kxoXXxkarGUU7/I8AaQgQ\nWmfU7llkDVuhZ0yuuNPxM1cu8a535GOIHP2fJhyvyMZqpeB8OmGZF1zmCy7zjHleyd4NI8YhUvxM\ntKiDUI8mRhRxKMLCCDa2FlSwXsVxnQrXM1ZLNzgg493uMcfZRDVlXh5N6uCR3pduB+8cfIwYrMku\nZPKmlJET9YRqoxZdrkXHLdi1LiXxHjhlV/fxnm3Ni8Y9KYKaVaPN0dm0VibL5gLFYlhHbr6UOD9e\n1w+XC/77X/xf8at/7zf6K45xwFsHZerWovpJCaYfF5TNVyuZ6yUlFFYXcMjaKJlwODAWzOvCccbl\n0k0Tpon6QeIdBbuLMqErACfwCIB3cCGqyy/3iFHFhl0IOF9mXM4XNWOidiDU9bcM1FEJcQDEo7SG\nc3cqg7K5oJqDA2Lgj2ntUCfOI8ZE4WJlE9sY2itx+6/OEW1aQrbx2uBptvD0yTMMw4TlsuDiZ2Rd\n931sFyDTp9ANrglZGE3NhYYhAo7MDhb70kEMk0sBdPpD8zanI4d2cDRLXoon0tk7aI31i7F4bF+u\nlSYZyt4xEXZNNZW5I1oPSGeBQfcQutFjB8AxRsB+R4/aAKdTGk0EuVRczjNu3B1CGFBLxeEw4aBa\nS5R22TRirRFrbCGvI8PeOWQwzhuwmFtD1hrJwLh+GxSt2UsPWFyOkezTWitWEaR1pdGKAuS8ovu9\nTplBEKRSgEJ9y6iNDVHSQHaCliPH0jMd4dl8Y73BnLxSsqeS+9WaEiJq3cWZ0AkCZqwRhojpcMQw\nTXDOk0XoBD5StiUoS8grA7FVIOeEdRggcUBYVwwKfKWUVLIgoamZSlWmsBBVpdlIXjU2CGsmfR5s\nBJBTJ7p2oMupg6y1g1b8/22nW6zX1jTMdJ32NQhlfdm/6f0QqNlaVvOzxr934pFLxek84+HhjMtl\nQSkVw3DANE4ABJfzBct8weVy0VpY86CiTZcw8H46e8Y4cEZiij6DvYkp8MPAfGGI8MH1mm5eZs0V\nqUWN1rCm3E/VGh9VazLpk00EwQ+HA6UmGp+lYRz4PLaGq6srHI8HQBpubm4wzxccDxO8E6S84jJf\nkNIKH4a+L6U1wcsCEWWhf9lP6A/0+IEAvo4jkzwT+K5VkCuwpoI1b1ogzXl2KXTxNl2w0QdMw0BG\njwrfV10sNjrmtBNr441MJjJqUdF2IbqeU9bEM8IbuKQLlb+n3RiAzC/7jwJfdMdQAUjoT9PBBLGu\niQYWFcPdEGu9IPtuvIjqepFmLCZ+36yjI911yoXQxYxLrR1thlnR6ueXYk6VBQtW3D+cED5/gQLg\n+uoKV1dHHEfOIS/zrO6DBbUIUX0RFWtscJX0ZTqjbCNCNgKRc0FKGWnZaJ3Qc4aK08dhAByQVxX+\ndAwC1r4VL3DBq8h86JtIyRnn+wc83Nzg4fYOl9MJeZ0xRY9J57AtGKM0Fq1aaIrzumEKkXZ11Qox\nwg8RfhwQlPFFfQCP0KQ7atmNsoTA2LsmFN2049BqV9naOjQQOB8wDCPHCEHAscaIFCPWdca6zCjr\ngpIoil9S5ohPMlqsCa7rqKQIxCso6VpfRk032gZ1JamlI/itCZyng5jy4WH9F/thsuSsXIbNxH/4\nnc/wW9/6CA+XmZ8lqq2ghbCNT3HMpqAhA+py14qgVbIQog8Ygs6xDyOCC1jXFafLBZdlxpJWpJxQ\nhY5eg/PUzVIavXcCCAsQ0WcdDZ1VNg4jN30BLpcLlvmEdZ3hAztfG7Nx7EyR1gjEoxYySoRBB80h\nxBEhjixWtfMOcCQ1eD5/rSjQXIsKYL9Cvr4Kx5MnT2CmHOxals7eWdcVFQRkoombNwO+mLgMw4hx\nGpHzqnsQn2WrN2W3v3J0nnthSluTwgAjds/43Awxco+tpXd2bR+1AuHL9uk89qORj/7+pf8vPdJA\nvwv/bELCEOC0JsxpxvU04PoQ++8Jmm4pOrqgrCMmjqqH6be41ACNhfy0UirmecGt3DMmlILnbz7H\na0+f4Xg4AEIhYzSo/bm5kXGPbwI0fX/TATM9ytQ2kejLhWNqmyaS72xj014zy/phGB792dhd3jk2\nTUSQlgV3t7f47LPP8HB3j4eHE04PJ5SUMY0T941p4mk6j4oFaECcJrK4RLBac0wUYBtHjOOIIY5s\nwgnZUAJBgMC3trF6FNAQMHmtpXSWxh781NRYNbPqTmgXCn4FABPgyKaPKWOZM4DEtZsyalMXSmV+\n2bh8UTOVvaxDZ7mKrY+NwV7UmbnrsTUx4sa2R8MYJrKtGQNoAfx3v/C/4P/7zU8B/AJoXf83cU4/\nh++0Mz4YpbOPnQJ5XtnEFUXH5ZvGdbIPDtNhAz4BFY+f+yii02LJKctSFMRkTUhR4CCqw+akSxF0\npp2CDmtKOJ/PuL+7AwDGCOfg/YjDsSh7ZpN7qLUAuWhRuGmQmq6XPTsiBTG6RwU3jQj2kwPtyw/9\nq+P7dvQ6Q7daaWQRXx+OePbkCbyPPT5U1f/x4tAUcGD80TxbtcFKI4vSKwvUQCWvLBeTheiM4so8\nEdDcrW1A156VBCjAYA2QXZPGhikttumLtWBhfSH9NfZn6fmjHea4aDXZHkjnC9ANyfhcEVSgdAib\n6qmp2L2/0caT47MdIrxjEzSlBFfYJKi7c2VNUlFkc7XrkxG1oDWOl7OuUdkRM8KAvea7Sw1YA3sb\nEdXDXOSxNcLiMEACAS5jkIpqfYpzSCXDlcw938BAEaBqbaSFpZfNSAsvaxX7gDhEjONEQEUZx95T\ngzgMA5wP2hwCwhARBs1pPdlKYRi6+YFT45UQRzZHVLbF3NRzSsjrgrTMSEtDTmwes5bPnZnamoN3\nSvtqFZQuKj3vMZmT7Zq2HUFADRwU+BJB18yU3WjpFkc0BwelUKDxDG0bSRVIN6CymJRTxvl8weV8\n4eh8HHE4XiPEQc3JFqRlUcaj6ZCq1ri5Iepzb2CzONWwg+4F4D3ySvowDWPxgpxbH0cke5MmYGZy\n0Z87IVMRziHXBlHZlxAjphhwvLoi3iCMzxUN8zxTosg5zMuCnKkz7RylokSEIKfKHUXnEENE0IaL\nET720wjfq+MHAviygmReE9JlBR2cWt+gekcQ0JvpNlS4Uf9rHEa0qlpGzqM1AkbWTTDKvmkBGRJu\nrkX2MKRS0dpKlznZZpSrdrW9146COU/sKMB27Lsp0C67YLeJPeqO9LW8+337L31dAx7WFUsqeHoY\n8eQw7B6AzbWKm6kWJaVyNNLpazYMD7lyBrkQ+8blckEFE+acM4YhcgwwDricTyhFkJPbbcZALuoI\n1mqfIXcGKGm3dE0JaV2xrOyQA+hd91wKhS93zIqKto1E6APmh0GdWwzRVvHedcXd7R0++/gTPNze\nYblckFOCaxVXx6eYjkfEOBCQ8wktJfhIOm+IEQ0Uzy2VgNg4HTCMI0IMEHXKcqrdJa0haIK/75LZ\nPd2E/qUDnrYmamPA6kVx3kT+vQ+QgRtxjA7FQD3OamCtFWVZ6URaau/gbQDaTsCyf3xTSvG2qAh6\ncWyxd8IqRx4NzIVjJ8rWI5lf0t/BRoMfzhf8N7/4S/i7v/Gb/f0PccTbz667nTUBQHVZhI22tu1/\n9UUhcGRp1LHG0ioezidcLmfMy4zSuEag39G7zVoXYGIThGOwnV2pRwgBQUdMa21Yy4rz6Yzz6Q5A\nxeF4ICXekfrrfEDOiR8nDq1xdCk5vobJRYBTyrqZbWSlO1uxHXxAdrl3DBu2U351fH+Pd999Fzln\n3Nzc4vbu7hGDiExe6WATYMUCu8A29j2NI0pOGIaR+om9mMCuWFXgQJstNl4NAOYK1Xb7N/XvGlwr\njwrqPZvs92J5vQx62T7jtOMJMVbpvuDR51CBiFQLfu2bt3jxcOrv8+bTK/z4H3murEeLRcYCNfYn\nmadCxH3X6bHP3h6ClDPa+UITj5IxDgOWZ69hTUeIqCZO5ff2muQJuG85db/02l235NHiVUqpA4M2\nBhljfCTuX/X7NrQOgqSU4NUx1kYnBQ2tFMw6/vztb38bH330EdZlUTZVwxAjjtdHXD25xtX1Nb+P\nny2fR5wOGA9H6iNWZT1BEOOg7n1TH6EvVXUdxSmgz9yEIB3H4E0LM6fSmXhtd+8rsBWjVjCIGFmX\nxZX38IOO5niPJhNaW1lspAz4VfdaHSdyxuyrvbFjBXxTTRsTtDZWF79G689VrRWQbfxRtCnU1/UO\n/LLXf/jxp/i7v/H3QdDLLOt/BkDDJf8s1lwwBZ7nOFB/UfbPVa3wgWAyxes9njy57to85/OZ5ijz\n0pleNDuxHCYqyE2NyaDMLufMNGEbbU+lUHOpVMpj1Irz6YTT+dLHqk1wOsQBoZSe+3HENGP0XnUC\nrXm0XRNjMdZau86Y9xHeBWSkfsv5tMmjmP/q+P4eokhv6wkA9ehiJHPY9Aeh4KpYw9JcE7tkicm0\ncF2UUjEvC0IJMD0uYh9sAprLO5vRlIvhc4G+bttuj/jy99b1ZwCBFg0iW5NlG5/XU9uQHpgmL+yv\nd0hQaw1FyPahpixHgUXjVIXVTgT9CrRZrIhBE4e6rri7f6Dm7xBxfTz286EDKx8IcyYE0OVX9pIB\nNDCjvlctQFWpm9oK6NCssJ9ec4KRAsD3a9LlaQofaufYzOW3FUqbYNP99d5jPEw6guYIfEGZ442A\nR1ONKvE6daTXhP1jfs42xqjAlElqiE5sOMbA6XCgUVevoThiSak4OvyK94+0ip33NDXTWqZCAO85\nrhmHbi6TVQeKhi8rlktQkhslWUqiQYqtZQ/qZXsn2pxQzWL96TFFdehM0L+vV9US4zWvO2afLmMF\nGTmJxf/ls+M3STHnICHC6/sZ02uvXTzPC8cCLwsgDserA8bDAYDr2lql0h2+aROTbE6nI45Op02c\nAl/2/SvXpajJlpnJ6bO2LAtyVQO0tCKlFQBZosQ+fK8ryWzU86pNRfcHTOOEaRwwRtbhHS9pQNHm\nbtHrXGtBWmc4Aa6OdDNOecV8OWNdF0sP4Z1HDATmYuAaSj5/CbP4gz5+IICv58+fI+WCm9t7nC6a\nYCqt1woBFigO5iwgonCSOMQwYBgm5NK6nlJrW+fBoFZ7YEPQZETZPCZWDwCtFdS1dNHt4L3Goopa\nWaSIajd55/tGsLl2tY707jsOTZRZhq3+70NgRufcF8v636kU/PqHN3hx2oqSt55e4yd+6DnGGDoo\n0JramOr3ITNHE1VY0FNBeX1YGjh/XdaCJW22yodpwpPra8TgFCXeEF4nrrvPQDcf75xuqDyP0hpK\nyb3AE+12BHVbaqC4ftZklaMLFSJNzQUEUCbEOB0QhhEOgpISlssF59Jwe/MFvvm738TN5y/gRXVM\nvEOcJjx94w08e/YM4jjWIcuCeplJ8726QhwGHZVg0jqMk85KT+ykiQkjOr0tTq3JZdeBsPVirBDt\n3vQikYHcaOFkFG66XJYr2My/k02vqoLuV9IK6rpS4047JdQJIAPDhip7Qet0xFHXYtOsxBgHTYwb\nYN0S1fURY3RhB95thas9N6UU/Le/8Etf6sZf0s/hk9sHvPXkSCZViIjesZjX569qokUR74gxDjgc\nJkRPEeJ1TZiXBcu6YJlnoFWEISDqOk0t8XkMAdNItkRplbTsGHRNFnW94n0hALxibQ2owOV8xjyv\nmEZu4j5EcBlz/JIbO69pygmxgw8e3jU0/7i0KKVgXhYM0Tr725jaBl6475pgvjr+8I+33nprx/So\nXQ/Ke48IINfHz3ZvicKcqbyOL2qXbqioTZQ1QpH1Wn0f5UZjEj8MpIzzOaWjkbn+JtUGiV4w+Mcd\neVtT1rF++dgDCnb0Drcmy/u/3w5jAQAQ4Nd+9xYvTgH7Z/rzu5/D3/ntz/Enfuyd/l04vpb7uPp2\nfdCLA7EkVZsZ+0aBgQNoFdP0BcZxZKNljCilYBXXGy8x+C4+6yLHAbzzHeQy7Uhjy9g1BoBR9UuW\nZQGgbDKogLJ3LArGkdcpcswxhIBcMvK64nJ6wEOt+PyzF/jwm9/Ep599hmEYcHV1TW2M62u8+fbb\nePrkGaZp4nmGAPEOJTcMhwPCOKCKQ1Q2rneOjMFxUqCeRSlaRa4NTpTp5Rj7APQmUjPWVQfJpBfG\nenO5f2uxaoK07KKzYKiqv0IauEfAiIYDqgCpZMSS0UqjuYnjWJWzIlGMYdwfCl1GFmO28R/7XCuM\nRTagi0Vg3YAvz9hjLLZSCj76zmd6Uv/sS6v9nwMApNow6drvo0Ylo5WMWipC8DgeDrg+HjBNQ2dw\nPjxQbJ6CxRnUXYlkeqsAcGs7Zuc4IMahF8/bWIkJ/9cNbHWJBXStWJaVzwg2oLiVipwLdUb1bErh\n+8Vp1HzV4tYuZ9T9Yb8XhOA7E6OPYbsNrH91fDUOZwCW5mO9Ud3I3Jwvs4LpBWj2WuaFFZskCmTT\n/TJ22Joy3LpiGie97w3VUT+VChJbHroBzgrSGAMVBrQCBsw9AqhrF2TSLd4xB9LfEAN/eh6sTC7Z\nAWZq5mGfUu2/rQcqTsn6mwTAxtZx2zVgZ7xvO/Mywz8Q+DqMIyYVtk8pIemz5yPZVZabvXx4T81E\nEYeSVixlIanBbc/a1hjbyBdo0DFPp8Az98MQItkx+roqStDQBgdE4ELA8XjE9dOndIpXwkDJGfPl\nTDKA0GHR6YXvBgZV2bSVa8sp07WBo9E04ZKuqxZjRJwmmnRpo4UukhUpa13m3NbcV/DMh4AmqmnG\nASy9HgF+iJDqyUrOHi54xJiRV6/3lSCWtIYM+hoUMdBJuv5igTG4KOhuTQsCMvoM7NbVPr5VBZo6\nCOtUAsjWT21EiwHUqnI6KkED7+FrQas0ymml8ccSoSo4PVDfiwLwvuuDZjXLaTCgEjpWSoOjoMCz\nVyMxLjnNkfS7Ru+723AI1KdM64JlXnFZLpjXWRt9XjWkfcchbAzeKyNPRLDmhFYrrq6e4OrqCZ4+\nfYohepT1gruHE3IuaGD+83A643Q+w+sa9GbwVQpiJPnkcjrj4eEeJWcMcezaco/2NY3j3+vjBwL4\neu211zgKcX+itoKOl9iDbxR7orxK8aQiBkIYaMEaA9y6dcujDwjikNv2EHHhqN6E4+bALkShlhVx\neQjYoQYaalDLTy8oKSNrERR1froqKNfFX9tjNwkrhPcLyCl7iGAvRySrjQ+8dG1+7cMbfPFSUfLZ\n3c/hl3/nc/wzP/YOxw4FWEvedEvEuhNQxFcFcRtRaqcbcQPptlWDyul8phhjILB4efYUyzJjiKGf\nQ9jp33gRhCAKVqluSjYhWYoJDzEiR4rAUqQ3sPsPdJFeOI4yDuOAcSAw1sQhjvx9cQ4oRcclCx7u\nH/Dxxx/jw299C2gNr7/2Oq6fPcXxeMDxeMCzt97E8XgFNMCvCS0EQDfuOE2k9NZGhw84Al/TgTRk\nYSGbu20xixbSPd2jzdeQc+0vAHre9uMBGNXOultOn2jrlNvapIZOgI8VkREfWQR55VhWg6Apk6jq\nxmsjQbWW7wKumMilMbkej5bYLLwBlrb+RJkV9pw0EMRMacW3v/MZfvXv/ya+Wzd+Tj+L0g4YnPQg\n4NDQSkUrCaVmOqYdKBw9DCMEpBZfzouOKS0oei7OUx8pasf9AAqXjsOo+l5BX0etlDWtyCUhKbOw\nqhgjLe6BIUTUAhY648igkxKqbDpwOWcWoGioKePq+hrjOCkwtyLljFEFz81ZNJdCXbgQ1EFF2aa1\no9t/CGHi1fH7OS6XC51BU9bnxp5hTVY1+XJuE67Vx4Tj47rHZt3jQgiobeuADwNZQ137S5hMDSF2\nkEZCgIQIy8VtP6lC7co+Oq3Pqq3/Pq7RY9n2PH9p1LH1lk8/HoESO3bIeUnaVHn8TDc0fH73szjN\nCa8fY98Xu8B+lw1gsplN9KE1tMpnsBS6R1lBB3DPn+cLPvvsM6zriofTA954/TUcD0dk/YxaBrjD\n1BlBBii3Rha4AVqlFIr1Xl09Gge172qJneUPovuq7X17kNr24/l87tply+UCLw6vP32Gp6+/hjfe\neI7r6yc4HA64vnqCUfWiaJLhAB8666x57rveE2SPceyi1tbRLhWoTVRLa+vk74tJ3rstB+L6cn3k\njhkL9UB79qAFABsoymJAtQQIzgMuTPCBDZFSGoqyCbIISvJoicYrgzgAcddI2UDTCmUgb/k99l36\nPfJqzbymmjJW6Pc8RHOo56890d/4m7v1CAD/NwBg0Dhs91t56BDnME0jro4Tnlxd43AYEYNHKRVf\n3N7idDphnleUBsRhwmSuzVpI2KhYCEN/5igZUfroCcd6FtRWVEB5Y7FlHW03cNtboakA7elyxrIs\n25iu3sctdzTmYsEwxO5kanvANB1wOBxgIDzX9jYu9gr4+modDehGQJRaIdMrRo44FY0hDkKgSnXl\nXDOwQXrhm5aCdU0Yhq2ZZmszZ90TVKrFCZBrgfebSyPAaYl949U+a/+Ft3VEdlVrqssrZnjk+n7K\n33m5CUzwq2u67pov0gDnGrYtigC/d9YM1++neVPVeBx1JK8WoAmfu1oqLpcZt7f3ZLoc6NBccuaY\n9y4uBk9NKe9MpkSd0iHKpgGK3SNsY1wmgZBSItlBgT7KGGxAIWTTBHUAykrpD9N1hA9A8IhjxHSc\ncHV9jSdPnxJ4G6OaXyyQRhOnIUQSE5yCfWCTo+XCOqBC88+NMRRDRIiDMnlZb3gdaRynCeM0IQyc\nEsqlwOWC2ABRHTBxnoL6fjPDyUZaENEpoobQwpbLag7slDFVVbPMQCcnguwEkhToquDAXduclvs4\nfLWx09Jzsd5eERVbkC2mmAt9d2wmVIxSrCFntU0XxILbNWMsVpmbojEva624nGl2whyx4ny6wIVC\ntqFOtHjnMXhR47kCaSotoFpewbkO5qHRLfR4OLCe0Aaduchf/n/23ufXsm07D/rG/LHW2nufqvvj\nPT+byA4hoLgBRIQ0oAVNelGERAfLEu3E/lMQDdJHCKUTCdFIEyGBEIh0ghQ5ETYCY2z8Hs7zu/dW\nnbP3Wmv+GDS+MeZap+592A1f3kW3lly+9apO7bPP2nPNOcY3vh+PB8+mjevmcllwvV6RsgXZjPsD\neLBdaYfB1jTPyNMEVcW2PlB3YF/veKwrIAHFQK+v3r1HV8XT05N5eBIMvFqd5XYfzSxw3L8aMHyj\nNvTcjQUWuLa/xet7AXw9P79g28hsce+t1hpKPyYU5+JZTQ/uuvdSKratotRuUwd/ZUq3RgIQiIrD\n/BVIFRZo1KFBpzeIcIqo5sUiBKn4Z0fx5/G354mm4DBZBF43HGdJnE/H+Xdfb15UFfet4Iuf05T8\n8/e/iZftc7y9xhGvO2Q7Ninq2oHejqQ+HBTl2shi8u8fIiWQL/c75E8pHSil4OnpSsO/lztqKViW\nBcsyI0ZPi6KMstaGx/0x0HhVJZMJbiZ8TIR9+uXysBBZyAchrbirAqEj1IgWKrTyAEhGtdTWcJln\n/Oqv/iqWZcHtesXt6Ykx5suM+UK9uirIBgOgVuBqMH82Yx6FlDBnRsq7PxTNIsOYtBO7ktNbNzRj\ngFYEM7se5tkiZ706f3UIkCLX35kpaK+BGBEkU1YpgqBMqmmVbKdWTlOmrpBIeYwbS7vcT70hASAI\nljR5Ss3q3TY2D0LgwSERxjzAUdCbD1KvFf/3T7+wNfjN03gIkE3eyIAKcKKUAlK8YLlecLs9IVsc\n8PPzCx6PlUCodqR5xnWaWJj0TmPIGDGZt1t2yRhrENTasN4fuD8eKLWMos5NlD1mOBpTVKWjW4Jl\nN+kizSBZWNabpYyvAAAgAElEQVRakGNAmhJCdDlss8NazfDYzJrt/qUQcbvdcLlcuE8EYzUYeC+q\nHxlf35Hrj//4j0EfkB3TNKOpYt121G4psDhNmE+XWlFUasW+7VjXFff7A6VxnZz3+CFHitwXuxmo\negMs8GRT80Y8SV5esc1efX99Bf749SHba3w9dIS5fO1c8V/2Oo+92t988zP9shd8ctVXxaozk5w1\nqjCT9E4z1/P37R1DgiMGdrRW8Xg8AGVDcplnvHl68+q9+tnAwhYsvHofyY3u4XVmW7vniIgYoNnJ\n/gpkeTnAArDwbI3SwX3fx/3Yt51yhJTw5ukJy3JBCIHPuO1dIVAOQlmCyS17g6SICJPyO9MrZhoH\nzxNSyty7vEC3+0RGLsYggvu73wtnCHYwjhPWiNmnOXrL07oRgbnZc43YvukrW+wf9fBa+iMAUx/7\nhtr6OHdH6IEIOg6AJXg8verwMvNfg40EnjkSXNJ0fMbOYmuK4S32o88/w1//9V/H7/zeb9tQ6N8F\nQa/fwnWasUzp1boPMWBKE+YpUd44JeTISfrLezYW7+53hBCGzHT2wUerI9RIAus5BBppbxZ4sRee\nC2Uvdk4ViLbxDHmtNxJP5xnzsuDzzz4jUKWKx/0xGGIaug1sLMDC2GatcY23dvgPuWH9PAuu1ysu\nlwtZYyG82is+HKx+vH7xVwH7gBwCazXpyDHjkhfclgXb/YEcIrZQj/pPnElivw9k1Uit6KWiGSAS\nw2T1eYdIN2uXs/9vH8z3OM6aBrTTgN1S9vgcmWG6HmCDCbbs+fY3SJBdHfzWsyH/EeLjSbmshy1p\n9vTcEySw4WqKEPMmduWHKa4JEMLOFbufbFbIgLk/HvjZl18ipIjSGpZ5xnJZcL0smKaMfd8gymAu\n0YYRZ6w8g1SbqR0UzUEy26coTw+IklB7gZaOPoKliEJ0kAgwTRNizuitoCh9lUIk8KVR0AOgWRCX\nhHTJiHMaBAKtDW3dUO8PtPuK9vJA3VZEdOSczIYjouhuAWsJIaRhBSNCEKKFADUrkJQnqprmCTJP\nwDwjmYdt3wvy5OEC8fSZyJCzBzCYakz9QBYipYsyahXYsCSGhGlaTu2QoMWEVjPKvmHfN9Syoe07\neu2opaHXhl55T7tLwAfZgMqUGMLoDUfPJbDezMYwXQHzESOTDbxH5q9IX3AG6qhQwkkQKaGHgt5I\n/lDl2v7Jz77EH/7Jz/CylaHYcjBPtCMIvbP5dHQoGlQoj+2KMUyPEuiRFUneuF5vmPIE7TSuf1kf\nWLcV276hSEOaE6aQMOfpUBeJQALQup91XivIUDkt84zb9YogAY91RSkr1sd7iARMy0IyaYqYluXw\n17ZnLKATUC0F+7Zj3zuAjGmZkeeFqeYInJkpkEJg6mMpqGfG+bdwfS+Ar599+YUBHkyuESmAmEH2\nCb0XIbp8ptL3rqMh2TdqjlvviIPFy93cvUNiJLjR2jGN82mm780ubyI6rHaIWERvZyJeRYGms9aY\nTBcBTjr74y28vvTYJGxx88l3K0luLGv5s5qSijeLomo97s95sq+KBoxS1d9SV0pWVI0iL0cz5Aix\nS3eWeSKNXwyQskJXVS1eHmMC5Ubf9t3Gz9mqGSHbnzaTrU4pY5onTj5hCZ690YMM0dizis4cFtS0\nIecJU0r4/LPPaXafMqPec0aaMpAi9tZR+j42aIkBOSzWpHHaxKkspQ4hJUAIKjlgREkn37Ab4XsE\nL/wgF8oOh7ynn2SHOIoCFrGDgzU+G7EDUlzNr4regwGtBL76dWcxECP2deN9N+8XqBCsGm4AvroO\n2QSLKZ+guXknU0oR2SCKJfkcE3jzBKvFGhICU7/8+af2Hb55Gn/JlJvS2NE8vHLGlJnayWh4xf5y\nt7RGRuaGEJCniYac0wQBUMtu4KCi1o4QOqqSutx64zNfqIffSxnMudGcCwGwFLjORCKAiGW54Ol2\nxe3pBokJ796/YF1X7Hvh82HrQMQPH67fWhupvxzIkRGqijAH5IkeYfYRHsBvcFbMx2n8d+FyppBL\n47ayj6cmmewKOMu2HKDQQ3ZoMu9SdpSmmGMeTKzzc70sM3JKqHvBy8vLq0bVm1pnxxAgN4DAnkNv\nlM/XWe74Ieh1bn7F/t+HDcf4O/udqmLJ/prf/Ezflokgs+se4KCZDobB+P72usGSm9R+Pu4xp/ei\n3Alrrbjf73j37h1utxuZNoHPrANYzaamPedX8jL1vdXAfFUdrJxoDYxP4p3ZowDljM6+s/fjBWHO\nGcs0GzMjWxgKP98U2aABPD+1Vpa9LkEBC+6YEqDKxjfYYMfYQbQCsDtjja4bqruMFhCCfHavDx8s\nBfUjSvAE5xCV479jbdggLto5MqYv4EuhsRmQGJGnGcuFkFZUQVTBpkCjbp4JXOepI9ys+gCKeXSc\nZVQymhNfAwH0Y+12XLVauZdCRx0mAvyd3/j38Z/+F/8l/un/+ptjNV7zjL/8+Q3OfhMhk3KeJkxT\nxpTN4L4yDbiWHdu2ouw7WXfZ2A/zTJ+Ssg+zXw7VEvbSzDNMaGRcCLI6G63WhiCU9LjkVkQw5QmX\nRZjCmJkOerlch5RXsbIOsjoyqvnLmJ1DSsl+foxgDP+17/vw9/KnV/shz/Ehjz/PH6/vxuVMYNbG\n7QjBSfQjTtHMxkMh87P3w9/pBGC5xNGtSQhQm59RZ9rasBsJpiIxOtd4FgPDvQ621bGPy3h25fSM\n+0/xup+wP7Ea6fVaIzh/6nmAw2plACh61KRy+N+NoawPMVz2DdbefsYcQATfSbVUepfwffrJJyM8\nZJ4IuvTG+lWESgmAg8/aGmI32bDVi2I1o3Z68e4bg5W2dUPZ6bVLsJr9jthgNqYICIcqYkMe+LDH\n2WBn71BL+14fD7y8e4+v/vRn+OqLL3F/fsZ6fwDacL1MuORsfmARCBG6F0DoFzhNs6VAHjYiMVoa\n7DyznpmypQabnLGDLN/TvuFkDPH9o7vv2Mlk3j5RV/IIjoAR1tpkf03TBGfX9ZrRasKebEgGRakN\nre+WVEmVVevdrIZsjY1zBQPo8nVzLEsZQS4dTJ7snaAkvdWMGRmDxRMYWHdex+fX7R3PjxV/7+//\nA/yT3/29sYYvecaPPs22+Bj+IHDCsoHH6GBol3uKCb3MJoaXzSlbWrzi/kLv4nVbsbcy6qMQSGBI\nwVRkvUGrmvQ20G86Hsz0YAok+oq5Z3Y1ttozyn6nuT1M/ZYnXK4c1GH0RgwS4vnIHgcQSKBqJZqU\n1p87XxM5p6GG+Dav7wXwtW1sQEJ87RMx5CI4pgTemHMB03clRdI0VZnKqP3w+kIn1Z8PZMA8EQ3v\nrePlcbdpLw4tNQimMWJe6B1hE3nJ0R76jlbBIjByUzpT330aK+LmlnzQyDDzn9qlaF7O8OA516eX\nyT/+n9OUzGbga9PamCwC/QTknR/6fj6suqcrqrHgDoCxtob7+sD7989Y5hlPtyvmif5HJZGqjQpL\n9yicHIh5ltj396LYi7lau70n7mbzPBO0chklFE0rSiVQFwNNldXoz3mKmBLTSnwSNi+X4WtFFoIB\ncK2ZCSLfQ7RECjFdPhzYiJyeDECsHwcr15qJUgPTmBo8dlfhRUGIwdgVfdxaB/igJykjjsJCBTYR\nCr4bA+AB4P8uREox07Rg6WoMo3AYB5vXjuA0/YczM6yxFnur/O7mp2LrwlE9b1dDGE0YWQAVzSaH\nah54f+mXfoC//ut/Db/ze7/1tWn8bV6w5MRJiAhyipgnj30P0Naxln0EL7TeLD0mjeIhBEHxZLFa\ngN4RAZsONfNfY9FSasVeeXB60EK3VB5KYPgZzjkjxQxIQIyCZZkwLRfEPEMBlNqw7QW1dTLNlOsg\nBpNYiTNQSXH3Q3bbmcIXIyWX/u/8/ot443r4bXy8frHXsiwDgNr2I5UIEEuWJXvWZeIDFAal7fN0\nyNUAWycxYZ6nE22fRtTX6w3Xy4J93bCuK2JL0OhFu/sCkl0ZQoAYK+ycmuNsnFcMl2+QNJ1BL/9v\nPK27V+tPO7qSRdR7x3VO+Ox2xRcvfxd8c8cz/cO3T3i60Ouh18N4/lwUd7XEIsFIzYpHp4IG26/E\nzcw5KRXz17zf7/jpT39q9+yKOU8szgKBylYr5iljWRZjxjR4epfLCrOBYsMOwe+h3bdzgqMDl/S2\nyIA1TbVSiv309DTYdSlTQuKyN5Vjj6ytk6nUu5lPM3U454ksiVohYmBWEGMzmMcbnIllzZ1Nbx1A\nbZWFtA8i/GuCg4virjgYf9/l9Dn7f4JA1ENhdEg7tPOMdJZjsLTJoIKggqg8N6oETvkNqFEcISdq\nrCdfz17/WKVxvLfT2iXbMaJCbfjWgK4fAF8Bl8uM3/7N/wD/6B//z/gf/qd/hO3xwJvbBTFltNrH\nSetee54ivdUNddugJj2JISJfrpD5Ahdqrts2AKX9VHcybbQjZ66p0o7kV0p/+H5FK5kdtv7oD5eR\np3n4tnRVrOtmQ5tq3pW7+bS4gX0Y+8x4NNVlPMcAxyUo3KsqGdjtCEyQcD5fPp4z35XLQS8xBcvR\nhHKtEAzhMFDNrxijVvMB+6EeSQaoE3A2/y3tKMW8f4wYw8a5m8E2X5PPAvePwZDth2Q5wFMkT4xj\n30/GtNx6Ml+zH2KsYwke/dtjL1hrw5vLhDfLjC6n5kZgfobWRzSyvVT7COsQVVh+zDHEBoZheO0N\nfdtQ+yHLu16vtJ/o0RJ+wwCOpfP7eX0sYgFmIidw2TxtWzNJmLNhxc4D1nvrtg2FB/dVHTUtzKfR\n0xGjDetFgVYq9nVDxY4vfvYF/uQnP8FXX3yJsm6AEnCbpojpcsHt7VvMy0JCSGvQsKKrYppnXK43\nhBjpHWiAejJPZE8oVhsAuX8h2ehm4eBd52nvUMXo4c6BXEPkboSFIEfgW3ewz3owDg4maAyoUUbf\nqUrbkbYfw8avnQ8n8gHJJ8da8vcxBj5duZ6MADBUYXLUAOPs9O83vkYs9MEUMKr4e3//H+J3vsm7\n+Mtn/Mpnb+DhMykEPmvoZP25Pbf1gjEwof4yL7TpgaC0hsdGqfu2rfSYDILkPm+2vnx/CCGgCyhX\ntZA1rlsf+IVxr8pe0RsxgMdjxeP+QAjdQHX2jDEBqdtD15v5i7r9UCKBwlQsrwALYKRid3tfnvoZ\n+ocbwF/s9b0AvuijA1QFnu+bNcakyTolnBvecch7A5/yhOVyxXK54LGuw8sqBC4a0Y5SCArESB+I\nixnS1lbxeLkDsBQQEagl6DmNVCWMxIne+LDZnBgOSRO4kQM1/8brSGZRqxj9XzkgdvxbTvSuc/7G\npkTwW/jh2zd4mvOgwwswdMzcOMz0VIRTYqXp/GhSFGNTDyGgB5saKdC6YtsL3j0/A2BM99PtcpjX\n1woJsJjVZHLFTK8T7lzwGNZzM3L4j0Vkaygc/VMo0IEWOoKYiatNv0WEANz1hjRNNMMV6tgl0Fhf\nAk9+NdPlDv/ZBCIER7lZyAC+oqeudEWwRsMnWhIOo8uxMZsf2xieiR8QHFH4ZhtCgAtfFcrXE/4d\n/cFOBYWyYeztYDByM+XaCjaRH+vepLetlBMoa0VMJ+WW389YXMYHo4loH+/BD2dfzcE/f1scrVVo\nFzPUbGPq/9u/8bfwn/zn/xX+2f92TONv8wW/9oM3gCWQEYw+Pv9SKv3ZLOpeIpvKkDPcg0y1Yy+N\nDK51A3pDFEoFYhD0pogq1kSSadFtrZbTAeYJmEGAjAAJCWmib4vRMkiJXjmF3/Yde7GUSwNaEegl\nSJNKfg7eOBK4M4lOq5imilKrNUXH095d6nhuSD9ev9Dr7WefoveO+/2B9v4Fe2UjGWyvDyGg6DkZ\nuA9ZGZNfZ0wWrOB7gBd8IoC2ioCOZUq4zhnXZUKCYs4RrYhJrN23kqBrUHqneKKX+zZ5+k4EvQLP\nUnmyAnxyeQKvcWwrjLY/ge3WAIkCwZiTQQS9Cf71X/scv/NHX+Bnz8cz/YM3T/g3/qVfQrDtxSf1\nfDGMQvRIPBW0Xq0wY6Q3f452FJx2Vk4poqkQsC4Ve31GiH+KN293PF1voyHyN94avdMOA3sCCmUv\nw8NEeseyEBw5flh+T/rh2FDBmrkYOZHtULK3lPLveZltT/KH97ipR9hAAISmubAAD3p5Tfz+UDsX\ngiVRqhkXNxrhWpT5YGXZdNUn8BK8SbOyXThFDtb8ctHxfbnZ/bkfdTbCsesoHC7qto9p6yZ94vmV\n0oR4SYghIQoHWXuMvDcDMLNUySAIXQB4EpeliGo35pkzCnCs6VPzItaQt1bpUQqeXfRj5FlQasEy\nJby9THhfy7GI/cSylG2ADWcxMKuVamxjhp7EGBHSRPBpW1F2MrVqa2i1W1orJUkK1iYhJjJkQhvs\n3lYb5fS9AtqgCKPRXK43XK5XzAawbuuKZkCqquJxf8FjfaC3jmnKkABLOAv2/smo9sEVGYwYZ1mr\nDXWvqHuBqiAKB63OxptzRtmYhv7x+m5c3nQ6e5+Dt2wyNAZhuNwPzoZtCow6GXBGCgyYUdVXicBq\n+xKB3AKoGoBjNbAIujSr7SwVLgTWMLUOufWBoZ8BhKNG9X1TlPuMSyX7q+ZXLNhXsX9DINcP3zzh\n3/wrP6Bdhb0ozwd9Je/1Ibhf9M61X0ogUEVsyAmgVZTKnz2EgMuyYJ4zbtcLHo/V/Jnjwayx81VA\no/VkhvZdzSNS+zizBvNbFZo6onnOdrUU1+p1Z7cexAA07wOSBafkmb1GV4andEXZC/6vP/oj/OQn\nP8H2WDHnjNv1hjxP9Cn+wed4+8mnyHmyva2gC8/MvCyYLheusVoRrCfI02ys1mUY3TfVQT4YBIBz\nUWDD7259yNij+4m44cegHT3O+Gbt4weN+2cJIBESFQEZqfext6ExpT6WwhpCvIfmexFwsPVagXLU\nGuNct8EBSR3ec1utcwLSBkssHADbwahvg/39459+gX/yuz/fu3grMy7TZGc3Qx5EAW1eTrDXmecF\n82Ss35igNrigomTjOdIq60kb2Ck4lAoimHPG5XJBzIlneKAUGCIWWufMUfNaNbZcsDqjlIraOm7z\nNAbyOOESroThIJMEIUr082Avj3QEOEhs55GwF+VQMCKEg+jxbVzfC+Dr008/Q+uK+2OF4j2qI/LB\nJWfCB/H0bxz9H9HTE839XHLnTYIDPYAip4jLMuGyzCi1UoIVBLXqmHo4kOQpCsQtCB5w0tyhKYBW\nhpS6dZtOjKIMxyGC0/8++7R4kqM/iGPKpyYhMf+xf/XXPsc/+8Mv8LOXoyn54Zsn/I2/8sPT9Id0\nYpds+P0JQQ0YMhmi8mANgQyc1jlxDZ20UC58Hrq9d+jLfVDwzxK+UipitJSKKWOeFqR8FNWwBwpC\nD4tsD7GnHZ1Nhf0AdHqxNjWwc7g/m88TJQQxRhoZght1jBFq2jqfbnTbCIMcE4rgiLZtlrCJhk9Z\nOnhopUwGXzOQJFhcem110M21G3sNNtsOAQEJXXjvgk+SxlQljMOQ4Mn5aFczzj5LHGyMoGDBlB1A\nTIAQca/bjloLWi30nrNDS4IgGa/dlwdZunpMQcLI1zHCmZuK8rPxZMhuEyCPiVftuC4L/s5/+Lfw\nD//r/w6/97//PtAVyzwZaFxxNH38bJkiUwkTG4uPVPCI3sEIX/u5e2uMSN53FnEhQO2AyDlCbJom\nEGN2Faz7jm2nHPRgPHDDjylhvlxwvd2QU0LZd2x7wbat9A6QgHXjNB2qdqjZOvF1eartmqVz9e6f\nFwH6snP6n8xjgYlA/n4+gl7flevNDz9HKQWPXtECgJggiU1sKQ2h0sw3SkIKieCmMkSFrEQWtQ3d\nkt0CdpOaQCvKtmJKEdckyGjAfgfqhtssWJ83tHVFyBl5uUBjhLaOrSl6UUyRxtoSArrFWgPAHLju\nJYYR+kLiWEAYadg6gHYHWvNJFukSAlFO97mkfeigWFLGv/1XfwUv6477XnCbMm7zRIB+N3ArnSLh\n4d5Gtn8Hr45ZmEqUISGBh0zY+RFDRE9X3JufUQkSEt49CjSuCHnCXBvizr1kzhMAgt29d6Y9IqD0\nhiAcwjweGwct04yYMx6PFXvZh6S1daUdib2P1jkwk5gQVJGSM8Nm7LWSxQsA2tEEyEIZiQil2hIU\nU57ptyQKDugikiRIMyP6Finv7jICEVQEMRMQ8gIS/nsL2YAYA8mHIDDWR4yAJgyQ08G4U6HvVz/t\n524JoTQ2HBKV2CMCApo2tM7zPCRBzgtCmlBjQI0RzfbjfV2xm89ajoKYMwQcGLXagN2K8qZjsCPm\nU9LtPbVa0EQxm6FuNdNeEUFoFVp2AmXzBVsr+OKrL7HXChXFvm8IoVASGnkfVBtaF6j5NsL81BAC\nSu+47wVl37DIOlhTXhe6fDEjIE8BEml7kKZlgBC1dTw2MjZ9SEiGIaf5y7Igx4SQJqTpguV6Ra0F\n75+fse4dc2Ps/brS52ZKGTHR+1KE64iihAIJHSHSW3XbVmh/Sw8mFURJiEhAA6ac8OZ2Q9vpO4Za\n8Oa6YH+8QOtH4Ou7c1kNYWCAhGjsr4Px56BwFJPZB0q1vF8ZNbL2wQLuIViAVEcQ9i8wZv4Oq0OS\nDTSLjgImTmGwA51I4AAr4OD5a3BgSPfhA2C+L9aCFmyiGLWsc3K+KZDrT9//Xfzj/+On+Lf+lV+m\nWTtkDHfco/jMZj4PejpAdYMCYgOpxq7c+nPBfV0R3r0j400bPnn7FgLWdCIvKKWYB+BE0NmkYlOi\nfcFm4UZifZgEocwQlMA3Y76ESFb4AFXU5aIEP/LkChZQ5ij0OdbW0UpB2XaUreD5/Xt89eWX6K1h\nuSx48/QGn7x9i8vlguvtgrcW1hVCRCwViBs6gKTKsyuTqRPzhJjFpIYczKVEeR6HG2bebnV5TG5a\nznFIjBYmZ1/jRl/egx5SdhkJt97pxhjNR0dRi3tleS0QjHwyHcOjrmgbASARgbaALg0NXERiYNrR\nxvpadMax/1kkAcXOPTfEh/X6asMQVcqHOcxwtjr/DQcfHOr8Wd7FqqYACeaB7IC0kqmVU8btdsXT\nm7eYpwmtkZG+lYKHsX1VgZh5xgiAmMKR3GhWCm6x4MPProraGOaz7T7YGFxvQBXdBreT1QwiTCtW\ngCoroS9xrR3bukEMBxFV+pDlaWASQ4nTTe6YyKR2JtpsOEuM63g2v63r+wF8ff459r1gK+1A/h2g\nAUZiBMEj3yCtgAxMH9n2Ddu+mUeTg1fVGu8dUwqYzCC7t4aybYgQpg6WDbUUJORBEWSR1BCDYMoR\nOUWUfRtTgUnoW+TNffeJQozIZ9PADw6Tg0FiqNr4Ojsg+/FAhxBxCQF/86/+CC97wWMreFomvFmy\ngXK2YZwK31ceU9pPm4hRUW2K4c0INwyF9H7Etdp7rY0ysJfHwxIXZ6TY0BOQOzeRbBNp/9lijDR0\n1iOKm/gNp9iOIPsh1/WYGpPlR8ZFCqRWSsJg66zrilgjDaRiMqpph5rHFendZioaMzQ4ZdZljsY6\n4I0a0kbKiY5pvpyowa+aCp+CiaEiPuwQIEiEx8gPf7cBXh0TNLFJLXwC3vqY4vnG7kEJqgkxdggS\nQhbkqSPEZMCL8uAP/PfFTOg9kVHEJLm9GZvMPNqsMXaw0Y0ktTWgFruTh4ASXU3uQg8Yp9QG7Zhj\nxNYqamGKUBSj2xttvlaORLqCHlg20SnbjnI39pSqTTPsvXTKZ6MIkBkRHWIyWWpE1Y6tFNwfqzW4\nBaW1QWl3X595mrCYRCqbD0zvDGBQZePX0Smnag0pHgbF4o28OrvLGHL8ULm/qPusOLODwIh7A/W+\nD+r3x8St78b12aef4n6/45//yZ/gfr+jtWrMKPp6cA8X1FrIGMwJKc5ojXvmy8sLeqt49+VXUFVc\nLgsulwUhCMpezOODxQ1AWVUtO263J9zXDetu0soYMacrbrcbTbT3gq1WSBpjk1Mx0mgF0A+PEAEg\nAdZ8eNMSzBTYJ5pH0MbxX+5HZ7+xsxflbZ7wNE/jf48JvDdA/lqnv/dBEQ3KC6IxPQdDoTeovvbU\noteaS4ltT6iFrJx1w77sJlGOljqrqAbwb14I217q3in+PmshA8Alpz7t57l9yN+HLEMO34w5T3j/\n/h1BrETZokjkHuwMWv8+vmcBBn65Xwd/Rv78HbX3YzhyPqdPN7K1hoYOnLwAQ4jme3n4kHjtcP5c\nP/w9/+3hm3P+rM+DuBAjAawY0RotqwMUXcCY+jSjzw33ZlN5IaOj1op9r8Zyi4NZ6N8L1lRTvmUD\nFPAz7ORh2xQ72J/BinMyZpO9Htf9ipeXF2zbZoX3PJJ+fYrvP2ftbLz83lZjSdRSUXyw0g8AFjaI\nJCODARW1Vry8vKC1hse64uVO/8dSypBV3m43LAvBsZQSohzSX7d+2PedqZGZJuSvwQQcNa5GAPmU\nFNvHuowhApG1z2y+Rc5AOaQuOoad1+v1xIj8eH0XLrUSTZU+RKU0rNuOx7qjVF+PVlHIAWjn7L6A\nfH5oYn8ivJg8ij68ZIG6DyuljAZsyRH8EeQYvPv3CSFY2mL4uZYMgwF00H1wfJmzvJyIIHhZ958b\nyPXT97+Jl63gk9tl7Mnn88nPKFet9E7DcSYHurwRQCMhYjCRwF7l5X5H1wZPOv/8008hImTDAQdL\nEtF8mdUM1Xkm7etmSY/HEPibBgs+SEoxImV6DKvq2B+HDU9StFABFXQ07CGOAbx2xaeffoof/OAH\nw5dsmWdcLhfkeULMCQ1MVOyksCItCyJ47jnsQBZOOqXR0tbjYEHZOtJugNX5Z4CdaWQwc+/2897B\nTR+mjY/fBSYY1sIdQ/ZoywJAHF7X0folmRv6ZUHTjn0LxmDdAWf0Albnh3GWONjW1dloJC3QduYI\nDVIDRQMEEPP/tOELWfY2iIGrNY5Exx/9Wd7FU6Z/t53zIpYOv8zIMWCyUIU8zait4fn5BS93s1EC\nz/LrhQgw7jIAACAASURBVGywGASeGh2DDLAr2vPeVdELpb/rvuGx0gBfcQDDoibYEbNnEqVvpgV2\nAQEpkWlYKgkC27Zj3ytSCphD4DpS966UU61gQ6QBiNNCaVkWrs08D+D027y+F8DXm7dv8fz8gvvj\ngX0vRqsLo0FvrZmsgBTxYNphUepga6t4fn7G+/fvEYLgsszIcwZCsMa/QbLFSCtQ9g1l25BTwtPt\nhmYpPr01Ip05k1W0MSkCLm+0YluVzI8YA8IJ+fRC0Atan7qKPfjaukk0X09rPYEKtqHCzhgZyArw\nNGU8TWQf9d7GdN+Zas6A8wmPCIbHiig3fS/eeu84zwa9OK6VqR0e7Q0JaPsO3O+v5BjLZUKQCd0e\nklIbSnWJmQxJ42Qxq4Cz5crQDNMbI6EXo10rmV0pMwUjnjT3wcxf++OBmBLSlJHkSKlSVVI3JQCJ\n8j4ACJYow6Yw2oTGb5EDF7aB2ERCm/FXT8WsT83dY0orjipEAUE/AEhxWa6MNfshddzTNYdZp12C\nAzQCwJ8lRAA2kdECCO/RfOlc+/sOEeH9V5rRxx7twLDDLwC9HU21Gz0rjmZgAE5dR/oJYAeQySm1\nN1Q0TjLWjRJDm44lxBG/LYHT/LJ3NPNO4X2ye9o79lLNQ4Gv0U7rXwCkZcLlesFiRp21E6Ra94LH\n+sBjJejVLakn5Yw8LZjnCTknzDkDSjrzum0QAbayYd1WTDkjJAK01abkIbq8TVH2HclCF6CHbxcM\nRKWXi6ANanuEBxc4HRggM3JZ5JUp+cfrF3ddLheUUrCuG15enlFKxzTNCBJRTQI1mSx2mpiu03pB\nzhHLNEG6moHonf6E9rW9NzbYpSBcLwS+gmB/7NjWDZ9+erHCYUN/bBYy0Szpj+mkWo+i2ZO4vKkn\nAyQd+6nybJB+pPhSfnJIG4+0rdcF0zibHAx5dYeOPRHAK9CLssYTU9f+7WCa2mTQwSb34zoDMJ4k\nxTPAotNteLFtG9A7U1UjeWlMSgVSsJTdTnBfACzLhGVZAODVIGXbNmwPRoNne07PpvgDJDMw5Aye\nxBjRg4BJ9NEAiHBq0g6pvmSTKeKQizvQNybqenwOA7QIFuTSG6TLcZ8giMaUo6SxI7XXFggfAujf\n1Kj6n3/I/h7AlP29nVKQgCGlpTWvIucJuBJ0meYZtZA5tT0eeHl5j7slPFcz0U4hkD03mihbGzbM\nakqbBVGeB37+OsNdwck1FIOV7exab46T+XvGTJmYfyYKsck4mwVfl6137HtFtfTOV2vWmtZ5njkY\nyRkqGPVJqZ7m6BIs3nsmWi8jbZQSEDIl9n2HANi2Bx6PB67XK5ktJ7+2gzUzPqjxPHhaaQgBk9lA\nqNVEIVp+mP0cfM4iNnAYuK7rmMp/vL4jl2+kXuPZM9gqz4rtFMQl0ZQIcNsK7lEpBkhKSIleTvu+\nW9gHRi3p5uJMuAVg6wQqNohnH1JLJdMzGgNGxHwgMQCKY6Txejji/3vsG0cpSexDj7NiLb7vfDN7\n5lEaPgGGbItMongMY+1e+ekUVM0cn9+omZyXbZYMBnMHU+nXdcPz8wsu84LrcoFclgE2+HCZzy6B\nQtq2UMFDZlvkwNjeS22NErJSDAAk8zqEyET4eabZvQHvDfXwyTKlCToHF7UUtFIQJ0oyb083M6+n\nqilEsrsbyGQ+bxYKICRPkJahSJNoCYajDsUYlPjn4qmf3H845HBwi7J233ed/XWw7YDj3Bns4QFA\n+fnUaV8S3CfbPsPeKKUP7MSCKvTWAGMlbeFh4FXl/g8fxDFT1C9nMBNc9P7Zh246rBgkmB+Z99Ei\nkDNLzSW+Spl97xzo/wu/9PnP9S6+TvQuztGJNkxyX+YJ85QHkaSUise6m6R+4xpJiX1JzpimbLYH\nHa3TX6va59xqo7VPENROdvO213GmddqYoRbWP0xltPCuGLFMAU0AkYjL9Qmf/+AtlusVqgHl+Rm7\nqWJYg5kaBYop+WA+otYV+87zNGUy7Ndth/aOPE2mWHJCxpFK/W1d3wvgy2Vxzy8v2IxG6mDEuVhj\nMRohoqhNEaNgmidABNvG6OoQxFgXyUwSj6kHQSY2+L1WTPOCZZ6xLwXagdrs0AiHtKUZoLMrG6CY\nKIHpluwD1VcU4mFQLMdkhfu2Tdu7Dl8OBVg2uwzRmhoOdr1DMXTFr3EY2esZQHYiQI7Lf+4YwmCj\njEL7zAjwolCcNsrpswS+323b8T7cTZohnKxePJGqQHb3AekmS2Pj6FNUbzxcbuCGxF6QdzsYugp6\n6OixQ04sKEe7g0l+OOXHYdir/jWgV46la46De4BUvikehzyLA/Fbj9qaTQfCq3vIqUEcow+/f1BL\n8MGxTv3VyRzyi99DHH2DfW4iw7cAIVgx4B1qGMAXWWGCNAluIeJ2e0LvFWXfsD4eWK4PPL9/h3Vd\n0Ssj4oMEhCTWUHgqJ0YQRABsGmMU+3FX/F5RJ6nDg+RYt8UkfyFGREvWNPUg72NtqF1RjJ3WG5vO\nGAK6ArsBBb7+UohwNDuGgGW5YJpN795Z9BFgrSiVa0VBGS8lKpQ5QViEbGVHrztSIBMmJaFBsHmv\nQMxbBnqktgWxSZcOkLfVaoEZHSEyfZKpJnraU9jgJTtYcs54PB7YthUXa84/Xr/46/F4jF/btsNG\nC0hB0M2gFao2hUvoraLWHcuccb1ckFLCut7JADGTWxbVGJNHCZQTACya97Jj2zfEGJm0EyK2Yr5w\n/YEQyDrRoNDivoRACHk0H61VFBzAEqf5gPSzZNyZXge7BPgAHBGf2H99ig3gQxRsrO8P/7eO3cJf\nlo3JPE9j32/Nk+/KAL188KKnorobaMZUpoogHCm3WvCmFLQrwa8pJ2hr2PdtSM1DTOgqANoAltZ1\nxbZR+ji5N5M1jAfrxibF+w4Ah/+XKqb5eoBeke0QGcye2GWsYPgZ4Q0A98umagBZsHOU0n0HdLww\nb73Zh+iG9bCQFjsTENCjDiYiDEQ7f0gffjZf+zgdtDwBZ6Oe8t7AmPXHVKgjJQMVFda8NLRasK0P\nPL/7Cl999RVeXlhQe4MRknlbnth3Q0KjbGCbMZ29yQpwZge9iwScRLvMUyRYCiP/y5qBAHEpxe5E\nsP23Dca4hPhqqBRCssbCmXC0YliWC9I0sdmsbHD3fbf1EJDTxMGKVtBigN/fATJVykV6TpZmfNQ7\nAIbkpZpPqctbHbzKZpZ9Zm5FY5FQDnYACsUAvJQYprFcLljXFY91xfPzM67X60dm8XftOrEnYoiY\np3kw0AFYiAWQE2sosUEgG2zBNGXMMwcwzy8vtLZofC6cjVRbR0401RYR9GbAixqYpZ5SWKEhAEom\n4XjuAQOa3DT7GAy/DuMygOODgTwH8cezdpn+jJTg2c419yY24OvYp/x8wjDU7xZWAeW50/phY6OB\noDDA4X5tise64d37Z8QY8ebNEy7LNGp4b3c4yCdwQPPwhH3fue/wx7e97Ngz+Ifcvy7XK2JKA7SL\nEUii2JuMuj4as6v2ghQTLvOCp8sVKdOnOKaEaZlZ9wOADT685+jmiQtg9KPBwIeoYsMaskM9kdob\nJu9nyFiWA0S31ydUKOPeMXkxjPTl815+LADY53OQUgBAYjQpPkYf21sji9F/hQgJCTFlTMsyfubW\nbS2ECtUjOdqtgw5W5NE1wZhsnO2L+TOyxhggKQ5PTu/XWvMkZhznkvVfv/Ubfxv/8X/2D/C7v39K\nEp4X/OrnN+vduymJ0pD8QcCBRWlkdtsQJ+WMyQL33EKo9s6Ak1IoT4SlX2o3r0meT00Ve+E+0Dst\nt0pTA//YR3sKKZVMES6ZTiFimgmCMinWQsDM+0v8rBWFBkEwWxZnIlM9dQwCm+0l3uu1k8/xR6nj\nX8D1YlP0x+NBiaFy6gr4RsXFSQ8e2xHBAm2eqdneNjYYsAkGE418B/CJm5ghXB2+RQJgyhltVuhW\nKBnTHSllQ0Mp4SiN3h8xJ0QDiJrFmkdLZ2kiEKfvxmTTEB3I+9hDxiZKwEO1mz2KGNFIHNfC8AID\nrHHx5/o1GOaL94RjjX9HI72EFOPwXDpoqTK8ODi/MW8nVZsqBLTOw0SMAUSmDsEZTxdqrTJN0TbY\nbhMOyloOxpfr+VX1le/GmCo0RS180Jze2gFEKy5jShYfjOGJpfBJeTADxsOk027DeJj5Ix+Hk8td\n/GFunekjR7qa2poyfyyh35vKMd2QTgAGerr33anDpymJH6D9dUMiMIZYCHAxu/hfALapszia5gXB\nCiMyTTbs245adrx79xXeffUV7i8vKIVova8rhIgIm3ipvj4olGuHWngz/PdNsjNREYGAFPzvu9pn\nkbm2BIBWkzYRzKxdUbugKqz4bwwZsNcHMDxbPIEIVpTkPFkDQ5Dtse/UrLNbQ4gZ0unz4jJIVaC0\niloVqhW9FixzxqITWiuoHiGMkx8dwMY0HqmuMQRMU0YQwd5oYg/BiPL1qZvfy2apQhAZ0pQYItbH\ninVekb/lQ+Lj9ee7fvLjH+N+v2N93HkmBM6LWQgH9B6g2iCi9tyy4F5m0rxDCJyebRvLL5EBcgWb\ndkb7b28Ho2XbdwgE88Roclk33B8ErLMZZEvOqG1/xcw5WF+HRNz+AgAwkkODm+LzjKOE5QNQZJwb\nxxAJwAChdAwHXt8z//NjL9XxJb5n8WwFpmlGjOGV5Ku1Pn4WZ7zwfPD98GBd1d7xWFeo8qzY9w21\nvOXZcOG+1+xckUAPv1jIyHGg6swqpgE+zWW76nh2BTCvK95PD4dpVlSOAZVN/vmZiCXPsvl4tT/b\nOatmej5AQXFGQxgsW4+Ab92Yxd3kKEEAUSZE2v4SglCub+cHCqDnQZh3BPwf9n+HNNJ/QdUkIGTL\n92AMPcDOM76mDz5ohm3f34JN1AaGT7cnXK5PePfuSzy/f8a2rqi1ADhSKBUY8sbx9sRCI8CBjIOn\nYjIwNe+0KGzGvI5whpWDXrvVFKUUFvxiJs6dNYM3gd68IUSkcAz9zuy+s28bQS/+gtUFlM9zyOrM\nsr0w1dE9+LKdXQ5KBglD5usAXWvV9op0AJvhkNYjHOBnDBzuQmRIcpolSjYDCnKecLlc8Pz8jLsB\n+ctlQQzfi3bh/xeXj6KdqRKNHbRcrpiXhVJm9eGZDaaDQHWHCL2plnnC7XZFjAm1Vdzvd5SCsZbE\nAFP6MfFZHt2BGqAvgDPt+b2s/g3HoPMAzTuOU0LHOj2zYl1u7aNeDjUw2GbXefp/CeR6wtMyDamX\nBwqd2ckQgslBAodBxkDyHhAgiFHN0D1oh+gRIgLwvH33/B7NDcyfnl6BSSI0tU+RA66cJyBwD/B+\nxlN2JRzPszrrPx6BXadjFh3dpKNx/H3vNBKPecZlXnC7XBFSQmkNasCaGDgD71tDHPuJ+/0Or+Jx\n/pAV6//b5YbeK7ifL+yMjsYoU+tL/EPzj57ZWwKRaN7ax1De+yW1/U2Cg0n6yj7AhzNqCp7Wu4F3\np68LTLo8m9MHEbRCxRVDtYzViI6hbBom9gBgtgFxvHEMjuBpkAR/70FOvsXsS3qtlqbIc++6zPiP\n/va/h//mv/8f8ft/9MeAdizTdBr+WK9ibNsQbJC+F9RiCcdWk6ScIX7eu5ywVJRtQynmXywBOTpB\nRoBweEa71UztDXupVLaMBFF16AA58CyYlwuZnHZ37vcVkB0qgse6GXu5GVBIr7cD1PR/JWPPqJX9\nW6v2/BhhwPvtcbZ+i9f34iT7yU9+gueXO9bVCmWbjnqD6U0FCyv30gi4XChtco+vfd/4IFvhQhnW\nUeiPRqI29FrRyo4OmkvO0wRFQOtcKKqcYOfIRKnWKoEuK04k0JS0azd5tADtdIgokGM04CqM5AUA\ng3YLLwyt54gix4PbxYAfO2ZOHgB+CXQkbTh6fbC/zCdNAk3hTcZF2cJuOmFnoznwdbw2gSd+Fyiw\nl4beH2i9Ya+M1hbbXDzBojcyc46pAhORnA7q01Bv4hwIcwmMT4K7SeM6LEWzE1GfoPb5M9HFac8h\nRCTOK+CR768ZDToO7nHoB5NAxjAAKk5KOtmErgu3CUKIxgayTUmc1quc8KscjYOOz83By6MJHge+\ngU8OTkY/pPxf2TIalGbBmFDFKHafKlqdcbuxcbvemC717quv8Pz8jPVxR9vrAQba5MIPIl9PjCc+\nfg/gWJ+dspxkh6cb3ouQlRVNn95rsQQqNgZNBR2ChoCmAdUbbLSRLhPysTb5U+t4VoNRykujefxe\n66tpZ4QANRj78jCCZBPb0Xs1z7fAZs+kmu6zU239eTFHP8Fjb6HPhviAiV9jjUv3g1ztObFiIogg\nZurhc8p4//4Z27p969ORj9ef7/rDP/g/CaisG6acgAFRkD2sPVjCVIV2FibL/ITPPvsU8zzTc+j5\nGeudCW3zJeIyz2gxYZ0m1N3k2zZhpxE6C5uuBM+naQYkoDXFtm6opSLlihzwNUnsAKgMeBjriJsK\ni9RTYeo+dyGEMS0/fnUzPz2muaqUoAF+bn0D8gWMPdCv81DBXysZ2DD2dWNZBWPKnpkrQWZwmluh\nKif2gaD1Rm+0WrFtD0vdpHxuygldgdoVuhdIWOmFpJaqmPOQpqmB7du2Y9soB48hAD0eg4jO5zoZ\niyvFNACxVqttw2y0ODmnlJvJSA08+A/Wl0DgM6QQnMUrFgEeLHgHA9hx+XjOcRjaqtKTkTWPnQmC\nw9wZxyDn+Nxe/9fPWAe9vHZ6dSZ2AJABEkGsaQMoXbd9s+4FYpKYlCdM04y8LFguC5blK7x/9x6P\nxx11W8f3rWaSywkycIzqjHFnZ6Ed5xhEbQiSBDSPp8cBmCoYMMMUXu7bYn5qffzMdu9xrHNED1sx\nuwMxoCEyWbQXyt1LKWT322u4lEPhw0maBaN3tFYOeW08nhEHMCZLYW7NvbvU6s8wJuv+7BwLRiB6\neNb5z0W5i9VNOAZWDvS2xnpMQiAL9eP1nbj4GRpwY/+bTXE6QrhwpHgmrwmVtVVKAfNEQ2lVyolT\nDGaTcSSQx8AhQvV6HGT0C2zY3Ct65Osh0BvKmZbu2/pNahHgOH/OfpPBEH8R7kP0diKOYrM//Gt/\n+XP80z/8ekrw3/gXf4BXli52nQffXqv79z/qX2e4YAAqkI6ggfiHyGDuFq3odzPqNnApWL3v3kpM\nHW9Wc0YgHgCfqqKfzjdXJDVjeZ6Zw5wK2b0ejD0ydgMoa4+BxuWuAuLrHooDch2GZoQ+Y8Ek/NKh\nHRaA4B5hPlwxKaXK8NgSUKo2pYlsZZvGi6XVVi2sVUMYAWGwz9KaDAQBuvK/QWSMcsia8+E40MVC\nVPRggkM9rMtCbca6BtVJMSCFCTEeftohBGyPB2WnJaC1wgGRpTuGkEZ/wPPZ7peyGyPIZ2cfuGf3\nTt9q7Qq33KaHsAzJI21trDbq9IScUsJ1yrQ+6jpsadQAI/8+LkNUwALQDnFmqZ2qG/saJ1XUsqPV\nQuaVBPSUsJiZfYiJYFknw3E3OfRWdoYBuOLIek/3p7xcr7jergDAEJpSsO4Fnuq4rhulurUiTqwN\nYziGcwfLEvaMm4Tfn7N+JAv7EDTn/Mqv9Nu4vhcn2R/8wR9y4lZ2blLxoJD65nIu3EIQTJcFn3zy\nFvOcsW0bTVD3DYAi5YTb7WYGpzv2fceUaQjfTK/taXWwCQjTFBJUnf1jE44UTc5Fs9rWO0KmnwW6\nUzr5oKlwcQQxmqulEzKVMCNFN6JshoRb1Ks3EuGQLGoApIcB9I2n6jThHdOGE+ruJThg9FujM7Ig\nbdi3DdoObxjRY0PhSzkgI2NajxCMKkrZAyfp1cC8hNv1Aii9kRxMmE27XmtFT4n33j1ftA9PC2cx\nqFE5e2fhjSQQi/z2NL/aG+miBryoHfxiG3S0e+EAl7dyB6MNtpGySSSiYVBhCBDTkndVaK0jmjgY\nRbrUAiCMg8Nfk4rATpowbNLtFTSMXXAyf/RG1D9PsanMKELs83TQ0xX1we6FBBbVrSsgZqqeEkKK\nSFNmpPGy4N1XX2J9uaMXshspB9HRlMDujVgVo71Bu90Xb5yo1qGMETSZ3vcdIVJ+ooEpQ/u+o+0b\nWt0NjBJu7kLgCxKQjV4u4CHokyucGjnGvEdAhQ1JIzhazRvGAUqf5rgYtquiN0VrBVCGUqTMZBIH\nQ0MMTMeyBt2B2Bjd5Jr6+6C8H9Ekb6lE9NLGRKufGF6c7De4ZDdFGZN8n/h/o6zs4/X/+fXjH/94\n/H6eZza3quitwv1QegdgiYHX2xWfffYZfvD5Z4B2fPXlC56f31PiBaFPx/WGVgvWx4JWC8GX3pkW\nWitEIvI0m4yC4RTTNOPpiSDPttkgItEjg9dhSu7T/bFd2Pkh0DHU8cKP/nO29vY6ptyDdWyvPvZ+\noVTEwV4YMPPnvXzv8EmoSxudjk9G7WvQq7WOeTK7APsaFtcY+2VXpc/STqaWe3o+3W4IIpSJNkFX\nA60giOEMMKTTc+mTfD6f03QY9ouY3MzkZdM087wPlP51k9Hzc8NxboeGDmN3CZlMDli8MtsPQBdn\nVMM2dA5Juu1lgsNs3ZmyAAHJr3l6fXD/z6zh8+8/NLX3z/z8egpO29XuuSjZC0070NhYxmbG0Mqk\nuJy4lt9k1jPTvGC+XHG/v+D+/h12S0CsfR9eXqNuYxrD4cNlnZCAXkM9sLGL5j+krZsX0saGNwST\nDhey4obfjU3y4XwVC6kYPzv9V7QDMXZjcYidL3UAtV3ptRTVpajWwHWbkAvPpPO9HUM0ORgxULXa\n4pCAObOcNhN1PG/OChvPpANhOL2mUt6yWb207jtE4ji7hsT6g8/34/WLvcSALzIYbd0BqKVgFaDU\n/fhiZ4V01guXOfNZy/T62x4r0BVTytgCm9tWClKckPNs4QgF6nXPlMmOrcWsQDrrxGEUTsaLr8sU\nz3Ln45k9ezqeFStH26HQ5tv2sWaXacLf/Jd/GS9rwWPbcZvzCORS1TGIPV8OdPP3DOVywDuI+w6H\nwSDSMag+6n3gAGq6Kva94v5YMU0T5mkaaYfdfq5kYDVMbTANCWodChXg1HL5M9nckiCQ0TMG2YAo\nAYro8moh4DZNM0Mz7g+GewRLjG9h9G2u/vG6OIqRAaLVys7ScYXGqJ37ON98sCC8GUdvM/YG22cU\nVES92jPU2LjO54P1RSA76rQWeDsChJmMg5k32Hz+eYqlfwLQmAE92PGaJ4RIgkoxeZ+GAG0BrVcm\nbQuHHxKFDEdtI3DKByv8CKleUQPM6IAgQK024zEvTrERlbYBMgOUz98fdzzWFWVnYJd2IKVgCpsw\naqTaKMlk/xVMnqrYd2NG9Y5mwTbN3k8w7EENeA3ZANnE4C4JEU3JaL4/6Nu4lUJwTRU5ECh0G4bZ\nfIxjTmS+h4DeGtb1gd4K5oVeXvt+sJNTysjWi9v0lGvHJbUhAOHoPTnc59ntxBQJVOPE8HpI+xd9\nfS+Ar5fn57F5zNOEkCcijvahA7DpXzBqasDT0xN+9KMfIQbg8bhj21ZOhwOL2NvTEzeaxwP7viHn\nhNYqtnXFvu0GJFA+1roCMSFlUuPdSLsUJjjmFHC9XlHKZotISXeUiJgcNDAHOkeee0OrZPIIMJB6\nIuQNvvD84oHg3YlvLIfZuXsPjctf9xvup4M9yR4SZ3pVi29NPlVUMwdEh1rihQ8xFDhYQafv17uO\nJDJ/T7W8xZwTZGzAfTC5vDiMpgPn11e839+bV5IXwUAMbFTyNI3YXWqXg8lMDs05GTzgRioC9KPZ\nqXJMg0UCoghykmGY738HLzaBAabADvhXRs6O8htjKJwmQzCU3L0BBLADACcjRgyA62BLHL8X2Dpx\nAMp2HvYGYr4y5ptSG6oBpr1zA1ahGWSMEdfrDTklLMuM6/WCl3fP2F7uWB8Pa0oI9g6mm/Bw7KDx\nsCGP1kwyVROIhz9JPybRL491SEN73YFOaViIpF934VS9Oahq60rVmpWuUDmMGs+TCGrTd+x1R9PO\ng88bHQOdQvAwCfs8HDDoipwIWLZWsW4rvTJSPCYZJjnyxj3lBOkNrVqz0SpSNb+F0cDwA/YkUjIc\nCx73B7Z1Hc+6S1mPhJ+P13fhKtuOw1sno7cDzG+tIUrAPCXcbgsuC/0fb5cLlmXC+/fv8bjfUfcy\nktwuy4R5ztilj4IkpYRSK9Z15cBlmuB+RU7HjzHislwQYsTLC88umPSNe2If64dT92CDF2+u7Rm0\nggYwtkwIaC2Mgvw18IHzcfM1UIR/htGc/LzLC3l/Zh18bjbR9DUvOFgwLgUTGzo4cHyAdvz+X748\n8LwXfHKZ8MllQlfgfr8DgLEaCuaFDGzKTCo6NyQ4i9U99XrncMVZaD5g8dFS62ag0RUyTSycU0eQ\nxGFQd1m4eyPaFDcWHEw8MtZ6dA/IhBS9QVS001T1daEuiJBX56MEwBNnyELoBk4doFay8+HD60MA\n7PxZnRkKr/+N+WiFQwbpIxZ6lXWUejDGKA03phIC8rTg6U3AvMzYtzd4vl7w8vyMd1+9Q9fnwcLy\npGRIQFMCVCLCY8bOmIhgw7iIgDiGbtu24+XlTnaTebZ2M//2hs0bToAy5SEVVkC6UALUOko379gg\nSHECQkCzgc1uDW6yND2vfQ7w9kgaG8wKW7veABwAlL7+vJVeSclYzMXYcNFsJx7r+gr8AmwoZEwT\nSn4L3r17h0/evuX7iZneeCfA7SyR/nj94i+bRYy9RCLlVtu+4f644/5yp+1DTJjmCSFGlK2MNfcK\nKHs8EELA9XJBq23sZ0EaJEXkmf3SthLIdUaT17cEksjEDOF1yIV7/ADHPnLI4Mk+ORJlMVQrw0OP\nDwvsBUcNCwBPc8bTdLDPRDDM6N2j7Jjj6+gxeL4ZE86GOdmewd7L+RgbgyD/mWKipYt2QesFen+M\nwCHutwumnOkRq9yH9p1enjAw7di3ZPQo3tP4mTxNDKBAo71G6w0xHF6EKbsfFxeDCKVxtVW+x3nC\nUUlsIgAAIABJREFUFOOrfqLbsLyBJvROYiCT2MB3P1PsF057/ysyg73W2avYf4Ug9EoG+4kDcbQC\nXQjgHfJHQBDHsMhPCgBDJq+nc2qcNyGYVxfgsnREEkjQqcroEISUMS0XhBQR9x17oEKk7juthHpD\n7D6cxhhcDCBLDEQCmG5o4GjrDVoLgnby6iTYZxG4Zm2P77Vir8Bj2+m/2hWlEzzLYnWdKYCaGnOr\nmwS+j24dqorSOKho/ZCoV2dKqprt0ITlesVlnhmgpIrdvvdjXSlprgW1sQYg8JeR5wvmacI8Eaym\n0o0WT1NO2MuGx+NOL/Kc0TYmjXcDG31N17pDA3ARqnWKMYodME0pIk8ZrVf00AZLFSDBJ0j4ZuDh\nL/D6XgBf23o3ZD8w0j3oMPmOQekLEYAUgSVHLHPG0zIhBsW2rlgfD25IgBWIEVEEzZkkwoNn7xVr\n3bH3hhwn0E7VJtdgEbhMAnmasGUmRNVa0LsgzzPmaca+CTcLZTSog0hdrIGyxkRxFGVuXJ6dqmkm\nfkPWBi9MrSy3SagCiHZ6+jSYTCGar4YghvofwJuI68sF2gW19NOmRwRXRehRJTrQeIBvxfdqUQdB\nZGiuBZRpwMwBX+4rYnyP3oGn2xXLlAZY05tCKw/y2nWkpQVgTCp1FIYBPXbzqBBIaIAUJCiyRAQN\nwL7bHVGomW42KEQyFAEdDU3buH/odt/F5XN6+iG7bZiUq6IfZ/dBI44IkiiPMOAxIJj/wAFmqfK7\nx3hMX1R0SB/9iOKBfu48YZ83rDFgdPGZOuyFRHC/FYixEEz0YJOTLoJimzA6IGnC5Skh5QsuyxMe\nLy94/+4d2pdfYa3NWBRnnbciBCWABetDHfATgWpClYiIyMK/8VDaHi/047OJkoQMblkuDyFzwSmz\nXQNySkiBDU7XitYtSTRSN58SV1mtO0ohu6+LDpq3DvPugIDIVJpO+bIIaeMeLpFipml+B+rejEnA\nn8sTYaCkpaPBDCEFPUbUHvHYGra9oapLuoCAjhwNBG4NrW14ub/H4/EJTdFTZkM3TZCYoBLQv8bV\n+Hj9Iq6c86uG1ffObgd/iBFznvB0vSJPGdor9m3F4yXi+d07rI/HKIrJ7LWyr1GyBmPvtMbk071U\nSIi4rw9M03zyh+N6uqUrogS8iGBbH1BtAyg4e1WRSXSqNPQo0J1hi+6+ZAaO9a+DIL5vHdT9Dybv\nP2eZniXA/mydBwJneeEovsdbZSx6CGFM1Gs5fZ3QR++//V/+CD959258z7/06Sf4d/7ar0BqxfuX\nl/E+n/oT479tag5RaHmd/uf+Xr0daY9+z3kuUopaz8MNcLq9v68jQOWcxBiy6yVY86UQUXvDkKur\nUlrt7NPO6TWie88cHiXyal83RrG/z04mtzccZFVYMiC+LuM/v+Y3AR8fgl6DAQgbLDmQGc3PBebr\n2BoULp9iLTBSFm2piAjm+YIpz/ReFcG67wjbChSyImFsLbZOJinvgKDyzyJL3HYycvbaqbbDxD6k\nZOeksbFao3eLAXh+xohJf8SGkEECukndOwQS6OnDZ4ymv5zKM304TXmsGb8/IvxMaynI8Wj+Hege\nlghWy7nVA1nZlJOFEZ5y8hoFsD7Wrw9IBCZ/iSZnpL/Tvu+4Xi18ISbMy8JUOHn9uh+vX/w1Zdqc\ntFqg6EgpImXWTz6Mlyg21E1kpKiHGFmda2uolx1pXjCljGVZUCoHbq119FIwZUrsa0porWC3MI4U\nz2Fc1bz4jnTeI2WuD3DGzwjb3h1dGYoQQ0UO4MCZQf6D6/gnePVAA+PrXwHy9uc47VFHnwNET1iO\n0e7NSSFzeqMq9NVUT3A1Fg72gueXuylDKDe/XA6D9mpyvLIzdGsAV4Oh2QYrdDMJvp9l/sypdmMa\nAWWvY3grYl62BpSlnJBCRrTBW4jhMCz388HB9OBpwQeYdB5MqR73dQxi4ANgDo6D7yNyAF8hCs3o\nnZVsn573zry/x+uOvT68Plt8gESgzQGow2omGsnD1SoAe3D+1ryiOpDyjIsEXK9PgHayhh8PbOsd\nL8/PeDxemH6qrnohczFERXSw375vh1vGcHBDTEEGWDfWoDb6UfdGBY0EyiFVh6QvRpcl0+fbzwCt\nlaFdzbzCTA7ptUKx9FVn38VAOaffx5wT5mXGvCxIKaP3is2YYqU2lFZZRUgc8sY8TZiXxQb3ir0U\n7Dsl91GAaYoQmVFbQWkFeToGOMBhRxEMBO+9IQcGegFcsz58iYnEIUrp0+hT3cu41nqw377F63sB\nfIlwgXKyNxE17ZxesGRSXC9XPN2uuMwT2RwA1scdz8/PeDzu0NZs0QeLDo0QVDbT2ZMOCvbeUAFE\nBNQOwMwOQ1BEVRY2S8acBPeguN/pAdFbRQqZi7UJqG+znShaDK5thM0eEPd1smMMtWfqpUXgpKPD\nUhsYOzhwkpz4jAQIokYslaMogx8iVqiZnwXRWZdT6gG0yelMMgkG30M4fa1/b2NTqeLdY8XzWvD2\nMuGTZYaqYq8Vz/cHIGJx2wt9LCQwAMCmoDRdJmNIYUVuPw7BYMaNPChkSGZijdB5YjPRCnpNdmBE\nHnTCHyaIoMYA6QH/D3vvtiRJkmSHHTUzd4/IrMv0Ts8FK9gFIQssRUh+AAlAAAr4GRB8AfhZ+BFA\nCOAbwAWeKNyZwW5Pd1dlRrjbTflwVM08qnt3hQ+NHpEub6muyszIuLibm6oePXpO1Ee3mqDKMQ6d\nIsrqoJNE0mHt8zudmBsPuy5BwmCXRaHO1Xge29QDMGzvtQNdYGL3xvzSx9ETsUXvnYLR+e/dwDor\ntizYheAOmrwmHWTrebcIwIPuFLXOEpY12PNHdBXsueK2H5BGO+aZPBAAFXsOjGBhLCeN0BA5ugh2\npmrNKDlDhU6HIkzqaBds/PcQRoffR1NH+hS8sDNmgwSkJFiWyGRkAL3WVOyGvA5HTr8nDPhVwktB\nDLxU1yYIAwiFaZSZYiAfY90iOovRLRKS0JX6YbURDY7RO2CKtERAFCUDvVfs+x1HPgjSqSJZsErr\ngqaKcmLmfD5+vGM14MtdPGstBm7DhNQzfv3LX+KXv/wSAsV9vyNGOgXeXl+Qj2PcdxIinp+fcNkW\nHPsdIsDlsmFdV3z8+IJaGziGvKA1Z8vMoiJGFs7ruqC1Db0VlNwMWDuJz6uxh9vU9iGjtA2XHR+x\ncuCrtYZt2R5Aj9FRtsOZVp7w8tCxT50BFU9qx/etEwzVIboqmEzZx7EVPHSBRcy4RieA8x//4jf4\n3QcB8G8B/HMA/x6/+ebf4N/959/gn/+jX6DXhtu+08VRBE/XC1Yly6EC3M985MDBPwPdoTrYeK6t\nYy/OkSGLUeu6cgS8gCNvzuBbCGar2dz3zuK0x+aKznAzBCi72N6J772j9hnfmWCbVkucTQfg1AwC\n6NAWwzzfdl59BPv8/CpTM0utATb2WAdZhfEjOpupNQAJIjO9jMGbPmQoNYvpIdhblDZG+murkNM1\nhT8kBBsZXW3Mu5qWkAv2BwOZmcO4xosDVjHOsZ9u2o5qjZPaGmJi86dUjjvGSOApWke61e59pgEC\n0XjE9vvgo6imUePND8vJFLCpgcnKtglNO48RIbBJ5Awrd5I8M64eGDUWx0MIg2Xsh9/bClgMlTFG\nNXTvxBh4jTIPricZY2KMWRbkWnGUcsoRPh8/9pEiTaGKUudwXRes6wIBUEpGaWQZut4sADMacSYs\nJTy6Gzg1st5TjLisG6CCI1eyFsF1tmwrUotk3g4XbeoS9mZgQKuIGoZrtRe8GtNYq0SvDPwFRoOX\nPW9jtBrYH0XQfUrSABAMWYq5B83/270xcmFH2L7bd4mBGrDJJ0XqLNB57mwPtfFgtb2FTFY297sq\n7keGyCvv71aRh+QKczXtNO5wsMu180Zshe17Jl3h0jFnuRbfL6CYJjSw0XG7ziFFhBSxbNPN1esj\n/zzRarrxfHac47JfC9d8CnFez97d4bahN7E9lfkqYBpd3qiGcGLJWiqzaaanz8O4ZuH+4b34KPd5\n+gUwsCmE0RSCraGZ/VOkP6UVF6tdo8WenHfkg7nY7faKj6ZXfBwHTaa6ScpYc8rrsHlOxJhmluvb\nns/3LXAJo24i+jFxJDVWf6tirroJ65oQRSHa4KZdlIphk7wBZrjVEVs/mfbw+qXoZlgT200pIiU2\nXlpX5MomKWMlz01cFprqaLPaI4EmLK611ZhntIrrdbP8kNq03UDs1inb0rXPiaswZS2W1dZg7yiF\n8jQhCEHZlMbaUwBuVODnOqXZHPqhjp8E8LUtC0KISNsFcdlw3w929CwQBAA//+Jn+KOfvaf1fK9I\nMaAcB+4vrzj2O3o3d8W04u3zs1H/Mh3arMNXa7fOIgvtpuwQBAGSUp6OIrcBKRLR19awC3UueqUr\nXYdAO7WEvKDwOWNEMgDOBQmgY/Fs5hbpRYfFECsWHvsn5xEUAKdu7+PGKJZUOhjmyP9wjdHTRoaZ\nnAmf0IKPQziemPFxR234T//lNw/d+F+/e4d/8me/xkWEjmUOvvRGGjEo7O9FwrIoVKidVm00ju+b\nVs4huqsVu/HUr2iIJVB3Sisg1G5bVnZMxpy8BNQQzJq1IeqpwFQL4J0BHzLdCim02wzkSQS0TAAT\nztIRjE313KE6hSP45XLr566CIBTH5JjMHJU7X9PzdXQ0XoIgdEs4whnUnDo+CnNnPBUeamvTC5+q\nJpjp79sKkm3bRlHiK+HcafaCSoxhYiGFrx14XhRtJOK9NcA+NwtuOoY2JXsm2R8J7qDohbl1uGCu\nQ1bY+ebsVGXvJzL2kpE5NL5OV8FDN2t0HUBYaw3N1ggMQjfc2ArwMArwT2naXdUKWxupTHbGLEh3\nF1a2hIhFK4N4iOwIbtuGWqeT6efjxz3WZeGY4fWKdVnw8vIRpRZzC1aULPjVr77El19+gZIzUqRr\nzr7vyMeOWgpgDI5tW/Gzd2+xrBtePn4EMN0K9/1AqQ2L6S94gezgbXQzBeXYwbJEbNsKnABy3xM8\njszk2oRx9RHUaq2hYH69xGWAZ2dw4lycz/3jsZv76XFmd43GiN1+D6MNFj/O4y5+z7smiipMY4RP\n8OG+W2z5twD+lf3Ov4JC8Ztv/zU+Hj/D221FbR37cYyEunVFqRa7hfdbA5sxImRl99bQDeyhLX1B\n9XNhMVogSKmNhLgEsjOWZQVWE1gXguAuFj87/aMSYPHUgOBAlwga6Gjrpyv4aIuNMc3nImOOmqMC\niTqdHPWk79jxcM3PACNOhce54PTrEw00BQwslIQQFqi6a9qMZQI5sdC8becv03HWcfGfl5zJsINg\nSQvWZUVvsKRajboOkwXoc3T+DKj6G1CCALW1UdwNN2Th0lGl2Uha16GdWg7TbzXwj/GQbGEXA15M\nAL5Udse7j/4HGQ0WMiPCd89hjIixQ7TZZ2loUoEoqOI6MDLu3xgjNCX/6GMky++X1twxU0fsK4O5\nhpGvNMsfqEVme0iMZD7GiLvJGPxd9/Hn47/foaY6p0r5lst1Q0oRtVfsmcyhrkCSBWfJj7HOgukM\n1mYj1l70kzXCXOyglmQu0CVh21aIM7wM6IqwHEwWjglaLHKmTnUDPQCCBDdtoq7rKcZYo/q8rzMs\nhFm3WP7eLbscjC6BuQx7DgwPRg9ar7MRy++tBnoB1N0qOaMVY0Eb2xojhnndY3wEdTiHWrG3+w7q\nPZKJjc468LptxOrsZ35vuoZebY1aXZiagB6Xzxqu67pijG82JeAVbCRUOFrf0GdjxvKB0ayWgJiM\nFetVhozdffzbf5frJDAPsHxdRKBibG/QPAbVmMXRm+Dn6wngPMFiz6viMdx2fsVp/5+xz+vLqXvo\njSDT7IwWP0aY8NecTYFoZl0CQHtDWhdcn54AVbzNO65PT7h++ICXl4+4vd6Qjx0orjc23083hpev\nQ7a8nVghAxRUdkWsCaiDda3GQgsp4nK5sp4MglZp0kPTLnOrREBHQAOndHrT2ewXjts6kSeFyRQf\nAJQEjkGqTQbUatqXZoIXBVIbujYEWx/MH5thDs2MunToyHU3P7LYUEod2qbOLhfhCHEUk0GKrK8d\nez6PQzJO4yEmWpU1xol/yOMnAnytiCnh6c0bSFxG4lUteUWr+NWXX+Lnf/Qz9FZw3HdIoP5Hq7QU\nbZYkXS8b3v/sHVJa8Hp7BcALWs0loZaGgGQaEQQnoIomgqBiCafriS24XK+QEE2Yt5FyH7novQMK\ngBtWDEhKkbpqdOMmXMSMF4rFmGG+YXOTmOg5gPl9Q2iB8xj9I/Tihz/ei46BgsM7Iw6yze/zbXgH\n2fQ7/IEWRP7Tf/nL73Tjf/fh3+A//tff4l/8+R9DawMk2+s1bOuK2jtn8u21r8Lio9RK21rraHoS\n13oApCFItJuM5041QDLQtQLoSEvC2lasvWPRFXFZhqCidnbg9TRGwIhGQK5X2/yAcUMDhqiHwIAx\nd2hLmis6wvd0cx/BMN/IYd0L6nIZBfiTcz6uu71LCSfgCwI1SvEQWPYkxTf6IOh9gmdeQPXOrmA3\n0NDZDjUXOsy5NsGyoKRkXUTXmsPDenEmWVff6hxa4sO93vEu+Vm0X4JgCcvoRksIKJWFQm91UPmD\nBSYPEBxfSiZsXYeoo19GPV2bmQ/Mc+rjoAId+mGtkt0pSr0FVS88DLyKcXwOzojOdeMz74o+6NIT\nFGbiMLr+5/cqgphImd+2DR8+fHzoUn4+frwjhIB1WfDF+/cUt28VL69MRy+XDW+envDFF+9wuawQ\ndPS6IqWIY/eOGgWEU1xw2S548/w8wGJPhFv7Fh9ePtI+OsUhUu5tDVGO0zqIwrE5vq8wEu76AJC3\nxoRnjkjxXjyzwnyvcICsVBY5Pl4ZRKAxnlyWeJ/I0E4xbb/w/YyvCX3Mf4+/bR93poIDNhMYeUzY\nYe5IAPByuMjzP//kav0L/jw3vLtGKASlNUjOgATUpqb9ErGmiGal5mKgPtk1DXQ1JpshBTZZAlig\nQWj+Euz6HVmRe8G6rcNpdgAznIOehZ+dv1nENIQ23SlFgBbIlDW0bwDyagUswB2FY7KTpexddwel\nIMJRk1MBco5JZzbdpw0WB2FkbprjKnIvVZM3sGp0gG069IFoRNAolm3xRcc4Es9DOTINFZoa25bs\nharehGtsVPlIVZi6WV5EwfVRhI1BN89BkLH7SwhYtwtContujBHawThnWn3ufgmw4F5WPvZyuQwN\nviPvyPlA683yI14n9ncEIZ4KROuaOwvbn53vu0O6jGZSSmGytWK0kRobYTMmil+nUiuCTTbUWgmc\nW3HY+nT8K2YYcdaqCydNQVXFvu8PbLLPx497+L2RUsTbd2/w/PwEEWMP317JAhc6cV6vVwCsOWJk\n412ETvIOKPfmioE09IjbAgiBj33fh+h7sNFJNQ/Q3hWaCBLDRoQBv98Y+6DG3BoTDdTUXaI5BKsO\nPUxAZx4oc9wNYg3QE2ArVvM8pGssQnDqnDjMMxrxQcx1caEYvbu/fyePMoDc5y7UXqCrGmkCQPCa\ngmyw1uiYx1E06g6vlg+7cVdrbYwykukyDZE8T/b3M+7bzr3jPMbsDuQqGHtYbQ17zkgjZ5ZBmAgg\n8OVx4iyk9J39W8ggU3eOdgMv5a+JOT22VhE7TZ7EGKSu+wQDG/068ny64+f82vMUu1zwUdSHWtLZ\nijjVr/6ePaz4pefbN9M4MhJba0MsPi0Ea7dtQ0rTrGtZP+Dl40dUM3sg4NWGkPw48TqqlVEfwnW9\nnNHm70EwRl0JciYsKz9Ja43frxm92H0IQCUO/WLXzwox8jVAGZko03FzjO3Cp3jUjLuaNWDaYEZr\n0BljVNF1jhnSGKVBQLH8sf87oBwFIVGI3tfmNBDihWimUd671TVm4NV6/46Bkt9PTu5xt87/HsdP\nAvhiEh/wfH1CBwGSrh0pmMNDBd4+P+GyrciHoi+84DlnXqRa0WvFsgZcLgvevHlCqVas2EaWS8Ht\n9Y7aOta0gHRLG6TsDb0DTUzsVSfwtCSfcwVa203fQYEu7Cbbzd/6ZOZQA8bAGJ1sFxEgCxlSkhbO\nKjuTR+sDYh5Po2jnbv/DBqi+NOX0LU8kJ2ASYhgAyeNz+OY7X3e6fwAfbsff2I3/7Yd/jW/vP8f7\np+sA+bQ31NpRGoGvlCLWdcFeCvrNkfbZ9YwyNVm84+MdrxQpoKfoKIXot28yPu4jvjk0Ex4O1A1R\nEWNwhTHr3K2DQqDRAJvRdaKbIXVNDGZR0P1FB+9obPrncz2Bp8kGGOeTkRDuGjM7Wqduju2+at0z\nhTPWbBM1lgQM+RdMbQaLTGTFVRYmvZWhx9BrQzkyjuOg66KxW5YUh3MNwSp7KxpM/5GbOO8LHwfR\nMbJFIX9usN03RlWEFLGmlXoGxmqsnaKqvs5cQ0CZ5SClhMv1iuu2IYSA/Tiwm7FEY5sE4t09+Gl7\nBMHCuO+4HpiseLFNIX7JfIaUpjvLfC4Hfd2BRlFqhna/J8Vk4RS9i7G8Gkr1ApCv0SyAMagHG2Oj\nM9nn4w/gsCSotUajh1q4xk1jJ10JWEQxxurKxLuWgnIcdOVRRVgCNtMdudvz+L3/8vKC2+uNycfS\nkUvDtg4/7ZHhO2AGEJBzbRGaqsx92sEjL2ycpRRjGKBxa80SwYZimo4BAX3h77AbHRET0JvgQWhd\nTp32E6B/Ps6guINsqs7GfNRsOR9/U5PGnxUQvLms9vW/x4wxAPDvAADP28pkU6nj1zSjdsVSK5Zl\nwbYmtDVBSsaR89RRs7ggIlgC2THLsmCJ1HbrvVvsMUZBpx19lz4+y4gVrZuTpzdRCmpchhawxySx\nUVpvSFAPs42vfZz/BOPQibgrRDpLNwkjRnqX1Z2LPTkeHfdPwK/zNRgaLp9cy/HY3tG1jpEFjrqY\nhbyS1cjLF5jrKMdDmDi7iUgf3fD7685xlFKNQTZZ6cx/uulARuiZrQhMC3qATlhgEu6GQGxWEQSM\niUX55XJBWhcAgpILSqtsrLWGeNLiDJH52OVyweXpyr372E1nKQMi3+leu/7lAIi9UB8NrbnmR05g\nXfjWIrbVAQMWm5R8aNbQndellILFxibPOl/MJ6drI13C+Ph933G/73SoMwaBA1+fmcV/OEdKEUDE\nZdvw5Zdf4v3bN8j7juO4425akSklXK9PeP/+PQDgm2++BsD9WiBmbJCnyUJMdp/QDS4uKzrE5BQK\njlyQohiYsKE1FvMowLIQ3KUZVx8gujMOHbzXLnPU2wTaCX5UW++nJp/HM4fkRAboEoNLp8ywNxAQ\neYwKqjMdZkEfB+iVizduG5gv2r1qAE03oMNoTtakIXDMHG9qZbVOMfBsjDvYHvZ8vQB9zLrx6Xsf\nb8qb07z3yfZ6fX0de2cf42IdWskWJRM1jPrLHfn83h/NYkv342iMgGzkrgSkrPEUNEJSNK3AEyDm\nAvT+Pa8tBJRx8T1LZpVIXTd92ItYDzkBAyO2936eGPL4/5gjOIjkLbkhweL1ERgLfYrG8/mudFOs\nmOOHUIXG2Ty4XK9WR664XC94erri/uEFeT+o750PesX55xtvRka+h24uj+rNOWM2Ido0iIxYVlvH\nkQtqbWiloJUDqtO4S0wgX5Ua4lOLkedfG/OUro1AsucRIdDgQsnsLrXgKJmxDiegzmJNiLzH/QQ7\nCNt7Q7Tpp5gCWi04RLGuV04YWCxzABeY+UkINJhpnTG7to4Uz27AXucqut3v3ZwhD6sj0Tu2ZUVP\nPyw09ZMAvgAAnXafRdmJiHYzq1KQb0mCCIV0Un9Lazj2nfTXxgJVQMp6qxnZbOK7dVfrUbHfC3oH\nZGsoSz3pXhAoakqdLy403jwDaFF2kZNrb8Ro3Xsfy7IRABiQZwKFrtnAJMaGg8djwtikQoxWDE2A\n5JzEPrBfTrRh9a6KMJkPYzyBN4uDe76g/Xm9SzOh/ccujOLv7sZ/3DPePV3ZpTRdJoigKoGvdZkM\nHrckDuciAAQ8NwNKvKiKgZ2wDQsAzqf33qgfpsq43Tq0NrOWB4q971gr6dMnnRaobd7WhWVhZBtz\nCDZC0UnxRYOGYAEgWhfqtExPnQ4BwbveGxowRkDGY7+nK+9r6tylHz+zS+F2vOJRHN8NNOxU2Mbe\nWKz0VkcRD6V7ZjkO5N3m5q1AHyKHZq2OPoUuGUB9zYitr/nvoaEgk93hrycOZNp1qq3hyIXaJJZo\neEHlnyEtC9ZtQ1rXISKaTS8LZ6biuAxqQU5GoeZjjhTWPGlTnM6r62yltBrDhQlcqxWwrpM/tltw\ngBU0DXOMMgSx+flHp7b7/Y6Xlxdsy0q2o7nBwN/z5+NHP7aF7n23VzKBt3XD2zfPqLXg5fUDlhhx\n3VYQF23ojQnQ/X6nrpCxSdAJDNxePuLDxxfcbzeEILhcrhQWtiL+KAX9dhvJSPSEcCSRxvxRalQF\nZ2JacXEuuj15ag+gyEzkABu3q5WjL20yEUMICIvAjU++72Dnd2513weY+KHj5zPOOLsAp66vP++n\n/+4ebqB4d93w6/fv8Ltv/401GP4FgH8Hwf+JX757izeXFer7kFL3opm8JsNpQy4HBGbXvXI8JmAW\nXFUCumAWBwYgJmWRElqAdDrArluaxi7+d4wcwS/FNDEKXGQ3xmgJKvcGzrWZzb1SZwYikAhoD9Dm\n2iMGnrijYaAI8QBTTMh5yBeooOWTbmjvs9P7PeCi75v+M2st2fWxvbN3QKONzhrDtTOWENCDOYQV\nFgG1UmtTFdo4VlhyprPty42seLNzd1abWNOGo+MKBBaj3YsiIcNErBgJMUJrN3OCE8PW7hc0NhNL\nrTisedMKNXqaOZm5QzDHRozl5zGpFmoyHjtqrwSQuHrR1bUvef6cfV57RZTIfEDSAOQcrIopsSnS\nGlQJPoxGmBVUqo3uwXGOk2jvSGuCm9U068IDnBho6u9JsKwLci349sO3pvkibC4uBMD2Y/8hXSjl\nAAAgAElEQVQO8Pz5+PGOy7JAAhn2b542RAFqMV1UzxHV9GHFHE9tFEsFyC0jHwfuhS7CXWQK0KvA\nST7Pl4SgK/ZDUUpGKx1RCPLHYHq5hY33Jfp0AUUWW7OyuyvE9AVVrfUaAxvIEiZj8QRkeHgYYIOH\nCxVzHwRrIvuDcxyz/O0MoDg7iqN4YYxXOXFB1ZgwwpxwPufpEIymhyfTvT9aC3XTx7yZU2bvQH77\nBm+v2/hgPVfk2gYid+n9oZnbakarjeLflqez1mBtkiAIrVvjxYD03iGtEQRTjq03G3FHSGyoagBd\nNGGkCpvyEMs/pRvA4nm5fTYx+R79ZNwwRLhTbgwJ8NfDnOoItg7JRifT19lBzNfHhf3kVBuDHZ6b\ny8Pz+hrxfd7jPcTH7mbO0lpHd4kEEXQBqq+1DiAuuDwFpGXDdnnGfn3B/fWV0xQfPvBaAeZUHwaI\n2oPVpf6ebQqHKs4RXSM0cPpLhfEhHztur69ozUZ5RSBhQYiLAbuUwQmqkGJaar2jdwOXJEDdKMwm\nm6IE6ohF5i9kHB/IbdaqzAU4RcbYHWxKxYxcrIZNVkcnY7CLCmouKMtiILMMcsL53hKJdl+RedYR\nkGtHLh33oxCWsHUWgiIFoAVFRUWtwG1/wevtFeHpGdmmCX7I4ycBfHkiduQdXYTOB9uKrh01H9Am\n2LYF65LQcsSuisPcH5pRzINvDujWVTlQa+aNmBJwVBYDXZFLRTBre00RoierXQMAmjsp2fvxzhos\nyfdNGICNPEwk3zvFwSjLWqcIsXSFu0wEcOwiukihsXvGWNtpcTlLhSCIjA1MbVcZtERLbB+KEvUk\nWUfX0U78+S87dAx0vdn+9m782+tldAq4VyqOWlF7J4WzJpTWLFEEZ/ZtXt5HztZlgaQ0kHkPFqlz\neEVloW5Gn90jT9q1G526K902VNFDgwrdKZAWG6cDugBBDTizwKEADJ+EDXfMszAosnaSvSiBU4HV\ngEs+55gD9+RVHgVvJwBp5/yTgtCv1WRYtZEkuJONV3Is6vpgq7Ra0UtBKxmtVtt0G/KRsd927Pfd\nnEZsDt7GQmHrdbDMLCgxWZBRXIcQgZhMXwdD6NC7SMQCSKuuNYx5+1oJfOVSEKDsLhi4JKosBE5W\n8bVW5FIHbZn3m1G+R/A/6xSQ6szxZIazAQRYAQkD0HtrtAJf00g8FTrYCEiRXTdbx7CERXuAimsU\ncd1MoUd++JQW7EfGy8srtpUjjpftYsEujPf7+fjxDxEMRu7T0wVP1wup7I2aXikFK3orcj6w7wfy\nfocokGLk/gQC97lk7PsduTCWrNuKtM/7pFaK0m8b3fE0BiwhjftmakDa/qzmtuX6iP0EssvJWr3N\nJsu0aQc1K7WiVDI/znuPiCCk01j1KBDm42RUMY/Hp6wuB7b4nh8e+cm5nvfsLMp9z5uP+2f/4x/j\n//rPf4nffvuvx/d++e4d/tc/+zXc8XYAa7bXajGmQ1NIIHC4rBVXdPRlGY2VAECDIjmjy2JHr24k\nEEd3ubWGWKmPkXNBShkpRo6hhmDaZLDRow7AmD3dda8aanXgonLML0QKTCdD63oikCauyTI1SHw3\n7c2NCHSMOPpoh+cRDyONdo7PYOkERGd88evNlMGZuwpVK0JaNWYhRymggl4LxbhzRi1sYHA0L7Pj\nvu/I+4F8Lyaua8W7Atr09J7sLXRFiDOOKgRdyDKRGCAxoJdKdp/pqklksa5mNFMLR9hHcq8KMQaD\n2fvMQjoGbJcFEkDHu3yglMzPGMlwVpDxP1cw718VjoJ1ZROk9QDVMBgg/hspUQ+m5GOMQPmofBvX\nrEISTPdm3h9pSba2fVRnssFG9z9w7Kv1jpfXV6S04unpGeu7d9guG2KMn0cd/8COy5Jsz45oJeN1\n3/Hy8gHHsQMwJzibKAlCd0GuhwUh0aQj94qqHRJW1C5m4mG1QVPLqQXxacWagPut437f6aYeCP4i\nragm5N2hwwSEshowMyJFxYw1HQCErKkUpyMdBIjq+wnrECbGhhQrTN5DBiCkoB6lOq/TgW4Afrdx\n54tjz1YFSqF0B8Yj+LfndLBmTxh5u049GIup/j6/ve143TPePW14d9l4b7eO/ciQcDOwXKbsRqRm\n2JiKgAFu8NzA9jRjhXmTgZ9IaHJ0KEqrWFLEpisqGtALtC3odTEjlg6VgJSYW4Ye0Ho1fd9T88j/\nk44pt2HNWUSIgXlqTWpnFiNOwEMkDWCMpk7WgAdGHAAUUUhG6K1DzbRgjLUrxn6Lh2rJD29ieH3l\nLvFknXlL2gFOFQHNsOeUi69vB2TVmmlBIuISsAmd3GNaUVWw54L9yAbcxBEPAVBrGTLrODdBgDUn\ne0Iz86uuJo1SCmo+0BFMqiUCSq23jg5tOsA5GooBQy4IE1zTRjJNGLlbQEwBWk02wOtZO/+Q073D\n4GNyM3YeQEY4zyNfI4JSAJS58bUSp5GSOspgskxQtG6EBUmoHWi1oTQ1/VEYoK5YloQORS3KuHns\nOPY7nq5kTbfww8aanwTwlYy+viwJEiOWlWNPpWZkbUACIluPo+Avx4GaM5MenEEEmwmvGV0bYqSe\nRIoJQRKgDa12HEc2ccAFUWC0VFLxAS9uWeRE4Y2aYrCkScfG7jRT1jB9bgxmnxsCEVTvHjbrGAMY\ndcK6rDZCyZuea983GIzPZf+CyMnxyYsXwDavGXT8IEMHczN1tMIezic4jUkIt9f3T39bN/4d3j9f\nDNU3TRIItFTUIIgtoDaOPaZowroSRqJPW2AK5dHFr4KspTYKgdYitXKiW/KymMy5QiRiWTBARu02\nHhAMMAKI4sdoc90cOey1GltHRyEzKKh+fuDAV0MXAxLtmjDg+ZjcBGAcuOm9m8jtHJ84jyx9Cmae\nC0o+fx8z9m6bDrUOgjpgQ/Cqm+5QLRnVZtFJz60oJXMs4vWOfOTTKIUM4I5P7QDRXAf+fV94876Q\nMTpYWzPLYBmfobU2xvq8nPegGoIz/jASJB8/EhFjh2XkWgZ4zLXLoDWFutWSLOsldnecYac+SKDA\na+PvOWOzdEXvZO00+x0vAEkuE87Iw/MqjsBQx8+00KxQpSgpuzISBdvlgtYb7vuO+74jl4Jt2zhy\nYMzDz8ePf6TEhsqXv/g5heph49klQ7UhLRtarViXBBF20O+vryg5I9p6qJb4r+uKy7ZxHMRGj4fL\nFADfjbuNV1A8O3GEm/YUo/vMJJIA6xm0mIXsFMsGgDYKdQemg3VuI5rpTPXWUTDFegEgKLA4iCNz\n78J4x6cM3l/5FBe+y1CVB6jr4efje/N5/LOIAdl+bEvCv/yf/wQf7hkf7xlvLiveXNfTvguL852J\nMjAcVCEdCI2sCGCMX0cr7tgdBRqUY3TdAx/PXm0dpTbEOGNmr9T8yKahsSwLu8LGthriwiFAkwHz\n1pwIgIFrBD07OhBdhcYba9a94IbFoqWxuFLYWGs391AHvU5M4zO4dQa4gKnz9nCNT7/jjzkL9Xtz\nrFvDBGoizI1gTq2ZjCprrNRKAOl+v+N+u+HYD7TDWSF2lYVOcmraVjivLfECBCb+rJBI8AshjBzJ\nx5tCpK5qF0HtHBNBIyAmVujFxBFW6UAYGi7UQ7pcNssLM0o5KBqcLBaB+7uCRQujlcfZzvUFHy2t\naC2Yu7eNGENMlylyhMVHnj45p85m70qnaQflRnwyoEus2CGrkDIYzlxTNSt7e+yyLEPn7Hs1kD4f\nP9rxdL1wDVrOeb/fcXu9oVjNEgTYtgXXCxtkR2E9EtIKCZFNxNbRwFHtpjDgy+ScoJZLA2lNSJYg\nt1qp79o7YODvgmT7nhktWUcghAC1pmO3QnzIX3hhn1g7RZ9SADATRubNMuqJGSf4sBM479CVnJ7H\nCpGzKReA0fRBdykL1+/Cd+INJAzh/C794QG5dfyn//z/fseY65/+2a+xpkiRe9mHpliMHE2F5anV\nmgyL5cheE/bG1xEAScysJFiTWsQaAwUoQFsigI7WTL8tR6SNmtYQsT2MrJ/QI7omRO1wiXuvA0Ut\nTow9y6eLDHwDm/B0DLbawr6Hcb7tuYDJ9oLvxLP5Fb2ZY5fUx0nPMeh8iP2ixyKPR6qKiJkX+OGC\n8gOgMoSNjX4CmlNHUucklYGr3gjYtg3rdkFa7pQaOr0uvE6wT+Z1utdZvtNDIrzZMEXsm5uaWm1C\nhnHr1HoMJpEQI9ffyCdUISbn4q/B3I3ju3x/j3rAXus9lmAeRB/TsQeAVSdJYo5JMochO9IlXXjP\nQecYK2y8k8NCPE9soNprCCgp0AyENA3K6g1VPN6HP8TxkwC+np+vWNYV77/4I3PAUNs4SBFPNr5Y\nA9BaNqe0w0YPJvIc7AIu64JUyhirA2AgFFFNH787coFCKX4bw0jEqCkynR9UO6JRKEXEFvcJ9Rax\nMTwMhBrwDYHz3VCggujKEO4+Ldp1Wc3xYepyPBQdOAeUee5Gp9e6D06LfYS+7LHjxgd8+YqDMadE\nGsDQwfpnf/738B/+79/gN6du/K/ev8M/+cd/PJB96d6Rtw1KSVVu1vHsKVliOTfhUgrWlRoFFPmr\n1q3tY+yTNuYc+1tM+LXUBpGKGJMVjiwufASE4p4RGg3saiw8cC54bL7ZrX0VwYAMsPus0YrWCijf\n89BiGyBaMNfIzlS5d9Btg0XDQ4EoJ4HA3qGRY5QPxYuEAXqptrm7KAbVvNsYChMbuozU6sAX74tW\nCvJxYN+J0B9Hpl5WnTbyXpCfi96xlmx9cR2EuW5CBMxS9zjyXMPGhAgWrFx3b1rHW3IfbAqo856K\nBkKcBUxzzlPPLkwNFbdiVpjhgTqrwARcbTSx94640Ca5VnNBsqKhxwkanj7wSKi8IHFx1hAD4pLQ\nG6DVrrPMEU4GV3ao1m1DOQ6Uap/BjARiDGZf/Bn4+kM4vvjZF3h6fsKf/snfx8uHb/HV7/8ar68f\nse+v6L3hetnM1CRa17Pg2O+otYxkTUAG69Plij/64gvU1vDycsNLuz2YHAAY4LcXsSJAS2RzNTij\n0rQjAuCsYQAjiRwdcos9HiN6o5PPmdXjznUxRpSDxfFZ9yfYfe1ucABM5Bb2HBgJ6DnBFUJOj3ua\nvaYnWhCPsY/Al4MG5+f7lInkz/n+6Yp3xiJWwUMC7ePVElxfCqi9QUNnPA7gKElhYyPYnrokMvCa\nsWgDpnyBSGR8yQVLYh7gRWAtFdlY4We2nQsD+7gaxMdLlA7FQrZZD4JSyIINEBaYUU1vpA0dUYFA\nTdhXggGirbFba3mDA24P4+6nIuNTPSovHM/FxjmXcPkHgdrYKRuK7lypZi6DrqiFI/LNjGlqJfvr\nsBH6Uqgd2UpHqz6uxcVEcWXfK2X88YLVd3WAMSakiJDiaKBQF8u62kEMGHZihyKFOdKYbIxXS7UH\nkEm/LgvWbUHOGbkcKDWDDtFxnIvafP0K4COP9ho8ZX5eCbotdp9N5qBSnDpMplmMkevTYliw3IfM\nQC804gCrRi4QTvpfy2IxFsMR9OxgFkKYI1j2WT4ffxjH0/U6gC+AbBKyJgvczffp6Yq3b5+xLDTi\nioG6tnQYrKjV9gHTqaLuE3MUCYDodO2NKWLdVlxMBsZZwWLjw4wzc38QFYRIcw9n67fWORIuglKs\nIQvTnzrv2UTFAMzGqVjeRDIAz8G5QD7vRefjMab4fuR7ggxwejaP/V6x75+6tgSeBsT2Nxpz/Yf/\n+lv873/+x0P7WQTm4Mz7jXUEtR2DNShEqFfbbNzdGzLB6gCybBq6cmS+dXcxbwhBUCpPYVoS1t6w\nrAS/AhJ6PNUGzgJXG1+UOZquPo4KG8NWNZDeNbGmKydlhYXMKRuZPsfgMwv3ISs+xWQAQ2fM9Sw9\nDk2wyx7bT6BmcACL+/tslPF1XS8NOIFg3YEvY4v1PmIRgUYdf9poipCFvyyL6Zz6JIY+PJ4TWo/y\nMg5SOuCqem4QweIuwdQzGOxuuiERTA7OTFbTigXxARj45HI7wWP76VqMs+/vWU5fjzwQ4xxPpqXr\nQrJWSsFcjx1B8z3BpGhC8N+z5zJQj/IGCm/iyckV5kwAaTaJ5frWnwKZP8TxkwC+vvzFl9i2C37+\ni1/g5X7HV199hfv9FXm/o9WCy/MFIh0xEKhp1nEsVmT2zkWWlgWXyxVf/OxnCDHi5fWO2/1AM0eG\n2R0lWFJsEwvXgJbUXCQrWqS7iQNK2gEVBisK7GccJQMnyrtgFjouLg5gCKz6jUf9Fd4YBYKQD0CA\nEJOxB+gu1Fp7pLx60SBhgAPnYHDWjXJga4J+fsPjOxubv3c8AGKMHkECLmvA//G//Cm+uR142TPe\nXDa8f7oAAJox4mCd19Gp0W5yHtxUgnQoKrsmJs7cWsO2buhdcXRqT61pIfXbQC4fe1v7AlkFUtmB\nDYGAmBd17mDCtxKwbMsYqYP6GKy9lxCozVYrIA2a0gCavKugXSGJHf6qBsSkZMHQ9QYA7ULWk3UY\nPPBCnS0YB2DWbXRyBC89bVZyChQDkHLgUGdAtI5Ta9XAsEq9gcIxlFIc+NqR9ztyPsbrnsUOGThn\n0SuBu6FrHnRVEmRHcI9Iy4ouEbUp7vvONWcd+uBjwJgbo1sVO4i5BAD2HkQE27pgu7BIr7UOJ0f/\nnWpClxIwR1LUGBSnOB3s+6031FYIXJiLm9vAA6RvDzth2wM84DigNQ0hDOS0IEiquwAhmFjsOSHl\n53WXJLJN67jnYgqjyPp8/LjH//Cnf4rL9YJf/eKXyPsdtdJ4oHW6Ov7yF7/E3/v1r6BQ3F9vJuzp\nGpKm5WfuWtfrFV/+/OeovePrr7/F7XYfgKfvNS607rbSIQC1RtQg0CCQ1iABSOZGCgkPSZaDWQAI\nPfVuwP4CxATFWQvM2Y0bRAQ3vQ0GqgskB3uMsxA9+fNj7Jk4J4F2j+h3tQkNGxgAzjgsw/K48p3j\nE/Ds9O3xfjzuOcilyoTajT0YZ+yB5pjVesdRMo6MMUp9uVwIGtQyxuBWY5o2JYivvWOJCdfLBaET\nFPSRwlYbcj7GvuG7XEoRXRtqoxutF00DiOo+um1JcAgINQzdqx6BgAUEWhQsXqZoPcV3qevh43IP\nmorjnHkz7KQ5+EmBM87X6esork9pHWqd8aWbjmrvFdXWf68VtWbkIyPnnUB/KYyjmJIDvToT2EYr\nWkO30RYYgBnU2YxiLllmkb6wEVJrxe12QzEzCZw+I+tcNiUcfBSZMgIch+1IccW2XXC9PkFVkR2s\nKwUKH3fWURh4Ecsl7XFhCiH7OSwto8aE5+dnqCrumY5z9vEGGyGlBB05p4yRd3eBBFj03W63Ubj5\nGnOXxwFoAsZ6D+OedoaXGgjrDaTPxx/GwfFo6rB17fhozM5WiwEqAc/PT3j75g31Cmth3tjFGpcH\nSibwO2KKqZ2wgOa9FL35LATz13VFNPZ872SgUioEAM5yLASbo9csGuD6UM4aBRgTUognoN9Gp8Kn\nDm8+sn0y1RAMp8bzcW6onOsYrz9GTWN74Amh8Wc4/csUNcWBEz78wy3/ncZc754udDbPwIvcsa5k\nEZdWqd8oc8T4qHXoO6JTa6tWmlbEEzPTUQWx897VJkG0QUSx9IWPHVMhzurtQDNn9tCGccAAGgU2\nrjqvoxiQPs8cdYoZMx0UI2Or98cRedUpzzOeSx/Pq3q0s6bWkGQYV8CnYQxwHHRE/h0QJqBvgJYL\n5VvGY+smuH4LxN4b2tQsPgNfvXfkOw2FSi4QAEuKqDGiWvyCryXRkZ84A2rERlUCiwZwaddxH00C\ngK3xIFhtpDyZrmIHUEwuAVafNXVmN/VcY4xYtw3bhTlZLhXZR+E9RzrX3cJmlMgEd32iJtrI8dDg\n7Na0qRUSKc/guUCMPL9t7A12rcSaMzBSSW1oZurQoUPZWe2c0FilDZDVQbvZJPrhjp8E8PX3/+RP\nkFLC0/MzXu4vuN9esN9fIVC8ffOEP/uHf4p/+A/+BL02/K79N3ylFCgtpQzWjxp49PzmDb78xS+w\nbCteXm+43Q8cpY0CNUR2CdUE04+cLaEWBKHeQmsNSyKbIzpLrJECuaRl3EijQBld5OnucLae9oSm\n1gUiFOSvpvvg8k0+b+0B0w9H8P0miecxRztmsfT/E4n1xwqAQXwFg5uEh4e+f9rw/mk7JdqOVPtT\nPToWcXOZm0e1ZC7anLUIkOsGSVM7LYiwKIQYvbKg94ZlXfD0dMXlcsFaF5RScRwF9/uOZUnDdtk3\nt5QL8lI4Prsm1FJwuVyxXS7s/hszChDkcECkIMVkQvjskgnSLBaEEbxV13oKsyPgWmAA0CkGKRBE\n4aw0bC5cbexjbowAoIOp5s6HA7EHNXucegvfCLVbEVJGB94/T84c/83ZRjoqC+N6skOfBa1tuNaJ\n7iAtGVYM+fdDiAgxYVlXlA6U1nC/7yh2HiROqjDHPNldiFHGqGZXbrKoBQJFStvoVKt2ZHNkq72N\n8Q+XRYVMTS9Ww7OL9J2ipFREc3Dj2iYTrJiwvkjAkhakRLdFfvx4GnnpQwNDVfB6u0E7R1eXJUEl\noLSCjgqRhGqjajEkrOtGILI3lFbQeoVCp8HC5+NHP96/f48QAl5fX/Hb3/4Wv//979F7wbomPF+f\n8eWXX+JP/8E/wNdf/x5//d/+CgD1DVoj87OWQidIKLZtw5s3b/Dmdse2bQSRwL0+poiuk9XBMaYT\nZTxwTavaPReisXFdvJ7swgE0wfXC2ogzLNJZoJxZlutK8KAcZRQwzfaPHBNW2wdcqPdT9pac7gXf\ny91AYhz+e6MreR537kM/BKfnPAM0f/PBV/Go4vtVG93gqeHnn00DAAOMqna0PNkOyUTA15SssNDB\nmomm13Z7fUXOGTFEvLlecWwLWULrOv6kHEdR6eftaA2wcVhYYrrv1FJ0MP8oHbUL2rryc9Rq5h8+\nAt1s/wSCxAGkK6abL7cx7vlIs7n0KQPiDHr5NTn/7Lz3t9bQhSw0ro9izAkYI6mi1YJaijUfq1m7\nH3QdzY+mQlBBxIoxEtg6xbqteQMrKNhI4truYp/BiuUYI9K6YFlX1NZxu+1j/M8Zf03biL/LskyQ\nz/6LYJ4WVcwx74qnpyte9m85lnm/o/VOpkWYhkGu33Y+p+c1fX6sjz/5vt4tvkYrKEJgA3ZZFvRW\nR4FLbVOg1glCCoSaTKM5c3Ly7tPEQgTGDuHPcs643W+4mXFGCHSF/TxS/wd09AYYaKXNHOPcIAIw\nUCUhLQH7TkC5tQ4VwZELbvcDpVYscUVdOXpE8NibnwR8JESapoSTW53f12A+Fl2rFLNW6F0hrQ+t\nQcaTCD3tI0OD0vL4dV2xrHHUPgoM5s1koE4mJfM4WJxgPgb7Wr1rAv+WgRGn5inz7O/uaYBQ+9B/\n73tKnr/LmOvDnqlRbGLgr6833nNQlNaw+P0tQH95QbrfTUuWzX53gnVdsGR1jKgL3VO6J2iwxkUh\nYBAEqXFMOvnESqOBEky3qXc3djqxejunaRA4wuq5+Wg+dQXEGVJhssRAxUJtEaoTqOTnPoOQBnpg\ngmQYtcLcY8VAOL8ek1Dw3VFHnPbTQRnDrB3thJoYfoCCY/YYTC/GIZyaNq3UoS9ZjgztDSnSNKTk\nNhi0rg3Ka+TTXqwrVKk717tNJCkF9tUINCFGGuj0DomClBas6zJkIgAgD61NMqNxWoYeB9Z1xfXp\nGddtY9PF3BFLrcQjYhp5o7O55jNM4NE10YJEk3eRAVyTcKKDnb4sJwMjceLOZLd58661CoFpT6Kj\nNTZjwwkkZd7QTSyf9dWxHyhP5TEf/AGOn0TFtC4UG/7693+N3//VX+F2e0FrxZwLgC//6Au8e/OM\nlw8f0Fsexb7ahmqat+hNSVuHYFk3bJcLlm2hC0MspGAqbE43ojdBKRnHsYMCdRtSjIiBa3kwhYT3\nXql05glWCLfuI3Zk6PSOkeR74HBAysdQAEtGPSE1UCDnihjJWIlpRQzTGciZOUPz4ZPRBn/O7xxW\nnPCMOKIt82eYwN0D8HX+fT75Jz9QCwCzG3NGyiEyRj7PyXijszKBoRiwH8fYuAGl8F+mphdHEJhY\n59bQVJEzxSKXJWFdFmzrhsu2oa82Q20z/iEULEtBWhaUmpBzxb5nLBttpPfjQGsd67bhGRQnDwo0\nNoshqSEmNZcQMg3QTFxZbJ7eO1NdgdYscQY/nZjmjoFaTmOG6U5JEGg7FyWPyfBYI430WYrNz25I\nzZnaKzZmUmtBPTL2487CpHDskcElGA3bgTMMsA1Cdxn4ZmjFs3eM0pI49rVuWC9PKPuBPWe83O4o\ntSEsAeGTwopdBbMJHto0NvKjHSlFXJYF20oAuRS6Ph45o/VGzQQACALRk5vpJx0p/55v8r5RU/un\n0X21GYAqJqovs6jGOM9GzQ7yyfcVx5EhAOJl47jyuBVkjNpmY/lcLhv2O23F77cb9n1nsbytnzY8\nPx8/0pGPb1Brxbfffo2//H/+AksMWIJCjjviqvj5JeD46nf4+LvfoXz7NdbWsIlgb0Cu1PcJ8YqO\nFX/5V1/jj37/VyhSkZ5WrM8X1NpxO3akIMi5opeAZYu4rheasdwO5HtGvlzw/PyEp+uVxivCzrC2\nhlYVtSpi5DhWjBExLAgSUWpGKTRpiMFFZN1ti3uys0CW64ZuHdjBIEoBVTtyq4iNoFBtbSTxrU0n\nvRBoxT20piSiNO4pAYGMNfpFWWI8xXJn19A6mJhjXEEi6uhy2t3m94ebsKjp0FoXOHrnWRVQbwAB\nS+LPtenjvml5QVBASkO+3dHDMsC9VjryXuEmJGmhTlJDxFEER6lIWbFdFE+I2ALHGlqriIsiRTbF\nCgQ9mnNyUuS249udzNv7fkftwHK54u3bt1ijUEuyAx0NohFBKNqrAiBGhJBsxNvGZnplH1aAlBSJ\nOsWn2F+gxb62znNQY4kdO+opP/DxDgCIQREaIAfXHHoztgLBuZJpFV/t32xckR15u2c7XR0AACAA\nSURBVL2SSXxuogCI0thMTB0qjItqMgUQlznmyPxyvWIvFQLquS6XDcvlisvzM17vd3x1HPj9seNV\nO8LTE3RJqMcBqGCNC2JrwFGx+p6tHb0VA4bFuuwBiBV7vSPXjtKA1k3SwBhXrbGI4Lqlg3NrDWiY\n7EgEKxrIWEeMQ2R+XVc8Pz+jdeoqJRPh//DtB2NUAgiC0ht6aXh6esIaw9CZVAjW5RmqAZfrBeu6\norWO255xvb7Bsm24l4a9NLzcb/jVl79AV8V+u+H147fI79/ii3fv8bQm3JQA5ufjD+NIBgDVI+O+\n37Hf74PpIeL6oQXHfsP9fiDngw10CaxjckUpDVg49sv8JI29NRiOoPCcjl8wD/ZmiWm+CUchuzUQ\nugEL7jjKhwid/4Jaw3mO3g3GDQRLjAjJR3oFGp2dwp3/3IAfe47VGnOUfxb5E9ydTZeHaRbbzx1M\nmM89Pv14bzrG/4A3m5fO/x7fZ8z1vK1DyY/7WEOoFZoPlFZpapIW1G7NatP4jJH7hDNYYwzYdKPO\nM4tQlFoRa0BrC9a1QUEBcubfdP6DMjcNtdK0A7wORQCpZUiInJ3pmwg0ss4RAxWp8eSzaycAycAk\nSs/wHIkRRBReL+rQu/WxOKiiqT7oBX7KGmbOPRtaDnZ+H/mBmvgkAMw02K+dAW4Ck0rpYyoGvUOr\nu9RbHdxo2JX3HfvNmi/2O+QR6Ki5XOOLwF+wscWplQkAYq6XXLe+9kig6GJQ34nY0E3+qFSOyNKt\nniPE3vhwHNblFNKSICmi3rtNtVg9d9KAht2vYo1+lw1zCQVVqy3Fq8AJHoo1S0qpCNIfZFW8hg6Q\nAYizBuoE/uDEBHcAJ/gVTcfZ5YqcYbofBz58+IAlLQPL+KGOnwTwddxvKLXg62++wTdff4VeM5LI\n0AWKojhur3h9+YB9v0ONNjqJUeyO5tzw8vKK220HAi2gl3WhLpSJzNdK0TzpGDogzUZeBBScjMsC\np+ECc57aUeQgLCikN5QywQsHema3dgIkXnys62ZAWEKrjeCeCd91c4+IjZ1g3zCIC5nbEx67kn/b\ncUbz4fHm4WfjbsfstmO8Z4yA9vhaaiAKBeTncw5aLkAtgt4fMTMdzw6oDKaCv8cWKlqoVtS5exKz\nfXZKM3IRpJJwWW0G3hDvNNzNwtBxU7NFzkfBvh8IMaCUQsBNFW/evEWKCboStdfYEVOHqN92ZDOJ\nbzyE5qFoth5gFHIXMvSP2dGbzu7ZoNLyMdUQ0iHeOMBJ199iAdJq5by4nTMKcReUfR8OUuyKVOSc\ncd9vyKYj0czBLMbEdzcSkskycxBOFFZpWkfAriMZJBvS5cJO/O2Ol9sNL7cbO+cSKH5pXRO4DhDE\nEhajyXZFMF2LJSWs60LWZSdQxISQ78kLAh8XPgs3n4Gvc3L1uOYtECYfs+xziQMotSKVaPfCdPmc\nwOUMyx7EY0wIMbHYQwAkIqYJfN/3HW+enyABqLVQyPZ+w9s3b8y1CZ+PP4BDe0WrB+63F2gvWLcr\n1hQg6HjaEqRXvHz7NepxIMJiDwRR4kjQugbUpnh5vSGXjMvTFc9vnrFuK0rdbf/n+m+1okUrmJWA\nDoWryVhNaYHCRg+tAUF2iHWNY4QEmL4fk1HfY5m2EMzl78/x4hgjrtuGy7Wi5jJACp4Djn1BFc3Y\ny/FUUPgxXsf2CHjBpHOcz5sqroUhEgeVfjZkxtmHGMj8gATL7B2qJcceW2BuSWIAmMes84gM+tyD\nB3PYwOlgHatWKhAnY4zxWse54tgb6f+ZAp/UZxImx7V1c7uKiCmMxktv3RhcglgDejQ9l8KOdLYk\neYmJoslKbcOYInRZyMQIMhhqQCfY7+ff4mS34lMDiy5+Woyi8DtsCYCsK2dsiO+XYZ7prNA8C1+Y\nxkcrbKIcdwJfOe+zqZCNsWJd4HNB1OJkoc3/YK89LvbQfpRmzIUQEdKCZbsgbRuODx/w8fUVH26v\nOGrF5ZJOCb/amvdCr8+1Zk7FNEnidYIoWi+ork9iTSsfjfy02HGWOk/RzIkY0czRTXlecynmwBfR\nSxvnWAE6WpeCzUSsyUqu3hV9WP/Lstn4PzU0u7F5ul2TEBNy3fF6u3GE3pii2V3Nn5/JHIoB7XOg\n+YM51oUTA8e+E/TKlPOIIsPgqbeG49ixHzt653hdWlbEvQAaoJ06X/d9H81uL7BZr8/9rFuMcTmH\nFRjgV2/UNhRjykJMc1AnmBH9vhRjCp0amlAgC++XJAKsGGzaWR8Ao614yvnJSpljZJ9Og/jDR9vx\nXGeowscvH/I9CxID7PDfFsqrdCjeXte/xZjrLd49XR72KxFh7pkLirAGKaliqWVoNa3rgsWAjV4I\niC3rgtA7QqPzqwOKsRt6EdQKJWPAdRiLptn4mjksQoDWUbVY7m2i+SkN3VkNpkkrgSORvZqhJqcy\nArwRBl5fO7ddLC82Bpif26HXFcR0cxnLq9YhI+OTPw4Y+TkThlbG6u/hTDy8xsmkAH7NhkSMgbi9\nmVvyZBvXQrMufp+1z37fcb/vOHbT+LbXarWOdce1O+OaNxbFgRx1XSuet9aUBJQ+DcS4l/MeKLUC\nBxCKuXV3NhhLIVPaG2Eeixz0iqZtXUpBLhnFAGXf/wfgG4KNiJ7Dg8kOaDfJoGTAogFWOnVPY4w2\nRabofZmMcBh2gQ6IImrCYNoJJWRCDGguKe0AMlzLlOApyTgLWuv4+PKCbbtgKz9sk+UnAXy1WtBy\nRt7v6KVgCQFLYuJ/WRdorbi9fETe78BwavQOAfvOLCgaXl7uuO8H3rx7xvXpCeu24nYjWKZwAVcD\nzoxCqMrkk450naKpke4YM2cz1FRMKwjKRLEJQQ5biLyhyXrh4z35Z+J5uVw4drfl6fBiyQxBuQO9\nd448CqwoGXXTZAadACkHB/5mkADjZntkzfi/eS6H3ssn0evcjfGO/PgdzOJGxmON8cYXPAkoMwA6\n++bcbaLjlULhOjZpiDATFPRkHiZEz/PZjMGVYuQYmznQkAUo5tzZx6ZRSsFx7OxSh4TL5cogUhv6\numIFLX2rg1kWhMQK065AlzZANi/INISx8fnecma7eaCfGizzKriTiVoy3mpDNuv4dBqLqiVjv99x\n3O+mb1eGFk0pGcXcG328ycEkp9yfOzFjfMmDnwNjgQ414h2nFLGY083tvuPbDx9wu9953byIlU9E\ndS3YOWBMW13Sw9dlYbcTZJi02sbcON+OjqIK3wNuze6if31O9ifI7EmgIA43SRGg5IIUyBrkaIiM\nTuggECiTi2VZx78pLuudFhnFUlfFtx8+Yts2Wx+KXDJutxuu1yu1xeQnsY3/wR/rukA7XWPfPL/B\ndVuwxIA1Bbx58zyA+GTuTt7ZTCkiqaDUhlo7WX37jtrI4nj37h3WbcO33360ItZ1/bpp8uhIiACu\nr5wzRIBt27AsC9YUkcLU4BqxCdNJ8NxN5/Ow8+wgWQpTWPv69ISL2mhAKbbvHcjFRqFzRrHOXRC6\nVIYQIEke3it7PWEAbN7YmUUDxp5CGr2MOPC9LGQ8FjfOTgBm/HLhdQetZxSegu1jP7NM0Y0uBqPT\nvw9PMA3IMoCi26j3/KPoPRi0oqCRh4usV+vqskm1rAl1XdHM9TGEqeMUY2IS323kr9IpKh/HKHaW\ndcUFdj79mgJABUQ40hJE0E+yCbU2k+bHd/ZEX1Pnvz8dfTyfd1WFHh2a2yx8YwSgxoA/bDSDbPip\n/dMensvjTK0V8fQ5BtArY1u3TsJcF8GSfRZOAetKjarXlxd88803eH19fdAQEmAIX4+GZDuJ/qvp\nayXqaw0H1Eanu0+ZKA/r7/S9T40XPj2vHp887kZxZoutOXsdLz7I4qrIh42onu8JEaQljZgdTyM9\nwyHa1sDr6yteX1/ZSAkBpVa83l5xHG957w+Xyc/HH8LBaQjLy/JBjUU4+EwYV0zzrSvHpmMUSm7E\nZBIrBORzqUiZo3spcawr0pYRIpyW0T4Z934fygnwODe9HQRXy1GZmwLEVMj80uiNkj60rZoBaNqB\nbQONQ/z+gVcMOv7lGNWoFU5L38F9Bz8c3HlsIDtgBsvBP61hpvaT5/csXfj3P/3Hv8Z/+Ivf4rcn\nY65fvnuH/+0f/b1xX3mOGkAZD+mUu2hiOsKtIaWIVZeREwcAOReOrKuQWZttXNwYYhChVEmnjIlA\nhwFazpx7CSFi25j/C5yhw/xBosUEaxBDFXJixjUFcq6My2mxswx0Gx/sIVDvC4BKpFRPN71ieB1g\ntaTamlQDuFpHrTbOdhoD97UDnGsb+c4eKjLrCgdR5/5v7shupAIlMHcGvep0qe+1oJY6DFWO/Y79\nnlEy16Ovo8EW0xPJIIS5345lZa2MECAh2X3A+Oq6iXQats/U+dz7ftgNMtEpryuWEBCDNeAC74tt\nNZ1HVRzGDqvj/QIwAoKEYMCW1zt8i2RZNWu0sIYN4D7vhAouD4795+MYbDKXsiBIbAQMdU3nufek\nmKgHVlw+ASNn8hpMTOduXVdIEOw5D+LID3n8JCqm65oQobguC54u26CVrkvC26cnaK2oyjGo67Zg\nWRO8uxAMiIJ1yg5zhrtcr3hb3+JyWdF6ZccNCs5BYyQugA4x21rpxJGc9okVSMlm6K1o8ZVpCygI\nBnjGDVcg1sz0brIfzvhKKWHbNhx3p2u2Mb4JgEj3tmFdEuK2mSbZTPrOyd+ngsMA5mZjh4qjyScK\nMX8yChXIqSMsMxIO+mqwx48fGTqso89j78feh4FTLrA5R1AwApwnh9G7E9pRu0KClTy2wQz7bzvX\nvQOldSAX5MKiJNko6ZpWpMgufa3UjBI4Ch9tw+b777VyTrw11MLOmGGp0MbndRDIKdutUbvE58aB\nidzz1FkwsM88dzqesn7S2hLTk4JM3QXV6QDUW4WwGjbmGru8x+1mCH8dbI7e6tDycWCS+mPsNJPt\nYMnO6YrxPZrLjyUY7MJTi0Yihe3vueHbjx/w9Tff4H7sY4M80TUGCqoCaNNxrqnhQtF5mhcEo9kb\n9deyGxf7pDDnHF8aa95aIufC+3wogK503loXjgWEE0geQmAh2jrWNWJdA7KN8pxOG5xJGJfFGDN9\niF/2fgIhbMb+w8ePeP/2LZYUTEOu4m4ahNG6hZ+PH/94fn5CEBYPP3v/HikASYBtTXh6IvAVJGDb\nyHD0JCmlBUkVEqmb10rB7c7xlW3b8O7dO2zbRrZlrabHENDQR5HsgJSDRNUo/A7UBlmRwmMXvXcq\n3UEZo1bZcK5SPPE8u/udwW3vBvoekXPGfuzQTuH3vraHx1HDYmAW4xhdejwCWj5W4o/59PCuI7+w\nP58AMQ7kjK+Zqz3EH3TbDSScHme/YyMm2icQ50WSP6b1Dkj3bXi8DpPLbn+M7SA0tgnGtKojT+gc\nBzFArtWKZuytIC5uTNeu+ElMJkMnQ48DIURcri6IzJ9dr1ckK3DI+jadkmjxQQmilVbtfBkb2pNw\nA4R8NMPlF1hYzOITAtvHOvrR0I/JBOQeRSOEfd+x79TYut9vD0DoMEix35taphbPhPwo/phjOGPU\nRXmeWjMTCAPCQghYl4R7PvDVV1/hq6++wu12e1hzvB9c/46/w+TcCgAhM3cxXTa/12gwUB5j9Cex\n4/uaiJ82W/xvPo9O4GsI7E+nMBeoFwBpWdDaxpyutTF25Cy9JS24445aG9Li7G4MMMxZOPfbDS8v\nL3j/7h3cDfL2+orjOPB0vX4n1/x8/LhHayzYcyYz5VP9vRACtnXD9XohozSGKYmhJhcRIsfZ1HRK\nhe2AEMgU7l3RpFuTwEEqfRj9CjYT2XU2BaYhV4CGbuNydthrJ3tERxuFdmsNO5x1xT10ScvYo3CK\nE/br8FzYwZbzvTbuSf/DHzw8jwN5EBnTJT4NoPxgEPHc0PZ2qz22RfAv/6e/jw/3jI97xpttxdur\n6RSfgbguY78UCdAAurvbZITPYyDwPQShUPnmDdHaUXoh41rNSMliX2009koxoqt9rRVAQEqsUWKs\nEGFuSp3ciLhEqHT0QEd3BAc6YY6eamAWPzv1qww4jAqN/FrtvNWSCZ5YY5vJrI5r5OOEMIdfuEGJ\nKqI9v1q89qYK46KbGvAaMZex69UcjOLjeN2sadDaAGvJ2CXo1cxEpWayvVo30MtiUj4O1FIfNIt9\nbQ0DMQORgsjQyHaALAQ604sZEYjQpMblcNy1Gca4CzGycZHLaPpFY3OllGwqgIBnN3BzWxesG+v8\n3rvJzxQ4u45nASDD3ccPDSQUf7+zqdg7pQZiCAgpQWJkM8eAMzZ6kslUfMrC9OdWA89g966wNooR\noUcv5wFr5hebMgD4mGju2KoVpeQHgPqHOH4SwNfb5ycc6cDrhwXvnp+ZeBr4tS0JLWes64LruuK4\nbKRWGmOL7K8ObT6r2pFrw7pSfPhy2dA7dX8kOAuESbUjxl6UtMYb6r7TNUJ7By4bwrpwbMqSnWGz\nq9Q/STYq4cUx55QFSGarHh/nbkWItraUkI9jOCU1S2y1uZOXGkMmDQ0iagDMJE71/2Pv7Vot27br\nsNbHGHPOtdbeu6rOl6QolnCQwZZtTAgOwSGWCIQ8BRKcYALm/oKrX2IS4ye/GOOXxIQEEgghyUtk\nLDsEHAdFKPdKsj6v7j3fp2rv2nuvteYcXz0PvfcxxtpVkgjW5Zxwal7Oraq91+ecY47ee+uttyaO\ndpfA19POiHbGNQj2xE+f42TkwAIHV4bY6HJjnJktM2tX4wLMUcTAZs1Hwb6xiMP4M9UAI+fsBcDa\nTQIqWPTIxbLV67y0d6JHExycBhFiNCcXcELJjBACUq7wMWoRaja0odGLSdkcJh6fU24JQ+Xa2Gou\nSEJZyMYYsiYfXh1x5DXavkE9EJhVbLsGmojXYqxAFo0sotZRE3ClSrJUCqg6ZJI1lTYRrxcGR9RR\nR+3ych+ttNHbnIXlSI7ATjRlWBMEp0FbiqU+MlKZG9BrGz85j/P6iJevXuHV7Z1YQDsnls1MrQjg\nqveTfvdm3OBFnHWeglwDIuQ6iL3qd2iOpm+hTgubhNum3f9DW8cyEsQtKIbhvpPi3rVgaTp9ebfD\nup5hVt6OgNqMK5xSo4F5hlLVDaC0NTVjXVXT62ovgMcQ7Py8DGvg3fF1HleHA8AV0+Sxe+8ZqFZw\nTph8t8TeHfaYpllBe4jg5+Th1N21soio07ri4eEBAGG/32PW50u3bdZ4YmiwHOM6MGFU24uDJ8y+\nM8IATYwUsF2WBc7vxNQi55Y0NlHZAWSpteJ4PCI4MeHIOgotY9C5Awe14nw+g0hGkE1PpO9Ysk9k\nNRqxveLiGECRFn8ITYhbHyRguO6hxuZsrM6nF4oGsAZQvT+0c/n0fjKQw35nRic2WmPn+/L5A0ut\ngY8SJ4P3uD2dcX+O+PD5DT56dg1H2nTShs22bYghiNtea4QRwiSitvM0IygAU0vBWTV+xPhAEuiU\nEracLguHUlTvsMK1uCciuF1IWtZNpYHB27rdtY1ztPNhhUiVXKGUAk4VHC87x8wVMW5NpF+ME8Rg\nxrk+6mfvecmCKnBOCqtRhwQsml9MrBqrXgwA5lm1R1xjMT3cv8Ynn3yMly9fIqsRQFtTuASbAICr\nAW7UCoBRhDgp0zENwMPIuuxLeGzcvQl8PW0Y2vkuKoLttDFm390P7KugzPWmy6psZJMb8N6jaE5l\nn4+ox1QxkJF78HSS8XnyUmzbdbq5vn4HfH3DDhnvK8pUWRG3KPkYM7wXo4ybmxt8+OFHCNNr3N3d\nYYsromrrWW0h9YqsvRSl4AzBo3BF2RISJN8Nou+B5v4KNCZwihFr3DqTH5I3eWULP2WHEolguy9B\nYkZNbQTMWLBEpOZRYqowslAIlivV9ncD5+31xyZ+u5/ZGp5oj+s5nv1MGgIAiwSJr0Dbb3SSYhDs\nZ2Y8O+zw7LCDNIm0GaLv5bzcr22sE+pWb1I4zqkWoDRAc8oK3hfMyyIM/5yQc8FOmTE20RBjAnMU\nMGQRTaQKiHFaqYgpw503xJhh0xfQ8zWXqefzpYAqNzAgQHTCHKQeMckeYgKTitI71fcKAc4FmS4C\ngybpQBlA6jyB2DUjLCEJSAyspagLMbc6yzpYtcrooKCqKk+i8dxIC42BBQXqGCI9oBpeetFUW1TI\nKUV1i0W+ZZPR+5Sk9kkRtXa3W9vX7TAWt62d9nMDg9m3RpknggsBfppBuWBLCWuMgPPwEzd2n+QJ\nYohn7Ho/zc3J3un3F+JBxXLYY15mzNMEgBrTvtaKaZ6khiwFnDOcmiBYLFV58tbEcyo/w1yRYmpa\nXdZYk5hYGyYhmnAyVRZjfIPxXUoRyQdIrV+ZUVOS9c3iRMksaypXM/vTKScDNMHCgn836vivfuzm\npTnVXR8OmKag6HOFZ2EMBUVus4p5C3vKo1QGYmqbXooZ5+MJzDJGIiJsCkA46TI6FchtSTgwbJTy\nmVLKID7LRkCEZZ606C2Al2TEAoSAHH122xIYB7pIPFNKOB6PUhB7Lx1MksIka1LrvAIsSRzwLCmc\nwqSCqa71UAzFNcCiKXg86bwMpRfGrrsUTQIAKVLVHibnxL0ReMbDOieO5WZt7/ckMW7nl0xIVjsM\nELCwQIaMHXl4CioALLi4NCHUFcc7PKwRx5jwEy+e48Obg4zpqGterhW5RKSUFQXXETdF00PwuiYm\nhGkCc8G2nZFzbU5cpRTMObW5+GmZZb5Zk/tSBPTz3qN6EUe0UYrxewqAqbg993MiYJEGf/JtFt9G\navQECi22FAUAJTg0oKhKAE5bRNXxGRPib+tCu+PGAmjXvum8jNmEFaUybgt1CvJq3cu14u71a3z5\n1UvcP9xL0HO+AcfVqMuldH0wvlw0QYGm4L0W49LFzEmZalpYMY2tOG6f0+7fvlZ7BweAggxoOnnj\n2rOu1TxPCgZC178AV0nd+mqtItqt13meZ2Upyly+d74DbFVc48IUUM+MdVux309aoErQTmlrgMK7\n4+s/4ioMW1Tg5voKYEbaVjhUBOdB8Njt9iilKjU96zWfsCU14hBkHFuKeNRxrGmasNvvxU0U47ii\n7HFvc/W0fdXGIeO26fh8ZzRKkt/3TREuVbUjS458Zxa7AQiJ5xW1jeK5xjJ26KNmDCBuW/s9adHf\nWCya/PnWkWQUsm6tAUdyv9vIV/+C6PscegwRCa3LbqE1Sdoe+qSfKPn224OQCeo/PbfOeRBcS4yf\nAh0GLtj5snP+cF7xj3/rh/jhq9v2+D/70Uf4T/7qX8Czq72ylRxKSa2wNF0zB0KtE5wLmAKJ3X0R\nUNzAknmewdzzjfO6ApVxuDpg0nHTnLPoORGhThN4kvjEmiNIucGNIWZMkardbuZefBIRij6+2J6b\nMzw7UO0Ai+xrBUlHYc0kwQpCA2qfNtm6i5cBYsqakORKRyxIGpVVtPJqLqAgekXzJJpcMUZ89tln\n+PjjH+H13Z3sr3rfmM4QD3FUrie3e6NZzet+a2Bcyqld55EN+XQ9jCO8Y1NxjOtyzYTdb8+R5+nv\n1bxh0kJ61Iuxw8bwG2uC+vtIF17uvdJe2+n4m2/jj8HLvVq4YstJx6PeHH99d3x9h3cAoWKLZxmh\nV+c3qRMYII/dXsbkGcDV9TXOsQAooI26vq13mILcpylFbFH2XK9j8QUMFGUQOR13J5IxMZQmK2L7\nPTA0aIf7xuLQU8DWe4/NOc1nTHM2A4ggdaJd9HHtoJ6zyX8m1/KkCH9yjGwwPIkRbx7WHZGYOL5G\n1zLUf9ueSD2flPFQbp/XwBT9pfydO6gPiASJT5rfgpuDrwFhBNEELd5AQqlpAcZuWXDY77HsFkxT\nRowO6xa1GTxJnui0Ka+1YtgkvwxTQIwJS1qw2+1QJokhq4Gk2mR2XszXQgjIANgJOFYl0RDGWsmo\nRb6/XJTQmmimRyznv7YJG08Eq8UEXFUBevRJHECBlFJQmiD8UE8yAJNgKSIIb9dZNL1UmzhFlJKa\nPEBOUZv8KuOitYbthazSQvL3Ln2gixyNCaigMEFGQ72CXi5MYJyxKdM5D/I7tk5LUY1waFMNELCr\nVjAXUM2gWtV4bcI0BdH7TUnkAmK0gCx/cFUiSV+jIxsSgIJeg0a4MsHNwMUemnNCTL6NKkoDaGqS\nG3bvWW5XSsXkZcQzpoT1fFbX+gnOy2hmzhVUsxj4qT6mc6pTii7y/+M8vhXAVy1JRhEdsDvshQ1V\nMogL9suE/W7GMksHr64ZiA6z28HNDiknwEUUFOTKQCQ8HE/IuWLZzZinPbybZGNQTpI4XZhoMcuo\nOMStirRbLHpghBgLiCJqMWFJFSgk6VQEtQ8tuaBS797KnDbs3aQIMPv5rSiLy2GePHC1g/cCdnG1\nJFOSSCm8uhir8+idIOami2VAEqD3/Rh89P1lYzeB/l58mXBs65jYdeE6sMRaH1cKBQV3rChhZ7sb\n2kbnyNDiYQxC0I0WqqwQYhZRYhslde3dABDjfM745e//Pn50UZB8iP/o3/rzeHY4NK0VQMcegm9F\nHxHgwJhpRmBGZhk5jMqwK6VK8ZoTUi3YoQIOyDVLsNnvMNUZOWkXlhwQPKDFMtjOjXxxG+kUkKp0\nHRJg+Ps4sidsrlJ6F8SowOI0qcCfMhJTiuLwpjPduVZwEnCsJx2y2mup3b2ERPss1wIT6AcgVFaS\njr+JTlrxWCtwOp7x2edf4Ysvv8Lx8QRUhkjCsNCfHQBHqr9W2+gPEcmon9KDyQVUmIlDRc5Vuxzq\nqnVR/A4AnS4Wp6CDEAl0nZBvmK0U/gVg6dKZwYmDuNYE71AnAQRzjJi9w+SdjBnZ5y8FmStqlbEy\nZ3qcBPjgAS9OeKkUBRvl9zkliBOmB6lzV9w27Jc98A74+kYcd3cvZZwRLM2VWoDiEdyEw+GAaRKx\n9/P5jPN5RWVgmhcU8qjnFYXVpU5Hmc7nE7ZtxeFwjf1+h8PhgPv7h7b/Sl5HQh5UzQAAIABJREFU\nrbB4yiyx5IWZRfejllZwBB0JNt0S0ezLrQMMc0AsQCEZoRpZX6Xktr8YGOC9R5pU48v0LMDYcoJf\nzy1mGEMlAM1ZqmsmFaSYmmusASxPiyoY+M82sjzEhuGwjrAcEisrpMM8YvQjL+wpcGZFnGlqvO1x\ncl7wxu/GjjER4X/7jT/EJ3cM4L8C8AsAfgU/+PK7+O//+ffwN//aX0JMsWkyjnEmeCcM4FoxVUYF\nI22bmKooYC+fD5imrbHSUk64e3WHbd1wOFxht1tUm0ROWckC+hQqmAZx6FZklNL+LnqK/Mb5se/Z\nGFA5Y3ITAgUZ5bTCrgqzL2VlGxM1FzApALLkZbomjAHZr519PjP6UV2uQVTfDmFa+HbNvv9bv4l/\n/M/+D/zoRx/jvIqGpPceKaXG9rV7pulZ8aBxN00yZjqs0yZALBf3rWtiXA+tYen6eQYutVMB3wC4\nnDOy6vzY+nTOiZu0gh0jcwuQ/OYSTByYc8PnaOdJmdd+CuoAnjFp7liZsa6raNNqo+rd8c04aoko\nRYp4sI1ZqzSI6j7FJMYn5v4s7I/uQG/L06YuSpam2rqJsdc0T6IBqzm15VysOTdzBZyDJymGK3dm\nFxdGMbbkE0DYQBADxVrTtiizBxZjClLKqm0o0wHgCpPsaOLdg7EI0O/B8c9xMkILDv13B6v67/Hk\nMZdB5Y1n0BB/tH7RbwGpfpwadWlFQzbZ8iZIXkpvKmxbbKCiNE0LqMi4mzDGizS69bMyxB3aB485\neMzTgrJbhFlepaQgjZs5F4RQMCmDN2dh325rhPMeKWeczmc453C4usZ+D8wTg73IxGRmULDJITut\nfT9nluY1aWMe+n1JY7rFcCmpWMYWB3BsZH7zMKki/9k5bhWjsNfatMvgUq/TLWmT0XphfAlguK1n\nbLG71HdNaK8NFrunuqyKuti1692bfOJW6UFKZggIuz1AHrkyTmfRBq9VzR+Gpo98XjQyi9QgVWUF\nClwtCJ4wTVMDgWsVUfwtSZ3mvG86ynhLk+Jt/7a8ZhwtFRMxyQ1roeEzspZKOnXGI3ZMbV2ZjAug\n03EpY54nLD6AnNdrKYBZ0LFKk7SY5hm5ZMR1xaj3+eM4vhWR7OHhNWISXZ6gxQcqwfsJV1dXuL46\nwNWE7ZyQtwwuhDnMQCWAMgoXZC6oIKSS8fB4xOm8YZ4XTNMOu+WAEE7gmlCcazcxgeBVONyEUwEb\nt9OCI1dsHMG5YllEmBsK6KAyqHBLGEsWHbHgRFhQNoCCUgzwgRQsVQT9nAtiWe92cA5Yz0CMg1NS\nARxtnSU1MZx2QgNpMQMPrg7F902nDB3Aiy4KevDpu6Fu9LYBogcKhogzEmQ/kT1Q7yhDqdGLvDG4\nQJNm9Ie3gwUVs0fKs/TtzS2xudRUcaT45e/9Pj6+rXhakPyP/+I38Df+7b/YnDEV6G+jjWGaZGbe\nEwIg3W9lTuUiOjvOeSk4NH+oOpoBAPM84xAPOOwOMKivkoykFHJwEEFjp0FTzr9Q1YuJDXJ3txxH\nRdr54Iq8RX0eWsEIlkAkiVJBUuDLGAFF9WnAkG5ALs3Zjdpm5wB2YHbSbYSskarfz1h7NnVOgLJV\nVJOgVnz58hV++PEn+Oqrl9hibJRXrlUDqbq2eC3YyMBSUtMBmYl3PgAk2ixZO0MgTTvINAB6CW0F\nnpx2ZeVQi9Ft/chfdC2z3L8pZXm8cxIHK4O86MlVZdPVUoQaDht5MtBL2TZDUiMApoex6WTjn2Ai\n5FYAknNwVUeW1g1pn9914r8hR9zEoe5w2GHyHlvcUHVk4cXz55imCY+PRzw+HHE+ryA47PcHxApU\nvheAGQB50XF7PB5xf38P72Uc/XA4tHFYbuk3XyQwdrRteOgsbqVrETnn4HVNC1NUuqylFB1NVnCd\npBOYSKDizlq5ZK94L2zXBlhoh58UxNtibO5ClVnH9zXhGZhjrbNPOrYP1iS/4uLu1X2FWlwdjuF+\naGVMe8wFOnVxjkZg3J7DwIULrQE/zBpnLCA0lrc2d4a3McDo/rTi47s7SIz5W/rbvwUG4w9ffgdf\nvH7A+9cHjQLS9RegsqIEj+ClSHFCARKn3fO56acRkWgznU6N9U1EiE5NSlSI3ZtotCNQIiQ9L/tl\nJ593AE6ejimNifAIrNjPjdWRKcNTGHRSgFolJtoIiY0/Sh4gbDEDVIFhb9SZdqJ+DfseLWfKjFDM\ntdeS//vjEX/77/59/Or3vteuxy7MeO9GdKtsrMqpTiQgo6RiRAE1HBDtSHOas++aUkLJBc5PF0W9\nraUR4LJ7065JX6od0GJmLWq4vX5wDqxC1Fyl6eGdAw9stVq6xh8UuL5gebmu92YMAyZua1rOt5w7\nEUiWeFVzwvl0wul0AhE1xum74+s/KieY+zyZEyNIcrFK2LaEx8cT1nUDOacmJwGlZtW+0+K6SB3g\ndR2ULMz/M0SXimZxh0Wb3hhAAOjPnDT3KhfkLIwO010CQ9kn2kh0luMwnBNJj2Xx8MoSQe0mH847\njSMF3hVplGgUMHAFEHCjviUFerqfy6GNkAuAevhtu39trHFkaMrz23PfuI8tLltuh4aSEdBy+AYE\norbXlbyzN60BcSSnqK/NjOo8OIleW9PctPwQhJiFnOEiIU0etUDve2m+BycAiYwuUtO+BQgpZpCL\nWNcNDGGbnU4nzPMi102NtoKv4FDha0BvR7GO5ok+YatFYao1ZMUXDAi0KyHsVnUVHpouzZGeCLXk\nLvNj1wBWTWjTRCVNyAAaZtFWzjLGmDYBuMzNPueEbTtj28QNsTRHRIieVR3XDbf8A4C4Rw+YKDmn\nEy0Sd6Zpgp9mTLsdYipYt4iH4wnnGKXp5rw2KLoOeCOQYGDrMtQMAQjOY9Y8ifQ7pwGsqwpgEnUJ\nnDGvGZnpNKzDEcKtel8CqjGtWsn2GswQXcEtQvws+n1BpLVP7Tjn2NSUnMNrziT7hvcBpolm8VYa\nLuoY/WM8vhXA1/l8Akictvw063xqQZgWXF1d43DY4+HuKxyPJ6zbBoAQphkl13YRDEypzHg8HvHw\n8ID9bgfvA/b7g2q4VBDZOBkErScnSUatMvfNndEE3Xxqzqg5y6axLIKU65gB60Yro1KlA0AD7Gqo\nc+u8u761OCLQFACSpJaI2tgbMyNqx9M+i3VgWpfbe7jgwUHG1Ox5dowA2NtEwcd+++XRuySMEb3X\n5+mmPMaziyDWgLV+U7JWHFKUXN747CQpsEIPkA60c4T704of3d7ijypIvrx/wPvXVw2cM8Ail4CQ\nc9eusQSzVt1k5fUXFSJcN3He2OJmOQHmeZZxvGhOGU6F7Z2l9M1NkohaQswN4Lp01BCNFR0NtEDK\n6ippRQj3UyjGAAJsxSQBIbeNVzv/mhCbyLAEcgtuCiCVAjhhIth1EGt5p0wp3QyBFrALyzz3r/4/\n38f/9eu/jtuXt9IJVI2JJsKsOkMhiPYAs7T6Pcl44zwwWEAiNp1y0eTKgVnvsyejIWOgNVBTRk3s\nd32xtc4lmbOiuDdSkJGnUit87e4/5AAmuR6iuUPa6RhXef8sOachIdJzrGyDHgxKu+41i67Pfn8W\nNuu742s/Zu/hpgnzPIGY8aCjj/7mGs+fv8BuXvDqq1s8Ph6xbQnOecy7PZCko1kU6JVECnh8fMTt\n7R3mead7hThBpmTjzGMO3sGvvnb7Pi5OSrk9VoAjxkRh2LfR9hQ7miV9ra0J4b3H1dVV6zxa/BF5\ngLkB6421ogLgXdfC1jnUCbHHj5EF0PYw02hsifpwDMmblQw0xIanx2UhNCTp9ObjmLtzcLv/9fua\nNl+Lf67DVWAWxih1LUoGcH/e9NV/4cmn+kUAwN3pjOeHpY/IKHOjVMZUArLPTRMt6V6dUmojQ0DX\nW7NRvt1uh2XXAa1t2y7G9uzntRTUm5v275ExZGvGzovpRV4KAF+eu1oTYukaKcLeKiolYSMVrq2v\n3ozrUg79s1TVj6ytOWSFN4ikIaK6NzlnUJhak+tv//1/hF/7zU8xNrTW/F3cHiP+zNVVKxymMGnc\nlTiTsxRbLa8KXb9zBJBKLVjm/WVnHJfA11PB/qc50lPwy753zhnJOdQquUAJAWHqo84A2mcw8LPm\njDzcI61A1uKHmUW3Jyjo5UWM2vSSzAyGIPvR6XzG8XzCzdX1W0eq3x1fzxGCQ5hEQFq2OwJ07KgC\nWNeE4+mMLSYcrve4ur7GdHuLdYsQoQ8Zoyq1AplBYdIGtDRXLccUUweH6j2qUyMpQJ340J0ICUA1\nVjArWwUAChzrSLsT4FbqCwAg1SMT0H6eZ+SYWmwDWJrHm4iYT6qH6xwhyGhKj1noQG8De4GLn41x\n0Wqwt4Felp+RgRkWHFrJwkOs6a/BgDZmpaLhoQFCpBI4zpjaQIUBiWwfAESmvSZmGymh1QJmHOL1\nvp2mCZObup6wTkRYLHeUAHIKHApgPgUZbfTkMVUb45P3Amn+q8DX+SzatPO8YPIBqBU5iMbhMjPg\nDOQQ8xxpWgBQcJOrjh267kgPhtZi6OeHFbxkY8lZDNU4a9dxzMMVQKvMwuiKMs0UvO67VaYutnXF\nej4jxU1ALzXsykUAHDGGKH3/Bit406eIbH214UrNkWQUV99PwS/ZUwP8FBCmGcftiIfjI17fP2CL\nqZkXmB6pXXdbXCIvoGtCATavoNc8TU3fWMC+0moXhk0+XTZf3tbUM5C2DmixPc7MeBiu4QLkCB5O\n12PCtkUdXfSgLA19A8EFUEfTMp1Vg9jGg+V+Jb3B5T3ilnA+r4hJnGUvxoJ/TMe3IpItywLnPKZl\nj1yB8+mEkjKmqys8u3mG/W7G55/8CK9fP+C8rnA+wPkZGdnuS4gbh9xop/OKu9evcTgcAEZzUmRe\nle7LLVkGDeKv6JurIe+Cdpc2WysdQeioIMBuYD2BIO6SOj5g3dgqXZ95nrHf7cWqWBetWZwHH+B2\nezjVEbL57VplkwMw1uPyT2ZgmjAFYeiEYCyZCiqXc8NPu5gWLiwg2Ybcb0brvNh7Palp7HxhLGuG\nj8gdVDMnRkAZT+3zD4WJvqa9aGUTmifcr39SQbLixdXeSEtyfap0KVJKrRhMKWGdNxD6vPey7AAo\nC+l0bt3WMIsAqbmmlCTz85YgSJINcBFwbJ5n0XdS4KudDzt/JMHLxhXHTj0p4CTBc3BMYdtkJOFN\n2caToOemg161CLMMVYtVmKsjG/6l1w3qLCUdLw8tdKs4h8HJpl4q4/71Pf6Lf/Bf4/u//dvtjO+n\nBT/1/o26NkrAMedCA2JrLgBV/bl0B+W+cUoBTuK0xYB3QT5b4XafjGuiFnFk68tOhU2He6AnUppg\n6f2acoJI+HvUKoWX816CmycY05F0bJlIHmeMrvH+kTHU/EawEgcfoGQxHCjqJllqxel0wm63Q84z\n3h1f/3G938F5h3macTo9Iirja5lmvHj2DMuyR84V2ybi4uQDwrzA1QhoymebfwXjeDzh9es7XF/f\ngJmbsHZKl2DDyMC1w4oLW7ulohXhKRnHRza0aZoQnGj9SJe177kmZN7ALzK3rA5MjMXFrDpSxiQ5\nnU8oVZhGMSUBwr26CDsCqgNat5WaYUQvXFS83PYeKBF7aJaMRxuBGONR/21Pti9izeVrWJI4gj32\nmZ6eY3u8gePj+z9lYt7sF/3br6A3WADgnwAAnh8E4LRRTLF+hzZTWN2ygJCyWM2DYRokIUxIg+ZH\nTgkhTLi+zs38ZttUgJhI2eoTiHABYI2Mptakc51hYMBXG2UdgK0RZEk5I61J9kQtCFiBryYabEUy\na4PAQFt0NlmpCvir1EEvQ6WYsp3bZA9MN68y8MNPP8evfv/7eNrQAhhr/A4qv2jam1yraKtSNyMw\ntpcJ/tpISy1dr4hrjw9Px1pHxteoOfQUTLz883J9ZR2FsdjPLIyYziTTgnBgyRko1u7NAfgqVV2j\nQRf3rZ1zu6Ze1/IWN5zXFddXV2+s53fH13fsDwuMCW/MISIBMbmK1MO2JdTK2O8PeP7iOeYvPke+\ne41SMwDJoRiq75NTM8UAbHQ5IjpxLZde3IwpWLHvhy6D3Imkn8cRSfLHBNJ8UfScXGObyufV8a1l\nh2maMM8L1uNJgfWs4H4EGEhTxDxNWOYZyzIPYG4HRMY9u7Ec6zAGrJt/Y2dqXWZ7dWOQWWjVPNcA\nxfZLfZ0xPwOs1tEvbA81AyYisOtmMfJetaFlxvwB0PSZRPakRzomqAYVww/Af2XfXlf2YKCwONNz\njHBJrpAjYbMu8wzvPLI6kMeUYeOyTdKFe70gelgyWu19As+z7A9EQK1wRUC1mjOKEzM4A28Y1GsZ\n7uBkAwStgc6WKyvXmUUWxMAdAOpU7FS+RvWZqzDjUkwgrqBqLvVipLKt5wH4So3RXrnvdYrUgFnP\nL2vcUk20zvaiVncyi1O9B2AOjVBAkh01l8LzuuL27jVe398jlwzyQUvQoZ5lZV9yjz0SHp3WPK7J\nUxj5oeSsjfDBUAV9MqRLIvUcZqy/R4O68b6oJaNk1fJznU1N5ECZdLw/Y1l2MkpbClJSzMP3WwSQ\ncxKmSQxsSgWcsJmF0ayEAzXrOp3POJ3POOx3ojfu3uJA9qd4fCuAr2fXN2AGUq6I64aouhg31zf4\n4P0PsARBH0sR6iU5hzDPiAUwATfnpYDPpSCmiPuHezx//kw2k2UeKLwqiGdySoSWiFwWtOo00oRj\nJSmMUX4+BY8QbNRNqanONaFAch04qihCWU4ZdSqAjXOiz0XPYcI0y+yxoy6gXWtFNLCDzGnP6diB\nOONNKpBIWpT5EOAcdwaRHm8gzVoEvMkQYwX1aYgyEJAQAEjAv4s08KLgwMXrAYD3BsTg4v0uHmfd\nGHcJot3s/uSCxD5I6xoRiZxZhXwfVKSklFzdRLz3CLpehE6rbC1iHK4PCGECV8a2RWznVebwTfTT\nNu8tYb/fi6W46w45/dNzY4hYUTuy8gzwCtrZZXArkJiF1ivdIgXNShdntwKoNPaYBRtNdao6vBg4\npGw1lUDWCrXqhkxAzYCfEHNCiRH/5T/4R/iN3/kSYzf+nL6Lz++O+MkX1wg+w1wjDagS7RVuoJfp\nrtnnjfrdcs4AOTjXEdWxQPXOi7UvlQ4eAi34imgnWoFg19WBYbbeuZQGUBdlB5AXceUKmZd3rhdA\nkugFpNQZA1KoiDZPZ0H05MwAhpQS4hZRdzvMU0CtQhE2EOPd8fUfIchY3+3tS8RVjAdunr/AT/3k\nT+L9999HKdxAIenSKRtRQSDy6k4FWU+i8yVg+W5ZcDhc4aOPPsJnn32B02lFTuKwta5rGxUcQRqz\nPW8FrekqGaCdDDxhuFlYpSEE0TLWRoXzwiYqOr5tTJ/j8YjdbtfjAtALcx17BMTBSkaoMqJanhvA\nFyYBpSUGmWOlfA8TFQf0z3lGXDeUqqLoRDJqMWz1F/v+mOjpj5oLI1shNsSXlgCinT8DmK15ZD8f\nmQP9fUX8tieXl4kbM+NmN+Gn33uOT2+/q4nvLwL4JyD8Ev7199/D9W6Hqm5HIBGw1uF6FDZ8nlBz\nRc4bDPg6Y8Pj8dSS4zZeAMIWMx4fTw2YcU6S6FoFCMs5KwM8NaMboOcNI5vPRN2Nxdc0dvT6m6W6\ncw7rOWJd4xNA1sa4h3FJtbc35gSJEA2ySTZoPlWKFlGuuyfXysgxo2aGK4DzfZyicMUPP/tC3/ft\nDa1SGe+99x7u7+9lb60mGl0QY8Szm2tMU2dEOkeopWJTZ8qUBCyIMV7kdjyspT4a3O+7kZUyFoMh\nBGFzQnTwpBApLd6mELDUGfN+h+PxiJwLlnnCsltQcsLDwwOCczgcDihFXBr3aophDG44wtXVFVKS\n7zBNYsSzLAtOj0ecTmfcXF1j2e8BMOK6Yt02nE5n5Okds/ibckxTQAjKfocU6d4DKIbLyH2aSsW8\nLHj+/DmWZUYpCcxZ0ldHcMwtl7PmdGcTVkQFxKppEe12An4pwFZVSNsmU8yFvlLPxVv+VCoovGnG\n0nOjCSl4dQgWt7pcojZhdRIFEK2yye6ZPhkx7jWWm44H0Rs/UuxIwa/hsxANTXMtRkgbECaQ2MAF\nZyw3rWlU5J4BsHvSgB/qGIHyn3wc6qxhQV8k4WYQiM1tlkVShFMbbwvBw2sD2Huveo1qiAaNd8Qg\n1X3zTphgMWV4Tw2wHGs9R0qgYFaNWQXiNI4E1Wh2ykgqpYASoTrSuKnjddMEwiX7FcClGdkQawCb\nIqkqFyPsLsFZueUgFoeLjjQSV6A6FBIpkLRtSFFcHFPcBpd61mvZm3ptVL8WqNeUkhwGt3c03oSy\nsisci4yRyUCYeUgIE3IpeP3wgK9evcLD44O1zdUtGC0WCsqn7ARmcFGg2cnI4TTpqL0y2YqK7wso\nWJVR55qkglYxF2CXERzMrGtcj2PMyqUgl4JQa2uYAQznHXxwyFnWlLDG1UCPixIksuZd1nQBQA4x\nRizTjHnWWrNUqcsAkQryAbkkmWBZ5jfquh/H8a0AviQhE0pnIMLVfo/9bo/333sPN9fX4BLBmlyW\nymClS8J7sfSmjr6SjgCsq4iFH67FOeXq6gqPx0dB4IF2UxEuE2oQXXTgWiGgWmBmNczFAxx0IQ2L\nVUXsKmnyT/1GL6VgXVcAwLLbNefBql0+r4j+stu1UQazQm06LDrPP08TyPmGjNum1LoKqjVRh81j\nTOIk9tpNOG7vjM6nwRu7/2X3027kJ49963OcbBSAgC3VnjAe+uThPQjSif/pFy/w6d3bCpIXuDks\nYgmuh9G9baORxEECX3a5AV8EQtyS3MjeNcdM52Wm/nRaUWJpo4BiS7xrYwdGKzUHRQERbdyj05qd\nFril1jbmchFoqwYuZuSk7o1FglfO8o0tMS46UmdgLDP3oK/fu7R1XVtLi0EqyshtPZDXhAAipunm\nGcEF5Ar8zh/8AN/77X+Jt3XjT9t3APcMu90OW4ptY5WAI+drmmd1qlHKfQP+YgMgyRv9d1wCEmTI\nQcW9WQFv/cxQS2rLX8DCOCEbD6iwvER0aeT6TzmjMCMoW6eWApC5pkqnxJIpKyDlnvIQ0L27nwES\nFEvJmHQsKccsZgMso6DMAWtescYVqbwDv74JR0obvPP48IP3gMo4HY9Y5h0O+z3AwPl4wul4wrZG\nlMygQAr89HFbTwR2IjYt+o0ysnZ1fY3na8TLly9F7Nc5ZBRd3717B1yybwDrHMs4mCU5QuuvjS3g\nW6aH9lrSse1MoHG8aj2f4SAjJ2HQ/jH2WRhAFGMIFa4g7xFLRjo+IpWMq6sr7KYFgXr8szhjFt92\n+CnAVUIb9wWEXdp2JgC6R457/wh+yb/7bw2/eluaZa84Mpns3yPw1d/XnsdP3q9Bb/jrf/6n8U9/\n8xN8cved9vuffu8F/v2f/5n23Qt6w6K0z686K1bgAXr9tOtL4sDmS27Xf0oRc5rb6wJo46i11jaq\naknq8Xi8AGjGeD4CXzHGdp0NFDMmWHtela5yZ1EYOHiZDxmw1ePV0MFu69nBTwExRqxbxLZFHT2c\nwHDiyEMyOl9QsA875FIxtcT97Q2t3TJrMXV59e37Nnt5HStyjSXR92pjSdrnHf+z16Jhbb+xxrjH\nHgCN7TKCthbfWONKzlnBrEvAeXyvMc54ZSHL59bP5cS1MeUkeeIUMM2T5KGQXMRhQo4RKUact1WK\nwnfHN+I4n8+qTwcsi67NYuZBkp+s66b1AAkAOk+az0kDmxyBqhgEFa49t4btcdTqlBhlysCB4PY7\n1S62yQECedmxulEJoRa+uFfIGCT6+pav2nh2CEG0kNHNLgAo6UDMnCJkbU6+60IaeAKgfV7Zni/3\nmrfdnwAGhnMHx2RL6LVCe0T7400gazzsd6aRK6VM3xPe9tgGBJE0N+TDoTUAKjECSawVHU6zUlM9\nzCKyKw9rxClmfPTiBh9eXwkYGTx8EMmMbRMDleALfPBtf4EyS6cpqCbcBLC4R26b1jokpIhaCqa0\nAN4kDsSZ3vL/XISp5Rvg4oZGxmWeQoymi61fuTkKm3ujc04KeEDkYrat1VhVp6CIa6u9izZnSpYR\nyJwzUoyopfbJKvS8qTUG2OpVGc3vMvbDxR9uFIaM43oiuKHpNM0z7u+PePnyJV69eonT+QzgkiXf\naqyStQn/Zh7inVy7MElDyEC/bBrSVt+4p6hu/4zWiDPnVzskzho7WDQ4+zTQZYyeVEu5BAEHmbmR\nNHKZEOMmNR7Je9t9772Xv6M30OweFQkDYU3mzFjPK+qzm1ZT/jiPbwfwFROc99gte8yzLIfdsmAO\nE2plbOeI02nDumXkCsBLwpmMAcNQcUfZvFsSQ8B+v0NK19jt98qE8nBUUbV4bpusbW5KmzeKcVWk\n11G3rZXEsQcxYY0YBZTbojFQyTYQ6+ybhbxzTrQrhiKIdQHO8wxzbIKCJSknQHCz9prQbo48Vh31\nYE4wPblqAUd1ybqQuG1y8rrWcW8H9c2EGTInbb/Srgnahqg3sn6P9hLO/DS1gqntXdt7Gmpv300o\nzGjdlV/4Cz+DX/nNH75RkPziz/+MWKwb9bJCO8+XTDZHEEeMIp8U2o1IOWtAMxF2DyoCmsWYEXQ9\neGcFCZBzECAnq/17CqAzNdccc6QU63cVAh0SicbAsuuuwJdps4CtmAt63lVQ0sZOSkZuAuu2/rSj\nUM3txEBJZZ8xdM1KoBMwjUFVNmCGA1EAg3BaN/zL3/uBnrm3d+MzM+YwATEi5wrvlDnJcr2Dmgt0\nZoh1fuRzE4aOOob7cPg7DetQQC9J7Oxe5cZd47aGGBrENdFjiLBoYSDn2s6VFXl9fECABNPXsfcU\ngUcIADmAy9bFCt5hWiZ1plVxa+8xO3cxcvTu+PqPmiP8NGHyHmtccT6dgQrEmHA6nvHy5Su8fn2P\nbY2oEBvvUllG04q0GV0IgHOihYJuqz3PMw6HQysq7N6+FGG9BL1GBhgvCMQ9AAAgAElEQVTRpSub\n7OcCsHKt0kypXvQ/lJEm8aS2brAPnf0St9iKlac6SO31a4ULAct+L+6OWuRI7JQGkA9BwbNZwD9z\nbLK4QE7BLbn/2VFzJpZiAK35YLUKW/dUD5YT0JMpC0F2btjiyZvJlsV8bZnr+6jl+LCBVKtTuKXN\nAIwN0IudZQn4D/7Kz+L+vOHhHPF8v+D51Q4AiZlIUf1PfR8D4CWsdWaU7D31gjFVuAPnRICPAbPa\nqDun2jghYFGdUxudsDVyOp31NHUwZowlBpSt69r2KtMXk9Go1PXF/Azvp35OWMdDxp6XNuxaA0eb\nGBeNQj1iysiFGzOdtInEIIA11ngH5ydU8ni4f8Dp+IgPnj3Hy/vv6rWVhhbwS7jaXyGoPIExqK0A\ntZzGqWSENBBV2P6N80LaFHs6LvVm0W0AgMWr8Xf2p3S7p14M27X05gaOth/kLMLP1iiz+92YfaZV\nNu8WEFhYm7UKg0AF+UutcLW2e9FG+Ikc5t2EuG3YzmuTxnh3fDOO7TEhxYqJZlCQ9URxQ6UqDvSo\nOJ7P0lyt0ghfpgOIAlBj2y8tlZO8x/UtkAFPHo58MxApmbFtIu0xBd/YqLUChaDu2iZKz2Bkyanc\nUMMQ694ILXBlqqSWjBq8alc57PYziJTRrnmv5XHSFAnY79C+BRFA3rX90WnDVaEG+6bD/mj3q34M\nqwVgnxOtXngbiAaSvcgaq07j0NOmhzM0Q+sBM+gwbcuqWmjGzrb/VafMmVZLdOAJ9rghHy8FWLeM\nX/7+H+BHr1619/+zH32I//iv/jyu93tMk1eXcjuHGn+90zF6Ge+GIwRmBABrTEiqfcXMCD5gyQlZ\n3enJnqtSO6EaU1WBLNWrZm3agFkF6J2aV2nD3eRZWOLw05yd1L1dau/UXM7bnqzSP9TqY2WnF2n0\nm2EX1wqq1JhNY5NMakFCLcqMIpkKqczIXABYvU4g1+t4KIEFMEaVQ0wFt7ev8fkXX+LV7Z2MYra4\nzqrlisEFs6qEAykeICOOXu8JOJFSEfa8/CeYYLuL9Tz1e4K5N+PaIzQ/gTVV4KGTrbI2WUGwwoCH\n4g+Ag1OmpUw2pW2Fdzt4kuZn0Zqn1oKagRAua0cGi/kXBOdIWQC0aWjGxiQjkbOCsT/O41sBfHkt\nlJdpwrZFcC7gIM5r23nD69cPeHg4IaYiN6RzSFkYUKlknVF3MsWuN1YyLQTrBnrXxbw1cbKj3bxW\nkHijCMpNLje1JbJChSRmJAVrnCMVdtRRMtMk0oRYACrZFGKM4rzgBPzyQQWHaejkguGngAU7SbZr\nRY1RrHET5MbzRp3VZItlw5DxPrlpvOqFdSpwZy+0ANA6J31Dk5/0bokVC+2mBAALSoav6JdtYFgr\njHrnxQ0bQG3VjXUQoOe6fQBNoOUf+92E//Df/Ddwf1zxsEbcHBY83y8S8JlBmlzKx/BtlnoA1ofg\nhhasuBIKAaQbvFdw0MXYRCrNmXBJMj9tmlWABATvt1ZIjqygkV1BTtwErRNiAEvr0q+bgGKDYK9T\nva1WKOp1LAp6GfBFUE0erqjN0YTBMBBOLYihiY0yFGVERfSAnBM72y1mfPX6DqfjUU/a27vx1q2v\nteqIlsfsvN4PvbDvwJd2iKwIceiJzVD8t6JOZ/SNot/X3nDfNvjU1je1jVzfUrSR9PyLeQUJuMkQ\nZ8daGkhs169rsFhBiPZvoZ3LixcNqN6L9ltp9tVi/RsmKUxGbZl3x9d3LJPslzUn3N6+xO3LW3zw\n3geoOeN8EuDr4eEBpVaEeQdyHjllESFOCaaHUQmNZRzjhvP5jKQ6jLaWnTemzZssjHGdtrVhe2cD\nIYRSz3brA6gsQEtYZrGnr8Ioqgq2hoE1xKWPYjKzMrdk1M5GxVLOIC9SAKzreYvirGQssZQzYs4C\nco/fARpzGKKl0UbGnGoUyWFaUb05crkl22GxVv6OyzFJHp/55Fy6DoS3hxIae2F4g4v4dbl39Nfw\n2mF97+aA924Ow1u69jEqJNFke74lssNbWVFk/5HtI8Oov9cx9XVDA3RCCNj8hGlbRUtDtROFNcFD\nkaZxXEHFDrTWHmNCkJjmPbjqmPkmsSr4ihCeMrx6/LWYbYLCnak0nPvhH1uVYsm5IKAwOaQqo5Ji\nLCdxlHzA42nFjz75HL/3gz/EhweHx+MDttIbWrtlhw+fP8O29bhq7zdqZI35icWLLjWAth7HXGaM\nMSPYNa5DA6Za3qL3lTHXW9vO1rUyMYikuZRzbjldWz0GdCm4HLTJtqWI2cwNWAoT5xd4P0mDiHpD\njYiQsrLMmTHPM6Z5xvHxEeu2IuRvRbnw/4sjnjJKYcwKfKUq2rEF4kDPAE7rKrFlSzjsr7DMeyzT\nDme/wRdGdTIy12KKCVDD7nt3scdxJaRcgHVDCQGz5ZdEZtgneY8ye1IRoEGwAKkBKmfkbCP3UOBB\nclAxg1oEoHE7WfMAUooN+LJ7z0Bp+5nl0d4rUFAdqpexqlqeNFPQNSQNijAAoZUHmgsbKIHx53p/\nGkijW6bsn5Zrtsdr3KVh79NX4IsgdblHiFGWvX+PS2Vo8lCtYCIYjv5HOdP/D//8e/hP/52/hJC8\nAjq6p3vZM2YVKncKHrITaHJLCeu2wRjWzok7aCW5nuylsVNZxr+vrq6xW3YCnrVAKc6hZtrlnWuf\nP+eCzNZsT6pfVofvbTWHfmcSlmHJCTmKfp1ELSWK1D62W5S0krWBnHJqeqVQwknXZx7GZSEsSCIP\nsAdzl2tAi7VWa9r1ZmWny70A53A8n/Hp51/g08++wOv7B8n7FUS7IG0QCXjIgF1IYnFxFLdrLwQF\nEt3KXFnGVzUJaDZ23DMO+UFfSxZXTbex2sJj+Q7Mtval5qxFTHVCsTxLWZokUgMV4oxZc241k8Wx\nknNbL5r2iN4xq6yB5rZWY3Iwc4zO5DdDtB/n8a2IZIsmCWnb8HB3j8fHR3gAJWVs5xV3t6/x+HgS\n5H2ZUXxAzBnndZPknboNr4FASTupNipoSarMRVdU6jfsuHGN7CxBjl1LaceGQgW3LqqsgQnOTYIA\nK1On6ry0H7qxtYqDX4xRQILgm/aHMcJsEzOqYgqyMXCR72Y6ZiFJYJvUMalt2JbQYaDoEoG9k7u2\n1k6pJ7u5BtbV8D2FWaMvTH1eujIPVvVWpPBFsCC7syxw8TjTrE+za2D2xAaMmIh5K2rkhV/cHPDi\n5tATWA20rZPPEsRGogVBe1gdtQN6LQZjuXGWoM+1KsChrAcFZmMUPbXgxf7VD4COJeP66q3z7JyD\n1zVqAtLg7s4pHaWCLSYRRGbWEVUGkFonyQBWcg4VImRtm/rFyJN9AF2lGMSAGXLePSnVvQLEDOel\nQ5cL4/b0gI8/+RS3ty+xm2es8c1u/H7eA9yFta04b8GlVu1MVAkW1XTE5No2cJgh95hdu4sCpEqh\nP4QL5xr5eQBuFUTQJMq68lylHWLC+6S2vIWBQPI5C4tYpNGfrcgKQ5fDgDpdIsJmc+aUclmwFwPc\nuaoo7IJ1PQtT893xtR+TMqpOp0e8/PILnI5nvP/8BQjAej7h1atXOJ9WTPsDdocDEhPOWpyknMHW\nwLD1RzLS8vr1a1wdrhuryMxKsrMRp15E9zX+JHF4ggbZvmzrUJjGojE3TwF+nkXrw0mC6Kg7jE6T\naBOuygQppSBMAQdcNSq76WWMzSH7naxz2bNzKUgxIrruNOibPtbAkoFTQMaAvNFFmPrPuYsdt68+\nAC/G9KwE+Ha3j7DSm8fI5Omvp0DEUOj80a/QwUiQf+N3sgebGIy+GvUCAWoQgvZOVjiZwLAyTzW2\ntj1D7H5RsjileS96gpuLCJuH13GhoE2uL+7u8PLhiA+fXePDZ9c9/g1AKjO0U85ttMUXYRHElJBK\nln2wRqRsABH0fD1phinYSNSBMKgjnC1Xi/GpOkmgHaFWW7Oi4+iDRyCHwoTzuuGLr17i93/wh/jh\nx5/i8XjGB9cT/PKsFVnEjBRjk6MArJD2bU0Ze8rypVorArnWDHpzLXTg6yn4ZYfdP+PaHME2p/u+\n/Hc5biqseyCp/t6kTBh5DafX1iOxak86hzAFBdQ7k9jum3meUEo3kLB81EDrUmUMal4WwDmklEWg\n+N3xjThSlKIz+EnYNKk0RjhDjFNSzjieTjgeT7i6usY0L9jtD5hO4taXdYqlFh72Jy1AW/475PEK\nvMYomsLEtn4DbFyaUdB0mFJsORTrGFpLdKA6lMpEda0u6ExLAnSNd11BZnUl3bZmhBICwxvYr1pI\nMh4ZZC9SN3oALZ6MsXIEoWE5bu9mt3P+Zkyx39FYHLVnkX0n6j9vr3ixX9hrQot/GpoeGn8cLpCy\ncXwUFbhftz/Wmf6Lu3t8cH0lgJ+CcCJ1kpu2pjC9CT4XkIuoWXQCLeed5xk+eCR13sy1AA4txpdc\nkQ/SxDITNYeu1emdx+RNwxOiv9XYZN1JXs4sq55V18CWc6RmcCm32symdkjLSxFPF4ZXUtZXLQK6\nWN1UFBSTc99lGVpcR99/K4RNxqQ1AnWgxoBPa05XBuA8fuO3fhv/7P/8F/j8089wPq1N19WYaN3N\nWp7bch79HiF41fELqhsm48g5y+cGS8xikBIgdBk2QFkZ1jDwSe6zNnnLF8tVF6kCVEX0X7NzCESo\nas7WPq/rLp3mAkkkYF0ecyJdrjaNlHOvaWyahtylVvOoAfvjPL4VwBeBUHPB8eERL7/4EilF3Bx2\nIK7Y1jPu7u6wxQ0uBIRlhwiHtEas24aUixb0gmKH4AGu2LYV969f4/XVlaLlrhUgDLQb1g2gETBs\nnoRmCQy1fYUuBNuApeNaEAdU2YoDIkJxSUEUjykodT0XRHW6KCo+aM+xsZSRPWQJUshBF3AfG0sp\niRskibAdKWBk38G6L0wy+tfHFTq4Z0lbw7mfgIAtORw0Bqq8eGNw8fD/9vxRcJaBC4BqDGq1VtBg\n8zq6WRD1KzMGQfv9+O9xNVU2LTHqBU+72YdxB8hGayKYzIJ0g23TY3DJSFChxy3CB3UqNMaW89ji\nhtvTitfHFR89v8YHN1cXGismqChuPuImSUUs74syM6KNxDFQqIJKU0Ftm6Ml0LDNy64dMWrmFjA7\nWCkJdWV1JSSxve2eBTZuRSi54hQ3fPL55/jBjz7GF1+9xM3OgbFii70bv4Qdnu2W1o1pRQFZV1yA\nuWJBkVk6GaBGQ4YzEUj9vK2jcKkx0L87gZTRYl0lu5bkRISbiBSIM00F1+jcpbJ2+ypSrEpT1iQS\nUsyaTkUtBaxdyQbqKQDqDJD2Hsy+dfJKKQCJdphRtp1z2O13uLsn7Ua9O77uw8RTj8cjjo+PIDjV\nyWA8PDzi/vVrkCNcX11jd/MMj+uG9HjEum1N40tEg2Vfqsw4nU64vb3Ffn+F/e4gzr37PbY14nxW\ndk140wHHEmhgKFqGPQoAyPl+P7N0+ShGTCFgt4hTMUj0oAx1szhScmmC4DFGrOcV5+MJjgjLboed\njjc+PDyoCLgwhHa7nQAZOQO0YZ5nJBVYt3vdGESi+9FjSFENG0va+15dUCsNTJxLcKEVIwMY4RiA\nfxOEetvBw/Mvjwsk8aKAeQN4RC94+shDr4laQlolXzHo3bXessFz3Aoq1qTU4pA4Tw/saecaG4Or\nMZAyMgiRMpxL8M4hlYr/5dd+F3/w5Zfts/7cv/aT+M/+3b+MnRoQdIatjcEWoAq4addhdIcslcVl\ny2KU69HcPos04Gy0qI+XXwggOwdyHggzKkMcpFhil6OAME1g55BLxeP5iJd3d/jRp5/iDz/+BHf3\njyhMCNOCsCzwYMSYkLc4FO2SU4Gta9/vpaoNvJyleVGNLaGf1WJJ0ett4JWtlaf50FNQTJbDJfBV\nirCkrUlZSwG4aONHNFfZZRCA4LvMwThCb5pu4mbe3R6naWrrzxiA9h2JCG4KcNE38WQAzQUup9wa\nre+Or/8woDJMk4DktHWGphXZKeF4OuHu9WtcXV010xFZJ9RzvJaPkgrVS80yMsktR2Fl09Ri+7Ct\nbW2SFgGva7UpAAbK0ERW0IGIMIWAeV7g3dQbu9rQlPUaQNjDOde0i230P+WM87qCwVh4uczXWbRV\ngw/wDsgka3ncx0fwa6wXnoJbvQl1+ftLMkNvJNm5HCCxi6NVBh3/Q3elHyslurwu1twHdeM0ndGs\nAF6fVaPmj5AOuT2d8eJqLzkyWx5fmjyI7cFbnLUBP4GrEDy891holny2iinK+XwWDV8F3Jdllty8\n1GaSIpNMOr1SBTCZgjhTO3JYt7WZM8k56N9edLtyM4GyuKJfXBhSQxxhbXiJu6/lyVLzjBIAtXb9\nqVLNDbu0mFkNeKy51aNMlt/r+K8Td0lA4mo1UgWA+8cj/u7f+4f41e99r12BXVjwEy8O8CGAzVly\niKkid6M5T61wgOp6hTa1I/HGjNIyABshpCZDNDZA2VhqCoK12t1xG8vEEAPtB0Kck/sreKmLAHFd\n9tWJJFOocMEZQ6XlZKMOqNwLnWlp8azffyqVREKYkcdkxLRhmae3ZE9/use3AviK6yqioNuKHM8A\nA5N38GBs6xkPjw+YlgXz7gC/vwKnjPz6volkCxAjN6RpAJWccT6dcDwecThcYb8sSj93PcnUonzc\nXAt3x8dxgxwbur1LIr8tpSLFAu8zwuThw4JpEpQ0Rgl4zosd/bqubWEzy+ijuX7d3Nw0xx9zC2Nm\nzMsiQqe1IOWMyTtUAlIpcCmqo8MinZhxg4fOsDO34tzm7O37yfdxCg5cBpZ+DF0S+wlz74powt9O\n1UUQuny9p9358XA6H9/edbgxDf0Z+zgYX99eU0Xz/5gSSDsY9kKmb+WGblBVyvLT0QnAZbmuJuwc\nS8X/+n//Ln7/y6/a6//cT/0k/sZf+4u42i2ycanrqHVYmAlbyWJTjK5JN+IjsumIcxhI3KpqTRg7\nUABgp0y6Gd1R0sZ2S6moguyAQciFgZLgvYjPV5LxxuP5EV/d3eEHH3+Cz7/8Eud1g/cBH743oZQD\nUiwISoXu8/KuiWw6KLgKaslRzkUSNSffWfKqJ5TfJ2vD/jSBS6HTq+YBqLEAmEjt7al1I3SpS7FT\nqmhT5KLz76UxfhhACKRssACZD5b1PAYA58V8Qkwk5FN77xvQxuq0SSQMQK4ZuYjQbK4VYZoRpoBc\nvhXb+Df+4JJaoTpPAcEL01hYUcD14Rp/7uf+HGhakJlwTtLwMLdFGoruaZ7BSZytHh4e8PjwgGXe\n4dmzZzidzjgez20den8JaF2Cu7YPO7TAAwMU0NY2a+Ml6Xtuc7fP9t6rtpI0UXa7HU7HU2NyWZy5\nvb1Fygkf/cRP4IMPPsDVzTVevXqFTz/7DOu2iavwFAAifPXyK6zripubG0zkEFmNV5aldU+FndMZ\naaUUkDaA9Is1RhQpIPHWfZm64PfFz/+/XNsnMeVpHLP3efKT9lxmliTRySCjjeyPr2qsYmZW1qyO\n7EMe6IbHAUBBRXG6V2riwIBNMPQGjVP9DfQGEWoHZv7nX/td/OjV5YjM7332S/hv/+mv4W/+e3/5\nAryy5LZrY/Xm0IX2FYs2mwE+wlCQL3LJZgKYuzaPAJzl4noRxBW4KEjjnMOyW7DfXwHk8Hg84vb2\nFb58+Qqfff4Fvrq7w939PQoAP80gJ2zqSoDzE8IEoHQHUQFauzaPXS8ZRe+5lA9k9U47ahW9FbtP\nOguRL/5twJS9thVf478BEZI2ALGobg1Q3xj9WNcV8xTg3NJew0DpPJgMzPMs18g7zMuirIOCXF3r\nxJciDdopBLB25WOMiClhnibsdjs8pAdx7Xp3fDMOAsiTGBKQa3m38w7e2BwAzuuKu7s7MfHSNULk\nGutFmmbdbMcGuMd7WsBh4ccWNmOUguSM6aLi6Q3EdQB75MaQlBHHEfCtpSJzRhtR1thSqq57Fj2p\n3W73BlMyK+t9i5ucCgXjXRX9wegc5mnCPHdAjbyDR4Ar9Y34+EZDaDjNlk12sEx/ToSLsQ99JrUG\n7dtjzJuViTXcoRMSl7XOxcMsFJDBQzqyCMKzP8GZ/r2rfQftIHks2V+4g992pJTbeVpMW7DImLvl\nCCBg2e9wfXON3c4jp4LH9CiAijYC5kk0pnPKIDjslgW73Q5EdBFDSMEjciTMLJ12sr2wXQMIsyj4\nAHhCVWMEG591Ttx+i5pDmcg+2topbXKjtE6TDgwqOMtao5MjJbWYjqMxoIUEYwQNQCQceJrxd/7h\nf4Nf/61PMcbSNX8XXz6s+DMfPIdzAc4J22lseLQ1o+xHp06bdk2afIQZk+k9MwznNuBP8j2CaZBe\n5D0kzTTW5euGtU8OQJFRR5n86vmiXBtlZlExeFJqVu9gTpjTFGC6z9213oOZYC6fxhzvNb6s+ZQS\n1nXFftm9G3X8Uzm4wDvg5uqAuB6QU4bjiridAR9w8+wGy+GA6gK2CqwPj7DRqadbkNOuR9w23N3d\nYZ5nOOdxfX2N58+e43Rasa4RjCFJIBKKPhhVx9JEzBAACNyog9pRc9RS42ruFiWDogrNOQ+/TJhU\nqZ+VWbbsdljWtYNflQC1nmdmLLsFL168wPXNDba44dXtLe5fv25zt5WlQ9+sxnUTkNleBzcbcwZg\nE2NWRLiqvasngIzlpjcmE5uCiVyOtwFTBFzcxkMXRp4zvoK+bmNv1Tceb+/zlLnFutnLjwXhJiKQ\nVQv2GkMQtIJEyTvj/zUnECsMRYiZdM950iUa/mufESrQC0myRXdHCwVH+J9+9XfeLEo+/yX8d//7\nr+M//+t/pa0hGZcUEd5SCkououel56UbevTgXcHg0NlQUpwNxbF3cEq7rtppA6D6NvJ5C7T74eVP\nJgfnZlCYENnhrBp6L1/d4ouvXuKLu1s8ns+ScOkGOHmPaZbxSOlCjmvAde0JDfhFC5LWTXD2mD6R\nTtTP9Qi4yqZ7KWhpYyKBXOtImounCGdKoGoCmVoUlVwEz3IE7wOmaQFjEx2jQliWBUuY2yhwCBNq\nLq3gc1DdAy/JqDkckZNuKEMCdQgesyOULOy5mAtizliWBbvdXrow746v/Xj//fdhGkgOHjlVTMHr\nqOCEFy9eYDlc49X9A27vH9WZpyjpW9iAJQOVCGGeQEXuj23b8Hg84vr6maypZWmAlbn2jkLlvVPP\nrVtIXtbOBXuJ0RoY8jN5TkoRp9MJzhGWnTAEmGRNLsuCq6srPLx+aLbnliBv24bKFbv9Hu9tK977\n4H387M/+rNLZPR6PR2xxQ1DXqFwLMlfELJbqMUZJqNELKum+dke8VnhYp7d/cPk90EBke4IbYgNr\nt7jvyPqatv8/PUiBddWuBEywuEerlljr65C2yOyjMbpema8VQjdzrUgysMpAL2juMfCJh5/Zt3xy\nDuyV9HVM98vVLqlgjxU9EfkOt6czfvjqLSMyzPj9L76Dz1+9xgfPrhrwZWtrLEhGwNVAMoZ8zYvm\nku7IY1w2d+EGGA3Oj6P2VdbGmkg9eDAc1k00aL58+RKfff4lvnz5Eq/vH3CKEZUJIcxAEEOEMsR8\n55yKxo85w2WRIHleaX8X/SB38fkAjYW1d7tHgfl2VYZ/2+s/NYEY8y17T/2Lgr3UxsLk/IvxiTVS\nvFN21rI0oehSCqZJ2NPOu3a/Ho9HUASW3dJAtwYhe4+aC86nE06nE3Yv3hPH8sfHi+/07vh6j1xE\nM8iFSZrrpi/Uch+5D2OKOB6P2LYNV1cH3Nzc4O7uNY6nI7BRizvWNHBDQHjKWuRhFK0CKKqTJGyu\nAAQBCWwiT8AsdaF3ANsUiDX/WJwa03D/O+91fEocxj0FAWyH/dtA4UoEpNiY0tC6CrWqLlgHtwFt\nfAcHfwG885P7edBMsjhyWRIMocLy9ksGmQndt0OQRIBNvmX4VaslCM4ZssV4eqv1yogNK8BYMf3x\nzvTviTO9ifzbHkNOIAqNK8RAKYwUM7JTDSbm5rrpQ2i6ayXLKLQLGTEmnE8biNfW4JjCJAZqGifE\ngdThsN+LNAf3eGG1D6gbqo3Al60l6GdMRfY21sekmJRFKDJAbZyRa9eSYm5u68KlJmjLXvKvth6E\nVS7XStTniW3tmy6w1gOqyzNNCyoTfvDJZ/i13/wNvM2p/rx9BxXPsewWUCTkmtvase/igOaeaOcZ\nQNvLty0ip6L5AqvWN7V7UxaW1kIOCIRWJ9Uq39a04wxugtb9It9jcKqwsqXWEbxjnmcsCszByZqg\nYo0teZ+ci7KIe2wLIaiR3qX8ERGU0Sdu9xY3t3VDuc4o4R3w9a98PHv2DI7ky5Z8Rlw3BA+keAb8\njP1uh8DAcUvY1hXrFpFNqyIXiDojdDHqkmHGtq44Pj7i2c0zXN/c4HDYKxA2jFqQzmGjJ0CNau4M\nmR1GAw3vdyTAldgE6kaQ4b3YlIfgsIS50fTnecb+6oAYN6xx00Kn64Q1rZjra7z/4Qf48Cc+wvXN\nDT7++GO8evVK3X4mtSctvSPkPWJKzbHST1NL/GutqGRjFkBPyA3NhSFHw9UYggmZoKZ1L+z8cntk\njzHUKzRSbRN7M1zO7tu5loc+AZ8sAW7MoAqzBTeqtzHA3hYYhzKxf6OnkcwKjKE46kUKt0IHZCCS\njQ5SayI5ItweV/zw5duLkj/44jv47NU93lc9Mq+0VwY1TYOu3eDQ+tnDOSpcRShaPzO4QXBSeHCF\nc14bHIyicZOY4FhAKSYP+KklXpUdCgPnNeJ4WnF394BXt3e4vb2ToiRF6TSoSLHzHg4ycgFW7QHq\nIyHtkgMw++ZexGmHTanHwgbTMSFWnTgCxm58bQLxrDRlc8YMXUAbUGF6ux+7PbaxDx05oXpD9Mss\nYSrFiheHIHqb4poDh3mawaUK+P3/svcuvZZlR3rYF2utvc/j3rw3s5LFIsgSW11sUM1Wq+UetN0G\nbNjuhiaCIcCGJx70L+j+Z9JAMgTDA8OGLRgeiANb3ZJNylI9yIxTs4kAACAASURBVHpmVeZ9nHP2\nYz1Cg4hYa52bl3TDJlUEKjeRzMp7z9nPtePxxRdfwFWn55X+bVUdShq85ja9NShIGFV7cJ4XXF1d\nYbe/wDCMeLN9/dtus0FhxhAGxDXhdJyRc5HCQ5FJP3RacJhnTPOCdVmqbokEDiqiHZzY2UH0royh\nO00TxrElAd47hDC8Nm2t+Zm+Rc2DfTlLtB2kGGNrHkAFspZlEZ2JUXQgnYoZb7db7Hc7bX+K9fPm\nL+Z5we3tLb588SWeXF3hhz/8YQ2m0ief4jSdAAKunl5L5dh0PpxMoJvnGUSkLTmqbaEsGGMr9Nco\n/5B3xM7fGNf1umpS0sRjSd9r+T7Qt72fbV3Rov9Z7+8aeth+bkUZC27Bcg8qRN0lh0Brkan7Ue2W\n/sNcgbUuEzN/0526uDexnVkLV/0FMAFeWw3u51V/+niLzIvbAy63Oq3aOwwY4IIwVE2Po/dx0hKi\naYWef2tdPG+dku9kvDxMuJ0WvH19gbee7M/8qTEhiRycDwDLlNRpusfxNOH+cMTN7R1ubu9xfzph\niUnEe52yYLwHO4cA1GlYvrTpX4C2dDF0FDtVn5k5AxAmyqCyA7nEs5jAkUMITS+1B4IfaqpWEPqs\nCNMSeblerrFgA+gUp4S2sHTH74Gv7XYrgHI3XRMQ4DwMAiDY86AMbGmrLUYFq8ZPXETfZZqm+i5u\nt9uzFtA329e/mcUXLS6ZDpzVDtjABWPkrzECkAEk19fX+PKrlwh3Q9d+C02ACwwbMdaI+Q/mJt9S\nwR00piK4gLMUwU0zqdlIK7I03VTvfF33y7JU+7Tdbc8mxVus5TWBrlpfaFpNy7pUwH+z2cg7TyK6\nbm2/NQas9qQViXoGmEyltxj+vBBScxrbZJR7LVi0d5vEn3QtZRU1g5nsBzZOWVXyS/Nn7TusIEX1\nYV3h1g7xn/7u38A/e2Qy/X/+e38Duc+PGDWOrdelR7NOConz1XdRwkJr7fIYzc4BwLwCICxzrBpb\nwQdsNnJPk5PW6SZl0KR0jHUMQj0/GRTVOiMstjHbCWaNiy3HyXW6o3NcCxMmIl9bJotNQNbuDu/s\nrp51SEmML+CXERGoUG0jLigyMZSkw8RZxwYI7//8U73rj/vSVBj7ncSIacnIKQm5AFTtfWXJdYCz\ntPbG6kusuwYPp1ezAniOtKDukLOucZZc3at/s84dy/UKt6ILkZBVssaQBKot+N7rJGMyjenWEWOS\nAPb+2h/vA0SOInXviavvv1c5GR8CYk5IJcGXX28x/xsBfO33OxAYLmdshoAAhiPGPJ2QMCHTgCkW\nHJaIaUmIa9RxoVxfhhbccmVAAUIJn6YZ+wupilpAecY+4gYmnBtYfZkd6fQqPZQGwgagVACIGSmJ\nXpNMj5SXYwgS1IzjKDplquUA5oqap5xwd3+P8auvcP30Kd7+9rfxne98R1gsMYqeVwjYX1xgmqYz\nUdeK+DuHQYXXybuqs+QUrHAG4rCdtV6+Ien9DdHgXl6ajqkDxbJKbfJoKDRwfl878OshndOO+xgT\njEBgV/ozrE6tgXgPkh1zMWdAnn2he0h4/W87fyjoZqANiCrISQC4KGijTvx2WnRHvyApub/H5W5Q\n8EXpowOJY6hrF3Uksnqz6pyBcm47GW0/YCAznNMKeZCppobaFa2EEDmtCgCJC5YYMc0Rh+OEu7sD\n7u4OOByPOE0L1pSFXqzikHAyDEJRpfYMDPjSnn8Cmh4enBpSDcCCapswOp031LViGi5W+SuFgKzv\nX2mtm2K0ZfJJe3T65Iw1ocETZf2Nnr93HgSq+hMMgIq8q/OyYvB7BSkCSghYleUAiC6UD0M9P0vW\nTUhYRPETHERLreSCeV5wOs2IMdXBFW+2r3+bdFJpzoz5dELJovcW44JpjpjWFdOSBOQBYUlLrfwR\nxP47hiQfqSD4QdtAHNZlxf39Pfb7vRQodL04D3AsSDnCIXRlAyAV1Tf0VnzR9jn1Zwyuc7uEmes0\nAWKkAiwxY5gjGMImdY4QM+O0JGE7QlkoRMj6bhQW5tfLl19hu9vi+fPnuLq6wne/+13M84Lj6YiU\nMzbeY3YzcsoouajmF8GlBLeuMLFxmdLFQM6d2VXbqXbDNnEbrEAWgdBGxNsbbcUNaJBodp07QX3z\n14A2JVJj8vSVfTu0xQJ2frK/llRwvd+QZ8Tt3IwhJv/JtZ+RtGp7Hkeo6HEtjrh2wPpzbX8h/bfp\ndkrNoN0tJ/fkyX6rP3i8RWa/9VhSgnMFrnhkluKGxEbtGuxaoUWRAl/bVO13xsQ1fY9ljfgnP/6X\neL/XFnvnHfzXf/z7uNhuADikJPqsBycCvjFGHA4HvHr1Cq9ubjFNM5YYpTUHgN9sEdcVJSc4KPDr\nPRwXcGJp6S0ssQeUZZmz+iNXn5MkB6yBfEAI4mdLFmCN4bRI5rAJA4YxSMtHjX0KrOWDNelaF+4Y\nKLYuJJEiJ5+TYhJV3UyvCUzReC4nqK7rgJUJZc0YAhCGEbnI03chIEDYW1n9UUwZIUaBJYZB/Lwo\nMcPZYJZka8VhLYxpiVhzwWbcYnNxCXZv/MxvykbOAzpAxxjg/cAsy1cEHBIh/O12i+12i2GUKX4G\nZJguoAFNZlB6/dhSWiGwxWLqS3IGl6xxEhTAUP0vqAxQZwfBjdFoye+6LCCgArTGYAZEF5fB8MFj\ns93U84hrrIV9uSlo4Iqa51ykuGt5GZyryX/7o6wXLmrDyxlQZcE9q2+A3Svmmmep06k+Qj5P9Tn0\nnQz2ffvbgP2aX0gPnRRP+Bwk6xONs9yGGdsx4O/9wd/E3bTgfl5wtdvgWu17D3yJ/5GD0YNrkmux\nae4NDAIZwUGuzREhJmjb44rgnWrbemX45AqEmN32zmFRmxRjVO1lauATCau8gT0yPdAAMe8lV0gp\nYZ0XxCRgW2Xbks1zqVpCCpBKe6MBX953AvDgCiDZtWqTr+KW+oztp4WRlTIug+xk2uI0LUAdfPK4\nL5XCiIJZWQDGQXMYQiuO2LUYeNzAWXu/O3/br4wObEJX1Kv4Q9EA0/Ljs+Uk+xKfJixpkSpQPWKS\neNIXwQAqiUPBbOcJvJ6zH6WoI74KZ0xur65WbJNzAnr5ISDniJQzfPr1ttV/IzxZTiICn5cJcZ1l\nYHQmLClhihlLcTgsEWshJAQwo9LynJNARAJlSCAJqCCdA+eCeRIWGbEIkHrXplfVCgK6Fw1QrQoR\neXMkFPpqRLm1RgCAWUQzEGtcFcBgbDaj9NUSsOrYVtaXyHXGNalg6e3tLT799FNcX1/je9/7Ht5+\n+23MyyIVQuYquj1Nk+pXSJ9uTBF+dRh9wKBC4FBxVC6sORV1L5EFvOf/ln91/fIEddSGIVkt4hys\navvjek0AqpPvP907lQrCVeOuekvs0Z6G7L9Pkfi1/dij4Fap6KsuNdl60E5EVA0EuiMWZu2vVkOk\nz1iIB0IXf7L75X37F+OANSVNdBxyQW3d7I2iMSA0KmmtikCtZFhiEljZRpq0vLo74naa8a2nV3jr\n6qLSvDkTkAsyJxQqSKVgWhPuTxNu7g64vT/gdFqwxogiaBf8MCBGcUSkrRvQNV1bFwGQtu5Zv30z\npBqQUUs8nA/wYZAxut0qIwht3irxTXSR6nMq1MQuwQzni0zW04QR3So0/+C00mVTTmyxGIWfibVi\nJcyEkgt2m420UzppRfU+65RV1QpLAmABkqxUXQqIRo2BaRZMpZRxmqUiv91uuil4b7avc7t5+RKA\n2Iqbr77CuN1hGEYwFaxlQXYZkRcwZ6yFsKQZKcdq62UaVQDDIcUMOJKAgDxKLphOJ3ApuLzcY3+x\ngw8ErDIFbk0FrhR4HUYC51DAiDrZj5z+jBnFOaCwYSHifwStae0H5BET4/64YIlCdR9HRiyE4yQM\nYjBrawuJnpIObfDOYZ5mfPbpZyDn8B/84R/i229/GykmrOuCz7/4Qqr8RfS6cipYY4LzQQTMU4aL\nEc4b0yjAB7mOwtBBMs2nkvocS848dSByF4Q1m06aGFk7mdl5aHDZ/EyRhuSqvWEpTV/9F5vVilrU\n+fl+X8yAY1+BIgPTDXzr8Ln63Ycs5t6uOyY4Ds23cAFIWGUODqACE0aXLxg4Js+MAVxf7vHuW2/h\n45evt8h8962neHKxRYZWfwsh5oQ1taBfdDMdLNO0Bk0Ta6gH1/90MB9P+Mc//hf48MuIszb+L/4C\n/+h//yv8t//JH4FZ2eprxJdFqtzLsuDu7g43Nze4OxxgbCrnHcI4YNxuMaWIkqTV0+sxuRR4zjCm\nH7HERzIhLIJCANUkX1utsg37IYB0MlVWuNiF6t+HzaCsamXJp4RSEozN5xyLXmOMcDSC4GvhBUDV\nOMqZddQ76kAaRx4BA5T7hVQKUgIuxg1WLlhjwQbAmAnzkiSB8gEb7wFHWOKqDL2CSRlco045F6CL\nsNlskfMATlnaSAdpgTrFguOSMOwusb9+C8P+zfTg35Rt2GxAJNq506LyCvouwHvkOsVQhlStKSoD\nvsW0MqjCA5TPzE6NobSYoTuCsY5sUIWV5YsGXhkZKdqwConjyHl4ZyB5k6ew/aaUkGKs4JcbxIdY\nzNazJkEi5r/ZseQz2iLGzKI/t9JZkdP0iC3xb1IdzYdYHkIlo3BjazoDryqQ3XKSCht1sb1J4zQe\nUSuENLt9XoQXm0+tGAPAFbHNzU+xFCxq0fy8s6WPjU018unlDs+e7O3gZ37D4nxXxWeo/szArXrO\nhqnBfJr8Q9pbgTpoxrs6cX0IHmtMGNaIIXjVrB3ARZg9haWYkGKsxzOGFhEhVlsoetPWhluHMujx\n53mubL6BTWontwEPlueQMRmN0SQdPrZ+jWjQrlRy8oIiOBZxB0xqHJGLaHWFAJDHNK94cXeH+7s7\nXO33uDs9Mql+s4NDkwjotZ1N05TOzqOtvaL3R4ZYlPq8uVtkbV1JHGBdTIY5nLOyu/WnskptLdUF\nUPGMUHWIpb15MzoENwiu0rWoknOVmd80AnN3XqwYqg1W4e55CVAeY6lTxH+d2zcC+Lq9uQWXjDgd\ncLq/x2YYMG62MtXKASVl7SsnxLRinqOMWlU2CNUHS+DiNSmWQC+njLgsKKVgs5FpVsa4KjpZoS7K\n7lk2Y8SK6nIFT1idCcGJoHeHYheWcdVlzhUsAJS+fjzqpBPUgLuKy1HTlXj16hXef/99DMOAt99+\nG++++25F2O/v77uFqS0sRdoDjPk1ehl3b/vjkuv1WLB7FvQ+MPiv/xvt5TQAyJIRCPJcKlTT7aXe\nVwMz2r09+9xrK6Kdo7k0+Z5+t6Cyrs4TD5gioCY75nTOj0QF9dmao6rnJF9sWYDlT0Q6QaNeBK4v\ndvjeW8/wySNJyfeeP8OT/RY5y7kUZKnCF2lPdLApo10lACpKDzXxXX9MxSchLIc5JvzTH/9LvP/F\nF/Uzv/3OO/gHf/wH2IyDUsyFxbKkJAL284K744SbwxHTsupAA2FojVplJg1WCBr8VBBKxwbLiYGz\n0ej5TDfFElhJsRycJsMmWCm30sGp8KoFUAAadZq4JWAkIvI5FyRmQNlbrMKN3jkUuKrDBDaKvQwO\nkNKM3LuSC8gba07aargw5nmBAwlgHAaA7V2U42Z992rLmrb/2j0KQQIHs0MAtIUh4eLiAqOCZm+2\nr3dLMdWKmU0uyikhaxCz3W6x2V3i5e095tMJy7pgXRcRk08FYdwgKNBDmTAd71Byxm5HGEcRhb28\nvATIYb/fY7PZYNJpTlwYTKVS3W2zqVvGuq0VaQL6CXVSCQbWlJpfKQZIt3YQ5iaQzKxaK2pbQggC\n1mlbcYwrPv74Y3z7nXfwox/9CN///velqDLP+PRTaQuox+4CM2thMR0j0+ADNV9q76K04kgY2/bl\nzhKbPuhvtvoxlvD5z+onu8SB9Lh9IYcA1UZswNdDp1P9tNq+dkycP4MO5Hps639vE/na71SfhOz6\n5Ozavgioejpq5xj407/7A/yP/+f/g49fthaZ7739DH/vD9/DMITKBkpZWhv8oNOkmLVV1ghkvvlg\nKOPB/LLmoFmTt5f3d/jgxWf4Rdpi//dHH2IfPJZlwbSs+HwuIG2PmucZx9MJ0zxLa8g4IpDYVWau\nAxeMDSK6au096KfzmkZR34p43vokfihqcl5ZvQ9ASIuVUowKOjRhf/k9g7tWG/F55wUqaa+UNerI\nJkyKUDO6tQGI/Q9BmNgAME0THAp2uxFDGFFKrpqRG9VIsvcKgALZI0InrrxMc70Ou3fruoKZsdvt\nsNls8Gb7zdg22y2YgVVZ5WuU1lZjcaU6nV0m5p6ORxzu7xVEAiQGN9vZF2mBzkie5S6yTqjawAr+\nG0Ci78q6mv0aMWwDvBvgPCEnYY6Bhf1i7xwAxHXFEiMwzTVus9bhfqKf5SbGAKq/08+tMSKMCS4L\nM8V8nV2R2QUrKpi8BVSgu99asbr+4PX7opsVsgtJNN5jGJaPWfJf7Xz3p9ob3XcDDlhzOT2TCqB1\nguj1TyuA2nPsvQh3/9VyzPYT4nLmtgwMA9cOWHlWqUjxGtrpU4CEDKKE1Tn4kHQqfZtObwO7hhhb\nYbfaxhaXpM4Gpw74armmCO+n2tVSwJxAlNuarOtEGY3E9XwZAlylrtXPckc2n+lY43KNwclBSeKG\nSYG1Bz3FjFf39/j4s0/xs49/jicjMK8nrKn50u2ww7P9DtM0IwTfANiuJdlB/GIx/6T5KTkD9Uhl\nZ8w3PQBRqU21tjVi/+1gOqf6pOvxBaR2Xkggtd0euvZZckF772VoQJHCDxGgMaD5Oq/Al1cQzNZ1\n3+1lDMfgPUS2U9tIu+cRf81sL+AbAnzJmPmEuGhrhZdat3MeAQ5hJOzDiHiccZpOOBxmnf6go15D\n6xEvJYMzjL8L56SCdvXkCgWEw+GEcXhZnQCA8zHX6IyNofi6GFn3p9ZPFoknOV5NQNTTOGF+LOui\nRq8Fzk4XoGgJ0Zkxlb7/jJcvX+LDDz/E5eUlvv3tb2McR6yriBrbtVqgVx2L9hov6wKvvd4hBJSM\ns5eJSNvriNRgGNSCCsihuwdFW05Yk6+KYuNhMnAuENtoxc1xGzDR/+6XbtXhSMXAjJ05w7N9dNhV\nH9RSd01qLx5AdN2mCZbch84g1GTI9AcAKgV/8nfew//8l+/j531S8vwt/Bd/57e1AiAaCFUXC6TV\nAeUzaDJQWAX42VoqejCuUgFUGJLx3/3zv8JHD6rxH3z+5/iH/+uP8ae//wPElDEvM07zgpgZay6Y\n14jjPON+mrFmobSGMGAkqda7MGC73QEr6dSVUqdRUrXTrTLH3Prea4BUwaH2HgkzMRlyCQsw7E+l\n01fxeCg1u919oGth1gQNUICqBkBN4LpfFNydt7zmAmJ6yPqf50X2vdvV/n1LLkifnSUlDJzrjREp\nwHHqjs2IMWGel7PE98329W8lCyP3dDphswM2uz224wbsPGIBkmqarMsqWnxZRobHzHBhqK25TMB2\nu8E4DDrEYIvdbofLy0s4LxN6jbnRgK0e5JaVWYraQyoVPG0V5qZtQUSVbSg4QQONeg0vG0U/el81\nArOyAbyyvQAp1KRYkKYJP/3JT/D06VP88Ic/xO/+7u8iaVJ+c3MjFVC7d6VpyMQYJSgkwlYF9kvK\n6gc1wO2Yt32i4Mk/8BvtvbHpVb1Zb5+Ve3LmOx4CWEZv6EAyteh2iEc3238vkt8f+9yfnAMif/2N\nVGvwXExehJ/NtzTNN0Da2vdbh//yP/zbuF0PuD1OuNpvcXWxAbOwYl0YEAYPcqrz6TxSTIgx6wTB\nVdeerZcsPsX7WiACdG0WSZo+/vKlnvPjbfz/5uNPcL0ZpJUmJtwnBx8E4E8pyTujYJRmYPDZY8il\nAj3TPNfPjDottJRSdUV78KpPwu1c7dnUJKycC89bnGExUtLWnJIzbGqwBfrwcq8taSc0v9SfAzMQ\nSET8ffQKaAioje64pUQ4t0XwHpxFG88TC/A1jAJ4rEuVsLBrs3M2lvPDtdczEpZlweFwwOXlZZ2u\n/Gb7zdh2+0uknDEfDljWtU3h0yTVa3IJiH853N3j1atXDTSyAl8XIxnjEUADjAw8ISvMMpCzFuJb\nlwTkN+ILotgd51ydrOh9AIGQMuq0N5NoiKYVqd0sfhaW0KC+z95bk2QxcHvcbISFqWx/55zqekUk\nbZUfvMRXDr0/0I4aAChFCaudiH8Xgz7cekBcvi4xJwGtM0g/W33II4WQ/vcP86H+d84J+0gE1/Fo\nQaX3VbWVziQ35MT6b5y3vPc51MPz0v/rSzxnJABCZQ4z6+A2R6CU1P61opVX+3o7Lbg7LXjnrSt8\n6+rygf2j2lorN1dzOhDWNSKmUgfdpBQrIERUFH/lCvDImj5vFzSfyCZGBsmTmOvVymech8ndASJd\nQaXAKYPRUQAXYJlW3E8zPvniC/zs00/w1asbFAbeut6CwiXyqqCTvmcxRUm1yDXgN/h2L9mKflK8\nJLCSXs4w13q+PUDa1kH/tFCH6Nk7UJT1ZjGg93oOhHZ/WIC/kiU+deRQfEHx0n67eIszWo5u/m5Z\nFhTvmzyMD3XdkHO1mD+MA1yyQmWpjDbng7S4/oL371e1fUOArwTOGVmiOBHjHkb4YUDIgEcCcQaz\nTNlaUkHMIs5aCimDh0Ds4WhARkIqABVggLSQhCEgjAHbbcAQgMEzNsEL6wOCjlZHY91UrFVAoGpd\n1cq3wSdEoOBA2VcjJAGm6GykVBBdgXdJg3mCzSotJcselZpcNLFmBuZlxYsXX+HnH3+C/cUTPH/+\nLfzOD34Hyzzj408+wf39ndZsC0qO4OJB3oluEUV4r3pi3gPw7bCEuuidVpWh47i5Ghc5T2KoFIY6\nWbA4D7sO6l4wBqye3IJSm1TWxJrtq9C7aNVVoSRb3/Y5UEiwlj+AasspSat79R7QIN7usbbOqMl1\nTNW/Mag9P3T2275PhMa2aAkBETrdM/nvnRvx9//ob+FuXiUpudjher+r6L1zVv2R8yhwtYVOJpoI\nDTwlo6rLPXV6DiwWTxIyDYpvjyd8+OIFXqvGg/HJqz/Dv/rgU2yCDD2IKUt9yxFSLpiWjDUqjMgF\noAwfMgoyMidQIPjikZYV67Jg3IxwwYsz8tqiwwLqMlNlrjnn6/WWkpV0qRUTUl2y0hJ4ewapJFCx\ngD9b7qCvlib3JICgGWQwVDcpYaABRMpUAMkEpWEAFZku2YBegJ2Te8wODh7OE1Ay1iXCg7AJA8YQ\n4INHiTplhgtycSCWACflDJ89nBsq3dcH0ZiJDKSkivkx4XRaZILsWWDzZvu6Nq4AkWhbbLdbXFxc\nwI8jIk+4u7nFcVmxrFHeGXLN7nUTbwCxCd6HmoA657Hb7bCuK/YXQ5cMrFIZL7mmIcbuFGaLriFX\n82ZJgpVhbGKwQA/om2Zjo9/3TCwJDknEw9kpmK4AWbQGAgCOMAwDfvazn2G33+Py8hLv/eA9/N6P\nfoRlWfDTn/5UwOglIqdcCza2JUqI0WEYQg0UTfevlCKThSG+s4F+BXgw5bQBSfKu9gUL+30LGs9Z\nYiDXhmk0A3+WILapuGraW0/hg+ILIZeWbNp97T/zy0TEHxZ8GtPNfs/qVwArrtQyTJeDFbVlRPZb\nOd9nT6/x7Om1tp6zXqeDo6C6Ix65MO6nGcs843SasSxRQSFl6eoaKc4BQZ8D6xpnVi2gjNNiovqP\nt/HP64JSVKKiMIBNC/SJMOSMZOykbm3mnDGOomtjgxNkuuEg2qQgDIO0A1syXQdA6HO2e9xPm7Rn\n0yfHVhiMa1QRZQGMSNdH/S4zCAHOCdNlHEd5bprEN/F/HYTiAsh5pCDaRo9VwGvCTeq/mbHGFXGN\nUlxxDoMC6XZvDGyojK6UztZeXzC0ezFNE47H41n7ypvt698uLi+xrCvujkd9boA6kwqsO0fgQkiq\ni3d7c4Or62vsNhvsd3scjycsy1pbqTxQ15MxMZLZe6CuJbbP6CEtxiagFllTynBuxbp6EG0wDh5h\nCDqpdwGIqo6XyawAqOz3eZ6rTMWTJ09ARFjWFcfTSeImQIGvjMwSN5GT6a/Lusr5VPAliK0zBIFZ\nhyppK1YRjSJy/uxajRWFruD+sCBxxgTu/9Z7Io/E1dxHPqMwDZ/vs8ajnQ3qQXERzG8wIzM69hCJ\npiIZUKn71jzL2GKsUiZVlxEd4GXHrRfX/mEMnwoYdaBpAbTAxqq1IvlezsoocjKJ/H/4y/fx4Yuv\n6n34wXfewX/1xz/Cdgi1o4piI2g4maola2ONNTeurCjuWzQZnlDzxZ61azlWPQYBgBTtLFZqBUHU\ngXYycEBF7B2JzqkfEAuwzAvuDyd8efMKn3zxAi9evsRpXlQ6QoHnwYFzzwxua8s6UVxna0sx8XzL\n0VCfucQ9bZU19l97L624JjGJsDmdrgNPEqflnHWwGtU/ViDNubGZbbAfp6LnKV00pTCO8yLvprH5\nvOALXoHsov7fkZcCjrH4GGf3IgyDaGbKtDPpbNEg6vwt+9Vv3wjgq2opDCOIpD9+2GzhhgFxWTEf\nFpxWSUhkMoroJaWUJSD3QXBbCiBiTRYgPeHMiDkhl4ytHzEMHsETvAM2YwDP1stsxk6gZHbC3jKR\nb0+k4qp937g4EXthS6azNopcACSGdxnRGcoeKhgghqNVC7KKQAntHrhJt/jggw9xefkEP/zhD/H9\n3/otmQo5z4jrirSuyABKisg+IOj0ipRlBH3IofYnM0nSkUtRAAIAaReYjTCsRrTTaLEftqwBBNkf\nmaElAOxADyiTLUnp9q2TMiU+bq8P11bS9v3+PKQKokZK770WRyo4ZlWwerqoqZIkgHYsUiNF3Qet\nfkDdNesP9IlXEMVOVIJ8AER46/oKz55eqTC1MjKcfVuqEikVzFEm/s3LihgzorXxaWXF7o/cNwF3\nqwNjGaN8c3/Uc/tFovpHXI0SdKQiwK4ENQF+kIC+XixU2bUqQgAAIABJREFUXLIkeFaH5uWKY1zh\nPGEITlsEvSSNbNpbpQKS9sz6JNceOrOw3ti13+dSFOgt1QZUYIw0IDLHqj7Aex0MAUbmNv0RLCLh\nIKXZj5I4rasKHdv5UGPMsRpze9S1nTFnTW4kMOMs1cfGchOgUgBNYVhY1dXGDVvQtKwrpnl+hIX2\nZvs6NksaN5sR+/0FLp5cYbu/wJqkkn1/OGIxir4mFhJYUw1UAQPCCjxRBRW8DxUU2mw22O32mkBT\nZd3KEjLwS86pgVUOnlpQSWTrtJ176dhUDKuStmClB7+GUYI2S4iTTl4UwFrtV5CWlXme8dFHH+H5\n8+d48uQJnn/rW3j3e+/ixRdf4P7uHstpRlpiFSm2xLuoLqWxbSwgLJ0f6BnDVQTWBniYT0HvL3ow\n6vy9Oa/Qd9/rwSvGGah1zhZTc43z59mDC6yMrIftdD3DoGerPTy/HijrJyrJiWm7ZU1+WoJiPh/I\nMkTBCeNdUU4AMilOAu4GuufMWGNCnFdhmC8LDocjpmnBdJqwLMq6ssJLkXbb5ByKEy0r03C0oQo2\nLn7jA5b8iB7KMKB4wioXKQW1pLEQWcV4rGyPftJnVlZj0KKcozaRSwAosfPeucoeeWzrn10PYvUs\nsDa9Mde4wBgH/QRHeWbnwFlllQNn52AtjpZMhE6g3taWN+0alTaQaxJm8jwv8N5hsxmx2WxwwReV\nxQW084pR5DyMidFvBnCR2p91XV9bx2+2r3ez6MekSLLG9eQtZNSCKAk73AZCbHd77HY7PHlyicPh\niNNxPkuCbaq54D2mdyXrse8qOGOXkA7a6OxZLhkxAcuyCuDqHfwQMHin74sUKJ33GGKEm2c41Quy\ndmYi7aa5vsb19TVAhMPxgJcvX+L+/h4gIJcN1jrAK2ssZFPtPIJXXVXSHMUKPtXGGyDvYJ2CrIWC\nBuedr/tz26A3gAzQwrm/0F/XncMwJ8uJfoEPwjnwVX2CnnvLVQyY0eErFVdo/shyGdb/roAc1wMp\niATNVdFqJtXq9OfVPKfZJbmu5osys+S3EFLAf/9//Bv8/GXBmZ7j53+Bf/S//SX+m//4byMEX8/Z\nO2Mlis9KMYmMSOdrLUbpi1il2mBrLbe3RPZj2peyVBtT3QAvW9LZhs84L0UhOMCNyM5jiRmn04zb\n23t89eoGX718hZd3dzjOszDDal7p6v20B0Foa+ChBndl6bNMHyZmeCe2HiCV3tE1WzGvtjasLf78\nkJJDhxAQyInfJ6r+pLC841njzTrxu3CXL7frkVwkY14WbNQuDOSqVnMIECkXKFbsURdZCAEMqsP2\nyBHGYah5HgHCJvcDmFPFbH5d2zcC+BIAgeExYrfdYLvbYNyMSIWxxhPu7g9YUsKaCEK3k2QzasAw\naMBlgodGEwRk4khOCYVFAHi33WAYZErDMHjEmKtYIXdGtLWm4DwIMlNLjSFVkxEzUAq4kQhmIEbZ\nq41/t2CGEGAjRNmmVBaLPcUEfvnll/joo4/w9OlT/Nb3v4933nkHn37yCQ6He6zzjBRXGQMeV3il\nDjPpdMk1YvBBtCbI1UBMzlleqqI6U+DzoL038PLrPoloyQOa3XjgUOhsX018WAL/BpJ0SQVRdd71\nOZKr1QD7bHM4yq7pADgDmggt0e2fn527GVRNPdSo6fPs/l++oNUcBQeFzKQGx+m98V4+1yemXBBj\nwhoj1jVhXiKOpxOOpxnTvOikH3G0OdtEnuY4CktrJ2vF0EC8NZnRebwaH5y0wMhgAVlXhYHRe+y8\nx5pkMofdc3E8phckwfwQAlYSZlfQ/nuQCS3ac8m6Xhv4Zc9buncUpFRgwJJaC/ILZ5ChWqg8FHlH\nfBAKchHNHRNntM2o2tZ7TgrEEtlEVzHaMRYV5pT9lmyBqIM3u+E8GDYBx4O2I3wIGMpQKzfFNLyI\nkFNCIp0W57k5JD53RilJO8s5kPpm+7o2q2C74HFx8QSb3V5aHOcJ0zTjcDwCfoC1hMWcEWNCNjvS\nAS+2JiVRdlX3JISA7XaHiwvR+DpnYbQ2bemYd/VYElicJ97OWVCowHfupgcpS1jyA662sQJf7LHZ\nDAhhQCCAooh/FwUTyDfGyHa7xbos+PDDD3FxcYHf+Z3fQfAe+90elxcXmI8nxHmtDJwQQn3nc24t\nLpthlFYIrVYX7oLGDhxv7KwWrj8EMgDUtsfXtu57kiD88vfrQery+u97v6eTzkCuJpbmDwQcUt53\nX/RBa2PoT7cWfepxSEAvNlvX7kM7z95nunocBhBV9L2QDD+QBHTB8XjC8XCUCYrLinWNWJaIZV6E\njcTiC7xO/WMwknOIlDQxTzrZsEVAjgjbkVHWI2JubfybYcTbb+0kijadNmZ9TwocFxlaMniMaj8t\nCWysLxU9HgLGcdS2mAxxC+dgo1XK+/jK7o/9vge9+taSKlDs2ruFzkbXfRYpPhKhssQsNumfpejY\nKQtFi1IEVlFo+Zx3BBps8plc06A6Z5wTlmVVkI1wcbHH1XiFw+GAZVkq64tZ2oUshrHF0bdwCuAr\nn1tUw/b/7T14s/372+Z5EYZf0ol12dZqe8tJ/4+5ta0uyyJt89udTIHvAd36TdlqPOw0brTPOoDY\nVTC5rgqi9m+2AQ0JPkSEIOyP4D3COCA4j+1uW5mX8zJLvAXUSfOAALW7iz2ePnuGZ8+e4frpNYZB\nNGZPpxNC0Hdch0owAKcMsFX1pLz38MMgsaWeo73XctoGKjVbbDFjHWSCh2CDDjzhTmtL43eDl7ov\nPXALdG6Tf8l79Zp/IpwV8c/BHf25nVD3HM9YxmeeAPVcz86lgnr6GXVFtXhhRyUFvJyre7EOHAPZ\nXp1m/OzlKzym5/jBiz/DZ69u8fbTq7pevRNghn2Q/FZlh2qcTlrYqzmZ3RoGO256XN2VFWYd/sCV\nKW2FZFN6kWmXBHaDDC8hL2w2limM6xJxPE64ubnHq1c3uLm5xd3hiDmuSMzCcHLqCw1o7UDUepZs\nmZatMcUdnK+MSiLTydI+pg4vqEWcjqkseQ9JzmSxhKVxzHCe4LVrjVlyI8udwKh6b7Z2jBnnPMGm\nWgMibp9ShvcFwVh+9lxA2IwbpKj6xyDNUSN2uz2GwalNWOGyQ3ZOGeLa7eSd5jX8Bvj6VWzDZpDA\ngwsuLy+w323BAJbjCcdpxv3hCLiAQoO+BQWZtY+doEYfYK2ohuDVeJSapAwh4ELbOcZxBHNRgd12\nHhL0WqLSElkJXk3QWkEPEApaUFaDNNgLIPRZVtaXfEYmUo7jgCEI86wUp9UQrQazBFZFJ33FdcXn\nn3+Of/3Tfw0wsNtucLG/wJOLJ5gORyzLjBhFQ8D7BO8GMATwizFhHRJ8GGsrWmauSHa9bjTQyJL7\nvtppP5MfiDHoviw/VoCgVVG7j3SglHys1C+f0YWJziaC2Z7rPtACVjm30p6LgnfmsyxIsGupQUOX\ngJ1dQ8fkk3N1FahhWRxgciriL0bYKvLMUoXQDlY1PgnTacLheMTxNGkglLCsK5YlYY1JBBwVeDGR\nzB6wrdOrVHBUkhcBaYILSOX1avx+3GIzDjLJhRw4Apx10AIKwjBgv9thWuazPu0egNyMA/b7HZiL\nTGeJSVkH1WvLG1JK7fk3hpo9+IesCK8sKglqFBSTD1ajDCdGtn/2lZ3iZOJdTFEfI+s5dHoU2lKZ\nta2srkvYZBaPpGPsha0pVQzn5dqWNYF5gveEi82F9t9TbcnxqsWSkkyDNBZOKY0xIEmUHFMmIcXK\n2nmzfb3bbreD0MSF9RRTQkbBEmMVIfYbBwobcIaC1aL1BWXqyjvAujZY195QpxoZe6TpRnJl2TBr\nAcAZaJJ1qdBr7wupDYLrQK3OVtpn+q1eWymYS4RzQBgGhGGQiT45dWLhwlQ5nU545513QES4v7vD\nT37yE8zzjKdPn4KIcHl5ifk0Y51XTNNUW9PkBMQGWyI0+IDgA+CEyZMsCET7u77rj27nP389kadH\nr/n1tKT5KH5wz37R/muwq67esSQM3F2DHLu0SFxLETXAf3ByrEFn85fcPUNWG8SV+WSJH1GAdwHk\ntUWeZZhH1mmiMcrAhWk64Xg84niYcDqdMC8LwIRhGOWZsEy9ZIJqhrWCIHsZic6lgLPEMjYx05h7\n3hGuN0BK4p/GccDFxQajH2oLv/lWt2QpPmjLrvcBgLSyJ52iKNIUDuuyYBgHhOCx222wLCpiXzKc\n6rQmBVRzzk04uUsQm27eedJoa9PWaSkFIfgKeku1PMMGQshzMpudq1h88B69Zqkl6FxUo4i5srt9\nLR6xtA+7QY9twJf4pwxGVMZ+CF4A8ie7yph8KM5/tsYVBLZ33J4hMTDPM+Z5fnSNv9m+ni2uUcBg\nGy7Ctn6LJrRStHVE9f2Pa8R8mjAOqg1JokBkur/NirR4rQG46l/0/ZXPiVayWSpLzgEWQIShLbUR\nSxSmv3MbOO+x3e2wv7gAM2NZl9rWaO+MMbjuDvegFx6XT57g6bOnePbsGYZhwDTPWNcV3vs6dGHS\nSX8WNxlb0ZFDcB5+CKpzJO+tACHowJRWMLCChxVsbWMzyU5iTkk4GllBUYX2WW7307Zqx+lxT/UY\nOQBolr63TTVtsvyILR8hg8Me3c/5v1sx/wyk6cEzfdJyTWoTiSsvQFEr/XCXQxFwOy+6l8c7SL68\nP+HqYlvzXu882KRjyDVmPKxYpTcV1hEjZ0gV7GkkC6++U1rDxa4576Tt3bkKJkHZaQI2eTDJOcSc\nMa0Rp5Mw9m/vD7i/O+J4lJwrxqx6wNa1on4LJp+jUkYdmFQBp+rT5XeeApyufx9E5470HbLFxHbp\nmrPYFFNbL7mg+p+sbZbJOdEbdiIWZNwwwrneqOkK26A9iRC1OAbpgOOSIDJLQIoZK8kgg20YAAW+\nShKswaQpBGzfNZBO41EbOGC5nekV5yJF2F/n9s0AvkKQyW0pwTsR1k5JkkYZn8kIGw/ngiQkKUqF\njAtcEAYYoAwSe7cVVJCpQkN1Lo2eCBHcRkNoPQh+GGrAJGbJNaNBVKmqIth3DnrJz13HbkF9iVKJ\nALNWNzfw+x3GcYAjjxmyaIsJ87IasZzBPuBwd48P3n8fsyYpXBj73R77/QWm6YQYF8Q1IcaEIQgt\nkYvoDcW4YghSXa0VFKAm7oqogEAI2rpX7yEb0NcczxlwRUI5ldJGF/zBkO+uamNAhOmTOOs7f9ge\neZ4stfe+OZte6+Ph1h6V0mE1mSF1+ArOq4FqFSQLTioIjwfgjQqAAlQ1FNiJIZNnVZBWxrQuOB6P\nOBzkz1ETkpxUfDEEqVAYY8B5kPfSdcfW6ig0VfIFXJICp4DzAU4Tiqu9x2GezqaT7Dc7fO/ZFUhF\nK0MIKI7BEapVleCKw3Yziigv59r7n5JWtLmgFF91TmJckVKUNeAMzCXEqHopCgY5R9WQVwYFGUCm\n00j0dykLA9NAAOul5+JQyoJcklRHLFDR9SSBJCmtvwUswTlJuImwJnkP7HdEjWXjvQOzr6zKUkE1\nD2KxP+uaMS8eu/0O2+0GDCCVjBhXsF6HMCVzrdD3U4gAVH2DknMN9t5sX//mg2ogzrOwNtcI+AEp\nyiStDGkJ2Wy2SIhIuWBZhU3hA9VAOJADj4T5OKlQtlQCp2nCy5cvMW42OB6PtQ3SiThL1Yuo2kIk\nNvq1ii8Le9E5goev/qkF0trSW6cv4bXvz+sKHxw22209ngVhyXQkuBUShHmTcHtzg3+bEp4/f45x\ns8Fut8P19TXWealjyg04FP+HOlUvhUHtjtg0X5qweGXkqN7hwwLHa+yEDriSa3xQcOm2M8DQO1A3\nFKD+3D7HCrp3BZS2cfV5eABEPtzfX3/rvkPGPlZNGRLdHj8EOBe6REbaN3IRDZ+UMlLOOKBgmmcc\nDkfc3d3j/v5ewcgWe4zjFttxAwoD3GBs1BaQWwJF3gZ0yOj37LL6da7rFJAYiSHJiPOSdMBriwm1\n+zQOo5y5l4TAa5uUTc2uYE0pWOcZzhE2220VZDfW0qa20Oaa2BuIbPt5bGpjX7jpwe126zVuQBGf\nrTGbAVo1DdXvGoBg96EOcCGSQUx6fiazUZK23lPT6RIVCz1X0rXphKm2LAtOpyM2u6EOwZjnud4H\n7z287qeCce685VHiyYTT6YS7u7s34Ndv0DYMQxWEBolAtWcAyqBiLuCc4Qdh1w8+oOSM0/FYGVOm\nA2TdJSJVIvtvrKCmAVTZMt6Dc66mh5mRlDlvEIrWelFQdLDQIrESiTB9yhnH6YQYIw7HA2KKGAdh\noI3jCOd1QBczDocDPvnkE+x2O2y3Wzx79gzf/e53cTqdVNvLiV4QN909grxfMSV4tyKFAaO953oP\nZfqqaBfZNdfCdAc0nG1aPLY/jsV/unr1Yneh+znbL85Brf5cHgPAvHYeVYaPZTkanLb8Anag7hj2\n/FDtvoEsApCdAy/yc7z2OXu+snsTZTFgk+HO3A/BHrwzRiARLrc2DfbxDpLL3Yg1J1DWIgcycirI\nQxa/ZeBUfR7WQ2P5X7t7mQ34YQXRVLtR9/zl/RF304y3r6/w9rOr6mPYvhsZOUVkiH7xcV5wezzh\n5e0B9/cHTNryDya4EDCEAWmZkdIKYgHtQISikg/FhhI4J0z1CqbyGXvYgCYD84hkure1HRoISCQS\nGE5Zvsb6T6rX6FwjxBTKIlDPDPIZxXnpcpGDVhDM8hQAotWac23bDH6AhwGHet5hQM7AklfttnHY\njBsAhBAGOCdAZwhBi5ZJ3kPv68+HMEj+rvhKNuY4CVngUSb+r3D7RgBfOoYRBMbxeK86IYRlzQAc\nvB/gwxZ+2MBzRuYj1hSRi+jxqAy1sjeEkcFcZHGSGNC7m1cIDri/uwNzwWYcMC0rQvCSsANnyWsN\nxF1nvvRDYndkibbgitToSnDjnYnlq5MrGTFlkCKtOY8gGrrpcNCFi/pvR4RR2wG4FHz15ZeI64rr\n62uM4wZXV9dY1wVrXJBi1/8LqvtISZhfzpHQmZ3v2h3FeRQutYXN9dVLu7KzBOU8qWhJTbXDj36v\nsq6o9ToD52LBlVzaJYJWie/39wtFXLt3sYF6gFTp/YO8qaNNQ4VG++MTzqraBqIWCOKeSkaK1g4l\nExOnecb98YS7+3ucTpO24gpTwzsxhMNmg5IZiFHEn4kAMqFO1lMmOV9bi17PSVsYDbR7shtQSkDh\ngu0w4PryQkXxpZ8+63vlnO5XA5vtbsSSBrhIbUpUTmAeUFiqecPgsdmMGMYBebYxuufJp2lxVWpy\nZakVNfJNPLmIWFbVy6p3Xx1NrXOwCjcSgYIAagqf6aQfm8RFQi1QZmRl5tUSEWEYZHLQGnMD74jA\n1IlVMhCcCoY7eU+XZcXxeIRzyhTd7TCTTKxkbYmx6xX6crs3rd1GktbpNGH1b0SHfxO2w92dBBzM\nMr3UD1hiwbJGrDGB4HB9/Qzj/gLp7iiBDRPYtcTbnq/3HqssmtriCEBbQAgXFxf41re+hbu7O9zd\nHpRj2IAvABowaStyAViDUUt0SCuczAz2Hrmkyi40Y/sw/pBgjgF9r1PJSPo+MpHahQJOMizi2bNn\nuLu7q0L/wzBgWRbc3NwI+DWO2O93uLi4wPF4xDzPvxB0SCm2KUVnjBzR+DLgwKY69t8H1CLz4wDT\nL/JHZptbO5AUPHo/RRrE1nyDJfl5jA1WCr9e9HjkuP9fNmn3l3YhmVlix3LVdjFUtDqJpuk0r5in\nBcu64sUiYtfTPGOeZixrkoKKExkFFwawc1iSaHox1NZR6fQH5TpyYVkHWvAxARYBgLkGuiE4GZRA\nWvGW2rSaWY0fQCg6hRDUdOU2m01NIHrAKqWEIUk7VQgBeY2A6oEJCOTOfPw4jm14gn6/F7x/KGjf\nF1+sMNGzu3IulUnmta3fO6tqlwrQ9u2OdpygIFlOCQks0hIgkSrQYimKsBsspmzdAMKE4yIMycPh\nAD84XF5eYr/f14EYzFzFlY0BFnzAZjfWKXrGwk+rtBkfj8eq9fVm+/q3m5sbrDHhdDxhWRYtrki7\nlfgKrrEKF9E7BYB1XUHksN/KhODt7R0Op1ntUoGQd6jiIAVcp9IJI8rBJsz3AXmBTdRzmtxrKxWr\nzAaXGr/t93KMGhsyY9xua9JtsZ33kM6VEDBNEz7++GN47/Hee+/h3XffRSkFH3zwAV68eFFBWQP1\nTADds2irLuuC4J20yzsHD5goZnuXqWkpkbYtOydaVQ83ux9FNZsLNSacbc1ncB3K8gs3y1+6fZ//\nHjXubD+yqNB4anI9hanKAZiQ+RnIgo6h1v3dDlkRu0d9cf0OkbK97PcGpjn0d+Lp5Q7vvvUMH7/8\ncz3T/wzA/wLCX+B7z5/h6eW+7rcwpEUwJ9V0LLVTR+L9TrORqktABe+Amu+Ij3JgOEzrin/643+F\n97/4vJ7Xb7/zDv7Bf/R3sduOKGApvC0rjsuKNeY6pf7uNOH+NMtQIhF9Fh0ys9feg4rm5V5aekth\nYfJrTtI/11qoJ2p+pbQBJ3IJIh1UlNnbF/eoY3pZsWZdVy2Q89mzrYUW1uFGzmkBBYB3+m4XxeYI\npUi+Yf6kKBDHhTWfZAyDvBs2/GJdIma/YBwCgvplQIDbnAsciT+z6ci2WiqYLvTJWsAXP/wG+Pr/\nvd3d3YiYWnDYjHuEYcCyZqxxwbxEgAKcH0FhC5/XrlVEEWxoe0mwce+xGjpHZkQc9vs9AODm1Q2+\n/PKltLaomOM50NIgkcKCzjKxdE6SaXxY9Vo3Ba3AOk0OpZk9rfQItiXJtgXYDyvLZh6s3SClpJRn\nYGXG/d2d6MiMG4yDTn/ZbJFiRk7cAjDFHHLJWFOEDwTvBYkGG6BTS0LyxzmwYTEPE5POMcgkKRjW\nh36qihkKogYa1UDUPmNJCJqRroywUs72087hAYj2SBLCaMbLJLnaREUDwejBN9AE5fWnysat66wU\nYcilkhCzJMrzKmPcY8pY1oi7wwmnacasY9yTglq1Mq6ToGTkvEzAZEoVzddCjDh1VodlDDwFxJhI\n4WHWyV9FggU/YvBCDfbeqhbSZlGKCsgLvgbngTB4PHlygXWNSgdeBfwtuT4bIp18YlWvDlACS1HL\n6zQ3IqcgUKrAlumpVHo5dWAkVOzeAoLCKE5HHjsHp4mpqwAyqnhmfecVdIM6M+fleME5FNVcsWQ3\n5YwSE0rxlWliQREXD/a2DgSwyjnjeDxBWr0uVGuDcDydEFMUxiihJkomcA90zAAAiXUtpF+vk3iz\n/fW2zz/7HM577PYXAIAhDDhMB9zc3uLVza20lqcMJJ1IB2FZkktgkIpSb7DdbpWVEeB909l5+vQp\n3n33Xbz327+NSbWXPvroZ9LOMQSsy4qcVwQv700upumjrbd9i5NOLTJfQ1pFDOC67kyL6MzG6nub\nCSpgK7a5CnJ34N04jhjHEafTCdM0AQD2exHlz8o+4CzFlM1mg6urq8rukkmWDrvNBs4RlmWRARPM\nADYVCBS2jk7t4k4rz537hsri6QoRvah37597+99sdKl2n2rR4jyBAAxcaz6+BqsWiJYGJlZdR/TB\nu53PQ1aZ+Jnmt1iDVAVmtN3EChyWGIBI9LpKwqJ6kMsaMc8rTqoFGWNCzBlfLStWbf8TPS6CHwfR\nU6z+xQPOa4Ip7YIMYTsSSIeoSJXbNFMAlom3rHeIuSZp4jpImANF72+Rb5lmqAwMSTpBSsLxXLTF\nYreBDw6ztj6BIbHLOKCUpFMnV2WkE8iCLH02VjW3RNyC7/6Z9dp2bXqWbur6e2a5FGuGxryEsc9b\nciPFQF+1++xzPngMYYvgHU7TXP138ITsZUp4KUn3mcFFwDFAmJHeEZwfUbJMxsOtJHTX19fYKjvz\n5cuXmKYJ4ziKDw7SQryuawX9QghV8NjExvvpk2+2r3d7dXMD00S0xDkXBnnrvNB2Wl0jzAyvelhP\nLi/hQ8CyRIyapDK4dmkY8PlwO4+XNZa02JKhdpdqcVHWu1UDRIMopVR9waCt+7bFJMVaZ0XGDpgp\npeBwOOCzzz7Dfr/Hj37v9/Dee++BmStT2ApGxgI2kKcwY40RwXk4OGy0QwdFJn1XlldtXbRYkcDc\nsSAtxtTzMrYrWETTpayAes7VP6DpafaVpH5f/Y19OJHwtSfB/ceNg6X744Ji9k0M94Pv0xmAdp7r\ncDsvbhrTj22VFaY5BQAtHPf+TggLpTD+5A9+gP/pX/xb/Pxl6yD53vO38Cd/8F7dDyDrxxuASk6L\nK6QFGzlHm+LLJHqZxHR2WfV6GApMFvyTf/5X+NmXEb24/gef/zn+4T/7Mf7093+AXArWGDEvC05L\nRC6MmAumdcX9NOE4r/J+OY/gBwyDQwgE5wM2W2nTTKptzGBlLdlpSC5A3OKR2onSFWDM59bvKWgl\n7DFpNTbCDID6/lt8KPs14fz+ObWhMI4IpSjLWnNlSQx1zZvEAjMA154z+Gw9OO9BkMmoKUnniXd7\njGHEuNkIa6zIH2Fyi+yBkBLkWvuplk6Zyjashn7J2vtVbN8M4Ov+FsE7YL/D1eUliAjLsuLu/oD7\n+yNyJhQWKqKwNBpoBAeQAjrDKNoY6zrXljGQBDqXlxf4zne+g5wSjscjfvbzj/Hq5hZAm7xiLsB2\nzXWNCZiFUqCvcp0OVBke7CuFk0uRyROGt9RAHIBqiBXWVnNq+hHem15Qm+ST1rX203onTmM6Tlqh\nZYQwYLfbIcaMuSwaABaEQa5Egt9VX7hmRKsThIFXXNtD4ZzqjWhSYsEySIX5lZ5a2qQxE6y3fbcX\nEvWeQJMyMZoAcxvF/LDa35gz0GdkdNLzazjbLJk4L7zo/uvZiKE7MxNUjVUH7wm4xKzTslYsOWFZ\nE47TrCBXRMwFMWUcTjPWGOszhdV7rJ0vDNqmqC1P3gvAk3MFPz1YpzAy2oQRkmSGTWSRZA3Zs+nA\nWgskHKE9G2VDWusUERDXGeO4gSRnItTrSCqANmIG2DE9AAAgAElEQVSXi7BFCKiipvUe670fhhEh\nDCCHyjikyv4yjTwV5mdJCIoBxGo6meUMTeS+0stlUXbAmfHxTEeg1BZLr4bZOWn/ct5hWUR8VcYc\nE4gYJScgBK2Y6P3zAiJ6EgovCMipYJkXGLvr6uoJNptN1arJsBbnrE4hCGNHH49NUMpEVZ/tzfb1\nb7ZWhkFaiI6nI756+QpfffUSx9OMcf8EBYRpWnE8TViWFTELSOC8sActWa4TXTWpNir7OI7Y7ffw\nYRQWh7JUvFYIkzJpbECLrB95P/rEtcBahzt7h67qV+zzXRs61D46qtMVo+pvkfqZ0CUzZl+HYUBc\nI5JOkgs+AJ4Rl7UxgZ3DdrvFfr/H/f29gBAxgZWhA0iLb8oZ3hg5MHZcAygq4MzNX7TqvNgx8x09\na+yxrfcxtn+pnJr+iNlLuaNc/Quf2bF+f1YMaj+uEUH97/Pjcv3bgtgaO6D7qiZlmUvVb2SNH5gI\nS4wyiXFeMK8rptOCw3HCPK8arBNW5xGTscJd1Ry0ZymMdwHAwjCAkYCUxL8YM4oLuAjjwFsxSQ2u\ntcoIP4QAKijWvg4AroCTVJWdk31I4gPAO9XtkpZN0Vlk/bfcnypzoH4nxrWuBxtUwqplZCnqQ4DU\n1rEl27Z+ALQW3AeAGPkGfBnrxWK39n0+25e0sz9oTQak0DQGDIOws07TDEDe7+CdynSkyjSDvtd9\nYSR4jwRgWQUMzDljGEQn0P7EGLWApd8LXoqPfH6eFg+9aaf/zdrmVYqaMXNj9Iq8KKzw7ByQCpCL\nSGZ4Hdw1jAM22w12+xFjIHgqGLS1EKWAycGRh02vV3ShxlgOrIl1kxkpJO8tq39w0O8DmrALiyNn\nBpARvLSLWcxM6PTxtBPCEcC5IFMCe49lWXFzc4uf/fxjPP/W23j33XfxW7/1NxHXiHVd8eKLL5Qx\nBnDOKJnAHAA4pJyxxATnE3wIcMGBgletJWV6dR0xIK9myzSLjT2rD6CKmMn5641QMBBVrqQWUB68\nV/aF3mdYRN5/pAGL3BVV2vft/hM6GRU2OZquC6aaYmo4k212+ibUz5bPeFjGUo9aARW7T30+1QEz\nZJ0aQojYbQf8/T/6W7g7zbibV1ztd7jab7p9qlSLgV6QwS25sE4szRLf54JksYnFIpbv2fXpPbSC\n193xhI9evMBr4vpgfPLqz/B/fbjDtrblRayF9fk5xJwxLxlrFBCXuACU4a2YCAF2whCQckRcFmAI\noAFCZvFQ4FM6oQSENh/hamGNNE+y3MyZqD1soABVRlmBMsSyMipTEhkmyLtmuRxB8ypSvzDIpOMC\nawdm+LoQjE3mAc8gwQthw98YuqbBsq6clwI9F+SUsZQFgw/YjqNqtEk+JGCe+mZIN0DhgpQTxmGo\n74hzAT4UKez8exAt/kYAX1zyGZNKQK973N7c4niKcJsnAEk1bY5iRLPq6jjv4IIXQ6mT3ixZLrmo\nBgthu93iyeUlSina0qETjuoLKAafmeB1+iIqNZVBKkYpjQCuGqe+asA9Gmw7BxSdR0WLRQBdqpdj\nGGoFr5Q2scdEzFPKyDEhuYgyjPDeqSCkiHI7cthtd4hrRloFWIg5IRSrvjJylqlLwbvagmlU/uog\nqOlmkFU6GOrsOhYPJLH3zosgbu4E+M6SiXPWVn05u8DUft7WwbnjOGd+ve5QHu7rDAhjc4IGaKkm\nm/2Pm7OQAngDkZhZGBdOEP1pWXA8CdA1LRGnecbxNOG0rIhZqgwpC9gJBfbIhII72msvBC9sRGgg\nYoG1tgJWJyrPwGlFBWxrzoCvrCCr6BPllBCcJRpy1XZLrNWViHA6HbHXW+NI9l8gDhlFApK4tsq/\ntAPruPvOJVtSwNSulZxgeeA2xYt1veeSKoAqophqQJ2+HwYoOKs+MArlekQie1cziCTREO0+ub5R\n7/OQRoCPWKOADN63pKTkRhUGmR6Xk+qUF4fGXDCva03IhmHAkyeX2O12SDkCkVXfwrQAxHGKsHi3\nhtQ5v0G+fjO258/f0ilUlwhDwO3NPW5vbzHNC4ZxgydXTzHsL/BKxVGnWVrMiAT0sTaNdV2x2Yw1\nMbX1tCwL7u7ucHNzA4AqGOZDqCBFyTaFzvyB2rgiVfjWCslnYD8Apb03W2oBNx78LXGtTOSZlZkF\nSHA1KnvG2DGWdNsE1bRGRLdg0LarqNcPoCbnxt4xfQh7R3wHJIgfaxOezA6RVhZ7QK9nWjdG2jnj\n93WAyv6gC84ay/SsQNLfo1/yKnIHmv2yzfzOQ/ChXl93DhXgN1ZSyUglid3RGCIx4zTNOB5PmJYV\nmYFFmV/TsiInBnmC32/AoNaO5zxMb0OKZT1Ic35vewBRYhb1/QB6fU79hPwY1MAoInDSdgpfNPgn\nEIm/WZFUB0yC6pxFlyyX1nJlWic2wXAzCjPQO2Hi1oozQRmP1K2lJhbcr9/+/lew6cF1W0FNrq+B\nm3XfENHjh4L5Bpz1kyPFz3h4IsyDB82NSeFJIoyUM4gG2U9pwy0MePZOrtV8hk3A22632O122O/3\nAmZprMvMOpF8e9Y2QwA2m82ZoP+b7Tdj4zCCc9bhDhKDS3hLCnwJQGwaQ5kJmUW/OHOG94RxdPCe\n4algO3gsXKROqok5cqmAeo1hVVfJqy2E4fxQ4EhjLwoODl7fFwWwGchJkuCUVGictNitf6SbtwmY\ni48oIF8QAlDKhPTpZ9jtforr66d4/vw5SsmYphNOx6O0wztCygWcI0qy6XwOKResKSPkDF8GnZQu\nsXAGKvs4hFBBd8nR3KO2WN52LXGToUlUCw7QogMBdfpjY4Y2bSoDiwp0Wnk9hk0gRI37esDK7HL1\nFaUB/3qC8jM9v7rfirChAn+Ag6sM3fZ1I3dYMZ+6Y/eAmNl8i7mp5gaqK8yEwoSn15d46/mgvsr0\nHsVmOhIJolIYKTNiksFA07LKMIdOjzLpJEBrk4flXmaLi5BJSmHcHI56lo+L6392c4+rzbbG/pEl\n5xoGD7gAFwa4lHvUE8wZmRNc0eKFFxAwpRVEDB8c4AkuCEjkXEBJ3YTj6rbMt7RiucF3Bl6ZpIuA\nZBmsQFdRnT0roFf2FFkRSnTLiIQIIR00AalE0R9nWb+OZd27IAWX4Dw8JZXnsBymaSKXzMKNcJbr\nSA6/ritiShjUh5IWby0uga4Z6RJbBSvwDfK1tZy7WOLXtX0jgK+rqyuEEHB9eQnvPeb7I47HE+Zl\nBZHHk6truHGPu1km4kzLjDUJhT8MI8ZRgvk1RgEJWKnFzIjRI8aEZZ7x6tUNUoo4Hg8ChJA8zBCC\nYMMsQYyH7/pYVTeCioqLmpYE1377Vm+QzZKSPrDPWVBqGw+8rhGzI3iSKZTWMmairiBCcB4lsPba\nJ63G+8oc8CwLcbvdIsaMaZqxLqrtkrIGWircyqqdlIv0PZNOsCR1Hs6d6WO0ha1G150DUX1wT0wo\nD4z+w+3MITHrvX+Y+LTEod7LM4dm54NHf9/Ot08ChV4qQUb3Xeo/zZX1ZzRdcuJw5mXB3eGI+9OE\nNWWkzJiXFacl4jhHZGaMGw8KIwI1lhgpJdg0EJwT4Xij2GZReQRpdU4n1MMV/b4BcXqWluRqnqeO\nzSlonFGKiO5yFvBNtL48oPpewjqTBEOCaUlkSZ15yQkMxrqKyHsYfKX6ei6Ia9b2wbYGSpHKgPNU\n2Vc5x3r/AUseVNC+CPvAOaotkaRArAVewjjTcKXI5BNjdAE2wl6fW2Bd25Lceu+w3Wyw3QrTcV3v\nzkCyklcIAYtgY59jjP+OvW9bchxJrjweFwBk3qpvI2lG+y37Qbv/uw8y04t2JZk0o56qTJIA4uL7\n4O4RAWa2VmY7Pd1mXWirrkomCQIBwC/Hjx9HDOK8yHnRtAFwuVzhvcO27Xh7e8M8T3h8fBDgC1rl\nKr2aP00CYOckiUypMkGzp6Bft196e356gg8BDw/PYOfx+e0mU04fH7E8vuCbH/4WHCL+fFn1WRd7\neX5Y8Pz8LKK/OaPkhHA+HTR4SinYtg2fP3/G58+fEUKUBJXF3gr47XU0tAWw3YbyAJz0yYd1sGE6\nPrveBxwf3V2mq5SbJheIcD6fBeQiahT8lBKCjuLLtU/amudZzgsS9JG2z53PZ9GsserrvmGeI5Zl\nEVAECiiUIoXsAYTp4MQRrGtnYoGhM32l+u739vcB3DLQC2hDTO7fyzY4xo6G3q8bQc7zp4K6e7/0\nU2y0DrKYkK1p6Ei7vEyk7qCmtHFkXDfR9RJ2sIrwanDsDejS2hD1I4YF56RT4Nra/MSxdubwPXDK\nA0go7/MQ9qFmzlLVKFq8sEKjI6xZCo2ifKX6KejFkUlFfpkZ+77LxDeSwkUMATVGZG3jtCLKyOwy\nppe10I4tj/Yd45S78X7h4TnC0L46rg1AcEMMVHQfx7YmEr04AD4EmZ5MCjiRV5/vUDgD7d7tIGBQ\nKQ6ruIcw4bZ+ObBFp2nC6SS25aq6Xfas+rP44zaZ1XtMyl69F/P/uv2yW4wRmRyItjZNF1pAsPu1\n1AzRXe2DG2ySqXNSTIhRchPv5XkQxpLEd1JfFDaZjqFV8oAcQ7//AYIThgv6Pd+mDXun9sk0tMQ/\nkFQNG+sl+Ki6gCoMXm3CqCTcXBmJMtZtxT/+4z/i97//PV5eXvD99z/gD3/4A/793/4d+7Yi54SS\nkjCEc4ZzAcF3FnPOGSUURGd5mMRaXO2ZtCKJ/P0uHxls+30+8a6AYhnAAM7b21vByQr+aNiZxuA4\nfPZod7tNPlwLHodwjAWgQeuYcSh0696G4+051Ohbe1kfitooENLsunxPzx/0b+pt+qSsYechAxKa\nr2DtbpFi17olXG4r3i5XXK8ylMPkIVoOpfm1sfUsZjbfp2mpsOoB/JS4fvC+aS6DHHhPDSiMMYIc\nIeUkoB4ZuWQcOIc2PZWIsO874jw1bTJoJ0Dx1HLkg29nYWi1wgr1wWzOkcgM6HUotfTvVqy1gaIK\neoUQJMfJXfZBgGU5dvN9QNffs0NphVFtM82ltmKfPRulVBTv4Cq14zYdwG3bQCTSB+ZPJTerenyy\nJiVnJNrh3CzcUMUccs5NI/zn3H4TwNfLywtijPjm+RnX6000ebgiLhPO52d8/7d/gzXL2NXbtuG2\nrkgpYVlOTRuh6T8QIcSImLNUzHLG5XrF589f8Oc/fwbASKmAIP2rEkg5VE4SrOkdJtpfgjBbIBRD\n7AetRk/+qYAWdaOmoWE3Mjw0ETBh35W2XAvOpxPiNGGaApyziqixY+Q7LLEyh2goP0EEU0+nBefT\nGaVc1YFmzMuMOEVo6UCa3moFOy/IO7WwWe3bUXPFHiZ5CN3hXErpbYpEEvCZ5NnoXOxn0RbrayaB\npj2s1i4pv/HuOAkE6C0PgAXp7yvzHwV+B2fk7irg4tq1GVDbAq01r0qPei4FSdt6ahP/8o2l5aBG\nipxMHdHzE1acHEMtpWmXTTGocbHWj6qXR4JqItLzH84Ldl00ISEVNHWqIcYC/nCR4IOcrSGjUtW2\n2gLKSUAm9Tq9jcMcUxEdIq6YNJmV+w5wlIT1BdE2CkE+k/MOz8K4lKmQpSU44yWUxF2AYwsGGsOP\nLfgzgU80py/3jtDqG2udhRlXckbVKa1C15fnJXiPOXo4VOw5gbyXIRghILPmbXoPiKMakyFp4RSd\no4z9ujYQK8aAGCaUSbQjNpbnNOeCECq8C0AQ4C5aG5Jem6/bL7+llFBrxepvYB9a8uy9gMImXOhd\nhPdRtSuEbfHy8gIiwuvrK9IurYM2FUdsYX9mvU70maZJp+jcCXHjvX0kEjvc2KGA6jCooKgGbgUM\nZmGMjCD4YX/owb/pqRhbZlmWxpphZplwqWO0DVjnUpG2HVOImJbYQBKbwDfb1MqSG/skhICKAhNI\nznYkZBXjwVcEd3gmWoDqtHVZg74R+Gpr9AH4ZccnjC/Aqtlm93spxN7aXzmsHeGg23nPphu3EWiw\npGsUKJYhHx1QkhiiarLhELwcNztCSVkmrOnvfQwgPyHOGSEVwBVpXWSAKouWmqwcAKv02nmpdAJI\nQEu2RFFb/Xos31pL5fhq/4X8AwB3NhZXjCyPMcG0UfBZ2+NtyI5NHRWwx7WfnZPA2tbJAFVrGYYT\n/TmbmjaCT7bGBg6MEx/vr1XTeKxHBt643T87gN2P3J6J8fqy9qtN04LHesZlugG8CxsEJK2/ylZk\nR6jogvxZByl5B30WZ1yuMrX8crkhRhkyIcOLpgYCbNuGfduaeL2tv2kF2vP3dfv1bD74BkJUjUtG\nWygTz61t18BZuTvnKeJRu1PO57M+exZ/Q8FbselqgdDaiNkD7JpNBNAGHtkfK0xUpbVwZbCTONjs\niBRHq7Q7QZ6TECOCB0pJreCj3y46hVxAVOFDwPV6xT/8wz9gmWd8/913iCHi5eUFb1++yIRgp9qF\nKYlWpguyVkVIAcF5TNNZmDg1S6zo3uthWYHIjvF9gV1i9LEQAAzp25DHtd/RYAYx+hEBl2rrWhiB\nc8sD74+h72/0XTzYWQmB68GOjb7d5HW69bqzWdT92cFnOWhhGf1+0HumAuY+tMtCGW/qS0jQEXAF\ndi2gXS7ChF+1QLNuG7Ztx74XbCkJscP2o0w1ctSIBcwi5dLF461lFwguINf/oefx3yGg1//EeTph\nmSKapEl18C1HzQAFTPOEU16QcmoT1e3aCDDLCFPE+XwCc8Xr66vkDgY2slMQjhpDt/sK6s8WzP8Y\nuGwEByvQlPa6rasjYU2VNvwFLdaze8HrGqWcJH6yYUQswKP3ItSPxkiu7ZY1gM0H8a2Jpb1TvBQj\nEIm4P0sLqmgXA+dw1kEpDtfrVUA8PT+v/qpNpx/uce/9V8bXX2orOt52U+feK3yaLBMBTnWZ1DA7\n5zHPMx4fHzFNE263WwO+SFunSpXpVSLUFnA+P2CaIj5/+SJVNRekrTGP+3XNRthNzMxtTDuzsGPs\n4ZUkwgyyOKSmZQI0YXq6M06ZK+qeUaskUeQ9JhsD7hy2TUaOeufhtH0s54Rtc1hOCwIXAUuIEZ3H\nMi94fMzY9oTL5SbtoHkBWGieIqKpFRa4PjRQ+6/tGIwxx3qcxuRqLWhka9WFhI3OSkM/ufQeyzq2\nZE8QpWa375MYMB+SJHM14/ts/ZiNZtzbf1p1WGsfh+oPdYCtgUgQNhLrxW5gFjFAriUuzKw6JjLZ\nyjPgQoDz2lfu/NAmKV8no5sVSFM9BO+kBdIxwXGFgwCrFaxihNZ22Csicgtay4YevyLzZEmP3lml\nSrWieg8PFVB0gGObFJaB2oUbDbB1nkCzsh2d7xNIIPf9FCNylHsVQ3JuQpGs4JXgR5og1K7J5UBt\nkqJtRNYWY9eeRE+mKhyp02LGgMXaTpgZjj1GBxNcmzeG2Qfg4Yz1dgNw1Uk0up/CaPTwWmWNWCnU\nWRzmMk94eHzC9fIF+77jdtvw+vqKKQY8Pj7i4fyAZVmk3fV6bewXIqE2d0AdB6bJ1+2X3XLOqiVS\nUMnjtq4y9TYX8G1DvG2Ip9DEPoXxBXgflVUsINnegiDfqvQhCFD86dMnfP/991iWE/74xz/hfDr1\nwLjdz2OS3gsB9nuhwXfwxhhbPfl2LWb3voMtBnCJvyRtGZbhDuu6NsBrniZtra9w5JBNA0yBJwPE\nQghtHDcDregy6ec3XT9rsbLW+QZWUFXRdGETtPNrGiEdVJBtBJL6desJjbznvqo/vqcDzdz2SMN7\nwB+DhX27r2YegSA5vvHn8Rukgi/HaGWVXqCxc7fBJVZtX/ekAKpVdu0aOr2ODkQCApGaL4bmv9WA\nKzTwBV4KI1Y+IquYmE4pEbq+j7IEWhW3fwEBYAUTW6ANTXAhAb/zBB8DHsIJKafGUJJrGMGIqFyA\nIi3rp9OMeY6S/KaEUhKYA5ZpQV1mbOtVzkNB4vf3yJENZveLCQlbQa63DPdBCk0/8qP7Bkf/IoXC\nAZQd3uedw/kkAv3XbQVegT0VFJbpmj4IU9h7bs9Tzhn7Rjq7eMKizK7Hx0cQXZFSxvV6w48//ggi\naq3V3377LbZN/E9jeun5j4VYGcDi8HX7dWyFWX3NJtOgSQdMOJ1C34p91H4OPmCaogLFhOBIhgux\ngmdq2xiW0whoIMV5wHAr6Szptq5BNsMk2zo8V+S6/isAQGNXQCeKanHndDrhFCdUP7QFtu7a3sZG\npcBNM/71n/8Fnhz+7m//FtMccZoXPD4+4Xa7YdulaGhF+hhqA5pLESHzlBLiJD7LeYspe8tZL9i7\n1jXRNrbuCEMLoYtjRXYCqB4ngrePjn7okAw26Re0YusAAtz5FQMpWsEctitquYp9cLQvpEAlNWBv\nBL3QgSndmjSK/Z+t7VHzI6ANebM4ok0SJgKcB0Nb2HTab2EIyeS24nq94nK94nqVAV4lFy0LGCNZ\niixEDnChrS0ABdQUamPRmbNYwHnpsiAGnhbC23ZFKl1c/zSd8Idvn5pmqfNSOI9g1ZCsKCUhuAnL\nPHftTL03aylg71RzS/KYh4cH1VXMuu5yfKJtR0o4sUKhdbEcGdNjgQvMqOqU6wjq6TX13rVpokU7\nt0zipnJp8hUybAJNqkmecdEe9kG0vwqLnnQpJs2krDq7vs4mGAsLtFagekJQe8AobUDANE+Y54gY\nTzIcZVsHQE2B9GpDY3KLYUSu4+dvqf9NAF+32yripkUpgkxSKc+MUjK2fQXiBB+d9iMruu68sk9C\nA4wsyGnjcl3ANM14eHzE88sL5mnCw/lPysYgNIE59JvVaLyW1JNNmFONFiGMmGhlbcmHOLL3yL1t\nZtyaYYU4yD0XxD1p4qFBnVZFzcgZgp3zjn3f5GEIXpN9o94vGgzdlAFX9PjEGEkSVOFdgSeH6hi9\nZqRJFfUJWe1hV+dhToT1wVBL2vrABaHGkKABTR8DkKSoCuD0UeJBdGdU0BO+/tq9YxrXFYf17fu1\n5MSMhVgL1pftc+QIjkkp4Q41C7PHNMxIE0qjrI6Bpjl9+7cAhv27jDF3GIow3A8tubV1QrWcRm0R\no1mf4btGj81sQpPiAJ1OPXQsQoYpZdRS4J2w72opre/ce4/ooghba1VLEnp5viadElaZFAQO8hyg\nV1dQIWvopMXHpqoyCUuhFtEzEBF6p5WOYesPoqRwGrPY+TexYj1X1gkR5BSchSQl8zQhxoj1URLz\nbd/FUatwJOsaV7UlRYUkWR3yFAXEyCVJVTLvuN5WhNdXkPd4oBOmKeLpSSrul8utHb+JTFvYEePH\nE5i+bn/97e3tDRIIEuLpAfM04+mZUK87MgVpW3ZemJ5V2sUZhDBNCDHo9Yyo89zaUAC0QMkmPp5P\nJ0zz0oS9WRMWe+b1Bm+fFVPX/Y2JtFvLgL1v1DqqQGOI3m+NiWMtYKUga9U2aBBlNPc4RaRWJVWa\nu+oIRR+Q5gVxnltF+KBZqKCWsa2DMmGNJV1VN1LGYuuxwZ75o43uzCjzGcdEoANf98kFDj5Apg8P\nepVtH/pep+1AH2AEPKz38bgGe6tb1wLrx9h9lx4PPKA6OrLfqqK8EIZXs7NZiwhyoGpKtRjj2/uJ\nR+YBun01YKqKZIEkfTopigil+RVuC6ZSQzDszJLi1jquS1yVBW3Xq6DCQe4/dgQKok0CRKQq55Gz\nDBapQYsTCgASUZuQSKysuSrMXZ5UTzEE7IPW6f21sGdtmqb2b0sircI/JpGmlzcCo5aQds1Se/9w\nrYf455Dc6hqJGPGEh9MJ+56Qy4qUBLy0m8sGSdjzoWpvYke8xzyf8OnTJ4QQGrD19vamY+YLHh8e\n8PjygoeHBxCAkoUBZoxS7xzS1sXxv/qZX9FGoga8pyTAlyHJ1O89ciSFOBa5C6/gznq94vXLF1wu\nF9SSMU0RW7KiPtrzbsCw5SMmF2EHMGYgMrF6bOHqMW1jIw/AV61FY0kFEFiYz36JcM4jF6/7lnyt\n3Xq6vxgCain40x//iJITnp+fMcUJDw+P2NYVKe3IecdWUpu+yOi2PZeCPe0qo2FasixdDWyRpw0b\nQ4+d6Wirj7lD75o4POvv4HC8e83srgz9aAvVvqOBcENR62g7hpzQAPRharHYx+MR9IKZAWukndrW\nztjOQs7Nvp9Es8x8jQCAx4nOIKcdQECqrDIHVXW6RLvr9e2C17c3XK5XbJvcx7kIcSLECSFG7XQq\nWksmGKOiSUcbZKckBVQAXu9VcuCWzzs8P3hwncAswxyezg+NydSQP9KOFiIr3YDAWJYJqewg0inu\nlRWwUWmgJFNK53nCssx4e9tlzb3FYqapagNUOhhcRwmc4RpaUVtyip6fSC433iGWx1TUolhx03vW\nPRRxG6TMtgHRUqkXJ4Uxze8AiCwLOWy7MMVMj88Ko01722IpZYfZlNUYpVNsWRYwGNnaRdlyuqoA\nYb/d5XGx5Pnn234zwBcRsN02zPOM4ANOpzM2drhmRso7whQ1ppMpBQTqgJeCEEb9TqnrDPkQcDqf\ncDqdMU2zPKzeCwBTa4vLSMGb5kwaF5TbzXu0eVYpZbDjdhOPAdcYaBnK0g2xHaFDygXrtsN5j3ma\nBiHk0oRTJWETraR12xBihPeLjvg9AoGm72LispGgwoRFHVlF1Yo0U4V5PB7GiHO3qi10tUWQ0+pV\nip6U9ADU1sD2Z0kJ2vnz4dmhBnb0akgLQIdvPwShw2fHBKRVsgiHayI5J/XrwAxGkYTCjRdX3lMU\n7a6alIxpRzvndijc/qbh58N7B8dj94cBdg2Eg3XqG8B4dOLq4troYDA3LR2pIkhbLgOqWUUokOpj\nKQVpT4gBCL4eknGbNmU933valXYrlX1LlIsGatbqI333aELvMq7dqa9TzoFNUKwmkO9AQaottZ28\nrZlTxh0fAjHG8D4DCrT6xpVEgJkZnlwTbzwvC67T7SAGLMkgYL2TkpgkMFdw8HAKGE9qM2otwBWo\nVcZ82xj5p6dHnM9nzPMCwCEnqSCFEOF9UA2HcPYAACAASURBVGCu6FSbrwnJr2F7ff0CECGEGdP5\nAQ8Pj8BUUf0Nb7s846a3tG0yTc8HYRabvfDOY54nxBga62RkQgEGWKkGXrYqpFoQ14eLSAgkRuQd\nuMudgQJoaxeoF1kw2rX3YD/QmTFmM611KpcCr9T7KUagGKBMLdEpuSDtO7Z1BTkHP00H4M0mEVfd\n57queDw/DIMyxsC/M76EDXoENZp/oHu7PoIXg3nWzYpS95/pGMWQMNgfHP3C/bpZUHm/3T/Dh4IF\ncGfPLYB2GLVbAKBSr8oXrsiVseeEWk0DROy4BNVONVfEL8jeqLFXPekwDvMTxuhiYYY5/b03R8W6\nZlXAGfZkIY6ZVFjMTgRpf9IYBPp9xAzHFcTS9s7EQlCzadV1mJA9AInkXAvgwZL0xRgF9KoyGMLa\nHkuS6aCNwWjrpe1Z9ryN96O1Pr67r5xqmWKIHaolzyZI/N5GN480PJO1VrmclSGTkCVem+cZ655Q\nNxEPtulnxqqUtjDR4cw5Y4NOh1zmJmRfSsHlckFK4mcEhAQeHh5wOp3w8vIJ18sFt9ttYGwfJTCO\nifTX7ZfcnBavq05JM4CCIcln0KIJkdkxNNuYksiueOdwPp/w8HBG/vIG9npXqlTDCM5IPjHYXLSA\nUmM0iV0tv5EBSV0TT0ulsrMWJ5vfYDjXhdkPMb8ZDurC744ItRQBsfcdn//8GbVUfHp5EdbN+QG3\n9Yp1u6Hkqu1llg/IcVYW0FAIDdLqRpDplIccquk6UXto7bDa+2pnRIEtgje8o0ETzb8QNZRlsAvq\nax3BsRVlh8LKADN2wGq0Rf2r7gGw+80KZcMrtmMYume1fFYgzPbXi/oMI5qJjdTWWyaVPpEJfXvK\n2HNGyjJYYN12XG4rbqtMrr/dVuw561pLXhL8ICrvPEAFZeicsT+Vq3YF2WtaCFHZG3bq61gKQFSF\n4eidDACxIrploJVVLJ56K7qQUoBpiTizFCH2PTV2rLUJWz4pRYN4vE72tOixWmxjeagJ3lvO6geX\nbs9ONdkaDHmafj9bzAG09wYdEEcGuMm71Gc5jQW0S8j8WLX4RZ83Zejve1K9QMmpRFZoaFO0YXwk\nE+hLrVjXrYF7Et8C6wZpcUbVc7TYrUt5MKMd48+5/SaAr5RkgsHOO2KccDrPQJywk8N+21AhUxJy\nkXHrORU453GaT5jiLIAVea3Cx96H6xziNGFZTvBBLrhT/QkCusCsJiLk5TPSq87NmTQHUE0DrBui\nceqPbSOybn30sJtF+xbNCJbKYBU3jTkKMKeBHTM3LQz7r3LFvm/Y84SJJxCp2OsQFDoXQKTTNbIC\nAt4B7JFLUiOgkyBgLYmMcboTgD6Ktp9ZcwrOoSX15ifM+EuwK5NpumOQjQewSJdF3+O0q2Ng7TUE\nvTamxFjBGSv65pABDNeCD8fmBotlhq6yu8u3WM+BGxW7KkBqLbQtMFBvJg4Q6K2e6K0mLbAQoNVA\nvO6kBpjMEpCWvL1P6mR/WutQ0SvH3YhXCIuwAoDz8MEjEqtxFBo5ISP7DBKhLhDQQK9SizJZajN6\ndszBe3lNq0LkCdA2z6Jjqg2IJq9tN0wo4wJLztCSGoL10KvehD5aBqi1GIRZk7zangVjfXFRJoUm\nfdB9T3HCPEVcvUMpCbX0IEmJEahg1UES2nBxHntKWHjBNM+w/v51vaKUitv11ibFztOM8+Mjnp8J\nb69vSCk3x0lE2LeCdd2aQ/y6/dKbsA1jnHBaTphPC4oviHuGFxckhYXbrbXOG6AlbIuEUsX3AL2l\nPSg4Zsn4vu8N/JTbchRZ7W1XHzGDR8bXCMrY6x/FG/fgzciEtYR4ZI6VIpR3BwEzmp5QEmZKLaVN\naNz3HT7GA/AFoAWH1j6/bRseTmexseUIfBkRyb6fWXQux/PvAIQdtziKMUkwUz8CTlYc+YgdBLO7\nw+eJOuPrHrwiENjVg9m9B1LG/fMH3/vuffe/s89WnfBYKnIqGlAbO1T1Cps/lITFkCnzK9a+cmAo\nabwhHlVaJawxgRWwkh2TXBQJhGBJcksbda1KlSKZvCTWN3MF1wxXHWLJ8FXa+5xzcCp2DxW+TspQ\nIhJfQSTTCgFpz6veo2QBe4iEEZZRkLbc7je7TlZsMcbT+ByZP2n6ksM1cn6Y1lhrGzbQimTovrWx\nJIfpvCOTjL1qZ+Yk8WWMOJ8WGVa0JZDGsq4lbfbsWlxRteJOyj54wDzPB40zZsb1Klqt3nv88MMP\neHh8aKBIsxFAY2eOIOHX7ZffDvFdx1EAEmbXNMXGbOWhFc45YJlnfPPpE0KQ4Sn/55//FW+Xa2Od\n2GRsic0ADP9nVmKH6oARCMROE2ZhfRloWvmoSTgGwvZM2CYahCrfAgzPCol91/zGkSTdt+sF7uEB\nHgE5JdyuN43HZngfME8zlnlBSQXblvpAILU9zBUpM3za4QNhcrE5SXnGBxYrNLZ2XVam5XdD8Yh0\ncJJTeRcrpgobrwOJlo8c/YMBExiS/q7dZrmPHc9H4FZVO0uEw3fdF2AsvgdbeiCfM01ms89sUIoe\nuvk3m+ElxAa97iTTGJMWvlIWXa7rbZOpjLlgzzLB/lV1vAQ4gYIsrt3CIn7vFUhxomv7bsquA6hL\n5dgEQXIOxN6cMhjGPu55kt1bBvgQIP7EcmnVYyaVDZDLyTifltZaSNR1tQgCjhEBMlDMtKq6prct\nondOipohgAlauCztObH8eMjaOsDFXQuymCyN6ueJH/I6zdd8Dek1bohoA8y8lwxS/Ij8iUE01yhn\nFGZ95kQKSYYGZHgnA8usU6myEnlY7nsfAmoWYPByOYKBQH9eHLo22yj/VPHX8TO/CeArhiiIJzOW\n5YT5dAKViikXhJTBqNjzhuvtgnXbwAzMmrwYLZxZNFecamGwXiABw6bW+hgBFaqeQKo7JA+bJiTB\nC5W/ZiEoKVhRucjEuioGU4wVtRulB+ZHMTygB96WdLP+myuh1OP7jOFleizJyRQf66tlAEmnxOSc\nUUNAYQCoTWQ5aKVlTwnbvmM5RcTg2w1bSkH12rJA4srI91G3gKHDqklh5+IM6WVIG4cBE9RQc8C0\ntMSWWBWyMrrWSPuOIUA4vD5WpkYHcqyo2+sjGGaOpe9O30sKpuCYlJkTNM0DO/aiE/uK6lj1Y5V2\n1pZEKahGLBMaAWVaKLJSmYFSJfkI/bttgqQZflkjMVCVnOiTglA5q6GlDjS2MdQMrgJ0EQtDykF+\nTrViYkYg1wW2ScC/3v/u2xoG1ZXYU9ZKwCQJbdrBJSG4KOOsHVCSTLeMftK1ElDAB4daNYDTa4gq\nVTpjH1T09icZqCLnW6swOZkZxTGCl5HbxhKQFiy9NgpegwbGhSa0XKpoFgGYYsD5dBJRYGZc0g3V\nWBTkAIc2caUUqbAWl7HtwLpFnE4Lpmluvfm1Cphcb6uum4ePEZ9ePgFM+Pz5M7ZtR63CpNm2DZfL\na9NA+rr9stsf/v6/CSA6n7E8PCEjoG5XGa2uSbcLAXvacb3dsKeE80lYXOt6E4HplDDFgLQnGUKS\nS0uAWxuX7ut8PuN0Og/gjIPzwt2hQVPFAjwzBD2wOjJR7oEw+bv/PCb89qlWBaRuQ0ut4JRADKmw\nhgBiIHNqQP/kxf9knUhnILj4N9aBAEGfjTKI3GurA7OyHVgLDOi+pEfw6NVDTS7IfDFg4q7Ujh3o\nUJIa+Xe4E7f39FQGg73urC9AA3GtODAzfCsEHX2L/WzrmxS8uQcdj9fG9Eas8jv8x71oVvIA8mCQ\nWrjbdWXT5qldhN/WWoPzUsfpfgZgdSbbCPI5IlSnawlSsWPzoZa4OwnMibU9EwBr8TBpS0jwOJ8f\nkHPCPM0y3TFJmziwgis3oCr6oAVEHZYQA7ZbxfW6wzmH0+mEyIR17zZTimClDZIIQZj9Zlfvn5FR\nqsGxx+xjL5S0tR3ZLhZzDNpgQyxUS0FVVhmRxVHynZM+57nI0KRaqhSeGKqrgsN5yPPH2PeMdd0w\n3XwD12UNxd9fLm9YbyuKgu+Pj4+tvTilhJRTT+CZsW3rO5D16/bLbZtq3YnWodoSHaISJmkxL7no\nEC0AqKDKMt3++Rm///3vsZwW5JJx/l+L6AJxbZpYIJla70MAYFIjA1BrPkft5KiBRdDYjD16EVW0\nisw+BAU2TEgfIKRcBOTyfSKc+AtllzoV2FYGsCPC+fwIChG1FFwvN9QsuVQIAaflhJwKchJt2pxz\nu8eBipwZmwKF1pUA9NxENA57rsV10OxigIuAFgZaB+qSOETCsjSmDnkrGA22T59xG9bBQGPJAHf+\nGFZ0eL+fBrC39X3PMD34GYUdYLkFGQAGdLAFOixlLNxozmH+RdeqOlmnPSXc1g23fce6yb8vV2F2\n7aUgV5mwuKWMWuXeIi1Am4303sOHAOeDAqly71m+g/GcwT32VbfPLCSV5v+hDCbXBy4UiO0sOYOD\nsqCtYg4Dn6regzJ3+Hq94Hx+QPCE4gnVO5BqOBMJc4prwbYKkz0GD1dFF9PWE1oYDSFKZwdq86fe\niv4DGcN8TWHJDbgVjuyOQGPSA6aTjaGo2f/Ys1l0wuUUdQKw5pjeO4QYEOOEdduwbptoMoeAGLze\nowUVBCav9zbBuYrKzrJ16YgDI+0r8i1r67zDN998GgaqJJRq9qQA8NppoHJGfLx3f47tNwF8PT0+\nIYSAp8dHTPOMvRRctmvTLpifHrEVVnH3FTllodFuGz7/+c/aklYO4+WBzh6y4EB0WBYVKtax6mwt\nATzI2vZ2CdOqcpAEn8ZKgwZN3QBSN7p3AdhoDL3po9QCZtVZ8iKcv62bUAuZ2+h5Q/3lWRnaHX2A\nJ4KfF0HlvUecegK27zu2bcW+C/BFeqxmGA1QMcc2Vt+FKeAaKHCsbnem12iQR7bLe+NuQNUdG2vY\n7Ofx++xcjA59v42ORf7I8QHjNah99DoZk8youb6bqiEwLuo0bZ+29oyeWIiOirzeWpS0qmGChlWD\nYNJzJy8aQjIxbgjYNSAu47UYz02TMwMvvfeoJG2MtUoV3ut35VLgUsIWPVxxAiI5uT8CswgL5yzX\nQs9L1jooyyUAWrVAEqApODH+FQRXGQ4V0xTBAPYkgEBgSWDlfpZpqUZXJh2/a8Y0maB2mJTR4MGO\ntbVUuuaDt/uoP4vOdVaDVfDlR9/vBQWzovc4LwtyEXBiT1nYYQ5gpfVbAlXVhlgiuW2bTOYLAfO8\nyBTJIgBYSTteX9+0vRGIQXQDShHh1lpl7LOJclL9yvj6NWyfN2CeI04PL/jj6wW3UvDlsuL1tqK4\ngB9++IRcCeQqak36fBek7YbP2w1VExUXImqq8BQhouNAyRVpz8ipYJoWLMsJRIRtE5BUfJkEECJO\nqlOO8tZAM0CqbjkXJeTItNiUdtSacZoWwAV9HqRtCnnUNCKgMnItCEzKvgSCBxCA6AN8mAAGkuoF\nMTOWaUIIHjQFEBfUfcdaEtJW4LNHQga7gpeXZxA8nGOcz3J+nyvj9fWCXAjLacWnuGBaHnC9XvD5\ncsHjI+F0WkBOpkNRISxhhnNe2/RJn2Won7VCiAGBwhgjmBaT6AMazb/UhFITUAegBNoigM40q7UP\nqMlZhMRjjHh+fsbpfIIEzzdcX28fAoxjVf6nwK4RfJQPMUDKpNDqMrHok5AmSrxnxCKtIrkSChNc\nFCC1bCyFhyxTqW6+IJHsyjsAgRCdNEDWpAkeO0xTEN9FAHkpoqQiOkMUJJEROyuJdiAviU/OYGjS\nq5M3iQnM5rPlmtQCcCX1GxXOVVAm5GsG78DkFrgQ8fr2JhNQMcF5YNsKSt1wPs1tYql3wPIQQG7G\n7XpFSp/BNWLWQp1TtmJNVa/xwOwCGvNAPKQINBdmZRs7OHiEMGNPG8Byvn52qEVYinlPCOTgQkCw\n4qf3AvKVgpozas4gYizTGXOMiFFYK2XdsW43kCOcXEGKFQkbCjPWdUd1DiFMeF5m5BixpoQ9FwAO\n7AOuycHdGDEzvBOJi8I79nVFxQTnK7a94F/+9d+w7QnfffctXr55we12FZ1XTzg/vuD0OOE//vSn\nNvXx6/bLb9fbDdu2Ydt30Rr2oUuYsNhoVjHukgtQK5ITRkgpBbfbTf/WIpvCId55maxoIusw0EQB\nagj47Yb4u5gWqlYChPhyZ8NIfuHG+JjLIaayfAKTxOQhRPVhQ76lz1AtRVvmE2oIqE7s7k47yImN\nOZ0W5JSx3jYtNEsiLnrKxtpSDUnTRIKxj6zwcdQukz89TxFJls5YOZ6yvjiAVUAHQT5i8za8Qvff\nCut3vuEjv9GW+W6/x9zq/Wfk39otQqSzR+y7u0A+qyh9URCmsg5QcFI0fr1ccLndsO4Ze8pY94Tb\nuuP1smIvGSAPFwJ8nCCcdmeLA6LOtPVO9HmJVFJSO09Iz8/0L/vQdj3+UUpnOD9Hhsp2JrRjoJBD\nSVmmEhJa0QrEIJJuFhs4d7u+KZvKdCVr65bKlieUrPl8QQgeJVXU4d4tbH6863TJxFEpwokAPgBU\nBVQZpWZphWQjvygIBTT5HMUDW/wiz31BzporObTcSIBCj+KptTnajTdNUYE5AeGu1xXVFQTvkL1T\nrdAECpJLOq6ojlCdA6tWaIgTCJDOuZwQgsfb2wXzHPH09ITz+YRaC663S2vvNDxFcnEnQ8g+iIH+\nkttvAvhyIYB8QIHD5+uKLRV8ue34/LZjY+DT330CbzuYnVAPIVWUPe2olw6SuCkibxsoFyBboClU\nR2lREdSUnEdmlhvdEcLkGypOFhRWaWciZ/LxHUiRFKNfeEtiGsJvN4sdl3xYqhM59xYvEmBgihNm\nBXhKzShJp0ZatSM4UNWpd86Jk9wTrrSKppHziPMM5xgxOixLwLYH7K8r9n3Dtk6Y4yTTuOKE9XpF\n8EXacbxg01RFryN4mWo2VjUO1FMzWmz1dGt1lN97RefNGLaNpWJsVQxHrv2e1GLqN7aq7vl8xrIs\n2Pcdl8vlXWIxVuDlZYHTrS1EDI4YG4BV+HjYGEAtolPCpNooitSTGm4xSQja2llB8BaGkIxghtKw\nGTJ22ck4T9i0T6v2o2H/FSJ8LyPi5TtJDKwafuiYXJnM1lmElVTAsC0CLCsEE1C4gLMAYcU7cIii\nr0I289DBzwtutx0ZGRN51MIoKWMmUgF4wINwihMCgGu9wajywQPZV6mUELUqF1mi4aI6RW03lroP\nctn1uZJ2Qw9bI7luzjHYO3gXAQrdsbgK7yO8FwciLbsEln4q5MIIANzkEEPEFCd458G5CnBXKwIR\nJudwigGlbCLQ6bRViwGOUSnNLEEoQ6ZyuRvqMiF4h2VesO0rmAsqSSvonhhfvrzB+38XkWJPmCcv\nbaBEOC1nTIH+KlNQvm7/7+2H3/0NnPfw04RSpTX1tq64Xm8IpzOenp7g44zz+YQYA5Y5IMYAae9l\nHTbiRf+Kkk4HEl0iE7Z3zok21ra1ir8lEt6ZPZI03X5nbYO9TUvuxZFRboHsfZB8v5ld4AoRA7aW\nQRiNvovm9+DctaKFadhxkeqqVQBzTsgpt2OyFkprHx+n6lmrgOBwGgTaBDM+sp7I9TaRXiHXKm87\n38HMKYjeilowNcTeymkFHqIxAZHjNhavFVViFCZrylnPMx99eQMV0Y5x3O6D+MO1GI6fhyRFm8At\ndWkXTofNyvq2VYHVpbRdhJooPXO/3qNvziqdwCaSSMYoRGNElIqWmVjx7pC08cfn24+Q2h8rNk1x\nQi0soGqp+jsBcnMq7VhSFikJ7xycFyCQpwmsOiWooiFjOqyW4He9FzSQzkSv7bgbc1tjGiuKch0E\n7g/321AgsxYUIsA7e2LApTbNu5yntj+r2hOkDeW0LNjPJyT1IaV2/NY7D5uSV5nBKcO5HY4q5rli\nmSYR94/CMHXeg1hsRggO+763ycImOGzPwDTNeHx6akMFvm6//HZbb9j2HbdtBTNaO6sNZcg5i0af\ntQuyaFqtq0zw/PHHHxFjxNvl0p5zGSxCqEzgXBr45UL3HS1RVW2/YzfE8XkezVZnInXR/DFYLgzU\nVHC9yvQ3m0BPtMC53Oxm1YFO1l6/70liLedBUVunILF0jBHzsmCeV9xue+uyYI5CDiDAQC1jXd1L\nyui/DrbrPkcg8g1w+jiHsEJztwndzul7tAPD7IW1Tdp3M6DalfpZwmjBARw1j+0QPnIdNJxT7y7q\nRIHeFjiAY0DzqTZJ0tpXiYGUZZrfum7YckGurFpfAoyWCrighVon09YF8BAQMlgBG91eeqfDcMCK\nfhWA3eE8xqUk7kx2AK1rQzyiALes+brsUm2/Uxkca590mgtDtbX0XHPOmCbXYxNnbOiMUhhEE2Jc\nQDS14rTJz0i3mFj8UgooJc2DJafJacxVh+KX+WwiBd3u/CWZr3GwCZJ6E/X4R8kg1XLPKjrc7KXD\nhUB6bzFi8AAHrEEAtLxvco2cDOvKRUA/W8tSKoqvYMiAOyLSjreIlDaUWnG9XjFNwiY7nWZM06y6\nx5tONi8a5wIxTijU21p/ru03AXy9fPoWAMDksO8XbKVi3QvWVMA+4ttvf8BpTzif/wlxmjBNpSUk\nOcvD4b0DqgNnZXVU0YWaYpS+8jZ6PmNPCXvKIi5bslI3VfSvSqAv7J2gk6oIYKHvV1baMPDO2FK7\nyalRcHuYJQ9yw+fJWi5cEwGvKjIsHcziRLzz8BQET88F1ITCxXlu+441BmESAXCeMC8Tln3G5XJB\nyVmnDhUsRPBxwpUvqt2h7X/msCqhuiqTDa03uNYWYN23FECBIQmotRrhnArwGlJsJnk8748ccTfa\nwsyTRNIcqGkAoIFZo0PvaYS+CKnYoL3eGNv6uoOwpcRJdFCKdDeVqbWWAE3/v02A0tqTnpQHOaGq\na7+I/NEMRdaqO3DJRa1dkhVw1bVjdVhMQAMb0diJbNmRJT8KQIFIj1WBNBN8LwUOE2KYEMKOVKTH\nPPMmyW2V4+ZS4KrHHANIGgIRgkf0XoA0pa0RBHyq6uxYnaNzXoG+IRhQsJOo6mCFoj3/wiartTax\nUnPsznRuWNayORhl5jnHoKDOvxTUwsgoTUTcWnjEWGcQCMs0CVi87MilYs1ZetVZAsTovTAKS9bW\nY0JOBTesqLXgtEwIwSmjVBgVwnyRPvzb9YbgPWL0mtzKPbxMEcHhZ3cSX7f/2vbdd9+JiPRNKpx7\nSjqi+4bn0xnn8xlxPinV3WNe5iZYf2gh0wC56HWdpglPT094eXlBjBHbvsFdLk17R5LdKpOWWlVx\nbL06JgvA0ad0W9cFVqUiSYfk5Lh1P2Em1uyoGwI3Y+ia7YlRhF9rLk3jMGdpZdz2DTFACyGqH9YA\nZG7t90RLGzxj5+EUVLd2tfG43X2wCCtkdP8w+lFbn9psj2i+HMCv0RcPyYMBftM0Nf9SSsW2JWyq\nazJ+h+3D9nnvt45MgSMo2di+wzUfz89yS1a/xHfrwO2P+libzNVKRHw4HvvTQU06XKt2fNRTsv8M\ntBvX8H0yOQKCsq7zPAMAyvXW4gZb85xLa7Pf94R5CggxCLOjCrMfvIjN9gGOI/ZN2iXtu513zbdn\nLSDas9PWt62zaVRm7PveEl85N1mfPsnOnlH5vRUmxU0zilb4UzKwW1p/nTIPvbZ+nU4npJSxrrv4\noz1LWzERnAuYQhBNtyoaYERo7V1FdSMdUWv3CiRJpw9yDW+3FdsKBcgCapVnjgCcTicwLx9ey6/b\nX38zRq1cV4+HsxRWnHONzeUnYa245JFzwp5FmmTT+14m8IZWzIOXRLkURmqDUfozbs99raVNQnQk\nk3d73qIFWSfPVOtKgbaio3dzAN1Msw50uNwyas3g8wnLvCDECKgvLKo/Z4UJ6ZxI2He5p2fMMN0n\nxwI2zPOC0+mEPQk4nlLGNFV4JzkZVwG4i4LYDh4m7g0Drqv4L1amTTGbALRkvwEWMDmZ3ioux4sG\nMh0L6gq2GWjDfVVoKN6bP6bxO+Vd7Z4YQbuPgK//jEXTjmsAvfrf3ZdU7vnBmCdYF4tJrICE2Ure\nS56h14N0Inkv1Q9nYPmrBOJAlXKaIwZZLuBY2YSkb6N2bDoHBY0YUTsZQoa6aBFD9X5NnihozmBk\nDEdmk1UTsQ4xicZRYrvNbudWhLTiXk4JwXkkytAan7Y32qkKIcI5p2Bg1+wmLfbY+YH9cO+Yppau\nHvdrNuYBpPdDb80dYkKoj6oVNpHREZqcTYwByzRhCh57FkJPVA1vRlFdN7tPOxvSuoHmGDAvM1La\nUYrEPeHtinme1bdEPDw+wm8Bt9va2pBzzgjeDfHFz7f9JoCvb7/9FrlUvF2vKJWxbjuu64ptTzg9\nnfDw+AS/J8Q4IYSAaZ4Qo1dAQHpbfWupkpsGzIjThPP5jOenZ8zzjH3fcb1eRZulDOOvXRdFbJMP\nG4vLaR8+gVknRai2giG37zfzGt0Ysv5sxlkV+URbpRQFFXrl2irbgrg7DXq9JiPq4IpU2TcVUxZh\nWdH4ErHloDdsahVSE/+vCjwwfMOM7OEs1B9s2+5v9BY6M5pgvYGN5Mak4/jZO4jqkCjYq8agICKs\n69rax+5Br482SyLu93n4mS1+7hUGtqOz1/VKWFVXzFgHMg28G+m7YzXZvIZ+/AD4sb6/iRO3xEYM\nKVUDy46uh/X+qa6niuLgqTk9hx54gMWAA1Jdm+YZW8rIWhEs6lhyLXCFkGvF7AgOXieKiO5XXmaQ\nBfHQNksU7cnnVu2QpEvvcerVw7YmbWkYptliiauGcO0a0XiTDOfqPTWtmcrCTMm5asC4I5eMhWbZ\nZyHE4DH7GY6cjBavFXUFtpQaq9N7D6/C/7VUDQ7lAGTCpTLZQkAoUdtnJpke6QBSjQFJgPR5hThD\nY/N83X75bZ4XrPuO6/VHrNuGbduxbjtKZSyLBOBbluEhzIx5EpasBVhUGRQjQqP8y7VdlgXPz8/C\n+guhTTm01qMj0CXHMgIPLbF3bkheJXMJJgAAIABJREFUxD4Ha/nS53kENKgh9X1rtnF4eSzQSBW4\nv9cq3fZzCxqdx75b9VGAr3VdQcugGaj6YKazacCX+ZkQwgHAszYYrp0ZQID4U3SARTD240S/cTuK\n6Nq59ZOmw/kBZkjscyEEaWNW9kVKCdu6Ie0ZwR9DrnfFng/+/VO/ayCn/vAO+ML9fTHsY/hb99Zb\n/Kj0/XFP1kyeoOnYNLDLHa/1Yd3exy/jPfmRv71nwzHLEITTsijgtTbgy/ZnjA1AxqkL8BUhgyUZ\nHgFuBm43aVchBBVytzgMMp2RjgmCrfN7Pw8wqgT7ObfnCEArMFKLVRQ0qF0Lj0j50d6Bq6RrMgBC\nhIErs94/NllSPrMsO9KeRfMGEhPBO/jgsLgZFYRUCsgFxBDahDDxh4Zlczs25zt7YdtWcBWJAe+l\n+6HkDB88pjbU6ev269mUYRECZvUvAPqUaSKAhL1figl3CyPjdHrA8/Mj9j01LWMGg4vsV1r4cAzS\nAUggiSbt4cghZ1abq/MsDs+068UW/XNfnB72jD0lEIn+UwhRp8t7Yc1aPkUVpsNlvjOlpMCVivNX\nKazO04SHhwdcb5sU6HNqms3SFirvL6WiUIUPRRhABkyTFQTYBtQCQJsW3s7H2fst5tdBR6ab6wC0\ndjUBMExaxeLTow037M0dAQ13xxCGAWQf5zryksX37xlp9rmRndqL9eYZRA7AgL7OjHXt/qrcARDx\nxV7BLwXwwZ1R3KZsyhpVBqhY3HAkFKiVk9zI2FewayLc5goFw8xHM3e2MbN0MVn0T0YI0eMoFdVV\nQFvaJacIAEnuUasQXToxQ/YTvAc0dhOfbjFA0bZjsZk5FyCJ3FAMworKpQy+RY7btZyqt3TKozbE\nBxUy1Mt5mzAB+48rozpdp8FX6ZXv+XiVc2VdH0fC5vLkdFgNYYoBfD5hu63A7SZAZcu1gQwF5Koe\nnYJoFTIBMsaAOM2Yl4zLRdhwt3XFl9c3eO/x+PSIeV40zvNY160Bp+D8Ffj6S23zMgM6glSovhd8\n+fKGvTIeo+gIbfuO27qi1IIQTONBNIG41iZib5pQQgGf8PT4hG+++Qbn8xnbtgMgZBUktuqoIOBD\ncIi7hESR6DoapYb2HwNe0t81WivQwa8PbpZ+E9nkCUYfk9vbCCRBB5g9nCsoVSryKQH77hF8QJgi\nghpIGxduVf607/rQzzLZQRMrMDegys6hlgq4LlB+Hwh7ZcE15y0flPY03U838gPUZY7IdQ2stuYG\nEpKwvUygX0Z8JzF6/mhoMHyXJRkNaRo2p9fgnmnRj/P4O5vodAA1df+SOwyfUQfUgNMKneTRK+ZN\nNFfZFc4ri4sZrlZQKU3v2dgXUq3gd+d7zxzQU7ObSYICJ5VoBpCLVD3CJBN1rl7GE8tUE7k3avFg\nr6BaqaAYmiNhQIRYK4OznLvzcu5rTtKSRQAFYXcU1aeDd+oWRc/MKia9omH97BIYeqdDBpQlyMxK\n1UdzCKSTTuAI1PpmRSw1ZcK2bwI2PD404JQctdHh0/WKeZqwl4JUEvZdhkH4MKm6EkDZBkRExBhg\nbWm5smg0hdh63ImovWe9XTXBEk01MCPtSUUhv26/hi0VYZu8XS7Ytg37LmO6T+czvv3+B5zPZ/zb\nP/1vfP7yBaUUnM8nTNMkg0K2HY6AmcU2LcuMaYpYN7Gzp9MJz8/PDeAxrckWtN4di/mokeFl27Hw\n0plgZieb7QK9A77G/d9vDfhynbkqBQux3fYZ70VbzATtc0kN+PIuwis4JMNjBES63W6NEcO1IkxB\nGZKpCdyaBucxObgvHEDP8QjY3W/WrigAzpFRaYnMYRqRnp/3Ioy+LGIf7LzWdQUzt6Ey937CjuOj\n18ffH//uqYm93vd9tz+rlADN7vLdvsY148Gf2mesxSOEIKCjo4O+4BEEs3V5z5L7aBuP/aPfreuK\nZZ6VQaj6W3ftV/ZZux+MccVV2AfCcJbWDdhzowNIRkFdO1e7h4VV0LUk25Qs3UT/tYNwpt/Z2I4W\nAwz7J1hBx4GC6cagAbwCSgd41RiyB1zAXhEd9kEEyA38sGIT9paWarzKvSWTGdD4r3qHUgi1Wss1\nt++x4qfEep159nX7dWzWCkvoeUVP3EcghDWWl3t0XhY8PT3h06cXPD8/i+SCCtgPZVKAtPWLx2FS\nBawFBeetiEEgyso4BmrVAoSB6Ex3x4MGfugP7W8DeSskrtxTRgiil2QFEPF7msvoZ2st2LMwhp3F\n8F7AKxekcBRDBEDKMM5q30Wmo1q7FRGKgglMMsURbGDTsT1eCiijHSCjG41lbrUfCjjr27sdQfO7\nTmNNEbm3KX+Axapj8Up+x+1re4GAMfoIs6kGJP1UkaWDTf37oFMN2xWi2vYhutYqmM4OWYtXpXUc\ndfaY3QdO86/+3fVwrJUroJPaCbJmo/xN68wZ9LEMmTTvNhYrWu7crpUOB7PjUB9YKkt3iObozjt4\nV+GVgVuSaAILY1h0GQtw8IXiTxkp7dj3HTGy4gUBMQX5St/zMzle8T2lZJl+Smis+FbA0/uhVs17\nSEAv77oP7JGfif/brXi8J2rpgvkGDNq/RcVTYrZJSS3BB+R9F1C5qES/d+14grO+HW46eV7ZWnOK\nmOcJp9MJOSX5kwsul2tjAZIjzNOE5/CMGDedTm/dCcKQ/Dm33wTwtaaE27bixy9fkEqRh9M5nJYF\n3333OyzLCf/673/C9XpDLUWS0iBCkCklrYJNDeyxG36aJpzOZzw+PWNZzq2SMGqEGIBjD6c9MAZ+\nNGAM+CDp6BOg+k1BzdgdH/RuABuocAh+nQZ7GjArAmyUYdu/cw5TjEgM5JRRcpYWzLm2JMa+NcbY\nErCUsupsSBCWta2DMSRB7Ti7U7DjtsD1vqpowZdtY7Jnvx83s4deUDxhEbFQ/6VdTB7srCPOt3UT\n8EKTLdvfsep/xKj0yIBuy9t5jWPK4QwRl2OqXIff38Nn5mDQd6rvsy+/r0Qbu2KsxHfHpK1S5oD0\nG4j6upueHJjbpGnXTnbo86cGLeqh6JpoIJFyRpgmodU71yokjTnItVUctm1DVCYHANHDImpgDsOB\nnWjiVO7PE5EIC9tCG9jXmQbUjmu8V5zrVHuCTO+qtQh9Ohjrsa+lxIqsQZhqoWjgIkMfVuwp4XQ+\ng5wlvECMIgoZgpepfCUKsEgqpOqijgbuE1MFMCOkJHpjOcmxlJyRWDSPljIjTqG1EtQKFKpALlg3\nmR7zn+STX7e/4rbvEvis+46UK/YsOg6fvv0Wf//3/w3n8yP+40//gbfLFd4HPOrQlXVdsadNhH9L\nlmCkJQ7dLlvrXJjmBsw4cq11yeyKJCa+MaLMV9iQBQCHIov5JCuejLbP7MC4SXHCAvBuj9uxkmvg\nUxvqgA5OkxPmoiTcCn5lmWIZg7R/2rMdgkyk2zYJjCxpmSgq+y216VnSpkKIYepJB3UmmG0dAurn\nY37jyFYwf/CBpWZrT7R1QCuGLcuCEDzWdcX1esXtJoL2fTBL/97+HT/92vjzx5VQariN+UtmNA2T\nEQirpFV0M+iwhOEIwN37nqMP0WOsnTl4H5vI9e++8H5dx3O1bWRxjesg7YulfYe1WbV7Wf/OOSMU\n19omSha2AcE15lMIAan0oprFMNZeyDq0IUZpyenPoQJpXtjsI+B8D76ZrwNkSADpoARLQNt6D895\nB74qbjcBSp+enjDNM5hLY1QEZQEvy6yJ2o7Kon2qJTh55qr4XFBpx9lvfP0uACCRJhAWfMQUZVx9\nKRW1EqYpIPhJWsPoZ85Gvm7/5e12ucl9vmfEOMNRgAlvGwt8miadQK0FxjDh4fyA0+mMECdAWUd5\nV91fiIaQaK16BVL75LoOs3fQRf62eFLa0phqe22M8RsjsvmXO11f6MAVOBnSsG4AER7Pp4NOpTyv\nvd2QGeB9w+12QQhOW6qOz1xowBkk1lLNMK9C3mwT1r20+JLjwccao/5jxtQxZwPeM7A6WN6lXehg\nE2V5CcY0Ao45h7XhjZ8xe1O4HArY98WTvvZH32PAaMcjSb8LALwUyAGgVGH9cGdtabSNquSQpLmi\n6A07O5BDvmFgFBFE7oZ65wWRdoCYob7LZc1OCvOsFxFEj0yOo7J9B97dVxXcWGDGSoTTHqgqA0vY\nEZwWmnMt2PeEPSWUZNOfHSrJmltnUwjC7io6GKVUGaoSdf1iDE3rzLR4GSIZBIICxr2Fkkn1yPQc\nC7qEhAzekfvLq24fKygtMZkHKevLNca1MiBhpBm9d1hICEX12NhXgE+IITR27zIvCOENe07CNoMU\nQYizDofo+6hFpgN77XyZ5gnzcpJ188DtehXfdr3CESGnhE8vz3j+9AnzcsLr6xtuVxm0Mc/Lz84u\n/k0AX7lU7HvG5XLFXgTldT7g4ekJP/zud1hOD3h9u2LdNkyztJUE7/H6+tpaMapOSQE6Eg3ITWjB\nedVxwSAaRmG7nmQMD7AFU1ahds6MODeLZ4ZdDO79WdlDPQTNGI0MHX4nhlDYMQC1YNV+Z0Y0BtGK\ncBBWUNEgUiY0aLujBp+WcI1T65gFJCw6jv0+wcDw6kfBMADDw8cPimGEP3xmdEAmTNhMrK55GzXs\njbEXVHNlQ9qTrGvtzvh+v8MhNEPaRYQxBJP9nMYq+ngs/Q8URDQEXp0mzBl+lNz01QHouEbNuej+\nlUbMA+uuzbOFjplXRway1lipthhI2RyLHZ8Jz1E/Cvu9VZK9EwF4qWCpCLTeQ8URavBY94Q5RPC8\nSJtjTojTLOfEW9NZ854QvcPOokYHrYgRlOHm1UkOoFe/Vv3ftVVGO55Ya+2jtwfHzJUBV9uF88Ej\n+gBwBWn7yrptuFwveHw8y+SWImsgWn8Rt31rFHuwTjwCtLXToXqHnEmEL9dVJ6vIcVTv4ZTZJi2W\nBSknLMsE7wEfowYGOrFPdVvoa0Lyq9hu64rruuJ6kwrW5XpDZkKcZjw8PqCC8eOXV3jv8d333+N3\nP/wOzIzX19emXWgaDqaX0do4dKrwsiyI84Jt29p9G6dJKtfG4iQBsli1fQyAktZf2UY7+Q7o0UBK\nEJSjH7FCwNHO9X2Irh5aAFuKTABzvk+3tVYDqRCqgH1BA4T7efS2wREE3FPCXKem8VVKQdGJmARS\nAF0DRu7M4naOVSj+MulSE4N2bvc+iQ52fFioztyFxQGh+cScC7ZtV9mD0sDFlLpA+JgU9rV9r9fx\nU5tzZvdEPJgdCRtWr1jhgUXODAZ9uB/GcSDBh+8crnVSrR121Hz+eE6SqBCc675Bjtcd1vBQkR5i\nkffMhdqqytZCuswzLpqs2h/dKYCKdU2Y/AosE2IQwIq4Yp4W1L2iZBxaxMWe1uOx6hp3sK0XXNp1\nU5TRElpj3gCWsACeZPIlM9BG39n3WMKiIGHdM263FZfLFU9PK8L5oTEBQgg4nU54enrCtu6SwJeK\nXf0EIAWdGD1cEf/++voqCZr3iCGq7pmcN5eMmiuKMsBEHH0GV9GmtYngu8tK9v5aYfm1bALsCnv8\n8eFBpscuJ6SUEHyU2EVzEZFzdZjmGfOygIlkSva+CyAWo8SHVQsnAGw4j2uDkwQUFrFvSfBzzloo\nNdF1LagzwfHHsX0r0NgzZAWX0sX05blROZkYZYoqSYvmpL6mPe/6naUWrPuGpZwwQbQAq3YYZJ0w\nbnqLuRbs6mfEZntkA60rw5Mch60ds+ouVW6MN3ImUTO8j7o9Nh85+ks51g66iSj+4APegWqdQWsD\ntYz9ZJ/JCjYJGNVBojG/+6miA7ciNh9y2g5wig1x3kkMzrYeZq9dAz5ksJTkJJKLKSNJ7aHxCSVV\nYkALMMbcI9aW3KzgGMpQtFHbaMwu3YWo3QIm66MaLuNJglSAHlU+DyMsgGWyJDkUQCcuEsgFuMAI\nHIF1FR8PGUpVXYWP0nYbnENUMkzWwXbTFFGKdIqt6yoDvyzOSTIwrgIS4+t91bQXvXYpOa9MS2os\n8nENj/eHrKgMIxFRfudIiy2mSSZ8LseMjM76FYyQtYuH2v1XckYtBQRgniJO8yQF/3VDLgWFgeCi\n2IE7ANaGEaUkut8hRiznk+aijJQ2VIa0NjKLpMe84PzwgOenFzjyuFyuWNftnd34S2+/CeDretOE\nZN2w54q364pURYh9PsmUnB///BkpFzw9PuGHH35AyRmXy0XQab2JgGN1z5Jaqa7M2v6lgEutCDFq\nW5kGk2RBlFQVGmCUCxCkEo6hNXFkskggz40CKu1YxzaCY+Au+7AHpVQRrjcaMqr1MGvABjSjFbxH\n9kUnaohG2Lbv0nOvI0+954PAcEO7dWKiPFNaCXb3hpfb78eEpq1vrYDrIJc8xMDH4BIfz3kQebdr\nY8lTCNLbvKcd+6aDBNRJ2KSqcTvSisWBOQIq44OtV7bbOYGbgL1NHxMvqAGCtRyZg3OSaFqwLwnF\nKFh5ZGAZIwNMRyeBoQJdh4lV1LXmOlCmh6T3gCenlRCgFlY/UcHshu80mynX3SrsPgRMk1B8U86y\nVqWiZiA7QkoeNWds2459TnBTBJFQdxEqSnZqmEUgOwYdzV26E3dW+fO+VYU6s0MvUDPImvBVWXvX\ngp88rL9OfBzuKwPXPBFC9Cq6KRoSe5LWpW3bEM5nvX8KvHM4nxas+4astqHWCqTSxj9Dvz/EKGuw\n75IQK5OAyEmLJYnz5FqQEgsIGBdNqqXdVaZSVmTHcO6ruP2vYfv8esFtvQnLZ91wva1gH5BLwZ4y\nvnz+grfXNzjv8XB+wtPTU2uBE6ZS0NZWCezHZ9Xs2LIsCNPUAKJcCqKKppbSpzXGGOHRdb3GdkDn\nHGoDWLqfYNaic+P2oOXoR4Ds6AuBI1BTqb+/1gp4mximjFQ6ys03RmcuzSca5d3EUK3VodaKtO8o\npVcFSynIJSPyMOnRnj+WYNzOux/9ESg3G/JRklCbwR+es7ZO1pIsdg+gxvwTlpqOLB+mU477vwe9\nbDsKFR8F7ttxaaFCeLJjm/cQp5gfOnC6+jlwu/Z8AL8OhSegBcp2L1mbkwF6tvfOYDiyb0dQ754B\nNgJd99pddo8yKvZ9Rwi9lfQ2PDsGgKY9IUSZfHrzol8S/aKJhF2LAipZY7uBna9JvPlOK/aYzR0T\n2XYduANcxgCIOsBl33fkXOFJGJLy/cciRWdjMJiLTk6urT12mWcYgcY5h/P5DAD48cc/dw3NUiSp\ngIPzEadpBhOQc8H1dtXnwPyftFbK2ivogKHN1E5L49NNpRXu2Ypft192y6k0du0UJ5mst+/YdBKw\nyI3Y8yxxU5xEM8sK7E5ZYTGKZqkN3oHyTYT55VSXWOBwRw4VBTbYAdSHWlieI1IcPT7lIU8Z4/Zm\nIIhA3sMzAzVrIdcpU9Ihqy8ERFuJ5gn7trfpo4AUWFPOWLdNtO0AmSCuerbmP/ckRfxt37Btk/pb\n8yMV1VewG6B/BQJbQYAMAHcHAO4+9+qnpsE66sHelVKbLbC1Q8sz3GEffT/980SkceoAwiuQdc+W\nGUGtsSgvL/VcrAF0Fj8Pw27QMP5e8GEuOhSgaB5jB4vmXhvwZww32XEDE1vcrt9TVD/bOdd8lu27\nl2NImFCsuZh8gWC3RZhXlq+1a6JDu2opMpGXq7bqSdEn14K9FIRaEEnuldayCxr8nkMpDlU7iggC\nFlnM5RwhlYy0JcAB3gUELwXynIvmAFKwT1rUFAaaDtdCL56wq6CqeYHhCkW6WJwXgKxqkNaOz0Ha\nfIPTHFraBiujDTZr8QT3mCA40fiqxXQdQ9PHg4Kk+XoD1wIXSII85wHf83yJWQk7AL+ug2THhGme\nJd6ocs+s64ofq2mdEZ6envD8/IxSGJfL5b9U+Pv/2X4TwNeX11fcVMz+uu243jYgTIIrM7DuIkLs\nfcDDwxmfXl5wvV5grBlBUcUYNcTUjIw6j2U5IYSAbd8V5GBM84w95WZAoIhtp22KU6pc4SqN9kIT\n9YF9wzgYExCB2CuwoYyWoT3m3smIEwT+b3tfuyVJblt5QTIiMqu7Rxpbts7xn31KP6MeYXdfwPLH\nWj3TVZUZHySxPwCQjKwaWeespZmtwdUZdXdVZnwwGCRwAVxw7NoVVe+jtVrVSLg5M23tV3KuVBWQ\n1XRLI75s8ecqWSqXi0YNc0apE6ieF2OJDLyN7rbFGWdCK1BPWTaMhnQfNyMJe1noNEk2XlJBP6vD\ntuyHMQr9GI0+QzeiINEs+/x7tmB/PhaBsAVG54D+bXQ0rCPO+YzqmMBKk7qxY8+HdDyrGv42TYxk\noxBEuDBGiDS9bd6s+izcMjAC9w2dSc5JVcrwwFUIU82AMIFoVEY+lPiKIuiYUkKu3ViprJmDKsq4\nbhvmW5KsCy0dAYzUFQOEIEaOZS2UXNu9EXWnisWib5p6GJ4hxjGuFWSizESNeC4WGYkRpn1ig2+E\nnz2LykJ8bduKdVvxdL02Y4DA+Pz0hL1kFDLBzSINIvZdHKM0qaDjjKKp1M0RrmyZ2OKgBI1QmRNG\nopch9f5VSUmLCHnG1y8BL683cVi3XaJjam3kUvF6u+N1PXBf76JxqO+X6E6uKDmD5lneU2YcSoqa\no2+ZLvM8I2iZ8HEcOI5doo5sXYgKpknmw6PBOxLz9vNWLtHKEaUDU3sP3iEsgL5Gt71CIevTOUAE\nkmzHRj6JNduuy97pyoMRzar1MJRy2ud7N7N+D2UUFAc9rLg4jYdFn9+s+w+LuawTgO3bPfByJkEo\noGWl5Zyx7xvWtZc3WoS+amT4FOUfzvXen/b3N3sky15d7X55eE7t+dj+wRphRvsd6KzzxYxT8OQE\n1gCCPmuzX6RbdWyOTgv2VCmNebyHR+dr/L2d95H0ahlfKNj2VRoPzTPmZSyHTTCxZDmGZHbs24Fj\nntWxk6i9XDsPAbeenREIKFAt0VIQSbW3NEPhPZitAXDvlpgiwJJVLsRXQIpFmokNQcDRyTTb0nTJ\njpwlKz1nEPUMxctyQdLMQdMKyrlIdywuiCFJYyYtB71oQwAh6ApyIYQiZHKISQk5ITb2fde9p2eD\n1FKQlcBw4uuXg23bG2FZa8XtfsO2y3xpXeiDVG2ATcQ6qPMpttykDikNkipkJC2rfUmkTfC6j2Ea\nwVXfTQzBEzCawLsdzzJVrOv8yTcZ7LKUErjIKyEVJZKJdhy5SQBEzbQKKSBbkyazkUvGtq5IISAS\nIWABSJz/aZISrnXbsB8F+ybE1+WyIMWeTZOLNCBpfBW6LzKS5GMiRLvPtsYZcUjNRgesjJPa8TAc\nv4FUbmQIHJwJsPNebhI8tvfXYQ0/7yXNKziZyMzj8+CBoBr0qXFep+wAzRZtnzN6yrKGuz1O6GPD\nzNLxXf0Jq9aRpiB2HLVryQg4HZzB7m/El42/JQ7YMdjWdZ33MuEkKMZS3mg+DHJGjDuOHJGmgEDW\n9Ef8glIz9ixEr214Ugqq67Y2niJKeu86pgREikiJkavoCKeU1IZXbbkS2ntntxgCRLu4DbnqoNke\noTrYJoov5HLPFi8ViNwF+U3Du1Yp67XbrkVs1ABtIKb+HSojUsRlXtTmEjmjoi0qAxEoqh2l/hVX\nRmZZf/YQsO2bZBinqOWLpI3wDpRccHu9QzQApUz76ekJ1+tF+IYho/OvgV8H8fXyLBkWOYtTkgti\nlDKk+7qi0AvWfZPJmyKAiiMf2A8hsSJJVMCiYICWQU2TdpeaMM0iyntb79i1FCCmBN4PYZlZROUr\nVE9lEOM2pt6Ij8fMHSO/1P48kWfcFgkaPqcvyWD1j2SdLSqmz5JSRAoqSD9E3DEs3o3VrQWhykZp\nxFePuGr7V577dZQKHiMbtlE9sM/jpmLXOzpZg2/VDFX94LDA9rEAqmp6TYhBNNWsY1LO5yiNaeE8\npga/Z+gFIrCy/Y9O3wjZoIKkihO11Fz7CleNjPU1uqPtTPbM1PhvWmzcasNxmisatVH2PsaIpIs8\ngmm5nR23tnE/OiqDc8hV0tejZYJBSTGgRdr2fUeaJtG4mmds+66bUZ9/tYoTkHPBfduki+rTIiV7\nqM34qZw1eiERx1yobyQnkcqBZNRMrybgOLwvlnVn702MEbUcMl9Jyio5auTSyFN9h6xUDEowVTD2\nfOC+itbXPCUpL+KKy+WK78CSAkwAsxDGG4sOgmxUWm6rm7m9A+MYiZaMaFSY47cfuTnZttFIGZp0\nOXL8/Ljd7hJJPg7sRd77GBJKYTw/v+CoFbeb7A/3bcPzyzNevj1j2yS1O6rhYeusaUpKtqqULe77\njlArXl9f8fz8jNvtrt1Q+3ppunvn8oX3iRZbeVrU2X7KUmAchZV6sxbyycDua/u4BwFoukBE1PcK\ni+AODlDbzyoriS5aG2aIp5RayaeVRM5zF4ofrfkYEwINXYy4r3dCLIgV3AXsRVCZhvdwJGnGbOTT\ncSxTSOMQJRcV4D80MtszzeQaexT6MSo/Oj+P5398dvbv+vAZPFxztZbl0PU8UHuWVT9Pg1PTnhtb\nx+GKykKEjs6UkbEhpUZWlhpaUNDKYHqZzplMa8GV4biPY3FyjiHr5HHsKDljnpdmewjZFFu5ozht\nAaVkbLxjWhOuywzSpiFElv1h4ywajfasip435wMUH/b/wYkdx33MWpdj9qAgl2FtH+ZX2/Tbvcp8\njalnBNzvK15eXpr2lu1/U5rw+dMnEGRP37ZdnPrjQCkZsURpEhHEMS6loObSSDrL2AshqjMOHMcu\nAsOFMc+TXr8I6RtV7AGWXw6OcoCIMKUJuWTcb7dGasUYUJKQnygVpPMyUrfpbD0OIeIoovNTmRET\nISKgKtkr81oyvIIFDpVFaMSxOvrgIUOnrVsBRAVcKipJSTmY1WbqGScUI1IIqCykU0rSUIsZoh+c\nd4DFpp+DBIhCVB1Z5XVqrSLWH0SiIikJHKJk7s+XGfOecBwbjkMyco/jQAyLEPg548gZ01S1KyHA\nqCDuBEPQTpZEZ73h0/rM6EQxmtAoAAAgAElEQVQRk4wjtJzNOuo9+g0MCbyaHU4ADZ/phz8H9a9X\n0T9b13VIyhi/1/d5GXIhwMynGm1lABbRRguf2DOyDzAPMQAln4BGfFn1vfmrYAxrhxB/gPqebRjk\n9zI3rWRd/7ProCr2ALqmFQESQGNqlR6BJBuMq85fYzAHX4EJkvGOntUGrsiBUPaEOiUJ6mjGYa0M\nxIhtz6iUtQlCQD0OXPSYdvwUtVP9NKMWsztMCL+CQs+clTEi1AIgUbvpNrzaWKtWrRqRB9T8PXu+\nIdrYSsAFGLSkQY1IDSEiBcvy14QJVFQlIGOQdy6AhIRkVsH7CZd5wjZNyMeB3cozSStvxJFBUZsK\nLKXY+yYZ2sssHEl7Jao0QMqFsW8F3358aftQDAHX6+IZX/8deH29Yd8ztv3AkWUBjqpP8fz8gvzt\nFV+//oD7uuo3GC/Pz9jNIbHyEDNOYsQyLxp1jKjWAaIUfPv2jG/fniXzq6VoWrqmkGjWmSiEc9p/\nE39UwmhsrQ1AXm7JhVdSQS1uM5SJmoM/bjx2T8DobNhiJBM4xYhKhF0NSKvzjXHQnFFdATFc46mr\nRSmivSKMbtaopxjPch29Np21lt+uZ3QkANPb6tGKABPvFZH6MYqEQWx/JDak+51kFVknl3xYho3V\nwvdNoVYpKRsjLSMh0Ta4YV5RD2icYELDBCGhwNylcvR3kiJc28LfjGB0Y0AImMdxko20Gfm6g5GN\nlZbOoRGIwJGLlEOoSCVssdaxJmgXjdEZAZrT2OcN+u/YlLfEMNr3HfOy4Hq9YlkWvLy8yPOU3ayR\nur08ySIIMyh2PZ8QRZfiyHp/hVQfi1DzuSVvczwHA6TPH7Q5TqA250gdkkMdfSMULU2Xg3ZqI9lD\nSi2ymcWEOCUIpcp4vd3wdHkBffqEKUYIt0gSsbDvc0U5RE+iFNEI5JoRwoTr5YJauXUzsTHOuYAS\nmpEEZhxHwevrK5ivmOcJ3fiJmrHwPvnq+Nvitt6x7we2PWM9DrB24DlyxtevP+C2b/j6w49YtwMU\nV3D9itvLKwDoe6NZLJAy32MgPXLO+Pr1K263G+I0449//CP+9V//Fc/Pzyi5Ii1zKzE/DnGELAtp\nLIewEskRjXTStR3opFBMsRFWo16T7TO2JrW1ndX41b+nKWkkdyiFZH0XjbQitAAFM2PbNsQo7eyh\nEdVpmrqjEgOO4xCnZiz1gBnZaBmgTKEFc+S7otFBoJZhY+vmeI19PXlLShupY9lcRITb7YZcDiVR\nAi6XK8xI7eMm+4wRJeN+NwZd7HzvOTHjf+aQ2JqsH2oaTblk2WP0GVOIImCtzyeo0UwhqO9gwRAA\nLPtTpNq6FhMka8FIHRA0ap1bFl5twbp+D3Z/tjePc2W8r8fAV7ulIQjTM6RD6yp9alCCrmd31Axi\nxhwj4pfPiEHM3RgjZortc/KzANAEBGnJnvOBNEub+kbuqnbKSNoRkTbL6aRs0IDN9XpFLYcSh2hz\nQd7xwXmB7BVmX6SYkKaE55cXbNuKf/jd36tmJON2e20aZ0KYM6Y54Te//Q7h5RW3dcO6Vsy1IkwJ\nx7HLOcLQLcyuw8hQfa4lF2x1b+RmVOKBmFErNWLY8fMjaUn8vCRtspMbaR0oSskgIlCKZHgAqvNm\ncgm1BUj2nLUZgohihxQQBpLUSgpjNAHt0EqibN5GjIHtwWaGWKctOGHkl31Wz2u2MkHmaQpJ3le2\n0mvTdBJCP6WExBMYGZaRKVUPoue8JnG6SdeaEIFlmXC5zNi2O/Z9b0GKy3LBNM/IpWC93bEsFYlY\nJD9sfa2sBENfx0fia6y0kfuXj0qMpQdOYwjg0NcxO15bwU/8mYZhB9LLXkHT+/v8+TNqldKxWiSL\nCHhbKm+kihyrJyCMWWGNjmELYImv0YIo7RLtuULE5ckyrM0/C/rzgEhRpQ0IYtgSKCgphXYQXcPt\nHDw0Tik2g6RxgpJUgWILAoukifikaHOOhQMasnVbggDJutcyE3V9Rg7gI4MLI84RU5wQglSvhJSw\n3w/UUMHGmiipfFGbHMyYYsQ0zcBRcN+ORop1SQDJoq1FAgqi7xilOQXZ82Edi4JaD+Qi3e2FtGP5\n79FTbP41o5QDXCU7a5pk4xLJfICSBL0sE7QURgkMKLkbo1R/mXxNAJBIKnMuU8SREo59k/HXTZFi\nAE0Ttj23Lpk5F6zrLgknlwVPl6U1PTLJl3l6avPsfrsjxoDLMv9N/JlfBfH17eVVxGb3DRVAUfJo\n3Q88v7xiywXPL8/Y1ah+fWa8vtxEMDeIYPeckoiDpqmVb9Rase8SuS+qAfEf//Hv+Ld//zf8n//8\nkxpBUbNYJJJd1TACIIuAfq/aC2wUgTHUJ1iZWY8sAgGVM1AHbQxY0KFHD3rHn77YEqMtljX0KI0s\n2BrZCMrmM5oxHWuCSCz11MpaqmZUZTUmu9NgaNkzD/N61Po6ES/mZPWsWJiAoqwPb6PFMqwBl+UJ\nBDEUN+0wOYqzdgfDCGszwu0TZ6LwTRSeuXHz4+Zh363Dc6hq5srck5TXrCnpaAa/bY5a9x7OmjPd\nCbPr0XMGEhFFoJVJtDvgbrwYYcQ0ZoFodyuJa53GR9Zx2yxNgD2058LtWmUxYwhJVJkxTyIYas/2\nsQYcpaLmDIJExq+LzDOKcq4URSQ6a2QnhQhMsv0ZiSnZIaltXrbwW9mnlbD07IIe6Z6mCcwLag7S\n3dGeaxUiT1Kmuc2CqiVrgcRprvnAy8srkkZvvnz+hBAjtn3VLJ+AJSXMIWKOAV+enhAoYN2ktS8R\ngUMUIoxNl0mzQsyA03fOHlXW0pcQSNOHqTnxeLNOOH4O5CIi4yEmzAjIkLVz3Xe8vN7wsq54eZX1\niLQMZV1XyV7SSNuUIi6XGU9PT1i/vYBZSpDu9zu2bcPlcgEANdrFSb1eryiQsknrJGqBEMNIDI+/\na8unrnHBjEI+r38GM/ZjiuoIv11/xzXLCB0rOQ5WfjOCu+nfSuSLlaJ3cql9/J11f1ynb7cbCENH\nqCGIYhFYCxQMl4DHt4jI1j9ZP856UL05TdsfYMe1IyiJri4bD78bSZyRAHokHu2zb7IKfgISkBDS\n6iT6bvvL+QZPd92cuBhA3PUxW3GHrrGmh0lKQFqpeymlBX1Ed/Bt17bH8X0kv977TNTOjMxSclK1\nxFsM/d4RGrBsE+ieJR3ijqPgfruL1uc0IcUkTvwQPJF53fcMW1tN35VZotHTNBJ+SmzWXmJkREGK\nkjVVwCjHIR2KK5qod3veNh8bmaal/qGIrZDF5gJrmVeYGnGYogQspxhUH3BCen7G623FcWyILEEb\ne/fqMKeItBMkizNvr6TN7VrF7pJxTq2LmeOXgct1aQRlCj0DSUiLdLZVIUTJ09MTvvvuO+n2mLN2\nnF2llFDnWohBBOfJdIXPQYugshJWPcB8tnvHcxpszW3Z+A/XZn/vkg6sPoQG9ViyFWV97HuByEZE\naQJ0mM+hJb3HgX3bW/Y8EUm5o2ZPSxly1vUbCCFhSgkrvb1++7fpbjK9vb/z3/kUMCZCK/MMD77C\nm8AGjAg3lmlYo1X3N4Sg2mwTjuPA/X4XO0IDLD+lD2n/lm37ce9uF3z+N4wcAnjYJcWPG4mj4dnT\n+Rjis5onNHSex3kudD+rX6vNPdGgq+18bbwoQCoeNBmiXSO1ax/nnATG+nXZp5sEymAHLcuCed+R\nyyoVNkNmr5CBknFIpNn62mQgxYTlsqCAkHNtJZUxBGS2Paq2To6ArPlsDX1iaPP85PvptYltoPOW\nHglO1nEYKqd0GondF8Xfy1mam9SK46hY73ds1wuul0Ubbsl4maQAQ4LyhYGDxP7kkjWDzWyiYTqh\n23/7viHFgGmWBisyIcRHl4CTzI11XbFva9OC/WviV0F8iWC4TIYQIqZAIBUdfn19xW3f8eO3H7Hv\nB1Arjri39ulEkrlU1ZiatE48WzehKtk0jAJCF+CFTmp7uTBMYiJSwWtG77wgr6y1JAZEjNxY7pZ1\nVsXgSulh09BFz5wEM6aS6sGM4oUW1bX1T0q+atuY2gJMwsYGoGlI5Xy08k6gRxaqRZnVEYDekS0k\np/RndFIHwMMLjrZQnaLflWDaAmjimaI3YJtBVEMwptTKGm1D7HX5jxtBHf4+ZuCdN/HHF3HcNkwI\nlOw5A638TZ691phzaeWgIrCuG+H4X1tAjLDs5Xf23MYoU9SMMjPYre4eLF3/bHOvbS/m0zGMiLTn\nbanspXLT+rGx60Qni9ZZiBApCVmUS5YooHTKmU5OuEXNoBI/WTtrruuMQAk1EiYIYRbThJSkxTaR\nttDV86+bHseuGUDQyAlbujBRK2cFhCiuGU2v73K54LJckAM0amkbu7RwD20sYpszsuFUzZKIqAC2\nfce6rbhepPTGSpkikUR+kmQeTvOMNE0IrzfcbiKMjxh13so1CzEHRDA4qK6GEo2IEUE1wLKSd1am\nEP8Gm4TjL8ORxVkNWmpHFWDNytv2DbfbTTODGCGKzuC6alv6KJ1wjvlAXWY9nnbGJWokxjRNoCDd\nHX//+99jXVf8+MMznm+vzem2YAvQsx/HqLSQ3X29azpzgOpE9q6/P0UwBdKOYUNHrxEnwoPPDlRl\nLXWBZVrJWhcDiaZflYih3C8Ne9q5PG40ti0bGwzk/Wh7X9QmGJ2wojfX2Y8hx2taYI+GJ6TJin1H\nMkWzRqVHoeEzwWX6fHLNw7o0EF+Pe+BbZ+o8rnZNZluMsGwEEf0vLQgGAlr2ge4v3LYeQohJyjFY\n9q+2zsiN2Axoeo4W/LOmNrUOHaLw00TWeyQXDc/ozedDQGRqe6c0Uplbtvk4x9t16NwCQ7QUc8Ey\nJ8TPAUmDPClFpCQZ++bbUyDE9KiRJ7t91Gh+iEVtIdlfaz4Tb0WzLqS9O7BX6TpqWRHm3JmdJudh\nWKlKi+QzN9JuvV5VP7O/C/M8YVlmHCUjhIQv80Wcq1zw8voKrgVxuoiWJ3Mrje2BqNrKOWX8Lcsm\noGRGrdK1L8xd18bxy4A8L9Me7qLU9h4tywJUPv3785cv+P7773G5XJX4uktwftA+NT7kvffUMocC\naYB1JO1DkAybB62hEELLsFEl7k5CNNt1JPi7Zh4IMAlBIafMVrLDBLV7TfqFUA/Rkz0C4UjSSCjB\nysGoBT5NOsDK5i+L2GjjGhLD2/u3pIdxbM7EoCQMsL7nRvBICdjbdd7eKdkH1L4c9qnTOkkRAdI9\ncJ5nWJDndrs1fWbEt0L2o++gd4KR2AKGFlpk96l2vroh1vRGjtF/b/pep2CUkl+WiWv3RhzQtM/s\n51UymGx/Ep+mB3Wj+sO2Pxf1rUmffwiMyt0u0MO0tIv2c71u80CBLtdi56EQ1MYWn0BkJhbctx31\nOBBDQNEAei0RNbLa7VU7PYq/kLW5xJTEJ6dK4EiIzKjb0ZpdhRiQ2nhL0EjkZMyPEQ5AbLL+PK1C\nBSBQJMRIKNXmoTUHOPtrlqjSNHe0zpQhGVr7sWPfhddYlqXt70klnY5jxpwS9ilhKZNoNpeKACmP\nJkqYGIAGBPt7Jn5OqRWhWjKNNverRbX8JLNauj52rda/Jn4VxJfu+1q3LemXOpNaNH2933EcRSKd\nRDiOHVxlkmVLTRycB4s4mjgoAKQpYrks+P7v/g7/9E//hOdvz/jxxx+7UY7eQru9kBrRttalaKSU\ncdfmXAxR9NH4H1h4ezHGa3y7gGo65dCmvhn9/EBK6XsCZdWZ0TpvQckeM45LLq10rK2wLMSSTeTu\nNGlnSZw32EcijCFkBQHNoG4EDYXhOzq2Sn4R0Dpr2XMyA9aM8m6AvhWbNLwbjSbSUKhGDM5+oTwv\nsq2FWpSfIY0UcpEuTNYmt28Cp4MMf7dSogDmCEvwSaEbK6AeDai1oBbAIgPmKEDTgGUcbR50Y9ZO\nb1oGtUqtNj0YQa1zj2ZGyQKrwtrHgSNnXKdJyCoCegeYXltO6pAwCPtREAKDkzo4ye43gYy80mtI\nMWFKFaVoVIiFkQ7tuQeYbgnRoSVGfR6WImVg81wxpQBw0vJD1Z9oVcEmBqsdWDXSZmKaQnKJAPF9\n3fB03TEvM6BNIgIYc0p4WmZs0wTEiOVyAQXRnnm+3YEqXcOmFHUT6FoaREBA0jGXJyRlliLyf1Du\nz7p24W/Hzwtriy1dgiSLMqWENM2gEKXN8yGE96E6kPtx6Jpvz7O09TgfuXVynFTjpxTRS4kx4ve/\n/z1SmvC//uf/xut67wZ7TBqle7uG2R5W23rHb9Yw4EyKjeWAI1H2GJ1t3xu+L+vS233A0vpt72NU\n1dXgRvJZWeZ5De/ZYyenQY1w8LlTnzki5/W9k//j/b73d7vv8d9E3ZgXI7Tqeqf71xBV1m/BdoQQ\nz8cfjzue+13H5ycg2sBnLa4x0xd2/+P96h5l4eAQJCOimlh1rS07Qca3ti9O2oCh32I/biOv6Byk\nee9+H+/5NIe4Zy7Yns9sxNeBmKbW7dMyzIVgLI3YlYGRhiB73gFmXC4Vs9ogZ6JNd2wdC6SeeTc+\nr5giAg8lmbUi49yJsur8necZYUqoZRreg/OzNwKsiWVX2R9jTGKfapfY52XGPE349Omp2WfLsuDp\nesW+7yiVcbks+MJfcFN7Ng+EYEwJodbT3IgUmmRAdzY66W3frUWIaN9nfjlIKSqhNYuzrVmXRvZG\nbdZjttE0zbher/jy+TeY5hkAqTbk+M4qGVDOP+8OdO9s1zmOvl6xrTHDnmBrcvdtzjk5eMf+b/tO\nJRGZVH/F1lzm2AgYI+NSjMA04ajHiSCvpYBjHK4TGphNUg6txJetN2PlCeGc/fxTAYgxeGEY1zKz\nt8f9dPyMXVdLlwVO18FKZMQYRONsFoLOfNd9P0TWJUQlqujtsfXPN8/NSLB31uhai1ZzyLMjfXaW\nVfteEKrvBdTWNrEH0E+Ot9/tviudiNjRZukYfUVLfug2wTvmjNgHPaRwAsHmrWY2HZK9nLRTs/k9\nJN1PtLyyNp3T/TgQg6zHMQQc+4ZpkqBb1ExihIDKhHBkncN93Rd+wtbb3jXUEmiaVaHvVrfBpAOp\nsZO1WFMgPiWW9Hk3PHsS4g0EBEiFyaY+89NVJFXk2YttM0+TdEslwrLMyPkA77n54ogRs+6p+547\np6CZnrtmlYZAgJKFXDbUUjHzpNJT0uBMXu33ntR/H34VxJdF1kiNoIqKlIIK6ArJJR0xJEW2Ai1t\nFCpCbscxxCjtgUMMqu+QUaoISn7//ff4H4XxL3/8F3x7/oZeq/xQC87C7YrRE4ZFQiYzM2v99FvD\nXLJpLExJrT7+0WA2A8bEwuUANrkwEP+Dg6SbZa0VldCF+NHr6Ktmz9gmYo5cGyuYlstDRsE7hvBP\nGcd2TbJZnomxMSrC3Ff2ymK0m8HavyNX9ecciVZuBtuwzror7XotTdf0lWwzaQuT/mcLqoxci1gU\n7V5iJBl0Q2lfxKD7RtYyPoAhUTXRvLLMMI2acBHHu1rntPZgdZHVCIwat31TsWvlti1IzlNpxjqG\njbt9Vu+v+89dB46gbafRjYKR/OoGlXTf2raCgIipWgZDT7cn7ue1eQndJEYtL9NGCgEauRkyVgZj\nwAyiKS1CasWMUrjPMUjBkpCsGgliQqn2HEnSe6N0a7yvK273FZfLBfM0dackJdTLBeuyYisFy2UB\nhSDGyrpiP7KUTipJgVLBLI5+yZBOnPa+kmaTaHTtaDpNjBiOv8g5dvwtIOvPfmTctx00zVg+JSyX\nC9I0oWh5iGXPmlMwxYgYu8Ejz1qyiaZpwuVyaRHq2+2GPcufKSX85jdSuiJ725BVG0IzzE5XSP0c\nLbIO21/OhJL93NbRRx0T+X23mdt7XgfiSxeY0VAer0P2RtG+mKYJHCVoISSHZO0GsgzH8HBNwz43\nNKKY0zSQXt34a04K6LRX/lTg43Ff6nsD2rh120IyCuyaqEWNzscPIZ73tYe/j6UdfwnICKZAFv/p\n2XqNzIE4nX/+SGfnEwPBOBj5KQYwp/ZZG+PH/QoUYFWWNu7jGI7OzDifTlpwVlKi9zLOiWnmFlHe\ndyVTQwSRBJWIRZOHYGWp5ZRJSCmc7/fkfIneTOUCLoxaLeMJD52BK0ooAGoLaDbtpOPQbtJCKIqx\nn/u50Ldo24fNxmqlljEg71J98PrygutywfV6acHWZZ5Qnq54fX3Fqhlel2XB50+fcL/d8XqXvafZ\nSyG0NcKuk1M6jUMvFe0zo5aKfdvHZcHxM+PL58+IMeK6XE6dymOMqNaQIHQ7WYIHCcuyKPEF1UHc\nTiQn6x7AQOtSap3bu+ZXwHkPMLvRslXwxmcRW9f2gvHnj+vs+X2sVbrRdYffbEkhC0op2vl3QgpJ\nkxW2h+zQpBUDQxnzeE9qT0kGaFJ7+hz8eLw++/kI8+neI5FMf+m99UaOKiVfj/IpvbtdQIwT5jlJ\n84JSsG07jsNIhioJHc0+f7wHfQo0PBce9n+8vezT/Q0+a9/L+32PcwC6npH5Zc2vwUB0nvdRu4g2\n1m0f6vrAp3tqfoyek7v/Yr+3yg2ys+iiy+3n/d77vEOrlElaFp9ixK5zh7S8vRZp6FJrxLpmJCJg\nuSDEhFLuWJaIeZbrl6ojtIyuQNLBul2tZryZ5qas1aTyBPbcOsFl42/ySAxJWCi6xwmdMO7lGqSz\n56V7TIgBgYHA4usd+cB9W/GUr7hcF8xxwnHsInA/y9wLd5GemedJSVDlDAnaHTXJu1dEU3V8uKUU\nCRzZ3qkVYlJFJlqFkqVPf/Wt5ldBfIUQQZqaua0HKgVM1ycsy4I0T1JSMhiplXHqcNUyiag78mN0\nYFfjZM8H7vdXhBjwm9/+Bl9/+NoMU1sPRyMQ6C+dGZBm9plxZEtTZUZ42GyaQ0Iiyo3h94ZWXqKl\njsxadlHPC45cBZquV2eVqXUyySULudTS+YcSEpC+XNwWNzvvmO1m5Xnj1B4jISdHzVZHI48eHJTz\nZiS/b6Vr6Nl1cg77/HsOznlz60TNMDj6N9IvEAgIyhwOi+lpcTKHo4qovDi9XRi6X/kAtp/qn7aJ\n6Dl5uIVapSylZQoBLTJv4ywZUBo5UGFBELVNQiJ1bzdKGzMjuYSw0mdF1N6RSkKqWXTCDOspnTOR\n2vyoYpQhAghCFBxHQYqSImznCSH2TA0Wx9bcD4kaaIRD0/kxGHhB308axg7MzXk7joxlmTDFAE7S\nuUoyFamNcx9oaf5QSQwteR9U9Bg71m3H7X7Dp6crLssiQsqAdHTlBcsyY3u9IRBwvSz4/OkJL6+v\nyOUGcC8/jkyooTtopVZElhlnpASAptVpJUbH4Cg6fm7Is1r3A6+vd8xPQoqkNAEsKfQUjMyV9yvE\niGTkSeht0ot2n50te4sZ67qCiHC7r/j6ww9quL/dE/7cvxvhHcJJrFqM2nNjkcdjnMiK4a7Hddki\nffVxXjK/cyxp8y0ZlaJHhNj1LnOWphlTmk9C8uM+1847OCuiFfjWWG7knXbP+inC6zQmihOpSD1r\n9lyW0vcS2CgOpCCRZJE+nsP+62V6Z4z3AgwOx0MEW+wEEyLmIfAy/GlOi0W9WP0B4pN8A0oFMaMY\nQ2OEyWC/tHsdxrDvg31PfXwWY9bD4ziM99zKNTMhWpdOztoUJWOaL1J6GDZYO/dResGi4SFEIMrx\nJcsja7vSTjA2e2rIRK+1okKDWwrRZekZkON/dhzrvppSAs2TOuap7R/2OSsXYl3nLaJvx04pIi8z\n1tsr1nXDtq1gZnXaM1KMuF4umOcJxw871vsdl6cnPF2v+PLlMyqA221vtqVpHdk8q9Q7eNvYV5bS\nMRoCLzWLCPqjfeD4+fC7v/97Ib4uF/zpT3/C6+tLJ7qhGZpjFqJld8WoTU+kAuDl5YbjOJQki3qE\nvsYYUVSrEc+5NbwytMBke9f5tN4bEW4ZQ+bbENDet/cwrhVGU4zrpREx4nQnUBKJi3wcqOpUH8eh\nmqix3YuVwFuAuGimNSB7TNZGAS0USj2zy7yAcb06EYdqM9vn5V2m5lO9R5YZOTP+ZjwmkQSFpAFM\nQMlFZBH2Q8giSFamEUd2XPv+CPtny/TqVwIeqoDs2bcgN3Or9ugHG5+/biQBGO/GxpEbJQo9x0iE\n2V/tewyYmL6Op5VUtjFRkpXaGHX96hZkQs9YrPbpCnUGzwPS5hSpbI+SoSEGLNOMLW5g1fNiDUqW\nA8hRnscWAo5LEQ2rIMGWeRYSuqj+JSggBiClgJpry7gEQ96/GFq2WycIxz2U3oz5GKzpz76C+WGe\nyS+6j0SSuR0J4BJQy4GjZKzbim1bUZ6u2rRFjjNNSpqniFyls7BUw1VIbExLL40or9rsTqVZiKyB\nDIFiAlFArgW5HqoNXXC5LNrU6FEv7L8fvwriC5CJsm4b1nUDJVn4l2UBh4Bt026OSjrI5BjTEXu6\nr0RWDumCom1Gc87Y9w1bPvD161fc1x2lErZ9B4aUemaoTpAQSZaVIuUpvZRjXGibQ6IOhb3oppMS\nmxNDsA4odoy3MPKFh3dfnHzurA6sS1cjv1SHjGE6KNzSg5szREYWcosu2j1Y1GLUaiHQG2divPcT\noQchV+yzowHdDFbYGtYXgvfGom8+bzeEx7Tud89lnSkAUNNmGxZ1srEkNUDUFGFSkXs0p9cWNzCD\nqhjdjP4cWdvR2xzJJcN0N0ykvpNdg7EyGuUaQbC6cXNUmk4WaTTBLgydTKWHRdYYPa6ki79ECmKQ\nCMiYyTLPMyZNJwcAjoyoLK6RW2ZUiEMiAqVHLpJRBWrGNwUCFZlfpPfHOGcHUIwIFNtttHlpzkYQ\n0lBEiYuUkYWpOSQlZxCTvkeyQdYiHVwo2EYrzzImiXjUUnBskvF1W1d8/vwZBNIGAyJmOU8TqFbk\nfUecZ1yvC7589xlHydiODNZ0csme7ELDrA5soKBp2voOKZmZYgCVgKPuGHXqHD8fKCYgS0fc7dgR\nyqKiwQe2vOLl5QUEkn8ZmCIAABRRSURBVJRxjTiTWGzNSD+OA+u64qbNDEDUAiv3+x21VtzWFd++\nfcPtdtMuVnsrxe9E0Fk/6hTICF0bkIeoL9pnTOOIgCFj15wFI6PPRNB5jR2zfLsz9R6JFpE4ypwH\nA2yZZRWW4UMIp73DzhHUwHw09nPOvRQeZoiPhBSNVSXDnoTT54Bz4GgcvxAsQ8/EaUsfxwYNRg1j\n/NYR6fv8uJ791D7eSC9WXbN2nUZaiUEthI0EsphIiXslxx4cU6g9YLqY+RAxdQJkn3l4xjYWAfHh\n2nomEem4PD6zMcD1SJiORrz9rJSCA0AMR9sTrTxpuYjejazhJlItz71wJ3CtFINLxbGL0xim7hR1\npxaQ/c/2TGCcKHL9GSKar3Mp0BAUbWHL9l4GkrL3/v6M7yJEI+4hm9HIx0uSLsnlkA7hdt/SwU++\nP88Jl2VBJMK63hCSaEt+9/kzmIGv6w9yzHruQCfEnomIjyRgfy5NV5bCm/np+HnxD7/7Xas6+fbt\nGwAV2Y6xdR9kK5vXhj+kBOw8SxfDovp/uRRM0ywd2aoRKLbGSuA0hNpI2jYPHtbdM6zUWf+l+lzE\nNKzDZ1/H/KAToUQAt+9Yh/mKGNGz/FvzpXPgwTIvpzxhXhb0YItUqey7dDwFdwI6xohj29W/O2sN\nNbIB/O4aRkQtGCE2dN8njPgaMZJeQX0S01ke91zRmppVv098zaN1qJf32ezu8Xrf+oC6vup+MPpA\n3dbv321+ZguQcNMKVle5Xav5R2OFP7/zN7vv7vtRe24IaAGsHpyxuTTYGurXVLPzuTcnMQQo2d/W\nOwAFKCjqd4dhrqg/of/HXFqzlhAj5suMuEa1x4GMilqATCQZd6Vg2wn3+x0pSiUZqx+dAul35H0k\nEm3JyhVcM3K1Z5K6/0ljYoL6P5X6Q3qYizYuMg90fEtBKd2Ptkdtj13GUe+fCZzl3d/3Heu6Yd93\nXC4XzcrPmNOET9cr7k9PyPc7akpSRlwZhQtykWY2aZrFN2JG3rYWAOp7JPSZa9VBo0Vxti+d+Pp/\nB6uzXbIYhhEiBrne71jLgW/fvolBEm2imDErLUGPI7cuWqUU3O53BBXNJSIc+cCPz9+w7zu+ffuG\n59c79l2E8/s19KhuSBHWvrVWiWiaMW0L/2gIWqQDzI1RFcKDtcOIdtar3NrEY3ipwXwyrFidDNL/\njSxyJ79kcTGHRYPFALq4HjM3EWVBJ5Raa/Tht40EGTK+Hp2yNl7n2EKPED0Yym0BbcZaaAKwY7bZ\niPeIsMc9wjY2O053UGozhs8EmkWzrEREouW1sjLb1vmpEzMSrRHrQMiVvqk8bii1Vk2vLaJNqGW6\nYbjwx3s4jZ+NkT0nPo+wRe3Oc0/nB4xwbHEcVJZ0Vi5F2zPLJjGKcKeUtCyD1flQp7Z2I0CE4ity\nLdiPjOk4mmixjX+KqRGlVaMjbZzN+ABAsUdKZF6K9kUd3h3L9Nj3HTEwphRbZmBQkWLrwAOuSNMk\nApvCR7ZnOC8Tal5aZo6VGjA0a8BIYJL3aN93TESYpwm//c132I8D9flFyyw1GhRDm2MmSp2ijOG4\nFtj8lPbIVkbt+LmxLAsYwDRfMM+i81BrxbfnF/zw/Iqvf/pRnulgCBBkXczHgXlKLTK37yuOY0ea\npIkIUW8xvakGRa3SMccIMQuuGPlg7wLQCRw7r61vPeNEYH+3PaZwN7A7WYV2TYDqcoTROebTd7hq\n5+B6JueILDM1NkKjFjPixDgygv2RXLPzNxFXu3YGcs19Pw1nYkzKS3X3O2Wkvt0X2pqo2Q7c1sH3\nHD07yk/9XPb787HPOpzvlf69h3Hvy228u55j6+ILCOH/8F2QloaqQ8wPRJg4MD2Q8oiejSDiwqfr\nrqKXGIduueO5bW6agWuZfG8z6qjtvQWMo/RME8vaIiJM06x6PV2La9KSc+j+WWpF1HLHnDOOvGOq\nARSm07kI0KxL2cdsHwJEWN9snh4Uk8DE5TKrrSj3GWPvrlxKQSFpviLvlD4701IDkFSc3sioygXb\nukk216Td25T8fnl5QSRu4taBgmZ4fcHL7Y71fsM0L7hcFjARPq8H7vdVsg7QO3UyM7hYZmUXRQ9K\ndHYSMiHNCSGk/3JeOv52+PLliwbMAOaCYz9a857QbGp7hvKeLYsQqdenK6ZpxrquGrCsmOYJ23Fo\ndoqs06WI/QMlG9DWmjPZQ2/WPcnGGW12apUkRjOgERMj+W/vmNmfsl+S2Hb1TFCJ1iorWXG2l9UB\n6mtatS6s0GzK7rdYhrL5TrlkpBxRtDP5WNosNrSVVr+jU9ws7IdS7odAkR0XzK3rsPlkluFk92jr\nWdFg2HHsbZy6bMg5C+29/bo9HcJgU759p0/BKSUeg+VMaZMlkbGhtj9aRlYPNA1zgs97VtGOuOCK\nGqhVczS7AUCJUsWij3HIqtVEjyC2QdMgbvNTx16JR9v/rRlD85u5yDGa7pURrQSgtiDkHCOmlJCi\nBvGp3xTXipJFQigfBa+vN4RA+O7zZ1lT9X5DDNKcqhQEgsoFSFYUatbDVfTGEARGkHLF0Akv1mYD\nvdy321Vp6sRZKYzMBXT0jENJkJH7Nz+qFNbyY7EVci0Ix47tRKwCed8xx4Snpyu+x29RAiGEO7hK\nMyXUgnIcAEXM84JJ14zKFccxZmF3Ej6SdKfn2n0by7TLmXFiUP8K+HUQXykANSDMCQksbbjLgW8v\n3/B6W/H6wwuoMOaQtIsE2YoNcJU2pbUA5UA9DuT1jsv1ijkQIoC8bXh9ftHucQU1F6zrOkToCozx\n4JJRlegAeoRPhCmpa2tV7QLE0Jeip9cTs6a26gQhEX5i5paa3/Sc5D2GRWCqbQos/E1hEbaTBRio\nENFTCsqkF+lIVFCGpKCKSiL2V6oSNxRQqQC6SJVgVJASFSSRZtbMoBh69xNilmYU+lkCNVHLtpXo\nvXCQclDZ4IaoAfqaRKwdTlo3xb7ACynYwxt9gxDyqxEMNk4grcuWEhlLt4UaxEQSPTESRoguK99R\n4kt1RcQhscYAej1KLBGbqVDB0O4cxPqMKopG93UPRWVG0o3A5kkprJEGKz89bzi2YZPVy4Fb6Rxg\n5XMVTBmFavPVuBlQopkCIlREHCzzJ2onkcQAl4q87VjihEuakeOBWmSOMBVACVWwEIITzZjmCfuW\nsecDc85YuCJAiKD9EKcOxIgpgOp5/MUROlB0TOSxEyIscpia6KNFSCxTczsAJiW/gmQN5MIgi6Sp\nsREDyfPhgloy9u2Oy2xGiUQOb+uG57u04v18fcIyLUhpxlwY8+2G437Dsa+YiHGdIr7/7opjX/Hy\nuiJn1u6ME2JaAGSUsqOWLKWMaZKNTd9b2UCAGAnTtLhD8gvBsiwACE9PT9jzgWm5AABebzf855/+\nJJF5UsN2WEeIpDvXsiz48vkzPj09IUXCD7etaXzNGqF/eXnBod3kpLlKxLZtsOYoI9FF4UyknMiF\nEBCaoXwmv05ZIdry+j3Syta/kfgKapDaeQm9/K4O79Xj+YyMzkdtEe6RyBtLP/r5h38Pz+FEKtk+\nM6yDlcXpSiOZ9g6xZsGCRg7q1nEmyDDsQzYm70wOI9FC3/PtGm2sRwfrveyv8d6YJUKbS2nGbN9j\neofLfjEDkTf+aQEbSBAixogai+hXBhquXcc0EDC0pLfshx6pfUtOPl77mC1x+u7wndFhq7Uic0YI\nE6ABkGINhVJUrdYDzFl/lmTtVt1Ri9zb/C85nubTSHxZhgazBhibcyufz3V0zBkUgMt8aWWIEpAQ\n4kuyADWjX39uzpCRqRLQkTkWo2bIa4Aw54x5kTLfnaXd+/O3byjHhn/8x3/smnbLjC9fvuCukXqi\niOvTjE+fPuHLl4xaGbemY6SOdAjI+yHER+2lp+P6kXNFIO1QNrmw/S8JX79+BQBUznh5fUGpXcsN\njEZmRm2ss1wuLTuVWebmuq54fnnWIBs1TV57Z0CEaE12VHSch31AgvcFvaPuEKxnhgXkreLD9gnT\naLX1otvz3JYsC2aMGo32HbvPWQnckstA+BeYZjKAtiYWvcfHckfJyM4SZFKiK4ZeOWCfb2tWHeQ1\nFDbO8jwqTI6p3SPQJEgsQ9kIcMukGu9Pyr1Ev3BKYvflnHHsh2opq3wPUR8rPmdkjnv1414rQff3\n9/4RZOs7M5hVRH4IhNt5rYmUkX4SANE9RgP70LGz84pciRyr1tpKJFknKEEy+ayBnB33KAWlqgA9\nc+98rqhVmrLIPsXD3Avi23Afd+swb/nY5lcRZE5suwQep3nGsixY17WVuo/PMsYo8iMM5CwEYFA7\nL8aAmWaEWHFf11ZJIvcn3lupZxI1xtDm05jcUFqAW587rEKkKukte2mBVJbFQJCGSQQq4vC3Siwl\nIBEJkQKmZcbMEwKkadfrXTmOuUttpBjw3ZfPOGrFFGOrvCmq53WUA7UemMKEi3Ymv+GOnPvaZO8r\nxYAUpemK2Ssvr3dca8XlMote3V8RvwriC4H+gBD+mUIARVmMK0sXum3bJbW/QrWseqRCDHQ5hKR7\nCivLSmSZ5lAtBUdLm5U/WtS1GcVKfMFeztA+bOytGZRkLE47N4BhYQQNMZZ27IG0sS81JuhsqCuT\n1EiUZggPbPYYwbCOGD2Kouci6kSaLbLo18CkxEqL8QyGe7sxW3RsfEM7ThdPp3Y/bZFTokkuizsx\nBtWpeLOWv+ONNCdqHKzxi/Z7acMr2XV1GGN9FmxXTJ0Aa46FOkeVT5sNjadgu5Q2Sm0c20Nrz9Zi\nQtB5oBGCwegYvMI2L7gdg9tYEqCE23gqJe2Gz/XhsgxBLZ8Zh5/7pZregJGb9OAMSnYimh5cCH0D\nNH0aKIE1joUsnjg5tS1T0OYUvxOJs1bag/PanWA+jZedzWRam8Nns7RW1JJlo6GeNZJrxZELjizE\nLmJEgDiTIUZ1oIVADylinhJS1PvTmnwRYpbOdrXou2VGIsyQGY1L7VQb8Ac4fnbEGP8QY/zn0bAG\nRHdk31R8eEqnd7IRN0E6Uxnpc8wzLB18zIrZ9111FerpHZBpfH5hHwmTk7Fuf1JbWvrvmmPTv/vn\nyNUzIWZ7wbAXsS1hw8/G69PzGHlj2Zo0rF+P52nnan8O9zpeG/pnRqP38W7eyyizY/30vdOfHZfT\ncdqGd86seswcGP8Ezs/t8VwW6Aq2/wzH1MtT2+Gc9TUYAac7HUmgYct95z7Q5seJOHpn/N77+XuZ\nCT/1nTf3pNfa7aHHjp3mLARZ8mufe4//2azp5+PTMSh0iYoxceLxOTzKVIQQEa20yRxAtYO6zWN2\nULcJxuM3kposIwZaor9jC+f7iZrB0rOiTYsyNpJrvG77d6FBbJ/78x+J0congtD3mV8Itm37AzP/\ncy478qFaT4MNLmRmPO0f9mzNFrHy+tGe6P7AMMdpsD8e1qg2TzRTxzDOIfu3rent0Ha8OgYOGJIa\nhjcb05s1O0ggtKCc3xkM1rzei0nD2D45zvVzpti4/o52p2atoPs47TqGY9m33tjj+lfLUG6DN1xn\nO5dWCbTGR+o/mKanDJsFS87XMV7PeNzx5+fndHIPz3aCPnc2I79bDcN3+p56HrfzKIl3dL4WPFxj\nS/R4vF4agvm1tvldGeLoPeyXeLgf4EysPo7LeK32N6uwYe5VG0bitXF+Z0xt3o/viTQmG7KKMWJ4\nP97dE/s3+hwBlCns53zzvbf7XeMTqHkzMB3QGINQxZqRlUtGLgUzRI/L9qJJM+BmrehJsWsxdx6j\nZxZbaf+4R9daBwmjXqorDQLN9gt/1b2G/lLDzeFwOBwOh8PhcDgcDofD4fj/CZ6/7HA4HA6Hw+Fw\nOBwOh8Ph+JBw4svhcDgcDofD4XA4HA6Hw/Eh4cSXw+FwOBwOh8PhcDgcDofjQ8KJL4fD4XA4HA6H\nw+FwOBwOx4eEE18Oh8PhcDgcDofD4XA4HI4PCSe+HA6Hw+FwOBwOh8PhcDgcHxJOfDkcDofD4XA4\nHA6Hw+FwOD4knPhyOBwOh8PhcDgcDofD4XB8SDjx5XA4HA6Hw+FwOBwOh8Ph+JBw4svhcDgcDofD\n4XA4HA6Hw/Eh4cSXw+FwOBwOh8PhcDgcDofjQ8KJL4fD4XA4HA6Hw+FwOBwOx4eEE18Oh8PhcDgc\nDofD4XA4HI4PCSe+HA6Hw+FwOBwOh8PhcDgcHxJOfDkcDofD4XA4HA6Hw+FwOD4knPhyOBwOh8Ph\ncDgcDofD4XB8SDjx5XA4HA6Hw+FwOBwOh8Ph+JBw4svhcDgcDofD4XA4HA6Hw/Eh4cSXw+FwOBwO\nh8PhcDgcDofjQ8KJL4fD4XA4HA6Hw+FwOBwOx4eEE18Oh8PhcDgcDofD4XA4HI4PCSe+HA6Hw+Fw\nOBwOh8PhcDgcHxJOfDkcDofD4XA4HA6Hw+FwOD4knPhyOBwOh8PhcDgcDofD4XB8SDjx5XA4HA6H\nw+FwOBwOh8Ph+JBw4svhcDgcDofD4XA4HA6Hw/Eh4cSXw+FwOBwOh8PhcDgcDofjQ8KJL4fD4XA4\nHA6Hw+FwOBwOx4eEE18Oh8PhcDgcDofD4XA4HI4PCSe+HA6Hw+FwOBwOh8PhcDgcHxJOfDkcDofD\n4XA4HA6Hw+FwOD4knPhyOBwOh8PhcDgcDofD4XB8SDjx5XA4HA6Hw+FwOBwOh8Ph+JBw4svhcDgc\nDofD4XA4HA6Hw/Eh4cSXw+FwOBwOh8PhcDgcDofjQ8KJL4fD4XA4HA6Hw+FwOBwOx4eEE18Oh8Ph\ncDgcDofD4XA4HI4PCSe+HA6Hw+FwOBwOh8PhcDgcHxJOfDkcDofD4XA4HA6Hw+FwOD4knPhyOBwO\nh8PhcDgcDofD4XB8SDjx5XA4HA6Hw+FwOBwOh8Ph+JBw4svhcDgcDofD4XA4HA6Hw/Eh4cSXw+Fw\nOBwOh8PhcDgcDofjQ8KJL4fD4XA4HA6Hw+FwOBwOx4fE/wXKXP5V3eqktgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzsAAANDCAYAAACKXgGDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXnUbVdVL/iba+/Tfc29SW4Sk5AQCCljSLDGCEOhdKCi\naBF9lI8grSgBIsQSKPWB1nsKpFFklD5snghD6Z44oN54BSKgZiid4LB7BorQSB5hCIXmpbnJ7b7v\ndHvvteqPteZcc+1zvpt409xwnb9k33O+c/ZZe/Vr/uacay4KIcBgMBgMBoPBYDAYTjW4k50Bg8Fg\nMBgMBoPBYHgoYGTHYDAYDAaDwWAwnJIwsmMwGAwGg8FgMBhOSRjZMRgMBoPBYDAYDKckjOwYDAaD\nwWAwGAyGUxJGdgwGg8FgMBgMBsMpCSM7BoPBYDAYDAaD4ZSEkR2DwWAwGAwGg8FwSsLIjsFgMBgM\nBoPBYDglYWTHYDAYDAaDwWAwnJIwsmMwGAyGUwZENCGi1xPRd53svBgMBoPh5KM+2RkwGAwGg+FB\nxAaA1wMIAD55kvNiMBgMhpMMs+wYDAaD4VQCnewMGAwGg+GRAyM7BoPBYHhEgIjOI6J3ENEdRDQn\nos8T0Yt794yI6DoiupWIZkR0OxG9j4geS0QXArgL0apzHRH5dL3upBTIYDAYDCcd5sZmMBgMhpMO\nIjobwN8C6AD8FoCDAK4E8HYi2g4h/BYROQB/DOCpAN4L4DcAbAP4fgCXA/gIgGsBvBXA+9MFALc8\njEUxGAwGwyMIFEI42XkwGAwGw79yENHbADwdwOUhhMPq8/ekz88F8AIAbwfw0yGE39ojnQMA7gZw\nXQjhhoc84waDwWB4RMPc2AwGg8HwSMBVAD4EoCKiA3wB+DMA+wFcke65G8Bvn7xsGgwGg+EbCebG\nZjAYDIaTCiI6C8BpAF4G4OVrbgkAzgbwOAC3hhD8w5g9g8FgMHwDw8iOwWAwGE422MvgDwD85z3u\n+dzDlBeDwWAwnEIwsmMwGAyGk427ARwDUIUQPrbXTUT0FQDfTkRVCKHb4zbbiGowGAwGge3ZMRgM\nBsNJRXJLex+AZxHRZf3viejM9PZ9AM4C8IrjJDdNr6c9qJk0GAwGwzckLBqbwWAwGE46Uujpv0Hc\nm/N7AL4I4AwATwTwvSGEM1Po6Y8A+G4A/wXApwBsAfg+AG8OIXwopfV5AKcD+CUA9wL4fAjhCw9v\niQwGg8HwSICRHYPBYDA8IpAsOK8D8L8BOAfAPQC+AOD/DiG8I90zAvALiGGoz0/3fArA/xlC+Gq6\n50kA/hOAJwAYArjewlAbDAbDv04Y2TEYDAaDwWAwGAynJGzPjsFgMBgMBoPBYDglYWTHYDAYDAaD\nwWAwnJIwsmMwGAwGg8FgMBhOSRjZMRgMBoPBYDAYDKckjOwYDAaDwWAwGAyGUxJGdgwGg8FgMBgM\nBsMpCSM7BoPBYDAYDAaD4ZSEkR2DwWAwGAwGg8FwSsLIjsFgMBgMBoPBYDglYWTHYDAYDAaDwWAw\nnJIwsmMwGAwGg8FgMBhOSRjZMRgMBoPBYDAYDKckjOwYDAaDwWAwGAyGUxL1yc6AwWAwGAwGg8Hw\njQoiejSAM092Pk5BHAwh/H8PNBEjOwaDwWAwGAwGwwmAiB7tnLvVez8+2Xk51eCcmxPRJQ+U8BjZ\nMRgMBoPBYDAYTgxneu/Hf/AHf4BLL730ZOfllME//MM/4IUvfOEY0WJmZMdgMBgMBoPBYDhZuPTS\nS3HFFVec7GwY1sACFBgMBoPBYDAYDIZTEkZ2DAaDwWAwGAwGwykJIzsGg8FgMBgMBoPhlISRHYPB\nYDAYDAaDwXBKwsiOwWAwGAwGg8FgOCVhZMdgMBgMBoPBYDA8ZJjNZrj++uvxyU9+8mF/toWeNhgM\nBoPBYDAYDA8ZptMprr/+ehARvuu7vuthfbZZdgwGg8FgMBgMhkcQvPf40pe+hK985SsIIZzs7Dxg\nnMwyGNkxGAwGg8FgMBgeIfjgBz+I/+mxj8Wll16Kiy++GFd867fib/7mb05afm6//Xa85CUvwTnn\nnIPxeIzLL78c73znO4t7FosFrrvuOlxyySWYTCY477zz8KxnPQv/+I//iK997Ws4++yzQUS47rrr\n4JyDcw433HDDw5J/c2MzGAwGg8FgMBgeQnzkIx/Bu971Ltxz8CC+4zu/Ey9/+ctx9tlnr9z313/9\n17jqmc/E/xoC3gJgBuANX/wifuD7vg+f++IXceGFFz6s+b7rrrvwpCc9CVVV4VWvehXOPPNM/Omf\n/ile+tKX4tixY3jVq14F7z1+6Id+CB//+Mfx/Oc/Hz/90z+NY8eO4c///M/x+c9/Hk972tPw1re+\nFddeey2uuuoqXHXVVQCAb/3Wb314ChFCsMsuu+yyyy677LLLLrv+hReAKwCEm2++OeyF1772tQFA\nuKyqwr8BwoZz4dyzzgpf/vKXV+696t/+23BZVYUGCCFdR4BwelWFn/u5n1ub/nve857wP192WXDO\nhQsf9ajwxje+MbRtu2d+/iV46UtfGh71qEeFQ4cOFZ8///nPD6effnqYz+fhHe94RyCi8Ju/+Zt7\npnPw4MFAROH666+/X8+9+eabA4AA4IrwANvI3NgMBoPBYDAYDIaHAF/84hdx44034gYAn+s6fAjA\nbd5jfO+9eM2/+3cr99/y6U/j6V1XuF7tA/BdXYdbPvvZlfvf8pa34AUveAHO/+IX8Z+8x9P++Z/x\nC//+3+Mnr732Qcn/+9//fjzjGc9A13W455575PqBH/gBHDlyBJ/+9Kfx/ve/H2eddRZe8YpXPCjP\nfLBhZMdgMBgMBoPBYHgI8P73vx/7qwo/D4DSZ+cCeFXX4UMf/jAWi0Vx//kXXojPuFI87wDcUtc4\n/4ILis8XiwVe/wu/gBcD+HAI+N8BvA3Ab4SA33vb23Dbbbc9oLzffffdOHz4MH73d38XZ511VnG9\n5CUvARDd3L7yla/gkksugXOPTFphe3YMBoPBYDAYDIaHAE3TYEC0InBvAOi8h/e++Pzan/opPO9T\nn8J1AH4Wcc/OLwL4atfhZS97WXHvl770Jdx96BBe0kv7xQBeCeAv//IvcfHFF59w3jlvL3zhC/Gi\nF71o7T1PeMITTjj9hwtGdgwGg8FgMBgMhocAV155JW644Qb8PoCr02dTAG+pKjz1O78Tk8mkuP85\nz3kOPv/5z+OX3vAGXJ/Ixng4xO+++c34tm/7tuLeffv2AQBu7z3z9t73J4qzzjoL29vb6LoO3/u9\n37vnfY973OPwd3/3d+i6DlVVrb2HiNZ+/nDgkWlvMhgMBoPBYDAYvsHxpCc9CS/80R/FSwD8MBF+\nBsDj6xr/fTDAG3/1V1fuJyLceOON+OrXvoZ3vOMdePe7341//h//A9dcc83KvY997GPxnU9+Ml5f\nVfha+uwIgP+DCGfs348rr7zyAeXdOYdnPetZeN/73ocvfOELK98fPHgQAPCsZz0Ld999N377t397\nz7Q2NjYAAIcPH35AeToRUAjf+AcVGQwGg8FgMBgMDzeI6AoAN99888244oor1t7TdR3e9ra34V1v\nexvuOXgQ/8tTnoKf+/mfx2WXXfaAn3/rrbfi+777u3HHXXfhsrrGbV2HMBjg/R/4AJ7+9Kc/4PTv\nuusuPPnJT8Zdd92Fn/iJn8DjH/943Hvvvbj55pvxsY99DAcPHoT3Hk972tPwF3/xF3juc5+Lpzzl\nKdjZ2cFHP/pR/NRP/RSe8YxnAAAuv/xyHDp0CL/4i7+IM844A5dffvmedfDpT38aT3ziEwHgiSGE\nTz+QMhjZMRgMBoPBYDAYTgD3h+w81Dh69Cje85734JZbbsGjH/1o/PiP/zjOO++8By39gwcP4oYb\nbsAHP/hB3HHHHThw4AAuu+wyPO95z5NABYvFAr/8y7+M97znPfinf/onHDhwAE95ylPwxje+EY95\nzGMAAH/7t3+LV77ylfjc5z6H5XKJ17/+9Xjd61639plGdgwGg8FgMBgMhpOMRwLZORXxYJId27Nj\nMBgMBoPBYDAYTkkY2TEYDAaDwWAwGAynJIzsGAwGg8FgMBgMhlMSds7OCeCfb/7QGwFccezYMRw5\nchTHju2AnINzFerBAJPJBiYbG/AemM4XmM0W2N2dYmd3F9PZDIPhEMPhEKPRBJsbW9jc3Iq/mUww\nmUzQNA1mswXm8zmapkHbtvDeY1DXqOsBhoMBhsMhBoMBgHjok+86HDt2NF3HcOzIURw7ehTT6RTL\n5RzLxQK8PyuEAO89uq6D9x5t16LtOrRti+VymZ4/k6ttW3RdhxAC6sEA9WCAqqrgnINzTtLz3mM0\nGmE8HqOqK8ymM0xnM+xOd7Gzs4OdnR147+GcAxGhrmtUVYW6rqXsk8kEw8kYo/EYXddhNpthPp9j\nuVxiuVzCOYeLL74YF198MQ4cOICmadA0DXZ2dnDkyBEcPnwYVVVhMBigrmu0bYu2bQEAo9EIw+Gw\nSHexWGCxWGC5XKJtWzRNI/XSdR3qusZoNMJoNMK+ffuwf/9+bG9vYzKZpDCKAYcP3YtD996L3d0d\nzOfzmN+mwbJp0LQtiBwcufjquN4quYbDEcajEUajMSaTCcbjWP66rlDVNYhI6nc+n2M6nWI6neLo\n0SM4cuQIjh07JuXpug6ucnC1w3A4wGg8wng8Ql3Xco1HQ4yHQ9R1Hv6TyRhb21vY2tpC5WJ+uZ2c\nc6irGqPREKPhCAgBXeoTCB4IAVVV4fTTT8fpp5+Ozc1N1Kld57MZjh09gmNHj2Ixn2MxX6BrW2xt\nxWdNJhNUzqGqKrRtK21CRHIBHQJaEAFVVcU+MxhgOBxhOBpJH9J9MrbbGKPhCIPhEIP0yuMlhIDl\nskGzbOB9gEt5cM4B5ACi2D6pzbg/6TrzPiAED+9DPBabCCBC8B6+8wj6oLgQgMBvj79PkkByyja/\nhhCKq6yf/AweiytppvtkDvDxXoSA4DvAd0V+AwKQLv0s3SfKdH38lcrj2rIRwBWh7zveb+Q5qagV\ngMoDFdaf2cDt66UduvgKn54RynQTnHOoyME5nW4uj8yZXZfmiA5d1xbP1v2I38P7WL+9e+UJquxd\n16FrO3Rtm9LvEIKHI5Ixyf0wViX/roVPeeP52vvYB4PX5Y73E6B6WdknWx/QdgGth8yfbdtKHRCR\njEPuD1zvHddN8Oh8QEj9h7/n9YyIQJUr+qVeR7gu+VmurlbWGp6vm7bDsomXLoerHIjHtCon5xFE\ncESydjtXxbk2BPgQ80DOcadFCHHMx0MgO3S6vN7Dp1FDoDTX98YIQkob8MGhgwNUG/THmNRbiOnG\ncpfjhCT/DiA1vlU359sDjzv1GXrv1yIEAB0AX8wFIY0NH2KddKE8HFPmAgDz5SJeiwVmaY2czeaY\nzePfyyb22bbzKZep3skBLtaT9wFd52OdUZynnXNwVWw3bh8CUBGh4vYtpkg176WCp2lbxmuV0pO5\nKt0PAM4RnCvn3a5rccGBre2v37NzHxVpOJkwsnNiuALA95/sTBgMhkcSTt6BaYaTA4KmTgbDIw0P\nZQ+13s9wJ/GwTMP9g5GdE8DRo8cAALu7u5jNZlgsFnBVjaryAFHUhDUtAihpSwNc5TAcDhGQLAyj\nMcbjCTYmm9jY2MBwOAIRiQVjsYjaD9ZkOSJUdR0tOnUtWiPW5DVNg2a5RNu0ohX0oi0Lou3cS5NW\naKiUZo1PwmXrQl/rxGnpNNiS0qa/uy5rpKKChArNZ63K0/kOy+Uyaou6Tiwuw+EQm5ubmEwmOO20\n0zAejxFCwHw+x87OTrJgLVc03lrTrTViOs9cf9qy09eiaw0mkLWUIXgsFktpt2jNaQrtqiMgOEoa\npGgxiBqkGlVVYzCIFju2TlSiqQqSF9auzmYzTKdT7O7uYjqdiiWErX9IGiq2rAyURaeuawwGA1Qu\np8910XUeXRvrIrgKdZXyyhdbe1gNVldJ6+pQO4fBYIDxeIy6ivr24D067osda5bj/YSUn55mmPuZ\n1nCyFs25KhlcqLTCYPVUZqJkG+E29CGOk6aN2tXUx5tlbG/vQ6wX1shXFVxVpzJXqr0qaXs9dqJl\nh0DOg8iJtavMF/H/K/1wtW8m7WaQXxZj9r6g21bXT5GfpLXMWt9eGjrPPW2zbrOcJvU0xGWKqydn\nB/k8a1jpfpWP55HOZ03zuntimkBI2m8EgOAlZ+v6XclXS0uV5E330arqaYhd0YfX10YJPVdlAyFb\nBwJCKMdhfw4P0g89fPCiwYfOL/JHsZjSwpIHLocjQlUBgVatb33LTr8fBDXmiAL6zcljV1t29rIG\nSp9zLmno1/Tj9HflHOqainRc5UCuAilLnV/TZ/rPL/5OlomgqrTjNdPn9bLIO+WKlecoXiBtu4dl\np99/8pwRE1kZIyEky2pZfoT1AjjFh6m/VnvnSnlAe6QXf08EUOB+FXKKFOdh4v+K8jmZq3u9cc0T\nch0FsKW31yd4zl0zh3A/y1Y2KejaspdTN8m9LE+x5WevPml45MHIzgmAT3+NLkXRfaiqo3sXiFDX\nDeq6AciliRDJDQiok1A4nkwwHm9E97XxBoicuJHNZvPkQjbPrgJVhUFdYzyKLkni9uA7LJtldBFa\nLNA0y+RixO4L8bXzWQBjIVFM0ErQ1RM3u0zw5OS9F5Mxo+/i0bYtqiQAtG2LtkvEy3uwhVsvliyE\nC9lpoyl7sVjCBy+kYXNzE2eccYZcTHZmsxnuvfdeLJKb3l5EDIgLnQjAvTz33djEVJ/S1MI1k5B4\nb4vFYoH5Yo75YoHlcoFl06BtOyF7qAikBLqqYleUAaqqxnAQXRILgZui2T74VkjfcrnEdDoVl0Am\nPJrsRGEipj9MaQ6TyxpfVVW6nnB52qZFs1wi1IMkdBGq5MpVKeIR+xABVcBoOIxufum1rmsgLQhd\n6NAqt0BiNzSX3M7qGtUasiPuKy650A0c6trBVVT0zb2IUvyD3TUCvO/QtuzmEIWUzns0TVJKBAiR\niX0+1lt2bXFFf9CuMJHI+yT4ZteVmAVS+dKflGNnrZAVP8ircm9RPt7iuo4wrCzKBARQ3LWp3Ovy\n93kxX+deU6bHgph+3l7bQbPCg5TbzYowso70ZHkv1rlfHe9rCh6/d0jSuwPtQcTiK5O2gOO55ZEj\nOLgVWWmdYoRdAkMiHTy25Psi/Sj6OSLAOakjl36r5yCkOawgO341v1q41QK0ZEEJ4SEEuCoJtk73\n31KQ1i5sfaITx4OL0m+PdIuCIs0n6JGdft/iuYbHoO4vkiZFRSBcOYbIuXSVJJrHawk9Dn1UkASf\n3M6UUiBA3Ny4rPLMzByL0aAFbJ4HHLtiHYfs6PajfkfjXIcABA8fXLG2ZXWFeq+JlyIWxx1z8iAm\nF73PmTiH3LcDD1JNPNKXBdFhdzDKafN00httQoiI02WiocZUHF/9uagsv8wx3Na9usx9IH5WeLQS\nxb6RyFBURuxdZYZHFozsnAAOHz4CAMkCE/d7DIbZclLXDaq6gXNVJBkAqrqCqyqACBsbcU/PZLKB\n0WiC8WiCrouC/WKxkH0f8/kcw7S/p0r7gYajEeq0v4H9u5fLBebzGZaLRc+6wxqouKcHgPg9a61g\n9JVtC+sO39snO3lGylhHHpjsdG1OU1tJNNHhZ4QQ4t6hrkPrS//ryWSCs846C+eee67sC4p+vzMc\nOnQITdPI5ytaRn0hE6DC71td3vsVy4Fe2Lls8bWJ+37mCywXCyzSXh0WguPC6uGoAsSiFa060dIS\niU49qKH3nQBZMOd+xlasnZ2dtE9niul0hsViLvXEBGWQrDh8iVWnquAoawtzXSQL17IRYatKVhrn\nSPbxMFkjihrgyWSCzY0NTMZj0cAiEQwm0GydInKoqpj2IFl2qkIznhd6ITpVheGgxmAUSRr3sajx\n3UNzyf0zaTy7ziOEFsEHdD71rzZf0rdVnx8Mh6muItnRJIf7jSY8zjlUoQIqRbp6ZEHvxemPm3X9\nlcsQLRJl+Qpislf5j4ckpIhg1CM8BG2J3JvscBbzcwOA1T1D+t7401D8jp/bF2ZXE0j15API+7X5\nWakHF61txAKhsnyUQuXeZFS3CZMicqWwqp+p54qU7Vz2NXOo3Ju+J+fgQrTqACIrSptI/tJ4CMEn\n4TwJ31hXj1qwVn8RpBG5bIADIc9/PEb0HL5C6lIdOefgQxBNvob+HRMRTRh0veX7SATjVaIdiVMF\nB1flPT2R7BC0NFrkz/ueoMuthEx0vI8KK9mHQmk45r0qevymAS/vi7KTruZY9oqqtf2gJMqQjkMk\nmo+SZAcAad+g9NM0roMax9LWiSByD+iPwxX0+IMmzJmip/FD6pOcsOoLJATVUb9NqXxQ7xMeOyRP\n4+Lo/FCRRJ5vyrwH9Ruuz7xssGWHMmFTBIkVd84BITiVOcMjGUZ2TgC7OzsIQE9ATtoeIGqEqwpV\nNYBPg1vcluoa47QRfzQaF4I+EwXvO5n4ebP9cDTEoB6gThrorutEAGbXpvlshvk0BxaIWv+5uJXp\niUWTk65r0abN9Nqyw89nEJHa4lpqgiLJqwvXBk0qABYkKwyHw2LTPAu84l6UBFJ2XdvY2MBZZ52F\nAwcO4LTTTpN6YhdCLVDzczVxW1du7XbXJ3m8mDNB0EQBKK0hTRMtLk3boE0bc2Maub55k6SsN5S/\nB9LimQRoTt85J5axxWKJ2TxaEHd3d8Wis1wuZYN0lawKg2HsKxyMYThI/aauUVeRMIibFRCDA4hb\nWMpP2tjt2w6h9pH8KILKVh5HJMEyhsNhNvOLcBjroq4qjIZD2WRdpb+HiVB4FihCSCTLRXJfVahr\nvmo4paENISB0HsHnBY/bmusvtnEkOt47EPlEpmNADiA9q9Lug9p655PTU9lvNNHRY4UFuT3BC+iq\n6nL1VspEhJKU1Bek9SIf+9GJohzHRb91+XUvYqHHuwgJnHJPeFIyQ1HOdYRnz9wmYS6kdl6Xl9XP\nHAKTMC3Y9p4VlCIAYT3ZiWlGy0VPLF2bh/jb9KqENcUwe0IqMlEOZRvHXwUJPOCL/EkOIpHtVUUh\nNJYZBKTeY59zRAhprGqSwHWwrq87saQ4UAhwwSN4TbDUe+eKPrVCdqDnUGUFUHUqxAkEUAVQVbiY\n5om2JK5i2QlZ+QVktzu/pr1Xy0BwpF0bJcPZ5ddVxW98CKDg4eGisE19G2Mum1bY8Gtun3xffJPn\nlJCsUUIGVhp7vdVpLwgBT9Ybfr6M1yJHOvWQy8cEGZQVZ5UO1sP9YP2zSaeuSUiP+IZkU2LlUJzD\nVB9SZMY5F8fQcepC1mvnUrohrSdMjvYe84ZHHozsnACO7eyAiHrRu4JMMpHs1BgMAFfVIBeF+uFo\nFCNvjWPErcFwBDbP9wWpFbIzHGIwiEIZR19bLpeYz2cx6hmTndkcsxStazqdolkuexNGhNZUt22L\nRkXcOR7Z8aw5Q17Agbz49d29sjYQ4l41Gg1jxDbl962j/jDZGY/H2Nrawplnnomzzz5byM6xY8ew\ns7MjZCfuncmLpX6u1kTqPK0jO/1y630uTHY0MfXeY7FcYNksY/2JBQvgiVm0n8VkmPVVcdHNkYy8\nEuCYSC8WC0xnM0xnuV2n02mOKpTqfzAcCInI1wDDQZ0sSbFtfAf40ALIAkOtSGps4w5d55LvfSI7\n6b7oihYXruEgP9N3pRXPew8C4nMxQlVXqKu8X4cjmwUfXTG4PmrnUNWV7DcaDCLhIUJBaBAiGWGh\nqNOk1gd48qpdo09727XSVoN6iEoRWpcEMIC1tUxK8vjsWy+1VpT7/16CkjR96IsIq0J3HnNIcsOq\ne4+87/3mvsjC2vsUOY9liQKCEB63nuisPmuNq0txLwnhIVpVmIigF0JRQ8VzmBSkPtbfu7Uuj6w5\nllSOR3jUM9YTHf2c5DqjSVLvVYhOAEKgRKg4L+zklu6JVQgmLORYgGRhNgA+JBfXvF8kRtdD7lu6\nXyhS3KsZpCbJ+U03suUlhFCsAXuRnYJ8OAeXXKtc73e6j2kXs73IDlAS7f7z4ngjUFpn9TgN6fds\nidGkTaw7ql3LNsueAH1Qb0GNkdCS8J3GTeUy2eHKpxDgQyQNgSjNSLSSh2IccN9YyUVvPED1oaI/\n53rPedHzB4/D+xDW01TYt1ZpF0idX31L/p73fbJ3A1v5nIylMt9UvCUSCpczrvJEqa11fuJtZYRF\nIdfIRHfdPAZlhYpzkkfXoacU5ecdv/oMJx9Gdk4Ai8UCAETo6bwHKE3yVYXBoE17V2q4Kgr5g8EA\no+EIo/EEo9FI3GS8D4WgH4WzJLzynotBDkqQLQoNFvM55vOFBDPg99oVrm1b1HWFQV2VE1LI1g+9\nQZ9RLErqytqwcgHTPty8kADZHSBafqoofA+H4m7G+eGyt4rojUYjnHbaaTjvvPNw4MABbG9vxyAP\nIYjlSsKY8iKpyEzew5IJGJdX1/c694yBslhoYZjTkL0+i0UMYdy26HxJmKQeV9x/ysW3SwTJ+zzh\ncgAEdmGbzmaYzaaYpfDNzXKZ0keZ39EQo1HKdz1I7mK17JVxji07MS/1YCCkomI3OiJQamTWkFXa\n0pXucY7E0lMlTVlGXESiBWgASnnhumRBxnddXDPFsgNQlaw6HLyiigskhw7Om4JjGh0RyHk41eY+\neJAnEHGwidTPOLSv7zAYRCLWb1/vA5DGIQuRWiusrZW8IPatHuuEqBKhEML0uNMQRWbo9ane89TD\nZBzsBf3MVcsLp6tCj1Ne9Dnn68B9m4WUvqWmfK+MGOvyq25YqctEVEh/hjV11xOOszDFxCCVRYTF\nIMSSiU6fdOl09XjWYh5nl/37MxnhenfKOq6F1PxbTp/rnrXcISmafMghpQuhXAjYKrQ4KVxPCaxc\nfhHc03yYSX2QenSuVCBByAtbdiq4kOuDteArZIcIgXTd6PJSScITyQgEOJdJS0AMFOFcJQoPLScH\n7LEvSHdC8BwhHSPXGdepEsg5eIOUn+vekQjzmoSHEOAR4BAtTl3IYyRbbKjMEqd9nLFc3Ie8LlPK\nT7R29NzhzGihAAAgAElEQVRe9VDgviEKCL5X/41EnlNfl3G1qrTJPLAY4GAFCgfZYDJYWnZKchcQ\n572Qm1PWDf5gdb6kXtmy8mVlrnQOspF4ZZSXlRR/y/1d5xK5bxoe0TCycwJgTVcIQUz2PHlmQYH3\nZQxkX0a80rkpnYfvGiyXDZbLVvb+hBCS284ARJQsQAM459C1HeZdPDNnOp0my8YczbKJQQlSFLiW\n37dN3KtTl/7VrJ1mYbpZNsX5B0BeYLI7UAoyEMKKRkwTs1IYjYs8gHzGy3gcz5EZjdZaWABgNBqi\nHg5x5pln4rzzzsNjHvMYsWgdOnRIrp2dGNd+e3tbJnMhTckljzfNO+fkc322Dj9z9YyWkZCy4XBY\nEB2912exiC5s2YKwGoc/n7NTug/mRbSTyVIIUGoftuzEKwafAKK2NbpKpmAEo0EmOamfxb01asN8\natO6qhDSawyWkaKoJfeLuMB6cTmrqwqDOpHU0ShFVBPdVwygsFhmEuDjAusonvdTpWhmQqqqCl2X\n95XFqEbxnBdeFLMFKe6z6LpIJpmkRrKRcuAIoXPwLu7j4DZlNTWJwJT2GjlCjZif4XAk7nREMXpi\n23mEphECyou+btPSmpAFP25D3ZZrBX4RHpEFa6DXb/IiqpdSFsCKe5GX674Q1icTheZaEVo+r4PH\nvX7lXLBYvRdZ0rkk2vv7+5Lf1llI+FU2IVPvioXNDHGPdHlPBgdwQSiFYCFthYo6izN6jpR00z8s\nbJbuZTwXlm6WWukRz17Jgi+p5/KzWfAt5mAtUErNRxe7LJSh2OBeWHGKfObC5F6XBX1NTvnzkMRp\nfi0JUt7vVtZTQN6cz09iQdojnrEihSnIThy/MSHnAirH/MzJ+ntfyJYA3YbK2sHPSZbNUHzPliKU\nFqOcINa53fEYCqDUT1IwCZTzBD+nGLNrCU9pQc15D9H1kZCelhUQQoKA6P5LPJ77pIXnDSY8UIyj\nX7+ycsU8FGMmtzfPweIBoiw7OcpnPwsBgdR4v7/o3c5l0IQvj69cvXxPVjyw5bNkoPlPIzjfSDCy\ncwJgwYZNsEntmr7NQgO7QvHeCd6EDsQFr2u9RF5bLhvRFsdwxAM5QJQjQ7VJ+J3P55jOppjNp4ns\nLOUgurZrleWikUHKQos+MJMF9mUTD1dsu9JKwkSnuNRCztBEpm+h4j0s7I7HB3QOh0N5viY95AjD\n4Qib21s4cOAAzj33XFx44YXY2dkpiM6hQ4cwm80wGo2wvb0dXcoSKWDixoeC8gTLUdc4XLMmO845\nIQps0RmNRoULGwAhNUxElikgBIdXLgREygskqcU0tnN8rkyaaWLV5I8PeI1ttEwHYHog5PocDNmi\nk10d67pKe1HyPhxpUyIQVSBXYTQcYGtzE5tbW2kvWBTw9CGCkezEENajwQDjUSQGWUAEfNuh8T0B\nH+lgt/Q7HRGOiLBYzHOI9K6VvUd12qvD+4gq59CFNkW3y3vk4rOTC2jn4F3aw9ApLTAIQJe0wLF8\nTMKoAgZ1dsHTbdOm6ITsmup9WAkLnpUHZf32oUlF/3PkXxeC9DphOskuIuCuPO847KFPuLSVSpMd\n1+u7ewUkQC8djXhvzDHv2VrVmvL3OM73q6RRPgu63lT+FNFZJ4ZkYqGimAUP+DVjNyYDftGC8Wo7\nZwLrQ9nmPkX24j02pSDLY54Pq+S2ZVYRRNhnq0tAPtgSLLxSr7ycz/QMJcnlmlaEhwVu/liEXLlN\n9/P8N38XmAITAeRAFMDcX1urpU5EGs1zY0j7n0iFB+RnEZMIJiEA4AAXKoQq5ZFdyXR798rWH1tC\nQGQ8QfLD7oNsqdJ1oMmOKPUS2eP2cv0xk2qKZK4Psp5mUpqVpYWlg8eoIiucdFCKmJCIjhJFxLKj\nGUC8j0lin+iUEMGeCY+6t+Qm6jvFJCj1uawEZqLTxVe2BMqczTlMZUvj6r687NaCO7GqpzUllHzr\neVKTHbEy9uqFCdxec/+/RvzKr/wKHv/4x+OHf/iHT3ZWVmBk5wQgew0A1In5F0LycBRPbx+N0z6d\nYXL3SRvcu3i6dLNsJXx127bFvpeoSR9FYTUAXdtmd7XZHIv5LJGcpOXmCT2Ny6pyGCZLC59noq0G\nmui0bSPR2PTg1fsj8qTeV3iWm9e15SMkwZwtP2zRKV2GfGFdGQyH2LdvG6efcQYOHDiAffv2YWNj\nA8eOHcPu7i7uueceHD16VFzYmDyxxUYTnf4+ixjWOwZvmM/nYknjNmVLzng8lvbU+3R0WpqEtMmF\nLQrFZaSi6H4Fma2jcBOgyU7U+kLaRrePLg9PxkwYhqPotjYcDjEYsouZkz0WEkWLsutAPagxSHtv\nJuMRtrf3YXvfNhw5sa4sl7FcwafQ0sPoGsd1zS5r2W0twHcxUgDrPpn0V64MbEDq/q5t0SWyG0LI\neWQLELu5eN5DlF0Oef0pBANZ2IK4sQUicMScUklBxTk/mgD4FLQjGqmCkIx1JIDzwooKHVmNX49n\nBXHJ2sTCuhaqi3TUv/rzvtVmLxz/ntRfgJXyrSM62gKh09Va8vy6mmcRIHq/3yvfq3WZCRqEcGZh\nFFhR7qrPSyLCpCeEIG560TUKWUFB/B4FsejnSxNIEYB5fCPPnfJXyLVTCOXCBbSWn9IX0gwIAbIB\nW9pAF1ZYS7w5EImFJ3Ai/XuLlFb7AN/CqXC++2tC7EcV9CZuJpn9KHpRmM/7dFbbrv9hJkmOHLwq\nj9Q9W01Q5k3nj8lO/jtZa+Hg0kLqkmu67tMSktrnQCgo6mW1DDoXBRFW5JjSXEXEFu5esJPURmJt\nSg+R9kl/C12ULMcvuM8Vo9JzIlgDRXClQKtzk76bw6szU5a/QWld0oSnEsKj5xzInMtvQyJNSvsQ\neq+5ouVVuxrqUhPpQEvajVDPMQ5ADKG+qtQxYrMX3vCGN+DZz362kZ1TBUx2mN67rsJoNMZkMsZk\nsonNzU1sbW1iNJ7EwyIHwzRhpj0jTQx5u1g06XycObwP4i4lAmJVofMdmjYKvbPpFNPZNIaYbpbR\nRS3kQAaVEKUaYTxOBMcXlg0tqMtBpIocrNNS6AUcRKKJ6Qcl4IWrbVssmyU63wEUScxoNMJkMhEN\nubYuMdEbj8fY2NzEGWccwDedew5OP/10DAYDzGYzHDt2DPfeey8OHjyYLGH5AFF+Nu9z0cIz54ej\nt+3s7AjRaZpG3NaYjG1ubsbDMeta2rnvulYEU1hmMgJkodgpn+TkKVMIRzE0NUAUF0qfFmhNdvr7\nibieq6pCVTsMhyOMRkMMhoNkdeCNmHlRi8pWQl05DAaR0E1GI4yHQ2xubGBrewvb29sg5CARdb1A\nvYz7yTbGE2xMJpiMJxiPRhglAh46JSgqt0ateQwgOR8EisgF77Fc5L1HPuTIcEw6+5pNTbhj/RKc\nqzORSgunaOULOS4KXkwS5bMUTEAHp8ghw+Mq6pJLCu8f4j7RJ0h9ob/v1rbeApIEaXWOiCz2WEOY\nWNO5BlnAXiPIAkVd9j9zlA6SVHXer//iGUqY19rT1eeVhGaV+GXyk0qxkseV8oWgZf41FZEESya+\n+j9FXGO7sZtitLxo7a12U8wXlw1FWjogh85nIeKuybMKoqVIbhK0CPEVefM7Agtpuj9p9ysUrxm8\nd4MFxjQh9UiSZPE+NNVCLJCF0X4fJ1VZkpJq+76VJQv7Ipbn54VQjLfV/sGWltIyzgJ/wPr+z3nr\nb5Inrt+0vmmyE0KqPviVPAWkiGvk4MjDSxXQah31+mLOVwpbkITsYjwijlN24JUe0COOMjblHmW9\ngPphIiOgNKZ6bU6a3EQmg7UdOf8i1h3pT3L9y96/yqHyVXZVrtTenfSruD9TzRkyqSuGE4CVTT2q\n1NwndL3Gz4Pqi1CvmXRmRW8em3ptY8Kt28jwyIaRnRPAYDAAgCT0O3SVx3g8xmSygY2NTWxsbmJz\ncwvD0QjO1VGoQtJstbxXpsF8sZTAAlpjX6lJoE3kZD6fYTrdxe7uTjz4MQTARwGZJ2xX8YGSFZwb\nYTgcFPttWLDrny3Ttq2E/12n6daTsZPN6W7l4kkiuos1hcVmOBxiMpkUrnHa5Y2tYtvb2zhw4ADO\nOeccnHHGGajrGvP5HEePHsW9996Lu+++W/LDQnGVzh3y3gsJks2riex0XYfZbIbd3V3M53Oph9Fo\nVFieNjc3JZ+8zyeE0m1NW1ty/fm8LhBbUuK+LU8pehL7aYe0VwDq1OsUYakfIU5bdISYJSsOuwMO\nBoMkD8WFQNIPSVwiDpJRYzxKJGdzA9ubW9ja2sLW9nYkIIn81sl1zXuPSSI6k/EY49EI49EQBIKv\numydCck1RctPrDXlRSGVu/NdslIusFzM0bRtaXlKxBNIgqQ6vK+MguOSu54+LFVFP2KkPGW3PhUx\nylUICAVR9T6sIVUVKnUmFCOOrWzt43zqBXxVwM/5Z9cNfo4IXH1SkdIV15PjzE3riEIffcsRRyta\n73qDrL0v5gPPev1Ux7SSdkw/P2ddXdwfrJCsJMWuEzJEhmfNbsq/D4rwICsfijZP+8MoZKGHy8QK\nHqgyc3qF5XuNMC5Cl8puJhboNSjlQSTWBxLLxwpInKPSmCuVDiiIBNcGk6ccKlwLzgUJUoI0twWT\nOK7DfhtJOlw8TlMpoVaLoSyUivDnOlz/HHWDWFvEWyApXArrhy5X7/lycGkqIQccqlwMgsB9LyCA\nfL+fh2RhimzIxyNny7wrwlO8XxkTASEQKFlkslKC4IlKy01YLVv8Kkf703XU+0SUFWFNfQTpH5Lo\nCtcp2qJPcoo+kOc9JpBysHia+x2xK6IigonIkgzs4umJ6MT6yiQuUzuffuZcj2T3+hMTHf7MOYL3\nZR9my+/qHHf/57J/Ce6880686U1vwh99+I8wHAzxvOc8D6961auwtbX1kDzvvvCJT3wCr371q/GF\nL3wB559/Pl7zmtfg9ttvxw033CBWTiLCu971LrzrXe8CAFx99dV4xzvecVLy24eRnRNAjsTEZwtU\n4gK1sTFJAuIY9WCYJk5KwnWMNtYsWzTp4M8QolmaB3/cn5OE9K5Fkw4M5TDLy+S6xh6ustgq7XQM\nERzPJem6DvO0l2Vl/41ngYX9addrdDVEkOeJSp2TI9aOJgZMIKIYSW44EPcwIB7GypHfmGhsbGxg\na2sLZ5xxBk47/TTs378fzjkcPXoUBw8exJ133omdnR1470XoHA6HACCWHg6wwOSqrmux9ui9OkyM\nePKTfVXq4jrQJLFvdRGLAEFOBI9ntqRQz+m16zyIArwnhNBzXxNhvrTssGaJ3ej4GgxqDIY52EU+\n24gnbF7oXLLmcGCBMSbjeADo9tYWtre2sJUOth0Ph2Jx6chhUNcicI8GMXQ1R2CLoaijQk1Oea8q\neL2AICQ3kpBIbZMOP8yBM9jl0HuPKkWEGw1HcnHgAnRlWPMQgup7cV+bti7y4iWaRGVh02SHozhx\ndCsI8WCtfnZt0cE9+GyG2Cd80V4FMdHC25rxkxf9TL5YAIt6jBzIgscqQWlH18xLhda498y+Fl3P\nXxxZy61ZxDXRWSUc8gCskdpVOvmSdPeom1J7W85BWVDk6FZZLiZkgUj4tiIkhYY65TkLuHn/lwjm\naszlwA2qDKSEJcTn+FTIbJdQpMXFnfTkXBwzLm/cFzIlfyP1RWXVKfLlcnpCiKQW1XvFjnXdBNIS\nYJy/AiTfhLim9YMLeO9Tvn3RoHsSEEXauJzriA7XYXx2KPpJvw/oM7wygYXsfSkUIyLErwqpRFQI\n0BJUhpxYwIr+oNmFrmHpk6m+1UuPPcT2Ajejg3MhKixTNDoRrRU5y9wzPrsQtLntNMlIvwushEBW\nVnA/iEEScp2mWYclAUWidDHUmFTlVplZKXRpocv1GefiPI9LFNBEeAqalv4JOvmgyXxRvVIeno0c\n5ZsK4s59UvpNqgO1fhRX0ZTl/sd/iWVnsVjgpptuwr333osnP/nJuPTSS9fed+edd+LbnvRtuP2u\n29Fd2gEN8IXrvoA//MAf4pN/8UlMJpP7/cwHA5/5zGdw5ZVX4rzzzsONN96Itm1x44034swzz5Ty\nv/vd78Y111yDJz3pSXjZy14GAHjc4x73sObzeDCycwJou0R20iJVOSdkh4nOeDyGq+pIbtooEDXL\nBoumQdf6UqBN548MktAXD0/s0DQei0UMYDCbTrOg3nUpvGVceLyPm7dD1wEhCkXDQUyvTafYz30o\nBCdZaJEnIFITkiYDGprs9Dfvc1CENp1jEklEjVGqj/F4LNYQ3h/Emvzt7W2cdtppcpbO9vY25vM5\nDh48iDvuuAM7OzuYTqcrLnFd18kBm+wOp6Oo8R4dfSaPPmSVCZscwslnxqg64gW0fwApa56yNc7J\n4Z11NRDLA1G0AACU3KNKtxd2m/KdL9qnL6AL2UmBCTgQgRwGKpN0bNm6rjEcDDAejbAxGWNjYyO5\nWG5h//Y2NiaTGCmwHgCJvDhEskwpPHQMlJECHYSA0HbwLlttqiQk5zC4qQwUEPd+d/BdhwZpb1iz\nRKtcAYlIxs9olK+27UAN5ODIylVqYSMV6XBQLEpF307nXVTKRzzXJUcZDAjwBeGIgo/W9sa9RsF7\neGgikgicUjTo/tIXrvqb/7VbotzLArrSUPPF1q8oMLoVwiMCyJox28+LFlCdhMstF3Gd5rpL5kBJ\nd91sKbmDFib6FgCVW6yoj/v5QVQgBSUEyT4xsJtbdjvL7jcs5CdiG2K7sgbeSXtTQUq04KlzyaVi\nQbEn8oLlrChYu0QiSDwCUktHAdsBLgl2URiDCGUB8WyewMI4H1gZcpQrnaeVuuQ+odoMSEIlrfkd\nORBVIJRkJ9Z/2guHvfuGroMiWTUG+gQG6UDuvqvUSvrps0x6AA/1Xs2poBT4gHKEuH5+hASqtg/c\nd3pC7olC+ngSyCmQuI7CZUtPFuCzUqMcuwSnoyXHClLPSQ8BjwRFbEgrQ8r8RaLFedTR3CD7xzjV\n0HvmfZY9PY77clRCOQSHwrrDbvg5kmlab8BNFHqp9p+i/iUmOiTkEijJjiYwIcRgKuW8pOZNTY6K\n9sh97v7gU5/6FJ75rGfinrvvkc+e+7zn4vf/8++L4pbxa7/2a7j97tvRvbwDTouf+X/2uPntN+Pd\n7363kAmNO++8E29/+9txyy234IILLsA111yDSy655H7l7b7w+te/HnVd46/+6q/wTd/0TQCA5zzn\nOfiWb/kWuedHf/RHce211+Kiiy7CC17wggfluQ8mjOycALrUubPGmd2KItkZj8cYjUcAXJqUW3Rt\nh2XTYDFfiJ84R6rhgxb5HBKerFsJSjDDfD4TQT2EEF25A+UN1SmyFXy0FNVVjfFojKZqMZ3NZDNu\nn+wAaRGqso+wtuz0NRhay66tK9k9rhVCVqVN7RsbGxKcgN3MtFWFyc7pp5+OM844A/v37cfW5iam\n0ynuuece3HbbbbGe6uy+tbGxAeccdnZ2sLu7K1aCfjAEJjhs1dH38cXpMtFhEsXuTX2hM56izKFf\n4yZzVJDIZdHikKN3sVYrpuWK+hUC2oWVtnEuWlmq5N7oXAowkAiPjrjG2mtCEOE8WktiuOhJ2nuz\ntbGJ7c0tbG9tY5L2dTnnIoFOv6/Ioa4pRsZLVp0qCQadCqThWHADgIrJQ+xTfG6OrrumWcY9Ys1S\n+jhbMoeDYWHZcbRM1qAOlXPwVRXrujfm6nqwMj69Hp9MePpubEyMvE9+9v3FTC26WG2vTshO7iei\nVdVkRxbcnL5249D5YaGHrQR9S6K46REB8ND2nb20i1rI0PdoATIK91Tkn+/p3xvU5/FLFP1bI4R1\nV6kRZo0zqXomJZits5Cx7UQF0k3yVxBrh5O8rdRIFnYcwcWTT2Lf53pwPaGIVD9HVnSx8KrrROuy\nMzl3zLGk/aVtQgBHXROjB8tWpJhIyH2SXAVyISm2SpIZ08wNwFbLXIeKtPUIcH6l1LdWw0YTa9WV\n6+cK0dHtpeZ6IO+FKvof5wuIFjOWydP3cT9jDpDD5IbrW8ZNyIqGTPyTdUfNuf2xwOUu25mrfJ2F\nNqwR+Ht/rx2O2VITXXchLpPriBgf6NtPIxIeTVz5+VnRpbPhY8E1nVoLysmsvlf35O61Ju9U3sNl\noTTGWZkUUAaviZ4oVQrY4vMzdUKFFiFIOTntzNESmYTu1z2yo74DKBEePSeq36QnleST+5tfS6T7\nOHz4MH7w3/wgpgemwHMQCczngP/6//xXXPTYi/CGN7yhuP8DH/pAtOicpj58FIDHAB/68IdWyM5n\nPvMZPPX7nopju8eARwHuTxx+/Td+He99z3vx7Gc/+7h5uy947/HRj34UV111lRAdALjoootw5ZVX\n4sMf/vADSv/hgpGdBwCtoeVzTyidH+DTJsa27dTZN11yadJarjhQ2B2HBSp2veK9LzxJV85lgpP2\nWMSDLaObWkjpN8u4wDZNKweNskVFC9NVVcVR7UuTbF+rVBCgNT7qLJQBKiDBeIKNtAdG9jkRiVVI\nBwbYt28fNjc3MRgM0DQNjhw9ikOHDuPw4SM4cuQIJpNJIjmbGAyGae9PSFHWGnFvG41qjEZjDAZD\nVBWH+Q6p3tnNDNJmw+EoEYcaISBaFChbHhaLZXQ57HzSMHFIbkRhwzk4OFQUhLT2LQjiLUK9hZaF\nP9nHUwoAhCzci0sWUSIlaVN5EuSJqriIsjudc9nSOGH3ynE8w6jmg0OD+NGH5MYmEdbSAuK7Dm3T\nCIl25KIlsk4b/nNBCjLohcQpktjGENO8v4nT6+/7yuMLMQRsOgDVIZ/J4FioUwJ4tpL5lX7Mkmnw\nIR7+ClY2hGIhJmitdRbcmCDzexbAwEoAouQuR1nrDLVgJmLoKtWeakxxullY88wjirGo+wJU2bL8\nWgpnhXZyz4mM/yHJd+LxWbCBEi9EAMvCFTkmVlj7LCEFSRrSGlSR7pWgxjsTAtKBzRQFi1zWvcsT\nQnZxK3TzxH85IRZR84+4F4KjGBJrmLMlRqcRUsOKKxJy+/Hz462K4AJKW49CIiQHBHKyx6jkImqv\nTqpbclE5haDaHYBEbtCNFVJ+5SsmCZT+zW2WBUCS53I/4AlJomL32rhveVNfqKor15JcrFXXqkxo\nFclW+ddpcsRSIKQzvHJU0QAUZ95oRZukFHSt6wpFYV3gW6VOitszKxCioud63d4qpLiuu3WPl/cr\n4zp906/v9B2vVSy46xG1ho3I/Mf5X22rHuvYQ7jneAEFAish4hgIKYCDS9b2uqpQiZdCnhtzT0Qx\nMHj8y1hSn+l+7OT7PB6LubQgLrF2srIx71fK1t2chnZ7uz9473vfi93dXYSfCMB2+vAKwN/t8Ttv\n+R3ceOONxZ7Tuq6BdjUd6ih6YhTVG3D1S67GzngH/hoPbAK+8aAPEK5+ydV4+tOfju3t7dXE7ifu\nuusuzGYzXHzxxSvfrfvskQojOw8AJAteJRe5CuxT3vmAtu3QNMni0UXrixbueJhWVQ7HrMMkLxt1\nFgwR4CrABzRdJ0RnsZhjuViCJyE234YQN53rc2XKzddRcI1RkJPPOXrEJqy65OiNoPw9E7RI3KLA\nP5lMsLmxifFkXLjwMNmZTCbiWiVkp67RNC2OHjmKQ4cO4fDhIzh8+Cicq7B/f42NjY0UyMEhpPNX\nmqYBQBiNaiFFTIgi2eHN7ZTcyijtd+HzX+I5RgDEchYDErTiHhfLCkRBKbVTiC4wUVPPEbsGiezw\n5YToaBO9CNWe67OvkczCLYdgdmqCdiAR/PmAtqp2KQ9VOvdolMjORNwIh6NhtBYl6w84/Knv0uUl\njwhByE7okhYZhHpQA2GQ9niwVJz2bCUyw8QpE6BWXL46HgNMdNS+mLigqEPo1AV5X+5vidrfsj9q\n7bnW5ombXSIzCHnRJOQ0EUpXGSIqAhlolxBCivbGQUV8h9Z3LHFEYd31r1ULauHWqJ4hJIfrSBMe\nlJrHvRZfFpjSA1e+zcJkSXRWBDtisSklxwQikRXaI03NnOTxQnR67/k1EChFLAxM2FgIk7bKQvZK\ngVPeRTDk2oqMLSkhQtL8B1BSEvD+nEIgYuFYHsMH1KpHEpV9g+9UASB0M7DLUGAJmiiRCfV7Rej5\nx1HBEj8v7mfBjn+T5qt4giS3ZZRGg1Lbc/m4vHH9KolOQK7/dVY8bgNWFKz7Tq8B0j4BgC+JTvE7\nufh8nlzXxfs01LTVnvO+TnHHCqX7ElU1+Qe/9vKqCU0cEqzk0p0jlUaI8nryJwpHmZPkx1hlKeWn\neg+SJjwFUeB+QPr3TBL2Ijv8g1COZTWmi/zw89TckYlLtLrAcUClFPxFW7plnldjBWVd5CpnoqZm\nwmKt5Axz+UulUWyj1MOYBMsYDkLQVpXAed6+P4Tn61//Our9NZrtpvziXODIXx/BdDotCMlzf+S5\nuPFXboR/sgfOTR/+d8B/zeOqX7qqSOIrX/kKbvl/bwGeC2AzfTgAwvcHTH9jiptuuukBW3dOBRjZ\nOQHwJOZcjgblVPhlIIaw7Xy07DS9MMJADk2cNRRZa8xnxsznc3RtEkABgAhV5eC7dO5OClu9XCyw\nXCxFmI5uTXFj+HLZYJ7OlenvLaAkKIckbBNWfU/1xKcFMiJaOVeHLTtMdsaTCSYbE9kDw7/lAAIb\nGxvYv38/tre3RSAHUXTbWyxx6NBh7OzspOAKIVluxpFIdvE8mOg216mDTSfFOT5cNu+jexdbdXi/\nUSQnkQB5H4SYyoGhHHChK/eCsFAeQuwPcbKOpvgcxjSvi0Jy1GIv87gspFljxsJroeEiUpM7CdGp\nqwrDIe/lqSV4wVjtleJzcgb1AFWa4PU5OWKl0BO3J/i2Q+sDOuqUstPDOUJdx76DRNR0ZD+WEHzw\n8InkByZBoTzIsr/Ya+1aAbVogwlC1yWymMYX12O6R+o75LRbJly8N4GFJfAClgmojI2eoCTjA3lh\nZTOAubAAACAASURBVGuhRwAly4y26uhXqDGly11E9koSHLtb9S1gLrnc9AX/dWNYSw19WSXs9Xno\n3ZNIwzoNsDyH+5NutkIz389cT1jMTCCmo0lOUQ7SXUGEj+KZSlgUQUmNO32GRqDQq1/Nwcq6E4Gf\nSUdKOiSFSOhpvjPZUYJVWQWJ6GR3vADEzevpzqINREhLgmUIWZhmbXOgaLXl/Kd8ZY5O6V8tTeax\nIoej9vK6DkX7Hkf461u8uKz8WbYqcR5zba1LUf+Gvd+6zhVkR8bQGoFVTycql2UeQlYCBj4rTbVv\n7rvE1byGLOSU+R0L6LnvSjLxVbKiRHyV2XXcvneL6rYkZFAIYO/XvMpQb4yz0oEruGzb1EKhvBWQ\n24sBn0lJvByl6LFq7XTiRqoIknA4PZpLq470YyYzPO9KfZX7j2X+LOSbfK4gH4i8vi/nfirzx32M\nkic84Qlo7m2AOwF8k/riNuD8R5+/EmHtZ3/2Z/GHf/SH+NzvfQ64CKCW4L/q8YM/9IN43vOeV9w7\nnU7jm37MgnHv+xPE2WefjfF4LNsJNL785S8Xf++lCHkkwMjOCWA0ir0oCth5kz4LQtnP3qfDCbs0\nqSkf1ToObq0xYsIwn88jkZkvomYBUZBCcndqQkDbNJjxmTvLuPmbzcHBExZNFDrni0UMtzybwSvt\nmt5Ux5rxvuZah/FkUoO0SHS93/O+Ar2vZpL2zVRVJSGbWfPGZGd7exv79++XulvM5zh85CgOp1DT\nXddJOGjejL5I0eXm8zmaphHyxBeAMiy0z+cH6f1GOrgCh61m6xS/70faAvRiXX7GWiQWkOOhZJAA\nBAyZaHlRXqOdZi1w8B6eF+ee5slRDL8co60NMRrHc3eGw7z/aJj+5rK6JJS1TQPSe5couahV3Ce5\n/QGgEw2XI4eucuL21rVdPJC2aSV0tfdeXOxSjQCgpDmv4kLHe34oLjJd16JpluCoctLn1F6zzufw\nzpFQdiByiVB5+OTmBIKEzta+/CHw2U6xX0SXRirGLUDZ0paETy3ArAj4svD2xAcmqb3f6b7TwScX\nxrwnQfc1x/6PyepY9chOIVQJOwmyg3kvDfvK5WPY5dD7PqehBbOslV4n0JVY/Zwtmiuf0x51uO4C\nC04kZc5FvS/RPOWLir/keaxdlrSUxFakzGUXKwuiK5rSCoswL0EPKOczlEJ1FBRj7QQk4sP/SZuk\n5FjA14JxSjMghc72kQBF0p3jYvG/mfQA0n9DzAP3/86nukXqFz5IF9uTKStoMgNOg+suANnnKYd1\nRqoHOUQ1rO8XnGch8iFSiKry4soWZ+A8P/NcK/2I86MLoAX7lOe8Vqa8Sj30iF1q0pBqnMuVy8/u\nrwE+UJFGgC/qT4RzZkNr63hNX++zpqLOeuOvuEURiX6/olC0D+fv/gw16uVS5kQAEgWyqnJUSnJi\nuS+zxnNNL7eqD/QtVEXfDeUZgsH7ZNHtVbEaazyOfWDCzO2SCer9texcddVVeMxFj8HX/8vX0X13\nB5wO4HMAbgH+w+/8h5U+vm/fPvzVX/4V3vnOd+KP//iPMRgM8CPX/whe8IIXFMcfAMCll16Ks885\nG3f9t7uAC5Eb7r8B5AhPfepT7zN/x4NzDk972tPwgQ98AHfccQfOOeccAMBtt92Gm266qbh3c3MT\nhw8ffkDPe6hgZOcEwGRHExc+0FC0x4nstLyhHemEbuVm5Fwl2mPe7Nwmi818vsBiPsdwMEBVx83o\ngTySwiEdMjqLe3X4UMvhIO4ZIIflMv5+NptjmqKRgUjyWwo0KDXK6tLa5k606F7cvXhS5ntiVK3o\nPjWeRLIDQPYMAZDABkx29u3bh+VyicVigdlshkOHDuHOu+7Czu7uCtkBYujqY8eOYT6fgy1Mmuww\nyeFnFgsc5aAI2gKky8nWnGU6z0hrgQAUhGN1EUCyBHjwWQl58gTyBO1E++SCKxLQC4LebK+fC0AO\nuxymfU8bGxNlxRnGYAZ1jXpQF0Ky9x5daEFpnxNbVzhqGZOzoOok9nc+C8fB+wGCTwfILpfxShbG\nELz08Uq5bMVADtk1INd9JCB8IOpefa/z/YNv48UBAyKRJvGx9rIgZwIaD/WN7RsGqR3SPjgGWwJ9\nak8mO9n1lEHFopuehGx9W9UgskY5hCiUcpCE4HOZuY9FAdnJwabstriOdMWMs0VplUDr1/74FsK9\n0q9LMSUrDFbJTinUxZrQ0CSvxHqhbP29fE/vAFYfkoAahZpiQPZU3plikP5DEfAc4hwhyIb5vrVG\n8pouF5SVKLmGQs2PHPgA4g4rpczEiUkJC2nIFhZOi8kOa63juMpEQoiO85I8650TBZP0c30kwTtz\nxzjPd+nkGCYhqUy6KtRH8p7vze0X9pDZ+6LwSq8R8qfrPPfDOH5Fy45sXY2WHRm8K/N3Jkl5DSxy\nQLQy/wnZWTs+yrxz15JxhzSvBJ+tZqltvPTbsu/LPK/+XUWfSkgCuQ6p/G6VSNwHenWzQvDuz0+R\nW5uQXcO0NTUTnpK4MAHjcsjU30s7t696toxHNRYpuWuGkNbolaGNvA55mWeEaPXq8/5gNBrhEx/7\nBK5+8dX4xB9+AgCw77R9eO2vvhbXXnvt2t9sbm7iFa94BV7xilccN+3BYID/+Kv/ET/2Yz8Gd8zB\nP86D7iCEfwj4mZ/9GTz60Y/+F+V1Ha677jr82Z/9Gb7jO74DP/mTP4m2bfHmN78Zl19+OT772c/K\nfU984hPxkY98BL/+67+O8847D4997GPx7d/+7Q/4+Q8GjOycANgaEIXmYTrYcZgITw4y0BUbmB1C\nxRFCnBCMeChhSOePZIsQ/04EoBDQNtHaMN3dwXS6i9l0N5GO+H3VOXjnQC6gbZQQ2jTx8Ma0kAPl\nhM/PYDe3/mSeNetqvwMg2ne2aunDHeXsnaaNE3paMOo67ruZTCbY3NyUQz2bpsHu7i6OHDmCw4cP\n495D92K5bFDXtYSZDiHupWFS1DSNuGlNJtFdTluR2HWP24wnUh1EAIBYf5js6TN0tFCoBdd1Cx2H\nUAV8sfEe4N+VgkNgi0+xSgZp+/hn/JIjsw3TwZ6j8QibGxvY2NyIh4Ruxb1P49EI9SAFD1DaKtn0\n7qPw7F1IGtQsRAH5hG4hG2LR47Mo8ndsiYwhpePZSvG8J49Q5dC6rIUngiICTAZ00VdJjiafndrv\npk8815ZHr8hOp85DiqGmy7NNOBpQlawauf2DuMTFDMZoewTeL8Sfk5KN0jjqfN77hlKw6JOTfDZI\nFkghWs/sqla4rmkrUiGshZgdLXhymnuQBs7TOivN3kSDS5Y1oiXR0UJWFmj0PVxXXI9MCnM+ynt1\nOillRXYj6Y9ljHHVIOMs2zNS9ZQdjijvLwDJfirOb0jjOROOTDykvKkipK7B9dMjXNzZ2VonY04L\njmU95nZk5UeqK9nDB/ms1Eb7GHCGAIkowGmF3H4qc3IJEQn6e6nFgsSE3j25f9NKvwAQgyqo/rWi\nXENQEnFWuUuqPaIvygMhaGUkSx8kQHmu097alvsEFV1D6n8NqeHzfTR4WJRTeUl/0lMgozM1iDjU\nydhaHYOZNGkbXRbAQygyzxUmhE/3fbnzOPJ6Wb48Z+q1SSeTu0LOHbufxWYs5xcAcCGogDOuWDNZ\n2cfkPFrhNHGj1ewHoZiK6PRIS4J4qYRcj3rtYbIjfZ9i45ZF1/LB3nXJuPDCC/Hxj30cX//613HP\nPffgkksuedDOy3nhC1+IAwcO4I3/1xtxy2dj6OlX/u4rcc011zwo6V9xxRW46aab8OpXvxqve93r\ncP755+O6667DrbfeiltvvVXue9Ob3oSXv/zleO1rX4vZbIYXvehFRna+kaG17axVj1G9huIGpDUJ\ndV0Xm51DCCJgd13c18OEJvi4kb0eDDAKUbvetm10W5vuYjqbYvfYMRw7ehS7u7uR5KSNfkxYyMez\nd4rB7n30MXdO9tqEEEBKwOc9N/0Jvh8SGcgLj3YLY4sJa8rn8zkWKtQ0E539+/dj3759GI/HICLM\n53McTW5r99xzDw4fPoSdnV0A2QpERGJpmc/n8n44HMqeH7b8cIAHJjv6sFYtQBJR4aamBUsmRPqg\nVP1brYFnITNaBLq4vygFK+CDRus67s+qXIumIRGc4l6pGA3KE5UEI2GQzgHaSMEGNjbitbW1ma/N\n+BpDl8fyLJtlCkyxkLQq5+CGQwyHI3GVkwleCc6cj5AWgtjOOXwz79FhQhF8dHWr6hiyNp4BpF2C\nIgLYHzpv4u2HYJZ7Q45MuFgs0PlOWeQyYdL3kieQi2dNNXV0q3Npw7Am5RyJbzgcwrkqWmBTWdoU\nNZEFYOcQrSZ1dr3gCF3ihhYyWYpnoqC/Mq4VnCKXcnGjeqohgo4Kpklzb4nvCWTBZy0x/x1CEEGn\nLzRKn+B+rdp+L9JT/qmtmuvIEYEoh0Zn4aGcR5C0tpkEZ1HLF/1HBFQWbpHLFvlOJel7n608ngUm\nypYCJt5Z0E0h2xNZlv1s6tyXHALZF+UWYsUsoSAEgTsD+MDKgggkSV3vN/NKE82CfzyjB2oOYned\noA5PRcwbRdpHqu1ZEo/iICXZWlk4iEQcByKhqiR7qR+FTB2EMyXrtdg4e8SZ58cszOf0RKEhZIfT\nzUK11sZzmv05RdbR3lzOe11FYajeS/1TtpBlwscaA002IP2AiZlWnDA/k3JLmtJNAEdwSOOy80Dw\nSYDuW194DKQ+5XtiPT9H1Sn/fpWIpjpCQHYJDNDP2pvzZMrD5QnOiftfnziGnOsiq9IHQ4ALSckG\nwPnS40LmVl5TU0ECPMgDrqJeuiVxjkcueHCkNHaDKUhLKBWJXhQF/UOheVhQDhDk1lv1Yv9bN/+t\nxwUXXIALLrjgft9/f3HllVfiyiuvfNDTZXzP93wP/v7v/7747JnPfCbOP/98+fubv/mb8fGPf/wh\ny8MDgZGdE0Ce5BwGgyHG4wmGwxHqFMJYWwbIOdTkZELnTfD6TJq2jffqjayD5F60mC/QtkvMZlMc\nOXoUR4/ETfvz6RSz6RRV5TAaDmVy77q4kTzIhB4HvQ8BFSCCPAAZ1AhBQgQXWi81KWiNJk982lLC\nh3JqEtEuWjRdtCix9WVzcxP79+/HgQMHhJzNZjMcPXoUBw8exMF77sHhI0ewu7ODQXJ14304MUJa\nE6PULZdCYra2tjAejyXf7Fo1n89l4WPCBKAQrJnINE0jbnB6Dxbfw0Rwrz0TUUhJFrquQ8AQropR\n4+q6kuhwLrldCDmqfK5PIrQhiGVFhAwX23hrcxNb21vY3trC1vYmtre3sL29HV/TZ5VzWCwXWC4W\nCDs+BqeYzcFLUeUqDJ0DhiPR1HHkNC2AsQtHVkinYAg1B3PwYtXxXbQuEiGFwXYShluPGRYQmOxw\nH1tHeMR61LUF2dFtAOmNirABMbpgANq6xrJawrkYFt77ktBGsjOKwm06sFefFxVdK2L4coQQ985x\n9MVkIe0oKQK67G5HlYsHV+5Bdko3kizoOP4bHMqaehZClZbaAyaLdFqwWSjnOYeAdJDhqiBKRKjS\n5dK4zRrzLHD2y5G6ifqud8BlMT5cEibKvW98X76f25O1rU7c7PRzwXtJhMDEuVgTXyDuN8vEIRJg\nsY4o4Zz7EbFbFBMJjl+tyiqKHyY1SogCoA0pub6gSIZTYlrgcvjo0hh8PEPG9wRyId1JOZBCTxP3\nA00kPaFL+aDgC8Kdte+ZXMp+Iq77JLU7IgSnPAv4a+FNbImElKdPSGSeTPXK+0L14da8tyaoHOr+\np/uJXnO4ziNZinPRsmnK+x2BfCRie+29JEkvE73IMXXsN8jnicmuWnaE6UhtrHxPFFUZAR6+iwlq\nSzeIxJPN+xADv4SsIM0WcVLzRkmq1DItb8r6jfuh8hhYMVfwj1M9lG7V3C5Mdrgdgrrfc19UtSqj\nmihaSQB4x5Fjc9qV6jfMOZEIPJ+BxHmRIoklxyOQU2cXeeQ+VRKdruskHFPcU1268TPxqionkUCj\ny6SXrQd5uYzy06mO+Xweg0glfPnLX8af/Mmf4MUvfvFJzNX9h5GdE0DFG4arWi4OA8sTcNfl8LYB\ncUO/7+Lni3R+Ttxbkg4lDHHBjqfRRwtB5z2Wi3naw5OCFiwWaJZLdOK+lhYYzhxPQGqxZK22FuD1\n7T4JSOssOPGevEAIwUnRzPgQTr33hTVdAZlcjUYjOeiT72dSMp1O5YoEBRgORxhPxphMNrCxsZHu\nbVKQgyDpbW5uYXNzC1VVpRDbcywWsX7bNkq9vEhxsWKeKjDp4LL5FCocKPdnxPsH6X12neBJlts4\nEr+4x2o0TOUdjsXqRRSVTV1XHmqKEBceD0JVxXw65+WwtY3JBFubW9i3bx+2t7eE8GxubmBzcwOT\n8RjD4SC5USIukl2XL9+lRSLmuWuj5St0pTarS/dq4lAKraGI6EeAWBALN6Okmcvkmd31sta1qisM\nB5lcsrVFCw3xhaQPkU8byFlQSyCi4oyCmBcdHTFbPkBBvgPnn8uuy8YkjC9NxhSRcUmYBwUEcoAL\nAAvMoqXsC9ZYGYf6+2zlgMifhaUgDdzQu/T36/SMLH4Ip0idgseqKGSYMOnnSRpJcAl9IQoi/Ody\n6bGnhIMiwcBcMgtfLEoLcSvDgHP2VcWt5HHVipZIBvUuJEEGcZ7MabEgiNyG3L6IREL2svcJrEqB\n8xcQoluzIlqZ7GihFhKBLtcHFWX0QCR8vTSg6igKnZrgUCksUnkWTDGeQlB7lSDtg96Y0+5+ug4K\niw53Yi6KahsWmnNlpRKHVWuOHkfSzpyGz0Rf3x/HUNT2r1M8SP2hPzZRCOD9/hz6aeg65v6Csk7T\nr/mNrBtA2Xc4ilmatZBDS6w8KpPUXt61JYOfp35ZDJ51/bb4TcjElriM6mHS7nJDVGOxOiv0ktPJ\ncxlY2VU5HX46Kn59Qd6Q+7vKR5w70mch11quh9humiT3FbmZwARJc221hHWl+deBiy66CFdffTUu\nuugifPWrX8Vb3/pWjMdjvOY1rznZWbtfMLJzAmDBt04Hibq0iIjQ6NmknoVh2RjddhJNbJkEd995\nGf0EJAtNdCOKBGeGxXweSU7TRiEVygSMtK7oCTyEGJUpCZeD3j4VpPyyW0YRhMB7rFvAWah0KfrZ\naDSSaGsAZH8M3+uqCnVVS8ACttI45wpXs+l0ilkKosDR1TY2NrCxuYmtrS1sbGxhd3cHTRMJUUxv\nM1k1trGxsQnvu0SYZpjPywNU82QWyxgPEB2A91chLYreZ/dCl86uicQjujzFciGVNboKBh8QXHxG\nPCBtkEJgjzEex4ABjjh9j66N7l99shOKxTEudaPkZrW1tSWBHLa3t+LfW5sYj0cYj8YY1DFKHROV\nplliuViibZoUBtpnzTARuq7FYr5AQ8tCyxqEjMT8Zrc/AltzYr9QetD0vk+k8/k6kUBFd8IYACEe\nSjrAkMNhJ8JTLPpJ2KcU4noUBvj/2Xu3WNuys0zs+8ecc621L6cugIQtMFgY4QYFdavBgVTAxqA0\nlyAksCzkVmMbiIQgD0jQgY5EK9AKKKAoqae80IYijmxEgxqphXlqsE0jIjVBQQI5bSSHi4gIhV3n\nsm9rzTnHn4f/Mv4x5lz7HJ8uTEH2KK3a+6w9L+M+vu+/zjkEPQgAzchQ1LjJASrmbsYYHFzpISt9\nJYE2bNyNuJlwoGsSxRKVpK5WT3lFAoTjgFMCOpMGLn+2H1svpe26Pu1/LBH51gmPtasmPGsgxsy3\n6qR/Ag4swaoTHYYTnlingFmPAhl/7goZA69IxUvtQvsCCYimTpmhGVRc4lreaH1SiFp5G1Vzw8B+\nAW9UkqV6o8m/l1E3xYxKxyPRsHrXXB22QKT+s38XI4GVPip3CvGKLSMnpJRN3m4kB4rClCDmIH22\ndijZiQQn5uwqAyv+Bxz/CwAv9mEUiLRzzsGkInvTVrn0HIEsGwGkcm9lJhyKz5xAyqPZ32IPSRDT\n1lDnSiAQkDTZhqbrJAFAMn++du1V1QoCBDuTa9/O+r6aIBbCwDof2WQAgWTY4238mpxF3u+M6Btq\nTynrtl3RdR/XBM7mlNYZy+J1tH0MNdHJTEhkEc2WBJFcoKR5ylJXok7qM12JrXPdtNUudTGyFZvl\n67J2pmn7uvTB8T6pn9fUn5aa77+r5Zu/+Zvxi7/4i/iLv/gLbLdbvPDCC/ipn/opvOlNb/qbrtoT\nlTuy8xTFyE5nIEgdL+1wFvth29jhYOpwmDAeRtzsRVNzGEcxK+W4OUFMyiaRNFsenf3+BuN40FDW\nauuLZabmosIth3BnPihN/plWqhEdwuMCriKmpOQaHSM8QAG38Z5erzMTNkv4GcnO9fV1pdWZpgmb\n7Q677Q7n5/dwdnaO09NTNV0bcXl5he12574/5+f3cHp6qv45WcnODcZxUkJSfyQ8dlaAbBIfCx7A\nGMdZwW5GzibNF9BrRfptrAgCs5ghSntPvL0nJydyXZZgDWM3VlqCQnYUwPh4QpKC7kSrc++eanbO\nz3F+foazs1MNKW3+QPAw0If9AYeDEb5JbNdTSdaW5xk3k+S9KSZ65dAvpnypsqMuQMGs+7mKfmQf\n5uJrI6Zh8hmGAWkr/i79IMEWJAHsUJlWGmg0otX3PUAlcliRaEqNjcgBNRjr1IyQwgGIgkd1TszV\n/DAJoPgn9SWqXGNmZ89IgEgUtX8zJzH/SQE8S8UKYQh1jP+OpTIREbRVrdvqkDXAG54fpdzVc7Es\nsm9BgXIt5fR3HJEAG5EwAFsgLlV7SnuXPc7wAxlwCXWy+9dIU9e0LcKQqDVwAuFANOQoasimSeS9\nGgqARCMiQUdy1izwmWCaSgpjstpH1pY4Tk1bq9LOBwfnrOaLXP3NwB9VZKcEkuHwzAiYk0Z0SxXJ\nJDV/Mw4VCCPZWBUhwxrQCy3z+13YEOe19zF8vZcuoFvXhf1e5kdTCSVQFOoZ14RrwkJdXSAhvYBM\n7OH5zSyyEIcl23EtIdXCmKrORh6d9GB1rB3Hhz7SKYzirxj6Rwn1spTv2p3gsX3c1LN9BhFVGhar\ncyLpJZt9VoO56ofyjOSCpUh4tG6Mmrz5GtITsyIutgMFYUd4pxDB9TUa2yQ/VwjP4tpb//x3rrzv\nfe/7m67Cf1S5IztPUQyYFfM1tQHNArAPoyTzLHltkpAXDwagyUYPU4nIBXMC7xRwNNGupkk1QKwS\nRqokIAToQTerBqFEyJobsBClW5UaWYMc2GHQSsuINMyz5tExUzLToFhoabu+6zq/xszdmEsOm4uL\nC//s93vM8+z+PWfnz+Dk9NSDBHieH0ioxbOzM5zq382P5+rqCpeXl7i+vvaw0xFsme9ONJmKwDPm\nGYrjEfsm+mOZBLUDIZFkgt5stp4g1Uz2pnHCmMcq2EFsk4EMczq2EM+bzRYbJQNJNUOH8YCrK9Hi\nSPADM7NK6PqEnGcNAb1XDaKYPkpeGZWasVjjSPCLGfNs/kjSF5YvydpoREc0NGIHbQdvnEfx4JS6\nicO4HDJw7Us0eZxzRppnD6/MykZSSkDfqTkYQAnVvHUJOJqIZakFsxq5zcY1Ap4VG/6uUxZFqdLq\nWLui874uOT+5HXQmArokkbdCqTQ6AWy3gMPq40FLrN4Vxo3AhhDCilWA5EmkjlkBuyWHjZoGxxFA\ntQ/EZ9cA1H9zc15L0Bfvva0siFZTIjGhurEV6WnrLD5Y5hdJbtbl1ypAWwONLcBnQP2fPZNLeHOY\nowTQSqSmKGtf0+r5NwbI2dIOFCDnne1EU8kO1+TPQLwV8wezdRHflZlV81ePtf4ZFBKj1hqEQoyI\ni1YwkgrT0JW/2TOtFrVwABQNoWIPRWl6mQf1ehLT0sSEjDrPWhTKWb0DZ3BWkRjikB/WPFEJYFAT\nXHLC5p+G7DCXPvI9DnZP6fPSBSYRsHqRm9DG9pZxhr/TOMBaccLbrJ/ye0PSbOtRNlPqxageEOsc\nnlSdEdbf+ldLQVCdYylGRbT8Q0VgQO5/x827yKobNuaomSxatBTG0+tGtZAodH8jcGn68/9vrOdv\nabkjO09R+sHIjpmFkUuyx3HE/jBivz+AIVqgvu8lJK1J3GZNxjiOnl+HiDxiGAdHzlkB8jxZclI5\nZMxcxjU70AWpgHwaJ0zjQSK9qQQmSlorgBdAvdUlXisgsPOfQzBh2263DuBbINj3HbZ67aA+PkZ2\npmnCxcUFHj16tEp2nnnmGQwamMBIgtXbyM7Z2ZmTHTOHu7i4cDJVIt7Nbup0jOy0AM77RoMg9H1f\n1WHZj+KUv9lsXINlGhKJVsZHyA77YeaALEH9nCRfzjAMQgRyxngYwXnWCGushw/QK9kBWDQplito\nPEhEMj1EEknUraRoo4RmJjfdq8xNAjk25/0IDlgPvKipMG1Q3ycAnR7Mxe8lEgcZGwLl5GGVnawk\nQuKsZKc4GRtYMXjUqU+Vm7KlAu6YoaZscWwjEGlt/UtiO9Hc9m6qas+ogHgQT0egRakTwoPlYe9E\nJ5hTxXVTmdoYOMzZwUmRpXpzAD/81w/eVvNQEQl9PnI93suXNORi5R3WJcRAnovwZU2DEp/VSuzX\nCE9FtprEgxy1CKiBvgEX09LK/FTgaKSDy3szl8AHRSNErsHJOTuRNQKyBOV6M0GdGIxKoRHZF/M9\n6DsTBepk/ZAhedaMzHikvUJ4rDeyAjzTFNtzDTCbgCyJCL7uf7Y51JAPECzhbyQ6ZQhK37HuS+5r\nZXsmF7M4H1ZbPxTeRwBYItcJaq97tVS1rp//pmuKQep7tPQtisC2HjLTGiu5BTT5ZCEYjR1o9d6W\n7Nj7mA14635PZoZZ3xfb5+tE5w019fD6WEcy/Hn2vqaGgejotTZHw3ps+6UQ6YZAN21f7RMUA22L\nDmj1k2VcsIfss5pg1NY3EZyw2MTJDJD6zFV7Z2nzkpzUgluZdqU/fC2utSOue39H2dPbvfWunR2g\nQgAAIABJREFUvDbLHdl5itIPAsLNLIzZwh1L1Kib/R77wwFAwnarm50maQQKyBNTq9n9VByA68Iz\nyXfRJqhUXQGVCI+7ApY06po5pbvPBJHk36FCrKJNdOpKOOo2BHUEPk4Y1DzNAD0zVyYNRQraOcmJ\nfj03GnDh4uICl5eXuLq6qhKObrc7nJ2dgVKS/lTzNvu7mcZZAtH2WVFrEv2P2pw98eBrpesGuF29\nrv1jGreoaTIg3/dDFdEtaSCLPGcPAy2hoEc1MRPJdzRF7LqEvuswbLSPN9sqnLcQatlsJQDBBCDr\n+zuIVZz8fXbN4IQ0J8wKcBKr6UogbZGotFrAOGfneao2966xg7d+63v9d0rIc0LqSlAGdqm/zLXS\n94EMJYAgIZk7PeSW0n7ts9Rh6HsMm8G1O4Bqo0LkN79fD102QJaj5NcioIk5RTRdi8/wsVdQWElp\nVYNAmmuqBezHPvb8GsSXSHMdpQBOlgDDQAljKdZtiU5F7hVARE1XVefwzvJLA4gaAhjrHfu3rosS\nNAVba+BzDUx4iGhK1TtB4kvDZq4S+zcVDaBEDDSyY4SdwXMZ2whYyfGg7Ws65x2MWR/Eeof+IiMK\nJCyQ4/iQg04HsAiJQsPcB5WEtNm+1zGPI6J4umicIqgjm99F+yFVsbDpgXBUBGJtTOqxyjnL/GMz\n30YR8lm4bjJJuXUB+Uyo57b/b8Hf5f2hfxEEJIu9nJAgPm+r661+ctVPIAKcqNsYlhrHu/1tFOZL\nUxyw6xluoZSjAMBIh+3J7GMMJ2IxoWx8t3Pox5RIZUs/l36tNXaBQGD5/Lgu7IuoYXGiE0m9nRUo\nmp0UfXWilr447OitkWy0+8Xyu0h0qu9JhBex7S0Bjsu7fL8m1LgrfxvKHdl5imJ+KhJhS83Yphnj\nwfKaSDSwpKF6AchGFRavZXM3bZBcQtgMAyaIX8VEUwjNSL45sJpfMJHYuJqZFQBwiZhGAMASBWic\nZsxdroC+vbPrBCwa+LTNpiJEqeTTGUJ45ggE7VryDawcKqYR2O/3uLy8dHMzC0oAQIjCdiuRxTrJ\nfWJhqadpcpJj+XkOhwMePnyIR48e4cGDB3j06FEVmAAofWGO/s899xxSShq5bb8Ar3Z9JJ9GcCyg\nwvX1td9n122V5BjBGUfRrDCzmOo9usTV1SX2N3vs94c6UpxpIwAN7zxg6CVRreeV8WS1UyGz04hp\nGsGcNbx17342snFHDYEmR8wBBKI2AbPxtU3fNSg6htJHJWCBm6QpCKOU0A0SlKLjDkMeMGfxP5um\nSULr5ow8TWAAM2fMnAWcdqTG3gWAShJUS9DbkFfYYVTq0qWu8t8BTPKuvzckzqXNkaS7dDQseJb+\n4+Y58fQ3wm9S5ehA3B60LbE2QBMJ3RrpgEpCE7WQI9RTRqrFYgvCFdscpc5LQrkOcuwFa3WNP9u9\n5hjJk7+va3La+iSiSgtY/k6+HyNZLiclOhQztAe/LwbgkcfE2X3OZlaZLEB6Gef1nl8UwVEFyFs4\na9M+WYhqjpJvJyWlf5U2NhPSO0ivV3Mv6wddj5FQWd4ngmr5TaSm7ba10AouHtvOusHVHC5rTIQ6\nRqDimD2tVNzWfBS0tcIrqyGHuVLtDVpv2YKjD5f2U9CaxffCiHIO71mA4vLvirTqxRY4Jda3AHPA\nwrXnHMml1c2mQyC5AYsXnl1IqT07Chy8vdUaBNhyJ1HV9Ipg2cXVyDmBLKTQgqLYHC+9TwBlN8GX\napT1aaamRRAYR4192cYKRG0WK7OO/doWCs+u31Ffzz4mx5bhpz9/78pnvtyRnaco263EGvdNKjMm\n0+zcHLAfhex0qoUo1xY73SjZPmjizQTCZtgggTCPo5sdFSmMHOaJMtB1QKodxOXkyvVGpqD1MM2a\na6RI8iuQOwwYFNRHczaru103qGanzUUTP0UaXgI3mIbBTM0ePnyopPDgBMvIzDBs0PUdDuqLc//+\nfTcPOz09xcnJCYgI+/0eDx8+xMsvv4yHDx96/h0rkbRst1ucn5/j+eef94PDiBFQDqnYJ9avVv8Y\nPa7159molsuSys5zyd/z6NEjPHr0CFeXV55biXMJ10xASFym5nDDBpthg0HN7shyXsxi/jiNB4zT\nAeN4QM6TkORhwDBotDP1l2FVvYtJic4jHZuuknZ3q20ucwD+c81HBiRJ3zpNLGsSvnmeME4TunHE\n4XDAnGXOzyw5dOY8gxK5llQAZgiFHrSUlmzVpNygkojO2hABDcOiYJW1WxOeos3wv9lii1JIBajc\n3C9X1eTD1wCJcGOhRWmKtyUAomNO+fbcCNhim4qIt/qxCsAW/w7frRGOtWKXHSM8FphjDdDWe0YE\nY0vCtdDsAFVEvFISUsrgnHQcuRqLmKtGnmNmTsVXZ1ZtOpMEQWDv63Vgd7xQ+RlAm5ELA75Geiqy\nY8/PSrBZTbIQZNoG7J38BkBtHRrApz85LOQYotej3uWSXDju/6tz1+oa3xn/zsE6IQvZabWk8don\nAY2RyLSEp71O+kQh97F10z7XuogQCOlKHdA+r7BhRt0u/5g0wvuh1kSVawHRtCX4uIY6EqK3CjvP\nLXtSq+urp2vkZzbn2MfEhA5tz9fzwVtshIdinZQqkv5k/Y5s7dplYm3iAl3HD+RrlRKDotObdyEH\nIUUs2ceCKqFBs/9Y3Sn062L6lQnAJhmo+jIQ9zvC85ovd2TnKYoRGI/wpWBsUgm0aVc6s0FNEtY4\nz9kB8DjWfiW22fddB54t6lR5ZwQkFDaYLonZU6+anZnkWvsuJQKPQmIogCjTOMWDPx5C8SAy87Vh\nI+C7Bvbr0mB5TonuZiZyMfqafW/1MZM3ABjVJNA+Fujg3r176LoOB9WiPXjwAJ/61KdweXnp74jA\n3Z5pAQ1OTk68HsfaG7+PIZRNG7Tf7z2Edtd1HrBhGCRxaYw0d3Nz435J19fXYnufS3hjfWHY6DvP\ny2N5dixCTUqaFdxBrWk/VBo9l807h827uPnGMa3N9Mp8LSFT2z5xX4dAIs3pu+t70UgNYk5mhyBN\npBEKZ4D09zw7yDINojkuU86YtQ+necI8zeA8h8z1eh/BNSitdtFbytENPIAvJbgxwaERE28rCdhw\nEBEfFPpkTVIapaVxLi3qGIgBwjo6vqaKVBkB3LTPLCSvAOC2rAHLY+v4trJGeGLbZB4YsGvMVKr+\nWwdYbV1FgAO0KKf0s817mfWm2VmTYtscrPP46CeSLkINMCOZWAH5kehU79WojyVBDxxR04KrckVu\n/PtAVny+maBLKFsNnqUX6jGDSrvJiJN8LJmx1efYWBi4I7vezqOVUoFyrJN++wsbqqQVoUKzznx/\ngYLnlQqw9m8E0gvtjhOeotWJf8NKPSqTrKYhnp9I52i9nuU7hfaLNRAfZMSYWvWFFuuvZU+Wv2uF\nnVjbP+O8rAhLuRyxJ5wUheutLxD/XdWg1MRITmmJhKNmACkb4SmRP0VLb/51ekawkBjX0rmuqN1T\nrc/ivrESndLbXAtd4nNiny7uP9Lau/LaLXdk5ymKEQUB6xLRKs9mk5zQbxJ6iAmSROQacNiPHjXM\nPpJA08BbAZK2nmTzb6W8hRglSk52hr5HToQui+nFvBkwTwMO0wQcJGQ18lKylVLCpMByCj4era+L\ntWW322GnAQeMDMTr42eexbTPtATTNHmktIN+721RQpUo4XA4ID96hOubG4zjCCIJ3nB6eoqzszPX\nllxcXOCVV+7jwYOHOBz2lYTffGfM7O3s7Ay73c6jqq0BywhMzT+GmZ2Uxihvptky8rfbnWCzGZAz\ne6JUizRn+X8Oh4OTlj713m75rqtImidZM3tm88khCpH4CCkB09Sh62gJ+u3QouTgjQjoNZR2HwlL\n+NSg149JCKwIWj4NT22awc12g81mi2EIppIKjmYlZJYsN0oE7czKYCDPyNrn0u+j5o/SKIQGEBpt\nDhAS2mrdRbOQFReXg9Lm6zSZlondXlwy0kuFehTpKwA3NTSQXEDUErw/rrTEwIGVSULD3yrtGtVH\nbJy/VWCJGGluhRRU/6bSN/G5T96W9TYJqJF8MSmRm5G1flA2ZsWMjdHmx6jqq8BxjZgR1WEaKgKq\nmgwz9/W+88AxjUbpSYW1LeFpQKCR1PK7zDEKeMmoShx304oV7aOMEyhJ0A6ias2CM2BarUAhwFx8\ncYzIWRudENnH2sLeR3ZdvL7q7xVCAiIx3WMCsUjojxdrG/y9t3e3jqcKBO3MJATtSOzYcF9r+lbM\nWG1tK41YrKnmOYAH/bHXMFhDg3u3N/0X9lIKMN2Ic/jnCs0N7y/TjVC011w3VgmraVj8D8v+bH53\nAkQW6AF+7tQVr0sktrFXyrPLXg8WgVIh7LXwTT4JOSfMKaHzPVyfpIRHK1vXgy2yqIyVHDehHkaU\no8CgITsI+7DPDt+nyn4sQ/fk+/5d+Zsrd2TnKYppH/Js+VMEwGWwJkHslSBssBm2GALZMa2GkR2X\npqci+ZTDwrdPOezUJMTiipqkvYDNXsw3ckYiYJ4GzJsB/eEAAmGaZ0QA4SSrS5X2In5sYRuw9Qhs\nux2GYXATtGNkZ5pmHMYRc84eIc3a7aZ7jb9ISknCK9/snViYidvJyQnOzs5w//59XFxc4FOf+hTu\n37+Phw8fIOfsZMzIjl0ftToWvS32QTyQ7PCOkb/M3K4NaR21Oie7Hbq+dyJ3dXWFhw8f4uHDh7i5\n2XseoM2wwXazAboY2rpoVap8AzEcp/YP67+571S7IUAdCnAKpin260ZxWTFI1yXJH9P1FWGIm3bd\nN5JolLmY2ll9es3zM2yU7Gw3VbALAG6SNs9izpI5IyGVgy+8c1bQZgEdDocDOiJ0SQgeoFEQw9w5\npqHLBhit/UDR5BBJ+PdpEq1rJ6RSsIp0VCKRLAL1wVigVDl0o/8SHnPwtQSlnYeGZBYajfBsA8Zr\nRGfxTG4ATTPWayTq0z28F23w5+ic6WqTQ9coV8DB0L9KcbkGKOUf8Mhx8St7UJQzUwRD2sYosTdT\nxuzaw6Zdx7HdsjTjVZH5+sJa1G2g1ACyBgvwNhoot/YlkuhuwTRP2gLAAaTlDiv+OxGwGaiv40tR\nMQIyoBfJX0N01rugAEfXwCRCQm3S2ZZIUP1dXAuhombGSS9I2yxgOq4BjyDWPCO+o+Sls3lR5khJ\nZJu1v2xmLce03Gv3LMm4U51we42vjeyuaYTqy+zeQqKMJFLh0+07VkF9XYwE2HyxfwvZKYluY5Xq\n33n1D+WdYXWqGVvMfWXBCkzAN2dGNxuZM/8bnVdhHLh6qY110e66QABlXpb+aITMTn7rp2Jl/kay\nf1de2+WO7DxFMbAco6+Jw7lFE9tiu91J2FoSU5gIgMU5XyKM9X3v2gfTGK0tnbgBR5BjQMYzFhNQ\nwlHX8pwCOkueAZoJ4zRhmicHl6bRiBL87XaLnZqvbYbB/X+KBH5yJ39ANoFxPCDtZQOLIZejNidV\nh7U87+ZwwM1+BDPQdz2eufcMTnYnmnPHghY8wsOHjzTIgER+Mw3JMGyw08SjZ2dnOD8/l6ASDEk6\nqr49HvbZzUsEHGdIaHAGY1bCJr4xsjFvNvJ8Sx662WzR9T1A5P1oEeckAEPpm04j35l53TAMGDR5\nZUV8I/lVaWueBZBl9XUxp/2SiwBuW0wo+TS6pPkKlIwP/YDNsEHf9UekUuqcirLlyyGekXOJcmb5\nSCiQjmi2GIlw5uy+OYBEMjTNEgDxk0A53KdJ2sjMVfAqIlpE7QFQzb1CXsvaAZbai3nORQOSzX/D\nrpbzMCZVrUz8EEBIIBikwgZSyWKN4Er9IilpyYkDjrCW7L0WBUw0ULXkf+158IPbDnk48vCx948k\nT+RQVzRtiKA0wCwUAGL/ZjVN0RDiHtSiNkMKMy6QSFRvMaBhX0eNTCGgK6Wa1zUoiRowSwdgrUtk\noW9T1UeFl6w4wrspWSRwRaMUSVeA207wgmirYN5Y+5RUwwmAE9DFeRLHt/4Y8SmjYmu6nhcc6mzr\nEHlduxbb6C1p+oRSQmL25K8RFPrcpMD4HsMovbZV26Q3E0QGaNZpbR6dts5ROAIlvE42G6LhhMdf\nnbQuYaZzMZe9laQAxlAKIQt1qsgVy34bCZgH36gahcJz9C0EUpIeNnG9eLHTN3PWHmlzR3yBm70C\nXK0Fb1v1y1pFy5Cb4E328KxWDJ2b39tnnhlzl5G0Pz0Gps37polmxkphfsjcW9lTY+0I1d/K2B5r\nj7WJw7v+7paXXnoJ3/M934M//uM/xhd8wRc88X0f+chH8Pa3vx0f/vCH8da3vvWvsYaPL3dk5ynK\n/kac4AXM3uDm+lrAHATEbRVop9RJQslRALCYXb2iYFie0fc9Tk9PcXpy6hqjZvfyEg8hJqj0KK+s\nyAKEwGWTNpO4CIoAKJgfsT9IpLDDYULXkUvvLcy0J8o0zZZqbIwgmdTcyAuppDulVPlHWLsraTlb\n1K0RV1c3uLy6wWazxTPP3MO9Z57B6ckJCIT9zR6XF0IaLx49wjSOkjcniSlVr9qW3W6H09Mz//Rd\nh8tKq7b3UOBJdl3Mc/HBkpCp4odloB0MDH2PlDY4OT3F2ekZTk/OsNlsQKohm6ap8jUycz1A/LEs\nPPVWzb0GzeUiIad7DUpBDrQtAADnjClbYs9Rw0ofME4j8jw7BkjUgTr1adHEnn3XycEJMZcchgHb\nzXbF58pAiByLyUiGzq/MDJ5nATLzjG6ekVnISiQ6ojXRnELTKH5sAFKXMNAg5nia4LTrOjCAaZ5A\nczFDEb8eVP4WBEJHYvYXze8A+PyptQukpE3FAVRIkUv1eX2tGUhsTfwKKMkLXw8rYrIlJobRFqoc\nyPUarMgJyuGdUB/QvmY5AMYjhCc+rwbaCgZSAcMiYQWYNIIZsxC/VrIJwENbV2JbOF6N3gyk2rJk\noZ4DCFlIx3Ou9iwfFo6Eiv3ats9rzU9gx3ZXANqxL8tnrrSFEtRgKfUlRWnMdTjtWIcl2Ykdhare\npVWrk9B/JpTuimTJ5kIhDbW0mr0O7ZgFctMQFQPtuQlSc7xd8bHah0ZS9d+t5lHWM8OjdTWEaPlg\nlFDfOjbKfCFmfexrbU363v5u6zjlDCRgnrUPfT0F0rE2LLof+X4CVHNsjeyoOkOEklkc79v1XZGs\nynwRALISnrinqEkWuDK7LK4+cZ0VAYy8Vp+90ufVGBOKZgeB6hhpwXJOW3OreWfExElImC9dbdUg\nnx5zp1YWSfszW5vCpuP91+x1RsxoZU7IBU9MUsjrHfuovOvverltzT/JvbF88IMfxF/+5V/iB3/w\nB1+Nqj1xuSM7T1Fubvb+0/xvUl/ysex2W5ydnQEMXOVr7PdikvPo0SPcv39fQfEsUce6TqOMnYgf\nDFppiy1olTxZdKMs5CpnlYfqgVeSf3FFhFrpMAAHh3slLPtAXIABm03CoDl1TPsUE2VGsmPSfAO9\nWXceBleHnV3Tmk4xa8SzccL11TUuLi5x717CZrPFZz3/Wb5gbm5ucHl5iYcPHuLRowvdHFVT0g/o\nOjEf3O1OcHoihOTs9AwA8PDhIzx6+AjX19daH5XRqXOkkx315TACZ20188TNZiPPPjvDyemph5wW\ncL8kO66W1/DQEmJ7g6HrlTwVU74Uci2Z+YCPc54xzeLHMk0HzCHZrPjxqISWOyHe6s8l4cYL2bH3\nd6mr2sc+h1C8fhmi9WCbTwDNhG7uMM0Thjz4/DLNHFASwVrENSbWQAZl3KMJWiQq/gF7lvuEEoms\n60pOBrs/gvyY/6hIJAFwkZ7mXA5nk5jKaivS8BjEoXKqzxISNlNIxBnq3XUk/nFcJOoRatoarsF2\n0IoCQFIJ8grZWUjIs0mo1/Pk2EMrzU5YewIkLSAKC+lxdmNgr9CdAs+5/DMAGLsuJRlvD8SBFjDU\nhCTufcaxSzMMjCLMxaVUun0ySxP8efac2P8uhEmdmkz2SgjDs4mqMSwam3WQXoODegz9egp9WZE6\nFM2Bjo/N//hczqrt5VxIpl2TSHxljOesEJ1Y10h4pD7L/EhAG6K5foYJunLOanJa+sa+j+bRaOoc\nxzKeDRVo94+CfCJkZCQmz6WzVtaIWgIk/1zQsBSy0WhbfX6HNYSSc4mUFBnJYcZyDYZmiNZmZd5G\nwpOz0RG9NwRuJrt+rbWhf48C1EJ02vkbx8y+t4hp2gStFXtQi8Uz0M5l2y/kTLGxs3PAzLX73qKJ\niuZ/6mZYoAKJUaDCljKx/dlEpT8o/N3HnE1DRz5/HktWHgPwfe38HSc97373u/Gud73Lg3M9aXnb\n296G6+vr6r4PfOAD+MM//MM7svO3oVxfXwMA9vu9mttkJC52pgLcR4zjrDlgHuKVV17Bo0ePcHl5\n5eApEonNdisahnCAJ/PXSMVZfUoESIoWlz554ja1O5+mCdM4YgzJK2NZmnOoKRTEN0NM8TY4ORHH\n/pOTE402JsB2GkccNJSwkSMjO8XnSCJq0UgeNjmCtTUQJwBZyNB2s/V39n1fhX2+vLx0UB0jrtmn\n73vv42maPCmp5ffZ7/eVSZLVKSYijaDStAeDaox2u13pk75HZsbN/qZo+vZ7jJpLJkZXG4aNa7QM\ntEWn+gjApnku5AsSynqeJvk5j5jmqWimkgWqSBiGDpvNgM2m9MXQ9zBDGSLpMyOiIKhNPYGZkC3c\nqQzMKniWeloC2hGHUZITSlh0JR+q+TDC0ldS8vpgcJBLReofwUnHEga4T8WvSzSVQaMRSE6pKy8O\nvZIRnbEWIczGKkZSbOdq+V3eYRqWKNnNOa+aAZGD9Vb7UsAWjr6vvofDO+0Z7fPs98UnSFaL5HUJ\n2pkL1rR3xrEpIDkt7l0DxkULEdoQ2lb1VewTWCWMWcnva1L7RQMWpdxr+ywgmsfkAgegdmpuiJeS\n52giFuvQ/pS7yNcUgDqIRKiZj38A9IRinuzPo7oPYWsnJffTIwKyAz2ZLxTWmQkVtMGldwJYj/0U\nxzSOjxGdOWf1KUqglJE4VfM23psgPkLtPKmIl5OLtaGN660x3wztj6Q0jkm1DlX4lU0QYsA4tH+V\nVMe+J3jflmSt7Q0GzG8nOv5crsfm1uJCh2XxNqNcYyTOtEfH1tJRIE/132xvtb6zZWHiEtL2FJGa\nEiqQC/p8z01hn9JnFSFYbHDdfOmupbXCKvH0u+pcPEZYQzPDPDjymL+m8ru/+7v40Ic+hGEY8I53\nvANf8iVf8pmtgBYi+rSJjpWnve/VLitGoHflccW0Oe6sPhcznZQkz8o4Tri5vsbDR4+CI/0jXF1d\naYSxVEU4225E0m4LrUg8OtdeiHlF8o1PNmmu7M7nacY8TRgPoxORnJc2zLVkmd3/QkhY7eBvwN7M\n11rtRSQ7hTDMmOdJtRB1lDcAi8PNAgGMaga12Yrp3GZTHN4vLy/xyiuveNjqUt/BNU4t2bEw00Z0\nLi8vPUBCJDZW/zWzIqISpMEiu52cnIif1TAg54y9ErGbm2vc7G8wqtlbp6Zrg+bN6bpezPuaMYiH\nbhUoIpd8TFXI8uAHZIEqJLHo4P2x3Wyw3cpn5/25Fe0KopRaCA91SU2OUnW8rZOdjJzFTO1wEL+1\nm5trXF1f4/pGfKKmWfyzEsWgHfUYUSDHoKIN6Ide50Cpd3VfA7QsB08ZwygnbwAbleh/y7kziDmh\nh+FeB+zlIG0O4QBWWs2NmUjODZmOxYCtvc2pQQOE4jsZHMZyhdg0H7lQBt6STa6DyfhpSFZ4n/VT\ndCyOocmXwK4WfNxGdMI31U9qrm0/Uehi/bh8zvKe1Ilk2fbyUv9IWsoj1ohA+9MDCXSp+HJ5Hzft\n1zpbdCqrQ6xLIaxt0XspaCQ7bYtHwuvcH2kNRFOYC8fITju+3vZExTwy0eK+ai6QaU9b5/T15x0r\nrSakmlNH5kh7v1kiWBj/AnbZ96QYldEmQT1nizZ+7V0GxDnsGS1YX2tbXWzXXtk3TFuCIJxo6lFI\nbqlVSwqqZ1rbg59dXZvlnuo5rfzdsUHxE85WW3e2d6Ru2efVvlfyd3n9w6fer46QThRSE8ci3hf7\n4RjZfZoyjiMuLi5uIWBi6fDe93433vKWt+Bf/IsX8c//+U/hzW9+M37iJ37iVanDp1teeuklpJTw\np3/6pwCAN77xjfi2b/s2/PZv/za+6qu+CicnJ3jTm96E97///dV9H/nIR5BSwkc/+lEAwNvf/nb8\n2q/9Gv7kT/7E1/kXfdEXfUbacKfZeYqy34sZW/RBMWJiAPtwOODy6hIPNQ/M/fv38ejRBa6vb9D3\nA4io0kZ0fQ9m0cKIdDckuEwlMldKBOcutsmHzd5y/szzHEhIDaxWQRaKhK3rOux22yXZ6TrxYVEt\nSxvQoNJSZEYmVcMHYBcPtgiePIQ1A30vxCAGbTgcDri4uMCDBw9wfX3t5nB2+Fa5aVT6D8BN0Yzw\nmAkbAA9D3Uahy0197acFn4iari5J9Ljr/Q2urq5xfXODm72Y9TEgIZ4VVPdDqVfmDBIbgAoUzDmD\n5ll9coTgZCLR1E0jeJ7APOt9FqktYeg7+Qx9Ae3qEzQMZZnbBj876WQHbVCSnZGR5xUghijdsszo\nEw5jeZ6vBQVDpIelmy2qWZrN26TPJ2YglVw+0XysY6BjQuKYlFATNLKRiNoUTOaX1VkOZtM6me2/\nBIUoyXENDHZ9bbbWrpu2X3yOAO4YbMQ1lmrdhQM/PiN84YLaNe3HQhtgDV0p7WG9fnBH+hsrjSCl\nLe1dWx+lCjJHjhMdVGS0BdXts2MdmdUBewVYtveHJlSSequfPTPue0Z4ZGxC4A/r9woUEsw5wilU\n0x/+u81ZYg0GwP6stblUgGqq8shU8yH2TBxb+3swQ+MQ2c37JYK6ODWjVHuF6ETSZfu+vM/2k6KR\niuUYUYtrzbQ6cm4kgPKC1K2R/sx5VVAV67ImsIgAOkcArROf9BmRHJuIYVHICICNX3lqaroFAAAg\nAElEQVSXjziXNbIqYajGpno0wtQAqtm8Sn8WY+ACInmBvsfObFTXVfsF6jUULqy0vpGK2c7n7bV7\nw9w1fzJKYhZthJwSKSG3DkQ1Tmx5qo5oduw1tWYnbI+2DshqXAfPiPVe3zPXydDjyv379/EjP/Kj\neP/7/zfc3Fzh7/29/wQ/+ZM/ge/4ju9YXPu+970Pv/ALvwDgX2Ke3wtgBPA/4Md//MfxtV/7tfj6\nr//61Xd8/OMfxx/8wR/g8z//8/GWt7zlVSNobRuJCH/0R3+Ed77znfje7/1evPe978XP/dzP4bu/\n+7vxlV/5lfjSL/3S6lorP/ZjP4YHDx7gz//8z/Hiiy+CmXF+fv6q1PFx5Y7sPEWxBWEbtINZNVGy\nEMv37wvRefnll/HgwUNcXxeNhPl+GOif51m1MrOao7EC2hARyiWoYsJjm1m05aZQx4V0mWv1uddf\nN4WO2b+zSGaWn8baNs8zrjXKWPTViSUujFbyFg/O2J9Wx5Q67E5OcHZ+D7vdCQDg8vLSc9ZcXFyI\nTXiQLNq9Bljs0LTcOPFTO6jnoDEp4aitDUa0rLS+G4AQ3v1+j6vLK1xdXeLmZo/xUEwHW6kmc8ak\nBGZWMGP+QFoBf//NzTU4zzreInXsEgmR6TV8dF+Sx3ZJor1J39Y+CRGcSHtF69IrGYoHXGvWZ31i\npLLrOnS9kCwQuRllLXmGH1x2mLB0WDVPKgl0okry7e+lhIGSmtrJd9n9XqJktjVrsrnYSJad7Awa\nHKIL9XHDiQCClo7E8fo4l4kIcxLTocz1AWq/O+DGOhiJpT2E4+HrzyIq2d7XyNAa4AnPOwbe2PtU\n6nus1IBgHVjG55np7G3Pa+u5+AkGeJmg1IUtLeHRuUHNe3xuMheC7nW/xWH+2PdYG0cFtgaamZzw\nZQXZcd2XdgCWiR4RhC/y77QAVUMqU3Cgp2IFEPvRmmLEK8d5s6J1WSM7Vux8ab8/Jlyz/7Vk1e6h\nRKC8/qyKqOQjRMdfURPQtfko+0lWXx0U06uqTmFON+1yQgVArPg0SANztYea8KDdN6w+UXha1h8F\n8kvhjU3/shKglaVa37e+pqq+19/l7AGAjLw25Z2ABSbme1xNzlf7zvaL1PikKaErRLakLxBBByNE\nYSjPhb6fkhKjSHq8M4K2fEkVF0Sz2VuepszzjH/0j74Zv/d7/xfm+UcAfBH+w3/4AN7xjnfgV37l\nVxaE52d/9udB9K1g/l79pgPw36Hv/xVeeumlBdm5uLjAP/7H34V/829+1b/7+3//K/Crv/rLeOMb\n3/hUdX5c+fjHP47f+q3fwgsvvAAAeOc734k3vOEN+Pmf/3n8zM/8zOo93/AN34DP+7zPw/379/Gu\nd73rr6Vex8od2XmKEsmOHZCDmltByc7l5SXu37+PT37qk3j55ZdxdSWBCgx4GkEysG5aBTen4uyW\nrsVERDU7tnmjOeRU/FNt4lyTnYUpRCL0EBt1BhzMnp6eOuEx7RMRuQ+MmfHFwAQt6LO+imQmgpF4\njf296wecnOzw3LPPoet797UxonN5eYmh79EPRSIfn22kzJzlr66u8ODBA1xdXS2ixVl/m+9RPNjb\n9kQwFAnVPM/Ya1hxMWO7wWEcARbzrZYg5az5klRylEB1VLjyQuQsSVk9105K6DaisdltN+6b0/e9\niFUhuSWsbk4EcpHOGtkxv7Ptdut5fGKbozMxcx2G3DQfXUduZmf9k1IhQaalsWY5IIEQp077Z7PZ\nYNhs0FnUroTK7LFLHfrUoyMK+XvC4cdFu7mY36Ee0WyOUlKio2RHyZib1ckgwKImxTkd53hSMhff\nO3LGCPOFWwILIs19VJGE+tkVwFOwZGMTyYXvA7y8d+3Qbgszrwqpq/cDoi04QsxifVJaAoNa4FFL\n1Nu2xP5YA82R7ETNRRRA2DqL98U+doLorZMS16oko6VqP42fql9v6d9yDQHqpWIAjFmS7Vri29KH\nlpOmgDchI7lECdN7yhmQSv9DSVJot6y7DEadNDjiZK+XmW+tEJ2W7FTaVM7IvD6PW/LtuDOMd9xv\nMzMoL0lv+0yfU0e0Oi2ZWszJysyUS14uPUtdOGK6GfZKLNtlWp0EpAxwokpQYn1rPWR7h7c5lwAP\n1dzxOrTkC7eXtf2Fa+0MG0GSf5X3xfsI4Jn0jAmPt/+vkSv/yVXOn0Iy2K8jMqKj8yo+kGt8IGMM\nwAKqVGuOfO5KH2qUSS7CnIg/YlLYW4vPH33HUxCeX//1X8e///f/O4APA3ibNI3/CYi+BT/2Yz+O\nb//2b6/2j5df/iSY/7O2IpimN+Ev//LlxfO///v/a3zoQ/8WwEsAvgXA7+EP//D78S3f8m34gz/4\nPxfE+tUoX/ZlX+ZEBwA+53M+B29+85vxiU984lV/16tR7sjOUxRbjIlKtKte7VXnnHG42ePq4hIX\nDx/i4sFDPHr4AONhlFwAROi7hM3QYzP0IgWaZ3FCn8S/xj4SZScLkjGj3ESgTpkJE9AROIntfQYw\ngzGDMXHGxBmjmvhY1npGkGgCKmkigARMbzZbbLcbnJ2d41STcdomZKZxe02SaZodA7oV+YJtxn6K\nVjue2xjrRs5dBzCwGSQHzGYzIGeWUNOXQnIO+71EH+olf5GbRiGa/MlhbuZ1V5rEdL/fF7tsACnP\noJzch2LWQ0lMq0TDxOG5iUgcl5NqMzjjMElyUSF/V7i52WMaJ3Cuo/cwLJQyg1ULIkMpYX+7nGTM\nuQPlGTMxACEps86XgQekoQelEJRhM2DYbDD0HWBBJtqNHRbmFLBAFJZMEwx0/aBzI0EUQpEkBXOO\nQBDE/EvMfWieQCDVtvWqbeo9TKmRu5lEoyMHFYE6C96gPkaDkB3TMjBlZJAGGhOYxgzMXOazJSjV\nxQhCch+FQkx7z7+UUqeaIyM8um7YUylK+4mRYDmtsiRwJFv3DWAmNblQQQRRAmUGZr3XBZg2Jo6j\nFuvFL9DDNIafZV1DlCwIBDnOMHhg620JZtfJj/AXVosQieRIiOkTre6FUHm9Q33jOm6Rz5Ik1KDX\nSUfzewsnOPS3AMbk674li8dIXgXiIG0X8GJviKC09JHBMqu90a0KsVey7AKM5MoANL1qVNpjnapr\no2pzGDtm0z4EItOA+XIHmvpafSKgNZOxRruSElLH4CwmnfLp5dMVU1wVD/g093dR/BStblawbz9R\n1W2lX7FuHtTOKcn5FdtaAqTHMfG/+X2MObdAupD60repno+Mks/M1qveo2kswUmIE9Rs18C3hY+W\n/THZytUxkbsTWbYr/fh8TVYrsM8xyWeVLR0swcNBV6uxEVbEnrFffD9aXGXXFHM3IpTcTJXYQHve\nIArL/GavQ3ir10fXQrK5VwKFQH22WElLVjM2okgcbV+Iqxj+LxmiInRbCpZK7UtTyzqu5xGXFtuZ\nQHgsmfid3/kdDMPnYRzfFt8C5nfhYx97Dy4vLytzrq/5mq/Cn//5v8Y0/SSAE/32/0XX/QZeeOFH\nqmf/1V/9FT74wQ9gnv9HAO/Rb78R0/Tz+NjHvg4f/ehH8XVf93W31u9pylq+neeffx6vvPLKq/6u\nV6PckZ2nKL1O7C4ldNShQxL/iykjTxPGmxvcXF7i+uISN1dXOFxfCyFQbc526LHb9Nj0SaRh4x7T\nnDxJZM4Tcp4w51F+8oQZMzixaDNZtzFmcJ+QO8LUEaYZOICx54wbnnGTZ+zzjJEZswLWRB0odbCA\nBqb9YWYMSTRUp2fnODs/x+npGXanZ5jGSaNujTgcRhz2B4x7dZKfMpQrFVLgPaUAjaH5UdgTULr2\nRA/Yoe+BDaMfNuhTwjxOuNkf8OjhQ9y/fx/X11fgnLHRXDpJNyFLTOnfp4RpHF3rtNc8N6mTZ07T\nBEoZmohGjoguoR8kCMKYZ/CctS0a/KDbYNgMSL1svjNn7KcJI4sZ3NWN+OqM4wGZWTQbsAOBJYJa\nnsPBI3Mn9R1ST/LpILkiIBH1ZljGagKnHpQYqTPzB4QopLLpJxtbMlMi+aueh26mMc8zpjnrISQA\nZJozGDMoE1JiTDljZklQGw98A/VdUlIz9Mi5Bw8ibSsmcUre5gyeZgftZq7W9x166rDtB2z6QbU2\nsobMlCRPGTwLaRh5xqTEK7tfFTuI8rw77rOluXySaeEiIC7AZ2IGz1MhcxSILQOJCR1LlDojFPGQ\nIxTbdFIEZBJ1sISj9eOcqNxH5WnVwdsSA5P4m7AgaQjilPyQNaBBKD5MBpLsd5PY25w0kGv1SiyS\naKtvQkkqG/F8C6AWWhmtJ1Oo9gKsQ0G+av+oABVYze051u5ScQdkLclZ1yLVSRtb7QHByIea6DCL\niRgYlpNMqtASnUJgGAyyRIbWtvCfdZYR54wMJpb9khJAvfutFWIMB4smibe/M0TzCTXrNP8GsGl/\nCiny4DWxP8FlAPVZiZMAZDUbSyTWA5kkCXA3DCEfWNGmc86QnSNj4hkzVCgBAcJMBCR4VMYMxsyM\nKc/VWsh2TmS9m00Asa75s7F2TY4xHepKPzjsNfQvP00TNGfJrTPPGdPE1fwsJDKV9ap9zx6K3eaA\nQG77rZBiBif1SYSYtQpYL4QFLmPRvSCQm8SS3Dr6hMldpU6+XhKDOHmrrR6R6ERTyLiOCmkq2gsX\nBqCsPxGDJM/lE/cF5jBfQT4HMqB7gZIfC8XPKOHgdfwzWHw2+w5pkDnXbQZ0hx7UiZBKNGVOp5CU\nTJsAq9RsKQCwdlmxlA63Fd/rnAexa9ANu5gme+p49RlWPvuzPxvz/EkADwA8G/7yf2O3O8Vut6uu\n/9Ef/RH88i//CnL+GuT8AwCu0XUv4vnn7+H7vu/7qmv/7M/+DPM8AWg1Qf85AOATn/jEXwvZiSkF\nYnkazddnotyRnacoPckgJ+rQUxKgxgDPGfNhxOF6j+uLK9xcXGKvZKfrOmz6Hruhx27osB16bPoO\nhIx5PCAn0SpI6MupEB6ekXlGxgymLKk7ettxCNwRcid+AiMxDsjYc8Y+Z9zkGYecMbKA105ONFDX\nI+cR05w1YhYAZvRDQj9sheycneP07BwnJ6e4xpUQnXESsnM4YDwI2ZmnWcyPgJAQk3yTsGcnUomN\nS8E1j4kBTEsy2Q/oUydk5+oKFw8f4pVPfUok3GBshk1FlHo1g9rogZyIcDBfnf3ez5LUdeBxxDTN\nQMoeeYz1byCINmzU8NdaNybCsN2g2wxIfQ9OJJqzaUQeGeN4wOW1kJ1pmjSyTG3+Vky9MjoNz0x9\nD5CYgqWOUILsqW9VhoxVsnwVHK7Vw5sKMERS5/qQqd7MNFjNvSQ6npCdrFv5nIFxFokZJSBlTV7K\ndogrqE5CkiVJZNHIAFCJP2lAhAEM0cjtpxuMo0Xpm9TsboPU9ehTh00/YKPmiB2JEzVmzR2iZIdn\nJV+YBEzNSqJQJNtIHbqhR7fZoN9sxCyuH3yemfDVFQssAGzWUOfmK5ZSQocOHQGdSgOZCYkdYijw\nKdqMxCwhgJmQSX0lVMNG6vwroB4CntwnyCS0qEiOEwYbOyMMChASSWLVSiui9RIgZz5XgqQKYDdg\nb6QngBz9mliIjpMVlHO+AKDyPusDhGsNfHKU4lIhIbD7oz8ISQhiB+vz7HthJDu2t3T2EzXJMfAb\nzZkiMWod4QtBKCC4JYnybGujQloNK1y0E7QgOgkC9hMRMsvar6JiJkJiWd+lLtqerGTL3uD/K30a\nyVtKCTzPmuS2yd1UBSYwgmyJFgtJBndgMBInZPedS+iGHv1mo/5tFrwByNOEjIx5ZkwQS4LMGZng\n80dUFKzjDyU7RYsuhE8uNs1EJLrs87TAUjPxipqYuFexasWNGFaEB0Y41F8qsxOeMj9lLEmFXb7H\nkM1PfRTM1418HtjqkPkhjc5KNAqhZWQWkpFNkGKCEPUfIYh2mazjvMjMsr2DFOy7tsz7rRBnJ2YN\nAPWdI5CAQhC0KQzIqGnfUULzGKdX9sryUdKj9SvanlqKYhobJsgZ1ovQqtvIvEvDAalPQJfAefZ9\nIhE7QUeXRINWBgfWCGma5RBbEdB4O4IMYPG79afvfiorLUGj+nQ7wH/Xu96Ff/bP/lvk/P0A/hcI\n4fkouu5FvPvd/2ThH/zlX/7l+PCHfwP/9J/+KH77t/8rEBG+8Rv/S7z44v+Ez/3cz62ufeMb34hh\n2GIcfwPAfxr+8m8BAG9+85tvrdtnuqxpaz8T5Y7sPEUx6aBlgDcb6zzPmt/mgMN+L5L+WST64kBu\nNv7Q/DizSNBSQoJGrUoJzAnTZH4TGt5Xc9uM01g5nCMTKCc1yVLzHg4ftREHZL1mDvlkdHM3p/bd\nbut5ZMSHQkjdPIv/y6FJlmnhjyktzU6syH6cPDNy6iyyXHEKjz/necZ0cwPeH3BxcSl+MEoWezWl\nSKnOuNw6n7uN7zyXUMoGelK5Zg6gKIZ6zpzRofMkmMkjixVfoEmJg/n7xIh4QA3CTKLqYFlN4aQO\nM2gq88GPaIJou/qhSGQjSAkf35od0BYHflY7dBsNSgk9hGg5CdR68CyzxHLosJKoLnVOHEqfd26q\nZuIuzmVuTU4kBHCK6Z0kez3RObbdbjXhKUtwDs3bM46TmnIKoDnwjEOeMZkPDHNVl059uDYaqtxC\nSbvkmFkIEhsYlj6xsY6yYDnTlEgc+cSjkKk58MNZ6+PdAO4iyQ2BG9o9BgAbENbr41xvSwnYcCyc\nsx38Vr+w7rjoKSj8vSU7qPogHFrGJtvCUCJYf90CDyEJChDBZWIz+8VuJmfAEJB6G3GxOjffte1d\nVKS5rtzf9psSHRhQrAGuvcP7J/5EAlMIckEFbNo7434Byk7A/LsjG6yD/ix5nTiQndgHFu7ezdfk\nyfK7vYvLfGBmkGriZc/yzaasFy4gOweyFqtqcyjH+ahLKPZHnJy2BtcgUQvM9VI3drA9sLyqqQ/X\nn+bp9pJqvlTjALvvOLj1+UGa16v5EFRpGysQf/X61WuYuG2NzckyP0jJo3deuL+dsbGNi/URhRVs\nAoElKfAnhqG0+4sgJNzhz5UKsREqLr0jgkxL6kzBRJiW40+o1pztZeQrrGirYjvr9hpZq/cRqy9T\nqXC5rwh/oqbtWHn961+P97//f8V3fde7Mc//Gil9Fqbp/8E//IdfjZ/+6Z9eveerv/qr8e/+3Udw\ncSHJ009OTlave/755/E93/Pd+Nmf/XHkvIX47Pwf6Lofxj/4B19V+dW8FsrZ2RkePHjwGX/vHdl5\niuJkxx2yOw/zbODX/FkAc/rvXXrMzH6tAUED1JKUNLtk3vxkDvs99g6sS1QzAP77avjkuAmiZKqP\nUV8s18jJyamC0J0HJIhO/DdGdm7kpzv8cx1GegE0EqHTHDB930t2ZAW5UQppCVrHiTHOGZfq9C95\nieTAtfDNKaUqn067cRepvvo4pBKi2ja1mFdHzLtKdu82WalJXnLO1RgfxgPGcdLzWoD13ER2s406\nWZCBJNrAzBIsYJ5mNUMzabk6o2+3Yo/NBtQLGKvMePRszcjiSKqkyCXCXOatJBzs0JkEUOspCUzj\n3FHthAWCSORzNCUxDYOBdSeMGTSOhRD6/O/QdRsPeHF6coJBtXEAPBreOFpuqIMDisyM/XjA9XTA\nlGf3WZGw35KToe81r1AgOxK0QftrVkOJLKTHkrW2IcbtkPXDtoniZmPsUNU4Zjm1qznokuGG8FCF\nztZLDdjJ52QUrhStjcyNNc1GbN+xn5QZMczyKghqgUVz3e1yzaVk+bZ218Sy/l5M+Or+XqvvMQnu\nk7z/2H02JscI1Vr9bb6klFxGvlZqsrMMitCic9P8zSYkYQ3fjmiqVI9ZqU+A3tYertvWAjj725pm\npSUD8fo14r0KWmHYmvz+tTFIKVXPElPFNVKzPjZtHWxOZVlAi+vaNnnbgOaNy3et1aH0PMNcBWNb\nyzuWkeUsgIFdV8hEQ4GecM631xV+VM9vRiHD1YUoc2zxvZ9JQIL4FHlThBVX5Nj2MqNGttf6ueh7\nMYFz0UC1e4Xt05WkJrR3ub5rjbe1P/47s5zJxGpC3ux7a5hnrXznd34n3vrWt+KDH/wgPvnJT+KF\nF17AN33TNx01B7PyJKGZX3zxf8Y4jnjppf8GOf8QAOBtb/sv8IEPvP/T3gNf7dL2zVd8xVfgl37p\nl/DDP/zDeMtb3oLz83N867d+6197Pe7IzlOULonDYpQuWz4XA2xCdsRsQTQSnWoZyIH9OI4OwAFx\n2B6GQaT9utkY0dg72dmrX0jnG19KaZEUszqIqJi5xAPL7rUEoqenp5osc+t1im0yonOjmh0/yCzj\ndNgko9TNiEmvpGqjJlAxWaaRtP3+gOv9Add7CS5wfX2NcRzRqy+I5dBpI6PpzlekglQ0OUJ42OuR\n1dbcCZbl+Ml1COsYUrxoueYQlODaiZi8lkS7p0EbrMhzRLNlOZOIxS59UqBiYjMisf4Qv6SEvuuL\nWVDYgCsJMsLhGXw2AKjKvfSHgVao2WSMejaOk+ZMyjqGQKcRBlvNjoE4M6EQH51ZyUQh3cMg4Z0l\nP9Epzs/PcXZ25lrRmA/KNIb7/b46mG72e1ztrzHOk+dRIkrYDCUcdkt2OvVLEzM4CaJQJ2zNVV/G\nPrUD1swsu0oqjuZ3PSwpQ2xM6/FZIzuKQI8yhLiGyqdOuBjXtwWTOK7VWQcFvgcQigkN1ZoS8jXV\nzLvHlAosHQECFagyhBMIVwS2FVkEVJlY7zf1vnNcav24vjl2X9u2FqC28yiuUbCFVCAHgsf6BClV\ngSlyzr5HxHdNmo9rHEfvvtSMUwrEpSU7RtIp13D5GOFsBVq3fY5dd+z5/lPPq7av21JpN5nBZPte\nGF+uDcyOkS4i0cBkm+uhPu0crjTAn24pW4YQAR3TtXeJGecyPHtLeMrjTLBWa32TWV2EChPVshnH\nBqGKVuz7Il+wCWbkFD5eibD6jGz7i1ekzD3lPSEPlD1eTYdtH05lX84UhE7xbKteGoUDt61rcqJc\nEVuwmg1b40mJqQovSwdV8/Vx5fWvfz1+6Id+6Imvf9Ky2+3wvvf9S/zkT/73+NjHPoY3vOEN+OIv\n/uJX/T1WbjsHHreP/sAP/AB+//d/Hy+99BJefPFFfOEXfuEd2XmtFstFEMHxNIlTvEUpG0eJrGZk\noh8E8BkgMxC92UjyzGEYQJ1EALOQutPUJruca9vcCuwUgmNg3YnUJBh45pJhPkqsJVnmRhNl9pX2\nyUCoEJ0b7A/7IrU34EHkkbXMjtVMvqIk0EiFHbf272maME5irjdOI/bjATf7A8ZpAsNywWywVTO7\ntUM4zzMmBfMVcQEB1Ei4CW7GZGDbwyyjRHiKGiPr56jp2u+lL4wMxY23PVRt3pABF/kGYFZtj5Ch\nQYnRdrvFvfNznJ+d42S3wzDY34qvjLeb2aPbaY9AJGTS07kF3hoa2sauBYZEEopcyKEmKO16GVNm\nTPMEmq2fzfxvVjAm9TDNmM1v0ximJGZzk4VaD2Qn5jyyuTznGXudF6x27H3XY6vPPTs9xenZGc6U\nqEcnahnjIgBgB412RpdxjuTZtI8W4MA1qAGtVPhLD3FGFgl5PRjVPC0/CaZ5ihqmKF2v7y3Ap13v\n5n9wG5hbA6/+O08wTYGDcW1xDRehwNIgTQArQUJq/y5ANpU+I+tJCv0ZgRAF+EEejr0ILcT/QZJN\n1kA5hu1dIzgtSbHrHkfG1p4Xy9rhHj8mpyhR2aoerd7ngo/4XfhbHOMc9n4TaMAIjgXaMB/B0A7Z\n57I+ryYJ/kF9trS5uloLgpbwLcl6vTceJVRyc9X2tXFp6woiscxlabvM5QLg43PXxsqEgnaNneut\nNsfnfFO/dp4s6t4SXDKMvBwbJ/QrIH19Puq+e2SuGimp5/16/f2JcTwDaTRWHYm8nan2XHAhPSKY\nMBPu4OCv3UFcetR4k0Q+bfbkrsPcac4538ABZ45VfdeJ7drvHNsWvgtNsgbX83XxjKeiv696ed3r\nXofXve51r/pz3/Oe9+A973mP//tYeOnf/M3frP79tre9bZGH8fT0FO9///tf9To+rtyRnaco8UC1\nTXEcDQDf4HBQfx0lFZJHZKjIjmkNTCLdD0Pw+2B1KJ/FoXxaHiyVFMgd4MuCc21Knx1k81zM4sxM\nza7bbrfY7Tae+8fIzjzPuLm5kY9pl8YDxnlSM6KSfbzvBk82SVRyosQ6aqX9wJyc8IxOeg6HUUjV\nNIEh2gXrv91ut0r2dEAAoHovz+xYqoAXkj5WgG0fUpBgY9uSHeu7UaO9WcQ362/fDM1Z0p8TnsGz\nB+HxzV3nyHazwYkSurPTUzz77LN49tlnsd1s1HSnSW6ZxeGXldQFIZscZnaAcAs4VMrcoK34d9Gi\nmenhoBoeMffgeXbHZwt6kHMBQ33fY+gGbLeF6JycnLiWh1nCreec3R8tatisj20+SLQnFudVUrIz\nbHC6OxGzOM0JdbLbARpBKeeswT2U4M9z5TfgJCelyoS064qZZUolvxXpvLUfBgYNyNrp7ode07eR\nxHA4n2+TfstPca4lQkWKarKzBFdVxMNUm9O1RZylWc14jOyUn97oSjjLQcpdEx27joAq2loFHuzD\ncR46BApExupiIb4JlLPjnLY9RnjW8pUcA8+xv+26x0ktj4JaLOskpFGBLOB+Xdqyx9Ytgv+FkMv+\nTdAQ1qQRE0sofvOtc6FLVrNHttGrSRXb+Ib3tIA8WhHc1gfxZyQ8q0Snaedavxz73gG4BgAhroN/\nxLrHOlYfJTyVhN/eZ/UKsPbWMWvq5tsCKehv1teSoLDPjbX6xnuMp8XvVufvkTl9W1ukzbcTffl4\nU3RJEyQRdhFfRP8lwLpFv9E9zs5DE0D1+uk0gJGZ9xeiAxcQ2BiWcbf1XwIrHFvX7I9am8vxc2Qf\nfdK5cFf+xsod2XmK0hINABJIYDw4SIuJFi1pYiQ7pt0xAN91HQ5TkWob0XEpboqjkqAAACAASURB\nVNiw1w6JNR8EMZ/L6OYZE5WDa55nN8tKidD3HTabwYmOtGd2UG9kxzQZ4zSJfwZpZCgFhUUKI6BE\n8FMhaGbeZQftPM+Yp1md/QXYFk3PiJzVEX3ovM+2260ftJ6E1Q59BVUlAIMFC6jHTUBZdkJpn9R1\nIjXWEqV+8X1REzFNk/sf+WEeJV5xzhiQgKjHO/WhGYYBu90OpycnODs7xfmZmHs9/9xzeO7Z5zAM\nPaZxxDzVpMA1jKQhiePBAztMGpHiGtjV09KImo2l+NoMDvwBuAbHwpbPwXzStCJECf0wYLvdKdk5\ncY0cACXwSmbCmhnDZ69BPg7jCOoSqO/Q0VBpdU5OTnF+doaTkxOc7E6w3W2RZ9WUzBoad5qdWNXJ\nW0lN6XqPMmWHa9fXgS882auey9nXP6oxdelip3LZFUBs898Iz5rfQ5Twlvi0S7+4cq8BnnVgWQXw\naMdd3yCaHZWw6hyqCUqZRuU+k6zHeQQnMCZYcGlrAGRVXexvFV4gBxcyZiUyloCaY1LuQnhacLss\n5O0tfVIqVb4vP9vls/6Ouu6xGFkszV0C6/hv59IrpJh9Itk71Ucxicl0H8cedT1zBojmoplz4l3/\njEQntnfNZydeY/Vv52K8Ju6va32w9uw47/39UHBtCVWZJaACL5/X1rGpuCeqbQUPkegcJVwrJcpC\nZFHpqmqITlzzDI+DuejXxdrRR7Xrv23XYnlhOU5H2+RMwUQUZX6LQANFfqF/tzGRYdD16ms3nEqE\nkHMPbj7cNZqdTvOnpWRR7IQoEWvy30BKrR2WIDalDOa0GFcfId2MjxJo/zQJq434xjPgrrxmyx3Z\n+Y8oaxsvIAsk+uIA0CSQG/VdOMHJSZFKn52dgcGYruYCZN0ETJ3le3EU77loleLG1wIgu0aA91Jq\nJhKUEuHJNoJpmnBzc4NpHHGjROfq6soDLrhWK5FLwrsu1dF6GGqhxZJwTjUQRCQ5GmeNvpXnEoVr\nnvQ7ua7veqAv/Rg1YszskefMDCpuZHOem4O7mGUwl8hfZuLk/QVUJh8mwUwpualbNBW08SUqmcQJ\nS7tpIVayoVoaudT3Mh82A87PznHvXD5np6c4OzP/qVP3VQKKKaCRAzsgiAi9RkyrwEX7U838Mhij\njqXlrAFrks8QOS86w5tT/zRp31h4XCVKXdc5mReCs/Wofqnr1NRqdrO3aSram3maZBwtnPmcQyAB\nxnY7YHt6glMlgefn57h37xncO7+Hs9NzNRPdgKgDszxjPGhUxMMBs81bZgn93XVIZIenScC7EkCC\nkoY3DmA/gEuLeOVzKwMmowSguaxKAIe47lqyE79vwUf5TqTB9rf4vBYwRXLzJLlopP7ZbeaJikQ8\nAqQKRKidiml02NC71QXLeoGo8sdwQFZ1ciktwK6eFfKmlL/Z+42w2Xc1iHHc1hAZx6Go+7V+Nqp7\n4t+XYIfgzXW0W0oZC/+m1LMdG9vbm+8JEk2xRx0sp49ER0GaMOv6nMgWkTASlxWfz9ZqIJKd9ryJ\nJWrZ6v5agvK157dCAPvZnrsASVh8StU19o5jz6gGMHwf12MMAmTzY+0Ztg8Gr58yrqiLTPmoQW01\nBSLkME1I7LdVrUKzhOJeol+EiGLLEvvomIBAxC1UhGIoBCW2FihCEicwcPkHEgNs95PkMmOK+jIK\nBCe5ZqfvTEupJMPmQdgXpV7lrMycleQXa5zWxLzs6Q1hN22yp8coP31vWUpo7spruNyRnacoZd8w\n4FOTDD90Ahgehh6bYeM+DGZ6Y59pniVXSxNRTZ7XoVc/DTd6tRo0B0/0k4lSPbu2tMF8FZKHnmbm\nKqrc9fW1O+KbyVb77NRbpuPk+RUyi3RN8j6ImY2d+JmyHgrFzG3WBJTi5C6HRt/3rvUwDdigkcGm\nWSSSDv7VBM0whYUUBkreiXiIrUat04FtwaEFMbDf7eA3Qmt9af1i5iOxvwvQzw6mKSVsNgNOT09x\n7945nn3mWTz37LM4PT3B2emJ+ulIvhjTSLQ+QxblraME6uEaCCOySU1YugB8QZKHaJokzxJ7X4lW\npycq2o3UuYOrmwUGYgjAnUb7XsjOmWpazCzPQ3YzRGtz2LtPW0UgtZ/HaVaNm0aayox+GHB2eobz\ne/dw7/we7t07x/m5/H52du7RDAkEzqM4bR8OGPfyyfPsYDylhCH4ILkfiM3nrvMQ8WZ+4WMZ1rrM\nmwDIwrLkRCCugVcF4HIhPItDtgGCEZRHsBZBfpE4pkp4sabNaQMbMDOQazBbULrRh0JqKsK2ctAL\nBjAw04CzFQJT5/RZed4awHOgYUQwalxE0mIkMTQKntMkaGqsWhL2Ovu4rJWlpqdUiGhdumtTg7Hy\nXP2ygOhaYxN/VqGd7W9EJbpjIDtdIic7pA3kzOLE38xHITw2JzVioX+KYK0FiGuExK6N++Ea0Wn9\nquzfLdlYIzxrZCelrhIyxWtu0xwth2JJdgrhYdeg1OOrdVP1pBNjCvvkgmiQaw0i2XEBB4zq1GaY\nx8iOLde1dkbhxbIe9bOPEh4q5GXt93BZeb/Vly0BaMkpZPcXszYSFqQt71ISwm7E3YRvTna0x3N2\nvkFk4yULLts+K7odpFTPi7YDbQ3GfTeeCx2VnG1kE2ElrP5dee2WO7LzFCVu4HHjtY3R/HEiSE4k\npML+ViTgO2w2G2AcJYklL6VmROTAk7rkGxuzgFDwhClPIg1XHx8zM6oOR8BBetcVZ3drT3RG3e/3\nkpjz+trBaQT6RBTyzxTTN2ZGgoQDzZrfpWgcoBJhAHqAzzm7z0eeM2YWFX7X9yK1HAb0Fv44SO6y\na3Zq51lzThWQQQ4o51lzqqg2yLQG0i0GelMdXlm3ZXuG9CFVRMcc7tuP1VPqWr4zp//tdoMT9Tmx\nz+npKXY70WB1SpTNbG3UhKh1WHHtUz1lDIzKXm6AQg2hdG4aSRzHyUNtx3lBvpuTXsvqy1HaItcW\ncjD0HTbDgN3JiYYv3/q8yMySIJSFgBzGgxCRcdSEo1M13x0kaV6efgDOTs9w7/wenrn3LM7PzyTh\n7ekpdtsdNv0GUMn6nGfV6kz+jmmcIKHcZf3IQdphGHrvOJPgkR+kUFTDbnaUcy3YiGTHLtLpoUTn\nFkl4IDut1sL/bYPn52mU/KO6p07Uq9HjXAJLFUmJdcgWdS+bc3DQwtj7jVh4Is1jxISUPNZmS/5v\nv2wJuLhBkQvJ9ZGy6DNbB1xAZBmDxd113Z3wPA69rIFN2xduq2uRKtv1UUPm5CaM82pNpKJeh0hs\nnfAkC3te1XIxD+s5Gc4KFEl7BP6xve1eJ1WLY0GL79c0PfbsNULzpIQn7mHH5s4aWVvr37V2ReJP\nK3X0a4mNEhUBI5bUWJ61Xk8nPKQk4Ag5W1Z82daqX5t5c9u7F7/b/1fGV/aJ1r+IvZ+KSKJsJ0lv\nzO68JvcnYayBwAcrA5vXKeAIVgEUMQgZIvTRtcVRKMT+76WmsQgVikxGtTepzFtL2O33SEcfHd+7\n8tord2TnKUrMuRI1MDE3y2azqXx3bHM1UGnXmD8E2U6AAOYbabpEPOvdHwbMGDFKwsSsyT8nMeE5\njJOGEjafihlEkvMkJcJut8Fut/XEjgDcH8UijZmvjml7ImC39saQzBIC1dS8BYh1fSq5dWAJP0Uq\nYyZnYpYmTuRIMRKWkJzMwJQzaJwwjiVwg0kniUq0SW42ZmY4OcpzxpRFc8BmvqUJNvu+x9APGPqN\nJzAtUdaSBhqwDbBD1xk5FCd9T+jHXIEHhHHfbXfYbbfim6MmWea8b1LPw2FEnmcfY/GNGZGVGJim\nsEidSltFgyTvTX5whMh8RJjGybUoOuMciEmepxbg1OJuI55mXrjdbLDbbnFyeoLtyQ5d34NnyUcU\n14gR2hgVVAh7rk0kibDb7UQLMwx45tnn8Oxzz+LevXuelHTbb9BRUrMb0ZxN04zDzV58ffaSv8gj\njIFUwxUSc3I56JgTyCT7mTWjOxxExHF1H7oAwKwQCmAmu9/uU+0lG2PQeRqjZ5FJ4+0SjsTIXlKC\nSBS/oq5oqnx/gMxJNmIfAS47Wetg4V1LSHE/+FHCi1sW+AKIoVJVCNAI4KAiO41038bYNEZPIh6t\nwCff5jJ9HPTeBoYfV45J1e1vxzQGgM4JikIqm3dLomd3GGC0gYhEyUCw7bOVZtIJLgIJZw8Jn+di\nSloFvUEchTiLpayShZU2t8Rora/aa48RmSj8WLsm/tvA75PUswgNuAgFwqeQFz1HdN/3aI7xWajX\nAkKbWsLX3ncbTOZ6QNbr37YTS2JalZV6LS9ZIzx1/4hGh4KKR1pU6utUOTSiEB/3gQTDjD40hIf+\nvSRh7zrz3zFBTslHZ53EGoxCtDsMC1JzbL3GueN1D/V3gQ8V64gUgiMwu6ii2Zjvymu53JGdpyh9\nI3U3ABpJzHa7deIQN2QAR8lONDdbs4k2rUDXpSCpYBBN6vCfMY0lYth4mCptgJEdohIGe7vdOsDN\nOVckx4ISrJnHRWliAekHALoHKlBNgyZ93G6w3WzBYPfRmPMswF4J0KQAv0tKpFS7Q6kDgzya2zgV\nEmc+J6Rq6uwbWDFZse/nObuZYCFJxTa363r0/aBmToMmgo1+D+zmYfaanGeMo0j+RXvE4CZSkTn7\nGzk4PTvD+dlZITu7HYbN4JJPGT8JKz3PFm0t+0EqG29fRahBALNGbpORMh0LZgalJCG+VbNjJaXs\n8yBKYAtYYD9ADFiZhlL8iyS09Ha7BRFhP5cQ7LZO4uFjy0HIjswDWRtysBXftlM88+wzePaZZ3F6\ndobNIJEN+74XkjozsgU20OS7h5sDxoOayM06ZkRIVCSEXSLXPJqEkJGAnEteCMAPN9MK1trS9pwz\nkWNLdOyjJF9O5iDxJDc1bKXetsblZcUsySNtOYHrKiCSLYlqWLvFXLT2A0kpgYLgwoFMqUhFdLLP\nB2011fOiWjOVBHiFKLh243hpQTHdAgSPSqdvAZ6PK0sNUg3Y23ct7y+Ex/ZZABrCGzBJdCnLOvuz\nQODEYS8I5LIBd3ZGMMvYz5qXZ6HVWSUutBivVZKxUs9bid+Ra9c0NvHMaeuwrPM6oVkC2/DdkfrZ\neWZrk1Qw0s4D2wOMLMbnx7lyvJ+kFke1UUfatJh/gey017fPXiNia33QvsvmWhSEFIuCutaFPNhe\naESHNZ+R+v/o9XPklvqujqjR8JTIgqK1nAvBtT03cSE8qdP1gGq82r60OpBJbbxpUUNte5uZYJqQ\npjzrtjl/V14b5Y7sPEWxkIYxT0zR8NSbBHMJ08koG2bM3+Ebu0pao1+GaVsANe1xSQtqcMTRp6M4\n/ucgvTMTO5fIBz+Y2B5Liho1Ou3hFv0BbNMGisS5UzMkec8Gm42YZ+WccQBhlrTERdPjG7ZJpwXA\nGVkxsGxagDnP7tNhRHLOGaQA3up7PHw3qrakpNqnrkc/9BiGviaiVKIQtQeoaNxk7Gf1J5LvBdwI\nsR1c+3F6coLdiRAcNx1jSxhnUip5biKzF9cNnSLZLFKujAzMxT3WQKng+CIdJaISwa4CEnEsEX4v\nY24Hf9GOFM0bkMT88XAAc3YNSwm2MVdgWCRn1g4ltiQaq2HocXpazPvOTs/EZK0bpD8yMI8z8pQx\nosnRowEJzIHbtDkddeLbBPFfyI3WVFpqKc3htuAmLY1mbKiABTk58IPV8jo1QosC3oqZGIW+jUQh\nrjkCI0e5ewC25eONkDqHvDutsCUCGGKWgA1hP/LpwM3v+kkc8++E/SAV/6dIdOJ1sXB4tFf/MaAh\nSrHX/lZdY/uVveMI8Iv3Vn3TgNv4vd3T/r5af7LxXr/OhAkG2lDVOty/eGwR5vgQ6e9GtJ2ku3+k\naljDPhbb7WPGGSkQ/rU+a0vbpkheHkda2s9xErZCAqk4oUcCF39al6xscNX6s/GJc7idE6t1OFIW\nRJ3KjCebFCvtU1qx6PvVOWzzxH4087KMaU3MPx3CY8LY5Rrmyo2Y40YRtDouHHE5ipqNuTlG2TP9\negrR2SLxcR8agkAuWzvkkpCyr7bmnEsCHIch7qelvfXZaFup789POBfuyt9suSM7T1GmafSf03TQ\nnDrFPCDa8/sGzHmxudoiyXoYeTjfecbhcJCoaIHsmEaolZ5GcGT3z/Fw40J2TBofw18DhZTF0Mr2\njFjquot0XLBrITlGqE5OTjSZ5NbztVjIYWm35RQyMAk/XFKXqv6xOhKRh77OuZgQMEsuIXu29YVp\n18w/pc21YgebmeQNg2h2BvUViqTONHgRKBhx5bATcs5V8ALRUkiumVONxLfZbNGlrhqziQhD34N6\nyXHTq29VAuCRz2oZooMawAJDZD9E5QDIyFwSrYIIk/kvoQAt5JbsEFIq0mPvJ/XTKSZPMo4WTtrb\nY0Q5lzqXMzeQZo0mZf1o5Dj6Mm2HLYZukMN/lqSm0X9m1tDlFuEv51mzX4tplWi3hDgSi+Zt0uiA\nRlQME0hkICjWDOYhuRzGelSimGzWBETamJHnGoDVALMx92xMv/xAzhJxiOiYSY4duvB+XgOMhZgv\nTcr6ZFGG7G/6HMVl1VFO0llU0EFpezTF0+taqCrgLDagvO+2UpPSlijUwqUlia3f35KXNdDfkp32\nc4zoHAU+tN7GQkTrOkvXu0FaqFukhtobjKDRhvdpCTqQyxkTzFzbNnt/gMFctLqxbWvkY0ncsJh7\nkey0ZL7V5LT3rhGM+AxQEYjVZrPhWVK5mliHZ1WEB7amNcrokSL7hwjosNIva0XqvCTPCxIDICG5\n9s/6YUE2OISpphrIV9eGfor99zjCI48N+1z9dv1/23YO/9l17Py9MgHTM0pMBK1/st9TCE/x4ZFU\nAQndJBWymWVNMaKzFqAl9tutxRpcbqgIju25LYH+2Mc+dvtz78qnVV7N/rwjO09RDFBb+NxxHBHt\n4VtH5kKA5P720IxhkLMC9pbs/H/svUusbVt6HvT9Y8y51tr73HvrVrkcXMb1iG3ZAWxHNHgkSLGE\nLNFIE9EgcYlOkJDKlujELSSD6CEkWoh3D4UIIblFUBJA2FKMTQIRxMQkdsVV1+VH+dbjvs7Ze601\n5/hp/M8x5lz7XJ8okq985r3rrL3Wmo/xHt/3P4lIQhUnp/I9s5fdxV6lJ0TUaXWMhORw1/vaqn6j\nGbU6Uh5LLjph9qhzEkLZTOXCqf9iwhxvJ1s8iODO1nlDy8Qr/HtaynkSIVLzJpqjftnilTc593tJ\nJE1effAGIDRn9ne+xzRVQLVUlEy2Silu6nV/f4/70x3u7k44zDOqShLX1lBWMTuThKyiYToejzgd\nj7IBt7UHLi0iqZktOVMOVQwJ882ymZhmDERYIRtEQ0jVGglAD+IaKnwjIpkUSv+U1PaWDNQ0K+w5\nK0KjE+DFXqbZMqJ5p0E7zMTv2f29+BxRhWm/1tY8Iaz1bTbVJEL4K5nWQgE5GGhrA1YOoUER7ZkA\nJx0htC99zoe4epHbmBvhZ4L7/exJm8ORtl8PshDD2pUJoNYip81OOezc/D5Kt/NzxjWoktQhQTAF\nUUDGcfZ7ByAGstatbbZA5GdTPIMg5HKUYOd22QPSiY93v43tMxKhsf63AM9eXUZQukd09u5r5MHp\nSyayN8YW+b8chIe63oH10VjXzT1bNme0NYS7fsnv8reA7FZYhANPAMOxfzoTyR2yfav+47lj3Uai\nk98t8lZLe2jeCzrNTnrPh41h/10Zzx5Y7r8zAnr72CeK++PKDrVM9lvv9ZPf3/4diuHtxv34+TiE\nh9K8B2ketw3VIYwR44zobAiOETGNYCa7lBIdfxn/sb6XE4v77lRNZF5Ry+JWEGiMlmZN1rJ72PVU\n71vjuesPhNbd68TYjk9t21okiulP//RP79779fHqRynlsbX2rX/c+7wmO69wvHjxAgDCN0YBl5GU\nFy9e4MWLFzifH13abcCx1j5nCrP4dIhkfNm8DMTZQkzDojVmnY+oXbJ4BLbogb0tdEaucj3yYtg/\n1xZc2RDNnMkJgvoh2UsSTJLnxMH16nl7nr940YW0tvUnS7hBFEkibbHBFhww+gRzeTG6moaqtYhY\nlTaOTHIiGMHWZA3AvsTQ8x6VIHPUa4skytpJQjFPYpoXYHQVcyslDuJfM+FwFK1bnUSzs7IGV0hj\nI3xImguOjdAK+YKSmQSCFQDZOwrALAt7BnlBUCy5aA5tW1xKuCwrgAuWpXiC0Ka5iWq6l7QNuTmY\nkQsiclJ50EAHlmSXmcU3C6v40DActLm5Zo7mxhaUQQkf1FcHMQ84aV1RB0f3jFtoC7x6EAtwI/UV\n05wqKABpsBBItKFxDG2c9wegs7sREzlY2ALcBlXY7QLCTuuYfuuereOYOQATD+CJrdLeVEZcsqlH\nOMazahxYvzBS6D0hTMcbXeZcfsSWVPg7OZTy0nEGItCQ976O5ftBxy58DLPVV8/rWmuDAzl9ma7V\n6th98hnM1p5NQ/H3QovRxKt7PCXwnYQTua+iaMN4TdrIaGMdSx2a3dYw+jEaodeL5PPjeU48LIw1\nh8QeUAGBVsqK1hjaLvGKcNjRngE+kXReDDCl65NgwcfDbYAb7ayklEi0OW27D2xM60jXTSq793fC\nb+0Zi4v/fovsDPykIyXdnCBpCUqJfEeSD8Dz7OySpZ3zAfLnm/5KdVhehc2d9IsCSTVgNc8aYk7f\nByeyMY2ufX397rBLr+ERslU0YqiZn/VlszUo19WLTCrosVw6JiArWatHvqaFMLvBNFKlFMy14Ec/\n9xnBGVq/VbWp8pwSJnm1otbw04t1q8+hyBz3YESbWBAswSyRNsTcFtYWwUgM+9RaPVn56XjApBYs\nlsBdctJdfQ9fF4tkGu0Vz6xYWvuVv/PVd78yDoF/Ekdr7VvM/M4/7n1ek51XOIzsmEQ5kwUB88/x\n4sVzPD4+qMmbRs4pEbN/lD6Zedf4ssV7TzppC7CZvfXhfGNhlWvCFjkHFRjLv092xmdH9Ca736x5\nVdw8TsmOEJZVAgMsCx4eHvD8+XM8f/5cAiBcLrgui0c8IQ2jGxGc2DU4efOzw9rPJvhqWg75UdrR\nQmIPbdgRtSmim+W2zc+5bWZhkn0lf8kkTsz5LMT4Mcjuqj4+kHJNVZKlWrjtw+GAeZow1QowY1WT\nqOxTJaBJ6jZZxLVanJwAcBLkEs/WJICC+Raxhh5Om+4YgEICN9R+I9A2yVHUbKFkZtFcpTa1BVnG\nZdaKkQfrsNw8OWjG9XoBGkArQkLN4WwfCWQDljFVyco9AgkDYq2h8QqCkHFJlscjjnUym6V4ipFl\no9LoPNR0rBYAXGQzZGBtw+at5bBxPppZ7J1rddqTzGYtkWQJf1pavKfVIZ2fbUkS8AQO0tVeDgEU\nmex4KQPY298OtAWU+rXOLEdoku/p3ZaOLDfm7ves/WouYc4EUEBftEsqZ9dOVqxEzEi5WS4HD+/Y\nPxjJd8bWjh3TxltS9qhkEB0jOwbufHxa/W0dDMapdRvbPpEnf1S0MZi6dhwgr5I4SjnVbJ3UuWOm\nxlrWIt7pTnScJG1eRjDClAnZAjOhbiNbZqJnRLcjPC8hO35TDV2c91jT5mcy7ZxdidtT/bYdqxHs\n5eZctZOp175kIOyCCrsgrXn9zW6UbVPUp8zaZN12A1YdEj6a8jRmy6FDMJ1aP4VjLNuI8v8S+ZFq\n7fjsmN9OqTp3GzxrKWJOWJ2Abf937akBa/Je1QcmsrkQc8uirUI/11pxmCoIVZvbrFGkj4zsRLCi\n2rW7YJzVy2RBguweeQwfjxOOKgyd9H42TseXuSRMU8Wbdwe8dX/o3Auyv6ulGjmfC64X4FrMEkHa\nYJ4j0BKAD5n5/3pqPP1RO16TnVc4Hh4eAPQA2MI124B5eHjhkcyAHDlHBo6Eyl1gUT5ck5O0OaMJ\nSpZwOPPXAX1xZi6Ex65xQIIeyEoZmgLK64bsZOAbS0f//KL+G9M84zDPOKhZ3Jy0Ol37XC54UK3O\nixcvvMzLsmKadGHJAQEgsHjM8u3111KZtHTRqFz5MIl/Pkyjk7UvWbPD1jZLgJBOsufJyuJ+tiib\ntC+HID8eDx7i2zax5kBaFsrc1yUBYYYAI9NkXK9XnM9nHVtqusWMNs84YEYtMywstOXaIEQCV1pX\nrAAKs+RxAwOltwcfiY9peEyiZr4puV1CQ6gJXqtKHdMrt6HlSzDCeTwcXZtl0Q4letQKXhqwMHgV\n0zDbHEZCKuOdI5ED8nuQFyet1FBakc2S2AHDeH6vUWEHvSLBJE2IJ68CRmMJlW5Fy3M45mC/qeZn\nbg8lCbtAxDbzniDs9ae3Ebb3Eqllkj9zAnRGPvbAmY53Tte1VA8f02x4xIyw+vrJm58ER1IcWE3u\nZV8CnDqs1+oEYDdUZuW3tZBTPo4Mxvw8WzvTOmPF82cmEDUSRE6EzUC7mRS7OWoC494eVsfg5339\nB/AuEn3yOnDX9rlI0e/skDVpnVL/OQnhVCR/j2cpe3RaOZKVUasJEBpYAlx4PZJWh9Orxdoi+wKD\nGnz/zEe0b09uxjF4C/AC8OS2MrDC7CzGFaLtta1uz6VoNB8pPD7/6fDp8Pb9GP5gqT67WqKXPeel\n5dD76Di19Y98TO2UWy6IVdi5jREdBMnuyE+UOKaihX/WqJU1vViEPNjzrdI1bI/s+lrse1xv+SIa\npdy3QZrcOkGxQEkJS/c0Xj52gG5MdeszZC4ztv28N55tL0IqowkU83mjWfSaonEaDrLfckLqWBu3\n5XhKE/1H+XhNdl7huC6X7rMMoqXLT/Pw8IDr9ZqIATmIZTYJ/dmB5PW6eJ6ZrHUAZDBP04RjcvZf\n19DKnM8XPDw84vHxAY+PEvI3or2Zql0l2LrIrKvkIGHAyz1qdoJUASbtMoJTE1GYUwhtABHtSzUt\nXf6ex0c8ns+4XK+R1JL6FYKB2PQsyIK+MzMqwtG6pQlo2p09LUWuT9Zap0f1tgAAIABJREFUjCZs\nzClSF4YoXNIMughbDhG9RtvYJFCWPDa3iy9yCRiZZNA1dOczXpSCdVVtF5EkQl1EtWxancvlotLh\n8CHi1UIbC8H2UJ2l9MlIAR+Tssv3q1omMKuapIkppUox08Zg92JmTNMkCXIhTu/uk9RFwbONrA+Z\nzJB2X6QAcS5DyM6VfeMX0C3DZiohISPSoASAAMqV0GiV4AuGCRv7fCBmnQMGnvMITORoID0m2rQ2\nzCYQpRQ0msAkpNPGnfe1jp097Y5tQLmP8jGO5xjnBRHZbmsel++f+9f+duGKgZD8TCj/sAYv5M+K\nE7TNDMNgK03f2+S3h5BVQvSxQ0aGg/pOhGyaB8VK7No0Iwqk5yvRsXoEO7MlMWmcUjMwUjniB071\nBcfnxFpgxC0FnEoA3+6V28LWQiNlUDJpYFuIubWvCR1kT9F7NwYXIR6k2j4Dk3049QTgkcvG7ufD\nA6gZAeMWfG2B2cuOjlBwT5L2rBpGAAdEwt8Azv2Yz3Nq82ztgkwk98omvZMJDLrn6Ae70sclNWzu\naec0DSYzBg2x/s3+qLkuY9lkr4xcf7fm18ftk50LrVapqqPGCSGksDMpkZyg4ml+sl9LJqwxwqD3\n87XMQqzbntYJXvbr6vuHEYPhd1sLejO56qbuPhW5v2eOyik+R2XoY6R65vGzLYv3Fe/32W6Zkcla\nvw/by/2bzVcXtu7vR2LsiU5ffjunEz58Ao/XZOcVDg8FTeTmVqJhuXh+moeHB7TWXLqfpfWtsYL/\nswO+ZdkSjWxaNc8zTprHpNYJzBfVBq24XEyj9OikJUyzxFcipPyy07a2YoWYf5mmICcOzdL42JDJ\n89/UWsXMSn11jDAwQxNsXnG5yitrji6Xi2e3d4Bli6TNe7Bra7J5WlvX0NLohDNSJOc1LMvqtr17\nwM8WDGvfTHjs91Afr51WabMo1upmYrIRhg+TEZ3oAw1qwACxhsY0+3XEM8+XCxhqvmWLtZIabutg\n4ri6uUqO5mcL1TRN6swZ+T2sDIUIUEdk8NYR3ECwE1wicCni55LI4i0NgkRH2Act1i8WeIAQWsoR\n8HBj8LWBlwZicQKt5kPk4B4+Ro08ojEaNdACBejyDmt7A7XcXAMDyiGVA3wxhxmSyXUNe+8RHlQC\n1cmTbG5fxd+9zKnt82HmYoTkQL3Z9HriNI77keTkNt4LZJBasyuDE50cuU0BCnNPcjKZGstw80hc\nRoCI9EOElMWAWch/78B64KpoRSLk//xWTPGidF9O5/iTEuhLBIeVaTGsmEYEx7L50NTiJf8g2jFt\n8tYnMLdgnmk9drLTNOBIkZsXCAgjFj2OPZwQwVWsLlY+87PhFnMX43ik7VqR/x6Jz61jJDl5DI5r\nABCRMPe0KaYF2kLafaKf6+5Nk+o61qELcEBpTg7rHnfjR/u+NGj0l1R3uRtDNcE7ALIx+3yycuzV\nxcA3t+Z7YiZPXl9m//1VSI9wEHY+b+uf15egxDw3AcdkSUQnrxcyJslnwgZGU6yzvhfZeksxr7uy\nWoGbmN3Zc/dAOimGy0Sn1qrVMc2UzXMbDyYIsLqMxMDajH0PCznzlkRkcjcO4L2+6sZdoa6/x/kx\nprYwzU7W7phGqMdJ6Mafzfs8Hz5px2uy8wqHOaUzFUBD2K4ORK+eBwYcpGU+zMmxrLo63tj2sqxY\nrsuudsUAuUnwsu+Gma2F7eWiZmwGSCIcbKHig178HiTJZiYfe2DJw0IjIsCZhqckSRIzq2+Oapws\nX88i2ewXi/S2ruKAymY6YxI22TAkHLWcs7aG1QiILhxrkYXMNm4zVWvZ5Aiyboymf0Qa7rhOO7mO\nYjKPhEI0GwW1TqhVATtEkwDhDfJ79mtRImNJPgEFQ8yukkctUl8dP0ZcLoU8qaigcSU1A0gFi027\n2RHn39vaXFadfQV8gyG4D0tehEspsTmztmS32RS1FZ66oA8ZXLd16ZIYZuLEHPez89dlFS3MdrIB\ni7wKxAacyCIDlW4jJAqnZWaA1xUrNw0kQCg8EDO9P6dn+fUICV44pca8NOsh055Kk8n8LFbGUqKe\noCA/Njc7cGDlQez4zN1HI2q57czEw8I9+zh3kgQ4TBkBpiU6TUAzSIaZfpkGs3j54efA2yJYgXwI\nzY+9w/vdkUM+rP7p/PhNywOImWsHwuPhApnyZs9dO2UNWIS3xfCgIBNWXAfD3g3bv/07ypLm3Ejj\nGjOAnmy+l8qAsZRaXcr9IgNREr+2JpGpbE22ikAJo6FUK3d6RuaJGMD/U3W39h4J9h7J/djENz1j\nFMCNxIdZAhrkkNp7ZCrfy+s81MXXpvxdR3nREx2bE8j9Dl9HdsGrA30RyIyaHT2xA5t77RV12l6e\n++CpYxSc5OtzZShsOPsxZa0Ytm0Acp4btWTQMedDryNC8Ht5VWx9Jer21UikfIPo+Pqc2y769uNo\nJWQMIMrn7RxBiRpzzFQay9A/k51y5d/7OdM2Ue22RydMTPex38Ivdi90u6074c+zLEtXhow111qx\nlII1zeNPMtEBXpOdVzpMC2BHOH+rD0WB5EspBaeTZoLXkMN3mmdFcq0c1BxNtBYXDXDw+BgaGpPo\nMotG6fHhAQy4Nsb8gkZzmACYBSVF07LyLpqbxDLPm9rTHOtrIgNmMtfU7K1/hgx+06649kZJ2PV6\nlaAByL4oFVSaRFqzHEC+eErCUV4WJztGXmzDFoK0glkToTYzM1NNm24+sXkTqFTMhxmH+RBqX62L\naYTyhM7hjGOSS+4ZWWRMml9RKqFYaMxaQWr2laPpmY2vSW+nUjyBJkHsgxeQLkZSsuvliuV6hUVs\nU+GZlJ3MByyZ43VRWqpHk+kIEDOaytGYI5qfmb+1xpjnCZhmNzGrpWKeKiZNtBq5iKYuFLX5I7S2\nYmUJrMCliFlgY41cZkk1WevSfHwB2aenuFaqgPwdAFi1koA4ZooWT/rBDmY1A2mMpm3FhTx5poyB\nRLQTKrENqnXhbJP63/B+KSiAlDNpnKjOqtmZ8vbtRFfIgYdQc+KVtTiJgTnYNvBjxKkWk0pWkPaV\njxFml/Z3QM/C0LM5fRc321zVVLFQAUoWEgx5eMjooDWbCSvkn0JV/Zi2h4EzoqBxNk5D27YFdTbm\niQjUgvh/XIC998q/5aMHFMO4GAHzAKDG+5JIIlS4v9VaZJJUNxJq3vwVRDlCp5cq6434aRPEhIq8\nrR1cprGUyzu2ibJ4B3l77TC2V273TEpGjeGtPrLrrE48PDsDt41GBUhRO7f9NP49TK+BTAbpLjrO\niWPcb8ZNEg7knhvLvdduyjwHUJrv0JPDW20vCuvq5duco/XZO8b2zO9d3xiZYxMkGvgHQBy+Y0Sg\n5OZrhLy0Bi4EUpNiJ95eWSWBNoYQAHyqE9apodYl1lhK2qu9trV7pr6h1H+5PZvOT/vMRmRUs2Oh\n2g0XmDVFFi5l4WYWLFldtEZehkwwiEQQ11q2LIj2s/cssPVyrw2tBmG2uWM4zATn4SvO7lZwPp87\nwazluRNCbn64kdrhk368JjuvcIwmT87224rGK0ohB4anU09wLBLG3d0d5nnG+XxBaxesLczgzuez\nEoYFtVRMbQKr6RtDwKsRHYvKlf1rRDPSQNRQStjydmRHiYj4zoi2xYCzJRudJnlFSOslwhoq0SHS\ngAZFwJv5LJ3PZ6yLRpwDMHlELyE6RGJ/Lo7cDZOiJYZGiVtYNR7NzT4A+CbeVmlzJ4tGiNIGaEQH\nuuAeDpLvphC59ilHLonNKdS90bcSUUWSqNqmbqGZiy7CxUNlMkekMkl6uWqYSgGT8zShsfi3GNkx\ndf6VAG5N/Jsez2jrikroyE2t1XP11FKDhMxzkC6TliWA1ZgFEFEQMl8UW+TgKFSAadJIcXr/9IyD\nvuZJ/ZJqlXCVyxXLwkAVMmKhN1lNCki1oQ4IwBJVzceU9IU84wCaZ1Q1D6yw8a0JepVMESQYg7Ql\n4r5mPgcIIS2EKW0aQXLSBuOgMPstRVREASUC0E2bJT5aVebLPAFlBpUJoBqki20ThAtCiSGmYUBP\neLwOCKmiBQ8QpuCa2loqyDSsIG8Xd9QepHy2kesARkXBitUj3IEEcrs22AJS+Pqimzgb4Bk2Z5e4\nogNYHbhnCSIgQC00XLaxb4iAF1eBmc31BBBHSf8IooFt/pz82wbwp2NsvxHA7hGuHrg3H5l7ZIcA\ncCm6VqUxzEZzYgH0Z8G07No3DIB6cygH/ll77vfbtpH55hmI59SeYzvcIoxb6fOgwRqIzh4hzRLq\nTJqyVLk/14LYPKHFcVIJIYNDN3v55QOIgKZmgHSDHOoXPXkCImpo/m4Dxvs22CXMUDq0Q2DiZIBU\nw20DZzP205jJZPNlYz+3oe1PMnctJ462M5IvZZFdrNRMGmWtLU32nghRksg874+VUgrqBEzNfGsn\nNf238m7H8iiMcU66M+9tjVxTfWXcWfC/uD+3cPAnbZRsPuz9lHCh91FqWvvbhUmFJKJnbpLhyM+w\ncud5kdebpkLn8/mcmiT6zqL3AugwQymS/kEInoXN5m7uPTkW/4gfr8nOKxzzPAOAs90cIcalEVMV\nyf1h9mhch+Oxy0Ezko/L+dJpdQRkzbYuhnnXJgLbknLrhDmKgYlQ+/Yg0GKxNwO5tCd96iVu+bCk\nXswMC6wfPiWrS+wJhEZmauZ31TIW8V2pAtqICpoBYF2IHKSnXCB5YcqLY02S+6z16DQeIKy0eltk\nsgOgu5/WFKX0G5L1RakFlQ2oxtFvurLAmaO3xdu3dzKM6pozUzdbiMsGJsuR0av1RaMjSUgnzT2Q\nQamZt7nqel0lLDLE9MOlNgq6zN8pwnxKuMl5mnCYZwkvPh9kbE9GrETnclkWnB/PuF4v3l9yb3T5\nESJvD/k8ul4vOh6lvycF2dM0YULFTBUVAXyksY2IysJM204QoELQJJ+E1UwF25rOZd+AWDfepvcG\nuBtXQBCdvi7JudMllAHuN2MLuq+1Jr5QTYQFexJKAwKjFD6exym3ydaccY84jOM05mO/MzPgoLe7\nLpCYf+cEx4BPOr8DuV31Qtu5d+7u4UAzfR7LgYD3uS6Uvu8pAAPbpneSyun8rh6UX0Mbevn0Ccyb\nMjnJJXO+zn3LEHWNFTyZByE9h6O83TgbOXwCgPbpFomTdaY68DPT7SgMfF3LFY2xqcGHvW8oXU3p\nPslbI11L1NJ7PC/6RsxagxDuHBT1zoPx5sjK/UV+8T5Ry3dTE8Tc9qMpkfT99tnbmaXfE+Bhnsdn\nj/tTngd7v8uXm98z8dk7esGGlSkTk7TOIYYiGfvr5mSaKEZ4CK4RIuKdxlAyQUCx1ApTH1So1Apa\nG1aWUP+FGFMZ2mXTtns/SMkzCYyRnq9NJuzJnC6380i67V5BRvuyWDCE3O77ZRxI2g1ib793bgmF\nfExn/Lcx8S8FVfP0TdOEZVk6THVLIPRJOF6TnVc45lmaTSymGK31dqQZZEtI5gMOR5WEJxYNyKD0\nkMKXc0d2DOQD6KQ2IpFf3UzschHiI5qKYOBmWuODHQA0B4jEdVfgmMIFsYH4IjmTAYns0XSxND8d\nAL5JMQJsGXEaF/iVZTUyh3BZCwtKBQrMh0YIoGhzwnTIyY6HfAxwsudol0NJ28KYQxpbOde1ecLT\nHLVklNTaK7Rn4dcjix+hTgVFxYVZCmIO9K3J5m+aGDELmzdAOW+JloBMyI1maU55gdwPLGlXTL1v\nJljrIn4zObDBZV1xXVY0LU8pVbQ3TgyNzEya60eIzfEgCT8PFnyhRiS0dVnw+PiIDz/8EJfLWese\nEsWpCvmXZGaThA0tVfp4WXC9XHTsSr8WIszzJAnQuGJCQWGT4K6+ycqYFbO2xi0k3aQwqhi8ZfdP\nWpYrQElaVpJITcFbWGWQh1H3DaGGRM40dVRkHqxrA8oKsJlT7gsQ8nd5vOR3L5AVLW1Isek18Mpg\nJcYeyCObXAzHuFk1BaVFTTBdso+0aeoGP+zUO2CgJ0ofd1t8aoPPde+eo+Z2jqUNxJMB/1wS+cJ0\nLGHelwAcNGRAF6wASnhSjRxL9STRyzEA6yBL3pFdfYgofBHsN1BXvg4mZ/LAUdcRDGdg6q3gQLV/\nZXNdubvMi5Iq01puh2gB+0pKaX5TmeRkMmoEJ5vsGACWPpWccAVUGNSqAmETSHAAaiPVLGBZTIzz\n3mPvEWIcfi36w0jb8H0HWDn3n7xvZBM7bduB0Z21YBzXGxKTfnslqTqzJ5Hd1OWJozdBJN93g/Dn\nGe6jRu7vhEeLkCpkfUdMQBHCQ9B+tN/TeB8xlVnNTPOMy7Lg3ecrHq+xzh0K8NYxBFhPHZ3mi/q5\nHLNMyBkX8zmSb2OviXXehHwbbaSStmi39Pw8lxMB3Rt7/buuKjfOsft36xMCo+wJwzrSY/476+p7\nYCfU+4Qdr8nOKxxGdkgHb62r27SHZicA6eEQSROzVoc5Qg6bpsbIjplYhSS433TkmsWJjml4MnAy\ncyaR9gMg3TZbk2SUg2kJ0kQVrZXaQzN7GFLX8BB1JKT5BLdoJX5LgMx/ovmCYFIb0wrUSfyEqJAS\nstZFQhvNYGzTzocRyExuclS0nEzVggJIcsq1k4J09US/4dkRfcOoU0FrE1phz3uXgYxIpQzUVExF\nHfznmvLh9MABHMEtwKzaloHszLMTEzOjM4mwaVWuV/H7ydHwHi8XPKga+3SShKeWnOyoJoyRsGxy\nE7bj4YC740kJu/Rd04AU6ypk56MPP8Tj4yOmuQZhSn1hodOtPS3L81XNMU2yW7Sux+MBtRVMXCTP\nRls0weqqpFnG8soS9ajWKjmESjEsrGMeiUBLf9epug+PzeeQ0IsvRGTrjhepn4SDr7TJCBEr0FB7\nPl56QAPEBrcdW1tziwARHi0ob7AqXDD/q+xvNpKdUStEwtYB1eYZgLSt1B1xW+9IfXPDewlh6eu6\nlabeuq7/Qp7TBUyw7+22w1PyXwYq7D+LfGW/OXIfnm3S2aiHAXR4u8XLnxbPc0CBlDR5CPqioJ9g\nfWtPZuRkvACSmRl8XdyC2C0AsvPHkOo2XnJAGw13oGVqGkrZIsPlp9i6Y41k7+Yb59QwAd9EjPK5\n6pNExEJ4uICaEJ5+JyR/lvPdBBQbok1szu2CfP3NCMx47EnNMZzbt2/0wwgmbXhtuFaelz43t0Xd\nlG0c7EN5fF/hOHMs663rbUx4YQbhTVw6ksQgOt05/p601IDgJsUJIBtYcrGBdBP82V4k/qkLfu/3\n3sPj9R7AfwrgzwH4JVzaV/DB+TnevovH2rzeCEzslLQebsiODCyJbMh+hefi2bbZYGIGicrHMF+0\nvq2jTEFwbq2HPQHCpk9v7SVkjlTU921+7zHLzr437B2ftOM12XmFw3KJAGHKBhjQCXCRTalECqBn\npgHmDuIpepsnmWzbnALdBjOwcQsuwMw4Ho84KjDNkd98EebIL5IZuxEwMUNjlLKG/C1NnFrFpwNE\nEkluEbIlwH5CnTTkZos8PfF83T5VckhOLCJM654q2I8OCMZXJhHNISQzOGQOPxpGmCcRoOA1JKv5\n/nkBGheCSbUPx8MBVbMi+7JOSQJEqp2pFZMn6BQtjycwcwTBQNNnKQCQHD7ULT4WTlzAvNoTo/k4\nvF4i1LcFjViWBQ3ArCHET4cjTpr49HQ8irnlfBDzS/Vxur+/T/5mR5CO++V6lvxOnnn5DOaGo5tu\nHjrSZP461+vFCbKZ0E11Aio7OT/Mk5gjsAXolRdBsHmMJ5kUrCt/I6RzNZeQQNoNqKMmmkUbOwA0\n6phoasxEzd4l5LpG9OrmVPh2xdyUcozEIsYseR1uHTaejfBkUwJ7tm2sEmQjhyXv7bnzHA9yZ3VW\nCWWtPng7sxMvq15jZMOB5oB8vX76nc1/sM9dq3b3HJb7Sp9TXCoPjudbVL3B8SKPhd11ozt3e04+\n3brJy+kkJ/qmP3cgHsOz3ISX83XWL6lvvU2G5zCSOWEPxjoNSZJHR8Hh5MlPYyMecQe2aTaUb6/N\ncuSz8ffOTHqQcLMKIjLQ2vPJ6Y99kGXfOam09k91tPPyXunlHZ5iO9NYJ69bFEfbaocE5bboC2s/\n6NjdPivdPvpth1B1QgPe1sPOyWCeifoxsHM8re2hblyCRJvW8R0zlbL7IYFx65/8StsdM/cWIcx+\njQxpS2w9Y5pWzPOKpT3g+eMjgP8awF/UJ/1FAIxL+zIaDikP23Yt9nfaaqhh5GtsBV+H4OTYqQrv\nhI/33zMh7DWq3vY7zT+uUXntBz+9zm21VeRtvWfKZjgpE8ssOBvL8Ek7XpOdVziM7JgjGBCgZ/Qh\nMXDRRetIas51XbCuGrGMJJDAVCfXjlSNsqQzKzH5KE/WJtkzj8cTTscT6lSRQ+haWaOcrIK0otJG\nmwghPchhbW1C1CpmU3WShKgEiYhTa5XobzyJES2F46g7TUuhEZGeNKIUkZqXhKnZnqRC/kAsItbW\nZkaYIoTlts+T3DZdB3+MbnHaA0OZaIRmZRITxcOMUosvQrmsBuCD6FgIzbDXNZNl7+EiRLOVIDuF\nogzZNLGTwHEERLhezjifL7hoIAsLZnE4HjErsTlt3k9idnkQ8nP/7B7Pnj3D3d0djocjjscDrssV\n18sZjw8P+OCD9/H+++/jxfMXob05HXF3d8L93R3mefL+dXM6c/hfm0fjm6eKUgtmDWRx1OALEma4\n+UYCMr+FeEmTt47sMBiVCMwuYejmnvlb5XkqYydCqoeNeOSWqjXCSdsa0JqFw9VyIPplJDpGXPK4\nvbVhxXjc5s+JzVLD1qsprEXayRLlHOFKcmFtJZwW5CDIBbr1Jk42gFD8b+pFuN3a5OsVESwpZodE\nE9Fhoj5PTT6cCPXtszmN+9d4k/jO5vf+uQZouopj/G7vEG1MHp9Z021rlq1XlhneczTlp7VEDgGN\nChbSbv/Br8hg08ANB49Uck0gN2uyWyTsjL32H4nMni/Y3jmZ9PTjtpcqjy9p6x6o2Rj2Gmcw7y8O\nMhIs72Wdtj/kct3s3sPt9uatzaFbJEQel0j7TlkcSO8QvO0z+2eN7WYk7mO0Qn9XjtEga6/Hw/Tn\nCpGK8vp0pr5PNmNlJD86B1tjNbM3rCCEnEgEkhOrmfWyYnX8/eeGkv8kADFVjTm1Jbu21+9Pacat\nhrNqoqd/sMYi6vsgnmX7Qm9GBkCIXnrQrT2h0+ykYr5s3pS0YNi5I9EJIVgEPcoCi1vao0/K8Zrs\nvMIxqQQ/BxiIAWEhinsNgEntjEwAi4IUlcSu4jhd1ESmrkWBroLZdRWVPooGIugHdwB30SIJMD2i\nlILrckVr180mIxtnWsgSgJPJIOeZqc80CQkzQjHPM+bDLOYOa8P1urojoZC34oTHo33pPLGcF+Gz\nopodN4MLMGJ13ACOJFWJyW3+FFtnOgmYsKTJmvxKdDGys8cN3YCimXVls8T5MGE+TApsWpd5nIjc\n2a+aX0ydUI3k6GJKumrFQsrgVsDVkJhpNQLsthZRZJrJ19kk/GreeD7jcr64GRsz43g84Xg44P50\n58EzTvp+PB5wOEggjdNJSNDpeFTzNiFpV2Ys1yseHx/w/KOP8MH77+P584/w5ptvuYbo/u4Oz+7v\n3E+KiPDYxNztcpYIc6sSBIliNqvJ24SDminUQh7FjZlScIuR7MiWKKaSusmpL10MmyxnjL4Z8zAZ\ngS/e1ykIwVQ7QJq1fT7WbqBhwrgBko93P8HP3WqDzNTRNI8BJFvKr3Xt+tmkha5xJAO7Y3lSrh7s\nbGa5sQ36DJu5V4A5OIkDaEEN9r6PLsg37nxChzUcf1D3iwP1odzbTTlf83E27uiD/H7r/plI2e/S\nV7qGKHlxaXIXPGarRZE2t3UhO/Jb6bh7cPyeB1P6OxMFDCZkG2L7hyc8veZnX7NjZPsWydkTbm3H\nWv+bCdBaujaTk7EOYxVjTO2fZ0JBv+/mt+EZ4xc03N2c8m/UkdIcG+tr7w4+jW0kML/XZo7bnxjv\nfm7CFfI36f8ZuAexjDXWotw5LUxEJ4Fya0cEyZEXp3cLZmTPN3NwQlWh2pvP7rXkv4TQ7ADALwKA\nRCutFQbwx7rurdfdGLS5Z8V4ySHCBcFSaZuQ39K8HOcJoGP3D8Eh/B4wfHC7TJuxkOafYVQjPiIw\nh+yDPGFSzU6et5/U4zXZeYXDtDnX68Ul5m4exXBwa6Y8h8PBB0toggiLOnWfz2cNAb16JCULCWx/\ne+SRIgPz8fHRJbhgSG4LYtSikUumSbUlAAZJQmbprl0hseexxSnMYlZ/NjNjnmesbfWJMk2zEKBS\nPPxz3pQ9jKiviAnwFBIH42IR2Nbw02G4RMfs//ZMzPYmukktTFK0aPABCa7FfRmGDT+OTK6kHLVO\nmCbxvzqaydfhgPlQhezAkqou3eIqBDTbwCq4pB5ugDW8dMaDrP4p6+qJOm1chBZJIhNZX8vi3twh\nv5TifjOlFLzxxjO88ewZTnd3YnJ2OGA28jYf1I+KsS4Lzo8PaG3F48ODg/51WXA+P2JdrphqxRvP\n7nGYJ9zfP8OzZ/e4Ox0lCAGR++Ss64qHhwc8PLzA4+PZ23SaxFzt5L5CYpNNBHBrWPgKZjF3LMlx\n3AAIkUYFZGlP+aIHjbbR2PgppYDBTtanFDChqAauWD+ZVgTkYc7tvjJX0gbJgCXyNamt/0cOYfRf\nQ6zkoy2GnpW1+PW5Pn3EtTW0ZC1Ch8smTSnZbfXw7xYIxHPn1Nq1WQYAZJ/Ta1canS64tffmzTZA\nmAGnLbzel2Ij0BG2wPOWRHQ8d/w8SnzHv0cgeOs+Vrf87lEk0z17sJVfI3nYLztg4g/5vnEGlsmk\nq2uTJ0A6aXuHtOVmm2Uy8xTZ2TNRs31jj/Dk5z1FfjZlQgC4saxP3UsGHemY3UYmczA5EMZu/NN2\nwPucuXWwguIdUuNEA3HbvfkW+x+6/rpFdmykWNvfGo9jO5h5uSUYLTBKAAAgAElEQVRB3pSBdFQl\nAs7aThYEpOXxwIyVLTIre8hwCRRkZrlhBYJM8rUvipq0vfnmG/j0W2/hux98RWv3kxCi8zO4O5xw\nfzrpHNiS8q3gwhpTsBIB3f5s4gHfd1L9O8FUIdXA9trIIEzkzzAXCF8jMNzrxlrbjeNxGu/0/959\nTNO6J7gwbfPos2NBnJ4WEP3RPV6TnVc4guxcnfCYYzAgYXYPh1nBsGpYakVTsmMT+qpJRM/nM66X\nq2sdmktrxSzlfD6rxke0A405CNbafBFzKbBqD0qJxIkW1CDb8QMCzsSsqgIgWXTUkVsI19X9FQAI\nmG86MUvBVGestQVR8tVXwXchMUVam0t3dKXQxUG8yHnVerdVkopCT0znecLDJGVC2sgM/Dd1ol1X\nxpJAbpaQy0IWm00fd6ivg0niaxUVuvXp6XQSh/tDxTxXMBjlesWSJG+2ubu6uCR/G9jCGT47XUhq\nfX5TB/6r98lF8xgtEp58bbZnS+6VmharElHWqkZEe/bsGd54414jqx1wOEg+pXkWMmfrogQdWHE+\nP8J8jiyfjSzODdNU8OzZPZ7d3+F0khxSh+MBcxVfpHVdZI6cz3h48QLPX7zA+fFRo7lNmIo4xh91\nvpigYF0tipxodooSnpCKQ8evASAFikCYVSBrBkvkgNFrJq1vnWok3tU2KxbsQQkxs5ndsW/aGWdE\nuUIym8dP/Acb2TDCTbDts69TvIwMJyDRNOraau+rR2RzDYKNBwuIMRnhmVz7WYjQSkGjXrJvgG13\n83Wigg348/nN6T23kZ1nAIBeTnQ2IDRu4vey95cRnqdIyx4weBnY2ANRI2C8BdopPmxI4rim7dQE\n8BV3IDrKa+zS1vIXt+vOQ//u1TsTmT43Wd8Xe2TH2iWvjZ3Pws6z9o5tn7ALdvbKvGnPfJ+0l4z9\nlnO3AdAw9jtt8xSx2a1AUXvbgNKbcoNvzp3+0VsC8hTI/TjXAdv2IpD7/egX/u68y4i5X49uvWwt\nER0oYR6JDlvQo71hr2thKSqMmvDP/fAX8Gv/8B2899GX/az74x0+9z2fQi1Vx39E8MxEJ89Ba2/7\nncC4Liuu64rjVHGcptBWsZEhGT/Zj7JbsymZKLMJw1LbZLcCm7Q7fXGzH3fWlL3PMadj//Dn7gjA\njaSBe7P5W3P1k3K8JjuvcFwuZ383x++e6Bxwd3eH+/s73N2dcDodUaqShWXpbOy7vDrLqhM/fs8T\ntGqIYQacuIg0oLj2YIyi0ZpJD0LSb9J+k+7aNczAms6z4AkAACLXTsVuKj9ZEtOr1mtJZbPDF0Ck\nvSFNzsYNy7riui5YeZUNOpMiosgSb5Of1TQEah5ni8YNcCFATwJqmyRHQocTCjUHiACGhZE6wmLf\n2eLY1oa1SB2u16uGUV59MZnnCes6CSidVqyrmLEZESVSzYWSnFrCtKVACEMONGAJZVfzf1lXIQKw\nCG41TC2JAIRmaZpmDSddPS+PS/m1pyI4hI4FBaYGnD24wlRxmCeUw0HuP02YJskZs7QVy1W0n+fH\nMx412exFNZKFSPxEiAKMW34fIo07xWCW6GZmuy3dtt3QSwkp484e6Qt47TQ3YZ6WzdSKbqZGLtg2\n6jUiBK4ckbHklXMupPdOL5MmA3nRunFn97TfKJ2fwUcAxj7Ue18mcoLt5NLyU2RfNn24exvpPyPB\noVS2PHd3N78M3hVQ5vKNzZEu628zEh3W3EkDwN4Ds3vPuwX0x3Z72XV7z7xJIgaA3bVpLIbp3gOh\n2rTL9txMHtjIOKdAAmnNtnV49yAfdbv1Guv9FADaA2lexhtttwe299rezr113h7Z3Nxrh4z35+q+\n4uR9O5eHW3R1uHkwaW6tsv/zxwSTe8+5CZK17HuEcI/ojG3hZQNcQNOtAfqvbsM+LkWwCyc7TnSY\nsfrvSYAUvEDXevha4vcGADW7PR2P+PEf+QLe//AjPH949H1Nxnn4UhLtJys28J/7cVlX/MH7D3i4\nPPp5z44nfP/b92JarfNH7API8ZQLtTQ/qEdztecmO+zNnNWKGkl6GWG9NYe3+2KYP2vXIY/YcT7q\nTUQYW7HZK+yaT+Lxmuy8wvHw8AAAiahcwNxQK6GUGXd3d3jjjTfw5ptv4o03nuH+/h6N2X10LDfO\n+XxxonNdrrgui0qzVyyr+PLkDWXSiU9UFEiQAlAG6taBPhw6FZinQZ4nQ/jM7EvlGMMkKpF/53w+\n4/z4iEd9Xa8CwNe1ef6R1pQQGEDkEgnhVPojZElM+VbIuVREou9RiFhEI3ub2Og3lbNYM7M76ZEO\n+T2nO1sUukViCHBg4ZzBjHVRrUcBqAJNScllQ3ZMa6KhmOuki8+W7BiRKES+uku+nMXN2NzethYc\nygzMswYwCIdnUhJBuhgbGSciXC4XHOYqYZmbmsdNExaV/mcAZTtOoQKaJqCIyaQkzZ27pJrLdcHl\n8Yxlubrf0OIhr68OuuZacTC/J40WyFpHEekJYCNAiJ9pddjMLFXbAwI0gl5RotQ5xnIQVnMClwh6\nM6Z58vFpwR4obQW2Qbm5RTLHk++EGoSTuY5F5CSZtNkgpDx9COdbErnxOvutB2S2JvQO3HnsGsG5\nHUY0QIhv2ERuYmrfGSLIpR033ZBj3JYoZzCV7oT+zj1g7cCrPPgm4fnDHLk8L5OG3yI8428jWYq+\nSSGmkybex4j+M3CTrllcb7izDuZAME3HKbP5EAbRgbXfTrlzG++151MS5/zZJMFWzz1N0F77jUD7\nqbb2cwfn7lsky/+2f7knK3ZOy+VL0vbxIKLNqH3queks6cUS0f12CbPud+Mz957j8/OJ83jnOjtn\n7Nex3GIdq2seYwyE2BWZWcKQhEVtrKP+QiJBzGq2DrCvMwzLZ+P3SJohZu08EkuWN549w93ppAIp\n0/Sxml5FG++vEbqOal9/870XeLyeIFHeJJz18/NX8LvvvcDnP/Osryu4v7cKdrp2LpY0Op6x6QP9\nZ4+sPOUnw1724X4j4SkliQv351dcC7XI2a5Xn+TjNdl5hSOTnctFM8brwl5rxf39Hd588028+eab\nGrr3DpfLVW3+V1wuVzw+nl1CH2GBr+7zIblL4gVApDMlnN8kSlOE4s0O9AZqTOXqO+iwuQkJEIDs\ne2LaOA2gmqTCXgDcf8Sk9g8Pj050WmsKgicw2CXiQtBksfT7N5GmXC1YQwGYNL+CLoGb5ck2eCU2\nZnq3tsgibxoqZvYod3aYL1Q27cvO6taOVtdcZ2bxZyl0gXCSFY0kWaVFPtuSHfVHqZP7s3RkhwhV\nTdAmJTur+mJYx5CdmzR4pg2xfkxwHSbLydIbgHG9Vlwu4s8lZGfCush4WVTDx4q6DOhW1cKgyvib\nasUhJTUthfDR8hEu50e8ePECjw8PeHx86PK+iMmchOmepwnHWRLtViLpuxVgrogQzkL+Cqu/DkPM\nHbgJ8SkSrY2KnDdpKHQbMTIOV9kQTYOpzq2HwwwkgGA5sqRRdLNOmtBlXdWEM/kpkCTERdG2UvJB\nSTMyjlkdfQD6zWMEaD34iQ1tlHwbSbBx0c3rYSzbeN7buFgBRyn6DEKE4SYKSS4bKrlNLjqw5FJx\n/ZDA7MchPJv7IZ49lmEsz8sI13jeLbKzB7pvAYX9exYQtQ1wyH3WkYzUGoHGKTR9wzjpiE4WVDnZ\nMeaUwPsNTkgmZLnRF3v1s2OMFmhAjYh8D3uK8OTjVp/ma+w57cY99vrRwWk+D337twyob9Td6y9f\nbJ65R9L9exMe3NCgdUKMnfps3/v65GfvtYOd89S4N4Iq56Kfc15+H01wCslJu+PtOb6C9ASptAfb\ntXH/9z98jvc/eoFn9yc8u7/ztBkMhEkbA1QqamXfN/u0IJF0dmwndhIAXJYFj9czgP8GYzjr5+cv\n47KcMNdc37iXtM92LHgndd3QE/aR6Livz856tP2Od3/P9yqJ7OyPtxgzQpwJkqh3u2Z9Uo/XZOcV\njr1FsEt6NYsTuzmFSyLCBTLptk6bMTAjIpT5LgS5IAfNZovKHKDdAL0QjJoADQ3SIXLQ7AMbei/u\no+jYZCupXrORqVIkT8r1grMmNb1cLk5qWFdrhkUbaREtpzXfwG2xtIhSy7qAC4BCyEp+1nYvtgDr\nZx7aUwI2cDhqR6cJSVGNQY4f7/UtxZeNbJfuLZfaLMliwVjB1LCsi5uajVojWQgbeBIiVjSHjJMd\n1exMtWCtVbUd7FJZ2xprTdJ7+/eJBYhU0hRmbBb6WrVYdh9rSysvjOBWNTMrmCfx+RH/LnZt0wWP\n4Nbw8PAgROdRcu5czmcf44UkKt1hlhw8B9UKeR6c1tScUJhw9ikpEE0gGoMXBXbIJotV518BTAsH\noJQV66qt5OF9497RgzaemsWu9n7LUkTR4oR5G6lmJyIAal+QRfkru2uFiiR7yduOVHWPEIz3I9Mq\nDWG08ya1t1HlZzQwmiUcpqgDEfVkx8uuUIMNF3MukJ+1V2vcIDoj+HQt0lP1H8GS91Uq7w7g4/R9\n98ydw8HbjddY5xFoyHMZgIaQv6HVyXWTK8hJc57/uayJrjng9fsZMbXfMng2HpMA71BpJU9mfiPm\nm7mtx1FtxNg06HYetQaYIzY0Sa0RIn2WFTCKZYBZ5vcGHJuJdAKr2Gn7rk2LhbGP83eP8RlWvz3i\nsENy8udbZMmuVYPq9Ogt+DfSON57Ux6K8/9JHNHnFF8AORDc8BP1L1nWncgYWclhpjszNgYeLlf8\n8t/+e/jGu9/2cnzus5/Gn/6xHxUtvgP0okIaBheA1oYVEqCoVoZoVBuygqQn0VG762L7/X446+va\ncJxn37t9DCp2IgKoFfC+haIfm7VfCY/vT0+M5e5vxua38Rlk+5FiPyvrKPTKY29vLfuka3dek51X\nOCScYZiN5fw2kyYeHM2fmEO1KgC3Tzqapa+HeQY3MXcxLQkAjZh1lOhlraGt7EQnpADZLC0DFTNP\nyX/rImQkTCXXIn2zENriTzEfDjgcj/KaZxTNr3O9LH3CSoukAkBT3gPQBU1BKjPQCqMwg9Ru+XIR\nc6dlXYBKoFr0XJnEonkpvnHHxrD1WYAvgklyVeR+ptZuKQEkUQpiALsFO9HpzMAAQ8YOglEYKGJu\ntqj/1haUIgDkAHLyMxsziJtotUjCbDqxYk5+IXZ+A61CTRqtAYh0fE3qs2FE+TDPOB0t8trUmzU5\nsJJnEcQUbp4njUAnUeiIAF5XnJdF/NbOF/dTkrYSc0yAUaciobZrxeko/mvHw1HMyIps9rb41laA\naoKD4oECKhRArQ0Nkl+BkyRbljEL2y7XgAjLSigrOQD2MdHv1z7O8t6Xt0G5Tv190vwxaRx8XkGJ\njhG12JBHTcK4gWRAk9cMy3flECKNGw9AwlKiRr3p0Eh28lzqyA4BXAAuAUxQaBivKiYxkyEmMHHX\nVl6y1N7dLzp5CC8JPkBQE8Ub4C3NdQPFTnbsMUbY0t/Yu1d6ruO2BDaR7n3rensGAV3Ie+9ja1Yd\nLy+TknodgvEJULdvNmOpACT+h+iea1pOq77dD+5sv6tVgWrMU4oD8VMT0VVuc05t7OS4RAjzbrwy\ne/JagpRhbO8M8jtimcjOrtaF4GapWTIu16omgMkx6lNjwTBsJlFjXV527EnP7Z10/98jut256fMe\n2cqkkXbmil/HnBLSbst0q/wBfmOG89gGHiFTxhY769bvfO4VF7I682bDA+z51ozwNAZ++W//PXz0\nrW/jv4UZkwE/863v4u/+P/8f/vkf/1Oq5dcVxeYAw9ukckQdA/p9M/BC2gWYUX0d3g9nfTrMbjFj\n/sK5LS2Sm89ga3/HaHHHvAfohNisHd7HfEsT/rRWM+8DCkE8NYa1zShgG8fbuGaN5PuTcrwmO69w\njGTHPtt3Eg++7E4ud3rUyWdO/5nstINsRBLur7mz/kFDBBMRlmXFusSgFRDfJ+i0SW5grCM++Xdm\nMER6lzUeDpiVgB09r8wBIBJtjml2lOwYJpCIWAWkZRdwqm1BK8CEBsnFw8y4XiXy29pW9emJhdAO\nK7M71A2Of744SA0BhPmZbX6rBWxIgA+Ab9DWX6PjrS9aqjHycwgoFaBJInZZFLEtqUmaNGv3eKCX\nw+rDxOq/MwlY0sXV+1FJKreGVctmpil2zjwRqJJGYZs9j46Em54lkWeJ4BTe3iwmWUTAVAsO84Tj\n4aC5eA7iq6Xhpz/88EN8+MEHePHiQfPkzNLWkEV/qtXDr5+OJ5w0XLe3jT6P1ddKcLYGLZjE2bSQ\nBi2oDUtbdMNoifSuOlZJyNU0ixZmJSxL8Y2UGe48msEVI7SaXXcYYE4AygQJbvbmoCxJxZJZ4S7Y\nSdffAr+h9UW6bgt0jDxkU6m8ie1J70YH8bUYiCET6SlwjbobFUYBuAnRYY72y0TBCu1P7fBRlDm3\ni/XFHp7cJUSIdTXnV9m0VW7XaMztQ/L1wKbfxu9T4byMe/0pZQdEx80vJTrbOtj92edKejig/Q4S\n37FGEdoZpfhcNqAlYBsAjfeKw0w4R5Oz3ufCYB6ijU3YYGCIGa0UMEnAEWLRzJOWS/wYbgD+9PLn\nZbKTNC8urCqDjyWUuDV5NjGLpmnncAED8lzuTS67/sEwrIe+G9/3ASkADGM7kQv7egSgVl4T3FC6\n4T55RaxTe7/f+M7LrYQia3GCeud2kBPefe8DfPv9D/CZt97Apz/1ZmjVlAgF4cFmXAl9YLz/4Uf4\nxrtCdLIx2e8C+LnvvIdvfvu7+MzbnwqhBOVIoYzSGFw4rdc36mZtrQx3KoTjdMB52YazfuN0h7vj\nQW9CaFhlLezu12Msjk70t9jDY7zK5q39ucEO+4Tb1t9bx2ZNAtSFoL/v2C5WyD2B3CdZu/Oa7LzC\nkcmOERQgs3vxZckan2VZRApPYUpTSgktgANV6nxHZOyFD4M8B5uIacuyoNfqyL0swpvZdOeJaE7t\nDho7J3+53szpxKl71klD7rRtPhnMEc4aXR3UXMGIH1h80F1qJs/qcjZwEB0DZ3nhaInkODj3hd+0\nW+SaINNiGVHyz9UhnB/jNO42Lm8/aZtaK0yzYwZ54tdSu4XCklNW1TrUYhmNdbG1+9pGkFAiwRak\nglJ5WIASgeUgYkS+ZSepXEh5jocD7u/vcDrMroUwU5WWxtO6rjg/Pkq46/MZj49iftaaBpO4Lnh8\neMD1ckFbFzWlYtVsCug5aJLR4+mIeRL/nskTvcniW3cItY0d7YUUFIBdYGjSQ28za4+i5gBcUSeA\nWpjMVItaSEkiCtt8ycslpEUlhqUnOmEGl8hO2vBKqSnE+XaTku97wjNuION12R+nP09M0GwsyPP3\nTdrGMthRSpHoUMXyP1lsPwPq2guOUcjrgCImqU60/TdkViKbp/fmeDhs9XUnQL7NQQMV2zYaj1Eq\nmYVO3VOZu/OdrN04ntrkb/VjOiHWqOG8sVwEuJllOsnP7cGVtsMAlIrOaSejeTxZOxL071hn5T1r\n+BMoHUjyXnuOv2Uz4fAj2q/LeM9bvzsp6c6NPnTSnPbUW33WaT0JEN4oxClfv7kHczeOnyIR3Xn+\ncNjg3owdQgp8MIBfK3PcRuutfbk3x/NUfKq842/R3wCj6DoZ9KCfjMCLxzP+yt/4JfzGO+/41z/8\n+c/jX/+pf1kjkkrgJTN1X1rTQEyKUdiCFTG++/6HAMKY7DsA/gIBf10f+Xd/7R/gM59+C//MD/8Q\n5uSr6eulR2RTX971lqmw1MX2b2bGp+8nfPfFA85LhLN+43SHL/2Jt5M1QgFx21nLtG2wR05MszMS\nJF88+3GQ+nxX+PIx5k7uIKK8nsZ5JlgzQfdSCipLCKBMtPfG3yfpeE12XuEwsmNEZ55nMIckzHKh\nyHlGdtYkcd03cwPSZkUWicMkcgAQk8M2ESMc1+vVAZQDQMBDE+fEdt3iqTluQmJmg99AUjKxs9w9\nBPA6kp2QBnhCxFpcikekYKllKXpsUL6wahuLtZ+C92HidpHU9JqCgsohjXbtGiLsorczwROTWTs7\nCJATh+huCmIVhOWIbbL+i8+OtVkGmEZ2ag2TMQPbe2TH8u34QSpVL7IFjqZJloBUouZpJDojyLZR\npbYrRUKjP7u/x/3p6H4xa2tOch4fHz2Hz6Lhz4X4TkpUtA+4iQnjsqgUVEjGVIubzR2PR5zuJCdR\ntXEPDb7AEXHNtEdHTdgqY9zGpfpZtbUjPMXax0z7KEnNCqFC+iebtJSUQ4eIwgqDhSQa0WGoyQ0l\nX4QivkFmqmODVwh8tHWhKnOcwsk0H0Fy+g3Yjh6EO+zZBV0y7RhMEQEr93cGdHubvZVHCJyNzQLo\nOiIbM+0gJiU0np9Ky+zlTuPbmGhcmUg4d7+h+zaiVfXHcL8d0rMBkAPhGcHALUL0MoKzIbI7z+5+\n3Klrfvat57EunpzWpnyt/WuAj2QydmtnJgqEyCOTyXr4Kvb+igA26+Ee2cmCqf5+6y5ZGolWvtfH\nIUVxjYIyTmOO4BEc9/qk+86IRzET4u3Y8LJFIXf7KtehO99vKP/I2zZYRgbFkRuMdsc0GcgXSVn/\nmPT7Xnk7sjy0Z09ujQ7YTNcVsiN8jL/y138Rv/mND4FkePbVb/wM/oe/+cv4N/61f8UjzJoFyZJe\nQoAiRPVxngGEMdlfIOB/PgD48wC+CODrwHf+2gf4+7/xVfz4n/rRruq+5lWpR61rlxRz6KWewGn3\nfO+bBzBmNCbcH2fcn+5cSEdEIkgYiMiTB+cuGMc1fCzs7Qe7t7Nr2+25sXsMYyhfY3jOghmswGZs\nviY7f8wOlx6U8LdZ1HTJBs31elFTthJgKzFk872wRUWiPDV7wDAgbfFhl9ZlspNftcZGCChbT5tU\nv2iac5wBtabRzZoDPQPqU51QJwFxRgZWjaC2roubkgjQVAmxAmndlqUuTtT2s117nWWLchJG6bwx\nbDQA8R9QDCS+G2pSQeRRysSnKDQ7VfsvtGjsdQP2cxKYxsiuIwJWEFZehKz4eaM/lgUGELBdMhi0\nuut+FYCp/9uIWTybkJQf4mSebA3ymkfp2sPhgLvTCXd3Jx8Ly7I46BdtX8OquZ6M8PTO1dKnra1o\nbYXZoVsZc6CO4+GI0/EI16MZIGE5f54KDupPJCZ2Yiq38KKO0Q0NFrpWAzZkiWdR5qP9b7+J8qX6\npix1iP4GwVX6ZKTFyQ4UaNREdopre6jEZsTMbuIhG1doDMfNy4hA/76dB7nf8t8jYPOmpADL4z1e\nZjpVSgFKBafAJl4HxY1xy748IZXkLsKXgyybQoLC/RYxn3fKFFlhtT5+g+758fs+0enLac+7DdSf\nOvaIzXhv/aK7Z/dsI4g3cIwJXEbQaocFD8lkJ5tsmWR4U06ifjEANLiHtsdASCyK4bj+vQxUjcTF\n9sIubPsO4dlbz28972XPZofi1ub7/ZrnUilF2oMgRIcZdCOqViYO/ownwaXf5PY5O2VzQrRDdLq1\nxOQQugCNRIhS3+fyjsRyfO/7ksDUQv/BrIK1IDzvvvcBfuO3fxsYDM+YGV/9xpfx7nfewxv3Jyc8\nTnKc7HBEalsZx0PFP/X2W/iZ9z7A70I1On8ewE/orX9CKvTdX/gALx4ecH9/H6QV0GAypGSnzxWz\nrA2XZUEloBLFiMntwJIiYZoqZvWbdQKqH24JUoC+D/rxEXuztzGLP7Jhh70+vNVfLxcCpHGFEEHt\njQOfp8sCQg0haodby2uy88fpsKSiy9Kr+oEYQDJwTNIuG3UhidIRpGjB+XzG8+fP8Xg+Y1nClCub\nqF0uV5ekm1wuP1dArGmZJCt8lMWijwlINFDfSyCBjFQcViRAabOktRXXBbhcr57g8nK5BpEo0Nw4\n8PUjzzvmmOgdICkSFriAxVl6dNaz8zYLSwD5QsXNh0x7Uqi4ZsdJAkTCn+/lUdzSPTf+WPqMOoD+\nlResLH4q8LYjf17W6GQfiFx+E8xZU1s0r1jAA7D7AgTA4hy1dUVbbEzoa4okt8ejaFfuTneabLZ5\niOzWVlw1ml68JP9TG+32W5hiEsGTjMrfQiyuVxmv1+sFy3JFWyVqm4WpnoYQ6RK5UAihA2jPt6M5\np9bQINrYibZVkzfStuDmpmsEKDGRdiw1IhZaewpQDBRquXriO/m+taaZN8PpVf6Xe1PqS4sUt0cy\n8se9jWv8bQ8dx4ao+Jj3TR0AdBu9lTNveKtGAGxpTLt5zDDP9v6WG5Ixxr60jt+jrV4qCaWYQzfP\n3bnXHhHJwOHjEJw9cpn/zkKZW+2dx6jNxzjXxtZNzrN7mPbQQ6GbcK1pFElmoMV+04WbHsZY1lqv\ny9rl71rX1cP232qPp0DY7jMGsjO+ZwK01z97v41t0xjgtibZ/LY/bpFiERop6L1BqAzkd5+HMo73\n9hM3fDjITKJP/VqRyE4vZNoB2R292/aTfz+Uba9NbwHoxuJ1FuGiI7R5Y8a73/2O3mE/itkffPs7\nmMpnxPzZ8giukjxcEqmH386qefl+5Ad/AL/+m1/Hz33wXG71xeHWX5K3F49n3N3d5RZ2v08wY101\nwTozvvnt7+LD89nPvJsq3ro/Ce64SSJ0R+VYb+3zeGTz/TxHGA289vfv+w/qN9z37V7f2O9O7p8g\nPN3LrkkYwuYfkQg8PcUEjERv58Itodkf9eM12XmF43y5AIBrZPZU8LHY68BW86pKFURXiDO7OHm/\nePEc5/NFw74W+c3JzjXytui0KFRgoUFlQQyyM02zm9UBwLouWtZIKil/BEloq0UQyYtmLLS+brMs\nQo0Z18sVZyc7F124Wgo7yk9s5mnyKPhy7QoYK5r4IQDbRTsB3dzmpTM30o0hS6mHhb/o95vNKi0m\nFqXMTceoaMjm7APBWLlg5UX6I4HebHJW3VcnQoI7OIbgRCeY+l7cQRy+ujKQ1PGxObd1lZw8bKaS\nch+LxHY8HnF3d4fT3QnTVNUE7ayE9eJR1S6Xi0blE+luXtRbSLIAACAASURBVNBt0RNgIGYCRh4s\nio2RnetV5sj1elGys+L+7g71rqCo75dpgA6HGfNBNIcWktsWcQN2EtY8zBA6Iun9zA70JPhFMgMx\nM7Ra9TnVTSZ8HGrfsHYAszlFDyY8NrKNTLu2R/rXcj8x92FjY8zEOHxKOhfjlX0+bkEMOW5qLUzZ\nMiAawRKyZI4ZpCG7JZHcFoT3wL3f7Cz5LZuD7YAEMh7wjRzQqE1PkJ7MpfYI4yA97X67AQpzfW6B\n371n7gJMvfY3v/YO/tE7v40f/MIP4Ae/8PnNPtCRIkDG6A4bfJoAJoCZyIOM1WQGnd7BaU/aAT8d\nCUm5sFZJdtWtvXttstdm9oyR6ORnfRyyk++5B+B2mkcJj81lbAbxLWLre4ntWDfmIhQsYujfXMbd\nIwHHXLdbe2NHdob5/pSGlofruzmg5R7LcKtd8m9CdDR1hJNKEbyGH9aKN+9OetV+FLO7wyxJxzV5\nuhAezUVnJIclmISTn9bww1/6fnzPB8/xD772u8DXEZodAPiavFnQgBg/0L26arJ1Mc36vT94F+V8\n7qK7fWVZ8cGLR3zq7tjVORMJ22ftd2nOXogRba7+wqmvrI6U5ipzCgCiGrn6snjVQ9/sjdWnX4BZ\ny+R5auaqnVCWKPbiTR1fk50/doeMd1tZzdHfItm0ZD4mm7MAH/EnAZmTf8PluuC6LCh1QqmALYVG\nbuxwyRtxAmqsjvLqUzFrRDfziVDw5pIoCKGCgjNQRMsxqsOKWyxhV6lqvkaR6PJ8kXDDFnLak4Yq\nYQOHr028mr+sRCYV17yo8Bj8rGIUe1mr2MJP4ZQLmHlZrwXSXRDGFvJGk6ermQ+Sqqg7glRINTkK\nrvVl5zMawFUloSEZd0d4JTlVc+eETsdACWvZolxehlQf6RdGBKuwBa+lBUlCU0sUt6oaHTENO8wT\n5kny63BrWC8XXNcFj48PeHh49GSol/NFm7tX1xeIaZuybSGoXDARYa4VdZoGMxWVHK0awjaZ3VQ9\nf6qizZEw1EIsGUibaFNJnzizrmuLBblOqJMEzajzjDrNKNMs99HxmokOkWnWqo5/6qSu1r/+G6l2\nRqWM1t6iIU2O9BUAKqrbIPjI85eN2x05qs9x3Tr7yGI2B+yj9YdqqgJ4x2i0zZiS1snDAXcmeImw\naP4hCxtrJn0qzo6xluYWWfupKue2xsZgZMwZFRmqwCVt3FoZ1jXJn84s40fXDvPLsHnx1OY7SrZp\n+O4pEJzXm/EZ33nvffylv/zz+F/+1t/y7/7VP/tn8V/9Rz+Pt9980/udrV5G3jWmQ+LL3i4MEx1r\nzbUfxlxiHblJflpuRWDCNwNqfjv5zvxx1lX98vTvtjaNhilWoe/8/rv4nXe/gy983/fiC9/3J8bl\nWOvUt6MRvFGr031uEghlE7RAx9jYJ1aLbm6MJAsRuhicoq5RIjA7Y0LKHPez8VGoiMDECLwNNmg7\n6joeZR1JTKb2WbAlc1Bob+yCGMaprUE9aUmnpT6wYeOfU/ViHsdcG6dL1942jjzPUhM/WxfqqVYg\nCXpbW/HG/R2++H3fh3e++TN6v58E8Isg+ll8/2e/F4e54uF8ds2OmL9HclDDMyuzB1Ra1Q/y2d0R\nb71xhw/+2oPU5UsQovM/AW9/6k0hO63pNk+aa03WNWbBBefLBe+9eNiP7rasOC0LjlNYcXiZOKLE\ncZpL/mZEMpNUF0zFV/ayOWiC6tbUOFAxXA4QYzik76woh6fz8Llu2CXNU5aAI22Ve5VquZ2MrDXY\n2sRtTS9CaxTjgRvEZxjYNT3+BByvyc4rHMfjPQDxAblerpL3AwWM4tFEqDCWpWFdZRKXSgqoKmq9\nCrEpE8o0oU4TamsCyCh8PWqdIFGeCeuaY6KHEymBUKaCShXTYUKdROIOVmk/iyMdqnQ1TZO86iTf\nlQKmFQ2EhYGVCSvUgb9OmA4HBZITqBSRsl8veDyfcdUIc6LeFgkPmCRKCZMEGdCM96uaMrVmZKeB\nII6gpqUwKUe3mhjQ0dnrm0YpKQJUbC3QsM3cVjTdBRgpUpyea5Ho7HoQUEtoczKok32mqWocqMUW\nmtUlXNAQ2ybVmWokYbVknllSwmvD2gRscItNWlxJxGKWLekcQYAemodoNjMVUhI3qSnjrI7+EupZ\nTdeOR0wTgduC6/kRFq2tLRJN7fzw4LmSrterkjQzDwtJj/VO4YLCUrqqz56KfLdKo6HUA2qtOJ5O\nuL+7w/39vWiWTnc4Hk/hU6UEozEBqxIbyJwRqzECaAIVBpHMl1Ir6jxj0jDo8zxjOswe9tqioQXx\nIN0kSCSHiWwLzjHyo875tjWp/1oT/Ii2KrdMI0kkCbKpcjMAQ+LfzwQYicjgPR+UQW7vGG3PYBuk\npYArSeQ0v5fVDSrlB9gkhPrMpiZ+piWkVB4AYK1/P0fY8+jkska9+1KGRiFePlaZNWJh+DoVggpr\nkgDETCu0LlFJ1dbpOT5hKdIyduFUkQBtB0RUw2dzsLVOWh9Al4Lk2HVWT33/S3/55/G//cqvIztj\n/+Kv/iz+7Z/7D/Df/2f/8dg4vmYXJrQEYIsBWheDhEQ5ExzR3K5ubpsjFcojkk+MvjqyY30E0fK7\ndqUtaLzK2kLStu9/+BH+/f/ir+JX/99f92v/zI/9s/gP/51/E89OJydWo0VD875BX/ZmoJaxclOJ\nvpIcg24dQuvJaBfqOgsNsmCLAVBTwZ48hxB9m6/Jl9g6bp8Z0FxSViijrfJ3Ej0ZmvThCMQfWdgA\nA75eXsmB55aGcRdtg7yxkU43Jb8EmPFymgbWWDDNtgFxJ06pJiBOI822WWsnEyqwj6PWGCsICzcn\nO0JGguw0Bn7qX/wJ/I1f/b/x29+MKGbf9z2fxb/wY38SzxUvXJcr1rVhSfkDpR9aEhDbM4IgfvFz\nn8XXf/9b+OAXHvzeb7/1DD/6hR8ArYsG8JE5VVFQmCAJLBqAFY/nRwC3o7t99+GC41zwqdMBtuaa\noG1lIWFZnuVER/P75HEm6xR798nJDURNzOXIvJ+0T3UoVbXQcbIEyDVUfcl1X6kmGliuVZ9FqFQw\nFUnXMJWKtRSAG9blCuKGggqUSUmLJuH2PEGm3GcQSZuh2XxYAV5BxBAjgNc+O39sjtPpGQDgfD5j\nXQG6NgBFAH4DlhUANSE7jbE2YEJBKWJmVqer5E+pGqVrmlHXsO+vpWKtDXVqolmYLN+OblLpbwke\nINGvJvN7KIRlZay8YmWxYyaLDFdnUJ3kvUxAkWSEK5O+bFMpKBpy2iTnKBVrYzyer3g8n3FZlpTZ\nWspEVMCleVuAWAmB+lzoJIWC9KLrhUmSXOJrjT1KXikWtSyh8u3IFmmQOp1mCUmSfpQKpogkVUCo\nGkms1qJFzM9WOluAWglYGxZWcLFqDhyVnlcqmOuE43zwBJqW06a1FewR9Dj5xNjib1J2Izq2iOo5\nvDrwId20aimo8wHHw4S7OzFXu7+7w1GJwMF8uNoV18sVaKtrd84PD3hUsmPR2CaNpMbzBKqsppcW\n0YwlXLQsnZhAmEjIDrEmiq0V80ES0J5Od7i/v8Pd/b3m+TnicDy4yaFJspu+THtkktjGBUwVqAJs\nTTgwHQ6YjkchO4cD5oHsGDmDSgxFas0uSfYw8JZ9uxBIBRbkowkh2UwvBzGJ7NimJQI7HcCmrqSy\nAeT9wM3AnoYfrfcBrqQ7UklUDUK09KO8qymeTSQiNCjRSUlpMwkwbW+Qa4NBY5CObR2c6JiUEQzT\nwhjhAQBUCOGxKpNpfVovVRz5ngk9FIRF4sribTeWaqelpb/tdoD7utjn0Uxw1wyOGf/wt76uGp1e\nTryujP/1l7+Mr37tHfzQFz+f+lUBaGtorTdL4kKhTJSF0E0nOWlgDFTKAOQITKINJMKvWGPbmtq9\na0gEQNX31fpK15uf/y//Kv7Or/8+MpH71b//s/j3/vP/Dv/Jv/tvQQjqCubVzUDZQXtP1DqzPshe\nsbTVx0wMeXJi4ODc+oaEIHqsCzLCbOdyzEMivy4TPRsUudkc5Lf+bNeGyMP95KA+Skg4utge4PQr\nE+WBdECFLi4XyETHnqDzo6dmDIuMSFo0u6/IVszMfA0EjSAM1LVbTPGm61ZzP8lMslW7DhGGLmzm\n+ypwZRP4MWgi/NSf+dP4zvsf4r2PPsLpeMDpOOFifjrLgutqicdbmBBD7rm4FjBIm0eErQU/8vnP\n4bosOF9W3J0OuD8ehDS0BWATHhQUYhQuutasIG44zQJ1n4rudv4fG95/vODtu2MiwozajDIFzrBx\nSEUDqOiaaddhtSA6KpBko1BsWx5CQ6vbRakoxZKIE5jY/ZAZ7Ps9PGKu4SYZeSJktdyPxa042rVh\naStqmcGcAhvV2L+YGaXoC2G9IGWUuW6mba/N2P4YHaeTOMO1xjifxV9lWVZcrwIWbWERCUVEHytF\npotMfFkwGBE9zAETDKOkTZFV0t3Ml2fVZwFlqrHJcEPhAouSFVI1M2ERiToZ0ET4Jhg5CN8GITty\nvgxwCVF8VTV0NlvSRXXYhBk5Yzv75jdCOlv2TLJKhTwo09YO2cBmXGP3sQzK/nwDSvJRwbpGQyOT\nb6lNsqluc0fk2qhmxvbYYuZAXAKkG7BeVixl8chm4Am1FNfKeJuo5JmUbImpnJo8qnZOqiAbEZiV\nIAopmyphnibcnU443Z1wfzrh7u4Od3cnWfjUj8TMSVhfbVnQrldcz2cs6qeDJqpqX5QVvXPL4IMB\nFFARWlDUzG+eJsl3APHjmeYD5vmAw/GAaZpdGmSmbWiMVtg33Qxwo58Lpokkb1FjgEoX7t0S3E7z\nhFpnlDqF1oLIN4IgUkpYdKyXQqL9YwY1Wegt1DsIaf7msZDJdgYR5GSDAdE8lkSKpGLYO9wczUBR\nagsjLQZqmKjLdxMADQFg7BoKIOVzCREx0Pfo/pGJNNn1I/tIJ770+whYK2/R5y700I3cE97RcBuf\nkqQSSDMLjUh7LlndMKXtMfqhGOjoTWDh3433/K13flv/2nfG/to3fgc//KUv+Bhx8yu21SbuL6AO\naAQQVhca5bQCFoXQtDoBgvO9BmKjaySnzsxroO0X439f//0/wP/xa6axCiLXGuNXfu3L+Ee/83v4\n3GfexvUqUnoDWplkMBLZUY03YJFBI8qblacD74nseF9Z37j5sBzZb7JJ1lGkW+4fWbOzGfjj+NE5\nlAoqn1XDMzIn9KQi9qX+na0cjI4UyVywtSKe0TWJP9OuS3skx7ke+S9VuXu3vEQEMTfXddCJ6mqE\nRyKlLUy4MrAw41vvfYD3PvwIb96f8Mb9neRkMm3PumKeCz791jMs64rH88WxggWZWV1AGm3qa63N\nCV9y+zl5Ohxwd1SRiY4tEVOpZYbtoQroTWd3Okz41OmIrzyen4zudv6FhuthxVRMwx8ExoeG4w/y\n/htXHakZ++pvfcRKLIjJyR5tLozO7s3ZYy8JXBOD2PalkkkJwfsWACJwgmi/bBK0xurHrPfTFBY2\nXsxixXx6PonHa7LzCodF/rhooAJzoDbpOBFpVnr2l0QrYxBd8Xh+xNmiXbWQMEem9xhoAHwBipw6\ni0vhGXBHfADI9tKbIAk64Uo6353VfDLkcMnyssFti98yJJ60zauoGR4N98/HHniw74tKrFkyTaaN\nIM6Rjz3hGcmOLEa6yaZFio1gFJZnIMJNM6yPWgd6MrAVjU+0k7W1Sb9lwQ6SuSwLzueK2RKzTsXL\nbhITK79pTyK6GYHXFet1gQNCQH2IJpSJcDhouObjjHslOKfj0fPVEMFteq086/WKtixYlwWs/eft\nryS41sl9jnyMrGsi4pF0VsJwF088O8+zhijX+mg0OyPmgIAemO8IkfdPDtft+YmmCRObORt5BDcj\nPPbZyLj1n9VZ3rnLg5PHTJ4D69rg1m9pHrkEDn2UPAsrP96Hao58lrayJyRiPl/SePcxrdfGnIK/\nuwx7WC9kjBmK7J/VwA4i5Znpv/7mHd8IJvZUPQCk3CZQqaSZ2DUHAEkLBHikylzP7pEATLNjwhgj\nOwbS8svaIb9vy0qbv/O6dWut+pOf/6f1r31n7B/64ue7NXY0i/V6yYPchBUIEzPT0riQIgmLnOLa\nOgfEfCxFJc7hy2f9SrYWqv0UkwjBXLbDwDd+/1tasH0i91u/8028fX9Kgj2dt1SzEgQWvEfW3CBA\na/J/c6jHCC0F4ObFduw55mcQaBYBq3ue/iGOPaTqz4h5lcfCrXFhh42dp74nmN9pKkcnutgSHcqf\nrb2oJzWxHsU8JbInxq5mSUhz32fhjvWV9CPj2oAPHi/4m//7/4mvffNdr9MPfPYz+Jd+4kdRSxHz\ntLbKS4nton5g5qvlZEcFvd6vvk8bsBfmJgBcte0MJ89iSwPXVIuQMOWyq5a0efW2//7Pvo13vvlt\n/NxV96IvDh30JXlbG2PqYrjEuhLmZU5jpB6JtAe5CZLj39tUb0009MxSTvz/7L150G3ZVR/223uf\nc+7wvX49Sd1qtdTqblpCQoCKQWKWFMCJSYKTOLbjpKzEYTABSSAiqo1JbBwzY3BRoSiDBdgubFKk\nnLSBSAKKoUESgmhAZtAAUk9qDT2o537v++45Z6/8scZ97v1ei/cP9cI7Xbfvffc795x99rD2+q3h\nt2D9rs+jY7Wc+0jLMT0kjxXsJIuiKJJGwblMUVaKkXOhE9qVkpYhKVZC41I8LoOdizgU7Jw7dw5E\nzD6lNMwcWsbJ4UBkcZoATCACTo5PsDthsMObtyh+4rlZFopShSta+xT0EMHDOpIv/KaugSh7yO0m\nAbQLWRdzBDpLsOPJrZFOlFwBzNmIAvT6euwtWj6j2URSAlvyOw9RWR7KpHZQmRArHG/wYWMlMvc8\nCKBSm/NIBHEUZmYpEWExz8WuqX2Sc5FxZfCi/TOOo7WtF65+FhSBrEAarQniOWkYHRcvG2WsqVax\nWCX0mQt79l2HzWZt9XK2mzU2Wwldk7/HgrN1njGNI6bdDvM0oYwjEDxzZjlNCJuFAwgFOqxUhQre\nmUFS13XsUdpu0fUdb5Szg3ZV2Gqt3GfZd229TynMHJdSMiAzDIMkrGcBYmXvpRteXC8NUNEYdg33\nCtNKrYsaQpiCOWsZihPnGytgeW8ttXP9mS1gth7CHKZDfwfEfungUMejfRb9rL9Z6nILJS2lkDux\nADvh9KiMLq9h9wjaoSmEpowlA2bqXcCiX3Pyon1uzZTzg4xq6MMDGHVw62N2IaBj834BfA99jsdt\nN78AX/VlX4Y7f+9bMc8ETcYu5dvw6i/+Mrzwlpub59J+iPfWvtJ7tAn9k4Gd/XAwf49KlY4EyyMC\n521pn7nBi0SZarRm6Don3PCsa+Rah4HctWePcP74BNM0YhonIGnojIx15jU2S6jtbGtQmQwd6DS9\n68uu7Sd4UeA4VnGOVKlRl2q7HuJxCNNcAOe05yUHk88MePaNARHk2JqQC+vzGvADYJ67BGgOXzNk\niLIoPAxC3aWFLGqeWjo/tr4FPAHozEwOM83Ar/3uu/H4Q59q2Mxe9/Aj+N0/eD9e/tIXev0cAbqz\nzLtZc4wt16dKcWiXpdZPjQEzkg7lIDe4zTVxmYuc2FhYcvF6gNk7y3SbnPDsK7fonnwaj5/Mp7K7\ncQDHPmDlsQM03LcFGoS4zA3k5KYEHAA16MJyB62dstaXTLNxHCPIuoDNqfmN02FnycP1uo8qH7zP\n2+eNxnE1MPb9pQkbLs1W/wUfjzzCnPJPPPEEzp8/34KW5Enu7NGZcXJywgtEFuvJzl27mhTOFnae\nUApecslNsVLOm4Bt6HOtSLWiLNhuIjBiFzNvOlkWkIEXco/RLF4NAGY59zozrBBNQXnWNitA4AVV\nGiUwKp16pCCdfeHaH/k7c8HubyjL9d0oRqQbk9fMsRe5xUrZ1fpec1mcLYy/iJYT/kKpwnc7FcqQ\nm8HjlwMQ9HOAyHVHxFYRIm03YPHmOSn/D1Li2vRa0KzrOPFwGLzw5nq1wno1YLUaMAw9uszJilPl\nQqCzjNU0MqnEOI6o44iuMqNVlmdghpZkN973/Mn+Qt6fRhc6s8donCaU3Q65FNsolW4zSzHVruuM\nUECL1kZQYRvfAriQUfXtW/ArEZLkhi3nnI65uyf2AZYOuN4raltLT8HSoxMVr6hcyx0OAHubXs3n\n1qvThm34v8NasXEg/52guGAv9+sfaoOtFVifnKYouka2UNrDBw/m4IRdloeuTsod/DrxQcI9zGCj\nskEVDDlXAdnS+njoOOTlaR8rNe8X8g4tj3/xg/8Q3/j3/wl+83c9GftVX/SleNMP/aNADc/HLJ7U\naZxM6dCitjp3lt54rtHmXmmfY96nmlPAdPNe20PlqFptSRK19XpNWCeB8zQrW7RvePa1+MLPejHe\n+8HXS5gNA7mcX4+X3XYbnnXlWexGoQ8eJyAlTPOMkmcPjU7wUChqPaN7c1fmH4sez6hS+RuEKFJ4\nb+R+WirJ+2MsV1lMAIhF/jCtelwjKSjAzzTv/PctyLFrE/x54mNaI1MAPNFz0zKpuaGEL2pyOe5l\ncr8oD2wMRJeYKyQJX+W6zguve/Pw40/h3gcfPsxm9ujj+MTDj+LKow17dEhD9KM0YoY0Dn8GJ78L\nuPHudAAXvVDs0akmy1g+qHE1Iaci5DwDBoksqGDPZZpy6Heeh30G+gKMb5YOuRkMdN4CDL3knx5Q\n/PkV0WWcBwlpb4I1j2W/2PfGJNPZkNSImgwwaTmBxeXi0jBdwr1cbBhkJj2ZK4v27RmVoPvlDMoE\nKq7TWu5U53UcL7XjMti5iOPhh9nVf+7cOZw7d87ATtd1hoA5jI3Dd46PYZs5gQtyqndGQ+Bqrei6\nni0TRJhLsboiqsQpAw9RACrNBjkbao/VsNXKVsX9GJG91fMRJT2GCelLWVKmmeO0p9B+tdTrcyO5\ndY/b6pZW3iiikuF96i7XYLlYHlG2BC+VFgq1zQsS9OVIJ1g42dug3rckbVwq0rY5hNC0aeJaOtM0\nLVrH93PL7Ay1vEpTIbYpe26ibExMUOaumjAXbnQRxUXZ3Iae6aPX6xU26xXWqxVTSw/M+CYYkT04\n04RZLK8MdkammJ00L0cYk+X+CUJeoSgrjp2CHd0wk4IOVmRm6Zdxt+PxRULpJlNMS9dhSAlJwtzW\n6w1W67UzsQEekhmUCAKDyDQzFa7SXZvwp8pVzmvbbreGqyXbtEVAyQgObGQKaJdTbQl0FMwfsqBG\nJU77Nl5jeSjQ8b0+KGZLo4CsHQXxiP+nuDRUzqRDK6i5OwPu+F2jEjVf8Vu2ZjYbrmzjWkgYxEAd\n2QFOUk8OEf70rrtx1z334tabbuJE/mjWT9LXQQNUTwDX+ZBwLGFdjOtWz43v9vul0WQBruJvYuji\nacDnzHaL/+PHfxB3f/R+3P3Rj+GW5z9PngUWGqq/mScOR52nib3W2mfZafb3AU+rSGn38DXlvbr8\nLoWYhSo7ba3PmWp7xiwGADKlVkkD9FoVt/+Pfx0/9LP/F97zAQdyL3vhC/Ftf+trMM4zdhpKPXIY\nNStCvleZ0YG07MLiSK5o6+zgNlcT2aa8xZlm8so0PFYOU2ukWI7x6UcyDfTTATHRG/jpAO14fvxO\n770EdBZ6DX22Jbhp35v7icKsekEDICzHS9YpNPkc4TcOfJmkSGvf8Bx59Cku7Hkam9m7PvgRXH32\nCC967vXIJRtdcwTfObHnXJV9U+AbceP9kjSviHSP5pM5pxfs7U9JlPBe8jhX6LqCiWZMNAXWQlUF\neO6f6RKenAjTHX7vQdjYHDzsR8CYsH2mqbU44rDy2EcAk5wVcM4SZibeo7TfluY6BvxbfUi931U6\n0GUHNfNQf6eyolZmNKxEyFQtssdAlOiGl+Jxabb6L/hQz46GrsU8HZ0Mqsix8qvUybxOYr7LKAop\nCAx2uo43kFqRq7t3tUaPWgE0mS+JBX0JeCzELIZCwJXFCJLUY2O5NyFcKJ5r4XMB6JgyqJYEQDaz\ndgNfWs4aa7YcuuiWgiSCD1evWmXF4FECK8Ck28f+pqT5IKvVysBOZKBRwZoAzGAmEn6Widn3QkvY\nusS5LiosuB89z4aEwKBSRqZq/zYC0JpQxS2VDaNxeEjXFfR9h7Xk4Ww2HrbWCxgtOaFOswAaLlS7\nOz7BOO4YmI6TCzkidMICpZsQgiBdeilM+5AxNoU/KPs8N2akPAFphzJXV0YkDyvnjL4fsFqvsdlu\nbX4RkeW7zfMcNuvgbQm2sFg0s6qSE5QVUxZnV/CSKt6So5AWz2nPiuDFWszLJdCxmGoDfw51Dv3e\nFNQAUqg9KWyI+0BHEDH/LlJCL6yi8TCi3HBtfla9R/tq+uSQ8hjGwZvICgwnOms7nMTDljMRHnnk\nEbzmW74Dv3bnnXbNr37lV+Bf/dj345qrrgwberL+iB4AHV/b4ANxxmnvn64XKMk4Np7B6jVgltdQ\nmfP8G56Dm557A+6673786m+/A7c8/0bcetPzmjbM08RgZ5xAnciWjnszp2T09V7kszaASUdT37Ut\n0+wyuesKiDqUTrxi2cd6rhyeNM+RLpiEKZQwzcShShOv4/Uw4Lu/6W/jD97/YXzo3vvxoptuxOfe\ndjNOdhJ+Pc3YSa0UIvJQoyBPWo+oymgHLG2fqgxihkciDceCKatxTejkM0/rYu4/8MjjeOjxp3Dd\n1Vfg+quvPB30aJc+A4iJ3/95PDt2mwOAx3YxQzAI/ePtMhpqLJck7X0iwDwx0Qu4Z9zRV3WwM5PP\nhxo+6+tozUVDL8Rm9uhbnsYH7v8EXvTc5zCkShm5BGUcTq6iNk0NoZXe4C8peLNZiCMaJJEzGxCL\n5oxylMbQr7BacdHsNO1AgeF2adBMAM52CXNh0KSh5ntzNvSde1oPjb+CiEMzIO3/kxDmhFx7Zs63\nYrVwsNeGvesExcfaHPQ3EIHqfl6pXju2TUtgJIhexAn3MgAAIABJREFUKQZX3acVWJZyacKGS7PV\nf8HHyckJAOwBBPeK9CjCDKXWBD7SgUXkCh2JGUyVdlWSWImWolshDlo1qLhxLPN7ZrXypBC7qYi/\nCffxz8sFVjVUSQuIWq4HRPmT8LUiDGLSFs/rqcGiIQ8X+qWxeOnCr3NjXfcNInzHH6QfAkhKYPe2\nFPmknFCoIEk+yGa9xpkzR9hut6BazVMVq4mrsOXwNX8Gbr70o2zQSfizuZ1STDQzb37OGuvq+U+l\nZAnT4bYre4rm7FjIWt9jGDr0HcfJWmFQVczmmS2yIHkGLgp6cnKM3ckxpklpqqsl1iuNZa2ESQVu\nA0BVYeGx1RyjUrpAQhDICCRGukhdoa4frMhtSkA/DBhWK6zWawzD4IQCC7DbgNYw/3hvkZoLSEiK\nNlNib0+YO2oQSGI5IwJyJde4k4foxY3Gj2TTKK4D9+TkBujJiQLwpe/soyt9ACwheIlRXCmxjvCN\nMAISVYb0xyJbZCrYFVRt8OXgVj/7cnFdyAbJwKXgABQ7CHSS3wq2gwvQaR+UlYTXfMt34Dfe9oeI\nlMa/9Y5vxd/9tu/CL/7rn9AOAQBhyQOsOG1Vyn1CsuK2EayqHAykFJar4iFcJNdt5JEozEq+orkm\nBniCpzAMAFLimjRv/J4fxp3veq+15dUv/3z8yD+8HWePjlqwM00S8x5o0oX0ZNJQN5FBk4GdIOPR\nGpA0v2eaZpExvA51rQNksqtWD2m2/aISM2QpLbB4g5986mn8xM//e/zBn91tz/R5L7wFf++/+qvo\nS8Y4E8apYpyUcGDZN34ogUkuXvsqIQUQqYG72CvgzDKxXa/LyvQpJQtBPne8w5ve/Ha8/5777P4v\nvfkmfOPXfgWO1ivsHQlQVoXDXhg+SY0Dh7yDbhzYe/RTDzV3qCnO18+nfwToC3U2xDnOy46vXgPw\nUV1d94BKzI45aQj2FMmH2HO/G2ds+gHPvfoqvO7Rxy7IZvbEHefx9PljDH2PnPkpNQpZ210rMM/i\ndQ9jG+UbAVaUXGUCe4ey5az2fY/1asV5q+s11qs11muu4UaJMBEz4ypAWRpcAaDPsXD60nuy79lx\nsJRC24JcJ5fJpMYzItSkkR0KumJeobQvqfz0PCbVL7kZIpdVdi0ng/aR1Avsuk70FzG6zGzMyNk9\nRk5rH+tzARF0az/ovLhMUPCX6Dg+5gJVbnl2sMPKXGfod9bchYWFxQW2FtdTq4Eqmu1C08Q+famb\nOB5q8Qbgnh2JnUVORjtdSrF2N9ZwW1iuDBEp3bTn6kwTV9tG0jolxQQGUxgvN+Rqm5cqFtBNitwa\nbgqbKPBm8TGNrt2YlOHJtL2wSBMys66BAOGWZ3rkgs1mgzNnzuDo6AjTOOIEnkA/TZzIr8KAqJqy\nEC2YWSwezCAXEKocpUhxL2MOYyVfgQ1AVoMkSz+WnIzxpO+KCPKVhLKpkGc66USEOs0gcIjd7uQE\n4+4EJyfHODnmdxVcBIgXiO8DYuaioGc0Vh4HrwldxxTPw2rAerXGar1GP/SWrJgS133JKTNzmoAZ\nVqCZaGBYrTGsVuhXK6Yy19h+Xwz2iuDF5rUpRfKzmpDSjFRb8MJsdgRKGVmV36xgo11XrcUOe4de\n75BHJ8mzUXM+fAOEEXg2RSsNQjRrN7Vzl+Q38HUCsXY2N7O7+CEquJAJJD/XFPsFStFzswDHkFfY\nbKA2M4LRIS2+CwqVvcJm/qEP3yUenf3aNL/+ttfgw3ffhxfe+gK5IvHchHtcSeXeXKE5QUo1bM8f\njT5K8b6gej/o5ZH+4uvP4X02Ct5Z1qoaYxTMf/s//kH88fv+sEna/tb3vA/f/t0/gP/9H38nh3qG\nMLZhGLBarUxp0JpeFtas4GNW9kIyoGMe/MhwJa++0zprnckn9v4EIhlyGa/9pZTAk+TgjOOIH/83\nd+C+u+5tnun1H74H//zfvRnf/Df+cwY7M2E3VTP4KT22AhgFKSVrDTiwkgVeW9GDaxA9cf5gybOx\nR5Vmfacmt0/flfzgTW9+Oz547xOIYPoD974Ob/rlt+ENf/OrsX+EtYcWvBwyhhwGRDGX6tM8zDrh\nsEf4Cy94ldgWV7FdllRVrHWOahgYXPHWduu+bgZUIz+aMY0OdqqAneOTEZ9966143599GLc/8QRf\n6AWLBt7Mb0+f36GkApIwTUumlXvXmV9EkJwbkXXeQJGRhuKQkAz8KnHNquc9abPeYCvh0evVCiln\nzDThxPJ1dA25WItzSg2NKRADLPcJNg5UfibKAkzCuNg/Qz/r78KY8XMFpkRSwJtgeU3pECmHGqa0\nfc3MiA0wQEjUYZ455H4mlhsTZuQsrKOJDTwW+j1XYV2NoAq2ztyLfGnChkuz1X/BxzJMItI1sjDm\nF0EFyszAADCB7cVBfQPiTXW2z3pezO9Z0j0v2wEwRbDm6vCC4XolXd/ba64VOSTSRgUg5iOwMKxc\n/VhICRRAsYLeGTOSWqPZahTyhWpLuYkgSPZDAlxZkR8A/st2TyESxceNdKYmRhM0GHxoQv9ms8F2\nu8V2u8XJ8THHvO92sv+4tVEBD3ti0CT+RaY6q1EEFZJAJ54QDTVjsOMFvcx7Vat53LhejYKdDuvV\ngKEf0JVslp06z5iIQPNkm0KdK8bdCcbdDuNuJ/TSXFhOFZ+ckrDVFE7oryTbq3ela7HuCh+GAWup\n3bM92mKz3YqHhpUr/i0rzSUr7aewzeXMHqBhQD+szJqtpq8KBfouUClzhXv1QOackUjqJehOIJ/b\nDUtCy8ghgAJh2+zRWvWipkPhG5urqc3PUdZEnefNVJQkaU/STg50BJS7dydoWM2RROHRzc3fU4A2\nwWTSPkZYIBoSE+ex9Zv+OnwHAa2smxCah4MCqxh+w70WdDb/jW32Yr0lwkfuvlf+eJjS+K77Pupg\nZyFf2SAEC7shgMFPUJKXltelxzp6riPgifJn32syN58by25KuPfjn8DvvPd9+0nbteL2P/gPuPP3\n3oUv/OyX8HXEy6r3q7U2oZxLzzmXFXAjWCUPV54mbZt77/tulILVxeRfJfYqTZPQ4YtcVSAPICi5\nfP/7P/kA/sNH7mme6eUAvp4IP3LXffjoAw/jqjNb7HYTTnaeuznrPaIBR2XIXDFUQsluPa9avFIU\nqwQAGSiz0+SWUq1OWAoKqQK5lHX/IHziU4+KR2dRH4gIf3LPa/Dgo0/g+muubKeea757IIfng4ub\n+PflZzVa2ib0aR3RqxMNBc/8e1q8mgbDlWNppQF0JaVojKczE+9M4tXRXKxRDJpznXGyY7AzT4SX\n3HQLrn/yCfzRvXefymbW5Q6zksaozUPXbdCXiJg6Q5PySQGP6tra/8k9Ol3XYdX35sXZrNdWdmG1\nWmE1rIAEnIyaSqDrrfUSAb7naP3BZ/LseG0gEeYHdJe9fzdyH9YGNwzImBtBqe9lUdbsgxsf8z2v\nkxgNOioYbb/1XESrtZMBz2MmxFB+3TEZZBaU4vqnMs1easdlsHMRx9HREQAOZ+OcHQYBJycnyBI/\n2nW9sFyhUbJSSmY5OZG6PApcpmnEbleaTffk5BjHxyc4Pj7m3AbZEJcTnF8ztPCe5QqBrfpDYWrg\n9ZqFgt4jsgMRkS1+BWqcn+OkBO79yRbaVLrOqIr1ur4Ze9XzTKoHtopqq3C4QFCLawLMq9KEIZnV\npt061PIeQyC6TpP7N9huWFCuhgF1j5ShAOgtfEst2WqlXJI3pCxFYsWyqRbfLncSjsZAp++ZMlrB\nB0tB3vBzThLyprHDDEqyKMvTOIogmiXBk3NvtPhqAswFXXJB6gd0uYS+ztaWkjMwT/wip6FV5Tgh\noUh/9H3PG8p2i+3RFkdHZ3Dm6AjDamUhbVU2L4IXHmOvkFBDdx2K5KIp0PFCqW7ZUu+gjpd6zXIu\nmMWqTfDv2/w4zy9TuGvzSa165J91nqlHFTjsdV2CHQVYhw79vohC1gAWQ+N6sv3P2hvlg70Q76lg\nf//54pUcLMHGc+998Tcx80EYBUJD43uEWAp5sHdetJ9a3am54qZnqE1z280vYAWcFhu5Km26ppGb\nu18I4ETq5lgAOeYQLsGOvi/p9Q+BnXvu/ziA05O2v/0H/hm+8LNfjH/wDf8Dzm630ictkYy2T73m\nYyB/0flaBTRWWlL/V/M+Fal/UXIxW/9cq4CdycPGQG4YSC2pym63w0c/+ZA90/J5AOBfvuXX8Xe+\n+lUoGVZXTkN/jWq6VgMnpRQM04xhmtBJiB17Y9zrFjF31rDZPJtxpmGEKmwUykTIxLWZUiI8+NiT\n0sLDYPrBxw6AnQBODhnegq2imW+HPDtJr9Wsbb3OnuVg7xw/aHni4X/Sob9L9ERW1laVc8y+qbkv\nCnR039IcXPbs+Uv38JNxxsnJhN3IBUav2BzhyjNHePwtT3M7boaxmR2tV1j1gzyzGJ8EGJgslsLb\nRCytauI8PCjwtS7QnJyErnQS1i0spCF0jQl71hYeWknInIJcsDCtMCYakhyZz04bN5cbue36Qzar\nvSF1gxqDnNpQ5qeUUJJTO6tuEeWV6hWH2jXX1jiju0AubCjIKWGGh8Tx5ZJgTN8PXXKHVAQzuDNz\n8KUawgZcBjsXdWxl4yIiF/gGLhKG1cAhO11nSli0PrJg4c1lGiXRH8A4TcDJSbNAFegosBp3O4vn\njtf0sDSnMeQiicVCiSLYUWterFfCXimhBBYhyQxsU+PZUetAKQVd3zdVdR3s+IsA5ApQgZnKotWk\ncRXzB7NSGeBZAB0LpwEAVDizlPwmhB3lnCV8ZI3tdsP1YATszNOEE/FGqPKcEkzwlHAND0lzgZRS\nwm5kEKpeOUByb4rUxOk7q7OTVXmGmbzE6yIhH12HXjwjRlk7TZiEbKDOE7uaa5V76PixNbTLmQkT\nBjgYkmKlubASTnMCTcnAjinTARgqTfRa6vccHR3hzJkzuOKKKwTscB9oDYWq1axVKbFwzmIeGgU4\nc40WdnAbi3vNShiPnLPQovK5cUydRKNYwTQI2PDDBbdvHm6hi8Qd+69g9YPM3dQqxXo0VsGUxFrp\nwKIBOmGDtBAFBTyLl83zJF6fZHZwu1w8jCTAEFC7xqLiZp9zFsCjJAihkWaybu6C/WMRrgHxLMgm\nfOsLbsJXvfKVuPMd+7VpvvLLX4UX3nqraJYEQHJkYv+lhIQsTSSzVi/BTpPoH0O4nsHD044H9n4f\nDT36m+uuuQrAhZO23/vWD+H73vQv8X2v/SYUIdewel7y0hIEu92uDRWmRfhaVaKYFujMtfr6DsWp\nY1QAKeAGLORYyT5Mzo8jtuvBnunnDjzPJ9/yCP7PO9+Or/3iL2AvsoTdaaSC9rWGyZSSsZomjKPm\n62XzZqnC58tGcwRnk2dz9raWklEoo5aMQgUZhAJCTsCzr7xCRvAwmL7uqrMH5mxq1uM+4EkLwAMb\n/33AgwY8LedTe9fTgM7y2NekHQdIw+1+0qacUZIys0FYCxPSLNEmIkunecYoQEdJksbdxLTio+/1\ns5BRHO8qdiPnTiIBtz77RnzkwY/hiTuetrYdrde48eprGzmmrKhqxKwSTtXmB8vzqOtJDD1qYOxK\nh9XQB5DjezgX0WYQpKHjk6wvgtcNqupFtHsmMzwuPTo6bo1Xp9aD82MfnJIPT/i36jUK9qLM0nDp\nYnVsZG/VtWS6TpD70jbOuWqNOhxVwZTcsURCDBtVsNM8O2kb4cXITQZOGMe2iPaldlwGOxdxTJOH\nmqnCVivne1QiUGKO+sYDEBaTxmRrHRwNgTpt89aY8ZinkxaL1IVbFTYVblvJCcMwYHt0hM1mg9Vq\n1VSejxZyDq1QC7w+Uxs+x7KIw6pKx5b7faATQxq4vRSEwtKK3goQtw2LCrh3fnNFDcdKCam6RVxj\nahNgYVzmvg1tXQoADjXjmOC+7xlMKNhZFFvV2FWuRE7Is8Qom1KuIC0FiyUDlMQdxvcVtU49OWyF\nYo/OuNsZ0JmmETQzfTTVitQXZIALjqKgywVdyXbv6NlS4GPjVAigkIci4SFJCBW6wmBnGFbo+8HC\nH0unpAT8StqPpGNNFgLX9R2yeJO42r2H4mhYQFYLlIStRQOBtYtICrD5vFcP5L51U7YFoxzNKFiQ\ngKiFEUzDrfWnFOCo9Vk3IQ2zOAh0CO4hUeVIPSWy4YISkpTYjp4Yn88OONWC5/eGbf5IarM77QjK\nW/I2OfZx44EtDmi7PexFFbxnOsj+J/+WhUu2abYA6Gd+7Ifw9W/4TvzG7zil8Vd++avwcz/+I7Jm\n9XeuHJkhRy+uFzsQemGJ+LNT6deQoO9EA7GGDdlzuExFE2JcZ0/eJXvohOdd92x88Wd/Fl7//g/i\n47UeTNquRHjvHX+K+x94EDc953qTjwh9o1EBCnasYDTEq0NAJF4wQ1LI29G5i+R1v5Rlc7aQOH42\nNSSkUqz/ZlF8t+s1br3hOnzzJx7Ekweehwi4946H8PEHP4XtakCVUNyYS1TnyvM9sRzkMOjoQS82\nP0BkYF4NaGa4KRVzqSi1opSMSgVEhWnzZa3kxPr+9ddciZfechM+cM/rZD9lMJ3T6/GSm2/Cc669\n6vRJHPagpdKrMmf5933AA27IIXCz/C7BAUH4e3NaCl+Yq0ONHWE9mzLN8oOd2wmVgFSJcxaJpY5S\njc+1YqoR8HBezjhN2C08O+z5qZhmJTSA7W+3Xf98nN+d4Hg8wSCkASp61FCjfRiNTOQLnOeOyKRk\nTxGMfz17dNarFYdSbzYCdhj0DL2Himfb2znmNcoGnadtaFiQu4dsOjYH3DimcjHBmV4NK6gMgYrf\nEL6/EKiNsSXxnumG1GKMbPPsXid9b65TK+aULN9vmid0KBYymqXodzRssL7E00qjV3JKzL5G2fJm\n415n63uaMaYJl+JxGexcxPH002zNYOtHNaUs5Qxowlewalq4mFiJrUpxUP6iEqfrgnNdciMUc0qc\n1xBc+6zEISxsDS3iauOr1QpnzpzBer1uvBKqVGqhqFo5HCIXCXGgCpra5wBgiqDmaAAwS6KFV8xa\nK+J0KXJBz86BcyPQUStEhW6YQSiAgUPVPlXBJ+0bhSo8AUzPPGlRVzLFW5Mgu6B4dyWGTrnFRIFU\nZYJ6FrZazAtArRmccS0eMYs7V6HMQn+qnIeQAGeJk+KgJABSw9g8B6dDXzoMyvhmoSJiHcMBAZnY\nApgAC1lTJSPb506SngcGNRLa2FjIqYah0lwtaR/xdzxHC0pXQCJIswl6tf4WB4NLZhzRvCPbst5P\n14iYosQxQEglI1UFehHIJBmDYFQIc9DXYLCIpQAExOrYegRU7QgeoZxBiV+CcQLIoWY57IWqhXsq\n2NkLQcN+X6T2n1BlMCAdqLJkJ+lnPU+vHYBc85TNGESU0wIcQytQmcVg8Zqrr8Yd//qncNc99+Ku\ne+/FbbfcjBfdcjNySvjQRz6Cu+65D7e+4Pm49abng8jnWVQ2FOhAvJtGIBAskC3YeSZvTjDDSGFf\njsfnwiMWNmpjRdBwpYSE/+Wbvw7f989/Frf/8fv5Gi9Ae9zMbx9/6GEHO9OEmrS2BocK705OLKx5\nHDnPRg02TWuD0mj5lPMccKCwLs0O+jgkTvVnKfJbZC8isno9atR69cs/D//Pne/Ek088cerzPPDo\n47j+yitkTfB3tVbQ7Ex4bExI7B0YJwsTZiORzxPd15rw1DKjdgVdLai1E6AjDyn5gAZ65P9/72tf\niX/xy7+DP7nbwfRLbr4J3/TXXmVzsTlkKBXoLr18+psl4PHvAwByLX/vGnv3TnGdN1/D1mgwVOgl\n1YnTYKLk2XSk9xFFW7EQUUKFeHRqFbrxKkQTPH9GAzXta555X6qE/XSkBPasrAZb9xSabe0O6y6G\nkLJMITbgaX+AHc2lJPQdF9FWxrWjjefnrMWro8a9IvlbVCvqIofMDSH74avaf9QKt71x4+cD7CST\nxz72KanRUteaBeH6mIWc0ngwsCvohw5dzwynasTVPUP3GK7Dw98TCdtjV2T9MrlSpmT6pq4pD8Xl\n0hCUEpiZTQuLq7xrn19lvwLlNC9p8S+N4zLYuYjj6afPAYgJXwUpcZwyiCtK0zQ1aFqt5dlAyeEa\nNObiJ4kuUYUvKFIZaMLjUlJ2G3LKVBE8uWSs1mucOXMGwzC44m40yE4bXCt7o7IAGL1OE6ZHYPdo\nkZydUrgoXTjHwtekDQeMXXbsbTLB4nnBg6KFln+RVeGExAEbOEymPGlohwra3U5zkXgBZ2EAiu5k\nBhbL0ClnerGQuVpRoaDNwR7VDKLOQYpQT5MYrKsCMWlHFYv0NI5cm6MK2YCCpcQhK13O6EvB0PXo\nux6D5cbwPGHjKomOKO9EoJyRUJAyhBJbmJw0x0ZDw0qHfuiRi4AdgrEBplrNI6JKOlWO2U8AOhv7\nbHOFBAQRfGNMycPmjJSglGZTYmud4lv/XhXsmjy8KENqOGS+d9DoDQw3m29Ye2o80FwhX3thXoa5\nqm0zUCfeGAU6EVCY92ehUEXrYvMe6yDF89Hol6cuLv5dbs+JGoheC+138dnsLB0r/ZsC8giKKL5H\nsJM9FUiu8cJbb8GLPuNWpAQ8+uhj+LrX/89462+/ze79n3zFl+GnfvQHcOUVRyYjm7bVCghzkIdZ\nBCKX4NUxUF5bJcf7KHYauLJ7IiNWgNproJbn5GQUKeHs0RF+6Dtej3f90fvxHT/646cmbT/3WdcC\n4KK/SpWs7R7HESehZts0cYy8zb0EmxuyokVuaH0crQPGMmeSGPvJQN9kay0BDnZStqLBHJvP906U\n8CUveyl+8W3vPPV5MgHnzp+wYiUhdFSV+U7bwnmMRRQ0Bjoso5yv0D3vMdJg7grvZV0VWSLzKWfk\nqqFAOi7AA48+iocfewL/3Ve9AsAr8NBjT+K6q8/i+msuUGdHsWuYD/thSlB7i/39oKdHz19sXkuD\nHn92z69/HfIG43oNoOfQdN1jArWTCFxslXvOvDpE4tXROk0VowAbBj3+PivoqZUNeUs5Ye1fept9\nbNtoFaU2VuIC9/6mxN4ciKGuK5y/yuFrAzbrFbabNc5sN1grGcFqJRl8fC8No5ynqfHoNqGsQV+I\nY0IByOx797ydUeYLSm6eXYGOONj2JWsEr3LdREBbooLXZ60pREOTyQF9aVggLAJnxDRxJAV1HNKt\ndYjUg6NGkmQFn9UDVBpjlnvA3JiuuVYzLoOdvzTHU+LZ4TyQAcMwOC10iL8GYIDAaHklr6CCUGqb\nfKk1eti1yZud/k7DzHQjUYU2ODkawaLX7LveEvv4GkKvLEqBbpSssFNTLFK9NTHGFikhF14cSRQy\nEsuJM8U561DrgfI2AipgJPwCsnmZZku+yOHCMpirWistwYot6safUkJNQJ2BGoAnC8MJ4y7h+PgY\n586dw/HxeevIhmZxEcbW1MgQ+uFpHiUs0RN12bLDzz0W9+ZkJFPIOTxmNg/OtOOcnHlmgJOIAZwB\nrZyczlpoqDUXSGvvqNXY9stm8+V+YwraWTxABbmoIqFgp3M2uX7A0PfoNKyv61EspI1BkIYglUro\niYxyuld2KB17HknbOGT0WXFTxbISKHllbZJ5oXMcovjE+c5gn2OfMzhxOZn3M4fNK1jpcNCQZ1PP\nlKvw/+bvup/v7f+HLXfx7/LB27RQZg8CGBlf3ZTJd8zwW7+khbtFZYzaS8d26tpbWrejFTaCrMMm\nCbMv8/9zFmY3aXsNVPOiNPzd13073vWOd7bUzb/7e/jGb//7+Pmf/LE9gxARAfPMnp0AapRNapqn\nQB99yJvjYWvsfYD1KxuTxFgSPEuW3CwMkWTX0eAbwhe89MV4+ee8BO9564dYAbkZwD1A/pWEl73k\nNjz7qitx7tw5ewY1Iim70W43YjfuPB9njmAnhG2GeaP7jYELqqizhLnV9hWHNVVCmlojWSVnCJ2m\nCZvVCtdfcxUefMtj/Ft5HrwVuObsEfquYDexDCkQh1gNYYWzkjpwmE3OKRQxrWYFT4B5u+da0QWF\nlLRWkhglKrlMzTmj1Ionz53Hv33rb+KP7rnfnu9zb3kevuGv/Uc4Wq/2jQV7Cq5Oz9MU3QPTPFzL\nfycT45T7tWAHjdKrgKE5L3xHKSw8Va7DGmeZ47JNgbAXkuU5YJ6aecZUZzz82OP41ONPYLtaYS0M\nrbN4frS/9TVTxVSdPVN1AW2MhllJrzm4IbL1U8mBvhnuzIiY0Yl3n/WVHqu+57wcJSNYr6TuXEFX\nEork75HRy4uxsE58L2rXv+bsLAYoyNV23HSuqS7hcyJcxyYR4JEUzdK1PZhs/BZGLDnRmD7DffYN\n4roGEhcj12cLa06ZbONaiQCJI0+SyHs5j60WfJ/snuMIri714zLYuYjjqaefAgCcLWdxZjiDK85e\nKQKMk03Pnz+P8+fPc7KYWP01x6GUAo52clYetSQzu1kv7ktOGO76Hv04Yup7E2RMPCCbVQwpQvBy\nqHI+9Oj7Ab0wpMzz2DCujJIIC9nkW9ppsZQIyGJXkQiBEhPfSEDeZJt1VcCV/Jp6tNZVwCU/CxFV\nz6JCqyQEMOsZ7V/PXLt8rq7pOQFzLWZVnSYGE7VWnD9/DueePofj8+ftejln7E5OPGen8PisVlwj\no0oMOSfEk1hUxgB2JhNoWj9nTEJfTYRE7P2oAgzH3YjxZIdpt8M8cdgaqGLVD+iGXgqodQZu+o6/\n481C3cycTLjXv2j2SXComYIdCVuTMAVWqmLxUAY6/SCAR3N3ul4opXsDE5ovALDQtlCw7GFguuFw\n3SmZO4AzBYE9Y8sUSAcY7l1RizTPM92cKlLIQ+J5V/YF9gHBHTe7uI5MuaDwOti7e1ds/ranRInG\nY/M/rgPdJeN9FPDJukgBuZB/xMLueOA5ab8tBDCF+wIMEjXnyOo6YK3UbT4AHcjmL52neTeuyFZ8\n+O578Ku/8/Z96uZ5xu3veCd+/W3vxFe84gt54y7tAAAgAElEQVTMeGLtmmdhFNwnInAyAgrsS8ue\nIBtjrRpOOo8qGyUc7IgCH4oAsmEFSEK5rgD0u77+v8f3/vS/wnvu+JDd6WUvuQ3f9rf/axyfHEto\nTciRsfyc0WRxbL9rTG1uHWS9EcjouGvVavehFpvey3IlpCdmB21aeNXAkhmuKj7vRZ+J93zog3jo\njsftea4+e4QX3XADxknCcimDUkJJS6AjpQ+q0lAnzJnbUjIXaBZbGQOd7FEN5h2nikolUCYrI9ss\nhDqEn3vLb+Lj932srQl0z8fw07/0W3jDf/M1B1bAcu5CjACHw9hO/VlaenlC/kc459TPB8z+abnm\nTRxovZpgwJDvTW6kpNun0ZRzbs7M3r/ZAc9T547x5re9Cx994JN2t+uvuRaf/6KbkSgFoCOGiQrz\n8jR5N9IWBwb6/BHkOOU6kZascCDRd0UMYwJieqaWVkPyeiXsa8NKDMs915orHDZGIMnfm0ER7CzC\nVg34LPo6wesTHRqnCHiifCOxdh2UhWF4s6IdiXiowZh16F4xbC4anGP72DANKwxvupoZPxzspMCQ\nqtetFMJypReULZeyGn7IQtz+/wJ4LoOdizjOiWJ8dOYM+mHAmSvOWA7MPM946qmn2KI/TjahYjK/\nhVIFIKBJ0Vz1lhdVBYzaWb0ytQIp10aDrbQQQAhgRxTUvlOaYE6C3Y3CvBJYhhpaZ8AWmibME7Gn\nIW66JBZSAzt6PtFC6VwqUnGBe9+6xVr/x4JKw6iaY/8LAG694CRNHoE5u6LBgIf74fy5c/w6f96F\nW0qYug7jbucJs6VYqBuDzIKcZ6TUenaqKCxqcVOww14diGStSCALXVOwM+5OpPjgiASu7lwSAw1m\nnBEvXc8haxYORrWhf41zwaeJC2FVhHIHdJZblZCE+ah0AnSG+FphGATkBODT0MJmYYJbWqeCN8eE\neAKkRxhoVd08ZNzsEr6JuxWe7LrqEdJ7aj5QrSysWWDnvbl96HCl38kTdI5RnG57oMebGlCHM9Hu\nnacA0De+ZhHE/lu0L+jbbBgIgAcHPnujU/jKv+POY6ATvTWN4nfgWZt+NLTlQEfvp+EcIMKMYK2c\nZ3z4rrsBnE7d/N9+yxvwyi95OX7sH/0DnL3ijM/rOpt3xwCOJsfHMN7GqKKA0YFcQ0IQmAlzYDSr\nQZloDvLr6r22mxW+51u+AR/95IP42AMP4vprr8Zzrr0Go4So7U52TbhdZF4bJXStseSKsmJgpxRe\noxqmqoYGaB6oenUc/JhXJOT5mDVYAZ2AT1Ou5Lc5F3zBZ74YTz39NJ46f46T0EXxmwRIFlS2Jqnh\nLYQWctSAgJ3KMnDO1cLWmCWZE6Nz8boiZhipGV0lm/dMPc80+vM844GnHsOf3Hv/Plgmwu13348/\nuft+vPSW55265vXbpQIcp/VywA+Bov1Q08PKbPM5WqD2GrZEQUExjYqyvsSnUAOIj7m7ytinHr+3\nvP3duP/BY8Tiqw8+8lq8+wN34fNfdIuNf2Ud3cLf3PDZht6r/CdSQ2kVEO0h2QoOALJ5XHLC0HdY\nrweshsHICBTorIYBq6Hnd9l3hr5D1yn5D++l7DHSHB316ggJCLkxoBGgy4NoT8ztKfoqe022qBAw\nXCpDInstpI2LcTttB4p/iV6dSKIEQHJ2mKa/QsPZ3DjtBu8k1NOt/kXCnBqBflLrA7KkWmRv+6kt\nvrSOy2DnIo71eg0AWK1WxtoV0bMmt+dcxPoiEw0sMHa7nXl/mIVnRNcRRgEgBIRNcTYhpVSkUZMy\nxS9sxm3IlRS+BIdN7MYdjk+OcXxyjJNjprM+5HWxjbGGDVJVhSUgqp4UW2dnl0vJ66L4oTSdag2L\nG0jy/8x6FfaF8IptCEZutqZoyFgDpFzJSsnZlhISSleMjCDm5JTsjGr2LCKsSDwRujFbErMOtwpZ\n4pj5aUysiM8TaGI2NmMymmYkELqcUfoOEBrmo+0WR0dbrFcr8+50uaBo2J8qFlXilCdxYYvgVsCV\npEGqk5aShV2tw3q1xmq9wmq15tfai7MNqwXYWfF3XLyQQ93c9c5sPzCwBVdcQGJ8ZG9lMWtTsd+3\nVlFdL7B5FDcJEjdHVrATZ9cBC5mOvX2vYCMAGZtIJHUppBkJ7JEjvzO/kv8wJf63PiuJoYIC4JHp\njTAdT91DTNG1xvkEb4CKYzHZ+K0TDloqae+eATldYD+Lf9JxSD4Y4YSsdk/rqUqsMXnxSQflN95w\nPYALUze/41feg2/7374fP/vD32vzKsbXkKNgkw05JS/oGg4NY6nWntnyVOZ54mTezMYNVSCcJrai\nvVpQlsO5c53xrLNncM2ZLeZacXJ8wqyKoX7OEuyM04R5qo2hqFaurWHyNoeaT1nDNJ16fenNcQs8\ntzTKaWNxs3NnkWcQBQqolMzizTT9PYcJTlOD/Cux8YQmpallOaT3ABEzS6llubKhg2SM2JuYgUSY\nJc9y1gRoVfCSr+upY2rhrs548FH2OJ0Gln/0F96Kz/6M5+F/+tqvwtFmdfoE/3Me+14dnQ3q4TwM\ndFrP8oUUSF2XrjeoQApX9Ve4nuYNc/gIf63ex0qETz32OO775CewLL5KIDz0+Gvw+FPXY+iKAW/V\nPYiETlzuRFXz1sQjmjXHmNtNJH0hdf+0oHpK2djTVsOAo6MtjrZbKaDNYIb3Gzbq9VKYu7c6Ugk5\niYQlBjsJHBaZE6FkgKdbavamCA73xkOlVTAepZQwzhV1nG2/Uu8vSL0juhuITpBSI2OjTnIKxLLh\ndnDj+XcsmyYsPTv2TtTm9IRD+zoC62i8aWbaKYYt7w+/1tJ7eSkdl8HORRwR7GgOR1Syuq7D0A9i\n+WeFWVlxNJ+Hc0XO2yZIBOzGEb1Up1WPShOWoUokAN7cUzOB44JQwKVAjIgTV/Xex8cMeHa7XeN9\nie5TpRusYl2r8Cq/ClrMcqSsP0S2SKLFn0Qh0fYTsXByYQ04Ma8r6Pz94tVYSZIIYQc25iZPvvmw\nnsPCxIDGzApFVzqkAR6upWxgWrBTnqloaJZomUZAQM7CouyjJIoV6/8TMggjzahTxpylbosIazau\nk9WZyYkLwR5tdSNYcZ5OLgYDErFyoYmJ88Thc1FR1v4HXElWKsphWKGXsLzVsMawFqAjhdoMAAnY\n6e3F1NNZChiaIJU+neeFwqXjlRJKp0nKsf5OADYGEHWl+e8PeWUIQAnPpoAZOptIBbYAHen3OKYk\nKCWCmQQgVfaeZnC+l20CcaMIzdHZunwFu4R/DsAnbrDLh2vYj8L6bhUsQD0zFtoW5ICH2ITmB6DC\n/bt/+7T4hytxugYRMZidZ/opJWiCulv6JytOPE8Tnn/DDfjKL3kFvvX3330qdfNMFW+7492466P3\n4+bnPpefp9bwIqhQUSOJW8HD3k0EgrJkMtgZdyMXaRbQodTnnZHEhHC3oOAvhgmWMyA1REx2axhZ\noO5vQI6CoEDs0niTyOdRBOnsPeXQ6K7v0HVSrFRC0uZaMevv7eVy2opIzpMlcbcKEGuvFIu82v0z\nUlYQyLKL285ybpZwXlXcWEcvMhaJI3pA5vFmmnYSpZkBj84+39PcAGbzqCu46gzXu7sQWH7/Wz+G\nn/zl38Ab/9Z/eniSX1ALPf04BHhS+Fs8b1+5Pnzbg7MrfimKti+6AHTUsKcbUHzJtSsBjzzxlPz2\ncPHVJ8+fw9nNluer7P+zGs9yspK+RDB5kxLESwct1cXx4yaDYftxyZkBTd9js1nhzNEGZ684g816\n5QBHQU8vBaMXxkueU7p3Ejg4jMFYJs0pjl4Z7779MfK5pkethAcfO4/j8cS+Ww8rPOvsWp5J5r70\nrAKdgxBA59gB44sf7mllGnner5z0aW7krHuavE5RCteJutfSk6TyxQzQ1Hq0VDdrHiHF3rsMdv5S\nHcPAVqKu643lAtCJ5Aq9eyj475ENjDe6nVSmnUBIzMojnpZIRkCykfN1W6VH7wfyRaDsaux5WlmI\nwDSz5+hYCpRqXYeu66EU1nxdGJAx619QtvQwz0VV68/inEbgtkDNroGwdBIrbNZvCIpu/CyLTxUb\nE4ILsGPKT3LQwlZ7D+tIkPC93okceiksGsGf5ukktIBQ4IwoUq7om3JKkjcESLJ2Ntpn2Q5sEyjy\n3uWMoessdK0XRjiuw8NheOrN0fo7CkwBcutvEHqqNrHXr2egs15jNTCoWSvQWW/knb/nDYhBcxFv\nUM5eHNW8faShM5o3IWAwCl0Fv1o0VPKO9Pc6n5MxLYV5EUIh98NNYmy2fhf+7ifa+amxwiUX+hFQ\nZABVQAR037Inhn2ZPHzLQE541yu0ll39eMrGYRvM4YMW/0iq2AfwtFyvhrACGNi/Q1SwfKNM0m4F\nOpHaFiKXIEoAAxIS8MuEAWMAFar8U634p9/9v+KN3/09uP3338U3esGiOTfz2z333Y/nX3+9MLHN\nQGWCghjusSd/9Ink++hVUdm3M7rnkT3g84x5USU8XrcBBY0c9kKeLRW2W8ij/F8WO1UPZKTcrlWL\n6QYFN2keXEaZe8vPMKIBBTrVa63ZfZWlTYpEO6HMgvFOKGuRF/0A1moTZSYRkQLWOvZN6JQa5yAl\nFLLIH7lWBSdUahpmam8E2DojpCphcHOG1qab5hlXXbHFi59/A15//yfxcaJT6xz98R3344FHn8Bz\nrrlyMa7yuCl+t6/oqbK+PCcCHm93/O3+Oo/fVQHQ9jcsDBz6Zeyj5DqFWdlTck9zivukAx2dw1cc\nbeXCh4uvdqUYeVEMeaS0aEtqaZGhpDIqM8TLwp7xIgQEXGNpNXAuzmazwdmzZ3D2iiOs12srn2D5\nO12x/V063sANUQiPllwgBjxkuWDLrjwINZL/VY0Cjz494mTaAvgZaJjf8e61ePiJY9x4bWdGMh6G\nvLhXMOgizC3d38JeBSAYmsM51dka1WBk+k7UgWys/TlaQ7A/Ny3u2/SJ/i0a1Bs5p/9O1o5L8bgM\ndi7iKIKKE9iqtduNpixN02QhatM0N0QCGsdsORIpm7Vxmiac7HZBqXOFJZeMru8wzROHSoS8DFPY\n1RuBxEl+qzW2myNs1hv0XQ8AlhR7fHxsFZJVWCsDV0pFrECS4CjhDsZEpEAoKBkc2kDmQTIlYBFD\nqkdjSdhbgDFMZr/CcbvOogKiCxFQC6RZg3JCKUJDDdpb+KkReOKyT56LYl4d2dyiB4sBzohKEiss\nFt5kz5EQY56UgcbyeNTihfhvjctlq/Ao+wnTVWuxNK8rosQEyq7WhOKVIEwBpJw5HG1g0ophtWJw\ns9lgs91is900IWxdJ9TTIUer6oYj81jni+cM8CZQCoOUXLxgKM/TeC0EgwArRRkQwg0s0DCaudAA\nGhPSAWSowF/Mofa3qZlTFNBKFWY4BzthV0u+CR/0PDVz9vT3gwDOPh+AIqL4pmDVPQT+9n+ndof9\nNlu/2e+WCl/ox2iu0A1S5iOHQ2mOX5u/wVb/yb0cAnaONmv85A9/L97xrvfg67/ju06lOr7x+mdj\nt9tx/L8QFESws1zTjXe6tkAjgo1YpZyIzNsS8w31iCFmp4Gf5X3GcQznttcAJOQYQM2co6KGAiIy\npX6u4u2ISm5KKJUV/86MCwp0POzZc3UiO5sXWIx9Zf2XKlAzkCoiQ5T6PZWxLiFzgrTM05SzsC9C\n5kTwftRqoWuqIxMR09hSBXJCrRlEBShM/MKiUwwRpMa1diz/y1d/EX7xzt/H7R/9BA/CKWD5wUef\nwA2hsKjumwcV4DDvl0cEN0vPzqFzWgU1rrdoFhHghOX+hhZgqG4gYFfnw96qXWIv8rl55Zktbnz2\ndfj4w6+TNrwKDHReh7PbM+hSMqADwAxaDKorgIqUKtjZ7XdmA19itmuoYYtr5ZTMOaer1coJB9Zc\nO2e73WCz4eKgRcopKNMpP7YCnABsjGVN9iCtVWeGGq5fV6k1HtABOcHj5Z21myacTCOAn0CbCUY4\n3r0Gu3GN9dAjgct/9F2xtkENHpLPhsI5M74/1iAPZ0s3iKUXogxR3WnJaOt94aB7ybqG5p6H86xK\nYTBZifVYmr3m33Jv1d+37bi0jstg5yKOYpa/hDpXjLvRLGzjOOK80BlP8xwEHM+eqvGvopCDvFBj\n2u1kcislNQu0Uoq4kTlxVpVt3aTZciL5JInpplerNbbbLdbrDbKAnVqreY8M7FQHO6XrTIGKYKdW\nz8MxgFFJqF5lUQKBtcQBEc0zM5CpctgonN4n0WKR7L/9zcIVQG+Pc3vxmKg1SIWmekyi9cSFhSqP\nbgHh5HYXIqJSHlSgap0x1R2meWeAEOSgJqcMylkseLyBm5VLcgSUilr8RvxKCVQJ0zgxexLx98p4\nxO1wpSVnJ1LQfK1IrqCKbsoZ3SBU0gOHsa03a2w2G2y2G2y328C+1nvoXgyHI6m7EMZDY/c1Kbrk\nUKC04yJp7A0SsKNqc7RGIkGKA0mJCAZVatY8BCrILuIKu+GjeP5C0SAiUeT4PHfJuKeU55YmYMv9\nKTV5RnsgJ8xZLP52CNwsf++K5WHrWdK2Ju//Q1Zn/eyKl4YtOBmKzm8Fqc0OBxvaA+0U5bOGDdzY\nCCcBOZMTAKgMsXO56J8BI6p4xcs+F1/2is/H7/3K+zAH6ubyqxlf9IWfi+dedx1G8cLUaWrAzmmv\npYclgpxDykI8VxWQ+PzqudkzNgUZH++12+2kBIH3d/TkmHxJiZmQCk+8afJrTROHubnGqy8g670s\nbE4Bj4bQtZZatYSrxT7OkSjXCJDwsqB46tirfE5slKkauyteY8gz8dhms0xrDlKS+j4gJxfhPVCN\niPxFSh2qlEPg9SgK7yJsehgG/J2veSXu++SD+Klf+q1TwfJzrr2yMcYdAim2vk5bBOGI11C5cqGj\nkRUJwBzXZjwHDYABIDXD+HsrXh7WP2jhbTaEJG3V/2SMv/zzXoI73/3HeOARL756dnsGz7/2Sgbn\ncg0H+6oAc6FYNUrZQxOPyyw7cVbPY+mYQnoYsN1ucLTd4Gi7xWa95sKgKw9d4/3Z8+7Cjuz3IJ9L\nVB3MKOmP6xbKTOtrQKNT9iJUyN+ImBadj8NhfifjjFXfm17WC0tunSf2woa2pZRBJSHJ95pfO4nh\nZxgGptqWsiC6x0ZjCbBfvsPCTklYDQ8AndYY67mAOs+a1IVKmJlXHOrhYYedX0tlorbnUjwug52L\nOEqRbks8MXcCHOY6O5gQljOtn2PuzqjwJa6VMKqnACw/SqlWJ0QVzUMbq4mFpNVyk4UXKTDgBcyJ\norvdiHE3Yho5Vps0zMg2NY2tlocDQrvccg8pKhVDIdQCAVk8bCF0q0BKSSr2+qKMSW8p3NMEXtp/\n8aGWHv0noRqYyqhgIcBhvQkULCbMDOMWVhYaIlRVKKUZVdiDKlz4RoCjtSlqnTFXqY2DGkLoihUQ\n7eylNXKkpkBmwKOqaBLLVJKJUOcJE/jZkir11D57FFyxKF+S4mzsVXGlJZeCbhjQDeLdGVbohwGd\nhKp1Wki18cLYbstKuAAd9XSYYq6bdArt0tycUtgSHDZptzy6AhfcMvK8yc5p/qRzJQFGSR6Aq/ZN\n9JTq/FGA5HteVJJ9htn/koNd/YzFK+AAn8kpqBxpqYL4sbQW67Ms9ac9z4uf2vRdVMIcDCWbE9rV\nPlc5lLI26yvcQGSAKVXKVKYhUFPw3BjQCYqJ5aWFHlOle+b1AwK+/41vwHf+03+Gd97xPnvmV3zB\n5+B73vBanByfZ7bHkWtR0cTU01owdA/omALvTG3Rk6NGYDMCJDZcaR6LjRXJnEoShiy1fNSSHGUy\nCAEwed0tvgwr+Zp0zIrMYr5BlZQKZ7RyAGIyWcG/gLk8TRY6xh6dQGgTDAB6H53nzsK2eKnRoWlZ\nmIdxPspLPSW6x+mSzgmoNcpRFWHqDSBQ0mKMJN6g3CilrrS5h6oEb12tBZ/5/BvwWbc8Fx986ycY\nRN0Mq3P00tuehxuuvdrWhrU9ypvF4ef5elqurcOgyUwte2DGrh3mXTTi6DxTYUKL86FJ90rxHEFR\nO8A2dx54+BF84qFP4Wi9xnoY2GuZgC/9nBfi4ceuw2OPP8X121LGbnIvpIl0u2SVnFClYG47zopp\nZi0SXbAaVths1tisV0a2s91usF6tsFmtOP9TiICSToygb9iz635fa6O8mwIve6KCcIb1nlNzQSAa\n5DIBXNgUwKlhfuLR4jFJAUBnJPVyGjiHyRl7hbaYZ0dZTeHrP9Ltu4ziBh+aUwAOfy/do6APsW8X\nwAgLWYHmerqXiLHiEjwug52LOErP3ZYErGjc9zQxs844jqbgK1FA9EpouJoi5t1uF0LbitWoScGy\npgLA3I8pc4J/EJSqxRB40z3Z7SR0gBXWk+MTjEugg+QFGDU8LwjgKPR109WFMy6sD8w+R4AIhHnh\nOtZraYiVsQtBw8tg0uDguiVnQ5FvXKYQSZKgWHuIPSpFaBqZqtGVTQu7MQABATr8zPPEANEs6fab\nKgpWcJMTbwLabyVnKfrJ1uFBYpB7KTDbFWZUU2Y3VaoIJFYgAiAJx/NsTDbOaOPW+eYlyr2BTOK6\nM4kkjlmKhna9kg2sDNyUrjReF+nelj7ZNmQRetkV/Upk86iCAjWuXk93leUGvQA5RoGcHOhgqWws\nJkZsV/iutXbpRijhMdKAakJex8Cb1noSsXet+DdVivTH4S8yvgnGmCbP26hIC2VKf0vNPYJV0oCY\nKz7WF01bF+02r5T8Xq2Dif+moSD2LuGEVHWjFIVYlY05UMxWCUky1ZwNKcgJlKon8aYKygnzLDl/\nEtK2XvX4se+6Hfd9/BP42CcfwI3XX4cbr3825nnC+XPnhDJ/B5o8jE3BjFlu65IiOhprHHw5sHWV\nkkT5hyjdzDTvSlclBjuzATlXRnTEjaRDankxMARm4jXNtchGCW+TMVbUBRgLluU++TSCW+ilVXMF\nEpcwaKimGyu2/k4PB9IR8JjCqLkYTd4fxKgAAzbs7Vcgy3JQu8GUR8kDVXkFIpPPBrIqG4go67xv\ngYMrf+p5yyg1o9bSGqxSwjf8Z6/Gz7zlt/End3zMrvBZn3EjvuW/+CunABPrjvar1K75ZwI8kOGL\n0+kQIHKvLf+AdcZkteviGk66J5mY0ViH0G5R8KM8VQD+5NPn8G/+/a/hg/d6sdUXXHctXvG5LwbN\nHOGx7jpcfcXWajzpWJMZs6LyPWGeR2j5BZ4ramgVI1rRqBKmjt6s19isN9huNuzJkdA1JR9gYKE5\nrp7r52uObN9jEhad11o0eG7mTM4JXFY6DqjO32CiWioXYe/oS8FQCLv5tXLdV0HD/FZdj67kZp+A\n6BzmeZGoB6o61mRjGQESlAxFCFGygDTNg1N4pOsuGXtt0I8WMj/O7UZ30xGjwx7wRWfYOo6fVZbr\n61I8LoOdizgsvCElzHXGbtxZwmtM+tTJvFqtjACACOj74z2GtOgFqiQKYnIXJYBwToecCNU43INy\nJgrdNHO7pIwXCBknJzsHOwQkZCsAye5xFwKH6uPUSkCdMYGFjFooFbiU4oUlCQQSj5VRicqhpA4K\nkHLKBiI8zRFBh2s3fdUU9ywVkOVJnO+SiYFOrpxsG+WD3k81hwSAkhIYJNnANXSL/6cbfLS68CZW\ngeT1IxjsaME0BjtD16EvnVmylCku2Q1EaRAKJbVOQ5SILODIPDfJQ9a0P5swI7DQ5QKmXPgvFWVw\n6huGtdIJw5oAT+vDMA4eKpiAppAoz9MkYCeVLGGLwSOUktrCdNkEFbIdXhtmBUILy5x+jvuVbiJ0\nQMGPxBsqvEnmFJFvAKakqLYGXVN+rdYA0BoColIU2+WfDwCdA8rXck5HJXXfgiwPo+3RO6alB7Xt\nl2VHJzF48D1U0YbE6JMzbwVvJgnzmIEeDamsGnIJ0eNk3Gvi9QVwaKsqU7WKV2i2or/XX3M1rr/m\nalCtOD5/HtM8GpnAbrczrw6ZB0VZAENBPV1j4aUAx70nIawlKLIpJdQ0Y1bDiRxaPFnr+eizq2LI\n5wSPw8yhejy9eD0p0NFcHgoTmj0/M5wd7ZDiT8K63SosDnTkXcbQjEjNgglzPAAuy01LooDnmHzN\n7VGZFAGLsmKRKEW6D2UkoAghOWXL7bIirRrSjQT3zrYzXMcoiSHK6sVIWE1cE2fWa3z73/irePDR\nJ/DQ40/i+muuwg3XXtXsYfE9LiPvmnbVanddCPDsXfOUI4613Sul9l3P1XNgy3vvHAU8/hy+L/78\nL/0aHlgUW33dQ5/CO977x/jCl9yGaVTWvBnqBWGFOwBb6F7koapcw4b/ljOT6qAU5MTGvfV6wHaz\nxnazwXa7wXazxXazNQC0GgbbH1OCrV+jP6/V5lsCsaFX3EYOvCR8fJ4XA5iBAmionXZ1IwMX8i/F\nc+S7s5uCJ4/P4WTyML+h9Di7zsFDEnewKGey6AO+iTQtTMkIimz/1hA2UrPEATlvnxfgbfE8cX5G\nj3Mr+w4AnlNAT+tRigbMS++4DHYu4jgvRUVj2FAEOYAjeM2/0a2kYQ6S6yXha5zmGScnTlKgVliL\n95YJy4pdUBpFqYj5GhoPCuJws3GamWp6HDnhVaxhFuYTBS2pgpmk/VVevjl73ghbA/V5WHFixUtz\nm8waT2Teg4a3XZ9VClrJFm2LWq8hjyob476lzrbLpPt5ar6Lm4UKHehCbxRqAlVhDIpCQYS/b+gA\nxBKalHhAPDe9FHLlWgHizSnZPDpZ2xY2KVO4vCUug0JdopzbsS6lhIcURQ7EwENyZnot1LZeY705\nwma7Fba1IdTT4ZA2poWOdXAECCfrWE80hgOELDlIBA71NHppC2Nzwbnc5KNXhJAkJpw9dAFmtb8L\nazLBY4l9zrhl2a1bchM4gPc5lHg8Y/tw4BWUxQYYycy1G4W5acYIU3jQzLm9g8K1kJrrHvqZdauM\nRUowT5/2W3N5aR/nbiTArIoh+VeV5qJGOBQAACAASURBVOrJq+7dnAPQaS31UDmlEFeflXRMvUYG\n7NruHUrkbawBRFl4rG3QDizmyUEPoHU2vG5Oyjr/2FtW1YNIBEh+C0J/53nGLIDJ5o4q2iGMRkPi\nWvBcLdyqzlVyZRTsOPV0E0cvBqMq4C96Tmw8BGw6+2WrxFQDQgHIST+2qhkWc9jnRlahRBUwxVaf\nj0Jc/+zjHeSiLZEge1U+cMV3SG4HvP+T38OaluLX2qcAUWkAaAvo+d/PufYq3PCsqxsgclAp9EVr\n14rXlVs3xyHAo3PmtCW9d38S2bRUxE85VAw1CnvooERkQ1ip4hMPfQrvv/tQsVXg9kcexwOPPIar\njjau5BKBGc5qmE/6TAkVM4DKJD/k+3bXFXSlE5CzwnrFIWsMcjZcn2nF33eyB3Le6YyJGKhoKKyB\nZ1mHRoSiNXtSsn0temibfrb/JORUvKxLIDpXQp0qkCusLIbMWSLON73mTIdKA6ZaQ4h50AVC6KzP\n2/0xtL8HuZ+RQdkNylkEZPROt9c9dWo08nDpqTkE3Pc/a9/5//ef4wINuISOy2DnIo6nnmKu+mhZ\njxNNC71FogGdxMquo5Y5DeWaLf64mnIZE9P0Ow8LIovyUeGjdNOx/o/WlDh3/hjnjxXszA42cpYd\njo+4gCNgK8U3UA3R0/MruaBZWlIBGCMJkYe7YWH517A8/okSQCxYbayRaPrblEiR/5HlLG6EOXyu\nCqwC2LF7EEf9KpumeXDk9s7hnwV8VKRckQvX7FGwM3Q9hq7zPB3xnDjQUZDjc8vAmf5LlG9XYt27\nY2Cn66CqMY8Hz6NcCrqe6TyH1YDVhplvtmfO4OjoDNbrNTop3BbfU2qpq+2lIXICWhRoa1s1KRXJ\nWeFyKQy6cmnGEuF5IgiFKMk8LF6fycZncb4qbnkh6BXkNNbS5bvOo1hROiqEYW01ljvX6JqDlp+o\n3TwaULVnwVugp4VF788+cjfuvude3HrzC/AZt95sl4/4iZtEPr9SoG0NbTAPgcW8A1bA0P4ewjXV\ni2Eha4ct9DBGJB0vWY+hWzysVRUcCmCKAY+NgLXFHyEDZvUm6QSyhHUGPQAsTy11muDL1zTDCwg0\ncz+xM1XBBFnHqjxQRYA0J0ZluHoqVPlR4wTpZ29/lfvE+jpGTKOgNGeox8xDgJkBy1jIaiCFoTiu\nYX6ZMS14iHU6ym/UWKNzGtnnDMuS2UIXbfjCeEFfUZkzi28SOeyKGnd5NNJJeE+zJnQ7UOCiv9f5\ngqCQ+9o6JBe8zftGsUNemENA57RjeT1t94HL7h3anrh/IKW2n/Sa4dotMMoxlTHiHhBVPPipRwGc\nXmz19z/wEVx75RFecuMN0LFT722tatSg0AKOXuhKQkqdra1hGLDq2Vi2XW+w3XDY2kY8O1w2QeoQ\nQuV6ZEarvlbMe9zmBPEecBrYaRV7Xnp83lzJPEZ67kyEJ48nHFcA4wQcT9j2BVdu19LJPlcU9HSl\nC0YUX0+eE1j1pz5WYaxN1sS9IAEZpc3JPgB2luDlQnNqz1MTZ5E1Sje5fS/PX4bjMti5iOPpp58G\n0IIdBSYcDuRgx8AJSTG7mCQLUUhKQZIFxUAkNde0MLGuQykqNlqLkYKd9ZprpqhCXGnENE84f3yM\n45MTjNOISlzQkxPIXaltlSAAcM+OMcLJ5uzCsA0P0UOfIaUEEpId3g9VaV5aqDTZT3cNB1x6Pdn3\npDsXi1suo6BGw77UC6MvZxaq4DyeoJxZ68kBlQndkEcVxoctyOL5Ksnmw9Bp9eeeE0DF5c8gB0Ge\nqxWLH4zjf1VdgKiurrhqqGOkrOz6ThQqtvyiJiDPKF1B6dmrMyjr2tEWR2eOcMUVV2C93jTeSX2Z\nUAyKsoIKFdaEpecDDfGG0k3bOgghkaZMpHBNmziw9QIFmKqQ6zyIYCdoGdEaq8ptAx4W4+mbvM7l\nQ+xIqpREpcova6pa1I+oXZtL76Nq0P6bsFs2n4BHHn0MX/faN+LX77zTvvuqV70aP/sTP4qrrrpS\n7iP3o2yTKydPGtZ11gCZ6koDg5Aw58N5miyrDFhOKV0P5m3EdZShii0Ursv9JLdHQjZV6dV7Qs6n\nMAcSfP5TrUw6Ut3rp0p4EzJLAGUSxbtlK7J0HCKQeXsCuFsoAFE2emJ8LPq8/xsbfzjYYfY0Dv+1\n/k+8drQemvW9yQUFBdX6f55GX4OpLRysbFQ+Jm6tF1HpIZ85A5nnTjJQ6J4zeAtsvfCF5qCYeoeb\nR0c93rbUGalSMn7F8HwuD3xLCOtWn4r2FdxDTFR7Ro4LKHO2PhZj5n89/FvdLxsPUAAdy3OXN2Xj\nledEIUQGRcOaNS/InxhuDhCPpTSTKuGas0cALlxs9VNveRrvv//j+Kwbr/ex1vk/q6eTr48E5A68\nnxSnS2YKadY3jjZbbLdbbDcby83pJDS65GykJeaFndh7aWNlc9W9Gvw179MMZlr51QAI+DZRKZCJ\nTK5rPXF+xKoCPw0Ggr8A4LvHGY8+dQ5XX6H1h9pxaN9FDkRgSKGf2l/znizyLe4AvJejmbcmV2oL\n5m0+nAbAF+cdAuGqP+j9HUiGc09ZI6d7qy694zLYuYhjHEcAHpLGCi4LABbAhQVD5/VJuHK3FNeb\nvPAiwb0dbDVwhdYprvmgWjHDaUk1h0fv2/c9NpsNjo6ObBHNco+d5BPpwl/WkVCAo5aQaZokZl9y\nbHJGCQux7yfkovVSWCDq4vcNSLw4CBsCYFYM85ik4MVKHPxSq7uyFeikxW7iFjY5D/tgx0FoYCqD\n1qwJbmgKDWxFk30uWcPRHOSWkpHSBKSZ9Qap+FxykQRMAipQaYaBGVE4EgEh7crAWIZ4ouTdARsM\n3OSOPSac/M39otTjBXzxYZCwtdUa26MtNlvZkLZHXDx0tfZ5ULKx8jWWoOTvCmTUiuqaewoKPP8t\nBeCjVknf5Ntrq6cojCyQyEL8tK9sLhwU/IvEfkMhoug1lna7GCflx3YvXkv1Jahmp6hBegJviEtl\nKv5+XzVKzbcJwNe99o34rbf9IRCi7+98+7fi6177Rtzxb3/armrzVDRaXc8p5vUFZb1WVRhEuWkU\nHD1YUa6knhc9VxV8jbVvWZG0Y5TcIiUEZUwTi9kiWsRAwAaEhDorRba3l6iiKxm1L5iHHpgr005L\nvqO+JimyS3ASFPVwax2LPeUigBYNMVNqf+5Of4/esCWVdTRg8ZC77HGwo6G53D71jAHJ1iDfg8cl\n1sXRPJV5mtFNI8axuNRLPvas7Gkit4DaPYu9NpIphLlP2ABm4HRR2FemNETl5LVSUrMIUlIK/WCk\n0MEEjCillMQU7sRkJoc88TmFtb4AMYzRktDqay0xN2xd7LE0dNh+9WnodiYTohzE4XeXn2GBxH5K\nFsQFl71ueMkpuWcHiXPpTGwTnnXVFfjM59+A112g2CoIeOSOc3j62mP0klgPqigpIXcc/m7sriWh\nDBldn9ENnUUArFcMatYrDVdbYTUM6EoHCLDnOnHU1NyqVWrDVS2ALfLfFYSwHYec30ShX3Qv0fnB\n4W4cycKF2k92O4zjjsmaxgnnZ8KbAHwNWk8XZsLDT53HVZvBPeEH5kU0XkX5od5Q2NrVPScAgwOT\nSH+fpwkzVUwxF3ixuxzyUCK0Z2mMiXtc1PX4Gr7DmBFEulU5dOJ99VYsg9iweykel8HORRxcO8Fz\ndmqtGAaYVdxIBAQkEGAhbE5iUN27IxtdFfrCaL2Pi6dWtqgpGNEkzbixK9hRK8TJyLSuMSnWvRy+\nAKpY6eLmrWEMuRT2SgRBME6TAB1gmqdm4TsI66FhegALaA+Jac+NAiXgFz4WAMfe1UypSqJsCgp2\nSlBuYqHNlHiDoERQi7JbM2WDEcVBQUhKrJSpW15fpWQAI0AjNH9HN+2MJFYd4ogPkeKJSGrrKLCR\nNqbgvUkp0HJmf7aSLR/GCn3qZpgTb0zynKv1CpvNBuvNRkCOAJ7NFuvNFn0/GAvXqQq+jnnYVAy4\n6CZjuEXHIS9eqsQvQZL/xuh09T3QwAU+t2YOHrIw+Vdk/a2bjoUVxPmlz71QKnTOtsqJXnkfpsS5\nSaEhfG74hSlD+s/Y1+3HP/3I3eLRaaPv55nwG7/9Gnz4rntw2603+89k7iqbHyVVs8WGXhdgR8KS\nzAI6z80c0LoXFjoUQrfMs2NgJwIebovmddmM0jGoCnY4VAR9B5KikrWEGjgKtIgA6syqqiFUVcCO\nkhcoYUo0uCzBTpR3SwVht9vh5OQEJycnjQJx6BVrYUTQE+eCrkMZDWEs5PVWumJgJAEWzgIcAjte\nL2iaJnRjQVekXIHNOZ3rMdSmGnHDLCB1TiFfNDEY1vpfOTEY0dxQ1OhhiECAXyQXaQ0RFM5ujUgK\ndpAzUiFWsBFo8a0QtMpxuWZYWwp0eI/M6Loo13ERR6vILj/ztKVT/xYvk5BMOBzyMjUyVt2uKTlL\nod9RQGcyua+GMI2MEDECgGvCQXPiiefOX/8rX4p/96tvx+0fe4Av+YJFe2/mt3PHJzi7HsBEOGQA\nx/PdCkpf0K86eXEe6jAM7NWRnByNYuhKgQrYqkbd2d+VhKRWDle1fTmML0wBd887iYfJtpCwlnUP\nUp1nEra5SBo1Si7fK3HY0zW+ueLx4x2uWg/tsDZAx/WEKvmLs5CtmL0vyMEG7Pg0aeYV64UTr3ES\ndljZFZZq0DKSJ55zSEZBrhT76lQj3nJfbP9q+udlsPOX7IhFlXjj07AQmWDBM6OCGILK9y2rPjF1\nc9ZiVX3fY56ksOcc4raDVVHbouBiGFZYrda2OSbwxj5JLaCozFnboIulyuY9uzsVsMT7yPrVaWFT\nIuQxNwm3qlTmrGaC1GwA2g+xD1URoZSsLXokS05qx6HdoPzfnPTnC9xjY9UyBhAXCLdxUQmr4R8Q\nT4GGz6SUDOhwMv8gJBBMa83hd0EIkLivVUET80mGhO0kbgs0j0fAjbr9uZo0e5JsvtmGxyEvKXvs\ndsoJueNQx77v0Q+9gZzNdoPNZsuFQ8Wjowqg9aNuuHHjjcDEzkkGEAAYA1NQB2zzVhVf8aN0TFDw\nWTkwQ5MZMh1YqKLDwDB2L2k3Lw7/Xram5vwwe0w5a5WpA8Avghhp/3Lj8S4LyqdCHQKMOjTinqZf\nYo/xcfc998qnwwXu7rrnHrzw1qDFECDZZloKy9pCBAcr1Moe9mhMqNO8YDFjnazZRC3efjYGNmcn\nFCY2xTuOUBvvj76nlNhTmhOoSHiaUAobGKNs60oNCFa4b65NSOcS7JiB4gDYsb4Jz7bb7UzuRi9O\nlFdtn43Nu9Lwa1tVZjJuqJiDwuYha8Gzk3WPULATCAkC2Bm7CV03OSNbHOkIeMwrNEt9oMRKp8g5\nnpceGqWGj1wDQLXZGWVwklnFGmaSued/t8lof0ggM8pkJC4cW6TGmJKgNGsPpkDqvxvvRvY9LBqx\n/lyeHXuk04HO8jhkYDEDXdq/1mkvAhr2SAr96gDM97Vse1c2A6rmNvI2puHPDCLXQ4e/+R9/KT54\nz8fwf//W/3tqsdV1n8XokKQ4eSfh8homXTifc81gJ+59KylKvRoGMy4CkDBL0VEmrY1V3ZMpe2NK\nsrcTQCp3cvA2EGGeyajeFSDmktGlBDODSR+qXBvHGbtRiUDYEFtkWH4BONXTtbujYhpqY9h1z4bv\nWbx2QthZMOq4PhfXhRsA9BWNJgRZ51RdT2oASVxc2p4wv+x60avj50WPaTuX21ciN5osj6Xueike\nl8HORRxXXnkVADLvjNKPVpLaMnDAo5tttAYyexbHiGulbQ4N68PmzJ93uxH4/9h7l5jbtuw86Btz\nrbX3/59z7626ZTt+UFX3VsVGPCSLjgUitssS0Ar0o0SWUCSUQAUTOnZoQGQaICNAsjCCgCKeooGE\nqmWTCAtkrDwMIhKdgIVdqSq/Ky7X497z/3s95hw0xnPOvf9zy6flI59Vte/+z95rrzXXnGOOMb7x\n3HbsvIOPJswjeV+AAEnzHIrxUSu2ddUKbJt7X8b8jNwlvDYrWb13BD2CBiu80FRpX9fVzxELjij4\ntVbstKOoQCeCh/PdAjticYWEqKinyUp02/0pM5bQiTEiIdvX/m5ghlsu5Q/LkTGmWQbluPMU3chv\nmSaxSDOTFpkKpRDWz8g5CsR7o3NqjC0L7QA8+vc0RZ6RKyZWHU0VG7XIWTfm8/2d5OdY2Nrz5164\n4nQ6oWgvp+M4XHkxhScrFMJu7b599TxbhAAm5AAerI1QdR6paDEIe46csW7rZgDQQEQCX5wX8oay\nYetlFsD43/VP4nn07k4nGbhkwWD37+8VdJZAUoiyJJbMOt5DQiHeJFj8B3HOZ9/7lP51u8HdZ9//\nVKA6zTsxazszaxWw4aUKtHkBwNqR27wtjcHmjSOoxTQMMtCE+aDpFonmbk2Ul/eHIvUvWadzWB4N\ngeaCQjOiGlMYXKgB1jOLSMJISynS6+Y40GpzntRXfgzvtRloxuNWnkduFTCGhIzgJ1dVy2F09n3v\n2WFUbiBuaOqhMmCTx2pj7xSLDFpaQz1mzPOBYzm68ehDAGnNmxU7qFbUQHOFOHnMQN39ZVykzrMM\n3I1uEZ+5kSgbH9jH4Pu7t3bo+ks4cbO9QyRhwKawO283PpwBzsiLryuKfntH71G5RSecnu1lQIg6\ngZR4wo0X0ljDkp+BDqfpSmuTebTPDAI4ICnBqpB/+rvfxSe/+1381i98XZbhfQjQ+Z+Bd9864+27\nE6KfnxpZT+c+emGeUOYCmovqJzNmzUmdqIAbUCEAh1uTpuXH7vu0HtWnRQx70v+OlDbq0SSvV0Op\nha1I4aN6NOyad+NeUWjEg4bvq81MGrTvFdt2eA/ApqXfz8uM++nAX1UPz1OertoY0/SUMYs6MSRN\nkQWEFf/8hnyikAyZpk1/o1bEC0/9frTDt4/3VZSxlCk1ifb7p7LbN2gwH1eeINeJ+nPGc9+AnT9G\nxzvvfAwAVMit2LYNZu01j4gJOwMvFnoWpYIFHFmfnVIK7u7u8OyZhBct2vuE6FGB0gGGnJ+TW5kl\nT2ROvVIAoB4HLtuGy2XFtkmeUB5Xzjsxr1TzeNdoimrnA9HxVwofzGLj7mJB1d7UxC2L2sA4vKiB\nnTNaBwwkAWpJVuWLVNEyQGDndm5jIN17ZEyurgMI64R9muRSEhIjaIrwiqfAjpSMJc235shLqFVK\nXKpiIPeT0C7zfhRkAR6lcifP/TFrHkkysQ82xs6kYGeesZxPuH92j2fPn+P58+d4pq/ltEgD0WmW\n3GLN0wCRdjAnEIdHrBSGVcuz+98GPDHfkuOuQNWAi4VcEORpzaMGduXMmWwCNi7gY3FiUZwBdzp2\n+uxWCEEvuEKZvyXQQiRxAiAvD2cxgCYxJebZuQY6Pejxv1zxDMzz/Z99D//Cj30O/+sv/wRqZViD\nu2n6N/BjP/w5fP/778G9iTqNluk25uX0gq0ftoWWsFkpi47cdFUdn1kPwyMRoIfS8zrYUaCjqhcs\nAdqmrkzSfHeeJ8k70DGYEnSokYQhnc1nzYM8QHqd4E8ZNOTjlicn5/FlD3drDefzucvBySAng4sc\nJmM8caywZteu3ECtAlyxKAgolXzZhbyNh7YO6Fjz4tbE8ltrxXzMokQ2KyARBhvjmRIC1Lx6nBRF\nmD1kxuba+R8Iudona48y9xyxeb0DJBvQ5o42mle0Cysxu8IWu0yU9OrGJmFvzlZgYKlnNaNHxwvF\nqHHmD3NQ/u+TQCbt1aQA2y85/0sZXWcAGV4evYAEdKi/D/z3+RpWQKK4AbCbH05zZPOsa/9jP/gD\n+MX/6//B737hA7/Fu2+d8Y9/7yekcI5FAywLzuc7nO/kdVpOWE6irzQSrlZK8bxVm3cwPEzy2A/s\n+4Z929GOQ+VgCs23VgQkoWuH9tnholVbCylNEVolHJVx7ALWvcIiATwTiOYONNa2Yz8a1v3Avmt1\nRq2iRkT4xPMzvvbiAlR+0tOVaz+MgMdApH6ZFH8KEJJAQyYL11uSccL4Cemi0URe0NC9hQn4usj3\ne5kBwDUchKHB6OhpoJONKzyOO51n77d0t9fpeAN2XuG4u7/3v6WxlSTFtkTI2RPSM+a+MlUmHvHQ\nnHBaTphmqermlskEFDJosXLTd3d3WoJYejlc1hUPL17g4eFBmpbW6kpkHpOEf0QjOy9O0KK8tOUl\nhSAXqTTPE6icO2Y+TTs22oBdwFlrDG7HE8LErBLp2VQpyhqZCYNgPqOlMICK/S/ukK0eco+chJgt\nZrfcvaJwU1pP6q5FRMgd5LvyvNpUEDCjDbnA9tDAefIeBPM8h2fHm3cpIy1RDhqW0GmWrmnCcj7h\ndHd2j87zt95SoCN5OtNsQqagWsI5TCmh3ihJJKDMQwvGUtRwRurvaUWSfdL4L5opMMkdN1IEm+bH\nac3szGQkNg+Fh/yoMhXenWsLmwsJV+pk3BY+Ekue1bFe0enHOl5XFUYTMN3VOH1mcxAhR+PzxfUZ\n/9V/8jP4l//ST+EXfyka3H3uT/0o/vrP/nviAdXx/9oXv4QvfvkreP+9T+Oz7793MzenC1Gg8JwZ\nECdbGlNWbTwZKLWGaCBqSDPAfFwnWzM1tM2Rqe4Dsga8E1AY3ErKCSrgUvTSza35yzSBp5pi/DUE\ndCp+v6ygA3DAwGodluvNPlZrHmx7b5lnD1HxHEML/TMemOapqtfE8hCyEqqrCQstY/SeHHsG21eN\ni/+GGOJlY/EEFVbjRyHUkqrHMfd7E7FmNp+HenfCUCbhbHkPkvJB8clNAPrqcF3YNec9Z2W7o6Tw\nuAY+K/q5AeEpaZfWqywXLJCqgtdy1NYqe/sz2Puoo9+nHw104jf9372ksTE8DXb8zHxLzkYX+HsH\ndkp+H4eX6MvXxtal4TQRPvdPvo9/+PVv4lsPK05TwbPzrLmf1pdPvP7n8xknjQKw6BIqBZWldDNM\nXqJI4R1owQ714hwaPnbsO9oRjUIxSdREI6BZbhgBrUqoGnMTz56FsTWJlGgVqFXeRd5I2DhoBpUZ\nUEOKVGIE9r1h3yqOI+VEUxg2vvvjb+F3vvUC289rf6z3IUDnF4DTUoS/ZJq9MqIE4AmAX9zoagtM\nptsgrWOilc74BOm9UzSkveMHLfESQtd7EYhCU71nNdOs/i49wy1vjeutA1Xno/Miv4bHG7DzCod7\nOqy0sn5OnYJ+i9ElC0/6PMIJxKJPJQSeWWLHkAWrAGcJ6PfPnmGeZ1RmrNuGh8dHfPDhh/jwxYdY\n1xWN2ZPdJQxt1iIKM0qTOvpmER6TbR2kkVRJm+am4VUSPmeCaFkWXC4rpnlBWVfs+yGlrlNjrwy2\n3GLlYIchHXCS8mX6dPo3kiDwubbvbf4x/qEzytJfuThDIk3GTGF6qUMwpf+YtYW5olZjRkCrO1rb\n0drhPUNMSWJmB0sTmXVr9nCAZV6wWN6BghGryAbAO5YTyMdIZuGapLDFNM+4u79XoKPenLekcejd\n/T3Od3fRFBQATZCcDharkVVxi8psk4QM6Rp11nGf5FBlHRdkWqf0HeU5RH8tX5hbC5aEjClXSXEN\nsGN7xcBDf5AKZ1trUxp6yJwoJykTHUDoxukXT783i5t2jb81FsDBmT6WfaJdF+OezIx33nqO/+m/\n/jn8+j/4Cn7tH3wJn3nvU/jse58GiFDbga9/41v4i3/5r+B/+eW/5ff453/kn8XP/Uf/Pt55663E\nN1pnXc/eRYL1RIkHZwAW7xngslf+Yb0xWDw7PdiBz4U8b98/w/ashYgSMVgrglX1dEpoKAFWoVIL\ncBQfN3vfHW8SDITyjaCXhPLE2DBVtHnCXGe0uYHnZJCaJrRGoEpoJC9qBBLVDkHH6VkBASdOm7K4\nrB6Zo1XsqZBL9pw7YZH1Eok+OTDPBxEmXTenLvW+yDmR82BkOVpjc9sDawprBEG2JiQKJWEC0dR7\nmNIr6CHeA3z1YZJZyTKgVQuhVkKtkTNKROrRjh4kOWxtnmYs2sfM83RsV2Xm/xHHtfIaP7ylzN0E\nOTTe7NsDO0SW06hUE7aPG+NXOvMw5qC54B/KnxIQjWa0DVZ4oBDwsWdnvH1/QmvS3Hs5ncS4qkDn\ndDoJwFlmLxtt9GQF4bmp37rVKB5gPW00ZK3VBukZSpq/V0DaHJSrgiYWw4B4hBgohEZSVY4ZqBpG\n2VhfEgMBYAKVGYVmlLLIDtH9VivhOBj7YZUlzeshlUFlbhjf87G38NUPHnD5QuTYnZeCj92fO3A+\n0sO1DDSuEotHaT85U8hykZsseOsNvKJyjEUE4B7n0TtoYMdDZTl7oTIdBn1fG+x6gOwP5Y/Z/+62\nwfr1Od6AnVc4zIPi1bAAtYTSFUF1TNWV+75KVT63lMl7QpiINqtNDpGQ2PI7Bzr3z575xtiOAw8P\nD/jggw/w4sMXkhPUGuDKqwn2GVOZUEsDSMBNBju2ETLYmeaGiWcszJjOfWxvrVWAznzRJMpH7Mfe\nhYREf5pwyQPiHZFuxw0o7Ba/vIHjde2BAYVPh/L59mOMm92YUt+/5kqIJitI0VLSsgZVLU6MWje0\ntoMN7LTmyqoACi1CYB6dOZKql8Wajsq7e5JgnsLm/JcIIvitrPkksdSz9le6f/ZMPDkaumZA53R3\ndgVbYp8BInaffWagpQTQ6S2nfejFCEoyRhgQaZybFqZfF9yQ9rrGmVGzxkkPYUXQffKUsmPeHEvu\ntYpGYeHqn8Ovp5d8mTWLGVo5rjdodBe5+pH8h9Fby279LacS3vvU9+HTn/xesaLWw9fkL/zln8Tf\n+9v/RypMDfzE3/67+Py/+VP4b/7zn425Ulp0IEoMosmbSZpi5eDLaa+5dXYEmnKyqUF5eSlRCLsH\nBD6G/lxJbBZQzxqPPxWSXjo6pqnE/smlaokQFb4gRoHWRHEitrwV5T+Az8E0V7Q6oc0Vc2sAzyCQ\nd4T3ypJVLdAEKTAA0ca8hxfgtCCulgAAIABJREFUQM+fwUGOfH+0hqMdOFrfkycXunGDgQJDRoSK\nxHwVFGoK3HsFxcK7ury7REd239qsoITJkriJW6NJjGGFJg2Dk5yhpr3gWqu916s135cGeGxvIPHr\nVrXy1EGopaJqqXEz6MlzaChtes0qrxY1CC3TLJ95KfyYwo86eg/LyMfiyGMy5fHWNfoF1KvS9bmj\n0TOfP1hdYFZ9A7lG5NmrMwIeZta+Va3fu5YjRyK/JppAhTDPC+7u7nF3d+9gZzmd3dhmhj2AUZXH\nGZhvZvzQMDkvR5+iGqxvVyjbReUPZIzqsWhmGJw0Z+sw7Cb7mJuFUwJQAE40g8qCUhY1ZFhUCrDv\njH1v4i1Clm0iT4u+vu/jb2PdduxVGqxPJcBHpoFbCj6l/wpPS8Iv8T5tquCGBGmrobxOr+u8YDKj\nRe+5GYHOaCy20L4ciXOTLNMxeq5cziAXDwpafNm/X6fjDdh5heNyuQBAV9owV7bKzNDqvltC67bv\nEvLAfVx3KSIMtm3zxqIg8jhwAHqudDA+n0W5vb+/x93dHU6nkxdAuFwuXkJ1PzT/pkRhAbfUD0w7\nC8YMdvZ9B6m3o9RJ6sIvC9ApyXL95hb+2KwyD9Wrx2WgQ+5FSXk30H4N7rLNXpewzudwtNxAtKRx\nZS+an6vAwxM+y/gc5k6GgxbmiC3vmWIkVpuQd2Gl/pmpTJiLdGM+zYu81KszL+LZsR4+JQnLokKr\nTBNOJ6kCZ5XW5mXBtEjlnFkrr909E8/O/bN7nM5nzCdJLrWStswMgvRNoKWA63UZ8mIhIlP0ebLx\nNDYFHXI9UOfNNHoIpKDPokpYnl/7PujuBlMlpOp8Me/du2sk6Bj1y5iygze3bI3nU7fW3R7x/zyt\nKMU1nv7eFG97ZeDTA56wkOfxMjG++KWv4Bd/+e90hal/CMCfrw3/4d/6u/jil76M9z71yQRMRuBm\njT1lRPJdDm0IC35uctnZGEzZRjIu2BwnIGr7GOa5JAtZkjMM/IoiVsAsvXfs3m6M0DAzPotilsFD\nF7qXXtnYYs9vRo3ol2WFQNIcDUoBAFfuba78WfMeag2tW3tOaBCBqZM9wHiG0aIp2MIeyc+xfWLj\ntOsYXywj2NH7e4ggM5iLFygwRcyfA3odmlHKnEpX1wR6ckW/Aewkzw78GYVv16Y5Hert9z5A1u+M\nYy7zfIZhaMH5fFL+N2tuI3V097Lj2kMTQH9UAMfz8u/Hd4vM8Ace7pUPZk6V18gc4p1vIN3cEM/t\n63CefysFL2GmBupLIQnLPJ9UjqqsWU6Sn+OVOaXAUacDWDNhBioTDi5oWjQk99yqmpfjIfkWugY4\nHRBCNvpTcpwyTQC3QwCOP59UJGSmAOBlQaEZhEnouFXP69l3KVCw71YoJ/N6dOCfmTEr/Xiu7bBu\nt8K2ZK3yzgpxIPuHg/YR1wVzhCoidC8xIl5bxUw+3ToyGLIQz5sAxvZ36fWhDvDnv40hoZ+3/EBJ\nlLx2xxuw8wrH4+MjAAE9VoUnJ7rmhH0LB1u3DasWNNiH5p4GlGqtuFwu2p9HiG3XktEABeNfZi9m\ncP/sGe60ytblcsG+7w52ZGxij7Sa+eah6YVhv0FGZcE8UQDcKm6WTwtlm2dJfsfJPEfyTGZxsMpF\nEUZ37d1ypkQh3MstIDIAGBPSFppmuTUZHCVfTVybLIzmWsCax6cLAcK10k2QUAFwUtgMcKllcpkm\nzEUsksssgEf6EswevjYXeWVmZAqVePEkJ8djqu/OUnDgtGA5nXA6n3G6k9f5/h7L6STx1lMBl8Sg\niuQ3gCEJkQasboCdbHkO62EqwZv8PLBnL1NXInoEO1EdS8GMM9OBg7o2KOc0vbfTZwYGA9AZLiLv\ng/X06rmgfTr6En9Bnw5wOI37WjgGTcb9r4VWlGdOP35SYIXubfQnw/jil38DgHh0/gBDozwA/9pf\n+bfxP/xnP4t33n77aq/Lu1oDVdFEntOkTPkNoYUIdL5dIUeEsAHX00wIZRyQaLNCyeCQf09SjpoA\ntGlywOW8gApOi1ioT8vpDwV2sicw7/WxfPFND9sAtDN46oBOAvNBn6pYF/MGGZ+DW+sD8FjoTYn5\nTZ+b0aVWIErdc8qvy/wsVkB4AKmHr0Br9Qmf03m3+ZfkcQkXEoBTxAtmc5kLXjTt6dNCQTarvS2+\nFTiptWKfd8y7FsXxeU3eQvuZg7fiTSyXZcHpfMLptGhFsMmNXDD6/ghNbFT24ODxFuAJT8xTQCd+\nm6n99pH5AyOUX0e/RF6uPRsjjTbytTnNnYDGqhX7zIspdDJPE/g0gwhSPe0qT+esPFlzwax63xHV\n+2oDKmY0mgTsGNBJILg1zQM1BmV8y+alcbeXbMJMzkwTo1bgONjZtQdycgDwST06IAE7tVYce8Om\nVdi2vWLXwgRhOtU55GujUldgINHBuP99/cwTztQ9hxsNbLu7kUp8tMRabrvjn/riHtR29Om02NOe\n8Zzsye1lho2NUtGha7DTHRTP0dObyTF7f5LE/0gfb8DOKxwPDw8A0JUcnbUMYhf2w9F1dtt2bNuO\nVc8fCw00jXu9XC5KxELIATis6hqkl85deHbO6tm5XC6dZyeAkimvg2dHj7yZs0D3Xj3KcHMibGst\nXatgmrR6XJkwqcdiLL5ghzHXvEk7i88AdEbQk8GOK+s0enYC7PiaQJkMwmg2NtT0NezADhzwWP+f\nYCgNEj6TyumSJl6rFc1AzjJNmqMze0jGPGtIhp7fj0XGuCwLzndSTlpekqclIOckwOa0YNZ38/yU\nOZraWgUgQKpgFSooHHSQwU4PSowupIkagaLW2KicqELX8UJVWqyQgtF20F54/3pQEKAjC9BO0TSb\nGPfKB2AqeH+4JXz4LKz0WUFEen4E33eQg5sH4/oet6108UyBYEaQM3h6rPiZXuG9T34fAAld++/o\nulHe3/8b/x/+9X/rr+K//bn/WBSrK2VOvVr2XOM9WwI9nVcnrOm2p2BTlIR/Vj4pKfB5j4hiwEmh\ng1vss0Idcyl8cJkXnbYe5JhHeuRj+Zy8Lhmo2NHlpty4fnzXX2sEO54gjSAfAzxOs9TTbgbLozwx\nsOOqoBE/917weEe6sygr8fvi98neZAAOdArNaFNDrQVtsjmYOpqUMtYBdl42x7VWbFqRyxqXcprv\nrIDm+cyh0pJbImBnmsxLCKejp45byh11Bpenj1E+PHk4n3g54BG7CdnF3aMQbEYLxvgGy2toN9K5\nSkAnCuUIo/DCHSTNPsWbsainbJGqr8viugqzlEhvVXrjmIGyNqCVBUyS75M9Ou41Ve9e19chSDUA\nUWdEJR/LNDFKYZRSk3CG56caTU7TglJmeFhcBY5DihJsm5ad3qtUr+TshdZrJhozo1nwtAATbhhJ\nAMnnia5lSyc7wqoU1zD+a0BHdTsHtU9TVbp33LUU6UtWksE4873wVMGNBleRFRhoG5nG7ZWFH5xO\nXsfjDdh5hcOY+WgtvD5CcbCKPWNZ0xDIYsE8jioK55QUeydS9l4q0dRy8rEcx+Hha9bzQX4/AdRb\nL4FeURhLrUblHe2c2xpQqzJgAm/sTMFidAmkzS4n71cxgh3Jy4GDqDyOAD0hzDOTscMVh8ScQObd\necKzQxJUVjqO1IM8olwCm6QSEq6VznyI8lYwkYJJtZBN04S5WD6OAh5PspX3bFH2vjppza2p2+l0\nEpBzd4+7Z5qj9fwey+nsYKfMk4CbyYCylnlg9lLQMWehfnWsrDtH15lFfWfNqbHz2X/SM8hoKKqK\ntN7qpUoCkhJgTJobiLXCVgIErvh3a3CtLOYltjABuX6TbuPo968o0fbcocDHtFA3WRmgj+OBA56k\npF+dcwOgsUd0mw9FclagoQ4FCe0w/uRnPo1/7k/9M/j83/kVfLPxVaO8xg2/9IVfwZe+8ht4/71P\nqUeBb8w1p+2QlGiE0k00df8uCU4SekBq1y1sT6K/of7djQ52EZ1351Es6+XW/6syy6EwZKWaOfJh\nRtDY85lYByLqeufkc3NDT3u318jPx8PnOv/brq1z0MjAY4TtZV4YRiGLFpD7gu07M8JInkNYmIOe\nY21tL5iVWTOdspJOBIIonaI4W96H7RFTjBwjo7HtJ5uLRNda0rpMwduSPojI9QmvLRAGmAx2DPDk\n8EMiqKf05UrYTdDCNn+3fzsCzvy5rWe/3tfXGI1CPlLqP8sGLjPNPQWcDOh4Lt0AGAGLGpkgfeDk\n80kbUoOkv9a+25bVIhaHeXUqAO0HBdUBuHqTzzbsg3bUDtAEn5I57gCQvheV61IwQQtvmCxXA9m8\nSMhiUc+k9RKrlYFdegKuq7TYWNcN27pj36QXYdfonbgDaHnPUplQCndGODfq5jVk1kIJTXMJs/HA\nFjQeUPZ59X5jDWGUyPeQ8N74zUsNXvkzIHm/eh43Gppzmf1sXMxAx4lvoDm7pvHWN2Dnj9FhCnGH\notk2VY+CDTiMm2y0HtZaUdmahIriahXOzPtjyv9ZgY717DGhbw1KDewAET5CqlyPYGessjM+kzFV\nqVdffR/YeZJTJFqgV3g5Tw7K5HninpLndCjoiQ0MhFIqf984OKzmI8O4tk4MQKdIOedSREJH8mYP\ndnxuqKBoV+qeocVhYl/KSM+YChy0zFoAwhNqtWzupOFq08CAJgU8Eac+iQfvfBKvjnp27p8/85LS\np7uz5uacRBcnFUwsVaMa4MmkTgdICmb3MNdAx59SauDeXJOY++Styb/rYUN6Xa+0e2tYfkqteW8C\nfyHWYwQ8twAVs1jTXIGXLoagjt6BUjRkC8XLhOdrKyoA0Hsi++dI1lmWpOBrP09cc+QZg4jxT4jU\nYOqzGGDl5/6Dn8af+Vd+Av/33//VJxvlffk3fwufff9TGc+I4Nb9T/oF6VzZrY1OwlNQ3GtqCqY9\nq/AKy/FhL/NMEIxWtHdUUYWuqIJuyppThvK6yULKHORIQRDmGoPjawX0KaulDPNpowUQxVnWde0U\nh8y7M+AZ+bn95oo22ABk8Bo/18ca5gcDdvIsPX9jH8+h89WXw5e5JW/qq84LoRgDPIj34JnQewmt\n2R6wdYWutZe+teIyrrxT5PQMVnHSBZ9qhA3mFejljxjWMngdwY7l8LhhSEdwE2m89KCgd18q7tYx\ngx3YszxxOEf6CMBjQMcVTATQ6QDn1a16OpKeRs29O+ZtDONNAdHsekPcRy5sRYEMpOYm6WbsDDAt\n5aWPo2l4W+29P7t8Zo1Fm/W3sf8VckOgeSMKFZTGqKXBvSaQyoLi0ZlwYqHxaY6Ja5B9wAewbQfW\ndcflsgnY2XaPaAkDBIOZpClvi9YabthElo3X69x5SrihsYybi3luBpqCGYmVL+inYo4o4AkxB6Wo\n8c3kQTQFzbwig42OkMzakM7PLwLc+JrTLDqgo8xnNIR2z5744UcZLv+oHm/AziscY9jNVT5JCpsC\nw6uWmOXw0KIG9cgAqHqYSpkYkwqnqUzArEqAWuw9UV0ZPjMH49GiCY7qtTwxTaFUe2y6PERY1Abr\npO1jsdw1LbwkG6OxCKWivWBKmVCmWTZ2soTN2rPCCiiw3a827/AOs16CrI9lsm4hNjXCGnF1ZOMK\nOp0tDhqZGFwgm4DwddWmmqH7swt8u64xklIK5qlgnkJRm71E6ozF+ugUewWwmaYixQuSZ6cUKSd9\nvjvh/l6LUNwL4LnXstLPnj+X3jpnyd1p0I7TLCVmuVaxQNkzkpbutN49+aVMjtJ3LlShVttBgFsI\niAktsv4I+iPybtAQwZ1AD6W90wEZF0wMqIWaiZT/s+oz9jvxLHCikwyrQrkLoGP0DhMcyXsZSnAi\n+oF2bhrw0mH3ZEMPMPoKAejndL8zGounsN5HUNBaOI21xQU+/rF38HM/89P4kX/pzzzZKO8zn/4k\nzEtQ2MQpI+Li7Jl1v7iSp8qRKSrexZ5S/ok+g1mYPXm59+R4ziCZF8MMLRWt9sBEPNt9gQIcYhml\nFrtPKQAFRQEte++YUVF9CvAYwAaLIt+4YT92eDnlBHakkphajWv1SmXmmTATg3K27n+w57DeRM0g\nhy0+d+Pz8s2s3ugEdqwhsDyfKHKhzJrC2KksidjYvyBAvEsJGMk1pFSx0bkp8T6nREEHxqxBaARM\nWjLYaFWZAaAAzIBY1uRz41SPIqBQCOfFyvTP2lg2FSYoCrqTMaQ/yOdifOVzAJu34FI5VNr53dXl\nfQcAZlUZ5i0f7GMyIZdljHl2kofHeafxuKATZQZOD5Y/4+CUVLkehSCMBEf6rqoL9AaBysBRm4SI\nJbCzbwouts376/RgB0EvufCNyTpikEYdmAxm1qa/04xpZlCdMTFjhjSgrQzJ3WwAUHFZN1zWFY/r\ninXbpcLaXnFwU7mVgUB4Dpvz5cx7cp4cQNSUxyDJJgr+zTGfNxbZ59koIby8GdBSl7cHNRQ11ZWg\noLbQFHSb1t75WfLwmYEIDmhUpzDPjpefz+kDapgik/9pP9k4WpMKmSl893U63oCdVzhaCnU6LQuw\nLDifTp6HMZXiiqtsMhFSx7ZjfbxgvazYrIDAvqMeh1rfC8j6z0AEfdWuxARCWSRZ87RI3sekcZub\nWiK3dfXwhkJShaW2cM8Wknj4eZ5gDNesQeHyJRBNoBKKkDW8Z46eLAJ4BARt+4FyuYCZsO07ztuG\n5bQAEEHUWgUxY5knEJ8wl4LTPHkZVIsxNsAxFaBMxqzlEB3VFDQZTwmJIAyT1OrDYVn25nSFwGWS\nsi8wK3S/ackekou8SqpuBKC3tilzKJBS0gthmki9R5r74uGIWubbQI9aWeakAE6FMNncgsSytSxY\n7s443d/hdCev5XzGvJxQZk3U1Ko0pkgzC6gpKeyIOQlNTqDSLOPKcFk7HDUmUOr5Ep3cAcugDQVC\nhQRMmQ6GrtTkpbSJNbSpNXjVGmYNWWOUVAiCMqjVZfflcXRQtI2B3MWpxbBGUuJd4DebJ/UgJQ3G\nBRNDhLAvNcFBcSy/v3OqNkCm3FIexuAt7Wgu01WEWZqAZbsmJ0uh0SOAAsYPfOY9/NgP/9P45b/x\nf6JyA94H8CVg+psFP/LDP4Tvf/9Tfq1G4nEyoM46OcT2WTLceD5byPXICekNPMC1J8T2jcjPglas\nGKuqGVzAPIny4oCE0NRjIHtZys/WSVpDNRTvw1UA8ASvDc2tdTkDDEajsERmn0bQQOR/VTrAUwMt\nUlK+oUrJaD5wVHnVdoj3ggPgNLT+39zQSF5cGHyI8QHHAWJgMhpLdMBaY5sT3TKxszvr1yG8jcBt\nEh4M6UeUrgTbP6wbxijXaYZiXSn9bfRfZKOCioYmOwjX0rRs3rZQ2hLRyj5HekADcsSYihXVjlBP\ntsrjXDSXp1dCpwmYSsNEByYwptZQSPIHqQlP8zZOvrFiTswDmbasTaf9S57M6ITsYQgFRXghIXl8\n2S9kz0D6fNETtvegdetTSIrDTIsr+qGYyi28UugA1GwdCghNgy34EN3i2A7UvaId4bF2A5SO0mQi\ngwAzLMIarzVUrjiQCh00xn5UXNaKxy1C3GptCnYib/nYDwc5vn6laCGgJu96t0mfk8FeZ+Oyb7gc\nB56d7/DWMoEL4yjAURg7WTGgHXRUr+T3uD7iYb3gYbvgcd+w1gMbVzE7UNGeQMqXGKjQhqSqCrgn\nWeWwA3QAymEgWar2d/H/kRqAXMIlAWFycdJiK8ZPbb296xgJJ6Nivf8gOVMmf5gxAZhJyu9PU5G5\nM72pHtJcumkD89ZA3OQ3ZpAiYCJr4Kx8uDG4HspbIpey6N9WQASumzXhO7WiDRT9uhxvwM4rHOY1\nsdr/Fm62pDhiAzwCYmTDCdh5xHq5YLus7oWpVjFtluu5FaBJnOmhTP+0nLQE50ksXFSE6Ry7xq5q\n+JpaR+ZJYlGlTacSs4KdEbgb0mdAPTMTSExmnQIsFbzEWiQ9LBiMAw0rjqNh2SWMzkLsZrPmAjhN\nM2YqaPOEuswaey7hINn1XVQYmAJlruJWWWNlVQOgAirsoEdkEklFXRKF3vJ0SiExO3JTtdw0aDkI\nhCrqEYTlSAdxaN8Ps/qQam+mbk7mzZknzFOJKmyuDCro0d44k1bTy6BH8omyHCVgLphOcwd2lrOB\nnTOm+SQdpGlC4+LeF1nSySvTBUNNwlKVj6zsOGAEmRELQITUuOLEdg0TzAUxG3Fke5GBKlIlDInu\nCAxqBnQU8A6AQBRBecmwSJWPsLoSRyWtDHY6cKQKJIESQKHuXbxKep4rcQnopAe165iHAVeXpBRm\nEjH2fpIpNcglg4v/3OSuKeYOxCjdXz7Ff/Ez/y7+wk/9O/jfvvArPr4f/eEfwl/7mZ/GpFPmPiYy\nMQ7wREBjVwjnWfo4eUNZF85qCdRqjOJ9nLzDuj1SrRWkir2DYoq57aYorYuHUNj9bBkbqbpBaFTA\nRWhRYTmmBuFLTQsFOihPXpU8j/l/3DdgrDjAE4MWWc/aKg4c2NuGve0CduqhFceMX2qSOGcAJHyE\nSb9HBdcD2LWCJZyROMiwhH1KwN6VCs+X00ViUZAYouRbCJCDPLPCMoO5ejiLKc5iYQ/FRiJQjc82\njSCYME2sPFZ5BLudW0HYqPSE50eUpwHQERwAQp8oA46gDPZ/G58ppYGIUdBQuKK05LFjAvMEbsWs\nB/01En8ykGP3JR2zJ51THrGOm30JjGmlJ441sltzOsf2p/EHk69lKqBlliu4oS/mzQGp34N1nyB4\nKhNIdYS6Hzg21SWO8M4IOyTd/yIPUSY1WNoiNQC6B2jHwcDWGuoBHEfFth+4XDY8rhqRokaXADu7\n5+4ws/MHAQMSlm9rRxCgM+uz1taw7Tt+82vfwIv1wef1nefv4B9775OYJsY0SZgxUMFNwvMtt+iy\nPgrQ2Vas+4atHthbU5ucNCM9uGoJazUOkFUyK26cnCzHT+WdSnffUwK0KIEcrViICYSSZA4MLaPQ\npEYcDi9oMaOsQmR1TRIxJJWK0Y6KozUFS5bPS1im4uX6iSWHmpvwlqY6lBkSCymgVF4zkYCfpRQc\nynRardKrqjXQpMWySuwV4wfikW7CcTvG/Xodb8DOKxyzFgWY5/kqWdJyDJqaXWrVcDVLft3EkxNV\nTIRworGlNd9qkRzXTEliBw7Qc2rK09m3TbxEyUqreEUa3LkgSsoHIyU6MiwOnkoRBZKNy3dsVy1x\n8nfTwgrQa0nt+wPLNKPOM2bzkBTSZ4Ak0mNC0ZAJ1m7lGASFjdM/Y1bhpsobm6IpqpwJUCYKSxwB\nhOK9L8wSDU7xpwRRsjmSfN0ypi/zupR0HaJUQteBA8JjYtYty81RBdG9gNrfwwCPPeg8S0npJVVX\nW05S4nvSEqLFhBaKzw956WSy2ehYkyk9hfpwn5gXnWPYc7Ovs2v7lK8Wa8Xpt67o+hJQ6smTPBzJ\n45Enu1M5Ur6QAQtTUgx4qurYDYu1qaNbltNYY0ISc3cFKSkm+TdJEerCIRXwuPrnuIejWhWbcg0f\nE7EWdNBJyhUK7TFyTHgXUuOjkt+/+/GP4X/8az+LX//yV/Clr/wmPvPpT+L73/+0zkOac2ZRwtNn\nVKwsKjRMKMCONV+tun7OGyznbJ4i4ZzEySJeu9RLKdOVW1igpBQKpy1e5G4ZWGCPZGw6boU/KWAM\nhocD6KR3GC2Du7Apy3tgbu65aaxlfOuBo+7Y647t2NwwI97omE/zTt/Oe4SGvEnoG5F4jJ16ElF2\nUYXuwM4egth71H0XxghZUwVwLYCc7fWiyvjEBVw0P6KJQhbGBpE9DVIhi2HNO1N4q+3ZbiuRAt/Y\nj2TKv445PD7GfzKZZMDT7zP5XkBuQVN6tb1Q0KxmM1NCJhlCUQIL47/1EwPcet8AIfkh453yfdI5\n5mjrDCD2G0Q+TSmTULKg9OCTekEzEDHDPZbmdTKdwjwq+ybv9agd0HGjgcrCZmEaxL5fjsrYK2Ov\nDdtRse4H1m330Ph12zVcbO+qHVq+jjUOr03MhQUifz0UUg1HbLxBX4SGiobf+No38LAuQGqN/K0X\nn8evfuW38E/9Ez+Ao1WUdoCrNPaVsP1Dwc6Ky7pKW49jx14lzFTslORGwOayS42gXhhIw3NtvamJ\ncc35Uu4bF+H26F628LHYvoZJTmUiyTa5oE8DtcJDBPwUBS7kESBxgeZGDbiBoy//7SAcSV9xHTLt\nYU5PNOgBvbWQu+d8nY43YOcVjru7OwDwRmdWRAAQQjFGQHRosysBJJHMyk4vuXyzKa9Eqgu0XN5Z\nrm9xp9bbZz8Ot7CMJa0tL4fN+tntS2OImgDnhG8KlIIvZP1k2ASwDRTXtIousvnUfVxKAgTG8ACL\n/SykSXvqXvX496cEagYW9jyIgcoTJFU1Ca54xo5N2dVvzE//yut8lQvQGCFzeyW1qDXPAI94giTR\ndtL5mVzZlUpsd3d36iFLYDoVmTCl08K5CpD62et7pxwHQ7NQIAzzaOfw+C8Djog5dnhg9JFyviz0\nxRRa1S2cobdxblvvHA9hoe9cfB1tTvtB09XnVIpqjTFuA6OhNKaxjQdz6oWRb5UUIjt1+J3/Pku0\nDgDK2pQkbOWz3KXoo4RK7D17/4HPvI8f+Mz7aV/G+rl12YSjflYU6BSyHL9UyMRKiVuoW6I9q65l\nY/Wu6pYcm2lrBLDodps/qivtqrB5fHkHJBqYa8cjLCbfiyTgeu9axa+uESMb+FHlbTPFcce+iwIp\nitXh/DXAznVp6rESkjyDesCVGMiTfFUBMoUMAYhFv2VXVEVX4zxVcW8nsgx4GOKiNMVSDBzR7FSU\nOvOM97JBq2+pb4mB3piDkAGjLDBDm9ydgzfc4OOZTd06MtC5ya0dgFH/9bAnghWNgAbD3/1t4vps\nrGwYs80bpwskwwfDPSqMxLuKKdzkxSDkO/0djKfK32IUrU63zA37vklkiMp+a25uhX+CZmy4kRdT\nm/keNR/nqNgOKdls4OFzCrJuAAAgAElEQVTi15aokW0TAJTpuqtq5kCMAqj5hN1eYAaw7jse1geg\na4385wAwvvnhj+ODFy+kpYVGsUylojE7yLN+gvb84nmqfs9RXlhOiifrJ0+6/qAHAUYbRY2niHX2\nvQYkhDvwbCIHHDdESbotu0HbgYeBkyHvMA/19nU48eC+7cdHHSajM4/pH+d6HK/L8QbsvMJxC+xk\nAW9ghxkuKA2MVEviTcqX9Z2ZtNw0w7og9Eo1cwi4WqtbVYQZbV4hqLXmm9mYbHMrVCZU9s0Rseuy\nKQtpjosye7cIMcQDRDE+U4JtbPK3duyu4oIdk1rDOyLMv2CSa5MqJJWdsdoxWr2THgXLARn3v+i5\nqtByrrqmF2FNiDTdI//WlST2pmCjcC8KNMyy0krRCsGc1hjq3Zk8tE+aiaamopa4qTk+Vrpbqg9N\n4T3sciok3BAlxlAYYI7wNfPudPMGwPImrhmoCm57zpGvpfyADF5MibYE8cbmPRqun+fVkirTvI5r\nDM8HykpK9vQkQkjPI+EtUjkHpkjYs43akJHC+Kj2fB3NXYOq8XCB4S+oAIvfhpXtiWZvrvx0V70a\ne/ffTnm7NgjowHytwuLOZgjtQYzHmDOINVdGpGcnhJ1H2Et5Ya7689QRRglHO8GLDNx440IpCsCa\nM0OoseczoGF08+8VjZKyOJbaZ2YFOuJ9N6CzJ6ATYKf33sRnUdGqA1rVeKzuu0yH+u4WeH+possG\ndsJAZspIa1KMpFoOHNSP63w8lCxbggILw2f1fod3MRvIpAANxx4YaHRUguQ0BUCZfyBoTaziSPvu\nJXTR0Uwoz9ljnr5OMEGesvMIXV07X7e7zc0x9MCsp2cHO/579n/LupGDUZuWLAtdZ85hgQmo2D6o\nzQoQHGitqoIvTcrXbcO2q7HT6SXzs8T1fZ8CR5M13g8BMtu2e7L/4+UiQGfdsO079qPi4bJiOypO\n84TTPA8tNGJis/fj1ta3sRGAfT/00x8dzvocAODFwwXP798C86785gCzlcjuwY5VYautSoRDkvsA\nvLm4J+xbLzmfMFu3a8Ay7iP4TwTRsj/RrYPS3DxxiukLqht2MuIJsNP/PO+3pjpi8yIztwzHT10j\n5HqegtcX5NjxBuy8wvH82TMAkNLCsySeh2WlJg+LxLCLa1ksM8oC3MpkqFvyfk5ertmUhkzw1lRO\nykrL99u+Y1tT/o9V8YAx6wAiuYeDCWYvq6qJh26dJ8snkIanRGaNB4xVdRsRocw56DGFhSLUKzf8\nNOaRf59d/1fuVIyfh7DJZ1hde1cmp9JZJu2e3u8jfW6HCefOJZyva6BjisaIoBgUEUmZ6Xn23hDn\n8xnnk/y9JJAza98dB0H6Op/P2nBNQ9bK5N4cn4Pguj5MYZvkEsWZlCrDhADTH3X42anCWD/bIVTZ\n1bSgBfucEGCdGTeVxiuvjK2LVZEzXSAz9ngsV0ocVKCgQJLfHcT5yejOzc90SyT0Ck4ohZR+ySY0\nk7rq16L+t7n06C1hlkEhp7XViwh46pbVBDJdvbrx20WSAq0mEfm9lpj2udLriseSAQogZEoNi4xW\nz86otff7xxWLNBT39Ootut4h2sCwaVK05csUVMnz6p4lewoD3OSXJV53HiPljdKnQ/uUpbK6m4Xq\neGJ0AHT33HT3qf26VU5Oln4PeVdyRIheBjep8J6cR3GNyuyldG1RbS6zclaKFJdsBM9VM0rzppyp\nNDATYbKNpUAHMGUxr11SpzPtqnLv52SwozLA9zCRlzyXLRo8/5Yl25w4vhViBP4ymdDzPbjMzeDJ\nx96hohHMpI8GpZUyP0kKr+n+8hyAGYmSSFZZG32GzMeQG11LXWLzRlpvmz2Bnc29GbWlogT2e+dV\ncuNWG47GOFrFfshr07C1VcHO5bLisq2ej3NZN/zONy+47KvPy918wnc8Oxkrcj7hoEoXTHSH1vGn\n5p9nuvnfEZ4dAPglAJJftm1aeEmfRRR5rQine1NCUFvSUZQGBj1Fcm0GntvEz9WzLaVZe6ZOVpjc\nHflz3lvkGIcoXQdpbInWTT8zyr7SM0r2osceCzrtvzM+JPP1NNAZ4Uv2zIa46SMqXlfQ8wbsvMLx\n/PlzAPCqW0YMlqBnwieITq2HAEYrrv17nhfpqXK+c4bgaFwVtaJl/8yiQnSIZ2c1plejZKHeywRO\nDi8RkKOV3o6qlYYkRn30OslLPDvEpkDAr2/WEUoMRgRdi3AMGLgwsBMJ2WZ5sKafOtqrDeVjGdbC\nQ0O6k5MiOUVlvHyt4oxoAEEDE8oIaFw3y7exQg75nJzAfVoE6Nzd3eGklfu8at8khSQW9fT0/SQ0\nR8fD1yYHAfbAsrxJyAX26cCNPkEn0DvWmyw/PWPMIJCAFJ43np9ItbtutiwxWwnQvty5nTf2tLCw\nA5McnuD/BOBxDQ+6JF7qaVCRBuXl1jXTU/t4QjEyaE7d7+y3rvDlqzh+KEm5vBZkeU7768U4usPo\nGJE7lsvg3/xdUqzd29AhKPJJ7RQ6BToZaeV1NQ9G1hw4E6aD815phY5DwIHGondAJ0r0K7Ly8+0C\n4YltwXeHRoKSi5NKRyevz7ZJGdttXRXoiGK5H7t46KuGEnVKzlNhbEnhj76cannX38L+TrgwL4+/\nZ6U91tDK/1cPHzVeSLpM6kln5cEKKixEEMxaBSoMUFJYh6w2S6IxQmlNKlTi+hiVKYN0QWdCY6UU\nN+KNR4CDHvB0xjsHPKZUG28YOVpcU2FOT9rj307jT1/D8ZR/xsFK0to4TkRerQzPKOjGQE+Tsr6+\njwu5/JYCq1qsaAA6OXzNr8cASij2TAFAGqTwxr4fuGybg5x10+ac24Z10541CvR/5xuPWI9nAP46\nLKfmcnwev//wiO98fgp+m5/WZUIUZNlbxVEbTvOMkxZnIDDuTne4bJ/XOfocBOj8JTy/e44C4LKu\nmMrhc9w4lct2r2uUU7aZLsiyXelbm39nfaKhAdUEqk1gLFd+Oo8gsX2MtIcNHPl82EvlxUdgBNdl\nBh3DonSu5/Y2gMlecSIpdDCe38kyfwa+0nl0UwLUy77X8XgDdl7heP5MwE5YTQTghNXhuqN2a1V/\nYqFcfSzlskixg/v7OxBFp9psfQSEKGs9fHPtGsK2bZu6p/vSj4ACDubUSLE60KnWO8JC4Kz6BpGH\nXrlnp7EIbardZiTdEGyMWxmGuWUBEzdwoJMFrFkT2eJnqVfMaNx8MBkq47J/k98nK5KTA55seZH5\nv+3Vubrn8Ln3wjGwwxEjbId9b16duwR2TssSVeoIWLRgwTLLudJH6RRxxbkhbAodMnrQqUhgR0Wt\nhZxRflH3zysl5aZSbaKbu/OyIpKVrXEu8jlGtz3Y8RXtQBcALWqhLy2e0QMBs2YnT1DSZCz00MI4\nx3AD1Z/CaveEALH5MO+RE+qNeeg8OjZ9Pp8UHeWLVfmjqGimc+EAUS7aK3zpmvkzu9ZUeq+RAZbr\n9dSjRWa8r/Jwfae5BLbNmxJ7X8vX86B4Jm0+vF/ybx+Jkw872DGgk1+1moecr+jA595/K0UHssc9\nh/p6DmUCOxEWI0Anh7C55XjICcrhcLWGZ8ceXZ6LwM2s2rlAQnjMjTt57kO33kI3Rm8AokmiG7h0\n7sk8y2n90lpb5Uvp30EKeMTw0qYJXCgXokr3195UJY+vp0F55p5PKHEAKh/7HAJ2noS0B5/y8Nhe\nvd6l5HqZ7Z/8uSusiT/4nsjPQHG94fJXWKjbi135+RRm2xG4PpMw3g6Qc2t6/VDEJZLDxsvu2enB\nzqahjBVVjV6NgcJWNCQpqMyozDhq9eqtj5dVig9su4AcDWdb1av5uK5Yjx3Af4oxp2Y9fhx7nb1g\nU56TAAPCE7758IDHo/p59/OMjz1/hlIKPv7shK/zBev+4/793eke3/Xxj2PbdpSjqY4g3zXmqz0s\n4a1qXFDAaHqEGX4mawFRphirbptKPc0GDctNrS6ATKoaF5F4n+o+VnyE7D9GN5kecIWnYN7oQj3Y\nMT2iozc8Jafj2gYIRc7c9uw8peN0wAc2nzH4N56dP0aHEV8nXFPIBQ9Ah4hc4Z6mgqKdpEtrrrye\nz2c8e/YMb7/9dvLIQN20Ryeorc69FSrwZp0cwg6qfDjT4QbJowmXaYR2WNKtVSZSK7szChlLY6A0\nKfsJJLDGZs01hQxh8VaFM+QI2/9lUzZtnkcFTOz9BcoU1ojR6+Big1zrFD1MmdxkhQDUazJP4dkJ\nQXcrYbpnCAYusoXFXpZDY3HXYBm75eScTot7c6Qh6L0UHJhnLNMcv7OnUYFEpaBoiWoDOPM8R98e\nVZCTxq2zyuj52agU3/aK9UDkmin6fAW7RoS03QIGyRNw415xjwRPiV2o98oIddeNZ3Vo5IKmqeAh\nwEGk01n6O66AmHMd35OSaHxXOjMPJA/n9zOdgVV+xgBnI9K2Z0o3DEEzABXbB7Zf5XrFAZX1xKK0\nV+QSIb2ZpJBDgDTz+FC3jLEeCbRaHox6rjuPNTKpmDJurySw7Y0ZpEUOrIwqNEfH/80t9U0hH4sD\nJQU6Epp7KO/cu9wb8/CM4Wj7dmBfD2zb4U2fD/d+X4evGR1bI8zwWJqSb/syQjiredabgLGaKrtZ\n494AO8NeKP3+aLU5IHPvKKyErPbTmKSEfpQv5i6Mz8GOl4MmqbxneprTVtEeTUltt/88ARBCJoki\nZ1g58xw3NKVtYMYzo9uXGWTk/JGndGfrf9UDH7/qzyWo4eQpRS7AKz3xvHFm5o8jn2Q9Q4psGDgz\ngGYVWc0QZzKy1or9EEByWS/anHzDnkpBB2imeJFVJBM5v+8HLuuGx8uKh4vk5lxWbV2hFc4O28ul\noLkf73ZOzV6rlG12Pno9H998eMDpqPgvYX4h4PPHgW++eIGPvfUcYMK7z+9w1AVHa9pL8ITWKvaD\nME2MwtFt3D0qUB5XrKQ2Qpxa35oSoKGUVHjl5nrpqlJvVAsZGGeasaU1rSar857z8Yhu0fctmWn3\nDXD2svC1a1kaY+7ILNHbS4/09WhcuB7j6wl0gDdg55UOAzthWWAPuajVypnyNeFORbo/V6nvziWa\nTwbYeQvTJMvCDHUpSxw5gE5gB/iJ6j/Bwk2AWmiJvacQDxt/ChExYW4gbHKrjTHe4j1R7AiG3R/U\nSUZcnd+aCiqSZHZApOFUxP0Oip5G8rvbmzaAGbmF0queWZ36KedFJMULvdKvhsYk5HsLSwY686xd\n3huDmwgoybsRj87d+Yz7uzvc393j/v4O93d3WmRAGo01U+KcGwLkYzewY88R/xZFsviMu5xXxcqP\nqEgdlk17eg6w9xTz7NbRr3K9BtkKFnN3/X22godCH+DT7tUz7h4MxOOZYJdo66K0XsiEF6VzI4Yc\n6QkCMOeJ1M/SM7mpbsAwhNuJ2joTsa72c/23AXpYbkyneOV9pco8COBsrRzvBQc8lIFO7nB/A1T5\n/SjFq3OGPAm43RCkYx6MKbZFQTvHIieQE8pvN+f2ufEpBzs13rX5rPdKAQXIYQBaCKAdDc1C0FLu\njRmN6nGgcq8ggqGFXqRAgXm95b3hGMpNg827o3LAgA4nDzjM22TFoSmBp8PfWzVPD3y9LVSr9wbK\nGhZd21abtzaQOZBYOQM6bhG25dMHrUdzfm9rZWVuSQGNlfs2Gda4eZl/djrMXGXcSrGutt+R5mtU\nzqy7ma9p2uej4jnyqN6rjPzjRMVpbyNO47wtKM7HcAUAKbfo6ZAkU4f9nftvHex4sYz4jYBB8uqc\npVi+hRg1JYpjxWV9jAqBGuUR4VsFvi10XhvC67jtBpgE6Dw8XsSbc1QFTqozKGJYTjPwYsVTOTWW\nR2xz6zmMOo1HbXhUoJP9Qr8N4CePitO646y9BQHJ0QGLnlNLwazPVrSIUyHSXnuIe2o/n2D35HQc\n+cEUxX0oG1K9e/bVQQOt6OKL6pB+7029ExI2/hSsN9PmrZvFx2P4mhV6GeVoa9dAx7yTMb5evo/P\nl3XFl0U15Pu8roDnDdh5pUOIwsBC7ptjm8FVmEQgfdiUCK15mjAti4Kdezx//hzzbM3GgOly8YTO\nfd/DyqMCPAh5IEaGJ0DmDepP4Bs1mh1aXlH2ELkCpUK3cUNJyb9VAorTtAwM3jY9Yk6yILOTwlrD\nIUipF27jEXMKZ2IGKoszCgljy6BTbt1c4Nh82Hjt2g5WB69OfgnzbWjUMBF5/s3JihLc3UlhgvMZ\np9PZQ/jYrbnNbhiMO4Edec0KeKbU4DQk9Cjq83OYEgy3MJH3u7llJTJRf2XhSfcjbsr3ewXC6D0+\nGkCGrfENQAVc748+rKRTFbwLuymeUgWugTD1dE6ZPAewQ77Y6I5MC5S+vwUaTOnOgxx+E0tx6/mS\nPzHr/Sr9slDvxswD9uquG7H/DqhuISRWUMja0ZtH5cxu1Gmx+sbXQMeEryrnxn+4WdOYADQwj25o\nDq6MC9BR/uTdcvXVuT8S3Zpn3fqPbNbXzHIPosv7UVMDULZrSWWoY6vySnk+VvEsgx336rN5dsbc\nnVB2ReGUAgHmYdoPLW/t+Rbpuq7vKwGOdKPKWy71jWb9dFgNPAXzbABU6Ua/z0VzqBSUBmAilMKY\nGtBIwj7Fal089Owphch5BgaYwTE/zFGGOkexMdu/R7CffZi3w9qykcU4g28PJ1ulk3RFxmCMgZ3L\nV/uEh/9S91e/CU12XQMcuSwPn/l3YMmxKdJHxWQaEG0mLFx93VZcLpeUg9bsCgDEyyGQI6rqHWoQ\nNaDzuJpXRyqvbfuBozYctWE9JCxSKoVOOJeCu+XAZb/OqVnKIvSBSO9i0z20EmfVyTC/0B8A+LME\n/E2dgm8+PmKZJ7x1uvM5YhLwX4w/kbbuLFBiyfvC6NvowgCG0EPkBkchJaOdp7wksl6xsK63DOsm\nHls1snEKO9ZfZXERpPiELoNeRxy9O1cVHp1fpmsYfxjA/q1b+h66MZbRsPC6gpvxeAN2XuF4eJBO\nv9m7chw7ZHNFF2dTLoGkHKS69ESEeZojp0PDnqSuvMr2VnHsu1o8gvnZC4g8mNyU0AhV+UUk6vs5\nicG7vpEd8LFJiPJGmlAKozZKORfqJeiYRVJ8dLNbM6u4f3qHJhQWgtmHuF0zIejvy6QlrZ0hkHdD\nLulzU9xtngRIMlojbeI3XF/nKzOc7GmxSmn5vqAJhRrmUjAvfZGBRc+PJEOOOvgqrEormpMVyqrF\nF3t1tklC24pVZpvEAmZCnVqIfFlYs+ybvkud4p3xqQMlY8bGmYPLd0cGVg5mVGsZLT/ZT+DUlfZH\ntgqHMpdBQKZIgnly8v9MtBcW4Q5mj2jwvWd3T2udPZiZwlww6cBuWrN8IgnRTAQOdPrwsf4n3Vxy\nrvrXz1OspcxxNw57uy07Y41sbbo1gROALLkZPfxW9uhyhoER2y+q5Hs4mHbAzGFJpNCTu06ZBlys\ngbEWRjAlIZ1ngMe+JxYaLzoW5obKsZdqa5p7WLWCmnZ3t5zGfQ9PTcqViQclzznyV2XUmt7dExTg\nRGLj08tDirQaJUsjxEpARQY7qS9ItZyfzIPltw+rdK6/P5/w7CzJ4B6uyEolPm8S4ifhu0WLo1Qc\ni4araeiu5TMxMyZmYDI8KXmTUJpojdGKek0T4DHPjLVJSJjCSBjZmJZ/Q3of3xMODvrk7v4geAOz\nm9/nPR2yp/8sjAdEwZModgHSpr5xjzSacQgdnxwB1wi25Afm3fWqmZB1K5OsU2MB79u+4rJe8Pj4\ngIfHBzxeHnFZV602qLLLDBwFWjp+AkhkSjsOycHZdqzbig8fLnjx8IgHDV9bNwmD22vDV7/+AT5c\nd3+st84nfOLdd/Bd7z7HV7/+osupmcuMt86T81POfNLkeSm4mybgxYP7hf4sAb94AvCnAbwH4MvA\n/vMVH24XvHP3LNaBwogXc0zutbYPnVt2Srkp67FEbtQl/VWiS87l4tHzbLtLXNaADnx/h6FGiNn3\nQwI7BkEzZY3gyqohdj2ATGbb/ZLhxwxF5L8nbeaaeMQA7O1e+f4jiBqjOoKvv96g5w3YeYXj4eEF\nAHSlm80lnXugAIkhITxBrB4gIpISw6cz7s53OJ/vtNyweHYAKXywbpsLlr4CyeE5HBKm1SubochH\nZTLLQcmMwZSXDHjyxgY0md+tKgB0HMIwqitdsR8M7MVGJLsO3Sj7DPKS0cIznra4BAiJ3BxrzOgl\nrT3sAz4XRNbTCB7K0m1gNvaavG/qTclloTsXM0HRxIx5KpKTk8HOsvhvJME3PErVAE8pmL3RbKzV\nPE9YZv19AjpWhtr6/3Ry2hYhAYdSshBSiztlr0F6fJuBpPGPPfsMFGV6YcBDYkg1GGPGDjKMtgZD\nQNBBAj15XHrbpkCnBdUK2GFG0Z46xA3i40nLClNMn1ZinAyInAxG5cu9jX5dm4s8LzHvXnTAvjaA\nMQgNThPvc2ZrmsbRe27Z72/CcNz7ERrU34vTWBgI5b6bnn7yNb/clQbL8ZNS0Gl/qmW5+Dj0WVxI\nt2hpbvmBfhJUgdDvjU8ydI3lY2rKcxxcsHq7D7eCr1Y618DOsYsHpSYPto/ZQmYF2NirqsemOtgJ\n7431SxOQpf1uFEh13i4ABzMOkvc9Ax0FXwY8uEVj0f2o+LXf+wa+9fjoc/v23T3e/863sSgPI/T0\nAJYMC8sbXOYDR11wrk3L7ys5W06UERkBPEVls9Df2AFgKX0rhI5u9faulAEBoBOwlKp/k9JeR5Vu\ncBjVTPl6ADnpxFDOYkUlzCz4KenAFBeogSSKlYjye60UdhsAw76l4XUDIPVAx8YL5w+cIiZA0NxS\nAhVG263y2or18ihA5/ERl8sFl9VKQAs/p6lEYvtUMM2zJvELXUqOzgUPFwE6Lx4ueFxXLzvNIHz1\n6x9gWnf890h5NeuGP/jGB/gT3/EuvucTE9ZVKrUBujehIWbxwF1bhGmacJ5nvH13xucvK34b6tH5\n0wB+UH/zg3K5/QtVQ//DWMwJ9LhMtsgGp9XeiMUwCo4yzlmpN4EUHmGOanj8xFoPupDdQ+5rHp1B\nT0EGtwGYAtwbPXCAlRIGXMsHtjxkFbkx5sTAKP2vDAbvEbjk+9p7nr98PHn+S+ToH+XjDdh5hePF\nCwE7xsxbsyaeKadCLSt87N4Ay+JszbJoRC0hT9I8sowhShyhCi2HzHn56ewl0UZl9jutzhJWgyg2\nMIYYMEeScYSoNJSaqsgBwoxKLxgIBOsSbOfGd+m8ZGmI8eY+Pa5HX7lt8+b1Eqke5qVeFgTACeFi\nuRxZsUYvPIFrRkWDZ2cMX/P4X4gAL8Ci1lRrFGoxws6oEmPNliTovDqTs9A1y9PpQI5lXoYyyjcE\nrV5UX3DQqX/omjm0A0xA0LCGptgM1lNjvFdzp/NmhSd8kAC89lZa//ybdLv+Xnr/3GDRRBlD+sQY\n9TX9UVfvyYAXYkiKS/JkdXRjAveapmn43ThohhUGuBKYg/LDgxA1YOiz7VpS9oiq11aVNHTnhVwO\nodobL+wza/4KzvH+dkSyFwfDkH2pQMcaHWal3kbE0tk25Qpq7eXWYg9wgBnmFgNnwDw/Hppme0ar\ntNXjAB8H2mEVmSyBW5qAWqUq6/6+a+6OhZoJPSjtFRIPUik41Dtz1OZFCY5UpCCKCjQPITqafmc8\n3oxfphQwYwdj44Yd7NXhjlT+2sCieTwaM379d7+BDy4nIKV1f3D5PH79q9/Ep9991gGdos9gdG+F\nWY55VoNK86T34sDIdiMBaAJmJgF3wuelMlRjlrBlrRTFJZKyG5qsOXFafSRlMgCPFUNgLUZilJ6N\nKrGfhn90m3KE77cQSgcv4pN0LwM8MY5xDEbTiUdSer8CO+n5h3HFXex3eoFCnTfc2hiI11Sqrgm4\nueByecS6rd5LT+QBgYoWrplCdtBUwEq31jvnxeMjXjw84EELE6z7LiC+MfbW8KECnau8msuK55cV\n9yepIlqIJBeOh5xkjX4weQc1LM7zgk9+7/fid776VfzkC4mIwXvDcr0vb7Ux5tnWR1fPjWkGKGJq\nbV6zISvAg/4qGZjM6OKgIe3RqNlt5w7hW1c80ghDKCnLQx+dy7kOnXf398uQhDBajnHIR/Lnsn0b\nfweVjfLh2wI84xxzyCaRMVlaxq56A3b+GB0GduwQgipYFklMN8V133dsjUXwriu2bcW+7W6NoAJM\nmsw+a1GCQ3vdAEJUVlZ6U0Z31MOF6fUY8idhuZeNFOFr2YXbmgGn6AXUmIFWQceBXAbbSx+z9UoQ\nwZob3fVj6v8tDATIroLMVOz8NihR8XwJgLiHpXjuTN7GDFG2xJooISSRRI0rQWzPk4HYLcAzVkmR\nuYXm6xQHOhLOmPop1IoKclAZJZepExZTaio6TRNost46OfciWV/Hd044iC3wi8IKZFNfSBKOE5jM\nSgiuWXu3jhnwZKV9ZLAmfKIaknye5+/aRd6DKPXfKMhJjNkFYWLE+l0brmZzFASV7uTC02aL8oem\nFvf60w0dK4M34wnZ+p0HYKDML8Pdmw8s9Lxe+HUWQr22yt4MS9O2jDkNT9IgwN0YkR7O7qPKay5u\n4iXx/RlZyyvL+a02LyNtOSUd4Gks+V8pDA5sYCgATrNyzlaBcttxbBuObY+qlLXi2I8O8FhRgt36\ncPAY+kNAk3Wiwjj2iu04JIfBwIsWEdgdyDTP4/GXGrL23FSaI19y44aVK1auDpSs6qXsDwJR9NJY\n94oPLo/AVVo342H7cbxYZ5ymqQM8ak0BAZhrwTEJaDPPkyhRolCZpbj4nm8gqm6kowmgqYGLAlZ9\nb8SgykK9VAQPDECHBjozg1prrL2JwxBhYiNASHplI016TnKkYftjBD9PbE4bXf55dyTl1t5sP+ve\nsPcO7Nh5ztuMG8VobKSyH0nmbiKtlk/acyuYi3gpN6wKcix0zXJ2Rf4JkJjmWQFPkabTEsuGygf2\nQ7w65tH58OFRy+27xj0AACAASURBVExvOI4mIYuFcBzCLZ/Kq/m9r30dd3cnfNc770h5cp5QbBxW\nMXSZHeyYNUjCvxcsy4w/+ZnP4MOHR/zqF78IfBnh2QGAL0HP1xDKsPpoywwJAxWiZen3pOt+q+8V\nIMC8UA4pNLmPPjzeeWECDGnt7csOoKe1jWvI+mdQG9QZv21s1xvBGWmPKzVKGF0Pz/btAI1vB/To\nzftrG+063SegFStzS9V7LY43YOcVjg8//BAAOkVYwpUmnE4nV3TMIrlvmzf+3PbNFT0pVVywnBYN\nXUPXo6e15kBHmoZqF+/UOPQmESNtDFI9uZD2LEGn5HszshZMozFLJzMqYOyD96pIvgjQgR1OuyBv\nDh+RSjVm1vMH75AxM1Wqaq3pu1Air6uiaQgfYgw9c/DW5Z03hbOV15UOxEanaw/SLaBj1XPmonHy\n6VyzgrTWUI+q8erXjEvCEC1HRxuJzktXatoBD8yqH2KV07ODraCDAZhslzEhEnNvVqxx3dzln9dv\neA9Z0YPS8bqhDJmi0Hv1IqzyttVL1KvkzUkgJ58jQ2H3RmTB4H+5nmSgsS83a57BVz1IAWl4MeO5\nMiiJecSTeTf9gJGuF48QU8wBeNALpH5dh/ll7jq2G+9KPxaQyewhTTXFuDdVIki1Bdbkdukrk4DO\n1Ys7AAQDzczuOQqAUxPoadjWFevjBdu6plBiTeRWkGIFXASQtMiLcVBuHmoBOmikQKn2YGdXj1E1\nD314evZ6pHtZeJpWWFNjBjNj5QOXduCxHWnOcj+NCdMEzLq+j/uhk3+73O/DdgCL0oPSAZjFQwXG\nUQqm0jBPWmBhOjArn5xKwURatbIUWKgQiFAODQeGeEsnsnwdhiSAM8xijtKcxjslUD38PdixQjDS\n88M87QFLlE9lsOEPlv4NU0Yp7dkMkkagkzfWLaBzAxiNl1VeaR6d/J1HEQzzIB8qD9Zns89JSwlS\nIaG/Ev3mwvAmYMeBzuWCy+WCXcPGiST8fTmdMC8nBzog8qa1rTG24/Cqay8eH/Di4QHbfmDdD2kj\nMc+YyoLTSfb7y/JqLj+/4fe/9S38iY99rAM6Xpl0mVVmFZjI9e8VlH3HJ+7x8T/4Gr7xC9+UqXof\nAnR+ATid5BxvRaE0ZCGs/mqsWCr4VzaOmtyaivCiDHYc6HRgJ4CJ5xQP4cdseZmcCcS+EwjQAQCj\nB6PhgSE7vjK9g+D7cZ76hqf5vKfATjbQxmcfDXhkpsxj1hsOe+UsyWLmYQ+9PscbsPMKR6/wyd8B\neuZIXm2SLLuuF2z75v1wCBRJ76roNW449h0rReO5WiseHl7g4eEBl8sj9n1Dbk5qv8WTG4EBpKaF\npMyh5tLVUUnOwtjs2VprAFWY8ttaEwWciyuzpWiHZmUcbiHgsFpT7G7IIABGQ2upvCZprXyEp8Ge\nc/SwjPXnbaNCFTLfvBxWEyLy4g5ANCXrPEh0XWo6A5zx3gZ2SgGmIjHXXgQCzmVlLK2BPVSLumtI\npbaT5Gsti+bnZI9OUmLtmqArJth07okLxL3OPp9ODy6zQ3iH/h9FAcjX0YDqy0BGgCcHtYg5laOE\nDDDGa2tor9ubzUcYOoNZWeFK0ngd9iex38Qz+jsZOSrgSdftwVp6NrvisNWuQIiPfXicG/+4VrmG\nf92Ymg7Ipb+J49lvnT8CHVaALMQVWqXuRAApp2fYM8bL/EFagIkGgDNfSd4dbg1cGWDLHbHqa+wg\nJzcRbUcqjV8b1sdVFcDVAZA1SXZPy3F4pbNaK45c7cwmNdMdkZTkvay4rGsAGy3Ja94duU9ToCOA\nR3qepO9r7fjQyhUX3vHYDuV9suIW5jqpstUUaC6nRVftdrnfeZol38OVQluCCE3ktEYCUMWwNpuS\nqhXQLEStNeCojFKkqmTzCmnjvjLZYB8l2jOdUJW7MIY4FcYatIYmDVKAxijaf6eBpAiFg9IAC0RG\nxwQHEvrMQrolFESEzmkgJ/O9kAuhLMIfM4OY9J3/EN25sT8Hhjp83E0UbL2iqIfMT1Rb9Sa36qFs\n3KSC67JgXhYxki4LvPJak8pr+1Fx2SS/Zt3FAFCbUodGRRSQhEdPM5Zpwtv3d/j84+WleTWPX9iw\nvyUV/ATgLFhmzUtdZkwa5mahk2ZQcJphxj/6mc/i//31X8O3vvCBT8fpfMJbd/fuee2pCm40sMbo\nmdc2k61pbxOSHoLhQsMh8tLA6bepxTuD94ugl7NwepG1HQ2Do0dFZU/SCbKhAOh5vAyBglZNPt54\nPj+3lKA7ijWxcfE4fvT0f0t+vG7HG7DzCseoiANR6Ut6G4hAFKufCOZ929BqFQuCnrssszbPFEVi\nY/bYcBPWL168wIsXL+Qa+w7mppYAggEZhlTY4WGMzsx10wlDbJq82CsEojTA97sIpIqmAqY0ATaF\npXpYSYq/K8S+eS0GnzrQA4SwtH/Vqsq/8Y9hbkdvjntNEtBp1p/C+nMAbo0wD5pt2H2XqnlhPY5q\nct5zIj2b3/OGZ8dydqYCTBMc6LiFSC1JSIrWCJ6macKdlqc+nU5YlgWTVVxTaW0zGKwcCURZcnlL\ngkLCgxpL9Spms6JKjL25yENGhzJDem2zRjm8sRLZ9kkS8A50SAoDePJ7UhCIkwKRAI9rIYSwoA2H\nK3TG1wup4VQESVjpZSyd7p6m7LaFi9JY4ePJQsfozMeTwUUHcj5a8HTfqZGAEl4YDxsTjb+98bdf\nxi/fj2U83wGLAZ48RntZieZWu+bFQiJJufPPw3PD1mA5h7AZsLkCQOwhbtWMMF0z5cNBz+Wy4vIo\noKTVXI0tSkbL++EV0mptXl7bcpR60E5Y1xUXLclr19hTLs4xXH+vCQypV8cUvciDMrBzYGP12LDx\nY3Kgw0RAkSpa59OE5/fP8eLxutzveT5jWeZkTEEYJvz5oHtYvXKtoZWCqRW0UrAwgEmA1dSAxgRZ\nCsZRpaqkJ4eT1Tq0ymG3oHRMJBNFccIb7wa+QACVBrQiXiKW4i0oBfJG/hvrXu/BSyQKanBGRzKd\n4QVkXnDyczqWcwV0Eh+8IeODNyCBncwDuBtL+iQd8r0rm2pQMgVdgLvQvIWwH5qnQ0QosxhUzasz\nL4s2vGXP0Vk3KUgg/XMOKf9MAm7mMqHMat7RQjeggu/+nu/E7/3u7+MnHy8yzPeGtX1f3o7acFpm\nlFm8Nsv5hPNJjHTzPIOIRK/A4T+VQh4E1Aqigs9++j188OELvHh4ALOVQj9EHjuPuo5YEdrOSooq\n6QYghpk2o+t4ZL5ueCF42ROAx4WQr+IT543XTX9kcNGBht4oa0dLwO4WyAjAk2/fG77NU+8FLG7M\n6XjtzvtzQ968ATt/jI5Ipr6tkDcV4JZkuK4X9cpITPWUEtmtHHFtB/gQS4WFRGz7joeHqMJyKEMI\nz0A0x6ot9cgBUihVjNGUka6im/adqC1vEHnOxg3UAE9FpYLSJD54zs+vLYTDmglYHH4cnCwg8HHb\n/VyXNQtHAgWjy7xojo5dQ4BW83KcBHi55QAlUSobakEzBS2HHt0qSmDhbLfBjubsFOjfAXaMs43M\nJ8CuWMXu7u4c8CzLSeKwp8kZZW8/N4aDlIMwWLaogZkC6LCpdgaepHkgUrjSLSuOj19DUBgZUGem\naWAMkfhultmSQ04yyEEoGHY2GahJa9sp1HDFP06jng6D2rphjsqLVUvMM5PH9Idh+J0FGHTTSjae\n2z10PPLt3wz/fhngkfOfBly3P5OxZCu6nWvKcg5dy/vWFVFBEuDaPNS2JbADzc1hZm0SGoCncQNq\neICOfRfwsO8eJubNQBXsPD6uuKxb8jpJFTQrHGCeWwc7rWkROPOCtrR/JJZ+1apVl8s65OTUFA6n\nxij18Mjn4dWxim4ZTG0QoLPh0NVRI5FWrmsklblYw1UZwD/yPZ/Ab/z27+NxjXK/gBRhYUjomy0e\nsy0AAZA5rmbsaA0V0IqPAnagvHwanr82ycmpE6vhYXgh9orTQTKSXCv217qmLL+AGmpQawxAltOj\nIVLmOSIKkON5LQx0yWnmTqIkS9K7G0ny6Ma9nmSAn3IFdIzHcJ4S/xqZVyEZUK7mRGfLNF97EAc7\n4dnZts2LEkR+jHlTRFZUPsB1V7Cz4eHxEY+am2ONQpkKyjwHsIY9b0EFMLeC7/m+78bzFy/wu7/7\n+0/m1czLpDlG0h/wdDrjdL5zWSZzsYEZ2gPIvBMWNdCw7wcIwGmesW6b79ngTeG16HSFBOTNAFLK\n5CkAHRNH7QjSjL1Gu53cCUjy5JH9RD2Q8RP8sKt5tIAX5UhXS3LEIXunp8UFs5HpZca1kbfbPzsD\n3yDXxkIO45F/O3qbXrfjDdh5heP+7l7/EgKxeMuiHLbV2glpK9HcVV/THiwE0nLUFnvK0vxrXTWs\nQuJ1t21z4WLlCYmmlHtT3WppoMEVbz3fvB6B5tXSCiH6onX6ybQY3xw0AJdshaqq2CPNie0y3ZBq\nhVNN1tmen5+shRkMlOTF6bw6dgd9htZCkeLGUpkGCkS0DGtRi5PMkz4zQvm08DXpb/OyHJ1rsEPF\n4tl78HsLCPdlqU9YTgvOJ2k4uiwn7bGUUnj9mgpudT2E1KTUspZG8iJaAd76UuREATxYgeeTwj0d\n/vtoHaev1l0700avCPTMXP6+uk0vAJyxDzk14x+Mrrt8L1Lsv2keNU+jlEikH5/1qXm4Pb7xGXHV\nvynmz56nP54SsqQX9Ee9BXIYnXX4ZRfMVkIaTjILa372KEjQPKTMLp+NKOAohMEa7nbse6qgVhPw\nTzk6KcRN+l1U/+2x71pVTd6PBHjW7cBl2yX3IPFNKflce29OC7Djr6GiWmOpSiVgR7w7AmjkvJz3\n4+Wmr67DEirEiQM6qBf+M9Pki2PNg60ACZPklFgTRqaCgoa3APyrAP5FAL+Bhr94AP/wG9/Cu+9I\nCerEOOG0/v+z9ya9ki1Jethn7udExL03M99Yc1fV626QEhsSqAEUSAjQH9BW0IJALanN63X9AC0E\nCOBWG7GphQRoRaBWVQSoXQMEJG0aJEQRQndXs/p1jW/K4d6IOIO7aWGDm5+Im1X9tKmnzpOIjLgR\nZ/Djx9zMPhu5vTtQMFBkRqtkzYrHvoJkTsiD9HuJ3ecjILi2eI2zP0J4MO+K0a1YrRMMysjHpO9S\n7a0rqYhm6faXTTFb3kPPiyiAmcdecdE0XBMATiN4XyeOufjKVLxOY+5mywxuye+j/dyMkg7etQGs\nKeelMlDEa2MA/XSacDyfcTqfMS8rFj2WUsJut8Ow20ETeMEQcCsVY8ULupYiDbBv9ph+OMkwP4Dn\n1ez3o8CIkE9rstqMd9DfpZBRVbtGVZAro7eiIc1AsC1GpOsjpdYQPFvoPPD58+eYpqPvv9/f4r13\n3w2yk4G6gHl1XcOBAQNIfREk42ePPT7jr51u89j2GvnmZ4sALh7qu6iBUXmrv8f9nIY3Z++MqxGB\nXcoqvdT18ThwhDc5Zljlzl8zB7+l2xuw8wW228MBADy3BmApF6jKzLbxpzX/HMz1u9thN+7EIkHa\nO4dXBw/TpLHj5wnTPGGaZqxl7ZRvEVYJ6xoa3rnnAtJYDAoelHH0ylqopgRu/TESaVOyJtjESdPb\n7Uw5MsXJfiFC86oATSDJr50glvMAUS0F4NarrMl6W4BBeqDMf2kARpVXIgDaUyjnQcM+EHoiFReO\nLsx1Tp25XsnZuQA6CnYSWSW36wJ1W8hit9tJyNpur5/3En+9U6+OhpG4l0stvhHsyFwL0KEqygJZ\nBN81oY7A5Dgy8OtgJG4OCEGoLBciIPSJaDQRvUhRebgGIqIQiWE4dkwEFEZjZhQls5SRlXreKi/Q\n8B7qFHN5HjqvMfdkM7bt9X8T173RgHl2JLE7NGXTO2n/P3IePVlbU20MEUT1Hji0sMHXjrGhRDM7\nMEQRYfTzYPk2TbkvGhKafE2n9pBlGBWopWJdVgmDdc8ONyEumk+LtVcwVcuKWgqWeZaiLvOixVm0\nEuWyCNhZCua1YtYKa6xhnEWLGchYuXl0anWvTAs/izk9okyep5azU7QQg5SXlvfjvGBaVwwpYVQP\nftXnXJyWGtAhY34pIw8ZyKMa8kWBMQ82UganhAqbd8Y8zXiYJi8H/BmA/46Ae3lY+OXzF9jvBrxz\n+0QaTqM9ew83Y0iCN1i8R7YXJc3XkJDZIYvhzcoX5yyN6o2e+8qJqYWHRnp9nODUCaOeVG6AISXJ\n24T9RhUZSYpcKD/bGpEuXiz75A19t33aCLc8ujPRk81NzyujQT6WVLgKdB6fhH7CAPdUwI2Ndr5m\nPXewY7ly5hmF5PhyKeC14HQ64/7hiOPppAUJJgUykByolJHHrPQmUQMWQTKb5wcS2l4ZePftt/DZ\n8xeYfjD5eA+HPZ7e7LEsS8cjYpSCeVjykJEWQikEyc21exTQs2rxEKtweAl2NjJWZTKI8Nmnn2Ga\nRiB0BJqmD/HZ58/xzW98U/UDCY+vqxhzW9h709rtHqTsO7fo6Y08kw8qoXo77mseN/0GO4VrdDQG\nD7d9lMgeWQt2vovQNCPxrfxVz85VmQIjyKabWcjg6/rV/TZvb8DOF9h2ux2A0CSUrY9LC+NYNWm1\naC8IW7jDMGjjyUESTSEu2RrKmBrYmdRCs66LWGiC8ty8O9FbY54aAxPsNJuIUMKC8P460bphVdtU\nEBsHrqZJhbXXWegAmKhNmnxji6t18tU0yscsCdBjEl2EkF0sat4KhPXSQkOtlGNOGSZETHhkq4YT\nz9019LoEORG0ODNWgZquCGWvGhdAjr8r4BGgs1NhMXr3a70JuACOL1fgYfULxLrZWbHsWV0yS772\nbWSqOscmo02Bh1fQkwIIpARhR26FVhx7VDBILbyE2BRORiZv7RwdhURlnvprXAVqeh/9M079eMJ8\ntcOuCLzwdxQMWytZVFhYNV/fJcxndx3ubWUMBWo6t1uPkglCjgeE+Qwzc/mgozCDVc4K9yVaaAMh\nVctHW+NLIFyDGtAyRd9yVjZhbE25M0TUgA5rU9CqFuZlkfLPlqA9TZOUktaQnqUwlgoshd3TUjev\nogCkgZzaLMqLlaPW5O3SepJY48TouZlLwU9fHXFcm/J3M+zx/u0Byfqp6WyyARwEWk0kzR7H1NF2\nUrBjvbOYWmjqeZZO9laP7VqFrOmHKz4/PuD9p28BbKUh2KcZzM4XpEqXhjCplziFfMScDeyYV+fS\nWx3XTmeecgDXbFkXG1GjE0hQrBmvYYXiU4LG3iHVdOHZubYxLC8xXsrWtvFPhL99r7Y+AjBqXh20\n/W2ZXrk1+47xmh/DmjSwInOm7vho6AmyzbyUHqYM19V1jc1YS8XxdMT9wwOOxxOmZcY0L6hMnpMz\nDOp9GUeQFiUoFQDNqCAsSwGghYJYIlXef/ddNZAC45hRlgWnhwfXZUy2xxBzK6yxrCvysGwa7MoE\nMbPnvcXwrP7ZRbzQ5J7oRkfgoiMQ43z+HpgLxnEPWYkFa81yP6ZDwGiwXauSGV/MFLB5hNx/r2JK\nn7flSbaj+k+XpieXc4/IuEgD23P2QL2n5wuAEw5uRtMrBkc1FnRyDU3VaNUa5cuA97502xuw8wW2\nUjT5jqTCjRASPEyqxdmuYO19EIk+uUKfvERqK126uhXTLCIeymWeBD2jWcgsB4i1/40MjZxhJh6A\nEJtpOUXM3rXErez2uwAPs7BEwXFl4fhCq6hMSFWq+VjCfzLBwQyGhLVwbR2OYcDESzeHqjpXrAhm\nHe575LQwNCvfbAmTlVsYjnmBtHVep3g6Qwx/R2be9b+x3wnIlJCodr2MBg1XvDkccDjc4HAjOTlS\nXjpr47DWLVqUHvmO/PnKtFXWEpyq7BuzSyQ9DcRLwUjU523Z/26JUeU8mbKDdn0AXka4MePeStQ5\nsB2ItVMQ7FnHXQimHgsjJ7Tu5u1akf78s75XIlRjtiZ8ts/tGtjZbNdAjHk8429GT1sr2SWY64GI\nHcsMtag3kUdh/WzHEk7mYC8+Rz+/j0Xmrf3Y9jE1G8Bl81ObB1PPXFfdCNgQ7hotmaa3MVdUA8RJ\nxlu0saYBHHAomOAjaiMAJVH21CVpNO2VpbiFkC2rJF3PkwIeBhYmrAzll633mCU5m1dHQJPkPzjQ\nCYULVu0yv65avrpWrAwspWoj0oqfP5xxWg8A/inMmnxaP8QnpwlfffZUCzz092nenlprowUiBRYx\nNLaFrBpmABjDKL6KPwbw9/B4hazpBwsqhN/I3LcKVdZ3p8cMprCYcawp0MLvsq5b488977fCKR0A\n14I0lrOJsJ4ab+i3fv2ThjixXleKFiROTdn1VdT+IfxvvPERpPXI34/t3wYdDQYRCMl9bR664RgO\nsGS7Vv13wJ5Mz2NaLyivrknSV0fytKRa66w6w3lecP/wgPv7o1QRVBqWPkiyBg2MO7RqYlf0idxk\nnANlIg+35loxrZIzhAhuxlHGlUnabowjKFHnhWqh482rZ/w15+zTsjUitbwQlTs5Y1lm/e56SfZl\nWXCjGQZJ9Ykr6kP3LLNHvGwMSRFsJEKiAZyqVrLVUFwSHptMZoVzkxkByXhtL1PtPm3zlAAmbGVM\nu58ML1FuD8rltfIcLVZhxyQNWQXq1fB84wfS2kFeGlcCM2SajNzKyS/b9gbsfIGtaPln642Shwwo\n2OFaPcbcKow0Vi2beHiE8OZ5xjIvXmLSSlS7Eg94mEJKGXkTOhSZhoEdQevW0NJyVIAL5ZUZnjQM\nXXxVwglik85EqeVFoLeM2+JrAIa0fGgos2wLnoBaoECldL/nnNzbZWF0Wwu6FYZwxbPaPEldfY8f\nHsV7locBxM0D5GF+zOCgAfTMqVegPd8mAB1PiIQ2wSbWZtikf8v97MYdDocDbm5ucHN7g91uH86b\nNdm1WRSt6ARpPx0DtFCLFLgBCEpSBS8D0qiPpOJS1zsIJkTchCrMy5UWtSqyKT8QekBg+sao4wII\njJyCwE8JYM7Y7N3Op3/JIaoxmLJlQIf7aws+oq5sd/fM/hpgpxtTAE3XQNB2nVy1ml05n6whm5Km\nfkW16nVAx68VnqOft7s8d2+AT2fgNP3WCV/9THbt7f3pQ7H+Fn68Ki0VLJ6IAkDzC+paNEenak8p\nu+fL8Yg+pTkbZmSgRvPGu9Z1lRzG2QDPhBWEFQkrSL9bvAeJ0XtRvnCeJhxPmvcYeuEIoJIkaitA\nYETMIMylYFpXnOcZp3WCAJ3emnxavoeVnzo/kJnVtVoL6iLd6RMnZACZWhPprPmaYozRAgtF1x4B\n4zjiZr/Hh9OEf2ST9t3NJH4gbxUMSgNQpeKch1dzbYVcAPXqkCrcwbCgvNkMWSkJFUVyM77UQkbl\nrMJvCBWh0h5bXovxOqO7Rq5s/yvQSUlzOpLQE3Fy0ERsa8bGv5WoOvv2k1GdrW2K1zSKfA0o8gXb\nGyZ6rw+39eP3ZEihKbb+fTt798kO6QyQbsRTsJNIK3SK7K0MzPOC4+mM4/GE++MR9w8nzMvSPHdJ\neDPZemXxgHX8Qp93Ttak1NpmNPAb980KhGNxHS/gM2SMu1Gajipgk5D8KeTlNP4W5bkZZk2uS26c\nhO2PwyggjTkYBq6XZN/tdxoUQUiZAM5mt7ngn5HvS8uNCoRcy6jYJ83xBBKWWgGWMuBmgGQvJRvI\nh+L86XU4vjYyUueLuJ9z20zvSClJaXvjdya30cCyjb0ZgFtY4DZixkkiyjkdc6R70/P+unL2t2l7\nA3a+wGY5OEQEDM1NKkJWY2yLdghHa+BmIU0tTEsWrwn1dV28S7IvBmqWLAsJc1JjAwsJyLJgtrk5\nvvD8ELPobRQcbr/H5pdk35kEIPQM3pn7BjQBqEmKIrA1IbX7sTyTDaAwrw7UamzKnzMl5RSWMF3d\nRV4BEiAiIWIjdtqotayLV3Gycyl8uFSW3RKyydHxcLUrC10ZnnU+9t4ZKWMYsvYhEPBlShGr5Uwa\ngKqCFJU9IPQwi2pyVGZF4YhCibiCJPvS7zFWM/N71uITkdmxAR4dYPOwuFrSncdDrGCKj02qjs+e\nXxhJfw8caO5y6wCQ0oMB4Ncx29f9tqXPzvrcXZd75h/BXqcB2t9beBfATTecBix9L18/fsM2iu43\n99pwO//1mwRglvb+S1gemA2sdSmJYKyNxUq5eyO+UEYd3MImI9gpq4TullL9fskIFYHGgM7janH8\nXpxFc2ekX8jivUbWUjCDsIIxM3CeF5ynM+Z5ca+OWZZrleTt0/mM02lqeTq6PhjkYGdZixREUWPL\nyoyVGZMrJY9Yk7liyLtAS/JeV5KGqKqc55SQBu2tNkrz4DARqti2p8VEePv9d/H8k8/wjycNn/sJ\nrlbI2u0OGhaW2vM10gICD2neI8s1spC/vqk0XHGq3kzUFJ2Whwa0NVprpJfWcFQMIE2xtTskpx6V\nFVVyeMRgB1XU9fzG5yA880IIXd0itGj8zpVQit/1oCignaC0bvgcCNsy+YQ25+Tzf8n/5Fxb4Bie\nF4wDsD8rAwLLuqKCtCDBCcfjCeezNh2vVeg3hEcmbVxq9xghmN8ptbxeU5pNrgh2IgXpEinhlWSz\nnp/gxspxHAFtks1cMU0ThmGQUHzPPWp6g80vJZIeWucT5lAAYZ8HHO6eeLGh3e4G83xZkv329inG\ncXQDMZtuFLwSNtGeZxjnmoGquajewsHeTYmK8soeazjHdvNdglEhenc6+eP833SsSzhu95Nq1Z5c\ncL2wAaq2LvUgB+UX+cYphuCGFzcu3dZGr7d9Gbc3YOcLbAZ2ZEFvGJ4zVGESloMiuTqanK7NuIwZ\nydaUiH7lxBrsG+IjESQ1AYnbou6sEjkLGAoc1ayf25LF4SZ0V20kmsgFkIGvaPVqlqjQ8IsZxRRj\nFsud5bfklJFGciZnjCyCGlO6t1Z3RnP5RrBjTNj71exGDEPGxIyyrP6cjKFfywXalpy+3tOnduPJ\nJHHwiaRhSEbEGQAAIABJREFUX8rZK7rFxEh5tLVZ2QBQYq2SpApthXR95tbt2+faXq6Swt9FOdL/\niFsfGmwEPdqcg+QaHfnao9uw2UtPzaX4bicwAWEnJz3D5ogNwmgVXzaM1BQ3mfALevjrbF1ogt1H\nZNy8ed/e2eb7rg/dRgKSCUj/kSH9jq6s8a2Wo2eRku7UOoZzAyLkF7lyHgNUvq7ZbtbODIf8ukaT\nC/TAHyz/xpp81uLdxyXG3cq3W7np6v1xamlFQHqAJUnBDjK0j4jl5kzTGdNZ36dJy+8uWFdRkpCy\nJPCXinOpOM0zTnqs5QLU0sDONM99Ho5bzGU8a6lYSsG8rsjMGEiqXTIRaBiwYwbmGY9Zk1MeZF9T\nMPW8iQhUCjglkHqGzaMjvIG8at8lwck6ppTw9vvv4nZe8OLFc6w/lKak+ABeIevm9gaH/R5lmUWx\nC68mN5yZNGrklu8kleea9z4ByFyQueLaFnlgyy2xvmVCD0ZpsXF0lGF8udJhZfIFTNkY4aCnkuT6\nGCVdGj7IjTDw9Wf0bp/Na47A+y1aIbU1EcGQLRLnxzqL3fqGn7Mp8uqZYTUX2u6UQLDCM9mvG71X\nNl5moJSKeV4AWkFLAeVFKrBNE6ZlwVqqnN8q7I0jUpZCN2T5WBYiHdoNGBuy0VsfWcvCbTKbgGHw\nIhCxUE/TERLGccT+cMAwjDjs9yCCltA+43yWPlbr2iIs6oYfT8cTbkrB/wQLFgU+LCum4wN2b7+D\nlAjvvPMWnj9/iSmUZD8c7vD++1/Buq4K3AiE2oVvtufYYISN33AG1LDm3xtIUssBmW4FiIxFW1ad\nGLHjOJw3hCdek1sNcParghwE9TQWvTYlZeS0BuAsa9DW4pY+4/FOBPact/eAKP9JdYvfIJnut3B7\nA3a+wNaqqw0d4+/c3SpfLHZ0GAbsxhH7cYfR8km8yADgCokrTWEjICYB+PmV8XoBT2oWtwh2mhA2\na1HFNC84TgtKqRqm0oSI76kaeK29Rayz1Npi5hh2o0xj1dPmBHAC5eQxwkRZhauFVZmwMSF3acG3\ne4tValxFJsIwjFI6c79Tl7okVk5oIMUsjGlTnKAVH/h1DUz78CKoIDA3vwGdIYWmqzrvrXKUzLSV\ng5UWJOz8jMH6XJPPuQtuCv0C/MUN8Li6hSasu1fyZ+y6vQGNYA0yMnSv+oZBc7tU1PHDyPQ8HEer\n74185Bv7j9Ad29YDhfPjgsa7cV357ZpwYbQltTkBurUYAFC4M986vSfoP41m4hgasPX1peNox5AD\npai0EdC8LJdT4qOJYQ0dQLKHabSkQtXFFhEyWmlRtjBRLTRQItix5r0W8liahybmxuXc1jx8PmSM\nVrFymmdM5zNOp5O/YlECOZd6bxnadLJgqQXnZcVplqpl1nTZ83dUmVq12MG6rtAOW422QVhrwVRW\nzOuCAQCrAasSgXLGbhhwWCrOV6zJu90N0jBof5zs5XFBEs5KQwZWNYCMDeykLIon07YXWVhXvqbE\niPPOO+/ixYvnmH8w+763dzf4xle+jpQTaslIqaBq7l9K1cG88QIgdrOPQKc0fggFO6jIuA524tpq\nrQ+qe9Za6LbwZQE8LXTJnTxGkrBcEjUIGLhhSBiy7m75JlaGoymlcP4X79XoWl5XCt0E8EMWno1G\nq2T/NhotBT7bLB6NCfa9S9g01qAfaM4kaTGaELZ8oZQr2FmWVeaWFoCSlEifJgl7N9lGSUH1TkLB\nzbvjcizKMrQxsuaEGsTSxHuTy1JxdBA57sfqIwzG1WEYcNjvgb0RCjBNE06no3ilNGrFeAQz6xil\n/cZU1i5Y9O8B+EcA/vG64K4WDIPcx/vvv4t1fYp1XTGoAZmZO7CTE7QlRKNVeZZN/okew1r9TO6F\nQr6ih9MWVtoy8GDPychro6cYnRpt2rlq5P/owLrpQZmSAzCXRfABtnuJOot5asgM4NFg1a53Td/h\nykjUTA9dNIOBnSCs3Vj6JdzegJ0vsJniLHHRxgdlkbEVEbBQpqwJ8+MQ+qtIkjqAjTJdtCePVdZp\nLmgPT2MW63+0FIGQm9nIFyCRKBtkjI+AdS34859+hvtTq1M/pIzbHACAxgZv1VsOCl8XymCjVY3P\nGmgZsKreEZtbjHDOJoOU+bCHbtlCb7p3syCB+xwcS/YdhxH7/Q43Nzfu1bGFybVVzZPz2R31myXz\ndWBn43HqZkQnxCzdF4q2MTqzkFMLn2EKDCuEz5hC4kLKC2CEsAfrgdQezeUWfu6FPAKCMcbMcWcR\nfhFUsU3atQuZmN8qAk0IXgAebqjAKMhxULju9mYiPbxu2/5Orh5tbiEAk24OuN/PQwq34GiD4Xyy\nOqUohi7ABZhZ/gAVejBrNyFMRof/2sBqF9vtuzA3QOSWvd6S6HTAweKP6PmtrSy0ARqWkDWK4zfg\nFiz71V9axa1WlJVAJIIezNrQeNHKSgJqzuczzqeT9gs5Y3awszRvTdViKlxxXCseloLjskoDxdMZ\n5+ksxQeWxfvhVK3ytipgaj3EWqlmIjE6JFW8KqAJ3rJfSglfef9tfPL5S5xOfYPPea74/LNP8M57\nX0EaB+G1Gg5UAVBetSJWA0FuMIGF4wawEKyw1qeENWws54x3330XXGTeb/Z7USyVWqzcf0oETuSe\nnaTAy6qsyfsmRNdKsXvIE5x3VVUALRwPZGEzsrV7MEOOhbHBKZkA6Z1jeTm6NuI6Z2iRAmoWdLu+\nJ174onK/h/OLtiDjuqDNdxujT/gsa808PHGtpKbcdetaVx01L2kDqg3kWL3JyNUM6FjBAculuvAm\nQfK5ylrEu1mLzBOAabbCHKJ8m/wQXWOUc1tPsTwgDVKFzc5fqKJyxlAZNQ+oQ0UpGYklSR2QohdW\nzTQNGv7FLS8ka2+mlFJXcdSMhqWsuL8R4+N0nlw/cBonW2YELfmE/wJSZv0fkhbl0O3F/Qu8/857\nsKI+sYmpaeNcpRWD12U1/okmEwzAhieoho/wd9hMxvuOqpOBk4NCB6YIfNhATQQ7fu/9VZwPBV3Q\n5Ej0Ehl52b7VegrW1B+r47acrx6Im44nL2lrtZEl3Pi74G2l4c5Q8OXb3oCdL7DVoszXGXcDOAA0\nlEmT/sYB4068Ol52eBi97LShcgBq7dQqbMrUrbGbcVIRznLN3sLQM/JkIXIpgVMWix8R/vSjj3F/\n6uvUr/VDHHGPp3vAeroAcBZ9oXpulUlj0jBrRWMdXvFHXZ8WsiaxvUEhNGuxKkWsHGhrRWRVmIoC\nH7Mo7fZaDOD2BoM16lMrjPUIiRuDPSFR7gGy+B/x7DRLS3/fbh1Soc+pdszCQvzKWpRRJ3WBmzV4\n0CIX8mpCkxrYSqHHDpm1EYEB4+r4rm8KRHR+H3Opx3CSa7zt+nGXtPE44MHmxLy5brTKXQ7g0krb\nvr92yxSagwRD1dXNRxnwUWzYfnGs79CUIVNutpBE5j0IPI7v9mwM5FhYju5TRdn39RGuz2ENNbAT\nc/Pa8yEij71mV/zUwKEWetQiSmYNBQrI/pNS+5YMH3M1TBECS4nZ6BWyMvFWgTKWlo4v6xw/h34c\npaweMnUqjHNhnNbiAGmaJi8nLdezPlzsTQ0zpMhLyq13FWr1AhiiUxCK0h5pz7FhHPHt3/kGfvrR\nX4HPZ/y3AP5rVAmzmSd8/tnH+Oo3f0fBkZw/M7uxogFJ9gIOYCmOUHWsXchMUMoTEWogxDxKHuBO\ne7QZGG6ABwp45I9McLBjeaLSOFRyCgcrPZ3aKyWtNBVBRxW+Xkkr6Nn9eFNX8+woOFbeTWAkmDev\n9dbZWrRr0k48lVHRKop2luYqRVgAc0ySK6peGMJWJ10HOnZe2tB9e7f51/0cqLZV34qyBBWX2uqF\nygQfWbBYMMfzNtrgOEa9Hut8rOuq1QQLCsuaW7SKYK0MShmLhro9SSNubqWXjtG4AaGUB78X0ykE\nS8ZnqGCHuW+doFVEwXDjg7fTSEnzUwfPlR2GAcuy4LDfq0czOVgimL2heRh2ms/6xwD+F7oss77+\ncMXnL57jq++/j+ubrRF9dmjrpw9H28iuKKvNmOw/BQFgHJek35zRg0Gr/ny6/wbswADQdgt82Yza\n1yp/NsBj+9r8Zdf3omHWveHYyMsU+B/YdS6nOR177e4/DPcN2Pmbs3FwdRLMeibJ7bAkdWMUVrlE\nk+at+dag4RLpMbCjIUyck9MaJVKviapj3gchaTnhvoFlSglICQXACuB4nvDi/hWu1alf6/cADF5K\nm6FY7jfRn2GCLfB5Z+4McRTrPYUcJpdHEOtVDZXAtkq2MQD36mhOgIOd3Q77/QG3N7duQSplBUGb\nHK5rN9euIDpDEUZgXid/mbALlha/X70BViWmpsCgWBRT9+qkikIVlDXEhbTZmwEd7WbuRhySfIA8\nZGVKOlkbgBAtPk3g/wYPbcP0e1DSA56m/vf7XqECtFDEGnS8LeBpY2inIbcebc9pd/Q6Fvta0BOe\ncXPY9/ttvTsdlgxzvLnb7l78hnx+tta88GJu42rSNUAkHStv7kOVvri5h7U2eovrJe6zBYlGhxJm\nlLyqooMerg62EknehKJHvY/qAMsUeVPmV+2VM8+zeHOKFGFxMKMl+iO42X43LbOXjTYgM1XGVIFz\nZcnH0XAea+BseTl1uwzyoJUlNbk6Z2ksmxI4Z/cAlVK9RxfpfmupeDifLzjnzwB8X0N1nu3f9v0T\nc/PKJgmdsQaGFrvfGkY2MEnUlBdwy1mJNEiRFbAo364jaxJxSlJ6OCWpAtd66ET+NnTFcuyV1NvO\nbHxXixSIBtSF3znArc3ib1SvsKHjHn6uwD8rGIkFPMfQn7qhc6SkngeIUmtz5vNDV15AXLlyzVD1\n0sOnm7en7Wye9M33aM+r7WuQixzwNJ9TM06YIm5RBE0x5k5JtzFXltw2KdKxev+oApHPa2X8+Fcv\n8eLYIjXef/sd/Cd/8HtSUEDBTvYqpzKIavOsdBn7Ydm8mw4x5oz9bof9fof7hyPuH4447HealyMy\nc8hSBdUaZu/GEcuySA7tOIoBkkQuINynRWYM+4yb3Yj/Zl5wZEi06EWZdSkyMo6huEd8tkAzz1LI\nN0Lg7xwO1Sd5EbrFUS8IESZo446lHgyctpOG4w3swHhwkDHGgx28qFe4ttYHcSMlM6ehJJUTc7Yc\n5D7k/lGvPplnR7zHWxlcuXkk//8CdIA3YOcLbS3vIym6DkQEdvDRVfRSpbjU4hXbbPEltCpeVvvc\niMpjMdO1mOO4zhi9a16tBMGy8XCypnjXKwsVAKPG6Gpr0qsWfLluFCCRSbcFRmrVal3XbaRioW0M\ngtUCXL18tVvW9OV5OusamPGAw+GAJ0+e4MndHQ6Hg1Rg094csylBpRUoiM8JG+V6O7fG+E1Yx9+t\noELO4s52xc8Y6sbqWWtF4qrhC32vgmEYtI9C8vr5HkPbTXr3tmGwUAFrM29yrTH7Nv+xp04DEhfP\n+irw4Ab+wvgI6MLrTFmyMbaQvzB06m/IFYXtPXJrvXdpnW3Xs09ueAv3IVgkPG/Wc/h8RRDU/33h\n2fPj+vtH2EdvV665BVEU1KAAjl3xiTpeBK/6uR3SC+lWOU2VFhd23A2UVFNu9LH4HRjNmtB3aySz\nrwdrdrguC5Z5ESCzWBW24vtFb42BHQE0U/DcNE/Poj3G5gh25hnTPIV9FixIWJHk3TvAm6eUAKpS\nZ7fWNn0EMRpYHpEaEhIAqhV5HH0soLXlOSjfXWbJlTHOuQ21+dUvfo77+5f41re/i3EcQ65mBkEK\nNyzz2p6LAbIqyp94VMxAJp7/sgkLrLXAvbpKB41mo1ITlhY99iIHRxaVkBQMSaVE44GN1mIPN6ML\n8yB2uYzMXVw/A55P08i5GbTEwVZV0WtHGTeQV/snRr92f36NK6KqeWoCAHKUZFxD5RPivsZT+qR+\n2EoJsqv7wu7TwRf7uaLa3JTfCMiCt8nmvLAU8tC1UhkoDA1LJ/z4V6/w4rhDjNT49PmH+JN/+xf4\nB//xH4AUiFjkACm4Y2YNsy+h+XYKRX/Y9Y4hZ9Ra8H/+yb/Bx59+7PPw/rvv4e/+wd8STyJXlHXR\ndSKycJ4nrMuMsi4i79GMu0J3TV9Za0VFxgRppot/AeDPE/BfVeAGwAfy9bos2I0DDPGT8Xsdq9Ny\nkEU9j0TInVGeVorkHQZZ3ehH1kMPnSM/bmTQwtX0+WtFwZ5ygt4WgUcTlE4viUgNNhvCZjSAvwF9\ncZysF9rqhX4alQ090Gu/uZFyM4dXF9qXYHsDdr7AZiWjY3M4BzxsCXKpBzBkAkNDO5KEVRlBWaKZ\nKNFB4U8KnCiUng4Kn3yALvheCdwS9o12OH6sstCggo9Skq7UClbYFxx3ip6dv6ggHnLGkBuoiWCn\nuVg1vIRLt7BsXkQp7q0Uto+AmNWVtGEQsPP06RPcPXmCw2GvYEfimc/nM+Z5Fq9R7Ts/I9zD6+bM\n8oTA3INXapYYYm1UWm2yFPBUSQJOofqMhNJswE5IXIYeA0ALBxDAm3GF98jrSI8xb4DN0xaYVu8n\nYHu1c8SN4kEN8ul3vZXK9mvKR9BCXI3fnCYimh73+P7kP/c5ZI+CHbK/tht3mhH5zhG4mBWa+3tn\ndpCyHWN3+nY3UUv070jPx6rlubziPqxQBEp1oQw0PuEry4WPWdabVdY8CLZur8nLeB/bSkEm9LpH\npLdSNRTNQmvmST03S2vuGcGOh5gpUJkXAzCzA5x11dL7xfrqNC/PedJEbPcEzSg0oOYRNeU2bhBA\nGjamQAdUfV4BSGhPMlAkFdJAUpiBGUhJ+pRUoHlkVCm2/ADjnP+QLkNtjj96wM9++pf4vd//2x5e\nIo0NpRnh7KF+LdxLvPsZaRQeb82Id+POw/7EyFOwrmi02IHz8EwJGpoYnrHpfY+AHlM+/QVqPUXh\n7E89UN64RGg35Ok0ZUnAUlhiQrMB7bA2Fwas7LQ2801JFFKoByfUn/aPpuyRrZ3GduHyypfudcDj\nQjM1oEMKbvRgMkXxgjE2EKOLPXwPmOzu+B730KeRJYcUSvLrAtuqhQuWtcD8rAmEqTJeHE8A/gmi\nv5HB+Pjz7+F0nvD06RMNpx+9T0vSZptDzliHgiEnDIkwJArexuKAOOeEP/m//gyffL6iA1Wf/yH+\n9f/9Z/j7/+l/oGBnxbJMQiNcsczTRb/BlMh74VlDT2bgl7/8FNO8B/BHfn78+EPgn70Cvle9zPo4\nZDEeGVg3sBBksyXqEwSMC7laqLl5IQNADzmGZtRpj9o8L9f5OvwJBxpRft4imzmQx+O6R0dSTke2\nluK3ytV9LB2M6sZhOkDM6Ykke+HR2giKJp/C5zdg52/OZsUFmtufnDF0npXg4QEsTG3trTe1Kjhq\nYW/RguaVWzaK9jW3eiPJ/hdRugv2uxHP7u7w8uFKZaE8YNRmnoLmm1WiAZ52TmEkjIf7E07r6r/d\njAPeenan3ixtuJk2np1aEVNo3LpStSFqbnIjelnMs5MHYZTjOOLm5gZPnjzB3e0ddru9u4Hnecbp\ndMI8Lyi19dgx5tjkU2A48k0bk1uGRZm0UuOd1y1lJK6iHKBXn23uvQdRBLZZGqgOIcnTSg2DYKkZ\nzfpi5w2mosDrfMK2WOISyMX76+RzNycI52zfNVgAG0vQpE0x7DenlkaaFIFMvMblUW1w2NA8umdG\nV37f7tu0oPaMeiHB3XW5++0ayIkPQOfA7rFGJaY/tl0JTcC45TGAly7nptEOoTWONOU55stYrtq1\nazs96ztYwjxLtGiyFUAJhgE9pqj3ZV0WKX1rxQTmFfO8iCdCx3A+a/GBCHbmWXvnTOJJMbBT7BW8\nO1qS+jxPXegb8ggeGBjGQNupKSSah9PH6wf6FAuMKkhagERDmcQQYzk7jd8eDgc8u7vDhw8P+BnU\no/Nf4iLU5uEH95jOZ4y7ESmJ57esUIv5HKzHQaEaAAJ7r5L9TqpKShnvLP2BaAEgoYLKfBXw2Npo\nuZKkCnSvW7m6EuREe3V8wL7tQI6WUm7lGZtlvPMEyq+JbAzk53XaY7tePJd8khyUFkLHNfh0qI2p\nAZ7Gyx1UNJINPMHAjbw4gB9TaC10vANHZN+HazijDNzikmXqXNWw3hvj4zhYRkfHIAEjlaUSmxgA\nVixrCU1DgWkxIXo9UuP+eMLTp0/g/iuTPZSEN1kz8lqlCuGQIS11q5efZgDHhyM+/uwTbMPfmRkf\nf/Y9vHp4wJOnTzDPE4ZzQl2l/Px8PmOZJ5SyeOityG3phydFDCpOpzNO50vQBmbgz78H/EsAfwzs\nDzuMQwagBVMUhFgvoWxRNokaP+UQXaEhqnXjxTGPeFRyBJgllzFdATIzrgRDkj1f18AYbQ0iyOVA\n9w2EbMoTBrol67sT15I9GLaxoPE4/d9kq/Hwi6iVsH6bR0rWbwdmgrGtjxb48m1vwM4X2PZaBUcW\nbHYw0xQNVYiN2FlCmuY6g1byBUaU1L0Lb4h508XZo2O8boFzMx3CdRtRJu2hU2tBBTCXgrkULMuM\n73ztLfz4p5/hGOrUjynj6QEy9kpg2lh5ERaASxng/v6I/VrwTxDq4i8rXrx8wLvvPFMQ18pXEpEK\nT6s81MbvpjlqjApoNfxjBbaRCLtxxOFwwN3dHZ4+fYqbwwFEWsJynnE6HnH/8IB5nqS8YuoBo/UI\niQBS1QQHVmxW1KBUmnXMlM+cE1LNSNQSOi3XJ1FUxEgr0WVP4MyDxM1bzHg1S55WN0pqZ3SZu2FY\nOnv+yeY3AkVj1hTm3x6jzf32uO12DWToJ1GAlJVfBxsNRRFdlkZ/3TW2DHwLgB6HNpstgJH2pmEa\ndu0Nmmd2nfLibrq/uD9vu5a+Nj+7YufCo4Gbqt6cJoCtlK95AKyrfAQoofqZW+jQNRLsZita8Zib\noK9agt7HTzr8BhisfKyBDqmipv1wNKQtFgeY5tlD1gzYzMvinp1pXjDPC6YQojZr3s2iL8nzKVgr\nS6XLcQQnLYMbPKw+u0bInfeyV9xLrUhFcug4G1+VggL7/Q55yF7YAKQhxgR869vfxk8/+gjff3iQ\nk353Q2cfyNt0Pmn4mhZyECaCWlbPb7H1QkQYkiRo73eSB3Fzc8DN4dA8XouU1OVasdqzq0KgvPE8\ntFj76vfPxKgkXrkVQKYVK2nxAlUShUwU0KAic5GyzyF/wAx6Ns/RuxhDYEyfIySVJWE96b8U1lXj\nP03B3ipj8Zr9ClRZyI23xfO2Ebl67EDe3mWwym2V2cobte/C+vVzMhBcTNesIXLdwGtlnprsbkqp\nlaNmyf01eVAqlrVimVfpB1UJMwO3h4Td+PpIjUyE0/GEZVzVszN63hbBWjhInvCinlb3JIbqpc9f\nKb0/AqpevHiBt54+AZixLLMXY3p4OOJ8PmNdpMKseXXGYcA4tLy0ZV1ee378b8D+MOL9t5425ds9\njPCwX9MoiNEZiyLYccATPDtWSZU4lIIOPMV1OQUEHR0GwdnRJjm8FnB9Ibdjk089flOcw/aRtZe6\ntdcaJ294v17TQY6HDW4jZaxsPKMVFUnex8pBW3wPcuDLuL0BO19gM7AzBtdwx/R1awqGWPZKIMpa\nK3LKUiWMxFu02+0Bog3xRoatggFo1mD0godIqt3UVJBSQmFgXgtmbeDHteDr7+zxcALO0wzUiiFL\nInRTgqyC2iNghytKYZzXgj/ClYTdZcV5XvDk5uCerwS4QLVKanET+5ndZgM7QOvlYKFgKSWMOykz\nfXt7i6dPpXvyMovFeZ5mHE9H3N/fu2vaQGnMi4pgx0INwc1SaSFsBnRGBzjZn4VZyjI3oGMVjqIX\nzphPygHsaIKwVI6D9isRZlwqI6EgQaykEei0l85d4KHtewp/bz0fSkEXBhoyrHkV+ERm2a5hFuXI\nSCOg6a8TQcz1rb/GRn5chTiPgh4OHx65pAukRw5zi9yVYzpAxLYm7QwbGme+EBot7CwAnvB3DA+S\ntan9qiiEm6jCUmsJ80pI3GLjmwfM5kLXuF+PXejL0T3YiYaGWcPSzpN0cD+fzh5mtsyzA/XK3HJs\nlhWLgpYGdsQzdJomnM8TphDeZl6eWqv2wNCJpgQaE0AZlLKAn9T6+LB5YvUJGA9DmPdaGVRYioVQ\n8SebyRKt99gDOl7JB7J1PIwDvvO7H+Dlq1f4y5/8JfATNM8O4KE2wzB42E5OCZWAVcGOsE+d55Td\n+yMenR1uDnvcHA64vbnRggsFc160jPeqBSgkzEjM2mYJ4f7F1gdJHmuF5GQSGGuSIilJwU5Kptwz\nQAwWbVGTlzeg2df01rNTOw8CkVSRowo9nwEYfQ4koVi+jhTwiGFbPEhbo9sl31BgEuRsI3TavNuf\nCmzsHeFF5lmx/YK3ZcPHfDVrI+c+0CisNae9xg4Ep+oXPv8Wri6KLVgaea+FsS4Fx/OCnz0seFXs\nnCe8c7PHs5tbvDxdRmq8/eQZiBmn4wnDsGIYF2QNHXOwo7QkdCay89XDA46nCbshYb8bRaeo5kF6\nBFQlwvHhHqWsmKdJijGNo6zr8wllFfpdlwXTvGAcBfBQItRSvBLbY+d/760nuDnsm+zwiS4N+DuM\nlifjzZADGNiCHaPd1oBbuy4FWu+M1mQ8UZ+tA6/wqDeAw0GPWyzbtvXsVO1paMaby3GQz0EDPNxC\nSNuJ4Z5pu0bQRWzU3Rrm1uB8u114yN6Anb85WwQ7o3bEttLGDfBEbAzvLr6G+K2aq1vMxOJfwTxu\nYrqjwHZoL2/YWtiakmnEWZixLMUtpaa0DAnY5YSCikje5JbnXj9sFmLZLK/ksYTdT5+/wnGa8M33\n3hGF3pWsZlFu5wasFCKpqiVVe5qwtXlKGr5mFtDD4YD9/oCUCPMk4THn6Syu8dNJ45H75qCNUV0K\nU0sa9n2NmVQpexrn2MtTV5ZXAE7ZQg9DWXLv4eNgJzvwsmdpYTTchtiSe40OKCoJl8p4BCscaMWe\n7Wt5PuJiAAAgAElEQVSxxoXIjkrOFvAEhYIed2+716wDQY+/t3Eb+DLFYnuj9haqIG1+892ZN3SO\nS0RnGjK014d+R2gT6uCoAzo6qQZ4PLJead7XlH72HJmWpL7Nubnsk8PgCi8c0jX79Aa7bb7ZQwxF\ncWqk3yz/0J46MKDDIQ/EDB4VnkuzrgsmC02zV+fZEbBT9J7mUHBgLQWLgp3zPGGaBej0YGfRJomM\nYnw0NSW0gbcMpsGt4absM4thpGxKObuV3qpW6vPjymB3MbQqkTlnpHkWBbZo2LElEaeEd99+B59+\n9ikefvQgc/wBBOj8c+D27hbjkMG1wCrZuRKlL06k11Ogk7Nau+W1GwfsdoN6HqUc+JzFu2T8qJTS\nPJMJzZLtuQe991ydd6jEKIVQCCiJUEqSVyLvb5kIqChuxb70Jm/lTkjw0bmMnp7tsnR9dWMk2W4G\nfux6cWtGHFMiyddr0E59PAj7CU00utp+brsHYGRmj41cjFdB2wtwnhTv3NkErMFvFz6Xss6/NhuF\n5e0wfvawIBUOGTPAh6cJdNjh2Q3wMvSAenpzi+985T2cTyeROcOCYRC5460syIyIkg92Pp/xZz/5\nKT57OPl53r7Z45vvv4VhyHh6e4dXx0tQ9daTp0AteHh4kLW+O3tFtugF/vFPforn4dzvPL3D737n\nWwAYuzHjZn+D03R5/v1uj5vDDmSP1B6AAmbzRFJNqO4loVbcI8r22A/KjEhu4EHj8VfkAvvzMz0m\nPFZudNwZB9TwqBSnzzTqPdGQwMqPcHXNGS9wmadjd+9/EOyR122BTlMhDeTUbo7aLQUgF/d/A3b+\nZm2HwwEA3EJvnh1z/TLXjTBg/V36rZQkL2OiKUmJ6VSiUrIVKHZ1W/INlCAQKtCOSylpj5kVizby\nixZgSQrVa26tv2jxsHJOBAEgVlDg9Qm7px/O+MVnz/HBN75qNyQgJggBW4RZixsAhHVtC6pZPxq4\nkH46t7i5udEmZtTydI4nnE8nTJMUJ6DdDqOCCntGtcoIiDZeo/CK4C6ONRYXkDEPyKhIbNbS1uPI\nO1AbANp4dVKyDtpW8tGesMRkt8o1qT2fwEjbxr1QvWqhCcCbJTJ7C1wa6Gh09tjWA51wlQs6NB4c\nCDscfw3odKPe3Mc1QKWi4lILQQN227Oz/xhArWki7DvEnS9ttxHkhLVKxOAkiq4LEgMz3Dw40TJX\ntYeOr/WLZ6hKZdXrldJeWi66zaN4agmsPbkaiGHiNimNgQRw1q5t8e2LlZBeZgU7fU8cy+HxiomF\nsdaKWT1A52lWY0sDO/Ky/B39vWi4GuBad0w+tnfAlMHsc1Or5TdItUsrhZwyIVF2D2rrSxE8nroW\nrDiAlbY1r3C0qlqPit/99nfxF3/57/Dwg1by93Czx1ffew9lWZxWiRkJjJzk/L6GQd6eQIxmWQ0z\nCZnUEx6eSwul1aIF6yKNPplB2XIexePDVcr4S1JeA+UN02oIDBe1fq8SDWCvBDBkn2hoMvrqvf0N\nLOoO7XWNh/RLqtulgYoIToQ6YRZplVW2f6cUcvvN/uRwrgZsxJOTQj6sl5m2MVAve+IZlTj6y8X7\nCLMiRzGstpxn09l9hDElkujM2N8NRLifxKNztez5ecbvvX+Lbzw74LwWjEPGbhhR1hVnbaSbB+39\nlKwKmgy2Bpr6s49+AT5NF2Dqo19+hm++9xRff3uHWs94ODdQ9ezuDt/6yls4Hh+wLDOWecS822G/\n22Hd77W4woIf/+Rn4IdTf+5XD/jxv/srfPub76PWgq++e4tffvaAcwiv3+/2eP+tm66EtOj7xlNt\nglmfBbnRq6sqabtVlUfRGOKnvYyckFPr+nOQw20xOT00ekE4XuS/nD9VQtVmpFEGRqPqNSTdjcmo\nKRgZ+vG0/aPeYZ5DBNp2QLORNRE0RaCD8Pkxo+Zv+/YG7HyBzcCOKbAWVgJgQ4htsVV1GZd1RckJ\na0necyalDGao1dGgQEPSvZVSrViBOJvucundsQTHdWmN+eJiM0tI3DoFUf9rzEYWyzBk7IeED9f6\naxJ2JyylYj9qcj+3rHiTiRbKIY1WgVLafRtIAeAA46BhHjc3N17m1Xp6HI9HnE4nTOcJyzxLQiPt\n/Dx2/yZrLB/IY3prQSlNyDEQmio2wOWAZ8jIyEh1FQWGotu4CdP+uFZ9jZJ5dUwo6nMBXYAd2y6B\nQSjS6gy5VaFpzMneB5iieB1sXJHgj+zbgR60PknXtwimfj3Q+U23zvPzmu0C8DDDiyxEpr9JVgWg\noQ5WdttOEI9rQhSpqmeob/DpfaI8FMm8N01oPQbOHNJxVYdMUGxrtOKbBVBj0J3WjZZ7JVqA0ZZ2\nWEIq1yJhVNOMaTo7yJHCBLMDoGVZPL+kFMk5W2uV3LnTGcfzCctSMK8rpkUAznkSb458t4g3SMEg\nkgEdLRMdgI6sqQyBA6nLcTJeJ13lZS5F6Muas3K3Ztmm8M+aHe/GHfb7vXji1xVcQl8QPVfKCTjs\n8fvf+QCv7l/hfJ70+ARURlmW3ioLCZPDkBvQSeRhrLtRisNIx3rtw+U0YMpMlWddJPl7XRbhDyyr\nzqtZhlBI8d5ZFTQLTYZGDYjRRwBPQqkJqSZwTdoVra3lCHB6JfAajTags13nDQb0/OU6P4NKwqac\nuSzCVgk0mRhPb8eSJ/WbHOs8OoFPm0Dqw4dSkEH2qhemj4DBfBU6T4ZlUoUQ3qhU23gSlO+LTiB5\nIwknLUTwWBTFjz95jtvdgK/d3oABnNfqJaa9zHNquSFkvERl7Hme8VyBzgWYmlc8f3mPw37Ae3eE\nd+7uwJRxe7NHJmA6H1FKwTCOmLXf3arFNQDg1cMJn90fr5/74Yinrx6wG6S889feucG87LCUiiEl\nzesxz2yvfLcqgFdADQcjEwc5Ewgp7m/ewWbM6OkxGqLAkXde8uktYDLjE8ia6+q9dOMK96Xy5Op5\n2o6XBWnC+rRcHasWnGLD3O08Bnl9bU33embvAfqybW/AzhfYYs5GZP5Fwz28J8QiPSha928LVWmu\nVDuHxcWXVRWHWr2KWLMYX1aLkRcQY5xtbPJBk3KLKUUN5DBbYQVT//UAfTNrR/s+WNcA3N3d4Phw\nwvdXVbS+u5moD+RtXhbshuyWFdua0AneCm7KYfNAJS/TvN/vcXd3h7u7Ow8nPJ/POB1PeHi4x/39\nPc7nScIFbZ7QFqt5jCzUvT2XeuHSjRYaQrO4dVXxwr3EhECvrheLFgy5nSP0UjAri3m9koKbLqfH\nZ21jZdEHyKasmtXRyw8bTTiU6irkBUTbM25qeoPbeTpOHQU6+fntKtgwRVE8whmV8VKgt2bY6i1L\nV7dOuF1+t7mVi3ORjdESvY3eDLAECxcASTANl4g01VVNc2OCKtw1JJKWokBH1nYtVpSg9+jI+W1+\n9C+y3kiNd1Rf06wFT1w9doFP9r0ZXWy8no/GYA35sEaiXFnCzmbhYVZV7XQ+aalpKSxgBQSsolpR\n782yFiyl4HiUBoTH00mrSQmwmZYZ50U6wq9VeB2L5UHWkNI8svIFNY9WVVISs3hR0R5Tey6tOmYi\nKRm92+0w7nYbC6lQbM4ZwzhgGEfstL+N5O7I2q15UGXLetEo2GEGDyvubm6w027xpRRRsXV8rpin\nhEQDMrf8n+ZhakqdFDEo2niVsGgjyXmexHKuZXyLyhSuSatnsYY1rqGqZdWEa4Yl77tFnCsqE7yI\nTU36IpRK0j4B4pGKckDI6FohEkc1CuZwqVRtjQdO3BFYXFrWO1nn42ihOS0vEgEhtmOuAZzUeVN6\nz44hlgZuZZ+YP1QZqri6awHhUP8OZMUJJJ+pzV0bTwNXBk7gYc7jOGIcB9wdRM69tuz5D1f84uGI\nbzx94rw90jvZkAClifbY1l8Tkv7LhwWHpeC9mxHDOGAcEwaCRIqY0aYUVCItS5+xLDNAhOPp/Npz\nf/SLT3FzM+Krbz1BIsJ+HOAdMoDmgSWj4aCJBF7mfFCFiLPSa7R6RU5E8on03QECbr2fOqBreoLl\nyLgeIIYLEFCRvEv79vI25ovxhHWgO+qYmoQ0DadbO5seRgivuF9KyStPOqiByAgKa7YDhhF0fcm2\nN2Dn/+MWPTcR6HQhHusaQtx6F6QBnuLdxbXTeOnBDgAXjjHJ3pJzzXoEFWq2SFbr2q1KjOgOVmlE\nmGKzhGC7iv3cxqBdmYWU3n767A43a8HnL4+PJuyOwxAAjFWra5VITPFvilyz1thCHMcRt7e3Xn3t\n7k5KTZdScH9/j4f7B7x69Qr39/eYpjNqlVLRiUI+jDZDJACsjKgDoKb8+u03BpYp5Oj4/PV8U4SV\n9ljKyYGOha4N6sXzYgj2XGDOBNaKbdoLRD1ZxrDlWsETgMaMO6DTeQp6sEMgiQKilgjpt3AFK8Tf\nmFrvANLEXEvQtfFFeuXtOdpMIYJqv0QHePReN0c9OsDHrE0d4OphnSmADszMyxL62wABo20GYCCj\nbt7FptzAjvRZiRWBNHyoGBCyZ9rG22C6PX7q83q2ICscBwh4q3qTicjBWqvu1gBPWVes84KyLA7+\n13XFNM2Yphnn8wmn0wmn01kBkPbU0bG3nB4tQLBI1TXptv6Ah9NJQuFWey2Y1gWFhSIrKW8bBqQ8\nSOXItWCfpRO7eXwMKGZSTwlJToNZYBIUQAC+9nb7PfZ7ySGIYNp4cMoZu92IcdxhHKTTeyatmpgz\neKgt9y6blzaBuKKugxYNKOBCADcLunscCMiUYa3PnYebohuiA2otWNYZHJqQLlbQYTpjWQT0FAU1\nIMmsAccwtpCHZd4EYkjuFusCq+BKLWdDvTqpNMu2ef865chAha2LDpAE5cwAT+AHsapbI+peEbt2\nrt6yrd4XU+ZtrCme4/K4Nn4DOk2OxtA2eKXTpkBaE2iGgUQJDZX7arwvAp7G/RhUSYEOdfffgzpS\nbGRGLqHH3W6P87JirRV3ifBh5ddGUZx+ULByxe2wk6iBTgHWqUN8hvJs7hgAXr0WTJ1/WPHpacHX\nx8FBhij/0CI67dkxV410IYzDbxLuvuBXL+7xzXff2hjI4MDNmRujRVqwGJUMtPeyp3sYPWh4bLtE\nrG0gWx5LPSCJFVetN6LkwJHShoFfvQlEENG+83PadcJ7O6Y3xEXwYnRu4b9uCPDbu7424vndUHZN\npm4B2JdoewN2vsDWMW0IgVi8ekzKsyZ4q3YQ9lATJaaYl2INM+d5xlpWybXpQtiAnKt6lQYHCluC\nNRFnm7muLT8AhG5hVE2ARK0iI9tNNsFFll4LdAtTr3l7s8NpXnH+4Sw/fQBP2H1yd8B+HLxRWTw2\nWiLMSyALrXZgh0hKVt7c3ODZs2fSV+fuDsOQVQk74uXLl3j18hVevXqFtUjVIotRtvu3KiwAI7EI\nzU553CqOZNXWyBu+Rq+OAw27n9SsvzHUTfrpSIJozsmtLswKttCsVlaxLWdR/JKCnQiqhYRaQnqr\nRhOSLrmnHeaqIDhJPoCFx9kTVdoQ0BQ2Dm8GpPUgZpUNvg874Ilro20B4FBUFPTvMJ+bUVzfXgd0\nHgE/glvYb4DtNKExp89bPIXerPF5Bnqg48dWt+ABfS8HAzrmZY0NONtzjWCnAR6gzy+zMW0t5ozG\nn/ycgLVK7OjIAHFZVyzzhGWavLLbsiw4nSR07XQ6eXjoulgDUDs3oTBLU9F1xTRbmNqMh4cH3D8c\n8XA8umdnXq2ErvQMoZxBOSMNBEbCX378HK+OD34/T++e4tvfeh9MhFLFYzQQAVRdCRLSVcu4loAf\nNfdmv9/jcDhgt9t1a73WgsrFQ9d2+717cxJJOeghZSC3So7ybuFqFWWUPji1ZileUuvV5s8pJ6Q8\nap6e9vZJ2e/RwEEtBasCF/Oqeb7UJGG567qgruLFAcncQ+8n5m6BGS07wNaDgWpyWjXAU2vCy9OK\n6dURbx12ePuwE0U2KFIg6YFztWIVep4utHHJD7otAJ2tdRqbazQQEwsKNIXOGv76+bZha+jDiqkD\nPRpeGDvZI+Y8CNipDFCtgM0stW4r0ueoDUFkg+TMUG3f2Zh8bAp0YGNMCXkYcF5W/K//4l/iTz/6\nyKcrI+H7eH0URamMQUO7mxJMbaqx6RkDYD+OePf2gA+P59eCqfMPJER1yD3YcT6l5zVjCRFhNyS8\n/Ruc+/SDBaVUKe7REEpPTwzn110BGKP9wPNA2Yub/HW3dr0GZCMdUyMR39+LEFGgGwpzTYRKBniD\n0AQ6A7KdtoFu+FiaLO9FU1wHHrZIofUFWulrop6uU2WpmhgMlHxxPXseZk94A3b+xmzzPAPoGb15\nc2KlIvPqSGGA5j3w2P2g9JhLWDZya4JtvfuxJcpH4BKBjnuDVmECpUr/C7eCBauxV+kyiycgTTKD\nUk+q4foioFYnPueEr7//Lj7+/DkefnD2MT+5O+CbX3kXy7p4vhIQqqVCQumYGRVFBT6jrJsmoETu\n2Xny5Alub2+xPxwAlr4fr169wsuXL3F/f4/T6QQiaInnEUQa14/aWz9SP49mbbVSvc1K0hiJzas9\nr3meQbUiJW0IGEIPxnHEuBOFaxi1zHTKTUGrVXTiUjVGHqgs1kvp+QFNMiYHOy0ExWjJFNZNRT2d\n285iowKaKGEYGmiLtCL7NfDj319ikqubW50257zc3GfRm62unk8VWT8qWu4gAvdCOAVLXvxu+4n9\nvx7sumeHL44Mg7sAyOYhJKrq2WkAKFasCjqeX8eLGYRre0E1vV4DTtzhRvtkXt4a1g7XAgLBiix3\nHkE2Ie4dbFV54AbMtEFgUT5mvTm4ho60VZRt82xP5wknayY6z8LbLKFblYChkoMdZFHyPvrkOR7O\nO8Qu7a8ePsRP/upjfOtb78n+qQEc4xG2boc8AGBkzR2w117D2Fa/hxXMJEUcSCthJumNRUoSRFZQ\ngDpDRTbll1uTYyl1xl6B0Uq+GohJmfVVkSw0lZLzW3vuFg5km3nQFq10V6U7KQANQ4UYDFpBHF2/\nHKrqmWqo9GO0AOMbLFXzfvzRczw/Nd79lSd3+PvffQ/7cXBekVNSI1ESHtsc3JulYYYBBis9RtDU\nJ/0bUEX/3VXAEzYHNcozScByAzdboLOxwF95RSBiRkEbs/OWRGG+be2iM4RoYhyIpfrW665jT6py\nDfk1Gf/jP/sR/uyvXnVroeBD7NM9ploejaLYj6OPbTufXjSH2nzbHv/ed76OP/3ol/i+VUx7BExR\nGrDf75Fz7oyEWfNXLQQbaAbGb3zlLfz8Y8b3j9Nrz10q45AV7Bgtd8p1MCyGV85NjiUN+SZqxX+c\nFzo+6o2awogbncW5c4NvIkCLOdmQKIzvgp5CdUPmeA9yH1uZG+ntAuiEz/48wzyIXKfgyWl6jA8U\n6NeE6TipivexCaSL+eE4CmoRIV+27Q3Y+QLbotV2ImHO8+xg53Q6OdgxQAMA1n1amtoFyzxrpTbz\n9IQX/Bs4gUYFPQIe8zQYMgfQPBtFXfDO7IF+CQWFjVmSJRmwsrXmsnfrtR5rnozduMPv/s63tEv6\ngv1Oylyuy6zFEUQxECFJ2t08iUCs5AqX5BdxsKQ3sHNzc4MnT57g5nDAYb/3MEEHOw8POB5P2O1G\nHAax7ooSKaAhWmetUlrnrQnNTy8AT8fAxfLNLDkR+52Wk9ZS5B3g0V5Mg3l13NPEkhzMrGqxgNWU\nM9LQrO5Vlcr2bFoPlpg0aVZGY5pAE74u9LSHg3idxLppjP2qJedi40eBjh3XCZErWxvLb2Yg6kBv\nBCkKdOwknYCK148C/9qwFPBcAy5woXslT8GBUd87SzxoVS3AEeyYAhIBWZNFIuD1+JB4akp9B3aY\nLwQXEaGKWufS04ToNVddnCLPV3JFoMXBl9LATlnW0JCvhaKCWUvrF2k2Op1xPB69JHUpRYA9CT/K\nEIBjeTpICXMpeLjWRR2Mh+P3cJ6eYhgHUCagNOU9q/czhxAz8+gY2LE1OM2zgrkqjTZ1xhI1fqrU\npA2RMxIlX8vOO1ICc9VCATtNz2KslDpeYtbulAzoqFKoOUnR6LVogYEa5tcKyyzrgnVZUVeJDrBS\n6K4MOTC/vu7cUltj3lcLZfvJixWvplsAfwRTrD+5/xD/+7/7BP/5777fvBs5I3MCWLxV15a5rcNq\n/Bta9RLNONboX3lUUGg7ZW+z5i6VwQZ4ItBpYCUFoPMYyGm/o7t2L2/d06ugslYGUDsR6vqiji6R\nyjJs7035s1NbW5CJEn72q1/gX//pnwIXaf2MqX4P+0yYfqjj+QACdH4E3B1GHNSDGQGP3Z8b9zrQ\nI89oNw74u3/rO/jkxSv8q7/42aNg6sndLQ6Hnc+T8fqsveUAoGi4uPcCqwXf+trbeHda8eOfffro\nuW8OAqLM4Ap7N7avvNrYhpAywQq7d8q5IY0w985XYeczw63SkXk89WJNVkV6CfoZxZeBnNTPLQEi\n3S+3frzUn8dOvNk/jgkgnwe7pnmXmszU3e2/oNs0XlUlLB2BV2zkuAOy11knf8u3N2DnC2ydZycF\nsDNLn5dpEsvmqgqxsLvGdCpriFpUYosqMYlAVVYUq4WRslkwsjMVJ9YQMgUABncsCdosGhbGZr1s\noHvb/6ZUmWJl4Q5wc6FU9oHfTxMG2V6qdBz2e7EYTmfvz1FXYXxiMZUqS7WKNavqeNlyGFiEY1bm\nMail9qBNRIdhcGXhPE24v3/A/cMDTqcz5mVBHjKEEWR4FSOOycEN8OQQQ28hDfZdFKwAVMEq8NoH\nzFgJ4DGpJ8mKECRXahrQyR5HLRZdacxaNIytEgBKXaKlJJ1fMiArpAC1zgKBmRmtpUvlwIDQ9t4e\nAye9ntzvIwp3/61Zlx/bnPFSZJmvOSAcZ+sHDO07pBZrubDOqwId6kfmTeM2AN9BkSsxjf7hCmR/\njH/fFk0AC6pgKHABWano6pXRwJL4zWrT9YppCpxRdR1YyBpvwFRpVQpNgYmeBK9AFYS6PZvHtkZz\ndlvql6pCn2uV8JUlKOLeGBHCy+ZSMC0LzsuC8zTjNE2YF+krVgCtiGXeJ6UtIjAlcCIsZ7X6PtJF\n/dWrBzx5eotxN4pgtmgVgq/jYZT1tt/tsD/ssd8fMI7WHiBLHozz3Op9KqB+TzJwyzI+Az+SLD50\nHuBSCsZhxG5cPQQywSzzlvei95qkPHTKAs7MAl6UkUi1pxXVqsmt0lS1rCtO5xnnaZFmk0Z3aCVt\nrUrgo8vIwDwZ0NH7JyHR81LwaioA/gdExZrB+Pjhe3h+POHZYae8lEF5CIpTUn+x1SbTNckaCcDU\nDDA6QAGoKQyOgvLYAyF7vj2/CL+rwkdaxZQd3LT53wKaS+t7Azr+0gvT9jskEKoAq1TRygg3Y1Pj\nMTLXSRu1ghKaQ5baXQcl0+7r5598qn9dXwvv7HZ4VQoefrD6L09v9vjOO+8gJw/SbY1jAWRdJwNJ\nSLYrx6a9Kz/62tvP8N6z5/j0R8ceTP1z4K2nN3jr6Z3n0TR22qIkmBnzYuHWBqoLuBKe3h7w7MkB\nL390vjj3s6c3eHJ78HxdL6QCNB3KlG3lG4lYHwEJrzVQhPbcYtW8So0We8OWnKKiijGSm3fK+BQR\nbeL/2FGPr/MLwNJJDj0syI6wZmB04WjqEuiA7DiF02QAcAPG4nX9AztNdPuFv20/0z+s9Hz7kcIz\n//Jtb8DOF9iOk7h6kydJAtM6S9ftWrFobLlVOZF9DVELu1y5IlUDTGrxzwmpDqg0S1gIV+xGCcEY\ndzsHNQZgCjOGnLC/PeDm5sZDKLgyHo4POB6PKGyeg07FgnU5r5VRC6vANUtQavy61M5mGMHNYKEN\nEMnJZXWlrNYqcefzokm8cr3scdNDs4ASASioKEAhVK5Ya0EeCbubPe7unuBwd4dxvwNyxmma8PL+\nHvevXuHFK2leulZGGgcc6BbDOAKUsRa7WxGupQLW6YCQQYMKRrX+jXnEfrfHbjfozUueBez+awJq\nBjgjJyANCVn5IkP02qIKYjFGrYzL7tPmR7xkcmZSAQRTXlVIgDSUDT3YaZZAboytY2DBAhWUBt9U\n2XNL/ob5N8nLv56vdSF0Ldwxbo3xbpQWk2A2D2iC39lr4Mo2l3ZBh+rUW/Wo/bgZwOWfXlIaDYyY\nAhMVNaEjvYbNU5VS6om1eg0YmQzAVCAkzZo3rlbx+pCBGbV+Uq2AVkVDkc9spYQN4Hrn79aDiZMk\nzrMqMGwC87HHJTfgSgQg1ZhWBtaUUZlQBpIyznnAkgbMKWPOA+acUZBQiT1EpdSKeVlwPE84ns44\nnmecSsUJhJIHFEoyHykpuCEQsxY2Jtf3blMG8Dke66L++ecv8fnnL/H09oBvfP2r2O0GZDaa13nW\nvKhSgFoSuGb1EovQns4nnE/icbKQvHEcpLdJQsvdCPMk9CbnJUCATZKwswStuqgva1DKVTmtKtyW\nn8mFkUtFXgmUWljzugLLSlgKsBZCKcA8Vfzik3ucphZath9GvHU3eA5Go1/ha8zUqgEqHRtfMkDB\nqvzaKphcRF1XrF8czzgMhCELzxJ0kwOfMFDHQfGyqWuqPXQ0zC2CAZQ0VFNm3JZ6yzG5VOAefaWs\nzTgb+JGQYbXuq6xGSgqwk3vTIwcznkkEVCtiwyYDo6chdQDHeIPcu/Fpye8x/pGgCjdL3kaLBJX7\n/Ojnv8LPP/0cGQYGr6+Fdw4jvrm/w8LAXBmHYcTtbgxArT0HeTESKhJDKgJWDl4d22T8iRn/0e98\nDf/qr36BT37QmoC+++wWf+e739BWD30VPDNCAQpyuIK4ICNjJaAkIGep4vZ3vvNV/D9/9TGeh3O/\n/ewW//7vfAM5J/doLqvoUqanMODGSClCUlExgCAVHWvIYY1h+SYfSOm+QhR+BpDAnsdsJlyTh53M\nUjDU5A63ae4+cPjd1ocavrxwSPtMJN4kTYdzGWe01hlaUVGLrnM1oPm5mQEUEBWkJGHU4BVcF59Y\nE4gAACAASURBVIBXEIrOgYRXEwqk9Pyq81YcLHoWmrEQMwarcbpohNCXcXsDdr7AdjyLADIiICJM\ny4K5rA50Fi0z21ySushI8zNq1SZiFlJE3iJv4QpeJqxcsR8y9jc3OCiYsVhZieNeQPr707feci9C\nqRWVGKfpjII+TIpZiopWluZ/VRWWVpI5eYiClc21bu4AkMbRE3ndo6MKnpWhFPf1imWeBeyU4hYt\nJIAoS/K9uVEBFwBgPQdXcE7YHQ548uwpbp7cYtzvgZRwmme8fPECz58/x3MDO8zIw4hxd/DqU2up\n0qCPBJBWtcASiyWYkBFLkA7DgMN+h91uxLpKo0SuxZOAuSYwZwAZGBISRrl3MqEpAHQtFaMpdL0J\nRSwmtcCsToD+lJoLGgC6ECZcvvtxoE7o9FabS6XXxRu3PhqdhSsyMj0/KPBz9AqzKVam3Dx63asK\nePQEkRvLuhvU83JqSlRXBc6xWZNG0adh31L4u39v3hhPejXwEwBje1pw0KIuUzEShIskZpACIQP5\nzJY31/fboVIAfdVSkVYtA72u4FCyvoR3ZqmEiJSBnKUEsSpy7gFzpNbPuz27WEFurcAKQqGEmgmV\nEurAWPOINY1YaMCcBkxpQIXwgsKESfM9TtOMh/OE42nCeVowrwWz5XYMY6tQlJLwP5sbbs/q7pDw\n7MkzvLy/7KL+HyLhh6jSjPB4xq9++TF+/zvfRuZgPDAgiYpaCFwzuA6oawUnCb2apxPO5yPOp1Nr\ngLqOSAnIGtLqlZTcQCHW6hcvX+DhdMazJ0/x9tNnUtkS1IGdSi2nysEOkRhAwFiJkVL1fEEzXNQC\nLKsAnVXJ4eefvMJ52iOGlk3rh3hxPOG9Z/tgDDAqFut5JYKET5bmlNf/k6/jRv3NWH1dsR5JK8Sx\nVJTz6CCGhr6QwZ0O9JAhq05h0xBpK9FNpkQaFOCOh1j6R2fAuQJ8kvL4nIf2LQFmxLLGnTJ4SVwH\nCejxACM3eijYUn5Tbd2L8NSZNHne+G2rbwop9mM5aqo0Jvb6dionkoZ2El4dj/jv/+n/jP/j3/xb\nn6tnd09xf/xDVSxlLRD+EO/c3OFtDffqmo+6HCDt3aZ82fiY8qSk4Cv5czHlVuU7gCEl/IPvfgvH\nZcVxXnF3s8fhdo9Fvcgt9Lvl/5hsLaWAuCBxRgZjTA3sDFnCvf+zv/1dnJeC03nBYb/DzW70arDM\nwMQMNmNxqahF5j2Pom8gJVQCKjG4rmK+DMYuAwHMEhkhxkaJ90pQryZxWBt6iIJTNu+dzU8nRHSQ\nZOStP3aAR+fdhJvyJw6Ax1oCJCJQTRKeq2NlB186dqLWrqA2UKcrCswF4AKC5A8TKsAFqKuCnVXW\nAIoAIQU7pa6wsGs5VxE9zMP/SPSbTMjDIMY3lufxZdzegJ0vsC3aMCtxQmJhNqt2rTYrhL18u7BQ\nm2GsKQK2pUHLDo8DdocDbu5ucXt758xMEn4Zy7piGAccbm5w9/SJ1+Zf1xWv7l9JuVZD4mRCIIoJ\n6piMD1WtQi2RVd5tcTrISdrtW7VQrhLHbgn8ZRUFjiuHaiHZq431IVa6cHWuOJF0fR4H7PZSSrMw\nY5pnHE8nvLy/x6v7e5zOE9ZVBDtp80BgY3WhFu7EDNTUK9m2b9LxZbX62T0p8hMGqcYZERjNCsmA\nF6EoQSl1hc5kKps1RgCZqExmIdSxGLhityVehCG5mtEpA1vgc51+W4w/NmBnew1h5K5AtxM47+fN\n2DyPY7Ntv5Njek9PUCWabDFStRE74LGdyIVPN6hwzDZX53J07MoBwuq1+TWFkBCfn4Woyd9kYI0A\n4gqqRbTYql4fFXCIr1Lae7G/G/iRvjel6yXh4a6ctS8sI3FGzSaEKawr6v8m8jC/BCgIYM9fY5CP\nNzGQxgU0zMAwgtOMSgkrxCu91or/l713i7Utzc6DvvHPy1r77FPX7nK3y6a7HRO35TixFdsxeQBh\nIhAvCCkSQkgJilDCA53wgtTkBSk8QSQkHlDeeEAQBC+oJSS3eUAIR5GiCEOs2Ik7doIdu93Vrq7q\nrjq3vdec8/8HD+P6z7X2PqdP28Iln1m1zlp7rXn9L+Mf37h842ZdcXN7wrPbWwE7t7dYV60RxpLY\nX8YJ42gKps5DBRo+zsEAFfyLX/gB/LPf/gY+fhRV1P8kCn4RDW8hFyO8wdOnz/DWa9eoVSyZbMpo\nY7RKWutDlVyoEnV7g+V0g2W5Rd0in6Aow9gwColIDhPeasUv/5N/ive//S2/p89++jP4Mz/+42JU\nqQng6MsKTDvYYcbCDasmoZfSlGhBBqZZTLdNcjxub1fcni7nL53WvwjmI8ZxcKUfIMl7bErBq7wm\naE3HdQY58WIA00AYUFBxDjJHKjgMjFo111IpqqkpGEhgpyjQceNEmoMi24zm3lRJhks3v6UYq3um\nUQM1adcO+BjgCfXVjjPPE4Vs0rA1dsXSpoquz7ZOWoRDBmw2xwA9ljqgExLTuzeJGdGQ4ze517/5\n3/73+PWv/ZNERQB86dkTPLy6xqNnMRc+8/qb+FPf/w6WZzeyNuZw60R3Lsa3xA5p90e6bnVyt5f/\nroADeON4wNvXD8ClYBO+d0Dz4oyow/pJZFRBJQA8gsAYCqHVgmYh7mqMnacZb7wmoZESsmmGHI0K\n2TasUACjdcAAkpIJGqZoMr6QhhPyfn2xf+KLvEeeCXnBCJBhX7G3nZ+O+iO6zrZ9mOHeTltbVZcK\n6mzrl075ijvqZLfOHW7aPzbS1DsFZQQUTUSNHVXWJpLfir7CNKtrmdyUjscAa+7BIvXkqYf8kwl1\nXoGdl9oMmJzlRNh3qqjnfbr6OKpBmadmHEXxNzKDUgoOGrZ2fX2Nhw9fw4MHD9zKm/ed5wOOxwMe\nPHjQJVMyB2tYTlTM+3jOTAq3y5vtb89MRJ5/cqnmTLZaZ+roTKjg+SspWTWHvtkxtp+Ffi3LgmdP\nn2JdVjx9+hSLhqJIXRNV8FnOZYJ4MAnlwoD8PQwxuiCootC2ilZIwonMai+N4QuBFaXrWPB2z+0V\nnjn+dlBghSztFhCgo3GTGh6at+VC7YKQ6QHOHux89+P6ZTfro7vCp+4CP/flkXSbIpYX3f3+U6VF\nSfs++kvGSlgJc8T3Bd3F/mPbV4eaemzMEmbju+7mR63Ja5PyYTw+2xSwoupkagC7dtPnKObh8DFQ\ndPwg1X6gLr8HkHFXQdhYXlGPi9R7PAvpgHpyt3VFXTfJS7y5xbObGzy7ucXp9hbLadHQXWm1gYKh\n0O7VnrduAjRc0RobpnHEF3/oB3Fa3sEH3/kYv/vNb+HnFejsixF+7be/jtcfXuGHP/sZjKUkJUHk\n3nI6qacHAGSs3d7eCDvcagYZZaiEELhYLaxB5XEhwj/8f38L337EyKxYv/fBl/D3fvmX8VM/+kUn\nKzHmzSAPifm5ccPaGpZWYx0IpAKrS1KVpGDdVu3ly6FlDFLyFVtKSMP2GrxAaCouavMs72/Pt9aG\nioY/icf4FYRi/SMo+HVu+M7Nhk8/DJrsnD9GOp5iboSB5U7ZhB54BSgPsHHxuAtlFnwjOx5+dgNh\nLg8dwCTg70CG+muXXr47QUGLtjTF1YLVXHnOhqqzlxGYBDD5+vvfwt//x7/WURH8DIC/woz/6tkT\n/Cf/3r+DDz78ELzcAuuCR48foy4nDye36BJfT814iaLXO9dV9m3o3lGcy2ozjGWl24wK5mEXXFgU\nfJC/C7mJgp1xxKQkPofDEYf5gGGQkhSbzkVjH1yU/t1kNIV0lZcZlHObOqi7vE6ebzvoQ/ft+91u\ndn8CZL6XZcvGX2uhv+U55KL8wm3bOuI1qUpP264X6NkbLz1/Ny97w/wnaXsFdl5is4FyBnISoBjK\n4AteFpq+QBQjHChOLmCKcikF8+GAGYSHDx/itdce4urqgS+qABzsHOYZx6Pk7Nh9mODKtNcihAJw\nZaCzF3wZHOXfMjjLLGYZrGRK7f1x+4T9/WLgLE+FMJYxioIq2OHGKOUWz54+xen2Ftu6eW0LTvdP\nIIxaFFBC67ZY8M+Aji1OmhheK2qljqHKFmIrSpfZVsyrtQd6rWPVisXOazTYv75A5XYwC0xekC+P\nw0tA5/+P7dKcuPT3/rfnAh5XCNEL9JdFPtGl3t7gIAKw895119n3AzuHnVT34NoE6Oxy2C69qsWl\nJ2p6P78tMpYQbcQlzbyxYYFrTb0FyeIZBSJz/aY+/EWUcZKcHSYHXQZ2lmXBfBoxjQMG7a9tU5r9\nmxvcPHuGm5tbKUC6LGBY8WMBR9M4Yp4nB3areamqkBeYkQA8SvgfGMdpwjtvvoHf/ea37i1G+Oir\nN/hn7/0evviD3+9BJ+CQjSYrrZ+WZcGidc/qJgpWVcr/dVlFNmmYLpGEJn/70UfYs2IxGN/66C/i\nw4++g+M0S120zZ4nQLm3b9MaanWTPjDFlNSWyimssEl9MNkuh5bNyvoo8kfBzlCEiKUSWiXUQuoF\njNpiwojcy/ZN7/Xn0XAL4B8A+G8A/F1lgPjVD1e89azhT33mGuN4rsA3FnIHETz7SXq/kh1Ax173\nGXD648/kTK8CRlJ5p6iF/M+/GdgJoNMbtIp6QJliXcjz3tvAB1vzMeD7pnBWm9tUCO998AEAgbV7\nQA8A/8sv/h38pX/jz+HxRx/hOx99B9M4qFcv6MCFFMcK05qnEZKblIxQnQ6SZK+9O4Dd9ZNt4eEW\nmcmNIHlL2mYDASwex0KkQEfmmDCVTkI0dLzC1dURwziqR1OKEd/eCvGThfWbkVIajAPrkLVxYsBM\nDLG7t/u3C8/Z6Qjf9eaxGMhv3+22H/OlCO07K7gsMDtuAGe/gzQ/xdi1q7uzn08GLAPxnHvB7pjD\nn6TtFdh5iS0jW1Oa/G8KT4b9fTZAklC3fW1wbpsUi3NgoSFfwzA4m1kWUm5ZTgM802CflpNXM77z\nfnTbhzPt980emkueGY+D11f27Oy9Oga09i+A5XmV7tVY15bTCcvpBG4QStvTSYgPFBzKtcSyRgQh\nUBgGbGCwhg9IuA56ZS/1m4OWFJoiv6k1VGPtcxjfvi2I3KYY7bezHOYFeN/O3XG+/+VxeFl5SGv4\nrm+ft+WxdZdScd9x9x2z/y5f567Pvi/6RRm4byHL6EiO7v4EvH5NAF10+9onyt/qPwGQepDuOyp4\nApvnJRSjS9beDie5TCAwUqFDZq3ZIb+3gSVX0Mae5pmIt/DCmEo5Mz3lqFjqRgigGpiw0YZtszwF\nec5WJbSkriu204LT7S1ub25w0tdyq17WWiWmn9QzW4Sty8L9LGadtIhxUcWPSIp4TuOASWXE8XDA\np19/DV969PjeYoSPvnKDddtwfXWEUfu3ZqyJphCZp3sDa2FjoqgT07hhq5v3bxsHEIDHt0YOcNnD\n8sFH38E7r7+RKHaj3o31AUDYuIZS1iQPxHIdXDEyghgwDuOI43yF26UPLSv4qygo+OjRY7x+/X2J\nbpbQGnnOTiNCaYRGFY2Lh+IaAUceG1cgAKvDqr9GwN/bgcrvfLXiV7/1DD/7uWOnLHfAwedeUtDu\nkn061tOM1N/CGNgpeftCojs5Q3Y+vR5fkKF3y+Fk6dZrl918kfVZAQTgHlQOwdDL1/S9tQmIhNrY\n20jWlHe/7x0AAmv/hwuA/rd/4X38z//n38Gf/9mfweEw43aePBLE2scMiEQSkVDdY4ozw6XJlyzd\njAEtA4YMjFA0H7AIyYiZFg1oe2i76jySi0yopaBuArzHUcowzPOMw2HG8XjAOIoRZKtN8oQ1BNTy\ngYsy03ZDhnLbhunJdaL0G1G/jvV6mspIZhtAvy9KvHc9A5drHdy9dboI0PVXawJYuCTWv9bnhHf3\nkYC179/N16Q3ALvj9bgzncHG0CvPzh+ZraT44w5F++IT9W/u2gIti0DN1shSCmgcgWHojpEFO0gA\nmoaDbJuQFbQmpAg3Nzf+Ot2esLVYhC5tlzws+4KlGbTkBScDnSg6GDTT9tqHvnXKbFYaSYr5WZ2M\nQmKt2rYN2yIVxZsWNmxVcnXM8kai7aEggcgmYQPsArl4TQ5SZdJilBlw66p5ZcgsVw5ujJraXlaM\ntPhnY6spRFpo8IIlZb/YuvdvVwNB9+usRTaGdkIxPp8L2b2wv+v3FxX4ef/nHXcX+LkEbPLW329/\n7+c25Lu37MmJU3G3MOpdwROsIcBB/WvwZdSsoBeAi4Egslooej4bXIq5g1VOi1mRMnzZwiuFGwXg\nFLWeN7CMPR2XAnYImVbXAJwBCAIifEG9yfYKy7eyStIAZslBqQzxcm4V27JiWxYspwXL6YTT7S1O\nz25w++yZgp1brMviJB6FxEAzTwJ2BCyJB9ZykMBNOLJUkSJIMcTDfMB8mDRvpuAnfuxH8Cu/9hv4\n8sePpHs+v+vYL8jbWhvmeYZ1T60bliUASA4vBTiUPRrc+ikEB/I1b0rW4uPisoflN7/5TXzno4/w\n7qc+DYIpjOfGr2rKAyR5WIaEjisdG+7v1bnw9mtHfOPDj4EUWvavo+DPouFv3Jxwc3PCG689UEVT\nqOuN/KYSoVQBPdwaWqEEdkxGyPs8jXjjsOJLp+1eUPnhVzbcVuCNw84zuAc/3asE4MHlLWRX6Y7p\nQJUamYIqegd4HPQE4LlkMMrgzMFV0Xm4u++83okxLRlISIkgdp4RuYf988FlPZO1hN5zIXzus9+H\nn/2xH8V/9Gv/BI+Yz9q+MeNrX/k6nv7pn/A1cRxHf3YBO4OzpNVaQFsqgopzsENK2GNgLXufA+wA\nRm3PpaCN6j2kMBI50NH13TyiAnSE8KQSYSvk4azzNOEwT17/qlbG1IRIoG4SwjmMEZpnNarMo2Fy\n1dR11UJg8lynOF5UHydbW793nNNthndedPMR3K3j8DEvhCYEqU2oYqMkb1xujWSwTpa0MArg/sc1\noON9ne7x/tn8h3t7BXZeYgvGLMhClgdEUYaesYHqzgvTmZd7AGHCZtu2cJ371gukDHhqrVJ4bl2w\nbQI4DOg8e/YMt6dbgCag7AgB7My7+7vk3dlbhPcxm3vAI6FzrfPivHi+jiQKHw4HzNPkbbOcTrh5\n9gy3N7einCHOUSx8RxIYVOCKZ4drFWsn68JgoKucL25mfTbKX7sfUOTqeD5Q591JYW0KeAZvt13I\n2w7oIAMcD6GIfalkL6IlENoQ6sGOCchstcsb5W84rGB74LI//13bHujk+3gekMnHXzrX/n5ezkZm\nAj9Z2+2zrYrMsdhZAxHg2TqU2yzHivOZIs06fgpr3RYDOWf3n6xqNgwY6nEyBVxIApq9MwNjzNdc\nH8QsdRZWlENT3WChTEox9uKePOwWBXXd5D7MkKKsj+uyYLk9qVfnFrfPbnB7c4NFiydDz10IQoc/\nKRUuN7QtgY0mNYcs9Mlkw2GacFSLr313Nc/42Z/8Mbz3/gf4pV/7p3cXOnxwxDxP2kWMdWWsqxh/\nzABjbRJJ1aJImdfHiEUkJFDasgC4mg64Wc89LP8yCv4KGr50e4vf+db7+P433+zGQfSvelsKSb00\nGOhBGGh0rJKPPzNuNPwigKcAPg3gP6OGv6Gn/mfvvY/XH1/hR37gsyLnyAAPoZjMaxZ21brxvld+\nv/DO6/jtDx7jy7ca9ncHqLzZGt7eyfS9YcYMO3eGzJzNhWgnAzYZbMT4LR2wunAGNxzl8+2NRkif\nDejYvOjuofSAR/V7NLOss4S12QR3gwpCcbW1yEzrIs/SfRQCN8Z/+pf/ffz1//pv4dHv/O6dbf/4\n9hbf9/CBF6rOcnMYJFS0lIJt2y7K8dyeuf32suysP0jIgtogYKclA282zIlndlTjpIz3Wgq2Qiib\neHbm2V4zDlpOw/MUIXP2tGjenBUJLk28kxyiS+88gA5rGDpUBYAYjGzfPCaiXfTZ/Dz9vt/bZnMN\ne96E+7d0vzF+FRcXAreild5VtHLojgnrxF10z4rcePfcebpvTgDSb/AV2PkjtZlQ8GTbGrHfzpak\n++49JsyMgTVHh4ok6ebER4QHZ9Uipbe3JwAkFtRkrZSFfcXt7S2ePH4i3PTbiiea09JqlXlXgLtY\nsmzbK0c5P2efc7QHRdmj09KzZCGbAVJuiz2oGjSUZdbYeTCjrlpJfBE6aPeuWEy1seagKVMaILHq\n1S1xfcXomLIFiXSAjRkJqiBonkRJyzPvLUp9LpPnJGVgV8LCmRo8LbClW1zdeunKKbrr7/ts15Nw\nxSkd6O2cdrP7eV4I2tkV7tgnf7/f59Ixe4/QXeCHL6hHlN/tOCIzS6FHKcAdKlZqBytKlxAKwvpp\ngIlzbs2FuW1ABWa9VSsq2aAhgKhJMTwIGDAHEHO69u52syJMgIaVmHdAT8zKpJYeXXwJcv9N6/ls\nW9CXMliYvJhQN/UKP7vB4ydP8J2PPsJ3PvoYH3/8CB89eoTHjx6JAeXZMykYvCyo26okIZBxrvcA\n7pUIZ9IaCgpGreIeuXzHqwOOxyOOx4MrzdwYayH84GfewT//vffxwVcfSX98AV6M8O3Xr/HO22/h\ncDg4GD2dTtJP24YCYIMYpbJnmtmePYDOpRH2A288wDce3eDZ0ntY/iclTvgGgC8vC95cTngwz6oU\n6xy08aXP0yhi5/sK61CrbZCoXE0C3n4H4lP6N+lyztJv/O438Sc+9y6ghWtZ+190fxl/zBQAy/qi\nAxeEP/G5Iz56dotf/fq37wSVb7/2QLztCei4BdoUKn3PIWxZwfZ39EqdWaftGOmnzPhV/AWKv12q\n7WUP2XsKgfPfegAUn8O71IEzt5QoSJaFQ9cZm0gBgvz6LOFvJO60AA8k3hJThF+7foAv/wd/AX/5\nP/+bd7b9u+98GkPb3LOTwUlW6mXNobgvGGPoeV/YxgYW2OSW9Y+FsQl4aYPQZhtl/aBGkmEoGAcr\n3ksaOin5sttQUBMT2zRo+7EYFR3s6LMMRVgc52nC4SBjDduK2tgjOIRpLuVYkq0X4b0VYobzCJL9\nZnOU09gE+mUk7Xy31Y31/Bx2BbVoQIWN7nZpNUMPttO8NMBuoZk2vwTsJECbtAubR0jj19p4b8z2\nIzg9mq6jZhP04y8e+8nZXoGdl9hMyLhnpW5KZdrOgIvt34dSACCglRLUpaYoqeJmOS+Lxsjb9cxr\nYq91XXFzc4NSihAYbKsoJLcn1BpsRJ5dCJwN2iwAM7DJTHF74Z8VvBy61nbPv4/xzp6kPTASz8vo\nLu9Bw/uqhrBtCnqGAVIuQS2lg4UVElJhv6ZgLyliiWAg6Z5QPxEAEQhmvQLYi2RbNFKiQnAWk0LU\nAR1ndbKwPV884XV3TK82YRaenQiLC2vk3XJ2b8mM7y74ElTJ8/Piuwtde5Ht0rleBBztQU7/WZS1\nvPbsz9hdI+3YT8UOKYZlXdADqKQ8GjuQI3zNxz1bkVC+HM4GaBmgAinWVgL7EAvlc2MB0UxRGLLr\nNlOY4ytTKuVcofg5rtNxqkgq5hqk2C2SVdZCNRs3bEvFtlYsp1WKET99hsdPnuCjjz/GRx9/jMeP\nn+DJk6d4/PQpbm5vcXt7kjyddUXbasSOI80Rj/8Xal4b9wMNkjgNicsfx0no848HXB2POBxmH8ut\nNYwkDNv/0o/9KP7+P/4a3v/KI+/Ct157gJ/+4g/j+uoKx+PR+2kswkZW1wUeOgYNQR0SHTXgYau1\nUte/prgPZcQPfeo1fPvpiPcePcEvAvhX0PBtCACxZPLf+ehjXB9m/MDrr2Ms0RJE8DwaAwEBFLQ/\n1YKiehsAYDxMeON4wJduT/eGl338lRs8uz3hahp0POsrBIyPo7AUp9Bau5cCfP9hxnuPbvDtr950\noJJ+AfjsW9f41OsP7wQ6efNLo/+tk097cAKTYcEaFeA0QoPtN9f4yE0L+qeteHvFsfg1vXfIvDvk\n5+1BTy9TCLKfF6YkeB6PGRo6hZOg9NyaM6V939CPCWbGu+98Gj/941/E//MLvyFsftr25X8r+JNf\n/CH8C5/9DD788AMN/xqdZdVYyIgstSYVUk1t0q/hAbJNITejjinJcZy0Wytyz6IAp7B9i3Bwb4yE\nWoEZtQ2Y6oA6GguhEjIRhP20bm5oEOZE8RaN44B5nnA8HBQcArRZbbosa5VaXcd7Bm0vZrSz9SG1\nhz4fQa9rne+NdWEV7myhnL7iZLuydeTSKXayoeg83dGJw/skrnBuLIAPcLLrart4cWNOkKtbb+wh\nImzejXs7I98ncXsFdl5iszoKOWxrM8+OKfCuK4VykVnKiAhcjLkrhIcpeBnMLMsiyYF87hFpreF0\nOoGIsCyLg591WcTiasp1WmCylT9bvDLIya8O6LSYNK1FBXirWZHnQT5n3iSPBh0wLESgQZhmxAI0\nApACnUIXu3oNHysaihJgg6DgUYWm1fwxhdbcwZ0ITCDGqC5bVdpY60BCaMxsx0T/klqM7/PsRNge\n7cRl9A0lQWd5RLGgd/r72dZ7R+zMcaU+pCFde3fs79f2IuDGtvtBTnc0XMDvFqc4GRBeHbalO/14\nfj++bnSLHbzfM9BBx6jUh7Qhf87anmt91pdax7tAYy7yg8jfvjj6MLPBtrdCl35s2OqdTIsJs0kC\ncBPvs1G+1lpxenaL080JN89u8fTpUzx58gRPnjzBx48f49Hjx3j69JmGxt7ipDKmbasQEjBH3H4p\nGEvBWAYP9zQwj9LLIABSnFjDco5HodA/zLPv0lrDUuTc4zDgz/3pn8B3Hj3Gx0+e4jCNeHCc8fDh\na3h4fY3j8eBWyEIk4XenUwIA0PDVEnTJDAjtc0Oh8JhT45iv+v7G1QHvPXqC39F7v8QO9/TnF3zj\n8SP80FtvW3cB0CKSFHLGyU5sWGgnWliUtdDnPvNp/M77H+LLN0qU8PndAP6CvN3cnnA1HP1ZAbVt\n2fh2b5IRreSQZJM9oir9zB/7AfyD33oPv/eVp36Zdz/1ED/3Y58XS7sdj/18jvnlkQ27cx/45gAA\nIABJREFUtcDeL3kZ9l4WL/Zc9rmjEXYGMq3O4Ut3jQxisL9mUiLlfMkDVPpx6s+jx6iDwZ+6yWCN\nZ/U70c/mkciKInUtBqDhr/+lv4D/8r/7H/FLX/ma//JTP/4j+I//3T+Pui44aMFrC2MTEg473sAH\nxXPo+OvbO/dFulFYk57nYEHX26Zy2RRoz8kqAXqoOIKQe9wVV3d5kH6rlssHdgbHwzyJwZcklJeB\npHS3pHy3aGgwtlZRG2MmYERPmZ43uQXq2uDSeD5fhkjn2X2bGZYQYWx86WRx6zIWLdzYdAD0/dWt\ne3vjJmKf1OfyDC2FtIZBL+7HgPkOzjFcpu6Nep/E7RXYeYkt0z9bfYXOs2GBownodHH9yQIss1iV\n9lIwTVPnorawpqKB/TmUDMAZ5WQmB5imCZUBlFHc5m6nMOufJBNiGFwwGhX2OErC4ZhIEhhqzfaa\nEAF4hPEnAShnLdNJCwE3ooeyTyIHK+MIEDCNEwqMArcKs9ztSYELUviaWRWtEUnDC0QYVa1zYkLY\nwtQkSRrgIpYbDEXBkOT9GJiT52AwDaFAZuEAU16KWqiDkttfO6BjyjOzVHUves7Lin3+RDCb0R4I\nXBJ4z91cDzdhGCDj0nbR/Z+u+wcq/EwZ1D/2ioT/YUCHyRcYs/m6T8hQTOez3202KTnq7gDaBmwW\nUAMbkLwP2UFAuIU/IuKdpUZ1fsGLD5sX0RYTf09GEHsP44MVRUy3bO9JkTOF162LrQGVwBAjANTo\nsG4bbm6e4cnjp3j27CmePX2Km5tnWE8nNxiIbNLEaAX3c2VXZMZpxjhNQpl/PGI+HqWuxijsUQ74\ngGR9DcPK4TDhMM+aeyNzu7WGbRqxquLTWsMbrz3E1gSoNWY8ePAAD64kl6E2ZYFsFetxxroeMAyE\ndR0iF9Is1S4vVR4pK3wo1vpSxeEwT3jr6oAv3dzvaXnylQUYCMdpktFKwFYr1lqxVC3wxywFqUk8\nyrTrRwMK40D44+++g4+f3eLX3/vWnSFOx4GAVl0WulIJuHXYiVOIOqDTAR4iHGfCz/2JP4bbZcHN\nsuCNB0e89fAq6GtdmQ5jAXPcfRcxcGGOmdww0NQDmfDC5BydfXRAPo+3V1ZYiQRc74lhEC/qDkxA\nwDw9O9loYxIKuIqCUzeGuHv20kPHDcrVzIRhyrq02cMHR/wXf+0/xHsffIj3Pvg2Pv/uZ/HZT72N\nx48f4/Hjx5hnAzsjWtuwVdLaP1ojrhVQ0XzUctkjQLDnS99lIFKyR20PdtLjwPpffjfQY9cgA3Np\nrQ+ghABrVlS0yvgVcpMJ7djcCWIMqUvdVNdqqJxY5FSqfnxbsTYxRD+rDfMGvHV9uADML/TN7mcb\n0opt7u5WOLRxEJFsTYgv0O19dvlCwldDFwiKzu4/rUnpfQ9oyWS/WLo6wCKXlX0LqIvWZ3/17fJJ\nBjrAK7DzUpuBHfPoSDJsBjSxbwY3Z6FsOvnBQZcsDCXhIXKGL9GsfBDvB/ievIBIQqtmJskNQlF2\n08gpEmWogAZIAq2CnTIMGoMrbmdX0hurkKloGk5X/ZlEaOdEfYvLl4lqLmYo05kWQAR00RUGplGT\nHLkp8cJpwel0Kx4XcFRvppIUX3bgQ6RkD9uGyoxJc38k3jforc1HLd4vuYf8e4GFKpCA0caeRA5k\na4x5w5JXJwEdXzRgxhQFuU0XSLOypM2ASG8JtzMEwLjTg/LcEdwLsZcBTL03qVcMfn8FomsxoaoY\nZjF0nYCOa192T2ANJWEV3mZuu3SPNk77eWurXVbqbJFH0VpQPvdJ82/U+mjgBgg2tg7owMGP11rh\nqCbOaZECEWgYg7RipyT7l6rceiikbq01yRuBMMahCWCy0NcnjyUn59nNDW5ub7AsJ7RNKJmHIsxd\nhSQvYBpHY0tGGQZM8wHTPCvYOWA+HHA8HHE4Hp0pDTpurXgmEMr4rB4eqR+jz8WMuk2oVWSN9UHl\nhk3DTQ+HA+bDjKEMXoeMW8W6HrCuC8ahYJtGbHWDkZowIKGxW4V5gSX3VzsIIkcc9ChI+JEf/Az+\n6Te+hS8/vZEb/Pxu+HxB2xnA8Tg7SF/WVYoFb1UY9iCOvcFrX0RfSgiJzXP56q3rI964PuDjr56k\ns78AATpfBV5/MOM4AFAlzzw44oEwgJOBTZCqWEhf0YR8k91jITy8mjEP/feU5LkpVLbtrb4xby7M\nMtqd19aMDHgyA1taUy56hsgAiw1/+y3tj3wM0jH2LAiigp0Eba3FtYvMb2EvtCgOS6K30M0IuXVp\nQeFnFh3YxnMPeJgb3n3n0/j8u5/FNE3YtuphXfm1batGpjOYxfg4tIIBRZTm0veTK9VJ1mdPUOTp\nRrhZgH4lv8jHZQC3W0tyX9l3nttcK1YlUmpbVUp7WatJZcs8S1SH6TWmY2FtqHWV+lisRYp1jH10\ns2Ft1wD+Fqz471K/hI+e3eDt60OMybhTkK8d/TB1Tx5ize5Biq4jF5bLHMbGamUKMLSbDjZeEX3R\n5Vchxm26m/OL4nw9zrpDYwY1S7FofhoxiBnQScYzNgNe3yaf9O0V2HmJbds2fzevToeYXZByCBr0\nFhS3olxA7/YbgN5DkNzr59cza0nvFSoDAyxeHdIJh3ScXGbAkK5rQm/Q+zOrsFljLHSNVTkDJw+N\nK/9DWmy1DdKCaALFQirGMTwiAFDXTRiglPbW9nUFAapwuuUkFkxRqKQdxmF0YCdG96Y2d3IFeiDJ\nFWp182KgIgAp5eqobkvkTGuSmDmc5eqcExQkS+FOQvoi7Ba3uK/9dpeK3m3ZovSc7RK42X93L6jK\nyo7d304ofjcA6s77tH9tjUn4T9Zc3imJOdcHanWV8e9Ah6hTxmxe2N07MO0sYYZ0tc9Yk2KhCccK\n4qWOjNJKc1ANSxG+oik8DdQocsJQZEFyjU3HoD5XLLfJKwx7BAVjLnfk2qXru9xXESrXuucT0D8U\ncgsrs7AjVq1bs9Um4W+tyXWoYBgnHI9HHK6ucDge9XXA1fEKx6srHA5Hv7bVtLEaWdD7GIeosWOd\nIqEqm1BXp3HVoEYXQAsqjgAzTssJpxOJ1Xs9qGI0umXYFNnGjHVZsawL1sW8FZzmDjR8qrdwH0H4\nyR/+HD58/BS//Jtfv9PT8sb1AxyUHU76qKHWgo2kbYdOvmZAauOtSFiUzWMGfuSdt/Hr738bH3/l\n5Od942rGH//U6w6erOZOABy9xrAHOgp21HtSOhBDGAfCOBSM4zm4OKPR92cMg4Aph3mt2a9VPaOb\nrW/Zo5PyF3OOkefVuFR22azS1JDLHcAIcdwOHCE/k8qHvXoZHhKAuAixhX7n+7LIihhOoQIT3Hbi\nICc2MwhG/hiRFNmctO6csZmt64JlKaDNZEJF4yG1c9SZsVIEZnR0cKf3LcA3ojrcg5zGJ+vzZc9g\nluwmk2jft/ra6oZ127CumxoxIPes4e8AxCs1FBBG1yPWTRja5Huhsd+2DZWDeW1tjNO2QoBOFP8F\nGKftL2KrE8bhDi5q07l2X7Mb0KxfdPeL62qPYnzU2HKDOM9dNjZCBpI9OLfbvGspjSG7A0npYWwq\n9nojQFp/0PoXgDDXssjZrGmh+/TJ216BnZfYMhubx3k7QOmFqwMCSP0D87gYhaSEeQyomvxlQMoS\n+rIinQWKWe4A4NLC416k1qBZLGdg6D6LmZ27OchJVNcK8Gzbg7TM5pYtPJcU4XPmN1L39orldMK6\nnLAui4AIIo/hNvCEBmhWdgcskYEY6y7YhViQFh9V9reNgLpZgnLEuJsSYUrKOA6YxxHzKHUD5nHS\nkJ0dQYEqb6YUuqUFdNZWAXwTAKYsWrOgDAXC+12Ve1GQGfF1OoODwudbh/J394Wx+d+4LMe/1810\nkwx45FPSTNn/2W3JEpdtrQZ00At//3t/BvMUGcjWf0RxEbTiwKjpmNRoNuIiiculgVpDUVIAakrB\n7DlwCoyaWOFIvaYS8iSMRZK3B2yaG2cWuLAOhxIohg5TSnQsNcaquTqbApfaGsZpxPX1NQYAx9sD\nrq6ucFpOWNYVy7opy6Met1WsGkpSxlFobw8HXF+/huuHD3H14AGuHlzh6oGAnOPxiHk+eFs2bio/\nNglVZZFRQ/I8mMWcW0OtYUyyscAQksSmZzW5WZ6JRaNuM+pxE2WqxVww2Sx5jlJ4WV4jTmMqAg10\nCjfQDRm8e5jw9e98hA+/+kS++wI8kf9TbzzEGw+vdLqKkjSNA1odgHn0avcmG4cSZBLiJJCQ4KZa\nsXj0hIzlxz/7Nm6WBc+WDYex4FrphodEAUzJo569OTlkrf8th+1J+wwKmM7m4gU9pzPU7RTDmGN5\nLspmtcr6mmWDg5sg4DAjX8E+LC2s3jvPTcmvYBQTx28CNSlMcQ92eN/pNjbSc2YhYUaHpsYNIO+j\n75nRCudspNp6CLYx8QtTIWEpnUfMs9Czr9tJQMBWvK/kGAEPbmj1l0lA8vcCRuPiCm3gRFLPmkV/\nBBjIBUQdNwJOdpKNnW6oHQYMm4JLMLaNUHzNFgIRkIzbYSAUilzX+TRjnk4Yx4LbbcPj2wWtVgxE\nEPsFYfU+ulz8d2vNwc7zQrH8t25Bi35Mq44vC+cnQTKc3AFwLmyxtqSL7MfQ/gD/LEpOAFmH/ukU\nGbTJvzanmLQ2kw1VBTrm/XFDciGIb/qTt70COy+xmaLf14fJwMEWyeqhXgAA/b0HO6IwMISZxGLL\nc97MMIjS7MAqKcty2h5c5ftqjcEkFuMcTpdZ1+x6l5TdPdDJr0ux1L1XJ1O9niuXvriqYJRiaYy6\nbViWE5bTCctJyAkIwDiMGEwauO7KwWyFtGiwCGBwMBR5aIXs6VaoaZRFREJaKrjZBIdP8oEKxiIW\nzynRY0v4jTLIXQA84zjCvEgMiaMXE9ne+tXHz1MCOr1w3injzL4vmWBVQZ33jHOkfdJ2nwdmD3i6\nffPnHVD4/dvowv35kvPC5/C3rITtwQ4C8BjQESMfuzJ0ybJt5+HGsLQdiVThADVFQUtrIPX6MMvf\nxeYtax6M7tdMidCx28DC4MhIjHCpRobe0zAMKDUSvImKnFsBS63NX+M44fr6Aa6mCbcGANYF6xrW\n2HXbsKxS9G9dBYCM84xpmnH14AFef/1NvP7GG3j48CEePLzG9fVDHA4HHA5ST8Pa1sNStk1CWOom\nyhliXEn+gbA1GZECVOknEFAg8oyg97bidCtkBK2aJ+gAY3cSeTQ4SG214fb2VpjlbibcTgPGUWSp\nGRyszWA2ereKSp/97Be/gP/r1/853v/KYx8C77z1On7qhz+PaRy8KDFzEy/fNKKARYaNQycjgWRU\nquQsVSLDBCCaGvxgGnA1imIyEFQmmRU+ZMhA5DIlvDfk73n/CCkrmmuJJP/utir3lucwPLie2E3N\nPrx78HUirRWU36mvrWMhZnuwY9cm8v6NfYo/q3uDXEM3gGRkBylE3Kc0O+jh1Ai9gclkhi1F7Lpq\ngcndGD+w+crs8rnzOumYkX2kdEQh6eNpGjEfJhyOB5wWYWVb10HGqB3nOTy6dinFvSXjC0skBPyh\nGKrT52cNgbPQ8gBKEF0aRdfAcbCQP9kaiUwiIDxEmsc6DgPWIhdmblgHC7VsUDJrFMR45iKRJqWN\nOMwnMBj/6Dffw/uPnvn4uSLgUIBpFJAk2+Xiv2M5Bzr34B3fN49d2/bz4Gycc7zlMLYX2xyCvJAH\nJYMjH54OTg2Y6wtpvUvjDjo/OrCjupPQqGtOM0gLUZfLAO8TsL0COy+xmWKxV9zNG2NxsAA69jCx\nWvIODBhIkUV+WzcXEp0QRwIeyWtjZhcm7pjROoa0Qt0AJSQLTfJCEJDyBkx5C++VXbMLe8lKn4M9\nW4xwJlWyUpMT8fQBwaaQrRrqojk0fi638JIrQL7pZDVrBIraINJxXvW5lM6rc5gnsHqUWNvcCDwp\n3bf1m4XdTOOEcRhj0TarrVu2Bg8vUhuWLjbFrV49MEwLcwZnWQHvLEyijJlwtMWMk/dmr8x7W+HF\nKDr3lrD7Qtv2/f2isb7nHqjzbe+97C6XDklN1t8P0bkClg6ltJ+NMTYFB8mo4MphKD8WwsZggAqY\nBggDqxkdJDTJQI6BGwNXXtySGYN6cpzqE0qWoM/JiBwfA0NGpuDPkgwNNqZsbpVxQNl0jI4jylxB\nhwZsGw7LgtuTeHUMlKzrJh6edcOyKthpFfPhqF6dh3jjzbfw5ptv4uFrr+HB9TWur68xzROmacY4\nGeCX+7Z8GQMmnr+jyl7VMLdaLSdyg7MuAWLpL9I3y3LCsixKN72hbivAkotTYIqX5B9a/7XWME8j\n5mnEYRpxmEcPO7M5aCMijEd9Edl5mvCv/eSP4vGzWzy+OeG1qyu8dnV0higLnauNQeOAQsCkOYmj\nGq+MxSobqOpGqEVScFprItcZABv5hXnplc1ODS851KsDNdQrrX0B0B0bm4qdbOi5a05S+s7nAfJx\ntuZcmrPs9Vnk3Tw8QTkdbGyXw9jIFDqgA6exf1/jzB5ub6zI5/T9kGVcrFX2l4eN2vzLczC1jwEY\nyxl0w4ppyCaDYTmj7PKAW0VTCj+iCGU7HGY8uDpiWW6xnGZs2+J6CJlMa829WF7zKck+ubwayHRs\n2b2opgtxTRtsJX0GMfqQGRAZ3l4ldoWtdpIbyP6sdqyheKPqHpwUAnqvLOUkiDBNA/7vX/stLI+e\n4W/DsnGALzFwU4GhSD7hYRhwqn3xX+CvYh5mDCUMvedjuV/Hsm7TE/+nAPRO5/BWC2CbfrB1+MXM\ngDFGIjojdDcfjdq3DTFnQ0eBj4Pcp9wBnvM1L57XnjWte/qJUFCoQRH0J257BXZeYsthbLaF+zYl\n9bVQConI602EB0jFgoGKTWrKEACe9Nxp8GcPS/YYGbDYNk3qTwxxEmKn9MtgtYiSK/rmXRoV7Gxa\n1wYal5/Z1gzoWAX0/jlCGQyW/1546E4BdkwZs+fU5GxrB/FiSciDKELCOlNKQUE61s7PolzaMUVB\nD6t3y645qLV3HIqEo03CBFW3DdswoG0SHyyTPgQGQZhLBmWRGgdTXLLSELHxtpCHZycYh6nEglw0\nKTTHzevj9GPAv7N/LSgh2tYE7L7947Mt13E2U4SzdxC74/eeHVcGmHtzl333XWzPAzohcO86QegP\ncR7/SRfc3QmBMHp1TZiupGDZFIlsCesAPRFEOVBaaR5QiuUvFLTGQGkgLmoxU/IRV27gCizAmvhv\n+TRpDqlyCrXCMSOsxE0sqwaMzPLdATcFO7WZd0dAR6kVpQrYmU8L5uVwBnbEs7MpCcCG2hiH4xHH\nqytcP3yIt956G2+++VYXyjZo7loZBtWiE32+GWKUNdEVNWgR4U0KCAud/qLedFUCSgENYmE8TQOW\ncYAQkgklNnHTEFSEQWcc3WPQmNUzO+IwTTjOM06HQzd/TYmtFkq39UYkGzLHwwHf95YNKIjMtHBf\nAmhrYBowjwXg8ORHAnjql1pRC2HbhKo6PPQ2J4PzmCC5VPM0YppGt+Qa4MiAJRQkfTc57WuRgRw4\no1a5ZMzQMQeyWsvNDhJG9R142Ht+siyJfKLhzODTG3/CeHgpX4hAAex3MthDg+0B7wI62XhBpDY0\nldfGBWK/2XxtDK4ZAHP0jQFOa0NX8GX9NbZGW1Osn+Qc8PWq1eqidSiEeRxxnGdcHY9YTvLatjUY\nWGEgtGq0Q4HV3PJBYwO3Qet8BfiQV5Xx1qrWAbLnUHnCpEhcv9NBxeZ9tolgMglieGhVPLmtbuBa\ng4GWImTSyEJIc+gGIjx+douvf/gx/jb6bJxvAPgygKkxrrjhjSPw8e0TnGoU/52HCW8+mH3M5ff7\nNg/3NqNiTO971iE++zedsAMYl482r7ERXQDqG5R7yX1B8atUEBPgk2COv1v39rhN9QR7zrMH2y2K\nBqoQBoZP4vYK7LzEdl9IVm+V4gvCOTOlhHvVgMy2rjDroyu4O6BjICbn3gBQ5WXta/+ozDNwYgLG\nGJWcBUm5+2ldAVNImL12kHuS9gLdLGe63enVyc+fJm4mL9jTZzdVcIbBokRZ+fghzHR6+riWhBAR\nWfKtxKeDJfTHchgG9cyId0aSPg/zjG1ZsJSCSjbZ9+Ip+njQfKppHJ0Ouw8lMculxJ0bTSmz9AVI\nFnrahXKA3EaDHHq3zyWBtQeyWE6Ceaf95zC2LqQt9Vu/390LhIfOcYD59OPZXd63vYhHR2/wzmPt\nUfPhYdTq46z1ZNZa8k7oaHLds9bUitVS0Uwbuxqz7qCyCAuggyEMIAgLkRAVFJcX1FK8vhk8ds/W\nUn+bVU7AgwLonWwwcFRTLaBL7WVEA0bTXKuAncHAzrJiXhYHO0KvHx4d8/I0ZlxdXeHqwQM8fO11\nvPX223jrrbdx/fAah+MVjldHD0OCvwbTxqRtWzMXhoJmzb9ZFqzLinURJsbT6YRaN/cyl0EMBFQI\n0zjgpFXZ67airgvAFYXEslyGCKUxjzoAMXBME5Z5xrIcpJYZke9TaxPj0bY5y9uekCbGvqgAAVoK\ntk3V5Wae5MENTF39siK1wczItBXCSsAGRmvkLzdMwKy3hFG9U9M8uRLioHw30l0NMyDsCr7iFQU6\nhXA+p21++QcZt8LsV0BF5G4ZwgCWWb58TiHC9XK486D9mXM8z0HPeW6pP2OJZPo4ZnAg4/PZjt2B\nps7IpPPcZEbsk0QQs9d76dbGnTy1ZwdDimhafgpM3kQemhkmqs4FK26d15RpHHE4HMSzczrgdDpg\nW08yNhUcFxLgYkpujIuQgr5euow0Y01VRbhqN5MCW+1n6PrUCKjV29Tkp4VtkYInI/6qEG+uAB6b\n7/KcZpDwllPvJakx8+kzqTFl2TjfhtS4smK+TypwAuPNArx9xag8oDZSID11xqIXjTKQnrH5Rr6u\nEN0DeO46dQY5vijt90lrvPfdLnQciLHrp5Zx2RBdEafkdL10E0G5prIg/Z5377EOesDzydxegZ2X\n2KqSCJgbG2qRMCHIJHTGOaE/U04XK26noMb2AZCoi4cAAhe2zgPAvUudG6MYw5herwyDuo0JlaqH\nb83zrIBn9gnOek9uuYdMelu0aYRavUrk0NjminlaUFKcuFkfMwuRgKqm15V3YvZQs3xuEehOYZWs\nDbpEsVqLBj1/k76pDs4MoCUiBa+sTkobrLH2XFHBaBuhFhLgV6vfK9iogcMD5oqmWUHlxv0uz+FT\nPFs2wZgiGxaYy8J6DzoYupBm7Z2DBSguGveXra570PO8a1/aXiQM7Xnb3pN0734dMODuex0mYPDF\nubT3vHbn1vM0hKGgU7RSuzl1NEeOGKV+jLBQTmtKuiM3ElAoP4AvNADcgm2fSQF0sfnPjKL08H4t\nZpjXiDURWJJZI0bf1jsMBTQWlDZgJKCMAqqm1nDQmlrGxsYMHK/Eg3N9/RCvvf4GHrx2jflwwDAN\nYI3PF3eTeL2IRS5aLp0rPa31ChN0EfaEWwbSi/QluQwFPI1odcLhMOF4nFHrilZXbKs+XKtoUAWs\naN2wJoBoUMAEFrk7TROGYRAihnXDuhbNL5D+LGBsZln1pHmVNRye8XUtnuhvcle8wsp258YYSQ4m\nbgIMhwI0ArUiJAyFwFzc+l/8nTBYnuAkXvlLifGh9KCb7ya1M4NmyGi4Est6YHhARUbtDX4iQ7qZ\n1YETC9czWdOBkjIg2O8GBy/7nJ29V8auE2QG8ZmIAnBRcUSXgQ/OgI/loZhHP+7d29TXWYmssBeY\nHYTmcGYHFU4ioOduWpfOmCJjqU3rucokrYM3aL7ofJjlNc9B6w6GcQZ1j+h/mxcmyZtsW0Puz+YG\nFh0lAootF6xTetnD9IrtrvO+KeABCNumBoN1dcNFnlMiEioqA2XU+x0Ib7/xEEBk41wq5rv+PPDx\nCXj7KDk/01jAXBBxN5fWMere+t/Ot2i7569hNk2YOM/E+49xsBMvOzJNR9Ei0r3EXCBbsNJ85/xn\nnLvltchYcS1SAB5ZYMfHrYex/JO4vQI7L7G1TaQKIwZEKw08NAmXIlFzMkd8HsAGdgAClQqigk2p\nWAf1OEQtGeoU3izobQFx664DKknMHUcJoaJBQkkaszOBCZPYjMN8ELAzzyLkqoSRbWVD0WuLviXL\nNQZ1O/MFwAUzJjAYZg0nYaQaStA4U3KN6/7NcxuMipK6WjVVlYhWtY1LJIKGxU0Xk4GcCaZuG9oq\n98O6kHfsaqV47HhRq4mF7LUmFeI3BUbVQwMrsqeLm1jKvQ+S5b5ziSerYd4opBGEByVV3M7Axx4z\njYUO6KhSlcPYKGRmOl6V/3xcEmCXPDn76/pv6f7vF+cvv/k17gJXcnPdHGPOEciXlyh5DlFkSrJc\n5fM25gjLNCUxhW7maxvgEcpnBUHNFpG0yKT2MouuvJLHtyTQs2tv1nsXD5LtB/fsEDe0ymjUtDaW\n0q1rnD531wNQND6f1Ts5DhizcmhqDZHmCUlbXF1d4Xi8wvHBAw1duxYFjyS8jgEHd2ZgkDHbAvCo\nGZH8MRlp1Ms77Z9ewSQxhoEADGhtxPEwY11mbOuCbRkxDKRz0YqNFnAR2cJV5q4UVS4oGKUo6jxj\nmias64pl0AKNUI8yN8lDMMDhjGLmlQW2dcO2SYisFVRurbkWUQgKeILGl1k8iDQIHbkAniKFj3W8\nZMpoJyFwYpch4RttN58PzcedqVy9V0PZ2SjICgS3GdhRdcjPG7LjXDnr16jsjTGQHuAowI5HQ5SC\nyDWzvxXAZFCCPC4NwIQXMdNXW62eDuDooe7Jof58yPPdfrN1TdcYN25ZhAVLgn14pYISnZjB6tlt\nrEThnicTYEQ+yxrQGslngtbOEWrocZL8snmecThMOJ0mWI6YtG/KqSVoiKIBG4ox4iLAjAcu8cBM\nGv4uuxYCaCgKdCjta+2UWy6NwWR4MWITz8XlCqTgK4IBSLm3UiQ46523XsMPv/sUaLS2AAAgAElE\nQVQO/up738I3+O5ivstXgLU2HDx5KCRs3FZeoe5aFWLt8H8JDv6eq+ebSAPC6HgPiOoObdbvFEYK\nBjykPg1j2eJm9iKS01g1Y0WWCZZbqLSPoq/aJRPQCVkcc+IPbKH/A95egZ2X2PZWLVaFt9UGQvWE\ndFeOk8WfiDymWzwPIrwtzt5yaGSyQwVsLlh6roieudMZ7tlhuMTTGjUFA7NTWB4OBw9jq7ViHVa9\ndqiKBlBAmveT4oC7+9kvfrpYeq5SUcsXhaUvP4MXU21q8SlBSQ0IyOwWVo57KwgBEV4ocmreEBwi\nTDLQ8TAGEw7qDZJQAgiI1fuCes7891rR6tD3gd2j9bmJC072nb3U7JRgrd2yUyK649GDlPjM+j/3\nAhBIQIuR69Lcte3Bw6XrIoMQvv+M91nO9lv2Ntkj3LfO7NvFFhwgAN85JKMOxJyx7ZaC0gQkxxHp\nXGmstzQPmTR+nZIhguPz7kn1ee1PATpZwTOl65wgRACPtRcxSwJpqghXoQuaLXgyCQ3ryFyxsULA\nAI6aGhZiOQT5BgBn5Tkcr3BUkoJpPmA6zGCgC7XNyjqTyLSwHse4du8vMRpXMFeIJyryGxjsuXfS\nZ4yhQJ5gGjBPI47zhHWesEwCODY2w0UTxqGm0JXZ+5wGARYSziqGH1fsFOi0OoLQsJGlqRiF9OjG\nEhBhG1es64BhUPBMjLpKXlJDU6+OyR/17HABDYzCBTQOSmAR5BUAUkK/5fiFQackD0IoM0phzSoD\nm83jUEzl+Unzm1KeiYKd3ptzPsf2c7Qfz/eDnQxybIx13hz35OwAjxslyGYAOprqBOL8eGdcs0Ef\noW2xzqmSqd+YY6M36IUS6QQhnAC5GSBS1IAxZEouygCi1p0TsFD3LEYDWMo9mfVdDJjTHPV25nn2\ntdNCoAyoRGSFevAUPCNdLxsZ4CA5wuBMJIEHGDehDIRmdxUtqOtPlnW1CZtizv2rSk5iBEti0G2d\nXtSGisIS3fJv/as/hf/1//glfPmbH8iFPr8bcl+Qt+rrnq2Zz0MmeU3MbW9H679sIJSef9rnXnJ/\nxVi/z9Z7vQfS+cmEyG8iA6QxlgJwmu4RhWv92XT8Zj0BpvPAxQi6PzjmO71Am/5h3V6BnZfYrq6u\nAKCL515XSRSMZMlBCtmx0sAmRTBilSNfAwDqOKFqTgozY1kWl0ajhpFkpSrnuJgXKSsZFlogXpGG\naZqUDvaAq6sHePDgyoVla8KCtK4rTqdbrOsiC6aepxjhPmLiWAgfgCRcS/e9/dax/Wh4h1seAHhd\nAV2kY7Kxurzhce5WOLS1Bi6R6AgV7IDGCG9yDilIJtdudQNGUU6OhwMGEo/N7c0NlmVRq5OSGZDW\n1JkmHA8zDhY6ME4gImxblVh/7UsHWmqRNLlQNeynaWMwSQ6S5XRl4NPUtdy8neGgpFMr0jE9+ACi\nGFrI5lBK+lCOuzw6eyXmrlCy7v5V4b4L0lwCTjmMLH/eK1PMu+c0dUeVAVE4AkywLcrxltSaC/dG\nGvt8xz4dWHXwHOFpfc0tfXHM1zNPH9kzaFs0gCiKdbol27xIpUhdmiaGE6oNVKq3PYGEljrdE7Mo\nuS3Z5rJyX7QI4YARA8Rr4V5LhiqgwWpFJahHiKSY6DCNQCHxHqkHuzYN9TRFkC2fIC/sVn1ePrvC\nByi4qKhchXZZw9ei/oh0GKkSCQWBBA1tKwXTILWwiBlbAlW5l2X8RNsQy/PXbQWrV3dQelueRgwE\n1KFiGwcNgx0k18RkOEGBI4N4FPKFJvXBuBWgGQvZ4EYW85LXQmhDwVQH1HFAbZP3IcC+b0cvbZ6d\nYditBwwwoUINM5pjFJpMGuAGkpq0b2OokDZFj3tPdZq34cWIuip35doUHzvyTDmMLefvCFGLtq9R\nR9s7Asxk707xnJ+4pgt8+A134McAUILRGk5Jvcw1A4X3hZyrlAEYZd1ppYihoViYYpRxcEbFVi/I\ngbhG/z3i2ixG1K1sLv/GcRRgrmu55NUtqFWAs5PlGHGOeXfIZGsGOYBRVcfnktZ7gEvBoIUmLfye\nuvaMc9s5mCV/bU2MiosSnhidvBOpUEFtmu+2qUzzJCnCcZrwb//cT+NXfuO38L//0tfuLOY7EiR8\nDqGz7HNfwuulQC2Bzgw88paBI85393XIQHiMUX2EUkT/M0ONzisD7gY+9Rc3wpSCM9KN/RjJ63IY\nFchLGLguaPe1m58Rsma1joTYqWnOo9V2q1t1IH+XLvCHfXsFdl5iM7AjibOykFioGkDOuAMCiBlj\nGZLCgW5xGIcR4zgBRJ77sW0blmURsAOShWsKcoDWGrYEcnLeTzCwxYCsdcOyNUzTiOPxgNdffwNX\nV1d48OAK0zTh5uYWt7c3moC7YFlOHQNSLGwiIGTdvFQULQBN1i+y5SpTnTJbbrII/ggJiMWFm4Tj\nECJ52KwVFkZWYLJRFsVWK7ZtBdemJAIaNqjKDJgxDgWHw+yhbrc3DeuiidDK6EZFvGPzNOE4H3CY\nZxy0rg4B3k9G9sBawDCTNjAbo1OVBcWURlXSTSjavkEnzHBze5YtO0GTAQDZMWxWKd2nP0JOuQNZ\nl4BI3jIQsff9OfbXyl4n2/aeDbcYpZcda1bIc4/mbl+w54gIk1ZQw9tdmZ7nYCajGgNFeSFDKHcZ\n6OyVP/O2tPS9gR0gCD5cz1QwKmM1lKoOSKW2NcMJlQARRoRg40OOM9DXPyfn92SQyB01FsI0SPSU\nW/sQVuqu1kn2C1BYwytLQj8rg1mr5wnbeZw74ElAJXQJBsybbZKT1Ahg+QSsFlw1kCCBk3GQPJx5\nHB0IGdmJCSay+7cxQOrFqVVCb5okk49E4GEAzSPGQqhtQK1RPDHn/gEBdtAauA7gNkj4LLPWKQmQ\n48oigJGL9F8b0drkYb02LkxxMoWqqNJrL5P/27bBrOQmYN0baAOQNKRYBbUBqqaA2+oLSTRtGudp\nfO6BzPOATrB2Blje7z8MCnRSGBp1IOc8b4fIwgkt30dDQHfmiuwB8s+6j9C2az5bAnQAztZSG8sC\nJCChhm1QryqpEYt0DeRgStx5/c0IwLjbew7AQ6SphqyU3LIZh8MBx+MR67o4AI72hRvdMsuedF9+\nQvVUtaDIL6UpKYa0HJeCoQGlsXqGzXsWJEDuhYadq2LdpC6Xk5tsq4AdfSYBvULSIzUGhSWSKWQP\nNKwSAD73mbfxfW8/xPtffSJj+QsQoPNV4DACk45XNAYNYqxkCrKnfj3Ka4j6zu5Y+/K+OR6CcP6h\nG5ck7K0e0l+E7EZqHiXQHi3t89wNG/eQfPTGvwA7RIioE4uUUW6YMJYoePJabdCCrjL3jNmTQRqO\nWFEGBWDq4f+kba/Azkts0yQ1GawAKAC3ZAChUNiAzp4dpp11JC8EDbAsaW7ch4PshK4J0Ax49qFu\ntpjZIldKwTRNuLo64kpD2IZhwOl0UpClXqpl8RwiwCaJulLl6oBaiS0PxRU0htJr9lbATAUatYVM\ny7T7FsstTM9XqwM4YrwBiMKnVJsefqFhaaVI6ErdQrG2hVSswNUVhcM8YxiEDWldlEhCwwGMTW20\nwmjK6OQhfmkRi/bOAseAoYWVaEFJ0kGQBSslhbpZIUkVZJZAfoc1xb81c50p6rhDcBNdoJqM7UU8\nOt13dt379tmd+3nX2J/fdLRkWHWNngwMahvtz+1KRfd9UsL1hP6Nj8keuDnQycofRyFQB0DgqCeB\n1hEXeNy3Wbi9v/rzI1U/12VZQHwLtjUbPz5D2d4olHd/7f8OqziBMA4CEMbBW0TBVgr3IQolkuXd\nn81IQLLH2aiYcp9Zj1hNIfXgeFFRWC6OdqlbHA2g232lJG97aT5NAYIEYBhQTebk9gUkVBAllA1S\nY0Gaz0X3G4cCghQ0rrWhWQHjEkn95qEBa0hZU6DTJG+jqCJk790rjzMbXwZ0OM/llKcI8qLFViPN\n5EftzqmKfCdudgLAUbj+6Tl/5PcAO386Mnt3sozff9/LxJL+thyk88KiUTPnEsjZ5fCYwk3kY6ff\nKAF9CjDnhgLYgDuTZZx2cKxGhMJFDQyU+iXl95mxZBeF4esFmwEmtXsaezYW5HuRM7bekfb7lHLM\nxnFArWKFFyU4wHFukD54OYBuKOD2GfHMXLA1Se0zOmogvHO5/QGgsegk67ZhWUSnWLagsnePAwHD\nwFqOgSPf1eRC2UA8CnGKgsk/+6Ofw9/9R7+JD79y409xnIC35lgGMhrJnpbeI5K7OmTAJWMfpbHj\ng8KiJwKpeFtHu5PPIwM2jmZA3Xk7g3DSafZ06xnwuDxE6B3y2UJ1rTFsvTAQZv1VADISmdAZi4Y6\nM0ceT7WQQyoX2+iTsL0CO9/DlgV53ixMIQ+MsBInC0MTy++mU2LbNmxa+6K26kBJ4nMPfn4DVYDM\nHfsrLy75msM44KAeinEYPAysbsJ5vy4LltNJQI5SrHqhv/1Dm6LFwajT/xzPm9snW/8onccBQ8tM\n8eiVmzRJTTkg7DxkmudkHpxIQI6cHKGrLbpIyEIhwrwpw1oQJRRlaRIvnSVWWwX6VZKCIdYju/4w\njF0fZGEmjEDcuZFNFMaCk14IwedCNivleRzu2t4F3KWNEfUVXmCzftxbxnzxoATc+PJ58/EvAqbs\nGq6c5sfyAxk578jnl8v2/vgzAW0L1U452l/qzha1RaZoXo/SQWfjAnOopra4sR3rWpmprshaZFok\nQ4kQBRAIF1TcB9I8AQUTVc53cMU8AxgiFJJcn9Lzb8f5EPsbuLJ2loIrFhrWv3LbZ6awZnk0dVOD\nzqbtJt4gyyMxpRHQnJ5RCnEO1lTqAZawMVU2FZOJt5dhFNRZbgEMagVUgkRFHjlki/eMtVUpqMwq\nb23hDwuuKTJDEUs4hgGsniVR8SXB20OykoxwFTSN25Y8524U0vawOzaLeoxOPr9/H09Z0QvFKhSs\nJG9NIUvf+fznlAu4u5a9nxcuzeClBzE9XXQiFehY1XZg54ICKHlmwgzGeiPWMi4fcf6dC9q9ILB2\n0/ER04x0nBo2stymbHwIoOph5zUDH9ahHn3qPcz7sap3zHE/wqkhUQdW2HqeZp9LtaonuenxRHB2\noO6KuQ3iGqGtQ42ZjFYIleEER9YWroyXBHaahNtuulZu2yr5y6pXuDEEQqbDJWQm6a1Y+1GSCwTg\neJjwZ/74u/jmB9/GBx8/ATXJj9w28TwaIxxZN+zWVX9k9i7edXl8EZK500y8zdjGWMYTabkyme7v\npLNXv3AQr6Qjw0BdOOge4Mh9t258WbtYEXVAWPvGFCoLhHmDvP/y2M7yOcah6as2pg1Icx+c8YnZ\nXoGd73EzhTsPSsvF6UAHR5iKLa6NGdQaABEAy7JgWReflAZ2zIJj27ZtbgmOQWnCp3goj4W7jMOI\nMognQ4rryaJVNWRjXZZ4rSKYmlpSTPGyl3tagA7suGXGlN90L/7S2iTaKMmS0zpFWQBIb+3I1kCd\notL24+ACwhJ2uTHaGPUcDGyYd8oIGeZ5FktoXSGTOUI+qEgdi3EMwSMhaRXrBsxtBgFePNTq9li8\ndqdEQRdoNlrSAGDeFjB9L3nmUFw58oRZpEUxbUkc7pSjS5sJyf3qfsfedwAdU378jC8AoL4bwLO7\n3W7smIJo58s472yB24Ed1nNZgv5ZM8Tam1RMFf1pbvpWIvEeCM9FWNOKn4HsQc4e2RYge9DdokSk\n91tQuoU6NFUb55nVqn9RKJuZoYorwBvCbAK7UzjQsQuyLq86YMXDstOadX4KFmlpwbTFUpQhidFf\n1YssbGfMUkzQ8vrCCkkYxgHAgFIrKNG/g9m9Ov6yZgG84rudXzYp8mqAhronjuel1L/E0kKuGNhx\nqoBKXxRgYIAHMIdXZygFY2Lby8YQbxfY/FdvoVPbpwGpb/n++qGUvT/pGdJOe6CTgdfOeQez9ndz\n/gIoTCNYZPMZ4OnD3AzohHcng5sMdqKtOgVx/xDaLqaA3mXv8d+jNXaf+79FdpdecYXRaGtIUkAc\nmIwQAG5rHDvIaeoF9YLBqd86Y5fJLor+JgogGWuOFJWdpgnbtgLctDSGhmY1KNBJD059w+S7ByTP\nhfSCxEBDQWUpcFpAnQz0nBL9DEQxXK/3p/nMTtjEFqZNSsbhkka7UmVnM7IXkZ/2/IUI14cZ63HC\naVmxLlIXyIdC4VgDsJf9aaEAXRoiqecRz0l57QoPJ+u8zN7Xu84m62Wgn5h3u1DObBju1sY8Nkxn\n0ucuklNFNASZyRAMs3En1s42l8x4kgmNUrvZOLV1VYk7P4nbK7DzMpsrGyHM8297NG5bt/ioxaJW\nKDlA1RCyVWkmR01EjNhcC5sBxLuz6q2YxchASH6VMmCaZ8zzEcfjEZN6QMyzU2v1/CADOg5oyt7q\nRt2i13l2WkNLQMeA2qWJu3frdzWIrN26RTiEjSSEEgouxHzrtdpQJXzF4n31ecowYBoHBzvjOEqh\ns0boGWjI79s8RiBR3MThJZZXMaZYUbzBa/uEvM4ALrumh56+2K2Auru24dmYgS9hvUhlTn+zfQW4\nAMuaTljM7gx1s113Y/gu78ylLQMkO9dFoHDhOHsPaxzp/3Tv8bGO2ehn7B+R4xdcUhVtn/P3sBj7\nM8nNOCmDh0qRKq36u9UzMKXCFj5X2BD3G3q0/Ob5C8VCOdIjqQLjCmgXQ38+P4KKN8LTUBIouWD5\ntBGU282ehRHkB6zreBwHf55uvHA+ml2pN/IFbhW1BEPY0HkC5FnbtoG2DVAyEZOfUk1+8/NYiJsZ\nMZzNDgyQUD6Lwt2SEm11iMjHh4ElV/aon4EebEisYEG8O6ykJUKaMATYUVaxbl5ru4h3mTSxXQqK\nFmuzDoGHpbU1I3YxRq7IlwoFsp+LOfTMldU0JsWLZ0qQgnBYYvX5HMwekPB4BQmBkAdkq3XkzuR7\nQbqPTEjg/SGaXdoPOvMC8NiDn8/1+C0jtM6cR6lHM5CifIYcvNZd0tvH7E3WR+blCQNMnhMJy+5F\nq80nlrGX+8/WJ4tU2LYJrVWUco+MviA6Y3zsJJ/eFyuoYyZIdp0q2YVAWsSbSdZkIJ7Xx8EwYLA2\ntILIpicoC19Tw+TAcPrzaILQDdyoaMyEVCB02amr9Li+MPPz1yxr2zhHGDMo9f9dZwqD9qUT5/Ob\nvEhA8ezVzzFfDy1c2HNBWzeeMpCx8h5I7XJ2nQ7Wya25p9LHr16/sebGvlhb/mHbXoGd72EjxIIc\nOkuyeBN1ijzRblA1BkMS9RzsrKsUtpuK1sGZcTwIUMlMa8siHiArdFm1cCmSkDHAcTwccHV9jcPh\niHme3fNj1zSgk4uf9la5tBgBZ7/nwe/CQn9zGm39OyePZ7Djx2rb7RdUX5tM4Si4YD3cW7EVXKmg\nkPsRoDONAnY2MGgNZcOvUSRfZxiGsFgxg5okOlsOlTEASXKtKpEJ6BjlqwkgyyuyhFFR/nrvBOX/\nVMhm8XLZUpW3S6tmCHATXvt9nuthSde7BHpyqMBFsH/hmEv77a2buS1e9D5dgaELIXT5cD/X7rek\nZMSf5NojxaqQr6bzWn5qVEFcwCXahXfz0wXH/pFUqQtwonPP4W7ce1ZQRZneKbIXwofk/PFMzOej\nhrUBOH1hWJxV2TYKAVfkEmALSJPUTTK1KtrMwraqxupTTYm6SRnwkM51BbYVSPXLamsSgrtq2IzX\nw6oOBBxQMWvuQeTc5M8OFrWN2FZ9fSKCzdU0ODSskiBK4MAEHgqg9LnTJa8v5XbV9iOptUMkDFkE\nOCmDKZlMpohkBraty9/M83tvdNjL9HOwAwV0NjxVudUOzPOwm4tZHjt7XAY88ZLnF8DThV/vwA3p\n/Ojydvb/6T557EbTkkK2HeDB7hr+irGZn3E/PW1u5G/cEJXls70S4GnsPaPQIYCazy92FSJkEGeC\nH2nTnLsjBEVS56kGUeO58tyLj3SndOE7O8BmM+LdROZOHmfgOuqcGscxyYg4u3l5qo9XUlKCbnKI\nrpVC9yJMSwFn67oQjDhflr0vsgXgMbCza4ZLG+/+4PNdfQ2iOG8eX3TWL3bfQYKT6zvt2Xdjhbd5\nm+Yq4m+b77a2QGsbIY/DO1+vwM4fyY3Qs2UAqhAjKQo7BdAncRZ+jbGay3fbHCDMShV9PArY2dI+\nRNQxsbWqlM0IEAYSS8jhcMD19UPM8+whd3vWNwM8mS3rEogw0JCf55ICm61Pg7J35H1zgnfXPvKh\nA236Y9ILdQF0xaS/nnl1ijd1g1Qhl9C0aZo0RG0UC7DdVxK4cq5RQQxpf8HpfUVphVOeOojRvjWg\nw4VDyFg4h1qzsBsL0gw7gXXP9t0DnXwsuv2sb14ESNx17RcRgpfGy4tco1us7z2nw47793OggbT/\nZV+X90t3WgIo1CJfGKFAp8X1sgy4CHYuAh1VBpNC2g0IoqSQ3gF6KICOgZx9gUV5ajmXAR75Dg50\nuu/9OaS1WgY8CG+DncSUmy4p3udyPI8YbqJeCFhi8bMibsCH1wW8LOB18WOZ2WWj5AZsDnbMIOTU\n3S3qUzjoKcKaVpiBolXdO2U+ywcgzx1mCiZEIiU2kHpmNAIDSQz9WPpw536MaYgTCdAhAzqQf8If\npo0vgibCATO4c+9OP2/2hqg94Mn72DPuZ1OnoOVxbN3ZKVQl1TOL3EoHOybHk3LsICTdR3iBdqDH\nFUUzwu1lZoCgC1+nVz8ffN87ZWGvTruRjBHX2imI1sedUc1bOE8wSjkRYQDrb1hAj3t2xgA7wqZq\nBkgF595n8Vz9o+1baC8FOe21V3Z7Y1KnGwAevt43n7R1Y3aGNlQbrzIHTLZlVFVK8TxamU9qoEDk\nEHbjle+S6M/fAlTv9Daiu5pHP6d5imizfF57pjvnEPrzAeh1PX3v65nluR733j0TbJ8cIsqhd6UH\nygDHdJ+LXslP0PYK7LzEZgn+edEAZDBodKkPEFNk99YwG5Q5+W5QC8iUQc7hKHz6mrPThbElr0xQ\nX0c9GgA4Xh2FZvrqKAu6Aoy6bVhOJ5xubyN8LbGXeUVtimXJAIiHmnHUIDCh4IpJMTdzmkgGAvTd\nhGEWKK6QXmozDedhreOTjRE20aPCeEnF9tTqlu5dcm9WrJozUKvGxsOwVip0Shoo4Yt5Ad8hRvNx\nIAIqKXUwnbWR5T6EQgwHcx0oTvJ1rzhf2uRY7oQ10nuju2OV+3Ocf77vuvbbXcc+L4ztksfKFRgT\n4hcO3V/TPIhSIyCx/u2u4QuaK/1wpjpf/g29uEISyi8pQLBvtdkllAzBjLTvrwx05Bp7IAP0oTp9\n3oLcH53FTgcgiiVfGACbjwk0ck+lXbNxRUN1Bdmai9OiZ+3jv+vfPm4NEbEpcXI/g8ocH4faocbi\naOFhg9Yo2TaSApx1E49GFZp970NmYNtAm3p3YF8n9sqtOkFJsLMVvcc8t3wEieeHGUJlXYL+VtQ7\nWBhHUxKTPIHECCTFKt37wspy1BgYTNadj2EzOsjzZVKC5q8crpIZN2sN41dWgi6ycqZxd5bwv/vd\nPXT6zNJ/oRAT+iKk+1Dicy+7hjOXqJ8DCvNABukGduQ6lCZhVmN3907xjNGjF4AP2Vn9yueKXpIF\n0Uecnh7dGpYVv76FTPuEv/s9M0ELwkHhbNyj7m4hzWTX1/EfFvxY64ZxwGQRC/oSnSSMcvnxos3O\n5XiEQPaRBszwcR/GvpBfDp6TIWHfjt06TlrsVtdRqUumkacwcULq5ZEAOclTUs/OmPJpTWDnVzRn\nd/1+7cro9PK65M/BiHYkNW4gids4owlGl88hukzvCfAIawMfTglMMgezLXMHeDLQacaU5g+9105i\nnpkH272uxAp4WsCjJBe7P+3bTybWeQV2XmbLi8Ye7Ijynwdur4zlYwGZ3DIBxFIDIgc6V1dXOBwP\nOMwHTNOMWhs22nxhX5YFp9PJwU72pNjr6uoKV0d5MbOHq0nxUAU7y+L1ggx0+UK2e3Yhgwpl2ckF\n0HO4mzXPgNOleGUiUXBYvSdm3ZNFtqf86EMdANeqdlYTovC01FIiGTR2AoNRt4plOWFbF89dYjep\nibJRa8Vm6xWAMgQdpMnJLmxnD3RUEg4k1sdLCoa1h40VAiE3OgNe3VjvLI5L7/b8/tmFW/4c4Rym\nkObtknX3LmCStz34uctDdAk0Pf/8fA4A8293nL8UpYa1IpS+gKf2Sv/6YkEWWGKaBsHoWFXz6K61\nVxiIAG4FVFhC2O7pJwcneyCXvu8AWQJFGQD3rRGLsyzQWUHSt7brB6pw34wvyjsw07V2ukb6QL5f\nlnU5j1BHHRdwaS5jxlKwDUXeSxHSAgBbW7FpeFr2XpRaMdSK0qrfFIO9BlHbxMtNLCGvpci5iRvI\n8g7Scc7+RIzWCEQV7AQipmzE/HajiPVVY2Fa9LFgQEFJFKhInYs7xm8PdHqQY56aCPm1fbgrat1R\noe/yIO262ZPT5Vt6X8X9dc/aFY+OfKo9k9rl1+Drgeef5bYFEGGVCfx7C5vBZn+fDldCSeuHZzJY\n9CAJ3XeIv9P8sl87A4x9nw0YCOXvDOjYvNMHyMq+VhGWueDGmMRq2M3BUIL3INZCu8ZpxLRNmKYZ\n07R4FEb28ADw8Ol9M4Sc6o1D9pBcNdTMi6Syn4AA79uSnjG3fedFtLGh1zWwUxhoTE6v7yQGREpT\nXcCsDHTDiHEYFUCTzuG4bYI1/V3ry/PXNX987uU8wdrwOVp/14RZNoTqwolVlBluPM4XZ+BeoGN6\nm5cBSfqn3zP1YLMrUkzi4ZbxiIjO9sGXn+nCwvMJ2V6Bne9hy8DFXLidgNkJjT1IkkkU+SoDSYhT\n9uwc5gPmecI0jliHojJUyAWyZ2dZFg9TM2IDqalzhaujeIdscazKkLKcTjidTtjW1cPgDOxkL4gJ\n+O45gLMFVSy5u2raNsF21jBffnYLsFxKQkjss53fwy0KwC2hEFunCsKzo7ok4j4AACAASURBVPcg\n7EkhAUnPudUVy0LYVvHuSGy/aGxiyRJASQhLzMgDaASAAb2zOhRDE0ikic9AA5WGYrU5ktDZL2Kt\nMcqQvDFJYN0FdvKWrW2dOpAXWjvXHZQq3yvQueueLu13CVx9N+eWfeJcZ+CJ1IqKmJMBfGA4Kt8R\nXFUnW+TkDzKh391rAtFZeSaCINbzgoTd1TpQU/IP+rK5ZmAovo+1vUciGfAA4tk5u9d+FzCqVvdO\nFv0kwkwh6Q9OinEg/wR6TCEodsvyYqhRQbw7QyG0oWAohEoCSlYA1NgLfLZasS2LhPquK4bWMHLD\nkAwiBi6azluu4lmxnhiKKJbQOW7zFTYebJ65QaBXPPP83ss8LhLOV5xC1879/7H3NrGSbVl60Lf2\nPifi3puZla/a1V3t7mq7aWSwLGQZYcTMFgPkASNjCQnabcEIy8AAIcSMASMkJCwmMGNiWxYD1DOM\nJSRkph4g/iTLdrcbyd12l/q9Vy9/7o2Ic85eDNbv3ufcfK+yRgl5UpERN+L87N+11rd+WwJC/dLp\nLX490DFXO3sfa6lJ6u4e7IzC8M6CmXjPkUVnnE/LINYL10FTitH6TrFVd7E5paYEGeZ23KVTzwQ8\n0Z5ujaX1P9CzuG4Y4B2WiX2E9OxOiTK04TkLeta8x0YZH5rHrLdekSdQKZCCk3ZPGtZIWisWHE7c\nrT9TcM7TjHVe3bLjFjqne/IeYCdAT78Wydejt6OJlcLToWuGOeul7GtGaS3WF3MXB7ZbjwqGapWC\n60RFDaEE0iB82asxv7UAmPpiuhYrG6sEbp0nhFL2kD8gtn9WZNn5Nvaddcen2dbMOO9yQ+fTaZ0Y\nvXFXwFw+wWUBimuGtfhcYifWhpkrLcOeh5C1fP8naywVlJIt//2gdKte1/fIXz6l4zPY+YhjJIIj\nM3HiooSEwJIO0ALek7BrPqe+1mhfL6c1E6IV2WulYXNfMGZYitSQuVNwI4DpHtMs02yub1cFOdfr\nFbdUQPRIu9eZrAdwZxvQrTmDVcnGJoOAnIxgvKdbuzTTWWPWugncgSL3ubd2Qsy9lhAByhwIkGBl\nCuK18abpvSV7E7embjOSpalomuDWGm7LDdsmcyNubCdMZJmFqBsjbUg3LrB4oBY1WERwDHBjBURF\nYxuMhU3o7nKlJuHs4HBCb38crd2j6w4E8u8CdD509Ezi20HL0bnOJI0ZDffXTz2AwVHbxcIQ14Ww\nMt4/awLHvRCC8TgNHWsTBrMTfp45diAJiekqIKaIA6T0P+9vs3tmx7Tli90aIHW+Ha9lKAOFAUYM\nYM+uJ2ut+9oza1yBKShMYENzhYNbXqiglgltJrRSUAFMpPV0zBVM/Xp401S1msLXsrE1zei2eUrr\nbefWJtZi21eqYTUg5wKSjpkrAziBOe5GyIUrkKe57jW4rMCuIW+BEZRk4SXTc9fianIFL8boGehS\ngPK4D8h4SgadhFwo1lua1jVgWvUe6NhaGi03tVRPg2z15Y4sPJEBsF85x8cAdGh8IT6XsO7Y+nZQ\nYQqDDHKc35b9/aKjMVc+rja/fTOjllZHAb7Dzlchd7ir46fUAuMrzeRjpS0Wa1brhDo1zNOqCXhO\nICKXGWT9aR0aG5tiXTXLdViAmfs2OY+uhKZud4zm68WE6gZ44h7i5jFvRITCOeMayx7WNtrGI6VE\nOVaOTLNDGj5QNO22xipJDI8URNZamB3wfF6R9q0T1M1BBjpZ9jA33I5XxLQ58DDPlgDHIQuAU4Ii\n5nTPGP+SLHLx217+jC3GsOAvgskvsmYkHMAUH0dAR94lBs0UpAbUPt3jM9j5iOM5LXUI7uTM3BZJ\nSSDAzmsthHhxmwlNUwSQJlTvTHx1rV721yYSrcf5fJY4nYcHnE5nlGkGwIdg53q9ep9GMHPk+12t\neCKiXXZNp21xQGSuF8HU83iNgbKAbLKmmhYhECQaqayVlJsgSakgBVzg2Jjd5ifJ2rRooTMrPkj5\nVQpIwc6yNKwkpTMKaZ0PspgotUKZc3UCMzImTeIjqCXBIdE6hPbUwI4osoq3X3COwp4s3P8sa3Yg\n/lnD+m2Wlo955k97ryMrEGMAKen+ccb+PvFuTBwYXY3QLHky5aW0A1/5b9nbBkfZpssZnNloSgY8\nhmP2Le3648/J/3GAIS62FhK7pXSvZ4Y75mF8B1wVukeUwux6qdifuXMRobgVQ33si9R6kHW+hUeU\n3qqY4FkJKBVcN0wAVhLQA1Ua8NaAraHRBkAtxW3zNKzbJkUMA+RkC4nQIEuD5YHkLmxIe4jI25O1\nrS6YcIyB068kYLgvPqug4a/jtTsqgUagsyaXlc2zyQk9EX6g13DLCybxEXSCf3Yfs3hBbY1ebhYs\nqwnTJ6vpaXbU8rB0wJnHmZXH6+tY3JlRYzZSNK67AejY/zvAo0DHAIxlwkvrkrzd++t3lqHubxHy\nQAAaibJh2Lj+J8GBsSuovvMR9CPWhH1G91mADnffZ8vO1CZsk2UZnQFAivWmezmPLzEuNgcx12FB\ny0cpACu3dC9YaxhCqDd3X5szm/NSmr4qmlplqRQfMXHzhigtGWrtCenaprDA1pyBnQlTLZimmBSn\nZhkxYOQtMdbPH8Y3bMDh8pmxFRmpkW4Gz4pxCbDDYPd04QQ0DWwCWbkcc9Kz0j0gEhnJBp+7ReRy\npb/6ciIhJZl8ofvJaCBs7366cOcz2PmIwwjD6BsN9EJW3kylqhYsZSYxf3YAzlhN62/FLbetueXF\nXBbWRVJMtmQpMbCRgc79/T2macbG0DoU4faQgVLHuBV8NHVpa4nisp6D5Ott2k4DQkZ8SynKuBNY\nOxirXmjQjW6be9CqZSE0ho1TYgEFTHVKWggBXBYD1LhJtWWWGhxSiVoyu4gbnIId3nRsgMLibsNg\nlEISGFmH9L1pPI5cSrq5VaZlQovMN1TzxU5wwhyfRSUdl2FNJpH5kIhnQu85xD4C3HybleZDAOc5\nF5ujth4968N/96Ck659r+ew8ZcpokfWna4tI7Uegp38ao7cAIAHtg7H9KfgE9beWuxuDpTzbiMXh\nWOf4mazga2xGSmVxhMaUOSOEOgM1gDN9/0HHhGBWG0nNbwH7YmHRFNMuPuWtVIBSQbWB64RtmrDV\nGW3awOuGViVuB0SuSW5bU2u30rR1czDgQkcCqSBCYZZaqBxgsZDWyzJFjVqMuKlQqgopsLjdUAma\naQqYZuvQBSEZeKmPsXnAv1miWkvWqC2Am73WtvfRH11YurXZgZteqCekDJBImNNBziCYWfsHoFM1\nA2XnsmYubF3x0BpClY5Vv/goLVoTG+27tE5LWKMsm2D0y2qyGNjpgZ1fp4vMrDom4MXv8W5Avh/X\neIZT38ECguGvbmtw/r3nBxjmcCSxblU2sM1KwW0+SgVPjG0ToDNPc3dfYX1yAwOD0l3S5ZwzyOLw\nsOyhVuerAMpTU1ziMA5mNZU0/abEk7z8ZHsR6NZkHjwHxk5TYg1OdcJpPuE0zTjNE+apuKcEDy7a\nmYbH5xiTaPDz/DDpeWJt9ku3X9oJyPg8eJ/zPkv0qUnWWFPsxRz189W12Ru1bzD7Wkm7K9Mrl7l0\nlIcJjHGMvXgkg30qx2ew8xHHuorGJDOl0QIC9IWxSrFqtolcpoUulYXFVeF2nXG7SRyOWBBkg18u\nl+R6Js/MlhEDOQ8PD56uGiCs1wXX2w03jc+xzGsEpNoS/TsAP2dH/7LKSTp8DEZ0A0fqV2mznc8U\nfsVGCISeNzREMG4z33sK97kjFxC5N4SxTgIqJfWs+AWboNKYXeDCVAXIqHm3VknHiK05k3AiWwvq\nNGHSgqSlliToZHKAjljrVDtBa5sEp1oAczPtSVoPYNYS8LQnLrz7sDuCmAeRJ+2/ZfqKtTpeewxY\nvg3o/KxHJ8SnNhD6/uzbkzmRWkCQhM3+KfosIeZjP01ozUwgruqPo/HguPkBQ5EbsYGXg7aZEBO9\nGaabjnvVNWAnUH74oPG+JlT5Z9sFwhB7pm4CfXq+3dfiY7iB1w2b0p5tlXcwu3U1gmWBtq3gVVJP\nF0gCg1YqeJqA1rCxAJ5tW9GIsAGu0DDLTgY73UjY2NbqldvFykEqxItlOruLhRAVndwL1fIE0ut8\nTFSYXNZF2200rbn1yd2T0985pfR2ELcTWvoiihfvYxJoXJiHrytXldgaNJqTFDEmIFlRQhEwyZV1\nkUZ6iM/Zua+lGk+W9tzheAhwSM+xNsLmagAifW0kUouRksqdMLevIWRlCohKsgxZ5sNYJ5zuJ8lO\nMj0hw/To3IyP0IKS8gwi9y9YUlYX6lnfXXFigMfmWZ9dSIrXTmBsU3In3IqkUm+UMVK0T5C+r88e\n3Iv1sF9Twn+loLd2jQiNWoCWbq/1fNA9MxQMkxbgFp2jq/cSAExjmjYTgVBI45LnE87nE86nM+5O\nFtO3dTTqef6WAIxPXc9znqOdDnT2U93JM0UBD9L4CrXhfl0AXvR4VAiP7Xbw1NI4pbHKzxfXxbAY\nOeBB7IdouH3kyIbn05BkhSN55BM5PoOdjzhGsJPN/UgLKVt5PCCMSF05MoORRb6uK5Z1xW2Oujdm\nITKwc7lccLvdVFgQAlSrxAPd3d3h4eEBL168wOl0wvl8xrY18OWK2zUyt62DRSgDJmMW4EgS4IDn\nmU1owqELivr9c4DENo1UMx8EOtiGy9mFWNN9WyVnteawuKWR+61DNmMJH/ptUysMFxWadby1EGsh\nQqsKwFRwKATVHmvLyOawCtg5zaiT1ctxTusM08bB5h42dlmDg4jFcsLCcCLmwnpaS70GzpgDhtFL\no5iJeRp3o9IfIloj4PlpgM6HrDvf9dgDPO2vCajDu1kFM+D5wN39GvNPz3tVP3T3y1fmZz43Lhk0\njYAnGEovisd5fds5zbJ7nH2n47vPgccY5Q2ZhSMe5A7/Mj1jB3gYlnWqrSvasmK93SQpyHJzsFNh\nlm9JVMAW79bEqjqpQIdpAjXG2jas2wqUio02eRJrNjYvsBxuWFnDDyL3X7cxMqpVp4ppmjEp2Mku\ncLFPubtnCOhyNCK0puMo6aYkacK6oq1KA1u4r207sKN9MItV21t1jC5WLVNgyikBNEDU0DANdF57\nNpeDVtmEIw6LpgmpBlRq8k6Q19QDnVoC3JRoQykGMlRM5oE/Qn8b9grnsdXvi4OYlPzGhHEg3af4\nMzuQ1M1bql+VkQ76Z/oQuhBdAE0sZFLzjgroQHfbSce7WfxZjoty4RcJ8CDIz8Aorc+y/QoIE6a6\nJUtbQfP6RNamPT2zvcMeA2drPck0lmSkEErS9jcmL8PhQ+e/6v/6ZR+/JesFxtOd5ykwSy6n1lym\nuKtZds4nBTrnK27XE8BAW5st8F1PP0Sv9wd1/XECmMB6PIAOAYf7aKT95SfB9qDsQ4uTG0MHjg4D\nSYZGrEUyghTzyYO1ptsv8VnuebRWfSii358o0AE+g52f+TDiYIcJUCEzUfebvMfecC2T3cvrJIQb\nG5GAq+x+BtimrzifTzidz3j16hVevXqFly9feuzM5XLFuq54enqSzGtm1SHqkgj0SD8Yurl05P7m\nvz1DWvqttRZpJb9FS9EDRRh5AChVZdeioLYdsxaSWlMBI2JjTHvBmXHa+DI0fSb8+/jEyviEsFcV\nInrXjF7T2JN4I/o9Ux3Bn2hcqCMweR5Kp4Xpbu1HBj9HbcjjnM/3U6i/Kp+7O//g96NjXCfjPbJg\n9SGiuQc6WmTuA4//0D0/ZKWiA0KeBeE0OwjYoff4QPsJ6ISrLHCCRetnwb7WkEwL+n7JlhQG26+5\nvegCn9+MVXKfx3mUeEHTOA4vy+bma218QBoLG1N7cAOYGzYw2rqpVWfFtsgLTUagkSgzNg3CZc0M\n2TaNS1xuWJY13NRui7iqmbJpS/EsphkdQMle0E3MnggEBVvDeWa1IfIKaj3Wc2HGeMHmiQSsiOlq\nL+5BSx+j06eWNoAVMTocafRTtqwINE7gzdYR7alDvyTGlRPgQtwP495dApryTDKCDG6GMQw3ZRv7\nnDCht8Q4cSK10HZCWj4/3VvXsQOckgHRQSHSYNDdZwDJtdVoWPo5/eHJLfTzfjPSsFO1Wwcjb2eH\nYivTgoHPGA6wflNk2Mrzs22buqSP/EFpWSoEc2Rxytd0VigHaGzYrOuntanrW6JvolC1PgVd7agr\nWdqUTPPkVahgniZs85wAzw2tMZZlBVmsEj7MF/JY+jCncbW+hNCfdw4rTTTgYoAhj00PdoCB73Rg\nNgOUgT6n9rMi4jgvx6JS/+wEiDJYyzzP7mmyiGFMAzywHqYh/FQBz2ew8xHHKBT1Ap0svA9vMtVE\nDVnMDMTYvU1YlEDbiNnZNtFmWozOw4sXePHiBb7/xffxxRdf4NWrVykZwBXLsuLp6RGXy9WvtRif\nXGthJHQZ7OTvjzKqZeCSgYyNw4eA006oNgUgtwA8SUvWEefWsAGuCW1N6ncYBXONiQKM0tgZkyWA\n8IkzYY/UhaNOIIIH4spYHflyx+VZ2LBgwE5HlAhLgCM4QS9q7i+kdQpGiTWvogNA8hwr7YDM4d32\n533wHj8lwTtipMeKADq4t4LXdK+x76EltrOPme543yD+h63W58nnjsHHg9PtROghZdTFhOrSAxhh\nQA2Fh8rvB33vmK2D4A/hPqNJ2mZ/JB++yxWMYqmnB4GGE9jJ98furyQ1KDBiblKbg1niDBfJjNY0\nNTRvG8BWt4ah6EisINuKTdPCr0vE4ogL7gLeFrRN4xcX+c0KiZpbXoHRnWPNfoCe5PIFTanvL44k\nJM2ECB1bBTvczDU2MqY58GoNy7biti24bYvTxX1KaQMx6OagIdELE8KoAMRiSfHMl1mIGcC1T9Gw\navx+SXBn9tpHU7L2H2XbtJid0NhTchPrtcedoKuABenzCEgA8pIeAUrLwT3Dim/zbe5pkXlsD8Cg\n9/VxSmMBYFCuDMKnfZt4H4gSwO4vew5oGdhIMDWNN4FZxf00JpK5Kx43AkjLzlbKhFLWNF77ZWDt\ndJk4CceG3UCINcub0L4cM+bIaxhDsh4dj0GsU+wIms2dNMUyT0aNuEokMTsndqBzWxYsyyoyht3O\nO/HdDxrWA3WNy7QVnuBEw5ASaDD5T2mFj+mQwCINg4G95/ivywIdH7Uv/QZpcY7tgf/g5FbXks23\n1SNsBqJ0V/lC+MSPz2DnIw5PkZysElljbUFmR0IdYMtGiVotqK0O2rn43Z5jiQpyUoFpmnB3d4dX\nL1/i9Rev8f0vvsAXX3yBFy9eeMFRQCxCj4+PuN0Wv2fU+glgchT0eiQseupn6rWKR2Anj9mR9mi3\nuW1jlSMBmSE1MgLo2BOyZhclu6yJ28BmICjRVyOqQivSc1gE1EqaPtfATi1O/PdEKRhdMOGchWjo\nD7L8GFrLQgWVLLW1MdCULniYjmPAYycefH9EdLEHOd/FirPXOH34nvm7Q6AyCiLWDwLGukDPA6YM\ndT58ZGY/tmX8vhMIELzFhFBtadcPF6YGsOM1e1xpYP2k3Zi69tbui/5Z/vyjsUY/3kefAan2wbq3\nUkfhqr7dXfPoctcevw6ImLSmrmXrhm1taGsDrxq71jZwW1WhI0BoVWuOvGsdrHV1NzWggbABvAUQ\n2lZ3EQNMcAw653NSjkCPCNtZgRK0UItEu6uN9M/ADTN3oGUs9tdaw21bcF1vuC63jtba+T2Ni3Uf\nHkMmgMFpBZg9mYyBnZE45JnrBPK88DPg0XOrAp0jsFM081odgU43lvY57QVYjY/qVhc5Idfe6Usu\n9GBHFE1HgEVFMhHPzH2uxOsI5D4LdHwv5xTtnhPz8AhKS/6H9mC/fx0gxS4KNkCSVY6sR+z38HaY\nkAq4MO1iufKcDEbDghaCOiVf2JFs2NbPuguPuzOh+MDVqhjYjs52VHi/NmLse8BDiR9SgB0mJy3m\nxgYQzucFt9sZd8uCy+XqNXfQ7aljOSaPfT6HhrbnGfb/nRcEL+/5u82Nw5jD52damu8xtilOyI22\necx0IwOnJNf0F6bz9LYtgI58b7nJVR56tv2fzvEZ7HzEcT6fAcD9VTMDA46FvAwyjBgUrlpjYusW\n9f3dHe7v73B/f69aQwBYHWSZVYaI8PDwgFevXuGLL77A6y9e4/Xr17i/v8fj46O0h6BubBes6yr5\n6bXomD3TLEojA34O6OR008bwKI2FnZcZZWvNA393GYVa2zF0FArNCXqfX0n2IHEP0cZeMo20wJGq\nVflEpF9ULZD0WQkTsxY5tAKlifk2xrZufcrvLfzw2YgRRTdy6wYom+i8MH1YNihlVMxilQJzFC7m\nA/B8SMgzQ0uM2hqGnx7g/CzHKGw/x3wAuFAm51g/vh282KV2uglcR20JkNifk8egB2Y8/G3P26HP\nXvDv+qJfZ0nCP/bClP+cqolbTQRKC4sd6FBclMAXdV/T0Hf93lIkt5a4n70HeIj+HoBSX/ou6UnC\nFWWkxHCLgSQH0PiWjdFQ1JKzYV2uuF4uuF4uuF2vuN2uHqNoSU4AsQgBW6cAChq8d786FJJTXzqw\nM76agZv47sgdLaeNztevbcPCq6SPTiBoFBq7sbWYk6RMGoG9FZD2YsxpDbgYlO5tgKcXQId7k2rO\nB7Bjz4uCzeHS2710rfh7AkGWma3UKu0gy/BVQNTPke0Gi9XIAv2u7dYfH7vhHCMKeW+m68aDDGhm\n4ZOV3yiPsO96YRlKn60tUluGSpFkG8xgLlpfap8psOnWKbpnmj4x4zLYnDI7nXNFIMPLL8SroLUe\nRGYg6j0e5tFd8ck6JHPE+gwDPzaORNlV1ABDHGUAOi4PEYFt/bICBCqwzIEGdCyMR0MAUTUbqtQV\nktek+zzvgcxrnlNQ5sWQwfnAZf38uA8Hbx7WigMNy3N/cARXU8UM7etYuSLBLKfUr2CnGeZin1xK\nIyGWN7UbG+1MAmhK5xgy0ChSEBnsxZZdiPoEj89g5yOOOwU7BDhzA/aofDw67aJm2mq1YmqMUiIl\n9f39PR7u5LVtDesWmdfsHlbT5v7+XsDO6y/w+vUXeP291zjfncHMks0NhHVdcbk8afwPOdixmB1j\nztaXHBM0CnOWSKGUgtPp5Mz2yFKTN6uNj11v1qlt23rNN1EE/TPAyhQyAZcA36iaHEfoL6ImAXtA\nMLHcrZYCmiqQwM7KDdwKWtswtQqaxR0gV/u2tlvyiHUNAaZlP3o24XBsXfpgmFeZIlQLZ2CHatXY\nBR3XBFKO1lX/dz8yxgBGWJhX6pEg/yGhPgvMHwQuw33G75+9tgMJBB8wTjUKDvZbMCoXz/tp2AGd\nbOLftzmekayL6VnPdEzeAE91nL93IGHlUQ70fva3ravWhuxuCng6cS8Lw/5fcWaV+5U/S+FOJIdt\nayfHuknPGoGCP9rxtfZqKwAsO5IFuleUCWAq2AjYwNiYsTLQtg3L9YbL0xMe37/H09OjA591WTw1\nM/Oq9w2AkddCuFxNO6FhfzwPdnzKOISZI5Bj9Gxd10MQ00j2b6MASuOzsjKMqil0IhX2DlQcgLZu\n7YwgZ/jsNc2GNUUksYqTAp78HC8tYFaToVZH3neEABnZVS0XGQ23tLDuBNhD0HKnpT0wy2vPez+O\nj/fR1jHZl35+957Whe351ho6zXYGOfq5A5Cpte4mrvNcuLpiYAQ7im2EJxUW0MOsTQt6JLQglAuZ\nLtk85VpHlhDAYnf2YEcykO7WF1mKa9m3VEVcNJdLG4QjsKOQsVPQ5XmxK6kUtQpFYW0iWxvFSZLR\np03bZEU2TXk7zzNqCbDDRsccDP50B5Gtu2hrJouBGpR/sMXL9M/24wNNcHBo7pcHgCesn3mObFyL\nx+6VOiYLyXTf1m3wMwdlA+gxe7/wL85k/ZM9PoOdjzhOpxMAiROp64qyLEk7E6AkCKu8bJEWdYui\nUlyYzYzorGmj7+7OWJYVWAjrtvkCzoL/w4sHvHz5Eq9fv8arV6/w4uVLnE4zLpeLAAMA67bicr2C\nGZhnzcE/ELYMdrZtc+I/xvRkcAfALUyWOtu0YZK5pTjxNQLYWlyb7wkYbzSwo2Z8KlLfp5Z4beGC\n12txIBonJE2R/WO1kjSJTfB4CSiRBQOa7Y1YrDvSpmCyjZsXZt2SZYdbEP5Rcu7I5UAsiDSuwP3d\nVZDQlNZoWzBE7K/d3T/9txPrOpl/MEqP6Kdj5vZVEO/ExnztdE9Uwfd50/3zRxYcxsYf9GpoeAhY\nLtDsZBjq+uLRtRkE2Hsm/tz/BvTj2QlXGnsiWj/S2/cgw5lMfubQhrAiHCtRAl8MY48BiBGl7lI8\nxxihuZvq3rUO5/Xqw5nomAOFw5bBBQ9o6vhKBNZsh0wCwsRssklfTJlwveF6ueDp8RGXpyc8PT0p\n2NGYH17BvKK1tQMP1i6xeMyYpq1ztbKxz+/STrNMh4tOHsMQZiKRwAhyRutSN1+VZE9PUb8nBIxe\nEBQaN6FoprNpMqGVdqDHwddABzsZKwEpsXdnYJM07sazimS/qwp6DCAYCHLLjgvSvRD2nMtYCGUj\n2OnjeKJ9ANs+Zl+BvrwoFnq//mKRJqHZPhsMSwqDPM/dAMbOHJUcWeod9601MIMrV3AasE27RDwP\nIJkHCwEQAb9YUp78bPIWeWNN8LZ/JYEdBzyDe2D/Wa4fQbPTD93vFh8GAFTEQmWKEEr37OkBOx+g\nNO4GjEGiioEVYQfUgq3giopYgBkgMgE9suAxEeZJrJuzJmSqZA6P/Vx1gNRHVDhZppkd8Dd+0kQu\n6NZEvrfzOkozkecpH4lX6TqxtVrISonkgrwU8XA+J/3ceJISt2abYqloIohuQNAv58yLjC4R4ONt\nI5Uv+jRRz2ew8xHHTYX927risiy4LIswptMpCM00gZmxbataLwBUgCZCqYQySZ7/tirAwAYuDJoI\nXBgrJKh1aSuWtmLjFVQJ03lCmStO84x5PuHh5Quc7u9QThMaGNflWMh7jAAAIABJREFUhmXb8P5y\nwePlgsvtJpYh3Yhra7itKypr2mYi3NYVa5Ng4gaEgIa8rEU7GRqEklzy4Axis8BeAK0KcMr1GACg\nVoK4LUgQ37YF0Y5qfE0YhsauiCVMTPuNGpgaQOH+xrRhaQuuy9WzpxEAqgXTeQYK0DTImSF+9jc0\n90/3ZBEGOEDgTZ4XpmRIzcMG0AbQxiBNj1s11oYYwNbApBYrZXKSFlVrikAFYSjoNB81JoA3EBdQ\nYxA30a9kwT0RYWOmHzr8HO7oHXgTBmJMJ7MCYw/OSE17BSWK3hRZJSacdM8iGtIkk6+hrlqqMljX\nhgFu+ndAZc+we6Rz9wjS7oFkbQ9GxXoOcxpTlyLi3lEQTp9l8Sxgv3FmW2lo1eWQ0dQFJLNJE5Ci\nZz0kpMSco71wQSEUKfmh1i4bT+sb9cOfG5meG8X95D/HQ+PSIlsdzUGiDRGl+0aTVhA1EY6a7Ffm\nTfYwb9h4RUPDRgxMBfU844R7PBRGOVXM93e43a6SRdLAztbQtgW83cDbgttN0libVcWs1+RTGtr5\no7jELGgzR8xNN9YieYs74S5d9AbmBiJGqSp4tOLCEANOB4QBsLqGpGHNArEJqV1K5xogEwYE7EVO\nRxwTIMBAP4WU1hJCENd7B1BQQkfibmaa5dwu+WyWMxvDELLcHbdWUJlAZQKooDGJlh5C+6k0EAqK\n9oSsfdb4vI4dYA99AiCuTiY0ylhCU2WjihU/6qIZ2Arh3pUTGgXKsBToDYWtXSp0myxIUieGi20Y\nA9GMzfcCKy0ioKoGftM90Bqai5gNIAapRcdiduSuTQXnWLdNFiQyNTElToDXgh9//Ra/9wdf4fXD\nCV+8PHlXLUkPgWBuYiLQ6/xrnx1YMiCuo6QFQWP0Kf2ztadsYFiL+s+zwMm3nnVNvKZgiRaIipNf\nZpasjmRtFVq9EXAGYwHjvgAPE2GZC65EuJL87kI75ZaoC13MUhJ4bJ+pHOCjrO0veh/Wmlq6WC2g\n3102vWi8hTfoeOhaqiXi44ryDJAkl6jTKZTEJPdtDVg3xrpuuC3ifTNNBXORfcosv8mkNUnpP1Wc\n7k6odUbDDbwJzW1QpRE1lIlRm8opDC2LkOiJ0iyZnG3PFz6R4zPY+YhjSWDnukjBzrv7e5zPZ5zP\nJ3Uxk9SP1+sF63UFF+4AD83CaNYmgveKFa00YAK4MlZsuLUb1rZiaRtWbEAFpvOMQgV3d3c4n+/w\n8PIFzvd3qPOMjYDrsqC1Gx6fFOxcb1g2qRTfWMDOsm3YmFGUqa/bJrV3skafIhtOFoxA5G4Wln0H\nfo5kjls3CSbeakWtK1oTU7PwF0KtpG57Rl2am7B9cxGnGg+qeSWGkLwNTE3AoTL6Rg0rL7iuV0x1\nwgTRPlIlTDSj1ILlRl5QVGp1NJymCWWeMVkFcOsbC9hhZnDVuTN8tZGUWVDAUyEuH1UFfN6aICJ1\n0RNTPTxFarE+G9GnlpjGBrTwlRUiSM7ETEAJjh8gwCaJ/fsshKajqUYLvaBjRBsJbEgaXASDTVYR\n9msR94G+8/Cua8fbTAhimmR1FzayhcGZ99CXQeaPdpmeTb5MerYAEd5mczOBS+5mEbTPJgjtHj6A\nBjsYhFYG1xfrU24D0t8HlqX8LKI+bu2wjd0lWUMZY5NQV2qIWlaLuWqodu/Zw56dBa3hni7ACdiB\nriWmhsYrNhYFz0abFCacCirNOFWgzBXz3Rl3Ly3V/oJ1jTTTvNzA6w3tdsWTWn4ulwuW5YbbbfEx\ny0DHrM+jq1m4jdTOWjNmYCSizvLttXDMKkbieQsUoMacMANMBVwqmKosdwckBnQKqIYbioGKnOXM\np5B89HW5pvgW/T2sbvYFElCKPU/+W6wPNmEXFQxxp3W3umnCVKXGWC3Wxgx0EmgrVS3U4kaFUsFF\noTKz6qkE6BCJcqEoCCyqDMkWmN4Skxe0AR1x0yLSYppFns1VwA65e6CBHQNJw3r2DKAyh1LY1moP\n2bgh6FZRwZCjOKa7pfmeVP6BEte2VRUqCndSTbcI9o/U07KON2yNlS/lUgv9/FEpeP90xX/1N/8W\n/s/f+h0fpz/2y7+If+tf/ZO4P09CHznHJhE8KB2AKRJd2GaS2Ls08r5+fd0h1hRifTFYEi8kQGR0\nwlZ2STyiJLATcyzKo62Ru6U3ZqzEWIhxJsZdYQE7kzynKY1msGcYc4uSkm+Ti7ilRrHtAXlnRH0/\nX9sEcNtScVbbcznZRrh/MZqPncgAmt69EKZq67sCqKAyY6onVQ6HtWVjYG2MZW1YVpFB6xR1tjaV\nJaExYkwCdubzCdM047at4BsU6Gxo2IDSQBWos4DeAouPMsAOkcVUMYGSEqd8YsdnsPMRx01jWm7r\nituy4LauOAOo04TT+exgZ1kX3Naruk8BhQsKF2zcJCgYhLWtuK03bE0sDiiyMRpvWNuKtakGlBtK\nLZhPM6Zpxv3DAx7uH3B3f4cyVQmCvWx44guWZcU3b97g7bv3eLpcsKwrTPPXmLFozI1pFK1Kd6R5\nVkLfjAhnQbZgqqTuFap94iiIlYvg2VFIzhctiLmH5RehFOU1FM80qlCqMSYVhBUMBZERC8zWNiyr\nCDtUlLRVSVPZivSTCqnwLqlvm/uuW+ae4oTX3E1ksxfkx6IB2NjjHIjVksGsNUIEjImLmzA+SUvc\nC4QAua+2MBS1Cqng6Gb2pK22ocmHW14GmddIfP47pH52LRXpGMDV+qyQrKBA1gbZ/ZOWLL+QnjW2\nrwNC9njne2Eu7+Ml5L0UiPshdTfc3dvwB6fPuc8Z6LDdg8aWBu4ZOiDjxXABwR86Xp8sjrkfnD6P\nIGkPcPpH7yw73ieblwNglYXEtKV4t1iiXoRN/8Gw9M/wNZJAD/fnSRCzZE8D1BqrGuxOoTFVoEjC\nlvk8e92cMSbGg/9vV/Dtina94N27dxKcPE24XC4gunTJUaRP5O0Sa3vEKGb3YbHCi0sasyQIybXI\nxto4I2B67nkNAnRE14o4x4FHWB2ymzKIkvtK7EnmADwmiMYmNMBBvkdtHVg77flhkeVu7xRR34Bg\n1plJAE6dUKfZ4zT3mdjsNbir6asje9BmK5gwg4/lIAtBO42VK9Z6WshMQCtgtUixv6q/UMxaNaA7\nb0y8yAc5x7HomFmSKr1G1pHxJko5Pnqbba8Iaq4oNOESHK7AWQEFUzxY9gKd+cZRiw9E+L0ff4V/\n8gdf4Rd/8H380g++j//6v//b+L9/+ycA/jqAPwPgf8U//L3/AH/zf/k/8O/+uX8JBqyCBgTYEAAa\n7TXAs6P1wx4LkN0Tj87qY1ZxAx/DdQSzJPb3YRBKcW6EBkJrjJngr3MtuJsqbnPF2gi1SUxgUy8J\nAy+U+iptAiJDXeZkAVycSTuQUVnF9iTCStTBumBNYXnzHnEnAwEQ916q+ioOaBkBqLcWXjkMaMKI\nUOz4c4q69M6TxC/W4rxW5DWROcUqrYBXmaNZ/+R38o3B6Hnbp3R8BjsfcVwuFwCQLEHKOAHb8MUZ\nhwS0S4xHZpZ1mlC3ye9h97GN737YyMIfq7Zxwul0kiQGDw+o04TbcsP6ZsP1esPtesPlcsXj4yOe\nnp7w9t1bf77de11T/n39jk1IN21lqu6c/d6NEU/Vgh6b39O0pjYWtUrxL4vrAfq0lePYlVLAxGjU\nsGGDBf2N8Q52dESV4YCrWVXmwurSEPFDOyF5EEot7kqwR0/Id6lRWQipFQ/sAF5KWtCY3V8bmnmO\niaC1nqF+C2pQUcLPIdhoI7Q9I7PuCU8n8yYVjIlL5BRY1+rBONjzCPB2mAaP0riPQo7PjwOCPhOO\nC5YZ8CDm9CguxfqU06XCr05/W5tgsn2Mk80lpatC8BqEnW87KM0TdV+ndsGBSDxmBArDbT/AQKwX\n41jbvczC9vz4HQAhxHo3f/gPDcA4R0aTwsLE3q8ADylDmq6LLHD3dbfSWCV6lEFOBjvtesF2efJE\nLZ6RaZoUrCQNe+rr3oXtAxmQDgArgO465ojRPLoOEIVBQw929EYuzNNwDx8TX0epHw562MfRwX3e\nk0fFPQewE6SE/B4FVf9NQ2avqeMFY+KHnOa4e3chPiS/qLNjdDXRlvgDAA10ywev+5zHcE+jjdIK\ncOjmyFAL2J+R6VuXcc4833xNoeOZRBuIogRD5gfdOiJN9nA6gbWGnqzJqHVl898Vl91CmWh9efv+\nCX/1b/wm/u7f+y1/xr/wz/wI/9c/+scQoPPr+u2vg5nxD373N/Dlm0f84PWL3KpuDuXxofwwYdzH\nx5fLqFDYr32fIaJwX0NaC5kPHSiObMyY0e1nv6e6V2YaMM8z6got25X2e0IemTMSieUJadmRdr7f\n63Gd0CezzEHlDbPAiewhvIbRkVWO3dx0bW5NXNpM8cjcfM0aqA3FimWJ7a1e+bBsvfM8qwuscLyw\nNqeXyppN45IYvZug9OBbsqd+IsdnsPMRh4GdXOATSMQRtrgioB2AaynrNKGuorkzsGNM09IzZ5Bj\na9kKht3dSVrqFy9eYGsN19sN1+t7vHv7Hu/evcP7949Y19Xr6yzLDaUQWjO/znUgUnIYY2gupMi7\nCRTmt33W2CQQd0DH+uljobFLZgXK2ocxPasx0RwrkQWq3EZ2rRT674eq46Y9KlTABWEqhxDWUXwO\nQtAweNUfCprelxapZ62tAri0yGnqN2kskWh8ezooBHZzYBG6QRUYzPcqCnB0PbD+alcOWQfBNK/9\n/HfnDoAwn1PS76Mg5cTU0A5Fu+x30WyyClYJIGFPtHNTegZMMXA7jNYzXx6IdP6r6d7Kt+oZ6tAe\nazuU8R9ig/55zwH173qETrTvm9+LyK1N1v6j5+VrRhAggCmsO/lZR+0+AhDgTK9ivUc66BDYR2uA\nfWcuUWCNROHQVHZZ0C5PaJcnrJdzB3YmDVI25dFY9yZq0kRq/Hj2/jX2faeYGf5+Dig9B3ZUlpA5\ntDU1AtkBMLO/99mzMiCgki0ReyB29PK9ShJBUzEp2LFClTno/diqIw0wwGMa9GGDGnhwwXh4Ty8j\ndwmR7e+n3xGZG12fdc/ouWQiGzMapsfpHznBggmVwutsfIe135oruyyvz/75PLZW0q8XArPy+8ZS\ntNOVdU2FzlS/ST0wsmL0r/6N38Q//Pu/new3wF/+nX+sT/ozwzj9WQDAV28f8YPXLzESsJiHvAx1\nzxJ1fct9/BDQ8fMNTHSWHcAy8AHHM3ukpMjjaXXwjA6cTidMtwVVwSdMCaMAhDzGMygrOfrp12aA\nvIJSdA05HdV1pfenQuIJk2MClU2NrML2scgODaXpetPfG7N4+nCRNZHATsgipZuPPC4yJhOmeUYt\nVoHKZjNbdoYyICAHPC6DoX/Gp3x8BjsfcWypLg0QqU6naUKdpt0i3GXnIXKi3y/SCAINoltQqwCh\neT5hnk84n8+Y1ZXger3h8f17vHn7Dm/fvMWbN2/x+Pjkz77dlhS0S0n46A8i8gKA5kKShQRWAdUI\nS61lV1/CA3stxSiZL27SeHBfbHTUwtlmNIRn9QacIDEitTP1gpdbzjQ9tQnVojERV5FaxKc7BPI0\nTzqnAQgCcEUb4XM/1tgw4Ctj+QyRTpYdhoYuNn2GmojV2xiwPu4E6wzTgpw6IGC5GwO7+H0GS7IH\nNtk9Cc3diQfAI6vERmEJ6PupEjhTD3Ti3Rr3LGroQFbuqoOmXft+ysPlbwPX3+UiW4eEPBzjfTnd\n8FnA4+Apf3Xci+e0nt/1OGJUvnc6aP/8c3ZKBw5ZAnnuBwVFzGPpJjNrTbN1xGCwC5PNaKhakbcN\n67qgmTJlnjGfTjgti7vsrpqMhNT6bBkmzS1F4h/CCk1QYOAJAfbKDWKIW5bNr4+YCc4mLCGhdASY\nGRYMkfTUQUoSuJ7dE+neYXlQYGbfF3KLtqelpeJ/H9XH8QaRWXYmVErualZMNPMnAzsO1CzOQe+Z\nnhP0QtuB/jtvn81BvtboMQ2Dp0ehIu62nK1FGXAAOcW80Q/BZuS3M96V12X1OB90a9fuw9b+ZvXk\nigiwtWqa9COwIymoK4U3hfCvTUGTgacNYHFdolSXx1rwuz/+En/37/1WZ7/5lwH8mwz8dwAE+vx6\nevLfAQD84ItXCrTsTsM6989ZQUE717JYs/DBOaZfChzYZB5013XKK+Pt2NOsTuGl95Q5CoXH6XTC\n+bSgbgto6eUcz33UNVkhucoK6Wn+bl4Fti9ZG+P8LinNrI0mX9i6cSBvPCyBjq1pAiYW6xGrtwhK\n764Ya1JkTZmXvfusWHaqyog1aKm/WlIMx7vPOMP7FDLWMzzsEzo+g52POFqabNN02UY7zTPMUOlM\nKK0NAw3GLGzhElGYYhXIECRbhzGE81mSEszzCaUULRb6hDffvMGXX32Nd+/EsnO5XF3LuW2hEcht\n2BFh08ZuWsncTLR+njIRA2SFsG6pzkzyX3ctmwvhbbdBsrYRCPDQWDxyLW6ntRbWBA7i2mlOmwR5\nttYk4HlraFNzGFCoSBCe1+mRZAyNIhheYmUIG5EQ5aIVStR8nQlFD3REqLK4AmtbM61PGm+ffwQb\n8b9UauQm7SpNBaORefhcdroil9ljvQXoyfPuGn5uEpRp5nDTtHXP2Ytc+clHoCPGCbBEB659zs93\nwj881x/Uf0NH5xhgtc8GHvTdg2/jjOHyEM6/a9RlBqHpr65N4fc8Mutugjqt2aGIYL8NDe8sv8Zs\nrXfPy8mH9+7msJMCjm9yyOgc+OzBThnWV6zIXsve0YMEJvJ9jTFLbJ5kJFo31YCDgGJxJWaZJaAV\nkFlU7bWJIEpt88rhAIO4olQ28U8F5/y5127rZYPQwxrw3AIEmlCdAs5trE0Gss/yznFOepRbm+wW\nWbBPN/HvU7rqSF8bFrQomJwtHSRghwTseJHC5MJsQf7iPjeAO0R7sqVGxjDF8qTvLVbSwI59dp6T\nhOwjYZqhsS8UwI+6+frA+jUZ10EbHYyPDjh33RRaRoSiqZjFIlMxJWHSntmBf2a19QVvNE+KUJyt\n7oHBel7hnM0O+Kd/8BUAsd98BeDfJuBv+2MKgH9fV8ufBfB3UOg/xD/3K7+MX/y512odSoVBd+Pc\ng4s6FNiO43m6GQqaBIiZlOX0oMmYoVks7fe9whBpHgi1CAh3oHM+47ysmBdGLWs//8Mjfe0zumca\n9aH8TGeu+rvJNDuaHqDa9i95NpwCUOsybnJrkmGuFbRi1iJTSEeMDRElkBNryeLncpxiIaGDU507\nC7WDG07rztYqm7zgUE37QTjYcp/k8RnsfMThdSkQLhDhL3qSTBdtS8SjF3SDqAoDYebuHgZUADHR\nVhCKuq/d3d1LwD1zgJ03b/Dll1/i8f0j3j8+YllWzQx3BiD1IfbarmRxMqGJWa00W9rkIT8WS6mo\nmjcgiqqO9SmKmlkxEPTn/L099sey1JgapggAgCtGghhL32JsGzfQRmg1/KCBYPjGrNtW9b6UrmUv\nALkpA29U3ExtA+F+th48LdnnVnVRNOtZtuzY2JqQPwIeT+WbhDrAXN4ypclAJ6+r+HnAr35uD7ak\nSnq2PqA1yeKSn8b9DeWJz9sYXCg9EPKzsEIOShBuDQYenrn5LmQnDweGH5m1nowS7iMBKc1N3Kwf\nvw8fz40DHWKFziqyv6L/O7XXMZUvwWFs0+voXoctTGuwa/OuVanN3H/uXv5dgJMRzPR9teDcfk10\nFgYDEbCq3kFHzB34tiyeRRKqiCnThMphqyJToLQKKhtK2VBqE+v8VhJwbJphtXYKgqy8MQuHa/pV\nOMj0wK3jyYotYZwFpSZAmoTKXqt+PF/+7uDrAOzoedm9rHM3U8DzfGKBJCwlsEOp7xnsdEBpbLMl\nSHCgY/fWdNDeZnHPzgVKR231bm3sDknony07MbZxSaZDoXhA0Ad/VvC4Q0sFhQAYsRMD0GflW/hp\nwY65hS8O3Nxrom2gFkL5D3/wfQBiv/lrBPzPJwD/OoA/CuAfNOB/fAu03/Dn/vFf/RX8O3/uX1Gr\njtTxMeR05Foa8ookCaq27vFd6aSdrGAHeb1ncIHgXSp052NUoujsokAL4E4TWmsOdk7Livm6qneJ\n8qxhHq1FAljZ+RBpEySbmTfKG2ksNSs3lHWnGmbRBwd5IkApo0u8nqFKF7m06bpxoJyc3bMbrlnI\nrJaSfRdy5YRpSmAne5q0UBwZ0MlKn5xsIU3Mbh1/asdnsPMRh8fpqFDMlItyrprdbPW0qdnHVi7T\nBWmLFACloDJD60SC3CcFUafTGafTCa01XJ4ueHx8xNdff41vvvkG796+xbrKc8w6JERABcEMREpx\nBLOlzdUHwgnQIiqY5wlTFdc1gLV/7NaMHuSENo25Qb1KAAiBqKqFOZ/PXqSOATw9Psq4SkW1pGRh\n3fDFx8r/pyBaAAC1ijTznU1uKkIUZ5zO4iK2gNG21dsVbi6kgYbmYiia5HUlJwEExrydHBhu2+ZF\nRk2QcKJAienbZ10zTu6decbYGVMIq4gNyJjQWMc3xcjEEcw24QsAMj6WThuqRZXx62+SBdqew5Eu\nK0slZ89LzCFJ4PZszj948TLydgVYiIt9bNItA++ZYNvd2b8XRqTMZRye3UE6TsdnOvDQB2WItROi\nxmsTwBjBBqfrx8OfQcFgaQCvR8Al3+25e4eVbZQujK3LuJrIkxUgR/eKzxa4fyw8uRbX+pCeH1ac\npgkKmu+z+E7Sq86nM0BShHOaTzid7wQA6V60OIcuiYoCpWWxtNar710qG7aygbLfvXRImly0SKVV\naofSuU1cXwsIjC3cbJnVSmHZwHoQ0IGBo7kycNPRD3TXxjUH93WwIwK8W07K3rqTgUstCnbKhMis\nJuUCeqCULDu29mIJ7mif17ahvq3dgk2CsPUXNPy9I3QRlxC3L+lzHqckxKffZFlmEC8xGiPoYtbi\nnxS81CxI3nxb4/aBE3VSabnwpoVDuQsSb7pul3XyOJSIlyq43SqIbmBu+JUf/jz+9D//z+Kv/P3f\nwhuGAJ0/qY/90wDmBvwm8Jf//L+GP/ajH+LnXt3jtkiMMGAWYvJxGJNXZNpSS0GtA0DB8/RON043\n7gF4Yo7tLFeUeNY5eBvNcgF2r0P3HLH1OLqxzfNNxm7dwFanyNaVqTP8OfKdKW0ADo+Ski3pMb/H\nFDUdad8K4IrMtcxk2f4dS4jsCMniytm9Vqw7svdaB3YA9nWxbaNcmtY1o1vXHXjsgBlcmfmcUvNT\nBjyfwc5HHNldiYq4STQVeNdlxbIJyLndbs5QO790Mg2XEORGEsyfrTq2UeZ5xt3dPU7nOyV+M54U\n6Hz15Vf46qsv8ZOffIN3797579M0C0CaJqxb0+JZqh1QorZxaEkkIK55cB0QGT2macbpNGOeJwVn\njHVbFMhESlgfD4qc+QK0Vh83+/18PuPly5cCdmoFdPwul4tvQjtso5aSNcGASH8uD7iA5mZgjnTJ\nhQhTreB5EnLHDN42rGUBTPvKkkO/kZa4o6QF2RpWsgw4Qp1McDJhbFUmZZa6EBF7YSUYvPwmFv1U\n6Ru5XoWOJZVe0O8OGt6HQ8fIhVrVnjWwuvewuszltKz58iT02YQocgqIIowk5m4vPBPEwkKcRyah\noYQiaAfcyLBu9zUnwAOEe2no4XLRuHxdrPFeGNdnOBihPIBHo/tTHSPgyUcGTuPRjb0Dkb4vctPx\nPsGwdprNLORxg9U3khsogExz1T9zfx8XJSjm1YTADtxxtgSZdrQv9DnGw3lNG6U1hRtqqZjPd6jz\nCaccO7dK0c98jQV1rxrTc7vdcL1KsVJLELMsC2hdQbWPV0RaUwyrKlx7sMEbChugNyGMY/xc6k7a\n8xSoH/QgKTJIZ28AO2adyQJpzEPKOOlgJywVVEhSXLuQvo/fAQzUVAE7ya2sS96QzvcG2//6HxG6\ntoBIQV8COYGMErzOS9rOiWti6eZnhyC9j0ka13tIdzbitiYbMbRSqLsbjfTb51n/Nrfubjxz8/zB\n+h8z0FbR6A/r3sD8tM7YZgHk0yTuS9dr1bnRmLRtxX/8l/4N/Gf/zV/Dm9/9p2LRycevytsPvv8a\nP/rhz2NZbinzlvBTAXTmVr9XTmRamS1uo6W3/6zr1q0lNh7kq8TBdRqblmhbfm5rTZMMSc03SuOf\nvWM8lOC0YJ5PmKYrpmkDYxUAMfCVcdfJ9KiV1/d2761AgCsHyfsxKJuQfi/2Lk+wchacXFIF7ETB\nYrdU65ovgPS9VNRq8yb0WjL09lkhRx7Zg/hMd7FjPEQ94Mk/5nX6KR6fwc5HHAZ2SpFikUxRsG5Z\nFizrTWrs3G5YlojlsMMAQS1F40OKm2OzNsfBzr24r5nrQGsbHh8f8eWXX+Lrr7/Gmzdv8P79e7x4\n8RLn8z3u7u4SEVidQNuzjUmW1rRarqVPbs5TJG30jNP5pFai2TfVui6qKV3cskPUB3cShfk9b8RS\nCk6nEx4eHjzglVvD5XLRzCHBYIIEhZZp1NKRMj/TDAlBCTcyO7eWAkyanaQ1bMsiQELvuykwYrU0\nmcbDMqNgZYDlWiSgF0LW2glJrIJpr2G13KXR/iZ/HDBndfMfAYjJjB2VCoGBuhOFZJllx5Q40je1\nyDTzdQ+3o/Hwa/yLlGwApifjeNYz+yaE59QRv1afrcTZ2SLZWZRxDdyvjblzWfP2GpH3llkTetBi\n7qL2rM76EoMdDQnkgZERdAcNs/EcyOF+RKgbo/7g7j9jRwej7Xujb0N+dv4srppm5dErR6DDaewP\n+juuU5NzU3PiOpP3XNPYZwXKmdTGQqCtNZw0WP50OgdETkKJpwNmdk35tm0CbJYFt6sWI71chO5c\nLqDLBWtdUbYN5SDpiIxN1HDpLCiCaATkUHOQ7W1DrMWgg4Q+6J5ib/u4Ba3oY28im6K1TYBRCfDU\nCa8qhNe9q1gkLgjwVapYdWqdd8/u4m06if5gbbnQH+0Bka7uzHLjAAAgAElEQVTaHsBEX+z68WXF\nXYdnpLHLwMZARxbQuzWYKFre2u6C25qDJ+M7Vhzad1Yakz5TXQDNro1Gn1oDtlUKi6a4npx5cFtX\nbOuMaVp2WfCkn1cwM16+eMB/9Bt/Hn/lv/hvgf8HYdkBgN+Rtx/9wg8wTZPwOVUAmDeDjU0ZYnJM\noA7QUdWzI/VjADnOn2MB26wNayPGzykVs3hzl57Pu2UHDWgFhXrFqoFNAJjnGeu64nQ6YT5pCupF\naQelAqrWAo6maicc9CLFwfh3gHtk+JQO/cs/2VokghQfNflGExIZLTe6tW1wC5atvVByNJRirodx\nX0uiIW3Nyg7v1B7oqLCU58/nJe3Hrl/p/M+Wnf8fHhnlWoppIsK6LljWBesSYMCOUcPkCy9Jcha/\ncz7fycadZhQi3JYFy23Bmzdv8OabNwpyHtW/l9RFTMy5uX1sDqFpM/dJBYzYVc8+I/6vJ5xPZ5RC\nnighB1K6LzFic2XhfhTw8m+T5cafKpghzzqfsW6L1NnR4MmkhHMClTVnoR3dC2Qu9ap2fp4nEGYQ\nA8vtKkRUhSMogcvAA2RjZQCqgJMrnzOnLdJvWxCh+WubEJQFTyLq3Ni84rIKMtYGH1TrlIGV70Js\nTKjMjImNwML5y3OHa/CeEb2NIbE9S/tTKLTTO4HYvn+2yQlo5D2Dvj6P3YRIIZ8yrWDDWXzqLunP\nSeAyupG05UACcrmd9pUtzgAX9l3oC+NZuY/5++/MPHaLuz92AiACpx2CIj8zGN3opmDWzez6IIzv\n+Lkm3JJd6zTSLKW9FSfGUoVyIqASiFonSGZh8FQrTtOE05A1zYEtx7MySFrVdW253RzoXC8XXK5X\nXC8XXG833NTaY25uS1JqgNX+pcJTfi6IQOZuNM8you7SKilmJY7zIDGATpSTK4dGWfnRx96UYpnt\nsmAS2mAHGInmHico2KePLlTVVa90gCkLRJ1ixOefAuA4MKEs+UU/AS2yDOT47QKNvUTpHJddwDal\nR1prUKCXU08/p7jpoaeO9bCVGoSgmCu5AUyLV61VM3vWADl7MII0FrE7mKX2m/AadW9kqEIwwE4H\n1HTO+1cItX/kD/8Q/+If/zX873/rHwlY+1UAvwOU/4nwp/7Er+GXfuEPYVPvkqpJPBr3FgJLs+1z\nBkDSLYcFoVBN0xEyS8xMLAMR2IMuxnr3b3zdxjw+Qx9VxpBi6wi+P8hS4Y0yYU4vdguvtrUxUKw4\nJnvbQwRLSjs6YJQ8vB8cTtZCMLKGK51NfEXpIKeEPl5Y2MbEQHDK8Fc8iUcfQ2cNMPqa2b7HDIHS\nPiliiTYeAKkBWDiPTozzp3p8Bjs/w2ETb/7gAnbgsTrruqoPZghxeZOaoBhIW+5rYOP+XsCOZWtb\nbgvev38vYOfNN/jmm2/w9HTxwHiLhzmdTl2RT266XJMgYyDI/ENrlXZNk7isneYAO9J4FSA27rSt\npg3OAn1vpUiaMQqLVq2SGnGeZQmezyfc3Z2wbicsTbReDWFuJRBykiILpY+Cij6iHcixj9K3CfM0\nA8y4zBK8x625Rs8120lYYEBS1LYmsTytACyxWVkTvWpGNguWtPsl0qLW7ySIQGv/0DhmKUBXpfmW\ngY6BOspCPcFjL7qxMIGSEwBDd/FPTcAyBzcQkte43fNA2GAcW36OgI59zgGk3fPt0UCnpdvDk4Pm\nZwH9qJ06wNmB6+ieDvaOnjPcN2ss4xnHgOfb5mRscVYofPvZz/ycHtkDkgxQ9ESfXnuufKYkiLTB\n0ilrN/zf43lJLCqMyqJlZg6gk7WKcwI7FjhvQqEFm3e0Vd2DzBq7qBvb5XLp3p+envxlbm7V6qDd\nbtIPwKuXZ1qetfyjtr81SWKyeTHnEP5s/GRbD9pXxHkRd6MgxV1WBiEHZCbh1L7s2rVPRR0aYaVT\npervpUthvadTlIQ4m//420X9DIpYZE0tVQjK9KARWmEN4GcrOOAvd/zxTW/00drSW62OAE9sK6Wj\n465WutWU2Ugmz+rxpQF2ag92DBCVEoDfhf68uWz+ITQt8X7jx9b+lsCNJ4YoBVRT4XJdK//JX/wL\n+C//+v+A/+03f9u78qf+xK/hP/1LfyF4bzGANoHBaE1SsANR5yoAidWiaiBweCYodZVwS4Pk5q4Z\nUnUe9g6Ij/QCaZ2gp3v2m6wTBTqFnZ/nV95vUXtL3rdt0/Tk4q5rtL0X5RNBMtkh0I+3J5jNc/SZ\nke/FfqHdJO0ZX4NIe15q9gTt6C1/2dJM1Ccm6IAOuKezDAVYaa/CFExijXYaqourUboWtlT3yoFP\n5fgMdn7GwxapAQCx7KwpeN/qtgRTHDWPZjY1IHA6nXB3d4eHhwfUOqEQYVs3PD094ifffIOffP0T\nvHnzFu/fv8e6rhBmZsS4eqChmEctOA8wjUXWdoZlp3Zg6aTv8zx5rvdt06q+7qZlugsJzg3CE5ad\nzrwNJdBqpm9V6hIYI7YgQ94YbRWA0SAMgRCCtGGG2LACJJoSJz/LhHwFCLVWSfCwbZGykZJ1wu5o\nwogK8Z4dRe9HBEnp3XJ2qAXrOndZmdgpXafjck4QjHgUIuxca7/PnhMvAzAhWHB/DQbipKnEwZCs\na8rMbf4TL+6/T19z+t1aBJuf7nuboFGAt5E4cmfL5/htlcEkRkTpPiZMkAlOcW9fH0aobfyS4NUD\ncpvuBEBcN3dsfRkZsw+h85TExJFinI6AXR6NdN8jTWc8M9ZR9z3Fc3ZTm+6brQo7JGdrp3GqqM1x\nPhiRCr5vRwjCxqj76zsBwOsVUVpvDFDtG+VyFGMqFXMV67BZo6kU1ZaXbjDJNguzF39cNW7n/nrD\n9aZxO9cb3j++x+P79zi9f8TlKpafy+WC6XJFmUSpZHV/bEC93aT1xZIAPNUJdZI012UlrCX3M4ST\nfq8Gjc48I8fdOGApBUQCTNIKCYHK5kK/6+MyUhHXFC8otFTGlQbQ0IEbgx+ZVnYCbZrPtDbZ/7M1\nmu8ZAmVWXORrQ/iVXzm3L1tV7BojIvpgEyg7CpT3mNItZvKSBzkLX3WQYwAkvCFM6M6HtyWDLJCO\nuU08NDZExqOxlJ+NcYVa/OWGVDQhkvJ3MOP1917hP//3/iJ+7w++wj/5g6/wSz//c/jlX/hDAIBm\nyXeKFYgVmYCsgDXt4xcBs+xsSmMH5aWOotFMJ/dWSmCgJ1Y8tKdfxtMt8YPRLPKJJ2rhOsbw+RuB\njll2DOzMXsZDPGwscRIaXHahhATyqlbO2K0+kzl6kmkUyd7N5c2nNc94tw/sroy0HpVxCR2pOxnK\nZEwA3VwkUSye25PO+NNpVsgaVAoKa6mUBHbAlgsubvqpAh3gM9j5mQ9350lMKrSYcOHfFlheuHkh\nV9VG3N3f4+HhAS9fvsT3vvc9LLcFt9uK9+8f8fXXP8GPf//38eWXX+Ldu7dY1wXMpAGMs7tMdFYX\n48sqJAqzT9mNmD1GyCoQmzVJfHQhiz65sjhRJ9Kkn+TB9AZ0jOgXom5M1mXB5ekRb2vB9SqAqpSC\n6/XqBKuwEGSovNQG4pb1QRbAz0VIDRO8grjNj9XvATSrjL6KAkymYJoJScUcq8DEoG7OsrZlWcSy\nN88KeNxyZtcipHeTxh2sKLUiJXzGNDgADrPmlElgh5QwEcHfYYTKnqdrwAqJAUiBoxx9DXkDx+Lx\nnlY7w0t/5d92B/lo9sL9MNrxxp7pcNTARiK3sY0GecgZjFWyzswHGAuyxZgCGSj0/Xru6Fnj2OfU\nYJu3EfD4ekD/+eiWLpjKA2gAVmO7bE3lMwgh5LFIALGuYYJ3TvuMABzeTns77n1mqhI8b/TDGsfd\neycbW59y34al6iBsYxA3SE1eTuclARqkIL9gKhUoFWU6YT7fuXLqfP+Au/sXuHt4xPV6weVydcBz\nuTxhuS2SZn61quZm9UI3n7IvCzaGKhnYheYMDr03Jp0QACZ11c0Z30yQ7zOrWSKBkqrQx34OkIM0\nDxkUFLfoBEiQ36u703ICThlAeUKTRDi6mAEb/93+tDUZ7XMlVudWp/cquX39+bDrUp9sGIRuaiB1\nC4FttNOOlh9fOT6Mz1vsDPh8KG3z+J5mHXChnl1Itf0mQCYGzdKqT0oLty0pK/VW67Lgj/zhH+JH\nP/x5ZIrXPVn7U7nq/rQ43Ygxij4EkAjWwIdjlpVPNs/7MR12pNEv42EcdDeUo+K+JvQKvt/iHvI+\nzs08zThNkqRpsQQSm9yELRYngSh7plfC6tZ635Ms3xk9y7CH7Z+CUWqJ3/Z3Ql6HYXEtnuTJnicJ\nVlYsN60dpIDX+t3FCuvg+p62UXbCGgoPolTHkAiS/S3srgRWtmXr+GhuP43jM9j5iGMkaPZ5tJgA\nssgK9Yt39L20Y5qkls6LFy/w6tUrvH79Gt988waPTxe8f/8OX3/9NX78+z/GV19/jaenJyzLKpaf\nUh00tJQS2nzlg3iw5vFfdsAlF+WSe4X4ZIwjZ10zc30IJLIJcmBoIZKA/y5b0oKnpye0tnXAygCa\naBnkFdqTRBDy86AaSgsKVhN3sUDdYV4IYe42C1jWXhrXyHvZmaQLgUHs5KVgZ12wLJOOfVMtsgmP\noXph9rvCO2LgBiEYeUGz9Ewv/MUhXHdE24UPRJvzywIjlajJO2ufzdURPg4dm6R+XOwZsawTQNJL\n9zRxhCx2Tv99JzobyEwgyNbys8GilICfAsLMjFwYSwKKDPuouSJ/cgYozx3S7ji/Hz98O+Cxtg3P\nGQXpDvSTi427861RAdYRMvXQck7r07WFu1pRw370+ydGml9ZOCURnsgXmTc27mVXdoI5haunCkVt\niyQG1IBGoqV18G5jQvleChY0fW6ZTph1/7LG5N1fLrh/eMKDurG5defp4q5ty7LgttwiQcmqyRS8\nQKnuUVIwtgX9deUR2bgl4YFlfZCtEwxrNMfrJLBjMRhp9NK8mlvfsG6yK1sW0m2M3UJWfDzzfHLK\n3NgBkPQ30poI2pTJS/xGQxuLAZzkrmdtGYGOSn7OcwLkZNoHXf8D4Eh0IH+X100GMj3ImTBNfUKC\nWNJJLgDS3jNFDwep5tgNrkBjc1tWJYXOVYVaO4nC7TqGEqUQ1mUF89LVTfH/01oqxvtN8VWi33GU\ntPf7wuDZMkxEoUDbEX1ncE6TTfT3d6e/CewYAILniVRLU9QGysopmyuzqE7TJN4p04RbqZqqGpBi\n2i1AvJVd8HUKF/5tLcQeSLQxracMn/s5bOBGYM3EtgNNNjJs/Q3PnKyIE3mxYV01LrzYmIU1KyuU\nO17i+/aYh5iyV+Ln1MqLsBhJ+jsknvTpWnc+g52POLK2ZtTwl0IJ8AzBuE2E4EDZsfimWnE+S5ay\nh3vJqHY6nQAAy+2Gx8dHvH/3Dm/fvsXj+/dYVwmYteQBOYFADp43gTm13p8LYEcgqm80qCtWH+Rr\ngpptFHIiJnvKgzWd6Qmxyokcrtcrti1qXVimGB1UEKJYW0vClR2UxDsCQG7uJYDRMZ8xI1PbNvDW\nE+6gZAEqimmA8ngZsermvGHdVtS1Yl031bhtHTMycBLEUQRac9n2aRHqAmoQiwbIBUxuIbCyYScd\nX6vQ3IGEcc5Zx5F7kTQenl3XEhe2ddqpdEZhOo+kSnrHDTn8+qjdWVlgQNDbw/kKA2sIQdcYlDEx\nHZsMjgyQHGt2odcMnTs6Z0f5jbkD3PWK0+/6t3BzOZOyOyUlf/G+n3GPEOp399W5dMBrYIb7M3dt\nO+irKw28R70wHeN8fFjwq4HJ8bkG/vNddqCOBnpZtEQUlf0I21IhVguJvVjkZQMUKvQXVMCLfYr7\nyHQ64e624P52w+1m1p0hVfW6YF1Wj820VPRt2zqtO3NTwbygdPWEZK/YXvZlbeNqwj8oua71NW4k\ndb+VBBjXQdyHnU6ne3VAp7fsGLDgvD/Sfsr3HkGPjavN1bhWfeyHfsbv+vdB8oQAUhjaZWPKgAOd\n5rTcwcYz6ysDmhy3ckQbbLzMZVwAmfGjHuQ4/Xd5P3odVZJDYBbqHxbLSMWs16nXwzQR2jaDT8bH\njEcVEF0BZmy0KZBXBSVi3AzwoGn9upi6ONOHV2lJA6I4zH5sfH9+iBak33J7bLx7oKMjWmJMHXww\nxXDq5rHkC6001Eli+s7zjNM8Y5o05sr7KKnFbfOR9VNv19Ja69YdISWcGuhp2hY2o8679e/sUg3d\nk84rKcXVOV3tZcxsUbLhz8rcXXF39Ovc93iei8xPyXglpb716/pTPj6DnY84cpCYLSwTpgVwWP0V\nAwmS8rFsGwr1PpcGNubTCXd393j58AL39/eYZ0n7aeDg8fHRA2mXRe5Rqmj2jFizCvYr8iZBko77\nKrz295QBCuDaTnN1c0uUWgZsE9Uhg4uDHQVfLiy61kjuva6RttqC+iM1MwCCZ6wxvbwJgqNg3Gnn\nVLvkTEjHYUsJJG43AVhtXR1AmLDlFqwNkorarVdy/5wKWu4rgcd1q5hWy1C3RfY2Xx9B5ZwQaq+c\njDBUi1IAknd2gbgHF/73ID/n+jTPs5wPH53Lgj07KGt/bnedsm5CdHQUFrxtY+tyGoChPTDfark+\ng64jv2pL7UQxc36WC+4xTIO28rAJ+0MFs6zdzC0+vlfq9e6SzFAIOdAXFP1y5uhPCiHRBCcroGr4\ntnslhiv33kOlrsUHAg0bmIXx/x4wjkoEEVwrPHYmd9vBtTUqIJWBgW6+/V2CrOskfT0EdvBh0Huo\nOwmZVj0UNX7fIoVKyzTjdNpwtwmIWW433G6LF2RcNIX1otkxb8st3vW7ZV2wrUIfCBuq0o9eUSZz\nJtuMEh3N4KSk9wxSzBW3Jnpu6yBmlHXNdAJPMSvJcZ2dADoRf5LBTEhMLpoCAzCJhZvak4BF7OEk\ndPlcHLQp9+oQ6GRXzKzos0UAn2Pju332tF4gzOvN0h/vtOY2Lwp2jNanpWzbMvia97n5XjI+YAAp\nLAP9vgDkeZVI3N7N2kLGn4znAbSuIodg8/WfJrObA9t/IvMO1JIIlueQQF2q5iPwksetPzLA3c1o\nN1Q5/tdi1/KLKXshxP1MlpmrxOucTyecTyec5klkHOXnnVZEJyevK+P3GfBAaZ/3zfCB05BMD61H\nnJ6Qh8LG3ngVkIG9EIRYDx2AUS+hvG+PAI+IDgnQ5/2U5yewsvPOfjb+v3N8BjsfcXwXsBOvFgJ0\nWnBN3bWIxDx+mmfc393h5YsXuL+7k6xhCLDz9PSEy+WC2+2KdV2E2aeUlyIIcRSlAnwj+IZLAKsH\nW1P4HgPgFnn4TZMR/sF9bE4UQJX753gYViLLvvGAbWNPXZ1TNVtyglILqFob2S07bqHKBC5tWnLC\nQarFUe2kZ0szsHOLlOCWdEBuFtYayFbfAFR9RhCLEPoERG2Y6oatmvUoanxkwNkZvZX6JWW7aM6K\nfGAWX1rpZwI2DnScOiXh1wTfOJRmqrATz6V0nmvu0rET4jurzghyuP/+iMnbXI0CfHc8D3js7s5Q\nHZCF0B132R+ErsM+Lqz36rDkd0U8FOx7byU8asWITVUwSfIGRffiRM4fqGurjwG5/dGfYgAnx9rl\nNthJoUnMVps4KysTbP/L2k1rJLWbqB8Pq2Qf0lQI+3a9CWzuMuPNUyVEAuBEhDpJ/EKtk6aED0tK\nl+YanDIQ5jYZPeo1+qVU1GnGSSKlYdZ4z+K2LFgWBT5q4ckFSq+e1MCsQFe0q9ROL4VQKXhGRxt8\n7kehuyBidQawgz6OpF93w+cB7MABVD8GLjzB4tzyxhpVFBQviueHMGV7Lla79UcsUflWIUSPYMe+\n2wlpnUBtSr0xrXkCJ5ahDqHw6wHPXkjPgmQPdJDGL8YwgHd2/SGnud4XiDU+9qTsW9sdBnTyM219\nCF+TONsY1xBm5XqJw1lXiNIyuXWb8G5uXNbM8KzIU2e0ARDm1Ft2O/77zGf/ztbKt5BXSn06eo0n\nmwsYiFALA1wx1YbTPON83nC+zlonsLprfU5aIjQwxRGSsuESa072zHNtj/ktaZ77I+bWSDTp/iIH\nO/0a9+nI687OU9fJLhFVknOaujC66y4Vz1pr/wb0NSCyJHfgQ999WsdnsPMRR/VFFkSiqv/0VCs2\nMqZvrm05RWXF5PExEiNzvrvDy5cvcT6f3f/ydr1iWW64PD3hdrth2xpqrbi7u0vgQcEGzE2M3HXD\nNFzrppnPNGZlmkTLkf22zZe8qWWCNhwTedX8yG+Wm50d5Jj/clEBJ19bNJ2igME9s7GMQkbsAiyx\npJts4r1rolBm60aQNCdcABM9h1sTLeuy4FauXkk9u+aBGdyAjcU9kOxVCqq7kWSBNLKjbJpuGplB\nPSc0Kz5hY4QBgUICJ51LE24AiKtyokhJUN1rbmQMXVgsLL7DO0IcwmDHyI35pkxZO2dIXxKxNpyY\n+1sIOowQlBNbTOezD4LKvjCtbAfOdv/7EIJSWw6GPfqs/TKw07U/jwWPvdYmczCMI+tOZlTdpcbI\nUl98jQYyTSDATuDona6vZwUBRdB88PyjI9qfJ6YEOEYEqIYXVg8QqRvdGARO5/c9t96ncbFJt896\njovUiREzSzbExqvGFbUUL2OMfqABaeyUasFyGRQCmlpWiBnUOITZUjCVgtIYZZpR5xnzacXJLDtu\nLb7her054Ller163p2038HYF2k39+FPxU26wJIlQuu70bLDkiItV8VHZWz/yiiLk4o779SIAZYzb\nyWCnZYnI6AKlsU0AIbcjhKmhPT6j3YQOypP4xtamsB1Owjdr/62fvfDKvkd8gamCTlNGT6YozGAR\n/sz8bBc+vTt0OJ79upX90nLv2Pqc1n2mOX5fdfsEkgtaN4TSd4s3rRWlTaitoU4N07xhbpufzI1R\nuGGjERBLe3w/dMAq+tVnl8t7VttBaR6Q10Oe1P7a8TAS57v+AyBn6EEiW326+mkSBfJpVrBTq+xj\nAxe7lzEd8r3YKYC4P59Jy18Qe6a3nKIdae3A16yOWSEwk7D5YmBHz+N+LpwtU3F3f6vz5Epru65J\nxsmsxPV2IYO3PJKmcLH9Y50faXWHhj7J4zPY+Yhj0oDQ8JclL2A1TRNKI2yapNwE6lqLWy9Opxl3\nd2fc3d3j4eEe95p97Xw+g4iwrhtuN7E+PD0+4XaThALTNOHFixcoZYJlA7IF6GAHABGrG51aUDRO\nRaxIasVJBeMMGG2bxZr0MS0hVAfAK4XRGtwaZCbkIEys/Q/hrIvNsXvDiKpBFWVMZMG1rEX8gM6K\nAeM9g2CgjCACElmJgGhmC6To67qsPZhjAadWNJBq1aBnoFJFqeSaGwFsSZOiLn5HICcLXLtjBDxJ\nOLRKQkJQlSiVqHafGY0lwDDQY4KJ068m2eqaa9cJBu52RE2JPJs1CBnoxNyaUHIEejKRJ5DXyelD\neaLfWewRmTcTXRoAD6XZT+PFKlITjkFKdFv7t/85f8cd4R+OaPoO6NjRLMVpOufY7S13RWFmPi+G\nAFlzPaa4TQ3vQdx3OTo52YSLNJ+A74V+3jl91r/1s621no6kORz3hT+zHyPKPxutA8DbhqZZ0QxY\nEQU9QYm6IXalZyQ0QQLWVsnCFPuXk/bfkrEQSmuo84S2bZhXoavbumqGthXLsrqV55bAzu32iPX6\nDsv10TNDttY8FbbQyCzY6NjsYmu0P5wn7OilPSbqx9sBYNDMY7CjcQshSaZp2j+rW9NpHY2i6U4p\nkOZg/JBBcwZURlMC8Og6s1poI99KQMe8CKq9amS4i3UdhcK7PskNnf5T0vzD9mICPEI+MvgxfoW0\nTTjdn8JtmuBZwRrHKHUhb0Qew1VqccAzTydd4/C+bG2Lee86ZEMc4NsaJN2KjKrRvyDv47oMABQD\n50th5BN5aBOd/RDVOqa0SYiHyBClmazVNP307G5slryIoMqOjrckwGV/5EFPAKIkACBK47QuSgY8\ncH7c0/kihU1ZXPXtN1fYdPS7uPwIaKjAVJPsJqrExqoEanF93gO58KitBKHqLZQtzJoBFcd89BM+\nPoOdjzjqgaAx1araA7PsyEKc6oY29cWuzqcz7s53eHi4x8sXL/Hi5Us8vHjwhASrultdr1dcnp6w\nLgsAxjzPuL9/QCnVmavEh7CDHTM2b+q2JRpQAR1m1TmdTp3WZl0XLOuGLbmXZc1OMasGJLV1J+Sq\nlFGI1Hf8QABCn8ffCeQoYaInoMEzJY6FNcWinrk73zZ0Z+VQ8NYArMsKYriAkusFmdsLceT1Jwih\n5xpZiSjNrQDJNVzikstQFjgz447wDGM7AiwYLFJcClyNrD2kAdlKH3XcnWx5/9GnD2UVurUOjchJ\n+u7AJx8c8wK9xjTumWPZvCdi2AMi7t4J5u+cUuQeMfD0vT7dxwFw1jmcrs+i+HvfqxDcu6QQCZR1\n/cptSX/a2Bjjeg7G8t6E1t1/tPB0h943W9psLE3RYELMc9rP6PXINA8e1wmqWTBNwf8K/AgxPqbo\n4RS07AJeOie07JZxSYvrcnpe/5aGIuY1t7NtTYDG1luew0pMqESSQjlf1wiE1gmzDE12oH/YbxOp\nMGRgQGllZXah2pORJH/57N7mNPzxLS6PBZdHuE+9FaKWv9npuIE2HwGlaTFCOiac5z0BIdnk6Xz0\n19o9EYKfp6D2MX9uTcVcfAi0267PNProcNpxtEYT7aS0T6Of6XtmcNs04D5a4Gm6Sei48+hpQp0n\n9zQwL4IcG5Ezj2IAN3urDrrNbOR97JYASaUdZkHoaKvyL683A9AIvPQBljZYLDwVpTJq+3/Ze7eY\ny7bsPOgbc6619/9X1TndbpO23bbThoQIIdmSHTlgSNxcpLw4QkgIkOJYQhbipZ1YCCmgIJKAJUAI\noQQp4okXYiR48hMWhijIURTFxDi2ZCwbJWk7drvB7j59+pxTl3/vNefgYVznXGtXHVdbikupVdq1\n97/3uszrGN83xphjLuA15r2MyS0yj3r5Q4eZCmYdg9NwHIUAACAASURBVFGO8RwfHQdEJ5PRI0NF\nusFhHxMNZx/ec277IbxP9bLhmVo5eXYWnNYFa110X65IxiHayOpso9a8OaFfcz/ad6GnLTv6uDwg\nGBTlC9Ndkt7Sj0Y4hHx2TykvY7T65vKGJYFYPgHtQzdwphJHGwZ+8XKwhYAK82PHbuzlcV19Yx6/\nKcdbsvO7cBDJRqIvXrwQa6C6GWsp6LXKAva6eHpnSy/96NEjnM5n1CrpmSVLWd4hN9bznNYTXpQX\nMCuWK3gioBbUGrOp930ImlgoVQEUm2MW5z7uu5OJjoWnRZa2RX8jT0YQCRIyEYryD2E3qd3YEdQo\n4Hrv6Ffb8KygUkFdxlADs4Y6UWHx/hBBgImiBrPcFa20rQ9YagWfTrJ+R69P6n5YvMos6byrsAmU\nGmSnbVusB0qhLds1sjSVWtBadcBkgtBj4hPBCcGj4Iw6iMZUpBlwioyS9T1MBO4R9gJwZHGzd4am\n20wxeWkcz58zURsOl6iJXDg2pel9BCbeBgdHkv0jGeDoO5qVxdE9soINrpOolOof6wuOskedVKl5\nkRPQtN8PgJqM+zL8lAHdEbgbQkUTSci/sRdyD7p290uNwQcNOvf1ADCQLoai77TmK7+beSXChqz9\n2H+TmHgD2tJ/M8AxYjlSTSNZtig5+juTfGu6ALcB3ud234eHuKgY2jnksCQLoZLaxgEAu3yx5wIG\nRlacTmfc3d3h/m7B5X7B5fE5UvCrp9mMVtvW3NtsWR6tnNK2KWTF3hF1jD60JfDRLqO8GIGL7dEx\nhHJpwxyNq8OxZoTWyIgBKxTcGmeHc3zur/Sd3Mc8zlJ3/z7VaZaNuc6AglK1ki9LrHv1NV/MGs4t\n1m4LF8rGylKrylu9p92eSKMKgHGxd0DpwJnSV2Zk49SOljba+mEnZxHi18igEXLfOHRZsPQV4aHW\nx24btg2uPz3T6jA2gJib2p8cuMH/9362MTl35lhekxPxW/YW7w8fo8JkwMsCAvbh9f4Mdtyy6KbD\n6yJk53xa8XBacbosuC6LzV640c7W+lHS0akiPq6sSQblEvPQiQpDIiqoo1tCFwZ0V1NAN2rnLsa8\nUghmBTLyySUwlKydNuwTW5fkddW2abpl1bUy9dbRekd4kPOAgOOybDwxA3rvrJ5oHrbseBOPt2Tn\nNY6j2FbziJRSZC1OPQvZKTHp1nXF+SwK8NGjR3j06JEOTBG2Dy8e8AIvXLB6prZ1xfm0iufEhKFt\nEKkLPkupngHO025qcgQa9i3QEDFMwi4t8rW6WTrH6ruCW/afSHUtA1+u6YNlDen3JCSZnWTZIQQF\nrtCaki8qBUtdUZdEtgp5EgDZz8Y28DQgqIrCFUDyTrmS1fVDpxPAjK6L+twVncgeke5p0DYAVTMq\nRXrxbbPkBxd9KeHZNlyd7FTU2jTbXKT6VAmTLCkBtBmSPUp2uS7ZwOJgGBwqkIlQUMClqycuaUMT\nwt02ZCtAnXjCAdGxfouuykAxK1H2dkVSiPE+g2gEwpy/y0WCqkMnOhw/+DnzPaI6AvKlZFnJOske\nwHPG8I7kxwx3RHHzzCImUpJB5ww0j0jP/O5zfCI8rpQs1e0rLG2Z8IRO3hNQK285vJ8qckj7D9nc\nhjMAC31Mj5r230iW4UwqWZvQ3qcnxAay8gcrkBSLfDTDEfnLgD8A8I32cjDBkEQhgCUKGayjSJ/T\n80xO9r7idAqZul1PaI/P2C737s3Ztm1IZf3wcMHlwYwlG4DNLe0zWBcSoessh3BJSzITHtSoywh0\nchsZ4XGyYDL7hkzYt5uO0R7rXIoRZGDXJy+9xzwX5AaJ8IyiIzzc+TvAQSPzpNdUpy4LlnXFuq5u\nkDOgauAQNG5W6Z7DmnWJSm4nokCBhEDLvj+jvBSRpFk3C7uX0MZlPxqjRnjyRtN2M2NcJek63Xtp\nXcbk9zbfZPuLSDzUOTBDyAQgS3Ki2GpCv/T6DvKdp6el+edjmQFK7RHVnLxm9r2OxwWxSXnGK9l7\nDMBxy1qB0xJGZlvDc1kWNAXwTYlON3lKkAQe6X5WfqM7R4aUqDM0KQSjU0eX2PPQ+cxAbwNGIzAW\nFNmT0J6l9y6Os2w+Z0/6MdlZ10WxhpCW1jpaTzoldZPNHSTjke3CzS3GR9f7Z6/Sm3a8maX+R3zk\nSWUDxKz7RIRlqbIwUPfAYfXO3J3PuL+/99fd3R0AFcibDKrWJc40x4zbICPA15+YRYIossv0HqQj\nW2wKJBNQeHbI00gzd5jbe+fV8f0EknXLiJiWh2CTM7LA5XZy9znbuWLpCEtwPleBv1oVCghUJWww\nZ54rJCEshIaNIwMTOMCTNuwoTdkszkoStQ9NmXqIQQZNZPXr6ETohVwgSRs39+CIhTZeTV99WdRz\nVh2oZmGT0KL3BYg833/xdgpt7puOusWJ0IllM1bZFS0pHzYkNwL0idTsxjkSRnZhj6SJD1CjXhAp\ng6OmNr687w+A83h/VYr20rJLTwUIH0kb4LGCJADcnuLKaajYvr5DeyRlDsygL27EU5uIJT76aAbx\n+bvR22B/88E5pIYLmXkydhwSpHqmpnTilgBJulbeI5b7+PC76ByxjhvPN4JJY+MNZ+Xms74x9etK\neBoUNHzFqQY0VH/2evj9p+E/YxQnxqlMRhIySXNSaBsne9KSKIs5lTOw66eKfreAtzWMI9s1sri9\neMCyPGCpD3h4uKCUC4jKEPKWExV4hiVm5I1wpYyRrc3mWYRVxvg45B7TnKDxv+HEY8IYQNnl7ESY\n9t7DoWRavvwXVM+l0CXYaMnAm/MI8ufl52bvF016zZ7LzGilo2h4ZiY5cIJbfB+sji4ydwLHMZ/Y\n/w9Zpb+xeeNpIDkBrKO2RnhG/46Of5U1np7cvTsdwOqRHp3FQNhqA20pQ9vYbFG+oW/ISc+u49Jt\n5oGR5WJ4mUbBP3jopvsfYa38GpIM2XAgwQzLAvHqqLH4fFrxsC44rRXXDbh2SUbkBMCSNrGCFaJh\n3M2CKcsNJ6GGI1i8kKbL4zxrh7zZOcDVZEsZxm287zMDzmSHiJS8L76W2tqXE6meGKbILZVvhQrC\nZJ0NRNLAlr33TTzezFL/Iz5sbc3glteBl92MppjWdcXdvazPefLOEzx69Mgzr10u4g1gwONMzb1u\nIRp2v/yydTgE0jCEsN7nxfNAbLI5KJtkLRs8MAoWjKg5QdppJ07ykP3afNi9TF8G0ErZ1tK59l5K\nQWXLXjeuwQnAAbdmBCjU+2uayC5bmIv1TPelqIVDKCfBE54hmkTa/pjDDgYvU9q8dAgP2AkYBa3O\nX+Ketri7eDieSXJTO6HyZugdn1PYD8dG0WMEeEY34+fZG8NxqyhJqhNZm0KFvJ88Wdt9vgA57nks\n09Rc6RU/TvDX7kcGxjV9blbErzhiDH2cs2/fYwTPcM5tYRMj+DTyawTQwA2Ll8wJbcqaZmBeAX60\nYvYkAWOP6UHRsw7kD0jObLXMwDNjFueg8VB7kD4u3z0TOaT36apDJD6C4B3YPthfaWybGNUDYGRd\nSwSRGQFP833HsdG7WpjJAH1wgjyEfI7qvkAoZ1DZJPlJsXj8AqIKoqpe9EXDpSwMNsXk+z1tHI3t\nMLZpEAPx5Mu8YDZvha1fSJtI74Y9B8DeAW1o+SdCUSKsb9Q7Y0jbdBuUJHddN/nvN66zK1g8MuDY\nsFuMhLpJbI2QtUISbm3bRLh13eWT18zX6cwhfswMNHZZ1jTTab7e7nEoSWwAD30anKO7gKWdjCQU\nMHStDouc14AlcC/oNhiVlOXQtlIqSk2vXlFaVeMYUpr2JLdYPQLqpaChtGP/3OqlXG8/U+s4ePKI\nYk81ve+R92TvASIfo/aMWgtOJJ6O82nF+XzC6WH1PXdaZwBNMyJGolNJHJC3mtAVfZxCyYfeiu8G\nnWnqnUwuWTORhOR1Iafmg12WBafTivPpjHU9YVlW2Ab1GWMYrszYIy8/GNvHQtWnnlG9QUSeZhuw\n/Qmr4IWiBhbVQYXDy/k2jO0fo2NdVwAYBGEIT1u82lzgLkvF/d0d3nnyBO+++wmczichTGqZePHi\nBYgIS30kmUOWRQaeoJ+J7GxBqlgEWklMn7kPhAeAZu7YK5tMdNxdamSC0hqfCawCI/gURZlgwjDp\nEuAxHCd5lCerCby+hSTMysLzhuxq3u6SZtKOrPzdzdwlMQEDEotbq+Jhggmw7B3xcuz+cknoIs5C\nCWYLy0B0eh/WVxn1G7xGXn65ZzfFvRP0nN4CyGC880AMcv90BeEFUBKQacsMvvUzRQEHokMYkJGf\nD0SGNzKuQ5HwwQkeJQCjzzRScqDcDOg7BhjawaxnbA909Mn5fGuIsdDOkaIfDp7/Si0+lTY1LbPt\niG59bD/Mo0xhOMVnLyFF2ud5Hg69ZwBpJjjIl6jytedMMiHX//bneM+WzfmJAXLhRoW4bj/vcv3y\nveZyBAzOZ40j3z0/yGMgtY2NHx3QTHE/8lxYPL5ZsxKE6BiutCF3IzGFZNladCFzlc2lTa6pjJNt\nCxbUumJZVtT6MHiLxZgSmZb6LpNitA8hMiDCWkPBL4AgOim8V+4WsC3uzklOZsJDfr9Zj1i4sW1v\nEOmyD9pm+JAk2i3C6/Uc6yz7LanOJWnb6mtzkgGxqGFyGw2T+7KPr1lO+1g24J7rlPTf4Tt4mANh\nDEHaXAEhbAdZqbkDCaAi6+KK/tSJgdIGGUsU6yxsnJW6oNSG0jpKkbUgnQCgp35QeeR6ScudAP7Y\nY/tjAN/p3EwMR0Pl6MHLh+vQGTPAxb23EAEaxlac6NydTnixnjxj7nVrUkNL8KTGTiodBIlaKUre\n0Vl0WJoD5lVFLsnQGOTfuVEpt20puom4YK5lWXBazxqGtnqomGGLiCIxw7Y8LHt69gZhGtoml0zK\npYZn+2x4qwvZKSUl7EAaQ3XaJ+sNOd6Sndc4bPGXdT4Vkn1clg2tmdAXQC4pEBfdV+eMu/MZdako\nVNBU0F6vVw/TsnU8IBEtoviUrMA8PcHowTFoLbNPRiFEpHv77BdkekYnmPUPnpJ6702JiXMk4HxC\n2wRH3KNMM04cFsn1z1lgaftxasepHOK4KUBNyihbOt1qlkgg1AtGBcVUyyGwPoIQ4w/5vr0r0SmW\nilbfM+FJAj3aYxT4hPAyHZX/SGCFWszwL4v9DP/yPbJ1Ktsfx88H5vPx+TSWS4jmAIe8bHv/wcEz\nef5trBEAUThevICymWCA2Pet8FW1RFZAH2f2KPZY+FyXMTY7PuPgcOobf2dMfeOYrcEMtWy6UuQo\nt/Un5V4ceyy36dH59vfOy5vLbFdyvMdv1tbze35irlnKToSOHFYWmZ+iXPohjeUALzaH2R6I0Wq+\nx8YmF6TcRKQZsPK4tgxxQ1ESoDo2OAwecVukRgkAHgB1t/Dqejpb28OrzRD18Jj1vVTVC1dcL5It\nc8MGoKE1hcUuU8w+HJ6z6DwDnJmUBDGxdhqq6HUJ63GWRd62lMKL/Bl5jI3t5n9Nk8JsKkbKXjZn\nwEbH8qjXstpd1MhYl0gqUJeqqaYVJHLz7JkWymZ3nNNx25h0mZmal7OlJJVnmNuqo2O+Jkmhl9u7\n6X0y4UGmT62xPE4S5tXpkOU/pRaUFpvP2nJaW8NTl47aGpbefU+93pbBeDE2NbmhghnoKcApyJ6V\nKz6QdSpSds8ka/J4898RyQrs59lbYUS+mFz35TApPFqfUkrBUirWRZI73Z3PuDvr3oanFdu24XIJ\nwx53BtVIshHklwAm33OK9Vwbc1bjQzvH0XcDgjKZoNEsixk8RAaAO1ra89BwH1ReAON6NGsnK7dg\nxn0iolFuGhaxrIwaEkmpH5MsGQzfb9jxluy8zpGAqyzWr2jrgtZOaGVTZr460VlTaJqEJsHTFtv6\njmVZcD6f8e6773poVusdL56/wLPzyRdShrenReppiJCQDaVEahJI1tzUivW0etjc4IZ0xaH1AWAb\naY1KK+ykWanlY2fFSZM4Wzay+5UcyNmkC8IDYlX6BymrCyQ7DMuGXqwLld1aZtnodMNB26vAPF85\ncvroOBYN4cmRptPnUFfSqn3ZNs/QZoTHk0mYICUC0t4OJuQHrUdeoQHD+rmJzMzlHIkN0nMyEQl2\nsGuHPCh2R6RRmDBiIrzDFwk0RB3GQaclIXgYwx7AT4XKINyVIwBLsz2UdyQVmH536ORKfwS14+f8\nwLF09mkA6ANITAft/6AbDS9tkyu5P9hPvH3O3ngRhgKpS4yJoV4Z3CXiNXhctKS59OMzSGsYhgkf\n5+l8/eCK1sltKsxLwXC+T/r72GOIXT0GMjldc3SPHAI1tGc6CnV0kjAr1iQhllVMgCjAS8gHAaq2\nRlFC3IgujjF7b1Zan3M2buTRAoicPOu5sUniTHhniTevS5zJDhwUBdif5lQekMzwXeCKkYckABLA\nzXeyWxxNnX1PxPYH8VqwLLLBpG3ESCkrZ+8MIgXwTkblgf6MHbhLMmDKm+8tbX3i7zQ0D2voZBD4\ngM5BY7JOtVtZYzA02kr9PNLXRYlboQKUCoPFEm2yYGFW76CSndbRl+5z2vs3z2sOohfh2LyfhZah\n0vY/0nr4mEZ4EGB10/nfNex4uN1uTGQiXFBKl522icEpoYARHtGxurnoacX57oy7hzPuH+7w8PCA\n67bh4XJFuZJuEq0tX+BkoZYIt/cU4ConY45zKroRohgQ1px5z7rob21zvd48SZY+39Y27xMyZB0V\nuinwFjnhHUiLXzB2nczLlMUy1FuMt5fIzzfleEt2vo6DoF6TZcHaVvS1o5WCZR1JzpqyvnhO/9bQ\nrpu8dG1NJjutNVy3Dc+ePdM4zskNbxtamvLsIjBsTBYiX9h/WoLsACFoJO1h07oYgA0F6tgDmcTg\nJhAOYmSCLXLazwDESJ+J+EGw2zUpzGIgXZ4eMu6XPTsWUtjQHOhnIsSWejuYQ7JwHClSe0gSUJCQ\ng6KKYwNFcoIc0pYtLxQb3IFI1+YgARLOGi8+m+S32yAg9+BHYVaSZJuVjWU3Jb6H6DT9nZ552A48\nlGG4hZXFcSvF3ypIGce3JrCDm9Fuz9N5E9BO1XCsrwt2offcFXIYO/nzHuAeeXis5Q9BtBOHV4Nl\nJ4RzoeZzhvq+vuI5IjuwkjqxiBh4Tr+NOu+4DIlaYgbVTAR4LpGMBI7LNjyFj1r049X362mvePwM\n9g88ZNNnOzp3BdV9uodY35eqMlNj5i11sBMdiKzsmlmpFLH4yhHy0eaNi1WjrzYHvU2ynB0FOplc\nmuqcUzMDQDHrLwHuQkCsYbLrrcME1AmwLCgeNuhPnsVNAlwZp93qT9NZZswTj45svris2chHviZS\ntkog8ZRZexQpY8hs+JoGsgFIQnTS0MVgYpmZG8WHMBWNBCckclK66XJKnSfgG054GKLLCkdYJFiT\nU9AY9eDA2cIi04bYvlh+alub/5KgjnE8nViNVQGWHUcgR2cgjVcG6TqggTwNiiURJCTiBdl7D4qn\nmGLuWV9KCurFk0M9nO9wd37A/fmMr374FE+3jgbbNDWMtKWqEVtfzx8ueHZ5CMI1G68OBJOTGaQU\nO7zvc+1GIBMdDTEl7t5neR7KnJdGyiFs1lZDSGbCNd6X+dDfR5w11YOj/G/y8ZbsfB1HZtOWIlrS\n/61YTyvWkxGdxTeEyms7LpcLWhOiU0sRl+vphFqrb+xpRMmI06KZNgBKVkUZ7OL+XDxTDzOjLgvu\n7u9wvr+DLGzTidPDRSqTqA2TShbyF5ARpFxfst3JTfDF7LD0lKY4bM2PtVe2HrkyTPcYyE4mOMCo\nECkpSiIX5v6VCq8OdUEza+rsYph7Uvgj1AwLF0V5DQCyCTFR/q13FEgIm79UmQw7Gju+CzBhSQxc\nopiuSKDa2jl/RUMZtZwgsUAV2/w1K+l0ru2smW+Y5VhGF/nrVCL7O2NfIzTklcDQ96b0R6LDwz1H\nEpMaJCvASebOCnpHGXj+UtsgUcZc3Qxo7e/8eX7KOI7j1xmY+d+HTI/2gC/d3yzOnMf9K+qZOLbP\nSSvHjlQw7/rAFRznXspgOu6f6Vo2XCS0lwuDsKViGIs8teHYPqlCN84L8UDDuJjPMQBn9w1SsB8/\nx+P92MNkfTX0OzrADR1bkEp7qWceuhhYiI4aU1pHb0Jwqm5rMGZrChk2lNs7KI9ZCSMUY02HbLAK\nHU++8doEO11gOWTz7U3JFnEnWWogPskke760i3lWJnmjhZ/nVj5lnpt5oIgBqaKQJnfQRehDBs/U\ndoO3EMkiXsaejz7qOk7i9zx3hrKmuTDULbM35HMovU2GAuS2nZ5USkLK8rWlxS66uTez7PNSfbx1\n9FbR6oK6bKibhbQ3MNteQz0WGdJYIutTm4qjrNqTmUJh3JM2Hg2pJJ0H8JisSG5noVSGJ6LdTW+6\n12XqC9fRmqW1lqIG3xOoVPyfX/gifuP9D/30dwrhEwW63ivK3TvwhS9/BR88f+rnnpcTvuF+Hcpj\nHTUP6VC7HImB1GDgBoTe0RBbl1hECPfADcdGFtvDzLzmQCQbSaFrt4hOxks+91hCO6ftSCwZlsmr\nQ8H3Bhxvyc5rHEeWPAs9AyBxoecT1tOqa2UiN7mlqLZX25q73+28vABsXYTonBYjTTVlaguyQURY\nTyfP5pHTatZV9hSwDdOMbIXgGL0QgyeidyE8JPI1NictLkCzqiVQymJzYP1UreqOXOrT5LlNdAx1\nZe+Tgyf926xtnQi9keS61+xsnnzBLoWl65yFZZCREYqnU6ChGQocGiuR3Tra1tAT4YmQulFwsSUw\nQHwvhCGntEV8n4sS5hYE0rYwIcB2WCU/rYdlKSV2ODxuAXLvoVvyTkIqsnbeWbp39z0A2endRssM\nkHYqmFwVi/CewG7wmkxwEtEBQvin8hx7dcbyjrXQKg74fiZK4zGAV7zkeYAAtQnc5vkKNhszpzLo\nWDh4lVI8kclL68ZTW0bpx3rvGiGDujQGxpOhnbarb36Ut0cqy+7uExnM08bOGZX+y8f6fBxdz9P3\nu37m5q+hLU1+60u8OwXMEtpWa9d1FrGOJ4f1StFVdh0MrZ2Xsnf0ol4Bfb5cvx9rXkgnOlJ7W5Rt\nRMfeh/Zgr2CSbZAF9UMfJ2q1Q4oeWBTnHrEfCMiTveyqrs1RnVuXgexU3Qw0doaL+3sSnEz+jRRa\nFAKlMZblGtFwLx8HXkf4OMnyZh53ZCtwdqSbhjsTkQD5THhYE0/onm7AAnB3z05V8F/rgqU29LKg\n1YZaN7RWdUF6kTTY1P1ZsIyDOtZsjhbKBZx0to+LkexkMiQDXvSTZfwavGmJELlcTHM77w2109+A\nErsN6JLwaF0WnE8n/PQv/go+ev9D/DiA7wfwNwB8vjPeB/Dp1ULIxLPyq19+Hx+8WIF09sP2eXz1\n2TN86vEJ4zH2vf0h3lAJMey2FUHvYG5OdgiErW2+GfmMxczol7024ZHNc1PXkOv6bvL2SvKVR8Nw\nNpiK5piIzhQ6ZynS38TjLdl5jWMmOwb8JYsa+cahp5MujExkxxISPDw8SMpplsCPJaUdzXn/q6fO\nXOW9RlpqKYNaJHRDqfv7R7i/v3dPUKmxe+TWmpOtei0+PXO2NyNthNi5GLDwhHHCDfHqQEywRHSy\nJdLKK0rUMtdp3O1kATerDtRkYosQZ6Xj0tBKQFJaUuDNpaD34nWSUo71GYWlem1M0OSO5wC1Vt4O\noCnhs9SQ2btjnp2eBJcJGLeacIACy2AU7uQEOg2/GjJPUiv+t1DGBIAYY30sHuOW1FLQfPjTUKKs\nr8nb1JQVXLFFv87HEcFAandO5cxrjqwwA5jd3X+ySxqwfYm0zj9lC318lhZw3H2L8Ph5N7w7c0kH\nsj0SJLuG6GBVz0TIrOuns4IU3CA98/kvq9t4R61t4jFenwEEZqBD0XcpY5id9zJl6m1wcA4Nd3n5\nMTsXyMdYqkQ6F9gTLKTxZIA2fkp3ZwE38so3S+3D0UZF16APaYJ9/U5sKJqL6XLV38wCvyetXfcX\nQRF5U3SdWxgk4oo8bjiNvgCzJoaDtfG08aGBpALdSJPt/LEPRjpgE4yGe811lbIAi+o/Ize+bkez\nsmWiuCfbetOcmY7Zd7EPPadrY/Qc33unpFGn5epWoyTPgvzsV41K+2qmtQHAplHi3uhk8FAiRp3A\nhZ3wAATuBPZsrR2ld1/LVJXo5IRFpXTdNwhIvoipmWh4t8+DAUXLnI2dQXj8KgDsyXpG+R2kJ+OK\n/Czz7ByvmRMS0VXUVyJgWfDh8wf8/d/6Cn4cwA/qk34QwG8C+LMdeLd1nJWgXbaGD148A3ZnMx7a\nD2FrQq6toE5eRzGuqlq2kyDtB7YtKdyTJgmurtfYiHwkHHk8TMZjCn1vHp8cTbOThKb6AbeXSrY5\nWb/GVJI3x8qq53cjPYdD4/f88ZbsvMZhqact00sOUYtNQGVvhXUVt7oJ4ZiQIUSNvLQmu2oTxSal\nQook3I2ZNaVm9V2B13XF3Z1sUvrk8RM8efIEjx499tA3BnC5XnC5XpDXYsoR4DvnczdAIeceAaPx\nyPIrdMl4biYacuIOtqVz7R/8/AFMcEengnFxqT2FHCySklDf08dmuCsbjvhYsrLJOe4FUSFlSior\nWTunc0djTpuLXofXdr36b3YnqMBuPSUbJThJ8ypNQFkbYmivHHZEWs9C5DvPE4xYqpotXUHyDam1\nQ3VHP9FcCjB0M0YXxAilTAFi82eDOF4Drd8+0iUD+SieK8lEsIxkCX6cyukAFY54Wcszt8ZMdNwi\n+QpAHgWkXf/NROdoPu0Y5e/KM0aQN8xPsvEWgDZgR/ztYFcGpn9P2vYZQzpoBHzOWedICGwdrIp2\nzOQuN4oreGX9ZiiC3xnDVkveXfqi9IrCIeqQ/sZYLAXoVqcEVqd+Gjy3nB5EBFl/E5Cep3LER0Is\nMLZ1i5ol00Oy6tRGI5k8HFd5/sFkvdaGVObqYD7NZgAAIABJREFUnOUCDGMFAHRDZAP4tqDay5rG\njdXPR5SPjfAUefXdWjwbl+Y6kM+N/CQzrhUnNrHeYgxlCyNhlgs+krWQmRQxs0dBGBliiLfAZM+Y\nqjzGffbY2zwYvLBEnmhH9IyFc41zMM0kf0yeX6TtYl6UUqr/1nuXjSIphTfZsx0cp/1TmGXjbGMK\nVgrC0L8zwSBK63KsTwwHpPBAr34a/3msjkaCeHw+xvnFodu4xwtwkA6SNThfe/oMgPhoAOA9AH+S\ngJ/SR/7mZcPX+Cm+vRBeONezs+34HACgdcbJ657aw8aRtdNY8vFWNle1Lr2LkdQITjaO8iQn4dd0\nJ35zW3obObFKupbjd4FFDRZi2jUdt6hjm3Mqw/bd8cYcb8nOaxzmpclZ1uygJHDMo3NaT8K204C0\ngSreoOJk6eHhAQAcKD88POByEbDMLJaQpVZPZ306nXF/f4dHjx7hyZPHeOedd/D48RP97YStbXj6\n9Cm2dtVnc56LA9lxoqMTxITWfoM4GgCEgUtS1HCoaGGAxIjO/EsGl0lIjNovKag+hkSQKeIS5c4C\ngOGWCtXCMG9RyXXKz0gehluT3HP095SgYBMLjROe7YrtKpnaXM2TbEbXZNWnlheQrDbFrYd70JtQ\nuYHFrESheyYkwZQ9VdIQSuBuIHYhYzgAG4McHzC5CdBMCA0EG5i2Vox7BHgcbmK/cvqQhf0E8Kyu\nbAMnv6uwHnDr6L5J7UC73wevygAuX+HON/Rt5Zyf+5rHoWdI6zCXMbyZGOZoBnw+b1KBKcH53d/O\nBOyqDHq0rlnfuzKN8ks2pdHLmcd1bm8rp5MLgo+HPDqJg3iRDt+Sh00mO4jvrEoDsGQF5DYN7N3P\nmeaFyQ2rKIen1owKVHW/IR/Ldk0G/oxxLVkCpAMoDWt8Hroiy3I2Jq9RyAgOcsHg3VgPz0cJgEvx\n2+B5dgtygFxvkDSXc0Da0HIOViNMxr8ejjS2fAzEvQpZdANNRCcIz47s2BAwGa9EYNBxFPpRyiBy\nu3ABa3IAIllILsaVPEri/rn9TdbJ7W39kl7H7Maq8UhSltNI9TbQz2q4MzzSWTO2+biQVMRDX2ZS\n7UZBjgnMNg9CRgRfGolOkJ2MBUad4W3hHU3pUVkOJ51woHz3RCCF4CvxETNi7Pn06U99EoCErv0g\nhOj8tROAHwDwWQC/Bjz9Xxp+/cOP8JknT/RJdrYdPw0AWEvCGcOYSXLoVh8SxjZVFRSRIEbaZsJj\nbTPWP4ebRfslXTaRp5BXcs/uc0Dq41Eo6W67ufEGHm/JzmscRnZyprVNF5ACcE8NqRJwooAQgHnX\nW8urzswe2na5XHC5XNyzs+kmaHa+kKgVZ9u/5+5OXvf3Hsa2rivKteBZeeabUmXQO1sgd4ov5Zof\nYkVZlfYklQPwYJwQPE7+QQkfHlmQw7Wf2HFNUGZaItfI8xk5HCEsVnK/5kTHwEGewFmZIAn9sZ47\n61OHhwIOnh3tQ9knQwgPJ+FtyQ0EW8h4KSlscPesqQyurLOQB6FQd4+Kt5mdQ+RE51XgO7evCTy5\nRbRJbh0HUzCwCn0exmw5mYYNZGMcFRpcE9nqMjAgGs/X+7Pr5BFazWNmLH3YmnNdZmIRHqlRA8+h\nQgSaWm5q57nsQ50Prxi+3SkbG6epWBmvBDpJT931hf1FUwtZiMlUqAS0stLPjwuLdq5DHj9CBJh7\nwschi7yeNo4cUPTjZgWczNgj8lgnjvUH85ij3HDpeyM6yOMwHTFe4EQHCjDAGr5VtVwWnwYjQ/Dx\nlEmPb9CcAamCdVmTIWsvgIjtJ9BEiIqHCBGRbp4YYTERHjNa2N0SzwC4hHU+6THXA+bpGRokt194\ndaKdTW8knTPIsJ1WgZHtWbcceReIQuaHZyetZdCBsetKB+dRRyODEe0ghqjO3ZNeWtbRGHz7WR2k\nHcBBtjJo/8EA7VC4uUFskpMaGtnv6eVOpKXzuC6VpjoaCSylpXW42RuV+oHSXIfpT/U4YtaluSkm\nfJEI3RFeiPOQ5FnI4yOPR3g+TA9C1QQLGa4Fn/nGT+Gf/bbP4E9/8Uv4TWbx6PwAgO/SB3+XXPP0\nJxp62/DkdIePLp/X+34OQnR+BOe6Yq15o9w0Dv3PeRyMYaBGpolL+AVZNhQfmilhxSA3tifpfm3N\nMFJUeMV9Z7wEH3MSkCFhbDyFzQ31e0t2/vE6jNQsi3hX7u7u3KIfsaQN1+sFMhF7hEsBkXGDJYzq\nfJadc5cqO/f2LovcL5eLAue4tz1/qRVN9/IJ7xKhe5a35oTp2bNneP78uXuHfENSPWbhV0ss+FzX\nZQgPkPmhSskFzKjywqVrP5tAntTYjUkT4GMErH4kYAArj11FBO0ed8vLs/L1gf3GyStl3D/xGH6a\nZYRYwq567052rO0vlwseLhdcHi5CQJV1iQWl+87NRRUpT4LtpUciPA7oHLxbK7KEpbgiUEjPYz13\nzxrxPPigDcIbFsCwc/f7OcE3JZAQuOiDPWjZ1xHiwfOhpmMJU59amfT/l7UcD5+iXjPOGD058zVx\nTn7fsRWOezLmFhxLbZ8ZgMfxKRmUt+OROTORaOZoa5tPUobJU5JrtyN3R14tmyeJ3OB2HzLGc/O9\n43nHrXM0NrJ3bW6LwFf731i/t890dF06L7549TzMr2EO9w4msa4b8JCF7zNgs1vZPQBfx1NkLzdZ\n09n9UaUU1yURxjVlIVPC5KCpd2xbJKmx76UdrA4l6uONlVvMBvSxXET+lqJ9ve9ZPRyOpm/0vd7J\nwHqEzY2gvVYph7SDAn2td9G2o7SOwUAkM7tVW3SzXpd0NXNXMEpwFm/9BEldLGGV6kkzgomocF5j\nFZoqJSU2gw+RrutI7Wx60+Sq/68NywTPwkySfc3JTmcw6ZqWRFgHUrwsqL2j98X1WfYYDJumZtlG\n8DTT8r7X18xRYvg4HwldatJxLhzI4SxrBy8FpzEGkQ8VRT391ZNP1FLwp/74v4S/+r/9H/izv/El\nuflnp0H3HfL2/LLhWx6f8Zt4wNPLD/nPd8sJ33i/4mMdbmTSuiK1F8jbowApAYnN2wqmmJ+WtMDm\nOjM53hjGvTeetpVugBpGEaS5owPH+gVh6nKjhpWV4AaDN/V4S3Ze48hkx7wqOYRJspuJK7JzR+vb\nkBUmExdLLHA+nbDURYZbZ7Q2rv3YtqtamER41lKxruzpqKsmImi9O9gGgIeHBzx9+hTPnz8PpUY0\neJbcC6ICYUmZ4SzpQk404K5umxj+3/4gaAYe25fgZcBWbn77ZqzhNCpE2b/LIG1aVI4M9saS6f7h\nLgCMDHycYxS2olhMGJlX50E9c5fLAy6XC07Xk2t92y+pwxZYioUnhxO+7CCkfvCycBJz0kauSK2c\nxkowgiyr0/gFvHOdPuyAbzo5KaEBnPoHGj/fGAuzV9BWmpoF2wmpkYFdy0R/v7Q7bRzR8ZodYK9o\nM9DeNVdSxjb20mP0GTLODlrn4DMPn19mHAhQtAegQXwy4dHfMuZ8ybF/toWqzC0+nhuBO7ZdydzX\nAHOFeHd6EiuMec66klbw7fIotcMOcmUiggGrJdmQYLyDrY9BcA6eEWQl740h+9J0svDlI+u0tpbN\nU+caCtqr7L2zdIZJLYsC6L0Pe3RkA1ghMV5ZJk6RLVcdEwaCZE2fNyanDJm2KdmOlEgLijw+ICtD\nX1P6p/ca6szp1lmnREhQUaBOJbwJBthMHx8l2DHjHfT8mehYyA6BxANnpKDKmpyS1unnWWvEQBbC\nko9He4knW7UMmYcu2g2Q8W7xHi5jbHwnoiNNdWTAsTlCoKLtxrLBZukdXAjU9+TQIzVqFaKz6Hvv\nqNXIeE7KYBSLg+DYv/R3EJ443/o1DHJ9MCaUMl6D9Jt9FBkxRqLs5k8C8oUAVsKDUkBFCU9hvPP4\nEf7dP/HH8Xd+6ZfxP/2NnwF+DeHZAYBf1RHLHdwbvu3dO7xoKy6tY1HS1Fv7uDBBb6bjxtsNw/gv\nkPEWHlkpL/XYZ2f04MjYytEklqzBCau2kyRCCLIDG5c2HmweM8PDlc2IUArMDALI39lo8KYdb8nO\naxx3d3cAgHsNGbu/vx8IxvXa0dqGbWOUtuF6pYHsCAC+OHu29TXLsqCWgitsA7lxc0qL0TYLkqmO\nDLILFc0E1nwN0LMX4tkBMGxsCiTh7ov5w0Jou08PRMfKYaLf53GCPBN6cvUYSNd/27mvycX3YdtT\n/o8FqJqgy6QnC0GRuWFpNSW991ZQLqQLAzXKhqreWZbYyccQyuZk54Lr9YLrdkWpBVUXjXpZEfez\nLCiZCJgHMLeBlzqDsxmgJYvh1OwBqpC/24twF4bpyRn878+Pq24dA8B8BeFhP2ciQFGc/GAYSGDr\nY8NilC+coJm34TQaErnPVuGAyfDf58PHBvaKeqxotNn8zDAFG4kZy5Urk63GR8d8Tb691eiojC9V\nbFb2A8IznIQ0BHcnWCea/ZzHzX5vPppAN9ORp+8diCfSo98JaQpAzfM1nO6X3uJjli3abpZhyfq8\nC7hr2kYZgISle3fjVBjx+Fpa2Vp7Ao7xEs+PeYCqZvGsDvaZGS0ZuRzgeLmiAUgWwShQTGA5918C\na0O5B5ITX9lzcvvbffIYcvieAdkcnqflyp4eWNvOnnFmn0K3BpONvpBJ8HFhcpeR5P8sR+b7JiBp\n60WKe3d0vLPdJ/tZ9bdZLQFawvDuUPrOdROpd6cwoAksuPBuvVfRMPhZR2rRB3klCWfG8tBYCK8L\nDeRs77Ecx+045+y5h/0z4Yn0pV/rXr5iG0kXABVsa9ggJK8WOecPfdtn8Ps//Sn8+k++J7f6DgjR\n+UngrgCLGgKod6ylYClV5nHvY8FTjzCrzjGZYL+k0MUos32h48zmtxOegobAFBkHGmE9Npho23fW\nLLDdQ1i9rTzMs0qYo8d+R3VI51YZBrgojBwV9CYdb8nOaxzvvvsuACE9jx49wvl8drLQ2obLJUAv\naRC5uNtlLY+FNtnaHwuFs01JbfMtU6BmDTSlbaBdwt0EWBMV9NaxXcWl6aFUmontcrmg1LD6ZS+P\nLS4EbNKpYFCh6BOTgeYLAbsL9aPDBGKa8vHbBHAHTwyP5w73TNeZN4ST8Jzxu39vIM4SAjCrpU+v\ntycSAJ4sH26hww6phUUpSFImPBHKJqGIbWvoa1d95gxqLG8KMRwshd5GqTUdlB0rCbvAvCHQcAMD\najdB+q22974RTXXkwbEscPHcuS3H1wH6HZ9743se/4NueqTS3Misw9yDGwdIM8gxnzfXz8Dh7VLJ\nDecmvEV2HOIftMEQqnWgLMdz9O+XlOro/CNL6cc9juY9vfT32/eOeZ1SxFvfTkDHLJBmqtjdO2Fv\nz/jk86QnsC1njSQtk48M2uLG0UQcxUOSQbopo8gGMax03TjUCc7LyG+uA6cSpkXktdbhHi7DNWRr\nRwhUhsnO64B50kTeEHqJEBe9IVCF7Bjo9++HRphldZYFLjTHsYxEFpIcdDJissONcDSG92TCo4AM\n2O8yP7xak7ZACU7mRjVLNBDPt7FgITul1tTX6V3rF30U5IwKARRhhGO2LCO7MwJWSsXItg3nGpQI\nTzS/biGhYaVktawM5gpU6H5uTcLbliWRm8njQ4E7XHAW9jVKQxT6ATmxyJOxlUJPmqcnzytm0/v5\n3jYr4z7joxRTMet+PyTEXMk8FaBxATyUTa4hGA4rWNcF/9r3fjd+4m//LL74E1/zOz9aCr5xmbEJ\nCXdCmgtSg+kbOJ7o2l7MthWSNijNV8DHuS8VSN6THMJmr1qL9918WFvauM9bXsjvOn90PVvrDOqm\n58a5nGCf180zE76Bx1uy8xqHkZ3YT+cEMKs7USwqYt2/6MKwWGsDINIQn88gIgljO58loUCJfRRC\niVp2jiBAXQeeDMoLwMC2NdR6BUB48eKFJDfYrmi9ofXm5MqImQs4X8TfkTcNLSX2B/IJ0+DWAtJt\nEw5BF0f5QynenqD2DPNXmbibocCgUChbN0ywjKF5jJjoJgDAkuaTKjTFYnqKcRB7TonyZHkwWMW8\n1MnLllOHX8Srs7XNvWLynD2IZZZwE/PmZK+bFTDwtiH1oxU1CTuMFQOI0CecctuqFt/fIjy5D8n6\nOIGWsd8mspOflZ9zeBwB6Kydx9AxhaxxHdGunYIMRfvO9bdxdlSuW6B1/n73rvU8fmqu8gwwD9qH\nxg+DQp7KdbMOH5Po3CI5I9HBwbgAXk14koLNRJ7TfEt1IiCi97ws9keMDQMgBrgiMCeuyV7beG66\n7oispr60cy18LQlrMDraxtjUCp/JwiB6suHAxgbH3CmFYj2GZtwagCrCKx9kwKzAxl0KmGXjUgHd\nBeaJstaAZQ4tCtFmUmy19nZGjNMk480IFL94ww2tb5s8u7zwcucF9HWIjshkrveODfA1qUZ4zBpu\na03tPwHYUGqgdpKSjFpp+ERSg6nvHQjq6BnkXISu5e0mwnBlhsJ52plsT+MxtR17a/X4hiXJh/Qb\ngs4xgCq/W8ha6V02F/UuG4lO8XpaX2v2UkXu8zw/knlG5sZ5nGVMxgQAc/RHtMLYJkdyw/uTkvfN\nZDUAcJF7I4xelrWvMGFZFrz75DH+9T/yPfjCb34JX/ztr6Bfr+Btw/OHByewzFb3Yo22q7PUIfSi\nER17l+4wmcUu+6My2XspoafQeuR1ObtN328cMf4Fa1i4JqBZCyejiHgdMyAw2R1/WlmsPG/i8Zbs\nvMbx6U9/GkBkfSESctF1vYyQGV0AmuCUDRIDwpaBze6RvQL2EoFtrD4YftuaC3eb9dUnAg2WgCz0\nj7wGR0DLlGsW4u6+VGEoE/kIgMr3MTFzGBAnobh/5gBDEnI15WTg30hhCFPJbhZWCgx1ywoQsJhu\nDGkWAzPSrn0Uig2WHFYgBhOiSej23n0T19Yaeuue5cTqAG++KIMR2aL38Aw5GpcPIJZlZLCBdLsM\nGhQEBflLzXoDoM99kn+PPiJVtLQ/N5Gd+R63nnWrTABQevRBghsDUDDACdIUsMSamCELclYnidwt\nW5gT/Dys+8c92PtkBMc7oG5EPT1nfn/VcXxejOSjeXbkrbLSWsRK3P/2s17muZm70M/lRCYOfp/L\nBRh5iB3dfc7Z+fPcneq6K9QkfwghCzmdk6+bPV8vI7g3vWQ27gxEm+i40dVhwNFwFPUKdftO728E\nQC5KcIUt3p8GOeFGLl2byYUhm+pEO6AUUC0aChXZ2/Ln+Qh5Y94gYw5j3yrc1Sax3/QvIk0OMBEd\nDc+zRdxuAdfnmQGp99CjeT0DANSlglFdbwAFtQigrFoIcpml3ow+kp2Qb0HkAHLvgZM7Co2x61Ok\nMWLf+70TtWFO4yTGKjsRilGf9RZQUAFQZYAruAJV+y42e1ViR2bYJA/jc89Ya+C+iN4qiVT5FHlZ\nOHPo5HRBfhvbM0qFjBWODjOIuhcsGW7dqMnisfS190oKbb7ZurbT6YTz3Rm/75OfBDHjgw8/wtNn\nz3FtmraaimcR9TEahZ3qSz5noUQHXY23OhSIYPkkkh7Sv52BekVV7/OO5GQDaK01CH3CWI51KI0q\nogiXs5TsresY7y4mvIs4cJU8umu00u9cL/5eON6Sndc4vvmbvhkAJImAhivJ35FBrbUNrXdJTZni\nK40Z5+xtpmR675qq+ILtcsV2uaJtm9wrkZ7WGra2edICUxTynnfYHt2hs5Ly35NF5xYQic/kAvsY\nYugtpp37ZkvvrWP+NeSrKhQKr1NexyKKndF9cw27XxIAzDuyY6Agn58BkJAFE7CpiiZ8GK6cM2gy\nhdGaeNVy6sdCtshWSSTHjspe1kx0EhHyNjIL1tR2meBF+bMXZfSofBwrUfZsuLI56iwE6Mlk5+ie\n87ONrDAOysRFFpsO9/CRFViO7K8ILWFlypGq4iV1vVH322fvwYyVDRgBb67zyzxFO2A1PealhDSd\n+3IwMs1HFltxPpPg3PHrOkIBWxED/MyyJcsrK2M3Ass0zIXcKK+q5y2vzKtAVX71NDeP+vXlzzOv\nQRqHBMwzeEemMjBORMNkS6RYrmpM6amcHa0p4ad9wpNCBNLsn/5d8phQraBaZC+wlAmqtdiLLY+h\neJWY/yGJciVDdzgnMO9CPN/SRddaIlOVrUGaNuhuXWVoMnSFYSvGkYEdA3pwgmZr/BCv1qHr21F4\nnJORdIAi1O+gznloRJZK/c9ew5GkVJqAHo5JAOl6xEzW4eSneLiV1ZvB4F5RufucyySnNg210/pl\n42jrXSJVSLOyTVLiZTJmxBJHmgpTmwqBCQL8CsEzpPCO+gKCGRr6kHa+D3ORhky6d/d3ePTiHpdr\nw9Y6LtuGrbPU1vHRaEDcVzmiS6BYhArpmFSSo96xSF4hte3WV0lGmh7svE8rbev3ANmbZ54P8vyO\n1tsgU82YUHxuScrxYdPX6ZPJIJM9s4x+k463ZOc1jm9Sz87z58/x9NlTUTBEvk7DvDu9d9AiwiSD\n7ZbITla6JmQsA1vbNrRtQ2+TovNQqYZaAKINvhdDF0sYIJOCQD5pTPgNAzaBYyCDSOwG9gCqcCTC\nKL7nPIFvg4P9ceBpYtNLoVB97wStAzN7/GkOTYsyc4ABZnSQZEdKC4VTRWGmGKJ9ebJgshL7fj72\nu64PcpLaIpwxXNYq9BiykNnAOotrXO6tyncXyhZldmNQFmqmwEA7geeUN1fiqF+SEgmiA7eQzS0z\nk2dgP0Ze5k06InaiZNRo4DecrsnDkkkUMxE8zhJApNU0oGmUd+p7hp8zfEf5dyNUAdxTgWCKz8jb\nUT0HhTGxinHOaXmQMmalY7iPaFKp2SsIQCYhnN7tNkdVn2VFfmyM1Nvl64bYJuKXx2iEVGi5qDiB\ntWtYy2L3340pq9hU5/x+5E26pcSPPDavIpHxO/s89PUFDE1XnAg5DN/G+M9Eq3dGb2ZEiV3Ta61Y\n1xW9yO7r8mzbQ0f0Eh/IgAjtkj4dwsNqQVkqSK3GW5P1hnJ9IhBdF8cXM7JFWDSAWNOSpokZiDwd\nrwI/uS42BS0p0UKpotNukR1qQO9K+FLZhr6D6ZCCWsUTb1m63EClRqdm3itWSZsy/2UdJKF+Wl8n\nO6nOnXdl6CrfyRMLHBw2j43wwMa5jicbQ6Oo1SYtEr4GBttm570DXFXOqA5QwtOTR4AQGGTbNtRS\n0WpBbxXUW9q7jZ043ZoHUa5JRtK+zkYUs6fvaC7alLHZYgQtGs3agSW8Xg2b0f4kKkHJzvnE2FrH\n/d097u8f8HDZcLlesT48AK2jMctot4beyb+k5zh1l9ZVkjsQbCN3wV6hO4lkywkjO3EzwxB7uRPG\nXsmSWGtBa2EksP4ReaFZGivtrrU1OyIHprY2GWSfb3hz37TjLdl5jePFJp6cp5cX+PDZM3zw0Uf4\n6OlHePr8GZ4/vMBl29BYN74rBaUuYGxAazIpSsFSFyyL5GsXknTVuxO2remaiopaT1hPDee7juvW\ncLl2XDfG1oDrJm7M9XTGejphXU9YlhVEBdetY+MN185opl80QcF6WsFXySzSmXWnYQYKoSwL1vWE\nsixgkKbQzkrXPEm6q7f+kx3MQwDJrgWC5LNSJRRQpyllJdxiJS0g/zEiNSizhah5lHRMUbN8dAZ6\nlz1rJnLUwViKhi50Brhj29TTwx0YFoGbUNcwKFPG+pMIqQ6Qxc0XKzCiSB1NM7JtlwdcLw+4PlzQ\nrldwbyDu0nK2wFTFiy8T1r0VuHd0JpDG2dvCV5SiezJANYB0MuuzRUmT5iQoKnAD6BfK+zbkak8g\nPP4IZaQXRrmDSFiGKwGq+er5OeMfwS/3ykv4SvM9icJ7E03lYyhZByW9K7R8cV9rswwu/X6J1FD+\nwyuQa0L+k+f2ywqZDpIeRI3HWiZi5HenyR+VCIoNt2nrKrcs2mceG3uYi3Z0uzdFj9rJgruSoqep\n3MOD7eJE7BLoDNNn9p7mNMIU90jzOb+TAVDAM+0lqpDKEJRp6LES4FueZ4DUUrNau0tZbb1k722Y\nD25McJBrfSNl7YCAhExQ09SeGi9ATQ8vb+8a/tqaeBp6D+M6Q7MsMVhDZGVe66qNgqG8UWekth+N\nXmIwkkXmTeV5J6CXAl7k2krWhh2sIXKxXkjWAxTbZFMHUOcEwAho3QwUAv/JQ011fhNP6dEYzLoH\nGQoYDcxps1UwlsLAav1mfc0g92qJ7u2dNNMpo3CVoC9PHgAnpEJgdGx6lCC7wcf6seieROQCLDW7\nfU5zy+AoOcy1U2Mskg8S0jGo5MI6lo2IxfghO9c2j1Wd3iFtzgSJVmQvhI8LJgYXjvfCEttX7R0A\ni87mJmWxpAWu1z2BhrSDzS3m0Sshzzf8EF6mmNVxmhWQTc6mz7YXlOmYLI+YxRu3aLrvSl0pOnlo\nGpcC1AXbsuC8rrg7nbAuQgivlyu2zqBqezRVXb9G6NSl3xIB6axDSNOiV8UZPp5YdTnb1iHy22Jb\niCwVp/WE9XRGqSs2Bl5crnixCX7rVKLvWAy1GzPQIdiOCtg8qrrWrpjBQqNgGIzWN7TeJLy+NVz1\ntbUNW9tCCWv/1WLzt0VfZ5nxhh1vyc5rHM83ISbPHl7go+dP8cFHH+LDZ0/xkZIdcwFXc3Fr9hxg\n051qK+pSdPG/kBshOzKIrluXWGsqKMuK06lja4zLteF06bhu8qprl+xq5zNO5zOWZdWdtQl8ueLa\nEWSHIOEB64L1fELjjsv1GiFUkElYasVyOqFWITtbj/AIVgsjyHZMVoWjW2Ia4TGy4ek2td1Ebx0Q\nHX0vsJ2ooZOsA9zcghhWUZHXFutq3hooiTFBahmKqBA6CpZKWIqEZhio6L05UHCHgEJXW+BIYg5K\niBwgkr0MZqVjUrqbB+/ygOuDvLaHB/TrFWhNNyJlAQ8Ozjg1VCSCAIBeq+T+5+p7KsipE0BVAtRV\nAUq/h4A1sGMu9bjRgdaw+xqA9msI6BQiIofIAAAgAElEQVQ7rVu7uHlruh7JUmTY0D648NQFsvYd\n4p0bg7uQ0oCu1hd6N12pLn1ngDr9BtX4CWnmxauJUQygPhnoHQAP30+NRoDgEUptCniK9PkaLyVH\nO413Jp+bBuyPSGRYzzkPw/3zEjC3T50IEa5h5Y2ujNBEU4QjOPMHsgGc+G7w7ioTM7OIGUzICX+q\njIJ49A60HmBP12Yz5aAaLylyzQ34jvPKjC7j49IIFXDbDNx2lRGSNMTITUEK+fL2gAJNAprsoYUe\nsfD2dBr6j6O+5rnnnE1MiU5TstdVzmn2QW4dXLR9oHuMQDfEhIXW2IJxbSMHmZFtjXXscO8KrNTQ\nU9hBlABHQqldCVZLstgWPuu+NiZHSWU0hEhtTSzdonOsZ7RjqahXtg56gNGBrgvOufhLEGZFIWAp\nHaVAZbaRDOvP8EYxA63Zov4KUEWhJYi3jfEkX8wq73xdRx7pIrc8ekMeKzCnGKM+TtRgBy5ajnEw\nmomD1XJCmfCgB2sZ1AXDFvt38GDEZGLbn3YiOox/8A9/A//g134D3/rpfwLf+ulvVKIjry9++cv4\nh1/6//BNn/wEvuWT3wBiQmcSDyOU7LCNaVKcHQZGmTuxNtEO0cuadRYZPGfFwT5vWOsWMphCJ5nc\ny3OKCQWMlRiVCI0KiralkR2UCixAW1bcrSvu1hPWugCdcXm4gglY6IS66BwvFUxA24qUwzIs2mwj\nydhXULCUBctS4StGOTKjCcYg3dOwYi0LTsuKdRWDdVkWNAaeX664XCWcjkvxMWRkx6JXGqv8tuQl\nVTyz5B5RCQFt3MGb4NKtb0p4hORc9Z1KGBA8aRWAXjqaTE/HU2/i8ZbsvMbx7IXsWfPRMyE673/w\nNXz40Ud49vw5nj88QGeDWMAQisS8FOZKXNeTeB10Tx0LXerNyEdFrSvWFTh34OGyYT1tWC4blnVD\nXTbZaG49YTmdUeuCWqqmOhWicm0KCUg2rpLzV5TrVcrnODBtNLYsYs0AfJ0Qt6bAW8FKEVpTEtEB\nMCgLka2TJYDH9xxnOoSWEDROGCEsXeAbceLhRWBPR1lJUjmaUm/MbnHppoB78313RvgnL6utsIUx\nq44Ae30ed1F85nkw129r2K5XeV0u2DQ00YB7gYW2SF1loawKZUBThnYXqoya1EECp+ZK8KYICMHE\n4kUyUEaSscfDwoDUPwEWzasweBxkUEoIDqAmLb02WfYz3Mxdbo9ge1QCFRnwDiE3IHQKYGRejRhj\n1l/jwl3DduSZiyg9HH5vprjev6c4z+auVdG9jKmuNPQFYiwPCpgHMhEne5Fh2p1h5IYDjFqjUbpf\nanYDR4ODZaQQ0adWR6uf3XpSYlYOGzg5NNL6YGJ9w8UesuQeHRtbufdEjgyCQeePeXPYjBkcXju/\n9e7B0ZdOsrxVre5jHX3i2Hda1pDZlg3TelsBK5kNJMZrtL9Nxu4FpRgcqQBynm34aRtSG+nh9B7t\nEB3HFq6SZKeMnVg7eNhKKezF5JmNdYYRSQu70V5SECshtw3cofKPUBjqOS9YatyXIUYbjQfwPmqc\ns0SZxZ5z1WLucQEoPNydi3i6xeXgGeeKyU2dB963BCUVHczm4VHCo/VDFQMZCqEmucA6t8OIkCYY\nzcYJI0gxujh9H/pDfsueHR8LxiA4hYlRfO0Eyc9NhwJwITo5agNOeEzff/WDD/Gj/8l/gb/+Mz/n\nl/+x7/lO/IUf/WE8XB7wF/7y/4Cf/cVf8t+++w/90/gP/u0fwP1yQldLQ3jRGDBDpY9BTG0xtpOH\nrBKlUyIsLuQuJbmr92T2ijCn/hh6QdEJAeLdgxt0zLPDDGx1wWlZcFpXrLqGrW8asrewoRtQkQ02\n3YNnstrkOkfda5F9eQSPmEzo6L0ApJuIavkqVSylopYFpa5AqTI3tg2X1tCYk9dG8IZ5GMWIICPJ\nz1HDBAop6dFNVbvMjcYaXu+vpomvWng1ERvyMjRBEMXGvsXCI9+w4y3ZeY3j/fffl/evvo/33vsq\n3nvvPXz44Yd49uwZLpcHjz+GrsnZtk2Br6zBsTTTlrbadruWjDuaHrBWLEt3C9jSJHX0UmPRZuRl\nz5k4oGuDumeEK4VjsyqNed69pgX2zB0W9u0ChQLYyd4EE1j7XT48jr9MRANwK+u4cI+0LrE513wP\nawMjnb4AGrcXLB/FJXt5mCVrT+mT7kkCydZZpWx63AOYBhgHXtaQHubiSlVfZvU6xJ3q6bHFhfoI\nBjyMgJkV6CqYSSXhZPkdfiC/vX8XcDXbyW8dE7BOpIpSxkD5MYEFJBCeCjL3nVmznRwl4Ju08q5M\nZBVxfcZ+v4FIctwrQ5rBxPg7qL9/lcr0snAB7zeCG0mGuYGx/V8eerD/bbdGIX5IZ/H4cRqAMd50\nvdE8IIw4WqiXAV/10OZY9aHOA2ye5mciKkF6xge7uPIuzH2sc7YZwcjAGbvzPDxPW9zW0ww7nt8Y\np7bweFgU3gR4tB4EK583rznK9Rs2Hk7jYwy3P04MMcjEKoCpZ6KjjS0RasXblzpHxJmC3HmOsIJv\nsITXFgWaEundfehYCKB1o4RUVRBJyC8p4MPwPIqND8nkxDSiidw6H1mrwhDZIWs8Ouvti7Wv7kuk\n9e/CubQREnmxrKXD/LVyEnb76aTyD30469Msw1J/jcaRuF/2VAdB2I9VBuNH//x/iZ//Oz+PHwfw\n/QD+BoA/8/P/N/7iX/rvsTHh537pS0D69Rf+3p/Gf/M//yT+4r/zb/ozLdrDPHcmtztYwylDx81j\nzluIeazOIG+P5++rDrYZ521nrZOmvI979TAbNtI1Lp7gxmRUa+JRGeYfSYQEBbYIgs+eBtxHguEn\nkwXDM0JeuNc168QQwFHPQe4l/ZvbjUNLHqkA86x5GKInCUl4K70f3uQNOd6Sndc4jOx89atCdN57\n7z08f/4cz58/x/V6xbJULFVijD0jjC4sNYuNZQI5nU66UKxC2D97NhrmxUM1lqXvyIlvtJZJANif\na2mP8+LPTHhsg9G2bZKdRg+zaErM3RhXbBM2C6xkL/662tXDROxWnITSAdmZgZC9ch75fH6uvwsx\nEmvLxyI6UxmsmAYIBhg4KRtLP+0gSEOyQhnAFWYWyLkcplSg66ZC+KiS1xJlEji/mzC2CDRvo25f\n8q5+Dg4dYc5tZexgsnR+zOEQ1jkjnvEMIZRqC7Pv0v9BfA6LI7fhCJjJNSLoCYSp97xgEz6f2jT9\nL58O73JwvPysuf3316a+5KzU923BfHts7+843iPPqRmcpSeMaGyYk5D5xQIXGVP8vp3v37Hfb57f\nQ9mmibYHSvnnY6DEnEaQjxcewnXF+JS8KYj2DK9Jmn1GXLJRw8DcJDeyISRvN2BEp2vYHE9tMdZH\nap77eHwOo/uG72Pb5L7NchIAeiFwgZAdWJCyXcMSRmvys+hi8ITVczkZ0Y6syKuU4ssk2doCom9y\nZiox7ohRphNH1jAlH7ImkcAaQgRdo+Gz2duCfK0jqZfeVn7a8MuAW/RbSbLV7smyvsTvWRwsj2Aw\naUUOL0f27GTwOcxRhoa89tCBchsl6BxlSr8DkOgKZTrWpjvCA+Dv/+qv46//7f8LPw7gB/Xa7wXw\nw73jv/67v6jf5F9/EL0zfu7/+SH81vsf4Pd94h3vXwlokHHebP89FI/KQBpv85HHcp6/w/j5HRKd\n/ExrIhu7PJUhEx5btC8L9wua3sOSTxHgZCfLwnz90IeDzgl5bf0+4DW2bLkNvY/4JNdknF97mTK3\n28dqOW0gIzfZeH74+jj3/D16vCU7r3G895X3AADvv/9VvP/+V/G1r30tZVfrgOXzh4SBjemOC9Z1\nxf39PR4/foz7+yA8opxSxq7KqL2iV9Z0mTYQY0M1/zuBeskCJqmpNyUyBcsA9sOSEbtTB+ZkXZsT\nEz0rD6Iilr7D2TQr45snwpW1n5lh136i5dk+g4DstclkJ/8+WzHN0tV5LzTsGYelnslOId8LJq4R\nBZ8ttnnvJAlbqbv6TuJ/EKpaKAUQEkTrOzsTD2DbgPBcjwxCSro3lSIW9rTnhhOOXKLUTLm8Wbi6\nmBeUF5cYYwoNNJYro3YjPswRjjCJ2h25cKDBsPU5k/FrPAgeQz0e6TpO4T08KeGbkp92vx0Thfm7\nsf/yKYN/LSfzSKQuA9nZA3CL8AgImG7kgOyY7AQ5RWpU9uK6rEDcwxa0k56ax2TsvK5hGilz5JEn\nw+2uByQrPDoJLBwofsqXa377ICAc+/vw/jp/d2CpUszJUvLGsOyfDoXXw3yxlxlANE29eXfivtG+\nBgqtvbgD5utlIpSpr1AI3CO8K8rOep+9MWkrsqYvGGF405xrmszoHP2ht+2ezj9S5/bedaG8gE5Z\nK6oeb20nuaSDekEp6h3Q91JYvU0USRhyj1D0zGyRNsIT5EdJmLYB9+7lkpC8WDeD1JZkAsNSTyei\nY55xmUeJnBjpsd+c6cDPjf1rRl3Iqd+HEZhEAaXPMfmODvKy/OoXvwRAfDbvAfiTBPzUTjh+//T3\n5wAAv/W1D/Ctn/5GEBGu24aNNvDGvjbLyIDvTzN2jUu4GNfpONBTL/v8MuAdOod8fs9nGOmwzH+S\nNGrBuiyyRs7qpOGjTOQJV4y0wsmO1ZdiXru8RlwzXAuVO12XMnQ0XV/mdXUiPAwqvekrqIfJvcPT\nbFTG/PeNejXJiBgZJjPuAcF6U463ZOc1ji9/+bcBAB9+8AG+9v7X8NFHH7lQXZYF67ridDpBQjEu\n2K6izEupWJaKu7sz3nnnCd599x08evQY5/NZFpEpKLbwAwHvHXWYTHJkIFI0C4gp6q7ZNnyNyGqx\nsWIhF/d8QSHN1uF784jibq3r3CqSK0fTNcqakjIy/JdaXl5hW6DpD9pP4FlxDXfPgo9i9/BMdvL+\nQpkQBdDQDG8plOXlZd6Xz9YlhcI3a03sq3Tdrrhcr7huV01N3rCsZum+Tap2goUC9hAYzKTKcvI4\nqYDcER5mjZ9XMgH17rDE3ptwPfIIEI0lNYKy+07LOdfFv6cktGfCY5+1rABF6Eo+d/+Ise+0TYAE\nMOcrHTQON4kUqwPRGclOvhWlz69r+nKPxQ1FMoTK6adXEZ6P9cx0V1YslkGiK+j8oFwmHb8ewpkI\n8gC6e3gcAwSMIIYQc9I2sttBPR+EewBkc2l8x+783V8GNPXZvj4nXSfVSAQOOoc4VYN59OhwpJuf\nqusgKpK/NCc8noVtBoQ0fXQZBtAiMtr38FA0VVgAS24nvy6Rn+zhKWTt18FMnv7b+3QqTtYFThiN\nxOkagd6bk51OQogaB9HpJpeIAArA1UuXsORaAK6omk7evC/FFo9jogqENIZtA2eCe9MZkDU80HUQ\nJlHVW9TJvThO7gTFO2mxDVCdxLgwsBGSWAhlna1l86VqNo5kHQ+b3NN7mSxk05F8QHJ8kKZkI1Z3\nNVrK/CV89ls/A0BC1/4qAX/tBOAHAHwWwC8C+N/tV/PsAMBPAwC+41s/g/PdnbT7xTxp4b0TG2kP\n4k2ReIa8fDpcstzI4zONp/HPl8zhw8MaiQZDgzUVIVKdL0vFsgp2W08n8HVDQ4SaWpIAS+bkMtKx\nWTI4Q8c+gIGWa99b8iTTToITxADa8p43g5EmPDsi62nfXq84ePdBmshC18xQ7JhQjRmvq9N+rx1v\nyc5rHF/57S8DAD766CN88OEHePrRU5zPZ5zPZ0kFvSw4nU9g3TOna2a2UgjruuD+/g5PnjzGu+++\ng8ePH+Hu7ozeGZcLZNAzxrAzKqhUNOsH/OWMXF9NFWzrHW3bdHPTK3pfXDnY3js0EJ4Ky55iIF2y\nmllKyyLJRlRoWapRxt7yKUeWwi+zQIR6Gs46IBTZKjJ7dOw9k51Sqnsujrw/FkJS1PJ5BA4Pv5t+\nc/BTiscse904NoC9Xq+4XGMPptY29La+UmBl79TYclaesX3HMmeNGKCdzHLpClz4BHNYpo5I1v6O\nURjhFUEnhkud6FDu5JcLUQcgynV25MkfPX3QMhqAnZTCIOcVeOdbO771MAxOIO6onFPZfoeEx0C0\nARv57uU3+NiEBzem5/yMYDOuxKGZksqNspjVMQiPl36cxwkkOgjT66SZWbM4mixIe4JNhoCBMHMq\nh7+zy7B0wstl1ND5ev2wv0V6NmfxS4ZRB5AfLw1VTZtJjo8KshMvSZjCTUhPPvz5Q3fE84ToREiu\nDyfSvTx4Wsdl7Ztlo8rHjq67z3OkiM6GFP1v9KsGWUQPgtPYEi40dEhoHBdSsqNEB+xkR25swIsk\n7W5lgCtoofAAEWCbKxIVNPPiekiyAf4yN5rIfsh6o06WFZMk6QIhjVMD6rpfXXque8MtfCk905pM\nGz/0WzIggOBhw9YfxJJ1Tnfj0fHlGif3nt4vPSd3js87I79CeCzpwj/12W/Hv/LP/2F8/md+Dl9j\nFqLzXXr9vwjgFwrwW5/Xm38OwE+jlj+Df+47vwt/8LPfjuvlEsSFJZKE0dCbkFhysmdeuNm7nzke\nJ1E7TtR5vgyVf+WRjYDs/cL+m3aBGkZrFY+OGaobx7o9S6QhZEfv7kSnhCHabqpjWQJ3U5fACCBi\nzJis0DlTbW0tkSe0isbIMy57LT/mwQiZbXcxQpqifcYwtvmpb+7xluy8xvHhhx8CAC6XC7gzlmXB\n3d0dHj16hEf39zifTzifzxJGdt1wrRe1HiyD5+e0ntJizdgsVAZyTQBfnstgC5J1gF1KbMDGILHy\n+YgMK5aRGAmrO1hEy7ERVaMGTh4cIqBwtVvKcYSkaHjL+O3mOXEkoKzhVEMIGpArNgi/THjMkpcX\n3xuxOSJI5hkbnzeeM5SSjz0fpOdmb0Dr4grfNtms7HK54HK5+saz62nVBBKRdSfQ9q0yhGK1uvr7\nDiwrlM+KImudpHhmnamVzYMPiu/mk4Y3Sv/xrXZ00pPLGefkts2KYvTsBMC+xRcNiB4Wl0zRcrK+\n57A8ezdQCCdgUY0E75Pi4TjhuGAHx4Rhd30xKP4B29Awbs3qd+M2ryhBpFa2kAwHb140R/jKAw0w\njxPbsJ8VxEhRnh/TXZ3w7MJAvHQB8OR+fSQcqWzeV4GqpmMct8jPTS94eFUiC9rQ5GAlCI6lqs6b\nf3pZEWtKALMad2/Llx3m7XdPrn5ncq31BmoWHsOYky64hbp3CU0hgFj2YKGWPFWQsDjL0EQk62WI\nxsXvluZfFIsQnO5ETYmOv5T8IPZ8sWxvYwpx+JwRfQWgRNa2nNQlRzYMYUGZ6CC+y/PavDsx5vRh\nTo40u52uN3PrvM8JOKHwZyA/P/70fWCsjDanCkJmuJEoyUUfvKFoB9mjX3DQML1fGRa3E2yMqoGP\nGYUZf/nH/hz+1I/8h/iFX/l74tHJx7/Rgf/uQwA/5F/9C9/9Pfiv/v1/D+d1RakkG1USeYa36/WK\n+fDxoueE3EcSsDORSSGRt+SnNolhgkODYdalh3M/gXxbv7yuOK0nnE8nbK2j9SuYm8skz3zGEGNQ\nVqtkYoF1exHWs8M4nBf9Z7U6h7POYfaseC8iX0L27us+YSF7iD4t9i3MZU/lSuF4c/lcBh/3yu/5\n4y3ZeY3j2bNnAGQQ1Fpxf3+PJ48f4513nuDRo0dY1R16ebhgu1zx8PCAql6ddV2xKumpluqwNcmc\npus5YrM0pMHKIRgUg0qu9kg2wNjUyldigkEFfCI729b0pcSndbSmRAfiyi/Ekc6z64LDV+ZXz0wo\n3nbAjYEPnr/Ah88f8O6jM969v0u3UME8phBy0JUB8dFRBkubnNc0retMkDI5MgAxE6H8XRQxCM+u\nFCoRzHIIMK7qZROy8+Ck53S6orUTbONSa0FOzxgI1aDIk6fOhdPcP2oxd4sTfI0KGblK7TDU0e6Q\nCA8fSDr/blfOOHf4m2JQhF6nQwHqVCIrybmA/sfx2DwaJZzmUgBRVSLpPXsNMkia+8TGm1vk6Pi5\nX9+xr2MQgJHw+NkHhdipRlIkop0xKMmSxoWjXP/D/+V5n5M+2Ll2qc+WYJJTefagzn8ZhkD2SnBM\nGkzfWT/nZ958AmKTTpMViQibMcLJZSbezJDkC5noaFY13UgavmdXvAZShVkm3ZJzPTVfEBlqQCMA\njVGhGxAThmeMBh+glI5wIDFsbZGspdnAfZMQuGn/GQlV4kgLbuF46pESfbLpfnNBdlomN4Xg+e89\nFMyynHlKBNddxqnkcGaTxquQQCPoQE4fPfZ8Xj3FOk6IbQ1P18wMBCbdXGTs7kC2dPTZSqg+dwP6\nSmRoPl/HkhTD5LQC26Hr9/PQiI6TGtUJtVSVDZLcmmuFe2C1np/6xCfw3/7Yn8Pn/q0fBn4N4dkB\ngP9Xxtn/+Jd+DK13fMe3fDO+/dOfRrsInilVN6qkIDxWB1vXEnMkSPKRhB7kByeZdnDu0BpOZkZ5\nbEYBr+7wrLE9bezUWrDUinVZcTqtOJ/PuGwNl625jjfPo4U6kuuM+QHsesLIjmzxUdIzkYjIkVc4\nER2E7Il9zLLMzTVC3DvpJWuX4YWQO5iucaJzo0xv6vGW7LzGYWTHPDR3d2c89rC0x5pdTSwsDy9e\nYF0kOcCyrG5BWJdF4pABNCU6W7NU0UDNFg6YnOLk2YF7dRbN0CabZHKkXEaQJdFJRnY2T0vdEuHp\nmmuaWZQRa+hJLQVcKj56/oAXW8MnHt3hnUd3U6uoiHI8bkRhVBQPlw1/65e/gF9//wP/7tu/4V38\n0X/mn8R51dhrS9UzWclGjROEwM8ZwEIAE/OY9YlAzeBiBI0HJIA5UjG7wjGxYwpK3kXQdvQmnp0g\nOxc8PFxwvV5w3U7iySNo7DdGIZTKEX8HIAjCY4pwJiyqBpNiGBt0VBT+d1YeWu9gJqqc57aPGyQC\ns0MJh/3oVOdGmUoSvrmPpsq+1iFZooqCBgpwHNDcFV489ph4FG27AvheTsE+eAA3R/WUh9PcPDC0\n5RY+BznRsbt7eREDPrwcRMRzM3mDjXe7OgFtTGMVWiaavrHGy9ZIuz6Dmz0p8aL5e/wqwJSh0y5f\nl/6e3+MEe2hARicFYR3Cbs3NQQPGtZou2vausEQkjjPDmnzY91bNac6PdeDhe1+TSIBsE88A6m6u\n5PTVNsUjJTL7dYDtxSF1AAgo3QlIh2ZC6yyJOs2b0zv6tokuSwlZbC+PZuFqELID3/xwzvykJj4j\nALBwHhs7WtQk44NkmOyK9znrc5bXbIMHSH3OACnhKR3EfZg5s+GG05+pA4d3ovG7wXhjMmG+zncB\nzYNuGP2u2+H9rPqg2Dkm+xngAtQqj+qMXhh/4LO/H5/7vj+Mv/m//l007sB3APhVoP5UwR/7vu/G\nv/x9f0TK2hntekWFhKXZZpWW/K0ruPcxRqR6La/P2aknB/p2wiwLBs0x6GH7MrVM0ttGOkKST49N\nfeJhbMuCdV1wOklUzovLFeXhAvfoMCvZNrlbLJfPWCyXPSI3JCjR9vshx0YezeGyYSIVwPA5CC72\nv8Eaa6/LRwx5TFpISVgkKUk/3yJib+Dxlux8HcfptOKdd57gyTvv4N0nT/DOO09wd3cXCmhQTjFQ\ntm3D5XLBixcvXFi31rGpK9iEfijFFCLBDczdyU6tBXVRz47o/yGttOVtFw+HeHWulw3Xy1VCqq5X\nXK9CtHrrqNXKGx6Sa+v4xV//Er6i4XsA8OlPfBLf+wc/g5OlrE46x/0MWcjr8bd+5Qv48P0Phvz+\nP/LVD/A3f/kL+Fe/8w9YU0nUMicSMrX9EfDNVgvR/+MeFjlkLw6Z3Lcyt+0OHq3RJsRdvo6nAhDP\nkpGdhwfx7jxcLjhfr7huG5hsR/b9846tvhPhwT5JAA/vGO8BaZvRfR17BMwKZDgISfDehs9uOzWE\nqNd1/c7JsJFE5L/tJqYpg+zcErT7b2/AegKI06JfhoLmUAsOhnYPMMUTZdxZ44k07eqopPzz0Zg6\nKvOk9Q3MzKMv6M50J4rxl+9+2Hojqtj9nCFWeHNu3Ctfp0rViYDtHZPuMT/eCn50byfYrrC1TBy/\n2/uO5HAqdVLkQeRgqEPGQ48y+7O1fLNRxepnCUlakjnbtkFnG8BFI6PGske6a3vXtTsDmRzHkczr\nHq9uMlO8U7aJsPWajXWzEgvgo7iflr23hg2M1jd0FsCKbgTCUjYD6FDvjhjK2Lw5KUJha5pG29bn\ngD1BgURxxSbWBqA95bODRvbNJ42gROYqyV5FRMBCuoFiyEcjREKcvNK+KbLLGiLPSEpFUlNrnBmy\nh3cwxhip2veOj2OTaK4MrTyTOUBL4jLbtKh8ScNMmccwA7HJM8OvtS0VTE9Y9EIhlk0nGUAB/sp/\n9h/j83/+P8dP/8TP+lP+6Pd9N/7Kf/ofDaKLSkFZqgBG9crZ40L2yXmtbaCNUl0QMkznr7cAhVjU\nobknOru2xc5rvTOC5fFu84jGviToOrVq0TGSnOB8PmN58QKllriXNnBnpTsdoN5BXYgPoM3Ksp8U\nmBUXRP1hPe1jJ+NDGx9J1+l777YOykJZo04z4bG+mLfdiHT645rEfLGpC0YkiGlpqQMRgd/QDUWB\nt2Tn6zrW0wlPnjzBpz71DXj86BEeP3qEdV3x8CChSgFUQ/Fadq4HJTucJqUP+/+fvfeLuW277oN+\nY661v++ca98/vnZcx05ix+kfKJX5I/WloBReUAUSCFRBaRIhxBtJH6hQHkA8AAKKBKg88MJDhSD0\niSoFQdqgSqgRQkhIqApRS0KcxI3tJHZyHV/H957v22vNwcMYvzHGnGvtc24Oleorn3W0z97f3mvN\nNedcc47x+40x5piS2dfswryWi3fDKrHY4jqSna4ae/Gs6xprgJReneuGR39dr9dcML9t7tnxOgAW\nagDg73z5d/CNby+om4x9/Zs/jv/zl7+CP/FHfiCFulU+ZXUB14Dim+89w69/490pgz/wVQA/+Y13\n8dVvvIvv/dgb0SejTjgKrEoEBu0cx1MAACAASURBVKADCgMMqZ/PrBNByKoim95DaJS6xMfykkF4\npUCqZMcIzwMeHyyU7bpt4dWpG3qeHlSYVOhukfG8n4Xg0LN03qZWH9MM1qOJOgjLsR7x3/yWTa9/\nTiEZtV70VhAEVOtXtNn1B+Z6DPU5/eMA8AW+loijsufTAxj6krXUqbzT25e+4y7uN6nACwnP2TVe\nvYkBzZDpWK9jl90kPP4rH+2Z56GSnA9Cd2wc9iE0jP2ttWcr8WWpE+E5tFXLOZM8GN4pSxwgFn/d\n1HJEogAUonOUFxIePILYaKdmKFeVOzaubUd1Vbj3gOUis6/RQ+JrXsIrNtBNhCwkyTKysqOrOOmq\ne6/Vdnq/hDzwspqitY62N/Rmi/133dHhnh2CMyc7HWIppw0NeZstKU68ejcDWqSWVk/vrKZXlFb1\n1SIeLhcnO34fzT2PaHnGCdnZpKO1DsHqZKcFoKwyRHxucxzVsUcDkrQltnJQIdFBrMGoV6dHKfWd\nw+BpXBd5FnpGYjxW2c2yFQ6UVUJ2kp5VKqDI36IKKHrE125JU7QIRVdotxDHJoq333wLf/kv/gV8\n8Uu/jl/78lfwue/7ND7//Z+ZSJk42YHpqt1IKttjxIpcS7BdTTftfc+xGkNwnHd1NlbCc3Ycvdd6\n+D3mvv9+MHyEzkE8F0bHrOuKu8sFd77pe92kt5KnrkY6RDuaMrET117zfkzBnfUc8VBpd9RlanCd\n516elFC2qpf5/I9eUsphyqgJA+l47xhTnhGzruuW1tBu6eAPwfGK7LzEwUl3d3fBRz7yGt566008\nub/Hk/snEBHfb4cx0mOGLsDX6Dj4HXfNXV3gj5fU9J37vpvFzVm+cF+ZZcHeTWFZTC09QyZ4egd6\neHau/tqC7Gxlw1MRoLeGpsB7D1d849u/h3mTMYXia9/8MXz72QNef3qfEw3ThANCcP7eswcAmcF/\nzvH/v/zfX8Sn334d//gf/izWZQmFCFTgcpxsBzcrLGUqpsl62/16DB266d2ZQFiQHSmkRzwEsJDU\nGsr28PCIh8cHPF4fsV23sMLSs3NKMkpfZr1SmVZLHwVyisDqxYFbtEbhGPeYCE9pdt6E90Qqppmb\nxkVFrw+fSz/HZxAfpJfEyqaAn29QrgwwkjWJvxJ9DDRBCZj9kgqc2R+11Yf6yvj9HGoxQJgBPPCc\nSnxOVLwCudCc9x4JD6b/7bL5vnk7nnkksF7mKdII88Hw6daR3EwLaFWAhhqWIRjGXlyMsc855wLM\nzLJAU6HXfg9lHucSCJ3U3c8Dz6vyZFiDELADNpLqeeV8rtvZd0CYypVV8JTOzPTUKznixqL7WLeY\naGnM4Gd6JlXVPC6SSQhq16bRA1HgLhqpgrsbUbqoJSmQXJdg4J+ZtZLs6K5QrtPhPmIRvsYNlH2d\njqScNPsw9zgxwrNcVojvYUMjUd/3AuRt/nYYGNt7R3Ny2mDeeVtX6l6Z4BajrEzvcZIWrpOtXpsY\nqTl0whhT4OWoD3ycmA0q9WElx96h00iUIntkfBX5zr/TO1h/S9lWr6/kL8h6awh/dgd+6LPfj8//\nwGcwHxThIgJZltjbry8ts3A3I2jd5Yewfjsio1nO0RMRYwIJEXZ3csx6wr88yOzRw6NjPwFlHhOv\npNG4Jo+6rJdMFJBX5zxvihbYrXmIvAwyjmvDjtJm1gPlSRU9UvFDGoLKYGR7WGZtlzAiJmUwPTth\nMAcOtaOe78VwQ/kkp5udfniOV2TnJY7LnXXb/d0dnjx5gif3T7CuHu+877heH/H47BkeHx/Co3CW\n2g/ANHgS2DCswNIWb7h6Bq/r1TK8dT8ndqauSncIFcnfjgkKuHbHBjZgilJEYrHus+vmdTvfZOz3\nnj3ijadPiiKtAp4T2Nr2xmv3ADKD/5+VKcf/l4Df+Jlv4X/7pS/hn/wHPp8Ahv108izq7xm/7oL+\nZGIeLCKhvFJQPjeMbb6/C/BKdAB4TK4rwwPheYiMbNftimVtWJbjOhgAkTK2xbOFn1frYPVgppVM\nWamIcERvu0B8HXCxMpX32i+nAlGL5i39BTXLrUzPKdzxrOiIacdDrPwK26npj/K19pMiFvVOiqSq\nyEp02K7wIpY6DR7VkzKjDYWr1PCIOu/iXpFFS+YLk2iwnl6WPYPaSo6PM8JDED4r/NJH50ymXF/q\nAF83F/1fjQlZ9aF8cYDpG9wy1j1kEcG5v+RmfTT7MR5OHTwkPN4rHFyKGPc6/8aXlnuwV8rXNCbQ\ne6OA7bERz8TWkCUA93f14TcBzwBUwvwuWU8mM+BGw7HhsC/qT1CXbwR3fAqBu5n1jW06AB8E4FU2\nOk82H46n4O8C9GYNMv7EJ2Xw2BwGFsqTiQno2bF1oJk+3O9bSuid6x/SAt3agqWtTjrE9z9r6G6d\nFjUKsyyrhbU1JzTsS3aVi4LsrzSB1GMgQSXsTSNEOEeNreobZQnP5wOoHmCtkqbylhOQm591KCM8\nR+oJjDl24BWrc4FztJYVusJP0XJdkB73yDRijpzriOFRdWUZV04QdL1gVeCy275JvLSrQq8AsLvh\nrc7FuR/O/OeS/5/p4VFkZn0HeREqxcbssRQwiqY1Lge44O5ywbIu1j+lDpVuSJGHtk6a/TwKgZh7\nY4OzD0xFI+fCqNcSr2iRmKn/qwGjhq/xvsoU8jdeh8Ple3fPrBlgMsT2w0p0gFdk56WOu7uLvd9b\ncoKnT2yxPq1RzMB2fXjEvhlZEGT2tHnvigTsVJjGrMVjvzcnOY+PDDu7gllBqmADiQ73dyjCThWx\nfuV63ZLoUDl5eIlNmNzr4n5ljOb5JmMffXofQj8tWAQDEjoBAN76yFP8wNtv4CfeeRdfhXt0ao7/\nL1g9f+Onv4V333+G158+GcnOGVEBgUPx4Iht9PncSZ2lDMLoLHztA5GeAmBtM1OuKSrjYkpUQOK6\nXVYsfcFayI7ImGe/Cr24J3LcWHKkYl2OHORjf1EFzGTnVjsn/Db+pQmsK+GJ/ojrqyJmZfxVIgXo\noo96x+rWCmQTgEedT5To2BRmRjoBG9GvbWgnrWJTGrC8rpCggaQSZMNsnXV8aU0+cEp4agclzh/b\n8TzCwybdGu/P/z66cnjG0/xj+TenVIK2oDaaPcIREdiNFT+tk+bz0XKBh25xn6TgMC7o4rsACX5t\ngJHyd6kGjQHcOby1ZsaGMg8Ja4dwlCjKpbK67AOiPJId9gU8cxsJwrZdC9kxr4iJVZetpZ/o3aK8\nTYvruBGpCHyDQBfCrZU6Z78ELPT79eZ5cCSHOgmhQHxvJEA8PLEzk6frk74xGYGXHVZmpL7qrCfJ\nzoq2rBGNoM08Tt3XlxCschNREhXKvqa5pwmnhC9ZGSQm5yM9VMq6+Vod9ikzjXVx6SG5ZmsmMDne\nz4az5Dcjjs1nyXKHeStR15AzyMa4TxGV6PAZqcJDfzWyg5dZl0TKxziJjraShZD/onpVNnu47rJg\n8XHC/ZLU9RBTjasqpAv6nro4us/bPEqxqaOep3tD4E19OZ1EwlMvGc4QsbVji28semeJpOoa2ug5\nYX/nOFbp6F3iXqx2zN/yvU4trc2sqanjcDlmz9ffY0yMuv2WkZYYZA7NHTpSEM+9q8/nKRx3WZZX\nZOe77Xj69CkA4Mn9E9xd7rCuayiqa2wcecW+G9Exq0HuscPXupbuV443d416ytIMfXJvwOMjrtct\nFlIyVI6b2EX8d10M7AO0d2Df1VOO8sUdfF0cinl/uHv1/WXFW699BL/73rjJmOAn8Ik33sDrT+5j\nUoce8P8K94njh//YD+LnfuFX8ZPveDa2z06d+zl7+9azB3z0yX12TyEuZ2FeaWXxukddJCwecza2\n6PhT4SOHdyq7erYQ3LogSstKQ2sJtjo3GN1yrRQ9O5f9kkKI9yR5mMBmZA0a2l7BaMJK000zKJ/a\n/DxCN2mGwWV+hnYPChvn55XfVBPQDaTJ1Tm/z6JC2wM494blyUVZyVlNEn57RXA2Fo5jpIAMrYtG\ns1T+q13Cz6OyOo7lbKAevonvTwkPYWvWVYcy7Ly8FS3vQN6L462en2PwhIGVypX2JMWYmzqOqbh0\ngm5Bcpy4K/vOAdJcl/i7ID7V0v6KBPnn1Ja4LucDubgGMPNxWa5RVU+/rJEfmbKnFXkRc5Q7ppc1\nLpu/LHtbd2MJ5U6GZNW+4aaGogh530vYtMA9ws08IdK7fUb209wHAhpoxLJNefvozQni4SxDfW82\npT7ZPGGBIDfndEIT8hjqCQGW8Og0X3samz4Dvqh6LQQS4ybbJRkB1xHZZrhJTBRlPgi9PPkUeXbI\nIILFeEe0IQx50gKYJtGpc648gLhU8jf+N0xNyh9eCEhsS2k5vSzEz+cC6+TX1jHGeVD1wlCpECHl\nPs2JEdTCF/2aNFQgN5jlOHSA3tTxTefmmLaRNrGIbFv0w6BDTokODv0wH6caZpJRYxHFE1vuL/V5\nipZtPC6WvtsNebGOs7xpvDRkOmUp5y3HkJCYe2XTCFRaUnBKbRfx29hPR519KxLl6M056hr2TTxZ\nzWQlTB/fPeT2pvz/EByvyM5LHG+8/joA4LWnT4Ow7PueaYW3a+yA3VqLOND7+3vc399b6Ju/IkGA\nr5mxTeg28+zIjseHBzx7eIZnzx7w8GBZvK7Xa2SvqZvXDSk/fZBq7ybIiuBj/OaZS7N7+MQueyRJ\n+EN/4C188WvfxDvfzk3GPv766/jHfvDTiCnIeVYIzhnZeXK34p/+R/8Qvvw738Rf/1u/fMzx/2v2\n9vpMdOxD/H20XpS2lMWkIoKlZBB5HuG5ZbWo6woGiy68bX2EDCmwXCS6INy1Y+s7rvuOK+PbIz1t\nAUlIcjVAbFqSbI/z+dfTutdrAZhCE99crrRv7tNBYR+0C633ST4piD+IFyzPyfCWuZ7jl3MdFKce\nl6HmRT2wvnNImuaZQ/1w/v35Qeun2ZVtUXEPMFDDn6pSHLvp7E5jP+gwzWohSREqzTk+Mh3ex8/z\nvVK5Hq7T7LRhHszXB4n2HzMfd+mEsbW5/qXElfuYr2U3zQEhU32t29OLxN8DXPpJlfDxfSBXOBnP\npXPzXI1MarEuMJ65gxdFzlsnJWM48R5ekfTMlzA/YfX9n4cviyb0oZEsiCEIgHxfng5LDNDnNtdn\nanPEi0hg3osnhkTTF+LQs6OdWxj4uc0ffCM5WLC4AayJJfdZL3cGLNfViM6yYGkL2tKQngvKRAFz\nT0aKXPbQ0tAB7Hs3UuRJCqSOURKdQjqOQJsAeFy/I2LeMyYvkCYWRud78IxHyuVa9kGuxSMI5hFz\nY8yJaUSH7yrNUmIzQ17Mp1ookqQEaeGz5j3lMIetPT3aPRAnIBIYVa+GZdiz/l08s97iRt1939G2\n3RJHqKImQJq7If86eyrnR5C4gl+G5hRyq9Rx4Lx2aRlGWRunJDwtwiS9zUUfJ0nMfqXXnuPOvLlJ\niv3kkEqjQWf0/wxRAkFOMhwz6zs09iCvAjdRbiifZLmMepHiPTJKls2A95RtH16q84rsvNTx+kdf\nB8Q8PJfLBQxTogdmu9oCTSAt/XeXy0B0nj59iidPnmBZlgxp2nb0vgF7j3SfLPPh4Vl6d65XLHrB\nAhnCt/ruSnPP2O+6GA1AeHHs5UJRDQQDjH3ukF3QZIdAcFlW/LHv/yS2/j349rMHvHZZ8NGn97i0\nECUBwsTekuTcQI7f9/E38X2feB1f+ZlvmTz9HIBfA+SvAd/79ut44+mTIAAAUlA8h+jUZA8QBdN3\nk+zM7tsMi7K2Pw+oD25iFIGnasKip1cmLTTqfZr1C+9Osebu+z5uolqsi1Q6FXRaaI2HSLmYPFhr\nbll5gAzNmc6vxAUotEHG8isILoWb9fhw32RLsyWKv7Juh/JEphSjA6T2b55HFOzeAYVjXU/iu6pu\n6UnC6TgYFXAQ77G6EPF9JwJw177N82r9jm073GauaijPM8Izl5xljWAoNZwebh+/6/HaCiABZOrb\nk8OAokC7oIuGh6T2sXoZAaIKiTjzJmnXHBc6EhoSJj7K4XoCv2xg9oE4+OiZqIUAgt6CCBv2K2ON\nXJG/BAWC3Hdplk9hmCqeHSYzGNZgwoB3eSBejsn15oBHBZkUYZIjKuYdMBwric9LeUnIrb5dsgba\nwRjZyFIXGQeqZ6foFRtODbIQ/NmaHLSGtgi0SSE6FyzLGllF7b1sluykpkmSnRiDXu/d1xZxnVOD\nhWKHQWQgOgn051VjoaqaHJIVEAwfSE/ygXGM4ji7B5GjGGVbHePFkyAdCMKj5tlRgnQH8T6BQPIz\nGzALZ0leW4l07YAic9lb1Bsh1Wr5/ps0S+HMrGa7R7Jcl6tHoXTvc3ZA3vzFUnDq20EXZedXgwzH\nTTK60XgYBMR1KAlEq2RHCmEoBs9KEq0fiuwlEfHxU4l5rX+K3yKzqfeH1iVdidoWgsYjx2qtlxZC\nFTecrvF5Es+VGPHGlh3PkfXf6ccrsvMSx5tvvgkgyY6BGWbf2QCYSxQRpqa43F2GELbLxawffd8L\nk2cGN7iShMVye8hTKsaOtkyO82LB4cB2GOxFj94dLefmJabQdloafEJx0N9fLrj/yJO0ZIbkTIVg\n851KhpOTgkDL3Fb8U3/0c/hf//av4cs/nfv3fPrjr+Of+MOfTctLtjAm7my9OByaQmFwCxfQYdU+\nkia+n5GFUJWF+EA7IwuiL6S5hczUNGRYuOlWE+5BwYxME+i4GX9Li5BngTnU0a+JtkAGEddVLdZe\nTqw0FTh7/8+udtUigKcCpNQ/+9GAz5gZCcN5FZBEwZLAUosF+wMfPgfCo6P5fiauM7VsUWpzccOn\ntBSmApe8D1erVxKpDCPM/sn7lVopDnU8DnN/RqeEZzgrx5X/eiD8RXlnv8XJpxUYekdOno9ybQsA\nWFhpEy17UhWywTGlwHl61PHeBFwy1U2GU6tgQxVyLoYKALBOQnhHIjtmG8Zo9KVOYR5OVMyTrjlH\nvPyuDBlO4MC9eHpPbw7rwpmQIbE+jx2xhjepyIju2ToZ/sZKW3UzwYK6LLJyaj9MPawaYXnaFbrz\nc09PD39zwpNJc5zoFTksIlguK5bLBcvdBev9HS539/5+h/X+DuvFyE7jptzim1gW0GgkIetn5LBH\nPzPcjeFoQU6QsjRkihQznYiRMYbX+Z4/Mdsr0Yn9eGxGpY4dQftBdpa+Fkg5V6bJk2WgicWfM4Qt\nFKt5kRM75BqelKRF1rk4mu8QMlm7G2pK3QpeoExQ9LD+AyOeAKy/W8uNR5lOfAg9J/kEDRWpG9iG\nrHR6NKKTa9/y3tOci/bF4n975r13lxsy4BSeUwlKtK8YaEaScdTP1gxiDwnSntVXJ1Hs4IodjpiE\n18xjZMYGI53K607xEW9WP4W+9TkVe/LQy+7deoJJPizHK7LzEgfJDtfgAEBY3HYDuekKtQl9R4Kz\nLv5asS4NVw6y7un+SHbga2zq3gX7lhnHCCZAYUmAaofE8JdBaFXhBWAQhqn8uqUk3a28bV2w7yt2\nB/EB2gZhnvfNPwPhJpiTmOl4crfiT/3DfxDffO8Z3n3vAW+8do/Xn95j34FtPyqMxC0jqEb5Ps4v\nYKUCgiokWmslLeZY9inhCSHW4v6RKrXUL0IhSDh7gt/ZwluznFRFeSA7BSRSSaSWOBF+kmszKplV\nwBcYmwKNMSRcnzC2OYhTeW71WdQ+q9ccPksdnMffq4rjFzp8mAXsTIUPoj6AjDcaQ8iI/zDcvdbx\ncDeC7Pyr9kkQiaSCWbdCeIB5/Na+O7959m/93dsTaIFlZZniYFd4eq0Wjs9tvCkAnZTlRNbqIcNn\nje6h1RRqXgZLZ5zjEdGnGveLndhJdOZ6zt8P7yHIssHzZyAJT/nOQLuRl/DMNimzBFGv7p6ZLTzp\nHopchYmDFwvxss2bO4lKz+0EuhOdDE1JUMX3Ci4pRwCETKvWV3ZHpM7VEWSRjFXANRJW0wHUS9p7\nkBrd+4HoqIex9XgsAnTFEqm2DfSt6wX3T1/Dk9eeYrm7JPHxd9tcNC3rsT6nJeGp9ekRAtwB3S1r\nmmRyAQnywgxrkkMk5jwiBXoF6cu6QpBJYmo2VXANlEh6u8q0qTMxh2yRC6fGm/Kd1O90lKE+FmNt\nEZrf33WR5R5HRQfzXUJFolIJ3p/j3MdMD38OgNx75bDQvci06Es+N99aoYjdCDUvKizlGOV1oUTU\nd1ruFcZaSl7/HLZVziH2F+dY7cr5YL96t4SxZSA4wyMb7GLEXaG/axhbaSfHwoQcjvUZRN9oBI3o\nCMqNiVSNHqQsX0obxLFZesqtuV3pKdbM6BZddENJfocfr8jOSxxvvPEGgALUfEKYEN4hAl/Lk94X\n8+SsWC8r1tU3sVoWy/hBBTQpLO3IHamHUAcHEzBF/ByMVkBaCqZqiQEIinmOK+wCqPdttXowv6J2\nS09KC0m9P4UahQrqHCzgTlKGvPWRJ3jrI5bRrvcsI2TjDVB29n0CyVHwMpsIU4FnB8mw8dd5WSM4\nHz07DmbZMipawC2KqdyoQCLfffHspCcGIXDDS1PrRCBSYrlHoZd15S7Ic1iDaId0j/32f03buNlg\nOdhOBbgH3ukz0FIHgvuRsMk8IPIeLEtrafVXJPEaikhFXT0oqYn8M6V+aQuvr4pCauFUeOXzUDf+\nVslgvTZOze/PvYYcIzNEmsd4UYqhxaiYeY9I7QCU/pSor56Ue6zOQHSGBw4MXihxhVlIn8mmzGxG\nhRoZrqby6K1EGacxXomghz7hhcNALPUtdebn6VwCjTrHtYSZLkuDYIEt3m4xrkJOe/ax7WqJaLbt\nOoSQhVFExPZV2zY8Xh+Htg0EBVqs0CcAEZJrJvza0WKca31qMxliwy5jSO1s9RUnJAqU33oSi96h\ne4asITw9xbvDxwgpGezSw7KuFzx9+hQfff0NtLsLZF3R1gXLxd7bSq+Khx+3xdZQOOlp/oxi/49t\nxy5GNKHd1xo50I9NQtO7wD7ZOa44YEWMvDjZsXA6g0bCvm4OXBdmbWO6at+qYZIJB90lORxzUqY9\nPkhHTqCcx1I8MNSqYm1UrrHRmoyh6o2Ua4kb8o5xxgDGgZySPlaajdHwIO59mG+VO1RiWA2Oww2K\nvBtmt7Mfrkfzh3AQQUF4TrANz4n7ej93fodbRyEqsxzmGVJ67pQsHTEC75nzTZFe/lL46XH88Szq\nY/YepVd81qTTNaKZBRUIYhtGnSjrRfX8zj9ekZ2XODZPJ725t+V6veK9b38b7733Hh4fHnKSA1Xq\nhVVq2zY8Pprie/bsAY+PD7g+PriVcAc0B/OyLJbg4P4Odw93uLu7w7btvo+L7cPz+HhFWx7w+PAY\nCQ9ojVqW3BXaqqGFUM2KMQe6ABbqJIq977huV4iEBARUsV9Wt4ICaA3LYP1IC4pERxTBP02cqhRo\nebDrC5AHhnqfWzhkEEJV2PK58aAgZEVngVnrNoS0TAeVOVOKz9bX0bukPmZsLdb7z963EMe7C+4e\nHyEiWNfVlCf1Wt4o+heA37OGXnBRpWdz8o0co60swpVzdPkJmePnUB1qAKZNymU+nu8650lDM158\nfin77HMWWrxQAT4kCA/bc04Oxfsl1bbOxWeVDdCVcuq7LdhNQMMjLI5R3vxFAoD4NJCzrFvOqSjd\n/xcHCxhyONCyT8VmQGqehPxPp2olmaH21PmaYZyyGHpnMJCR7MMBVQ3kRoPkpJZl26oMqsAnyNLw\nmWVHZYfzQ8kXEs0Nd7V37DCAb3xOY13OvvueMv539mHWYfckNdxos8a9kzSFgcnlb4yh3rkxjz+H\nYBIhV03G9CBBgrQk2+aPKYdrfyQYQjw3hUT4Hlzuo8h7Aa29nlraM7DZ4yFIdFnbzDPSVss4uq7m\nvbm7u8fd/RPcP30Ny/0dlssF7XJxomPeEi3PpAOZ3W4B4OtkmiyQZYG0HbIs6PuCS2+47i022bb0\n1J5EwOd21E/L3PKHztA16oF93+N8psQ2csHnbPtQpeesAuIK1Dkx6rx12aMygnrUMYo0Asxjto6h\nYc54OCQzA8azM7nWKgGqsrTntWNopq/99bAmS3SUBH1Yx8H57vim7zvgevNyuZSxKxF+iM75X/qK\nbR/CegsrqF/j1mHPpHM+cUNf9rtfa9tU2PeGlXwdlp+3uJeR+4UxbUl4D4sEVbXyWqxjhs/D5urI\nxzTbrXbu0jg2U5/URFORuEh8P6CC4/g9+EzZRVqMqf537t+1h45kav0qAzluRMSTNdg2Gq11kwuq\no7z7EB2vyM5LHNfrFQDw8PCAZ8/ex7Nnz/Dw7Bkenz3Dvu8u4NcMdwJlgVn1t23Dw4NtOGrJBx7w\neH2MuG4Ry/kuIljWJbK52esCukcVir0bcIZYMgMrZyI7tEIBo5BCAWhVCRZh0VzBb9ctwIH4+7at\n2PuOpR+tDBGCgQmjFwlVLfWsG88LhU0hoFVJ0zIig/Uo7l1AIPvABNGJoHDlPvdP7Zt6HK1UR7Jj\nG5uOgDw9HiS7Vzx7eMD77z/zTH13uD65D3K76IKZ7aR1MttqO5A7uFjsmt53YN+h6LautfSVdW8B\nhRjrWfsN/uxsYbbvZeGWxDNrGj+TLGPuJ8BRhlI3DtedHS9ymYc3aCAMvDbvXEEG8TtE0GLHdjsv\ngbKXf16rA2Gq40JF0UVOr2Y1ZVpHVBhQvYuXNxoOZqIz2Gjnj45rBlqkkobVIL2FzLD0qQ0j7hqB\nh5T/qOir8hwITbnPQIQqCNKz8jNpcFouC7kB8rvhe4LG9HBgroefy7qD99goG+FrYvYgPBmGWgmB\nDmsau2cp29wrTxCbfdOBWNPH8Ws+eybh4vxD/Er+qZERa6FnYrCo1y6u5Ip9wnFSZAzsntLU3uNZ\nK1DWKXXfTwfqMlgWk9fLgraslnhgXbFeLv6ytTn3T57gydOnWJ88wXp/h+XuDlgaZFlMn20btn2L\ntU+bKkQU3KAZS4v1QK112qvK/AAAIABJREFU6L5D+4LL3nDZXWY1gkyf2yQ6sX4kEyBQ12TPesSC\nG/GW1UPaHDTHmOo5d+zZHclM9GfIHylzhP/GuVTnFsNBOVZHzyWGOcC5E0kqIvsQ62P/JRRHzMkM\nTSvrz0okSVfP6MqQtoIhIqStrPEgWCcGWdc15kcT8fBPQLHn1AOG9YdavQ1FPBbaM8/eOo0N4EOd\n9APQJZ7LgMe0A9KwNNOlVa63ZskWNg851d7dW0hdXupYnlHAGOG6HdPJ6QW1hESCBdocJxX90Xs3\no7UvWyDeY1gnZRMPJlPwERnjImUQRnnFZ9EaWlfsclwnaSR/waKKvSta95HaNYw4H7bjFdl5iePh\n4QEA8P777+Hbv/d7+PZ738bmG0RS0baWAAug4ndhsO24Xq8+qB9tT55t8/hINUWjGjvdNw95W1fP\ndBLx216WXKEAHq+Z3QtgnLEiNkvDOCnzqACBAz6tP3vvkH2Dag/hLIJMm7zYJNQ2kpUK0Pg9P4ic\ng+U4zUkLiQyzJNUMSGeu3CRZo3fspts3FN05cB+uYb1OyE548lhGgKuJVKoJi+tm+yc9e3iGJ4/3\nkVL8crlM4TDZceKgnN+FtWdJwgMRVyQANzYd+ifqZ7Wbx0Wtq4jkZmzeRa0sdr510HJ0k6ZUfFlB\n78iEp+9raalQ4qS5SpIJASrsyKI5PirZqfjg6KGay4HkGBvJjhPKw7VW1SA6gTbH9hzJTPZAAjOe\nO41PnHZFdGMUPZ2khjaO7aWhAd6mSk544VzfwrIo8/IMjZvHpqAoZXpFh+CWAsSFwNvLZpGKUZ4k\nEfJ5WIBiAP153ATZwQAmEyiURASUl3Wush1TNiNL4UqygVLHDD0LmSFiHg5ukdmT3KEkP5BSP+09\nCDGJzlKzSfUEwVzvSdAeY9g7h983pUeIL4Jpt/h7quyGBmD1BfvI8LOShni9XHBZL7jc3Zt358kT\nXJ444XGyg0UsvOzxEf1RsKvpmw7bYSYykDVGKgjQOrAs6HvD2oBLzQQtOb8juYA0D5FbAtjS4JXP\nGkB9JswkJ2NYGBzUltFcxn/Kz+RQheiIe3V4WRg9OCY1h2boEo7R8h3HuKrVOcB0plmNvZFAb4ST\n25gHGoknYkNbEh7q975DG1y/p1FhzgTL8MIajk/9O2T067atxizyo700aPhzTPmT5+e554fC+0IA\nC9UKxel77vncAAxnLR4+WQhwW2z/oH3bzFsW8sHGXx8wg6fW5uZU7GkpRoeBHHb0Jlh0XFcMILxj\nlDMyjGXq6ylio7Y9no3GRuMz2RnGZ9EcJGvEXlx3lSTxqBc/LMcrsvMSx7vvfhMA8Oz99/Hee+/h\n/fffi7U14jNSBFjXxcOMBPsm2NsypPOrno0Arg0++xAKtm46x5CIXA0kkR0mUp9W9zIS+AM5ofKY\nAQ4n+zSRinKF2kTN3XUXNOmIrD8515Fo04VYFEaF4LWoJKP8TY9MCKYAsdmO6mUYvB2RJCLLq+8S\nKBBx7extqr+dAfhqlRnIzhnSl4odLKHFsC9SAUexOeB0TxKeoa9mYH0CwCu5C0tuPB8Z6tYp1BG6\n5wgka7+w3MPYetGhqePncaj1gwzgl4rvXOQOPVHOnzrNQUYlW3wuqvhAAn3O62b61JUzs7GV3+iZ\nYNEx1kKTs1SO5VpCep1GMjRcfPgTqG2ZeroArFuPbsxwZudW2RKIj2tyoAGqDn1YQb2SOAEkYWyv\nZe+r5IV1OQx8r49/MYBFzc/lt/HcoTdK25BlOGDMvF03SGWcP9UhwGZpI+XD3D3ss76XeWnP/bDF\nQN/G/q3EBx4+KAaKYl1gIZ7DTUEgmM+09+IZUE9Hu29Deu2zQ4FiIJFcB3O55Gu9oK2rrX9ZuOBf\nrJ89QYACnvnNrOlozfaYQfXce69KM2+S3JCD3BMnDAXjS6jwoLBlqbauTJbbocsf+Ki6sI459S/r\neEH2t52m0+fJQBivXGeLGKdlLBZSM1wTe+0x/E0tAQVJjnt4mMEv7u1l05PEsLmBVPvG5vFe16eN\novGky5Lc1D22JE8on0e9wBMFEsbimsa8ia3d4XOGMXQLwy9JMSJEXMYIk3k8kOgM4pBz0fsWNPxM\nc0aQhtloeennOmSOozD1+tzGweirOR9ZtmVXkySEofP82UKHNuQtn2PA/BAcr8jOSxwkOw/PnuH9\n99/Hw/vPYjIT9DYRqK45gVrDsu9YSwhETYssToo4iDtyc6dtH4nO5qnKciHmDmmbu0pJdDhR0lJx\nnDJFyCJ/NqUsBcDmGg/G9jLkLqw/rbkwawV6F1d9ITxxuwKiB+CnWmXYIUa0EpIj0XHr3QnZORAd\n9sFU9pm3qHRPfA8Qi0uA3OzaguJYTqghT0frFhzbWHALaw7BSRVcs6AM4Vpep+04IyG0XgFAE08H\nbM/Yd3HwFK609Nb7zgIbBiZYLs7PPdRBM20z9/wpeL+c5zC/fDf9PH0z/sKPOlSvgIysTp54VsZ0\nD4kac0yxfAnQqjIDSynkbRwuoFKaQdHctmHc3lA9t6sdJ2g58UV4jlP3AFIKqeCidMRYlfhd/Fxl\nhq9KlgKcUU5hwGnJH+weI4nQAF5Rn9r+OAe3z40L9FA2lHxQS1vKuK2XR5EaxfEykqVGESH2XR/a\nmn1iY4dgyPVBz93pKXM5pkP2uIdH1fbKgfi6BG7S6hk/xR8630tMY7m/+VRUkfvpbPtBx9xEPy57\nTB5bWBv31VnXC9qyOolZbG0S0/U7OVIgMo5FBrQSjh0CjIRKFyzN616rgNkqTn1G7iMFxEnMvwYt\na13PdOfv84hKVfTJ/zjQygQ7Ic6jlzIHWHj+ONckyzYv4GhkCGKsPfR5DYPTPhKeTD2sQ1PoQbLs\nfElqLGPfHu8kPNyLaZx7LGwkqkP3+O+D/i2/HSItnEQ0/61xjJDouMHQeEiSnTGxQoagHQjE9FCT\noIwkwYgF17nmedF8PqwPNLRmo2fBIIc6jvWt+kT9eXWvU3eZPOtCLWMq7uE3/v9tAPj7dLwiOy9x\nPHoY2+Pjo20gWqxdrTE3P63j08Dz3+rgyvURNtH2zljkHpl8rh4mR4JBK1VvHkfelwATVhZTj/ZJ\n0OtYhxK6EsoPyIktHPhjPPom9ErsWJY9FvjlTttRxWL999vSAqz2JXW10BRBUqBj3Vg/kpWZ8ATZ\n8bosy3IQPoMH6UzoYhSeZ0RhEDJwYlCsHoNn5+Qe5tXR8Ops2xXbdsV1u0aSCpLhmmChKvK5PIdk\nSVTjGZ6EWkn2e/0uQJd3+LlO0qHs0z7y886tYDf+TrYwabkEIBhaf6Q8pdPBQO+xWK3DvejRWdCf\ntT3HZR3OUS8BwlM0eXVqGazPOU6sFdZS9wKv4/lUyG3voxUu21PbOIchKI4ei6HJJEYHIlBejtgz\nqyGfWf7OvRu4PiWBWnYfJFV6lVJd+ey87r0q4moY0aFszcaPn/3cTD/Na/M6Kf2VYIBl1LbltbVu\n9LIw/GW8/rwfa5sALemFMa4T4vofEVs/UNqY++/YrTpD5QhmfVBFf5chlK1xkIo91vypJ1ZhuBI0\nR4zkxyyHdfNkBWt4du7QwrOzhlfHyI5AFlsnCpEAzvTOqBuMDrBXmq2voXkmnmvOV+vHcaNQvkQ8\nd2ARNaamKtl53vGC3+tkT6FT3jXHWYyt/O10jAy/I+dSBa0gh5rGWj/+nenFC8lhYg3ttnasck2g\njPlCkopnp+9lawV6FXuZixyA6g/pTDfHfM6WVcnHgLfQvlV3A1MIlo2DWAPZiM9aZOMbNo2d9SbH\njGCqSX3UmmSh1JtElVU0iFB18rlSSK/juc5I7+UND1TV8dNz2xn2WORYyPwzzDSX/SE7XpGdlziY\nEWNptpamr6sD0Y6lLbi7s4QCl8vF45ctI8m6rlhW8zyYIoBbEDzri4dfYSOBsrjo/Wobi+7+vfYd\ntHIxTtcRQQJ+X+eTnhkSCGtDHa8iOfEB9yhUr38Z/BRkIsB123HdNgsZaw37vqAvnptd4SKIMasu\nGKpw8xW46huamTIq6ywCsGkIBAFjbuu+E/ku4llEfH8FxiBvJRtSPTf74PZEHkPATr4TGdM3VuER\nbSllK6JeV98w9tHfr5stTNzLZrP1ndmtip0v7nnwpBRBCArNEH5HUsTjFik5WNBq/UjGXIEO5zrA\nPLvHLfJZPW8j6I+zwW/0oALODsWQnszvV+mjFgBXT3zhPUIvl30TpvUvty8sSunk6+EG9QfvlCSV\n00V6vP4m2bxZ1QqqhgtHAAaTMGP1KhArYLsTKCd6Mc9dptGvVWJIJdSNLZ7yVnxh/6EtU50HoMdy\nB5JU6knF30cr+lBGEK3shxqywnUtXISsXN8DAiFaeZMAMqPamDraOjNIS1k3REApTRKBqmY/FznV\n6/oTZD+w5y20stwSXh/1UDnXKxXA1tAiljOQVGZnc322+nqdy/09lssd5GJpp7EsYVWHy6TWFLrA\nE4fs6LJ72dRjrGPVEUaGFmlBGqKGKTwGoiM33km4Ka+eD+xGa/v82/heDx0/K70zKPMqfxtfcxnl\ne0WsBRqpT72+5ytC0Ko3p1tK723Hft2T7CywUENBPKsk9eW12xw1orMP79X75MXYWBFrd2zeGY+u\nyKc6bgt5CQNJgAYvW0km/EZCUluejHCc2u9jyBrimiizkhzhiEzZq+qkK1VXEjHNS2u2XeHGo9HM\nomsp12/IZ5YR62pO0nxbH3AOiA+FsqZnCmOrfc8Ik1oBYd0+hMcrsvMSB7NuLa1hWRes3fbUUSiW\npQXZubtcnMBYRpLLugYxoIs0NioDXDGspsgA28vB93Ag2enbHqlQpdGTUoSIl7m0hnVdILugqwxy\nshIeKgyJl4vKAZy7naKr18n2Z9k2y9K2eZuWZcfe1/Tu8CaDBcRvqmoWFaYccmltZEdDmNaDLul5\nvVONIbf+XCKMLcI/5hSxH/B43sQ2YUki5koyBLSm0CvWG4IeLkIk0eHLQhXTU3gUXrD1IOU26RpP\nUT54EwdLT/Xo3G7fGRk565NKEvt0/mAROinrlmet/sZ7FcxyrA+qfwID6D58x36ryrqUFCdO5CpU\n3q1KEEAHqb/ZtLFCUubFacVvXMd7HgjPWG8Cw4NHp34+u+utZxPAbCQRtTDlnAgylESHZCKFUMoh\nN41QJ1vzVCBl8XXvHdL7WI+pzvFMCxkZ2jwD//p7zzoT+B+snBV4ekUz2UAFkTmPo0Qtz2NaS9M7\n71n6xp8MNx9VEh7tQM9F53zOBEfsFZZ/eEgc4lMIG9St+z3JTvT9xn12vHIDQy/fAQDXPSyeoODO\nsrEtd3eQy50RnYHseHTDYlsdqwiwO0j1vp5FqwIh31qzJAUJGJNUsmquIU4ITrGuC4lbPefsmGXD\nTUx6OHLIpnHkQHTqGA2SUoCnlhfrUIiEwjRrqAWwjEp0tCQN0DF8bdvMs3N1stMFsqBskpmRBkmW\ncnymJ3JPglwMBcJ/wgcqGEhq7axZxPj5lXuQjWS0RXpn6yMMwiNS6lBIR9FnlRTV66kLUqUkZjrn\ntlXDUObTG8Msrkf5P4wriU/Dr0ma6gaucqwzVQZotLbIkhhqpewYivT2lTH2yrPzXXaQnLSlYekL\ndO2hHM3bs7oXZw3PDjcQFUlFp7Kn4gIgWGJgZpjTHrt013NH6c+PtI5lumVAgK7g5t6U6SZDBbpY\nRhD1VKV6IiAUiJheWgN2UcsEt21Yr0uQqxByqmgUxjHZfEJTS3naxyq5myh6M0HVNL0FJDqza3le\nLDv/rqq5HqZsKFqtRqzbB53I9TxalQjuQtlSOGkKyypAaTnZGMrmnp3NU68e9kIqFiYKdxONs7u5\nKIyZ6GQLRqJTFQeK2JvJCe/P+sixz25Cbh3TUT+PTLGvog7TNSdnY/Sk1GtZhD+fqkECiJ9UeKxM\nadXzTsx7ntQQFRxWC2C2tYDFAvpL4ajpTjmRK/Efn0BeF1850CYA0pMrovoVXc6virbm21WiQ5BG\nD3QtY7hx/qHlnqPlOEFTblpZ53IBggNQZJvL+SeEJ0nHHn0zZrnKc1SZGbKGiGXoTqal7rHmoYNt\nsvpVb060LeavZorwCnBRsF15zXN1aOcg093IVsFmOZ9tNDlOsmP6KNdcANy3rTDVlEf+fRNfO7ka\n2Vkvdx6+tuQ+OChrYgSwZANA9z+bYPK45T1yThlQba2sLVWmrB4k4iQLy7wjATolOpJjqlxXpeYw\njyiyqug+eT4R7aoo62o4nud5hvP5N59T5qN4ufW6OgeTvCcJqsQl1+zs0TeivteLZMggVIHdCdRe\nSM9eylMaKBI0t/IsqnFrlPMu20vXp+yUBDSTLjokMwmVkPqE9yuzKGTP6IHV0sN1LLHovH7GH0G+\nZBpP07lw7NXLc6lPtYoACZlQ71FwSOlPkvcm4yavwMk98mEAVb7NGOQV2fnuOcIT0xr60qC6xARh\nFjC+1sVDqhaJDasiV7nCXcabTXLP569qljwmJGD4WmToAtISBRRdkaCb61UACiumKrQLbG2RwsLI\nFIsyHSOJl4wCwq0BtqsuICRj1w3XxdbIbNuC3VNjm6JvTG8PAuwjElSvm01AaRaz3VoKmsw1P27c\nWSd2FZYVyNODMoexnU3YM7LzPAIUgowdWwjPCDB8c9NWhBGYntbqduW6rJKZ7eCJinqkeDpYnYti\nFch5/etz+HsluEQi0cDhqApmUEInn09IThKI87qOkH2+XsufglnxZSib5DWuX3nP411LIciy6jFf\nJeN/pftlOEmGD+4RG4oq43fEwHa+1LFR+kfrlyQA8evce6OW9flP4KSKcUNAnfuDN06iA+3jQmkQ\nNLOBGkUlYB3XAcRmhMpQtnGu2ccZGNY2F4NAIQFBiEqoWJBBjpG6JmGnF2f0/BySCNCj7OfFBqtg\nGwuZ0yQ7w/gon1s8JB+jlHXI/YfmDRhnaC+uJ9okF7Q8JyM1vlcKw1w6Mr5fSQZQKW88eYXdSNri\nnp3VyM6dkR14drUEmTP4tE0gG4z0qBiY7mJJqLW2SwTcbNSUBsBtDWajU47wuVcw9tVNkfhiWTnP\nn0wzP55Ten74LeBnJTyVsNaxO5xjv7EUUTPASoz3TEc9khwSyZqkgOuAd/P0qIcSqvWx+nYWOWcn\nQ0BNUlDD7Nl2EYvlaM3OZb8UolP1ZJ0MlI8ziRgNkONBQwfHpcn8OsGyL4NwFEPEQEBiCEnKr6g7\nPBSuBfnONUMK2zuLkSyGaVpzXKg2v0h6rOL53KmlclyNbeS8jjYXnCNNPOV6CxwS55z2GFKeTXrt\nw3y8IjsvcXBS0YPCHbBJMsaX78w7sG5TmIhFn1uGpMEG2r4nSN/2zTalc2V4ZpwKpegWE5KdrorW\nO7CHSIGIrRUy1u+kSM2zUwkPj1TqPb3gUGys47VhWxYjOyVZAy1VgzIb/syc9MJJTtIIxH5CjRvm\niUQa6hnAD2CzEJ66NqZ6dnhN0pVRyH6Qo1pqRJjVLMRSNJPPvklu/gVV37/IvGP07mzbduxDFia1\nvCimgC3FInM/nFh7ojwZzg2wP/VlPXTuo0q6eU89LnofoPAtwuN/n3l1TvjFdFTIjvxcrkv+Qwtw\nAcAj5zCgAD6vAiAPrTmvSn32h4MkrFoYw2JB6/J8LruKMqKUX8YISV16PWq9TrwhXuFD907XSe2r\nmShMF8QQdAAd+34EmC/wuHqqFMPeFQybHRc5a5Z7RnJ430p0BmDYxz6oBKSsiRnOobejeGvCk1Pm\nqarmfiMldHbe36LWtxKlOtfnYUcY1zjfXAa0LBDj+Ee0OXeIsZHVBAPZqeBKh7bu4c3RDu9ze2ZN\nWgHXlAv5ZGmcWgbPzsXJzpQKWtlmcSeLoGlmzurYYyd4zgGnREiLtpUZeiQ6jUA3F7FnuzkFk3QJ\n6l5m9SF4/byc2azDnq/v0TFw7yvOjwOBYf0Pc8V+y/PTWxI6p1xbiY7oSHgQ/cl1dBnelnON2fd2\nk5mLoKlCNXabzXqVMLb6zt+qzGgSKxvRZfTkzGMyow8wnBM+OJHiraidanvzJf1JLwZT5M+UU0uf\ndNenVfZUYSrjf4j1xk4mmo9JabYTlY13hTqxEW1BisIw63J2kCmlgjHHpoEUhu+pC1TVpxlD+6tn\np2TNPFFRgxEVBX78vTKO/n04XpGdlzi27QoAZpX3xeQIQYxQmHBiEnGUyIkKncUlQvDQqlLBuREY\n343Yw9NKDpIkAGXsjuOf2cpIGExZ9NYDr9pGYgI6FIZyRNDFNilVtTSqwLSxWH3tHb1pZBUjIeBh\nik1zs69QzN1n1hiec2uiDSFiYUVJgWnEcT8AjiRMR0Gbz+N8oX39PvHILVWWZdfnw3LqmqIIaSth\nd3vvaKoePuBqnkqcd6bS0vSCobTtGBpw3ockR+WH57aJfVT74UXnnX03K7vBa1f+T0B3aMCNm+KA\nPqyI9CQOhHIo8qgQxxNGS9vYpmAdp4p8JAjieC8X4mceBQkilni0llfu53OojugRXGdlj4TfAeGI\n8rKKtHxO5Uc9pvf5c7SGzffvjBTnl9XrktbiHTUMBpogriIBqW0MvDh5Pev6mwFg5lxkCFf0GcFP\nkIAd+55kZyA6IfvSs8PUvQxZG3pmqkedS6pAcu18tvw9QmIJJmXKSjWD8TC4zB4d9+TouKCc/d6Z\njU2zX4XIUJJIUJ6VGxrw831zmH0t98yZZG38z/kAI0UdQNMhq5gtws9xL9JsBMSQGGVzDL7QubX9\nY1/ZFPC9sDx9d9VdQZhwJC/5fI4y45b85dyT7MV8zQQoXn26e01HUMd5zpuBTHmq6HiPUE1mTCvr\neuhdZf9Kh7aGL3/tt/Hlr/82vu+TH8f3f/KTuQfTtsc7QzhjLVp0tdaqR71Of699VZ5BkNSJRFat\nUb3fZ0cVbZzn9NzGXC6An2M85FT5f3ymxCI+FqpKHU8sesl1N0bjx1x+NUsNuqAUWyNCbAPdTNq0\nLguWtkDaVsqrI2iUmaGLW+qYl1n7/J1wvCI7L3E8Xh8BIAgJQ9I4ZBjmAM10yCISxpA6MNOqBhtI\nsRNx2YUYEl6kZTUB1Z1c1fhLCk1UYVAGsYgZGNoioE1QtcVZuwhEdhh3K5YMY2xo6KWdtDBRoDGE\nw+q+944lLCTcGNSVk/dCEhhO6g5oM8LjtX4RULci5jjZ/K2SiQpss9xRMT7Ps2NNn8BxQX8zECVJ\nHN3smgIOOoSM1Be9eexHW7jdwmtChRxAy19Qjf0Fnn8kSZzfPwg5OhBDBFR5Ae3LvrpFgAbCE9Oj\n9u0JlPab37y3lhN9DCcgiILHuQngvBfnls79dQ6DDmCQgIppskHwU0oQ+LyZAZPm+BWEbJkzGvG+\nGm0ev+c7F/1XEJozQ4cy5eS5UcpQlhCwSznBhv+REjG8LTe4I/DQJDphqNABII11oOdBY55WQwDK\n53whzo1sY3v4lxxbVkMO11myvlMYWyU5+17kTvXsJCEJAFX6uA7VI3SW8Hzw5ArhtciXuafTGMTy\ns3/CwFZC8GofVbIDQnMSnUJ47GYu51slPCsa1+pECFu2V8eK5h/N9ZOSZBXSGwYk8TqN/cSejN6W\nQpJqj3mbclqzD6mj8HLHDRmqtYkBnANOIzo62orp76rrtZRar83POvzdS1mM1iiemDAs1LC3DuxW\ny2+99wz/4X/9l/G//+1fjPb8iT/6R/Dv/Gv/Cl67uy9pq53k35DzOb6rMSJbApzrsGqYy4LGvj3c\n6DnPT0ufVW9OZ3KRnrIj9bxfeVJu4A/OgRyepUJFlvr/iiQ7Y1SH5pzWaezMfVL6mnJnWVeINM8H\nYmng29KG9VL1OVR9G3+7QYGnvgiPfacer8jOSxz07FQvBkdiF27CRc+Okx2/9ozoVNft7CEBEOEA\nNvQFbd+xdw+DmqTxQTinVHHOws2y3J0Z4HmsR4KAnjGlHmtKoEZcpT0FxSHco5sliGUmwcmKmkqx\nWFYp63cOhxZwMBCLJBOt5WYAs8V1tmhnVW6vy6nn1/sOE37Q1vWYYokPVnMtRJH7Fm2+306mH++6\nJsAsAjTqQoXRu20qOAHeQ2w+xuc9E5363QfxCKlOO198gL580e9ZxvFc1Rv34JiM6wqAObvvpGTn\nu4WHEGdrvCpoKuOqMhWt54xHjnBnKkPdj5Wp38+kOm55QnTq+fk+/kayIeEhsP612pd7KU7KTzI0\nih0ZTgl974QngHkB0dW7Ah/PwyJZLRbs07qU7wZCU8gTARzj0YtMIcCpae1HGeIExsnOfI8582OS\nhlH2HMZ0BaOlecJ9m0A55QYrByABhro/HGFfT4CwPCneILqptCtefSsyM59N1s3bLN6vhfAkpnOi\n4hs8C18l81qUBb7LeD1azA16dxL4oxAjG2BHucI1b8UPMyHUvKQgbepFgVu064mTrj3766QuZ3M2\njTPRyUUmOX44IS8kOlHk8Fv1OiZxqaQ8Q9VsTU5s/smxP4VqgmNbFf/BX/op/OIv/TJ+CsAPA/g5\nAP/G3/lF/Pn/4r/Cv/2j/xI+9fZb6PuOX/+tr+Grv/MOPvX2x/Cpj39s0PtjtARyXk5dOcv5m3pU\nEPOEl6t/sOHjxCO7PR+zPwQaL6rhlp+jbnLEHixnrlDymxnL6OlZqkz+UUNjcbjulh7gbwNGKX1Y\n9x5c2nJTR7MM9kloKRoCp/Z/mI5XZOcljlCGNYUqLawF4I6hVaPyrESnxlBSOZpRy8LW7u/vAADb\nvmPduy1m3zbIdYMtzgRCEXpdgsAAFkPaMs31ui6YgW2GONh1nYCjWnh6h3ZB77bWhh4EaZHbJxSj\ndktRvbeOJpn0oHsM6wjAy+tGP7FvRGQgL5Xk1HDBqpTZRqjGgrvnAfKbno0CanjOoKBLX5JMjF4d\nFE1Xi9UAR5aOesPj9YrLZt6dNUIBiRUr4ckyAnQEWTh6uua2n4UBHs5Vxdwbp2WU80ZS+5w+PTlO\nn0xROPyTRDXbqzBkQ4RsAAAgAElEQVQvyKDSbCyUzWqPd8uyj8NCp3Pz60PK63pVV3eent9Xfa8F\na4i3Q0poJbU176syfhXllDpHH9W5pdO71amCPBKeoYxoMp/t2AeUZwRZpaZBSPh8mrcpPUJsXwHd\n1cJMZV9DOXQKoZvaxWJR5kCE83SuryllnpTffQ+zo9xJb83uxGCWUXUOp7GH9xif2y1DwmzA0dpf\n03nxghuk4t/to/dx7y62bffQtQydtQ1Fw+uZyDAIMNsL8XAn6ZCW4y82ZmzLsFHjMDZj3Lvcj9Y6\nOeG5TSBgXmkJsM9wJo7p84MgNwlPEgzKZGTbKlERD7Wc9ud60fG85xoV4GCm0osfkuhQ3wwZ1dBj\nvKYHZtbRTA7QM6309NtIcH3z0G0rhHfPtTzu9fnSb/0W/o//5//FTwH4EQDvAPhvBXhXgXe//FX8\nq3/hL+ILP/RZQBf8/K/8SjT3H/mhH8Kf/9P/DD762lNE+Dok63sLQJc5UL39Ogg9FPlfulcA7vFn\n9zTh3mgMhKAHGS64wwlP9FmpS12LWGdmVmeSB2plMQRT4zny8XPUm8GiS5FZmr+NpLhStuPB/urd\n12k5juOcTJzUytzxd46hqBuQGKKSsldhbN81R7X8ceDGQbBdwGOz1GKAVOWug+JhKRm6Zt+v64o7\nVYg0bLsp0+W6QeQx5Z+QaM3WD7doCLczkEiYUPf3Icnh3pMQDIADARwE2lv8xsmfceDeBh09VPtu\n3hpBt5QE0myhXhwJxOI1hFGoBbaViVxBPUP8ok3iYRbT5nf1r6H/49GdgdICfEhwyquWPAKUJBmV\nSGgRVNTRA9nZc++d+/2YrIAbkEkTU3ai0S9nSuMW2Tkjuzc9O4Wsz8ctcjTf9PdjDbotyoEkB3DC\nkOUHUZhseNbPI2DJpwRXhLUNeVaUos8nyGMVdRp/cx/Zd0l4AIaz6ZxCWwnXxP+cSaaW7k4mOI/1\n572PYApEfCdE5/mYT4bfJ4MLZByrRXGbtZnel30EZ96e2neRiXYmPD6hBiIT6yDHPW1GwuPr3cq5\nLJdzsxeAuM9lTIRnTD1dZryMY+h5BoAEO2OvTmeBSRJaFd4nZdv8GKel6hiKHZsvq5GdHuHE81wG\nFN3HqxMesbWF6g8pjGCSrzIYolxi/R40agxvFuowRkfwAupIAJDcHLH2bZHsQdFpnhh6/YTohJFH\njCRJJUY3n8bJd895vtEelPHLvzkfexKeXH8zEpzUz9Vjk4kHMiR0XJfW9y2ywfZts2RJTniUm5fz\n/L7jy1/7bQDm0QGAPyvA37gD8M8C+CyALwE//1d/HeivA8X38/O/8hP4z//7n8G/+6P/gpMGGfc5\nc4Ixytd8SjPRqYSH/ZhzrKTjEE+BJBbJwqiH7sQlDLTe+ZQXzDob5ATEVnxMOjyy+inKUEs4pW4A\nqF7lVPz1Iz3NR29SkiM7OfXcPKjsLTx0Lo9okm3iOGlpRV5otj/alu2jzGJilFdk57vsiPCyQTDb\nUT05QJ3Qvg5n36d85ykQrdyM2RQRLOuCOxFL4bnv2PYOaY/o2mNNB4V4JTyh+gTh1SHRCWKwtLCO\nhSL09yQ7GoI1hSm/t1dbFrRwjRpAi/hXpgwNIK0eklAmq3Ivv2KF0uw79hEJTw01acVaQfIGpUt4\nynI0HQZKTSJ+4DC2+lmVhsbhmL07zz9Gq/C2mVfn6q9KdgAM483CC5M4BeYLhT0SAn6XRJgg9MQD\nhQ8O7mMcAyNIfknCUy3UwrHN6x2EJMmZ7h+f5rrr4Tn5DRzMf5C2KkYdw4tHiK/8N5Hh4bq5rmdV\nRrVH87okJJWwK7Xmscbj3yeEZ74tmyRwIkSo6FM+3qOcTK6QwFJDSQYBruMz5vucba1YVXNAR5uj\nQQWMZNNZ7gnRIWjTBHwj2RnJC8sdUk7zVT07PZ+11rLnNtyYS2ek5HiMgyPIdJR/Y2wP1x/HSJU7\n9UWio57Io861wH+qUHQjPU52uloWTRHKFE9zK2dppkkeCLUMaJHIJpEpfedGQyPnPtP0rM8OlHvq\nDcUczgYH3wfjDSt3ynXKM0HOzpilg447zMTyfQJtM/HrML6lWvtLSOdMeDI1enp1wDE6eHyctPv+\nfTvDprer/e3JBsZU0js+9dabACx07Y8D+FmFEZ0veJM+DU+e9F/CfD8A8CPoqvhbX/wxfPXr7+Az\nn3g77U4V+KM+R5erp/I6SShIfKa+jyKoSWR8JXAv0ko5H45z2G57xHopGjn/SNxc9qigd0+z7euX\njGTpUEfKtWp4qWNk5jZFxUbdgrhM+CixpGNBabFPUi3w3IjrfejGBj6jV2Tnu+koCmwGiPOakd57\n7PGyX7cD2TkLHdq3Daq2HmdpljZwWSzVc3NF++jeHfFJm0cwniAuDF1blgXr2rCsLcq1SbDkZHAP\nUC7My0kI5Q7afSA7TLE9ErgqPBQi9jJgpJFiNrq0rvtxBWBdnH0ZIETTq1ND2Hh0VYiHo4yL/RBl\n3QLyZyEmgxXY1x+dDIrh+jmUjXjWziTArONESxjbIx4fHw9pqANEQCBN0BW2CWuUdFT8Iii/2mcR\nJ0o+TqpCOPPUVIF/tJ4e++7W8UFC2RISVYNBOSEIz9Ss6c/zuxRlWq5KI3ACIzk587w810QViPtP\n1b8yhFkMyowoSqKhc0iGX5Q1M5ZRCE+t08m1OI7n4bvUvUhwm9bwsbdO+nZ+PnFy9iUh7UxAhgX9\nvVg1CznKZ+6lEMj1Tn4DKvqUD31Q/APhqe9x7pRuH2XeF7lU66hFVgXo1vmzliFyHE31WdRxMcqo\nswQY9XU85rLqeYMBaSI7vXcjOkgjVSSzQTFK8QUB9gbIcuLZKbIvWMN5C/i4aV+GZ5+MhGiFdCWw\nAzJZeZEaUkft82dwPV4U0vu8smaiI/PjQmm9luQCA8js4eGE1t8KqZk35p3O5ToT9F68pVyHsxev\njhMdbmS9Xe3z9Rr7+u2eLImG2s987GP443/w8/hzX/xV/OscX58t7fwGP/wwxuNPAgB+8xu/i898\n4u1Dv83hl/ScKEadcSA10/OKz1O51JvqWQDTsxOPwMb7LJNIMkPv8p4ShG0c0Qi50Luii0KlowvC\nq8wiErvYSz0BRJ1bw/CTHFNVp8/4YjC6qMaehyR37JyKFyivBoNuwTPSci20lnZ82I5XZOdljjLo\nIkwN/O4Y37jv5irerlds1+3gjSBJ4GDb9802EBV4msAFCkHbdiw+EZflEa01d1OmchUpkxwkMMZi\nlqVhWS39YM25Hu2QXNsTseYE+XxfPGMRN6BTxSJLeIvizi6Hu3CNi+ehd6IjU4eSFDHL3CmdUB1A\nCo9KHAESpzGjXS3j9/WoKxjBJBRUocWzEoK1jIME0nbWAHP9ItV0PdOz8/j4eLo3UAq3BmmehrUD\no2SMsw8WIFUNokMhyUo+jwBWwjP/VjrrNBvY7+cYxm4hHsNzI/i9dRy4h56MJz4nL+4A6U/OngjW\nQQWXm853PPYfx1UpXwDuARTnRrszZOODEJ4zonN7HmS50e8y9cn5hCxx7Ce/Q2OMic9rMNvRtIif\nf4ci1UlGzHUnMIzf5nn5HLIzEKskPABShhXCxaxr1XDSA0xmHQh0RqCq0Z+s+/OMAklMjt6aCFt8\nDsmp96j9UMEY36t+GvppIDu23QAgkfHR8HWuWYQsQO9Yg+wUfeKJcEqrphHCFlHua87HIkOrbIXA\nEndyTIW+GKXGuYHBzh+Bak7rOaT3g3q3WUYlOrc+e4XYiIHIpJFxyoZWxqNU0jOER41eHFcs4c2h\nh6au04n93a5X7NfH3MR82yINeRo4O/6tf/Gfw3/2V/4H/Kdf/FVrx5eQnp2PsXE/h/TsAMDfBAB8\n6mNvlraP/TZKxfI+nTuJ4OH51KgaYX/zGdII7eMyn4ePwJjjFi1TQ1XjPsIQeSmki7jAyjIPjnl0\nOomVUIboSX0txFMxhsjPbaV+iNEtU9trHxWywznNbGozPoWW86sRu5zbpMX+hh14RXa+m45Y6+IJ\nBKpHw7wnq2e9sBR/4Sr1NMMAQVZ6JozkMBuXx07vu2WzEd+IqzXzWjANYM/40q5q+9qoomGcNKwf\nNzoddtMlQNNUKAFuT8hO33d0YUxoA7paiFxbYvNPgJemt0ZKKJuUugEYJqVZUhIgsF/7viepQyr0\n6tmphJEhgzXl9E2iM0tQjAA/rpejQIrOm64dw9gq+KQyR7CdJLk7tm3HdhLClkIXYPx7ayZUE6zO\nbeAYq196ndoo+BKQjeTl1nEW7mYK5DYRqYoj+q/c4kW4YlQWPj4l1c6hjix+asaoSrJ/hnC4SZFE\nEXpW4VR/8/4hH+T4fV+iPm6c8GR/piJkPWfQMM+D/GxhQadjgshAx54+9EkFdgBqqJBhsbqOLz0J\nO0NmHJwBRzDKQhRwr04qZYL5Cu7r6xbRifSyft1hw+I6eLTIgRJmdJARJ3KGlmoQxDsxrjI2UDu8\n7ALf86EivlP/cBbtI/FMCghWEgo+x9ECPGSqUzUZr90jxxgyRu+B6zIVNHRIt1fnPR1UkqVwJA7j\npRgj2AUdpY5ia9oYBtlazjL2T7WEk+ZUYxPfK/k79FP5K/4diI7cvGo+RllRfuAwUs+khsyCOBP0\nJDfHPXJCdw4EKFNG15Tt1qnTXPB1cYN3ZyvEh2THs7T1IEt2r9ef3OPf+9F/GV955xv4j//KX8Wv\n/rWv2XP/HICvwPdG+nFv8J8E8DfR5M/hCz/4eXz67bfHZ4MCqDkOqiw962DXw9WjYd6HFvpWIBEm\nXw0Npt6O2UorTuld8c677+I33vkG3nu8xlj0S408heytIqLI2+mZUsfHGCmYhS/qjeE8cEz735rX\np6w/kvpTstOsd+fRq8j1Sb3KiKhrwYRA2QLgw3e8IjsvcZDsrOsaLw64dVlwd7ngcrk4ETLS06VM\nOgeVTBhwuazY947HRwtfum6bZTLrRmwWXcJUQTGg6nva9D0JjyzQ1qG+eL2rhXlIE7RlXMQfBAGw\nzAQ6MX9OYMUYsy6CHbvFvSqApu4RWpI8uTCpCpUTvHfPHCTcs8eOKoytky2+lHWq1oRZcBwmvIMa\nhg+erdtJUKMhAgaid3KQ8NT6moUz65L1smdMS1OW4f2KApGLUArCQ4Uzgye2t7WBRKKQq6qkWQ/k\nN0l4CpmsSuFADmaQMAEKlDZS2N86bvWv8OIbWKKCdiuDfaxHQnfSjBE8T8Sg3lSK1a6Sn7h6BJ0s\naiz7ZBE0xvFRbjfWciJeEDkWBEKBHItnVuyZ6BzKmBVrJTrxTImox8Xd+bxHMnCopVIceKhmzw10\n+8bsZtOC65N+SnI8Ab3a3lskZ/q7Eh16d2INoM+jlLQIYM37P4/YjPUl4fDvIt40wRhIeCoxwbEf\nyowebyQMyRFwxzSZR+MApOkNKQC7egfiuSlUdwuR5e7v5fquQN8VcLLThuvBAXUgPPW5QarHBwm6\n4BmsxPZma008DTfyWidosX520gOzMeZFAK3KTgEzCH5wkvO8o47P/JJdMY0nnHl2CtEpa2gtjNND\n1uKh5DON64eU6+M83D0xwb5vYzjjvpVwT94zq/+Ztz+G/+hH/gz+k5/+H/F//fSvxvf/0Gc/DdEF\nv/B3fyy++8LnPo9/85//UwnevcMpt5obcQFFmwjE8NTmORG6UCJkksRJOo77gRWSxdI5nlUV33rv\nPfx3P/s38Etf/Y245CMCfOzuMm4f4p8t9bp4Io80XozzS+Nec72b2LrppTX0dja+io5WBP5jU0Z9\nckJ4VOP5tcBAMsgQyoA+jEHrfz6nuJf/9orsfBcdy7IAMLJDUsNJuywNl7s7rOsF67r4gjDBLm0Y\nZDaAmnuCLlC9oveOh4cHAwLdLGitLVBVtFoBBbiQztKG+iBtVNpi33WFiloWjrakZ2daM8QMuVQK\ny7IUpYIMHdt3bK65tBCiBidP4pY4zEo2s3iYVaRD+zjhAnhAB8U1K69ZcbDf6+8mzFNw3wIlOgnP\nfDbHrGsVbA11uDHx0/KUALbWwWVXgCICrthQ9AZRmy2P1XU/APFCeMa/YV6dJpOwrJXHKcCe2xfv\nVYmo3rz0uUTH389rpEN9TEly+KWn80WA5LxZJ9dMBPWFBwE9/zi7941xFq2Ws2eX9RnaX/8r4z4v\nOxIffj4FXn6JlLEyqkSJeUkrehCeAtpQvnd9H9/MhJ7WY26iTHrBMTTPy7RuY1y3MLVttmweSc7o\nXarhaeY9X6IHD0+yEIV5PM51OF46WlXHMyrCK+3yuVQt4flE8imIaMmIWWqv+dJ+lGfxIljWWgUL\nZ2vqWR9RZGJXWxLSAWZhi/5m3Sj3SqWDrKgGAUo9QRKl2LVDYOsRVQSiDartUAYBHXvnuTLtOUeM\nd8nMonUTxb8XxzwPfSDVEwr4njOt8Rna93JGdEoa6kp0KugeE23kprdHr87m64brPCqP0ufn60+f\n4N//M38aX/6dd/CV33kHn3zjdXzqrTehUHz1G7+L3/rdb+J73/4YPvPxty3tcdEV0e+qgUHo09Uy\nB15kNOKzGtZAA9YXt5IcnDwb1Y7/5n/66/jab/zmsIfQjyvwznXDJxzziWSCg66Ka9/wuG1YBFhc\nIOZzZKRNNoLEwTCYWPTP0tC2o/YbCI2xq9LmCSMVjFGfd2SgpOyq83EeG5RdmpVNwlO8qq/IznfP\nsS4cWTv2TaF9w939PS6XC+7v7/Hk/h7393cQEey+b8rmYVjSGpbLBXd3d7hc7izkbb1g6wCWFdqW\n8Opse8euj3jcbGPPbbfvnj084HHb3O1o0yuURO+eYhEWAgfFIoJFFavCXq4quTtOh6dkZHlF0ECA\n7lbDHuBdoJ6nHUgBwEmnAd6zz0KpLQrVht5yHw4U4aCu+KUL0FgPJ1iTJa+1hnVZcVkvuKwrmli6\nx77v2K4bro+P6LspzqVkE/EP5b2b1ZX7ObjsYHrG/EcdThKHEGaWq18CNEYPUm74fzJ9j67QraO3\nji47dOnApsCu0G2HXnd0vi4GQGTl/gGAoNmG5HDC15qFO4ZiYRv4sX4+ju2a4vvQXwV0zZcLCgad\nvh+P7CMqhrhXOYdk0G5NQVvIL9tV2zhih6EdUbIDm3gEp4J71ApSvk3rmty4FmgO3EcDxcm50acc\nGBUgsm2sS1E4ItlzJJcsXhQBq8/aH4B0elCa/gArYf6dY2EEajp0UAXtCIvwDlhq22E9wGbhMdph\nEiaLoVyQ0sZQsuoZjRzkZhgWFxT3A7BHV8hg6S5ZpphhUhU7KGsKENUMkeIzV9VhnUs96Cni3jX7\nvkejZuAQ/e1gi7JvfJ5wD301/CS5Cosseg4Vr3/+3jNEjAv6xf/SDhW+d1tUDQDaAF2gffGnY7h6\n353oDNzIkHD3cnbdYBuTXtH7FdqvQL8C+yN0F+AqgIdSZ4Y1oFGH+bhtTkC4mS3HQucwpLwDgfLo\nfahHakoOtExrDSgiQVWsXO95paNEKYAzjvFBxhwJcBnX18p4jScy0zoTAdWEBIXM9PFlqaF3fxgd\n2DvavmHdprBQ7g21bdDrFf36iP74aGt0Hh88KcEV23aN0Lbei7W/W29ZGDdiTnX3CHzPW2/iE2++\nkdcA+ANvv2WbiYpgF4tACElmrNK6QthcjleWoS6HEnOMAL+lLB/mi5eLBTssPKw129DWMJJi39W8\nhiKQBjTs+M3f/gZ+4Ut/N/YQgr9/FcBPdsX7247XlsWfp83vr733gGfbYzzWJ+sdPvnRe1zWBUtj\n1IbhIBI4kcXa0soeVL5up7WyHUEMFeuX2AReMn12h2BXYOuAqKDJgrau0E2x6YZ9B/ZuhvYmDTsa\nNhVsKti1oaNh145t93mtgIJrmyyhlKKh74pNbI+udblgXU+Aw4fgeEV2XuJYjeSjd1tfoQrc3a24\nuyx47ek9njx5gvv7e/Te8d6+47pdsfXN1qIsC9bLHe6ePMHd3b2HuS1oXSFthbYVHTuuveO67cC2\nQ2F76uyeA/7xataEXU0k28tc0+g75Yh7W4AFwKKKpStWJz1Nc3PoLMNBVJHNImJKjACVVo2GsIaF\nwJEEUa5+Q24vVFiqtrFoK2t4AvgS8Lgm7Qn+tKvFEO/dFr02wSIL1mXFnZNGEy6+9uV6xfXxGmBl\ncQ9ZhGPAKpcLSHdAm2dZcSsfzFrILfusibygh2e/CzcroyUmY3qhCMGelnO7o/g+LCoKvfrC4LVD\n9g7ZFbh2Jzob9uuOfjVgoq6QTcB5WlemeJUGlYY+pJcsVk9JKkZwlUdSj4GGECA7OBf/TNCWPWNQ\nSjsBQ21vEiWv/NAnA3iOIcC+FkAFTUlUgnoelV2MX6axVQ7MvL/3XYE/8dsISzw8LNpdSZDW04JY\nsPxDCo6CYFXLddDYXDE6U0o7qxWzSeyFlQvECXoRrbmB96KBMp/hfdGneo3v+X3UKMB1+cLnqijQ\n0RNsbx4aw3UCfUNsWliQfY7Ycu8AhFZeU3HCI7ZWZApPS0+LA7MI+8kX1zWMZAnY1IAek7VE14nE\ndJrXHdnv/I2Gnh6hqBWoDV7QeGLZ1nn8kXdJsVJTfvDZ05IMB1RnnqYA+1Kuc1nSPc20wtZ9WiRx\ng/TVZL2HMO5d0QmKNOiCjV+SJ+xGdpRE5xHaHwF9BPoKbPDNTxbIumKRZqFLrsuadoj2mG/ipFc6\nyt4sZV63BQInaweCcnKkKEixyS+bgXJQzxWSnXJrAnqF6JCYDNbyclKd5pXkkMzBjZXx/eC9MTKD\n3fe+2TffC2eLvXCkd7S9G2mK8EwF9s0MZ/sGfbxCnez0x0f062NJTHANkt73THykKlBYkqQOZhbj\nWuGyVgsU1UlkqAQbmnkKgdDfAT7A8kwH9tAkMBIg4rLP9ZgD8tQ+4rJIfANYk2c7zCiLZmuo+95t\nH7vN10Ivi+vFhq9/810AmUfuHdg+Qj/rz/frj1c86Tu+5+lTLA342rcf8Gx/CuAvgX6gZ9uP47ff\ne4bPfvyjhgdcHtU5ubiHsi0LZGmwTLjNQ/EaGoNRRTyzno2jtri30T1MKhgIzwJrpyx30LZj7w3X\nfcemgo4FXRZ0dOy9YdeGXW3Xw70LHGYWfKdghl6Fy7TrhjWWZ1zO59Z3+PGK7LzEsbjJ1hbBm4CA\nfgTruuD+/g7393d48uQe1+sVIsC2b7EfTlsalsuK9e4Ol7t7n7QNaFukRtxVsKti62p76TCO1i11\n2+7prAl2/NVd4GpxkzaYxWxRJzz+3lSwID07u5oOosWOR4qToqxbQ9PzrEJp2QIsfbaDc5/wrfdD\nFrphnYnQQj8DMioQBRarDzcTXdfVyUymjtx9s7QMc0uVw7jogPy03FHJuNvEwnZC3RYFSgBlwE6X\nBRr2fILxAwaMDg3FSWW6qxPKDnWvjuxO7rY9iE53D1AzM6jVmQRLLIEFLT9a+tPeaE1ibLGWbHAJ\nNtnzJAL1KVSoT9KbI4RjMDEyq+BcIfmPwusu5Q7TfiNBdOBWX/ohBz9brRGq9Rea7RJWptVr85p6\n5C/ev/OPJyBq8IQCYNrc+MbB2Rj+WCE+yvNCkpyYF27JVC3eWI05r8qFy8j2A/kAvC7H2Vp+Vl5W\n65jPIFtTPEOH0cF7u1HDrc82J3Ozwt036DTXL9Pw5h2klseROOwvYjLTNhwvGaZOwj4Hz2SQHHp3\ndAjfUCZKaNz0mAlcAt0fiM5MdlhWTb4QltwTeVmvnY8EyqNQHshO+RRyrY6zOu54ruR4NK8OSRD/\nwdqOFkTanqdi765n/KnFwnIBFB1dd3TdsU+eHd2vwH4FmkA3gcgF6IDIGvLCwn16zA8smsTA21M9\nSiKAtAZm0osQsBzMJ31d9Exl1kwWExSOhr9eyirypgo3yvEgGSTPdY5ozGdV7z3KKLaXXq1ue+tE\nuFrfnfS4J8eJS983IzK9Q3zstqku8PmBbQO2zYiOe3eM5DzGPjvbdh0MB6R4qs1HFzPyIZMixXgb\nhIQTYLbb+pfbwqnZ5NyQmNiFxDv9kDYKA4MzBfIk91Of8g8Jzw1kQWsXi5rpGzbtuO471uZEo9l1\nn/z4JwBkHrmzDVOf/c8dX3//GT5+f49n+yOM6FQ/kOK9xx/D3j+Cy92CnRkh6d3lUBbDgbYWjupQ\nQqUGJvJQ/73rkFAoR5RhxaZuqJYFslygeMDWgeuu2Py3jvTskOh0NUPG3s3b1VrRN7ZMD8zK23vH\n5SJYlxX3d/enc+s7/XhFdl7ioIJTzQV2sYBLFfvesW17rKcBEHGe4Y5UD0/oBr63iJtlaIcTlt7T\nXqWaSQnOQBccYCCVLsF1/W4I8UAFuxgUMj9b+0ZyM4dvzJa04W/t6CH4huCeYb1NWE+rIprK4vn1\nOiZAqPH3c10Oi/k4qUtbB9IVZ0o5v3xfleZZGYrBGlvu7KWORCIVKokis8PUFLmZrScttkWd9m5h\nIXAlKSVlNEzBiu+CavpHx7actC/A3vRbjSWWk+tu/X12Hy31OHwWBNFuyIQVx35LcDf3+cyJ5nsd\nx8fZoXM3vOh0XlXqVt5/P+UUIN0n63EHhrFwaCh8DPu8Ak6eiRVS6j097/o5HjtJAOtG4NYPnpNh\nTlKZx5wqz4vjuYKnIqeGbtHj3jfPIzvzeUw1G/3Ycwd3ls061LTw8ya/7M9Kduq9wyugepvV3Dri\nmdb2cxxqfRgOzMf23iQ75fehr+fDWHgx3AgiQ1jc90SvlLUh++7E0Elvw5gmXfn8ve5BQilXfUMT\n5XgZpjdlUxTAQsf3+ocmUVJopAYW0Gsq4d3nM4B7qvXsGZ6QnVzs3cd7w8tWGiYL0YGmsU3NANB8\nLkWq6UhAcNLfpQ44PIP9uS8zFJQshaoxnjhWuroHsIwxymSVHmOSYyzGvfevJWNiNtgFy9pi7BBL\nxHiMIamYE2O4ShjH6I2DeiNVdaZRDuygwLbv+Pibb+Af/IHvx0/8+pfxVdXjhqlfsOo8++kdz1aS\nlx8eb+j7CTbcdG8AACAASURBVD27brhbWxijM6ICg9HDwuHM83O9PuJ6fYT23IeR2eFyqOmgq2qf\nc7Pk+lw3N/pu2w5Z9iHrZTXc8pmmB7P0Vwn/D+z6IT1ekZ2XOOrkFLGMahV4m2LMxfEJHNs42DtT\nQWohO1uUz1TOoxLumfd+AgIhYKsiE3GLynHRfe+ZbnUGFRW4U9BkHDPK9+fAwr8h5rZrdxkWMtQy\n6lqMOp1mQJqL+6ZU072SgaMCH9uWP49E60h4lBfoCJDjmqj1eIgDBUBv/MZy5+dnd63tytdEdAo4\nVAql3r2PW5Yt5lInwFS1nc7nYyA4fL8B0sa1M8fvz8/FOZh+DuFhvx88MtZhyCKPgK7cIRXOCaF9\n3sFxl2TieIzkC1EDn7UFy8/zA3HWC+thF3pGr/+PvXf7mW3L6sN+Y65V37e/vc+lmwM0EAPOxYoN\nCEUilhxHAUexZCs8OIqSSDYmykMUWQJeyf+RxMmLJfNAFCkPIYpkCLLl+BJbkSzZcfANW4nBdDd0\nA4c++/ZV1VprjjyM+1yr9jlsv/QRe51Tu+qrWpd5GXPM32+MMcfMazU48JKfGeQ8eynNamd/Rx17\naUPII0oRKT6m97SY2MEW+wJpk1kjaNn462WxfYXShJvQTimT1wfw5xwlIjgiHPX3PJ64XJN1ioGA\nI8CY9RZRXDfqCO87fNaeHq7j8LVkvSplZURcY7TVSGSC7IyyGACylDkbmwhJlmt9MkgaSY552A1E\nF5JIRr7jhuP1DIrlM25mFg97FIgD/Gp9jDDYjUtXaFu6YdLrK3XOodqu2wv4hkcp5Hu63Kf1Xwb4\nR/k1/WuZzhTPa9mhBimJE+hWn95Tyuk8h/dd+0PPHzfPLfK7riViRJL5GNFRb4SPVy2vrz0JSXAj\niqYX4CSDJifUAjRLFIasK5nmqYy9EUv4DRjwtPcc/flGFe4DLnvGpV9bI7RpEg8jiadqXVdcr1f8\nx//+H8PP/qWfx0//1m/L9d873Pf367tjmOP9hE7TgI3I9jBsyXsiWHFbN3TasCwLrtcF3Fcnhdb2\nQNS9thGHjtjpqZROfFvR1qmuw/L7DmN4wFn5+c3XF30+Cc87svMWx7bVRfKkaZdNkW3bBqKwAurJ\nsFAiQLPOqJKxtNPLEmTHMrUZY6cu8bq2EDc/XwQy1ttUMqMhWIArsREA3AJyVJSFLq5Lv2VwMQ4A\nV0z2LCJf6Lq/f/ztE6Hcxe+V65tfgJFPq08AlUwS/f7xMAfPI9HZDWadDMeyD18ctOAx+H/zMUxm\naums/ZbO5qTwkIH/QASsviThet2rdUBwxnqNk9BR3fjNdc0eogq0j0lOTBRGgCvZGYlDADptw/wc\nQUwHlBQFIN4qf4yPAxo1kjMjsmzgMl3D9Q7sSM3Z775sViZm31enTFClztaHXjpEzVP/U/wmV8rz\nC5G394TUU9qNXKEoT0/yOgCughi9jLoqg1NoKTN8HU9qEtKLDIAyB9nJemgETvndwFyAunpdPT+8\nqDkkLXR69LmL2YFBiZlLmfORujZ9GR+dkBQ9mIA8SDYUbiajVa8H2B/kMNUz98tumJuxIWqbut0M\nLT3aNpGcANby6qsQH5P5xHPk37SWyjwpAtwhQtjqFW5IYiuQvGJNZT49dKRVVILV2PA8rFDselK+\ny5ws5D3uYySzEB3rJ65lEZ1kBoGuKdeHLIRF09R00x6WZnKbxpn/pu89jT3zSLpBtaScNqKzVTBs\n4w+MzrJlhMAeCj3nLaQ6xPURm3RCPGZN1iZbyPk8oU0zmDuWNEffGr/MkPXO2tY2JwUhRRUoM+6g\nzueGv6bGspYHEl2zrisulwuIgT/2gz+I//uXfxl//ytfrRumAsCvyNvT0wmvZsZ5rfsJAT+Jp6d7\nzLbZe8Ih5JhFQ+e0bhIlxFiWFcuyALxFWamlcVfnvtEgm8nOusb2FZbZVdYsbS43qFcLxmzRTvnd\n+kKIGj63xzuy8xaHERhj4PN8wjxNPtmJ5Q/FmpVdmSKYcs66rFh0sAnhWUDUMM+EaZLuMRAvIW7w\nATRNzQfUNMF3/nVFQDFIxA2t2XJ69ymutWSFOMC0MahIdcz+pCOrjE3ypjQlReieMGTrgXxXIZ9b\nrNL5R2SHNUVqTPT1HmN9DDzZd6NSrAWNfSZGy23BKfk+LBPbEYa1ilpmrFrWBMyc5FjcuAGsWo/d\nffSZNsH7vN+lTNY6nrB5JJxjGxz07b4+8k8mUPtzCUehfUdH7QOKV277BPgrjRiLRuN88SnPi6P2\ndSaaiYgggC5R7AdyLCdH5RzGRiIYBfQbtsJY93RXCuJE431vHRxgM/BsvZI4fnMAma3ZWwVYJdOZ\nhoTZOgXy0nG+XYx1Jzxwsiu6U9pcfuZhg9DbYWxOANjCjPbnm+XSrs0JDzLJ2Yew2fuNtOrDWMhE\nlKsI7bpEW3kAfi4B0iaNNDVzgNRC/Ax+pvuNz2GOjvXzsiLeVUvuIqFYDdQ30NYcUE8pSiFSGguo\n5rwo1DkBA74KLXwHvjqDyL/155qE9gaiSDSjWQy8bg6GM/kAhj1YWNfMqX5K5AdpDi1j2udMjntz\n9SwVVedlQIw337uG9X8unw0rGMExMiNryzZfA8dKVniTNXKcx4VtVK4bVS/62ULmjQiFZycZ1MiK\n29G7rO0AdC2wpea2ttIyZ1JNBPWkhFdnnmcJY5sm9B6RI7fDz1Fl2dp7ND5yYAd/+XwMJV1aFqSk\nTFvHdVlwfjzj8fER5/MZ780nvHd/wsu/tEgD/H4I0fl54OFuxmma8G3P7vGbrx5xXmM/oQfNxtY3\nDSH3dgjP1jRJZjTHiix9ZmumwBZtk+Z53Ufoliq3NrJQ23VbsejLxt80zSmMzcJ4ObV9h+21CNTl\nBWHMswy8n2EC/yY83pGdtzjMszNNM6Zpxt3dHSbda8fIjimPHMrmwsvw0I5lueJyXQrZmWfZxOru\n7k6VuxAZWsgVoqUrjBFAslgRsYYlAHyy+nVZ5O56tVNStHa3CnSaWyKE4N0Gs/GdtEWE1Hm4Srlv\nmqTdWmFgLZRc98FGSvKmUg6pLyIs0CbDBECOAEq+5xs9HEpUx/tkC8uoh6TZoy43jx3aydat0asz\nXHrzHkgTfm51mcHcI5DqtLOAOWnjXd2zBXtflT2hjf79jG1S6mhtX0GH1+0G2Sn9mAGLN49MnJz+\nPvJO5s8uS/osH3mjzGhf7SZv7IpR2lcG4tGkFuDNoW4pjxXEp9fC7UbaWApvj/VxiiAWfi+O8/Uc\nb3v34GzJcqjeZyM6rMCNwvIuskVeeFYAaATKyI70n4As881lT8JIQka5LNZiJzqxv87o2SkhJltY\nxHPo2tF4ye9HR4BXbVOKPt3JXbqGGUO94p1sM+j0e+e+//yG8Rb60b4ZcvUZmfM5waIEUj9sHRvJ\nGgFSsrMtad8WTzdu61GLIBfiQIZlQZoigXxYABJ2lBPYELqvcSH3LgTht7FIuZJ5XLqY23WpzoLW\nfXiWjTpdfyQArmOjGgl89Ias233s3Qti58R73kRUvDZBdLoSHUusYd95+KCOjSA3K1b9vBgJdSK/\nuZHWugW6zxF3xtYJfRPdJB6HNC/oS32JqfI1fG2aZt1oXb6zVO9ljA5jWMaa6aXUPv6IIMeWcIdM\nXrPBlyAZXDWrnJHI3juW64Lz4wWPr884ny+4XC/4rvsH/NrrDY8/F4bTh7sZ3/7wFAAwNcKX3rvH\nZZmw9o67ueFuniSgr/dYc0YD2Umbr4tnTrJUSt+sABjT1DHPEIkmjQaiG5EJSWDNyGt9vaR+nudV\nMin2SnQcZ3CQzWxUtj4AAgf+bubvb6bjHdl5iyMLxTRNOJ1OsvBusFLY4kwD7GZN6r2DV7FQXa8L\nrkp0tk028mqt+Z49NmBZz23UJJa3yUahGQR2lrTFdhTAigC+VkY7x34jkGMtTi/VfKUN8gQ/AsWm\nbtywMocStP1p5GWDTBbVV8tnBbS5PuNgjDVUPbX/bVCe0OGuTmMYm+P3TzPBDveQSY8DOAYy9vvK\nhnnh9cv1rdassXzNiWKz+nl/WBaaREhrbT71KG2QAPwt63WGxWMzFdnYgf8KSscy1FJXEFaB/p7o\neJuaue/g2qPnhcSG72GcfP2ZgsEP72NyXut7fK5eUEmP1dm+PwBoCdKNGMB/ya3GTqbG+0W62yhL\nPMF0gEEbB+B9S0RHQG/vKdQ2BrqXN8rv2gVG5INwceTBdp7Lbng0vWF6VtIOZ0/G/kg+jvTM/auz\npLbPC35j4XbSrYCM7cHwY2VghBxy+l0vc/1UjiwOifKUerD1o4J4lhTFXn+rRw+is5P3InZc7p0f\n6RtH2/mNgB5zipSjY+sbsBFoXSWkW70I67IWoN3XVb0PDNnivsMZoM6Ptl4FSj0s2xuZ6LJkKss6\nT+rUQ9aTHLPJrSdW4NSk7LzCR39um0bKsykYQA+5jrlR+/VAr2T5d92hoWZBdqRcxKMssp/LSnJY\nM7D11V72fTI42D45Krtr8uYEyVkljH70cLqMAayGqRqEWkdYfBdnSDNSinyZ1TCcgD5H1EIZ95z6\nJyk3l3kMRinVJT5duTyoeBTCQ6Am+w52xWXbtuG6LHg8P+Lx/ChG50U8LN9xd4/HtqKTEJm70wyE\nfQYAcJoa7uZEiE3H6pxv6ku8SlNZhy3ZCy2BR9foF21fJWetSYrsfGQckOdq14epP8PDV0MUj/Sg\n3BvJCzX5Oba+257zeTzekZ23ODJRmGfx7MzzrGkwoQrG4rxF2BqgwtlVc3dsG+O6XHG5iEdn28RD\nMU0T7u7u8PDwgNYmgCQzx3y5orUJrTEmFciEorFuW1HWPigwEB79bB4gO0ThkizCRPOMXpSekifH\nN1k0GzV0i7W2XPq8H2CZ8ATxifNHS+qYtrpM7Hq/PAF53RLgcqtLbqMBuEQld7eq973xvXs5dFIm\nVch5UiVALIeoeDzqktvbPIPNFaYRnWaTFMmiS9I9dhjQfUlYlTTljrxdqU+p6xFZsGqZvLDOmrfD\n/mJSu3m/mwW5fX7pS2/wqPdo9R+vlbMN1pcCV9JjE6yg2qF4BjhtAhnlak/A/IGG6hLhyZ+pfEuZ\njhzcUwmZoQY2CDmcZaGvucKc7ov4PoMS95BssU4jwiS21IBmdbeC63TbB5CDADvRNXZR1323CJal\nKFLfZoxEMBOv9Q8zC66maM3d60An9eElfa/hvHavBMYqjICCKyMGcD02vo8iIO21J25BXkxUMpDu\nsHVP40LkAkRTF7vX/wijG3UourKBbFOclJlLnrvC9vmiNuG6LLguVyU9i3vJJF3ypufKfEUpy5js\nn6SgC7XPyPuSRWaNSJrH0PbuSmTHyUQRkgSoDzS4jxFLncbk+iy/Mrmhg/tYn3lygd6H6+vfEu0R\nRCh7cjw8bV0l7fS6xt8j2UmZ1WzNjpEcX8dhiQnM21lkyxLLaztpmCO7Xg05dS2hYwZgn6OmacJ8\nmnVvlmmfyMm8U0b+Uh+5zPlcrmWzcHJt9axK87sZI6BzoslxM0uDkp1123C9XvF4PuPxfMblelEs\nJmtn7hXXkXs5dKynuSA/3dtF54VsFJF9goygSAqK3mWjU1lmAM8IaG1oIX8ZO2Wi03QfIjuOvNw5\n8QQSRqo6T5uT6pYeds+RVH0ej3dk5y2O7GkwstM8rIqH0Ac9nwiNuuzh0EWwNx1oFsLWuzh25Z73\neHh4gOVi33rH/HjG1CZs1H3Bnw8y1gVkyAPCLO3hAj3ydOwIDBNsp7dDa9WNo0zcTfZG6QSAxnjc\nDCqM5OhK2zTFj2THnpH356lkJwb0LRYiY3r/4y4kBfkWMdCPgXkFtdmTEU0SbVOcDTvrcK233Z8o\nAXnbb4DrpO/765h3B4jU5SMJHuo9tsNhDd9AFMbryVo6jRWbUCvwOuiLwzvvz2c/mYAi84noHNSn\nyDvqObX+deH8OHbYScTxgtFxgqr1G4inI3MEiuY864dEekCRniIfolUpt5Ojey7yXPqvCxlwwoGh\njdN4iolSAZKDFp1kNVTJkhJYF3AmPPaMPFbLex2/bO2gLw9HS2FalfDtvbO+70cZa5kQQLNfdd1/\nohdC5fsZkd0z+i+DH6+ePo9ai3VIVhfv0jwoUY4sQ0XuDGwp+Gtd0s1nS7n3S3kmHz7nMx06j1A3\nkMUQgRF5YAuP0Q2N0SZJpXtdPGxqXWVfGFtvQt02PVYh7tBwtFir0/RlYmNEB5u1Z3eyI+1tcqXF\ndnDnwitjNbWjw1OuTSNed9WpXf1LPLxS1x2oeTlsLUpPKaFNJzLX0Li05ibvH8Vd285CAbUt7bOf\na15W97hqZtiUgU0WrG811J5jBEWrZn0mo9fHn7ea/jrodV+no2t0JPIlDJRjCCqr0YTrjb2f4lHW\nt6ZNQl+OhAeU8A/pmi/9ewJAq0TRGAY7n884P4pnZ1kWWTZg0SPNCJ4ZLSoGHA+rRmP2edgNtRQb\ngTNHymg3TtjcpZuMTonsBMlInh09T0TtOOFKvjZ0xwHGQGSNy2RHEm7diJL5HB3vyM5bHBE2xS7E\nAHx9hZEdC6cCFOy1JlYpvY8LIltWFkk6YIJ2Op2wrivaMvmitnyEQEMHbmQMyp4QGe/NdwsGkg4Z\nJ2jDXamuBo7lZ7P+ZCVXDw9zoMBa+8EiRMfunwcUDednxXLkTRqtGK4kjwCqtrPqvt3hVlf/orTW\n7fZP1wKBwXdrVGyCNwWtQPeob7PVxaugpMcKT60FIXWQT+plZElJbX1sQI0tUw5cadqPXCquPR76\nEGHt27eK9BkC1DKn+6bPgIZfxzMyNM1Nbn1hE1sqSgiX1+OY7IyK/whwHnv2PkWxZ0yQ6ud7Yeha\nMiMXTpi9770QcT2hIi/re1+BmypdGkOxnt3Lx1IdoQkv+PhtunFus2LkftZ2C9Bon3P2KVtAXcGg\n93YqLnuFOHmBekpZneuV+sp4Eqim3kc9JxNBAVbSrrd0h5XMytV1DWO2hh5N8K5rkp4qYXU3rnEZ\nqMJTZUkbIc6FD8xRnXTWMLbkjQriM8h70e/1RrW0aphgCsOM6hTZ4JdBmhjAn9U7QKuCyoblumC5\nXmUd6vWK5XLFel2wqUeCqcFnFWagm5xFv4cKSXTCNqNN1mVSdxAFi4HpLQfEek/XuYB7DRhcx6NJ\nroJOJ1Eq3yYrZZg64GbvL5eJHinYWUm0nRkb3PYIQdtSOFraQLR4dLY1kaEtJQVhIId49giTOkwz\nDSuLs/iSWIG179vUAJ4SjhjmhqR7Db/Ea3LiIThF1qdcl6vIQ08ZwlKbwo1yVa/IWpYqr3I65T+9\nD2n4zjDasor38Xq94nw543K9YllXSaSBwHYmh1k1hbGDIr12wTjJ0OmyzD5eSPVmEJR+c7YJHeOq\nHQFgwugLBCaZpglTCj2z32yMFb0ZzS391/TlCbDIc2l8ngnPO7LzFscIllprbv2L1H9rEAWNAafO\nIIungI1dVXh2L5qQM5d4Bo9WwdieuUt2ojWRndaaK+ymg9HjVwERep3zDE/5TzuhFiVjIKgMnDSJ\np4ZRhVAHYy7/mEjB1jdFOfdtfSvczNrAlAKlcub7CHi+naXqpuX11pEA4P4wIB/AQvF3AAiEHiZv\n+wowi2XWrmgNpMSO0sVEuvu7AWNOYW5yd1nqTRYmkts0y6WACHZk7NP4MBOmuuYiIlcG6ZUggSM3\nIzQH7efPiIfm2gAHhCXLD7CTvzdZ5fLx2XS61CNqoRdqSIq0o5VFJyevbel9H4AZ3Nq4c5BqsT3W\nL/7G8b2Tp7iNwyvDDAjZiqXgSVJdBgGksAek64ysmNWaxr5GIjze7lYAWyjbXQdmQOMve15q8TEm\nfT9pW8in7KthWZ/st7H/ctt0RbC3Mq/ly0cjy1ieonPSd+T9ZE/Wst2AOwRELod0Sp0DjsPY8nl5\nkBWqQ/XJBv9ZkZWlY/Y5hXW39R46WtahrmhMYDRclehcL1dcLxcs14uEsxnZaZPMhe45Rei7rh4c\nhqzT0oZnUCI7SQeQtF1O+gCwG1Rqemr7XGqKArJdjxG4k67dsflO9bLfI5rVJSkRzvB6bmXthPW7\nhIEKWdnWpSZ00LU1fU1kxzOwrYXouAcJlgijymTvPULWumYB8zEW9Y3KVLkHNUwkIfU2h3kIqZ3X\nhAhF+FqQnTxO1nV1krEuixgv/HkHM3M0sI4fn6CSfS+uMtzhBNTJQYzZrW9YdH+dy/WC8+XiZKdz\nj+x8KYlST3Jhz7RIiyA7ltnMnntAdLrcv2SEzFkK/TF7vMNjmye95vpcx6klg9jNfwd4JRvHxbPT\nMFndO6NTWqv2Lozt9+5BpJk1tp5cxJsv6pKB0cAtLCERYgaY6Eq2EFJyE4vZMgzcM3J2q9GmynTb\nNk8SIJtN1s1JnWzFo1E+8q21FhUw5rIcsv2M5XKJ0zV53RAzi8vW1uTsL90pgGq9TBNSKu4IdHMI\nynivI0I5Ph+IxYAgKspnf/7xlwniJnBuECQUY967wauV2REnr4gpeCOYdjcleF0vJpIoRbL6+IxQ\ngXaufgFruSpZNtmUrj74sAfZfzPrNsUv6b71k5XLy+FVvkF0jkDdKK8EB3FjUT+z9SoNIruCByBh\nchI0j0qfCV9ijGb7Wm4IweX4sVAAVyzlwgpikxw5QNZ2QItQ10xYWBhAmsRj8jZCVxZbpxd5ucLa\nLa+B6Nh3BVDG88vYBjyrkBk3rG6hG7J+pZ3O2HXfMOYAlOxrSdoMY6XfjsJH4vz6JNZ7cIwTCpJj\nIP3Wkbpl36dOGvqxV8dLFOtcskGi3tMyNlY5pdbQ1CPv8wkRzJMA1gzmgHt1gvBcsVwu2JYFfdtA\ntEHMLgey01nWZlilTTcSpfUdXfsWno3N59FUJ5dBV5753YUsXRe6JgxGtvH2PpGHPSMDSEttzuZN\nWcUDs5n3RjueiUr2NAn5W5wUbusSiQi2de/N0Xd42KjKvfejhTRaKGYQyw6dX7xJssLUujuZjP0E\nY0JjIbs2B6kOnTx8zV6aec3C7CwVtnr8fBP1bjqS/RllY2PvK5OJQaqPxngwISE6MkqwaWjfsiy4\nXK/y0qUE67ph6+wEhlpzIunjlU2/NA0pT4YAF5Fe5SS9jPBUEmpGvNv4YyQ6Uc29MWWaJsiUUT07\n1pTs9+Nyn9bsJYSnq4GeKOrxbs3O76HDBMiEbNs6tnXFsm4lpaPoDHZdbddYLChRwzydME0n9MgG\nrfdci2Xscrm4cjAyEwB4nNRkIDZqvrguyM7BaLGrKEKbPtPhY3lPEsIqfPvyPGiyMpimyRXobetG\nXcdj4MGem8FmsfpkIHyjntkiCz6ugD87LvpsANkmIyLPxOagIW4ldezdQxPzglMPp8gvpKnedGaa\n+KKsSaEmi5dMvkY9oh5HZDbusPfIOJl0GGlKvLZdAL7jNuPxr6Tl97Ju9UUZa/n6CkTTjGkIJ86E\nEQlmh+kFTGGoERt40UnQwxJ28ifnleIxB0FxwjMMHStPlwQiTpDybdI9speuiHAomGhP1R8GGAuo\ncxBqpMYMHHX9gWwEmTY15Cqfpf/0flzup/fsQRJ5uIeBSWZb3BwJIDhV0Pogh81kC2p5eXKUfRYj\n+zsbGazF83PreZzKoO1q1l67hefH5cw1Do0imbTY3jL2KmM/ncPDb7l9fNw5vcLBWBmPsF6jI0LZ\ndIPExoze1FoNAfrYNqyrZBm9nB9xfnyN16/ucX//BA9PL1ivV0AJVdNQbxMNJ7CJ7GT96Bnb2DGs\ncHVIeF0+RgNNNYRJW8UC+HizfctcPycZtntkT0/XwrOGhfUE7Mvmqpa1MOlrIzubtpmtcdqWRT09\nSyE6tj7HCU4yQpgguVHF5MJ0WXquaeVoMUp6iFQX+BcC/qfmCoXtPFlR7+PN1uaER8GMAZtipCX2\n/NFEAKZHxAjZfO4P8UyzjAoLpf+a4Zb8H0Vkid2obyx70KwrzpcLXj8+4vXjYyQmWGWtjhl/oPsJ\nban9AlNJ3ZuSHo+8aU29jmE4ZJU927Ik5nY1im9m/IkxsG0d08TYusi6J2XRtURH4190UZAdX3Nk\nz8y6FHUdcF4HvTckj4ac4zn7m/14R3be4hiBd++bWwoy2ZHBTrvrhDXPoMaelnFLe8TIBqLhYr1c\nL7hcrrgui3qOZCA4ZslgRoa/Dvimuxc39zB96j4nxRqyUzVRb3vlCYXqupw9zB2BKnbgYjIiCXzK\nALxdBx4aZh/CQvsK3bpPqvtIjkYCcFS/4yNI5fhudxPw0jXGOjyFDgxFKyaQY7fmIFOAxyxnLJ2f\nObZFqRHDFdyuWgORKu3yBvkaiY7X+Ua7GflwNDTcywAlsgPUrdYBbDJQLC9bCwOA0ZGJjrVBfo/p\n/0j+TexCpgNgAkbMEs6FB8h7cXlXXSuCA0C9F4DY1I+sPcjPdcKjeqEojAzcSB+mWSKJ2b05Wc7C\nYxWeGfs9E528aZ0uxqjPTGsLOAPFkmDkeDI3ctUdHITys4+fTnY2dN7SwujQPzbOxiP6thKccUGw\nyZzgTpcSlbUD+eTomp03PYPVBF7z4WVwnZHH7K0xVf/YDUFOskMAbE+3FkRDMkU1NNvU04xNnbGx\n7OeyXC+4nGWzxtPpHg9PHnA5n7FcFoAJMzNsh2OTd+9TlfXQYeQc0TdD9v+g5ar6mLQuNk6FoFj9\ngugI6Ym65/nON9O1uaDIcZJ1DxHrhcBsKSGAe3eU4HWwR2IUsqNEZ10W9HVBtwQF5tXqA8GBjKXa\nrSEDXL6Red1UglmHQseYZFL5gojQJqGVlkyAQGJ8AUHW8dua4yA7gO1Z1SU5gtbPyI6t1yFAOzbW\nk4Yhirx/jNyKHET/RxCu4R/JDIhU385ds68tOF8ueDyf8Vo3Er1eIoQNrj+U2PQgKQA8KUAOYTPC\n0zs7YTOdlHUQIGOEGzmW29SAGecKydl6R+uh70y+6MZanG46GUJ2GmIvw7zOXB4kvX6L8GRJknpY\nyKklRLnwjQAAIABJREFUIv/8He/IzlsclqUi5x23XPbXZXHBzh6gLFBTk/U4zNCNtia5BhMYsZO3\nbTR1vcpCutU3ZjNhi5ANfVB6VvOXDXg5OP61fzLoHoV9/OwEIJ6dJwc7xsn/4BYBZGGJEPSc3tGb\nKdI9ubTBO7ZvenpYi4Y6eZgLqPyWydRYXrsug/MC1JEmwM9y6CTjipty/0Q9fHFp3utjsH67dZ0s\n7XRMVbntaADAZsHbVTSaMBG42/VwEO/nvqENtPMPSeP4/FQOb98kaUEWrO2so8qFCSDuy0U3z8Xu\n3W5dkm4kICXnyj8RXmVW/oFN6iQuGIqC8Az15vSBy3elFlKRltrW2sNvnQYdgkw4qehd14TY35yI\nCxcS4+f75wB6eZF0kCMDM+l56Z5WLr9Hvm8+P/VPrM3bE548Xm3MelYqT727+aLt7IHLhKfqlEpA\n8qLi3qOf7bzS3bnPUtmimyNYLJfD6lv2EDooq7cJZ0KEKFMaFuOQz2XM9TOZMku7h/Nw7OtlWyC0\niTFZX2zqaegsnp3rFfP5EY/zHaY24/7+Hg9Pn+LZw1Pc3d/jdHeHeT4FmSJZl8MMSXFtzaYyLZ72\naMxGYuUmcAptS03N1r5wOfJ03QywEfFElJHa1+0PRna0XXsiOZ6AQBf/9y5RHkZuysadW9dzwtvi\nnp+tY10XbCWUTdc49RW9r5GYIZMck8/0t+sehLkxmo0kY561Jyk4D3ZRzhWdEnJUDC4NkqFvsixe\nNJAcBiAGBcnOpy/z6qwrnOWSzfcxF5QwNkr1TTJQPDlahywv2cu99Y5lWXHR7Gvi2XmN81mSE3hS\nKa07pbWv1qJG/Fy/BDVLZbW2i7mWOSW2ItH7eU4H6xoz1WeW1MLGdudIt29jML8iw514pkgzv2Ud\naEeeD63fmFtqw3rPo/WLn8fjHdl5i+Pu7h4AME8nEBq2jdOiuwUOyNLgi4VfE6Z5FiUPuGdHdL5Y\nEk6nE1qbxEq2bVgXIT196zphRXrAfEy+B00Kj9IjJsA9KKcBbN4kPlYptkHfQBNiYfJw+HNMZzQZ\n5GU5rA0u/cMn9d4ip/4NsgPc8v7A17tYG42hbEdE5/jI1+VmMEUWk0lWPkZmju7m6veAZMZt2deB\nmXfndjgO69osAY2TApPSpySg19K72jNu1p0cHh3XIxPIfMahQlTgfUiLg0jmI8vOeEtrO7b2ooPr\n0udR5ouHL507vg4Pr7NhnwTI7TqbwI+rm56dCE+tfQWsCYzZrQPECtHx+Pn8BEW3OXECGyjW6dvW\nynQri4VIDmtqwpKdvu9BcEpWIfvNQ23kWbFQ3OoU9/Q9e3oQJCjoH9/ZrZxjXw16jSqgEKKzJCt7\nNhwhAYZN9eioQ0eAYRbPeF4SkdKfb9IzRWaRLLwYiWMl4w5I2ELBKskuz8gkPQHb43IYYIwQ6Cz3\n4tVhzA4fZBAyVgHwLG24XK84U0MjOW+eJ5zmGVNruH/ygPv7J7i7u8M0nzDpPGgGummaFHC2ZOBP\nYwvQCUUtzb2DebNGRMhZtEsmz1BvGHQ85DFr3yPVzhArM1zeXe6N2KgnZ9NUz0FyIgOapQTviLTD\nRna2VYjOpmFsnq6bY22OuO4yqcuyP4zZTHeYI62xhbpadtbW1RMSgpLFx+a2rl4D00mkXSBrgoNk\nMEsYfvd09kjeHCE82yp4Js+F0Pkoz5E+W7loBlCngXiY3BL5j5E2moTsXNcF54sQnVevX+P160c8\nnm29jiaVAsr9yhgZ2gTM4KaJLAa5I6RyGInhDjChUzKa9CCU3ob2nDfNRYjwNluHtG6bEJ0pyp6J\nSp5rDTsJ2UnYozOYhLRb4iu7BxHtcOfn5XhHdt7iMLIzTTMA8sQEy3XB9bp4ggEgiIl5dFprmKcJ\np9MMZvKMawAwnU6Y55Oy8uaxm6uuBdrMAkAUE0I6Ilyth4XFCQCHPh/BowLRMTvXONAd4BmQ1710\nbBJw4D+QHAB1PcgBuLUJmkkWwB55buwa+82SG+wJDztwOnLNflavTm0fawH7LrIV6cVjdfb3GW76\nRlIJTZF5QHR2IFMaxT071tdj79lcViyetyqcuZJ3fBCk6imLNrjFdaIEn35kEubgToGO18Fka5yM\nDsjOcRUHYsnVUp4nh/w+Vqt4H7Q/aJQWmwTR6sWZ8Bx4X6wf7fvugDbKw5SIDpFuUktxn9o4+qrW\nYSMPYHuIvPKaEaTPnOpbAF8iOJFSOiZzg8S5f9wz1NMeIU6WjvvP96boEfabrZX5/nncbJtsqLht\nQazykb2o0ufH6f6D1MmrjgcU2RUdUWX1Vr1cDmFtX8MHD8mOLkJ3kO7iMiYdh9kcEuGpz67nEoim\nQ/1ErWGyG/o7QbbAESLRt46Fr8pFCFu3DKETmAhPH57i4ckDnjw84O7uDqe7e5xOdxrpMBejXkKC\nIofWb7bhJ1iytLlcp7GZ2ipkue/blIPwOPlxE1wa5+C0p1RXUB/kZk1h7KsC+q5rdaLP2IeaJS3Y\nesrGtkVWtq7Z52LBu77nvowK+zgKshNzv3aehCMSAazGyi6bxdrceSQgnbu0MUXioCAbdR7r6LrM\nL7LQbcuiRlslcatmkbNxk+fSKrKDnOZfhhnOdTo5mXO9CPPsLLKB6OMZr1+/xqtXr3G+nHWJwKrZ\nGAdsQEYla0FUe6r+ReAiZzvaxkiEsQNEYvhx/cWMBg5P0iCzhzIMU9NGmNXAsK2YaUZD24WwjZnZ\njOg0lYmmMiQZAuHzgoVefjbj8Dfv8Y7svMVx72RHJgNLMWmKDhALlQ062eV2cjJiu+ICGlup1rMn\nDw948vAUUCW4rRta0wnH7jVJrnvZkXgK/MJA3i/FJ/kN2NBgKmpnKSDobxRAOMmyKQ+9OGCUCb5N\ntAaQumVX04koWWzGg8ZPA/gcgbX9ZvXLZEjITz5vb9HIlRoH7pF3oZQ1KaFyLft088bra60PPDr+\njFDiGUCPoTM75adpxs0VbtNgrbt+lxRornshlanfb5E0u7YQE/K5+LD9dvcbjpHoEFHNVDZMrOXZ\niZDl98NyDDJ19BrLE/29f07uJ1swC+0PmS/Fw+I9rITF7kYjyHIyAp9YkeuIkivLW7YsuKb4CL8+\npxA10sLoG7uXxQDPzhqe22rw6PiibNvzg4PosLZJ88qHPsn3ix3geyI75MAOqgfz/hTdwolSOTmV\nP6/TkdA1Izt7QpsJxOB/zo3onoLczkQS9kIZlFub63euF7VjYpyORGdMknBAdpCA84G8l7JnHe46\nJn03lMn2Y8teHW8j78IGs7WxWh+23tE22Rg72l1KsiUjwLquePbsGZ49fYanT5/hycNTPDys6E82\n3J3uZP0NSLzVDoj1+Uk2ctiuJ9Hg8CByes8pznkkO3ljzyzzw3i0/swEZtPkAZuFSFqYpL7HOMny\nCXSdbw2odiM7nmp6yLbm41LeRSUOEsoDoeKQVZdW0pDSlEKamuojDr1VATt0nG2w9VkgXRmz08Wh\nC7dtLam013WVzHTdxjiHdylJZKgJ85ZUafUi4mguCILiXhI9t/fu6abP1wvO50vdX6dbWnAtAY3j\nBN62BHiGu0aCc1g3dU+cJeb2XOhQ45V40MG6GTrQQ2k+d4NHjwiQvJ6nrBXiWCKR2848O3FPa4fu\n2FaMOuJ1be0d2fk9c9zd3QEIYYnBLW5sEygZay2yr7VIFtA0pbQJ9zRNePr0KT748AvYto7lesXl\ncsXdSVz8bZowTzPmadOddcUCZjHjnS1ePSbJdV3VsjChoWblcADBJB4aEoGXNMVVmI9E28G6bVrp\nk4iRAEIsvk5ANwFrKVDFZG4bSVpuZynVYwQrI/i9BXZj7qTd9eM1t0C79/3w+xsJT9ahqoiTVsxv\nYQkyIFjAzgh8EJP1UKI8CRkTCRC2b8PSN1Zm7cu8sP7Q4zGQgbHN9p+BvSZHLQcbmXxDyN1w3RH4\nG8srfcde3JHoBGm/XZej6zJJlwvK1eXPY2jK9WUEx7CH1yn6JB4UpJDSOQbYDMSh12xrvHV9pTFj\n56Z23NUzk5yUQjeTFQ9jI1JgE5Zgt6Tr2gdbrO1hQhxp4gkyKYOa65qeSc8YYpf6cetj6t+UCCEB\npUj/WrosesaK7P9pE1MD2aJsERIp+2be1jrUrXnzPlYatJbKbnXq+3Y3AD/oAe8rMnGhYbyOY7aS\nr6yJDXztvDr6WXiIAJ9JQ2ZWBVpE5CBeABOwbhFK+Pj4iPffex+X9z7A9f0r3lsWzTDGoC77rM1T\nA3fZyBJJJHv2vhm4ZQZByA7ZECpkJ62zSck1jOx3Dw/LZEfXSjkRgstMDnfMnpjs1bFXIVMxjH2N\nZWwbYZuI5v1zwqvDqgs8Tbkh5sxXC7GR/2zesDVCnlXP5qKuER0gNOK0OWoC+ErA+8Y+54vHLQy6\nwi9Ep3RLzLCsWJcrlquEjv76b3+Mr/3Oc3zbh+/h2z98T/uOvC71uce6/ojwBD1K9fJBF82zsSRJ\nuCwLrlchOufLJRI/dRvTMViZajvYvMxg93h0Iyqse+20vHNZMo7CRmTWMdJ2siyBUnIHeyXlkV6s\n2KNDxowRnXVdY9sR03/bpuNnP+cH4Qmvj+EOIKXV1/HWCJ5E6vN2vCM7b3EY2THBKDsUbxvm2cIj\nzLMzqXcnmLSEuVmIG+E0z3j69Ck+/PBDrOuGx9evARBOdyfM04SpyVqfaeu+YZR4lqQMzTYkZBQm\nL2SH0WiK74BkuCGQ7SPgk7mU3f7NOtUOGyCeAptEGYqVwDFXOT9/ZrasYUiKDl62sJ7uScgIKI/I\nzkgIxucTEuj61OOG4jXAZoX+XRyUX6YIBzQUFm8eFn6HpS6DtnIwxMQ01kHRgBGesW2PSQxcCMwj\nMZ4PoNzn6He/91gm1D7OfStcmZ1IHXl18vNHC/hRWcKDBQB7MJnD2W7V9eh5NjG4ZRH5pb6CFBtd\nDwtnM3AVi/o5kR1vNaufEgFrm5CFOs7dWt0jAYARnr51YN2AsrkftAy1X0sb2UTo6xLW5OHpyBZz\nSaCg62BSOlQHmQlAsoYIefsT0KiBZUW0EwEHG9nzWbJaRhhNT+Ggo7yHPCQysVNK1pwc4FMVGLXQ\nhTtji40bx0/RN0F04r+j8LUxvNLB7Ehy7M6msEWpuNRUkoPdZ7lHeKdosDJnS7vofwbp+o9tS1EK\nJN43CfHSdafTImt4Hh8xzzMuj2csF9lUkrcNBGAiwkTAPDf0eQJPkxDzLHce3tVdtDStAVpmRX4N\nwEhykbyNY9ui13YvWQVzeGeSVVtjs65LITsZZMLlIDwnrGQhE3bzEtkmo/6CrkvSvg/NWAlUkSZO\nRIct0QWArvqnCdEhCaASbNJJIgSy2Oj9e+/YmEHUvJ1bs7Fpet1Ieuylc71e8I1PXuBn/vLfwj/4\n8tf8nj/w+76E/+KP/xG89/BQxoTrSpuuKFTdXmLJ5TrIfPKu2kuvd8/OInvrnK+6pceyYDXd4KGr\nVBuBrAtMv0TYq2MhbpFNtukK1aP5irVSTKm+zXGhR/O8geQI0THZklAzw6BZpl2nMvsmoxkTZQxn\nx6hvQmc2JWafBTN98x3vyM5bHE+fPgUAzyqyrisaNcynExiWdEAEf5om3UVYkhLM8wm9M87nM7at\n4/HxEZfLFQzye+XXsiy+OZspzxDSCcyS3cUziZiCVyFdUZWj/e6Mngi9dVkjNHVZVzRNUn4y640C\nrmHsIw9gmxxZXKVgBqvi3ANPdsUhytwmEDlPJs1Yj1QsDr17e9rkOoIZAJjaBDqRhxqOxImTEs0g\ndhz4N5BpEDYKWljBunxHHi7A3t5AKCxv1qKwo52ywhJ5W3FS65+V15Vik43fbGG1E6kEvpkJvSGh\notyjw4RhiQ70Z8LRdXatndSwv6/W5ogPslMvEwttH/8jTemcL5MzM4GiCONj6w9/qAFF8oX7Qfwj\nvAxQL2cqvv/GXMrqaMvJSeBLwjDBpZJ7kXpdUG3j1mXdv1OZ8k6wNoKGs0iIAXoXUiFrYL0dA+gl\nS3ZpGs49WEh0Bt/IgNu8K565TazqjUQGqAnI7G7Vru1ggKY38TlLSG4HpgkdwMYQEqXjeePN23Jj\nxsYb1uQBymGet4iryUsepy4DBJi3yHuKhVBZJ+X72+/5PpkgZ1Il94nU5PXZdW3USHC6eXWtHgnI\nWn1SoyYZ0TE/GCOOvNd+edLlgu8taUXfPcfP7wRqEnY2TRPuTicws4ZyNt9bBCxemaV3rMsi5LUz\n1iWFOi0rtm0VeVSC0VJ7dc7ZKdN4YGAXmpZkIghvXmNWwzD3GQVziGasBYL2kXg6uoedeXKCNT3L\n+giGVU0XN9GtbfLxKWNqq2PRwTqVerkeMtLtEpr+Y/uFVQ6a963PNQOj6drumRQHQNdnky1Sb54Q\niRqBfd2RYBbJuiaJCH7mL/8tfOUrX8fPAvhhAH8DwE995ev4mb/yf+EnfvRH5HrTKSQwnrttlSG6\n3PUwGTFIETJp3vQxCNFFHcDaN6zr5nvrvHr1Cq9evcbr16/xeD5jWVfRpYonQJJWnZmlX5XcOOFI\n5GwcPzZ7en8w0JUQUrP4GvXvcMfWJcmGeczs1TRBR+cwphdSm+QbwLDWsM49RzrwcC3zcF0+nwBZ\naz7POJ3udnX/PBzvyM5bHEZ2zudzgOtpknhjTRzQnDQo0Tmd5DWfNEW1EJjXr1/jcrkARLheZCff\nbdtwVSJle+1crxd0B+fNB7zF+66eSlUnUKH9qhw7usZgWDxma7YHjy1SI/Q+oc+MGQyiWTbQcmte\nqFUDlnaIPtaBoimjjfgU2JtS7MZEbhlFRCHFubEexw4btE0z1s3z7K7bHDpg/WFkyJ4XEz2lyQD+\nnEOvxgBsMFzj7TGCmKQ4xKNXY3lH5B+KRn9GnbR912nbdG7b0MySqoqRnfCkhA1+b5k0pA8aRMdm\nAuEP9gm5UYt9XMCRvtomfuzrkEyP6Z71vO5/crkFp69qeJb+lmLUdxS0EZo/inxPjUIgwL6vRymz\nPsGxHnSCTQ/yUrC9BTgFB3UthCfJU6qFtwkbeEp/B6hBArdWf62bk0FZz0SQCZMbgbpkVzLMLjHX\nEibjoGoAyq1zXUOk3p9CIAx0s+0JUcGXgTTTAczklsc+dJa1DyD7c0ggzeT32KzuvWZTs+dt3JXw\n5O9r2FchlQdyWgiK6ckMHLmuPxzBRW5H++3w3g5MgygXfbrr6z1YN6Dfh/u6bGVDiemQQZfZ+VZO\naxWXzQH4MIToZQszpefBrO/ibAM10u0U5Dm2TnWztRDmvUgeuG1Zcb2cy3oOZskm2dQoMSHIdyYf\njJjDZFwPXr60z81maaEtK1oKvfTQRv09Z1rLG4K6/rO+R48wTtsrx+7h48KAJRCW+6bGgAlICYZM\nFkSHCEFpIHTVqS4baUx6qnYkI0wwJdfdkmn6wOORCI/JaNJ8iRCxP6MRa+hiU8Ij8tDBuqfQoh4d\n8dp99bd+B//gy1/DzwL4Mb3vjwH4KjN++stfwz/+tV/H93/PvxIksqd50ImFVsuMeNmTqt/Z2mCd\n3V2mmYF13XBdrrKvzutHvHz1Cq9ev8KrRHZAQJvUWDhJEo3ODE7pqGMbj8R9xzFI5H3AgCcPAWJN\nTlMSufUNbd3QEfXyPXyaZMcbvTRZ94xe7d5rEgHTRdmzk4nOUSbbfF3BNxAD8mk+4f7uHdn5PXPc\n30uCgm3bnPAQibKnJEgtDcqcjW3dOs6PsaHV5XIBUUsenO5ZS4TwCOmhNsnLrUSRbWMb9uCx921T\n60JHmSgtdXXjhqYxvL2FpUjWBQVyZQV6WfXJiaRKnUUZsWR2aayW5xaW/rASwQGSDl934wPHqQ3z\nAM9kp8RP6yTWiGTDu7TwMbeJWFX22YqOLPEOSBCDPp+fThrKCphlNXZaBiLmOibxCkzingaCjMwu\nlppU60nTJMAgkx3zxjlyH6x0RCDusqcBBQ+RKpiiDgtkIbYGbE0Cem0/mwgotZSRS78+9cN45O95\nuMbbl3Cj39JnlGIWkD+OgebpOcoNU5XT87l+l9MqG1BPTMdupVdzIikJjKtsCZAJ2fFnaG1NchP3\n1OeSok0COoEb5N0JA+82pQVH7L0R1JZu262OCVxZamhPCW2/W5OxJjqxxmQSiyhFkyCPIu9O8nEi\nHuEGbg20BUgf95oSsiOEp/apgb96HBkx3IPiRC68FzmLkUz8AihH0hX34nJ+/s6JEnf0vIOmSxWr\n+Iz1GEiPlTV9n+vFSdeMdbW/bSPW3QiiGLGmI5gDAGdA1LJc+zghNAYm23+OLClPw9qaRylwlzlq\n0W0UlusV5/Oje0h420AkFmRilnU8fRNdXTyTkQJ3moQkWyilJ6LwhEFqHEr7K/V1K8YxSQ+tiQa2\nDWwJA7aIsCjyaqPSyPaWk2BEHxMk5KdNFQe0NgHTrPN5zjia1LXLkHn2WAlYjMXOsf7MtATpurYM\nnl2fNxvlNlcAu1mNbZQmOWKTEfY6TVMQDUrz97LI5udXTS/99W98AkA8OgDwMYA/Q8Avanv+Nz//\nN/F93/Md+K/++L+L9x6e4Ku//Q381vOX+NIXP8R3fssXrNGjRIp7vH6ZsKkCc34BIRvruqZNRF+L\nZ0fTTp/PZ9F3JrPzhDbNbkhZTWdaW+U5OrVdIRlp7hJvmZ5j/a+G6mldB5JEaqxUgxFI9a15dcJg\n67gvrQ0byxEylEPRQtfm0Fuyvk71YQ6qSUSYWsNpnnF3OuHzeLwjO29xXK9XAMDlclGCsmC1MCoF\nUZbhaF0WXNoFlkZ6mmdclODYtdfrgjbNWJZVw9E4JqY0K/UuVtWFGuZ5wTRd3cofQH4E7Ep2UAdD\njS83cMVonQ8m9GyFVG0yTH52yJhtgp5698lcLvcPPsHHdUFyWpMwOiLy8K1xgi/3K3WVsvbOvjHd\nnsBYNhsqqj4rg1uAfHeost/V0QiBgVc/3wgPeTv6FRzeBQPAHkbkfZLwf6lT9CGM3Vo2I19QqOCY\nA2T6c7VscS9EOtDSbxXojgTwuI0QOJdRFPEbr0l/jIq41H24z0hqckhQMQboJDZasm6VLV87vsp5\nCk7NymdjMtKvA052/H7xLjWO9iUEmG26AaBzHSBlYIvsVUF2Ytd1cffq2AODOsrkTTC5Z+9rMIel\n1No+y4RUoJKf+KcaEFjaZu0MwuZtJX2z7a3xwxobUuvo1nUNQbeFt/V5t47aZ1Lt0AO3+r6SlqM+\ntx3lAdIhPXp38q7jHP/y3puTAb2tDdJbg4bRZoQ1J37YV7p0h35F0VelniqyLcaFP+fGC6C0YTyD\n5tlDdW2esVDuZVkk4sFDqoDeN1zOj3ihn7dNvD3Pnz3Dw5MHPDw8eIRBAFwJoZpPEhpOYPRVyY7K\nzrptbjCUTTpTAoGUMW1bN0lHvq5pzYxlR0tkBzEWs243smMbirrBUZW+G7qy4XOaMc0ntNNdArs2\nvo30aF1RbCfebpJlIEJuOVkVKF9ESNlVTejTjWj/8uensk1oAM2KG3Ru2jZ0lmxx18tFXrpx6Lpc\nwb3jo/ceAEjo2o9BiM5fuQPwowC+F8CvAv/kF76G/+EX/0/M7YR/+Gtf9mr+wPd+D37iP/wRPHt4\n2IVdSXhXh603svXQaARqExgSvna5rnh9fsTLly/x8uVLJTqydGBVvGZJCHICEu9tl+XwFsl3HKQh\nGRcLF4K1pUVbRNKBep72DkOTtchrN55VbxfvLFe9NxpsswFn/H6ihk1JDGtyFUtEYHrXSJARtDeo\n12/64x3ZeYvjcrkAENJzuYg3JhYBqjJskKxqywrgIkRnWzFNs3tzgvBcMU0yGazLpljVLDZxePw2\nCNM0o7WpLIiUSVEmg1DIgClmErMMzCsULku12EItVNzK8x1Y6WC0HdeJxM1eAMaobNmpkk4CcHA0\nWhrMC5D3KepdcuPn8/xe/sgKVExhjQA2ToKE/2QSghskZ2ScB88cUX8BLxjIjl0Pxi3NwUMbefjK\njf1E/CIyz0EHo4G67jCuCkwT6VsBduApV8j+s/UtmeiE18Fv9dmPVITPdr7OQFqGIys9UImIve8W\ndo/ldxRYXfe/W6JT7qvyZwuCdxY/Lzc7qQQnGcllsvobcHQAJGEjZnkHoOt0uqHVWGzd2dPXQtfq\nBEsCIh90gy30dvJkIJ2zhc/IW+pG030a0mcyaufaGj6A1cOcQupSyFD398jqFt4oa7oGwM5dvUwB\nLOqEPspFfNaXY78g4NVgYd/FbxlsmBxFCIkCTwfDOpIonrkjOj2v2+npu5F4VVCDBP5d5w7lCrIz\n6HJYGVUWWQAds0rDVIHT0WcDgkIaScVJ5wRIePTUGrZ5Qt+6hhVf0UjmRgv7Ol8esa4Lrpczrucz\nXr18iYeHBzx58gQPT55gmmb34th6zdNJ1g7c3Z0AhmYyy5t6qidc1zmuvr7WiI8SoSUToMWTH5i3\nKZOdZk2c5tQcWmehbNwju5uRmBi/DdN8wun+Cea7ewXB0l+WvKORhYlN/j7PE5qGjjnobDYW8xrD\nID2ZKWXCkw1dcQ0FabYfvb8lU5hEbejvHPXu2yZY5nLG9XLVzVFXoDO+9b2n+P7v+jb81K//Fr7K\nLB6dHwXwg/rsHxTi8ss/95sg+gBIK3v+0b/4Sfz3P/838F//p3/Ss9mK3rEMeqHviFjabpbolxUS\neXO9XvD4GGTnpa7VOV8uWNctQqrL/A3HUrIoX1Oh15G4w1E+HnK7so3VlkiP3Vv7xp7JIjadI721\n0t3QF73OUdkIPBLCkQhFydUL38Ro0FvzMEAwu2ff7ksepTQa0j9fxzuy8xaHge/rVdfV6N9GAFhX\nv9taC1OKU+9o0ybWj4NkBKJ8FzAI62qLfwMps1ozAI2NXSbY7ssjeZDzA/QzaxY30qw5NlABbB1g\nbDHQujw7h044ONNPeUDIM/W5Ckq4ySZzoGRlHsiOHaILCI0tBLB6dtZ19cnuaDDb4UCEGqh1dWqR\n6+bXAAAgAElEQVQcbAwIKNE5JjE7gGGNOQBtMgWhE2AlXbn9B2IQ/5QyWR3ktsly6HH7e6Ix1j9g\nmgtNnCAbYCsw2Yfx2X0NB7NN1lx/82flNkH0xxFZkBNsEmVvr1ukNVUqgTjatV3UM8qVy3eb6OTa\nxPPzGBrv5Z+zIWCQZSuzh1MZkLDX6EGIIQEDn1bFTDCQCBMRpRTUeWzZM1ImJpMfC7lLkxijy+rZ\n1K5+LycZ4ZUgbZfmBCO6CJ0QG6YHiEfOaJXKlBeGZ7KTF5THYv1E6vz6mgmJklyMhDjGTDJA1B47\nJEYx/x/JTG5/pO8cDbve1cEBUJXBMR4/y2hsFJp0B7lP2GXLLO97osNBdg7GL7xHY4hZ32WvYhl+\n6d7R1nASTwqavP3VmzFplENTIN+IdP4CVrbkBLLWY70ueHz9iPv7O9zf3+P+7l7XuiaSM59wOp1w\nurvzkJruG3KGh7DOq+HhERKzxf4vnkI6GQ49jE3uIxlNKZEdqCzGOiALk+Mea3+ipQMQT/MJ8909\n5vsn0X/gElo0zxPmk9T37nTC3d2d/z2fZk0AQSlsUQksGVAPmRCjiE9SLqfZCJM9Z6FrEqmGePDs\n1ub52rRtr5czLucLluXqxBMAJmr4sz/yQ/gf/8bfxU9/5etyg++t8oQPAcmK+d8hr+zpzPilX/1x\nfO0bn+C7PvqojHHRb5vUizsIU2S5bQ28MZZtxfl6xavXr/H85Uu8ePkSL1+9xKvXr3G5hmfH5XVH\naEyHkKvIcb7y9S9J7oc7WO+n3+3dQAKXsWnYgbRjXVcnI8qREaRua1LJTtVhpNw2wk0j0VOv99a6\n5UyLn1e+847svMVhcbmRIWtJDLgVHFs9JITGkhO9pkfVbFvrqsSJwuXeNUSCgzRsG7syD3AQlv86\ngdqi0A3zSQjOPJ+SlRiSdhaAQceuedvXdUNrq1ty3U1MzSc42f0XqhCRFFJDa1yUiQENpJc4oWQn\nILl9WK8EcwlhJKKUbjvd7wD0MTqYW4E0NuCDTKD8ZtePR0wNw/cDoApjWCiyAMTSsgSqoXN5Ukn3\ntn6OjEApBMuBLZdKZLzF3pOoFbVJbgCFR/V2QGxa10DfqGiZ614ER0Tn6BgI4s3rdkQnbhD9EtZy\nu9cR6bldkPy42+UZ+8DPsUlFz1PMqH0+1gNxDVePgf9kPZRkg/yXfG0iXjqJeRY2/928J7nMCoRJ\nSij7ROhanW5ZqlL627EtDsi6Tdx5zxxfEN431WEDsM9EPhEgk/ej5ATcGWtf3cBjfXUrjCOae/Cc\ncN+1O4puqkMnnoVyTiY31u77a4xg7Ym3e+vHeiZCkccAAZFS3oDoaKDhLINRs1vH3ksq/2zdwlik\nKETq3WgAUfeQSi+mfaRqZebO6LpDu3ktrtfm2zFY6GLvG67LBZKs5orr5YLz6RReneThmWbdd26e\nZY5Tr40lP4iECEo8Uva1kCVLviFEtE0EoknmDmZMW8M0rZin2IDTw7Z13BrZ2bYV07piXQFdaiSk\nkY1ssJOOdVuwXRmXdXWWyU52ZL3p6SSE7v7+hN7vobt+giagMYEw+RzsjZ9mV9M/VUManM+ANZGb\nRHiM5BQ5AZA3tZZIFNlHR0LYLmKs1XHdFC88u7/Dn/sT/w5++Su/if/2F/828KsIzw4A/LJ9+GHU\n40cAAL/xO8/xXd/6rTYqY/7rHWgp7biTtYati0fvrNnXnj//BM9fvMDLl7Je53y9Yt1Wnydzfdk0\nd5mr492mxNhPMbWX6nQbcWlm9H7p6CBG0W8Tm4xlD2qQl84kCVuYik62deHZ85kJj9cNEHK+xabX\nQpDI75HDvd0bmcJQjfCMSxc+L8c7svMWR9dY8eyNaVNDgywU10z1dWIDAMhCTlG8dcIz8rI42Qky\n46YaNs9tr2Qn36/HPc0qajuHt2kSsjOdXMjNEsRQ5Q9g64y2daxtQ1tJU0xOTkaygrW62YL3sJLA\nQ9wy0QCb1ZsdvxIJSGs8aWKEyTPNGaE0kpNTSd8MU0Ks2TkG8ijY+RYQDkvqHlTZ7/LD/n5mH2VA\nooeansbYA99CFuSG1neuEL1upkz3h/djAjl1zY6ep+lDCcehW/m7+tueOEid9pbyz3QknHgrfEx/\nxAiuvURcvxll4eaj0z0PvXmDNWx33572stpVy4ANB7kdzot7H4FuAlnKABsjcWGQ2XRtDa2KRAh1\n3CGRVYZZeWWDQ33Pm4L2CE3LZamfUYhbJjyio4YMVWN7JsJTCICucXTLuZEwZmx9xaaLs32fr2Fs\n7tta732T6PjZQBpjo/xXogM9l8p3Wd8VojOQnULoDvSZyShB9jfRm5vSPJClIGTWxabfc9nwhr+9\nlprNU7I3WhnEWCMeeADNdlUX0GXQ2kASAF+/yr1j0oXt8zx5BlAiYLkyZP/MDcu2YcFVjV66v1xZ\n3N881Ms+c98UeC+I9VMj6DTDQRjuyvoYQICyrl0AAzxP6FvDNm1xHpFNXWCO5Bnb2rA2CQVsBKza\nkrLOVtfMMsCQNT7rumIbUkoHcG3itbo/YetPBHrrovU2N3SeQNxiG7VsEXGZk3L6on0VDLIyMhtX\nrkQnAfc8l2dZc8+Z7qNzvVwkU6gmJTDDh2QUE11GIHzf7/sSvu+7vx3/5Bd+UzyXvx/ArwD0d62X\nbGWPHX8dAPAdX/zQC+G6r3cxsvUu212YuDfZN6j3juuy4PF8xstXr/D8+XO8ePECL16KZ2ftkvTH\npmNSXGPtpukp3TA42nZkn22Czax5GLHqQiplhutuqE4QMp68KQek05NBdDNGybN733RarITkpJ7O\nozlN9O0mewm1eE5OVGD6KBsrPHxUEyJ9XkPZ3pGdtzjMs5OzYYBILUN5MVcs9LK47KYCaC5+JwMQ\nEmTxwcuyesKCnGPdyQEHaIiQleOMQa01MCa1FN3j6dOnPpAA1vVCV0/9aWVdtxVg3ddmAmia9LpJ\ncRKHmcOITiD6okwBNXzIL96W2erAgC9Gla8qkLPNVDPAifomoLDzAuyPUYFbWY4++4R5Y5DL11Gr\nnaUURn4S8DAQ/AaAFv1bAWGFL7VObyYdVP6TPrLU4lFPeX7+LrR22Ksy4SGXB1sLcFgrZ4NUv1NQ\ncluJ7smOlJH9+tpTN+6yA3rpPkf3lg/xdyEObyDIGiYYZL4Cij043d/P1niQ1dHJiwAnW8gaZCYW\nyRfAbmOUdY1aQsL2yA7CZjoohZHl+9vYFgNG/A2gpunNL1tDsW67ehYSduDdCI/3GOImWc2csGer\nqhKBLJlGNvKamMhqpu2a+1xlicgAoxF5fR/kDflcHStex+iJXSY1s5AL0Rm8t0k2iODlDPE9HgtW\np6ibFSlIvV0fenkAcxxvGbQx4MCuo6OhqR1FLui9H+o/sn9a0zUvQYQIaXF5I6zL4n0Mlem+yTov\nCwPKbWuVdJnd1qS3Qi/bM0omrEn2usnP90QIWjbmjq7rjkAood9WCFt3tK4TpoUwNcI6iUdoXdsw\nP8lFG0MJoKbhZ2iIsRof0kxhf9mno7+zDNh6D86yaP2h93edosrJSbXLQ8y/LluQPvFMd9vqBMcS\nQXiWUAwp+H22YfyXP/KH8Rf+2t/BP/q5r3u5v+97voRtbfinv/6Tun/UjwD462j0U/i+7/kefPsX\nPygRIgA0mxx5cS25gIXeX5cF57NkvH39+jVevn4t2W8vZ1yXBR2WtMlWKqapaGgXb2+2mc10T5K1\n1AcwvetNnuZy1+NqzNlCz+4nLyp77tgYNDwkXavkv02+tu3Q2Kc6dWOAm9zJx2EitnYuIbyw8yz7\nZ02z7eE3lvPzcbwjO29xmLAVNyREaGJTTllgHxOqASATTGCa2PfkMUVuG6ZZumlJ07lpAoGwZkXK\nQAUhCSz4zs2pTPNpxsOTJ3j67Bnee/89t44xGKfLBdfrLIrLFmR2FrCCtWxg1yZzZ5Lsct67KzQ5\nyVWlKo4gOpn02FnFOwLZM8Qm+NHKmS0XBogCXOXUigcDOB23Bmu2Dvu9rGgHhKdYX0d+deMZWmsn\nOkZea9vE/XkXnoidUrSJxRV2fvYABm2BqVmKZWGyPa+W8gjPx1fk//5LW3o+haWVcA0rB49eJ4It\nLoomqgT08JoE+vO9y4QxvEZAavcvfajhmb7Ba8Lj8Zwobb6nhP7IPWTebCAkEmByYWMEPNSJfMJi\n9mbRsus+OTBgH3XogAOz7h7i2jimc8hAfyEme7Jje5rsJmAlEf79ENI2GjPKrvSibEGTynFaOMsM\nSHie1K+jO8HZchpfe+5Ak7M6SrSxypV3Iu/OHahWqWPnLX0OknfUPqNsGXgdh9oRySntTCRG6rTr\nuYWvuLfI5YYVNIYO9HFTapYJz7C3B1DWk8F1VpDT1sTSP1HDbBbpddb1NCEz4DASiizEvjj53WS9\net1jTDI1fHy54vllwUdPH/Bt7z/zcyQ7Wk4JTE7CmBlbI3QFePl3e1ZX7+O6zljnhnWesK6T7xsU\nGQWN7Gg6ZAbWjmKotDK3RjjdnXC6s735BFM0Tfcs4F6BM7p3jJF6SYqh/WiTae4b5zNpXvB5Qu+U\nujCTyRjfK5areNO2Rdbo+KaolEhs0RXA09MJP/kf/BH8xjee4+svXuM7vvABvvNbPsSr64q/8Ff/\nDv7Rl3/cn/uHvvu78ef+5L8nOoh67Bdk85j2nRHQDsaq3pLL9SpE51FIzuPjGefLBYuSMliK7pay\nW5Yj2qUPyUJMzq1NrfWR+hfcU8oXM04JVrINmSVJh3p3ytwb5NNC2Ww8ZoxiZWl5I/hpGpK9BDGS\n/am6EH3Mu/v4iRB90aYWG4nexdKHN07W38THO7LzFsee7NggUCLTguzIqboyHKZIG6YGzHNHXvjF\nzLpgsmNZrrKIblkk7liVlLkfPZaz66ZibiHcfAIC4Ju9TfOEJw8PePbsGd57//2YCJhLPCZdrhoX\nv3g2GoaRJhkkk7ozjQiZBQdIGD8MRGniCbAEDJNTIoUG1jIAMFft6XTyEL6yT4IChkI+Uh39OaZ5\nPwPhkRJlm+0AABK4bcMN3wj/U1tRUZi70uhmgsM6gzcyg9q+UcY0qaGl7xvq3iQx0dk8WZVbKLtE\nd+KCpPTfWH8eCZo/bKwObNyMh/dFKveOCx60L+mzKBcg3bN4dRSUGjgfCc9R1XAgg8fk28BpTKT2\n3tFl93gvo4TrZEsg5zLF0wswpUzU1Kqbs6aZtVHUSwCvQq7H+mlvZEJy5NmJENvqaT5693MGz84R\nmSJqvneJ7xU0yIFRDRs/4yvKE2THdYfW0e/nZ1jf2l8ms/uFzUE2FGiUDVATaXUCNshevoc+linA\nlrebk0XW51TZcILBregCS4M7sidiSz4z1iNIj3F525vI1wdkxRGVSHWIuWtqDX2ecNpOOJ1mrNss\nOn1ZPdHAqmQBJk+8aWKD2IPOIiFs/U4b6njtHX/1//sK/vknr7wcf+BbPsB/9IN/EO/N95ESepIy\nTTR5umhmWVPadc6dkvfHAajO//MqnhwjO7Jw3/b9icgDQLw5KwMrqMiEHa2RpNU+SdtM8ywh6C36\ny0i4S7AZHlg223UNrUlLjNsU/Wj6Ke3HYyc5wVeSKd6ba0kCsS6SWGJbF90TSdaiuCdN12S59jbZ\n3zZ89OwBHz19gjbP2NYND/OMn/oTfxRff/4Sv/XiNb79Cx/gOz/6omzw2buuKzQjjnriDLNoUgVm\nWWt8XTecrxc8nsWrI6TnjMtFEkNtfQPRpIkoY/5Kkuo6xSaJIKTZExZTnrWZ0E92ubdpzfqGehg6\nxGst3kvuhjTqa0w4sCc7sXeTGdmz3sxGnTAoTUriAseMOKQp3ptnMUbcneaqDz6Hxzuy8xbH+XwG\nAN//pU0Np/mEJ/dPcP/kiWeOkdCEq3tayiTnlrqwKpEqo943XK8LLuez7kQsizehCnxqUxJQ2ygM\nOuDyIJlwujvhycMTPHl4gg8++AAffvghPvzww5h0t9UTAuRy0MUEu1ojfWSTrt9Je9kQeSFisEPK\nFBa9DMJNoeo/jsu6KwgLXTOvzjzPxXJRyY5ZOmwyP6YRboGk+Pt3cxSFk/iZhD4E8Mz3N2vg+Bnp\nldtk90zUnxzoRqUC6qb7WbrTstmcKmtOk1q60WdogZgcch0zMMq3PbyjXZfkZARe8KfUf514oFq1\nYyoPoGmWTJONRAPsDnDvjf2aAKORBPmc90uJqtrdvPTGuoZzXW4UnCamUwiUgKzm53HrEvKSQruO\njwgfjKGY7m/rXtL6F0s5T7kN/L1+zmPbxqmFX1nKaFtf081AYyCA96+dR4Ort6MbYNcQKJgsTwRM\n5N6KChbDmwIce01ye+XrcqfuNyfdn1ue6X1ergAQRGezMDXmSkpcVrgy1XyvpFNFjgayA7M+J/Hb\nHaEXi/4pZYZb482AU0nSoMPS794ypV30W5b7NohxhbWuZkGeMIWc6n+TtomETc4eQmPrGKZpcrIz\nqTFMvMDw8v3v//hX8DufvEoJjYGf/Pg5/tf/55fxp//w9wMbg9HRuqTg3WiVOZlsXajIdSNCV5Im\nYeHs+sTK5PWgSAXce4BPOzoDGwgbNGOpySapHmm6Yeosmdfu7k443YnBsk26toREvnpud4r+s/6G\n3o907OR1T4U8BWNKmVblfdtWrNcrluXiRId7D+KT6kcUupCy7gHU0BLPASAeD+qa+GLCl77wAb7z\nW74AahEZ07mDOkmqZCJAic40n4QItIYOMRT3dcH5csWLly/xyfMXePHyFR4fz7gumn0N8D1vzCPs\n+sKAP6IOZkQxz4wkC5B1WX5m3sOiqJGBRFhz9BSaTwQ2zzTXMQ3rhzykhiPrj7pWcvU13UXnqCF8\nJNmBywJDGS609xzJ9Hk83pGdtzgeHx8ByD47zCw7y97d4cnDEzw8PPXMGOZ9WJZYUA9sIbw2Abir\nUoaF7M+z+D485npt0+yLGIOYpA2m9N1cm/N8wpMnT/D++x/g/Q/exwcffoAPP/wAH3zwgWymZskV\nzIXvE6ApuQ1u6SkTa36OxV+bFUPBYWovs7KBq7U7wCpLaA3H4LUNA1uLzDQ5G1vvPTLW6QJoUvOV\nDdackSRbMKRQ7GX7rMeRVcOe6ROLAQOrt/1nuMJIYTovv99EO1GKCg65aFed7OVVQh4T2YFZ/Ay0\nER3W7TMfqQmd9ORm/Ze4dcB3HTAZkCe5NGBVrfW5XON9Ee2XZNo+l/ZlIQRehnQ/7z+y0pLfJ0Ax\nHMgwxb1lJq9pof3oAmUE1DRwy6Si+0TrMq+FiNbiUg6z/vfOacd38XJYOcZ2i+IkUpk8MJl8Ha31\nyWXKhCevwRlJj7V5EBYBJ5PKs4A6loQfNIACZgfSO8CwIzy5rnUcvZkUxbVH1+zPU8DMkZXOCGiQ\nEo7+ku6UucGAqP3rp0ikQOhL9vtyusJvl0lKKKLQQQ54w7slIc7VI7kjO8MzahsM+kkHQQcDPWeK\n0uQGPIEnWdPaWKzPzAxMFt7VwNx0XpuLocvaitKgJBA+fn3GP//kJX4WOaEx8FUAP/3xJ/hnX/8Y\n//q3fQHU4fOfzYESgmSp29nBX7cEOmiYSOZsAoCmO1VRA0jnqEaDzEGn04YOQtdURk4AjKQpcWpp\nj515nnTNRPO9sY4k2ecXtyaZ0SvPBeERdcMXQp9mIt67kIhlWfDlr/82fvMbz/HRew/46P2nHsJn\nCYecJBBAETsLZlnP5QYBlw8A3MHShXUPGn03okFpXzwJXxPPF4yUgrGsK5Z1xavXZ7x4+RLPn0tC\ngtfnR/XoCFaiNgXhcXWtZAf1+WY18nBDlsxvts7HoroK3gE0BTtqG3M8y8ltI0nMRCmhEVI/aHP5\n+zBN2CHn90J2bIsU5HsmsuMRQI6NDNOhZHjLUUSGuz6Pxzuy8xaHeXYMZE/ThLu7Ex6ePODp06cp\n8UDD9ap78JjiZOggVmVFtuC/Obvvml3mcrngqq763jtosqwsRnTqYv44yCeF+/sHvPfee/jCF7+I\nDz/8EB98+D4+eP8DzaJyxeVy9muknEF0FiVCNWwCPtqIRPGUoc5xD/uakhLPoQzMtj6gg5l8UbYM\nSqtHZBoZyU6Z8KDx1w2gN7ZNlCeX+3fr3UnVHe6dSQy5EjGAka099dxaPv88vDuGTc/mdA4nBWue\nnWZZccyS511DxlD9oQ5S33TQ+EeAoQBMqXBDfUaC5qfeJFwmF2MGtATvRlDhwod9JyGIOR/cN0A3\nfHYpVrBcn/QYf24mSRTPsrbegW8lD7XGLOH4TYkFavIAgu7c7YRnXwYH1ArY5L3Gc9t6Auj7Ubhd\nLqvtLt+3/X2y1Y+ZawKWBJ6Ortv3X+4rlV0rD4k1uCOFE7N5q449Ocf3Dn1zdE4lRsdlG0lVuU71\nWfbsjPcu5aSQpzrGGL7Hhl+fnm/3S7rBjuhL0z+xbcDYz/lc0RV1AXMlO6JDj9qMrYAcY8t+ayBf\nbG6GNSIB98Ck84GQe0zNgVib5J7T3MFd001bmKSO47GLXnzyEkAkNP4YwJ8hyMaWAP6nv/dP8K9+\n6wf4U9//r+Hpadb9o5JuTmRyakK2eBKoO9MsBCeTvybrkBpBNmqc9vudkM79nSZ0z7hYf3cQrEYq\nsazr31Pzc2xtJg/y4kkUnKTaGl9b99PK2LSbdIzho/L3Jy9f4S/+wl/DP/zy1/wZf/A7PsJ/9kd/\nAE9Os2emNJnwGcHRuYbVJX1K/ieDefO1IMbFrWzmZbKMa1Di26YJ02kOL/DWcV0l+9qLV6/w/MVL\nfPLiOV68fKmeHV0OAPIF/3nOM5mN6apoUycK5vHLZ+ZzvA+0/XOfxrNEVgmIaBedm1132X15/4p+\nrnOnZd7NIZ7ZIG0Eig68Oln+xACRvIAq34YL35Gd30OHkZ3WIrf5w8NTPHv2DE+fyeJHE6aI7WV0\nbAA4xZjChXHStNCA6I6+dYn5LQvvIw42PyMPDoJ4NeZ5xt3dHZ7c33vZnj17hqcPz/Dw8ABAEhA4\nKVBAcZpn8P2dbwzWt45ZM3Kchn1u3IqUCFBWamzWKobHQZvXRQBQ0z0OSPY21IM5wJKRnHmetW32\n4Wt5jdK48dUxiJJCfRZ6Q676Bs9Q3On2lTvSEZbVTyVXfm3Ka09pgkghSa13sIHBBCAcJGaFS+lG\nw3FAFXzy9+8PiWMlOkXp28UHSvo2uamlYrb3AUwmQnILsGbOs7/zwbUczyuEZzjG+1VgHQTCrLVy\nkVJshk94FlKGMoYBVut91yxNpKQFBmopAXDVI2zGFLYMfga0Fbh4KueRaESK6WOyA3jImu2dc7Be\nbgzXsU0/7R7Wnr33RFP3k/bRkXWgWzEpheQlT1UmXOP9vf9oT9IrSbrlBdqXyzxJrvO8YvLBydhN\nMnXj3gaotL+1WIVs+x2S4STX1yz6lIxW+BTdU3TUEdFJOoH4eG+hKH98T5AQrqxLhVMkWdb5kCcG\nNJAtj9FJs3bkvtp69/U9+Znf8uwBQCQ0/k8A/B+y2sjP+ecfv8T/8kv/L/7sD/1BpAaEGRGsppOG\n81j4XCQ1MC8XAzyBmcCtofVK9CjNBx2EjYHVNwE2HGA6O71byun0naDkMKIZOQBw2M/mxXADaV7n\nluTXxmboBxnTP/MLfx1f/crXSyjgT33tt/E//+1fwn/+w/+WyoHJvXo91HjpANtokJFbUCVr3gYp\nxE7DV7v+ZoZeX2NEYvRc1hVX3Tz05atX+OSTF/jk+Sd4/vw5Xr58hfP5XEO6snwqUwzqkn+HTQM+\ndzJi7Q1rXVXAXX4EU7Gu3Y4oHNHjKi0EtGnCSUn1fApPSt5A3cZO4Dx2rGZj3eaUvnWszAUfWXa2\nYvJIMufintofiA1u7fldN95dlwXL9YLP4/GO7LzFcblIZ9/f32s65ydBKN57L9IzrpsLj0zwAhqI\nY3EoATVJgTNocRcWsoNQfsDgIuc0WRD5Yv77J/d40MQEz549w9OnT/Hw8IBt23C5Xt3CYVYGIRUC\njCw8xRT9rMo+FHRMBpzKUIMyOBRcs8Wd8hLl04CkNEzpGnAW79S9k51bC6FtF/XsNvYSjAB998Ga\n7hgE0GA1zJN+3KRaenJZskfLrCQZcNQro2jhDUvhZwjFl13r1vbEkZmohCrk1xsw1hEANfk4PuqE\nvfPseAW5/p3O//SjWuoL2bHf9e96GXtqECnpWK56z+xpCcK+vy+lO42ADkDZlNOvMZKZ2sDkPJdD\nf/IJDCSLcwmROABsiDfRI7uPg5RIEODWT/1768mr41Y+DUW5MX4M/HhK6RSvf7QuJhOIeoj8Wb8d\nydYtUuD3FBu0E5vs8TJvu11Xx2qV66PxHuSPU7ugXDPKbedMGEuvSHVTRsXPegTNMhkc2yP0dtbH\nVQeZ7sghyvt2GA8Hz0l/uNEmhS07F0t9fzSmoz8AINZWWmZIJ4mmopokVKjjj6NsOv7sKeu6ArRo\nSGbU66P3n+Lf+OhD/OTHn+CrbETnfQB/Hg7b+SfwLz5+gd95fcZH7z2BV05RoHl7nOwYgNWEBg4e\nWfbXY9ax2ISsWZeELpeNIdEZfVP5tyxvFqJupMaNY86/yrv0USWlZUNJIvX0m3U+RzxoCB1SBrfO\nw7zK+I2Pv4F/8OXf2IcCMvDTv/Ex/tmv/zb+wJe+xfUPAPBGuneXrknqEqoIarEOTNfbdZ3vc/nz\neqJupNMiWoYQvN4lfO18veLV60c8f/EC33j+CT55/hyfPH+Ol69eu5dj22ytGAWJVjliILJfGvgf\npqxMbDqrt8kxj4kOeUijhSFOStoIRTxl7bWuv24zYZrSEoXkVanzvVzbUnvJnG5rcoBtjZT9xXiV\nxmUQYpNPOC5DNtRKJ4lMLKtsInu54vN4vCM7b3FEwgE4GL+/v8f9kye4v7/H9bqo4pfze7d9FlQP\nEkE8C+SLb6eWN8sMcMGwRADwTdZa21u32AeCzEARcznjdBIvT7zuMc/nYO4ZTFJsInU6zURjoMIA\nACAASURBVFjvTqLoW5NsNKZI2RR1/MkOEjFMUHmyDCtVI/KNR/0m6TDydX9/7xYKU1x5rU4cYS0U\ngBxtlI8d/Bom/vo3lw1TR/CUDTtEAbCsbY4Jz16mTPmW3yj2gMgW8gCf6tXqusdFa97+u0dUnK33\nugG+vG6h8G4RGUoW0EOiAyMEQbKsnW4dR2Bp7MeRHIy9Ws+tZ45/7az6ttI7/e6K38E5xeR+QJi6\nhozlwyybDoh5fw99hI9l2bNHrrY9sJg1FMH6GxKe0bdeDAD2OcqTUh33lIYZZlA59uxkK+9qRGet\nCQmO+jN7e+rYSd5kbUoztjt5Temxx6NTx4aOjn0I3c56e0h4Up8kuY6+YycvtV9GGTcd00ta6Xw+\nGMmr82ayc6Sn+LgJYM0WWQwrSa1treBwDF3K5Rz/Tv3Ujow1XoDj9rG9phgpnb/2pxkI/KkUYyPv\nwUNEGnIT68lMF5WxSMDGHVufhzZk/Kkf+jfxv/29f4qf/s1vQOJC/zwKbGcG8OP41W+8wEfvP+x0\nvM1TEUaW9HEml8a+9DupM+/uQ62BWDGBESoLV2tGemLtChF5Fj6kd+tbDH1jmeWIdLcbI0UIg5n0\nS+irvrGHBI5k52u/8wmA26GAf/Fv/n38ge/4Iv70v/2H8HCaYIYt8ezourIGMBrIkhnl0HigGujy\nK4WuorSNlH/rHcsq4f6vHx/x4tVLfPL8Ob7xySd4/uI5Xr6S5ASbGUOqWq9EJ48BNq8NAL+GvKsP\nMZfKNZESHSLdEFe26bCBnOWzNduqRLJL0oSUFGCqnpVilBIC23a4QOaHNaVv71t32XNC9v+z96a/\ntmXHfdhvrb3Pufe+93pkN5skGDYpK4Y1RpEDKNAYSIJiRYoNOYmNSBYQC1EgmCTg+AM/+B/Il8RI\nAkRxgsREAEP5EokOYFKOJSiiZDuTLQMRLQmipubQc/cb7z3D3mtVPtS41t7nvub7Yj7kre7zzrnn\n7L3XXFW/qlpVRgeVd8PWSUwGrCOibst8xnvGND0BO/+/KcPAwzaOfHB+u902yS75vMuM43HCJLkD\n+JBd9uRlWePDe1x6ENwtBLz4xmEAxhEpZ465v9kAiQ+LUenDtLJQklLMTVEwa6hmcasxlzlizUqZ\n+XzOpBmoK+ekYNA0eFjOLMyFRGNOwmxDiZpuwBlaar5ZkfbtfqY7MdT0drsFERnAOR6PDdBxjZZq\nXSGm81aI1Y0sKUy8RaEPy88JSZOk4gTgCZqXNmBDKyCsAoGFsNC2y89nBa1SSB5bSjGmoHVmyogW\nA52zOMitJW0JCFvhsH1flPh7J5n1wmHqfn94Wb9BBStAgJYA3OvkSQWUoXErF6mQvfJbEPRUttHS\nWDeiu1nogwl79v36eLrSIqwPezY/o6aEpMkZhImqNVn3SVQI+HrwNjmgYsCzbIcL/3G9WS4UC0yw\nbrWIlp/IwGO0xCSclsO1Vg7NWttQzdUyL0q75MwOpZUAByeK/3b9NWuv00WEIvJ2xLpsD70HoNM+\n1dfICoSErr6eVsTPpiWPYMdATA/+WpqcUm7+Jrpm74fSPDMngNhVOT4oWoBS6mhLIglWQKhD555o\noEeeE99TwjCM2J41VQEgbM82+Cvf+x349d/9E/zvv/cncLFdyw9Ye/OQjU5nEwSTsSyyM1i8VtX3\n2qhbD3YRzvSoZYMHk1NTDA5CTQEon9WyxDqifu1SY9Fp5jTH+daG6HzyF00Scs33UpZghyrhuZs3\nALgr4E8m4Fe3AH4MwMsAXgH+4HO38T//09/Fn//Wb8C7l3u8cPMCL9y6EKAjh+IBTwQqY+A8dX39\nmlyUUggqIOd45oKZjtjt93hwdYU/+vJX8cpXXwXKhHI84PLyEof9nmUaGUGidl8Zic5ej40yyTli\nch4WAx7pDFucH+6g9cWS2OYsisDWms4eM0wPx2FEHhOH0w+RcXW+W2WOnGvKDl55Tt1yz8CORFYo\nwEyiFAkttzEOMlroo/I5jpZXMM8cla+U2ejc41aegJ1HKFnCIrL1Y+tgRzYLC+QTjkfPLAwoGs8u\nwObMvpuimSNQk1ANgMXYHwYOPTmMI4iAmWKIyKhNrmw+NuGECdhUJHw13J0MSJb9nMHO0YgBJ/KC\nmGKzxbQnCTsJIo48YxRjjZknV4hEcLBSokCmWii17Gw2GwNjGqFOfXCja1wULlxIcuFDrwcIfMTb\n614DPKZBhAMJ+97q4r5H7b4ToV5L2Iq3pgjUe9EqmFrm54SYE5IV5FJQJYmY1ZgSkCtAwlhtTEVA\nAhAtCmvF+qmfwzhcB4oWJYxrM8a07u6y9vy+rjVNOxL47IA3sn8q5LKmDuqeQ1GI6uoBTsP0uP9q\nrUga4czATQt22j61gmXTPtsTIlYL0AGpHKTRijxKzjTxSw+parQqHZMFUE8wgKdCVS/sR2arCXzZ\nTc/dX2K7tcRcWOPIWvdxHJEkWpUJMmLaKXJ+j6CHbeWMkVprdH4ysbYiL9u7Vnqgw38mnF62p8GO\na6QVwERrUCvM2/Ps3ljHeht1DSpJvWY32JPVihDpjbv7hPMCJxQYrtSR56YUlFhx1b83wMMlL8ZX\nNdOmgEm9Ask73qw7E8DD+MT1kBJHKhvzoj7dO//6xz4oYEfFdi2fBwB87IVnHezAgY6SclWmcI0V\nlSRaHXld0RKoojypSxJJsslE0Hx8OY92BkUt+Dlp5ExZY6mjH7oiFCDYCw50sgOgOIcu4DNgc2tO\nxSzuqfHMDlXC+27ewJ/54Iv45Otv41Uituj8GIBvl0d/O0AH4IufvYv/4vV/ZqP6p198H37y3/hX\ncfNsa0pg40XKT5KPU09bbV1mCTc98JghuUK5loK3372N//GXPovf+/Krdu8LN87wwacuJIloNVdw\n37HJ9hYhWNySWqOCVwicL+fklpZkQBRh3fIfrSvaYOu0BzsAy1fjqGDH84epm//aa9A1Ey1kxEcP\n5iLueqFOqiTR4dastECS84AGsohMViGq7G5JVcCOB4R63MoTsPMIZbvdAkATDhnE5kM6HLHf73F1\ndYXdbofD4YB5nsVCIlaVnM1Xk4QCVWIUXcCbGEAQ9rcYNqNkUR5Mo8o5cLhNqvXViD/q6jVNRwMK\nukgHeY5q/iqRHPKbjFmX4n75CbzRKTnzUY2MB0voBiklz6TdcT13dTgtUOTkB/bGcTT3tcPhgGma\nGncV12B6WzT6VF80ogoyQUOrxjbFNvRCbi8sqJBRayushCGAW3X0SQCCen9dmEnt/RpdRzoXhVDO\nBp0bH17OzdILbGREngn9OthoNa0tUezHaHGfoTcYU4ta7usAVt+WtTXBjzwhcEVBCd7e5pnarpXf\n+utiV/Txa9a5/rwKrzmOHMQMNoBgUWgsa/P+xf7rntbEk6jEnjjk7jERhLA1+ShKFrcqm/dLSs35\nQD8nKIIaToOcVXcxO4uyvv4Xmu5GqPb5IHAyQD/r6G6qa65pLAOur5cGZHRt4vWzHG8dy9helcse\nVgc3x0FPfy3fQM3+J9I8OcvnU3jXdrQlSFbyECIyJY7TjGChCEJRr5xorD46Lgp4EGhBBDwiCC20\nMzauGms0oR+pWkMS4zCe2m4V4nWMckoS1ocEBFcH/QGv870rYEfeX3ruGfyp97+IP3zz49LwHwAD\nnU/gYy8+j/c/e8uF7sRndfh/sjYpLc5hfK0PBJBY1F2I9P0WQ/jmYUQaNkh5wxaanJp5UzJtvdY9\naWCr46sqmcpg6NCQ0GB7GsFAeSlkigvm9SEwgbmm8k1/6Xu+E//LP/4tfOq1t7iOl9GWLyzPQn3x\n7Y/jF/7pF/Gz3/MtDc01kNov7MCHdf1HwGORRBP3YaozplLx6b/3y3j9K681wRM+fnXAK8cJ79uM\nEgAp+9JQxNcpI/Xsi+4/O8dEsDNEGoltWWSMG36fEHMg1qrgssg5SbdUqrzjVp1kFs7I5y3FBtzd\nk39nPjRLEng9k9kErJG1mMIeMWWugk6jA4FGKH0uWKfFj1F5AnYeoUSwo1EzSq0SuOCIy8tL3L9/\nH5eXHAlkmiZsNsmIXwQ7phkVM+RcPUSpuXGdnWGz3ZqGYs4z5lKQ0mxMk0RzpBtCrSCHw5GtIQdO\nqgUAwzhgHDhu/zCwlaqUwuEZzd+T30stIAlaQDSgzmzKlPOTwbfTNVpktDe1h/zIz6SYMNETQriA\nHzUksU+66fTaeJiPW6LhKD0aVGTwFawUplDvdUJ8D3bWnrkUdKKwY//4NToIyxpF0yJALikzTCbm\nNFYEeUGEGtSKFIAOC8lVGIUS+d4cv+zzypdNDxrBz5hu6LYuzEaqixe81yJCk6yJ5hc6bSFq2yl9\np/idNrMVAlUbjMBw31MrdU6IMCSIUOTfny4nLAwyb5ooTl1UTdAL9bp754Tjkff8PAnYmf2QqipP\nVIkAABoCvirg6UFOKeLz3rqMOciTsVIQ3e0D3ZvRhU1+NZCkfYggp3fBi3s0JYDqQs5uBfYF0CGr\nMwJMfe/X0SlsHhUg1H13uoR225qNdTQTGtq7ujDs+8a6gYQc9r3VGhUWC7rVW56TgZ0ahMHYdxPK\nV5rXjoNrh/ldhbcQ0KLqeS7tOrVtVABHFZn4HJBK8zUDTa4wQ2A+5ilOEoC/8v3fjl/4R7+NL77+\n0/bdN770Iv7yd/1pDONoSqmcNDCBAFliXmdARy0w/RAQ4fW7D/Du5Q7vf/oWPvDMLQxhv9lhdQU7\nw8YE+JSapkLP0el5r0pBIYE47zIkNjQioBvYJBk3MrCjVtMG7BQFO+Sh6mW53Tjb4md++LvwB6+9\nib/9q/838ArcsvM2gFcqGOj4WSgiwu+/9dN4+3KHl27dMIava7bWKvPbKj8iIJKOhIAF/FWprNj5\n0htv4nde+cp6HqW54iIVnA+egJ2ncgmy2Bo2cF16vjqcmx6SwJYVYJ/iIgu8L7nZyuYxJmSttaBu\nNk5zFPDoeS0DSbWxkNcqZ3Cqpgng/RMVRXZeR/eYKHhT4jNB+nTdmwhKOO1PlOm0iY+r+5qWJ2Dn\nEcrZGTsHq2Un58zCxuGAuVQ8ePAA9+/fx26346Sg04RhYGIawQ4vN44qBPjC1kU1DAM24wZnZ2fY\nnp2Z0JymhCm3sc6ZkLlwcjwekXPG4XgQbe9B4qMTE+BxwDiMGAY2786l4DAdUaaZMxGXIoyp8AFC\nVhWxz+Y88QG8xGeKUkOpk5BY3oh9cQEiaKs6qSKJ4H4K7GhRoBnd8rQSNRX3mkwWwCQ05on5bZm/\n9qj/PpIDiJZmKXg3woL1HJJNutXQGVSLY6l1Jb87ApkIdjQEtUWTEpdGYyBC3fhJmqH6NFDQeq0P\nAameBBkPBTzLsmYVaNuBdn5D+5aAZ2k/UYHl2n6uNH954en2Ry3cMLhrpbpOtlaDVqiOnx08UMiN\n0/psq9sY4DRjlvCrh/2e3TeODnYi4FhbnypItdHN2mAHUasX+6HgcA3sREVEBDwq7FOoL+aGiNm/\ntZ5GGBcX21SXCohT8xP3zRrYMVeb91zW7XTXXN7U2e7z0FbEMYxKgpUryc9fKK1oLUpLIBPbEK0V\nPdgBAcXIU2fRjtad2MUGGPnLzhx260tzRwHtnDRzmSFnEJWuifJH1kAMb0VasY2atFPCYz91cY6f\n/aE/i7fu3sdb9y7xvqcu8OJTN5p+GdhJqlwio3emNEjsWhXB9+XhiE//+m/ht7/6ltX/r334Jfy1\nf/u7cevigj0UhkHAzwioZSdBanGrngGbfk8i23dA2H8dWFBQwEJravaoA511sKOW2gUmQMI3f/gl\n/JkPv4jf/9zbrET7KADzXFs/C/XOAwE7sb3Cp1Ktct5UFKZCP1VZp/VqZDqFcKVy0vXX3nynqbkP\nnvDGVHBeK14aztgVTupolBRB1mBMWALQ4XHiHFAs50WBv6U5UVYwKAGdXY1kqYpkEqW20nLlcaoM\nSgqSam2UP8pPxmGQNQIDO0pDLbiKyIO1VDtDFGWOSIsWdDQoIBb0/jEtT8DOI5Qbtzh+/9l2i+3Z\nBsMmo9aC/WHC4XjE1e4Su/0VDscDL1AqKHXGXCdMM5+L4djxGdvtFmfnW2yRME0TxmkGElDKjOM8\nceShOmOe3ed0mo44TgccpyOmeUal6jH5hywZfglzmbHf7XDnzm1UFMzzhN3VA7z77tvY7/bY73bs\nbvfgPqhMGCBRhcosZ3PE5JozSDZhJkJOg0cSEWYJAUOQaDN8uC/m0xAAJJ+ZTyXUlFEzYc4Z88DR\nbsZhg3E8w7AZUWrF1X6Hw/HAboKyu43MiAYo2WcZpKRnApTshIgv8l9/4FA3cqWKFP9LsGchnJ+B\nCF6UgrZNNJD+EuuShRp34oaUDEjq90pLXIAGE9/CgSamacZwnJCHIzYAkDIn3BuDH3hiIE2UUAsL\nzBCrILLV5EDNVDwB1CQHgx6+2UFDL7jrfCSb4/g9+fqwevmzOA4YQ7bPcU5yAIWm9RIGrh9N4HYh\nMohQ3ZiSZUVvhThbOjDmFYVFb5QxIj2/lgALRZsTeA8UXY9kUdSWDMPXs2plqVbUEN5ZhX8W3pJr\nKMmDoczTxIqV4xHleAQVcaXLWSy4I0ZNzjsMTCuIQKXYPGQd71pBpaBGLaEy5hTnGnK2wwU1nT8N\n1mHrFyzAxdVBFM8NzHJuYHbhTve11eZrNJHvN5HNYXTF9lKnJZZ+2roP86CCB9ereY/Iwbqsvxq0\nnjYHJOcnRUChsOpi0lkD0uT9p+rt1NCysmTWS4qjnyBxAMTSIG4zlKBRmE2MDiFl9d3Xddj7pK48\n6ubnFhUFQsv9ENZEUsUQPzIJHc6Jz4cSChJVpFTFNagFO3pmJdn8AcAcVmgBJPsKYzydYw5Hbm0R\ngb8FZExrX3zmFl585ubKsCZ7107k/nvwmi9QnsBt/fTn/zm+8urbbS6ar76Jn/+V/wOf+vd+2PgG\njwDxnwMaoVOVMkxb1AqTUKQ+/l7XCDk5VnqXYt/192rzm2Sj5JRAOYGqrGcisH+sJweNJUO8OAD8\nzPd+B/7Ob/4Wfu8z73RXrZ+Fev7WGSo4/1FOGQQ5NyIP1bMkld1EkIeMqpacLGeFhxEYBrDFEdhP\nBfeudsa/rwuesP8s4Y3jhA+MGxCAAwFTKRiHAZvMdJASJ1SlSigCJgnqLqbrl0SGIBAVmSdRMmZd\n58CQE4YBGBJAYJ5dCst+pc4AqgTDGJCGBMoA29VF+ah8AiRnb/jZ4zBiCGfFx2FkZZopNp03y4oF\ngoyj7qwEWETOuRR3oeSLkDFAwY8pSiEBEJjJIdXrPUO+XssTsPMI5aaAnc24wbjdYBwG7PcH7A57\n7HZXuNo9wP5wheNxAsCEqdCMuRxxnBILrXNFzgPGzTM4uzjDMIyY5hnbaQaBcJyOwIFQqWAuHlGk\nEuF4VBe1A4OdWlkgz5IHR5hHKTN2+yvUOzOudvdx7+5tvPXGa7h546YxoQRgnicBOxzCM9UZqIUF\noVpBJQMl22FBjc425qFJcoqcZfMlEfAi4FELhWtUqkTOrYkwg1CSPG97hvPNBXLOPFaXV9jtDx7o\nAZ1WRZidBcqHEvQc0IPKyknc79asNExoUgWDA77amVoymYGJNESgSCrEUxDfXcYiy5QNbz+UMaUF\ncyFqwY5q46ZpsnNbzgw2GAlIyBjyyC4SzEkA4jwHBEKmhDSAtZzaWm+Eg1DrWwt4KP5DoaHyTlBg\noD20G8JnWvnsf2v0PB24WA1ZO13Yk1pljXnTogDg1/mcqKsGg/TsxJ5UONV12mZI54cE17Jara2W\nx0RcCVECwAEA/Rx8nolgzMYlFoBKlZwGE6bjxEqN42SuMKphZItI4XN5x8nO5s0TZ84eUkIe2RV2\n3IxmhR7ywPMv+XgU1Cl9SbUCpQTAE8KeqjCq61ak2orKQgOpG4i73NScgVnD9XsUKNOeRstR1Xxk\nDnDdfQphrCqfYepWUg3jyG/+a1zNvgJFoA4R4DSwSQR2XDn53aQAjkAirti+t4nk94zEiZWTfk1O\nGwx8K60gtF2I1MF2Kf+7FmUNmZUcLMFZfxn48j9K1xyYKFHz9lcCKrE7V6VkgmpCRjcZYUcG7bbN\nmb8jVQnjX4S++mFoBSJuBdK5IbCYPQCYASogKmBgI4OI4nTDBk9peluWNCp+1N/4Pqexfj5C93MC\nOMhNSnjz3gP89lfeXMlFQ/jUl17HP3/lVXz7N3wYGZVja1DlzyDbSxqeWNdEAe+RGUBRQC1WXbXs\nLDsXQDX5GQtNaqnzoIo7SpXnF6o8qAaWIl9ibsLC/82zAR//we/E67cf4K17l3j+5hk+81t/hN9/\n8+MyVz8A4PNI6RP4xhefx/M3t5ipIMu45aSgRmilCNVpyCxI5wFVItVRzsAwIA0jMIwolTBXwm4u\nuHu5Qy0VH3z2aXz8zj28CqwGTwAB+88UXM4V9/YTDsXDJp+NZ3hBciv1Lry8ViDpNripOREIBWr9\n8XXDwTHGcQB3I7m1pbCnzFwmVGJaay69YwZlQkHFYKCF3fTUQweVlctp9BxMKn8BBBS+Xjeu7kjm\nx0ofPGw383RWMk1lxgA/J5T0bJPuPfnXaHoC79vN4wkbHs9W/0suN8Usy4tuZMF9X3A47nB5xVad\n/WFnYYFzHgy0pDnhcJxwOLJr29PPPI2zc87Tc5RISsd5wrAbgMwMeC5sveEIKgJ2jgccp4OjfznU\nxkk/hWDWgvkwYb+/BEGTg7I5/caNG7h54wYuzi+wGQeM44AMjiSVqCLVwkJPrUilAHoQfhgx6nNy\nxpD84CAggQxES4kE11wCfp2CHbCGqVBmgg7CmAcM2y2252egQtjv99jv9+yGV4ox2KaIZiNlJhaL\nwAimsRKgE7WaJiwABlgIUCTAmj2mAJwXyPm8ysVcVEOpLjqqB1L2w8J1BDouJGjrXMhrrDqVw4PP\nw4xhmnAUsJPHDcaNan8ych5tPWpCN2aOJHOj4y7WKAqgManmVgVfH2e33gSwQu1vNkoi0QUo0k8W\nXIwTeKia2Qh0wnMZPKtwlZonQWsz4cgxmHF/FTChWi217HTNCvOhQpEKCXEs1D1AA2Do9eaiVYFK\n7D4gN4nmrbXwAEBcUGZZnAvqNGM+TJjENe14PFoYdkgEPouieDxahMJ5ZuY6jiOGccQ4DthKni2O\nhCaa1FoxV7bgslut9IOlXA5rPxd+6TkdIuRMSBhYTgkBDkAKNHQuPa8YgltI7x5X4hmOMOeti1Vu\nN00i2dO12S9xjlyxoMA1aBr0HrRzEYGXu2uF++BgRIUAF4Db/+KiImLAk1UAjyAnKDXckoHuCb4A\nE9y6AkkSaYkFrf+AGDnaV0rQ9IYWpW2l+DZMEnFTrTusHEBywNNbRpMAgHYO+XNFYWGqgoFOdiqj\nNFXPy7RzWkA0gyiDhgLmFJ4/Sq9RIc1QZVdcQZba9bDGUwCOpDYOyBJJ0KKQktNUyglv3t8BOO1O\n9Z//0q/hWz72Ifzcj38/nrpxwd4RqMhJ3YvE2gEBPJWB5lwTgx1I9FWtu4R90vUvCx/RszmvvXMH\n79y/wkvPPYMPPf+sTF8W4T2ZxUa5lY+Tzw2fVyFJQ8p7+6Wnz/HirS1KKfip7/pG/N3/64v4/TfC\nWagXn8Nf/rMvo2CGc4EEJTQpJzZ/KHjOrJysQZFH4u6fhxHIA+ZaMFXC1WHC3csd3r5zFy+/9CJ+\n52qHT4lieRE84aP8dnt3xFxvAPg7UNvbYf443r7c48VnbtpaKmLZ1XXMlh0Fe2z9osou/rbEMsSl\nX2UwHrlpnjHNGjm2oKJgzGzRGTcjA7ycUJPLHZwKhJVYGsAgJz9ryccGeMg0mIS5HkKlCFsQxjKZ\nRPDYV2ILFkoBARgTkOBHAgAPvFOJs7hVkFl2/Nzl41WegJ1HKDcu2LJTVQuz4s+eEiPpYRgt0MA4\n8hmfKlLyIHl6xpGjZFClxl/domp1TNmen3IjsBENIoC76wkoiVaItQpj8qSk8yw5a+aMcVC/Wc4f\nNA6jcb1BzMnsE14xC1/RPsalr0QtJWDQ8NpBI2bCJtRVxV+qmFONNZUQISYKicacnPEkET5y0w7/\nfIKfObNuxPIlo+xL41efRPCjFd9XvpiFjUYbhEZ7tmhPYsZX5dyUrocoYMkd0voI3DRpowpnZFY/\nni8mXLRSrzTXxmD9LISCiC6wQ3yGPyg+dL2syCbx/EFKMHeH+Jtfk5AkkV3f3ASAMgRUKCgk1nyD\nlQmZVI/lzML1t9r8CEIbRLUQuHVvqAXG3JQCnejvBdCAgbkLW99n1o6+4+qWEC0ka+ds1urS4Aca\nTbShP51ArmCSLTfJ1rs+r6F9yQXW5XNgwCVGiotzH5/TvzxyXJvXpikyfR4sJRTZW7E+XU9DDhno\noUCBFuG1bR+CFvO/VhoBOYCrBuBQvw0c3PuY+nt0w+y7t/aYflz1c1+y1qOgSEBtHjRSVF48x/4O\n7XXrudbDAuwwDGG9RJVF6ECzv70uP3fA487n4ggpjejzMT20pOXiaPrTu7murNGcM97/3FMArnGn\n+gLwO59/Ff/VZ34Nf/M//FGkQWxkeUCWQEWAW5w11HYM2FGKKx1OFiVZKeHqcMSnP/cb+O0vvWY/\nf/vLH8J//GP/Fp66ca7oF7qech4gMUsCe1XFnwdLgFrRpeSccfNsg5/9vm/Cm/cu8fb9HZ6/eY7n\nb267gdXxDmNOEK8IVZhUoBZkOc+sEclKKShTweX+gKvdHnfu3MG9u/fw4P4DzNOE9z91E+nuPdyd\naxs8AQD+hN/mOqEPogAQDtNPYyrnGKOcIuurIgE1I6WKUsXK2dC5LG5rMbqtX6O01fhvSpZKY7vd\nNoEreP6Dexywukc1fw5EpmuTwLbrQ/ddjPbH00qm0LHzyz0vlwlS+aHnH49jeQJ2HqFcXLBlh5H7\nbGdJbHFDlBVykGyUQAb6AlhjMY666Eck8b+cJxdyWBCTxab8ORD/yHSIgGEU+hXCy/bGmgAAIABJ\nREFUoLPlhwWoQXywhoHdWMo84whmbpOcwdkMvBmzRJMyX+uo0arsapeHjEHBB6mlAKbxs4hUgPng\nkwQ+mKV/+j13hLtXSkURjbKHXFRtsTNF3aTqd+yBfn2cCLRgaNeVBCwSpTYlgC0S6SQhGdixWPVR\n4JP7GlKhApeBLf06CPRw7Y0Dwk4cUnlIhQE9l5M4twNlAawS1jIN7JMLGbcTndT/Qz0R1IiQGsdB\n+0DUgpemvdcBntay5WOgYGZlfCIYWgE61ia9KEGSHbqSwM+TBCEcyXhzLK0W37/DyufY1shE+4g2\n8bcYUafMMwcLOQF2+mevgZy1gAL63l8DxEO5zjytnQjruC4Df9jzpY7cCQ/NK+7Tlee8F6F8DcB1\nD2nnPv4EAUF63kfXUVDcRFBLIoDU6/qxqL5VWiit6EFzD3YgbVOFglKHFvBl+26dtoW90ACkJYBc\nG1uORMYKuGixVO+BVYVOqDehva7J9C5BMqJQqCAaSSEWt7sHOhHwACyOgoi1/+Z+uA48V9dJM0Yr\nPwc3wSgM9mP5weefwbd95AP45JffaHPRfCOAX8zAHzKl/YOvvIn/7Bf+If76f/BDePbsHEMOoYBl\nX+kh9pgny3KbRD3BapuFVgL49C//Jr7y5dfbM0Rfeg3/w2c/j7/+7/9IANZJhHa9U8eFQvoGAR3Q\nHGI6PmEcQHjxqRt4361zV9QazYYBnRT2ZZgtgGCRQzNpCHX2qOBIsQWXl5e4e+8Bbt++g7v37uH+\ngwfY7feY5xlnQ8aWCMfPSsc+CgY6nwM2Ix8ROBVEYS4Fg603V8wyj+MjAqm6vEHSvixAZxC3skjz\nIn0F5NrkSdK3263T88RCks7xmtJI16ADqD5wQQt2lDbEPRv3xnUvvZZc1fPYAx3gCdh5pLKVVM2V\ngGMTQahF2Ez02ZdTgc4wjEAidgfbbM2yw1wXpp0F0BAGLa3AHBmB+FinxNnVF4IWH6Ybh4E3WnJ3\nlgogzQQaCKMcCNxImMwhZz5gN3NkJ9sQxvCTNYxEeFdmlcRP1Air+OOX4lHnKql7jF/rUem6aFBE\ngUBqtVH4qDDbTs/sXHJYLcm7YQJGXxZASsYBSd2dyAWDyIzICWg3fVa5MrCWocr5hmDZMsEp3B+1\np5qpWy1qlRIzDxWS5RwTiVvCmiDcd9j7kgLQgYGTpSAKtpPFPj+EWCopjuuWvxeBFGlRT3N/8iqS\nCovdGEPAexXG64xNQav20YUGbQvFOezwHMJ1WmcviDqjombM9LtGk6sMLAg4PciJ7bJ9dMKao9fE\naDwRWMVwwA1YUgWDMj0VAlQ4jR0UQZXsMwQkMO1RRUljCenmLjLkZg8l3udmdQt9srEIv0OEr/DN\neyo+b8merRrt3mqmPfA+XA8iiER4NEVCAGsk9CkoEKIgblbbQFv07AzvjyVYjBaZmGQypXB9Awjj\n/eyqNuSh61c3LyvjF4FWW5UEKUiJAU8YX8u7s6KYimPpFjcCLBkvccLOSsjV15Y+e+09Fmr63Y2j\nnU1L3fi0YCfnjL/6o9+DT//yP8anvvQ6X/QyGOj8UZt/5g9e/QT+2//1N/A3/6O/YM9XwKu0nvfl\nUmsvo2v9VoWYdI4BIgiv376H337l1fUzRK98FV/446/imz/yQehmtTMdemBDwE5FQeGDeLYPLDJr\nWDua260J76/asiTtTe1L+WxK4ippdF8vZyF9rnzeeX844vLBJe7cucOWnXv3cHl5icP+gFI5CNAz\nmxF354LjZ5wuXJyf4emnbuCN27dxKojCGC25FBshig6jd5H3JoswGS075p4bAAgA5DQ0Vp3tdtuu\nN0mgHHnuGk2xsNUiG81lRm/V0ceym6KHs45Jb50f5YY1t3uAVvn210JTv57KE7DziCUlFhgOhwMu\nLy9xdbXDbrfDfn8w//kssdvdXM3C5ijMZ7s9s1w9QqugRGzImS0sei8Sn7MISQZ7/38VKPpwhSxc\nZWzGDc4vznHz1i0X5CpbeMo8SyQSgRPKXCX6hjJJZbS8uSWMtgmarqFjmumEWTcXB2fgBKbVAAow\nYODzP5CcPzSBSsE0i6VLBTi41kWZhPZbOuTMyEURE4AVLMUNm5Qga2v1z56pK0PpmKeGdcxBGMip\nFQpURxIlZA1ysFxbydukwrhTwVVCqJmzTZiRV5YxaoSUnBb5j9p3HbWVtsk/JtjEsdGxtTbDzk8l\n+BrxEQlt6Prffq9raCmQdNWfLAvQlFpNXrbvYRp/Jfb9s1NKMoap2X/cDo/6Z3qADnj018f9qtpc\nqhVU1NXABVdlan3uBVMKqEIgKAZUoRDz1njS4cmYciXXLDZKhJ7G1OVgx3XnYJMaIEXQaFLRhWlt\nPYT1mBL0zEiSzUmdhdPa1izqNTgKKKZwIWYFfHXzUsqMqQvDTeF50fphlt0wLk6jqq0nAz2rC1cp\npwMdVlTIPrdXtPTE9vCRclUgqcDjihjIXK2OED9GomWpwi2QSAPrC+uJDLnFqwugPmqch5yF6idZ\nSzpXKVIUq6O16iSw7cnXDpEcHs/LtdprrJt1o10KgCzW3dBVpOY5PeC5deMcn/yLP4gv/Mmr+K//\n3q8DXwDwh+v5Z77wxz+N1965g4/e8IhwDuDbvFoWfY28rSk2WjpiQnpOePP2PQCnzxD9rV/6h/iW\nj34IP/PD342LcI4vPpAgZ4NUJqhyjhfk1gi9j0JEt9AXKFD0lex8Te/Pcu55GIA0ACrviLxU64zj\nNGO3u8L9+/dx+zaDnfv3H+DqaoepFFBlGWtICS+MGxRihdb27AybcYNSCs7GcxzmZULZs82ZhHF2\nTqMA13m5gkGTmmw/GdAJ69yt8yHs85g43YcovTeSY8eVVezBAWoVpjH1hinGAl0qsycbhY60yiFZ\nghkMLKPV2ubKiXvF+w3j7zGSZEbyqK0P4bVfr+UJ2HmEootewc7V1RWHcN7tJIkoCxKbDV+npk6P\npsEWnu2Zg51SVJAW5ilhYvUgKSFJ9CG31ChBbLTEQUOr1hEGXHwo7vziAreeuiUaAkKdCw5g4cf9\n0CErnH15S5YoTMndV6I2AwAolYVQGNlYJbZazUIIjtNkAhCEqQwD02uOFDKx7/LkWm4X5CBhVQND\nE7M5qVTdMS7/AydVE8mEYW459feiZfStlic1YCf195JawVpmqyw+MtyofTVNeKd9ufYleQmI+KgK\niOffgRJHlYsyaxQQUlvdYgwakUQFCEW8OqfEIxjXwLVUMoUPQUiCrsdrxv+9AB2STkWhXIUIEEn8\ng2yCHQs3GuWNwrMgTLxxmuwA43LNrFkjtB/RfWyaJrfoEFnknlEPSRM1Gt8+F47VFesVulBCGzRy\nm4OdIrRCF2JsP+B0RwWwAFR0zUqELQf6qpgpJvCbhccCGPSgx+u0JeW7RH48FZgAjqptDuPGAYja\nfdWse30OehDKYfvn6Bsvz4sCyamzLAQBm7UKGNB9Ehst4xiEWpMJFehoVK2cjS/odwCC25BHYYoC\nW7QMrdFAA3uyCbKFq165dmXTRdiqAnm8zgSqpBRBAY9NzrKicI+GMo9zrB2vGRIMpxW4eytnpB0G\nGjqwE2lwf26nb1P8rgL4lo9+CN/80Q/gdz//uozHuuvUG+/ewUc/8uG2rbJXFeQo6FmAyrA3Urhf\nn/XiMw85Q/QK8Lu//Bp+/nOfx5/7jm/C+595Gi8997SsX7EySXhwxjkEFDlPI2seOYwX2AU/1W6/\n2RS3AAdhPHPm3EMpDxx9LbWKVA3IdHW1w73793D7zm3cuX0X90XBDJGVODAT15OTJG7Nfjbs2Rtn\nuHO1x2H2IApnmzO876kLn9M4r9D9popM3oO6Zt2FjT1gLFhLkL1UbtHzzuPgQGez2bh7ImCRMZVH\n9XRF+UZUjM1lBhX1BKIwzK4Y0BQhvr3a3GVhQTeAx2gBwSJJWuiQxzPy9BOw8yhFF948TzjsGexw\n1DDOXu6ChzPDFLQDGrBgs9laYkzAQ9oCMAGHBeEsGcOD5jUQxNguR/1u2hzHAeNmi/OLC1xcXODG\nxQ05C1LMajJNM29UMNgotSKVipxi/odWs0hIFqShVuLIINwV3jyV+1yJMM2c5PB4nHCc+GXFNvYA\nieLMAlXRJKmlIeidUkvAj7ZR6lbNkm1oJ7KrRRifGtgpNeJVqNAFSf1bNaBNFKLw7vW6yL/WkoaZ\nNp9SQ8Rc0+sAWgX0posJBlzIwAdZA6Kms4VhyzYZCOjHUAFEACVWl7yvDGJfiQk6JiRZO5Pdchpc\nKCBsBefUDQYzA3+Kzrauk5wcxtm/0q8eMEerTgQstUpeC3H/iEAm+nBrX12YnhsGqfVn+LjY3hbh\ne9J7apFwtNx3F8506MhcPfj5DHaOxyOO01EUJOILrmC563PfV1OK6D4TS1fKBI4SRh58pHo46VMv\nXxnqfKbPT2Gt6vA7IrArm8XXafBNKkxm/em1/7LE+LER6IiriCpp9HttUxTc+rFK3drthVLtr623\nhjA47dB9p4oMAz1qsdFodTrpAsZbBYjfY8C028smyqVIR1pqtQZy3HoDJBtf/TuCPoS9nuy5/lWg\n1aowSQj7j5+tWuZYb64c2ZPdcgLA6vq4aP8poBM+L8apu8a+lz3xMz/y3fj5v/95/NGr7+CU69RL\nzz0jrl9u+XMtI7/42axk1MYqX4ljSgQLfkOV8P5nn8a3vfwhfPJLr7VniPTg/jcC9amEP3z1Lfw3\nr3IS1G/+yIfxcz/6vbhxtuV1WqjZBygFqEUUoC7tRoAf33WKo4UkWiR1nQ5ZlLrDCErZAtEQEQdQ\nOhxwtbvC5eUlHjy4xIMHD3B5xe5r0zwjDyPyADsnC5GXAFjQIz2M/9zNC8xlg7lWbIYBm80oa68D\n5GBLiEVtzWIlSYnzCCa4e5jU6zJQCclDW7dllwU7WqE8olYk8mTp/fpjQMxubKU5o0NQ/qbtVVCq\nFuHVtS3vlkRX5ZW4uPRaCmf3rpOjvo7LE7DzCEXR+CT5bna7feO+1igTU9T68SJRILPZjKat4sXu\nUVcUFMmS5EP4gZBEAUs3axSoFPDkIWOz3eLi4hw3b97CxcVNnF/ckMy6kpBwZo0yn8nhKG1AstwP\nmmfDBW8OVFkrn79hEywnTiVl7NDuJhSSDOllNiFrmiaoEJ9zxjRnIM0g0cbkSkAJOTsoiro2lFKY\nUWgQhxZgoNugCT2/a0oQ7qnb040FA1gw1Z6QmIDdNTrAh2sago4YtQfUPTa+Ejl0dZEDY1LGJSGh\nFbl0tXnoUf3b2+ACUA8BCXFAF4Cn6flDepvgE8gnyANYW1p47D30EbEPOl8rlgOrUsYhBy24ytJE\n7RyZthcicIU9qG2pqr0nAJVzXZXih0hLUVDC17h1Jhw0teSbhErZQMM8z5hk76ggXoKrqrYxD0Ae\nXINvAAVk7hUKdKbjZJYGJJLDsi2jjWPdWJAE0Cr4Y6bozD2etYtKgusAj/3L02/SbmSwWWR7jSQE\nIrHcSXv6/ZlkLuOZggh2dDJCHbMBndZ6pu+9dtvWB3p6owu2B+gdeG+XpT7Q12gQuhrgkxScJt2s\nUAXZGtAxYatrY0pBLSG/R0tIX9YEnjUZqL+3E9OvucaBaSIEF0XeF0ZhlScqKlqp+9R6Mx32GnAJ\nwuB7ATuxrhtnG/yNn/hB/K1f/Dz++I02/0xOn8Q3f/QjeOn5Z5lWJD+zo8/LYrXLaQBlcL66E0oj\nvlfD9gM1s0vZX/1z34dP/4PfxKdeeZUvfTnc9osZeKs9S/R7X/4E/vt/8E/wN37iBxsrgoL8VBns\ncB4npzVra76hts5E/JqkYI6tOONmy2AH7H5GyKbUudrt8ODBJe7dv8/HBXY77I9Hdl+zJZEC2OH3\nCh/XODecfiMv17UKLA0/DVYe2WcDDVAX0SwBTZx+sdW9zsVSE1CtnBC1o6FErIAqlflDrZrKYH2/\n6Twrf1Avnjj21iZtf6AV/Rx5WG2/L1rkXa5wmbW3YD9u5QnYeYQyzzMADk6wN7CzNyHeXAzkv8ZX\nGpL8U/w3Y1xztbRUYTLjOIrMmsB5WuQBRGHx17B5Wi2ygZ3NFjdv3sTNm7dw48ZNXJxfBDDEriyH\nw1FCGwOTgB6SLM4AQrJFZqRIWaKruaZBI8jpuSEVbth9bbbzOvPMdaoPes4kzFmSbJWKoXhOAy3G\nfDqgoEoxlZEpXpvaDd9rG72kxcd4lWlqRShyhslXan32CGvnmqDvv60Vg2VKcIJmyQiOJiYLApCz\nGdL/jUmSTShYWiQsGqbMPwoS/fhZFxUQ+AC1L6xWcbrPiiFtjAE/dxEEa6uOms892GkfeqLO0CEV\nCq29RCpnL+bVzveEZ8cD/mx1BRDdGUKY0Mj4Wne02a1Dsn482R2xJfnIyYSbQAJVrTK+7vyMh0Y5\nKhbafpo4UelR8vM4YwfntljdN60Fi7WMZIoNdfNI5MEQjA5cA3Ds1YtzQfjrBZNGY0m20BdgQh/D\n64qapdGAqwh4pJQAdHrAU2tlAEGp2avxvS3U7kOEfRn+NSEfLQ0woJMCiBFvAdUs+1w5jW61ydne\n1+ZXKhNgyAkz45j2/Tr1vY/6cuspoDISQu1cIfymn5ntkAmVXF0PMFNLi3BiLSyANdm97fPsDxN0\n+368F+32f/LvfBf+p1/5Z/jdL7vr1Dd95MP4uT//fbL3K1KOyjcW1jnQzYCcyamfpmbgjvC3FPal\n8KIkQTBunJ3hkz/xI/idV76K//Izv+Ihmd/G6lmiSoQvvPLTeOPOPbxf3OA458ssYGdGInZjW7Oc\nLRSKMrJkACKx73SXoykPI8ZxgzyOqGCQMhdOPXGYZux2Ozy4/wD37z/AAwE7h+MB88yyyhDqNo+T\nlCSSXJ+qoeMPAKJG07h18qTjplAUcJYyK7qaCIMGOINXTSlo0mXEKpWOKn2pkoen1pO5rwCvI9Jg\npdvqVpdFE5TSMg2GgzeY2/0QgI7liVvZt4AmrfdQ2Y9beQJ2HqFM4oI1T34IzYk/R7EZhsGS+g1y\n6C7LhsypRchFLCwMnK4wzew735Ji19KZD7dEAAOWBEiZ3DAM2IwbbLdnyMOISoTjNAkYYs1NYWlA\nrDUVRVzS6kjmlqMbvtSKlCS2NUsIIVpR8ahFIVSrgTD5vZSCUkl8QcV6g8LEKyWMtc2ZoxtUmbEM\nh32OZMxI13tgRifLw6T0hQDNjSFaVmuERl9J5jQImNYPaiPsRPHP5jS1Wpg4JKf6wqBMwYKAHsr2\newQukblH4uh/w4RDBxiLKnFd1qLU/xEEW7WeaZS7/pyTjtPa52VNsQp/TpKJUFjXA1VTJgRm1Wv5\ncpynAALY5aMCpVqeqBhMILqX9lbYHgxxj6r4gLNi5XA4+Hk3osbqqXskwt5KhEQFRMl8yfvgBkwr\nwviHfum41FCfKzPI6qZEEthBxqnWZp08TMveQoBTQnSc0bZQrCsIgiKzdxh4eVBdn4H4rWEHz+8S\naWse/JAy0/ilm4f3TQV3WY2UrM+m/AhCoNaL7qVrV9umVsAUnpGQ/bnds1hp4sFMbL+H6zTpbjwP\n2ox+Tx8CnUiAn+voroHNTXsexcadSNyYfFaE3LTjuSI8PuwVQbfeY5RthWanOA8yb2t7o9HYd3Ve\nbDf4a//ud+Otuw/wzr0rvPT80/jQC89h2GyNLyZSNzBdcg5aTeEBwCyYUJobxyGo/4yh8P3f9g0f\nwbd+7MP4nV/+qlhYtQfrZ4neunvfwU44H5JRkKmi1mVQlhTqZDBDvl41ypuB84SUBv5bAxyZKxj3\n9TjNuNrvcXm1x52793D77l3cuXsXV7sdK5pl7IdBzqJC9y7BQoXaPGIV44QdagTCwSP3k3M4yRpg\nowvGobUMxeAuOl6WDFTcKttUAUrzxf045NBz2uVrVkspQaFco7wZLDMmUy73B28pkvXl99m+1YHi\nxWY8MM5xVLY+juUJ2HmEcpRsvVPIhwNB/kMGA5xhxGbcYBhGPkCXB2FWErUn+YbhOPJH7Pd7XF5e\nsaBvUT4kgzgAJWBxcZtLhV4RmbEw4nEzYrPZIqeMuRTs9nvTOrD7TLU1XkpFnQuKJGsrQ7VnMeMR\nASsIgmbNIQc1nBtGv+NNrD60qudMqoEgoFZ2p8spYQNgmzR0YtBOqkAg75rzWcPMGujR8eiY8ddU\nVABf0eytXUsrACk0wwiKQp9TT2w0ksrc4IRtqZVde5I0RseamAmYOwhB3I1ghA36pE5IacfQeoZI\nUCkQx14Q6VrUDRD8W2E4EfCAFIUtAU87Zid/EiFL14jWl6yuFNuAIDiFcyyRsSijWAg6QTDAXEHq\nztCBmXjuow8s0FtBAGZyKc1IgFlipnjeLY5DmLPYLi0aICSCKteW8zj0GnHtJ+9f2HisJdW08dZ1\n3u2bHoi4PYeumd1uLvWxumwCWCLynEk2hkG+M4HjIfXoOjFgm9tzICroqnWVg88MyEMLdhqAB4Rl\nplRAd4WOmWvAk+TLUoDTgxIgeZLSSsGlNSNlpoZJD0BCtb2qMEsh2MGSprBrckGBA/04B6de2THY\n4h4dV+Yby4AazfBcu9dpMRd9DqR+H63tK60lrtBlnwLg7NqwmF+hGX2fAOCl557GB9/3rHlyKICr\npYqhIwGUgkJGz+k4rfL1bFwu0L2wRrCcl5/78R/E3/7sr+ELn/lK6MXps0TaJ1eOFAypANBQxSsK\nEQPhHX9KwfKogrKCnwh0FDwQcDge8eDyCnfv3sftO3fw7u3buHv3Lnb7HYoEUckSIS9L0AC2tnL0\nUaXtWXgI87xq42vCv62Dln8pcKqV94oQPr5ncPBSCgcJqBGIlCIJiHlOYhREHlMGSHNRF2a3zEel\ni8p1vUIsAh0dB4sKp5HbQAK4ZL1UD7TjComVMzgmL1Rfa6TLn2lLTtmi5j5u5QnYeYRyOBwBANMU\n/eXJGOMgiTnHzYhhHDlfgZzZSVCGxH8r2JmOE/b7Pa6uLkGQsIlCPHKOmycCmYxSWsYaiY1qHAeJ\nAoKUOH5/PZiEWIsm+GQSWuTwck4JZSSM4pKih+aKhVSMYVhFEIJYceLZoap5OmRDqdtVzqKhAaKW\nKodrxsxE0TQJyRmn/s19F8EhtX7nUVh/eCF/C5vf+E/ziBPCt0tVdp1rToKwZr+1tzYEWIGOCZ1o\n5ta1srE+OFDQp1L4HrBQ0FGb6jLYdULNSneNIPYg53rAs/rr2g8N4IlfL7WLaw/pZEsBy+SMGboj\n23GKrmPaR1tDgbFHoTYCnjrPoNnBTmRW0bLC5/uoZWDwdvQgaAoJh3Uces16HGt1bdH2GeiqtRM2\nwcqCfm2EZ/EeP605t/tOrKHYL4M4q3MY5ibce+pZcfwbENa1TddMP04nFrb9FIFO/9kEGbG0r2k8\n+zb4mApND+1o5jL628c1JzRFzye6oK0KocqHiVNQkxgBsk41QphGnXIQDwFKbQLcVYBjHgYt2Fkv\nqjVvAX6cCz832NLQuEdWAc+Ku+SaC+WpsrbOlMb287n2t55NW6troaBS+mVeE7IMbbICCIZHjVRa\n5HmJQvuMz3jCWZVHnrpxgU/9pR/HG+/ewatv38bf/z//X/zha58QsPwD0LNE3/rRl/HB55/FJJZj\np1szOBLrMocXtNkBtEM9ThrXS19rDHY0vHSyBUMASiUcjhMuLy9x5+5d3L5zB7fv3MHde/dxFC+a\nBCANCSkNNnC1Vglc4bxK1yQL+goC4uTBBPoFTQM4OAwlUE2oCZyfjTQYAkCzKovdep+MXwBR4ey8\norKLc1GrkOTi0blFu361rHkGmCI4AB2mUZw7kfN6LXl93OtGA8JM+oKTzwam/d7HsTwBO49Q7ty5\nAwB4cP8+9vvDwp2NKBArYqEjK6oWhqiR13hRs7VommbMU0HKOSz0qPUUdJ2zu8bl0iw+JnjJrD4E\nwvF4xOXVFcbjsTnzMdh5IdKmolTObUME5Gly69DAWikNbBCjvpnmEp7npyEcQoBMoyguILwHdWPz\ngb0MYBgyRgx2/gbOAtGzUgLBWWQUkCKwcGHH7usOnyt/MQ1IADyWbZ0ftGSAcNoglyzaGSDOSi9W\nBDiQrZGYHblhqJ0W24maPjIhib97D/oexvgNpNn12lLXzJ8uJyHNNcX7vd4mNs9HocT6bIA5Ci1Y\nB7pReJT+sFa1cvK86to3TaYHdAwoMNhTIaBrqabpjYAnWoAU7Ogrgic7h9c/t7YC6OpIdqAltr3X\nDKpmVWeADPi5YGDrLDwr/o3wN6R9BPi5IbSuFXGGW+VFFDjRCPdIcHAvShUTnknmrdPwN2OCFSF8\nZW1YP8L66UEMkefCUMEnjvPa2K8BwbZqEVIVeOjYCc00gSRgbhkUgEI0pQaEiWY66dz62tK2pZz5\nnFUQgEq/TlaKNz8K56eKrpUQnW8VfKw/ZwFsFmBHXSrX6VJP96Li4jpLFfOVVhiO7Vnsr473xd/i\nZzs+pnjScqWSJ/A0mqGvoFSVteR7xAVRDmygAFRDlPO1H3zfc3j/s0/jYx94Af/dZ38D/+IVP0v0\nLS+/jE/+hR9ajLHxtpDDSj02EvHaSSpUJzg4D0A65WDJSRlpYKCThwHQqK6l4jgXHKfC53QkKMGD\nyx2udkfsJzmzlDOfmRSwRDDDi48pkSgDqtM0qOIqLLUTtMKtesqvne7Y+FTNp+NnLamSKT1y8jM0\nmnpEo6KpjGHgQ+WXQEdaaw9J8tAV+m0gV+9v5QIQYckxdM2YxgRENdD9flz0mex+97Xz9q+P8gTs\nPEK5fZvBzm6/w36359CxRWOmxxCpvnAt5KJ9R0bIaq0cGWnicLLDGKJ3AJ6YMYUEloObLntrRwQ8\nRITjdMTl5SUGMaPnnLGVWO/DMIgbHhcNQ11CNt9xHLERCxVHR6OFwKac2JhDhGjaxg6ouXBSxGRe\nkEEoGFElWAHTJ9dyrTLDlW9dGEhLoUbvI3+lZEoMm6OUxNEkgIemDYYElByhmFQ/AAAgAElEQVTw\nl81Z6KbqdQC01gESkLw8iN4zTwbOkXAHpai/BUZUsRQKFprN8F3opGvHAjHtn3M9EOoLNWtlQUeN\n4SwFxHiNLXzAAJ5Z9toGNmDHOKQINCqMaYI3Xs/eqJw4ISIBC7DTzpW4NHRzGAFPdCXrx0+v0z02\nz3MjiK2OZCcUaunPCGm+qiisU2CSDXjpQE589hoA6q/PyOi9Hkw87oV/nZfkAkYzh/LO/vEMSOO5\nj7rSRoT7GlqwBjy07aF9UfvZ9CHOg4KJKCQGwdf6cGLeeL+Ju49aSgzkZBMefe2KqJKAhGxCpoIk\ntbaoq7SOKxG7+SUitoSkxMJqAFMMdtTleD0aG9PKVgA8DXhOK2bimkopPRQznbpXQcB7EcIinevB\nTnTraSwOJ9p97T5At0/i3pR/SD9UBa0UBGl+RVqhdCgB0ESnKpibll8BT5ZUDuaqyPfVWnHr4hz/\n6V/8Ybzx7l28efsuPvD8s/jwi+/DOI6YpqO33eg72dxoP/ksIAOdlFUxknwNkwj3Tc6nbCAlDyM4\n6TorPefCcsfhMHEEtstL3Lv/AJdXO1ztJxyOxRJk5jwgiZt/qQQq5C6dYa0onbZvA61HMyfdOoRv\nM0/roOvegUiMokkGdliJrC6LlmNxGByQEMEyBQRlTtN2U+bw3iniLheVXdJSuHK3XW8WtCL0rbGY\nhvqo0uJ+Hxv+VCWpLOjhCrevx/IE7DxCuXv3LgBIGOUJmrtC/SxJpGYiQHPhpFTdqkMw4V59Yqfj\nxAIWRLhT4gAHSE4vlTj74lXNYRKhTw/HpZRQ5oL94YBhLnKeSDQO42jRTCC5GohIrDuz9WkzblA2\nhaNwSBtK1YzvcxCwgxCZWsEZkQBL/bzhiwn2fHaIUHPrXmMP7AuFDwtB4jTIWSsK2HSMdR5VSNLv\nzYwbAK02gQWkAJ6gn0U4aZh5oG5dO0kYiQvfK+45fCEsQktz2NdymNt6aF5hLaVQ/ymgY4TPmN86\nWDKGIf+u59jpxz18bgSn5ulBc7UCqBKJ8GUD6teGZ/g6CW3TeWqEseCz3DMQVMkF1QJ+cy9YOy9w\njYUnPjvu5d7tbZomi4TTzI0uvLWxld8asKNt0p4lsWqtCXMBBDZKDPLZIvtO73PhsxKAimY9mQJB\nGLy5CkWgEwXS8G4KlapZxN0yZuPIH8I9vR0Wy/3mq8NAn1+aTgj8/f4Ie7S21iZ3dXPU52QgCq3Z\nzus0Fh0TvuMLBpCiWwrzhcG16HJ9FKSS8im9hyjUAUk5cBrEME2j8NkFrXitrQsd2RNgwcbQnvNw\nhYmOOekiXC0R0Lbfp7DWXAhs/3bBPgDq2rffx8GUBdakHvwSu6ST7hcfKbuntnX09elqjgo4pfEG\nKoKLYhOKGGj694HnnsFLzz5tHh7WjwAcgsjh18haT6rEVRrQtIGa9kQrj8oBbNnhs8FzqTgeJ+z2\ne1zt9ri82uHy6hJX+wMOxxlTIWwyYUis6FWww20pHi0WTgfanaydcZpm13bLpwWQuuX02a7MKmVG\nkTOY0n2z6ESwo1FTc6BFkVeq3KCKPYKDnRqivEUFhF2vcleYGwNvgR7GfqV4BzF4idtdR01lGX1e\nrXxtLe9drvp6Kk/AziOU+/fvA1BCqAzewzQrwFEz9DxxfPosFEo1tihtJvOUEs7PzzGOI87OzrDd\nbDttsUY20wgg7SHqXkNluX1UcE8J47jB2dkWZ9sznJ2dYRxHzPMEYHYmKfdVIsxirarw8zsWVlsA\njIagtSKEIWf3JR3GMVii2HStfIoJehxhDzYAwNzZ4iU9e2uu7z7Hi3smasQ9ABgFfUbg0Aps2kfW\nmqzCsEZGIIDBS4qAZylE+KOVirXCtwvgaITTGgBPpgqQ2UIQzUyxi4523A1irTWNUBLrD22N9xro\nPiGAnO71elEepsLJeonCltwlHMTrI8S3ZSUw4aa9Jlm1NhaVBdo1P+qmjSr46jk2O8C67iIULXe9\ntWh1bLStSRmUuzQ4k3KBzaImktMT6mhIFNDkCc2z/F1/jeOna6ofQ2e2SGRC+EKLvphfF0hkOAFA\nDgOLRjX+0JeFMNvtYbTr27TB4Xkp0M6FcG7j0wunNQipFRUc7c4fKv+IcNNqvh3smKXGzju4Jr+l\n9QJqLLnxYAKm1hOJkc6punDGZzYAIUeguEY3+7HoSwt0gGBx7cbR63gv1OEUtW/v7bbiYu59bfg5\nF0RqqIBVLV010tt2jUcOGPtUTWPOCs9SEiQLzKKr8Ux5S2plTSCmBVgeLldCmbs1r79TP4cKRsnd\npTXEdRTGbZzUCkyaqDMj6VkZm4Jk4ZmhZ3MlIIGmrEii8EyZUybPlSPE7vYHPLi8wtXVTlJ5aO6/\n2vIY+6yghL1AooUkBkYyGr4iB6wpMQzo6B5M/j0ReZ6zuRjQ0Xw1CnTMomNuqStAI9SJBLOApxRW\nVKcU0N+b+dXr437s1mdPb1sA1803Qc46OeDXNVIW/PHxKU/AziMUBTt54MP/OQ8CcJSw+wHnKptC\n4+YDMLBD4GAHh8MRxyPnnWGww6GiN5stJgkTrW4b6r9rhAnuKzzIhvKDak6ENYwoA6lznJ2d4exs\ni2EYwQCMgq/3AGAysENEKCIgsUtbcuaaM/vskmi9ETVkrMEZRj7zM4yjaMxceFnGonf/VT+zYz/x\nfVgTb5Wt+rVBNGneuG7XphMF+UyjlalwE7Qxy6Y4AbO2a1WmsuF3/lsYnGaFX3uuEiM4ETL3HNVY\nNcKVWA6ogqiAMCAhLxibC3vKRWldAIhjGupxAkoNoY3MUM9rNP1cFYFOl77d6y2LhHr9egJawEWL\nD8sbhJDHNdSPB4jE4slJ76JVR9ulDENuaoCOgh1dKIu5JGosP9edneiFTIHHvAdVuCGgKo0QQc3O\nZBjgKfJSDZ/t0MAzyZ/pfzalmW0ZBEIb+SjpngkJMXPScy8uUDiw0jb4mtXIR7NYxrQ6A+6iLFgA\nKrTrxsYdoQ5arsAIeOLYr81dFYDr+7ZymHLKQR5VISU1L9N+BxDTZHE3YCjXi4Z8EA259zmclTKg\nHsEJwJG1pA2k61aBPQv/OelZqyXgBbI9r4oSzOXdZPPlQCdO1Fqhay9oLU3xnrVVuCyuAFBhUvur\n/GoJeJQkKG+3cxQytzKATbV9a0wjDvZcAICMASnRwr2TiNiqVtsHLSxPxl+7obClsQJ21gqt0x+t\nvKHtxuh4bknWeUUGU5hwPRI4dkCM9hdAj5wZTnlAIVbgHqcZu/3ewM5uf8DhcESZ+YxIh8N1ZISW\nZA4mkFRJqiC12BpXvB9sK9cAHYjSoLWMAWis82WeQZIryffiaAGhOJiU83OpZHUqWJ6KXSQJMNDK\nR3EdGG2I86n9ksUb10MOIK6nZbUSA1RbzgxaqRIKQRJkFwtA9TiWJ2DnEco8cVLRTcrIm4zNZgPA\nmXRKg2leFGiQcjoBFpV44RwOBw5yUApyyjg/P8cwynmacRSBhyTMYTHXtyZsbRC0smgWIpFSH/2L\nGzdw69Yt3Lx5E+M42nWlFOSJmatGklOXlxIOs86FgycMJKFOc8YwspBLhRNWUhQQjXkPdmBR9k2j\nGZ9nFboiQeViVp20ztq0LJgMRPCTwAJRLFwjN8q3nP6FJKICerxbEd6cbpQyy8jIuXuMfigFTV13\nrzGzADIU6DhYWVp+9G9QDtKnBudGJ3ouiwp2SjCVqTXWnTgO/Wsh2Hj/Tgnt3WPlb5VMsDpCLUBW\n4OCfRYYLAngEMhRmpHu0MrYI5gAbe1UslHkZOtrGBMpwPVlo8xKQ4W0PmjMN2y45qUjcGXzJyRw3\ngnmSJeUCq4MOv74NDa+Mi0Eyh2at3qT4jDAfEWA1w5bELcq/MAGpubYT3u08TIpiiPSzduBB+j6H\niHIqwFjdge71YZW9Ly4UWHj8fl3HfgWg06/h3jLU7A+dGwUR7YAtwFgLdDQfTjzz0IM4X6uqHfZ+\nL88Z+bw5BI0g0BUtDJRS0uhzS2vX9XJ0mx2rURxJP00xYq06CXPQrkR5fiQ1gc6tEWNTaC2I7Ept\n8bqw30+dm3Q+gcWeAbibObdBIQYU5FwtTHKsO/6ta8FAGDmg4N+1x9KeSpI+bUkrta3W/tryi1p5\nTnvlSm8NcPCsgC8y/dZ60YCcmEw0sxsaUgbNRcDOhN3hgMurK1zt9zgcJ4kSq5HNnIdwQCUCEoeT\n5nFKbdh5tPvwocAPOvap+xxlNxH4Zw41TYUVBhlJzukM/pIzOotq2wXmr6Shsn184xp3OqTH93z/\nN+qZIB/E+fMovh1IimvO5lDnUaLQCV+gWi3J7ONYnoCdRyhs+QC7hG3PcHZ+bocB2fqxEWTP39l9\nssiUgE7zjONxwuFwABGw3W6x2W45kIBYjDRb+jSJ736Z7fM8z3YIGmCLzjiOFnjALDWcfQs3btzA\nU089hVu3bgHgDVVKYZ/dBA73vNng/OLcCFIeBok4oq5zkCSkkIOGiRMophl1hgtgpCzPdqSDHAE6\nc5nt2abNjUKJflQCi5aZNHSEOqoiRMXM2PGnE/O6Kox3j3040ZQ+K9HqmaExaE3CuLy3rWNdYFGB\nzf5twE4rdBERErnmFYGA6ru+ouDWMEV1CSCPRBUG5TTgaatcfH7YtwZQFq5R3jcib2//rKbPChrJ\nmYn3AY2grEJ0FHzMskN1EY2Qh0GiICYgHmDVkNEW0AOhLzZnxf3AO/c11rIlIOmh0xLmHx3QydaW\n2DUDVMR1aBQhPjfkDDIFoUUeZONs463tlt/TiXeTfIAuUlMAOtnbHCfcgWUI/GCCJwsbPBauNDCQ\n2kcxk7ExLSkCyKkOAl241K63gMAtwetrdQ0kAWDp5BolQ9x/uQM8EehwNKdWq18BwBKLcshfbqcL\nbm5JQnO2oQVOERQ64OnBTg/qm/scb4VrghtgJdQE5FRBOQne0ef2tFB/61/a/s7S1mqqmjZeq2TR\np60AWrNeXAN2ejDc8C+5RteWPTMVDLkiDZXNCLE1RpuzCbU5iwJL2qoM1uZG3Gp5CDyhbKSHphzR\nPURyvrBqjkCej4aHoAc7HW8IYIlzA8k8GA0QkAMFOurGJp4nicMRFQlOsN8fcHV1hf3hgGmeOPhA\nYrlmkLrZDbcgC94xT5ScgaoBYcjGMCWEdW2DZ0tlTYmnn2rVXEfK1sis+bUy3UzaPlEyj4Ofie4l\nlghg9Hn68n0e1p9UzG1nBbOvjYikHJjFon3noFA5AB6EMPHGYE1UM8uW1JdrQiFW2pe5mLL/cStP\nwM4jlCzMeRxGbLdnOD8/h26KUio2m1HMmQp2EhAYD1XObTNNM45HTiY6DAPOz89xcXGOnEcR1Hmh\ns/VjwnGaMXUZ0EvQxOScpU1b33zjiGGzwbDZ4ObNmwZ29NDz8XjEIbhBjJvRQlNz/HYBXIdDyJ5O\nvGFGri9l9p0vZalxhvSfkMwdwAMzeD94Q2sYXB8vJODyOOE4HXDr/Ay3zs9O6O+8rIva6wDCGLFc\nRs0lS6D0tZTISGN/VENHKTLZTtjQcVitnKyxEdwYKNFDsPEOCpXGkVgBbz0j04OJqnmMBLoBOfZQ\nXD9Bywq9jesXyGC289aCm/azdRdRQOjukx9VtFNBn5lyNaEyAQY8SD7HXFLRhS2rUCNCOa/zKfh5\nz3ItC/ruFlMt6Idm4Vb3IEvGB4DgPvWNQKKsy0Kq67pmCVdE/OAC5gCMu+3nKVotfzsvrjnlkvwH\nF4CDFZfgQIcCI20E+RznlXvJwMRBZSNwakAOU6f4TJuFJOcG7PjS4LZHtz61ci2icXUlCrbvFfAA\nsOSgp69fBx32Wlio/KWgMAF8JpS6rRhBCdBYwAAs+mxzIv8tBduw9/s6AuDs20BEgJzlqLJG2eIB\nvHeCoevdyZspkh7yhNUaOrbQA5j4ug7s+FgopF4+M44bpRlpYI+NHEI6R5rNtCQ7vVb3Y7mE21GE\nNpNZOfu96s9VWh5zd7VghwHP0m3WwWxLf6tadSwyn14TFB89jzChnmUOIpaZjtOE/eGAy90O+8MB\nx2k2pWoeuI5SKmohIHFewESQPIYi/BtY4/QAUSkXwU4P3Nvhj3xEAbnKbSQK2hlUq3i3aO5DOasT\nzuvwWMKAqtbhoFHngJAGdT2VxU0hkIjNAUAUXOOUOa2sfO1vTknGJ4AdAzp954XfZY/oR6JQShCe\nVgrmE0mtv97LE7DzCOX5558HAFxc3MCNmzdwfnGB7XaP3W7HCTkzM4tSnCB5ErdsPuKAE8FS+BzP\n8TgBSc7JVMJ+vzdBKeZb0VfOyaxIm80Wm80YDsgNGDcbnJ2f4+z8HNuzM6SUTNOsz91sNrh16xYu\nLi6MoO92O1xeXgFIEinNzyUUIrHmMMjR5FXsOwsmNCmZlSmLJYxLDIOrB3r5F2WUSOyWMpWKL77+\nDt7dHezuF29d4Fv/lZdwJi54uQMJKmBVIqCyv7wSaYUtyvgoMI6FpcLEx/Y/2BOAyHyTEPxey6nX\nMx0lu12FcW2bt4d7UKskRKMUxqvP6VIM6GhDemEjkkHlRwR43qCoRRKCZxpwotAm1ey1QhsnxmMh\nqgFYKYgXkZ/HexWkWd1uddGrieDC8Aoj9zZqtd089u1C+EoHBDX0WVwqpV82jgFUJgOj7W/6Ustr\n3LNLdzcVXJZA7ZTYZld19Wk/clKrcdu22ayoM6aZw9uzO10R9y1ahCeNwGetHesCeba1b9dEQX0l\ntK9auaIQpudxHOS45Vf7a+d8ku67vAAFvaa+FfSCwCp0a5FRPPb5hIDUC/09ECCiNtdIBB/yilE1\nm2cGiaQBIvKudCoKdh4Upk9LEHOVwdq5+lr0/nR/Uyds6bZioc7pZLsNW6HexyyOcatwcVfdpTD+\nXmBSbEArKHb0LDx7LWdTnL84htoSohburK0JKG6RNa1CqA1lXKOipPBb1druQTB477tA6+veaVlM\n5mqu74HmavQvD/7BFmizWuTEuWJsnBTa2awZ4DFepkI1S9C8z+SsDrKHnN4fj9gfjtgfDtgfDjgc\nj5hEAQHd15QkCqafF+lpfwRjcS4Xay/QchAZDfLb2+fErzUQAdKAYeAxYXkri6KL2H050PSWHrXf\n+xw7X+mVjarUAVKw9rnVSjecsxMB1tJmvS4njQgX+I1+lH2fJWS9Ro6LZ0/1GcOwTJ78OJQnYOcR\nyosvvh8AcHZ+jouLC5ydn+Hs7Arb7Rb7/Z41ppMGE6hhF7GmNWprWTOVUKnieDwi5cyuYoWtP8fj\nMYCdsFGl5DxIYIKM7XaLMbiwJUH1Z2dnuHnzJjRZ6W63CxpkwmazwY0bN6CJSGutuH//AYBsbmbz\nPGMWAlnUwkOcC0DRQ8ocB3/InEuHicCG/WntnIKH5I5yOhS0BK3lH795F3V/xN8F8P0AfgPAJx7s\n8C++/Aa+8xs+zMRd7jONOoQI6mdl3vJPAzCCoK/hV3XT83Wu4bRvV90t5D4TvILAsMLgIe3yP7wd\nkUAjQdZDe05E52NUxqVrQQRKjSATHx8JoxIwJY5K7K0VSoAdgUmbUvNu41drx1EiUfc/A6xqhXWc\niAQmDUzVx7epN4AiZQSx2Dyk2ADtg4t/1u0QRdHDwGvXQusTmkOerKwIc3M8LkNSh/6aphvo9kAL\nMFzoXQdWLhBxKQlItdXIV2IlSpkF8CiIsGhF3AjW0nYCsNQd3yNoaZJXyt5p5k3oQB6ygRKbx+QK\ngMX4lVkAWYwSFzSaOQIbnhDbd2op6sZM33vQqeOsIb17oLL2jP63NcDTzie7BKdhCXb48wmQpQKj\ngSIJWiDvJljCg9JowIKcvT+qHY5r7ZRliqulVa/RVcEdPt+i8roGqkew4sCjuWQBcugkSPV+nKjx\nGqBi6zW1v8X77KxiB5IeahnopnExr4FupORuUCpc6hhztEFqwVGtBnY8CissSbjOO9AqyKrRIY8k\nl1OkYRWlQs4Gz5Y8MucEjAPGnDEOJM8lz9UFNO8GnmTB2RGilGQPDIDQAyLCJGkxdvu9AJ4jjpPQ\nKSIximZT5KQQ6GOt+BwBbAWPdMIWf8d/GsQU+HhYM9rHnDDKPmbvmWzuaylnlo/EMh/3rUZm8/Xl\nHgHLddSuf7VUxecp2OG2BYYegFx8qlvUgSRJtE3WkDUZczQlE6D0mXxdHjJGisrrx6c8ATuPUF54\n4UUAfMbm7PwMm+0W47hh17U84Opqh2nacdhE0/MkY1DjZoNxG0KDQky5x8nyzUyz5LqpMSqTp8nS\nwhtpxDiMGCVRqAYeAJgIbrdbXNy4gVIK9nu2QCnTH4YBN2/exNNPP43tdhu+HzHPM1ur5hnjPGNQ\n4a1IbpxMSKkGRisBDjQJqbjyAUK4aYaCHSXegAvjPExMZfZzwW0BOj8lP/0UgFcBfOrBDu/cv8RL\nzz6NlLLnCSDRgZH90wpwwTZDIuQntGdnoiY0hTnr79XiBCehIZQ6swomYH/I9X6zMovI6FMCUs3I\nIaO2ngGxM1RlzbKTGiLtAlMAUAkeBlub1Zja2zWWREWXFmMEI649Q2eAEECPflSm3TGb1prUCSl6\n+4rwab8nhBkS7VUDwMLFJo8k6Oxo/ZU42prmwNFnx/7qutA+69xoCPk6cRShHujEtrvQ5CDPx26p\nNe7FuQbwhD74sg9WEgVeVYKddEnhVIjqhbpVK0QAPSak6elhiFVQ3DdSSswcx9GBrm+YZq7nwoBs\nEosz++x7Ozn56dAlVW7RbQSHvvxbcNiH8u6tGnEMdWziePel1/T3nwEI6MvI47i4zz+3Cgr7De0c\nRFBjAKaZj2xgJ1p2ItjhKFrrhWR9K2xZbJ/UKTLk6Qy6l2u13zun1ru1sXI4slMgZxVoUPscq2oF\nBDVrO4Cd2H99tll2unZGJUfbnlPj1a2zUJf+ZmBHmj0L73fQqWvYLTVap/FenfOcQRKtVfe/0qMG\nZOaMMQ0APBBIDKRCVJEyMKSMYQDGQfqMAhR2fyNZt6pUJDDQqbowkTCA69KIZWrlrKVgKjP2xyN2\nhwN2YtU5TpMFLeLUUwlImRWSuoTWNks7k4G+yv6K4x4ART9X8tcC7ADAkDkEuJ+P9kTtOSV7JlEA\nsbI3N5sx0CH4Wujwll9DC3fdnl5FOSe+VIbwtcdDlkXbqbm0VA5JEMtNTm6hUhlNiIcqz9P4eMKG\nx7PV/9KLCjmEaSqodMRhz1HV+HDdbJph1bSoq5mie03YWcynn4nRNE9GLJRw2oG3UgE5nOxuZQk5\nFdScAIyufTUNB7vC4d5dFirEhSXnAdvtBpvNFhcXbKHabremjd5ut9ieMZgr1V3Y1AWuCODpGZcL\nj5DEY6oNcoYVGTcIHpkpJFE9yCG475envgvgJxPwv0lV/88fv4oXnr6D73z5wzjfjKKx0OlpActJ\nNZC1OP7RHlRtBNMgvJswpbQgJNmL9dkn6r/wtkbQ6033cat2PssjdTUCgIEFZYIu5BsdjaCInDF9\nrWWh8W8a7aUXNkwo8JvsXz5cfJp/rWnc4xzF53Vcw76iKO0Z/FT01daTckK2g77tlNl4d8Cstxjk\nlEBBCRC1ev049c/qBbtE1w2ODmoAOuA8E4XUAsufNYJZ6YR9BA32+gF5Re9qOWlfDERccMwDu6gM\ncu4v5bSIrEbwhIl8bqb6GqdqAnyrHRWrxdC763QrmWSGU9if4b92/JLtQfLbWWAIc/6w0mv9Y9uy\nBkxYAJwIdPy9teQowGwtWf5v+zxvL7VtiQJV3LtdW1xJ4ntyCc774rspURxhQkz2G/dNc3cAQWtl\nYRlZ1J2Mhkj3+Lx6jYfEW0FWb7Uapd3WPlJlQbWQ0cs2t++2ukI72EU6JPZMYNouygV35Q50LMxb\nSuyqXTVPX+YzT2q94DlSuqXbkNe+gl+iDKrZhHCo8KxtgQvIGiTFAqpMEwCyiGO2ocLcLCMFym+6\nZzcbCdrESmGkEUQJc2XLzuE44XBk91q16NQ4iEpziJBUmxnA6qndqbzKc07B+DvPi66FuPOFI6Ug\nPSS/yqZpscd03WV7Z2sOn9/RwAWqVIo0hq08BaXwQzytSFh3DcCxVWjtWPS72dNY2fPc99Rdr510\nRYO4y9eKRGTHFB7H8gTsPFJxsDOLf/7+wIDncDhiltw4gLgXDDFggd5b5aC+BCqYJmCaeVFaYrlW\nUIKckUnB/Em1ouaErFYf0UYooySqOBz2mOaJ2y0bdzgbsNlscHFxjvPzC1xcXGCz2RiY2Z5tsT07\nE7BTzWwdhSBnBEHDBRW2mPFpPoKFtj4pUQAf0MstodyObCr9DbBF5ycT8KtbAD8G4GUArwDvfO4K\nv/XKV/Bv/qmPsE8vAlEKQeuDHLZge2tyZAQ5+rcz+x4mhIPY/Spp5G/q6jZdDb+nJVNXQbAUd0co\nlvhNXQmi1lOTi6qwDlWuce2kgsHXXlriH4StjoiGDlsf/NvIJX0kFXoRrQs2SyLvzzaGZo9ewjiz\ne5jmC8YkUhSARbCUrHii+eqEGrTgpD+0HMPAD8MADTLQujDEZ7oGbRXsJE+MuhC6I7OOQAcayYxd\nTiPI6S0b/AQeF8PZnbDtWnBxJVOgM4T3CIqkuJtbBqhwzoaqQRJ03DzSGoV3bUdrNdaw+hBXtXYt\nNPNNbqVR7by9wn0mgPIBOVkeOpjX75TT4MXbY0qcLhR0L5BwNKul5tZfbZt15lKCJTb2NRK12k2L\nHSYZbVwBOjyIARt52FsfkpWxIbKze35tmJdFTjV/ltOnyCOW4BHwfd80FjEnEEej4wAI/sxYLXVT\n3O9rtaJ4fp2WT2jf7N1raa7h9dUCHgY7DHga1zJgQUt1beTEOW2yrm3i/DYqL+SsQq3fx9G0Bk42\nXQX0qOsbeIw075olphbrzjRPpogFCEMaUAefLa0jyRkPyBrXgCgctCBLKowNu9dvNhjGraRUTSgG\ndo44TBOO84y5VI7CRgbJYAl3hTQbHw797fe48iVTFhgC663mvTUucuSVuM0AACAASURBVGnlBzDQ\nE9eL8hGB2h4AwBQz/p5TxpATCtDS38BHShLPl6p587gS5nHJFiC/CW3TfRP2TtzTOS4K8NpTGmBA\nTmmMtqfC1gIDHc7Dpm2Rk9mPXXkCdh6hlJldXObE70SE/W6P/f6A4+FoxDHLYh/FtUwtNATY+QA7\nhFuqbdRhGJDHLC4bHLddhdRSndDXWjnCDWnUjKWAAADzNKEcDkiZY8EPAwsMwzCY21sMVQ2osJYx\n/n/svXnQbdlVH/Zbe5977/e9obtfT1IjNAQ0GIEEGBCOIUWBgZCQ4BBiZIM7IUEksSX9kXJFcaiU\nKSdVqQyUIVQIVQ44KYShiJHaMZbE5CqGYIiDADG5NbSG7laru9X9+r33TXc4Z+/8scZ9zrnfe/2w\ny3Txzqv77v3uPcMe11q/NS46LFfLRmsdmcH0EGYP4Gyzxa7vsVossMhZruNzVAioBK9+HK5fdhn3\nHCzw9vUOT0EsOt8M4M1y2pt5fz/3yCmOzja4fLC0a9Hcy18q6kfiNn7u+Bhr8IwYWmHQOpY3rQlj\nwaAV7ttzVXPj5mdx94t+10VfkSnL/UOtHajAmFTwQhDqpQaPQQw0bWvHJLQRLeDZd54+b1YYGg9O\nFP7CuqF4DubBTiPwGO9rBQ3/Q/lBADqyX7z/KqwnWOy7ZhsaAR69xxj0KABl2VnBgWfB8Tb7Gowg\nNYJWY9vGxGaAzugrEfWsHWzRGRxghGQJqD5/lp3HBKck1pMktV4U7MCEdguGzipoxXSoem6wvkCB\nu8fklEbYg52n/VOXNbXo6AvhMSrkjFeiAh39PCdkRyAXBevmvPB5HxCf+60BNhZHR5NroiATAZEB\nTvnd1udIXSInTxQ4vudHZ9ewv2bbAgOEDp7aLdsAy5aYTjdeeHYNwL49bOVivKjHCqfpdSbtNnWe\n9BGxSdr2MV2eAzpRkaF8btzs8ThoL9r2O+Axr47KWvLx8whk4+57R/ZSFQWMCNa8bxjgaYwm2bs8\nW7NqFYl5GU8PYHuI4yYLStFYQ/fgIKoolVBqajJlExRIKNghmBCdJJ5Y6vaxZWeB3C1Qh4Jh4Kys\nm90O6+2WkxLsektMUOKkEbEbXK2gklwBJXwyTEIzJ8b5Z/iH3rYKHWzBpqey9/2h14U6NYHGqaW5\npVVCu0JhUQcUpXl5rs/p2qLR8+QMAVy6dkKnJ+2MFiqCuXjbOFCTMNLWfiyBEORLjMbypXLcATu3\ncXDwvhPvUgvW67UlJ4hayMWCLSTu15kwiECjWcAYEIkLSWLXD3UBMf/sylpRQj8hknpQ0uwgHqRa\nUYGdVLnWhZ0cxXOswRZnZ2fIOWGz2WK73eDs7BS73Q61MjHtFh0WZSkps3dhg/s9VRM8lILHn/ks\njs6OrW2XDy/ilfddAVQLQgk1FVSr5QBmxNUZzyvuu4RPP3eMd20k1eGrRxPxGn47Xm9xcblgmqjE\nm2pzX+eC583sVKDWo5TiqSGhpIZQAGYExG1HUgYaiGSNDyeVNhCltgggHCzUNmi+aAaeGOQbGLac\nk4hEw6oWQRV7GOioJj8+18HP/ABFk762c+5oBZn9gz3RFo8EtvG5+4QeA4f7HlWj1ljbpGNWfSyU\nkSTJ8CcV4hUgxbUUhec5wEP6zEZ4879bzbG7JTqYddZnXVXh00BQ/M7H2wpwhqxKvQUdF7Oe8C1F\nyFfGmDjGJlncR0iiYmDHGagBnuSAZ2zdiSBnnPI6WsUi6IjgSemYCQ8pyXbylWpjMJHkMDsL4yP2\nadZ6NnPRnEVkH+AxS1gEgQauYeNGYo32sUigaPGBCktR3ggLRDta2OJbSOru2L38fP3fBBijBfJO\nDiKn4ETGcir9e1Pm5qJx12pWLeZnZjymQrNGQrt9HCWeuNlhwiLmwc6cJWpujcz1ae535fdJSgOY\nAOpEtRFMU1ILDtMTqiSZnnWtcn85zgLiHQEXeGXxqqJLFSncjsqsqrpwq3W3lGaUWgCEFPzCt4wc\nqJVXE29ojS/JnJa6xHHEUj9QkyftBq4xuJaC6mdna5ytN1xItHcX7YAU7f6U4PRVSbLKDGG89/Gn\nlhqM9zw/qwEJPjUABMwkTVAQXGuVRqXkL3JwqIBBs+DG1zD0EtvssdbR+mTjD2+PyQhhfboM4fOj\nGdgUlNr9ZHyVXMfnolYBpB4XzOtMMrWlfWP7J/u4A3Zu4zCwU7X6dvHg5FI5K1rHqaCXS35pbZ4K\ngMICUqFh0XXI3cLytGudG2VERUy+CItSiafdh0iyoLFGpes6C2jsBwjI0NSJcg/J+KapXDebDTYb\nJkAKdigRui6j1gV2u61pfV3ogfUjJcLjz17D8VkHhDxqR2dvx+PPXcWr7rtiba1IqKkGJiiCp7wl\nAl71wGVcOdviE88fA5+CW3YA4JP8drDIKLWKI0Ob+tLJwIhD7j34XAcc4ZAaY0RoXGFMYynAhozZ\nj13GFGSSCarOmwLsICfg4wreTcrRgOXmmDU0iwsiQZc4r729J7unCRfSvAjIzj9uTeBQYOeARxhZ\nAD5VBmQKcPbXOplvkVu9dI0pBIxMQoVMXpcqZvg+2wd0plraKbhCc626HKrriKYSV0avjarGvJTB\nV9EKqByu71V+06KbQxkss1I/cByhrQ0iCVYlsHk4AJ3OC+MldVELIF0FNErtK8bRqNJDAfhQBvSl\nF6uO00odE3V3Y/96T0DQCBPSHu3neD/bX3PrQoUhFQwaQcJfs4cMcGOt2QN25oBPU++nEVzCc0dx\nD7Axb98ngEfnRD6S0FEtMslSM8D7PliOFHiBms+zfYcrFab4ZgwO62T7234N699O2lNnRsdwLLhq\nG/id7D57rU3nHecAnbmkCPO38OfLyN/CY+UsAzpRcy9zIkqXKMbWWgPYkSLdtYwEWheI24cGelMH\nAbHqgOUuSwx4dhiGHdMaEqEYvmYBFajbmD0CK060Bk7K2TxDNIlTyh1q3QnY2eJsvcHpGYOe7XYn\n2SKLjY+RKKU3loLaqZ8pNG4yV+MjrueoTBjzZQd6ISaHyOJx3IIjMTryUrkItRodVEWPyot9v/Nk\nOMJ79LO3M87raJ03+0l5tcb6wWQtSyet94n9DbKItXUYUKR46tg1m4HZS++4A3Zu4zg6OgIggsWI\nSKpVh0HOysAOA4viiQkG953PuUPugMWCtR8peU0GFXodCEw39EQDMPqbi41mz9aTMgs6Ihj1ux02\n0p/tlguNDmVAImoytHWZN+l6vYZbcxTk8P13w4DjsxNgkket4nj9MDa7S1hmzqpknqu6iU1Tw8Xm\nkvjnXjpY4PLhAkfvYwKM14CBzgeAey8d4sJyqfIrlA664KOCLtnfPGY3m2UhpHOgR+9rRNCJrtZ+\nU4AQ5daxLBHF4b3NCbJDjZpLYwTB6oHAuFG9WjppX5R1usBnRwRv1f16m/NoOm5jEHLeMXduK7zA\niLAK5M502vv49TMSmD9E3md/tFnTUVHCr+7wSCxR2G0MRLYC0uy9S7WK3g5uAsgpLmBEkBMZl82v\ngAie31G8TVzrcEGtFK+t06vGNviKJ+L/KLUAJ9boaiw7aOdvH0iwtSrtsBo/QygiPErmoAOf8tRl\nTelpa2VC2Bfee5rA17AGyLWZNX53M5ATIMCtgh0VnBDeEb8PQMfdgPxdx4PC/pu2kO2SNPrdeQUA\nKqiJJHV7EuIUa4qRDVVTQsvWdLu+bwYoXNse5kRpU7O2I+WbHjpmDnT2UciWrsX9+GIAz2wbKIDB\nc5gFjdp5s8e6kirGyI0vEkWGTY8q0ICK5Ou+VBSo8AoocFSexXtMFR89+mFn8SCcQIUtR0wvPAub\nurtqQcoupyYpSCmynJrilu7GlmTfaJ29CHRACX0p2Gy3OFuzRWctaac5SZPE7dm+IgN3tm8QACPA\nscGRnoTfbMx1zBDWYXXXrIpqiuC2HphfSsTZ2HJQ9sY4HUohEYWshTowzVfL9m63NZDTJBoK62m8\nvozmzSzDOatoPNXaI68Yg6TrjPxmqFC34iI8zPmslhNZ3MnG9qfnULATVxQzZ05EsFwucXBwiNVq\nxe5f3YLTBVdh/qEGB1EoCroSYAQRFqpnhNHUsUPM+JRaCwsQBV4WePg8shSJueuQO0lRWSvqMKCn\nHS9ucDxSrdWyHi2xsjbspMoxp5tFI4iocHK27WVQNI+aHl8DANj2PZaajlHofhFtoGn+SkVJVYwQ\nTNxeeeUinnjhBEePePXeK5cO8MaHHhCN15w44PcsUHO+Y6vxJS2DVEGjZWDRvAwBUZWqZGMLgMcx\nhogl2ketL6L3awGTfmePdHkkEEQEt4UYgBmECb1xS8kaMLiPhe9j7jfFh82ZIwIchczmb7eEjUHM\ni9HSvegj4CCzwqjQal0I9pmo9W2AiR+6LmoFB3UObY2LYfQ+frXj0wrPKSXTsLlmmEJf+FrNvBbp\njNbXUSutahDVXZYZWMai65q9rLEm441igvwIKJSiVdx5zXMCFi1iOoQsjlo3wvvICp88C3bmAElt\nW9MuTt1740PGMGpxbc5H/WmAzfjvc0APkRc6VmGZacDofuNnRqGmVTW0muaqAg6v2ybxQW3hewVA\nQzVhkdP4uk133342K8UMcLj5nryFPWv0bs9P1I4AABP2YzsaGjEDdObaOqEr4xuH89hyUb0AM6a0\ncUK35vp0DliSpmM8HlGI1csN1CQfQgpXKPCrqAHADOh3W+x2W/S7ra8MyepWxdIzlEGsDL0pX1Lm\n+jGLrkPXsacJ95GzrEZFjAP6ZFlVu26JbrHEYrFkoJMShgrs+h5nmw1Oz84E8Gyx3e4kXsetXvIk\nWYvCb0FGX3QviMNFUPShyQpYyhDmoF0buj+Vh+bgju/TpjIAn9PlTizeU7rB9+YkCwhzYbRYkj5Y\nanGCKY1J0nK7WBno0YvgvvEYK6XiUhzfUUGg13ISOVPmtusyllLe5KV43AE7t3Eo2DHBISUcHBya\n6xiDnQOsVitzSVPXI85wIoy/8Dbl4L2Os5+tOPtZPwyofS8aUhcUolA00a4K4Vb3NgobOKdONKed\nJCiQc0UI4iJimicebAHqOuSus1iRzWaDk5MT0Wxwat2cPc1izhkHq6WMkuZR0+NXAICBjmzdSqJA\nryQmeSFetXJqzuRbPKWEz7v/buxKQT9UXFwucflgBa03ARhr4H6QC/XswMH9sg0u8vh5fEiFcb37\n2KVifD1bU0L2rDmg4mfCgQm8TkHQOikQmDRSgI4GcKtGSRrd6HqsNTKvxuxmpcH9x034tZyjYM2f\n3hDX0e9z4GYf4KnSt9s6ZDJcrokrxgFwFH5BMADduLiU84GOttkCPEeA57yX3VeZaEg0ogV/Ec4x\n6Ye0NopbdoZhwND3DjSkxkYi8TlPxGCn66xehIKdqKlURrdPcBzPaS3VssGpu9pOslNqRjjv4zTT\n2tiyNBYkDEZTA+0DencL3Zw8Te2CbOd8rn/we06un5n7cZFjIqZF2t6x9ccEkBlA50+Hr33pVw3N\nHolxvsaVFimIqpDcJMSeA20n/Bkz4ObFAZ59Rw0TuP/wsR5/4+Bi8vlFtGsfrZk7TxUNN7uXjl/y\npMlN+/YDHl/FkW63NCpcH4CPrXHFunIHTvSmMkMv1oQtdv0Wai0BPDObxuv0ww5DcbBDJLG6XYdO\n4+Wg3KsEC0hS7RsqsecIiLOwLRZLLJYrgDIKCKUv2PY9ztZrnJyd4fRsjfVmg81O4nVqQdUSFLJ3\nDPA0K12zLc6sywB0eA5mtriSUBtLt9K4m1a1N/V2YIWxJo3iH1tlcxU3PqfrsdaZzgnXMdK5lFgY\nSVXNjLq97+0cNtMCqJr7jfeK8pVaTJmn5yRRqHSSbGK5XOKleNwBO7d1UHh3gmhm28WSM5AsFsbU\nNNX0TlIs7nY7NienzjbX0A/Y0taSAOwMGOlmGRrLQnQx0Zo9u57TV3tBKxV4ga7rgIVo91LUTLhw\npX64XdehWy6xWC7Q7zx7kmaVGgYVWgITRsXBcoHLFy7h6PTtYGLxNWCg8w5cXB1imTvOqjLV3fGb\nas8La0VSSjC2TMDhYoHuQAlqBAMKPEmEGBJ+H92N/D6xkOh4VrkZzgxVDlCt/RhKOAO6GWPjaxXo\n1CpaKoJposY0SAWnRqCiNuPeuHggBS0jCeAwyPAi5JRJPwKjvbVrWkY9BjEmtNZ4dvyudVWwu44+\n721OEOBMLiCwltCELv195i4KEKuDiFJboBP3or4GIlvHjbAYQVP8vcb2kQm+E2UGolBHMk5+/wbo\nlII+WJEiiFILr9IrAxmdF+1sFCiTefW+27YNNXMGKYYXg3Bd68ptj9mLlHbmUVZI03IGBq3C1kSu\n1XYiCstkggNEgaL0y9s/AhhBuI2gZM8K8fP0udQ+v1WOxEa39IdG7xYUqDEwjZASPsv6V/zb7Bs9\nVX9MQC0AB5IXBvMKZkfj0Are+ri65+95ojIFb/FDSxP0/Dh/+t15IEb3P808b9yOuFeMtvMJE9AT\n+ex59NwATa2eHewcACVX2bVx31piGdLfNFYCPirNslF3ZbfEkawJth7ssNttsd1tzWqjcSbeNHWr\ndXBUisoZQM6E3GlWxiRCuDSqWfBkckfKHUgE4yzFxYcKKZbeY7PZclKCszU2m40E6Q+SOEVVofIS\nHtlkIA1jF+ch/u68Tsdax03pGX9uQc6o1IeWdSjhvqO1SCJrEBBoRTuvY3dl1jUkX+8pcby2Flyt\ntbHiRz0EyOlQpI36/ARIvaXIR0Y105QOy1qxdDhGK71vCWQgbLFgpdhyecey86fm6NRnkRwkqOCw\nXC4F8CzQ5WzCkZoyt1sO0N3udii1YrHgjTaUgmGrhInr7mx3fdgsdeLCNq3b04O225D1RYiapLJV\nRJ5SQqYMQtdWJDeBg/1sl+JWt95ssN6wqZkIlrHFBwGNZuDVL7uCTz19FUdnD9uYXVwd4hV3X0Kj\nipJPFpCue00iHJNiKSVM+qzApG1Dp7FgyC8VVgu1T2V5d8RaxwzfKYx+48IyAAqO7hPG2Moy7aGS\nRBXRraKx9BjjtcDvQBijYG3EOQpl7WFAFuF5Lwbx3MZxntBhYyrddaEqOt9EgdbngJfZnLvKOWOt\nj9LhDe1TVwj9bCMYvovaz8ayE/qkVhezwJCDkqa92thR2/Sdk3ZA1vTURRXhngzY/bsCr6vjgEfd\nXrkGV5J7dgHoLJZLLHJGlzO6PAU5e8c0CDvsSuI1oYai/ukc/6fZG3WvpgQvODhyg51zzbW+y/jZ\nCpkRgk3hICCfJyJIC6VMrgkXzwJMwvzessvCOYS5e8yBs5YONluSwpchk2ML22Eg2c6I2KO265ur\nMZIEnPPnYoJQoGVxC4xAQvw8BTpTIbD9G77DKE32wfiI4GUMeCbzvgeUjK+Lf5s1hv+Y/O70lot5\nntfauB9vhbI6bQjxESKAFpBlJHVBnWR+/OW0pdhdOc6ioEoc7na3xW67EVfSHcowWEwK8wy9V0xM\nINkgq2RskwyvSfcT+DrjsSS0k5QWZi8kuligywuknNmNfyjY7rZYbzbsvnZ2ximn+5BueiSkV4g8\nkGoLeOp0/zd/V6CiNBPCK7z6TrU2S0xzyEIJVNTCbn5DVCjZ2AcSqfcxeuGArM222Qb6p5QsqQEn\nZ2EFLicXIVsDrqiNsgW1wIckaQJ4zarnh8kQYY+MFWQqFzA94c/jsck5YdEtsFzw66V43AE7t3F0\nMUCL0IAdAzpdh5QzqvnpB8vObodtL2md5Vo3JQ8CdFhQAFy4VkFfF2FctAp2KmCxQMpoOa0UZ9XQ\n2jpZUlpyumpy3/3VihMrrJZYrVZYrlYgedaZ1PtRs6xrQXRTMhPNRPi8l9+Hs/UlrLdbLHLCMnW8\nmWYk0yDKGWiq4uKXYswMtRqLiXCSYiV359rBqA0Vmlth7ubau9hSBjxKOmMvnCAZMMOYILNgISTF\ntIt1dI7eIwVXnwjsGsvOxG8/Nsm1OWNA0Z7bAtDJEeWy84TMmXG0s4NGVQWvWmOranNNFNYiA9nX\nhtnmKoCIzKm669p09IP4ViPD8uKXesPYZ92PjZVtzJBrHc1zFF/DugyZzRqgo/fQNlCbIW6c2U2B\nhw+FW3w7EUaWyyU6S1zSuuvMjfUEDMnSKtULhqrLbbTsGDDPGaCZRASazUgUOLTHdcgExT1gp2mj\nfHZtJQFIs4DHoAfts+wY5ZiOib32gaLpGgtya4tWGBVMsaYt4mYg7B6Oj9QaOboU4CKWxMouC3Qg\nEaxIhF9ZV0Lkwl44B2woDCMfB+t56IcvmXGWynBOfN0EcMe2RItc/I3pTTMK8YRGaTG27hCqBPKn\nMEXtOPhe3/OM/Q2fCO6lAkkqxHpb4n3r5LNbS5lnlr5HGXpsd1xCYrNZmzutnmsKBwL2WXZ0UaUk\nLlDyj/kVwUmAEmjnwbnrjL7krmMvDLAr7Xa7tWyvp2drSTfdYxjU0i81e6QAgFp2apkmg9I5aNZj\noyjQc6Y/j2l3jBdUWl5pQBmAQhFQ+qu5B0ndQLhFZpxFVYFpknFiBVMnsVC8B1kxq4MbrH5xbdc4\n/vwhIbirweUEbVuMBQKJSKhy1phgQGQPAWNdzhKvwy6Nd8DOn6Lj8PACAIhwwYskpwxOG8hpooee\nAYZqOdsAZBfqARhDNQ3yKFh57hhvOhW06ui+KSV0KSOnBQ4PD3HxwgVcvHjRLQbmltYz0QxCjLQU\nmw2bm7eiJdKih9pepSupVGf4FegS4cJqweVdgoDmSk3VKLBXbtINj4aPh+Jhqs3wz2PR3K06FTE1\nqXWKWIffqmb895vx1zFDnDlj1KYwkMJAqhDx9gr5vxEs4WBl1E79X7trc5HEV6VwXSCeUgpNUOY0\nFr7mxmNf/2a+DcR/75U6HYQxbZ3ca+6pt9K6fUezEpo/att3mSfVeE0sSQa+nNGNhesYixKvTSkh\njf5WRmauKLa0W9dEY/SxHQK+rGjo4Cmnh+KCjWoAY1xMjI9JybWSk3E/by5oeq6m4le3lKgoaKyS\nMxYc61t4nweOQciLggy5EK3CciOQEu9/FSR0b5jGkx80mdexAB9p7s2O886LcpnpRqbDOrki2JAM\nGEShnSHdjDWpevun7QRCesk9R7V2trRktleBHnih5L13rq07mr2HOWyAQfH6TCklqRXl5R3kplAL\nsa+fAl82EbjMtB+JwWDDR9rPquWHvU/P0b4zGCSPz8hacNhr1iVqVpr0j12JUKtVt0+JMBQ+p1a2\nxBStY7Xbhaxfvc1bttg41tQDKsNIfa86iLCue7CYFwcnHcg2BFEFoP8TpfAMrqlTAfSlYLvrsV6v\ncXp6ZokJNltxr7MiyqpIYSSmDspFijtH+qf/4ixGYZ5nTxSxKnqM1hbPAYl1JSZbYrqtSY1KdaVu\npF3ZlI7ENXUs6QO3yGMtJZ2+ppVusthxuwqUfrriasJ7tP0U3qXLDLYga0gL0sueGO/pWqEZQasA\nMdTaWH8sYUMWT4AABF+qxx2wcxuHgh2tBl4KZy5JEexo4L8E5bZ5++eFPdMGjLUVM+eZcIuW+Y61\nDokSFouM1aLDhQsKdi6YZpRdX1jrQnUQIhOeA629w4BHs4hU2TBErKGnUrmIXRQLhDgD4Pz4LOl7\n4H5QVCmjS/aVav3lVir4IxkxjBho71hJO/QgBUIBVDlAOv/YJ9A7yXWRvAIO6hTT2fNhnjX8fAZg\nJhrYc8gAz/hpNP4urAkqxAVbq4+mn1bZlWUOPdwCYLndo5nHWwA6tyJIvqhj5rlh+bVDEYSjsSbR\nF+zUXckETXKLXOxXSglZQVSwBNkzEMFOEDxn2qF0RIUVBTqc6jkEmWp7krupdiFOp+s62ULt4Ez7\n7QOlTHr2fCmUOkiK24pqMrQGNDdAx1XMzfPUFXfu0HnTMYvzR81fe8CGCfZ18rW2pZ3TqcXmVgCP\nWwimy2/8W9MG+xx/pebbybPk/2oiYpgjFZT0s4Ke0I4WcO23vBjgqbWpNTZufZw78zAYfd/cE2zv\nMa002jngpjvPG1s9kxScrHo7tGu4SCrdAqBSEeUChedz+z0NtGfWJAJqjeeOZ7POjJcDU11X2jcF\nNzl7bauUx8ktdLzA7lVJ+DuxYVK3YBWwUy0QfmcJCfqeXeJzcsDUWdHxxNaeAHTUAmE1vCqnrB6G\nBFDHyjMF2oQwL9I/eQbTGLFYENfb2m53WK83OD05xdnZGuvNWlzYRJ6QOU2UJH6MTBZht3bhCQZ4\nGqiK2ox5ADWjWTNhPpbNyC3QyTlz1kaBfikxuFRZwaxBFuejgIlQCkkx1jbmK8ZjqUKspSwOylVh\npHR/wpeJLC5H7+A1dSLYSZ4trxmroDCQOjq1Vo7jlrIgCgC7nDkhw0wpgpfacQfs3MaxWq0AALvd\njjfzMIgrEVPbWqrlizfGr6n8lEoJPRsLS0DclOpO4Zt7LIA1189oTHNOWK1WuHR4gIuXLuHS5Uu4\neOkSF7aSRAmD5NivAz89inUVwHazYcK020qsjrsHWDvkioZ5V9N/z8nVUCHdmDHNiRUIhCwIgIhp\nKTFhvApAJtWW9TdHGna/8dW3fLTdcBl1dCt136DJxVPhMV5lZzZaxDBLooWCZuErBNSCpH23M6u3\niVpBNgoUcR36s+VCZTrjVt5MMG3agVnwsbf7t4F7bvmSuNhZGgxftVphE65JhaCpVceYWXK3Gr1W\ngU2plecmAh0RZKzd4XOJAAdR0A8JCYZB/OIHq5OhbdqX7cwynkFqMr0IgNmIeiOaVErQTAJGm/Zb\ndtp72Vhiutaixa3Udk25daq6+Dy+HmGqx5tuQn+nYKexFNU6S68mhwqv1e8NRKrYCmaxZS1wEUFT\n6KBhTpPk0CRe0d/UMu50eabroc/6rGo3EB4ULmtvEcatfVKYW6V++n2cGwUZARDMAB397DGpUvOF\nFCj4ftN3A0gFXCh40MyF+8CL72UeBg/KbwHu9BrM/DWnELG46QDi5wAAIABJREFUlmBlySJkJgNF\nvg9S5r7WUlBQ8dRz1/HkM5/FvZcPce/lQwYrI6uOpzceoDXwui4hd0kSFHA8Sm8KW0kJL3NGMveq\nSCGxEvh+jX1yhYr2Tctp1MrF0DfbLU7PznBycoLT01OcrdfYbhmMlapFRMMcQsCB0ty416txcaPW\nLFv52mMAQDLXXk/HlMBGgzwm1sAPEWoioCZUcmuO0vAYM8vFRDV1NO+dOrSZ1Gy3h30f6YBbrIAY\nv1VNwolrSeZmRJvib8p/pm1wIShadkoZgFKNfiaRG7vcjdZp1gnAS/G4A3b+OEfg0pGY1cqWHaoU\nwI77a443jyYa6GrHTDtlpGFAzoMLD+KqEoP0GMyMXFOkKKmes1wucenSJdx7z924fOkSLly8iIsX\nL+JUAgRrKdjugKHvUcwNTS0KvBE5R/8OQ89JCXQDaLuYH2owoAv0Ei4XCPhIS6rgQK5jhjoFPI0g\nXUcCaIFYMYBaPXtas70DCGGhcl5zqY+5mcZ2eoy17qN7OsJq1oydQG2Pvb9ubh5KAUkshlrWGp/g\naB1KJC5OBWPGb4R01JR9VquZrs5/PRmvEcQZgaR946tj38xBEOrGbbzpPJlw7H+iqtB8/qVzbaMg\n9c21pQT3sX0v1fJFkBTBjs6PrSu9dxgP9WFXkKPCjQIfvW+kDzHz2tjqhCD+8bUwCbf6iQCZw2UY\n3gBpq78TecVxqzJumuxkAMgZdxC0RkuxogU5cW3rEVPucxrcYu1urFSjeY90+5zJbwDPzY4GAINT\n0id9FsgCvlMQz0g7HuiQwaCRkAmMYvV0yKSdNpvqtgtAzYb6nAgSNEaMNeuwsgCkl4Uu34pVK5zd\nfDqPwijZnlUABpqo41EKjymg2uw8S+/0GJdk8GD16V7mfa6OTKnpc3yPfF2BOEKbFeDH52aN6w0x\nvovFQuIutM9Vu2mB5tePjvED7/6H+OBHPmHt/KJXvRzf8Y1fiVWXMEixSksyAM2opjHFuu8raino\n+x22m7UoMSU1/SgzWa1VCoxzsqVMgCVPSRJfk7jGYJdb99hKYDC17XF6eorj42NcPzrCyekpztYb\nbLY77IYCESFMRtDVMFaoBAbNb7IUppZbVx6MQY7PSaxPp88AWzlUThjNIYAmsYBaPxTkaDtj3KS5\nic0wmxjaEJPaTN1/457wZEXyRMTYXxM4moyjce9V44mobImvmllX7kEpWQHRmDQGMj5973GgL6Xj\nDtj5Yx5zxNu0SZVYMzLKoqYuLo2mICfbXCln5KEgD661ZR/4Ym4igAszyyUnEzC3lJQsicBiscTl\nS5dx37334fLlS7hw4QIOL1xAPrrBQGe7BVVOe91bYgMIEeHFvdvuBOwMQK22EbRAoGlbA9GCaKei\nEJOI3HNE+UING1GYLbkvz3RsocIgCzyEBKpgTXnQkASZQeZEBCZGPBNGaPN5C/K+jn3USmub+Fkq\nbsQ4ANHUxXuEl/3fMFTYfJdhQEnJgHP7qqjEmXw49SSBUkLJXhzMwWFlDWd1q89YezoPfOYFm/0C\nTwA7dHvKIJK5coHEnxmFLQpEfV9LYPMd5slR6K21xf6w/5qxi2uK4EkLzgM+dn1oTa0VBQrgvbiw\nWZbkPKvhMPSSpp7T04+tOqoEUbATa9gYkwQwieOSwSUFXiOBs44VDwakq52TEgHI0JS3lohAXSxk\noxIJ3QjAp2mPAZ0yGetoDbIxTbB1o0QhtjHM4K3N/y2dpUPWClaorH9wgQ4BaMD6q2Oh4+zCnwI4\nVxqB/Dc9NzRgIjQyTSRTGETgnUSIUkVcJWCwK2UAbY9NacX0uPXNTkYbdB2MFAMzrqDyBwASQCZu\no9RaUsdrRO9ne3KiVtM28bcJPBaFpkBHj8YNNQLP0P6Jt8U+sGPzEcZcxoiI8IN//x/h4x/9JH4C\nXLL7VwG884ln8O6f+w38h9/w5WwlGXYog7qGVS4kmxO6BScm0tggdXnbbNjCoh4bnq3R68iUUlCS\nu6SyC57EKBO7PuXkRdVVGTpUoO97rAXsHB0f4caNGzg+OcH6bI2t1NYZqirfIj2EKVpcuQsHOpCU\nNefqJ1T2mNJbtcRM6Te8oKbKbMRJKnS+IwDIosxRbZzeh3l2McCD0dpp1iextOCWfekvwh5t1tGI\nH9WgKKui6GiEH7igpeeXKpn7RBEf9orOL/OK1OxDtgbdBjP/E3DcATu3ccRYGQMoYRPEDaTWD70G\ngAvicRNGxmbaNtdGOer3wEwFOoeHhzg8PLSsRgAsvka1NV3HedK5WnrHmZcIqMHn3/PrKxPQjTtI\nMVTXGkXwxm0CTBeoQllgXkrIQbA4HsgzVKNgglUUXk1w8PZAhSq16hRCgaRVlY2vcEMfQRBwhZYp\n3czCMPf9GAhUFQbhhAyxC61aNGio4O9jAiZ34AKr5NoiqaFSxHJjLkMFHlpaCigkujCiGoRRJbLa\n3jHgmYxNAHVzY3czy8555HE81s3zgyBIoX0NIKs+0rxGrFGBaYYxUEYWG0Vo7mGfw7w0cz8DCGNy\nkXpujzESSJV5czuLPnuOMcq1pkEshRUVIZNSTD2vsTpjq44+m+t78CDZsvQPNuZjxNoKlB5n6EBH\nhbQktEpdPoJlZ2ZcJyCwBssW1KozD3b0syZ+8LlCw8xVkAiaBgPWNdxvuh8x+X4scO3rR/zd7DX2\neWTFEMFnDHb8nJgiPNxb50xiR72NMOuM8iumySl8Dh4H5OM+PvbSh/AwxVXNXpQWWZkBo5WjsY1j\nM94jRCgyd6l6LRQIv4zQhYga0D9eY/asBiO2c1eEl6QxXR+tpYbeC81y16hWLvDYuTZurus6ibeI\nMTtOR5585jn81qOP4Sfgpbq/AsB314rvf/JZfPqzV3HlwlImQICOrAXNqMVuSCyTaGa09WaDXupg\nAWwF0gLDgyjZqv1rZR0DOykj5Vgni/vbD1z7b7NZiwvbKY5Pjj3l9G7H9fqK8ETdj018VMtzTCFw\ns3UY5nRsWQOgYb92KD2NADjSW0/RPtpXDQ2qpmT24qGD1cyJayyuHaNx4/1M3v7odhePqnyswoF5\nAtTLxRVQIhEZT3TazUrQuFe0FEm2DJ0EuV+p5473n+TjDti5jaMXd645DepC3MgUBACtu5Ei41Kn\nBHQYBgnYc6YehVwVpgDPrHRwcICL4pqmGj9N+1oKF/bbbDZYr8+wXCzMp3az2WK72bLf7NCLlYSJ\n3XKxQF4smIglKXhqlZg9K5sREgAFBUXVCwG88TmueauiZbANM943RJbMIGpmeIz4FB47tmOUwoQr\nVQ7IN0EGaLUbCI+7zc26T/jRWyqD0TbUoE0xwNPcg+Rv768TcRUUXKjFwOmEY95+T4nMbD8RQCVZ\nogs3iUeQE4S+Ecg5r49tf6dApyWCU7Bzs3uPGYELJWiY0LQNBIqaq/BMB3jxGh+T5p4y7uTL2J7a\nMEsF5KEdUaOHYE2bG6PZ1afPVmEvtFfvqwoEhN8sOUHfY+g982POXLshZfehV6CjzL8o6EtAjoKe\nMriRMDGnLZ8AnjDnccxiPR0Vhs4DORGM6ZjF9N+OZ6fMt3FnmxlLQOUpctCjcxAEEwc9OuX7wA8s\nhiv2xX+f9rF9tedAv4v0wc4NVeuhC8Ib0o4jU53PPH8VT1+9jpdfuQcvv/dK86wmu5TMUYHMpy20\nGQEr9K1Z59Ii/65Bgi5swfdiOKF9G62HiopUktRcGSkKm/mYKqrmxh2QhDj75kdiSTLaPTB+nyi3\ngoDdrnv5brFAXnR45to1PHf9GK98+YN49ee8PMTs8N0q2Imu1oqnn78KgC06VwF8BwE/H7r4D379\n9/Htf+4N2OwG3Djb4t7Lh7j/7kMQQdIqMxBRhUgvpS3W67XU31HXtWz1Ane7HXoRph2US1xO1zVg\nJ3di7cjZLCa1VCkiusFTzz6Hx578DDanpxjk2UPfo1QZS1IOSQ2Ns3XV7Adno3M01kH/PH1R/qqH\nKaKrIIYZZYfuUz6NeTBRxSDXVUnhrXXFGMj1KL26B07pnSmNRXYooimI7ZyLceQLqgOWosrigBmF\nJvFpLXiMSp0SAUzl+2iCHbXAq8awSjKrMpxTq+xP8HEH7NzGoWBHDyVmKlToIq1DWFSBUas7WtSs\nV3CF4X43WMBew+DD9UpE1apz4cIFXL582RbvdrvF2dkZhpDXXsFO7riN2y3n4d/uYiAj92OxXDbE\nTDUWu93Wrtvttui6BRaLjIosCqUWwBABlvVECHkt7J8KqzXjB4VXI4DYEQUtzn9Pibj4FwVNhtyb\nxg+QtpnmsmHa03meY5r6fRQovNM0y/gaa0joq/XZafgI2BWJo+J4HQIkGFUBsNZIELAj64iyxOsE\nC5zKtUwgHYaMtdizlhMf/eaa8Wf/u46u4E6epzEfj7WdI4xwDuzElrWBBSMBuPp3Y/kq4hafyahR\nn2GUFJ40EnoMQMwJQ9WZCub6qoywaU24TgX0sNbVVYIDjR0Eaxxg3gN2vL2sNOB6dtM4mnEf9IjW\nbU9G0IKhfcK0xgPMCZ+NcCtzb0y9cnZLnbeK6fjGtTsHdmxMtW9oxzSe16zTuFAwXa/7BPRxf/YB\nnghooAKvzcN4rDgZTq2hrfoK5xyv1/ih974fH3zsU9bMP/t5r8Y7v/WbcfnC4V6BCuB1TFY8uVmu\nzRHHvB2s+N6Ov58/c1MRamfXBgglVVBJIHKXtk9/9gU888INPHTvFXzOvVcmc7QPePrE7ZmXapFp\njRY/9mWyN2bGdFww93TX40f+r3+I3/7YJ+2yt7zxdfibb/sruFuUliw8M+gEgIfuvxcAu669m4Bf\nWgL4ZgCvBvAp4Nn3n+BH/8mHcLb1eIrXv/wefNtXfwEuSkatnBOGgTAMhQubb7fYrNeotWK5XIj1\nNRnYYfoysDAtwr5lXBtZdtRFlUIsXq0F14+O8b+/5+fw6BOfsXbdvexwzyqxyy0ghVRlPEdrrVkh\nxidbXnWzYx/QReBnwzCIDMENiHvD7yFrQenmoIBCvGPKIPIRxzhrtjN9nsqG4zXY0M3RPo8x3SmM\nq8qMKluSjJ2GDxFBSnkAKO6Gp71uFVXOj4imbnMMhmD8Ziz/vlSOO2Dndg4rMqXEsKCUHv2ww64X\nho5sGrIKFsA1pWCFYAgiY9oEQs4dFktgKMUFFwClAkMFKhJArDmplFGQ0JeKbT/gbLMTlF6w2/XY\n7AbsBtYXnG52ODrdoOYz7JCwLYST9RabASiUgbxEXvBGK5Sx7cHB8JXd2k5ONjg92+Js3WO3KxgK\nodYMIKHWZEQwd8mUDlTh2UlQMVQvyGhm8cQnGrMQYoICpKpaO9HomHSDcK5/xWNUmEEXGeDkG9+v\nYYrgQbgMJjRznNFSo7JBKI1tDAePMkHINkKr/d00U7Bna1P17qHslxB9qfMAQhGgMgzVsvuVwsSn\nSua/oXKWr5K4OnrNHahwmtUESHApE+0KYIAnc2C5SgQXa2+Q7wITcpeYIArEKRzzn3M0w2EQGzhj\nkFFTlo/kTn0fg0cT/QjeYOUEVJv7uFDFnyuRlOFwpUQvr2p7t9rtkRKQE4PtJIDbpE4OkC9JhVIA\nWbLrDLL+hjLtF8n40LiXDtZ47ofgtqauEqqZ87jAcRAuVLBOXPOHkMFxxtJ+Xb+y3kYqc2sTEXlq\naWOYnK5VEhkx08yeZlfXmOxYIYJ6R6aCBo/FDaNUcV8joCaCJj1x/beMl4GRINhKF6oQpQgO9D1R\nQaGKgSQRSD+Y4kfHr71rmC2hT64VFUpOrQLMaEL1jE8KZECSrALVasUQidQi4y86X9+rEvep264F\nUQokE37oPe/Dxz/xRBvj8YnH8b++9x/je9/6rbJME5AGWcuZ3/WZ1Ww7PEPBYtnWjYtLhALNNUIh\n+gaee/VqGNPFBACSbKUQ1wwbJ/IoWpyxVhwdn+IH3/MB/NZjj9vz/+znvwrv/Pf+TVw8WHk7i1iq\nJE4BtQopcMYw/hfXoikXALN2KUl75tp1fPbGMR64chdeduVuA6fQhA85g1IGcgISg4H/7affi08+\n9qlmXv76P/8o/uYP/Bi+93v+Kl710MtAqCCqKEOP3W6D+y5fwpe+9tX46x/7FG5UMNB5szT/zTy0\nZ48M+H4A365z/cw1PPJPP4y3fdOXofQDdqVit92w9WG9Q+0LErKMfYeEDlQT6gCUHkg1Y5FXQAK6\nbim1cxZIlGUdsvta6hbolit0qxVyt0SlhG3PcsePvffn8fSTTzd9ffu2x3MD4fIygZk0C+MDPA5Q\nLT467rLjxI3R4Ce4/IWuPef3RCpnuLxh69MXnu9ruS+pMEFCnkpxGkCEVAEqctekFu0iHhcFZago\nA/NpptWSqa0ShhpWGBGGyuupgHlTIudJmpha6T0hgBoFwVXpWjUexqBIQI+66nGn2NOoVOMbFdw3\n6ji5h8boqKtcFXlSrUc6BpaV7SV23AE7t3FQCgxTeHc/7LDZrgEqWCwWqFiIYFuAJEQe1XOwC0MC\nsSCbc0JeJuTlErtdj7rbYthuARbFpT5AAtOZhIqEvgDr7QCcbrArTiiGfsDppsd24OtOtwOun22x\nozXWhXDWs3m5L4SaV6BFQkaHWiv62mG95c2rAc9Hx2scn2xwdtZjtwNqzbyJamapRjaYFcmpaoJX\noCPCjQkegFIWE58ERCjjzkXu24jAFISaKPQyY+LsVAWVZVDUmizDTaSCKpQOJFagWpiISRccpoQ5\nF3CiIpYJ4wZYPViWRRdue0WwaokQyL61UUCXexAQGbB2VhnrUCoGAznVAY/FhQ2oIghVSsAwgIoA\nHeldIRaqCrFA3TAKFfw1DWxoo7ZGZWAGqT4LFXNpeMM4zuAbO+q+32n249ztwox4Y+NnZXC2RoXZ\nkQYE81EqC9YDBOiUgp2k5jQNmAhgFQQUWWw5oWZCzQm1JEDqHHGwqL6kHTQAQ7W94HtCBSlZUfpu\nwroWER1QeglEHnrL+MNAhwXlnBKyWmqEaVbr96igJykeDIBA55Y0UDZMAek4xlXBbBtUoUpEqyWS\nSAqjF9vCcSw9KgJBgIcIPdIm7hwoZVlnXGU9XtesB7kOxTXkRYRetyq40E2AuAOyy7Br4ylYSGUe\npG8xJXAszldRxR2ow6JbICEhVX7VzKBCAY/V3tDRTewmxKBOROtKBioJBEpkNc1szAxk8Pw+de0G\nPvjxx5sYj+8E8FSteNcnHseHPvIYvuTVr5Q2JAbrKaOmhJKYPg3jPRcEH68KH2iHJJ3I4vrCwCdY\nIQWkWzyV0RuyNQYBt0RCTwnNuXF+f/BnPoDHxmDu40/gf3nvB/A3/tK/LfPi+1bXtcp/puyI/1QL\nRUCtJFn0kqxujXkgHK83+Hu/+Mv4/ceftDa9+TWvxHd/yzfh4oVD4f0EyJjWnFBzxqevXsPvfOwT\nNi9XwZaaGxW48cSn8V1/63/EV3zRF+Bvfc9/hLsuHmKoBdtNj+PjUzz8Tf8GfuCnruPG89fYohOP\n1/DbCYC1zTXwrqeu4iNPPoc/84r70dcirusb9NstUIBFXoKIuPA4OmBIGHYVPQoSZSxyZ25rXdch\n5Q5IGaUSEmWkboluucLy4ACL1QGQMnZ9wWY34OOffgZ/9PhT0zUI4F1DxWIgrBadgdoKYCgB5AT+\nIlK+8d/mJXzMQIJtCwGokjkpURqBHlHUKk1XWqDApzBoMD5RIWCHobDWmuJgfwY4pa+oAziOuAKl\nsjKMA7DJ6HGU64Aq1hQEYKV7rmKog69f+FpmQCx0OSepjyPKpUSMr4Wfq/WpaEhEHQAUoWEdupSx\nXIaYTohVT1Kv62GubS/B4w7YuZ3DLDt8VAE7tK2oYMTMOCaJACCCBApXCybfbBCinonQdQt03QKU\nt+wru+tFiObKvK41SiiUUCuh7gb0dYOzbQ8VR0qp2Gx22PYc7HyyHUBnG2wq4WyoWG099z7lJQgZ\nOS0ks1PFblPMHLvZbLjq8Slbdra7KlYdTcmZgjbRhR9mipJ6EaFgGXwjJ7H8UAokTPxPU5WATtFg\nksUDYQR4CKqMQamoNHCdZ5beRMMmzzCwo2BDhbRkwqKI+UKOlBlHeZng/nF8hUA5Fx4hJmQksdbw\nvFWxKCEAnrHYRfa/DpQAZTlpKIWJqgCeauBH6iFQQabElp0Fa3KS8gtZa70IMpU8Pkj7qVqdBh/K\nGndwqYBHBej4i2vdmw1ChEg0m98MofjR/EUs7ap74uQW8bzxXcJaGf/ktSO0KeoaBgyVrZF94Wxn\n8UEEycIEQs0EQ9dZhcbEQmOpQIZZ6IIyH860NGV7M7qGEO1c1bQLwxqGHoMCnsJ+4QTPOKXBrMo8\nDeyArSNEXutDLTRqedb02dpGooqMUPtEh9DWr59PInwwyAFyJqvWrhpGQAFeBStu4CBH1rpqd5sJ\n00xE3Bp+JxVR4hxCsgyxZFIxSP8LSiHE9P1REC7DgH7XowwDuk5rhZBnVRJFVa0VXSfFGbvkQoQW\naCyFYx+HJYblEh065JpZU951LGhnYJI1CWDrStavfe5ikhtSi12gVDZKAnaefs5jPIBpnMd/+95/\njC991SvwN77+a3H54IAVIIkza5VE9ooIo5bKKe3DS59JREhdBnUZCRVeNBEy3kAdKjAU1KFnXmYK\nP6UzwXJUfWXNuSF9+uo1/NZeMPckPvjRT+ALX/kQINpsPRK42j1Bss/VZFr0Ziwrgx0V65geVPQC\ndv+PX/hlPPnkpw1o/TSAv/3JJ/Ajj3wA/9V//J1C33kuGEAmUJfxzPWTZl6+g6YuaR/8wIfx3/3o\nj+P7/4t3AGWHjYCdYb3Ft3zlm/DD7/814FNwy84pgL/P4Pj7AHwfgPuQ8Lzstb/7C7+D17/iCt76\nltcj14LdZsPpgythKWAnpYyEBJSEsmMvibxYYrFcMmDvMlLHRUI51TEDudQtsVgdYLE6xPLgAAUJ\nm36N9W6LJ555/tw1eG3bY1kr7jq8yADeQHTw9oDzIAWbNkGoxqPUfcuzQDNBKbUiEcdPa4kLVVal\nJN4UxPclA1gCeHj65L7E+7ZoXCzArvhs/VCLThk47I/JOo+TKcVS4hp4KoeoMgxSgiQlz8QHVcyo\nl4FY7y2mkNunoEZjBtnZgOxFAgSZ9nGSqSIF74GKlDkZxbKTrIChLEEZCijwVE03ngJNeCkdd8DO\nbRxax8KANoBUcpMlqNbaLBQYY1PtKUDEAmrqe+TcYZmzFSztpeCn+keaS0etwDCAHUZbn2ART1Fr\ntSA5KEI37Zqms5YsbxV2bt8PKP2AoefEBgp41us1Vz1er61dLAR1TWHE/QfZs/xv/TizcVr+LYeD\nKJWbyT9M71FhmrymWGONYEJkYWFg6sI1vpvJ6jIPNbZbb6yIQO9ThXnLuTWcrG1v/L4RAqutDc7w\n9a9SSlgbvD66oReQOM48AxszbZe9QtPbvo78oOv092ZgUOeva84J7y/6qDpJTRsaYfVFHIyBI/Di\nGR8Lvs0Fcr5ZYDATSxeCTVWZkXN2WgAAYmOrtTBYyomZYmFFSFwfY3crbav+ts+FCBLP4XVt9OW1\nMbT4sK8FXqmm6aawYYw3UzO/Fk4cfkvE7pMcT1KaZ0Q86xYtTiGoLlw2I1UAj42FzxST0QLUDArp\nueNL07Fb+leJb9O/1SIRpxiEJh0rBkJFL2CHwaXXy6goNYN1/dni6Nhvv5fzGcSVWtGhRy4ZuWb0\nVockaWe8b5DSBBIozmPBO9Vqmuk54tJnFhGDRwzg7z5YAGBrx3diXqj+0Pufwv/0C/8E//U3fJ0L\nf5QwJMIuJeyyEWlppFt21FKm647Xe7JXs7aKzstgCTW8mGNqQHSzD8Mag9xLh+zxZ54FsF+Q/sFH\nfhFvfNXL8Z983b+OC8uFsF6xsCvQocRWt9BWGHgmWaMkH3kMMiU8ff06fu+JJ/ETAP6t0XMffeJJ\n/Pf/50/g7f/Bt+LChQNQzqIfYxry4H0ee/MVkOtGLmmlFvyzR/4I//yjH8M9Fw9w7do13Lh+Hacn\nJ7i0zHjVA3fhifff4DX8GjDQefYygB+G2riex9uBB4+A7yzAp4CPvv8F/NRvPIrveMtr2V5IXtOH\nyJOGWNHhlC1NvNIMdq8UF0pKln2NUpJkSD36UnF6dobj41McLrubrsHt+wbcODvF3RcvhV3g/NHp\ni4MeO/R3nTH7D8Yz3LWrjUvTdOuGLWy1YSJTmAqSWv6qz2losqElEy58+4xodsMblH7JTRWM1BHf\ncQUoNWMTB0dlRRIXvELynShGq/aJ2FLTdRmdZOrlDGzZxrl1kfWEGy/F4w7YuY3DA7RUKKBJTROg\nlYPjLtWFByIOPKceiyUHFa9WK1QA293OCAkzAS8uWYrrNaaZOhh89JICkYitAep6YDV7RNumSQy2\n263U0+HrdtudgaDNhi08nI9fLQiShCFPhU6isOnD4b7XgYC9mIEXQdJoUa2emMBuRJNLTCQ30CJM\n1NDO6AHhL70mflcg/uXeEER6pM0YO3apLKwJEmxMam3a6C2szecKrY/Q29zs+h6LfjBi1wZhCmQK\nz0pohdZbOao23vpRm4GN633uzvu+f1HPH7WhPeEcwEM8zx4XRm1GKLl+7Drh61mBerW+6m/tfhLA\no2KRuALYubZO2MUpZ3Vzk71twtVonEcD0dAXBemAzbcmGUgp+0uFl5RdUG6Ar7jvzICaKdipgGgr\nI6jWQqkpqVLDU+36/WoYb5i7nll34EJl1f5V998vUOEggSrvwpja34v5aY2L6vOjNE8L6IW51aKN\njdBUpLVDFbA0Bjti5YHGhQxmXR2GnjXVIuD3yAZ28tCh6xnsVFmPCOvRgGj2+McKBEtVqP6OMH+h\nP0SEy8sF3vTQg3jn05/FU7XuEaorfu+Rz+ATzz6Ll9912a4tKaFPhD6lZu8aSB0pGlygJPP5b+iQ\nCIHMc3h+eMxD3RC4AsaFRl/foJaW3rNaAjhfkH70A8//BtOhAAAgAElEQVTgR3/p1/HXvv6rzB26\nGtgRwIOYgjs5qKoOfPijpFhOCc8dHQNgWDH33I+9/yn83f/7Z/HOb//37f7q9vvQ/ffhS9/wOrzz\no4/hu1VL/+p2m+M1/PbRTz6Oz3/ofty4cR03rt/AZnOGfrfBN3zha/CLf/hJPP7IDbmggIFOtHFV\n4NmHgR4W0/OxR67juaNT3HXQcT9VWRpohblvZs3GFWiGgh7JqNhlifEgVbD22O4GnJ2d4eTkBAc5\n43PvvQfvuHoNT2Ee2KEC20d6A8DMb2MyjzHYIbjqkOfUgvIVlgQ6NQt0hCa5I+gM/5aVrQQw0rIk\nrmiWfTLyj3ilgtyJTDF9ktE7+cvBTssTAAcqkS43LL2qVSiJ34q74jYKOZBk6wwp0HMnWXP5HnHX\nqfUpdy9N2PDSbPW/4kMtOwBkQyXz2Y6CiDIg2CZ1gaEaAxAGXdmUuVotWRsYiv/p/Vy4UitP0Kom\niTaRoN9B6rFQIrYADD1yr24fKqhxNdz1es1gZrNFv+tZQ7PrW6F6t+NYItkwmlqbs/ZE68FNZM8o\nODktacGSjhyNiEQ4WFiC+duOQUsUZg1IQIVZZay1udTAidGDGrQloQ96v0ZwbrMSGes2QXkKjPT8\nGu/Z9hIqUOlvCnY4xSXP0zAMpg1uCDpcMPExN5awd47i8xthp5nYGetCONnHYfLT9LpbaY3cYO7a\nyGCmh8wsTYHfPDCr7VzLetW4sLi/m4K/ZtnheWZhLtACAiSJrdCJjJTYwsAhPp569LwhiMw1NlLB\njlpvxpadJNadrNr0aN0xQDcCO/KW4p6tgBbDGrsWJUvGIIySohbUYOCEkesq03TQsb+qjXz2+gme\nu36Cey4d4L7LF4E6oBbyOZCaIJql0MFPC4DUv97are4jmWOcNHtkqRVJAA3H8QjYIaULhJQKUkmm\nOCoIfvilgsoADJA4q4JUBnSlYMiD1UNzKxeAWi3uhZICYX15Bs+URONOpnOGWiUMeBDh27/8i/BT\n/+z38K5nnuMB3SNUP3n1Bdy9XJgwOSTCkBL6sQY3Kgkaei2CU9L4rNHa0I6ALWdFrH5z9U9ga1vH\nRdPqhnVRK66sVviiWwBzjz7yLJ6+eg0P3nUJCewSziBHrTuqAEr2QhhPXpeElDnmgwC87J67AbDr\n2txza634o0c+hWeeex4PPfiguV4p1X3Hw38FP/ITP43vf/TDfM2nwvXPAfggfzxcZLzwwgs4OTnC\nyckx+mGHWnqsuoxv/bLX43i9xUeevopfe/RJuI1Lj6/ht6sA7vO5fv54jcuriwaarQhoADuWOVFA\nD9fEEiAoxUNT17FrW2bXtmHg+MazzQYnJ6c4OjrG8fEx3vT5n4v/d73Gu07X3IA9a3CohRMkqABB\nKgO0YMeT+IQ0/c151KyXSJta3hjof5NAp2X0cT/ZfTSxSqMkC3S5+g2I/PZR4dYoD+VesK8D2Ak8\nwUCO3CI1YNB7ZMCpFIBay44+NkFje7K47C5sLRCRZOFTGcnHMpkX0UvvuAN2buNwsKPMBY0LG9Bu\nvARNwZwagaCEYDzUSHz6RiOqi9eD0QcLVtfDGYb4Wwo4IgLW6zUWJx27PEktIBYC2CXKwM52i343\nYNhpkUIX5mJldn4ev9dS2N+7lMa8SWHDavt080ewQ4IuojanBpARDx2HwBcby07VwFI528UrKLqw\nPxTYqOzWCONi/q7h2qg5ac7VvkqDDMAQP6MK4dbfx+461q9pd/3b+OyqacB3Uvdoi91uiQUt0XVK\njEV4BQuLfd8b83IdsB8Tbb4OLtGkYW7hGPWhTgHFeKzOO252Xg0PnTCXF3EQMHJjw/SeodPK7HzN\n1ZHiIVh1qoIAjkdNYmUFOCsPKmc/s9ShtVgES6lqCdoD2YKSZOzXTtA5dBcoTzmd0eVsRQUV9EyA\nisQVVbhyRWPTojAxbpM+l5LE6xSAA2KpEWgNzovAXGs1i03VvRniN1QgOFlv8TO/+gf48FNX7bmf\n/+Dd+MYveS0WOXN9Ias/VRrQWavGi7RubVBQJ8H0NXcMQxMn8qiiEWZyJ9fJWJtFouuQFwt0y0UA\nb8UtO4Ck6E2cSnOnsWCce9/sQtVpRx2DHQWDFeY1wAJXRcmaeELXgAMdfc8gPPyWN+GDj38GP/Oh\nR4E/BPDnwwR+kt+uHK6wk7g0AjAQYRB3NpG99hxt8oqia8TAfgBftncY7LhFLZlwqsoZ35uuxrD9\nF8bqO7/yS/Du3/jtFsw9B+AFAPfCBOnPXjvCAxcuiEWeJPsVp5PhZC1i3YGmXZexNeGRkHJB6hgA\nP3j5Er7kVa/E3378CX9uPOS5z18/wisfesgExCwWkssXLuB7/7O34dnnXsD//O4fxyc+8GmUTQX+\nIAGfch77k7/4a/h3v/yNyMQukokA6joQZXQ54YGDJZbLhYAdtXHp8Sv8dm8719dPN3h+lXH/5UOk\nLHFnkoRAQXTSNNlZP2s2ObHqZC6KqkCn1Irtrsd6u8PxyRlu3LiBa9ev4fqNG9ierfHKK5dw2BE+\nfeOsBXahXR0liRkeTPkAREWLK6hYZOBslwZ2Ip0KnMTSf4eXKgJVmzDLf4MyROsHZQE6ylsBlbNq\noD3F+IfyGm0XL6YAeEZHbdZ9q3TjS8j6xzxGExK4S6JfrwV4Of1L1Qxy4D1gCrEuo8tc4DYnqZG0\nh7cr2Mv5pQkbXpqt/ld8KNghDXRMreA1FkIQN01iTSAvnng+Z+SIFp2xtiu6sg1DQT+MhB4BOyQE\nSO+7XmekTNjutlZJve+HGbCz48KEu3HRSu9fI8AYaJMYhEbbPB231iytYEfgQgAKGBEsP/Rc/qzM\nkf8kgIL2eObFce5VTMsuzHuWtfAMOOCZbUlVjaMqZYIJ24TpKdARkdWBljyjJXSqSZk+V2N21PVw\nu91hJSCWQE7MDXiUxu3Q0svUGYDjnbOxcRodAUzLHubafsvHrWAVG8sWlNz00EFuvqPGjU21x2PN\nnGvhHKjrEYHOxLIja1c1xtx89S3nyPMcwA4j0mrrMo7enOVstv8j7WUW1wSurSGvTrW2/IpuGQR2\ns9H8XyqYNmAHQcEBES4UYCUWHFHJ6jkwrdDfY+re0I8Sao6JO5OtT5n2n/nVP8Azn7naZNx6x2ev\n4/2/9Si+9gteiaHv0cscxOre0RKl8nMEQ0naVXLmtUAKqJOkuNZmCMCsVZomlrOuQ7dYotN4EAJQ\n1c1YCwnyGJetJJRAz3SgcIpuq08U55S4jgkldSUJgLCqdpVjhhz81pCwQN3CgPW2x3t/7zE8JgUp\n8QsAfjcB31aApwH6APC6B+/FPQp2hK4OIAE8ruxodrbSZ8JkbehQkM69AIkkSqxaBgM7E6uOTPrY\nKqxAyC3hvHYWqPiur/xifPizz+PHfuN3JXYlJA96kFf0fRcOUYcBgGR4qw5i9Pma3c4sPEaXue8p\nZ6RakGqHVCv+02/4C/ih9/8cHv3M03stM59z/33o1GqYk60H3l8FD957Bd/3trfh7/zkT+J33/cx\nAG3czceffgfe809/G9/yZW8AgZN+dJ0IqZIT5WX3XMTrHnoAH3v6HTJuXwMGOu/g/ncF+P8AfIDH\n4uf+8CkAwL92/934S1/xeTg46Dj2JmUkyo2coqCHBOjUJK58XYdOio472Nni9HSNo+MjXL9xA9ev\nXcP16zdwfHyM07NTdLVglYHN+2QxvQYMdN4PLBYZR2dbbPuNTd0iL3H5wkraMwI6uiy0DpSB7ggs\nFBA4wDEQl5Kt9ajYQkNSBYir8iiJlYtYGYFQe2awfe+yku0TJyTNGm9YE/laIyvFEV8OcFxJQMgG\neFy28kc4T45pvCEKlZZPSBY2SpJYSRRF1WUsHRNVpL0Ujztg5zYOCxQV5uwmx/FBttgTKdHzhUJU\nOZVqUhN6ADfAlBFipLkIWl624jBBi+5RIGC93qCiGNDpus7cO/p+wGazwWazkUxEkllkJisKEBmU\nCzV7BdBGieE7sQE74acoLKp1ZXwvt/oIEBEBgZ9Po7YIpxJww3iIDNxEK5FKxs1TG+Fuegi9NKAT\ngYFacNQiYX8rqIOAL+lYtDbUMM+u5babB8uOJJbY7VCWklWncR1ywVzB6Fg4MQaiHQhAZ7ymFQjo\naw5wnAd3bgZQ9v7uA9uCLvnbfh5fNvrCwDTikFa773TNB215WDN67iQ5ARzokDIOA/ECAFA5Pbha\neVNh4TrmIg9jMQaZ8zRBgQ5ZjA773Ls1x2N4yECIaeuIBT+uaVLcWgqv3eN6bm1fSwsSVSC1Ch+N\n3bABt0kKQnzx+hGQehS6/j97/QQffupqk3HrKwC8rQLff/UEn3n+BRzmJHUjvFZWk7TFgKoDqFol\n/kcyKlGRLE+lolKRGl+RNvGecJDTYbFcYbFaYblaSlY/Pq+IQoqFCv6+Tz12ZYs6wPazCjfDaN0p\nyLEkudr0StJekaAkNmqw+k8CdKDabsJ7fu8xfOL5AYhQ8dm3Az9yBKDgtQ/ei7/8xW/02jEyQFwi\nQaxPge7oPCrw8M9hD8p5arXhtNYMZnl8fO3uBTphXeu7g9cpb3zd/VdwYbnC6bMHiGABz74dF5Yb\nPHjpAs9vjc9ROqt7XNwuUUFUbN2o0FdkTlIpoFKwzBn/5V/8d/A//KOfxcfe/yzqnGXm538Z73zr\nX8Tl1crjXsBAZ+j5RbXgrV/3tfjdRz+CcdxNrRVPPP8wXjg+xQP3XOQMgDmj6xK3RWqz/OWv/jP4\n6V//MD7y1MP27AurFU6fLcAPAOzt0QKpTz7/drzng5/C9/yFN4mg60oQMi8UpyU1ZbHsJCscWkk8\nB8qAs/UGJ6cnuHF0hBs3buD6jRs4Oj7G6dkZNpsd+lJwd0e41ldsH/EpXy071JKwHQ4A/Ji1bze8\nHUdna9x7+VCWe7TqwFxeIwBKtlb0N7ICmTlF4M1Zcg1TKA8w0IR2HLJbdpSOaS22oUSX2cHjeKRN\nqhTQvaVCjyo2YH2q/v3oUH6tIIf7pAlFpDQW+XlKX1X+8WfD+mRAJ1qsjEZW4zXjlpjS9CV43AE7\n/wIOc9EK4oAumBioq5XMWdDIsuBZW9J1rGHk2ja9uWc0ghSxliNnCZKXhRyrmTfvYCvUZrNGP2w9\nCK3rzCUuCs5DPwgBaJmNkpNoyowuSyr86Tkp6d6d2bg6ViS6DX3X3yoaoBNNs8ZSg2bEGB+5niby\nZ00GUIk0gzHcbjMWzn0GKRCiyI/njgBRgAYu8XdtOzVTG9yiVGsYKR8PKGGRrxRSqXWn73v0krGv\njtLA6gBUSUtdJTNY4BQuzAnyIhHy5hCLAZ1mhMfCuIPPf5nHGFi3zW3bt/8m/mEKIHT8R4IWOWCK\nbWisCZJyPk3oQavJVg1dsb8F5Gv/wFYWbo0KeCKoazFPwCaRANbY5eB+kqOfOpl7lPeHrPihYgJO\nQawAUMCatMIsYrqA49gkMrc9F2RvfSlEeqFj8cLxGQAWf8bZtgDgNz75HL7swYvIpNaajLMB2Fbg\n7sND3Ht5BaIsAeJkmS+H4I5rwosAD6LqaeTFPUTHj0HOEsvVEqvVCgcHK6wOViZ48H3clUXHYNft\nkJF9fAB2/+17oBbLFlkBr1CvQcDWPhJySQZgSylAz1njLNWzCO9XT87w8eevApPkzBXAw/iut3wx\n3vCy+0wYA0hiSyrXEamqLAgAJIANAzwmULV7sgBIhWuexZiIMa9UF+K4DxHuo9cQvAZJlXFRQffZ\n4xOcbjdgYbnt6+n2YTx/dIIHL1+CXhyBT7X+iEWM3GIJaHKMwGfTAOp7zrLWZfznX/91+LFf/jX8\n0fuewhhQ/OHH34Ef/gc/i//me/6qg2cwPd6sN1ivt1ifneEjn/yEtHk+7ubjz72Ai5cO8cCFQ6hx\nnqSAb0XF4bLD277hzXj+ximevXaEKxeXuOdwgadfuIGPP3MdP/f7n8YckHrs2YfxwukGL79yIDw9\nBx4vFkaxbFQBPJQzuGAySfHzgu2ux8nZKW4cHzPYOT7G0ckxTk5Psd5s2QUeTBevLAklZRRK6Dp2\nAX32+hGAvzeZu13/MIayxDJzLI8lNiNYvSO36qgewPeAxSY2dBe2DnTXuaxmC1tAQWsZTymZNVrD\nBMzNX14AJPGKtsO5UxXZpn1UBGw1Nk7OGYMvWJ9S4pIlKiIAoryto35JXwlkCrBOkhLklEHkiXKo\nAlaIV2hYQ+dfwscdsPPHOBjK8GGC4+jg7yPYqUipIuciCQY0oJinwoTYWbAjPuYAcoVlQhuDHW0b\nwLnS+2FAXRf2zxSwozyl1mrP0/TFDTOyRe5AZwx2xm5sVZjyVGbWe8LuHU+I2vGxZaeG/7XIHn90\nqw4nS1AWYNxMNCZQTzeohF8RiJ81cbSp9+zvsTjtxGoqdrvAGoGbtKIqyGNhIuqEQEqwQ2pksKDE\nQEcSFOz6BmzqXLHmXAhzpxWXvb1kTQ5Ax76X9tQwjqFTs1aYGZD0xz9U+Bm5HGAGaMXfbwHvzAGd\nGoI4de+6FrtVZoyryOt5bd0O/00ZVozLcIvueOCcWXnva1MosfqyARCCcM3nPrsrSkzxq8+UOioU\nalEVIk84UgmxUrfWyIGKGMKEubAmF6OkMJa+jUaTYaA7nlsNQ0EE8HsvXwDArmvvpmnWqxvvG/A7\nzxzhjXcl7ErFJ46B5zbaxhv43LsO8edf97lYLZcgSpKdMoGGwfaF9qWqwC6+7ZrtDAJKOUZnicVq\nhdXBAVYHK6wOVzhYrSxzFdffq9B6YjqlXdpw3bBKwQ15ANWCWgRKEosjSATKXMRR5wakaEhosGhj\nh2GA90AsOyI8XVtvZRzmBeiSwH5QGClHACaSwxR0NH8rzQJ8hQYaxYWNZUxJrVZqCdIAb9jaavdh\ncWVTeCeAUx8DUCsYAXhBg9/39PXq8RlermBHnqvKGxMGCcJzZG+ai7nEPg6STAQ8bpQTUt9htVri\nrX/uLfi+x9+LMaAoteJDH30Yzz5/FZ/z4P3W5SIKyOPjE9y4cQPY6VzNx9385kcex29+5HG8/qH7\n8W1f9WYsF5rSHs3Y3XfpAHcdZPQ7dnG+a5VxwSS8+bF54WSDVzyQxT0r+1gThXgVBjolZz4ncX2Y\noVRsdztOSnB6hqPjY1y/cYwbxwx4Ts822GwH9H0RqxDHsXUS8wNKOFlvzm3fUIrTU2VYysPJ+Rgh\nuHIGGmcubAp6jCorjdPoOUjf0fZ9REcHDKiDusRGV+Ye/dAbXWXRphoot60T2DsmH0cgHy4rWTKN\n5IVDzcJD4dpqkoXsZ9l7kLhxcqtOlxccj6V8vkoSA0kiosxFgeNLHfDcATt/jCOi3ig1GwAo4qIi\nXFwXWjKmqIIP5zkneLatwfzQS7MRQRxMnJK4X1AZLcAoVIMXsGiDMTjz0M2n1h3XcJFlG6GmTzCi\nyuCmFdBaTbe018Q0JSKtMI5AECKgs2KXc/K0CFEug6vWW9l+NUbQWlLkPAMUonVpA3ZkBF3rArRE\n5/xDxmRysqMAszLBBdXqH5o7ITw3zkUpFYhEtu+FGbeAgGxcMHvvcfOYKJJpdKI1p+p5cyCn7eLo\n+5uhjltCJf9SjmYN2frVFx8U30fzOrbU6HkEcoym94cznmaOBKjAgP/UatR8Du/aBhjwmKZXbUBW\n83cyQTplt/w46NPsksU/FwAioJtOlcCgiKhxEZWee9utX7FWiwu6c0vngbsv4g0PXcFf+8wLOKqY\nTVt77ZGK077i8eOCYYc2tufGGX7zsc/gG9/8WnPR0dYNIGBgSzbXi5HCqqLRzLkig9XoWQKz86JD\nt+RCi91yyUHaWnE86xpwS5hKY3moWA4VVFmZRX2PugMwJNSeA/uhCp4syQ+WCxO0SGIMlGppTOcw\nDKBuh9TnAK+Ztjxw5S4ZqHkB+t5LF0Tb7tQQGqsEBMuOzmRY9zNzZb+P6Fj8XWmq0ZbmWgcfrXWQ\n21QAtqYo/dT9lhLuv3Th3L7ef/FQGBg5cDdAr/Jh8T1YWr5OYB7O7n1s+eLi0CwoP3d8JM+bF9g/\n89zz+JwH7jPBtxQu2n16eoLj4yPk0uNld92NZ2+8XWjD10Djbt6EhPeh4FcBvPPp5/Ge/+d38dav\nfjM07x+RCN4DUGsxoNP3OwxDj8sH6jY/PzYP3nNZMnBpxjUYYHALcUbNGUidZQkcSsEmAJ3j01Mc\nnZzi+PQEp2cbrDc7bHc9hkH5Oqbu+oAXHN7TvoXWKUK77ipkjVJYV6AAeCJ9jtfxPmxokdEgl03S\niJZGBa8pLIL7mn6mRKCSuHB4rSb7zR/SNhEGXNkrPYwNNxYRAV2jTkMEPEZbdYELAIzePey+SAJy\niinSdP9qivHcsfJFx2BW0fkSOO6Ands4XNvUbihdeAYKauV6EOqCkAgZWvwTACStY8rIeQEQscY+\nplO1TRAYUfPcsNzn+Awh1rUaadA0W5Fvdq0qH/tZiguArtF2zUJ07eFzYOcDquFt2zl2Y4uWIuvp\nGISY4NR+pwBGx0mfCwU9gLmxKRikMTGR541l9tj0Wa0GxZmBU+UxdW46Iv/pfJECYmpP0VuSx35o\nn5XI8nrpDRjrvRvGYOBvT3sAu78Bnqom8eakc/pzfnfPHYqZY+/5/4IIrd1ldL8J1NG1SqqVpslL\nfZiNLmjmm+rvDaCa2aPTtR7W+/h6u4x8gZKnnU5qORqDsQB8Yt0Mz7qk+1gByQBNilLKwNEglm3N\nx6WKgMGmjdLExHE/BEiYsiRmL3KaYUMgk1BLxbd+1Rfgx3/pQzi6drI369XRDri6wzS2B8D3XzvG\nya7g3ksHrFWvGoPRc/9Mk6nxNkq7s1iC2WWHckbqFsiLBfJyidx1oNxJ4La7I8pCQAQ7adFhUYBM\nGdvtFthuOCvbLpk6qKo2KGekRYduxc/oRNiMYEeFr2EoyMsFAyhQCNgGXnF4iNc99LJJ4DrRO/H5\nDzyAey9fYLc9Exg9yBta72QEDpq9QmJHbdZtoGOyps26U33NqGCqLj1UWPGnagC1trBA66mnqXhi\nA20DAXjZXZfwhgcfxEc+2/Y10Tvx+gcexIOXLriiptmHLV0kAT2Vg3Flv7CQztXrfU8biaeEl91z\nj/R/XmB/6N4rBuiZxhbsdlucnp7i+PgYR0dH+MIHLqEM1/HZE4+7eRMSfgUFV+SuT9WKdz19FY8+\n8TRe+/Ir4tJEGHizoJYB290O2+1GvEIG3H3Q4VVXLuKJF1ogRfQOvP6hB/DQfXdLbFuwMJO7b2ah\nDTV3QM6o8PpRm+0Op2cbBjknpzg+OcHx6RnONltsdwN6KZHBNUg9zkT5LGpFlxKW3RLb/u2yZxzo\nrboVFlIs3WSfEQmgdrmB0KbK123FS4YXFdfrKlK7KsTLBUWQtlUVC/MlQFRO83T3CYlBcPW4ljGs\nVz6vyZmc4AHVrOdhT0XxwqdoJL4ocA+8J4Adm0/x7tGENQTJJKyKddkMiTgVfyfJKBZyzR3Lzp/S\no0XYtqNsQ1ApgsPdxcjTvrKPrAYPk2wmc2OzQnhqTozPnApd57UytsvBirYzCFByX6vRAifOY2Er\nSWQc1dQKynOAC74xGy24CAVjwd4YZXMjZ5aNVtDaFeIdlIkRRBMI+1uHUt3fmMO12ia9OzX/nS9k\nx3lpxn72EOtbACaaoGAMbNCMVRAcQo2RvheCG4XpSEcb5NM2rbGoNYI0/z8HLqbnzfcw/s7NCILt\nrIaoWQmTb/YeAQSTzfGoo/taWVswse+BzV6fATr/P3tvHnRbdtWH/dbe55z7fW/q4fX8ulGLlgQW\nCCFQCxxMUXacAhICdihM2RUBNnYqWHQoG4wdTOEY7JQHhdgFqXIIjgMhFSeUSwSCFIhIBadwjJgk\nhJAQkkBDD3ottbpfv+/77j3DXvljDXvtc+/3JBSnSJf6vLrv3u8O5+yzh7XXbw2/BcSxZ2ApVWnj\n6snYu07YjSvQakGS3GILfOzWqtyhoFAkZ8DyLiBo6FxN0qUQomEx6TBFgAtKSeBSiwgDCyQVvngR\nUrOys7t0yMrwOLW+eUsszr2slAzvMz2uP3eCT9zc4o5Lx7jtuMfXvu7l+Cc///ZzaWtFdpZzc3ve\n+tvvx9e/7lWeq7iobAaohmsANdmYGb1qTbmTMSKtLSLenR6p70FdBpKAIra1HxQsO5ImgFPXA4mk\npsiyAElqYBQfIxLPziBgp+979H3vIc7WVWZhLaWgUxlgyMPqtIIZ3/wnX4f//v/4VfzO41WBfuSe\ne/ANr/sjFVToiYlI4/+1QYkkJ9T2soPrNYxbAHim1Pu+o9diWP+Qyya236pFTnIiVHawep0kE17W\nmy/wKB8J3/ToK/Hjb3sXfufpeq+vuPsefPOjr3Q5i9A3DnqKdQH7uaTwFes8pkqP7UVl4ddOiXDt\n6h34gpe+FL/1+9+uba9g6wte/grcf9edshhUueTCmMYRZ2enODm5iZs3b+Ds5CZefd9lcHcnPnY6\n4h0ffgo/q0BnPad/8pffg4fvuYI/9UUvw8XjwUFbWRZM6tkpZfHx+spXXsXPvfsZfOiZ2jcvu+8u\nfPOfeNU+kYf2aw2Hlc9LzkDusLDUnVqWBbtxxOl2q0BHPDsnZ2c4244YRwE7dkrLf5O1SqqIS7/f\ndmHAcydnGJfavk23wR2XNofthjpd7I8KPCWEOKGVh3GemkyOcqg5NQV6+QNeHWauRkZLNViqPCtc\nQJyQgqzf1wjC/EU17sp3o9e+/VV8Il9n9dz2Sz50bdU9JVen14Kw2QHfEuSxhO1mzzE3wGO1vT6l\nPfn/h8eLYOf/xVEnJflEjIACy6LhALr7qzIgIRWm48iiNMXSFII9N38QDhZ65kX0Qo0P5tAyE1xE\nwvpGrVVwT9FzIVQ15EMbnIfOhGUcAU+j4tq+xhXcwCyIuugbXTwoctYevf0Dn0flj/VL9drm9bFN\nkwFPBraNLPZBUPGrFPEvG0RZgRH72UGd2jxLga244JgAACAASURBVDK1jo735XmAQzbj0tD5+r3r\nPFnmRcgslKxgmWeJl8/sCqk3j6vaARbvXGhpHU+j8D6o3JieEjf9FiTEz9ZYK97braBMPccfTLSu\nvX+06s/4WfuXrWNGzAlzsOKjhwbkmCLYNqK4pb4hGbC1ZmdSudEAqNVkOujVIXKLpvypeX+pUtY3\nnhw3riQPS7DaH0nzQ3JnBheZG+7NKRmUZH4JSEtgThDGquRrpfYBubyy9kdFIAIerl0MMHCyHfGT\n/+p38btPfszv/5H7ruJrX/tSPHzPFXzwzTfkNw8D+H2A3gLccdzh6vGA992Yz83t+dibT/Dmt78H\nX/2qV+g1gwpF1Su9FBaWylLEPJwTulJQWLQ1yh0o9aDc6+sMJsnVcbDiRTXrJEvEyElC46ayIM0T\nMAl3MCdCSeaVI6Q+iyV1I+FyQy/hciZLbP5J3gtXcOACDq7Iby4c47H/4I/jqY8/h48+8yxuv7DB\n7UdHnu8nFNlVSYTS6uaUkAKhguiHB57rLPXnOgvk/8bIBZG/S5QrprHZfE1Wb6peoVQBBuYiQD3K\nG2Yc9R3+0pd+Hp6+eYaPn25x98Vj3HP5IgBJpKfaxGBwqCYZUsAahKXQsHMlBLHIDCmoKaGG/dCj\n63t8x9d9NX7oZ34eb39/Vdi/4GWvwF/9s3+6JrtrONDHHn8S7/3IE5i320YHSCnh8oUj3HblMt7x\n4afcT/TnDszpD775Bn7m7R/A67/881CKEhrNIv8N6Njav3Tc4c88eg3PbRfcnAj333kF1+66A5vN\nkRo5NG8DdR1bzS6jnUZSUoKlYJwXCcPbbnFTQ9hOzs6w1fIV87K0AF7v0UmCzKCie0wC4Y6LG8xL\nj6UUdF3C0HUuD9s5FaYb2D83kBPJCOostHkCB7rGsBf3XhunSs8vC5u5RsC4cXHR2l0cV8K+7N47\nyNaE3hsFeRnA9BrTy8Q1WYXwrN/xPaL4a2sSkTJzJpX1gbhmCXpllS/yfTO29F2Pruulj16oSAcv\ngp1P69izbNP+JC/Fak/AXftxkzKFv74nxp89q2dQ9s066rGiZcG+hVRa5QuI4Iu4tUoDDgjcCsCu\neDRWBIqL75N7k/Y8MiBY6EtTNJHIlaVGkSeqGtA552UIOYQlvzZgIuIedoji/VKVT/19VGRhIlSv\nF+7TlPxoiTGwJs2O4AFu4a6gRwT8npoQAFkFUQaaGVi7tvUExT07lahg0QKizF3d8KLQN8BzQGit\ne8pUl0NDXS1GXPva4/8/1ePWktPASDzf+RbmA+e1pzXgCVo2rz6PVuamhaZQogU76xBOv0apYT5x\nhvnXTNdu5EC7rg4CHVSZY8/VS3MgVyc8jGEpZamY3Vkstj3nVDdLo1It6tVh67sCLkIpDDCIkm+4\nzMVWTlV/OXh0uOxZVDl09P/8S+/F+z86I2befOCjb8BPve0D+JrXvBQ/8+sfwAff9Lz3w12XBrz6\n7ksgLrj7aMS3beeDuT3MwIfe9CyeuXmGS0MfOl8oaAsklGNhqQI/LzNoIdBSlQEpEZDdw2MhbEaF\n5CQPOgbR3pMgG20GIy8T0pRFicwETvUR83WE1nqDYdgIaxWqQYZ03sBBLHmIlcXcm6FkmWc8dLTB\nfXfdjt1uxLjdibcOArxkupOGtLC0I3XoUoc+93VdrIDO/p5j85JN5PkCc9lsTFalGM6XUxOsjgNc\nsrucYqE4hshBRgrzTI+Qb3DXhSPcffFY3y4+1msGtiq0/Pb8mfxZ5rvToSepb5N6KSjbb6TOUtf3\nOB56/K1v+gY89exzeOKZT+C+u+7EfXddrWQhXcbZOOGNP/Jj+OV3vcev+9AdV/DK++5EUst77hJu\nu3IBL7v3Kh67/gyeYBaPzoE5/f43PYvnzkZc2Qj9+qTMnMsi/SthWDVP477ji9gowUbf9+j6znMx\nZF9yZCoywwpR56Sh4oS5MMZ5xtluxMnZDien4tU53Z7hbLfDbhKwEw1DkhuYTB3SMLK1nkDoc0Kf\nUy1GG8ByM8fCiMWQNaf8d/CMajxS4cthbVjYlslc83jXOodJQSBgxdznuWCehXlN0gxsa/jkQIdi\nm2h9b7puYcYznYVRj3Fd0MiHwmQNLJAmA4gZnsdpct+NXCuSKQN9uh+ZV0fKlQjgObQXvZCOF8HO\np3GsQy8cEAQluCixAKlgdeuqUtNaYmg9J1C4VE+NKwNwwW+WBIkZLU3V8Noeak8aBAFopZCvBA6D\n/Vp2nqhiURAshwBPtZKEU/jmeI7g0i/veYXI/9tXJPW8xfrXF7zds6nJprDLc7Ts13B09sWeiIJs\nMSEYlHluVTlqbnR9Y3Xs4myxkUrhPQBNnR2z9pgFrJTD4LKhvnQq6hm569zj4DH0dq8OnryShzY5\naGcGeCru2gMcdTzWYIgRqWabTz6ZkKTD3/nUAVT4La/X1wFAYpsJIsjUhoT+cCtaGPcYw103IX1N\nUqSzhh7GtdZa6OP6/JQBj60ZkLfFaabJcnYOgJ5U6e+7vvO6W6nL8sgZULBTioRaFaNTZfH0cMpg\nKlqFXuSYe3rNRoEKsKNiEQFPtNwTCE/fOMX7nvo41lTJzIzfu/56bMf78fWPPoKP3TjD9WdPMSRC\nD3La/M+/5yJ+/cnngamcm9vz7MkZLvZdHV9SJYxVlWYo2ClIS0Eq4u0pIPXgZK8gb0qgMdrB8hJU\nkUBYz5mADEJHQB5HAUudFWoMQCdrwcZBPTsbqeXT9RaqFMcfWuhQLLbO0heMXwZ2lnkBpYQFwLQs\nwDyhkNTosXEDJH9CiBh69N2ATbeBeWTcINUAlxXYMQBDEABibQiJ3DwzFojX2RRVM3ppNKIYCvx+\n2TdYI8TYEy9xywO83zl8bB6q/d/p/buCTI0IKCSSEp4Ll9ENvXt1+r5H7nXtJMIDd1/F/ffcJfNJ\nFf2ka+6NP/JjeO+739uQaHzbJ27gbdstXnb7BdyeFfDkhH//y16Nn/uV38Z3f/gpaet5c/p0h9s2\nRyjLgnme1KtTXMntOlNaNSxyGBqgk5UAw8LAbW5ZPp9UrFT2NQbmpWA3zjjd7nB6tsXJmXh2Ts+2\n2I4jxnmSkChw06ekfW26gFAbh/73ORSMc9aW1SMOnz2crUyNOp4Dp3Pb9z8OHhl9VPlY6wtFoGN7\n5jLHXJ1QbN3aTd5yb6kbRK094bt1jtZ15TpAHAu/Y+k7MzCyn8D2FQFLdVODe2q7CHRS9np8dg0x\ndpuOaHOnU9Y2efY1/CLY+cw5qnIjf8fFsq+oBOsBscaKx3MJjXRhydeZ5kVqp0Q2NjYFSc9X6nkb\niy8RXI02ZUItAIXaEKxDSlpVUORaMTQlAp1aef3wpK/goIIf2SdvrbKSfpEVWMTdiQ/1OwJgCaq7\nAwWYf0KeHRyh7piRKtcElwmvakkNnhDbzcMbErNPLpVqy+X3VolYv+3fkNJwtc3R0kIkQragrTbe\n9jNjKQJ0pmnCOEq8tlnqEc+pIW8AYdE8AxgFrHWqgT0HSHtI5vCYhbHZ+/yWv26Pc89h/Uq0mu9h\nGM496QGw7EqbNDCui2gIhCl1zkxW10zMm1ivJdGhkyuoDjypgshGdgSyAAuDiv2+npvSZqsLYkBH\nNzEHPRVAGQDKKXv89aBKzzAMrmhTjqB4kRDJNKsMKShZKZtV8SuqtEpF8ei1rmu9htRpf1rfxwVF\nwCeevzV98LOnI+64dIx7br+EK0dHONtOONvOuLmb8IntjA0lfP49l/FLjz93bm7PxaGvIVQWssIB\nTNNiU0bBTyirSqT0ueLdIe0vz4OyYn2W+JvqushgKXjIxYsyQuu0UJeRIHk9OWd0yvTWbTboNoPm\n7gx1jgUrhNXLyF0n47LIPLUbKKWgaF4Bk1jlp2WWMLoxgXPwCnY9us2A4egYm+EIR/0GR/2R53jt\neZyNpQ9135C5LF+T4tQClqd5xjxP4HEElwXzzOrI0YKGRopDEdy368qU5ajw2j6FxZjU6vyrn9sf\n+5LIlDtFO6vXOt465gZEk+UvqEeHegkBs5rArPsmpYQuJ/lu3+Gpj30Cv/yu9ziUfwYScvk8Azgb\n8StnI+452eErPvcCCIyjLuNbvvqP4QNPXsc/+Zl/uT+n3ylPWWVK4ZBcnkgKkKplXsBNj74f0PVy\nD+ZxMjBjPeLPqQK/wuIF3JYFp7sdTrYCcG6eneLk9Ayn2614dOZZ8/MQUAgcqLpiwNbdEdQEmEAa\nek9w2umkm30dRentCnTUk2V5JVT1AJ0lDnSiPJX9PcjPEAoMWKQNg7WExzTNDnSs7SklL7/hOkC4\nJ29xADv1o32AEz1UgrkMSJFjN1BzZxUshWsRCF3u0PcCdiOjGki9pRzug6qxTEIbBfAVnV/OQKcG\nsBfa8SLY+TQO36gDal8/ovIj8asEq9IMSEIvsyWBqkCZbGOoNXZqXGkNUzgP6MQF5kDHrBrKomRt\niwxrzb0duF/baIBanZyoKo5rgFeVOdYNrFoPD18hXgxOYWuGdwM6dk/WprrYa+sb740/2MGTq1hK\nmCKMea3lvCqVdiMVXTX6P8en0AdYAx55EmYauzECqIAUnMaekTGS1pbCe3PLvlNUwTGvjoGd3MuG\nHIVwcSFFKBngHMBkUGT2XvPqO+ccDRALYPTf1LG2/lkTP+l8siZxULT9zf1zWr6Se9eY64YXNgZ7\nrutJa6fIJ0ACEtf+55WRw70hSajkObF7ZBDWcWy7ezVRDSueq+NFRCt7kHt3vGq2FKs0kGMPV8DD\n2Eu7J6SZYF6dZREGs7IE9rFEoEKBDljnFaGdt6bklHatGSPRHRc3erfnUCVfPFa5Q1hKwsm24Bff\n9zgef/Y5/+bVoyPcvkl49mdV4X8Ynttz720XcaHXQpzBaGP+TSt6CBtPkz26VDkovwIMcwU6GnqT\nOunfruvEuqx9mZiReAEVEuXSqtArcEqwOj6qRCvg6YdBQqX63hxuzVEpZHvNr1LqWJnGNRRRizqO\ny4I8T0jjCOoSeEp6T8YAt8FwfIzN0TE2/RGOhqOWjUqnn8x3CXF0sGNKmtJXz+pRmqcJadyBxoSF\nC3ieMHORYoZJEqHJqrmHZHIHVHHN2n86MG4ETJo/RksF60CV62GtU/yPqscB4TmCW+hYJwUMXT8g\n9x2efv4mnn7+Ju67ehUP3H1VgD+JeS0leGFYK0R7XeepQflDeThPv/kMv/S+j+BPvfaVOnYzXn7t\nHrzioXvwu29+WvriPgD/IgHXRZ786C+8A4/cewe++vPuRtK9t9b0s7wLnUv9IHNMvZJkIWO+bgOU\ncM+GGOumpWA3FQ1f2+Lm2Zk/zKszLYuMMQw/0VqUhTncylCEr1n4WgU+qIo+gJpRafIlKOtqOPKy\ny2y7fpU7TvrEdW8VRT/ITgq5fLPk6czzIsbopXqmPQQuhTqD7S1bhzrIsKnmxosAdgzS1HbVmjrV\nc1T3vshh6JqIfi8RIdscGCRs2XIDG53Kr1mBjnv21Dy72D5ohCgvwONFsPNpHA3IgC3YEELiSpBu\nDK5EEirdoEzNpBtrKSzW+anG3jb5O9D1uWqLbdo17EqV51I8NMrCDkwoHAqJahbiOcceqEPZaw+0\nneQ7YwMxTMacfw2QsqhRFQjNuSuYIu8TbjCJeXrArLHGCB+iKje2Ma4U4QAD4pUPvpMAwEIAVp9a\n+5rvF0ZJVbhLFPoKBpL6og6Mt3xsSik8LMjBzjSh19ydRd3VnERIzYBaspX2NVVA44L7AOCp1qR2\nfrRblHyJm8/Wn+4ff1CX+Nq7c8tj1X/RSMHBStishxhiupoftp5vtYaKPicQWKtdRwVbvwmopzWR\nJKibh6SuL7+Ftu3286CwO4V0ZA+KYWz2voYydAHwbDYb0SaCN8nCj0zhKGXxXLCyBGprLXLpQMc0\nGzZFsrZnzXrkuA3ys7suH+ORe+/EB66/Qe/1K2AUuQ/fdQeuXjl2UFdKwi+8+/144lkg5vc8s30D\nbtsU3EELPvGmuiHfdfkIX/LQ/ULVbO30fk4+FmEg4dgMjRpRta9UzwMyz5wqxp2uO52AxIuAPHDN\n89EH5exgJ3VSbDH1QnGd+h6pk4eMSdvElIUdLncdqCSQ7hduA2YGLQtKV9CVgm6akMceqe+ALivo\nkrC8PAzojzYYLhxhsznGMByh748k9KWTUDntAQc7yzL7vJduqPkSs4YX0pixEKQEw5zBKfkaQU4g\nBXl93wtJBmwaVqbQ5uE5SWoILIzrn3gOH3v2Bu45Psbdly7u/8aV0ArMfN3bJI9aKERGeg5Vp/WV\nNhvsloL/+n95C37jAx/ysXjNIw/jL3/D1+LyJfHKEBGoSzI2+njo2r0ABMo/Cpybh/PEm27i+e0O\nt99+xeHHf/hvP4qf+IW34b1vehqy41yGFDDVvLbrb8D/Oj+Fr3v13QAsVycyaSkDV995CGYyo0qc\nw6A6z0G+dy7MGOcF23HG2W6Hs+0OJwpyznY7nI07jNOsIADej7WvyeWpLTPPq7FxqB/pkERvBtV5\nwfU7/l2qIZHJ6gVhVXfO50IF0HUtUSM7W5ppFo+OFfFeZjdC27VBVEmQzHja3BF8LB0A+owMPW4g\nJQWgQxXoeH4SrDNtToerad8lGOjtnGTADBd+dWunrd1EDdizq5gO6iF884tg5zPzCAh8XdvCNjsA\nXpm7gABIMbvMQEnsseHjOGI3SjjSHACPWQAqWEmgxEhpFT6jwsWUMsf7aiUzGsZoma61NdjDFQ6F\nJh3WL6v02Quxsv88fC6eoz3ZnmcItI5iay0RpqOvLtYABoZTT9tGZtaQaFBZhyA5OLLGEsLNtO0h\nhJju1eH36tI/QK5aeqnaZagCJhGWpEp3o4at+kw6tWhs/qyMbMbKtmil9ZKD8GYoZXjXNNRAhAMe\n7TOqL+u1/b39Mf//jq2FFJcduIC3+cCxUnjcSuxntVPYLgyxwAdhH8Ew1t8Pf/s6glm4W+OHtxWV\nKQ9hPVOQIVAQ4W0ANPSwfl69O/KAMYEFj876dVKLrwOezVDnn2iyAOCx/8wFaanhcZSSVgjX63G1\nWMo013Zz8J6kFejhBKPjd4AE4Otf9wj+xS+/H++/XhmtHr7rDnzdF7/UE4e7vsPHbuzwoY8/g738\nHjCe3b0ej959EXQF2C7A5aMN7rh0EZnEs5o4zNGV3GmpkWvCtsmLYoYptROUIIOiosgqv+x3rl6Y\n3CHJAYJZUEGihHYdSMkPyLxHXlSUYcYft8QnIYqwsTMPlLRfPDGJEigXpFnBU9/Xa3QZlHtV5nv0\nRxtsLijQ6TYKtDqv92MrnpmxlBlUOuxZx02ZygklJcxgYJnBU0ZJCSURSpZwP3Qd0iBAy6i2E0ko\nEhDyKizCwTysmvt183SLf/bzv4h3fugJH8dXPXAvvvnLH8XxZqiRETH/VcedbPwVqPlYk/0HAWLq\nXeuHDfrNgB/6n34av/97H27ybh77wAfxX/3kT+Ovfcs3gsBS4T5rbk8vOXEvuXY//uirX4nH3vke\nfKsB/5egPR6Wp5u7CX3fKYFIxpULx/i2f++P4d0ffBw/8pa3QYBOm9f2+x9/PW5s78QdFwcALJ4y\npRnO2RRdC2PS0DWf4/EB74eim+RcgHGesR1HnG1HnCrg2e5UX1GgUxgqs1ShZwqqeD1M7zDveYUB\n9XMXKf5s8relU157QUi9IMW2b0bQw8z4UBFTBEjRSMSs610ZGiXFYBJPKddVX+cS+9qw+UY26Tje\nZX22/dIMb5QEpNg9WK0fGTOPCAzD1LIf1n6rsrfLWT2SXROOWhl8ZTP3XHI1ZAEG9qqFZVbm1/lF\nsPOZefgkO4CKTVVxq7Aq2kBVtCnJY1kWD0MapxlTCGWrkxLNwo6uU1ugQA2rQVi0Fk5XAU9tYVV0\n2wrH0aJtx1rZPGThrtsKBw3YFP4AztxK0ZxQBFI4SzxrBDPk0sTesn8HoEnTJG4JCrD/vFagz1W0\nXQe2ewytsfuIoDE8S3hjEJLaH7G31ixta6+CCVcjKXBGnnlByQtKWsBLdsFNDFWsWpazqkTp/bpC\nHiisI/Bha3sDg2Cg89/0EafZHrA+D+gcOBogG85njzVTVARL9ohjsb6+hJoFEBLOjbC5+y0kUfwT\nV2ACf6Aqsee0F8016vqVa2thxFQ3c7P2dabgDkOlxw73sSwWzlW88LHnFZF6JbjUNRwAGqlnx+RT\nzrnJW2pkT5g/x32HP/dlr8DTz53gY8+f4vYLA65evhjandF3PW5sJ/3F4fye7VJw56bDUQKGnGrB\nP2NfWs+JBseSh2/IfIkhH9XDXhQ02UPCkSms70oyYuDIVDXWcfMcIGIFHvpQIICcPZTKLuo5f3oO\nTjVnsJB4E1lruBEAytL23A8OdlLXa75Q5+Fz/WbAcLTB5vgY/XCELvfISQubKpGFzT1mBpVZwzar\nh7KxiueEhRISF2AawVmMLiUL4OGcQH0H6nvkowHd0RGGQZTyLgmwMit8ZPCz0N2lLPixn3orPvLh\nJ1vg8eR1/Pgv/Sre8JVfEeqHhLzXVoNWA2Gdj/FIXYfuaIP+6AjDZoOnn7+JX3//768gthb7fP/v\n4+3v+wBe/TmPyPB0WYGOgB1Qwvc+9hfxA//4v8Eb3/lu+fEHcTC37K7bL4s3phfDBBcg5p2fN+9v\n7BbcdUU8cNlCA0OCeVZGwVS50g/I6gjaZZ4vpWCchIHNgI6AHQE84zh7AXQ7r3l8sV5bgCvxRMnl\ncdxJqkfHhia2cl92C+V0CsBFjTCoQMLVkEY7CEAp6m6695v8M8/ONM0eWtnI3NDGUooYIbgCbOtp\nAyp+n6p/mEXE8o4MDHohUJOZtNJ5Yr+aSLD+s992IjP7vnfg1Rh3XY+qRjPJGa3FRu27ol+8GMb2\nGXWYQLdaFbkTQWLuRkAVIVaqaGWwkLlmC0sSZBnAYotJF9Q8z02Mvys2qtjaYlvTzMrGIAuu6zqJ\n5y8JhRMKagKjUXJGnc88BYULsJrLRPvXqQt3X/HkIFSk2Y39wa9XgUsMJYMqi8lspODlHGU2gMiY\neyOFvYTKW+JTqUFPJi9MLXdFVu8tAhKxkohFGK6orRXu4DnASrDGPnZVpQpbF4ehf2t8bqtcRyAN\nQMPXFqQ06dyZPH9nmqYm3l4UVqgnTxOZS2nna2gv2/8GeFytMdQDiOWuztM1MK6d/ckOG4f2b++1\ngDvPC1FZA9Pzjtp/XG83gJgmT47gRgxrVdwoIjlBNDrYPRtItf7PnAGo5Y+jEsbVcr06V/w963yQ\nfJoawma0ol6rJVlILblHxooHWmiLWOvldQ3VCv0KltAoikApxrTXcBEZoLDG/e8W7LnlVEESOPZn\n7d87Lx7htuPejQWC+qSRpTCuXr6g1zqc33PlaIMuS00QgD3M0zSCFNY4oAnOOYOWGczAshSkXNWU\nOt5aZ0MLgiZKyKbKmLbh68Tmgu4DWMCFsShQYlLms65HYkbXD05l7InEBzw7zaFgiDUkKWmiucis\nVA0tzCDLIdFwtc10AQWEvutEGTo6Rr85EmKEYYOceqTcI6kHCF54UgdLZWucp0RmFSYQ11ylbjlC\nVxbkZUaaRmAnICdtBnTHR+iPj7G5cIzNZoMuZeRca1hxYa9Qv5TF6aufvv5xvEM9LHvA4yNP4QPP\nPIdXPvQAliIFl4W1b5ZzQMZS1kTysEPPl9NH1/UYFOz0wwYff+o6gAo11sU+/+GP/SRe9Tmfjb/y\nTX8G/fERprKgywOGI6lncxsxvv+v/WW887ffjR/8b/85nnjzMyK2HoYQDvwicO3qFdx39Tbx7Fjh\nRzAKL7jzyq3n/Z2XNpovlvZCl9zwYYQUTUK+gDFKJPqDyqNpKeCl4Gyccbrd4uT0TAgJzraSp7PT\nsPvZ6mjp7LO+hIoHW8No9SPZi8QAoCk+cE+NzWNU35PNZVuZLXBZLY8Akut+wNUwgzh37Sfs69wY\nb+d5qeFbZXEDqfymOFhYn8MaFJeMRwfsfZeRk9Bup1SNQWLPqAailk/Id2jvE5P5Udb3mqMlTLOa\ni7jeOw0sWb4OCTtf0fxwq+k4TjOmUXSMF+LxItj5NI6cxXrSab2KXtlNrF5OBSfwECNLeAXIKV9z\n7jDNC4qFIOmjLLUoWCKxADLaCt+AFn9TYZZzdkrEZVFUD4C5KNBZnLlrWUoz0ePBZcHCS7WUpLqA\nUsqNcuIsOlFJcgVGFnW1HEShUK9p362LL8SoApAChq3XwX+r/zNHQSWBggUESqyAZ32nq+tH5Rma\nz7PqmUIWjtIKbANtBrbsZhnrnq1XXtmWGqBDKfn9sxaHs7lg887eqy51xjCOmIfBw9gM8Nh5O+6Q\nOwKxWYmLJPa6YiTApjLPVasPe0gSIQTlNG2p86m1FsnrticOg5H29/H9pvjpLUBGc1oDb9bHB0aC\nUYAieU/NvSzVA5BSRtexJGaCfG26AWPVDkvkLjavdBPJqPkIpSzCkLjU3xar27BUT66tP/OOWBuh\n7WpY2Az0eNiaMbAp0NHQtWxARwuJ2vqGzePA6mXhHVVBsiRe+R0XA98GCKTP13NaPlfQRMIEWKy+\nla9d+N82ZiIvdPRY6othnnH10gU8ct+9+MBHv1374ysA/CII3457Ll3E1csXMU0zJhKAU0rBNE2+\ntrN5mcxolRK6RJgm6et5XpTN0Iw7ECV7EUbDuK6Q671KH1YPu61lMXhJccuFjfxAQ536HiBg0DCp\nbhBvioGcmigMr91rCk7M/UkgIMPHggD1CKhhIyml9GaDzbxgKZrzo4xum81GwE4/IA+Dhj71ogjn\n1BQ2ZgVrFokJraMiXiZjA+1AYGRIvtAAxrAsyNMI2m0F6Gw26I+PMVy8gM2Fizg62vh8BVt5hQVk\nSdFlcTHxzOnjAM4HHn//Tf8bvvDlL8F3fO1X4UKfcXJ6il05waTgZ1kW9AkYspK56LpIWb0fTjAg\n3s9hGPDQg/cDwC2Lfb7rLb+Hf/wTP4nvBUtipgAAIABJREFU+/a/gO004vjSRQdy4zxjOT3B1Tuu\n4Fu+5o/jx37mrfjIm56DyFSRQY9//Ab+x//zHfjmr/pSMUzkhFmLv9595SJefv/deN9TB/Larl7B\n3ZeOXR/x0CULS9JlWGWDen66Xuea6C+zsejN1QB7st3h5skZnj85xU0FPBbGNo6zgH8z5KmByMIz\npTArXD40XmlUsGHrPJHBHLhREuYesgcC4GFfEb5GzMBRltlza1pwUw0zVT5V/QEwQpYl6FQtSY2s\nA4KQTtm5rBUV7FQtoIaEkd6Yy3kI5fgw9Mgq731fsz6l2lfsxmrTnYqGr6IC3b7H0PdSlDhX4hUz\nrHmkh593P2epFCFnGKcR0zRht9th3En00QvxeBHsfBqHTQZnW+n7ShvbaHJqVQxxngaILHFs1ord\nDdgJ2p5YQtkXvil6lDrn7++UtnSaZgAzzKRg1nopZlkwTqNbOVuFEr6pC11pcQBlwiHrxhhD6wii\nYJkVxUGOeSSAZsGbYGmFwipECFBaWLVkF/bcBfMqxcMt0lCltZgDXEAPJVLAdFDDDudQRdpATbyM\nWWIQakMgCB+1OEt3V+VbX4Tioqhen9CcxoJvFnAAC6qAiopvBTsFWCS3ovHq6HP07DhYYjEtc1HP\nTlIwiaqoehJnvR29tnw3CnAOdVOaPuV6bxEgNh3qPVJfr88TzwXsF92Nnq+4ifm9hGvszQEm93hG\nEOWV4sioTDssOiIwkLlqRxxH2LzVzU0KuEE3IxLFd4Z/buE2ck5bX7Xfaz9w9Sp7aNfas5McwMTw\nr5wryJEaG9ktgGRKM5Fa7WYkziCa60YY6FntGiUoJk41DVOsUs2Xg83vjJTUM0UkNNBcrY0H542f\nnxWEATknfOOXvQo/+a9+C7/7ZM3vuXbH7fiylz4IngWM+KbOBTxbLR1GUXkp8fHSZ1mVQGbGvMzo\ny9DMGSnmLF6deZ6V/S77/R2a45YjVcoipQWWInV7FOyQApCUkoSRbTboFezE8SQlB7C+lqrtLdgx\nZZXUwiSeaisyqFbbTpjBNlo7KPeDy5th2KDbHCEPG+R+QO568TpZv4Q5KGsFTrfPSfKGyJ51DZDK\n0g6Qukjzgm63Fa/O0CMfbdAfH2G4cAGbSxdxdHTkAJ1Z9inSBxT0WKjnZ33WNQC3Bh6/+ZYP4Yd/\n9q343m/6BoylgHdbzNOIqSyY5gncZaktZAx4ffCs6RzJSuPfDwM++47bPO/miVIOkgwUZrzjTe/H\nh566jmv33Q0kwubCMS5cuIAbJzc12X9Glwlf9ZqX46f/9e/g+o2ESDjw/ie/Hf/DW38V3/VnvxI5\nEcoiNZKYGd/wR1+Gf/5/vRsfeDrktV29gq/7wgdkHnUCXDstEuxhp2QRDiQGC52/Mtc0hytl8DRj\nYYBRMM0Ltrud19K5eSKPk7MtTg3sTDPmuWg4rRlOkoOdaoysBrC1vI7RDPYrP0oF2Db/gBqatr9f\nsGIj9UhwCREwKQAfu7ZRnkP3VAZzW7vO5L14isN1UA13FcRVYGKfUzg/UQuYAIAS0KWMoR/Q5bSq\nZ1P3OPdCkclJdk9nIvG8piSU45vNBpvNRqndY85uW+tM5BRpvmf07IiBZ5pn7HYjttutP8bdDi/E\n40Ww82kcNnlsQruSrsc6dCPnLEw5ui6XZcFut8M8z5Lkt91hmiR0LWnIgluG1ZNTFg1xkSs0ykzD\nwmSF/tzCS5J8lhj90GOz2WjMpawaU/KWZcE8zRjHCdMyBSsH9JzzYQUTqsCH+7WF7QYlMgtpdRPH\nhMO28+pLBmq+whqrmMkjHqpbscEXZjg5o5qdqjK2f04HIt6m9UXFmsMUFGkG2gKxB/wIh9oen01w\nMbdEBYSaxwH4eFiBRrv9OIZLsWri+6wzXoC2qOJQpbBuTmiKm9oOZRY0V+zDOQ95WPw2w+s4Zw4d\n+2BpH/Ssr8erdu59dxXmEM9pCjS4ftbcn/2NeL/nt6mGd5Kfo7UCrh7gg2era7ZlWayKL6Ga1G3D\nDwqBrU9Ua102FjbL1elqQdGu63zOFesYO7nJMbPUxjC5lJFSQc6VE1mmTtF1x8rotgaiYSy4tl10\nlAhNQ38o2KoGgYSLRwP+wp/8Enz0E8/h+nM3ceVowIUuSx7BdotuuxPP+TQLJe6sHrl5EYtlXhqg\nRylrXTPruwq11tZovQExI5WCVAilEMoinu5SlDzGEnu4GlSM4KACsSCnZMEDKQOU9Tl50rePtS1R\nJzmQcDbzwnFhNZCpoSUTqDBSJ4VS81zQ9QXusaXKBmfn4pzlQVQJKUzgMYM4RUuIInlpP2v/yHcL\nqHSgUpA3A7rjY2ymEZvjYwzHx+iOjpCHAdT3kqekuUxcQpizAinKWacn4dqD9+PRV30uHnvXe28J\nPH7tTe/HU8/dwIVNjzQMSGWBJ35vBnlvGED26CWfyWvRdErk0HdA3+F7/8pfwt/5Rz+K7377u+Q6\nL1kt4Ifl6fozz+IlD10DUtKclwm7ccTZdovtbodpnvCJ509x/cbzOFRI9z0fej2uP3MD91+9zfdM\nLgVHfYdv/NLPxsefP8UzN7e4/bjDXZeP1SPWeQSGgeTsjHv1QbmC6BqOKnNMcnRYi+suGGcJXxrH\nqSEkmOYFswN3rYcTPcF6TtJ1EHaFKs9sXcHADny92RoTp5caFUHiYXR5w/U8egXfO1EZ3yKYkv0s\nuZyLIELkdcFS4DVlFivkzljJa4NyuvWQKzsOdpoQNG1U/ZUZcVm9WUrnTm1dNzR3BTThwUmJC5ik\nplOuhu/sIXFxP04S+UpS6oBLJTsxY/e8zMBMnuc4TQJ2pmkSsMcKEF+Ax4tg59M4ImoHWmvD+num\nbIgWXjzuexx3YBB2uxG73SghGsrehGIxsOZuLM6O5AooUQA4EfioJ8P+tqrMXWXZ0NaJ9dNY4HY7\n7HY7cGHM04yycCieVcHKIeWlfS+54BCB0yq5opQVqCcWtBIhB8HC3gAEfe/Ql22fFY1WAYq1VX5k\nykeb/G3K1qoNDqKgSqrer45Fo5z5lw8r4IeBFgelL4BJsoRL/ZaBxajox/eLhiBYqKNtCoCft5Qi\nRfhSADt6LwZ4IpjZ79uVkn7Od89Tcm91nAdwPtXPD//oACBDO+Zr4LQPTKoifl6bItA5DHbKOeeV\nBrkyHTbnQi3gaax7tQHNOSvTGBq5IGFsgY42AJ4CFi9LaWdybU8wnORqWMlJw5uyzJsCgFnkHIOF\nZjgAngOdF4ClD1dtQaOQJAc60XN17523457bbxMD0jR5Mn3OHVLK2KYRGHdqARUWMV6AtGQsealK\nX67W1LQGOQiJzw3wqMabVIoAnlK0vpIYmOrYiK+ZUUNIirJwgiz/XMPAyBRRBT3K92gA2YCRfddZ\n3YxchloFk6BgJxfkjpH7gm6xfAOdbx7ClSrgSRkcmP5scAjs9ZKqohe9Ojq2KCIjSwFxQdoMkp+z\nzBiOJFdHvElDpcNW75DlIQGoQFtDlG1ufOdjfx7/xQ//d/ju39SE/3OAx1PP3cAj1+5F3rRgJw8b\npM0GtNkIyLGHkjc4iUPODsYuHx/hH/zt78KvvONd+Kvf98ZzSQYeuO8edMMAJAkNg4KFs+0OWzVu\nPnt660K615+9gfuuXnEvMbMC6MK488IGdx4r81rK7r01y3wtEGnFhpV2OrXhkTLHaj0Vs/7Py4JJ\nc4nHacbOwI7m6czz4qQEBtLJiDEo1gojEHEjdKNhlGx+Brnn6x8GJgicDOUL2CGoHuQU8C4w/MeU\nBAi0srMq96J/VGNiXdOLAx3xuFd5vT4aTSFcI6mR2XJwHI6RX8nuru7vpWBB2Kft62T3Lq8JVdeC\n1rXKOQl7nwPequ+pRiJ5O5T1vvWapiuxGKomDWP02kKT5JFLMdVFzuWe5hfW8SLY+TSOtWcH0MkC\nNIsVEewQAYuoBKUUjOMkQGOaME7CLtRpUbqlFPAsDCeupDbKWmsdaRPXyf+XCa6FBIdW0XFLTik4\nOzvTECdgnhak3aj5IpKsK3Gpi9/7OrQmKraiP1toVLWS2netr9wzkaq42FPkvB/1P1r1eUQ7bvEU\na2q0iRhAofA7akDO/lGxCoe/a35O8mtHq0t4j+o47N3K6pVBrEZRho5zgivR5nou6rkxIe9AJzzc\ns4Pa7gp2FrABG80FSSlpkmhot4GhoMCs+2zt6bHr3er4ZF6ceJVqJa7fbcDJLS/UjrEBcA5/rz/3\nR1GF3UEobj1h4n2sAAgALQZcFV8HUGEO1w255skQs4Z0orVOhg2awtypvt/qHTJFyEFOyNnpug6z\nefxIPb7BFLn27ESiAjbSBbtvgs47aVNJESAcHB53FvjcWsnP6tlRQoDoxdbwM+nyTgumDuiC0geS\nsMxlEZnKi+bNpAJaklq5C0hzK502ltUAwGGlcm0rVPE0ObYsMn4lSc4TUUFaFJiUOu6tV0dOZ2pN\nHXf11lCCmLaTzRaXeQQSz495gSi5Z4VMBipQAxMosyjuBchdQe4LvCIPwXM3oADWH8qelqKhjAEk\nlto5Oh/d++TjV7UooahWsLMcYQPGMAzoj4QQIQ0DqBMwwXouX0vauWIEjEoicPm2y/jbf/Mx/MZv\n/Db+5t/7YQEeDwD4BIA7AXxETvHA/fchD0KIkMuijHBJ/lbPjtNy91317Lh3p3p4rMjol77uNXjd\na1+FX33LuyR8+mEA7wToXwKveNlLcO3BB9BvNgp2JPzxbLvF6dkZzrZbjNOES5te++ow4cC9d1yp\na8NkftABbD+MxCMpeGvWJATu3Uk1R6fOMbHsL8yY1bMzBa/ObpzEMDsK0cNsOSy28Ik0Ry16dvRY\n8WtEr46FrcW932cakYKa+i6F/4ja3zFLwH6jT+izyxKsZGgAQNDfi3drcaCzmP6F/fZVoFX/tnQG\n91ZpO8yD478104XqGRa+7HuqnpcU5Jh+sda3EkEKyHaVrtzyN6uAlbYl3ResX1i9c2UpWBZjXJsx\n6zgvs4y1ecaZ29DqF9LxItj5NA5LFjb2m6K5D9GaC4hAyjmBqBcrQS4e+1lUmSIiF1KbzQbD5kjj\nJHe+8RfmIBDCwqXqcfFQtHlShi5RBjowKBNyqXkbfd+7ZcByeCa1ilqxwZlqXoK5RNfHeYon+YZs\nMmCt3LY6DYCwgNP+h0CQctzqY3ZOqNJnFioExZJ18/wkSvje/a0u34AHE0brgkArwczNX82Xmgux\nftEt9HKhOuYsHkGY4C1FlFkIauMiAmlR2umWthx1wyQlPphTHR+oLGWAcgptZFUWD2v5UeEGtx68\nP+jhilwDUMJm6kD5QFsoAub1ife9KVUd4/3P976/Kk73qd5LBDr6+3qe1XqB9eW+FTIW7/RaOVw9\nf3K9cP822yzczMkJTCFS9kizBOcskUNgJEgBWmeMzAm5ZCxLcubJYo9OksjFY5Vgk5gToRSjXrXZ\ntd9BZlEEHx7TGN5ieSNrL3bOFYCBRYnvlwU5tSvOvC8+P9VCyVyE6bEwqBSVnTV30tbRoiQyRZ8X\nla+JtFqQhXRxtb5zKeCcUXLBvJglXNkyVSZBLeGWKN71A7puENpnzaEwIFEZ3uBA2DxdVSAmNWzI\nQjIdTnTahJQ65A7Ii5AGcJBMQrCTwSD10GnBY2ZnnPN15nKqzkFT9IopnsXyiTKQJZQt9wP6I8YR\nJQxKd90p0ECX3ZtTgswxK7mF5iGuRV3Pr/3iV+ELP/9z8Pafep+QGNiRMl7zeY/gsx56AM/duIFu\nc4SOGTxN4JzFq3S0kUfXITlVtAKebIVeNT8rSxtJw9t+4Hu+A9/zAz+IX3vTb8NIBhjA77zvg/iB\nH/yn+M/++n+MSylhnKXA6s2TEzx/8yZOTk8xjiMuH/V44PYrePLZN+g9fQWAX0Six/C5n/UQ7rvz\ndp9Ta++ChTBl1R/6rtJLp1TXSzavTpIHpc7BD1LwpOm+uRR2kLMdJ5xtdzh1qmkxzM6zKMaFCaCs\np+kqiFIvowxhzT/cX99BJDi45QYY7f14rUuEuQpnkpW+Ek9G3ZIrOKpGFF8kkJ8XVo/OXL0boqs1\njW/0MVl6CjwCdbTVy9G0INeLasvN3yPtXcri9D9xn6pRNfX6ZvjKSR7VWy81sQT02rn3DX12VC+z\n6I+TFrWfJqn3uCxFQ9oCmcEhmf4COF4EO5/G4TUHLM/hgCVXvkDqYiZkZt3szKsjVpqUEjoSBo3j\n42McHV9wT49ZAGfnNVfFN9TWgF7fmEMMmRvYAQG5S+BS+feHYfBzlcKYpkmpKicMfY95GJBodiaS\ngx4Xru7WdciSPwPwsK5qT7efHxAawcoSDldSonau/du2CQ1gKJ5bo1DoDwx4osiJt67nYTZm5npf\n2qyEKs7sLKT/BT21Kr9BGWcWq6wYasVSa+GMbciVKLpgZYpaFqXKXNdoCn1ShE60aMq91wrJtilY\n48K4HQA865Ct+P6h45bWfcUy1oPtM5rzf8peHT1DBB57vwvKg/cPM2qV7QB0wnfj/dCBvqmafLy2\n6/b7UCdumhTWuBU3TWqRVAWmmcdBBtTTqZcgV5ASWdiclc2s1gvUi8GNN6k+pDjtospTyRmldJJj\nyMU9FxKyBKRUUEpy6/P+uGAFarHXt/FhXp1YyyVn81hVz3mnoWE5ZQVKBnSEOlX6qdS1VBSEUgEv\naJgMa7VwATkCeOpzSQmLKivuCSzKVllY1liWh7B/qYK4MLjoukWCRAF26HKPvhu0CKQppGJ5d1u1\njmvKlTymrlc5n80HgsqmpGOrSikzJJStsMoOma8pV8U3pmFnO1scE7vnYOsWpdL2CfHqMWcgsYId\nRuoZPRFIvYz9IDV+khY5hYM7XZs291m9VbwyUOhao8IgdEC5hJjoj/IGEHohXRg2QqvNLLlI04zu\naIO82Uh4W9eFR/Z8HVs3BrQ5JSmG2ve44+qd+Pvf/9147Lv+Lt7z3qfB/MN+7Xe86zH85//lP8Ub\n/853YZwmnJ2eKth5HienJxjHEVwKvvxzH8AvvfcpfOSZSjjwOQ89iL/4NV+20i0snEr6myiJopuT\nzp3Oc9Dcs0PZQUglF8mg1CGGm4knTUD4XIRyejeFIqJnO5xtJdx+HCVfZ9G2GCmBeYxSIDWS4WlV\n7MbTS+RygGD3hiprWfUHe47naWSHzIlSdK8n+X41DtfLJVsT5n3Se4cCJqecXiobWxM2Hjfvldxu\ngA4FoEME8vCzfaGnS0YIWMBt/6SqU5jYN8NXTklzddoQZQG9ZvjAvqFQ1xY50LHCqbVWnxS4H50U\nhpldl33Rs/MZdPS9uJ/dJQrA1dYwsaLCQQxQavnbiQo6pX0chg2Ojy/g+MIFJCUvGKepCVFzZTlY\ngIGauG5Ax34nk5Ilb6cjdHPnCzh6dqzNOWf0w4DjAszd7OApKmx2b2LRVPYzqh6mpq3aS/AFvKfm\nNdaL6sXY73O/BlXrIuKznV0Xsr+2TfKTAR39PKjV3vZzjfougeACus6G6mGqc+Sw5ifhuHUDrzWD\n7F7bMDa/fExUZ6Uv1grHkUXGxsWAiXh4JASlBIWSLT/E7s0aF/piDV0PdsvB7j3H81N3OP8/3mMD\nJG55UdqfY6rItQAxgqh4fVTgZv3E3IzL3vw9AHQ+VSB2+Bbi5okAXCqwckY+2CZYN1v/flK5E2L5\nuywWv5wFuGSP2af6GxZLPrMoq2vyE/PspJylflfJSGWRMCdO7jlsvJ2uo1D9W1d+NUTonGrmR2uB\nTfasHhW5B2ruhZNRfkMpwit9cSmVtCXR6KFFnnfALLmSpYC1roQ9lmVWj6k+pimQrwDMSR86V5Sm\nuuQFS86BbU9ZzLRSrN1bzsJ81inYsdwKMdCImAVFw5CMbZULFXwbMJJuriDI5pQopozcibWaNZYu\nWf4GkssutUj5eCQDUy5LVkMah9nkSRLAQ1kMQFlzjMzDmDQvBkk9Ow6QGV7QONyZ70NhnT7+xJP4\njd96F9aJ/gDj19/1ejz5sWdw+dIx0jAgl4KSEkrKAnQsjM09ObG4awfqO6RO6MF9pqrHlAF85Mnr\nePfv/O7etUth/PKvvR4ffvwp3HP1DpycnOLk5AQ3T05wdnaGeZoABo6GHv/uFz+Cs2nByITPuu9u\nPHz/vRi6rsrZsI+RjQQF4pGu1uQx8JJW3r+UsjJ2mZJfQ9gYSo/Owhg4WY7OdsTpdouz7VaAjubq\nCOgiWKK/zKvK5BV1oipjW9nf+geCfPV5VeeX98Nq+7AzNMAX1h4BNlFZcO94fFZCEZlKNafaDL2N\nV2dlhDHvFKU10NmX5fLdFVgL3eRecrS/jWQ02gRfx5an43PADFg5+f3Z+i7F9jQbDzkM7JQlMgKr\nbNT79xaTgdsXwc5nzCGeEfjadLWdqyXGQtuM0tSRPmW3SDILpWXX99hsjnB0fIzj4yMwM7ZaDMrQ\nuQn5uuGRbrT1esuiLshxcld24SLWNaq1RCLYYWZl2lhAibAZBvRdX0M4lsXdmrPGbXq+Dac9L5Ms\neFT9uFmrQejc4uEWxwNH4zVSicG2OfqYcAA9Gm5h7wFrmQn/teMhs3qupW1tw75Su1bm2yt5fmH4\n1B/McNY4QPNFsAfaquBplVxrT6XLrBZqq9sSwYaf00u7VyWNU70vscwr4LHnCHfCmMfnT/Vww8DK\nUBA/s43yvHFrNh3fQQIwP3C9T9bKdVsOXm89Z7mZIKpUlOa35+IgwwfxjTh3IsA1wGPv193Uvbnr\n+jr2SF1laoJtptpe2cSqhybmxdQ8nbwHgLyAoDGOoPb5+tmZhA70KewT3VDruIb4fhIVKZFVTQ/G\nJlOSWMItcjYa3sHpZ/u+w9D32I2iuI1O1y7J2NlAFQBiBT0WujbNsqbGDnPXgaiOEhcBOyjaD0sB\n5wVlEUWTqbKwiRiS+WFsUQJ0+sarY6xmkheh8pYIGYTE2WVkYTV2aaxMpM3nQmC2EKUKapOGtAlN\nMGtIbFWA2RRg1HEh1WotdLtOnjC/Q4iR5d5AgTdxVm+3tiUZ3XnWmj16Xdsv7D+yNRtAzwrsPHH9\nY/rZ4UT/x69/HH/k9oc9VC0TCUDva+gaKcixnBzkpI8MttBek5N2XwCe/OjTt7724x/F7Zcu4uTk\nBKcnJzg9OcVuuwVpHlJWq/xdFy/gyqVLuHzpUjBwUtgkbO4HhsWkDItZCTmy5t6onkGWjxNDHYNs\nYaCGLLKysM0F47Rgt1Owc7bF6dkOu3EKQEfXrK5DKNixnB1fjiFXzTyNFfzE/URb08h8+H4Nmwo2\nEyi86bJelXqdH9Z/cZqa9HF5ouBazyKnKOJ9LcVomlvZa7+L+07ycDWTU6Gr7fANbL0xMWwHZNZy\nGZ7vFAxZIH9OlJA1fzGnGpYcy4XIvQiAMqrpsoQUCjPyGNArrEbSxUmpvH90LVZGvxcmbHhhtvoP\n+dhsNgA0qUtRsSvJDLeoi9KgzBVkTCORIYkwDAOOjo+xOTrG0eYIm6NjzEtBf3bWeHV8zfku61tt\nyNexmMsRVs26cAFIJ71/T2rx2OIxZThRQt506FLXfPfsTFhjrBipUyAnBhA9TyvQA9uzqDb9kwAd\nX6gH+r16j4LINl0HQbZEaz7LJuzWytXBza+rndnyf9y6FARX9JSQY6L27EYrGRX1lvktijkLC6l7\nW1EruwOd0O/VslKFeQN2Jnks86wsfqsQrqAsSB0jATnxe1WJlP9sS6gKSICwf0CQY+0Fao+v329f\nm1W3Pcf+vFuh0noD7Xlho3IO+jgAlG511DXqi1TGRfP4yA0EtA94wpxoCDfOuY5ttr4Jq9IR6apT\nDF9bPWLh0dgIq0EhdK4MTkYKEM65ZPUWJZQlI9HiG30BNXPGDQ6qqBnQcZUjjF0F4nE8UwN0IuBJ\n4bUAE7uoPBNBKpJ3HXjQvEitazYMI4bdhO24Q7eTUA0iKTg6p+T5S7I2FhT16gjQmTB3Heaxk++5\nvEryyFJolZX8wD9PyZnTSjEJE4Cp1rTpeq1to2CnmDdIiQBECWLhFGFldlNGNyk3ABcgxCbXBfDI\nulXimCQhbdm+QxaqnMEqtQuEhtgVRJgnTudbMzN5b81UGm0AnD1M1h+az8PaNw6O7CzNfNB1UbFP\nA3auXbtf3zyc6P/gg/d5iFpeehSSPIfk7GsdUpfcoyOxhQJy2EAPs1rHdSpraOkDn+Ta1+6/F7vd\nDqc3T3BycorTkxNsz3YYUNCnyqBVKYOzhyCJbKgda4p6TgldCqQjAezIlmfsgYEswPqTLKerrkkB\nOlLkeJ4XTOOM3U7ydc7OxLNjxUOLA692baZkMoRWax8OWsyY4ROlDmadOeu9KkhhMuV/fR4/Qy0G\nXUDiRVztU43hxPtEd2KukTeWp1KYV/fZkkLtyyaRoUTxyrbTB1nVvM+wkGnTIckXc9SdUK9jQEe9\ney7fU/ILm8faiFSi58YM2RFMW/4Ocy05klK9/+zz7EU2ts+Yw8LYllRAs1RWd7chquIpMfAzMFcr\nqYCLGo6UUvIQExBVkBGKWklI0qzzknwD8pCWoAib8h2V4LJIkixN8qZ4dmyxJhe0vXqYNsNGCkqp\n5VMAnITINRZ3Xlm09ShF9TxrryvHB4BNAEh+WjTiT++rKkVrndDBhAoSY/PxXIkoQJkr8lDdWNa6\nnoXrGZ0J5pbgy76vzyaMg7dGLkcNVTVpOxzo0OreA8gRxauGo9m8caWQ1iQV4uGbp1oUjUASTmKK\nuPd97XjZLGQjE4GXvK99Th0AHK6MIIR8hfGpl2gBRx3vGCYWLHUm+OPmFq7r15cXdaONVzkwcNS2\nqjkna//4nLJrsUGkFgzGa0avo80xy+eIhoAG4HC981XP+OfxseqE2gdk3plQSNTICJyhx7w68DF1\nBiBrcwRBYX1W+umgRLmCs2KD/CTYl2CbdgJDhUUDgKrHaK1UxHFjLkABCkX4KuvFQt36vpP4drWg\nS3XxCd0ustON6HbZbz0lTaDve3RgPJtfAAAgAElEQVRJ0vNZPefLNGHusoax6dzjDOYkz6lIEjtp\niCggjIepA5IolMtcdH8AOGusfoF7YlDJrxWsQJVsATVW0Z2hCk0BSrLclTp92kKvyiCaBMwmxWci\ne5S8RhVn9vwdIS0w4GmenzpOYQ5TmLOGCBREiadf80IKA6SeKCigdcY5CounnTGNshyEEYHx4EMP\n4dEveg1+7e2PKZj8CgC/iJT+E7z2C1+DBx+8hps3b4Jyh9QtqiwSUtdXljUFX8oXrF4n3a9VRhdG\nZa9iAbsPPfgAXvPqV+Ed79y/9r/1JV+Ca/ffi6eeeBKnp2fYnW0xbkfM04y+S23tq1wJBiwSxMGC\nrZkkOcAcCwQHquGkoBGkVnj37hCq6dH5z2CApyjFslBNC4X7bhw9Z2e3mzDNWi5CBOIeaGjkm82J\n6JlZSV3XZCh8bqDI5xWauRa9Kfafl+MoUWeo8uCQKHK9I7So6gk4KG9l3zSWuyoPPXwNYS9UwGP3\nyb6A2/fI1wzXMUZr1PG5SjV893BtRbsP1m1P/hUNR1tmIx6YG9Bj9yY/Ju83QDxWVg6FKNbxeWHC\nhhdmq/+QDwtjm2dVIrE0i8/Bhyu35BMGRIqsa9iH8aGXZcGEEeM4YtS6N+M4YhqlqJOFGhjTRlYL\nLzMHZG+eI1K3skxeQ/b2bAqMhE0kDMOAzWaDC8cXcPHCBVj9nXEcJX9oHJHzGCzU+1pko8wWBicD\nf+aOtU9pJXD2FWHnDml0r30FddWCKqhwC+FligMsdIyCkERwXJDpuPEm9y/rQouUIVIhTlDCKtBh\nt765aF4DHUDnEakCtBK8bmWiRsjFqs8eeqgenkSSMEwkm3SxYrMmmO0ezNLLyi6kSrtUfl4BV+jv\ntQ8cbLqyI/fd5mLE0QpAJ4wZ/Dn2dQUzex6dMI8Q+/XANR0YhWsd+ALMcGHjGc97q8M2PEJlZyyA\ng9s4h1vAY5uUfhbmbf0O9uZCVDxaqmkrJFprL1SLcQUGxVi5bC+2NXPobonCpt8CneYRf8M4PHdl\nIipIMNmwD3bWVlhTArkoyQaxg7J6TfPuEEC5GpS6Dn2/CNhRBqu+77HbmVdFlM9+1ztY7LpOLMTM\nYGU7nMcp3KvMyY6zEzw4X7WtjcKgTr47mwd+ngV0LAlTWjBPC5a5OIEBKS8TESSkDgZOBexM01zH\nUfFDIg3jIZNnBq6TqXQAoQU7Dg4ld6jre8mdSUlq7KwAj7y2cTIrdJ2zLr1NTiS2O9G1W1ypIgdP\ndT61aE3noGnAPo0iiJNrfd/feAw/8Pd+CG/79Zro/9rXfBH+1l9/gwKYDModKCvYWQgpCzuZPBQQ\nNrksCcwE28o9v8FCf7SB3/kdfx7/4Ad/FL/5W/Xaj77mi/CP/u734MZzz2K33eHs9Ezq64wTyrKA\nzKPTd+i7Hn3XK2V6S9ssfWprRjxOYG4KSEa6aV8zGnLqQFWBjk9MvTeEOTUvwsK2myZsxwm7nT7G\nCfMsYNwmdVyXFrFi41b3YBtA2//rOq2KfgBJiUNlY67zX2WK5xgiXk5yBa34aAQ66/0jPtVZxs0r\nWw+rnQdN7SI39JDvp95GanZ2E6p+3royq4HPfG3mqc4roJMN8ASAk03HM4Dl86WCKy80HnSCcZz2\nwI7eYQhDrPMtkeZoaric54a9AI8Xwc6ncThBASWfz75QFjjYMYWhMPbATimLCzV7FoFTHOjsdjuM\nux3GadLNMWtZFNnQhPigLstYWLTG3CuQKgzm2b9rVuCuE6rpnDOGzYALF45x+fJlLEvBbrdD13UY\nxxFnZ1vknD3f51y4oe0RBQ8hF6FVUKMVZP3bmL9iv2kV08OgpzpvquIshkQN1TIhHJRdogp4RBdQ\n5ZxrP9dzx7+rMDZduCrucvO8Si405RkQsGUxy6oeKGDQv9ViXUKulXu2qIJnE3j2ueVYjQqQjUK3\n00r34uHRuhlWMDACHbAq+MXnN7R/SAGNCHYLhqjj2FiwrHK8/iha8Tj0h4E/2yRjb8WwMB952n9t\nAMaeDmKY+Dt/DzC2oL1z6Rxgr29QfxjPdeg6hBpi5QQRxq4W7zBuqg6qWtDh34vA55zr1oKbq9o6\nHsJmYQ7UntfmP+KYmIeO3Frcrt104NF62W7ZR7qZi8cTYfyqIuzzPHh3bBBq/lpB9DbEMaBEvnkz\nCL2GqAzLoB4eATZ936Pf9erp6Z2av1lrRYvtTTNmUyhhvh0JOSXOoMRK/lF7k3T+E9KKMdNAxixg\nZ1EqbAYsR8Os8Mw1LEXofBdYQUUicnnRrlHAFE2Z4yrzUtZQxXbv6DphhCtJ84wA8Q44yKmhhXpq\nmAW7hvTa+rdeZwVNWqCalqDeGcCpz2GWBHUQFfD4DKjfIzAuXb6Cf/j9fwMfeeJJPPHkR3Ht2v14\n6Nr9YEDYTA3sdAVJc6mkjo6G5VBgJgt5LrZ/c4GzqRrgoSTjcunSJfyn3/Uf4cMffBxPPPEUXv7I\nS/FFr34V7rjtNjz78Wew2404Oz3D7myHaTehzAW0gTJo9YE6Wtdosz6tAyyHQjyN5tXputysE3nO\n+jq7or4GOvB5pWFsi9bVmaWuznYnnp3tKAxsMyu7Xti7ff8JI9IaGB2y1LGKyjlVMONvJMAsjD7N\nVmtxDYgJmoivKCgaNdfgxttgzYqyluse2GwiB2SeAJ4VGIuXcZBTUAcxSlr4OgFZ8KiGVwZQZXmE\n7tHx96JHp9VJJB+naDmKAHSmCeM0aqFQS2eo/Wv5gtkK0/o+0lcPZPci2PmMOjxnZc2/rn/Yoiym\n5CEogpAFEpN9RSlizPOEaZbiY1sDO55o3oIjAzTxiLH5NQQEe5uSeIJksVj42jAM2AwbIUzoehDJ\nYqhJlF0AeSTxnmuhALt/roIq/L932L7Osco6wxJkDQQwWATO+sctUvL2iK5QGYMaoGN9oAPBapr0\nzRrkVniThtV6ue8a5/CKwudVtNUN2/TmmJdJAVh5m+z3zF5jyb67DhdoeoQjX/7knrndbqfCLCOX\nIonUWYSrjZ/H9mIRtqFUKY7XV4veFTt89DTxUXYBNB6tZlNc9V3j2Ts0p1BBXfO+AZP9zjjYR/F3\nAnRWxVeJINbigGKhoKfU9h3ytKw9ThReI4K9sGx8ToZ+0R/ubfY2H1zRX10jenaEnliJBXJlMYue\nl7gmrMhlVOas/kITSudtNOVDLIJN4VFW72D0+gAObliBTknRqwPvIwu9aUPYUtMP8tBrJIgS3pCl\n6HdNqXN1RP/uZWxzyuhyj6EbMPQiA8dxbCnI9X6TIgmhnp6x6HvEBcSd174infuuOM1FdtoOODvb\naQ7E6Pc0L0Wt/ANyFtIaZgUaXUYGPH8AsGTwABCCIlYVymTTyCdWXTsFnsfj68E8DT0WEvrpBYGo\nogGbq/XGfrurFR49TAKYjOgiNwUvkwIw8p/afmn5A/WMwN71XVYTHrp2DQ89+KAb+axhRouci7Co\nZSIHOmQ1ScJcs/PJUmNP5MZqHpmRoUsdHrr2AB64+27cftttICYJH58mjNsdxrMdlmkWLx/MMCFh\nazn2g8mzKCR0/j194wQfv3GCuy4f4/47jtRbawDEZGSuoXBJ+txC8yoLm94bMziyr+122G532Gou\n2zhafSippWX3T15fiWAe/L1wW67zwtYOJTQ5dz6uVRg2+5H8dL3rc7P1NwajZo7YRIpyVD9jPY9S\nz4vsK7VwqM0F1H0He48D8xAmx4MuEoAOoknJ9TI42Uq2/nGDdfTokMh0zZ+0uj5uWLdOIOhcFbAT\nQ9eWZRFQCAT9se5ZrTwgGOujFCzt0fWdgvMXwc5nzGHKRmkEUgQzOpFcSzY8r5YIIuErV7c1SHJ1\nxmkSl/fZGXa6Ibp1filIuTTnz6m1hjVgh1T5ICgbWyuQBHAlBzFS0HSDoe+9jlBk+DBAZH8v84xF\n61dExS/KpkMLqPZVVFxXVnyP6Q5vweBE/b1e1M7gVhrS9+VPcqFjSh2RJDAmBRjkSpzAFffs6JCd\ngy32D7VIOZW0bfYB5BDqpmlhIPZZqywYAKmAurWsVyG+Vr4j2DEPoY1h1/dCnGE96IK/oCS498GU\nStuszu8CrvSwzWZXAc8eQkSr3B8COm2oVv29t+tcwIdqUeR6/nXo13mH3a9vZtp2gUX7m/oh8FVD\nO7A3VnbXbVilKnarvmnGOkm4hhX6jUDHvhuZmix5NWctLBg8JOv7l3kGB1IGeEzZ5wB4KkqHtyuG\nV3Cy8L3qdVz3iwOecK+2bqqyXhVJ+SeeEYKFChcsLOG7xmpmllFXVg3sWO5KoJs1oNPnDn23YLMs\nOHLr56TUq5qUrRTVAIAiYMeAjhCadXLPneZmOXmX9lsq4A7gzDg73eL07MyLRhME7HRdj24Y0A8D\nNkfHYIYqNllZNWu0gPW/kQW44okWFLqHSyeV5JQwpHgH6RKV38m86dTQJcQ2VryWmvOvVkvQ5aJJ\noyp91t/sYTF5VfvF2f70e/LbAnAtfGpv+ZJslE2TNZW4xTzl0n4jZchIpRPfCJVQzygD4fs1lK3m\nGbHSLRtVc+0BuacuZaQOKEjoc4eEhDIXzOOMcTtid7bDMgrYSQp29shDzCAR5AAz4+Z2hx/7uf8b\n73r8ul/38x+8B9/673wJbhsGl3Wes6cAzkBwC3SUKAMavsZFiphrAdGtPnY71T2MhKmBFHU+tDhl\nvxacr/8QjnVo/wonwfqoBgefUi44XL4DaH9pQMfm4GoL0n2PGW6gK0EG25wle03Ucqz42WxCRrMm\nwwF7ADtuRA0MgwkGcIRQoVJYW4HSNnTNCryTz0+pI2Y3xQ7MWcHOjGmcMC+VmdXWpDloapeLrHSv\nq86l3HXoBvWAd1U/fKEdL8xW/yEfDnaaoo37SkqCMcxQ+BA60ZLH0pOCnXmahNN+u/V8nVlpod1a\nQtWCu2bFsPhdt8SZy9dCoWw56oRfe236rtsrCgagATz2es4Z0zRiDpbmag2P/WD78b6CBUJN1G+E\nHK1eqsB08BjPQQ3gdNHClTGtylIRAoUr0HESAd+3A6BqMJX6bc5TlNl0KhN51LRDTxKUFds82YEO\nAKebtt8WhldVPuTV8fOHzWaZJdQmAp6+7926k7uubhY6r4RdulqmLTdrz5ukz76Zeaie9W0oNBsB\nz353Nc/xnIc8O/GICvThM7P2dbt5HgJJHD6z+4s5W217DgOdeN4651sl3y5W5+Pa2xjaY8p7o/RX\nJTJ6+7zNUS6k6tUxJcpDHg4BHR+38ODq4WnuFTrPQxtj0U9O4jFLXK9pAEfydCKpSr0PV2ApKu1t\nbpBZhReG06mKYqBkGtrvyQpskHrvSJQyASYyPokSSs7oMmPoi1aO15CPRWipLe9tmuXZPWpWj2ee\nUUiLtgPQZBuYGLRQkpIKSmYsueDsbIvTEwM7ct9LKeiHAf1mg83RMS5cmFCWUr0gXdcWFYapNeSg\nx/I2IuAxqm4iCfMhKq57SegSV0DKyZUbpIRUCnJZ2nkYlFwATQ0cgOr/TOFdG1vxOiQqSMSiuFGu\neQGWC8QAkcg9k8aNPGi5qb1NFNoVwR8ILX16FgDFtLi3J6XcgMi4ZkVfLT7xYz+Q1btJGZx7gDKQ\nGX3Xg0BY5gXzOGPa7jBuxbNDBf47r38TQpTcWxcUih//3/81nnjiafwEvFwqHnv8afyzt74N3/mn\n/4R65DmwdHViHPHNt4ZfVdY7AbReV2dXmdfMuzNOxsBWgYCMkSnFdYBtPVuEQN07LcE+yLGwJTRG\nlDXY0XPXseAG6Ph78bndUeBAp04HmMHRARqLvPN2mMGiaOYc1bnF4SFrwKe7f+KSUgU7mTGLbJXY\nPDN5JTXD7Dm+3+Tq5FS99Kn2SfR0N2BHPYtWWsS7NYBODt2ewjqP4dCuHxppy4tg5zPnmKYJAJTS\nz5QDmWwx1KAq06gbt8ZGe3z4MKDLGaMWnps0P2cJHhNXFnK12lpV86isNdYSQGnR5G9qzag+4S0U\nrhSx8KTtVjjXVQBut1tM0+Tnt/AmE852rnBmFy6aFrKnpDtmMeHVnKNKwj2V1wWdvDAw03zZlAED\nOqoMGJVzG45DSkttYMZOtVKKGYh0ywEDQX1B65b6b5xtLd4PwUPabIOvBqIqDOU81GzAazpy9xRx\nDdSRkEiJ07UxdEHV98K2pBZx32xM0IWCL3vgShVuf0YFWKZQrb0dUQ3a66IVcDr39Xn48gCQPOR5\nOeSBkbbtf2b3Z3/pdumAxO7XHmsrphkSnOzvYFtKCyLC9ZOCBfGQ1PVFRFhKQdLrRgrUNml1n6Fn\nfdc4t12H29r0YSNDatvOe5hRxu6zyimTVazyoIY8xc8PnpOU6trb0LYlKrs2BvC/rNigyGICS82V\nIop/zhldkTyn0QgeJpG1i2aqMxgpZ3QWVgJoXR5VdXQfKJrnM9OCOc1YUo/TM0lUH8edz7OUMrZK\n83t0eobTo1NsNkcYNhsUBnrjsnEgSA0whMmFEHIWFRfSuV60lsY4zthtR0zTWD1yzOj6HsMgF0sk\nMfwU5LGfL+YiBj79Rn66rOTQ7wLKumzhcQJ2avaTylLXKBX8BAHgRoQoFLx+ky260E8wz44BCwM7\n8Bw2ipsj2TUCkNNtynLALPQsa52bPndIvRZNBWHTD0ggLJOCnXHGPM7gRbzgludi8ieucXuY2vzU\nM8/htz78VFOy9FEA38qMN374o7j+3Anuve2SyH+qRgcDOQB5TaOmlpLX1Jmw3W5xcnqGm0aPrXN0\nmiYNYePazQwn93G7EkFJHDiKsrA+A+AwoKH92oIV9n3Mx7HJCatzzYdewUrdX+tvGljqhpM6R5k5\n5GHVMDaXRTotWt1FDTUovg5MA3AzJfsEdoIbA1nRa5PUk5NNt0tCfY/QbxHo5Gx1dLw1ugdZ+0v1\n8jCUQXKRCJxmz6jyUfazCHbECC/6woBhsEetA/Zizs5n0GGJXY6KS2sdIJJNk6HJjYADnZSyh431\n/VCrZU+zx/jO86wVt9VjkmQz8LAUfY6eHbemQxe9LdwCkJf6aTcNW0j2+3maFOhIvo6zwU1zsKLK\n97kUzCtlqlVQItgJ+qO20AFP+K2+gNs/zkc7q9d21vCajQXLwMYBxdeEt208MGyh7nkvqHlA396/\nqb3DhPraGmRtrZuavVE/Y/+bYQnYbew8VHkEyIW7vFdKARa4Z2e73VahtdkA8wzqe/DS1uCRRGy1\n7JAo3HEzjs+xn72/uTjgOdwfLYhcf+s80HMOVmq/S6bYnq/I2+GAhq0PWw2+2qjJQxzjdyPgWfeB\njGnr9Wm9JzVE7BBYMoVFaMKrl5WIkJaloXpdU5A2dKSrYr/amDC5Vv0Em6u2Vs7pR4S55grmCpDY\np8YIqeFtzAxqPIZVVtn9V8i+rwC6Yg6WeboCQC57sJ5jFaRZf0jpFAVODLAY5dGpV8uY7EY1KuWU\nsCyzG7VSuDdRwhjMi88Lq2NRyoIJE0Z0mDBiu5N8zGmaXBuklLA922LYnAn1/+YIm82JGs6kT5Kx\n6eVqNDOvF/Q5jrl5deDyrCjttYa47nbYjaMC5AwwYTPM/w977xZ0y3aVh31jdvda69/73I/ObUuW\nBCLmZikmIXYoG6mwMMTgJEAqSQWiIrHzkAIpiZMqKg6V8mNenCpXAslD7HIqUCSuUHVCAeKmcAsg\nO+AQiBHmZglJnIvOOfv6r1t3zznyMC5zzF7r3wdt/MApdu9ae61/re7Zs+dljPGNK/Jc3ErUezHN\nFrQAaAFP3IswstqeL2Of0CUGGmuGZXcjxLSUnhfElFBUAc5Ju/adr/X6TkTiBunuQJ3T3BgrxGyx\noXadLx7d11rIsZOU0RHs9P2ADlL7ZkjqNoqEPGlCi1FqNJUsEN2C0SsBbCRciN+B0JbP3b4LQCw6\nNwF8KwE/EcjV9/74L+BvfvPX4mI1gMzl0wANNAEIVbDDwf0p54xR3dd2uz3ubbfY7vbY78W7xPg+\nswEdA5NhbGSAHOhEhYgB2KWiE04fA+0NAKEmLTlZVCdHpVhw3O303QADVUtG7EiMS5RCmwHYxrXk\n7FY6EL0e2ObT5AVBGXDQ4+Ct0k0BzMHtOFkCAnN/rmEGFaBUrx2nakqLLMtuKQJsfNiK1nzMUijU\n5FJzjSNKrnQrZQl2DOSssVqtMAyr4G75EOz8iTmqSZB8TfuGATdCqQhg3AgEfd/LAlqtYcwMYOQi\nKUmzJiSIQlytjF4BTwQqJ/cEhAjZ9VRjHZaaCovxENI0gpCa9MXGuButdhSSghBLgbA40JE7oaU1\nek0DkIRtaUzo2YMCF2Je0MDAnOxcF88C4LFxkf6rcGscNYKMc9nUYl/0v/N0uPYxppY2xZPdP97W\nQB41LdTnjgkplmCggkUAKthE647Ff03TBOp7dFlcVFpXTHZBqrAEmp+OPRQoLCw4zDUw8gqwUy0f\noY2zZy5HcgFqw3qrGr+6Fl3bt3TBWoAtBKHe+6j/EylQdon8/iCqZaS113XPcIh9WVh2FmNEKWlc\nFTffn6uxEC06nigggIkwaC2gMWDGpo21e1Ww0TzO8qD68rMpflFBs4OdUsCUULyIpW4KonB3amiB\n/R0tWQI29J2q6Gt05lyPbZ9VoZmqcoM18xig6fJDEHnwmc+5h1Ukd9qVbO3p2i9FYnry7JkQRxCO\nPGNEh+M4ug89EQGJtBi0BLIf9nts1yv0Q485M3JmielRy6zVS+pACnyEF1RBuQK+Jc7NpWjRSMm2\ndTwcGj6yXq8xzzN6La7Zd73ytwpym2UCnUMfedZU8+E9UjOStNysWehSsOi4RoFRkwGwCZHtcy1B\nFvn/LXWO38e6TQwN/wlukqeUqKXqJnxGq45bdvoeoA6rvseq6+XZc6lgR9P/13idSrsaRYeNhU0c\nA888/igAcV37PgI+tgLwjQDeBeD3gU//2C1870/8Ar7r3/hgBb++0Ou7Ax6VN5gF+NY44YNYdRTs\nHI6jyCLF6FgcXgr6g7ouKtAJY+lzV78qqhho6XFLg5e3u+pwCKG0pFWahrmjOB5wGsgB6ETe5Gun\noZFyRxXLdE2IQpvIUqyzAzfyfcN+voMvMldjjcVRCw85oaqymsVyRSusJBlBUK5IDLXV1DMxyWQ1\neaylkqwDafKmlGQ/JOpcPl2v11it1u4Vcn+PgT/+x0Ow80c52AyUUAEme8Vd+TIQtLBhxF1C0vgV\nCwCMGsHSCox1oVcf42iVqa5lVBdjECSjALEEOkVd5w6HA+Zpdte8rFV2raioPYdoK2s13qLAL4Id\nF05glp2lQFUPY2IpMCIURl4Ik3Zu/eQpH+4zPYI0luIPG6VWiiDEH1pY1Ag7OW30u77JJj/53Si2\nan3EUlAFrAbVnGla6B5VAXgxd/ZOQFgPapViKSg2TxOmvq91d+YZKWd0OYMD2DHBN5lQWjggtPYZ\nfTwDwLC+xNe58WqsUp8P0dQxat0ezp+4tKYgnmucCvZ4CyCFBZN1Xt5adKJlJz67n6uNlQBw7PoG\nKMV9agK+Kgw4VCkvXFyzVrgqVBrg02Q/C2vF+qSB1qLlY1eSuECYCFTE978EWnEyS5WfV4UHjMYF\ngScwd2svApkTWK/7xPam8f2Gpuh759m9rD0Dkaa8iPegoFipKYVt3nyd271A6DpxSgKgRUkTSqmW\nUPf2JBM41JJDGRkqRGURQuZCmJgwckaeVchDO1clF0zjjMP+IDF1IM+QtdlcSPKYtWhZDfgMq5qU\nxg+fMxNI5dlKKCx4HAXoHA4HmF8+IGDneBxBfY8BKwzdUIVCPqMYaKRSXQXN/lzS/eJrpKENmjaY\nUeOc6r6g9h8hrB8VPGuaxGYMKgwyIFjBhNf4qXaW+wKemorXalZVpWPf96DEWPUrbIYBZc6Y8+jJ\nLco8o8wZYPa4sygbsCEJquve9u9zTzyGP/OO5/Adn30VdxkCdN6n3XufAIdff/ElvHrnHl548vHa\n9dimD4mte3VpzAJ8j2r9F6Czl0yw46jeJQyLe/MNeeawfe8KPIRHEsKtdw4AA9zsa79sIatU/HIG\nyPh9qiKNwC531LZCyv0wRqdWawMKBnTqOrA9QL7eCaWQu55JLKWCG2/NVnAr59TkT9V9zYfY983p\neESLk/M4DYGQYsPZLTR1e1JDR2M7KZHU8iNoUduasGq93gi90ZTT3rsree8f7+Mh2PkjHC7w6SY3\nkOJCBKES9yB0ESXNsd9j4hlcxMzorg8aFCjnVkbfhdSDEeWnlNS0GtKzIhAeXfwpRXe3Cl6mSYrk\njRgl1eSUG4GuMhd4H6Wf1b1tad05tew0owZ4v1qBTTZxbs/z8+PX5OP7prNkAbNBdmf7m4wFkJ+6\nEMEibfVuLEm+64ICQY3iphVWrT9GjdlVQn/QaAYCFQVmb9IJfWWiRcFqzOo3zzM6iwkj8vVateaS\n4cqDclHX4ZmRbQR8T995Mify7K3FDQ3weLPDAeq538L9zlpelvdtL14IcAtGGh62FfyusOrUZltm\nWqqba7Tq+DiE+7sLoT4PEYGKujI52NE93VXFBy1dNewJvB/FY9eMRpngbszRmF/cy4uJOP0jCDr1\nXnJ/T0edkqSapuLM/9zhSgAGkFRQCOu/unEkFWaSLyFmBorUcTGwU1MytwHgEtQNEMu7pI3WJAeJ\noLYTWDKZoe8cONu8GMib84w8TwAzZtLaa0Wrl88Zc2YBO1YguMDblpgVEkvsNOFwkFieORccjiM2\nhyPWmwMuLq5hc+0C680G6/Va6H4nWcQMrPg65rDOdb3lXKoFaRxxOErWT0tiwQys1xtsNiOG9RoD\nxAOBGY176sneNvccqvNvwhoz++8iAOp6NjcgQzg+nmYdY1Q1YhAYo7Bmwq0Vlb3yiIBHAQ5XQdhB\ncah7dq4NUzhFoNOnDrnrkLseKQHr1Qqb1RozRpRxEuVnzpKqPJfGskNoExz5fRCVDPL+oQ/+q/ie\nH/4Z3L15Vyw68Xi3vH3uzhs9gXAAACAASURBVCVuPPVEoLOkyrs6igZObU7FpXGWOkCaBdYSFIzj\nVJVaUqfAe2T/268NwA23pPDyOVb33ayxJdVbofLHVigPoxP+iPX7aPG72q4CjaF2rh1S1NpVVUmj\nPaf6pBXo1+ew5lJSq7CgbmlV32P8rawfWiSRMcCcPMefx+CGcbDPpvSOqaZdAZclPrDkAk4qe9kc\n0Zn9E4GTus9J7abBXdc26zV6TUjQdV2IU8Vb8ngIdh7g8ArHHojKnr+83eIJlBiJUa0yXQ8gYc4M\njLNoVcYRu8MB45yRGeLT3PXoBw2s1Mxtw2qFflhJpeUu+Boz+6bpOg1A0zReRGIZ6tSHlzqgUEGf\nei9YxaUgTzOYJTHB7L66poUzkycBzE5MZAyiwKNCHRUh5oh8SKmFaxigFMsK1UlGHhDQMYGQpahm\nyEBkjNRb5FaLBDL5OcKM0D0XVsn9e1ldlepTafAz11lU0QrM8g7XEqZINp2vE1EjtBmeqRrh6q7G\ni5e1ZumrpS8M8oxAgFkJ4rMzhaBJ1Sp5/YCSMc0jjuMBw3EADT3SvEKfqnYoaX46A8Knwn2ohRT6\n0IyrRTqiJssw4ZEU9Z5YHKyORtw+/pH8K1IGwwrAIsH1pQS4q5j3o2nTnBaNsbEDbvsuCh9eFlif\nIaWE1HdIXJA4KDO0bQN8zk5VGKMEUEegTM4IjenrgpFx4upOY8HulcnqelNXA2desIKBsodiLRN7\nSRraWEwUzeGav7Ca4xri9mSfV+u3azR8wn0AdPzqixJbd0W+TFDaaYxZx8Ky/4YXE4sAl9TNjKsQ\nQ0TehWYNeZdqX2y9EAQ02roggtNMSoRCHboiLp1cuoYO2bgUZnSUkJEEIHFCYpK/qEOfetDMoMxI\nXh3ehJ+aKrinDn0GcJwwZQYfJ+TVAdNqheNqjfFih+PFBTYXF6J13awxX7uGoq9oMTNNNus+LaVg\nPBxw2O2w3+6wv3cP+7v3sN/tHCznw4iuMGgW16tignmIDUphXG0f2r7ytaEfTNB2YbIUoGRQzqBS\n1AVM0n+bTp1LQWYgc1FKHOYV0h/nM3ZfuVDekunT6wpOUJqbVFmgoKpkcroC3bNuH2MGtLq8ieId\n66uIsqArWg0uZ2Ce5Y6lB3FBnkcc9jtc3r2L42GPkmfpP8na70ju1YV2E+vfJDWAhDZKgPv1zRr/\n/ge+Ev/Niz8N/D6qZQcAPiVvzz71OLjrJPlM0pgdklFzN9LUSfHQUnCcZ+zGI+7td7i322O732O7\nP+IwzphKgVMx3YwiqKunBowWG62XOUkUsU6dU8sFW/ckedxHLZZJ9XZh3n2eTX7QTb10b4wH6byD\nWDus8Uu2XFjBf876kqx0hY2WANUpLViB68L3fvjzBmBW124gi6FmTnU1RuUhXHmnuSSb1bDve1Fw\ngyQTpKXFn2ZkfZWcVTYDEou8R4lUurKkI0nDilitqSJf2hyshgGrYYXVeoX1WpISWEIE4iJKeVV0\nvxWPh2DnAY5OtRFzqUUcC5uWkTzrCamlomNC6nt0fY+u61FAOE4zjlPG7iDpHnf7Aw7TjEIEdD36\nFYH6oc3FbxVsh0HNoJY6kCB1LZKDHlJHdCKgS4ReKRUnYdpWgbmjTmITsmpcbPOocM1gdAkNw7OY\nAi5Z42sK5HTW65IWFTRCIONmhMk2vuWvkRw2JqyRpAdVdyrzQy2laguNAFLDcKsU1pA+dv64eEWQ\nI4GbTKRkoQr1Ri81ua2m1lVvc0pKEmtmFpWN60PrRwFhC0Bjn4nl3gQkYhEACSgmMGoMTlJgIGNq\ncQWkPWAwB39dIkjK8QJGQZ4njMcDDn2HNAzo1iugSz4n0EKwUpVd2vd/XNTTxLTo8fszlg67PVXi\nHuONgFAN3oUXZRtcr3XGZyNlwVxx3lnGz75rgI4J5YFh2YJglcxSEnDrAC4CKQenAlYSd+gtCJWg\ngZ+q7VKmVUKAKEGWuLhddcglISngKSwxepaRh5AcIBQmmbViWY6MP6lIpgNsazciAlJFSfNKAoJA\nFtvhsxSRS1iXfDKvireqhlKzSrEKQaa1tN/IaqKQrD/WzSSCJ1cpstHik284LwnSyfkGdApJ8C8l\n6JhVbbgL/E4D6h4U17aiT1fPNeVIF9JVi7AulEkSK1jtINZ5qOMiaXkTCvXIKaOnAau0wtxNmAax\npG7mjMNUcJyzWo9qzSNb58yyvvk4oxwnjADmrsMxdeiHAcf1BsfNBofN2sHO8do1HK9fx/H6dQmK\ntwBid20j16Lv9wfsL7fYbrfYXV5if+8edvu9CECJMK5WKPsDpssdpt0BZZxAc8awWknttWFQjwIR\nfmodJvh+SGG/mxKkcPVYEKCTQbmgXyWsug6rQdNqM6NkYArZ/0i3RDJ6grbuU9WkMQrBM2+acqYj\nqlVxUkLXd5KiGQWpZAE6pYCzxVEIvTFNOQEeT9Ez0OeCRFkShWS5nqcJ+XgAMZBBKIkw7nfY3ruD\n27dex357DzmP6JKmHGBGR4SegBUIAwE9WF9eexa6HKA4Dc8/+Ri+9E89i9/6sdfEwvhuAJ8C0o8T\nvvwLb+DZtz0pllNLpW0CPkSeQNcDqcOUC46lYDfNuLs/4PblFne2W9zb7bE7HjHmjGzXGHhOliob\nDmygcxIBT52NSj8toYfRdMAC9DvVv8geSEZXAv8mBKui0WNbCxTP1X0fwZAVNlcaVSCJSITuFky5\nYJozprmCHWaqtQkJ8FpLQM1EBwWhIHShLymZO5tKCqb0Iq6/J0slXa0qrApJlAIqWWsRJQy9xIL1\nWhLEFIplLsjThHE0t/QJeZ51PwAdajxZSknoZgpAkQFkBlMBSNdil9APAzYrc1+TOJ1Vn1R20TmY\nxYI9zw/Bzp+YI2l6MyO+OWcgAB0R2us7oL6+/YCuH1AAHMcZU87Y7nbY7sRPdpozChKoHwSIAI7s\nu+CuYn9XRkl6D3LrjshvuilJNGhJuQeBQhEzcWUpwb84z1Oj4WZ5aLVqACBCRkLJJP7pyqm5kGtz\nlm4wVdOfRIgQSVMEaHT+EoYptRhKnjFniKsJMzKkkGD1PIbOgwGJRQaxZtbMClGZSPVFlpc52Ljs\nDCO4Qsi4KENlAmuALQANJCfVrFQxy4FHlePDZ1KyqNYbY9ZJQY52nrlUS1MAAsacWf9m1IJhlrFL\n0moL4JnzhON4AHUJ3WaNYb5Ayr2vgSj72tqx4o2sYFYiuJfAoJy4Y1hNlKjNWiZXYJ3HmNrY1omN\nojM0RuMGivgZleE62AGq94ylD4Vd0sJN037VQFwOz2LMU4T5rk9A6rWfwEwA3AJjALC2XQNRO2Es\nmTAnAzviZ41OskVRSr5eZT9L/EkF+XWfe1A4mw5TgQ46JOpBSUCOFE2UvylVWuTgj8KkB2GhEeQ5\nFNsjcteyxAZ02hfEU03lBNWiowjoUasMWH+H6/RdiAEFoKOgB50qBJJoiZOaXSvIicChWjh88jjO\ni/0mQo0oC+LaNMVEaIcpzEF1Q/QkGASxaCfGkGbkLiMPWd3bMo7TjM044zjNCkYUNGj3Si5a42fC\nOM0izEyT0gvhKeu1WHhWCnRWawE74yPXMV2/Lhb/YdByBlo8mMhTzx52e+zuCdDZbS+xu9xiv9/D\nLK5932Pa7HBY38N8OAI5owdwce0a0sUF+s0GaRgw9JAEJiG21Gax65JYJlh0ySJXsWii5xmYZxXq\nCrqhx7pLWK8GjzmYCeA8I7u7pc2RzRp7Gt3KY1QBlQRouKeFrrzOBOFESNSjgyokjDCrdTUlybJG\ngBTSnGZZJUOPIfXozZozZ3n1GakweByRD0fhUSkh9wnHww6Xd+/g9s03sNtdIucJSdc7WNZvT8BA\nwAARwjoDPEToiZABr89CEEvIX//gV+Hv/8z/jd948WVfr+95xzP46vd+MV66c4kbzzyFEiw7BeL5\nAS01gNRhmmYcSsFunHDvcMDtrYKd/R7b41Gzx0oyA/NDJ6NjCi6iEiTyN/lcA/pdkEeNzVnGrBiN\nJQrZx5yEyngVqGXQNqjS42T7VP9F8JuUjiAJrxaww5iLJPyYcsY4S0KoWZOAACSJYcwaTwRK1Vbo\niYa0D0bI3D3N7s+h6DNIp4OQugp0XGmo9BV5Bs2zjMEwqCJgcGVDjZEuyFq7KSaPEiWxWGl6qoCn\noeeqmHe6SwTqgD4lrPsem9UKFxtJSiBhFuK6K664M0qekKdJXHbfgsdDsPMAhxVVKqWIhocqUajm\nyYWozZYSOLsQMc1iirRU06LNSqoxkLYi2DGCYfE+wzDAfPpzzv7darUCYwDU9ahLEnhmwgHQpjU8\nF3ezFECXpstYZ8TOt3Pj3+1h4CxoRgsjpahFNtGnCrZxJMkkBP1Nm42y7wLk1FNtDkSUFEJWRFUL\nIch67rnrBdrquTUw3Xw7Ept7DGMZ+FMJmz+Aa4fqo6j2WouXOigjYXpBRKvPA3gRUhuymgwCIXBR\nYnfEZebohUbJgyS7BViJQqM+ZpeQuHP3raU1pwUr1cLi674ZyyWoODNZgXHJVwojr7oGyzXHzRtw\nsiX9mqqpL4t+tRkEjYEtF1hjAVEBgMAelN+s7eWYsYmKVRSH3iPOAzP5PtGeyWlWq8SsBTHl9AIA\nxFcM9jfBtHmm5i+RaJbPYNnHmrUQFQWLcWr6YNYhIs0Yea6/Og6hLd//91kH5w46mTgZ7fg/UO9b\nsw6dgh2jYYkZavRRuVni3XInAkife+Q+Y1gxNheMXODzAlR6lHNGN00Yl99b3ORccOSCeZSi091W\n0mKvLy5w7do1XFy7pl4DnSS+CZYYG6ZxGqWWz+GA/X6P8XDANI6+V1NKEsszDO7ecxiPuLi4kNfm\nQlPXr2qw8nJ+U52znKtV3rNApoRh6DGsBqyGHqzWkY4Sur7WLOo0OxqpJtxuxQiCV0wOQgJ0ZH/q\n/MDc3uBrF0W8AToisNYZ60Jq8S6poisVcDLXNnEU7VOHoe+x6gesuh4JhDLP2G93uH3rFqZxxGa1\nwnq1wr27d/DG62/g1s2b2F1uMY8iHCZKSB2hN81+4EluJc5ZAIseyYRYTnhkdYH//Js+iNcvd/jU\nqzfxsV/9bfzOZ1/C73z2pwEA733Pu/GRf/vr8OgjjwDmog4FPswos7jN73d7bHdb7PaSkOB4PGLS\n9MUW7yYxx+R0SBdmQxf8ezLlkiGfeE7NnrjkKfHcpSuafOddcDp6ek7Lq0yGIVOaGCCGeT9ERc4V\nMabaFqlCxbwoxErGGhNDNYZarTrJeLE+Gnn/AiiLfQu36zS1fG+gmwBm8cg4ekKoCdMk75YshbQf\nFUB23i+R7XIjpzWJEboupJge0PfhvrnSeUuhL3QCmrzlrXc8BDsPcPS9BHTaAvXAetskqAvcFn9R\nDVdhSQHqYCdrsLgS76UGZAl2DABZOsAIUOz79XpVteqUQJxMV+7PEDOgGJBZAp0qvJ0CmGWdkUis\nrrrmXNsOQIwIgMCJnQnH45RY1javOpbnG6GDgh475+o2hNgx1/OaV1HrCbl+2u7kfsVyX9N8qbBK\nhk+0TWsbJshyyzv0s2i2VfASyuRgpzYvF9WihpHIJhyPRwyjgJ2+70/AyHIumRkdd+g6BlfP9rPj\nzwrMCksgMgAPqjy55n6AJ7ZrAPCKU09Z7B/ucEGjnBHaY/unaLtpw9qpFivTVNaEIFwkZTGjvUcE\nDwKWIw2p7n/MHLJuEUyOo0ArYg2ehrGafE1VAxkBT6QMDlrD8zZP7IJCLabcFFi9aiZcgDgDvLyD\npxaaJWgLDWIBD68+iK5YIBU4RloQrUU20OyAp1rarAkfMY6pYHPVpFICkrgRRmErz1Kh3hLEmJXF\n3G0wz14YcJ7nCsr11qv1CpvNBpuLi+oep3taXJ47D6gvzA5ijscRx/GIWYtGGv23xDdHTWBw7/IS\nm4sNNpsNLjYbbDYX2FxIhiYDV26RJHU5UkvvNE+a+n6Wz9OM9WaFRx59FI8++ijyaiVxBoW9WPbQ\nk4MKQFxMKWkcmwqnc5qRZlW+qWKMQci6vgUkwWNoyYimpn4HS9rrwbOp9ehT55ZyMINzAZKdq74H\nGtNwsVpr9izCOGfstlvcfOMN7LdbEVa7DrvtJe7euYt7d+7iM69+Dq/evIWLPuGJiwvUVPHS19O6\nTHUv2TpMKYFDbb0bTz+J7//pX8HvvbQD8P2QKjw/j9/4Zx/G9/zgx/Dd/+G31LidFKwac8bxeMRu\nt8N2u8V+t8PhcJDMa9lcoeo+FSJmSiboSIffwzuYryTCS8srnI+G7cnnAE9QgoR9fpUcUH+rwDvK\nYFHJ5qmmG1pvdDPQgQRx80cEP+ayaeUA3AjW6EEdrAU6DArf63mJCMPQYSDC0LiKCsgA4JYdeWW1\nTtoa6RXwdBrCkBq+IXUhWTMAJ5cdvdB4PwQZE2C2JFTVJbSoQljCDx7W2fkTc1hwXTJiH1x0yFex\nEQGAodW1CwNUNXZTlmwoRuTYNxs50IkxO7ZpLHBtGIYGcNj5fT+gH+QcSUAA8MLN8pxAu9SQRCBi\n39mxtOzE368iROeAzgnwYYDUJWRpbbhf203/XGA8/zuXIu5iqmktQSg/OciIXauRd+E9mSUmBG0q\nURTcYWMC0RArQ63Em53aq4K4SQrE+syWMCG55aZeY215+L1roGWtkVkfAYAShnHE8TgCSTKsDMNw\nMs5xzEyIZUZjdWzGfDnOXAHX2XajWHxVG/Xk+jrTz7juquUjnH9mHbmgG4TPq0D+8ogWuaYN3RPu\nQqFZzWJdqlOBoM6XtO038QQky/vUIaEG7LRWHWuL/GX/R+HD6zYsQF7sZiMsGFgrVrG7AsWoJT2v\nqW0Flna/OSJ7E5DTzsT9DmqUBXSyzIJsJ5aAMCbQcbKBtFAFAz1tH1RJw6droZQiLoXDCl2/agTb\naZowzXNL41XAp0RI4+iKg5xNqzsraJlritjttlp4KXlblqJ6tVrJM6lEZu4wzJYxzrT6ckihyT1W\n9+6K29x6jc167Vae9WaDYb3ydm2uchblnWigJevbNFu9oRnXH3kEnAtWQ4/1asC8WiOvZhk9tbRQ\n33tMrLn9lDCm5s6bUQXmQjUgXNzfKr32ul9FFVysrotdrZFj7msE5Q2dBIGDxepEEGvTkMSyAy7g\nzJjGEdt7l7j1xk3cvXMHouBijIcjbt6+jR/++K/gn71201fKu558HB/8M1+CzdA5/jZlQQ7rpdlH\nSZJdyHjIPn/19l38f5/8NATofJu2/m2Shvp3P4RX3riNG889A1XDo8yWpGbG8XAQ1/ntFrvdDvvD\nAeMoWViF5qHZf67sWOztyI+JyL0jGujgclCwthjfgPGoU35TOVptp7L2P5xygxSMuJJQGYKvC9VS\nLNuNig5XxKAqoZKNj1l3UrUmUpMZ0Cz8CwBl9MTYsbbZdQmrvkcfaGIEvwZ0rN5htdS0boHRglaB\nigh/fS8Kequhs16vGxnTxt/kuqWCEjCPoDefgj+Ox0Ow8wCHIGU0GTBsBbs2EAYIxH2hqCBfUC07\nludeGJj4ozMDSV3SSpHaGjnnYH6sReAsQ1qtlwFnpikRSirCBDOj5FbQioQnppNeapeA88Lk53tc\nRdhOX5CsYmdSnX6+Vp2rzi0QQMWpgjnm+wlqQoCX4+EaIg/mb6+wtryLJjShCvsMUn//EBIjt9NL\nzhF3zy1VT/RPJuFVASHiXEojxnFEfzyI1jQ8s6WXJKKGqHJ4ACIFhcEyeMVgV6tmsNy14xPaRWQU\nsRkfsCvGAsqQz1l+7qdtPGOlW7y0aZyMMdW+LAFwEQStySzaNW59WWo5m3aAk/G2w1NFo85yK0RE\nRYUF0geLVRiXN1UaRAC0fC/tO4ffGxrjAOt8fyPg8rMouNjZOXjzvX/+eXR8fdzRgMc/6mFjbtrn\nFATw+HydJadxmp6Qc4eu7zDkgtVqVQGQFXOeZ0zTiFFBwzhNmEYBPJMWLBU3FAE02VObQzN41uKA\nw2qFvrdsoMJPxB0sY1bLiyWBKdrOnAv22x2O+wO2KTX36geLC+qd75CDHckUZfXiqsDEOB4O4u6T\ngDxOmI8jxsMBw2rAsF65Oy1DgL4LYVTnN1pnbMmbZSfrXJtAWwJPA4RWEwTApI4w9IMHgsMEQxCY\nMjh1QJEkBx0IKBLHM+KIaRoxjyPu3r2Dm2+8gZuvv4F7d++6pj/PM37k4/8YN1+/GewuwIdv3cHP\nfOK38U1f+T50qQb1M0x5cKowcIUAmTdGwqu3L3VM379YkR8AALxy8zZuPP+sK2KZZV0dDkds93t8\n9uVX8ZlXXkWeZhwPYuEr+VSwNfopOIG9HtLJHgY0qyIWiqsq5Nf9oi2rPFQD+NHIMbUHLV1f8uB4\nTatMkSy2Ih9J3wsxasQuaSKUJLE/bLSn0+s6H+9I/z0WlarrmnJx5WEwQgfJwCd0J1A4b00+q2xh\nFtagvI48xfixPWeknVER7mMbPA2MnkaPIAM88foIciLYifdaxt++lY6HYOcBDjP7N8U/qbpjyPqX\nzTznjHnWAMwSCoiyZQXJmDUjiHzHLnT2fa/ApaYhZBYLDqk2gJn8HKAFO6kTLYUUlCs4K2zp85jW\nwF5LoPHP6zjX7lkLj2VOWhD+q/r1Zn2NRDJRQkmihfvDaPMD9jhpy5IMXAV2TMBjrt+a0GWApUDS\nk5dwocXmnOIuajvzJs8cU3fbe3c8Ih2OIM24Y+srB5C9fE47TNOVQKDufEecOZ7pjx/xwZaAYgEA\nornrrMVAfvEmS7HihbUfLSNsOnXiwtZYUJaPQVW4XTIXd1tSf3fisF4XDdl6JhN3fMHUz0tLSFQI\n2LCYQEPnnstfIaXbFeiv3j5Y8nBmTOxzOf2tzq89AM6u1SWzrkCstTgtAWELlvlkT145xw546J8b\n4HGg48+S6j7n6roplh2Jsen6Dqxrou9NsG3pX1bX06yuYAZ+xnGsoGeaMc0ziMRtqus6d1HLJXtf\nuq7Hai1gZ1itMAw9+n7QLJeScUza0/pqCoJ2hwMud1vsd1uPvWEF8UQi0HdDr8U0q4rF+UfJVY2R\nCF0vVpRpPEoCg0TI44TpKMVNPRZo6H1sT9LuamIHA9Ax8xuIkEmzKoapnaYJEwPItdp8Is0+1XVY\n9b0EgfeDuAzlgsKzZCxN8gwWs4PMyJgw5oL9fof9botbt24J2HnjDVzevSfCZN/h9naH33vtjYXd\nBXgJwHe9cQufuXkb73n2SSQqLhyf7COTJaDZGtkC4Ts858VDfz7cAQB+DgDw/NueDGuyQ+ER0zTj\n5u07+IEf/in83kuf8yseWw946pHNgnsFKmF8ywTnsP6bYqBFsnstGZZt34ZuG20NaptSgpU5cFyj\n4UseHXnJkvcTjKdZRjlNsSLoKihdxEphaam9xEbSAu4OdmrLXuA9gBgrlhtOE+UcESwrXFX88OIz\nYIl61DOzlYMWACSClwg+4vguwUoMiYhgJ1pmidTiG671xAfhfidFjN9Cx0Ow8wDHNEnAoVlonCnr\notA8U2AtFDrPWUCN5nY37U1W5iYMpWju9+KWHAMxRvwtRkfcjsjBT4yfEZPnBNWJCGKfC8rcakHj\nIr+fVWdprjZCs/w7nvOHOU4FJPtOMouVUG079tvezxG7P6zliQPxjtfb5+UzXPVEVRt/BdihSgNd\nEFIgbL9pzxvh2sn9AgT4R9e2Qa1KcPP4UpZt3BBVYJmmCd04IvV9A6TjOvJb6rXRLcf96M+cx9ym\nII1j3Aiji+uwEFRMQ1sHs76frDE6texwc+HVh4v/54R6nMVsaNwQFtrKev1SgKnnNxqy2OcFwDoL\n7FSz2PytY2CCcwkuZjlnJCsIx627XnPfJXBRpQwHemDPYQJJHKc6nlePeasRXoA5H9S2tosOd3tc\njdkQ9adu7aqbCbW4b4vEaPH3VW03GD0Icv4Z6qpa2rleKphsPDyLZ9jrNtYW0znPs4ISSzcrmvoq\nUFE912NZ4AHI/WqlQo65PptwVbTNlbqaCa8iEOZpwrE7gvMo/Enjh4TfAV0v4C0+T+QjBkK6rsOw\nGoChYNwfsbu8xN1hQB4njIcjDrudAjKxFNnz9F2PXvvr8UdKrzzuRWNm0XXgYG0mjf7mKaOME+Zx\nxDxNmKdRfl8xugFg6iQ2JxXwXMB5Rpln8DyD5wzORbKNAig8YYLI85fbe9heXuLWzTdw99YdbO9d\n4rDbY71eIWGNO5c7ANXuchPAtxLwE7pmf/CXfw1f+OxT+OZ/6UuxWg0qgJ/Z65Zuk0UxB3VTfeHp\nJ/HeL3gXfuNTH9bi4x8A8HNI9BG894vegxeeeboBHTlnHMcRP/AjH8MbL7/WWJu+8zjhtVzw9GMX\n1VoNeEFM/9+UJWeUEQRCIVM/nPKFur7RrG+jIWbZMdpl1hI5t41zjIDH+nHWukOkGSgVyHBp97j1\nSxVOlnY60RmX4PAs1XVNgQwiHVXgoqzM6IHlv2xADts5slkLs2QhRMszTVYBIq0JdCVkd9MR9WuB\nGptdgU4fXNdCXGJ9Ch/v5rlTdZfr+odg50/McTwe6x9h01gGEwvetWw0YjWx7DTlBL0zEICRaOyi\ntQaQRbvZbAAAm80aKRGGYQWExW0bf1TXuDRWZl+rdi82iyL6JeCRRztvvoyCa/wcicNVoOdNAZEJ\nT67hqdedP70SPu/LGQn1BCCF6686XJBcCuLhOiHL8q/EcbHzjHCr0qveToiiZXTWGrDgAhSd9hQD\nto0dRqYB5UFkf0Wm0nbYrFC2xqZxQj9MmPsBZcjuw788loDQxsRHZgkMzwHOIBCfCHvW1nJ8I9BZ\ngAXrz5sBa16gFXImegrgEdYQ/CwB3wtE4n1uhfdlX5bftelXzXp7PlDWUfDJWLZ/17UWNYGmoc/d\njNx1UhckSW2Qkgg5JU8eEa+39rlYRe7i7kicta9leX9aTl3zGH7mybpoBaCKIFtABFqeF24d1kR8\npbQAO2Gs2vf6uYLvBrUNpQAAIABJREFUqx7GrEKxA+cemQNQD9rZnFEwtUKD1cVJXa1FxbWOz8rm\nsgTanGN8B/u7gaLZrfIqpGiGNkt53VGHQhmZVewirc3CQKGEoeuQSJLwXLt2EQBW1fqCoEkQuoao\nzZ5wZ4bRTMvA1vdSFBtzwe7OPQE7+z12m40KYlIo2+a8Sx36offMoxKH2ocxqy7d3dAjrVbohpWn\n3yVKGI9HHMcjxuOIaRoxjSO6lLBerTGtV5hX8loNg8QtzRK/NM+TuHaVahFl/S3PM7aXl9huL3H3\nzh3sLy/BOWPoOlysNrh+cQ0vPCVrw+wu30rAx1YAvhHAuwD8PvDJj97E//Grv4n/4P1feR4QExCD\nN0uAEsyM7/g3vwbf+0M/g3/yyQ/52nvvF70H/+m/91dhBWVlvmYcjyM+89Kr+O3PvHTe2jRnPDJl\nbNYrt3IUWIIdX9h1Jyz2m++eE0BS983pPkHYTGLZsbYReMy5WEpvIwj0DW1ho88mzHt5aH0pN6UE\nIuHAVvfPQPoZhgTnHYKelK8xxLJTpPB3uFIyX1s8D+DFLZiMafs4RJdPA1U+vgu3MRnWKlcwLN7b\n5kfi3QC1/KqFVJIR9BoLKop3b8v6wLLOJEV2iAfqOsmYqPvrrXg8BDsPcIzjCADNQkiqaQIIJWcw\nB2Ehz431BoBtEREedBNnTVgAVIISTZd2TzEvJtEK6WHCn4CdEWwJZVlN4aiLl6jW2SGqlh0DPcsY\nC/scUxSfC2K7WvD7/A555pqff9l2fNYoRPlnF6KvAFdOs64GOuGhnPDeD3CZcLMEO8I0qNbiAfub\nFSqVQnd1TaQCLV6KCqZDo94SK2Bi9SW2Lp/RsEX3iHmekaYR/ThgNcjaZBW8r3o+GQrTilUtUzwn\nzpWPbQA6J+2Ez1Fk5sBUltadc23cr89vdviaOtN3dgZXz42y7nK9x/GJ/Yh9ji6DSS1ky/g45uXs\nnX8mWvxmmbBKEUaWckaaZ0lPrWBH4jlqBi4iqffk2QBVUVMaAVvdmKyfHIC1AxITUmIA/+mD3A8c\nRiGjGVe0e8qe/RyNklfU8p4DPDj9nt9kTTXgavmjQmMHypWmG3gEMnIRq/zSraTToPyu66oCg6u7\nM5dQ7LaifgEXk2Q8s6QFs1nnfZ5OtbfVgVaKTVPq0fXV5XI1DLh27RoKlyvBjsUgRQHcQMKcZ9jO\nFa2yAK5SMsZxwvbuPRz3e+xXLYCpFstaYqHrO3e/6wcphO115zopTtmvV1hdXGB17UKLZQtvOx6O\nOB6PGI+Sbl/ATodps8Fms8a8WmNeDZhXA/JsNeZmBTwz2Ph4KZiOI8bDEePhiO1WahVdXkq9Ip4L\nhq7HZrXGI9eu4/FHH8WXvPAcPvLK5/ASs1h0vhHA+/Tx3idT83sv3sSt3QHPP/n4CeCR/aBzXrjO\nmoKIi80K/8W/8/V45dZd3Ly3xY3nnsY7nnsGlASAFqhLO4s88PJrrwO42tr06r09LsYJTz9yXWTf\nYnzUxOiW7rZgJ+zRBpSc0nlAaI3QEt0tS95BEv9m7l1m3TnncdJsUaWvrDzWLHygmDretlClFTHz\nolyzAGhKkJkBdJEfuRRnmjWAFUo5j1TQo+DRalJXYqY0NwvYJkgYA2tmNUtxHZ/ZPQfsH1sZC3LF\noVmoVoNYTYdhkDTrus8Ykg2y4VVq8bWxk/i6hWKmk1iot+LxEOw8wNGkaibz4YwbpLqLEKywIAGp\nQ+q4cWNjFECzZZjQsNRkLP02KzPo/XxLZhD/zlrNPVEPUAer0/H5gJGlIHdWc4/zxOfcb/cDDDJy\nlSKdO3Wp2b9S4LxC2DVmjQCKlubxZoxamn22Paba7lkhmxD0cm2b1exM9bO1G4QSv4QhleRZLUJF\nM7QlgVNYzteyv8VAtbiyrVYrEVBWgxaWFe0TU2UqJ0Jl0L7HcTwFlezpsc/1xYcnrHs5jwJY11ss\nBMp47TlAde6oDLhlrqJRZxf4a1+q21YL4MK9QxtLIb6xinE7nqY4yLMkOSkBSEUXkkgPFqN2MqDR\nstMFsJLUOpBKRipdo8wgIrl3EMyLWqBLqfU/YFpuQQV+bdLr4SMb1++bH3W8Ktg5Sy8oiFwEUeJQ\nFFjiOl0CqqAGINlr/jdq+xEAkdPzCrjYr0f7W7i/z7n7qRhNq3Ejy/k83RcBHAPBPYs0xTS50ssy\ntLnngLkdlmIJskSxYnPL7AA2p4LSB+ui3509Nb60rQoRnX8iQlIAU7c3e2FUSZNtQmqNGZimCYd0\nwB6aWQyEVBhgSY4QSAUKATmJxn00Yctdd1It4EhAP6wwXNtgdXEh2dX6AV3XtZadAHY2G0mnvdaM\ncqthQJlzLawdykGwTBqmcRTQdDjicNjjcDhgOhxAhbEZVhj6Htc2G1xbb0AEfNv7vxo/8PO/gO96\n+RXp57sWU/xuebu1PeDG256UeKRUX3U+2PeTM0TbBMR44ekn8M4bz2JYrUTZSp0U0cwFU54lPfZ+\nj43GQ93P2rT/0RmvX27xzKOP1jXoO+RqwBMFb6DyU3J+eBXl5+Y53R1NeZzR+6Vb1fJz5N22KNj6\nxEAuGi5QLGHU6R5s2mZGrWxnxUwVvKCAWICAKzglrYV+rldauefQK+jDAU6DIkBqyxbUgtxG06yP\nUtPLxBjAgNWycKsoxFerle7VShNb4Ajvoc2rWXZqSuvO+/J5iI9/rI6HYOcBjoZRmbCkzLLV5mll\n5mFAB4ApgYncNWTOGQwpKEqEqt0LG3FZzDNqh/t+UJOknD8Mgy/KwrlZzLZxYopCE9Aisbjqdb9x\nWGpbPl9AtWzHOfRCqFyOw3Ie/L6RMZy/oRbwPP9q7yeuTEa4zwqzTuarW1q8XmUzVP0XAu4J7gnx\n6b0/Svjj+SpcFECzyPgg+FpcMqjwNLKmphlTL4HPAnhmzCvN35/EFhjHdinQ27/Ix6LAF9dV0TE3\n5UA8dynYngUrXN3Yzh8RGJ4HPCeAJdwzEYFTQlrsOflzUUuKjSGG6xcBo6So1AW3YjWdTl3ZDNhX\nIMVaZLPt+/mDmnVuwEw0hdWy3Cl46XJB6TJKXmTvScmBXil6bcmezYqt/yq4mNDNKaG4osee0EAi\nB8B++gyntKK+fG2dEZJckAhAxxjzebpFJ1dXoLIAQ9ye78DJr1v25/RerQswYD758emjEitmWvK4\nS2a3sgp9IHdBM6BcC2F2yEMvcTglxGS5QAePvzJ3uOpxUFxQ9T5DLM2x4GJRyxLp2FGTKa1KYGZd\nyvNc78XV8j9NEw7DChfrlQP5JWaP64aZwZnBecIMiZlhyzpXrJZRBnUdutUKaS2xSatBCp9OmtRh\nGkexUI0juq7DZi2WnZUWAV0Ng7jxBqDIJVcFBUMyzU1iucrzjDxNoMxYdwNWG0nne31zgc1qBeaC\ntNngr33NB/BbL72Mv/uzPw/8PqplBwA+JW9ve+JRz5JnwfEV2Ne1U5Tm1ORgBGghYRFGe6SuV3Fb\n+P84zdgfjtjt9lh1hBtPPoYP37qLl4Cz1iYwcHhxxnQtu6uSrYlzQMfmq85dCz4MBNt5zf4hE/iN\nbkd6YAoJWwdtu/G+5+gKkcCKXARsW9y0JfGoymPvOYxX1n6Htk1vQQA6qVtorhiSgc2UANB3eUm2\nNjiI8VupTKGzqECHNP06HFxYWumTDHU+RnX7SfbCaIXpmwyK0kadk1OPHMA8f87Jil13f1nwrXA8\nBDt/xMMXgDN7WYxFCbYHkaUOpHV55nnGlDNompALg+bZBVULFDcmsxQGI9gZNKDTDjfvpwRYQShA\nZaLUgBwXtqy/5bTK8bmFfRXRib8/KNBh5ipULRRCprmwfi3BWbwv18av6HfU/NTX7jjiOGdcW69x\nfbPyG9N9nisyJDsc8Hjl5fsNgLOD82AnEMZ6vmqAlNj6zylVqwB5Pjc0vWOIMEsTaBQmbW4qWetv\npNS6C5wAHQc81j5qVqYwH3YkNLXWmnm8aq2QWXECw7naVqAC9kIDeAL0HPDU30g0AUgGMpo+tWs9\nfh+f5RQI2rpoGb2L8yqwAiq8pQJSn/UGpJP8fhakod0iVYBmkAnRJSNlsQB0Zt3JHVKX6/30Wqhl\nsArgxQVj5lIBho0DkQAdBTytEqCZlvuAtbCX7amU8S5w3OLZz6/JJfggA+xUr1yCnAZUkfW9tuda\n1YUKIwI0A112VMuZCiXhukjvlollbCyW7jry6mWdkmRD67XwZj+gKgNsydk9ghvcbG7KZgWaxZoS\nn8f4QuGaPZTQrnHJ8plcMRcnyeKL5pyR5wmzp7SW5xynCcfVGsfNJlifQvIL43ssaaNnrtbJpjbR\nNEmmulFicQpgRUQ8y9QwDA5OpvDedZ3XDVqtVlgPAnbYACYzLLsWAbi53eLOdocnr13giWsXnvoa\nrMUgux79usdmvca19QYXqzXmeQLPMyZmfPELz+NP33gOv/vRzwlgeTeATwHpxwhf9I5n8PxTj7sb\nPHXRslOAUl3Xis5p4konROmgQnLfI/W9W/NyYa2XJHV1LrdbfOmfeha/ejziu3Yac/yuxcZ6t7zN\nuWjcU9hbTbHM83JBVNo40ObzvHPBlVrQdHLSfTno6V7R77KC/1kTP3nGwZyDaBABF1xp0Cg/9cxE\nBOKErFlwzYqTAq2ypAVW4ocAT1DgCkuC82m5RkAsoYYYxDCDFBLSVKDTer4Q1URDFuM2DL1/R0RN\nkqGqXDGgQwpoInBq5UUDRW/V4yHYeYCjAQNOqLNoxAp77AtAWvV4QOp7MSV2HY7jCB5HyZwD1OJ8\nC6EqBt7ZdyKISDrSw+GAZOBpmhr3OqvwK+4eFa0vEbsx2HMZg061pHJEzWSr2fn8gc7yJdYKHedm\nvO/fbgMKrf0r7gklFsZIpjnjd1++iZv7mnjibdcv8MXvfA6rvnct5DmhzUklLTSU+hxNllsO4inp\n31S/LhrbY5YQJ0jhEqhlJxra7dGN4aSuq8SUWp7BJGuVJwAkms/j8ehE0jL+AaQpuoXxncxTzPIW\n5yCMawMwTQ2lv8fxvBLwWPuLNRYPm8/IsE5nZ3G+ariafXwGeBl4YK7aev2hYeyxv3KO/F7C70Ti\nh57iOlXmUV1F4ODaJP6CNp5H2rHzyLQA8Etwfl+ZMLecv1KK+EwUCXNlp0WWsrydo8rwAkxopRYZ\nm7K4dgkwbSv4lqhj4JYUu8NieRhzrq8lEK+AKFx18u4AyfSrYWxEwAjCjqbVpebaRYwF4IHOzcGW\nobOl4dDxFq1rK0gI/lSrmblZFgUE+oIOqQBrh4vNWpJ6T6RwjZB1T5fu1H2tPkvnGnUXqH1dBnzD\nANRVDcxIrFaolFD6Hj0RSmcCVsaq67AeBsx50wAY2Us1RT5YMlN5LKm6lRmfm6YJr966jTd2e1zr\nOzy62YC7DkgJfT9g1Q8Yuh5Zn3dOHebUY1ZXnlW/kgKhSOgBseg2wm/CYRrxQ7/8y/id117z8fkX\nnnkG3/QvfwWurVZKdyUAfOh7DF2PjhK8mJ4keQMR4du/6i/g+z7+S/inL77ibd14+gl8w1d8ucf6\neoFyWbxghlrY2OvvkUS8a5ax1FjYJLlDUosXY5wE6FxebnG53eJyu8M4jnjX04/iogP+4N7xSmvT\noAVeGxkBxTMM1jV6XhFja8kWyXKNtZ+X9NAUCLIzmbjxXrjqXhGsp06sY0a/syp+XNgPfHjJnlnX\nYmGu9cSch6qStJidszbgyizStOjENUEBJJsemWs4t+cSaSmHQMsqP9M767iIHEeQFPZ1L566mMme\nS4mcnhnvq9e08l3X1fadjlKcQ1G8vlUBz0Ow8wCHaWWFCCBsKEsjLS4CRsTW6xW6fkDXDyANQs2l\nIGkK64q24e3asUypWErBNM04Ho/Y7/ewDGyxum7c+ODqf3mVZScCHfts9zwnAEag49qPM+e+2XFO\nINNfEKJU7nvdcrz0i6BebrWpfr2KYqUUfPK1u+DD6Ck5/wGAv7Xd4xOfehn/4nveUckOtS5/3j6d\nCtD2FASqjNQIR4RjDBQiJAc8WreHC0ohyVKj/svGGqwFf34ooTYNkBNeUqEPVavEsvYyxJJxPB5d\n+2MmbwAgC0xMCdxV4Z5LQdG5NiBmIiDb2C/GPXzhMTzngMLyiN9JKvIWJPk8NIBn2Uh89rq+lvfw\n8ToLeALYUaGdnDEutIphjTS/y6BCnb1reyrcIPRDxtQEYGrqHfgzEEl78bogMC+tlueyGnn/CoOT\naftaYBT3kaRpjVmWDCzAQY4iXb12OQ/WS65/e8qnCjpM4KuXnO7vq4CO36xK/M17pW2p3lP3icWl\nmMBjAMjWVgQ6VShr711KQkot7UkkrkUS8yNt58wOes61RSQARwLOw/gWzexG5F8bqVzCxbjGiAgd\nEUrqwAZ0SpsZFOGayAtM8IlrRoTH3Kwr20MJBCSJHZE1lVFKh9Kz22DnOXt8j1yvY6wdLxx56azn\nz7h9eYn//Zd+Cb/58sve3/c8/TS+/s/+WaxXqybrlAu3CpTmaQZB+HevAeBd6tBZgdKwCn/w4x/H\n66+/3qRp/o7XXsP/+g//Ef7dP/fn8cyjj4KItM6RJE5IRJ7Ig7TsTCLCo6sNPvw1H8Snb97E//aP\nfgWfvvkaPvvGLfydH/4ZfMk73o6/9nVfhcceWXk8EpRn+JZSfiWa/1gLxoBSj5Q6gMQilNWKtj8c\ncG97icvtDtvtDtvdDsfjiFUCNj3h8KO6R98NATofBS7WA1ZDL2A7rAFmgKn1NLH1jbDXW/BT0+Gf\nHM6jEqKVwkF13W3q7Vbp7FVrtSpyxeLIsGLuaq1WOljCWnX6K0+jSqrSJI6qO4rBxaQTCimm1cpD\ntdhop9+5VccADyq5T6RUniz72tJ6EhV4LQg5HU67Xq5butMyp9BmHLdKb6olR1KBW1syz1U+fase\nD8HOAxxUd6ZvDifI2WpcsPteDsMK/bBCNwxIWgBuHEdH8NWdwbZCZMqhijLgwMbAjqWwNc1XBB62\n+M/5s0df0FNTJTXPutTmLDX8D3qcayslgjt+0Xkh+KojCpvxHst7OuECsB9n3Fag81fQZqjZ7Y/4\nfz75WbzvnS9g3dWt0tzDhEu25bAEYAvmEP4PnVLAww54UICSzLJThcoIeKwpFbPgfsA2x7XH/skK\n185FWhjVj90EBDN5d1oIsXSdpxxmDfAEWc2CdtxjB6MA5Z8dmATXJbpaM7gcY2urHbpozg9M0P7T\nxA8t4JW/XZFw5t6x3ye1h4ATsNP22+TSKjwTACQDMW1bzf9h3xNai1qzF00DGGlR3Cvc7i9wu9da\nMFbAhcIctxZbF2LJNK4yrleBnCoABaB35qlBQUPaAB40IKROJtrfrojToUbw1yvO0jSzWGh7RXeW\ngj5L6CLXBJAZ2lyCnZS0vmKgsy4cwVL3V8FhnhfJMihp9jxNCQ2xzHBJYCrVm4g5PKMKNKjPZeCn\n0gICdwmcbHEG5QXXz7YvZP/3wapDCloEgEA/Q90cuRR3wUpJi+Xq/ipEKCooU1eTFYxTLzXr2KmZ\nCtgqpIY4I3GNm/E//cSP45VXXmlByBtv4Id+5R/jm//8n8OTjzymWdtq7GsprO57s7iF6si1Wmz9\njgiv37uHf/rqq56m+SaA7yPgLgN3b9/Bf/uTP4kvufE8vv2r/iLW/Uq9N2SuxLIjgm1iQget3UIJ\nP/Jr/wSfvTUBofe//Qcfxv/8sX+I/+xbvtbHuhXUuYq8RJpNsXNg1CnQoaRKVGaVDybs9mLZ2W63\n2O522O0P7rL85IpwayIcXqy07WI94Ilr17A/ThhUAZZUhijuJVJp4+m2XsouaM6NNJ3Cf5FsReWT\nf6f/X8UnljJNSkmSNLCtI26KubMpBxqgo33FeRrmZAgFbYIBV9F4jE6ngMftuQrkTWESKZ0DpJO6\nPqYEYh8j885ZKtaWB6v8KbIlwYz3NifnZEEic09d9qPyzDiXb8XjIdh5gMMmPObhtxoHObNDd0rk\nKQDl/IzMrIRefI7nOVf3EmncCf9S0DFAM44jDocDttut+26z9sEEs1bAq0UGTTt8zkJhR2S+517L\ncbiqnQc/6Gx7S+F5qeGpV0PiL/jU1a4Ki/I2zuL6936cz1Bz90eP+MRnX8VXvOvtp70kEzcqhDEi\n7p+t76Fv5543nmOfDZiwyrFmuPG2jYhyrNPDKMQgEgq3TBJZtfWqoQ1rahiGxtLThyJ+EjgrbaTS\noaSCVBbCploQpVdLgIGICD1GBA7m6pguP/MZQtvOKZR53R8ct+umunIRna/nYBr+k7WmW/wUNNRZ\ntL4YWFJxUX4LfSoBYDTsM1wf911UtFTN5OK7k+eOa+t0DE0AyHGv6P1TktonFhAPFBCrXVQBVeML\nvsh0JKRQo7aWXeOTD/6MFcidATsBrJy8uLqLUd0kuvTiufZ7BVVROIvX1rEy4UMFF4rpSEz4gAsm\ndi9Ggljh1NLB3LiQRS0sE6tbVUJmBrgglw45zerWlhwURU12E08VBCmi1MBJfxZ9mSWvBPCDVEDq\nreD8S/ctsfyWGOhM4CvB3bMUz00FsCcU8L2mbkaePGAafQWIkiV5ql32ezF6EF69cwe/9ulPnwch\nd27je37yJ/HFb7+Bb3//1+BiWDVzVzQhg7kAlmylDXz2dAwJty+3AGqa5nN84bc/+ir+l4//Iv6T\nv/SXZYygWnrWtpLWONHXq/fu4RMvfQZYVLopzPjEpz+E1+5e4k899zbfy41lFpB4TANVfV8z0imY\nLqrAOh5GbHd7bLfmvrbFbn/A8ThinmaxKEJSEz97bUBJCXMWheet3YSXb93xcbtYX+C5px5Fnzqb\noGZMl7RaQG6lCWgvOSMnXGGlOP3qvsc54T3D4p3sxeH9tB+hl3alf91ZwD4ZoNH3pFacRPVF8p4M\nyBnNYGubnJdL3JtmW2tAjg0ca7y31M1JujciPxASEWVHVhoI2ZesOeHI7h35darWuyCrVhBo66/S\nev/7LXg8BDsPcLgQZ24ApXi2D6kw3/ni8WJxkMDwzBJkOY4jxmlCzrV+gSykU8tEZIoimIpVZ7uV\nQExbvJMWQmuEMOhmoAJOfAJ4ltqB+wGd+P3JWCwQ/x8J/BhY/DyaiP2rAn09Wk11FXhWWg34H+Dq\nDDU3X9xjdxxxfbM+FTqtfSVkHj/a/HaOgC++aRU5YKi5vQjRJfVzc913QxvZ6WlhNZczw1Q6bsC2\n9YBK+C3odxxHBzhLsNP3PdI8CzFlRkqyhlKu69uZXdLU1QuS6AxGpUEqRaqex8cOwr2P0nKczwBs\n5jo+565ZXm8AxjXvzI2Qvnwt6+C4OBkE/Xq+d9yfx/eaTli0OsR4vQqWTVg9BX9E5GPlPv56jbV+\nOl7sjDAy/LgmyuI5TfhDJwKMuTTKyZLW2MYta0xGDgHn3mdXXCQJYjgxBAtzdmCDlt74QJwBOzY+\nvp/Nr4QRMhhWYGNAJDQM4+u0uEcFSUsVhL0XiGvIcr2GJ18IFkia9lvjo8ztONJ3AzxmLSlFAIsI\n4sHFGEDfmevpCma9keexcxZ9QF23Pvelgi8D3iCSfZyT5cANVlBGKoxUVLlipLYIMHNVm7dryTI0\n42gXwM7xIB4ODu4TeOiAvqtjyuza8jfu3gVwfxDyOz/2Mr7/F38Of+Ov/OsODG1sLYNb1nTdrLFp\nhRlJa9ElIjz3yOMAxGr0r+A8XyjM+M0XX8br9+7hhSeelLE1oEuQ+B2t+dN1HW5ut3qx9d6ODwAA\nXrt7iXe+8CyQyNN+S7wOB6tOB+p6dP3g/JFIlEa5ANOccTiOnpBge2lgZ4/jOGKac2PZYDB6Igyr\nDq/cOWA/bQD8XZjVaX/8Trx68x5eePoxV/DEI9Jgy+DJ4ftqEWj3Ut1vONk/b2Y5uOr3pZXCz3ea\ndwp4pC/tU1kdHPJ2Bdz0yawe0HWiW4MInQKengz0qGLSSK+7ubO3lwwcabIPy4DYCAtE4XzJiCZg\np8b1lMLq4h1lSPb7dtyFMddXqrE5yTP6VTpjQMvG2xUhfBrn91Y6HoKdBzjcrSVsqlKygx8rxlQ1\ncSLUzLlgylkKnWlKTE8qoAQ/rqPlojLBS7TxIqAysycc8A2cqkZhucnj8WYWnPtZdZb9ukpAPSes\nndVU2+8wkf5qsHLOshPbf7N+uVhFhM2Q8MR6wN86SvzUVRlqdtOM65v1ybgh9DM65diNlkDnPPCp\nvy2fWcN/kdQdixzpBILk56Mh5gacObRn2Mi6Hq07BnqGYRBL5Tyj73spQhoAckql+oynCnjagNZw\nUL2/AR6u/j7Vxh7Hhlwn5mO6nHdf7wRwAYg4MLsq5MZzjeksMx2es9IIXjwFPyK6n8bmNExUmUYE\n3+IBmHQe9ZlKtbqSd5hPF8NiOF3QD2CH7XKT4CMtAU7ajAAtapIdkCYRXywDWJeSKk50nev4RMtO\nCb7uQtPUhQqSgON0LdhU6ZwtaQPV7+vSMEuMSwVhjcQh5DD/aM5vRtMFx5ZGORiKt2fA4ozkGaow\n530On8UqkjSwXFaO1DsvSAqWxEGAfdrMVUYEUwJRsdrriEyidBU5WoBzqpCm0lMbL+tfQxMq6LF3\nW09IkpLdAI+vM2agZFBmkbJzAQy4Bbe4mPVJlIAkGcYyYT4ekY8j8jj6nIvLn4L+RM1eIiLcePwJ\nAG8OQj7x4mfxxp27uPHUU5pVTAtNsrizTQAmZmQICSpckEAau0N4++OP473P38BHXn0Zf93oxhV8\n4fXLS7zjqafh2nCGBKCTuX3Kcz3/xBN6oVW6sePnAAAvvO1Jycam7ah4rMBE5y/E6NRztMqLxvIe\njsdq1dntsNvtcTgeMU6zp2Ku+0n25ZRn7KcjgL+HaHUCGPvjh3A8brAOSlVZN637JXTOQBSUP+VE\n7miv077ILzg5+Pwvy/bsqHs3OQ3igrNWe/+9SQuttd0QrezV3VHWkhYJpaVlp1p4UgA7rLFbHNvT\ntdElQq9unaLZ3VRlAAAgAElEQVSgbJ/Vk0qdTRxgirUAKKmNdU4R1HRGz4KSiMiBD1F9t54aWI1J\na4zevxWPh2DnAY4IdqqAIgunA0nAomrIhWgD85xxnCYc1QXteDhgVEuMmUiZ0cQCuHB1AhKUUOlG\nN3cGe/Vdj5xm6SOz0rZ6fRRKl0kLPh+QY8dVv58DNPb31S/ZyFUAuRpgXdmfeqOzfarigBzvfOYx\nfPJzd4FxujJDzfXVcDIeTd94cS8697k9Z/kES3nKGZ59acGrOja8uNK6INo1aLFTOGDyMVO3CwHF\nEP/9HAJ559kTXsRXBTvJXdZSSE9pNaKacTGG5jK5jJ8XkAMkoDc6FYexSCCUM0ugYXiwVN+njHh5\nzVKz526fkQE2wKW18Nig25guBbqoveOwn7z9xVxEsGDCaEqAZds5B6ROjjBmfoYuGlsLYRQc5Eaw\n47VdFKS4i4w+ixV0ZLDX8DIm2LiwlRJ7oVPf7peo+a0aYMRl0tI6p3l2WqWBS81sHdslzdHxWGQT\nqi1X2igZlau2036r9zvd/5Jmun5v8XMWcydgr4LzZIJTMYWE0vo6FAgj14C7qBXPaqEwV6oKBLWN\nOPdN28ux1BOM7hABGVJLyUCbP5vF04hFj3MGq4eCWXNk+Sl/Yq5ZCNUChCIACTnXQqlEIC5IpYCY\n4Jpk7fTz1x/BV77rXfjIpz/9piDklVs3cePxx11YFV4S4jl8Pk14JXVTkn7+R3/x/fh7v/jz+Nsv\nvyQNXsEXnn/scfSpc3DGHCxaOfu43XjySbz3He/Gb/zBh3UdfADAzyHRR/DlX/Bu3HjmaY290fXu\nQMD2gIBmSpL0qCoooPEZGeM0YXc44HK3E6CzP2B/OGJSoCPzp4BKXRMZhCmb8Hre6nSYJIYnaUIj\nmdpTRaIB6bpGjD62rZ7uztPfK+GqXPBN6aD3A6pcqjWZyuJlchvZ4oKtt5rp0M9BXSNLi04iiMUl\naTYzAjqdQkacR70LmR5BaU1K6PpOY7M65w+AAZWaNMDGPYJIo8GRfiV1j7NajFJ/Mfk8WB9aGbPO\naZ3WSsdEKVO02HRb+/GtcjwEOw9wxBTPlFIlSWoS7PsOvQZ828bPecZ4PGJ/OAjYOR4xjaP44qaE\nHhJQl7i6lCy1z/dLIOBAp+/R9x3G6TzAOAdyloAjJi6IDDYKK1cdJ9qeM+/nQEMEO0Jgzt9jqdk/\nNxZV4LtC46r/m3DZE+FPv/Akfutzt3D5o5PQ13dDGNqPAU89duEubOcAYMyZHyl5S9SpOaX9ZnG5\nAhVLMW1nO27QDxXw1DtxIFRgNJWoRdgmtzwStT7WZuGJAGdp3VmumVQ69SUWoONWxthvm9Mg4FoW\nwfsCHgem7VidrIFEziCvAjrLa5dMk878DtOsLr4nkLrwtBps+1xdDYIFB3ABJR4lAAZ/3jOgKz5v\nux4Wknt8VqAKDC5Qn/ahCmnFdCNiIdBsb15kLiUJTre1xhaPUdO62rg5aFGGf04THJ/Hv2r2V1Tu\ntEdU+tzvYJectDfUKpBcAoEJw+z3XSqX4sa+nyIHCjvdfXn5rKZk4A7oqobWrWq6WFzWQ+0mxXln\nSOC99ie5u1sFOzHduO8P/920u9V9xedeUU8xHkctrCwmaOWCUmaUUE8n8q12HE1QYwE6RTOXQT0h\nWOMAWQGRKmDi8ZEP/mX8dz/1k/jbn/m0fHEFCHn22nUBUiQWG4tHSEWATtYhLBDLSAcNLNc5e2y9\nwd/4S1+HV+/exf/4Sz+LT3/0lvT73fA6OV964wXcePwJ9J243UnGryJ0W4vzcqeALyV85Ou+Ft/z\nU/8nfv0zH/LufvkXfgE+8m99ba2rYq6i8MgRBSfkiSu6rkNWxYQF4BcuOI6jZmCTVNO7vVl1JumL\ntpVS52AHkIxycpy3OiXd50CtyxdpORE1afVdMQRuzvX1D5wUTrbr9IPTIeNvVwGdq79HBTkLpUzJ\nVbFU4p5idg8dhO+J2UFOp/TQgQ6ZRSd5rE7SoqJcSIo121NzAEx2nSYCYjr18K17p2YLtP2zdJ8W\nviwZBmOtnb4XuZA0U187TjZ24pJbrdS2dxHuq+tME4a8FY+HYOcBDhPsGFWzC1uUqBokAFpU7YiD\n1jM5Ho+SSMA3dhWC5F1WlwmVy0VtR9KNcuKj6oSiugV0qQqkMQsbQv+r0FEBkQEo+67Rpofz7X3Z\nj6uATvwcAZSNKYGDz/0CqJwRZBvtuTSmBJPPXkOBmcdnec/Tj+OTN+/i7oujn/vkoxf4shvPXSlE\nuzhuz2FChrZZqNS8+kpHKGiYTYiJJUCdwpD23alOK9xxPLdevbAIhfOD4G3/kVWqVibQ1LMYR3Sp\nw9zPvh6WY27jZ0DnVPiTNa13cQa2FIga8GPubfrMXE6JewN2+AzzpApql6D3LBgK10fw57VArJ8V\nYSpztErui5pTtrHjPdkqoQdrUc7uKmczyEFrd7rvW0AIjtCF6vKg6kbjgpONY67WLNNEex+sbko4\nmNndk+K4eFV30ypSQqG6B6M7bRzXpdIkAoq4wn0bnAEU/u8ssKXmvQVMy2uo0UoY4DkHdpZWnXP1\nffTh/XPSVONZvl6ca1poWy86JjYXJQCeMLXxCdnH0TJ3mRJHf1yCnfg01pdS1HoatNj68jGON+ew\ndkoFuy5MOT8kp22JxHNBasZYkVoN/jYBEKJESFqjiTSrWdzzF6nDf/n134CXbt/G3/nZn8KnPnqz\nBSE/Tviyd7wdzz/6mGSKowLmLPGqqYBzATTBArNahPWdWO5pPAgg3Hj8cfzND34D/odf+ln8+ouf\n9SH4srffwH/8Fz6gzyV9s5ITTewb1Tl//Pp1/Nff8k145fIOXr68heeeewLPP/NEVUCQus0a8AV5\nhjtSHm7lLAoxKEtBnznPGKcJ2/0e97Zb3Lu8xHa3w/5wxDhq4iQ2sIM6Nwp61inhYr3B/vidumg+\nAAE6H8a6X6HvUrNe4uHKHlgq5ujeG9brgvdX2nRGqcNhuZnLLFXat1R2xpcp8QAF37ktngtAdThR\nkWZ7T1JrEGIiAXIw05s1ljh8D89SaZvVaT+blV+tomr9EbnKsuqRKvmqguhUmdyOZatYqvxzWULC\nlO1V3juNBzd3uPuDyeqWWDMHv/WOh2DnAQ7LgDbPM0Z1+Uldj64HEjrfJMyMeRwxZxb3taNkoClW\nN6PrvFp0YRNSW6uLJR3IOTexOSl1zYJuhbMZDKhZHOj6zgMlIziyDePCiwoijUtcyPYWtTTAKQG7\n33EVyLG2rT+GCtIiIvLcfeLn/TjhOGVshh7roWs27dk+FjhTic/znqcfw/hEwVQYF6sVHrlYo6Pq\n7hSBordngoUKDC6fKHdPqASb3AOy+uibMJEoCHxENe2rCv52C+GDkSi1AMgEoALNCkNVVKtjXlNV\nxyD9YgG844ix02xsXV0zdm4DdEpWRkEoqZyMtzEV6xsWaylaEqO1x+bFhAgDHafMIIxEs7aqFjwC\n9sgAnGHqtbYnWne+2fdCSkldHVjdeMpJyncwNPaBmzUTM0FVLaOM3XIWXYgIjxpdiZxeGHgC3LVQ\nno9qGmBdNIUllS/NQOKq+LAUraa9c6atDE4EaelXnicUrY8i9KK60aJnlGzuINmFXRP4osvgcg3p\nNNV5tPk7s3dTABmn4KVZDeH3RZphAzEN0GlpRbVgtq5strLO3z80CPgYJEaTVbGWBQj9AIslJi3e\nmdvtvhAiU4cKQExw00qUMpUGpFsw2Qo37H1IADoFHnUHa/9UMG+rzMcsfprAw9YhDMxI4gVoAtOO\nxKIgtUfIx8JBR5hDyUqp7kXazeeuX8d/9bX/Gv77/+tn8esv/oGf/eXveDu+46u/RuqcMICcJe2w\nTjCXgjLPWgsnCNYWa0bZ6ZTE3HZ44to1fPfX/VW8eu8ufuOVl8Fc8MXPPo/Hr10DAORZ9vBsig+W\ntAIOVIg83qbve7zzuWfxznc9B6yBjFZ54IoWlo7Va1VZ2fdSV4cEYKAwpnnCdrfD3XuXuHvvHu7c\nvYd7l1scjkdMedZyGFzpL4RWCHiSzG43nn4cL9+8h92hWp02wwZPXt+4C2uUHSLYtRXiqo24pnCa\nTdKVRkCzdrw9rjwjdeTJnjyBRxDMz4IdDR3Is7pfG+8WYiWAWl3DEkFNKgZU6h71DGtdQm+Z0JQe\nGr8Qa6ryeljmTQFMKVlcj8p0Bu41KUHXaUy3Lz9XUfp43E++is8d60tFsFP5yDnvgHqPE8Cpx9L9\n7yHY+RN2WOHFnDOK1swZBlQ3HGWAhRnjOOFwHHHUdNPjpEBEQUWZZy9ICtMp6G9933usRCvoiYAo\nvphd0LAVFdAyAPbNJPFDNY2wCX12zRLsWLzRsjhbNF/ahlhafO533G/jOuBhBpIF2p2/LhLPac74\n3Zdv485u5+c/dnGBL3jmEfRdOjnfN7ZajiIhsHP6lLBe9eg6LejIVbg5b+Exic7lBcDJlmkK6Xym\nl6QuUQZmCCZ1OaOLmuDlSDfCi3aDVThNsY6JtyGGEy7Fr7TnKkU0n3meMY0Tuu7ovr/G6Az8xnmz\noGaL4Wm1SfFkXEnM7YiJEOwouVbAPgdi2QSzCIRPBM64dsxkX68xhnQKdqZG0dD3vSgnkDXAuWCa\nJt+zSbV0cU2lJAGzBTVGx9wFEcaveaYAdiJTT+Z+ojTDYhqYJaOUay1DEWFCsOzkjJklnW+lBaqI\ntPlk0/ZZKukak1PyjJJnjxUBzMWtA3X2jECGuX6cKjbOzXHz/L7+T+cv/l3Bx1Vgpz2XFiAp4pIW\ncC0yDLqlvgXSdcMvjxa8+ZbmCrj8nTSlu6bgMoBTko49sQv5Dl70Hv5cprH1jGpVQx4FR1N6xH5G\nodUyEnYQ967e12J77lWCkYNJjS/wQG59XtaUuAki9HHXuWXFtelGJ7XPpjQkjSus92Q8Mqzw3R/8\nevy/L/0Bfue11/BFz/3/7L17sGXZWR/2+9ba59zb79HMdM9M94xmQI9I4ikUUpWiCjlxGZSyIRSB\nGEGGBLAKLDQqTCgiPyhX2bwMuKwEsBMcAwbH4GAjBxIUXIaCKiiXq0BiEEhCMBoJjXpemunp1733\nPPZa+eN7rrX36R61ylV03Hvm9LnnnL3XXmvtb33r+33P+/C55x+EIaJaUbcVFZ7tUBUVXAuHx0bS\nhxqsmgoPEwhDHnBtvcZP/rt/h9976kkb7xdceBhvf/ObsT8M2Bausbcto2wHwguT1x7SPT0vB9Ae\ngfYTPv7Ms/jEM8/hnjMnce4VZ6SQqljpdM3nLN4ZorAcMtLICg8QYb3Z4vrhIa5cY6Bz+cpVXLt+\nHav1BputZEkMNFGFIJO43GtB0s964CwOj46wWm/EVcsVFAp4dK8AOguDM5Cw3gK46dzl9bmq1cVA\n3jgacDLln8XPUUuvHdjxhDnMb8dxFCDqvD4nj0Nk3gjJfijATBZMTCCgQGfIxEqEUS024g6uCL6w\nFbGIhYiBUG6uVzBmNXNSVCSou2B77JKbojynrmvL5dLATs7ZlFK7+K3OvT5PvU//jHd5GN1Oxx2w\ncwtHRMimOLM92jfpxvQ3ukYXDdGSLe4obGjV9N5FRusqELUMQt2PIsHmnJFIGGR2RjVHuMqM+/ec\ncxOcvsttZ25++iMKclOtrgIJGEOOGsi+DT0Y6CwQC7VdOfx2PPn8Nbzm/tOz91fhH9QK1yb4RtfA\nsNFHjUYrzLt/sgkUKkiZsBHjGFzoKKWyM3BllzLV7VRAiosWzopUSRiodT0ILqT/8+ZNJjuJ9aoD\ni+GfXrhWF7Y2PicZzSrgUUAc55a0AzLmPr5HA5gbt4IUr2+fbdQc98+wua+NJ1xnUBMmxKnLzVyQ\nZe0UAFHob8eoAupc4hDpX42QLvS725gtsDTJGrQNWM5lGDwd+5zQCVEUlApK7q42UgFoRB2Zv+RA\nX9qmpqNVYGUvdU0qpQn0jUkIWGOfLGtXrZppzAG6/qs0q0IsiIzO4/ygmdMZ647xWVcu7T5uDohc\nuwl75mphjMVF5dHOrKO5e7a0qusyjtEWMnxczDdkDUm3KelijuBK9g1Za0xKrKkuqc6k+A5dc41M\nIzjqM+c6LBzLYgtA+b8QypzQUwuJVp2FwqKUVpmhs0VILTRaYjX2CWA3SnLwUYvdj5xIAQDX10f4\n0d/6bTx+8U+tD59/4WE89uY/h5N7ezKHao2SZxt4o1ZJ6nJoWpdIxl3GEf/g1/8tPnDxJcR95gMX\n34Ef+43fwHf++T8v91CURpxZTSwySQHKMCAvBuQh4+rqCD/807+Af/+hP7F7vvHVD+Nbv/rLsbdc\nBprgWAy16JAoO8ZSsN5scXh0xO5r1zhOh13XGORs1aqleVWI1yiDfnX3SjLfzGcXw8CpkIvX5dO1\nWAMd8DA7nm1EHvds3ghjWw3NBFoyUASmYwW/PSiK9+5d82ut5o49jlsr7VFGASRKj7pXAQZwiFEO\naqEQh5MwJMKQBSjJfw7kq6+nYKFXIMQAlwHPMHjsTVSy+H61G0REHtjHXaucprKMKqVVTruRrBbn\nND6HCHbi93P79O1y3AE7t3AoMZXqm6AtTTI2CSAKEO7zjo5gWBsG0/AqoFDCjS5Urj0m+10FVEPx\nolVg3sZaoZw8uFDdbiIRtwkOhmZBxcUQwdUuATUull6rq9/t1OrGibvJojpcb8Si0xZqAyquHD6K\no81x7C+GHQvdNU99X/tFPRECa6hXxGdAAY9mFiD5mgCLJ9FXhaem1HkxQYMIVrCBJR2jMQIFVxhx\nj4Hcr7pl6MZT50JoO8Y2SUGjiQtgqp+vRgOuIE8ktR7ssPYZDXhBbd0CG2AUNJJ678loVGiEj4MF\neM+cFrPx8HryNRXptdJUuaA00tBEACz6jr5/HUiqgT/EjRoiXOv4zJe9+pjinPcbUwQ7ENfEceRr\nRhGmK4Bc9dpsz94FXQTA4wBzDuxEBU8ELlVeDGISKhWnwbD+WG43Hb59hzCvzTwr4TXi6M0ATOSt\n82th7kpf2zW4VAqQ0OeT1LmrTvrFH5voOwNRRFWW9VyHAjCX/wjuUuNt8d8U7yCSfIInzKWiz73O\njNPvhY6vqasTVSk8acIhn6zZ+liBgua5atu1EqeXDprqSoRSkt7Q3qO7mvVqwmsF8Ch/Dam+f/S3\nfgsfePoqIgD5g4vvwI/95m/gb77lLZ5pSwFsZUBWqHrmSh1e8wz1b+bJT116EY9/8mOYKwj6gYuP\n4pnLl3HvqZNOw2rNkfgaBjoZaZFBiwE0ZPzwT/9LfOQjT4SeA2//k4/jh37mX+NtX/3lOHf3GXnm\n0tYwcDY0ob/tOGK1WePg6Ijr6khNnaPVil3rpYiqWol8v1NLU4ZlZqtV3KhcKdSCD9h5/RM3+UDc\nLnsgrLTfKBUBix/lc1oFLa9sV2K17bVW7ijoR4XaOIoLsspE4lZsvhGFgBT3/EABAnJyClYdAT3i\noMZjIoLkp5T+SbwPqecOA5xhcMDDVN667hlPxfSYk0kiwIt/K0+PMuNcO/Fdj12uab2S1/at2/C4\nA3Zu4YiCkh4qFJlmA63gEAusqbubCcFEFryOjtko6AFaTUEUVnqwA0CC4di9JCY70MXQa1PUbW2x\nWGC5XDZCcFxIUSju/Xj1iFaSOaAxB4Tst/hvd21//tFa0mvvSJm53hbsLzDpi835DkTQ/6Ybdw90\nzIdYinoZwgmCIGOfasGbKqKx9hTt5h7moEK1tS40sgzMJnCA3ZYKAUkBVgQ81m8WPFzoggiVUWxC\nQxcTIE4Kdpy+bWMKoEbb4Q1tCnZs3RQVFOHatSjkhj6VMppMtfN5dZ+NblSAD9ZIBTvRJdPARFgj\n3rXpZsMCzQ6rTtcP6wu1wMksg0HaMrAT5rnWNpNRbLeJmwCAIgkxAHaLHUcDOxXsnsSdGEHF+64g\np60p1LmwVdfIt3wvzkPiYpTVXffcxmYzaWsgkce3GSrpAY+e3dEkiHbSg9+N7O+baSNVWJlb4zIU\nAMnOmwpJMhcIIA1OWwWBxzsx+P1VQ2zvYb6EkfhnTZThAIStFIldaNQ1pkD4gt0FliJEFN2qVW74\nG9jN0S9rhVhbHxPxjCR2gQxUUG9Vnqx7uFLC7hn2zcLvqBxMredevHIFj1/8BOYAyOOffBTPXrmM\n82fuEpasrnCsTCIQK5WEL5fajsNmWnjH05dfkl/m95lnr1zGPadO8jUaK5cTKCcHOsPAlp0h4+JL\nL+Lff/iPrecvAvhZAq5U4Mozz+Gv/8Ofxee8+pV421d+GU6dPMHua8MA0qxaALYjFxA9ODzEtesH\nuHrtmlh2jrDZbsWlrmIcZUYDEONYXs/Gpoq2sZNrokKH0O7rzR4BoCaAzNuSry9FraHd/KZkMS6R\npkx5JPeDADDN/Kd9mxP0lZ8WGccosZbjuBU+KQpj6D4qi1qXonWOQJUc6KRkBUVzYqBTRF3D1ide\nUYU6pZUmNRgyhgXHTA85o9YCNjKNzdjt+XR8qgc7PcBz5TdsfqI1pwdDfZu90iw+/9hmpIc5me52\nOO6AnVs4ojAVhT1L4SnnlCppD8WFTQOadUFUIrMO9RtHJD4l2L29PRw7dgz7+/tYLBa2GUdLEDML\nBjkGdoI7TGw3agoU6GicDtCaMHu/zf+g84uWscY5id/tL5V851Nm7i08O1gjLCKIQTsEVT+3sksG\ntcxWryHZratqKw2ZaAPCSVWV6ru9sEmPw+nBDipr5YjILqtgXFUTwUUDHQy/WQpz/gSAg+q5yjVB\n/1VBWAG2Mr+bgUDudRvw74KzWFZycVATmjP6E7kli+O8A0FqmLC5vAnw6AVt/YkE2LQPr1oGMtdY\nztOwabZnBPk5QN+fE6+zWiNhg0boX9OW0h8iPenDDpJgN38TcKw7rdyrSOxAHdWqI3cRoGaWSQWE\nDUCM8xYtPBVaqXs62TsOEWqgzzzQSzeR0FTXcR7ifETQ5DB9F4iZEcpuAnhmW+nAbP+K7eo6dcDD\n40ogTlAQuhYVDTw4AkIcWdV2axwvt2+AuFaJ6VGNdQEhIRWgoIigSQ2gBmwpMdcSAFGpAiF2wc6d\nATpxr7JRBP6ki7vCwU6cP60ZQgL8ogWqURAWtey494QCzeeuXZUr5gHIM1eu4IKAncglCexeZ/91\naz4MTK4pOHvihHw5v8+cO3NGSlCIVj8Hl7XFAnmx4FIUiwXyYolnLl1uev71BPzbJbhA6sMAPg58\n6L2fwD/+pX+D73r0a5CHAcNiiZwHBjqlYLVa4+DgUJISXMPlq1dx9do1HB5yAdHtduR009X3HLXq\nULDqGJ+dmQcVpkmBYQ9alO+RbSSNvOC01AnUoa1JtksFV7JJl+p8aK5vcy5cGg9Zx1E2S91jYGvP\n6+a48oX3NqbdQWrnDBpfQ+IiqudCE2vImq9J2CtZ7R2Nlc7J5RDLaLkd3dMHlelFY7zmAGX3XQQm\n/d/RfS0mserb1KN/ZnMKz7n32+24A3Zu4egFIs604UF0eo4KDGMAChHsQJmNSn6yscWKvwqkFosF\n9vf3BewcM7CjDKe3ADEzYP9bC34N7UZBLmbwiEkJeqAT7zGnib/RPMX5uvkES5fDveaOY8sFzhw/\njssH05SZp48dw7HlwvoRGbsK+jcaQ8NAUFFqmzmM59n0OlDLzgQsyG5LBmp884mgq9aIizj41Jiq\nbPZEYJ9rQHL480mFqqWu1qMUdmUsCYDWX5e8/1z0TOs5OOBpXQtmhAAVsuT6mIygF/6GEn2kyeZG\n6cmEo+ICHVydLWNQn/35529zrX3vAYy63dQIePwz9ePt4tiIlPaCgKvz1c13BDwqrDVzOCMoqDBr\nMRo2xwDqNBlFq4UDVIjw3yEArxiQrbWiZljRVQY6rU++45HqtKAbZ+FaKGrVsZMdkk+P/nFJCuVe\nodNoGE3F2q/JAAvsK2qezfxNp/fxv28EkOZ5jiscpkBnHgw56KlQN7MI0uSYzAtxgpbqAh9F+lPw\nJPRWxgq2/jIBJWLrRSJRcFQHPEozuiT1dhqg3f4H9N/YL113eS8L7SHcxwA/LCi7Vle+6TTX8I8D\nnV754M/o/tOn5Nt5APLA6dORXMC6gDCyDsBND+avVIH7T5/C5z3wEP7wmWlB0Dc88EqcO3NG3ItF\nKB6yAB1+DUtOSpCXC+TlAg/df7/1/IsB/GoFAx2tF/T5LAP84Xv+FM9duoxHHjrJSZESZ04cxxFH\n6w2uHx7gqmRgu3KVM7B5ummpdl91WakgHWNcNGaurevXWxGIJEtlACX+TGwHa+pJRbATeaGBHYDd\nJcvY8OJmPSkNFckiGX7b5cI2jiM2W02gMhpPh4Ayt7jCFQcEaBoX5fCWiS1xLZ1kiV90P+adX92O\nNXehfvZ6N+zKqJxF6y+NoySOGJlXL9RSI8DkRjJJ/BxffXKdXlbrY2xjG1E+jefM8bbb9bgDdj7D\nw4Q9AzpKRNES0ha2IsAyhnjKwemhwpy6lqllZ29vD4uFFyydAyLM0FTr3MpaUUDVQPM+Vgfw2KHY\nfq/JvxHxv9yFMW0nMERqrQ09mHjN+Vfgjy9ewuUDT5l5+tgxvPr+M8218b2FGd6HOWYCSAA13I/f\nf5csQ7KBqrBqO3cjHHsYLN9doEwnfFnPAjggaBy/gmMKsco1ACk0D7qgsP++0Frz3FIUkoX+Zp5X\nZHZJLJeUxHIo7pRtKmA+NJMgkabGdZ9t3nzk3tQJG92jcbDgMxn75r9Puu4bawAh/bjmjp6+PRBe\nRfxuQSEC6iJKjoqojeS+TOsEqVAYToSKZc5LIoiK2tG5MQsJcnYLSbkrAavy7FLukjDwqLs1IPcp\nDgLZr7LY2H0cOob2Wdj1yoA6HhTXMulaaAQSg8Bh9ahw3VnBbgB29Joo6Oxa/0znUwtOA2IotDkr\nELS/8ZMgD8i3hwWY+6mQd+yVuqMRRFhVYVqeFQo71RR2YEORzG6JxJ2RUpOCWrOPPfXSC3jm0iXc\nf+YuPOm+lFcAACAASURBVHDmLgTVNsznraOtCH58uvn8Zu0reKnhKgHhRZgWafIKBUrF23RPB7e/\n2K1UGVKBB+86gy84/xA+8PQUgHz++Ydx/vQZuXbKN/oRzf1iFCd89u1f8iX48d/+bfzB077PvOGB\nV+Jb3/yloCwZ9YRu8mJAClad5jUs8PCF8/jPP+d1eOxDH8G36H7ycNeJR/jt+Zcu41WPPIw8LDjT\noZS7OFod4dr1A1y5dk3idbiI6Hq9xUbq+PEzIHhCArbo6ORXKG34ep7we5UHKiuU5oGh88RWAPf6\nLNp+f73WJZqNe9Qn1MkdMQPZXLwKx+lwpkt3lK22Lj0dtLzg1lJVXzrQ0TUXl4kDHU1fzQqJCs0c\nZ1lMKQvvCXse4DojfkKmnB5mwE6tLk/2wGYO7MTsujnnzj25c2m39qfnWO8CP9PPt+NxB+x8BocL\njurXyoyVCZMsMK7EDR9CWMLkrMYFmL3GkFJd0MvlEvv7+9jf38fe3h6Wy0WbfSS4l3F/XEjiDE0q\n/LTpCmNSgujzGuOA9BXd5OaKmd5ojl7u78YUovDfgZX+GHLC6x+6B4fr0zhab7A3DOzeFoBfbAtQ\nGcO3ub7tRjgOvDn68WvbtRJIHYEB+AhcECNjEGQbfBTk9FT7vhMcFDjZJkX2rW/lcWyA5TiIFeMB\nrlEyJshG0M59vGWv8VF6iK4DFkxKHhekz2q73ZomKRW2ApWZwEm9l2n3UgopukVD3eGB/jnZwKdn\nNONzq9x8XFKiKPBG189Q30FS+/Yunc1mEZQc1hMFP6XTogXZ0QL8XT3eWKKa+8Sx8SDk1Y1e+szx\nE+7G11iaVVkjF5vrZAQSNk77Z7JB2vw0wk4xXtcLOv16NvCigjd8HTUgIHwfZmBnu/G7fl02vxn9\nOr30Ql9KcdPfZdWZ9odpueuXAIJaBd6qyxkopF/m+UjN/eTZJDT8hz1tpWYVRADlirtArbhycIB3\nv+cX8Tsf/ah14U2PfBbe8Re/AieWSwEu3BeSPqEUAUqVrbAAQvCR8CtM+FpDL11Rx6qKIANYivQC\npDJpkCFL0vbhzX/Hm78E7/7N38LjFx2AfN4Dr8Q73/ylrOiJKT0NwjRPhue9Jxfpl+7tKWecWizw\nri/7cjx99QqevXoF586cwf133cVpEwicZ4VTcInbmYCb5QJpoa8BtMigDHzPt30T/s7/9pP4kT/4\nI77nx+GWHQD4GL89cPasxPtkjFu2WhwdrXD9QGN1ruP64SEnJthwYgIGOjyvHEPkBUkNFJROEYNW\nNuit9Ziha71W133peAu36y7EFufa0EdthO1SSijcLIyf3MoUPVF6YBDbUHCTE0E1Ca6w06QDbL0h\nggEapYpM/EqJM64xwKlIopHQtrUorrFf+5uM1mskMCKklDEsnC6JEhZ7ki7aCoFSMy/jyPM0jpr5\nle8XrXT6fdFixKBubj2Git8JrpQIa4IAT/et9BCBzu2Jdu6Anc/wUCHJmD4czHBmkCkCh2hJAAE7\nrr+yNnQRR7Czt7eH/f19ialRUNVmUAGAGDfEzAayoc5bdGKQm4KazWaD9ZqLoGph01pbN64ovMz9\nHQWBm81hu1G60B6PGwGfY8tFm3mNXECbO6rcJLbZ36tWfSp+rzmTO4FAuRWiGiihm6deA2ccdn0A\nGwYg+KEB1l4APFABeQp4VEBQ97fY1xqKS0ThKwL3XlukySi22y3W63UDlCNjj2BH01fXykGSuWaM\no2f06udZN0OSjVrnIJHEtamGePcDbY4eyLVa+9w+R7TPRzcQpveKUsLzVyvtzLreBXYUNKvVRxMm\n1CBwGA0EsFMBAw99UhSbi2YM/NmmQgB9qRWplMZ9LfIMqrCCpKgVNSVQKYadVEyM/EuFmB7glOpC\nT3QjjM87PpPwkOITCwqDuYPCKzaxG+ToHO8COv731LLTZBxUId2nfifAif1NiTgoOvS6GrAR/l8Z\nmLRX8kNQvXMDQgtEsVWBmjgzFFUUAxHB9bAC7/7X78ETTz7ZZAB77OMfw4/9P7+Md/03X8tgJwnf\nkBcrhoqtySp9bB9DO18EsXDq8w0Z1Cs5UKcQowVEJU5xS4EIrRbP5RODU8f28De/7L/AJy9fwTNX\nruHcyVM4f9dd7L5bi8c2QQXP9vmQZmVrZT0bE5IL2SBCTQkX7r4b5++5x1JYcyZCaBVKIBHywCAn\nL5ZI9lqAJEkB5YrTp07g733Xt+KjT30S3/sT/xxPvvcZVkw+AuBjQPp/CZ/z2kdw4f5zxms32xGb\n7YjDoyMcHB7h2vXruHb9Gg4OD7FarUUpKXGOJBb3pFnhRCgmFYDdvVAFWHUz7IP+454Uj8bSIK6H\nrcUhxu20e6ftX/Z7CJa3h6V0osK315PRV+yLvqsSKelzMcUZWc0jTjqQGrASrTeZHMhoIgK2nmq2\nNZgFR6/3PT3UF6vCw421JymUqkVNCSknDIuB6WZQK5x77dRaMI7+ObqbzQFT57Gwzwx09LlQ97vu\nJ7oYdC1PaeF2Pu6AnVs44iYdmYAJJcSabtvwTX0rwqC1Aygar0G8jxtH1GKoppyRPmcaiZaX1sWK\n/bmJCFSTmFzb+jnRbS0KtuM4WruxKFXc/FstSjs3PVOM3xmI6D7bfNL0ul1WnTlrDEWQMyOAxN9r\n9z53CBu2Z9Pfz9o2LWI4WzdNR7CACS9QLh6+j5+1garKrW7w0rcaAY9JFBAObyBXf+VK7hU1FZTa\nCmk21wrIq2qVxkbYayw7whRBnH0m5Wx0tN1uba5UEPZH0z676CqZ5TuevgTSND/z5psO6DVT14wN\n0l6kp14TPdXQ+xzpZs2bzbwrgW78jXJD50AtvSGAFNWow1I4K1hWMD4LdoCgIIn0EviRTzBba8JG\nqQCWx9Qm3DDahH8OcAXGsyoMUCmgM5Qm5/bru3lEM2s6HnMKD+3PnPA132YAJxHszIITFwJ6Opie\nf6PeGhL1t9CGPS3SKeMZpmCybZq3MfvvJpsQvA6PtCXUygChVlCpeOr55/E7TzwxSdJ/sVZ898ee\nxO9/4k/xBY88AqpScFZeVIjBfuXYQMZPLUhtsKe+qoyrVqv5o/wpvhMQYoZi8oASzgkZJfVZVb/3\nA6dP475Tp4UmGfApH7a/jMWSWTEJxMl7qKVuzVRmqaNz5vorAniIIKnW5T2BLdIpATkFt7XBXNpo\n4JTTGOR+lWNpL5y7F3/32x/F3/upX8Dj73nS+vGG17wSj731q9hVOHkGttVqhWvXDwTosPva0dGK\nXde0wHAU7KOrl7rON3s2T4wJ7tF1DbDn0q/gyJcsmUkX89isvQYMQzcm+03bLEVzncV1wnMeY4uj\ngnZi9a6aKCKBSiBLCrVpUpLkA8kL3wqtUBUgY4AHVt8u6/lScDTbXEVgFses8wlOdR14grq6ZTYf\nTTJ8+v47Lf7ey13zboCtjBWfWZTj5trpM91F5dSN5KU/y8cdsHMLR7O45LsqCL5YKTWp2REKTbXW\ni6BVEg2fugc0i3Im20gpCkbWWK1WWK/XXaVc1txUcC74IWt2tmGSwUSJOBYmVfBkWU2EuOOCmhPA\n9JgCmFaL22vze6DCG9zuBTUnfDT3iYBnx3UONOcXsJ6nxQ9Nq9rduxprnh5VRRRDPro/R0AD58YT\nWFXjnjCV/PTLIF+yHCACgk4FN8UtklpJWovWHKiMzziCl9ayEyybXRxZD3Ygm8JkDqsXQuvpJmeZ\nkzrOPVJtYJZaGrYfAAHR9GwFI3qubzgzG0aIY5mjfYjyogU6YvEZW8DBG79cG+lL6uzMgSm+xPlF\nO765ualAcK1VoKPvlBKy0lkQSCKGIluRQaBX8GpzoO5PsHGpADpPurvWjSJ4VQG1tBJwSdecf6lr\nzOAFwf+eOX9Xl3bNq/UDSrNKV/rcgtCjnEAL6No4yebJIWUALvKb31O/8vn2MUIsKLKGNbVuqQBV\nPP0Sp0/WDGAvgrOA/ao09Xf/z5/HF77qs/HXvuK/xpn9fWQAg67/MgIjQSVHLwpcXboLQEf3P1Pg\nJbRxORJlpDYetdwq0DHAQwj7gQIexNE3grgCwAlIVr4j7t0McPjZFgk4B2TJwS2ssUYOiDgDpgAc\nHTcl/h6JU03TwGmi02KBtFxYXR0aEgOdLDmaC7HbIQHHj+3jXd/0Nfj408/hk8++gHtfcRoPnz+P\n/WPHkfMAEFu315sNDg4PcfXqNVy9yrE6168fYL3ZsFVIFRQJ4rrG6Y7ZzV6C+Ku6uYVgfEtjPJh1\nJwrbrnji+ZtLXlQD2AEiDw17e/w+EHgPdgIp8XNIyQL+o+JXlTVuAdF9hu8zpMQpsWUDTMFSYUVD\nKYAdYakE+HdNNjYFyhKXEyweKk84ybkcZ0Xdk8dRsyKb415zShjLiLG0Nd6iDKaK51gjcTKnYV/t\nLTG9zNU/x74dneP43RzIup2OO2DnFo5eQFZkX7hstAEOdtsRgYA0KC55Xv9GUNKNzoGFElzvZlZK\nwXq9wmp1ZG5mfaFQ1i6PqCljyGiSEPS+rnFBqfuagpwYn6L92oXydyH+3kIz0XjHtmiHYPTpHh3g\nif23eiHh/nMaDtfE7tbwcsfnv2qEGpoRnEgTDcRYLeqarM33k/sEoSredx7wVAuUrnChqQc6xkwD\ng4znRf9ps/jo3zk34EXbA2A1KOI87gLOTZxEqVwX4wYAeB7wtDCU7zs/l2qRnW4gM30sBXOpWo2W\nDAhEGndrUEz84cqODuxofqAdYAcKiEifN9qxNUOskj5dhAkFPEQY1U1HQahPFhoJ1uah6TICorHH\no1pzhWX+7y4qjj3VwfgKmlcotJ8boEMEs4V039/oMHBCANG8NRno+Zl/1wIp/V4GRH5uPwJSsNCi\nBWlAwR9/cJqCAdIqC9zqbWpXitPuhbNnAXjusrl0x7//3ifx7v/7l/B33vr1GFAZAI8imNPIxUJH\ngKi04yXD5mjQu9AL58IPYwEY0lRO3KCKgVID4FF3W4jigLpELDq/ev9+YnUqw0MlgE3bREiSmZJI\n92dVIOjzECWACKpVVfs66cQAxzTyORvY0fgcfdEiA0MG5QzkbKAKUgOt1IJtGXHu7jO469QJ1Ao8\n++IlXL7+DB46/wAePH8/SqnYbLY4PDzC1WucZvrqtWu4fnDAcTqlAuYmyf3JWp9HeEoFuP6RgQr+\nPsPlDSJ344xWBFNoKVkGoBOtOvrMnHemsK50P52uArdijLpyQQDywHWBevmljxnu93COMWFbjdb0\n0XgdBSoOdvokBOqqpskLkgGfbOAnJoCS3bTbgFhZx88gK3AO1pLFYrBEU+v1CnW9YmV5dWVhrKGo\nSmif31aJPCefRHkreibEmO+451qfZb779uZkpdvluAN2buGIglyzq5UKUBG/dVjMDiCLNxFSdVOy\nCp3Mo9jkCZrmj+fmq4GScRyxWh1htVphu526sBGR1aZLQrzDYoEhT93Waq1NIoI5a04vnDb3mREI\nbgSAYqBidIfzc8WqMwMObias2DlRIOz6oVo71Rr2DKNva+7VnBMEMt/jlYHrOWqrUmSiYFffCtgj\nOKaolT7bOQLOCjiddOXNP5FmiwO0gKAWq41zcCMtUJyjSRKGbo4i2GkKm2UuoGaDnmOwUnk6PiMF\nnPEZ9fOvgncEY/2hYC4MJgjsNz8aLaXRZO2a5M28aOB9pKmuMzVeo+OEj9Pu0TzjyYgmQIfdPABZ\nIP4sE2feUuuBCtksDMq5hTAWAo0jRgWpwk/YVTFNhZdG8p7Mmv1lmkxKkhI9SYxKjEtCc/50zDub\nd7m6eaZTlK8gJ9LLHO+64W1NkL/R2NtjFx+hXhCfO0HeTRQMt66arU2VM4CBAyKvEwIAvZqIsjCH\nSnjovrP4z177Gjz2x3+Ci7XuTHf8/vc8gaevvIRH7r4bqYIZ0sjvdeT+YOyEngg8rC/WU6ib2FQd\nUWxsbs0JHg9E9h1Tve+ltVZU8nT//CuZvahWzk6XQmUUBSqkm26BgZ1KQREi7yT+S27JkeeVFAyR\nxOmoVYetOLGQKBnISahZrEAgd4OroZYMgIOjFf73X/x1fPCJJ22W3viG1+Ov/ZWvw+HREa4fcLrp\n6wdcQHS9XnOSBPCYSNaAKaBScrrSZ6J8h9SCK7JJs9e3lhskqdY3o3wxPqh03LwUeHSHXUcTd2Dd\n14gIuSbvY+D/CgaiR4orkDzzmj5TQrDsEFm8jmVbC2tJc00QscqJMa3HNGksj40VAKcuKBYbNQwZ\ny+USi+WSQUNKTeKo7Tii1oLtuAURYauWm3GLImmpm2Lxo1p9IO6GLQDU/gBeskGV7qqPQlR+BqVJ\n5Kcc6qBeQIPt1Sx7VGvjdjzugJ1bOBp03Vg6goYqZmEDbPGpZYGSBAErgyYGO9QTcTA56mLebrdi\n1VntrH2j2k0S8LRYLNriVl18TnSFi8FvJsQEs6gxpRntQjx6IBPvHYGOnsMaJLDp+WUKqXrcqB/x\nHH0YJBvXvIBC8cMs4IkbvQnaAcfEo8rmIQXNTRxLIqFVBMCjjFrblAZDNBZSZT/6psgZRZblf+hG\noeNy4ZhMaOBbecdjIKld14GXCMg3mw3ykLlmgMg2tXo7HhuiwbFhbvr0zHJEl0kbH00tUJO5DuCC\nqlsEIgBVmSYejZayo8vmvcIyssWjFaQ72BJAzUQRUNEAP5WO1QmoBzrm5qBCv2zeJmjANz0LARHZ\nPaGgjMQpqGX981xn5NyCHU8BjJvL/BFMiEY1E1ArYc7roaEta3oKGGHKgZk5ngFCBnJm7rUL8Mxp\nq/lQ1cOnt7P37ek7C/TTLhOCckKfH4JAUkOiEgWwVVUf8pUyAm2RG4XOH0k73/3ffT1+6J/9HL77\nIx/hUx/uOv8Ivz370kv47HNnkWoVBsPta1A+iMSLQSWpAOQd5hvgsfkI/LHABVujcYE0uuB13EzH\n/Cun6a7ehgKkqndMxktRCwNu443KeeU5EWztEcgtLmFea2CsClAM8IQ4HXVVS4ss1hzJvKauazmh\nilsVACjbi2scAP7JL/46PvzRS0BII/H4hx/D3//HP4dv+pq34PrBdVy9dg0HBxyrs95suEhoyuZi\nBQE7SVzYnG6EDcm6JoJZphQI6NzoeVEe6JPXtPyX2H0OLi+o5SMFId/eKwPScfT7aJuakdJc3Kld\nV9F1LQKdcXQ3MI2zSfL8CG6d4aLrhEwOXMxVDfIi3XPcxc1BkYNKmTBZcuw2OCw4Gx9nzl0iD9lW\nxziO2JpLeFgz0u+xjA581LKz3Tq/SAmJMhaDFKpVT51ARyw2FEuMUDWmz4CPrANfqjIMtXxlC3uI\n7RZijUed4em3w3EH7NzC4UKCZuIgY/gV7NM8ltKAHcA1DYk80DLJxsRgh5lTzJQWwY6bNTVWZwXV\ntDuDcYDCGh4WTBfDwoTFqBmZc13TsalQ2wv5URjuLQS7tPT9dy78tnOkwKGTSZo5nPv7Zvfr21Cw\nswuwtYCxBQrx3q7B5I1EkyN5O1G4b39k8FMhuwRAxa7vZbmkQk7ygqP2m8o1ckMVbqNQ34M1z1Q0\nFcqUljQxAQAObg8m+D4N9XazxbgcfbBVN1enFwPNKkQHgT72EcBM8CQPMj6ruecWtYMKJdtrohzt\n468B7MTYN9uQmk1e3CDDfDX398v8e0zbsrnvAFrch/pxKRARCYDPT679rAp2jI4ImsWiyARQoebZ\nssDgYEfnI/btZkdjgRMBiyhNlBZx/WjLQea8qYpj1jojkhuFVTEB6zv4xm7epWv15YOdnh4jf4t0\nLj/6n/pZ56b9xSbI4UMAO9oOxXPlY7XGgQqcPnUS3/ttb8PvfPjD+Bs/8U92pjt+8Nw5tkwY2AFQ\nuLiiuasVruVjWuMaxxeBjjMrm1Y5gzFMCVf4uAyXWHHdwDGqt2Hfy5op4gat7QjskSajpdg7JJzF\ngGfzjHQt2jtf//SlS3j2yhXcf/YePHD2LLuxDf5S6w5lSUog0neRVMjaX7XSlVLw7Kdewh8+8STQ\npZEopeLxDz2KTzz9hTg4OMS1a5qBjdNNDwMhS7FQyJqLckA1oBPmF3FPiHUC/YhghwB2Je6BTuCr\nDig8XfGk0LpeW6vFfkXeZoocSqE8BDX90b8BGMjRV+TzVgMn7HkKVmK2NXdNI3drs33f91gHPlEO\nCLQCYBgWVhdxudzDcn9P9rKCUryfq/XKwBrLcGxlKqXMetqoBwUnVcgYhgWWi6XJiToX/Kx40eoz\nVwKuDSEDplAwVQBNAA+RW97YxHtzpfKf1eMO2LmFI2qPgbDRR0kKvYAUXvyjN2iCoFuKok+qEpuj\n/TaQTfvQCLMiVPbBhn18Th/4tgvExL+ja12ckznBsz/v5R0u2PYgo+/LrRzx6c1Zrpr7BaXILsEv\nKFFboKGXWPyBsu5wIlrRQPXJgLcB8sxCJqjDN/Ra/RzUIFyE8fBP1TSYKsjPPbdoQYnPkAIN5ZSw\njnE1KWG5XBoIYveJNHmG2+3W6ae5aQtw4kYbX7Pzr7PYgOYKlYuoGV+7ZvQYg+XU19YMkCoahzd9\n+bXqBhbWqIGn9t7zQrkK7oTa9cHaCqOppbAVK3GGJ3WXYK24SKji4khiFdRNTN95I55qbhu60zuK\nsGICVORDAWUnjWco0XLRzb3cg9DPdjiCwKLzo8/jRpaaXQqKXfxD6VjbJXhq5Ll2Yh9upFhRoNOC\nux3XGeAJYMtAhixcYzQtnrFLdB+ySY2EB7zp9a/Dm17/Wrz/vX88SXf8xte9BhfuO2uaZl6Y0rik\nt9Z+NsoqBWO1OkM0FAT7XAPtBA7mfSRi97tKnjhAr51OLlsmqtC2xighxPZUtqixgCpzp4Is4nP0\naxo+SuRJCIhwbbXCj//Ke/G+j33Mrv2iV78K73zr1+L0/im2pqhFRWJ6QMxzi9RqgaZmH9t9/LlL\nV6TFL0V7vBkA8MyzL2CZwV4Ym625yEeLGwlQUEG2sVSLG1JKnNXVCl/mNj4QAFqlj14/TcrCyU2q\nKwXRKl19fqft9MpgywQmsTU5JQw5N7ExLX/G5LOCt5QqMvEjUEWIgx3+XsinA0LBpS2AHQc8DnL6\nvY2IsFgMHtyfSEBdwXbLctbR6giHR/waxxFlHFFRsRgGLAauWxetVHFuosePKqF1bvtY0Dl+dDP+\n9//34w7YuYWjd/PiRcoro0CsEoH57wI8JvruWDgRVESTrWde27HoxBcs1QBMUFFGt+b0NXSiy1ET\nnL8DaPQAQfvYCwa3pAVweab9+jMEPL02StvprQgTptBszDN9VbBR1SLVaq15v3ego6lRFfCYy5Jc\no8pUxPHK7zYEH5Vv0irotHDO762/1aAZDjQ598wm8xLohAKtqDub0mcacqNV6xlzHJgqCxpNuLwc\ngIwoZfqM+tlo+lwd8LR0GDdGsvuMpfDmY/cP862Apoplp0s93VqFHOxYf25EX5PvZ4c14R/KADSx\nAapknNKCgiogg89JkOKiyfvMLoYes9OCsyCwIhCeEmI3rhbMBBfYmfFqf1Vwn9Q7aWemuS7echfg\nmQMon85m71Xnbw6UbgZ4bC8wwb/t6+RcWaem/e/m2OataYj/ofg54g77joX4v/6N34Af+Jn/A7/7\nno9YE298/Wvwrke/gd23dN0okiKy+A8tcFpsvTqtawwOycU+ZqGVUoz3FANi1ftMYCWJdN6urz4P\nzltJks4RaFK4tD2zQjdL3TNDLAu5R57zRnJpOOQe/vFf+RU8+fE/bWsVPfFR/Oi/+Jf4W9/2VwTo\nKOAhcYVjq4jhUQUhpTDPkfV83z2vkP5qGgk9fhMAcOLYHq5duYrVaiMKz9rsk8z+yVJnK1+rYf5I\nwA7H8nKx5xzO73mZrvHIt1tgobMoDnREnfzQ7jPRchwt6HG95pRDBtnUyEFjw5/bV+xTSlVeQieB\nF6XwN5G7rLl1J3wPn2JSmiMfZ5+eeRhCtjhiOaCMIzabLVbrFQ4PVzg4PMTB4aHsOSNQgf29BbC3\nRCJq4o+Ut2gCiQh2otdPDEuYUwzu4mM35Fszxy3Jc39Gjjtg5zM8TFgW5si1CaJDbhBSokZYzxHm\n7kup3QAjg+n9UueADrQVDQQn3jEj0NF01Rqn04+l18jE3+N58ZhbBH3sh17bA6juBABt9qVPF+TM\nLcdoMUCdatl3tlthPuF6/eRcIrjTFCb9l63T/w5fMCBWFwoXhlQj3NyKYlt+roMk7gfZZ3F/a4fj\nghdmwMfMGJu5g6fE7IH53t4eNpsNM2Odl/B7BNU+dSSF73q3tZD2ukjK5rChNX2ceXTNcw6bYTXh\nvX3uRYBOqxWbgqj+1VueRnZCF+EvaC5DH9p7+xNt1oZkWtu9tyjggQvIJBYh/ZuYD2jWgl1CQilc\ny4Fo7G7REVj83vhaAHNdZ1WgKLvADgKtTXGAn9vPDdxF4+UBl3nQs+tcvWsEO33/te/x712/x3ky\nTBcBG9yai44mpCv+UqYQAE+bkGTyR7iLX3vqxHF83199Gz753PO4+KkXcOHee3Hh3Dk+ZxwFaAUl\nDDGwSJRQwr5Ta+EcCGoZKFoTi58phQfL67k2Pv9xLvw5e//7jJANj9CYkMp91Tl85vJlPHflKu4/\nfQYP3HUGvUKFxHLg/IPnhHUYkoparEARPFx86RLe97GPN05mXwzgW2rFj3zkT/DMCy/gwfPnJc0w\nX9ckN4Dy++L8JvCcB87ejc977avxh3/yDlHsvBnAbyLRY3j1I4/gxP4+XnzhBc7KVUbBrZ2rKDmd\nlqpWFLs5tMaMpnPOg86F7wUmY2gm2X7e9VY6PwIAFATrb37djEIoWL5JwKcK8EPOAngy01xIcDAX\nU9n0RUBKTgVZwI7+nqyvbrmJlh2Css4AgOJ4O8X0pASDzGmiAEJE+Xe0WmG1WuHo6AhHqzVW67XL\ncQDGUYpuk4POyKsc6CyQUgbZPSpqHRuw4wBynvcpD9VnHo+pok95WCCw2/S4A3Y+g8PRfVZODa5U\nFHz/LQAAIABJREFUm3wjggsURTQ5piEGxM4qzLUWjAWgUAcDaLUiFixI03gaPSzom9VI4ra2Zu2C\nLLpYjHTO7Kz37a01fXY27csuF6PYfz335i+euX6hflrHDvDl2uqohZ623YIjYAwgYqId4QfZPgvf\n31yDiN2sogYBh6CbNzPn3qTu18DlIhXiVUgmJq0ikIcQMr3VApJUrlF71M/FHD3UykUxx0APyvSV\npobFYFXFdT7mhBX9LQ+Du15BwQx83ahPdkeLLcCvAg4isIGBDP++pUWLIepcNOZAfpyDqJlsAc8Y\naKwVhqHa7XhQS4e6Ee06XMiUdv0G/GYZ2ZQwCBTQdXykPi7nLz6fTeuTw8FksADZvDaahJ1ruBWI\nXJafXPsyeMDLAT43AzoxQFvBztx9e5Cz67f4XVXVQ3OtCF8gaKoauXMjiBA0MF5eYqWo1PWtn0BS\nUNT++NRzz+Pi8y/g/L334MK5s7hw7tyEr9TKcacm7GgTEOUecTFaxgXiYlRdWCO7yNcTJaCMvA5s\nvzCpLICdRE5/FRYzUpU+awAiQh+ZgOurFf7Rr/0G3v/UJ20sb3zwAt7xF/5LnD52zILwSfZsgt6X\nQDWku5b9GUScZU0yaT13md3MvhTTOkUA8CM/+8/xfe98B07vnW5c2BCAoyoJxjJi1MynQfH52Df8\nJfz4z/0KHv/wo9bu6171anz1l30JXnrpJandJ7tFIqvfwrTqvEOfn1vDdS8JddIGFs5JtCqlOtAZ\nJVsY0K7TOcGZKMS4BEpSK3cEUDpe945x0GACfWaXrpyyUiMq3KoTj14u4ThqINGIRCM0ZlPH3u6n\n1PLfZgV0fKICrEDOXgw0pGd2JRXMYlNkTjdblruORO7SeMnFYiHgM2PIMgYo8BtsfJymemEvkjW2\n3TrAiaVCfD6cLtxSPZXzbIg1vnQvjJb06UzdTscdsPMZHBQ0JDAhpSIlD/51DSinoZ5kOgKBMiQY\nrzbMITIZJWRd7ElAUi/0GapPKgO7KXuz3ph2QbXzpZTJgtXFNDUNtybbXpDthcJoZtU2b9YWKfP5\nD7CedC4AzdLiCSZ6wSsKcarhiIzc+ipZzfqjHYOKNDv6teszxU3FwU4rmFTdD/gzVTunFLGooCCJ\nQJUqv+u2FLVIN3Jf7K0Z4ziKkpnPSSmZtXBYDDy3KaMkjwuZ08hpxqDMtqApLUPWQxkxjqWhFxNO\nYRiv6a8K8bHfPdjRo3Tra/Y5dcAprknXrBVACvqiF8BFCGyAFBTcd2MPhDCrKIBbrcKpPL7CdGlb\ndq0NAFHtZuiW8J1WgJyl15k5mLPs2JjCvW6kVJg7HAS2Y48b8NyzfDnH3PlxDfDvaXohWkC96+gB\nke4BvFxd2eKQFBYPMwV9sJTyZhaO4IeCeDY3DRKzdeX6IX7wp34Ov/OhD9pPb3r96/Gu/+HrcPr4\niXgBWzhKsfYcAHLnSKo1Vk2LXT2NtI3diNiBuNIPAezS1qJvSYFMjul8Eu1c5Ttc5FHjTQj/66//\nJj72yYuNi9nbn/okvv+XfwXf8Za/gAfvvtuATpLgawU8WnwVOpZSLNtaSlxn5/w9dwPS7s/StE7R\nk++9iB/66Z/B933nY+bChtSuTVQIqCjuOmtzQjh54jj+1tu/Ac9duoLnXryMu8+cwZAJz3/qBWy2\nW2yLlrMgsYirlt/lDaW5sVRJPCLCfiIAAzQ1chKhHbWgjHM1wOaB/BzAYPpt5RUGtbURyKObFQFY\nLAakNJggv1wuBewMGHJmF9symhJpLla5KYEgYAcCYAkaT6RudjB3u7l91blmD3j4syZ8ikmkIn8b\niyci2I4jNqN706zWa1Z289mcZGC5xGIxAKVInJzWwImWo2SJD3LO0Jpt41gkJGET5qVKymgHNg5w\n/OX8rwRwA7hinl+sC4yWnl4CuX2OO2DnFg7KC/0DBYkLo4nqbawVowiU/Fv4XD14sgKebpqI/XxF\nAI9aDhUkirjFoCYT2mxRVnaRUwlD6/l4+keANzDO677eeG2eWitSrRhs0yxW7Fp5ShKzP1c0Lyh1\ntK2aqIp7g2YBS6CRrVvRKqQLhtsDX0cKkpIxHdsca23gRa1SRaEW/zZKBUGQ9CiVqRYoSRpG3ixd\nKANaoBM1Stq+9ajjgUXmUE+VmZkKHwGQuAygAgzEcZxQiDeOWoCaJqNo2jWRSbRKzY2ELgnq3EaW\nobbCLVWVIO5GPk8xk60F/JKngy2oQC3YjiOQCEkyBB4eHbFLGmDPNOl1IkjEtM0V4JSsIwf01nH0\nYn1I4RrVEtbAvKvTjlqG4gbdTFwU9uNW5gKmAe14lZxsrjtohVcTYuFupTxpYRGJ0Bc1ZrU4OGCg\n1vpOO35QS3AXhAvdmLX5Tvh2EghARAhK8ghTTVCORIBpPKFtV4S11N8j8LJuytWCWEPrRJ6BMp5N\nKZsAjLCGlMhJFqldJsvPMlrKFyywONCPd5luz4FxNMI2tHG7QvutgmoN/5Xq/CGoruxeRBqfJ2Mr\nTmt26xr6p+wcwd2toVK+iABJz8+fq4KhCYxSFsO09wM/9XN4/x89jZjW+P1/9Bh+8Kd/Ht/39m9G\ns6egWmwhESyNeUPfDeCN6yKutcA/4zMsxMVKC4VzpX1ZyyTEpbFCmaghNnZH46f+1KVLeN8nnjIX\nsxfBgORKBa586gU89s9+Hm/8rIfwXX/xLTh97DgvA5K5ljmUEniwiH8iTkEnwOX8ubvxpld9Ft7+\nxJO4UjFbp+h97/kQLj77HB588AGjGUAKsiqLGkfUMpqXhwIXKJAHcP6+s3jlgw/i+uEhnn76GVw/\nOMDBwQFWR0dYbzbYjlsDjWod4TYQ1pNb5riEn2RIywIqiUBUzQIxjlsT1nnvDuu1tmuXeVK12jtR\nQeLeLBJnPIY6MYXLyObEMUPL5QJ7yyWWywUWyyWWiwW7seWMnBLGrfKtikT8sm6YVYjENY9M3iHZ\nW1XaMr4gJK5/Gy+VPURlBAPTtpQ4JXaSOCflSxXuMmZKbQONW2w3/FKLltK4uuupy55KG1xET2OO\nBMxTSEaA6CXEyrUiViRbFzIG7mvGMHAa6SRxUMYXauQ0JGvdLYUKon1Nc1/SvA7oz/xxB+zcyjEs\nAQAlZWxrQt36ZlcqsCmEERkjVYzE5vERLAAUVM/9T2SZW1JI4zsMrOnglIICdopk9EjAuB1N41GF\ngZRSLF881YSUF1hm4or2lADKwAYYa8F6uzFmRJANOQFIwvhG1+gBACFDOUipIzAWFzKg2hEef0qE\nkhIXVR3ZbWEcNZOKMJ4gFPJ1ofCbyTzMQYoW8EJyoVCv7aOaVTirYZPVMQgzS8Rz2oq17SY90VrL\nOTZX4X7MK1gITzVJQGoCkic9neCdINCgel0d1dgnkoDWkFM62UkQH30VeGGbjDFxip2TDTRIGiNF\nlzwAEHBB6nrBe30JgAhEqLohSx8qMT1h3AIbwrA6QhqyyEI8riSbGgmrSTwYEfhFmzWOKBuSaurc\nNm8osgFV3QpU4BzZUlW4SGmSjF9ILgyp8Ad7kc2z0nJjqUtA9jLvIuRTAFvsulMTScxBC3h4rAnD\nAFSpNO9gyAGOZWgz8F9N6q2kY1VZUjMWqdsHuWBfVRiEC4CN9UbGHIvtlGo1WShBAA+QkJETYcjk\n8plTq82JSM7QTjCQSVagt0q2KY3RGZEwIlgSlW4dS1jfyNEdmoPC+aRgT7x/hV9oHzWoXUTlHS8N\nxlYeFECB1GjR1og8Ao7pUi3yoQhmB3daKzXsHQVIan5s+J/GXJDV4NLHpa1a+wEI9koXY4VV+2Qt\nAWDXtd/90Acxl9b4dz/0KJ569jlcOHfWgDtPFSmDcEHXGQJUJ8S4PTldB4DjAidZQWSu+8Fr35RE\nM2BdlUuUGOjE2CSZMd4jUPHs1asAPI/Z19PU8vL4e5/Cj7z3V/G3//JXgePTAiFGDbbQEc9BRU2V\nwVEiPPbffiW+95/+C1y5+MzOOkVPP/8sHnrwnO1FPlfyJLdblFE06khAyqC8QCVVjlYMRMxLARyt\nVrhy+TKuXLmC69evYbU6xGbD8T6Q/WIYWEgtRRWj7KqcU3QVI+RBlI2polJBqSTgZouxbN3zRPZk\ndQOD7MEKpFTBV5MotlLiuYICIbZAjWWL7XYjsVzMJ4eckQcuh7G3XGJvbymWnQHDYvAkAgBqqkil\noKIgoSJD+IzVxwFSJuSgQFXFBxet9X3DVnIFqqbbrsliuHSeXEmcLLmKkAinEk/J9r5xK25jskam\nYJ+X0ZAykIVHCJjKRKBSULf8HAk8hyjKYXjNjCigkQAakTSTn6SyVjkpJgPKQ0IestRXZFkyS+FR\nTUIz62GUElIekPMCKbPFjclXrJ2UbZ+7HY87YOdWjmEPACQbDWErcb28yIGxEMaaGPAADnQIIixr\n3kOvchwJM4Id1UzUUrBeM1FvwP6ajPBHlO0G43YEsmgChoyMjEXiAMRCGYUykMjADveXGWGFgB3R\n8jTJE4iFlZwKC6mlYFtUoxRSDxNZZpxU2ZebwR5v9uw9ZhITN2/a+SiMqFwmxcWqCNkQYUNiY8xs\nMHNEjbcL9SSCk7rA7NZKRheoeCjQIRGFKyqosqBNlRgzIKGkglQSavIsTQRIGmAXBEzWhZCDMC5O\nlerBsjWJZSFpniIdu4xJBUgTmwRUmjivgAcCRIAK1dz5fLq2iiL8bECVapJVzhzFBWKsFWmVXStL\nDHKGnLEYBt7o4Jm5ShWxslbUsaBiy9YAEmEIEvQp1gelHd24SmWgrJrdmhK71vjTamlCZTUVQhHp\nQMBklr5XsQ4abSTUpECHxGrhFh31bc+S2ahstwxSoFpTATplZEUC4MBaAY7QRgxQ7V3lGkG6QgCC\nTk03Xuh3ZCCAzxsZMxQCpRGohERs2R1Sl3pa59GEaKUdpUF1ZUoAifBGTnFFgM5o0WcBBFhchj4u\nzfwUYjmiQB9oLlHlyufyDJkmAuQwUBYuFKCjM6Ja2YgYKhWo3VjUDrxuobCZRZAioCcCHp93tjRa\n4LOQZKqw1MhmrVIFA+CgVKec4n37gzTnhJ/fwqLmKgLh4qc+JZ/m0xp/8vlP4fzZe9wiIFJaLKpp\nShVEsiMB8BCFivNPyOzp2GoiRjuZXT1JrZv6KoHWqlxXOE5CU6sT0IBCANhSwX2vOAWAXcy+GBJL\nM2N5ef97/hRPXb6E8/fcBd8p2n3EZk/HnqrEIAInT+3jnW/9Srzz7//E7jpF992LBKdjAzq6z4xb\nUVAKl6aMlAGkxJVMxEsjZVaKrlYrXL5yRcDOdXZDL6o8ZMF8yFyQfAsBQRKXmRKQMxjoZAY8KUOU\njNw3VZyOYi3Sl+3L5GuXMYu4xqdkiqhiAr/T4ljYqrPdbqD7UU6EYUjY21tif29PwM4eFsOAPGQM\ngxC2FcWsKGDglFHs4SvISYkE0LVPj1CQxBNFFRS64Qr0ZqAje0FKrpjLUqDVXFqFRlTQJwGlVSwq\nvFRaYKRdUV6S5UG4+7s4/UmCAU1owYMroCIhALWCCrAFAxtKut5EcYYiIQvJ+qxAJw8Jw2LAYqmK\nc+Y/4yicy/JoqUWLLUBZAA8l3bc16Ygmi5hypNvhuAN2buHQoD+Tt3VjjhssqUmwMiMjztRW64CU\nMyPnYM3Jkk9efUL1xe47oxO3ErpmNCmjIX3TrllPZPOrFQWjXb/rMDOsBiZ2m4CRuQk+YVMKLg96\nbU1iUbB+6btbd1wI9f7u6NwE3NzMb34eCplcadpK1cz3t5trLJryJ2Z9DboEAx39zl1uuj7X0LSf\nIIKYCtQMoBMgXkg896UorqB4sTfc0CV/p0BP5V4dqLnqiLAdBdyWkmTM2rzdwzfA7WaL9bDBcr3G\nerHAMGzMJTOl5GlrNUhVBJ1aNRic71bFhTOmBY/PS8ekQtbN4ig8jqA2VKY0qIBXN8secPRtU+hP\nH/8x6WfY9GIdl/78XeBdM9k1sUy91SjMUWxmIsbZ+cIvJCvUNo0AbZuzzfpgBSsqUk4ohV/jWFDG\nJEHTaNJtG8iLAM1e3TriUYK10UnITvkYdXPdj6o2lB9WJCa023wv7zVKzsrQyQTd5qlPl24AGLE/\n6rIHAbP69P0RU99Q7BLgPDZCKRk7xYbitf3fATA+cO+98uV8WuPz994zpfPmHmo9DvwkdJrH65aM\nrsv8t3pRigsl135SkCNrTwG84C2rt1wDLXRgJxFw4d5X4I2PXMBjH7+Ib9ExPIz2eITfnrn0Es7f\nexcijTSHjRXGi/W0iorz5+7BF77us/H7731yUqfoiz7vP8GF+87yPEp8hvLxKkDBkqFAh+u0nsTi\nwPy0hNp6W4zj1hQf/qziZ48XAWDxT62METIzina/jG1dF6cBlWP8afq+rRBA974R2y27tatrVa28\n92mtnEQc37y3t8T+cg97e0vsLfewv7dEHjK0IClnF4MI82I/Frdmy6ImKamtF9IHdZVLNHKAgWSl\nNRc0jbOWxABZvWpMcZtEoPdxBwrntjL7lm+rKuqAyvYXL85aIW1xyuhSKsdHhXkswdKvhTxBqhge\nm2edMmEsHpagfeuzwVkMU3ZFdHxeOgajAf7DaXGyhVL3StDwg9vtuAN2buGIAflGSA1XB2v8SRA9\nyAidiDAsFhgWS34XKw4LgJ4BRQl1FA2H+4GycDIWZVDzAll0ySq1sIWpy2bii6a1cMRYGz/05F4f\nqhtycDFQ4V4BH9XAZNVmME2uEI/YVnyPY5u7btcxJ2DeSjvx+r4/gNOGHknM/JwFbSow939N+g1G\nJyZUlWKuAwVAqoU35ABaWGvVNkvhHJXEVBbq+98IpogWIjT3ie0q3WwlIHO92WCxXmMxDFhrbQB1\nESBPQw2IFU+AjwE8dc3MWVz6ksf+9HMUaLfvk62LIDyqi9tsmvXK/UGZgolZ0BPp0wRnBU3tOQp0\n2jU4gSMGBuMRr1U3EhYGYN/dkI53jEVBKrCReCh35YgbqL5YQGIL1Thusd0KnzK3Pa/7oDsn5WQ0\nFC1rPdmri4WDEucq07F1dND/PDOvk9P6NaL/GWMMfD2CIsWwIuvPQmyVDeJNpd127LpiHelMAc7u\nce7iaf3x0H1n8aY3vAHv//BjaNIap3fiC1/7Opw/e49LO0HqofBvy7Fa1JYC0InZ/xAtVonrU1Hb\nguBcAlL1sg0pAJwqFvSuJ/p3kvP+6lf+OfyjX/4N/MiTko3t45i1vNx/911hFC0vkz/ad8iUkD+j\n7/i6r8K7f/7/wu+95wk7542f+xq8622P8h4nwZZqVSj6dwnFNAXgGU8g8ZbIGbVy8eb1Zovt6AH6\nRhmBj/h6gyU+oETIGBrX+FiIUlNfqzzRlwVo3DBttp2/sjzjfRljHyXGEpV5bFoszco/DJnjdBZL\n7C0X2NtbYrnHv4vkHdze2zjFlDNoECuKCPOsrGG5aLthK1IZR+RU+ZWJ41UEdLDHTIgLkno4Os4o\nN+mz0T0hEUCZkNPA+0gpqBhDunV2VU2SNMOAR0phf9J1wjv4KNkJSYBgxXy5kTRqHI6C15CQYYZX\nz2XNjavG2EQEPJN9rmWQBFUM3nFj+4/mmAM7nG5aBXkI42ITNeeKd63Ccm8Pi+Uev0sWEqBKkc91\nS2w1ZnrSWB2pO1L01TLPeDDTqGL29viC/ogCY1zwzvTmzlfLju+PLbMUt6WgzWa3DV9EO4HOy8Af\nN7Xs3ATE7AIsL+faub6oJWKShjulSV6nxmpmsRadgFbd0mLxI2DAU0hrmLArgYMZu3rSHoMU1+Iw\nKHfN4sygYJvcDuHR2q2q3UvYpo1liVkMa+RhwDBkDFk232D10mPU8aICtaDWAaUUTks9sKN5M7cN\njcJod9fRMHT4PCmdxg3GwFEAcRFQzL2gz0r70K2leK8b9ZGkDz24iQDQMsChbX83eJ/Sgp7P4y4o\ndYsk2kdtp9EUalaqWlBrlrpdKgixgKPB5vHZ2hwJVjDF0KzQrrTGAkZvWZ7rf2hh+iepFWR2+N28\nBAFXfcQmygK9pul4kBzi3EcwYDDK1hHNToKuAe+dLcFGZml5rPevA/tNdyve9c1fhx/8yZ/H737Q\n0xq/8bWvx3f/9187Mzc9sPAA+4YXVKDVrNyIJwcQ2ShRyHlgSkAtFpNGAAOd2k1BeKVakSrh1LF9\nfPdf/q/wzKUr+F9+6dfx8fe+MLG8fMFrHsKFe1/R9LTlxUHzHYmnGXLFyePH8D1v+wY8+8IlPPvi\nS7hw3zk8eP4+pOxJhVRIjpadqM3X56u8S60GOWXUCmw3W2zWG7HqlEb41wFE5RDIgU+SoPaY7Kjh\nKZo8wOKHakM/0QoLUhCO5vcqrqeWREX7Vzn6UpW9OQ0CNOQ1DFguBiyXCywF7CQikWlG451Wj0fu\n6UkIXNAft1tL9lLGEZv1BuN2g2Eg1AwAGRxmkyT72R729va8OGdSN1K/Z0zj3OwFQgtmnQcZeNVz\nh5wBsLsez1NG5MdtuQLdw2Re1U0zAFKraZfE1U7c2yJv1mfb7y9zimJfPUZCxmR8r3F5MLalnhy3\nohz+s3DcATufwREFD+ZtIuAPmbNgLBZYLpZYLPeaWBx1Y6OgWd5uN6i1YLPZujm2Fmw3G05MIO+b\nzdpM2qNkdWmYJ1zI0qDm7ViwGatUXXYB00GMmsDdvSi6D0UcVTEVBAFi1y2Idq7bjFXTwEfUbMC+\ni3/Ni2by+2ew2CIzuBm4ifeZE6LnGFg8txFUS/HicnDQodvszcYLeAyTPj3NeMU1c2B+8XobknNm\nZoE3SBEovQoPoM+hEeqVxdfIOJ3xx+u242gbjwZe62ZJBE4tOixQh5bt2DzLP7JfwvIFqFQgbddi\nxCjzL7Fnu2gjbFhKYXO4SJ9FpG/tn2szIelaW5AR6/TU0mZPi2Ocdi0KL2qxqRM6in8rYLsZXRqw\n2CHt2/UkY7QEFPyqgMWOlLjuJR6pNtfSBKD5uq7+rwiBNXat6ZS/18mX+snsIN3gbeDSdjf+XmvT\nABN5Ka3NgXviCVH5b3p/srnQeBxV+DCHzL4eVICWhmpog6fJAbndG1MBxrFMAEl1ShsE4PTx4/j+\nd3wzPvns87j4HMfonD977/z5ss6VhkwIi32KrdddT2syRTK9ZAKx+ekKyZBkQ1MLtYMeH4u+u+VH\nYvYIOH/PXfiet/4l/M+/9Gt4/D2fsHt/wWsewnd+9VtCr6dWHRbqKDwjvkuVZ1UJnEFQwP+D95/D\nK8/fj4ufehG/+wd/hAcfuA8XHrjP1k+HhdujXfogShgyywmbzRar7QaHh4dYr1bYbjcca1FU1lCg\n40KqJmtRK85iYGCRcpaYkmRJjdiiUwzohCcZZAJOMESSYhwK2VWQl72EqnqgsMyiz0f7wuBmYUkI\nck4YEvdJQUoBzKWWZRtx29NaRLVgJI3RySh5FDd/ngm+V0atC5QhYciEYSAshtyktdb0za6gE2Vx\nVCT1oBL8bECwch2laNrndbPvRCXvLuVWVFyZ+yD5OrcsuWKNsoQJ4pY4iPIwFhedu0d7aF9cOc97\ntKfCbkCuqSIc9PJLF+rtd9wBO5/BoQS/3W7FZ52DKJf7e1imhMWwwIkTJ3Di5CkcO3YMe3usVSii\n8RlL6fxxKwMbWeClFGw3a2Z0260wvC0XIysciKjm4sAB7ai1oo4jttuCzZY1BC7A8SupMFO8Hsq0\nbo6xVtO66ILlc2QBUEXivMnCMGWBalYyIkRByN+9v8Iybjr3ny7omdNyfCbASduaAzn6bsCSaGLd\nIW+kRTudQGZaQiIDPJW4Kr25GBAMWLD7pDcxtSgB/jz5G4arCmqilcjYnQkmVUFXImlbO18xbkeM\nlTcDg3FBzixjAZYOICaFbAPQ4ZgnBzpUKn/XWDHDpZ0myr+b2q0UbDdgxqbFadwfETXgP3RXwBdv\nxOr6ZgkJZsDOrs1v10t/n5yn4CO0E7PkNButCmk9XcXD6oKQZeTTDbhU1p4XtJpOadyAEqXEcYl2\nj1Zj3PS3CgWStSLv07kJs210WSk1HlIGbvRD2NiDWIwgudvcONhp7uzn2lfqxtGCnQZgSqBxUtAj\nc5OQRduuoCHcnwJNQtO6Wz7ASdcmihmfLNzsIAAPnjuLB8+dbZ9j1yZnqgo024GtyEEc9cqHMJb2\niOtNLTtKA2EOZZIZyLRgJwIdyHcgEuuP9/fU8X18z1u/Ak+/eAXPXrqMB+55hSQl6OajoZOwbuwZ\nuQKgWqEWTyx0/eAQP/wzv4j3ffDD1uZ/+rmfg7/x7d+IkyePM610c1HjP+GHGCC+WmlNvEOsVlwQ\nXN3Ww1RC+RhnRwMoJQwJyJkzm5mwHAqd8x7vrmtRuaWKAs5fULwEgcxtSglUs6X6p0qiOKsSsF8E\n3HOMzpAzlkt2WVsupSgmpLipuK2O7AMrQGM0kFO2W5F7OKEDSbxKzhlDYaDDmNzBDpPOgMXAiRAU\n7MSkT9Gdb4xeMyO752qCpsY9TMa7HbcYV6MUamdZTc8x63dK9ngIUzkhyk9WgBQVYy3N2tb2+G+S\nhAyped1IIdvSeUvrvAa15EcR1hF4YShS24KdG97mz/RxB+zcwmGxBtG9BcwE8zBguVzi2LFjOHHy\nBE6dPo3Tp88Y2Fkul9iIL67Wu+GFs7WijFpl1yw42w3KuDU3tuhjy5tCIHQhRtMegLDdbrHZeBCi\nE25r6Yim23Zx+j6qWlXXJrWblMSd2iZOosKNLki++EvYn/V+YaKjHBwEUxN4Zha4gqz2u3lBM7Zx\nK6Bnl+DavGuMjbx3HeXnt+Pec+PjWUNb36DCMtdFl5J4rt2zVkmhCxGyatt4N+cOdBRISbY4E1wF\n1AC2USgIrvBNVONtlPmrlaStWh82gipCtvxRSemlerbAZiq7zs/Mm0y33a8BBI1MvRukREChfaGU\nLNbAwAB8fcT7zFkQ9Y67wE48Lw6oWSrdOox/a8r2ufHo31pd3ut1+M5Wwc+DpzkAHoC/tHSCHy2F\nAAAgAElEQVT3IQAXEEuxpvj1Ds9vzGrJcHE2Ah1fVy5oK30B8LTEZCMNYwha+gB0DAh1gKeiiUBs\n3gAGAqgVCUqX8bdkwpEGO2fKEgw9SBdCX2yETgMEreGjfZmZs8i3dWLkPfIgWxrNzLZt6HeNgGZz\n5udO2ZR+4QJ4DZ9pomhomTtpvTFZ+/r8go5E+A5ECdONQ/Go1BLTvI1xzV249xUgIjz94ksgAs7f\n84qu/07nE6BjmSrTTrDzw//0F/F7f/QsYu2i933wMXz/P/xZ/MD/9G0yBzq7cZ76uRFwMAwYMrvw\nrlYrHB4eYrVemUzA+zMwXUE8Pymzxl/dtIbsRS+VX6lFp42JkfGH9qLXSlybaqm0KbR079WUZQoA\nBnFZWywWZmlC4G/uusZgia1OW2zHTWvhKcWyGdZSJWU+IaaL1n2FCFjkhGFgAKQAR13fWqtOVDh7\nKY9Eya4x2gBhW7Zc3HWzkZpEpdnDWqAsTz3IVPoMmwKrkuSgVE4AExWB7kKsCRaiBQb2XPX9Rkq1\n2MdEnGig35uiVUf5Yw0K1Dtg5z+y4+joCAAkXfQCx44dw3K5h+XePvb397F//BiOHT+O/WPHsL9/\nDPv7+1Bz43q9xuHREQ6PVjgSZnZ0dITDw0McHh7g8PDAFp65qRXPbjLnbqACpGn64f6eY4WAnW1n\n2QkLs0pQdvXKuUS9a8O8INYHEXJ7CSnw9tjX9lBnLPVlbjfdueNm1hjTuu4QMG8GLOaE0RvdL26s\nu8BJrdVSCjfCdZ9FQAfADTdt6PcKXjzNA783oEYOTmEdoLBMTq2ud/V+k8ukzZjnn4YJWXpZdYBd\na8Vmw+nNkxavk6ZU0FsMnMN/kD6klCzV9igVzIvEJlVJW15DTIj2XSZrto9xPm2uOqGt17gxncPa\nb15hNlQALePY3F3bS5RAuQUXvWWlubeOdwboxMPXLQdm92fN0rzMeT8e0xBK3Yss1cDVvdbWM8Lz\n1jlS+lGLZfV7EY2cjl2yQhX2UcEEXOt1Ln1PxiK3c4G/tqfq023Aie3MAVhAnrs9h7Bz2+cW6zp5\nBeEiCqqdMO9zFwEPYUhLDHmBnJcuRIjwKOxXwLHGeBTPZhcFw27uSv+98HB9Xu1BNlM9mNfvOJ14\n5WdVguBra8b76/+0gJyUdm1uIpG2BKvALnTPnnWDo6aYSmXsboQtz792tMK7/9Wv4f1PPGnnvPFV\nn4X/8Wu/DCeP7Tf3bZQS+jJXxGSW0arpwinh4nMv4H0f+jDmahf9zgcexVPPPIfz993b9Lt2c+Z0\nIPE6EtdYSsHq6AgHIh9EJaiuA1awSqYx4muH5QKLxbIBAFGwj9acOO5k66IajTeWHwQeqHWSpPuM\n/zimphJZIhouZsmB9yQbQDF5JrqMjU4LFWLdGZsscbUUeS66h4nLHA0WrE9Cq5wBjt3YIhgCPPRA\n5StXKo+mPEbFJMOZgY8hYyistBgkVicmgIigKt5jDApqBT99wqieFjU2KSt/lrmMshdb6MZmHTRW\nJuMfrVyk7fM67H4zQOXxQa4kn3pQ3C7HHbBzC8dqtQIA7O/v49ixYzh+/DhOnTqNU6dP4+TJUwZ2\nhsVCUklm8+9crVY4ODjEtevXcf3gQEDOIVarFVarI6zXK/MLHccR6l7UbywQ4lTLgAMe/tnNpEXA\nziZYdpyYTaNeesuOy93xswq1PeiJbarlwGWFFmy0GusosLrFwX+fBxs3AyHxfrtAz82B083v0bgA\nhHtMru21nCqI9e21jcfThcl7fZpEFGq0SEKjmf7VZgzV/nOhLj6TXsqoZjAiePvWbnXNpRe/5IPd\n2WScsjmr3zHgdBs1Y5z6nLgonbiHmY67exatG1wLJJr5i/NIELpvn5UJaB0j72tJGb3L+MYADKwd\ngtSRmUv92QIsfVfhto//6ulKBWpDAZ3gGg8V3OL7HNjJuqkq2CG3kiDcgS1qgTEYeEhWY6MQWeyf\nJZ2oXMW0wv35b2RRbMag97c6QWo1Cz8SRFDvgAT8b++rAh8HQSAYbdXwr0MobYsX2K69np+Nao+9\nMCFnf9rDMCxtXu15wpOGaMKJsRSjf0sPXKtnCOQJtHnUdRaJN84vxYkC84s43dqTGh9ESJoSl5jM\nGEqDmcTKBl1HcPq0/uoc2SWYzGTo1I6cLT6+8LNa4hzY8rN497/6NTz+0UuIVpfHP/oO/P1f+Df4\n29/4lfNt71gvNQU6kfiJp1+8JBfN1y66+OzzOH/fWe+t0m+/lcs9ctJq9xljKawEPTjE6ugIm7XE\n6pYQd6sgRaxMechYLpasXA2Crio5e6EbUB4KAzvMBh2M6LVWdJPIYnO0jACIkCqnmK61WCrnIWcM\nmu6ZZOwCZMYt1+AZxXuF9zM4j1W6b2JoKhDc5ngP0eQDQ0glnZClvlBkiTFGRmUiBTrb7dZlKeEh\nOWQdU15ZSkFdaHZZB0YxCYTuBeM4Yhvc3babTbN/6NpVSibdLTuww+53TBuc+j9kMi2cUS+WFNH5\naPakXsGREpK4iqcU5ZjkgCdxn1xmjEz39jvugJ1bOE6fPg0AOHHiBE6ePIlTp07h1OkzOH36NI6f\nOImFaFcqgM2GF9XBwYG9rl2/jmvXD3D94ED8co8EjLjJVlF/rIyrYKZyeXvZmpjRJ9Kc66kNwAuL\nbhxjhqSgvW3Ai4MaoBXIPr2XbqGwe84dsYaImkvlAjtnTsvdg6Zeg96/5voQ29gJUl7GoYxprj82\nBszsreHLKtq0flzMgEWYM2ATzhPAo2lwW7e1IMh7z4KI3IKp2jAyFYziV7WhC9X4RUcNBHpSv+ZE\nid0OckgZGtqxmlK1ouYsVdUdfGPgNKfUuwugfd4TF7NmhK4MsHcBYQYAOxq2OdZ51zYwpTM090ni\n+cIPuI+l0c2qB8P90Y/RaExTPPcDnDu07zSdK9fkJa2C2bwUJ0xIgtoNjwG4Bna7lrEmT6MLEstc\nLV4st9aGP+iz8QbCs2k2ay2452yiewI25gh04s+zY+3mXueGn6cA69Q/72j1UCGi1QoPw1Jee2GM\nfh3gQIerzgvQL54WeBR3yVKK0SqNxYXzwBum8xGH7WM1KCeCqM1RhQmUFK4mAfLefrXnY5Xq40u/\nM2BDHb3W2FgDnkDhK7tvS+xTscvXy8UXXhKLTmd1qRXvf+JRPP3iSzh/z91QWulBvj6jOJPxXrUC\nD9xzt3zaUbvo3L2IcWsMYIW/KKAWujdtvLjMjdttE7Oz1tjgUWNsNDNZbvb9YRgwLBYAENze5oGO\nDNXoQDd+54EeD0xUpTSwWmBqAL8yhzkBSGbZyVkEeOXjtWAcIX3Zcoyngh1woeCqxYYr71TJ2kWw\nYCUszE2Pxx7rz0TaV/BmSoTRM5xtt2p1iR4z/uwrFPxp6ILTV5I+EcgURTkPRiUGdgRUbSQtNsl+\nkNXiJMkjSPZGjQ3y/qsCLFnf4p7Dv7c1kgapUaefW6U0RM7SfYBMVmtd5LQAeLzf7Qt0gDtg55aO\nRx55BAA4LufECZw4cRLHjx/HsePHsVjuGVNbrVe4fv0A168f4Nq1a7h69SquXbuGg6MjHB4e4Wi1\nkoXAmdiU8QFaV6NI6kZfzNBNcSQUYheaRIRMYBOrLH47ZCEXQ/9TINAUZQxAR49PD+TA97tux1Xh\nUe8bY3hMIJwIQC8feOwCOjdrowc9ny7giYCt6Uu8R38RK6lMwxPklLZvkO+1aOvMxOrPWgeioIpr\nEcdrTMfjm5Ux+diBuc4QWZrqqDEygAMWQj1RmQKegs12AwKCzzQ8XeiiNC4A4ziyC0B0CagDEgax\nHnQM2Uz27QZgbLkbR2Tyxr4rwiavrhtBINAZD+331pmmXwkgZAOlPS1Z6tKeTpX2O5Cj4/Q4PTIr\ni4YQR0Dbg+5aK2JoyRxALAKirBJ4BEdx/uBCjk4vj2VEUXfDWjiOIiXkWkHD4LFr4qJoIDLOcZgr\nb78XwCqgmR8R2Yz8RWj613bew+KjkGtSUjjdEi4kBehZvms3f72eEEBktAamhJwXGIY9DIulnx8E\na53/iupAJ7rAlBGkpQZMYNa0ImF9C2DhOaKWl8qkxM82NbWdJl035jpkALd5Mv7eMP0ZBK6xOQ3v\nqt1723y10fEn44F1dwtxPp+5dEW+nbe6PP2CgJ2eMXf0blZEXnaopPG5FRfO3YM3veF1s7WLvugN\nn4Pz951tgWsp8DTFYBqmhJQl65xajypbY45EEbpac4KCbUhQQAZ0lHcGywa5VSfSUnRj16nStVOL\njrVa3AoqjBfknELhTYS9gttIiTjbICJwI1ZujFuU0fe6YjUCNcFSMb2Eboox4xuRyDiSljvnbHVy\ntBA7auX6X2X0/kiMPY+pmrXU4mRknSTNDEewoq4pZRA4PpWVxFuk5F4vkeswGKoYUzEPmXG7xXq9\nxXrNJRgUVOkemIeFyWtJi4BmT9gQrXFxj67Q0gD+fJWmjGbD/qSfS6lmydH9bCofuRLQd0cdKzXt\n3Y7HHbBzC8fDDz8MgN3Yjh8/juPHj2OxWGKxXAJEODw8wuHREdarFa5evYpLl17C5cuXcfnyZVy9\nehVHqzVWa9bW6OLLOUkeetbKMAGmsLDZbEok5lgCSBhIFn9ZLdqlaXgj2h9H1gj26J2IbB9ShsfX\ntHKiaxjq5Ld4ODPATsCjhwpwPVig6WWTe/RtzR27wM6cMHiz9nYtcL0mau+B0P9am7E443JBm/ug\nGKMVAGu4h7qZNL1UAQfVZQoABYSk5v4A4NziUU2IacYWgI72y24lnYrgSWmHVDhO2TZM3uRH0AZA\nEdozzR33QjdjBTzmWpU5qDsNGQOAIZFr16Vv7mLW+ih7v+rMs+20uLpb1RbUGxCHx0eZYBoCTptn\nrgACxPE6FRP607Z3AR4VtuYAnX0nLmJUC1JNk42uf6Ysr9K0nzqfLM+ihIK/Wfpiwg1UOCJ71jbX\nwo/s/oWDX1NKJvzYnJWCSgImAyOJz1VghLTXuvUpf/n/2HubWNu25TzoqzHn2vuce9+LHdvPzz+J\n8ogTBSWSQwh0kw4SjUgIGokQFiAiGiCSFiI06dBC0AbRCI2EDkEyHYyQIiEiQAIhhUSgKMQ2fjiy\nYz/72b7nnp+91hyjaFR9VTXGmvvc+06C8cVn3rvOWnut+TN+alTVV1WjykIdFyyD+Y9gP5MC7V8I\nOySuZMp0ooGWzfdRlM3NW9JcBTxG+/cF/qjY7Psjtv1hBkuF/7JvNTsUlZ7WO1rrOEaHDO5n4/io\nJT5JBpJAH5jSNUv0PnnI+fjR8DWQ3nbz3EXY7AQ1Tl7i74XfPQ945sPCZgtokpRJvHTKCyHhJ7F/\nRfAjv/f7/Mdzr8uP/uD3571k4Qn2JfhQ8ks+Q70OkKrgL/1rfxb/wX/2X061i/7JP/rH8O/+Gz9V\n9sj0opR6Wnp/hq0pei7Md8IwK0Z9XN0o2o8Cdlz55wb8vdBoE4n9XOu+lNo9UrzRX02dXxIfNWsf\ndQwaiTg3BGmthAZHshMXcL0fATg0AHv3zXxApCB3+hA3uLQmAbKoB4WcEPte3bhCI1VExES49MzX\nGRaaALpF9IyF8rXoD1z+db+mSd0CUOgVZqyQoZHRjR6dqwNV0oIZTawsiaXDtiKnzffj9NHx9PQ0\n7S06jh5zHlTuwosGujMDHD/TeDfpHqvcKesAy/d1zX5VgQ7wEex80PHNb34TwBzP//T0ZGFp1xs+\nf/05Pn/9Gq9efY7PXr3Cq1ev8ObNW7x58yYysK3W9goS7hS6jRvsbJFWy+K2CfZt9xSLnle/STK5\nbsyjHs+BAIACUakHlLbdx89WC8d6TIJpUrSyDXVxBvBSRVMNK/e6GLF892WP50DN6tGpn0OhX+Zq\n7ueJ9f5ECX7ffaYwMM6AKxVnT+XQnrGdqrBAgeGAp8GU2QQ8zzMtAaYCmXGNxG3vrUdIpcgpKPrc\n3QtxOza067UA7qwyznNrrPFwZZ40/772+g3iNXsCEP1Ase2n8nUPdCqgaWPOWvPcRl+CNGEquWWM\nn/O+lAberf0KduK6UMyeSYqxAh5z7z0rqLT+W8CiwsJgUzHWAHOTtb95yulNobqFAI70IwXceQkV\nYJQQwey+P6fSfQM3xTJpyhiF/qmxhfaWwIVAbhrbiEnPjFoiBOEEm+KgJsFOoyJZMjrVUGBZ5qru\n22nbBdv+gLZdsv5OAT11PbUxsAXv7mhbw3F0tNHRmKZ2mAW5Hx2tHegOdqoXDDVFOxXkmMeceFVN\nXEIaKHVHbMk40ImxrRaQ5F05DVrQFubPhbp4/ekhNO1QzhiypXe5JiegPArAB+DHf+j78Sd+4h/D\n3/r5v+DK7Z8G8N+jyV/EH/+JP4gf/yGGoM18JcTWyu/8XOVz1ADZ1z55iX//L/6r+OXvfBe/9Ovf\nxY//yDfxYz/yjVCAc1R5k7raAIB0Y+3gvF+vN1yfrrheb7gdc6iViBfr3PbJSARkOYw+utXmu1m4\nWJSoqF32sYy9YWE00TBSNFf8GWEyGSvjJiPWVQsAR6PomGjRanQ5mBJMkSvcFyTls2UzLAYfwItq\nqyVvCrAz8+0xkt8/BwSS1y6p4uua7B195fHrODSN2mshWwVm/Nh27JrrmzV/oqjpxn0+yH16E682\nD1WCcYnx6z3BECMRVvnByY7C8+U41UWq/ISCC63qp19VwPMR7HzA8Y1vfAMAcLt5LvynJ7z67FWA\nG77evH2Dd++uePf0FOADbnXY9nn3HBneqjhLEZ7whU2iF7Hc/JfLjseHB0vx+HDB1lqkU7x1sybM\nzyl7CMq/9Zwza7TYiozUvxW43AO3TN+qmLo6nc+9GrFvZwwvEncezva9gpwvc1Rw8xz4qX1br53O\nocAlw/qS7dXp0znIed+1K/iJv51pWQFSKgtjOTv7oqX9/uWk0EAQCRKoxGb7E/BE29Trs3TBdhxh\neeTmfd6Kx+qhYbuqInlHb/6cqjSGF2FlzK74V02mnjNKog6AgnWe4xoHfxaKqbAMQ+u97z0UsyCW\n8owV6EyeIMw6Z4DR54SQK7RfJKS0vHM8B0rGLFUPa3GrLdsJ2P6c6Juvaeml+C37ypQrDGWDrxnE\nGNR3/sXChiKmoMko9FkUcfuvpeYd5yAUMkSo2ebvUkCPg5Qtx33b9gw1KUBmBTnpYSzpYluDtB2y\n2SvotxQdhaQysY2O3rcAN8fR0DYHPr1jK16CbesYx4a+9Znmh63NoP+lNtUEMosiRmWc6YAtJKjI\npBbIcpmdOUOk1B8m5rSaWAroOaHFSN1QAFSFD6mza9Ar+yUi+Lf/7D+D/+iv/XX8zZ9Lr8sf/4k/\niH/nz/2z988ra1BJM2pmqNkAgFhLBEUA8GPf/CH8+I990zzbpz06P4wcjWZUkUDHy1Bcr1Zjj6Fv\ncEDR6qb4Ygw1D46FzR3cgD9Y7Bk+luxzAQme/Sxpk56jPQDJ5kbTma8mKJUcPWurptclAakZLQQG\ndC77boVG2xaFiZmogB6USlPDw+vUQVbM/cpLC7A+M3qtfJZ95oWqGZJGb5AAsT+nFRlZ95uKP5wJ\nIy568fTV1nfW+6nFTSGIENXIwuv3pk5YZZ+J3hqeaGCnhnKTpnh+vrgg6zGPH0Nqk1+UM98nZ36H\nHx/BzgccP/ADZhV69eqV7bm5XvFbn32GX/3VX8Wv/fp38Zu/9Zv4rd/6DO+enjyjiE4ZO6xSsoV6\nBDAIJXGx7kq6hWPPDU9FZt54eHjA4+MDHh8esG0N1+sVIoJ9v3kIXN7zOeAweU6KZX4CO0VQvs9D\nxGtTUUH0cb2OStxgjLiHaqztPWvz2TOf69fcrvPjOZBT771ez4w4fpILyS9+1nRvPt+VggAcz40t\nTnQJ/0UwM6iBYYoYhURRMt6LxybQk91rqYYY8G0tFIS77vozFYqjd8jtcAWqhAEhU4RScNjt0pqV\nn09oQIsitACddfyVQOfkeyqBU7ab7PrduWeeHRELrxoeNhrPfM97HW/2bwU6BDu5DnNcnvPuzOMz\nr+f7sUnDBN+t74PoFoB6EgJYTTHyi5YFc3XbilD12hGqEQJFnhBKZFGyV8W3znXySDh4N8AT/EHc\nU+jhJ9VCWz0+aTwq3hoqEo2bhCvQYUz9FiCGICcyYZXN4nENgZQIpG3AtgOufExFRwMg2ziMsTmo\n2XD0wzxMncDnwBhbpu7tG8ZmimrQI630PT9rH9OaSGUxlZo6F1ruAykAZzhQXOaIiv8EhU6sL4Fp\nJ0U5jVorNZJXFRW6AMO8jnr8enz64gX+vX/ln8Mvf/c38cu//pv40R/8/uLRSd5Zj7hP0CnXqn+W\nkpBlAVjfE8phP6XwPQDH7cDT9WpJCZ64sb2HESYyr5WwLpHG6uDu+bsVq/8xgwDknFWgw1TP5kmx\nEE7qLJd9xyaCzddsByJRBpx+xBeaQCIE0e7vqZHr8+mxaeJ1eB48/J4hZBJ1jYOPFLoeXrzUynEk\nL039JWfzOaATIbzRqAJ0/H5rkhBV88woPGydsr7cn8Y86mUAoDtpVSLcMIq9NotusPk6LENdCcUT\nT8hQ6+2Mw/cIOdBJcDTX4aHeF/y4igS+L0Bofs1nf1VBDo+PYOcDjp/7uZ8DALx58wavX7/G69ev\n8Ru/8Zt49dkrvH37FrfbzUOGELGs6bbcUhkVmRQrwCwKY8xAYGJMdNWS+UnW+7nstBhYjvfZQwTX\noe/Bifhil/g7lUxUy5YvGBZ4m7KnRftTCVwVVLNi5f4UlOcBvnF7jLSyLr+vzzn77sxLc2Zdf9/x\nnAL5ngtOBfbZM2cv0QI0qszkj3HtyVjDT8EstDW+qP3O+PsqoFvRTM6AjwAe0hZdDSEfCvEYUJFQ\nau2BWTA2xkYtpvkowoYeTYYI7QvIrRYt3kO7038z4ZcMfh7zCRwA4dUapVUrcOHQyTT29zSUe1Bc\n2PMaCEwduKe154FGed4zhojZalnB3/sNDnnu6c9xTtsa5LJP4224RkIpNq+yAQqp4ACVpm1eWEjX\nFDENohTY7wJmlqOizfAMlNlZxseP1oDNFd8MP3HQMYEfKjMOqkvNDQMxu6epzZA17tOpYWiRTnoJ\nX4v7iiTIamVsfHwgG9A8FIyJZkr2OypC8M3vDeb138iXW4K0SndWYNrAzCQbugMg3z8wWrfvXN4o\n1MqkCPePJKAIC7zNJkc/dEF6+dhmel4Q1yUQiO8mMOB8Jswl50eAoABkCFrRAMdJcyMAdpF5Yr36\n0R/4/qWY6PwcysUKoPgEPkp9LjQUe53OO1teaZSIYUSBg+Wz/d2Pjtu44a1nab1NIe9l478XC91c\nn/ChwRgdRx8Ojs5CoooCW7VcpMGOe0d2Tx+9tVxT9Nw0B1b2XKPblDdaxsPbLWYQIY+09SeRRS73\nzCUYNlWjgjEHA8cRiQ0Ylk1+VQFB0IkE10kDLjyyc9DzZODhjo+KJyoQT7TSxIzKD48ZfTDGVB+J\nQAew+oZb2yI1tHotwTHU9+GknDj6DbejJqoyPrPT87WEKtZCqKbrAaptuta2L7gcjdDZFuN852ct\nS5bGMVv3EvQ3g6Cv1vER7HzA8bM/+7MAEHVznp6e8Pnnr/H569d49/YtbtcbmKqQQnMriH44c65g\nhzGXmdOcaQFJYGWzY7E0wBf5pbhHqTwCMEXMGc4IoTUrJyAbqEoUQxbIE6WoiLTiBPNOywDveQ90\nyEgsjSXTH/pj45Bm8f9VJNTjywKX7xXgrMeXBTyTt4H9x6zYnrWLQ6c+xoERkP3m/E5KRz2hAJ14\nVyDi3VXAoCE7nVJbp+d4nbY7AFrbWlUc+B0s9W/Zb5XNyrld+t7HAI6jzD2F34792DEuTo+SAChC\nDMq4ArDsX8GMM+797vBxVBHoaA53sn+zUqAuIBH7ls6AzvAY+LjEJ7Sury8LdmKs/Xnv80SaYl3W\nVAE7q6e0XnMGiNiO1gRt37A52OH+Fa7Baumb6zC4Us9Z5ni1htFGWD8tBETB1OWiDMl1g00Annan\ncGaTC79JMi6bo8m32jRGqZYXT5kX6WuRyaql58a9OBOgrPflyEhpDxdPE0NiBQi2bQOkQR0MFdSQ\n9xAJy3hrMNDDpjeBjIbWhnvN6Lmc91qExbsPjKNHWNI4OnpvlrnTDWDmF4PJHBFLG66KRfeJ8ZfK\ndGTmAlQfFZVXUGPKIo08f/Is0WIcMzxRZwCNBMTVE1XvacprTUXO35Ju3n+sBjKIwzEqgMFkJZ5J\nxfxuzBC64iRX6wAnZ06e0fsNT9cb3ryxunu34xZeO8ALd3oYVd3zkR4Ibow/JgNqPDMFS4JRTUON\nNsEeXiMLLWthRHDn0TAC0Caxf4r9NI+O+8IFCYxbbv43Xl9qe3lGNV8GMabD5/k4rBbPcTtwO6yw\n6ujdEzDMBT2r1xWxN0hAI8I6393lVwU6IUskjSMcn23brLbiixceduhJBzzsdWueHU6M7922A0fL\nWj5dbY9R53w52Bp9WN+OKwAtehzBzkPh3x7u5mCH97ZxJc8rYbbkWcUgZPKqGtgT5EzLtci0CiA/\ngp3fRccv/uIvAqgIu1t2tadr8eqIVw7ewu3MBak6h2AYk50VJPsubSVMDz1GVlkHUohv++5VdrdQ\n+qp1xxYwyvNmiq0ekbAECMOSUtC0hWlYmwGGqk3elXLvask35sLf8hywR2Ib6tcn1XvfCadyzn37\n7vu6HvcA8HnAc3q9d+Z97ZmegWTs75PGExiFThtzV39Skf+g0h5Cmc/juVSIdfbuzH0SVyrrWEso\nreyFAavkgkaTmdHGh8boVxPYpxDPGhEPAeSzh9FPNcFUQ9RUNYXpkmmQYy4w2leBeR3UCl/We4Tx\nQF2dFQbrYaK50NGc1qvpl0rLl9CtJtpagcgZLa7zImL9lnEPZGbrJO7Go96XdLBtDftlj7XaeD67\n6+MTSosI9lbS3HexfSLhla1z0cBd8MIx88QZQ+kdG66tVr8bTFGMdldAZ2eFRbrO+99ZYD8AACAA\nSURBVPQeIzaBnX3fZ57J7H/+OcYqxoFrYVb1QwcOaJjGInpjVDJVNpwOiZGYfr4wS4jaj81PYAFA\naNLoHeBx6/foHaN1jH6gHw3dx2CAduRUboYrgWxHXf4c83xNGG2hz2lRBEDhq9IagUI+LB9aINVE\noxPYCcCD8g6Xj5gOYeYFzAlnnjvSuITgZcHWWMAsusq2rN3QMGDxjcPy/GHPPHrH1WvrXK9XSy6w\nREkQiOylzATX5hgGbhm6Vg2OkGzMmr0rvKGQqQxAyOzSR0tS4sU/fQWs8xaD4QBJMIfjZm2c5DOq\nitEpszKD2OH1aRLsXCfjVO1n1YkGgSqqnLyfb/U+cb2R/8G9vZEq2nnGi8dHPD6+CC8rjdM1gYK4\n4G2SYaAGyCn/4LIsM67djhtut2vMMZCevK0YOcbw2j2HhTiOJXHFFGpbAI+VFGg+b/PaDjrn1MX0\nJV0A6rrrR7Dzu+p49erV9DeJt22bpZ92QTdG2j24GInouw4TThH3r3HetDm5AI+JpbhwkrJA7St1\nN+lhGxxvN88TXxQPLMxBPMQCCUzWowIvKiCTlX2knJCSFzSNSTrdN59TGZFbEZAxuyjXPwd0Tq3k\n5ajest+O46xd698EGs9pxvNPhY6+zPNROJdISuwTJTrrN/ucLA2w+j24AzwDrvyoW+bLfS0BgYXi\npFVPMu3nUKgeQfshBOmdPI7cEN43s0gPEwCh0JWwnQp2pn0upYo9u6RKWl3C1wotU/mfxtRDRweT\nO6hg0EtWJstAvntll3V05tkx8D8CKJ+Bm3XOAkzg+fUaRyj+q/I6g6O0upb6Ruu9lUYTiTZYRXXN\nzdAwoX54MhaIQDZXAorySoXdQiDVwCd0CpkEzpRuiVVAYVwNKTPgibPsvK30cb844MlaJelJzIKB\nSTe+pkNZR0h9zxcIA19e0yLAtV8D2/LiNgj35AxP0106SyUeMMCk5um2h7SqRxaPzsBoDa11DBF0\nSKQCh9qzehnT4XMk2nz9ehuaL47WIIt1+Ixu2JgAL1SiXVEdOntMz/l13oefpNyTsrXeQ3UFTkEp\nTnKpwKVMwpc7dG6L1WfhDajKOoAcC7Bm+DnnHijjwDCm872EgKD3gasnPbKMapm1rDULH41SFG0L\nzwuA8O6o16yR8l9I7gCMadU3j00r4ZxzPR2GixHLU+4T9Bjf4hq1UZsBcu5h2cL70dwQ7JEtrP8T\noK2k664eS68DJlvS4WpE7u714YZ/m/uFjoP2ltBF6lzcq7RkTtv33WoYQb3mkSedQvJEkD7HcP2L\noNXDzcCkJdaOSDoAnztB8KPQGb0I63F0HIfRx5OD4eHys+4Jr9eGHhnJVRI4mVzMcgMTNRaZkACH\nRvnfHj3qH/XxEex8wEGwQwWtNY+xXuqEmLtSY3OhqkYqQxaCyj075zVwVutaJbRkKMlwoWYtDbBz\nvYYylWi/3TFbWn/uFSGTfyR4s0TqqXI2CTFUgTafm7GfqbzVlth+y1mxf+78M0BxBnhqW/7fOp4b\ni1PvjmoAzPzRf0IK/BD8MrOkEDoiC5sKTSyvxz17ijZJsrumwBBBc8tyXHsKeBB2vbD9uKIDCsuS\n5aqJON2bEJPRccCE3Qp2Hh4eSphDRxsbtj4wILbnp8Qq995jw+uqrKMpBM2VznZHF7UuA7yfz4EC\nbo6VmDvuW5vHM4GFhRXU8U7DwFw7xp7t4OtEETqjnwp2gLnO07Q+SCx3iiqm8xkiwzmIsNsa0gVM\nn6mI9qO7kSVDcXs/4twmW9CIdyiQp0paRy2d7BxSlfdIC2WAGLZl8exEP6tyQ/68VJrfNq9Rsm8h\n3CNpgIPZMagsenw/66T4ACvg1eXNa90GoI1Kj2GUIZqGBQXEvzefz7xCpfzTZPme8+7jzAQFvTUM\nsVfIhQA6oa2kwts0gY6ax34MeNicWNIR3Sb5ErRX6B6oYYgEPFn3JOme3lqGQyYpLNQ6GU7ymjkE\nLvrBC7xGjbWNazEBT33mFx18/vD1OIa63JOcaUmwPQh2RNCUtV8c8AyNVxaELR4h56AKYPTuGV6v\nOG41hC1B/dbcs7NZljTSKoGBKvcUIdYNQReBDtcpDUTMurZ72QquJXoNOwtauYpBMMUBNRpNeUJV\nJOrtNO4DapOOZN4cC7s8+uHeycONwMxe6zTm/cm01Lm3sBXe3rvV7xlq7TagyMQBCOPxqkuEh4jA\n4XLBw+MjHh4efJ/OA7Zti9AxJhJgG8O2QGN2t0QT1+vVPG2DGRTrWHsaawCqewE7W3h3GD10u129\nZk9m6huega21BDoMf8u1anO5lb2I6SUiMF1XgATNZSKh+fuv4vER7HzAcbvdACCybew7rQeW8lSa\nbTK1zdoGZCaLbhBbsU5PAgS5iFtbCNIXKVKpSheqncR7UinM+N1kmpFa1xc5JoKeFSbGa4Zkx6y4\nrYIwWklG5c/U0u8I55M1/MBC9s6MB3UBr9+t4OIM8Jydu/7Gz5PX6+RzPbe2q7rVv/yhd3Ov5XvK\nkgGGEQoGWny/cqsVJMb9ngGA5cGonj8pQmztzny/EpoiqdYa+FGzaItXiddUYsQtZLfjwHa94nK5\n4OnpCZfLJZXYltmHGhDF2ihogpa2ZW5UIZ4MRFph/OV3E1IhpgBB8RDNnoQBTyXNsAURQJortSUT\nEAxYoRXlVuaQOSDXDX/neNV5OzcG2GEbTueCnfUeE03CjRRFMQiLXygj5uXYz6yZFUxUGihhHKZw\nH8mLAnxRO0o7cyoGGvVbhjZARnh2aHGdgaeHvYh4VjgJq/EKerzzacSBRJVy6+vF9j74Ru+9Zltr\nuRF3qELEFBXG/0MZz5RA0xSwzChVrclaxoBDQu+rQXhfZ2HJWIwgnE+Ood8uc+D5OVS6SAPxmsFK\nP6Eni9JSS1ywNe9jbmZOuYBY61MhykW+pYFvxDtK26aluphr4vuFpg0kpPwkLwHEi52eGAVk/nu+\nZwSqroNtNIZ5HZrIHGU8NT3bBBlKiwmmMRllHJQRH6U/gBWvjEKUx4Gj9whjq2MSm/adJ9boEBou\nuDZEmnsNmj+7uZfQS2DQo0seKxJp5SGCsegdOVwaq5nPDJ5SdBKmdQ++WubBDFc3BwS3zAo3Eiwz\n9KomT2jT+opJK/SgHsamPo818gDx92yc9THzUNa6xzqTAxgAvLkXO/duci7he2myX9frNYq5qgK7\n7gbMG/cu2ziL8+DWMIUQEsDdblmklM9W1SlzZOXtsV7qOikgOGV89L7McjCieNnc2n3eG0nwO/j4\nCHY+4CDIIXGZ58TBAKjUDdf9mGigMr48txKkiGdwC4uFzMI7DnV+OmcXiqQCKAtZyyWFIQGpcFmy\nABdsRVkFBWu9pmeCBIarVeVJY0GVZwNFyT1X6Pi3wUMJFeBM0ZuB2Azcpnst4OR9yuP7nrF+PzPJ\n8+squLs/n2M8g5z1IIOyBAIEpZTFI5gVLcNTk08UpvX7qkjO4V+uHE43TJpNhSXfBZl2k4pu7x1D\nqBywP+4+93Zz/bBiOIVLnSvxulRNNRj+pOBH/31f29Hdq8N+tImGxRXL1gCRLAbnw2Prbit7TwCz\nFp6MWZ3zMsix9utvdQ8dx239vGZRqs+pt6diTY8Kr6mhgQQAFO4rMKc3zbwcthG2hm7wnWEREz24\nEB5HB4aiU0GI+10yDbKqpamuYwcYUByetS28Ox4U5giN/CcFtFuSi1WXSlUV+LHGijLEcI7NPTlb\nAJ3MbMVXZzy97xGT4Sm0yxxQQapgbCvFSMWBj+3bqW2pw7ha+qdpBokygTeCLkNZ5nyW0EsR8lAp\n4+NjTy+I89mObtxIhofaNQAbpBjqsq0IALPSXBjvuC9Ps9ZPKPWkoTvgMo/AbAgoQsyvozJL0JI9\nb5jX47wGJ2AGyqXleU5fiT0d+MCMNyICGe41CZ5SAG1dJrxO6d1JDxUcoNFg0vvA7Xbgervhes2C\noL0P6AC6DgAH1EF4V0Vrm2X2UrWQtpaGF2bggjLZQotQOpC3CLJIZhHe5P/Gyx3UIQFrweUQEfOQ\n7u5h8M8ECCKYAEwYYz1k7+npCf04sm3gFMye+q2EvwU5YKEfDq1wTjMcU9X28oxCw6YXNfP+TKDD\nPL2qFjp91QOA4h3b21mDimRpfOJ6O8IDc/N305U8bXTpf3cSYCjiVsJsWRvRjAaMYiCfr3Ios65V\nHSsBugLK8LmBfddp3gLwcJnV9RF66hfrS1+F4yPY+YCDYIcHGZm6q57xugDCwlIJiDVkVosY+Wx6\nB2rcdD6LwIVWzShitzJaFwxJtM8XbaxbDefFlG5VEcEBlLoO1ZpExQ8IRYO8M6xXs9CpwKGOwRi2\nH6IVi3xta7RZ00v0ZQDPcwL1i473nbcCsrV9d8/WvI58ZG1XbTeBhLPtUGDu/qOFRsr9v6BPp0Cn\ncZ9YqPlsVdBRtYoRwPCpbdu97ZmxLMephhtRsfCq38eBdr1moTWkQt48rKCphmeH825COnusvh9O\nx0ATiYKgQAn18nS7DbRyzvRHC6IJfLs3PTrr+J1Z02xuzbNTLXQ8aqaklUamFMKaigvDGnyWTfB7\nQoHq5eLfaQBpyQeW+Z9ivR3knL0qbVA71KE45ED3salKyX654ELPsqpXOhegIbK3NZ83U7ALaGgJ\n8KmoJk/hRGbcezX2RFhI415An5My/wz72LYCbjyr1eWyY/e9PEc3yzp6xxgNMmiQqusmjURUrtY1\nJaZFheJ5B245njjhTzZROV8TsJLJ/sAU35tfQtpvTdCP3LDcpOGQW4xOL8/iPMAVW4Y7Z/KOe0Be\ngXl8Hjw3C0qGMcH7pPH7fI+69lOuFLATyq2t4aGWxtyTmSf/q4rccuQz09scY1pAZWqB+XiFZqYv\nEdtPFX0rfKC0Oed6REhb3C9eZfP51Taf39xLYPtW2PcjwuP7UMvG5mGV0gSbA5uJTkq/E+zQ2MQE\nBdYgASyLZ0uwYA00yWN6Ducqed++bxHy9XB5wIPzDc777XbD7bhG6DDD7N+9e4e3795ZQVNvJ0EN\n13U1ujQP+2Kimshkq8WDQdCJ2fChQLSfIXoKYAMA2UCDSNTJ8rGztNf2rHfvnvD09A5jaOydIgge\nY+B6tTDEp6en2MeoqmVvEbcwKCyzGtCaYmMYcTybxtIM1zYenzpX8qBi/JjkiYE6pw7s+wi5mUaA\nyidnfVRjbeQSWGXZV+n4CHY+4DibbMMgxfUN5GdNBjvGwNG7b3BbM2ncb7YFnHEujyRjnZVUt+gt\nHF588a+CZGWGqycmruWzuMDC8p61VGrLTsdGndE0zXfVqQ22aLlQs97Q2lYuuPpdxAAviuTcDp2u\nrcK1fv6HOZ4DVuuAKGbGES7t8n3cCzS8TOpq+feZY/lRlx9IQ3djTCZIq5VfXK09AXIUEyhSIMI6\nohYUTBlsDMSTDF20yBCbs+Mwq+adS94ksimh7sKnxdqs8rQAtoiNJgidaUtgAsYVDkFsOCXtBAmo\nJVpgrH5f1ivK/dNjBEtvLaZ0o9Aox64KruM4/FH31u2VPtfnZdX05/fAqWomBRCZxmQKfSDA9fj9\nbZ836IanWSRCaDhe3HhLnpb9sz0EVBLMsulNCeDke8R8jgcEEoqYr+tIMuHzJxbCNgQYa/x+ax6g\nTwMAH2j/VGC0e9hecyuuXc9ioOZFbApsrhQOcVoPUMYxabkuCeAnRcJXWihgVMhy/arT250isfDr\nuH5abQQW+QvHKcDplsNQ9+/Ax75Jsz0/JSzHFMgO6ECDh0pC6FNJeVYqzU8enpN9OzYNDL9NHkHe\nEjR7J79yHM3vX+ijNdC6SDm7vuqITUAtZDPy2WEQca7rc3omg88Pcutym7kJd2dzPPsw7w51g+Fe\nUZMVwW6nsRuS8zEbTmfPcwCxZiFtCdAQ84FBwwNKRKAr15FFs+or9xvjt2b7vBSKPnqAgJtnVKv7\nLbkOaMhh/SJpWRx4HUuOwTSkImBaQ+orJjPSuNFam+0lMfHcq7jhsl+wXx6w7xdI2zAUOEoNq350\nD0275bzuUiYa0WbxwqzSjF6zMDG3OxQQpvTAFOOgpDF3jLLXy9ts3fOMcY0huNx3uGXmtULfdl9P\nJd6YhbMX/XFNSjLTdKyv8Qwx/w4/PoKdDzioUM9M+V54kYExGUH3GNzePc96YUxheZtCMWB3Cze0\nBpCCUGmo4RvwVwExfnJVbKPFVRnEGT9WMOW1KsKiurUGbBvGgGd6y/7P900BwXuMoVaDQ2fvUg0x\nkpGbWddjBTzP7QW668kzQOcfFvBwrtdnZZ9n8CMn59W7nVlOTHjcH5yztcXPsaJFhcDaoqBD/5pQ\nqwKXADquXcR4uZBUNY+GhvVKC1hLwZ5j4M/SAZGOdrvdhW7yusvDQ3zHyt6PDw8eY21rgdnagFKE\nL4BOgu6VVhIom8VQmynUvK56TxJULGPGfrZmr+XeBDj1tfaTgGSajxOAUi2P6/zl2KpnUkoFvCr8\nWx0fHyMCyP1ysdfDQyQLEdUISzKQw/oXngr1uOF6HLjerNZH74fVfBkDjanpXRERD9OwBN/uU1ZY\n5mmSFAGKt5X8kWmUI6yQYKgVJcI/J1+VUAhYkTyUs61FWBxir9YGYgWIehXCOuepGOTseau5gIrV\ndFp9rrkKPz9zrHTAa+scTyHT0Q4NLZbFHJsqsG2lmXaf7ue03lKpGlagUkfzWlbu1Sx6nXlVMhX8\nXUibZuFHVRs/FbF0vPRwqd1Mn+FYs7HCx1CoqBZgw+iqohDaWrbxb23mw9WzEwCC460ahZFX6V55\nI8HnPIdO41L7o/HfdLPCuB1nuPEgQwFnnVL4/8RvtPSpKseUIyxinnQjU79iHpB105h8JTR6TcCT\nSvYJ0Nk2QEzG33xTPvnx0Ql0jomH0nNDYD4ZMcVCCYcCvbs3T7l8ZjkCV84J9Al2svgxQ3HnMEcp\nHpXoy34B4KGCR0dnrR+vYWRGquQ5jTxH6DU2z3E9yGta8dywnQoYP9UOS2JZaTW9V4mnTnh5TZ9f\njDYYCQvrNaRVa695r2OPVQFiM51UPeCrd3wEOx9wrFaoM8Bgi9Q34fVUdCw1IsJiw+M+5jyF3axk\nJsObC3VtcFXiVGHPNs739j+SeS6KqDHM+T6sQ0HvzjnQmUfEGLEz07FUti8KnXGzVKrurOcLWOP7\nKszmfpwvzn+kgIcDVu59x5CrYF3uUJn42k9KudoLAqDnWqrlX7tD5nwijkz9aZmz+iydlYjw6AQD\nxcS02f4R4RrqYAYQpuGNubJLe+lzu93uhPFwe/Jj7yFgmwj2bbdq1lsyacHhsdBl30oIwnleJjBa\nQiJUrGBpHZd1v0214IfXwTsVQjCUrnPA073I43NrcfXyVsFG5WXlQWxb0J3XBzm7RxbPZIYpUwaq\nEnO5XKw91Mi8L9YP1oew19Xfb0cW0hvdrJURuqGAbdBlqnzz1Cjpocw9eQ2VB26i7mrAq/sFYbX2\nSWbmPfj1c6hbhsPkRmDf2xBWV0v+IKrmjVKisMpzWlx7t865jkCWcA901rlej+f43J0RQK2cQagn\n0YzQjI13mh4KprGZFKajYWxbWpH7QD92dNzS2u5FoGl4YM2QQWXsDvDMKZe5LoYIGs73M9aRes4o\nZ8ScxjIa/4bH452t7+rtr54mA2XL/ADpDa0cVkitqQSuc1f5sRLEnZFFScBDulctRlHuFSsgaaKB\neLgroDrzF4axAu71hYXjNvZDeKmysc7SnVfHvZFABxbaWOVwzd7IRCYiYvN+GFBgUVAz9Fq65jqv\n3Dd4FplBmWKe+vsiqXVMkx87/xMaOxjmv675mR/uJYX15muB7Y79N14sPjOANrQ2gK1kLWwNbdtj\nbwwnmkVHk+/OhpLRB0a/oZB98HHSRjWyrUBnq0AnCsE28/yFjCjhyH4wZK+1gUz8kIZzkATC2D6p\nOV+p4yPY+YDj5cuXAFbGilIgz38b94w3PDN+rBbbufItQriQwkxBzP06dMHaPiIPGdKRMa5bQxuA\n+EbxYK4j+Nh01AXGPtLi11qCrXp++SsWhkBS0JVD2SMyWL8milAizFx2H+/naok/U/DWOVnDjn67\nj2lsqMmdNkcgct5OWlQp4GYrr9/69Mr124Q6Iaopz4oVWpZG5kbgMVl1iswsVxYPRwjNqhikQooT\nC2P3EE+eR4OBOuAavePx8dHoRLOiOC1ScCGQ2W9SUNRwgNX6GefSszPpODPYmA0OmXkoECQ8/MBB\nTYSu+l4jZpLj95OBY6FhtvGMzgF6zhKgrwaBKuRqYeMpyxpD2NjHAG+wsBaPOT9uN/TjwLt37+J1\n82xDt2tmHrpebziuN9yut4lPRUa9kuVNRCxd7rAsbKHOkIcwtKxkTNv3PQrYCvufg2M04P1tTULB\nuLd+pncsrPRSvUGuuNhAVsouNJH7se4V91SKmX2LCaurDKj0V4/4OwCts5AC8CLMqRBsrscyJoBv\nVHcFGJsXNs2+t7I2evON8NgBdDNnqQCDyUVGrE8q5GzHqGORto6JG+V4FeDB1pN2x7D9ZoMKOLNK\n0kNIkHCufNVnAPde1pQ/uU6ShnKu7SvfBwMPZ6NyXc+dmFn9yEYiX6jKeYYrRTjo0cNQ4E67fETl\nE6iD4GDW69BMvFFY1yU9ajE+NEiVeRLMQ9CE66juaWkzwCmyNkDXkYad9E5wb7L4uVWJ1oIYZX6V\n8Q7jUpWLZV2GjPE1PHs07teciESGQo5L557Dkur5uFmSAlVgMwvSorv5nqbdpao/H6ozn/cjDWFM\n5DHTRT0mgzDqOed6T5WB9d3u1WJ+c7/3CsCYuArL8RVFOvgIdj7o+OSTTwAglBbGqGsfgPRTgFPj\nhO2YXZH5qoSuoZCiCFMqWinE9wJ2FGNsRQnkXh6/MoCOBuCpinRdFGmpo7LLbGt14fGYRGxY8GMD\nbl10mp6t6KkVnTCGOyyTD3+rQKcKprP3BGdz4oLf7mPyGCXOiHo1td3TCcs9sm9IIVsOnf5MkXx+\nTCNeQA6QQKf8TtotnzX2tbjgCWGElJJUvvxzKIpVYLE5SEZsoCBpYwzF6CaQ+2A4lODiYQb0Qpgy\nPY9ZZIEaCm0jq80XBat6F1NBU2RzZ5BBGpRiQWRl6lTCXFiegJ3q0bnfr1dTFZ+Hyk5W/aIknt2n\n/l5rU9SwkzvPUXmJ35eg7endOzw9PeHNmzd48+YN3r5962DnhuN2i/CO43Z4FqljqtnDDHfMhLZf\nbA6FcwMLTxoaDM/AJAHK7oDncnGwM4CRvKWI8iiSGCF5UTw0Q0lWoxIUEQ4Hz2rZYNnhGhWxCegg\n/l4t0kFCpG8w5KusxBPAUw/SAW+mBUxbimmNbHfBWyVItyxJ9+i2WCCuFAsgPRSy0QeaGzREOqA7\nVLe4maJbYp3WgN6g6LZVJhRnAq/MchUNWfq5ykbymmi34zIdCrQMR6OnZAIQHJYKMHRO8MIMX6s8\nRnDKssbKi0o0Yhw1Poc+Xa6e8U4CvgoKKxyNPWVuuPgH3/l1/Owv/H3021OGurvxlPSwsHunjRyP\n1sQot7E46LakjZfkgSMNPNn/BFPs49YaLhdL4MEEMiuAIP2voboM/wpaBmZwoBpjFctAc3wnRAMB\nuG7dCzEnvGm5hoG7pCGVPnhUGQDnP00V/fAEEe6xZspnGqS35d7sE/sDbw9DNhlKHTzeZWmEoY6k\n56CnRb9KPL7yoexXeJ6q/hF91uVaQWvdgE4bqGUnFkoLcvsqHx/BzgccBDvVWmvCIE1O9wzdD4Pv\nobjWxbISIk+lJSYOX+yrG9PJGvs+Jtdm7Iej0CiWlHjGM6ap7IPXnIhTc0HMDIVMa1aQVwtDKI1s\nU9MItfCgcded760ca6jfcwrhqsyux3rfL3usoDCFY+U8uB9SAp0FpH2Z59V7hfWqNCChY9UAaguX\ney5/OSuMS52MQygS8AaQWfolCz2ob+iu7ayen2hEATwBeqgkDBbKc0uVqu/TeYz059lgCcFPkC3D\n4t6HCLpQAGR1blokqdhPBoXSbktUIHFOWhVlosWqSFHo1M9nSQ4iHME9HZW2VpqdlDXVUiH8XqDX\nsDvb9zJ7duY1lIqNPygF8RgTyHn9+jU+//xzvHnzxrIN3Wi51YjPZ0pqaYKLPKA5UNkuF+yX3A8k\nsNoiow9PCau5cVhNQRf3BjW/frtcfJ5GqbhuCoZ4dW9pEqBmK54kenZay7A90rmtyzatTRXfUUSw\nUfkzCVgAhGFFQ6ErQ2nPGJ7koP7Gsa5LovIryXWYS8ZXus5rhkAg2s/78w8qMQ2QUqFHRYBOumue\noWqH6g4du19sVemlbYDvuWHxLBXM2UenQwpoCAxbgADpPH/kfWS4TEisEwS6gia76JyXnsmd6bsz\nHuwLguu8dKd8N3sSVkMRZXYFPcguQ4T164DPXr3Gf/xX/gv8rf/z5+JRP/x7PsWPft+nU3sDdpFG\nUMdwDvmuL3uey+aTaBPJLqN5yKutEbXU1FtmWttKenMeK4+jXkTDDhOxRPvUEpu3VmnbDSy+tuzc\nsj/R992sfYv12CrwSQ9clVbVOMRQxZV3i6/l6EMJ0e29u2GZqKOMFdu0bdiWdale3JRcg/rRUPMg\n6RheXNiAKvnMDHAWmguKSLqrBrzjOLJkQJvnrIarxdhOexCT6Cu95jO/mrDnI9j5gOPrX/86AESO\neMA35SFDviIjDXJBqCr2fQ/Fkr+REc1ERrf9wm+d1yZjk9hwS3W19zWW05jYuUAwIT+7eCWsA3dn\nay4vusqBGYDwvOcWRlUK6W6NUDURCIYpPeXxq4emKoUV+PC9Mv6z/UHrvc4+v++YLMJSWU7iASn9\nV9eYzu9/Mk5UqKoW+kzTKswRRWyQleUc+zJB5qRYuXBmDahQ/gdBT95kshhBwSQWkPQpnbFD3uJ9\nI0za6PE3AsxtW4uio7Xw5caaJoIMm+gjsnVVxT8tvZkimqBn9ZBwj8i2bRmiv4KUzAAAIABJREFU\nSjC/KE+VniOrFYfcaY6x4FX41LSqlChTVquyT6bOl1UIH9nWItjYn967j9tu6bvLRuLV0mlW3o7R\nzZoJ5QZuxdu3b/H555/j889f4/Xrz/H69Wu8ffvW9naMCoBNY2ptQ7s0PDw84sWLF3j58iUeH+3z\nw8MDLrvNHwBsXi09hKyvE1X33HlaaKaKZibINhoa49FbqMgAvD5Hm0P2tn3PKuJMFw1fLx5gpjAD\nqyTemsBDBTsTFUsDMGxP2kDSCJJ2q4eB2v8XqQxVj0/lqXILdU8xkl/w2jiPirZOa5Me4WDTpIfW\nIFtDGxvaZffsgpbQzcDoyNcYUN1iX5iVXrCMbXV9AOrjXJRsEKBq8U7LXT9Q+iAxJitwkeC3Z8A/\nx3M1QN7LgdVqXqBkDOr9ecW7AHKWuY3DPV+sWg9sHnKr+E/+6l/D//33fh5/FcCfAvA3APyFz17j\n209X/PDXHovRo4KveZwqj6le2xhBpmcmL/R1K4AbByyqZA+9IcHDvjdcLhc8PPjG/cV4M6dGHhmG\n57pQ7gFp0UZGsZDHZNcypXvdT5NJaCrI4X0TGIgDcKP3EeAGQBhvGG2C8jwmQOE4di94enj6b3rZ\n2sRrMrlKrNUiK3WkURlhpvDfkOHVOmy/TBivW9bZCU9pAUqJ0TVes8cy6Y68nvpYjtVquCk8JtZI\nATlUx76cevQ78vgIdj7g+NrXvgYg6+2wwi2QVg4j4lSeuMhFJDyWBDv1CAtDUabvCCwINTMUNVf2\nBJnTPZUbYGtqtoNVCCiFBN3KWUju3g3KNnLBNGwsaQGURfX8URflaolmyN0mAEQtU5PO+3b4nHU/\nwwpY6jXrXp95KM+BzvtAz+TVcWbbilVveYLFm7tC8swd8azFZAU6BQDz7DdPN7x9uuGTxws+fXGJ\n03W5NG95rxRQERmBbhL8nHnFgjY0lcRtATzvO87IevWCqlrmPpccFsJWQM5ssWc2th61DZjAYy9A\nR4JW5yHOhBgplOvm+DYGVJJ2FVUo3Htz1r5QkM20IxPY4TUHcLc2qiDipvDh+xp4bo2nr3uS2rZF\nGBfHjPfNtjK96mFpiEsK6devX+Ozzz7DZ599htevX+P1m9d49/ZdDJ6FE14icQQLsl4eH/D44gVe\nfvISj48v8Pj4iIfLQ9T1gWo8B1RSxJWEYWOw7Rds7tlpDtoMCNkm9arEE5BUjzcLhsYepah3AwdV\nal6E4Mm5FyoZG4rxoT2zjg3wJIgp4MLnTN1NEV7POs+n9+ScL/yXrYsP9wCBLUiItFj0gdi3A5Go\nNyUKiDa0fcOGPTCsAhPQkTEgbaANhcf5meKnI9d/USptjSkGnN4wZsB1wqVmRqfTHHFc0zMh01qY\nxuELhNIdaPHviHYmXCRyxz+FKCeuKaPuc6dhALX6XuQz/+A7v4L/7e/+LP4qgJ/yR/wUgF8C8Jee\nbni5Cz592GNIVtmy9oOhqjP/6A50enjLmcJOkOHAln55x2Xfoigo1xLD2MYYUeeMn6/X6wR26j4c\ntpNto6cmwZiD4QIiI2NiK8V/N88eud3vaz6ZcKgMQNMgGsaowvPYQEu9LpFVTUQ8sZSH5PUjUuhv\nqghGFa1HmW8Nsk8ew1/d/KDZnuTtZT/UtqGJGa8t4yT1sHyud7N81onnV+CT45x0EoYx+2K655i8\nf/zZx+ZMh/yKHB/BzgcctErevCYImV214nDDmR2zUu4kH/SXC+RMBfQ7LMqZTB8qQc9KrAkBYyAV\nXPEcdSGRlpZ5Yajm5jrvif0unlBAisWiHr5KKIRWJW+yUtdFKgJPiDTd9cw789y+hveBoPOx/fKA\nZwKiKCyAVqVTLf7ku/s7TycV0nn2uB0df+cXfw3f+fxdfPfDX3+JP/atb+Cyb3npiR4BmZmWqiki\nMmQCOyG03DJEgRvzRWoeXjNHmCQjwzeSzVutDhZGJSmdgpwxInSMYkVE8O7du7uY78vFLfdbm547\nXIASyGRCALceIqNkEgyVDa20LjZLd7yCjjOwE+fIHD5QkxHENIhMyQICwJzsJZoSKhQgKgHSku7p\nbeU5U5jFnQfWrZ3dUqweodQLDt9g/O7tW3u9e4fr0xOOqyUraNuGTazi+MPDBZfLw7RX8NNPP8Un\nn36Cl598goeHR/PqXB7MerzvgFpsvDRPMeuUQi+a9YVAxzwONj8KgWW7K4OZSRaK0rBH8dA9FWKn\nJ9NBXEl3d44ZouaslgElJMNKzg/SdK6L6VBbH1ETJK+K+9/dDzDbsSvRevfzYuH3Z3BotAIdaNwj\n7kQl3T+qCBo2QDZAdv8tk4XQO7HtGsl4CExUBnRIeLETnfhoNAOWo7kiCq775BNY21U7NymN9e1E\n5olEE4CZx9wZFNejgEcqsJX3QYhrVpBU+bePNYFOFBS1tPZUbn/l134DgHl0AOC7AP4lAf5bb/cv\nv77i5fXANz95xO6WRVnnfOl39n+eg/CyeR9ZW4tp/AloLvueYIe80J/N0CvW1WLxU/Py9jJWvle4\nzQkCalIUkbovjfsKJZKIWMRKMWYte3I4QeEprPxYh6U/f4ZPT/QgCtWGUXjfOAFvQXRBa+TRHnrt\nhV5Ze4xlRobOYWxBgyAgwiSPSc+cv7UP9nVyjzvgHTRrRx33yp8rP0xAZmOhhV6ee8ZX7fgIdj7g\nYAxqDVlhqt2VKE1Q6LS4QvhoEiUzX2RdmxVArMQMt9akO5SMbLYYGBNsW3OekothYkLb5pYNa19d\nzHWB2MpmexjPviiAg7U9GrZSNXwCbCeLZmYA5yBq9QjxWPdO1OfU97PjuXPO2nd3DmYm9qUZwaq4\nQIBnMrI9d/ydX/w13D5/N4c/vHqL/+MXvoN/4g/9yDNX3VtnnhX+wQAxKUS1yRTqQ22+AUtgwM3T\nKLcwy69EGttGzYFjsdC8ATDb1yGH4gZE2CgF13EceHh8cGX7EnUUWKiSShbP37aGfdsgaJk0XWYa\nfU54hHXwxHtT1xwBxxRDrhrX8X5VMQ/htjxv5QN2P1f4T4D9HfA/EbS8Pw96dCx8TWPe+sH6GDez\nDg8DTkwQsV8upiQ9PODx8QUeHh6n5AcvX7zEi5cv8OLxJS4PlylFbWtb9ldsLnYAEKagtXZHQoFt\ns82+4lyu2XIRn+dMw5/pY7eI899C6SIECT2QfMYxyFDWExE0ENRXvnmCSZaDhqdJIZkMXvYdOC8E\nUbwxn4VFhrD9lb/xH+UV9XMqgajvBVAon2dIx4FVQ5MdVnjw4KLIMRszbfJyM1AY4Kl05Cvfzm2C\nNgEdb2vlNd5CM8bFVwbiOH+ERlSuITmuuGMlcUxGFejdupjOLTfSO4tVztW67oKeVKFMv00FfJSx\nkIZvfuMHABjv/ikY0PnrDwD+DIA/AODbwNv/euBX3j7hx7/2SfSVg06+UZ+f+xA5trMusG0t3iP5\nwH7Bw+XimV3tlTRr+/FuHiJ8vTLd/OGFhLM/IpTFxbhSQdOiZJNHh6eh5brdWjXQtOg29SZFGpYr\nKBmxL7MjaWrWU+7nukBtXbIKlhmn8TiIHimLVDXqCaVHyAAXi/dyDuKeEzPR+X5YM4lmgWbqaDFu\nU0gf732fgZMePKB4x0TKs4Fa04f9Jq19BDu/yw6CnSmz0hjTApmsZyuinxC6fTbLrpSY0HJp0mI5\n6n1GMjjRSRGj0GB87Kq88dlkLIDRfu/MzDFbBgzIWAuMOc2KIIAoytZEot2LHJ97UpiKupLg9oTp\n9y9abKvVvH6ujO578eTU4+x3Ka8TbDZdNzHZqrjI6QS/93jzdMN3HOgw/OGfBvCvA/gPX73F63c3\nfO3l5aQxSMaF++x7a5tpRZwVtNJc0nF80aJfucclAb1Kg6gpp9oMMEMXELWM1RgdRwlJqBthr9cr\nXrx4gRcvH/H4aMr27jVZ6rgTpFwuOwS2x1rh2w2mDZyksbQi8j5V4EQFcMz0X8GOlH00q1WR11WQ\nbtbBmtXrXjivluTn1sMM4FMxOjusPwdwlfDyTON8u0W9nE0aLruN78PjowHNxxd48eIlXr58gX2/\nhIClN+fh8hChZNu2xbhaWmEDO0YpEmCHfQ5rbjN3b93fIUB6rKShFtWz+P4NuRm39L0YVfLdCUKH\nezcEiuSHZZV/wEEwUeagKHmhOIXikT1MJUwCplR+Nj2lrMMABYrYkVShwtS25khP+NTN5JBmm+i1\n5rom8Aku7X0b4sk8xoBw/44frPPiUDCNIBX01PZ5e2bQUc8q98BzIdSznJ0U2BW/3F/qY+gnLucS\nPBeSzEvLswZ5Q9SXaw4sG37sh38YP/mHfwJ/8Wd/Hr+kah6dPwPgJ/1GP2ntePvTA9eheNw55unf\nqWu9ymFxAudoScwlsIVHx4p6Pvhr596YjR5Q83LcxoGnW9bUYgIC7mchz2wi7mUvdWuKZ3k1JCWA\nyHo4uXbXMhxlDh3cdE+MMhueu+0/HMc8VzKPV/1MGiMJ0Ys50YsDnQA8i34C+JaGBexAFVvboA1h\nUD5twx2dZh2ruVzBfG1GDEiwD5MtNKbtkbE39oeGgaB4MbX2pQI9pzWZx/GrdnwEOx9wvH37FoBZ\nmVk3I9B7a2hhqRqeHfXE46PnFoYvc4SA1hn1UyTWAqa2SEzRRGGOX7T4U0mjpdTDhjAzTxExBeFO\nkKTdzM7L9+jH0v/p70mBno81WUE91swjzy3MDwU8pwe1pi84Vm+Kf4mwqnwPj3zzdANgHp019AEA\n/va3fxX/1B/6ETzsW8p0Kr4QIEDWAjY107Y+qzCTgNd/l/vMDDMVldBRqrL0zFhRkTIvzwhDQ9yT\ndC+I9J5b2+ZzKihZKkqfeUPunruAnDPPaX33h91/t7SJ965galL022wJrJnU+hBIG3HeasSYEzLo\nXT/WcRl9AK1PiivDlLbW8HC5YLx4MV3/8PBg+3IeH/Hw+AKPjy+ifWlNvITSY/wj5z/ColSz7svW\nItOY9b2ECQvQY6kJ4CCoKkoBeDbW0UEIaij5ZkzPPQ/yuWOhU3peVkV2nsugnvgulQ7eNUEBxBXR\nCdjkzfRL8KB7utIYlwkEJHuZnmdtYCNnPV7Y8BBU9nFTtzRreowENicAMHqHwPekCqBteNa2BAyh\noFsDnNbYDPcsVc4v/K4ovARA3nADdGUkgj/JNM8TL9IalbAAIX4W1Mk9PfJJcJmn4fkiwLkryhxX\n2u3//L/4L+A//c//Gv7Sz3/bfvoDy0O+ZW/HGHghO6WqD8+Z0py11MgXQa+LiNfNaenF8SQAm/Mb\nFgVlbbWjH3i63vB0u07p9IEa9ZF6QmPxzGosKgaaCuxpVJr38nBfnARYhGIqYhv7b8reQgId430G\neEhglH+yjNWZHkQ+JWIRMZBM/PLw4Pyu7B2lnJj4aWnnREOeGryRAlz+P2fITeNC5d+CMerWgJNr\nNGW57bmqCX32oD1GQOS1qVsmYT1vYPkqHR/Bzgccn3/+OYBMPc2F3zbLHoQuAA5gwAm1VpbWO2Ja\nQcD7DpORdOHmIrBNvgl2WPn3OA50XxyyuFHfp9hXF2kr1lPbc1EK9CjB16xUGfgDkim3ySJRFeR1\nIVWl+L7/5wuuPv99Suzax/Xz9wJ21jZD9Xu6frrXyX3fd6+Xvmn1bwD4K3If+vDqZ67429/+Dv7k\nH/pRm6bC6KlMnFk71/GVOodYoUmxwypiA/8XWUv5NkftEUzxuTNwUM2N49O4+16YUK432wty5uU7\n85CExzLopqhVLmiGzECnhqOtQvO58VwBRwU6vAeFN9uyWjanZAx9wzY6FPdgZw2zq89i++uao8UZ\nvaNDINIj5KI18T2Ktn+m0ubl4QEPlwsuDw+4PDxg9z07Oa4eguYFX4f6njBXVqOIZe8WglKVoKAK\n+1tpoQ8LNYGQF8TzfQVzetpUClea5/y+96iXQwpwIG/imM8XmRLNk0PbTqLXdYGkMo+iYE884VnT\nz9pgoin/poCnWMpagFftIsr61gErQmrGkg1uTd8HVPcJMHJMBIKB7oopW00hkYlLJEBNaW/5614Y\nVrBJH1e2nLKiLyOUa2/+LmkgvUwr2Bknc/C+QzV9alR0qajPz9TpXNWBl4+P+PN/7p/H//A//6/4\nr/67/xH4NtKzAwC/YG+PrHFDC/6Jks62BH8TiT2KzDqWmSbz1VqLNYrDM8r2TB395OmXRxnMdS/I\ntmWh4uoxuZeTZdwa5rTHkp68XuoBMfvkGD3SNQ/WX+s9Eg8wygbomLJu1ueDa2EJoSt6Q8qHDa0h\nZEpklWT9sG3L5BMlg23lu1DS+ICFiPq6KCAfJ89Wz+muSl5J3apNNGUvi5KwbRCARftk9rs1oQ/v\naeGEVT4WnlXH6v8Hx0ew8wEHwc6k3MMW/+6bgyP3zugBbqiwnTPQL+seJEHrYkHovqjSsxOFvbSB\nESPcvDwp+s88iQClKg8h36ZwG0zAKxYgZkZci6jF4kcy56mXJ4oIz1st0+uxWsRXITD38dxCdgY4\n7oGApCRdlNsvnEtJlpK3OBfWi94PCPDJ4wXf+NoL/Jufv8MrxWnow6//NMPZHuza+lx9P+BJYSWl\nWKFrf9SUCl3bdX6uZqfeR2fsLj1HoVuu4F9PLKaqEXJFZv5wuaCzWOXJ+KtSZbwXLNlGyUEqIGEF\nOmcJM/iZ/GC1JK+x1yvYWT1GVQBXQNdaQ986+tjuaKauDf42dMCM7HNK+aBzNc8O1b8hArQSe783\nBzrZV7bFLIaXKPopE8hkKGCb2sR97VM8OvlFY3pHuVt7gxXYQUXOlaTq2fF4fxGJtqSBKaZ1ASjP\nWS4lwFcqJqkEiy9GTUIuxoECrLV8w39E4m4JMMrzC2/RcssqPSYaL/fLizABx0A7uuA4v1cATFWo\nbgtKAHSvng/EgPJe3ffjwZVD23elmJPeVBg782ONbzG3meBAKjwpTRPjDXbqDHCq7D01RHgq/um3\nwT2n3k7BPT6Nh5cxAQAmIgg+VQoZn8xPNVb+vm9+A9/4vb8H3/mZz+z3b8GAzs8AnzxueHzYQagY\nnOo9Rjp6JvbY7M9UzglwzPtSYOPo6EdH76yVc8PtOHC9Hbi6V53enLkEwCW8uDk0vlm/8LVq3GT2\ns1xjFSAh+G+kth7di632iZ+u3nYDOQOCuWBqBbMV6NwZdWOvkSVLEBho3LctUulfLpe4bnTf81hA\n5h296XCmB+9r4SNsR/GEpc7iLya3CCA912tLmk89U8R2pa5gp7Ut1ub3Ymifn/PVOz6CnQ84Vgtx\naw2bE2XbLEOSnThbNuxcRIhEFTcrkRdD1t1zwxohWRm9tS0WA88NhuD8u21212r1nhTbEyo2xaZF\nPRPdPPa4KH+rop9gJ93B1brMTp0pHK72nQOLZQ4q8FkPZrf6h/XYfMjxZZ5VhTb1mudcxaqYGZIC\nQxR/5Pf/EP72//UrwLvbs6EPb54M7CRdZWalDBf6Iiv3otShKDkr7ahZkg0I1jF5/tamyKSKI0uf\na8tinSAVBfOwXvH0tIcCfmel82tHFL5MQFyFUhNPv65zzHgFKFVhIuCdlK/Fq1I9KhU08bcM8bKB\n4t/1vWbSCc+G0/ipElfmJkKx/DcCnhT0nlDhYrVoaj0as/imUtIcRDSpNT2sPQSgOa62b6MK9go2\nuGFbB9MQe79izmZFGOL8pM3KyQpY13EIsMNZKpo0wTWgGdYFJHAq94/7OVojbz8j7dV4khqcPTdh\njgOHRPpp9a83fM/6ZNumMWiw/qj63o0VpCEXVsFa5M7qX8RngdXgaRvapp6Ct4Id2+fUfUzNtg5I\nB5iBEWWsoruVR3iveY4uv/MLrReUc3Iu/bzy/cpDlJ1djgQjBNUAWJZBEpDZKZkRkQxLIehaFfCZ\nt07XjuH7TUaEYf3JP/wt/E//+9/FZz/9FNe8fGj4fd//NVuLDEcv63k1ujCcfm+ss0egQwOBWf/N\nC0KKs/ns7s3px2EKfD88PBHmNZesk1NrYNUwVfIi7qU5+jHzQ/KS1tD7wLYN1EQGEPEIR8+KVkBO\n71T4Nd7DkzbSINJK2EAFQZwPceAc+ltT6ObzE3V+LAV083pt5snZw7BC3pl7D2Va5jPQnr+v76jt\nKHudqv5C2pzveb8PFMjEWTTSVQNAnkYQhru2xbohXw3++ty+uK/G8RHsfMBRlYkUhMCmwNANIrbB\nV0lJmM+HeHpOzAxrEtwVFNhJ2YBnrBEDaqFzy0IYw+OqZa64XsN31r7lo8yVy82MptBYyljuV8pG\nrten92AMFlPM37WMTbQLVCTOgdfZPLwP8Py2Ha703ik5zxxVqJbLvxDwFLiBfRP847//h/C//L1f\nfjb04dMXl3vANwh2yOzWOff3NGdPoHXRMeZz6zflq0LO3p97xXNWWtjnWTETINOWTmDnhqenp7Be\nreuD143WMMY2CYN6LwM7LcLj+DrLwBZCR8Ss4T5Rdf3Ve6/F91Qz3I5eiFVxX0FOvNT2Bj6XMGEy\nnhTFqD4371m9RqW+Rlg4ff9LUUjoOcn2LqGo1OD5bMAVITjYRtnLMEKhJMhZkwpYXRcBRj77OcAz\n84W0kAawJiVZOreA2Kl8y9192UdEHRkqMBp9DEX+BHxU+k5mmbor1ejy6/RZgTvvQrWSx1PimdY/\nAp44PwajvNfH64zLlEiHMmOzfZxbATrNXz2AD6IosKiHtnFB+0RYOyTX93pUWuJYncgE9pU8Y+XB\nhE/TN+S5p2inaH9mITE5WVEa76vuXQaAZiHeKkutvSjOO18/y+cEPHvb8Ee++YP4zc9f49Wbt9gB\nfPLyBS77DpF2QsfzKGwMUSPQ2Vizxr04SP6uBQRYkdGRYMdBTj+6yYrGRAOZQIA1rKZsiUCEl2U2\nx2Px7DBjpnlhex++npmun6ZAuGFqeLiahbKtXpPY9zdYMNSSKLXiYRwj9/WYQdjkE0GMbsCOhtFM\njyMPmnSsKfHClryhJdAN6OhzHnbvE1Bh7+5ZE8FqYKnhgBPNRZ/mCIEEmRbZ01qbxr7S/wqasn1c\nwckVn9divlrHR7DzAcdqSQlLiarHpCNAQVRen5SPZumgIIUBzPezeyAYeGX+prgxZXRu7APc0rSA\nl7C4btl+Ap18UJ6/9i2Lil18BSsOvz42jEvee1Weq1A+swxMfadCEeNyDx7OwMD3AnjOQMi5wnD+\nLF3mAm6hRaGL9z3L7wLGh4XeL5j6PHlSkPQQyogIXj7u+L2/5wV+42fe2Q/fggGd/wb4we97iU9f\nPMztoVW57pvUah2soPy8z3afZVwSF5X75T1DM9Ln+sirW4J7p32CYvGb1WsJdq7XK0RkAjsh7F1B\nV18z/TjQS00ekfTcNLH9bWNJfbp6dSbAs4StrZ6VOK+AjQqGpiEs/VutffVoPj91LGq7UhC3UNrq\neTzHrKDiYYAPkyFk8ih5Qc8qhCdFvMx93NuNPUo+B42ELXxnm5jGPsPS5rh/gdlqrAbXHGqyWj9R\n2kFldzHtOz0t61RzPM/Aju0rmpWPbL+Ue8+AR+REYVAgvJk+RkJe75r7c6r93bHcX6MZdm96rCb6\n1IQO9HIwm5v6qHHOAhoIFUAFtg2icE+ORHIQ8W6JE4RQcVTfQ0FlNKZhHhmhxZljEW8no1EBxNkY\nO+WcGfC+6PAr5/knD2ObipINVY/YMM9ObJQf0wjGu06GivtQrMd9gz5cQMMEM2hpCYO/GxEq7wXo\nRKFf37NDfmoAp0N7D7Cj4ZGyF/slEEjbIIsxxPiB19rTzAJ3lL0+fNETo1rCY0Uh49xTy4P1aiKS\nZIwYe/JcAp5sg8sLN/zOBU/n8GFtcJrmENLQQs/2FnRv4bgp11aPSYIQDQ9Sypj53IkuXSespQpW\no1deewZUZgMbx5zGvNwjyn2v59fWZUKvV6wtKTzlKwp/PoKdDzgeHx+nv0lIqvDKu2W/jC/QqjiQ\nuM0KMqPuO0bsAieVPhjxeejJvu2eVWXH6IIO3FmCE2ilBfdO8Om6OFPRMqDzgMfHBxeeiMQMNUED\n1DchU9CjLJplvLK/2W+zwFvNFgsVmZXGe2sppu+fYwDr2K7K9pcRfs8dVMSqsK3K6pc5pACeu/sv\nP2g8MI8/+vt+CH/n7/8avvvTWVz0B7/vJX7yWz+8PEcCbDAUh20HDH9PzDYszRnXnjcrQI/t8fuq\n31OmMSGtYaLlyXAAQGRY0VGpj/JAGB+oOq7G3G8h1DhmvfeMUy7ABTCl2ix/mW6dIRCMzc7QTVMa\n3gd2BmbhU0MReE4F3fQmreFpMVDLnK2ABkDshanhDvWVCgnTOs9tTE+rjcPlcsHDw8P03OAhxeo6\nCeKiMOf3JfRP0+BjChEt+RKKpPpvkwW1JBkIRXE0yOjAsGx79DJRIKvYPklRlqydAc2qClcPSPzS\n8sozj5E9yhH7+w6ej+Qvd8oLFYeiTBRmGD9pOZ9/n/KVemtJcJefDfQE3fq5E2gnfZHWxwAqzfM5\nTcyzuPncKD01CXSoEnXAEnyIhPfAEh+UZlelMQByPrehJjx4ZsgBN2hUPuU0sIzNzHtakY+rrMq1\npJjnI9o2hrkQ1EKLFZLhmRzP0hzxieQaHP2crwjbt/CpAUD7e+hPcGIsMN2kd27sdwXYvTeOHqJ3\nttb3VGulQbYdoO5S5qp3S4DEdldPM7OkRfRHjJ3LA/4xfH/zNDesG2M6AUqdHaaHxwktE8hZ6xLA\n0fNd5558+nK54LJfvJhqSZFf2sM+XF1O8XcCCkYXXG9X3I7bpP9JadsZmGl+zzPgkmsj9aEF5Zdx\nPQc/1r4eXjvK/+Fpu5NWFzoq/32VQQ6Pj2DnAw6CnWBYY+A4jIj6GOa+9UxogyFDRQmJmhF+v+HW\nCpFZkGlhQtXOtypKXKDdzWqnIRiRbMDOz/sjBBv7AmT4jN3fFKHHh4cg/W3bcByHK4IM24NVyFaP\n17fWzlbHshCZLamODVxwjrK43wcaKtBhX9Zj9e5Uq2u9x4ceEoxhbusCJ3+FAAAgAElEQVT773mu\nNNW+rECHBwEP233ZGv74t76Jt9cDb68HPn284NOXl+efr1nxWUSi/kWdi+laKiFL+ytQBZikYlAj\nc2XUyniw4bqAndpvifc6hgZ2rBr3fH611JmwSW9N791qvDw8lNSqG3XLWGtBAx5f35qge+G1MUYY\nBs4AdO1DXT+Pj1Zf5nK5TO2pgpbnTgV7Yx4wnTvPva8d2ayi0QpQy1piMoPhljyGgBDo8N3OveDx\n8fFOIQAQPCvi6f1FZSUA8xL2McZAB63GVFRQgLLTCajQbZltbtumZAdtDEu3PUaAPBYaLGRqa8If\nZkp3u1N274wRrsVP4yf3YSSVZlYjypkltjw1+dv8dQ5GEGb5rrRRgZIoJPlEqnvlmtq36J+6oWpJ\n8HJC22HppyFO0zvB+UfLOiz2vBZAJ+zfDnqGdHQRi+nRMdWSqu1TGmIwoNFO9wIhQcMZV7Q2pQJs\nayyV91UuiPO7yvfYv2RsztcJPtXaERm7x8Bozffo+nZ4kdhDMnSAvjGJGzp/0zncbTV6xjqD4DYG\nnt5d8bjvuGwbRLJYK2m+9qut9KiIDKq9216c3jvGcWD0A4D6NSipozMcrrUG3TZg2zE0sz2O3nEs\nfZhfmX6b8qBJ7BBKBR/wdb2ukWDUPgfl9SzQycQQQA++vAKuqjvR0HNh0c1tn9ZPrBd68Jxvh1Gn\neFOiDpEDi1EMW/f0559b8ny2n+s7svmBoPUc6JyNAYACOjM8UXXzZbiWI6j3nHm9iExL46t4fAQ7\nH3A8vHgBAJHj/egHcGuhgA5kHCmtvkV6YSJSX/nG2Dy7UPnJNc2QV1SrGWta3dUmMEYK6bgRhRr8\nHE2BqEwjoPnZraNbE+xbw2UT7J62krcd3X7fmqCLRPVxhXo2n5rpQ6busi2DipJanxjKEfuZBIic\n+/7dpOhXpaZlnZWJKcb4c/hl8lQk06kKw3ssZygLPuR/hnFMv7/HEmIpYR3Gal6joPpgnSKbC+Yu\npXUECP7f1x4v+Nrjg3Vdi1WGyYWUAmZiaffNdHDDdlT+KnnVYmXWuHeKdx9nv6LapUjbMTeMXWZa\nXCqkCo81Fyia59ixPkW4gN9NxsB2O9CergAaWBPksl8wdsW+A+3oaHtHO3oOgLLhCnUlTpz2Whsn\nilKOYQqXHpbTChjyGnElYg6bY8ayGQHkuFIpU2RdGrhSWNPjKumBILN4SRAC1OcpFIjiufFCguGJ\nmayHOW8L6ec8LUAovDzNi0kqacM8MM2JkWpgY2KEtln4iGyzsuZrDOIhvFIt12X+op1KzO3nksf6\nfz7JpE8AkXzB1jMzVUnwTQnCwPR9HY8E6nmecbbm6jDyd77JM58XADMVVCXv4PosC/lODfKL2VLy\nvphXTQ8ca6vYRBVmM5Fzg4gCTbD5umzhkW0YwbP9vTVAenp2xsh2c60E34AZywQOXlqANBS61AJ+\nOG6iOQaUcRbCyE3xJI74EHLl3sBDJZOZ1Dgdks+PcVTQHGl7HhiuR77tYJ8zIyFx0XXg6AeuXsOm\nF9AzFPilV094c7tGs77++BK//wc+DS+1U0PMeSUhjmgFtRZpwsRFGlASvr5UGrQ1qGz2mfPpENZ4\nnScfOEaErJ0Bt/AYDFiomgLYWiTIqFk+Gb4a/Mhpx2R7KkDq48L7D82C7qO0Q3wO6LFQzLxp2y5R\naHPb7fO2XyJSJohFEemt03A1Yg9UGHWKd4fAh7Kg4ujgCcJ+I4Cm8UP7b5RrZ1WupqAeZe0g5AKL\n/oZ88lpPlpyHOh6XjtdcqumoKQ89wyGjHSzjYQfDUL9qx0ew8wHHw0sDO8dxg94OyE2BrUGbQGmC\nbhukWUyqNnUwAPSuEHHkDrhgoRWnYZMtNNIgYNtRXnl9WAuitsS+WQjH6ObKF0Tl5qHcc5ALsgVz\nVwdth4EcNUVhQ8MuiodNsAvQ0CHj5iOgwDjQ0HFpitEU4ziAfksLtw7IthULra/aMXA4IDTftYMj\n2BhZOkpzm9eYaX+qnTdysbIfTRoaFkWPFhPk4qdCzZSjhgDITRahWNS7U3Dgwo9Z8Z6z7N4pvuqM\nXl0lEyoirlx4qE9rFQwUpWp5jDU9oJYLPcmuFeEHeGZYEWCbryGwMcBKUJj0Nj0w5XbcIxIFIX8j\nc4d4v0nDIYT4XGeyBcDxuSJmWVTZ0CEYHsYxBkOjJOahq+DWFXJ0F9QdA+ZJlU3R1apuH2OUOS5A\n2V+pvGTigrRMEnBYpkMKBdos6emFHJOQhlitGmmKpswipC6sR5nMqnwZMcZ2B7bYLYzq/WEYrcV+\nA9I267M04wssKmhuPKsJ5ntxxMN0eihuxXsF21/Thu2mktZgK63FXIFr1mnOAKhZCps0yNbQNJMS\niN8zOuzrZ5OGhs2AgTbf/+hrV20/pCVmyP/SmolU6grlNuppbUMoF0FhNK74mJQ5XhMkxOpzelZn\n8zpKiFMBHXYpjUOctXX/YNFiJP/OMc3PyYl4WirMhYzPjxQkoRDx+9TJqZjaeaINYtV1irI8nNad\nWwnMbeudH21Hawf6dgC3DdqupjgfB0Y7AIZMjUyhS8t/AC1F9CoNdpUHFyaiCZiin1p+H/ybYyDZ\n7srA/M/kRf7VGDi6Ve+R1jwb3R3HdDBU2qoWdtt0oNOTpeq1zlLWwL2u1+OGt2/f4un2ZNnPfGYN\n6LwE8Jdh5aP/Bl49/Vv49nc/x7d+4GsB4HNuR6H/gaECWTIHGpAUwNd9Uw9XE4E0+62LpxHvCvTD\n1knraLJZvZvjwOFeCwuD6umBiLmsYEch2sq8WmbYDHlltrgdbd9ClpqO1A2QqUI7fN9Oee7qRYr0\n9Ig1CIHpIiUaJuoCbRuk7UDbgbah7Rfsl0tRARR6u6J3o4U+FE163qeAnc7QtU6PmQS/yFpH8IQG\n1SPOfUvwLHLDx2pARG2sWtK/eiKJ4xDsUfvMjC+TGIH4OnZ+6kqoMFFFEzzsF/SHRyseeztw6GE3\nGR0YHaI79q3h8bIDOtAPtd++gsdHsPMBx8XBDm7NQsd0ADstIhKVvcE9AsOYYShGoWijCBeJzYVA\nZaI68W+Tt5Jgh1XDtw19dEhvmRUlFCpgqKV5PI6ObTti06KBHXNtqw5sImgCNGzYGxzsKDYdkHEE\nM8W4YUPHvgFdBg7tUIKd3k1BEjEmI4h0jmb4GimHqAyKDePWxNM9upJApqdpqQnGBg9/cS1ORawC\nO+P5m6RlA8OsRaGZpGJBVUIohIDULMg443fE72SoNm9M6ZlaR1qEi3XYn5+Ax879/N0Nb643C0F7\n9L0TUrwqFezUQxOQhEDXFOhn+CtCPnjJYuWtz6s3SMu2Zuf5HBCY+BAXQJSShx0HMKisJZ1blzkv\nCWC0NaDtGOLK1yiKjrHy2Kx+uJDWW4eiYchhAGDb0NSqwG9D0XouKpOJDo7FlQHv91ADJqTDFlZh\nxdAG9I7BrvEXhrXmzKQivW1ePduUguO44TZsX189t20GVFKXS6VKoZZdsZdixUsSlCYtAA+cRzW6\nWcSLC3raWHo7RyhL7CFpwVLUmkcG0Ca2uRgVFORKgipG19zM7Fmk2lAMsY3D4V91BTAMFGKgSRw5\nG9CBgVqFAZ4m2NTOJWAEN0BzAy7568YZVsjmkKxsBgYQHpMagheEy7EH6ZxWaBsTTvE91kjwlCPz\nHrBT11go5VLPLJdku8NgwPe1JeX3CnjWlylKGpbdpoKG3QG9a1HD+TDm8FfxNo2tY2w7pB/Q1jCa\nZz+kh6w1hGfH5USHeTcYDUF+QIs3+WrwMs3ogwjFdct1FHBC9ieBzgwiK+9CGQo42FIY2OFesA0b\ntgaIOGjm8GrlX+Rdw/cxqYW4jW4Kv8ANkeYZk2Yhb9fbFW/evcHT9WpgRxXvju4enb8M4Kf8aT8F\nQPH66V/G0+0BLx4uE/mYxyQzwME9ZMZDSiB8eDq3ZTwkQCczmI1u872hYXPvXD/x5iSJrWDH7rU5\nrxYYPjYPWKmRtW3YdhYmtTUGuJ1CFeJGhT4UR6eyP7chsrHB9x251zzeS+HpyDbpmdUgG0R2tO2C\n/fKIxJADxxjQ2y29bqoe+jtw2XcDOwfDA7lXp7sHOkFO2wSsa+QTFoBVXF2URpryddZg5p8GMOvH\nGJZUguGZOgCRpHXOffBWzXc4PyWfu+w7xuUBGIonBcbRDZwPS2AhUFya4PFywegHbgCgH8HO75rj\n8YXv2YHi5tnIzMJqOeGjQJ4TuoqFMZjw1qJwY1FW5wxNTQQDlv2GSo8qcmMuAG7Au9UNctdrcaNa\nO2pmKVrM1FdGMCwdJpBEFmFjD+fmRlVWCwb2raHvO7b9wLa1sFAz5rv3XpQwH5Nti7pEI6yytoHS\nOKYt9LboAiGQqIxS0EgmJxi0HLtleQ3X4CHlnmah1vi2ghYK8rQUIc7hO7+/D11aMYMrXZo/XvvA\n3/yFX8V3Xr2K677x9a/jT/yBb+CyZUhjeQjmQ6YxqoMVenlRgKZ9ClLvN7u2czTmexKt1VAL2uzo\n0QPgNJ8giNn/xK8dUM+WM48dvSatsaK3ef66F0l7LkSMQ8NQDekDR+uQw+pEHX3D3jt634qAdsFI\nJR2pEPBeOhRDSu2qCB8hvXHtoICh7FP1StaU2fxSPWNQXfcM45TlXtGGYATzhvMEnDKlha6JEgSC\npmqCf9sjy1PvPTLa1enm2kWDJQkQWuCNuHSpjxTKtcQdsq/WuaAh4b8UykFxCTToweBvkwc1rSUT\nmWshXnqbUH6f6FronSpN1bXdWvpFwE5+tswPpktB8HjHQDCDmee+e85bLCLzw2It39MMKr0VOnru\nCGMaYJEKY0Ah0JbzHrRW2pgloxVt7GhjoA2NF+DeWH9+eE9hAX7cWxaeJJE0mgU4LV5H726McwUe\n5N+lVzUMkONRhO8CeBCAh2vNgHYDPYfWj1SwKSnqvqek0ULzfLzztzVz2XEceHdlFMWfWmbnTwMA\nbn3gE3FQQFpvLW6uqqFjqHJssfzmJxRBVcEDEwxABzZ4yGL5LcPVam0tzfl12X4f4lqSiyDby0KY\nYwDcl8TN/reyH+Y4Mttb3afCNliYWiaJqd8x+UDWJ6yJTiqdIdb5xOcx92c9pvZIWb9lXhLMpGyY\n1jJ0Gtv3rtX6DFAGNWhT1/uYkTQNTzWcj6F4zFiaKoMm/cLA49Ya9n3DZf9qwoavZqv/Pz6YoKAf\nB55EAnBYiFhmvAAQi3tVSulqtZMQil3vPbwVFjIigGyu0NsrvQgGEG63G969e4fr9QnXpyc8PT3h\n8CxpIkz1yEwjTGPrAgUEGyOZckn/mmlmzfLL/PlMSrC7ZePoO46DGxiNKYwxgG5hdZuIpa90piPS\nYs9Fd2vscAtYTemTijJiPKsSKfL/sPd2vbZty3VQqz7GXGvtj3OvFUxwbIid6BJ4iIKEhIOIlFji\nkX8AyhsvyP4p/Av8njcjJF5iKUYhUpB4iVAIsZHwvQ5XyD7n3Hv2mnOMXjxUtarqfYy59j4rN4Kt\nu8c5c8+55hwf/aN6VWvVq1evyjI3ObW1MOcKCUg9D5FY+1PvF++4T3bOwOjHjqJOAAD/yx//K/z0\nmwbg98FQhZ9+87v4p3/yr/Dbf/3XzolMPPTlZ41rkniJvngdQdSJGj8o5SAvMJpQDULci2sgWqY6\np7I/lK20IcF/azBZU18nUOqV16fnnZv87bKjdUHbxUMMduxr2edmYbICEv/y8nHQPWyHxicIO7Ih\nBvIlyJnFUr4zWYlFzCXGHcBgnCOUYyI62nsAlCwvDtdFRjPNJB40ZM2TMCyLmYBts/CZw32YbAAW\nVsmdt9lGfM9Ojy4JwsjziPsG8Yt9VhIQTih0aEfqTQK4XBOJyNBEMDJfj9B1Pt7Zl0UMk3QWIIbj\nkWUqXIpl8zYmnCE4/hQi86lk56XfznTRmdPnzHFgNzY91YqutXPTqSRxXmm+ATC2iFTQpQ/PDDeD\nUNaQ/LYAvE4qJDLMxM0ALyVoJDqlMiBBq5mu2U9ABg4VXhh2xIjOHgkySNBMlssY8PpXwEvnpmgC\n0cYUDpoOk0p4brcbJNZF/CFyZgcA/iEA4OnhEjOnleycO0gQdavRItlEKecj2XF76tnSOtz5M+mt\n2c6Mt3YiPISPTWvuCmGqyTNUbWuL214W/heyM6+lrPvTXC6XIDYsR8182crsbrwO7caZqdz0dc6g\nyaRKxeod5JMKq8pE2hPxCBTO4uvQtmeEsur2Gm5LXV/flzWdWoekVaW8dewe5Le077quQ9bOz+n4\nQnZecTx6Z9+u1xCsvveI2UzwkoofgIU9EHCUIz1WHbuvR7Ac9vBrHU462bEUzXbNvu+43a748OED\nbiQ7Hz4MKaGX1oBlTKvIPPtc4E0PuhmhEegY2UFRypbql2kbVRW3bcd62bHtHbap6h5rhpZ99/hg\ntU3JmmBZxBZL7h3YMz0ktPteGoj46FxcXdtrPKpCgIMLnAzu2QNrzpuRiEo6uqwtJrIzE6LqMX2p\njFL/UcW3H64+o/P7qKEKCsVPv/n7+PbDsyccOAE1n8atTgmPXT6izto+bI3zdh4fHsBHc3p9vvas\nD1QzZXI1mmfl73uHyo66ASEVPmWTfcCZHYig7R1NJqJTNpdjdrG4a3ankwpLJ1uRQZKdc/JL4zXv\n/1LrY/fWSDvLVyWErN9ZBwwzO+X5PKqTos7qHAyXG8EOAxW6b4MhbT5mofDl9eJEZyQxASThZD6K\nkl5MVdN/0yiJ80hYx3EoQ3vU7xTcMyJpUu2Uwxg9NiQwlHUEOYG+7xIS6nekTg9Z1ASQg+ycl+VT\nSc/Z+DhzGMwEea7ffBx0FyTA4Ah8Ktlhf+Xag3BCtMz82ZpiaR1YNLKX6T5QpHhqgD1V2wPGZYdO\niVifOev1MvajLjEwEDPpg+7yz5SdeOkkU1xcJgKRjt7CJTCRHXuWyghoh/63lnVgbdePsyjmLN22\nDU07HtuC5/67XpK/ByM6v4f3j09483DBsnioKuspL+mcTCDUp/6u46eGp3GjU+0dTW29I0q9znT2\nCPKPjhduyNnabA/0YA9677htm4X6lpmdWsZ6byABOTOsVR0aOo1hfJBRjmaMMDmkes/smbF/W7MN\nqCsRp2yTxNceYb2qE0p87SFV0kx45raONp1maQ5Eh7M663KY6SpdhMCpOOqS2R7VbUs+t+ML2XnF\nwdTNFLCaieN2uxUhyXU1ykQFvYKFI1OvA2lpTkoApHEtKaeXFUsTy0y179huWYaqCLiGpQ7UfdfM\narJbvn+LhTaPdy0Lva+ctbndLF0lSRzvbWRqx37pEcoXwFHTIy2ylMwv6XFi+kMFPSrZNjyq12Qm\nMGFcVC38wjNfzR7uaE0a6BHP4miIZxg2/3okDqHIZuOjCQx//pFQhZ8/3/D+8eGOckmj/ZLqqWXJ\n890DijsA7EV8OIZDONaD4CjPFaCMfTXODNwzmiOYyZDMgZjxdy9XDQczEubjoMRLe0DpkM2wVl3E\nE1GJnR8LZKOMGcbDMIAKwFi26r2bjTl1BmO9LYMQTsF1NL+mF1hEIv0vAba4l5GhJpT52r61nVke\nBaBND88e9NKcAc37j6EnQmKgSXgMNGs4LaJPki7Gc3htUp6XDepLQKu+i7PTBLTpbacg1zHA9Qb2\nXYt+Lg/Jd57XbV3XWYmtfXWq9/l5H/v+HpCdx/jcLjPhuedYGJ5B0CbHUlvVc04X09gXXyO3+M+t\nCdrOlMa32K5AfZE50yFv+459S889U/eynyxk1tfReUFizNR9WPxoRc6o8XIE53hQIGYI1ceD1O8H\n5w6vR36Y+p62LtpZub6NOkjiXmn7yoJ+f8ivvgF++uFbPO9/P+79/vEJv/mr7yNkraj1eHad8bAZ\nKM8MWxybg0yU97rYn2Fsc12ijicypKakD5im7llmG6HnZqSzTDIc2iJGxg1B89zqUxhD1yJUrZCg\nqv86uq1jEY21gQDMMbbv2P0aJkCIPXN877ZIflSwRMU5XqJoB8gkmCi2y04eTqlk52xmJ9p1Odli\nBLnVRrQx+/aENNl5EnWSZtnyar0ju5xfN29w/bkcX8jOKw6SHYKJjd6H2w3bdkMMnpY7jpsnctzf\noKsO+doHj4EPVouisVhpYv5labF3iC3+VdvbZ9twu12HWZ22LBB/VeXTLbMCmKVt7zsEwAU6lKfF\nTvO2+Hfz9UFQYHFr1mQZyc5uC657V+yau8tzsbcAkRHEMioV4BXGw89vOQPQPJMU2z7aEqOiUe1Y\ntNn7tDkYj/BN8rdJb1dgESZ9woPqRixAmp6Qi+kQdzUKJBMR3AlVePtwOb3H9znOwFDypFR6xzJP\nypn/TsApPKRKhd0wEICijLN/8voZhFfFzWl6AgKmVY8ShrFxrzN0qK8RFPPiWeILypzVrnqpBOok\nR8p7hpraQtB9kKPWuAGp+t9HMnB2zIZk94W29KhPzDvuVw2gVKA3jQGCrRxTYxtXUCHii5h9tXs1\nnsMMD41hkQu7T3fgS1Qc84K2Fop7nzDPrDqhBNdQVDkbwTOb4d5Yqn1xRnTyvcqJrcFqaEFWqsxw\nkbNIhk3GfcQBvhMzzhqw/Sin8xFE8IXjXh0/dgx66g6B4W8zQD0ji6HTar9U58F4BVKZOMhtzVON\nL8Bq9+x0sC27hdX4etII5SwLu2+3Fcvtitttg8gNGx0dnX1nC9a7SGSVjEQ2rhsq2a5sjTosgGlp\nF9Tvom082oE2qaq/MsOpQdJNGLgoX6epTHFnJROPgPLY6ysBbhPBr71r6HJBh+DN4wPePj7EmpNY\no3NKQCjzEiC3e6ayrke9q97HJDuc/bYwthKudiZcbFvKAOg0KphmICFL2AWG/M/Afnf5OCc6SXiM\n6OSzavTKme2vDitVc8b0brXauwTZyTKN66keHizSgrNDrPeB/An7ewyROzuox8VtT3Vqnc2ikdhR\nJ8/7FQIYbC+Qe+DRCZZtwVkid1KIBPGf15Lx2acRB5/B8YXsvOKonV29tDcXCs6+ACkcClN8XcxA\nnBmaeXqUg6QCJxFbs7Mslkljaba8ujP14S1Z+DyzU0ELiEGobPceA02EoThGuizHPMw4+W68As6k\nwL13ObtDsrPtHbqH88vBVQOag2OYQqjgmAv31EF0Ep1cgzPPmBwIT+zJcFw7EdcQ6iuG3ZiPswZW\nQYUef0MShrT5LxEd/8cXDL1/esC//YOv8NOvf9fv8/cA/EMIfg9/6f07vHv81yc7tUzRTln7u2V+\nSTmPXkFHAFpnA2ts9LGv7r1mjzz7fVfEQv6q8NMAC0pPJIjvHdoNDHFWJ2CcTmEmukS9K+nhEenZ\ni9eU8drA4qQsZUHVMjnVurCOudFbWUM0zMSgMEIE0KugoLXcr6I0rhnebolGtHfbub4CG8122vfd\nZbIV4UxdNM7sOBGj3hgISc6wWWuLf9c8UUWRqUI+TgmPDpKZDhDU8ZszgxXMDnohwC5Kp1NeU6eO\nY3kCuiX5Qhx8hmayDaa8EoJff8Z04cuDKm7/cWL3izhmojh6e709UmEh+yz/HUhpVM/TM4tAulg0\ngy5lrQf3LPHZ/27h3303h+H1esVtWdCWK9rVSPS+79h9g0i4zMzaysioHkAmwXdsBOoFjvF0RnZU\nM+mNZ1Y7dl4heuxvHxfpHMyNGs2W+39iJMRsYpKm2h98b63h8XLB5XIZZitmZ9yByAI+DktYmJY0\n39AYu+w8Re5dVh0r8DA2SxaR7T2IqmYbC0lvwQTLUggInVjIdq/hfL1byu553UpWb5S/AOyFWLXi\nRD4Qu64hr4qSlbaL6fmJ7OzbPhCP7CNNWZpCsWlHqhyeHdU+SMtUOXP43PmanQxLG3hWEJ7EKDHe\nDrYWiJlY32tN+hSxxO1KpuiFz+34QnZecTw/PwOAKebbzeJs9z1i8FvjALP5gwbfUqYKNnF0ALbc\nvKk1em3pod09XlQii8i6rLEIz2aQEAqNg9IY+1j2AfAVxdy127Q/gcVgMKoSTyMRszzwNT/ucbhc\nLoAI2rZbu/Tc1XLvO3SD5f/3Jynrvq6e/WcD9j76fImpScbKgOPsT5QPlVwdyZHV3BPpelpwNlS9\n5ngcjV4FVC/7b/zqCbP8x7/17+Cf/ss/w//9TYYq/Fvv3+M/+qu/eldBvua4R8IGsKcJWplN7ew4\nI33seybAqICZ547x6aPH7mw2gYksSKZUcadv1HtmDIswYG5jjbM6JAO9775vghu0dUXvK/Rim/PW\ncSpAekWLnLVWAmWEM1kK1R1+1TTm7WzWv4ZHMB7cZpDcwO22bLpzT4n95cw8bGdgDOcbxgW9xo1x\n4mqp3pd1AFK1/4Y2Dw9BtjqAWPemJR4eSIdGkqmB+mAcT5UsKlAIYgXdJBSKEVBkOROI1daqbde7\nojXNkCiXDe/MAH8gTim6kJ/TiVBJlMmcfcObZBaz1xzfl+i85FDgMY+hGvJoMzNSeleiDdhGqcdI\nEZNMA8CiHYo1CTgQ++twL5SwPQ4md5Kd6zOu1yuen6+4Xp7LDOiWzhWghIQZ0bF9KDnLONnaWloz\nDnYO7a/Lm9WtzvpY/ate4n1CIrlfWrQ/zDlj8a9+W9p4xJW9j/1RZybYPxkxsQ7jkUTlMOuRdwRh\ndxAdkrvYiDltVx0z9QjCKIKFupR6nToVGEhjBePLkkTH9rRZYmyR7EWiIq4RYrtH29veW7YvnECw\nY/fQWWuPsvG4mLNFu2L3dJ+1jbJ1ckbDZmWbhbG1hqV78CLldJZxry87enc7YnrczxXOlNxJhjDY\nuuLg1hO9PRCsmiK/EqmxfCmLZaasrBGt91pXu8+2bVhvm/dFsVG3G663m0cxjGHfn9Pxhey84pjJ\nzrZx0dxeBKkYBgdbilS+UgSUm4EZifGpV+7c7INJ+44mq+VjF7EUgJcL1jV3Gk/PTAWQCNAQvp6i\n1GJA9e7xyhPQK6ihesKYme223QbDz1S2Npu0Qxh/XTaOs9jhvQXtrp0AACAASURBVIArn46VBdCG\nvplHvnpkaGfPPBj8nO3gizD7uYKxe8LCWZoUxfrxo9hEfzDfEvTPZXvpeFgX/O0f/RV8++Ev4dsP\nV7x7vET42i/af0ICcO+36jk/cZ/6kXIb3nwHt61lqIKMQnYgOqNhy/udkR46BAyfnBE2lqoYB1UY\n5Uihicw6Hgv+SOW/X/Bw4R4tbgg9kQYdBmE03GPL2ZbAWm1BWzpat9SpNNizJ5ZGZZ7ZoSeNhKfv\nHdp67Ax+5lkcZL6MFfZlL38P41zV9zwx0LcuYhuGTm0fn8uzYnaIwIqg2DcktKdWzzMdNyQsJ4OH\nnYhKoMbwMhHO7JZZHXFQ0Wp7tBiLJhSTx9vL3eig6d32WJKS7IGyLYhnpKv2OMbtnmWth/9t22JQ\nj43e139Tx6GuU/15nI2jaOvCDLQ0Jc9x7F6fevjsPejX8BsnFcg+1CLf+7bhdn3G7fqI5+dnXC7P\neH5ecb3ehvBsnYGrwFKjcz8RykJZH1M0mznfGlPhU49luUnOFArtAkgf9BGvUyDWavHvwMBOKoQ2\nNdql2FOM45kOnsvlMoxDEp4kOanLql6lgyB7TLIexXZTNyUp9NPr2rqiW8Q37M49Y7jmJlu2cb8r\naNjznM3h5p0tNjC2OqjrvT68wnFQHa6Ltx7B/WYhI5xFVDRzXnqQcle1TLCawL0elewsiyWB2rtg\nKbMoxF9Jesdyq4c2J9HJPY4oV5HkqejT2t+MhCDhmXHImX2sshhETzX6Oa9Nu1WJzpkNEelGqi+r\nbZ/Sd3Q1O3m73XC7XoEil5/j8YXsvOL4+c9+BgD47rvvcH02z1P3gXVqzgvpEcmQLHrF1L00MUBC\n95Z00PBc50uLaWF6e0LxlV18GW4jNMIHIFkEHUclN3tzq5Kk/2j2ElgZfeEk30Vwaw3Ydmh48zUA\nly62gSjD9wBAerNFgj0H70wyhvLxbxQSqSP4ZehP75aFq0vzxa52ersLRNxr6GDlUIaPkJxToHHy\nrPdPj2UND0ZW95H7/SKPwWAOBIjGsXgEQadSGg16fir4jnCVYTbnmLZ0lr302vK3Y93VdlQrIKCA\nYZcB6Tv2DQhwFeAgw2qo3MMr1xp0sf0HbAKwEP2epMHKuNsO45sZn/CeTmSHr3lmq3pmzwBMnE8k\nVfrDxvfJeiy2A43bQHh8kS4JDMNRzwXC9tKp4DQMpgN5AdAbxDcsHfTfRxi785HheVENyXGfYlmc\nREidSr0aMlNvSTkpz+noPuZbyCgLJCFzpUmd+Mh070p+srClXirwnSmTOeRdj8dL43v6bWw2LZvt\n8jPyNfj8+YGzcYXEis12MPs/rxChvM2ta/eev2tux5qTRNOVWsrCMVocIduGy2XF7XLBunrq4HXF\nennG9bpiuT5nSNG+p4y7LMZ6qlno3CZU21X43PEohK6Jg+5KnCQJbI5C153BeGp/Cf/3DYULST4h\nO3UWp4ZmAenMZKZTzip01w/p6U/SEyQHGk6awARq+q2OGzZf4gMvH+rC+GVo5t4buA9alt1mcgjK\njfilrBlmYT2KLsyOGOxAcyPdOqAtExpVibS9ZX2tFfSgS2sfWjZObrAqQ39gKkNiNmTf9cRdh9kj\n6qTQ+0eMMBAX37LARFgG2SzDcCTzZY8lneSpylfvHvEz/Z5tm0kk1nW10DXxRDoeAXHbNrSlYdX1\nTAF8FscXsvOK4+u/+BoA8PNvf4bnD8/Yb0YuBPDpyHFfAB4EbDF4evqbTBh3dN3dI2hERwAs0qCL\nhXldHh5wuVxwuTCHfGbOiDz015vtLrxz8TAASbK0eHKDfVmwtwXbknH5kbfdjfYwYHoq5gpmvXbx\nbvVTS+TArYGRC8i58JBK10ChGaQKXLrK9IzRw5JtmudxHUNVFwfCA6Cho6svooZlhpuPIE6F0FRQ\nlV7D8b0eg/LUEmZQvj4lSgWczmX6RRAeArrToyjsMBDRDJPi9ns1yYQCeRsdjMEcusb6nJEdAN5f\nx2dWQqPqm+9Kzb7EkmX/770D+wzYfb3dvrk3KzcQbCKArrCUUu0g5xb2zTTXgOwbmKFHp7EyE56z\nBbe1XrOB5kwQH58ABAFC1UHkIF+FICgcuKllmovdvdmmnRkZx/92iJMCW8NyLLP32TLKAdPLsiix\nviiRNubxXD/XTF/i/R+XVwJ+Niapu/h0EsD42/rUQtg6Ymsv8VpzN+NBfysx9US8SplnfQ/nN338\nvnbR+OH015dPdgA/9IuTnnh5G1SSk6VnCJY4qbUfKtkZxmdouZk8aZJEkOjkuBVnD0bCcosAAdCa\nAUdufMjQp7YuWFZbr3JZn3FZ12GvFXqr1cdy2ezEOZWW9yQ72hnWlSDxrBtIyYbZwoE4TroZ2cai\n+bPUF9vipM8ruTl68CUcLpxJOA8HbqUQ3uZaZ3VY38QFZ+Wo5YEqGhiB0SzsdVo3xFDNSnZsDQrX\n8DFyMNcO1dkc03fMGJe2V32sDi1J0lQIWu+FCHZx7KSh4+vMjpGQZiHzQeyyf4LsoqUjdsmkVAAC\nx8zraqwPrKzRBgP5xIF0EXOJO3jRfC2jlIKBjoYzhyACL9BpIwDoBA8SDg3fS+iAWF8uQxa7sLUk\nSkzOI+Oa9c/p+EJ2XnF8/bWRne+++w7PHz5YLHHvaE4oQskDyAFr8sXMGVDLVJTpJjOe2S7zgQME\nCbmsKx48fzwFk3GidUOy2+0WZaKiaMLEBhl3aXnY25AQIdIPShqC8FTHTMtIMCoogRs5bbZZjjRf\nqExPlCigRsTgyhereYYS2Phi6PDejEcFyjyomNPTd4fo9I4mzQGfgz+FLcIsg5ik4viMo7IRyGC8\nzshIlDnxxHBfzH9TcU0hG+UsBIJ5Dfe5R3TidhpepmgHguup7g3HOOLa7uF5LEaBTzmfzcn2MgJi\nstSaFHnIGVHOp95rButjT5ahit64Ds72jNq21UGTy3aztO9mo1bf9A1htBmUEjMnTtJvbtRy5gcH\nwEIZnGPIK1hlu5EY0VibQZRq9grBznHITwPmKYS1IXUKZVdZZjEQwQQNEn0hIJocZ+QEYGYzWHZF\nrisM4kvQKSQ9M1yuRCcFmmA84BJByAnZqaRHy22UyJ2y4mVpYqC7S/OZDEWD2OxUXegYoAsD0eH7\nmYMjxrN4xRxczPJJMjF8f8+RcfZ9AfN8pQz5bJ0eZ12GMhPxiktOIHx4el6/QurnKECooJA19kP0\nRwJ8VfXZ/ULW2baLgbNlWdAvluJ3uaxYLw9Yn3OPuOfnZyPScsXWdt8MF74odhxTdSa0ByEEci1G\nNutZq1cpHMFqEky7icT2BQIPAyygU2B93ZDOtRyp2W5VV8w6gzZB1fQpQ3EtxL0XkJv9nTJb5cK5\nplBvqqdfznLUz0FwPYuceCa11rhZZ9ay6gXDQaa3c+3a7MxxorOXGZ6uZXxJ1CN1jes8KTX1e9e1\nPzaLmA6tiiOoRw9jSiT7K2Q296sBdCQ7UyKHTCLgziRiQV+DTXt1aGNiruZ1csIFSE4GS9H4IRMp\nqQpGH3gZiu2OWb0ikbTj3A9LRGJWsWaxI6HbKWMkZZ/h8YXsvOL49ptvANianev1Gl4Dmwr0NSvD\nnhQ9DEwMJs9aQCMA90L0vmeKXBHIukDEBPDpzRPePD3h6fHRY3jt3pbF5hm36xUbvV4MMWuMn7XZ\nnNUJk+47+rpj31esi71EYAM7mH3Ge3IzxtEjX6anC4in84tGb1mBVVefYjYAu+zuEYeDLAfE4ECa\nPRfTMQKuYmQ9rC+8auX6ANCwZAzd3SdNMv11VWZ15iYBVQL6Rs/VBFrvzb4cCM8JyUmgJLaeYDon\n7u+tLcWgfcpBQup/fK8jjUABl5IKGMiF8XudzSnrUmo56fm/R3Sivbw92KccLwFCG8NDkAbryAHM\nIDBu0QHP3guBIhloBM0PZWw6mKQHkX9z8bnsPqglHAMAF8JnzL9dVmc00viwbhmegQIKdhtrXYz7\nyW6zLi1qnuRPNTYAJZAJsuBjtbUWzg7qiOHwAR0zBSSVBWBzNrS1MtMTaBnl3O59QGM+07HaFgmg\nRrnIz4QtARQcHAQh55hMhAE9vCp78b5sClS9XUTIG8P612ezkrYVGZ3bMNpyJB3DcH1BV7z03Twj\nGI6eAOHHe1R9efgNrlfE9QqyPcUHVeqPkQqUB1S+NBTBwJONCRECsiqbDQsKuI8ZwjHL1rJYeNt2\n23Dbbujbjr5bRrdh9mIC+eOalZSL+4pwtB22sL8jZoliHE+0iLoRBZ4XfanUZXM5h6yLCktwYvZM\nRDykaEzwQtKG6Jf5M6Ke0TaAjUUfh1WOj90ZFt2JkkIlnTG2tnMkbXUmI9sp78G1zZzRiTIVO5Lt\njqhjrhemXCWqkuF5bicxJpTJ+pzVMdtp/i1xRQH5pZ/G5AyjXgpnqOM7ksJKRPjkw5j3e9GmRU0P\nY/iIcUytjWSM5IXrpq0PM8X+mX6p5JS/f5nZ+SU6fuZrdmomJYCbLRWxdG1PIU8hTXsfJB4EU7Z4\nUppgaRIercvlEmTn4cHSUApMcWy3G67Pz76IcxuApdkMj8e8XPCwXnBZL+gXS6W77pZBa11XiNch\nQTyGuM1t38o0c4vU1AKJOOLBurlyR2vQZQVTtFaFTu9Yd0/Voh2iPWK96Qm32x0zilFxjEoJDmbP\nyQ4U48yOg8uYGUJR0ARQ4QU5hiXVWa86EzKDdj777Khgf3ifCMAw06II5nSPYN09vgfRCa/uBDpn\nwqNqXjVAD2tS6qJPu2cLr2+tc53RSeVa9jUo2ZzsUGi3vTwAxGaDB4NfPhsZgIVt7bZAeixb8UTr\nOFNioImx5QrZbRbEoOzmvIBgM2V2WSz715jIpsosgTQC6LAduM4NsNmd9FIe+7y2i3gszUwaWsMA\nIKUsHp6JJ+8ZBKe8i3ZApo1LCQAL0FfvE3otE0gXFxA/EyycyFq0F7GimByhSXT52OmVrqhxm+EX\na/OE54j+j1kOekSnocV2mMHI1BmHknzKMTtPzj7X7+695uNUv5weFVqhkLjjgApS438ZyORMCmd4\nzA7FutJ9N7vkNlKaEwMB0AQNi+vdFulwLfx6DaKzXC/YthvW22Ybkd5u2G+3sn+PBqjOjbxzjebQ\nPEfGhphJKe1O4BdjQOkAiAYAve8NnrBDcnNlq29DYoNyn14ci/sOW//SAMmER1zXFLpVNclpIfoz\nEa/Erkp69JmTt7kZZhvWe7dJXCBsa6ONivak7mXiHxKOavfpOO1hYysxGMwl9aGcEAuXzZFUlHbF\nOB7GGZXR5tajEhfqjYNDLpxtR2EKR+i0CXPMBk5tS3lUx38zMRvLOIDG++XXujnrGEa+947Wd0jP\ne7VJjwc5Osxa3XdA///9+EJ2XnF8++23w9+V8dJzOgxY99DneoYa10nt60AuzhW0peHycMHj4yOe\nnp7w9GRkZ11aDDbb9+aG5+cPuF6vkRmOhyCzZF08/vnhckHfN+zrim3N1JYCzU2/XKAzJWSmkQ5F\n56klq0eRhgAoXhFhesPmesinl7fdvTuuSLcN2hpWd4mxDJWE1DY/KjCSD+re8xA4hZaZnRakh4N7\n9lykZ66mRE4PZPf/0JN8nYJQ4iecc40zMKLTb8P9BUAkuniZ8ORZrz04gzMq/og3hvVrXQsTXrUp\nZIvEke88ZsNKWVuWBlks0471+xSuAs+KRCNflbEQzPIZ1hhBmnr3smfIJLN7EaRLXc8GLZkFk0wQ\nRETmUaXcuCT25psRz+Cd4Qgz2dFoT46R0QjmLI0Xc9A5Iha7nv01EpkaziqLE4ZC4o99kn/Hd94e\nB5AduiBBVgShDzLdBqMdNnyWrdnAknjX3+KVpyVL8fasX5eTFHUMlYeIDvUebqylLj4m70KAO2Py\n/NQjubk3pj+V5NQjaMsd0JIyNRGcAHlHmqNxXbazyb8RHnZLDV0SMWcTSQBa7uXEdV/L0tDVN6Rc\nVqzrDcu6oq0rlvXqqXJv2G62N8/WxhllxB5vLNd5Gw1QUsiaWeg8n7Yh5Xy8S20x2r0KxEkOukiu\niVJECCkdiwxZ7b0mHMCwVoeppNn2FVjXOoXDjsQNleRkT7Jt7gFZS6WtoHHV7unrZczOFZdz3HAz\n2AKih4QBLceutVPOVLP8JFd0kNq92OZsWwcNFXu9SPqlFNZbrJBCQd4n+rPqxiBvmQCG9Wf4WqaG\nJmkbQ+lyZu44fisGmO1Z+vHu9FXIpwS5mZ2PtoaVWyRIzNbNhIfjel5n+zkeX8jOKw6SiQTBruxF\nYhD0qgyLsqSc0OQ3AWThJqELLpcVK71ZzVJRX9bVXzYL00Rsx+l9841Ec8EmVIeBYLu8N6yrvZYl\nvWVSBmVzBcB1FxCJvXR230h023aENwM4GZzzoJTysWFZBBeCIBFsS27YlWHDoxEZCUCCy/r8g5In\nwNORtAweoXgaB3YSq5iij3tKKDx7dcyzQOz3+pzDIQQB58eBKLmhIhhnO0SdC9L9FEX0qSrqWN97\nnnMASEBIojMswD8hOjEGJnJX2yG/J/Cv71N55zrTwE/ly+LPcNdnFrcNVxEzwKBsmMFmetAm4gts\nc61OMCjxGVy/aU0e1xqJvqItSwC6GdxWA1MNTTVE4UTwWUyh9VOHmqqALp6ulfKpTtqaL7GpxCRh\nQ7QfasaplO8Ej9Fy4MJkll1k2quqgC0jBvD7+yw2kUWQOK4pksAkBw4zHfecIfGtGOlljQbZRpFL\n9j/1dxlbExRKmSJoPClD/vrp4+/sXi/V8Xsdd0jO8VneJcCA/CrB5t9Atgb72L7z1W1+H+1jeVU5\nxhjSYyHG8JUtGs6ABW0BVpoGMbK+bRsulwu22wU3d9xt+4Zt8zTWtw2QW3Bey1aW44vlH/VQEp2u\nCkGHlC0MhjZC9r/9lGtdoeqp2H2mhyHfHGcF5IZDMdbdbg6Uy342Za1fJleo9jb7l43LtorPRW7t\nlKO9UtUoIz+TaLANa7/Hu5c37D7XzrkOnWf5924blds6uRK6PrXv8D712fzKOvia0JP63b9Www70\ncDjnc88cOlXH6Hz/VvrOyxIh1Eg7Hu3aO2zLwiQltcyHfgpRfaktLMLidrP9qy6XC7ZtG8iprV/u\n1l8nY2Ku/+d8fCE7rzgY9tI8lIvpC1tVkqpDmkeCNR6mAOEESWI9zeWyZkY3Dz8j2VlXI0IAsO25\nw61t/MT01wQ/pjiaJGlayy65vD93M+YAqCFaqhozOhayt4GKvQ6AqvgOwyFIFGA5Lu0789xt2NqG\nbU8PBLSnhx4YlFFV1vXZFQAqryGz8GMYqLWQqrZgs6XnhYQnPHr0yimB3TFE7ex9VrJK9PCCzjgj\nb6xT/T2A6GvD2E6O6MeJ7PiPTu6P5eUxhI5UMH18UoDL2WjOpG4EkmNig7Oyl5IdxlyFmwlSDVbt\nlZQJMvTFZ+ts9tPWs1VAFw5C7Z51qyehDZCgw/4SCwCZNmabHQchzzqGFPCc1to0g5vPowENe7/Y\noummsPU+aBavLwptYwbDYuKsPhHPXcgf+8DlWaFQqa/dLvX1bdkF6mUyqRZpGbYrrHsSHUss5YQn\nnmrfnQGg+vcASsL2iz8nZa96zo+NIDiT3yC5Vb+wXBNwZOPJ6Ti4fwxgqN7rlcfHx0s5stihX2zb\nrWyP8XrNf+NaDeId/gXVQ3PSNjJyszUjPEG9hRnBAKwSf6/r4nvzWGTD7bLgdllsHY9v9A25xv1V\nbfaXZWMdUsfNsiBmi1BygdU6e0h2guJyL7F2i42ZC8nxYLZoYI7rsLO3Ddt2C5scoaU8NwB2bX8S\ntDJ6C8nJ0c3jPMSb5GbsnLFPgbSTqrlgv8li47WsVVEgkifMYVSZpKZFRshoY9p0PvoEaNPZM4P8\nwRFz57r7JCn7o5KdPtmR6nibbdzx/gCCzOd2BQN5Qqbf1n5c33rPth8IlqQDja9977heb7isVzw8\nPGDbtiEyZe/dkrWIDver76dk7zM8vpCdVxxcfKytgoSyYZT6tHRDWZeS07HNFaK4ARGffbmsCx4u\nnmMfJmxLy9mYpYlnhirpprdb7C5tmat0GMQkLyQ6y1L22EEKdQWfDLejck3Cs4PZ2tqJ4A+KA3XQ\nABmrbPfn2qAmAtlso8VqIONCcEEcFY6cDryq/GqdTr2ttDX1Hz9tVuRivj0IHPsVxVK98PeAydA+\nYcBH01PPrWWelc98HlFIgM+XAAyvDcuFoRBDu7GsRY7kpNBJRqj8S0jioe5HQ4Aif7UcVXZp9IAj\nUJrPD+Xs/yQhzkIYYCt1F/ubexGEkeg6yMflckHvF09AkkZZal+gJ0k3+xEERfoYUsmZndpOZ4Rn\nlnW2bSVATh2AiRANbT91nojYPldca0Y9VbauUF8gPZSx9gMJCg2+UgYEiA17uUcFz8kyWBqFBk8P\nVertM96TvAmfzUFUOvJsnNPRFN0o2Q6noIeyL+f3rA3q8w7TmBjHfZBtTfn/VKBwT4d86nGmC2Zw\nd/d5yFA26ssYg0WSZieUQCKqNuTEx2GQJBRnjhQw7qIRyQskZxgAszkLZWNpWPoS6dK3bXVn4YLb\n9Wozp+02EInWLGRKfLNk8TBEkVx3IsiwSvK8CDxXLXLBM6JlD/Yn+1/iNY/BPK+PhGezNTu5B8vi\nLVxlmn0hQ5mHe/P+h+/GPh8cJIjuHMm711nZn06mRFNnWce1IDza09Fbw9e4pkopO1yXFLYHgNCp\ndAxFR3FW2GPtqnGcnGQhrOO9bA8S8kid0Tu6lBBrvd9ms862srUMYTStFbJNklTvBbcTOxTaT/bs\nmY4YMxWPTOuIqWv2njM7TNk+pjZf0KvD64QE3qvv53Z8ITuvOLjB10teArSG1rtPZY8eCm0cBJme\ncPEkBA8PtrGkel7z3hlGdnOSYgukr8/PtqGpp5muC8iG8BjVom4RoITAxMBO7lps9+ClmTrYNi/b\noVhs9/Gm2PYO8WlRkhiCZQyKCGwBiMAJlxPDUA523b7vkJKCe2zXaMkDuagAeQbPh4P1rH9OSizT\nWJuBhh498ZGisWTfelERpI0/FmkiOi8deZ6DjO8BolL5et1O2opKeiQSY1lHwpWGtd5nfO6xvnOd\nah/Wc9Q3B0ibKof3g4eORmVKVNGBkkGOLdJjDwvsHYrN9mCRNIjdQUNXjRCTdBogxlnIkiIXHfcM\n6yK46o2bjzJLjmYKWdXzOpXvhxeiG4Zz63MP/SESM0N9Y7gONwIGUOpXiUjgIbbd4d4y6Jt5v7GB\nbMcHiXFmxEnKUDewbXXiHfzuYk6QcezMROU4LtKxU1+zDqd81JohZolmGRzOIcoXesvHZ89j/ezz\n/N1Yp/vH99EFPE7PJ+AVSbJTxo0Mn+NGoLNKizeb6144X596o/SRjwGJ9k1iWoVbHYQ3WYClGYkh\nSHaZVLXxumwr2rZBljYsxjYfkaadikoEq/MmSAIzNpFvyqszBqAddLIWin4eyxg+k0DUtTvN9QOH\nQfNyW7ukfWcUSaFoVkXNflUdN0XO/q46cJLjIofgkJRWlojas5TjUJqv4a0L83vIQC1D70nCmNI4\nyGKb+yHHYeVU9e8gf4XJNVEsJQEO6xQgnwmWWivdX8/Na0gqWKh0NJ3PeMz6JPQB6jmDoBkx8c2t\nxwRTJ/hl6Ci4zi72pWX0iRHMDbdtsyUJ09qbXB+3hC1afDPfZV0B1YFEfc7HF7LziiOAushBEKh4\nFYhwrGGHau3Qbl5VcYVb1+Y8Pjyga8d2U2z7DbbYe8N2s7A3gRGg2/U50k3XxeC1LKNS88E6K1ff\nvNQRISo4qKDJ8vp3LH4vizM2sLQsiw2OyCvfyiAfDxtgJUOND04DCTZ2+z5uypgeEwDI51YlcxiM\ngruDk3Bp8DLrqIhIeAa3Yzl3WZbBGGC6X9a3KGmQ3J0W60gATs4Z2tUNFcHxL8LjIq75BaNMewmH\nshLIBdimCKEYyjv14P1qke85DkwezstKcEEZHzxvHhZZz+UGagQ3sd2CA7WtdzRlRqRsD3WkofCN\ngxc1ZwU9mZrhDqJqu3yX0A0rg5W7uSOk1QWhQ3hHGqJ7dY49OKSmns53Ep26/mzWC2GMbwr0HVgk\nDCcm3XboGxFIozMg+3gG9gZMm8ND5PMLmBmIDtQhVAI9Ep0Yo0087XWVx7Gdoi38dQZ6EudO9Qo9\n6M6lKntFr5zpl5yrIJgvCK2Q9dQdGuWr4/clInTvGO5b7lHrfCjvyTPpNk6ik++Uy2PbYSA7vZPs\nCBTdZzbFvf5+biD9JIhJaoGg1jLrzhJFIYhMjeLrRFQVu3Yst81DtpuHShYQrShEhzM6+bu4Msu2\nLF0q3cW2Oh/GvaVshop1mtpb4kbxHR0edWbc1gfqEEbHdlASCQC5tQVdWRImq46bOjMUzcBwPHWd\nX4hPyIvA1+CoRzX6eHSgrWL9ypkCtgcAz87p6346kuiwXN7HEusPF8Ren5LEzeSREQP8G0Od0iYp\nZDmO0bN9jHL7g/t4IUlL9mFdnxpyjLR/lRxRkVWsMuAWcBYmM6edrdk5KVk8q9oFu6/PtJY9GCOT\nX9E5UtpiWRazb4XsaO9lY9QRJ31uxxey84rj3sxOpGHsFs7SpShlKHbXcwCcZAiWpeHh4YInz7j2\n5s0T9n3DMxSKHrM5QLJ0Ljq7Xa+R/joMIo4D3MLXFkt80FookzpI694xdT8Qy/4yTasGAIRtAtYs\nDKY11ORgXs9qcK2EIjU0zdpSVx/glvYFfR8H10Am74C3PD9s6CkwSTpq7aon9whg0Qx07cP4ztkf\nhrpRadUjnz1cGsbmHhmcvrh7btzw7NuZON1VmMcjDY1MX56Bo0poEpSd3nMoH8s1nXfSz6oZLnEG\nWudnVoWs+WX8xnCCao9CZlSxc0xsG1q7BQhmaMW6LFh0wbIA2pjuGhGNJb65HTxzUFcLB+tq0j57\nA1UtFTYBD1Qza9NUx4ODZR5vqPVMg8nnUGaH7z2STPdK8pvJMAAAIABJREFUZCSIHDfIk0KwWiEc\nFbRUADsgRB3LSZmwlyYRSG9M3DP7j+CxJZk93LG+u3xS71gjTsBfhqtHcaQcFR3Gs07A0d0xKhKz\nADwvPs/PLAOj6meSovqc+f342JNxKNkO/Pt4vcBCuo6z5AG4g+iUcShOWMu+HW7mfK2YgzsPa5QI\nZbL1G3UMWttwY21/TgC7Wj+XV8m1pwHgFgsBa8uCtu9oy+LZEvtINsBhVIL02E6hrwdpLGOSM6DV\n6SnT59kOpXxyXKbDMklMrP1VHSTQCuuee29ghZa+aCHz7KwIPQfHzVjG2hCDw2h6dozKoe2z/ed2\nmO+TZHa03erppZvrwqGVNJ/PR6deZ+edjAGZlOPhMDIehGqwbUfbxPLGmBgFIrAXMZuUCpAg1nsc\nbRYTUKQdpb6OKADUca3Zv5L6mQ9me8eaqZIgYsZlrTV0l5GaqZOrQjM5hpGyz/H4QnZecSxlZqcC\nEHoJOpimUiBiU7u7A4m+bym4IrhcVrx99xbv373Du7fv8PbdW2y3W8SsXy6WMpohU8y1v3kWtn3b\n3IOdICEIj1jig4eLkanLw0Ommw2joZEIYVkWXC4XrOuKfe/YNsW2ZbppINNNWxpdO+qUqfoi4DSi\nJFNsswQtPDIZw2LKvu84piQuwLoAvpiBKedq99UTpX9mzwcBWA/Ddw4auCZiPEaguoQ365zs1Hur\nW89qUE4JGb+bn1zLqOO95t9PQdAAFI6Hqnro5QTDTgD1dEuk92sKwzl5zj1DkveZkbHETtT51bF9\nQ7biJ8E3H57x7fMN7x8v+OGbx0g6ECBkMOr1nuaZvG07pG1WLij6umJ1I7IsCxYUr6mquS97WZRe\njJYsTGrCWV9vWkVm2IFEJBetJmdMY52b5Jg79Ivfew6ho/eOCTgikYQA3TJ7j2THwz20WdhdEKWm\nABaIeDIREWhvUP+7extU0DO0D9tZ4lPoIoLfQcxLhwiSyJ2b3HEsCZ0RBZhVohK4JZKPtJCHMRUr\nu4ILzJM0vEQ2RASNmMSQ5Eh0KH8g4M66hqYM8of778DpOKutQodc1Yf1HkEg2wLBApHlhXtVwlN0\nlRAoJmlAE6AnGCQBgG0jY6RZkcA+XqQgamn9ce700t4tM+m+HVLkUubXdS3r3cRnHGgy+1QPA+8K\nX8c3hCuNeiqBvsv5iSxU0JoEMfuZiYa6ZyhD6XOCS9k9Y5b3cgWw7gKIsrTGcG63u61wZg+VK6Y5\nx56ODqWUf4A+iKr6Z9s6O6iGF8Z244PLitN45nyvqTERDNQvi3VYZUy3pqj7JA+OpV4SYJQEcl1z\nLXIQoLh2jJyxUGQnGBQksN1dv2vZk23KxDZjlvpb6uCGxRNTcX8qEqHQpT7WNAek/c5/yxgNUr3v\nETKttSmLnAbJ4nn7bqFw/vocjy9k5xXHykxKxXhUsrO5AjVywMxnFjKzoUMjT37D5bLi3bu3eP/V\ne7x7+wZv37zF9XoFk/Av64p1WR2k5yK/vZAdZocrozP2BlnXBQ8PFzw+PmC9PJQZHDckygGam5eu\n6wrVzcHeXkLKbJp6dfI1eNAdGM4gon6eM4UAqTyWxXYoVl2gvaHvbVROImgtAXhd13H0kqtnAR49\n4cMCUlf6NoU8ko/B8xJoCE4ADOixXItvqrq0snA96p2KPwA8ZWMiKZ9CdHgMsxYnRO3M4CbxGA3D\n7B0m+KpgtNzlQHT8onCuSdmbJO/18WPwmM3fCTwdMMLbevc+hUg/7zv+yb/4Mf7065/H77/+gzf4\n7b/2a3hc14Nxno/e3Yu1bUkgFLGZH/+DrG7YNELT0C2mf2npbRb3NHNviQCzQISEwD9XukmvXZCV\natRqv1urA6K2Xkh1aH9mcFuWZQTyDfYqhjE8fdRtS4O2xWY6F0BhBrY3gWhzMNDC+6hAzEzV/kQp\nIwGHdbGGzjNse3Qy5KiwsVtnW2v3EeSJiG/evCQwP8t8QGjgOomgv4aTmCw2LJIzgnKnH4BpPPOl\nGJ4teXIAwtpWJHYkX3FO0buHWpwBRC9PEJ4CvOvzSCCp50XWoW6hG6PwcxmOur80VpBDyRvY/k5M\nhynzbGSWzbrmqC/NAZhbGNSQbiA3z+29xz5XwA5Vbs47rm1rsUmtGMHqiA0wuZ1E1RuR1VTSjlS7\nOANI6wcvu/o43XtsHVEJHfi7KHbxZB4udyRie9/RaUtEctNiseRGw0bBsPBz3R28l029Kxnh+5hV\nU1D2hxj64d6ajrDHU5vwOgEiPbdikrHSv8O9Q3YmwlNmqkRg47QpUPZkq86hdJtpXAPAkrYoibb9\nXusQssd1m6ZsomjEe7R9XZn8ZsQVlYBorQswjNN1XSOLGkQA34NplrEzgjjYYT9ihqdgMJyUrUYA\nUA9aQixb+/M5Hl/IziuOmqZ59ZmStjAtrVrmi+u0QLg1YGkADGQtIlgvK56eHvH27Ru8ffOEx8cH\nXC4rVHdcbiv2dcWyWspoaYJ9Sw9yL/Gdqlyb4AQCFu+7NNuM7XIxsrOsF5Dg5ABIcEjmT0/T7Wav\nSngAcDSOxpr30rwrT+W9RwPNgYpIwd2apcnuy2KvIW417zYTg0qK4t6KwXAMSlTL8zF6Pub7hwGD\nRhx2XVchItBmhmeRZVDUcxkFYgtjI+xgXGMyXxMVVz2UL8DQye/3jmpA7h00mvw8tAWoQO+RNOA+\nRTs8aXjmi+VXwtxq8IZClz8IpIF/8i9+jJ9//XP8PoC/C+APAfze19/hf/6XP8Hf+dFv2DjJgicw\nixLaLIW4gWhuaAic2R4KZKiXmBtVGEdvnYRdO5o6eRKx9MyTge/dsksBnqesyHaQIkXGmQ+N4CTA\nARIBO/tTkBLPvUYiQUFXy5otdJI0aFO0RSFtsXTSHmaS4CffoxGmMg3lm8d+jAEjSV07Wvd1TyfA\niUAZ8JlzzWQJR7mRSGmtyqQHVr/MMBANUgh8AoBat0onQ/4LGIKevLy8JlFJ6s6Oj43buR2MM43j\n5aUxXc+5B4w+/ntIj32WChh5g0n5w+vMzGf13DA7tBxsN8pYH2Q55I1DKp4hnsFqN7LQC4gHov2b\nkHD4PUV9RnIEmgpflzL1iUZ587m2LiVndWbyV/XaQIQ4/VWeWe6KINEiMYhIcs2L7zWTBmmKpikT\nNQSJmCT7UgD4Pj176gv2RT8pv/YqY6OMrL7v37oyMYHpxu5rgTN0ynEKRiJTnW7RxoOASPEUxCVJ\njDCXzUlCNN2pa24gpKaOCfRdBxc7mZkkEd9ZmU3f91J+YglWZnbs1qPikt57ZLScidXZoWyHk1PC\nTnTr56aZcXPer602nrQGeGKMyJRbHCI1UdWXmZ1fooMCcHHW/RDhYSZYzQGPCYUGsDUhMiWhXfHw\ncMHbN0Z0np4ecbmsaIsz+qW5EklFoq2j74AZ2Nytnq86IBcR36h0xcN6wePDg8Us9z7MwMyDwJSz\n4Ha74nq94nq7ghuZAQnwAA2lW22ilg9V/XNsHTw8VuAkPc1Impawg1FZHAkJD067xn0Hj23WdSxo\nelFmr1zcyInTqCR9Y1FfUKrdM/TcIRT2d1HgOJKJaLoClgjG67nRT2CPyN17zcfHzmEpqVCPx9R3\nh6snUCeTYb+jxF8iPAlbPlLo+Cj45rtn/KkTnf/KT/tPAPzXAP7br7/D1x+u+OHbxwIojuBa/OE0\nHnu3hday7yDBV2WGtpbJOWAkqokC3RcTiwD7HmFeu6o5R9yQ1nFIUDPMGvcehIobAJNcBskciAgC\nqDdH2nVxsRF3G9MdHTs6VBTMqGRhaoLYx+m0TxAMzLmSA8tjcgPjGjnrR/rWezPyVWQ4xlDtd9YV\nNmOk3gZZDj2yiUpYtAPaXDqyAgmcRhA0y/lIeBRi88fIPTQIZAswwn2C86nHS+N11gcfu8+n6Ifz\na2d9MI/z45gNzBefJckNZdNDiE1mM3NXALKyhoVjxHhm0QiKIDoBqnuPUFIoyaagoaHBwKxAYj8s\nuw/lQCLkaJ6dSYdZycQ4O0j0jp2IzZZtpmY0MWzPXPdC9C5MT6DqMu9lblYf6i+FOwtXS8NdZ5NC\n1tVHDPVN0Rdn+jXqCylr9/K1eohVgmNaXZtx2vvmr7IeCZzFqzYx5Sj9TuLn5CtGKuXoIHeS/irq\nPJzLfZDrYp5IdHavu9WnFZI9OgFCLgJTJM4InBRlPToRQk6Kwzqyc5aZ5TOCkmhIDzKnbl967z4j\neLxPxRjScg2mqg59zGgAts8XsvNLdlBY13XF4+Mj3jw9xaCnQO3cN6ZbnKVwU00kiHl89Fmdt094\nenrIkLfFiAo3MSTZ6XvxWCizgYzT9oLcw2OY2Xl4gLRm+9l0DdU2DixTwvuuuN1ueL5ecb3dSr1J\n3YrH5AWLruUUPutsJsOhm3mynaQBa9SL4Qb3gHJVZjQspv5H8BwzbYNi94ChjwCBWZnwu66pSFgW\nKsG5bOHdPGCyczJAIni4j5/HeswzWPXzoY3K21lrptk7IVF679zafHdkoQAHDeOqp+ccDz83Ld7d\nU/jx2+crAJvR+X8A/JcC/A/l2n/8J3+G3/n3/108PtRwHlKlrBRBcMzw+OyOhcJwI9VMz0nSszRf\ny1L9pX4/LgTdW0swTtIcgGoOkW0+RkajOxCKAPdT23iZaIATiCmAjk137GozTeuigC7+rA4tseXs\nP++s8kISHsFQJqaUR3RPmUdRgBv76H4E5GO/5HddmoWbHBjYCRhwAhKJDwi2ypnEJDmjUCn/VIIK\nFFyM9QSMlBZ7iabfPe7N3NwjNp9Cdl53aL5GFTLd/961CKCYX2kBaU54eiU7nnq3a7T3QECDmPif\nTnB09xfXSAxFz/8a5LAIPquq0NZje5e5vVO2x8X4Lzlxcq0QZw7KMPVCjGN5SbBenQVDezNpSJ7X\nfG3SuuZefdSZ3B6hUx8VMmbFULT6hEIuIQVTeLKjpTyLa4ABD/H18Dquo9r3LfsTitx7odZIBxmi\nHjEwPtuf0rF5RbmPRN/Gk04cISqKTFDgTqB9L2M8Q+VJ+KKPAHSu1aIeR6rEPpB6duc54eldgUJ2\nzojOTHgoE9ZFI6bi+XvvEOnoON5zbmdpzaOI9XRmJ+75hez8kh2hc/WgNFJAXXgH74m91BWRDYAU\nXk4DG1hqQXSGxWy9o3tcMt+p7MPLJDb9mpuR+qJo+DqEct0AELRj3+2c6+2K23bD7XaLRXdLk1jH\nIHv3wZ/75YwmyA5zDFeAiwBGtTlnksBZmj1iVOnlS8U1ToFXxZ2Ep/6ez9MgWATRoyEpqSFrOesz\nAlwCXXpkxKsKon4elG2DhbIVYHswlpoE7FM9uGeG+fRI5HbnRvWc+iU9kvU5VLAM7xoeMCjnsYz3\nWMtH6nn6taOH8tv7p0cAFrr23wnwPz4A+C8A/CaAPwH+4g+e8T/98Y/xO3/j3yu1sHvNVMwW3GsQ\nF0XZM4JEiLMuzcaJqv+ttn/NvjQsqlj6jtY8O1QxkqBBi4Ws1AVtmCmxdO2ZJa0aX94niDANmcok\n/9bGjN3u2h0E6Sm5qYY6DXhuaFq9lgrFQoDqXs/I7lgcFmxjAppYh1RBWunwUa4moENMLRzVL4Vi\nyaDzsteReP6I70dp1RwHAGIcaxk40f5+fnmLa+rnM0fK2XHq9Ch6YtaJ87WfRnpYDgdFUtrl5Nx8\nViGBDvaGp6UXIfQFQbXJRi7mzhmdnHvL+pQZNFVbvL1t2DZfu7N5BtG9D4Tpblv4T5E6HjbbeKwy\ntcKBJrlYaRUdjuKDzlCor7NxtaVVZttJH7M9C0mQlAWuCazha9VRwPVGjNCIRedlPYvpPdfVswyH\nbZYD0VnXFW1ZkGGHHu50soZqoCYi0WbzQZ0QZK8IYKrLI/AXiX8Ig1B1E68D4OHfSRREYGTQw7nY\ng+YgHckKn8n90tD7KJvEOsFoMRDXA4EQQNAjoU3VBcRAh5kdl1Xq1Lohds6MKnpTavb4rZKWbdud\nkK4ug9kHsyMt1u0UB/jndHwhO685CkCZBSzW0pRp+Up6YoAubRhoVJ8NufcMw94ibhRlJoGKxNfT\ndE/9TMLERaZcEM2c/SboltRgVjRW/h29m0DXHXfNU22RAftuITANC9riwB0zMPA1JaHuz7xfpf6u\nVOc4URHxwS4WmdDvh4rVMLb6vFlJVDBVBzffj8QjPxg/3Ecis5tCruSlHrOSFDcsAuQeTKWcOhEd\nlqm+Z8E+BbzM1TkHUgMRiXRg/C37dTx34GXnhyTAHNv3ZdLzvQ7BgCa/evOA3/jhO/w3f/EzfKMw\novO3/Me/Zaf+2T/4Ob75cMVXTw+H24XpUs4QmreXQKUrLBSt2ys3GrUQVF0UCwQ7xMaKCvbWsfSG\nJvsQ9gEveqyx0SQ74uRm4djwNTVLLIxuMdvD8o4zQ7afV4uH2KvzbyCJjkw6qho894jHZU7+dgCK\nzftfsbhTYtEObQu0NZuJ8VYdersQKUTIjQlT7i2CaItyWWa6GwSAoKQQKYwjJAPfzn5DAGioBkzV\ncu4IuDGA9eg3grMyhpT3jf4+jvmZ7NwjPEOti074VDLz0jlJAKx/j61Uj2wLFLKjbDv/WcZ//DkA\np+bYdjUkO4kOZTafk+TIyrnvO7Z9x+brSwm0M1qhlGVooyQtqqUvSOIL4M6uyGvO2zG1ZEqaRBW6\nOvhUIPa4AcfvBIbL3YwUAa3YL8p4q2t0FksmwmcCKGntuTi9Y/cEBdy41J4yRR64XqmyxfC1y+US\n++u1pZmT1LGI9ccW22IwDCra86TVhqMQLJKisyNsIop4kesEGTyOiZAt7kVTxpmtLQKY3p4kj6HD\nQNErTdC6r9sROmTLMwCfxOI66jbUjc8TARp7+0QHVLIz2t2coZ8dJiS2zC7HxDoj0dmC8Kyr26RC\ncOckJrz2C9n5JTxUc2qaQsiwMrhby8JHpMTH+sYDsMXu6TFII92EWWTS0xMDlDM6u8cp7yVGmdPf\nSGFtxVOkTsQizSXXB2Ac7NuWaQb3bYcpDANMFHiIYJU2rPmtpID/2szVhJrrO7K8Mymo0632UYfz\n5+tzHc2R8NgjCxDMC1O3nxmv4XqAaXEH8uF3WNQSFNSZuEpWmviMXpnZmdvhUzy6H5vheenQoJ9a\nm/Pla6LPjt9rlO1IvO7XBUii833qUe8n0/davjJy9ds/+nX84T/7P4GfP9uMTj1+y96++e6K94+X\nF8uhCtsTRDq6Wiphy7y2oC8WH23x7C5/tmIHWsKl7Pcde4l7j7SlfE5s8otynZGdnePZFx13tZmi\nJpZcoJU+VVXby4RpaLWB8w7xoj5xox87yp8caeZJCJwkdUDc+78xbFd9Zqf3aA/OKitJAO91AtBt\nL8AWIHPCyNlWpRx2L1Dh5DsKMOE4lXqHQmKACOMYXiBBGscf34fZh3JatFNs2nictblLbrTQwiIL\nMW6nI22IhC46a7Ph91Lvw98KKHq0YzbtyZhDrVshKN6e7L8cmplcJe5CosNZHY4DSm0WCjb7MwK7\nfdux3wrZqTMKMVM06to6G0p9Xu1D1FfKRlp+7kuqt5IcQHKdjdRkIwqNmX0WS0iTp37R5Hoo54v3\nDddWlAiOEaBqrBEk0Yk1pkXmhrGhZdxQrmLTUH8WNxJfFrRF0tmriTFqPwyOjZcOFxhr+nEMHxwD\nlLPsnryHg6lK1kYsgDLos+9iLHdzsNqzU4fFI6KcOT5Us48KdYwync2WkJgA3XUfyzLOxMy6Ypgd\nir2ZxvYJoi/IcztDDEl4bv6yvoRvLErZYh/UmZ3XYo//r48vZOcVR2wqCiMQ2+2WRsEF8rJeLIua\n65B9t8xm236L8LTFFwOvHm5mg6bOCLkREPOa0Fuy7VsorjS4ABgC04qhUZvmv16fse07nj98wPOH\nD7hdb+jd/LIiDesK7L1BdYO0HoOZqoBKtveO27aFMaBXNrFmWWQY/w5QKQxi6hkN0mX3zfCc2BfH\nB/+kc+I4AmsSyiNICfspOJCNuHoe0CekCbD2IMDUlov7ci8ju09rLTxJZ2W7U4iXfy/3qeTr5Svu\n5ajJuqEo0nEW6e5F4DweL6/lONaiEp1PW4NwfDq/OW8jEcHDuuBv/+g38Af/6/8B/AlyZgcA/tje\n3j1eHDxMxml+JkmE0BDlWhwFoE1h3kCe3LH3vF+kcJ5eNXRAK9j2o4sYbRKx7XfpGFHfzwbdPjvM\nIrBr2tCbYoFnWOs2wwPlegRNz67tH8mOy8KckPER7TkA9c0hufMNCX9rPcZyeHUrmPFwPDp77HEC\nCPWDjt3rQETVHEgVgCfP6FYZzbJJrNHutt9L8dJmPyf44LUHyYq2qOujyiwD78o6eimtmzJEsYKi\n1G0owD5LNfx1OgRLf82AlWMSRQvLUSOXkejawduurGzJ38tF0EM7VLJz9yBY7bu/yppREhR0VL1v\nxmcMxTL57U50LBKh73VWpxfC04ey1sFbSZ4Vj9QCEHRob8hWSr2Y7QbvaW/ZQd7Li8TfMxGeeeTv\ntVwC8do/sIQpTSC9wXJlK8AQPGbhYptslpyI4XQpASyuJDlAji06TbN64inc4fVg+L6FRG01hE17\nbKocszRSa6V1WCXpIoYouoFtH//VfvKsaurjIMt/DB0zG0c5rX2ElOXQ96bzm9j+TKPjL5+fmCDf\nzak667xRJkLeGsmdQLTZTI/LGLcQoAzUiIqQmz4RHpQytAVtsf7rUJ+dueKD0Jlua8kvlwseHh7C\nyRxp1WOrBMXed+DzXLLzhey85ljLnipku/UQAS6Xi4WiObG5Xq9oywfIVcNbuzZLXb1GJjd6rapX\ny2YSYm+djamg95LFgwO0erCYdciSJdxuV9xuG56fn/HhwzNut6tPjwJtEUizTQJ775C9aJuCdzoU\naot6QuEzKUMazaQ4A+uR/DMVNxJUqOaprhTmDGmtcVF1HqfgPmw+FfkYKjYSrQKbJ4B9Nv09v8Q0\nfpAd7j/E6wevkqrvK5BlejGk5N73vB+Rh+rhfh8jPS8digKA4t78ZTpXEdE6s+eadaigtNYhJOaF\nds9nH3F3lvb8EBF89eYBv/Yr7/Bnf/Azu/63APwxIP898Jd/+Bbvnx7G+wZQRQCK+hSBJSpQ4QJR\nIyFsh4qn6qZ2MdMar8yy2MaBgYrxBYIu3WZufHCI701iJKeUrhi9DiM8ANB6R292PnqDtLLotXfL\nUkXDDEQa1NNX7atoH3tuJ9htHX3KxpavSnA6ROmNtlv3LubhVHHQJgMItfHrNIIoSMTGMx0hrv84\ng67E7C3LbTqCJL1c10ewfvB5sJ0ryKg3DRHSLLuWRCtBCmp9WOZRmu9rhjuHVA1c75JOlpxol5Mz\n7McAk11H4A7XX8oxnnZneK/tJSjP1Cwmw9VIRPZKSvaxbXqe2/ce2b1i/cFtw3bbsF1v4y7xsTbF\nnRMOYsPm1FZQDAA6vhOEHDJKIQjHLD9h5AppOHkB3vdTUpKz9stWQ1zH/X7g6bPFMxpSb1cQDCc7\n3dtO95wpyHEwErNWdDL1ljTJV6kHwb0RHc7o5ItrlAi/OcdrZKO2ZZ11tDMpemNLzOSQss11uhLK\nN0nGOLNT5UC1gHqWdCAurpfE9vlLslTs7IAJkqQ3sWQqJDyzTMT1LjtMYtVcFnlO116Hz9AeocfL\neKF+Yf/Fum8xB9m272jXG6BlE1QksSUpJTnn310VcLL8OR5fyM4rjlAEbiaqp18EWJZ1yEG/+tob\nhXmyDOAg0kovS/OBAeSAHtMQ2uLLzV57hsoRMlp5UIBJlo+EzLxfV9yuVw9l83uIz0S0hrZ3SNtD\nafNFQ9A5oBRYFvMUZeYxO7NReaLcIlw1AJUIgEyHS81zYuFN4fJGbVBadTqY3/FBwbVcucR6nwlg\nnPZtaNnawunxCfCC+AlY7LeY+RuMgiue1EIvEh2eU7X93dmSQnQq0To7ZhI0zwadXfdpxGmmBfnX\nfMeR6ByfO5ZBogtebq7zcosI/rMf/Qb+6H//v/CTf/Cz+O0v/8pb/Kd/7ddLGae2Zhm11kihKjHj\noEw/DMfJzYPXFJ60YKxzzvpZCJp6eucWsjA8zGZnRSzkURTiXtKuzcKyuJePElPnIuGmRr4hQOu7\nz+wItAGt54LT3rvPBLcA4D1CiVLOWf7aP6kHo3kcJANi6dXC6ZHZ6jRT5rYGaHfwzHHc/XNHjZuv\nAGeHoPsrxpghEiohQ1W+sXBMB9cUXEVPsK+1lCNkcCBGCIBkHd6nsVHWUwQ5dL1UZxeAoT78+3Ac\ndNHLY1H0zkCJOuTfMQSjFcqfXj96yesr54UnghN722ht2lEBlLp2d9j1gbikA28AtL3HDNAYpmaJ\nCCyMzQhPEp0REFfiRPs4vDjWtRRYNPqbwJlYWnFsM7tVIYcV2LYyw+ntUDN5Zn2RdjCIE6LVQwaY\nvtrCPkKmzUYXEF50QraJV0/s+oGMnQBy2t/YMLNRmPJ+JDu1T6PtKT0RbpJ1KB1QcIxQ+RXh5Tle\nL9jsX+6bRb2hcQ1niQ5Ox/I0kdTN4liJzzVR6Z6IoE8zO+PYHV8+zj20WelGesF+WTl89r32t4wy\nGUOpYJGzBBDRliLuWFui/vu+4wYPrW8LpC0RjVKz6w3h1rxW98hb8rkdX8jOK44RHDJbmgkf99G5\nXJitZMFlXaC6Y9tW7E58RATryrTSaaMFOWCoNPa9m+fKvSa67xDV2PxPdPSkWrnSs0Flt3caii29\nO37u0gxAtaWlUqsFgw2grkyViDA61b/VPMZZWIbwcuEA3EOJKwe3WwwHYEe7fiQIp4ChXHe2U3j+\n4WpxUhSHNnSjYrNKEvfhq/pSR+I79Yd7b2QCjaef9ZgJ7qWjzux8Gjm5T3SCnw7fG9CfycxHn2E3\nODzD+lKn7+6TtE958r36PKwrfuc//E18890zvvlwxfunB7x/fACNdT03ni8GXBLYpUk2mWHUqIcx\ndo7dhi4d4ptwBvgVwaLN188s8YzYsd1Jy9BuUwtErSQdAAAgAElEQVQ4lDRPn8IitkRi/CjDgDRG\nEwCxtTMkLAC02TWRSc6Tm3RVyK4QdOyyQ7YxmyDXxAkQBG2W5aH/OK4URtamvg05K+C6kqvqTKjk\nrMPWI3WMs0eZJMLuh2aAAw48UtH6GCaA9T6yYS4AE65UwlPqZP1dgGmtUcVnpW6sA9/n19AuL7P6\noU34nuG+4z3qd5XEDYRuOi/HxTQlVolABX0ltVh6vq3uge0DjDO97h6ExzKnlb1YKuHpWgjRGN0Q\nr21H33bstzqbU2ZyClXo7DtmaeMvWs9iM+T4z71oUyayXvFVAamC3N2ShIdGXqJukRK6htmxD3kf\noOypw/7zNM/o6BszybVC7hD9kf1V7BLBsyBnciizRfxybLXYv0cORKcX8snERxr3azE2EWVQjiPk\nd0Uah9YU9gE84kXKOqyYQWXQqATpqbhkdjzm01w3+zICEUs4YNt87EEotJvziDqIGz73IvPj2hr2\ngxO1OnYOB/VWkh220TAua+e4XNdU0oOj1z8N+y35OXvvUBgGtKQWK9bF9ozkPeo+SsRQZ6mrP6fj\nC9n51znE00RH6JIG2VnXFQ+XJDt9X3FZV2zrajqvCZZ1CUHKoQc3IFzot3uMpS0m27ctcsHbvjTN\n9so7gYJJeKaUg7snKNBMo9wWSzawRH71VuJyCynoin230Lpl71j37sDAy94A9ObLeDSVfRmAGkaw\nKDWiIvvLFoQPg53K6kh2ju818YMMA50JDOJ51eBhJjostd8z2rMAFt+7ILgaCdCJd4z9S9BZn1Of\nr95A2V5nMJ9oIrv+UwmPFPNRyzbcOzBglczvR3T8BoPBKV9bSSbDel5e4CWedUaWRuBnd/nqzRO+\nevMEyps1s924kpxa/yA6BG3xrYdCehiTrceydVmKDvhmbpT91gRdFzQCJx8X2gBVN7RaisCCV3wJ\nhqcp9q5QD00LL24AqEwpL7C1eK3vfjtFw+KGuMf9evdkB+ZtcCKzT2SiJdmh3pqcCaXVythSaJfY\nDHLoswIYK/gn4WE/Vv2l0qCyGJms40ybhYKor1OqhIcgk/IY764tXLVI59q6LGeUuhCdEKCKRaoI\nBbbUqBvlcq7n2VHH8ktHdVrB++Xs+JR7TVeU+45rd/yGPC1JTCU7ZjCc8Ni13WdoguRwFmDPsLOY\nxaEN1AyR6vtui6lvSXi2bbPrt0w1XWd0on+CZKCQDKTcHeo/Qu8IxSPQBzPOJSgfnAyh3yrRIVlx\n/dMnYhdt5way2rwwsFauSCXtdTTnSoLz0vEh65wsofOR1k2ACGGtz40XU+qv3AqDOtbKve89w9YY\nWg/ObEvhaHldbdupuSlU8auW7/hfkJ8wDCQ5Ze0U637yqgfDiq2LvB20+8wOHc+5ZkdVI8Nd4oBc\na80kM9qol+UgX1W3iT+Xs2fZdYUEl35LfwN1yO71LwaEdZEMY+MzqUs3wPZmWm64XC5BVKnrI5V5\nndmp2fU+s+ML2XnFQYG8rBc8Pj3i8fEB9EhBYAkHGhchdmybhrLWvkM9bM0GXc7gAOpxsQAIRnpm\nzSDRobLg/hUdgGg1mhIDmBuLruuKbd8jbG7nQt1BERVkVR0I5Qv+zYG290J2wp0AQB1sIO8TRgNM\nfRvWZmphjTrO3o0zMHt6FLDOa9hvHWYcUp3aMw+e5wDqJCy+27uUxAlF8VTgwv2BTsmOFeZ+WFBV\nhEMZp/opz0dRnC+v3THwxnufEYOcETyU55P4zpHA1FbNNh7DvFiOuQ8ShhyN1OHJgwGZ7sPN44AQ\ncwPIGuOgyn4ZCQHcw4CW70OWBD7DKgB2/8XrKIKmzdb2hBGyRbukFyJSyI6VlTkDCEaIg7pauJyr\nmwR1xHYO6gMyaGZkcpTFHoi2ZYXSgKqByMZQ1fTq0WEgrR3aA5rAD+VdINAmBgpCRqNzrDQaMCXH\nCYoMEFgSVMBCcJlaP3iTz1KzPDknxm5OIGRgvPStdijD4VruPh8lGRaVu8wWma/7JQ5tUNr23owO\nMMrtGTCrMn6PQJ2dO9RC9fTeB8Adg2VoAWtj/60CvHptjBkpY48zADXcSQvBKYSHoJmpjA1M15S5\nt9gjxIiOQnc9kp1sDG8P6mqN0K4YWBN5nfxq+UW0XUngw5ZS9QR8hTwMURLiKd57kLwaysbnCJoT\nJAeaIpHYz9o098hKT8m5fmwuC9zgN0gO9U1tpukuAjp0W4Td00FEoD30Zeg9Cd2VxC9bivKTJ40y\nFrIk1soKuLMkSc9BNoOY+OyMpFOR9voe4QlSpwq0ht5LFtty//F5qVvHMVjqWWs12eXZsUolEjhl\ncviQsCdp9ARJL9hGu/eINare6N3SkBO7VGzDkLa6aSwJz+d4fCE7rzi4JuPx8QHv3r7Fm7dvzGNV\n4o672tR6x4YbFNfrM67XK7bthlVWDyM3QLFvm4W3BbuXMJYxdX+7mdLvI/s248K4cw4iU1DrsuCy\nXvBwueDx4RGqwPXhiufnZzMiW/edMiZD56jpSEFG7wgFX1WdvOW5NCxhRCRu66SHzyH4qhd7RqVS\nrlqaM0AwEgRJvVDOiWtQFWo/1HM4v4D1oc1ZNimVKuWNFN1DA9psgCz5VVVCpzM8L5E6KQbrRNl9\nlPScfMcby/SdRP/dYzwF8Ml07ekzcHqfGcjZRbkm7N4xE0a7R/29iCH7tBKcUn6dL2YtVMcSa55r\nJMbGohnxDojahoEC/9t+28Wz/DTL9KTaB1IocPAuvngWSKATnl0DAUOTBKgQxA7v8OxPCp+FhAMI\ntksmSahlCDl2wtP3jn2a6QHcrxEN51BniiGPa7qDNno+lf2aci5I/SUebmdguUObWHsGcQDQbNNW\nMHRt0DmVrrKtRpmUkAGJ1NPmaGmRiCLuQB3Zk+gM7T4JhpqiK+tZjscZQX/JC80xfY/ozE4PnjNf\nP39/vBcO9XHN7c3MOh6Jjit+17HUt5KzOvtWSM44qxMkpyQk4FYL+775HjrbQIBs4b2ib8d2iC5y\n0gHNvhtSU4dxqnKTui/Ae4DSQl5AWEuZH8Epny3l/GHGali347IkApEFaG7bS5FmAK3aoyyRAMRP\nJlkRETQu+ndZj1TroD2eZBOpiyysafHU+iQsGRrfOaMBJyiLpegflbaG7JCuBPmS6vzK+wsKySst\nPHwTtrd730oQHs481+iO6NkBr1BGmm0c0HLszWYn9WTKWi/jhucgz0KuSbw31o/POPRH0QeUM9vw\nup/qCw0xPTpdq0MgdLWU2XuxmViGsc0zQ5/j8YXsvOIg2Xl4eMTbd2/x1Vdfoe+bxxPfnNhYLvPd\nQ8au12dcb8+4bTcLYVtsnQ+TB6zLCrksWNsSwq/IdI57zOykByizlSHCvnjYTu4LLqvFYj49PkKh\neH5+8ClLTyzQeyh5kgpihgDwoJlz1VTIBWekVNLjI1A06baDesUfk6KKTHInYAQnJKQeH/Py10Fe\nX6asrSyR1aaE8x2IFBIQ2eauDa1lyebFsPzuXhlJxIZnTM+sxz2Q5FUkkhi/vwOQ4PWOEtxrwqIk\n5y9FUqGfHdVIvPSI/GUEYmefgQyJOL3TqSwU8hIGqMqgpIzwx3z4kQwWHjN+mUDYbptEh2t2BApt\nng8eBs536R4y1S1jT8Ezzc8XFl5MajSAZtaLvmXWIYxaWRBtIm778UAV6FrIjQOk6h10wNq7kTIj\nOh2NxGeK264GNHdq1+F3EUHzEDEVtbWGVQ9EDY23NMnZGgp6U58d2hGkQ9CgThrB+unYl8HU4xmp\naYSglY9x8ABxEkenC1xnVFCahXNxYvulfCQpOgGTcgxVO9NZ8zETljOyc29Gp14/OgbOZnVQZqrK\nbI3WazJ8h3KT9c3xIcA4C9DHjIA1pCt+3xm6WDcL3aaMXyQ7sJmdibBl5wgko42tnPHMJGhgHQMc\nRsfE+DKZafFjqe3cwQfCgyahL/ad9n2c2Ykx6YvDVUykmaMVDk5tKNc+bZBFczxHMRoWyWgSEUG5\ngS8+BHCQGdOhTWxN77raBuVBzohPeg2Ld7LTaglQ+mN0MopEQDfPRBAdIbEaf7vf4h7+Cp/Z6WPK\nf6DM8AzdlLgGQZDqGuiRKNTiHsfeiXEMfDWOXd6zlWxo9fuPYRyThV72eTsJKb6jR6ozQEFiJI5N\nc7/AGsoG4KD7P6fjC9l5xfHDH/wAAPD+q/f4wVc/wFdfvcf1+RnX6zMAxXa7gbMeNSEAYIPtclnx\n9PiIN09PePPmCW/evMHjwwPa4rGS9Myog5S6SVpJbRjHYKToOTBBvVwueHx8xJs3b4AmuN5ueL4+\nY987brcNbbPZBy5WPjOSwv8ksyrRE2IGC2B4lwh88bZ5cLsKWrfUjWgSMzpmRHvUI+AGp+MLsLyr\nRHAODlI91euLsvLMK0IFVB52F2QIAOVCSxv8YbB3n8WZijjH06uOKa9rmaqiqqAzZiHO6n7n+3jW\nGemht4kzUidlCRBYvldD1mbLpHqjP1KiCiTH0sQ1Z97o413HO3zz4YpvPlzx1dMDfvDmcSh/1tev\ncxAckkZ8etegcFatPJeXNWuEKOZEflQRCDHuHNgiZ/0gAuy7gXtJYMC/q4E2Q2zhGbtIHTaOpei5\nhXuQR4C+O/mQ3mNNHo1jayQA5nypjoyx/RF6hgav6gMeleyMY4lexG5JGjzldPUYVjlozbKxDb0S\nXae+dtCuaepJUfg8EqHIhOayyxnj1gPEWHc5uCVoEXqaGxmQE80E91U2TOcVnSUY6nPPYXFGPs6I\nztw+vOZsdqf+Pvfj0KcnuoEv6s/QilpHq7cHSZyHE1b7k06zXm6gGcYW0Q/uKBr22vG9Wbhpdt+H\n2ZwIBS/r0rwC5Tkj2QndFXI4jkV6tvkamkbhIar2wdo1fzCgWLzkMTDFQX+SlprZyvaru+F2K2td\nmPQiVE7qKh2LBMpuEDmIp4UuSTt4FyGhlyRt1FWl3Yzk5UyIhcBbGHzN5sWoheHFxBAuW20qcz0E\ng8vtLqgfz8pz79nolPmOvgO727vMBNnCUc0ZvRpGKG4nBuIL+JqlceuA0LvIsVLrQnzEprdhMBKj\nXPdocrnvffLTlDE51Zk6iOS3C4bfOOwoImBZJbPSVv1Rw0bnhAfVUTzapc/r+EJ2XnEE2Xn/Hj/4\n6iu8f/8e3zmA3n2H2d5zmnr3aXvAyc56wdPjI96+eYu3b9/g7ds3eLhcwmjEIJjARXrEyKwJvMqi\nOJfw5gkQLg9Gdt6+fQNpguvVwti224bn5ZpAhMpKQ4WO+DJ4wlHQxwFpg9s8K5xOtjUHvYvH5VfD\nnNPXMjzUZ7cOxnpUoecgIY0yr6vAQZyRKQ3YuV+u3KGCygxjowdkwwZozujMbTL8rakczxTPVLlD\npjjWYWipE1BTn3swCjQiM5+rHSHjd+JkL0zVCeG5Y7NeIGUme3frP5TN3p9vG/7on/8YP/7zr+O3\nv/IrP8Tf+Q9+HU+XdbrGZkKs6AHdTu6dJYxyOAkOzyKbpADaBIGUs7Fq1XCJA6Hu3jhftOa/mTUM\nuaBHTVP6RMTC3yhjDlTMM+hyvywhVzxsSYKvbwGwu4d38We0ZUHmMUriEmEf/i91U++KxfXaGdlR\n1czyVoxknQFYtFmyBhHIHbIzE3/xdmpIUjJ7GAcdoMrFTbDGpt7qzBEetaNwBUjovgnicA5xEB0Y\nkvKA0cFyJCGzbsvjlNyf1L+ef/aqv9/34o7nnukNkh2u7wj5pqwHkQGS0DjJINkopKf+HhnVPMFO\nzuSUGZ09M7VFiunhncTA7st1XqVo+ercPNOlX/iT1aprsXv8fdCtOYNiP9uHJLs6JC6Jr912weW7\neWrfDAcyO37zjVBt7ZEBzbhZ6ODaC8k6Nc5x8hLPKinioyzprKxyigDFhfAIYGs8PEvXukYiJZYl\nEh3VJBHsby8Xn3VOtilbeirnB3tX5HV+zeNHVWMN89bVZ01qFIymjnJdTLkk2SHnGZ5Z+o/Zd+kw\nif4qfc8Ih2hxEuppzGY9LIV6L0lX6uznvL4X9V4dGPYA4m8Yn2EiNRPF0iYD8cvnzETnC9n5JTp+\n8JWRnXfv3uH9u3d4++YN+m4bd6b3Yx92Eg6PWWs22/L05ETnLd69e2sJBHzxJXdWBwD0zEI0zuz4\nEQI/7vkiYtORl5UzO0+AAB+en/H44QOeP1yxLB9sQ0NF3KPeOgG+Q40J3MxTmvR62Z5BnpfeY2ch\nGpsnhqE60RXD1Hdp8/QWnicSGAegnTvcq4Av4QNpsArZOXhja3t4gVvxIqun4Q4jNCmzIR0lZUDu\nK+5B+Wt6yuZjBoFzPe99JtGphnNWbFTQ43Pd6BbOkMp+PPesj8ay5/2qUbnreS5t8kf//Cf4yZ8L\ngN8H8HcB/CF+8ue/i3/0v/0p/vO/+Ven8pZurt/Vus5Eh3YfrGclOo5shr4hVpiYDgLhgrcisOCY\nyTBKjavw/7L3djuWLcl52BeZa1V195kzMxxKEE0SJmlAlmSYtO8FiJZtCLD1Bib0BOS1nsW6550N\n8Io0DNsAScAPYAEyadCChpSGomBz5nRVddXee63M8EX8ZGSu3FXVPaSFxuls7K79s1au/I34vsjI\nSAgRYWZwzgqYZIWUKqFYPgqMiAickhOHpBlZ+ZmbAmOWEx8sgmSuFQuzHOyZM8DN97vW6mSea2oh\ncktBKUmiNw7yQMZXAM2dv7zBzIpaE7IGOIhjfwQAB1ATALSUow/Xa8/q3Eg9kFjb12ARI5H6kdFb\nUqGLzEfi4GCA1AWFbV4EYAc0UB4E3TWS4uUY5uIszfKYEZ7x93GlOV4f800BQB+JWwPG3IReIzlo\nIaOlb2pHanws1jr/Tfel1ugVEQlPjWGq+7q4aGK01R2Tv9T6xUZiBL7SR2mSmZEM24OKrq+tBN2n\nQHTMHS3lHMiOGEMtqlwjO6Prduj/UJZGtuQaD9IRVo76bI6yNHS+18vJkRI0CWy06l4dEYK1NDwS\nCY+t6sgjjuM2jsn28/VVmmupN6Bc19lVdUsZAhM0giAYxFeiaz0YihzzzMC+59na1D4b0Ykr9iaz\nK3rjZpO3DC47APZnxDkbrx/nuh20PhI6bh3iboVEuurm/dFkQ5xbo8HFxm10afvc0hey8wnp5uYG\ngFn2gX3fcT6f8fj4iA8fPuDp6Qmn0xnbtsFOYBJhkZET4eZmxZs3b/D23Tt856vv4Lvf/S5SSnh6\negoTU57FaCs3cTOoW0fCUqwkkdJEar3VM3/WmxvstWJdJWDBsmQ5W4eos2Y5EE/UgZH4SinDiAcQ\nrSBQAVLlYMWa1O9fJzhJjUw52jPbza0QEaRbclk2kgLPolmRncgMANqtXP4sLRO4ExTt2c0aZf0Y\nLR3e/qVZYezezpJkbox6baHSCbRrAuQ5EtBEKbr2aIDtSHoEyHN3TxSkVtVO5FOL4Daa3Shcyzy5\nYFLu2fejQuovkv/uns74t9+8hxCd39AffwMMxr/95p/g7unsLm3DzdNyzayCJvz7n1rZY1SfEbB6\n2QkQn/7QZiQK2Fb2uBbpPW7gxWZh9U3AZjjQzbZSSBlLgeyIy0nyeUPG8DRvM6K4wQXkB8itpaCk\nhJITloHAmGLLOTvASTkh1wQq/WbWg8GB+shrbuBUZR4JAwAHTsuyOJBalqUDNgZ2t11ee2Ehhkkj\nP2pf5JTA5ndOEzlWKyhlWRUIwL4fEyJ3OzIMdH1+BG/D2Ap9a252GPKYjcFrxooZ+Jmlca5dI1jj\ne/990iZGMkfCoxeEOocQvGacq5GgFo8oam3UnaNTagtGYMEMzE1K75Nrg8yuALjJdRrmuvcb4KYt\ncB8+uF0JqTszmCh4O1SJ7uXjjH0PXxfEAqbCdE7k1F5KIihJvtu+qxtbcFM3gyO33ORjDfWwWpDr\n62h06McG+dWy4sEuR6x/RPYYYG5n6izrgnVdsWTdWxgITnzJWXs++DSfhOkYJUUuKs9GsmMyCsOc\nOhjkBoLUjWXofkNu31t5XJaE54lsU/2sJKUnI83t18E+696ooSwe8CW5yVBKpHqXcNTnRKRuuTK+\n21EmR3nTzUkYlLpm+OA2PqgFp6jdvA4Rf7cd275jVe+kSJ4i5lmWz5M2fJ6l/vecbm8FUNmg3LYN\np1NPds7nM0rZkVIEyBIh7Wa9wZvbN3j39h2+853v4OuvvwtAJt3lYq5lNiBF0FV72YFomixqTQx1\nLAKDOuvMjQYluFlXrMuKJS+dgLREavlN6u4y7tGRCa8hr6uJ0BrK2qwNnMKenbhhsSM7weRmgI6O\n4N0umhGd0QJZNbqOtVME0gDcypEcqTfF2W2cZVOM8l8EdS70kh6umppFZATDcVnYiU5NTlJHi0wj\nHdTaaRD22kzdqs4svYb0HPL3//pnXYVXfquRhNcCsZbrWL9RYQOyT0fSPxhy/XX5/ekyITuNRPCk\nXKOCaIRH7wxkrlNsCoamQJLCiwHf3C1PkH6o7fkc3FeIJEy1ZNOsipnNp7sBTNmgr3JIV4ESyUqP\nWbRrae4ytTYjQM5y7ldZFqxZyc5gvbTNqXGcpprk3J7Ukx2ThQcQYisbZO6rYSNtuM6IjluKJzLN\nyrEXxlYYe2GwETIjFwBYP3NKqCnJgaoj4WEGVQ0Gk/qyCIiskHOTutHSQEuY55NB1cCk1V9XkmYE\nYwRt45wdf5sRl5nxZ7wv5jcjPi73iGRfo4K6Boqa4c0Ac/+cqtfXsCenreS0iGq7Ex2OZGfYByJE\nR9zWGtlppMvlDJOsTiJ10rBrq9B3Bv6ZbZ8qmstiIDpeb5bVz1SF8AhJVjBtMpqC1At6ou2Ny2Io\nSFmCDnBc2dl9n1uN45ihbsytDu2a1u82F49jRgSQnYVtAUAIBNjKW42GFskvp4ysB0qu64qcCXvd\nUGqdEp1SSm9oGcbkTJYbnjgQHRrn4jGNY/1AqqzPw/6TKEfMc4Zh4zq4senzu7k17NcxsuOuasMr\naSh8pzoqc2dz17Aec3WyE9O4gjniIfA83/aeXMaRkeMg1Dy0u/XptmHTkNMmD+y50fD1OaYvZOcT\nkhkwmQv2rWK7MJ4eH/Dhwz0eP9zjsl1Q9wvAsiFWwqUKiElgrDnhds14c7Pidl1wu8gASszgsoNL\nEb9xVl96FXquRFXYGaCvtrERJijETlOqbU7Ww8dID5FaF6RF/fX1MFEGBBBUFfhuEdD3UmHIU3S5\nVn+vtu+F1TWnqJsaIBlnscAK4GiWL/gLsOg2siFf/IMj8GSW5hzhqpUTEPcyn+wVEn1qWIFqYELb\ni+FCLpIUub6B0E5cRyFNUMtdFqufypFSa18/TaZ07YyEav2jSsz26Lj17VDfXhFYu19LZuV3q1Ik\nF/E+f+jVnPT+kV41Yh7QvSjq9rH7HFXx7JnyfQCA+ozvvLnRb/4QbWUHAP4AAPD1u9t2X6ibUtk+\nf78kKo7hxlgz6mvqZNDz11ckOl3546MaYbEVmghQmOGW1EoJNRUUO28jGAxkE74W3eem5SF5S7RH\nA5DxML+9tUNN8kqp803PlZFr1Rf7PqLEVV1mJOqikHXxG5fvxVhiYx1qYSxQgJlkT4yVhAHklAUQ\n58Xrtufd53dldte1oiKmsBiPcs7NNRbwvUsA5MBUDTnsYEQBayIGUgKzEp7IbNEIZ59MNmi0KK6w\nHU+kfWcgBG5P14Ao/UiRF9n3JKDd5iu3mWZy3jflh1URqI4w4SiB7RSw2X0RCFl43k5u6HuPjknd\nuBTgOHoWTJKv5JhhLoRVrronoWxOdiLBsn06+96v6sQVD3Hz0jqEviBOql81zzgHFW06wemIg+oD\ny4rYiQ6MHNncYhsN0icWBa3JKmokJydQEv2algV5XUTXqn6rALZScd53XPaCrRTstneIJOKgCRy2\nOcPsQdOaJG6ffE2Vh371JhgFohlZqhwoqvNCdJkeRGkHiJK0W1HSWWrVSLPts+zzafo0iriof8Fw\n4wIReR28nK3YTSVRq6lkXsV9lMTYmyjhGLtVe9vaLqwkG/hPJNEhRT/pNSk1/USCidD1QS+rD26D\n1md2v85nsnMNvZvYx16T2VBPmAAdfPUoqcxUSWJj08ddahgqSBrDGcyspC0DDJfTDCE7275pwIwN\nq+599XOZqEXkyynpWXKfX/pCdj4hlf0MALCw0Pu+4f7ux3i4/wmeHh/E2mpnaaAAuqSKSgAn5Lrh\nhhi3iUH7Gdvjg7jCPdzj8nCP/ekR2C5IXJGZsQDIkAhnRUawW6QkIlECkEXApgSkFdvOeDpd8PB4\nwu3TE948PWIvBTsX0JKE7KwZec2NKKm/tDxEB7mdllyr7Pcl8jDTdpaPBCNQS15hFK4oYNRcUXJB\nyRnLksHZDqlqvsUUzx9wYUCN3NheAW6KW4QQSWAsj0ADFQbiNqcBKDUwRFytgQC0zhoDF3imzOfW\nC+5+axZYCQbBBKAQQAVcyLlnI2NJyGUIQSqCuI9wRVzBSL6B1tJIdKoC2hn46Fd/4IRHlNFAwAKB\nBgywE3w7grOWI/izvBH6zt4erjzwCe4uonaZKraWSwXh63dv8HPf/x7+3Te/qdDl1wH8AQi/hZ/7\n/vfw9dvbCe8zmHNMHZ1Shd5qKk/1azXaFnG7UyFR41cx1F4gyoenDfyqXabjBALcqLIAyL2gMFQ5\nB1DNjexUPRG+Fsa+xf175tNtwEXBkSw5gyGvwgRoABGUipQYuQKpMpYKLHoyeQUh64sY4NTmjWap\nSrWvOxUFz0mJEtU4ZGBwtHLBzgCXip361VFf9QFJuSm59XldVxAYWecW1MAkHRsHu4LJyuAEjcQm\nZxG1zlcwmRgtIptTQ6cgDsd0nlYKeRCkjknkkRRLATe1+dbGphmHCEABijkW6T3VBKLO4UCYhOzo\n/shKsag65wOgh5kO+sQ2/hMj6Wo8xeADanyDruqErvOHtTDScY9NIzzxvJy4smOrNu4iVTaJwFZ1\nv05tctnJJNjnjRgEGYTUxhExmKqcYh/mgq3cQvIAACAASURBVBMfJTex/jafbWIaaBRZqDpzWR3w\nmj6M+3J8f46+8roirytSStjVTe+0VzyVgqey46nsONeKS5VIXJxldiEnIGWpi85rhuk98jpX2Cqx\nUu4ZDu2YB7ztbRxL5FZ7EfICUGKACgo22StYC0rVslQ7sYIg58eQG2JIv7NkhtgmDnVukhHHtvoR\niZEpFrbItEGfQVfwRP2TEJ4o4xtCB4hQSsH5cjm43C7rqnsPEUgKdwQigdXlcEOpIXomEdzNVUVM\nhRoFIFgm5+zn9kCxjln9+lVHqVNKKwA7wDOBKCvp1IM9UxIZXBl70Qj5lJDXdvhnWhbQtgOUUbli\nLxWXbcOybri9ufVgE17XyihlBypjO5+xvTmj7AuWnJBowZIIa0rYc0JJAEE7/zNMX8jOJ6RaTgCg\nkc1OOJ2ecH/3E3y4/wlOT0+4XVfc3KzIRKgsYTLdj5gJuW64TRU3VEH7Bdsj43K54PJwh/P9A8rp\nBN4uvoE4A1hINifrUR2qJET4MBNAC4iE8BAt2Arj8XTB+vSEN49CdkBAQRWys6ZAdhoQpX2HmWCE\nzZODcYacnYNaQTlL7P5MKGJiEUtZkYPGuDJKkn0pZVlkfqwJTLKalNPa7QsyYWaWN3LSocJVdb0o\nGG2HBGQnEk0FU6M6ABdtI8uvwIyfI+FpwGBOICLw8mSrO4vsxxLSphGKCzSMbVziVkVGzfJSuIK4\ngqpFuCIvg1kQzcrSlUetvbOoVBYeE04aVMEpMSEVyIWL4zYjQ+zhlRtxAYIboj1fQdZIdFR9HcvL\n/d2OwAxoUCMVIHsioQSw+ff/7i/gf//jH+EvvvknntPf+v738Pf/7i8cKI0Dl+GxrZ1a0RkRxI73\nG6i1Wrb/KH62N7bSyvHasertGoOsUflnllUJFDEyUGU1MgRLohJRrhV2Hs5ORQBXGHPSLxbEwKy4\nSropyWwJMsACFaQqe8wKA1WtoJnYx7xYcCXsaWJGqgxKFXYwslluSYGATGA5FydptLNmDDBAKyvS\ndZcBUxQg7sHNglMC0gLKGTc3N7L/iRmZSNz5UtIw9yl0Z1E5CSF1yYCf7Pcx23jjncnLLvKJ/ffR\nLcfOCYp9CLBEuWYLCmH5SL3Y/obxEP/ab90qfiDQBITQ+Sxjzsrv+TYq1QFGkyUdgITvqZSjotT9\nWAVw9CzwPFwmKXQqBSgFbC5oe39opp+xY+5oWqdSbMP7rtHJNuwhKIFd2zon1I+tLG21kHXisUWo\ngpU7ygNTeO0rpmb0YPtNW4hSAuUFeVmkfntBUeAqY1nGY1rEayLnRd4r2aGUwOcztv2CU6k4lYKn\nfcep7DjXggvXsKpKYohwUCxEQ1xcRYcQV6mzjhUUbkDcopRYTZWsOsHU/U6m91Ii5AwsS8ayEFIm\nUGYwKgrvAIC9ll4XM/nf48qmPRe6WmGf2/gTSwMFgm9l66ZWk76dntYflXAYeQhPVgWsZKdWnC8X\nLMviK8G+0sYZFgqdVeexz1Whz2Xf5XxEbV8jH6z97y7qEANBLbp1IScsqclaruTR/9ohpEpiScgO\nmYGNCUQL8rJi1T3iBMULtWDbZYyuq64eLo3wUF7AlFAB7KXgvG1Yth3reoO8LAHjVOzbjrLtKLxj\nu5yxXc7Yb1bcrAtyApAJSyasOWEjOQMOPByW/pmkL2TnE5L5VcqqzgWXyxllv6CWXdk+yyBP7SA9\nU4FLknN0EgTQl+0C1ILtckHZNxFizHqwnlovYFhKrL496GTAv5GrKgQwbPuOy7ZjKzv2UpAXWZpe\nb26wrCvWVSZJVVe4aN1wkUJBELnQrODayEVUwFYkIyoA6wGmFXuqoFSRs/kdk8qlQLZA7srlRh4y\nK61YWtwfWslSon4pOZamufkdCQxfed/q3YABoQncaCEiIkCtLrnKSlYu2c+JsJWZg1+vWYTQQnnG\nlFPbN+SudTTsExhAdPebV6RdqJBS2lhXwXwp3xrBsu7AssM3dDtfjAMoMiB7FvUjsl1uz+F4e4c7\nDHy45S+SPCLcrCv+4a/+Mu6fzrh/OuPrt7f4+u3tgU84gTI02bLwZ1L4rgGfBmz7QdGPECN01lYx\n/5hFu3VCusJ4jGWhqOVt1UB/Ex3eAgFYnzdSIytCNYxTCxvrrlrGVNCip3lQQS+TrPlkTgAKzI3C\nil05S3kwzAs/kyLu+1PQVgmc5FwcJhb33kCamFJzzdMyxKhP+y5gGCSEiXJu0eV0U3WxyFFQ8mru\nI2TPagYW5qqbmBPIzkrRvjLntA449aPf278xXXPfHKKYgQCqSHr6SDd/HLgb0QkEZkJ42n3tTduI\nHeQc9yV1wAhqK7csI88N8U6cALUTNfexUX5qm7aZzL5HqRoZCPuvYthpOYCytU9b9emjtcUogq2t\n0b13980kfXhM3E3GUR7IzXB5MdzpQql3Xbb5036X78wNVABnyouTHmkrEkv7vuO8bThtF5y3DZd9\nx14rshIVDs/x8cOtsEZUiYP72ljlWMcwJsxq2Iodz5AxY4iJh2aAEBlhx1P0hMPcq46vtvrWq964\nsmPkx2ZsLHd4NSWA9vTgVh06b+zjuP8v2UoLdMxwdYKDmI93cXMHrax7x2p1jxfDIJ07WxynschN\n2LXf7HFKmqtnYTrV3NcsQ+sPtH6IY5LaSiOReIfsStZsLrpODy56HLyU9n3T86yqB3FJSWTszOj6\nuaQvZOenTA2QJ41wpFadnN2lglkse5mCjznQbcTddzmrJecsS417Cwxg4LEpa7G6qeeJTsqmGE1R\nSGQbA8yQTZIpY1kkoty6rropuAR3gabU/HmhrqKcGDEowWwTXQTKQFNqUtcGjuYbm7kjF0A494M5\ngDgKq0NolpLwrFLbxr+orKacwCqNBmAJbVVlJDleDtvQp31aVFBEsmNlbx+0z3g4xMvc9kJkK3Ed\n7IlOrEuMEBbLHgZPqKe1mVniWoSa1u89ofN7A4AawU/sl7+WNOTrJCeWr7uCD9/YNR3JoVZnIZSA\nWRqDXhqKQs++HyhhX6oBpB1XEOmZ67kzRHTl7u+aPiNG/evDixo5CHkRbNObuLEoWIh7LBzWdHNC\nAYUfkCybslOqHlLbytGRncrqdmQuqfasUSYRKliVMctm6pxRcsG+7Mh7O/zQ50Scrzl1BE1WkYOV\nld2RBYAdx2NzLbYuro71SA6YDcIlD70/GxoGf5jnf6Uf+6tbCvnqy+/jNhM8GiYpEKUBXNr1FaDC\n4NLqcm31uN3fn9MRwxPHz+b67U9kDqRmOCgUrY1HWRNf1gJHnWNtyK67rqWGcYPrGnRWBF1g16RE\n0k4UVigCIPfgPkEmVq4CKLcN2+WCy/miK1l7B8atjvPx1c/96e8j0b0iY8iA8aDPYpsTNS+DmcGw\n5XPU+S+l11z7sXnGZH0+e820hkvvZwB9y8OwUcMxgmXiOYjtHi/Qc/VUItba+djmnRElYJ0uoitF\nVzsxGO2b7snZd/U4anJe+li+24doey4HBxfAzzF9ITt/BYlZN39li34mAz/LphKARdEvqZEdMHyJ\nHoBvHl6WBdnO2nETiyQBqkmjm4nlMZkiUmRmm9ybFa0RkZzFD5SIlOzcYFlWJS87YmjRbl5S8B9n\nOxehWW5GMBInRBSczbon1xjRsdOZkwIdsxPF+6PA68gOqTVsEAh93PjiYNyeMU1uHGllT+E1CnWr\nQ15XLOsKoJ09xP7iA/jxa0r1zYP2PSd190itTZCSA7IDuE4Ut5Z0fUDD2GnGJY3ahZ5E2uuwcmV9\nP2IjzEHIXwfhGR99neT0d4xliWSnvRkIj3xQXNjPhZeIjuU7EqWZwnopxTl1jexcubO7PyrC2bPb\nZmsKz5R9UgBDgi015ZlSkjkMiG01zomwsmPhrWuWFSJmRjYAxf3KTiVxbUtKwiIps3MkvC1sjxtX\nlJzltWSUPWNXWdLtgTOZtGQkyAnqTvCtTeIcZHX35Ab4XBYTepkcx0zIz0BGrbIBvFJCnozUcXy+\nNE7G76Rc0dTbXl1eWj4bmPzcswsDSniuhbqO5xkZwxqJTvwr7y16197VvREqPszxkcyPoNV0H9Xq\nRiG7d25QiJMZjfsBbaXBrlQwO7aV6YiUuAHjOP0JIYJXCNZRq0a92rBtF1wuQnb61a+KqdFoIlNn\ncnbWV/4dx3lkhPXoqTASnpHocJdPJE4vE5OXrov9NpOvHyM7bUzFceR1wIgxCFcUyTRvMw7FqJQS\nqQxdtFxmbhH7hrqM9bNjBlo7X+9PqYN524xEjnz8MTP2vWDbJLT0vm1AdMEL9bYgIluItEda9hiJ\n7q9Dv///kb6QnU9IFq1i37OHGbSQ0pkIq/mGquWLwFiyuFmsS8aS5ZyaSHa4CmFa1xX7vuOiSpsc\nnlED3ykhVQan5n4Gi0fCrNFSKlLZsYeINgD5ht7b21tf3dm3vScIgSCllFCLwB6LkFsrI6W2YfRg\nZZtMZsu/FIIQK/lshKfFwW+rWWMeo2AdTa1ejtBXUbC2vHroLOUO1hw6WqtG65fnF/okXuMrOxqt\nKoIAb2sL2xnKWlPSV+2EqJXa+sTHBklULKl3i+A0Uyjx00xljG3d3c+d4XgqhF+dgvA317jX3XZd\n4b9W/PZkh/3bg4JlmVf9vqVjOa4qZCLlS0qWvMpN2WJsPwPTQ6qs/viI7lU2inXsuvJKkD1rurcu\nUfeea7P6wcYrpB/S0A/RvhmJQCO0zT3XLZOVwLnfpMzMEg47JXevc6ODzTU08GWRnYR8tZUFjzo5\nGy4M38NW9oKaerKTUkIOpLaaIgdkNWkAIz0P5tZr7NTYASPCXHECFQweRhpnnTuTlbHdXvpuZukd\n5fHsefZ+ml9hYJfXLC8nqzbGtVOiu2F8H8mO/LZ39XZg6mfzHAndjPBYvgDEJcf6AgjBbhBIKNDe\nWN4mgyA/hnEr+YR5jda/Vi59pF9v38t5JFlX8zTi1bbhfD7rOXwnnM4nXC4XPwNr2l82zkLdr4f+\nbST32jjxuRrmYVyZGMGsgekRG4yGmNeQnPHz7LuXrpnV6VjfIzkbX2Ou1sYNVphe0XmrU7ibD+pV\nYuGYxcABFCW2XTn5et9YAY6GxwrbLz1tC8Vih34heL8C0L1wSQj2tgnOoiPJdZe3y4btVlaBltyM\nQ13o7c8wfSE7n5DWdQGzupxp5y95we3NDUoi2eiXlQgpIFiXjHVZZJ9MXsDoV3YA9XFfE7ZtRcrn\nNhAdwCbZewsJWsB+YKcCM0AmVHCN2/Zdw0RKHPllWfDmzRvc3t7i9lbIzjmdYfHWZRUkHFzaTbLe\nohbJjqVryrsX0kfh0w7SEqDDAXCMeY4T3ywc9hxTZm0iiz93a8++XK5MTcjxYK0eiE5XDjSrTNsL\nINacRASuqSe1TvqKx7ePyiKSHVNAWio5CC2W3xQxk6/8XO8DbgAggvJwHYd6j+k5OtK14TOpuyYQ\nnhdTRBRDfsARQj6rRNmUWlux4bgCxFAS9HrlPXueERzLrz2rPbOzBrfR3tXVSRFLCGUhJLYh3u5o\nNJdRJRRvElqUqgJSlSOJoBGOyFdWWCkSvD0bmTEiGJW0W/wC6UpJx2AiGDWTorPPBw6Wwd5oYCBD\nypOM7MQ+QQyx39p5BKIiYwqoynzpDBCwuSqki0weKfihoWxN6lkfBPIa+t3P6dExbWTHV5cgpFmi\n+h/HzXOEZ0wj6I/vX0N2rj2ny0vieoP3wR1vkL/mxmbALJ6RM57D0qLpycpGlKtefgwbtyflH+Wo\n6ZQESJ/ScSVGrm9/m7lhJj+6iasqoQf/8SsKXR/bNyeJbgZqrp/btuHp6cnJzlkPHu9xwJC6wjEk\n+tmRDFrRr5GhRnaiYaGRHCM6M7LjRyQMhtD4/LE/4zNn106remUezLDEc6n19XGssOIj67QRY3gL\neZ/2Rg1AVyIrA1n33gZ3fMNfldqzEV9DPaIOtn1AZgD1w3jr8dDxxtuPRFRWnKRMtppKuOByucF2\nuYAAxafJMQQR6RzdcNkytsuGfdu6sfKF7HwLk50guywtqseyZHBdUbMEIJDNXOJllACsy4KbG43S\nFtzYABmwdujYsqzIywY7+CrYi2TSBb/OBD3zh/R0ZVPECqaRUrckySxlFqJjKzuLbyBuy+mSGxEO\nAN/KC1hYyTnRuWaNM+XYVob6awhARZIoa4MCmQlDvmLNsklKiXxjcMvDLHhNIAlpgAPdGdkZ6xgK\n111n1j+xwfc+7y6cSrN0RkXkZCdPVssGv24vA8EJT1em9ulgV76miK6BKejYGq2bHcl8RToQng5c\ntLKP5R2umCrMHkjaXUeeFGhFtxqmNYLFoWWecqwrzzPAoWstFMobSFX8OxYquhTENjDDA9hWdlqm\nbV3M4iHJ+o+f65BspYdAlcDESOhXJ+0APNgqFkVQaNUKZ1XEtrK6cpJza9icUHvDiI1rOWhxNqfY\nAUYEXWRz0Z5m7RvJmZEMZt2j2Fp5NFTYgcnyfQ8yo3EhVLzVlOFup12/V2qExwnRYEmuWkUrswOq\no/Hk2qDz55p8CXPPgVb4/Fqyc8i3VCE6+zE4wEHOicIBM08PnLSVnTHa2oFUkm0En+uFsbxxbMV6\nxbKNRo7ur3+wsUfhY/+9k95Rx5h6pgaQrRx2gHhhIen7vuNyueB0OinhOeF87snO60C8uZAf5c9L\nfU+qUwUM92TH3h8IKM9Xdg754jiuPia9RICupdnYiLIHaPsTXRYxdxvt5bdGAgGnuWiktxmXhADq\nfFA8ZnKDuUpQKg77cOVN9/fQhmhkx8vK7ViKDoNRK1sko15nlaE5J1lpKgVgxrZtuGwXl8H+XNI9\nwRrUKof9PWLI11DqwRj0OaYvZOcT0o3uzzgvi67siHsYEcDVzlQwK6zsoUm5CRY7zEkEsn6f+gEF\nlmVFjtBIwTspIKMAEAC4ZYfBel4OeQSjy+XivtIWSGHRU5LtROfeAgIAFgRgRnjkgQelgl74zYWR\nCGzL04S9CFsgE8T6PBCsDvhbhfWvA0lFqNaO2Zx/RuU5nlBqwANHJfKc1aqyhqYkbSf73c6GqNxZ\nPN3y2bkXtjJEAjaz0Blgi9G2OtJzvONQJ7Gejitz7OPHnj9r/0bMcLCg9iQ0XDOpQ+uPQGPIeYbm\nwX1gtJ9CmbZnQ3G1AP/DRqRAWsLbQ/ln7+3+50r5HFAwAG85zEj9gNa6fpKhL6s+s0AE10k7Obny\n6GkISj28mrscurIwCW2MgM8MKADEhS3sYZCy6LXDGHA/eJ1TYxhtEHVz3JKBapTS5GvSU+xz8DkP\n8rcRO8ayrrgBfBUoNL62R3MriYSVqMlIA5NGzGxKi9hjmDHFotFB203utVx7+cZeBvYPVuaO6Ay/\n2eSjLk/00RfRywBmJTul+hleM9nb9uy0lZ24khNfzY0trHYFQtLLpnZw6fMEYJwHVesYXwpUaXSU\nje2s/eFziyCbQC2UtekWs9hDVsh1LPpsNZ0/7G1gJXzn8wmPj494eLjHw8MDTqcnJzrWnrO9MyOh\nNcIzN/71K2NTgxCoOzh4LO8o8/t9WFci881654XfX0qvJVBzjOHvYON+ND7A5BjZ27aC4+2gj06J\nUBOBuBEmIzOJZMXaylDKMcgDAy10e1fOUJ4U+hyio1Onp9v8s9EtNbTjR8Z5mpprJyySnIzFshRU\nNdg7WVeZWIvgmaKH+9a6SLTZMLZ/GlL77zN9ITufkFYlO+uihz4lcS9blqQKzpScBKbnWpXMNOsJ\n2FY4SCMKLRq1qIUadIwBhI2XKrBYz0OgNvRZYL0q1gqYK5uSnX0XwWokZ1kkGltSod784iUPcyVx\nH/9BCVuKgnWc6EeBDZhL2ZiH1a8mAnM6gExLPUHoAaALq5ybLUYRR1zGFt02CG2b+J3AOxKdWF5z\nGWTAyQ6h9a9ZPOfuHS0kprdZeBWucphcEHSJZPVnVGjypz+VfrRRmSClUlBZN6Y7MOrJTqzj9PML\noP6l1CkpRQtOdELGr1GZM0L1/LMtY8IYgMB/dyV55FgvCvtJ2zyn/H28DWTnmBogneXtFkpKU5Iz\njuNu3JG6siWSKGwpOblx0mN5mgJ3ck7yx2O6tnL55vO4qhPP4HGq08C5h64eAZmeVyHnifXKNz4L\ngB/I68Cu9i5qFpJerm0gLqfkK/et1aVstVY/ANOJhrajRd7q9kNpUzRZUxu51kHIKs9BfQjo8dnH\nvwiyjJ1cOT1yokPtGdY3NTxmAIHMDC4MFDkgekY6iKhb5bOgNXE1ZyQ67VU6mXcE2NXb1sbQrAxx\nDvRzy6SBji4aru06Vgm6tZq/tYA/gYizHHiLIgQaA+iTerRQ6zY2Rf5vuJxPeHp8xP39Az48POB0\nOnWrOrO2GAvd2qEerm+YojYDRUjNINb2mOaUPZrh6J4UjZ/FD4YtV8nOXwUAvmZE+jTCE8n/ZCy1\nuzsd6oYL+UnG+tDWMu8C+Qj3mzEFpZVD3xz6JJbJ6+k4oIX6tr3NIy5p+Y+GSHL56EQ/bG3Y9x3r\nuur15MajKtEVsO9JjLF7QV2V1A1E/HNMX8jOJ6SsQsHPkSAN66zWAR/YphipCNFRMtPcRiSPnBcd\nzCpsbEJGH3WbiB7BqDo4N9nOQShWrv3KzmBF8tWdvKiQC7YCnQRRibeB3reFAcPZJJgJIa2eP2d0\njSECiu5ZuQZhe9DdSJILHcSTre37tleGvYvYXb+awumtO5HwXCtHKUU2kVMghoOCGiOyNUti315e\nAcBj+2NQhlExRWtQK2IgOPYpgK/xpHcD/t3q2Lzl5+UNnzvgcqVM9gzrFxncRnws9GsrvxNAjqsY\nPfjC8Htf5vk48qfHe1oxpkRnfOYhBcVloPC5MnZjzRVvBH8jwLtOmqy8Ixh6iewYT5E2lkACbI1g\nbcQsG/lhYkdaL84Xw4hUEyqF81NqxWg9dpcNtK73cgWyI6vhCt4zkDirlbS1j7VxdBW171OSVZ1c\ne0CXUkJSWSCnw4u88dX3Cahg5u6gS3Npi5ZyprZ6BO1T0wd2mGOHwCnsuHIRbOSlJzlmkWa0utsh\nhd5Rcbxb3wDNWOaX6XpFrf0+GbGCeES2kUTGcWPy3cjObK9OdNGKK2PWBwcjkhP6OO6P75+Txy8l\nk//tPkD21VnrWAhfaW+yvCsk4AxRjG3SjemU+3PfSim4nC94enrCh8cPeHh4wIcPH4Ts7Nu0LToZ\n14Z6aMM+YmGre1i1wETWmJ6OBoTcGxQOxJe5P//oCvmd9cO1/jgA/JA+leTMsEYn1scxZK9AVEjJ\nscs35wEqNzQPc4WD46RAdicrZIbnRrLTtaUqS7vNgtKM7X3AI0E2+HWRtNn8B9zLpNb+SAzSA5j9\nyJIqZ16V2kfz/UJ2voXJ3MHaZn4hLcuiEdhs6bEUVAJqgQcySHYKOmxyiDuZCRqx9le3+tvyfNKT\nzi2MJVXAzQeTxMwoXHzpctOoL01QymrSsi7IyzESy0hipKwjARksS3heQF37La7U1EIoaceeoAca\nPn+vufLFckWBYJZkUwTmosL6nwkIJzrpSHbSMMFHJSJWYj2HJLjpxPJY/1rkFjCjuF07KszmDmP5\nRrKTUsIerXCTdu/bilyI2veJNVpWaufzCPGDfM/cLO04Kq1egbbvPkYINuUUiM4kcfduHpYUzB7Q\notUHoLBJtO+/APqeLaO/e221OlIJNHef+Pd4y5HsjGCiAQgAnT06lNAJ2vPBIg5uRMx6+ncLMRrD\nwnerRLGOCgYStZDUzOKulmuLQFi5ItXaAYGkB3X21E7ey/hMygtsHjISSxsx9yD9uJeohTM28lKX\nGHq+zaXKzc2UGA5k7aDA5KSlAf8I/NzdpFaPOMecpawqN6FR4lBZVw9iDML4P7SP2/yz9xEURaNE\nb9Ft/x9WdWLzcLvX+scMK6yny6ZKg9tOD2BbexvZ4QPJORp4eqA72wMW6/tS6mXOeP3sfgOIjRyy\nUs1IKmTpy7w0TFao4ZEhLoipheEgaq6XFpjI6rddhOg8PMiKzsPDPT48fsD5fEbZ26pO1L8dMHdT\nT190eT+p86TdfA75Yb8KhIOuis/uxkYc71cO556V5Tmi85wutfLGvzG/GdGajcnRaBTv9de0nMGo\nq38lYFICUk+YWt8MGGh8brtpKE+YH/6vze9Yb33AMOYbrpmRIifgKTm5GY/CMGLkYdtlKrQDVLk3\nhoz98jmlL2TnE5KtkNjBdoAoUgs5zRpCsxKhAiisAQgo+p8L6bEVFqKEfT/6OscBliCWQxEQx/CJ\nEQHZ4PSobNuGUlrkr5RSt2+nCdtIMHpBOQqQjwG4vVBq30fFBwh9K0kiKXG65ps8swj1H0YBHwHk\njOx4HkFxjaRnlszaVoqYtXNKQD5aQSLA8ghrVGSVZWjPaNmT8NU92THCAyKQuYSgnWbfW4FgpqoG\nUpOE2k2h7g1MMVg3U4+bLCP4H/uCJn0y7xz4GCWiINhpepkBjW4zT1cm8pUHhHYjB/4I35ETna4g\nY3EP714GXoc8qK3sjIRndp0r2QP8HxWykr7hedwVs1eW4zg+zClmqOO3kxwO72dz0Po7GRgIZCel\njJqEqLORnTB+O7JjMsbGBCB5KLAX1yAGu2FVyQ5LUBZbre0JYZvXJt+sfHZquPcPi4/6rpt4STKQ\n/ZPLMUKVWXX76E6aV2LkxOAsRoOk0TPtoGBwMCAMPdiVXcswghizJtvvx7GBQERbREu2htVxxYGo\n1dqC0phll0DIyKJvQl1nzzP5N0Zjm21oHwHZmJ/nNbTNc/J/JEuWj811wPbeGTBEaN9GNcX5vAFX\nXcYBbCUu9InIT7hxIhEhEyHnpG7tcl+tFZftgqenRzx8+KD7de7x+PgoZKe04DTTVa4DsO/b7EgG\nwrVDG8WXGV3d9XLiojQlPJP+mxGXl4jqCJyvyZiX8hjLcPyu5XcgOg72w7O6xzbSYys2416ynodo\nPa4X+NAu8cBk6z1/zea16XBqZXsuiDpjNAAAIABJREFUeqF5t6SU/Cg+c++tQx/A9/fo3h2WI0w6\nwnOtbp9J+kJ2PiFdLmcAwL5vYtFncXXPZhGtpmgYqGLty3rOjq3iGOg1gtERk30PZAcuoJgyGElc\nm6igQgZvpx6iYIaduSNkZ9v6TfFShkUPQl3UnW4L1ucAbHTyjxP8ORIQr4sWHLtlJtzllGnCTjtS\nff7AM5NnhyLYswmybUq+7IXC3Ajm5fDyBkF0rX4xYgoPwnt0N7P3Ev42oaSCaGntiI4KGdJ+pFKm\nwSJgzxnax4BPvM6fn1JXhw5UkZ0PEq8RINA/NuQ/GQfjtY3kBIXt/1+xBNpwnv6KQ5u198NzgjI6\n9DvN3x9Jz/HZ00TUtXX8O7b7OCeuPWuce/NkYO84554tr7s1sGA8AN88PuHudMHPfOcdfvDVu0NZ\nANuQLSsxlWW/S62yAmzgwMCuufj6vhbf3xLIMho4ZySAFJCzGFVtHtremVL7vR/PgSwiElKTk8sy\nITsNpG9o+eRl0ZftaxBXX191MOJhiJkAoGpQcEL1iH7s2wrdZXbstUBiroGyEdB4XTlA9EBEfe5P\n5qW5sVRWt7zOei8b85kYmXIDR8PeoFh2JztV9iHWQHY6GfMCwYt5IdThAMIxG8tRSkcjxWRcMEJd\n4p3UxSt5CXLb2JUgPuRRWAExiJbKOD2d8PDhA+7v7vDhwwc8PT3hfD4pdlCvkEA4jGD4mFZX9mYQ\nsWc3/dLasZlBDvomuKq5G9sY4h1t/LWgBNHoekVGDzL4NekaYRrl5bX8Dka9/ld9mXNu/1wj+qnq\nfBULh97aOr8ZdNRjgwdj1TAffUzRUKZAFK7p3Ne2W1eXoV5dCygWIQ0wlbRcVnfHGyZ1rcxabDPo\n2N5iHwMquz/H9IXsfEI6nZ4AANt2kcPpoLHNSQReBYl1HDJJOMl+HTvQM5KdKOAsPKWTEh9cGSkT\nGEkGsM4oDkuMFezAUJStCEmLojKGBDUBZas767piXRdsW54CMBqsY4bnDMwflPCQjnnOyY6Qk4Id\n9RDdZrR+RQtHFDCmDMUN3yJ69QEKjO2Mytjgggs1IzCT8nqZJyAkgrB4cKopnpwSSsnIEytodJEx\nhSzLymElZ3gxs5xjYkqOSIS5CzpqkbSShvae1MMUraw4VR1jUoYIokbCFWGGjY9DH1PQJa6srhOd\nVyfmgxtb3xeDctUygtrn6+mvoHw4KvTrijoUbLhe6vESBNNc+Ghlvf5ZHSiY8XTZ8Id//H/jT39y\n59f9ys9+D//1r/7HeLP26iIlAlUDaxKEwFxj7DBFe14lJTOpdmSncysz8Khjn6JiDv9KlTNLtn1v\n83+y4mxAzlxwSylIe+nIDjNr0IGKDTuYgX0vWNcVy7piXRbUZQEvGqIfRmLkmV1v6DyptQowIgsB\nDqRxlAXicCA50f0r/lbbwdH2uO59THG8hWsZ6M4AsoAL0XqfKMlKWkIjRdH1pauGyYiqezsEHNn+\nnChTrR/RjcMIvkzuVS83KLhdxXb76NQs8cxBX6HJApO1se1mzxLS3lZ1KJAIi2xa9h2lFnx4/ID7\n+3vcKdk5nU7YLvFsnfmKSk/gjzol6sQIwMnLOL+2vagFChmeHfXQjLRe04PX0jWD6HjfSHRGI9YM\n0M9+b8SQQp/3JM50HLEZlO06OAlwwqNExzKT1U8zvIiXjc8N7ssGwIO9MFGbryPReQXpGYkVwvPG\n1GSqrezovINIe2uHFhkzehbIvN5L0Vc7HBiAh63+3NIXsvMJ6XQ6AQC2ywW17oAulZP6w4rg1L+k\nZCcfyU7cMGuERMjOht3IDnQFBiSWdhAoCbERMDwsMZry52aFLKXoeTvbQHa0XKuRnRVZAxZYpKKW\nGqiIQsXcUUwgzgBVl8sL80QshDKPUyAKMxIhroAAjYYGbnsQBKUfBYuRnfE+OTGbmxKh3kJ6APnP\nCClTNFEoG8ktpSCXgrKnbiOvtaNv7DV7KLNs/ipqDR/awgVh+A5J3IFMyNpvCejceWI9zJpjqVa0\nwxfRP/fQd+GasR38+2g5jWPlp5CfDEzd2OxX7p4XHsf8Uz33tWnWVkfl3Y+pKzkh6MsX08cQHnOR\n+oM/+iHuvrnHbwP4BwD+EMBv/eV7/C///P/Cf/Of/Z0ufwNMiRXcVyUW1GhANHIQAWSrterWl7kZ\nAYyIQ8eogX1ZwXYugVILtn3D+XyZAqRmTEod0SklI+2ykupuuWzR2Bi1SgQiuhDKTcFaCni9wVp1\nP5seG9CQkfeKv+cqY6pSC0zhwVICojpYhMNrFsxkZlCJZGfs92vfjSC22MqO6hs5OiEDC0CZphvT\nOwNRJDsTo03rm6ijWplMxrWIeLW7zyzUcqZc2JAfXk3yHCXQkZy1JotYkbtbm8HhmnhwwpNadDMD\nlnst2PcN58sFjxOyc9ku2Hf2oDY2ZmM7R5nZyM+cxABDhFIv43XCI/P0uuvcYb/OJ9p7ZiQlPqsZ\nckbvjyPhuZZ/zEve2/cJCMdOxLrZ8Q2E5DJVmnKQyUMb+nPUYmZ7qp2sK7k/yHwKq9bPzO3n6hrr\nYPWcUf/YdqRBM9zIEIwLtVZQJpW3bXwBQuJK2UMY6nYm2ZeVnW9T8hjrkGhmNyRhqJNMHOhAqWEJ\nOCXCsi64vb11y76RhLIXbBcJD325XLBvu1jHKpSQiGAVpS8We8CWGi3cNPvEVKOjXqNubJcLzmd7\nyWFmtWp0Nmr7dwQgECwkb63mJGcK4EiCgLnQsc/PpSMQ1BWrytLAIY8IskU4WojQ3r1Kb3Irhgml\nKFicCHWPFu0nwk/q0Z3eMDw/1jEqljGNQtxd26BAaSAc8frOTQFwNz+gOPBiyNlJrNePARXG8iYF\nlimU6TmlZO1pZUYAs1bu7lLgCkig8Iefu/B4Jx1H3nNJimTjppWTwu+k5YjFv0ZMWr7XFbdfb0/W\ndub2sHk7s43U6KrWw7g2wPvVhKAiEVd9jKBzKH/Ec+0x8lwiwvunM/5Mic5v6M+/AeDPAfzTH9/h\nz/7yG/ziD77nxYlA0Q/ZQw0cshEd+yTjn32fD7PsHUuUUBP5PrJaKzjnUG+rI6tLrrx640fvNirA\ntgG3bdtgBod4bQdvwrwzS6eXUzefH5Q9NYNIBDpGRnLK4Jzdxeka2HmJ4MwA0QEsmdwbiNF47RHM\nhr05Cdj3BNSt9cUElEme18lOlGVEdHXfR3uGkU6ZDyPIvFYXmz8mUGI4+REsh2ayzmv/OyOPfQ9Z\nUbPxFOR13w6tHtu24fR0woenR9zf3+P9+/e4u7vD4+Oj6t1AhIOXh5UxBm6gUL5rxCX2hYnVdOVa\n0w8SeKPVP7bpbGxIu6ZOlo7jK6YoM2eEpZOXA9EZv38u79l98BaTv+O491Udn692JaHaHkEfV6ql\nqSc+o5EwzhO7Pho3CjOotsAwh/YbdPEBTwzPsPnSsBm68l1rK5MNNl9joCMj1ADc02jbdmzLhk33\nPQK90eFzSl/IzqeksOclLQQsGaseMCqEX31dLZoai8/6ugjZkfj2IsDP5zMum6zoXM4bLhdxz6iF\nFagIMcpEKCwRQZMFSFAl0wFkA6JEvvpTSsFlu+ByOeN8Ph9j/CfS/TrL4CrGLsQBIwH2/RF9joQn\n/n1NIn0AM/tZODMF69dSQuIG3kZQJ4pf2t/aqaoLm7m29Zk6fAvKJorNOeExq210ybF2GCMORTBl\n9xooiopmvCcK1aIE1K3MRC7yMrNHhGvNwL2AUou6kaP4rHYSdE8w3Y9em62RhjnRmfKYDrcS7IBF\nv/EqnYm9MP/1tckeI2Xkrgh/VemaWQBhTDkB4qCuZm3Zlc20MvUXda0t89Lc+vySWZmY/ToiwsP5\nAkBWdADgxwD+OwL+Z73pd//5n+AXf/Bd/Fd/71fwZl2gzh7alT3INqOBPdn3EqCRnZSAnBUo6iGb\nTOQnnB/B+YJaWWTkJqvUIwCczTVbwWCVhWNENp+zgbTs+65N1Oakn0eS7TkRIFBX31j2JWfwsgAK\nGD6W5LTuGonGMXjAS0Rpdk0kJ7Xqxvy6gxN3EbhiHj3YK68iO2ZwiuXvAVx/YOPsutn3Mm8C6Av9\nP2s/5mOAD5OjPg5S8inl55GpTlUqJnn5yw5uFLLzqETn7u4O79+/x/v37/H49IR92zSo0ZGMWHk7\nskPmLZJ8FSKldnxElOvSPPWw6n9Y1QljPsrxEUw318YKouxGslGvP6ffrxn/xvfjvH2VAQ7XiFIv\nD0diUmtFMbkXDGLSvtWJEIfoazYuot5GKN/o7tcR9VqdMM+JWd9WM8NplK2tbxgaKcNDy8dxTGEe\nSRvJVDGDQjM8WHMpntAosPtG2PKGbVuwLYvX3TDC55a+kJ2fImUipDXrSg1hSU1YFXUXUy9vpJSw\nrive3N5KONSUUYus6LSVHXnt2y7nPrCC0SWDKKsvB7sgls27OoHRonGByKNSV2bsZcflsvmqzukk\nkWDi3h2LCpdSPgiHEYRJsgXUJri7X68QnpbVcclaPkAUbK06OfkgQDphCIDTRKgygwNZ64FBCyk6\n3iP1CkrdihWU9liWnMkPl521Q0yH8qegLgclM7MC1SrR2So3lx8hO8ZAGLK5u/VSGvz8BKDOSFvr\n92nTxA+GaWcKLyjRq8mEq91H/t/1W55RFMd0xYo4XDIEeeuZwU+RRvLSAYtWsAaWwrzo2vowR8aR\nO7C1wJBmBoBIRKOOAwjfffsGgLiu/QaE6PyvNwD+MYBfAvCnwI9+7w7/2x/9K/y3v/a3daY09wyE\nsSBEMgAYLYQRPTs0mJmRs5z9lJjkPNMqgCNa9CMIs2Ar27b5nGsRDo/njxjJie6ZEQR6oJgAAiPZ\nsefGwxfH1aERnHVzWUkOhfxeS3KeA3tWr5FcXHODm+U7I0GV5fyhNDlUdASnDNZ9Pce9h928IzUv\n8HViJq+jG1t83lj/nuwAvqoztTaY6BomuZMcfWZnRJL6yZxKPrciwDQgWmsFasHlcsHT6YSHhwfc\n3d3j7v173N3fi4v6vqvbOXWrLzln7Pt+IDuyOT5DvcV1RXR+No4RcGuvOE79s0eETWoUPZKP2cqO\n8K2j1pyNz5mOfG48j2NlzOu1hGd8vn461M2+bcEJjOwAiTSEPA+GXjQS0bumA0AfndEMzt4/ADhJ\nSH4zlI9tYUYWRJwxjK8Rx9TBKNARHR2vHWHyPqjBbZTjrbK6Bfltx459k1Wdbeuj9n6O6QvZ+YR0\noxt17fThnC0mv5w1UEuR4AV7aft4WKIV3aw3QizyoiFTn1BKxbaFAAJxECY5E4fyglwk1r0LKpXz\nNuEMB9lEYRVk+y4C+Hw+43w+4Xw+uWUg7rUxK6XNDycKWm9TWL0Aadeju+6aor4u1HwFIZQ9Wrsi\nWJGcGJllH1NCAB9aqAQCo2q47nCf9tWoPp28cS9cAHgkpVEByzlJeqjsCxY64HgScRQckSLEPEar\n0dHCo0vztbYcZHggIQGpGp9qrzLpW+rdcHoLU4tsE8G6m4smKe6l/1ju0I2yV9x8vOQK2kHgV0YO\nOSpIBfADh3i2rFcU+ceSM7s9lqe3Wh7BRlT0RmLB7bdZWY4AUtrq+1+9wS/94Lv4rR/f4c+hKzr/\nGMCv6WW/JmX7N79zh/ePJ/zM12+HPmpjwWWS1c4YHUGDkDAy+vHHejaNxHYhJKoolZFLRc4SaCUv\nC4ruPfQNs+n6GUZGCEYSEEGm7afMqswtVHUkWFPgOBCf0UhkRGRdVwHMryA610jFrB9noDTKjDFP\ny/fauPTvGeBasZtb1ASMxvkSvQuureyEHhnGxUi2BhA4mQczgmZgNdgM4DrRdOW00u1vJDpuSGP2\nQEFIpCuY7OOZmf3sEtQKLgWXbcPpdMKf/flf4E9++K9x9/49nh6fPJQvbFWHckegZ8C0AhKG3Qvb\n66FDX+r8H3VMp3dsv9pw69XxqPmlsJoR+/Ya4blaRmB6z0ukZvYMu69vOwBoKxlj3r5nh9n3ozrQ\nT8G9azLmmx43bT2Zs5qhtT0Duj8IV9vDdC/G30MdXc8z+yvq61hGH796byPsAdfZC8HopqCyVsGa\neyrYdwlUkHJCpuUL2fk2pdt1BSDLeeuyIi9Z9ujsO3aWja77tqHsu1gc1eqYc8bNzYolr1iWBdu2\ngyi5f+S+y8AysiODNiHlBSlntaIagFb/fo7qw9mOTwDbs3O5wFd1LMACM8n5MCbMUurztonMDflJ\nmRh22vRzFhlLRzDYK7PuBUIZrDEzxc/MyJyBzLAIBb6B0PIFQHoIq01wB3ogV5CtbH29/NkKVGYk\nIJKYcXl3dLsYCU/bF2CKNnVCMlqjxzaMBNDK4eSqVucmzABXCSVriplRnQz589CE9LU6RmXrMPWK\nfvIR87EsZ5YHXIdP00dRCg59jubG5or7o/ObE51rYPW5csHHafv+CHbhJYzPYAVkuu3sBXIz5EtG\ntBn/xX/yK/j9//Nf4Z/+WKOx/dJQ0F+WP++fzviZr98144rmY5xmHB8uRxjqsiYGiKw3RLLTikVI\npaKkhJSF8CzFQhyXbn6Nc9NSJCx7COkfyc66rkJK0Puj29yyOdgbOfpVoTEQSSQ7ch7b/LyZa2Tn\nuXrF58zOtHlpheW5PKUf1EV6P5bpOJZkNebac0cgGg/6vdYeMV0jgvF5jd13d+ofAvyZ/UWdWCPy\nlxl+ACF9tVTA+je4b/tY54paCVxkRewn7+/w3//2/4g//uG/9md9lQk/89WCJSfP67CyOJC5VpN5\n+x/ls8mD9ntH0Lt7bM7P27l/6bOHlZ1rROd6+dDpqY8lN2P+z5XjefzR9kXFAAVEFbUmcd/kCkYA\n9ar6YvuB2r5AH+uqQYhaSHEGfNX4tXU6kB4cx72QsjYeR0xhtTViZFFZjdD0hAd+h41pMCQSm76W\nusjq1xey8+1Ji4LaRVd1ckrgIoeH+oGiRlggg2NZFtysK25vbuVsm2UBYFFYGKVUP++AQyS0FtYy\ni3umBi2AkZJYMBPaMCDbFOK+y8Ze27cjE9FcPxpYby8JIWqitnF/+D020dt3H4ds59frd4Pis0l+\nuJTYXfYsJWpWEpCEtBW3GfY+CU3lZZFmb5a37vlaplieRjKuK+kxjftxUkp6cnEAHmhC1SwzlSWM\nrbhVKJjSvCLhASDL8BC9LCe5B6FGGpIbpa+fWamHskfhPlZHhLiWeAwGFMjJT8F3HMRbnzyXBtWA\nRs6eUax0/NhI38vK2MZJHC/j56skA5GwOKee5jG7d3wGa5UNxMzaKwKqDhBoXW/WBf/oP//b+NFf\n3uH3/o8/Af4UbWUHAH4of7739hatbfu55CaNAYMeIJwqYdm4mzSfpnZlejNSlVdVy7j4wBfYwaL2\nHIsy1T2F2337LtGFqj4vJUJemgqkIANb+SPIbvUUgNpW9uOKbjRElFJRblYnoM+B/JlxZApu5Ysp\n2blGOJ7N7wAcq+oMXY1Si5qRAJNPMr1spaOP7BZBlOdONrfg8t1dsYN9eZx1HI1PWpa+bjoOndfY\nGBLZ185kaOyGgLbPIQ64buyI57iEQZdrqCtPO6QRzKh7ARPwz377f8Bf/Om/6SIa/mZh/OXDhr/x\nnRVEGqJ94hJpxKcfJ0I+aZRwE1KSqAHr0YsAw3sTj1afq+NnGJMzYvEScRnH2HP3HAny9dWj60al\n+fWWP2u/mSuby18yF7Hkela1T4Amcf7OI+hRuDaWMfatB0gZSQf17rHdNfYvEnT0csddcmXSimEX\nQZ7VcIbSskRU5/NatprreWYagrrUFiH4c0xfyM4npORRwir27YJ9g6zMbBv2i0SwWXIG5Yyb21vc\n3tzgq3fv8O7tO7x9+1aFUEYp3DHxCHLBCJshEQaryW6dfInkEAv3M7b7WMG7TQLddKbhrdf1xgMS\nGPla1xW3t2/w9u1bECVcLhfUuoFZFJiQn2gxqf7dTHGOFpXRKjh1/3Bh28jVtTy5spxlQa2ezGw7\nOHUPE2CWlihsZtHYEpG7vNm1VZd/o2U2lsWEhkV6IqIXLR8j4LE6+uqQdripfmZ1+WEGFxHI9uzd\nrkG7PiPL8PATwNFeVu6hDC1KT3KhyywWIAPSFHy7Oitkyl3fde3EAPt98vejyQ8DL/mVOYxxUibP\ni2TEMouExsbFmFtTW9eF+5j3SHhm14/ve+JLGEO+z8b+c+VRVD29P+bRAwgFpdT22fz8D76DX/zZ\nr/Gj37uX9vxlAD8E6H8CfuFnv8b3vroFQ8CguISSu3oCAIV9Y/KZ/TMhtntzKBVgEQmYHCZaVUGz\nEh+LAMbMoMogFJSSxM0t753RxvLpxidEXLJOMjM27XtBSjsMPMT2isYNmw+2kBsNGBEs2sqsnMUG\nD0oz5ju+Yt/FcRKt/9Z/11Z2RpA1ptnv9ryyF2xbwbbt/fDXPovAT/ISo9hzRKv1qBGRI2lhhhvp\n/Bk6pH0MDPdVtVIDDHKuaPWJY21iWWfbBssgKiLrKoMSQMnGDeSDyU5YOfU8oCqKeisF58sFf/bn\n/w7/4l/+cB7RsAIP5w1fURIVNYBa8fy4ARF1R0Qws4REp3Z2lBHjOM4ABikBH8+w8n62NrH6B6Ia\nVz/7w0TbeX1xZS6Ow4NxcDL2xnEWwX68byZHZ/Iyfo7zU2RDfxzGqJPNkChzt4nMQnJ4d0oJNYcD\nkTXoj7eLBe6oY33aeLRD4pnZ9+oYmV3VO8j2IOacseu5iwQcyQ64RbxU47n81trJcIj9RiSH3C7L\n0mSfkZe9YM+7u+z6M1Wo1VJQi9SjeR7p60uAgm9Pykp2nPF6LPIduyoI25fz9s0bvHvzFu/efYV3\n74TsAACzCDQ7WHRqdXFpb25l1E6Uj8w+KcOJCggqKAgObG3yyeSSlaWcM/IiwQmE7Nzi3Ts5Mb1W\nVoUXwUCznlqo0KkVCc8rVCOMHWhGON1b3RNGi2l8b+4Dkeh0YCElEJOvPrhwrbZJtsOFagURUN09\nL7SngYlY5lJ27LvcEzdKj+TP+2Yo68G6qore68hCZ1K181BU+FUL+5oChGjWIT85WXMF6fjRfCVQ\nXSM6voqo99sIHPtpFMT2fdlttchYeSQ6VoprpKUnFh1IUuvspClb+3Wf46+9r79fy9bu4/Xw31+T\nZsp3HB/jdT3B6Q8FjK7iR3LD6JplfLZ8iXn7DjlFgAFxv2A0skEAfv3v/If4/T/+M/zod+792l/4\n2a/xX/69X7ZM/FwZDqSxrSx5qRRkNbLbesxWLxtR9dKTkj+9txKBbLWZBQLH2qdUkNxibkcBBKu2\nlYMotLFGrKwM2guI5GDRa+RDDBIWXKH1lZXdgKLJWgNHMzdX64fxWTO5YOOkJ1xHa/w1ojMjveP4\nsnz3Xc4xumx7aF00HRXzAWBnmfirthDT4GA4Menk7ycp6D1SHRfvj/m1OnBkJoCR70TtzCeVbyZl\nWh/LvjDTuUQibhLbs8lHbDQN+KG3VYIDnc5n3D084F/+qbiuXYto+JMz8Fgu+Jtf32K96cmIYQFb\n7blcLkJ4qlnsCUBGzo3oAm3MERGwkJOdUedKy5rAa+5MkTDFg8cb2VHXs1pAQ5RPy/9VhhhN44rG\n+Ps1Q9E1QhXvt7ktB9u2vGNob7056PimAyoVVKJuPuUlu45s7VI1eiQ644obYmoLdw8lTHlYyTMs\nZgRlt4hnk/JKN7C336KHHFtZbDxcLpdwjQbPWjJqzeBNQmDbmY6bki7bzyOHjQtR2gEldLYVwsbG\nhu2LG9u3JzVAx8IzUgIyg7AgQYC8Meo3t2/w5s0bvLm5kVO5lwW1VHF5qyzvS9HTp5t1K0xj/+tC\n2sphv5gg1+VxOzdD/bfcEmYBCcwKZJNmXVfsa8G67ri5WbWcK3K+NPJl6wYqHAx4PWfJHlNU1FdJ\ngIP1CIgm17G4Y83As8E9UVxtpSYUBHB7cpfxASdKO/abFUdrVikVpKevy/PJw9O6tX0o5zXC49Zb\nIztoRKtWO7yxekWN/FYWQYYqlqmxHlmv942XWlW3BFM7yNH7CGghjBvrae0S/4LASSLZ2Ipif18Y\n09OxcoXoxCsm4Oxaaj8Nrg4BnM5owSzH14ztsVyvnQ/W3vok8ITUtd+PgPW5Nnh1MlLKjfAwgJs1\n4x/9p7+Cu6cz7p4u+N7bW3zvqzcC7HWeEreVsr48Ydw73yF7HHw+6BiX+62+djUPWbSAvwIxjfwp\niVIykIiQcjPMmGWWVC5SImQ1GDDHQ0ubMSPOzzjWBYRkpHScvwY4RsKz7xnbLiFcD00/ITv2fXzu\nYZ/fAMhe2qMzgsmZ0cauKUXAjQPokFf8256jxpNJfaJ+EHl2DC3d521fjBITh7zC3a4vfOWFxT2S\nLcIfG6Hu28EOq232GZbVRJOPNs5Np1LTw6VUbLVgLxUfHp9wd3+PrID0uYiG599l/L+Pj/jFr75z\nCHoBwA+dTimJS6Ab86yt+zF3IOTUrxh17nLJxkOvV0biPBr7AAW/VA9tOKaxfLMxZB4Eo+vmjPx8\nTLJ2ckNhjQfbHi7u33JPgp8zeNTaR1f0Z3AjxpH802AEtT6O5fbACKF9ItGPTe2YDwyuUjcLfd76\nD0DX/8FNTY2lVV2B5ZkEsJQz1YqqZzHVyij7jn1ZsO8FOTUjyOeUvpCdT0i1SGdTkrNzblbyQV1L\nlXB9+46cMt7c3uDm5gbLuoZzeGTwGKvftx2bLR/bnh0GOl9jfduUhiZF9a7Qk2w1p5yQirpNELqJ\nawJIIg+tuFkL6q2w/fN5VauBkicFu0QNGkYl95rUC7ve0tTn166RcMm960i81i1dldqhql2TRKok\nbfOcYJbasEs9/34ifEdBLZGL/EnNqmaEbSpnj2Ap5t1bqhpJjYoLZNbP1AQYV+wFKGqxLFxRuGLh\nBSuE9Jh730gmI5hoRE3fcwQiE6IqSyUy7qp8Y78crw3v+Plr/Ws6CntvJ+buXJnnkvP2K0kf9Xx5\nXpnGsTsj+W1ch/LhCHbbNdcM7nTwAAAgAElEQVRreaT9x/LM71ODCObRlb5+e4vvvrv1ctlzVMXC\nAgv0fRFkFBsh1rEOoy1qOOG2oqpZdG0xvgfbXsLq5bb6EenBgBCAm0hXhKrNQ5mfJVekmpBzRaoV\nuRbUuqAu8XDAvh9Gf/uRDAGYg8XK6hq29e0+IwMHWdgbiGZkZ4w2d+1e+27matbJwQpZ7cDzYLa9\n72Xmc0R/VsdraTYWZ/cagbW62Wo4FPARFSSSfQx2VoztEfMRaftgfT+skGDmdqxDJrh+rcxgdV07\nXTbcPTzg7v4BiRl/63tf4zff31+NaAgGTr8j+n5d16lXxGvT2MezPh8jByYjO6G/4piIeUvrGIBX\nQ8ikT2a6bEZ0Rr3/WsPQmGbGgfbe5oWuwEyecTByDZYvI7TRMDDuhYK50gYdDWYnpzHzWa9e63P7\nTsh4MACPxAtGwmF2I1hY6VILUg2Ba3IC1YxUZb8iqHkJdc9Nkl8tRT1jjDSSejLtSOWLG9u3JtUq\njHxJC9ZV9rsQIIq3Vomnv21IlHB7eyurJRrWVJSf+k0a0dG/+y77YoTr2OwLwgHDJHSAwI3pm+As\n8l7M7DPFRhqJaEGtN6gV2LZdV3Rs0+1ceJqVgXkO4EYhB8TrjpbreJ9di2CJvXadrL7K5lFKkdoE\nskMMCcD8DEgMBKetpfiPms/x/l7I2eGxEk8/UQVy7ggXWvM5ATVrTiQY9jmWzzcURleWECYVZD7I\njIodXIBcKyoveggpdHxIu0YHN3vGCLCj0CWSUN7P6WIvuzGK2K6mWMP/YrF/gehEoB+VUVSURLJf\n5JVAIV52IAg8fvdxinhU+C+BmNa+8KfO5k/M8zo2aFboj03eCx35N7LOPteNGJF83UmoSD778ju1\nQeOaYQyYXEAjmi3iIzoC1OrZ3Nlim8vLAIIQHfvNEhEhVY2EVStSKsg1N8v2lYN1nyM7lv9sdaVF\nxLxuXJiBt3EMjaA4uh+NhiyvpxlGQhu8tBpk1umD/pmCS7v3eVISAec1cCvXeA5dma+l1h5y2GsD\nhXHvJ0L7GegXvQCVnfaSMa7gnnXFHKpD9DnQcu614nS54OHxCfcPH3B3/4D3d/f4j37+b+KPzmf8\n05O4FF2LaLiXOiU6ryE8MyOKkZgZQU4puRsVke0teX4MNvkPs1B0hoXn+vMaBhj/zkjSS2lmJIjl\niHuQjOyM89+qND7SPyrQEt3LEs1UhZO5mNkm/q4cw1wweRjLHtPMJdznN7NGTbCytPbvC9zIaA3E\nVfZTow+GkZMf0xHMFPpcOS+SAYmASS3anK9Ul4JUvqzsfGsSV1t+FDCb1Z9aSMzuQQDkHJ4F67K2\nTWGbHvB50jDQ57OTo7IXmVgAIjhm/S8qt1JrW4IHdcQEQdD53h40C4UpR0CjsCU5W2IJhMwnkIFJ\nkmcMBotngJddcwR9UfhctdSFlZ2u7QPIdZBI6MmM5clii5JrB4UyrLiwNbITHlgvAKpIZpZQEXpR\nwLQT2lNKfhqzkC9Tqr21bbR2jcCFUkLSvVVi6YGSm7DMPYKl2P5E7lIj+WWk1EBxjyOPgMv7ygWr\nAd5jtDD/jqtbm8b+iwOnA74h9VAZDrLjsyK45gFkj6DpkJzR8KGMhLHcH0d4tIDt7wiohlwp0bj9\nZF5k007DeDneyMNXasn1W0c6NCFRQfYcyMzhKUaGJI9Z8QNeCtnTobFn13FXCn2eUHtXxoAGV7C5\naiCchrmujWBuHaVWl9+1FJRcsKfecmnjOqc+YuU4342AjHPYrtsnsuw50GbPBo7nc0Wy45ugQx+N\nQDf220uR28T1LyOlBY3MDP35AtmZpSYr2/UvAdyxLcayRIDLNZwOD6XYNiaJ/CBlNkIT9Fzg3nDJ\nSgRQ0mmbAMiZbvteUXjHZduc5Hxzd4f37+/k8NDzGT/3g6+wvmf8Px+2qxEN1zUfxsk4dhTndulA\n3M1YZkRm6H//m5qnxqFfJnqnPQTaKvM09ss1Y01noDr0X096ZnPgGkme/Wak1vr+QLTQRIIVNaln\nTMNRIX+0dpF8KyoYMaDMOA8iHnuurnEPU4umRhp5F0qu23lWkeAT6f6y2E7o+9RknhDi1NWn25uk\nex2REnIpqDmjsES9tCAFXw4V/ZYl9znmCrMDcRXr3XbZcDmfcT6dhOwkOYtHorXtuGw7zucLTqcz\nnp5OOJ9OOJ+F7Ox2OFkQWPKc5o9ZSsFeLQKPAjUF0rayA7TJStSgQ1O85jetkzfLZjaLziYTqdVX\n5ptYw/yZHwEAe0vj3NI9grY0Oa05XtuEBZow7qwrUAJA4Cx/O8VvICjmK7d0gqjVvydotsJSS0VB\n6b6PoaBHwOFtEN3RNEUfeld0pJaZnJCXVYmOvMoEqHRKAnINDS5wGQSkHEiw1p57hXTso5bzqMsO\nljNrTN0LQhMwx21odmU+JgZY3ShCH7hSpLayc03RhpyEqEnNp0HeGmB/HYibJScVZNZW9Bo2Xits\n3ckMjf4FofQzfT9S3Fal+H/3wPbG+6Ap5Y9JjYhwR3SO/WAPIseW1Be+lZ/gKzzxveVjtTSFHYG3\nuNmIPKzEkxaQJ1t0pZQKSsrI0UVUQQRg8z554INcMhZV+EZ6xqhXVv/WDnpmTyzFOBeukJ1WhuPK\nTtxQPjM6WBnHvogR3OJ7K4OE1AbyMA5n5WsA72XyYi42sz07rW+8FodyXwO7YgEHWEPjSj0a2SGC\nnG2TNMyav1okwPZ4No0uv/helwxQQgVhK0J0nk4n3N3d4yfv3+Ob93f45v17vL+7w+lyxnnbcLMm\n3N4knH9XrfO/DCE6vwe8e3uLdVm6PSsRfM7keRzHI/HtXNQwIToU9a4yQD4SnTGZkS4GiYz6/CUC\n8tzv43XXyP5LMn1WZsEZCQcjZ3yPSOHY9zp5e0ULiV7WdLa0oYQE16tkE3EgUUey47jB9hcGrw53\nlZOb9ay8/t5aqxikFUeldkJe127VyFEw3fYYpsmBUtreJln5AUrOKCnJIat7WNnZ9y9k51uVVFhb\nqFUCwOqWZufYnE4nLHnBut60VZ1dydDlgtPpJK/zGZfzGdu2obIGF/DVdZ2OzGq10qgYvrLTVoE8\nQIFOLpsM7pEgBdfBvatAlW8TJd2/Ew83i2xH86tqIeYAp14pg0bh/Jy1RriILrVbySfgwKCWLsg0\n96+R7KCCuS0Xdy8XtBVcjsqdDoqi1afqEnOtLSTqjOy0MJEmiLMHMIjuMKOFr4UTJ1nZMTRpAnSw\n6BY91M6FpRKdWoUok/rh5qRn16vOc+snjsqmbw/4sHDSMLRJFKZ2MNnYpt7Jjo4VCD+jFw1Uj9a/\nmTKM4Lf/i6i+LMhbZHH92oh//RGExwwFcbzYnLS26S5v6jZykDF5Ealvp2slM0JAIG87K5eXCUHG\nICr3aWaTX7VPum/MCYi80GZw4W7wIHAtapzLSLcVMb53itpWNA8EX8cCVfJnzBpJZJkRnoo6WTnx\nlxIjMV4VlJy7VZ5x9WQEZgQ9CuwqWTgCwxl5iVbgSHbGvUBWFiM6s8OOG9DpwwwL2akAE2jpQwNf\n+2tkZ5QF4/vnQPW19Bqgy2gHJ5r4ZzfIaJ8kOY6gJznUzXPucoSQXDKiI4d6s0YofTqd8fDhUVZ1\nvnmPn7x/j7v7e9w9PGAru5QHjL/x1Rv85eMFp99prj/v3t7gP/jB92WTe4uX/Yzhqic8I3CPm9pt\nz8VsHDsRCjnyM4QnkqNBTB7k73P99hpCNCM7Lz0jpnGM2KqOjcvXkB3CzEPGfm1lsnlVUwUVM/Sw\nXK86spMFqutmMmvEQrVWpBCCOraTkR3fr+uu/nPCaPvWogC3trSXzH3Bk9ZuOSVkXcUxLyCTNTln\n7PsXN7ZvTVpXabacZQNXKeK2dnp61NUaWdnhm1s/Y0GEBcsKkK/unHA5X3DZdonopTHyKckZPaTW\nd4aERhXFJq+9tDMj2t4N6PWqfsjgCPkgt1jsl8sFl8sZl8utLPsXDkrPNiq2CZmIJOocqguRhluP\nKzWWjkRBhedEkAlRwRTsxdQJPkOt6POr1SwuzXrnioEZoLZZVfJMjkqY6SCMRt/aQ724lcuWfCNx\nsbKl3B8oF8trf/10+NTKJ+Ot30sgq4DtfhNucSNlXD3yvNWafVzZUkWp3WTjpv3egDZLI9hdYw91\nn6JytTY7AjsC9Sb8IQ/q8uj+Xr3rWBZuch/slv/+avLbPoLkxAdcAX0z4Ha04veg4qXvPyUd2k/n\nt8yhwEPpUB30rR3mtM2X+P0w58fnz35r11x71uEiANa2Pb09iCQOVk7P0Xzi0VaQ9GYHiDqHSqrI\nJC4eKcsqzzzSlUJKnUM1J8j55VmH1QCrAxDyMgajAKHNm7hnz4lKuM/mWjK5NrY5hcAGE1e2qnNx\nLwXA7m0b23l8P87ba6TPjUpXBnIcayPoHlP8rrIc6F14+M2Ausv5FjLcXSBBob9VxpvLl78E3EpI\n5oqHx0c8fPiAu/t7vL+7w/v7ezx8+ICn8xn7rganlJETIecFP/+Dt9hrxWUvWJeMNS9ChtSt2MaP\n9YHLf8AErQPVqI+i/hmNlA6c0xDa3okL+yrba8knxfa80i/j+Bjzfo7Qz/J6qe+vE2Hbr3PlPnkA\nonbqtYkZHlkRREXBcFRAJBIhY5NdHsjIyEWtvofQyhMNYFGfH9oi/vPhLec1jRiiySCLNMndOYFS\nFu7O3ClK0G1syZEkC9JeRGZoPcxD5HNMX8jOJ6SbRQ6Ekk5n1LLjcjnj6ekRjx8ehcBovPNaisb6\nB+C+j7ICdDqdcbb9OqViSbJnJuUsbkYpq9Wqnemz7Tu2XVd32EIGkxMeA6CA6/CO0e+7xGI/n+V1\ne3vxOdtcGo7uUJRSCN9ZOjD02tSE5Pz7l9JrhDIH4GBkMKm/lIEF28g5+rKTRmwutQlqAzujlUws\noMlXd6z9ZsTF6phyQublQERiFBy3ttYCVLMsN/IS22zfdxFo3DYmWm1me4JMkZas/RyJm3WME4gJ\nhQkEQFxE2EFdbP/WpNQB0JdJCXWfjhbXK0BqOn7mSpbQxqzNlPF25kNJPjq9bkT3d4zk4kCEQIeV\nqE9N1n53TyfcPZ7w3Xc3+O67G3/2+FeeH1rDBAvi3z5J2zY3i/EqcsoxCoTrefbXhKLEsh1u5c4Y\nIV+x7PNKMYgLHPyNwNLc24qBgRJJTnAhsr++14NQOcNCutqzD2UPhMXet7kIB+yxXJGwRCIn3i8U\nDBL9HDevALt/dIeVQVYQXWhmqZ/r11d2Yj+Y66Fd81qZHtN4XwU08qTUL8HaqD9nCQghgXVvrO17\nTXpsQ/J20pWglEEpqZFwx3nb8OHDI+7udJ/O3T3u7u/x8PgourzsQnQoIeWmz2+XBcsibb2X4jq3\nBUxoK/x90Igmt2w8jWPTwLf1cSQZkeho66mc4XYw5iv6QNr8SHRes/LyMSt51+4fx9NoYD3qhYp+\nI+QhU5kzI84x2Qt0/WH6MOrqa3qpyc429ozMxDLHc5VkTlagEhZMwBVbkdvcaWeKNUOv7/mx51bp\n5+beGcaYr+xKcCzmdt5O0nGbsq2ENnmRQsjszyl9ITufkHK25X2JzMbMSl5OeHp6kshq246b5Qbg\n6gKUaws5fT6fcT6fsF0u2PfdB+m6rBKTXX2Ed11pEZIkZGffd1dYMqh1sjmrIl/V8UQGdndd1blo\nGc4gjc5hqzouYMmsE0BSYjWma5aTnz7NLUDD04EJGGXArSgCEEXJOrFISRVNrziaibcJNQMao0Ut\nCp3GKnt/eIR7kwoQ81eP34/gyizDInDlv0h2nIjN9gpI5q1s2kwOMipkn1Eq3cFzoBYyW2DBkezE\nvmB1p3J3kViGQVFbWXo60/pQIm9NzlsIpEmv7Os1vD+Okx4Ge59xIGAjsA4E65NHs4Kulyyfk5s6\nHXcAEcIvRfn8lADivO34/X/xQ/zoxz/x737xZ7+Pf/irv4Tb9bpaMDClS2Oh6BP2MWNMIZ++hWet\nPaecZmtlBBe64fE+JrntwQDi+BWXk8rsA4KZ5eTwWhtQToRUxbXr/2Pv3Z5mW5L7oF/WWt397cs5\ne58jjQhGtqSQDIEBywgb/AIeIMBcDOF3K/QXzDzrn4FHvSt4sLAiFLalJwcIhwALiQiEJHs0IM3M\nue79fd29VlXykJfKqlWr9+XMWNoxu3b07v6616pV18z8ZWZlJv0uESEni+wVo3z15/PkfdZIjXvA\nWYC9CiIRmFG75nvAY4kLC7chuFG6fWH3698bqw63whBQgJyxe7SmmyKyp1BHM7q/2QnlbfDi1++t\n8VCvgElVCBZWpZ9YMAJMMLzr2nqxagBm2+UEJFeI2N6t4X+vy4qHyxUP5zO+fPESn3/5pQKdF3jx\n8h4Pl7N6W7B6yyVM0xzO0ULBlQma4ppOVGp0r6h5r0Qg9LWl99t3Gzc0dYUBdeUoox54j9fZXLwu\nLx8pn25Zc26Blp6Xve4zt3wcsHnfa8vYelL/EzBcUJSOEFewY0rFnmcZ3zZZogGjvAWWPf+u1rY6\nF5GHRzRm9MVoTj/GLs9wWE+BqRngqWd21EIM1DPCBnisfWgVuO9aeQ923qLYZFftfcHVzt5cr5In\nB6hRtKYJRAKMBOhcPRrbsqzqu5swzTOOpxNoUv9gIpR1BVYh0JL5NrdmbujidjS/UQi40JxzcaAl\nZ4YecDgcME0zpjSrZQLN4dt5niFaPnjkEUtOagyhp09D7XsoUXvd39doTXaYXavVh7dh+7yo4SI/\nS2PZjP2wn4EOTDCwI/eU+oiuX9FPGgzXkvVBBgB0/q4T5nWVqChzJUzWDkoJ82HeaFxtbOILRL6+\nGiKu4CarWRy5jk8kWIRqATIXORsfH0tdPFVvjPocQIGkQLNS0Rnqzf1U1TE0QCRdaQl2fEa9bwxy\nbpedsxAGSL4Sqnn9ssfw3xa0RKHkber4J7/7R/jOJwXAr0Dyvf8W/uT738Q//j/+Bf6rv/Fz2+ft\n1MNMhoBGrWzubIeauveu3hvPtN+rQqfT7Cgo8M8GdGDCrVkkXYIQSwiz00oTzVMBCkmmFSbR8BYS\nAESaYNGtOfruB8NVOOUygecA6LdkqoKc+I4t2KmgR+6zpIDxPoa0k6vRuQIngiawVkHHgwZUsCXA\np3R5OMzioZ+ptt37wx2VGAI8i6BJzghMqdTyLqNz2BSKbWBSJRy52zcU6OTCABVEodeBgCNioT2y\nZup5HmYJDV3WjMwCcl7eP+Dl/YOAnC++xJcvXuDhfFY3dHUjTNEzQ+ozTm2grLo1tedJ6rDV742/\nAKyC7Q3eGgTbGHLb+FJKkoLBlJZxfB1AdzTF+SfQXLudk04B2L2P+hn5aLxuVEe8Jr6PohT2fetB\npPNPt9LUdUrR8qWgkEmVx1y9JBKR7JvgVmrKETtL40pJIuQwPsbTe5ACtO2PYxTd0Vs3su3Y1jqi\nggHC7yj5ucY6JpIfMrq6kckWUYbVDbq1Fr4b5T3YeYtik10DDwiAsEADpoGxw17zLIKsgY3r9Yrz\n5SyWnXXRKBwT5mnG6XQCpQkZ4odMhcHIYqYvGn0nZ4n8ocwiav2MCzYip2ovi95vVp3z+YzDfMTh\ncMDhUBexCb8WjppVmLfDlFWQ3wc6oyKEFBiJMY12SjfpXk092KlyDdlXVUvD4uNKFBNzEkqpAKES\nEgZharQfRjFtLCMTIqIKdBoA2GpOIqCYV8lCnNLa1OO/q/Cfufjh4950bq94n5XCwtzFj78IlyJz\n01DswxKkIoI4Y3IN87AxKHVO6jx2DFq/51Itg85AItPr5lHqai073BBjdGt7sB6G37bWpQbkqGAo\nAQrGFqwfZnlrq0x321Y4eb2efH5/VovOr0DyvAPAL4LB+Pb3fwmf31/w7MldfU73HpvjOMeE142J\nZXTP/lz2146fWy07TYmKDycM3sr60vbWUMRQ4aRaCUxkLmzVyDq1+rMLGUYTqtXHXdrUNaqejWij\nNW36amBhQ/86q6+CBad2ZD2TNS/NZBRiJDCSuadA7mvO6RQLdOOQCcxFrF7WBiIHSmZz9oAWtgAC\n3Y6d6pUkhtPizPgPDjKF7vaa8HgdhXdGAluENZtlFXa9Z1G77QAyuvlWwKNsA7lkXFeJoPry4R5f\nvrzHixcv8PmXck7nixcv8HC+4HoVTwtMSZI3Jj1vq27oADxggWjv4WcmRgK+lRpwR8esE+iHNNhm\n0UBduK8UOXPGuoZaKQF+bT/usq5Sc+WoDSMlzh5YiX+/CuC8DohqrSSMUqgCW0QQGNw+lUdGPmGW\nGVPiMVewg8CXktOWrfumRXP0ZwZeGoFstN7tkcQR2OnBXRyPCIQ2Cjajj0FRA4jy2gNehbHug7DY\nmnpv2fkRKpZUtOSMklfkdUUpq2+iREBKgort0KNFQeMC5HV1rc5hPuDRozukNOPu7g7H40mYCwvX\nTbSqQF3couIIPDAwIfpSGBUEmZAYY6VbcILz+YLD4awCZVITPGGeDwqA5MVqVQJazVFK++buPYIl\nbxIdrWdk0gfnmjfrbAgfbQkrRWIdNCqAxNOXcytTAyRMM5OQHKRwcxixBTvx4H/J+4yrWgDFspdS\napTh01yBZZpEkwIidzeUM11yTouC5YhII8OE52WNrBLPDZkFa6ZZGFcpyEwghPNEI1O4tZ8AgBv3\nr56JyOcaJAGqwd2sjw3gsXHYY3B+5e5aq1eMgUT7Hbts9sMubwZqNuJfV1e9zhgp0AOersYd4eHL\nh4t++tvdU74BAPji/tyAnW1Tqduf3P1vgqi1vcIWCndQU0MjSjX19s8TQaRrgjFyCBiCCXR6Xo8p\njCFVl0oDXwxb5xSf7KUEEAG2O6w6cuEhkSQUJg19K/m5CkTUNcvOFmD72HHT80Yh0Qg38W+l72Zd\nju0SRVoLVsx1zfhI3bM6Hix7GXZGwwS0MDY+VH6DtjvQhfhe24TmjIH3v9mUnQY+1BMFRVeIVDSg\ncwUVZuGuOYKjDJyq26FGWrPoVgyx5jAKwCuu64rz5Yrz5YKX9w94cf8SX758iRcvXuL+4QHn8xXL\nKge7OUZui+7G0hQFDASmBCIeuoRb/4AKdPbAzi4tNJDXCa513TDgUVvbXdQI4GFepA8GfWvfIn0Z\nKcBGQvke+Nnrz571+lW8oLfi7IOdqhSTNS37m1MSy6gnKK55rQCEc79jy3ovJ8R1u7EwsUaC2xkf\nqWPCNLWWQJubfkw29RtVtHsnRilJI1Zam0wBkhGV3il4+IiLb6uYfJfKe7DzFoVd4FRtncZal+gr\nioYN7EDPSKxZia0wpYkSTscTCAmH4xGUZhzv7nA8HiQEdRGiS65p6hZwZHqxba6hMIKZQOqfbJtV\nAI+FyT4i0aThkWVTHY8HrOvRo7/lXJCWGm6QXVO5T+Sa8QrEoBQ9EzwwhZICs85/Yue6CnR2CWYH\neKr5mLCuGVOK0XBa7bgThpQa4ARsXb9yys098WxNJHI29jIOBYeSUbjgRCdP6Hq8O+F0OiFNk1gL\nw9kqvlxk3DQQAqWEicS/dlXzORZCKVcPlmDPPx6PbmkszMiUnYHGaEzNfJqQGX29BkKKg0klmm7B\nC8PWzI3Nl04RRSGTB8z3FYyt3h0ZdgUFLbMkUBe++V9l2Wfa+0CnXlwvjX3aChu36/ng0Uk//Raq\nZQcAfhMA8OHjFuj0Q3Vz6LgDLtwB//CphTcULniFAAZ2ISTW1J4Kq58d6ATAE5dnM/JEcvYx3Nu0\nnMMTHYtVQY5JnciKAqAklge5Rw86h/Xe47r2D6NFvcAqwKPmCrI9bPuv9qrep/URmoPpvRbfASIb\n6BnT96iM4G7ORiDFaQJI3bYpfN/OvVmo+rbF65s1pWTKNfEBJFR8q+OVJhUcJwc9RAlryX5Ye1GP\njbOe0bl/eMD9wwNePpz1/QHnywVrzgKs1D2MVCgFklhvcmnOzjLgefASr+BUremj8xsmCNvNt4AO\ncziZVnQcAz2vr4SS2CCL08ibRddB0TmM50zjmrD37TPHYKfnl31/4jj0dCB+t6URLbDpwQ4zV88Y\nhHVKUR0zLi5DKN+1PbYHeGIQk13A49fWlBTNOk+EicXFPm/WSEExV2J5qM9VVYoLwHcwxcA0FaBI\nvh7pl5xXtGMSiSzcfvXyWZkVDP05Mc+vWN6DnbcpXMEONHGTofxpkqRzk0ZiAVWrjoQxrFaD0/GE\nw+GER2CAJqRpBk0zcmGwElJb2KXbHAAawFPbZgIkVbBTyN2s1jWDaPWzQ4fDFfN8wDEfMU0C1g6H\nI47H7GGul2VtBPg9RnRzyAaAJ5ZGUOsE5dF1zsDJtHVxDII2L3wyN7O8ZuS0Yl0raPGs3r1gEeqM\n3/fnXGK7IvGOrm2lFHdLs4PFhSUPxukkgOfudIcnT5/gcDzifD7jcrm49caCU1hJRBLMwrU2AmSW\nlZpzXbG9IgMUOcPUrJOd+YyCGUZhpts1YetUDe7N0jRwFWvc0wpava8EAIMr9oBABWG1Xa+u/QdT\n9vZKbOfrlLg1tv20K8L1g3o/fHTCT378Eb7zyTdVbP8GgN8E0bfw9Y+f48Mnp809wO6WbPohiplw\nA23HeFSPCWv9+hqNmwvDhKrV5/pbs8ICwGnFIfielrqUjipN2T5Trvc6uErSLU0ya4vUQ4XAnPDJ\ni5f44nLBx08f4+MPHjf33SoNXTGgYzQISUOvJT/4Hs/fxDpaWlbHULpS15AltO2U/sN2bUFSK6Bu\nAQ+QkiyKXhEk7QvwdReMDcZMeZ69SvgM6JSqwDlNM+bDwZV7ApEJ+coonTXn4eGMly/v8fLlS9xf\nLng4n/FwkQiql6tYdVjpLlRYJbMSseVfkwaIQJuw5oK8rJiA4O64fTX91k214XNhrO0yH+huDL3u\nBBC3ls29sa3367gWmb++Xrt3S2tfDXZiUt4RQN5bS307+wVh4H8P7NQFEogVK4fb2ZZ2PyC8d8aE\nRG1wCaER7DIY0EZG7WfotAcAACAASURBVPvibSE0oFcGKOzdiQGaQV1/hOeaEqXyabPUeFVkYFyT\nlvIk3kUOdixp/SrneTVxaTy/nXMGKKur/LtX3oOdtyinkwgDc87I84xZ3dLAwDwvSDS5tSRR1Zyb\nVi8R4XA4CJFU/94CMaGvGimm+EKuCJ0VWFWmYHQwRJcJAgAlEsGOIyCqLlXrumBZrlgWseIY8Tck\nb4AtAh0gMvVW89IL/WPtHqkmckz8dIe7hqIvkcAKQdl+v71JhaCg9ci5KOAJ/r6JHIRFEGCUPhIt\nGyMCYZ1XXNO1+b3XWkVtjOXgYQiInecZx+PRo/KJUJAcAFnwAiCeL4IDEQYjsb46q5OtDwZ7VmXj\nwImrab4nyPYsn3MguF6wa/v6+d1q2ELfddKIohNQFYRGhVwzylV4eQMhcfN9eCf/r7uAvyIIovAA\nE5Bd6O47St7HiivDfd0dUlcDefSHG5Ydu8T/J/zHf/Wn8Fu/98f4zie/5Jd9/ePn+E9+/qdaoR7j\nsdwDLKOyBWHb60jtMtuFMHh22PPtPVsozvEehvveW72FWV3NTOjYas7Z8NRGOoRthUqHXGiSn8/L\nin/8u3+AP/r+537bz37tOf7rv/Fv4e4431zLG0FyR2gEUJUnwX21r6Pt01a5UYEaAZzGk4xKa1vA\nw5tresGOSATm5lmb9o0Bz2hc7LOdErQk2xyvI7ggaKDEBHdJNi108axg5nw+qzXnjIeHatW5XK+4\nLAuu1wXLmqUfoU7PyUMpWJocp6Bwweefv8Tl8uBtPx1O+Pjp3U1AIAuprtd+DEZKPhu7eK2B5TYc\n93bO+tIqVLZzF3lcD3Q27XtFed1r9+SKOnbW/3F/um8AUxZCAGlSGUXcP+2a+mxWOlG4TQjuURwL\ng1OQIVK1kFhpglxxaeaFWfPZYEKa9BygurYTVUUmM9czuY1lkEJ7bL6aQfC2UbjWPH5Mrpmnen77\ncDi4G/4enf+LXt6Dnbcod3fi5lFBQwZBzH6Hw6JckXA4zFXAVg1/giyyw+GAeT4gzQdM8wFLLng4\nX7CczxItJ0TMac2xUWgBYNqKUv3ObZtTSgAnECfP2eJMvtQD8MuyYFnXxsQfXzH5pjENuhHGKhKU\nkUamt+xsAE94Xn9v/JtcAoHKhzsH5/u2qG/qurZaz2mWxH+WRbkBO9RqOeZ5xuEg+Zama9VOVQvK\n2Ne40cpAgk4Y2Ller1jXxV3QDocD7u7u5DkKECJBNOEmh4OuPdixw8cMOSi9loxZdMJuYYyAx7Rt\nm/lUZtCAlAHg0anYLUNCqYxppMWN2s0IWL1dqIJlO/c7AgJXFzuVhTalYokA7t6o2FxVYed2LQZ4\nyMV1NqDk79alEaDhgAqp+W0HfuB4mPCf//zP4ov7C768nPHsyRHPnpwUdMh8UFfXsKaKtQZP6Xu5\nTzNeDXHai02x0wKzUf117FrxJ3zaAXe+9mjbP7LxTvbE7WJiZvyjf/5/4/NPvggx74Bvfe8z/Npv\n/x7+3t/6t18pFL5KO27X9Hyij9YZP78KQMBAObd7cCTE1tva8Ry/y3VVAKtWMA8WYcq8Dijt9SU+\ns5jkB4j7sTaw8ixSOshADkF/csb9/YMDG/v88HDG+XLB+XLV/Hbi4laKuR5JLh4JRJHE/THZ2pEA\nD1Y+++we1+sJwH8PWwmX5Zv45MUZ/9pHHwzn1sfjNchPVSDtAB3nT/3ZkKBUuQEuCYKNej4TFWQR\n6OwrPl4fYA2VLNzt2wHAitftAiii4J5e16TnaLIEwXF/60gVFWD6tji4ABrwEs+9xHb759Ja7Qzs\nCIjZAkv7vXCBHLutfa3AM44Vw89IR8WQ0rDCBTkD6yLK7+tVjmEwxFV+nibw4aAK8f25/Yte3oOd\ntyiPHj0CUHOqVB/HCYf5quZTxjzNzogIxRN/EiXMsxxmnA8nzMcjpkWivojwml2ItbwPfqg0aLgB\n2zi66IlUIafbMxEICWBSc2Xd+BHJn46SF2ieDo2wbOePyA/UjzbVq93Z+s1tlp3e6uGEiQgSWafs\nEk/526RWVCFx05Zt2ywTMHqNEAmw46j9MgLBvAE74gpBekYrWFy8n63mxwiiuTcULqCccTgcPBDB\nsqxY89qAndPppEJzJeilFKx59QOykRg6YSUCcdEQ1HCLViKgICGlCsI9HHUDauPYwL+vSrMdN5Me\ncO4BmNcqqqnTz3EN3mJo+1pC0+BJ+9E3t/ICszXgVQL/sMkmfJBpGqNYEdtZr/fHc/gxCuK0+YBG\nwCd/ePi5fWbp/n766IgPnxxByUUl3xev7HcAEdvHDUDHwPLSl33QQ823ppXf3r8H7+zVrlc7TdPi\nxCDeBMAzaly7zlrw/dn9GX+sQKfGvAO+w8Avf+9z/OGffoKf/tpzuXNnDe8BnbovyV1b9sBOU7/N\n2UigNRqioxL729PhrWLh1cJt1ba39MoBTyUszTxtlBsd6DLcGeng5oXkioOcCzJYk3SLsu/+/h4v\n7u/Fbe1ekoM/XC64qjVnLUUTl9YVRhoBjlTrbnnurAdQdzHhs2cA/wPalcC4LL+ENT/GcXBu5XXL\nSMiPvzUARYGZrVTHtQP+ulmTNKiv8wbo+cHe51vfWbtHbdgoIhBSRAwJOTa/OV+nyAtsCilYAr3b\nVe1lvDwqnwNvN/ZHBdgoQOe52adWX+ECOfVVFRfMLC6wCHtdrzfPEN/j1MlSspnasS+l8iSrMyUg\nyxnyDMnhaJad4+EIsIzHpCDter0Oz1e9K+U92HmLYpvAAhAQIMLvQbQ+IkiLcd3OaWQqQhiRFAwJ\nKEnzGWmaseSC+/MZ1+WKdS1YiuTv2Wa3Ns0XqkbSTJpJwqdCIwFVzZYROHJNgW0WyZ67Yl0XrOtB\nNyY3GxlcAZadSxLBcyxwyGP3AEoViLZMy6hLAhJDMnq1jHYj7HZCiBOy3bmrjLW3aKREKJOdN6nx\n7EnHwFzK4ruYe83lr82/1I9Fozljdg2j5T6apgnTYUaaJ7f+2XOe5BoEwYDS+XyWQ7JRqwuJ7nak\nI6ZSLT+1XVmGNVHT1hHYAeBWqmTCrwu4LXMzcFeFCx5YW3Y0eUGbu50vX/IV8uwwwjje+rTub8ce\nr7R9fNVie+9NtWCj+14fII4F5pGGvC0jwcDWwc6TwjbzNkPmknm7p8U1ah+ANh+5+67vlyo3huPi\n0ga1jdwpDoAGQGx4p7UvtKE+un3eFxr1zmLefQLg7xPw63rJ//jb/xf+8tc+xN/5az+Lu8Nhg2Vt\nHnZBD5kSKzVgzfRARh5NALemWgsdJndDzSoBm4uLj8fN9bO/H9v7WmDkHg+Na+7YquNNHIIZAWlV\no578ccJvF6Vxla/KedQF12XBw1nP5JzPOJ/lXI4c1mZYFDIidgWIjbedeYhrzsgroSYRlTKOfris\nGYeg9d+MG0fg2bokbcec6r7sQMmUJrXsVOVlDxr2LDsJ0qmoDN07izLqx+g3a5/x4HF/ut4NwM7o\nmcDWWkLtwOl2sbbA+ZUrTuVGtReaHFTd2Ow5xkMtemtR0GTPJFLrTsdnKWxIm2IO14AIc5AjGgua\nj2uNbFsBbQuOSmETperzSgkvyaOYNY3Kuh5UlmBAw7MjnK16V8t7sPMWxTPKJoBIorrMU8ZhLp5Q\n1N7FN3MBIQvRZJJDirkI4FHtUGbGsmaJBJMLVma9LoQSLp3LBqulp0iiOzAE6CBpcqt6FoU4KXOu\nCzZGZ1uWFfO86GH9NvZ8/F8itkH7Bqgd9WZphHy0YKcv5Kp2aX/UgPR1hmZt64nCojRc21+JQC6V\n6BARcpkk2zlqolEX+5gb1z637IAwzxPmNCGnqdGojIi8vXKxHBcChs/nM0i1KKTM5OnTpxKh7XiU\ntuvAi9k5I+ciUdqitohZgNc810PLCrjXVSLrzVOrnWHexs7vNXgGdGRq2IUie/YGuNq4jeZsU1oB\naPSzWTR7ATdq6foy1JabsGBz9EMCO29qDNKW+Y0R0NX+vk4fq7DzquLrNNRcwUnzX/OcdvwBiwNF\nQaKObZA5qkA5tnVYjJbdGsQACKr1ZXB9B0DiSqMb390sZM9qLS3xGUCNamcx7/4+Ab9xBPB3Afw0\ngD8Gvv1rX+DX//c/wH/77/0V2B7zduyAnPgqnv+kPa/i71SnMYIbxTN1WsKGJbNKvAbQiXyiH/7t\n2qxnKVra0gZycY7TKbf2igjjIsTDQkBTVTCVwhXYXBdcl6tGIxWgs1wXXK4LLvb9smC5rhptzax+\nYV/GETaAY2tC/Z6SXcGMeT5oS8fRDy3BdVxLDdDRx9UhaNdc3LN6dHhDvx2ckI4TGCipgreOR/dz\nSKgJc3ug03swWF+2fL99VgPcQ79He6oHOT0fGAGd/t6mX3UU/doNz2L2XVWVvj1wr88WD54EoiLy\nmM0DZI6hspUf9g9tj+MUlbAxOWxv4SllG02vpQ8G9LP3z99trtQVHoXFU2SZ9Oxw1jVHbgl8D3Z+\nBAvb4TIoLdL0wm7piAoZFwYF3JTCkojUNEwM5GJ5G+UQqpnLs1qJSsnw4AS9kK+CIJhFnVTUzzcp\nU1GAY4fRzIxt7ctZ3aGWpSYRLQcXLC0sc9xASV3iTOngmzWKDD2BQ9Wu9N+ZpoRMoFZNGqOAUgqh\nvgeiKYcPrimJV5EydHbGBKuHjRiIa0PROUmThvzmjqFomFITdMxd0PkeKrFJVDNnx5KcsdWxM8B5\nuVwU7BDmecb54QHLsuj5rhmPHj0SoKO5dNZ1wflyBilQAlDDq04aocnAci5YsTaE1RlTkvDa1R1A\nCDalooCTQR7iWzXqpALuLvGj5m2/dHPK/a/d3z7NseLtZyKTrKMmNMAJEsukuJrwsCb2b94MENWn\nRGYtv8geCFeGfRVa3+yVZox52xofDr4x5ibp6sKvf9pJIfJn1/f62b5xPMNttX5Z+KJn0FXy3o7Y\nq75rZ7hrMfXX1hngsDdbqqCFFbgHsNbgozBmfTNNwKXNl1Lvsyd3+OmPP8S3PvkC34FadP4ugJ/X\na39envPtX/0Sn7x4wLPHJ59MoyVWvwsdjTBTQKUgFY08pWzAKH8zGWHsOa4hAzyOdkgCZDPq+fX+\n+jj5EWLZI4jq2Ptjq5DGgEdrLKyfDRDHlemWwLiXlPYyKX+VM6CZ1JPbauCaLHFdV1zOF02kfcH5\nIlHVluuC63VVRVDGkgXg5LXUsNIEpY82cIEH9+uASEONExxQloLj4YDj8RGu129q674BATrfwulw\nqsqnCAYQBHsfewp73c4NBaAQYRgLn+5Biblp2ZLwLqEvYcz10D40NUVbZ7Rucjc0PRhpeQ8zoZQM\n8SifQl2ktCZUpg11LwBEQZ/r1XHDg8I1QWRyJhJ4Q2Dl1MyBfEk+NzIeTLIGs5+3AYhUjikS6MjG\ntVph6/kuihYYomZOa6TWGnSkgmzUtWb3juaOzLpZQ9EXZk0oantbFilrR3ORdS8WTXHbnLT9aZrr\na343YcO72eo/5/Jwf181YwC4wKO4LNcFKlqHA//JNfm5ZGTOyFywsiyuJUvCLppmEE0opECHCwpW\nFP1nDFdpq3h5kppMdeGzbWIDYBC3LIkQF6OFTW7OzmvG9XJBSgnzpP6asJDIR3GnmoUYsbrnWaI8\n2Uyy6dndCAabE6jJ1oBKmJjBRTJ9I7XaHmYBOqyAh2OdUQBxDuBSljO8yq/J/3ZRKJHUDdJoeAws\nBYVXrBNjmkrVhiXChIKCjMyEwguWIkTw4XLV4AJrSD5IztArDFTmZdq1CQ4oAQtNfcXDg3z36d0d\npnnGBx98gNPphOPphNPxhPJE5qZkccVYl1UT2IpLgAlFzKKd4SKiz2TugazJ8wowTeKhL9p3GcGi\nhI+iuZ2AhIRJ3WaIoFZEJZysxn59ni1SF3QqP3xFqUzFwS1DGb0xJ1LmQs3nKFRFqTyC1pY5UBCo\n9Da7jOO1sdGRgW+/M0bjInlgZDrEQWyjenkUmWN7YfeSVx+f2gRUopapx7ZxXfx1LepXSWkJIYX6\nKmSI4+r/94IYSJ6BIHBSna+KPqidglHpQVG3ZsjbaxEHO+HTCAyhsfBqVowQkc2uVwpAThm0ye2+\n7XQogbYMuqCj8I1/9+fwT/75H+CXP/lCfvjp7sKfkbfPHs744PGx4gYdRHMOJABk0Z5sSRk9ypUc\n+n6B7NNmLfn37AJQ7UjYWyCQ7rdG3kR8SNtTpbDe2iiIx80v/zRBJWk0KD1XimZe6k7pQbNE8jTP\ngoIVjCsxrmCvE4ACFwEz58sFl7MFHBDgIznkRLizM7GlMDJDNPOuOJqAUlDyCl6zcD0V2BOZas7o\nehXHC0uETC4FH3/4GJ98/hLXpUY/PM0n/PjTO0wqCJuwy3qPJ7RWfkGBxckQBQGfzDWdUbK6VPm8\n1iSqVgGzWIGKpZsBATTBuLMFILL5THp2t+aNobAHLKpdjRrr6tsbMczFgphRsryD1WXKhXiqMoLR\nKwN5tu6o0jZmrjTIgKcBCB0bzwOH1kKa7Dx1WH3OgwqcMbgliwgrE3JWJ0dVBh4I4pmBCUV/L8Su\nVJUgfgmTRuqtYxmUo4mQMAGa6H1ZV+RSMKlrGzN7hFbpJ0BI4MJYlwyL/JvS5HNrfdYBU75DoEn4\nOnMB0oQMwsLAtTCuOYPy7OlU0uGI+e4RTu/z7PzolPuX9/UPJRoPD/d4uH/Asq6Y5gPmaUY6CIGa\npgTLoJ15RUZGRsGKjGuWwASghIkY8yT1ZWQ5FMkZhSXyBqO4cCSblTGpxgWWvE4ZAhegQJKdmrZ/\nSpoRN2kYQ134ec244AIiwvFwwJpPEkd+nkB0wvF4wKxgpzDkjBAK4MCH6/M8UZsJex7LOQxZJdJc\nGCUxJtUwJIZrkWCZ0ouYhdkIAgN9NDiOgpV/h8Dg4QSTrDnq9sCUUJiwFgYvEqVnmhhTYqQp+bjN\nmsArl4y1ANMqY3A5y0HWotFK4PMjnyXcs+rQnbgmEBMSyVkXsIKd6yJEWQNcFGZcr1d89NFHuHv0\nCKfTCdM04e50EveLywXX6wVE9YCulWJiZ5FPydRNRdwrLRP9rGuJUmUMri6lApDoTCXBrWmaE2iq\nWlrhyyTzSWr9c2Cii9ak8wYkdGBD/y/OaFieBfI1SzqBcYw7/bpWxhtw44K3MVIyS2NbQ1Qqkzul\nGJvtgEMnBDtQoBS/gtUEW38uFtbecxgSd/WIfSJ9IIe/N6ArADK/htsjMzoXMn9ylpDYWzf4vx/f\nfrxYQ9w3VTQCRP3+NuBpQEXfbtgspmbk4kQ4+DHQbX+zDVcUrO03cUExjagBHY8P5hY5avo3Bjq1\npYfDjP/iF/4NfPv7n+LXf+f/Af4Y1bIDAH8kb08fHZvoXRugYzVqOwg1ipJbXY2m297wz22DKzDq\n9x85bxHlQqqNuVH8fJ4C2RhVMK4f4YEB7CAJzzL67GHz6lhLt2JYXmmP5VDJuWABcAZwqTMPZmBZ\nF6zLiuv1irOGlTagc7lePcCQWLTr2hWNvPBMHGZMhwN4XXUtZreIs80HRHCcAtgpambjUpA4YybG\n1549xpKPWNeMQ0o4RNcyO+8RzFVsZzCT8MIGjEPWZKRx1W25gpV4hokUANl6Liz8vEAUi7rAdI+E\nOVcwNk016WWyRag0q3BpU2SwBQRXeYXYmyrZDxSglAKmrAR38j0In28GLK1GoLs25r7GyPoUwI7K\nC1zYx8aOBCTlKaTWKba9o/9bKo9SogKPMJPkQgQBaykoawaB9SwUQBMwcUJBQmYCZQ25nrlG8UsJ\nE81B8Uw13QiE36VJwFrhgnVZQCkhuxJTzg/37sQC5jQNiq1fGx+7lvViO+oAkUGYGZxIwE5hLJlx\nXQvSzKApgacZ6XjCYS3Ir0j6/he1vAc7b1GW61U/VdKzLnLQP2u+GtZkj8ZQTfORi/oBG0aZSDaH\nutOIi5Jo1uVz1nvs3E6X7R6K7E1rQ8kF1mTPLsb3hQgyqcga1qxl1QY0Asc0ISVgnqFuVBOmedKY\n8AFQBO17DaEIuPXCngVU4mX3hg9V7GjN1/49mdUKOp6tFsYZ+kaKMgaKakqHi6Ou4dL/RFtnGrKJ\nkUpCmSYHY0VfuTBSFrCzrhkl12AN1EqgtR+BEDfvwR2AWVzPluWK+/uX2iXC6XTCk6dPcTwecTwe\ncTqdcD6fcVWmbYlHL5dLTShqnE2LhRBnZVBsQNXbZ6/q4iYCBSFRYBIhsp8zUoJaQ/YFI9FWx/ml\n+n0cK2OKXWboXhsXxzB+9jWp00AV1zTPjUKp/T10y+vWexSMtoBKvwb5A5o6Y3ubFdwK+XtnJBwc\nUVhP4akm7rc9k1+2oMPab59He+f1Sk9Pdq8bzFcs0c2PtW39VTY01KE3E5bJ7jX6q0KZ7fduGTR1\ntHu3jnUDGJzOjDpMTpB8rQD4Sz/+IX7yx5/iO7/2Qtr/MwD+CKD/Cfj6jz/F86ePtlVxXZdGYykA\nXQE5FgEqOd1Vudg/G/joV0voIZxqNdd3QGk0btx+H0dwe7cK7Sy0/JMvX+Lzh3t89OQpPv7gKWy+\nWBM81z1uFn+4dt7ONeSccSnAAyecuXUdtnOKBnYuCnSuy4LL9RrOpqIqoFyIJ08Y6jl0UrXAOFFB\nAB28XXsOBHWwjtOEg1lxzGoxeB+en0EV4ofnVUJ7jI6HrxvaXl+VTfj6CFugOVsT3Nkj/XGrjrrr\nV+tOt2xsyJRXCP8RPlV0flnHvgaYCOeHNwK70RBpYynhrNSApzS8DXq+prA1xudIvFJI89JVvl+p\ni7wKWBO/1/EqBX4EgbIqm21jQeW0iTBxVXpan+wogMlObslkBpXqzrbH/yK/ib+nxAGIVquWjTNT\nsZ67bLPmgiUXHNQaBUpI04z5eMRxM7PvRnkPdt6ixFCHBjJs4SaLWgGLmsVOlOXsjTDzyQnojPnA\nWAtjzRIO08/z5ErQ60tM75mF8FMiJN2INbQ16RkMcWUqxV71IKGAmcmZYjx0b1HATAA+HGbM88EP\n1kWCB8hF5v8LdCZw5oYfSgnskNqXMEwj+nvR3nqN+LgQ1efANFCBkdr5GTCrix2DuY0s079b8WtM\ni0Xtb5trXculWrygokpkGqYY8hq4Lgtwf4/5cMDjJ0/w+OVLABL6/O7uDk+fPvX5mJK6SjLjcrmE\nBKX23DD2VAXKoXAf+leBj74SQz1+mjrcauR+5Vtg0s5L/BvOwB3weXQbs25UBrhL7DedAOAaxQqE\n3qTcrP9W0XXfCyaxbRVmIrzb7d09vD2M2lzD/h9GO27cxCoFtW0ZX/uqeex/e9OxfpMyEgb1F38Z\nWALf6hs1v432bg9uyD9vD+xup63Swm/8Oz+F3/zdf4E/+dUX/vtPfu0D/Kd/7WckwqWjPJtOU0rA\nZT1TVAAs7oeWcHgr8yhdjuDDuluvb+xuFP+6AebiX4SOFlNYhe36tGY+rAv+4W//Dv7gz77rP//c\nT3wN/83f/AWc5gmsfNKVFlXyrgoYjSSa14xLYdwXwkNpW2I8UwITXB3oWAS2HugA8KilzbR2100q\nOZcAbtoAC6HNaOlVw09MkNRrSqfIjHtuwye9ae3a3eNTMdBPVGTFZ47qtL5wV2esSxR0VRELAzHY\noRHdvPb1tcqhsIV3yoYXGHgLANJARzt+DFf4lTb534i2mKdBVDIJz1a3WpVdSs5YAQFTmDAl+S2l\n4CHAdT2YnFgCQOznfSSHxPXQREIN4+cpQorlY9zOdVy/dR1mT3viSvBUE4y+i+U92HmLEg9yp1QF\nZw/Ta36nXCNr5Jw9USgpIJpSwiwnanBdM8r5gqyHJVc9NJ/XFuys9lm1DeIzbO4X5IfgCheAhAjl\nUpDXpQE7huodpKXkQGcLdg4KeOYQqhmoupCqsXEhwwSOnnGEYnWMBNc97VZz344AM9b2W72VoBQ7\nB0QWOUbm047PGii099guN0GD9UxMkP7DdToirThA1RqCHWLFAJaraCbTNOHJkyd4+eQJjscjHj9+\njLu7uwp0pgm5FFw8V88yYGIu3bgWPlrcYulBBxGhpGpZ5GRaoS2QsSe9DkQwba18bgVkB6IJqmdO\n6BnA7cL1zXhg6NfrYJjXAToboZ7qnjBBaNS02qyxID7S6tZ91VwYcA7Xi19RtsJNW/erwEr8fc9a\n88MCPFEj3f0S3quAjKq27a6j7nP7jLZQBQO2T3dWOlHbNomQRTgeZvydX/g5fHF/xZcPFzx7cofn\nTx8FekBBEDQBBS5YM+zcgfR/mqw98l+13bHLUyTaI5i0F6/vaVbT19Ei2t0PVAGaDF4VZnVdKsdB\nIsI//O3fwfe/+7020ep3v4d/8L/8M/x3/+EvtLnljIbZYW0NuJL1PM6aMy6Z8XJl3OvZpSi09YBn\nWcUDY1lX7RI5DQX07M2UfKyMdkc+6bS9lLrfA6DwIUSrxLHrwEHARr2uz5P0pmAnllZRVZrn92Bn\npNyLnyNpib/5vRrxy7wbzIVtj6/7GmGrh/VA/5bnC5d/PRrSgph6rsrq6aC9FnGpNOvJq2i+9Ve8\naXTfogJ5ZlFui3vjpL8lTBrcgcgIVxy/CBTRnMdpWhr4ua0Ni4wHZiAoTG08IljK6xbAeJ9CvVWZ\nkD3BudVnuQXfxfIe7LxNcTnKCBwHQCJnHIgSOFV/3jRNSIUxMYspXM+LVCalbm4aHlhc2Sw0YCBO\nlnuHgcwAUsLEqM/RrM6pAEABkx2o66KydDHzzapjgGeeZ7NF4Hg8OgiyLLpOPgiw4zPcjxEpq+AA\nOuL/DBANCC0z5EzQWOPj7lISRugGmKrEjVI9V9IIdd3EVgJcQuQ08ndjdkaY6hmMKjiYtsa1SwOw\nA6r3NMzA+m/3ZQl+8eWLFzjqeR0DPBae2kCoZV0mqrkLJNx0bsavL71mrf/OQ2GCkEn8u6ep+nk7\nYS7BQtAxOBd8TR7vhOJR03y+7V/HPEcgrRlHX8E90KmRnLADxvcAc3/t3rjusQNnHBzb+PqAgIeS\nx+1njkoLRIIgn8RZDQAAIABJREFUtvnt9eoZWX2+KtB5lVC3V/9mOqjd83XOAxI24SwKqeF+AwZV\nCGmtjdKeCHTq8xIlsXzr3vzog0f46MPHTV1OP63xrM9NUnHSet27h9GEwrcEltB1bXTEAoc0/Y5x\npjeDaj8ZPQvXGXjqh9fpNlxT7jAhCmcAPr9/wB/82XcHiVYZv/zd7+H3v/0n+PqzD4Mwrm7fbAF+\nFPCE1yUzHjLwoIm1/RxEEOg99L7Sw+ih0IAIAmDuUAZs1JcpgiJbIyZQN8DCFFeppVNxv+0px0YK\nvgi07PMta0wUlGO7bj1nBMraPbxvIWJmV+RysUijbd3Nc5oxURkizEHsJ7ME/Lml/OzHCoAG2IAr\nW+0MqT2Lfa3CwYdW0PRv81nlNM3q5GGZXbphOe+zcoG4XzLIz+cEHoZQN9p8TDGfTpybvi1ADdne\nj0o/lswMTgUcEu7sWRKLKtnXdfVXlCHiHniXynuw8xUKl2JRp12jLmCHQGnSCGOaUIoIszIwRnvY\nnlF9kFcFTKLBMzRftT1ZzYsZQGFCKsVFaQK5X23RcJmJCzAlgCVAQY2RPzXMMgKdw+GA+XCAbWE7\nJ2LJNA1EVAK1BTGwA8vSsI0gymAHOkTdJvbPW8JGKrj4YWglrLvaBhNUwEpEihJYY25b9h0Jff/a\ngB6oNlDzG7l2z653xh/bj4HwVJ9td5iG5Xw+48WXX2rQiBl3d3d48uQJTqcT7u7u8OjRIwXAxcd6\nXVc8PDx4P9xSMih7IAcIVkwQMmVQ1vGnCeZL76ZyeAz14ZhWKayZIOUvVm/Vyr4K7Njn2wyQfb5H\nDHxURkBHPktreiGh6SPGAmHXJFcC1DZUoPGVyhvc3iggwlD8IIDOn39RgENqAd60ydodAI8pIEBe\ng3wIlhco7QChRv6y7/ux0+8TiYtMcJPpSx/giKxCIqHj3q76PKPjKQjlRZlKtQAxhtPpbjT6p9Ep\nGw4y60YYm/aDDSNMyKt0hFHPblSaDmb8f59+AmA/0eqv/2//J37i2VP8zb/8k5gnas6BRBe2GlI/\n41qASwEumRxoRAuM8daosW5d0akbWhL+VQpSUQsMqRdFFPSIwJ2mnIiQWALbEE+gMF6uZdc8ZSPt\nfZ2L9p5eeB0pemwv7v3WC7YjUNXfF8GPBT6IvCHOC2ezRsn9Ke3QUq770RUHA6BjFgtm+HP2xqp9\nTgUgyWk2kFjyERZKEum21CAKcZ3eUgrKWtQonqnm4vM9YAAb9XTPRATMmrvP5hKQ/Yoa5Mn6Z4rW\n8fN5M9c+l2EsNiAeLV9qgGpnMcrFci8u/jIld+T371p5D3bepoSFEWP5rxoiME2TEEiWjTfNE1Ak\nXCGShBPMqlEwgdjP56yrWnTgEalKfJVq2ZEQmBPMctIsRhYUL1G/JqSJO2tOtersAR5j8odDtew0\niaWcYJumojJioIoRPVF1vV+nrah/W6S3WoaEstHM2s9ShzMF1Ag5zcb3OuCgY1TPCPBEwmRRaSJ4\niYAl9rPvSxTg/Vk6PjVxqOR0evHiBXLOOB6PePLkCZ49e4bT6YRHjx7heDxqtD5ZI5azx9oYmXtf\n9uegBTsAJCgbAGDWddYyX2agkIVL3dYvH+qMjYCEXdsT6X6s3gzwbNdgnO495lbXyrZto/rjvtgK\n183VQ6Bzq34RpMdVhatCe9+gaHM2+7QTJP5VAJsReOy/J8Luet7WpYCnaWalG/J9BDwjAXQgODjQ\naSPYwXdwqD8RaGJgrkmH23030gGoEGhRk2KUS/UIiHvPBCyggHPlFXbWLo6n4BEKz+8EYOVTlo8N\nFMSk+BlxX1eA49aOEoKksGjEJ738VqLVP/u1F/inf/jH+Ov/+tdQ4vmdAeAppWBlYCkJV5axMYVe\npGH13Gy19tgaISJQrsovWWDwCGmGAOWsZVvszGe0eJhC0CJFWGqIZj0rCIprqgcgDbimgcXjBt3q\n9+x2zY2fs0cDRJYuDjz6+WBda+AapMgjvMVn6BqyYokzR0BncsBKMPfz3qI16ruJ9ZHPyB5hWGoM\nU8plkzOYxQo0AIE+Dt5vUXF6m/1+2YOSkFMtO2D1gqhryOQSShrptANzPaDp2zGaS5Md+rFowC9t\n93wPgAHImaO8Ylkr0Il5GN+DnR/BYgu/qOnWFvI8z5gVHDhI0LAdjIzCcrBy0WAEaym4XhdJZGYG\nThewXNQbNKD7Oyjdmv1KcJO6LfB1tRRsdUPYwl7XFZZfgKgSEAB6r/hKM0OTY7EyM/b6MG5xA3TE\nV7egcXV24WNHKDb/VP19u8Xr3Gzu7cCOaVgqUYhPbevqCYRrDmPDw4sSgQqF+WgFWgZLJJg+z4uN\nj7bLfGQtj8/xeHR3tlKKn686Ho549uGH4FJdKqdpwosXL5ygybmxjEItMd1oOdFql0qRqDJFiXQh\n025VgYIAddPZCuWtQLT9XvmI6eLbMS8mrG6BbV8is451xd/j+0DEfOW1UYjYf7ZtxPG1UM1xiI2+\neW78u+4DaUesruIr+zAGCDcLkU/eHqPf6/d+lV8dBN0CsTG7eL3ePwEI7q3UA0ADQd3f41boewUl\nRCQCSqC38Ksglnutn1URhRQuJlahqn4GbA8E0AUTjCLgkb9triR/G7sLteWNsc8S8tZCGsMtiqyY\nrHfD8oPa0RKla5m6fsLrUqrlAmEnQCmwN633jz2+wzfvz7uJVsHAJ796xvdfvMDdPDXPkqhfVUlY\nwMggnYs2yEu/h7l/2dpS9hZpj707vZ8qwIwla+4ToAriEWjZA2JUNrEQtTw9ApIeiIy09M2auwGQ\nRkqhaBHYjFHouwvfaqkruZ6fiYKyAT5fVNi2uQE7cWT07Gp0qbeXjyO3MkIU0Bu62/S1Rh+tZ5Mt\n0E4CcrsOWHftq3iM8TBb662eJEAshqZhqIGmSsnI2tdJ5Q3rcyq5sUaOXkTkfL+nyQ489bvoyWFj\ntOe2tgG7Rlv0vLjJhBGIvovlPdh5i9IQBI8pXyNfuHXkeMDxeJDcNcUOwgHLKuGkl2XBoqDnugrw\nYUc6KnybAO2lfmb/L/4WmTNXBqpSqAm9tmGNGUewYxvTXAIAu73en3OWJKXqjw4lSoGj7wC0wBjB\nDhRtPFNSxqBd6YnxhmgaL90VVlRj4wQpqeBcBcl2w+8LakYwIvGgRBWv2MF9KNChdgR6ImMJ0GLL\nDeiA2qAXVw0+YN8BEjji6dOnePz4MQ7HA54dnmmwgmrJKaV4OOp1XbFqDhEJSscNQbS+Re2hFc++\nDNOMpgb0wdeKCXVt36ogVPta7wcszPRIYyVnv8bg2UrP9FrwND4suyfkjq9tr4+/bZitgkIM1hF7\nw+KzTThvBRP7xdbRSNPn1zjH3fbjlYXIm7MHMHqBanTNSGD6qmX0rLhX63fjz/LF+Lv6IQo5PLqo\nBen6jBZ/yx8mQNlnHdTwCuGJWa5i5rhlfB+J9SjkSemEx5xFabWu9bC+CCZZUyHImZfqFl3BR6X/\nAy0vkbg+j3zz2d7CHDuIEh5QBfYIduBu2D/xwR2+s6745asECdhNtHp/xod3R9cbmKhd+2CBG8Ry\nklBpl0dXC+unBzobcDEYk0rnaz6cWK9ZvxqBMwiVlQcYP1R7oNYX29e47g5Ayy3Q0+/PHvSNaNpI\nERhBjrdN57eEOd28glUH1t+953v9OrGovC6eK57UQ4Z5bKka/U0KIuR6UxJMmmOoWjuN05oM5IqT\nGyST4yceq1ltrm2N2bkzc5/0cVbZLnrbJErq1taCzX6OIjBuZBEi5LAW4pnjZn/HNX9jHZjMYK5s\nUfZ4F8t7sPMWpS4U22CSONSYkp1xsYP98+EAXjNSFsYnrkYaIWbNWHLBYrlaAJhGsAUvwO5OHAno\nznVbQawu+PoM22zR1M9KuKLLW9T0c5GzQG7a5wKwZW3u2tpRBectYRwroSfx9Y3dGxDrVkQZWwyI\nTFcTQR38s1601c7yWGtidUYNHoFQPCmZPpOoHlzsCJYzNi6DcbBp4yZbtRGd8/ks5780eMSTJ0/w\n/PlzPH361M/vgAjn80XAkYZbffnypVgSp0WDVWzN5bF/TcQha1cxM3082NhrMOt4unjRCYlxrirR\n7sYgMlEEzTfGwn77eNNO6d/x/w2j3xfYuy5hKxQPQI7f4De1bbJrfQDG9Y7Wuu0N5q3gXoUprWcH\n8OyNXbH9YAJc996XW7991XITRHYlpb25svGs42xVVLHXxmkLdMbd6kGQAfB2TVpENFcAUdXpk3+2\ntqoFl2P9dTaFctk7mkAABMmsfr0u4hUQDhMvy6pgpwbNiRYcwyUwsFCC+1kpcjB/SkCqgo2LdkHI\n6xUTFUWVze/2bq5nzx/NOE3Anz2su4lWGYzLurrwumVxOr4+dFtLBqXk6Q8SgCm0N7qzjXirXRMV\nP5E+OmDp7mkE8W7DkrbT3LTiPXvrfARu9sqt/b73d3zvA/NEwdro8VAhFXrYAo5t+40vw4eGGpAT\ngzGQnrMtZQuaesAzGrP+DJd8X1A4IWn01f6Qf+QMDlUDv2hEK670w0F5ENtkzVeL6xb8qTWraKCR\ngu2Ye7vHa4B135Ygg0TgvD9X7Vj5GkcFR6b8Xtd1k8j0XSvvwc5XKLJQqfroImGaZhxPJxxOJ8yH\nA6bpUJFyyViWFddlwXW5CpNiPUxqdcLdSSXfNJu5PjAcf76+ogAWtA5Rq0auF4sLfxtj3xa+nOE5\nBOB2aoMUpOTBEKx+UiEzAh4j7u0zIuABGp0JA2AKoR3HmqkqnrBcT9hsRGauhIvRanUCgbQgA/Z8\nqysSgQgAjBgXFQxokiCTKQiJANrrjLlyq2EpfZutcx2xs77nnHF+eMAXKeHTTz/1aGwffvih9IUL\npmnC3ekOd3ePcDqdcDoesS4rDsuMdZrAWaxpUfvUl42A3mjC2hwNpRRxGTCMsceYfTkOmBT3q7vO\nIVMQLTthfK/E9V77sC84/2DLdt2/LTi4OZ7980B4Gzc231/d9T8owPPDGPNX1ylCSAU/e9d033Cl\nF5Ve2kN1eKnAff9Rz7XYNf5mgjhZMBprE6lgLvk5Gr2Q4QVmzfxePEdGtM6Uwp4wU8BO1mhjwmPM\nwiPnVUbnHAiNJQPhMxFKTuCUdSwC33D+YkqL+t4S9YbAb0ebGcc54TQTLv9AB/1nIEDn14C7Y8I8\nJxTlMXbQfKCZApgkKXfRsxjKYAjQxNpSGpASLDRmod+jEaUUpIGgmPRcUwxJnQZ7qKdVtt8iiBrx\nrnj/rfI6CqAR4Nh7Hyqe9N/ucwmwHGsjfr3pW8PXMHymrbNR6fnibrtgS4b9M5FYARNkXXHTXoR9\nLnyvJuNuvTUqGDZ6L5TYFMCkDJEBlCwRAU32sLVistaBRRTPekatDx7QAMDQP1c8Bj5qa6svEYD2\nYxXXaPwuKgVepXz6i17eg52vUCwZJKWkIECsOPPhiMPxiDRNkB0gSSQFIS9YVBt3XRaIYxBVQTAg\nAWbxSZZMvexAwJi4b8jR2qtc00GRMVERblutjRXbKNM04TDPDnROpyNOp5OfEUmpzfJbXeX6hnRE\nNCIdaWjzJ7tP2A0zuGuxrf62jn4YbHBNUN9cQBpnn+I9dTx6Tbdpv4gInBISEjKSHETeYSxsQDBr\nxLTShpvUVmobyJlBT2RKzng4n5FLwaeffopHjx5hnmUbRzD66O4Oj+7ucHc84Xg8YbkuWOYDlnlB\nVg2T9HXLTEfj7sIQzO+5eHhrA23UMYN2mNl4x+Z7ZpVRNt+3ApNZdl4FePw304hT/T6CB18bP+Bi\nDNOeaf15szq8gu67dq03o21rB7eB4OBpQ7ADfDXA88Niik4DNvXbmqmqkNqnV4+/kUwb4+JjrXSN\n2OkcUUwSGASlRiCX6z598RKfPzzg6Qd3eP7B07q3Ug06AHuMBhTgUlBYE0yba5q6qkn6gYzlqoqz\nq+zpvEo0z3VZgztycWWarX3ysWvXpr0XkhDzhVJVmgVFh2v3TUERgKGNtWHuGAlPQAvVc5cMPDvN\n+Oyy4vqr9f7TMeHHHx9RNEm2HfD3evw/LQXgDM9FZG5SzUF+Cu5jyt8M6NjkjbTnUTE44gvm2haV\nYZGv7u3/hraOBH1shc5b9b1uGSoOOxrTj4MBW5vjocAcgEsK58s2pVlrca9uedGbkufaborqn/qu\n8f4TTPC3NSkAX7AJ1TWre19kIonA1s+bKCWgIeFtrSZw0rWvY5dzAbA27Z3nCbPlySGApurFEYHG\ntn/t2uitOP2Znv7+0TqP9ZKPwnuw8yNfXCukmzpNCfNsIZuPmOYDpnmCJPe0BcnVxzpLUrNlXWWX\n0NTtaWqir3meHa6WAANG5u7QLsCGKjcbu3/1PrL17wnT3ObfaUJPUweyWrWdEgZrQi+YtqRoQ7cH\n7bV6KqMjZajKtB2otIzDNE4IDKN9Frk2xH6KQ+kCQOdP7f1hRiZGBouuyHy7fYyoYaoCDMhk0nF7\ntDNmRrZneeZiZqzLgof7e3z22WcOQC0s9bqu3l4DrTFYRl4y1rRqoIEArAeubH2pjJ9QSs1lIf0N\nfuJol4RENmIgFWEOA0G1XVCbJw9/37XwUPO2AQ8ROLzKSrRXbt4Tmvs2gklcXy04G7TjTescVFDP\nn9jajjXbGhnWClvMcf9s9xK111P7mZr6+ntHhaqCKH57A3yxdkLIBm86FJ6MzQJ2IFP3dASJLWiR\n9/N1wW/8r7+Pf/nd73o1P/kTX8N/9rf+Ku5OpxBumh0wiMuL5FOTaEgr1kUUY0sAMZYHY7EzOzkj\nr8WFJU8IWCrPcEHG2toPsLWBCJkSMpU6Zg50ot+/CsCdVBoxn02zsQs5W2MXyPw/f3TQCKSMw5xw\nOGjiQguSQFWrHsfXp4kAFAFh5DYItVb5deTvaUr+q0TgssZaHyK4M3pXLdq2N0ywl3OVxccpUfU0\nYD1cb3/XYW8t91GxteFhcYpeoViI99+iayOg0z8nvmyvRr7c1M91MxLV6zbt7uo1A0Q/DvVe3vy+\nV6oSod5ryk0uZr2EA3XA1iiB9CxdozvSz3LKVUBM36dSiig5C1naRHWvTd5XQAOJdIrWlAhgkROn\niUBTtTgy29nqfh5a5YR/r3TtVTEq9wC9/WZr1ECcRz8MxxveFmj/eZf3YOctigudgPI/E/DCJiuM\nQgZYoIlC5bVq0iZPApkg2gAAIMsFY+GowyHUrFmkVQAiVCZiz3X9C0WCZgJs3SDzPGGa2iSiMQpK\nzOEwTRUINZtFmR275cmER2tLbVwkkIWSugW0v3lbTagIZaOJaP67JXSa9nGHCQRh8lbpQU8U6nNm\nrHpmSUAuwDRV0OATRUhgd4kYWSiIxD0QRJ7520DL6XTyeQcR1nXFixcvGreMx48fe13X6xXMEgr1\ncBCXxLxmlDUjL2vNCRC0Nk2kuTBm1IyFHOg0f2c/eJlM8JM7ooaTmUVQKpJst87r/pi3DPnNwcir\n6o1lNBdvA4Li0o/C9NsCngY5dFad+MyKHVqGGMs+EKh7wLYUc9heni+L/fJaaWhBCLhBzQUcrq3X\nbT4DrzfNOsjcrsqda6vYG0axHdPYHaNFKrTKeEVh2/a+uZXUswUOfrT8xj/7fXz7ewuAX4Fklvkt\nfOe738I/+p9/D//lf/TXNSu0uauINWfV9AN+ptNyXVz1fV0d1BRmSeTLxl+yJ53Omt4gyHXKL8gp\n5tYqaHNCGj1OLFfs9ciZzBKghA6PicIB6CgdoPCdSfqUABKFGKBRpmbgYKHs7Ywo1USMKY5toIHS\nj6Juz7lbPwy4EKutUw09uAqjnFogbEofN0Bx8oPmpUQeaBGyEpinMI4WhEKTOJrlIKy0CG5KqWG0\n7bWxHuwIuqMyEoZHAu6IHmzaVYrzSFkSA8uPAR0HReNn+LvxmyADRGVbw6dtTHf6O1LeupxhfQej\n6PBbM6VflkNOAQ0NxtPXcKf8U35Wiig5WQPtJOWDpP0kaLjuUrCK6cgB75QS8jRhYpWzQs6saNGJ\noCfy6mZt3JCXIrjr57rh8TqG4nJbXAbpFSgjt/d3obwHO29RzG0IqBuzSRbFFtJTmE4pwKq+01nD\nhFrkHJpsnZqgqOTbGJgBozU7QZQNTB79a0Pg0TE2srCL1ZfTgM7IchPj3MvfbThIJ8QbDVgUxqhp\nB+ydgMTmWh2tKfUaAzwjLYQXE8LMtaQrlSDomHQE1z6/jjB7izEQJPRpYoAgk0kpeaLRNCUwEygx\nKEMORoYDoLXP+jmRR44xsJPUTfJ0OjUAwsDOuop5vJSCp0+fOrBZlkWBrczt8XiUtbesWA6L5/CJ\nTCYyudbvt855f52/KGGSDjUCTgU7IijhNYhlOy9fBehQzwea0vKv1zsP9OqiXHUXXLxJVb5B6loe\nPxHkz92rqjK1USHqbg97rKrJ4WAo3tcDHsQ64veNUH0D9NwqrdzY/4H+F4c1AeBIPXVdynS11ljY\nOiAFO0ajkVqwk8J9Kn5/+uVL/Ms/+y4E6PyiPvcXwcz4kz/9JXz2xT2ePnkELjXRpbs5LxIB6XpV\nl+dlwXK94mrRMjVyJxGJgERJ8s7YSwGPaLPZOUJtHZrPcb8CACdzxZE1ZzliuBQw0sZ2wmG9RyDi\n40hBFqMYdKGubTJwNQnYMRc/GWOEsUf7brwiB6sJcX05kNezDAZ0FCwXJpeAKwgmJVGm5RbgIoqd\ntTk/IZYdCX1gfYyWIIa5P9mY1GsKY0tDh7S3rt9blppXAaPIwyKdizSqPysS7+0BRdO2Ui0MPeCJ\n77E9UJAvdW0jhZmVwfwEeoA3alNUqhpAquflItiR34m5hpDn6hwf6ZSfF+vaLoBKkoUQAQmTyDfK\n/0sYF1F6ZxgQJoJ4Y6jFaUoTpoMAnx5wxnHrwU5cL7c4jVPXDkTHeW6V2eI6OgXaFPNUvYvlPdh5\niyLErR54lwOOCSBJHErMID00VooAl+IRcSoYKiyCP1iIJpIAi8wZUI1AKdUiZAwMbBqCsSBHKjx4\ntCK2e9uwoECrfTcEf71ecTheMS8z5uXgqL4HNSOyK8yB/HNrtTH2KieVYotjiZu2F0B7WY5ATb6L\nkSapHx0HhJ1WyNq8V3ptCRG5q+GqgiglQikJJRVMmJp70jQhKWHqAU+VNoKwgFaD55ai0K+cs0dc\nm6cJy7Lg7nTCSd3ZDAiZdafkgvUkrjFc2AFRz9w2Y9iNywjsMBUUjX7kAkkcN0pIVHMBjMBjvN41\n6R2cbX9vvx/NeS8k1DW1/X0EeLaC/euVXaDjUlFz9U2AVetq16/VQ91vb9KuwOJduKtjUP8edWFU\n2jWNzdrxRvsP9fPrjO9XxY8t+HLpsxGcrFV2vYEh0QFXVzAXDPSGogLzpy9e6r1/u3v2NwAA3/v0\nc6RETR4LcUtbRBkR3NaWZUXO5sKmPCeXmgctJSAZ9ZAdk0gsqHUv6y9Gg1XiYlUGGCDyMUkk4eRN\nOgTLd1xkf8fXjoKtAp52plnH2zBSAkTQTDY3AnwM8FTAPHgncR+yQAEANoJvIwRb/0qgr5ga+mdW\nG6DlJaVkT6wsykbpZ3TtJqJGMGy05lFRqGAoWtZvCfM9/eqByB6tGQGkHnj075sXwpDv0N66x03h\n2Vptmnsa3tDu+SiEAzVpd6R5sU894HEgxtystdiXiMeIxNuiBNppOamsfXXf9OMX5qzZZ9pHIrBE\nQND7Kt+MFhMJ+ERIXNevpZyIfR7N02gM7PfeUoZ+Hrri48pw4G9tTCmpAubaKPvfpfJutvrPubhP\naKmZ7qGEtDBr0IKirmmi2WkQefciJe4pTUjzAakARCsYohEwzZ9H40GUH8j/cmanRIkhEWrk0Gtu\nwI5FJQPQAJ3L5YLz+YxpntWNbcKyXJsDr044zEWga48TCIyJNQAkpE0kMmuLCW2t0NWGRowPtb/H\nRL8yVaAlXsaA7IxN/X1bRkxDf0Bhi5+nUVOUUPXEqASgE18ylpuBHJY4nhYqNq8rzg8PIJJcSZe7\nO9xdLgDVs0JmHeKTnPfJp7VqnQZAp2e8/ZianBO1yYUUUKsAEgfTNLzOBBqGEa5B+7kOSxXWRtfd\naqv9vl1LvPm9v7Y+4ytL2A04Gc3zmKHab81f29949MfrFRXrBvX+IKxcP5zCg09eejmMA52NdwUy\nQlCB2f3mGwhY34nCWqzXiXwk59GYgcenk97zW6iWHQD4TQCiMHtxf+9WHHut6qq2Lkuw+JQmMpvt\nPVFqJdA0IbEEFEipgApEYx20ytuBCWPh9Np+kr4ld62O4IYaN1xmthEIYIdcMLbP/iw2FyaEPahR\nsbjCNX910rCF+OcwDyA9RztNjYLFggcZjbecOBTovfFToFq4+8JsVi31PNTRSlSF6+jebHVFwVSE\naiCRaP972rsBRgOg0wu9PeCx71+njOh7VGDdov8jfi6TUsey73ukJQaIjVaNwI4L64mQkJprevq/\nB25TIiDLedp2vOzZVVZxS4yt80AVY593QaW3PYwHqRTkfA++7g3wGJBIiTDNNfeSAQrrX6NU7Phz\nzdPTrr+mvVybtWl7t4ZgNlfl740SXM8Hv4vlPdh5i+KEBRBhM2cFNUAqLPkJkobooARGCsSsAh6N\niQZjnGmaMc8HrJlBtKgwqRujZM3NokKJMZOWlwgRDlqvAmDNetitM4lWwF9jqi/L4mDHXNcsj0Nr\nxjQJwh8c2GUrmO4RR1JXgZgJ3TULLPRoK/SROiC0FpD4e6vRGAt/DVEMGpG+ypF2pf2NkZlRWEzU\neZowBcYVx6UPHxnHJQpffWt7RuZndHLW0OUF5/NZCNLlouForxr6fHJNkT1vPa7Ii/j3x8OHe6BH\nmhYFcWmlnNtRQkzizy5WTgKxacAjl4KDndifWOeu5jCA59HvGyDDza3+vK3A0M5nD3j6GdloKW+U\nvWvaPmwF0X2AIeu5+Snc7qz5BlPeKzb+e23tP7f3fnUg+GaF0SZl3SsVzbRDto3UB6qRwkjzy3T2\nRK2kF8it07pGAAAgAElEQVQNB5irirye3B3x9R/7Mfy/3/+mig7fAPCbIHwLHz9/DiLgxct7zZNz\n9ZcldrbAJKVbyyIoGsgisb6kJCCEGMwaCSoIVRRpvf+33SL+t/Itt6oonTN6vKUPla8Z4PG2dgC+\ncHUxskYxqZIw1kLk7UA3V2xzo0DIlIVTcxaw4z+pJkQUjXuNNBeVbrcAj42l1Fn8PFHv4h0FzShI\nRmWHKRz3FEt7gCe257ZCatyHW59fT9HVtrH+wRrRjCqgDfX3531lHY/5s4110nMwjHZe+zYYIKj8\nFbKomKoXrvdLPGYIBn4tdDxcSRBBW3zGZh7CPmqUd/aTAioJYFB/LSwKCQMRRAJ05jyB5snXFFB5\nvdGDOD5xPEyGifzL3NRdbojRc/fkstC3CMoAuGVn5GL5LpT3YOctynK9AoAHDTBiNs0TpukgwoZa\ndQqr9cfP7GiuF5bFNx8OOBxPmA9HpFny8izmouCRaExvBj3oGIl8x8kB/01+V0Kr31uxwAO9/61r\nmbSNtvEOhyPu7u7w6NEjPHnyRFG/MncWt7QgFsHAThRuBchwIA5bdykTHIDtYfFaO9Uz096trVCW\nyMIn1qGJIKoBGnXouqG87SIgVKFoUq/OB9sILNU2OxG0eSM4QefSMkULSmB/X69X5Jw98ppdE++J\nQQ2YGTgckI6ShTylhHmacDjMWI8HF6qmafIgA5HRvQ7Dcy0cCxEvpUhkGp2SmM8isq043yZIDQV+\nB4sObzeA51Y7uT6kmcsRkGme23xn64JvXlcLNQtpAxi437K3BXcKbR5gwG193TWvJxBFzcWbldcB\nfj/YYhLMDphUYGKgJhYRmmXQRNyqg0d2BrIr3H3QlVvXfuEaFCDXMzP/wb/5U/inv/eH+NPPfsnr\nevbhh/jZv/Rj+PLFC3dVq5YdCS2dc0bJUeAMdMGBiPjUFxZlCxTQGGSIAldtb7vKRquCjN8wPJIo\nUPepYxQeV2D0W0k9KueyubFnkFfiVhISpR9RMtVGMx9bxYRuMz8vUmqbiCSBaEe/TTC2OqIVYaso\na2mMf5cSUilgFkvSlKS9YAATkNMKJxfhGZUW1jVoJeYAsvc+YFDsu723kctqHyMIiH+P6HsPdvo6\nfN3fAEMtmODN+MU6LRFrHYO2Tf5sKNWnfRozEtrlrBerSkAeUag00Q9J15vLV0r+HOoyyy5iMoHB\nv285GUIfJEppVaIZdFdldkq+og2MuKwyiSVq5tnnbJ5nlFJCHse2RBAZ5zkCHSuJCJhsf9FGAWp1\nWRtZA6bYb1EZ/t6y8yNUrhcBO3Zmh1ki95gQykRgJOQiG6D6aEoktqI7K5EdPL/DfDyCphmUZkw5\nI80ziCQsoXJu2MFOUNVyR4YQiYRFBQEntfQEuwttMxZHoi4a/uKCwTxPOB4PDdgphT1fkEQdiWJF\nBTvUtS0Kn8Y4GwJc4L7mPdBwYq2yjkrCLtzE6/SDMnx2TYUx7Kplc0n2tUvDHMAgOWnqYKcCgOL5\nZ+rg63SSzKe2qGEiNlZ2zgYQEGNalcPhAGZugkpELYwkL6vzfNA6jclYBL71sHoAhJEW9k3Ajgl9\nhQooK4Pi6roHtEJivNfA52b+6jebtdT8egOQ9gAlXv86GCCuw9dZJi3o2La3Ajhr2hbobNZ9qG4D\nxl/ZiFeXyse3AkrT7nel+Pa3saXme/0RJmjXAY7BV7bFhCLfr6roMbpuWdI9cmbJ+Pd/9uv49P45\nPns4g+aEw5Rw//DgWt1llYSgWe9zBVJhELGvFQMCtghMEVYAZLNG+NkAE8eqG47Tma4/o+JYJght\nQdar77y9zz5UYY/D8SihC3KY2lxlqgCmDkv6z0RVCs/ftpgZUI2iKOjCD0TkioL6/FaZZCWCnT1h\n3oCQuIRLqLYECRLhChgAa5qE5xptVBe4vvR7KgKakbuztbMHHQ1A2Hltx20f9IzbaEC3s/i73IAG\n6PT0PIKvJjVDADuxL3qjrPWdPsS6R88xmacURtKoeLZEElUZqSimYQUyiGMDtZZyVJzc3jkyDqmR\nt+RMzgRJClUBtllsDOww2FNEmAxgZeRiaNdQGNN4nY9PSnI+nHovlgp23DoJPWNOdQ3HM0ZXVfa/\na+U92HmLcjmf9VM48Aix1EzTpEwmqY91ZYKSN2Hxw/52TmeaZ0zzQdwn9JxMZGyNpEztKwpADUEx\nAJNYQyFWpl4JxEDrYhqlecbhIBG8Tqc7rKuEwH78+DHu7++xXO2A+6oto04BYuysJwxRkzPQDqFq\nTfYEWAZCUIJ9wUyCRdg8tYfS/XlhQ8ttY6I60n5ZYyqIqkTMrDqFGYm4jnczYWhGqBWsZS6Ox2MD\nYqJWMmp1okbStDp2TscAhxBECXE5d9H4jJj1mkyP9uJAesw4zZUt23UZTdtSqokEx2UMZOynyDhe\nt4hmrtXCtUDCBOFbTB6+NkzgimM0vI/gTHqvzvq31dE/rwXjWuU+4GpA+5473t69m52IOh/oPo/K\n7T2zeVgjNLSfX6u9qnHtr21uI9o0K6S3ataUW4mj4KbPcXqmn9XgXV1AC2vuNAM6K9Yla/JPzXWT\nVxwS8HC94lKyh4m29AN2HlO8BOrzXdxPgW74of1q9TflWaTxbAIcurllbseFw1u35plDxLQNSqrU\n11dw3GtsYMbmSy5OU9rQEIM3Rl/qv3qFz3lYrH5mtFSLAgKA7QXvHhTE6kvOIAJybt3P3FoReZKB\nN9fc69RQXWOD5RcQ4pYORJoPwK060T1uBHL6PdYL/qOyd/+oLo7rZQB2/F6jtd2WvwVGjP71+Wfq\n9dsx7BVHwxdqRLQMYC6S8iADCn4CPyOB1SJTkIpbApJ9rdmm9LNraDuqfxsYjGPSAx6whEOw8ZYQ\n8gXpas+uACZa9SKAAaq75R6QjWDHeW83QdHrogc7WlFIKcLuCfLeje1HqLx8KZF2UppAU8I0zTXv\nAcRESpRAetbmcr3ifDnj4eGM+4czrmtGLkL0ijJLTisoyXGfnIMbFGyjTKBSI5IB0IVLDrKi8FoL\ne76CKFAy10hcx+PRtf2PHz/Gs2fP8Pz5c3z47DmePXuGu7tHuLu7wzzPeHh4wOeffw6QulDkjFKy\nC3dF3fVEUyaMrTmMDwQNkPHwKqxXZr0VlEzzwpQkmA6JQFBS1bpstejs2oxaZStMFgAoRdvS3v8q\nhgILL1pEGKkCxtZyMCL2PTOIAMY1Np12LyYNlaaPw1hzKViXFdd0ceJJ2AYtOPlh6nbcPX+OSvpS\nxyz5Fowx6HWllIYRMCYwKgG1sbb1bM+XNreAfdMWljwJrSw7uA4DAWcAqGMdySJAvaJUTVr8vH9f\nI092QNnExMoIX11frasT6oPw1YK4/bJ5jp3Oba5pnvraIHN02XYrc/i+KiE6fDeow+6zfbnd81Ev\nVJ8Wxj9U6DJ7jT3romhN6lxddQ3cGI3Las1Z1ixBBcxCk+08nFh3LznjIWecDQD1UQyNFiaNfmZS\nD+resGifBnQ8VLO+kkcv07GxZKJWfxAEHelF4dXhXZ0vCv83w0s99iEXBtmRowhWfrSKdMWbvMWQ\nZJ7MyGvGAsbxwJhTCgImuVUoorYIOJi0j+qNIAo+UTyatpwSwFA3Jma3IIGgrtxUlTQpuxdGBSfQ\neqp70TwbXWOseQGy8m3jhwCmOYEKoSTh2ZJEkkXYHWzRyA+isGt9tvUyjPQ2ADd71ps9sNMqgvbL\niCfa/X7Ohk0R24ObMIeuICybdmqNYGjUWrR8d2Sd6Hm3nKlSIDol35sWUAoQqxuoKpNSIkyJUDyA\nUm2nnVVWdlhBRRJLJFEbKbWOUwjeIZsZBLjsZAmEQbIPzYJyPB49jYS5tE/ThMvl4uDDrEMpSaoQ\nc4PsFd82XrlkgKuVKI6n3WP0wyL4xiAappx5F8t7sPMWxcDOPB/0zI0sIjNXe+QXInc/Op8vuH84\n4+X9gwjHICBJfoRlXSWSziShqHPJyPGQn4GnlCRHSVQu6LMM7FiCUGeipY36VRd0wboW9wkF0ICd\njz76CM+ef4Tnz5/j7u4RTqc7pDTh888/xzzPuuEl70Ap7IngRFshjF9JiAvuBsKEgBkolGsaQquC\nTZV1W4IMFM1qLAQp8ZbIN9erMCfPGzABlqzhEezE9riQ2gEKI1xgCTluQKegChAjhjQCOUDrutBr\ndez6yPCi9t5AbmQCpTDyuuIKcV3jWRMlFtFUGtg5Ho8N84sJxOqgyvjNk4V2lXY74y3FnPyDkND6\n9vZghahliBFIVJeRonkOWubWA46thrIV4kbFDhiPhITR57gmR22o/SQH/yMhAxxkchNmqY1WtDdu\nm3YZCLA9U7/c1tOttwqWq1A6AitEVmdf36Bhzfcm6cbx9E/dNfJetb3RUtyCIy6SH4VLPAdBtbpQ\ngrjS7vnuusbaQJDzN6W6HuecPb+Nu6uZK9qScVWtZ1EQVPT8CDNwKQXnUnDWIDEGglxoj3tg4FIq\n6yOBoK45VN8d/EyTnB1JSRNah1QDVlGq5xSsdmuLgCIdJxsERrWwNOAxAFOQh5r39Vc3SR3rOsUa\n9koA5YuHK5ayeN2nwx1+4uOnmAShBLCjN5tOJQARV56BMZG6DJl3QyJfvyaspsTgkAxWyLjcR1mF\n2Jyb5KlS36QJtmfM0yQ51FCQV66Kv5yRywoQK5CS/HYmJIuftvI8pRM9j+jP6/R0P6aBaNZwByZG\nyroqtPe0rS17gCbWG/+u7QeYzVYyBiIcnu0u8zttYUDmPLV8suefff0uwOvZ5LlMWKeMtK5YFnJl\nsiQWVQBC0OMICYQCFMh5OMgaA2q/rO05Z4AJhbCRQwRUqLSna80UhZaw2ADPSgLIc8mY5xnLsjjf\ntwhoJt/Zfcan13WV+lQG2FOacilukbZXHzY9zrMBMVsLMd/Ou1jeg523KFGDaoRS/gK4MFbOQGFc\nr1dcLhc8PJzxcD7jopGyaJqRptn9ShnKdCCoW/IrmBZCkbULNFU4iq8RAagXw7+LQnPONSKM/W5n\nQkSjIFoFM1+eTiffeFXIRAV4QfAUglqdEQwIyTj14CVuNgMJo/G2UbdXAQppgtLtGR+71p4TCTPQ\nRt5hDnmJBvMdx6gn8GxqIVRCbppgI1h7mqjoghY1Mf1cunYm1q3Z1s0HmpNkciYyDapeAyjsBNie\np/2Jrm6RkfZZm3PJmDVLuMg2LWE0AcQErVJIAhU0hDRaM1oG2Y+9rdE6/7cZcz9PJriBR+utfU4P\nmEbr6I1K3XJNuyLY2UKHbdv0S61yC8BawOO/NtcN6+yeJbu0BQDj2/oxoc33vZBua6WO7RZAyv7v\n2zd65va+OI5M2zEFbD+2iXPNOmE0hwx16sPXBtBYLhz9O5fqrrauuC6SC2dZu6iG2qiFGSszMlfa\n2ESgdPpniTTrfonj6sohBzwGeipQSimhQM9Q6uHq2k8018uzJaAI6zg4j2FrWRxuHSsYna5AyPGN\n/8/4/9l7tyRJcpw99APpkZnVbf+vF71pL0cLOaYVSNvRgo62cx70oB51ZYaT0AOuvHhEVvaMacqm\nWBYVkRHudF5AAB8AgjmMJ+uBzAxyoPMbgP8OOY/of+D9/l/x///Pv+E//cf/4GeCer0KeJIqPRoz\nVBaXIinEh5TTCoa6CFsApjSzK7omVwPycfq8/m6ZvZzGhoypSTm38TEeCXmmyIqgyUcGMXtGfr9U\n9hOQmEOOZo/OIx6RPRNCDprUI61fl4fJpUqU39c6CfDwcSBoZ7jG5Wni51NbF13H75W5qkX3wXAY\nek1GnQDYthMowybAjQFcSDPvQWkHMPf3rOcQiuhRZRrbZOgxgBPh5AQiPQycGdQ70GLMW2uui5lh\n04zFtk/XEgsBoXfMc+N6BhG66io72trTwPid6wK/wM6/Tvn27Q0AxKtze8GhYWBEmk6w33E2xt/+\n/I7/9ccf+OOPP/Dn9w98fMjZCUeFnulQFfQcAJFYEe8S9vbxoRl6zjNCJLpkSRMmrven0IWZEEkt\nWkgMLtzi0Z98r21Ae//4wMe7pUM9dfNs3vRWPJWhuZhFIU9CebSXRqNY2+VfpcWn/EE26Eb7hsXI\nSGyEtTPX2dtcqmBl9vYz+SXjvpm5zN8PQn6aBxtP62P2rmUPTp6//Jz8IkqH17WOQh1FrZ+shwz2\nIt40qgAqDfMe4Q+jsjW3xRhoPtTMQYy6tkmtdxmwMbHvLbgScg66tyrpWrKSPFsn53meAc8OWM91\n2/zNCvg10EmK8VTP/PmqH1YNDY94XkcU166eXPeklgdKzl+p45G1+eqeK6Ut/zbMOSF5zxBIftMO\nSRIixqIc+qO6/PCcrN5aogHjvW580hC2DICMR9/P5pnY8jA0kuycpRB6N2Dfh2dnMBP8c1boRsPW\nCIrGz9a5WamdlaFdoek9BnX8luwrVtjJI/ggS5gAhSXKhxmMs3X16Px3xDlE/y8AxveP/4KPj9/x\n9qrenfw8n6cEtEks69wx8DJPJe7tlNbZ+WQdQFFFcw0rHPlINrzkjGk7pXH4jgUUZXALEJi6wraV\n9+yen+seDIcT8MnyIkcF5PqXad3QRpYbNvhZHudiAHCkGFbeeiFDERrAUz6kVc/ycH6f22Qhimbw\nYhYvT2uE0gmDym7jqPeqbyfgNJu3edMfxFgNbQSJNxVw3SjvFfLXYDSKJBn5wOEsp00XOI5jmIvd\n3i67FkTimSyh72Uj66gv6X22dgzUad+v0rP/s5dfYOcL5du3bwCA4yaJBY7bDcdRAZDs0Xm/4/vH\nB/7425/444+/4Y8//ob3+4m7xnHzoakP6yEppmvV83Aa3u8n3jXL2V0thud54t5OtW7YgiyDmxuA\nLxAADjrs+3kBSAmQMIOd+ewH35eBsFKYFU024Y+COlsmR0si3BJI5N9EoWAeDiQmhsZgPygQgLi5\nr/Y9OBi5cMsPLZj+2ijSq/LFZvLz7/NBsDuBaO00QEFEewaShJ1dX0iSfOcYfO6RCIOgB+Zp7Pss\ntIhiE3RuizHTDHjse3aBLRmmunc39hRxooF5DH3cOaxoK2h8oryrojILZgHIoWLF88IiOxdyQLYC\n478MdPx9fWbuC5x0SMlnL0i3akDq70UXH5ZFWbAH/YW6npVnoGfgEQ+ujc8GdpQYQ7f0jmSeZ2nR\nnT4odTfxFTsq4Dxb8N7TQkY0vTR3z57mYEc9O814fFKeeq3AIWFQpswI4AmFcAd2Mo3OCtLek7+n\noasxv1KoHSw9pAd9ri1t97WYehgKcJCWeTZzatz/Z6r3PwMA7ueJt5ebC4oE6dIBzFa3nH/TiYfw\nLx8jBMBhWzvMeo/yuGl/wmAwyXSk3hJ7t+ddjzk8ja9/Jy4oMHVg4pWzsppDmG1+dmAntzMrpnP4\n+ti21YA0AzwZL1Xckzxe+hk9W56xGnvG7JZXvNgrplgn1zQ7FvOiHLUM/alVvX5qtEsP8cYQkkhX\nfsIKmHaAIsvZoW0EFIRHR5JzjLLCeL81I+tonrFRExPlkLO8LUAHbui/yXvXMSD7loruK8rgbDAC\nJbla9HmZBgcA/JOVX2DnC+XtTTZ0256d4/aiXpYDjRlEAkwikwVApeDQlJQvb9/w8vYbbq9vKLcb\n6iFn63zczRugsZG9+0tiPwEqSuiaKc1cmoNS2gAiPZTqgsll4s7xwBZ69/79O76/f8f3798V8Hyk\nzEHdGaAAH3gIhVkcc0KAQSCLec4ZXFb0MlOcLVaDYmQ+Z4SQvRLMYTf5oja3KaOymPs4elFOV6Ki\niQ4UE7iY++9jgJH5Fyoi6EuqMz2PiNDQBmHsDLizhLeQWbpCec9C2zKz1VoHwR+hc90VhFJS6IWN\n9aTTWxuzADAlP43K5Vhbe+fxt9+ugMo805mO4nX52OW+ucYtXdp3G1fDtRK6ATjTtWQgMXyZf7fi\nFsi0pn6kfAbo5Gctz/6B+y+fzfPITCDHvDsc2YXcWgz4nhNPSsDhuTEQc56n8GEgeDtsjSKSGTDr\nkQMDBgMwhrJamK/0YwYrK/Ab6XY0KD0bw6v1sjPAZJB2DXjyOhPwkvRCuTchaF/hyeZR/dn/A+HZ\nAYD/DwBwoyJ7AN0FGoPpfIaEu3cAZGGKuW0JzO8AjPG+aG4A6JoUPaT7d2DIeTrEAGj8tuj+qQDi\nmUo5DCPYg/3dXFmbZ/6eFda5XBkSFhAyPdtl3FTf7jkUk4OZaBYDFaBhbJn2V6OGGSUsfHEGn1d0\nb9jJAbLOq23gr4XQTBXxvvBwv+kNREgAGWJomvkY9vThuo2G05VpHmRPUQUV2UvWmYEWQMJCzBfw\nTnEshf1t+2aZIwTd9IJaK3qRpBw54UUpZbjW2mXyuRbZizzvG/5Zyy+w84XyptmrJIztFcfN0kYX\ntMb4uDeUcnc0X46KGw6gVFA58PLtN7y+/Ybb6zdQraDjAD7uoPePBHAsE5BaCj0JgKSFfrnd8Pr6\nOiwCVoHL1FEszMg2Xm6I1ASyEbtZEb5/F5Dz/c/v+P72XU/OPf10bwuHAqAxsQFwpC1hUQMwLRKC\nuWUM8IzXkDAUDLJgX4/345rJ+6XJMvRXygh0EoySgQQwunlNKYI0QYSo7tWiUlBTv5xpJWHqdbGl\nNhXGzRnIJMYGhDUnx2yzaGQCUV0LC4U/u8XzRsQc3tF7w9li4yNS220/0WhhmiyiW0Z5DTpC8D2e\nC+8f9rSwVxg/B3bmthpA3NWfL5PhXWl0vXel8/mJ0LXELnGft/GHCiVl5e9cdpbdnUV5vnan8O2U\nDLP8Jm1kWBecaZDFGGRYJ9djio/QqqzhUzOtiWddeZ6uGzaViIpjAjYLcF4Gvs4I494Q74FcNoAX\nDO9REQ3XzUBnp9Du5uJRCR4cT76kpmkQF6U4tTx/WRggFBx04OT/qlf+ZwjQ+W94O15xq4mfJHuI\nGbryOrYN4r2rt4YZZeLFu/C07CHRzgsf003eu4QA2Rpuh4ly6eBSffM5qIALo3IBl47eI93hYPSZ\nQO2sTO5Aar5mB3J24GU2ps11PioGFq1ZXzVQ5LXtdLGh131fhABmsHMN3EmSsNoqNdlKRffx5Mxw\nxgzM+DCgJLmXGXC+seGUCQSFcbGHnPe9eGNGOkt6UUpD5waevM8ZdM9exDlTq8tsDZufE1rUUoC6\nhrrtklUYaC8IHWPe+/Uzll9g5wvFUvXebi94eXnF8fICQOKy72dDPT6cCIvlyy8V5faCerzg9dvv\nePv2O47XNwk3KhVND1ezmHDz5hjgEWIklCpo//bygtfX14FwAbsWANtBU7a3Zma4phhEVhHfr/P+\n7oDnTz8AryWgIxlUALiwz9k/PIQugYzFKpAEe1ZwYs2F61ouT0wbq2D1uzZKpQnIvwp0LosDu/Us\nhJ3Lt2gcLxGJYE2Z1YBVMANwy6GN9e4a67dZc7LlD1BwC5ZMRCXGflYsjRbyvp2udEl0SmrOHuER\n/izdU7ZTj0TI2Vx+ZkjnTe37664EPaX/rb4MzLLwnu9d22J1Ja0L49jtAM/2+9w6yvN2/XDRi1nH\n4RrMULrnR4rQ1dfBzrN19UgZy99dKT3b+zLwc/Cygp3Bs6PWUx7qiPoZ4Y1vvaOd3YHO/RRvPWWF\nxVGL/N1hYXBCryXTQPLGjIBlhAQOeKbvRjA08lPzsM9juCtXQHJU4UYOS3gwxwPgmRTt4SsCTXT7\nb6Xgj/Y33PFf/LvX+oL/+Nu3ADrJM2KKqPpQPGyWffY3oUSp30MYIyJl/zB2RKgkVvjZ6j3XbUpg\nbyJjofIWBajMkgmVCgqJN9zvpVF+7YxHuzUzz/vMu3ZAZ75v1Bf0mrwmprKAgkvQM/LGXRmMGXrH\nDADsOtNRcpeWaIUL4JWbbKupkHl1FPCQ8V99WYY8PcTdl3Y0ykHNKox48e50l/EWUpc9u9J7A0Cl\n1EhVn4yLea7Nk2MZV+dwTdsbzAncmx7QWkOvhzyzkIeyARj2eGd5W0iyO+b5mNfPz1Z+gZ0vlLAW\nNZztBJ0FTAWgOGOG56wsCjosHSLU2+IKoC60QhWRUlQWoFkNbY+MpSA00BUI3kI0eCBcY6YWSy6E\ny54EYEu8STFkFkyWF9c2Y9gizPeLwhjDTi6bJQkpT38GUg52XM954L4H3KtFALodzoO0sJc7prbw\naJneMlf934VuYiR2/6xswywzEAXK2WAaU99EaKY1GsHUMq5qUYqEBZoSugjwtHOPVHvWeQ1hY1Yj\nS2NtGyOtbqEzoJWC46jDmNQi+84s5a63h8PDxL7lM2emwwBq5/H3Mmb9XOZoHgfpMC+W4KDbzwKd\nJDldSI2K5dz2rJReW0IZEc45KjO7/l9aYnWZuXJMF2vhQgkeLI3TORG7svt9pzxf3Xd1/5Witlfo\nIpOV15/8pwJywrOTaoXuV7aH2NcAKLIi6d92t7ct8SN2sFVQakepDaV1cO2un0t4L2niDgTf4gQg\neGyfHSrCdq2vD3j2dUlSE+NkXG1+mR539QyrfIZcMxhc54xT/63+J+A00Xhej/+hFDQI77iVgteX\nm0YLZKV3LOO6sHEyeQoHq0TWI1ECu1rnaVtP9hSx15d/HxIATaBxNjiNGUunECx73iRHr9bozEOu\nAFHmx4vM3Nxj9z0aXwcXYirYXqPfbNu+LRf9nPvBEyFmoPa43ULFooPlBDwFRz/QD8Z5NBy6x85w\nDMzoQ2YkZtQKNwQwc6QyV/2llKIepHGumTs6E4gtPBa6tznpS6rLAYzODa0hGbiB8+woRWSw6XwW\ngTHoEvZcDWWbr5H10PxcMNvfvKPboMup7qQH/QI7/0LFwE5rHVQaiE7IhsOiB4tp6Flm8GVUeM2K\nZIBGmKu5Nc0TQ0mEBxO1s1EM7Nzvd21XAxICN4Yce2jSHgzbB3RBwO7KVMFeKxZrQg6Ps0VC1g8i\nZyILY5ylKUaFx2yAM0BYwQ6jq0Vmt2ihAKyoZlAKHPANwmO6d37fAZ2BsZJ6XbAy42yhmRXuUoqc\niM3tXOEAACAASURBVA4BPMMQcVh5mFmzENHwex6vAWBoyBm3gl6ivwZGXf/R6rKL2mjMXm4x4jin\nopXYz2P3Fw07YRoVzCzk46SCLLwy4MFSfB6wYp0r5SAucL11I/jH9m1vX+Y7Bm0HdDJNZIXqmRXU\nde5NXTRcedXOXOU6Uo/GycF48hj8iDCb193ut1nZm9s2GxSunuFry5RtV1Iy0EFY+P1vBC34esUA\ndphINi2jANxgS6pnwKM8xdaqnetZz6aZNbsaECy1caxx9jXK8GQpDnYCUDMA0oUyAB5AzwoDUBjc\noYBHjULbfwn0xGjKm0XtJPCFoSXj2OdvR6v7NGcXIMdqJwWAgxUZcdZNTKq8P6KXqNP6GgpnNrrA\nwK/tS8AKLAb+oPdk2UhEvi+SE++zNs5gI0Dx6G0ysJRl2pV3Y/57liOPwNbVtZ8to/yzA1kpCOQL\nJfO0XdmBN4Uty+/DNRPfJCV6mSeRr6UQKqqvu/M4cNYTZ6nJMJL1MrhngyBf9WGtiseGjfZobJfo\nVt2vYSpgW9OT3GVmlHYf7m1NuM/9foKZB7ADhOHZ6qm1eoINO0rCxiOHs7XWhbck/WShWz3TcQiB\nx0pnP1v5BXa+UALstAAl6ok5mx4UNRwKui5vFRf+GQhXq3l17JDKqGb07KyHQYZlK4qBKELvkU0j\ngE8CK5RjQ/XwtOOQRVs6zvOWDq+s6rqHn8kQ9SAUilR39NUWzsUAJ566AwowxZhNcbioxu4r4dlZ\nGL8qMYRroLMTjLmvOx0zM4azjemn50xnVl9OVgCEZ0jSpNKWjmy8vC8MTyTQSFNIp1AQO+XZgspm\nAJbBTpkYnlmrem3Ync/ERc7ssHRJmQ5lz44kWOCySx266klENCjxj+T1WJdOhs/TTuHfwafp2cNn\nXtpwCXgm6belI+/Xdb2bVgHY1KM/uWnk4v6remflbwZmeV6ygpX7dlViHeyU492GeV6+dxDjCIcT\n0LHfh8UXXpnUx4GOMk8iCvojO7eC43BgDvhuSjlBlZgOyVpUqhi+CoOKjo158Y2fG/KaX7NXBAp4\nMvkPv6m3lsl5jwGb5WUK48UcuaEnWRvseX0xWmRQme6byuBNS/0zgElEuremDx0kpL4mEGE/0nRh\n6KWahtvStFHQy/iSQS007kfweqxtCDo35bL35opjb7EZ3Og/h1jlUO78bKkDMm807nPdZVj7jGK5\nk02fATgzQLuqS4okYub0/VeB1MhnxvbkduXv9IphvOc6l/YwZL5ZPHyDoRSE23niXg8ctfke6VwX\nCOBiIW1BszFuUk/VPcuUvCVm4JSzbTo6FXTdu6XqotJsgNzzzIBXvTGNAcheHtk3/eFyefbuMDNK\nrTjS+Fm4+7D3trVhze4AeikBeIx37PSgn638AjtfKEYgrTUwgLN1BSeEszPu5x1Nz1yw5AIMBreO\nTg10nij3EygHqKqlkCDeHw1xY0Du43BrBnAp7uHp6ra0kKNLNSkpKZZgQAg4rAMZRL29veHbtzf8\n9ttv6v4UQfH29oaXlxfcbpo2e2CD/jRRHi4VyrzYrnSzyWuUBJEBrFmRuWbcoyK3W7Sh+K/K6956\nNGinCOlrfyfmrQdt+mnHkydlFrLZYlNKkexOYOSzGoaxiVFwZmv04HRB6ZyeUVP033M61SVTnPXI\n6bEPViFrQbaM5eKWdpqZZyi3j5gp2cRPdc7z9Pcoe8U/BFr+/rMCYAAJds8wBn+xzfa/A6j12VfF\nYMED1egT31+t81FJ3t9PF5/Hax2QGJCdaHimxQx49SIHOv690TYFU8lJYYaMmoAYhzjfH802NpAs\nNXDtxpR6HQ67hNMt8+2mlDADKPke0mQjLIYDrf+qnvk9hpSXd6II37P2xf8J7OT7osLpff5tGrM0\n1zZ28aT4J1eS/+0p7ol8I3WlA7d0qOMIMiKpAInmC0BUeAmJHMGQexQUCNl5LaVEtqveRL77eHD3\nZ5VCIMjeEK4F3Au4V7RS9OiAAGlZluzW6SVIpVU+zp939WS+PVv18/0r8LE1tb/mGRec5aXzq9S2\nLeAxWtqA16Xe/HeisVI0BTUiKYAcDtzQuINaA86WnhlylQoi2RPnzKeWnMlA6ijze+9orhY0s6GA\nuaByAdUxzPC43XBrN6U520djcybnfn18fAxGSdP9HOwQgXRPz+12Q+/djw7x+efuR3xlOZzl/s7T\naGN79dvPUH6BnS+U2HQuscHACVZLX+sYzqVhTRggimpDA6GcJ8rZgNpQUVCKLBYiShtgLQ0q+4ZX\n1iQGRBWl1CUjhyuaqZjynpUtF+bMsIPpDOxYeJyAnW/49u2bb04HgLe3N7y+vopLdQi94uGZ/vkh\nGxTJP1qYLphXqlxCO9QzwYSrPdukEjT0G/JxtrFwJo892PGWbpirWYAG7YUC6JlFuAsBgPTcnfmg\n0aoW4Lz5eWAsBKAH3ZliJ/HCYkHKykdPVkejDcvJL6S1DthgIdoxPtU0I6PVKnhC4Rvrz4KLGUm5\nMM/ig31RLmRpS0uzte/zoGfvEdwDnQy21j07P1LiniwgrwFPUhGv6xzamD/8QGF+8qDHRovP/D6A\nlaXMY5DHaaxv7t6StCEpOk6OyRgRCpHyAVPe2hTmy90NTqHQjG0W7JNBvq0VKC8QuWDNNxDCBno+\nhXNZzhIr8bewHRMMY5u2wMmuHy6lqGP4W94naBOfVfG8BDubTsWUZBl1TfMqGWJ927pLyI3UOEhg\n1FKFTfaW5FV4VMxo6FNfRfFkf1LstZJ5CZksxicGc3WZ2YnQKJ5l2SqLW/plgzeXAtYQo1Ot5hKO\nuAc6O3722AgUbczn68wy30reAG90nq/PxrZ5Bq/A1WeLAwj5Y1jHsyyJz+zXz56oXf3xHryilJRK\nnIF6MM524mySTp7ucPrI7Kn4czWsPoEDs1nZs8wgYm3vvXtfHbowgBrtinMSgVs70G4GdqQRpqcJ\n2Dnx8bGOv4Wtme5YAE9JbbIcgBg9AXBntPE41T3YSX3JtGjX/YzlF9j5QvF9DDBZQ2ICoKJKrsVR\nHqhHx3FjNJbUh36PLW4AoSXC67XzHno3l3yAoVLD9Q2EB6AUPTRq2pxo7vK8QKwNgBCxeYrMu3O7\n3fBye8HLy4t6Cjput9OzgcQp3zuhl5nAyhAfy/fx1x1zU6zjijNSX7KwECv6yMCMaS9AB3uws/M4\nDMze/0u/Fzu0zISWCN3WgdLCMjPsQ5oU/WFOS0HnMWtKMHa9R7lvtuARiWenUEE7moSzBQEu8zC3\na05Ewcw+3XHI6Jihxb1sOlN5/pgU3IwaGIBrsDKM86ZcgRujEdv0sF6zB3zLcyfF7JmQF6sw+XO3\n1y168wi8Fo/VfPncDZiKq2zkh7GOrZ0HV1z8OMzv9hoT3hGuOM+3tzuV+HsMcwzQGWFCAaJSdyj9\nQeYRJlvocakOmKu8zLppOQF6xDPtWrDdg1RnAjvDPTo/CZessMn+PSgcH2QZu0Yi4Wo81usK7MUz\nB6AD+HlDdjE7o4XaR9jXtUKRfQMnOvCVtqx7XqB+1Cy8wvYAko07kXi5MlgohOpKcYSmMXhR7IOX\nhadobJMCPY4N6LPyT5QVWKcCf0Z8Z3VQvIjA2UuXePmPeqozv56v3YGoGUhkz042jo3yJfO/VdkG\nxmmNZozrexg8p0ma7okx8TZ5TfuEEA/HyGWSHrJe5KwZZgEEt/uJ82jozKhqjJZ8QEEZZuQIgDbK\nXZunXca+eb1JXRVEQKcxffRxHHjhF6cXk93n2fXcRdm/A4z7dW4KkI7jkHOEkh6X2yZ8QHnTBGCy\nzPfEGn01as5JqX628gvsfKG8v7/rJ4uSJ5R6oBxyls5xHCgHAfUGLhUoB+4daAw0qJWhhGA04MCg\nOLyxm9DVZUfQTWMVkcRgtMbUUnEcspjisFGgtTosECvDvVOmtUz8At5GEMF+UJ9Z4IaaEQxifBYS\nAzNZu6ydqc7Fi+BKtzLtDSMf7uvdH2LKki/YhSmtwOZznoIJBGVh7H1V93bvKOrlscM7C60KYGw8\nFGWm9bEdaZSXcTLLUqGCRif6WdGOE7UUH68rprUDPWa5dktoeo5tfnSBIK1ZFPgAfqtnZx7rmJ8M\nSZ7PQyiAAq4M6V7NI2Uinfqf/87Pf8bsE8ZaxjkMBOS/f7Ykkh3bKp98vX1GFs3PZbaWf/6eZ99b\n+x6VH7EWxxwKzwTKutY5a/w6CYu2n7wWzmsopf1vfjCo36hIIqm2btiyykyhMIAaoD8eb6/IwokB\nI2W+Mcyzdccfpp9zA7RdHh41jes4BLwSFHnwX1ysgCMAD2xLnjYn4A/Ft/Ecit8iJGnkAdYMS16i\nOzHT51S/dMpDvqkWHwsCy74d0hTiU7jtIiM2AMF4GAgeLjePYS1yXASXUAC9XxbNMRuBEj+1PZTW\nht3xBI/W2q7eGTQNz9O/dwdDLvx2Hg//Po6uWBTexHPzV7ThfwASXW67OLRL5l3/T/1+NEbRAA4j\noj0Tsm+02laAWmXNFztHqwfdmMzVdW3gJ8vnLFdm8BghYyN40+SMfrQDEVCPA6/FQiazMfvuiYF6\nbzhP4OPjY5hrydjKIE1gYGFsplvYmVCc1oTdl/W8fI5P5ybeZB6vt3t+xvIL7HyhjGBHFv5xAw71\n5hzlANUD5WBwOYB6Rz077q3j7KwbWtOBU0UFN+Ik7mbuZmYXnFTknJ1SI+RpUEprRa2C6I1wSS0I\nre1Q+YrqA/TU5EGyEIC8wLLAAkyJBUJwR0LGx2UBMyrEefPbDuzMgixvFu09bRhOjTEmlT0H1u5d\nuQQ9ZOpLXGfvI9iRcMSm4WxN56gp6OlFDhjN9WSwA2ZwmSxaDpbjGRmACGM9cRKhnQf62dCL7DOz\nLDJXxZ6f6cP2DDFbisw4uKy37pZLEAGdXLkJAMLq3VnnzdSh3dyYmvQ5akKiIcA2K+d6x36u/d4r\n3bS9/qIFC+3TSHzW0B8C03M7pVUj/X5yiAaaMePCJ7DkUD7T7r8n2ImbCgjqSU/APRs/AhSE0uTt\nzi/jMzBDRFt5rzTKleAASqysKMEYKumZtKFc8+AYKKPh2+GfPSuPsyMHTl9Er5yP2ZjaeKY6BsCz\nHd+okrWNrH9wWk9MNnKI5WbNm6sirSXx9eDxcl0fZsfGRa+hAFkmN32Pq3lRYXxH55MtOiKAx1NF\nLfHFLF8zbXpdffR6Z+Padk+jARMHygG45hC0/G4l0/nYZHLFOa+HeX+FhbrNdeZ69kOSAc/jvZXO\ne9XYtQCdQPV2x2Vd9rutgVnO7WS/07qvkQzkxbsGkAOd4zhwti46We+q4HfXwSSFuRmjx35koBl9\nTwDEDS0JhCLATg4hPOoBHHKkQ/awSFTNHYAkLOh9BNhDyLomKLAzeSwqx/Shdp5oZ/P7dkZNWx+s\n/C+HPVpfvyKv/hnKL7DzhXK/f+in4mClHsJwSymoR0U5XsQaD0IDgamBqaGfXRecKcBGUC0O72wN\nzXPA502ScUDpwmA53O4AJ0/OmLLSCqnAyJvR8yKyMKUhk0dm4j3i2cEhAHP9UlQQDc8nZV5xrQMl\njExltuQMz8vgKP0+jA1E4NlJNjPg2Qn8neXrcoGrQj3fu2OGdkMGJf7e4yCxUoq3S/4myQyjlhpr\nj9lhBXwkl7Naethc0cn7cp6nHmQ7pkV91H4JjyRwIcm2pv3IYOdsJw5U8XAS0FxTS3NHaq0e5J9r\nby4cByul0U9WPC/KOG82L7TOuX/G8vv+uqy+7cswhsmOPVtbgUGXvKznWqEg1RVm9RmzbH1afK3I\nH5+7KbfkCVBbjSvjc/N18+fduA330TzfmYbTsxJI9X4quDOlu+vXcZBzHwCybFJGUtKMNofeqlJk\nSV9sj0meJzgdByXEfM+vBeQYQGK9tzPces0BNEShInRY5jFo6nobkWhBVrhzYUi4leuKS3+hYGj9\nZVjimeX7OvfRn8ZCp8f4ErFkoVTjF1gy5BlcCN+Pz8CmgUjP2yvKMz3KOro4/4YN2oYxyhVOGyeO\nJDHzM2qtAElYu4M+BG0/AxIZrKzynIZnZfljz8l7ez5jYCBFziMVj22ycTEazTJ5qQuJTpOOkHm/\nXfsZpXqWYZYgYgA8JhPJ9lORzoWevaOv3qsmnRDoHTpEV9oyvWWUjTsAaYaQnBmw945OQJPM9kPC\nolrNUyShadYXu6Z7WFnUZVld8/gS4NsQspcHAE4qINxBRE6bl3wnrcP8rKeGqH/i8gvsfKEY2LFE\nAQUHGLoRroh3pd4OUAfODpwMdCY0VqGp5sHeGdQF3NzbqTGaJ867bp4bDqU0z8shZ5oAC/IGA1QI\nlarHCGdelIulxszuS0f1rFYNXWiWjW0APh7GFoIrShJfqhwM1jHYoglFc1Bup7YO1puuz1KwE3Jw\nBEV+H7pkwynGxP7ei3XP1I0ZDoxw1fSDoXDE1mYBIopKASq7gHCBZnTEI2jKsiYzR8/MVqtkbsE4\ntlf9EIWvgPTsAOOHOYSttYZKBVThSt92qGgUTmxK3EUx5js3cWcxHIDCAHDGe0Yhvwd6++c8Bz3S\nm8/6NCd9dqLhsFKuAG1oL5KiN+rXm+et/TW6fA4np/s+ed2suCxzhXlO1vEfrNqT0J3bMwJPhEcA\ncE4V607P0uG8eTv8MaJAEAox7GBoMtCeR0yBTfSDfK5mWlhGT9ei5m1LQCEAj//vD2TE2QQye/FZ\nlXGypwvdGvWOUC0zi6mB8zwT0mHOPrq7Hk312KNkvLoDHfl7THOjXg+oh87SU+urcxHZg47CBOau\n4nRPu+wIZKQh47nZyORrzgCtHQibhrwnXmQ8/jgOP8PHftyFzgESXo7WwR0SIpXa9azMa2hRUvPQ\n03icQFZcMwCaQ+DmOtJfCzkMfVN5HEBnnI9H/ZvX+DAXk3wYZHt65fCqvugDHdwbOpFk4LPkt5q4\noB4VRz8kvLwWlEaglo0BCMCXZEkGk7l9YZSNRAZ2TUt0EobmAipV5CdFAoA+6WCSfEN5tfIrAy3+\n/N4HfY5Z9vMUPfsw6xBZN5lBY9ZJPEw9zc3PWH6BnS8UO8SzFEY9ABQhTiIJM6tHxe04QEy4sYCd\n1iUtdekcVjbWfTmkHp3zxHnehbj177AIqRXiEIBFwOAuN8K1MKIAF5HdIysYsqj2YKd3ycdubbD9\nQ6t3R60NaWyCp4XC6UqDKTM8KgXPyrAIPW8iJuY6MkJn8FDhqkdT/EMMExt5v7NQ54fPjLr3jl6K\nbDROSiipdZZK9XF0RrWpwyy1pPfbNe7VIcJBNBykOjOvkU5S7HeRNto1mRGe54mj1lD4pAaMQk8V\nNIrnxPiMQiF/H7LzuQDdfzf+Li//Zvn96vOVwr4rRhJzf7bX8joHQKIZ5uv2miq9Eca7+q7AgynS\nz/q5U6p2EFDasgctV+2bv99Zeh+B3KEOU8rJNrcPqNIVV9u/1jmfXs5KkMrTyaCC8dSsAHfvMBUC\ncUHhOCrAfrT16Hr/NEaFKNHmBN7GJwb49ywtnECOPY+dNgqRHr48zRKn+60pLKBOwBuGJbyb5wUg\n6efo33iphQYa3AHghw0DAYE6A4VYD7OMdophh1TuCPApF4dd8vQuXd57dhYaUmOgA2u7TvmujFc6\nZb6U8KhzHB461GnXU0E/O9DaQwPDvGZyW2fePBsLZlqydZI9O1eJDfbgydbAlWKPh2Bn4W/Og619\nWNrPugbDcDeG8V0BHidp5aus+gwRiSdSibNQ2rdzdLRWcRY9O5Eass6UCdoOU59fS7t8HNJ+IyZB\nY6UPUTW1EoDQwYhoka+SF6u5PmfyPmf+7a15goKcdAqHNp9H2X0lJ3zcUvTG5Vz+JOUX2PlC+bd/\n+zcAQCkHSj1Qjxve3r7h9ds33F5fUY6bAJIeoRKmeIuyIgzPQuCM4FqXjBv38477eeJMBEZ6vUgS\n9mtbO3G/3xUYhTvdQuNsMfiCcGYpdc6b0wIkjUqHAK04h+d2e1ELhAkCv1rrBkzqDQwXoVsBI5Nj\nNos4Yc1lIsVkfDQu17VXiLZoBEnxSnMT18c1WRiuytXqncr3zqDnSufNlhYZAQWqqW8RTytCoKez\nHYa5TddnwRVeOfb9QbOgfyT8ZhBj97bWPGbc+6rCzGUFJ5A/9dvGhXmkhTxehnV2ym7+7PcZYdCo\nXI/vo1DeAZ34zgDH2L78eXg27WnuWXkOBvLn1F5FOzvAs6PddRzCiv1ojK/adtXTWQF41s8ZkO3q\ngSnlGOvOSob7DRi6twROjMaTTStitlCT7ns8ugGIRICcaIE5PRfASNgEoswTGcyrJ/XZXK/9XxXI\nveKRadp7DFNX16s2baGxXRmc5H7unkw0PucZgIXJGyJ3VolOqmDIvTuM3gmtE6g3sb4TAWTn4BTU\nxA/tHDpX3FL/7RqTsTaWeVM/CqPQASpryLiVfL0pm1lBzOvMFFAURukAUb+khd26yHx+Bit5zeTf\n5+/nOnfPyHPl8qMEX9/RnKy1PdhZ2uB9Ww1NGciZ0cJW7UCP0zqyz7138d7UInucp31LVgqJYfrg\nin67GXmhdXkZe+ie28hoFCrbLgwTG/m5jBXL/puIijhxNkI9C3CMc2qAxf6ekwYZPZhhfD7H79u3\nb55B1/Z7z2Ni8x5jHkbsDCSt7BJq/AzlF9j5QlnATj1we33Dy+sr6u0VoAqUglPTBYcF0Ri5Wesp\nzleBnBFw3u8OXs7zBC2Z14Sx9NbcC3Sep3ubCHoOwITKZ8ADULhxd4dJJbwje4xGsPPyckNRd+si\nAgcmMCnLHErgzAcEDP241cAUvYVRWnGENC5w/TBBocdK6gqmrts7gLjQ5p1Z5jpnsGPvJbXFwQ70\n8LuOJbuKKWg76x6z0A1PzOqZEDR67UNdowDuLW3GpXEE81jPYWxXzxva4/9dl9mCGQ1YBeo49lL5\nY6ATde0UzrkPX4M5Y1loZm6JtXH+n9Zwk62CmX93dPS8XVug80BZf6ZkWT/n9j0CPOBsNV3BTupY\n0A6lOhwQjffOh+VyrojS7LPw4Kv+reMgfDmavx+Th1bWC7BzVV8GOAAGw8PuGXMhiGyK54biGWGB\nmdLzuGeqlL997LJ8YTWMWZ0JrPNUp5x5RKDSQB2gTiBqQCf12FsmqdHTfRyH/A0COIANgMVazczD\nRn8CwGWkvznpwLBZXJPC2P059Md4d60VxMBds5va9buy8xZYv+y3nEQmt/Gzm8l3oGFWfl1fuVjn\n2atj9CL0HH1Y2pH4Wua3M+BhB6iPeUwOYzP2fwVI7Fm1VPBBuMkX6JDQwpx8yZPyaBMyjH8ETOVy\nIepZ1lsbbWvAeZ6olXBWAqgONGNgJ/+dx2nYN6tn6WS6qbXi7e0tgaRRn8zgOIOdbmhvGuMrPvUz\nlF9g5wvl22+/A4AmDDhQ6g3H7YZ6ewHVA51l4Qx7arg74CG1KtBRHeyA9KRc27ujB15VUpU3L5jO\napFiBzqyH0PD2FBcAe0by78V8xZli0FWoiL8LGJJs4u05HjmQRCPYGewEpL9vR9buY5cEOa6TDG1\n9uX6waNAN15q4njl+aPi6iyN1+93asTYXfZnRJtznyxtZ2IoG8DjFhNtrBwWmgSNvxetX4U34gBa\naT35OAuDjvh0EFCVHooLqHk/U/TaYopbrShJiAJB35K1JgFpQfSIDdsRUiiKh2yq7syemcbnKfV/\nHPA8oPYiV6R0oPMbpq99XpzGMFuoxvC20OXyuIytlYCh9Az9KfvAoh88XRjvM4zaiOe41pfSCnhy\nK+NWzZKXrvB1Ah5O1N6VHRCcW7Zb0FsguHnGDG5mQLZ+VoXK3nn+Hm5pHnXxtG9FFTTovZLxsAMa\nDgK+GFdGSmmO8Yqpa3lO7T3CuMaLl3FNzCy8VKNh5pnRILyamS9OgMk66l3i/KMCEaPy+N6VPktL\nbe1aukFujMrrlGIwhxs5P4mhyi5L6HMh8ewQgZpmL2sdtUrEQy0F3GVf1XB8Qqk63wD7/kaG539j\nBluUgo+rKsS+KRwOcPMcmfXdWk5gtCYDanzVlr3xnkKIUCj9Ma+BPIQERKilGzA11EpL3ndzCfxj\nSMe/N2BHgE7R9tq+nlFoz8adq7IDUjwBnSzns8IdfBqjTMh1dfFAGDDPI2h0EIBn5LJEQCXSuQf6\ncUg42xEGvFZbyC7rB5S/+/OCh7thUL/Iy9pko4Nt3R5wto7auhw0T0AtqluR7Qm7uQ42elgssxp7\nFA84Mg4SEV5fXxVM1USHpMeYlEEvNIDr4zOF65mu8Gi+/5nLL7DzhfKu2TRupaLUF5SXFzQQzlOy\nrTWWhATv54k/Pz7wfr/j49409XTHa3nB8XLD8fIKSfWjm9TIiNbigi3Di4oAbujtxHkW9CZMv7WG\ndp7o7UQpFai6CU9lt5ni5FtN2WpmNBX43FkWdtPNuboJrpSqC00UV3OVWta4WHjBfIiAWglENZQQ\nF2hJIWHAMp7IpvdIC8kcMePGQPxuHtVygim8Gs8NE2SyJGspvmilQmUEpQO9JAGmAk4ldxbci8xQ\nQS3MlcTSmJm2M1WN9C8sfQJ8o2AtVfbhyI5+ESZAMHCOTe7FwWhSnaRiUC0gLiB0IB2U17iDmzDm\nniw3jTUTWwE6muwto5uO4SgQSiEcRwXwkgQG1EsoIRustA4m3G4Nt/sJGIA+bkCv4HZCDmwTYATW\nuGIFbkXnyJQtSx1MTLB/pVCaa2XAJdq048BZaQpQlAVoUJFfusx1zKv/72BThdmi6LP/C6GYgNJO\nUaZs/VYqsmcMIEzaaAlIMpEys3rYxrSiFpde1KgigkuFuRlFWl/77s8zpXm/P4a3A3cNnh4949F9\n8T0DZImK9Tvbv+I8Rq+zj+S6vyb5Z1cOuDPQGaXJnsrKuskZjock8RlI8saioJCoylzk3I4GBum5\nGtxMWZZ5sjD9TkIRYnjIY6ikWEJZMn7FvvcnQF3XfhUN1THDk+iIPQCMtbeQ84aeHuxQysjIVCir\nBwAAIABJREFUDuBFR+/KN2zNJYXU6vHxcwU2gTZTkvJas/qGg3rg69MniqdwV5YxpC7mHYKMtyGY\n1lTWdZmUfnb0D+F/1AgFupewsoeu9S6HLHfqIhK4iJx1OSEhTPezg/n0dV6OmuidwcRo3GR9E6Mc\nhAMFjArQoby8AzjRe9FxJYC7klKs4TLzNBsaE+ZO35l2Vi9+HEuRNqkOt9FI294f3U4y8DPd/UUF\nhQTUdUR0CFyBrtoXo4k4XJUZMtaS11n0E5Pt2m9mjWLQPvQiB3Oznu8zeBMZbpTgGllWCwiVCo5S\ncPjRGdVfREIf3MdES8wSLl7BuBGjV1mrnToamnELPxakd5O/FcwFxMABlv3aJJlI/RoFu8wm1+By\ntjPh5ALqhNIAOqVrrTBKFb2pc+yDlbTlujeHO1ondC46RgJMAaPbhu/vH/jjb/8bVAreXt+ct6AQ\nbrcDpSBF/XTd7y06Sz0KjqOgHgX1VnCcZUie9TOWX2DnC+VDvd90K7jVG+rtFR/3Ex/niXtrcngo\nAx/nie8fd3z/uOPeBOw0hhDby4GXb6+iLIJQDwIVBvMJ5gZLugkwJAZa92e0E+0kNOVUORU0Hcro\nQHK4WjcFPrwzzmJUN2BfwKH0dJX0YVWQlliWEIszFbCThLAlSdAUila3rHHltsZhYZt42eu2DHHC\nIIwxaHNFqxbBasogZCwLCRMAp3BBFcSmKDojtXjWDglRUMsQd8sBZG2i2BukQjupY6HbMQsYMaVX\nmYm3z7w+ZPhEgUA1BlyHOnNGKLAozIWKH4JmoJBciSkgnRcHrpCx6kTiRelyfSFC4QLBux2MBqJX\n1ENAcGxpZu+KJMQIz4BZPeVk547eCb2fABM+Pk4ctxNUDhy3A0c9QNQdcLWsaBCAGopF1TTp3YWi\nTLxcVnVYydBFjHUgAqctI7cs30nn0WjfLYtYFXhXZgwgGU4xoQJVSpA9btZaOZCts2XJ4VzpFpQN\ngMeeSRjfrXucyExpiXVvYFcPm53dVDQjx03Tjx63w+mndQ17OBtORGrTpW1Z8foB8PKVe5Z5uLqX\nOuQYerPmWOkBeib+YdoSpTtsnrkzuHWQejuLKj+SkppEAWRdw0Y7FGuin4yGjlNQD7jpsyuhoKAT\nNI2yJEvpYmdxb4PPM0lIFiewI0xejCEGoM3Sf6gR4zhK8rK7HyjoiQpQRPnvBvJ8LO2dfJg8IoEZ\n5MaICKhNrM89YtyNMBEZzLwPdoMAGdJxHSc7wI6ZeXzJEPm4dwCNtIc6gLUxuOnUNxaD4705ACqs\nsq8AJxqosSi89gBqIFSUAvSufegCqGRP5F3DvQvKUUF+sny8C28Hqlrkpb6OdjLO06790OMkxOBY\ndG6MN9nfYRNRb73Tc7yIVqCT+YfsB9b6VGYmRgYDPELjIfUKFPCYnqAGKcs8y2Ddux+8jADxFJDJ\nfZXF3Y7PaAKoegNQwKTZgmBynALw23wDYkhgWesx1joG3R8v9RSgouAowFE0oVMCOkWTSJkXtzfZ\n79y5u3yvYBwE9MLohdGo4zCwo7rF2Tv41O9qBXeNeiESYNCL3N/F4NjSAaXdDijVMW0oYtDrBGoC\nVjoYtYjRRXhA2tuNjoKOxqcbIwToCCAS4MkCos4O4AOF/obWGt7e3vH6+oq3V9lrfdwO3F4O3HXb\nBOgM+iLCodsbuHecraKdFd/fv4tca7/27PzLlHK8+Hs5bqDjBtYDQz/Ohsbsn8Wrc8fZ5fcOVSJv\nN7y+vqAr8r+93MQdrzymUFhviym4xnw9+4YufnNFWoiRCiE/wLEbAADM0gCEIMzvVpKaFt+Z9dj2\naBiQSQAjmG/e3JfDZlQc8yh0mW1hR9vGZ/cQ4i6kwtpvQjK3UxgUUJ0vpzpduJMrRq7kIuq3u/JY\nzDqY2fClWuHaIptDuBCwjLcLE++XAZ6Ij5V51Xs7o1SrWxVuHl88KO/s1lnqoigUZtCpALASej80\nLAKYk8Ba6nLz0lVNRHAWsezkUBAiSaF+ng3n0VCPQ/pYCcQdVARcGehpzKgcSlkGLTG+Mh6mO/lo\n0vRCKKFsgCJP2gKMRvC6eCyS1TJbRiNGuzjQWRUOqBm/jIdbbgoNH4I2UzPXe8abfFzcl8RjOIJ7\ndzT81C3HzQ6WGzdo/0i58vR4uzb1fQY8PW0HsyhMk8Kcgk3kL57T1wrBOOmwhUjZC/4CEhgxkOl3\nWz/M6q0Kmz/a1nOiCaiuD9LUuOSJE4o2MWWS1r+Nbv3hwUftGcOwdPTpcBxl9dJWGqAQ7KLFBmB9\n6CzAxQxHmSD1GrtuYIqz52Yp9pCZwGn/OfRq5Y9I8oXHCAZ9CYg0Q1iMr3ShCYjNIUFVQaha5KVe\nM9TIjaWSjlNufxAHqRGqokAOKaqQ6AWKtnLTO+0AR6UqB7i6rjCO6yjhdITm4duB2DzcJh+R6CDR\nEbPRhijdRdfOsBy3c0pDyBir50rWX0RMMEgMltWePTeXNHQ76x+kIEhDroDh+AnuXYx3PdHp3Dob\nW5OnPc616705mC9g1ALcakGrhFsltGqeWELr4bGX9W17ZAGCGSKBTkUAeZPoiSzTQQVUBKyKLGRQ\nSwZtEHqR6BjTAbN8kf3Yej2xgNAqnnrScTYdqnfG/TxB7+9OL7Xa3rExxE+GRwiFlJbrUQEuAiQr\nofUT53mg/vLs/OuU33+XPTu32w23l5tbUAEoczClQ9I33+93tM44bcGTENLLywskjK3i25/fcXt5\ncQuS7I8xi/64n8b9D6agZOVeXZzUCY1kkeXkBL4J3pQg3Ydzu918L44pCL3F2SwANA11bN6d43Cz\nkrKL7be2Zu45h6+MgGnNHjUAk6mEkjgq/MHUx7u+Yqm+Ki76vL3W1PWZc2y113AxhhGesArFvBHV\nYpbNC2bt2D037+XyGG0IMx7HhRJWCA9Gbkfu235vWDDqonH3cv2sZMuDnM7zHO50o4syt2seM/fI\nTHMyf3alOF27zAlNc+KWSgs73NP6o+/iN2BH6bmtMobjae2+V0HX9pBlkUWVyRtb5/T18zPmMd2N\n1a7swNBnyqfuY1nZ8XzjidNlT9oIwBwOn6avL5VUNxEt+34AHesBUFyPQczBxNORsMak/M607O1a\n1jJtx8I9AE/m5jNj/qO0saO/5Rr9zU6QNw957+oNM8090XTuk68B5XO2p8HeWzNgO/FoKhotaMBR\nEwbUCtaMmdSSJxYERkFVI5K1PrdlZ3wwvjVnTM0GjgG4pDoWOW1DMV8P9unfjg1iA/9+LkyOjXNn\nMiTjw2iPAPqZGkxpd2jpAj7zRlblP7LftVLQW9GwwXwkA5Y1NwKJkW+aXmT0Q37gqACg3Kmk/lkT\nxzGBjW9PDmkCIAYnagxdvZ4kQyJpikXew9Jqy8G0If/tGAqb/WLyWkNcjc5ba/j4uKP3jqqZ6kI3\njGiOQbYTYHtvj+OGl5e+guyfpPwCO18oBnZKrRo3rczHrBK6kHvrknDgfsfJGpim4QBHPfDy8iIn\nztcDf/v2hpfbzc/TqUfB0WKD5ZApjSdmloCOMz7oUupX2dgsTO0YXr44wB7qAsgCsDrMlTx4aCbG\nfGm1tdcFM7ZnzYDHP8/1ZUUZI0CKa7R5+i5A5HOC+5nQzg/xlgwgbWzrrt+E9Zr8/HiNlpjMpENY\nwedHa1z6KnHKZRBism+q6H6G3P+xHQZIkNqQ250VZ5m3YMqzJWmVPPAzmEYQDNgeqbnsgI2PawIm\n/p6UhB1YG5Qqv3IFObsygFA95116KfOx9mufdSy16PIZAXR4ADvWvjmdvKcq5bBqznwhK82zMrOM\nzf9VwDMC1bHsvMbXbUymhp0u9HcpypmG9RK/GI1YW6EeH1rqGBQ+CF2ZMYs5NibLgzZjM60HB4vL\nOnnep50y/tnyVaAzGy2mqwCMBrzWhK9B9zmg7xTqkZYy2AEy4CHYeXOuTGYenL5D4su1VKB29NRu\nRpGDokuRnBgM9VZEO2Y54XwTYpSi1MYMdvRi/R5wQ9FUsowY5BGgRzHk9ojH0PjDAsKGMfRPY7vT\neNmF8Vz2tuY6TVYbKHDFPiXFcF0r87RCaK2gtbqAndxywvQ3RVa7ADoCmFs3WlKwY8eK6Hg/o+bg\n1bq+yWRuExAtbipYuJ7oYRbVEOc4knoqjcacZtkSZATQIYrD4w3s3O8f6M2Sd6SkA8x+7czbZVyq\nZzYcE1P9POUX2PlCeXt7AxBKu6Ur9MxUrfn+hPv9xPv9LsE+pXhcrjDkG8ohqastF7qKRd+jYXGn\n2TqbQcasGEcx7jKCC7sue3ReX1/95YAHApTu97vXe7/fk+UeAboS8Mlt2Qq0BM5mhSR/l3PFD7fn\netK9l8UYvjuf98xfEFA84dMgZ/dINlcytvOzE2ZXqlYIuRR+k77PKUcBiFDVEEZwbDofBJrRalJ2\nRVHAoGOZwMHwPA2rJAvFi5IFjj0vtzNn/8tj5XSp/xWaBWuyOk5lCNlKls7LYnO8md9HFuNnZWfp\nNHBuuM6Uy3ztQwvpJI5noOVpUScaM5BzHONhwczz3FtSkv54zH6g7IDFPN+77z/7O5Aymon278E5\nzpemusJgAgBTKtxBAUqQx0PkVuCxK6N5YfhPO7NR2q8ALtNK6xuQ/ZjeQxmejUdjtWbAyH8Ds/o2\n8+rPlMs18QWg8+w3kT9xWKak6xVFkhmSsMWsXRf1RrrlIiHgFDwsAAV0n2gcBFtLUuaVt8hmcugG\nemlLNswVKiBUdBG0sndGkwNl3jevhwIAlBn1hReIyH/zMcpyB6GA598JKjsw3ddlQzzheo3aGpvX\noYOd1L5ZBhqPnPsQxqY4DBVkoW0hz5lj/sKAM50taGsih3/3MMTl5wpY1qQ6ratXR5NaFA2pH3Qg\nAYW+26nIXjHbA1gYGtbsiHgAgjqT47ioHO80hiWbHAYiCx8gu3fs2QF0IhSOGd6nnErcQbrzkwSg\nbVr0OR758xOWX2DnC+X19RUAHMw0PQD0NOVRN+adpxwQ+vHxIUCnHigV7l48jkO9QwnIMMt6sDNw\nilwzEBknRrhhclkpZd1fYMSaLb8Z6Ly9veH19RW3203dpLSAnfM8k2dnZVh7C+rGm5F/nerKfXgE\nmGwBjmBhvBdet/6nw/VwrV4qIReXX3wvz1kVhiw8Q/DwoLBFU1Jfptds5czpJkGxn8r21cQ4S1KB\n1giljGAHjDg8Lg3HyJjVkzlnDeIRQIUCPYYImEVpUToRz/F++JjpwYI0jokLqNAhLuZi8qrMJr0v\nlitwH1+LxS4nRH0EeMZCPvYzAM/0k9fXvL6zESUrbK11tLOjnRJm2/tYf+7T/Pkzgm7PB/6+hQ2k\nLGO38qN4X9ekVWZ0FnDHQMcPtit5aoTtsG+4HkAHMGe5V95vX05jr/VkZT0rSkOh3bq9ADsGdOY1\nT39tkWQauKKHK9rf0doCFMenKW1bNtAsT0+UIqFDs4y5ajez7PXMOr9839Es3MgSzRhPc22d/Ug3\nyfJWfXiz91RC36vTI7Oc0dN5kpWZT2g9KwmrdV6PqJgBidSzdHToc9QETYedjAHc0Zl0E/0sG1bA\n4+sHab4mMjNwwDyGnM/10cT/iEgTeAy+Jwc7gIDQ+bgNN3aQGg6pDDJzlivM7HJMPDqi9/QhwkbB\nKWI/nMnFAgHB4pUhwLO6Sa/YvZDmdU/wNbW5K1jalawjKYbzUErSkHEDO1avjZFlNfR94R4dEtc5\nCE2zUWske/jZyi+w84ViYAfvH7jfT5xqIT1bw9l1o7aBnfsd7/cPlFpxUMEBIUizvFI9YAc9mQII\nRIhZKdXD2OJQSVPcbemsC9YWc1g0pdhiNrDz8vLiYMcOnzJg1Xv3MDZAPDtXYWwzoLEyr9OdpWn+\n3vqfSxacXvGinMloODMiU1ZMkTF2MwrRWQl+pqgt90wlLFwrsMpKWIQN+a/bZ2XLmL3sNyBiwYk0\nM5dKRKm+w87O82er8O+9+GFkVrN5a6Tu3PhJICT6yq9duGSmx3CVhwVpHEsTRmGNc2E2pVQ2S15Z\n2rrO4RXQeQiqL8qsMI33Jg3Jxi198xnAs1cM198y4LFifGI8DysfOKhnO5xmnOlrk6fnfAm4XPAD\nr3N95I9VP9/Pm05gVbRzc8zQMFccoIcTInk8Bry85rZMCjyRRuPYA4VZOIjbeXYmhjJPSwABRTsT\nAM6KXG7TVdcegZUfWS/z9ft1M/72WaBtIFYUw446bJS38CbhKc/AjiuYugGcCWCzpzDi+2LGi1BY\niRCZ6Sj88KXaeTV5HJQH1up8zrbLZYX0cmzGVifySVnOKPf3inad2AbAIXewg2/WELZRzwBmL72N\nE2uDsi4DRIiVXRiKNUOz4g99nVs9AnZ7Ny9SUuRTOuUB9Gid5nVhLigFg26VaTMUfkkywJ1xUnNZ\nzIi9YJJwRNecHhhbLLMe5cx3MhKMSBJQUybFcSzZAWEMgr0FOjIZaFlhLVtrBjshm7uHvQGMWovo\noRRRHMCcfIjiGeWXZ+dfqhhRtN5xP0/cPz4ECKil1M+u6HnBV9xeXvD69g0v6kEptWodDe/fv+Pj\n4x0fHx9oZ3OFqJQinp0pdaKlmDUGZGlQiciTGhgR11O9Rz0Ohcyb8AzwvLy8DJv0CGPGmuzVMaX0\nyUgt38xC7Ar8XP3u7+lzCGNjwqOL1rmC37Y+Z2zuc0G+LPiLobhSYrPVOX4f698KZGvdhaIgmUZT\nRiZM46aVcEpc4Sd9g9CQvTAOq3xcRw/NeihZ3vRuliI5RC8DnWDug+UNIUjNRc928OBmXF0wXQ//\nWpIyeQVyLhV0omXe8t8hMEQpWucg/a3j6p8uwMUjuTIqgaTCsy4JTWQuhB/ZAcStNeVRBhjHUI5H\nz5vLdgx/4Pera65+ywaMBTQlAD3QiCu5SSHz67U+GPj5HLi56su23TTO1zXYG589AOVp/M2AkPdl\nebIcAjjR5WoOmP4emA/wjwpjm8sORH0W6OR7emtoJ4HSvtPYqxaI5TNg56qNTldqrc8AkgB06kqT\ngm6IZE+OASZXIBn6+ySvCJAMWyuPV71eb91nQZznOcuQpVsmF7XeRwYfM2p21lCpLFNTe+IoCo6M\naVqK92+kO+eLejbDSpOWdGcCOxqKli+d5cocUg0EsAnM1ZEznlmxxBRCPxFWKI8mz4Q6r2L5XaMf\nOEIdbTQiBDcDFAXEJc7UI5tInkK1u8GsSU8yJEnqNdJJ9gNhkfkexzwx0svmMMsx6w+cZp/JiX/W\n8gvsfKHYXkILVftQsHO2Mzb7No7UzIB6Ul7w+vaGl5dXHLcbaikS5vb+ge/fv+P9XcDOqQeECuqX\nlxHYsBFPwY6lTgR0sdl+n0POOan1QC0VrTRXUC2u/3a7DeFstuhzFo9ZmbXnOGe9SGU0yHpjJBNT\n+axVPSuXGezkMigTw+fcvCeKzLUW8rBcqIH7bzdA52lRZkT7rnufmRlkB4Pos+RQUw5wohYp6uSe\nHYE6safmSpiay9teuS+7Te8iSccQtp31TOY0hNYsfAyM/fVi4xL1XgGeHyWFUNQiOYN9f1konjIr\nduS/qYCbQStiA6qs2TIkJsjjbBa98zz9ZYoAqfAu9FyI/aii+6MegE89jx2xDvCRJkCZ789K36jU\nmuCfbuXPQehnvXNLPiYDBhFyPBLbtRdKvVNC+j2vxQx4DOhgAA6fXztk7dsYTObPmNr09yjznD2r\nn9Wqb5lDcxib0TZoVhFX45O9Dx6gpV3svCHzNTO79OQJJEDC3VQ+epp3VUZpGmPHEK7dG53nVigA\ncL6VDERE/lqAsbXK+CsIQYrPPcsAS8pmVZ53lwQft4NUs9yfAcl1GeS3/i/kHJ5KECX5sxpDsr5i\nrwyCbT2y7cOisU9jYhe4/AUghju/T4GatrUgeVBtMvXYB2ZGSwAj738tlRCgy+bIgOaOZ/ngwI3d\nCnoKE1hfwGauGAury8/oPWhd1o+eDTXNzc9WfoGdLxQ7Cbd1CQcxa6kpEK1r0gJn2gX1EEDx7dtv\neH1900xsFb294/39HX8q2JFQsQ5PSqCx96aoLmBnYApqHVcheNSKpkpQqQWlJeZMtACel5cX7+MV\n2BkFQYQczXDnykLmGOkTyv6sMGWgs1OmSKWFMRtxvdu/YByh8G4EDXtFny7x3OjnMzVo6Tu5eFyZ\nSfBTBwVXxU5IxjA+o6WbwX56uB1AaXtxSg+BMOtewujKAnZ23p0hIxuCSdr9czy1W5xSxjkdVfnM\nuQ0TmH0wzutYJkV5UqrydzrsC03v6Ha0Ro+Ws2fFFMtMOzvLtlwZ3uI8DmPK1AA6MwidgU7MjwAd\nOzR4GYdPrtOrzz8CeC6ty/OYLxc8XnF53ec6l1pdqaHp3ifl6UW7OfWnIlPP2lIIjWCktZ1nJxu9\ndsFQM32PLRt5VwbLj+rZ9elRmT0ln61jp2hZHa13nIi0vYPXxa0O8Hma+5Zlndft4EjWXuajISbU\n2JBn0eUcyfcUekCMNk18kfLt2rbUzwfjuIKD8RoB0SNwkOuDR1yNb4wzvP8rZxxB4myMzLw8vw/3\nb9oO79GG1nS8bA52NGuHmg68LgER8YiYF2Vsr4GjoJ+o388U0pTXc9vMCBHIldALg4sc8Nr14G+/\ngoBMq76PS/lR51nfSZRpfF5fsLPxFOwEfWGg3R1BdT3k3UIrAVUlhvn75dn5lypNN0G01iIxgaYo\ntJNyW48TqI/jwOvrK37//Xf8+7//O377/Xe8vr6i1gOtN/z5/Tv+/PNPfHzc0TT1ZakVt+NFDgOs\ncvK5W2M1Y8vZTnGToqIQfEHDLE/AwlB5WThw4HMch/9dkuIU6YlpeZUirnoqznkeFrEUFN90l9Pd\nWptMQcuMeBbSe0VqDAswC1YgGbl7q5ckhfoZUBlu8+furF0rE56LKZszp58VcBuTUkiPuKbL6w04\nGeP1kDBllL0T+nTWiihOFYVaGndGtuJlxdqSZmTlaw94TDGI9gQt7oTkKMStL4XKEKo59JkCai+/\nLYVgFtOnytX89xaE/LXC8OYkJefRBv+gzQw6w6NTfF5sLoxv5PcB6MXwbcusEP0IePmR8mWgAww6\nEW+vCXVqprl4wZUIHv6LoK48VPMzHKh8BhzOjTTLAptyHAaLoZufHH9bW3N/l/ZdrB3ho3teuQM6\nz9pk1zyipZ3x4VOFNbSbgdkgZ/VZONEVgMv3uKzrBO4FlppXXpr8pYfhYZZB9n90w1JTFz/kFFiT\nEYSRaQakfAnmR3lsG19Wg9B4vYRmUZE+Xo3JCH4YDNMfYsx2OoUb1sYp0ki1DMquQVr0XxdKnk8Q\n7HDOGKXgmYVsj4p5soXnmS5DUH2Fq56jncNXo+8ezm+AhyyxhOg6tvdG+iufXb5JJdrHtG/axqcz\nOrqZxeQgWlSV1waxx7HxMU5t9bkjTZLQAwSWIpEb4eU3Q1mmg3HuLcmH6VLw69QYSgWEX2DnX6Ys\nG+E05bQDHZa/mSU7x3EceEtg5/ffxLtDpaK1ju9//ilg534XYiuEWg7cbi8KOA63NgDQAyE1i1Yh\ndJKUw2x7hHTNzsAkt39msjn0JRTaw1H8KswiRKBgfcZw5cJsR+vAvCFzxzy9DfrKlqCw5O37nC1J\njxVJDErTp8rwvHjGI6AzC2IGS6hDAhWDECHAsu10OfdTrUo7wGMWw8zQOAlRrbML08xgp5aGXmoC\nVpFIILfLwytNeExKRAY8pijE/eYRGtOrctezf2YrHsjjmAtGOvI6DeQ+oUMbyyUN1oPiRoNPAp2Y\n2r3KPdStAFvP1PO7xupp+znPhSUisL06pRQPUTOwY8lFIrxwrOexf+zrgOevXrf9/grtPFDOs9I2\n1xUWz6RRsqkUkeTE/l/m326bFPdsYMDAsUy9Uj7G7PtroEaA7XToYgzggM2FoQpdgbq13j3QcYUH\nI3Aam/R5Wnh07Uxbe962frZ7O8tM5VDr6E8odsJv4V6yXMcO7Eh9BUDws9mY07vanhhwaUOm6xKI\ngU4Wbk4ofX1mbmtO/CLPBJz+eKTBfI/zYGSZtI6j37O55hH/dECuBkMhx9XYtaUzBjjJOAzPoYWM\nvd6pGlPa5be8ppPHU5vazoazhEf7drv5GiOYIRBgdF3v8bBxbyqJzCWIwg+S0C6Iv89Ab+cxNM1q\nM4+ItRQKmnvXtc8dkrVNQFNed9vkkRtgZm3xrIAOeMZ+lKLy0oBL4v0GZBXLTbRS9fq0B+4nK7/A\nzheKeXbMq3Oekf3Dztk5T/kMdfvZfp3ffv8Nr29vOI4DnaWu7+/veH//8LA0Oan2BW9vbw5CmNlj\nkgEjTGHEXJJQnRjNvFZGJjqGxMwbXSmlGczXAWa5iowji4IOxyVyvS0c9erwBEpmhTlvyhvqRGIY\ny8xsGPvQeR2iWaHOipBqm58V4HL/qKBeCfUr0GOeHWYewy7SdWYBsmbOymc8BF6nCEGCeXYc8FD3\n50W6zoJWGmrtExgePVazN8HC4GxNZGGXQ9lmAA7EJkhTVjgTTO7PU4XcEAO2YzLMRWrLrgyCf2jC\nc7CT6egHyMf1YHnT/wel1taBtGYVYgXzPgUACnTa4NXJ4RwZ6DA2Ckpu4oPfLmnxE/c+HJYfUKJd\nUbCUtOzDmmv0bzLAyfg0xoHiFrVqD5v2r7DT1ObclotOjoab9P2jYgqOrR9frxw8clA+TUWalOu5\nTiJy3ZNoPwfPgMlnyw5A7eh+bm++xnhjB4PS4bo5YqAoHyy1oPSihpUrYJrkTyO00lF6AzAe2t2a\nJiEqHb12HSxv6CATCPA9cZJoiNFplGsZtAAXEQ/yyUkjMoiNZ6nYQ01hzUUOR9XvLwBRbo+1fx6r\nmcet4GaUssLaQ5nOtV5jK6fkcT1QGLj0yqkOMZ413oXv6v6dkkJ99VmegQ4Y+Krx1lo18EyRT++M\ngxmNBPTC+CqyjqHgDAay4ltbu2DSEDLJHOjjr1cGPkwEhXEN2ngNQIhCn/Dsv1QluUN62ctfAAAg\nAElEQVQOWyYb3vD8eGIDTq3lkWZ/tvIL7Hyh3DUdswEdf9fX/Wy4n6dsRlNUX2rBofti6pHOsTlP\nfH//wMf9DhDh5eUFL69v+PbtG3777TdfaGah/fj42BwIRc68XEZPVpasfOYT0+cUwa44+fk/I9ix\nwoCeBVS21k5jbMyjFaoA4FLcETqDqLntcxGLTrCSuIaXZ62KhykWV8L5QoO5upoyw6VL5WBXBoGN\ncZxy+0eQt1pzF6scAjwZqMjWwlIIpZOcDYCRLjqvNLFaHlUQpD1gO8Aa+8qibqkDCdCxXxvPLfsx\nVCm5zClz9BkY2rAFPEn7nMHBXMwedwV09koCwBcJO54WV4rXPo7PDA9Z3oNnlVh6aRn/Mx0gGoB0\nVq5sD9dXy9UY/iMEo7C5+XkCdMAK3RJWeQCRBwGeQbmDBav7CyWDi+1zfnRoFoUyFHMrxDTs7xuf\nueOna++M5inVk+sb758B+b5TMz+e+ctcx1W9ezAtg8FpPEaZJrLsqIeH1e7k4wx4APi5KRRw0cHO\neTaUQqgnScpnyjyjJLDDKBCeWXvVDJMFbdDfaVmT5l13TxOzb3TP4zPwXmWrpGh1Ha+IQjBAm2XY\nPMYURDCM9zwfw3wxhjOhxJgFEJv3nmCeQ6tvEmvTBC89GPqwyF5bXmmv4sfHHcdxw+12amInO4uw\nwFzrWQabHtR794y1QV+i11mEgzAZ9cDZemQdXOXHQNr/YlEtqb+9NbQ2jqkd3F0SXTgImud2oNtM\nxz0BYYvcqYMR3Y0hzHp0BWA7/jqRgHoS7yZzHGb9s5VfYOcL5TTPztlwbwJuzrM76LnfT9zPU8il\nVPeQHMeB28uLhKUVQj8F7EhiAjnr5KYend9++w2///67M7HWGj4+JGsbZSVNlR/JMDIqWZ8FPLPy\nY5ncTEjYfbPXwQUJC3Nfnxs8MiuVOTTuCugM6RZ3itSiyAbj9Es2c2eCcVvvD2CduNeUz+trr6yf\nzpAIg1K1U9LZwQktru1hDCfAE8ItZ69RukkKWOsdtY9eHbPycLLuSD3GMB94opzWxjTU1p75WhGI\nPGzGvByLWSHR/0NJ+xzYyYrFPJ5Wb1jY8Jgep+9l3Fbw8Fz5v/YKhVJjIGfKOpUAciQlGE8Tn/th\nyknnDvTP9e2zY2B//90BD114+dyzk5DOZjHz8OJYB9nPk3jKXymsdY3+GyTL71+oWxWvOWwLJIAn\nK/0PvUuJR7gSOSjBj+n2ihae/f4I8MzX7IBQKGrwucv0b/eVGjKtari5AX+rc5aRwxox/q6MtzVG\nKR2NGlohnFSAgz0lMfJY+ryLN4GrtrPDM0hkoGDgZvbwRGOjzYuhS5XraPc6/iG2KPUtpxp+zOOs\nEVfGMIAlasMAh18HCIvpul8mo+xna21BOzJWFHI3gx3z3AkPPHGeh+hk90jOUkoBODwbNLRnPa/M\nQuDa2XGigTtQqaNrIp/OANnBocxgbrIOQQ6CTHbKM0vwBpW/ZztHXcz4PEV2XFvf2Rjho6T97wZa\nwJ6ZLea1RL05wZAdQs4K1MQsjU7iuaIWQKeUv867/m+UX2DnC+Xj4y7v97tnYrvrRjhJWiB/Mwjl\nIJQSzkVmPZ/nLtYGe51nAwiaFS0O+8xlYEC+IKazTyalZ2eNy3XNFiVLVJA9OznrWywOWRRyQNfI\nKMK6Zt+U4bkEDAttJ+DmhAi5rcJMeblHh2UQgpG90/bFZGA0xvl6XcAwhrsxe1RG68pzq6eBwvy8\n9flqrlM8u5s/E14Ocq4UZ0pj6TTSPfHFTDfRXVOECkrpi6I9K927g93Inx1jlWnqimZNMOR77PMO\n7GQFAnNNqeqd0uDjigA8+bf58/rdKGCunrWWx0Lf1qi9D3H6zMM428Zc21cg95u1mbAcCMjX9JkB\ny4+Anqt7rL2P6nk8VkHjQwdg6VbZLzM3B+fLBjpagYfwjghaewQS8luqwJUeyt9l2t4892HROvOC\nzsq91+sKLy30ShffbUmOnnuqr4DJ7jf7blnXE9B5BHzyPQNPJRtLHvaz+lohQi0SxtP7gTbJnF27\nZ6OBHdBIekBjbw0nEcppZ9xVHNU2mJsyHyBCa1fjYNcDYuMnSvQ8eHOyDCS7Z+UTYRTLA57BDZJH\nJJkKtA3rUD94BmMAZHnsCAUoMh+DLOmMXgjoup+FI9kBO0t+bDSMZ5gcMr4cPc+yHxAQ0jxJy6ng\n50QtBb1WOVx0I6spAQzx6kgg6wfdfW0XFByq2ImhzpLudD+eRDKZ6bwSgUpFKeLpsrXs+8wmvcfZ\ny6QrEWdwOwyOjKHpY37ddiTX9ajzAWbYjqSWDEfPIiH+2csvsPOF8v7xAUBAz90BT8SGNg1nY5ID\nPrnHXp7WGvh+R+/A+/d3fFi66S6u1aNWdbfe3JqQvSqzQkw5rrSWyBwCBChBKG2715rRKYBOWU5g\n756UAZC9Ht2YMHTR+yZRWfylJOU1Mdp54XwWlBGRAxK7z5ScDBpMqbAnsCs/V4I0mOeuLc+V1X0/\nnlm2uUuz8nWL1TPpVbs5BJIggPG6YLRjL3dgQxSFUXma7rM2kFmdeADa9pvVmz07Y2iJ9WRUKvJ1\ny5jxOLf5Xsq93YzL2Pdc5SeUzQnoPAO85MLNFO+xqofPnJWQyQMZBok4Dwkg3SAb47yedSRAp9ZQ\ngvN5R7l8lsav+z7+/Y8TjFmTM/0vgK98p4rwTErI85A9A/k9rs33Jagg/+c2ULrH6ve1NHsjAvCQ\nNfLZWM38YeZ10SptYvB3gMG9+Plb0Y0dDx557jO+vDYzyad03bWxh5f7fG0/ADwzQJI+9iFk0wFP\nLThYDvGurejelRH47dpjvAkoKFU5jW4ub63hLHpoMlkWMAlrcsxtoJZj/RYGiqYt3nWPkzI7jCEy\n/W2ALvIFdhZQfD2P/n5oZ5BjdBZ0HaQdczCs9R5A3hOlAOr+IHRSY8sEdkwuPOVB1jEyz9ncA/3O\nzlfa7N2ptaL2jlJyEp0x0iR7P+xvkIGTgsoADtkvVlnlZ9P6urWCAN3UX8iAoLVLh6t3tN6Ak9Z+\nJBqMdZH4BtJaLAQ7wdbnRkF6BqbG/xRfJbkKf54YHkl0E2Zw2czzT1Z+gZ0vlHfz7Hx8OOA5lcF6\n0oJ2Qo7ELYBu5LY4X+rAWRjf9RDRD82UBABVXab2inAU2Sc0K4LmkjyOQw4fnZi2ndiLiXnOQGfZ\nkKdgJ4fMZbDTexxIaJlHOLVvVEonFWECMLlkQbO1HFFY8Hf39Y7l+XIBqVNntViND8EqFX6gZMGb\nK5oZ+ABsYIAn2j0D26zo5Lmbx3AQiAteWOsAzErXPZtfAJMQbAFQzMIZYGcBXJlWum7k7VmwmzIK\nfz4RbYGOARk2xWFLX6HohXIX5UeZs1+/ATiPQU7u3wXQvAA8w/0OdAKUBtCpvrE0gOUe5JiiAWAA\no7O1j13F179/EPA8uvaZsmzPe1bncA2tY0tEMGu6Xe/PHgDPDsxcA50dKzAOEqyCvDkDOOJhVAfQ\nxU7Qetcnx3s2iGwVXsCBc6wFneVOwzX7Zzz8Od3+mbVwfd12DdPn9+p4HcROw8yiOFoyH5MjtRRw\nPdBqx71YRqk21JWf4ZlP3VgAATIgOT/PjX3AqffWUmOO09TGtCRDQ2mgFmM8XhPtGRRMIgH0icFn\nQCZzTUGOykco8+1cF674mVG4GRENXAs9d83HkM9jcXkEgCCegWFuWTLSgRhdIwPYPSGmOxjoeUx4\n7tmBdXJeEzoM2s/eGQ2WqEVo4ziOFM4Wh6Daesme86wn2d7p3hsABT8KdMjWVjb2Qseq2oHaZTim\ngwH01nG/V8w8UWMzhvXdeweVOA8t5hMCdJQOnL8Y2aT15IDJ119wQZsPmWtdWyyHyf4CO/+CRfbX\nyN4dycAW+w3c4kBFXJgke2mYgdY67mcThlU6Pj4+ZOG0pnn7Q2k5e0PrDU1D48yDZK+mZ2WMisLI\nrIlIw814ATMWrpb/XrKxJcLOi809VCaUaGU4ttjzvbkMCnpSiHbCbVamMTGFse7EHPJGOlV45tjc\nZ+WRRdKAlzwVLrEyA3F1aFOP99leF8/J2tUO6MxgJ6YiMbJpfGdBNzK/aB+5oijXlnINtua2mIWo\ncx/qdblNY7u2SltqqwGiq2LK3aP2hQYy7h2z3wf6Y1FCZ+XrObPfqclZ2bX2TO2n/H3QqV03e9F2\na9LCNPK47owcGcySP2Qf0vfo70fXPFNUP1uWMTewQ+M1sshHXvSsXldKkW7LzeWYzelrf58ceMv1\nPCmNYcD4bEs31ORjG4qmpDZWmi/h/XZwq6/gOzzU7esvjjtceMxsMNm29cka2fGZmV6z0Wd+rj3b\nf2eDcipD26mHaVcHu3JEQvH07AuQSPxQgMPcR/Wa2wGibHJOkoHUGklYONGM8UABXaOxTs65yeOV\nlc+1vzaF61gKcOjcQVj3UA557b9syctzJtQ9GDGd39rv81l5AXi4dDm/iJJn5xM8YlDsN0Lc9Q4F\nClSrjzUjQMkQQdDNsxNyxfe2QiJz/Nkg18cA8hBtOyyWGXLek8oOZkYHgUqXcwWZUwprct7LRKiH\nHO6+8FMYbbPvp5GzkaKt1jYAID06YtCDWAyOjTqIThssQzX+J9hkAzDTiYrCX2DnX62Yl+U87TDR\nrh4UUoBDnt7PGCmz7tU5JREBE+Hj/iGJDCagYy/zELX7OQAdA0itdxxZoaCRwXZAARh8b88MdB4B\nHmyU15xla1QSgXGB2YIj+InAnxCCj8qsVI8C0rHGsMgzU/SlzWN9j573rE0j2hn7YGOQBfP6u83Z\nqgTM9ZFZBi+Ueb0BJljCUrOCsLXrHLQzgQ4TxPISYV+ILtOHr1akOBDV1sPcx0ugQ9JvyZoTgmi4\nnjDEMQ/K39QmfzKPz9/OEZHG1tP2uqtyNZdLx+yTg5oM6EOm23teo9nybGE7Fpdu/Cn3fdjgiqQY\nqFehpIZc9e1Hhdxnrv8MT1h/14xjGZjJ1XoP9vO5f4Irrk/bShPoycturXX6Y1yLYPUjJfraPzRd\nP6xjbcJC86Re1+LrOYOdbCmO6se62XnENZj9R9CCP/8JTdh1DorIFEvZ6E1NXCZHPwYeVouGZtPo\n5YhXZFBbbCoE+BkjOkZdMxg2EkOmecadnwO6D9JkkcwPKAEnGo9YCDkWoGfgDz4uaqgg1nC8jgIJ\nUyRcjR1P758te948ywgHO0nuDddCdu/2zn5chqwJAwejAeOzbVv0DgWWNbXH1kLWtSxLqAGeXKwv\nRVNUsxqtWztlywGR8l0GSJMUdEYrsh3BeIoZYbh0xHyWFA3DmtW24uV2c+9R7osRlOt1iQwynyOn\nq5hn8fIDjRlokkIdzHowbk6aYK+i9+s6lKdofbFOfsbyC+x8oZxnZGM77VBRlk1nRpvKTZ04GOrZ\nuZ/Oxt51v47X0SP85NT01ef9jnMDdnwh+KPIBb4wfgC9q3UPvrdnB3iytdiLyVjkzE45X/25WNlX\nRT6sVUuI0gVweVaurYnBAMJCmToCYDHBTt3Nv+Y2PW5fFj65/7lt11mGRFjv27Z95kBXAXgycMpA\nJxTAEC7W7lGZiblagQfr9bkNe4/BrEy7FU1TWsYw7AAPnKnn8cp1h5KehkT/I+zbM4Rw+QOx6Wc8\nzxh9TqG6U6Bzf1NvRsV2KnGPjUcoX3N/5W8FdP7dOsaRajo2Z+e6dmfwLMAutQ3T58+Wz67j/IxH\n9+zawHbfeKEv9UdAZwX0BvP1nW0lWL3pmbM3KV+Xro97R0OLf3behPV3BoaMcnLDcG9+1gzsLayZ\nSgUo5tn6Vzg2OyP13dulimp+/I/QwY/Qz7Vh5QeLrWUIqGgdQIOGWqs1PK+DjWcnZCD5cBv4CCVS\n3g2kGuABOlrRkN3OKMQOjD3ig4dpTEpmZF0Leg2+OwOd1ZgEyPksEIPII6BD8LqvZJ1f7TyYJyJX\nUHIBmCRMi0G8y9QZ6y0DAVX5sUrhzxXjtSP9BvgyXcnmy43Jdm4hCxDJ8sXpUfuEKuPUbjdPcNFO\nmXdmFs9Jazg1SUUMHQM8g5eYVzEGa6rr4/g/7X3ZliM7bu0GI5TVy/3i//+o+y9u+5wcFEHcBxAD\nh1Cq6rTtLhm7lkpKKYLBEcAGSRAgGvRmdXnBVWaKmGb5LZVv/VTr28Y5i/Nbn6+6VpyHZdAX2lfZ\n9ALguueXxui/AJLs/ALuh+zZuZ+Hna1zMsurss2miIAqFk1Dw0yfbUD9+f6B94+PtnfnjuOoFj3k\n6y5hppXsfH58mMc2xlu/3XZs224zMYAM7u4sHhBK6J9RsVAbXJ+fn/K8tnmvFNlvRFTwxx9/4D//\n8z/xH//xH/iv//ovvL+/4/Pj08ouBjt1ynff25kG7GTnfr93ymb0CsVwoaNhNhmm0XAN0LQiGVQ5\nvzLIzSuiaQ5G55VHazRyVZBcGc+rDfzWVoXsPIexfXQdtChhNu/hCqNAbU8fr+rS1v0f4sFyxauK\nYIvC2x9kCkauKbZkRNtQP29bkan/ekI3asb6nWZfgjHv9ecGh+S1dPXHzZhA+C72pd7zBUtnzO9o\nqIndyd240vLH766I7NV3/T1at5IzW+piL68DrsD96wBwbyG6x0h3Eo563/3e0Zkw1RswGb1a/kf4\njtSMY+dRn332mS7PZlNLDQIlM4snSZ+tMI+uLmuxMdXxiGZcoqAtDgrG5vz8znAmQkfHqc+zlZP7\n9pD1+ECtYjBqf6YFOdI8juctlaJjzJ9n5Q19xWTqygAleLQwzH0m9t/eYTK0UyR7F3Jxde+S4C7u\nHap4yqOGsWc1opt4kVUOW9s3ovJwXh4q33vqlnbVJUXiaadWX9vWAhLtO/ZNjpyAzkpjGPOFsLWZ\nnVjGOF71PYYrHutTjXsNmkAkaau+mKDitdv7s0a8Xzfn+/eu1zVaqwXCaMa86pfb7dYCJVUQ0GZc\nXLap4a1BPIZcTGS/UJGlcFA9MO71dF3Ry9KCWk98fn6BmXEeJ25vewsKtdnst+zjaeHJF21y2/bW\nD2SvthgYbTZp2/D2dgOI7CgSORup4jjuqFyx6bI5cjtOlpr59oCO/GvVhzqLfUDkRrFrvB6iA6Hp\ndmbIAU8nwGhBa0bbSGaHmN0BRvD9VXnOzv8h2KGix9GWmrVoa22Gh0niq8v6WSENlYHjfuDj48Ou\n/fP9He/v7/j4+MTX/W7k4Dwr7l93fGxKdu74+vzqyM7WBMl+u3Wnp7tGVSMRqLU34oHe0NQzfN7f\n37ulbNQCFPzxxx/4xz/+0ZOdz8/mTZbdilTk0DQ3kIt5m5nReZxjhLdIdKJAGWcsuohezGHwq1Dr\nB6wN+BZvPpIdoCc69kyokTMr0ysDVoxiVrYzGG/SECuSFT/H8wJGQWebPkl/mw/e7Mqryv3CiOSm\n9wtkal5/VxIyKjBgnrZWg1KJgp4hdb/fO2NK+8LRDrYUBTgb4t7easD5s6I3qVDp6qdT+Bb9Bl2f\n6ZUdGfGPxviKsMhYkrFMQ/tzq8hVe1odDx7zmN+JVPHcf7uZmFYvx3ngbOdEaE4YfX/ZNLAIeR5W\npL2rx+C9/c6QjeV5XKaZ6Iz3PcKYXvfuiXhaoS2V9KzyrUawnk8jpCdGZNKHwpZqFsghvCD3cvYz\nH6NRpc4TtAnbSJRCP1GK2YxmLgW1Mqi08dNnfllHXVCZsPwY2n/NQK+mX2yMsh4PwD1JZMbViqI4\ntjUPq9dV3a/afWzrqZ6CnNZrOmPQOu/6eay8Tdsp7F9VKEkE4myYCEuVQVb+tgdCvOWtt7FsDN/a\nMjcz6gEhKa1JlHeJXCfZ34F+3K3qphQy4U1NX6oc0GVyBCVGpauMq7SBuY2v2kdli+qg0all+eFi\n46Gr4za+iGuIGGsU1cfBJIdUNnm+KipQC0C+NKzTh0PezQmAts/m/LJ90Lf7DX/72w+U8qMnO4DI\nWjDieWaFCPsuZOcsp+lb1dH7XsB4kzLa3m6RMedZUXSVQ2U73gNNt6uNNDZQUZtkYZt0/dxrEho8\nItpXYqe0w6MZbSnhDu3jq6XOvQwi2Qf9DUn+V0WSnV+Adkg/HZ67lynDpiwBmT25H4cEJWj7cT4+\nPvD5+WUR2QAhSccpS9jo8xPH/cCpQQlalCUTJGVr65B9IKohKQdRyWnFBRUnz0vO9KUD/+vra4jG\nJoLp8/MT7+/v+PPPP/Hx8YGvL9lr5MqrbdrEykgh6HpYE0gdSaHpnpWyi4r4Gdj91O5psvUyXTRx\nSjCltzLgYjmMKPndYy4mQ2hMSw2jeN2yHDG/F4aDKna3Xee9TJbPJjxHkjx767b+PszKZCSZkWT0\noadLIAIr42hhYTEAXZPPvRfU6ofRTiXH9HsU+PoIzcKVARYJcEzrGcSyED13r9eBE7vud+1hle0s\nL910bN08pCEGj7eZGbTBaJjz1YzChZHZXXVFmC7I388QnVUaI9HxOhlzv4DeE55XlViwz+4w66no\nzXBRshDqVGd6QOOTAW0ha8No1YbMdvIECEt3xpL4vXZHIHpWJ8Xly1RHnbHPWG7OZi2x3hJlwywf\n4zWPSMujPjP+PY611b3jNeN1/XztSHTEONdAQTq+9HR6ov68sD7tUQ9dpM2yKf08D9zvmzkj67aZ\n88bGMHm6FPZV6Wx1lJ193cK7CgPM1ByKp8uZgRSMfSmmZa9CIG6zQdWvXclEtS3O09Pr9w7KqSxx\ndloNaNsXw+4wMCIaZLibCKq4ohzzgBT9eXl9PscxRST7tZSkRnJWa23nL731acT2tTpTZy6h1nam\nkqos8ufgVmwfjIxXcYpXlTv1tDySVFh3xhxpgvC0Ed7jGIzjW0o+jjUvkx4cCmbUwkBFm90s1hZ9\nn/cxBRt/vynTQZKdX4JO47XuCpkCF6IC9pkdAGakHbUKibkfuDey8/V1+MGk98OWjel60lJKt+nY\npjgrt/MSGPok8Vj7kiI5+XcDA6gHQGdvKK734fhBbKGbT8JBvY6ylrUZBWGd3CMjUo37Z7D05i0M\nGP1zZYfYIgZuJsvCIOuvv/5N74vvkjf5b1DTa7tohe+u415lReNkepmnkZtyfi4L1qODQlfh7IKw\nKYILYvYwfcvLrHxjLlb95jxr8549eN5FQScyrf+eyL/0m4uOhbmfuLEkTxpvXRl2JXg5432ag1gX\n/V4lr42Yu4442nc+PrQNurGFK8P72lBdtVNfBzNpmsbyxb3j578E9pme6P208RKW2k7FH/oN+x8z\nurZf/NzyYP2OCLIXy4kSmQGunuihbYc0S5iJAEKdtfQjudH1/zPZadXUOTNajf2TmuA7p8HKwXM1\nPpeOMUzUEO2BNmsnRja77CoS/ljP2omOAE17JPMuu1remABdogaJTsbc9m8cFXc6ZMkc6Wwt2XJl\nJc9kvxVo+OiH4yU0cayPvv+MzrUoAyiUn1G4Su5rkUhpzRiOS8qMqC3Ih75r3itz88P0ZWMwuLqN\nZOOy6QWJUUAXfa5JqEG+6m+xm4jz0fPLLRiCRgTVfdWyjyrui6l9eQkSZIrHyLSxTtseudbGRe9p\nthhIznfa7hu+7gcId3k+2JyJdALtMBsQwZcstu7I3jknfdPp/coy2TWRnWgHNCkU+kd0svn1w3gE\ndfvcpv3dvwmS7PwC7HRc0V7SEZhRrMO0VU3tb90UdxwH7vo6TyM6GnSA2tIxJTlGdhoRsUMCmcG8\nSb9tOkk9D6UU7FvB3kIZVmYc1a2uaMhGoqNkZ993qAdHwez5t7M7yM/4YVOPrhyq7S0ZiINKXvTp\nR4xetu+MJPeGiMC05O1aN7BX6V5h5YGcvm9liiSuF0rfRxaSdHoBNCpbNUg5kJGYT/t7ZbRNBXNy\n06cj/7l3sXTtqPWAApSqh8NdkwYjSYOSvLxW8xbqT71rGjjM8oCZPEcydG1AoVOoS8Ib65xiqs8i\n9rW+7GPfnpWO52FsY4+e5mV1vb+OWublfER41BB8PC5X+Yrp++fRIz6P33H8rUnjX7e2O8cAvE/a\nfg72GXn2DhatSWCq6ws8yu+iPyLIWTck4rIb+HOHR8c61vFqZJgIKP1G5zoQnbgJe46Non1sVYzn\ng8ms7v3u96dk5TBuGv2QGQrTA23WqpEdktMcB2I50kl36uhzemdSlwugHYwpy6mC7m+OTWmG1p5E\nAFokONb+JO0ty8zXLy2LlJMtinTjSpbH9f1+jZIC62dEqIVQuJ0VQxXExQ+RXOkZc6JxN46N6NTa\nln4WkzWmy+AHi/YkUl8E0Dy7PBOdniSu+oZS91iG6AysTQFK2G8dF+7w0D7CKJC9OCU4pQSlNOdy\ni4CoS9E3EkInW55l7/J929r4l5n5w5zHUqvEQgaNGGpfC6sVou2xOnqACiSc93BosBMdrx8bM9Yv\n5D2aEHKtd7Rxb+DviCQ7vwANQGB+gBZ7X6OQtHHbZnjkyn42RZapCdER8nMchywdA9l1ep6OkZHq\nJ6JzC5lY1XtRWcIbsndEMwQZNk2q30sa88n1dl8IeKCDcN93/PjxA//2b/8ms1ttUJxtw+YZprTd\ne4jumWUQUlcGz+pvM4LVMA7f6aAmGpRS/EzohGanuBuBcyLwvXJW0qem53z9c0TnW7DOa/CkcCZi\n0J4bMSl36utcvGHo7lSSEZWBL3EXARgVwPju+XIS04pixjbCs7xdZ0LJlcGnR1XS57jQ7cn5ikz4\n9+v2eNRO33mkV4Z6fx2G5/aGx1x3gBPRcfYuEB29zx9yaW9HouMGYfjcvliNudXf87id6/w7kvNo\nvD/8bEIF3o3i5wtYfXZ1WrvZHXOLtCJ1gadi/9HPDExdigDd9GI/NZnaj9sCbhvUVxHCYm+dHkGS\nuBk7ozyrY7/hsGQvbOjW8v2EnHqW8Fz1pdFYHu95lvDY9WhkZ7gt6jaQHsbo3umR8ETjOJZxSXio\nOQgg3n/pl+rYrCDIfo6tiPd/24o9WzaHNhkQCE/cuxrbs6tvUmNc6wrt/r4P9QQ8CLYAACAASURB\nVFjrA51xQfU2ZWK3KVhDcDdnjdVP36aRFFbmthVe6sYMc8uJOxacVDXZz96nvY4XbR7k5zgAo0zk\npjfH/Op7ZcZ5Ujvm48B57qjbibiPJdbXKIdkT1KLcrudKKfaTCFYFEiCVYRaqHcJZmVhpKPdFduM\n7dPUH/W9+9w5L8ex59+R2qzk/Vb1cq0MauSdAFDxPUNaJxl6+v8QdBlbbYRG1r1CPEvMRsh1yzva\nScFj2EMhORKA4DgP7ES2OVXDS5/txF+d3dElZLVW1KKn1Ovmf7Lp2l7JCRHRgRCN1OgdiL9rGE4Q\nWUSVHz9+4O9//zv+/d//vW1IPyQsdiuLPkMUzBkICHXPnUTxoDhXwl6/j4JwxWpGcsWwxpBB3gbu\npIjbvY/0fhTq4VvPD2K6KoS/NwpiMn0aMSWfJZm8VeFlhbC0+jqJ+XtE6iIRVtLjBkrfRiujP+Zd\nSYwam/6M/nldOWIaarBwX4aYn6XCG5TVdxjLo3lfXffou/733iKn0F2u6q0zxNnrbTQQu2faf3P/\njcTTDTsCkfWshxMWmsb4PhLbleF6ZdQ+wrekJyr+brip2bvOs9ZhnN3wiGzVm9oMYHIiyeS1F2WY\n1kHjPXY4IoVrpbEBip5b9XXLDI7OAHTLkGBNum4fM1LWY6f7vrKNo/7agZQt2uK7th2/X72Pn6+e\n9ejaSz0BD0CjYyUGYzhrBZV+/Ky89WP9fUt4IGNIW0rb4myrL+pJqO0QU2YNANNmPeQBlm8nPDrT\ns6pnlyUEaoYot/tmmdzXYU9S5JBVmb2Ieo1JHLaVZEyAoJGZTZ+POq2vm7YHBEA8D66SSJoKbpvc\na0gm6srviZoJO4qjXeCROtWxsQDL9xWM85TD4Y/7HfdN9kDv+4mtBXlZkRx9ztaiuB3n1mZ4WpCL\nRghslc6+9/3jPHHXZXWnkAtu5/nEIDxc+60H45i7IjuP9ZMTFlJipnmrbNu2dMlnYYkMKaSsEdPf\nFEl2fgHjzI6v2x2MBiIThOoVkSnuNlsTZnbO4wCRRCrTAAjM3C0x8xN7yZXXWVFLxVnOtimyn6XR\nQWN7bYiWZCd6tLozBwDbA6Rk5zxP7NuO9/cP/Pn+DgbhrAwiz7fMQPUDLIbHVqwUzOpdPxNJ0IcY\njlWVtgripSI2e8M1u6bteyHYSM8zyt3rGJ2ylXfPy7O4JA6BvzwiOtyIzuqJ3xnoc5nUWPBXVLpX\nhGdKi7VO1Yt3XX4jRoMhXdVArX52Qxd+OhgNY9mu6n/V5/4qronfqDB9GKyIjr5rlCUlPau6XhOe\nhYEA7dfdL5KuPvuCmI9Kdczro/pbjZuRrK5+e/i5/deTEwB8tfMo9r9hzKhRHOQJVEZ0DBLmKFlk\nOmSs/R0rW9st7Mcotjm9n9mRZWwz2QkFuSxXjJLmv41770ZStDAwL9rT5O837f7d2HuU9neOiVWf\nUT1LBUCV2YjorKlnBW/NACYnO6PjJNbLSHQiIQiav5tlYDRHaOtLBAkjvpUC8NaiVsb7m6PBSIET\nHua+rkNhvRwA0EhLrUE+XNY9W17lAFKpu65fFAZVCactZ5VqEI9YR+t2sWVsQdD7kkwN3iRESsvu\nOVMdHvsWr3qn13lwHi0yZCnPtYCmZyqo2Vj3+4F9P3DuB+p5a8sO59lWzRtR2B+9be18HXVWCNGR\nfdM3i0grEdkOfJUvKZtGii1iQ1I7iL5bjoq+/42yU98lQMHalvK/W+1ZyGsJ2sEsRKa2D0ogiUgO\nqSUGVdbo1b8tkuz8AtzwRDDkwtpv9QISCbvfdwszWDY5z0QFo77OCmzBUyezONwFBVAFGnWwCIRm\nFEWreMxXFSKiy9HiayQ/tlQOvt2tlILb7Ya///3vbabnDaX8w87aietII7ESgREMwUEZP8KouKPQ\neXTnlXfDfD1DHVldBREc04iCZlT48vsq7+t8XeY1KJP5WrY381k9vDb2ES+DeZXhIWf9e7QTlWeD\ndlzzr/l97EnU+2NeR6N3qJdAjMY608PqItnpjJYooC39tcKPmxRGJaLPJDVYp1w/Stt/e4Zc+p+z\nAotEOpLEmMS6rNdL0bzfkrVzn0aZ7vmurFe/P7r/WZL0MzACpMbghUHmXW2ePeNIZlqfisvYuv3T\nXt2LjPQGv/XTYRkbiIBC7qC4kFkh0/Nv5GPssm5U7q76ZPMCjfm9tiLXBPbhs4fPo+z6rq2v5Ob0\nLGhzOMnTVQbqLFHHQ5zZWZPvOIYpjMPaPSvKWesSLHqGWIMHSQQz0fWtGZv8HesmPhOhLE4gFvVF\n7Oe0SXeyfTRjubh7bj+DBPRBUKLOY5rzuoJGO6xVAiBY+5L8DbBEia0a8dSKCQ7M5mG/MKNd62xN\nidpVrQzikNYZsHqecuYWKs7jwP3+Jcd5lA3btrc62nvdH1KWYFBtX3Tbo7W1o0GkvoUwiuNiw+22\n46xvuB8Hbl93bNtnrxubMcmLPlG2rZGzxaoHHUctEMOVU8zlPnVVZWSpC34TxmqtYN4s7fM8u5Dt\nvxOS7PwCos8gEgo9UJSb0iVq0Tj2Ddu+hzMwig1uuReWhnp0ZQCzzeaIMvbpejOQYHTH/rJ8ci/0\ngf6gr9vthr3lKwp8DUIgh2G54Lzdbiil4G9/+xtutzec54n39w983b9Q7v3yEb2HLoTkI1V5ZShG\noXNlYMVyqFEeKkr54gWU8HjdjUpoFCIqUqPB8Kwh0Bm3bls/FvQLYdd5IRFlWROWxU9clqWOrqpt\nFo/Fk9ftX2B0/UdfhTSEtAvV0XCwcpkWG/GYGI1kkkrzRC2ep2RnNhgW1df+H5c/XF+7yulzuMoH\nBRI6PXNB9HjRb5dEh9TkGknl4/0zpgCf67YP8Uzf/1ki8xRMJnIgKau6vJoRVcYRzgDRaqGLLtx+\nm7KCvirdE7wNz23ec/TGlImsSHIWho6QJ1p3pSAnfYyMMphNbvUG0nNy+hGiLLhq71Vfj/dfkZzJ\nyWOXSc1HOaoRRrc2Q0FtjPSHsI6zOL7kDN3xsEJW3LECG5QdaWSdMaxGhjTYS202QmE3a1dOI6JY\nMNfyq3pGAYqO6eDdH89DkvJ5X37UPsweDlv7js5C9ekt7A1WJ8Kwf7i0w24r22GWXjb9/Fg2eD/W\nv6XUcxFE95u+ILIVAJXFiNcldXKANtoYLbbHRv9GIK0xH2o3nbVivx/Yy4bTnCfS9nru0e12AzPL\nER+3Hfu2295s4bDBAaL1S2T7eUa9OP2NivFQ1tm5FllOqPUH9kYlQmFGJfJzEjNAwf8lDAadGYRK\ndop47AigrQjR2XeUTWZ4/IRjGXjVCI97BVQoedhQN1BcGPaUB+YixDJ/zLBzdFYzO71hG84OamRL\nSZKm8ecff+J2+4ed9QOao9e4UPJBLM6ltaJbkQu9xpQSXU3xz4QntpgSQq/n8V7YzM5KUGjaupG0\n+32RVvt0qUy6/DY5f2ksxq8fCMAxz/Lua5m5CW417uKSRapCupwca325d7TWKn075Gk2lvq8ulMA\nplTWBv+C6DQ1U4oTmuVrMbOzqnOyEXOtFOzaJ4y0kXSMr3V7uuHx86DpmV2qNBi0D0iO389Wt6tr\nnsVIvFd5/GdiLKca6tLPZq+G5GskOkrKV+mGhcmLIvDwHhIQAykYwoV8JtKWIl+Ng2CIdERnHBsE\nFB7NsDUi8bE2bkbiiuxYuYfC/Wy/WJGecYyvxtpKpl3KUYr58Ta2IxN0D2mtQNuLEYlOXBIbct7q\nxglPlOl6jekKchKk16jhT8HrzkaEFuT1G/IxCozOWRFzNuiWvs3aEmsjCfMzJ6LTyqebkaXO1su6\npXwS0jsup1e5RCyHj3NVfVSv+8Il9+lohxHDvt5Eromt0JaWAeANICbweaKCUPn0qGhE2Lcd+/aF\nUto5hbx3pDTmcWuE5zwr7vtdnBmnh7k2J0Yp2HkD4w1v93tzNO847oeRYqUso82CFpVx6aBpkGhs\nY/ATmvLbtZX80NX7FSSQQu9k/B2RZOcvQGZzKu7HieOUqczKMu1IG7BtEp553/ZGEIInidSzFo0/\nQaeEm2QicuVkm+GKrPOMXqp42q+pwS4dPWW936CpQRHu97t9d1Q59ffj4wMfHx+43+9GkM7jROVq\nHogR0ZhQPDL6V9+PRl0nvKfBfNVKbpKIAvRrl4QHLkp7g3A2bP3z1bMvcjQocjW2+jaP+SN0YSgX\neV8pTjWk1KAxpV4ZtXiZPBhFr0898p8uuXRPlCoPABi9pJNBxLENYh77/I/lF2IsId3FO9dHf3Oi\n4+22qoexHf+7MBkeq/61+E4Jx5XxMxke0bM8XDuYPQ9JzmT0Lq4ZyzUaJuPn/wmi862p3TqE9Trr\nUwtyM2TPs0tBENiHMPMb7x1ypHXR0tOZ98lYaYbvWDbz4QcDd0V2/Lw1zXvoF8M4QddvYlvOZB3N\nKx53QMVxveoLXnSe+k+ft5nUPEugYt3FM2nkpBitY71OPN26Z0dXSMjZRB4aWHXyvIwHU32Zk0I7\nFzO4zYq30QNdLqVnQsS6mmbIawWGsq/qx16YetpS1qqXnwjQvT/hjnYdmiE9j8+1Q6nR344U9/mU\n94rKwHm6biltRqdtEZLvNz0jqkUAW5SfAYtuqySLmdsB0hS77oL4CWHvSDwBhA0Ao24bSj2hwRTO\n82yRb++433c7uoNZ8qYBRNwJCHHybhvO/bRzDc96gltAqOM8sR8Htm0HAdi3gtu+43a74e3tzcfl\nceIksmApVga14cLY0X40jkGZLfTZnSt57H1E+4Lbl1fQMUWQM6Se8K38SyLJzl+AGs/H2YjCcaIy\nY2MZHDvEKNz2zQhPtz/GFMls8ETjT67Rg6uoi90v7050lAgVat7uJiFVEKjwiYRHB5CGuwZk8GiI\n7M/PTyM7b29vYGYc5znNNsV6udRd5Bb1s8ag3xoUeEvLBdwF4VGlpAqcJXDC5XMYZpiMAv2K7AA+\nW/WoTFEx9e9kp0evPH7B5lgaetd1pt4YF4AabpTCskYjO6a0+zTUeJBp7FMUT/FDDaPHZ0loH+Sx\nV9azQSeZFCNCp8+/9YAOaffX9QbePxOPDPt+XH+/T2H1ezRG5eeRjANz2XpjcvVZ7IAwWzyM5SvS\nMxpao5K96g9/HY8M4zBYXPy1PKHraxzK6zNB5MngqqewJT4tLeKYO7YZkpHodKRnSJlR21JTy7Qb\nKKF+Cy3kmPaP9tkdArNBow4RndXT72zRDvck5zvEPvFMu4995VcIj5aBScmsvzvBOENUtgqiDeO5\nIbGvukPhog+zbghvxniQndTOZpF9NEaXhvz46ol+Vgrh+eu6QpfHRd1I5ppuVMKzHvvEFYwLB9L4\nctdpsFfm/KlNBFRQWPbkQTdUJ3k4Zl3ydaU7NBiR1QHzevlokGdOPlu/D2fhAEDdNtSzgMN5VAe1\nQAXb3fbiWH1ZHxFyVqjtY953nLcTt10is33dqQUiEPJ0bqfV4V423PYdby2yrduBjfRxmwm0Ou/b\nZKznUYYIaXQnwNV4inU6E56Lvse+3WKSeb8Jkuz8BTDHA0NPHPdD4qeTrPsUO7YNbF26BtjSMB1M\n4/Ic6aO9URQ7vhEZhQqf8BVXRsWJagEOuN8waGWQ7zQctuI8q4WUjjM7mm89CDV6TIfaua60YSBe\n5WlUnPY3ZoPscpBaFfWC4VqxelpXSntUgJMufEJp99eJp4qfzmMv7KY8dkacv4QsqHIu1m9MmbV0\n4iF34/MkUmCL4zLMDl0J5jWi8lRjwIlR3/ZrIuvXtTocnrmuGx9Pj/DIWLv6bSRa4/ePFFC7cnn/\nPA7sl6FetGz6pRrbfT2NRo+medXXx2tH43Qy2L9rg0UZr+69xpXKZfvfFDP7fkgbY3NuYsbCd9Tx\nJ8mXGNdmLHQEx3On7aDP7M8f8+UuSlw035V9paiRnfa5q58wk9HVF6FzKo3F62qKgfUG7zkJ+e7x\n8uH4Prb9M86AFVZyqCM9aMEASGd0VCeF2R0jPRu2TQ3KBeEZZnNWZMdmdsyTCOhY9PtK1CSWdyVd\nRYO9lMdjo9MHlzU01CW0z/R7K/o6Fh0wtr2WoZPlg1xf6Qb/jHb+H3X7PMAFtFHTHJJGpQKiGEFw\nTteXlcd+HmtjzD8Nv4dPJDqrEAnZ2TY7f1BX6fjh6UdPdhD7oTxTl7rFbQGlBRypZ0Vt5/cQEbZ9\nAxVg2wputx1vbzcbz8zAeVTgHJb00RyIadUG3j9WzpS5jSg4Z2OaY/13bRpk2LP2zb8akuz8Cixq\nUe+xOarM7JRabRCBXdCdp/x+3I+eLJAajBLAgMFgifsoT1GWD9e7lSvAhPOs2EqVkNPnibOIcOGz\n4iCyw0s1nLXO4MSXhreOG8/OWi0s9tfXFz4/P/H19YWj/X20GR8XCvFMkGtDhoYBfOl9GJSl+R+C\n8B3uuGgsF5A6YFeYUhsMiIlwdc+nUeZ2+RkVxeRpa3l7iiQwJgukF2S9YO6JDpphxe2k5cdkzvOj\nLzEgNKw4DUpmVcZZWMf0vzeeEMZXJHFTXS4MzhUo/Pddf31EiFZG0Jj/+HkkOqvnRhKjf6/723cl\n1d9t1ATjbFUYTGPqirg9fOr/kBI00jL/cmkMXxIdK3v7g0ItDdXWya3xcyBTTdiE/Iq8pkqd/OWm\nJwC0E3dUxsk9q1rv+ktr365vCRP7tovEtpLVcFHeLaggXc/wjLJyJDx6/4o0X8rjb8aWygTRB82j\nTb0OYtZDEtmWs9VSW0RUDfO9tX0X51K3LMe5nhoeHDY9jdB0ivcFJon+dTLqUXFuFVRPlDCzspYJ\nKz0XnR5j3pyEPxq2ZpvU2jiRlGVsf7M9GlEQcjznz9vXZyBr6O9Kvqiw1pCn3w5lLyGtWFodW6rD\ndCyV1gZXZN3JhIfFJujKlgLed2VntqzbD9EezqRqxHaU5USErZARHlkxI+Oy1orzuEs7kNflVja8\n3W5BjxMO3FEq4wzEeOznK6JjdcUAaL6nVcNYMV0bRKz1OIOZUPH7Eh0gyc6vQclO0ynqrVEyU2rF\nxkGxKiPGCdSK+3FvBEMPCQ37brYWBjhEgbHOFxQaM3CiolRCrUWIzraJ1+g4cDaj+H6cuB931EZ2\nIskZic8RQieuyM7n56ctgVOyo2WI57BEY1bRKcRBOernyVMRFWWoi7hfx+8HLjV8sxyulKun34jH\nIl8d8ZqIj1/7jDCYPTLNLF0YxcvihLzF/IUn2HN6chFnd+I5SOs8qpcslk+IjvTZGmYk4z2rDHv+\nekN+cWFfJjWa4OuZl0bBosrG9N3rF4nF4/vGy54x/FdEZ/w8eTCbRhzHTbz22f413B0s9uiZ7K64\nLOdMtObrdL/DFVn6Z2Cq00B2eqV8/bKT2yfTlJfLYtZmv5o9cQxzdxP7R6Ujbcmvy91aK/h0slOI\nwHr2jpYJQ7soC+rqBVM5JXernPd1ycqowvh0I6k3eEfy+8hBMcqlccyuvr+Sy6tnjIagkp1K82Z3\nwA3Xs9a2r8HzMi7pltPjv8kHtaV+QX63H4TkhJbToafE6zxlKZ3O7AD9Id9XRKeTn4NTJF57YfYv\n0oH3JW6H25KkMDaFyqRC+uzZ2dQ/Q9IxogMA2wYixoliey9VBxRdITARNA72Qr9PS8ZzRYFEJJz4\nKPusZyQsRB6Rtl2AWk+UM9o+50B4fLbQ8gSE/At52vddthE0UlPrieN04lu2DSDCvhXw7da2dRHA\nhK+TUUh0a1eGWmVfGOZ+ODrAuK0O0XryfWh9P5E+MveUaCeYLmeAqVpQjVKKt+lvhiQ7vwD1MGgY\naSrjml/9rw0eZtTjBEMCGHx+fNpMiXYcCgEGmNk8fQrrllGpVUYttS2H8N801j1XOcBUyQyIJo+F\n5tHWrbbZprPtQxpngVSAHcdps1OyaX0Vp/2C8GAQuhdYEQ1LezIWtZbW6brSmUmLfG4y36+2tK8I\nz2ND0D1OIwlYKohAtFYGsRskTghi/izdKT/rNdiFihl95rliMgXR1QvruyqQtqeA2+F08Wk0l7c3\nnGLfWNTNXDFOdEDL+tdWH31VYz3Hv+vit5VRIzU4fn1tTqyMOK23qCifS8/Hz8+Rh27Q+XddGnGs\nrOjOYBQv8jkarVflGA3ln8WS6LBTFs+nbB6OMs6MlstDNSHGCANMF/XQ5QUW1rrVinwX8tbojRNw\n1jE7G+uWdyP1jUiFbEyEZ8jdmBZpmRDG46JkKnMIo9HKUE/0aPmOBu7VGLuSm5rGivCs8KhP+eGL\njNLIzpgnyYcvY+MqB92QGqCB7LjhvX6m5RuqK4K81fpnIc5qKCrZjXk+64lyFpRaA38t03PmDPjL\nVWAg3dTNtZucHQmM1486YwGJAFu630KGZI8mNoQbpnEtzytmSPdOGonQVkgcbTyUV6W36plWpb3e\nQyPjaOOlUotyN3bTUD721SwxghyRnKmDreLcNhyl2BiVgBa9E3jb2sGotScj2silyNYFXc627RsA\nndmSVTPlaPtliWSbw+7lvJ0V+3HiGOUC0JG80bFoQYcCd/Gxob3h+eWkY9pS/2R9+EpX/A5IsvML\n0EOVSgvBvG07tu0U5t46ZgzFLDM+Z4vcVvHn+wfe33uyU8jXk3Lw0kSwhC6BMf7qJ8urmrXuzeKx\nOE/ft0PBCFBEgRQNBJ2piuf86HUALO3jOCQym+4/Gj0D6NNXZXGF+JxxgHd5DvmOZbhOWJU7Wdp9\nugQq6sGYFebqzIIVXIm3NOmB8tL8X9SBPUsNvAee65gWh2n9+NiubdqSBG93KI/q6kTT8DIEo62F\nVF3VwXfQSx7WC7V9TO3wNyU78z0UHY6XcLLYk+WYj9GwJzxXni7P3OqfXRGbEfwEOfgef0XZuAJ8\nhIkQfJfqRVl+tYyjvOm/8828w11m2I7ybFqWMt5LQjDMTJqZgfxG9qflyV56ndlm+gdN1ytZspHK\nPPXJZ6AkayiMOwCiLB4dLqxl5b47BK7VORUeEJ2xvVaySdOLcn2VxqrPjE6O+JlZiA7xOMMo3m7d\nI+u6zNMsQzTTXmf1z7dIqqHe42jSvhZnKiIxMD1yUts/JCRCYmNE54M/M76Uyq70a2i6sPKBGnmY\nnViaZwz1z8zhWq1ngJo94w65eQZMVw2o9RJltaRZITZ4AQrbvrRIxp07qrGvjjjPp4bzLrZHq7Th\nE581979SZK+O6mfaCsBbO0zUI61pgIGjHTaqQ4drnfpmnJ3bNw9AcByH2FA6q3geQhqtXQj7vtm4\nfDsrbmfFCTKncsz/OAs4OU+5SRn272IbMftSdu0pYxrxRS1qobQNA5v2R5+R/N2QZOcXoGRHT9st\nZUPZdmxFZk9k7410lNrIznFWfN4PfN0PvL/Lhv/Pz7tsTIMSnTZLBADMFtsc+jfQDvpsh5OdZ4sF\nPxslEv7wtJeSnb5D996XSGpq5W6wjoLjPGXW6DgOCbkdBoB6zXrPzuxNvcJKYU5G7kA81Fbg4Hla\npg3fODwJjcpCNBeKOz4rYlUKVVyRJIyelW7pz6BwJkEGN6AmkjPUqxV/yFjnESoEqgXMZ9fuXLUe\nxzz3SovgREe9Ts+jF/grdIQAMoaI50AeXibMBR7qL9YPgUE894Gx7skTf4iuf6i+GcaLm7bzc/7n\nEZ+9kh2zkTqlMPTn/w5cGdbgWZ6ocaZLTkaC4++Lsln2afg7PLL9H8WLGLjonRDoxyKHC7sixCsY\nPrPzE3WpMzMYSINajUrU1aBaEXdLI4BkkPvfY/rx/nF8XcjuFdn5jjh951yyNIgb0andvg8z2uvQ\nH9DnZdvQze6sihq93QxqMwsMtNnE2Ce5wgIP+Kj3JYJUJQhM5YLCGv2OjWReOccit7kiO1O7Q43/\nnnBdEdVIePqyl7ZkDEYYVYdF/ayieHZpBqeVbWXy5VmBYk7lVj1nz4KMFwmko/bP3EfVFtDynufm\nTlm0s9v2DeXYQp8UO0DIzh1fXxI2mlgczLovJ9YXuEXfbWGlb29vuB0n+H7HccqMol6/tbMWZVWQ\nBq8qeDsqbkfFUbkrM3M7hDaekxf6opW19cV+FtHrQ8wMXwnxjJiRa4tdSy2gRFk4OH8HJNn5BWhn\n39thoRqmsNYTpVbsu5KgdjL9Kftfvj6/8P75iY/PD3x9fuF+/8KpRm+cjoYPeTOMVIgDYq4TtaVv\nmw2yt9sb3n68Yd92HKWFHAZwPyuIziDc14eK6nRvDSTnbAN/JBwadUSI1LncszPCjYvewJ9+X/w9\nGaKTIuSB8DzGioSIoiAzHkaj6Erhy73oloOM5R8JTGdA0OwF7O5jLZ94KhlBMckN3bM8UlQPy1uY\ncXLDkNtMIS9Dsrpi9XL4muk+v1ft39dHy8mT16/TiB7r58izjR9czBgOn1cG4iOo8WiGFhb95ieK\nqgq7/y7OZj6nuMb7Pb/t1QytkUzH/vwdSRvrb3JwTHn/OQNaPyu5qNG7HMZIH953ntFZ5StWIo+f\n7ItGZscqGPiC1mncR6byuttsHOX6YCyGAnvaQ56pWcfT+AuOhNE5EF9qJNLPdMgFVu14Jbuv8jES\nqvH6q+fGfsZgCTLZlS+Q0cFpJ9UvEck8P21P46JMTnaaUaxjvZ6TTLZ9JGYQBxlU9dpx6Zg/Z1lP\nWi9WH3Pd9E6gmezEFQroqDnQjwuTDI0YFGy02+8S+KGf9YvOJy27pmuqI45BcHMKe5enkBd757k/\n9ePYSYCVK3zvefa9OFs7zgDU9tgEmXTW2pbpH9i3L8AO1b4BQCDF7NsQCC0622bR1nRbwMlx+ZtU\nTjwPEYXa2Ts92TkBcLO9RlmsfdH6BlVxVtr92oYrUNd3Yl0LQdKgHjJ7BiJzIqwP4P09kGTnF7Dv\nUm3bfvghm7XiZJk92fcd+7Y1wYk2eA58fsl5NZ8fn/j8+sT97qGe1aaNjH4yLpoUoUbNC5FtjNOD\nqn78+IHbvuPYCo67eGK+jgoq9yXRGcmOHix6NgNYZ6ZGj0IpQvgkxGLcd5U4zgAAB7JJREFUxKdZ\nHTyIqpignsPHa7VXRkn0TOi3ndIO3ovrtGdlYINepW64dUV6OuKCngLEZxM5qVh76vqZu6t60J+j\noXdltJFmyoT9ZS1Y+r7Eg20jYsxfJDuanimhB16eucwUbMr4ucv9JUajyfLY2nQ8d2T1Wfsfo98Y\nvMx3Z1h8j974WpAd6t5+Il3J+dgXf4UghlS9b6hhshizq74/OxrWRCemM6b7K3mPY0FCxXI39nTP\nzorYRMPo6ee1Z6ndwPA6MoPXfgzOB/RlL01em7Fs+QFqG7BKqrU/Lwo/1wPpnT3xH9tIxwZR77wg\nlXf0PaH/ziGxkv1Rh02EbEF4Hj3z6jptU1nSWEE8zjK7sWxLH0PHFyNVHTtxZsf7fez7I9mRJeRk\nj6qVQXquGYLcjisfWM5iibLWSiVKbFnH6n7xevMhK8O3tfMQ8EBkfN9Gvpxv0a/CONMHlyJ7XLzv\n9hHCbM/TkC+fSWn6KNYJVG97jyfEfHrbzWTHyx1lbaebh3vrGQ50pbYVoYT6hLaLLDs77nd8FQLX\nE/U8wLVi2za8vb1ZPiJ5LEWWpt32G47biftxotzvOJt9dLR9NGo7aX+6lYLbreKtzewoiVKC1EdW\n466+9VWJJLQBe7sqIR3bF+ZnWclpvU9XHAHdkra/pHP+d5Fk5xdgy9g2OUhKyY7O7BSbqpSOUWs7\noPPrboEJ7l93HPc7aFPiIFY2++idnmt2uAqUJoC2dtrv25sQntt+a4ePAsdZsX3dw8Gjpe0zctKj\n0EH29SUzTlUVcpj2joeESdnW+4CiVymmT0C3VGzElQdnJH3RAxQFwSOiozMamscxr81s7mbVxvdn\nBnvv4VoLiUgejTEt6iJ6q9qXVnerunGVsjaSW0G7Z+isZD196ts9OO7xNHvYkhqMeXxvFMX6mX+4\nvod5/nms5/jdpbHNXt3LvrXIzs8IeDdy1t7hK/TPmBXUKq1fIQ2TIQPvf9cEYZ3frg8vfh/lwjN5\nXxuzQ3tqn0bfrnrdMy/PqPwnnON6P6GbX8p+aPqtA8m1KqlGWRCJifwezb2hrz/oy6PsiKQJGJ95\nTVZXfy+L9cT4XtX3mJ9+huH5Zy7lO3t/eNTf7GXpAgAFoqOvOpGDmA9ZhlVgh782ZwFTLDNMDmDo\nc7rftpObMa9Y9JWW4ai/Yp8hJdTd3iNPXfbfe1uIcR9Jw5pEQmd2iGzJfK0F41lsarjLgebK2cLY\n5QrzGoDBFr475D+Qn9asSo+6PPYkRt8XsmRwfPRRY9VxOhB/9ihyx3HH1sjOeQrR+/HjR1dHuoxb\n09hKaXbVDfv2ZTMi4jiuYrOFvWXbtoFBuO0Vt1vF3gJDjW24It2dDAZkuSZ5/4t11o2/i9lcrddS\nlPC0Q05b9V7Jjd8FSXZ+Df/vfzsDiUTiMTpelkgkEonEPwG/q8H/T8RvZwPTz3gfE4lEIpFIJBKJ\nROJ3wc+EUUokEolEIpFIJBKJ3wZJdhKJRCKRSCQSicRLIslOIpFIJBKJRCKReEkk2UkkEolEIpFI\nJBIviSQ7iUQikUgkEolE4iWRZCeRSCQSiUQikUi8JJLsJBKJRCKRSCQSiZdEkp1EIpFIJBKJRCLx\nkkiyk0gkEolEIpFIJF4SSXYSiUQikUgkEonESyLJTiKRSCQSiUQikXhJJNlJJBKJRCKRSCQSL4kk\nO4lEIpFIJBKJROIlkWQnkUgkEolEIpFIvCSS7CQSiUQikUgkEomXRJKdRCKRSCQSiUQi8ZJIspNI\nJBKJRCKRSCReEkl2EolEIpFIJBKJxEsiyU4ikUgkEolEIpF4SSTZSSQSiUQikUgkEi+JJDuJRCKR\nSCQSiUTiJZFkJ5FIJBKJRCKRSLwkkuwkEolEIpFIJBKJl0SSnUQikUgkEolEIvGSSLKTSCQSiUQi\nkUgkXhJJdhKJRCKRSCQSicRLIslOIpFIJBKJRCKReEkk2UkkEolEIpFIJBIviSQ7iUQikUgkEolE\n4iWRZCeRSCQSiUQikUi8JJLsJBKJRCKRSCQSiZdEkp1EIpFIJBKJRCLxkkiyk0gkEolEIpFIJF4S\nSXYSiUQikUgkEonESyLJTiKRSCQSiUQikXhJJNlJJBKJRCKRSCQSL4kkO4lEIpFIJBKJROIlkWQn\nkUgkEolEIpFIvCSS7CQSiUQikUgkEomXRJKdRCKRSCQSiUQi8ZJIspNIJBKJRCKRSCReEkl2EolE\nIpFIJBKJxEsiyU4ikUgkEolEIpF4SSTZSSQSiUQikUgkEi+JJDuJRCKRSCQSiUTiJZFkJ5FIJBKJ\nRCKRSLwkkuwkEolEIpFIJBKJl0SSnUQikUgkEolEIvGSSLKTSCQSiUQikUgkXhJJdhKJRCKRSCQS\nicRLIslOIpFIJBKJRCKReEkk2UkkEolEIpFIJBIviSQ7iUQikUgkEolE4iWRZCeRSCQSiUQikUi8\nJJLsJBKJRCKRSCQSiZdEkp1EIpFIJBKJRCLxkkiyk0gkEolEIpFIJF4SSXYSiUQikUgkEonESyLJ\nTiKRSCQSiUQikXhJJNlJJBKJRCKRSCQSL4kkO4lEIpFIJBKJROIlkWQnkUgkEolEIpFIvCSS7CQS\niUQikUgkEomXRJKdRCKRSCQSiUQi8ZL4/4WrXuuShg/gAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "########## compare to ECT crops\n", + "\n", + "mode='TEST'\n", + "test_data='challenging'\n", + "imgs_dict = load_bb_dictionary(bb_dir,mode,test_data)\n", + "\n", + "new_size=256\n", + "# ect data\n", + "img_ect_path=ect_path+name+'.jpg'\n", + "lmx_ect_path=ect_path+name+'.pts'\n", + "\n", + "img_crop_ect = imread(img_ect_path)\n", + "lmx_crop_ect = load(lmx_ect_path) - 1 # matlab indicies\n", + "\n", + "min_pts=np.min(lmx_crop_ect,0)\n", + "max_pts=np.max(lmx_crop_ect,0)\n", + "bb_size=max_pts-min_pts\n", + "bb_ect=np.array([[min_pts[0],min_pts[1],max_pts[0],max_pts[1]]])\n", + "\n", + "\n", + "img_crop_gt=img[bb_gt_margin[0,1]:bb_gt_margin[0,3],bb_gt_margin[0,0]:bb_gt_margin[0,2],:]\n", + "lmx_gt=lmx-bb_gt_margin[0,:2]\n", + "img_crop_gt_rescale=imresize(img_crop_gt,[new_size,new_size])\n", + "lmx_gt_rescale=(lmx_gt/img_crop_gt.shape[0])*new_size\n", + "\n", + "img_crop_init=img[bb_init_margin[0,1]:bb_init_margin[0,3],bb_init_margin[0,0]:bb_init_margin[0,2],:]\n", + "lmx_init=lmx-bb_init_margin[0,:2]\n", + "img_crop_init_rescale=imresize(img_crop_init,[new_size,new_size])\n", + "lmx_init_rescale=(lmx_init/img_crop_init.shape[0])*new_size\n", + "\n", + "plt.figure(figsize=[15,5])\n", + "plt.subplot(1,3,1)\n", + "plt.imshow(img_crop_gt_rescale)\n", + "plt.scatter(lmx_gt_rescale[:,0],lmx_gt_rescale[:,1])\n", + "plt.axis('off')\n", + "plt.title('GT')\n", + "plt.subplot(1,3,2)\n", + "plt.imshow(img_crop_ect)\n", + "plt.scatter(lmx_crop_ect[:,0],lmx_crop_ect[:,1])\n", + "plt.axis('off')\n", + "plt.title('ect')\n", + "plt.subplot(1,3,3)\n", + "plt.imshow(img_crop_init_rescale)\n", + "plt.scatter(lmx_init_rescale[:,0],lmx_init_rescale[:,1])\n", + "plt.axis('off')\n", + "plt.title('init')\n", + "plt.suptitle('compare crops')\n", + "\n", + "plt.figure(figsize=[10,10])\n", + "plt.imshow(img_crop_ect)\n", + "plt.scatter(lmx_crop_ect[:,0],lmx_crop_ect[:,1],label=\"ect\",c='r')\n", + "plt.scatter(lmx_gt_rescale[:,0],lmx_gt_rescale[:,1], label=\"gt\",c='g')\n", + "plt.scatter(lmx_init_rescale[:,0],lmx_init_rescale[:,1], label=\"init\",c='b')\n", + "plt.legend()\n", + "plt.axis('off')\n", + "plt.title('ect')\n", + "\n", + "print 'diff gt crop to ect (landmarks):', np.sum(lmx_gt_rescale-lmx_crop_ect)\n", + "del(imgs_dict)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "landmark diff using \"crop_to_pointcloud_proportion\" with 0.125 margin vs. \"crop_to_pointcloud\" using \"center_margin_bb\" with 0.25 margin:\n", + "0.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAADICAYAAADyWgsPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXmwbdlZ2Pdb057OdMd339TvtVrdag1IIAYzIxyogE1V\nbAcPieMQKomxYzs2OIljOyHGEJx4KqcwwXYqYXBcqQqhYjCxgWAXYDCEQcRGEoOibqmnN9z5THtc\nQ/5Y+953delWP7WGduvtX9Wpe/c6a6+9zznfXvtb37RFCIGBgYGBgYGBgTci8vU+gYGBgYGBgYGB\n18qgyAwMDAwMDAy8YRkUmYGBgYGBgYE3LIMiMzAwMDAwMPCGZVBkBgYGBgYGBt6wDIrMwMDAwMDA\nwBuWQZEZGBgYGBgYeMMyKDIDAwMDAwMDb1gGRWZgYGBgYGDgDcugyLzBEUJ8vxBi+RD9bgshvBDi\nz346zmtg4DJCiPf0MvhvP0TfnxZC/Nqn47wGHk2EEN/Yy+Ot17DvmSx/xSdwfC+E+K6H6Pdtfd+t\n13qsz3QGReaNT+hfAwOfdoQQf0EI8Xs+jl0eVlYHmR74VPOJzp0fta8Q4t8VQvyZT+yUXvE4w/Xw\nMRgUmYGBgU+Evwh8PIqM+FSdyMDAx8nfB/IQwvMf744hhJ/p9/3nF5r/MPCpUGQGXgX9ep/AwMDA\nwMDAp5sQn5jcfgL7v+Z9Bz65fEZYZC74EJ8SQvwDIcSpEGJfCPHt/fuPCSF+WAgxF0Lcfbk4ESFE\nIoT4y0KI/08IUQshnhdC/FUhRHKpnxdCfJcQ4vcIId7X932/EOJrXuGcnhZC/GB/7EMhxP8ghEgv\n9VVCiG8VQnyoH+/DQojvvHzsV/kO3iSE+AkhxEoI8ZIQ4ls/Rt9vFkJ8RAhR9rEI73jY4ww8Gggh\nvlII8StCiKq/Jr7pTKYv9PFAAZzFGnghxPe+ytABUEKIv9JfiyshxI8IIW6+wnl8rhDiX/Sy+qwQ\n4o998j7lwKPMy8XI9PPiPxJCfKkQ4hd7+X9GCPHvX9r3o2JkhBA/BXwdcPvCtfDsQ57HHxZC/GZ/\nrF8RQnz5K3TdfbV7yaPKZ4pF5sx/+L8Dvw78l0Sh+q+EEMfAHwP+GfDngH8P+OtCiF8KIfwcgBBC\nAD8KfAnw94DfBN4JfAvwFHA5OPHL+7bvAZbAnwZ+SAhxK4RwcumcfhD4MPDngS/q+24A33hhvP8F\n+Ia+798AvhD4C8Bbga9/iM+vgR8HfgH4L4CvBf6yEEKFEL7tUt//ABgD3w1kRFPoPxNCvDOEcPAQ\nxxr4DEcI8W7gx4A7wLcS5etbgUM+2lf/R4iy+4vA/9S3PfNqwwP/NeCB/x64QrzOflII8TkhhOZC\n3y3gHxOvi/8N+IPA3xFCNCGE73+tn29goOflYk8Ccc7/P4iy/f3Afwh8nxDiV0IIv3Gp7xn/LTAD\nbgDfTJTz1UOcw1cCfwj4LqAB/gTwY0KI3xFC+PUL/QQPdy95NAkhvOFfwF8iTozfc6FNAs8DFvjP\nL7TPgDXwvRfa/gjQAV98adxvAhzwRRfaPFABj19oe2ff/ide5pz+z0tjfnc/5mf12+/q+/3dS/3+\nWt/vPa/y2b+v7/e3LrX/aH+eW/327f44K+DqhX5f0Lf/jdf7dxxe/3q8gH9EVND3LrQ9QTTDu0t9\nlxevpVcZ9z29rD0PFBfaf3/f/qcutP1UL9d/5kKbAX4VuAuo1/t7Gl5v7BdxUeeAWxfaPty3fcmF\ntp1+Lv1rF9re0/f7igttPwo8+3Ec3/djfM6FtseAEvihC20PdS95lF+fEa6lnkDUoONGCB74FaIm\n+70X2ufAbxEn5jN+P/AbwAeFENtnL+JkKoDfeelYPxlC+MiFMd8HLC6NeXZO/+Oltr/dj/m7++2v\n6/v9rUv9/mbf7+te8RN/NJeP891ACnz1pfZ/GEK4d+Hcf5m4ov7dDDzyCCEk8FXAD4cQ7p+1hxCe\nJVppPhn8QAihvDD2DxGVk8syaHlg6SGE0BEtpleAz/skncvAwGV+PYTw82cbIYRDfvs945PFz4cQ\n/uWFY70A/AjwNb2n4PwtXv1e8sjymaTIQFzpXWQO1CGE45dp37yw/RTwDuDg0uu3iAJ05dL+L7zM\nsU8ujXnGhy5tP0PUrh/vt2/12x/Vr7+JnBItKa+GBy77Yz/Y/338Uvvl8znre7nfwKPJFSDn5eXk\n5dpeC6809uOX2u6EEKpLbR8kTt6X+w4MfLJ4uSymV5rfP1FeaT4ugN1X6Xv5XvLI8pkSI3OGe8g2\n+Og0UAm8j+irf7n00MuKy8OM+Uq8Uj2AoU7AwMDAwOvPJzK/fzoZ7hk9n2mKzGvlGeBdIYSf+hSM\n/RTw3IXtJ4mK04f77ef67aeIFiAAhBBXiIFcF/d9JSTR7HlRY3+6//uRlzmfy7zlZfoNPJrsAzVR\nTi/zcrLzWibTlxvnSeBfXWq7LoTIL1llnu6P+ZHXcNyBgU8ln6xr4WlinMzl5ItXupd85DUc9zOK\nzzTX0mvlB4GbQog/evkNIUQmhChe47gC+JOX2v40UeB/vN/+J32/b77U7z/r+/3jhzzWn3qZ7ZaY\nrXWR3yuEuH5+gkL8DmKW1D95yOMMfAbTx5b9U6KcXD1rF0I8ScyGu8yaqHB/PHyDEGJ8Yew/AFzj\nt8ugBv74hX6GmIF4ALz34zzmwMCnmjUxmeTj4Yv7LEEglgoB/i3gJ0If0Xv2Fq98L/lkxa69YRks\nMpH/lQepnb8T+BeAAt4G/AHg3yRmS7wW3iSE+BGi4vIlxPTvf9AHCBNC+DUhxA8A3ySE2AR+hqhY\nfAMxSv1nHuIYDfC1Qojv50Hg7u8CvjOEcHSp74eAnxNC/B0epF8fAH/9NX6+gc88vo0o8z/fy4km\nTqLvBz77Ut/3Al8thPgWYrr2h0MIv/Qq4x8TZfD7gKtEGfwg8D9f6ncX+HNCiMf79/8dYpbfHw0h\nvJL5f2Dg08VlV9N7gT8ohPibwC8DqxDC//UqY7wf+HEhxN8mLjz/E6Jy8m0v0/dj3kseZR4FReZV\nY1JCCEHE58V8C1GB+L1E096zxGyiD17a7+XGfKWaBH8I+A7gvyNmYXwXsZ7NRf4jonvrG/tj3wO+\nE/j2j/nJHtARV8t/l5i2vQS+LYTwHS9zPj/Q//1mYmDnLwL/6cUMlYFHmxDCrwohvpZY0+jbgReJ\nE+vTPHBZnvFniZlE30EMEv4B4GMpMgH4K0SF5M8DE+AngT8ZQqgv9T0iXhPfDfzHwP2+36sV3RsY\neK18rOcavdz8fpHvISr630icX58DPpYiE4CfBv4f4vX1GPAB4BtCCO+/1NfzcPeSRxLx0dargU8W\nQoi/BPw3wO7LZE0NDLzhEEL8Q+DtIYTLyszAwMDA68YQIzMwMPDbEEJkl7afIrosPxUB8QMDAwOv\nmUfBtTQwMPDx82wfc/UssU7FHydmMw2xVAMDA/9aMSgyAwMDL8ePEYNrrxKDyX8e+IshhFd7ltLA\nwMDAp5UhRmZgYGBgYGDgDcsQIzMwMDAwMDDwhuWhXUtf//W/L9w9PsRVJePRBCEMk8mMWnjGownV\nfEVWTLn9+Dt44tZtPvzMr4IrUSbl2Q+/yHxRYrSkbRoSJbh39yXe8zVfwy/97M8ifcdHnn+WG7ee\nQgjLiy89w7pcUEx3+ZIv/Sre/sRb+OWf++dcvbVHIhTVcsnu3hWqruXg/iGnBye8NL+LRpA7x95s\nk6/4si9kYzYjURlt2WI6h+9qFBbpLKkKtMEyzgyq8+jEkKUpMkBqEtI8IQhDmhXoLCGRBm8Fddex\nubVBVow4PDomyUZMN6a01uIRKJWSpDnee5TWeOeQCDyBpuvQicFbT5JqQnBYa9GJoS4rbNMijeHo\nZE6aaYTw2JMFB8f3+OVf/Tlu3r7Ccx+8x+O3HuPoYJ9RnuBE4KhssG3HyFlmm9sslxWhLnnr4zd5\n/zPPYjSkIuOlrsG2Gpo5169f44U7L7C3t8HIpORCU5aB0RNPwM3H8FlCO28p64q6a6nrBtuuWK1W\neO9p25ZQW9q2BeJT1K1zQMC5Du8dnfVIpcB7nPecPQMthEDwHoiFGHwISBf6bYGQAhcs+IAMoIRA\nhcDff++/fF1KhA+yP8j+oyr7AF/51V8VmmpNJWCkE7YnG9TrFZ3s6BqLUAaCYjabMJ1uMJ1MuH/v\ngMksZ3r1Kd7+9ndx+Myv85H7H8KICW0H9+/dJZESJQWLk2O0lozGKbZtcV3Dwf5dDk8XmDRh+8oO\n73v/B5jOcrwXfNW/8bvIsynH+89ipGY6HlOu1lx97Aqqzbh3/5DDxX3u371D8B5n18ymI77s3V/I\nW970JMKB8gLramxd4rsK4TuEa9BBoJGkWiOkQwbY2tgAH3+L8XRK5yzj6YTMjBiPZ1Rlg/dACkIn\nOBdAKmaTKeu6xiQZPghUkiKlxBiDEALbOYzRGJPQNA1Cp0jbEYKncg1JklDXNUmSYK2lbWu6rsN7\njzGGanHMYnHKT/30T7B7ZYvVquTm9hXmh8e0wbG7scVvPf8R1k2LQXPr+h7L1Smia3jbtRvcPzzk\nfnXCY5vXWOuMn3/2I1yd5oRqRWcDOZa93SsYIQnOI9Ix6Y3bFDdv0RrBelmzWq9o6gbnLJ2rqVdr\n2rrBNi2Nc4Qmnq9TAuGgbWqEhBAswUsCgbbt4jUUPKnSMSndB5wGnIcQ+MFf+OWPKf8PbZG5f/8+\n5XqNynJaJNl0QgeE4HHOU4wntJ0jL3KadsXh4SHHx8fcuXuXpmnY3t5Ga4V1HUpJvHf4psWFwHy1\n5PrV61RlydHREXXdkSYFT7/lbTx28xbPfvhD1M0K5TzL5YJ0PKLuHN5J6rriZLFPqjXTIkeEwDvf\n8Q72NrfRLmC8IJUaAXGSsY40NVEYtME7z2g0Ik1TAJIkQQiBEAqlFADOB9AS5x0my2g6y737+2Sj\nMWme03UdACGAVAprO9brFXVZkiQaZzsgICQg4mPH44/vkVKe75+mKc26IheSDEWGphjleO8YjyfU\njSXLsn4yDCRJysZkSrlcxxuQMRR5BgQ2Nmd4b5ECNjc20FIwygqkhM62CGB7c4PToxNs25GkKdON\nGV1n0UpjlO4/u8d7TyDgvcNoA4Dvz10gohBa2z9S3YMIIIjfXwj4B4+dp+s6nHtQy+zsvfidC3zw\nhH4fedbmAv51fMrJIPuD7D+qsg/QrEskoJxDWIdJFEvfUpUVBBhlBZPRCD0tWNmGsu1ACGo35cbO\nTVZ377IuT8mCxGBZz/eReJxvmS+OMYng3v2XuPnEk9w/PGKxWHAyn7O5vUeWZZwc3UOENUJInn7H\nZ3P71pt47jfeTwieyWRM27SMsxyB4bQ85mRxn9P9I1o6EJ6RTrk12+Xm3g62WWE0tE0F6wbdelIv\nGAvDTGWk2pAVCUWiyEzCZDRGBIESgiLP0FJidEJwkmA0q9UKKQS168ALxmlBmmSkKiGEQJamOOfI\nspwizRhlBUZqfOfIhCJYR7laRUXXWbwIOOHRUmB9h9aScrmgXa9xFrrO4b2nrkuk9bim5vD+SyRp\nQLRRQW5tS24Ei/IYtGQyLsipyWVAOIFRBV4pivEGe7tXwXlsXZOWAV07pjrjLTdvM94YUdVLlAwU\niUJZj1KCVjha1yGsRwWBUgrvIXQWazuQgqAl2kfF3XsPrcVZh1ISfMA7h/NxMaO0QimJhnit4XHC\ng3VxYnkIHlqR8Z3FKI1Jc4TW7B+dEKRkWsywTYfJCq7deAwhPSen+ywWc8qypFyVSCmZz+es1yuk\nhGvXr7JYnNIuTjg6PiCbThEy5eT0CGOidr+1eZXJdJfxeMLBwUso1RE6h3MepKB1nsPDEw6PDpHS\nI5xFecc73vIWtsYjQj9ZKyFpqwqlIctSTCIBR5IkpFnKaDwihIBWmvFojDGGLMvIkoI0KTAmRRmD\ndY40yzBJwmg6YzSdoXSCSTLatkWIODGt1yvKcoX3Nl7wywWdbSnLFVpLQnBorZFSnk9q3scJrOs6\nRnmG71qE77BNhbUtSZIwKqa0TbzxBEAqSdO0GKUpspymrBA+4H3HweH9uOJ1LYmRaBXY3d7i5PiA\nLE9JE81yeYqtG25c2aNcrlit1zTeYrIUHzzC+X4ijcLmnOtXnt358c8m+RACQgoaZ7Eh4ALYfuV5\nNokLIfrJ/sHkfvae975fafSTfIhtCM7Htq/4HLdPPYPsD7L/qMo+gJQSpTRlVaG1pC4ruromKINI\nM4IxWCTVumaUT1BKIXVCno/IMs1ydcoHPvAB2qbhzr27rNclOzvbhODwwZNlKcFZXF0hleLe0RE7\n21do65r9/X0WizVaZYyKGbdvPY53HucqfNkyPz6mrErS2ZimhqpqWZcr6vYUBUzyjFGS8llvewdj\nk5KgkF0gUxpjND7Em6VSitD/JQSKoiDLMhJj0EqRZSlKGZQ0/fWRYa0lTVOqukJpjRCKu/fu0bUd\nUpv4GwfQWhOCp65qjo6PqKqSPM+QKsoYAlxvoTyz8kkpz614aRotOb6smGiD6RxjYzDGUFc1eTHC\n2kCapqxWS5q2QWvDdDRmtViQJQmjfMTG5hStFJubM1arBc42pFnKerWgrSuKUUaRpyglKEYZe5s7\nOGvPFW2dGKz3aKkwsl/ouKhY+eDx3qH1mbWp30/2Crn3+OCi/ANB0L8vCf2C4QzvfW/hjDxMHO9D\nKzKJ0mxMJuQyoVlUXNvcxXjF4nhOlo7QacbG5har5Zy7955DKlBas1qvzn+g5eoUhGexOObNTzyO\ncpYkN+TTGXdeukcIgSTJ0Drn9q0n+bx3fxH37t2nqpbkI8WLB/cIBJbHp6znJyyWh7jOYa1mo8jx\nXcvOxoyrO9uUtiNoidMSmSXnk5sxiizPSNMUYwxGa/I8Jy9ylFIkSUKWZWiTYEyC0SlKGlSSoBJD\nkmccHp6QZjlSGTyyvwCiKV0IwWQ6Ikk1Zb0m4BAyoLSgbkratj5f7dreTAgQfCDPc4QCNDSupQsd\nWRbPdTrdIE3GtG1L17ZMJmOctaxXa67t7SGA3e0d2rZlPC5YlysOjw4Q3lGvVxzcv4vRgrouSVND\nmhls20Br2dnapq4rdJogjUYrhTybUAEpBM6eCZZAwLlwK6X6Sd8TEFjv8AKCeCB88oJZXWuN6i9S\nIcT5DU3ruAr2ztPa7vxCPrsJvJ5T+SD7g+xHHj3ZB6jrmrquubq9gwxQrldoqZAmQZqE08WKfDIi\nFQnrxZL5smRje4e9vT0ODu+xf/AS0+kk3njrmrZt2N8/YLVaErBc2dthtV5AXbJ/cI9kMqJ1gcV6\nQZ6P6FpPnk15/PbTPP2Wt/OR5z+ETgLbG5sE60nThHVdUZUNhwdHrNcrlJKMjKKrSj77HW8jUw9+\nsyRJKMsSpSHPU4yWgCVJDGmaMpmMEQLSJCXPC9IsYzKZkmcFWiVIpZBSIxJNbTtMmiK0ApNw5eoN\nismUvBjjnEPpeIutqorlak7wFmMU8/kJZbmiaSsIDimi5UJK2VssXe/GbOisRSnJZFTQVCVaC8rl\nEqUEy9WS7a0rrJYNW1tbSKnIsrjA0EqxOd1gvVqTGkNdVyRpXFAsF3OCdShvUQISLZFSMJ1NqKo1\nXdcwPzxiczRjNZ9jvScYFS253iP9A0XcdvZ8QWJt/F+q+LmDj0q7lBLrPY6Aw+MRUam5oMAIKXvl\nL0A/nr+wIPhYPLQiM5qNcV3L4ugwfvBJTrJRUExSRpOMSZGxubPB7u4Gy4NDaC0nixPazhKCRivw\nPgpLWVb4IDlcLxjpjEIIFs2S1p5QtWve9I53sHH7CToU5fE+I51im4TKrem6Cm8dB/f2OTw8xLsO\nE+KXeX1ri+t7OzRBksiCIBNMIhglHokgTxJSLbG2RiSCVEkSZQhBRB+glChj8EIgjAatkEmClgl0\nhjSfomTGdHMLpQ15nuFtw+Z4ExrPtBgxzlLaukNJRYIgkxLvuzjpBUWSFFhXg/AoraLA1i1GSmzX\nsS7XuNAxLkaM0gIrDHvXb7O1OaNcHHF0tM/p6RFFPuKlO3cZjwqqukIgWK/XlFXD7nRGV5bcfuzN\nbO3tsu4a3vy2t7IsS5K2ZJYXdEg2RtuYINmeZmzv7nC0PgYRaFuLVRIrAkIrvA8oJWmtp3OeprN0\nzkehdf7cb6sJqACh9dCJ+LQqPMhAMBKvJAiBBGxnsZ1FS4W3js67uKKVgBRgHb63QDgRUOL1i0sf\nZH+Q/UdV9uHMohAY5QVbs00yk5KahO3RBu28RDvIZcYozZmfROVj5+o1RqMxSoEPNWXZsFqtODk5\nIS/iM3jX5QqlBMdHhzz55BNo78mKhPHGJof7x4TgGI1GKJnyWZ/1bt70+NOsVjXHx4f40HBcLhFG\n09QNfl2zf/g8VbXC2UDwCUZKxmnG9mzK9mzG2rYEI2mFR2YG5zqatkbqQF7kZGkelU2lSdOMJE0I\neEySRGuDTFBaRwVfJQQgK3LSUc5kNsW5eIMWQuNCtEIIEd2nIQQ2t2ZkmYnKi/AEHMYonO+omxJj\nohXHJObciiGEJE3iwqILHct6FS10Jiq5Ozs7aJ2RZ5Nzy95oVGA7S1s3zKZTXNeRaMO6XBKC4+T0\niI2tKQJPZxuefOJxpuMRy9UpUgbmi1NWqyW2blienkJ/fSklEUqihUQHgffu3OryQNl/oOgLxLkF\n1nuPUAofoqs0yAf+UkG0QJ1ZKgOg+ziis+/h1XjoK2S+XNDUNXlRMJtNyU2C7xx107C5uUGejUiU\nJnQtx0f7BOGx1iGlputqtJakaYq1loODQ5SSLE5bJpMJh0d3SbIAQXPl6nWuXb3KRj7mZP8ux0f7\ngMfhuLq9S5amBAFNV9N1Lda2KC0QHm7eeAwjFUZrirxABtFrdqC0IEkMQkoSnZ3HA0gRNfSiKDBa\nn5vdTZJhdErdduR5zub2Fh6YbvQPNw3xx03SNI6jNdZ2SKUwqUZrhVYmBn7B+eqrrmuccxhj+otG\ngVaoxOClQKcpk+mMum1BSsqyxPbmva7rWK4WrFZrdq/sYK2lqkru37/LyfyY2caULE1YrZdMp1PW\ndcnx8Qlve+vbWK9XrNdxrI3NTU5PT5FasXNtj7v3DtBKcGVji2q1oshyfAgoxJnLH+HjtkIgfCA4\nT+0dnQxYCS29Bu0CQkpkHyDmg8c5h/Dh/AlrAVBaIZXEeodJk2iOltHUqqSKF4AQD8y+r2OcwCD7\ng+w/qrIPkOcJ4/GY+fwEJz3ZtEApWB8f4X2LyVMW3ZqgLGmhkAqC95wu9xklksMX75IoyeHpEdPp\njK4NGA1aC5IkoaprbAcnzYpMJWxnOaUtSVJL6ypuPPkm1MY2e296ivnhfXTTIHxC2S6wtHhnWS2W\nrJZr5vM5tq4plMI1ltvXrjCbjmlQJHJEEAZjBOMkIIIkTwyZMXRthdMekygKneA9COfJsxytFEJp\nZGoQRpEUBSZPSEOGbSXIjGrZMRpPyfKcJNHYtmSaTxFdYFqMmGQZto0LBuk8mRBEW1t0WyYmI9Ai\npMe5GDcmW0cqFLaJlshVvaSzLXmaMUqior975Tp5pujKU+7ee5Hlcs54NOGlO3eZTqdYaxmPx6Sp\nQZkC4QOZkOxu7jEvV1RddFw+8+Jz7G6NSasGjGYy2aDQE67v7JDQsbGzTWWjAua8p9MyKt69m1Up\nSesC1ocHyr6LcTHOOaztCF2D9IHQWmgD9BbbgEco8InCy97S6QO2s7jOoh5CTXloRUYrhUkSghA0\nZc388Bi3KklUxiifMZ7MODk44vkPfYjMaLq2pmk8UmjapqVpK0ajEQBNUzMeTxBCc3R8n6qZA4Fi\ntMlb3/U5VFXN5qjguWc/wNasYLmeUzU1zXzF0f4+q+WSdVWiE0WSGrI8YToac/XKHpPRGCMVGtlH\n/UtGaYZU8cs2OsWYDO88WZZhjCbLMpzQqCQHlYBKsEFQth1pMcYLyaoqSbKUu3fvURQFSivyPCdL\nUxbVGhscy6qi7hqcbwnBIbUhMUWMV1AKkxiklOgswUsQRqFSQz4ZgVEkRUY2GmGyHJNmBKGZTqd4\n5zg6Pubo6AgpFZPJhDTN6LoOpUXUtH1H29ZsFAVGC249foOOjul0wsnJCWmaMZtNMUazsTGjrmtO\nlsccnJySZGO2tjbRNrCRj7Fti1QyTuQeVBB462jqmrapo//f2T7Y1T3wk5759nuf6ZmfX0oJ3qNC\nDKAMSiJkXKEKKXF9wKPv/cnns37/PiHgwqtr5Z8qBtkfZP9Rlf14KpLJZIKSkpOTE1bLJeW6RCeG\n2WTKzvYWW5MZdd2yvbXLzRu3mE5mFEnG0cEBZbmicx1t61AqWiTatkFrHZX7w0OUlpwc1YxHYw4O\n72BST7luqbuOd77zXUzyjOXJffbvvESWJbjgEdbHTLsspeka5otTmramKDLqrkJKybWrV9FCkpiE\nPM16RdT2Cn4f4C4licnIsuw8LiVJEtI0Xivx/xQPjKczrPeUVctsNmO2MaPIC4KMv593MavtbLGA\nlFHJ1wqTRteMMQnWReXW+YCUiqZpokyrqMh672mcxUuBl9FKurG5xWg8oXUe27tb8jzn8z//C0jT\nlIPDA46OjtnZ3SaEQFmu2T+4x9HRAWmW4NqacrVke3uTw5MDjDEslgue/fAzTMZjkiS6jbRSHB4e\nYHKD0gmT6QZGS4xQ+M6SJAmegOrnGRkeKPsS4gLKeRpvsQo64bEyyngIAYHsLS0X4mtczBA7V/jF\nmcKvPspV+0p8XDZLHwISAQKKJCURituPP07TWrwDKSSH9++hpQAtWK8qPKCNoiyXQFyVbWxsMJvN\nOD65g/Nr2qZBqwlf93W/j3/6Mz/Duz//83jxmWeYjVPmJwcIYFmuGOc5mUk5OT0hEEiMRuCpqpIn\n3/wEWxsbKCHPTbYyCFxnaaoa51qOTw5xzpMmOVmeonWcyLMsoxiPQClsCEhj6KwnG42jGVRKJtMJ\n1jtkonuTn2AymQAwGo8pxiOmGzNUmlDXK9qupW1aRJ/hHn2vEyaTKcoYpFJ0ziGUwgnogo9CKwRI\nzXxV4fusR24nAAAgAElEQVSlmLWWK1eusFouSZKUpmk4OT2lXK8pRjnL5ZymrUlTTWIU41HO/tE+\nJ8tTpJDsH+xjXfRdZlnOCy+8QNd1VF3FbGeT4+MFzz//PMLFCVdrjXUOjUR4jwiBYF0vtCKmxLmA\n9iCsixkyQRCC71/9RdqvxEPwvXC7cyH14oKJUQqstdCbFt2ZKTGEB0GhH4+gfgoYZH+Q/UdV9tu2\nZT6f452jKkuEEBit8cTYD1pPebqg7RyT8RQpNUmSMTKKF559lkRLkJ6m6dA6QQJ1sybPcwCauqYo\nRoQgWa5OWVenOGdxVvLFX/oefvXXfo1r27u8+OHfwnUr9g/uUK5X0DlEZ1mcnHB8fErbteR5ig+W\nLDPc2LvKZDQiSzMyY8B5ZBAooRilGUoHlBIYnWBMDN7N8zzGiqUZyuSk+RiHQuiENBtTNRbrBJPZ\nJlXX4gjIVNNZG2ObpCDtY7tWTYX1D5R8HzpCsEhlyNJxVPB1DNpVSqFTg5fgBegsYTSbkBQZo9kE\nlRqCUMy2tkjSDKWjJdXajjt37rBYLFBSMZvNyLKcpmmQClarBQGL95ZRllFkKSjwMrB3ZQ9nLaNi\nzLos8T5Q1zVZnhNC4GB9TDoakeZjlBaM04wEiTv7rJ6Ylo6Myn5V0dYNwUV598QgfmvduVz7EKLL\n1Lmo9oS+7AAC6aIy5PBxsSMEQkmQn0SLTJKlCG0omyqeYHB4JUiKMaVTtB0EDzpJsCJQtmuStEBJ\nGI1ymsbhOku5XBGQLMo1lWsp20DZwtvf+W5+9md/js992xdQqBEniyNefP551rUjuMBYal44use8\nXtC0FSF4yqqiyAu0kNy+dg2lNLqYEnrfnEmigCRZSggaFxSe3kxIzBBBJVgvcK0lMxnSG4Qz5JMZ\n+Xjca8MGSx89bTtMlpLkGctyjTQaKwJORC0+WEegYDTZQuYJLvU4EloHVRtT04RU5EnBOBvTOUcq\nE3zj6MoWgsRkOaPRBKMTHJJUafYm2zzx5qdoE4lME5rVkqJIWCwWTCbTuMpXCmMUV3av8Nj124zT\nCUWaMS1GHO8f0rqORdvg24adPOfq7k1U43nqTVdZrteE4HDKg5RIp2ikp8PTOovSGqsFLR4bPK6P\nzXDO45Skw+P6yU1gwVlk7wf1LuBCiOOGgLTxGPQTuSfEKHYVA850X08DIQgQ9w2vX5zAIPuD7D+q\nsg9gjEYIGeMbeneX9x6tDcEHhPdRMRCKre0dbOc4Ojzh+N59EiWQUmBty2pZU1ctAU9dr3urQcls\nNmNra4vF8oDOLnGuRZDy5V/2Vfzar/8mb33b2xHO8oFfey9NuSBRILRknGScHp1QlhVN1wAOqSDL\nDeV6zZsef5ytjS1ykyICaKFQSGzb0VQ13lvmixPatiPRGWmaxCD4JMEkhrTIMHlO5xxJXtA6R0CR\nj0d0fQyT6gOYVW/NSJKEIs+RUjIajRiNx0xmU1RiaJo1dVPT1DUERfQeeoqiYDweRyVfa4IUeEAm\nOmbDEWLAvUlQOqXzUZ+u6/o80+qF559HKcVqtWK5XFJVFeNxQdOUlNWaNNWkSpEYRZoa9q7vcXJ6\nTJ4XOB8tiycnJ7Rtw+1bt7hx4ybz9Skv3L1HVVtSrdBBkmcxMcB6Hy0wvaJ+7n4VEly/7UB7SJAo\nFwjeEbzDWRstm4RYcqD/i3P4swxBEbCADf6hyg889BUyGY1pqxhBXdU1JknQxhDocN2S+eldDu+/\nwJXdTdqmYnG6OE+rXC2XcbXiHLbr0Eri+gAoKQ1PvvlpmrZmsrvDO9/5Vp774Psx3p2nttnOkuU5\nVdVQVi1Bxi80MylNWbG7vcOoGJGmCVrHQK2ziRzAaE2apFy/do1xURB8zLRQylBXLUobVKJZVxXF\nZIzJ0vMI9zNtOUlSiqIgz3OsCAQVfYSVbRFC0DRNrBuQZcxmM6SUZFkWx0gz0jQnyTIc8aawmJ/S\ndS0gKJuGYjLBZBkmy6jqJn7eukZJjdQJVgjGxRhnPcF77t29y/Xr11kfz7Flg+rrhpggqOcrytMF\nj+1dYz6fI5VCG42znr29Xa5eucLNa1eRmeGkXpEYw85khvdxFXheJ0OIPvVSEbyPk4FUSCFQSJRW\nfQpqb1rvYiphEPQatTwPBlP9/2dGQm99rE0hetN7n7lxFvBVe0sdHFaCfZ3rTw+yP8j+oyr7ANZ1\nrKsFtlyRpwlBQDIa09ouyk5T0zjL5uYmbUjoyGIadFOzqkpq13C0PGVUTPC+pShywGCbjtV8iVCa\nZVVSu5ZVbVnXgRs3n4gBsqNd3v7Uu7h79yVuXt0hCInD4OqWWlpqWspmhXUNWZH3MUlwbfcKN67s\nIlWKyqconRJCIM1iKnNeFFgnWFeWgO4D21NCB9pkSJXgrQcHRTphfrimdQKZpKAUOksQOsW6WLxw\nZGJWn9CKxnaoxFB7SydiWrTrLG1nGM928EbR6g4vctA5tXUIbUBppBeM0gKhNK52CAt0ga5qsUEi\nVcLpyTIuRIQiNJa92Q6b27s0RlJMxrTlmixVnC7m7OxeYTbbpOkc3luc7UhNwp0X7pEqQ24Sirxg\nb2+P0XjC2lvcyZwPf+g3KcSML3zXO0lUy0tHh3jf0PoWkEgraVXACui8Q0hJp2O8mCXE7CRrcQQ6\nPF4JnNbR6isFigclCICPys6TQZA4gdQxuPhhYsQePtj3+ASsJRsVjKYTHLB3/Rrr9YrpZEKuBbae\nc3RwB9c2dHVL2vsfl+sVIQSaqqZrWmzb4bpYsOr61Tfx5je/HSkhy3JWx/doq1Pu7L/EeDwhS/M+\ndVEhtaG1Dh8Ey3VJmiRIIbh94yZ5kWNMElcO3pOmaSz0JcT5KkJ4YgBdgOBj4a88H2FbT1U3TGZT\ntEno+gDD6P9255UVvXdkWYZvO+rVmkk+QnnO6280TdOvVDRSyPO0SmUSUBrrIMny3qSfI2Tsk6Q5\nPgjSfIRQCml0Hz8wRgZBMd1A5Dk7O1c4PjkG4PjkhN3dXe7cucPOzjZN07BYLuPNLIsm+KZpuHXr\nFk0fZJllKV1V4roavKO1LafLJVmakkjNYrEg+IAnnPuKzxAiFoWSIcYNXExRDX1/SfSVuhDNo8GH\nmJoaAp3r63H06XTCRzNvsA6JPK+voVSMco8vAQGCf30TUAfZH2T/UZV9gKZuaJsWk2W0TRuDndcV\ndV2fp9ta59jYnrKYHwA1mfEE35EYRde0rBZLilGBkIJyXca6OSFA8BipaOsaazu0TNjbvcat27f5\nlQ+8j8/53HdRzw+ZprHKbVWVdE2HVoq6bWPRQgQOgbeW7c0tmrrm1q1bGGMoioLQpzUXo5gtJYVA\nyGhFvH79GuPxqC8fIEmSjKpsAIlOTLSeKcn23i7T6fS8voxzcbGRJPFac87RBgcmKvllW/ep1FH+\nRqMRm5ubGKXJ8rwP4pakWU6WF1hi+nGWZazX0VoltKJsGkyWkRUjVKJxBK7fuI42sW6NyXPy8YQb\n126gVHRxvfjCi1y7do3F4Ql0lmZVEpoO6TzdquLo7j6zvKBpGq5cucLxyRHj8ZjFYo7wHrzj3ot3\nOOkqjlcLVqdz7j77PPv7+4g+Awl61w+cK/uyD4iPyv5ZQUf3oDaSfeAuDTLGwyip4KweUz9fEWLQ\n/Ecp/K/CQysytrPcvHqd7d0drlzdoxiPyIqcuoaudtAFlqenLObHrFdzmqoiSRK68zLe8UKfFCPm\nxyfU65Jr16+S52NWy5rZbMrTt56kOj3iV9/7C7TasljM6bqWzlmsdXTOI02KR8RArLYlNQm72zvk\nvV+va9vzfPayLDFax1RH8SDjQEmJ1ilpkmM7h/MhmgYF1F1znhomRFxihRBo24aqquKNxcE4yRCt\nJZP6PAUzyzIAOmspqzKWne79/h4JStN1/twEqbWOxYM8BKGo6pa2s5g0oW6a3g8paL3HAru7eyTG\nMBqPmE6n7B/sc1wu2Lh6hXQyiis53+G1pLQtz7zwHGmasjHbiBMQgbc+/TT3775EkSWc7h+gApyc\nniLSWKVS9wWgOAvM6gtFSSmQIU7Y57n+PcHHlDnZNwVBjGgXsaCXd+68CuqZyfysVoB3DnFhLO+j\nadF4MB5Ub6K8eLxPN4PsD7L/qMo+xBgnIQTLak1jO+qqwgiwBNCKydYGVdv0dWJKxpnGhJbTk/us\nFkeE4OjaFpMkABydHAFg27YPom6iok1gPN7g3Z/zRbz04gu89V2fw/bGhPsvfpB/9b73kudFH6Sr\naJuGpu3oHFR1S5JkSATr1QotFE/efpzJJBZ5PLOwnWXKnacG94HxwTpEAIJCSkOWFTgbWJUVre3I\nRzndefXmcF4RG2L8UCDezG3d0FYNqTYYbaI89YG7bdtitMF5R55l0WpZjAhIrBekaU6aJHjvGY/H\nvbxoxpMZARkVZKCsYtxN2Vss88kUkedMpxusViuyLOXFOy9x9epVTo+OeMubn6Rer6nrmjRNybKc\nuq6ZzxdcvXqV+emcGzduYq2lyBJWyzlZorl2dZfNvV3u3L3LlZ1dnrr1ODvbO70iEs5rHHFB6Zc+\nKhQqiPhokgtB8EIIjIwBw47ojpZKYfvA67PxzgrmOefQxIB74T+Jwb7jyRShJEU2QglNXdaUq4qy\nKimrBWV1ggwWKTVOJaATvC1RwlGu5nRNfG6JNBqVGISWTEbb7G1vsH/nRXyn2N3b4b3vex9lVXIl\nG4GMJZGDc8wXc2TlCVWLCDHSOS0KEgWpTvCdoG08RqckOqEOLVW5xpUVwrZoJQnCgwKRKkwWg7GC\nUmTjEVIWtFYhTEHt4oTVNS2+61gu5kijUFlCKyxVvaBuS2pb46QgEQbbOoIXBKHQWiAVJKmK6bHB\nkShBs1ygvcW3MdDRWod0kGho6xVGBVSw+Fj3GyUFJ/OXaOsVeMV0usFbrt3m+OiYVVeSBMHj12/T\nrCqauo0X9nJNU9a0dcf+4QneK27uXGO2N2OUKO7f32cy2SDNM7KNjGXjKbIM3XU89eSTdE0TI8f7\nVYySoHSg7Uq8s9GnKQJORO1aIpDOo12gCi2d9+igMFbQuEDrA5iE0Efp2+DPAxttX0TtImerUofC\nInBC4pVGP0TA16eKQfYH2X9UZR9i1VmlFKuqJB8X2LZjc7bJeDrh+s0b5EXBtZs3WJeWxIypVjW2\nqqnKOU1V4juL9PRVYuHMxyY9jLOC1WJJuVwxmRbcvPkm9vePUVrilg3V6SGHBy+xaBbRuhI8y+Uy\nFn2zHqE0QhtWVYUWilQZJnnBeDQmTTOqqqTtuvMbrvcebQx108Tih/0NNFaqlcSfSFBVDSZLGE0n\ntNbRWovtKz2fVXQOIVBVVUybV4ppWpB4gS8bVOtiIL8x5xlM1juklKzXa7TS+BCvGaF0TF3uq0if\nPYspCEWSj2itB6lBCNIiRyWG8XRCIg21dyzKiiwrWCwWgOTK7i7Hx8e8eHCfVdvgjaYTgRYHqWbn\n+lU6EeOTrt24zmq1YrFYcHx4wLW9HW49doMb168iWsvVvT1u3r5FsTGl7doYlHvh8RxnL6Vkb2Ej\nynivwEgpYzA7EKw/jx1zvdVSShnTtHurpTyzyvS/lQjRRfVqPPQVYtIcaQxKRb/xaBTLmxslUSFQ\nLZdU1RprLU3TkGUZZVXGwK6mwSQJ0vQ1EaTkscdv09QlH3ruee4dHfOud76D0+N91qsFQhu80DEl\nzdpYEtw5OnwfJCe5u3/I//vrv8ULJ0u8EDS2iZVBFZT1GtV55vM53/9jP8Ff/aEf5u/92P/NwXqN\n0ArrHSeLU7QxoATLco2PoZCUy1XMSAjgOottO3Kd4tY1orHI1rO1tUUI0Yy+WC6og0PlKU4LSDRd\n65DS4Cw0dYuSga6pSbRCSYltW8p1iW07ROirnLq4aumaBtlajIOu7ZgWI7pViV1X+Lplc3PKc899\nmN/64DMczE9ZlhWHp/P4fBOlKWYT5ssF2zs73Lr5GE3XkWYZ25vb7GxucXJ6grWW97//fXjnOdg/\nQGcp9+7di+b3ziKFRPUmbnqTn1KSIAVBxqhyxwMt2ZgE3wslcG5CV0KihMR1rn/GkP8o4b84kZ+Z\nKH1fHl5I0Ue1BwThdc3cGGR/kP1HVfaB+KgII7l5/RYSxXgyYTobMxlNsG0g0QmZyQCJ8x1ts6at\nl+Q6pfOBmoDORrTNgqZe0TUl68UCLyHNc6RWBCXY2rhJvVpSLedMx9t88Rd/IfNyxW/8xm9QIKjq\ndcwCE7FyrFo7RO0IrWVrNsWj6Lqand0dpqMNbBMwKiNRCb6znJRzVssFvqrBeYLtkBJ0opCpYjSN\nAe6ts4xmU3wwrCuHwyDSgmJUkKZpTC1el3gFZpzj/n/23ixYsuu8zvz2cIacM+9cc6FQmAiQAAlO\noiVRsiSTLdmy5EEOySG3bfrF3VY7OuwHdbvtDssd9lNH27LsiA63AEnUaJCySU0mCRKEBGImUAAJ\nFFBAFWq885DzmfbQDzvrFiCiSrAFmBEC98u9EZUXyDy5zj7/Xv/614olspUyHO3ghcUrj9OSVtpA\n+tBwUXGKlJ5pNqbeSKlsgdICKRxVNkVWJdW0QEcxk+mUepQSa/C2wNsCW2VEGFSjhlGKmpbsDFZn\n7UvJTSdOctvB44CDWFKMRhxZOUwjbTAZT3DOUZea/tYO3oJWKVMn0Zll+cASCIOSika9zdNPPwU4\nBnZMv59z5sXnmWu02drcpMrzUPzNCnGt5X6xHwIeHdZbLA5vPcxYxcgLSlFhRQhDTbyiAioAHWFR\nSD/T1ji33759fVTBjdZbTr9utNqhVyUV4/GE5aUWo9GIWEvKMiPLxviZ4th7j7VuRm1bnAn94VZ3\nntFoxLGbjrK9t0eVj1nfHXDillvx3vD8s1+nMhXz84tMS4OUgbozxuCdRzebXLq8ysZOH2gD97I3\nfp5//K//LT/5yR/gBz/6UXZ3d4iU4uEnn+LXvvIwgjaeuxE8x2cfeZL/5S99gh/+4Adotju8eP48\nDz73DdZ2djm0uMBf/dh3c7S7gNIR24MBcRL8A0xVhskVEUYlR6MRSge1utYarXW4+FozmU7DJIYx\nGBGyZcos2ze4Gu3uEMcpSRLNcnKCijuSCldWeFMxGWXEUUpVFigRjMLK8QRlDUcOL/PIExV3vPdO\ntBW0W3UeevoZ4jhibWuLwwcXsHi0jji4dIBJVTDJLFVV0Gu12dzeY5pN+fCHP8xTL79MXmR4Jbn3\nAx/g8s6YpNULlKEM1GDo7XsgbOQqjnBljiGMm0qpgh221lhh8DiqKmSQ+FklrSCM5MlQzVtj950c\nYZYrIsMDe9/S3c2U7EKELB++ffT6n0XsDydj9iZTPv/YE6zt9Tk0v8CPf/Cj3Hbw0Hew/x3sv2F1\nWnOMxxPipIZ3GbVGk+FwQnf5AMyca9uzceR2swVVQVWEiZosz8icIYrbAGitgluuTihNFTBiSo4e\nP8bu9g7DaUZeFHzkIx+lzKY89fgTVNYxv7iMs6GAtsYyGo8RooYSkvF0yuZggKkMsYCTR49R5Rki\nCplAtWaNUX/A1vYOX37yCXb6eyy1W/zQB9/HLYcOBdNDJdkbDOi220gUxjuEkiH00RiSKMGUFdMq\ntGyjKELkFcp7olhRFjmtVouyKkl0nTzPcVKRpCnDbEJ3bo5yMkYpRVVVwYohbQc7f0IKeG4sZVGi\npQpGcldxJgTZdIqkIu0mwZCurOjUGpi8wk5yjLJ0uk3OnjvHzvYmJw4cZL7X5qVXz1B5T9ps4ZRg\nYXERrTW33HIL33zpDLXmEuPRHitLS5x5bY0rV65wz3tuY3s8Jp9kGO84efwY29t9PviBDzKot8ln\nBbeUMuCUgGO0RLjQOrrqcwPMnH8NKlbBKNJecwQWgaREK4n0AuPtPuN1NZPtjzOXb7beciGTlwas\no5W20TqcGK215MWUWGlsWRJFmmE2oawMtVRSVhVCCPIyp2EbjMdjut0uZ8+eJc9zThxeRsaa226/\ngwsXzrB66QLIilq9jvMab67RdsYZNnZ3Zhv53wP+DVDD+wz4GX7jD+7H5VNSIZjmBQ88+jSev4e/\n+jrC637+d+7npoU5Xt3a5d/97hcQog3+HoR4ivu/8CA/9zd+ih//4EdImkkI/0JQVJDbisoZhJBk\nwwn1Zou0Xmc0mRLnFa1Om7KoqOsYCKZoURRR5CVaenSSkE2mswed3dccSCmpZpthnmUIPJSGIp/g\ntccJj0oTZC3G5QV7ec7pieeRh79Or5Zy91KHo8ePc/bsWcZ5gVMh3Gtubo58mrF2/hIHTt7EZDpl\n7dIVVo4cZe1M8NZo1ptYu8nF1ct0j99MURTQunY6DBkyfh+sQgmqyuBn8/1RFO87rzrnrwXdCfGG\nk2fIzLj6gLi2YQP7o5zWWiKlcMbgfQC5nI2deu/+Kx2P3t71Zw37xw4d4ivPfoN/93tfQIgO3t+N\nEE9w3xe+yM/9xE/yE9//8e9g/zvY319VBWnaIE7rHDp0mMlogkolnpBkniYptjK4IqeUFbKq2F5f\nRWpFksRsbw84NHcAZ9ysbZOTpCm9+Xl2d3c4ePgIWZEzGuxghSRt9Wi3W6xfuUiRT4J1v4yCF0qj\nwY4KzsmVtmxvbrO6tUso7kPRfv/vPYj3mu/6wN3U0xrj9RGPnHqOX/yd33tjcf/Yk/yvf+Uv8skP\nvI+8n1Nvtnltc5PPfe1x1nd3ObiwwI999Lu47eARBuMdao00MGtaY6swsXXVN0grFYr7KA7C37Kk\n1u5QViX1ep3JZII0AmMCA9eod5iMR0FLN0tFVyrCG4u9WsDOIgCmozFxHCPxFLtDoigUgVdN71rN\nJma8x4njh3n8qce56cRNrMyv0G6mPPXqY9RbHfZGIxbadXqL8zSazcC44tnZ2wNTkEYx1hiWDx8I\neqjhkE69ydmLF1jpHWF7YwPd7DK0gnR+JehdTISS6tr0kQQZKUQpwQYtEwaMDxYGeZWjhQpFjQr2\neVddr70J7VaURClJVZTImY7ubS1ksmLK/MI8U2ORUUxlLFVV0YwjRoMRpTPYcor3BmMceMnecJtu\nZw6EQEUxtbg962GPOXr4Jq5cWeX2m2+jF0mu7OwwzsdU1rH5zZeo1+vMN2tIm1N6j0jqDHY2Z4D9\neSCdvbMa8G/xPMBXT73IgXabzeEQf53X4R/g//2DB3lpbQvPp/A+bPbMHgr/7Lfu5703H+OwXkBH\nEVJ6bFWgvKAUniipYSLBZDwhn+YQRSTtFkVeBDFf5TDSE8Ua5ysqkyGVwFQOJWdTDMUUXxrOra/x\naw89yKWNTRa6bf7GD/4QR5eXySZTxtMJywdWqJym2BsgvOVzTzzFz/3KrwNtvH8f8ByPnl/nb384\nZjQasqobrPcNut5jaCxX1td4eWONL19a58yFS9y0tEBj53mON9rs7Y6IK4upCXYzx95gwsLiEv0o\noTQW42UAmBBUwpMph88D5RcpjS0rnAiaAUf4iQu0oRQSW5l94yMpJUYLnHRIL6mKitpM+X/V2VR7\nF0byBFSuQjqJn5lDzdqu37b13wP7hc1J4zqnz5zDWoeW0E1V2BjeRuz/8oMP84m7b+UXfvereD4F\nfxz///F+7jp5jJsOHnxHsY8QnFlf5Te//CDnVi9zZGWFv/K9H2e53XnbsL876fNCv8+nv/iHZF4w\nPX2B71pZ4sh3sP9ftaR09HpzECds7fSJlSaph3HmRqOOs57dvV3iSOJQFMM+2XiMrqXkeY4QguFg\niPICpSVKBo3UJJvut5aeOXWKe26/lXOnz3H3h96DVJ6XX/gGxTRjfmmR/nBEpEHMCgdjDFNfzoqY\n1xX3ZOB/hl/6/fvptGvUtGZ7d49f/P0H8f5T31Lc/z+/fT/LjZSTBw/yxedf5F//9u/AHzvc/suf\n/lv8yN33MigDC9loNML0oREkSYJyjsloRBprYi+IZShwyEuSOEJ6iTUVadxgaqfk0wIbO5wpqMUR\nWZFfvdIwmxgUQuwHiGqpwHlMkTMZB2GzTgUuUshawmB3m1ajxrzrkaQR88srrK5u8cLpDeaXl3np\n5ZdZ6rY4cXiZtFFnYWGBYX/E5vYWC7WIVqJotFtsbW2hbznB9vY2Bw4cYO2Vc1w4d4XvvvcE3VaH\nvb090t5SwHQZ2uhXi3mtNd7I/YEBLwXehUw1Ya4NEFhrg1uv99hqFsUgQwK2FALrg6WBfF31/rYW\nMo1mG2M9WkbgLUU+xZQ5paixt7eHoMCZQIWXefiAV8OyWq0WaZpy4sQJHn3sYbrdFqtrq8Rxg6X5\nOS5deIWnn3+Oyxs7s4r5Hnb7z3GZDY4vd2i3GuRliUYCd3Ntg766asA9TMunMLLJuCyAD77p6zz3\ncHH3MaDFm2724rP8xsNf5R/9tR+nNI68zKgnMZPhlDyv6PY0UT2iyDJQkKQ18nyKcyFArl6vI7Sm\nKLLg5IijqmA8nuxbchtT8NmH/pCf/cX7X3cifpT7f/8P+D/+1k/xY9/zcZJazGg6Iis9+XTExtYG\nP/crv47zn+LqTcvsZvylJ+/jx+45ArHm/OoaKwuLjIqKzz97mt869dL+/+Prl5/D+QF/+Y6jfOCe\nW0kbNfLXXuP82jq3HjhA0e+THOlCmjDOSuoyonSC2IIs3P64HbORXoTFy9dRiCIYeQWxV9ikxex3\nvEdJgXc+jCZzTQgWJgmChftVrcG+IvDqBMm3cTN/p7H/2sXzjCcZr13eIBQr9wCnWGOPw0sd6kK/\nbdhfHzzDZ598nuvin8/wnx5/nH/woz/yjmFfWs8DjzzCz/6H+xGiPcP/H/L/ff53+Gd/+2/xw9/1\n0T819td3Bjx+aZfPfv5xhGjhuQf8KZ5eexnRa/F9Jw5/B/tvceVCMsnBTPoURcH83Dz98Yj2wiJG\nCmpxjfFwghc59ahBVpZYLTHFCCkURe5YXG6yvX2ZTmsOL8PESqTqzM+3OPPKi7SbTc6+dpF2rcnt\nh3b0lZoAACAASURBVA9y5tSTXN68xGgyZZiXJEnMylwXm42Q3pOpiJ3BkOsV9/gH+M8PfY2VTodz\nq2t4fx28+wf4jYce5fveeyf/5g++hPffWtz/75++n/ceP8pip411Hsos5GNZg6+gkpDWUox0mCwD\nFyaMqirkrZVFThJFjMYjrDVIBUU5JtWKIh+jpKUqTfCJsQ4lFIU3QaSPZzgaUG/U2d3aQ6cxHkmW\neSZFTiQEabPGYDjk1fU+Z8uYr3zuS9STmE/cfSf3HjjESy+8wMsXt7j3zg9Q03UGo5yXz5zh6JEV\nruQZf/j8Ja7s9tkel7x3WHEoqbOQNhGFJT04x4VLfe44vMz62KLiJEQNuFmrVELmDFNhwTliqbC+\nwlcWoaAoC5BB73K10HduFoo6S8h2LuQ3ZQpircE6jPLoWaEv3oLY/S0XMnEtjG01kpRpNkZQ4l2B\n9ym9Xo+trctoIYNgTimklJRlua8wT9MaFy5eIK2lKK1RwnL3++9F2Am7O2tcWt+E19HhVzeq8xv3\ncUxAb3GJeG8CPDf7t9rr3l0GnCKNIiIpqEWawQ1e55zHX+eh4P3dnN+8wtbeNgsLC3zt68/w9fMX\n2RoMWenN8RMf/z5uvfU4guBDUFkDMysfIT3Glgirca7CuoqqKklkGDvM81B5v3LxEj/7i/eHjfmP\n3TT/4lfu5+jCPIcPLlNvNHnh5Vdp1VI+89WHue5NywO8uD5iQU2xuWWalbz02iV+69RLocXg39iK\n+Pzp+/jI8WMc7bawCEohefaVl3Cixotnr7CWPUSn0+Wjt7+HTj3F4oiSCJtbEK/zudg3XYuoTBV6\nzVLijAlGYA600mG8bmZBr3UI43Mi+DlcHdu1ZZgY8cycQ2d5NVdH/aJvI7/+TmLflCPWttfZ2hvx\n+pPlVfxf3ryPO7pdYql4O7CvJPSnGZ57uV6xc35jDS/9O4L9qiw5e/ESP/sf7ntT/P/zX7qfoyvz\nnDx27L8Z+9ubO/SznM8+e+aNrOvVFttX7udIvfEG7C+25knnlvj9z32eixubdNMaH37PHSSpeldj\nHyAvchJR0B/2OXToEJW1dDrdMHpvLDL19AfbtBJNTkllKqqqAG+QKpyms+kUAO/tLNNIcfjQQR57\n/I+IY0HcTlnfWuOv/vUfYTza5ZtnTnNpbYvwvd8FnOLSlXWOLHaY69RBaMqsAD7E9XA8zJ6lWYso\nneFGxf3G8Fl+94kn4HrFDp/hV778Zf7RX/uxENhqyzAmXYupSkvqPXEqyYucVMRMswyZJESxJs9D\nSzXPp8StFjYrZy1LQ1mGKagoimZauBI7DbYF57Y3+bUvfIn1vT069Ro//vHv4VBvGVd5ShvaLiqO\nmYwGeJPzu48/zr/6zc8EIsB/EHiOb3zxMb5/pc3SfJtGo8ErO+scUMsk2YQi0Ty5scfPf/6r++02\nfJ9/8oWH+ekP3cFfmpcktZTp3phRWbA9GpA2l7BS4pVCRgI5NOjKoZxHWoefRTToWbaaLw1OOaw1\nsxaRDFNJ1ob75erXMCtUtARcqAITHQXdmFLXYjtusN5yIeO9QOmYPMtCyux4hJLhJBZFEUqGvIU8\nz2bz4UH8uLCwwHA4RmvFZDAmSRL6gz0OHjiK0AmdhuBLD36DG21UWWE5kKTMN5qs714Gfmb2b9c2\nJxhxeOEIynkO9Tqs96//unYtJa+em9GLb9zsBadIxAJr61f4g68/wy/87oNBR8M9CE7xqw//ET/3\nd3+an/re78dUFT6KqGYWz1prssxgigIdKZw1VFWJnNFsWimss/znRx9HiA74b/28gs/wO489xj/8\nyZ/gsccfZZznHDl4iIsb63h/neKLe9gdP0mz3uK5nVUuFEMubo1ueE1/5cln+MThFRyC7eGA1XHM\n5154PrA3BFr18196kJ/64U9y601HKKyZOZ1KrBWzkyb7gi8pJT6E2CO0Dr39WfqxkLOcGucRs0A+\nP9MeXB039LMgPSmC0NK7oJGwLozr7p9Svw3rncT+uVeeYziecqPvajCcvG3YX2otsDcq2LpBsdPQ\nh/n0F774jmA/ilI+/8TTN8T/l55+lq21K//N2I+F4MLuhOuzTg/wm0+e4ubFJtvDASudg3z1tSv8\nxue+eo0h5RR/8LWv8Zf//Pdy+4mj71rsA6RJaBE1Wm3GWcbKyjJFZanFKYWtsGVOLQoJ5XJmkDjg\nWkSDcy6M4DrIshwpNXNzcwwGQ5I44fDRFS5dXOXk7XexfuUS07zPy+fO82aF/aWt+5jvtAPbmdaY\nTK6PY+EdlSnRSnCjQ0ASawZ5jr9BUfTyxbOMxkOEFOxOMx54+BF2hyOOLi3x49/1MU4ePUqt1yQb\nZtTTBs45+v1d0iQhyzK63S55meOx5FmIGYnjOt57xuMgAi5tjp3mfPaRR/mnv/yr+1hEfJ1fe/Ah\n/un/+NPce+Im2r0uzVaLc6+eo5HEbO1t8a9+8zNvaJ1dvV4Prd/H37zlCDuDCadPncHf5qgphZGS\nn/9caC//8b/59FP3cUcjJk4b5MYyLivKSHFpc5uHnn+Z1XFGr9PlY3fcSSONSaTGSM3YFVg7E7lL\nBZoZM81+m9UZu1/UCGa9UwEg0LP8JiGvmeJ579+gK7veesulvrAVNSHwtmI42MOUBa4yCGuYjIdM\nswlZlWG9pahyULC8vMzu7i6NRoOtrS2Sesy0GNNstUjSOqOtDVYvXWJvMORGtHlpHdPxCKMKDi12\ngfuAA8DHEawA9/GBW49zeGmJhYU5arWIWw8tveF1zF53y8ocK902niFhc89eB+qfwfshtyy0eP61\nS/zC7z2I51M4v4rzD2H9Ks7/Hf7ZfZ/m9LmXKcsxopqgiXDGg1cIFUFe4Cc55IbUR1RZxniwy2Rv\nC7IRlzbWbrgxb+7ucer081xYu4If7dJfv4J2Hjj1uvfL6973qaB6j0uySrI5KRkW1fVZJ+5hOzO8\nmlm2M8urw5z//MJFPH8P51fx/iGcu4L3f4df//3/wnA4JlEaX1q0l0RIIqGRKqjKlQwshBSS6qqK\n3TikEiGoXoRcGTHbqEOcmAljlLOTvJGCQsMUO5tHBSkFsdZI53G2fKtQfdvXO4n9tbX1mcfFPVwP\n/5PJ9G3DfhzHtFs1uA7+8UMWmo13DPu2HHBlex13A/y/9Nq5PxX2B6VhML0x/leziu3MciWreHp1\nj9947gzef2qG+4dm98Hf4XNf+UMm4+m7FvthCaxzREmKUhFSRSitSeMa48EInKEsxuR5TjVjIq1z\nWOuY5tPQhpn5h0ipaDabNJvhvpifn2d9fZ25uXnuuvteFhfneOGFF7hWhF4tPK4WoS0ubWwhhGC5\n0+G6OGbEseUFmmnCSqd5w9e1I0kkBWK/2Hn9CofbbjNldXOV//ToY/z1f/l/88DXTvPlbyzwS19+\nhh/9v/4lv/WVhxgMBjOB91VGzVJWOZPpiP5gl8l0hHEVUaRBOMqq3H/AByzFXNra45/+8q/i/Kew\n7grOP4Rz4d77F7/8afbyKTqWnPrGKb754guMpiP+45cDq3K96/X4y5e5tDHgpeE2j519hccvnOXT\nTzx5w2v8n06fJ6o1qIDNfp/7v/oEf/83PscDD3+DR55u8rtf+Tr/2y/8Wx795jfIqjK4Gs+WlCJ4\nLs3asFKK2c/AaAbXb4+wwUVYzRyBQyBrmPLEhVk9D/u+Mjdab72QcY7xcI/xaECe50gZUZXhRuz3\ndymKLIxNzU4Xc+0O02zKcDhkYWEBpRSj4ZRa0kbJBK1iFpfmGQ2HMzXbm4MITlFPE4qiBKFZmuty\n8sAiR5c0x5dPc9uRBj/5Q9/DR++6i/lul5qOWWh3uXVpke+9/WYOdz0Lra9zbF7ysZNHeO+JYxyc\nn+P2gwu82UPhg4cXEN7x5PmLr6Mav/WL/uzXHiUvRgxHO0xGfbyrsCbH2wJTZuT5mHw6pCqnlFUO\n3jEaDRiO+szVE66/MT9Luxbz/HPPobRifWeXs5evsFhPrlt8wYheEig4pWYjoZLr3phwCq0gtwUm\nElwaTuA6N4KgxddfPA0wO5FarL1G9V2lwr0PoWEI8JFEJBovQ05GZYPzxjXre4dUCjczBgNQwiO8\nR8+q9lDF+32ho3grgRvv0HonsT+dZrRbbf6kB/Xbhf1eq81cq8ldR95Y7FzF//eePMQrm9vvGPa3\nNzfoRBHiOp9XcAqTTf9U2C/LklqkudGeEimBiQQjW/DM5XVuhP9nXjrzrsU+QD2u0Z6fx5gpaaSw\nWU5NCPb2dmi3GmxtbdBs1VHeUeQTyrIkLwuMKYJHUaxw0tJsN0OgaRRx/vx5Sjtlp7+B0JDUYi6f\nPUs5nbC5tcWNCvvSedqNBkYXrMw1ebOi/c5jB5hvN1mc67Ew1+W2I8tv+rqTyz1qtZTFTuu6GHN+\nyHffcQuvrm/zC7//5VDw/rEC/5//5m+xenkdYQ04Q2wrpI9wlaDR6mG8wk9zogpE7vATiysrhKlQ\nVYEqM/LRDp/9o8AKvum9J9p8/muP8M2zL/HIU4+RFn1WX3uFi2sbfwJjOSHXFdul5fTODi9sbHFx\ne++Ghf6V3PHEmYtUPuGpKxv8zktr4aDr3njQ/c3/8kX6ozFaSCIUERrtFcLMPJO4ZjOAdaDCfVBT\nwfRPChVYXQl6v3UrUVojhUcIhxBvY2upzKbgKipbYCtDEkWYCkqRI6Uny6d4FWG8Y2lxiWw6pSor\n5uZ6vPTSS1jr6XXn6Q82WV5apihzwLCzt0OiJNcq5m+lwxvp8sxnISSTxnrMzQdXuO3YTURa4wUU\nWUkjSnBpLegU0opOvWSh18bgcIUJ0wLO0m62uEVpjiz0uLi1y3D6ddqNBicWlmkphRGSrcGIG91M\nFzZ2qMoQlFcWY7JhTrPTDsIkVwYqHQs2RKNL4XHOkGUlf+Gu2/jVhx9/88/rRyxrGAyH9McTGmnC\n3tYmQiecmOtwbvc+4DMEBusUMOJwK0YLj9cRZRFo/F49ZnN0/Wt6qN2joRW5KbDWcz1GzHMPu4Mr\neO9C+q1zb1CRW2cRguD0SEilNR6MdUg3S/aNVNicK7M/qlcW4WQilQ5jhl4gRaARlZAzH4Iwuvrt\nHkF9J7FflobjJ0+wsXmK631Xrfo8OPW2YV9nGd1GnUO9Fq+sblH652nGMTf1bmKl1+aPXr3CO4X9\nIp/wg+85ya8/+tSbfl7vh6w0DnHp8uX/Zux7YC7VXGDvutf05t4y2hhSVAi9vEFboT+8+K7FPgSB\n5t5gl3ajgVaaWhKjpcKYEUIF/ZOp6iglkFIHc8OqwFJhXcgKa9Yb4AyrV9ZZXFxifX0LLTtYK6nG\nJcePzJPGEZcuX8ZZww1bQZFmMplgjaVZS7jzRI+t3QH4Z2g3G9x54nYatYRarcF4PKJVa5BPMj58\n8hiXtncpzdMkWnN04Qi1WFOr1RgMBpxcnuPVjWsYE5zCM+LjJw+TT0c8eX6dG4nkH3jkD/nHf/VH\nKcoR9XodpdqUtiJWKVoJ8mlBPg0Y8M6S5xWmKvC2whtDZnPOra5evyjxd3Np4wrPPf88vV6PQZ6x\nNcmwZcG1g9C3Xq9oNkHnbEjUdjjSNxT6b/I3SrCdDbCJ4uxgzPVa34LP8PQLL/LxD94DXLMUCLqf\nCoFAaR2iPJyj8GHEujKhp+RkaEN5uBZpcPV3zCxW4k8uU95yIVMZRzEpcNagtaRWT6nKDI+iMgVK\nSMqsotVoMxpOkcLgDBxYPsRwOGRjY5Ns2ufY8ePsbm9hsoI1X3HxymV6iwskjZLL69+6UZ08vIwW\nigpPnCZYHPVGjcX5HnGkQq9+ZheuhKQ2C/DSSULlLJG3NNMmPgr5LaX1NJt1GvWEssg5vDTPZDKZ\nzfAbMBYhNe1aCuLUTIT4rV/0cvcusqzEVx6lCdHtOCAYoglBmN5wDmtLsqKgKkucsyzUEv7hJ76H\nf/OF+xF8JmhSOIX3Q77nyCLSlsRaUznP5nYfpTXZZMzhXouFZsTaMGNSPk4aKbqNNglQGkNZVngB\nDRXjypI7Fruc3roP8bpr6hlxcr7BUqfBQqOJm0gWGhl70+trhuY7J/dDB5337I0mPP/qWYbZhEaS\ncmJ5kXYtoTL2Wk9z5kiLECHjJ4pCO2ZGsWulkH5mqCQCkyFcSDcOKvfw3xEEjcq381T6TmK/NTdH\nNh5zYK7H2ps8qA/Md0IB8w5gv9tu0mnU/7tiv8xyFjt1/qcf+Aj//sH7ECLgH54FP+Jjx5aYa9T+\ndNjPcuY6c3z4ppQnX/tW/L/3YI/jCz3cZEqznrA1dmxnp66L/27z6LsW+wDGV7RaDbrNOZq1mEhr\ndrY3KI3BGpBSAxIdSbzzZNmYoszQcXCznu/O4Y1hOB5Qr9dYX1+n02mjRITULQ4ePEAUxaT1iIvn\ndomV4EYH2+WFI8EUznjSJGDvyFKPO48dpdPpMJ6MiaOYSMfIWpPRaMSJw0fIR2MO9npkRc60KmjE\nEUIoJIJOq00cJ6y0m1zpD5nmT9Oq17hp7iZq3rK+vcvabh/89Qv8i5tbIbNL66B/0oEldDqMUuNK\nrLEURUGz2WQwmYB35JMxeTZGRppeGnP9ouRZRNVhbXWVSMfUtGQ0LVhu1Tm9eX1dXC+pk6QpRWaZ\nTiboesqBdp2LuxvX/Ztu0kNiGZUlmXE3ZG/2Rqv7fi/OBj1UyGEKTIytAhMpXPCWMcLt+zN5wsSe\nl5JIBjHwVXGvFLNDgP2TIwreciFjqhKPwBtPXmYUtRiHIY5rQfSoNFESMc2KmTjHs7J0gJ2dHfb2\n9pib6yGE47Vzr7G4sMjxpYPsbK5RWUuj02E8uMSBbovCGqx/GiWhVWuTCEJQXj0NI1tCEUmBdI7p\ncESsI1IdMcpHREmCokSpMLbYqClSm2JtRaQiHMGNU1hD7KGWBLGVims4GYR6tjLg4daVRZ49/+bg\n8Iz4xAfeG8ya0hrWzr7EyofeuTHk02ACZIqSqpzgncMUOUoprDX8wF03s9xQfPnFV9kevchCa447\nlm/B5xlWQH93D6EjIoLKu5nE6DhmPLW0FiMajQZZllFQoZxklGU4Y0iiGI2gVmsQI/nwxz/CNy5c\nZpKfJvaa2w+cJC9yqjJHdlq0myknjebMVv+6n/XeO29HiRC89uL5C3zpqWdnXgt3gzjFN167wMdu\nv4XDi3MkKgQJehcYHGFno6c2bODGWpI4xlQVxlaISOJFmAQRYmaOdJVSF2BLG6b0vo15M+809jcu\nXiISkhMrC4zynLx8Ai0F8815oiRF1pM/U9j30nHvkUX+yQ9/mEfPrtLPXqYetTneWqJVS1h7G7BP\nWfFd77uTWw8c4MzaJlt7z9KuJ8zXlomFRWpBu5mSZbsspILz13lwekZ88Pbb3rXYB9BSEjdjfOWx\n2rI77IOtiBPFdDQNCekVRBKKsqKocsoyJ/eKxflFbOWYjKYkacKxkzdx8eJlzp07x1133cVguMeV\n1XNEukG3eSej8RCJ4D233cKLL39rYX9wvkWkJbYImhJrQ8SAkpAohfLQabSIlKIoDY0kDQW6EDS8\noHAV7XadSVFQZTm9Xo/JeBKS3RGURcahxXmcrciMR+NR3mIR1OOIGzEfS627yDNLo1FDqBjvSkbT\nnBolQkqkMxgHkZZMxn3KymFNiTEFSikmoyF/4c5b+Y9PPMv12PojzSUa7Rbj0ZRxWdLPpihd45al\nOV7Z/NbrdaSdkGi5z3bEcYzzUEzGnFxs8ersoOtf9zcn5urM1xK6QhDpiMtqwoDrH3S7zRNB6C4E\nHh88ZZzHuFnI5ozJ9FLgvcUJcAqUBTtz0g6TXK8TBbtQ7EQ6et140w0w+lbBbG1FkmiG45IoVhRF\nifdQFAVJEhNLweb2FlZIlAzW5csryzzzzDO0mi2m0ymTSTAPy7KcTrfDhddeIY4jnLFEUUzmcnrd\nJmkcYU1Ju9UiFhHjokJEMVZaiiwjwWMnGSZ2CCkprUPXI7LRcD+EKpq5AioJWR6Md6yzTLMJtXqd\nWpRgvUHriFqUUEkXjIwij5KSthR832038dWX7wPxmZlBUjjR/f1PfpyDi12881S+ohH3GO316fXq\niCpjMOzTbnUwZQFulltTmWDBXFYUucFiWGo1+fH3v4dJNsE6KAwMTUVRlSz3uuz0h8y3G1RlSekM\nwhQcnOuGqYDBEI9naWGRnfUtWp0eq7s7lJMME0ck7S5mOCHPpvz5997GeGuN8WiI9hWxFOxmGVJp\neq0WH1pqsjF8hWfW70eIzwL3gAgM0U/9yP/AYq/HdDRibzTiS089y5sZqX3tpfv40dY9tGo1tJQY\n59BXDZCkxs0mW2KlmEwmJFqho4gKu59OO9vKEUKiBThj0FIgncB9G800/rtgv8hpRTFLjc67Avve\nw4Fuj0++J76G/cHwbcX++vY2R5YXabqMcT1ssJVx7PZ397HfWWpiqiscPXwzv/30/Qjx2zNfm4D/\nv/aD30+32WBzd/ddiX0AKSMUCWlTsbe3Ry1KKI3EmxKMpSKn0h6hNNZVmDKDytNtd5kMM7QKLsip\naLK1sU0+zTh29AirVy7QmeshkdSFYOvSeda2N4k7HXAVJ1eW6E8nGPc0UnpSXef4ygpZXlBZTxRH\naC0wVc5yu0u9WQfvgutvVeK9CBOHUmCqapZQ6nClpZs2QCucrWikEShHqjS1qIZ1Fmc1qixopHWq\noiSJNO85nPD85TcvMjwjvv/u92ClJ5uM8TpC1yLqjTo4C8JT5BVpLcZag9YKO94NTtez0XRbFazM\nN/mff+ij/LsvXWPr99nKIwvMNWps7+wgoojxuCTVCbkpONZr0k0866OcrHycehzRarRo6phxlpHn\nBUILmkohsoJGnHLL8iLvPx5x+tIa/fHT1GLPwbmDOFvRbmtW4jmG/Q2OzSdcuY5MwTPiI+99D64M\nxbm1lv54ynOvnGWQjajHCbccWKaZJCEvzoJ0gWGxwbMAIcIU4FUn7KuGgFFQnu2zNzdab7mQSdKI\nKs+J4xiE208RtSZsSv3BgMpUOKmRQlGWBRfOXwiGTlJQliVKKbrtJlIKVldXGQ9HdDtdtne2iaWk\n8JZuHNGo16ny8KGqqsLNes5FWUBRkNablGVBJAVOKYSHtfU9ep0uXlgG/UFwovSWnd0dlNS0mk0q\nb7BSYFRIdPWIMLcuwZUWF4Wgt0gprID3HT/CyZUlXljbYHd8moO9ZT75gR/g0PI8WZnTiBKQkHlH\nvdclr8ak2qGEwZqCInNIdHBmVJ7JeEJlKkBQlhYtYwaDEDRWb7ShsnRaLcqyIDOGeGGeRGvsTDIl\nlMQLFTbGdhPfaFCYkuNLK2zN8nIubG2xV2aoMmG52+HMuXMcP7hMt9NkqVdndXNIGleMsgijYtJ6\nh8neJh87fpxPfugI3xwM2CsndFsf4kN33kkj1uTZBKU1z716bnYafbNe6QOcXd/kfUcOA+CNC34a\nBO8MNTMAs9aGDJ8yuMFKfc0BdaY0CN83gJ/9PeDFt+9U+h3s/9nG/sHuEjefuJXv/Z4/xx+deZUr\naxt06u/l/bffSiuNMWX5rsX+1eW9ZzTsE0eKyhYYW2GqktJUpGmI7RARZFmGkJJ6o840m1JWlnYz\nwlrLwUMHOX/+NcqyIIkTlpeXuby6yuFDBzl29Dirr71GURQsrqxw5eJFUhUx322R1mKy6SREfuQ5\nWkdEs4eejmOUdMRCYScFEo+SKvg6lSNUnBA5g5YhjFBHAu8lVTlBO0UUSQwWKRTaAQikinFYypoO\nfj+NBt5a2qng47fdxMNXmSJxz76O5h/8yA+wPNfGmALvBVqBm7gZG+RBeBCCUX8aCuqqoirDuLIp\nyqC1muH7Q0dX+D9/9M/x1RdepZ+/SE3WuH3hIN6WFJMxcRQxzUvqsWY0HtNqNkBJknaTA70ucRQx\nGA1xSqCcQgP9osAWJcSKRrOJn+TUm02atZSFWoK0DmMyMuPY2N2hISNIBXEsaDvDHd06L/XvQ8jP\nhvba/kH3k8x3u1R5jjGGF89f5ItPPfMG1vKbr13kY3fcyvGlBRwWfGgfScBZg5cyaNveYAoZDl8Y\nj1Bvs7Pv6nAMaYIrciIV46oSKzzj6YTKWbKyoN1pgJDcfff7efyxR6g36ywudnntwnnKLCNRcOzg\nIagqtnZ3uPN972Vjd4dMgo4jas0GTkBUS6EsqWYeBDKzIdPGWYy0TG2JmRpir4jRlM6zuruDjBI2\ntvoUQhEVntN7uzTiOvOuxKugZZj3EVYWM2peoYTCCkc1HKNqKdMyJ4pipIZaKvju24/SqNWII0Wa\nCialIUlBO5DOo82UOKlhjaCSCbX2MpPhgPlOi3w8YjcvSZWEPMNNx8hagi0zSg9KRdRVHNwOfU6j\nkRBLaKkmZWmpZIV3PvQWjaEUAqc1sY8pC0OsFKWpqKUaFWnkwRr2wog8GzOoNYgSzYWLF7j58DI7\ne1s4KprNDp1C0t/qs9dIWVhs4XYKpHT8zb/4F2geOMC0n9GfZEzGI2ReEAlHfzQO4LxOj3icvQiE\nHn948DgqZ8LmQmA2hAiQa4o6xtgQ5y4tTrnwAIAwmopC4PHWo5GItxDl/k6t72D/zz72dycD7lp5\nD3/3/e97A/az4eBdjX2AJE4oq4pYCdIkZjgYkCQRQobT8lUW8OpEUpqm9CdjSh/c/yaTMRB+7uzs\ncvDgQaJIs7GxgY5UiLgAJtPgpwJBNFpgEaaiTopWijhNEQaYmQlaZ1FCYaYFVqaMB9sIJInUoQCM\nBM6ZIDhVCmfKWZq8wZQ5ngRnCsbTKfVWk2aUzibMQGuNExaFJNYRXiiMtNx15CDH5ru8vLHNIHuZ\nXmOeT7z/+zm5skxlSuJIo6TACUcUt8iLCfU0pFVvDbdJ4jpFXoJXKCHJ8nIWLOsxXpIVOZGOaQjB\nX3zfzSRJg6wwjKc5zpRs7fWJpcSbimZao12L8SI4CbdaPUAG5r3RJKqnTPaGtDs91GDAXmEwBqQU\n4wAAIABJREFUzuKkoN1p8+qFC3z3h+6loKIRJYyH0KgLNIasqpBpyrGDh6iXXZquz1/++PdxZjJl\nazym1/wgH7n7blpxxHQ6whhDfzzmi0898+as5en7WGg1aKYpV3PInHOIWVyBn+li9MwAz1QVWsnZ\nvfQnM5JvuZCZTqeUZYkQBoHBOoH3Bm+DaY0XYdSqMoZOt8drr73GyoEVOp0uz506RaPeoDRBhZzW\nauyOt+n2emRZjjUGnYQNLVKaajoh1gpTGYy1oXdWVbSiFJsbYi8YDUfoKGxoSb1OYUomkwxUxHa/\nTy4tUeEZmJzhJCfPanjlSGOFwhKJiE69jnWSepygooh0RoHKSFNagyKkteIkVQGuqIhFjDNDIgFR\nq40wJb1ugyiK0HjiKMzI1yKNr0q899TihGw0Cn1AIM+meBvSbROt8M6C92gv9n83VQlSEjmBtSGL\nhZnq3FQh0yeRGutC3ks9rmGsJbUJxw8c4uzaFhubWxyen+Ol8+dpdxoIYrqtOsJ7IiGZ7O5il3tY\noejWG2xkGVorjDXBkGh2kAgKcken2QDx3HVFoLW0SSXDtIazgAvOjFLMLKqlxLnANGgkVjikjvCV\nwQsXTMNmomKrAAFCC4wXSK3eKlTf9vUd7H8H++9W7EN4L2VZ0u7UGE8GKAVxohiNRrOHfoSUwfwM\noCrCCLxXCmuDl8jhw4d49dWz9Lo9pBScOfMKaS2m0+uhtGZne4d+f8DS4iIbmxvEUcygmKKFJk4T\nvK2IowghPMY4hA56iqwsSBFgLLmpEN7jVChk9oZBVBtFmp31LbrdLlSOra0t0rRGt51ircBIgRGQ\nmxBgihBYFxg0HUVBsC1AJQneWXoCfuCuW5kWOa1ajVbicRQUFlQlieIaXngKBEmziaBkXIwoiwnC\ngzWSJK5TGUOsI2xlmGRTnIioKjvLWNIU5RipZoJkqWjUa0Q6YlIWtNttIilByiCOlVCaUBDMddqU\nVYkxlnq7w3Sac2Cuh0VwZbSLMRnNdp18Mubi6ip3HF0h29tkkGX0ogRTZWztjYnqi7Sk58DCMmVL\ncuuBQ3z4lhPohXlG/QmjwTA4C3uP0ppTr5y9IWv56uoG9xw7GiI3gkHMLL5D7uPsqpmo0jq04JTY\n143daL3lQqbf74felbU0kggpPJPJhEiEniJKYvCBGpxfYHVtjUa9xkunTyOEYK+/R5wmqDRhOB4x\nnk5IGjU2d7ZI4xDEZ62l1+6wV+SM+wMa9Roewo0sFa20ToVjOp4gEEyqgn6ek49GREBelAgVUyHp\n93eoVZKRhthr3DDHSkOShImKykYcXIBeLcEJh7YGLyOUkkFcNDM2MnmBigTGSCpnqMWzGPU8Yuqh\nMTcfHC1FnbhWI9Iq0Kuwr+S2RTk7bQlyUyJkAJz3kMQa4RRZWRAhKYtydj013lkkEEdR+BK8p8oK\nlAghYkWRYYQCFIPBHjqOKUvJ3nBEt7PAle1tVrd3IYp59tXL3H7sOOV4wtaVi7RaXfCG6XhC7lPm\nuy38rAWCDyct5cPkp1AS5wTvu/kEj3/zJa7XKz1x6GQQboWWJ8oLpAoEucPMPrNDKc20rIiSkISq\nI42zZcjh8BY1MxGzUmJnmJfO8u1a38H+d7D/bsU+QDYastDtYooSW4X8sNFohI00GEMsNZgKkSqK\nacFwMsFKQkEsI0QUkTbqSGXRsWOSDenNtZiMhkhTcnzxOMV4ynAy5rajR1jd2iSbsT1SKdASFWtc\nUSCkIi9LsMFV21SGOFFU2lARo4RgMi6xuWESGcoxVA6294aMjSF1mlf6ezSTkrligkhiJuOMJRQy\n1oyHI9qtJqmK8NJTTaboKKEUIHVFpDVWeiYmI9aKyodk+EmVIZ0nimsUzuMqQ01O0XGDIrOoqEF3\nocl0OGB5sctwdwcrgjeXtgaVjfFRhCsKsmmGFholYoQBrywytsQixkpHt96iMgaDwXtHEgUhuYgl\neIWUGuEEsTDhO4gEqYAjy5pIJqwPJqx7xVynwctnTrPSrSOFYmmxy2h3h7m5ZYaZpFFLMUlJnHjS\nRDG2BfOxRglIhGAaxegkpcoLIqHpjyc3ZC0n5Ys4ZsW+c/vBq9bbYKK3zzxq8JKaS7DGY8WfjP+3\nPrVkDL1ej8IZnKkYTMZEMsabIK7Ki5J6o0ErbeO8QyvN2sZ6sLZuNCmKAh1H6DimM9dj7fIqpJqs\nyIMBjrEorYmUopHWKUbjWRx6hVQxKCiw5LYkEo6iKMmdwhgoCsNUQpLWQWlsaZDS06jVqUyJzypI\nBIXxmFJQZhWqoVnd3aNqJnTrMe1ah0QqhJBUVYEDYgGyqpDOQ2Ro1lOqYkyqU7w1JHGErUpELQRb\nKaUC5WkNsYyZDgdEUUxcWCqgdIa02aCcDJHe/f/svXmUptdd3/m5y7O9S+3Ve7cka5cla7FkySve\ngsF4w2B7BkMG28MBkoEzzCSHzBDIBAYTIMlwMgSSTJBMsPFgbAx4xZFXwJKNbXXLkrVYspZu9V7L\nuz7L3eaP+1R1y+pqNzlmZJm+5/Tp7nqr3nqr3t9zn9/9/r7L5obeWI8MkehXW4tOFVVTg9B4pZHt\nDUJKiUg0k0mJEJJxVVEGqJqGQVWineXIeApC4MuKmU6XtfEYmXaZDCZ0j6xRpJZsto/KMxY6GSeH\na8wUuyiDJcsyRqPoPgsQjCPYyFKonWFhdpZXPe+5/MUXb9skgcJdkfB15SXMZ3nLNg8QYiaHcQ4l\nIgtdECHjEMAnIqplhGjn2jqy6rWOScKGluoFSIEOT6Nq6Xztn6/9v6e1D5DnOVIKJpOo7rHWUlUV\nXlqqakyezpLoQDA2GgZKqJsGmUSUb++ePTz4wIMgBL1en4ceeiiOFkIkYEulqE1D0elQtlyLvFNQ\nmuh/5I1FJyl1NUIq8AS8taRCkiHJUNhpxcHVNdK8Q9kY8m4XUzVUwzGNc4zGUyossrQMQsNgUjEZ\nd0BHpHIVR533SJVC1zU+DWRFTpZHBY4PHms9NkSirvLgQhzN1pVnIhukbsi0JO3NghDM9OaQIiZD\nF3mG957O0lIkA4dAKhTWxWwqBzRNhWtMFKn5qDJEgkSQq0gad8HGMaSQaC+iVB9PEkAJFW0AnCMT\nGkdsBhOpowFjKVnsLzKYnGQwHtNLU5xKeOToCS7atYPjTxyhGY/Yk3dZ6M0wXVujP5OQ9+foZgmD\n4RBo5dKno5at8d1c9+yoZZ71cFq0YzQQLqqaIi8mbI6cQgh4Z3FC44KLyPC3WOfcyOgkwwRJUzoU\nDgUEZygDGGdJ0FjnqOqa6XSK1pK6qgghMJ1ONl/kjsUlmvGUaVVy8uQALSXBeYQPzPZmsGZKbSYo\nncYjUSqQpCRIqnqMaRrGlcELgbE1XirSbsHK+ohJNQICnbwg+MA4s2gkRkmM92Q6BtipXGNdyXrt\nsT5Q+xQra7zU9IQg0ylaxOyQxksa48mlxVclRZaifGDSNHSNodPpkeUxMPCxw0f50zvv4InVdfYu\nzPHWW25kSQQQYyQliWio6iqmBVuLJ0LnwkclDNLghMA7hU6yyLoXUbaXK8W4tqS1pZ6MmeJZqcaM\no/0HJ0ZDVFowqQ11cGilUC4Q0j7j9Qm9Xpf7TjzBzqJge54RyglOeuqqopOvIzJNZ24B00yRCJyF\npDUi0iGG4DmnufaSK9k+t8TdDz/E+uQBuvkcF2+/lH6e4oKJSfSt5M45T6IVBEFoXb2CDzhvwWuE\nC0C0c5dKogDhY6Ce0cS8Gu/RQeLl0+el8Z1c+93ZPivrI8rhBOuiEkmJwLg4X/vna//bs3rdHoPB\ngCRJyLKM4XAYDdbwLMzNkSjJdDCgk/TBxayorNchOEg78YbW7XbZtn2Re++9lyRJGAwGdPs9SDTT\nqmRSTSlmepxYPUmv06ExBi0VO7dtoxwMKUcjpIjjpDRJCEjKaYnyltliFuMcJB0GtWFtOiU0FtE0\nNMYhlMZ4wXC4Rm4EEy1JUYwqS+Nr8kJS1TWMG7bNzWK9pR8Mlbd0VYpwnqSTE4jk/WAdxtt4TQlw\nOJy0JD1NPS2ZOFicX4ijWlmQd7toFYNkvTHkaYZ0lnoyxVuP0JLGWaTwSAmpUCgNTgpM8AjnCMZg\nwqmAVuctUkjyLItqRWMZlxVSxDT18XSKU4rgJcPRhDzPqBvNynhIrzfHcHWVYyfWKGb73P3oQU6s\nTrhi7+443raOgOfI4UP05S7G3ZLti8usOIdONNb7OHbbiBaQAifhmosv4o577mNL1HLnxZHcriTC\nR96Sda6ltItN/53Q5iyVzra5bd9GRCbNMlyAuqlw1ZQsEeAanFA4GzNCXJuK2uv1uO/gQSCeQoyJ\nsqymqinSjGo8oeh1sOsrSK1JtMZUNTt37CK6vAuSNMEGS2McztdInVGVUdLZ+MDUVqgkwQRYO7FO\ndB68FjhAMx6yvDBLp8ijE6cQZElC1TSsrQ2YVFOkVvSygrJ2nLRjJB7lBbLIUEpibGvYIwXWmjgz\n9Qkg8GJMmsxjjMF6h0gyPvTFu/il04K+hLiL//jxz/BrP/R9vOyKPdjGoJVCK4URjk6nYNJYApaq\nKUFIpO4RTE2aaqxxaJXEcGFrkEGiVcJRM2LdOAbGsTqC1cmI2jpK65Bp5GkYBanXKBvzKoyzjCZj\nlBaUzrJWBnIZkFlC2u+yXlUkR09yeW872it8AKuhlA4nWhVAEDglaBrDXLfLLVdeSeWamAPjHM6e\nyoMJfsOWOp5AQ3CnTqM+eowIpwHfkvuiMsWFQCKjZFKIdtMIpweLPT3rO7X20yLn2No6VWXZqH/r\nDgBD8pyoZmhr37fhdONJifEBLRVhavHna/987X+LVdUV1hp6vQ6j0QhjDN1uF68l9WSKE5YQdOQ+\n+UBpGnSu8CaSNofDIXmec/fddz/JGTnNMvKioD83y8HHHkfkCdWgjuiU0tS+YaY3A2XDuFkly1NC\n2wAHEchnegxXTjJqSoJpWJlM0VmKc4KmKhGpRmY5aadLORyTZJJekWNtAy1SaY2gdIK6/X9jV1jo\nJNhuSj+fodNNSLIUpKCxltpasgA6eEyYIGWCJMVZjzEZnTQl0Sq69YbonyKlpCgKnLMU+QyT9XWk\nlKRCUZspxliSPCOYChEcxlqkTmLjYmPuUCYUVbDRX8gbQKGyBAdM6wpBQOcRVZRSM21qpj5QG8Oo\nrhmahhO1QSrFeDBkptNlfThidTLFITk5rjk8GiPrCYdPHKE/s0DaSxnVFVPrCckUITLquoY2XsDX\nJnpPAbUzLM3N8X233MjH73wqannLlZcynxcIIWKDR0viDVGV5JzbNLBWSuFdICQKL0Gcg2rvb2GI\nZ9B5wWg0ZvviLL4pKWuHTKMlsWi7wr1793H3V+9uc0ncJpNdykgstI3h5MoKTZsa61pnUiEESitM\ns3GSnaKLNHaAlUNlKaaMLPKpMZDnTJqGybjkTCmpJ1ZvZaZboVsWfFnVlI0jbvg3Qn2AyWTA3uUl\ntBCcWBsiAqRa4HH0007MUSEgNpjULtBYh28cxrvYLWvF1w+f4Jd+/z348FS29v/2gdv4k59+M/Op\nwvmAEhKpJLUxeBfQOiHPA9MGDIIkK3C2QYqECCoKyqqhsg3HplMeHQ4YTitGJRg0Kpsl7YAxFUWv\ny2BtFSUhzQu0h/W1EUkaTYVq07COghQGTYP0hsQmpCHQW+gyGlTsFBnehZa6r5BpQl22PgfBEoJD\npxLr4wkyBE9onRcFSds9R2dTIU9t6humSBvhcWiFIgIPUkSWv5QSnaYIH3CmQesEF0xref/0re/E\n2i+dZTwctk3MU+t/Zf1WrDUxmds5yrqhtoHTG/4xQ4SU52v/fO2fdXnnWJxfoJysodpm23nASvCB\nqpqSKqilY9JUuMaSpxkqkSwvL1NOp0zLcjNEsCzLqAoKnp2Ly1TDMWVVsbJynEQpbGOQARKpaKYj\nHDUueAQxviFIgTSgZwJSQTmtGVcWpRXjyRhURjbT58TJVYSUiNGYLM1wU88ki+GfRkmMc2Q6jaT0\nuR51M2Za1zhjsD7BUBF0yqyEpLR00hTrY+tZWo/A4rXEmYZCJsiQMakbsswyk6SkWTwUPHoaWrln\nfo4fe8FNLAvQSYWUUxQViobauShHDgFjDdqnTJsx3keJfh0kUmmUVAgk3kuUr+mlKUdXBvSCiIil\n8KxWE8Y2xhutjMagMyaNpQmtR0tZUckc1xiEkIwSw9cPHmTvzBwd0cVWDXnRZ1zXnBwNWUznyLSj\nKsd0un2cBd2SqjUCHaC2imsvvpLts0sc2EQt57l426XMFNG7yoeYt4T3BB/jCbx3pyIN2tgOZIjR\nHV4QNVlnX+fcyOR5TtUY+r1u9EQwBgE440jTlKqquPyKy7njzjvo9/oYYza7rw2vhPneDJPRGOsd\no8mYJEkoJxO6RYfuTHRJzbMotbTWIrxCJgmuivbesUENyDSltJaqbNgqAwL+mIBtX4Nrm5gzx8Lf\n9Kx9GDnD2uoxOqlgtl+gqoqiyNAqwViHVnEz9N4xWxSsD4d08wIhJR/70l2Irdja4v382f77+YfP\nvYK6qmiahtoYbAAfBNY4MnpIVRNka1luJUIqppOK0hiqasKwHvPEcMyJ0iGEpLfQoXaeE6sTpnWF\nSiSlmbDcW2RkaqQNeOPQaYLSEuctSZYyrixVWVJ0E3pOoZSk0oFHVk8y199JE6AjFYmrKBsbCViJ\npNFA5QCP9xYfbAsDxhmpaM28wrc4PkrZzju9QEQsHiHABkeikjhbb6V5yHgyjcqRp299J9a+aRpw\nkrPVf21KOlkaOQg2cMaGf3QrS/v2sjZcO1/752v/jMsYy9QPEUKQJjH9ujGWsq6pypJEgGliro6z\n8aakpGI0mTI3O8d0On1STtXG+MA2hkxrJtOSotfBrK8gId7U6obl5aWY0RMCnU4XqSS2jqRsLwLG\nuJg6bgOVdVSmpNefZTiuGB1bAWbAxaa9NhGlL05D6VMdb3/j6ZTBeIKxHq0StE45OZigFUjGCGAm\nTXHlNBK4RUw2903T5j3FcW45FaSzCd7709DKL/OL73oyWvmf/uIz/PqbXs3Lr9wTOVEIUp3QCEua\nZgSgbAyNGUX+iMyRKkU0E5TUEASgUM4jfeTwZXmHo4NVBjYwMJ61sWB1MqIylsZ7gooqSCMCSZ4h\nG4t3Gt+iPEEqJt4zNIbGGlQTeSqhKul2umRo5rrLSN8CpRqm0mFFVB0pL+JIvW6Y7Xa55YoraUJN\ncA5vzTehlr7NHRMIKRCoeOhSGyhmPExIr0AE5LcTkSmn43hyVIq6maCVRxAiIdBYdu/czfGVk4Tg\nqZsqKiA4JckDmM07mKqKJKFpQ1VOSZTGNYb+4jJCx+66rC2hkFAFlJaIROEyAUpjZQCv0Ta0s7Wt\nWdKd4l56us/ABpiss9WGvzqquXzvEiMs49Eaearo9PpoNEpKQhLtlouiD9ZTjiEtBN5YKus5unqW\nJNFwHUcHh0hEIJGS2gcSJfEevEwQASZlhZEB71xLLBN4Ex1416sRw6rmyLCmkhk7l7qEoDg2nvK1\nx54g3shuhvoAUDE/I1lamCN4h3OBtDGsrQ0o6wYRAlk3Z9wYglA0NiBcTSIDLslYsQ02SJRXeKkQ\n2iJViGx8JEFmOBlPjNYYnLDRQl1InIkXi5Ax6E4qonS2RcQ2NrENvojUNsrvPAQESZoi4nEHHQRC\napx1KBGR9XPIDfs7W9+JtS+FppaBs9W/Fl9m576befTxu4mX+pllkXXdsHth8buu9nsBxuMxa+sl\n1nlUqillOF/7f8s1O9vDmZJyMqWxjsm0YmZ2gROr63TSlE4iaaoJTctlECI2NEprRqMhw+GQqqo2\nlWxpGlGQXCc0Vf0UlDK4SAZfXFrC+QqIqJAngIpBg1IIbGVwLmCspwFk3mF1OKacnhml3EDpN+S+\n3jnqJtbxk5DK6ZAdc7OsDacQINUKbEMvy0lE24xKAIULYIKgNA5LSbfXwwmQieYbx1b4xXedGa38\n+T++jT/5R29hMY/+tdbGEWRlG1xbJ50iUh8aJ5AyBiZbE8izPCqXfWBajqhsw8na8I31AcNJxbgW\nNF6h0xmyjsSZkqzXYbI+iOZyUjA3s8DqyXWCj2hwYw1Wak5OKwoZCMKi8XQ7OYenU4QVbKtBq86p\nHKU0QWUpTTk9NfISjiSVWBfwTdRZbwRBgo4mnMG3DWrky0TCr9qUWW8gl0FIJJEw/63WOdPhrbXR\n2dRZRAgI35LitGZ5aYm1tTWaxtDpdFqSk9z8uvjiZCR3tbkPtWmwPsLXSZ7R6/fIhI6hb1U8VQUh\nGE+mQKAcjrHBM55MGE8nOAE6zTiV4Hn6KhHiALXx7HnOC1G9Bc6W5rs6GaFlyt5dF7K8sIdyEqiq\nmH+hpCZLCxKRkKiEpCiQWYoFEAonBHt2bEeIrV7HfnbOdLDtLJHWllmlGQGB9YG0yJGJJlUJeZJu\nkqBqa5gag3GBTtFl7/IuOj6mz97z2OPEi/UI8Nn277fz2KEjHDl4hOOHT/DEE0d47NAxhpMUY19E\n42YYDSsUiqZusGWNckDj8LVhUE4I6sklIaVsCYmqhTzt5ulKuIBpTLQEeNJhVGCsJdEJG4m/vuUO\nnD4jV1KRpAlKqVMMdq0QiYrwo4wnn6c5M+87s/Z7fbJOH8TdnKnuYD/zOy9gx3NfixcpW9V/4Dpq\nY77ran/l+HEOHznKkRPrVKaH9S+mrgp8I5hOqvO1/7dY0+kYpN90m+52u4Tg6fV6aK0ZTyYoqXDO\ngYREJxhruObqq7n/gQc2LeeB1o8p/ntpdoHpePIklDLGfmR0Oh2cc5vNYG0aNuxHyrpCaolpLGmS\nU1uHSBLqqsFs0gf+HaeUMxuH1j4BsRkLIaVqm5in1tLR9QG9+e2sj0vWxxMsUS3oQ/RD0kkKSiO1\njuPPxuFFYGV9LSIaWvPRL34lopVneC1C9Pnz/ffjjKGpa+qqoqoqaDORrHMk9BEyR2qFUQ1SxCRo\n5wNV2bA6HnFiMubIeMAjJ45xfFhSeShmC4q5lPW65OjqCtO6Zm3tBPO9WXKdolFMBiM80a/FE1CJ\npgmCQVWzVlWMfMBVnmntODqZcGQyZmwDjfdIJNo6fNXEpPJUYZSMTlHBY50BfJuz5DZznqSQtFcC\nZyN+CSERIjqNx+DIb20kc86NjBCC4XBIXQ7JtCaRCR3dYX5hgWlZsra+TpqmMV69hdOBJxWx8Y6y\nqihNTeMtLnh0llF0OtTWYJ3DusjGlkri20FyMA5TVljvcMQU7E6vy/L2XcCIyJLe2EhblnQYcuG8\nYPXRL7B7xzZOhX2dvuKG38tzRuur1GXJ9uVt7Nq+Cyk0Wdqh35shSzJ6nR5aZyATvNRYoaiBpNPl\nR3/g1YQw3OJ1jHjjcy5D6ghlp2lKkBrrIMk6CJXGzAkg05pMxZwcGwInxwM6c/PMzM1z2YWXsmt2\niYX+PPc9fpCzXaxGEP0R6o1x2pMv0qaK5muqPQFleRbf36pkOB1jrInvgWyZ9j7gbAwUPN2dKBXR\ngr1xts3NiP4AIYTITRJsbkQbXbZzHudsjGYX4L3DWosOMZwOwAa/eYPwIcQN/Vxckf6O1ndi7c/N\nb+NZl1zDqZTgJ9cdjCjCmCt3FiDUls0G7Ef58F1V+0m3wCeCySZ/aKP+jwJvxxoAcb72z3UJi6lB\nJDmzcwuxoWmlwpH0bbHSIIKlqzU0lquuvobHDz5Or9ulaepNnsfG6dwYQ0+n1FUV09srSzWdkuqY\nFL44v0BQHq0yykmNKBKUleRJjgsBowKVsQxNg9eKEARFiCjf2VDKIsuZzxdYWn42NRnQZ6tamk7G\nXL7vAkw5ZVxOMUohkaRKIRXIRCG0QOUZNsB0AjpozLSisoEj3wKtPDYYkeLIpALn0cIhCS23LmNq\nKmocBge1obIBh6QpKxICjZmwNm14YlRTqYxd27ezbW4bziXc9+gRTg5hUt/MYJQwGBhK71hammfb\n8ixzy3Ps2L5Et9Ohqi2jcUNdV9SJYF0KyqA5ARyvDOuN53BjWHUWgiYJCqsUKvUIEe0TFETfGykJ\n3mOaBkvTeisF8AJra4QMCOFBRJGEd+4UAtOaMG02mtqCdIhzaObPuZHZ7KqkiBedh6Wl7ayurrK+\ntoYUgrBxWhEicgBagpdzbVcWYDwZMy1LpFKoRFN0O1g8lWmwMlA6Sx0cdXBYHw2RtFKkUmOcQ6hI\nilNKsXfnPp5388sR4jaE2IUQL0OIXcCtLG3fhprrUhSOcjxiqw1fiDFX7dlLkhhOnniCRAu2Ly2x\ne/eemAmTZHTzHp2sS5YVZEXBwvIyvdk5kiyn6PZ43hVX8Z//5b9Eyneh1B6kfBlK7kKK2/g3P/Qq\n9sz30Sq6M2qtyfKcNM+RSUJ/dpa8yEmTBC1V/D2GQOMsswvzpJ0Oe/deiPCwfmyF0XjI1Fq2Rpiu\npz+7F5Hs4GwbvrU+ukIqGJsKIzyVM0ybBpUm4H10IU2SzQ3ab8C/G/83baqpAC+Jlupao5QiaY3M\nNjYuKQVKbtzQMpyNm7j30UcgWL/JgPcynkSFlKAkgYDzT99m/p1Y+zsWt3PFJdfw0le8vq3/3Qjx\nMmAHcCsX7J1nblbx17e/n20zOSEM2Krh2bfY/a6q/W27X8607HG2+m98OF/757hM47Am/vzr6+vR\nBFFKBBZTVwjANh4fHE1jufTSS/n6178e85Fans+GP8hGU6aUoj87s2mOVtYVLgQ8ISJ0eU4mNNP1\nIaFq8LXBi4hyKinjiLZFyiZVSWMMRkl0lnM2lL5xgoue9wou+p63ElQOXM9WTU/VNCzNb+fCCy7H\nG01VmZj/KBRpkqOlQus0coLSFJ0kUUadppgQ2LNzx7dEKyORPqK4Qmqkjk6+QihkEsUCiU5IlSbT\nacwnEjAqpwwmU4y19LIuF2zfg5w65mZnuOfxMyOWBw8f4+Ajh3jikSMcO3SMxw8d5tCLenHYAAAg\nAElEQVSxFaqmi3EvwtoZylGDbSy2aXDTGmk9ykXn7Uld49oGW7Xvp1IqprfLOCJqmpgPhwAZ4gha\nSrFZ0yEErLXt10rUaR4xIcSMstOXlBKdfOvZ6jlPX6VwpAkIOYPIumzb2+eBB+6h35ljvTlMlmXU\nVYlSKqbqFl1kWENqjUwEqfAEU+KtxTqLBVxtSfOMmU5BYiyimsbnCJIsFCidtJu6JbiAqw2NdZjG\nI4o4p7vm+lu47pqbuf+hv2E4nLC8/dUsb9vDvfv/CutWUGFCvzrErqVZDp88FXMuOABixI+89gfp\nhopvfCNwePoED9x5J3u37+CFz76GPfv24lo7bBscyvvYLWeSGkcicvbObQNtufna5/ATb34Ln/vi\nF8A/xouuuJGfefG1LPuGUT3GGIsNkkYqhFRoFzc3vKBxmsXeAs5EOeqMgpm5eY6fGLBtx27Gg+OM\n15/AS0fWT1hY2sPRwd2EMxgPCbGf2e4FnKSAYzvY6iJNk7voakXpDAqBaRxNWTE2U0ahBGnAK4RX\niKAQTuGTBmMcSNGaNUmED2ipW2tpSRRxRD6JCJHZbtsTrWtNnoKLplZpkkco1TpkEhuE4D0iCIKL\nOSqh5Q48ncqN79Ta787OcvOei7nhuuew/8DdDAYDvH8u5XidLJmCm5BMHqSnLJfsWeShQxv1fx1S\nHCAw5CXXXsO8KhhNV7j9S18i7XTZNr/ATZdeSpp0npG133vha5Df+BxUW4+ThbgDJdT52j+HlWUZ\nWnQZTtbQWkczPO8ppyMUgSzNUDJGTOy7ZB9f+fJ+rFZkWcp4PHiy0Vl7KACoTEPTGKZVRW1NbBZ1\nRtHtkOQp+BCtA4h2AcY7ShvVSSrEUMHaRSK3c9Cfm0XqDgcfeYgzepmEIRfMLXL4wS9y08XPRSVd\nhDhwxlqC/WgU66snWZiZQy/tZDxZRylNJ+9CAqnOMc4gkgRHAOtpgkGmGV5IfuzVr+a2P//IFq9l\nxA9ffwVaCRKd4NJAY21UgymNUBIkOFOhhCRNE0oncF7gBaxPx2Qzffq6YHH7TowN5D7hL79xH2cT\nADSU9HtdajOhXD+zAMY1txJaEm8IUV2IdayXo1NeNqcRt72PHLfNj/k4Ekx9PCAY38YOCCIPTCeE\n4FuPJd+OklrLAh/axk6gdUZwDvntDI2UUlJVJUpnzM/N8fBDD+C8YzIaxpEuAdPEfJVut8uJEyej\nDFXE+VuSJFR1s+nSmSAJOmEyGjOTZQgf8C3Ja+P7GWfwMhCCZXUyYW1csUHKmk4PcPLzn6XT38FL\nXv4G+jt3cvf+O1lfOQkCrrvxVTz66L2sHX8EmTsWdnaZXd7BoYOH8eEulheXecvrf4bL917ER2//\nEJ+896sE+sCNHBsf4EsPf4gfefnLePFznoOxgqq2eGqcr2KS8WzB8twied7lPR+7nZ9+52+exkzf\nzwOPfZqbds7xyl3zm29srhOsd9C6vwqZ4DwkRS9yoHJF4mcwITAalezauYfBylFGx58gWIfQKdu3\nXcMPXLOTrz38r7e8WFVouHD3pZz8+u3tx596kSY6odMtKAdrOEK0FLeGejKFKtrKSylp6ho25so2\nIIVABgg+Pu5MQ5AtfH7ayXHDzXSj6DeY6kpFZY5s006VlHjiCRUhNol4QUqsMeA9Sqhzhw7/DtZ3\ncu1f8PJrGIw1Ku8iJyULcwvsuvalT6p9IUqWuzPk/d0cO3kMa77K4vwyr3/F21memePPP/EBPn/f\nwwhmCOuX8uCRu/mrr93Hj73yldx0+dXPuNp/3u55DogOp8bJZ3AZzTMI/nztn8Oqa8tgukbR1TRN\ng3Pta/bRcbeTd7BNzY6dOzl8+AmGwyG95UWqqtpEp7rdLmVZbiJcEE/2w8mIxhlUEk0CO70YvFqb\nBpklZKmmtAYy1VoVSHAucrTafDOkpDvTo5Pm7N57Bbt3XsgX7rgN+AARvbuLEIZsW54n6SWkcsKx\nh7/IbKEZbyKVT64lGHHx9guZTtdZnO+xMNtn2/YlmsEIIRVpnpE4QWUtIVVYSURoXA06YW5pmesv\nvYz/51/+Mj/xL34JIT5ICM9BEFOjf+vNr2bf/AzD8SSiDlohg0AJgVOaPCti09cITNWgLeAdPnhG\n5ZTFHds4uj7komddzHRUM14fMK0n0Z6BG9iqgc+Kh0g7F3Py8IH242dueKybkGQSIwKlNyRCUXnL\npK5YVLGJP/293KgJpVT0RXKOYE9x45wEWkM97zxCKgiBcBrBTMnIodFtuGpUbwbctzM0UgjBnr17\nWV0ZcOLYcSSSbl7gKhsDtQTUrUqjrutNmJ2W3lMUbZBWUyOFJg2SpNPBGwsuemToRBMm4TRSnMNZ\niw9wfDjhTN3jJz9xG2jFJz/63nYzfQ5CfIwQ/ogffstPceNNz2e4fpx7DnyZO++8fXPDfbw8wG/8\n9q/xxtf8IH/yX/+cwDs2nzu0z/2Hn7qNS/fsZt+ufRRdmFYjmsZTdDvgAlc/+zmslw0//c7fxPu3\nP+W1/dS7buPOf/I2egrSlnGutaabp0wrS0CT5h2mXlL057FEz46qmpILzf3feJRP3PUVVqopRZpz\n3dU30N95ITsvuID/9Wf+Gf/2t/9Ve4FcC+wnhAEX7rqMnUu7OH7sLk6N0556kV556fNZOXmUbrfH\ntJngQjviKGuk8TjhWxdGRdOm0wpi4rFEYIOP9tdJQuNd7LChzYzxG0UTL8aWNxK9AtpQPiEQtBJl\nG/05pJSbF4NzkRyGEEgBPI027c/02i8nFSeOH+XOL7wPIWYI4VoGwwP829/7LX7gFa/hjnu+CvyP\nhI36b5UVf3D7bVz5rEtYXlh4RtX+5//fn2ffjpr71reu/8W5PTSmPl/757BCEHR6GdPJCK00WsfG\nnaKDzHusNTVL22d4/OBxTGOoJcwqxXgyQKu0/XmSNvE74HF0lARXE7ylamoMgI2Nv9TQjIbkLsel\nKVpqhFEIKTD2lENgaDwJkiTLybRmcXaObr/LJTuv5YoLr+Khg19lNCqZX3olzmtGKw9j/QkSN2X1\na59mIRF0dy3x4OHTkHpxABjxiptuoO8yhtMVPnfgACorWJ6Z46bLLiXLcjpZh4YpmY+5QAiBSj0q\ndLGVZ3dvgbSA/+ENr+VFN9/Cre97H4899ggXzr+CH7vxMhbNhMF0SBbAo5hYg8pTlIVCJmiZMDSO\njuwRMkNIHXk9wvvA4twC46nl4oufjXQVK8ceZ1SOIE/oze1AbIlY3s2l+y7HXfvDHPvQN7Arl7Al\nYinvQEtFVdeR26YlTVUxaiZMQokVDc6AJAFnSUTGNG2wdYCNsaiQgIiS8faQ5kysJ9XGLyi1wY3x\n0VyUUzYFQcSn2rQtOMs65ytkx44dfOPhh5kMh5SjMaaqwXlsXaJEiN25kuzbu3dTaidlnPFqpSiK\nDo01iBAh1LxNFS3ynKZuwHvSNKFu6k2fAe8twTsG4ylbzbtD6HL7R/6QEN6O94cI4dN4/wQh/Djv\n/6P/QJpEOPfOO28nhHe0j536nA986AOE0D3jcyP63Hnf/SSpJ80teS7bmWXG3Nw8RdHhj26PzdGZ\nmekz/Jc7D+C937T31jqesIospdftUKSa5cVFZmfnyYse5XSKK6f8yac/xf/xkY/w+cMTHlh9DvuP\nVbzrkx/na4e/zszSPD/wmh/id373vVxxxYVs2/4gz372xfzCL/0brrz2Kup6yF4x5eoLl4FbEewE\nvocN/sSLn/cCdmzbycLCIrOzswQBjY/QoGlqfG0255gbp8mmafBN/JgUopXRsfk+x1OFJrRs9SQ5\npdrYgJU3+CJSRZMwY0yEnaXAGnNKEUIMU4tfH1ob66dvPZNrf252mbpe5ROfeF/7eafX/9v48O0f\nInDm+hf0+et77nrG1f5ys86+XpfLd84At8Jp9S+4jZuuvYEd23ecr/1zXN1uB4D5ufn4M9MmLjvP\nbLfPwvwchx47iAbq6RQtBXrjGgiBubk5jh0/BrD5+8mLgtraiFK2VvdSSrx1Ub0GOB8fdxscG+8Q\nKpoTCgLOGqZ1w3hUMhiMcTJjbnEXndklutt2IpIClRVkRY9bXvAyLrz0RXi5B5fuwGazhI5idvsS\nSwuzdDqW+bl7eMktN/Cb/+xf8Q+e//2s2IZP3vcgj61LHj52BV946Bi//dGP8ejqGv1en1wv0ykW\nSbKcPE9QSpNnOTu276DX7yNEwv2PPMptH3g/jx0+xIW7d/L2V72MZy3Nt+rGiNBprSg6MXS1yFOK\nPCNLE/qdDrP9PkWnR6c3R1ossLzzQmbmtrFn7wW49VUO3n8f1XhCnhcsL17Ca172Wrbig4YwoJme\n4ObLLkTLubMKAGb7/U0zz41Gv64bXGVwjUUQR44bDQot+Z0WjZStPFwI0XpXn1pSxpHS5trIboIn\n+Q1tkH7dtzOi4ODjj8eIcykoJzXzs7OMRuvURNa+sQGpFMeOH0eI6LYpAC0UpjHIEJhMGmidLivX\n4FSgm2ckEkICTd2Q5zlIixUBT0pwI5qzwmVzxH7sTBDZ+/nwe3+Xhfl5zjY3hNkzP3e4jpNrh8Eq\nOmlGkqborIMTgoWFObJc8OixI+2p8MzM9McHT5CoDFAUWXQSbRKBczZuiiGhHE5QFBhrKLTiyw8+\nwvvuuY9w+im8PSV/4MO38T23vJivPXw/v/abv7iJMJ04foB77/0nvP0n/3eaxSs4+PW/Ydf8EKck\nB48OqJs7SNOMV33PW7jqoot46L4DpB6OHztJU3u8DUywDCYNQ9tQJAnexe452qarVjUncARCa68u\ngke6EDNmNk6mSkaXRuLGJTeY7NaQJArnTHT2bMPflBA0ARIU3hi88HgVyWDemJj/ISxP13om1/6P\nvPaN/PVXv8wpdca513/gOk6unaQjimdc7SdySDFXs80oBqMJQvwNl150OS++4WZWjxzk+PqJ87V/\njssYgzGW8WBAXuTkeU7dlFx66eUcPHiYyWRMXdV0OykhOPI0oaqmGGMo8pS6rkmSJEY0tEquPM9j\nM+Ic3jlyodCJYDqesGNhgVxoVCoYj8anHQwcRZoynVpWRgNODEo2/V+mB/ibL91B0VtkdWWVj3/4\nv2yij0J8iE98+N28+a3/My952Q9z+MjXWTl2mPGRx7jnngOtRPomquoAn7vzczzr4kvYvX0Pf3n3\nVzgTUvnez97G1ZdczNLSbspqhA8aYyeopCCVigsvfBbdbp/3fPS/8hO/8qunjV3/nN/4/XfzH97+\nRt542QWM1idkWca0iS7gM4mgbnxEd7REJxkeQdGdwXrozi0ymUxZG5Tc/tW7OHTsCL1Ec9mOHcws\n7mFux+XsvPBifu5/+nl+69//+pMQS+8HPGv3RSzM7uVrn/hdlmZKHjux9VhtYf4yTDmi9gYhBS4E\nxtMp1WRC6gV1K8W3zuG8i6NSBMZ7EimZNNHIM8a0tMojQXQkDm0gZjjFl9oMVm2VbbGBsQhPTIT/\nFuucEZm8yBFSUtUVWZbFLsnH9N+N08VGrgwQN/6NbyIl0+mUUVPhtKTGk/S7CGFJMkGnm+J9A4TW\nRCx6MUgZnS+VFGzFRI+M7K0202spRwOOHXyMs8WLR1nmmZnl2+bmkFqhs9bKOsvoZwWznR7OOvbt\n2HkWZvpd7J3vk2UpaZZuJgQXWU636JBoTa/oMDPTQyeKLItOqp+6/+EtT7qEPr/7O7/OO3/jn+P9\n23HuEN5/qv37x7n1P76TF73slXzvm3+acbKD+x4+zmSaYe0LmU4TPvix9/HA49/g+HDEp77yZY6t\ne0blTUxMh2Om5N6Hvx79DBAxadZbwOPcqffWORe5Hzrm4kjZ6v2JzHSx4U7aLu89jWmQMqa1huBp\nrMW3HBLjHEmblBuIXby3DgIkOm2f8+mD15/Jtb9y772sra3+t9U/+1men3/G1v7++57gxIqnaZ5P\nXefcc//dnBiun6/9v+Wq65oQPEmakOcZeZ6ze/ceDj7+GLaxmMYw2+8zHq3jTE1wBkW8Gc3NzVLX\n9SYitYFQZUnSRlVEDlUmFEWeo0SrdAkhkmBbZMw5R12XCBGbxiNrY56qzHkbn/vMh/j4h3//m9DH\nQ4Tw47zvPb/Fjp2zvPSl38stz38xDz54AHgHIRx+Epr5rvf8Hp/55EcRWyChgj6f3b+ftKhJMkte\nJKRpQVF0WVxYZmF+ieODMT/xK7/6TXX6BD78OD916wd4+MQ6G+aAeZZH1FIpOmlCliYUScLC3CzL\ny9vYtn0nM3Pb6CSaO++/n3/63vfyF/c8zr0nruILh0v+4Ct38/CopLNjG52FPlde9Rxe97o3s3v3\nPPv2PcYPvuF1/OK/+L/Zd/GVrI0nhMMHuHTOcPGeeb4ZsYRbef71N7N7z1763V5MtMfT+ChU8I0l\naR2tN66JTQL3hleMi/yvDWQl7odi0xRJtCMjQjwAbiCaYuPBcGrEfrrS7WzrnK+Qum7Q7azKe09V\n1VjvSbN08xtufHPfFt4GASgeZiSJkJG45wPT4YgkyQheUFeG4MWmtbuQ0bLZ2BKdaGY6BVv7Zdio\nQDrjRnyApV6HpX7nLBvuAcCc8bkDI17x3BvpdHvYEDct4QJzRZdcavqdLu/4oTeylbQ1hBE/evO1\npGkGEO2YhUCGgBaSXCdkWlMUOVJ46rrC4Rg5Q9hKYiqu48RofcuLjNDjd3/zn7Ly4Fe443Mf5vQL\nNYQ4Tnj/h/+YT33pr4B38M0Sva8+8iiHDh+JTxniJt40VdzYQ2SnK6kILRNdJ6fml1LIWJybHBFa\nmakn0XrzY0JIQhRqbJoxbca5Bzalr85ZfIgEUc7FTODvaD2Ta79fwPbZGfhvrP/vf8GLztf+3+Pa\nB8ALTN2wuLjI4uIio/GI48ePU9ZTJuUYFQSFzkFHH5zGB0yQLMwvcfLkSgwedQ0KgRKRyOysiygl\n0Uiv8ZZJUzM/O0dT1RjhcTY2SUKpGACpegTrGAy3HrdCSghbecP0+OC7f4eV+7/IZz723rM2Kg88\ndN9Z0cZRWZEGzXzeJxUJsiiQWcHytkW6vYzbPvqRs4xd+/zBl/ajZUogjmi6SiHTlKKX0e2kaKnI\nHBRJF2egGq1z8MRR/t0nbifwDgJHCHy2/fttfPzzn6Zpxnz5q1/iJ//xW/nQh/6CQ4f2cfDgOh/8\n03cTnOM1P/yTzO+8klLvIk/m2bNtll3LsxRZRZp+gW3zPf77V/93PO+qq8mbmmPrAybjGlN6vIWm\n9IyqhpE10RdIaIIXWBtwLkAbJ4GU0SRSCoIPyBD5ZUrLzfHrhllocBHN8c7hg0OI0I6dHKmUpIlC\n8W1sZCCm/zYmyuQi3BjnyVVVbW7cG2Zgp6iOEW4VgCtrMqnJpMZVDSEkVJUjkABJvGEohZKSxkS3\nQ0Kgk2Xs3baNU93jSxFt9/jsfXsJZzEFu3bfTq7as52tTLtgxJtufB5C3IYUuxDipUixEyFu42ff\n8HquuvgSik4RnRyBmV4f4XyMTxeSi/fu4z//yi+f0Ufjd/7h67hi946oEOp0yNKMNE2edGJvTMNk\nOozmQMGRdzO2zc0gtjDwE+xv5/FbOLWG66iHJ/ir2z/A1tyKHpCe8THo88W7vxp5GsGgtCBJFRA3\n5OgZ0G7W4clELN9u8Bt/TocN7aafSvRj8QKkVtGO+zR5nWg78nihbJxww5PMyJ6O9Uyt/dKXXH/B\nBZzNOO9NL3jRN9X/LoS4jZ9705t41r6952v/73ntb9++nR07dlCWJYcOPUHTxNwc2f4u8qJgfTAA\n4s+wcZM6cuTIKc+Z05qxrG1uh9UEpwU1Dt3NkcqRZiC1R0iHkAKlJEmaUuQFSsWG353V9G5my8dC\nuI7jRw9x/MGvMzx54qyNSjyBbO0BM9vpohJNlqXkRUG306FbdJjp9Qkh8OjhJ87y/NfzxGAcf7Yk\npcjjuK6bFyQqoZvnzM3MkOcZAo8Plm634GNfuWfrJp4+H/yTd/Pv/9P/dUa08p3v/Dn6s13e/KM/\nwZUveB2PlT0++5VHOXwiUNa3YEzBifWjjF3FI0eP8uHP/zWHj1esj29gWGacnDQM6pLJdErT1Ig4\nGETIgNaCiFy2qKWP8RQbB7NNM8QQEFJGFEaddgiQchOFcc7F+AlrccFhTHNOWWPnzJExTSD4lGAr\nRGqwoUHnmrqV1AGkSYIIgVTrSFpMJcJ4lPf41vTHNA1JksTwMe8hRMhQFRnaeMraoXsZwtboJEGh\nmOt2uGC5y7N2LXJsdUBt7me2u8yVe29kJk/Y1u/zmXtv5fTocBjx+uuv4cLFRUQIvOmm6/jjv7kN\nIT5A4Noog2PEz73+9fyD627ge5/3fG7/6n4Or66wY+E6XveiF3PB7l0EHTfcJIF0YQYpFUlrTKaz\nPg8fPsJ9jz/Oq77nJayurrDUq7lyxwt52wufy0W9jMm4jNBwcEhtcXgkGmsNCEPwln5vjolOybvz\nVOWE77/+Bv7si1/hjBJTRly6/SqOre1v1VVP9dLYM7Obo+Phtxgn3LflY+uDJ1A2+lg466ibGhM8\nG7fnjU07zjzbjV3SIgkG2zSkWYZxkcgqVIh7sSDC8EIgXQDnCNahsoyJLUmkIlcKZz3BR8WOFBqZ\nChL/9J1Kn+m1L3PJW5//PN5zx20Ivqn+X/d6XnHN9Xz/TTfzkS99gRPDNXYv38hrX/widu/cdtba\nl0nGzTffzNve8mb++otfQPhHeMGl1/G/fN9Lztf+d0ntA6yvr0dej/MorZnJZxisr9MYixAa0dKR\n66bZDEptmmaTCL3xx3gLKnIkrLGbN75ARKJUazSS5ylVVZIl0XVZBFrZusda/03j1m+W1g+2fExw\nF3PZPF1fMqNUbFTO5CEj9nPB4iInR4+xVR2+4oabcAKEDwgf6BUFnTQnRZIqzQW7dyPEB8/8OsR+\n9s5fRpKkuDqq4vI8pxIxw81bR5YrQiLQeYZtPEYLjqytb+kUDNdxeGU/bBHgGsL7+fRH3s1Vl7+A\n66++it//vV/mdCXkBv/nw5+4rR3lPFUleWx6K4eOHKGqGwqR4JzBmBprGxAbyj2BFBIX7GlE+ATv\nPNHsgFPBqLBJhN8kvrcHQiEkxgUQ8pzQlnNuZLzzpEmCzTKapmpfgN98ERt27FrrzRPJhgujUgrn\nYzppkiQE5UkyxeL8HFU5iSz2JKGaThFCxV+E93SzDOE8/SJnod+nyDtcue+CKN0CNBLfVFy3bzcX\nL83xtSeOMqweYq5Y5qaLbmS+KEiVppMXvO55z+cFV13NZ792H2uTEyzPX83rb3k+z9q9G4CZtOCS\n7duRiabodFC9OE7yKmCdIRUJSsZk1FRriqLLH3zso/zjX/0/TyNzHSKEAT/4s+/ggqV53GQUk1pD\nhM601CQCrJA0xAA9oRV46GlJIEGrhBuuuoFfeMtb+dU/ijeeeMKIN5633vRcLtuxnb+8/2tsdZG9\n8rJr+OwTD3HPoa3NnqDmzBf7fvrpXoyJapMNkzdjLAiJEIokkYDB+7p1+EwwLnbQKtGgYgqq1ETn\nxiBokffNeaoQcXcXApq6JlMaQsD4aIAUIfmkrS/1pBPd/9/rmV77/d4M+3bt5ZbLr+QvH3iAo4MV\ndi9dzxte8AL2LC8TKkcn0fzsD7zunGtfaM2tf/an/OQ//wWe5CHz6F9y0wU72XfDledr/7ug9iG+\n7uhqbFtVXkSXnHN4E0jY8AaJt5yNG9jG150+et143HlHEuIvJtiAqUp0v4MSOVJoCGbTc8f7eJg0\nTYlSMFOkrA63ktY3nBqVPpXE+vzLbqTbS3j+VZfwxcduP/PnhRFvvPH7uHz3Pv7w809t/v/Ra17L\nJfsuwKUOX8ZcMi0kaYhNTJpmvO0NP8i/vu1dZ3z+EIb8yE3P3rzJ6yTBt9yg/4+9Nw26LT3L8653\nXsPe+xvP0HO3ulstqSUk1JaQBEJAEBgESZlgl4NCJAIICnDF5aQqZUxigu2UEyoVuwjGDBJIxjhV\nAhsnJJWh7D9MNsUgVXBhCY3d6vkM37D3Xmu9Y3686/uOQH1aLQqqaTir6vzo06dP72/vZ6/1vM9z\n39fdtQ0xUNfQ1jD5kSlkpmng8uEe4qMffu4mng/NBNxXczPjyod+/V+xe3LEv/jI73Ez8X8pH6R+\nP57bGPDJJx4neE/bGkpJSAm5VC2ZmknLdWopKTn+gc9da13ZTJ81lT3XwAgxW63rilUgoDq0X9BA\n8gU3Mq6p48C0STPIplBEPsdynxVsznlmIcyjVj4LmFMCpIKiugCmYYszms5ZcqoaAaMV4zghhWCn\na9merrmws0PjLDtdR79aMsUAJaNSxrgeqyWHy54HLl8+p0G6xlXiJJJl2yGlZXe5w2vufYA4eczC\nzVCrekNCCnRj0EbjOgtaM42eTP1ZpRC0TUOMhf2dfR575lm+9+/93edkaLznH76XN/3w3+S+ZQPM\nYDSlkCTIBSETi9YhpamdJxOkExbtIeQaM//NX/mVPPLQK/gXv/LLPPr0k1za+SK+7IH72G0M6/WG\nb3nDF/Nzv/G5E6Z3vvGNXGwNX/rgffyfv/U7PNcXSbCeP5fnfhi8/v67EaJyUc7G6HXMLZFSQ6ko\ndWkF4zSSS4W5FSnPR8m6dYicKihuJpbCfDOfi72+73W3KudqLdRgMmcNU/CzlTVR0zxenOvPQu0b\no7mwe8iDl+44r32lFCWFL7j2jXE8+vSzfNcP/K3nrP/v+amf5i0/9F9w52p1q/Zf4rUPsFgtyLk2\n76VAQVW3VygIETkdriK1QHjOvwc5Z0Tt3ub3oBBVQZeEpiYfx3lF1bYtw3YLMTGME6SAMZY8DuQp\noq1lyhsG79nf3UOmkQcuH/Cxp96H4Of/QA186cOvhhj4tY/84Snlmr/46oc4dIo8bLjoHH/5ja/j\ng89RR9/9NX+Rh172AK966FW86eFX869/98M8c3KNSzuv5Wu+5I08cPddZJFJAmewcnEAACAASURB\nVLzQSGHRymAMGNcidcvLX3aRH//v/x7f9f1/iz8Mw/uxd/0lHrztLuJmpHWOKCLGajrV4KcARVLK\niPAjye6TpCUKw9tf8yp+/tf+LTer3Qcuv4anrz93o4P4EEu3zz0m8Kvhjz6xPN1+mLgdcDsrtgW8\nnyhAloKcEilHoBoVzq36zCnXaXatnVmtySBrCGUuua4M5Q1skkJQUjx3eD/f9YIbmRRryJOUknHG\nRAshGH2giLrzOksJPuMw5JQxVtdxqdIo4zBGsV2fslgsaJWmxNqZ5xjQUpOERIdCXxwlRlqtWbQN\nfduyWPb0bcuBXZFyRApIPtAojYyxagwAJRRNoyk507oOEPSupvAaJVGNxa/XuK5HGcMUIllU3kfb\ntRjnSELQNIbRD3TO1nyUydN2C5QQfPBf/6vPEnP9wc5ViF/gA7/8m/zgO96GEolsFDl6tHb4YcBa\nV3ffc7icLgltMlEMdG4HP2WkEjx0x2X+9rvfjZ88pyfHbNcbnrn6BFIqvuqVr+TuxYJf++QnOfEf\n4XBxyJfd/wi3X7hATIE9qfmrr38t/+tvPccX9c1fxDiM/Mzv/DRC/DylvA4hfodSTvnmV7+cVx4c\nIkuaRYh1z2mMAS+o+IiE1pbtMFabaE5ArpRbXcFfuVRaqhIKSHU8XCJZSUypltQUwhnaCqZy7vow\nQPQeozSy1PF9yS8eqP1W7f/B2m+WS376n//M89f/r/42/83Xf9Wt2n+J1z7U9O4Q4vxaCmKGlGmt\n8aHSj6dpqvU1ayO01mitz5v8s+vMkptzRsj6fqYc0FbRrVZIMilmWmfJYeaLVOkQSgg0VRx73x2H\n3H/XnTz67FXG6aPs9Ae86t43sN93lMnzsgsH/PsnnuRk++/Zafd55J7XcteFA1JMWKVIIfKWBx/k\nkfsf5Fc/8lGurp/kwu4r+aa3vpWLqxVaG0QovOaee3n4nnuJKYFz2NbS9i2DH4glQi5oVQ86XdfR\n90uMdXzs8Sf4/U99iq9929u4du0Kh/3EQ5ffwne87Y3c2xqG7YTQilTmaa4UZA0qSUoRxJBo9IJY\nBPuLXU5V4OV3PcBff8c38g/+j8+dEv0nb34zr73nPn7l9/4/bjaN+vov+QZ2kube227n3z3+hU8s\n4UMsTUvwmZwUSgqMsQzDWL/TQlDS2bRRIlUmpXI+nROyrokqs8mTS40nSLHqoep3TpFzOg9WVUoT\n8+fHD7zgRqZpm3MRlxCC7WZDv2jJRQBVyGOMQWk97zsVpcDB4SHXn73GerumAKWFxjWIUihS1Fjy\nkskUjFIYp0lxQkmFU5q+61m0LXurHdrlCmdszd9I1a6oXIsWEhHqf1NiwhlLY6BpW9brAWsaUggV\nQOYnuq5D0NbArmFCNy1N09L1HdZYpJL4FNgOG6Ssb67tOrRraNqe/cNLfObqlZuLuXgdj169Xj30\nCEqpXz6BQNs6ZvelPhBzzugkkCnTqgJWczwO52nKfntKjIm+bfGD5/Jtt+Enz+b0OotFx4N33sHp\nyRElhQpQu/ZkHc2ieOv9d/Hw5V1+/VOf4Ylr/45Ly12+5pWv51LX0BjLG++7l//nI5/gydOPstfs\n8pUPvIbbdvYpGgQJ5xrW6/WN8fC8u5SSG0CnkIByPhLP86lN5KodSCkiSpnFYVDI5Aw5JozWdVcq\nIIiCFHn+AijUzBWov8QLsuD9SV1/1Nq/7fbbGY5PuHayZgwBpSS9tS/52m92dvjk4595/vq/dh1u\n1f5Lvvah6leGYUsIvrpo53oPsUZWxHJmq87nEMFxHG+sGsSNwEgxE4tTzoTs658RGaGgNZVu3DUO\nqyRJSqSs87NSCr01xHFg0S3YaVt2lju88p57Z+uuIE6enDxKFe7YX3HfhX20FJDqa1BCslh2WKVp\nrUNqTescD99zH85YilS4poFSsM4hVQ0wbZ2r2UfdAmVr82GMYdoMWGWoMRaKvl3gXMP7/rd/yff8\nnR/6HMnBN/3193DP3i5xe1Incs5SYkCQkAmcUYiYgfqzlwKtyuQSiI1Dm4t8y9d8PW/5okf4xV/7\nFR6/8hSHy9fw5Q89yI4zbE+O+U/f+Ag/+xuf2+i8621fzuVuyW2q4S33P8Av/eZz69AEpzedWMIp\nLz+4gzyOpJiQcxCq1poYEyAxtiHlTEq+Jl3P7z0CshAU6nelaIXK1b0kztxN6mw1WenWSHFDh/Z5\nrhfcyJSSGccRZ6tOoG3bWYnsMVYgVR2r51Q/ZO89OcMnP/4Z6j7uEeDDbIYTDlaORe+Y8oSzliQz\np+sTVrZF5ozREiEyq7bl0uEFWmNorUUUsFrTuZYUA8NmjRCyKsdXDdM4oo0l+kDyGdVoOtuilCX7\ndE4ZTSmRMtiuIyJY7u7T9s05yXAcqhOl6zrGcQtCsJ1G9hdLXNsQteZl992HED/HzXbtd1/8UrSz\nMPkaJuZDFamVQvKhosdjQiuFoNBKzSZ40rhm2RhGP9I1DYXE1ZNjurbHyAztkp2V5sLhIacnx4yb\nNZ957FMVQrXdME3Hs/3Xo4vgQq/5K69/kHG9pu8bGm0J40SYAoeN4T9+5V3sLBdMfiCmQtsUSleY\nSiDJ7gZanYI2Vb8R4oRSEoQh50AqVeAV5wRfKUTVP6SMMoLiq1hSSgixgpOMssT5lJdzIlHtrc5Z\nphBouEF4rLqCF1qpf/zXH6X2pZR84uOfIvhMdVK8Afgwm+0Jl/b1S7r2zXIx1/8HuFn933fpEdDy\nVu2/xGv/7NLakFRgHNcVZicEMeUKK1OKYQhod6NxOYPY3SBV5xt6CCCnRJEFoQVTnOZpT6RmJQpK\nqWGESlV3l5SShbZMw8BO32G1opMKY3RNwZZwuNoj+hGVMk5Jog8oKdFC0rcdUhuUkDhtcMYgZHUM\nWW0I44QxghI9PgS0EhRZ18YYQb9aELB1spYz3k8YUf991/aUIuiajk898RTf83d+6DlXrt/5P/8E\nX/I/fT/3rzriNOJzomkcaRpQCGKaf36pUCmTdcaYgGdNaVqStgQfud/czn/9zm8hRUnwW5598lGm\n7Zr2ouHNEu47POBXP/5xrp3+Poery3z5Q2/lnsuXidHzzFNPs+gV73rrG3j/L/+hhqec8n1vfQOZ\nwj/6lZ+ua7sZqAenfOU9l7hzx6DEQKFmy4UQ52Z/FvLnCLnGEoiSz6nZAoFQtdn9bO362Sq+1sQZ\nJbgSB2JKVWvzAhr5F9zITJNHac16vSGGwOQnWuGQEoQopFTjuxfdimEYiDERfea51M9XT97H7qqj\nzRk9w78apYjREzYTrWtQQkIM3HnxAsu2Z2ENzf4+p8cnbGNm0XWs9g+JIaCVxocBrTWdaxgZMDkj\nsuBg95DtdssoEm3bstnUkK6dvX2afoF0DbZtySIiZyiPNApVFCFOtdtXktY1NG3LYmfF6tJF3vUt\n7+SHf+zHuNm+8tu/5iuoQ+eaNROm+jCxWqMKhFSZIqlEtDLEHOo4v0wYqbCt4+mjU1ojmTZHqJLp\nrGHydeS9bHpQE27HcOHwkOQnrl55lqPjK1Q3m6823sFDKCz6Fa3TpDjSt46SM9oYFr1DA8tmwTQq\nlE4MMWCyYltuYNZviLfqTdn7kZTq3jznRErx3MlRZpeBkJkQEkZKcipVzKpAJAgzTOwsN0WKiFKG\n5OtpVeRwbmcGeDGNG19o7ZdSiCESAzyn+v/a+9jrHHo+cb7Uaj9rxbe981388P/yI9xMzPiut73p\nVu3/Gah9gHEYzwMt27adT9/VqXX96OpsIzbkrElFUURtPvw40jTNeWMvkJQsuX59U/8OAW1JlODp\nuxadJKIkjAU5RTSaUAKExCqbqq1RkoPdFbt9h1t17C5X9G1HmCaKLLRzarZVGpPqyjWHSGMdWtTP\nqXEG6yw6WQQFZxQ5CtJ2g+162rZlShlpa3Pfth1IjTYKERPJR6wEbAVFKqNZrHbompYf+6X//fNI\nDn6bH/qGt6GFIhtdKdfaVQF4TmgtEEaToseqimKwTQ82cHQc0Uay39uaFi8D2ijuuvt+/OR54qlP\nsbtK7C93uK3vWG9P6yonDBw/9RilMTS7LYyRL73vIe5qOn7rsce5NnyCXXfAN7z2Tdx9sMfp9SPu\n/to38SuffJpnNh/loN/nkTsfYE9ZmnaPRbMHRjPN02chBE3TUIREBD+DPSUpVIq19xOIhEigi6Cg\nKEXgZaHMYbnV+RYJsuryWmWQBSBXt9vnuV5wI8OcCTKNAzHOL7x4fPQYawmxvpiQPdJohtMtz4dF\nP10Hmk6gyGhZv8QIibaKnCKN1vhpxEmLEBovNAvg9sNDRK4ZNtF7/HZLu1zRmPr/iCljG8du12GE\nhpjopKV0giigWa5ICERrcX3HYrFDSokgDCgY40SxGuknIFO0QEjJwbJlb+Fo+32CaXjo4Uf4qR/9\nSb7je7+TMxS0EFXM9d6/+V/y8pc9QDh6BruTWJ8MSC3rGB1IRHKJZJ9ZLBZIpcE2ZCFZNAafJ7SC\nuy4uuHJtZH//kJzg5HRN23S0wmCVqNwCXUfYgcJtly5y5+2HHB1dY7095aknn+Bg94C+bYh+pKTI\nybSlXTQYJesp0FpyjIQpsFg6YkzItuUUSdNI0tTgp0iWFklEFFBCooUi6gkBGKEgZ2JJKC2YtvVh\nXjwYaefPPkMoOCkJMZ2P2aWUZDImCUTOSAUlTngtURKImVISKr2Id/MvsPZ9TJQigQU3q/8rR1s6\nI1+Std+2u7z8lRd474/8Y779r33359b/3/heHrj7bkJY36p94CVd+4DRmmmaUFqTpoTWimmqQt1S\nahhoiBNZ1M9WG0mIE1bb+u9m5pL3ka333GC91An9/sqhtSapUrVishBSQCawjUb4QooeLQ3aWHYW\nK/aWK5Z7+xilUULgug5kdbmIDONQm3ujNVIbln1PDlusafAhYaQjxyrYn6a6ck1GM8baTFjXoKyh\nmRkvWmumUpi8J+dELgU9a4KU0uRc2Lt4iUeffJ7YDl7Ho89ehZklVEqprw/I0eO0JeZU7dfGkQbP\nwllyTIgQ2GkXnG7XTKGupa1W+FlcS87sHV5gZ3eHME1IoznIhzz79FNEP1bhedwwXL+CMQ1yGrl9\nx3L/5VeQvefk+AjjN1x91qOE5MFLh9x/eAnrDCfrYzKphkdmhdQTIW2rrTrPbKScZjRBIucbTK3z\nCVye9TApVcF4EaRSE94LCSXUeYD8mQ2bP+R2e77rBTcytRD9vK+EcZywDvLo0dpUJ8fZC0YTU4ab\nETp5HSn/NkppjJEYraGpvIAkCyJn9hYrGiFonGXRL+h3luwuVsgCMQQkVQdgEKgMfdNQKOcCMyGB\nLMgUtDUsbINQmsVqFyE1auFomyp4LD5hrKIEjw2B9ckxRdYTQ04FawztYod29wJmsQSjkUrz7ne+\nm7d88et53wfey6cf/TT3XvpmvuM//I942YWefHKENhY/FkQBUeq4tIg6hhNC4Jz7rHFrfQgVKppb\nGEuRBmMDSnWMY2Df7BH8tooj04BQEe8rMKkWj6BRht1uUfkjl29j2Ky58szTXNjpIRduv7hfiy16\nrly9StPME4A+MwwbnJVMwiPSFlk6kBKhJEZVi6CQcwiYFPWENY9amR0e0+TPdQVSz7yAuUBzKaQp\nVNHXLAA7E/NFLZECfIkgqpI9zSf3mo764gkev9DaPxun3xza9TpC/rdzCONLs/ZLgW/95r/Km1/9\nat73c/+ERx/9FPde/ia+7eu+kgdWPWI4ulX7fwZqH+rDqG0b1uvTOoFQGiHAOjs39Xn+mSJlprPm\nHGkXO1UHpTXT5G86ob928j72d3pC9CirEVIzbgZaYSCB1IIkMnvLDlFgb9FxuLMiS40zBqM0OSbS\nOAKSxhj2Dy+Sc2C72dC4hhgiTja1GXIt1lTWTwjhfIUopKKIQr/awXY9wgi6tkXO6480jPP7AX3X\nMYS57vqW1d4eXivue9l9CPGz3FRycOnLyIAyNeIipcpWodTsLTkTca3SCKcgR5wUbKYt/aJFYxlD\nJCNYn1yjaTpKEYxhS86FrlsgXMvF/QOGYcNqscPJ9Wuk6Bm215l8BfzFtEVkRZgSisKFwx20kEhE\nnW4lT4oQhWe3t4TgK/pBAyLUZlFKjJm1XgiEzFUXI+vksmpn/NzUaHKqmrKzKacSAj9EtDwTzdcr\npVQPYkWTYkS8ANfeC25kavhTwBjNTGtCSI8SAqsMyU9ILYkpVTgYhZtDiz6EkmCtwVrFNA7kUFBa\n4YxjoTU6Fe5/8H4u7B/Sth2m7zBIrNYIZSix5t1o62i0Y4pjTd/0ka7tCDLTLpcIoYgxYVzLancP\nIQ3KWk6LRzaOgqaYRBaVRphiQCNZ+xPGUHDdgt3dA1S/i9y5hFjt4Vy1Wn70o7/PB372/Xz60Ue5\n7867+M/e8Q7uv/tO0nCE0vOoGI3JVBqmgCFMSMp8qqnWb6kjMQrKKNBNSykZZQw+JA4O9yqmWyhO\nT7YcnW4Z4xY5C+asccRY6Bc94zjitwNd11Hmm3ur4OLOEiUKjz32KP3eCj+MKKOxly25ZIbNtqYx\ndx3Zb9gOa5arCyRpECaBVhiRmIyqN6kYyTJB5hxslGKl3iIEKYRzJ09NDK51ARWoFUM8x98WUdcF\nGWYFf3V/BD8hSkXaC2oH/2JdX2jtpzk/Jqeb139rLdbal3btf+C9fPpTn+C+O+/kv/2e7+MVc+2L\n9cmt2v8zUvtQtQpN0xBnnPw0TiilmYaRyfuKA9DivIkxRgH6/P3JOTOFyPNN6K+dbLl3f4UuBRE9\nOmeyrDoZIQVd17DqOg729tlbLtCiEMiMw0jRhgt7B0gWdb0XE4TIGGo2GtRoCKssSijatuf4+ITt\ndsPe3j4xRvq+pwjFYq9DWkfT9UhXHWZlfg+sdUzTDbda07YoLel3d2j7jma15N3v/FZ++Ed/lOde\nuZ7y7W//CrTVlFQwSEoqRB/QUiDyTE5MmXEYsLZFCihEmsYR4sCy6xGT5Gg90LWOJ554jL7boWtb\ndLIVrOgU680pbdtjLzkuXzhk2o5cO3mWcRyIcQAyw2aEFFFSIGJE2YKWEu0sfdeRS6nfV0AZSUgt\nCM82TBjq2k1JjRDzKlQVYqycpGkaiOmGviunVFlDoq5fU0xkFdBGUkKapy9qBkfO4vlYzQZ/rBqZ\nrqviN60gxcJme8R6cx3VOnzOJFW3XEJUjHTftxwd3wxadMrh7uXzv/c0+qoUb1tSnNDWMRydcM9d\nd3O4f4DWBmktrgjUPN4tot7Mu+UOOUYKdeTbGYspAqtBGYN2Ddo6hDBY16GsxbgGwoBVDfO6l0ZJ\nrh5fAWvwYUJmQeMqBKxxPcu9i6jdCwinKQTe/3Pv57u+77s/S5n+z/gff+If8xM/+Ld599e/nTwz\nQ1LIqFwoPhIUhDBhZ6uZUlWlL1RBaoN2VTORkZQZ64wUSCXQStP1DcJexE/h/GFghUTKlpQDuzsL\nQuNoO0fwE4iC8A3DZs1q0XN4+Q4WnePp9RbvA/1yQSqJkjKiQM6CEgda3SCEYV1qzldRAkV9eBTq\n6K+e2Gu4XS4FKRQZqgr/jKkxswRSSvP4sZJRpZLkVG22QlS7XT25A6Kcg5RSrDa86t54IaDqP5nr\nC639pmkoUyD456n/1aVbtX+r9v/U1z5UwvBquce16ycIDdvhFJEqpC1HgdQKKTMx5xlgV7C2Y4oD\nShmKEMRUeL4JfUm/yTTVfKnGtPiQkcXT76yYwoD3nuNjzV0X70AUw5gVB4sljbU01hJGT+ssx9ev\n46xjd7mD21ZWEkrWOAEhIGTyFFjaFmkU0hrarmcSkn7Z0bUL+sWyap2EophMSBHbNgynJ2gDRVSn\nls2Jg65n12ra1UXoVtz/8gv85I/8ON/5177rc1eu3/9f8fL7H6BsjpFuzXD9lJzqqpiSQDE3Sgqj\nNY1RFGFJSs6/Bz6uWTYtRliuHiUO9i8QQsL7CDkSAiyaPTrXIFVBuYYQB4wU9N3lOvkLI5/85Mc4\n2N3DaoUzmmncomVhc3qMaxqMEqQCXdNSUsKPnraFUiSi6znNBdcJojVMYyBiUClQlVACKQRFJ3Ko\nTS5Fkea6jjlW3kwUcz6ZqUwZBDqWunZKcZ6AV8Hv57tecCNzfHxCKdXvvt0ekwmcnKznL6pGiDqe\nM8bUlMycaAyM4X3AB+cirurney7tkUpAU1i4lnU6ISdPChMqJg4uL8nOcrBY1a5XVTtWplrolNEo\no7DakoVANS2XbEIojdKWLBUqgXUt0li0cXRtQy6QkaRcULIFFEJUVfW03aIRDNstfjuwDRFnHbcd\nXGCx3EX1PQMjXe75/Y9+nO/6vu9+bhjeD/53vOGB+3jV/l4tQuEIekNWkP2A07ru3cWEtBqrFNrI\n+QQPRSrQipJBGjv/TAaUQ2FYNR2+mRA50SjF6KeKDkfhh1AhQh46t6LkjI8D3UKjrea221cM64nL\ntzuS3+BL4HS9YbnaJfnIeLxm7A0rWa2IPgWeAZriGBsowRLDQIqRFOqJEyVIueBJ6FytpqIUjNJM\nMZBiPR2XVOoptpy5OOqNvI7n5weXAJkFJQqSqH9XTnV1kPSLlwD8hdZ+CB6dPW0rGYb3AT/PGaEW\nTrl80LMw3Kr9W7X/p772AYT0nJxe5UbKeyHGitZPORPGgLUGfKL4gNF25olUHZBPNd39+Sb0TVP1\nNNZKlJZ0bQsFYopoBPv7B6xPjrntwiUaY1ns7rJaLmF2gs3Jnuzt7JFDJPnA0rVAqY6rlNCuPu6y\nqCtM51ZY12DbHqRC9pbGdbimYRwD0mlEipRhS9wMhDBRKIQYQUqa5YJmZw+3e4jqO6Ko7q5v+9b/\nnC97/et57wfeVyUHl2fJwcWefHqCFIJhO0JMtWZLrpOHHHDOzRyVmvFVqCwVrSUZaJwjScXCtAyh\nsFws2Q4j0+TJaaxuMRXQNhEDhDhhjKRpLI1smKYBYuA1r3yYMG45PrqOHzZc2O0xtkVcOMApxbWr\nz7IeK43cdj3BTHi/RRvJlAZU2SKLRWhF0TXoNkeJKJISqevW2Tod5/VZzR2r67MiBSUD8qzZr0Tf\nGBM5pfNMs7PV8+e7XjgQL9VxUUkJRCTlGm1vrSWls85JnIt8lFK0zmBbgQ9bVPk1jNFc3j1kp225\ncnqM67rzHasQgs41WCdY9UvufflD7LgKN7JNj4+JtncoRN3liXo60kpjbIORAqTANQuKUBhV0M6h\ntCPmQsoFpEJpgxKKMlu9nKmaBmUMcciEnEmlngzbvicVcLbB6JbpaAu28FM/+Y9urkznF/inv/SL\n/A/v/GZy3tA0MHpqLoczxBnHbBoLJbMZtjVMsJcobaFUIVdBkEv12WtnEUrS9C3JBwyZxrZEbxBj\n/QLnWJ0pVmuGYQAxn+OkwKj6gDVZUVzGmSXrE2gVKG3x40iOmZ3VDtZaemE5zfVUIHNCi0KhOioi\nVSegEIxpTj1F1lNpjoA8HynXde/8z/lGoF7dq97YiSqlCClCqWK9ehiXlDkwr9r3Xrzrj1L7lLnh\naDL4gZR/nc5Zbtu9zHra4qy9Vfu3av9Pfe0DGGM4OTmh63qOjo/Y29vlyScfB6BvOxIR5yTT+pTW\nOlKuqxipq14opYSSgpRuPqFcNYf1oWkV0zhrV7TBGsv6eM3lO+8idh1N49jtd+gWS9Lo6buO1jii\nCihKhVcqgVGaUCJaiBr1YRqylbimqyvXlHFNR79cIVQVEW9kQltHFhphBFLXSZ1IdcUnZan5Ukja\nbsVitUezdxti5yIsdlDzKuwjv/d7vP9n38+nH3uMe++8i3d/4zdw/513Esej6u46zlg0pUg2wxot\nFRvvMTN080wQq4xkCqm6qkokZYlQlcUjpGR/bxcfPF3fcHq6ZTtVzc12Ws+6rTmwUVlizGxOt2gt\nOdjfZ5oGumXHqmsJ04bGWh594qnq6kOw6DqWe7uk4PGDJ+dMv+iZNkdokelVJmjDxmak1hiR8VoB\nhRIERQnq4PgGYyilNDc4BYEk5ioYz7k2K2dRL2dTyyJKnXqeCc2e53rBjcxi0aGUqJyKDGEczzum\nsxj6s71wjLEqwV1T7W6NZGUtjZIsrUVLWbkYM/hKCEnXOVpleNkdd3L1ySd55BWvnO2loJWqdE0S\nJSVs26OlqqJDUYE8VdFuQCisaykikovCGktOGe89Qiuc0IScK+9BVCJlSok877B9DMSccE3P/oVL\n+DFwutngnnyS5Cdy0/LYJz72vMr0T33605TTq5TJM/gJ4TNK1qyWIsDKCjWLKVJSxJaK9C4hoY0h\npUjMGWubCtSj4p+RiqIkWjlySShr6K0mjFOlh/rAFD16Pt2IKKvroUa+IEwNodtuB7RtIAe2mxEt\nJF3X08RMUQVbJEvdc5wimkyKHlUSJUREzoiQCTGQU6FkKLmQU0EyizmLnImdcVao15vymbgRxHzi\n4LyGQk4oqdCy8lg+O0VYiBt6hBfj+qPW/gy7ZLWotb/Tdlhj2IzbW7V/q/ZfErUPkJOiZM04jmhV\n13rL5ZKdVcdm40nRs95eJWtJkTBsRqRSlPmzrdwlxXb0jMPnTujvvLhD3zaQC33fsz2NKK2RxlBK\nYX+xw/p4zRe95lUc7O6x0++grKVpl8j6BmGMRQNZZbqFI3jPVmec1rTKVNuvFShjkcbSW4eUFus6\nbNvOEx2PUbURQwhULmzDQFaSQWRSmUg5I2WDNQ2LfolbHaKWe2DqA/pnfvr9vOd73/NZa9df5od/\n8sfr2vUdbyedlqp/SnVV7KRhMw0UYtVISTVb2au13zkzH5RqQ1mHGJJcwDiNkKCUpQiBDgo/BaSq\n681WqrodIdG2jty0tG0V7hoNMjrC5LGNxjjNvXdaQhi5dvUKpEi36GmsZdg8y2LRM6xHrGpJKDLz\ne0pdv2oh2M48GER1O5aQZ8H7PJ0TVRCOEOT5Z5r/eNVCifqdrcLhCslTTIY1BQAAIABJREFUWv0B\nFMHNrhfcyAzDyHY7sOh6YkwMMJ8oK0fhLCDszC5VSkErg89xHpsJkIW2aZjGCUllEpycnJBzwpgO\nkRLb0zWve/VraLUlaoHrOyaRKTmxMBJnGpzVGKVJReLaDqUsoiSQlQ8hVMHanlgKY4hY21SXAYLR\nR4SSsxi5vrnWWk7HgZP1miLANI69gwscHZ2glGG9OeHJxz6BCh5H4bZFj+DfcDNl+m3tw2yfuUZM\niSknynqsam4Lrm1IUPeEpZJAt8MxSRQaLSjFkLPANd157HnIEesczACmEHy9WYuCKBUaRcqVoCog\nhYgPHu0s2swjy74lBo/0jk5DjiObYcC5Gi5opKY3iaIFTRQUNE4D4zgXaawBp3k+nRRBKfUBnnPd\na4oC8YyRUTJKG8r8hUyzeyGlygQ4P7nOyHIlNCWX+XRaO3GlFEoJ/DRWuNqLdN2q/Vu1/+e19gFE\nmhinTT15W00Ike12pKSC9wPb4YSYPOMwobVFKk0M9fNtGsM0TYzjQKNBLxXBn2LVv0FJwaWdfZaL\nntNxy55SLF3LcHRKDCNaCWSCe++9myc++WnuunCZ/d09rG2IqYLVykxBXvQdOieKVBQkbrFgqQPa\nWhCaLBUyFpq2RxqL0pauachAzZyWSNGA1IhSLdh+XEPMhGEkbAemLPE+c+nSHn3X0e1coLSKMQ+0\nqeNjH/s47/ne99x07foXHryPV+3vo4QlSYtXpwRVgLoq9WNGqgQp4awhpQnrLCEXcsgIJylIipRI\nYwGBaTpQBhFh4RqCnRAlk9TE6Ov6T6PIPhPGEac0jWnJwlF0Iaf1fE8RmP6A4Lc0bYcQkeNh4PR0\nze7eASdHx2htGHVkV7R4rQg53li/OsBbwlSBmlUAXxBKEnIilljF62XWl+VCmTWFMBOVSj0YpHyW\nnA1nk5rPd71w15JssNaDTEzRk4tEiLMsjapUFuKGBbTCtOqLdqrB2YZlpznebir0Sij2F/tcv35M\nKpn16TGPvOktPP3o41y+8y4ODi7SGEPfrYhTwhiHVhFQxGBRmLpflzWTwblFdQ0gkNKSRBUPWako\nMaIEVUjpQ2V2oBn8gI+ekCPTNJDKwJQC3WIXLWE9rTlZDxw/VYjjAH7EaclXP/wQ//AX/jk3g4F9\n44P38sSnH8MYiRcRQiILWO3tshm3SNURhUKrDjENeAq6rePE7DPGKNIUkW2DyhrZtBRlUEIzTAOu\nXZyP4aLMGKUQIZNCRJaIMi128kzjRNM5BJkwjUTA9Y4rT19B58hqscL7idYZwjSyLgpDRxYBIzJL\nr9AKQo7kBEkkQgkkMrHU83LJsZ6KRKnZI7KQiSQSxEgqhUihCDkH4VlyAVUEel5tBF9FYinVXKJY\nIlKmWTwbQdbpw4t13ar9W7X/57X2AZiBZ5kyTx5TdYlNHinqQ+bMgl0btjJbsOtaIefaaOZYT//O\nKnabFiEErbWVausDdqel7/qqo5ASow3D6SlaKF7x4ANc3NnHFIGKdaqBKHRNixKigtWoja3SFmMd\nigapDNo4EBq3EEhtkdqQCqRSPxttHbkITK6rPK0UMdU08yl5fE7nK1ftGppugTYWa3pK0sTjEZz4\nvGvXf/ZLv8jff+dfoZQtxiSmoBhPJmxjCSnWIFpjMRKmaUILhxCZZrms2UZKIZSuzVfOpFwwjUUI\naBcdyQdKyTRWE71G+mpLJxckQNtWjdPcYGghaLoWWXIFPYoJGo0UC4btlq4VNLbh6jPP4lzDbrfg\nOB3ViSUKrRQyJdTZ+tUY4lT5SjIzC9zrLyH0rAk7+71Cprr6Ssn1/UZSuBE4ecYu+GONKNjZ2eHo\ndO72ZvW9cQ2b9SmVC2GBOhosuYqQlBC4+eR5vB1xcoHRmuvXr9O1HUUITjYbtCoc7OxyerLhnnvv\nY3//kK7tSc4RKJQ8MK5PyU3Lol3Qti1KSISag9xSom0lSInTVawHNXwrp4JShqA8wU/ooiBkrq2v\nILViiiM+BqZhIFNIObO/s8uz16+zOT5mc+1Zps0Wqxt6a4nbyEHX8QN/+S/xdz94A/F8Nib9ga9+\nMwsBR6ens1APtEgYZ9GjpWkbGqfIKDKRbQE1xepykQO0BkEdq5IzytR9LjKjSFjZIbKihIC2BlUK\nxHrKFW0DaZgtizXULaYBM68iQirENLCzu0ujJdGP2NYybbcUwJwFD+rq71dCourwEEmmlEjJGUQF\nH5Eq9wSAnGu2DDWbRcxZIWdXKRV8KCo0gUJhGIZ644qRlOdzUck4IZlUJqSCNJocIjZ9/j3pn9R1\nq/Zv1f6f19oHztddVSbQUEphd3eHcTvOlF9R6dezML3Mk7IaF3EjokBrW5scBCkJrAQnNQrOpQaT\nn9CqPpb2Fktefd/9hM2Wh1/7MBKqfb5VOOvIIiFJSCExTlf92CwSF1JilK0hlrI6+JCRLCTWOkgF\n70eElszZ7Mg5lfyMzl1ERQcUAalkfEhcvnyJTCEXwXB6zHT9GazSFG149GO//3nXrqyvUsapisEH\nj7OWUiIoSdMviHEihWrnN0JVYfAw0S52CN5jW433nmbRUlQVkOdE/Zm1wigHMz+qcwY/jGipmMaJ\nHDy2dZgZZDeOI8aaasE2iiGssbolloBtepI/5eT4hN2dfRpnyZuBZbvAeknvWo5jQM1cJlUSyQdI\ndaKUUiSlXDVLBYKPWOQsiK86v5gTMVZcgUDMIZKVMVM1hzcm3J/veuGrpTARUkaVRN/2xOQJwRNj\noBTBMAwslkuuXr1ad/JCYFJFSivAKg1C0Pcd42bLarXi6WtXaxctFbuLJdePTnj7l38VRjc0Tc/J\nuOH66TGtECwaR9/3aFn3prlU5bkPkbbv8CnSNQtinvNOgJAibdPhfUSamigaUmG73mIbzeBHlBYk\n7/HjxNXtMRcPLjGtN6w3J2w2J5wcX2ezWdP3K4ZR0emG09MTvuqVr+KL/sZt/Mvf+E2euPIUt+8+\nwDe+4n4utYqNT+RhwIeBoEDrwA4r5FBtdkZoGtMhTMPYFthc5+T0lD27wEnJNI2080Mxp4QwBmb/\nvZLzTV4qUkiE4RTX1U7biEKWcuZshCr2TCNZCEIqLFaV5KpKpMQJ3TTkFLCNJcqCUw1x2BDGkZIk\nUoHVksZoNqe+7ltLJMZAyn62DsI4DlXnQE2zFQpSCogiWY8Tn752xDgFOmO482CPhXMgKjBpnCpk\nSsyZKLJCG2oabKlZLkppVHzxdAK3av9W7f95rX0AP00gDXAWIDnifV0dtH3H+rSu+3Iu5Dw3c1St\nRwhh1ntkhKwrQSnOUpILzlnGYayQx6bh6OiIlBOucayvHZN39pjWdZIZBNjWkrTEk2mVpHG1QXTG\n1Aml0jRtRy4CWTJCzo4+Bdq0pHnlaoxDGQsoppBAypoHRkEbU0neIZIoDGNdRS5397CuYRg92sCj\nn/4oVoA/PqJvLbevls+7dr29ew3Dlev4yRMllPVY7fZWYoysWi6lyKk26tvhqOIJFIS4QdslMQSa\ndjk3WmLWtNWJkpSS4CNaSYSxyFJQWsPsqITKrAkxII2mUR1WSWIYscawUi1hGmmtJYUBlOHChUuQ\nMlabCsTLmRZNVLrmn33W+lXOvKOSS50CCc0UPVXjrykpk+JZCKiAXDBzzEOeYwrOYJHwhWnDXnAj\n0/Y9pinE7cD1o6t4PyFEYX9/j6tXj3DOkWIkxkjTNLWYU43u9tPEcmcfayTM0fRKSrbjFqEkVhvG\n7cDXvePrMKZhHD1PD8/Qq4leGrS0NM0ugspwiDFglUNKhRYCKSqRMZXqvKBkZImkXDg+2RBCxg0a\naSzFGERnOT0+4v/6f/9v3vCmR5iCp1EK3TravidcH1gfPcVmveGpa9dJJRGswhTDlAr72rDZrNlv\nLN/25X8BNRRymvDjhq2fCGMiT1N92KmCI3C6PcEocEoxbtZ0Oy0+JBa7e1zfXkM5w/XNGtWtMLqp\nfIl5tFZyxk8TKguMqpAgSt0N65Wh5EDrJCRPprInlNRE78koJh9oFwv8Zguy3jhLrCAvqE6VIgWb\n9RonBc5YQskoCkoUUpiQQtQcGxIpVeS4KHIWbZ6JvDgXKpZSePTZa3zosScRrKjBZB/mY898jNfd\ndTt37K/QWpHP/ryg3txSgZCwRkEBEQslZ6J88bwbt2r/Vu3/ea19qDOplBVSQmMXDNuCEBNdb5nC\nQEiRlKrNWQiQIgDiXAgP9b0xtkZvGOtwTc+ylWymCahwuN12lyeuPMUQPOTMvffdi2kbvuKL/wN2\nlit2liuWix0oGrJEyQmtWlLIlOwogDYWikQpSWMXIBWpgFSWLBOiSMzc5FhtQRtGH8hCILPBB0/M\ngSkGQpgQxZPLSNKKw/0VKU6kaeTxK1dwEq5v1pQwsVaStz/8EP/ggz/Pzdau3/DAPTzz6BMIkfEy\nkqdAptDvrBBZ4RrLmAuuXeCPjinSElLG5IQUGh0Aa8hTQrYCjUE6S1EWVSSDHzBNX2sa5sgHiYqF\n4D2agtYNKibC5Gl6gSATS2SMHikbhBGcXlujSSwWC8I4oI1m2K6RrqVnRUoRQ2T1h9evRFKJFAox\nB1ICQWVG1ftTgHnlXqh6s5QSIeU5LT7XZHhbm2YjzijYf4wambtvu8Dv/u7jjOPIsN6w6Du2mzV3\nPPhyrjzzIVxrql+8lHpqKlBkJBdBkZInj6+hTxSu2aBE5J5Fz9VnnkTFyMHBPhf29ri9c1z/zKdY\nNG0Fd7klQsjaIeeALro+CIwipIDGVDGXkpQEp9c3dF2H1gqEhRLQWuA0NNqynUZKCRQ/0nctX/vV\nb2c7jWzWI1fyhtvvvYMwbjg6eoprz15jPW459Ws6ZWiwRGWIBp58+nG6xnJyfUKLXPe8FcFJDhm/\n9Uyy4EUhDhMbn+mdxMoJKQdSMyFPC65fIv2EW7TIGDFNw+AnglK4kOciAFdUfQ9Srv57KQBVnQEY\npFUUISgpIVSiTIEpDMQY6HsHwSDSiJEjKRaE1UzDmpQCjXU4o4gl4iyInPFTpIhESBNWGoxuGcUp\nUpSa/xILoih8Tow+oLWpJ9WYENTCW4+BDz32/7P3prGapmed3+/enu1dzjl1auul2t1NewdsYzaR\nIWDFw6KJkskMM4kmGTKDyEghIpEiRYqyKMqnKB8n36IEA4o0ygAmCCUDDDAw4NhmsHE34xV32+Wu\n7trOqXPe5VnvNR/up8oN7m5XJFBL7n6k0lG/pX5V5z3XeZ7rvq7///e/Bfw0aRa+pfmX+tkbH+Fo\nWbOYd58xBYo0A8SIUIg5KCwRU0BqjXwITPVf1fVW7b9V+2/W2oc8PTLlApECBweHpJQYbCJGy77d\nIqRkfbAmeMtu12KMyRM0lZsYIQTGGBZVRb1YsNls2G421GaNSLDfblnUmd+ybXcE71FKc3zhIvvz\nDUdHFzhcrIj1glgU+HYPs7BaCUVV1BSmQMr8ALfOopImmEiMgrppCLNAG+Rsm1dMRQRnkUiEi7Tj\nDhTsuz1CC/xk6caBKViODy9iRcH52W2m/YbN3bvIpIjeZb4RiSvrNf/Dv/8T/I//9OcR4qOk9H4E\nnyGx57//6z/AWivONue5XnRCyXltoiWL9RoB1EVBCoGyXtBvNohSgvIEOTEVmSQepYYQQWWmjdEm\nT03kIk8tQ8wWdDKB2kVHsTgghTGvRE3KOpmU2UumrIhecXq6oSkUly5fJvks2m1WS8a+nScn2UVZ\nFQXDpkUrMzuS8voV8ipRyFnnEuc10+zohESKIfOUXjFtkVIQYv63Gm0e4CHQknEYaRY13+x66Ebm\ny1/+Mm3b5QyNpiGRqMsqCxqrkq7rZphPfODiiGgmF9i3Iw+CwtrngI6mvktFDshbVDVPPv4EN19+\ngapY4WNDSiVizrERs2ArpTy2LIriQTdnyuy8sOPIqqmIKbDf7GlWawqjZ2dBpO9z173b7fMN009I\nrWbXiCJGA9Zyeutl7tx+id32nM3Zhil4gkkcNxUE6NstC1PQDyOKQCkT47ilMgbhM+QvlAYbLb3z\nONdBX6BEYjdZhBmRqkGnkZgklSBTM+/dAx+Q5j7aXGGKAhsCzjnGoaderNDazKAoh5i5FpF80iTj\nKAkxoKXC1ODGCZUUSoBICW89yU5oIdGmwDuHCJI0uZxWagxGKdpxwugCGfM+UwnFmCK61BShxM6q\ndCnljCkHFyJaS1wIXD89m0+jryZ8+2W+dnrGOx+5lMfMCaa5+FEy38hiBiqF+4Ak3ri8mbdq/63a\nf7PWPmSdSFVC7yyFt+zHFh8dyU2Z32M0Pnq8D7PNPNt/m2bFyckJAOM44toeWZrZlVMRYmTRNIx9\nT7NYcG+/yRRdbVjVC7761a/xb//oj7NcrDk8OKJPkc32nGmz5ZELh5TNApEERZEdaylJyqIhpIgu\nDEIrlosV42RBKJTUBJ+oqooQErJMTIND+ki73ZOtaoKDwyW7bk+0jt6OjN5zbbHmdL9n3+7pzu/h\np47eBipTsWl3LIqGs7Mzfvhd7+C9/+XP8H/90ae4e36bR9bP8O98+9t5pNJ0kyWNE84OTDKipWW5\nXLFpN2gjqUzBolriomQUnhACbduhbOC4OiCESNf3LI7qvG4lB3oKkae1SmjwsyDbJsI0UC2a7KZT\nCVUUJJ1Io6NuliTfM409CggxcXThAkpEiBZkzkCMPjsAUQqJIkwd3TBkeq+MFFpQSEkXfMYSJE8I\nDucHBBqtoO9GhLxPx87MmETGErTjxPWTMwbnaEzBE8dHrOrcuAjx9VDPb3Y9dCPT95lsWBQldWmw\n08iua+HO3Qc2Qmuz4KsoCqZhJAnJvu15taCwL734EZ65suDSxYt857veQ3fvjNbWVFdWFKXBNIaI\nYL1aUyiFUppSZ85CCCGHywnBOI6EBNX9rBitqUqDHXs2fc9qtWIcRrwHlMR5N488wdoBGwLj2NEc\nHLC5c5eze7c4ObvFdrNn3PZsJ8edbkd98TKVMqRhz9QGJBEjAr2zGBNJIbAsM+KdqBht4PbWs9kF\n6pXIvAUJSkokGnQWvSktUaqmqA8QMVJpw+g9wzgQZIGXEiUNy9WKfphIyBmXb/IeXcrsvw+RaRhm\nK2dAK09yFqJg6DqMcGiZwWG4kRgsPgRKU+C7HhMiSUqmXZtPOhGSD2gUlSnRUmK9JwAuxbzLjdMD\nfgrkEb31jkCinyyJ7+K1hG+9/ZP84OfrECj4urBLJkXwgZTyzV6/gRbUt2r/rdp/s9Y+gJ0szYFk\nfXTIOE5IbTAikPDIAG27e8AEuc/NKYqCYRgeTGO890QXSFIghaQuSpTMKHslFWVh2LYtQqoMBgTe\n/a73sl4f0nUD+ATTjsrMTiSVP9uqqpBS4J2nKheZzROhrhqiivRDD1IhJFjXkZKgv0/qHjIgLwhQ\nyxo7Dnzyk5/k8MIBl65eQtmAi4Grjz1K33W0m5fp2x33zs84Oz2jWJZUwbEoFoTgWcWEsx0XKs0/\n+tD3YZxgGlrc2LHvOqyNhGEiRYuVgbLwiLFj3Szo2j3eOswRuCgxy0N0syNJRyoVu7HncF0TZ41c\ncI4gEqbKzBydJNF3GGMQZP6QaCQhTVSFBD+RUFlzJhMiBIQukMqRUqCqFw+iNfByhtAlVGGAiE+R\nsZtYGINMEVUYJp/dUN6NiNn5BCETkFOCFIjBIWXK4l9S1iGJSIieG/d2PPu1m3PT/34Ez/HC3ed5\n/xOP8cTxEd77eZX8l8qR6SjLirIs2W7PH4yTF6sF4+wdt9bOoqJcYCebHfk0+upBYfvR8e53vxs5\nWxLXiwtcunCJoimRVaQqF0QEQhdY6/J+fca2x5RoqhLrM845xZxQPPQhQ8JMiRKCvm3Z7XYsVxcI\nISKFRMpIjIm+75FGUTc1xMTdmzc5Pz+hG3f03R4/el588SU+e/smn/mzr/Af/e2/TW1HbGsza4CA\nCJb1Kp+S6R3RWU5F4Hee+yyfv7Oj95pHSs+Thwt+4Om3wThgVx5RNxiRHQ2ekvrgCnHqiMGjTEkM\nkWmaSEbjvCcNEzHGPHpLae5sIdh8kiQlqqIkuMzfIAa8txS6QZb5ZoxSpMHiholCZ5fGNI4I54gu\n0I5tDkGMnkTEjh5ZlthxotAGU5qv33RneJOSc3BeyGwQITOSuiw0gufmkfqrhSaaByCkGAPC//lT\np4vM1s3839a6hy3Vv/Trrdp/q/bfrLUPoNeHNEcHBBs4uFjx9qce4/nnP89uEmw3G2SCaB3aFChp\nH1iuhZBIstZBIaGIDM5hvWdyjgPbYIqKKQXqxYLTOzdJduL48iVS9LzvqacwQ49MgXHc0yzXBCE5\nPD5gnCZWZZ2bPQGikHgc0cNqfcDkA7bPh4vlsiaGSKDMEx9VZLeh0rg5u6sfOlKKfMd73stgJ4Z2\nYtueURw26KTwbs+waznbbDhrd0zSUfYRdbiiC4Ep7Bi6jroQjCQ02fZc6AwG9D5CZ3Ekhpjw/cRQ\nwegnBBojDVL3bLoTlstDUtpRHh1id6eUKdG1HbJeoHSJSQLQSG1QITeCQhuSFg9cQEopgjBzZpnE\nTxYpA65vIcQs8C0URdUg/ER0e0TMUxApIyRP31sqo0EklJGYvAMlpYRnJKRIbQqqcsm9sUelkAXr\nUaCEYQhZMJ1J25LgHWl29HWT59mv3eRV168vfoQLdUldm4fSx8D/H/v10QFKKfabuyybGm8tSRe0\nbc/5+Ya3Pfkk0zDQ7rb44LPnHcgZM68eFCblZzjUgmlzj1WzQiwOiGZBvb4wW7dyoNvoOxCRRTnf\nyGLmLlg3zgp5R2szMh4p6MYhq9jrCjuOrA8PsNOe7W5P2TSEmGj9yJgCdswnLaPz/7c9b3EjhCFx\n4+QeL27PsUoSguf3/98/4se+93sZ4ov40VKQEehmSEQZc3esJR/71Cd59saGVhdIIXhphPOTicG+\nzF976hpO9ZmdQGARFizjXQomkq7ph0RRrJiERoWIJGLTwLDvaOolneghRepSEr3HCY0g5nyR4FBK\nkERAykRRlKTkoAY3RthZjIGirvB+QiqBIqKrkpjGnPtBYoqe0VpEBFlkuuRkHXVUWBsQUjJFT4rT\nLOyKRJGZAiEGVITHDte8eHKD10KSX109igsx235Tpj8qITI6ICSijqQQkWRY0v2H1xtxvVX7b9X+\nm7X2AZ542xNcOL5EWdR84fOf5c7NF7l162WstZmyHBPGGDrrcjMvBOMwPOD93I/v2A+e/eC5v2rd\n98/x0r3rXD1ezuvYlGnU1vNd7/sOhv0JWxdoygNW9cFMsjYM40RTVV+f9Mz04Gwnzk1gs1oS7p3S\nlAVDu2eaJg6OL6J1Qdu2c+6PoGzq7DYMjpBCtgSHPKU4ODpCGUG/3XJ29yanpyecn52y3+2YfGBx\n4QhRGZqipj27hUqw2bZUWmAkpOAopSIFh4wB2xRYPP3Q46VFdQqCYCwCnXe4UVCIQIxbDooCISU+\nSYQXLJd5YqJ0Sd/3LA9qmKd54zhRVjW6qB5otoQQJCFAQgoZGWGHiaqqsENLXZYkAoT8+yNihtWl\nGBn7jrLMoMkoAyJGnB2pEhBDNivs95SrNdIGBOR1YsxcGGMMvbW4GRgZY54kh5TIUQWJ6yf3Xnf9\neuN8yzvqi8ADMPDrXg/dyMQY2bctUijarufShQu4qmHbtawPDthutygp6YaRxTIDdXJI2msHhT1x\n5TJTP3LlyqM0i2OOr16mWdS4cQAgyARRkIjUVUkI2cIqhUJp9cAlQoLVqmGc0fEhBLZnpywWC4xg\ndhmUVGVgszsj4tF1TaFBK8PJ+TmhsPTjOdvdHVwInG877u42JCSazEd48fZNNjiEUQyDZ/CB0jmc\n0BxVNSpITu+dclUf8H2PL/n0y7fZC4GRGQ2/GSdeuHOPJFaUSUJ0sxOipTIKtOHg8pqiWJJEhQuR\nsoSiNHiZRVSTzXj7FBVKFQwD2K5ltSxQKhD6Dq1LhNSAxMkduirJn2IiTBMQM37dDiRnCTGhtaIo\nSrq+yztXH2h0mW8WccBEGGTO+JE+0iRFN/80pZK4yWcXxnyMbMqCd169wJduf2No4tuvHGGUIsRA\nUhI/TwtijPMvVMJ60FISU8pSx4ep5r+i663af6v236y1D3B+do5Uhs35DYahZxwGvPc0TQMiUkjJ\n0LWQMosopURZluz3e5TKTJ+2H+cm5htXrbfvfYSvvvwypcxi13e9/e000nDrpZdYH16kXJXIskQq\ng4uJi0dH2HF6YM+9D6I8PDxknCzb7ZYmJuqqmKGFYIzm5NbLgGC5XDINPcbUdF1H13VIkxPWt+0O\n7/NqpNuPHB3U9Ltzzs5vc7Y9pdtsac/2WCN5udCwukBpHbbrcENCJo+dHIWEwgh88FRSYO1EQUXn\nLXYUdIMgJEGBI5kRtGJRFpg45imIPKdZH7A+OGa371lLTVTqwQpvGAZECDSLVf7cQ0B4l6dgUmWW\nj1YIIcFnC7wWBj86tJRIPM7lLKrgAt6NlEUDKVCazJap6zqHZnpPjSIEix8mkAItJX0/ojDURUmt\nNYMSRA2eDNxjzgu7P1mUWs2ho4HeOhIf4LXWr+30GbzPJGwpv7nY/aEbGe8d0zgiBZRVzdmuZXvv\njGtPXkMphXeOcbI89W1vp2lqbt++w2Kx5M+ev85rnUy+++kPUpuColoiqyUuTPR9QiVyVk3IY9u6\nKPCTo6gr2rZFzdkyxkistSyXS7quI8aYR+0poQXgc1ZMdB4bBNbbHBUfI4PriEIy+BHbTyRgHC0n\n+55PffUWJ5uekAKVkpTaYApFUzd02y1HRYGRGhs9PgU8Cus9ZYJaG65dusyjBAqZ+HI/sG/3RCkp\nSs0QRu71hrVSyKAQMmD0kmlylEVgsj1hKNHrGl2WaBO5d3qXsqwZhgG9bEijxyVNaSqaqkSyhGjx\nDowsM1woWKSQhGkgTCNi8pRkrLQKAaJHxkByjpAiHjCFoQwlfdsjrBE3AAAgAElEQVRRklkP3ke0\nNhQoTEjIxIPTk9Ya5xzOZrslZOHl/VPSldWCVWG4veuY/KcojebK6gpVoUEKXErYcUCZrK/QQiJm\nBoElZKw4OW9HPEQC6l/V9Wap/RATt852/PFXbnO3H/L6zCiWdfVW7b9Jax+YT/0jWiu8D7RdyzD0\nNE2NtT7XpcqaraqucTNLSWtNcA7nHJMPvN6q9WzXc1TDO9/xJG977HFOrr/IpYNjLhwcYyqDLgNl\n3VCXFUkoqnqRE611foTd549IqVCzQDTzhFR+iCtFU9cIKbn58g1WqzVKlYSUWC6X2ODZ7jf0w8B2\nv6NZLhimEffyhs29G5yc36IdOuzYM/Udf3b7Np+/c4e/+xN/h0eWDcqPtF3mFBUy4YiodYnzftZB\neYbS8dzt23zq+Ze4s524WMEH3/U01juEd7hmiSg9erHCmxGrC4Reoc0ii26bmrbrSSoRGKjXq9y0\ny5n6+wq7ckop54PpPOlTQmWSrkqQHNPQE4PAaIU2GhEUIia886gYidaStMkZaAhCP+GiRcQ5/Vsk\nXLAIXZBCRAmF1JpoZR4sMk8ShZiF2AIXA1GkDP8rzOuuX0vz9eblL9V+PU0Tq+UKWWR+xebsnLJp\ncjLqfo8QUNUVMUZu375D3/c0dcm1a49y48Y3nkx+6N1vp4oRLRQhJVzKYWx+mri4PMSPE0W5oCxK\ntCTDeMijL2RiHHtiNCilODs7m286es68yQ+fdr/HjZYUA93UEpNidBFQqELhiCSpcBOcbU752Oee\n51c+8afAehbrPQfseHTdEGPCu8hnvvRVfug9T6OkRCeQMWV3xKKgMSXruiIegh86zOIa8eZdXgw9\nul5Qas0XNz2fPut4fFHzI08cUZbQy4Le9HihcEpQGU3tl5zf27M+WFI3JbvtPoOe7EhTLUkhszT6\n7ozlYpUV4igQniQcPgwkHGo+pRdKEYeJcdxTCFApkfyIUpkAK6Rk6Hu2my3rZoHtR5IMiDRnmqSI\ndJnUIaQgaUmY5lCvEIkh4l3uoBH59CqSYFkWPH2sSVIQRYYgJRI2BLRRSKkYrUULkYmZMY87hVFE\nIAUPQr2hcTNvhtqfRs+fXL/Db33+Orn+vw94jtNxx6MHhlIV/N5nPsfVgyVPLiuWb9X+m6L2AcbN\nCbWIjFEwdnuU1ly68giFDrjRURUaN1lAZC1ZUTJNExcO1pmTNI5su57XW7UO7o942+GSdzx6he7k\nJo0x6OYIszxmdXQ8C7UF0xip1wuGrqWUnrIssNaiVYmXWVwsYkChGJynMQ2qMJnWa0oKYzi6dJlF\nVbPZ3Gaz3VNUS2KSnA87hCmoDy+wGwaiWtIPPWfnO0KncZuRdj/x0vk5N3bnTAr+yUd/lZ/9e/8Q\nNWj68QwZEn3MBxJ8YmEMTgmiqfmD5z/Lb3/+Rc5igZgCZw5e/PQXeXq94ENPv43Lhx47O3bG5Fgm\nxSG3qcoSL1bEqaNsjhmCYtnUFEXDuO+pqgYlEz0WSaAqJNE5QmFIySGTQqgC0kTbtVRVwjQGGSS9\nHZAxUVCBz8ykIBSxrCgI2ODwPmZisw+gFUnKTJxGomLEuYk+jjRBME6eJBJWJbSKMyfGERCINLOS\nUuKRgyXX7772+vXK4TWybjxh54yy17seupFpqiXWTjSqYZh27PctQhRcunyVdsjjuXHs6Ycxi3t8\nwFSHXCoqhPe0bUcSn+bq8THXlpd56ijbyZJQ2L7DpIQSBzR1jR16lMiK61SURKkQFhALwjARtMbH\nRLCGerHAekspNW7sKPRMk0ySwiim5Clqw1pXOTTPSDbtniItaJ1DFQVlJXnha7f4lU/8CekbRp8/\nys3dxxCsYfceXjx5jk986Xl+7NvfzgUl+MKdE3rnubJa8sPPPMaTFw44Pdvwhy+dcNJNHJiCdxxf\n5XrX8/tfuUs+lXwP1/fP8bHbX+E/fu+j/HvPlJyfB6ogWRdHiDIwyS0RzXazR6ncaWslKFGIyTKN\nFuE9UkLrNzRNhTISpoAXHmEUoR/BWlT0ICIES5kiMkYIHiEk3gW0Ktifbej2uzymNAZTagbrWNg5\n14bEVEqsh8nn8aRXhsENOV9mDlrLo+VI8D7naEhBSHJOghazGl6QfGD0EalmRLjLCccKBULiQ8gW\nPyQiRrJs8I25vtVrf78duLPd8Vufv/7q9b/9GLd2EtL7+cJLz0Ha8n3XrmCde6v2v8VrH+D48hVC\nSARnUVrRLFYMY0+73zNYz5Xji+w2G9TczHnvuXjxIi/fePEBjiBvx1571VpIwXd953egkBRFTbVa\ncfmxqyyWS7yzBKNRJMrSMI4bjBHkSCuH0UVuAlNu6Pu+pyxLyrImpUTfdzjnM9VWSrRU3Lt3Cmiu\nXn2cF66/QFEZUpwgBKwTlKVCI7h56wTnO7b7E8ZhYrNvubfZMk0eGXPT+lsf+30+/L0fJHWKzvUk\nGyiVRoWJJCONNOx3HenMcTEZehuwUoIAG+G8tzx/8zZKX6ASmh0DMQZishRqjRAXswX+sCG5RFWv\nIAmmaUAIRd+1JBJjggtHhwgB2ghsUGhp6NpTqtIgg2OpJL4LyKoEOaFJKAFSZEik0hIhEgqB6zqi\nd4iQMJVB2IjzHkFk2O+R1ZJiaZBKIpPAioTUEuMkxkUeSNQFRJ+1NPedeU1Z8O7HLvKFl7/xoPeu\nRy/SFJqYEtZ70kPwIB++kWkqjo+P2O93TOPIxUsXKIsldprYnm3yDvLeSc5GAR577DHOTu/NyPCA\nkpGnHrnE44dHPH54yDju5hNkZg7EMjI6S1lXSKVASgieYC1uRiSfTRONymmqpqpyQIdIGKPZtC1G\nSFw7IlxgIoEEUxnabs/QdXTjiKwqkJLRDhTNksFGYlB84vkXEGJNSq8cfb4EfJxXKqtJuWv8jc/+\nHCByg8P7+dK9Z/mD63/Mdz1yxJ/cOs/vNVvKYtrO7/eN++Ff/NxHeO/RgscXDQfFMU0yJJGlh4vS\ngMh6iHEaSDHgygalDN5HjDE0zSFFKZnslm7oqGKNUZrkXP4udMXu7BbLWuBth6FhHHtkSkTvSTHR\ndj3TOILKhTaOWUgqiwIpBXqOUhcxJ/9qoXAhIBJUSkNMxBRJUZLmMaCSKr92f73/ijV/jHHmEOSx\ntZ/ZH0IKiPkEHEkzpVUiYNacvDHXt3rtq8Uhn/7aHb5x9P+K+k+vrP8f5ZM3PvZW7b8Jah9AmQJr\nJ7abLUkkxJRdNP1k8T6wa1tCguVyydUrVzg/P+fk9JTLjzxKu99TliWj9fTDhlc7gQv2XFtf4urh\nRbZ3b3PpiaepFscEERncwLpeEO1EwtN7QQqORV2yqNbZoityBMF91H1VVQ+yhELIzr5pmhBa0bYD\nxBnsVq05OzujKHSm+BI5PTlBmAIbIlbA0O8Zhj3eD0y9ZdP1WCEoy5poJ4JQ3D65i2xKkhHYPj4I\nEx2io0IzOEs/DDy+usTR6gL/6vqL3LCeGC1IjS4Lds5z57xlqSuwI5GaJAo0kaY5nmtAUBQ5QX6y\nDiFcTnCvs5W9Lg273Tavpn22aauUKJVhvzlnIUAIhS4qGBwutRR1lUW+3iGVyNiC4MB7pHdIEkKL\nnKMkBTFkAe/SVAShSBGkUlRSM8YIEQptqHSBHXsgr/2kEjhrkVJinUMKweVFw+KJKw/Wr1Whuby8\nwrKp8CFg559d/MtsZJybcG5ku90yTj0HB0d03Z7LFw44Pjzi5ZsvoaSkKDOifbvdUmCw08QwDCAS\npZJcWq2Q3lHWBYUu0UpjjMlgH63wKWJmJoOylihlHkk5j66r3BHOyZgxerbbcxJZJGa0wcZAOwwU\nRc2+3ZGGRBKRybksNgqBoqoISRCkpKwbqtWCMSYS7+fPjz4/Arxamul/Mf/dKxocBuAn+fStj/LK\nG3/eAX4/cP1V3icrtH/3xj3+0Xc/Srk4RJdLTFkzBY8dO0LKqaJNXSKFYLffUBY1db1ASJjsjskm\n7p2fcOniMWPbY11CuAllLRgQKbA9a9EC+vEMbRRaSybnmKYJN01ZgCiyziL4PLIdXcA5j5RVFu3J\nfDZUIu/4lZDYOVlVC4XDo6TE+0xvlFLiY0ZUk0DIDHRUSpNiPr3d57DEeV2QUtYaKJH1AvnG/8Y6\nN77Va/+4LrC/+RsgPgDpm9X/qzT3b9X+t2ztA2hT8sjjx9w+uUuhDbv9OXVTITR0qSUi2XY9dV2y\nWq9ZrVZUVcXFS1fYbDZ89rOf4+lvewalrnP7zjeewN/x6EXe98wzjNst68USoQpMswLl6PsWEyNe\nKOoyh63WZQ0hr3yLomS332F0ycHhCjdHhcQY0abk7Pycg/WaxWJBCI4xeIiJYei5ffdlqmpBOzqq\nqiYGS22WoA0xOtqpxwd48c4Zf/T8i5xte5KAykiqsiYKKMuGtz/xFGHbUauSLuzIkqaAdxCkp6pq\nitWaqQxctCPVO57g4zdusZ8SfYisFppCJvog2I4jy7pgHAdEBBUV907vYpZHyKkg2gZRCiDigyP0\ngcPDgsmOtP2ORb1gmhzLZkmIFjdNiATrxUWk9wgZQXqs7dAyMXUthZDIEAnJ4scBHQMqgQKcs1lU\nrSR2tIzjhIo5ZDX53HTrskCGRBnyhMnGwJRymGiYm3sBWU8438O89yghWFUljclQv6RkXtPOPz+h\nFTYE/ENoxB66kSlkgZQg12tibJgmS6lht91xcnKSg7+0ZBja/IuvNF3IN4vBjhmQFBS1romhozQ1\nq3qBLDWmqZBaoWGOgfcQIynmw0zykaglYfIIlU9I3X4PMiem+uBJU+ZrhJCYrKcfBqqqou06pICk\nJcqUJCQ2SAqjKcqG5ugKDsXVK48ixL8gpVeOPq/z6nvdf8KrC9eefI3X3wkcvsr7ZIX2JL7MU0++\ng3J1mXK5nkPkCqIOjLt8GrXOo1VB3dSUZcE0DNRVzdnJXQ4O1hyuDhgHi1aJ6AK1lgx9Vs/LGBE+\nYZ2n0op2t6VX4K3Fu4BRkkhEzUF2UuQbfXCBNI2UdYFSGozGkYja4IWHlAmrWmlIAp8ZSkgl8SHR\nD45bm5bBe0pjuHK0xigxQ5E0ImWXhoiRKBNSZqtmCoFCmwfx80oIknjjbubf6rXvUuLa42/jk//6\nYer/tZr7J3mr9r/1ah+gKkpu3HiJwhj6tkMKzdh5ht7xyCNXmaYR7yTaBPqhZ7M5p6oKrr94ne12\ng5Ia6zqWx0e85/iI07unjP0f0zQl3/Md3086O+GwLphGR9mUpOBJ3T2EKWiqilIIlIBuOmdRN7ho\nKLXBJofb9lTKEEVgd2ZxMXLp8iX23YCyjqWWTO0W1+9xYySSNRun56es64Ld9oRqscSFlmE/4SqD\nTxO7/YZKKH7vi1/kF3/3j2GePsJzJLa88/iIi4tLnE0DX3j5ZU7bHd//zNNUVU03bREhsAgKkgfp\nWS0rVn2PXB2ymFYc6SUff/Gr0NQMEb686ejPzrh0uudDV4948mJJbUrcNGGnkSntUNURunEk5UnC\n0I9dpkuf3qEsSxqzwO97TC1ww0BMQxY/K515RdEzJUdRamSQMPWUQBqzkyi5nmBHjNGkFBmjz9NF\nF5ExEfseFXLD79yES7C2S25LgSwNIRSMY4sPOQ0+So0yCe8mfPIIkUBkgKbSecwSfCLKPNlJKfeA\nYl7LikDm1nxziczDNzKbzYbVosaHjEnvXLZC7tozhBRoXSKVIpqJZrFgGsdMukwx77qco/cehKRq\nGpq6YdUskU2FkJKyqtBJ4JzNJ6RpolKaMI/rjci5C3JmEqAEqpD4KWPhu2kkRtCqyC4HO3Hv7Ayt\nFC5GXFJEn9DVkqpuMvZdFiQSVV3xt/7Gv8sv/d+/xp8ffT4O/CbfuNd9gVdvcF6ai/0vvv5twD9/\nlfcZkOI5vv3aO3ns6iPo5pAoJBQlZ11PCFCWRU7XjQkbHFVZMvRD/h77nqJQdN0OPesjCqFYNiX7\ndk8KFt96CinYnG9Y1g29zSFt3rr5gZnZGN5ZdIykycF8Mg0JorekGOeQu3zDFy4fMYPIIsYARCUz\nCEkbkvfc3fV86eYp+Qbw3cBzvHz2Es88epErR2uUBELEqOz0CCF9PWRO5qTUzDVIJCnx4o3DtH+r\n136lNH/zx/4Gv/zPHqb+r/NW7b95ah9gt9sBME09VVM8SLp+9LGr3Ll7g912h/fZSj5NE13Xcfv2\nTZwLxBi5+sgjRBuRPrLvW9aLGhMdj1095rAqKY4v0Xd7mmoBZGuxEiILvCGLPUOkrDR+sqiQHTlR\ngLQBWUIMYEymCN+6dYv14QGjyD/rWhe0my1jjCgjcdGzXDUoAUYIbPR044TzCW8jTgjKsuGLL3yF\nX/ydP3wV3djP8qV7Pwf3zhHiANK7+NLLz/Gxz/0ZP/7tb+fYSD5/O2snL9QVP/jUIzzmF+z6PR9/\n6ZyNDVxaLnjPtcd59s5tfvuFW+Ra+SBf5Tn+1el1/u4zF/nxa2AOD7lz74yDyytCUpxv9zA5pCiQ\nKlKW2XQwDD0GjfeR1WqJ9xMxSqpSM04dhRGQ8jTQjwHb7imFQctEiC0iTUipkCLrsbz3qBCxY5/J\n2f2ATx4fAoumyRyeGOfpY2YHEWLmMQmFEgotAi5lXZgQEEO25iul8MHPK9f898AMURQPgldjTMRZ\nPP/NrodWkV279ihHFw5QhaFsaurlgs1+R9udc/nyZd77nvezXh+xXq8Zh4Fh/uOcm0+akW3bZsGb\nVqQ5MMtozWKR0dIZ8JVwzlHXNd3YMtiWJDzduMeHCaHyCKxsCvZDz+nmnNE7yqLMePhxzCNZITLN\nUcBu7BFSYcoaqQuENlA26KLCSM1CKZ66epX/5j/9WaT4BZR8DCk+hBD/K7Al39yH+ZMYgC+Rx6LD\nX/iUHn+N1/8esHuV9/lZEnt+8ns/gBawLDW1Tmg/cbxYcLRY4SdL8pHgHEZKtpsz+nbL2LV0+y37\n7RaNwPcDRUyAZb89xY4tKY4ZTtT3GGMY7cTZdpML1c5Bd0LkjIwY6dsuC+ImS3A56yOGSFkUaG0w\nUqEQaASFnJ0VSpKUJEgohAIXmCY/38h/GrgF/Mv560/x/M1TxsnN1kmJVApjNJUyNKailAo1712l\nlNkZIiVKvXHBed/qta+i58krl/mv/5OfQYpfQL5u/T8OfIa3av/NUfsAR4cZF79Y1DRNxW63ISVP\n2+YG5+jCARcuHFLpgnHfo5PAyLxG8N7z0o0btG2Lmyx1UbLdbbEx0CiBGEaWRqPLvGYVMj/IlNTz\nQ0wyuQmhFMREu93RtS1929H1fcYJdP2shYGEZ7mq6YeWvt9jSsU4tih5P+ohoZSg71rOd1varmPf\ndiAFZV2wXK3QpgFZ8pkb12cd2P/C15vw+9ICQV6j3iTx+/PXf8g/++yX+D8+80X+5Jbji6fv4+M3\nBv7nP3iWn/vjz/Hf/Ys/5Te+vOXjX3uGX//cXf6nj3+G33zhFomfJnGLxL+cv/4Uv/T8KV/rRjrr\nSLICWROEoqgqJIJlbVgvFxADQ9cydC3OTZSloes7uq7Nh6xSAx4fJ/qupSoN2JE6gfCRdrshuQni\nlDlGMTHsO5LzOcrBR4Zdix1GIGuL+q5nHMcH688QQnZUxiwSDs6jhaQ0BSrlg5gWuY7v17JUcm5Q\nxGzRFrNuMDctKaUHr9/nBb3e9fBk34Mlu82Goiq5efsW+/2euq45XF1lGEZO7v4Z3TCA4AGcK4+g\n3Oz1T4x2YvKOZbGgrGsW9QJpMrG0KA1tNzC1HU1V0Xc91k8sFwusnSDBsqywNr/37vw8sxeQlELR\ndS1dP9LUSzabDdFOqMLgU6RaLymahro5IJmSZnlALFYIIgaJsgFrd/ytf+vDfM+7382v/97vcOPO\nba5e+utU2vC/f/TnQXyUlN6H4Fli2s2fyl8Url3n6zftV77+j3PPKX4eyUdJ5PdJ7PnHP/FjvP/p\nt+FjAD8igocgUcnQ+ZH1coV1DjvazGSwI8FLUkgcrA8JETZn9yjJGo2OgWh7RLAUUnC6O2NZVQig\nMAZ14ZCp67I633uk1nl5HxNBZJGoMpqp65isZygW+OAJwc9OCpHdHc4jU7YZBh8QIeOpjVK8fHr3\nNamN8MucbPc8ffVSDgB0FimzrTmlQIwJLSR+1gWImXh6v8DfiOvNUPt1WfF3fuRH+Dfe9z5+6bd/\ng5t373Dp8IdZ1gX/26/+PGKuW9KnSXS8VftvjtoH2Ld7TFGgVcVut2OxqEgp0PcDu905BwcHdF1P\nKRRy1j9s7p0RlKIsy6wDipFCCs7PzpicRSmBQnJhsYC+RzcKow11XWNMdsIkkV1iTVnlRHDrqKsK\nO06YssYnzxgDTVHgnGO33+T8Kq2ylgXF2W5HXdUMYcINgW7cszpcYwpF11mmENFV5ssgM8ytbBou\nX7rIth959Snja0kLXls7+eydV9ePpdfRj33ibsvbr16mWR9xePExyqrGIymKPLXthxatNDFF1qsF\n/dBi7URVLQBJjeT09B6LxQIpDLpwTH2HbfcspcSJFikcfT9QSMG4v0dRmBzdYEemGNhvNyzKimrR\nMPkpE3pDoK4r2rkpN6bOjYgQyPtU85STriUir2CRCJ2dWjFGoo8M1nPrvGV0gUobLh0uqAsDZAZR\ndPk34X6K+utdD93IEDz91PL889fZbbcIkQPZhrphGAaqukYbyXa3QQiNFAbnxq+PTBHs9z3//F9/\njkcO1/y173wvV5bHGKGQSTK5QHWwhhCRAmywFGWRg9l8jmzvR0dKEaUhuERwkbqqce2IVwldFEze\noZRBNytsHDGlwVRLmuoQaQrq1ZqyXuCVweiSEMADR4tjlBI89dST/GfX/j4uCrQUDP2eD3//9/Br\nv/1b3Lp7lwvNO/nBd7yTZ7/8RX7xYx9BiF8hpfeDeBbSju9+2xU+9bUc4/5KQdt/+0Pfw/c/9Ti/\n9oUXOOlu8fjht/EffvcHeM9jb0PGhIyAC6SUhU/ajByoiaEviXEOXhsnFnWNd56I597+NGPiAdMU\nDHZAiEChMrshSEldCNIs+uq9p0yJ0+09VKmpjMF3HVqpGTqUT/J2snm0qAqUdxQiYVWBCgIdBSYl\njEhEk7MwCqlIzpNSIAXP+DrURng/4/hpYrAoqfPDNCaSEAgUUueRohIm81hDFouk4g28mb9Jan+y\nE488dpmf+cl/8KD2VfD8m9/5Xv6fP/gDXrp9iwvNO9HR8quffqv23xS1D9RNxtmf3O3xXrEwFVIm\naqWo1GW891y7eoWz8w1t19L2HcjccLrJgQFdajb9ljG4PM1CsvW5aQ3LkpWpWJULdF1SNg0kgXGe\ncrXEBYdJEuciWgogi6oLKRFS0o6WsiwRMeSvCYZ+wMaAVJrt3T1al6QUKEzB7t4mi5bHgWqxZPKg\ntMqrFgzV+gJqteTqI48ixG/PTr2HkRb85Wkn4QMEvsz7nv525OoYXSrqpmKMERcTvoiEPkcROOuI\nQaC1ZNHMUQ2m4vTWHdbrNfvtjrKucP2ASgGVEnfO77FaVsTRohEMu44CgRt6hmCzi89ZlsbgxgFd\nRFywQNbmTdblxHo7UqgyNx6FYuwCqahwU0SGgJKGELMR08ZAQqGM5MXTLV++dcb9lRo8x43zmzx9\n9QKXD1eElCjrihAygfibXQ/dyPzpZz/H6faMoR8fjIfu293W63WmN1qLlJoYEpF8A/beM44W7xKw\n5Ku33sX128/xiS/+Ov/gwz/Mhz/4ARaLBV3XZeGiC2ilMMagpMGNI0IUTJOlqgRt14PwFKaiKGp8\n9EyTg0oihAIhmKylrDTVosmAo+UBTb2gbBYkbdBlSVFUCKHJompJs9IMQ0ddVYSomOYMCb1Y8q6n\nn+E//w8usr93gphG+v2GR5eG91+7yu9+8Svc3X2NVXWFH3jmgzxx0PD3B8kfPv8CZ93XeOLgCf7m\nu57h2uESbRT/1Ye+j9WiwfuJuloDMKaQd+0pZ+ZoZAZsSUVRaHyCZAQTkZigMAWeiFE5EbleNIxD\nRxgnks4FqMgP0b6fCN6jQj7Z9VMeuTtnsSHf+KcpJ/mWZUlRFmznh/U4DERd5iyOBF7lP05B1BLh\ncjrvfSW6EBIpsg3w9aiNVWGIc0CZSHG+seUrzg9uMU8dpc5puEN444Lz3sy1L0LgmSee5qd+fPWg\n9sfunB98x5Nv1f6boPYBttstwzBw585tqqpgb3vWy0UOz1QKO4ycnZ+DmCgKhURTFYd4stDdGMNu\nt2OY8npCKZVpwZMlpkRZlFR1zbJekoq8YlqYEkLMK1elmIaRUimGsUdIweRDXoWIbJE/P2+RtaYK\nHh8cUioqKRnHAWs9Wpf0XUtZ1bgQmLxDKIlSBpRBSU25WIEq0FohQuLHf+jD/J+/9lG+ccr4JfIE\n8q9OOynEszzzyNNcOL6Aag6RRY0qJYWo2I8jg59QUuWm3UWmybNeLxnHgRgFhTH4IbLfbqjqisFO\nVEUWSbthpNCC/W7Hoig4OTmhlAqfMpTRBwsiEZ3Pv2cx5hVtWTCOIzJC8J4kciAmQFmWsE+U2hCt\nQ0mBk4kxelCSICIpZE51N4xzE/ON2qOv3P4Ix+slldGkmO3ixUM08g/dyGx3e1wUc7S2fJChcf+b\nPDo64uzsPEfDkjBG4kIGIQWf/tw/Os0sll/4nZ/n3deucfU4zMXtqMoi76pTyJxCHyFkJsO02yJ1\nvmEoo3B+hJTQStCPE2VZ451DqwKMQFUF9eoQU66plytQiqJZYmOg0PM+Tiu0MqToZ8R7FhxpqZjG\nnsporPcEDweLA0xRo2xPYQuaSxd48tJFquKQMVqmYc+qkFSP1XzX04+yTOn/Y+/Noz296zrP13d7\ntt9yl1qSquwbJISQAAFBQWJrC45OiwpKI9MqtDOt3ajT48ycObZt293KoDMejw1qCyS4tIgsrY2K\nDTHsBIFAhUVIyFKpVKWWW3f9Lc/y3eaP73NvVZKqUJyDE3T1xu4AACAASURBVDB5zqlTqXvv76bq\nPu/n+/ss7wXlbOq2FEh5KtI+zxOvwTuPExKhNVJnSKVwXUgx86pEKkkhBF1tqQYl82lNjDHJRosc\nLQXz6QQdAsF3tC6NcBGC6XSCJJGsCJGu7dBECp0lU7AQ8bidyUEIgdksRcHPZjOig65p8Z1NBl9a\nEbUi9O6mrrY7WBCA8x6lNRctL3DviYOczbVx39KFO7JU2OZ8pT8orVM+R29yDSkleDuG8fG4nsT+\nk9h/omIfUgd+8uRJslwxGg/Ys7SI61rWp1uYImP/0iL33HsvmXYokbNr126KYszhY/fR1DWz2Sz5\nJfVch+0ojcl8SgR8Ms1JHJnMkOc5RqWppoiR4H2aUNoG+nvYNS0KQW4yvE/k3bm3PVE0efRsTacY\nk+NDIh1rbVLQpRI4H8nLUcKdKRDGIIoRSilkEJRS8oynXMEv/PS/4ld++w0I8W5ivB7EAWLY7FOg\nz7XAuRB47xk+/krg9ZwJK5EJr/m251JVFbrQICM+OgiCyiiEzbG0uLAdzwDTzTWMzinLAWsrc7QW\nZEoT2w7vHLWrsQRcMwPfonXJxkbywbJ1x8x2SBGpMk0zn2HyfCcbSSJo5sk52bZJkj33LW0+QI9T\nGWGEot/QopE0Ma1qO++wMZArjXOOI6sbj7l+Pba6yWXn7ULKdJ+2Yyge6zrnQiYfDHnoyBFyIkVR\nIITAmGQPXZZl2h0738u9BNb1oV5RACPOvAd8Jx/+4t/xIy96QcqI0TLZhstIU9eoXGFyRVen71UN\nhrRdDUrRdE3aWwtB6wIyM7TWkmVF+jUoGS0tgKnIioXU6ZgMZQyZyDGZwWiDUqnjVVqDSLKxeT1F\nYRgUFTE4Mq0o9y7g1tfxdkYhJTZ4KiVReUmRj5i2MyoZMdFRxMCgyJE+kJU50ibZ2aDqlS9aAYHO\nWoyqEM4TvEMLTdfVCJUhpcLoks7VaCUpyxzhA7nMmEwmOKXp6gaLJVibVBfeoQcD2rahcQ5NRPbd\naVvPkULSzOdYIoXRNF2D6Luj7crae8/W1iYhREozoGvaxEYXChVJNtXOI/z2vaXfm55inA/zjOsu\n2MPnj9yM4J2JW/Ew10az4wyglEqHVUjYcd6jpcTj0UYifPLReDwP8yex/yT2n6jYh6Ta27NnD5dd\ndgnWthRasbnRIbXi6NGjnDhxAmMMo6KiqiQbG2tsbd2PysyOKd3pJM5tnsW8qWlDmjDmRZnesHay\nkxIfqetarA+gMzpbY5Si7jxtU7M0GGFti7MO67tU+JuUwN22LW1b76j5prMZbj5HFTl6UKT1YlVR\nViO8MgzGy7SywChNLgTCemo75Qe/6x/z3Kddy5/fdiuHjh3l/N3fwQ9814v55OcO8Po3/97XhzvJ\nLUjxCP7YD76EK/fupqoqrO0QJGdlIQbkpiLKgPVzcmNom45MGeb1JK02vafIS0TfkNRNxygvaXzH\nINfMp5sUmWIydwTbgrOUJkMpKLTCzeeIENna3CIzCgIEH/EKIOHcOovvJzPbhaISyalaCUnwHkMq\n2IOH6AXEgBJ81fVr6z6LlgoXPCYzOPvVJ5LnXMgcOXyIUhnKaphcEU2OkpIYAmVVsbJykgsuvoD1\nkydxraWzae+blOFnGqslH4n12Qm0VkTvmdcNQXuC88k4yjuCiATlaV1N6BRagHMBET2eCFGhlMGg\nKKocnRmEFuR5Ig1lhcJULUaWqExggyUrB4QYqdsGpbY7BYUoNENdMVnfQI8FYV5z/KFjvP39f8Ox\ntVUuXBjz0uuu4YpBznhpicZbtB5S5GOkc6g85b0oIxHOUWY6jbzDBB8i82nDaDxCZQaBBCQudigv\nCCLgu4agDEIGTJ5ThxopIZOSXBbM7Iw6NGR56qb9rCHGvPeuaNAqRwhB5z0yBoKI5EEQZUCoQNs1\n5IMC27ZMupoQwbYdOqYcjFmbUm2DkKhM0WZzossorEblEhEliiStk0IDCudsrwYIOC9wzhOF4MLd\nyyyUJYfXN2ncZ8iNZu/ifgpj8KQuS0qBV4oYAkLrZNVOOrwzKek9lZJJ2ONobvpExX6F4r5ja/zX\nD/0Nhx44yPlVzo/ccC0XPIl9nijYB8iVxAAbsynCtkQpmcw2OHjfA6yvb6TixNqUJSVgc5pCF9tu\nilJpWiCFJoTeXA2Bd5GNrRkfu+deXnD1FeweirROlBoVUmaPHlQI6yA4nEtFXqYNrm0ZlBWTWZMi\nLBQpsdoqbNeQG8+wqpBG0taW1tZobZDFkKAdXgryYkxVLKLznEE5QucZWuVkpmCbg7M0qAjBc9WV\nV/Kvr7iUuvN0/Rv/y17y3dz4lMt45/vex4nVVRaKq3jhU6/mc/fcxVs/cssOf0yIA8S4xXMuOY9P\nnYE/9m++41t41gXn8Rd338fJ+VH2jS7lVc+5nit276PKcty8QWiDDJJIhVSBGNapDEg7oBGBWV3j\n6g5jMgQSh2ernWBchoqB4aDARYcWMN3cIviIaz2xazBSg5RMtraQrWPLpiYKLVAx0HVJUq+1Bi/o\n2pbBYJCcsYVGeUdGpJUGaUF5UN6TiYjIMjrboaXAx2S05Jyj+iqBkYWWBG9TZpl36HOwUTp3si9Q\nliXWWozWCaDOk+UpRlxIx4kTh1le2EOrG9qtadqjxcjZMjYEB1gePgXrklzL9IZLRV6kCG+ZHEy9\nDxR5STNvscGRG40QJIMwoYlR0FqPzgRSZ+RlDlJgsgwlZApf05G2a9FVTmdblBJo3RP2sowQ00M2\n3ZywPE6cgre9/yP83K/9R4RY6Kvu23jjn/0Zv/nPf5wbLj6fP/no7Ty4ss6Fy0u8/MZnctnCHgAO\nnjjGu+44wOG1NfYNC37o+iu5dHlMUZZ4YVGiQCqdduVREGIKrotSoJSkKHPq1vZM+khnk1olyzVC\nJfdY6sAgzzi6tsXCeIDsd8BZ4+ispdSkg9VHgusSwRCB8ykvIzeGuk3dvpcS27ZJtdGPfb0PuLnF\ni47gWvRguCOPE73XgNYaH/RO3Pr2lfQdnmGZc1WWRoQ+gosBeq+A1HGBCCFZsUuNpU+zDeGU5K4H\n8blEuf99Xk807Itsibf/9Xt57et+qcf/MxDcwe/dehu//mOv4NkX7+HtH7yNw2tbXLi0wMtvvJHL\n9ux6Evv/ALGvtWZ9Y41ZtMimZbK5wepkk8nWpFetmOT3ExNx2ZgUaBqDJASbFFn99wo+YjsHjPDc\nwOfvu5PP3/sBXnHTt/JdN1yPEoqyLJlMJgQCtm6pirKfXCjW17eoyhLfJo+mpqmTtNpItNYYoYDI\n2toqlBqlTXJe7jx5mWPKDJHlFMMxZVWhixKV56i8IDPJ/NB2nqLIKYq08u26lsxk6Fzju4ymmZFp\nzZWXXMlPvXSB2M3pZhPq6SYXDTQ3XLyP2758kOMbhxiX+/i2q57DxQsDXjWHj3zlHtZnh7ho4WJ+\n6NqruWhxgAB+/qZvYTwcMpttMhotkJucNnpUkWFdADxZnhNioG0tmTLkuSHgWVwas7W6hpImcati\nQEmFdx3DYUX0lvlsTlDJYbxpGqISGKWwtsM1XbpnSCwO27UEGzAhPRPE5O0zHA7ZtWsXq6urAMxm\nc4IpU7ZYBKshGEXXRWKukb3FgfcpAysp88I5rV+FSM9ryun6Osqvt0mOWZZRVhULwyEbaxvkWc58\nts50OkGZPo23tQxGY6azGTFG2vZMY7W0B3zR9U8nz7I0NkNQFAW2S1kMkpSBgRCEAHmukSi6tkEK\nsDZSFBVGG4wukVmO1CmvReUZUicvg2FRUbuGohrS+Ya8GpNCzR1SKjpbkxd5ijOXKTfi3uMn+blf\n+4+E8GoeSUj62TffnA4sMU4FjriT//yBj/Hbr34Nzjp+5g9//7Ti5wD/+eN38v/+0HfzshueghQy\nWdEbjQiCum6SlFNlKCnw3rG1vo4yGVEqdGHSusLapKbIM4SLaAHaGHYvjKmbOSdXT1ANyhQuVmi6\n+ZwQPd4lNru3ARcjuJAAZS1BqJSA7D0+SDwO5zqkTERGGRTQ0tkttKgAdngBafIb05vqtg+AIoXg\nudAD2CUjpNBzAEiHuhJpi4pIZMkoJV655J+BSBR3Is6ng15K2S/SH5/riYZ9iiFHV1Z57et+6Yz4\n//m33tzf84VT+P/gx3nl87+VP779409i/x8Q9gGqKgNKlBU01jKb11iXTMustahtgrpSNPUpQrz3\n6WepTlOGeZ/8Vx7JGfuTD93Ct1xzDVLIZD6oFCE4RuOKrulTmQOozCT5tpA4axEiKfaUEjtGhrFP\nF581NcOh6ScKGVmVowpFNd6FUCNMMUAaTVEOmduW4aCX/lZ54nZJcC4ZuAkRCb3/UC4NCtisG4qi\nINMa6wLG1jRdxlN2L3PZC/dQFcvMbU0z32JoJJfsK3nWZfuoYiDznuBTAab69an3nsXFRYzJEVHS\nRYdJwVCgVCKBIynLIT4ElE5+PbUNLCyO6XqH3razmCInN5quqTEInOuwLhCkIMsybFPTzOeJ0xJB\nek/T1EhBWqNah8xSs2PyDB+SJ9Dm5mZ/rrUEF+iaFtu0KGkQWhFUHzWgJN28RsrkDxNDxPYcw2Ge\ncf1F53Hng2dev5Y6CRdO55J9tetrCI2sUscgJAvjEbEn4Vg3o2lblCySE2XfTayvrXP+/n1sbGzg\n3AzvbwbeAdyAEHcCE179Pd/J3sWFZJxkLSZPu35jDMF7Nja3WFgYEgmE4HC2oTAGKSHEiDQKZQwm\nz5EYohBIpcnLiqzM6bzDSE0zm1MuDmltS16NaGyNDoGjKyv86V/9FUdXVrjookv5pz/0cm645mmo\nILjlV3/jNDOkh3sFxHgzkVdDfHiQ5E+95S3p8IqvOfW5/vD/3951Cy+65louHY1wsUmdqFKUg5Ku\n6YgCfAgptRWwPnXRna9RSpPnOc4lCVyMjugtGZIhEiUVUymJtiNKQdskOagUEWkMITg672jrhrKo\nsF2X8lwIdA6kT+6KUYBQEr9NygsZ4AiuRhBOOcuS+IkxxJ0/Qzq0Y0wheslXQPZ+R5HQV9faaFyf\nhAqgRb9H3fku21lCCUu+d3lUX9vw8Ot6PdGwv/6Fg/z6G3717PjnZuLpGI/JK+OPPp68Mp7E/j8c\n7AOsra+ilcZ3NZubm2hjmG9N6dqW0WhEjJHBYEDTtBijGA0HdNb2RHcBBBAe5zyPxRm79TMHeMVN\nL0wEbCExJvnrCJnI2g6L1omzYW1DVhTJSt92ScLvI7nJCNHTeofQitZadJZhshyMYrCwCDqjKBbQ\nWiCMIUpBXg7I8qResi7gnU+S7WCIQjOfT7BtKpC0FATbMRgVDGWBXVtHyEDtA6WSBKGoshKjMgSB\ncjhCB7vDHxMhkAmJsAFEoChzmvmcxYUxUialllE50keiTTwRIZNfVFkN8R6Kckjr5mijqKqc6Dyl\nLtjc3MQojW1abLT4tsEIAd6hqgpnWzprGZUFs37S5NqO2WxG6DqMkklg0Fo6TrntamV2MpCmkymd\n7ajyEdOmTXEaaYBKtC5xyKzrV6iy59S43hw0TWkuWByxOFAcOjmh7tevFyxdTJn10720jwRONZKP\ndZ3zEyKNZquuGY0GDMYjNlY30GWBm2zQzFPmAzHihcArQfAkWalzLC0tsrm5iYtTjPg4z7jycr73\nxpdw6f7zAei6Dolgc16DD8kAqXPoXDMNLgVYeYEUmlZIimJIM+8Y5COKIiPLNIUqEvM9U8nKelbj\nEYjhEK9AOIcpB3QBpMl49/v/il/41V87rat8B2+4+c38+//ltbzoqdfyd1/6XGKpn7NXwH8C/ogY\nizM/qOJdvO2Tn+N1//RlTGyDCBYVLQSPFg5TDJi3LT4YfEwyWqUUrW2AjHrm2dqaELShyjKM0ugQ\nQNeErmFpcUjTOXAe7y2280gF3k7RQqF1BoWg7lqyPMOHiK3rJLsj4CNIJDYEfIhUKsM5iwseNbdQ\nt5TKUAuFF9D1ShTbBSAjSAm+ZduOOsa4Y4zkfSKkuj5ALEgB4ZQ1NZA8VJTC+lS1R5X8IlQ/rH88\ng/OeaNhnZY37Dz34NeL/0rN8/EnsfzNjH2BYLuODY21rjbXNTU6uruJcoCiHaFMwLEqi82nl6v1O\nXs75F+5i9egJujbFZCTiz9k5Yyc2j5KXGd56vLXUdUdhMpp5myZ2zqELTYiWLnY0TaTI87QidAEt\nYV7PUdIglUELSVVVBCIyT9wxIQSm0OiqwagKZQQ2pqLF+7TKlFIitWDezckGJZlMRHFZBoR3SOd5\n8Mhh3vmhD3PsxHEuXBjzkqsu56pxSatHdNFj9IgsG7G1tYYqFODRmSJ2DYMyJzQtMW7ibCDTQxYX\nKoQWKF0QOo8wAhk0tm1TirW3kGXUoSUrBjShQypBIRRFVjJzM+ZuTpYLhOk5ZCJDZxLftSiZpdWf\n1NjQsD6dUmUFbdcQoyUKhy5yQvD4EJFFRhtiqtp9JNgOJ1JBGQmYsqTTc/A5hTM7PDItDZIWJTQI\n3Zs+CrQWaSIUk4cQEqpsyFXnlTtE+U5EbPD9tFNAb80QT2sYznadcyHTdWmPdt6ui9CixLsNcp0z\nj4nAk8Z7qtfwp31l1yUDnW3JZYyeEnjetVezd2kRpVQCaqhxXYcximowwHYtUkE7axmNKmQA5SMI\nTTSKelpTlhXVcJQeDiGZNHOkUoxyTV3XaZxYlEjvKMoSoQwhCjKTc3hlhV/41V8749j8F3/3t3jL\nD7+aXYMhpyzXz8UroCQyBq458+fiDdx1+Chd3TFWBV4p2gAqzwiZp/Ud2kTaekJnA8H5ZNGcS9p5\nTfCB6dYWNkp8VbI8HlG7jkwb5jTIKNKe0nucd2R5Rtc1aNkTCn3AW5fY63VNkefoLE/OsTJxPrqm\nI6o0Km/bdscu3LoWvCeQsi8kIjmQipjOYxGTdFcKREg8gVnX8sDKGrW1FEqzf3lMkadpAyQwyx7A\nkEiN29wA79MbEdCTxHjYuf//9/VEw/7+/RewdzTma8P/2bwynsT+NzP2AaRxHH7gIMdOnmAyneCc\noywHmCyjbVtGZYXOMrw1CB3Y2tzAulRMX7D/Ao4cPkLXbStPzoSpxBnbvXAlXWvTz6mXxdd1jbcO\nYTTWepRKnBspJQjJfDYh0xKjVQrXFCKtOEIqpkIEleeUVZUCSbVJQZzeI3Sk7Tp0YfAxmU9qrelt\nfCg04Dva1qGiYzwcoch423vew8+9/j+ctkL9AG+If85v/uSP84wLlnn7Rz/J4ZMbXLS8xA89+wYu\nX9wLMXLwxHHe9ZkDHF5dY/+o4geuu4TLdy8jjSRIj5Y5zjt0lvfy7kQEDyGgpCAzKmnxnEOoxB1J\nhZciyzXIbQ5ZwyDPOLa+xcJoiJCGra0NKlHQtTWFUdiupa4dzllUb+YYpSIG3/PWwFqX4gb6bCSh\nJEpLnIt4F9LnRUf0HVoPdyaUUioiEaMT5v0josLSsyKIcKrwFyAiaJmyztIWTRBDRJxDIX/OhYy1\nFp0r9i7vZTJZZ2FQsXLyWO+CmWSMmckJocXkOU07JzhPURSEkJjPg6UxfmuSGNIX7Mc5R+18IrwJ\ngVLgo0UIKIoMH4b9fi2gtCJKjZeCarzAMK8IUWDyAmJgaucsj5bxQDedEbSizDNkZlCZQWc5Ki9B\na/7b+96HEGdK8E0jzvfc/Tn+0dU38I5P3865myHVwNZZ2diCz7IoLuVLd36FPaMxg11DjvoZf3D7\nJ7n3xHEu2bXID9/4NK7YtQi99K2qSmzXEYF63iGFYlRWSKDpWmKMFPTZLyKSZwYlJXWTsi+EANu0\nSTbqI95ZZl2HVimDJhDS7tNGhEi5Lj5NtxGAFw6VaZquQ8tIUAoExBDS2BNHjA4hI9pAVweEkhxe\nXefAwYd6r4BnIbiTg2sPcvX+3exbHPVKDbltxA4IRAxE2PH1iDFV5kpIJILH0xLsiYb9Vy3v5kVX\nPY23f/qjnDv+z+aVcWbsD3cPuPfkGm/6wIc4tLLKBYsDXvncZ3DhaPwk9r+BsA/w4EMPUNvZDlcp\nz/OdN62qqsgyQ/QRpSVC+D4I02K94PDhwwgECwsLrK+v4/2Es3HGXnDd0wgxJI8ha3fI6K1PBOiF\n8RJbW5tok0jZQgWGxQDX1mmyABidEUXyL8myCqEzjCkSd6zIMHmGdY5ROWDuaspqSO0ahmWJdx1C\nqjRJiwERZSL3S0k2hGy4xOHjx/m51/+HM3Mn3/Ro7uTv9txJay0/+4d/8DD+2O9+7LP82ku/k5c/\n86lEEn9sMBjQtYHOO0TfKJmqSH+frsXHgMkH4AEdyEySuFtr0/MeBVpEtDEsj0a0XcNktoVUka6b\nY0xKrnauI5IKkxAi1npKk4i5IabVmujJw23nUcLgcFifyO0+ekRUEFvabgst0jN/ikeW8CGkQEqF\n9w6lE98rhCSEiN6nNW3v/SPpV7aA7CNYkCSDzK9yfU3L1+XlZZQW2HbGwrigKmBrq93pSr33WGsp\nqiqN8LSmbVM+w8LCAhuzGSOjkVIRtve/Wif9eVHQyTaNoiJMZjMyUyXnxzyDNv1gpRapA9MZSqZk\nT4gs7duDjOlgCDGl+ortvBvnMAgIkCvDwQcfJIZncLbu8f5j91NcLXjN82/iLbf3OTPxeoRIXgHp\nvDsT47oD7Bkf1BAnfPeFl7FxYpPJ6gbv/9h9vO72j/egT9yJ3/zrD/MbP/wSXvGsaxmUGcFbQuyo\n6zYlLAuwTUdWpMPYkzpXow1bkylSZxijUSo5PEYCxqS7LEKgqcEbSdN1BJHG3yFCXhZpf+0Cvldh\niBhx0RG8w7oWaS1SlYmEJSVGKlpievPomvTgCcm0bjhw8CFOzxuJ/c/gyw/dzEJVUGp1ys00pI5W\nxzReBwjeIxSI01pRoR7ftvSJhP21jXUqrfipF34nv/PhJBk9Hf/pOlevjEdjPz+uufXoIX7p1ttO\nW28d4A23foLfeNmL+f5rr3gS+99A2NemxLnpjkIrxsjiwiKzOqXAD4cjZpMpRkecS1wY7zVCBWxn\nIcD6dMa+ffs4fvwEXXeKMwYHEEx55U0v4PzlpR2fmbZtyKucdt6gtUYKyWxWo2TiLmmd4X1L19XE\n4JAi4vtVYZkZjC4QJGmx1JqiGqDzZM6mkMwnUwZLI6zvyPMB83aOJnL/g0f5k7/4C46urHDxRZfy\nIz/wA1z71KsZ7S4RJ1r+7e/83teVO/l//Nkt/KOnP4OLhhVRWpquwZgq+TrZRNpFCJCCMsvoXOKA\nJUdpcK5Da41zkSgSmX2bQzYSikwbNmdzRKGJSmBdmr6kOiMF2Db1LPn12IjRCmc7YrB4coJzKKHo\nrEXmILXGWkeMgTwYwBN94pEJTvHItnFyek5YOvc8wcfevVr005b0NYn4r/AhFTTbTF91DtnW55x+\nvTjexeJgga3JBCk1s/WGONfUtkP0rPXWun4/KiiLDOc7hEyGWLP5hIGTzIJnVjd4pRFSYINH5pq5\nt+BARJn2m3mBKXKGWZmkZoMSpRTDvCIzJTIriERKoxDaYWcOKQxtBLUwJivyVMWagqhLJkESzYhu\ny2KajjMn9dbAZ1koCzbW17lEFfzM827ismXDYvFJLh5L/uVzns+PPePZpHCwJWBv//vN/MS1N/Jj\n1zwTwS1IsR/JTUixD8Et/M/XXkc3m3Jo9Sh3HDrIr37844T4Gnx4iBA/gA9HCPEn+Nd/+tccXJui\nqoK57Og611vWy2QfTcfWbJ2mnaNUoCXQuZaF8YAMhxSeGFqKQqCkR+cZXsT0dTLirCPLDFmWEaMk\noGk7jwuRKA1KKIq8wKtIJEO4QLO1gXU+yQ+DRSlBjA6tB4SYDJAyJDE4HlhZ5cyJsf8JGHF0fQul\nNTF4RIxIEVESgkxAzqQiKolAIZTGI2hi3HmTeTyuJyL2Dx08yHmm4KbLr2Rv5dg7uIPnXbjIr9z0\nYn70muuAt/Bw/L+Lb9t38VfF/kMnV/jcA0f4pfff1uP/SI//hxL+3/nfeXBeP4n9bxDsA9iNCScf\nPE49nSUcLoxZ3VzHCcfe8/cklYoUVFJi5/PkgEZMhmhSYkVEasXW1hbj8YiqypFyglAfZVC0/MT3\nvZhvve6anf9f13UopZnMG7oQiUrTOocLli03Zx4jIQpwkSAVMS+JskDEiuXF88nzlH1WZooi0xSl\nQWmITUc7r/ECQq6pncMh8EKi85J3f+g2vuNHX8Xv/cl7+W+3Wt741nfywn/yfdx8yx/wmQ98mM/f\n9hd8+ctfPAfu2CPvvSHG0Rk/J8SYt33icxg9Jl+4EC/GCJVRGE2RSQgtUgQCkcYH6rbDdg0Cx3S2\nifMd08mU6XTO2slNXOfJTYYWILMWRMuu3QsUWcoLw3kESQlofbMT56B1hik0jesgz2mFJiEwFZVR\nCJwLtC7QOocRhs46bOsIc0uct1RSkQmFI9KKVOgHF4lCE1We5o9SkRKtY1LphdQ44CNoRRc9QQqc\niHhIvkvnEJp6zoXMaDRieXmZTEuWl5ewvqW2ybI4y7JeJx7Jsow8z5nNZn20uiKEVKmPxmMCkXld\n07iUs1FUJS5EkIJWwCx4Oikpl5bI8hKd5WksaDIWdi8xGI0ohoNkduQalMkQUqNyn7IoigHGjLGm\nwEqDRXN8ZYPJdIOTx47wxb+9neuX9hLjdve4faCf0rE/Y7yEna3zxeOH+K3bP8j9qx0bzXM5tBn4\n7U/dzldOPNQPhQu2OTECaOyUPaXg+eedz97Scl71aV504RL/zwtexLdfeBHTumZez/nLB76C4GzA\nHvG2T32RzAypigVMMcJFRW09IpO0dhPnW5z3zKeBpqn7Ua5nPp9TSp30/z5SCLmjmEhJzCmNFlI0\nepZllEUJIu3m26ZFaUPbJdmvFyL5lUhJaCzW2hTKJpP9fghhx18jxKS0mLddL6c7m2uj33ndtsIj\n5RaRQN0rPmI/tYDEWjfnDtWv+/VExf6/+5u/5EP39uXLHgAAIABJREFUHef47NmszBS3P3iIrxw9\nBM28nxgk/Ise/xcMcv7F067jkhEs5n/L5QuS//PZz3kY9h/aWuNPv/w5eAz8v+OOu57E/jcI9gEe\nOnYMnSV7/8FgkHxDpGRc7mJpYQ9d46jyIfN5vUPUBpBC7PjLbKfBt21LURQYo9GFIdOCQZEB7ER/\nbEdZCAlZppG63/mRfu5a6bSCEypFDMikKBwOhxAlMUqyrKDxlnlT03UpCHRaz7Eh5Sz5GAi9MaM2\nGYdPHN/hjnl/mBBu63//cX7+db/MXR/4MCdWVtk9GHHmRuCxuZNnw0WMN3DP8ROUpmAcc/YMl4lR\nIMoSPzCIYUEXW0Ro6OoZkkDbzGnmEwiO+WSCdx2rJ04wWd9kPpkCYINHROjatueQCZyzaULW3w/X\nWWSIEAPReWJjqaRBuUApFZ2zaXIjBS4Gui4RfSORrm0JIhlcd7ZJWwqlCCJZDahtjo8kFe5AJBG2\nI5HaOr58bIU7Dx/j7hOrTG2H8+n5SK7oEVTKGzsX+H9NHJmu68hIP5xyWLG2ubZzKFhrKcuSjc3N\n9A/uf1gp4yLtNE+srSFzxR333MdG2/J9L3geWVWmh9po6Ei7bq1xNpJnFSYz6BgwJsNkkrpuyLP0\nmqxMB7kUBaPxIllegTB0HrYmJ3EuEOIEZyObK0eYbtRs3H8Et3qSl1x6KX998GbgnZzutPi9lz6V\nkci4//gx3n73F4mPGhP/Mz52rJeZnrYjjbyWt939FlJo+ZjIjQgOcGz+ABeXJdnybmxwuChYaRri\nYxAj7zt+kraJKFUStUrfM3TUvmU4WGA2m2O0pqkbogqIAE6AMYbpfE6WGyAQZUQouWNm5JxN7H6t\nCf3euWnanYMzqvQASKNpmjm1g6GCQhliDDtjw0ynrta6uHMwQxodFpk+K08IDlAY3XujpLG6cxFj\nNIiU5wHpQKf359gZw5+DKdLf1/Uk9k+tSN56V8J4PN0LpP/cn95zOv6/hY32AK+/45O88vKreNbi\nEi4K6uBYaerHxP8DK6so+ST2vxGwDxAEdM6ysLiIEKmb76ynKkZ0tUcEUBqcsylsk7hTpAkpKbKM\n2bwh02bHQM8YgywywnxOXaemQJDM9zqXlENZlkzbtFQYUVDXguHuJZx1uFlNNRzTeIvQiiKvyMwA\nKSOISN1ZOgKDsgIpmW1NEEYhVJoSmSIny0uETqGR//W97z0rdwzeybsOfIJXPPeFfMdTr+Ptn/4Y\nX0/u5Dhezj13PcDI5CztXaJaGnLXiePc8uGPct/xE1yyvMCrnncdFw4X6bqOup4zGAxpuwYhFFsb\nmyjZYylErE+xAaOqpGst86ZFSUlRFHS2TWRqkeTSTV2DT0WPcw5L8qLxzhEVBERaSXWWpKWTiQ9o\n0/OnMp1yxqLD9iswgEwqGgIhOhB9NGq/anpwdZ0DDxx9GI/s/pOHuXr/bvYvjXdwE4iE6BHyq09k\nzrmQ2b9/P8PhELs1oWsbVtdXWd1cw5gU4b192G8HPGmtd/Zjrs+hsd7BfMzR+fUcX7+Tj33uFv75\n97+EF97wdIQQDAcl1lkEAqUV0/mUBbNAWaYcjtbWlFWF8xEfHGVV0M1asqJE6wWs83g6ZvWMjY0T\n2NYzmzS4LmB84KGjq0xOnMR0DVcsjnjZVZdw/0ZN032J3Qv7eNb5z2fveIG6bbjj/ruIDIAF4NUk\neen272fekcLNRF5O5GLgMJHnAAf5g7vfxfiSyzl/MEQIwVKWczb2PhxgQV/GxvqUrEoEz85B2yV7\ndu80mamwvkZlnmBJ9tN9N7M+nzHQJUoL0JpMpO6lntfEfh3pvUcbzWw6S/4QIWn7u75T8c4jlEzJ\np9Yync0oWrejyLF9JxpjIpU5mxKAtVZctLzIvcfv52yujecvXgT9m4c2JuV4BJ9wDuxMEYXolUC9\nbNU8fu6mT0TsJ4z/DPDvSQf0pSSM/yGRkq8F/39837s478qnsjsvkEaxaDJSpsyZ8b+7fCr13D6J\n/W8A7EPqiiszQCnY2JphnWNxcYm9e3YTXEuew2TzxE74Jr0JWgguGdn100mlkknjbJZWVF3TUMSY\nlCkiye69dQzKCiUkTayx1tFaj5IiKZ86A0CeZXTOk1UVzjuMKfAelDH9GzyYqkBmZmeCUA0WkUrh\ng6dpW3RWoVKiKUeOHTvLyigV14dWD3FybYML9+/nX930Et7wwa+VO9lxNv7YSy65kpNH19nUksPH\nHuIDx47wi7fe+jDDyd9638f5zZe/hJc98xq0FDTzCXVMRnTBp5w1PASVgmxdsJjoknzfe4zS/cQr\nhcNOpptkxiBCCimNMjD1DVJJPIKARBJp2paiGNC2HUYKIiE59UpJh01+R8GivEfrggi9iWMk4pO/\no9vm9AimTcuBB47yWDyyKkv3eLuQ9+7r6Oy7Z9dutlZWqecTpBI0bYdSpt93hZ2RXwjpz0pJnI3J\n2U+o3nPhVBcXeiLUm//8Fp5+xWUsVxVt7BJLuqkZjUYMRklbjwiE3sJbRAitZVAUdMFihWD34i60\nzqgnm0zna3zl4P38zafuYGV1CxEjtrU46ykUXDQcsKDGRKfYM3wKP/0//SjjaoEqaHwWAMt8a5O3\nf+UAsELiwlxPilv/deDZJJLag/3nDpIO+bX+IXgXqfjZfs0mkZz3HzvEcwcVeW546mDERzh+RmDH\nuMWzFxc59MCDjEZDYiEh00RVELpInVlc21AphegCUQgQkratqYocgsU2AlUUSZvvk/NmiJEQI2WZ\nJ4vq/r9tZ4kiEQ89ARGTjFRGTeY8jfYUSuFdTU6gzgROWqQOOOFAQfAatEE7yeJQcd3F+/j8oVOu\njdtBaNdedB5V1ofCxUh0IVX5IrmZ2hj6wj0SZLI33+aZYB+/w/ybCfuTyQb3HDnEx+74EidWNxAh\nIiPMm5pcCq4Yn8dIlo+J/Y+sPEjcmJNwfjqWfx2ogKcAv8wp7L+axBE4O/7fd/h+nr80Ynm8i6cv\njfjIyRXOjP8J37JrF8cPrzyJ/W8A7AMMBgNsZ5nPZsgoKHqzN50bNtY22FUtMTuxyTzMaL3DSIOW\nklmbCrE8zxEiOSeHmN7QyqrCTyxtDm3X0QG5So6uXkInInlMDsi23ywVg2pnqpMN0pvmdDpneWkX\nJiuwDoRrKbTAyg7hK6TKmHYNalxhco2PAaVL8mpMp0qMGjGSA5ZMDvGjnK25LPVetqZz7r7nHi4r\nRvy77/of+duDX+H47D4W87186yXP44G1Vf7wc7f09/6GnXv/6qc/Fwm8+QsPz1qKccK/ePr10DUc\naWsqZVhpGn7xg7cSeKTh5Gv5uXfcwg0X7WffcsG0nZNHnci4SLCBNrZMtxp0BllumHuB0QqjBN61\nyfyvN4ssCoV0ivl8ThQpBFL0MSHBB4SUWBsQKmNW10itMCanrtNE1OqW6Ay4jsnqCuV5FyPGJYnZ\nEiB6pCjSFAaLERIbHIdW13is5Ouj6xOu2rcbHwJSbK8Sv44+MvO6RsqUCbOxtYn3rpedJmA55zAm\n25FfQfpLDIdDNjY2OatZFu/ktk9/lh+56dtROkm1cpMhlUQqTWYyEILhcJiY1a1lUA0gRrTSGK3I\nTUXothB2wvs+/FHe9J5bEYwJ8TzgbtI+/gYEd3InJ/i2q57F6//t73LppReRFxlLS2OCm1DPasZm\nkbv+7gvcdewwj1wfpQ71ZsCQuDGnH9gb6Qbyk2d4zVuQw7286MYXsXL4MLbueMUFhj858ujx/ksv\nuBA/mXJMS1bW11g4fxdOQchT1667lGUSEQSZOsXOWpQU1F1HkVdUZZUku718r2maZAolJVtbWzsy\nT9X7XjgCIjf4eTrkqzyHEPFeEkKHJtI2M0obyUUazwYlUaIPAwseJQRBCJxzXLZvD4vDkqNrm0zr\nz1JmhguWL2FYJRv57XH8Dkdg21+jX8nEGCl7rnoIFhD4czBF+vu6vlmw3002+O8f/ghv/+AdwIgY\nz+eR+P/Syl38Xz/5b/jpf/bTZ8R+mNRc9sm/gS//MY/G/2tJ+P8UpzgB2wXONUBzhtds4/88rli+\nHFt3nF9VvPwiwTvOYFH+w5dcgmxb7jt06EnsfwNgH1KQZRSR2WzGYDhC5wV79uzBtjVGSDYnm+SD\nnPrESbTWaK13/i3GGKSUOynY2x/f2Njkwj0XsDJfo+nVfS7IxMGJAWU0dWt3EuaFEBQyS9MvkxqG\nYlAwXlpOip0IKI+zNsnBg0dlHqklhRohdYbXEqlzMDmrW1OKsaQIcM+9B3n6rvOJcZMzT9O2eObi\n1djZOkjBZlvz6WNHWO1qdhcFN+7ZzflGsH9xifG11/Geg/eyaT/BQpbzvZdcz7V7lzm8ucHzz9/H\nwckWMd7Bdeft4wevfAFLxiTb/xA51jX89UOHOav7sXgn7/rsXfyvL34eBQLhwHUdjg6tApPNNcbj\nBep5S/SaoOYU/XnS1pYqL8hkTvJvbAg9xy8pxRxta/tJYCLZx5CmaQBd2xGsR0hobANEUFnidgH4\nkOIMjMH0E+ltL6bYr62EFNStPetaOfHIPrPjJpyKGcm5GEKee9aSlExnc/Jc0XWWum528jWsTUZg\nk+mU/fsvpGnnGGMQpFC1RFw7GxHqBk6sraCNJssMs9ksuTH2na5SKW9kPp+n8C6dbkwMHu9alJbU\nzZx66yT3HHqQN73nVmJ8TT/ieyacYZd/+71vZfmKAbsvXSCrckQuaPwQLRZpmsjNb3oXUi7iwyPB\n9Fsk2eAmjy5Ytg/5n+XhBMbfAv6U8fIuXvnSV2LmLWvzCXpW86q7Ps+7D36Be1cOkdkxF9sxu03F\n5rzh/s0NvtzM2brTs2dhyCW7xxzcnLDRtuxfHPPdV13CxYtDlILc9JW5FMiosH3mCDEmboD3jIZD\nrLVkWmFdIt35GJBaY6JIo1ajsV3HvK7JtcbHHCEk0XW42RQXPUom8qGJIkW2BxA+pl8ItNK0nWWQ\nZ1x9/l5C9FjrkEYny+rkgAQ8PEZDkPJztkMEvU+7Ue8DSiVC5eN1fTNgfzabcfDIUd7+wTuI8TXw\nGPj/v9/yK/zoj/8w11z1tEdh37gCOSw422Ga8H8ZcDuPxv7gDK9J+C9GC/z8q392B/vfdfQwP26n\n/P6nP8Q9J76E7gQ3LF3K3nLAgYOHnsT+Nwj2AdqmJcSU9G6MoagqqqpCxcB4VLG1sY6NSVm17TEj\n+vUYpFXDdgFnjKFtO4oi5+TaKnXs+PiX7uL4dMr/8LwbKQeDlNnUNNgIaEPYdgiUqudLCEajMR5L\nNRywvrZBlhVpzackwQt0XrK8ZxcRg3UKoTK8aJjVc0TtqBtLXDuJnwfqY2uElVW+/ylP48/vfnRz\n+Y8vuowqCLp6yt8ee4i/OvJAP1VIU5f33X8/r7z8SkSE/3L/Pf3nns1Wd4Df+eIBblzZw6dPrJzG\nCTnAsfvvYX9meP6e86jbGqU1DZ6j8+lj88dW11BqgAwRR1JdORKxtigymqZOWU0onOtofEArhdKa\ntm4wRtG4jmFVMps7ZJ54ZFIoFhYW8C7ZRTRNg1YSZ/uiJkaSNV0EpQjB0roOEwNFXkEfQbB9v40x\n1I3due9KSjrnqPLsMXlkVZ71ZPjUcPg+5uCrXV+Ts+9gWHH48P1A6jjzIqduW9q27Ssxw+rqKnv2\n7MJZy1Y7TyNSIThrCrA4wO6FpxFCpLMWrU2/L06A9SEgldyR5GVZxnxak2cKbSTReZyfY0Pgvbd/\n5rSx1S+TJiZnqmzfze++5Y38/E//75x/4UXM1hrGyxl1M0NJxQMP3vsY6oPrSYf42Q75PwJe94jX\n3MDCqMWODDqTDC8cIlY2uWnP8/mef/Ji7v/0Z4mZ4kv33M2dd3+J2x56gA9sbZA6+Rvg+AHi3ff1\nKqnnIsQB3n3Hl/iXL7ye733a5Xgp+lC1iAK6zqFUJBLJTHKqnE2nSXbXH+5t26B1jiN5PVQmR+i0\nLsFHog+AxFrP2GRMvKP1DlUV6Cgoo6LOM5qmIS9yrLU0bUte5HRzl8LfnE9eHXnCSRDJJyPLsmR+\n1JO/Yk8OCCH0/45AUIo2eJRRtM4ixeM3Xv9mwP7GZM5Hv3D3OeP/jW96I7/5+jc8CvtEz2Y7RYhn\nkeI2Tr8SluE8Hl6sb2N/gbN1WksLNXGx3MH+5XuGXLs85qlLS09in29c7AMURcrwqYqCABR9sTI0\nGRuba0QFG5ONnQDJbd+X7c4a+pVZCH3WDrStxdkIjHlo9RkcW7uTj975d/zkS7+Hb3/mdeg8I48F\nUoDzPmWZCZnyxUwGUqE11E1DUZVYF9C5Ii+GzCdzBoMxkSE+eExhmNYzZrM12s7STC1d3SGdY2uz\nZv2hFdq1VS4d5rzymiv50slN5u0XWSgWuX7309k7GhMjnNg6zl8deeCMPLD/ct87d0jwjxSHfOpE\nEoc8khPy+3fdzD5lWDIGHdKK7avxx3blV9PMHSoroRBMW4snIrWgUkvYrsUHiw0zMpkarRgCRkrm\nLsUPKCOZ+zQhESSlnNL918aAay2dtUSfjAVt72zeOdeHqoqkXRIC2ReduY994S13ChmtNW2XiNtJ\nkB+5ZM8iXzl2L2dNvl68OBXu/TpYnWPy+zkXMr5LBC1HTJbtOo2+p/OaLMt7i+3Ea87zAVnmkLLt\nR7kK78+SAhwnfNt1TwMi6OQZ4bfZ7v2u24WQUmGVZFbPyftDRGqFD4FuPme+MWFta3JaNXuQs3bC\n8Qa+ct9XmK+t8Yk7v8B5y3to9y9w/IsHiU6yKEcIbuPMLqV3Etl3xu+bDvl7H/HxGinu5Lrzvp14\n9AGi1YiNwGy6ytJogfrIGsNxweKePYRmDlXOL971uYepQk65X74VeDMxXgC8ljd+5Baefek+zhcl\nZZYTCcybxGiPJMVM28yREUZFTj2bYUlpq0UxSBnIIWBJhC1nY+J0RItQMo23gbppiSqjaC3zakAm\nSma6JggQWqZAt+CRSiV1jzJY2+K9I5JMKEVvWy0UtK6lMEVaC5x20KXodo9WKnEGEH3wnD6nqvzv\n6/pmwL4WkrWt2Tni/3oOHryPT/zlex+F/eHuPSzqAVL+f+y9Z7Rl51nn+XvDTifdULfCrahSsoKV\nLMmyZVuWZYEBgzBgg2lgGmM3HhhCM3SvnjVNz6xFQ88C00N3QzcMDZYJzRDcthvjgDE2OMhBtpWM\nZEmWVFKpShVu3XTCDm+aD+8+RyWrqlyMzZIMtZf04dY959579v7vdz/v8/zDvTh36sUUfvxZP1Nw\nDYE7ONU9I8U9XLZwA+HokXPY/wbDPkBjmqizVQWDhQFLW5YYJDmj4SpSCspRifWxUIkdlzoWMUSC\nb6dTMB5v4p0ieEHwAmtOzRv7r++5ncvP38/2uQHOWRASa9uRqpQIJVCJbB2wc+qyid0xFNYbmmBx\nWjGY3wK6z/r6cSbDVcblBqvrJ7BN4Mknj/HZv32Ijc0RhXLs6+V0RYGyFbISvHjuPC67+Cq2dfdQ\nbOkhuoHgSt7+wXcTTsMDA0Wgx+kzyE5FnP9T3n/wYW4c9MgSRTfrcu22BT6x8hCnWy9esbzMylPH\nSTNNMughk4zx2FDkXZosEGRAO0UYTyitJUsSGmcQCpp6TJr0IAgUiqTIYpxJmrSOvW4WryJwoDXB\nxwwr7yMnLPgQM5VCSqYkY1GSWoGrJ6QqUGcK0QClwQqLTBUCTfAJsYQXXLlvmXsffzaP7LLd2xh0\nithV9f7pKImvZ0fGhZoTq5tkWcZkMmFhYYH19fV486Zp66fgY5tXKZaWllhZWYneCFLS6RRMJs9O\nAf7R130H5+/ZjZZgpt4JWqF1gkQgdVwgnHMIK0h1Em8s4gLQNA1eQFZ0WRz0T6pmz2tBdupcj7y4\nhf/zV3+R0eYaW3t9bnvpzbxgcTfCBL7r0mv5r+/+vVOCCYaRhBROt8ifd9LvfPo9b7zscoaHDjKp\noQkNeUdw5MQJOp0BzaTmy0eeYnFxkfd95gGkGODCqTo+7yIakf1fzCzl73mIN7/0SiZ1RSKjB0XM\n4Qg01rYzfEkzmcwekqaJcuHJZII3hjxJ2xHJNM8ukr9SEciyBGUEcSBbIkN3lnOSJAlZFuPnPQHj\nGqZN8yRJcC76AXjvwAu0EHhAiaheSHQcvyito9wvBFy7i1OIWP23Py86PT43xzcC9sf1OjuWtiDE\nPYRwZvzD3Tz2xHZ+6e3/97OwbycjfvSW7+C33/kOTod/+IGvOEMlUt6D8/a07/nuffs5cfCxc9j/\nBsM+RH6ESjRz8wNkktDv9ZisbTAaj0mzhNFoRFVVNE1DnuexKLOWbrcLws9I8VIq8jxnNBpzRt7Y\nnV/gjbfe3O7uYzGEYFbQ6fbc1XVNvz+gntTx3ypPlsbEc60LyuEKoh7RbK7y4ENf4q/vuZ/HDq9w\neHUTMe34cTef4wjXbNvLZTtfzPf90zfwspe+nLWVNTKzSd7rkiUZHaH5Tx99P2figUUS/FeKQB4A\ndnAq4nzgAjbMk6xPAqEas9BRbN++ndft2cd7Dj57xPW9+/bhRkMOPGnpdHMKU1MrR5ABNwFqRxIC\nGZG0K6SIfjneU9Z25nf1dBRGq6DTuvVVShmPx+0oUJF5SRMCtRSEVOMm0XkcHx14mtrik+hDY6uK\nwkIt4gbLStAyBrEmShG0xjiP0przti0x6OQcXlmnMndTZAnLgz10OkXs3LWFvRAibuLO4jj7iAKn\nCV6jZGAwNwchUNf17GbWWqOkx1g/ayMuLi5SliXj8ZiiKHDe0jQj8uQzXHbR+bz+VTezf3lHXES8\nmy1CWRofGKrTmfEMpp4NTdMgQ4hR7rUlCNgcj/CN4+VXXsEHP3sXcfH8aSIJ8VSStw3e84F3I+V8\ntGsXH+N3/+K9/Ivbvo8fuPHVLOrAz3/3/8T/8a7bEbzrpKpxk1/4oR/j537/N0/5c4UYQbgPKXcT\nwpUI7iIw5G3f9nr6mzUj75BJjikN9xw9yrse/hJHq5LtWc63nbefi4Ph0HjzjGSoeIM8/fXR4cNU\nTfQJMEGANYjxiG63SyCaTDVNg9IKmigFTlNm+RzORv/ENEmonSU4j9bRKEpiCSGCOkkCvhohwzxR\nXCBnVvu0pEUpJaVxPHrkOKOyItOK3Vvm6bVzT2tdm6MRzZOmnhkzAyQgmUa9B9AyiZV5m2f0nB3f\nANhHKm64/HL+7OPTfLAz4N9v8OCBwIOPLT8L+81GSTft8G++5fv5tx9sJaYnKTBCgMB/eNbPDGHI\nT73m9fz6h96BEO9q8R/f84s33cpWlTEMDlMa1suKRzfWeN/jj3FwbZXtRcH3XPrCc9h/PmKfaEuv\n0ow8L+gvzDEcjRDOMzcYcPzE8ZnEutvtzqI6IErdk1SRtKaRxtOSfeFMvLHj68ex1tIp8kiqT9No\nkuc8eZ7PpLxKRRKxFHL2OmPja1ZPrKIZMdxc5QOf/BS//5d3EEIXGHHymGeK37uP387v/MF7ufyS\ny0EHigsWEF0BIsGMGsqhZRQspy7AIg8M7uLsRSCRV/aSF76cX/quH0JNKobjkpUnn+SGjQ1etvQk\nf3nkYZ4a3UsHyfVbL2Y+URw+foLFhQETU9MV0OhAIyydIiMvEhKhEEmCtD7mKBGwOLp5DkbQ1Jai\nKMjznMlkOOPjJUmCNXW0FLCWLM2gik7YVR2JwKYxSCFIpIqZSDonhAYdwJZDsJYESZpoaqLrtRaS\nxjZRBh48IURcDDoF87uiQ3loO5Am+MiNaT2UYlyH4mwCOs66kMnTDNHts3biGFmR8/iRIwy9iUx+\nIWLAmYgZCsYYtm/fwcrKCouLi3HRcI4iT2m8Z35xnusuewELvT4q0RDiSU/apE/nHP1+n7qqWmfO\nhiwvUD7O2SZVTESNF8FFV0LnWd6ylbd+93fxW++6HSHfhfcXEkLcCQtxTbtb3WwJmG/BuWfK237l\nz27nqh37OH/nTl59+Yu4aMsu3n/vZzi6scruhRfz/Te+mnmdUbzxrfzsH/3mVxQ5Q/7zP38bF/U6\n/N5f/hHH1o6zp38pb7j8BrZqOLp2Ipqf6YQPHniUX/rMx6ENF5PiHn7v/i/yC6/+JvYsLiDO4DED\nb33G19t62yBoTO2QBFSSkHW71E0zc9a0PoI5SInwgXJUkiZJtImWKgaFuadVE8FHQBkCidJUyuJd\nYFyNya2nkiE6zpIg0RAkAsEjx45z50MHTiLC3cNjKwe4cs92ds0PUMLPSI61axA87dgpXbtLcJ5E\nJTjvYluRNqjvLGyq/76ObwTsqyTjvN37+Jdvfgtve/vvIMQp8M80K+kmvP8Ap8P+Zj3hm698MVfu\nuZD33XcHT22usW/ry/iWF1zNY5trp8H+L3Pr/gt4xXl7+cAXPsWRjWPsHlzJa/efz0IIHFlfRegE\nJRPe+8gDvO3OTxIfClchuIc/+NID3Hz++eew/zzDPoCSiqXlbeQyPry73S5rG0cJGuq6ZtJiNUnT\n2CVsC++6rhnMbaFqDe+SJOaPxc99Gt4Yd7M4dxlZls06Lye7HFdVRbfTbUm/cRMRbPx+WW8yNz/P\naFwiZcra5iaPHT3eFjFvJhYYb+dUnSAp38Xtf/yb/Mdf/jUaFxBak+YKK6DXzRFbYGnHVrg35/SF\n9sc4exFI5JXNbV1izxUvxB9dYXmpx/YHt5I7z8sUfOsjD9J4xwOPPMy9X7qfNVmSm5ynJkMeKCcM\njWWhW3Dh8hYePrHGel2zY27At166jz39Plp58jRF4KlNjXYxEy4EaBrTdg3bgMZpB6TthjSmQWgV\n07GFJPUBshQFOGPbsXfAhUBGAGOwAoRWqABFkFRIlFAkKsHbKm78qujx41wkzwuiQaSzniCeJvh6\nH/PHIm//66ha0lqxXo7ZtrTE4ZXjTMaTeCISjVYarVQbTe9aQl0zS/6dm5ujaeKctfDRt6GuaiZV\nycB2yVON94bgomvktBUpgPF4TJIkTMZjFFE1OLa2AAAgAElEQVR+majoqVFWFdbY9oMHlBB8602v\n5FWvuJkP3fFJjq2eoNe5BO89G8Mhy1tezcqx47zvjvvwz1Ikxbbm//j8J/n+9FYW5+Yx04tFbP3X\n1rGwczs3CcGfvPlf8b4v3smhtePs2foivumKl7BVVxx9/H7q0ZC6KhkryaG1I5AXNO0uYmW0yS99\n9uPP8Alw7cPk5/7qdn79ta8hnCZ8L4byvXn2dWDIK/e/iKY2iABKRavu0WhCrmMqsJYS3UrsJqMx\nWkGaZTEVOESCWZpmVE2NbI23pFIxun36oFQSU1ZI56IwVKoIslZ6p7VkY2S486EDnIrUdu/Bt7PY\nzellGSEETNMgNJys3RBJNCcDgTypjSyI0r2zJX39fRzfKNjv9Prcdus384obb+R9H/0IBw8/Rad4\nAd5ZhsMhBw9t4YEDgRA+yFfD/pOrx/jAPZ/h2HCNnfOL3Hb1y7hk7372HD92Wuzf+bn38j++cBfH\nhussd7u8dOdOCiHYbD9XLgQrfsLb7vxkDND7igX/o4+8nXjFz2Efnh/YB+gvzqE9bA5H7MhzpLUs\nLPY5unIshpM2DVoqQESVlpxaEASsAa0LEt1jPB4D8VqdljfGkJdedmk8V4BI48MztCO4PM/xMpoH\nhiCpncM3hlQndLIedWliYrY1JEHyN5+/7yQC/Js4E2/y0Ue/THXsGJtrJVnWodmWkA4t1cizWRte\nePEL+cCHfwvvT8edzPi7iECEuIb19RPYtUMoExAjz9yixtUTDh84xKXXXM7Rw4dJEsGF+3bx6S/c\nxXsfe4gPj6Zk+KuAe/jLxw4SY3IiGf599z7MW195Bd956YU0xpFpTdWA8nX8a02NDgrhLalSOGOQ\nCIZV05J0AyHEDokDbPCILKUQGZubmyilCYL2NRaPRjmJHFf4pQUy0aXRDSI1eEM06xS0NhWx66gQ\nBB/iSH6auI3C2phcr1KFaOXfX1fV0vHjRyE4jq2ucOTYMYIPdLOYsRKr7QQzjByB0WhEr9cnT1Pm\n5uY5fPhwuyhDVTVoYjd1OrNzzhK8xzYVafr0nC5traynzql5UVCVFU0dL4hK1IxbYJxlrtthMD/H\nYtHjp//pm2aESeccSa/DxtoJ/tUv/iKndXDkah4/cYiVjaO8/65P8Duf+CuEmO6w7uT3P/1X/Pwb\nfpibLrycoSkpbU3jHOVwyPqhR7nj2GF+7dOf4OQY9//3gb/lp176Um45/0KEFPz5XV/kdPNheCef\nPHiAn73xKv79HdO2/lXAXfgwRIgcwVtmu+D/5WVXs73XiX4mpr3JVWzN+RBwpsGFGJaXZRlFp6Au\nG3Ce0XBImqakaTaLSZcykhenOTB5nlNVDcG2RMjRBA0kOkFqGW3zK4dzhoePHOZ0RkeCP+Xg2iYX\nLS/FVmKiSIgjFdm2KSsRPR8aY+joBGXcSbP1OOt9ro5vJOx7Kdi7fZmf+eE3nxL7DxzYy3OF/VpJ\n/vizn+e0/AjxTq7flXPnoXPYf75gH6CalOQ6Iy0kUjo2hmsUqaYsS5z3ZGmGUpJJ2308WXY9zWea\nxhJEYjz0eimj0bN5Y//sdd/O8tIiAlqFk5i5Z3eKYhZxMBwO6ff7hKkyKhBzsqTANi6S46uaE+sn\njyvP40y8sYXF13JiY8SJJ58kF9AdzrFx4Ahi4rj06mv5kdd+H2/7L7/C6QowIa4/g9Lv1CKQPXMv\noz52hMJqVg6uIUSDVuCHGxy4//7YKTENuRBs27eXD9935ynJ8PAOwklk+P/nr2/nii0LnLe0gPOy\n7ezJmZRaCImxFi8DEijLEt2ONqfn2NZ1fF8AKQV1U5EkbSSHDygZ0CLBGU/jazJTQWivvxSzLo9z\nLhYrLqAT/XTSeztWFVIgvUS049qAx1sPxNedzWj1rAuZNNOsHDuBSFOkVuQ+suwdAdXOKJVUCB0X\n3zwvuPD8C3j0kUfpFQXBOYyvSNJkRjJqmmiEJHRM0szyfGaApJSasd+nH7oyDcI65DQXwhpojaU6\nvR5CK8blhPlOv50zxxOhpaSalAgf2L28jBAfbQmRXwHmcBeYLnc+/Cl+51N3RyldeOYO69/8ye28\n/qpreee9n4+L13TRvufzLTnvpPe0nZb/dMft7OoolucGPLF67LSFFFzNwfWH+NGX3MQLd27hIwee\n4tjwIDvn9nPD/l18+omnOLR2kC35Mre+4KXMZwmVjTt/LRXj8Zi5pXnwDtNUJInGN1E9UzfxXAYX\nwAWUimF6Qkl0ovG+tRcXYI2NC23rNjo1NxKNQ7gQs2CUQoiAlJDlCaOqOS2/IXA1pbkboWQkNgpQ\nbfyGa+JuPVOaqfJHtOZKQsjou6Q0PIc8gXPY//pg3zvH4+snzoj/bvYYt7/+lnPYf55gH2LRXW6O\n2LV/H2U1geAZjUZRXlvXDObnsMZwfH19ZgoZcR75Mt1ul7quZ9wkay2DwSCaPJohnfxOLjpvD6+/\n+Y1cuHcXkkCqBLV3M1JqmsZgyWnW02AwYHMzEvB1EFQmejuVdUVlGpACYx1bFuZPEoD8CJE39lM8\nHVj6dMfvRVdcz7/79V/mS/ffx8W7d3PrVTewqzNHT+Xc89EP4tKEX3jDW/m5P3n2aPU117+cD33u\nvra7fnYikBA2ecMLLmNy7Bij2lOWFUE2FIVmNNxkMKcZjkd0Oh0qa/jLJx87ezK8eCcfeeQQP7x1\nntIasjaLLBcFaZohgifJM5wxVI1BpwkyxIJmmh8nQiCRCtGO+IQESYyKEDEFhASNth4RDL6aoL2j\nJtoXALMC1nlPIhPquoqcqhCdz62j/dpF7ZlUM26Y9cS4jq9nR2b1+AaVAW0aqAOpSrCNIwhIOzko\nRZJ3cC6gVQZBYSvoZAlpphmbCUmpybXEmgbjPOPGYpCUTaDfnWM4Wqfb6cwIbkFpmrqMHASZYK1H\nBYEQiqYpCVqgUo2XApWniDwlCEFiAz5YJuUIaw0CiXGWJE245Ybr+b13v4fTqSsu3Hs+n3niEKfv\nmvwpf3rPncA/e7qNHL76LPQDjzzCay/aR7/QCHH3qR8m3M2OuWiktXuuz0/ctEyn04s3cYDr9+6g\nqio2xmNKY3ABUimiv4KSpGmKc5ap3qEsS1wVM4CCixV5bQ22NmRZiq0bQrtYRNVNdBJVKkUriVRQ\n+2g21ut1GBmLbSzFYMC4WkfK1qHUQT8vTut/ILg7SmSFQul4bbOWqJeoyA2ZRrUnSczZsErGnYAQ\neNeu/M/RcQ77Xx/sp5lmPk/PjP/+jnPYfx5hHyInYrG/QFM6vFeAZjQcorOEvCiQwIkTJ2ZBqRD5\nLEJ4bJuUDZFbo5Ric3MzFjyJwgP9boeXXnsl2xYX8M6RpJrN4SZFvxdHHUozGo8IbTI2QrC+vh5N\nKaXC1pFMWlUlxlpM01CZGtd4XnL55bz/U3fyNOZ/m6g6eidwJVLeC2HIa156E//i5//XWYH+N3f/\nFb/13nfxM9/+em679kYyFygaxat3X8Rlb/rf+bMv3sGR4Sq7Fq7jtmtuZMeePfzFnW/lVPdWFIF8\nESl3xeK/FYH86nd8P3OTwNGNVfL+HOubE5yseOTJE/zFE09wZLjBzv6AN1x+BZfv2s1xc/qw4VOR\n4Y+NvhzVe87RNBU6EHOwtGRSl2gXs7BUoqjrBmunIajRFdu3XDwhRTu+Fa2KTLamkg3OR5/7NBXo\nUGN8Gy6pVJvkHjtm0w7buDI8vrLKsCzJE83O+QG9LEVpjXQCZ00crwZQQsTwSP/VO5JnbVDgmgYt\n441VNzXWu5mTn/d+xkqeTMYoLajrCotnMDeHVopu0SHNcuqmpixLPnf/Axw5voJvA8OMMeStCiTm\noXi0iH9e1dRYFw3DAEbjUZxhh8BkEklEWkjyNJtJMKuqio6FUpGk0aNjtLlBJgU/8U++FyFuR4qd\nCHEzUiwjxO3c9pIXsW95R3SUPMMOK166aUU/Bc6vEd1Q/+BZ74Gr2WgMvUHOqy/ZSwhDIuDL9jVP\ntydfe9kF5HnOwuICnU4HrSPBbTQesTkcUhszkzJOLaCnpLjJeIIx0bl0SpCa+gJE23U3U9lE983Y\nMlRK4Z2fhR3mWTqroq1pCD6mPntnwDuCjW3CEAJKx0TfC3YsncTtefbn2r0436ozAlJJjLGAiP+1\nYPUt0XIqv5uSX6P08rnjCXw9sN/t9UAKyqriY5+/i7/45Kd46vjKPyrs9/o5t77g/NPiH4a87spL\nzmH/eYR9gG0LW1jevYu11RNoIVBAliSouiSTsLKxzpHhOkHEMacMMf0YYQkhRnhs27YDKSVbtmyh\n1+sRQqBIE5CStFNgS0NtamSiqY2J6dRpivceYw2dbhchYsJ2XVVorSl0im9MTHvWgtI0TKpILLa1\nARfYs7Sdn3jj9yHFO1BqF1L+LlJ0gQ2uuPgoP/BtN/FL//OP88E7/gbvfwTnD+HDR/H+ECG8iV/9\n83fyxJOHGFY1G8FTpYLty8v82Dd9L7/wnW/in7/mDexZ2EZeWv7dbT+IFLejxC6keBVK7ETKd/Ar\nb/7XvPsnf543XnMp33zRUX74mot5z/e/hZdtmefQyhEOr57g4OGDVNLy37/8MD/0vj/nv33xAB9+\nfC+//8XH+Y4//kP+8N672DM3fxIZ/uTj5K7P018vFV2wGlxKEgpE0iHJOpSTKj74pcIFmDQNIU1B\na6wLVGWDcILKOkpjqY3Hi+k9E4sTay0OQSIUYw1VZVirxgjraLTABpCk4BQiRAXTo8dO8Bf3PMCD\nh0oOrV7No0ctH3/wAE+urSNFQIpoZqmlwFuHCZbGNTjsV8XoWXdkhLcorSitwUuw3mFOWgDiAgFC\nxLluWY1RWtMtMkxT0tSGJ48eI+72ruPLj9/Dl594Dz9QVdxy7YtIVTZL5vSuZfP7MDOI8t7TOIMx\nNUm7o4o+DNGRMFMpiVTMbV0CoehkcSGe+nBsrp+gMQ2DXodbrn8Re7cs8pE7P8/xtSMMOvu57sJ9\nzHdyRuvrzBU5iLtbRcep2oQ7+LsY4glxN4vdOYTwbO8XvOX6y/jtO29HiHcy9TKAIf/bLdfxwl3L\n6CQhSTVKRXZ58LGVG0mG8fx643AhStSeliNGC/1ERxZ6XdcUOkofp0m6hIBxBu8jSTSeo/Kkmbyk\nbhqs8fjgkELhRIibQt8wGY3IF7aRiJRaljNFxUK/x0su3s+nH3q20dE1+3YxyHN88EzNv5wSINqQ\nOGtjC7HlN8Q5aYs7ASF43HNIE/hasd/rdHn02OMMRxNgwKFjl3H4+D186r7f4E23vZZveemL/1Fg\nn+DZ3uvwYzdeyW/c8Wz8/5tvvpEX7Nx+DvtT3D0PsA+QFzkbmxv0+12sbxh0u2yur9Hv9xhWNZub\nm4jwdF5UlmVA7DCZJhaQnU4HKSUbGxsz7te04KzrGusc1rhZcepsxLi1sSuQ5xFz1kb+xtraGjbN\nY7RE+7Om2U5TPAQEWafgta+8mZtf9ko+8ImPcezECju2fgff++23sW1pCUzDL//GfyYmTZ9GAHLX\nJ3njDbeQ2oZja+t89IF7OLqxxo65ed7w4lfygt3nsb6+zt6tO7jtqhdzz8HH8P5vuXbvBXznNTcw\ncGuMT5ygGo+o6pqx0qyM10h8F6vAIRBZwlOTE/z7z93xzMDItiD+uQ/fzn/41ledvRAkDLn5/Gsx\nxqBl2ynzgo2NDXKtsdahiXhMs5yqLJFMfXoSXGjarppo1ZMmhtcmCaLl2hhnUFJDrLfxxsYCFo/Q\nCkEAAUoKxnXNnQ8f4FSE+PsOvp2lfpdumhJkNMGTSqFEO1o/i47kWRcynSKlxjOpq3jDEaIjYBMN\nuuJNF9BJzHgYj4fs3X8ha8cOYo3j4KEY3f2M3Jfwk/y3993Opfv2cMGuXYBgMinp9boYY3GmxuGp\nmwadp1R1RaY1k9Eo5p2o2JrUWlMkGXjPxsYG3e483jazGa53nkRJyknDXK/L8WrE7m3b+K6bXk5T\nN1R1RTMZUk8maCm5cvcyn/nywdMAZkjr+cnZz0KHXL/rEpyREAS3XLyfa/fv4cNfepTj40fZ0V/m\ntstewcVL80jiojocDnHO4IPAGYvzbta6DR7SNKEu69lnnO4sIWCbmjo4lJRYG6vZEALjyZi0XWQA\nkjRhPJnQ7XSpm7jLaWpDCCAQOO+QQmKtxwUI3uKtwVtPqnKE2JzlqATvOX/7VhZ6HR49usK4vo9C\np+zdchH9vMBYg1TROwPAaw3WRhvqROONIbQPlCRJMN61oBJxJ3AWEry/r+NrwX6iNFVTtUXMSfhv\nRzK3/9ntXHnh+exdXvpHgf0iS3jN5Rdx9a7tfPjhAxwbPsquwU6+54qL2b91yznsP8+wD5AkmtFo\nAkKQ6ITVtePoRLKytsax1TVECCz0B1RVNeuiyLbTFOW+AWMMRZIy6HRZXVujrieIJF6bqqrwzuGD\np2kMvU5OXVm8D+RFRl27Vr0VDQ1D292qvcXZgPQejMd5i7WulXiDTBJ0mtAZ9OinHX72R96CUgop\nn74OI1tzZHUVTicACVfz2PEDHFl9ki8cPMA7Pvmxk0jwX+APP/vX/PQt306eZ/zy+/87nJTB9MTa\nXSynPbwz/OYXPv0MIvyffOlv+cmX38irL7gQiabC82dffJAzCUE+89Qh/uXLr+ZtnzgFGZ4cIZ4m\nw//ky69hx6BLaMcyaZpCIshSTbAGiEIDY+yMlOtDjEoxvsHUNTqPruVTCbxOE5qmwZgGhCTPC5pm\nmrGkKGuDdIGkDQ7VqUJWAangocNPnZkQf2Kdi5a3Rrm1ijlj0063PAv4n31HpsgwkzG0xCsX4tzL\nh9Cm8CpEsAgB48mQThHYXH0KYxoOn1g57QUSvJOP33Uve5aWQCRkeQdjA86D1DG0Ks0SghAUKsVW\nNTpIdKapbE236JNlHWTRZVw19LIu0hhC6pmUY1xtsE0DpASnOfLUBt6nuLqh2xkgxJgg47xdBHBN\nzbb5eV571WW87563g3gnhKuJZkdDrtu3zOcef4pw2oX+XoRYjjeGuBvCkB+89jJ2Djr0ipwQHBLB\ntk7Gj99yA01TI0LDIIsOknFnYgkeEpXjXRMj1IPCOocXgqTIMNaSaMAK+p0+TdMQQsArA3icCygl\nqJq4mIuWndUYG02TpKQua4SQVHVNCDCcVG1arcJiSILHCwiidUpNCsSJ4+j9ewmpQIjQVuwalRTU\nzYRBnnPF7u0A+GDxLpozJlqDEvh2YRNMvQsCzteRP+BtjJH3sfUeZCTVBqkRyXNn0/61YN8LOL62\nypnw/+FP38kPfvs3/6PBvjOGC3dtZ+/W+Rn2u+ew/7zEPsTOmLWWJEuo6wkQ2NxcxwoxU6BIF4uV\nRCcIFQuFqqrI0oLRaES322fQ61OWJUWaUYoxPpxUoLbFzswgUBCVZnUsWGN3J5obxkBVjUgUpjYI\n6xHCx1RmIWK+VVlS9AtQkuF4zHzawdQNWa8LxM5OVY/BOvYsLyPER07dhRR3o32Xzz/yGX73zi+d\nkgT/H//q9hnZ/SsDWv/LnW9v+wmnIMJ//HZ2ZoFt3fg7H19bObMQZPVh3nzdC7li11Y+9MhBjg8P\nsnvhAq4/fxefffwpDp44yHy6jW+59EbmU8XERA6Ms46JnVDMdVohQYXAE0zb8QoBJSXBgVaSxjRk\nWUbjXFv0yVjouybywohdk6Zp8BZ864Ztag/Oo9MUR0AI33ZlPKPy9PyewNVM6rvQmW67sGJGio8G\nel+9JXnWhYwxFiV1NJMSEteY2Q7CeTdr57mqJsvyaEU9HlNkKU1jONPc/cT6sdaq22GxTNNTm6Yh\nED01hPWMyxIVwASHDAopFEIovIdxVTK/ZZEkTUFAWTaR/Q90uj2cjWSj+fn5mISbKJwzdLoFa2sn\naDyEToextSQ64+WXXch5Swt87rEnGTUPk+s5Lt95Mf0sZb7b48P3P3uh/84rLmHfQp+7Dx1lo3qQ\nHYOtvOri69nR66FEIFESLQWqKEi8Zy7rMCxrVKeLc56qaeIuTyhGk83YHpUJQrTGUChSHXkTTVNT\npBm2lSY6fGR7h7iTS6SmqRoEEu9blYx15JkGAb61ixaEWdWdZlnbznXt3D52H6QQSBRVVSPTJvoO\nhFbNIWLqr5IOqRVVWdHSOxCt0ZJzbXOwNWOCuOudupuKIGf/7lupqRI6WrqrOL6pm68+J/37Or4W\n7Adn2x3iGfC/eeIc9s9h/3mJfQBCYGHQpzKGalgyGY1pjABnURYSFMEEJBGXMoldmUQXpGkHZwUE\nRaczoByu0+kmrIwEWUhxScA7Q20do7phUUgmtaPbnaccb5LlUdrd1HXL3xIkSgOOyaRGI/AmcimM\nMyCgcZYkjw/TpC0SiiBx3jCejKJaEBEztYTkVTdcxzve9W5O2YUMQ6645HI+/9CjnG4zEvhToP47\nfy8S4Q/wbRftIc8y5tIzE+GXB9vRWrF3cY6f2beTPO/MXnHNji1UVUVtLeO6wSHJNDODuan0PeYo\nCeq6IZiY7RVcTIw33qKEpA4O6wN1EwsaFEzqCiljYVFkXaz1ID02WGQQ5HlKcC7ylzoDtLYYQeSy\neUG/ODMhvpPmuCAROgEfEE6SECX1iUq/KkTPupDxLgZ9Oe/jTiEQB2PEWfy0Cp9q0VdXVyknE5aX\nd7S+Aqd37Oz3LqRsapQI5HnOeDyOHjACgvEzsl43zeLJ7XYw1qKTHJUVBAS9QR+dZwQlqI1Bak2e\ndFABvLVoJZkbpFgX/T5MMOQqo5lM6Gcd1ivL/HxBplPKyRh8zfKWLbxu645IJnMe6+K89qb5LVyy\nYwf3PnmYYf0YS91dXL9vD9t7HYo04erz96NCoJNqMq2x3oGzpDrKNr2QpFJy4JFH2bltK3UdbdKD\nkAQE1hoGg36ULDoPnpmxl2tKEqWRuaRxFutj1kuSpvi6pqlqch2VHplKmTS2TS9NkdJHi3XfuiWG\nEMPCWnZ4tJD2sx1umuW4EGhGFQGB8IHgAk1VAwk6SZDSRH+MEAhSoNIUHxqci9W4J5BkOXVVI9pW\noRCxdT+VaELcNavWV8OHeM3xDiGnZMznjvD4tWDfm6iSOR3+BXcz37+UxjTnsH8O+8877AMMen2c\nsVSjNapyTF2XKCmwITApS4xzJFmBdLLlych2/OOp67LlxwgQkt6gR103DHoDbFXTlEOauuIL93+J\n+U6ffXv3QFvIZ3lrImhs5L64wGQyBp1gnaXf7zMaDiEEqqqm2yuQWsVniU4QwZMqHccVUlBXFVkW\n/YOiS3BJWU4olOYn/sn38et/+PTIZjqi+Z6XX8fy4gK1C5xuMxL//YH/X9/bbL5E0U3pdTJuvWQ/\nH3rkE5zOp+Y7r3gFeZ6T5xlJGmXuZVlijGE8HkergapiWk1PN0XeeYwwJAqspR0tMdswSRnT2l2I\nvkhKRbfqLEsjb8/HnLJW0NQ+zyWNrTDGEqTG4fDOEmzsutJ612itEVJy4fI27nv88Gk/296lnXgb\nO0CeaB/hnEWeJfbPupCpqiYCNklAtoY1QjApS7SKF0kgWnJWQIq4m1hbXWN+0OPYyhOn/BCEIddd\nfilVU9PNUsrWzjrutAKZ0jhnSJRmYzii8Zai36PodqhrF/XpSR5bzyF6MHTSHKEkxjlCEOR5Bx3i\nw6auo39H1imoNjexdc3CYECWd6jLkkxp5ufmcY3BGE+a5BhTg3AzEmEm4cJ95/GqF12HbQyJ1lTl\nmFTJuNtVgWANKSC8w9eefn8A3gOOVKVMxpssbttK6S29ojvzp9BSICxtSzUhC60HhrHI6MAW55jO\n4bzDyxTnPWVVoZOEnJymrMiSFOfi4qtUSmDq7xAJoFmSRBASSHVCXdVt6i4zAmvZNIzHJb1OHxob\nJXRNg2sMeb9HVamYM6Q1UphIPrUBkAgViYrBRyWDkKKlkrWL3MyhPV4X2wYuemKbWQmBFDEwzgZ7\nFrz1v7/ja8F+r8gp0hRY4XQ38YtfeCnAOeyfw/7zDvsQDfE21taxoQFrCKZB5ikySzA+/n2yJTM7\nFwswpUAnkqqsUUqA8JTGUhQdvA94Yzl0svjjiXv48sH3MGoqXn3ti0iLDCHiQ7OualShEd7RLbpM\nmhpLiPlYEG0Hsqg029wYoRJNVZZs37KNRGt6C1sw1kXloI9hqwCjzTUaU9Pr5nzTjdexZ3Gej37+\nC6ysHaHfOZ/rLtjLln6X0eYmC93iq5Dga07PHTv194S4m4ViQJbGPK5tneK0RPh/fesNXLp7J0oJ\nklQTgqMqK6w1McYki0nWSmvqxmDxeBsL5mkEgTEWaxpSHc+pjn2plmAePZICtPwUcD6047+pQtMR\nEK0XkG/JvjHGAR8gGMbjIT2pSUQWJfZSIoU4IyH+2v176eUZDhvv2ZZLZkUkxZ8NQ+zsIwpSydET\nJ+jojGlgV90YlNKkSR9vdGQzK43BIRLN5njEgp5nrt/lvJ3bOXD42YmeN7/oKvpKImVcOBtTz9Qg\nNDVoiSjSmKIpFdZZXF0TpsmxpiRPJUoVjNY2WFzcilQCFRSdvJiZMykUnTzHmVX6ecLQViS9BNmZ\nj/bWIjDc2KTIMoos5/ixVbSQZDpB4BEikKea4TCyvoNzpFIgvaVGElyDFAZ8jRAa6QPKe/AW5wwi\neIK1eG/J0oIiyyknZTRJ83Zm/OR8zJtIdIIPniRNZ9kTTdPE2bsU1M4h0gRjSpSUdLIMWzXUwWNb\n2/CuSvGhdWm0Fi8lwTuEhLGpEQFSnUS/ESnIsoLxeIxWWXuDBPKiE82KEoEsJY0vyUdrhPk5go8E\nRSVB6YBwFq3AWYEPoLyKn7sdczjnZ+TIMFNxKEIQKPVM0y/vTFykrMX5gHoOPcG+FuwrrVjo9di/\ncwePfQX+BSNe94qXsH3L4Bz2z2F/djyfsA+wvraGQmCqCQRLoiUowXBSRRKQ86DkzNHXmnZXLyCm\nXweGww0GC1tpyjWsMRw8fGrxxx++7zTthGwAACAASURBVHYu27eH/TuX0UrODNqqskQacCKOG5wE\nEeKOvarqaBRZ13Q7HYRugyplVPWtrq4yGGxhMh7PCOLOOrQUVMbSLTJGo5p9y8u88dZXMx6Psc7R\njDcZj4YI77hy9zKfeuhxTk+CD3/n74Uw5MV7LsFZiRWCItHcctE+rty5lY98+QmOjQ+wo7fMd19+\nExctLRBCiGTmpqKcjGcdOx/8LMYi+ECWpZjWQ6msKpQMYMEFT5ZqqkkZ09VdLGBcW/CUtiFPYlFF\nCCSpZjyOsQVlVZOnCQQxG4HGojz+TS4E8JZgGoJ1ZGnOWKm2kxPL+At2bHsmIT7J2LtlO/2sg/MB\n0ZrkTQ+p1Yyw/9WOsy5kpA0kDhwWlebYpo1Or+vo1jffJ02SaLGOiEF2KgJpMp6wMOiR6oRRVVE2\nd+OdY9fSbnYszLG2sUGnn8e5WJIgW5ryNDTPhrgDDgJ6gwGVbaL80ro4B3cxjXgwmCPPc5rakHWn\ncr3otFrkBVJIFrduZbQ5ZFsxYHNjg07eodfvUTeWPed3kB5OrKxw6Y49JDphMhqTKImpS+rJmE63\ni4JooGUNyju0c3Q7C3jXoGVM+IyLuQPn8L6hrkq0AGPqOKqwhnwxb2VxcYdQliXeOcpqQpqmkWGv\n2nRkIcjyjLp0eB/n5wFB1ua+mKrB4xFSoqRAKY0pm6dzW4TAGoOXjhRFITQO3y7Gcea8sbnWjkdi\n3kWWZbE70A7xkyShqWsmwxEDT3ut4gKmlCJPUoQPNLZBCInDtTvPKGGVUkbJbGs9LoVAiJbgKGl9\nPhTGx52WAAgCrQQ8hzbtXyv2u1lKr1Nw9aUXceTEKsPhZ+kVOde/4Dr2b99KWZXnsH8O+89L7APU\npmIuzfC+orSGzqBPVUdli5SSpJX3Ou+x3rAlG+DqJhauWUpZxYylhfk+o0nJ8dU1zqTO+dgX7mb3\nlkWESFE6xQdBYxx5muFs7H4hBb4ykcCrNEIGSmGpjKGb5eR5D69SqrphruiRek+QJpLgqwZrDDUp\n1gjWJhVNA6b05Hl3NkoV1oAPWJ2wJ8lOS4K/+ZL9hBD4mwefvVG/9eLz0ELwwQen73smEX7XoEem\nBDjDtGO3d+siP7pzG87VpFIxl8d704s4QhNCkGWdGCEA5G2H0RJIO3lUOqrIM5nrDmZp5CQ1tatQ\nUuCJ9g4Q5c1VVZHoJG7QEORpRlXVJEmKs5GgXjaGRKegIt9ICYcXgaACxjl8UqBPrKIuGBMSgZAe\nISPPTKkYXjlXdLlyT0oIjoAltDYKidZ4oi+TbyMNUCIWXHwdyb5TqWEMfIokOd0uNlLS7rYS8jSj\nNpYgJGVT44ylmyZUVU3eKxBacMGWPawcX8G4hvXhkC2DLo216NAwmUxYWFiIZDEln/H7fRLD4JTW\npGmORLUWyGn7v2Y0GjHoz8e2rLV0Oh3SNEWmKXme4RpDVwqyImF+yxZ8kHS7A9AJ3nqq8YjdF29D\nEncWSX8eGTy2njCoG6RzBF/RlBU6eHzTUEiHArTs4UyDMTVZptHB4Y0BkZBoRTkexYoziJmXgtaa\nqo7gTFONbfyspQoxTdmHWDULJclUgveGbpJRWkswhiAUNhgaa3EWVJYSfCAVEodnPB63Ft8B5z1B\nCly7Wlpr29m8AwJaycgD8Z6AxLcLuRAxREwrjS1rlPWsbg752F33sbqxSZ4knL9tC708RUmJN24m\nS1ZKxbG/dTM/jeDaB7QMiEA7kokPZiEFsq38Q/AIL5DiuZOgfj2wn3QKyqrion17WTm+gvUNzlka\na85h/xsQ+0op1kdjPvfAQ6xsbNJJNBfs2EonTf5BYR9gZDZR5DSNJQSJsw6QpElU8BkbC7SpSzIw\nI0ODYDgckmddhsMRaZoxKUvOxDc5sXEU2WaR1XVFkqTkec5kMo6mgd6jhca07seTKno1YUAqjdYp\nzgRqaegNeqBkxIdvYkwE0On0cC5ioNfrRU5OlgCepO0+yrwbuSPtKOXGS87jop1b+eyXn2B98iD9\nYguXbH8Bi70u1lr2L23l/sNH2Jg8wFw+x6VL57N7aQEtBBdvX+KuQ0fYrB5k+2CJV110Hcv9PhJI\nE4HwnqTbRTlHv+ignMMkGVhHVdUxxkKAsRZazxzjI7fKOYFHkyXxXBhrKNIMFxLqqsL6WDBIJRAh\nvsc2hqpp0En0lHE2ADYaHgqFn4Y1nnSvSK1m4oapgWMIMbZABElTVSBUjN6QKaL1n9FJzA+TWsdN\nkIikYU9MVg8wi0DwLrS4iancAdEmnZ/5OOtCZrMpaVR0bBSImZU6BBpTYUyFNTU4j7cWdEKWZdjG\nsLa2yqDTxSaSrVuX2FzfJNEKZxVN0zAcjxiOR+hcUXQ6Mz+C6TElJeE9wYsYFa4UeEmSpIQQQ/S8\n98zPL6JblvPUEjtJEmSexIq1yOkNBjhTovMuXmYImaLzLsE55pe2x5hy32Drhs2NDaQUdPKcZmOT\nXARESCmyAltVqCLH08QMF5ng6oZOp0A4jw4OkXmMHaME5GlCVY6wJiBEbDcbY+h0ouOx1gqt4q4j\npijXKC3RSuOlRwowNnImKmvAQ6oUjXMIKcnzlKYOM3+R4KL+P8tzgo+5NN08KgoqLAo5q9a11mgR\nd1TOO7x3GA/Be5SKnhxSaawxNGXFJ+6+j3d86CPAYLbLuPvLB7jxkvM5b+tilP217uo+hNmmcupS\nKmUMLVOIaALXIlFIgUJhjWkfLKHdnT53u9Jz2D+H/ZOxj/Xcef+D/NGH/pqT8X/fgUPccPF5bVAf\n/yCwD0QfI1MTvMB5D0HhrKFqaoxxM3KpmD0EPUmiW5PC6FMyGg1xzrI0P2jJy6cXfwx6F1E1DYmK\nvjWjYcwbkkIRgiMRimo0Ic1SausoioJhNSHNcpRKCEojkoSiG93kHVEeLLSk6A8IxkYSvNbMzc1F\nHomUyEQSnEEREEWXjcYzN7cQOx5Fh7rcZNdSh9cO5rE2xKKXgLGWNMlY6s+ze26ePE3pdboIH7Cm\nRgTPjvl5rtp/HioEilSTSokn4K2LhUzwyCxDGsPK4aMszQ3wMprJoTToFGcNaRtj4ZzDuIh3pTXC\ne5qqJNUx26i2hsYaUBKt0pjPVjdkSYJwkKgUQ01dm7ZzKdFKIaamjS46Kic6oTY1SRKJ+wFBU9dR\n6ZemOMBMmhhlEAJCQjUeE7pR5ZnnOeNRGf2EpCDJM6razTqdXsZQEZnoSFQmkOgEBDjr4v3z9QyN\nrEyDdw6yDtbbGOo1qUhTTeUNtWnopgV17rHOkEhJ08R2sVMKlaYMOj2Gm0Mm403yNDLPj0020BuC\nuTxjfs88PoSY06A1w3pCJ89JAKzHdTTCBToqQXmHSAI6A5UXdJJOdP8UCi8V3ge6RU7wAZVlgEFI\nTeMtEk2hBwQT6PczKtOQZwlB5wQUdQio0lHkKToUYAWjtehs6U0FkwmIQNbJsdbGHB4tSBIFIuCb\nkkZ4kAmq9AinkEEQRKA36BEagTEVla2jH4XOybOMpmnYHG2e5BirYuBd8LMEWN3J48NOK3xdoknw\nQjGxJQ6J0AIdiJI64Qha4qwnSAiJxoZIPffBxWsTfJsSHglexjqCULgW3MY0NCYusgTLMHGsrK3y\njrs/SwhvZpbC2nojfPJLb2dLv083y9BtRT9VaQgiWVO13QalItFMtS31iOy429BCRvdJHccHLpw1\nVL/uxznsn8P+FPuhGnNk7Rh/9KG/PiX+P/3Q21nqD+gWyT8I7APk5NSTGuc8WZpTVjU6yaI/jozj\nuKl5Y9GJpoMhxPiOKcm0pkYrxWRSsjg34NjKafgmYci1l19CWVeoPGvNBCXWWWzwUZXmHCoQ87Ks\nZWhiOnxWdKgrEztgRDVa2VRkRQepFSpLqeoa5QVF0SUVcQNQtyMyH8AaR1NVdJMUMb9AXZbkSQrB\nEewW6tpAiN4qQkTC+NR9OJOQKE2qNM5EA7/JZBQLl0TjpAdro2+TMzjj6PS7JFoQnEUg2ZyMyHsd\nvJYIG9BJRq/TY2O0Saqejt3QWpMR16VgDIlSoDSNjWR4HzyIqYGdiQnwSVRFdrIiJk17iOOs6OYr\nZcA1loCP6kAZPWWmGzfrLP8fe2/2M2l6nvf9nu1dqr6lu2flkCK1UatJDWXaiR1FRiInNnzgA9tA\nFiBnOfK/kP+F8nGkBDk0HDAJYpCIYstcJVJ2pJnhMtM93f0tVfUuz56D+6nqpjjNGQYkB+F0AcSA\ng56vv6q63/e9n/u+rt+li0xhjDGEUtjtDpxvLyghoWumJLFgj3deJLS1q+QzyX1AVq+gjKxaSxPx\n1zZdq20dW2tzShVFqT/B0MgKJ+aCaTteY8yJSHnEgB8BR8o2cI5SFDSpFG72e1LwOGO52d2y2Z5z\ne5i4vZ3492+9wyv/z3f5e59/nVdeeIGqwNqOeV4Zu56ul516NYpsDKkkLjdbjOsZhy05ZIZh5Ii4\nrkZT2y4w1kyvLZ0dGLdbagatOrQxrArcdkuKK06PpJjZWENyA94v1KLJwWNUYT3sSOuBGgO25b1Y\na7HFQRvPGQylmibsy7jekNceZxxr2Eu6rhbRYZ8LRhl2JRJ8kA7YWXzjkYRGLa1FnA7aaFKKbDYj\n0zQLKApLDJGu6/BJdAIxBKzSJ53GUWegm13C+4B1Mrqz1p5InDkrFNJ5W9fjfcI1JsS6riRjWFXi\n395/9CMpjX/54F0+94ufErARsl+tNbfMIEMulVwzR4CGuDpaPHyWf1+p7TOUh8GPEQv2E389r/3n\ntX+s/ZwUX/rK139k/b/x7kM+86lP/lzUPoBVPbPqBdIXMv1m4MbPhBAwric2oJ0xhhwdOXYokznb\nbnl8dSOUYmcIObGbDrz64kt86rWXees9zR+vs6kVowvO9WLB1bIuitOBqi166HBWE272GKXplMZU\nccmdb3piWsgqkdNA8oGN6enGEV0Nw3jOEbtfUuXs7JwUrrncjBAc2QycdeeYWrjsHbubHSVnNv1A\njk3LVNvarEa0rvTOMc8HnNLkFBi0RpfCgqImj7OFFCecHVC5okrEtod1SYkUVpS1ONszdj2r9/Sd\n2MeVUqwxMo4begMpJ7pjmrS1JCUC35QSuSZSrXhdKVUT8oKxCqscJSR8KVRjmXPCxUrnDDFFUFqc\nQkmI0gWYssdWdSI1K60Z7FYOFMYSgmcOgX7YkEpGW4UNDl8WztYD1gm2opZGp9ZgTEYraV5UAYeT\ng0aR/znrWuNqURR8jqeV5fvW6ActZmeEriiMhZ7c0MbHvyjFiDk74+xsy6PdLSEE3LChlsrF2RmP\nHj0Wv/x2S1UVN/Tc3B54eHNAhF+f4c0HX+NPvvU/8s/+4Pf5/c9/jhoz43iGKhWqPBCcs6iisG6g\nVI0pirgGtuMGYw2bjSig+3Fstjwp4t5atDbMh4Vh2OC6ntocKDEl+sGS/YrBUH3CpIDKCb/M5GWm\nBs+8uyL7BSpY506qeNNvoUbx0eeKtQO1BoyqZB+aNTPS9Y5pWgjrjCqJGjwaeUgeE1ZyzvR9jwIR\ntRXJh/Grf6IdCOmk2fAhoBovwDnH0oSoNWdSjHTWIEsQBKEfI1pLgS7TLCKrkhtKHNERFE0o+XSi\nSkk4DjllUJVdSFQ+x3vvuD/HYfkmKUdK1dL5w4lhknNGKyhKhG0i+GzWv1JAy39DO8mWZgtUH+LN\n/HntP6/9Y+0bpXl4fcuPSiHeL988jdr//177APNhJ9lHnUb7TAkJGwpLKbjmOHPOQQ4Ev6LUBmMV\n2kPvOnyM1JQ5hAV7fsayzLx095LR9twuM2v4KpXKxy5f49UX7nC733F+Z4NV8ynvJ+fc2C8rBtFn\nKKM421xwmCeKgsPhwDiOdJ1js9mw+pUXXnyJYRiIIdIPFtX0Hl3XcXn3UkTwL76AX1ZevnPGPE1S\nh9aRK/zaJ34RCiyHCRBhs1GtYTaQ/EoOnvPzC8K6omvBIa49kwJDd4EiYdQdrO3QJVO8NDIhrazz\nwnDngnnasxnPGgVZ6MNWFfaHPcYI+mDTb7i6vmIYhtaAC2EcpTDWUkJCifxKRNhFUqh9iCiEwqyr\nrAC1qeQiEQXjOBJToupCyQlbYGs7gspyjRsjWqTlIJqckjFGy/r8qbVP13WEnDjs94xFiNZaa1zX\nsa4rVil6JxM1pTSliXjlOwaQSWzJSVb3VXgyfAAD9gduZFKVC960DI1jSFelyvgUWFdPap25sZba\nBFvvvPMOQ9czzbPsTjXUVNqN/IfzZ/74i3/Ipz7+MT7+wisoPF07mamxRyvNUDSbsy0BcR1YZTFW\nblQxBHJVuPIk1C+GgMqFod/Q9yNKGfISMH3HMk1048C8zuiiMFmTYmCjM4eHj0h+IflIXBfCvMep\njDI9MQQiIujTsTKYToSgMZFTpJhMSgsbKqtfCHFGqczqd1ifQVeyhmogHAKhBQHWUtGqimq+sTuO\n6bxCOJUb//EEhNWsKWGMjHitMTLWpIlUlSZXsYCu69xskZp5njFtDQFPsSxSJVOZloVh7E/MhZyS\n3MA6xR1reeaOW32F8/FCnCNhwvWOZVmlQMsR624kV8WLsyTl9AR13k4EWqunYuU/3Nfz2n9e+8fa\nz7FwZu0zKaXwVc7GM3JZfi5qHyClwGANUUHMIra+vbmhmqcaPVQTaitSDlwMZ0zTjhQCRhtUc24t\ny8LqOkzpsJuOl88GzjYb7r9zn6IrN7sdL54J9HFZZpTSjOMo6wigHwbmsIoGtYJfZjCafhjoi7B9\n+q6HahnHntL0VtvNebP5w/n5uVy/1qJa9tLoHP3G8dIrL7Hbr4zjFt33gj3wgfEy0bUJXY2p/d17\nyAkVIqpkop8QBXHE1ILNAas1BiXXRQkC43NZVkxYnDHk6Nlut6yLp+/6U3O/+APj2LfVUMdhf6Dv\n+5P5QHJFjqRqWS2lFNj0A2u7H+gONIklRsga0+q6xILpzBN3Xs5km9FVtFw5JpTV8jk3tpVSsNmO\nMqFMSVALSjKatFKkKsTsdVnJizBtjDHQNEgEsVg7bcnRy8o2SbOutSHnSikCQBRBc0G3Kff7vT5w\nI5N9ltFxG7UaJR+mLnKykN1cZDCWTYHcKdZlEYW5VqcMkekwc3G25fZWkoCfZcH706//GZ/4g7uU\nWojJMPYbsl9hHNAXI95UrOtw1tE7J8r/zqGsobMdKgXhMRSHGwZGrVBJPO4Zw1wX5qvAvXuv0KNx\npmd//UBOFfOBaU3EZaZXipojtUSsrSzzjMaf/O3DMOD9StYaQ2EwBmU7VKhYLLOfCfOeWhdUTqhs\nSBVyFAX99c0V/TBAkbqMSTJgdGMolFzoehFrWWcIvt10a5EdfE0nhLfVFm16cpGcnr5zrGGH0nKi\n6XrTTiQFzZMC8yminCapgZjl5t31kIuH5vIIFaIJrCnza2eOP3lwzbN23L/yiU+jraErvVxkypJr\nAatQuYgNtyWonh4iR/FXPlJPFc4IR0QpRfoQ7+nPa/957R9rPy2KX9ie83/x3oDPyp5Pf/xX6az+\nuah9gM5o0aXESqedNDBW0RvRLmljWUNEmUzO4uILYcUosfGmXEjtYRRjFNxAzehhZOg7Uoycb89Y\nwkzwntvDnrNpgxkM5+fnMpHbblBADEFCQ0OkKhFTU0VzoTCYJnY9No6lFDabDRcXF6yNrZJLYbvZ\noAdxQ6lSsNqS00wGtnfuMG4uoesZ+57DzY7Ly0ty8OQYCSGwHiacvaRXirjbYXNhsxlQNRMOE07B\nqAI1FYwSF6d1CPm2RGqK1OLpXUdYJ9Zl4uysa/EYpTkjg6zvrCJ5AStGn8iltEkMrYkP5CJGg84Y\nQozUXOmMaRO/wjB2+EkOY9U5bM1C7W215/1Kl6HrenLJhFKwWWO0IXj5zLvREnMg5SD3pjaMEU5S\npmgj16WP2FR5fNjxf/zbr/Lu42s2vePXPvYy2164WMe6l+8ot58i7iTnLLVUakupN+onqZGplb7v\nOcyzdGkazFOj11IKy7KwubiUjq+N8I5WquOoFiRMTEZSzw7IenjzBssyM3QjxurWlRUG12GUoh8G\nUhMe5ZzpnMUohV9Wuh6wms1mg28I5jCtONsxbkRLsK57hn7D1cN3cPoRyU/YduaLfmW3P2BqleC/\nnFiXGWsNKa4sQUaTWmt8qJSsUVbjvcdXiVlwqrAuB4yuKBPIcSYFT4oVozpCWNlsBvqhQyslORfG\ncNafE+Pa8qk0SteWLlpPSb8g4YXLsrROVqyhrh9Y9ws5J4qprDWe9vxHLcAx8h4glUKu0s2nWknJ\nk0pqD4mM0pWcC0UZqoaYNSsiSP3Mx17gG/efTmH9KtQdv//6b3GxGTFKk4xGqUoJlZpEc+CpRF1F\n0Z8k1Ozp17HAay606JxWNx+eBfV57T+v/WPtzzlzCCv/7B/+F/zxv/xD4H+Cp+r/7/zWr3L3/Awf\n1p+L2gdIRdZjIRWGzYbbdZbTtzYYpTBK0dWCVg7PzJwXLs0Z4zDyeH8gNrt0LRFq5Xa/w5i7vDBs\nUDXz6PFDxr4j18rj9YDbwcXjjs0rW7oYGQaJi4i6iINlTfTWsY4amwy9MgxZgUl0nSMoT39xTq97\nxu0ZuSpup5m+H+g2m5O+rVbP6hPODmijGNI5ISXONxtCWNhst8zTzNm9ewQUWkuW1nYw9KrD5HP2\nN1cM40COHt2QC3boyaVw8Imx6xichZyYbx+gXEdnHR2WFBI5ebrOYt2IDo6QPEVXYomUpceZNo0s\nBR8y4zC0hjwTUkArcSamnClWUUql04aSF4b+jP26oKtjTQUzNDef92RtiBQRvpdKd7bF5EoqQgy3\nnZZYlhjpOkeqhexXclUkFNU4ckjNji3rXWJirxI6w//59a/yL/63L/G0q+8r/+FN/pO/8et88sU7\nUBRKR7lGGtRPIROe0A5KRmnRQsXwvjX6gRsZ2fv3EiJVivAPUm5jRYlZj63DOjs742qenrxBOP0T\nJadVIfh9jWdZ8C4vXpXo92F72pGen22oOZNj4tHDh5xd3qFzRi4oLYKvlDOBQKccy7IAME0TDitc\nBp+pNXN9c4MuN7x87wXismc93FBiQrVOPi2rWAZDwCrFus5oZ1C2cnv7VCJrjPS2Y3AdZV1wVrMu\ntwxWU8LMduxZ5pngp/Zha3xYgMLNzWO00dJ91pZRUsDYXrQKWnQZMYbmAqinIo4xyf5SCe/CGvld\n1hJAiTVVRthPbt6l5JMDRFThkvviU0Jpw5qiaAlSItdCWgNFKVKOZBRzrOxqZB8Su8Mt//y//W/4\nizfe4P6732Pbv8YvfvyznHUyzq0pUxXC7HByGs61oNAMtiOl0k7a7pT3cXzVnCkt8K+2/y5/gPHi\nT+v1vPaf1/7Ttf/njx/y3/3n/4j/4Z//Cv/7l7/M4+s3GLp7fPrjv83Z0P9c1T4gzpVTLTemSNPG\nGOfgSC1uK79axe5sm3YpxyjfM7If6roelDBn5mUGrTksM8Z2HNaFedOxnw9sDwf6ocfVjhgT3eDw\nMTIOLRbEJ/persuUGuNJKQa3oXcDqqiTAL4fBmIpxCrp6H3fS4yC7dhutsSY6C/PUCnhdWXYbFmD\n5+x8Q8xZwIlaBM8hFGqxhHnPZuiY9wc6XWW6oZ7EXAyM1JQAQ82ZcTxnTZEQV2y11Gy4vHiJab6h\nJKijQa2RrhRUzAStiSHig6dzHcnKNGgzbsh5BUQMrrWhloJSGuc08zxJk58yveuJxWMq5LaWtc5R\nkgjLdROjawQaqY38/uu60pnuRAwWwnYl1yqsF6Mb/6kn5ywHC+vwpnI1T/yLL339vV2t3/wCd/72\nZznvenLUqNoBmRaOIEnXVQi/SqkW8fETnMis3mMWi27BeM46cpWOrCAkvtpscv0woJaFFJ+c3nIT\nBaUkXXnvLPO6473XEzt+81O/g/eBXbnlfHuBUQVVM2d3LrFac352Lta3nJgXETnVrsN1HRWY55lx\nGHDt9Naf3WFZF3LxPHjwNi++9Cq9sVw9ekBNgcPNFX71TRBo6Eulxkj2Hh9XYskM2560RowdiHHl\n9vaavnMsSdFby1nX0WlHTCv+ENAlcLh5TC4w9ACV4AO1BFznhE5ZErUIdnuaJrTWdJ07dak5xZMm\nQ6lmQ8zpNBqPITFsNiyrdMvVglWaGgMqyZ6xtpPyfn847eU714lC3FpK8Bgjo3pdIGcRgRUEP51Q\n5Aw+JtZaeLDbEdtN6p/+o3/Auw/eYX97w2Ha4Zf1dIA0ro3VKwTk/XRVkOZVKUHQt5tiblMLrVRT\nqwnhEcA6i/4ALIGf1ut57T+v/b9e+/tp4td/9Zf4L3/vP/7B2m+6m5+X2gd5iGkjv2fJFW2a4yvL\niiNEydyag6epNgk+YDvHdrtlvrrCIKnYNWWGccvsA+n6sUwZtSZmSZjfTxPfujnw5vcf8fLdR/ze\n65/lhRS4OL8gRRiGLdZYdFVsug4fE1qDUpZiK9p0gtEP+TSZPF6324tzsUmPA13fs+l7+X58ou83\nGDfiTAGtiKUwjh0pSdp5XFcJriwZizR3eTkQDSz7G0LNBB8YetG4yLVvQVdKaSa1YsTlNFpMCOjc\nM88LKINSmhhWjKqEeSLME3UQnoqzcjBxXUc/DOQoEwvX3tdRtyd0aHsKxYxzwDf7tTICozNKxNMK\nmSprLY6lkpN8xzm2SahchwCqqLbmNC3SwwrjSIuGJoQgQl9kmvmVdx4D57zn6lz9EW8+eMRnP/kJ\nUPrUiIFM/aA2wnYS0X27F7zf6wM3Ml3foZVBtTFtqYWspAMtoZALrCmzXxds60AlG0JG7LVW2u+L\nshZfCpttxzx9Afgjng7Iev1XPklXOrxfKbnSDxsJjUOh44ovAjMax5FAwjrLFFYGDVXLB9uPAymu\nUBMxrOwOFaMq19d7euuY9wd264KlQM4s84qlEA870urZ5SSAoFLJtaC14frBFYPruI47aq1suoH1\ncBD2RNKQDPMh03WW4j0lrKhaheBy7QAAIABJREFUGUZHCEhqrAVTDXFdqAjJlJRQRpGDKLVXL2Pp\nWrNoB0KUXWKOpBpBa1KGSiXoyrzfYZvF1KJY1xY+mCJWaTCGwzSDNaQQ0EYL6r4IUl5VjZ9WsuuI\nIZHWhNUan2TvuUZYQ2W/LLzrPd+ZA6ofeffhfX77N34VUyo9mgUl4WUhkEuWE2njM2hjqEUJmM04\nbC2E6OVEUDLVmvZwFoHXEYJ0dHuY+uGN15/X/vPa/6jWPtBquEhzpTit6qhtWtmmMtR6yq5KKYGz\n6KYHimtEdx2X9+7y8MEDOutYwoK+c4miYJ3j8dUtN3NA9GN/g++++zX+9Nv/C//kD/5T/u7nPgs1\noarDakWKmTo6VDX0xjHajrLRaKxox7qRrrcNmWC4e+8eS5YJTkWCSVWpDMPYGg1FDZluu2F/fc2w\n3bDGFacc0SecMtT5luJX/P7AMh/YX9+w7S2bzjDv9vhVmmznHIfDgYThfBjxPmBqRedKJrOElTMt\nQnRtEqufUDpTD5Poj0h4lelV16ZNCYWSjCSjsEfoXZAJhnOCETBGk9taJgRZCyut2Gw23E4zznZE\n7zHOoY0hBS9xH7U0jVqSSIAWQGuabuV4ECulQlXUqvCLaHdqm0TXWig+oV1ltwSof5P3XJ3XzzH5\nP29r1ECtjXiNNHvGyiRJKQ0UlFEY9f5tygduZITSGFBW44wRG1XMBFVPAKucpfvbbEfGccQfplO3\neMxO0VpLroNz9L0TO2JaSflL1FrZjo6Li5HDOmM7gzGdnDDHLbVWpmlm6HtAtZPnKO4Cp6mlY1nm\ndmo2xOypfUfyHnIlhcDjh+/y8ssvMl3foHIiLTO6VnKaqSFI6FVO5KSZDntKKvRd13bCmt0iVr+c\nM+s8c77ZEopnf5hZraUzBnWzUlLkrBOr2eQLXWcxVrGuERUKrrfUKnvynIQi2nVi88xFItFFJKpR\n1jAdJlAwKsXsZ6odiLqd4oxibQ/NHPNJF3AUUuUG3EopodGU0kb0uRBPOHVFCpIOXJRkxtxfAn/2\ncOLKJzqrudsrHi0ratODttw8fExJme3ZVjKHVkeIq6wITEcObYxfKh2G0saFtRa6OWOVxddE1poa\nxcpcc8V1mtRu3gITE2DTh/V6Xvsfvdr3tXK9D3z14YGrENEUIH7kah9gPb4XDGSIXpqDVISMnMmo\nUk8ZPSEn1hC4GHvKPLNBE883lFS5efQQVUv7fsXtt+k6fIitiflhJ9///MU/5FdfeYVXXruLUwPz\nunKxOafWQtaVaDJuozGuQzeG0DBasI5UCp2zPHj0kMuLM4ovaGsbUK6iQuB8OCOsK3UbWW9uiWtm\nu9mSiiUmj14n/LInLhk/H1ApQfBYlzjME4dbT44BMuQojXTf95Ss8SVQYuB86ClodNLY6ogpUVIg\nhj3RryQvjaAPsqoehy2PHj0URpL3LRJgRSvH6tc26U04J+tPASxqFJJNJK43ae5RcN45FjTaODZu\npJCgT6S0NlOBZFiVnE8xEAZNVZVYZFWassOYXthMWpHLChiyghALuczEmLl0mh/lat0MF1SFCI+1\nhizTpKgzNRVslYlkNeYDr1U/+GppXelcD0aDUmQfJO03ib8/F8jtF6oojNYMg9A/j+RD3XDfJyBR\nKTjn6AZDWD25FLxKfO/qIZe9o+aEVhajLc4l1nWVk2iMGGvRWlJya6kEVvJBPO/WWubDHqUUN1eP\nxGKWNet0oKbIg7ffoVLQNZOXFb/O0g6mICTVnClFE31omOmI0pqiaehsQ0mZ3nVM80xQCathWme8\nqigSpIyxlRgWhvGMxa9Un0kpYCN0yaJ0myRXDSiCl9E2VHE3lAxaRoG6M4BiCZ6iFJSKU5rkvQTQ\nlXoKwjt6/wHpbKvw0mutxCBCQmM7lrCSEXeFTMEzMUViTnzzeuFfvXkMd/s88DUqO+52cH7hMFgO\ntzvJqlEKM/bovaFk0SxI6rJ074N1hCXIHrZEMpB0EaFnlPG0Rqx5nbUidnyq9pSWC/TDej2v/Y9W\n7WMM33g08cW3roALKn8L0TQF7p3B5fDRqX2Q+u/7/jRdTClhnG0IAtpnG05asBCCEHiBOxcX3H/0\nmHn2GGVPeqDcGEwhBJxS7KeFZzr51B/z5T/7Jv/1L/195klE8CllCR/dbFBVmmGZSjRtRUxYZRjG\n7ckdVkvBdN3JdTfFA9YNzPPCnct73N5e8/3vPeCTn/wldlcPsQ7Wwx4VA05lvM+EdULlTFxmUkyQ\nI4qCSolpCSfsgXCCoESFo7IPK2jDYBVrXKlhJfodioAmo4z82VwilSKr22aNdk1LZRvL6pgGr5Th\nGDRZsoh0jdECfWy1RBOWD8NAXTzFGKawkEpCFdH5ee9PP1fpBsE08v3GkkklgzEYJ6uglCNVZayx\nLF40ZhUks00pfuVy5E8evsuzXK2f/vivA5JuXbNkX2lj6JOs6IvsvcT91Nx97/f6sVxLuRbunp3h\nY2Q+TGK/S+nUwXXOsqyB862MhUP0ACfnhQRTKTm1aIdWFVVkr+aMReMpQXH9+MD3N3uqhnT7iHtI\n2NuQLSmG1u1K/slxJ9vZjlIgp8K6CH20lMIyL+ynmZASy37HxTigSyFQSG2nbbTi6tEjzsYeUiBG\nUV4rpbAtWZUie/qiEnOU1UGOFUpB28rsV3KMbX8PnRZfvUqJkG5R6hiGJTc/v3g6K8I4bQ1hWdFw\nAgKptidPScSA1lhySfiQxJ6WI6UxQtCaXAuhJHwobIYNJSdJMjWWNcsNp0SoGRKFHFbZiSb/BGsN\noBRXAf7Vm9fUp05Hx0K8Dl/gMsP5xjJPt/g10fVb6jRJFlE1FCo+zXJBK0VGoZ2lpCZMq4XiRNyp\nGgTseKsuWWBL+vhv2k2hlg9PJ/C89j86tV+1453bA1986+o96//q8AVe2m4/MrUPgsVPWXg8IQTW\ndWXQY5si5RPn48gbOT5452niYntxmmYeV1JKqVOwaa0ypcy58EwnX32d6/0bvP39d7hzedmup8TQ\ndfTO0Y2D1Cc/GI2w6Qemw8QwbnFWn9hEIPA2smqrmML17TtcX19zcXnB/voh67IwaAjrQq8NWRt8\nSoRlIS0TaZXJo9aaTKTWQsqKad4xjiPzssfqDj8dOB9HemMEIZAjxS/0hrZaWfHzjpI0vR0pNZNy\nkByploMkTZ/CmKGt7Wb6ric1XICCRvqV6BOtpEHsmuNpGEeWNUJbGWkt02GVnnwn2+2WeZ6ppWCt\nI2dpULSVKVzKidwmh6m5DKd1AaWJMRNrxafKTZHr95cvR964/UOUetrVuuf3fuc3efHOJSkEQvYo\nKwuslJOET2pNUpVYC10vlGM+wGr1xwrxcJ3DaM0aPD6FFkUvJ9CqQCEX7u1+j7NCUTwWt0Tey19X\nShHxEA2m0/atGIXOBpThncePqSVx/cbb1Kp44c4lr//yL/Layy8J0rhWjM1cX11JeukaTw4PgM6J\nQEpso5mYE8s8kcOCrZU1Rwz6JNCLMeAb38AaRa871mVtwXuWmMJJTFWUJL/GUigx4ZeD7DD9Kg81\nrVmAhcrYd6wx4jqx6VproSQohcNc2QwDsYUCkgt1EYy9iBwLVGFJ+CoZFb4lAoudNACaED3ZKHzJ\naAy7eYICulZCyEQrN8aaCwU5tWYFJSVygZAKPieMtYQY+dN3jpOY9+Kc/BG7dWWwmqQU17tb7r34\nAqaTfe6wKRyWw0lJr43BII4abY2kn2ZxoBxTpBWI7a9KCnBjJLX/f8SBf7jOjZ917Q9OcX2Y+fpf\nfp+YCnfOtnz+N3+N11568Xnt/xRrf46Rb179iOkAf8TD3QFzPn5kat97zziOLbSxnoBsWssa7CgK\nPb6EyirrT2eE1bKGVfg9cKrV43QytgT0Zzr51Fc4G19CqTYdcgMpJ1zUVFeY9ge6vqf2lWHbsy6r\ntIIFhn4jSe4NhChOG1nZDqYn54h1mhwCiw+MvSeGhC2FZd6x2+0BGNyAihmnFfP+lhoDuSZCzugO\n0V0ttGgMj0KxHFbOxxE9DqSwUrMip5XiFwLivjMmQobOOvaHWzmokFkOE30nYMBjUvyyeFILQ1Wq\nSHzFcQ1kTLNSC0xPKYS/03Us3oOSiA1jFeSMbdPEUorEgVhL1z1xOyqlSDURU5Z8gRbuWLXofHwI\ngHz3PidK1Swxs9TMnAq5RP7xf/b3mGLg/rvfZ9O9xq/8wqtsjISKKqVQxohGTMshIxtx7Vml6avG\nF8lAK+r9J5IfuJE5io5ubm5kZ9YYFoI7lpNIyhnaaWx0DptsIwLKySLEcBqrSyfbchaoWC37MGM7\nUVoXxdvvHhHur/PWg6/y7779V/zB3/osv/ubn2aDXPgasahZK8yIYRi4vr5mM8oo9OZ6EWFgSoR1\nIW9HwjrjkwRg6SKqe7Ik7A5OKKHzspcTR0io6MVyWwq9MigD0zLLyXtZ0eb4gBJb5aoKvTYk5OZr\ndRV7aicgohyCnMSqwtcqYs4qO0mtDKkagvcSpY48CE4jcyMn/3EzEtGEsIJSRCqhZFRIaDhB20JM\nJC0PLdXG1rnBoXOF/bqijGItBZ0jiw9chUTl8zyLcxLLl8m1UKvi3cePePUTH2fII/6wg0WIqmiN\nTzLKPxJU5WRhKPq4+zeQZMyetTzPjjR2nWVcynEU/SFO13/WtW+c4z987yHvXk2oVv+or/JvvvWX\n/MO/+7v8R5/5ree1/1Oq/X2uPPaJyjPEirxOyF8ml/KRqH0Qno3PCTeIu8V2jhQzzoJGkbUC68jN\npl2KJHenjcGOPV3KqHWhqnqa3pRSQBXWVdazXdex+Pd28tW659c/9rukGKHCbBeGcYtxCh+EcaRx\n4FdWBeM4UMjEUlE5YK0jhBllDOM4kGNgdzNxfn6G0uAy3H/7bS4u77Hf3dID+3VGR4hrJs0Tk38I\nOlGzCGMphSVFmUSmwtkwMpPAiy5KVXFQLevETZXcomoKTsHu6jGjMxgN49ijTMccF0JKxJpk5WoU\na1iIIWGsYV4njJIDktaVmAKmKBSKmAs5ZbxO5FxQRUTPudeoUoRjRIGUT/orEZErlJEok1haInjn\nSLlQFMSQpS5LJoWE7xw6VXIEnTXeVEJVBBw5QVj2JG34q92BWBSPH7/Lf/VP/wnrbsd0c8Pj/bWs\nsbRmzYmiFLXpcKpWxKqpZCF8o0gGwGLTT9C1dBQqjmZsDAfpqodhIDQdQKmVnNruM6fTGPHE0Wjb\nX62bXsDplmwqmHeUjFdjKYSp8l7Cry/+my/wyouXvPbiy+IAsJawD5xtL1BKsd/v6LqOFD2r96dd\n7P52otbEvE7UmjHasM4LnbECG/IZqyvzKpht89QpSFUFqdD3Pfv9TDai6LbGiiXUp9N+Xsnin6Ws\n9ErjlKIiHTXNTqqpWK1xxrLESOea0E9LjLr3i5zwS6azjqmxJnSWNUMpmTQtKK0wpRBKIVMxVpOo\nhBAZuo6SCiknpiRJrM527Jep5WrAEsVeGnyjZPqVOdfGjHg250RrRVHyPb778KGA1HImVCF4ViR6\n3Tr7FBhOhI45CyPgSFc11pJjxLYCqKnViJPVyZE8mdWHN17/WdZ+pnJYVuRg9N9T/xqH4V9++Q/5\n+Esv8srdu89r/6dQ+7dBdEfPFCvyVaxRYD4atQ+yWqpA8J6U5ABTizxsq0Ls0CiW5gQrVRrbnBU+\nRjrnZPLSro8f4ishU5/tWc90+GEn3699/CVSWluW0gZnvYSqTsIDOj8/J8Z4CjiMMZ00UUptgXrK\nasop0DlHiYHb2x1GyURis9kQwoqfJ0bnKMGTveewu8HVSvQzIaRG4vWQC5EC7T2vfiWqKt+namnX\nKtBpRY4KXQo1eeIysXEd85zRvSHmgFKi41INPKiUUK57M+C9x1VLSnJQKlVYUN6vDG44Cfzl86yo\nWsBaloYRqDlhlSWk8EQH0yYxctORdZvre3IqlCI8HGHiiDbNB0/X9cwhCIcnBBQQK4QES66sqbAr\n8PZhz/W6oIcz4rwSQ2hmB0PXDeRcWdZFJtTlSfp1rhWTq4SqloLrOja+kNvk6H1r9Mcq6Lav69uI\nsR8H2Z0qRc2CYkaJ9c5H33ZxCqUMJYO27QNsoCcTQXei6K8qo3EoVdop5hk+dP6Ir337TfrPj7hY\nGfqe3jhSmFFWg7P4HNGLRWsJuiolktpncby5qGmHrgpfVkARaZbJUtEVci/MB42SALEY2S3iOMnH\nlZ3y1Jqp0Z8eUBXp2IeuZ42FiEIaykDXiz/epSpiUS3/9GGR3WBKaJWpVbgMWsGSsogAU6KzAjKq\nBQKphXeJ9kBpDbEQ4kpGkUJ7dCbROKwlMOPxteBzoSRhPVRVmSusSUL+9qpiB2D/DM4Je85b3sd0\nmPje22/io6dqR69HVrNIBk7U1OixyCk1NaU7pVKLJhUvF0NLN3YY2cu2G1yIawsra/bPD4Cp/mm+\nfla1rxSEUIFLnsVh+L//4i/4O7/x6ee1/1Oo/UepUHUC9jyr/i83249U7ddaT3qd44rDGkeshZoL\nZ05cWrTfn3pcsUTWZaF3g1iwkz9pY6wVJ1vO+dRkaI1g+rMnxS9RKfSDBVeYU6KbZ0BhbQ/K0A89\n5+fnskrSEpyYn2rgnVWE0ITjQAyeoR+4nQ6yNlUGHzzXDx/C3Ut8DGgq0+OH5BiJYUaTOSwruhRi\ngNvrGzSKmjPdMJBLaTwpAc3FmMCCzRpfV+YQcarSGwt+oeSIyhlroHiFTwooYmVeEpVM33eE6ElI\njtiyyIM/RhECe7/gnJF4DWua865gskxfK4aQM72VyejqPVUpSnwSuGqMac665rosuSVVy9Q4xIQy\nhnld0VoRktikQwxUoygp887e861HC1c+YQ1cjo539zOqG0RHl5LcF50la4TvU4CiSFHudc5Y0cpU\nhS2cVvUxJ2wDdK4fQCP2Y0cUxJw5OzvDe8+yLJyfn3M4HBrzoDwZtzdXxjyvTeT2pKs6doXa6KYh\nkJNWaReK3CvfO1228jrXt19j//iWzllKLVwv1/SbjeydGzZbqx7rBEW9b2j5I0RMoSjen27cpWRC\nyThrIVecMcRDpLMOlQpzmbDa0Hcds1+FUQ+UmkhJGAHUBgiSIwmlBKiFmqvklFjN5BecNRQtYCGD\nghqIZRUPvdFoBZ21rGuCknFDj/crrqWY9v0gpM3moElZ+Bu5WSFDjCgjwLaiwBUtAWINPb3kSEyF\ngqJQWX0gKMOcK7MvTLWyhMzWVqb0BeCPOSHY2XN30GzGQdKFtWW+2aNTYaiaaIxYlXkqIK9pQowT\nIBNKxJlaabRSOCfrEQWNIilrGuPMD5DZ64eoE/hZ1r4QUp8dYVDr61xf/RmHZX5e+z+F2r8JkZAq\ndwbNzfrD04FXLgeMqpiPSO2DNCelyvTjOGUspSB7RU42cwkIbMnl7dkTY2TTb06amuMr5yxTp+Y2\nkjBEhXFGKLRNHOx15nuPHvHa5R1sGui7npzExReTOKU2mw26aNZloes6shIy7d27Iog91odTmuur\nw6nRsWbDo8cP6LVhd33D490VvRFKdlgmcipQMoTQppRtkjhPOG05HPbYrhPNFZUwHRobqDLNE8ll\njILDvLAUse9bK4JvHTLWONIapSk5LPTJ0A+OZV7QVkogxkgIkkHW2Q4fVpw10ty4jnVdGMcNFM1C\nxPQdMRRMzJQ1YpzBocmAbSnUpRTJrLKuNUcQSkJngTgu3qOtYfUJtKUqxbyushrMhZAz37ie+OJb\nt4irT1ytXO+412suR4fGUUJkOUyc3zlnPNsyT75FKnTkXHFaokesMmQSql0fRSmUVkxGGv4fsPE9\n4/WBG5kjE+Mo1Dpiqk/Ib1E3Qj3+WQAB9+R8THJ9Ikw6FrPr5KR27OS1Pmr2nz3apSpub26xneH6\nBnpjWbOM5ntt2HQja96Bqo3vEahtvHh8L2tcTyfOkhKxFkLJ6FLxWTrTEGYhhdaKVoklBfHpl8p+\n9bxxdcPkA9ve8am751z0nQitCpTq5bPQ0GWRguYccTXjjZWTb4ySCmsVpYIpBXKldwqDwShHSkWK\nJ0FvHcs00XcdPsgI8niPO37XBUtBs1s9xWh0KO0Gr0mlsJaKT5mqpGtfY2FKiaXAmjRrKSwJRtfz\n4kVlv87E9GURYDnLdiNNjIgVNcs8s7+95d7FPSatcNaxtlo4dv9KywkfpTCdaAP6KtOLHCMiI6PB\ntuSGGMuT00OlYj9EncDPsvZFQ6Mo5UesNpTj+vbmQ6t9gIP3/NXjKyaf2DjLL71wwVnvfi5q36iO\nF84V9zaa63kh5i+jdOHudoPVfKRqH6DTXcsQU1TTXHxkXhwuWXJk5z1OK1QWMmwtLQU0WyKVVCuu\nWdylIRJtVMmglKzZFEYkQlGcaE5bivJUr9C657uPb0h3NqTesuTMxfaSs3EgB88hBoZhwFhzSiw3\n1nL1+EbIyEo3O7IIlQ+HCWMMt/MD/HTg5YsLsq+UHJnWRI6JEjNhmXBGo8hoIM0C+yslMw4bggro\nFCWbSBtCFrL0sgRZHWZZAaXURPhWo30kGfl5rgVgrj4QMygrlOscAlZbcEqSt4celQs+zJRSWXyl\nlIzxwkFaprVNUaK4+qp8R6UWSqz4mok1ExLC2dGWlDwqGdZWf9EnOt2uDxTrGlBaE3PEp0gBVHuP\nj33hi2/dvrerz3+BewU2vcKHHbeHiTsvvkoqE+djTw2Z25gpphByJStZxZt+IJaVcuzZS8ZYgXJ+\nkD7+x9LI5JxJTazovT8F5h0JlMeu+zhCPBaV1pqS5YM97kW7rkPVk4NUOv3GFeg6S1qePdq17g4P\nrq4YB4fVmu24ofMrRhuS08zxwLpUhs3A9e0N3398zbx4emd57e45Yy9BdDlltM2kmEg5Y9u4MaZE\nIGOUxmg5PdUmLrbG8pf3H/ON+1coLqh8DsXX+Nb97/CZ1+7xiYstDk0oiao1VUNfZBTprCGkxNzS\nSZ0Wq2VacnO2GAyFlBYMmk4ZKBqDJsfEVAPjxuKXhZzkpFtzc8M07UNMgaQ1U87C/ciamzXyl7cH\nDjHRO83HtgOmRkIuzDHi0UwpkyOEKpqCM6e42FgGHdF6gw+ZorOwGI7fbT/gZ8/b9+9zeXG3uWnk\nZGq0FgGmzD2lwbOWGBNZQd9EkakJRVFaVhPtlKaMOo1Aa6kYPrxT6c+y9o0RXHlKz67/3t7j6ubm\nfWs/+AWfIm++85BpDQzO8LF752x79/+59v3quX9Y+Mr3Hv5A/X/73e/wmVfv8kt3Ln4uan/sDL5E\nXr14Uvta85GrfQCUwoeAMhpn+ydNVhU9Q0qJFBJjC+l8+n37FGW18dQ053gQeLqxP65dxW1Umh0e\nlBUh/PXulsEqJv+Q3fQ9coF7F+f8zd/4NK++8AKpFg7rytBLqOJ2e4bRlhgDObfrNCZQ4iLLKbGf\nJnL0PK4FlSKhiq1bV3G5hWWhc4552rMdeuIqTh1nLeu0w5knrkSlFEUbirHE1dNZx+xnjNYsPpCz\nEKM1hWgMvdEsOeKiwA6tscS0ipA4F6Y4s73cgnHMIUHOpFBOqelgUNX/wJQrloT3qSViJ8FDpUQy\nkBSoooklQSpYrViTkMKrFV7TmhIxRUEUUInNJRhKBS0Tr6oU/+7+DT/K1fdoWnhVVPx857vf5Rc+\n9cv0m4F52p2uC/WUZtDaRmBuPJocE6VmlDFtLfgTtF8X+VsFiFXKKUfmaeGWMYZlXaXAs9BAh65n\nafk7VpvTBUCpxJQwbexea8W2n22MZhgM63uMdlGV79/suI0bLkPPZddT1hk7KIyzqKhabsfAW28+\n5M+/80674f4O8DX+6v5b/Pqrd3npzhlaK5ajzRRR2ofaThS1UAxiM0359D7XnPnG/SueFmLW9pD5\nxttfYLSasbMNimWoqZJRqFqJSVT+hczQd21fn0XMVyOmgsqZwRh0VVhjoDiGoZf9YoJplXGb04bq\nM7pGlLJkkAemT3gDU8oEKt+/WfjGo6P7S0aAb9zc8srWMPaCYI8xoNrKwHQdNUfOu57R9EzrFbYr\ndLbH1wmtFCUkHI55DYz9yIMH7/Dbv/EbVGdRQQpzLgVnHD6t6CrvGyXckFILdY0YJY4I0Y08gR7V\nWoglo5WWz0ZDff8A1J/a62dZ+0IK1nRdIYQfrn9t4P4cWKr6kbUf95HvvfuIb3//IUfnH3yNNx58\nl0+/epeP3Tv/sWtfG81hiXzlew95z/q//wXGzjA487z2f05qHyRs0DYL/akJiZFlWZijF41TzlRb\nT8nSJVd8jIIsiAGrnjywjk4++MFppwAeZfXXGSsZVFoE6bkU3nr3msOcke/zd3jrwdf4yr//X/n7\nf/t3+N3f/DRjN3KIB2xz3+kG4LPWClCuWYhTW03lXFkX0a0ELw42nQEqJSZSyvibG/rOkeaFjTOE\nkIhFbM6mHV5Ky1WLYcUjTdzhcEAbgTzWIivDogRPEELEUumtghhRqAbMFNCm0RqrNfEw0VlHCgFV\nweoevwRJSK9VXH3uiatPqNuJ0XQkND7MaGuIIE7F1OCKtQBt9WkEnTAYx5oEc7CkRM6JrKyAI0uV\nBqiKqPc65PY8fW9XX65fJlW5jzx6/JiqZeWejKLbboi1oLM5TfaVkjowyGRZGzEAlCrsotOJ70e8\nfuzV0rGDPibJWmtPiadPv+TPSVf39M84duFPPwhknP7k7yilyD69y+RyoOR/LT9AP7GO7aeJeZnY\nO8f5MLCpPX3qsAV6Y7j2O/78O+/wA86PdsP9i3bD7V1Lao2RhGr6BLmZlJIhyWd4HP0DfPf6eGN8\n7270uzd7Pnn3TLrOFoi1qIJBUVKQky7g5wWK6AtyAWOV7IirIUbonMFWzSF43nxwxZIyW2P41Asb\n7g4d8yqshGrFJRELpAK1RFKEUjV7n9qN/IdHgA+mL3AnJrQy2LaPVk1Jftb3jOOIMppaFWvwGJfp\nEcjXXAqxVja9JcfAG2/xPxFIAAAgAElEQVS9RWmZKqHdpDrn8ClgGqRJTsySLyPWZfnkqkJsp39N\nz2VojJZSoMITbNjP/vWzrn2tNUpXyYqJB2r91zIAbmX4frW//L/tvVuTJNeR5/fzc4mIzKyqvgEE\nyAHJmdFld2xNppEe9Krvog/GT6IXmUbiSqaXXdOORtLOcLAEyQb6Vl2Vt4hzcT34icisRqMBrmYH\nBiLdrK36Ul2ZGeHnhB/3/0UPlFJaEfP1e///Pv8V687RB/9H5T4Vvnj7bfm/5ZdPry65/yeS+wA4\nY2nRcliFpTiwN6hLwaAlN2CpsczEGdg5dAFXHzL5VOtJjyZnpHONWWTFwszkwwmHqTBNwvuYrP/j\n//4rfvaTp/zk+gn90DXGUqLvVoQQFmXi43HHlNKiQ3Z3f8B7uNsdqFpwSRgPRzofqCWTMgTx7MeR\nLnoOhy2z/UDKE644VCvDsOL27T2pTqyirYl6xuirpRq0zEHSREQIVPajFYWuOYGXmll1HcEFvFjB\nfpgSAWeGruxbIWiF99z1AQiddU1yymS1v4sK034kO/DRc8gJKZafuZqb9WGaqKJsxxG8ZxxHiipZ\nK8dSSaUy5mTMojxxqLPO9AdYra1IF4Qvnv9+UcsmenI1MHZ0Zm3gnFCyuYWn47h0JZ0T87dDrUv1\nLfGdC5m5fT5X5CEEcwOVU8twljpeWm21LLP/eZOef9Y5VmA2qprbdLVWVqsVaZYvbkwRlbps9Kq2\n/nc5c9je4bfK1XrDzbCmw/H8/p4PbbjP3+747MkVMzWvtlP17Larap+XakCuWV3wMCX4gMbKMf+a\ngklD04qZHBw1F6I3ZUeHLC3E4BzijLsvWpqKKoRJebEd+dtX29ZR+m+thX/7gn/18YafrjuCOMaU\nqRVMQUMaAM6TSuJ3d8cPXoNjuWflXWuLC753+Cw821xx82jDV6/e4rueEIT9eGTV9YxNfTRTic4c\nSl/f3nK339v1UkWrgWPH8XDCaFTFNwDkggMp1R4YKF7NM8QIEvbw1DJrTpjWyvcV31fuz4XPH5v7\nGuDF7YcLji/f7vnsyeaPyn2AY8p8KP/H/K/JNV9y/08k9wEO49Hck709wnwbLU2lLBpLse+NmqtW\ndolCUBMGzDmRgyysPOccWgUXxLx0GpMvJIFgD7dKxjcmX84Zg3h98/38P/7vf89/91f/BdxXrtcb\neh8p2RhxNQgv9iPdNIAoUzoyTUdj0hRZcGp6tyU4z7EcEIXsoIhAUY77TAn2ueJkGJeArdfdeGdV\nv/OMZQJKY/RNZ4w+W1tDiJQyl6YzJq7ivOHJ9lMmkOmHgZGDGVCmo+VSMdmBVeyopbItniH2UCq1\nCHk8IuJIZcL8kBpzEvPzquWIYiKZpdj9Kdk0Y3KFpJkxF1JRFMc07UgIhyIcaqEeRm5F6QZg982s\n1k0Xm/t2Zle3vN2+4dHjZ4TaEWRPEGMPDr5rBdURr5BoayPbtSyNCHA+Pvum+KPo12Dz/aVFDouP\nRYwRRDiOp6pKULyzTWb2nQkhnG3IygmWbNX7+Qm36zoOh3HZ4JWT9oAo+Oqw/UOMU78dOe4nYuy+\ndcOd8v9GrWV5P+LDaS47v547KVAqdkG76PlQNdpHj7ZD7MI2KDTFK0GKMnkxYJsI4jw5HRBnaqNm\nD6OUAn/76sj7Wvj/7sWv6D8NDK6SyajaJl6dh5KZyByBu5z5Rtlv/pqq/4vJ0Euh7x01eEItPLm6\nYre943DM+C4wlonrRxtrawqUcWLTrxH2dFEYp8TzFy/4+c8+aZ/JHlbiBHUADhF7+s54iForVbR1\nGqSdzk73PqgY60UguhPI9PuMH0ruP7ruOaYEHxB1G9O/Xn72d819VRi6CPtvzv8umlfKJff/dHI/\nhMBxSqZRgo1CY4x4sK/tJG9j0ZMQZAhmugiy5H3OY/usp5+/4GqY11TLSzE2k6qi0weYfPw1b9/8\nn9y+vaWPpsB9N90RhhVBnOExqpKcEjob793vdzRbeXLJBk4vEzpV6zCpUMSECYP4Rrm2QvtYJzNj\nzIWu741SnpLR5EWpNZmNSCtGXfN5UlWOFCs8ckFradTnjHOwjj3OrCU5Hg7kMjasEabyTCB6xzQZ\nhk1dpiRAlegzvuuYxslYY/bBzDspGzPuOGZcgGOu+BCJWplyZmwNg1EThykz5YILPTlXxqLsqzJW\n2B2VrcAuVTaB97JaHw/C9Wbd9LYcToXjm3s+unpi+LHmB3dUbYc9K/JLtc6bqoD35FqJLlCa8/e3\n5uh3TeYZ1DgbOJlPxqndPk0TueSFsx+jAQrNb8peZp6NzsZas7qjbeZN8VSrUSOnkfV6Rc6ZNNlp\nZf48BpCz1pUAfdeZumH0qKvUcsDe5jdvuF4UpZAas8C8MrI9UJy3jRxTHHSIMS1UefJoxfO3t3xT\nNfp0fXUStmotwNnUK7UTr5RCaafPQzKJ6loFdd5mtEX5apf40Ank87sDz9YdWQyTkapSNHMkm4Fh\nVlKFDwt7VTIHHm/WOJT9tOcXNx/TF+G3U2GvE1c10mXo8OSWdNr3VC8k9dweJqIE3r58w3/5y8+4\ncw7fRabDkdI2L3v4F1QzOVVUA5mK4nBFCQil6QcJzV+mwcGcSDNkTHxf8UPL/TdvU+sAfaDgCEIq\n4x+V+xocT68iv799yzfm/+raHtqX3P+TyH1g6Saej1BtxGRJOa+N2VhyLkzm4nsG+PbtoX86ZT9k\n8tVaHzD5VNXYUg03+SEmn1Thfrfl6G2UFJyHozmsR4RV7DnWETVdZ8bpuLx3bZ20Yx5xTkycsaqB\n+4FjPhJDwz2Kjfx8W5DjaLgecfbQvjsc+IdXb9hPiU3f8YsnV9z0ZqBpjL4JbYy+WDDlXQwMn0fT\nw5FiI1NcK4iradS4VIjREyUslOWU1K5NcZT9nhg6psbqozHFlnvmAtUFdvlIqSM+OxsbOROgHKsy\npUIRTzqMTLVwzMq+Vg4FsgZ2pZDVsekjnzxWbnd7UvlfCc7Rh8ZqnffJWtBS+c0//D1/8Yu/pOs6\nE8fE9q+qs9Guts6oiWz6LpqqONiYMv8T6sjMbdHZH2M+XdZaT5Q35yEakjtnAzk5mdvVp1/nmgIG\n9Dq9xvz3OWfu7u5Zr9fkdMCUMGak84x55rRwqm0AlUoQYeg8x/TN7a/HVxtSeyh4J1Rnp1BVZTbX\nmn9+0bm9LgxO+PmTnt+++Xo1+vOnA8GBeG9iaW3haxtNnCi82mbf2IkMaTL3dQEHHtI3n0Dgr9mn\nvyFMJjmdSyEpIB7TIDHhIe8c+QPCXr0o66EnT4n10PG4X/PpJz/h7//953RXK7owUVLio0c33B3u\nWQ29jQEKTCVztx9N4VeU3/3jf+C/+a//amHzzBiS+aHfPmxj5KS2KcgifiROFi2WeeNSqQvj4PuM\nH1ruI44+CtvjN+f/zcry/4/JfXLFU/nlsxWfv/p6/n/2uGfVd5fc/xPK/Tksb8+6dKpmp9EE7uZi\nZcaAzcqx8733TTdp0aE5Y/KJiI1q32XyYa9nY9xMSt98P4fhKS/fvGEzDHhxPLq6QactoYsctLLv\nO457GFYdr9/e8vvXt43J6vnZkxtWXaBKNQC+mFx/zpUuBARhmo4kMQHAGExCYO5iAvRdz2+ev+bf\n/P7lg3Ho//X8t/xXP33KZ4++zmbtinUuY+coqpQ8QdGmnO2ok12jGCNld2TdCdO4pwvByOrO4VUo\nxxGHMKwdx+O+5c05q8/+XHIiu8q+Kvsp0dfA6+PI398aq28VPT+96uicMuXCIWUOJTNpYJcSNTfn\ndoTrLnC9DgQteL95wGqNMbLb7fDDwP5+x++//JKxpJN+Twj44NHqHuIIbe5orDIRehGonnQGhv+m\n+KMKmblduNlsOBwODzbkWqtVk/WUvMDSSp0fAvOGPS+IGDtyTi0j5GubvC0SGsBJl8Vel43dLV9z\ntSrWEOUdVyvYHr7O/PjZsytWfU9t2ISsFT+fGEWQalLqD04XbfbrgaebjutVx6vtyJh/TR8cTzdX\n9M1hNVPBC6ktcHd2krGf41FMb0Qwhc+CWqu9Qfu8Ez50olZRjqWB73CIeIpq6wKcdQA85PL1a3DT\nwaqLXK3WUEyA7C8//pT94cjttGeVAkEE70z/IHpBS6LzkVIz0QlTdYRY6SO8+MNzO1U2vIUPgVIa\nml4VLb4xMUa8V3w2/ZBSC1nA1YqLbVOcAZiYUFrO+Tsh1/9TxQ8t94sz1s/NWrnbf/3ef/ZsQ993\n/1G5D/DsqmfTB15uj0z513TB8Wy9YejCJff/xHIfmq+YijmMNzn/qrpYApwXL3PBHmMk18qU5sLH\n0XcegmO/P1CLdTRn48P3MflmLM7cEep6xzS+n8n629stN2nFTXI8Dh3l8JYwCK5ky8fdHu96Pn/x\nFX/7+deZrP/y06f85Nk1mdb1BFbONUVb6yrG6M2igUI56xJUrbw9TPyb37/kvWy+P/yKVXSsu2hF\nxRmjr6rSHcFchgoxRBRhGk1rpdaMb6rZasbdDNoRvScnTx8CiuHQtsdk2J13WH0VQRXyIZFcYq/K\nvmT+n7s7/u2LXbsWxur7+9s7PrvpueodexWOo+lROeeoTnEhIjVxFXsG13E/HiAWou+Y2CMIeUwE\nIscpsxo25lE3HvGrDo4OvMN5jyhNlG+yzi+WEw6zTGEseEcb0X44vnMhMwzDkrjzSXSaJjabDapG\nadOiiLdXDSE0UJGdkuxgp00nQx5UYrbx2+a9tPr05BJrPhhpAUCex6xlEENHLcnoayIgnijCo42Q\n8h70b4jBcb0aGHqxSaTz+GCzeq12wjJqmtAJy+auYKevedYvQufhZ4+HZSHbqKCdWMLZNcinanK+\ndqizDW42lMNQ3rPvTq2VLgB884k6OkdQZydRxOTOVRajunmu6L3gnFLKHcjfEL0tqEGUm6trxmkk\nonz09Akxw/Pbl2g38/rhz37yKW9fvSC0Iu0wjqyHNV++eA3ScfVI2L88Ernn/v6eGAwHMAw9OVmr\nFlW0GPti1gVwmCR5UcMQCHb6cMGTczE6LtIcYk/FwfcRP8TcL9XclZ9dO6a0a5gQx6OrDTerNU7k\nPzr3a630wfHTm/6S+3/iuQ/t3hUlVxsPzXk6d4vOAe1zx3Fh38k7VOv6zV3K0/far/Pv8d6Ta6Hr\nHTndMzP5xDDWpJR48XZku4/s+si67xgYWIUO1xSrX433/O3n72ey/t3zXzH0nqF5ZHnvmCG51m0q\njLl1X7Us68P+3fH5yw9rq3zxdssvnmwAwTW21hHrzB3S1OQGqsnyz4y+UQxDHKw4ySnjxDGlwjFn\nPr/fs8+FTQj8xfWaK3Em4zCOiCoaFEolYwcGrYWcbNi0HQv/9sXuvdfii7tf8emVZ0rzPQSo7eA1\n8WRzxWa9tpGoQskJF5SoigQDBietdF7Qmvjy5Qt2xyPdul+KXpMZNLVoxCGu4sUvXczznP8u2f/d\nMTIxcBiP1OZEaYssnM2Bm9nUwg0XfLCZ6fF4fNAinbnvaKZmh6iBFtXpg8QXrDpO+YA6qzqtBWvj\nG2lgrRACSU1mPRRzBS7eeO/BO/roWfseUJwHp4bw7mIkADUnvAvLg0dEyOLs7FhNJMu8dGzj9W2r\nzMUWeNEJaSdDpLOqvT10RBxZZ5OuueVqughCO9GLfdqU7QGnueCC43ol3L+no7QJQvQmO+3UlBFr\nm/46ses8bwgFAwxuutCAgzDEaF4fFG7WK9yYeeZWvJzu+cPdPToMTPf3/IuffoKOR1LOxNCzjhtS\nOUIYuC9w3Tv8wR4O0mV291uePH2EOMeYDYhpbAMHQUlpguLoY0/Kcy6ZOysxUsdm8IejqjFmjI5Z\nlyLh+4gfau47MUG5Z90Nc+4Hf8n9S+7/cVFKgXYfZ+beXLzMIHbnjIJ+Yu1VxqarNI+PUkoIvuEk\n6mKKOXdy5t9LA4unkpYxboyRKafG+gvUquDmQmieRzmmUrg9Vu4PR7r9nnXXc9Wv6HE8v7vjw0y+\nLX/2eGPdi9xo5K0zVNUc4osaJT43pWzXiplvZbOmX5u2CuCquYjn6CAb4SQVE70L6pdCBg1mx1HU\nNJ1KpQuO37zd83fvMvrefMW/+skVn10PaPNJS7lQq1jnB2PGoTbO/fxu/8Fr8fpwx3W0ZyYUuj4g\nXugl8PHNNetVz5cv3xKHFSrKYRpZx55jKSYCmDNXQThOSoye37/4iv/8P/uL02hSoB8Gttstpx5z\nEx+txVhX3vBBEr99vPqdV8g50PF81vW+uf/8NSVLvK7rlqp6PtnO3zMn+gyCPK/ETkCxstBd7f+d\nsSI4gdHOW+19xmSxVanBUYbIsSajeGbTQihYW9vHSBGQ4M151p/0DmbV1fkGzCyPYyqoWoLMDzNp\np1KtzQ25zcunaq7GU8nU5hxN+1pQE48aDQSmVfE+IGrqok82kVW3ow9/wxC3PFkFhs5O3LWB5WY9\nk/n6nIcWM+ejVLoQCT5ArXQ+MISI5sJHT5/ydjzwH+7ewtCjtbJed9xcXXO/29L3Pev1mrvjARcj\nL968spZ7eyjHaC7kX331FV0X7f0LS6uduSPhjOFTS20aGmb05nxokv3xdO9nzAazsuz3116/5P4l\n93+suQ8n64yu6x4Acx+wsGpdcmH+vrnAmcHycMrrZSR79tnmEezMbjkvmETM5dp+tnvvPXdFCHi0\nQFGQ4tjeH/ny1S0vD0fG/GHs1ZRnvai2BtqYsGKHh2JzT1K1e6gCWStZK10XOI1Dz2Nm8zVHc0yj\npaKQKyUXNBumrIbACCTnSM6RJXMsRw75wC7tmHzi5bjj716ZPpLyB+B/al//B/7dV1u+3B3Zq7At\nld1U2KfC9jCyHRPTVNhOiVcpfSurT1VwYgWjDybSWaSyih3Xw8Dd3VuOY0a8o4qyuR6YnNrazpnr\nOODEuqviHf/wm38k+HDq4mHinTjAe8SZWJ8uI9rQrlWx4vHbcvRbv2P+xpbM55vqMAwPNvWFjcEp\nYWfw25yYwzAs33O+gc8PhWUm377OAlLTNLVNwy8V+LwQHi4M2usbALNzHkmFw26Ha8mYtJJrYcyJ\nopWpNA8N1FQbW1tz8adpX1M7jRynjPhAVhAfl89mbbG6zFQ5+1xmi96uRylUWP4OHN5HnAREgj0k\nmlqWC56+82zWHV0QfHAUwcCZTh6c9s8fQPM1HUKgD4FVP1CmyZDlqxXr3u5d5wzM9nrccQRqVur9\ngX/x859zOB6oTfek1mo29Q7TfoDltUVMR+XLL78CBDMAPNNK8acNqbbri28PNe9w0ZvEfrbW6XLC\n4rRhvjtW+eeMS+5fcv/HmvtzhL57QJ8FHuT8PC5VNSNAA70nSslNPZnl38/v0buF/Jx7pRQrFKp9\ntW5MwoDvMxPstO5KqRSpFC1UKl0fSVXJ0TFFZXu8I6fEh4oN7xSRypQO4OrScarV2HHq7P0UFLxb\n8DxV4Ml1z2kcejj7uTOb1byepApOXful5uFUMlNO1DRS0pExHUhlJJXGJFLhWB1pcnx5lzl1Umb8\n2NxJueb3d4nbsfB6qrzOystUeVXg5VT4PBe+mApf7hJTrpxYfV+/Fp2Dwo4QC310eK14zfzZo0eE\n4nmZCrs6QVX8VBlch87jRG9YqCSBN8fMPim/++3voAG3ASQ4uq4jxg4t5iBedKRqRotADRTnAY/T\nf8KOTEpp2ZS7rmOz2Swb7LyBOCdLkgNLRe2cYxwNrX9y+D1vJZ5cUM/BkTP3fp6BAsvmOP9+/jmz\nIFVtyT2JVb6aCl2BqNaerw6mALmdHFWMmXFMianN6bVRR+eH1jI+KCfcw4mFcBotAAsIzLUTg3Nu\nSfwqnE6k7UScajvdljZiUAF1xu7AkUs2UGDJJnHerm2V0+zwfFOYuwYP7gGujQSEYVjRx95OjsCT\nmxv22x1vdvcIHsnK02EDhyO73Q5EFn8P30dS097pY7eIu+VsEt1ffPFbAGKIZtbmZGFynDoH3jQW\nglXc4zhSajVWjppvjmrbxMUtM/X3nbj/ueKS+5fc/7HmPrBoJU3TtLyXGSs2v7+56zJ374AH+T53\nbOavwFIowCnfzkdR872dR1r39zuePn26/PscJxyHRQzBOh0tN7WaO3sXHB8qNp6sI6kUclVyLksR\nVbSgostYDWhCki0PqzIEx8+f9MCvgJ8C/z3wKfAr/vyZmY3ibCSaa20+Wy1Xz7qtJgEsVjy1EWlu\nxX9R/dau0n2aeJtG3hx2vDnsebPb8nq34+3xyH5/WIpMK5hnFtjXr8XgbaV3XYejkQf6FZ/89FN+\n9+JLhtjRRw9VeXRzTU4TXfB4B6u+o+bEbp/aPUjcvn7F3d1dczl3C34MaCraiuDswKOZnEfrVGG4\nt2+L724amSubrmc9rK3lQ2Gqieg9u0ZBrQoxdohYctZayLm0Re3pu64J3FiyidRlM3DOWbvubJPH\nSbNFN5GgVCrDesN2uwXR9iGt5akURDxd6CBD19RJVcx9tfqKEwUteEBCxDuP1FnAqvk8VAMJSnto\nlKL40GE5Zgsr1em0mDxIXDdqIVSvC7tjbn2Xc4CbQEBItYIEqigOQ3JXrW3Om3ESoEBPpJogAFIb\niBEH1ZI7u9REhB2ignhrSBsQUvl4c0VNI9TEzdXAujPEOKVys77i7rDnxWFPcityLlyj/OVnn3K7\nfcMuVfp+wLnAtN1RQ0+IobExMtTRkOfDmuNx4l4OHKdKkB4/0XAktvmXZIu2eCihof/FL+JXrlZo\nm0Sl4nGL14Ygi9Lp9xGX3L/k/o8196EVLcfj0n2CU1EdY1xGpvv9fsG7iAgISxfHgL6mYLuAglte\ndF23vJaJTmZmkPx54R6C4/7+vhXuy3NwGd2WuQhyliN2/WhjSMW5yNXg2L7Hw+9nH12xavYGWpWK\nWCfJmXmq5aW2h6ouXTot1XKqKj+5WXOz6nm1GzmmX9N5x7OrKzpv66WoyX1oe8+crffgfSvobaSI\nKrnaNawSWsdpvh4fYPQ52DbtHTBV6Sre8HV2tTCGpBC8vpfVd9U1m5AQ6EKkDw608ufPPuWr1694\nM+7ZDNHcNfLIurshNRVecYH9cWSzGnh7a0rBHz9dIVthPI4MfWdjJHFN1dkwd3agC4hmoOAjMNk7\nzu96eLwnvnMh07tADJGx7MkZhv6Kq2GFb7btU4Ps1HTylJlPlPP83Huh1kzOiZQmYjy1KMEwCPMp\nxv5cEHm4iJcqtt3v5STrFKRay5EGAHOWNd75BU6kaoocXgzI5TDNCbOWN58Pa/e10+WMEWgnC+cc\nsdEil5Zvqbg6/9y5upzR7kYqTTlbS1wAsRPr6VRZ7GQ2z8blBH6yDaHOfyBjD4RU7T25hivI2TZ8\nqqM4JTpYi6OkPV0MlOIJ/UCJnsf9hjIl3h62HCjcjUfGSfh47fiXv/wlcjQ35c4nrq833O12xKsb\nUikGXhXHMWc2fYc6z26/RVVIKK/evObjR48IXYcrx2VkMj+0DQdhgLYp2whCSkVyMc2R+T5j9xdn\np5Nl1/oe4pL7l9z/seY+zCMyc+9WNWp1jJG+7wHLq8PhcCooZvXrd/AvygzsPX2k+Rq9y3CDioh/\n0L0xfRTDnR0P05KfX3u/OSOiiErDeJjHlxDoA/TRcZhmJqvnZr1iNXiKCs558NLYdNYhTe01gncG\nQp27RWI57Wq1A0EIxCB8ct2ByEIfX94/9fTQZrEOBFrXVcPSgaJ9T1UjG4zTZEa0vYfDNzP6fDCM\nUDALRoL3pGoFftZ6fktwDqIoVe9B/2e8dwwxsI6eIBB9IIhbui5+zHx5+xUaPcfjkejh0z/7Kfu3\nt0jrl2pJrIae/eHAYVJWG0cpR+QYeP78OU+ePjL38Nat9q07Y4cjk2aoxfSIvNL2jG/vSH53OHwf\nOJREUYf3gT46Nr3jkEYUO2lJOZnrzVV3bIjj1WqFgeAMrOjcqaU+t+BjjA9uvIU5Z86z07mVa5vr\nqbWsmtFaqLXN6lH71QBZS5K39udJq8Hen1dBSyGIKW6+SymEE9hzbivXWun6npJMAppalws6n0zM\nwdWwFK7hCd5tf4uzh5FQ7XNopjbZalvQhhyvNeGpuJLpvcNzMhqcF5fXiIRAzYVPr65ZdQbUiqsB\nYmTwgWl/4JBG7qfCy1c7Vn7gJgSeXQ1crSLqlTf7ezarjimP3O323O4P7MYj6h1v37zFV9CcyNNI\nFWWqieqEP7z4ihAj4zsU41orIQa6GfBYKlQ1d+WZiued4RCA2sS61QmEk8ni9xKX3L/k/o8195lH\ndAbkDF1cfh0ONq64v99yPI7LqHXOk9RYfMu4SQw4q2KssdNYto0zKZZPCl4e4mZUW7evmrO0j8EY\nf2fXc36vYAU6wdE5T6ze3JZ9IYvhlq6GyKebRzwd1gxhADx5nGyc0YrzIAHN9tXhmXKg0lGKGIW+\n4V1wgUkhTxkzLPdIMeyLAlUdIh0Oj6qjFNACuQaKRnLxFI0UjGGUFXLTV8pa2Y8HcFBSwotysxJs\nhPUp5yOs686zaqaONrAM5EqT/6eZMLaDhJrHkvPCKsCjXng8RFZO8FpZrwaQQhccN2HgU3fF62nH\ny+NE7XvyNPJR3+NKptSKd4Gb/hFOBsLqmh2Ota9s6AkpoP3EF7/9rbEru2iGoniMzWgilqkknAhD\nt8GVgGq1fcn/ExYyUy1kUaBjvd4wDJE0bimNNhpx+Aqn6fUJgLc4/joFqp2y5LQBzZu01tr8T2R5\nKKiak6mB3mbk+7zArHlorUzwwTWjLMC5Za6o8vBkMMunI0b7dN4hTpYKcUatz6de1zb82ASN5g25\n73tzJZWTUy21iXr5YC3EM/CkHbJsDnha8Jl5w65aTFjNCeKg1NQ28koI1orunMMLhFoJtZqibLvs\nduI2xkwAPIr3YiJeITa5eUVz5fVuy6u3Ozq/oXeej68GPn32mLvdPS+394T1wKrvGA9Hbh49Bu84\nTiOvX73har0ylNvlzz8AAAzSSURBVH3J5GLGeFmMYvrFF7/DeU+36k/XHMyErWRSzoQYkKJE5+l8\nMAdjIAFZYJwJtU0lWdus+PuKS+5fcv/HmvvAMj66vr4+gZ9bkZJSWrp1c+7OvweWwnn++3dZT+e2\nBnMBf27jMRcmYDn/PpZgnbFEbl4PNrp4F0fWFQi1jZqip6w7M4YsBZfK6SqfFVdLse9s/Km1aeG0\nwklEzLLA2eLTBm6vWAEx49ZyMb+13Ny3oR0OzvBxMxboHMBc2wEpJ3OTV1VW0fP0yi+MvlW349HK\ns+4CtO6GykNm2PsA4+awrnQhGL6vmjO2IFAq62GF5sqjmxu2aeR3b29x0YQ04xB59uyZ2UE0E92x\nZLrViu1+x3gwx/F+GMiN6fnmzZvlc87Xdb4/JiRpXeHzvDPYzD9hIRMQblYbhs7hqBzaPDSIKYGq\nYpuinISfTgqmxm7o4gpVh3cdtZxYBnOiBRXkDPSYc2kz1llgyWrNUsxDw4CC9tq1ekrB2swidkJ0\npn+hfv5ecC7gfcBLM/JyhUknoOKc4QVsv7UNJASH1gxaEFFccEuyiZh7q3h7cPgYqALeBdOCEEcN\n0dgPzhEQfNUFtOgdeOYkVrQKWp3dllYty7yIGrXV7O3tARmcJyJNQIu2sAorJ/zs42eM45HYXeHj\nQDmMPA0DMlVejXuIPdF7HImhczx9fM1N8STgdZr4ZHPNNBUOY+XF3R1j2pPHkUdXa0TM42eqju2o\n7HJlavLbL169oXpBgiJecKJI02AQTg9IEdqmUAnOU3OxB12BPnSLeWFtow0Xvj8tjUvuX3L/x5r7\ndl2Fw+HA3d3dMgI6LxLmwnsu3Gftl/nf3i3aRWTBxTj3jkx9fQh6PxdIW0adIux2e/q+b10gltc4\nf3DPr70UJUXxatRfVWV3PJC0Gt4qFzKVqWaqg4xSvSNRyWLFqhVYrYjiBGCemWyKJyWlqKPil9Fy\nrdUAu2cFzDhNSPCkWigCRezAVJzYe1okbR1aHc4FajUhahFzeloPkVXvGTqP846kBlDOat3Y+bO/\nC45euly1Liabq66n84aJWfU9Q9fThcBH149IJfEy7zk606DR/YE//9kn7HY7pmZT0fc9d+OerIXt\n/b3teyGwvb8HDPv05s0bDodDU762zlgtD+Uo7N8qtUJ1gjSdrG+L706/DoHcwIUisugiWALPVdPp\nws2JPetoGO3KAITjmPA+Pri4zjlWq9Wi02GbN5TyHqW/Nn+15H3nfTYGR2yaEcF59FxOutYFbDUD\nw2aztnOXTeeMHmYnVX9iYjTOO8wnXPnaopvUwJqAbbTtJHL+uvNJZd7IS2NuCAbyDOLRYj46HllO\ncJ3zBgxTaz3ijHkys0JcjAzi8RU219ekVJGi3NxccT/es5uOHEri+R++4ma9JkbHk5trtGRuV5Hf\nfvUH/uJnn5AOiedMvJbCVBUyPHv02B7iKGNJjO1BpipoFaoT7o47NDg0eHy0kUIMcbmmNrao4IXQ\nR/DWQu8amt03loiIR8STs6FRv1f69SX3L7n/I819YGEnhXZyd84tZo7zWHS9Xi/ff17YnHdU5gdq\nznnxXZrzbD6lzw/+c1+m+efM9P5SKz64pSt0/hrlDBg9/6y5uCnBId7hFeJUkWS4pCoweQyTAkw5\nk2sxNW1s/ZsFRl3wY3M+W7fEWI2pVCR4K+Tb4cbeU8PYtE6Tcw4nhvnCuabrhI0SvTvRzufcqlAr\nS2FTK4TQLVo2xuhTE8r0fvn787Hc+7oaAUcfO3OZTnZAGkJkiJ3dF282AuM48cXrF6h6ym7kSVxx\n4+Iihphz5ng84oaOpNVMH4sV4uv1ernnzjlub2/pYrQuqXP4Jilxro0l0ixatJBq5ruwlr47/bpk\nQhfpu840LWJYaJdw7gtzai9eX19TSllEq2oBwRN8hzYWwnyhV6uVzT79yZ/mhANob/as3Xdq2588\nYWSGhMOibugweefzqvT8q7XCW9Xa2nLzg2J+YVVtp2CrYmehs/l0MuMGfNvo1dlp1SEEleZiWx6A\n9ubrBCyzQtPTcERniP7OBaIP7XMIXYhEcbi50ndiNFsxnQ8Vuw8fXT/G1cpxGhmz8mh1RRBlO+3Y\njUdebu95/OSGADy5viJ4x2ro2KbCJx99hKSJg1ZKhcNhZBoL62HD4W7L0PfgHEkryQmHVEEFLQpZ\nSfsRVypXvdEDnbRknQWs1E7tqVZyVVwIuDPacm1jiJJNOTb4QJ6+vSL/TxmX3L/k/o819+eIMRIQ\nAgK54KqyCRtW3Yph3ZP0aMVb66B5MeBsCBHnPCJuGZfOD6a+a9ojYvTe847OCR9zeg9VrKslgFNh\nyoV+tUZ8QBe6un3vsjYQvOtAIy5XyIapERHUK1VqY/0puSpVBY837AsYe+g4EitITQTRxjBScAHE\nE2KPCx3qlVwTVQrVVYrrmFSowVtXp0kc0A4FczfRRlGV0D5DxVMlUtXwMojH+UhGUJytmSL4LIb/\nSdBpwE+KL8JAJBbHpNMCWDaTSTX2oYDGQK/CUJWNFzoyN8ERPXRdRIBHbuColef7Ha7fMKngauEX\nP/2YF3dveLM9sB0n1usrDvdbOjq7LkC/6ekijMcD3kf67oo348hXt/c4ImtnHbm5MA6h4atQ60oJ\nZLUu13cpU75zIfP05glPbx4jNTJ0gVJHXLDNMCWzArcTHgQfWA0bSi4E7xn6geA92kTOS2EBQqrq\nYsQ3g93mzVYbun1u24OhpIRKze22ulP1ijiKCFlkaf2JGjq8qM3jHUpQaxtqwwegIGp2Bs4Lzgtd\n9HgnxOAJ0eGdOZJ6VdZdvzws+tjhXOC0GXuC0kznTgqULgSKQBYz4To9dRwZxXsI3lruhuK2dqI4\nscreecRFVE6qkopQqlCURXPgyWrgygUGF1n1K24+uiJRuNuPlOS5Pe5Zb54wrDYIZhiYy8REYdre\nsw4dOQu308j2q1seu8BVCOxTJVPxITJNhVyEmoUgns4FrocVN5s1Q9cTvJ02uxibs29po4tC1YRK\nJnSBKoVCIWlqmABBvR08JChVMoWMuvLg1PXPHZfcv+T+jzX3gUXETKeMThnJlU48/ZVHyWgBpwOP\nuhVeAe841PygGzKPfeYx6YwdO+/SzRiambpvLuKnQryU+rXu1EwHP//71BzGrW+nlJoMCC8sRUTl\nBGqfwcnzn5dxWK0E5zBlF5ZFORfvrnU1EaGWYr/q7CmmUEy5l6pm89H+/ywYOWNi9Oz352B4EVvj\nzkEuE4gVIlWzSQA0DNn8K7tKlspBJyZXmH26FiZUFeaGlSuZ63VH8ELVymp9RV1FppR4vL6iq8Jt\nuuPtdOB2f+Swr7jDlr/65S9xqTIdJ3KZ+Oyzz4xFGDvw7gT4nhLTcU+MAefgfr8llcxv/vEf8T6A\n88v7s/V+hoVqligeh8zeU98S33mFPH70iL7rDWHfBdQ79lMyUadioKbYgEKb9YYuWrV9c33Dahhw\nYgZpOSd74/6UxOM4LsBCPaeKttMXc3tdaWJZpnehtVKqEmOwWXI7FUprP88/x/K3GXC1RRG9JzhH\nEEf0wXQ+SmZR36SxTOZN11myqlYijkE8g3hCk4BQnVkjBXuk2ftDzh9Orf33TpvPOcU5RTXhnIEf\nfaP6VTX8edUm5d4Ak1nBu4iKozbAlhfHk80V1QsHzUxe2O3umFIy4KfzDOsrPMrxsOPp4w3R24l7\nNVyhJZOT2bfvD0f69Q3R9/iS0WlP7DpTePWerusR73HBM+XEcTxyf7/jcDxwnEY7fVQ9ATLtkhBj\nsOuENvnvBRZ6AtPZnyyZg6DUBwv8nzsuuX/J/R9r7gPLCKfruuUEPQwDh3xAnY05bjY3OGR5r6UV\n08CDh+m5UKTd98w47hGpC61/fqjFGE9jUJGlezivgznmQmv+f64BbmP0eG9yBOKMGea7AF7AnXUF\n5xGYnDBrzjm6EHEq1tVUHuTugvtpQH3nH9oqOGcP4dCAs6IsHanzNTGPiuciLsSTVcUsqVBqgoXV\nZ90jK14KztMKtgIBJICP1n05H/GpqhUyquRc6SusOmHoPbHv7CDlhcc3N5RxQrxnh/D6fssQV6x8\n5OdPHvFkNRCCaUF99OQRh/2WQ8p0mxve7rfspyNOIY8TqxiIXkglUVxBnfD7538wPanOOnXAAxsU\nI0aYzo03UJnVa98Scj5/v8QlLnGJS1ziEpf4IcX327O8xCUucYlLXOISl/j/EZdC5hKXuMQlLnGJ\nS/xg41LIXOISl7jEJS5xiR9sXAqZS1ziEpe4xCUu8YONSyFziUtc4hKXuMQlfrBxKWQucYlLXOIS\nl7jEDzYuhcwlLnGJS1ziEpf4wcalkLnEJS5xiUtc4hI/2LgUMpe4xCUucYlLXOIHG/8fVMLLyA7U\nMUUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "###### compare to menpo crop_to_pointcloud vs. crop_to_pointcloud_proportion\n", + "\n", + "\n", + "imageList = mio.import_images(img_dir+'/training_set')\n", + "mode='TRAIN'\n", + "imgs_dict_all = load_bb_dictionary(bb_dir,mode)\n", + "\n", + "\n", + "im=imageList[0]\n", + "name=im.path.name\n", + "im_bounds=im.bounds()[1]\n", + "\n", + "bb_gt0= imgs_dict_all[name][1]\n", + "bb_gt=center_margin_bb(bb_gt0,im_bounds,margin=0.25)\n", + "bb_gt_menpo=PointCloud(np.array([[bb_gt[0,1],bb_gt[0,0]],\n", + " [bb_gt[0,3],bb_gt[0,0]],\n", + " [bb_gt[0,3],bb_gt[0,2]],\n", + " [bb_gt[0,1],bb_gt[0,2]]]))\n", + "\n", + "bb_init0= imgs_dict_all[name][0]\n", + "bb_init=center_margin_bb(bb_init0,im_bounds)\n", + "bb_init_menpo=PointCloud(np.array([[bb_init[0,1],bb_init[0,0]],\n", + " [bb_init[0,3],bb_init[0,0]],\n", + " [bb_init[0,3],bb_init[0,2]],\n", + " [bb_init[0,1],bb_init[0,2]]]))\n", + "\n", + "\n", + "bb_menpo=im.landmarks['PTS'].bounding_box().points\n", + "bb_from_pts=np.array([[bb_menpo[0,1],bb_menpo[0,0],bb_menpo[2,1],bb_menpo[2,0]]])\n", + "bb_from_pts_sqr = center_margin_bb(bb_from_pts,im_bounds,margin=0)\n", + "\n", + "bb_from_pts_sqr_menpo=PointCloud(np.array([[bb_from_pts_sqr[0,1],bb_from_pts_sqr[0,0]],\n", + " [bb_from_pts_sqr[0,3],bb_from_pts_sqr[0,0]],\n", + " [bb_from_pts_sqr[0,3],bb_from_pts_sqr[0,2]],\n", + " [bb_from_pts_sqr[0,1],bb_from_pts_sqr[0,2]]]))\n", + "\n", + "plt.subplot(1,3,1)\n", + "im.crop_to_pointcloud_proportion(bb_from_pts_sqr_menpo,0.125,minimum=False).view_landmarks(group='PTS')\n", + "plt.title('menpo bb')\n", + "plt.subplot(1,3,3)\n", + "im.crop_to_pointcloud(bb_init_menpo).view_landmarks(group='PTS')\n", + "plt.title('init bb')\n", + "plt.subplot(1,3,2)\n", + "im.crop_to_pointcloud(bb_gt_menpo).view_landmarks(group='PTS')\n", + "plt.title('gt bb')\n", + "\n", + "\n", + "print 'landmark diff using \"crop_to_pointcloud_proportion\" with 0.125 margin vs. \"crop_to_pointcloud\" \\\n", + "using \"center_margin_bb\" with 0.25 margin:'\n", + "print np.sum(im.crop_to_pointcloud_proportion(bb_from_pts_sqr_menpo,0.125,minimum=False).\\\n", + " landmarks['PTS'].points-im.crop_to_pointcloud(bb_gt_menpo).landmarks['PTS'].points)\n", + "\n", + "del(imgs_dict_all)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 2 assets, index the returned LazyList to import.\n", + "diff gt crop to ect: 88.5933782935\n", + "diff gt manualy rescaled gt crop to ect: 135.274497693\n", + "diff gt crop to manualy rescaled gt crop: -46.6811193993\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAADICAYAAADyWgsPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXmwZVlW3vdbezjn3OmN+XKsyqrKquqhqrqYEXRb6gYJ\nG6wID9iWbNnGYFuybBTI8h8KhC3AlkNWOLACI2F5EghCITtaIBu1mAQBjWUaEHS7qam7srIqs3LO\nfON9dzjTHvzHPi8rSaq7hq7u7ILzVbyol+ede++5566991rf9619JcZIjx49evTo0aPHuxHqfl9A\njx49evTo0aPH20WfyPTo0aNHjx493rXoE5kePXr06NGjx7sWfSLTo0ePHj169HjXok9kevTo0aNH\njx7vWvSJTI8ePXr06NHjXYs+kenRo0ePHj16vGvRJzI9evTo0aNHj3ct+kSmR48ePXr06PGuRZ/I\n9OjR40sCEfmwiAQR+fY3ce7HReSZL8V19fjDCRH5zi4ez76Nxx7F8h/7Al4/iMiPvInzfrA7d+Pt\nvtYfdPSJzJcBRGQgIj/whQyKHj3uB0Tkr4jIv/oWHvJmvxOl/+6UHl9sRL6wOPs9jxWRf0dE/uIX\ndkmf83X68fB50CcyXx4YAj8AfOQ+X0ePHm8V3we8lURGvlgX0qPHW8RPAoMY4+W3+sAY4691j/1/\n7jr8Z4AvRiLT4w1g7vcF9AD6yb1Hjx49vqSI6RuTmy/g8W/7sT3eWfSMzBcIETktIj8mIjdFpBKR\n50Tku+45J+90zhdFpBSR6yLy0yLyiIg8BNwmUYdHWmgQke+/L2+oRw9ARD4iIr/TxetLIvLnjrT6\nu84JJDbxO++K2x97g6eOgBaRvy4iN0RkLiI/IyIPfI7r+GoR+XURWYrIKyLyn7xz77LHH2a8nkdG\nRC6JyD8WkQ+JyG918f+yiPz79zz293hkRORXgT8JPHTXWHjlTV7HnxGRz3av9Tsi8kc/x6lbIvJR\nEZmKyI6I/LCI5G/z7f+BQs/IfAEQkePAbwEe+BFgB/g24O+KyCTG+CMiooCfBb4J+D+AHwYmwLcA\nTwG/DPx54H8G/lH3A9AbHXvcF4jIVwE/D1wH/ippnvirpPi+W6v/94C/SxoD/2t37OU3enrgvwIC\n8DeA48BfAn5JRL4yxljfde4Gaex8FPgHwJ8C/o6I1DHGv/d231+PHh1ez3sSgceBf0iK7b8H/IfA\nj4vI78QYP3PPuUf4b4FV4Azwn5PifP4mruEjwJ8mrR818J8BPy8iXx9jfOGu84Q0Di4C3wt8A/A9\nwBrwnW/idf5gI8bY/7zNH+B/B64Ca/cc/wfAHpAD30WatL/n8zzPZnfO99/v99T/9D/APwZmwIm7\njp0j0fD+nnNnwI+9yef9cBfnl4HhXcf/ze74X7jr2K+SCoS/eNcxC3wKuAHo+32f+p939w/wH3Qx\ndvauYxe7Yx+869gxoAT++7uOfbg774/ddexjwCtv4fVD9xxfedexB4El8FN3HfuB7tx/dM/j/3b3\n+Kfu97283z+9tPSF4dtJwatFZPPoB/inpOz8q7tztklB16PHlzU6BvGPA/93jPHW0fEY4yskluad\nwE/EGJd3PfdPkZKTf/me8xyvMT3EGFvgfyGxOF/zDl1Ljx734oUY4yeO/hFj3AFeJCXz7zQ+EWP8\n9F2vdQX4GeBfEpG7vZMR+NF7Hvu3SEzNvePmDx16aeltQkS2SLTenwNeT7ePpAn3UeDFGGN4nXN6\n9Phyw3FgAFx4nb+93rG3g8/13A/fc+x6jLG859h50uT9MPDP36Hr6dHjbrxeF9M+sP5FeK3XGwvn\nSd6zLZJ/8nOd+zKJqXn4i3Bd7yr0iczbxxGb9feBn/gc5zz7JbqWHj169OjxzsB/juNfbt2l/d4y\nHfpE5u1jm+QP0DHGX/lcJ4nIy8DXi4iOMX6uAdIHZI8vF9wGKuCx1/nb469z7O3E7us9z2PA795z\n7LSIDO5hZd7bvealt/G6PXp8MfFOjYX3knwy269z7qt3/fsxUkF96W287h8o9B6Zt4lOKvpp4N8Q\nkSfv/buIHOt+/WkSRfgXPs/THfkF1t7Ri+zR4y2ii+tfBv41ETl5dFxEHgO+9XUesuCtx+13iMj4\nruf+t4BTwM/dc54hdfQdnWdJMu428Mm3+Jo9enyxsSB5I98KvrHrEgRARB4E/hXgF2Pn6D36E/Dd\n9zz2e0jJ0zvlXXvXomdkvjB8L6l97rdE5H8DXiC1jH4N8M0kt/tPAt8B/E0R+SPAPwPGJEPlj8YY\nPxZjrETkBeBPi8hLpI6n52KMz3+p31CPHsAPAv8i8AkR+TukeeK7geeAr7jn3E8Cf0JE/hKpXfti\njPGNvCt7wP8rIj8OnCTthnqe1AV4N24Af1lEHu7+/m8DTwN/9vOwmz16fKlwr9T0SeBPicj/APw2\nMI8x/pM3eI7ngF8Qkb9F6gr8T+n2FHudcx8RkZ8BfgH4IPDvAn8/xviH3sLQJzJfAGKMt0Xk64Hv\nB/51UhDuAs8Df7k7J4jItwH/JWkL62/vzvln/F4PzX9EcqH/TSAD/uvueXr0+JIixvgpEflW4IeA\n/4a0xcAPkijv995z+n9B6iT6ayST8E/w+U24EfjrpITke0l7Kv0S8N0xxuqec3dJe2T8beA/Bm51\n573Rpns9erxdfL7vNXq9PWfuxv9ESvS/k7SXzKvA50tkIvBx4DdJ4+tB0pz/HTHG5+45N5D2m/lr\nwH9H6uj7Ebp15g875PeyVz169Ojx+hCR/wt4IsZ4bzLTo0ePHvcNvUemR48evw8iUtzz78dJ+1X8\n6v25oh49evR4ffSMTI8ePX4fROQ6aXv2V0j7VPx50s66Xx1jfKOvIejRo0ePLxl6j0yPHj1eDz9P\nMteeJH0HzCeA7+uTmB49eny5oWdkevTo0aNHjx7vWvQemR49evTo0aPHuxZvWlr64b/yXfHUmQd5\n6JH3cObBh1ksam7dus2pU6e5ef06Lzz7LC889yyrqytcu3aVvYMDRIRlVWJtRiRy+coVzpw5w87O\nDl/1dV/Lhz/8YX75l3+JEALGWMpyyfnzL7GyssIjjzxC8J7zF14kAsNizPr6MQTF9vYOl69cZjDK\nOXPmNMeObWBUZGtri/FgyJNPPsnGygSjNa6qWJlM2NvdxWhhtFJwcDBlsrrKymQF0KyubTJemeBc\n+jZwbSyZtYgIxIhvPZGIiqC1xjt351s3fV2RaY3NLTGG7nggBE8IjhACIQRi02KiYKzBO0fbVMQQ\nEECIKKUIwdE2NVYUrm3wrsUozXI+J3pH9B4hErzHh4DHEHwAJUwPD2nbFqUVIUZ88CDCbDYjqozG\nO+bzOXXT4HwkiKSvXo2RzOa46Fm2R1cDVdMgCM57rM3RxoAIIURirAkx0raOJjiu3brJC+cvcDBb\nomxBFIvSBiuCNen9KgWDImM+mzIaDYnRMxwMiNGzOpzQto6d3dsc29xAKcG5BqOEtbVVitxw5swZ\nfugnf/6+bBH+o9/3Z+Oxkyd55PH3cvzkGeq65caNKSe2jrO3c5vPPPcM5z/zHEWRc/3mDfanU+qm\nAeUwJqN1gatXrrG5tcViseCpp57k2/7kt/Kzv/Bz1FFhxNBUJS+fv8DKeMyZ06exmeXChZdonWc8\nWmM8GWMyw97+PleuXUNpzfETJzh54iRZptlcX2V9ZcxjDz3Eqa1jGIGqrFhfW2dnZxerNfnA0jQN\nNs/Y2NzEexitrLC5sXXn81RaY7IMUYIShWsaNEL0Aa01MXiij+ADbdtgjCazhiiR1jegIIQ0PkLr\n0KJoqwqjFFZpVIg0VUnbtmitgIASiMETvCc6hwB1OcNoQ7VcQhDapgHAhwAonHd43yJKsZjPqVuH\niAKtqZoGtKKqSkJQ1E3Dokyv2fqAC5Eokr5B2Bgiirb1+CiEKLTOExC892hj0FoQIMSWqCIhOso2\nsKhbbu7u8/xnzzNfOLQyaKVRSlBasFbjvUMEiiynrUvyLMP7ltXJCN+2jCcT6rpmPl8yXllBSyT4\nmkLD2tqYzGacfugcP/TjH7tv2+P/n//j34jPP/ss+7vbTMYjLl+5zGhlwvWbt7h++zagyIsBJ08c\npyhyhsMBT3/gKS689DLPPf88Zx54kBACDzzyGJ/85KdQAsZo6rqiKArKsiIijCYTVsdp3r52/Tqz\n+Yy11RU+/Ec/xBPveZThMOeVC59lbbKGFot4j2sbVldXKOsKZRSta1kZjTi+eYy6rdnf22M4HBJj\nZDyecGzrOIPRhNl8SYhw/NQpnHM0zlEMh6AUIgpjbIr3GIlNQ1vXECKZNRAjIXicawEQEQJpzjdK\nQYxICDRViRaBELo5UGGUIc8ymrahbmqCdxAjRiskRkII+NZBiFijCN5RLhY0VQ2ANYaqrmmalqau\nEVEpNkPgcDYDJbjoUVozX5YsyhIlwnyxQEQjSlE2LY13iBJEadCK+bzERwhRiFFQSqGUwjUtSim0\nsfgY8XggrVvBR5rgqULg8s2bPPvCS8xmS/JijLE5TVsjElASCM5jtGWYZzRNhYiQ54amLhkOByjg\n2LFN5vM5i9mczfV1xBiW8zmZUXz8M9c/b/y/6URmfWOdsw8+xOnTp5keTLl46QqPP/o4N65dY/v6\nDRSRB86cYXtnm9u3tymrCuccJs9YXx9z7do1zp49i3OOjY0Nvvmbv5mPfvSjnDlzhldefoW19TVe\nfPE8a6trPPHkE+zu7bG9vd2dv0VbO3a2d1guS5bLJSdOHuf48S1iaBmPBnzVU0+xsb7OfLbgkQcf\noF6UeNewOp5Ql0t8U7N5/Di709soZTBK0zYtm8fWyTLLYr5AxLK6tspsNse1LTFGrLEMBwOcc/jW\noWIkxAhdIpPnOUYUwQdalyZnIeK9J52WfiemgI8x4kOgqlOiMhoOMdbS1DVN3RBDQJmUYETRoBQu\nBKyxKGPS84YAotBi8L7BOU+W5dgsp2kaiIGIEEIgszmzsqbxaSBZm2FzwWYFy7piWVWELgGr6wYR\nyGxBpjVRFKIUEYdrI2iFljTQY/AoLaioGI3GDIqC3YM5oiOoSIzgvU87RsVA0zi0FrQxaeD7QN00\nZFaDCCazQJdIKkNLGtTBe7wX5vPZW5+B3yGMRiNOPfjAnUTklZcv8cgj7+PWrZsc7u5SLUpOn3qA\n27dusru9x+FiDoCympVjI67euMaJU1vkgwxbCP/Ch7+Rn/25j6FtxnK2xGjFlVcvMRhlPPr4IzRl\nzbVrV3GtZ3VlDe8j08MZB7M5ZV2zur7J1rF1rA6sjgwfePL9jAdDaB3nTp+BGPDesba2SlUuUaFh\ntLpK3TTE6Mh0gW8bxuMJ48GA+eEBHlhd26CqKtqlQ7TCmozcFsQA3rcQSGNAKbTR5KZAieCio20b\nRASF4F0aG4qUAMQQUNoQQ6BuG+q6om1aRqMRWhucc7jW09Y1WikUIHaIKKEJSzKtsHlG27aEbhwp\nbYmt0LYtWT7A2EDrHa1zaIFIhAje+bQwxIgWg84EMRmewOFijhbBOU/tWhCNNjkSIyZGNIoQPDFq\ngoAYg0hExUgGqCxnWeSMBhnzwxKlNM4FrLXEAMGnIsb7SGYEiRqiIKKo65osswgRa1KCqKJHG4X3\nQu1hWTmsthzu3rtT/ZcWBzvb7O9uk2eaui7RRnWLf0oknY9sbGwwHo+pqpJHH32M6cGMl156mUce\nfpSD6SHve98T3Ly9y+72LllmOX3mFOWyRMSQ5QOWVc2JU6dZX1nh1s0b+ODZOrbJuYfOUuSWixdf\noTCKw4M9lgcz2trx4OnTANy6dZPRyhjXCq6tGWxtobVmaAaozU1EBGstRTHAWkNdpQRgbWVCXZaI\n1ozGY7QxtM6R5xkhRKqqQikBnwpZkWTD8N7jWofSgkhKeJ13qXhVAiFC8IBKxR+BAAzyAUZbAoGo\nNDYvcK7FO0cgJfNEwdh0vHZtKo6Vwg4KjNbEENHeo3ykGBhC8FRlRdM0mG6NcOUSUaojCMydYjrL\nMpTR2Ej32WmyLGNRlQhgre0KmoBSglZCUKCUYLSG4AlBUKJTkhM9OoIoKPKcPM84PFzQtg5RFhC8\nD4gmEQNRUoGkFM63iGRoZRBR3TzvyfOccrmkdS2jYtCtY29sf3nTicxgMOLU6TOUZcV0esDmxgYH\n0322b91ksZgxmx6wvjrh1cuvYjNLVFAuS4zRKaExqao+2N/na7/u6/iN3/gNNjY22d3b48TJk1y7\ndo2IcPzECWKE5WKJd571tQ1WJiscxjmHO/tUdc3mxgaTlTGT4YDxeIP3vfc9vO/cY+zv7bE+GTHd\n3mVlMqasAzvb20z3d3nooYdZnUyo3JLhcEQE8iwjyzKaqiIrhvgAh9Mp3kdEC1mWMRgOiEBZlRBB\nKdVNpBoRSTcwBFzbpuxY6Y4xSfsqKaVBAgFPEzwSPEqErCiIIcNkNiU/bYtohbYabTTSTfzRe/LB\nCJFAdB5CxGQF2hhcG2mDxzUNIQREKfKioGoqXNvQOkdU0k2mPlXAIihj8SF2i0LKvEEY5CnwjFHg\nU/WbGUMbPDGAxBTUMaYKANJAHhQ5qysrXL+1e2cBM1qRZ1mXGFmca9AKFGlgFUWBcw6tDXVdUxRF\nCuKqIsss3jkQYbFYYOyY6fTwLUy97ywGoxFbWyeoG8f+/pSNjS0Op1MO9nY5nO7jXIs2mvliTpZn\n5L6gcS0xQt2m93j27EPMFzM++JVfwbPPPE9VNlivGA8n3L59k3JZ8tgTTwLCfLmkqhpWVteYTFaZ\nzxcc7O3RNC2rqyusTEYMi4z1lRFPvPdxzj3yMMvDOSZAtVgwHo+o65b5Ys5sOuXk8S3Gkwluf5+V\ntXW01hRZxmAwoG3bVH0izGcznHPYbsJTShGJLMs00WXGYLMMrRSubdP/vSPEgNYGUYL3bYpFSXHi\nvEMpje9YRCWaLBugRGNslhYH71PsDgZYrdN4cg7nWopiiFGSxleIZNqkMRYjvg3EKPiQEucsG+BD\niUigbloym1HWS9rgMcbgCChjiCJUdbpOoxSiIlopoghGCyEoCBEx0sW5IipBFIToCKErSkKgGBSs\nTlbY3V0QQ8RagzEGYwRtYWgGeBdQKERrRBTDwRDXVoiQErFunJRlyVo2wbUOoxVlWTIZFBzs79+3\n2IfEsA2GOUVuaZuGslzQzOesrK5ye/cAUZqTp05SLhZopbl98xaXL1/GGEvdtIgkhuXZ5z+LMYYP\nfOBp9vZ2oSu2bu/sMFlZZTQec+GVV7h2+VUGgwHj8ZjJeMx0f5/9nW3WJkOsFqIJTMYrzGYziiJH\nKcXK6grrG+tcuXKF/f29VPm3ibUYj8esrq6yWCyp65bWR7KsSCx4BCWCEsEYg+pYGO9aIGBMBgJt\ncAQf8DHgukVX61R8NU2L9x5jDZm1icXpEmpCSIzLwKIzS9tGmrZBlMJYi8SYEuduvjdKpcTbJ1YQ\nEaJR4FNC07Y1zntEqy5Rb/EhpJ35uphMK08ky3MMkaZumEwmKb/qtvs7YtirsuriOAfRNK0Hmxwn\nSWE4YiUVUSIueEKIKCJaFEFDhqLIcwZFkRI/EqOvTcd6Imitaaua4BVaK3yQVGx0icoR3ZLlGVor\nmrZmrCDLcnxbv2GMvulE5tix4zjnmc8XDAZDnItcuXyFzBiefeklondcfOkl9udzjDbM5nPatmV/\nOsV7z7lz52jblieefJLgA8888xxPP/00u3t7nD51hkuXXmVzYxPnPBcuXMD7QIxgbUZTp8nWWEse\nk7SS24zHzp3jkUfOYqxmeXhIpjTT6QGuLPFtzc1rN1hbXyGzic5aLOZUZYlrPXXTcOrUKcr5Am0y\n6mWJi8JwNEQrhRcwWUYbPG1VkeU5eZanCrRtCS4Fs+qCR0RjMw2QslBRIBFt0qQriahIlS2gTYYx\nCqM13jXYvECMhRAQiWj0HRaoGA2RCHVZUtUNWqXKt3VpUj0K0OgDVmtiFCIKrS3GGloXiXWX0HRy\nV103xBiRLvC8d51sRCd5hY5NiVhtEAtJdor4FlQUkBSA1lhGozFGawLdpKD0HfYps6arXBxaa4J3\nWGtZLpdAIKiMvCgo8oLFYgaM0UqjFdRtg9H6vn7t7NbWCZQyHC5KisGY6ODWjRv4pubKqxdZzA5Z\nLuccTPdxoWXZLHEu0LQeMYaHHn4YUJw79yhaLM/+7rN88IMf4rkXPsPph05y8+oNtjZP0LaBy69e\nS4unNiibUdU1KIUxBtslwlYL7330HOcefpBhYWmXJZkyVIs5h95TVyV7032yIkdpUvVcpQlr1iUr\nx4+foJwvUCbHOZ8YPpsxHA5xXWUUYqRqG3SmsSZLsdXWeB/SjZE00aYEXyMKfFCJ8TQKCWlCb71H\nibqzDapoxcCOsHmO8w7dPZcWQStFcC3RBURpBuMJsUuCQiRJXyajLEsi0lVsgiBo0XgfCAG0Nlhr\nsVlKiL33hJAYwqppCDGmClUElfJ7jiZVJYAWYve70pooECQQPen9ikIpyPMBw+EQYxStSxNviJHW\ne1CCRIdrXWJUVRoDYKirBgEaGobDIUWR09Q1SpL8ABEVFapbzO4nWtcmSTFqikFOnufcun6DOFsw\nmy0599hjbG1t8vytmxiluHTxYmLhlGZnZ5dzjz3Gp/6/T9O4lq95+msYDoe8+OKLZJnhxs2b1E3L\n+594kv39KZ/57GeYjIZsbm4yGg0ZDArauuwYhZwiz1hbXUUBTVlT1TWT1QnFYJBsDFmGipGyKlmW\nJXmWZPH5fE5EWJQLqsqxtm6IRFbXNzg8nKZEGYgiSRYmkpmM0La0TZskQkiFoFKIMUBilrUyZFmG\nNgalJEmkupOJgkdrDQhN01K36b6YLOvYFo0yqTD2Po2VEAPKGqxVBN8kBgeXEgnvaVxiIQWwMRJC\nvBPfUWmUTvNFrhXLugIl5IOCqmoIrQMhsTtKqMoa3dkdIK0Lxtp0L0jrl5IusRMhM6+lDN6lgkUr\nTVEUjEZDtLWIaJyLWGURJRidCgU6dkjpdA+DT/fiiCBwznXVMgTSfRCtiO07yMhsbh5PE4Qy3Lq9\nzeF0jm8dF155mRvXr3FsYx3vHEVRUNc10+m00yXHrK9vMJ/PefDsWTY3N/jYx/4J6+ubPPPMs3zo\nQx/i0qVXu0XUs7OzR55n3bdYJM365OkzNHVDXTXUonjgzBm+6Zv+GOfOneVwf49r16/CYERVlRRF\nDmgW8xkbm2vMZodMxiPW1lbxzuPaVKlZY6jKitWVdfI8Y3o4pyhGjIpBork7G7RSisF4nEjyTiY6\nysiNMSilaZuaCDQuEGMAEUSnySjEpChGpMtEA21wDLIMYywo8C5VskkyEiTKneTE5EWax3wgKkHZ\nDGtTwqN0+qDzPEt+HqWYzeegBKUVoiQNQudRKtHZSmmiCIgi+Bajk66PQFXXZMbQtDVaWzKraVpH\ncB59ZyJOVYPKsySxhZYYUkaeGcOydhhT4FtH7VqUEmZti/ctw2GB+JA8ARLvLIJ1UxNjIMssy1II\nPpLlGfVyidLCskw+p/uF1fVNQlQolbG7vcd0f4qOgQsvfYarly+yujJJfhGriTXMZnMCwmg4Zn19\nneWy4szpDY5tbPGrv/JxVlbW+c3f/G2e+sDTbB9MCS4QA2xv75JlGSghRI9H2Dy2hdGKum2IAqdP\nneCPf+TDPPTgKYKreeWlz3JsfYvFbMn6yoSmrvHBMRgOKKuSlcmY8STFb1kmj4Y1hrqqWFlZJR8M\nmM0XGJsxHo+pmyZVa13sW2s7L4sQnEsTpg9YrUBSNRu7REFC8lgl04sQE4UHnUTpu+o0ywqMSQtJ\n6z2t84ikIiCGSCTFuXidEm0RojJom6dFoXtNUQpt0iLivWe5LJO/wWZYrSiriqZboMqqQnU0Np1s\nKSpNwiFGRDwxxk4iU93rxI6RCUhM1aXWCqtznE8sayaRwWCQvGl1S9PdP9fdK0Uk+oguhIinrmuM\n1V2hFgk+sU95nhIZ17ZkWaLXPYnVXlu7f7EPYKzBZpamqanrwGK5SAWdi6yurnHu4XPs3L7N4cEe\nxhiKLKeuWmxesLa2xo2bN5nO5hw/fhKTGZ557lm01hxMD4gxcOr0aYbDIZ/+3WcYFANGoxHz+YzM\nam5vb6NJ/sdiOGB9dQ3X1JjcorNA29SghGs3rjMcDVmZjLGiyY0hHwwwOsXyskxJTp5lbG6tkeUF\nojVt06A7dr2sqjtzq0iK9xiOhKGU0OouiWlcTTjyvZh0f9qORdRKJSkVh5iMLDPUZQmisZmlGBS0\nzlHXia3VNiXxznuqtqUwFghJUomKrMjxrcI3LaKlszTY7tOJBDyt0xg0AXC+AUnyrvP+zvvz3tM0\nDaI0SuvE7CjBueSXUVqjtUpjOsaUpOiUTIeYinNtDLFj8rUkxaANnsxaiqJIpW6IhBg6BjYlWi66\nxLaqdM1H15MZ2xEWFueSXDcYFIikxMwHh3sT0tKb7lrK8pxLr77K9PCQg/0p165dYzabMZ8dMiwK\n8J7lbJoGqjEopWjbljNnzjAoBihRrG+s8+lPf5q2adja2uo0Zcf58+c5PJyxubmJsemNra2uUVcN\nm5vHWF9fZ3d3j6ZJ/ppTp09x49o1fu1XfpXPfvYFdrZvceXKq+zv79E2LdPpPovlkuFoyHgyIgpU\nTY3JLBvr6yhRnDl5islkgveBxWLJoMsoq6oihMBoNErUnLXYLMOHlMDErkJLptrk82jbNgmFgHOe\nsqqSrEOSZ2IEbTOiNqCEIh9QDIepygsRm+com4ExaQAojbIZxWgE2lDWLbX3eFFkgwE2LwidjJXZ\nnKIY4YMwmy1J3l+DKEOMioBgbNJCjxYBm2UYkxYOrVWnc3uK3GKtSRKC1ShRqegmYlRij4ihq1QV\nxmiMNigRxsMReVEQQ6Bt265CSL+LgM2yNCl0A+So7T92dXrwgcFohBJF2zZpUEiiJJuq5n5uE5Dn\nQ65dvcHO9i6HhzMuvnyJ2eEBs8MDRsOCEFrKakbdVIjSaJvhfGDr+HFslgFwbPMYL52/QNt6NteP\nEYMgYnjACivSAAAgAElEQVTlwkWmB1PW1tZQotOgzguqpmVj8xgbm5tMp2lcHT92jAdOn2L79k1+\n57f+OS8+9zyLwxmvXrrEcj6jXC4py5LFYk5eFB371dHgSrG6ssJgMODYsWOMx+M0eZcl1lpWJhPq\nMn3V0Xg8xlqbJNDM0DQ1bdsQYkgzhkSikKrDJkloRxVVXTW41uNCwLeB1nm0yUB1XihrGYxHiDa0\nXaJuBwPQGmVt8mWZDJsVoC218zTOE7XCDHLywQDROs0xxpIXA5yPqdoMEWtzQogEn2jrvBvDWusU\n99YkGQwwnV+raVusMQwGRYp7JSglnQmfTi7SSIwQEvtklMboJL8NOzYREvvlfMDHiPMBbQzWaIix\nk3BTcqR18stAkmmLQfq82rYlz1PCFiI0ziH3eYcM530yLBcFIQSWi0V3HxSPP/o4xzaPc+XKZcrO\nWNo2DZPJGKWTv++z588zHI8wWfK6TKdT9qd7lFWF956VyZgrly93rAkczmY0TUO5XHL71i3yvOCB\nBx5kOJwQEZZ1zWw+Z7aYMxwPyQcDVtfXMNYyO5wxHBSsra0iItRtw+F8xnhlwtaJE6ysrnZG3VTx\nJ69SnhJbEhudZxmESHCOIssYDgZkeUYIgaZtcW3L0WJ8tNYdzXdaW7Qx+E7qz7IM5zzKmGQjsFkn\n64cUD5KK1qPzB4NhSqJiSGOiW2ciEaUVeZ4zmYxZXVsly7I7/sbWO45EJdMVIk3T4GNKyuq6pq7r\nlLxrjTUGpRWj0QhrLcbYJI12Y8J07JICkIgxGiWJ+TzywklXTBitMNqQFzkikryi3XhPDJZ0cnOy\nJmitGQwGhBjvjEHvA03ToJQwGCSm1uOwmeVzf/XVa3jTiYxrI63zjIZjbt68SdO2DPKM6D2jQcH6\n2ior41Fn0G1x3jMcDjn70EO0riESufjKRS5dvMSp06e5fPky3/iN38Av/uI/JcbAU08+xYnjJ3FN\n0q4vXryIj4HNzS1+/dc/wYULL6OUsDJZZXWygtWWqlxSlxU6pqpoMpmwKBdorVnfWOP4qROMVlaY\nLmZUrmb7YJeDg4OuIwkkBKqyZHpwQFmWEFJXkuk+ZK2Ttr9YLNJi0BlTnXc454hHgmOHGNNEJqQA\nzvMCa7OOdtSdLponrTTEZPgNRzR9+jjEGEyeo4yliREPaGsTFUlKTNoYaXz68l9RKRE5MpXFGO84\n6LXWDIYD8jwlBaPxmCLPU4dIZ/7yPlBVFXTGZd3RfgrwwaFQdyZ2LZK6T4xGdZEjSsg7lmg4HKYK\nXpLRzFp7p2IxWnfVLZ02/ZouetQdoLv3UdVV8mKY5Cnw4f5+0XGMUDcN49GYG1evgXcMihwRMCbp\n81optnd3cT4t5ibLeeDBB1LnmTGcP3+ey6++yurqKleuXuNrv/7r+Y3f+E0O9qc88cRTnDp1Jskl\nMXLt6jVa5xiOJzzz3HO8eP48WmtG4yErkwlahOnBPsvlkqZpGY9G5FnGYjEnEpmsrHD6zCk2tzaZ\nHh7iXcvB4ZSD6fTO5962LXVdc3BwQNM0d1gBReqyOFqk626x0TpNWKIUUV4zsccYUaIRFN4FiEle\nGRRDTJ6TZSmRiAjGZNg8p/GBeVnSOI/olHSLtklOyzJMVuBiJAgoYxBrEJOYxDZ4qrrCh5CeV16b\nUEPX9YEkRtJaS17kWGsZT8ZJ548kGcqkmFsuFmTWUORZJxWnjpokogZEgSYxT0eVLSHeSeatMRRF\nwaDIkwQFtN4jOhUCWqUFIElKndTceYWOTIwhRLTSiIrUTYXJDLq7Z8HHbp65f6iXSw72piwXNfv7\nM5TKqRqHKM25x85xa/sGt27toJQlzwbEGFlbWyG3iosXXsTgWR1kjEZjqsYTxSA653BeItoyWyy4\ncu0yWkNZLiBGZvMk124d22A8yilnh6joqMsFuUnMSAiBEKXrTm0pZ0sePH2WjY3jbO9NefnV67z4\n8mXMaJWTZx8nH2+wbDxtCGidrCDaJoOvdAyq1hmuSZJHPhgQBKrWUzYObQvy4Rhtcowp0DojRgWi\n8T7JmZntkqDg0dZ0cQlKGxDTsSQBlMUORkSTIVmBygdkgyGD4RCdFeiswHvhYFbio8HmY/JihLEF\nxWCI80LZJB9N60OSXK0liAJt8GiUsphgaCsPTtDdf7FTJpL8J1ibki1iSt7wIa2FymJsgUiG6KQ+\nhJAK2aggWg1GOmZTGBcDxsMCLYEiM1hl0GIQLESS9BXSfKGVQSF3un9FJQnTew+iWS4d3kXGwyFZ\nV3R/Prxpaeny5ctsnjjO5StXePnll/mWP/EtHO7vJwd+0xC9oy5Tp9Lt7W3m8zlf8fTTZNays7OL\n0opFuSQvCnZ3dxmtbPLiixdo6pYTx09y8uQpPvXJT3W66h7eOb76iQ+wNz3g1u1tNtc3WZ2spsnI\nB3b2diA6RoNVJpMho8GIpqmIolhWJVVdc/36dQKBE6dOUtY1KBjmBXmWMZ/PEdEonWGNJTOJGgMo\nywpfJfotdA51YzRVVacKt22BFADapy6No8xXW4vNbBpo0Xet0BB9as1LWmgghBaUJsszYogYk2FM\nMgf74NNkKClDjzHi6uTT8W1q55TO+Z3nBTEG8qJAtGK+SIlco13qMtIaqJNMoDXO+eQqRzBG03YV\nOwJ1Xd8xZWqduje0Tu3BMaZJI8syJJJU2xDQMRJVZDQcsjIas29nuNANXnVkJE4QSV0sSimIAZRK\nC2E3uTdNw6AokvvfpffvvcNok1iv+4SrV66yur7BrZvXuXzpIh/8I99AXc9RSmh9SwhpkWqbhvnO\nLotlxXvPPkKRW/b397A6DVqlFIeHMyYrq7xy8SI7+/s8+ujjrK2v8cLzz2OtZW9/n6Zt+aqnv4K6\nSjG8tjJhY2MD03Wt7R9OCRGyYsDKeIsiywg+df0sywUrG6tcuXoFay3Hj2+lRCV4RqPEmk0PD9Fa\nsyiXHd2doTOLtZaqrmjbVIj44DvztyE0DXXbpkRdBJOlx3naOwmq1iYVNyRK+8gM7p3vjLSatu3M\ngjYnL1JF6Z3DZBlGpe6FukndSzbPCcHhXERH03WQdGxQcBR5nlpIhcSYuhZtNRJaRIQss1SVw8dA\nluc4X+HaOrGqokAn307btLTiE4viAjbNu6nLTklqJ0ewRmNiSlCceIgehTDIC0bjEXZ/RoiaNtBV\npOFOvKvInSrcOUfWSR7G2ET5t3XyIyhSc0BMMrWI6Twb9w+LxZLBcJgYapMRlaJuWh58+ATL5ZIL\nFy50ZuvkR7E2Y3t7m729A5zznD51hhAjN2/cTF2YzjGdHiCSGIH9vf2U3Kk0RzjvePjsA3zlB57i\n7OmT3L5xg6qpkToyGo0RIovlHNttkbGzs8d4POKBBx5AGc0rly4ynR4ync15z3vey/ve9xSD4ZDr\n165hbM5gPGY8KDBG46OwXJRoYynLMi3oJOZgNktrhs4KimKAEUVTVjRVjVH6zhYbyQybil8fAkEg\nLwqUVsSQYi9JWEfvzycJS7ouzq6dO3qHDwHXGeYj6f2ura7g6prl4SFVVSWJqU4detKNk6OC2jdp\n7CYze0xMS5e8J89OYn5a7/DSJVWiu20D0lyttE3WhhA7xj6N40BIrEwnvQYBHwQnIDGQZ4bxaMje\nwZy2rQkkX5EyKo1bk7rHIkAIaYx09xpJ61HTtF3xkVGVFRur61jzxmnKW+haGlAulvzUR/8hx0+c\n6tq70l4gzWKO957p7DDpXjbn4Yce5tFHH+X8+fMsFgvG4zGHs1nyUSyWPPjI4/ziL/wim5ubjEdj\nfv3XP4FzLYezGaPhkOFkwmA44JPPfPoObbuzvY0W4cLLF3jkoTMc31onuJo8y7l24xqnT51iNp+x\nsbFJ1VT4Q8/a+iouRk6fPk3EM8QwnR52+3OMGY1HDIZjRCVaV4liNB6zDC1l22BU0jW9810FbrA6\nLSh04RNjTI7zrjpTShIVH5Lj2xjBtyo57mPXqWDyRNfFQOMb6PR6UZq2CtRNTWazNLnWDXlWYI2l\nLkuaOpkVE804oW5qKtcgPrXFZlnaNybEJO20bXunAq3rOnVrWEPrPcYoYrCUdc0gs13DrL+TdCBp\ngWq9w3lSK3rTpupUa3wb8K2nGAwwJnUgtf6obTsAabAoSW2m0HW0hNjRlomXiSHS1DWj8Sjprl37\ne9M0ZNbQ3MdExhpDWZb82sc/jg4wGQ6YznbSBLWfWiR3d3fTpGUKTp04xXsffx9Xr7zM4eGUYVFg\nlEnGbITBaMRv/vZvMxyNESU89/zzHBzs4136XNfW1hgUBc+98DxFMUAktZgKW1y7Gji2ucZDDz2c\nJL9swGyRfGDNwrG2tsJ8uWCoh4hSDPOMzdV1MIldbOs6Jc7WMhyPKQYjUInereqKyXhC7drOS5Ym\n29B15FmtUdak7jlSV4PvWuQTPZ2ep22TcTDR1KozBKZ9klRMSYzuqixXp71rRCUZM3TSjNGaEFMC\npI3BWIWralxoUDoxnpPJmOVymRaTTGNC6joxXic+JUaazmB+FEve+dSmqhVlU6d9jmJAGwvedz6a\nLiY71jD9W5K/LP2GNYL3gnTG9Tzv5GcHXpJUm0yS7o4HwEu6T3VdJ5qHNF5Tp5hmPBriQoMPPu3L\n4xw+Wurmjbs2vpiYlUs2j21RVRUH8xnLZcnaxgaj0Zjnn3+ecr4kek/wjtlsxtkHH+RwNqdqdxiM\nJzTOUTUtTSc1zuczqqpic3MzSXPDIVlu2Nvbw1rDiePHefyxxxGEq1evMcxzxpMVDnb3ONif4oMj\nCoxHQ6azOSuTCcePn6RpWqbTm4ktF8VTTz3N+9//ftrWce3KVaq6Ym1lBRUVznkW8znG2NQ8klmq\nsqR1nqzIsba44xuxWY73gXK5gJgkNi2dj83rlFBpDVoT2jZ1vKkkF1mt8TGglCECAe50RsVOWgnO\n3TH7HrFvIQayPEOAxbLE13XXRGIA3zV6+DvGe5tZyq4Nu2nbo2YpIsmDqCV1SYW2xWSWtk6PjaQ9\nlY7kTukSmqOtA6RjPI88M6rbZ0dIW5BAxCohGE1uTZKsuYlrG1DdXjydDGdtRmbtnaL0KBEVSeRE\niF1BpBLjVi1LcpsxeRP+yDedyEzyIa+88grlwT5rjzzEYn+b1pXsL/eptCP4mtv1kjamquurnvoA\nURmuXLoCXca2PpqktuhRxad/55OcOLbFZGWS2tG0sFxURKM4WM559NRxnnvpRRbLZXJUV4FhlrG7\ne5385EmsTTc0ywbUlWMwXuXWzj4hRgbDMePxkOA988Ml73n8UaKL7O0d8OJ8n5XJCo89+mhq4Ttc\nsLs4ZDScoImkPbocisA4t2iVTEgQKfKk67W16wIlkEUotICYJEWFpFfGrmJug6dpHYW1EDxt2ySD\nl04bbymlQOfJP6JSJ4TJDZNsLZkr2xaVGcp62S1AmkxnKDvBqjR4FstDghKa4PB0k7cxqBioq4qA\nIfqUYbcuYnTK0rWkfWFMpjFKUbcgmBT9QWFMagv1MWK71tHoHI7EMASJRGNAkpY/XF1BFRZpAibP\n0YE7XpwY06ZImdUMi5xyOSe0jlzngKOuFwyGA4zWbO/tcuzYMYbDId576qplNLh/nRsr4wkXLl5k\n++Z1Hn7wLAfTfYJzVNUSayxVVVPXbWoDdp7H3/d+rLVcvnwV7zxFXuCd4/jxY1RNy2c+8zx5ZphM\nJrgQU4x7jwsp0Tx1esiL519kOp0CEd8K4+GAw+mUYWYZDQcogdzmNE1NCJHZbEbjGvLBgPFkTJSA\na1rWtk6gtGF3b5/ZYkFeFDz66GOMRiPKqmQ2XzAcDmldgzX5HQP2IC+6Gi9p+Fmepc20fHqfSkC6\n7iAlCq1TR4LrOhGsTSxR3daJpQkhsTtZBmJS5ask+WJCIJLaS7W1rOQ5vqoJQSA4qrLpfFqarPPb\nWVGoLMfPF6mKdQ7fJR5KGwKkTcQC3d4YyfSevCfxjnSc5wXLskwMUohprqKbXHlts8oYuz6Ozr8c\nlaBQGNFYNMPBMDGebSDPCkSn8QWBGFoCHtV1d6StGroq13tc8AyGWWKt5yVFMWY0GjGtkq9hMhjf\nt9gH2N7ZYTgeUzvH9HBO6wMbq+u0zlEtS5x3jIbJpLu5eQwXArv7+8yXJZujFWbLmsY5yqpNrfwC\nK6urrKxMMMbQdF1kq6urrK2tsbV1jLpuOL65webaGtPdXXa2dymyjCIfMJsf4qKjbj2TyZjBcMT2\nzm7yGuU5RZ5z4vhJjm1tce3yFTpKgtFoRGhqnICKmtA2lHWJMRbXlJ3ElzpztOoMsiHgG482mtFw\nlLpFm5RsKq2wnbR/FHuSGcQlhoW0bySt6/YxUqmFOXbtz/FICiUxhFXTpk1PVcRmpuukEtq6SclR\n4nVBjuRKnzoS66rzpvjO0OtSMdu2tE0ynUcVk8LQ1NRNZ2mQZNqNsSvQrSXGxP7FLu5Vx5oDv+/f\n1mhcSF15qUU6MB4VFIVlUTpEpb13fAhpLyibUTcNoWuUSfJ06GT61DF1tK/OKB/gyholwvr6+hvG\n6Jv2yHjvuHXrJidPnGR9fY2TJ09SVRWLxQLXujTgJuPXTLbjEa9eusSt3R2yLGcyWcG5lvliyc7e\nLofzOQ88+AARUlt0nQyde7upc6NpGq5dvdrp3bprzYInn3qSj3zTR7BZxnKx6CbyQJ4X+BgZjSY0\n3nHj5m0Wy4pzj5wjRsXu7h6XLr3KYjrn4QfO8vDZhwltILRpJ8jVyZjRqCDTqQJVXZZaVRV1lV6j\nrCoW8wXOO4rBgMGguGOm9CFSVnX3PjpNNErnl8nR2twVLPEO3Zd67BMdq3WqYI90/xQ00LQtHmE8\nGXdmsJQxH93/RMumiTkxQoo7uwvHiLbmNfpfqeSu7waB7zZ7oqPoX8u6u7ZaSZ6hZJDs3Oukijm3\nJpl9SRP+cFCkjdkIqG7xiF3WHjo99kgeOTLyplHz2kZTScKKHB4edmbs5MOo6urNhuo7juA9Bzvb\nTIqMzf+fuDcPujQ9y/t+z/JuZz/f0l/vPT2j0WIhZrABU0ZCdhIbsA0xwQ7OAklsp8pVGIdUkRCX\nK7iCy7FjV1zYJF4qQRISq5AMwmbfhCVAWELMIGk0a093T2/fer6zvvvz5I/7OadHUo9m7Iiat2pK\n6pmvv+npfs/73s91X9fvGg/Z3h7h2obpZIpCs1yWpJ0eVdWSphnnzp/j+WvPsVzmxHFGknYARVHk\nHNy7y3w64fL580RasVyuaFpoHJxM5sRJRt04Dg4P0Fo+d0Kxbbhy5RKPPfY20jiiqSvms1M0nl63\nE+LEcnI82D9gNV9x8cIl0rTD/uEx1166w/7xlL0LVzl78Sq1t5Q1dHo9+r0u/U4mNNDlUu4v56nK\nhrYR39Uyz5mtVhIxTjOyrLch4YIWlkZgRugQN/VAHEfiFTCS5HDhM+G9kLRsnIrJ3SZgLATVown/\nvKodjdMMRzskWQ/vNXXtKauG2XxJ7TwY8ZQkSSIqIVA3jhZFpCKU0xgsyinausXVjWAYmiaosLIu\nssYIvVtpQGNMjDaJeHi0vs9SMhodWZRBjM9OfIKdLMZ7WTm1jcPVHu/EHyNeIjl5GmU2nwu0Rmlh\nkYDBtYZ8VdJNEiIjvJ6yfP3USIAoTTFxzL39fSazGU3raZ3n9u07WGvZGo/o93pkWcbJyYRnn3uB\n/YNjlEkoG8dsmbNYlazyEKNOYsZbY1arnDt37jCbzYKvZkSn06Fc5cxOp9y7c48nn3iSF65dYzKZ\n4Jw8C5UWf1Fd10RRTNbp0uv16PV61JWoh0VRcOfmiywmh6imxLQVzWpGmy/wVU69XNIUOflyTlXm\n1GVOlkR0s1Q06aYBJAwRWUtiLDZQdJtWAHbWWpQxuKBqtN5vEqpeaQhJPR2UdmMjUGt7QRtAkBIK\nqeta0pta0qcOwsAdVj7iM7//l5d/boL3UJTQmqqqKYqCxXJJXbcyzNSiiDWtw8aJJJm0DSr//YGq\nLEtZPQVT7/qdsn4frJUZ70WNUcpvALCiXLIJzXgE9dE6eX6L4V4OMBsqfrv2akYbu4RsdCJZGyvP\nKl9i7KuPKa95kCnLksFgQJzEXDh/kZ2dHVarFcPBiHPnzrNc5FRlQxJH7Gxv8cK1F7h+/bqYSxWc\nnM7oDkaUdcvkdM72zi6Ng9lsQV6UlEXFbL4gsglpklGWDTs7Z2ibhrIo6HQ6fMVXfAUXLlxk/94+\ndV2BguVyifee/YMjeelXDfv7xwzHWzz6pjdzfHLK7Tt3uXX7Lv3BkP/4Hf8RD196hOVkwenhMd2k\nQzdNMXjqfMlqOaMsFyg8xSpntVyGBAO0dU2aJPQ6XVzTMJ8txAsSIrNeQZQIEyWOYzD3bwAAre3L\nIqBabvjA4NDahD8OUZqaxm1YFHGcMBwOMVZk6bwoqYPLO8/z+x+4SHwOzjnyPN9IjWtpXbwwwkkw\nkQwURVVS1Y3cjAGOp8NOVLwOzWYIUlpu8DSyGOVR3hEpT2INsTUMuin9rlBj8+U8xFmFw4BSpFnn\nvrHXmPsYcHf/xjbGkqWpwK6ShDiRREG+yl/rrfolv/J8RaeT0e11OH/+HKPRiNlyye7eHsPRmLKu\nKcoaZQyj8Zhnn3mGu7fvCidBwWQyodcfsMxLyqZlvLWNQzGbL8jznKIomE6nmBClX61WDMIQh/f0\ne32+8qu+isuXLzOdTFguVyHxJ5HjyemUupa1yMHhEb3+gIceepjZbMH1Gzc5ODomy7q8/e1fx5Ur\nV5jOZkwmE5IkJYlTQMjJTZnTViW+bShWK/J8KSfLcJ9maUa/06Wpa05PT/HOifHbqHCCk1SSjcNe\nXksU2oUHmbVC+2ycmGFBhsTIxgGktR5oJRot4MSE0WgkEnlZUddNSDiI4d4FAJgkDGUFWVXVBuMe\nxTFNeGBqK6fsKInXh/TgB2o2p0xjXuaNa+7/fe8lwWTD91gP31FkyeKYTpqQZRmtq6nKXMCAPhwS\n0KRpRhL4HHEch8OB2dSUrM35kbVMT6ckSbLx7K2K13e1JBUKS6bzOXXTknU7rFY5RSHA0ySO0daS\n5wXHk4l4ArVB2YhVXlE1IfHpPVEUsbsjvq0yKAky5AmT5fRkQlVWRFHEYrHgZDLBteLvan3LfLHg\n1u2XODk5opMmbI9HXLl0kcgYZpMJaRKj8Rzt7xPT0k8s1eKUdjWnXS2oFqfkc/mLpmY8GjHo9+VQ\n6pqgVogZtgkmYOUdq+WC2fRU3jeAMgZvNDqslUx0v8JFaRNW6zLMayMHwdbdjx1XVR3u5RajDU3r\nxPgeBiCUJk474BVtK3dRVcs6aB3v9+EQTBhivPdEwetWVXVQOFrxIipREdeKq6yZK5qq2aRMtZah\nbf3/N0bckGICSditU1J160OUO4LwDouiKCQwZbRYH47xwgTD30+ttk2LUDgUTeNCBY+iqWrZJLSO\nqixYrZaveo++5tXS0dEBi8WMPF9hIjm5HRwcMp3NuDp8mOVySZ4XjMcjut0uL774ImVZkXW6WBtz\n9uxZhsMh+weHIk0bw8HBAXXbMp+cslws0MbQ7/cZ9Adoa4RsGWKib3jkYdpWdokXLl/mdHJMVRRE\nkTz4G9fiCkcUSTzNOfjUpz9DP+sQxdJLc/nSZVJibr1wg6Io6PW76FZ6kOqm2cDikiSiKooQBxNO\nhTaGqqjASxwRD91OB40YebXRJLFMnR7QATu+TiasM/WtC6AsrVGBiLruR1JCZMK3cqNo5OtwjqIQ\nxkRTCV57rWysp/kqyHJr83UVDMpRFLPKc6qqEgOjtcRpwhqGpxEeSBu6dLTW0KpNBPC+ByjsSI3G\nKpDWDVFnjHK4ukTh6HUzOklMUdVhqBJWQWQl8ipyqcisIjHGOCWDUlGWAkhbeya05uzeHrdfemkz\nTL0e12IxZ7maU5Yrur2Mtq05PDxiOp9x8cJFpvMFi9WK/nDEYDDixRs3qaqCyMpguL29zdbWFtP5\nklVeMUx73Ds8xnvFbHZKXhQYo+l2unS7PeI4oqoKet0uWmsuXDgfEl6Ky1ceos5z5tMp1sR4B9P5\nItC0Nbvb24Dmxs1bgKfX7bKzs8O5C5fpZh3u3rpNUwuGXTuHqypar2nKktbnAtryLXUpn60kgL6q\nphbmiW+ItCXJohBHdhhrsIFo2wCEdI93otIoL2uounVCAw7r9fVpU2tN3XhiG4n03IRuM7tmNzlW\niwKDQikjAMs6xythbTR1FYYOJ3UDAdfuvWe5XFI39eZ0WdZVAOy1QutFlFEboI1Ne39o13q9Fl0z\nNcIQg8MYjQkR3aYu0drT76ZYLalBpUWefzkQsgqmXWutcIdMtIlcC59HuBqrZkESxYxGI1aL+Sah\n+HpdkTUcHx1SVTX9fp9er8fJ8YQsy5jNpiyU4spDl9HGMlsVTOcrWq8Y9oecTCbUgeze6XUl5h88\nP4PhEO9Enb14/gLdboemcYyGA5xryWLLcNCjXC45mRzjjltm0xl7e7s8fOUK29tb7GwNuX7teU5P\nTnjoyhUUntl0ytawz7ArK1ivPa7O0SbDeUFB9AdDwVhEEnMvyoooFgAfAawYpylt23JyfCR+mihi\nsDWW5ycKF9QVExI9TSm0ZqM1vvXCUUKGgaquxfcVhurIxuChqgtRx9sWjIYorGnrBrxAINdRfKU0\n3ihZlYYDftvWlEWJkBqhaVxIjMYh1SXjVFvXkkT1jto7okDb5vOGFLE9CNpDuTUyAAmnhDnI2ogW\nUeUq13LnZMInPv0sx6cLsjRhd3vMaDxmlZeoYHRvvZP7IHRKKcT8v05Qisc0wrkmeNYsWSejritW\ny1evp3nNg8xsfspzzz6LsYayyDk+OsIDu9s7NE3DzRsvyUSnDfv7+9R1HYiVHcbbWxRlxbUnn+Rk\nMiFJkrBvnaKN4eRkQq/XxVrLeDRmcnpKkef0+n3SLOHc2bMoFGVZcTqZMJuckC8XuKbhwrk9kiQm\nU5f2GF4AACAASURBVOssfysnBKUZjbcoFnNQMB6NmU6nHN08YGs8lMmzrDHeUTXgNdRNRdNUlIUm\n6Z0hyzJ50Qa5TcxJkuXXWoBbRSErjziOsVG0gQ7FOuwztQ8TqfgH6sYHx7qkmpRX1I3fTLrgKKom\n3MAKHxJA1opLPo4TWXeVNTRyWm5bT1nVIeXgKcuaoig3p742RFLbRjw0SinyshBVJJxYi7JAIx+G\nNjxcmqal080E/uXvR0DbpsbEIsU3rsE1IUmlPGkSkyRxkO2FHtzrdul0u2g8q7IktkZ2v3UDGZs1\n3jqybft9FsslZVkxGg259dLNoAy8Pte9/Ttcu/Y84FksZpxOT2hxdPp98rri7uERRdWQdSP2Dw6p\nq4pup0ukUwajEc55Pv3UM5xMTrFxQlG3zFeCGpd+K0UURwwGA6bTqTzEO8mG+ZImKdPTGYOsw83V\nS8xPJ0TWcn7vHFober0+TdsgMDpRFPCCPV8tc86dO8fidMLkcF9+XdaCaqmbQpI7pUQfhf1S0SYV\nWdZD60he+kqFdYsiMZEMKhCYSy1JEodTmnwt4aXvvRTMsVEDkXWSlSSODae+uqrEmBiURINCW3nY\n1U1DYiPW/VySpgCP3kC/6qahqWVYKYqCqpRB3tiItpUHqHcOgrxfVKUopkrqDapmDcOrw0r4vidg\nfW08Les1rhYVtG5FmdRK0e11RFGrWjl0aY1SliyTzhip5JBVQNu2xLGsYVunqWsxDUddS75YUJYF\n/UGPKE0oi9dvrQrw0o0bDIYj4siSjEYobWhdg40MWskhazoTr9JssaJ2Dq8MyzyndY7t0He0WMy5\ncfMm49GQJIlZzOdkacKg3+fgYD+suh2drENsNNYIGbmtS3Z3tlBKkXUS4shQlzm3bt7g+OAeX/nH\n/ijnd7d59plnmJyccP7cOYZnz1AGmnUcWwb9kSAAopik06c/GolVoChkPW4jlNbyXFWh0qKUmhfn\npaJhOByT9DoUdehG0oYmnK8irTCENUsYvn3rxBvmgpJhRLGIUDR1y7rmxYXDbRKlmEhTl42o9yjq\noqYqGzkUuPvquLWWVVjFG2NYLFasVjlpmgbPmBjxq3XBMVAH7Ma6ikFpqQuglXu6qiq8d6KwKIHh\nyX2PVONElrJuRFkxBq81H3/qOT70G78L9ME/DuoJ/PM3efShi5w7t810PqNYLCVkUkMWRbiAeliD\nXKuqChsBQqJX/HBCFw+Q2Ve5XvMgYyODiTQPX36ISxcvcev2HQ7299nd3ePO3X15cBiL8y3Townd\nfo9Ob0BVVsznC/b3D8LeMMImGdPFktI52lIMip2eKDFHR0dC7nSetnF0O13mszkz37K7Nebw8JD5\ndMpo0OPc3hmMMUxOJpzMF3TSjNGF85zbO8uw3+P69esYDZ00YX//HlmScGXrvFAW0wTX1lSlx8ZW\nBg6NSLpZgo2lOKytahkiWolGJ2lCXZQUhciirW+xcYyOLA0ejCbrdgQEFxgqTSBAGq1JQjpjTaCR\niGsb4ovxRiY0WgvUztXESYoPFQJrz8ia5FtVUt8QJ6mUsCETs7ERy9UqnP4a6lZ2vigpaKyaOsRY\n22BOvg9pWj9s41heBNoYeVgHjoA2iqqsMbElshF3jiZ87DPPcXQ6l6ixicL3E5BS64Ro2oTEkpxC\nS3nZWitmNqSTqSqrDTRpPp+Spgl7Z/a4c/fOa71Vv+RXmiYoAw8/fJWzZ8+ymK+4e/cuW7tnOL23\nz2qVA7IPn01OyLIO3U5GWS5ZrXJOTqfUjZPSB22ZLwt5gdbyYBoMBozGAyaTCW1dSZKhjUjimPl0\nSr5YsL21xdHREYvZlG6WsLd7BodnOj1lNp9iI82li5fY291l2O9xeHhIka8YDAYcHezTTSw7WyOa\ncgmtpWlynFb4oIqIvyohyToClSMYFpXCVVVYDRl8W1GWZbh3pbsIIxA5v5bJnZzW0FqIuE4i0zaK\nxXwLm53++n5O4jhAJBXKGikfdUIBliSHaCdNI0kLYw1FWYgS1EgHUBPSH9pYlqscpWra1m0GefCy\nEvDS3Evg4Ww+n2Hd5ZF173oFSvj1rg8b4jFgoxyihYaaZR36gx6royneOxm2PHgvA9l6TdU2QsvW\nSrqqhK0RjL9ljVbiG4wTy3g85ODg9V0t7W5vEcUps8USpQit5xatoapKev0uZ/b2+Mxnn6ZuHc4p\nqqbm6OREEo9BMXZe2GLOOZZhZV/XNZPJRHxFbYs1MbGNoQUfadLY0O30ca5BKU8Up+zubrMzHnM6\nOaHXyfjUE7/PfDZnOOjzljdJ2skqTbffFYDfakna7eNQmCgGHTFdlaAsWVeo18bGaG0xJoBDw/rF\nGENkBlRVQRvIzN4Y0qyDMhHOrSsCPJEJikIgprcIILVtWwFjek9d1RhtcW27IWgrrYgTjTYSPbdR\nLO3y63Zro4XpYjSr1YrVakkVUCfdbpe2EYvBmnvWtpLQU8aI56iqKEKpq9usb1uU87j150Kt/YsO\nbbjvc9t4HFuck8HeGEPjFXcPT/jQb/wu3v9V4J8AGfgc+C6eu/5DnNneIi8KWQ1GhjixJElCDRuf\naNPUZJnwy7xvQlWOw2nAaCIjgNRXu17zIBNFgtwfj0e0ruF0OsFo6WjIC6ljP7O7x+lsAkrSF4vV\nPhcuXARtOZ0tmC9zojhDm4SqloZgG0skqxuaU/vDAYQX9pkzZxiP+zRty7g/IE0sxns6SYzRQiu8\nPT1l/+49Ll+5wpWL57l8+TIX9s7wiY//Lv1Bn4vnznLn7l3SJGZnNMAYR2QV5WpO0snCwJGS9ToM\nRwOiRIzGZV0LvE5b2rYhCrHmxXLJ4cEBoBgOBsT9HhhDEyRLTSjuUi6QOxVKRHG8bwOmfS07i2FK\nm+Dgdg7XNhgbkybx+tmLUh7XrgthFK2HtvVYZaiqFVWgC+d5LpyK4DWxVoB0XrdoDK4VMqv3ofyr\nvT+tiwQYCjGtwYRyNKFPrrvP1lTSGBsrvFb8zqee5qd+7WPAAPxjMpH7GbuDjCzOcO7+vlUp8VCg\nZGXmQzx8vYuV79+iTRQM3zWr1Ypev8dg8fph2k0kfz6D4RDw3Lt3j36vR9vUzGdzbBTR6/UpigJj\nDcvlnHy15MpDlynKEjVbUjY5XltskjFbidxujKE/HHBm9wzzxZQszTCdDnVdMRwM2d3eka/p9ahK\n+Yx10jjwJhpu3rrBwcEB58+e5fKFi1y6eI6drSHPfPZpvHO8+U2PMp1Oqdua3eGIXhrLjr/OsUYw\n8jpJ6Q6GdAcDfCSJw7ysSNIOaZLStLIGjGNZ4c5OhHPT7ffpDgYYa3FawG/GyKm2CUO+VhZcK8NJ\nUD9c26JD47UxBmsiYU4ERU5irFq8LXUtak5Yp/rgOPFausTKssS7lqLIaeq1F0zu0zWt1SNgr6qq\nxGTpWmE+eelMI9BGgfAgD3K6exnqUgkcT+KyEU4JQ6lpPVXrODid8YnPXGO6WOE9RFGyUaW0ElZT\npOX768BGWnvZ1n4E1zbiGdBSnlnXJflqQa+bsepmr8+NHy7fSot407YkccJqPiPLEkHRt45O2mG+\nXDFfrkBLrYSkk+RUX5YlVmuSKCGOI1kpRFmghEskPYll4OmmHXqdDO8atJY1v3MNVeOwWjHq9Dgz\nHlNMT5kfHTE7PCKJYjpZiq8a2qpmd3eX4bCPx3M6nZEkKSZKAyBRqNI6iqTXyAlyw9gI59WGRtw2\nMsTHVki9NkkwcYLXFqeQ1VJI6BkdKi9QwRoAOtJyv7uXH95k/amMIrGh4kVJFUbrpZzURDHU0hJf\nV5U8eJWQb8siZ76Yi3kcj1OeqqkoioKiqsiDWdd7hUM8nWJGRkoyjYayxNGKmdl7UTKtBFPaUEWz\nxhPIu0Z8K77V3Do45neeepbj6ZJ+t8OiKIE+8E+BNNwtGfBVwLs4OG6BrwSeZFnM2GpihoM+KpRS\nOpy0kZcF/V4H5+X3rChKej2Jaadx+poUydc8yNy5fZszuzs88shVbty4yf69e0wmE27fuUOadhkN\nxiRJSlUI1KyoG2azOecueFbLFYtVLtySKOZ4MqExik6ni2vFsDib3WZrNCbPF2RpSq/fx7VefDjT\nU2bjEYm1dNME39a0dU0SWSKrpc+pn6FVy62XrjM7OeKhyxeYHB/zxO99nE7WYe+Rq0Qa6iqn9Y7h\nqE/dtvQGI7p9kXDrpuX0+DRwIVLZ7SMxV0DMUWWJ1ZZut8twMCRXHmVDCVhoR123Y/uXP8SbFtdU\n99UU2JBv1+kh+dv3V09tK4V3HsFNl1WDa2sJOxgDwZBYV1XgcEgKxnvx5qxPj+s0kPhuDHUrLA4T\nOnA2g0QjE71ClBQbSb+SUB3bELFtqWqH0pb9kxN+6tc+9sCJ/HD2Q2wNhCsj1MeIbhIJm9gYslT6\nmOq6Rkcm+Gcktm60JokkAVKVFaPhkCROXuut+iW/jg6P2d7e5qErVzg4OOTo6Ij9u3eFvdPtM+j3\nGW9tcf26tPa2tWe5nDGdzTHWssxLagfKREznc7QxDLvd8Oe14LkXnmdrPKSqKpJIWETWGk5OTlgs\nlgz6A7I4YhFplGsoVosNWXg0GrC9NcAoz52XblLMT7l47gxVWfPEJz5BHEe84eGHAZjNZhitSFIB\nl426feK0Q28wpChLyqZEayulccpQlvLyx0FVllRlifctg2GfwXhMi6d2jlhrQV95sGiMMqFSpbnf\nKeScqCDeY60KhGkVeExrSqsPlSBRKLKU79O4Un7cthsk+3rVmZelGPGdZzqboJSsUuugdlUhlr02\nk0ts1qCtJQqfUx3+eVmWRLGsjde0bPH6iNrcaEHbS7LEUDcNn3jqBX7xI58E1cf7x1E8gWfBxb0d\nrFE0ZUXTlHTiCB1ip1H4XJVliVYSBV+XBUY2otPJaJoK71uyNOY1gE3/UK/BYIvJbErdtIw6HQ4O\nj+lkmXjcdESv0+fu4SFFVREnGUVZbIy9a6q3kJEVKkDZau9J4ghtLd2AXfCto5uldLOEvGgwRtPU\nFVYJu+nRqw+TRTH7L95kenSPOJImdqstZ8ZbZN0uW+MxJrKswvA03tpiONyi2x/QOqQ+oi3pRAbv\nGupSCj2V8qjIypAcDlpaGdAW5x3OG5SJIRhynV9zVAinPEfrVVhXtlDK0NLtdDamdGsMPpD7n79x\nk/d98Ge5fus2ly+c4y9/85/l6pVLWGMplysJmShFU4oPxtUVL966zU/+wq9z9/CY3dGAr3vszZzf\nGglHLC+EURPJmlcbg6/r0Al2nykD8qy1GhQCx3NKg9ckUYpf06i1oXEC+7TW8rvPvMiP/8pH+dwD\n6xT4Ou4PMQDPAd8J/DU27wTknXCSv4utIidNQsCDFhtb6pWwnVqvwm9pUIcaGdjWfVlf7HrNg0ya\nJLL6QCKhcZKwvbNNvxT40Ox0LrDWYIBank4Z9AcMByNevPEURVHRelgVC05Pp0Q9UT7qSnpOkigi\nDy72qqo4OTrm5PAIrEyOSRJTG02Vr+h3OhvJt65r9nbOsLu9JXv7PCce9Pj0E7+PVoqt7RFntnah\nbellCUkUCRehu4OOJUWhI0tRVihrGW/thFNcHNKRdmOsdc6TZhla2c3KqDWKOJJm7trX+Kbd4Myb\nME2v8elrI+ua3rs2Dq8VEWss2iiUEgz02uHd1PWmOsEpResr6tqzynNq78FaklSw7qosqWtRfspG\nkh1Zlsq/P5wORGmRDyxrJcRLy7WU5oHScYCYtZuvuXd8wm9/6mmOZgvG/R6rspQb+xUm8pOZAv44\n8CSzfMa5UY+9UZ+yWAkUySNskBBJb5t244WJkhiL2yRK4iR+rbfql/xKkhRPH6U1q1WO0ZbxcEic\n5zgE3b+OlEeRYT4rybKU3TNn+HSQ21sHZZmzWCykFDDPqSsZKNdFq1VVocIpKV8uaBohSLeNY2U1\nSWxIE0snjUE5jNWkacxw0CMyQqht65qnP/sUVZ5zdu8s21tbROHfYSPDdDplazCSElAbgYlYlA2o\nmCiWE2IUxRgdobSsDtcxyV6ng1UeZWUl4pQizbqCUw+nc9d6YmNFYXAEH5XbEIGNtTJ4q/uVFWI2\ndNg4QutYToFaiKdtVUFguqzNgavVkqLMwwrWCN/JyYm2bQWDvlb64iShbVtWlQw8zrtNzFPDZoi/\nL8u3QVm6b/RdJ5zWEdPWi7/r3vEJv/iRT+L5q+Dloe3Jge/g1v4HyJIYraBrDf0sxQbPjQx2koJK\n0xTna+paIu/OBNWSRszB3pG8BrLpH+YVpwnLe6L8zudLqtCFVtU1UZqiI8vxyanE653f0KA3sV2t\niGwkbc5NS1EU9Pt9vJMD3GIxx4Q12917OePhgE5H+qayOObyhbNcOX+e06Nj7h0coFxDHOAVINsC\n6dmKhBfT64rybTRJmhGFtWVZt5goktVLLQmlJMkQZ6LCaonuo2UYR2kaF3RAbfCEtSQAKoDbBEFg\nlJOhu2rIOinKtdRVyaa3ywW8hHO89199iO/+u/8QpQZ4/xhK/Rt+8N0/xv/xvf8j3/bnv4F8Maep\nK/E0tg1xZPnAr/wm3//PfxjUYDMw/+Sv/hbf/p+8nT/x1jeilIDv0lQqZKQbSVNXZUAHiH1B/jw2\nLDtRy8Nh276sE01bgZ1633DneMqP/8pHH3Bg/RrgCWRQWauG7wKGfOE74QeBn2KyKLiQ9WnbWlSw\nQPitmxpr9ef8mUbW0sk6rF5D0OM1f0KMNeSLBbPZDGsNt156Cdc6JqcTkiQMFkqFNYwNL9CM+XzO\nbD5DRyltXZMXJVmnQ62CeVOJL6WTZoFHEiK+aSItqu0y/AelREphlfxaNGISVIiZrNfJuHnjJkWe\nc3RwQL/bEUjcKqd3KWN7Z4skirhz7w7dbhdlPElsSTs9vDb0opiqdZRVTRzH+NaHk5O9H22LYowW\nOdxai41irNU0StG0AQdthHyqfBhIfMCho0K8WaTXtm7Q2nD91m1+9Kf/DTdu3+HS+bP8V3/hz/PG\nhy/LQsoY6rJhuVxiwtDx4u27/OjP/iI379zjws42f+arH+fc1pCiKJjP56yKQiRJ1lwWT1nfb3iN\nk4TW+00J5lr61Fb2wsbIiTwKxWdRHOPwfOwPnuInfu23UQzwPAY8ifen/PtM5HdP38W439kYp5u6\noShLkkyGRhec7W3bCJ8HWK6W9IN68XpdGk2Zl0xOpiRJxu3bd/FO4VqoXBMo14GMqTRNVTPcHjJf\nrlgsZaXkfUue5+Gl7WmalshaotiShhLPTpbhmgajFZ3g2JfIcydI7QLKcq7FNzW6jdgdjNjudNm/\nc4vlYsncHpElCXFkacuSXqfDeDwmiSOOJxOUskRJhyhOiNIsdBwJfdS1NdoE2mZgX1SNAPCsMZgo\nIosMylhMnOCUdH81wRsjD0wHGJxroA3pvbZkTTHV2lD7CqMUcSrQPIcSOdzL6dEYgUeWRUldVtL/\nojRVXZLnK5bLBUqBC5L8qipZFQVl0wT/jqJBeB+0om7GsVR4+LLEh4FZWEtOCl1bD14RB4K2V2xI\nowpNVdfcPp7wsaee43i2FEDhMucLpfWfAH4aGJKX8jlZMkMZw9lxR4Y95YhtRF0XKJVKWSjCSImi\nmKIUZa7IV+SrjMhGvJ5XXlcUVUVZtyxzUdZH21u8eO063azDbLFiuVoyGAyYzRab/jhZH4p/SEcy\nevT7fS5evMjFi+d5/tlnWK2WRCYSHxowGgy4fPEirqnIUks3iVjOTnn2qc9glEI7TzdJoBWo4NWr\nV3nTm9+CTRKUNXT7faIkYbFckHb7mCiiAXqdLtYLFFRtPIkJ1kZSzBlWmm0b/FRavFY68FqU0mgb\n4QN1FoUo8M7JoO1ann3hBX74x9/Prdu3uXRuj2//lm/iDVcuUYcVeVVVPH/tBt/9/f8Q5/8Kn/98\n/N5/8I+5vD2mGxnpbCulWube8Qn/2z//YRkkPmdg/i7e9yvvwlc1V86fQSlFYgsWVcnvv3CDyXzB\n1qDD1335W9gdDQCZU1xogG8aMdKKuinhFE3oLGsJ5ZaKf/v7n+HBB9YfAR4DvgsZVDLgBeBtfO47\nYf31j1PVHwN333PWeofzQphfH9Zl9SodhUeHx0T21Z/9r3mQ0SZlvjghLxochqTTpfYr+oMeh0fH\n7O7usVguMJ0+rUlotaU3HnP91i3quiIyhrJcYVSDwgjuXGs6aYbynrJYYVDENqSCfE1sIppK08ky\nBllHvsYo6qrAqpazezs8evUKdVny0h88yWQyodvvo4xmsDVie3eXwXiLNOuyXDU0qaG/c5GtrS2G\n45HwScoarzyZsdRViWu0tE8nllZrWjwkotw4a2lROKvk5WQNXtvgeQk2qsbhmgprNIaatpYHa2wU\nymYbw2ASJbzvp3+Wv/l3/j5KDfH+yzeT+Q/8r/8T3/4t30RZLFkuVyhaiqbi/T//q3zfP313+PrH\nUOoT/PDP/zrf9a1fz9c9/kdompoi7EXXK6PImsC1kBVYWUpEW61PFErw8VobaqexSYo2DnRDFCnq\nesXhdMFP/Npv4/1fxX/Oh+/ffyI/nK/YG2TUTU1sPNo1RCbFawe+wNUtWZJxdHCX7Z0Rbatw7Yo4\nes3Ioy/5FSUJRUjCeK+I4oQUQ9V6jg/22dk7wyovZEjxCo1h0Bty9+CQvChJM1mxAZuTKnghKxuF\ndy1V2RCZDkYr8cJkGbn3xMaQJjFV1WKNlmED2NvZ4dGrD+OqmpvPP8/kcJ/xaExdlOyNxuyc2aXT\nE0JsUZV47xgOhwyGI3r9ES3iWambgk63Q1sL/M56h4ljebDrQKxGVFZFgDXaCG9kQAj5fDnhORf8\nYYGF5ByulNLMJI4kpeYdcVipguPazVu894M/w83b97h04Szf9k3fyKOPPEy1KsiXS0B6xpyraeuK\nF166zU/98m9w72jCVr/LOx9/C2dHA4rQOK+CT8cY6fJqW6k5cJIhRGNxeIyWVJTSBq+0RLEj8bDI\nmlaGTa2FA/JbT36WD374ZekMnsDz+dL6c8B/D3zhS2p/+i4Gg5jEGlwtjeB17UPhXoRz8pK11rJa\nLcjiDGMiysBUeT2vxXIpZlGtOZ2ecu78Rc6dv8jdewckWYf5fBGwE0qAoEqRppms8RBzqCRCZW0M\nnjI0ZZ/bO8t4NCRLEo6Pj0jjVEpLFSwmpxwt5mSx5vyZXbJIOuyaqqLfGzMej7l46TKjrS0q19Lp\n9en0e9RNw4WdK0H9ayQ0ERhZJtKotqFqapI0pW3Fp2nTRO4FA06pAEEMGAgXWGBaDLCEIlCUxO+d\nc7zv/R/kO7/nb73s2fyz/MD/+z7+4ff+D3zzn3wHJ5MTtDb82M/+HEoNwD/g+ag+yI9+6Of4C+/8\nE3jvOZ3NqKqaD33kd3jwICHP1N/+7LOsipIksdw6mvCRp14QtYfHUDzJL338M/y33/gO3v62Nwao\no6iSes2riaP75l6lRI0KTBlqy/HpHO8f4wuHk7cBjyLP/A8gQ83Hwte9/J1A+PETaCSM0tRy8POt\nWCO2t7c3B5Sqqqjygm63y2q5wJpXV+P/PTwyd4miiLt396nahtVqxWg4ZLlcsVgsSbM5q9USbYRb\n0u12MNZwdHy84UWI6Ul+03xkUF7UGOWhKlZEUcR4a0vK75YLiuUCZSIWswnleESWxMQ6YjTs88aH\nH2LY67B/9xbz0xk71tDp98Wj0iohjQY5b3vnjJThta1EqiPpzinyEhOLS325XEJIHjgvSR2UDDLr\nxJHzAjzy6BADdcH4BYpQ+BYrrr90k/f82E/y4vUbXL10gf/mL30Lj1y+iNGaqhTQ0ou3bvE3/87f\nx7kvfOh999/9R/yxt76Z7UEf8NR1xY07d/m+f/oe3Mum8rUf5Qc/+G5GnYS9rZHsSZVhuir4rU89\nzfFswagT8/Yvf5S98VBeTo5NyiS8hySlZBK0BbTEuD1Qt56PPPFsUGK+BBN584mN98BqjYlj5vM5\ng34PhahXcWyJE1EpIhuxXK7Y2zvzWm/VL/n1zDPPEkWKmzdvEscpB4dHnDl3joPjQ5Z5TjJfsFiu\nAKiamihNsEnM8Y2JrBzDwy6Kos1K1GgjDxDlA/wvJY4tbSOJlcV8ineeqfc0Vcl4NMQ78YW95dFH\nuHTuHM999inqoiRRim6nS1mWpGnKarVisVrhreGhQR+UkGOVtpgopvGOVV4RB2ZGUZQsVivGwzF1\n28rLRgfsuo2kqTkYscHilAkKCqwldmsNrWqIjRe/gPP0Bl2Jc4fUQRSJUttUspZ6zwd+hu/53//x\nAyX2//RPfi11U1MVBW3bkCUxH/jl3+Tv/ov3fo68/oHf+Bjf8affwde+7S2URYVSmqyTYm1EFMXk\ny4WcsJ2oo0ojAL8WUSCtofVgw++NV0I0dQBNQ+s8d44nfPDDn5fOeOAg/8WH+OmiYmeQhOCEyPpN\n3ZBm8YZnE0URVmt6vT6nJ0fUVc3uzs4f6v39alen2yNNM0wcUZ5OGQ6H3Ds4YJkXpGnGfLWk2+uy\nXBVyul8D2CBA5XxYsUjEd7lYUKyWnJ4cU6xWNFVBr9elbRuKfM5yYSiXS1y54url8/SzjLYsmK8k\n6RTHCVGccu7iJQZbWwy3ttFxRF6VVE1L1u2itSWvJKmpPLR5gUOFeLJHmyioKbJJaFoXEkIWq6xw\nUrzHN40oFTqibRq0sVhUiFe3KO+5ceMlvvN7/tYDn+X/8z/4J7zh/HkeuXCesm548fYd3AOHggzv\nH+PZ68/zydGAKIrodHt4pZgsluJLedDP4XEmy49z9+QEr+F3nrkB/DX85yk37/mFd/OmS2c5Oxri\nQp3IusBRmdDELnQ6UHA8W/DhTzzJvaNjTmaL4P160HByj34WsTNOsPZ5RoMrfOIzL+D9y98J8muA\nOcOsR13XWC34DmU0bVOTpilHR4cIh0dR1SX9tEddNfS7r17R8ZoHGTGb1ngtDZV5UaCN5WQyfF/o\n8wAAIABJREFUoWlb8rxguSy48NB5jo6OsDZiNltQVRXD8Taz2ZymcWH/K8bZOI5xIRE0Go940yNv\n4PTkhEmesz2WiXtVFvSyjNGwj/GOYbeDVY7DW7eZRWJoGnS6tHWBAXZ2zvDYV3wF3cEArQ3d4RCv\nwEQR3X6fVhuMtXQ7Pbq9IXXTUNVNoBomKCsAOq9NMEl5HEZy/cF86AlmMK3QNkUAzQ4DvOdHfoS/\n/t3f+7LJ/Kf5P//le/i/vv9v81980zeS5zmr1Yp/9p4fQ73ClK34IP/iR97Pf/6n30nV1MznSz7w\nq7/Jgx3i8pD86Q//Ln/mqx7HGM2nr7/EL3z805s10GYq/4av5Wu/7E0CanIAIiGuLyl5FBmvJSCy\no4TD2SKsk/7/T+SxNRvPTU1LW5d0+l2SNIG5+Ii0lv3uyfEp2kC5XG4e/q/PJaNq07SU5ZI4SSmq\nilVZ0nrPfJVTtw1nzuxxOjklzjrMlsJ16A8GHB9PZIAMLBGllMDkvA3Qv7M8/PBVFrMpx0eHjAaD\n4CGQoeLs7i64mkE3I7aK2ckJTx8fob0niyJirbBG0x8M+LK3vY3x9g5oTdLr0O31mC0W9EcjKY1T\nmijN6MXCNiHE8re2tuWh7kFbK/e/k4e7NsHv4L344KyFAAHTSgdWhsOjqNuG5194gff+xPt56dZt\nLp7d49u/5c9z9eIF8tWKfLUCD08/f43v+Xv/+BUl9lGkODMesVrJgHjr8JDv/xfvfaC8/t5ffheq\naTm3M0Yp6HU6rOqa33vuRY5OT9kZDXj7297I3ngY/GAKpWRlLKstCRgqJyfRuhVfhFeaoiz4jd/7\nAx782fv8Qf56+PGDh/iy+l0MqcRw60oMoFFgi0SWphG/oLWWe3fvEUWG6XT2MjfI63PVIZ6+WuX0\n+wPGW1s8/cyzgmNAU1QNaEVRFHKiD6tWa608e8MQYwJDSCF+qtFoRL+bYbViMZtKMi+KWBlFJ47o\ndUfCXMlzinxFkkR0u122tne4+vAbuPTQVdJuBx9Ziqalajz90UAOocYSBZ+L1oaqakRtQ0tayntc\n41FG4s1rK6wQzR2RkQr0NpCtQXxUxkraEhci+MAPvfe9KPUKA6z6ID/5b36Bv/LNf47pbEo/jb/I\nUPAEg+4OeVly7/BwM8go5/hC5fv+z7FGsyxz9qdLXkm5UXyAjzz5NN/2J78mKJWSuBJdUphMSmuU\nNfzWHzzDe/71r27eH94fAks+98B6fzj5xne+gze/4SqpUViluHJ2hw/86ruQz8cAmAIVW90MY9YV\nOHKArqtSKM6zKQQm1XKxEPU58J2qunnVe/Q1vx2UNizzJWVThem0RSlN6yDrdGSwiSwXL15isVyi\nbcR0OiXLugCsVnlIwehNb5LWiroq8Y2hE8cURc5iMWUw6DMa9On3+6i5x7cN3SwhAk6PDnFlST9L\n2MrGdPoS13aR5czeHuOtLWHSDEdUbctgOMJrRRJw942TbH9V1yRZRmJSnBeKqY1jyrISac3EbFpv\nQ8rBb3AW8iBEKfy6N8Vpnnnhef76d3/vAyfzv/F9f483Xb7AVl/6QG7cuv0Kcl2G94/z7AvXePbK\nReHTOLh++84X/fqD00/yqWeexSvFr3zqBeCvbdZAm6n8F9/NoxfPiTIDEu02yH+j0igrw5k3cHw6\n5SNPfJaD0ynH0zmv/EG6xyBLSSKH0k+wPTrL0zduveJEvjXYwxhFpA3a1VRty87uWDwUxlDkOavV\nnF6vw9179xhvjWjLmrJ4dZbAH9blFZKCcC2uhbptiPGUdU2cJNIuayMuXb7CcpVDAvPlSgCJzoWV\nhyHNUmGWBANkWUmyQvg5Baenp2RZxtZoyGg4ZDGfCcLfSIHn9OgY3xT0Oyl7W1sCFvSyztnd2WH3\nzBm2dnbpDgaoyNLrD8Bods7sEafpZjXWeiVYdS0v7sa3mDiiroVmKl4AjVUaEPAVWm/8a0oZnJJ7\nRrpjAp+i5QES+4f4Jz/0Pv7B93wXf/prvpKmrnHe85M/90uvLLHzAX7ql36db37717DKC6q64UMf\n+W1e6SHt+Sn+7ac/y+NXL5PGlruzOR9+8tnPkdd/8d99iv/uG9/Bn3jro6L8BWldGUNs7QYpjxKF\nyWuDVYZ6mXN4OsX7x3n1QX4AzHilF05kjBQNKoNCUoTj8YimEQ9eXVeURUGWZSznc+JIKk3Wa8nX\n6zo6OqIN0etut8f0dMpkckocpyFubVgGuroNsXJjjKwOFEKodeLHsNZQVVUwyDcsfSsRfe9I04jt\n8ZDxsIcvK5oy57Qs6KQx21syiGe9Lnvnz7Nz7hxRJ0MnKS1ajL3dlCTtbOLObSjolXJhud9diFYr\nHYobzRqlr1BIb5ZWsvLwbSghtRplJT0q8R+Hd43E/ouC51+4hvdfziupLM+9eJ2b119AW8Mff9Mj\n/NxHP84DhwI/4w1n30RZ55RVzmI5p3WernZ4Zg/+Ocy5sHMB39QUVYWohA9Wbo6mt4LhV6O1hWC4\nNyomiTUtjv3JKe/517/6ABvB1/O5B9YngDl/7p1fzdsefZi2EQhrElmqopTINinwlvC1NY1raV3o\nb1Ie19S0bcN4OKaqhEwfxRHGyOC+NsW710C2fs2DzKWHrhBFEfPFghdfvE5ZCbwqSVK8gtl0zoUL\nFzidzTg8Oha8dlGSZBmz+TLA0SIaJ/jhtpVOl8haaV6uKmanExbzBZE2nBwf45qWql1SFgV3X6qx\nOFI0b3z4ITJrOZ2cUMwX2MiwfWaH0c4ZHrr6EHvnz5OmGXlZsior+sMBJkooalkZGSu9F8vl2nyp\nqOoaVHCl65cZvIw87J0nnDqloVopH5qq7qeL3vfjP/GKk7nig/zYh36Ov/Ff/iW0gq1+F9Qnw3ro\ncx96nt/HNzu8eO0ardIkaYcsSUE9+cCvhydwrmWyyLl7On+FNZBM5R/91LP8xXd+NSD7eeUFxa61\n+B+8go8++RQ//PMfftlEfg9Y8EofpMtnzvI1f+xxzu/t0ksTfu+pZ/nJX/rCiXx31JdTfYiPG2WC\n6atltZTelloLZrubJgL7C903Sr1+GdTz5y/S6aYcT044Opwwm68Y7uyQpBmtFzLseLzFfLlkMp3R\n7w+ZzheknYzlYoVXUjSIUmi1hkyFh702tG3D6WRCvlygspQijzh1jaD3q4qjtsYqyIzm8vlzdJOY\n5fSUvBVj+ni0xd6581y5epXBeMxgPGa+XFE5RxLFmCihdQjZVlnqpsX5liQYv5USxoVS8uJp2jaY\nG82GreGcJNuMtqz5dN4j6YOwJnz+pVuvKLH/L//oB3njD/x9Lp87x92DO7x469YXkdgf58WXnuEz\nTz9Pp9sFY5jMl684yBPk9XuTCR74nWcfLK+/+xfezZsunmV30A+KQbypC3Hid5TVU2S5dzLl1//d\nJ7mzf8R0vuSLDfKPPnSenWGfyXTB09dnwHcADwG3gIuIUjNnkA3w4fdTq8Bs0oo8z4kiIyWdrSQU\nm0ZeqMKY+lLcxf/hVxVgg65qeMtb/giHR8d452WtNJ/T6/VJuj329w82kMA1SE0rhbURUmViybKE\nNI7pZinFaonC0e32JHlnLZF2rBZzemlCN+2RGUO/25XwR7fDI298I4+86c3EaQeHIun00FbuaWtj\nPFrCGJGoQdJvZ2jqRjxarLH74X/XdTEhWeqaJtRTwLVrN3j3j7+fG7dvc/nSRf7rv/wXeeihK6yW\nK3mO1TXFasXezhjFr/Cg+0OpJ7hy/i3snR3T7fY5v7fLd/5n38D//a/ejeKDQemWoeAbvvKtnN/Z\nomwbsiTi5HSCUppOJ2JVVXz23rtQfOBzfs4bz44ZpDFVBWlkUfmTD1R7FE+wO3pYnj/IWqd2IVyj\nNUZbPC0fffKzYdX7+e+PXwLOMOwUjIdPsbe9x1d+2dvpJRGTw33xWSrN3f0j/vVHn5Ak3+c9A2b5\nu0iMpywK0ljEkCiS/sCqLORgIakPvAvhGZkbX/V6zYPMcrFivlwEcJXn6OSExoOJDKtJQafTZe/s\nea7duiOlbyaiKCs8Eqc2NqKsK5IkASURMa3lJeaVmHzLoiCKDMZorDYcHx9TNXO5kSPFIBtgXcv0\n5JgFEEeWwWhAv99j+9w5rly9ytbuLkqLipFXNYPRCGMTlI3RqkUhyZw2RJoJoC3XevKqlJbOcMpQ\nZm38U9wXY+5Pi5GJWEc+NZ5r169/cZXl2otcu/YCZVHy+CNXeP8vf5gHT+ZzHn/4j1KWBdPFEqcV\n49iG3P6Dh4nzW+doncRM/ReZyo+nt+QkbQiR5/sR2No5jmZzfvjnP/yaJ/KveuvDfP07v4ZuloQ0\nQE5RzoMY+3kTeV3jnCPtdinzBRH36ZZVUxFFlsqIKlRWFUZriryC4E16va7Wtdzd36euKpZ5ziJf\ncev2HYmyN4Ii2Ns7y/7RIU0jfSV1KwyTvCikBI77pFDlHS8PYdnQcmyMCXyVltOT45BaiknjHp0o\nIlaefD6nXoA1SlhGoxFn9s5x7tJl+uMtbJZStY4GRa/TJ80ymbWV1JRqLYwWo4N5t21Ay27c2/tY\nfhWot0ZpNCrI8TKEKe03oESF+E9c1fAvf+iHRGV5BYn9fT/zs3zbn3ony3r1xSV29QSdZMS9g32p\n0HByevtiknxkNIt8xdEi/6KD/Ef+4Bm+9R1fvWFtSBt38LcZObj81h88xbt+5pfl+/jH8PwevMKJ\nWKkF3/Snvp6dXoZWnvf/8kf55NMfRAb4x4FfAGZ0YkMaYHDrOoQ4imgqYYRI50wVfDNBoWkcvvWy\nynsdr8FwyN27dxn0B0TGcPfObfE3ANPpDNDsXTiHsZb9e/sChtSywsF7rI7DcCArVd+2VMHPlaUR\nSRyJuX25pGlLOnEooe33ibUkLbuDPm9+61u5+ugbxd7goD/oie/LWFASwW7adW2Lw0ShDqOscIFn\nFEURRoeiSqNZlqWATMMHUojODe/+0Z/mb3zv971MWXw/P/DP/h/+0ff/bb71m/4s3jlcXVEX+f9H\n3JsHW5bc9Z2fzDzr3d5e+9qLWmot3dpASIAAs9hgwAJJFhiEhwFmNGbwmM3BEthhGzMYI08wYExg\nNTYCSUhIgD0Cj+wZDAjQ3t3aUG+1v32961kzc/745XvdqKtK7QkcdSIqqur2q9fn3Zsn8/f7/r4L\nb/yGv87b3vlebrWXv+6rXk23m2M0HFs5xve94Vv42i99Ne/4g//C1bV1Bp0LvOqF99JJpWi13mFt\ny+J8N3wCijMnlnnJwZjHV7cYzT5LJ+1w9/EzRBqsB+cytPZsjNZueh+eMV/54P2BD2kDF0ijEwNR\nFJK2NXvD8S3QxxzFyzm58iTf+NpX0jQ1ZVGwNxmTmCSgs/DRzzwJt0Ra38OsnlBX9ZGlgFI6GOrG\nZHECeLI0hWCJINvLF977n/MT8viTT9Dpdjlz+iy7ByPKshbH3DwjTlMGc8I32djcEkv94OEwHk9o\nWkuvL8SdKMmC5b1skhL21mJbA1mK0YZyNsN5S5ZmLMz3WFlYZJCmqNqinKWa1SwuLrC4vERZFyye\nPM4DL3sZg8FApJtRhIoi+oN50ryLDnHrkTbBWdSQKIHIW2epilIMskwW5oaAs6Hr9HgUj126zNvf\n9R6uXl/l4vlzfO/f/S4uXDhPXZW4pqUspxxbWECpP+HmndvDdMxFbly5zMLCIscHPb7tK7+Ed/7h\n51XmfsyXveACTSEyxqYuGE4mKG24Z2WOJ7efXUxcWJpj0EnRypLsAjx603tQPMLy3F0oDcqpsJDk\nd+ccSZrxwU9+5BYHgVTkWTQhTT/E4vyAr/iSr+W+i+eZjg6YDAucrRhNS/7DHz2Cv4n8en/6EN00\nZmHQC9Aj9LpdimIqm54WUqmXhDSc9XjnAhfjzm3mTz71FFmWcvrcWbZ2D6iqmtnmpsCgOiLtdGjq\nho21TVFreC8JteUMpziSz6apmNgJbG3xTpJp66YhDSZpk8lYXKQjzcLcgMX5AXksTsvaOdqqJO91\nOLa8jNeKhaVF7n7+8zl+8pRIUOMYlCGPMrJOD6PFgK1ua5wT4ymjBYW01gaYXYlPT4DZhUYgiADK\n4lvHk09d5u3vfi/XVtc4f/4sb/72N3H+3Fm8tcwmE5qi4PKVq7cp5B/g6uo1ynKE0ZpX3nuBP/jz\nT3AriP3CsYvgLQf724BiPla3h9eXTuGaiqpp8bzy5vcQ4HUhXEtOjvWeNMnRRtH4lq3hiId+9wNf\nsJBX6lFgzDd86cvoaJiOx+yPxjz8OUGDPn/tz+qHqOqGXqdDUxXgLb1OLtEKtiWOI7SXblTcfwXp\nleiEO1vIlE1LmmZcvHCe4d4u5XhCpzcgjVNm05K6bal8y4XzF5kbzPHkk5coJ1PQJjj6CgcoiyMi\npehk4vidpRlJJp5Ds2IKbcN8N2eumzM316ebZvS6Pc6dP8fpcxdYPLZC1OmgdEysRGptQwSAQgJJ\n40Q8vax3EgERMt+AYPvwdDyAUgqN5Ig5j8jzleexxy/x/f/wp26KLP7IT/00r3jB8zlzYgWcIzOa\nu86e4Gd+6Pv5sZ//RZR6nxQ+PIJnzP/+D76PVz7wAG1rKcsaleeA4+TxFf7Hv/W17O3tMhweMC2m\n1G2NjhSJ8xAp8iiHYJnh3Dz34HjVA/eijWY2nQlvqSxovaOqak7NukSJ5o8//RBKvTeMVeU+vvcb\nXsuJhUFQxgW1JB60hViQWTSsLM2j1CP4myH/6hG62RIHw1KsJSYTvHUop8nTDlEM+9OK2/HEnPtT\ntAvRJT7cgzr0s/FESov9QduQxILYN3+VWUtlWdEbzJPmuXg1KDhx7CR7+wccDHe59557RbPftvT7\nfXZ290jTjGPHTnD1+jVGozFZp8tsNqPT6YBt0UlCkgi5rZOkJJE4PSov2SsnT57AuyFtUTEuS+bz\nDnODPr28g0lidBZx3wtezPNe8HwGnQWxkg7hjZgI11qB1BGFhTaGTp7hWkvTWBpnwUGa56KkCo6N\nkTE4byEExP36b/0Ob/nhn3xGdf4u3vqLv8Jb//k/5nV/4+tCVJjndX/9q/k3//43uNVm+53f/DdY\nmR/Q6XRJ05T777+fr/2y1/D+D36I6xsb9LPzfOkD92OU5Mm0bcusKhmNRjjnOXN6hQtb21zeHlLW\nD5PFMWeWzpNH4tvhnefsYo+N6f5N78Ez5rUPvkCcKUMw5KFBXxTHOG3YGY7x3Lwih5dxfPkv+LrX\nvoKlhUWasuLK45fCISwKkD/7xBPcTio4nBUslgXKWSIj7qY14q6Jd8Kbamvy/hxeKRrr0c7j3J3j\nyEynM9I8DbC5oW4allZELjgajXnJxbvEOdS25J0ew+EQrSPOnD/H+vo6s1mBNkZcjo3GKOFsgSMx\nCVmWkOUZyidoHFkSs7w4LxTytmI2ndLLcub6ffI4ppulRHHMqXNneMELX0RvYUl4L1FMkuZimmh9\nOAwlO8UYI2Ng52m9DaOkw/vwRFrTeC/uq1rjHOBaPJq3v/t3ecsP//gz1v87+Plf+GV+9p/8JG/8\nW9+I8o7ZdMzxpQUU/4VbQex3n3sRZ8+fpBN3ufv8eaaN4+ff+XQhf7jpftOrX8b9F89QVRWj0QiU\n4lTd4I3m4atPw+uHX3//6WUWujlVCb2kZo9bw+vLc3cF405BYaQDF3NWbSI++PBnbwutH1+Exbmn\n6HeWef65+1nsdinGIzyKj3z6idt2o9vDKYNuLmgAiqauGbY1aRqLdUnId4pj6Uid9TRNRXyHrX3H\noxGL8/OsrKzw6MOPEEWiuGttS11XtM4zPBhxyV7izOkznDxxkoO9Herg6t22LVGkqdvmyNxQuA8t\nbeOJjIwm55eX6GcxS3MDFubnydOUC+fPc+9999EfDFBJKrYBSnLoUIbWNniHuL8qSVT2Tiz4XSDX\nH3qAOesEIQVinqYPuGDGabR4W739Xe+7LUXgXb/7f/GPfugH0MoTBZ+c7/27387XfM1X8uvvfh/X\n19Y5f/ob+bZv/DounDyGbUJoKYI8r964wf7uHmUxoyoLMatrLcpKIVu14vIsXEwtuWhOnN9jY0ji\niH6eEscxvTzFB8my8/OcP3mMV7/keTx6aZPd0TWW587zlQ8+n5MLiwBHQcIohVMS9OqbOnDjNH/t\ni1/Kf/yvH+ZWDcbJ5Xu4fP0GO3t7TCYTjDZ0sh6xTkhSTbfT4VaNNDyCUSq4cz8dDaJ1GLk7R5yJ\nWWikFGmckCTxof7kttdzN8SLJRsiTdPggdDQ6XbZ3t1leXmFvNflQx/+CHGU0O32uX5jTcyHjOGe\nu+/hxto612/coN8fMJ0WdFIXquiIOGj8rW3pdjrkmVStRVFg6xFYx0Knz8LCHP2si8ezvLzIwslj\nvPjlL2VuaYFyv0bHMVneOcpiwTqsIkinCQeDp6wafNAaxWka/DIMjW1xrUN5Q2wc4PncE0/ylh/+\nyZtW5z/44/+Yl93/As6dOkFbVZw9scLP/OgP8GP/4hdQvO/pzdaP+Zm//3284K4LlGXJbDbBtQ1L\ni0t80QMv4oX3XGRjY4P19XWqpmFUTkWa23iyvE+vExNHQp67+8IpXuNqmWk6kY0XZUFTS0jlcDiE\nKOGjlx9Cqd8GHjza8L/nb76Wk8sLYcQhbH68PCyRMVQeludvXZEr9SinV06QRT32Ng+opgXeWhoj\nia9p3uFgcvuK3Lo/w1mx644iRVuXRF5LRxqkswIrBjWMtZhDQvUdukwUiyw8imnbmrotybs9pmVB\nt5OzODfgEw8/QowmSxLWN7Yoqooozzh7/jxrq2vsbO+SRGKwRSSbX2QiYq1IlMJXNVESMzc/F7Aq\nsSSIfEs/z1iYHzDX62OUojvoc/rcOe5/8YsZLCxS1pYoTun2erTWEikTRkEOdETr2zA9UmIfH77/\noVO3jFsNVV0SGTlkvBYH0L/43OO85Yd//Kbr/x/+1D/jZffdy/mTxzGu5du/+et527vex60g9td/\n9ZfjLYzaghMnTvK9b3o9X/zSF/PO93+A6xs3mOud4aX3nmVprof2DnodFvsSpGqiiAvnjvGlwykP\nP3md/dETdNM5nn/2HtJISPeTyYR+P+bq3tWb3oNnzGtfch+owE9CXIq9ERt6E2t2h6NbQ+vq5Qy6\nT/BlD74ouCi3DMde7N51w96k4LZr3/4pKhgpqlgH+S8hI8qRZynYlrjTkUYGD5FEIdzJK44isjTh\n2rVrNE1Dnud0Ojlb+2Ph8yANX1FUXHrqMv1BV8ZGaUJrG+qqoGnBBx+iJMQHCC/RkvY6ZGlKmsZ0\nsowTx4/T7XbpdjosLK/Qn1sgybvU1mGDkZ3SRszrvNjZKy8xGIfjLN+26CgmjsWZ2gMqkn1EKUUT\noipik+AQ1LdpGgCur63fGlnkQbb3D+h0eyF/L6K1DaVtufC8u/mpn/gHaO9pigJbl+AVvpUCqm1r\ninrKrJgwGh8wm0wpi4q2aSgLQeacc9Jga3GTb5oabx1RpEmMIokNJAlZYmhbIc6bKKJjDCZKMEpz\nvD/gRedOh5BaQbPjKALCnq8ULnD0dCRWCkki04kzx5f5n97w9fzKe34NQR8fxPuPAxPmeh0+8unP\nYcL4a1rVeGXIZg39tMuS6bOyuMRnL1/jVs18L00hkOo1EgppraOpa4ms0BrbNDhtQnEfIh++wPWc\nC5nhcMjy8jK7O/uMJyO01ly5epVer8/Z8+eZTqYUs4Le3LL4P9Q1s1lBWVfgFRfvugsP7O7u45GD\nKgmBkVkcS6y3MSIB1jJ7b+uaXp4z6PVZ6g4YdHsM8g4nT57geS96ASunT9Eoj1XQ7/dJ0pQky5gV\nZRhtZSGALqVpGlovqaCtlfyIw5mqax1xkgY7dUKRI5v929/9O7euztV7+c3ffh8/+pbvIUkiep2U\nN3/rN/FlL3uQd//BB7i+usaFM1/P//C6r+f0ygp11QTZm8a2lulsyt7eHqPRSHJe4pjKNnjtaW0D\nyIFvtccYT6QdUWpQOhMSGxELgw7axJRlCUpRFCV3Xax5xYunPL62x7hYY2VwkS9/yfM5c2IJ72Q+\nnGUZkgHlhchsLSQxX/HKB3n/B29dkd99/D6213e4sbbOpbV1qqalkyScX1qhl/fo531uV5EHFTLe\nOerakkYxLiTfeu0x2lDVkteVJqnkQSkTZt935hpPJszP9RkNh+IloQ2bmxsorXnhC1/IbDZluH9A\nrz9HpDRlWVFUFVevXuPMmTPce889ZEnG/u4uOMmn0UqRpRmRgm4nF6VMkIWiHGVZkEcRC90+c72c\npYUF8iTh9KlT3Hf//SwdO0ac5TilydNInDDTDDub4ZwEPcZxTJQEvwzvg2lcI+iXetr5OY5jGtti\ngsGdxx/B8r9xu/XPe3nvf/x9fvzvfR9KxTzv4nn+5U/8ID/80299GmJXUsj/yx/9fl79qi8WSauC\nyWTC+sYa/Szi277mNYzHI8bTCVVdojX4xuIVxJGY60WRwZDSP55w9+kVUIJqKK1p2obGWmalxBZE\nac77P/xspOd7v+G1nFpelA3cGFrXYn0LXmS1WmuOLd4GWucRIjPg8rU1Dg72sY0ljTpkaU6aQDe/\nfTcaKQkaVIHwrYwiigzOWZIopqxl31yME5EuQ+AIPAe243/H6+zp00zGI1a3NlFKU7ctZV2xv78v\nh2hiKBtR4znnmI7G1CEHz2iIosC70opBfyAeIlrUbsZIREmep+A8K8vLnDx5kiRJWVlZYX5pBeKU\nyoJXEXES41WQDyuFiWK8s7RNI++ltUfp7FHIzXLOB+WpwbZSwDStxSsh+3pHCH0UjtTFc2dDE3jz\nZu7CuTcSd3LxTnKWqmppnYVI01QV2nvq2ZRqOkVZh6sbDg72GR2MmNVTtre3GR4MKUqJk6nrlqpu\naFpLWVfUgehqraWpa4yGPI5wdUmvk+I7DuMT0jTBaLB1JSaULhj4hZ7PRAkeEABGBVd9agXmAAAg\nAElEQVR58fiJTHzk51XXDdY2R35vL7xwiu/5m1/Ow09c5cb2o2zsToE5DibiVC3iDYUg7w8wqx5l\nb7LFpC5YKCtWFhfZ3ns2BaKfp5JZZg+TzsEohRcBOGmSYBC5vrUtdVDrPZcm9jkXMieOHSNPEmzT\nsL2+RVPVRDpGeU8WJ1y/fo35wYA4T8PcPcIqQ4vh6uoao8mEQadLdmyRajbFYqnLBuMVZWNxTQ1p\nEmAmRy/PiNOY3mCBTp4zf2yJpfl5EmM4e+/dHD91niTvo63GK4NJxYipLC3e6aPxUKwiVF2h2xac\nw7oYrSIMseTBeIcyWhjtWqGMwipx6a3rikvXbtxe9ry1yfGlPlZ54jzDJDHpsTl+6otehPYKg6at\nKnxdEiUKV1U0tqF2NTM/YXe2zc5wm6qqKNqCpqlIavG6KBtLKZZ8zGYNbVth8ORZjFYw6GSyeVQF\n/SRCK5jrGYzpcvdKj1ffd1JQBJcJKa5VGJOQZblkzihPlCCFhLd0usuc7+R8/9/+Zn7xt54+CA4r\n8uWFOf70s1eZzQo2DsZhIb8cike5NnyC8yePc/HiRfzlp7hVRd5PuiinMVphIo1VkCqHL2cMFubZ\n2ztAKUMaGRKj0B6M9tTNnZOgzs3N0+v3qaqajfUNsQ9AyOZplnL5yaeYnx+I2ZxtsW0byM6KtbU1\nilkp3eXCPG1dY61IDasaGufRIEQ3BaZSZFlMksTM9br0OhnHlxdZWloiS1POnL/IiZNnSPIcZyJs\niJXQSlPVDc4TvDqU8HFcG8ijAMGhNEC1tZXxkrMNCvHTsF78YNqmobWeG1+gO93Y2aU/P0+aRGjg\ne7/7O/mKr3otv/6u93J9dY2zJ76Rb/+mr+OuMyepZgU4aNuCui0ZT4eMhyPKoqAsCwllrVuc94JC\nKBU4U+5IBZNEWoI1k4Qo1ijnMEaTx4ZeIgqVM0tLfPlL7uOPPvkku6NrrMxf4KsefCEnlxaf3szx\nREkMrUNHijhNcMrz1171Mn7vDz/ETREdP4Im48mr15hVNWVjQQ+JteH0yiKnT57iU0/dHA2StZ/J\nARtFKKxIUK3FGyk6p+MxXoshZBQbFP6oULuT171338VHP/phyrIk73Sk2VSKqmmo6preYJ6s02c0\nPAijavmsvHdB/gxpHNHr9NBaojjyNGU0HpIkEf1ej06W0EtTTp8+Q57lkhiedej050jyHo1ztBZB\nKpw4G3ol0misQnsvKjsrkSFxLFEbTetorCWJxASudR6jQ+iuFtsACUaV8ZPH8+Y3fgtv/ddv41Zr\n4O+86fVY72gqyTZzTsQe1XCIa8V5288KdFUzHY0oZyU7m9vs7e/TaM3ooGA0rpiWFeNZwWhWUJS1\nkNUPhqztjymbliTSnBj0WZ4bMN/N0LYWGoC25IlHt4LotW0bGiGFikRIE3TvRw25s1byw5Sckybk\nB6IgirWIbOKE/dGEa9dXibXhxfdc5OPP4nx9CiGxP1uVtDt+iDjJ6PYG6DimKAqce1h4UtECsQbX\n1JIu7hxpEofCy5MlCXma4XwbRr5eRuIa6uavEJG5+667WF1box0OUQrm5xdYWlqmbS3ra2vs7+/T\n6XYp24ZpUWFdS6fToagqOnmH8WTMbDIiSxKyRPgQRou5kEOTJgmEzss78R3IshzXihvvieMnmR/0\nOL60wmAwR5TEYhakFDqKSHRI0g2yURvGElHspeKtCrJMiqOmaVFGkUSpVNJaciUgKJq8k3mu1tx1\n/ixKvY9bVefPu/v1pJ2uPAyRYVrMcG0IpHMe21iK8YS2mGK8o6pLRqOxZFBNRmxsbjIajWnaVkZp\nraWuPVsHIz55ZY1xUdLLMy4cW+D4XJfYeKbTGb0sxeDI0wylENMg14Z8KJmjeVSwiwdjQhRBcNk2\nOkJpj9KSvaGtorXiuPjaV7yYfgJ/+LFHubzxCBt7UxRzbO8/wPb+JxBzpGcTGq+uP0QSpxxbXGDr\nJhX5XJahESQgCTJN8NRlxdzcgCMzvrahDRwOnMTVa3PneALnL1zgYHdbQhyVptvpcWx5mbZtuHL5\nMgcHB3Q6HRoHw9FILOWjiLJpMCZhf2+fYjolS2Li2KCsPKSSS5YcOWxGRp4HrRWdXIjBeZpy6tQp\ner0ei4tLLC6vYNIcrxNR3EQRykRBoygHhzw/Fq0jbOto64YokZl620oiu0kMyolSobUukB/9UVK0\n85LOfvH8OZR6D7da/3ddeCOdwQCtFEUxpbKW8xfP8hM/8vdQzlKMhrRFyXQ8pi5KpuMpk2LEwXCf\nzY1NJpMpTVXTNC1FWdO2EhRatC1JnNBaCRlUOLLIoF1LN0/wnRydGkwUyPlISm4cnLb6vZzv+LKX\nYqMYrQ1JLC7G2sjX+3CYmchjnce7liiOObG0wBu/+tW8+z//GqjfxvvnIV1oTRYbtg+G1M4zKmoO\nO1J4lJ3JNXYnJSeWFtnYffbaH2QJxsg4KVYGjaAVtqlQiSB0KqiZDgtljztyVb6T19qN60zHE7RW\ntG0jDr1NQ9NUNE3DZDIhTTNZx77FaPnZdODHZElCr9s/UqkCkh+nNb1ul8FgQG4Uc72+WDGUJb3+\ngN7cPHGW03pP4zzWI7lNkTit4zzW1lLkao0KOUg6iVGBiyOEeoX1DtyhElUdGbPWtagltZaRk3ee\nuy9e4N/83E/zP//IT6DU7zwDWRzxCz/7T7lw/qzwaqylriucbfBlia4rXFUxKQomwyGz0Zj1tQ1m\nsxnD4ZiqtdQ6Znt3j+39fXb2h+xPxwyLgmlZsTedMSobZF29AniUzeEGSzsHnF3oc3JpgWg8I00y\nqsZjfYs2QgzXSlyHPRrrRckUoZ/hlyRqULSgTkehnhq810RxAjpi9cYa49GYueUVPvLRT/FsI8h3\nAPPcigM5KWaSIu4h73TDmK8hSxMMjmlRHDVMMhJ0KASNcVaI2SZQTaKw57fPoZD/b5BfT3CtcCuS\nKOLE8RO84IUv5HOPPc5jjz9OZCIJeNMRVYB4BwsDOr0ek7HIccVDw9E0DXEqFWESp+RZSp6ndPKM\nopA8pV6vz2AwINEN58+e5djxY1SzgrzfZ25xkTjNaCxhfi6jmtZZtNIYneB8RZKkMjryjihJZBPT\nisZbvNVEscIiMmqnrEBtWqG9QpkUrRTf9e1v5K2//Gvcqjp/85teT2s9RiuaosQ2LZHX2KrENQ20\nFleVqKqlqWr2dnZY39piWhSUdcP+7oTJrKCqKsbTgtq2fOLSNT72xDWeuVF+/PErvPziae4/dwzf\ntpjFiKSqSJJEUlutpaklLRkfEUUCqVonjH7vnTj6qiCtRaBZr4M6woBWlk4nZW11i+l4j3tOLfOh\nz17hmeZ68CPAv73lQt7a22N5aYU0zRnPRlj7cSJtyMwCBo+tKzGFy2KM9tgw5svSTJC84GtzCKc7\n7zCYELx5Z66magJy4VAeCaq773lcvvwUTzz2GFEcU9VVsBwoqZqavDcg6/aZjEfEsYRGNq2YlQgb\nX7rUfqeP0Zr5fp+6KvHKkWcZvW6XPIo4d/Ysy8vLNE1Df26e/sIScd6jseJppLSEe8r7FqFjg60r\nCQFFU9dFiNgwWOeDj1MIePUu6LIl9deE7kh7SCJJJH/zG7+Fn/+lf8ut1v93ftsbqJ3Ftk3I1vE0\n0ymuqTHe46YzdNMyG4+ZTWZsrm8wKqZUdcP+roSczsqGSVEwK8UteX17lys7e5R1SxpHnF6Y48TC\nHP08QVtJzo6jUNhoReuEW0Ak8RuxMRJMZ0A5j1JSNEaxEX6QkRwZSYGXzCcTabI848qNVU7OdfiO\nr3s1H/zU41xe+xjyHL6KsnmUsjmE1Z9dyN/YfogzJ05x4vhxiqLE+YeDx86AREmBXjcNnSzIfZ0l\njWN6eQdN8HXC4bHh0BcbeftMrf4duB5/7HNhHC9j3zjNqOqKum3FY8s5mqYOkSIGYxRtXaG8FCq9\nbicEFFoGfbGor4qC+fkBWZqSRIZenpNlskcvr6ywtHJcjB2jCKdETSR+RiGcVSuU0TivcdqhECd2\nMS51EvrpPGiFCV4yHmmUD0cqMt4LHjJtS93U4CHSMd/xhtfxmle+gofe8S6u3Fjl/Llv5Tvf9HrO\nnz2Lb1ta52jKEu2ELDvZ3cc0DWVRMBmP2VjbYHd3l939A+rWsTscMpoWbI9nXN/Y5Pr+HkUjxrBp\nFOEUoYh59rraLR5ikCeseC85b3l+5HtjQ9FrnUPXDVppIq/E+C4y6GAtoCMxYyQUMQoZ2zrvsSga\na8F5hpMxOo6ZzGasbm7ybEf3K/xlHtgTiJrvCjBH02wSGU2n28U5K2Z2kcY1jSghTSRCGhkMixmk\n8+AJHKWA5gWkVWT8f4WjpcuXL3Hvvffy+ONPUVYFJ44fp2lqRsN9mqoi66cSxd1JqcqSqqqYTiZ0\net2AsoA64sZElFVFt9tlMDcH3lOUFd1OTtO25FmHfr9PlmbM93okSUI5KwFFfzBH3u2jjFRwXsn8\nz0RxiJGXTc1aR5ZlVJV4wyRJjLWOyjsaL7CnszKHdyHCABWY7FpjjHTJFy5e5F//3E/zv9ykOv+l\nn/0nnDt3DqKIqmooigLlLco72qLElSW2rimnUw6299jb2WVn74DReIo3mrJp2does7O/z87BPru7\n++zMpjy2O7zpgv745YfwTc3J+XmyNCePI8qiDkZCoUCMIsTjT7gleC2BjNggdfOoKBxakRg/Besq\n8jylbkqeuvwk1nue2hqC6n+eCuMG8NJbLuSi2qKxlsY6+p0c2zpca0niGG+tKGqcDTbVDmcdg0FP\nVBzB8TkK2T0QXHSzFO/vHEfmsccf4/n33s3u9jbeNiwvLuLahuk4+CpZi44UXnmqqqaqa/ysoNvt\nksQxzkkMh1YID6tt6KQZg74gGYRx0HhUMTffY3FxgW6W0Utiut2OIBI6Ju8NiPNuSKtWtM6TBJM7\nIZ8EtYORMFClIE4z2cDQzygOPd66gNgRTCEJh4TIUqMooq5r7jp/nl/+uX/GW37kJ5+1/v/Pn/2n\nXLhwTtQrVUlb1+i2Rjc12lqaoqTc32c8HLKxusF0OuPgYEijJWl+a3vE9nDEznDI7mjE/njK1nDE\n3hHa8VLgUa7vXOV4t8OFpTlOLs9jTEGS5CSRpbHgsVLMqSjISnWQdkoXarQSpzuFQNnBFNMrMEaD\nkiR7pTRPPvEUDkXe7XFlbZtnP4evQtb6zQv5/fGQXn9Ap9uVEaNr6Xe6FNMR1oWkYa1Io5imkuBC\nrRAuxOFnFscQVIt5nt1RojtAW9cSIaI1rbPEacp0MhPkSEehKLZMpwXeedIkop8n9Hq9QGSGqmpI\n04h+v8/uxhbGSDhwnudkmazRPMtYWV4m73aJwv/PKoiTmMRHuCBJN5ECJU2QcxKAGAcvFIsgzLLW\nffiMIzE/DJcOhn3Wyv7TKlE2GX14uLbgPRfOnOIf/dDfxyuPw+GdR1kH1tFWFVQ1tq6oZjNc1UgU\nQuvZ2R9xbX2TvdGYte0dtvYPWN3aZjSdsTGesl+UHI3leZQxI9I05nZqz/1ZQdvWIYeooJt08E74\nQIQiz7vDsUwiSfJeimOQ5vWQJ3QYERDoikLsVyqkXXvKuuLq5Wt4a3k25+sC8IHw2ruQkNQ5pLgZ\nUTUN0+mEvJOh0JhDTiSetpYmqq4aua+w93krKjNjJAurKsRw8FAddyhOuN31nAuZbqeDVorVtess\nLSwwHO3z5FNPsrG5yaDfYzgaMhgMaNuGyXQiVtRNhZt4kjghSiLp0JxlNquZX1wkT1ORw1nL8uI8\nu3t7ZInkaeRZTt7J6SQa7aHb7XLy1Gl6g3mRViPMaa88zlsUEXGS4FxEXVdEaUrZNMRpIqolnKiZ\nvCLKJLzvcF7tvCcJjHaBGmPqRqpbrRRvftO38mWvegUPvePdXL1+g/OnX893ven13HX+HG3rxAdh\nOiUxwrje39nGVgIzTkcHbK6vs729x3BaMplNGU9L9sdjrqxt8tkba0yrSuA1ZZi4Q2jx5gv62u6I\nU8vHsRh0FAuMaCUtVilNUdVA0OgHI7kkj+Vwi1SozGU+rA8D9BSAB9dSlQX7BwfMLS6zsfu5m/Aj\nbr+Q66ZmNBmzsLCErUakaUqjBBr0h0ZwwSbb47DOhkOzkoJU66CqkkLSWivdx3NYzP+9rpMnVkhj\nw2h/j26eY+uKz3zqk2xsbpAk0qVq74lMTFkXqACpT6cT2YRjGdsIdOro93p0846Mebxjrtdnb28P\n7yx5lhMbQyfL6IZIg95gwNLKceYWlzBJQu18OLh1QBrEwgBjqOsS7xWWILUEvBI3ZedBxWG2qEQp\n9rRqRvKFlJEgw7ZtJaoDxXf97dfzpa98BQ+987e4urrGubOv5++88Vu4ePYcrm1oyhLaBt22zPb2\n8VXFbDJhOhqztbnJ/t4Buwf7FEXDeDZlZ1qzezDi6sYG1/b2mDW1jIiNDiObZxfxm9OH6Kcxi/N9\nscU3GocKQX4SlVI1TUBYVCjotLz3Rh8pNDiC1RWZieXwC2OCsp4xnkzpzM3z4Y99Gn/T5/A+BFq/\neSHftlvkmXxusdG4VlFX0oQ5pYIB39MePpExNHUt9xuej1jroxHsM8cxd+oSA7+WTq9DnGX05hYY\nBiduooSiapiWT4/aivpRDiYjlI4Y5Cm1V5RFyYULd9Pr91m7doO5fpckiWXPtpbW2zBYVlR1gzEx\nJkmIsiyMoMHZOrhhC+EY5HAWgrwgua1r0fqw65fsOO+fJoy6YKnhnOybHh/+/WH6gKifNIJyOOdo\n24rWWdpGuCiRNrRlhStK6umUYiTI4vruDmtra2xubbO5s8vG7h43trfYn5UUrcVHcShinr2+q+pt\n3CpeAB7E8SHyLEFrT1NXzGjBWTEOjY2gvkZTlRBHKlhCiZO9iswRb4jgSxRFGhUQK5xDacPq2ib/\nz8c/w5Xr6yRJzInjS2wcXOMvO1V3gX3gdcg5cFf48/chLtb/K3sHD5FmoZANyFHVttR1LcWT1jgb\nYiuCSWiSJFjbkKYJcRLT1hIAm6YpzyVr7DkXMvNzffb3dtHeMzc3YH11jf3hAUkIlOv1OrS2wWrh\nWkggmhysk6Ig0pqluR54x9xcH60U1jmxeD62cjRy6nU7ZFlKt9clSRKyVHN85RjHj5+UHA2T0npN\nFsfkwd7YeicHZttiXYsPUDrKh8pUyIJta3FaE8WxwGsBXtRKycMUKnFrrYyXEFjaWceZk8f5yf/t\n++WDOOQRBBKltS2+aSmKRmR3VYNvHVXdsHcw5trqGut7Q65t7lBWFddW17i+N2R1OAkP/xchle9I\nOsTbSDhr92HhEiUZ3gszvSpLquCMK52IdAeRiXFaigZxYg2sdqPEZEvLiMlZKQg3d7b5D//1I3zm\niUt08xuMR6NwX59CZqNXwv0e3HYhHxw8xMLCAp1OB9s6YhNRTmci8Z21pLG4fDorXUNVlhht6M/1\nKIqKtrWkWUKaZoyLEq8FcbtTVxpFzCYTnLUszi8w3Ntlc30dY5SM9WJ/NLap6gZPSBdHoFq8J4kj\nellMJ++QJGmA41vm5roYramqin6vE6StguRkacriwiILi0v05uZQkYyAoiRGxREh1RRjNM5bIcXC\n0fzfKRW+xMl/R6SaJnTRKvxyTrrTI4VMkKh6hCToW8v506f4qR/8gdA4iP+Gb1vausZXFdQtdTmj\nnpQooGk823sjLl1fY284ZnNvj+2DEdv7+2wOJ+zNZmyPD0PupDMVNcSt06P3yhKlke5VyXNbNy11\nbQOxWZ5ZrTOUMtgQca0AZSQzTQVlxmE3CuAQH53pdApasb27y+rmFsJT+Pzn8G5u25FWNWU5o9/t\nClcJh61tcI5VQUUS4doS75yobYwiS1PqciYqsiQWdU7wPDl0W75jl1akWSo8KiN7blEUADRtzfQW\nI5Frmw9x37njNG3BYG6eC2cv8JnPfgangSTGaaEaTEZDBitLtHVBXU1YWp5nYWmRRsdYH5FECU1T\ngtGYJKZuWpwT+wBjZKyuDjukpkUrR2xAEx81TaKWcUTBSqFpa5ElB3TG2VbGerbFN434W5UVWiHy\n6rrGJDGl87Rlja4dvmnZ2dgU64ztTfZG+6xt7bC6u8e1nT2GRU3c6VKnOSpVTEYjbt2kvp3bBUMm\nscGicCrCOcO4AtuKECRPUlwr3nZaaeoSYh3jncE2DmNilMlxJheXce2JtKJ1NbHSpNrz/j/7OG99\n++8BfbyX82h17xoLgz77o2c6VT8S7uv/Rtb9OaSQ/1cI5UCe1aqsWexrmqpkOp1gW49SCcpYIhzK\neOq2RPmGONK0tiaJDHVZYpTBGkMEaNtK+OcXuJ5zIeOdEHIWF+ZZXlhia3OTYjYjzXMyk5AlXbI8\nY204lK83mv1JwWGVXvEo03KPC6eWOQyObOoGreDuu+7micf+4sisp98f4JyTcLE8R+Epy4r+/DIm\nTkk7OUpHeNuioogkimVwokOYo7fB2C4S+NG7owyVQ7vjI7jWSRd6OKdTXoH1wp9pGyEGexl3eCUH\nr20a6qpGG0UcZ9iqxlYldVEyORgynowZHuyxtr7O6uoqaxsb7EymXFrfZDieULWOteGEmz381r6N\n20k4syTGB9LdtBBItK4aWtuQNlI8gqKKWrRpiXUSYPVIHuIoweiIKBY1AcrhiflPf/Zx/o/feD+o\nAc69JNxDGX49iHShDyCbuP+CC3l3Z5tzp49jcEdE6rquSVPhB7TWhs0D8jSjqWu0V3Q7wXDRQ5Im\nkgocRoh36hL3T8Wg32VpYZ4r127IAUSEShSdToes02NvNEUbTaINRf2Xu9RZJV3qGRXJeMkL0e7M\nmTOsr65itCbPc5JEwkrrtgaXkaZJ8NsQQp5KoiNn7NaGLCqlqA/DKFUg9OlDnxIlzNbwZy/LXBoJ\na4VQG1RBztvgsyH2B7a1AtQFjw7nLK2tacLriYmxVYUtSppndKabe7usrq2xvrHBxrZ0plc3NhmW\nFY0HnyVsb96MMP4ipBi+hQ+L/xBxpLG2oSomzBpNVVdSoMViFIa3oSNNBQEMUmuUEDyVliI+MmGk\np6UxUcqwvr3HHz/yObYPxlTW8+wi/gLwGuBnuV0hv7HxENn5s6SRdMBVUEwSGifrHNqJs3kcyXOY\n5SlVlVCVYsOQpklovto77uzb7/fDeKildTW19YE07ikry+0Q5O39EcuDLs9/wfMZjkZsbm7Q6/ek\nAW0bRvv7rMzP0clzOnlGlmb0e30RSjgHxtGE8YlRWozfrA8ZZSLjjUMYcV0LxwVk2UuosajDrLNH\nwZXOSV6ecxajFVVZYZsWvKUpa+qqwLYNEVC1lmoyIoljjHKiUipr6qph88Y6V69cZe/ggM2DfR67\nepXNnT12pyUjC431RLUN+20izcJfGsvzjPfrAeBj3Erx1ok6TCYzxkmESxO0EnJ/pI1QOoy44Fov\nzXt4F3AeHIpIR8RxKhQM7cE1aCMo7NW1Td769t/D+89XIr05FDHPPqfg14APIs9sAfxA+LovBR5k\nNvsQOzs7uLYWS4RIoigO43xQijRJSLIYWxWAI45SQMi9SiniLAWFcJe+wPWcn5BOnuKcJ81zxuMh\nnSxn0O9JtacVSkkXVxQlrW2ZlNz0Dbiy9hD3nFig0+1yMDrgS774lSilmEwn9Dq5+KZYy3A45MSJ\nE+CdQHrGsLi4hDOaxoEOMrKICG00RdlKXPxh0KPyYYzhxPZbRygc2qijEYZ81vKAKMRHQAWPE+pa\nDLO8oyorZmWF0oq6qmgqSVX11lLXjfANnGdjfZ0b11c5GI5Y39ri008+xScvX2F/MkUpxeL8AirJ\nmBaH0uWbPfzv4la5LjBmqbuIVg5loKks43YmRDtjiKOIprZoAgQaeaIYrBW/CnREZBKBbUNIGNqx\nurnNv/qN98tC9n95IcN7uZnU7gstZM8naNqWclZSzkqUcyRxDLYJm4k74mJ464i0ENAIQWYyGxVp\noXWOO+mk0el1wNZ0OjlVVZOmGUmWStGSJKhI7nU2m4H3NLa5ZZd6Y/shunlCW9e84HnPZ9Dp8eR0\nRpomNN6ijGIyOqC3tIDR0NYFkYHlYys0KkKrBEmtrQUyjiPqWlKtoyQlinxAhLQoYgKRO1JGRjKh\nO7XeE0fCC/HWohC5u3fCafK0KOtoq5qmqgSZcZayLsV7Q2kmVY2qHdSW7Y0NNtbX2drdZutgl+sb\nW1zb3GZrNGZcW1ScUidSZNWzwwbn89f/twC/yi3ToyODQ+G9pigdrXHUTSt+VMTY2pFFiqryxEbj\nowjfenxk0CbDmwy0xmtBaNqmItYRifX8/oce5q3//nfwvo8gpJ9AEKLPL+L/BXJafiD8DDcv5MfD\nIeQpdVXhrEKbGK0sOoLW1WhXExtByhIjFg14IbBGCpR1RBisVVh959BIgL39Mb1ejyhJmB/0uLa6\nCmgik4CquR2CXNV/zokTJxkM+nzkz/80cFMskQKjNEmckMYySpg7foyF+QW63R5VWaGzmCxJhaLQ\nCrpmvSdJ0qMka5A0GWdbrG2P+C9KychcBTKydy6QARUgZ4p3DucVbVWiPdimpi2m1LMp3rYUdY2z\nLYnXeOupmharYHgwZG11nUuXLjOZztjc3eWp1VUurW8yrj1boxnPFGrADi983n0kRjMe3yov7DHm\n5/ocDN/G54ft9rOIum54fH2LJzZ3mO9kPO/EAktzXVov3jN5mhHHyZFHkomiYOQZE0UpWZaTpILI\nGK1wrRhyem95z//7IZ6tTsqRwv1W59T7gN8Efia89gvIWfErwCMBlW2OfMMI0w2CpUBsJDqFtoJA\n4D4sSpVSRLGMm6I4fk6F/HMuZBYWFtjc3ARr2dreYjAY0C961HUDFsq6pKhKxuMRpeU2b8B7mNQt\nShf0BwPOnjvHpx55FK21SA+tZTqdkkYRvV6PjrGkccJgMEecpkzqliTWz0jgderLrcoAACAASURB\nVBRVg1I5h/SlQ8lZa+ujvysdOlMZmEoFjgRYayUzO+18IHs5UDVVVTKbzWhrqRCVg6KY4Zyj1+th\nfYtqK2xZs7q6zpVrN9jb3ePG5hZ//KnP8MjVtfA+fDHwKPvTDeY7HbxS3Prhfzlx9EGa9m3ArwMn\ngD1gxiBRbA5H7M4KlgY97j8xz3wnA8TATKw2xGPhcOIcmSQk+0ZEJiWOcsmdigyNrdFK857//Kf8\nVS/ktq7Y3NhAK4Py4pNibSvOpUYWsgqjraaq6HS7Ij+tK6IoIk0znJfgxcPx3Z26+oMBw71t2rZl\nNNml251jbn6OuhavlbIY43XEbFbgvaesWm63/rf2hqzM9bl499088bnPUNU1SZpg21a8RGLDoNcj\nSxOSOKHf64X8HYdyoUsPXih1XR9ZtLetbORHbqbOo4XjemQMdjgakjGUw9nD4t2iPeL8ax2uFY+M\n2XSCMGU8xWSCamqyfpfGeVxV4xvL9vomTz3xFNs7u6wd7PHY5Susb+9yULZMvaa2Fq1LlNL0B4Ng\nE/8ynr3+vw/4eW5VxKc659HLqzzKKnN5xr0n5pjL0+CLIWRq4Yx5ERdo4c4Yr4h1QhxngsooD64W\nHpb3fOTTj/Pz/+59PNsv4wFuXsQ/BLwB+HfPeP0vF/KTyZ/h61JsJNIOh74qeHn2sqSDb0uca0ni\nLkop2rDG4zRF4WnbButcGI7duWthcZmFhQXiJOH48RNcvb6KbW0AmRS3NQE0mrvuusiVK1cYj8Yk\nSYxrW7xWdLNUJPrTMb7fpZPnpGlG21qsr+l1DE1d0dQS02CimDggam3YF4yOAtIiqJrY3ruASgjZ\n1QeaAArhjDmHt42cFlajrfBNbDnD1wVtOaWczRiPh8HjZA6TdHCRp3aO0mpqFTO1hs1JzeeubzJr\nPencAk89dYObNTCfefzXuOf0aSQv7Obp6N3OCgfDMXxe2G7TWDZKi+zRD7I1fpTHNy/zRXcf43mn\nFvEWjG3JSEKDFYuyL86I05w4ztAmxQfxB0pjIoUB3v/Hf8Lvf/DjwJfz7OfxBtwyrubBcN+f/9r7\n5GdJ+nicgBwB/XJeEHilCAo9AqHYS3RBUL9po4+MIuEIZLvt9ZyHr2VRcuPGDXZ3t6mrioODfYYH\nB0xnU+IkYjDo08k7sqC04XZV+rQoaduW17z6S1hdXeWpS5ew1srYx0vqZd7pMJvN6Ha6LC4skOc5\no9EYYwQis56jwDWALM8wcRTyI1oa28r4AkS9owV2E7+G8OZ4dzSnls6zpm0a6qqiKkrqsqQpK4rZ\nhNHBPjs7W8ymE2xTMz44YDYeM9rd5drlS3zqkYdZv36NtbU1PvroJ0MR8z3AOvBH4ffv5mA2Y3F+\ngadh6x8Dvi38/ingI0GmOwd8CVKVz0iMZ1R79oqcrdEr+IsbFe/92BN8bnVHIEXrKIsStMEEPwUT\nCZlO6ZjIxCRJRpKmpElGmnZIk5wPfPgR3v8nH7mF6dn//4WcReqIhySQqlwqhIIlYebug9OxkBs9\nURSRJAlaC9ErMgKd3snRUlkWrK+vs7WzzXQ2Y/dgn929IdNZBUozv7BMt9PHto4oSr5AofogVd3w\nmte8mp2dba5du4YOSJ93jjRJ6OYdismMPE1ZXFyk2+0znczQKJIkwVtLWzc0dYO3XuIsDhFGr2gb\n4ZsJB0YfjZNEruppXYPzIf/FtbR1KbL4qsSWJdo2uKqgmgxpZ2PK0T7DnQ3a2QRjPeVoSl1UjA9G\nPPHkJT7yyKNcWt/gqc0NHn3iKR5f32SjaLmyP2H7AIbjl7E/9Owd7DMXiPwSulh83vtzBkiBtwEL\nwDEEDXkbWaRYHRZc24Vruw/w6Rsl7/vYEzy+tU/V1lRNHawYhPhs4pg4TtAmdKR5Tpp20FFKFDb2\nOOnyn/78k/zYL/0mTxeeh4fxO8I9PPO1w2K0jyAxz3z9F8L3CB1pIC+DFJPeB2sIY8jiVDbxVrw0\nDgtQo00Yp8pze9il3mmOzMmTJzl27BjdTlfSpOv6KBcqjxOeRpAPP8+ni8+TK4usra1x7dp1kjQJ\ncutY0o+dw7ctkRJ33+l0KqRdI4nWNiApSRyLGtOIDYPQA3xQ38jGYIwhjpLwXmm0MsEOToXvKWnd\nzsk4SivhuXorBXtTFlTljLapxDpAi0lbHEfUSlF48ElKZ2GR5ZOnGSyuMC0bnrh0je29EVneZTQ+\nRGJutmZ67O3vMMhSpOH7VeRM+FXgvXSymNX1Q5Xc4ZmxAXx3AAbeEP7+9Fnykae2mNXtkfeaqPHC\nnm8EgVc6wako+IkZ4iyT4OYo4+rGNv/8be9E9qpPc/Pn8ZGbvF6E1y983msfBy5xamkhFI4qTGtE\njacJCeio4KrfCtka4eVlWXo0LWlti9ZKKBDmC2/+z/kJubK5yubBHqOyYtY22DjCJRHn770XH0e8\n7Eu+mMpbrDehSvj/iHvzWEvv877v89ve7Zxz97mzcWa4yqS4arNsiVosu6ljOW4S2wmapIUDNwla\nIAmKIigCNC2KFAgaA02CLkHTRkocB3FtyTFspTFiJ5al2JKcSqRESZQoisvs693O9i6/pX88v3uH\nlGYoBrDDlxjMzAHu5dxzfu/zPs/3+S53KlQ5OMoYRpurNGvrfPn5b1JNVvHRiCOvLRiVBe10l9jO\nBBYuC1BJCF8xsFwcEPolRmuqUqzsUxyIvkeriDXiVmqNwR2S+5KWzB5rSFYIrxglmUNJZJKljuhh\nifMtdbugWS6o2wVmOmN57Tp7ly6x3N1heXDAcj5juVywUJq+WeGmdry87Pndly/w0uKQG3HnIjj0\nLbdh638AXMu/P4VwUr77MPdBcafD/LvfvsLN6ZTOtwxhIMQBbcUW3Go5OI1r0KYAV7JUmqFwtFpx\nYeeAv/2xX+QP/iBvUpsx2gcKBYQhmzeJb40oYSMMA2oYct6NYt4ekFKHMwNGtajUoW2gjz1F851N\nwX+46+KVi1y/cZ3ZfC4PTGuoRxPuOXOOyWSNp558Z3bKjAQvq8o3Ov9NXXHPPWf41rdelJscRfSe\nuioptGZol7L2sE4alwht2wpJsetEqqi1EIJzYvztB57KkLs+klIrpcnZqUcEX51Ny0iBFDyaiAoB\nFQZiv8QvZ6R+ST8/YLp7k51rV5ju77M765l2iYNloFMF0TUsk+PqQcvzr15jqSz16gZX9w45YK9v\n5L/y/NexKZLSPjKZ/jWkkf9r+e+i8Lk9lQrS2vr4uu+XDs//Ny+xO1/Sey9kTmcxRYlSUtSLciSF\n25REpbO5jMW4mss3D/i5f/xJhMD7nQjRK9y9GX0H0uR/5+uvaeSzaymknM586OEkSNrhhGryg7jv\nu2zZL0o0lYnah6q+t/JaLCTpeGfnFt/85jfolks0UFhNYTXHN1YRlOoE8KH8+8dYbxyba2tcvnRJ\nPMiURmdUpLKW2PVy5lKkcJa1tTWJkwmS0edcIcGBVuToOr9/Ko/1ImCQmANjTW5qDlU5BfJ4k/tL\nZR+qQ8drnbPc2rYVD6QgHDOjtNRO66ibEWsbW6xurVGNHWjPbHqLF775FX7/d3+HF776LLNbVxlb\nRZ1dmt9o8ItEDtqO2+f40xzeF4t2QBRBb7Zx/l9RTHj5xhRrTV7BSHNZ1DU2m2xqJ8RxV5a4ssS6\nEldUuKLkU5/9PBI/8gvI8+iv8Ppm9BXu3qTuA3/2O16b0hRWPIb6NqMv8pnoTOxOWaBAku0H6bZq\nrCwLqtLJcyuJ0GAYBtSbwGTedCOjElRlRdM0uMIxahpWV1Y4cfyEBElqzfnz53HOMSrdG7wBU5yC\nUTPidz7926iYsIj6oywLyalYtpRFSV1XR1I4UdjJD+6sxVn54ORBkP+NufsDjrr1I2fD/OcQXyPk\nTUICG0JAhHhZSdX3LLuWebtk2XZEpajGDZO1NarxGGWtBPytr3Hm9GnWxmPicslL33yB+d5uhsvu\nPpHvHRyaav0sUhD/Tf79z+fX/yr/Pof5xWv72LwXVUqQGAn3NEJUNXlKtZayKHBFQdM0/Ivf+bd/\nCAdZzOGW2YjttZ/Fa6+UoV/54BTOWaqyFD+ImB9I+fMlCcfprboUogQqyxJtLKPRmLIsOXnyJFoL\nT+bKlSvZ2TRRuTc+//eePsm/+BefYrFcCMHXOpqyoLIW33VS6Isi3+QyTRrj8o4/CfFQS17NUU6M\nuq1uUUrhsqPta4PiDlcUOptMxRCOCI+aRPQ9YejpFguGriUMPcRAXZWMRiNsWdBqTbCWanWVjeMn\nGK9vsGh7vvXtl7l5axdnXIbH797It92SSVlwp8lUru9ugO52XygmvHRDst+00RIUWDiMtdnttQAt\n+TxKW4HaywZrK379dz4HahUh635n43nvHV47/ByfQZr873xdGvlRISGv8qEIf1ArlU0d01HGVUpJ\nJPd1lRtLTfBeEDYrpm8xuy+/lZfTGqcVK6MRKXjq0lFYTVOXrE3GbK+vcWJ9wqhcUhe/x+ZK4Nz2\nGvfdc4q+64QvlHIdD8JZjP1AGDpSkKZ8srIi3LOywhiHtU6MG40+4lgIrqskeLIspN5phXFCgE+i\n7eUwYVvnwERryyMrAXEIz74psn/EuuLIMBUjkvI+wsIHpt3AfL6P9wcY0xGHA+a7l1F+n3MnV3j8\noXv4sR/+QX72P/vTfP+73oHWdz4zSj0rYZdvcF8IAng39PvOjXM7REZ1Q1lIQGbdNDhXgLEYV2Cd\n2DJgVH4/ISSPLRzXbt3KSPxjCL/r48i5/gjSjH6Sx89to/gYSp1EqQ+j1UmkaU1o9QGU+jAqN65Q\nsejfx62pYb/3dF4MWiVCxeZ6FvO5lz+HELDaCEqb7w2TbRNIEYWirL73EPvmQyP3dgne4wdP7HvC\nSmDZLtnZ3SGlxFef+yopG4OVzrI+Ktmdf7dV94nNFQmPinDr2nU2VtewKApjsCgaW9AtljRujAXW\nVtcYjZojWNa5AuMcMeWVhCLv4l7/sHwtHHsos47ZAdUoQWNSUpAEJkVLvsvgw1HUAcaRnOzwUopU\n4yJ7tySSUtzY2ePiK8/x7DNf5hvPf4P2YJ/N0YjgPDf2v8wdE6R5Nk8Hd+dQSGPxt17zdW98mPv0\nNaqqzlwIIwzxssa5kqglssFmIpgrSowTCPbG7u53HOT/Apkon0SK8pS3nznO8xc+BjlJG8QMDUCr\nD4jzY3qGhOx2F/17WPSieFpVJU3hZPpJ6cigUSbSw/wcMnRsSMEQtMYojR+GDAFbhgjDm8jb+MO6\nZtMZRJH4+mFg0bZ0y5b9vT36vufFF7/F3s4OrqqpC4cOkROb69mq/pe5LVuccmJjgjWa3d0pVVll\ncq3H2RKXFKnvZf1hLCurq1R1jY8K7Qy2kAKPSrKq0IakVL4XTF5n5Aemeo3BnVYQFDFJbIHRCh/y\nPZNETeOHgdD3AturdGQfbq1A/M1kBVtUuKQIRGYH1zh//gJf+dKX+fqXv0aczzi+WrO5MuLVawbF\n46S7Tabpi0y7O/vFSEG8UyN/9/ti2X0V68QfBiVhga4oiUniSw6n0aKsMM5JLo3RXL21C+lJhJvz\nd5BG/vAh82cQYu+d+TrwKrd5IbdfH5UF9hABUBGTU3wPOUkpxmzhkH9pycbRusD7XmSxWdGpjDy0\nU3xrDfEKp3FOM19MOdjfxTlJ5N5YW8GVFVev3cQk2JqMUSpRFgVaCS/u5o0b8pBKoJVIaq3SjJua\n45tbLOcHVFXJZDJhsrrC6to6XVAUdS2eRt5nIcYhmnXblVcyuDiqLdlO5vYqO8lDNBEZMqfniD+T\nBPWpilL4YUSGsqLrljQrK/gISrt8f/UsuzldL8G8Dz/2CA88+AA3rt3ElQ3vfM8PsHX2HI89/TS/\n9ls/wp3PzIyT2+e4sX8W0t2alc9xN66RENB5/evqWTYmG6ytrJJI1HUjjUxZisNv4XClo6ikoVFW\nY5zNKnXPsfV1lPo8pCXwMwi/6x8C3wZaHj2zwUcePcUPft9JvnZhh3n/IsfWT/Ghpz6CMZbPPvcC\nl2+8wrPfOgD+FK/njP1lpsuPCflYSdOushRemqDsGaYVGnX0TJDVUxLTwX4gxfgHnH69t48tCkmh\ntSWFK2jqhlFdE1NiMZ9TliXz4Bk1Netrq2x2PZev3yTxu5SFY2OyQeEsm5sbXLl0iXFZoXzEFgYH\nxLZjY32d+f4OpdGsjSdsrK8zHk9IRuA+68zRA/C2kVGeeHLzkrKjYfDhu5CAwogCIEUvRUIbQtcL\nd8B7SdAuS3w7BaMJRhF7w5Alru1iQcg5UF2MVFXJubOnqZuG2bLjiXe8m2ZtjT/xl/4K6U4HWs04\nsX2Cb59/6K6FXg7Sa683Psybq+usrKyQokzrRVFhi1IMpXJjY50T/oyzh2wr7jlxHKV+5y4HuePB\nE2v8yFMP8gMPn+XrF66xGL7N9sY9fOCJhynLks88+zxXdy7wpW/c+SDvLz8mMGF22gxJAtsOjacO\npb4225oLOS9hrSYMojJo6pplH3kTa9I/tGtvZwed97hlVbKyskK/aLFasb66gu9aRk0lqiCtmZSV\nNMJ+YNa1xPg5qtIxqVY5e/oU169dI4ZcTKNkLIW+p6kr0tBijWFtbZXxZEI9GuOqCl1WwinSCnU4\n1ZDPvjYYZ24n+GqdfWHUbW8YFBqLseIASt5XBy/upzFFTG52ozcMyDk3VUPXtsSkWbYtPvUYp7Ha\nM3KRc6fWGbtHmc2XPPTIozz6zvfwv/3TT/BPPvFpUrxzPpMEIq6Q/r0b+TvcF+pZtlbXGdcyiY5G\nY6qqBqUFSi8cykjKsRapDDGJ9f/xY5so9TlI93DnRj4CH0PlJv4wRfv9jz/E7z73SZT6TVJ8gpSb\nVHiIeXcVmDLRmrpyKG0kcV4ddfGABLUqLecbktgPKCFtqxgxWlFXNcshZc7VW3d13ZIYPSpFYhjQ\nKnF8e4uT99zDC99+CaNi9ozykjsUA1XdMJ/PUSiSDyjthOAfPXHoWZ2coG872rbFWkPbdZLfFMSt\nuVAa34vtQooeazWD9yRl0PawwTFHXJ2j5ia/v0abbLqWccgcfZKCz18TsdnNdug90Xf4vjuq7Sop\nrCsZYgJdYWxF1Xh031KtRUpbcO7tBc1kFV1W7C5a1jcm/L2/9d/xV//6/8RR+nse/H7mox/hys0d\nnuPLd1Qtydka+PdqnNOUd97/GGVRUNc1xjmsLQQ5zupd5yyusEKh0ODjIJYKIfITP/JD/OL/+69e\n8/98EPjvgb+MUp7vf+gkZekYjy0/vLlKURSUZU1TS27bH3/fE/w///oLKLVKSv+YO93Lbd/SlFbk\n9CRcNiGPOTgyhgAmEfyAq0uqqmBvVwwyox/EqmP43kKPN93I+MHTNCOCDxhrWcznqATD4Al9f2TX\nXrua7WPHGLynW17j2LjJkfSJ0mgqV7CcLTAp0bcL6kmBjonQ9aysrnB6+xgv7t4gDp5xVaO1pipK\nlC3RZYlRWlZBSche0mRLE2KtPYJsjTJHf759yNNR1LwoG5J0g1rjMhnMZhKa1hU4jSpLGmOP/CiU\nsdmlcGDZLgnbxzh++gS9DyjjePwd76KoK/6vv/u3+Av/9V9HbN2fyAd6yp//k/8Rl6/e5KULd0Zs\nbnNPvnvau9thfuLsw9RVLdClVkJszH8XAmGFKwqsdThbEnI3/KMfeJp/9Mlfu8tBHnj/w2ch9myu\nOD78+FkmK2OqqmKlbCiLgj/9oXfxS5/+fbRaI97lIC/6BeOyPHqYGp33ouQ4CCD4jpQchdOkaPAp\nx0z4QAxJ4PW3cLVETFR1SchS8Nl0SooBY0ARmB7sYpRYp2+sboCxXL56jcJatpwjpUBVOsqiYHpw\ncJTZpJMgkYRA1VQ8cO5evv3C18UUzTlcWTCeTAjKUdQ1ZO8XYuYbkUBJfpAPg8h3X4M+ZoqvqEvy\nfySNHyIpSVSEkCHBFAWFNlI8CidEu7JkbCxrGExRikrKL+m9GKJVkxVOnruP+XROVY958OG3U62s\n8d9sbfFPPvHac/X6c3xs/TQ39u9/g8n0bo38vdzp/L/34Xeysb6OsZaqriirSuwHCocrLFVd4kqH\nthplgKRZdi0/+vT7+Wef+o3X/DufRsi6vwIc8Ce//0E2Vhq+fmmXWfsCx9ZO8KF3fJh7jm/w4+97\nkn/5hef4nWc+gzQ+v8BtKwKZRrVR6Dz9W22kkcoLvpR/H/xAWRiqqsQPHTpJJECKkX7o82rsrQtM\nBTCIYd+1GzdkGLGOU6dO4/vA7NY+hTYoq1Ha4T2MRw3EyLLvMCpRVBXOOpqqxPfQFIYTx7e5cfkS\nG6srOKUZ2pa18YTQtVhbooLHp4B2Nsd4JFIWdsi6GZROYq+Rz7BSh+69MuDqvJo7pBxIJEHIQ1Me\nqHzIXwMkjdUFIZCb+ySUA+0ompqicFS1qEQVgrJ5H6TB9wN+6PjoD3+Qh37+f+dX/+VvcfHyVU5v\nf4gffufj9LN9Xr50ld/4wrPc8b5QM/7YDzzJpz7/cRSfJHG7CXr09CZfu/QJUP9KEET1LKQpf/Sd\nD3Hq2BZNUTGuJyhtKIoKo1wOhsxDe47rSDlzigSlgYfOneVv/Jc/y9/8+/83qF/J3/sZSFN+9ic+\nzGYZSAS8yqrFdknfD/Rdi1GSoH315i6ku/OCUvw9LIIWG+TzUjqB8Rg3woQah6e0isJmKTIGbRGV\nlXZoU37PM/qmnw4KuHblCoWr0Eoxbka07ZL93V0Wbct0OqWpGta2jvPgQw/y+c9/HqsV5WRE1/eo\n/BBzzrK/v4dVmqIuMUk8HwqtqZxh58ZNiJH1yYTFbIYfxCV4OZux3oxply0h8wESHMGuyuQiT14r\nvWaIGfoBa0W33vdCnlMGOt8Rs0oqJbG7bruOrmshDfR9h7GOFHqUEQ8L8TQRq/9yPGa0ucbpB85i\nXEHEsGw7Zge7/Ph//EE+/av/mF/61U9x/sIlTm1/mJ/6I0/TzaZ86bnn+Y3fe+bOB5op8BxanZK1\nDc/mzvs0X3rpE4h/xe3D/CNP3MeJzXWKoqBpaqwtqatKpHdOFBC2kBwqawt8EiKoj5EH7j3L//Bf\n/UX+x//jHxxNEKhnSGnKX/0zP84kLejaFuckTqBt5wxDi+08vijQWnH+8tW7KJ4O1wi/i9GaIfgs\nhUxHig4djCgXgsdZTTVa5ebNmxilJXzTWLq2o65X6Bbdmz2qf+CX1pr93b081Rc46/BWs7tzS7yT\nFnOs1WxsrHPu/gf44jNfRqeYYwjEwMtaizWWdrnAKuFzOOewWqORcMTlQqT9TVPRti1D39P7gT5G\n3GglZy4psQzQ2ShKC0oZY8AaMVEj88liTDkFW1QcwfsjozClUnb9FLRMG8MwBIauJwwtYRikWUoJ\ndKLtBlEKJostCkbNGhMFpZNmWdmC1kd2FgsmayN+7m/+t/y1v/E/v24yjemAn/nRD3N1d4fnX7nz\nZPrGjfxXUOrk64r5j7/7bRxfnzCqG2zhqKommwpqjC0E/dGHTV9+QEWPKxwPP/TA0fl/bSFPacof\ne+8jPHhqFWcNxzdWMNbirKW2if29PRpjiH2Xp9HPc6cmvh9amsKKJjzvPlJ6DX9DS6Cfs2JQuZzP\nMz1V3JpTTGDUURr2W3WdPHECW5Z86+WXQBu2j29hjOPFb72AVVbWGFYQwaZsqMqSxXKBVkhEjNU5\nR6dk7geaZoTVWUXk5cxN6gZChBBoRiLuEGsMhFPj0xHXK/YyxWuVP1eSvMcxorQkWQvimbO0OFQ5\nGZTND1OlSUqUPqW1ebWdHZiVEgf4shDCtRavKCEYG4ahB6SxSiFSW0MbPEVR0nvP2e0t/uJP/Th+\nscB3Le1yweX9m6zXhj/7w9/PP/3X39GsMOVn/sgP8JF3PcF7H76fz37lea7vvchas8nbtu+jMpr3\n3H+Cr1/dZdp+g0m1wtvvuZ8z28coXUldNYxHYxn2dPaRcS7n1cm9r7UFZUSint/TFCN/7IPv57Fz\n9/Cr/+bTXLp+k631x/ixp9/NsbUJX//mV7m1d0uG4Nd8TdcKkbcoCrbWxqiLdx/KtRYPHk2OA9IJ\nbcR8MwRP8om6MGJQGQfmi5ahH6hrabq0NX+wPjJVUUKSXlQnuHXzJgk4c/YM5189z4GIxdna3ODa\nlcvMp1OqSgLPxnn9NB6NWCwWGCVR7FVZUhcVk/GYdjpj+9g2IXiaps77Mhg3I1JMOTwtEj2UdSU5\nSzESEBJZ9OGo8z7kX6SM2khAVc4uyd19jNJRH6apRiIBUNZSmobkO5S+7QqqjJVk1RxxUBQlriwI\nqSNGT0jgYyJYRRgiQ4xsba3yM3/6oxRGY32PX8y5uH+TY6OCP/cj388v/NZ3H+g/+8Pv5dGzZ/js\nV7/J9d1XWBud5D0PvodKwxOnVnnu4k3m/ddYH63wyJn7WRtJBlbpCppmTF1KQTcm/7Iu74blPdDK\nkHLhSQN89Ic+yBMP3ccnfuM3uXzzBpurj/Nj7383954+zvPf+Brnz78kYWlKTKdS9Mw9LFuNtZb1\nUZUfKnc5yOrQll1k4Sl5Cc5LohzQylFVsgJrlwui91RliVIIoVsZQoz4tzBuxhnLYAsSCaMjy9lN\nVNScOX0Pl65cZogJWzZsHTvBjas38bOOCoN2CVUWpKCZjEcsFwssCay4zJaFZlTWDN2SkydOcOvG\nNcZlSaE0JkZGZYUeBiZ1gU2emEBrh0qJ6IUIpzJPQKlETF6KsBKDRq1UNpBLQN4/KynqIcdDKGFI\nklJEkSiLkgGwymKdI5LE8M8YotKospFslLIEJRNuDIHoB2zwglSh+U9+6IM89H9u8+u/+WkuX7vO\n8fUf5OnHHsTPp1zZW+M3vvAV7tTIK6ak1zTyh1Ppjzx2lpOrI75xdY9p9zwr9QqPnL6fcye3aaoR\nk1pWSto4jBKyrzEWiVyyGFOQtANlsFZhYiQMHX/0fe/l4dPH+dVPf4ZL5Zg50AAAIABJREFU129w\nYvMJfvTpdzLdvc6FyxfpFRRGE1Oky8aAGvn8dqfzN5xGY/g9TNRYFSXM0iSSHuRhGizOKIoUKYwn\nZPNfW2iisgRVYEwFaMJy8R/srN/p2tjc4MKVyyyXLetbWzzw4IO88MKL+OAxhT1y4bVGM5qMWS7m\nGKMZj0fiAZVEZFs2tXj9xMC3Xvo2K3XJfD5nZTwiDJ5uscSPR8QUxITROKwxt71GMiouwZuZ+0iS\nMEky/yL/v7TWxHDInUlZxaYgHSL1EQPgB1lvpGwid4jiZNVYygZyKUvBffSk4IlR1H5K+mNKI0wP\nV5YUG2vsDB3Xb87YvXmD+XSf0C2prebpR87xyD3bfOYrL3Br+hJbK6d439vv58TGOkPXMXGWDz96\nL+1yyXyxICE92sbamB86viHeVcNAXTaM6hF11VDXDVpbtLEoIyR3awtcWaC0JSSFyRYcSSk4dJrO\nKO3Z7W1+9sd/lBgHur6jqCzoxObGBl3fCi0heBmEjGGIPTEEFosFj96zyWe++gp3G8on1RijxIk8\nIf5O0lgZiUYZPMkasSAwTpqbFIUHqAJlUbwp1d6bbmTKssR7T997irpmMV9y6sw9bK1v8swXn6Ht\nljzwwP1UruClF1+kcA6dnVtjjKyOxqTcdKyurIjFeyEa8aauaWdTkQ/3PVp59g72SZwhxshiPmNt\n6zhx8EC2pk6iPnI6J/VmOdchJ+YQnYHbxN8YY55a5bWyqCVc7DXcghSzTbvRFEUJCGEQoyVdG8QN\n0gd6vwTtCWHAi+scKkJVVOiUqNdhpiKXzp9nfusmeujpZ3MqrXjfw2d5YHudzz3/CjcOXmJrcooP\nPPY2ttcn1E3NT37gnSzmc+bzOYvlgoODOWujmo88ep+oY4Cu6yitoSqrnNHTULgKZaz8PMaK2kUh\n/zado9y1wYdwdJjPnDjJX/qpP04IPfP5lMNF/taxLQ6me3jf58j3QAgD7WLADx5nLe984CSfff7i\nXQ9yU1RHXCbIqdv5s0gxitW+F7ffxWJO13fUlRG2elGKn0RIpPjW8QSMsxS+yIx6y9APbB87wdra\nKs89/zV67zl58iRlVfHKK6+i8ppSkL7IeGVFOAZaC5cghGwVrhlNRux1S1HT+YEQPXu7ezxw//15\nzTBQjsQsLURFNiUBEHVCbvQk1VamYvFIApRMwof76CPTRKVxriAaI9B8yuFyOiA+Tlps+43O31uy\nnQKalE3kwiAeTkoW7sQQcEYjccUON5nw5MMPcnJScbBzi26xoG+X3JpHtkYF/+mH38k/+/R3N/J/\n4aMf4uzWOp/5yte5vvsC42qVt22fYVyJ2u70iWNSE5ZLxqMJ42ZCXVaST1VKxlLS5giJVNrhI2jM\n0WSqsiOsUmC04sz2Mf7ST/wYi+UcZRXGKW7ZxP50j5CCqMOCWEwOXcfgRRa6MRE/nLtNo4dnXR0O\nQ4Ck1Hu0j5TZYRgi8/kM7/2Rl0bh7G1Ca3gLu3jg/KUL7E+n1KOGd73r3Vy7fkviAJTCFZa27YnD\nIOogI4hTdxgCay0xgg+eru/EvfbmDXqdSKnCWkdVVoxHI8Z1g+97+q6lx+JqwyGaYshcCQ/6yJ8q\nkJKEoR42OlL3VZ7k89n3udFJCqVtthyQ9R5awoOVNXnIjSgrtcbnz1zDax7EEZ1yNlOIMqiFgFGK\nnd0btAczrEq0iykqegg9/UJy2qxWNFXB5rjh3Oa7iSnR+8AwBGb7B0znC9qu42BxIHygGFnb2BC0\nCCHoRhJV0zCpV2hq8WQ6FHYUVYWyDh8jaGmIlSkwhaDzWhlQ4JOs347qcko5+064KimI6+/qZIXr\nN66JO7jOxpZK3tuYIoUrOTuZ8NMffIJf/szHUHyCxFOAoJprhajdfMyrdCMCAiD7yES6vqd3lrZN\nrG+MiFGsCuJRsvmhwvWNrzfdyHRdhzGW8bjCOcs0TFkul1y9epX5fM7Jkyd46G1v45lnvkrbtozq\nmvligdWSJ1LVFbdu3ZI3AkBL8FzvB5rJCN+tcGvnJuOmprKRIfTY0olE2gf8MDD0HlyFq6ojsqik\nkw4oVx01Ma8jA3NIiNT5oMcja2tnDQZDCIfmYYnovTitIjvAEGXyJYpag+xjoLRBHdIQUhRZIUDU\nOKOZ7u8yLGeMXcnxlTVuzudcu3mDW7d2AEXlHA+dPslDp0/RD4MEyYXAol1y69aM2WzOfLFgPp8T\nQqAeNTgjOTxt8ETvKaxIgVfGMo0WRYHCYLR05tY6jBNTOWtz1pKRlFSNEDxTkCIQQyQMkRgVV67f\n5NNffo4rN29SqMhjZzc4sTkR8lzwlKOG1LakBKvjip98+lE++dmP31Y2ZRXT+qiiKgoG7wXKTRGT\nM55CCODlQdh3EWszmx05uDohFtYhEYmot9KmPckqoGlGGGO5fvMG3dBzY+cWi3bJ9vY2jz3+OF/8\n4rP0g8eVjqEf6IeBsnSMxiP29nbk57NiSqeMoht6qqamGTfs7O6yWhUUOdDToDEouuUSNx7hfcSU\njZB3g3hy+Jz8rLSce+F+xSMCMDGKt4qxkvyc75cEgkw4KUii2oCoPGHos9xbGibj3FE69CHn4zBk\n1CK5KMEP2ZkzURrDYjalXy6pnGbSVPQHmp2DXWb7u6gYqI3mo+95O0/de5pPP/cCNw9eZmvlND/4\n8P2sNjXT2YynTq/RbtX0w8BkZSKNgNYMYWAYBlzpmNRjRvWIphlLjoxxecWLENttgTIOpQuMKyls\nkblZMU/rwrUQZFaaMa0S2hVMRmNWJmNmiwUuF3EFIuvO9f8d953gs18/zxtNo1qgAyFTK3EgjikR\nfaDXkcUisLpWIYk4UYJ3w0BROozVtN2AMW8tR+bY9jbXd3d47PHH+f73/gA///O/wLLtaEYNu7u7\nhCQ5RkU5YTab0oxqjFV0XScooFZYVzH4nkVnpCkPmtliwdbKmKEfmB1MiSFQ2irnT+Vk7CwIMEZj\ncqq7zk1hN4TXWzuklNemh6anr0Hlc1OVonz2ylpBVfLqVCklkWSDFPUcvSdbq37INdTgfX+U4gwJ\nqzTGOYa+ozKOZA0vvfgCz3/tOQ5u3qBbLNBEVsYjrNYZOYXBB8ndGzxd7wlJSVOVoBo1rFdi8Aq5\ngUkJV1aUOSl6VK9QlDXalChtqUcTca02hso6WYllwrJ1FerQnzubziotZGCthCNqbUEMA7emc/7V\nv/m3XLm1w/bGKo+c2aDSUoNl0JcNhs7ZcH7wvPvB09y3vca/+8Z5dqYvMG62GJltXnjlPD5HFx2i\nXAmdAZFIKEq0NUdy+qqqkOBkkxOxxaG8675Tzv7d15tuZLTW9F0vhNGiYHVljVFdM5vNWF9b4yM/\n9BFm8xm7u7tsrK+zv7+PtZb5fM7a2hrtYsmoblgsl7RtC1ahLSzng8gN/YBKHj902KqmrKqjg1ZY\necgr48S63gvjX6Rc2WQHjvwZDk2/Dl+LQWSkwhXQ0tkrkT5KQyry4BDEvl1bg03ix6KGQQoRiIhB\nurDMP4io0JO8R2cIG8DPW/y8o92fcv7yBS68+jLdfMpisU9KiqqqRMrb9yL57gPL5YLZTAzXZv2C\nwQ+y48/+IkVZHXXRzhTYpmHsCprxKDvgSkpsUTc4K5kySom/gtNamOs5zj1pi09eECwtPiPWOVKI\nfPqLX+Hv/OKvoNRKhs2f5Te/+A1++oOP8cS9m6QEQ+74nbNoFD/w9ns5e3yD/++bl9iZvsio3qbf\ns1xdDIf1RULNknwePomro46RlKcmYzSHuRNiLS/BhN4Hhhgx5VvXyLRdh1aGvh8YjQrWV9cxzrJo\nF4wmE9739PvxPnFwcEAzapjNZsQkssHGVMznM6yzeC+8K1A47fAhMPiBSKTtBgoF5bjOZ3SQSUhx\nlLburDuanowWvlYIHqNsPo95Kj0UyCSZQrXS8rkfaVS1KHmUIoVEUvY28dfelssfmoTFlEl4CfAD\nVhsiCFcgBlRGe1RK4oQ9m7I4OODq5YtcfOVlhvmMxewAo6CwBh2lmdgeF/zxd30fs7ZlNluy3LvF\n7rWBkBJeR4qiYFw3lNlPavAejKGpKuqmprHSwChtMbagrBqMc2jrSPlcowuKaoS1BUoZmfby56qU\nkrgOYwjWYq3h0o3r/NaXvsLVnT3qUvPIqQ2OrYljeYgRozXRaKwxnKxrfvqDj/PLn/n4a6ZRWYVt\nVBarFb0PWGMliT4GhkFQbZMkMT2mJOhYnN/2Xcqy47Zb4r0ocN7Kqxs6trePc9999/PsM8+yu7vH\nwYEEKUrAa2IymYgret+itTryAUFJcv0wDMznUzbWVqBp6JcLRoUlJei6XtAnH4jDQPQDnoQNMgBZ\nazKtQWS5MXmssxRa3ie0lgytEKXRBKL3+BhzdEX2j8n6bOOKnJgtKHUGpmUQyEMdiIJMHIJDVmQF\nfBwwWngmKQoa0wfP0HWCzGjD/fffz71nz7CYHfDSt17g4isv0y7mTOcLYvR03YBxBYtlR1FWlJU0\n30lpjNHUk7H8PSPjRSlrIm00Solv1cZki9IJouXKkj4EotIYbSmM+IXJSqnAOkEzfX6eVlWF0Zp2\nsZDImLomKPjU732Ov/3zvwRqhZSeQik5yz/1gSd519tOyYBsyZYC0pwURYFBc2qr5Kee3sRqx97B\nkpcuX+fSxctMYxBejhE0NMWQ/c6E9yVO/fYI7W67DqOF3NvUDUrvUhTF9zyjb7qRmXYt586d49bO\nDarVik4PuImjHyKPvuNx1raP8fIzl9lbzKlToB0GIRICxml29m5xbHOD1dURs9kMMzIkE6CM7M52\nGa2P2Ll2nboqiEMiLSPDQUeJgcFTkIgqYpUXoFFbQBNTflPbmAtCYJlDFK2ToqycIoRE3w9Yq5Ev\n1QSVCAlUWYDPYXlJip038gA9TP4FKG1xtBt1xhx17Ekr0BBTL2sqNeCKwLJQjI+tc6rQLHd3eOn5\nrzE9OGA+nzObTQFxpfTes1wuxa48KpSqGY9WacZjtNOE6PFRVjmy+5eHUF2usLq2QZlVSapo8EmM\ntYqyzB29ok81ZS0y3uA9w3yONWCMog+JXiWK1RVevvhV/u4v/gop/Swpvd7f45c/83FOb76f9UmN\nzX4EJkvZddSc3dziwQ+dJkVYLpd84XOfZ3/ZM0TJVlKIUZUrHDG0GO1QfqA0GkxDXa+x7K+jnWMI\nnrVjG1y4cZ1ipIkBkhre7FH9A7+8j5w9c5rpwVSsADhgbX2NZT/w5JNPsr29zQsvvMT+wQGj0Yjl\nUjKXhHSaWCwW1E3JZDxivlzinKPI6cYH0z1WxiMObtyk9wOkWqb1vkMLsUuamSgS9BCTIInaoHUi\nRJUbHi2F1gcp7Erk1dqYHMPhURm9Kcsyy7eTIBZA9Jk7lhudkOT8c4ReFmQ4Q5QMXuS4RmkwYnal\nUoTgqZzDW8Pqygru3nMc7O7wyktzDnZ3c4ZTRwiyslosO3xKeQUkCFBhDOVE7PCHIAnvxijqyYQs\nTxHfEbtKVVVUVZ1VVZqYV6plVWen31oKuXUMOS3ZGo3K39tZi3YFKvT89pe/zs/9widuF3Ke5V/y\nVX7y6cd48v7j2IyMHA4OWit+8OF7eejkFr//jfPsTL9NU2yihzHnr1wnKMSELIEYEwpXKaZEYR2F\nBaXEEK/rO7QWo8OmqdFGUxblWy1YAmAInvvvu4+Xvv0SX/nK19g/mBK8Z2c6lXVYWdLUFft7+1Sl\ngxQw2lGXJYvlkkBGEa2ma5fUTUU7nxFCYtG21IUMvPP5HNcU+K7H4xlsiXYOYmDo+7wmNyQVUClh\nbFY0ZW+eEOS8GmuzXk8IwHKC5VyTVX0hIy42K3mGvpfvqR2ZWSb8sdfYHKSM+IjnCXK/5MBgiVSR\nFZlWMPQt2hg2tkXROt3bY39vl27ZEsyA1ob1ZkLfe6xS+BjEnVdrYuZ5lmWJylEzwsksscZRVRVN\nM8EZh0YM/cT8rpD1qnXE7KEDEKLwu6y1Ys9ROupK6AjRDzgSL51/lb/9879MfE1wsKxM/zKf+OzH\neduZbbbXJkTSUWMRhpCd8eWcJD/gh57KWk5tbrLSVEwPZuLcniLOGfqlcG1SygBBkhUeSOBxWdQU\nRY21YG1B2y7p+u8t9HjTjUyIkbqu2d+XvfEweDY2N1hdXeXk8ZP80i/9MvPFksF7lju7+L5DKc0D\n997HrZ0bFLkLDiFKfoXvsUmK6KJdsLG2duTqOgwDZjyia1tmsxlVIxCz9x6vLKYsIO9CQwQiFEUl\nhVkpiSUwcjjR2V8mx3CmEMHIeitlhvohHA/ZhTYpYhwEdlcSKinrpCx7IHM8kvzSuZv3IYqpWAq4\nomT7+DbWnsL3PQc3r1MqxYWLF5jPZiht6Iee4ANVXVDVjUCuSYGp5KGjDtcEmroQEm9RlhSZzNsU\nE1EAWCF6aW1wZSEeMtmyWgq/w3vPYr6gKA0rK5OcMpoYfE43jpHPPvc8Sq1C+m5/D8UnePalq3z0\nvW+nKHJxVkIW08lIo5Ik3NFZy4njx0lX9sWPISu+tDXCh8kEO6tltQiW+WJBWZayozaClPXdQNt3\n+KgxxVtX0duuQ2vDbD6nH3q6rqNZm7C2vsbmxia//muf4tatPYL33LxxI097iq3NDebzhZiTpohS\nJvvqQLtcklKk71rqzU2mRhCEtutpCke7zBLnpmRoO4ao6MtWCOdoWt+ilCEmcbO1zuKMwPZGKXw/\nCCqXJ1QlelFZkWYL/JTPtQ+BlCdnHSXbSpERxjzFqiQKQe99Rjvz2lZwHKIPea+dMMaxubXNiRMn\n8EPH/s4trHNcu3yZ6cE+i9mMvu8ZfKBZqQVuzvePPrSaz7t152QdqrSspw+t2EejMZNqVdZwWhRK\n2rqjLBllLIUT1UZE4HltNGVVUZSOsnDMZ3NU9IxHDS+8POPnfuETry/kuYn/5L/9OA+d3mZzdSzD\nkVKyhtKy/ju9VfGT798gDomuizz/6kWuXb/BInliVFRFI0nWMTeAqgSlBI1L4IdwREg2udFsl0v6\noSMkTeG+t/z0D/O6995z7Nza5/e/8AUmk3XGozFdt4NC+Imra6ss5gvhWilFGAZOnDtLCIGXXz1P\nYS3aifozBs/WiZPs5sa90LBctkxnM/anexw7sUXpHEYLh0xGICWrfK3FGFNFfIzozM9KEeEwotAx\nEPogCKQStFEpUYAlPDEjvhKyCsF78e/RhsNwSZNR/hQDICuYqHPjY4VXFoLPq3hZ3SplCL5n2UnY\ncAgBXMkDDz/KQ488St+17O/uc/7Cq1y6cIndvT1R5WQloURRCBKtci0vyxLQ0qTYHC3gHKPRCG0s\nrhAndJWUoI3GElC4zOcUXoygryF4EkGUS9m2ZH1rU54dMfD3/ukvovQKhDvX/n/3zYv85IfeTSId\nGU8mJ/e+yc9EVXji4BnwrNSGU9vbXJvNwGi6IGoncXhOedDS6MLRD0tanzLCU9LUEwa/yLYR+k35\nKL15c46YmM9mzOcLNjY2GE8kJPK+++/jt37zt7ly+RJbW8dwxojF+eA5sb3NdL6PD56ysCwWC556\n6im++fzzR3t2ozVd21IWBZubW+xdv0ajGg4ODphOZxxMD9jaPibsdaUwWiC/GKWEWgWBQD90pBRu\nM9mRJoMAQxSSqSiYhGXvU1Ya5ckZJS6aHErZyeQ8bY4i4Puhz+S9fNNoK4ql6I/cIrW1WGUJwTN0\n0ojNZlNsgu974inue+TtzKYzzr/6KucvnGdvdxdynP2yXcoHYhRG23zjWGGfo1HOZhvvAmcLRvUq\nRVlmiFSL140VqF2ZAm1FGmm0BDGmlIgpCklTKepRxfrmRi74sDubk+4SrZB4iunyFeqmoSodMYrZ\nlEnyAFZJUC8ZfBLHjx9ndeUKBwczktL0w4COmQuTZC1YliW+CywWc4y2+QZVtG2LDz57o3BkqPdW\nXcZKfsiiXeIqx/rWOmvraxzbPs7v//6XuHj+Iptbx5DkdC9E0I11urbD9z31uCEMA2fvOc2Vq1fp\nuj7v7I0YjGnY2NhgvrdHR2K5NMxmc/b399nYXKNyDp008lgWOFunhNFKIOUh4VMQTpH3JC0TKjHl\nnb/s/1UmeqeQEEpdOFotRi/Ih0KjybyDPO2KYkPcrs1hhIQVZ6tDbx2ReYuPBSHQ+57pwZR+2eJD\n4oFHHuO+tz3M7GDKpYsXuHQpF3Ml6gWXJMxSYGeOVkNCbFe4oqLIGTFlWTEajQDxSJJ7WyzZD9WF\nSmtcIQRHbYUQnVJEG5XvFcvxUycF3UqJv/+Jf47Sq3ct5F/69hV+4umnjlbUMcTcxOcznwYigRQi\nJze32FiZ0C4WOG0Z+g60AwJRxXymDKHvaXtJNxajsRUp6u2Q65s8OAff/4c+8q+7NtbW+Ne/+dss\nF0tGo1WGfpCAVGM4dvwY1lj2dnaoyoKycJAi169dY7IyEe+YcCjzl4bYGkNTNzB4QoS26znYP2B3\nb1/WKSlilCjpYm4YFMhq2geME9Qn+F4anExYFf9HMYzUKHz0mKTyWjVmTojUSeG8q4y2HOYxiSI3\noY6afq0Ov14GgBSEDxTzqkkplQdcCb1FW+rxKiZz/kxeeY214sQ993L2oe/j+tVrvPLKq1y/fp3p\ndJ/oB1LyaA0hDMSgKKoKawsKJ6nVSslZ19ribEXUIkLRriB64bwoazPiJBRl7z3WaI52qXl1WZUl\n49VVyka4pjEqXr18+Q1tNA6WlwWNTikjKIARpoVRMngG32EwmGghebY3N7CvvEwfBlGNKUhG3/5Z\nk6ziCIrCSaRO1/bYjFjFEKVOvomIjjfdyAzDwN7eniRTeo8ZPA8//DDfeP5bPPfcc5w4cZqu66Xr\nInH27Bmc0RxMD4TsW1Z0XcvurRtsbKxya7aHuC2KRLLvO7Y2N9m5egVlDPP5gq7r2N3ZJd0riiSr\nTZ42O7zPtuxJC9mwqMSxVOsj9rk1+YAhlu4xBOnIjUbbQ7KTNAshu0AePuzFKlmamJQZ8ocJtQpB\nqFKWigUf6QePSmJklqLYYRtbMHEF62sbRzea1rKLf/DRJ9jducWLL77Iq6++ysHBFDeaYCyo1BOz\nqMjmpGjhvZij9G/rLNqVKCPTuES355wRJfBkUoaUOQCD74VsawxDjKxOxqysrFAU9khBdP+5syj1\nz7mTTbbiWU4ee4DV1fUsw47olHf6SqGVRSXotKHresbjMcc3NsV/RWmsUnkykEeoj4FELihKPFV2\nb+2xujYRaXySBqwqK7yytP1bt1paLBbsHRzQDR0+eoY4cPbMPVy4eJnnv/51mmaFbtllvwTNiRMn\nGI8adnd2JQMlI2PT/X2aqpKpPLuLahTRB45tbrF//Sa4grbvmc1n7OzucG86K+fK5qySEI7IuT56\ngg9Y60g+EhGDR1J2uua2IaTP/BijhOBrtCFpnZPqc7EeIkoJz0ZG0jyVhgRJiSuwlrWTlw+JEAWJ\ngezZESKd98SkqMerNJNVgZ9zU3SPtTz02JPcvH6Nl195lcsXL7O/v0eMHgg5PqEnBllDFkUlaKMp\nUMqKa7VzaFWgCoetSpnaQpL3VElDbYwhxAQqiEyDJGuJzBEYr6xQViUgfiCvXrm7H1LiKfYXl1gZ\nr4qSRSmSkUbGKp25Xy1ag4k9a+MRWxvrXDw4QDt7pPyKohXgtgBPZc5hydDvMlgvjV2Q2mZyQ3b0\n4HiLrqtXrjObznDGEryna1tGTY3W0C1b5n6gtBI7YLTCD8KV2g+BqhRvFZRCmwpnHDu3dsSPpOtE\n2m5U5k72eC+rmuTlfldWeBVJGaxx2OxloozOvi85NyzzjQSBl8GKIGtWrU2+M6Q5T2S3a6UwTuwM\nghdOXsrBoioH/N0O+BQ3XJWdgo3SOFfKsBBFtOCKUlS6iAmf9yET+zUBaIeIcQ0nz97HqXP3sVzM\nuXnzBjeuX+XypfMsFzO532IS5BFH4Spi5msWVS0/j7HkO46UNNYJWfdwpaazBNv7XjYIClZXxQtJ\nFE1CrkVpZC+kOXfuDOJgfWcF3tbq/cJl1AarU16tyrNQGnmIxuBDS0rii3VsfZWttRUu7k7FU6gq\n6ZYLIh6nXAYPItoK4hY9GYWKDH1L4ax4CfEHiMj4YaDvurwXDJw6eZKV8YSXX36Jqizx/UDPQFE4\nRk1NDJ55N+CMYTwWJ9gUBy5dusR4NGZUNfR9j1aCOCzmC2yQf/RyuWSlLJkvFsym86M495ASUYFx\nBSlPRNboDG+n7PGQ8u5NJhqthYeS8vpHxYRWCZWlrDqTJg9XS0qrvFrKmIw2aKQjT0FWTSSV3VFl\nKlZa5Kwp30xKmSzdJmesyO4/xSQQei9T8sb2Sd5/6ixPzmfcvHGDCxcucvXKeYblnkg0lcEWJdaU\nkuaaJDzQlgXGWLzS2QCpyEnHslpKh1MEsoPslguUUjSTEWWV831SoqhKtDH4vkc7w3/+03+Cn/sH\n/4g7qTASUz7w5CNoZTEKtMup4sj7obL8XfK4BmbdwNWDGTfbAWPEE6UwYhxlrHweSYFyFmOFh2Kd\nIyRo205WCnkSUnkt+FZdRmshqAOByOrGKqPRiFdeeoXopamYzWc4ZymrFYxW7O3t4bRiMmpk+vCR\n/b09ykr26Muuw5iCQmnaxZKFcXR9j69KgpZ11nQ2J4SUozYEFkcLF0bZAmd0nvCl0QjZ3ToEKbyH\nxpGHjUlKMUvzD9etAtv6IAZhxjnJOAl9nrSMfH+tIGaKTC7sKYrXA0nQQ62BFIkJiqI88qARo72B\nw2oXkGZo+/S9HL/nXrqu5drVq1y+fIFrVy+xmB1QUkGUtYUxDmcKkpIGvijrvF6DYCQIU2sjCb+2\nEOl7/llSNgSM0VPXNa50mQOEOLTmhxoK7n2DQq5yIbdZ9qu1llUE4s6sgBg0g1+iUdRlwfGtDepL\nl1ikiCsc1lradinh2wqSSmgt70/wKXveJHzsxUeJnKKuxcPmrbymiqf2AAAgAElEQVSSh3Ezpl32\nDEOPDwOr41VmsxkhBMajhklTCG8LMcE7dF0P3jMejyScdyHGqG3bYZ3D6y6v6GE+m3NwcMBstmB1\nfUNI8WHAplIsL+Kh8lEGPA2ZrB6+A61VuS4lERP4ADoQMlrPIXFd5TpPQilRMaUQ6AeJWFCZdwNR\nGnmkxtk8GEq9E4SoD4JOobLtfhSFD4cxLFZqZQiR5BUR4ZbU4wnnVlc4c+8ZHth9kIPdHa5cuczO\njWsiaMGIKko7Uo5XUErMXE2Udb5IyuVQyXCYAZjgIQUxnKsrNjc3cGVJ2/c043FuuA6TwA1/7k/9\nJP/L3/+H3LX2P/F9+GHAOEVhrIRwZifxkNFDbSxV0xCVwQ8eHxM3l4Gb8x6lPNpWKJ0y4itIbNKR\nIXYkxqAk6HbolhSFljVUkkTy73W96UamqWr6rmd1POGB+x/gxPZxLl+8xOpkIisBpdnd2WG0IvDT\nbDZlPBqxtrLy/xP3pkGXnmed3+9enu2c8669qLvVakmWLLwiC2xDgAGDh8xkgCGMwUlYEpapDNSQ\nkKVqcFWAqTCTyVoZoEiFqRlkYMJqvASPA8amzDZ2JgO2ZVuW8SJLarW61cu7nOXZ7i0frvucV2Is\nWR8APeV2t9SL3j7nPtd9Xf/rv+TQqMjWdIYP62LrOb13isV8IQQtrXDjiPOOVBhGP7BcLVkcH9O2\nLePoUEVBGF3enUJ0AwqFyZOquC1JM7H21kCZvJfLhzjEvEKS3xNCQhUmrzsUyspUaW0pxNjgs+FX\n9hSIAhkmJRe3QOElIHtTIQwHlBLoXVQhGpcRn3VCcgiB5AKDC9iy5o677ub2S3cxdAvmB0/yxOOX\neeqpp4kxYU0pUtJkGcdRFBhaiSkZ4L0nKU1Vir+Mz3I9pWQa0dFTFAX7e3vs7u3RDb1I3TIyVeqK\nECL33PMS/o9//OP8/R/7R/z5rJC/+61vZH82IcZEYxtp+CBL4D0kmcibuuYPPvYp/vnv/BGwTUpf\nA/6jHA0LTqfItKowKhJSxEVFdI5kBK4vywI/epqqITjBF0DhXcjKmRfnmdQV0Tu293c4f8d5XvKK\ne7lx44Ddbcm40lqzWs2ZzWYMw8ByLmd/e1pKICDiFGqMwWeZ797ONt3Qo4MmRmne1kqAFBPdquf4\n6Jj58Zy9M2fwfQdmoMjv+ehTDhSMG2depXXmqoQslZTJUCvQawM8G2R6Rfbq2DV0LpbsGNBKVILD\nOKJSyKZfSSbcqCFIA19a4YuktZzYDRSmyBwC+bpSSDK1KlEoiAmfxTlpbIpqwqV77uHu+17C/PCQ\nw1s3uPLkk9y4dgXpoSxWFWhdkpTkRMUItiohWog6rxcMIUUxClQKFQIxRWyKVHXJbefOUE8mrLqO\n2daO1KANWz/ynd/+bfzvP/cgz1XIv+qV9xKcl+RxlflaSsmKHIUxJbbRVKrAjCN1VbMYE0ddhzaO\nnYnCWlDaEqMmJE+KAyE1kASRdGNLVUlttErCU0Mkmxa+eM/ezjbtYokbRnrnAUG8qqoUWXSWy+ok\n3knrZrq0lkCkKgqKakabFqJ0S5Fp3bDKcqGEYugHFosFfddt+HMhSjq4NpaYohDeEWVPWitTUx5i\nc4OqkQswhlyfjawBUwJ0yJxH4YqQU8mT7JdyvdSZIO83zQSQL2pBhZQm+63kz17ONQopEbyg3msZ\neIxBlIPIejNEl21AZK2mFFir2draZnu6xWSyxdZ0wvWrT9OtOgFGlSgPi7JCWUOIMA4DRQllUW4C\nGKU/E/Q15bTxsiwlB7BtqUJge2cHbS1d32VepSh/X3LpTn7mf/gJ/sv/7id5dqzOnB/93jdz16UL\ntMsVMSa5o1WQ17csM9+OTQiqsQXv/fAn+Be/90FgS+4AHmJ58xanphW1lfuPrKgsrGVvb5/CFqxW\nK0iJZrrF6EYikbqafNEz+oIbmdOnTjOfH3Pbbae5eOECV65e5YEHHiDGxGq+pKqnuHFk0jQM/cBs\nMqUqCyTNXqGQhGMT5ADWtqG0lp3tbZzzdIsVqm5ydIYcLu89x8fH9G2bJYiKweVpXc4eOgWU2tC4\nkHcTtBbIWAIFDCnb42slxMQQA9gCrMkH+eTvmshu2QnIKiBdZA+C3BApJXJmVI4tyB+WhCg8QhBk\nYu0BIU6sUnDXVs/JGLkAghcLbiN70NNnz2OLhtnWLteeus58vkRH6bUndUNd1YSUGN2AD0LCrgor\nJSFPDZCzQpJHG9jb38W5kePjY6ZbU0xRMAyOfpQ9s9UGHxJv/jt/m9d/2Wv4l297J489eZkzu1/P\n3/iq12J8z9HBASFEBjeSkCJQFBarraSiq8i1w2P++e/8ESn9AH8+2fjm4kF0gkktX59SGozhzOkz\naG1YrQSe39ndZc1RapqGNAYCL55N+9Zsi8GNnDlzhpfcdTePf+7zfOWrv5JPP/wp2vmCom5w40hZ\nisTWmAllKZEYKhf3siyFW1IUJCV/r7IsGZYd49CLsivzApSyOO+Zz+d0XU9cIy2Zq6KUEfJwyO6k\nz/CSyZprSbpWWsy7/Hr1I4Zhop6PRA0qZtIvGSlYR34gJG1Z24Q8yZJXBHJ5KaNFgRAlUVgrI7C3\nd5tVLJyQ7FV2P3XOoa1IvMfRY4ImaJhMZkyaCU0zY3s64frT12kXnTgaZ+TF2hKsXE4uWzUYrQRl\nVfJZjbm5NlpjjGUymdIPAxGYzWbZn6XPazWAxD133cVP/+Mf50e+QBP/w2/+W5w/sy9z0ChpzCi1\n4eLIelT4caqI/OFHH5YinrZIvB78QyyHI/Ybw3RSZv60KMp2d3Yoq1re5xCYbU+EEI+irmraPLi9\nmI946kw5PDrkjosX2T99hsVqweXLS8LoqauSupRhFhD0HUHxjS1ReX26vbUFSVR8OptGpiT8qn4c\nuHnzJm4YpYEw2ZzUC2uLEAjKARpjijyfZkWRWttIZPQdNs28rP2cIJExgY4im0ZM2bQRVCLm1es6\njFVn5HLtRiuxBiJYSPEkq0+hsjfUmmsjpGHS+iOjMnICxCRfg4oZvczKQSzOCUetbCacOXOOdtXT\nrsacs6VIUcwxCYK6WGMwKkF0BJf9j7QhsN4CgLYFu/v7bG1vSdyIEgWa1TqT6HPQbF65fte3v4mv\nft1r+b/e9g4ev/wkF87+Lb71DV/N3qTi8SufZxxGcAmToLRiuooyYI047KeEioGnFwv+xe998Ave\nAbdWD3JuWzyfQoiMUYJG+66nzVwgdKSu61wrn2mY8NzPC48oqCq2br+dc+fPcOvmLZqy4sKFC5zK\nMOBtt13gVa98FV3f8blHP0vfdzTVNmVVEb2XC89aCDqTBQt0dsGtS81oB0xKaCPQecyKlqPjBctl\nJ4dn7eMQPQaBFYOSgq60IbslCXKihKSp8gURUjbCU5kUlk6CJPFBZNjq5FBrtV4tSbebYiIogRdj\nTLmTLLK5ljgNE8mTcXYPTVq+ZVMglQtyVHLKVQ6tDFG8VXCemEZi6LC24dTp21guepbLVlD8FPE4\nnNMbwzOrEYTDjzm5dZLRC53Jm3Dq1Gmms2m2lReVlo9RgvRMQUgR7wJJG4wteOlL7+Un3/LfEN3I\n/PCA1XzOU5efoFt1BCd7V2M0hTWUhcUYlfeYiQ989BGeL9l4NbY09ZQEDN7hxpHFYsnp/VMCRydh\nrss0I8XGjbI7f7Ge2WzGbllw9uxZjg4OKLTh7OnTbGep5Ww25WUveznt0PPE5SfEwCrqrL6QYrGO\n6xjHkbKucKOjLErq7S1xSUXWQEKiFifU46NjyV/yuSlIkeSFOBliIjCi0Nmx98R5Qq0NwHKDszbB\ns8pmjocWqXRel6Jy+nVWi8VnFvSsFknZ10f6nPXUKapBIb6K/5J8FVqa9qxk20y7SZ+spTKA6lNW\noGQb+BACZTXh3Pnb6dqRdjmglKySiAnvHERNUlAYkcoGP5KSpSjz+jetV8WWnb099k+dIiPh+OAh\niDWDyq+3fO413/0db+Jrv+J1/NKvv53HLl/m3P438s1/7SuwyvP0tadIY9ikla9RIKzGk/LUnbi6\nWD1nET/oHqRppLlzoxBHx8HR9YMMZUZLAc8huyErOF9EMBKAw5s3qOuG06dPcf/9r+ZoseRocUw/\nDFRlwWw2zWPHiVmd0QZdypBns3dXnxyT7ECu8tAXc10OQXF8POfmjRvcdvYsZVPLiiop4SL6kJ0A\nNKqQy39NSFcbdF1WfCY3SSopqVdKiztzioSkiM5nDzHZb4eQycTIOdBmjabIalJpLWsUrU/OjDaw\nHgDEXRRblKCEtwaympU1lLjm6vWfgTRhBghKMXSS/E3mtJEUk2bGpGlJEaaTGc55+mFAIaaiVSlN\ntCYrWzF45+T1LkpKaymrkslsQlWL3YIy0ogNY08aR4qypMoUCGMKiqbgS+67j3/0lv8WvMMPPYv5\nEQe3btBMp4z9gPODcMGUlSHdaLFpyA2hxvK7H374i9wBHTtaGiGjLCTFMDjGMuCCp+87zp7dZ3RO\nVnd/kenX586dE0fDRG5cznH5iSdYrVbcduYsd955iZ3tXT732EFGPsQPQZjdUqR1VvWEEE7M0VxA\nacNsOsUPA0VOsCYJoXZxPOfq1avcfukOdGmYbc1ITtwIg3MbMzpVrDkpZDhd0/t2A3UqLXbJyQWx\nc8/ZMS4KNBwjuWnJDY4S9rrK0CdKCF7yQ/k+aQVBOm6jC9CZpZ5EgqpqjfcOjaY0BuUDNogRlo0I\nGTNmwmcu0iF6MFaMnpKhmcyYzbZJIbI12yJ4z2KxIHiwTZVVS0D0FNpIh+7lcirLUoIjS8t2zj1x\nSdJonXP4GNAm29tbizaQYiYre4dNiaeu3+Ktv/52PvvY4+xMKr7q5S/l4u4+pS0yATXiBr+Jd3j6\n8Og5lU/wGmL813Ipy6mnLCucCwSXzcIGMYzr+h6lxB00IcTPF+vZ3dsTq+wQicGxv73F0a2beOfZ\n2d7m0qWLbO/tcvj4ExuTutlsD5mkpPkWjwqNKoVLVZUFbhgIZNQpRpTODTdCol2uWp6+9jR3XDxg\nsjWjbmpUlpESsodFUtgEGEEfIgmV8voo+uzCKSR5KeqKoiwy1yCvBdXaHTXiQxD/GZ2dlvPUtuFp\nZAsCtZ7mtEIlI+R4+SMoigKvnEzWCqwRIz+yVYLV4nGTUiZPas3QSeQBSA6UDoLQTKctRM1sOtsk\nzqcYs0+UNNGoiFYBFUdGL+qpqixRRlNPJ5R1SYheHIvLgtE7XI6JKAvxxKjKiliU3HvPPfzkj/7X\nJOdol3OODm7y1NUnqSYTBr/KBoMGayS2ZIwhS38Nish7P/zx5y/iw8geKl9yFu8jIYpVvfcSf9AP\nTowgM5K2vmxerGe98mnbjk9+6lNcu36Dnb09rJHXuWkaXLsSn6uiFLI5a0ddIYzXVYkfHRoYR0Hs\nTBYpyDo8EHzk6tWr3HvvvTLQpoAJshYnJrwPVIXEvwTvMhpiNkpVEYTIj9fNPkgMRQxejBMBUsKP\nTswQbZlR0HXkQT5/RqOy87s4u+dfkxCaQCbUr81Xk5Lh0WTFqXT9om5SMh0Lr1ZlV+kQ8TEb7eWB\n03tPlF9CXTfs7u0TfGTaTAFou3Zzjkc3QgpZVaVQKWBUEp5eUzLb2mL0gXa1pKoluFOZvA2ZSDaT\noKsZWSFl913I/4clceXmAT//a+/k0cefYG/a8FUvu5cLW9ti2ZASCiP5U0nWbikFrh/Pn/cO8OGD\nwv3Twh8tbEHTTOTsj1KPQoyMo2cynWKPl1/0jL7gRublL385H/vYQzz22GMM48CXf/lrWayWDH2P\n854rTz7JJ48fwVY2r37E7fH46EjyQ0IiqIC1lcDQSYqZLUucF1JW3/WbvaYxucO0lqtXr9J1LdvN\nDn3fC7O5sLKzz/vZcQ1/K4VJmmgShTYiSc4TahQKgEyozhNtgnzgBXUU74GYEtGFTfGuMv9gjawQ\ncu5GbrZkcs3W2JlsTBQCnzFWDrP3GMiJqQGdIiYphuypEjPXYfQOlyQkDcQUaHtbGpm6KlFUWCMX\nTTRauEMpZit2UDFSl4aqrplMZ1RVxTCKt0FVN1gl+SVVVa9hK7QRmHGdhpyCRpP4pd98Fz/0lp9A\nqW1SvB+lHuKdH/gQP/hN38gbH/hSXPKIs3KgKOQ1Oru7jeK5k41tbvRc8JKGrhVN3eCcWH8LmTTS\n9z1N0wi52IALL95Y+uoH7ufjn/g4Tz/9NMeHN3nzm9/E6mhJ267oh4Gnrl7l0ScubwpnU9dMZzPG\n5ZzSFti1I29eJ8QUIQaauhJEJCYW84WEkWakw7tI0JGnnrpC176cqq7oUhBTrKIgeGliJs0EpRLO\njaTgJQIiF96ikDORkFC8FBO2LCSGwJbyXkT5vdpaUDYr0DTOuQ0yo63J6iDWkAxJKVzwhCytBcS3\nBhkmTI7IIAq/LMUovWtGIdchfNF5RudysQ9SIBGr+Kps2N3dxw2O2WwLpRSr1YKoJJ8rxCCopjUb\nT5HKaIqqYG9/D8lpmzOZ1FRNtlggMZlKIRc7h+wEG+XiMYUQ/NGGK489xs//6tv53GOPsbc14Svv\newm3Tae4IJwtjRXPHWvEhAy4MV8+bxF3/kMEHwkWCqWpm4bReYbRSYOJKES3t7e5tWhRSj8rN+7F\neJTWonLRmsE5ur5nB0Gf62YivkSw4YSYzJtSiD8LSQwA8YGyLOn7YeMIrLJpY5GRw8ODI7xzlMU2\ngUhwo0jec5es9XoABFSSiJW8VlVayRCW35sU0kbFKYGHMZu3SX1TUYj0a7KwuMuajev1ulmPIawX\nRNLskPOeyKi9ks+JjxG75sLlgFGTEaO1lYRKkELAj24z5JtMmRD3ek277OhWvVzwlaXveqy1NE1F\nUQrCMp+LGWFZyvuyjk1o6pKqLmnKgmbSMPrI2K+Ybm9T1fWmCUMriqLK5OAsM09ANKhstfALb3s7\nP/SWfyj1P92P4iHe9r4/5u9981/njV/6ShmAMtpa5FVcjImzuzvPeweYjXhD4Zynri1GW5aLOdoW\nBJ82Yp2EekGqvRfcyHR+5Mmnr2Z30p7VqmMxb5nMdkm6xNZbtLeWnN6t6d1APZ3Sj064JMmy6hyf\nf/oW7eCYNRUvObfPqa0ZdVFg8dRlwfHY52akQJUTmWJT5OjWTcbVip3zZ+nGDteOFM1UPuQuoAtD\n5Vz2BZCCqDEkLemazoEpZG3iQ59VNgaDxUSLEcgISEQ3yjrIpizjJsv9RK4aZIMkagkUUWnQAsFr\nI7vc6GViLsoKReaUJFlNkaQLVVl6FqP4zVS1sPNH7ymUJvhA1/f4bgCfaDKKojXMtsRhMc0q6nbA\njJ5JXeFSZN6v0EVJ0yhK45nYAmuh7w6xRWQy2yYaxGeHk+iDqDQmf71JBz7z2KP80Ft+ghi/nw1E\nnp0ef+49b+Wlt9/GPbffjnMea0WVEUPkjQ/cz9v/+E95rvyZqa0JLlBvzQh9R1Uamu1djvsRVTao\nKGmoRV3jU6QbO8p6Su++uLvjX9bjY+TatWtU1mKNpV+1tN3AbGubqqmp6obD5U1JoTWGpiwZh2Ej\nG4zes3KBz18/ZDWMTOuSL7l4jtN1g4+i9AMxxYoZ1pb1Ghwfz3NTV+FDIHgnah6dUcQUBZVUOcPM\nB0EKU8q+F1kWnZf20cv6LkWIVhR2Gwmxc6I0wcsqyq79NnLYnA+5IdPSoCRR46n1f5v1uUpiSqmU\nrM1ipNA6G+aFPKVH/OgIzok/jpKilrwjGc1qsaRrO6y2lNOStltRVRXNpMaW4m7dtR0JQR5H7+Xr\nU4rppEanSDNpKJLCDS1FZZjMZvgELgS0Es8bnzXRxmRPmCzZ/cXf+E1+8B/82DOK+If51fd8gL/3\nLX+dr3/1K0VBk/10iqLIdgnpBTTyojyMYQQrEt7lqsWWFZGcDJ8VKM45iqLMqq8X79na2WVnb4+D\n5RK0ph8dTTOhqmuB/nvPpJAMKmsMy37g0euHrPqRWVNx77nTwuMrS6aTCW0rKsp1w2Ct1GCtYLGY\n07YrTutTRC+D3fo9jgH6rpX3qyiwZSmXLrJi8j5CEA+SZKQhlz7jROyRfMBYhdVCPO/7HnLzYa2F\n3FApY7BKqAUp5t9LXg3lXZ+EwmaqQUaQEikrN8fNUJuiDCvrHWFwEsUgaKmibbucqO1pj1vaZYvK\nF7hpDHVTkzJpHR1JBHa2pzjnIVMTolYM40DfiwrLamhmW0wnYq7arpYi7JjMiGgCGooiq55AKyEo\nryMiPvvo5/mht/zDZ9f/XMf/2b96K/dePM+ls6cRTa/K0RECCLzh/lfwjn/9JzxnkHAxkZW10qTk\nMpIj+VNFURK8QxsryscY5XP9RZ4XzCL7nfe+l8ViyZUrVzhz5jSTiRzk3d1dmskUbTS3Dg9oJhMm\njWRFDP1IXZU8fuOA93z4ER650vP4zVfz8OWWd//bT/LZqzdIMTKbTqjKgroUCZ9E7miKqsIYQ9/1\nLBZzyARTRWIch80usu8H+rYlepnydS7kMfiNfXUMYvturMIYCYhMwRPdIGz73ClHHyBKDpFWKkPm\n62+ZVKnXfi1qQ/ozhWXNGd6YZnlPdE5IXkJEyHJQYZU75/Cjk8PvPGPf471A8qvFkqODA4ZuyMx8\naJpKCLbWMplKI9dUFXVZEp3DtS2kxKpdcnR8RNe2pBgpqopmMiGklKMjBJYvqpy/ZOV7W0rIHlrz\ni7/2dpTaAX6Gk4KcDcLUNn/4iU/Rjl1GquQQhhg5v7/PD3/L30Cpt6LVBZR6A1qdBx7k3LQRa/ai\nFK6HFoOqYRiynXyxkcSqLDs1VoiyL8QU6S/ref8Hfo/j5YKjoyP29nbZms7Q1rC9t0vZTDBVxdHx\nAltWTCZTSUcehaCrUDx+a867//RTPHy547Hrr+bhJzre8cGH+PST15g0jShhMgoJUuCNFaSxazvm\n8zlrhZj3skMWrkmg7zv6riV6J4UzBSEmZu4IKQh0zom3jOaEV6CTNBkqxuylIYoUk5uYlBUJKA35\n4hESmqyyUFo4HVq8MvSaO5Mizo2s02xDlCaGKGhj9JHgHCpESq1xfUcYeoJ3tEdHrI6XJB8Ye2lg\nm6YhEvKZBaUDs1lDXYr5VvQjKTr6VnKd+m6FioGqNFRVwdC39H2LLWw+5xZlC3RRoqsCXVXosiIZ\ny2cee5wf/Ac/RozfTwhXiPEDhHiFlL6Pf/bu93NlfsRIImb5a3Be1gUo3nD/K0nMkaK9Drt7RpBk\n0wAiZjBaE4OsTIwtIK9KyrrC+UBKKgcn/pUe93/nKaoSjKWezvAh0Y9jJpWKK+8aPVbA568f8lvr\ns37j1XziiZZ3/X+f4JEnnqIsSqpSpNk6cxlR60BBnRG3FTdu3MjqTENVFhsSr85+RCo35YZsdIoS\nAqsxlEVBUYjqboOCyodHUMCUEcIkDYdK2dBNydARQhAJv9ZEBNExVjxTUGtVjt2g7ZLBJYSvhJjF\n+ZxRZtTajmKQgSM3/947uWucJw4jrlvhhx7XdRAcyQti48eRrusI0TO6gW5YoVTE+wHvBqJ3LBfH\nHNy8wfz4kGHo6FYLVos5inWUiaxyrRULidGNKGMll8wUKFtAYcBaEZ9kBOsXf+03nrP+a7XNh/7s\nc7go6zFQG7GLVoYLp0/xw9/yxmfdASrfAacmVXbwl3OvtQzt/eg2Yhm0zrmA0qTZ4i8wa2m1XPGa\nB76URz/9Ge64eLvsv5MIZKuipKpqXN8z9IHRBdplh5rKB/ZPH70C/F3Sn+vs/viRB7n91B57u7vi\nI1NYqurki065qK66FVevXuNlL78PjHTnSlu0ylkSSXb4Kf8ekfRJ0nBSCmXUBlY+ScgWT4yUEimO\nEK2smJCIAzGtUvl/mciGcGeskWn4mS+6VloOSZIJOKYkbPmUSNljIwW3WSGRO/foxvx3cIxDR7tq\n0brYNGGkQIyBdiWZJs6PKCK1irjosBhcO7Ccz1n0Lb402EmDDwPTckpZVoxaZ7OihBt6oi3EfbIs\nMrfC5BweUJkZ/9jlJ3lep8fxGGUtPt9r4uEjk/UbH3gVr7h0O+//k49w9fgpdrfuxa1WfObxJ3Ah\nUJuKfuiZVuWmkREnTCCxUbsEH6lyExOe5RXxV/vcPDjg/i99NdcuP8m5c+dw4yhrxZSoJw1lXXO8\nXHLOe9zoaJctjS2JJtE5x7/5zGW+0Pn//Y8/yD23n6fJKoKu6yTcLk+PShv6YeDatau03UupmkZ8\nd42YKoYsMVVKY3LhTHkKxYiPkDInYZFqTU5M4n1NBB/BWCXrHSt2/0LqTZvCnfm6QnDFQBTuhs7S\ncq1kelyT+EMchROABFyqGHHjiM4meoLu5JWq9/LzXYt3TngyMRBcNpvM/BxbWhKBfgiUpaEbeqa2\npu975ssl/SCp3VVdsZwfU5cFRWnzZJ4oi0IIleNAPakpmwlZay6mYMqIqaDS/MKvPrOIP5vnotXb\n+ZPPXeZvf8VpfAhYZfO6TdYkF07v88Pf9EZ+9j1vRfF2WTPlNPjdRoi8zjlqI1yjYXTCpZD9dHYy\nlgu1qmuU0huuzIv1KG3o+oF6MsUryRCaz+ccH88xSjGrG5It6EPi/32Os/6HDz/IpbOnaCaNfN6z\nkq/ISM7oRkxRMo6ORx/9PJfuvpPd/T2MNbIGR2VEWmO1+I2sidrA5lyFEAXJN2IoGH0m7KrMpUny\nzyAIo8r1xWW+l86rb5XE2wqtsQJZCJ8sBKy1WG02nBppzDSdc6iEmPyllM0kBSnUSVbmwQk/JwXx\nWTEq4ceBYRxImRM49IOsE7Vi1bVMfAM6MbpE2y5RBkplCc7Tti2L1ZIQE7edP8/W1la2K8nEYC3J\n62XZkLK5ovIeU0qilLImK6P0Rj6dUDx2+fJz1v/Ea1i5nq29HbrjRY7sgKQzrQJ442teySvOn+N9\nH3mYpxdXsfZ2rjwx0obc7HmP0lBMS1ISxFFWtuu1pNSk0cKG8EwAACAASURBVLm/2NDI173+y2kq\nccJcrlZcfvJxdnZOsVwu0EbRNDV1XXN0uOD4+JCUIluTCY9evfG85LdHnrzKxdvO0LUda+vzTXfs\nA0ELdPfUU09x6/CQ/VM7+ABNWRGTEMeMKajL6kT1gZgQqZijCiLYoqAohHCm0JkQLKzrcXAkFUna\nbA6lNEZZ+qeEnLV2Dc41h7UwCSWRB5GEUeC8w/kRq1XeGwbxtVh/y+6NKUqIHdltcRwG3DBiTWK1\nWLBaLeS1SMKSHNoVRWFxQ0/XrnA6iRdLO7JcLHEoirrhzNnzQvjVmuWyp7htl2QMpjQYWxGNxaeE\n0ZaAXGTKSCFPGJIyXLrjEkr9Cs9lEHbfPV/PbRcvcP3a07g1oTtb2yulOL+/x3d/7b9HD4Si5kMf\nf5jPPPY4wzBiS4vVCdVkxry1BO8YhgEQ+bhzTvgHStH1HX33xaPc/7KeL3npyzm1s8+Vzz7K2PVc\nu3qVavc0i65l9IGdakpVNiwWHavlEjf0zGbbTErN5Vvz5z3/H/ns47z2nouYpKitqA2U1hvOV2U1\nV64+xfHxMafKAmW0mInlxqFQEl6oNNLkZuk92ewrBZWzuQwxhjwFiXkiSjF6zzovyRBRwYv9uVEb\nVYbsUiUPKClFVJYYRN6M1rn5EDKzd4IoWi2rmui8pGinuDEvC27EO0/wTqZTpfDO0a+WKKNYLpc5\ni0qGkqEHYzXGalyX6LQipYBXHaHtGdqOLnqanW1Onz2Hc56gC5aDZ9bU+CScnbpu8Em4PTrFTHCX\n5i+mTN43msefp4lPvIajtuPU7Rc4uPo0wUvjr3UJSUIrv+HLvpSXXbiN931Uing/7nH9WseQNH50\nmBSwkypLsC392OPciLEJT6LrO8mks5ZV3zGM/V/BKX/u58kbV7l+cIO62UIni1EVx0cty86hFMxC\npHGRz904fN6z/vHHn+LUzg7TssKPHheVGJPmsxZIWGs4yGjy7u5uVlO6DVJrIiQlMQUh+JPcsCSS\n6RAjthSX8xg9MQVIWu7qmNDG4txATIKo4HtilOylCMITQxBKk8CSJMQRsRCR+0TjQhZqZENE10m8\njNHiYaSDJ2b+osmGq8EPpKQ3g4Q1Es8jPkwe7x2LoyNcdBv1ktWa7qgT8rosAkgEljGRekdoe7ln\npjVmOmHn9G1MXCIYyxzLzJaZZwJVNZHh1VqilqxXdMrKxqyY0gqM4a4vUv/vuOMbOHX+IlfHx+mW\nCwqVMIjU3iWNUpZzp0/xXd/wVUStubpY8UvvvMbysAVEOVbUFqsMKQZsUWUpvqOoNaGQBmyNmH2x\n5wXj9af297l58wa7uztcOH+e6WTC8fyQJ5+8Qt+t6LsW70e6bmToPW3b06465qseibd/jsm+HRjd\nSDNpxP44r2WM0RR5XVPXFUeLY46Oj8XKOEYG5zYkuBOUQySWMaVnTTE67ykFShR6E8hkuvYO0Aox\nzE9pMxnG6ElJiIoxZNkoaQNtpkzKdUHydXSG3cVwV0zGfBA3zOA9KgTZwbtAymunyhiqwkpwoxNC\n8Go+lwPdd/ihp28XDF3L2LWEccB1LUO7YlgsmN+8ydGtWwyDp2pm7OydZmtnn/O3X+T87ZeopjN6\nFwjaEJQhKE1RNxtIPSlFIHvhJOnQbVHyfd/z3aR0zBeCyBMLvuOb/332Tp3C1iU+xRxDLyiVGD+F\njQumMYad7R1ijBsvk6IoIElgYWFlF7rmHCitN9OOUpq2bRnGFy9v5s477+b41iHbkwm3nT7FpGl4\n+sZ1nrj8BF3XbZrjoR8ZR0/bDyy7jrYbWfbD85//rqWpaiprqYsy82qydboRX5a271ksFkI2dIG2\n67Kp4xqWZ6MC8n7EBTEdUxmlUShCkDWPOGxJUwF5vRpFqRS9EIaJUWTMUdZPKgRMTOhsriTKHUmf\nDyFuUDSDQsWUo0Gyf00U1GWdTROjx4+jcHi8p6kqQWfyyqlbrWjnC9zY4seOsVuBHxhXS2Lf49sO\nv2oZlyvmhwfMDw7wq46qrNg+fZp6e5vzd9zFmfOXSHVD7xO6rHEBXFJUkxlF3QjvR5NXZQqyhb01\nlrsuXUKphzg59+tHivjFC+fY3d2jKEtpikxu/ICUFDEpbj9ziv/0jV/Dj/ydb+IbHnglpTkxcLNZ\n5h5iEkI0cjmZwsiEnFd/MQT6fnhRrQcADm5kf5cQ6PvVRpyQUmIYeubzBfPlktXo4HnO+qLtKK2l\nLit5DZScWWMMNjfbWmu6ruP4+DhnaBmGYaCqakFmM7KxRmeUknyzlBtpMSzUeZV0koWUYsoeSuJi\nvbYzkDskc9nyZZ7yf0PWRjlnjJP9XsrKRHim3FyLy3yMkkUVJLZg3WytvZWE4tDn3CjP4eGhcOhW\nSxbzOd554Z0kw9D1uEHujuAdbugZuxbfj3SrJYeHt8QHrCi5+JJ7uf2ue5ntn+H2S3dz7uId2LLC\nRyjrJnOwoKgb6smUopRAypREpm6UIE9WGwpj+L7v/M7nrf/f/o1vYFILrQGEmItig5J5505oFnkt\naLIf0vo9KcrcjMaQf2/KNUu81kJ2748vgOz7ghuZmzdv0K1WbM2mqBSYHx8z9gNlYVBIoGRdSY7M\n2qnxeLFAxYDio3yhogAfZVYXKBQ7OzvyF9Z6k7BrCpvDsAxudFy/fl2Mtqw0M1VdU08a4eO4kaiQ\n3CG7NltKFMZS6GxuFOLmIMack6SAuiolXEt+dq0MFhZ3WvO65ecyf0sQ6Vy4xa56DVmKpNQoRYpe\nCJTRi1rJ5W/Bk7z8XN+umB8eMj88pF3MmR8esFwcEeMoO04lxlIpZ0f1XUvfd4x9Sxp7lsdHDG1P\nUVTs7p/mVV/2ei7cfS/Nzj57586zd+YcpplSVBOm27tMtraFf1TXAuOpTATNGSVyHhX33XMPP/e/\n/S9o/QsYcxGtvx6tbgMe5FX33c0vv+v/4bNPXGZra0uIvjFP2zFunJXFm0T2oTp7MFSVeBroTJRz\nmbPjnNskG4cgRMdNynJal5oX51nNjzm4dYMzp/YwRrNYLgnjSGkMBjg+PhImfi6CzjnmiwUHx8dM\nqgqlnvv8bzc1s8lks89fvzbr9HJtNH3Xc+3atewRUaC0oq4bbGE33ig+ezUZY7LnEBTGiJFkXJ/b\nE+g8htw4FpaysKToM0xu1ugwIH/O2lMmEqVJzxYFMUhDlELY/DfM2vE5xHz2w6ZpcW4kOJcbmcA4\n9CwXC27dvEG7WnF0eMgyqzEMBp00fhiJTiD94EeGtsUPHXHsWS6OhfBrC05duMTLHng9Zy/dw3Tv\nNKcuXGDn9GlMWWOKmtnuHrZsUMZiqxpTVnL+I5gkWWBGiWP4933ndz13EU8L/sM3fDU6RraaiUSF\nhIAP2ToBsqGdrN6UVlR1zdrOfb0uTwlZUQLDOApBNQ9bY2701lLgZ70hL8JTZVVRuzim71qq0m7W\nMyklVm3L4XxBbS08z1nfqku2plMJAE4nUl+xw5D1DUrhvOfmjZt0XYcxuTmxIkwQ7sQJp6WwduNp\nJGVManLyMW+bVE5uD3mtKk66pbWkFDMCL+jkGtkJm6GV/O9zvV+/DSmvTIPwytaGketGRSFIQoxx\ngzwGL9wXFQMqRLrVioNbNyHKXbparjLXKuBHMVONzosqLwRc3zG2K+LQ4/qWdnnM2IupY7O9z/m7\n7+P8vS+j3juNt5Zme5v9M+eoJluYsma2s0c93QZlQVuSNsTcwOt0kjIuNLvIPXfdxf/5P/+TL1D/\nf55X3XsXv/Hu9/LZzzxKU5SUVUVICedHRtfLXZBCzpwSGKksS/GzyYNX9D7zZERu7Xxg9E5UhEr8\nhYa+2zSMX+x5wY3Mpz/1CEeHB/jR0fd9/mwl2uWS1WpFu1pRlEV2GI0YIyuVMrjnJb+95Ox+3gXn\n3ViWf4rtssmQuKyLbty8wWK13OTwKK03l58uLCFFgcqTRI2vu+uUEqwDv5IcNCkUMZMhhRAJOWI8\nZVJY8kLQCgGRsGY0ZsNAl2wnm5BVkXeEwRG9F8+OECiNoZAwIUkYDp7ohRmevDQ2YRxE7eQcfhhQ\nMZC8Y2xX9KuFkMCcY+xahm5FciN+GGgXx4xdK8WxLNk9e47J/mmq7T3K6YxkSkw9YWt7D1s1mJxV\nU1SNcAJyAJqcHIQoGiTBN4XA93z7t/HQ+97Dj3zvt/LAK66T0gqtd/nEn13kF9/xx7z5v/oJfucP\n/022sBfXyMGNorLIBL2isJRlQVXlyPlsTCUoWlawcBJuaIzOLs5iHideJ1E+EC/S85lPPUK/WuDd\nwNB3eDdSWcvYdXSrJf1qyaSu5PVDLqpxHDmeLzmz1ZDSc5//++++4xneQ3rTJUtSNZvze/3pGyzm\nc2lWtEi4i7oW4mFex64HgM16NiZ0JvXGLPNeNzBaZ6XRmreSwNhCikyOSfDe59ym9TSqNoiOUlkd\nYaVxis7jhwHvRtwozbvJaqaQ101kMzyjkLMfAu1ygdWGse8Yh2HjYdSvOvq2w48j0TmCGxmWK3Aj\nYexp53PaxVyasaph57bb2Tp7kfrUbcRyQrQFk51dZjv7mKrGlg31dCZnH71RK4lLMhlKlBXyS+66\nk5/7X/+nZxVxoy+geJCvfuAV/Mwv/Br/9MFf4clr16XxRnxNnBuI0ef3LseDWFGdaKM2w07IxPik\nlajEcohnUZQUxhCc8CqkbAmC8GI+7WpJt1wy9j1GKUm4jgFr80omRhbLlt1J+bxn/eUXb6OuS8Zx\nIOXhJt+dgpooUe4ZrTm4dSCWBLlmDOMopFtjN42M99LAG2Mp7NqrSM6yNNkxoxk5XkZYv0Qf8N5t\nXLfXOX3PQt6f0bTE7D6cYhCrCyWS6RQDwTnxgxpdRq28fK7WiOS6yc+fM3HCDrhhELQzJfq+Q8eI\nGwfhy7Q9w6ojjA7f94RxIAy9RPF4Tzs/ZnU8z07zmunuKab7t6HqbcrZPqqe4pSiaBomWzvosiYq\naeDLekJC40MkJYlkfBYKFUL+zAe+503fxkd/+938F//Zt/DAy66d1P/P3MEvvOuD/Ec/+t/zr/7o\nQ8Ih1WzuzBizR5A28jmw6wBUqesKNjXF52HKB/GTSylRlRWlFTVkDPKafbHnBX9Cdna22d/f4/SZ\nfSlkKTD2oiZKQfTz+7s7WAN1U0iqcvC4PnDP/hTFgyh1HsUbUOocigf5ulfdw7QsKMuS+Xy+gaXW\n1v8SbCdrD6UVN2/d4vj4WJoYI7v59Y/XMtA1IrCxwH7G4RTWetw0IVJYJak1eMfaUH1tUmeV8GOM\nEp/SE8Z7zHwX+R4f0N6L9NUH4jgQhxG8R4VIHFz2DfC5eQmEccQPPUPf4foBN/QMbUvfLumXS1zb\n4YZepLXE3CQN2JSwgO87lvMj3OhIWmFsxW23X0RVDaooqbZ3GZWQfCeTLcpqkglv2eY9rZ0RZIJZ\nf9hkpeBQQUiY9126g+/5lv+Aj3zyz0j8ADFeISZRccT0ffzTX3knNw+P0Wvmv5b11Pr9uHLzFr/y\n/g/w67/3AW52vaAK1uaVk6UsCtworpbiSWIlR6qsMkcinaztXqSnMIn9vS12t2dYIwU0hsD86Eis\npKJnezbFGk1dWqqiQAHLdiC6kdffd+czzv/XoZDz/9VfcokzO1t07Sr7DslkKaseSEox+hGlFIcH\nhxwfHuciKxJRbcSSPJLQhc3qFoUx4rsRY8y7VqSwxrhR8a1XF6QoUtEUNlB4CvJjk9cga5NI1p+l\nsC7QkTCM+HEgOCcE3RAIbiQ5Oe9uGHJB91mNIX4ZfduSnMMPI323Yn50RPJeVqrDQBw8YRhQIeLH\nAbxHp4BWkX61YjmfMw69THuTGfvnL0I9IRU1ze4eTimC0tSzbcpmRtTZJydzBpJIsTZraXE/lpUo\nKfA93/EmPvJeKeLf+kbN137Z3aAUH/zok/zuhyb8yu/+Cd//P/4UH/jIJ0RMgDR22pocmClcA61N\nzp3KCpusetFGHGQHJ+7M/TDkVYmmaWoUcs6c8y96I3N0eARJGtDSSqZbXRVsTyY0ZSHqnBDAO153\n7x3Pcdbv4PTOFiGIXxjpRB1HFmEk2Awti+WK4+Nj3OiyTDejggqiUujCYqsSbU4QGQkJzb12SM9o\nbOImIiCK/S/ejcC6uRDyrUZ8xgoj5Hkyck8MeRjwmxo+dtJkqxgzei/8SELADzJo+nGUxtxJ7fZ9\nx9Cu6FcrXC8qpfnREWMnnMdutRLn6hCy3xKi8oshR3Akum7Fqm3FlwZAG2a7e9Tbu3hloKqppjOi\nsSRtMWWDKRpRo7KO0xBu0poLGnMtiFlZmDgZ7l9y5wX+42/6m3zkU5/J9f+pZ9X/n3rbb/HUzQMR\nBHCy5jaFKBmfvHXEv/zdP+Dn3vnbfPbaAT7ICrAoLLawKCO/tu06jDGS76YM3gXKosJYs/Hner7n\nBZN929USPZnQ5PRkpUS3vre3R0hHoKTDrhvL9vYeR0bhxh6jYKc0/M377+PaomU1fIqtapc7z97N\n/qyhH0asMfR9L2RffRI6tk6kNvnSG8aeg4MDOjdQlw3Oe4oys8aVIABWnUQPnCiU0ubPSsFn9YXO\nidjSgcreLm7gxZgt2ZUyhBx1npSWSTQZEjLd4h3rDbvsGyMWgUOjc/RtKxyKcPJhcMMgAZnjgHMj\nXbtiHAf6XoiLSsteUJJTNTpB8GMOajQMfcdqOceHkRQNzjt0WVDNtiV5FNBlhUlZoZIiRknyb/AJ\nFQK2zPvKfABT5k+kMKK8h+jRyRNczy+98/9Gsc0XUnEofpP3/9uHeNNf+wqhG2hN0opA4v0f+yQ/\n9e73CQEw3U/ikKNxzn5Tsr01lc2qUrTtSiBaLdPO6Ea2C0tVVSy7Qdxm7Yvn7OvGlugUVSkfNGsL\njhcrdrZ3YLEEDdYqpk3FbDKhNAY3jowqMgwDd509y11f+1o++9TTLFaPMCkn3HfhEhMrctHDxVJg\nbmUoy4KkUkYuclOSOUMHB4dcGjx20ki6dYqYshDLAWMo82pQzvsaPJGVn7ZGcsYSksuihJ8k5lgm\nZ4kFcRZFQcgqJe+RJYK4aaOFAxKz9YFIuOWSVgiS0xSlFPJ+kGYkrpueIUvGe4ZhYBxHxnGg61qS\nE56AzuGxOioKW8gZD56gZFUwjp7lapnzmgyjdxRlRd00JCRZ21hF1Uxx0eGDAiWeNhFxTzVWcnfE\n+0N8b1IQfhHBQxwhOu6+eJ4f//v/OY984mG+9nt/kJR+gJCe7an0s+96K3ef+0+4uLcjr1GSME9r\nCy7fOOD9Dz3Mpx6/zK1upClNztSSz5yxluVyKWhjkBDPYXDs7k4x1p6sRjaZUC/Os7W9zR133MnV\n69fRGqxOTOsJqWmYVAX9MOAKQwqR23dnvOlrHuBzV2+ybB+hKSbcd/4OIYPmOu+zW29CfGdC8GDF\nfboohGoQvOfg4BDvAk3T0EeJgTGFcDLQZjPcrO+jExmw1Hq9RtpQm7VSSIJ0CUcmkXKqtgIIDkll\nVqTkYM2liRktyGhOzEh2YWxGsIUPUxmDz6tBPwyi0gvCCUshSK3vhNjt3MjQ9/hxYGxXDH1H3dRy\noSdRdInzfQQdUUHQvFW7ElGEtQyjY5KSBEdCDosU8USp68zzZINmxxg3PjpKIU1YHhaJeRXsRvAj\nOnpSHHF9yy9/kfr/e3/6EG/6utdh8p0ril34w489ws++67czAfx+Unoa8ETds1UXOC/NY1KK5WqV\nVeBS5122MzC64IWEv7/gRqawBUVRMIwD7XzJZDohBMcdd9zBqh9xPqF0YrY9YdI0FKUhDo6h67BK\nUxvLay5dzOQ+zxgdXddRVZVwK57RuCglUrsYclCXtqyddK/fuMHYj2xt7RI66UrLsgQj+R5rbsxJ\nZDs5aROMUrgYMnoA5At87d8h/xxPyKYklAo5VyVHjxvZo4fc7Nj856rMJcBHTGFIY6RftbhBfGCS\nE3Kv9yN934vvTRSSmnBeBlwmMFst+1vZDxpBgkKCkBj6FuccbbsiWQndC6rDlCUxNxGDD2ijKMsS\nP4xIWKXKpDVkz3yilBNjtSgy9DDKQcZ5cCND1/H4k1d4PhXH9cOn0Ulyc4iSBXL9YM5Pv/t9pPQD\n/Hkp5kH3INurllldMClFjplffrQWPtQ4uo1UFYQ09mI9dWlRKjAMPcMopoKjj9x1zz18+tOfoRsG\nMaCaiB/STlPRdR3DMGGNKM0mDa+7905iLmwgZL+0biiI2ak6r2KMpi4KdBTkLITAzZs36YaBvZ0t\n+uDRSQzptFI5XVrCFLUxEBVRxZPwPBA4f31W1/4Ba65ClAwmo5UU+6DQRDKXVxQeiJuw1hKFIM2W\nxmoIo6yPCqvRMdJ3nfBbhgGrFX4c8MOIcwPtqs0IT2DsOsIgiGTwjmrSiJLDi21NCo6oAmjoh5Fh\nHOiy0sPHiEri+VSanFgcMw9FGzzy9a1hczKaRRQEOQUh15M5bLiR6HqRp4aR2C2JXccv/9Z7RI6d\nvnAh//2HPsl3fu1XgtaCBFjDBz76MD/9jnc/o4k/Zu4W7NYFjbMQFU0zoR9HdPJMqlI4AyEhAklx\nb1ZKY144cP6X8tSzGaaquXr9OpAorWF71mBQ7DQVfdcLRzGj3o0xvPaeS4JeRFlVj0NPURQcz+fZ\nXSCJrX8mvaayxFqT3w9ZKx8eHDIOA1t2lzQEfBK3ap15K8rI6620wuqCoPMKNaUNFyxlPosEKebM\nO4SLo/NKNRFRWbCgtBg+hnyGZA2iMh0hN0RKi9AqJrwfUSGvWEOgnS+Io0Nn3kz0I3F0eDfQrlbZ\nQNQIJ6Tr8UFI1BtByuhQKhI0OVZBPoCjG+mHnm7siTERRnmddpPKEShRGv4Qc4Mnf4+1rYVE3kjg\no04pq1SlASMEUvTo4Ih+ADeivIOhJayWXL7yRer/0bUcxhw3d+nVozk/+67f/oL1/7B/kKa0uHFA\n1N+acfCkEDFViQ+RMccVKG0ZX8Bq6QXfDlYl7rrrDtpVR7M9Yzrd5rNPPMXgAm3f43zEliU7RUlt\nC6qmIZY1SyS/yAfHarWSg6agKDTdGNjfm9J3PdGLnXOMQUyrFHg3kCoJdyNCHDzt8ZJx1WNOa7Fb\nN0YIfHnKWbsAFs8gDctEE8WwK4odsoqKEDNpSyVQUaSAWjgFVf6wiZ9G2pjGhZDhZ9ZrVPlziCkH\noQXG3tEvFwztUghiMZJcwHfSiftxZOhaQvDSyIVA14nJ2TgMsh8nh98BqEhIgub46HHeEUj4PtIP\nAVV4fBpIfolyEwoUPmqc1tl+Wg4xWsjPxiRSdIDKJoCScZNCQPsBNQ7QtoR2SdG23LG/i1J/kKfQ\nf1eKd3bvZehSEUePtSXGWH7/ow/Dc3Tx8DYWw0ilE9WpfXRohXhdFPikCaqgDzBGw7J12VfnhZ7U\nv4RHRy7cfk7iHbQoXw4ef4p+dBwvF8QYKY2lKS1NVZKsZWIMq8LmCzTQrlYkX1MYjdaWrm3Z2dmi\nHwchiSpZXWqEF5ZCBBtzYy6kwXa1olu17KMoihKljRDi1005EDMySkqbqX9NHIWT1WlMQXJusseR\nSgal1y6aahNEmaIUPa20uAGrbBqWsnNqCPgQRa6qFH4YGNoVq/mCQmsMiThkaH0ccONA364IMcpa\ncRhYLhebtPjVUuB8g2IcAklFUFGGH+8Yo8chjUnbe8rZTC5MN6DdCPlznRSyJ0gnDZvJKwOVEirK\nykqnRPKyAjDRodxA6Fpc2xHbFWG54vHLz13I4TXcPHoqD00KZS3XDub89Dve/QWL+FH/IHtbCUWQ\nqJXgYB0urg1jkIyZpBT9MMAzBo4X63n6+g0ODw/pxwEbAoUxVEYULmhNqRSrXm2axdVytUlsL4yh\n9466moBWHC/mGGvy+jTHx+Tzrp7xF/XOM/Q9y9WK3RCpqkqiVLTOilCpjYGIVlpivDK3RatnNDHk\nNWpap1oX8klJa44UWfghjUsMPnvK6OzqG4mIfJmcs6UQaxBJnxeU3vU9w2rJ0IoMWwHRuWypIeZ1\nfhw3yd8AXbdiHPOdkJWvSgmKOvaepEUZ64PHRY9LgZiH8Xb0lLokhoAbOpIbclOSh2yjQJ2or1Sm\nW2glAwRJEBhiRLkxI/Ie4x1x6BmXC1LXk1YrLuzuoNQfP2f9v23vS5DcTNlcKGP4wIc/hrhif+H6\n37qRaW1JyMCdvPv/iXuzZ0uv87zvt4Zv2MM5p0/PmAESBAECJEVxEEeJNilL8Zg4FTseYssKfZdK\nJU7+gtymPKTKVa5IDkFHllVlybYk2xQpiaIGguAkASAAEcRIEOjh9Bn39E1rysW79m5ARANQijI+\n3rCbh92nz17fWu963+f5PdjcD9bW4mOi7x0RRd+9sWP1TZf6xkg164OnKCtmiyUJmWWGJKKdwTlw\nXsIRUYzLku3pREh+IdC0DU0reOoUpHrTykhQYEo5p0JjjaEoxE0jAiDRcqSQiEOgXTUZmAVDiHTe\n4bJbyhaFxH/rnFCb587SGlQUtpIUXp8/XCVAGNGJBGJuL2sfUF7gQSpEdBBhl+97ohM9TZkPieil\noldJrNvNaiWhZirhhw7vOmLw9K0IGIeuo+86hn5gMRfFesyWvjU/RayCiX6QXJLBDXSuFxR7Ctl+\na3Eh4oKjWc1pV3N09Oi+hyG7Pci3Wt8T3IDrG1wrjqfQrPCrBb5ZEFZLmtkM36xQfUdqV/jlHLda\n8F9/+H28nhXvr37yx3BRbHTrjJVrxzNez3Y8+LDhoRyfHOO8jDVcTCybgfmyxflI18vooCzeutFS\nil7yoLynGtW0XY8LidliKZtwbs+mPE/XMTCuSsZ1JWvEB9qlCOLDK8TLxhR0fUdIOXzR6Iy8z86h\n7DRaAxmHXkifa75OyO+c85LRkpSQdUWNqLP1MefGADaPYNedSvm3yejRhwHvhkz+TcSQnRZZHxC8\nIwS3oaFaKyC4NQ1YAW5w8m4Ojipn60QnxXm7XLJaOiRghQAAIABJREFULBiajuADfdfRNI3Qp0Mk\nOKGZur7PosyId704lYaOtpdbv49Rcp5SwIVE23esliJG1cmDH0jO57FBzmQKjpQkoM8NPUPf0rdL\neTf7jtB1hLYldS30PaltcYs5fj5ntb/P2ckIbuS8VI9y/tRWHrWJ9uZLf/gISq2L+FdTUWGL41WL\ntZbBOY5nJxtdX0qwajqO5wsGFwhB7Nl1/daGRtpyRNs7xtOpFCAK3NCTsph1VJaMqorCGgiRvhWw\nZwxxY6m1GUi4LkBU1gsVRbEZS76SsKuUwg2OvpdDXkYWkX4YGPpBKoU8Ul1HaOgsfF/bizRrMe+6\nk7LuuqeNNsYPHYqIVWpj0lBZLxgzZT16L4R0azdnWVx3NKO4a9rViugDdSGiYz+I6L1vWprlIr8X\nIk4e+p7VcsHQ95nuHDYuP60VqIjzA8EPDG6QrDzn8DESlYzthRAcWS6XNIs5cejRUUZDaydheMV7\nG2PADwND1+G6lr5Z4vt24wAMXUtoWmLbkLoWv1wwLOd0Jyf8V++9/4Yi7sSC/+aTH0XlWJ3N5OT4\nhJRuvP+7IBqcqqpZLJccnhzj874UY6JpeubLJX0/iHPvjdbom13MZ06fkXb54FBNw6VLVzl77hwR\nLXTQbiCmxBA89JJcrI2hLErWJNuhldYyjPAhUtdi15YftjidbLZgk224CmE0KCWLMnhPDJGiLKUi\nt0Y+4I1Q2EoVHSNFVRJ9kBtvbjdCTs1G4EibeapSuPzh27KQHIsk7UuBeckBoJMi6gTR44dIGoSz\nERJEP9CtVgTXUygg5FZhSkQnh04iEVLIoXyCmO/7Xjz1PqGMFtW3MUTk+/HRg5aXOJF1PFzPKpnN\nZhzuH7A8OWH3woAOSlp3LuDansJch/GlJIAno6UbYxBni3MyThq6lma1pJ+f4BYLumbJ1Gr+l7/2\nk/zTX3slrfQPSSy557Zb+M2vP8Z77rzI+Z1tEdOZyIVTOyj1GOk1qnh4FK0EOx9iZNW27J49u3Hc\nLFdLklb4DBY8Oz234QS9Fc/09C6zdmCxHKjcwN7BHls7Z0lURK/o/RJSwnlH78QFUZcGnQwmCc0z\nhLhxWWglYmaiIvYBna4LHo3WJC83W2vEfi/zeCO3L+/Enm3zJcB7CmNEv2VkBBpCdlYowedLh8Vk\nW2MiqgzBUiGPm6w4dqIXqFgQcWSpLckIhj+6RNKaqKSDGQbhW0hL2eGGjm61wniP9tLm9jlnyfme\nIQ4EFUg6MfQ9wXu6vqcbehmJqQhGrOT4iFUJnxwpJFyKdN4TiCL21BCsplKRZrVkdnJIe3TIqXPn\nJBRWyc+VFInGoGO67h5RopgwAD4Sh0HeZTewXK2gb/DLGe1yztAOHJ8s+Il3vZ1f+N2HeM3smLTg\nYw/cTcijMqsV12az193EvX+YUTECrxg6j90uKeoKZUoWixXjURBOVgxMp+NX0c7fiueWW+7iYO9I\nOg/0WCNFmM6aQbTOWj5DSIkQ0kYropCRv9EW33pMsrmVHTN7KK0/FtFxpYhWop0RO3rOJDIGjKH3\nPhfrRoBdVkGSvdsaQwxyUdDaiPRDJNwkJV8ech6SVgaSIrkgmt8oa7awZbZcy2UXBcnIfhu9Z/C9\njM+V6BaHoaNvVugQsD7igyf0w4Y142JPUBFVSGHm+gG0aEKSVrjoiTp3XWNChYSKgZAcMUAg0AW5\nvMacJRitofKKvumYz0+YHRwQF0vJ6EsyPk0+bOJFlBcJhY5rV7CI5VSMJOekIxkkKTt0DW4xw60W\n9G3L0Hu2Ssv//Jf+HP/XK2jVikdJLPhf//Zf5aYLZ7h86SU523zAWDh/+tTr7v+FNmgsdVFlYwxY\nU6DLAnRB13RoVdM5L/+mN3je/GipKDiZzYg+UdUjQkySf5JvEl3fS/hXWcrIRl1PrVxDiJSCYRiY\nz+eM65GMVVJkGByymnJKdZQWk4wwJdhO5cyImGR+is5Y9qJER6EwJqVxLncFkspcDukxy6gGYnTi\nRDLCeHD5xRD7tdysg89URiUHQEJaoShRfWMMMYiup8CgXMQ5cW6kfgDvGII4k6TKF/dBiAGTQVAh\nRYahZ3BCVm2aRuaYiN1vrfWJSJaHG/LNBAU2Z7WYkrKqWRwfs3f1CldefImbbrqNhIF+QClNAdjk\ns7UukpLocmSxSyerbVcsF0v6wTM7PmR5fIBbLYhDh0KAfz9+/93cddM5fvvRJ3ny+8/w7KUVWp3i\nmZfewTMvPcov8Qf87E99nJ949/2oQvFTH/xR/v0ffI0bBYftjKeSGxRDdkyqDRJcvULXYLRmNKpo\nVs2bXao/9Kcoa5arFu8j0y1p505GY5bzFSmC85GqULnD5LFZfb9uXeesdIZB9FGFtWxtbcmayBEV\n6yIuZe6K6O9iTv4VXdM6l8RoKWBNUVBZaWSnJGJWXqEPi3ncJDTqREi5zZxvwzJ7lgNjbaFfhznG\nlFCFyjdo2RCTQGSIecPW+f30fSetbTdkrUzEe5cx6UrWtvNoo/PvOwY3MHiJ7HB+DaCMm5v3EAI+\np2EPwTNEaaunvJlbXYDxtKsVe5ev8PL3XuTMTbcQrZHiS+XOks+HVeZ9CAMHCInQ9wxdx7JZ0LUt\ni5MTlkf7+HYhjsEISVnOn9rif/qLn+Sff/4HC/m33XyBLz/yx3zygXu56exZbEqc39193U3cakPw\nkcZL10IhaPq6FhR/1/fSydCa8XhE37+1ZF+Vx+eahPMRpUyWC3iMNdKJf8VaB3ImWIdWiqqq5DBy\nsmduIGlK5aJbiVYlyb4k3UrR9bksD4jInl2ZvN6VJqS17ouN62l9IYA86shrfs2f8c4BenOpW3co\ngw9452S/V5EUVT4N/Ka7HxH+iVGaFIOs+6wnDMOQ7d7SgUwpMuS4AZ1zmNbdU+cHQl738RWdbJ2z\nhVLwctkNARc8Q+7EpFyYKWUoCsOAY3ZyzKXvf5+jq1c5rTVBq8xRixjkvMTly3bMWpyEFPHZcbha\nLWi6ltViwfLkiHZ2SHIDbhhAyfjnz73nndx9ywV+69vf4WBxlaq6A60Uj373eZ773kt8+B23c/Pu\nrnDeYuRTH3gfv/r7D3Oj/X97vAsohn6Q0ViejvR9z2g0kkIyrV1sbzxbfdOFjB8ih4dHnD93jp3t\nUyx2OmKEw8MjyrIS5XRG3qcEdXE928IWVpwIRoqbrm+pqxKX56gxiShPHBpCK7XGiKgphBwRjtBg\ngeVyIc6ffLM1uaUp3i9QUQREMYv7TL6xxiQbsPw6EWOeSRI3olKjNUMvmh1rbR5DyZwy5M3FFiXa\nGLwf8ENEOWlbi/alxbUNRsnL0bXXSZh9PxCTpFqvVku8l1ai956+b7HWSKKwlWKu9yIO9sFvHCZa\nxEAiXi5LamPZDonjw0O+8fBDGG24/fa7OH36rCj7tSINvYQCukHgeiHgUqRvOxazY2YZbtj6wHJ2\nRLdayHhNJ/qhxaeIqSounN7hz7/vfn79a48BnyGmV8//P/vFB7nvllt4263b3HHhAv/b3/lb/ONf\nfBDSr8jmz6PAgnNbY+qiYBg8Q/SgDG7wGxDe4B1kzVBdlwxth/NvXQKwSpqT4xPG1ZidrW2m0wXG\naI5PjhmPR3RdQ+8GRmOTC+WMU18HKmYuS/Qy99ej0aZLuZ7l22KtjfGbvKWN2y4zkwC6rhO7utYU\ntsBaeY/i2omBFCRKFJUbnpJs3Frw7sgGkfPeiS7molHhoxQgRVFm/cD1YDi03FS1sdisrXLdkBPf\nB1wjltIUpfvUtq38DTFkJlCkaRu6TjZ67yXWo+s6jNUbsbH3DhcGIgkXPb13YrnNgbIJKGxFOSro\n24HjwwMe/cbXKeuac7fcxPapXQp7Hb+AEz6SH4bMfAn4rud4/4B2tWTZLPHes1gu6FdzadHHARcS\nPiqU1Xz8gXu4585b+Z3HnuLxF57eFPLPXb6X5y8/xm9864/5hz/9SX7yxz7IX/jgB/gPv3eDDg4L\ntkdb+XLSictGiSZkDYFs2xUoRVlYvHfy67fwOTk5YnADZ0/vcjI7YvCBcV0SvGiZQHQpwnLJFzAn\nn7k1hvF4LHt8TpZOKVEUpXS4AYyRrnWMm4ve+uzompZhcGijUTFRlKWsm7jOOLo+iiIX6eu1nxBa\n+eY9C5IHtw6MTPlrFBI8bIxcJLSx+YJJfpk0Zu1oDYHoOkI/CFrDD4LK6DqRFnjJPxLqu1zc1/va\narUi+pSZOEZCVdP635zZOM7hoyMSGWLAeU9ASW5gkn+rsZbSGCbjxNHRjO899yzffOgh7nn3A5y5\ncIHJdCxwOyVxCfgghYsbpGPmPb4fmB8esVrMaZolLkZWqxV9syQMK3TyuBDwAvPGlpbzu6f4H37y\nx/mdbz/Fv/i13+J6Mvxj/PpXH+EzP/kxfuI970Jrxa1nz/GP/tbf5J/80oPAvyOl97De/89MJ5T5\nsjE4L9lbOmXjg5zRKSXpziqBHr7R86YLGWMNRmsm420R06XEmdNnAJhOdzg6mjGbn9CWAklKjJiM\nRiigqisIEVMpyhBYreTFdM4xHo02C5BcWa/BRdZKp0QrJQs5z/q7rqPrOqqtLVnM1uK8pGcWRbWJ\nHggE4QeAZEpESCpJZoVCYDsposJ1R09IccOU0UTRCgSxrYkIQf7Pawu18dJmd8OAH5z8974jGS2V\nu/OslkuG4Gn6Ls/spe0aYqAsC1wQgJy2luDk90O26/VDth8bgzKykavs7vFR0qGnW1s0TcdLL3yP\nk4NjPv6xT/D+93+AEALPvnyJf/0f/xMvXLrEhVOn+Esfej8Xtqb0bUfwA6v5HL8O5ioqYhBQ3zC0\ngrXPrdVL+0c89N3v8UfPvQhpixtZ8X7v8ae45863kVD81Cc+ztC1/NJ//jyNfxijNeNqCogzY1TZ\nnAU0kZwbpZmvVgQvi3tUjyhsweB6irfQuDEqaxbhhDO7pwluoGsbbrvjbSgyvwVohgF/fExhNNtb\nE8lGAQGGmUgygYDNrVfLfD7n1M6OuNqQwmOdLSR7Z/511r3IOD5mq/7AeDqBHCBpZLljTAFZCBuS\nFCzrGzJZAKxI0rlZ037JWrHsHvE5xsMAoe/l5pgLGWskm8h1LdHLO5F8EJZMjtgQ1wXCYIqJVbPC\nZceFy3TfvhvyYSWtfp2hWSF4XI5MaHwnh3sGZWlVyDgV6SZZU2CJ7O7uwtGMZ5/+LvuHh3zoox/h\ngXc/QKVlxPzHz7/Av/n8F/n+lauc39nip370Rzg/nZBCYHZ4BDFQ1hW2quhWK2IYGEInjkKtCUoC\n9WIMnNnZ4uMPvJNffehbvLKQT7lI+fkvPMh73/EO7rjtTv7R3/5b/JNffJDEr8ArivjT4xq77jpY\nS10J+TrEyKppSQmarsNmhsbQ94zHr+zq/Jd/jIKysCL0TjBvROtYFgZTSIyGQtapuC41wSaxzSph\nzJRlKWnn625JlPFnUutwiCzWtRJgu17vTdMw9D3TrelGrmDy56G1lbFkzMC6xHUWGMgFIC//iLiM\n1nounYubmESsTswJ5OviIUR8ZjVZYwiIXibFRBgc+CiIgV60QnHwKBUzHVqxanpcEE2b92LQGAaX\ndUMBi8Sy2MKQNBJumXUjrReoqAtCvTWmICUh5GqlsKbEAOPJmBQVB4cnPPS7v8uVq5f56Mc/wc0X\nL6Bi4pnvv8Qv/Kff4MXLV7j59C5/8QPv4/zOtuTWhchyNmNoW8qqoBqNGYYeN8i5EGMv0g2lSdow\n5J/V3rUZ/+LXshv1T6z/f/lbD/LO227ljvE2Wil+6iMf4fzOLj/3K7/C1eOH0VYzKibYHISqrZKL\nmNFMJ3WGQCaappNOnRM7vLVvjB9404XM0dExShmOj44JxzOuXTti9/QFuqZjZmb43KrrvYxgVm1L\nXdeEvqOwY8qqZOhaQqb+ehcEaQ045ykqK+MarTZVtjEaQnYOpfXCSyIAc46JtcKF0KKNWXdg4vra\nllvi5PEXKiveWQsc5RYk2R/CAPCDyzdKJ/wLEjJVUpRWrOOhjVlt7iis3EySd1RGM1hFcArXDyza\ndsOIabqGIeZuUL4JpBQYBqnW12RhH6WtKH++3LTXQtCU2MCBNIkCsQJWVcHFi+dZLVuu7e3xhc//\nOk9++1GeuLzHz//mlyH7+BUP8//85y/wF++5k3u2R+gIy9WSoWsx2jA5fZayLDh37jRnzu1iS0PS\nit//7vN87kvfRLFNTAVwHzey4h0sLtN7R7W1zf7xMd//3otMlGZ7Z4LLo4iUZ57GliTtcsdJDmDv\nWyaTCX3fY41mVBYMbmC6vfNml+oP/WmWDdEHjo+OOTyacW1vj7MXbqJtl6zaRjgaIeJCYFRaDo+P\nObO7S20LrC0oiwKNFO7OOSkWIAv2/KZrsj4ExGEj3Jf1eBVkSbt8c9faCB02F7Uuj1601jI6RMjA\nhJiLdxG1p6Syk0d4LoUpMEoKpX4QMKQ1BW7oNwdCobRA94jEwdM1HcF5qrIkOcfQtqQgHR5CYnA9\ng3csVyuatmXVrAjRYwq76ZrGJFbdYeilUzv4fEMbGPqeLvWAFDgSZ5lILltoNSg8WivKquLixfNU\n9ZiXrlzmd37jN3j6sce49aab+Mp3nuYf/+rnWVugUd/iX33xd/jUHRd41+ltmtlciN8K6q1tJjvb\nXLhwnq3tGmUUyWiwFdYq9hcrfv/xP+IPn37hdQv533n0cX72zrfzwXvv49Pvup+vPfXHBPs1rDVM\nym0qI8LWsiwISkLyBudRClZNw6mdUyyaFaURNpFzA1tb2/8FV/sPPsfHBwxDx/Gxz6aOgcJo6SqF\nY86c2kVpg82IDgUoJyGwcjA1TKdTVosF1oiQfT1iUq/Qhq1NS2stekJGVG5wGFtk5IV0HsNG65f3\n05hddEQ21YtWCAQpr3liXvNWvjaJY8kNg4z73JBHODLmsAoxcUQR73aNXDoqWxDcwNC1OXsMyGeG\n845V09A0DU3b0vaNTBK0iN0i0oFbc5SSLog+a0iHHu8dfepltGsEYBpB3uOURAtHQBtNpQ2nTu1Q\nVTV7h4d89/HHObhyhTtvvZVHXnyZf/qrn+f63v9Vfv4//gZ/+b67ePtWjYowNA2u62X8Nx4z2tri\n9NkzbO9MKEoJVg5Zj7e/WPHQHz/2huv/9x7/Dn//9jvQWnRUJ0fHlL3jzKgmVkJgHrouu4UVdV0z\n9G2OOBCZxWwxZ3dnl94NFKWhKH+IHZn5fM50+xRt11HWY0Lw7F3bI8b8ofQD3ntuv/V2tre3uHrp\nEsezGbdcPE90AVuAG8AWhi07oR8Gbrr5JpbL5fU2O4KojklhldpU3CEEkl1bQhNd320QxzEGdCqw\npiDGIQesiUaGHMGHEj4ACJ9BMoEkqGpTWOT2e8gjDMlSksPGuYGiKAh9i3eelMR1FQdH07WEwUtQ\nIko27sVCMO0hiDNpsaQPPXZUEkj0QdTo4spSAkAj4TK+vHciqg5hjXouGHpHSImiKLBFSUrQD1IA\nVIW83FuTMePbb+P4+JDvPPMUP/eVR0h8Bnh15fz5px/klo++h+cPZ1ybrRiTuHenpmmXrLrEaKti\nO20BipcPTvjcl77JdSvp/wH8HK+VigqPcu2k5p/+u1/nlgsXubB7mu8++2wG5MmNLSI3vL4XMFbX\ntIzGlqKqMtskMZlMGPqBvu2oyorgPadPv3WFzLVre5ya5sNESeDZwf413NCjiwoXIz4lbr3lFk5t\nT7h29RL90DMd1WgSprQELxAway1d13LnHXexXC4AMmFTRNevFDUrpXKomkatx419TwpSwIIW5ogR\nnICESEpnSzLxcqs9ScQHWqFyvlCIgaoqMTn40WUKqTUGYswcDnB9R1nVpBBoW7ex2KboaRbixCDK\nm7ZshY/k+p7eDbR9R9M2DG6gqqusb+sZ/LDRJmgjPSLRh0XpQHqHiwFr17TXgFzWSwpb5PcvEXTu\nqEaYTEfc/bY7uba/z5VLL/FHjzzKg48+ReIzbCzQGWL3pRc/ywfuuYOzZ3boFkvapmOIgePZCdWo\nYuvUBF0afB5tPfT403zuN7/6ikL+AW5UyH/tO0+wN/9FonMcX73GmckYNapwSXR8WiuGtmVwPV3T\nMKoLyrrCuYHRpMKWBTRy0GutsNawNRn/WS/x131WqwU+OBQKH4QtdNttt1BazeH+VekQbk0lrqWw\nG+v1eg2hRVKQYkRl0J8UHzHHEsQsGxDB/DpQMmYe0ToQ0vmID5GirFA5pVbMQ3qzv0sBr8RBiJg1\nSJEYpCgqyyJrXBI+OLxzojlLQs5VSRxZSomEQIp76RJCIjhP065k3WcdZtt1tKsGl/e0tuto+5am\nXVGUJTqPkZxz0oFU4sqzhcm5XILaGHwvoyVC1m2S4xESWhUZFqfERELCa0nStoXl4vlzjMcjDg4O\n+P2HX+Lnv/7t19z7/9N3Psv//qkPcWF7QrtY0szmNMuGvu9Y9h2t6yjrOxhNtwkqERL8weNP8wtf\nfnMX2ZcOXuAXfuvLHC07xlXNMF/QugEzqoTG791GCxgitF1LP/SMRlPKumYYOurxmLKuWHUtNiWK\n4ofYkdFac/fdd/Pss8/jnNhRr127hg+esSmIMXH+3AU++ec/xfzkGGs0l196Ca0NtlD4oaOuKqzV\n9E1DLCyTyYQrV65QV7LJ2VeEgW04AMZgc+aSWEnl+wkZOFSUFWVVCghr/T8ih80GYJSu/3khiZBx\nvTCNUZKREiR+YL2YUxChYYxJQHZRZosaCyR8tpoOXSsirRBolk3WBQgcqOt6cV5ZQ1WM6Nz1FOeE\nCN+iC/l2LsVViCKEjLlrEYJ84CFJErQxRYaTiT7IGlHne9dLy9Iatk9t8+TjT4Pa5rUgXolf5Oe+\n+hhabZPSj6DUo3z96sv8d+9/Fx9+++0Uo4K9puHhR1/ksReu/IkK/GeB/5PXmv+nNOf5K5Hnr96H\nevJRYppxrq4YFXZjFw5JgFrCgsgK+izKjlFCB1erVf7ZOEajmtGoekuRYDEl7rj9di5fvkrfd4zG\nY1bLBTF6rB7hY2T37Hk++olP4NoVdWnYu3KZ8hVUXmvlxtp1AgYbjWuuXdujylk1MkaVjuMr3wFb\nCL9ozZ4gyYacEhRViSmlqFVafrbiStW56Jc5v9YWHYN0QXKxtH5XBjcQgwgPdQ589MFBUESfdVVI\n4eOddBQFIdAS17oOFG3Tslq1MtLNCIHBD2hjqHQpXZphICEtahd8JmpLoZIQHdrgcks7RJSKWfgN\nWpl8OJpM+i7QRoo1H0UEbwrD6bOn6ZsVX3n+pRuuf9Qv87vPv8SkKDhaNuyORrz/jls4f2aXoirx\n66RqrTledHzuN7/6pgr5lB7h0n7P5YNTkB4lMed0XXFqXMtYA+GS2CJTe/OIyWbQKGiWee33vQhl\ni0rIzW/ls5xLLExEHGG33nknH//xT7B3+SVKo5idHFEauyk+jFGUZU1KidVqxdbWlFWzzMaQHCCr\n1jlSbMIKyW4lbSR2RsakmQ2WhJ1kqzpfJky2QItYWhmLShkqqYSIHckJ7il3gbMD0HsneVcurBsl\n2cwhf1d0onPTJELXbd7JoesYuhzH4T0aCXRdNS1EQW8MrqfrO+FN1RUhRppmmfOLIj6FnLgtY16x\nlicGP2R5RMKHkLVHKmOQDKZcj1g0RsvaRylxCWd37XRrgtaKh793+fXX/nPfY2tUc7zs2K0LfuyW\ni1wcj6AosXWFHVd4ICnF/nzFL3z5TV5k0yM8+vycb78wR9Abj5LSjDN1xRbCMFv1PaOy2nweIWsC\n19E1/SCf3app8qQiURQ/xI7MuXMXmE63aLuWerTFZDzleHaN3d0zOB/wPlBWFWfOnOHw4BCU4fTZ\nswyDoy5E61IUguhuY2RnZ5crV65sbh5ucKTCUGm5tRolrIoYAraqNuGRRmuqsqLvhfBZV3UWmMkH\nu85YWutpcpvnetclZg+JygrwIFwDn9kTVmsG5wi9pHiS5PbbO0d08uuTkxmL+SK7R2ST77qOZiUd\nm2EYqOua8WhK0zSSR6UTUfl882QTFNhnqzoZZ6+NOEVIYr0TzVjC2JKyrLFFISApY9CmkAMwRLAW\njCHFwGg8ogkBXpPj8jLQ86oZf76p/vIfPcgH7r+bJy9d47Nf+nquwCteXYG/A/iXwGcgz/+VepSU\nFsCPk/gNSNdvAPvdZ7moNWWMhCTug5gS49GYlMV7p06dQqlE23VMRzXzxQLXtWxNp1ir0RTMT47f\n7FL9oT/nzp6hHtV0XUs12aGKcHR0xPbWFg6L9xFtLKfPnuflF58jpMR0Ms2butm8jGVZslqt2N3d\nZW9v71XFaiJRllL4mI1zK1DYUrqSMZJ0pKrKTV5NZQvWMWxa27x2rlssY5IQuE2XJ62FwJlGjbwD\n61uhVlaiQgaHJ4PjksC+BjcQIxzPlsxnRxRWeLNuGBicY7lqs7YgUJSWUT1iiAOL5UzcEkbnkZgm\nrv8THSjwTrACzjuiypyRpAhOwi2NtbL2TSEBdEaCYjEWNm7ChA8DxahCG8XCB7iBBTqlm/jac0+/\nopB/jC8/+zI/8+mP8tF3vR1S4LBp+P0nnuWPnvn+my7kYQk8RkoPbH7vqPssVVlQGCPjqhgZ1ZV8\nBtawc+oU3sso2WiDd57lcsnp07tSEFjNcjH/M1vbb+ZJMTAaTThetKA1N918Kzfdcit7Vy4x2d7K\nHYyc3ZO7K1U1EhG3MUynU65cuUKpzIbgXuSIAa1kvQO5OK8lcDjrxUZ1LZfEpqUYT66jJ5RGQqvV\nphhSaZ0vlvLXiFsot4DyOElcoDEKTbvQ8j0NfZfp5kmsyUrRDVJckDSL2Yy2aTBGrM3D0OOcZ7lq\nRGyfHXd1XWNLy6rJbLAYcU7iZVAQkpeLQhKxo3MDKQk3JmbrYEoQnLjDtDFURYUtquw2lCBeZa2I\niwdFUiJJUEYx2pqwcO511v5Fvvm9Z151if2gwbiUAAAgAElEQVTys5f5ux97Lx+9/17I4aZ7yyUP\nPfUCjzz38pu/yLIA/gYxfe5Vv3/YfRZrDdPC5qmfdM/qqiL4gdFoxHRrKkJf7zHaELxAYnd2tjcj\nx9d73nQhs3vmFI8/+Rgns2POFCUXLt7M/skxZTXm0pU9fAhcuvQyX/3qH6ASXLtyCYJnOqoZFVNM\nIe3VkGCwhp2q4uqL32cyHmXPvZNFInc2dFGirMX3HaSQN/YorBWlWC6WbJ0JFC7RKSebWk6dFZU6\nG1TzOksoBY+yBYpEcgGlxPpmtZZ8onUYTQxYJXRBuTVGmtmCvhM43d7Vq2ht2N7eBhLL5ZLVagla\nC1achB969ldLVhnHbkuFMnIwhBjxPofVJSFchiTtQtF3qo1Lav1C6gigsaYUGJkyBGXRtkAVilpP\nsEbRrBoUkQunT6OeeywXFK+snH+OGxF3Fb/Cb3/nBX7rW0+8QQX+M8AHgPdzfvpNxlXJi4dTEl/4\ngT8TfplVlPwmbYyMWnIezmI2Y1xXFLagbVcYNM552qYluIHxROBnymq64a2zoJ45d5Znn32W45MT\nRj5x8fY76NoWXRRc3j8hJri2f8jXv/ENLJG9vQMKFTfJ1FqvD1qhVhdFwZUrVzZC95hFvcBG0GiN\nIfSemAIog0asqiFEVquGifMYH0l9j9bi5lP5prt+79ddHBmZrllKazdUTgbOiIRNejaCWgiDZIj1\nveAS+r4jhsTl71+hrguqssAaTds0LNsmk1MzckElZrNZHhN56SpFsynio5JDxLkBrSFEceUZKwWb\nj54Y8rhNAckQbURZyTDSWRehtGSwjccSNLpqV8LHKSxnT23dwAL9OPA0r1XIf+63H+S+t93Gd158\nic998ZWjpNcv5NdCXvi/kbETvIpi3bWcmU7xwVNayRCbz44Z1xXWWtp2tRmnNl0r42zvGI0maCKr\n5VuHHgDY3t6inu5wvGjpuoHvff8lLl26zGy+YO/qNayKdF3K9nF5Ugp475lOp5ycnDAMgyQvZ12Y\nNkiw7NpqjVibJX9N9vAQPEprhkFyiVRVk4YBa4qNNmydp6k3F1cZfYacrq7yKJjApgMSU9ysRZCk\neq00iXWHB7q2FZdRinSrnv29a5SFpa5KVEq0fUvbdvgYCFHe7aquWCzn9H1P0zagJD5HLNVJYkiM\nrHfJh0oZ1pjQVgTMEg+iCdHJUYYiZYmNtXJ5Bbm8KGOoRjZHHgjOwGjNuVPbr7P2n+G11v6/fuhB\nPvqh97M9rvnSH36bB7/wlTe9/rV6lJgWKGoS/4rXJvn2lF1PkXWtdSGXkdWyoyimjEY18/kMm//3\ntu0ksyoERqM3BkK+6Y79aDri+OSQ6fYEU2jOXThP1IlVt8T5nulkRO96vv7wQzz1xOOMypLT29uE\nQYi7RVli6prjtqPXhlXbyALwogtRik2FHlIgqIRLAVsoUpINXWX3UtPIIjPaUlY1halk9qq1wPHI\ns/V1SzELFUmRpDQpw5R0jhZ3eU6qEfsbMWGSxrUDrh042j/i5OAIQmQ1X7CaLSQHJyWWszldTi31\nfQ/RE/zAslnk22gvF8fo6LsG73oUPnvEc1HWrlg0K3xW0Pe9ww0C2TO6oLAVSpn88lqMKTG6oKrG\n2KLGFjVlOaKup9SjCUU54lPvew+J16Ix/ntk831tWNcTL7zE9YCwEVKBvxbV95+hcPzdj9zD7tYI\n1I/e8M/0MTL4IdNie8ajAuc7ysqye/a0BJIq6bQ1TQsJxpOpdMZiJBmFezPJYX9Gz60Xb2axmAth\n1Sgu3HIzQcPxbEbbLBhXinZ+wDce+n32Lr9MXVVU1YiIQZsSU9Z4YznuGxqdOFwtRbQX1UbIXuSi\nI5DExUB2K0WhZsfMh2gWC+aHh4xsQV3VmKrOXQqT03/l5xRTDgGNmVaqNMpYkjIoU6LLCl0U4pog\n5U5PEq2Md7SLOccH11gtTjg62CeGwNHhAX2/wBjAKI4Xcw7nM3xKdG6g7Vuc7zk+PqBtFoShY1xo\nTHT07ZIYelJykMSuba24F5rOEdAMHvo+4XpFUgpjS6q63gQJGmOxxqKUpqzHjMoR08kpbDlBmxFV\nuY3VI0b1Np/60Rut/78LrG+Yr6buKrb4D3/wLT73RRklxXQZ+B+BJ3g11fdnWJN+L+z8ERdPAXwQ\n+Id/YuWsAXiBNDiSsoymWyz7Fl0aTl84jY8O7wNWVzgXiMlTV6XwZYIiecWo+JPv1X/Zx3nPyckx\nfddQWsXzT/8x/+YX/hX71/Zy51uiUIwtKaoaioImeJZhQFUl1w4O0Umsy9IZySJdJPJCZcaLVvp6\n9zC7Q9vVipPDI6zSVEUpOXjZ3ZoyZwTWJoKQI2FCDpBTuSjSoA1Ym9eVYD6KwgoGPwRUSvRtQ7uc\nMz85YnZ8xMH+NRbzOdeuXsYNLXVdEkms2oaT2Zw+s5B88HjvODk54uhwn/nsGBU9lkTfroTsHh0q\nBSGsBylSBudwIRFQhKjwPuGGHKegdGbtCPNGXIPriAZLYUvG9ZTReJtqNKWqtyiLCVU14dPvf+//\nr7X/xT98gmev7PPgF77yptf/ua1v8ufvP8cDt10A9SFueAZkrhoJQlKU4xGLdkU5qhhPR5uxWl2O\nZLyXPFVd4Z2XScgbPG+6kHn22We5evUa4/GY3dOn0VoxnUwoipK+F9HrYrHgnnfey8233Uo7DLio\nqCZb9M5zvFyxd3DE1WsHHM4bHnryGR65fI1vX7rG8XIlBzXrubHJLg5PXY/ElpxHQsLKkMJI2Btq\nI9pdy92Nud7mTGshcb7pxhA3Fjhxh8iPoCiFnlnVMsZy3tF1HW3bMJudMPiBk9kx88UMZRSDG9i7\ntsfVa1dYNgvc0LNcLVg2S3rX0Q9itfbe0Q5tnoWK/qB3TlxJw8B8teDg4IDFYiE37hTp3MCQ5MZg\nq5J6MmJre5vxdCqt16LAVDZX9CHbD+W2bjM47eazu/zDn/4kSj2IVjej1CfR6ibgeRSP/YmFCWvc\nOkB6VaGzrsA/B9wE/ARaXUSpz/LX33cnZ3emnN6e3PjP5FGMVhRGRitb0wkoxXI2pyorrDWsVqLs\n77oWN/RUdcVoXG/i3k2CUfHWYdoff/IJLl+5wmg85szZcwCUZc14MiVEaJqemBR3v+MeRuMpq1WL\ntiWYgmXbcbJYcjybcXX/gMVyxclsToyiEXhlWKp0bkQbMzgRxRXWskarS7fEUlXCeCEX6UqrzYZu\njMmberZXa9kQ1/qFtGmty9f7IAiAFBNVWVBXFX3WdnnvOT48hBRZzOdyQwW6YeDg4ECS6LuO+WLO\ncrm87srK+rJu6GmHnt57gU8GT+c6ej/gvGexWnHl6lUhOWfXwpq7kZSmKEvKqmI8mTCdblGUJUVZ\nUY3G0jVKgXaQW7GyBlvJ6CkZuPn8WX72L3zsNdb/t1G8jxuJFZ+/sv+nKuQ/8+kP8f533IVWT3Oj\n9W+twZSW0agWV8tyRVVVpBBZLBaMRnUOGe2pipLxaIRVsvYVCWveusBUgOnODjp/D+JqM9xyyy2Z\n/RSpRhOULnAh0jtP7z37Jycs2pbD2YmkIWeL+XrdrZlHUaXc1ZDsKY0iJNnrJehW3HBFJr6bXLTD\nddAqkPPDUh6tijluzV6S0eM6W09glVoLt8xaoc8rhYxRhwFSZHZyzNZkSt91tJ3EgjRdy/7BPvtH\nh3RDT9O1zOZzOYQR11JKGY4avKSpJxHyeu/ofS9RLDFycnLCyy+/zKpt8UGiWNp2IPgE2lBWNfVo\nxHg6ZTrZoqrqHMFQUFY11liJKAmBiMaWNWU9QmnDTefO8Jmf/vE/9drfOzrhoW9/90+1/v/eR+/l\nL7//Xm47d+b1zwAj3dOUEuPJGB+FUr6zu4O2mlWzoq5HDMN1kOKorgV6+ybW/5/Kfl3akroeUxYV\nB4eHzOdzynJMWZSsmoaqqmh7mYMfHs9YLFuSDxsUeSSxGCKXjveQ8cYH2OMxntl/no/dfRvvvHhW\n1l1S1y14Seah1ghtQCzWEji3Zm+E6MGRoXpabghRKry1ll3ogEoAwusRjiAhpf3Xi0uorGqWw4Kj\n/X2a1Yrj4+PrQKPlKgN6CpZtw3KxyHZaJ90ULxu4tDxVHgsoTO73+yDocRAc95pkOZlMJNU1k1tV\n/jeYLPRMWrJlKlOhC0tVVyhtaBqhKZdFic2Y6w0W3Cg+fv87eNvFM/zuY0+wP3uO3cl57rv93fzz\n//xVSK8l1l3wztvv5+rhnxxJ/QwySvoAZ6ff4r4LW3zqve+hVAldVHz8/nv4nce/yI0AYCM7yZH0\nA6dOnebg4Jp8TlqJEC5GEYt2DWVZUOXU7qIwkli+tiW/Rc/e3jWMsShtmYynHB0esVi2FGXFaDzh\neN7kuAtN1w0slg2L5YrCSJEWgsfHQNKgFw1VWXO86Bh8ZHtUcs/F83JIQy5a1PUW+8aTmuMFsgBY\nQuDW7WgBSPKKAmb99SqLKNfi0pRVlcZIqGpdj/BdRz/0VKbAD47lfM5qPqddrVitVtiiYP/gcAMb\na9uW5XKZIzOyezBF2raRFnnuniqrCYgzyUdP78W+GkXERiQx3d5CG7vRGayhl8YW2LLaEFXRBlvI\njT8maNqWajSSbo0Re3bvB1IKGCuU6A/e9zbedvYUv/fkMxzMn+Pszk107hxfefK1qbuKdSH/Sn3B\na7fSU1rw3374Hm46f4bt0xf5/De/zY3Wf2krfEpUWtH3DRAwWgnc0DnatqVZtRTWUlm7gXEqMZq9\n5WJfbUp8aIkR2nZgurXNHXe+jaP9a7kr06JCZJjNGQZH6zqWeVzWt45JWREBnzWIIHk6xmpIStgs\nUZhLKl9C11A8ZYx0DXOWXcruoutfA9fXvezr68sASv6elCQVuyhsHlXU6JjoO0E8OJc4Pjqib1r6\ntmF2fAIK9q5d5eRkvonNWeXzIGWd31p3uVwus9s2k3NVwqeATsI86t0gYyXkexPYqaeoK+F35Wfz\nb9aaoigxtpAOvJU1Xo/GaFPQOyEDm8JIFINWUhikII0sbfnYe+/jroun+cpjT3Ft9jynJhdo3Wke\nfurGa//c7n1c2T+4wUX21ZpI0oK/9iO3cW53C1OWfPqD7+ULj3yHG70DlR0RtWJUlZRFwfHRQZ5e\nOFQUsnVpC1arBo2mKq3o+Iym/GGKfff3DknAcr6kqiYcHs+YTrZZtS06u8K2plNOZnNuvukmeh+4\nvPcyp3Z2WC1blFFU9YRLx9fyD+XVtrCHnv0sF7enclMhoZMV5XkATC5scvXd9wKJG1zPmIixglsv\nSiFLDq7PLei8uPMSiqTsGJCZpkKq9hRVrqYTi8WC1WqVXUkrYYQMA6umyV+vSEHSTzsnWRsh+g0X\nA+SHX2ixVaq1o2nocEOPsXbDDXFBMpXqusKHSNs0xATluBb+yLr9XxaU1QhrS3z0LNqA0RnUFTzR\namJSGQolIrKUhGR8djrmr3/kRzbxB7Ys+Aef/jAP/vYP5mb8zF/6FHffdJHffeTJ11iQ/wylHH/z\nx97DubFnqxKKsy5Kbrtwkf/+Ux/hl377s8AvQ1asw4LtukIrQYSXZcHx0THJB3bPnZGQuQRVZWn7\nhhgCpiwkrDAEbI56N0rRdW+dTuB7L36f6WhMnyMGDvf2KOuathtkFKZgujVlNj/hrjvv4IUXnmO5\nXFDUY7F3JsV4awoaLl074Kido9gm8T4uzx7jO1ef4mN3386777g519qJqpC1HGPEmnURJ+4GrbVY\nmvPNNQSP1YaYwsaqug6aXAvgfZC0X5OTg2MMuUMpXRStJLtldnJC8J5mtZT13zYcXZlTVpINVZYV\ngx8Y/EDTLjHWbsTuSikKSpRRlOt1TmTZrITeaa3A57SSgt5oSlsTfaJt202IoIQMVtJ5NAVlIZ2Y\nmDRd78AYbFmhxZ9KVpfljqx0KZ0XkvDprRF/9UP3g1IURcHRquMPnvw1biRWvOumt7N/cqNC/v2c\nnXyD9955gR+96x4unDtDOZ7Qd4G7zu3w/P4Prv+tuqS0FqU1q8UMHwbOnzvLqK4Y+obC2g0cc1LU\nhOCJQUJH/dChNaK/ewuf3gWq0Ug6AYW4yh559FFOn9rh8PiYvb09bFHSNCtU7pYX9YiT+YrCFrx8\nuMSHyKSy3HfLRU7VlaxrJZ0VpTVGCdXVaC2J5CHhiZt1s3HzxYTzA4UWjUWILmshFeuQAqXlEuiC\npL+ndB2yaoxBJUXbLIlBXE5d2+KdY7mYMz85IQXPYtnQdp0U0kHE6jElXHD5rJCzYHBDvgCXhOg3\nf7cU11G6827YdJOCkt5qPRkxmo5xQ9jE+5RlKWu/rDFllSGxkqhuy4oQwSfP4DyFLaRjl+MPRGfm\ncoyPp3c9u5MRf+VDD+QOJ5w0PV996vPcaO1/5IF38qVvNChufJE9M/kG9996lk/e/x4qPaCLEl1V\n7Iy2+ODdt/ONZ17rHagwWsIuh5wxaDRs72xjjaVvZW9fLBYMvWc6rtHA0PWMRzVxo2e68fOmC5l3\n3nsvBwdHNO3AqOnY39/n9NkLnBwf06watre2OH3mDLfddRdd13H/ux/g299+gmXTUIxGGKU5WnXc\nWGj6yzy9d8Tp6RRTyEa8nr+mbD9ORQTEveTdIC99ykRHpYUtkcmgxtjrt9tsOQ15FrqxoYIkX+dN\nXynFMAw5E2fFbHaMcGsahkESa53zOTRt4Hh+wtALTE7nJNaiLMUuW1q0NZLOu1qSFBirMWUBStF3\nQvEUV0tOJ86CZZsPAWsLilL4AdpoyrIk5p+LNTZzFLKFUWeEu5WZagiiRdBGbM3Xsd/w4Xvv5Px2\nzde++yLHy2c4vXWOD9/7Qe56+32UxvL3fvqT/L9f+MFC5+/9uQ9xbmeETQ1DCOiiItkKW0+4eXeb\nu7YKDrslQ/wKZVFS2QllIQyFdbHYNS27u1sUxojIOjiKsiR0LWVpUVraxHVdSqHjA/VkRLt84znp\nn9Vz37seYDmbEwMcn5ywt7/PqTPnODw5woWBnVMTTp0+w+233YZzA+/7wHt5/PEnOFk5bFlTaIsp\nKg6OjzlqA7yCbbIu5L/67Ge5eXeb3Z3ppgtJ/rxSTCQlh7R3LoMce2IY0KYWkTsx5/as5QWycYQQ\nNtoZpbOlOgZUlMR2scMaur4l+QGrFfuzY+azGcHLCFRrsazGJGMA6cgs6IchF+qesiwZTUbEFCnK\nAlMIL6ftOhlfVaXYUUOgaaXosdYKXiBFTCH6lzKLAHVdSRRCTrMvylrWsdYi2NcKNXToFLGmzMnA\n2dSaEiZKAGsqLCquXTGJ09MRf+Pj7+XffuVBFL9C4kc26/sf/JVPc9u503z9O/+W1yzkcfydD7+X\nm89OSdaALTCjMd9/4TkIjnOjgta3BB7GaMO4mEJOvArJQxiY1DXjusI7wfcnpUnRyXhPKlfG6yRp\nElVVsVy8dWsfoCgL9g8PWDZLtnemjCYT7rj9drRSnJwccm2/oVcabWsUiaIeE0nsnSyZDyB7/vtQ\nPMYz157io2+/lftuuYjzQeJlFJuxA4ghQpa/FC0pJdq2oXI92ow2nZiYfC4y7CZDaM0kI4n7MyKd\nGec9QrGOG8ZMihHvPH3X4oaBZrWi71piCLTtSmQ2ecSFLmjaFW3XSvRCYRkGAf6VdcUQHEVpqSr5\nGQgYb4X3nqquha+T0sa5tx57XZ8ZyDtrjHQejZX3oSjKbGWX0Ziylmo8QQVH8g5lJLeKKDRtrSE6\nIXWjlWjrcsF4fnebn/nJD/O53/rBtf/3f/oTnNne4sPvvpcv/eET3Ogi+zc+8G4unhoxrjSeUhzF\noxFXD4+IruNsCT0tIT2M1ppRMc0GgyAxC9HRrgam4xFbk6mYfKxBJSOXPiva1eiluJMO5RvH07zp\nQmZrusvVq4dU1tD3jpOjGfNlRz0eEcIxW9s7FGXB1SuXueed93L27FlO5nOef/57dN3AeOcUw3wF\nvJ8bCYIW/eO4EGTsEiEEET6mCFFHlBK1ets0Ym9LIfv/QWGyKErmqWoD2cvheYKVIbOIsqYmszdy\nJ2Xt72/b9rqvve83OoY136J1DbPZjOVqiVGKUW3QhaGqR9K2NJZV23A02xenQlkwnkzk+yXnfORF\nG4PPBY0UMMpoTFVumBkyOiryfNRgkVai1pLOKjoZj0r55Y6RpCS8TKFRxIy4lvlC8GK33RmN+Avv\nfacAxfJt9crBId/6zrPsHR3xsQfuQQHOX2K7vpmP3Hcnu6OCK5cusTOt0KYgasN4axtlRzx/6RI+\nBM5ub9E5j7HFxi7vkbl1YQyxNFRlwWhUMxnVHB0d0nZiVayKMm9kwkWQ+aiSYMXwxlX5n9Vz8eJN\nPLdYsWpbtkcjjg6POJzPc4aMYzzeYjwuODi8yjvuvpvd3VPsH+yxfPEa3nlO72wz9I5Zc+NCHn6Z\np67s85Gd6aZbt0nzhcxPsTjnWCwWEiyaZDPW2kguSUqZn5Q29tXsTQWkZR0zdj2RNknBKUkXB1sw\nn88Y3EBZFSyHlhCF7VJUtbiQupbFcslytRRMgtXUo5p6VFGUFm3FerqaHeO8z/jzKm/kOess4/mH\nYciFlHRfi6KgLEuM1gRjsh6ooiwriqKQID91PZKktDkhOd+KrVJiHnAOqxQJg9f/H3HvGWTpdd53\n/k54402dZ3pmMBhkQCRAMAoUmCQGSVRYyXY5reVAkaWSdyXvemuDP+6XrVq7XLZllVyyLFA2vZa1\ndKBsmVQgBTGLIMEBARAgiEAAg4nd0+HmN5xz9sNz7h2AnAHgLcp4q1BT1YPuud39vO99zvP8/7//\ngtsh94ara950apuTa32+8u3nOJg+wVp/i/fd80FuOHU90+mUv/aBe/nXf/i9jfxP3XkD22sDlA4E\nY8g6HUhynjl7gcp50jxDN24pymzbVlaBRpEajVGWbpkRnGNlMGB//7IkIjcN3W5XOChKdFCSxGyo\nZhMRr76G18WdC1T1jLxI6PdLjm4fxVjodgve8yPv5LOf/TwvXDrEEOgWPYqyw9kL52IT873T9y89\nfR9H+j3WVnokWnhSkikWNYxqQWSH+XxGXc1lZahl6Wq0QBT9i7AaMr3QBO1xrV8iDfAhsko0OBdX\nO/I5bdOinMM7x/7e3jL+I0QNmTI68l08zo+ZTCbMZjPJR2qlAet0OqLbsTGE2NWMxmOatiGxCWmZ\ny1QIEfcCS02cc17WSFlKmsjKBYhp25DEuk/zHIWWdGwjUxgdxNKyXNVFBk/bNmgnBxUTV3OCOJED\n7ltuOsFW9z189cnn2R0+wVpvg7ffcQ/XXXeCTqfDiSOb/NX338u/+aPvrf+//EN3cWRQkqbistWJ\nhcSSdfqceexZLh8OSbKcBIW1WXS9x+FC8CQ2pZlXdIqMPE+j/kvTuLAUeqdpIu/p3tMtCzmIv4pn\n/6tuZP70Tx9ga3OLY9vHubS7y8bWFmW3y/6hiFTT1NLrdAgqxCDCA44c3eLs2XPiONAm7noXgqDv\npcJ2UvmY9yK6MsbgrMYlCLk0XgIEWzA4GiCQ6GypJ1DxROoXOH+t8ZglOyPEkfSSLhl/gJVrYyCZ\np21EXT6fT6nruXSTyqMsVKMZB8MDggr0BgN6ve7SZqutZjqfcDg6oGkdvX6PsijBKJoG4rEhIugV\nPmgMKubHCMlYWenElTEYFBf2DvjCo0+xOxxzZHWV9731DRzbWAcWN7LHuRC/N2nGdg5H3P+Nx9g5\nGLFa5rz99hvYGvSWwmD5uSguHUx58OkzfOfiHi9cHqLVAB9ujb+nirtuvI533n6c1dIyGu1jU0WS\nJuzPG77y+AvMw/NkacbZ556nJQZ8tV5suBELbrTsObWCI1ubJInBatjf3+PgcJ88L0VXFMXLiVLk\nxpIkGk2gns3Is9dO7Hv/5z7Psc0tTl53Ped3dtja2iIpS4aj8WLpTZHlKAWHhwfM5zOOHT/GzsGE\n2WRGu0ySVbycY2w0f4SmkdpW1uKUjg/v2Jx4h/OSSaS1Fhun0xHNLnVuFhslFnwZeeDyIlExLHTx\nEUiopYne39uT3bvWjJuKuqmZ15U0zhFS1tQNh6MhIXh6/S5lp8QmIpoMBObTCYeHAlArOyVFR07Q\nS2K2oDyic0VH/kgSraWiRUjSFJTBKGkGtBKsgbUJOkmJs1Q5FOCXOiDJ3xEarkZTVXNc66M1RrLV\n2taDh41Oh596y+upmxaT5qwM+jx/4SKfP/0ou3v7vOsNt6JC4GD0FOvdLd5w7Db6icYahUktpuyw\ntrXNc5cOeeb5s4SgMdqidIhgSxH3WwWpVlgVKIqMTpmjtbBhRsMRZVlKkxZtySaI6NooUKHFNy2d\n8rV1LXW7HULwTKZTut2S2WxM6xKOHtnAB8fq+gqj2lNN5pJUP50yqRpebvr+5KXLvLXfoYn8Lm0s\n1ioUXsjV8XkKMBwNRSjsnDR12iybFKM0WrFMswapVR01YAuyNUH4RH4hkFdaYnPaKePxCKUhzVKq\naraULWRJGbWNYtA4GA5x3lGW+XLCmGWJiOm14mA4ZD6fEwhkUf+idCQLR3iftWmMYmnjVDJZrlQX\nNGQX16lax8Oul8R7YySyQ7L3lCS4twK99M7Jas1LVlpmLa1bmEHCsjlr2pbVPOX9d90sk9ogzZFr\nBMWQFwXvecud3HH9Ub786JPs7J+hmx3lnbf9IImrqaspxqQoAyQpncEacxf4zrkL1A5MkoppxTsW\nwZ9aR3u8b8kTQ5YYyjwli4ebw/19Iec7R57nS9u8OIkhzZNXrNFX3ch4F1jf2EQpzc7OLt1ejxde\neIG6kX98NBzRti2bG6tY3WdlfY2i0+MLX/giiU1p64pBmnKZfa61o7tp88SSEeFc1JvENVMIsZCD\noiwK0jRd0lCV8gs149LhEaIjKUSBsFcBF0fOwcub/hLi5FpACULaeZI0ZezkJOecFJFNUuZ1hQuB\n8WzKvKnY2FhndX0tproGtDVMorIdrSl9MX8AACAASURBVBgMBuRFITAwJ2JPaxKU0bhGCjk1Jiay\nLkaDYqPVKHSALzzyJL8V4XTSHX+D//Slr/GLP/0B3v2mO5eaGIVC6wAY7j/9TX799+5/yef8/unH\n+Rs//IO87dbruTyZ8cXHnubJ85c4s3sIdIAJwhd4M/A/AAPgHh5+5jSPPPM5/sp77uR44ej3Ojz4\n7CV+58tPxK9/N3CaEIasZBbTONrFNMy1aBRlkTMY9JlNxxHwlNC2DdPpmG7ZwWaLvA1IrCG10vgo\nPPW8wijN6sprlzejtaHXXwGlGQ5HpGXBxYu7NE2LCob5rGL34i79lT6rqxll0WVrc5uHHnkMHTyz\n6ZjEpPH0dO1GvpvLx2QVtBg6LzQtXqCTKWRFLm67EGJmSWRqAJHZHg8PYu92IUQQ4YtIqkh/44Pc\nC4vk5bzM2b98SU6mSk6GeZELidc7hqMhs/mMjc11uv0eabpYDzmc9xwODyF4Ot0uWZ5jFiN4Alma\n4pyOsC8NZqGjEeH3Yv2JUlitIK7TLh0ccv/px9gdjtlaW+W9b7mbY1sbVFXE0Mf6V1qhgibRlvO7\ne/zR1x/l0sGQjX6PH7r9BlaKDKsNO9OKP/32s+yNp6TWgtLsjGc8e2EnNvK3AA8DFbccXeMn3ngL\nYXKItbIi2BnP+Prj5xh/5RkOR2MuHYzkIBOhaI0TPVqiITGajZUV5rMp3U5OYg11IwnJnU4nrqvF\naFAUBYlReBUwCCHZaFhZWf2zLvGXvZQyzOfCWmnrhjzL6Hd7HOzvU5YlN998M+d3HoDMUlUzkF6R\nl2vax9Ujcd0PKngsGm8WxohF4+4JQZqSLE3x3kn+nZLUax2hjEuFzELMvvhzEf0RJ5EeOfkHdcXV\nOp1OpEnXinkt4MeqEmOKNprQAEYz2h8znU0ZDHr0BwOyPI3CWhHcDw/HHA6HpFlK2SnJ8jxCICUg\n1SiNd/LGrJTGJEl8vzKY6ExcNDTGJDKVdC3OSdCsTQSKGuI9LN+PhEyKOshHyYGEbnrnaOoaFcS2\nHfyC/C0NN4CyivP7Q776zNOMG0+320FpiVzYHHS49/U3Msgso9GY0hp2Lh4I/0UrbJ6i84L+6hrf\nfn6XM+d3cB5SpcWJFnUtCtDKkxlLbmUF2O91hJPlWvb3BXS6bOLiAdgohU0tidH4tn7FGn3VjUyn\n06NtHKPRGKMNWZbR6fZwoxGurtgYrIBWvPsd7+A7zz/HzsXzmOyANEuZjafgNbnNONbrcW70vYKg\nN53cpkxs/NavjN+8c3i9aFDkkgajpa4rVDUj0yVe+SVMTAYuHpApil+IwFjYu9VyIrNQn4MUh9aS\nMJqmKXmWCXEzsVSulSZmPGY0HtHpdukPVmRkSWR/RJsdSpqt/emcrz7yDHvjOSudlDfdfIzttRU5\nxSuW/5ZGCbBMEWnBCoviwsGY3/rMV7gCp7synv1n/+mj3H7jdWyt9JYaG1Bc3D/k13/v/qt+zr+8\n/6McTGf87lcehtAhMEZGvwPgPuCX4+/kQyzGwTAj8Ev89mfv42++4yQT5/idLz3BSzJs4tc/qO7D\n2Com0gaKJMUYQ5oJPC3LMoo8pyxSRqMGq2U1MK9m4D1ZmsZ1ktiFXdMym4w5vr1NUbx2CcB5lmON\nYTgaoZQiyzLyzNNUY7ROWFvdwAfP2956DzuXdjjYP2Q8nlJXc0m8rT0qhdUyZ396wLUa+VuOnozP\ncAF6taYlieL0BUXHOYdrWqr5nKSuSUwUxXtJejfRZq1ALC/xEg6LEDPdgtURv56JgnS0LGPTLCcv\nS+qmISty2e3XFfOqYjKd0Ol2GAwGsp5VoJNIR41cjU6cMlw8GPHAU2fZORyxUua87ZbjbPZKLBar\n7VLXtbDFaqNJjIUgzZYGvvzNJ/nNP/jCS5ry//ylr/GLP/PjvOtNt4tgM2rEvBNtxee+8W1+9RN/\n9JLP+eTXHuXn3vNWAD72J4vcmCMIHK8EplytkX/ywmn+r3//WX78dcd5+y0n+MrT5/i3X/7W8muH\ncAaoWckVOcibqZKReZpYylQa2CxJSNNEgnTdNI7SA1UlVNwsTWUtEDlRwdVMZ1O2Ntbod7p/htX9\nytfuzgFtHfAtjIYTCJrN9S1sIiwrFbONXFPRNAGtTJwMXrtpL9P8im6PxfNaruAczhi0EyK2tRal\nBFeQLhoduGLkiINGFSd8Lq5LfZADrnrx144N0qJ5R8kkRr5MiHlwgbwsJBnbt8znFaPxiCRLXtTE\nRJwB4mgdT8ak1tApS9IsQxu91Gsm1orW0wasSuJEZRG3YzDaLLU8LkgStwRiWnYODrj/9OPsDEcc\nWV3lvW+9m2NbmzQu6uaiq00Hg29lhXbx8gGfOf0IF/eHbPS7vOv1tzLIUxSwN57yxcefYW80YVbX\nPHFuF6UG8V74JsKZuQ14mP/ypYe4+egqP/P213FiIATnIktQCnaGMx585AwHX/gWw+GE/ZFE9YTl\nzz6A8litsUqxOuhhgLadUxYZoJhO54KYiBPJBZVconeIv+dAXVWvWKOvupFROmATLTbqIGayEBR1\n4+j1V9g4eoynnn6SC7t7jGc1JinZ3x8yGo4p8xLfeoxVDIqMMjHszicoHqDMUm7aOsVaKQIxwdmp\nyAGA2rfgArk1+EiBrOqG6XTObDojGEOe5bRatAJLXUwIV3ZrSizdWpm4X20JLiyLWhvB/DvC0jLa\nAl5rMLL6oZXd6XQivIyVtTWSNBPyrNFYZB3WupoiT3jkhV1+50uPxwemnPD++OHvcNvxTX7izbex\n0S+XJzgVfBRU1mitSG2K8oEvPfZMfGBencJ7/9ce5i+/5+3LfW7wnj9+8JFrfg7hd/jEn36DlzYv\nvwL8LcRm9xHAxL97IX7sRRqOcxOyzKHUgHC1HA8+zrSZ0U8y0bloWUMpYD6dkSSG0DSM65q9/f3l\nOs61LVmaQAhUTY3B4r2haSq0VmRZGgFXr82VWjk9+CigbV2QtFzvyDsl/Y11Xjh3lt3DIePZDIXm\n8PIBk3ErOWK+wmtPlimO9jIujO7ju6mwb77xOGWREIIn0TJWdd4js0JFomK+TOuYTyY0synTyZBu\nZnCtwqgUq00UOUafnosCX++kkUGjTULtZF3kvUenKb5tqPEoK2AzbwwkOSZtMcExm05RDmbjEc7X\nDLpdTGpQVl8RGgdP7SrS0pB2NQ88c4bf/txjL6n/P/nmc9x2bJMfe8OtHBn08W0j42WAuqbMCozW\n5IlFe82FvRG/+QdfuHoj/4mPcvuxdY70ulgVs3sInD885Fc/8UdX/Zx/df99cdz98wR+CXgjV+6F\n30DmCL8I3AV8DLiTRSP/qW/ex7HNVf7tl7/1kq+9bOLn97FqCwxB7KNJTmI0Gs10NiO1BrxmPJqx\nvz+MVGKZJ1gDuBrvW9Fa+MB8MiFLNJ0ipWm+m83x3/ZKbUI1n7O2vkGv12NlbYW73/RmHnzwa5JY\nHALzeSWnfu8k86pTvGzTftOR48vVQwgB3zpq02ISHd9bBD/Qti1tXVNXc9RcaNo6WpRDkNVSwCPy\nIh8xG3HCbaQBapqasFi9Q9QtadFMLhhMWpNkObN5JdZ/KzrHtm0ZT0agAisrK2RFjAqwAtpr24bG\nNbjQkhcFaW65NBzzlSdf4PLhhH6Z8dabjrHZ70jKvJYGZZEx18Y4hEQZEi1IEa0sWhm++NhT/Ivf\n//xLm/gvP8j/+LMf5F1vugPvieu2+D6i4XPf+Ba/9ruffsnn/N4Dj/A33vs2vA8vCn+8Bfga8GFC\nePG98NJG/qkLp/mH//GL/NRdJ3nDdesoBV97boff/uJjL2rmHwKmrBQZxQJKGzyJNWRpSqriCttL\nNI1QlBexQIq6Ev5OklqSGLBptfyenWskPuIVrlfdyFTVlMPxAXlZ4hDw0erGJud3L7O/e8Dl4ePU\nTcMTZ87TNI5zZ8+zc3GH2cxTFAk2g6qeYRKwGRxNSvIsF9S51bQ6oHVg7hsyJfoRE1oaHPiERGsq\nL8j6EDwHB0PmU8layo1lqLyskiSyWgRZMVtDRYSkAoKN2hglo0dl5fRQuTmVb8URojxkGZnWzH1N\nM68IeOp6hmsqyqIgSzPStEBbTVVXJFahrYhTD2YNv/Olxwjhw4TvKownzp7mibNf5J03HuX1122R\npwnVfEy3WzCdDOlkBYNsQFCK5y/sEMLVx7OBu3nu+ac59/TzqABZnqADnD2/Q7jGSDewijQqi+bl\nDcAZ4AHgO8hO++1Ig/OPEH7A30SSg+9mUj1GE/w1vz7cjQtfIgRPmgiW3yaGVBlCU5PahFRZJrMZ\n3mmc0hA0hc1pm4ammpMnGqstzjc0zZzt7S1pQvUrJ6D+WV3VTKBvK6tr8eZyHDt+nLMXLjCfjNl9\naA9jE557/gy+bbl0/iLnz52nqhrSNCPPS6pqjrGatV5JmSSMmwYXvkYnT7h+6xTrnQLXOmnI5Z0N\ngNYZGQUriRDAKPYPDphXFVQVK8bQeI9XIpIk6KXIWizJQvnVAZwSzRKwZM0kScK8bmibFh0hfdoY\nyqKkbVqa+YwQwtLNJxO1UtwZUacDRGG5olN22BvO+O3PffPq9X/uNE+c+xLvufUEr99eA+9Ii5TW\nNaQ2oTQphRUw2qcefxpF75qN/O/e/2V+8q476GYZCsmW+uTpl2nk+dcQcqT+/8/4mn4Z+AAwRJrL\ndyIk0zdypf7/KUp9nE8/duZlvvbHmddT+rkEuRolq70kMbimRusED0xnc5rWkaQS2ZCklrqpqHxL\nkadoo5bY+rX1NWIM6Pexmv/rLxc1C0W3g7eaMxcu8Mjj36JuPZ0s4/zF80zGNf1eF+8r2uAo8oTt\nfs754fc27W+8YZuyTGlDS6oMdmFeCJ4mRLee0ShtwAdmkymuaZhNxmSdAu8UOmisjqBHFzVhC90j\nwo6JWyasNrLaV5qgnAStupbaRyeN0QSt0UlGVvQASavHQ1s1zGcTksSQ5cK5wSi8QvLClKf1NWmZ\nkHUTvvLUC9/TwH/2m89xx4kj/Ojdt7HRUbimQStIE0EXNImRJj5YaeLRnL18wL/4/c9ftSH/1f/4\nUW7d3mSrX5IgsFEXWs7u7fNrv/vpq37Ob336xU38Inrmaa7cC+Kwu1Yj/58fvo8bj/RobMZvf/Gx\nqzfzs/vk522Fb2N1ikHyFeuqFoyEVzSNZzQaM51VV4JgrUEFj6tF2K1DQnCOajr5/qZf100D3pMk\nKWVZLsWqrXPM5nP2Dw4JSvH1r3+dtnUMD8Snn2W57OoSOYEYK2F4YbHncy6mIntRr3tZ0xDhRi6I\ne8MFUaI3IZAllr29PebTKXZzg6Zu0FmGikLaEAWtizTfpcgxXCHhBkLcV8qJVRKKLePhiKqS0Edv\nLW3dYVhLsFfbtqAVnaJDr9cTEmVqMIlB+YYGT57nPPjIc/GBd/VVDfwSn3/mPtbKnLVeTn/Q58h1\nx0B53LxidHnIeDSmTDWoh+AqACM4TaFXONzbx2gYH0KRF/QSG1XmjwD/BngWOAX8VeAC0qiciR//\nKjJGhBe7C+Tr/3L82DuA46AeYmttUwRs37lahpOMjDNrSY3FmkBiZT3nmhqlNUVZgtJMZlOW3I9I\nJNaEuLKxBOWZz+cUeUGn06WZVWQ65bW62lZcYdYmJImkTTdNi0dR1S2j6RSlDadPP0JVVVTTuTCF\njKWuWnQaE8ujyDVLLWWWkueZiN5SuxwtC4VXL0+O/kVsFAUYbTg8PGA6ndFZW8M3LTZLZSwdT0Ii\nYpeJpti2iXqTxb2wWLXqmC7cSuLsUHJi8qzAW6n3w2omI/a2WQp4O2WXLMtlVRUkJ02riiIvMAa+\ncvo7r1j/f/Lt+1gtU246cYRjx4+ijGI6mTC6vM94vE+uFTvjCeGa4Xd3c+ngcSaHh3iTkEY208W9\ng9j8n0Ea8meR+v8Q0CdwCnlw/5v4td4Qfx4vV/83E3gjw9lXCbz1qq9Hvs8vkSYiNLZG0SlylG9p\nQ6DTKXFosZ4bs9Qm1U2DNYqiLCnSBFxD7bwISfMC71rS7LUV++ZFwaXLuxw88wwuBPqDFXYv73Gw\nt8/ezmUuXbqEc4G2DWRZQV3P8N6z3u9QJJZRVdOGr9LJU67fvI6VbikrzhBwJqAxhEgyN0aTxLiN\nJrKGDoeHskq1FqM1fvHMVgq8ivyuSMYOMtX3waOXcDy/ZAwB0Y1aS/OOpm0dSmvyvBQnX9tKkGmI\nob5A2emQ5wVl2Yk132KUxSuPVoZO2eHyyzTwj79wmsdf+Dz33rjNXSc2RRdkFFmR07oaqwyFSUh1\nglGKTz328k38J+7/Aj/++tvIrWhPnPf83ulHX2UTnyP3xS3IvfDPkUb+33OtRh71cb7xwgFpXr18\nM99O6Vsra2IrWJIkTVBRN2aSBOcC86oGlLCD4vS+amqU8hRZGk0B0qGurr6yRuxVt/o2Rm27tmV9\nfZ3NzU2Gw9HSZSAPz8De3h4HB4cikLVJJN8uUp/VkpKotZbpR+RIuNjQqHgAEdCP7D0XO1TvrjQc\ns9mM8WgsBuOY4RGcx0cEdJT8Lh/c0YQNxIf5iwpbWBs+8mBEy6Fi2rY2hhAbtrZtMUlCXhRxP5zR\nH6ywtr5GWnTEQp1kXB7N4gP4/4mFfPVsi0fO7TCsala2j1Kur9M9ssXadSfoba7RJIp3vPUOJIzu\nu/HQvwRhxNtuOClE2cgl8ATeftP1+HCIPFj/OXAx/nk30CDNyx3A40gHfhewepXX+CvIhObXWdAZ\nf/iNt/K+t76Oq+d4yP/TL3IsikwZslTSiV3TYNOEvCgZTyZMptOlqEupEDkBHquFLROiBmplZYXp\ndIYylk7vtRP7EoXjs+mU1ZVVjh7dZufyHsoYmrbFWonp2Lm8x2g8pXbgVQLKUDeO2nmMMtgIe1NK\n4YKX2vc+lqKg2Z2Xj4sqV+G8i8h/afZ9gKquGQ2HpCaRwY1f1HVUgylpYCQCQVxQPrQ07VySd5G9\nbYh2ZUXUahlDmmURJiZidI+ku7e+jYwLG/faKf2VVVbX1ilKiSopInZ/52D8qur/0bM7dNfXSXo9\nuutrbJ44JrVvYOv641x/3VGUulacxml6RUaroFGeJghHZiXLkAnjHby0/u8ALiPj9H8OHAX2kVPn\ny9X/b7Ign66+QhRHZi1Wy6ootbJym8/nkoicZIzHM6azmtYHWi/jgqXbJoikKSChm71uN07HErKi\n8/+7dL8fV902BGWYzioOh2POX7jEAw+c5vRDj/Kd515gMqsJQZr6pnFobYnya7LEcqRXcmp9wMmN\nAZlNRcgeNYIqTlqFteOjMEDyxcTwIaC0w8NDiY6pG3EqGeFotK7BISstmZDIsz4ukVgYPxZGEIXG\nOU/TtGhtmM3mzOdzqd+iIM9zkjRZxnj4GJ3Q63bJc5lEFnlJUXQE1GgTiiwnTzO+8u3zCN7/l5Em\n5kPIiv5PkEPkh/jiM+c5ezCk1Yq17W1O3nwj199yM731VarguDw+YDQfsjudvUwT/wYuHRwyG48Z\n7x8w3j+kGk24dDC85gSfuAaSBv/vAZ9F7pN/htwHHwbOxY+/gEzsPww8FT//jQxrz8GsftmJPECa\nGHH36UCRiTvJeUeWJHS6fWZVTd36GPDMlQBZoymKkiLPwTuqakaWpq9KH/mqG5lFtzscDanmFXXd\nMJ/PaNuW+Uxu7IVYVizMIeobxDbbxkmIPMjlIboQ7V6JO4+NTbRvtc7Jwzw46lpAYMEHZvM5rm7Z\n29tjOp3iaoEDhbYl+HapOVnYfxfBkQvJ5EIr5v0VjoaO+Upp/MGlaYJHoFpJmsQpDuR5Tp5nJGnC\n6sY628eOcWT7GP1+jyQR/stat5BJCk9zLeV+4G7Gdcuoaki6A1TRobO2SXdzEzvoYPpd7rjzDv72\nf/9BlPooWh9Dx8wMxX38tfffy73vvpcfeMvd3P7GN3Dz3XdSbqxQGZBB688jBfnHXClMgDlyg30E\neYDfes3XKA/5f4ziPv7mj76VE8e3OH5siz//gcX66Sjw7vjnfax1CnJrSQjkSSq02MgKKYsO0+mc\nw+FUElyDiE+N1gTv0MjKsG1qXPAMBgPSLMP5QKfTxb6GWUsLG2hVN8yqOSiYN8IX8kFqW2ktD/Ag\nDreg9BJwtcgt0kpszsaYpVOldUIxrWNO0SIJuw0L8S3UrURbOC+2ducc+/sHzGdTmqrGtw3eNXjX\nCs0aaWp0jK0IwQvq/kUxBoIdkHvWGBPTp6WRsVZSiW1iBKEe9/lZntEpumR5wer6BtvHr2PjyFHK\nTldOyxHi1y/SV13/admh6PUoV1cpVlfprK9hOh0Gx7f5yff/0Ms0zWP+3M+8j5vfdhcnXn8r6Uaf\npkz4gVtOEpY1/uL6/1muTF5eAH6EV67/u+P3ILqOv/j+e1++ic8TVJCHd2oNTdztl50Os3nFaDpF\nJ8J00lpMBzrmkKkgVlrfNqz0xe3oXCDLC9L0tat9YLkCcD5Iw1K17B8eUjUOryyoBBB6tHMBFRSJ\nTZaifU+IwYpivJComSDNive4IAdWtBwYm9Ytc+cWwcI7O7vooMB5+e9FJg0QRpiPiIIrwaltJDxH\nAF6QB79rJUZGdCrE3L5U9D4gbidEnuBDIE0SrEmE6ZLlrKytsbK2JpqYRCJVgg/sHE5eVQP/8JmL\neJsw2Nog6Xbobaxx5PoTFGsDWqvYPHmcUy/TxCv1DVZ6JWQGMou3mmAUa2WBUg8hKdd/D/gr8c9H\nkInL4hD7z5DG6sNceR945Ub+yPqAzbWVV9fMa0ViNNYIC0gBZbdD3TrGkxl109I4j8BC5L04js/E\nhRVaFNDpdl4iBL/W9apXS0kiv8jxdE7rYDyrODw8XP5dmmay/3VVtFSKhTRJos/ft7I6Ih42taYO\n8v8sut9WeVxrabWI4IwO+KDlxErAKrlBvJOQuMP9fYb7B6Q2IctLwfaHGJIX/32WAveFKlpcTfJ+\ncUUpvUxejZ27TRJsmgo91RrQ4uG3aUqaZqR5ztr6Guubm1RNxWQ0ZJik6LrmnT9wis88/CzwBPLQ\nvHq2RZ4keCVAoFYZVJoR8Lg0oVhdI1td5Ud/9Hruuvt1fPpzX2Nnd588uZVbTmzwI+94B6v9jQj4\nE9DYnmt48GsPo/UA768xXmQxXlxoZG4CPnPV1wgPcWIt48M//oOcOnkCkxWMqpYyTzm5lrI/GdO4\nL5DYhF7Rp0wSNAJlS21C5Srwwv8w1nJ572AZJeF9ixYBB2UnJ9EGmyi8rynTlI31DbxrpZaU5tLu\n7qst1e/7lUSrZN02NE1LvbvLaDQUUVqsifm8pmmdaKnaBptYkixBESRPxAroSSsZbbu4NvJexMOK\ngDPiuIg+DpzR0sx4cDqJD1hoWs/+5T3GhyOSpKATozmkGCQWQBpvHcfqPtIJtDh7lHxcMARKBPYK\nBA4hkyBrLb41KBNtzUaT5RLiaNOU9Y0t1ra2qKo54/GY2WRMM59jdcJbbjjKF584zcvVPzxEmaWS\n/qsMJstRwdNoS39zi+6RbTY6JX/nI3+Bf/IbH0Wp/0AId7GAc/3vv/BzvO6eN6NbD1XDxCimBwec\nv7R3DTH6KV7KNXmWV67/B4EKpRo+8tPv5vpjR3nHG27h8w99r+tys1cIiJNAYi2uFZTDInLlYDhk\nMq1IEhOff7ISybKULDEkRqFCS5HlDAYDmTJrDVpz4dJrV/sgvJ562WTraPkVlosxSZykyzPUxUOJ\njlbgRU4dxNWnh7b1KO+wKiUYjQsBHRaTHKjbFoOPzJQW4wwHewdMJxOysoPNWtrgUWjhssRnOIRo\nmhBxuxhAZXW0eJNcbJmstbGJt3JgamNOnRbbrzYaFxzGyoQ+z3OyPGd9Y4veyoD5fIb3jqaqsNpQ\nBxgsGviwxcs28NWXMWlOUpRkvQ5pnuKamuxwiBlPWDl+lJ/a3uZTX72Pa4ml/7sP/ixb/Q7GBebD\nMZcv7XDPnTfzmSc/jdTlSnwNfwj8fWQ6pbi60ePVNfI//ObXobKS//LlR676uqSZ76IJpKklTxO8\nawX42OmgtWV/OKZqWgGq+hCT7Z383I1ZAgyVa1kZDKJW7/tI9i0KATkFAvOq4uBwj4DCOy/8gySl\n0+3RHchJ4sknnqL1sgZKY5aQUkSbcUBbgdx4JPW2tRaTWFzwkmarFVal1M5FvoqosrUW21rbtAyH\nkrrb7/fxkwllUQgjgCSOKVmusWTy4mka2b1ac0VA5JyjrirSNKWaV6Jyb4XsWxu9zNJIsxRtBQnd\n7XZZXVuj2+vhhoE0L8izAlfXHNtY5S/ccysf/9OHY/FcvRi3ynWsSajqGuc8be1JMsOshbzXxxZd\nSHO2rz/JL/7tH6CtWvZ399i/vEe2skYY9JAJtUJ5x8pNp5ig4BojSXmQ3xH/7hRS5P8E+AfIOPRX\nXvIaFSP+1nvv5cTRDbKyh85Lnn7qab719HPMq4bVXgeUwWpDFsFOoamR3aDAClObYYxlNJnFRtfj\nm5YilYh6lCNPc4IX4muiEwYrK7LGsBZv4NLOZQ72Dl5tqX7fr6Ishd7pA5NZzd7OjmDBgU6nQJuE\nsizp91eo25bnzjxPU1ekqSZLrKw/vUNhpaGIE57FqtalKZk2KNQydBSlo01aQRAhq/eyIHXeM51O\nOTw4pNPtYyczTO6wiTiQ3AJ0FXVgxOknQU631hqCl4a9daIHkCgLmSzhHEmW0jS1TJKMiTkwgqvv\nDvr0V1coez3a4EnynLwsaOZTatewsdLhJ+4+xe89dO36hxEnVq5jXjVUrWPWeIKCSe3JeqvorA9p\nyft+9Ee4+wffwic/eT9nzpxjpXsnP/3BD3DzTTdSZ2CDRrcta9cH8s0x+994Grha/b/wXR8/xSvV\nP4x41+tu4M+/74fY2Nzi0aeepZpM2OymzNoK7/+U1Bg2elskiaJtRUvn4/TZWIuxlsl0zngq6Ptg\ndIxgCVgDZWYFkKkUVmnWVlexUcFVIQAAIABJREFUStMaKNOM3ct7XLq48/0v6v+Kq2lqmrYhy1Ks\ng/F0SkBCclE6ovklQb11DZlNhSYbm/ambWnj5Ltto7Yl8o0kXymgXMDYljZoTAi4OBX0QQi4+/v7\nDPcPyYsuSZZBmkoDbhKIgA0f+VsLFydEDaTzGG2XRF+ZyEdNmrVQN/HwaqkqccZKI+OxaUpRlBhr\nyfKCI9vHyLsdJtNI+p2M8XWFNQlvPnWEL3zrHK90gE2NwStF4wJoS1J0xCGbZqwcOUJ38wibvS5/\n5yN//iVN/KJp/rsf+ku84d4fpK0rEq843Nnl3GRMsSqi98DP892aNPjNF2lbXty8nELug2s18nOU\navmFn34XR48c4WBW89bbT/HA49/bzG/0ihjuzDL8tW0aea6nCdP5nIPDQ1on4bBaSWyPq6sYJqmj\n08+RJAkrKysCjX3lPua/wn6tFG3TsDJYYTSZcvz4gNoFhk89TWItw6Fkr/RWT9LJc647cYLDgyFV\nXUvjYBdjbciylLaRtQ3R9996RxZfjpxUofEO3YKO2gLvBSud5gl1VdFUKcPDQ45sbdGOJ6TakKRJ\nJDqqK3kW0aXkQoiioysFLkJOETzKzXeFY7MYaWkjuUlplktxW0tv0KfX75PmGVmdUXRKym6HZj6j\nms95yw3bbOQJf/TNMzy1cx+KfwcqZluEIXceWUVVM2bDhOn+kHFR4uuaNMtoWsVgdY0s79J6TafT\nI6gEZQ1lb5XWGxpl8dqSpSkECL4lXd3gxPUn+dpDX76GQHiIUov00w8hD/BfAX4N+NvAf0DWSaeB\nEYHAc7sTbrulh0pyJnPHk8++wKXdQ5KsJ+PYuhblP/KzNEos7NP5jDyTn5uxKfuHE6q6wSQSdpak\nmsSI4HE6GZGlKSrRrK4M6Pe6uOCoJjVN1bJ7eQ/nA6/VlWWxEU/k9FZqSaLd39/HahEjzquafr9H\nr1eysbHOcDikbuYEr+lkecTMh5itFU8iWuN91GgFs9SCOa9onDAlskRhtUDbFoLgtm2ZTKSROXr0\nGLPJhNIoMJa2rtE2EScIgAoEJ3lkAZlIam2o6wYVgVrONQTfQiAGLrbiImsbsjwnzRKSyi4ZTN1u\nj8HaKiZNMVlG2elQjQvqLGNWycj57pMbnFzt8unHzvLti7H+F/BERpzsZIS6Zjwac7A/okEmnl4Z\nyt4AbUo8CUolHNk+wd/6+Z9jdDCimtd0On1C3iXJU3nTm84oV46Q9FbZPn4cpf6E7034PQF8iisP\n7EX9/xOuVf8At586zvbmJodVy3NnzrG7dyBRJDoB78mNJTWa2rWATJ/rppEk60yCLw+HI3l4x6C/\nNE1JDChaqqoiUYEkKxj0VuiUpRxq2pa98T77+0Ns+spk0z/bK5Akhk5W4AMMVvokac54MmF37zKN\n8yRBuDkeyd5SiYDirgjXfTRaOIKSiUcI0HqHiZOY1rklmVqoswJlbp1MSw4PDlhdWxeUgyJGGrTS\n7PgYAmwl2kQjFOfgvUyAksUUPkoamiri72V9FJCAySRNmE/HeO/J80wml1qRFQXd/oDeygCbZcyb\nmiTPyPIcV80xrTTwP3n3Kf7zyzTwgRGbZZ+6aqkbR+UCiQ9UTlF5TTFYQ+fSxL/3A+/h7re9mU9+\n6rO88MJ5Otnt/NSPvZfbbr2FJjfovIMOisKkrE9mfPpLX0fpAeGq0/h/xZVU91NcaV4W98HVG/l3\n3HEdP/1Dd3PqxpuZO88zzz9HM5+w0U2YtxUuNvPrvU1Sq3FeAn9VkE0LcbvROs90Nmc6qyQT0EjY\ns28aEmvI8wTlnfzuPKyvrJIlqXCpuq/MUXrVjUx/MBCh5vAA7xVHtk/w5DPPMp6M2RqswnhM27Y8\n8/TTdLt97n37O3juued59JFH42oJbJEsabwBJDAMmdK0rcGnCU3waAdOKZSTvWYwFq89bYCmbWhq\nMFqIojsXL3HjqRtIjcK7huAUCxS085JpBMKY8N5jMNJxay272fj3LyaLam1I84RZuFLksnYScFfR\nKekPBkJQDIqgReSbpjnaxlO3MmyvrvA33rXKsA6cfu4i+5PvsN4/xj23vRvfNnzn+ReYTmcc7uxS\npAmu6qDThPFkTlmCJmNaVQQq8tLInjYzlB1F2Vmh1inaZoAwc4qu5r0feC+f+N0/uOpNBDUi+F38\n3Yvj2d+E0Ew/B/w48H8D/5iP/clHuev22znW3WD3YJ8nv3MW5zRl0Yn5PjLSNcYQkFGtNoKHByKG\nHpq6AWXIszKiyBvqtsHgybQis0ZEc3mGa1tG4xEXL+ziWken6L8q5fqf1dXtdtgfDqlmM1pt2T5+\nkovnLzAejTh6dJvUWiaTKc89+xzdfo973/FOnnnmGb71xOMQZEfcyfOl1sY5J+s155cQxaYV4qbW\nJp5CHd4rUkvUFHjmVUWIuqIkTbh8+TLVXABT3otg3SE7f4ii9pjTs7CmGm3QStaqspWUdapJE2wm\nGpy8yJkHEcz7uBpY3CdJntEdDCQPx3tskpJkmZxY01RiEmLY4/GNgl94/zH2Jw0PPHOOvcmzrJTH\nuOnYMSaHhxwc7HOws0eW5cyqCmUts2qOtSnYlNqD8Qrl4z1Z9tDWYbKCBkOqJDzSZBobDG0z54M/\n8eP82//3P/G99f8sLPUt/xRxbPwaYjf9ONeq/9/45Ee57dZbqKqGM2fP49EYm4gWKjJfgpOfYZom\naB1oKnHYoJSEEtY1BEWe5xgrz6d6XqFVi9VSX0mSkKUJbSuhnBcv7dC2kjpdluWfdYm/7JWmKdPp\nlOBb9vcP6Pb73HDjDUzncyazqeQhNRXB13SyAtpGOCJG1j7GmOhSFUK8bEFFc+mcpzUanESt6ESB\nMjLtDx6lrqSrDw+HKBTT0ZiO1aRZTlNXUZ9mZJUUZQiu9UsJgdYao4U/pnHRhVfjXL3U0yzMHPET\nyIucup6TJG3MFLOsrK7QW12har2YPsoORdmhnU+ZzSW9/a6TGxwblHzmW+d46uKVAyxBGvgbegXt\ndEpd1QxHY0KS4JShDZ5gEsr+KpiCoHPQlqPHV/jQh3+O8XDMdDQlSwt0ZwCplcT7qkLnhqOnbmXv\nD7/AtddER5HJydWalxe/D1yZ/PzkW27iJ++5k7W1LRyaw8mUZ8+cZe9wTJ6XFEq0XZmxZMbQBkfw\n8vOumobEGNJUmr26aZnM56KLjOGwRZGglccoT1NV6OApuyXdXp9ut0vwnsRYprNX5ii96kZmiVrW\nhl5PMnvOnTtHCIFuWTItSubzGh8a+r3+Utx4/NhxDg72MEa9iIYo4W9GG4IXpL04M5y4VpTCB4Ug\njgJtcBgHJoBH8mZsasUhsbPDpUuXODboM5tMhSRr5e/qpkYZvXQ+SbiYPJBlVO+WlmwJcNQiuPQe\nnQptcEl/TFOmsxnGCmMji28WdVNT1w2ubdExij1NE7IkIbSOoA3HOiUn1tdIspQ8L3FO0XpYH6xz\n+WCfvcN96tGIZjJmXDc8f3nEzs4B28dPsnH0KDqxWJuRWMtkPmU8qtjc6sr3FrTYzgNYo7j5xlv5\n3/7X/5m///f/Eaj/wJLfEEZ8+CM/R1bk/Oqv/GYcV95CCAY4QNwcHwL+D+Dm+Fv/pxA+zj/6d3/A\nXbfcSJ4a9g/HBJ/TtiKaSxLJhanrGqVk8qUQqKBCnBjzebUECzbBo7yKbBNHmid085Q0tXQ6ObPZ\nnKqeMT4cU+Q5zkGn22PzyNarLdXv+zWbT1EK0iRl0BuQGMsLz5/FqISy6NLUntFwhgqaIu0wn1Qo\nrzmyfpTDw310cNiY7itVLXovh9xXWiuaIFh6FQIG0Mjv1TuHQ9EEyTpSqSXN5A1iZ/c8u7vnOdnP\nmU081hiSVLJKFpoGa8WRJEJ8g8YT2ipOYwRC4LXFB5jXI+ZNTafICXgaV+ODl99D04KGtCywRUaL\n1NysrsVCHMWdiZEE4LaV07hODBurCT/9lh8gywqMsczrwHy+yeHBIePpDD2aMxvNGTcNFw8us37k\nCMduvoOVQZ/UpmQmQStL7Vpm84b+6iZKW7SWVRuJBXKsNhwbrPG//N1f5h/+w195Sf2HMOS973s3\nn/n0b72o9r8BeBI9pvGngf8J+AW+u/7/wcc+wVqvw3R4QDBJdBt5mQgEQXguoiIIXlRHocUqSxNP\npyYSY5WT1HHlHd1OTrfMsEZRljnzumI88kwmEzSWIsvod7tsHdn8b1/0L7pm0ylt07IyWGFvb5/h\nwSGPPPIw/f6At9/zgzz99NOcPXcG76GqZuSJXeZohRhYqCNOo21bmrrBKsmh0lZqs1FglCYhZuOF\nQN22ktKOCNWHoyHT6YROvx8DgkUgnWSZENHDwtAhQpgFQ3PBoFocoBfxH8ZatHWoVkT43rUS0Brv\nlxCCwPeMoeiIKL31Dg+kueQtWWMkF8noGBFgObY24CPvOcqoDjzw9Fn2p8/SK7e5ffsuDg5nnD9/\njmo6Z//iZYLSTKoKbQyzWUXTegKWygW0V4RWXqdNS9LSkGQl8xayPCcoMInFtxqbB44c2UYcUldZ\naal9Qphw9UPsXfH/PwC+CBxD4fkvDz7D9uYW793YxqM5e+4iFy7uoIwVbZQDG/OQiBEQxhgSq6mq\nGamVDDaCyEeaRhyeSWIlELd1OF/jlCPRIl+x1lAWOSFAVVVc3ttjMv2+NjIi2sEmdHt9JrM5znl6\nvT5FIb9UAaEJBfLrDz4o+9Boh87zHDFzaoqiYDavBOC12JdGBbuPmRBavNfyUIiAO68WluzFzt8R\nZp6LFy8w2N5Ga0XZKdFKRdt3g8EiRsiA6A1iLEHkZ+jY+YO8lDZmyrStfH7d1BhjKYoyipSM2M0R\nQJnJ7BKzvRAW25jkO59XKBQmMaSpRQGurbE2jxweQ3rkCJtrq9RNy6Wdi4z3DtGtohpO+fLnv8z1\nN9zITbfczMbmJr5puXjuAs898yydosuxG28imswheFHoB82Pve+9/MBtN/MHf/jHnL9wkaObP8JP\n/MSPkhQpeafgda+7g/t+42M88NWvRmHkPQhO/LdYcDPkEnHa2Z1vcX73KXw4ZCW39LtFdL0EDIq6\nrkjTBGNiVIJSMcVYXGyzagqxea3mNSozGOVIE0NZFiQGsjQlS1L2RkNmc0G4p0lKUmScOH6csvPa\nWVAXD9+0SMnynMPhEI+n0y0py4LZfCYgqMTSuoZvfvNRifIwonMpilyIp9HFpxY4AnWFY7TUwATJ\nVNKJuICc99Q0KJWC0cv0dIymnjfsXLrE5vY2yjQURYlNw/JeTRLJbLniIhRCsVlkmiCsGQkvDdE9\n6OQeCEH0OtaQF4U0+LBELXjvJbkY0fyo+L0qrUmssEBiKZBnGcHLmz1AlhjytEeZZdR1S+sCu4dD\nLl3eoTQJ1f6Yr3z6s1x/8iQ333wT5ZEtnG/YO3eOp55+lvRNihtuvJFWR1ib0dAGbCY6o/e//33c\neeedfPJTn+LihfMcPfJefujeezh56nr+3M/+DB/96Mf4aqx9uIfGP4RMa17HldqHRf1f2H2cC7tD\nYMxGr6TMFCq+S4YQCEahjSIECYtM0gxtLGjNZDYWLYSS+ySzEuyZpylZmqGALJHa39/fo65btNXY\nJKHb6XDkyBadzms7kRnuDcnKgiLvkqclVdVQTRvy9ZL1wTqjtRHtvGE0OkT5Fmui/tEJ9VcTSLSi\nrWucFt1johKqIC4oow1qYUM3Hq9amqAJHmyWUWQZaMX+wWUuXnyBm/q30MynJFajbEqiIsqjbZdC\naq2UuCG1BNQGV2GUi5IBcMoQjMKpiiY48iwh4JhMxjLJ9/Je1tY1Nk0oV3roLKX2gcYHqrbFLSaS\nNiExljTNxX6uNDZPWC8NP/nmOyjLLt4HlLKMJnMOj26yt39AGM2o1T4qy6iAC/uXaRvYuP5GySVC\nCbZBWRrlaUNDt+iSpLk4Egn4xABSRz/2wQ/y8X93tWnkLwFT/vpf/0t87GPSyMMbCKEkhENW8gc4\nmM+Bv4i8B0SQXvgl/sXvf5Tbbr+VotfhyefPsTucgE2jkUACPCX3CZSRqaTCSVYagtjwXhLGVVAx\nJdwAHtc2GBrKPKXMErIsIc9lnVTPW8bjMdNptaynl7tedSNDAGtTTNJh73DM8+cvsnZkm16/T3/Q\nZzafkVhQQR7AFy9dkkbCWkLbMJ+Isr0sS1RI6WWBcTuRN3/5rTCc1jw/m1A1LZ0s5YbtLbY68hKd\nEY1Lg2fcyAMh0wk+OC5eOsfK7jFWV1eZTMfS5UfYmlYWFTzeCQcjtEShWRv3sZLVUrc1SkPZLTnY\n32daVZhEU9U1ZZYznzWkSUlQmiQtSbICbWykm0ZGjRKYX9CykzW5NF06E0OI1bLWIng0iiSzGJvh\n2hLnYa2zxg3HGrwy7F7e48yZs3z14Sf4qtGsbWzRHwxwBC5e2uXZbzzKba9/PaduOEVWFIwnQw6H\nQ+5959s5GI/5/Ge/wOXdHU4c3eR9P/b/EfdmsbamZ33n7x2+cU1777PPfGoEYww25RGMbQZjzNQM\njZQIJERCt9VJC2VQQl/0RSu5oZWLVhCTou4IGegQmo7LJsZhsE3ZxrYMngvbwUOVa65zzp6ntdY3\nvUNfPO9ap8quCdpKfSXLdfapUp299vO97/P8n//wVi5evsjDDz3Eu9/1Hh544Kt84jOfA/4+Mf7O\n1xT8LRMw+drngX9MiP+KlRX7ZNRjswyDxrmeoiixVlMYK+7NSpK8daGZdwOny4aoMrKsJCsseWHR\nwZMXBq0iI5tRWM3x7h5+GNioJzRNw6yu2N6+QJ5Bvzx5waX6jX5W3JAsz2malkcfe4Jz584xnkzY\n2Nig7Tuu3XYFHyLGZuzu7uKcJwRBBhfzBoXHjOunhaNpLVlgMUb6rqfrew7nLe3gmFYF33zpHJuj\nEh9Zh572g0MRKZSouW7evMnWhQtsnj/PYjFHZ0996QPDENa2ByG4NQIp3xe4TjhsRmvqWhyIV43Z\nCqkcnBJTv2RqWFZVkuP6xC0La68ObRTGaPJC4hKyzKK0kD5BiJZ5Wu2O8jHBQzcEtjbOce3KNQYP\nx2cnPLqzyye++EE+/t4Pcm57i7woyOuavYMDHv+bL/Oyl7+c2+6+i6KsODk5pXMDr3vddzKeTvjK\nQw/w5++/j52bu1y6cJG3vuXNnD9/nt0nb/KeP3wPn/zkZ4DvIMZb7qVfX/vw1PoHqf/9s7dzZ1Gl\nkM6INoq8yDBWJcGAkN5NJuTGk7M5JsvJjMVa8ZexKpIX4nhaZJa6LDna28MFT1VXNM2S2WyTK5dk\nOFsuF/9N6vxZHy1rsdGowmaGruvWtgKf//znOTk5SbLnSFWUaV6MYrOgwrreYLUyDeuMuxgC3vn1\nat8Fj3KgLOik1Ivp32ublr2dXa5evYbyAW0zRpNCBo0gK9C8yNeD8Uqd7d2Q6n9ltaExUeMG4d44\n5wjWJjsEGWTLqsJY8YnK8lxs9eOttZgQneVc8NHLgJs8lgQKiuR5llZcAWuE5zYZ1dRlyWQ0pu8d\nfYjsHB6xc3RI6z07UfPg9EvccecdXLp8kZktiGgWi5bHvvIg2UsMd919N31wyfwSjC1Qheb22+/k\nX/7Lf8qv/MpvfB0a/4/+8S/wYz/2I7zhjW/gA/d9iBvXb3J0eI1RWfDgl76MOPv+Ll8fa/MOfuX3\n/ojbL19icXwo3LrMCKcuRNCyHvcqYc3R4/yAMmndZy3OBfp+QKfPU8jYCqMieZZTlZUQfRO94Ozs\nlLYdxFC3KiS+5nmeF97IIJyWo+NDTpYt82Rq07Qtd955O3t7e7RdS+gFkWjbJvlWsOaegOzkRa/v\nyPNcJlPnOFx0PHG0RJQ1r0bx1zy8+2Vec9dFvuXyNgrNgMJolyR3twzvjo6PefyxxymLYh1ClZcF\nSikhoyYWegwBF6JcskozuB6jzdrPRtSOKr1sDqv0+s+4CrYKSkhsQ/JHkfWTww0uTb5epgKjyfMC\nlUz2Vp4HWiuIWjwNlFhzY5SsAApLFaCox9x51128Oryao+NjzuYL5s0SpWRPe/ulKxweHnH/x/6K\nT33ko4kRvmRza5OPfOxjvPO+Dyak5R60uo/f+09/yFu/9028/y8+glIzfPiO9Dm/E+ED/MKtwuVd\niHeAHNwyqb7tKb//Dk6bhmuTMZ1vKIpCeBQrG/yEqimtqUYbLLtjsqLA2gJjcgprUbFHocgVWAJt\nu6TrJLG2qgpZV45HnN8+Tz2qmS/mVOWLFxoZQqAsSvZ2d2kcLOYLjv0JTddy8dJFiiJjd3cuP+uh\np+8aQHxlQGrfKIX3ga5LeVqZpB4HJXkzO8dznjhesKr/neO/5is3HuB133yFb758Du29NIgZxGgY\nnDhen57Oeeyxx6lGY7Q2lHWFzXK0NrikxpBwR0EpM2sJqfEwKdOp86ugN0EigxdXbJtnDH2PzXOs\nd2tCZtM0jEMEJQOC947BDayE48boNQ/NWiF/ZplcBpI2L9D/istTp/e5quqkSrmbV7SO+fyUxWLJ\nsl2gjaEc1czPXWDvYJ9Pf+CDfPYDf4Eyhm4YmG5s0Ny4yQM3rvNb77hX0JZ4D0p9gD94xx/yQ9/3\nPbz/Lz5KZMKzupdyL2IA+X9wq7n5+vqfdx2bZbkO2WyGjjxIVInSBRGY1iOWXS8riLxCAVVuZG0Y\nZWWigeAGjg+X8vtliY+e8bjm0uXzWAtNs2Rcv7iGeJcuX2Q0GlPVJVUlaLLShhAcOzcP8CkvSHyg\nHC7FLWRJpLFcLqXeUsCu9y6h4eKCrHHozBK1CD9QYDFiNTA4dIxk1oAxHBwcsru3x8b58xhrKasa\nH6TJ11qtA1B9Uv+F4FBJKBCS4Wr0juBk5ZfnOd4NwnFRt9B5bS1h6Mjy/Nb/rBUkWunEnWTtsaS1\nxmpNnhmCV2LLYA2ZzSU6J0S5uBOiWWU5ISiGEBiPJmxONvBKs2gbvvzJ+3ng05/jytXLXLvtGtoY\nThdLvvTAA9x86FH67/outi9fEqJxiCyWDXmRc/7CBX7qx3+C177q1bznT/6Y69dvcPHCW/jhH/5B\nNrc20MDl7fPcde0a9977bmBKjPcQY47U+R8g78LqEUTy+t4XubH3JJFTzk9qZoWo7nzwsibVYHOL\nzfQa8bVZJmGYSnG6mDNvW6wtpfnXEnSZGUtVSVCwAiajEV3TsFwsyIqcLJfzc2vr+fmRL7iRMVqI\nrVmWMdsoOLuxR9d19H3P1rlzjG7c4HOfu8Hm9ByqkO43LyR3xK1+2GkFIwGNnsxmRB1wgdTE3LIJ\nX2VEfPrht3N+OmJzXKE89ENIKhJHj1wwPgRu3rzJtatXmc6mGG0kMEyrtYeBSR4HPnkMoAJECMGT\npwO7a9u1dKxtB6KKTKdT5ienBJ3WT8CyaSTafDIhA5aLRbokMhQ6kdRUCi0TuHvldGxtgehJkueN\n1umfE1+D3knOSp6JCd/t164xnU5wLuIHx9nZGe20x95+N697xT2U6cA4OTvhwcce5X99+28R49uI\nUT5HH+VzfO+H3g78fXgaAvN0G/ZbJnj/HiFCLpCD/taqCV6J9x8Xd1rvsVYnUmOPDhEfnJhI5Tmt\n9yzSem3oBzrXoaqMXEeKLGKiGBkGrRiVtUxkzjGbzdjc2qTve07PBqbTCWX54tm0xyhNSF2PsVFx\nthSS49HREee2t5nP5+zt7bK5uYkxskLM8wyTpUZ9tXokTXUBrNXEqInR0HQuNTFfX/+ffPDtbE9r\nNuoSHRGFjBuwSg5tYwwH+wecnp4ymU4hRKxWRB1Tw5zC8lLTLU2MRxHwXojEq1UsSU3Vh44QPPV4\nxPGRNPshSnzC0DuWiwWL5QKd5SzncwY3CEKhZSrTWgYAIHEHhBirlezWdWEExdGAVWRFgR8CziOZ\nSxRsjWpuO38+JXY7nPcs24ama/iWa7fzple/hioIh67tOpZdxwNPPs5vvePep9U/X1v/CTp/5vq/\nB/hVxPH0fp6t/gf3SZFMW+HIDIPDBFEsdV1HUZZ0Q0/TtvL33YCOkTwq0FDksu7wvgfnGY9SkJ4K\n1KOazc0N/NDR+Z66lObhxXxsnjGZTVLq+YQQIt0gTu1d1wBKfEF8ZAgORWBwPqlVhS+jFfRe/Fyc\n85zOG46WLYMLjArLN108x+a4JKahb4gBE6TZyKzGu4BTntPTUx595BFMUUKErCgo65HcKyjatpWG\nWQmp2oeITc2zeN3In6Pv+7XMOgRP0ywp8kIoCElCrKwlq0pMliUfMbvm/YRk2Do4UU1FFdEGCca1\nmiw3t85HYvJiEkFKnhfYImfoPZXOqMsRt125DZSm6XuOTs64efMmZzcOeWD3kLIsmW5ucufmefZ2\n9/h//s9/zxADVSUbAh8jr3/DG3jLW3+QvcN93ve+93Owu88d167x3//4j7K1MePxJ6/zvj//AA98\n9WE+9olP8fXvwnMjkjENtntnb6eyOaOqogtitKm1EkflGBj6XtRIQVGUJUpput5hs0K86IymSLlK\nlvTzNZoqzzg7OWG5WDIaj8AKEnnHHbdzcfv5OWIvPDSy71m0HZev3sHRoqHtWkFZlOKBr3yFs7M5\n1gq0luf50/bzwzCQAVEpTGKHF5lK6xjFSTvwdLMquOWE+A4e3j1hNqrwRAYfaNsGqzWuF3MvawyL\nwwMeffRRRqORpG3HkKymg6yYUjCZC46+7wV9SRdnEpPI9xRvde/LtpVEYYU0TM6jjHxkzknQXlQd\nwXtBbnwnMGaQxikaI42Mkah2ueQUSolHincCmWprsFajlKyqnOvZ3b1JbnPqqsK3HVVRYbVhqx7j\nM4cfHKPpjMENnM5P2VCWT3/xizxXDgbczte7N74TQWD+DSujMunObfr7lz+lCuT3s0yaLmutSCa1\nTsZGQlIN3lOWBd3gRXJtbNqHRnCQl5o60yjfU9oMm1mUDozHIyAlng4NeZ5TFAXWKrp++UJL9Rv+\nOOfoBsf5S1fYPz6jbVs7ADRaAAAgAElEQVRxpibywFcfZLmUP5tSwoHRifflhoGQ+C4CjyeiO3Ht\n62Kt4ehoznPW/84Rr7rrsvgdOQda49N/LwPm8zOuP/6ERGUsxVRRG1FaeB+FCJkMH7uhxxiNiqyR\nEYKnb1sI4qYpE7MMABHQ1pBlkgjsB4d3HpxkTUXvJPi0N+tmiOTnoYxGoVPKefINQkmsBhJNorQo\nWrCSTO+C4+TsmCYaFvMzqrKiLiuMUozznDp9ljazFK2j6VpK7agzy70PPvj/o/7/FVLvjo3xpzme\nO561/q1BWy0OsUZR2gLiIOdJCOR5QfAB7wLBdYRBMmOUVWRaEoFD35LbktJmYuluLcZqhjCgYyCq\nyKiuybKcvu+/ccX8d3geeeQRhmHgpS99KV/4whfY2dlhNBLeR/SOPC/I8oLlitirZK3gQ0B5T5ZZ\nkfk7Dyj2z5Y8efJ09P2h3Yd49V2X+OZLW8l80mFQFIW4TkdErkvQ7B8csn1yQl3X+H5Aj0mIkGT1\nGZtStdUqCV7Qohg9kbT2RhGcJ4YVV0w80oqypO87uT+yXNyKQ2SxWLCYzzFFSVCKrm3wbhBLAyO+\nTyvvK0E7BXW31pJZGVRBgVFEDQ6HTj935eSdGY0rLp6/wF1XNObl9xC8qDfbriPEyOnyjNu2zvGt\nt92ODshWITX4/fXr/PK//tf82Wc+C2oK3IPiT/jd//gHvOZlL+XTX/wySs0Iz4nGv0BEsu/ZGI0Y\nQpTsRCJt14LVhOiJThipE2vpBofNM2xWMPReEBkCmoDRrGkfZ6dLqiJna2MquY5KcdttV6mrgpPT\nw+et0RfcyDTLhrys8D7w+OOPJ78T2Xeenp1irRFXRyNoyGrF03WdFEqC37TWaUoL653l4APP5YS4\n6O9PBC3QUdE7T1ZIYJfzkYAjsyWHBwccHx/LammZMxqPUVoLwQjWsN4wDGS5wWTittp1Q2q4eqKL\n9H0nqMyywUdH3/WYIlt/D6sXxAeP63sya8lNxsHZEV3bPa2glZYmRmnLyppbq4BSQopc6VhUMo+K\nSgheRcwIg6NrG1zb8cDeQ9z3ufvZOTri0sYmP/bK13H3uW2B+7uGYRjYPTzg2XMwXoWYNH3t11+J\nSFNXE+oC6dbvRRJSf5ev9RaYjbYhQl3XNM1i/fP1TnxJYpCLtG8lMbmwkeg6yqJgWmWMCkOZCUFs\nVBbko1LQOhUZ+o7pdMpkXAt0qWXSWTYvXiPTti0mEwnq/v5+Ms8S06+z03lSRcgqSSd+UFWWLJuV\nZ5HUPEpWM7m9lfYbQqB/nvqft/fLpWFkdedAEtudIxppjA4PD9nf28PmGW3fpdyYir53GGXQucV7\nl/gCmTToURA04R80ZCrQLReiMPGBxWJOdB6Sj1JI05MKYkgpqjRFbnPaJKXNbMZg7TqIEgSJVCrl\nqiTPpizLEQK4weQWJZ0ZQqdQ4AKtb3ELx3Ix54ndPe77wl+ze3zMhdmMH3/Nd3LbaIO+79A6EvHs\nHB3+Hev/qzy19k8W70RauF/lGd1LR9uyrvNgUOAjg3frVVxRFCwWS2nelSa6gbIumdQ5mdXkWqHL\njPGoJLMaa8Q9tmkaZpMJdVGi7Mo00bNo2r9z7X4jHmUNGFEi6uSDZK1ZZ9pBinvxEa9WQoooZ1tC\nvUEUdMvOpybm69HHzzz8ds7PRmyM5J4ZGOitgSBDg9biVbNcLLh54wbb58+DioTBYfJsjbKv3NpX\ntRaTOZ/ww1wKmYwMQ4dLpPiubenaRta+RUEXgWFIiHmG6weGvqddLojaJPReYYwMdauhQIYGJe97\n1Bij15YEcg7IuyG5T3IHuSifT9u1DN5T65y6qqnLgs0Ll1Fa0w89bd8RkPOwDIJyhxho+45H9nb5\n5XfeS+RtEJ/+uX7qbwSNjM+Lxr9ARNJ/Qj7XxHES81qhbqgU+izxLRJpJO7OS5wLwqHLNHmuxc1d\nK4LrKYtcCNcxCkJZaOoyZ+jbdczRcz0vuJFZLBds1jVPPPEEzrlk52zpuo66qrlx4yabm5tYY1gu\nF5w/fx4UPPboY2tn3ZWPxjCIf8hqh5oZDev8hmdwQrSapuvIjELnuaQO+4FMW/roqHQhh/Gy4cnH\nHyfPcja3NnGDmOm0XbvOtxmGYc1XEeMpv0aN2rZjYzplPj/DaIkjX5zNybIsdegZTT9glPAbTk5O\nyLKCYRhY9g1+cEzGY4a+QUUxIiMRnoy2aJVBKn6iXEBKaYoiT5cgKGMZtBEmvjXgAvd95n5+7d1/\nlKZNMdW79xN/yT/7/h/kzd/80mSwZrk4nqB4tmTqzwKv+5qf6sq9cQO4inTfvwX8DEq9jxjfgRgn\nJdIYZ5yfjinzXFZ7bYtSkSIvaLulmBlpcYG12nBysk+mwWqBh2ejksKAxRGd4+L5bUgwNAryLGM2\nm1EUBX0ioA6DHCDOeV6sZxgcWV5ycnJC07SATH7aGKzNWC6Xkg2ViTP0xQsX8M5zena4Jhlqk0iL\nIRCjQN/iXOoprOG56r+08jnkWhBEZQw6k+TpgHDulsslTzzxBHlVMJlNscZQVfWaj2BMFJRltV5S\nmiHlkw2D8GJsYW+9p1HMJ7Msw7mA1Rl938sqp2k4PTkhK3L8MDBf9Ph+ILcZ0SiKUAKd1LlSiegr\nSKRWMg3rhN9lWS4RIFazikjQWovnRwAVFO/9xKf4zT/+L19T/3/FL37vW3nzt7yMPLfkVnNlY/Pv\nWP8rf6VbtX/bxYzHbn69e+mlrSlaQ+cGLMKBGFwvvihB0p+1tpycnKJiRKtIZhSzUY2hx6DQKrA5\nm2G08Cac64HAZDxKlgMevENbQ9ff8jp5sZ48Lzg8POKBrzyQyJpR5PbasDBLcpvRr89VucRDTB5g\nqYFQUQJ4j5bPhz4e8so7LxO1TjlLTnxionj1RAXaew73D9jf3aWsClzw5EWReIwKawNFUQKSveS9\nS2t/UkhnQMXI0HUMXZtWri5dvoHlYonNLOjVekRBQNDVpFbVINEGy7mkaOsUcxMlswwlg400MGq9\n2tUmORBbLeidVeio0UqQp6F3DKFl0cwps4KqKFFRVmKijg2y4ooav2hwrscNLX/6lx/7BqHxjo3x\npziee54Nkcwzg7KaQheyVo6QqYwQe+ElESnLCq00bvCoICpkq8TNuso1RZ5hdYQ4MJ6OybSiWFlL\nJIdoo8Dk2Qsi+77w9OvUdLRtS9e2a4Oui5cuCfw59IxGIyFGVhUbGxu44ZaLbkyy59WvV2iMUooL\n0zE8Sxhb5IxLGxMJGIsKFyUCfBgCLog2fdl3ECLL5ZKbN27y+KOPMj+bMz+bSxx8NwiUHm6hQC7t\nSYehT86qIe31hZwp3jAJKk2k5VVK9tA7zk7PaJpGiI7DQN908oIo4QApILMCx2faYLTwA1aduXCf\nVeKKSeee5ZaiysnLDKxkfuw3C3793X9EjG8jxOvE+MH0//8Dv/6hP+ex4z0wERd7vvfuu3iuUDt4\n9Fm+vokoM77ELajxlczqkpGdU2UfY3Psubq1wcXtc2sCqfee5XLJslkKKdRa+r5nOp3SDz2hbzAE\nqswwrXPGhSHXkVGZM5tOE2LXMx6PmE2nazXPyckJbduuCaptQrlerEfIr5bFornlTuoDs/GUuq5Z\nLBZU9ZiAIstLaaLDsIaYCUEg7CiRARI1IMZf1lguzGqeq/6vboxFURFk8u/dgPPSAPa9x7tA2/Xs\n7Ozx5OPXaRctXdfj0+QXoic4l1R8EkvQdi390DP4JCNNAX9S3z0hRIqiXE+cPslju66hbRqGrsOn\nIWAFfRtjU8OpMCaTlarJWLkJa23IjEkXTlL6yQBLllvyMicrsiQ/thSjkv3lnN/84//yjPX/7z78\nfm6eHeJcx2Ix5we/9bmT2Z+5/ufAP+SptR/jK1kslmyPMyZlx6T6OBujgZfcdonNyRStMpyHputZ\ndC19dGib4WNkc3ODvl0Qh5ZSR0a54fx0TGVgUhompWZjUlFkGj8IkXo0mQqfKgQODw4YOlklBedx\nvUPpv5Um4xv+qHR+gZg2FkUpF+/gqKqKqiyTzBpx/tdG1JzeEbwXVCKJLdrB85zoe9uvA4aBtS3H\nigjsEL+Stm3Z3d3h+PiY+XzO/OxsPai2bcswiPDCuWHdoCgtw2NI9Iau67FaM3StsBaVol0sxR07\nypo8RvHLssbStS1D39N3LUYnK48ga5Q8l0bKpKHVaIu1WbIcUOtQS6UURcrrE2WUFT5dbinKnGpc\nkVcZZJohOr78xGP8+nvexf/2e7/Nr777XfzXL3+F4719dnb22D844vR0QfSwc3LyDUPjTxYt0tz/\nKs8YjjquGaIX3xgtRq2EiBt8uhfEbqVtO1zfA5HgejKtmNYVVZGRGygzzcZsTF3mFIVNboaBEBzb\nW1uUeUGZ5Wvg4bmeF/yGWGNomzZNlBHvPEVZs7W5yf7eHkPX0/uOC5sXyfOcnZ2bNE0r8tS2FSgq\nHYirtQsASlGVGXdfnPHQztuRlcYtBOClV7aoylyCII1GKUPEE5JTpIs+yV5l8uu7jt3dXepRzeWr\nVzk+OiRLsG1VVev/rhsGbDLvUkoIu8YYuq5NUFjP0Pc0i6UUtbKJuKlRVpKym6ZhPJ6uU4W9c7Ib\nT/Cl1iuSZ1wrt1ZcgdWvpblRqPRDVNomtrZMo+9736dBzeDrQvB+A8W9fPCrX+EfXH4DSmmubG/w\nz97yZn79vt+GeG8qbPkc5Ud9L4KwvJpbXJg3AR9Lv/dUktf9xODZGI+oRiPatmVjtiEoktZikuUc\nJoWvRcTBdjqdMh6NOTg6YDoqyIxmnOfkWlNmirqo0EZjraYcTTh34SLd0Eh20OkZZVEkpZhn6Adi\nhNF4/KI2Mtpaut7jpBeh61vKYsTmdMbJ0VHyLIqcO7eNAm7s3KRpl4xGNX3fSz04B9qKricKrByR\nNdykKrhje8yj+19f/y+/7SKTukI2GH5NmPcJORl6h860THndwPXrN8SrxkidFWVBT2RkRxil6HoJ\ndV3lJ4EsUbq2pRtSgzQMdF1P13Xr99U5l9YIgWHoWC6XZEUpBzww9G7951JKYWxGiFH8VEjQepAk\nGKVEASku0MmDJUmZV6itzYU8+qef+ATPHAIp9f+Br3yBf/Ddb0AZzZVyxj/53u/jNz/8XPX/Xp6K\nsMjzep5e+5/FDcnfYpRjlBGOmrGpQRTRAFHMOr13RK2pq4KN6Zj93evM6pzcaMrMUhUZRWaoCmna\ncquYTkZk2+foe8fp2RlN01HkFquhGyT2o+t7RpMpmBc3/XoYHOPNyToAcuW66r3n2pWrHB8f3yK1\nJ+M7ubhZD69aKYzVlNmzo4+r9OSu6yDLyJQYRUajMCZPadgBYzR937O7u0c1GnEt02sPr5XpKlHM\nJlemdsHJINB1HTGhLypCXVUs53PgFv2hqqq0Cg2sIg2Grmc5X5CXFVEjv27lriiyjBA0eV4SkrOt\nNgatZWgV/kyOMkKNCEFWMmVZEbUIaCLJQDBCryFDc9+n7ufX3vWHT0Mi3/XJv+IXv/8tfP9LXiF3\ncGEJXeD85BuLxr/0jglfeuQZEMlzMyE0+0jTd+TKkquMGLwogF3EWmnUdnZ2pdktC7S1TEcjikxU\napm11FVBXeV416H0LU+tyWREcJ4+iiVKXuTPW6MvuJEJIeCHgZjC0HJjmYzHnJ2dsb+/KwRfazHG\nsHNzh37ohVVNxCbVgU+dsDGGvEgXO2KTd346YlRk7BydMfiPU+UZl6YXqeoM7yOD9jBEdIwYBcMA\nyhisVeRpD+mcE7vsvqeuay5euEjTtCil1wz6p34/ve9QUbxe+iSnXhHrRMKXJlERm9F1nbh4Bg/G\noJZL5vOzRGIkTeCWzFhclMC/kJzy5C8tDH5t0wsncKN/ygSijCdE+Ry11dw8PCTGZ++0D9qbqNzi\ngmS9vPFb72ZcWP73P34v8CTwjxC05Soyed4L1Olrb0tfv8zXkrxiPKW0BVmS+BmbkdmM+eJsvReX\nsFDD0Pcsly3GCmp3eHQoSEspRlGjPGOU5+SGZFudMdvaQhnFVx99jLrIODo6YjQaMZtuCpk2QAgy\nzdTV+GleFP+tn6AUTd/hghAIbZZR1TXLZsnO3k2KskJpueyPT47p2jl1WZCXBTFIcxuDExv2INPq\nqiI8Uovbk5I60xwuegb/Caos4/LGJaZ1yRDEWMMFmXpjkBVRYXKwAjcPIRK7JYPvuLFTsXlui7Is\nIAZikdMakYwabRj6Aa+drMeUZKg5N6CDREwsFsuEXnpilKiEtl2uOQAmiDllXhSYzGKAgSTZ1hrv\nAyoKMhmUyMQVKgkADNoI3yYqJAdKG7zvE59NkByEF8zO8dFz1P8r2VvegEI4O51redO33Mmszvjl\nP30fz1z/7wBGSLbSzyFT54orcBWp/TNynVEUpTRY2lJWFcfHJ2TJobkqC6zVuKHDO4dVGWVmONi/\nwdA11GVOmWXU5Wo9EMhyCdit6xplLE8+eROAthM0czKZslycMDhHEaWBrkcTmu7Fq32AXFkunz+f\nUoiVxKIozaQeozNN0y/Xg0YIAcIgIgyM5HcFpImPjovTETdP9nm2INGrm7cBwh30KhKjI3qN8bLW\niZ0Dq4k6Mp8veeLxJ6nqEdvblkW2oB7VDM7jQyfxHN4LmhMjPgoyE5GMJ5V4az54+n5I6zElUQpB\nzmRxqIe2XWJyy9B32DxP77QoEEHTtg0xhrW3mMQsJAuGoNYZUiqFHxsryfbaiDvvyi8nhkBuCm7u\nH/Jr7/pDUeB9DZfo333ot3nZpUtcnExRiP3HW77lW3nnZz/zrJ/rLTTya7/+aqSRfxvrZj6+isXy\n81yalZx1DTH+FUVmmY22mY7HOBcYwgBB04QBF8WRPMsNw9BzbnMLFQYYloxspDaBosyxOjDOIkWu\nMDoyrm1SceWMJxOGFOexWPYEJ0h9VVcSb/M8zwtuZMqywEWFO1nQdx3kBb1zEpCWZSgkhvv69euc\nnp4y2xAi3nQyTWsUsbG3qdlRShRLIBMhMWKJ3HVhS5oH5zEqkriw4jqtZCWUFeKsOzhHEHoFrZMJ\nVaTTLTs7N7l0+RIXrKFpGibTKd575gtRwxir8M7R9wPW6JQngxC62pamaWSLrzVWG2KSqgqy5DF5\nTvCSAbKabL2TF0W4AbKPDT4mBGYlhVWJAKbIcwlUXLkMr3bj3qtbgXnb51DqM3x9CJ502lfOv5xq\nOhK31+hZnM35rzs7aLVBiF/g6RfA7wJ/jkis/81Tvn4P8Gso9UmUup8Yz7i6NSEGREbpei6dP0/b\nNckaHOqqxihRzCzmc7a2Nrh0/gLLZk7btkwnEzLVkCUOlNXCsh/VI6paTI+u7+xgi4JeOSaTGbPZ\njIODQ0IIbG1tpVWFYxj82ofoxXiyvKT3EGInLPzMEmJkvphTlgWBQJYZdvf2aNuGqk57++io6xwV\nBbERAmDK7Yoxccfk+1JKUeaWy7lFBYG1y8wmvkEQtVIMmCJf5zENXtY4PjryQjK+govsH+6zu3uT\nsshplWIynlAUxbpWYwiEKGtiawx+cJRlxdnRCfOzZUKRZIUmUHFPjD4195BrsNHTDx028Q2Cl8ZH\nK0NQEbGukcNZay17fi3+IyuDMJvluCDKkYjCB4cKWlSEiQ9wcXsr1eQzT/CXL7yMfCap80OvwBv+\nZv/56v8ebtX/ikPwA2h9SoxnXJqWZDbDDbJOq2Y5i6YROwcnQoHCGk5PjvFDx8ZsKmqLbokbBrY3\nZ+DkPCE4CA6bZUymM7ElaDtu3HwCazPKsqQoCqqq4uj4CDd0nDt3Dm2FgOpCcu5+EZ/NjQ2C9+zt\n79H1PVlWcu78Fk2z5LHHHwMVGY1q2rZFIenfRkkMjFl5xSghC9fPgb5/65VtxnUpQpAYpCHWIlmP\nyTfMe5Fhq6hRznN2tuCRhx8RlDERkIuioFksmcwmEn46DGsBRlEU0pAb8Vlq2w4fxGhyGBxN09C2\nLWVZrgmtVgvS1LYN6uyMjc0trDF0wafBN8VTIDYD3ouaTSkjd4e65XiuTQq1NAalBZ0MKcIEpVBK\n3uP3fuJTz4lEfvDBL/Jz3/VdoAJGK65tb/JPv//7+Y0PPR8a/9Svl8BHkAb/6Yhk2wxYFdkYV+R5\njvKK6XTK0Dt8Esb4EDBKPGV61xNRlEXGeFSxmB9T5eJKXFhLXRYy1FYao/2auL116RIozeHhEYvl\nkmFwFHlOmRTHwzAwOPe8NfqCG5mjNnXJ+YiNyRYbm1soFWkWp+zt7tD3DdtXLnN4fMKAZ9mdUVUl\n8+URRVkwmRUs5wORHnCEQRM1BKXXE35dlWtTuagj4Ilthy5Ba0sgEr3CoFE2w5gCVMR7w0IHciPm\nW8ZaFn3HAw8+SFmWzCYT5odHFAR0UTIMLQqJQ7VaMopUbnGD6OKNgUIb+q5Dp4vHeSeOvUasllXo\nwbXgK3SQZGzihNPTY3qlMaZA5wrrBZK3CiGsxV5MlXSGVxC1x+HocGKipzMKJ5Ck7z0/9N2v4/99\n7wd5tiTVt7zhtbSVJQTJ5rGZ5qBpnmNfutqLrp4Grf+al9x5hc3pLhe2X8G5Sc377/sAZTWhdT1b\nm1N6t6RpltjMoMlo+3RoBcdt1y5x7fJFhq4FF9kcjVnO52haRtMZs8lE5IghkNUlR2dnZMZwfmML\n5xy2Kjg9PWU4PKCuS/I8Z2Nzig/Q94Esr3HDi3eYz7sO7xTKZmyfv8B4NkajWC7m7B/s0XQdlyYz\nTk/mdF2P0lGstoeWMsuZTMYsl4ukWhPb7r7X5InEphIhduWjQ3KcHlwHXcBken1gmMGjrGTPhBgY\nojj9Kg8Wi48e1TQ8/tjjzCYzNjc2ODk+Ttbgmq7rbq1vEi9GohTiWtnnvCA00jyGdZp8dCFxzdJk\nG8IaOSyrkq7x8s5okaKGIORPowVm915iGPLcrocbIvTeoU1GjEBKrfdhQCvNj77xdbzj/X/Bs9X/\nD7/+VcTcoLS466rg2Jsv/hb1L8jmuY3P8D2vvYfNacWf3/dhIR7HyMbGBhFYNA0aJWdFdJLArOHC\npQtcvHAe3zdE1zCZTRj6Fq0C41HNbDwRxDaKmufk9IyirBhNZrJ+thbXd7RNQ1FkTKYjNs9tSVYV\ng0z0L14PD0CWWW7cvMHZYk5Z1eRlxsHhIcvFAu89dVUI0TsMtE1PDENCKwwxSq2t59EQ2B4XlGbG\nwbyjdx+nzDMuTy8yrgq6oReUXVlcWlMyBKIPFDZHJdWUw+P6hiEM+APPxtYms40ZfdsAgRhylksj\nCjlrJXvMB8nEU2KU2vfdehgYhiGZ6EnNKxXp+1aMUkGyhaQrp0hmq5KyDVErGYbT+xGDNPbGRKl3\nm5FlGSQvphBT5I53qKiIIQVfGoMyFmUUN4+eB4lvdsjGggwF52iHjje85Ham9Q/yy3/8XGjkw1/z\n9af6x9xCJDMytMnJ8xLnBkbVBB8iy2ZJnudoo5gUNSopTTWe3GRM6oKTwz36dklZZBTGUBcFdSmm\nkEp7qnpEURSMxmP2D445Pj7GGEPbCc92Y2ODs9NDlFEUWgtC+zzPC25kTs9OGY2nvPGNb6QajXn4\nkUd46KEHWZwd0yznFFbTNW06KFfGUKIm6ruesiooixK38qjQJIXE06XZJhVqSG6Rq7BKMnHkVSiG\nQdwavXYSSoWsdegdXsuuDjKu37hBVZZ80113UVUVy0VLkUnCrFklEYdAYTKGVtjxdV3TtS1L59dq\ni67r1isg78U/ZRU+GWMkakU0Cpvn5GUlB/0w4Jx0rDF4vPIJdkzeMkpUGyiF1pYsVyhjKYqKMh8T\nFQzBc9vVy/zSL/ws//Z3fhul3gXxHlASgvdLP/tT3HnpAoN3uOiIREymuLS18Rz70s8A/9NTfi2F\n+y/e9ovUFi5eucbv/N5/lIl/GJjNNiiKnMPDIxRiaa91oLAZTdNw9cplZqOatm1oF6cs53PMeMSo\nrhjXEyaTCUM/cHJ6xng85ubODsFHNjdnaG3o+iWLrqWsS+q6WLP/UYLwoQcUBvsi8h373jGdbfPt\nd38z49mEhx95iEe++iBd19B1DUYp+ralbZbEEETybA2l1vR9R13XVFWJW61mEyohqxtBZow1axI8\naYXknPxMcyPuoD4irtg+EE3AGplqVIS27zFKDm3rA3t7+zz80EOou+8mN5ZmsaCqR4Is5lK73nuK\nPMd7aUjquqJtFsQg6yBrC5pmnlbAEgCaGwmYjCmXyYdAVuZS49Fjh4Hg0gpCK7yPiTdD4uYInK+0\nAa3QymKNDCZlVWPzXJC4QXg/1y5s80s///f4t//ht1HqnRBfCeqzxHjG//JzP83VSxfxrk8XpkFh\nuLj9XPV/P3KI3/qa1vfz3a/+Nv7nf/j3ePv//QdEZYgBptMZmbUcHR8n9DiklYI4ml6+dIGqLBja\nhmZ5JheKHxjVJZNxzXg0omsk8kFWkS0BhW9a8qLi9PREVD0oqroisyuX8YhSQpQ22pJnLy7Zt+1b\nQgwUZUGMgibu7e2htaYoDYP3ZHqgLDNUdAxDQqEhZbIFVIrmCCk6oMwtVzYNUZJdsCoJQZIhniCQ\nGq3zFEC5arY9LZ4seXG5IMT1mzs32doUVLfrOjYSitQn+w+SVLjrOkEhnafIC5anc5aLNvHcHN4P\n6Q4Ka96ic164gVYygiTo1QiyGZLBpNLp3BL1ZUAGBZ24L7IrFdu+zGbiFxaC+K4k7y2VmqgYIxfP\nbaDUXz8zEqk+y4XtbyefisIteovpNa5TfHFv7znQyPcCP4NQCFbPCpF8C1qdEDnjFXdd4fDwAJNl\ntEtBcW2e0SwbMcUceoo8IzeG05MjvOvZ2JixNRvT9y0xera3NlAr5188RIfWhlE9ZjSuAcX+/hF7\n+/uMRiOMzRjZjDzPOTg8JISeejTG2Jz2BXiIveA35Cd/4ifYvnCRz3zuC/zFRz7K4dERWW6pS9kl\nj8qMbhCZbGYNXWLj/VYAACAASURBVNcTfMAltVCWZ2kqVGs+yEqStoL9IK1ynkIGVipPnbxUvFdB\nLvn070PEpsKDxKvQAa81SkUef+xxrDFcvnQJ7xwTqyRczwpXwBpDdHH95y7yHKUVVVVhtBJyXwhC\nnCwKGER6q1BkNsMUOTaRkbO8ksZEQd+2RDeskQjvIx4xxMLKwa2txWQ5VV1js4wszymrMdVoCkqx\nbBpO52f8d29+E9929x382Uc+zt7hIZe3Xs2Pvv51XN6sUHh0dMQUdBaBt7725dz70U/yzPvSU5T6\nv1B8EpTkcPzz//Fn2N6Y0nUNRVny+GOPE2OU7ng2Y2dnF51WZa7vKAsl5nzTCYSB/f1dopPi3piO\nmYzGRCSL5PDwWPhJxjIMnno0EpVbK6Tsc1vn2JqNOTs7pcgr5vMTQgzU45FMepmYKw7uxZOg/tiP\n/yRVNeVzn/8Cn/j0p9jf32WUmPaZkVBF73pCirLoh0EkhEHQvt5JvEBeFHKwKokDUEqM4kya0pRK\nxL8gU2DwENLlGZRwroYAGCXwO1EyTQAdkeBG5+lij1GKxx5/AlDccfvthP1DNrci1WgkU2OScxIS\nLyxKtEBRZPR9BmRr6fZapeZuTddZXpAXJabIMEWx9hoRXxeFG5woGqwQAKOYzoAWgzylNRjDeDRG\n5zkmL5htbpJXFSFEhrbh9GxO27T80Bu/i2+76w7e+5efZO/wiIub9/BD33kPV8+fwyd0SBlN0hby\n1td+B+/86LPxBU4Qbgw8tZF/y3e/Bu/g+o1dBh/Z3tpkPBpxsLdDrg1N2xBVICsyjFbkWY7rW46X\nc7RSaB0ZjyfUVUHXLnA+cHh8gh8cdVXTDgNWG0ajMaeLBSfHB9RVxdbWJqfHh9SjipPjIyKK4CNV\nVTH0Hh3Nml/xYj1bW5scHh5werCHzXK2ts4ntWYAlaHKnGHoybOc0ahmsRDuVYwO7wKDihijSCSC\nFJmReJfOp/WKox9afJSasVozAGZwkBx4UcJL0RGCFksD71bnzAHXr19nMhrjo+P48BjSf7HvBPEg\nxjVfyxqDC0JvyDJLiCXDcCZrUEUyhExSjYQ+huASyphUvEZDrOiXgS6067tLuI+Sum20WG6s1ltG\npYYmff8uBrTNCYgDMYnw+mNvfB3/6X0f5hmRyHjGj3z3a4i5JTqIBrTJMZlidzH/W6uXFK9ia+Oz\nvP5VL+P1r3w57/rP7wFSaKe1gurO53gnwbeZNQTf03QD1irOnzvPpUsXwXUcHizZmI7xQ0/w4g+z\nMZ1RF6VYSGQZy2VDRKFtzsbWdvpsrHAjY5TwyGrEZDZFKQM8v4/SC25kvPf8/u//Pjf3DsQSOjUg\nRZ7jXc/tt9/G6ckJZv8kJeAKv0FHJFLACblKUpGN2E+vZNmpMYjJ9EiKR5qcsihkkk1/+RCTC6Mk\nWvsY6JxIvLIYkjmZQqdcmaXrePLJ61hjKUvJCQne07c9zjsyY/FGTPKa5UIca7XBab0mfK0arRCC\noB/BJaWOXCTRaIboybKCelzj3SCkx174NArSS2MwmTQ9VT2iHEkAX15UZHkmkFs1QhclxlpGXUe1\nGNM1LZsbm3z73d9E1zS4psP1Ha4/S+GNEaPSZRc8l8+N+ec//QP82h/+Nop3stqLRs74+R98E4th\nYPdolwvnv4Mff/ObGDT83n/+M3YPDtne3GD34IRRXZMXBbs7u3gnjVLftmxublBZSz+0GK1p56ey\n69w+R2417bJhb3+HIi/kdo0S+RC14myxYGM2w/lAVY84t32BPM84Pj5K6jHF6dmc8ahe18RKMq9e\nRHy9bXv+7L1/xMHBoTi6eo/VBg1kWnHHtass5h0He8eEKAe1HyI9jj5GsmlO5x1VUSRfCpGA+sT0\nF+v0lQtpIMgch9EG5wYhxBqTfFaSSy/giXRuIFsZTSrE8ZcAWtN1A08+cZ0sy7njtmsJHQzyPsW4\n9nHyLq2EovA6JE09MrheCLpGpNPBBxicNCSASTyXbnCUZZ7IzZ7QdtKwRVLHFFihj8ZaRtMpRVlS\n1jWj6ZSoNDovKKqavBRL+L7rKcZz+q5nOZ8zmc6489olfNcSXE+7XBLjgIoBgsOljJcYIxc3x/yT\nn3ozv/nur6n/eJbOmO9JyI4gm7/4cz/B1QsX2N8/5ODwhLIcobVhb3dP1GbBkxtFVZRoBZlVqUFz\naBTTyZSizDg7O2WxXFAWGYOT4E0FDPM51lgmo5qmE4QuAmVVsnewT5VbnOskV2k8o2s7cltAUBAV\nVr14ij2AG9efTPy4HlvkzE9PpC6jou+FMxYVDMmIsa4TRcCzVmjK8BrWq0ydeIlBJ1O9GEVlpER+\nHxG7jsF5oo9g5V3LrZBovfOE0Ej0SxCl0+OPPcGoqtnY2KDMHV1dYa2gdAa1bh7yTPgX2mgm4xF9\n29C4lBFkLIPrcINf+ynZJCaBNMx5jwmBPLPYmBOCI3MDYRCV5fpe8wFFEBm2kXWqIJFaVknWYJVE\nmZR1jbFZQjw67rx65SlI5NOR+H/xsz/FbVcuSVQCkeiE/qBsxsXnROOfWb2k9F/zhtd8Gz//0z/C\nl7/6KE3bQ7JM2NraolkuJHpAa4l9cPLeub7lyuVLjOuKvlnSLucQA13bUGSG6WSDyXiE1YbFfC6+\nMpnYWGQpvsBkOYvlcq1YrKqSPLOJYiKZTFo9f5vyghuZD33wQ1hrGU8m0pQ89fCNkaqqefjhh7E2\nX2e2eCfNh0B2jiEdiNZYqqLAezHWC8EzuKeqiqR7V4kkJS+BkngiBWdtx83ThnZwVLnljnMTxokA\nnKVsi+gH2qZhNtvg8PgIYwzntrcJLrC7v4M2mul4gioL2kaQk2I0Ynl2JsGSVsK/skxeqJVRWJZl\nQszSojop65ILly5KmJpSHOzsocyccjQhZoNcEEpTmAzyDGsMJrPMNjYZjycobWm7jm7wFFGm1IFA\nRCD7zeocOsDybM5pfsTZ0TELF4jekZkcrZVYag89g5PJWqnIm15+N3dd2OS++7/E/ukTXN56CW99\n7Su4fG6LqDWd89jRiI987kv82n94J0pNiVFkdjGeceeFTXzf47peJiHvubB9TvxQwkBlLZpAORkz\nGlXMT065eXqCAqpKjJKGGBilULdMGe68+87kjtlyfDbn6OiI2XRK1/aMRmNu3Lgpcr16JImoeU6M\nS5QyL2rezAc/+AEgp8hLuqGlLEcCA4co6xZruXm6K5Necvld8V2stewfHjIZj3CZJTdpjZQbhm5Y\nKyNMtkqHTiu1IFo5OUAVBMlPCgROFgM3Ts9oe8eotNyxNWFrJDb+PkAwhsxYMJHFcsn1J29wbmOD\njdmMg6MjskJUV1VVSTaN1oxGI5r5EUrLz885R4jZ2rFVHIkLcTROqpKsKLh67RqmyAnBc7i/j7YZ\nOk85RIM0oNbmGJujM+F+jWdTxpMZOrO0XY8jMKpHZGVJNJreOXRRMqsqvHOMllPmp8ec6MDyVPyj\niiIjt9B3jhh63NDj0tAfQuCN334Xd13c5MOff4CDs+uc33wJb37Vy4lRcd9n/ob9sz2uXn41P/Dd\nr2HoW37/j/6cBx99gp3jBRfOX6TrBnEqRw7TMs8EKTAQ/ICKilFVUxQly/mcnd0TaU7KFBGhoCzE\nLHM23eTa1Su4bsmiaVksFhwcHTGeyCW6Ndtmb3cHP8jKO89zyrKiaWSFYbMXW349yBQeMqqy5OT4\nCKsMUauU8h5xHoyOdIMMcZLZFUBFsRmIfh0kChIZYBJHixQ465wY2AXvk8+SqGFQsp6IRoFRmIAY\njkaJ2ui6nsxYTvoTHnjgQb7p7rvZ2tri8OCAjY0NcgqUjqwx3RiTuEORaUWWGYzRVKUE1rbdch0U\nrJRex9YooKgqyRDMM0yeyTmgRMiilCD7WmmstqwiE5TWKQ1aqBMk3sfm5iZeKbKiYmNrC50sC4au\nZX425yff8n28/Fu+iT/58F+ye3DE5e1X8mOvfw2XtqaihpQ2RkwCM0t0nre+9hW886Of5m+jXorx\nlO//rldiTc7Nm3ssmo6oCy5cuIR3A33bUdqM5XKO1QqbG4yGoiqI3nFydJSyrAJVWTCdjNMqSdM0\nLX3foaKiLEq6waGtFXL7ySnL5ZKqrvj/iHuzH1uz87zvt8Zv2ENN55w+PbJJi5Qo0yQlxYkQRbZh\nw3YuDNtAACUIkFwERq78z8TOVRAwFzKSALIQxzYCGFYgK7BBQxIl0hJlUxzU8zmn6tSpql17f9Oa\ncvGuqiYhNrsvlPQGGmiQjTPsWt+33uF5fs9qvSIuM/2qY3dzXYGK0DQty/Lxrr1PXMjEO+893Bcf\n1ojC2jsvVW5MUsCkBLnGmIfl3q1EqdlCWhPCgrXCsrgTWglbRVfBlblfLznnZE0VI+e3A3/87Abx\n1ktOx/fP3+Pn3nyJL77+ElYbUgzEnGok+C3eOa5ubvj+97+PcQ7nLJt2LbZJs8IZQwwLtmaEbLdb\n5mFknmf2+1vBZYdA1/cc98fsD3uMszjv2G63PHrpEZvNht31tQgVS6H1Htd0GDfhrUc5K2wE73HO\ns15v2G6PyAXaJFW70tSAMnFk3U29tFKYxrE9OcZruaTGgyVMC8PhwDROLMv0ofMqRbxzPH6w4Vf+\nylcwtLRtT4wS+GfblqIU7zx5xv/wq7/Oj4Ts1cP91vnX+OyjE3Fo+I6SBPUtAbaRtl9xdnZKConr\nm2uurq8xWnO82UqXnyLGNaAd2mjW22Ourna8uHzBer3m+fMryf5Z5IU2TQvzvNC2wnAYDhOb9fEP\nrRk/vYmMyTNzClI0hoWUEwXhGjWmYdutSKGuKa1BpYx1DjJCxTWeeYpYE3GtJywR3xicF/R5yhGV\nQOz58vO+Y2HYu118Em3BB7s933l6/SPn/7tP3+MXf+pVfubVR8yz7KjJilwEHX59s+MHb7+Ndpa+\n7+h0g8oRQ8Y6AVihCtq5SuQ0DIcDeUmkRUb7vm0wRjMvA9Y3FGfoT9acPnpQtQa3XC/PKCHSWItv\naliicZXe67G+wTcNfrOm36zRSuNDwlixn5o7HUQpxDCDkXeGNY71agsp46xhOjiG/Y44DSxzIE4L\nOYi+oZRS7ayKx6cbfuUv/wLeN7LiiAXbtPxXf/2X0U3H+uSEf/Gvv84//Ee1kM9foXDFi7ff4cF2\ny3Hf0DiDCIsCmoIphk2/5uhoy7zM3Nxec7u/xSnNar3COktIAW0NkYLvOtabFZcvLjnsr3BNx/Or\nG2JMNMtCYy3jMDKOkdVqjUIKXG8NjbXoku8GYJ/axxsDJNr1ildfeZlx/ycsWiz/Qm/NhAKJLKTz\nJBdaq0WgLmt/mbDf6SHvpq1iR5UJpFOqaj5qoCiVw2X0vYV6iQmrP5xk5iyTSU2mKMXV9Y733vuA\nguLVxy9VSF/NPSvl/h66I4bbkgDRauYsVuy7zLSmadBaM+0PqFwqE0Zs8cpalpRF19WIFpRFVsel\n5iCllMk1eiOXQtu2dH1P07Y0XUe/2RJyoek7mm6Fb1sR5I8TzWpPWAKr7RFf+NxnmYc9YZ5QKTKP\nQ83mA3KqhbVMgh6fHfH3/+5f5X/8J396Gv/XfuFL/N/f+HWU+pc/MpH8+//N3+HVBw/IRXF+fklM\ncHR0JOHIN9dYBWEaaJ2RKZRWWCsC57QsKBRHmw1N65mXiZvbXZ1cimBe19X0fppxWnF2dkbKhX61\nAqVYrXqG4YDTEOPC/nDLZnNMCokUEnwCVcEnLmROTo55fnktZN95lheelkTprmvZbLf4tmG/z5Rc\ndSJLoG0a5kkETOMgSanbzYaSF0AOi4Do5j/1e37IzJPpzxQif/zsBvh7f8pb//tvfY3XH56ybpCx\ntHfVsicV87wE3nv/A5Zl4Rd/8Rfpu04KgFl2+ss0odqGxkti9224YXezY5pmNtttxdFbYop0fUcu\nhZOTE5wRncT777zLH/3Rt9nd7Gms4+zBI8GNX93Qr1Z0mw3DsuCc5/j4ROiY2mCVxte0VrG2FaKu\ne/8aCib21oS1hna7RllD2zdcX07sx4k5BlJI95CqUpK4wbRCFXG3LMtSHTGSO6WV5rd+7w8+0uIH\nv8b1fuCVs2OMsVJVk3HecnZ2BiiePbvg+vpKxGBOwhKz0pUv42SClgtaK+YQeX5xgVKKE99wfHrK\nMs3ElIgh0HgvnYwT22uyiaZpaZsOpcynimk/PTnmg/NLplkErqUUsjIiAM2Z7XaLM1ZAXUX+vilG\nGu9Y0kyM0pGCjKNLSZgkhM87UW/OWcLl6kpV13VCyalakWEMge88vebHnf9/+z1JiW80IjyvTUZI\nEa0073/whJQTX/nyl+m6lmk8SI6NUjIx817gdUoxjlPNCkpsNhtx7FQIpHEWjGa1WWOtrL521zf8\n+3/3B4y3e4wqvPz5n0Jbw+3tQNP1dP2KoRapm+0RuvGYiri3XnQPUMnZPwQ2C2FBoe+p0av1WtaX\njQMN+2kUJk7KlHhnaZdfICf53nISsGJOGZRQhaUkgffPn/MP/9GPL+Sf777GcXeGqd+9hBYajrdH\nUArPLi7Y73f4rkFpReO8FLIo1hvRuBmj8cYyLYEXF+doFTlbbVmtxRasdWEeB6Ed+xZz59wqEvvh\nnanurk/Xfq2Qn43vfBXKim7KGQkvJRcp2K3lZrej6xpctjit7y/csMyUVMNSlarC1lKLGlC5kCsk\nFIBqtwZJnldA0fI8pFRwujrokIBe5eRxVBbOLy7wvuHxwwdM08x4fY1rGnzj7zEEIDC88XAt9mdn\nyFko2LJNyLJRyIq+lRVN0pYYBWR39vil2lsVbm6ua2xAptGKkgqq1CgaDK5tSFk0h+ujY9q+IwPD\nPFd9WIttGnINrmw3W9xqRY6R8XBg3O+5uVQcciJmmfJ6J2c8lUCOAt28o+r+8pf+HH/u8Qm/+c3v\n8Hz3Ho/Pfoq/+gtf4vHpKX/3l/4iv/F73+Zid8ErL/88f/2X/iI5Lfxv//w3efbimidPntL2a5xr\n2e/3kDOxJLxWeO+wRjICcwpQC7mu7UkhcPH8uSAdnKZtfIVp1saswOPHL3O8WTEMA6oUpmHiMAzi\nvpwPvPL4IS8uz0khYGrUTdO0jOPHh6Z+4kJmtVrz/pNzGX07d++o0MgUxRpL4zze1+lF27IsExpN\n1/fEEPCNINBvb29Zef1D6xqPr4WHVvp+B68N2Hp/FVN458UtPymn4zvvPeNLbzyucLzEojQ5iD1V\nK8UwTTx79oxvfetbvPGZ12mcZxpHtuse5yyrruf29pZxXjDacHp2yma7QWnNxcW5QPMUMhIswiuY\nhgMfvPsOf/KDt7i92fHa62/w4MEDHj16iZwLpmklFdx5tus1fbeireGbIUZcTca+6zxy7UiM0QJJ\nKjISVVoTYiTlSDEat+rYcMocEylEgp6gOlqyQG8kkl4rKOZea2KdQ2tDKoXnV7ufYPH7KjH/W5wx\n5LjQN56HZ2es+pbd4ZaL8wsAjk5OaXyDMZa+73Hek1JkGCfmUSzHKNDDxDjNbNYblhg5DKO8EFH0\nXtaCd24yKdqEsVGKXPSN7/i0Pk3bklIRiJb6UB8CBec7nGvRxtbk6wp7q11o23WEZUEVKUx2u1sJ\nR0sRA7Rtew9zVHA/br9jDiltKEno1U8vP+b8f3DOlz/zEhmxNKuUcdoSsjgH333/A5yzHA6v4a1h\nvZ7YrFe0Xct61bHb7wkh0DQN3jkJQLWG/TCwzAuu8axWLUlB51vyHLh8es4ff/e7jMPA66++xsNH\nD3j88ktM04JqbzDe46zHrjb0qzVd17ME0bRoJVlFH0YgBFKWy00jo/iMkD1ziqQCyjqabs1Wa/I4\nsSyRaGaKkUDMXATMJ/RkKNbViZ40CyklipZu8Tf+n6/XleqPL+R340i38jhnefmVV3FWMpR2NztK\nyTTditWqo20bVhU3n0rhanct+HtrufNSxQSrvmWOCYpmvx9onWbb9VhrOQwDyogZou062q6VOUMu\n2E/Zf120wWBZ9ytsgRwj1nqy0pLH1TTkMBNiwmrLPAWscWgvqdfGKqx3pEUiC8hCuKXUNWpRUtxr\ng8FUa7KYOorKTHPi2W5gDpG+sbx5tuF0tca3nazVgSUnjFIQRJD7/gdPODpa8/jx43tul/JG8vqc\nF52LcSht6FcNbdszjyM5JKYggYcF6DdrcpwlF6ltKN6yfXDM41dfxjvHchhJh4lFWYwruNWaeVqg\nRhRYJ5NIbR1N19EdbVn1QvzulUFbcx8sHGsMyJKnqqkxtE2HUZqcBMw3D0a0KHEhhUhcAnkJ5BgJ\naZQC2lken275lb/88xhjJcU7ZsbDgQfbNf/lX/tldNOwOj7mX379d/gHv/qP76UFpbwH7Hg4B9ZN\nS9d6rEpAwOiC06BzZtX2vPTSI0JcuLy+4urqClUKx0dHWG+Zw0xSgmowSnN8tAHgxdUlh+FAVoZn\nF8/pux49j6x8wziM7A8TfbdCFU1cImataD+Ba++T2693O9quY7i+qda0D2Oack6M48jt7S3KrHHO\nobWmX62xwDAcqtWzQSmxwcUk1k01DLStrKGolN0fhp+VenkoFGNIwC/wUTkdt+PvCYzJOnIKNfdF\nugVnxeY5zzPvvP023jtee/VVwrKg9ZqSyz0Iz1pbraNi19NG0/cr+r6XrJtlAa3EU09LGCfeeP0N\n2s+39BuZ3sScmZeAX61Q2sgorVvR9j3lDt2tFMoY0fSFglYWhSSIKl1qp1pqLSJpqto7lHMycjaB\noyDE2MOLK+Y0YE1BYZFrNFNUYYqSx3N3YcQUUcby6PSYnwQba5xDK83x0bHERJB49vQD9tPC8ckJ\nfb/mMA6knGV8j+b2WjKopnkGJF1WK9FgbLZbXnnlFXJMnJ9fEGOgaVqcd5Qslv2cReC3Xq9ZrVbc\nIc8/TSDe7naPcZ4yfmgrJosWMwSBck3zIhPQUrBWyTqu5KrQlwLdOUtOCyFEKIppWiAXrLN4K9+1\n1pLvItbsLOAvDabqmn7S+R+W3weEWkopYgsP0s0Yo5mWhbfffQ/nLK+98riSWgtxWdjfXDNNi+Sm\noCqRNUNS4krcrIg5MYwj2li8DYxlj9OOz33mTfr1Slx43vJiP8h4fr2Rs58KXbfC+1ZYHGiMEWFj\nyqU+9wZ0okRZAagsAMqSC0VVKrG1YDXZGjpj4OyUAuyurpjTAde0InRWYKoQMkbRQ6QM2jlKChhr\n0RqenF9UXdhHFfK/w0uPHuKdIyyRZ+fPWUJktV6xWkkXSgxoNOO0MC57DsPItMg7Iyx7jNIcrdZ4\n13J8coy2DU+fvSU/H21k6hoE+phSYZwklkBw92JbvxOaflofZQylhvSu+xWN94yhiNPGWjnzVaCd\nKJAT4zjR+rU4eGISyrQ1Vf6Yq71cVg8KUFXQKZlNMjFTCp7cHPjO06sfWaV+71ldpa56YpJpp7MW\nbZwUA7mgWfjeD/6EmDM/89NfoGtE5hBmAdQtNRBVW4d1jsO0Z78/cLg9VCSGQluRDyxErDIoZ9CN\nTF4phdubG9753g+4ePKMedzzxqsv0/QrsDPaOvrVmhALKM1ms8X3HbaT6QvGYnRNEFeKHGN1ZknS\ndwpCRxYSvmO7PaJ1lnlsubm27C8vGKeZtATiEitBPEk6eU71+1PVORyqhVwcg1lrMor3z5/zD371\nH//YieTF9dfoziStO4cFdCBFsL5ls9nSNi1XV9dcvnhO1gXtDJ1x0pwa6LpewmCB1jc13X3i2dN3\n2Rxt8G3D0fEJ43Cg8w3TOJJzxGiPb7p7e3vXNvfZYz/p84kLmfV6zeXVNfMysz06ZpoXcQ6lRNdv\nWK36mhDthShas3kenBzxx3/83XsHUMmZvm9Zhl3N1InM84TWqmKuP/Sn5FJwNTMGoG8davfjFdmK\nb9I3Ml8M1ckRlgXvTGXXRKw2WC1QpO9997vklHhwekqKYlc9OTmWP880iRBXSapp07Q0Xoos13j2\n+z1N2zIOIy+9/HLde3ZyiOqodFoE3SxsDNEPKaOZlhmr5eFRaBEELoGZas8rhlIkbgCtxIkh94q8\nNGpxNS9Rwrn6Hn2m8EVx0BaiwKhCmJlT+tA1VGqAZ7WD+87xl37+S/wfv/l1PkoYdrw6ZbVaoYzi\n8vISQ2a7XtEfn3I4HHhy/oxpWiQgbA70fc8wzizLwrQspGWoLJoj+n4NKG6ud+SUOQxjValXAWAu\n9zEW4zgyDAfGYWZZEqtef6ov8832mPMrsdR67+uLV1NyZH20Znt8LIRo19C0DfM8sVn3nBwf8b3v\n/0BEwVoTU8YZR4ozGkXSkaWO17UVAeTdOtVUcWBO6Z7k2zWWn5SS3XlLiAnvDSVmYilYpZiWScJL\nnWMOgbfffY+cMo8fnZFiwDlL3/WErICF1jf3HaHShpOTU+H6yDUlQs5p4uHZQ05OTlhywncdWLkk\nUpAVads2ONsgiR4SKGmMTJkkUFWYFLniuWWiIaRSp8UlaLwjZtGKlZwJ8ywIeQR3cHx6Jpoq6wjz\nXF/okaIEmWCNRnlDzIlci2FrLSklTrdrFN/8CIfHN1m3DbkULq+uAUW/WtMbQwiB88sXhHGi947g\nG0zjWUIiJBgmcVnmlFi1Hd16jUH+95gXDsNE6211jnlSDMxzJMTMOI6M08SyhKoBKffMq0/ro7Uj\nqUDXr2laCRJtjWbOwjVKKWGcwTeeuASxPC8LN7s9bWOxVpNtom0aiYapcTB3zYlSqk6Oa0ZXnR4P\nIfCdp1d81Cr1uG9Yte4++TjmBCljnGGJgecvroAiYMLtuhpBBPBnUDSNYAbCNN8TgVln+vWa3e2O\n/TCQDpmubzDWYLuObrUmLYHzD57wR9/+Ns+ePuO1V1/l7OXHvPaFz5NTYbe7BW1YrTfClHKe7dGJ\nSChilPeA86IHzUnyzVKArKpOFO70QXcuQrErO3y7ot8miIFpnNFKSeGV7T1z7c6cgpJYnFzfP8Iv\nEzu50YrfGe0yZwAAIABJREFU+PpH04Ph1xiWhZOVIxdFUYYHZw/puxVxWTi/fME0D0Bh1fWCLHGe\n7dGR3Fvesz/csoTAvLvlOl7TNS0oQ9d2FC2sJmc94zhyslkLLZkAtYBbYqxcqT9DIF5zsmV+p2B9\nyzxJF+K1J5ciTIVSWGLAxsBUIiotbH1hOVyy9oVn13v642OmJbMbE71riSXLBdC0hBQpCnxFm5sq\nCrNaKv5SCm+eHvHW+Tt8FOXz9dPXSSFiqn0vkVDOQ9ZM08BSFJ3bcr1AqzTvn7/AtT1ow3bdM44j\n3hlKjozTiHMNq80R+8NBuA5BErGtb/G+QxtJrJ3iQlwUXbfCIlVsg8eh8bqBKAbAvNRI+c7i7zgE\n6EpzLOSiUN6jrfrRh5wPk7tTKrJrDgVHTzKO5mSNNp5gDYfbW/a3O4oquLaRjnZc0EmBtmSlmEOg\nLDOvPDjiv/8v/ib/06+LMKzwFUr5feCWV4961t6R0sIcIfuOpBTv3AyYuL/3/JdSaFqL9R1FWcbl\nlhcvroRDs16z2bZ0Tct6e8rhcMvzqxushmkeODragko4J3qqUhI5yhSi0R0WzeMHD5iGkdPN6pMe\n1T/zz3Z7TIjvSKFaoKSEbuVn5L1jmie5gKuoUJHpu5Z5HOnblsvDNU3bgy4M00TfCqNlnBe0aVhi\nIJVM2zQ/Ioi0d4WxkunIq2db3r54j590/qngRgq03qNykQwZqHoYTd4PPL24oO1aQLHuW7xvqxZJ\nuDJt22Kdvc8BSzkRs6wOWt+Cl2nJsD9gmnrOYsL6O6YMWC3RJUZrKaxSxrYG461gC5RCW0MK+R6S\nZ12D1rJ60Fqw8wRJ6M653NOBjTaopmPVtCht5blQmvFwe39RxHpplDrNyTXsMS4LmMJf+uqX+Kc/\noZB/sH2Zoa4JUsq8uN6xxMgcZJRvlXSbyjlihpv9wG5/IJXMerVmvW5YtUIwvb25Zt4vxCQTou2q\nry2b4CdynTxmGWhIzlK/Aiq/6lP8SKKGYpoj4yiMJG0NmkLXtzirRUybC9kaeX6dJYaZsEDJmqFO\nXqyxFWxa7gW7IBocpe/s2gWlDc+e3/CTVqnfP3/BV998mZwlKscaA6mgWKQptJrnV1f84R/9EZ//\n3GdlvVEKx8dHNI1Hl8xhnOv0Q9FWS/DdVLSvfK+iZINgYmYZJgZzS+4yjx4+4vU33mC73dCv1+hG\n4j8aJc6siKZZbWjbDuebCoYUPgvWVB2kBA4bo4i1ablzdqWc0c6SliDyAisMo14rTEos08yw30vR\nkjJei2NXaVUNCfo+BDZn0FZ0Z3gBbD57fvkTpQUh/TbeGtr+iL7r8G3L1c0N4zBiG8/D0xOZJJHp\n73L3YmIcZ66fPBNpQ81v88YQMzjXYl3HFBL7wwAls/JWtHAhit0+Q7GK9XrDerXm+sXNx57RT86R\niYHdbsdmc8y4HyQjxHtyLqy6jmdPnuCdp1+vud1d0RiNcY4n7z3j+OSE671kuPSrLbvdXsi/jTAq\ndrc7NuuVQLkUaK8rg0EC7e5se+uu4UuvnvGH738NheRJqKrI/guvnrLyjrsEzTnINMZZJ1HuMckI\ncRhpvCcGuLq6ou88Tr9E4ypfZh452q7RpiHpxO3tLSnJqmO/39eR493eHckXsZq26SodMuFyizFe\nIHJZ2DalrpKc95V/k+Shy6CtwbViV4d8b0O/e8jvfq9UJxalSG6PsxYTDaUkutWah1qC5/Y3K54+\n+YBhnGmbBuMb0brcZ/ZI0JhF859+6ad549EpX//293jryXu889ae03XP2fERCs04zYSUCVEepmGY\nMCGga5W83W7vbbzPX7xgHAfGceb09JiTo+P7jm0YR3a7HSdHW+bhcD9hSXUcethL+rjzHhPlAS65\n0DTNfcL0p/XZHw7My4IxVtghpdB4K1qwVV8pp4qubxmmSSidJXPY7TjebBiGiXkJNF0Hy8wwTqz7\nlpQC0zzL5NFaYSxVhb9gByTtWheIObP2ji+9/oA/fPdPn/+vvn7GqqamhyXQ+YaubRkPg4hekUZD\nocB7Ll5cV8G5xlpHurklzAubzUYyVYKku8/zzIMHD1hCkF+378TiXDJLWNDZszINJSXCIi9mrWv0\nAlr+2/QhuiCmhKt8lSUsNK0Hre5DQXUlepu70RRyud1xRYyWwh9A91viMmN84tErr7FMI1cvnnPx\n9AnjkvDO4RtVL0lN1lFSkGNAl8LjozX/3d/6K3ztn/8vwK9Type5y6F58+GGFAOXw0QpAsDb3e7J\nqWCsQWPYbLesN2uGw479OLMfJ5aYWK03tP0KbWB3uKVfecZlpG875jhhnBWhdJhx9ojD7S3KKNqu\nRYnfm5hEVHpzs/uhGfWn8xEInBRUqRTmJbDu1+QkIvW+71j1p7z33gdAkdV6yvi2I8wjUHBGMw8T\nxbt7NpFSpU4IuBdpQ4U8Fpg+ZpU6Lr9PiBFjFEXVYgglnXwp5GIwRnF1s+P9J09RWhoEX7ko8zih\njJepidLEUpinhUUpmqaTAlIrYgmSGq8tcZrpThybXng1tvFgNTElwjSTkqzZjbbkDNbKdPOuoLZW\nTA3iABQKvnGWHBIqZ0mMLxJhcKe3087SekeOkRQFfdD0K47PHqAr3yzOMzVpl5ikqLwrDDWmEjPl\nPSB07sTZdvMTpQWdtxxtN5SS2e32xJtbnPesT05QSoCt8zDgjSZMAdt4prAQQmKpBfsyzRitOdps\naZzi7Owhvl1xfXjOOM10jRfns284HPaieUuZ+XbPo4ePiDW4+eM+n7iQefbkGZSEoeCdIcUFjXR+\nZ6ennD/7oL6sLEYJK6Nk2aMuS+DRw4e8uLnl5uqa7fExYR/IKdG2bY0xmFFFtCFicXMYp4SMWEdl\nSik++9IZDzY971zuGJdv0DnH6yevsWqtuAtyQVuF8w1H2zXTODGOA8YavLfk7LkZRt55ccN+mjn+\nwXv8xc9/hq9+8fM8fHDCOE7iEJkC3jf38QSH2z0pRkmDjolllByOpveyJkhiVfVNi/bi2ipASSJA\nlLWU7HGXECR8rWnQWgS51jqMK+SYyDFUPo+sGkp1LeWaE9I4TzEWXTS+UZIIvhU1eUmBMC88evwy\nT95/l5ubG4GYKSGGKmOwFExNaVUp8XCz5b/9z/8qf/D+Bf/sn8nabJpmDodbUDKWL0VhmwZjLb3r\npCDLiaZdEWNhv5+IMdO1a5aQSUVzc7sjLAtd27IOvSQvp8RhGEQAbcRF0rYNCVnb3DnY5nkiUzg9\nOeXZs2dc3Vx/0qP6Z/55en5OCBHfepS1qJxRuuCdZXu04uryBUWBdRamIs+A1sRFOCBH6w03+5Hh\nMLLabJkOt8wx0nUNKUwsUYq0YRjomgYNNM5DXcUWBU5pioU3Hhxz3Da8f33LtHxDOEonr7BunAjv\nAVc5DfM8M00TzpiaVyIi+Kth4QfnL/hX/+FdHh5v+Bv/0Zf54uc+Q5rFzSEdnDxvIQSGYWAcR7q2\nI8fCXBaSKtjcsq45NmWOFc6o7zHzpUhcQ9v1NW/JyNpxGuj6XhKAlUwKvfU1ZFXcRyXf6duEKyIv\nM1k1K31X6BW8azg+PcNpxTKPvPHmZ7g4f8YH770nmPUk+TZLjFWnJBNTbSzzHPilL/4UX/npz/G/\n/8bX+YPv/A6rruWofYDOC4dpJuJYlkAsMgZ3ncfWCA1jLPtx5HacSangm7aulRT7YaDkhcZqchGR\nfiqiw5NVb5apQBVEdm1HKZIUPVf42OnpKc8vLtnf3n46B/+HPsIaWtfA1FyddQqt4WgtupnOe26X\nobrZkhQI2lLIjPNM21gM8vwUVdEC5Y5ofRdhIMVILoW+cXwU3E3xTVpXNSZa+E25iCswh8g0z1hn\naZQnh8iT8wtx/5VCWBYJN1yvsL4QQ6RoQ9M09KuVRBD8UJp3DAlr5D3vjKNvOpwRw4QI86XwSSmj\nVcFqh7OOUiQ4Msyid+n7XujuVbxua2EvbiuHqegRUzVqpsbppPr+jzGJszUlctG0/QrrPFoZDrsd\nyzxKYa88xkEKwpmxTtXmua6cEMTBX/qFv8A/+c1/w0dNJB9tH1auzoK2Hp0SIRcOuz0hRpZxhBTp\nmxa/9jK5LIHDNHN7OEiUj7H4RqjdrXNc3ezY7ffsh5GwRDZdJwaPnKomSLYOS4iiO8yZrus/9nx+\n4kLmxeUl69WKEGaMVeSYsRY+87nP4qy4esiFBycnkBZ0ERgX1JdozpwenxBTFoGPc5QiO/emaYQc\nuwRQRQqhppF8mrn+4LIgnK0xbLqWn33VC/HxrnG7W5QqcX4459gfDizzhEJWAPO88O7Vnt9560kV\nj/0c77z4Ft967xv8zcsr/vYv/ycS2R4DrV2wdqKvyPT97cA0T5ClO7Ta0rWre9fFNE6UAtY6cgw1\nv8biXCNUYCPiMdl4ZhLgxAfNEpeawVRHg9TiJcsLo+RCSlEOtxYqZilArjkeqsgoMWZySLRdw+tv\nvsl6s+X5xTkvLs65vrkmLFU4rUWvUErCKolN8NaRo6R5x5QZ5lkEmErycnIu2CI/m2WJKGWwzjLN\nQdZMSlFQzEHQ+zlBKIt0FEpXx5QVB05K9/ooY0wNDTRkxJYZU+JwGBjnibbphKj8KU5kXrx4IQ+T\n1sQijjLnDI8ePKBtPM8vn6OU4tGjR1XYm5nmkRgCbd/jneXsrCNfvmCZRpq2IQYp/Jz3kIUWqpUi\nWStnvxbM8U5DgiDPFXDUd2xaL6JJRNQrBjV1D1RbloWl5spQEOG7KvzJ5TXfePuinv+v8Nbzb/E7\n3/u/+K//yn/ML//sZ6Vg6XvRBFiHKkWKYe7Et4j1unUiIJ4ntDFoJWcoVV6HUgpv5IxoI0GQaIWy\nWtgQSsjFc5BuOAEpSkeZU8GUfK/Bu1thaqWxVtVVMxStMFp0JGMUt0rbtLz0yqusNxuePX3K7uKS\nq5tr+TNpjVWalDMFiYGw1vDK0TH/2Ve/xOXltWg4pgPkSNGWKQvASxlDjkEAkUYuvRQTu2EvURE1\n4dlYuZyXJWC0FOfTPIt+JMZ70JpoReR70HUlIs94YX+7ZxxHGufvV3uf5sdajc6KXDJXVy8EmWEN\n4zDReCO4iptrtus1+8NBphJtx363w1tovCGGyKIj3memKOnS1thqmb+Lt844bUQTGCKvnG546/wn\nrFJPXgWgpExImbbGmUwhyCQlJajW/XFaOH9+KWdbm1pEFJbDACi0EltzocjPy3v52Q2D5AC1fc3Y\n0xyGgSVHurWsqsR9qdHKYir6oFquatZUQSnZG6pafBXAeEeaZSqllZJJlFFo2bTWFbPctSXJGVBa\n45SXSVbOaDPTrhZSKRSlOAwjOSeck8Y+ZXFfWefIQWJs5mlCmcSj7Yq/97f/Gv/zPxVpQf6hieQb\nZxs6b7k5HFhCRhdFyJlpmgkxCucsZzYrwSskbTgcBl5c3zBOExnoat5Y4+SZM95we7Hn5OyUcZrv\ntwo5LdVck0CLVs5kh7WOogxt+/GO1U9cyBg0vpFo+RQDR5stm1WHInN5cU4KIqZtvYTYWefY7Q+E\nnAgp3+95X3n5Mc+fX5LDhG+amvoqmToxRWIIDDnXSZhCVbCEqaPHWIF6JUPRH4ojU8kSdGcsSslY\nqySphHVd0SxZ8TtvPeHHicf+xb/7Gq+ebvn8m6+L7TdCigexoS7L/XA3pcgyLSgxFIEVzYlzMjLN\nMcn/R6JERDOgZO+XUpEq3eiaGixEyaKoGVTCgjEAP8xTqH9JVTkLd04ekK7QWU2KgbTMKGuZ5wiI\naO2zmw39qmP+XhCYlBNXismFZYk45ylZid0tJHa7W/q1CHNjySgEUlYqu0qjiWSWlOnWHcMwMIwz\nKPBtI9Ay17DESOep34vwdxRSaeecca5lmUWEen11c/+yVlWUen5xzmuvv8bJ8RlN236qL3OnwXvH\n7TCiS2a7XXO67um85fnzyj1ACU0XMI3jZjwQlSMkhTWFxiZefrDm6uqGeZlZ9WvmaSKHjG9aYlyY\nl0jOwlVI1IIeKkG7aqaKxmiLRizM4moRp4Ku2U1hSeJcKEo0NkZGzDfDzDfevuDHnf//9V99jcdH\na9546SHhMEIpnB4fiwA5LRI5Ummlt7d71qVj0RmdAxiNcY0ko2eHrhk2Whm0taQ0C0cnScHTNB6j\nxKVoa2cu2VMFbRSpZHLMUqhVbQVKMA9o0WMYa7FQL6QoOTCmYSmFnKBZHfHKGz3r1Zbx+99nSbua\n8SMXT1agPKA9UQvEc/fiEt+t0LZlWWZkNCwsHmsl5TvNM941NF5zcziIA01r4f4U6dhTCGhTcNri\ntCPOCV2LF4rCaum0rfPc7OeqHdC0TZ2YXT/nMOxZ9WIxDvnT5choLe/Wrm94dv4U3zi8t3CQpkWR\nCdNM26843h5xsxsYp4l21ROXkTlGiZpJE/thoPGepboZnTGyEimqrkPuZAWFbes/epX62hnr5i6H\nT8J5+75jmRf5dZS4rVJWlCQrz5v9yHsfPKtFvWaeI3GZ2W63rFYr9vs9pRbux8fHUkQmoQrP08LE\nBFpz0jbyjtTU1a3GrhzKqvsGFKTwFyq5RPRMy4x3uoqjLd43UMM1U8qVISWN0N0WolIc0ErgltpY\nEVJpWbc537LeHGGN4nB7w+76ivfeeZdh3GOUwjmJ/klFBgEqJZQxGGuIqfBLf/4LfP7VB/zWt9/i\n69/4XQqKx6eP6Q3MITCnwhxgmSe8b1iWUA09neggVz3KeW72O0KIaOtBSxitNo7DOHBzM3J6tKHx\nipgjd2w37z25ZLrW1yZ6pK28nxADIQtjbLX6eH3kJy5kTo+PMEZzcJZxuOUrX/6ivCxz4cl7l5SU\n2Kx6To63vP/+u3jnuBgmttsNMWZynnFOOpmjzYrdTYBSORshYLQQgkOYWJaFoYh9eLve3ucjCYlX\nkqcLqtpUJb7AGKl+MVIw6Nrx3QVLllz4/vkdEfXHi8d++7vvcLxZcXS0ZVCKzWrNEBZCDOhSAUrz\nTCmZm5udEIvnAdd4+vWK9XpNiUmyKLRGG4hxQiVFVJqlyLSoaTuBBKUomgsjXWsuEmpmazL4kjMp\nx/txq1IKVy/6EBLGNpIsq5RYxrNEG+SSCLPY8VTdHff9inlemKYZ51rmZZL1ktL3xV6slr8lRrTz\njDVWfdP3jPuJUCt6o6zs8xXMYRG4lVbShVrpqJzzGCNrgXlZsFrLz9hbCeZE7O0iakuV1VI5LXUN\nNs/LvfX9xdXVJ3/z/hl/zk5OUK6VF84y85U//0WMKqS4cP7BB6QY2KzXbDcr7LlMLcZxobE9IeXK\nNnF4ZznarrndHwjTjHeenCZikIsyI3ZpVSFs29Va2CKlkGOpkQhVIErdf9dJpK4TvbspntEaVWrR\nC6gC71zefOT5h1/jt/7gP/C3ukaYSn1HAsZhFAeVNfdhmGINDwwj9FNPt1rTrjQxLHdJl6A0KUhO\nVMxCnHK2xTe28pFy1Y3VQr0IZkArTdEZjGJZctWYibZBG1lHaiNTgJRqir0ylCK22DBNpBDEhpuS\niDa7FeMwkWIEdadVkI5V5yTFeroLBhSbQEamO8pYxmmU6RZgtaZpPKja8UPN7ZGzrJA1jKl5WvO8\n0DWelIoA8pzEipRa7C1RyMbWqioyzcyTTJeMNaw2a65efHprVYCcI2ePHrKEhd3tTsTMmw3PLy8l\nFycE4jwTtKFrGjiyXF7doBqNa1qZcGmDt60IgKOQ3OVy9jgnjWyOiZwjpQjkzmjNZx+ectK1vHe1\nk1Wqs7xx+jKbRmCSGhFGt14mZOMwoMqHlvVSCjFl9nPkBxfXHOa3OV33/OWv/Aw//8WfJoXAVdXg\npZRwXhgzIQSJZnAObxtSiKLbUxByZBiH+yl651sksOVO1yjxJE3TorQ0rBTReszzTNO1Ap5clvss\nqjvRd8lSwIPws1LOwt4pNfPJyoQ1y4MjdHxniWHhpGl58OgRm5NjWa2eX1CCQPTuuW9GdGuqQKky\nhtdeOuXvPHiZy4tLQlEs48Dt/oYQF7JyBAxKCeyxbTucEbmHsSLW3g8jw7KQk2wkUi6YQr0rA06B\n85ZMwjcNwyARELbxLMvMpl3hGyfuNmWkOUARg0xju+7PcCKzXq0oJXO4vaHvWo6PNsRlYZomhsOB\nkiLbzaaOwiJPnz1jd3uL8b7uf4VmqkqRlOTjY4ZhLxU4EFMQHomx1aoqAlGrBbTmrSWjJejRyUWo\ngVyt2blaQwtFuj/kAElyqaxzDnOg8PN8lEp7N/0+z693jCGyWbWMYWE3jsKyKYWu6eiaRv697bEx\nMd3u2ZotVokmYhz2wvOrAuVSIXS5HlhZs0m0H0pyOUpOLFOELB1mSneAMBmnK63kAPLhA6qqIlwr\nBUU6cGs1KYidPcalChsjw82BEjNGGUoqzFFYIMbIKDXmwrRICJy1Xpgb2nByeobvGob9yBIWTFYY\npVlvek7PTrh88YLD4RbXNOJIcAL0CrUQMkYgTzklhuFA0zj6rr3XSlhjyTmxLPKTk5DEKMC0akVd\nQsC3vnbIn85n06+IRdE3jkDi0ekxu5trlDEs80QMM6sHZygEPDfNC7vrgaOjFt94UpaXqXUWZx2r\nrmef9jTOMmNq51fxA8XVCBCZSh5tj+Qln0WoeycEvxOPlyK8Gbib1ImwVteUeWM0KFnNyPn/OT7q\n/F/cfJPzFy/o2pYpLOz2B3QRzY+3VmCKBVarniUo8iyBgU0TySGyHAYGJBjSeXGFFGsxxhFTJutI\nigtF1QBBI89ESBHqiqyQ7kfv9y9eZP2i79ZTSCOjlGhxVBGNREmRHAPLeEBTmMaJ2+trVMk4o5iG\nCWMFe2C0IyQJNoxBOEvONTKW9w2nR1uU0dweBkq9SArQrVYcHZ/y/PlFFfo7KRrvdtxKChZnNXGZ\nKQWWRQqT7bZnnnKNd1GkHFmWiGxWVEVRyKTi9nAgxkDbNhwOh/9/DvpHfE5PjnnzzTc4f/qUaRqx\ntuHRw0c8efqEpm2kuMkF3zSkomi6FbkUbnY3NN6xWW8YhgNta3FNK98nosValKKraP5conyL9xNo\nGXofrXq2razwFYIUuJtSy1RHKNa3t3s0NdCzNr4Kzdsvbvndt57VIv6rvHP5Lb759m/xd56+4G/+\nws+KNGASEfadeeH6+vp+/R3nRNO1tFbcpkZyWkhhAaXJ1hHCTMxyAbdtR9N6YaLVf6g8IGOs6Iaq\nC1VbaT5yFL1prhEd1O9By19SSMH1Prmb+ljnKRSGcSKXhFbQeMvp6UPW6w1XZw+5ePKU84sLtP6h\n5y0IONUaTeObut6BaZ64vD6gVcYphW96krYscySTJKg2RNGCWkvjnEDsxgPKyrQ1V0o4FHKdwvvO\nM4yjbHC0ZppmFIrGN8RJpprTvIiG00GpmrLrm2shRTcfn7P3iQuZsAS8t/zMz3yB82cfsO4bLsdb\ndtcvJOshF6zSnD/5QIStviEXeH55xYMHmsZalBdCYSkJa21NxRa+ifeeuCyEFCuqXTEMB3IQfczR\nZiPZDXfqdi3rEC17nFrJfqiZKUUQ06JUlxHfums+UjwG36RzjsO4EDOMswiEt+s1zlg0ilw75RSC\nVMRGRL1xXkg1ojwugZtwhatZHdZqCpklJLAOVSAVRdGJkh2Nb0g5kUPEGBGqLdN8P50QAVyunZ6R\nTI27dVqchfoYg3TJGpbxwDwOhGVmOOy5vdkx7AZSipQoRV1MGXIFXSmDcQ5tLcu8CKBKa0KKhHEg\nDQMlStdqreQ8+dazRBEDZ5Xl8ilUQnEipAWVwDTdfYd6ByNMORNTJCwTfSeJ177z8nsrmJeZQmG9\nXvHi+op333uPhw8ekMqnt1palgnX9bz8+CH76ytWnWM+WK4un0unpsUyenPzAmsUxnjikrnZ3aK0\nwhuN98JzkA6jpRTJDnPW1mwlWat67wFhbRxyRqPQm+09S6HU78EYuTxz5n4KI04HecnHOr1R9c+m\nSmbTfrR4UlwKjuv9nsM00Y2etmnou444DmzXaxogh0AqiUKPtSLOC0uk6yCHyHgriey674XbUgrz\nOAuXpihy0WAFJmgQGGRMAjTLmR85g3efO0HovVU3CjbdanOfr6RKIswTy3AgjAeWeWZ3dc3uZk/K\nQr8uKTPHCW0dySbRsVmHMo5wF49wF8Kahe46hYCtrhuDWHTnsDBMU7WzJxnZa2SlHRe0UXjfiF0f\naU7mcSSvZeoYwkLfyqrd+ZYUJzJKrKcoNtstF88vOT0+Yb1a18bs0/ucrHpuLi94fv4UBazbjpLk\nHW68ZzfuUbphmIOcf515cNSwchteXO3AtLTNipwmodhaQ1gW8iLNa1bQtQFfBa8qZ0q5mxwoFPW9\nX6TgRRtUFlePMdL4hTmglUzgMwrtLBrDzTDxu28948etU//P3/4arz864Y1HD2i1JexHjG1orNw5\nd9mBRSkOh4FhHDg52ZCXkbiSaZ1tOxbvsDT3kgBFQCETW5QlhUUyx6wD5TDKEtKCr/eBuFClMU9J\nzvfdFEaBiPi1QhtLyJLj5au2SmlF1hldZKo+RWkqjPZsTx+Si+H6MBL2B3mmVAYLqZSqSzTMyhFS\nYBkHUlxwXc+0LMQlYBrRRgEVkSBkZ+csbWs5TAcKshZEaWEBoUkp1q2IiJedcixTIkVqMZdIIRMi\nJDz7MaFdgzaFrnXktDCOtyxhJv2Qg/GjPp+4kPnpn/4C42HHxfNnaF1Y5pFSItdXV7S+IYe6Blr3\nPLu4BF3uu6b9YUT1LZ23zCmiS6JooefeTWS8cxglPve7i88nT1gCt7c7NHC03eKdE0hY3YGWXF/g\nRkRUWmlytX2KOEvVF37msw82/NH7b/NR4rHPPf4pMophXhiiVJ0YhzeRxnt8hqFOEuaY0HNg1Xim\nceZwGGq4ZSKkxEpJErfKGUvhME8QsugBlJJdYowktLiCsoh2Y30xw4e4+lRHnc7J2ixFEcxqCgkJ\n2irdtkmjAAAgAElEQVQpEnNiHA4s08A0DNxcX3Fzc82ylwezKMhLrDHyCpQhlYxyBrxhGA6oIuPg\nKUuMQNM24iZyCjVHnDb065br62uKSnSdFxuuMeQSZFVAJMbCEkSxDoqmbYm3M1pxL9yVLljVUDFZ\ncY3ThIS2eUKMjPPEer3+VIF4n//Cn2NcAhcX5xiTmec9MQyMh4MI7pTksazW/T02wBr58+8PB462\na2LMMkGMAZMi1mhyLFIAGiOOs1xqp9IBmmVZ2N3uUWhOjo+xdcWqaqtqah6TIAeyPA/k+wC5uyme\nbFcLn3t4zLc/+BM+6vy/8eBNpiUQKrclZDlfJWd8k1jiSOccqRQO08yq7xiGGWs9bRsoWZ7d1VqR\nlkCxDmOc0ICtlxccUFJE6Za8iNi7pAhaVqslVw2Vbu6jG1JMVaOm7iGBKWcUsWrhIjkuLNMoGVLj\ngdvdjtvdDeMoJOU7998dkVyAwiLA18azPwxSdFgr0+BhwHlP27a4kkhhYb3e0HUt19c3IvA10iGj\nStX4iB4hpoVSJNenJMkMW6ojTKZjwiVpG4NrHLkI1XUKkoW2Wq1ZppnD4cDx0RHOfTwQ7P/Lz4PT\nE4bhwLA/oMi89PghWkvq+zTPTGNg1XSkuq7QRuOtEQdQygzDhHNC/k5JirXGy5Q1LAuSwAd+7WQl\nX911IPIAQJrSypiB8iNNXs7yexr1YVFPAUXm7Y9Zp/7rP/xj/sbPWfq2lZgcFFe3txitaXIm5iyX\nbsoYAze7AiqxicKOMdaLy7RiLZRW5KCJOQsTKAe08XhdYXQkiZkpggaXR1OCQUU+IHrJFKoz7O6O\nVBrjRGystcgqFPLfWiP3jkIwGSksxJyJk5DV+7ZjmeYaKiwyC2NN1ecoISlnWW1RqHlY0PUdTd9L\nXtU0MNf1auscTduyxFSnqeIWxtw1m+UecFuyYBuMUgQvmj5nDMXZaszR5JIq+0nkB4VCypkURaNk\nzMe/+z9xIfOZ117nt3/760zTyJufeY2vfPXLfP3f/Bum8UBOkbDMnBwfc/rqy/zJW++ik6Qar9Zb\nobTOisZpbCk0jVzQkgxsKN4TQ6zpoI10ZblwdnbG1eUV8zyzY0fjXSUiKtEHKP5f4t7sybLjvvP7\nZOZZ71pVvQMgQBDgIhKUIIlaqCFlLR45/OSJmPD4xeEIhR2h/woMO/xiazzagprxhCRKpCRyJIok\nCIDExgVro7trucvZTy5++OW51RSxtCOowXkho6O7UFU3T+Yvv6vAUUE+WAOiNXEKpYW7NogS3BjN\n0bzk15+8xTdeFfHY/c2gv/LEwyxngiBY7wk6YAnsqh3BOlaLpXzoPnB0dMTFZsPdceTaesW8LBiH\ngaraUxQ5Shv6oSXZJTSrhuVySdX0YKI4zTp85tFJgh2Ej0/TFJyEAkWM6XBATe6eKRXTR9401Rpr\nB/AeN/YMfUtX13RdS73f0jY1zlmUV1LQGJykvWYiPiOxeK3Ii5LZYsH5+SYKEmUhZYWI0XwAYgDY\nyZVrdE3FbrsV/QYyYWsjbi6jzaEBvalrrt+4wX6zJUulBKwoSwmrUgbnLaiC84sLsjRlsVjQNp10\nrkQrb1PXtG1LUXwwvPgv9dy6dZ1nn3+eptny8Y8+ymd+7uP80z98i7re4p2IS+erNR/5yCO8efsu\nTdeSpIYsK+i6hv2+Qi3nWEtsU1b0XScoRJChLovZGn3fo7VmvVqz3+/p2pZdVWOSlPVqcYh1BxFS\nAwcaUhCL2Io7QZNadBuKhPU84fNP3uLr77b+P3aTo8VM6CnnGUfh1dtGBHhpKlZhE6RUcrADR6sl\ny/mctu+p645ZIQhbUzeUs1Ki/JcrtrsdRTkDKwORylKMJvaHyc3S2zGGa4mw3wQJ9vPjKKiUl+9p\nuC9Top8g9RDomoa+rejbhmq/o2kqrLUx/j/WlWgDGoJS+Ch8T4sZIS3Y7CpMdKWEcZCW31jCN449\nWaKZzWcM48C+rmQAcg6jJgpEhtAskxDBtmtJlwvc4BiGXui2NGOiyayzoFLOLi7Io1Gg6wcUCShD\nlufsqh03/fUYXPjhPQYY+14coFqTZ4am2hF8oN7U1LueZDWSpjN8RHzTSAXOijKKVTWjSgR9dpKy\nnJiEoGVg904G8KPlCpOmBxPHQesSRcGTVEBatacaFyKNL0YQpRU6Doz1MLwvnXq2+zbn2y1N2zKf\nzajbhiyVtGCtFIv5HAl1VJRlgeoD4JnP53KhHEe6upFKDaNJ80wQpViZgJfBx40WjcYrh9HTwOsP\nQmU5vMMh+HSiopTShwut6AflMivX8ygvkN+QuGV7OQdUCDT7PbvtDoXYwu0wOVFBqwSPJwRpEB+t\nw+gEpWwsRp6RFxmDddGt6w+D03wxp5jNuXf3rhhhohxE5I0i41BKdGh2dAc963azY7GcoYzC2hGV\nJOJatQMmfi9JItKEYRSpxWa3o3oAavWBB5kfvPxtzu/8iEWRcDV1VG/9GF1XFCj23Qh6xg/fusvR\n4w8xP1rQ3DvHqIByjkwn7M53YOHKlROcTsAO2FFRFBllkVHXO5qmFfpIhWir9KyvntDsK7TWtMNA\nOnTioMqEqjAmQQfITUZnJbwqicVjOrpI3OhReBKT8PjNa1xdr/jBnXPq7lkWRcbHbz3JMksJQXQY\nWaLAynTqgwgGfdvTuD1aabpGivWqYeRrLz7Htm65frLmd55+ikeuXaEsU+zoyTKDbUfuvPEW+6bl\n6o2bFOamuKmCJfEpOk3FDeEGAkZyCJBuGdfWIiQMQTbEePs3WmN8IOwlRElrqLZbqqpiGDrquma7\n2xwC9EyS4BOPG2UDGYMnzWa0LjBfrJldvcqmqnhzt0UtF4yjJdcpbnQY7bBWBM6L4yO87mlqy2Al\n22TqAtFIyVeaJ2Ra1OkoSdwsFzN8CFhnqSrhU4exZxYFvlmylG4ZDCqV0rN7Fxc8/uijnN+5i+0/\nyrJIH3Sp/syfH//wFc7v3qYoMopEsT27R9NuBe0O4Lzh7t1zHnvicebzku22Ed2SE+1GVVVA4ORo\niY46IBUtoMoomqah61wMfowwLYrj42MqkwoS4yUFu8gyQizVsyrWTtxHu0ziXjOZ3nzkIpUGBR+7\nccK11Zwf3N1Qdc8yzzOeuP4EiyKJ1nwtFGocjJy1DFqx2+/QKPqqI89z8iLj9bvnPPuj56j7kVtX\nj/ndpz/DR65fpR+k22i/r+H2Hc63Wx555COcnAShJEKJjoiGSSSGwXsjrriYKWGH8dCb43zAdm0c\nzcTW2rZNFOpC3dTUuy1919J3Ldvdlr5vo44gj9ZOiS/Q2siwohRZWVIul5ztWk43F3KxcFaqVmKB\nq7OeTHmWswVGC8VgvSP+6g8H7VSAq3XUZ0SRskkvSxCHXnRoISgRP8bvJ53WvoY0ybnYbLl25Zjt\ndkPXtcxmH15hKoAbB6rdnkTrOHh0NG1LnqX0g8db2O4rlNHkiSbLREg9jiNJapirkrZpDtoSRRCx\np5HA0oluq2tJdF4tlpdUahwQp5bsEFQ8gKOIPmoPp5JWHZEPlJR1Lt8niwa+wyxL2dfismr6niLL\nWK6WktxsDCrNJJwxSG8dqiBLDcMwkmUOMzOEwdK6iiQxGMBPNTXdQFCaLFPS1K00Tiu8MxGZi6WK\nqVTYjMMAXDpTp4vsNMiAXNytc4JqeI+3FqWCIJJty9DWDG1D2zZsL7bUVSP/zoojdrROOtG8x0Um\nQ0o0d4zWChoUggSbdi0uiAN4lhnwQUImY6RA3bayPqbCTgXKKNwgwuJSSQdXcBI5sK1riiIjTQ3W\njqAcWSKGk6IopCE9gLUy1MxmMza7Hefn5x+4Rh94kEmM4dqVq8xzQ54XbLdbylmJjg2d9dCy2W65\ncuUK6+Mj3nzzNlrLDdNF+3Xf91xcXLBYLpnnCbOyRBtxajjv5UUJgTRLKTPZwFfHJ4zLNdvdlouz\nc7q2Zb1ckWUrsrwQkV0AlJJJWktho7PCuyvkBnbQ4mlYLwp+efFwhPOQQyd4qV+fSisTEQF6JC7b\nh0BvRYhnQuB7b9/hr1/4IagVhKd54c1n+cqzL/HvvvBL/De/8EnmRWy9TsRp5KxESp+dnpEXBcdX\nrxwaVv0gziOMZuwHDOoQVS3CLnGKTHoiKRnzQtVEDcRut2O329H37eXf8SKYTdM0ag6kkG267pzv\ndvzp177BrutQwfP27dvy8kY6S8dNC2BW5EIPeccwxmZfrQ8Qr9JycxCoVG5L1o6M1lKkqdySvGIY\nhhjZLoGIJk0lGXjoMWlJPwxkWcrFxTnXr1zBGMPZ2RmrxeJBl+rP/DlezKhWa7LMsMgyuu2G4/WC\noDyJyQDLvmpYHx2zPl7z2utvg/bYGGyYZRl1LQJU1kvKLPbDKNFYpYkhOMBDmmUilNWao6MjFvMl\nu82WfbWlritWyznHR0eSJxTFrtNhOonkCUjJKJefhUk0xLK79bzkV56cC2oZU4hddL8ZbYSnd1Kn\nobS4AZ2V7KB+lIbq775+m7947uXD+v/uj5/lP33zBf7n3/o1fusXPi0J0EbLLdYHurrhIkhn24yA\nsyNJmpJkTgTdWX4Iw1Nao6KrR6EOltokTbHW4l2grmtyI26P/cU5u40gt2ESTnolKaFRS+FFjIAd\nR/JcfsfKGJI850dvvMz5xQbZfonZINJCH4IiLzPKIseNkvA6XZC8v4yUV/GdndAxEbGP5GmCTjQM\ngXF0zGcL9tU2Ul2KcrZgHEaUShhHT55r3r79DkerBSjFvqoeSOz4L/l0jejuJDYh5fj4GEdgt2sI\nHowR4XRV1Zj1km4U6kQTsONAYgxZktD2XRS8arRKBYVRmqIo6aKwf1/XKKU5Pj4SDZQVOkKEr0Il\nmUTWqITWhcN+po2J1Dbi9AuBJz6ATv3ojY8xOKFIPHKIq0YuDserNVXTUKYZRZYyjBZlJNW8aWWQ\n6dr+QPcuVwtsH7Uv2qOcox86MpPKHq40JAl9W8dAUelDCjE/iCBoTJJkpIkEp9qJskKo4uBDzOKy\n2NFC/P9+HERS0Fb0bct2e0Hb9vRdK46lSK3KUCSRGsRcqiKf0TR91M2IFrLrOrz35LMZWZqS4xiG\ngeViTpKmnJ2dSXyKdFBIrIEfUVoMJFIbMbCYLxi7EAs4M3Fneo/H473QydpoTJYyuAFlDF0/AkZ6\nyJxl/wCBkA/etZQmfOSRhxjqPUmSsFysuHt3I/BQqnChYRPTV9erNdZa6aFpx8ON0TkJXAtApuZY\nJbqQNDWcHJ8w9F20WJsY8ezZnF+QaMPQy4LxxrDdbknTlOViIcFsxsQkWGKj72XMPwhE6JXGH87w\nf1ZYphQqxGZWNXGPqVAqTvpBQG6nHsVF1fLXL/yQwP8GU2tokJfj//7bL/HotTU31kuZ0JVAceVs\nRts2VFXFYrmQG5wxMtA4Rz+OEhKlpa8CpaIw1zEVbqpIp42jZRxGQu8Pm+Z+v6frOuq6QikO6Zsg\nGhoTlf3OS/bOV//xJZ758l8gpWG/AHybEHZcWS0okoS2bSONIaK+sizJ44Hc94JcTV8/RHX9u1Ur\n2HFEZZlYB1VG13esj5bUey03AKVI0oShrpgvl/LiKikMbZqGeVGy2++5cnz8oEv1Z/6EceTWzeui\nFTGKMjGMvZQrtrnHNSNNN+CDYrVaE5THJApGJQepNhgtt7jtZo8+WpIoCGMgTRTzuRxmIpCTwcZa\nK+FjqSAwwlsLIpCnGYvFQizEkYIJ0eczDewERAtFQGuiviB6a+I6BwQZiQMpQQBrrSBooanMhDBY\nhwueVKVctBV/8dzLP7H+Q1z//+dXvsStozUPXV2jFczKQjI6mop9tadpatZuwCQpy/UKWhm4fW4l\nTmTSsUTrqdhnXQybS2gbOVDHYWCM66vrWrqupa1bycew7lBAGgASaVP2wR2C0u7ePeXvn3+R082e\nu/fusW8aoS8IjFZygTTi0ssLEe42dUvfS3ilbBQ+ojyRww9B6JIgAY52lCE+eC/p1dayWKzo+xY7\n9qgoam9tw3K1omla+dkVNG1DkRjqumL2APbTf8mn66p4sImu7uq1q6RFzvm2RjUNSaLJ8zld17Lf\n71ktFwRnKbKUxCR0XUdmjCS4xmiAosgl0X0YKItSKiB2O7p+RFGTpCnLxfw+JCYcyj6nNQ/3o5GX\nglDZ02VNrxaGzz/50HvSqet5yVRmLOeTZ+gGscpnGYAEjTp/uCQeH6+ZlyV107KYzSjzAq0VbdNR\nzHLmTctitaLtBGFQQcTfwXtMnkkWEqL/SPMcP7p4oYBUK9E+jj1+tOiAdLjZkaGJtKqSbjo7jmI2\nGXv6pmboWtq6oq4ruq7BOZEiuJgKHJRkSoWADCwmIc0zytWabVXRj5Ykz2PVQyBNDNoH0cH4nlk5\noyhy2q6l6SWh2oQEvDtUTIRoCbfW0/V9dKQJlQ6QZjng0DpBaSkdRRXcOz1jVhaEJKHte0w8f5fz\nOXXXfOAafeBBxg4dV0/WNMGxXh/hfWBXVcxmcy6aDUFLtPZ+t4+lXDldd3kjnXQeSsmwsd1uWcwX\n5KV0LfTRKUAU5oroV8S/xXrNyfEJeZqx3W7pxpHNdsPUTC15C0uC99R1fZiQQwASsa7pSzuTwLs6\nxDREEcQrJeJJj3j5E6MhTQnGxA2Ww9d8+Z0z3qvMDPWHfPW7L/M7T32Moigo8pwkL7D7mjt3TyUR\n1MmLMTpHU7ccHR8B0LsWZxJMHPr6YZDhKW7ok+2uaRpxkZlCeqS8lQHRB6x3sVZBbN9ynRFNjQ8B\nFxR3N3ue+fJf8G717We7Z7i+mouOJabCZnlOnmWEEGgjnAiXcPr0faVZFtuaJ143E4vlOJBo+Rqt\nHQ9rYRIx3+9HkjArTTkrGcaB49WKtm/p+g/Pfh2CoygXDH3HtatXyNXIsBuYZ0s2ZkcfBsYhsN3W\nLGZH5EnBkHhcbw8tzoKEaZwNbDZ7lvMZeZYyevDK01vJWfJY2mZ/0MJYPKv1HK18RNx6LjZbCb5L\nLfP5nFkucO3QjweETGstm7meqgmD6MmUhEf6IPTTtNYFGpZPQpvJLiqt28oYPNExFRwv3r7H+63/\nv37uBf77zz1FUeTk8xnbquL23bvkRc6Js1gjxZRXuissZguMTnDdSGpSsiSTTdgLmjc1+VpvUSHQ\nta3A6ZNuxjravpVOMO+wTYd3PuocDLgECwzegREHxd9++3me+fJfHYb4EF4BalZFwqzMDl1XBEVZ\n5FL4FzTd4A7OjIgBiF5BC33upikxGDSefhgp05wEQ5olDEOLHwcU8jlYG63XeDyOwY34eAnzzpPN\nCtqmJvir/xVX+08/wY+S1xMMXeu4c+eM9dU1eZGhk4YQHMFpjNLRKh44Xi9R2kjieByqi7KkbZvY\nfu0Pw/UwjJRlwcnJFep9RZZJZIGguVKF4pzDqZ8WfYbAwa2nwlQZIHEEMNGpx1xbzX6STr3xMRZF\nGoX5Bh/RzeA9o/cEEjabjejWlCFLRLy97zu+8r0fsmtarh8f8a9/+Skeu3Fd8r/6ER+grhru3T1l\ns9uyPjrh1i0FpQxLSRBESUUnkLex8dqrQ2SCHaT+Rows0PaSGi+XbC1DzNBhlGhNqv2erq4Yh559\ntaOuKoaxj8LgJK61EZUIEixGD41OU2aLFUlR8s7padSUgh1tPA8lfDJYhzHSqRhCoGlboX2n+IP7\ngIpp79Fax1RqR56l4GRdt20bOxoF3VMIcqa1IS9mUjGkUrKsoKqlWLjafXCO0gMPMo8+/BD7jUSs\nP/7oY/zTN79D346sj4/58TtnBK2weH782o85Pr4Wp+f+Jxw40zSdpCldFwU8ek6Ry+RrR4sC+qEj\nOEFmjk+uxMwRw+pojQ+B/W5P1TSYNGURpM9pFpDBoRBLtxtlEzRwqIgP04c4XUcRDUHQHoW5749l\nINDKEHRgjK4JbcQuVw0j8DTvKiALT3NePS+pxqOj66QkMI3hQXmec3p6yp27dzk5OcE7z267pSgK\noWZCEMvrOEaeXV7eqcDvkkpQNHuZcn2whwHDexkOZKOQQdAYQb7w4tL4+xdffV8lf913HM+l30Kh\nKeP3No5jLPucH1CZJEkO3TwmOkrUZA1UQi12WpGgyLJS1O59TxozSYZRmmrRmr7rGZ3FRN58GEZA\nUVc1293uQZfqz/y5ceMGu6rFDZYb12/x/We/SdO1FLMSe3ohlEIIvPHWW9y6cV3yNLZ7oUMS6dEK\nsWFXGyP6DgJaL0hjtP3U/upGuWnlWc56tcIY2RBWqxVaazabDf3Qs9luOVqvaZqGkOeH5l7gsEbu\n185MrhqtNT7EG2xEI+9/pqFStCrEziN96YLymn3X8X7r/6J6ge12R1Vp+m4g4Elj3MLpvTPu3LvL\n0fERwcNWb0kSsaYaNIvFgq7rIG5wHsn4sHZyM4k2oGs7EpMy2li8GXUX42jxIWZeeAteKDEVPJqE\n0/Mdz3z5r951iN91z5AkmrLIMUqhvKfIRYg7jCPd0JEkmQgRlVDGdpRgzylm34UJmZTLWNt3KDLK\nPCfJk6izCOLKG4cYs6Bpmi7GRIgxoWlqjpYz6qpmv//g9t9/yScrDIFAYjIaa9nXLZ/+had45Qc/\nwLkelGUcAyGaFpqmiRqtEIfsVILhlCfRCoxQqSYRtEtpKaRcr9fsii1NXVPVFW1TsZiVHK3X6DQ5\nuPW0lmupxBZMjkz1E+sfAspkUYntWc9LPvfkXPQkMXTukACsNEYLyiP9SYJiWivnkQ0SdfHcm3f4\nyguvXsoJ3niWr3z3Zf7dF36R3/r5z5CnqeQAaandwcPQdew2W7pGLqzWW0n0DVIQ2fcdiUkOhZdK\n4HSih4lxGGJMQHJwFnV9D24g0Ya2qdmen4uxwzrGsY/0EwxjjzYxq0zJWeesJUsziUhIErKy4N7Z\nGa+//iZojZejUhAqP2JH0ejMipIsSRiGgXEchCI60FWX1LYxBmvD4dzvh548TTCpwaiEpm5YLpbk\neUkIkTZUhrycMY7yvVrnKZTmfCtasQkZe7/nwduvx47gHR995FFu3rhJPwwErUGnIm5KDLYbOD09\n46GHHuXhhx/i4uJFtNZ0XXegHSaLssBdVjZi71ksCnFhBI9JMsY+MIwjTVUxX8xxTpFrEUAGAmdn\nZ+yqPcEokjwTlMKOhzLCqSfDwyFg6DLqf6qL9wQvG7QKcjMSWsmI5TORckVjYupijOxfFgXSSfHu\nArJluUCZlMHKTbIbPDom7u6rhizLyIsc0Ox2e5IkZdeP/NW3nuN0s+MjN6/xO7/4FDdP1pLVYAxt\n04orKA4U3geaqo+9S+7Q4+L9GPUqmm7ssd6DF8g7MQndYLlzsSXwPvXt9u+Y+o2Oj1aRwoCqFidI\nUMNBg6O1PiBuU5O13PINbbTX9v2AVorlciaDTirQfCBQFAVN1PH03pJmKU3bMJvPaeoWtGRCbHcf\n3mburUX7wKOPPMLNG7f47hiwXmFKsZSaCHmfnp7y+GOPcnx8wt17Z7HcLWCCDLEmEeFnQAR0TV0z\nK3MSU5AmKUolOKUON6GmaVit17JutWJ9dIT3nouLC6qmxqQJi0gjWmdjarRoTaaOHmPk1kS80YVo\n85xurcYkotcJHrSOm2jc3I2KCOXlsKN0YFnmvN/6XxSL2Fob2O0qQhyi9vuGNBF0QquEdt+SJAmL\nxYIh1oCsl+s4EDjpiYr7B8jBNfjA0Pf0XU+SiGZr0m25A8QdCMT02OAwLhUNUICvPvvi+w7x3diS\np/KurmYSje6co6oqSaJWE9orYZV5nmFtLNk0+nDTDkrIvq4XCmm1WhK8w7qBNE1wTrp9pgTYYRDr\n+jgOZHlK24vzbRxhV324pZHeWcqioO5G3ODYbHas10fkeY4noBONsorRebSR23g/DFxcXKCPjynS\nhHG0pAnkRUHmA+MQ6zWUIs0yhr5ns9mg4+VriGngVV2TZzmL+Tx2GIm4FBcOuo/DI8IzFDpe3iR/\nJQRx1Ihb6JJO1VrWtugoL2mqNOa7EAJuFKp713V85YVX311O8LUv8ZErJzx0ckLVtGgVyDJZ195Z\nzs/PoqjZkpQ5y+WS1BYSHKq1WNOtsBFaG4jvbgjIOaTkPe37/jDQBzseepOGvqOuqkgbxKLLSCfp\nIK5SVHyX4yX9nTv3+MYLL3FeNQz9wJvv3EEZWX/WWnCjUKgBjFIHwXnXdWLjNilMmjKIVmsO74Ux\nCd4P8VItg02e53RNi0LcYNvdBhfk4j2blfRtH8MTxR2nlbz7ZfbBRo8HHmSOlnMY5SU8vXvGvbun\nBDSjcwzWkeY5yWjpp+6KmVhFe28Pt8LpUJ6K01wUowql5CiLnBBE7Z5lGVopqn1FlmbMF2JdDHgW\nqyX9OFI3NeebDUEpbhxdYYiHaZolpEFTzOc422PHy3AhH29A6v5oBj99IJckh0okGVgrSSrVQRTj\nPgQ+duOI5998mfdqDX3yxiMM48hUJKcmb7wb6OyIbjW60uyqisQkfP/tu/zRN55jKvL7x5ee5f/5\nm3/gf/ndX+eLn/0kwAGSS9KUuqqwzpNns7jgp2h/Di+H8Nnyex99oLcDWaZBJRwtl++r5Nfxpc6y\nLLZTSxrnFNnt7hsMp9u/c5PrRnjwiWLSxkifTsznWK/WdF19KeDTmnGQCvi2riRsz1ny1KCNZohd\nG9vNhzfILGcztFPkxnB+es7tO+d4ldAP0mJu0gRvRQg6X8wp5zNZM8llhH2SppgkpW8bcZHh6Qax\nzmutybOEKcZ8Gg6lHsBwdHJ8eG9mizmDHdnvdoJSKTg+OmKwI0k8RFMT3zMnuhvZoAH8gSIVR158\nJ2SBxnK7qB2Lnx2xzC14YuhV4OO3rvDCmy/yXuv/k7ceZ7QC91snyJ33Ht0NcruqA/uqIc9S5uWc\num45rxq+8eKrXFQtV1ZzPv9zT/DQlWOUUgfBepZlNPuaMerJQjeKGF/B6EbcVJYXPN7Lz+tDiJA2\nmzAAACAASURBVGWp8uenu/r9h/jxaxhdRHhbsq18FEMbI6L/6QCV/JKo8VGxLgGiS0yRFTmagElS\nBuuYz0rGoSfNDP2+PQSCZlmBtVKkOowDszKnjpeQ2Xx20B5+WE/icsoyw25PGYPl7tk5wxBYLU5I\n9Guk2jH4cKBRjTKR1oP9tsaVBUWeYr0YMqzvCdqLo8uPjL0lhMDQDuR5ztHRCq0DbdPQ9wObzVYu\nYqmYRvIsF5vuICaNicoIYWoll70vcGnPdgScDYIUxYuWRoGO2jImgFLHS5r87JIH43npA+jUrz3/\nEr/1mSckhT5LWaZzunHk4p0tIQTWR2usCiRtwq7acXJ0EiNEDD4ZSbS4d8ZxwDqpRwjIe+OjI2vs\n+wNroSIY0A0DXd/RjQMhBBnwjUEroQLxKZZA7x1BWRKd8rXvPM+X7qNWCS8R2HGyKMgzgzHgY+VC\nkhiKMkOlGYMP9KMDnUz6aqTeI/ZxKY138XeIdHB5J++fSUS6MYv7fF5mpMbQ9b1oA7WSKmUDgxtw\nQVAoax358mfYtdS3FT/6wSv86ud+ndtvv81+V3H14ce4vdnQjANFvsCpwG674+7dOzgvL2ZddZex\n+vdB3cBBbW6tpa5r6aJZLqmaQKo0s7Jk53fcu3ePPM9ZrdfUdY3zjsVyIXkOWjOMA20nWSM6oinG\nGHR0LKSpOiSgaiW0jGxGMZPAyBx//6NNLABDhFESHQ3KBVZlzm984iN8/eVnQP17CCIggz1f+NSj\nrOZz4dJl9o+aHIfXStJDrQULg7Vsq5Y/+sb3CO+SPPl//OWXuHm04PrRUjI0rETCN22LHS1dNwmp\nA6f7mm++8hoXdc3Jcs7nnvwI19YLcY6phMSk1P0IGn7ts5/hL//pu7zXQTTLxHElWT+Wrm2FnYu/\nm4miuL8gTQr55HeYJpJ46YNwoT5STzJdy0CaZiltVaGVZlAj6zLHBU9ZxrZrO2CdiJivPvYoZ6en\nD7pUf+ZPs9vx1muv8+lPP8Wd2++wb1rWNx/h7bMLejuS5CUmMdRVxZ137sjGqmLLbby9p3HQ1GkC\nTiLrJfDNUe0r9HrJYi45LME7irxg4zbs93vSPOPatWty0+17yrKkadv7NrIoqlMS0GaDjU3xGqWS\nw2YYCKh4IE+bJHDZHB/CAfWTm2yIt0Ej7UOxW21ZZvyrTz3K37340+v/X33yURZFFv97kf8HeQ9Q\n9MNI8OLgqeuW/b7hpTun/OdnXxHInqdRPMv/+83v8T9+8Wl+9ROP46wltZahHyWO3Tn60UZNRIg/\nj+RXDG4Q+iYK+iXUXosbD83RYgk8y3uhSZPRQFJ6rZR3mhStE7wd4kEZO62iuDqNQlaCBLPlecE4\nxuiHweIRhKLIkyi2nqy07rDvaK0lLyY4aRZWUDUND924wb2zs3/B1f3BT5qmZESqJVFUTcPbt29T\nzuZkWU7TdNFtk6BNEl0yAZ0Y+mHEO4sxK0AxDLG00ztBspzYgmfljPlM6GxtFOvVCq0U+/2edui5\n2G5ZLZcAGF1Q5DPSRGpsDnT2RKdCHNR/sq5DvriKwu/YGn+QySumtmnn3UEDpY1BBU3VD4T3kxPs\nX6BpWxGKGyO9VOkeO4ysVku6tuet6i3SMmWxWDJ2sWjYpPLZp0XUkHSR/hLJRD/0ooN0gq5M9JCg\nqoG2a+N6UQzjyGDHQ+Gs7AWDBAEFyU06vdjxpfegVs+rZziepeS5OEm9layyosjROqHthPVI04xh\nGGNeTzTBeDBpCsrjPAca3Vvp99OF6CWTJEUbDpcAYWou9Z9d1x8+hzTRDGOHDx/sWH3gQabeX5BE\nHrjeV3zmqacYVMoP79yVvh8tEOFms+H1115nvT5htVrxzu17lOXscCiqeDv3MdrdGIH/nBvYVxXL\nxVwgy2FkuVzQ1qINOTs7A615+pee5nxzwauvvsrJ1Su8/vrreCDHkGcZJs8lRt05BufIjCFJE0zs\nMhFX56SEjwJGflpEBnGjDxzi0qecDQI8efMKt45XvHLnHlX3PMtyxiceepRFlsebq7xNk8jY4XFK\nBHFBIigBxffePuU9J33+kK8+/xK/94ufIgCurQ/oh1YSD58kKd/58Rv8h69/F9QSwtMo9Sxf+e6r\n/Jtf/zS/9snHGUxK7xyr1RrnFRf33uLjN67y8jvPwH1Kfthzdb1knucSNhgD+PphoMwyjNaMw4D1\nUuSVpNIzY4xhPp9J3ke8SSgFYz8ckleN1iQG7p2dcrxekpgMkySMdmS2XGASw3K5xIcI0TtFMS/p\nOtEOzOIm96E81pKZgHKS+Pzppz5Lb3LeOD0HZJMUvrrh9dde49r1GyyXSy4uKhRg0gQXPMFaEdB6\nd+kUUorBWqqqki6q2Yy+71islmy3W4ZhYLPZkOc5n/70p7nYbXn7zbdYHa25c+cOatBsdjuhK7Mc\nN4yYRIIStTExwVM292kzn5A0uHSYKZTgkUoG70k/MP19pSSFkyC01BM3jrl1vOSl22dU7fMsyhkf\nf+hR1kUhh4j8Q9GWBRDhpWyuPgQJcXSW0/2e//zsKz8B2U+D/B9+7RmuL2dcP1qzrxtUkPyX6Skz\njXIiHD7dV3zntduc1w3rWcHnnnyEa8cLnM5AG4LJ0SbnoeNjQniW9xriT9bHaCMFmG3XY5QiS6f3\nnyhMnGzviiyVAEjtJSdJgKDAMPTinhodRZqTpSlnmw1HqxVaJyRpxtj3pGVGludSG4ISmsGN5MWM\nthc7apJ8eBlKAElWkIhK9ICSvvHmm1y/dpWyLDk7vzg4xKYiwekgGwbRbDRNw7zMSZMCk2aEIJ1z\nVo2M/UDfdRR5Tp6K5q4sCtEQes9+v2e730lhotHYvSXPBKHLshRCeqBcgEMpKUwOJkQnGdEZk0x0\nqlC2E2oDHHSK7r73Q4XAvMiQ5u33oFPLuViarRzkddUKlRs81gc2u4rgHEcnRxhSqq0wDWUpGTvz\n2ZxZMYvv5WUcR9u2ka4Ryjk4+X0olQjaaB3Wj/jgxQEUvATUIvo2DSQmlX4rpfjqd96fWh18Rxkp\nzlRp0jQ57B11XcuZo+PvJsiQK91W9pDrgwkoZaSfySm6cUCpwHw+p8wNfdeQpAUQKMv8oLFM0zwO\nOxKcaJKYwXXtygev0QddzI89+hipKaiqPc4mlMWM87ML6cwIgbptyMsC3Tecnp1yckUEv7NZGTdF\nFSOSpVdJexOttmJzDAGGoefs7Jyr145Js4yTkytU24oQRHV9+/bb3Lx9k1/7/K8TULz8ystcuXZN\nptLRsqsqtDFkecrY9bHhNsQwrDhQOAmQS4yRDcUkKCR7435MJmiFd56gkLKuCCcrI2r4EAJlkfCL\nT9yKuQhG/o6dCu8AxCWk0fG+KNZWf4g011TdwPsJJ892L9B07UEbo2MKZKITvA/cudjxH77+LO9m\nhf3jbzzDxx+5yfx4BT7w+ptvc/udu/zw9TcJo+XWekntLKP7B1CKdbGmyDLJ81AqCrajLVwpui5y\nuiYVUbUTHY0bhojgiKVvGKVMVGktQr80IYmiu3EcGMaRfExYLVdstpv4s1kW8znn2wuWiwV1DKeq\nqoq27Viv1w+6VH/mz+MffYQk9Ni+xusctOLs7Jy27WNWSH5wNJ+fnfPQrYdZLBYHKgImh4omz1J0\nYiSgSsVhGuhHy76uSbOErMg5Oj6mqirSPKPrOu7cu8fJvbv86q/+KlmW8cqrr7JareQW6B27qoqu\nH7kRGz0NL+4gcJw29yTN0EHEhErsSDLcqFjIGIeFEGmvadiZQsq8cwQ88yLlV598RESCMQMjhICP\nWmL5IuAjteXvE/Bqk6BUwkt3znk/yP4fXnmd//bpT9F3o4h2lTgumJwYwHOv3+bL3/r+QYSJ+g5/\n+/3X+R9+4+d5+uc+yeAD75xuePPtu7z5xtvcmM240/z0EH9ltSCNaapJmkEQJ55SSlx/noi45KJL\nGgdpfFeKIs2jhXfEjVJvotFkSU6ikyhC9nS9ZVbMmc/mNC7eRJ2XDqe+J3hH34s5YLPd0w0jJ1c/\nXNeSQ9HbARtDRrVTdH3HzZs3WR8dcfvOXZQJca8VnVySZYyx6FVFJDHEctCikIRza63o6aJhYLfZ\ncnTlRJCpOICs1iusszRNyy4K/o/Wa1wQhDfLMlKTHNLEfXC4MFmzo8g9xJA5NQ3wsoZ8cJLIqy7F\nw9JfJPZ/Agch8ZO3rvC9t96bTn3yxqNSSWAdCjEqTANAU3eYJKEocoa7p2w3O/I0Y7lc8trtu/zt\ncy9xUbdcWy/54mc/wbX18pDTJRc5TZIkDF1P27SCeCfifg0anLP0Yy/nkJbIB5B+NR88trdMrU1n\nu+p9qVXn/l7C/owmyRLmseS363uJQYgXaeLPdj+96nCkaUTqlY+XUikqdoFDxMgUEim4yGSr9wdE\nako4nxUZfS8BlB/0PPAgc3r7HTZnZ9y4+Qj39nc43dS4JGfwsd6ehLEdKWdzunagqSrhOo2orB0e\noxN65yAoTJZJsV0UB6FSedFHz9lFzXyxIJzuGPuBMs1oEd75B6++ymK15Fc+9zm22wu4p3CjpW5b\nkjSjqltOshyTZrjRYvI06gLiS6YMiRYONwQfU3XFCkh0RAQBo0myHImRCzH+mrjpx36JEFBkaGcu\nS+5MVJyry4TGEDwqaBIKuZVHOFN7y2qWgfpOFI799KRfZCWbqseYnDTJQYmoSikZkL75o3fiBv5u\nB8G/56+//Sof/0TK+cUFr732GsMopWPJfAbbLbeOjxidZRgkiC9Yi3eOJMvk9uwCWSYVDF6loAPz\nRSmismFEK4fH0dQXlEWBd5ZUa9DgVMK+7WRgzFLGYWA+P+a86kjzOZmB+XJJb0dM8ISmochL7OjI\nMok7V/mM87rjkYcfedCl+jN/3n7jDdr9FrOCi3bP3d1ARyax3lNNg5LuGTeOVFXFrJzJjbTvxHod\nb3aCVkVqIboTZDiVjfliEzhaL7lz7y7t0KONIc9zBmd57bXXODo64qmnnqJuGkIQ+mMcBvokoW5q\nyvUabwzBW4irdxrRVZy2lAa8dNooHWKMOrKuwyV1eMk4xQMgSDCXSfSBqop/4VKnENt7L7NV5MY7\nJQ57ghwoKoBB6M73HeSfZ183GJXEkDOPMkLFjD5wvq/48re+/64izD/5+2cIXjqM3rhzj7YV7d3x\n+hi0oscy2v+CAhbFikRLUnVCEn8fiiQrsEMPiFauLEuSRLJRjNYi5m9blJXDIzGaMcjtd5x0ckb+\nXpql7PcNRZqxKAqKQuysXdcdGsMVUBQlzlpQmt2+4uGbN37ma/r/zxOMYbvfyyFv5BDa7/eCFhBI\nTIpSUq3iJvTAGEYVERoCLuq/mlrclavFDKPBjgNpIs6wpqrZbjbkxQ0R//c9SZoym8+pGjnQpgvz\nhBBP+SuJMaSpYbT+cHEOQS6V05oOBA5gudhADvqTqVldBMIcRPJCeViWRcJvfPIR/v6ln6ZTf+OT\nH2FRZodQSRC0QtxVCuuDoE5x6DVGBpO/feFl/vxbL6GUaCMVz/Llf/gu/9MXf4nP/9wTAIdhrSwK\n2rYXlDtxBC+/xyQxIlcI0vbtJ15NxWRuL47cJMkZbHgAfaSkEJdFydRRCMQBNcEdkNrJDSmdUdNF\nLkQUNk1TceHJi0SqDSgj1Td5ztB3mMRInUkhMSJZJmhYlucEL+spBE9zX+THez0P3MTXd71MXV5K\n0I6Pj9nv99R1Q9U2B1HoJMS7du0aN27ciOmLHFwUUViNs1KUNuVcZHGi7oeBtm2pq4qqqjCJoR8l\nurmYlaA1zz33HG3b8nu/998xn83uE5nG1uC6kRyUGBg2TX1plpElmai4EZfSZH9Uh0Wsoo4mxJwT\nG10JAee8TMH3QfOi55A+l6mx+p/JbVBKNDbjffDnJKT85MNXIOyQyX76wC4n/U999GFMUaLShGa0\nVF1H1fVsm4ZN33FWVXILfZeDIIRf4Advv823v/1tfvTDH3J6ekpV1zjnSEwi3SJ1feDprbWx9kHg\n8ul77btOXBWTeNha6qY5wJ7TwGaSJKJgHOyoZS5Nzz5a78ehJ8uFgkyShDwraNv2cPvoozX7aC3p\ntcM4sNvuBCX6kJ6qbrDRlZIXGYtVyenFhWSX9CNGGXHQWAhKEnlv3byO0Z7gLMEJ1xICB3RQRIVx\n/ScSV2+dp+8GqqqRNawjNB/E2h584JVXf8B2t+eLX/xNVqsVaZpIo7z3dH1H1fToJJEU3xg1oI1o\npBKTYnRK8NLXctjojUaniTRxR2v/tN6n7hcp65MbmLj3RDTlnMU7C1FDpuGA4mjp7UUwV+Tn1rKR\nT9TrcpbLIM8/36xaUN9htZhjVUJlAxf9yGndcrequVc3nDYD3/zRW1wiOtPGLIN8YMnXn3+JH772\nFvdON+zblsF5kjxluVqyLnJunqxZzUsSI3olMSTETiAvP+cw2AM9Z72lriv6XizhOn6OWZaiNFJ2\nawyp0WRGfm7nHc4FUAlZVrLZ7HBeUBjpXBKx8hALc8tyFrVVit2+JrxLfsp/zSfJcuq2E3G40qRJ\nwvZiw1tvvcUy1glM+7uKcek2VqOg9cHdiJIQzKZp6ceRNJOMniQVSjUoaLuOzUbEzdeuXSPLc9Is\nY318hFci2q0beR+TRBLDp+45O4o+ZSoLni4N034tDfGX5YhwkPnGn1QdUMWD3kYTbfHwxI0T/u2v\nf5qff6zk8Zsv8NmPzvi3v/EUn3jkutReRAG9RxB9F3ViKI0xqeg0EWTirdNz/vxbLxL4X/HhbUL4\n6/i/v8//9dV/4gdv32bf1DgfaNqO84st+7qm6Qf2TUs3dIx2oK4r3njnDn/y9e/wv//lN/iTrz/L\nG3dP6fuedhjoHbQOGgdOZ3zmsY8Swpb3Om/Wi7kM2EjnUW8t/TAwjo5pXwB1yIRTSnJ4ZmVBnqdS\nsWM0eZoILRVD76qmpW0Hqrqh7lq0kfdsHEeZBZS5PKOzjLwocNaRpPmhCuF91+iDLmbrBo6Pjzi5\neoXTH73OnbMLXCxrnKKmQ0xIrPZ7xnGU1MqmIS9ybIRRrXNSApjLVBqcvYS8k0SySKL1t+s6styI\nxmAYDxbkrMj5sz/7M/7gD/6A3/7t3+bPv/zn3Nndpu8ksr9tG8oyJzVSTOidxzsZJkxct0orVJiK\nrqZbqGz8PkgtQZimLqKQLEw36OkgUrhRYf1l66pS8RC/z/1BkLZRgfMdSgeCYPqs5jN+86nH+erz\n06T/NKhvQ9jzm7/8KVbrI5ph5N7du5xfbBmGEW8lTM+lKZtqR3gfK+zUJJqmKXlZXmZXALPZjN1+\nL+3WSpPNcvb7/WEwFM770jYvv9uWLgpNpzTf4D1ZaiiLAmdH6romaM2syEAnuO3ucoB1Fq1yrHPU\nTcPRakGe5wdH1DRMaa0jTyq3393+w8uRMWlKkZ8wXx1x7507nJ9fEJRmtIFxlJwSrRTOjYzOx2ju\nHIMjTwxeJQfqxTlPqhPJQwngYsrlpE2xLtD1I0ZLhECaSKW9t57WOkbr+Ju/+Sq///u/zxe/8AX+\n03/8j7TVnqHvyJKMpuspCil5HN0o1nsFQofeRw8FCyjRI8WXQInXhIk6ndxO8k/CoT9IKR21Pj46\nmjzO3y8Sls9ahckZAiFofLwp+sntphSfeugaz/7oOd4Vsg97Hrn+MV596w7nF1t66+Tg1wof5HL0\nzqYi8HneCypvhm9w7egE0/WS/O0GPKKt2G7OWWVLsixBkTCOLc5BmqrY9Sa0T5qmQo3bmq5vwcv3\nnqZprFIIkocygHMjeCdCzsWSqu4YRi85W6Ml0xkERdN0JKu57G3OoqKeJI2XAaE0NF0/PlBp3r/k\nM2l9pv3TaENV7Xnrzbd49LHHWK/WnJ+LRVwKMaVrKs8z2WONISixPHuHVBFUFVmWyOXUexaLBeeb\nC3QIInDPMh7+yCN89ImP8cILLxAU1I00ME8X3zzLSbXGOaFSg/eoIMJvKbGNa1HJMBKC7PEqXOKU\nQcleHeJlc0JnpouqjujylP47z1N++YlHROM2DVHxwndIKZhybeKAZJTozwIIeqIUL31AqOo3XvwR\nv/sLnyRNMkH80Cht5GsqMEqKOb/1gzf403/63k/Qqn/zwo/4N59/il/6+GOQ5nilsaTcPt3wgx+/\nziOrFW/sfppaPVnOyNN0uv/gA/SDlaqfeB4IwhUOZpDphpYmKbmJOTPeYeM5M1gbaywStDF0fYsP\ninJdkKQJs3JOnAClksCH6NAVp1+SZuLu/IDngQeZ5XzJ8uiEwTpOLzaMo2yqddcfOi8mq3KRFxR5\nwWK1lpt93LjSJIXId02HJUpulKO1osY2Bh8UPoZgJT5lvT5CJ63Y8LKUfbVHa80f/8mf8POf/Sw3\nrl/n4t45XS+FdtY5uralXB9h0Ngh5jwgnKkJU5R+DP5y9pBBADFo6T6li3x2IcJnUekeRcJiLw44\nJwPQVIFuNIfDAUW0w0mqsI/dTj4OSJ/4yA0euX6dF9+8w7Z5kXJ2wqMPfQLbtfzDs89R7RsJQmp7\nUHEAVJp2HCWxlAnReRfx4tVruE4SZufzgn3lcG5kGHrKeclyMWO0A8oIrD4MA0VRiN104kPjECP9\nSRaTyCHrot3dW0swiq7tkBkuhoXZkRBGUi3wapal4lYYB2bljO12R5oYHn74YW6/887hv59GJE2h\ncWPPGKCuPrzNPEkNt25cpR8tp2dbrAW0obcDOpGyP7GbE0VtM66cHAm8q0UbJHEDknRJdM7piN7d\nX+4ZQpCwwZhmul4u8NYw7qV4chx69tsdf/JHf8zP/3xc++en1FVNWcwlm6nrOSkW0gytVUR0JPBx\n2munTq3g3GFTFigXJseP0QZnR4KatDbyZwAhyA1Nx4vHwYqvLtEYOTRiwraSId55TzBCNwQF69WS\n3/zsE3z1uZ8c5EPY89DRjOe//woeRT9I2d3k+nHOYoPsG+/nQkoTDcozn5e0MWhvHEeWixnr9Yq2\nq0GLVVREpvlP/CwSKyBDNcR29yxhHHrRHgVLahKqphJ9ghWhalCafpQwQGUkm8TZAYfE1YseynDl\nyhVOz8SRF6IAehgEFR0H0eBMdMyH9YzWRY2FCEjxjiKfUe33DF1/SAG3B9Q9KgTDNFDIHut8YJJP\nDaNlX1Vos2S5XEj2VZJQ5Dld17HZbnj5lVf41x/9KJ/5zGf427/7O05OTri4uGB0jrbvSKuKK8fH\n6CC1LVnUXoTYqyXvmvwMOqI3krCNiF+DoPLTo4w5pANPWpBDCJ9RhBijQfBR9xj/nZqC7KJEAQ4o\nZIjC9+Clt0++lqEaPkAbuX+efVVTFhIlEIIHF0AJhTt4x+1qx5/+0/felVb9469/iZtXr7NcplzU\nDW/cvsu9exf03cCsKLnpHa0fGN1/QSlYFivyTMorMTqi8jkoKVcd2pjlpCWhOcuyyEIM0gAePDrN\nxNkbJEPKaI1RBqc8qZG0aueBwbPdN9y4csJivqRrGykVPuTqSCK91uKu7IefoUam6zpM29J7zeg8\nxWJF4xu6XgYZraAoc6ptgzaae6d30UnKYjFnX3WYaLXyNmBtFAYCudEEnTL2ErImThjh9pxz7Kue\n1dGaNMsleMx7slRixN+5fZux7zk6OuKhm7f48Ws/jhuOoh8G+r6nKPO4KG1sJ01QUZwUJiQFD17j\nlT+gMwoVQ5MU4KLAfbL2ySQqugFZvEkyBdOEn/i9HUwWUSOAlnuv15rUaLRJCWhmJvDxh2+waxvu\nVXue//7L7HcVSkOeleR5SWZyrHU4iN+bJlMJnoa2fQb4w/hyyIR94+oRSVbgxxZjEvKyxINskH1H\nlqecHB/z1ltvkUda8EArxdyYyVY9xqThSSyntcZ6jw2eIstBeUZnybXcKLMsRXnPrhJ1/tj2k0ZT\n6AmVoY1hv98zX5ZcOTnhYrORRQxUdS2CSSM3ptMP0YIa/Mj5+Tn9GPDeoNM5ysd6ey3DcTkraJqa\n1Bg252ekOnC0WnJ6tsMODpVm90HcQBA0RKtL6F1Fy7T3nmG0WNewXs5JUrED44nuL8PpvXt851vf\n5vjomOvXbvB6+xp9P1LmixhH0FGWuTSee48Kkp0x7a5KEflzInUUaSgt2pAJjZlKSacGXhW477C6\nrEOYIHwZ8kMUDEeuaepQ0ko61O5DLYPSPP7wTcqy5KU37rCtvomzFuMTun6ArKScL3CqiweCFx1G\nkoLSpD4wtO89yB8v1ijlWK3mmERTNy3OSj/TarWgemcnm2zMvZGwujHSrzIEjqOTlGCmDjMXB85O\nxPHBErwmSRNw4vSwzoH3zMqCza6CxICKerw0QwdHVdXMZiUnx0dsdxuUClg7oKIIXEoyR+7e/fCi\nBwAuzi9ircB0GfUoL2FxeZ5z7epVfvzaWxJIiqCLOg7oaaJjcaegaKmRLiznxTrNfVb5YlZKaW5i\nUImhrmu+/vWv8zu/+7t84Qtf4Ktf/epBGGydox062qZlUZYHwXqiJSpAKMzLBu2pfHcqChZUMaLv\nE3qu5M9/4p0I07shysaArAHlPYSYdg0SrT9dzokXgjiAhJjii1YQ0fhFGSnV99BGLoqZVCV0PUZJ\nJIDzPl6KFT4onn3jffSR/CF/8Y/P8tjVE852FXc3e0IseC6LksJbZolcxNumlf0g2uaT2PUmDj2F\nc57RSsr6pO/p+140TImK/3bEK0OIEQSJFgQ2BC8DCgacRZkAqWYcLPt9zdFyAfHyZq3FOoltUSiK\nQiotEvPBrr0HJl/Pz8/Is5w79+6x3dW4oP6/9t5sSbIkve/7+XK2WHOprOqunhGmBzCKBCmAupAJ\nkJkM5BNQd3o7PoCkl9AFpTtKGJADYBZM77VmZWTs5/imi8/9RFSDnC4zoaetzcLHxnrLysyI8OP+\nfd9/wyfQpiahmM1mtHVD0zTsdjt+/vM/5i//8i949uwZpMR2u2GfA99KZ+8G8QqBk1mekXjisgAA\nIABJREFUG4aTS6zWBBJDngJgpFqbTqe8ffsWNwzsdjv2GwlivLm5kZRhLc6o6/XjCFN0mQlfJNXC\nSJfk0Kqq0fbkixJTGq3hxZmQ7A0y0h8FK64qtJHDX2up2o0RSXlKgRi9SNCQKQjkCRAQYiJGWO/2\nfP7V1/ziP/8t//EXv+AXv/wVv/zV73j3uEXXDbrqUFVD1U2gqjBtg2lqfEoor7Fops2Uq+mUtjpQ\nm/+LWdvz6cfPWLYT3L4n6YQyCUXk5maBqTRVY6kqw/Eg0eoxiCfNdDbDZCvqslwuCkMOeQxBvC5s\nJulpo8eDJCWE6KoNV8sZ18sFmkhXW2G4KxiGgZiiOGii+frrrzkcDvz0J5+MG7qpa4Z+YDKZoFDi\nXPkDrfv71zRNzZu396wed0RqfFYMKKupWynYTQ5Oe3Jzw1/8j3/Jxx89Q7JkBvqhH4va4KOYN+b3\nszJW/I9iZMhcK5PHuS7EsbisrKWpazarFX4Y2G22bB43TLspy/mSoR/wQZ6d9XaLDwGl5NnSiN+D\nkqBamVI6T21ralOTSvK0Ol0AbnDCYysdZzod8DJazgwDVTw4CvcFRsIhiYCoSWLmKIQYCQm2+yNf\nvnjFL3/zGb/67Wf0ux3h2GOUzmG0klOmtaFuGinirM2TLikMqrpl0jXAvwc+Av4q//Xf8/xqQlUp\nbKWpKsN81jHtGkzmsgzZ10giphKTyQRjq3xoy3RVXMgdPv+7AqfZPIkruVRkZdhsJgXTYj6ja2qM\nhsoqOeiTQMIpihrKx8jXX31NjJHlYpmLWGm4SmdqTMV2/92hed/nWh8d3kN0oLAY23EYEljLZDbh\n+npKpQOGKKrNkQ8WSNFTa0OlLIlIMiL0iChi1PRHz/EwMPQegyG4XqwpQmDoB16/ueev//pv+Iu/\n+J/48z/7M+qqQqVA8D0kWO8OHENE1xUxE61TknRtoxu0qrC6gWCkWSX3oVZDbfN7bDKPMSemu6z6\nyRNViUGQQtZoI7V58KLC8gEVxGhPgXDFosYkEZQYJXCQ1ir7Ogls+d8+v/m93Mj/7k9+hmlnuLrj\n3sPnmx2/un/k79+841dv3/Gbdyu+ftiQ/mv8SP41L+4f+fL1I/ePBwYX6YeBiCfpRDtpOR73pOgI\nOqAri/cJELm/kJ3FLgIE8pbsPjgMe/rhIBSJmLC6wuiaum2oW1H7dVZTa82sqal15oqhiEljVQsY\n1usNCYWpLD4FfPT4FNj1h3FCZ6san/jO9cETmT/++c859ke++vobrm+f0Syv+bvPvmF/PPL0o48Y\nhoHZTJxmUfDNN1/z9NlHpCShg1U/ZAxdioFzi+4QisT5NJIkH3oqJd49PHBzc8NyseCwF37GfDrl\nuD8wbTsO+wPaiA/Jdrtlv9uJYiof3kbpjJUKrBPzRi2x5jHFkdmOUhgtJEWjpQofnVHz15VVDPbi\nt9m9ML5OndurpCV4LzpH74/iGAm8uV+xORzZHY48PO7RVZVzKMCYOpPXKuEgpTMDOm3AK0iaFANG\nWepa4YeBxtRUKGo0pukYkkBS+6GnipY656F455hPZxilJNW3auVnhEDTtvQZ3qub5j0DvKQiOsZM\n5BPeU5Vt+kPwhGCxytI1NSkncxuTjeCwYxDmdNISvOew3XF/f89yueDp02esH1cMw8DVzTWb9Zqm\nqanGidcffv38Z5/SDwP3Dw9cP3mGnS352xdfcxwG7u6eysQqehKJw2HP43rNF19+kTtYI7JLH6kq\ni9aKwTvaqhavihALFVb2fd43zgmk8bhaY66mzGZzjsc+S3UbDvs9bba2N1azvLpiuz3SDwNNOwMV\nGfqBtm4x2qCI4yRU9rNB63SaBqFzdyyreCZJp3lS35EnllCmNWcdKIiVQu7EZKwuIxmBpzwuCCSN\nttIU7Y/sjp53jzts01BPpvgoKeOVtWgF1ii8CyjkdzUKSNkyISnaSvD5w3FH4j8waWqeLm7pasOA\nRxvF+vGBrptgdOJ47Nm4ntlsRlVVHLd7jG2AiPcu730JP5Si3QlnoKi7EJluCuKbVFUGHyQ1u40y\nkejaBmMMX3/zgrau2B97YtIEH/FNRaMbmqZj5wa++eYFf/Inn4oB6HYjDs7djP7YUzU1Jv2wPjJV\nVXMcjqQkkEOIEWM1Q98TQ2A+n5FSoKkqfJTzMOViNeWCXEVOZ0iQ5GejFM5HdvsDXdtijaFtO7wf\n8E7Uk95H/uZv/oY//dM/5V/+y3/F559/znG/o++PuNqhEcluW4tCVhKhT1YAhRdWpqEqCzrOjVnL\nNFKVAlopUGUaIaKUQuoulfpJvCKxAsVodeRbplLUyx0SUkmol/1zNZ3yV//qU/7P97iR/y+kNX/1\n3/9zQkx8/vI1b9+teFhtGHLcScGHffCsDj3w//D7zB1jSlxdLQgPD+JunIMcq8pCEu+jyooNSbBp\nnMqgGINrSTCfz4S/ODgK4UcsSDpSkGmvFD8mQ6xCE6nrmknU7I+SCjAMPc47aiuBlqvHR66u5rRd\nh/NOlJ7O5YxAnS1b/vH9+u31wROZmCW6Vd0wnc+pmwkpy0p/+tOfiNbdCMbvBocPwipvmpqqsvky\nVqfphhY/hrK5q6rOEFU2nVNq/Pv1ZsP6cY2xlsl0khNwIylE9tudyFojLJdL2qZls90KB8cIS95n\n50GtJMDPWit5EBkGKcWJ1uLQWcb8osIxZ9OY83F7PsyNyRvBiHdHHt3HrOaIMWSLc5/JoDlwrq7R\nleXgBiKKZjLDVPbk8SEyFpIPqBCxaDEW8wEVk0ilUyRGUayIxDvlKUck5tDMygrRdHvYMgwynZrN\npsxms+zfk1guligloZtjMmnmaxQCdpHP2syX+bZDs8oPt4wkJXMlup6b5RWTVojXk65F58tIJjyR\ntmmJMfLu3Yo3b94ymXTM53MhjfXipNq0LdPpd7s7fl9LaYlRMNYyXcywbYVzHq0tz58/H8mgSmuO\nfY/zgdl0znJxRV03OUAzh9opOQDqugGkGB6TxuE06laKEBPr3Z53q0eUFkb/sReeRwiezWZDQIrH\nq+WS6WzGZrNDaUNlGwbnCV7ceJOSwNCI2K7LP1cEEj5FlDXZh+I0gTGZ0KfLmF6JLFWmkDpPUfX4\n38/3xfgakhycIUqEgDJl4iMqPpSmblpMZdG2ytCNcI6CdwTXY4joFEh+IKUgxpwkdAQVE9GLE/i8\nablqG67blraqMVo4Nbu9qBi10swmU+bTqUxFKiNhjmiaStQSEumQOXz5eTfaZPhYvG9IWsivSbKs\nFIwqp5QzokxK3CxmzLuO1hq6psZajc6Tm8ENNO0EpSzvHta8fPma5fKaJ7d39L0EYaJyYKv94H7z\ne1mH4YgLHttUxBQkpT1G6rqiqWtm06lAkrmArWpxQi7woxTJZnwdMfMkyzl/PPZst1u2ux2TbiIO\n7QpUEqgt+sD/8b/97/zyP/2Sp7dPWC4kj6s/ipq174es+DKilCn3DCb7hElNIbEEerw7VDqpT8/j\nVhInj5RzBVPKEnIoAYnlWcl8S0OOHRj7EYp/WFLZekAbySisKv7Fpz/lf/23/wN//sdLfvb8b/kX\nP1vwP//rf87mcc3//R9/wV//8te8uH9kc3QcPbhkcEnjksJl+A42/NemOk+v5igTMvTdoLW8984N\nkBK3tzdiqxEcw5BVePlZPldvxSDQaoiisLPW0rRNnlQOJAKoyPawx+XnwFpLW9cMrifmcEhbWYyt\n8CmRtJxH6/WGYXDcXF+j83tMCvis4itF6HetDy5kXnzzQkIEb24ZQkRpS+88SVkm3YSubanrenzx\nT25v+fjjj5lMJpTwum9L4U46fdk0Nh/oRmuZiig1SrQ3uy37vci866Yh5K9/fFxzPByJKb95XUsM\nQYquqh6JlJK8HRl3dSkEQhzH4nqUXgOZqFbk44k08mbKxSMfuLzpIfq88YNU8+OBX+yWTZ6uGGxV\noYxm8JnVrZSYhlkrF0xSyGBSQ8i5RYBV4kVCFOP1qBKeyJC8XBg6EVTAk3AEMCo7h1bs9zt8cKQk\n+PRyOWc2n+KGI5VWdE09mrfJ5EoCHUvY5zAMuCzBtrnLOo8nSCll9cpJvaVS5Gq54ObmiuwbmwvY\nmv54ZLVZE0Lgpz/9CZNJx9dff8ObN2+4vb3lk08+IabIbDrNREL/oVv1n3x9/tkXDIPj+vaWQ7/H\ntnac9BlTUVe1mKRl5v3Tpx+xvLqBpIhBOpqiyBJXXzCVTECCzxwWVQh21ZjkWzB3FxKr9VrgpbrO\nE4LE4bhjt9/motzQtd1oQWAqIVt774heOmCti6EcI2m2OAyX5OVyCNlcxI+TiPzZFbWCTFzk+ZVn\nK4wHuny/DLfqhK1k7ytzeo3OOVyG1lBqFAyUkX7MsFg5WG2W8qYkShOBJooHiBRnPsY8HYv4lKgn\nU6yt2O8O9MPA0Pc5vHTOYjGj7w8Yo5hMWoSrKZlYzrvs61JhENXO0DuMrsRlNynETLMGMiE+ivIi\nuEByDqsUV/MFt9dXED2VhsrIdGm/33LsBUJ/cndHN5nw+s09L1+9ZjFf8vTpM4yxzGZztDY5YPaH\nWyGJ7UZKEVtpbCVkbaMVjw/vSD7w5OaGqjL5DBV+lJzrmROWJ9xliqcz3KCzBYEPQcJBC39KWn6s\nlsJg0rb8/d/9Hd5Fnt19xGQyYejlQtZaszvsCdFna42TjLpIhYqfyRgLkSQ7rxTt5Xci/06lMBdj\nOnM2hWRsZgsXUNKfReE2+iupVDj9KC3cz6qqcnMsak4XpXH5+PaKj6/muMOBv//17/j85Vs2fSDZ\nhmYyp2onKGNBaVwSk1VshWkaurbivwir3syx8kfQJnJ9veRqOZeCM3q8H+jaNjsGy/uhkAarUC4K\n0V0KOD+Sn0OUuBKTVcHWakokpdZi5SDDAoUG6spSV4b+eJDU7JiN7bUYJ65Wj2y3W57c3o7RKjF6\nsXbICsDvWh9cyGgt4+vrm2uMsez7A6vHR7qu49j3GaaRynY6k5Cnvu/lMM+5MsWtsBQ0AivJhnPO\nv0eTPR8FSoy3THoOhwNttnYehgGdErvtlkQawyitteKKmgurgmuHEIWVHeXylQrRjBMiLaFLFL+B\nAjelmHImkz4VW6Y8tBI7YHLHJvhi7ubQY5E0Prz54HbOZRdDi84uvbaq5E+lhM0bTMVAch6dEpXW\nWAUqeIgeVSlxYrMaKvmrI0hxEz3H0DMEJ+S5rErqB5lykKc1XdfxuH5ksVicVEgxsttuxylbwZHL\n5yLGZ3HkMhU78uIdI+ojJy7GwXG1WIhZXvZ+0FrjM//ocf2ItZbb2xuatsnGfV9we3vLdDodyWLF\n1fOHWNbWzBdX4tvSWI7Dju12R9sIfydGqKxEzXeTCWidfUIEIpS8LztObiCKjDeTCUqX917noUXi\njBKTrxATvfPZlr2WcXUMbPc7fMyGhloO3d1+T7ES8D7zPJKYkqU8DSzRBVrbzMcxYyFznlh7OuhP\nU5cy7ZQiXZ/9/4wrk1+P/Jw0FvRlaje4/hRSmQmMOsO3RkPVCA9pyKPukESOHBK4BElXY0GmjRYC\nvwKXIlEpeh+ISiz/k1IMx2FULiokYqNpGvb7XVbghXwmubFjtaacDyKV914g3BiFnDgM4lRebNpT\nyid0nlBG57heLlgu5mIUmae33nucd2z3e0xVs7y6oqobHlaPfPXVN9ze3DKbziRp2DtevX79B9zt\n/3j1zoFRmMZSNzVVZSiy22fPnvFnf/5nXN/IlMRlHzAgX3rZtNH70TDO5rPEB/HgSkmhtCEicR3G\nGOpaYh26tuWw27Hf7og+sHr3iFKa6+U1Kv9uMZNFD4fj2OBaIwaKKQi4SUz4wZOCKGhqW4tMOj9z\nJpN2vZeGSevTxLlIrE+T09NzUV7nSD8oBMyUiJT4AMmVGpzH+8C+73n15p7ffP4Vv/z17/jFL3/N\nb798wZvVBocYs1ZNi60b4dBVwh+tcyRMURcaU0kG4WxCbXfU9j+w7Ab+2Sd3XE9agWJNwlrhu7RN\nRVfLxF6rxPGwo6mtRDQkeUabthk/pxgLR0yUdCFITlqxkajrOtstxIJ4iWt7U2OsZjJpuLm6QpMk\n5iPzRqXBkuet7SYMg+PVq9c453LGVs5i0gpjT9Pq37c+uJB59uk/42Hf8+bhkWbaMpk0HI87tAq8\n+Oprjrs9w9YRg6hygo/MZnORpsbAZNJlK2NPVQlJz/kIxuIjhIiMnVD0zudNHQjeoHVD08zAiHPv\nartDGUMwij4FVrs16/U9IQ60bc18ueDxccd6d8Q2E1b7HckaDtGB1ajKoKwYNGlt0cqSooGosKqh\na+YS8helYDBGi4wzJaq6Yn840LQtTz96iq2yrFXCO05TJxlQyqHlHCEOxDSQYo+ODhsjph9ooqKK\nis7UxD6BMexNYjCQKoNPogbKkhWG5PA64pUoB6w2hMGJXwMGhSVhcD6x2zvW2x7tNRM7wzvFarVn\nf3D0MaJqQzeztB3EsKGtK9q6ghDwPpN9heJPSDCEQO8i1jaQNG03xblA9IHaWLqqojYafzhQpUDb\nTEk+oEPPs2XL0nr0/pFWRZaTKYOLbAd4+3AkqQmz+R0+GN7eP/Kf/vPf0s06TGXo5g3Lm+9OQP2+\n1t2z52z6yOvHHaae0TYT9scDPni++epLDts1/W5L8uLc6d1A102ISkJC22mDyXtf5LtN3hNhnGiU\nDjU4h4qSy0RK4urZTWnqju1ux2a/xdTZzVNrttsdq9WahKKdWKbTht1uw3a7p64bdscDUSti/l9d\n12NTUbomRZkAVUwm06zAK1ECGmPsWIiXA/358+fYyp5xbsqoUyNZTXIBBB9IIRsihoBKkSGE0SG0\n0mCSQiuLUjUxKFIArStiUqRI5u7E7N8USdGh8NmETHhr2hiSFi8PnzyH/Y5+t8Moi9YVBx952Pe8\n2x85eCkc55OO2ggs3DQCg8cQ8T6hlLxmo8H7IdvfixO4rawUSDERQkLriso2GF3JmRYVXd2SfMQk\nWE4mTCoLfqCrLdO2xQ+B/e7IarWmbSdMZzNA8+btil/96td0XUvXWWbThqvlDwerAjw8rtDGcn19\nnc8iUe7sdnse3r3jqy+/giTQTdM2o6+Yzby5mE7xBWMeElnJpnS2rRCRxWr1iPeB6XSWJ/yRpm6y\nCWE/Nk/zxYKu6+h7EYzIpNKP8SpGlUTslJtlxiJ8LNLPYFRgLNYLt+ZciXf6e8YmtqDrUosX35iU\nn5zTdD4RGbwQ/kVavub1m7c8bnbsjz3r/ZGkNLbpSNpic9K7Qop6UkQliRox+f/EJM1yhEob5m3H\nrLLMm0qc9rXODayY+q0fV3mKoojBs92s83tbMxyP+XUI78lYPUJ0pfGQZku99/npTP8IwYvARUkT\nG0NAJQnlvF7OMDoRg6OpZNISY6B3AxHhX5lKXNK/+eaFcGomU2JMo7nuh0CrH1zItBMJMXv5+hVd\n1/LT/+anzGYdbdPgBjeS4kIIPHnyhMlkwrt37wghjmmo5dCW6PosR81dWRzJTCcyIZyMiORQlKpe\nUlbFgK1rW7G+3h/EEM8UnxXFbrcbgw0TQij23o3ppoWRrVSZsAgWrlBUtqE2lbDU8+9jjBEyZdPk\nsK/jSTbm5WEprqclE6ZU6nGE0OT1UCR56eRPU4jF5QEs0w8UOOdGAlaZIhU4pxwK5+9duXgSjLiz\nyhuxHxzHY5G710ynU6qqYjJps1opUVWVVOF5PFyq8BC8jOjzpSbmXQINlq5BAfv9XkbFiBnSYr7g\nyc0Ns6kYYAn3SB6UzWbL0A/UVc3V8pq7J09o6pqXL18zDAMhRNruhwuNvH5yx2Fw3K82LK9u+dnP\n/pjZfEbbVjg3ZCMuOVyuFgvm8wXvHt6x2/f0wyCvM0M+oKirWjqSb/2cAmsWgnj0HqLERBz7Yy54\nDNoYJtOZTBxjYn/Ys9/vUFpxdbWAJKZS3USCPGMWjoq88cyBmsxTyDECMQcXam3GjrQc4ErJ14UQ\nWC6XbDYb+n4YpzaQeYEpgYrZs0N4DiqR97xApEW9VFRPOnMaQFyIdX4GS8ifDz7zAeIIaaToKZEI\nIbtGl8ycEMMYcCrPqozmj84xBJFv26qirRuWi4UUVDn4DiRkT7h14qFT3kHnnUyZIU+YzPj6rZXL\nJ8XEbn8YM3IUirsnT7heLqitIXpH2zQU6KXve7a7HVXdMJnMePb0Y6qq5uXLFxyPBxSJ5WL+Pezq\nD18xiqLr9vZWioHKkhL0w4CxFXd3z4QPVtXCEdHFaFSiN2yeKJSi1xg78mMSZO6YFL+b3YHHzRal\nNXVd0/f96Ie02+8IyeGDo6lqnjy5o+/7bKbZkFCjYWghzut8F5SJnjL2xAs7QwlK11+dcQBP3DaJ\n5dDmBHOeuGEnwjswnvchxazUE+mycC615KzFSET2oKnqDNWbkZMTvBdDOS+IgyFCdMTgJGWdUtvL\nxIkYBRXQJt+3ck4YI5/TdrOTaTCKadexnM/F5E5B0zS0TYNBMZ9OKY+dwMDyOZ4Tna2tUBjhieU4\nCK1P7v3lTrJGY5UQ8e9urmmtZdLW1NZkKCoRvZiizucLYoSH1ZqXr14zmy24u7uTPXbsR2j7960P\nLmRWqzXr7ZZ+8Dx5+hGvXr3CGEPbtOz2O5RSLBZzmrrh6d0dd0/uxP4+1yQpnTq38vCXCn3E3eP7\nIXXl64uhnnMuKzxOWP6km0hOx37HbrdFoWiahspaNpuNQEHWjiqplM5ceEfCbBiLjBAk8Eui0yMp\niglYSaC1xrK8usI7z2q1En+WpskVbJYdpoLPnvwLYpSHRxxe879LZ1EHnARR3y5khINRjyZmWp2M\nyIrqJJ19r/P3Lt8QUmBkCMD7bMBmLFZXtE0LSiSqqnjpnHcrGedV+VAfBifcjcwolzFkxkczBwKE\nZGmrivl0zmwmDr5N05CItF3DYjajrSUyPgTPbrfLsfUepQ1DPxB8ZL8/kr57L39v6/7hge3+wP44\nsLy54eWbtxmaMxwPe1DiklxVFXd3T3ny5I7d7pAhG7H6NuN776ULjcW+3Ix7UhiCKnNkTv8vxTdk\n2DP7slRVhdWGfXY8LZOduq7Z7/eAjPFlTCs/P2ROWIF2i/uo+NmEMzVGfk7J7s1JIiiurq5wzvHw\n7mGEHU+dqXSkElcQx3/vs+rn9MyHEboFRr5VaWTKgai1FhhMW+lQzyCuEE7QF0AKJyM2ImhjxU08\nRrquze9DzLBnj8jixQelqTSTriHklF5j5fdRWi6+UjwK7CY+L855IS8r4XeQ86O01SQCm+2Wqq6Y\nTkUePmk7ptMOaRIsi7kEA9ZNw+ACh6NjcCHbR1QMg6c/Duz3R86a4B9kuaPDmhprpFir6hofPF03\n4eb2jvliSQwiuFBo6pEPJuRQnacCMUQJVVRqlNKbEmmSp35ow9EFNts9plhyuAFUoh8ObLbr8c93\nrdg8DIPQEozRDIMTboUXJ+IxA29cKkO2pVA5+TgVPszo7JuKHcGJP3PidMZxLyt1FmmgSpELxmZ/\nMS1cT2OFeDwM/bjXS0hlOuOHyT2oKITi8nvFJLSEqMTbpcBBCYkBiDJGYvCBpHQmk2u2uy1ucAy9\n7PvpdMJiuch7OTKbSERHyA0mST6juhRZgBukWbemRPwotK6wph6f69zJiEGqc6QQWEyn3F1fU1uD\nihFrJE1epcDhuOdw7NHG8uTuKVXd8ObtPW/evGU+nfPs2UdobVgsvjsw+MN9ZNYb1psdk9mM5598\nwm9++1ueP/8Jt3dP6AeR4ZHA5Vyi65srJpMJpQMth2zTCHHNOTdujGJtft4pwmnUV5YEV2lRM4Rs\n3lNJqF7IlvcxBuqmFkJwkKwkkX0JN6Su5ZJNQSrmkrVUqvLiZ3OS2p2mEUppppMp1lgeViuOxz5X\n0KeRaSk0ZL1fWBitxSgsCb9BEnWFRnx6SLLEWf5F/i7pTH0lXXMxKCvvHzA+bOfumiHKJKBp6lHu\nftjvORyO7Lb7kaA6ncyIUQi+2khRWdcVxmpqW41k5VJAlcvGe095BeXhb9uWtm15fFyz3+1pu5aq\nrpnNZyzmMzGwCuIpQww8PNzzuH6U6YuXCc2r16+pqoYYwTtPCqd98Ydeb+7f8bjbYeuG27tn/Oa3\nv+OT58959uxZnrCdOZpqzXQ6Z7G44tgfBS71IXeYTZ6IDSPPqEzNyui28FT41mTOOXEELvsjRjEi\nnE47Yozs9/uMpwuHJubPve3EpRn4R4excMFODUaBncZ/zkZU5aBvmxaFZrPeorXJk0g/dkxKZZJ3\n5k+cj+JJKedtCZ4eQsjdeGluYm4E0shTK4V4iXcQu4MMg2UM32iTfXh0DqcEYcEI/CET1Fak78Bw\nPLDfHdhu9yS0nBW1heSZdFX+3YMQlLNvhjzT0pWewxQhjDpUKRaVYjrtqNuW7WHHdruhaRqMViwX\nUyZty7RrBWLMnlMPq0d2+wP7w5GIYnfYc39/T1XV2KpmcFny+gOuGBI3V9fC4zN1nhJrprOZOLKG\nwGQylfc+T6eapslFhLhRhyB8onKGjYWyjG7ka7UmxCRckii8qMl0OjqNi/pyhw8e54R30zQCn/ZD\nj7XZPTuIs6yoRYUXZnPqvMoCjiJYUJnkPQxD/r3ie5NSKWLO7gWdybv5n0+8T94/k22ZTCVshquK\nL5nEmqjxWdN5egly0dvK4p3PfltpfA0JGGIiKXkdkQRajDUxCp8iAZlb9iGIlNxUIszpZRpss5DG\nGs1k0omAxlZopUQNnBKH41Fk5+V1ao02wqUJMaKVwfvI4bBncIMgGLnokfNQzherNf1BTCNvrpYC\nDccgoc1ay+vLnld12zFfLDC24mH1yNffvODq6prFYsnj4+N37tEPLmTu79+x2e4ZfOD+3QMPD4/c\n3N5itYRHtU1zChxsamazOU1Ti4eINfmNZHyxPoTT32cM7hweeU8Wl7++kBDLnxU1WuvBAAATtUlE\nQVSyUb7EjWHIBnvWGNpaPFgOxz1aG46Z7BeDkBn7oR+7U2Fsq7NixiA+G+Wvslkn3ZSYEvf396SY\nJNxt5MMwbk5TCJHaCDQ1qrHk+wQlhnghxTGfQ0hTKUM579t8x3x4FuxUG/3eBXQufT0vMsrDsz/s\nqGrhAJSv8U6cRYfBE4KiaTo5XHUhV8U8PUBwVqXHi6YcRl12Axa5/clG2mT/Aoxm9fhIPzhiCDy7\ne8psNmE67RiOO2qtuVkuAOlwnRMDtrqq0ejx5/S943G9+dCt+k++VtsdD6s1SRlW6y2P6y23T24x\nVowPq+w2KknVLfPFgqZtGZxHm5PRnba5AwxliibfP9d/ACfJcyFEZljW++ynkIvuklFSGgSB4ORz\nr+sakjjPismkG/dUOAs4HTtPyjMn084Cp5aiAKDrxKdis9nmad7p0D6fopqsMioqRcicAiNdsNQ8\neiTXkk48BNm7Wf1HIGVfF5VVImK+KHi5zsWRMfK8VcZkjlEQKCEmnI8c9nuskf8ujuEB7wPr9ZaQ\nEj43OlqRrSLEl0kpEPMTJVlBKeXp7Yn4GUKg74ecoCxFjQuepMCFwGr9KE1If+TZkyc8ubliOmmJ\nTiSv8/mU4pwaQoIkjV6IAg8Mg6MfPIdj/z3u7u9ePkra9ddffsFhv8P3g3TX2QG26yaEJMnXEp4p\nZ7ZCOBCScXXig6X8uYnE3pOCxJzYXCw3dYtWmtXqkfV2g7ZGPgskBuVhtRJeTGWYzSe44chmvc4w\nY8THrOBMAnHWdX3ihOlTkKmWKpWmafN/y/C+JqMEp2BX5xxd17FcLnMRe26bXwpngeG893gnhpfB\nB7KFPCkbIsYkEKkUzQVS1qSQUJHs4gsJIbGXGIWkMlyVvW1Ks6CVTHuSQoQeQUQxru+lCKsqjoNn\nvT+wysGTWmvauqbKlidNW1M3Apm5weGdxFLIHZNfkw+5wDGjsCXGlPlu2dokN1t+kILFag0xsZhN\nuVrMR21Kl1GTYz9w2B84HI7MZgvh1SrD61fv+Iff/o6mrrm6+m5o9cOhpc2Oo/PYquGzzz7nfrXi\nzf1bXr16Rdt12QFRuC9NXXN/f89XX33DixcvJCytrtjtdidyIN/mdcih5zJrvcyly4YpaqEYIzaP\ntowxMlmJkTrDGcfDgYLlDc6x2+1PEAlQ17XIinOFqZR6j3hZukxRy4jSyVpL107oe0nWBqmaZeJS\nbJsLRCCdZsrQ0fi7WwlOIx/+LrPtbXYsTipX1rlYCCGMD7/Wmq5tRtVLzI6jAjv48WA9nwqV7wHQ\n90eKd0nXdVRVjVKa/f7Iw7uVjOmjXFZKy+/UNA19f5AOmlO3HGOgrkU+q7QW5938OxVYojii1k3D\nbr/n5csXgCiYnn/8nFnXsVzM6Y87QhjkoagMMRdPZeS7Wm0YXKCuW1T64K36T77ePawYQsSR+PzL\nL/jm1UvevHnLq5evpaDOn0ublVlv377liy++4KtvvibkaUVflH2VHfd7uRhlMkKeGsokMMY4miaS\nk9nlcxJoyebJWIqJ2kpac+FvGGNyyvB+nMbIQWPPwt5klf0jLqyynwv2Liofzc3VDf3hyHazla7c\nViOfTGs7FsdlkpjOoCat9fj7y9F9IhDqzI0Q3nLhmwh8GYJMOErXW5RzpyJMJPllWuNdfK8wFE7E\n6fXZSlyRq8wbcM7z+LjDBYGLC/xUZfuH4Fz+vfTISyjwaZGlNk2duR3iRKtSJpYqTTud8rB+5PWb\nNxk+CdxdX7HoOq6XcwgeYqCpq3EPuCCQgFKah9WKEhXxA6KqAMwXU5SKDMMRFTNs4D3L2Zy6rtnu\ntuyzwkpbBRr6QeDgumoA9R7/sVy+RX5jtCaFIO95EnjK+zBCJdpqJrMZtq5JSbE/HNjud4ToWCym\nNLXlcDgQYqJuW4bgwShiiuJ0HcvkPU9B8vQuZpGZMSefM8j5aPLbImHIAuMuFouxcTuH8dO46UsM\nh5YU+EL/DR6VRD0V8oRRLnTJIkoYlK4kriZJQ5Hysx28l6JHCeG30pCSH3mY0YfsIybT4IhMIgmB\nMHgm7QRtaqI27Jxn7xMuJYwVjtjNcinPWeb7BOepqgaV1XkpSVMRghcEI9uNoFKe4GbuU7YjaFpB\nYY7HAedE3OD6gUndspxMJJoheIxKtFWVGyvPavXIse8l3Lhpubv7iBASr1+/oj9+t7P1B98OwqZu\nGULk5Zu3vH17z7t3D6zWjxCEbDTLuQmbzUbwZO9YXl3RnuX4lHHiuQy7QBJiTicFgM6XdHEDLsWI\n1jKNKFLhwAknJyHZTxnvTHmczVk3tXp8zH4FUnkXDki5+GVcLNK2qqpp2walZKLjfUChR8l0ST2W\nAujkB6K0uEeKod+piCoHfIiBwUt2UQnsKyPscuFUeeJUNw3WWoaMcRZy27eLlnPCWvlr+V6QGIY+\nF3uFYxDR2uJc4OHdCu+km6pyZ2JsGZ/KJKZpa6azLmfRxNx1OKaTCUpx5h9zMkuLQTqQ7XZHClH4\nRLWla2vubm54enfLcbehrmW0WaYFzgckqdYQA3iXsPbbNtx/uJXQUkxhePvmnhcvXnD/9p7tZof4\niETZ4/nS9MGhtGI2m4/EczWSs9OIMSttIMueReGROVUwBqgV3xVjCnNfvGmc8yg4+S0pNcpeS1E7\nDFkumY289vs9zrtxv5TuFBgxbhUTJd26qiqmEwn39F72S+lURwgniXLnvfcrSb5dVIqUX2NEk7Ql\nJDgc5JIzmXBYIIiRF1A6vkqgzRImejgcTtCOKtlP4gBcWYsmP/eZQ2QrgbGPx6MQGnNRJGRLyV3a\nbHf0zlNZkboapZl2rZC3c5vdNA3T6SQTJqEfepzzLBZLTOH35HOjrhpSkimGyhC0z/B1ay3TtuZ2\nOef2Zsl+v4EUqCqNy1OaGEWdqLSlHzxFWflDrq5rSCky5ItGLpuGjz7+mMViyWazRelMqg0F/su8\niVwciEroZOFQTDO/LVJICQY34HNIJ0ixoVSZAhiG4zHvBSlOplMJS+2Pvfg5heIvVFzkT/yywgsb\nuX25qD5XKpHhejlHFVVdja7x2812tPg4bwgKxKjSyeddQnNlklTM9EpBV5ag60WwwXiuC9etGjlv\nxW2+mMYWtV55XSlK0UdK+essg3Piu5YnUqXRlNcrP10gIU3b1NRWE4KjqiROJsQgd1N+JpXWeXIu\nPL9hcKOBZ8w8MTL0lnRiu9vhvWc6m9JNGqaTCbPpFJsVwE3TMpvN5F5oW469wwWISWVKSEU/DBxy\nYOXvWx/u7BvFv6GbTvE+sjuIG+OxP8ooNAh8UGVFTwgerRT/y7/7d+LGezyOMqoRgjEn74pUPpAM\nJZVRtMof4PjfctFTIBgNY7fWtS3eSYaTsXnUnB8mmYIM4g2RN6lSJ6fhsiGEcJV9ZmyF1pUcTL6k\n/ZqRECZjO3v2z3lMnhgPzfJzKATafPA557L9e7Gylg1jrZCHixFdeI8bk7kDWo8dxDkx+twFsfAg\nQFQiu/1OcGsl3iFCZIaEYrMRiEkpkZYWYnbd2AzpydRkOp1SNzL5MkaspK212S8lMxLPChmlNU3d\nsNluePP2LQrpRJbLBbXVfPL8I2orCadV9kfxXpyK5XPXDL1ju9vzsPpunPT7WsZU9L1IAX1weO85\nHg4M/TBe/Eop4SFVhuPxQEiBf/Nv/i3z5WIs4svnUUbchfBdpjYFWiz7CU4EWeey7DXK/hK+QjGu\ns+M0yOXDqxxcevzzJevLvH8AK957rsZCuqox2ohqJHNkpPkocKt+b1IykpO1QVubU8GlSI8ocTNV\nhsFLREG5MNJ7ZnuGuqmomzoXxyGPuQufTiDgUU2hJZVa5URjmQqRuRGMU99SyJzUj1JYKGNZr3cM\nLoKWAi2EgAJxuPYCfVS2ostk7hJG2PdHCq8ohohBTCwrkw3P0OiqZrXesFpvIEFXWZ5cX2MU/NFP\nntNUGpKna2u0lsmpD0F+Py0u0avHDW/f/nCBqQCf/tEfUVmxl08pjhd807bM5wvadirQqtb4ILL4\nKoekStgkY5Mn5HbhAha1T7kMC9dkVNApPTaIzjnqqmIxm5OiFKchq+y6rkNrnXkypwLjVKyfGr6Y\nuTblnKyr+lsQqx73TUEPJt105O6dFJwnKoTWpV4LZTyTv9c59/HEowuZ5yhV/Ak6kj90EnkU+Hn8\nXXShEgjXEZWn/aVYjCk3JvJzvZepfte2ohIFhv4o/MjdnpSRi65rUCpirUKrJGRfrUYDP3JzXpqm\nggbEeOKYjkMDEm3XMJ3NGPzAarOi7RqsMdzeXFFbw2w6yd44EuXhg5Dj94cj290BH+Fxveb+/kEa\nqrr+zj36wYXM7tizWq3puin9ILkJKSEW7AhTe7/ZirtlCLx8+Yrf/OY3/MM//MN4WJ3DSYWkejJa\ni5n9r8YNVFdVlheXyjzmD/C0KQuBuLirWmvY7iRgsFzsZWpyrthw2ZwoZiXRt1ep3p0bMiG2yn4a\nMvosZnfGiLtjXdcSew6n1/veRj6RK33G0ZURhYp04YKhFnKukMJkaiPTDsbJVD7RT11FPqDLKpwj\nwfB7ghfMVJtTLITWJl90cvDu90ec62XMmz0+tBZitaTNDqDeL9DcMIxxENZauZRz0TVe7l1LWzes\nHh4A8Ry4vlpy2O+wCp5/9Gz8M7aq5PDLEyeBTqCyFdH/cNKNw6Fnv9/TNA2b7ZqmkewrY+xYhGw2\nG+GpxMDD6oHPPv8dX3z15WiwJQ+8GTuzcWqV4aMSFDk6TZfpZT4lVYaWOOOtgM77rspwoRpJi+Vw\nNuZU0I8H6Zk3RDnkzVl3fCIlurGwKYUVnKDg4kZ8DlnJAZ+tDYoDb1KQVFbtqfESK9yulORnBh8k\noPR4lKlj7pTP3bRl34uhovxZkbKec8RivjgP/cAwDNnlW+z0y7SneJ0kpdntpYAgyV4jCdeHJBya\n0kiUM6AUbrvdbiwaiRB9wLmQf7/EdDqjaVvu370bJeFNVWWjtsDHHz3DKMmgamqLNmqcmPm8X9qm\nJfwXzqc/5Pr055+SyFlh6qQ2reuW5fKabjJh8B5bV0L+9T5HmRgpyvJ+PUkg8hTZnAxSCyesFAjO\ne+R6kmaz67qcmSfwjfDyhMNXzrSYDe5CjCMvrBRBQw4jPhdIFO5WKaLE5daglRl5YNPpqYgpDWr5\nvucNgS6Q0tkEvvjNQObBIQ1ILPyadO6QLXww+b5SDDkvVhjy/TV11aApAwDh1lQZFqtMJYV39tER\njpjjeDjlWCkF3jmGfpBJZO9yjI1GI74vbVtLIYNkrEXECFZniPOcsmBtlV30BTZHZdVVkkiUIXge\n12vcMJBiYNZ13N1eM5+0VAb6o/DXppM2K4UDISQUGltVueATmfd3rQ8uZLrJlLqp2e8P/O6zL0bY\nw1iboRrFZrdhcMKOfvv2LZvNhoeHBw7Hw6iYOSehnhcyBS9t6lou72JfnjeENTbzBMKIHRb8v7j0\n7g57mXhk6GNU85hTpX/sjyM/JcaY3+SyWcw4NneDxw1+hJpO4XjlLVMjViRkvZI0bEbibrkYTrJP\nSZHuB/HfwIjsTgoAcW8tMMB5YUISQnGRX4fcVZ6PTst7e+7XAIwd9ZBfZzcR0qatKpq6HbvT/f7A\n4IcsB5TJkzWWrm1Gz5/ghHg5nU6ELNZ1Z1MAqZqHfAGmFEc8eTafcTgeefPmdVa/iH/H+nHF9dWS\n2+ubXLTEcbLQ9+JzI1Hyhsn0hzPEs5OaalKz3jzy1Wdf0eqKWlsqrdEpYonE/oAOnkZrXn75FdvV\nmoeHdxnukYsrBeFdODdgrM2OtIUqiFxyMYk7ZJIIChnVnhQzEsEVcSESUkBbOXj3+z0qaZwLOB8x\ntjorlgEtB0vvB/GUyaZULgYCWRVhJG2+9w4XAj4lSZ7NnTQ5W00KKz3CXQIpGipbi8GcgDwoZfFR\ncXSePgT6wY3yZT02jpGEE15Myq8vc9cSAlUYXaankZIibzTyXiU5sB2ek/eNISjLzgUOLkhQ48Fx\nPV1gEAVG3TUc+p52MmF32DM4R9uJPXtVGSpr6NqKtrH5shFya9s2cnlUFhccRzdg25YhiZvwMAwo\nAin0uP7AZDplvdvz8t0jTmkmiyXT6Yzt+oGbRcf11QQ/DEBN3cwJ3tP34tIsZ49mMv1u+en3uT7/\n7HfilG6r8VybzedCMncueybtiEnOwuMgTY+tToTZQoKNmcg8qtBMtt5ACMEhReEKUs5PUYxN28lY\nqBcV0NAP4wSyTMmOx6Mo2lIcYRl7hgQUkvYoofYyHSkwZcpNY9dNmUym+MGNVgYCw1QZ7q3fU9QW\nPte56k/k+/k+yJMSgXBPHLlzeKi45BarBZLwt5qmoW6a7IjtTo18jkPwmeN5apaTkK9DEguM7DtW\n59Da4gm1P/b4IKjAbDaVgFatRp+mFFP2bBOlV4n5UZl7Vtf1eCf7kI3wYPy66XRGSIk3929JJAY3\n8Ozulo/unrCYTrA6EVzPbDah65rxffA+5Lwuw2q9Jn5AHa/OSUuXdVmXdVmXdVmXdVk/pvXDSUEu\n67Iu67Iu67Iu67L+f65LIXNZl3VZl3VZl3VZP9p1KWQu67Iu67Iu67Iu60e7LoXMZV3WZV3WZV3W\nZf1o16WQuazLuqzLuqzLuqwf7boUMpd1WZd1WZd1WZf1o12XQuayLuuyLuuyLuuyfrTrUshc1mVd\n1mVd1mVd1o92XQqZy7qsy7qsy7qsy/rRrv8PesjX6A+sN1wAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "####### compare to ect\n", + "\n", + "test_data='challenging'\n", + "mode='TEST'\n", + "imgs_dict = load_bb_dictionary(bb_dir,mode,test_data)\n", + "\n", + "imageListECT = mio.import_images(ect_path, verbose=True)\n", + "im_ect=imageListECT[1]\n", + "\n", + "name=im_ect.path.name\n", + "\n", + "im300 = mio.import_image(img_dir+'/challenging_set/'+name)\n", + "im300_bounds= im300.bounds()[1]\n", + "\n", + "bb_gt0= imgs_dict[name][1]\n", + "bb_gt=center_margin_bb(bb_gt0,im300_bounds)\n", + "bb_gt_menpo=PointCloud(np.array([[bb_gt[0,1],bb_gt[0,0]],\n", + " [bb_gt[0,3],bb_gt[0,0]],\n", + " [bb_gt[0,3],bb_gt[0,2]],\n", + " [bb_gt[0,1],bb_gt[0,2]]]))\n", + "\n", + "bb_init0= imgs_dict[name][0]\n", + "bb_init=center_margin_bb(bb_init0,im300_bounds)\n", + "\n", + "bb_init_menpo=PointCloud(np.array([[bb_init[0,1],bb_init[0,0]],\n", + " [bb_init[0,3],bb_init[0,0]],\n", + " [bb_init[0,3],bb_init[0,2]],\n", + " [bb_init[0,1],bb_init[0,2]]]))\n", + "\n", + "im_300_crop_gt=im300.crop_to_pointcloud(bb_gt_menpo)\n", + "\n", + "im_300_crop_init=im300.crop_to_pointcloud(bb_init_menpo)\n", + "\n", + "\n", + "plt.subplot(1,3,1)\n", + "im_ect.view_landmarks(group='PTS')\n", + "plt.title('ect')\n", + "plt.subplot(1,3,2)\n", + "im_300_crop_gt.resize([256,256]).view_landmarks(group='PTS')\n", + "plt.title('gt bb')\n", + "plt.subplot(1,3,3)\n", + "im_300_crop_init.resize([256,256]).view_landmarks(group='PTS')\n", + "plt.title('init bb')\n", + "\n", + "print 'diff gt crop to ect:', np.sum(im_300_crop_gt.resize([256,256]).landmarks['PTS'].points-im_ect.landmarks['PTS'].points)\n", + "print 'diff gt manualy rescaled gt crop to ect:', np.sum(lmx_gt_rescale-im_ect.landmarks['PTS'].points)\n", + "print 'diff gt crop to manualy rescaled gt crop:', np.sum(im_300_crop_gt.resize([256,256]).landmarks['PTS'].points-lmx_gt_rescale)\n", + "\n", + "del(imgs_dict)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 3148 assets, index the returned LazyList to import.\n", + "Found 3148 assets, index the returned LazyList to import.\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAEKCAYAAAAIDb8EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvU2TLFmSpvWong8zc/eI+1GV3dU9M2zYsBkGWCCsYMeG\nPX+BX8SvYMGCDYsRYcECBJEZgR0IiDAiyHRPT/dUZt4b4W5m50NZ6HGPuDfvzcqqqeqqmnJNyRsR\n/u1mdvSovvrqq2Jm3O1ud7vb3e52t7v9MZr+vj/A3e52t7vd7W53u9tvavdA5m53u9vd7na3u/3R\n2j2Qudvd7na3u93tbn+0dg9k7na3u93tbne72x+t3QOZu93tbne7293u9kdr90Dmbne7293udre7\n/dHaPZC5293udre73e1uf7R2D2Tudre73e1ud7vbH63Fn/pAEbkr593tbl8zGT/k1Z8C9vpuEa7L\nSICrFqUZ9M7Lg38PZmby+3v3f3u7+6e7/aGbiNz8g5nd/jYDVVAVZDxOgyKi9G601lAFUUUQrBu1\nNboZGBiGdX/dEAIhKioC2HBIhsF4vU6rFTO7+R+RH3c9cnVm/mbjRl49/+o6PnsV++Gvn+jvGrfP\n/WP2U3zTTw5k7na3P3n7LEi53Sx8cof/PQKW12v/1XPuu+7d7vb3a/L5wr2ZcV23qkoMkRCufwuq\nQlAlBMUwVCDGgIhgQO+d2iq1VMxgnheWZWLfC+fzGRFhmidyzmzbxl4K21oA8de0jirkFBEPS0g5\nEVOm1s563jA6MUVUlbJX9h1q7XTrnggBvft3C+H6uh7IqApm1+BJMVN6e5U5yTgqdj0SfBKovDqC\nL/GM2cuRvD3phw+/3T+e+BLI/Ron7ifYPZC525+8ibzKKoYzMzOs90/XqHz28wuv4/bpKpUf/GWf\n/iqf3Hq3u/1JmHz1j5cb5bZW5PawEJQYlKjiP2Pw4CIIKSViUFQVxUgxEmJENPDw9i2H4yNdjCDG\nvEzslzPb5Znj6YFiRm+dh9MDGpWPz99DLyggKsQUKXuh7js5RboZ616orbOuK999+z3b1liWhbc/\ne0OtjQ8fJmqtxBTJ04TIkefnC08fz1zWnRgCDjh0pkkRoLZKTEKeAjEGeu9s646ZoUFJOdHNaH2H\nNg6PgpjReqPWcaBkJFIGKkqzBhiCICjQB1bzcg7G0z71Rcbtcdfg7dVdXz99n9jv1rvdA5m7/Uma\niDtEVUFUXmBfAZGAmVFrGZnL50/mE1j2NeL6Kfb6+m9/jny+4q/O5h7J3O0P1L4WcMhnv10z+dfB\nRgoj2Lj+H4UQhBgiaQQjKfmGnWNAaKgIU55YDgeigrXKsiykaQKrCJWIEEbpJOWFsp1REZbDEVEP\nXi6Xj6Q0AYKhPL57z8M3/5D0+EBQ2NvG/vyBb//VX/H47mdsZjx9/4F5mrEYeVrfQKukILRWQIV9\nKzx9//FWDzpfVkpvbFuk7itiO61ubOvKPM/kFGit0rqhqqSUaK2DecDSWxtICbTaSCmiGuit01pD\nEGIUigqlNECJKTJNE2ZQipeJeu8IRmtGrQ3RgcqI0bshKi8uSV6dLLMfRCOfu6FPApcfg1JuFaBX\nidrXrqlfUc76de0eyNzt3ylTBQ1eI1YdNeHWuBajzaCPmnSIOiBif+5tsXcwkxsyg40a9BfKSV+H\nYb++TO3zBX+3u/0O7crPcnvhaF3LJWFselGFIIaCox1JSUHJKSAYOUVyikSBFJVpTuSY/LEKKQhT\njgQNaMwkhaQdDcEDjqiomqOeMRFUwfx1vXwjtLojIszzkXk5AY1yPnN4fCTPC2U908oF64ZZozZh\nPjxwfvoe6Z3lcMI0EvLEd98nxN+MWiraz6T1ex7+7C1hWvj+3FkO7yhPH7CyE0NiiomyfeTy1LEQ\nmeeJVnbq3gjROW4alfWykXNmmjK2b7QYmXJmT51127k8nwnqiJKZUbYNVaH3jlknJuV4nPn44dnP\nihmtmwdoIWDWoXUvDdGJAXqDVispBfKcEHHUuPWO9+0YRvdgpnRE/JgC9N7QIJgOXzVIefYjMcfr\n2361p5JP0J0vgdPX9xqn/beKQt8Dmbv9UVoIvkhDDOScUFG2bcfoTHMiRPWspzT2HXo3uoF1Lyh3\nE3rrSAzAgE4NVAJIx+heW+46kpb+svpe2Selp89rxV9Yqfdh83f7mn3CoXqF+DkJdHAMlBshNKh4\n+dMgxkiM0TNxFdQ6ihGCknPm3fu3BO2Uy4XQO1NKvHlzJEcPZkQd4ej7itbiAcwSSSmRUsB6Z5qy\nBx1WiUHJOZHyRAqKWrtxSUDJyyPWKkE6IQVHBURQbXQM0UxrzbkfIY5SrlF2MA0cTg+klNnWZyQb\n0xSJSdnOBcHo19Jv71iv9L4j3aBVDKPunZwy+3rhuCysZmxP33GphswzLU7Mbx4pe+fx/TeU8zMf\nPj5zOj7w3fcb+/kjqJIUWjXogjUn08aUkLVQSh3JUKS0TkiRPCdqa1hv9NrJceYslZSUy/mCiKPA\nvVaiKClGukFrFTOh1E7OgRgidOfLiEBQ/7/3Tu+VGGdimKhl53JpMFAdVU/Eeuv05ijYuKKAPl5L\nMFVHfF6DMvaSmHH9+RP91QtS86Un/PCF7ojM3f6kTMc6TCmRc6SUnZwjMSpCJ8bAclgIIbGuhaen\nJ8KAq303MHqLFKtebx8bgXWHYUuthBjcYQDSu9d6xqoWEUwMCd4t8CVe2w/im9cr9JNE+Ppse3XX\nywPuMc6fgMnLGQ9ByeO6Xo4LGkCD0EplffJMHRNODwuisG0bUWVsWh6w7FuBDvOykKb5FpDEXlCM\nqIHHd+/45hffUMuZ/eP3yLZzmCYeHw+k7KWKEJW+X2jPBeni6MuSCSkS1DffPE+oGNYCQZUYEyEm\nD7QsOO/C8C4bwAIgQr+2ppiiISEMzkbZx8bbbmsLEWKaUE1+LHolpAkJkVIKvTeC+OejK6oN1UAI\nidZWaquI+nFTUVSMQCVYIVijt42+PrP31c/BnIinIx9++Tf07YzNGU0TIQXqXtm3FdHoiRCdKc8E\nreQ8U8pOCBENifNlR2NAg3I4LrTSKdtGjEbA2PdCAEeKJYyAoRODsBf/Dl7ObuQcSCnSq5eFYlAE\nxaxQa6PVStk35mX292qddavYCBZjFOooTZkFVB2tcbKtIeolPu9cslsQ+bn/eY02f40i/fktn5cb\nP3m93xHRF+6BzN3+AOzaGeBZXuRwWphyopSNy7qyb4WUEssy8/zciRGWJWKtYnTMChoC8xLptnB+\nvmBi5Dx5NmnFnWn3zEEFugqtdWrpGAOCVaNbH62PzpkR9dKS8HUeyzWrgS/cb78q87iyfe8kmT9I\n+4IHv2WTXwpYX9sXol65EioFUo4c54mH04HTuxO17ZgYH7/73tv0Dd6cJh7fTlz2QgiZKQasOTpY\na6EJpCkxT5Gcg6MivaIdApDzxPt3b8hRaOvOgkFWljmyJIhJmI4L1MLWG0YjjLWojMAeI+VMHMiQ\nhERUJQQvy75sgr4heovvBmqoGmKCBt9qVCNmXl4BL2/RDVOhmyDxQJoOmAi9N0BI0wMaEvv5e7QZ\nUD2xwPlsQRMpZqjVO4AMEMVapffOvm3s6xnE0SfthWiwfvxIlhM6zVRTRzeevifMC3FeEDbolW5Q\nSsOoaArEmFgW7yAKAUCJIZCzdxlhgiVjXVda3cljeZtGgiiokHKCYqQc2UqhN6N3BgpsxJiwANu2\n+zHIYRw/odZG2XdSzkzLgd6FzjNlb1wTJcNo1Sh7I086mhnkVmZMyZHmWuu4MF85KvvkxxUL/OSC\n/2El/bMa1U9QQ/htBjT3QOZuf28WgpJSICWvlc/zxJuHR37280f+7u++5XI+IyrMh4mHhxP7vvH0\nFHn6eKY1Y983pinT2k6rjZwitVZa6157BlJSQlTKVsEcVp/nGVUvPTk060QZs1F3Lh3NAb3Wma0j\nChoYmZBDuvI5s/erZLaXRf/FtfoDct0rJ3CPZf7t7Ev0o8/Lfb/KPnvu69MiX7jtix/jM+j8c05V\niIE8ZaZpYp4nhA6902qhrIXeYJoS82ny66PBkidUoFmjteaba3dul2DQi5crQvdgRAJv3z/y9t2R\nXjeaVQ5LIsRMVmEKnRgTSYxSVoI1QgoovtGlpB7Uh0CMcSQbiTAi96AgL8An4G3AQRSoiAlBogcP\nMd/KD6pKbWWUzBRvvRFEIzllzBpWuwcytUColMuFtu/0Wnxt6iiTBAG5klvD0E/BeW04KtFqoHcI\nIRNSwsqKagca+ybolnn/i1+wBeVf/9W/JDU45hNPa6GWDbQPfgtsl5WUZ2LOSFDW9ZneCjllDgfD\nTGgN0iEScuLDd9+T58A0Bda9sW0X5uOJOM1ICJgEplq9K6l7WahVj4BjDtTePMCJkTS+mxnU3tn3\nnUmUac603jnbOlCYwQ+URm2N2B3BviJ51/MQYqC3Rhu3Xz3RlwOMr1/tLzHQ+HxfyN7kuvDE7ojM\n3f4w7Qo9e/eP/304TMxzZJoibx4WptmJc7V1Lucz5/OZbS2k2Alq/Pznb/nwvVJrxcSDlnmeCcHJ\ng8/ni2cn3RdcbR7IhBhBPLNQAbFOToq1gLUG5p0AQTNYY9s6/QazerDihOBrF5Nel/PovgiIBPZ9\nB7zU9Ekn069EXF7Z53yZ13/8lA32bl+3LwUrxq0T7UtBxZfMPkNRPglAPn/LL3Bavv7CL59NAEWI\nIizHmXzIXC7PbOuFsu+UUok58v5nb5iXxPPHZ1rpiDUkKTEn2mq0LmhwXkpUJQchq7cWJ4EpZQ5T\nxvYz7fJEonlwBMxZSEtkOh0p604pG0khxARmxKi+vlKE0d2nQ6hNxYkYjqT2sTEqZkPwUWSsG7kh\nATQPrnrvSFBHYqKT8Z18r8Q8YaLUupPygVZWJEykacFqJcfIpe1ICGgY5RkURQgSMNHbhtzrjhAI\nV/6NGbUV5jixrc80XQmHN7RWCSiH04Hv//qvWKaM9Z11M3oz2t6db6cQ1AMiRZmXhdobl/3Cvu0g\nRoyReZ45XzZMQFRZjgf28zOGlw0Dfr7meWHbhFqqdyA1Y+uVWjulFNZ1Y9HJ26/x8xJ6dHQLpVmn\nm9BaI0QlZ6VWYV2dz3P1xzTz9u+YX12rfhsyfLa9FIWsvxbKewlMPl8z8tk1f22U/+oy+B37t3sg\nc7efZKpCjIGgYaAqiZQiOQbevjnx+GZhWQIxGEnheDogMbBdVqaUHBEphb01tkPkw3fwfX8eZLXL\nTUTqcjH2Wge735dFniLdMrUWyl5QDYBDrCmnQTIMQwAKojZ6EK9rt0rvgTxPiPqibJcdMM/m8BJT\nb51aPOjxxa03zYQ4CMFeo+/uIOzHMosfyV7Gv58y/Metv6Ns5U/GvkC2/kl6xb+FY/5jwdHn7yWj\n1JBzZF4yMSlTz5R9G8pmoFG4XFa2dYXeB1IvNy7FXgqCMOXk/8fAnCJBGrSGCpweTyzHGWsbwRqH\nnJkEpgDznCAl8jTRt5WcnK/j1zaEFNEQxrrqiBlKh168BGRgQejjS11JrKBOK+39dlzMAnGOqMZR\nQe2YRESNtjl3zbzdkF42BIgp0HpiihMxBLZ9x5ChCxMcO+0desXsQrBOG7epCLSGhICEQG+Fbu43\nai1Yd57JNO2054qe3tFKZjk+ItvOtq+oFUIKtJacpGwCEkgjwJtyxkohaaaHRqXRaUxzQCRSSmPO\nOgIPaPtKaxspKNIrvTb3J2bE4AFQ7yutFmrprJcVHeVH5xMV5/2oklJkChFNiVIrrVdiDEzTRK2d\nfa83krgrA1dajzeRPBt6MxrC6JB6fb5+ug/64SVvn6zBK0H9a0HMb5Pwew9k7vaJiUCOgWWZWZaZ\nnBPzlDkcZx5PC0sKPL458v7n75nnie35mfmwMB9m9rry/PF79m112Hye2S4b+8WJdapKqIWgQt1n\ntrVwuRTOT2cE15cwM1pt1HpxYl+ItFqJKsw5ee/0yPhq79Aac8wEFUrxdsVpzgjNy07mNfIQA/Oy\nDI2YJ9bVa8+38o41am3elTBq/yJCqxXBxbBqq9BfZSpmrxPtWx359aYm8Hmx+evH/sfvvtuP2efw\n1uua/+cPtU95TT8Ac15znn7Tj/MlLhX+vq6TkjgcD4hA2XeCQAqBp1KptQ0ul93KJVNMBHWUY11X\n9nUnoOQQOE6JKQeyGtK8427OmWXJ5CnQd5AozDGQAixzJM+R5fEdiFLESEsm5ciVr6VBAUH69bs4\nV8zqUIQVgEAg+EbbK/u+01FizLcOqtYLvVfq3tGY0RTprWPir093NCfESKsrve6ElAey09hboW6V\nboXaVkdem6DNS3GqL6UvktKcokKIATCmnClrc9mXoJRSERWyBrQ2rHzk/G0mh0APEaYDmYD23Ut4\nMVK2C4j7hTxlYgzUfafu5RZ4xpiIOrHtO9taCSlyevPAuu2sz89IP8G337HtK9t6oXbvNLNkNKlD\nP0Zp7Zl9946obdvAOiFGSne0JAb18mJrSIg3XyQio5U+ouJCdylFhE6tjVoqItGDvKvP6x1kkIHN\n6Pi1if7w+r0Rfj9fLMavcFw/jGJ+F6TfeyDzJ2oqME+J45w5LhPzlJiia0Esy8Rf/oN/wDd//ue8\nffeeN+8eiQl6r6wfP1D2lTQvrLWQSN5toUbOM3bspBiBjuIZxb7LEHtKN1QkpUieEq3BXhrbeuEw\nLySNbOxY79S9EpbsTm7fmafMum6YvQQ8ZsY8ZdKU6baPLqTMfDD2bXNCb+us646GRM6J42EBYN9d\nFlOCt2fXbuyjpfJaS1ZVSi3uslWdENz7gGXdufiL8AlZ7pNs48qpeLXo75Wk36Fdve4PPK998pDf\nh3lXSbglCbVWJ8b2Ttl271IZkgIxBv/IJqSYOBwWOpXeuvNYQiBHZcqBQw5odyRTg/JwOjEfZoRK\nksY0ReYYmFJgWVzXRXpBg3A8zcQrR8K8xbv3Prpm+uBWKFGc4OtH8goteV+wBMgkpPu66K14GSYI\nGoKjNGZwFYETRTWOctK4f98wq/Qe2fdCq43edkpruAieoQHQgKaElY61RmuG0TAx/yyDUBs6xBDp\nJRJT9s3aPBnJMSBmBDPWD9+yh4l8eiAsM90q/dwo52dqd2Ktmbeyp3gixsh6Wdm3FeuFWnbqaiwP\nJ2JMiO5spZBs4nQ8IKXz7b/5lpxmT5K2nTr0qTxw8CBEl2mQbx2NLntFRJlGctXprocz0HGkkaOP\nU6ilInhAV0qj9+68GMRb1YdqsRObHNnrvWO93SBCGRG+mH01Lvm0nMQnf8gnTvCzuuvXHN5vKXu7\nBzL/jpuqcJgSpyXxsCSOs3dKnObIw8PM24cH3jw+cDrOBCrWCq0LpzfvmY8PHN7+jPnde5o09rIS\ng/H8y0Ivu8Ob88JlfWJ92pDk4lgSM60UxIQ4dBfK3ti2zSXEYwT1Wv+ikXDeaa2xrauLUqmy1Ubk\nWpdPSOwgMM2J9VKoe3UExDq9GTElmnWaeRdSniawTikNkU4XqLUgMZKnSLOJbhda7eM4gYrRe6PU\nSs7pxvCXawaEZ6qGZzOeYV/nmLwcc3v1yydr1F42gC+u63t085vbJ0HLp57xNcHx921BhWlKxKS0\ntnmGbcZWCpd1vynAjkoSKXpZIyZBI1yeXZwthchxmTnMiSlAkoZYxayRoqOo85SJsTuiaKCxk3JE\ngjAvC1MO0Do6yrNmfWx6nSZGs7H+kEF+V0RtIFqudRIkgDhvJMyuonstC0sI6JUHI0JK2TdO7Z5J\niXNbinV6bXSr4zQa0BA6MQSCiN/f20AVFDGjSwcd7cOI69MIIB1FHZlRw5JiLVFqAeu0UmhEQvbP\nHa0TrTFPE+e2UqSCNQLNW9ljpGwrddvY1xVDaK1S9234BcNaYX1+Zj4+8Pj4gH38ng/f/Ru2aebt\nu/doivzrv/lXCMrD44nLWim1kUJAU4The07MQOd8XinFeSwxRnKOIELDbvov4OVuRIbfjPTOQHOa\nPx8ZJT/3PR7gRDQKpRZqGcmcvpTSr3MNPufKcH2Vz4KZ67X6ufv6JKT5vOz7W7Z7IPPviKnAYcm8\ne1h4e5x5c5p5+3ji8WHmMAmnqJymSI7CNE3k6LM2cl5IeSGkxGW7sO+bCynRKd/9Hed9o/Wd6c07\nRCJxPnB4aJTzxcWb0sxWNvb1mbJe0BiJMWPd2win48JeOi0zdBcCOSgpJlKqmFUeHx/BjA8fP9J7\nZZkSMQi1G7XspGlmOZ7Y9o3T8QT9iVI6pXhr5HpZucyJPCVkyWBO8puXAyF4ZocGTJybogHmJdF7\n43LeaM1GpinU2r20pVd4HRwCdyd/IzCqOneBr9SUPwtifB2/pB92o8d9Zvf60m/BXmPX9hLEXGv3\nr8tKXzjevyrm+fz+n8KPEXCJ/pQI0csIqgK9jU46J6FrEFQ9gJmSlxEUR2gwKHvBWielyGkOPB4j\nSzISY0JyjOScPMDJQlShFW/FnhPk3DkdHzgsC1YLTXx+j1//kdaaB/wa0DQC9vGFRQTRgGlARyux\nmEsWhBDGMmmDGBy9pXocoKjqrczdgw7RSDefxNxaH7y3IcwXhI6LWwacE9MxelVMvDzU6k4aHA8V\n9XbtZkBHut34OmqdIB2sEjSQp4UWnG8T1FCFtp6x5+85/ezPiGGmhhkLGzlHejNkzDsqpfD0/fcs\npRKmCeud7bJi5jOdzMkmLNOMiNFbYV0vPKdnjg+PvKt/xrd/+7eUvaLSXdNFlBASvVdUjCkn2pIp\ne6Fslbo3avLS01XvqpZKtz7iDaN3BfPgRIOhOpK3zkBfRrI1BPZMjXAtI9pOrW2MOODm377Elfnh\nspAf3P+SSny55vRJwncvLf3pmggc5sT7h5mfPcy8f3Pg7cPMu9PE+8cHjseZpBBVWY5H8hShbUir\nRBG2vVC7ElKkrE/QCtYCTVxhc61ncgosxwNP/+Zv2b/7O2rrPH18Znp8JM6Z8PhIWc/U8wfy6cR8\nPHBen6j7Ri8b0+zaEdtlQ1Mk54yYDmGmRpLA6XBAVHl6WslpIsaE5si3v/wWoTOnxFYaa6mk6APX\nLutKx5jnGRGHrmspPmX26Yz1yaFkq6yD7xKC94e2bqSUQPDWT3FBrxi7t3uOMhLSB6TtWaUGV+7s\nvVNLofX+Qs5VheaD2F6dIeAlXHn94/X9n9583Sh+yxfLn6J9UsP/aWSXn+JPf12nKy8eHfA24ZRf\n2mCvXT+9dLZtd2mA1l1l16sN3uESnMQZU+SyrrTamHLmzWHm4Zg5zYElGtHMBeAQ5mnmdJyJQ0F2\nConDPLPkSIqJnBawK0o1eBcx+G39lWKIOMIh5ld8GFd+x5Ar6f0akKnfl5ya4h0+4/EaFaxSa6Wb\nYATUPOjprSCm0BlS+4FgAZpBN9+YQ/B3F3OuSp6gH1ATxBzJMfDvMI67ypjGZJ1gnRSMMvR3lsPx\nlgQFTeRQkF4JrXA8nLzEVXZk22jbBQmZmBbK/kRZz8QghJiYpoVtcy5LkE6MGWmN9fkDe608HB/J\neeVyeUYMphx497N31L3QrbHvO+fzxuV8prVGSoFpShwOxrbuzuPrLpLXupGmOPyZH7ugXuarcGt4\nmKZMqzO9w74PqYlhV0LvVUoiJdf0ac0Vkq8cGefM+Pn/0mX/g+D/dRXpk0faJ8vxdwmK3gOZP1AT\nPGD55u3Cn7878GdvD/z87YH3jzMPSybFQIqBEHwWRwqB5fBAmmbKvtKbkWbPGvatYr1Rx0Z9dVDW\nC2hwSLo1kImoULaPHA4zKRrSGrSdvp25/LKxvH3D9OaBppFtu7DXjXR6w+PjO76vRq0rahXDh6U9\nffxAng5ojCw5cz4/sW2rB2TLAZHIthVCDJweTtRa2c7PPlMkREy6s+6rZ6WtVTRxI8d9/NBotbFt\nDhun5LLq3ZxEqXLNMtyZxpQB7/zIEVoyWtuotYB41nxVyLzycFJMnnH1TtvLC2sTJ+zVWj9xGJ/b\nDWL9WqDyhbLy3X5D+wTC/hrb96e91NfO1w/yzC/wil8/VwVHYYbQYorRuRLjgTIgfzPzVuBp5niY\niToI8jGybRvbZSOKcsiRxyVyjEK2SgJyDq4do8phmTjM0aUFTNHRaZNyYsp5gIltcD6mEYQIhvNZ\nkk207pvnaNZBx/cQlIgTbEWFPkQkrbbB23UOhs/2ce0ZEVfFlTA2SQJhEH3thipUxJzTIqL0VmEQ\nl02dvNq6I7ghJMTCrZSkEhDVMYbECGPN+8Rnb12ezCj7hdq3IX7phOBIpNed1ht9W4nTgsaITpmY\nE2ndaKKQHTWp25m6bazyjKZMikpvTsJOOboI4AhUt8uZao15nkjjHPZegUbdNlop9Frog+vXu/Nw\nYlpYl53z08re3L+Vvbhvi4kYE/vuM5Zi9GNp1gmqTNPichgSuOjGupVPfFNrXkpy8rOf7+tMOszo\nzbuZvHPzdc38mqB9GqH/sCvwCyjM699/R8HMPZD5Pdi1nD/yeuYU+PN3R/7iZw/84t2Bb95MfPN2\n4d3DwmFJr7QZ0mif84haVX1zrZWY3EmJCk0dWk05UutOSIo1lwWPYlCNlGZqXGm9olYRi9S2A5EU\nO/v5o0O+UWltR3ukA5fnj1gMPL7/OY/zxHf/8v+jPD8T84FlOrC1Rt8aXTpTynQTaMbheERiYC+7\nK16OOSsucGc8PT2xLAunhwdiSuzPz+zbirbKfv5Ib53D6eB1cvNBc55RNJ6eLqMltVNbIcRETomC\nd1KICNOUAWPfnY/j6pwztXX2slGKc21CeGlTvOrF1Fo5LIt3GdgzpTZn/DNmr0SXT79yYLwm7GxT\nk1cs/XH+X/M1rjIbMBo47vabmd3+cfuREt0PHOtXIs0f8Gq+ArB98W1e3aijC673zjJPvHlzYjlk\n9n3zAGWQSXVwp8TM253HtdV6Z9s9O59z4s0x8+YUeJhgCkKOrsQbgjDlzOl0IC3Jr8TkG6uJ81Ly\nMpECaK9Y94vTROljmqCihBgI5uM7uvRbli7iAnYytGREfXikqNFrvSEx1frYsPzgyOi46b3SO4ga\notFJpdWKklaHAAAgAElEQVQ5bSLeSZSjb/rNKjV4EIUK0hSxOPR3Rtmqt1uS4oGAc16UoQ2lDUOG\nvk1EJdzmGjlTv9FDxGKgl8b543dMKbkO1bTQD5WyFS67z28KMSF2wGqlbSt1X72rsUOaF9LknY1t\nq7TiDQutNZ6fL4Rw4Xg8EJNQO+QUKJcLakaOru7LdW6WushdnjKlbsMXVVqrTDkzzxOqsO8uohfU\nOURlu4Clob8V0OCLYNvKOMZxXJrX//wUuf7XKx7ZlYQc9IZMX4tFn6yvkTV8vk5eL6PXPu13iTjf\nA5nfkQ0u25it4XXKOQd+9rjwzZuFbx4m/tHPT/zi/cK704RoRNOBSIe6oiliGgcpsIAoITm4W5u3\nBHvLnNeFSzcSQhpELa6dAkP1NozPUrsTw3JI9LzQhoOUoPReuFyeSDGxrzuqgRgzKYL1jUZHLEAt\nxGXmEgLpeITzM5f92T+bGda6L3pJDpUHQQeKoaqkEJHk2cBeC9OcKa1jqhwfjjSD9bxxPL4llwvn\nbedp2zjwwJInaquUuhOT8Pjm4DDtVtk2n8PkMG0i50wbM0f2fWeaJx8UibDvheWQWA6JbYdYhVI8\naLkSeG9m3nGRB7+htU4b2UqrlTAG9tXhzH9QVrot4K+TTl9zNv5AeKl//PZl7u+LfX67vT5ZnwVF\nX7MvoGmvH+6icd5JM6XEnBNC9yBmXSmlYCJIUFqFHLw7KU2RRh+EzMK+b4RmTFPgYQ48zMopC1N0\nTkmMPql6XmbmwwRBfcPuBenmJSVV2r5h0tHRGaPqc5aCBrgOoWzNL1tVogZUgyOajE1vbJAyeGRi\n4mXWYYGAidGuwpGiYEovDUzQBLTO4OrS0VubeZJIxMtSISYkZFQizXbMigeEoxTiUZKNjTjcOpYM\nLw+77kq8dVql5ITf3rtr0ajSgkIMaO8++NIazQLrXpGYmA8LpT3RsVs3kAaf8+bKw5WyV1qHmCem\n6eBzjoLrvpTaiZIGIuxdUnV0PYYckVJHYOUTrG10Ds1T5vSw0LpRS3O0qXYw19jRsKAheFIWnB9j\ngA4drBgDh8PspUBr7HtDJBCCjm6ljhBJIULy5KtWV4zu10BmXN4/7o5+PWf1Opi5c2R+z/a6QSKM\nia9B8HH2Qcgx8P5h5u0p8f408YufPfLN48RxdqJtiOkVCc2z+tYHrJcSpBlJ0aWlzDUKVF05s7UC\nVm8ZjxnEvBDzggal9SFRTaY3oe0VKw1TH+GuCiaN2jYPtIaarevHZMLje6w3yrZSyu7lltJpGGgC\nUZom9HhkWU7U9IHWnlBzXokEj/wFd4oh+AA0rFHXhlSw2qnbznw8+kwRM1p9Zis+eO3Nu0dSyvzy\n7/6WPM28XRbadx84LjPb6mjUtl2Y54lpgsfHAx8/eDmq7oVtLYQYmeaJ5TDd2loxI6VALZ2ckju0\nEHg4nQhyYd0q++4wr4jQmitnXmvKrTd3gFVvGjKeCfYxdyUMifCvlZA/Q2K+enHd7Xdmv4nzvD1H\nvnTjJyafPWp0tvqAyCmRklBbwWqnDHSwtU4vhiIsObGcZg8EdvPBj+LDFqN0jkl5nI2Hg3CcEino\nbTZSzpE8zz5tujWs7fSyoabkmIgIeXQRIqP19tVwxW6N2q5lUkXEibRB1YMRRpkWG11Mfr+Iy6lc\npQhM4TrX6FqmTTqhwVWDfURIv5XNFA+URB3t6RhiELr68YwdC1ddlKF5YkbQQBzK3N08qPEzIy7/\nz+gyNBAMjYpVc9QEIWm9kZY7ULaV7bvvCcdHb2+unRYC9OrQQnOSsaTkar8NFyhsO9t6Ia0z8/HE\n6eGtBx0UdAmct8JWi6v4qiK9O38wuNp5ez7fdG68SykRQ6CUyr5XNq2upoz7oGjO/VuOC+u2ewkd\n9YBzRB4hRHICW5x71O1Ma0LUayl8BDOjK+p69V6lJV5fv/DjQcdLV9MPH/T3xfu7BzI/YsLIQPAa\ncQhCioE5R3IKTClyXDKnrBy187gE3p4ypzlxOi6Ies1znmeE5hLgasQAQV2siM5QvPQ6somDftrK\naB9Mw1n4HCARCKg/rkMICU2zdxP0Dq1C794NsTes7ph1EGe9O/HVv1EIQ8YfYAwPS2Fi7Q1VGyRY\npfdrEawhdaU9VcpyhOMJmQ/kh0LYzuznMzoQo7qfvVOoz0zLW0SgbGewSkqBfe08ffc9h4cHpnnm\nH/6jv+Sv//qv+PjdL4nvf86f/+LPyTnzy7/9O87nZw5TppUzl8sFESWnjKAEhcfTEWueuexbo2yF\nLQbiUODEYN92unWiBBe0qg7lTnPmeDw6D+aysl5W1rVgvAR4166SGBNBdZStxtDJWsFeOmNc1Kp/\nfim9XFNfXNmvRPS+wLe4229gXzqIP0nm92o/Qmj6HIUZP69aYzLqxt7c5l1IOSvzEkjTmG9TBmTv\n4rSoBo5L4nCKNCr7DlGjl4VopCDMUTktysMh8LgkUgq38QQ+STsy54zGSO3FCbopktTLzjnHm5ZT\nN9/sg+ioEpgT13sbQUVA8LlLKnpjeAoecMmN8u4HQEWxMII2ceXf2irV+ggWnMNTagXqlU3s74Vz\nVmJOxClirWBhtH3HAMGDCtQ7uMzGbDURGmGQUq9lju7JHCAh0key10xAI3IdWimBjjKlCdHAvq7U\n/YKEmfwmEzXz/P23GIE0L14GAoLh3B4UjUKYIrJBuaycP34gzxMWhK1X0jSTCJT6RAO6CD0o05Q5\nP/tcucNhgd45XzbvZBsCVDlNHI/GtlVKeaYWL6PVWkkpEaIjVscYuQC9VG81b4WOEXIeooP4vLnp\nKkXhQZDPqGu3kiGjvOdKvyNJG4HpbQ7TFx2TfOH3v38Pdg9keIkaBS+BxCBjwGHk8eHAlBSplazw\n5jjzzfsH3p5mjksmR/WBbOdnAp2YAzlHH0omLq+fr1LVYs78v6bs4u2Gt1oyHes7Lh/rETZq/rgb\nVVzwZkp/fR3D3GrdCHrNkMKI4J2MKtLRMJp/h2w/rTjygNfjRYQk4q2UKSFUSqm3mSmllNEa2mjb\nyse//Stm+QcsxwfKdiHSyetGo7Gpcq6NvVyYzRd5q4lSCs8fnwAv02A71MY0R+IUeff2Ld9++x1P\nTx8JITEtC4/v3nm5pXlWkpO6gm8P7LUxTYF5ySDCuhbqfqY1H6gW1gFXx3j7DrV1UkzuaGvFaiAs\nieWwEKJ6V4mcuaw7mN74L2XfCepON+c8Xq+OCb1jEF6tA66XHyX/fn7dfeIgrin9PZr59e0PoO1L\n9eVjXFG6nD3z9usGTxC8N9ZnDKkjtW/ePHI4ZS77PrqHXB1lipEUhWMW3r6ZefM4czi4EJogBFFH\nZGIiXjkr0skxkDQSVUk5jJEcL+UzF8lWLwXhYwI0x+GT8O69QfLydvExeBAniqJy2/Rue5gzgrm2\nWEfzYEuai05GFaxDHcilqCMxDLG9q/Cb9dE5E67vHzDxsrBIQMQHZnYxRyJGqR3zWWkdQ01uU6Vb\nrV42M8NGoGNjIrerfV9LwY1WVkKeyOlamumU6mNMxAKledkspUDKkWnKlMvO/uGJpxDJj0fMoDQj\nTwnNifbxjJpicSFPidNp5rL62ITj8YSKy0MIQt12YogcT4+0ButaKOVM7a4+DgOlD+PYLQd2ufi0\nb+u0atjgV/XuYwymORMTtNpvujLXBO26t+gYvFlrHTOXrgKJr3HGzzqRXv3+dfTmFSb9A+0Cfiu+\n7k8mkLkFKzIiTAMR7/+fRltuCsqcXMY7J+V0OvKXf/ENU+psHz4ie+V4mHnzeCBnv4h1qC2Kel0x\nBkcLfOHDFJPXmUVQM2RE3TJgUF+YDuv6h9Rb27AjNYOEJ+qlIVNq85qpSBh6DH5Rxjz5bV0Gi79h\nVycwuhBkQKTgnJnrRdoRNEQEmFLCrBNjHVoX3r0kMjI06+wfv6XOR5a/+IdIytB2ggpWC2aQ54mG\nl8vW8xPTcuAwTfRSOZ8vdOtMefJAq1fW54J04XQ8sW4Xzs8fmGqltZ1pTlgNtG1HakVNx/errqnQ\nE9M0cTotrJeNWjzTbaXSsxHnRBxCfHstNwlz0YDGiOHnLeU8xL5cb2Zb2y2Q82nD5QbFXsnWKXmA\nBgwnea3ZX3k29tlavUcovx/7AlNX5Nfyo1dc0m5Ex8/ewSsmLp462mFdzCwzzwvpKr1vQO8EhaY+\neX2ZZw7Hg6tK740UhaRCpDNFYQ7G4yS8f5w4HTPzNJSmB0ISg89AC0EwOkgnBE9kQohjdpIHI4oR\ncYTAS0bqqO34WjZKN8289BTxNTD463QUDQPhxUtUIkPBV4Ta65h5FAYaPDawEfEEgSrXTdR5Z5IS\naKDVoVyrY6y2Bp/BZDbK1l4qat1GyecFfbEx58kPSx9cGg94MJ8/Fcb39wRHsVap24ZYI6kfv9gL\nVgXrBaGTc2Y5LAiNDW8oaNXnG8UQWZYFKjw/XSiXFUkePLZ9xWLkdDqi0nk6n9lLQZP7Hmxn3zdy\nnlhOR0rtY7p5Zy+FNC88vn1kL44mexAjN4IvGK345O0YA/u2QvGypeJo4JQThlFKpZZGwfe93tXn\nThk3H+eaNtD7EDW8sv0+4Y59fuW/8my/R9f273Qgo+q16TjqyEG9PLTMrjzbW2eeJ5blSMdIYizq\n7XspRh7ePnA4TLT9TBQjZmHOyhR8EcQ0dESke5AxUI3Ay5yUEPQ2fE1stDEGQ9SG0xjB1XB+OjZB\nz+gbKSlXVr/j1YrhKpcuFOVdS2auhCkidGlYryPzKDBkqN2JCYhf3NdsY0A1uIhSIzSlXlu0EZ+u\n2qNzePA2P/aV8vGX9LfvORwe2M1I807admopSJhYJFG2lf3yDNYJ+obT8YR1uKwXVwYNivVC2wt1\nlH8E2PZtZLTqolQKEj2QorkcuQDWOr120hQ5PSzse+Hp4wo4vN1au7Up5nkiMVGKv5+oh3C9Fbpm\nR7RG5jnPE0LFTG7BSh/1/tcD8a4kX+u3oTQ3js1t8f+aK/xO+P3N7ddL8D510D/dvvIOYz13jDQm\nRmM2UBnfbFrZRwdKo+2Nfa3M84F5ObCcjmz7BiZMKRJVCL0wR+XdEvjZUXl3mjjM3lmj4jw0VZ8F\nlmIkjFbaoIMyIty4J6KC0YY8vndBpjzRW7shizJe0+iD6alYB1Oftuxl0KH6a17yliuyLN5mFDTR\nBzEXNZo0xByBShLo4h2BIvXGjYkx+4a77+QUb0GPjknXpTbf/GF0bZqPJBiBl7U+ErrmQczYiAc1\n7uVxY2Fdux+9+2jzEQ0iiFX69ozVgvqYTFSVPC/eOFE7NXbqulM2QZfJO0SnxNy9Q+jy4YOX7WJk\n7xVNM1NauIQynH1kOj7g46I6EpUQJ6wOH94a675Tys48zzw8ntj2nfN59VZzcb0fFdcJ2ruRp4nl\ncES3Fdb1tt+hgVkmQghc+uqdXKY3AcNW2whgXlaO0xjay2V+vY5+M3fG19bZNY34bbi6P+pAxmvQ\nY8R8UATzCH1sJIdD5nDwCy2IIdad1Joil+eKBeU4Z6Y50YFoldh3kgopBQ7zTAouupRjYIqRQxam\n0IkBxBqtbAQaOhxLSkoKo3Y6+vFH3ciRDZXBCLfbd7iOSb+2VvssoUHaVdCY6OIIAwaK0D3yobVC\nrxsiwYWNAKzeApledyd/xUzn+vqvFGpHPT+Ib+pRA9CgVQLN5wzlhXk+uJz1EJLLsWJlpT1/ZH7/\nDcwH2r6Rt4sHCoDOM2CUzXUTntq3hDzRa0GsYRbGgDKX585JqZcd6UavjX3bOR0PqCrnuoHhmcu3\n3zlRcVg3IyUPRMruSqHrpQA+g6TsOyHMqAh58tlNa/eW0YCPLqgGMc/kaXbnhxCDjVZrF8bb1u0T\n8q+8Kt9d9RkAPl+Zv2qhymd/XSmLd/t17ccCE/nkx29yfL9GEbhJwL9CHTwIF4JGpjzKSlTavlH3\njbpVavEywDQtPLx9j0Zh+/hECMqyTEQ6sRnH2Fm08pBnHpbEnOJtjo6pEaKSRheOjKQnBhe4Q71r\n0DBqr7fP5oHN6Eaywr/65TP/9J//C/7m22d+/jjzX/yHf8lfvH/w12g+WVpGyd2vfbjOPAMZ8lS+\nBnoXanNqiw4ej0YbvL6Gc9uiI8U46iLDv2nvTr4d0hJXJo6vr5fjHIIjOL01amu0USoHPMDRgWKb\nI1TWbAjyvZpe36uXAruXhP/mu4/8r//n/80vP668ezzwn/3H/wG/+Is/o3afDRWnGV03ouxIb+xr\nG7pTFbHOPE3UvbJfNkrvpGkiLwt7PWPBFZW7ebKYY6TNhW29gLXReOHt7Z68NaxUmIx5PrAsZ/Z9\nJ6fMlBK9doTRSCFCCJHeDQ2RNM03fpYPmozMhwNTyvzy2++pbSdEZcoTrV5ozQdKXo/tNZm+XeJy\n++cliPyR5fNqe3tZN194/G8nhHH7owxkVBkzfALH48zhOJPnRN1Wzh+fKFshpcy79yc6xr41puyZ\nvUoY05W7i0OFANZIKuTB/p9SZJkXjqeJREV6ZZl8MFsKxpwhzhG6UbqPiw/BA5SYHSrNU/aAwZpL\nSTecWNt1XKze7VRLYds2NKbBgO8jqxkO54qctErvBUFv84ectVcHrNOpbUf6kM43gaHfgHkprfcG\nzdn+YTATr4vf0Qkn02GdiCHJyzetbPS8uKJm8AmqZj4+oJ4/Eo8nR59yZj6e6LWx7o39WtqK2QWz\nSqHVnVIK214xjZzCO6bjga06TLxME5e1kDVRm48hOKSJ1Vaenp95eHzkcJi5nFcu206csl8UJszz\ngTdvhNag7N97ayuuHTMv8xhm6YHH4XgawoH15dhYJ6bIssyEoOxD/K41Q5pQdNyGt3ICo2NJMBvT\nfF8tzquz/9Iq/jy7kdf/yj2M+Y3sVwEsXyvu/8hDf9V5uHb1+OaIl4GVMfgxM00Lh8PJRRr3QgxK\nQfzarp2cZx7fvuf48Mh5/ehKvvPEMief/yNwkMJMZcneaBAHyutoiI1E7oUXJwMFwsaGJAN5NRAC\n7mIcgaU2/uk/+xf8t//9P0N4xPgnCP8H/8P/8v/y3/xX/5j//B//e7cj4cRcV9mlh5djMyQfuvn4\nj9Z3tvWZGDNzdCK9tU613fVmrokAAQmKRZ+f1KqXfzR4l1ZroCHj6IDPbgL3hcLolBobbG9XzmB4\n6Z4yL4s7ui2YBh+RMIZiXvadGIy1FP63/+uv+e/+5/9nHIP/COF/53/65/8j//V/+Z/wn/6Tf98l\nF2qhW0etk4eqd2/Nf+67o9CHA7131g/fU0rzzer/Z+9Nnyw77/u+z7Of5S7ds2Gwk7BIiStAItRG\niZQlRaKUKCk7qXJcqVTsku3EL/QiS1X+CicVynmhqIpwVSpVUUhJJdMuiREpWisp05AG1EKCBBdJ\nJIRttu6+957lWfLi99yeGWAGABmQois4KFT3dN/uvvfc8zzn9/v+voszTFPGhZZ+0TNsTlBF0fdL\nKFmCbkEa0ZLxwUPwTJMY5jkf6n4jDV/RokRSGdrgySrL89IO5zilEhhnUQXmJPe6vmnJBS6/cFV4\nM0HsKcSoL1dlbDnldgmHRooWrU6vgjtaSLx0banTHr7c+MotD3mt9rnv/ELmps1nL2W0RtMET9c2\nHByuaDoHprAlwUaBNrRdIATDdphQpVas1QhtO86VaCaLPM0j3mu8tTg0jdIsFx2LxpGHEWOgcRav\nCq2zQpxqAnma0dbgvIeKCtnq4ElB+CgV4tX1IsxElPEY7WXGrDMh7jsN0FXDb5099W8oCtkAqBdS\nLYRQYq6UEU6wVaBUlkZMaZR2MoeP0tkYbSlKCeyoJM1aoao8sRZiRuDhAphiSFlItONui3Ue7T06\ntBJ0FkfSuCHuTtDLNUlplAu0fc84XxMEihu8EbEaFxh4ShO73QZjPd3BAeuDM5xcvYxylpQgxkxM\nkWGeabyn71u2mxOG7YblcoW3AX18gnYWZxzzMOKcZ31wBusDOReuXjsSOL1AydTXBnNMaGXo+p6c\nI+MwMk+zVJtonNU43+OmCbXZstuJYZnzYng1DjMgM/L9UhQlVLrhnFkvXeHK3Oa2eNsO5WW++frx\n2h2v1ektiOkZYJWp6z5jrMIFi/Oeputo+xbnIWVNTrYiIbJ+F6sVq7OHEmqaEm3b0jUepyV2oCng\n50TbGNpG9gxjNMbYysUqPHN1y+8+8QwvXB84t2p538N3c/Ggq9k6smewHxlVRDZHjY2ZyydH/G+/\n+jil/CyF/xVoKeyAn+MX/vVjvOn+c9xzdnXqhVOQcS5lAqNOzfG00qIqsoaCrEnnxN9EVYIvSvg8\nwmPRZITjh9qjL3XfqpumtgZlHRRNE1q0tiJdn+cbN8Yq/9ZavJ1klCTcnlIUKYvgqdRohCnOoqQu\nwnsLwfH1Kzs+/DtPUfhHLzkH//f/8xgP3XOWbhEkuyjLzdlbQUKyEHAEpUgj2rQs12dJpXDlhSts\njje0y46UJqbRE9qqulKKrl/i2sDJtSPhv+RInhPFmFO1W65oTd91bELDPAlCjBazOqMUwQfGWKMc\nlGHYZRLSmDVNT9CCOmvjWK2WzHPk6OiIFAtNE4jxhvvvvojZ33hF0CBI/w2k5UYxs1fq3WlZnaak\n31TcvJZIzP74zilk1Es/Vy/6/FQNYAR+ExdGsY6PMTJsB+ZJZLLdopUyMha8NWLZ7xzGOuYo81pK\nwSpw2uAqCSzHCec9Xd+hK3+ic5bWGrwptJ0UMcZV19zGSTKp2TP7IaciPBFEt2+0whgoWoilxnlU\nZcxrZXChg2qzrVSubDW5KDOFEidUQaSDNaywlEROVJKewhqL30sLkRA2bRTFKJKJ1VtmX3GL0kEb\nhUpSdasCVlXOj5HNRaGwVhJ0U6oS4T2L3VkYlUCs2xN822GNZaz25SVLl6GtIe6q6Zd3KAUOhZ5G\n0nZic/06xln6wxVTjCgbCP2CiGbebSlKMcVIExz9ouX4+gnDMOBCYMESKo9mmEZ2uy0uBA4OD5ij\n5CJNU6xFbCbFjA8SeyDhkUKmdr6cbvamdtbGGLrDQxb9guefv8z160cYren7DsqOcZxOzc6maaZp\nGrwvxKiI8cZ4Uwqpqu4oN67hF1/2e2Lw6yXMt/C45eSq23z2ao8b0/1Si5l5zqhUyf7KyQggNPSL\nntAHVJ7AWpgnaW6UZCKdvXCe0Ldshx1aaVbrJcHBvDkibo4xrtB5y3LZ4puA0k6KByN7ze888XV+\n8aOfuwVJ+Fef+ir/4Cffwg++7W4ATNnzRUQNWYp022ou/Ma//WL92Q8CTX19LfDzKD7CJy/9JX//\nx94hBUOp+031TiIbTHEUoyk1Iwo0xjpc02K9R3tBErSzdbxviWXClFoQIU2G+NLsVUQyttXWY5pW\nwmiNRWuHLjIq+drlYz7++Jd47tqGc6uO973jAc6t29OAy4KosqYkZqE5CT9mjhJGizHkohimwmc+\n/wyoFZSXngP4CL/7+JO8//u+G2yQMb+2KAq2JOYURe5sNCWJPxcmsD48yzjObLYbrl895q8ub9mN\nz7BcLXjowQsslwvGaWaxXGCt5+T6daZxqL5CSZomCiVGDIq+7Vl0PUfzdUqe0dqhrEEZK6niRBKS\nDm72rskI+tR1HeM4UHKh6zr2TsHXj05kP3buFGm2xtZbYz4VNczzLD497EeKt19WN6a2N+Jw7wSS\nvtYcwG9/IXO7guUVdpKbN/u9RMw6S9MGUIXddss0DkzDhALaNgAwjYlpmlmsAsN25HAdONruSEmk\niW0T8EbRBY9VCZUjSkHTeULn0WVGG3B7H4igcY3Mp40p2GAwvq3dlRBScxbmuXdiYmdq14QqaO/Q\n2mO0rZtBoqBR9sbsuRQjoypnQStynEFlmWVXc6ecEynOpCzQqtUaZ710TClVsp66pSCRynnvVyK5\nJXvcz1S1EkBGGO/yvtRsFCWcnZQTOmlsKlitmZQhppm83aCbDaHrSc6SSsNifcj25Jg5JZzVNWFV\n5vnaGUIbaMeJYTMwXLsuJl4FXJ2/hyaAgmmOxJiY0LT9QqwuskCpYbGoncmMV4UpRobtBqU0i65n\nWA9cv34sRZ1WxHkW7lMbyAhhcc4ABufkDIjpliLWZOuD9boWIRKFoDEslz0pxdNixbm9s+8sPh1K\n/B5Kxc9uXvw3q6LkCzeu85fcZ1+var6hYz/X/wYmSK/N36tUM6MFkbXO4VygW/T0ix7vDTlGsdlX\nqoYvalYHZzm8cJ6sEinPLBcL1qsF4+4aadjgc6TxQfajRYMODqxBWU3W8MzVLb/40c9TykuRhH/x\nsQ9xz7kF59cyTkg5E2NGWUvOM/MUoRi+9ux1Cg9z4wa+P1oKj/DM1afYzRAQpYwiCc8lyx4gydOG\nojVfv3zEx//dF3ju6gnnDzp+8r1v5YH7zkqlohVGSVgkSTgvFolHQClxpC2QY0IZQbWNF47JvNvU\nwCqDzo5PXPo8P/+rn75lFPYvP/UF/vFPvYv3P/wgMcn+l3JmmqVoSaWSlY1nN2zFHK8o0jBz+WiA\n8shtzwE8zPPX/pzdbsC2VTGlDEpFkG1fxlolC5coj0zjC1gf6JYtX3n2Kn/y5av1ub4L9dwTPPnU\nZ3nPI2/gTW9+kGEwOOexIeBDEBffkkVR5S3TLE7Lzlu6tmG3k+e+H2WmAkUbmtZJ6GYxaGWIyVJt\nTAHNanXAsJvQWrNaG3JJzDFycrLFOXdKiNZaCpd5njHG1lgWqmIT9hvTrX5Y+1HenYqWFz3+5kX5\nGi3Qb10ho1708U4Pe6V2qNxU1dWbsHQzgdAFYWarmq0RhWmdYmTYUt0tC3kuhBDIKMZhEOmjtQRr\n6BpH67RYU4+phjFajM6onCSgUCmsBeekgHLOSHdh93NpcS4AUS5ltTe6U2hqQWAc2nlBXurISVvh\nWRgFqkK+ohKSEVAuCW3rXDuW00pZhksVMka4MFYbQZvSBKqGvWkjztdKeDG5Zn/UsFrhuqBPf09B\niNfAdBUAACAASURBVMZU107Yq6wsKmVilkeblHGukfTX4QRKRM0zJiuCaxhr9oiPkTyMWCfKoRQj\nSjmcN7RtiymGE04Y55mTK9dwXSBtI6mAsp5gxdp7GEfmmFmv1oBmu9lQRNwtr7FofAiCjowTk9nR\nLRYsl0tOTk7IKWJMQwbGYSJ4i1KQ04zzraiSppmcxD/BhUCwihhnUk6sVqtK8L3KyfFOrr+mYRwn\nALzzNfMqobQUNiCjgj2yCrxo8b/kMj99zCvOoF8/XvF4qV/F7c/9N3umbx4d7omVzooE2lqLC4Gm\n7Wrys3iOTFEc41IqONtw7uLddOsFm+MjVv2Cg/UaZyLXj4/Iux3rZctq1dIHKb6Fi5XJRaOK5pOP\nfx3F8rZoCnyY3/7s1/nxRx+oIxYh3ScSc812UtoSnAEuAbv6s/tjh+IS68VdbCbhAnojhp4kaXaU\nEc8tLHz88S/ywQ//HkqtKOVhlHqCX/43f8Z//1++n5/+obdWAj2CJtWxjCkiNdbKCFKkRAGq6nje\nOC/YV75xE/jalev8/K9++rajsF/89cf4ngcvcP6gI8XMFGdi0TgVsA6GOTGVSMJgtGeeRqz1rBYt\nqEtQXnoO4BKLfs2UCmUYSVFCbHNKqCT8w5wEhc+pkEqukRIDV09m/uTLV+E2I6vPXPoQFy+eQRsl\n3JsMoWlFsBBHcinyb5OEfEshBM9i0QvlsUCcc0WzLNZ7bJHrXtuEyZJrR6mov2uxrmWaRrRRHBpV\nXeALw06KljjPwvmpx43P92Oker8hc/No6eXW037P+1bvafqVH/IKh7rpf33T//uvcYPb8opFy6v4\nU/LGKEJwsrBVIXiHs67OrEu1dp6Z5ghocsx0bcMUc3XDrXwYI4GNoYaoBSMeKqGtybNK1EnWVTWS\ntzRNI0iOVbgqw5ZUUl89CqhE2v3M0WCUxaDRuWCy5JwYo6rvwz6XSdWgr6oKKEgRUoSol1OqxGGp\n/HWuvptFoYuEpVmlxRxLG6xxqOqrsCf8UclXQlC0cm6qangfkpjzPqnW1CJHoGJTkQaJfZ8rAUwI\nhYYCaSJNW1SOmOrP0y2WtH1HaAJN8GgF8zSTYo0uCJZ+2QnpbBiYjk4YT06Iux1pHCAnnPV0XY+p\nRLS26+i6riJMWYh2cUYrJcWRUeQ0A4W+71n0C0FYUiJVYt08S7J2sA5dpHj1zgkkW5Nxm65jsZQC\nxvvAmbNnuHj3XSxXHSghBTdNkBRjVQ23SrlV1VTHVfs5/j587eYOpuwXSD1eL2L+/Tn245pTv436\ncU/2t96i1d7dRIE2xCzhpsuDs1y45275TlKcPTzHwXpFzjNlHvF1jOm8EcUPSYIUc5Kg02nm2Ssn\nFO6EJDzC89d2XNtETnaJcS7MWbMbEttBku7Rhrc9dA+UI+DnkBs39ePPUTjme9/xJrJyjBE24/73\nKDIWtKNoxdMvHPHBD/8epfwsOT9NKf+mfvyH/M//52/z9LPX0RnMqQrTnuaTiZmdkIh19d1R1oF1\nFCUjYWtURbsjH/vDz6PUCvggN4qO/ShsyW898VWMbcnKk7CgPVkHlG3JypKKIrRLtG1pmhUudLz7\nLQ/d8RxQjnnrm+7DWo8uEi6Z5sQ4Rra7iXGqxnxZEVMhxkJKhXFKfOnpayju/Fy/+NTTDNsTdifH\nzOOAdZ5utcK3PRiPDz1tvzyNqPHes1wuWa1WLPoe70SYISNsg3YO7S3WO3wIeB9ueJEphfMOF4Lk\nxvmG8+cvcObMGdquoesC1omKzFTH55Qi8yzijL1o5Iba9aZ1UG7ay+o6OP3vNvvZt2KLe/WIzKtA\nWF6sxPhWHMZovHcYa0gpVvnxXI3R9qQkXYl3cnPWWgqf45NjSio4Y2rUvSPYgleZYsTozDnLog10\njSeOogIKztI0niYE2tCIfX9W1dhobyglAiIZ9wBkKRiMEUhVVWJcDVeT+aZ0a6oIAmKMEcdLqORb\ns/9laLXHEUEwzfoY9jfK+ntFd3SaTitjDHmk3ntsK01CsXcWvrENl4puVWJgjTowqpAqagSixMrz\nSI4TumTZqNNE3B2RtUPpatZlHb7pJPG2COFvs90xj6CVePkoJRba5MLxyQlTnLGhoVWaMW+wQdMt\ne6wpxCjmT6vDM6B1JRAq4pjISvgJ1ogXT44z1jjWyyXzMFJKwmqLUpZcxPyvcU5QppqMKwREkWem\nJIVQ0yhygaZt8cHXgvMFTk625FSL5nGqScCWcZrEEKyIk6m8B/pFo6VXcaG/Plr69+YQomRGJQCF\nc57gvTRDJcvawwAzOQp/bXXmDLoJHF29wqLpWS6WOF+IccCSWS1arFOM80iaI3OasM5Urymx5V91\nFsWl2uW/FEnomo7tIAofsvDoStF43xOaHmUVdy8tH3jv2/iN3/8QqI8AjyAIzTF//wM/wD0XLuCs\nIsWJOI+kguQMGQPGorTj448/VZGY2/Bs1Ef49T/4HP/4P/1BQDhjxnkyE8xJIgdQoARRBjGpPDWV\nzAltrXjPzJnnrhxTyp1HYS8c/SXKBUzWmKiEoGscxgX0nPFBgiRzFhQ35YkHlj0f+KF38Ru/99it\n56Ac8f5Hv5tVt8C5Fl0K0xihSPGyG2dUiVgtfjMpyv1mnMUHZrObKbz7js/16PgJ5t1IjBtBYLoF\nTbdCG49WBaUN3loRiSRJxs4FlDHY3uNsYDdIArduJENLRt6JxgdCaNjtdkJFSLFGWsCUJaBysVhz\n9lwSj5rNFu+t5OshPFSiuqEA41a+yw2n+RcdtyHRfDuas2+4kLkd2Wf/9dv+2Cts2jf/rtsVQjef\nL3FVFfi2FCFvpij28VMlJCm9N79TOG+Yx0jTBpSGOM2QBcHpW0vfGFpXcKVgncMo8NbRN47WW+Zk\noHga7/DOEXyD1WLgprQ+DfkCjS6a/X8ZIInbpbEOq/emUXKzLGTxcVAgUbClelFUF97KCleoagJl\nySqLqCZLZGxNZEKC0SzGGbTVmCxhZmIzYwTRyaUqtwwRIdmVkm8YZVVylqaavaVcYUWBEW8C10T6\nDZQogXSqFJ67esynn/wil492HK56vv9db+auu86SYpKRl/PMw05CNREidHbCG0hTxFpPe3AGpQ1X\nrl5lHCa0GSi6MM0R28h7GnNiHEdcaDk8d4FpGNhuTshZ3JWdszTBS47IOGCCpm9bhkXHdtjJCEAJ\nUTHmIoRMXxkLGUx2pBiFC6QMzgasd5KnRMHrhnPnLuCc55lnnmW72Qo0nBJxjFhnmWoQIEqdIoio\nW3kyWova6XaZTK8DMt/8cQPuvnXTuSO8/WrJea+CyFSqxNc5cYFtmkBw5tQWXyvDtJvIKdN1C5q+\nY7vbkebE+vwBofVM03XKONBYRd85isrMKTPGmd044bw7xdCVUrzpvhW/fekZBEn4eaR4uIEkPHTP\nPcS4H39klJdAQmMtaEsIHUVrHn3HW3jjAw/wxOe/wvHmLzh/9g380KNv5+K5A3ROEoqrhWxrVRH5\ntyp1wG14/urmjsUF5RGevfKsyKgVoBUqRVJEBAHaSyGjlZBEcx3VGdD1Bq6V7KFFRy6eWaHUE5Tb\njIEUl7hw+Ea0DVgcHo/TRjxgTAAt42KlDdYGXGhIeWZKkfe+511810MP8fhn/4xr17/Eur/A97zh\nXazXi2qpYYjzTKzEYbIixVK5I1WCT6noDJSiaJxF8cQdC02rFMN2JEZJN99tB5YHma5fgJbfH7zD\nW0+cIxol+xOKplvgfEu+doWUIjFO4heUqVYQmq7vCaFlszmpp17iWnTXUdA45zlz/jwpZ5579llA\nMc+JaZqwxhC1Fpn3fiM79TjbTxtk9JLzjVHTqylaXkKXeQ32vFdfyNRy7I7P8zYFyWtx3EwgMlrL\nG6GVqHsKws6uHgaqSta0LjWJ2uCMo20bxmEERIK76hqWjSOYTGMKvipfrFZ03tE2GkMEozDKiRW1\n9+JZooTMK0WAzHYpMvZQWYLElNIoUzcwLeRd6aJuICmiVhQzv5uJnyJjVKeEVq2EqyJBb5lSxA1T\nWHMSRWCsqTdp8UgpKopKSCtMMSgNRomkLpUiUseSZfNVIhXPKQt8nWL1xRCjuVLdJ2WemqqhQKZU\nX4VPf/5pful39sqH6r/w+Jf5Lz7wKO9+ywNidoXIIskFbwwlRtIs4x9FpsQBXMPq8BDjA1evXWUc\ndgxT4q8uP88Y/5JF3/DgfWdZr5bM4yDJ2cFhZyccl3EiThNtF1AUMVxGyLt938sGWhdeyVWS3mis\nE2K4KiJ3LcGLFBsl7p9Kog3iPJFixLnAhbvuJlN49ulnGIaBrmuZp/nUYTXndDpaleu3nBY1qiqd\n9u7Aco2/Xr28lse343wqJehwKUJcVUp4aot+wXq9pm0DxsCUIjorxnFgHCeUtnT9Cuc9w2ZD4x1t\nF7h+/SqPf+YzXH3ueZbB8LY3nGXVVZ8YJflsaS6n4+dSNG2w/Oi77+O3Hq9oSnmYPZryg2+7l8ZY\nhiHJeNtasnVkU4MTrZfxhfNob7ivX3P/3RdpmkC36MSJWEMeR8nwUYIsWqVxVqFVFhM+o7hwZn3H\n4gJ1iYvnvgfjAyIaiFVSLBuWxBxoitKk6jFTYqpxKUKWN9qglKXg+KkfeAcf/uQT3K54Kxzzt9/z\nNqzvyLrQO41xjlQtjl0rpFbvAyG0UMRDZjOOhGbBufPneej+ixxdvy45UxS0FkVqjOIGngqMszRg\nqmY25CyeYDICSygczhredK/jL1/42m2fKxxzdnGO3WYHWleLjJk4DiRn0U5Ga6VkMbkrVgJ5rWOs\nxndNv6Ro2BxdJ6UJJjDG44wRTw40i9UhTb8kxSh8UlI1ajXEKHzAi3fXoMjyPCnJeDyqWJtqEBUs\nlZ8F+2JgPwX4Tji+raqlb3Z/KSCFiTVV474n2clNeX9TsPWG7qwR/oNRdN2ClCPb7SASZWtZ9Y6F\nL3S20FiFt5qiC11wLLoWHwyZiHMak0udcwMpkk3BGSmtcs438Lb9rPyUDCTGdWZfxNQXoqiZIXqf\nH6uRWqUqivbOQ3qfqaGp3GGKLtXgKZGLkIW1tWgvzsQ5VSfMoioio09vnvtY+D0yRN7zYiohuhRx\n2YWamioVeC6SyVKUwMlJKVTOpJT52uVjful3vnhb1cT/9RuPcf+5FYdn1vVdNKQiG5dXhbna+isF\n5MSwuYpyLaEJLJYL/uKpazzx1GVuViY8+aU/5z3vfJDv+q77mKxCW0vT9pSkmP1Q1WGatltQ9vbp\nWtO1LdoakXcWxTQIXF9Sxlkv5qUp1dlxoOtgt92y225x1VpeOclrQhm8b7jv/gcx2vDMXz/DqGfm\nPrLbSexCNBExqudUdl1qRb4fLb5evHz7jpeoJl79T97xO7qq1XJVtFml6ZqGg4M1q9UCpbPEc0wT\nWmlBg5XC+4a2X+IbTx4GDg5WPPnkk/zmx34bWEkxoi7xJ19+ku97ywXefO+SNgiXJGeFdl6MKVEQ\nE2994wXOLwN//tXLHO/+mFXnefsb3sJ62TFOiZQVGUl6jkVjjUc5h3Ke0LSsuh4VLNM8YYC2bWn7\nniYEvIHSBOZxYJ4myAWjFNYorBNEWpXCT/zgu/nl3/pj7oQM/Uc//Ei1myiUJONva0X4oJWTgkAh\nPirURktptJXmr2QoWfbK++65wH/3936M/+WXHkOpXz49X6Uc80//sx/jnrsuYEOL9hqlLcZ5ihhs\niRrIeZq2w2rDPA6okw2l8uO00oSmJStDmmeMMaScGaaRKSbmmIhV/RVneY7eWpSSEVDwBlUSU5yI\nKeGD5z1vvovPfOFDKD6CqMOk0Pzu+w5pnWUaJrSr1INcmHdbRq2g6QBB0rSxWCeGgUVr8jCT50RY\ny37prGa7Oa4eOoJgGaOZYyYozfLgLClGcprQJEQMYtCz5Mc1Xcv5CxcYR8mQmseRaRwlP7BKS/ao\nyw1XeOFy3tyQfcOr6zXcAl/zQkZRn+BriMporTDVlrvUCz2nhLZaws1iquZrohxofMB5J+6XRnF8\nvGEaJxyGVe9ZtIo+QO8N1uzNjQp96+mXPS54hnFA5RlTwGkn1JIi9tl79dC+29aId8ueuKm0qmnX\nMo+VDkpSpvU+T2nvL1LHDlpXgyVk7GOoLGCtIWZUVtWAzZLjXDNWqK/R1JTXIlV3HUvZmlMUSyZl\nIbyiZHyVKkOrVN8CbkrhzknyOCpeQlEGVBarbiAB8wyf+twzcEpme6lq4g+e+BI//v1vYVZaNoDq\nNqyRPzenLO9b0SggjVvmacf145EnnrrMbdn+n/0QZ88uWZHktSNE5LbvSCUR4yRsfxwxTuQs1uEZ\nsKEhhI5hs2VzckTcp1p7UUfJoECzWCxpuwUnJ8c422CtZNQoazHGE1Oh9Qvuufc+Uso88/SzdF3H\nPM3EeawOmVLP5uosWqhmUxWNudMG8O3gmf3/8bhd4XjzFvVqTveeL48C44wEPOaMsobgHKv1gm7R\nUsgSRRAlbV0XQVKC0RjlaNoGSmbRdczzzG9+7Lcp5WehXuuinvk5/vBzH+Le80ua1tSAR0PCMmfx\ndMlZUJIz6wXf/z1BEBMrviLaWIwpxAQJI2sNaWKcC7RNQ2gCNgT6pShh5nnCB0/b9fjgCFajk2cO\nhjh7CYyt42ZtZBxdUubB++/mf/wHP8M/+xePwU3FBeWY/+m//kkevPs8qhRyiZVjZkWybTIULZ4y\nFXlQet/8OZT1aJ1Fkp0yooAw/MR738Hbv/sBPvbpz/HclctcPP9OfvqH3sPhesmckvh82QbQ2CCv\n0bhGGjrnJKZEG+ZpIJnLhHzDD8g6j63Zalprpnnm6PiYOUk2m9aiurK5YE1AIUpQZ2SsjSqoaPFF\n1vzb3tBy18GCL3ztMse7P6IJlvvO3U/wktEWozSSaIlwmIexcoPE6ddaT79U+K6BArZpUWaH/Egh\ndB0prolRBC658gata8haFJ+2hvN61+KsEbf2nFEmsfeU6RcrLlwUzmmKUcbzOcvojD3yJEWMVvvQ\n3nzLWOnl19+dvvEqFt6rOF7zQublntct/Jr9x5u4Nzc/7vQxSlAJCbmSm3PXNjRNQ4wTsQaw7U+y\ntzJqKFqRVWGzE/MylTNWKxbBsGw1fadprHiweG8xStEEL4Q6CjpF8jxhjMUbjXdiOW6sqiOeCidW\nHkpMCaVqurXWlBo4mJVsINpIkVCUPvVJKKdzxyI2/lqj64WllcC3SUvBoWrgowKUz5WHoeviN6R5\nRIG491qHMhajLAUxOkppnza7R7P2abZaskn24/5KP8+5EEthyvJap7kwTkoylIz45l05Hrmz/8Ij\nXD76POMciUCc95CmJ001Jr7Om/fdcqp8gCf/4gXubNL1Yb745Wd41zvfyLQdmCbhKy1WB9J9pcS4\n27JcHOJswzxOJArJiGtv03aEtkUbxbDbEqcBbao8XioP5jmzPjzL8uA8cRqhRNlQFWjjsAlijDRd\nx9333gsoXnjuBUpJFAopp1MDwf18Was9jC6eHq/qeJ3w+y09bn9qb96YbrwBN+9PxuhTrh5Fo5yh\nb1uWyw5yYtxsKmoqRF8fAk1wjHHCaOGKzLuR9bkFf/qnf86dmgGlPsxTT1/n/Nl70UqLfcSUxHyv\nkgetNljfobQgBlMpUDTeeErJjOPEFEeU0tLgOcdi2bNYrWkbiR1p+h7nHDFHtDGE4LHO4q3GEHBB\nSKR6r1ip+0gpkr5MSfzkDz/CO950P7/xe3/Msy88z91n38bPvP/d3HfxHBJoW079nFSNTskp1REI\nxJQrr0xjjMMYj9KOTEJZjTVFfFpiBmW5/+6z/JP//MewTYcLPeCY5sRu2qGdpuvWoIQA60KLCx3W\nWaj8ROc8cW6q629hGAbGYcBog/dO4ha04WS7JQMxjcQ44KxhaxxxnGiDxxgZG1JKNaYraOfx3uK9\nI6VE1/WcWS2JKZNREhoaM+M8M9lEzOLRVbK4sqeYmcaRkgujc4xjj2+ckMiNp6DZDiNxnvAp0DYd\nuY+cpGvs4libXBmrzSlxfHRE0zSs1weEtpdmNM/M00hJhWEnjez64IBpEhQx1hDOzWYrfmdFemoB\nvfd+ZrdXJcG3vxH7xjgy8KqRlv0LuYXYU+68N99C8L3pT2pUtcAWRCJ4Kx1yET+Evconl4wpwqEx\nzlRkQ060UNIkmbpzimVrWLQWTSE4L+nOztB6L4S6XGpImsVbI1CqraofFEYbyFUzpGxFYgCy+L8o\niNUBU2VT+SzIVYAUCo59+FpVC9UxE9nIqEeXiiopKIkc8+nC18iYpGgpigQFKzWDSdQEaENRBqUL\nbh8wl8UDAa1PCaelKHRR1QgvU4zMa1MpjLEwR/G2mZJmLpo5RoiRnAqr/uX8F55g2R8wzKI6cGjm\nOBNLJlbfBYVEMORSxPRuSuymyMl2pvAe7sT2Pz5+nN3JlpgS282xvM8ZFqs1zmjSHBmngUXfQ7IY\nlSnFM0SBUtdnzxGahqMrzzMOW0qeyQh6ZozE2++mkeX6UDbxOGL3vCVU9RnUTMNA0/Y8+MY3YJwh\n/dVc3wfNbrch1YVujDq99lPOtyiYXj/+ho6XGzXdYGmffulmrl6pPDMxLpMx9mK1pFssgFLDVUVk\nGJqW5WqBVoW0FelxjLN08E3D5mQDdzCkozzCbvxTMdes1v2pqldsNQW11mGNoyhDQhoGGZE0zKmA\nGzDDhNaGxXLFYrlktVqyPjyk6SR1u+87StmPVh3BWuEFWgPkigBHUSfWblTofoU0j8zTQBwK954/\nw3/7d34M7yzKeZTRgoqmBDWZWymFinL+BIquHlypOoYXjaop2pXch9ZCWEZnaSiqakhrh/UNrl+h\nTYtNBTVt0EazXB5KU0fBuoDzAWMUqSTxs0K8xdYHa9IcSXNkMyeMFhsHbS0gmVg7v8X7QN+vsbYF\nHLMbaIOnbXw1DaWmY0e0ghDEbyynxKIf2S63TNMsxN5xYtiNokSNClM0KRlijKdofp6jvJ/jwO7k\nGK2RJiz0WOewSUZECkUILWqF5NjFmTRLkRKsw2lLjIntyRajPU2/pl8t0QbGzXEN5x1INfZhdXDI\nPCe08aia57fdbMg5SphlEYuOfWP8nbKHfVOIzM3Iyv7zcpvvwUs361uKmVchGlCKUxmxtTJeinEm\npZmpGjuB1AjOiMzaODFJo0COE01Nnm28Zdlblp2jbYyQT52pEmCLcw7vDHnOZCdGSs4IGrTntCiE\nGGqUQun97DqJ9LLs5WpV8lgMJSEOi1qhDaiqOMq5EvUr8TfOsRY1iXncSdaY64QsbDU5j5ByTfBW\ntUgReXaJlatTF0E1awDrKhQoqJBNiacvn/DJS1/h2asnnF/3vO/hB7l4sEAXDcjmXJTYeEvYtagK\ntHWQJ3LaewnAw3/rfv7t5z7F7WfjR7zpwbeSiiHYACTG3cQ4TcxzFMhSwCap7FOdPcdMY83Lsv2d\nhpOjk9OAuJIL87BjdhbbdRgjHWQGfNtQkhRTaTsw7QZKKqwPz2K04fq1F5iniZSzJMKGhmIMw25L\nyrlGD3h8txBESwv5jeMTJmR8YJ3jnvsfJCe4evkK/fKAq1cusznZCnEuplMYOZ+y+3nxvfL14zvu\nuMMuXW445QbnadqWbrHAhiAeRrUo0MayWCxZLHrmeSKIrRVTmkXVFBwHhyvgCW5nSIe6xLnDA9rQ\niIV8geBF2t23PT40gnIagw0NxjdMUyTHVBGWwrks6qJpknW96Je0bUtoGhbLBcv1AaFpKFnQRK3A\nqkKoAoeCkky2HBGriFI1wLI3x72DeVaUPGFywXiPaRpynjFFCM7K1HypXGpbT90AaxtnNAZb+zxB\nn0zNpCp1DG6VkbxKCimrOn4SnqD1AactJjVYa+jaTkzekkSUuFqUqYSIL5SY+wUvBWDfddXKAnlt\nWklBlTPjsGPnGmg1IWSCayk5ShyFtXRth/OOnEWaLanbiWnYMu42OGvpu45pGpnGid1u4MhsyFrD\nNNWMqFIDgzlt7HSBMkem7U7ORVFQDNp5ERbUqB5tLcEsWRYh6m42O1KcyHHG+AbnDLvdwPVrV7FN\nQ7tc0PdrQmjIuTBPI/M8kuKMsZaDs2fJSnzEchJFaEr51CMr5SwjrO+QIgZeg9HS7QqVV/yZl/me\netHne3he71ERI2XQviJMKVfTJEPXB3xjRCmAqUGKBhc01mkOWs/BKtB3IruliO22EPdcHStlChFU\nFut+I6QzrXWVPlbCU1UCaFSVEaqKDCVKylhZDZRU1UfWVgWPRRUpQHLtbEoulFQkkbYa8cmrFJQF\nXcSWushzVlns9bPaW+ALsU3SYPUprKi8J01QSgRl+K1LX+WDv/z7txBof+0PnuS/+Zn/gB95+CFy\nzhhgSom5CEM/eGH35zmBhtA2lCLmVvd1S/7j9z3Cv/qdx3ix/8KPvOvN9E2LsQHnOoa4FY+drJhj\nZrsdK1O/omgK4TgZyxvuWvHV5/+aO7H97zo4z7gdUUZJ6jgw73ZsSyZNM8YHQtfT9YW+b9GqEBKY\n0LDdjsy7LayWLFZrcoqcHF1jGCQJOxfw1kPKgvqMEesDi+UZVoeH+GCY5wGNZhxHYpQNoKC594EH\n8G3H9WvXiSkxDCPTNMmYIadKDH3RItgXMzcviteLm+/IQ/ajmkqvVCXMS1gsusZ+KDEsyLnQBMlh\nU7pgrKVdOOYoCfZt26KN5p0Pv4U//PQdiLIc8/1vf4S+bTF6Yo6yJ7XdkrPnLrBcrVDWCMJqLMp6\ncvW0UuyDAkWldLwZmCcZczTB47zBNwHnTOXaSaq2IqNIMkZQCWM9SgVUdhLhksSEEqVquKEQ6HVx\naJcwRaGsEeVkEcKsPr3WS1W+iIXEaRFTkW2lkiAzcBpwqbWWMXq6VQFqlKUYg7INxnoh5fuAR5zS\nvXPCt7GujqzSaSPorK5CkSRmGVr4kW3wzHFmjlNVbAqavexaSjoEEJRcixI0zRPzNONcwFVFpG8h\ndQAAIABJREFUaynivzVNIyfXrlKKjOFCaCgxcXK8QZst2jY03chuGhljlMiIJEjRlMTbpdSab6q8\nmZpxjM2itMSILYWzEk/QdEv65SRj7T03E+H1WGvYDTuuX3ke3zi00SyWKw7P3VXbc7h+7QrDJF5B\ne88ilKqNd6ojppsELpWgfLp1/Q3uY99UIfPyxcqLZkm3+fKtXyy3/OuWQqZKVY3RNR6gEm33kL3W\nxJIoRdG2HevDNc5rpmGSk1wK3lm8LTRKc27dsuwDwVu8N5UTkYQI5U0dHxUwiqyLqIS0kn+TT/kc\nWu3dd+XGlIvi6atbPvH4V3n22oZzq8CPPHI/d59ZV9KnkHv3hKlcZlBRvGOMkQZF6bpQFYQgM8mK\nqBStsL4BnSlKyFiUWlft7b2FrQZanSZyaxeY5khG8fUXrvPBX/59bpty+9HHePMDF7nrcIk1ljTt\n0FajS6ZoYfSbMmLRGOvRyuKsQ1nFD7x7yT0X7+bS57/M0fGXOFjexTseepS+E3g2tC3FGGJRzCkT\nY0LVSIVS4TZrrCgkMniraJs7s/3f+uA5DhZd7RISUlhm5hLrRgl6ioBiaDvatqHtxA/GhhZjd0wp\nk+YZFzzL9YFwmq48zzhNTLuNuA67Bh0sKSVOrh/xQniesFyz7g9ZmAOCDUyj8GfGYcd2s8E1LcuD\nFccnR5V3YyohTkYNWqlKCZCdoJx+/vLr4vXjW3Ds2dj741WhwzUYthLDc85C8I5iWR+TOKCmObFP\nm9d6n7ulcU2ASdP6jrbrMMZweLjmR3/0e/nEJz6EUh+B/bVejvmZ972VC2fXgML7loJBGUe/WLE6\ne4HleiUJ06aaYRqL9S1UlVTKwkub54jxHorCu1ARaEffBgyJPM2gDCo4nK1qJGoDqTLG1BF3Aq3S\n6U0sVzRIKYPWM7oorFaQRuZxFg5eDezdq0v3yE9RnCpfZBPdo/Q1lDLNqCycGpMFBRKRhEW5IAG8\nxuLbNU2zQFuH9b6+pRmzH+NrKCWxhxBUEZNP4bKJ2CBlUVBSlDgrSxovcYrkOBOc5czBqhKFA9ZZ\nlEby/XZDVXQ6ilK14XYyRj5/F/O4YZ5Eej9sd2ADJjQ008ScIuM0s9lu2W62wnMsGRPjqWJqrkjI\nNE2YQVcneOH5pAniNAgyR0EbTb8+FCQlC1dnjpmYJZXTORGKXHv+OajFyXK55uxd9+C8p2jF8Mwz\nDLsNaY43roF94b7nV8ocAWm1b144L96z1B2+/tof/98Qmds971d6zqeyDF4KrdfNfv97tKn2/84S\ngsf7gHdaBDZ7PxR2zETapqHrF2QS1oj3gC4JUwp9cHSMHDSaReNovMW5mqNQqnWztdXsTUiw1la3\n1zpWkpiAPfqh0OUG0enjf/QVfuHXLt2CdHz0U1/ln/zMw7z/nQ+yv2mJ6yKnCa3aOCwGtOHpy0d8\n4o+f4rlrJ1w4XPDj3/tdvHG9qj5Rmn34I8UCI7pkciliV6c0xVjISbKHjJMCScnYCp359U/9GXd0\n3+QjfPKPv8zf+w/fA9oQWk0eI1kXtG0wTmBrHycKiqbpaLqWjMIOI29ul7z5oTcS48g4TaSURd1Q\n+UJTimIkhWS+lAzOOIwWozBvDIrIXDcbZw1vefAC95xZ8OTXrnC0/SOCtzxw7gHWfYNFE21iiDNz\nlhtIzok0ZyY1YS2kcWTaHLMNBqV6rA1o0+CbhjSOzNMoXhk+sDw8R8mFo6uXhbU/TxRl8KHDOsd2\ns+HalRfASeDe2XN30S4PuHj/Gzm5tubK5WfY7EZOjo+BmnhuDT5UztVUUDmdSt5lwy63rpXXUZi/\noWNPWKr7zm02MfnyDXv2gtxYhdgv49wUM0xTtUDQBN/QdQvaxZKcZ2LMtfkyNE1L0wbxockzb/6u\nB2lN4itf+Rpx/jznDs7xvW//Xu6/+wLBO/bmmM41NG3PYn3IYn1QnabBWn1qTaG0IaXMpAqlSLNg\nVMYo4dmIEEHhvcbrTMniiK7QZGZSlHBaa50g0SmjynzDo0uJmrIUGQcJf1GaTXJG5UjKUaS7Wvxu\nxNRT1bGR6DsVsr8bLYGyQpAXhMsajdFO3JAj6FIbQYnIFpTJeLAe71ucD1Jkwk2FSj5dU7kKKijV\nLysm4e2UUjPgBI0tpd6iK0KuS8bpgralkn8zhknGbDmjc8RZGeVrZ9DGSzxA0+Csl+eTRuK8YxxH\npjkyDRPXr17l2vXr7IaR3bAjtA2LRUeeZ1Kc2e1GtsMghonjJNYa9XVcu37CU5/9MscnO5bLnkcf\nfYQ3LFaCpM8zxgWWh2eZx7GGhY4QIyAKV21Exr05ukYpiWG35fDsedZnL5CLOJXP48RUBkLwdH3P\nsB3EW2sSBaxkCebTZfOd0HN984XMbRm7L/6Cus33XjyLuvXTUglMqCq7rhwV55xwFZxBFelypygk\nWKMsbddhvWc37ITs5h06a4LKLIKljSO9h84bvNXYvZmdsnVkJQ6v8hwQSFTZGtC15zUUIcvWUVfM\nir++vOEXfu3SbZGO//2jj/Gme89z8XBRAwlznc1KUVIq1+bjf/QU//xX/oCbA9c+8sk/5X/4r36E\nD3zfm4VklatZnpW8I3IS6WdRoAzaGcjVSMo6CpImrWT34bmrJ7ystff1v0IpRzGG4FuSingtv0sZ\nW7lPmRACTdsL2XWOmNAgN2/DOE0cHZ8wT1P12FBsh4F5txWI02qss8RcKuQrz8Co6ohqena7gUIh\n+MDiYs/dd51nsx2Is8CaRilKKkwJshJfCltJaEUyCzAUyjQxnIijZZkjrmmwTcL5BlUiKU5VZQBF\nFw4Oz1JyZrPZil+MlqwRpa0UI6pwcuV5/jpODLsNy/Uhy+WKi8s1oe8pGJ575mlOjo6wxrJcrUhR\niJ+bfEycoWghyqnakb5+/M0etR96UeNYbltUqjrj3t+EFVTxQU07n2dQkrNkjCM0LYvlkrbvmacR\nxUTJBWstoZEC11rDsNuxOTnBqMKjb32Qey+cZb1cEkLAOycqTGtro9bT9Uu6fo3vOrQxFLL4XKkC\n1X4gzyN5mityLehjmWP1SBM38nnU5Grop0oRR3JjyUacwrMPWB8wVqTf2mghrRsjGW9wigLr+lGQ\njCQounVoiiRuK4WoOEX9kpJkxu0DbdOcSLtJkHQ0ulugvIOkKaceVqqO54XHYoyREbIzGCT/KI6i\njqpJvahTw0JJoi+pnBYyJcXK95hJaWCeR0m8V0KojlMixSTO8fNE3Dv4OnH5tUZXaw2H8R5rNc44\nrANrC84ikSgFrBESNcUQYyIEKUh3w5Zht2UYBuGpTCO73Y7dbsRvtsJfqe7fCfjCV5/j3136MqgV\n+zH+H332V/g7/8lP8Oij7yRPA0D1GnLkXHBzJKkEWjNFVdVHhnmYOIpX2G43jNPI+fN306/PcPHe\nmThPTPNIypn14SFxTozjJCaBahZRSF0jqnDrXvY3tK99Y4XMKaP3dt98la/g5X5HgZyQmXKd/wnq\nInNAYzTzNDGPAzlGxnFm2s303Zp+sUbbQC67uvAFNu1twTMTsiAzzmpM9TKQGWLm+esjv/vEX/P8\n9YGzq4b3veMeLh52SFSAdAkKqYrnLAmneZyY5oFf//QXuVMCreIj/ObjX+Hvvu/tABLBqMErRVEK\npzVfv3ydf/4rfyCFUKmFUPWR+Gf/x2O8/Y138eDFM+ibR1TWkpP0UHIVaUo1ZzHWoK1BqSIz16Kx\n2nPx7J3dNxWXuOvs36JgML5Fu0BnwIWWrEBAI4MPgb5fYpwjx8Q4DuhhRGtLyYWQC77p2O22GC0k\nOrPb4ZwhxR2GxKQdu7LBKEXwHu8ciYIPjmW/4PjoiBQnrLO0bYNSyAKKkXEc2Gy2DGOkRI31no4q\n3y6VUFtlk6XAPEykfExKibabaVJG5RnxR5cZuQsN87jDhYaDc3dh/DGq2ppPUZyOxcFZ/s5u2FKe\ne5rN8VU26zOcPXeRxfo89z5oadqWr//FV5jjC7S6R2kxvJqGkThLV2SMgiwZW/vAzm8fAPv6cfNx\nKh19BdK1kgeTTtU63LihVo+heZ6x3svowToxKqt8Cq0tRiegqpyCxTcOpWA3bDg+PmIeZ/AOkozO\njbG0rciig/Ms+iWL1Yqu78XQzTlpsnKUcU2aRX0zDczjjjhNpDkS58g0TWJDENMpKiLqOnk9Vmm8\n9gTnBYVxFh9afCvNoTJG9uOqksJIYK9URpkyRfIoQbJYQa2ssaRchPdS/57IjidKmshpFsVpKZSs\nicNIHgdUMcwpkacBbT3Gt5gg0TCiE70xlNX7dT9NpGmqZFkN1qKcqDlzqorPmkqd50kKriTnJs4j\n87xjGHeM0yzjnHFit9mxPdkwDgPjIEXG3jDPBY/3YigY2o6mb2n7Bd1ySUg9JSdso8ELFUJZhc0S\nXyMK0iXWWna7hnFoGcaRaRzYbTc452jaiA/hNFdpM0w8f/2Yz1z6MvCPoN4n9lyqX/2Xj/HAA3ez\nXDTkcUOKk4wKjcMFL5yZVIiVd0S9h5VYz0kU1da5C3fTrtYcnj/P5viIaZ5pGs1qveTk6IjdZlN5\nS4KOiT+WIOzAS4Q+t66gFyEWpwvrtTm+OUTmtW4nb9rJbzRFQsK1xuCsE6hTCfErzTPTNDOOM6Vo\nmq6n6RYkZLbonScEj8kTncnoYcRraBov81xjT5U3v/+nz/GLH/18LUbEYv9ff+ov+IcfeCvvfcd9\n4qCLZZpnpiky58IcZ3JWjGPi6ReOKXfwUik8wnPXvsR2Fr2T0wavFTELxOu05eOPf+nOIx/1ET72\nqS/wT//uDwtfp6aYakWdNYOpXJOERA7kGDHe1vGbNCdFe376h97NL33iEney9v6p9z6KcR5tPU3T\n4RziOWANynmM9fgmEJpG5H9Gc3J8jN5usNYzTROqQN/3jGNPiokpzoTgeH7aikrJOJpFg297dE60\nXnJfhhQJztIvVywWK4zVNI0QskuKTLuJzeaYzW4g+J6iNOM8sZ2mUzVHSZHZTqS6SFKSPKWcM+M0\n8P+y92axlqXned7zT2va0xmqqquqR6pFDaRaoq2Zli3J1gREMQw4jhEYsRHYQHzjmxgBcpX7XCQX\nvosTkEgcAwYkw4EtxIwkT5oHSmxKtERKZHPqqYYz7LP3XsM/5uJb5zS72a3BEiki6B84ONUHVdW7\n9l7rX9//fe/7vLu+5wu//Xv0Q2C96nj/N7+HbnUkp88kmS62blifVPJASIkY5VRkjSXk+URWNHEM\nJD8x9Ad2V1fcvvMkxycnYArj2DOOA1e7PatFR75zi2no8XO4mzEapQVUJqL1WfB4PVEtvHk3+Bpp\n3f7/ft3YMHnLyE82pzKLGgvzs1Jp6trRtG7Wy0gel3P2poOs58R25vBYZWQ8U3KEHIklMU69BPpZ\nhzNi+TXWsVwuOTk6ZrlYUNcNVSWFRdO2uPn+zikS5/T3FDxh9EzTKA/lYWTaDwz7A0N/YJh5WjFE\ncsoYDdYqLGBRNFZ4JFVTY5uKultSLxa4tsHUYl92dUOuFKoyooVR0oEp3lN8lHGP7DgoJXl3UUQq\n3DieZkxE0oaUhb9FFjqymp07cehJUUCVMYzY0KC6Ds0SV8kBIRcpUvzYU5IIeTVQlCErDSQyiRwk\nybfkQgwjwR8gS0SKH0b8NDGOPfv9nqvdFfvdnsPVjv32it3lFdPo52IwoLWhrpsZmmep6ppuuWS1\nWbM6WnNy+5TN7VNWp6eU40zbLXF1hTE12jKP28HMUL62rRmGhn4cmMYaNxdHPojBIBUZz6ndnt/8\n5Ofe8TkBP8lHP/pxfvj7v5uQPDGMJCzatTOmQ6CxYu2e07Bn95EB4jRw/vBVUsmc3L5Dtzri+NZt\nYgj0h4GyXHB0vOaw24ku8FoCwnXCdX7DhfmHrrfcYH9Kp7ivakQB8MaM+eYHzNlJ11j8WV9rFcYZ\n6rqla5dyCjEZlQLBGwoSEmmMYXm0xrYN02GLdY7VeokpgbQf0U7T6MJ61eG6Fun9SSTB65cj/9u/\n+l3eDrH/4Y98iFvHDbfWC4ytGKfAOAYh5OYyW+wUq67hnVgqihc53TyFcx25JLJKAjwCyTvRlkfb\nPyRw7ew1ibWXNw9AhGlRTiZKlTlF2xBiIqSEsQnXGpSTzk/KmqfunvAP/+sf5X/+J29Ge1N2/Hd/\n+8f5umef4TB6sgbbOZxqUVrTLldUzQpja+pWmDvXbXZjHIvlklwKZ4/P2G33tG3HYrHi0O9RKRF8\nJGVoFxspTrWhpEQuUdrsdc0T6w23To+oa3GJpRjBByonc//9/sCiH6S7ESRaftf3tNNIzJkwBaax\nRxURxu37AecUGMsYAi+9+pjf+MTnUV/Skv3YJz7LD//gge/9C9+HNYocPUmpGUyocHVHjIkJcWoo\nrfB+wlTCvUEVdPHspgcctheMz309J7ducXL3Pn6SgMpxGDk5PWLse/r9AT+3+4XwC9dCsWve0btV\ny9fAuq4q53X9ibyptimCgmhbcf2EKaCKonaW2sm4oWkajDVSEAePUzImzynN5NQwE1Ylh6xx0kVe\nbY64fec+t++cslw0dHVL5Rq0EdSDRgjhYjYAUiYGzzhI0bLb7dhfbdldXnI433J1ccXV1RWHvhcn\nTMrzuEPjnMYqcFrTuJquk4dyu1rQLPY0ywV111J1C6qmo2o76iZS6oSd3U5Gy4MMVUALCzynPBuo\nRV9TcpqJs9eJlw5ta7SK5DSQs0eXOWwxJelIqSxd5RjI0RNyRBWDqRay7+lAnEW5Gn1DC85KE3Mh\nRTFF5BAgJXKORD+QpgFywnsJnB36gavtlkePH3Hx6Izt2TmHqz3TOM3aoWsKO1AUfjgAbyD6jXU4\nV9O0DZvjI27du8MTTz/F3eeeY316ymq1ou662Xwh4mWtZL8uyRKjpYqOUs9OWNegp5GQM8vgATGd\nTD6+44EZPsDl5csYVeRAG8OsRTLklPHTSD9MxJhxrr6By+Yk40CtLTl5Lh4/QGnN0fExm5NTgp9A\nnWO04fj4mO35lv5wfSgVfVienWXXcT1il59vpJsD2TyM/QqOnf5UCpk/TlH1Zb/nWlw+q70p0m1w\nztA08qa7pqJuazSBHA3GWUwQt8/xyQlHp8cEIkUr1utj1uuW6eqckiKuccJMODmWQqZkBu+JKfCR\nX/0C70SQhZ/gP3zsFb73/XdFVD8jvrWqBNlfBJH//ufv8+uf/Cjv1On4nm/7RlzdYubQR01GM6vm\ni+HOH5DminqRJ46/nlS0qMpRkKMka5uaUmfynFxttUHXZsaAa9AO7SqKLRDFEv4jH3w/L3zDM/w/\nP/cxXn/8Ovfvfgv/2Q9+N8/dv482LdSe/biDynFycp+cCm3boJ10YYxVc6Cl6ARs0xCCnLjuPXGX\n040nl4QPHucU+miDUoq+v892u2O/PxBTlHa20bSNY7XasNwcU3ct15FUY9/j+wNGF1IOLGzN5sQw\nHHrOzh5yuBgYQiCkQrfoWK00YWwgC920W64IIXJ1OLAfPL/xic8Df+9mdHf9+fzMv/sw73nPczz9\n7DMYMn64IhlHKooQPe2yYwpXUMAUh7MAwohIKaFyom4cw+GKz730SVJ+L+vVitMn7lGAw9Wew27P\nZrNmvVnTDwMhBAzMpNb0hoC0vJFjUnJ5hxbtu+ursq6bM+qte5uMmI3RNLWjqZ04DjNUVUNV1Rjj\nqNqOqmmw1krn8LCnsZaqsjf5a3IMsSiscF8qw9FmzfHJMeujNcvlgkUtzBhX1xhXzY8DMTnEWWsy\nhUDf91ydX3D56BGXjx5z+egxFw8fsT2/pD/0jJOI4tPsHBLKrox/rFZYpWhMTdPuWex6Fpsly82C\nxbhisVzQjBNVM1C3A74dmdqWqmlEzO7sjbNSlYRKolMppRBn8bMuihIi03AghgGKFAKJTPbDHEEA\nOQoHpZRMCaK90WbmYaEoORDGHSQ7d+w1GoNxNWAoWpEoxBTJMRKnkRw9cfKk6ElxBB/IOTOMPfur\nS7bn5zx+8IDXX32N7eUlORWMNbQLd0NvvmHZIAybnAvXwXQlFVKcGA8T02HH2cMHPPjiyzx85VXu\nv+cZ7j/3LKd378N6I5KJL4loMUZTO/m3GWuZTMBYoezGuYBLyTP6ipPNgpfUi2//nOBFNqunKSli\ndaGtLImKMGs6UwgMhwPDNGFtRQgLmqZBGy1FSYhUdcPY9zx+8IC6blmuT8ixoJXjUMt4frVZcXFx\ngQ/SfRf6vJhjrruP12bAP9L+Vd7y/U+w/viFzJvmyX/CYdf8x3OSHI4YhawoeUQydqirmuV6iak0\naRI1fOUsyRiiqTg+uUW3XtJPPXVTs1ou0ETC0FMpReU0bVujVSGMPcrAFDyTDzw8+wO6IXyAy8Pv\n4JNlGEQM5pRl2cqIBW1QWnOrXfFjf+EFPvKLHwb1z4FvQ/EihR1/66/+APefvDtb2BQ6S4tTaMFS\nwf7l73yBf/Hvf5t3DFz7nvdRaFDGUnIQcZ3SqDm1eR55zu+lv+FaCJXRCYPGGayTOekz92r+/t/8\nIRmZ2AbdLKnXt7C2xcaInVY0XcPR8W0p4HKcBYwaa/XsWJBqO+dIjnlGYit0WwGFKhqcEdvpOAY0\niuPNhs1mLZtDI1EPpuQZ+FeJ5mBOj+4WHZrbqByZxj1Tf8D7JJu51WyOTxGUuRIR7u6S8dDjvefq\ncBBWTIzEnPn8f/zsH9iS/fiLv8UzT9+TUVz0MjPPGmVrVCmEOOKjwPyMqeg66Y55P+LjOBfcLf04\n8sWXfp9nn/9GVptbUAyVu6Su94Bm1+/Z93u251vJCdPCJspzvMa7jZivpfXmfU0acPJrpec8t8bN\nVmOBzzVdR8yFmDJHXUfT1iijCIPHjwfpBJeaRbeQEMmYKChSTFhjaJuG482Gk6M1q+WCrm1p6wpn\nNdYilAVzTZtNBD8x9nv6q0suHz/m0Rdf4eEXvsj2wWMOV1cM+55+HAhRbNBCRNezk0UAZ2QIsRBS\nwetI7wOHcaLd71j3SzZ+IIQ1Cx9oO0l/jj4SQ5i/amwlYxah9qZ5jCSanewnSgzkHEjjFWl/hfej\nQEMVFK1kTB8DGUeY833M7HJKM1rCmgrjapSWx9V1qGShkLQMkWKOkJHPICdKTMRpIIWRMPp5r5Ki\nxk+e/rDj6uwxF48ecPnoMX63x1CoWicIfpVRWhxWJUnXSV3jOK4ZO0qjnORnKW0k1iVk9pdnfH6/\nZfvwVfZnZzzzTQO3nn6G5WZD0zTUTqJwtK2xVaKOkXoKDNPI6Cdh3MSJNDmmqqapG/7c+5/no7/9\nEu/EG/rWb3yakibM7F4r2pCTwPWsFhuLnyb6fmIcJxYrKVK1sYQYcbXgP6b+wPb8nLbtaFcbCT21\nEo56dHnB2dkZ4zB/hvqN+0W9xfH3toXMzc/+9FWBf/xC5m1qFnGTv30x8/Yv+S0/VdycNkBOLBIZ\n7+i6BdYZjFYoZyjZob3YmJfrIxZHRxTE8ro82rBatvRXj0jjSOUMTddQV1BUIiS5ATIKpQ2nmxbU\nx992LAQvsu4WGG1wtiJGxRQyWke0KzhjqZoOVzV8+wsbvu65Z/n4Jz/Lvn+ZWyfP8wPf8+d55skn\nqIwijoKAziXeuLCazlAUPHd8wj/82z/O//J/zoVQ+QCoj0HZ8d//rR/kmaduYysFaUKXRNFgtOOa\niKuQGXdK4cZiSDEYzE0mBsqgkUIk5TTzHCTy3VRSfGAMbbukXm2kKDHywVgjGgADqJIgypGi5Cz5\nVUYs1imIJbHM2qaqqoTEbAy5kZwj6T0WIMlMPBdK0WiVcbrFWIeyYAxY7TC6onaa1NZy8gmFw3op\nYQpJAtJimFgvV4xDz/6wp9rviSEyTh5X1YSY+YPyoLZXnyX6QfRYGsocz1BiIAIlBPqdPBRK0QxD\nT7dYyt+dI/0wsVwuUUqzv9ry+itfxD79HE23lnwprTBOk0si+kjyiaurndCgldhPIb85t2QeG5R3\nq5s/4/WWg9p8IKkb6a7IA9XQLVeY2hH8RI4dAMZqtFXEJIj+rOc9zUqkSfDiCvF+QhuDMZaubVgt\nFiy6dgZ02pvsN1XiHJ2iCSkwDHv25485f/VVHr38Mo9ffpmL1x/S7w7kFDFGsewsKcuDV1sJ+otJ\nupbpOuk+K1JUxJgJXh6ko+8JcRBNyTSRT2ar7UygFRRFJPgJW9c34ldBZSUUAbInhR15Em1YihHj\nDC7bOWletDoleXL05BIJcwaT0uIgjXOMQUwJ5QMai1FBQnK12LqLVcQIOhWYbe4xJUoU4XP0I3Ec\nKSWLQ6gfmA49/X7H9tEDLh4+xIcRDTRz2KYPIo4uSmHqau42ZJRKN3oQrRVZy+emrMEgETpNU8l7\nFRKHy3M++9u/xf78Mffe8x6efO83cPv+s5jNRpyg2iBGLBECAzM5ORLrWnAjVUNVBe7euc0P/8UP\n8DM//yFQP/kmacCPft/7OVpacpzQONCZZBQUM2fj6ZtOb/BBtFIUsoLVckku4kpaLFrUNLLfXXJx\n1nB0dETbdcQUWWzW3HvmaQ6Hnukwst/t5/cBSlESnTFfI/AlXZkb0etbhbB/uus/sSNz3T/6o/+x\nL6nVbn6ivnQWLbKLm4wPay2urmkWHa6u0DqhnZOLn4mUr2d5J2QStalYLVfUrcYfoKksXS1oalsp\n0IXeB/KYpe3rLN/xzXf5ud/6OO/UDbl3fIfLqwFrLM4KoVPVDclUovXQhqpuaNqWzfEJzz71JG1T\ns16vqduGpnZYlclNJcFiOUsBZKXir5uamOFHvu/b+dZveo5//fO/wYOzx9w9eR8//sFv5bn7d8BV\nov0oGWOdPPhygVjEZnxNk0R0HAYrIDY0Rs2APdTNCM9ZN/NckEwm5+S70dhKUOLOGKrKcG2pKTmj\n59ZPKVkSs3OQblAqhDDix0Hm4EYynNLMakgx4v0kEfTX4WglzpRKi5lBVqUNmGQpQeOsiKwRAAAg\nAElEQVRsDVWHcmJr1NZQQqapFfViQ0wCq0op0g8waUWlFK022LZjmjxcXrDJkTu3j/n0F/+AYnV5\nl+wnjLVYDdppKlURMYQMdSVOtxwTw9TT9wO7vmdzdERdNeQcGadA23Roo/DDnkcPX2ezPhKmRGrI\nZO7cvzcX6IrPf+az7PeHWWNgMFkTU/mSRGxFUdfFzZtunnfXV3G9iZk3O3yck7GStQLHW3QrlpsN\nfRjQWtHUDZV1GK1IKeKHAT9NqKIprViJlZJO3HDoBf0eBb/fNQ1tVdE4h7MGYxzWWshZ9DRzttw0\njezPHvPw85/n4ec+z8Xrr9FvLyGONLUCHBglXVk9P8iMJuWCD4EYLSVlUoRplO4KIAyaAjFnxnGA\nS8lm01qjjCGVMgvoCzkElLXYpqZqW8JsJ9e6YEzGqoxWQhtWRZGUHMLIkRL9jeNKEVElM02BVJSw\nXAqicTGGXLXCQbEJk/Oc+ZRRWQqJVApRRcieEuS1Xe89JXriODDNxdSwv+JweYUfesZ+z/7qkqHf\n46OnaVuMk27rsl6RlwWfwg0rqKRIToYc43xwv3ZRyc2pKBiVJJW8QNXWOCeE8PNXv8ju8QMOF2ek\nFybuPvMs7dFGdDPz9WCdpS4ZckBRy2eeFKlYfEhMfuI7Xvh6nri15rc/+Tl2h0+yWmz45ufey92T\nNSoViZlJGYrESRjTQS7EGFBK6NIm5lnk7Nn3B0lDN4pp2tM0LUYbdvsdZRZpr1cr2m5BLIHl0Yan\n3/Ms037gi5/7AlPwGP1GBuGXheGqNwqbN26qr8y9+qcq9v1DB0xvcWO8RQp0Q2Usc56QrcQPL9Cm\n67GTlQhzbam6lqwVfkqsmpa2bSilJ04jzipshYysiiUESRyNMeKLx4dASpkf+a7n+Olf/ZIqdybI\nfv8Lz3C07MhZiwpeaZJSFFNTjEVXDa5uaZqW5WKBrhwpJ7TRNKvVrOnJsuHVjqqt5o1Q3nKZizuc\nUoz9gfv3b/Hf/PW/jImJSou1WFc1pWRCGFHOoZ2bacKStC1NjhkMqJVsHLO1XAmWU04T82xctEgO\naysRxxlL1a5w9UoslcZI0WYUJXq5Ref5cCx5zjWSELkYJJ0154L3e/zUk1OZN8KIn+RU44eBw27P\nNG/owcsmVlU11kgab902NF1LveyoF0vqZkm3LJQmQuUEZudkJltrRZUL0QbGccIFT4yK7BytNriU\nyOogROGS+OCf/2Z+6Tc/xTvlQX3LN3w7MfRQzKwZsDDXcFOWsVx1wwpJcoL2HqU1XbegbWp2uwMh\nRI6O11xeXnL26CEhRE6Pj+mWS4ou+GmgWy146tmn8CHw8ue+IGyKOVJWl3nEhLjpypfq44p6tzvz\nZ7iuT5fGaNq2om0cZnYXNYsWZQpljHSLjuXRirpryaUwDnv8OIpjaIxoY6mbBldZcsk8fnTG733q\nJXbbHS+fbHj+ySd45sl7sm+gREuF5JzFODs2Y2TYbjl7+fO8/pnf5/L1B4Shx6iMXdTCQFIQs7gG\nQ4r4LK68OAfA2qoR52PIWOswdmIcPD5kKFq0cEpLxyglej+h93tiUeT5wsw5o6xBzf8P10jekLFg\ndSGpQmVmKJySaIAcRlIYBfwGJESEW4rQdVOZIaUJihEiMCmgc8TOYqQUvGQUGUsqijgHvqYpk4Ng\nGlJOwoyJgTCOTH7kcHVJ2F+xv7ggjCMhjsTQ42pFs15TdR2lFIZxIiopUfww4PsRlTNGgZs7RdfP\nqQRkE7FVgVocpdKBtRRTyCpTNxXWLMgp8+hzn8XkjCmR0/wcy80RzWKJdhXzUx+SQ5eZD6aF4ZVL\nxHuxiJ8er/ngd7wPgJICKgWUMsixdnaMzbotPbvkQpgkiX2GCWptSCEyHCSC5Wi9IiVxb7Vdi1aK\n/nDgXBvaRUu7WuL9wJB2dF3HnSfvsd3tuHh8JoUyEuJMekPrB/J8l/Dmr/w9+icE4r1z6fLHee2z\n+H4WEBWwskkoLaGPKC2ZIkpRioDlmrphsVrPtmhPtVnjKsvYB1SOdE5O2OOUmEIkRo/VAr6Lo9zU\nStc8f7/ib/zg1/M7Lz1id/gom0XDB55/H6ebhdgDM2grtuRURBUvkQaOpqnBiDOoW8zKdGuE7Ogc\nxkBlDWb+SJXKc1LqnPOkCtoI+8WPPaaAzRqnDabqwFkZe2iwZg5UK8KjUKZQ9FxcaEXJlhwjOSRi\nyNiihL3gBMrkssxLlRYBna4aMG4uJiR8DhRWFVTyZPEHC1FSFXETFMkfSZMneomRjykSQk+YBvpx\nYBy9dC22l2wfn3P56IzdxVbokCHMnQdJrq2cwOa65YKu6zg6XnN055SjW7c4vvME3WbDcrmkXSxw\ndUVWBTM7xqwRrULXtlRVhQ8JH4Lg2LXCqsxeZZ558gn+2g9/F//3z3wYeHNL9vu/670savD9FlW3\ngnfXcgrNymBwDDMV01lLVdXkDN7LNTd5D5tjFJmL8zNOb9/CuYrtbk9OBWcMT9y9y3KxIY6B3eUW\npQpP3L1DCJGHr71OCAGQhOycFSFIsu+bbq13lb9/huuNzrGrKhaLjqauMErRLhao2rA77MihcPTE\nLW7fvYeymuAH/CD8oBAT0U+zo3JNEyt+6+O/wy/9wm+i1IpSPsCDRx/nxU/9E/6H//a/5G/+539F\ngHFFsA25ZFJJ+DCw255z9vIXePSFz3G4fIwiUDeiM9MzAC5MAT9FhoOg8UPMTCEzhYjRhrqtMdYR\nUkYbja0aWldhp4DvR3KciEr235QyYy9j1aIsxsgjI5WCVQ2aRDyMuKRwIaCNwmlonMA7HUk6KjGg\nY6D4Say/zDyuWSujrEWn68iXjMJQciQlPx9kJ8apQNZYV0NlCbM2JqdCmOYHqZL7N0yeOI5MhwPB\nH9g+fCDFUAry2YQRW1mqRYOuW8YpMg6SUJ2mgTAM834ssQZOa2rAzvluBebsNAU+kcYDkwa36KhX\nkv3kKkeJmalElkfHqBS5OD/jC7//KXTVUNU1VTWPD01FsQ6qBpTsuZFMWtR439HvWw77HfvZeKJm\nQKAxcliF69FfFmebuGawWp410zSSUr5xHOWcGLc9RhkaYzCmcDjsRNzd1Gy3B3b5ku1qyentW7Td\nivHQsz0/p2or7j51jxQjh/2elEU/ZIAQ3ihcrhEnML9P8sOvyH72n8iR4ctqmD/SS1Nf2iN/mz9R\nlHBblKauapq6oqkttXOiRKfgo5ccCWNoulZmr0rRdg3bi0t+86O/yfmjx6wayzc8dcxRV9FUlqrq\nGKcBoxTLxZJl20JR7Ld71t3Ed3zjrRktX6GVYYyRUgypaMLoCUFGTM1iiTLSQVgdHdG0CxbLJcvV\nAm31nLRqaSpHOzNXUkmQI6okCUdUSpT6gHYWayusMkQGqkrPOUaWVERoa00lECcKasZog4TTRcHs\n3bS0tBGyrUJcAJkiBZMClKFoK2mx1mIqcUOQozi8jLQmU84kVWabscw/U05S3MQZIjXJ7HmaRqbh\nQH/Yc7m95PzsgvOzM84ePubiwSP2lztSkERYAfXpm3a9UjPl2DiM0jhjsHXN7XtPcO+5p7n99D3u\n3r/P6f2n6I5OcFZJaJwV1HatK6pGaJ3ee8ZpYpwmIBMmg7WOtlnywW//Np66/wS/+rHf5fziU7TN\nmvc+9/VsVg1+GLG5kI2juEJJUXA9WKqqwenMLnoJqLQO6+T9GfseHwPZR46PV/hp4OLiMevlGu8D\nwzDw+MHraK04ObnFanNEmHqG/RZtFCe3b5FyZntxIXqJlEi5QJhjZd9azLy7/syWnsPzmlqEl1pD\nVVUslgtCjozDRNet6RZrKleTVWaIEvzXDwN9P4rFddYSPD57zC/9wm8CXw7B/J/+1w/zwe/8Nr75\n+eepqhZlDDHLqGTYHzh/7VXOXnmZabelrjVdsxCRaUqMk6ffHZh2EznI/dwuJHvJx8QwTURf8GPi\nEDz7MZCBdlHTtI66rum6WYBbCiF4+j1yQJqiPBRzYhobmi7RoanbjhwzKQ4ErdCmSPxLV1MqBSZh\nZl2eKkZgdSmhsjBwip4vcj2TdykSY5IUMQUaq/A5kn2iqIDGEXMiZU+i4EdPDECxOOcoVjOEyDSM\n+P2O6fKC5A+EvscsO+plRymRPCTqZUsshb4P7HejdG/6HTWaBYraGpyRfKPKGZq6pqoctpo1J0VL\n58aLc2ycPLHv8T7CtKK+dYv2ZIUPIyH2dIs1RlkuLy945aVPU1etCKWdmfWPBlVZjHaYErEpUWVD\n19ZsuoZD7ThUmpAUWUsmFlHEzTYncvTSqTcaVETZhLMV1hiin5gGTwgF4ypSLIRpwhfY7Sq6ZU0Z\nJAm7Mo6urhnHnkevvULlHJvNMeujE/bbcw6HHeujDcOdUfKihhGVZ11lmGMg3noTfYUPY191jszb\nrrm+KRQoCqMdm80RJydHKJWIMUgeR4yEYUIZS9Mt5QOLiUXX8vu/9/v825/9eUBOOEq9yCc+83t8\n77fc4/kn1yxUTVGWnAyHsTB6EXgdDhMhKhaLI1zVsB8m+n7AoFksFri6wQ8SDlg1HavNEeujY9ar\nFevNMZvjY9rFgqoWnLe1Rsi0umB0whiDNRUKhyFDjJgiG4+pahkZaYsumlytMMpQWUOKE2raYYzY\n86ZxAMqc+zTDuZS0JKOfSDGii8bYpWhelJhFS5H8layRVrCRIDvpriBjvCKshRKF/hhRUNUiqouJ\nMAVSlJFSmHqiPxD9iB8G+kPPbrvl/PyMRw8e8Pj1h1xdXOLHEV3g9GSBdXZuc86kS61FtT///SlI\nWmvJhXGYePzaF7h6/BoPPnPEo2ee5qn3fgO3nnySze07bI5vS+SK1oIXDx4hPxs0tRRtOaDXG5Sq\nMXZPCJH7d075kb/059gdDoyjJ+VMyV5MCMbAvCkpJfZUAxQlURZlFjZSCrkklDX4cWIaBkI/4Zx0\nC88ePaKtW7qmldm0Hzl//JCuazk5OSbHU/b7Lf044UJiuVrih0G6kIDWnhSznC5vbgx4VyDzZ7uU\nUrjK0LTVTOuFqltQjGE6jBhTs17LPhBLwvuBq4szdvsd2+2WfjeyPj5FOcHGf/J3PzN3Yt7GSaf+\nOf/ip3+R9/+DbxKHIPLp+3Fie3bG5eOHBD+wWC7RZkGKkX7fM+72jLsekwtHywZntYx6aktBEXyk\n7wem/YQfI8OoaBSMIeF7z24/MXYVdW2lA60RbV7OTJPHAGYr8LSqaQl+FM3OaoOuW4l4UcK1sr7I\na+wqVFdRG01xTjKYnKWogs4KUyApgeDlORU7JIipQBA5gbaWMnhsCSirMMpAElmAj5HxMJGCkoy4\nrkUXQ98P9Fc74m7LuD2H6KW75CeizdSdw3bHhAS73RW78yumwwAp0AKNhqWr6JqadlVTLSpc21B1\nS4mGmGmj2jjIYuYYDjvGXrQnwSemceTw4FXgHuu7dzFOEcIo9PW6Znd1zqNXPo9byNi8bup5nIcY\nIEyFtQUT00yhF8aWvibez5rSouZk6jCRSrqJUUBLVlRB0BxGK4L3xFQoSolTOGX8NHFlNcYdoY3i\nanvJcrWa0SeK0Q8c9luOjze0Xcdqc8zF5SXjdKDpWhaLBSVnjBVRtvfpzXC8G83I12oh8yYl3B9h\nvalVzk1Xx2gJYUxzqJ5RmsWi5eh4Q1VXTONe2n1JLHWVFUtit1iQUqCqHKVk/u3P/jyl/F3gzSec\nX/7Eh7h32kjatRFkuB+kvakKNG3F0XpJU7cYV3N829G2LSUV6YQYyzh6ISQqQ0yFbrVmdXRM3ba0\ni5blZoVz4mIwWoMFYwqleHKZqJRGG0flKqFwDgONrQgpUS878swk8HgKBddUlGFEGyUWupyxVjQf\npWS0cZKIOhyYDpckP8psWzlCLPhpRGlDtdhQL9fQyYzWlEylHTlmKImM0GqtMSLETRKulrV0ZnJC\nGAzek2IgTgN+2BPHHu9HxuHA1eUljx885LVXXuHs4UOmYURrzWrdUXcVbVeRY2bsR+k6FAl3nLww\nU5yxWFtLa7KyrI9WKK1J40ScBl5/6TNcvPwyy+M1z37LCzz33m/l5Inb2EU7h6AZjLlmbEyQNKqq\ncK7CVkuqpiGXRFIZnwJ6mNAmzRuvxZLkxs6FGCLGFLSS9wd1oLGdxCiEkWkUuB/acp2vk9LIdlux\nWi/IMXJ5eUG3WNC2DamyhDRxtX3MYrlguT7i1hNPMoWE0udQFFM/4P0ECBXWWkMMc8jdV0jh/+76\n4y1jDIvFgsWixcwZO66R+9ZYx7JbsVwtUKaQiOx2W4ZDz2F3YLu9Qis3BzpqfMxcbd+ZBg4f4LVH\nZxQHyUiGRZh6DtszDudnxHEQC+/skrp89Ijxak9VCt3RknYhydoAzOyqVAopFtqhJXReSNm7nm7v\nGadMHyLTFBmGwG70aGcws67POdm4YxawmjGaaIA+E33gcDjQbk5puhXayujfmszUj2TfoNUS0zqM\nNmQjjtQUvexj8+uLSbARJWcR6s65clobKFKIRe/RSREMAr2bYOxHpn6EbCnaUErBBMu4P7C/eEQ6\nXOEPW4kGaCqsksIwzHvofjdw2E34w0BTClZrOiti7tVizfL0lMXtY+hasm2ol0e4piUmwWAopXj5\n9Uf8/O98gUfnl5yuF3zf+57h3qJm3G05XFwy7i7ZoTh++klWt+7ghx5dwFjH4XDF2WsvYywc3zpF\nW+EKoeSas9ZhlBzUtKvmyIg9eX8gJtFYKmSk5GMQw4eVjEGMkXT2WcgtuAdFCQk/TjfGm5QiwzCw\nmDratmEYR1CZpllibYXLToCe/cB6tWG5PmFzssNHiXjouo5xjqEJ83UUQ6KkL7msvwqj8T9h+vUb\ndtE/5De++T+/5KApIDwLQXQkbe3YrJY4Z/B+IvprW7GiqhsJI0ShjWHqe+rlmpc++3lgDW+Xd6R+\ngpdeveJ7T9dUrsIZ4QQYJaFeTdOhlMFUFZuTExZHxyhbc352yWq5wFpLDNKNOQyBVMBVNcvVms16\nSWUdw9WWSReqqgIrjgbnDNaKg0H+9TLzNlrhuhaXFXkaZqbIDEeqLFYVUhpAFYytZM6YZCYtf1Ge\nhVWemoCpLNF05JTJPuD9iIoZYwp53OGzJw5bsXwvlmRVoZp2tnBnkh9JRQpIowxl/pp8EOtlmMjT\nRPQTfjyQJklkHX3gcNhzdX7J5YOH7B8+JvVyQRtnSSmyPet59FogJxHA1Y3BVeZGc6DnMLpcEnGc\nqKxlShGfAsvVhm61obYVKUxsHz3gU7+yJVxe8cw3vo+Tp59mc3qCdQtsVVOK5FhpJIRSxyDz8lKx\nOVqR00gYDuwvL0V3ZcTRVrIk4OroiXNbVmt5L7KVcMemqnDWEvyBMWZQljSH4YUQ2G231JWjdisR\n0MWRtl1SVS22VBx2PWePzzg+vcNifcrp7UjOihgLq6MjpknooqWIFsdrAe69u74WlqKuG05vnVLX\nGoqibjpK0ZCgqTrarhWdXwwM+8B0GJhGz267I4dMu2hwtbCgphiomhr1DnAzxYvcv/uXxHWjE6oo\n/DCwu9zi+4GmrjFVQxwHDtstcTiwaB2L1TEXXvHTn3rAw+1jTjYdf+GF93CybAR1byy1DzQpkVNk\nedgznZ0zXO652vfsdwUXoE+JMQR8ysQkGWiV0ahK42bTQykShVJSLyNWHxiXA3Vbz3TfiCFSUsbV\njsZonEqUECneE/oDXzi75N/89us83I6crir+0gv3uLWqsVbP9GtDKY6sLVnNYtLgiSERlcb7yOHq\nijhOWLfAVC3ee5hGhu0l0/aS5A+Shm00kUxtNc5ZhqFnPPRcXe4Zt3taBQuraa1lvV7QbNY0x3dY\n3L6POTqlRzNmheo2TAXG2KPI/PJHf4t/9q9+BoGqfhuKj/PTv/F7/L3/4of5/hfez/LynOH8jH67\nY//KK6hyj9XpkRxIcyFpw2F/YPf4jNpWNOsVrpYcK5XBaUtT1cS6xi86/NFmnk4Etru9ADSBrKQ4\nI2tMzqgkY7ikJrwqxDhTimf4ZgqROOckoSAEzzBONCGibWEikkKibpaY+fm3vbykqhuqpuXo+AQ/\njegiTYH9fsc0DnIwtQavNEnlt7+dvkLrT5XsC3/4AfJNNc9sDTRWk7N8X6xqqkYzHIS1QclkFMZW\ntMsOpQvT6FEG4pTQGA77PfDOYLsp/i7HR0fsdj37sadpGrrNmqPlEbeOb0Pt8Clw6/YThALHp3d5\n9uu+iRQm9ttLASwpTbWEW7efIMXMYX+gqg1dY1FZvTHKSeHGOhe0Js8ZKkpD0qC1dDx8Ep5MCYLq\nNwrCHC2PmscwxgiOvBSyHklpeiNXxY/E7ClosqkoqlAiaJOxaiZn5kTyAyVIh2Y/TlRB02kHKlFy\nEGJx0WRXk1xDMZqQEjEldMqEWfg2TRMpeam6feSw27M7v+T8wSP2F1us0XRtC1pseHEKqFy4fec2\ni003C/Amko+QZEQG3ASONW1L7aw4BIxDFwFYjQW61RFHd+4xnJ3x8mc+zTQNPDUNpPh1rE+O6VZL\nbN1IpokyoA1mPGDzRGM1obEsWsdmVTNOLcpkxljEKp4K2QdSToQsYyPjamlpJ1DoOetLEsBzFFHx\nG/TtwjD0XG13whVqHDlM9DEy6BFTVTRNy+5qx2Kx4ejklBAH/LSXsZ2PEsjWH0gxz1k98nre7cb8\n2S+tNd2iZX20BpKQX50j+gmtoF4sMMZijYxGp7Fnmia2Vzv2Vzs0Wg5gVY1Ck0rhiSfv8ulPvT3c\nrJQr/vqP/kXB6itBHoRhJE4Tpq5wC4sf9wy7LSpObDYrXNvyc596xD/+yItveqj+1K98ir/xY9/P\nB7/9WwnRA4FlXdMuW9owEW89YP/5l/noJz7Dw32kK4XnO8uJshxCklDenInWkPOcIRUCKHEvagUl\nFsYgiIWwWKAtgpmw8jCu64qF0+g6oU0mG/i3n3iVf/RT/3F+rZJv91O/9gp/5688z3e/7wlSgVwk\nvTooIRgLp0TErCkXpnFiOBxIPmGTxRUpgFLw9JcXhMMBSphH2Ioy39/BFyZfuDy7YtweqJViUzmO\nu4a+qvi584mLB5fcumX5ntOv40h3XOx6doceawbC5BnHAxfbC/7Zv/wZCn+Xt8bb/O8/+WGefvLv\ncG99wnqxYn3as3v0gOHR6zSVYfPEbQEVJmGwjIeB7aNHFDJ6rTBVIwaXOQTYVTVVXVFV7sZkchhH\nxuBli9AKskgOxDkqjtac4jzqnOZuu3B6JDYjck1gzilLYGWlUaWm1IYJTwgJY0UYrs0VbbditV6x\nXK0Y+w1hSrTdkrZdMA793GUT/WLK5Us6MV/Lo6U/1nrzrF/N7G+tNdYa6sbRNA6jEPdP0xBThBTR\nlcwhm7ZjtT7C+160HUAsiaqybI7WwMeRzeCtrJCPc/v4lNubU5qmE0ePq9Guoj2+y+LOLZqmpm47\nuqbBjwPLrqLowvn+QFVXLOtalOQlYfOEJaOrhAoHxrBDSJaZkkQxbrUmWoPWFdZWROdEIzKLcV1V\nY4C5h0pJEyUE1DSSE1DZuTMgjiSJoFbM/QaUtpJVkhtiBj/1hPGA8iN58uisbkK9tLFoV5GtwdQV\nRiVy7AnY+eOQVnmizKLfPLt/AikmwrAn+YnkJ8k4urqiv9oxXu0ZdpfsL87ZbS+JKaCtwVYOV1nq\nxRFFiXDw4SsPSNMkHbgisLdrO7i1Vjo4ZaA3UC8XLJYrKudwdU02mmnak4tnefcUNWYOh56XP/tp\n2Ux5HmsNkAVnXjTWVRIqVxSpFGrX0LRL2sVEe/DsDgkdRgGNGUPSihwCWUHMChWDFI9o4igYbzND\npayR0Y9PCV2kZRt8YH/YYS80OTVU1647E0kD7LaKxXKNs46mlVyWuqoo2VNZxWK5wI9LvB9BTbhK\nE5PMsd90C71b2HxVl1KKqnK0bXODLlBatAC6FFxV0bYdTSMAuxQjfgocDj1nj88ZDhNt22Jmx2Uu\nGaMty82ab/m2b+ITH/8Qip8EJZo+yo7/8R/8LZ67ewujZVwyjgf6fkcpIk71vmfc7TAUFrdvk23F\nS69v+ccfeZFSvvyh+hMf+TCb01tQJvwwcLw55u69J2lczW+8dMX/9S9/ZS4ovhPFi/z64yt+7Kkl\nzy5qdj7RJ+R6J3LQE7kUFqWhqTV2xtLnHMljz5DTjdkgakVKksm0XjjqWuOM5uWrkX/0U7/D2+Xb\n/R//5kM8fWfBybpFqUCJQIScvUSu6JqYIyFGwuBJPpJCphQZW4/KkP3EuNsRpxFLkX1NFZS1FAy7\nQ09/ecW066lyYVlbjo86PrVP/NNf++wbheCnP86//pXf4gc++B1suord5QU6C/MmxcDvv3JGYcXb\nTQHgJ/mZX/wYP/TdL7BsK+7dusft9Yarh6+SJwF5LjdHjIdBYHTBo7YXKI1EXCC8oVSQgsDIfm9c\nLV16bWfsRUAxk3uLOEuTUcK+mTv3MRZ8iELiLcLDyjEKTTkJqypnhHa874X/U2pcBTGM9IceY4Ui\n33Yd3ULcVnVdS+db63nUWROCJ8Ui48eY3hjYwBs501/LHJnyB+llbn5cbr7dIKrJEsw3eZyzs2p+\nSbtcEqaRjIjNtLa07cxfyA67qOmngaoWkNA3v/8b+Oivv32yM1zxXS98J8po6rphvWxZrY5ouiWb\nk1sY51BGcXR0QtvUxCBOgVIKp0drvJecjug9OXj6ECghEX2Y7XeSLaKK0CVVlkJGHtCSGKura6eQ\npEhHV7DGCFLJFCjiGsrRQzGQDUUoBXO20kj2nhLfyPnQyqJzIk89YbgiR49TFmM7UhC7plB0lXB3\njMVVrbBmcpFUWBRKQ1CJEDMqRXKAmLIkQM9fYRiZZrBUf7XjcHnF1O/o91tiGHC1pnId9WJBLjBN\nnimIBTJPUQTOWcnmrzW1s/PoTdDmJWdCStK1OgwM2wN5uaJer2mOVqyOjlHWEoKGFkIAACAASURB\nVJNHV5bKVPg0cfbwZYzTKKtYnWwkFVg7UpZUaWUdFZqUIDSR5SIwrAOHw0jf9/gx3gh1o1ZkpPtl\nsow5i4nE2BNiwE8ehRYraIpkL4WPzPQLfgrsr/ZoEstFTast6EQYR1IU7PrZ44fYynByeotuuaZu\nKkoJOGdpu46UJCROayVaq5LfXMy8u76qy1rDYtFQN44QPLURl0nwgYLC1Q3tQsbPUMhJ0P+73Z6r\nK7HgizbBiCAzRYySU/WzX/cM61XDa198gFOf4X1f/37+q7/6l/nG9zyDNRaNxGAMhyumvp+1W4Vp\nHHBK4U5ukauWXR/417/xIrzTQ7X8BD/77/49945bwjhSVzVHx7cIRfH//tLHgC8vKD7y8of4+3/u\nLsc+oQ+ePgqDaxqD3FsFCobKCU9HUURI64M4N5VCqUxIE9ZppuMFuamIqvBTv/xp3infTvET/Nqn\nHvHj3/0sOWfR0sRCwsqBT8neFELEj0EcSz6AGkFrUtGUmEjjSPLTzNGCYjW6aPwUOVztmK4O1AUp\nYtYdYX3EP/2Fty8E/90vfoj33VtS54BGcphCSGyvPPAXeacpwNnVa5wdPI+2VxRjuXu6ZvPU04Rh\nIIWE0pbFZs2wO+CDx2AZ9gdcfSWsHjdfU1lcYwqoK4m46OqOxtUMw0CMkWQUWvzgRBTKako2JBWJ\nITMNEzHl2fwhqeHXnZmcZ11kVBK+WxnquqIxFgVM/Y7MAWMtV9stdVuzWq2xrkKphFKJqq5omkau\ng+uYISW5VzfrBqD7ldnPvsIdmS9/0TMs9kaklHMiRUVTWxaLDls5UopY6/BZZrGVE798DB5rHLbq\nSGhMLdC89WbBD/3I9/GzP/0WVgg7/tpf+QD3n3gCpTSNgdVyxcnxMUfHt1gdn+KaBrSiqiyKRMkC\ng/Ne8pWmUaBIYfKEGIhTYNwPDL2kgKYU0KoIxC4pdAajLa62VK10l2xTYZsKV3XYqpYvV+NshWAZ\nhCNSjKGUDCUIoj5nwv/H3pv+6nqd532/NTzjO+zpnH0GjiI1UAMlUrEs2ZKt2I4rG4lrIwHqpkXQ\nojFqBP1aoO1fUBRwvvRDgsAu5TaNbVSD49iRIjiWY9qSKdkyD6lZpDiTZ9zTOz3Ps8Z+uJ99RMnc\nAlKLKopyAZsEuffBu8/ez7vWve77un6XG1AxY5UmhA6/WRF9RzhFf5OxStw0OXq8jwwuYIzFmHJ0\nJ0WUlze+qTS+kxuKHgVhISaCEn1rcul2YmpKmeydpKeu1myWJywPbjGsliQ34IY1ikw7m6DrCh8y\nm67D9QOxd+AjNkOlNU1bUJWWqiypm4KiNGItL2qULsYWZ8B1A0Pv8FkcEv4g0MXI9MIlZnsX8NGB\nTxhrCEqxPD6mfOlFcvLM93axjYzxtEqonOUNpQ1VYahKw6Qu2Jo3rLoStxxwfmyRI2TdmCNx7L6Q\nwohSl89ZU4iAOwq0McUkh9qoGfCDZ+gsZWGpaii1gMdX6zUhKGzZsjxejMnDJfOtXRFFhszQdbff\nIEYjWiKvCPmNLKb/N5ZSirqumG/NRFSpFMYq4TBpUBiqqqFpWjJRwvmiPP8nR8f4fsCOqAPBDkjn\nQiEGh4jC2or77r2Ld73pLn78vQ9w5+V9tC0wtiAGh9usCeslKkeKuiK4DqMy7WwbV9YcbBxXT1Zc\nO1pxVgxH5iEODz/HNpLGfbJYcvOVG1zvA2frCj/ONwfNhy5voW8tseuejXO4EAnAoBQaTagSZWGx\nSjKjcg4Q1ZjLBmkIbFZL+m6bNK+w2nL9eMNZMoDMwxwvv0aJwedM1pqoNSQtKffRSSEzRFznGDYD\nvu9kz9SarI3c/dxA9gFVGEqlCFmhfGK1OGE4WVGmxLSu2Nmesbt/ns88e+vM4go+xuFqzd2twUfF\nkGAIQvUVeOprE8PPX3iYZvcSi1sv8/L1W3Tdmgvnttjd2UUl6YTUkwkqQb9cEzH4rFiv1iRtqSYT\ntIYQBCIanUMRqYqC2aRlPZ3g3MCmS3KGZil6lMmQMiZGydUKYTQljLlRedzn4nfcwONhTGEtwaeR\nBSN6Gq0VQ9fTrTfUbc/qZCGFtimo6kYaEGVBVZYMwwYYc/e0cLF+WPvWD6aQ+Y9xL71qaT1mzSQk\nH6cfqFuP9Q6jxRUiFmGEXji+Togeow1t1VJVkunzrgcfYFIbvvaVbzL0X2V/Z4cPPvx+7rq8L/H0\nk4nwY6YiwmwmMyZtiykrIhGSl8j3EMghkHzADQPdcs36eEm3WrFerVidLFkuVnKjd44UvMzKtabR\n0i0oyoqqqakmNVXTUE9qyqamqltsVVNWNaqssLakqitMUWArCzmPUUTj/HLUqig/kEJPcCvSSMbM\nIw5aOgSOlOLthzAlQX2nNKCVItlSnDaFJ6cCFcVaSTJEZQjIBhWGQBziiESXubTvevm7L47pTg4J\nqwU6ebLOFHVFVZdgNZ2PrNc9/bonDj1FSjTa0lhD3RTMthqa2YxqOqecTMkasjEUVcu14w2f+8qz\n3DxesjNp+OAD93B5q8V1HX7dM2xWdC+/hBr22brjIroRzopkrhhWqzXmxgFGWdqtTFk3IrLOiqBk\nBFCEmrJqKKoObUtsUUonJoRxbKQhxfHmMqIYkiZr8C6I+n902YE8k6e3GxHSQQya4Ev6IVIOUeIr\n6oa+6+k3aw5v3kKRKUvNZD6nbifs7J0nxYgbBpYnJUZvhFuhZLOUIuoN4e8Pe1krXbK6qbFGC7is\nNGNOWaQuG6bTCbYUt0bMCecdi8Uxq8UKUsaWwjziVA82Asm0VvT9IFEaxggja7TKorIAKFMUgKR3\nkpNkNcEpbNnQR7i1clw7XrPqM9s7e/D82TEcNifZG5JmPYg+woXE2QXFQxyHZ9i6605UeRN7cIJd\nblj0jj5EhhzIaSCETGoqysLePrDEmJHQSY3vCfl7xJzAwuW9KWfl2ymusD/fRkm0NxgZDScghIhz\nMrobBo/bOHw3kAZHzImIgElJiRyciF6tlm8rJLJ39MsVJkWmbcP27g7z/QsU27tcf/JF8vfRWPbh\nT3FZs3SZRcgMcRTKsuSsEMcf/8kPc+nCLvN5w+LWVY5WC9ZDT7zjEufnE3IIEBJNOyV0g8AKG4PP\noAeHKiqKQoIoc4q3P5RWlFUpox1j0UqTkT0oZVApCUpDKQm7DGO0TMp4H8bLtwBinXNCF1cKykwI\nFjdYhkEuxG1b0TQNbvB06xW2EKr1pK2p65bZfIdh0xEGj7H2NkFea+lmStTEKIJ8nQua17kj8xqD\n/VP+kdZoJYdCynKzjSEJCdM5hhRRSVEWNZN2xmS+hTLg+p4YvNBdS0NVlzRNiXeRne0Z73rb3bQG\nzm9PObe3hS0K6qphNttiOp0wnW5R1lOKqsSUVkjB0UN0pHEc4gbH0G9YrRYc3LjJ0fVbHN28xeHN\nAw4PDlmvN5IrkQW9rVEURlFrS1U2lFVD2dS0s4bJ1oTZ1pR20tI0PWXd4myBqmrKpiU4wYrrSiya\nhbUolUQzQyBHRwxLohfQm7aaGLMUMCEI3CkGQghy4AYJbiSGMSfEYBHwXiYQ00CKMprKtiRq0Rp5\nF+k7R45jJLvKuG5gfbRkfXKE2yxIfYfSgJHuVak1WhcMPrJZHbM+OiEPA5WGibXMmopmMmF6fofZ\nxfPoZoaqZth6is8ZtOLRJ7/Jb37yu5X/n3n8af7rv/8zfPjBt5KGNXF5gl+uWS2OWeCZ7e8z29km\nK2mP+gjr1RrFVZIfaLd3KNoa0MSkRERnLLasqdsJ7WRKWy9ZFWtJ840epRVqbLOiRXyuoyJlQw5B\nisogDqfTTqIPnhBEAG2MkVZsYWGjsEXBZNpSV1LsbTYdi8UhiURZl9iqoq4bmumUud8h+MDyZEG3\nXlGZKHwNk4jWCCDsVBj2xnrdl1KKsqpo2kZGwFpLPpst8X2PzoqmrinrkhC9CO3JdH3HciHcosJK\n99EaybsIIWGMwodAypHNWgBqRVVIaKIXh2DwllAYABlpB9GeKa1BWwZluHpyzNWbSyIV2/Nz/OzP\n/Ax/ceV/5axDdV5pFp1jFRxDEB2fPEtndxSa+jxD0VBu7zBBk60lrzbkVUfnApuQcEPAj66ssrSY\nkSycRn1EMVqiY4oSQZAyH3nfPfzWZ7/xmt9rZsEH3/ZWvA+EnAkqkUjSFQ0jUXwQ+3i37gm9gyBm\nEJdEC0KOGBKFViST0N1ARqFDolAwmc6YbW/R7J0nVi2H655Cf//uitWZLiRWXrFwCZ8SRmVmFpbh\nEeBjwEOcxtt84Mfez97elMl2RT29QNNqnvn6ikf/7HE23WPcffEcH/nAg9x/j2G2vU3RNHTHJwxd\nR1mVRCJu6CFLJ1DpAm0yKsSRcjzSy60ZQbmyMRwvO556/ibrzjGfNrz9/jsoqgYfIs6JjCMEKWZO\n3U8hBLTSGBMJ3uOMwbkSH6K4e61BaRj6DYsTRd1WtNMWW5RUTcN0a4thGFgtTmQKoBXWKCjlGU7x\nVWG48Lpp/V6/Qub7NGlObWA5i5ZB69GuXIjVq9+M+OiipKxrybRpWsltiAmDxxgjN9dK4gKc2xBj\nAIQKvDXdZnt7j8lERLyTact0tkVdtQJo05Cil29UahJCTGz6js1yycnBATevXuP6iy9xfOOA44Mj\nFssl3TAAYKzMX/WYyxECrHOgGzx5taYsStpVRbOqWK+mzLe2mG/v0E6CME68FxhcP6ALgy5F3CrC\nYEBFrMroDErXAtpLPTE7cvREP7YccySOWiK0QhcS3x7lH2MsgaRjD/0GYkQpizYVOWmCSoIw3wz0\nQ8CaEm0Fj73Z9CwXC7qTI/KwgeixVpF0QlJuYQiR5aqjX20oYqQqDG2hmbUNW3vnac/tU+7tU5y7\nyKAsQ1T4BF0/cOvwiN/85B++5mz6Nz/5Ue66fAfntxqq7ZrdCxVb6wXLwxuE9YY8n9Nsz/GjdslH\n6DZCP85a0yo18mGSkImdg+QorGLetrj5ltjLY2DTbYS0PN7+ckxknTAqkUNG5yytdC+tWOcd3o+j\nRh9wzo26BoFOZaCoSnrnKCojmVqlwa0HFsdHVNUIVtszVHXDbHcHa6xYdheHCMAnonWStHStCG80\nZV7X9WpyemEtTVNSlQZrFNYWlEWF1hqXwJqCqmlHd6Fo31yIrDcd63UHGYpKwhSNFaBi9A6jRTQZ\no2S++RiIAVSOgpUfw3hl3O7xQw9I2F8mM4TAk99+gU8/+gRHJx0X9/f56Q9/mLe84wF+5Z/8Cr/x\nz38D+AQ5v5vTQ/XybklVwtEqsPIRF8Qy0Bo4q6OQ84KLW3fy4iu3qJXCqBI1mdJYQ7KavNzQdY5h\nkPgFnyLtTKIbVE4Q5FKas6VqSrksymCDuy/O+O//s4f5tf/royj1idsygJyX/OpH3sH5rUr20DEJ\nO+VRNJry6AYVfo13Duc85EzOmn5MvM8pYk2mMJoiJ2zwQn4vK2Zbe0xmM0zTsImK1bUDjpZLZjqT\n8+I1fxawZNoYQjoVrArfSQOTSnNh17IMDpe+iC0M58/fw3333knwa0K06CLzF1e+wu/81u8Dc8jv\n4evPPMFnPv8kv/pLf5tf/MhPUNQSVeA2K/rSoq1Ga4fzQc7J05cd97HsB8njMuOEIkS++ex1Pn/l\neVBzGTOqK1z5+ku8/+G3MNvaEq3nyKeSoNI4ZudJJpQIf2Xk5ENgcI7BywVPG0PKA91mxfHRoeAE\nyoKyGi9ibqBfrzk5PpLwYCNdGHHppu+gJF5Hw8IPppD5j4DjqVNEf863ax2FxIErlQhBWvh121BU\nlSS3akXOSWiG2lKUUBVWigklKO3gPS6I2E4pqOqa6WyX6ayl0BKYZcuKohpZBWN2kC1rhuzoO0e/\nWXN8cMDh1atce+55rj3/Isc3DnDDQEyRymTa7QZbSNCfjF+iFA5jhlCM6Tb4LSSHc2vC0OP7kdoa\nI1UzoYry8MSiAGtQRUEVAq4sMdagdcLqjFVQoFFZo6IIcnWKmJyFr6CMpMZqQIOKUqCF4BDBe4XK\nRjo82VBpIZOGFCVqIIEbPK4TW3VRZ8pcMkTP6uSE9eKQ2C3QMZCVBFNqW6CNJaXIetWxOFmQh4GJ\n0cyrgtmsYXpuj8nFOyn2LpHaHTrbcnCy5Pr1qxwd3OTo8BZffeo5yGcr/z/7hSf5ib/1DozKXN6v\n2du/xPa0JfYbiWzImsnWFsO6w/cDxtSYkFgdL0jZUrQt2iBF37AheCdRDIWWgL9uyqpb03cbYs6c\nrDq++dwNVhvHfFrzrjffwdbWjDwmyArdVzTU3vnReTWSSYmEEEkBgpY0381KuDpFVdNOZ7jhhK7r\nWZ6cCDSvndG0c9pJQaE0ly5f5vDgBjdvXAUnacApeWLSQj59Qyvzui25XI2QxtJSVeI0VFZTNw1N\n2xJSwBSWetJStVLIWFsQSXSDY7naMPRO8ozahrKtUUrE7JyOB/P4WtqM/y1UVFMYTCGOFO88w2aF\nH/rxIIt0fc/v/vvP8xufEHo5PMS3nn+CP/mLJ/jH/80/5MM/99Ps33Wef/Px3+Ol5x4nR898PmVW\naJT3WBNvaxO1ksygbQvHw1/vKLz/gYuo7Hnp6nVJnTeWpi5oyoJiOmNmLcau6Da94PnXiZATvqko\nVMaSMDqRtAiUjQaVAyoJR+vvvf9e3nX3Lp/6yxe4fvQM57cu8NMPvpfdpqTreoyVQzUlxN2ZMypF\ncYemKIBLknzETAiBvvcMYzxJKrS8V1SgMAVVVTPYiseunrB89iaNNdwxrQjrDYtNh1eZd1ze4muv\nPIJSHwceIufHgSW7My0w1JwpDTQWTFBUVtHUFbP5hPNbE4LKrDpH3UyxhUTKuL7j2vXr/M5v/f53\nwVoZYa3/4l9/lAfuu4O3ve1N1NOGcHjCenGM0po8yZhsRKyck5DVY5DOsbXy/GhNypnD4yWfu/I8\n8CuQv/s1Hnv8EX78A++6nWF1Woidkn1PQx4lMVyMtMEnXO8ZBichqW2LHwKbrmezXLI4XtC2M4qy\noWonbOVMdAIDXS0XWJMkyHh0Jkshk3k9M1d+cB2Z72ofvUrk8z3fu0aNlXYWUSai55COjCb4QIqa\nuhCrao6KoijkwEB+qUpJqnX2gW6zxnsJQPNROANlYZnMJkymE9pJQ1MYmrKiNGBLKIsSHwIhJyG+\n+o5ufcLi1gHXnn2Oa888w8HLV9ksV+gcqSsF2qINGCuZQVllQtSkqElJwrJcf5ofMj4uSpPyaG3b\nbDB1RdSaNmZQ0rJOOUO2ECM+JooyiJNKRazONKUdE0Yd5CACVm0wZSEt7RSFpJj8eGNQSKikEkZK\nHgur5DDJYG0m6IhPgZAUg5M2d/aALshKEmhd39GdHOHWJyTXY7XGFBZVyszfhcDgEptlT9wMTLRh\nqzSEsuTRg8DxjZucuwHv/9GL1Crx8o1nePmF5zi89jJuvST0HceHKzIf4qzZ9PHqJk61dKtDFqvn\nuXR+h61Zw872LpW15JwwxjLd2eXk+nU2/UA52SKi6Lo12BJbWEF+K4Mec54y0qUqi4Jq5Ht867mr\n/OmXnvmeG80X+fCPvpXLd14iRI/3AzmLSBmEBCyFs5KiVAVijKhocUNgs+4pSsvWzoTpdIrvPc6J\n+M47JwVyDFRFDUXFfHuLS3feTT9IsVOfsoCyJiYjTrM3CpnXZeVxP7JW0s6tFVedtSXNRIJLN92G\nup6wvbtLWZfkKN2+zbDh+PCQ1fEJKSSKsqJpW4pKvsYYeWaU1ngf5GCKAsjUWlNaITqjlVhYh17e\nI97J+Dtknn7uRX7jE99DLx+7Bv/bIx/lre+8j0uXz/HBn/5xHv+C5uYrL4kTkoQ1UJeaidOYnLEa\n6kJhK8Vkqlh2a0L4HLOm5p13383eTs3gHMv1mtVJRw6QteHYRwKZ7bbkrecnzKuCzWrDpnMM3Zoc\nesrCUBlNVcjYuSkL2qqgGPETAmHT3H1hm1/9pX0yin69pl91+D4I1yoKP4wsklqiZE3lLGO5NHZO\n40i0HQZxFYbgsYUWsanNFLUUlM8vIn/6radBzclZuDV/xcvcUSomRgrXvd0JP/e+u3n2YMO1m18k\nxIRR0k3auEShLbYqmRWWjKZqGnb2z3H+8mWqacPxyU36GzeZzM/Rbu+QMiwPT/jsp/8DZznKFB/n\nU3/yl+zvTNk6t41tCjbLjuXhIdE7qklLWZdCITcKU4CNFboXfpho9BLfeu4mSs1fM/JCqY/x8is3\nuXDpAtpKd2VUbN0W/ooBR0ZO2hYEHxl6T98NVJUUgmUl0Lzog0gvnKRul2UtNvedbfbO7XNw6yZk\nSNmjx3FqiHLmv56b1+szWvouA/n3fG5s98PtZxVdaJqmpqosMchhXRUFbVPj+oQpxH6Xgid5R9Bi\nd22aRkZTRhMiEiapoK5q2qalqUvapmVSFzSFpagMRksKtSkKCVrr1/SrBctbt7jx7LNce/ppjq5d\nI3Qdhc00TXHb4qutHOZZKfrBocJ4sCQoQ6IsRzGai3gfpTOiMtZqfEpil4sZlFTU0QeZvdNQlDV+\niGPatWCijYFUl8TSUBRIN8V6dJYZbVIJ5aLQElKQsMckSeIooemK5W48bHOi7zckLAFFSIquH+hW\na1TW6LLFxUjf96RhwG02uE0H0aHqAhLoKHELPsLJ4ZLN8ZI6w7QpeKqPfPLKSyi1JXqXp57g03/+\nBO9525so4prUrcjeU1mxlwr9/OzZ9M65H+HCPW9lefwKq8PrHB4tuXl0yN7OnPvuvpOGjFutme2e\nY7q9zc2Xr7JcrCj2z+MJsFlQlpKBpUyBRROSgrAmuTUaCdZbbDr+9EvPkF/jRvMnX3yEnxsttmVV\nMHgk5G1MSDu1MALSkh0kC8zESN87zGpD3Za0bUPZNJTrHlLCDwPdZs16uUClRGENVdty8fJF3LDm\nuWFgAMoyyL6e5ZYZ3xD+vi4rj502Y4xERRiD0YbCVlRNIweJ0tTTLdrpjIRoPjb9huOjA45v3aJf\nbzDaUDcNdVODzqSsMHYMNAT6vie4Qbo0OWGU5LNpYyElQhBHovdOxipJkYbAv3v0ie9jW/44n/3M\nn/D3fvkXZQzfTskYCXotanRtqHVgpgZqB1VVUVSGflgRvaMtoCgL9rdmlFqLaH/oWG82rPuBW+vA\nTQficnoPLx4+wZMvvcSH3rzH/dsTjFUMvRPDRAiErLFGOr9tU9GO8QCn2U0JhVLiqpTOvBmzyRzR\nD8I6SaNpgQxZoVVEESULTYPSmTFDW0jCJmANFKWirBRFWVC1FSde8ei3rvPqbsVpAfiye4R7Syiz\nuDQPXx745iub23o9YZMtaMrE9rxhsnORdr5P2cyYbu+xd/lOzt9xJ+vVId/+k09z6+YSN2S6++7m\n5JanP7rJtRdeIuczRNX5PVy7+Q0OX3kJYzLNdI4tvYxnFgEfBuo4pW4n0q2zIqBWMULwwruKntVm\nODPyIueH2HRPElNEKYMtShEJaz0G+Mp5HEJEOYcpCopY4rxjs9E0bS2Zg3WFWRcjVC+JrCEGMToY\nEcbv7O2yvbfLQbxJVuDHiYWJZsSGvKougB9oXfP6in1vd2XU+K8xUflVn1daUZWF4P2TwmRNVZZj\n+K9iOp9iK4kVCN7R9xsM8sarqwajzXjDCRTGkMoSYy06y1imKqWirOtS4tLJED1kT3KeYX3C8tZN\nrj/7LFefforu6BBLwE4K9BjShdWEnHDB020CPmSGIaBQaDWKb1ES9NUW6Cpi+oHoPIlIN/SSd+Id\nVdVgtWbYrGgnM5rJjNpHUpNRtpJugcqkHFAKhm5DaRXzeQNllmRrrVBp1BilACrdtneGmNBqDIpE\nNg15hPKYoC3ZGzGpsYvU41xPDBk9BJIygCIOPd1yid90UlAFGfGFIPkcq+WKfrWmzJlZZQllzSef\neI7Mr5C/Z8O48o1HeGC/YLdUuJxYDZFN0ogY6Ow5/Tvf8x62z++wuz9h2Ozz1JNf5vOPfYVbB4fc\nefE8f+8n3svd57YxRUW7NaedtWxODllaS7vTihrfJXSUDdGHQOh7UgxoLT8jjOEbz94cOzGvFeL3\nMZ578QZ33XsZrTVFIU4IawuMEa1WHOfL5MDQ95L/VBhCMPTdwGo1UDYtzXRGcInNek3fdbjOkXxk\n6HpCYWjbmq2dLS70lzg6OOTGtWtYYyhtQmFIMdOH0xymN9YPesnGLh1JpaSLV9UNRVUSogi651tb\nFEXB4AKQ2WxWHB7e4uTomOADVdUwmbSUVYnzg+Dm9enz5+m7bqQCZ3RKGCyFVuTkGboVKnhCL2no\nqrCkDP3guXrz+ExnTeYhXnnhJZ7/2rf43Oe/xAsvvES/6ambit3zd7G9d54UE82qR+WCrd1d1qub\nfO3Jv2KzDBgy2w0QPP0qkbOjd05u5S6ORcyv8L2doD97+hHOPXiB3WlDWynCMMiBqBJGZ6qqZDpp\nKYwWmNyrUSJao5KGES+QgRjDODKW4oXEbQy/ynmEjYLVWbQ4JJTOlJWhqSusUZhCw4hPcD7y1RcW\nnGUzh4+xyUvOGUVwnq/eCryaq3O6F3XuEbaTpqpntNv7TLfPsX3uPLOdHb7++GN89vf+FadF3jWe\n4Ftf/T/5yfe8ift3KmY5oHhi/Jl9z2VNXWFet/SrBYuDClNWAoMNnsH10gV2A64fKNoWZa0Ufka6\nhk1dM2laduYtL9544rUjL9QV6roZ5Q6i6TTGSrjkiN+QmlpkHd47ylQRg8X1gcFFJjND1bQ0rXwv\nwXui9/jB0QFFYSnqmunWnAsXLrI6WaCAEAPeB8p8uke+fpewHwrZ97YWRim+dw82Rss8erQbl2VJ\nM2kZnKfvPLOtXaqqFFhakl9sUpqqqqSFlRI5BlzfSbU/zv6MUlTWUhojllllRd9BwqfR4dN3bI4O\nufHct7n6zFNsTg5FKDZtsGWBtgY3eDabnm7T0fcD3mWcT8ScsFo2vc5FMub04QAAIABJREFUXBBY\nUlFZyYPSBba2FMaIOM2PsLME6yRcCJ0lnDAOG5aHR9Tbu9iqBZ2JyaOSx6iA1RlNRM8qSp1RWTow\nhsTN4zWf+svnuXa8YW9W8cF37rO/bYk540eWgDL2dk2ZIyIQDhnvxfbrBk9wY5EjSmPC4PBONtSc\nM8prsJbkRey6OV6inGdWl2zvzPjcjQ7F1pkshpvrFROr8RGO+shxiPReBM0h//U5/ZvuuYPGBmJc\nUc8qPvfnX+Y3f/23ORXMPfvyFf70S9/gv/r5H+Pnf/xhlNHMd3eIIbA6vgVqh2a+BZWIwslS0tmi\npGo1Lin0EDC2YLXpz7zRwMOsu6+OzjBHSBZrC+q6ZugHwdNbsTZKAF5kGHpMKbEGblBs1j3z7cRs\nOhWysWKkJztAbknOdXQaZtMJ7WyLy3fewcnxEeRM9PI7KCsrAapvKH9/4OsUB6+MFocQCq0N7WRK\nUVb0G09hS6q6JCnRKsUY6boNq+VarNQoiqKkbmqM1WQvycNKqVFA6UdxuiflRGHE7ViZRB5WdCe9\nHPgJlCnI2YjTxAf25pOzD8T8OKsDw6/9018H5mMH4ApwQFntcf6Od6CLAt0GtDLcuvY8V77wKDLy\n+BCeK1xbL5maJVsUpJywIVIluOYzZ8L2+BhfffmED963TV0XUAhPKSWxCM+mDW1biUZmZIvoEaOR\nsWhtyVHI5VpblBG8noJR3KvQeQSrRSlkCi2GmMKK3iZquWzWtaWqLJmEDwE3BFzvWPUD8D7OGl9n\n9Wds15Zn1v77smSyH6j6A9LNgOtu0q1f4fjbjj/6938IvEr/MhY/jz7xCPf+yD287+5zfPnqa8dR\nkJc8/NY3o0rL0G9YLxZMdnYpmppMT3CezjmGvsd2LaauSVnAf7qeUE0VkwgPP/hmnnzqc6/5Gjkv\nuePSvfiETAnGUZJk6khRk3MmZIGthhBuf2iv6Tth91RNw2weWeYTYgiQxd6dQqSPHjOZ0M6m7J7b\n49orU7xzFNZSaIOy4G3CudN9a6wI1A9O8/dDKWROtcAS6Psd0Y9WpzNpyynFtJm06MLQ9xvqsoUk\nAKqspRPgnMMoS0zgg2zu5MjJ0YKvfPkpVidLXtnf5c7989z/JpkJ6wwqZkypQBtSEKdOt1hw8/nn\nufXS8wS3YjKrgYyyhpgT62VHt+gkdVsr2tkUbS0pJdzgpAAYEkVS9EkszL4PeKtJBoH7VYVk9xhR\n34ckBYYOnn6zQluFH3qGIVD1HbadYasSpTI5OQziBFppg9UZarDKo1Tk333peX7tE19CMeM0s+T3\nH3uBf/RTd/Pe+3fwUaFtRVGKaDHljI+ijclZ36Yq+97RbzoRaBlLQnJL/GjXK6xsLiklkg/06zWx\n65lZK9kb+xc5eumZ78tiGMKjDBFchE2A3mdCyhjgQgPZrnHqMaq6YDbbYXtrTnASvfDi4VV+89d/\n+zUFc//7pz/KPRf3eEuKbJ/fpZ1NWIVjloe3cF1PM20ppy1lXQnm2yoMvWyqOWFTYGdanxniB48z\nm85Fp4UUHyZLRthpa9baQjqNQW6QfmQQFVZAf5vVhr7r2dnZYTqbQUrcvHWd5fKE9XrN1vY2OQW6\n9Yq2bWlnM85fvMiNa9c4uHEL7yIheaqqEKZDfCOH6Qe9tJYbqtESLKi1jEfquhZnotJYW5BJo14D\nur5nuVzRdRItoo0VPUFZ4oKMSFRZwBjU54ZBIJbBQ8pUuqCtSiZtiS01kmRbAnoUXTpighQ8H3r3\nvXz681/lLNvyszeUjEa/50B9/plH2Kks7WRGTImh67jy9a/Aa3zt04tHuHdeMLUar8GpjBDGz07q\nXg+fx/UD1US6BKoqyClT1zXzeUNbWYwe/0gWfL5SmpDGRGY0VhXoAnwxEIwTnWESpyDGis5IQ6EU\nOXtxRjZiEQ4xSRQJhqjsbf6Oc/K5xirOjq+5wrTU1IVhiO7M/UvxEHX5V9y3awhpjQodZnHEUy/c\nGPfe1+7kPn3i+fn33sc/MA2f+POPovjE+BpXIC/4+fe9hb2dXahasjVsuh7smqppsFWDMpboAxkk\nL6nfEEIiJE0fE+vBE1Dsnd/jpz74Dv74c4+A+jjcfo0l7333m6jrgtiLdrR3w2hpHzu7itHan8au\nTMT7gLWnE4Ge4D2z2RTNDDd0bLqO4B0pQVnWbLoFwzDQTiZMZluc399neXIi7lwzkDNUlcV7/z3d\nZHUbxvc3XT+krKXMiA35Lu2y0t8R+SoFRVkz25rjkifHONpUS8hJ+C59T9/3kJVAzsqKdtLw5Se/\nxh9/9jGUmpHzQ1y98QRf/Moj/I+/+sv88i/8jMy+tQGlSWTB6HcbFjducHztOioG5luig3BO7N+b\nkxWu66m1odluqduKopI5d4oZ7wJuPeD6yNAF+l4EUM5FhpDoQyTEjO8DWCPdGqvJRg67HAWH74aB\nHE/5OQNqvRrj2g05RUxOeGuJUex2la0pSs3LN1f800986TWty//yjx/h7r2a3VmDHmMOcnSkbPFO\n4bOYKLyPDMMgcK5NL0hwYzllGKWhH8FURuIYXCQOA3Gzobaa2faMZneP3MyZNA3fT+9ijCKgSUpa\nw8VooSgV1IVld7el3NnCa1guB7IpSUocHJ/9wz/j+7WH//iLX2auE/1qwd7lfZrZhM1izXp1zDCs\nqYcJVTuhqFt0aYnRSXfGWpqm4ccefoAvfvkznHVrett9byNgKWyBC6LFilGImCkLQ8SMBW6KctB5\nF3DWjREWiW65JgZPWZa0bU2hFcNmydHBDSaThumkQQOb1ZKyqqjblvMX9kfeyICJAZSA2frevTFe\n+kEuhTgFrR7hd0LXrZsWWxiid+PlUYB2yhh8FJfG8eEx/bojxkhZ1DSTKbYqWZ2syCmPU/UsbfbB\nSR5TCDL6NjXTWUs7n2GbKcZooWr3A269JsWINgY/OPYawz/8yQf47Ucln+n04pLzggcubvPN6/m1\nxZ58jPXN57nH7JCBb9w8/r4RAa90nnfslSgvz+201Nxyr90JUlxhUqjRJSkFvVJgCkU7bZjPJlRF\ngcaQfCarzCuHJ3zqS89w9XDDHfu7/MIH3s7+pCEqw2p05UkukEJlg1YFaUwBN2R0iBijqUuLbyqc\nj/QuMPggY/ScCR5SElfP5XnmheXZ1up7Zg0QaQzfdwR0cW+Hu++8LGOwDEoXXHnxJmcXeQ+zjN+m\n3dvnQxfu4C33v5kvfPVpbh0/w7TZ48F73s68sXR9wFTIvtsHgj+hqHuKRizOuqxJo6MueSEW+2HD\nerniZLXCxUhUmjfftcvuR97DU8/eYLX5GrPpnDff82aiMlw/2uC9whQt1ka5xBkj8NcxtVfBGDoZ\n8YPDalC5xPU93jmURjIJq5LVcsFmvWKzWbG1NaewlqHvaCct9WTCuQsXuPrSS3RdhxmBj3VVsekk\nvJL0g9+7fkiFzKvXKOBCbkFVabFatCbNZEJVV3SLjrqqmW7PaWcTYvSEQXI1whjMpkdR3Y3rN/jj\nP34M+Mff0WaMt/X/5V98lA/8rXfxjje/GWOlVZtzJoTI+uSE41s3SHGQuXdl2azXbFaHpK6nsZq9\ni+eYTIU7g9FkIzyBmKAMmcn2GLjVDbjVStT3m4GuG+gGxxATQ4j0QyQETbSWkBIhJZlXFoWoyLOk\nyaocyKmjjxFtrdhBY8QahY+eorTMJsK3+NQXnj1T16H4GH/17SX/6Y9uE9LoqCGSlJFZtJcNWSzn\nA92mI/aDUGp1onOeFCNqhEtFFDoPJAUqJCZlxXw2o9reJpQty6MlF2v7fVkMTW0ZskYbaAoBvPmQ\nqKuKZmub9sIdbF26xBA2eK5TTbbQdcVqteaVF18W3sRrbRj5IW4cfpnFwXXisESpyLk77qKZzwkn\nB3jXk1cJ123AFpimxpYSp5BNialnXLrzbn7h7/wov/9HHwW++0bzUx94K/NJxcFSfiZGW4y2ODtg\nCoMKSrJTEAdKHMmvwTtcr8hRRJzdumO1WDHdmqBUpixK+m7F8vAW1zRcvHSJSVsTvSdoTd207F+8\nyMnRgq7rJf8qRorCjpbcNwqZv+lSp9o9o9DWjDwrK4GlRclsa05RFXTdWtLbAxSxQilYLI44PDhg\nvVgJHRWoqpp22pJHoq1COhAxZ5xzDP2ARFtEGX2XhllbUlojWW4qE3rHsFrhug5lLGhDt1rRrU74\nkfv3uP/i+/niUzc5Wj/LufkdfOiBH+d3//xJ8vU3c1bXxBZP8vZ7L5OApw7XwINnfu06fBGUkcuy\ngXvmJc+uXvt9nVly71xiUHxIKJcxBoq2YDqdMm1arLKQ5KL66S89w6998i/Hfes9KPUE/+oPr/A/\n/cO/zc+88y6GzhF9IIUEcUQOkEhK33a9GG2xSpyhbVXi20gk07mA6zM5IUWPLjBaMcmKt+8mvn54\nWgC+RwpAljy8X7PVWoiB++YFTy/O2L/ykvfc83asFQp7VbeYoubC+Rt866UztClc4fzevVTzbXLK\nnD9X8rPvm+DWS5zv8Emeh5ilqzL4QDl2nUyn0etCjCBFLeT3UmIBykY0erXrcT1ifvEiFZgVhh95\n62XUOM4MKE56R4oeN0QKZSW+wFqquiKliHNu3EtObdmB4Abpxo37TT/qKJuyoSwLNDBsNhzeusGk\nbZjNGrzrJAesLJjN58y35wzDSKX2oqO5fQn7gbx7v3v90AsZpcaKVkm+UdtWY8hiQdlWbNwG7xzb\n83NMp1vYsiI60R545xgGL7jtkPEx8fWvfevs2ab6BL/37z/PO9/+gHBWlESbD92a1fEhrlvTThom\nsymbrmNz/SbGe3a3JrTzGSfR8umvX+Pa8ZrtWcuPPfhmzu3uErJkWBRKM51M5eBaL3np5Vf4i688\nw61Fz1QZHphYpjHSBdhEgcf5lEZssyLGtYip2kqQ5lqqpOgjaC0ciySJpj46itKwu9XQNjXXjtZn\nH+48zNH665SqkCA7FYkoolLEqCUIcvDS4dp0dF1HchGVIZDo+wHnHBrBTRfWYL2wJzyGpxaRzcEh\n83bDPfMpfrPi8HjBm2YVzy5PE31F9Z/zggvnpwTfs3aJwhgm8222JnuUzTaT7T3m+xfZvfMeTGF4\n4gt/xPFxT/DHdCfHHByvKUPP9+v2zOsaVSi0TqyODyiaCbPzF2nnWwybtUDrBo/v1qiNRtuCfogM\nEYaYWW163nb/Zba3P8STX3uOxeKrzNopb7/vLWzNaoaQyNETfE+IFltqjJGQ05wzfe7Gg+u065hJ\nwRP0GAVBZr1eszhZYK3GqCxiYW3oNivi9YDViurOO7BlSfCBuqrZ3j3PhctrnA/EdJ1Nt8EWSWIn\nXr+36P8/1tgRVFrcfUVRoJWibluquqFt50y25tiqwDhN9CI6Nday7lfcunGNxeERboS3FVa0fWVd\nsumkG2OtFJ0xipvNu2F86ZFVUxpqCzb1+GVA5UjyCeUzRumR0XJCv1qRosMWmkt7U/7BhQtY02CL\nBmsLLj79CurbZ3RN1BNcPLfHuUt3kdDs7x3xzauvffjCFVorRYNC0BizUvPuvYInDx5B8bHvdIJY\n8vA5w7QcjQVZjADWapqyYKttaYoKjUInxSuHS37tk39Jyv/4rzkD/+ff/ihv+u9+jiKm0/NUxvCn\n+U2mgKxJOWJMQVFCUp4CxaSpiDkTEnRDZBgSWmkKazAKlDLctdOyP295edHT+ceYlYb7d3ZodKaw\nhtJWnNfwYWV49MVH+K7LDEt+9m2X2DIRXI+2lqooKaqSDz74Vh59/GucVeR98KG3yYWtH/D9gFtv\ncN0SHwYGPzC4gZDBhYAbeprKUlcWHRXKa5zrMaZEG0vZVNSTBluUFFXNdL4tUTjrJUeLE/zJmuQD\nCS05c0aypzQi8CXLHibOXoU1Zkxsj5CESSYm4zwGGGsCUoD3m45u3WHyaZFo8MPAycEN6tLQ1vdS\nF9K9KaZT2smEc+fPc3DriLIs8T6gNVRVSd+71+Xt/EMtZIT+rlFKgqWapqGuaoxhtJgVrJcLMoZ6\nMqWs6hHWE+j6jnXXsV5v0LogaU3MiuVyfaa9DR7i6o1DslZEJQLgGD1us8JtNhRlQdNO6N3A4vAQ\nHT3bezu0W9v8h2/d5J/9wed4NTr/01/8Fv/5L/0c737nW1l2R8TBM9eKppnwpWee57d+/89e9fVX\n+PO84Jfetsdb5prlKrL2kXWIeOfpAVOMjqccqYoKCuShCl5s6laL50gJ9rvvZT65lUou7p6dWQJX\nOD/fHjkBeRynJZIetRUpCRAwRmIIt8MSUwIXMv3g6Psea6GwmpgGmrrg2lrxhRcOvsNa4QqP8Rx3\n1YapgkYrHjzXsFKBLn5JUN56QvKSAxVjIhSanYuXeNO7foyt/XuoZluYsuDrj/8Zj/6b/wNe9fP+\nxpNP8uF33MHbtwqe5Oxuz0NvuR87mWMnNSklTk5OCKqgmbboekpRREkizoDKBN8ToyDOh66nW56w\nGXpqMu994CKEPIoOFcGJsM0q0CSi70fnhSSYV2VJipEhDWQtGTN5pFbnmFAmY1QmjGyYtiloqpKi\nKKjqmrAKuL7n+PAWW/Mp8605EeiHkqaZsHv+omAChoHeOaxN/0+jzd5Yr1oC65IZvUSDFBitmc23\nqNsJ2zvbNJNGbqtKTAl1VaO1YrU4YXF0wtANouXQBVXVMmmnaA1+6NCKsXsmomA3DIQxxbgsK8pC\nkBDzpqKtLBYBvYGI8ftuYLmUjLecEkUllnBrNIZIDj1ZKVRZ8Hfe9yB/8NiXOfNAffCDlFULyvAj\nb7mPR7/89Jlfe998W6zSCoxRoDX3b1fst4YXlh1d+DyTwvCmnQmzSm7+yphRK6aYNiU705pJWd6O\n7TA586m//DZnj4c/zqe++BR//z2XUYyxMVlG8MLZYhzppNuxK0p5odvqTF1oYl2So8MPAedkr9Ea\nCq0ojaatNO+4uIVOibowtJUljoLUujIYlXjfvOUtl+Z8+dqaxfBXbLcF7758F7ttQ2W9hICGDrUx\nFCpy907DP/rIB/iXn/mO/uW0yPsv/pP3s10kVjdeoV+tiH0vXfcCIBFcT46ejGbYeEKvyNMGZVoK\nXWCE9Yx3jhA7fOxBRap2grY1RTvD1BN0M4GyIZsD1os1foiM8eTASM23ghRAMdr+GdPYBVRnxhiN\nnE71XxJjURqNzol+3TFsBioj55E1BX2/YRgiBzevs7uzw87uDn6Q0dFkOuP8hUtcfeUmOWX6QSC3\nVVWgtSLG/4+Plk47McaIoK6qKklANpJlksjEkKjrlsl0grYaFxzr5YL1csV6vaHreurGAgrnPE1d\no9TZN4zLF39C5oBJoDVhcLhND8Bke5esPIuXX8S4DVv756gmWzx/6Phnf/AXr6k/+Z3f/SgHB9dR\nwRGdpyprAprPfP5xXm3dO/36f/2tj/I/fOQdnJt31KuBaj2w6Ho65/FekStRDaVScoGsER0POaGi\nQimhxRa6kLRl74gp8nMfuI/f+ezZt4Gfeve7xIZoFSplFBJIqXMUymYWZHhWUuj4LC6moff0vXAs\nZMPI2FIRbMEXnjrku1gr4+u92D/CPQVMSkNJpkyJZw+H7+ExdMwsGJXJ/YbN4TU2qxNiDGwWhzz2\n+T/itSyef/K1R/hvf+Lt/OLDb+H3HhfyZj51N+Ulf/dHH2B7OqEbIqoAU1R4F4mHh2IDLC1VU1OW\n9RikFkFb2tkWZe3E0ZR6NJFucCQnlsE8ulaUUmStKYyitJqNiiMVmu8ApUaOjBk39NPiO+eEVpnG\nGgyR9XLBSV3Q7O9RNfU46lP0mzXL5ZLj4yPKUiyWPmXKqqGetuycP8/x8TEHBwe4GG+PRN5Yf4Ol\nECCnNlilxwJDHEdFVTCdT8Ul5jc412NVQdO0bIaexckS76MUuMZijKEZ6b/eObyTUFtjLQnk/w2O\nnJIIXJXCas28qdjdmlM1LTo7+m6N945utWZxvKDvhlEno1HKoI0S+zEBYiAPHp8c+03LP/mFn+Cf\n//5fP1D/yw+/l73KEtYnaG3YrxJ/95138W+/+tc7Dz959zbnpxUKKb5SFtKxj4FCwW5TjNgCDa+y\nlUPm/2bvzWItS8/zvOcf17Cnc2rseRIpDuLQDDWYkmxJVBxLSmTEAmIIsJI4iA0kRpAbIwjg+yQQ\n4hsBRnwRR0Rg2BkoWVAUWxLgSTQty45ENkUqpEyRzZ7IHqrqDHvvNfxjLr51ilLU1QHsJo1IWkB1\no6u76+yzz17/+ob3fV5rYd1bru16ru02dE2L1UaydzS8en7kQSGV8CxvXH5J1v/DRM1VQmFB8BZl\nObuU8KdqSZhSsYjbxltNba5CW9XiulniSqyhIq/ZokFrjBMUh1HifMIYTGNoVg3P9D3vepe9n7GV\nS0EvsTfGeORWV3iTMEbxA+9/knc/eo1Pfu4r3Ll4kZP1w3z3+76bWyc74jhhcsDqhGsRCGrXoOfA\nPI1ULChFmiQPKpdMWr6e1Y6KIpUlULSIjrJOE8ZVtLHkUilY2tUp26pBO+b9xLw837TSGKuFSq0y\nISMFEdxHd+ScMVoLOBSIFWrJaAWdMxhdCcPIeDiy7izONrSrnikm4jgwHA5cnN+j71qohTnMbDc7\nuu2Ox59+mpQTh2Gg5IJzYu4puS6rwrfv+qavlkqR8aN1Bu/l4NfGo6wHrdhsd/TdCuMMuYQF4jYS\n5pnpOFJzwdvF2hojtx99mC98/ou8+W7zkh/9/u9E5YxynlyRjJxppGkbdGc5++oLqDByeus2fnfK\nftb8/D+7woD//u6h8nE+9anf5NG1k/ydVPjaEHlQt6H4GT59r/AjH/wW/Bt3cXcvcJeOwzhxmCLz\nGEgJZptpfKTpG3zjMEZJF5KzpJlSiWEmpZmcI4/cXPFf/fiH+e//14+JUn2h0da657/89z/IY7e2\njMMs2gpVMItYMeeMUQWlM5BAVXItpBIlViHP1DLjXaXxhqbVdKuW//v1B3+P8HGO5ZKbRkHJ/Pa9\nyJvxGPbpp3nPrZaNOWBe+xyqZGwJvPD65VusBz/OF85m/vT3/Ft88APv5Vc//zz3Ll9h2z3K+564\nxaozpDBzOEyMoeAXIa1nWOy0imFvcL7FOo92FuVkrGqcYbXdYpuWdjOwP+zh7IJyrOQsyvSrKHuj\nNV3bMGVNKoY0R0AKxJwTOUdUldRk3TTMSknHU6HRAlcb5sDF2Tk3ru3oVmuUFeYRJXN+do+L80s2\n67VoKGIhrAf0Qpjdnuxou4bj5cU3kvT9h+aqBQoVawTloBTL/l9jjcU3VjKSQqDmSrNZgbNc3t0z\nHMb7DhyjZJrT9x2usVweDtKMda08pGJgHkZylGmMc/Z+t3u6WbHdrsWlk0QzEcaBMA/UEtC6oHVd\nOFHlfgPolUa7q8ymI3mc+Z5vucEzf/7f4R9+5kvcufwiN7c3+cg7P8C2MeTpHrVANpZGG77v3Y/w\nrTd7/sVX3uB8fI61N7z31pO4kpaV8hX3S5yOKldqlpUYeuFSLUJmBXirliKm49p2zW6zpWulkNFa\nUVXhodOet3IP3drdRqHui0EldkqaulwLKNFRakBpQ12gmrVK2Cs1kBtDLZ5aYY4SByOllsgQag44\nDJZEjXEB6AluohRFnsUF221PWK9anPdY5/FNg3eN6J1SoaYINQvhHUW36nnq0VvkXBiHPQqFsRpT\nPN5Zts11tBdA4TSMxLO7eK8gVEiLDb9r8X1HQejPCk1SkZySUJ+rEuo9mlo1lSCrqSQcmBgiGi0M\nNRborC4YZfFNy9pq5qyoaAYkrkUtN0JZ6NPWSWFVYkQrhTcWayxjigz7PXHX45uW1WZDQXMomWE4\nsr+4ZLfeYL2llsq8DRRteOTJJ7hz9w737t1jGkaM0nhniUGMEm+nYeGbXsjUKqOsk92Orm8X3L4H\nFDVB14l7KC9OnpRFrzGOE8NxQBUlDwstThrXNrzv2ffyueeWbn0RkcGev/KXfpzHb54sEwlFrIV5\nninzTNtYsdyNI9duPoS/9RBDNbx85zW+eu9yWZ28efcQwj/B4tHOMUwj4xx5ULdReZZX7n6J0a5x\n1wxr22L6PeZyj94fON+PxLwQgSeND4F23dH2rXBmYkLXJFH10VJzRi2siR/+jqf4wFPX+Lv//Cu8\nevY8D914jD/17U+xczAeJkqMEhdfslCUq4EM1IS5ImXqKpTMBTDlPThjaFvpUPQCYTo/jFQ+8sD3\nBPNJdq3l+TG9pSsiOc87H79OKTL27buWF/YRePcD/uwPcRleoj+9wdY7/syjjzIOA8fzM5noxEiI\nkXGaqdOEn2dabyiNxRRZ2yltsXaWh49RrE62uJMTMB7rOnRTMd0WtzrBrra483PGw0g4ykPMYPGu\nslpbsoWYKxxGxmGUIsfoZYUQIRWsdTRNQ0pRnACl0CiDpTINI/v9gaZrMV66+LnvsHtHjGIZ1VpR\na2Y6DDRdg9WW09Pr3Lhxk8P5BdaMfGM2zX+Iriruw5wLzjtCiBgjFtG1VihVmKYjOWa6ds1qu+M4\nDZyfnZNCkIeVthhtxIm27kkkpmlcHmQOgDRH5nFG1YoxVvRmBladZ9O3tM6Q4kicDqQ4SyJxSWDU\nkjMkeV66il7OGYv3HcaIQyiXKNqIXHny1or/5E++H22k+E4xMYeZkispQSoGpRy5b1ntTnnq0Ue4\nuHuH/eWeiibEisaRrnLEpFQQxydqYcEYKS6QMNXGG7Zrz7Wd59p2xW69om86vPPLclaTa+ZHPvwE\n/8sn/yUPWg9/9L0fFp3ZUsBI+SE29FwLWmvJkjOgtUMZg9aRXGdKDLRGYxqHVTIBGkNmijLlrpX7\ngcKUzFQTRUvhWpagzjRHqBN1LIxz4rDu2Gy37HaOtvdL7p9BaXv//pTXYIhhWgJoC23fkKOcG9Yq\nqtKYrhcDR4J+swLt8Kue8TgseVUFrKMoI6DVGkg+YK50XHjCrMhsadG/AAAgAElEQVQFbNXUqqha\nUUshp5l5mpmnSFqSHZRWkv+WoBotXCIsTePR2koIaanM80yOUiylVMFIgrmqlroUGkYbTClMw8A8\nB/p1oWk7tHHkaeB42DOOE/M8kZIGG5mGAa0VjW04vX7Kq680HA8H1PK1lboSGL9917+RQsZax+1H\nHkabRBgjxi0HSYVmvcF5EUKqqoij0AQvLySkrGs6SoVcqqR/Ks2TzzzJjesnfOXLLxDGz/P0I4/x\nH/7Yv82H3vOOJVpcU6J0O3HYS6ZK2zDvB/puhd+ecKDhxdfOefn1S05OTlEvPXhd5TScT5lpmhmm\nhGy2HyBGrZ9GlZ4vfeVlvLbYWjCmwZ9aTtYrdHfB8TAwDRMhRo6HxBgCzTTRWIVXBS84BYySIsNZ\n2TUqKo89dMpf/NETqjJo25BCYLw8QK3CoYjxvp2RqjAoYimoWmisJlrFpEX8lQvYVuGsp183KKOY\nY2Y6jnhVHvw98hxrp3FOMR8rb8WTGdLnObl2m1wLFei7DbdujnzhLdT/N649g287UoqMxyPheGTe\n78nzSIgT03gk5UTWApaKjaPuVnS+l4gCZagZUoooFGE8clkKtm1xjVAvU6oUDBqHcw2pyeQpkUKg\nag2mYow4xpx2NO2a4Xjk4uKcGCU/qaYkr6MWlJJbK9XCcQ5iqfaeMQUuLi7p1iu2rsUYjW9autUK\ntbjituu1rBMQcd2qW+Fdy0MPPcrd1+9wdnaAPypl3p6riihXoiUk4VxrTSGjK6QMq/WKquD8/IyL\nszPSnMhJHq7WiQPEN45pHskx0jSigQlhlliSGETfsvBpvLf0jWPdGKzOkEXoK0+ehCKDXgIsTSOa\nlZRR05FYFX5rsU2HaR3a9stZYEA79NWUTylyCsRxIIwT0xhJU+ZwHNnvL8njTE5iPJDpoMHnxDyH\nRZiciEliGIwWpwyqoLQiLzoL5xTbjedk17Jbt2z6jtZ5WZ9pi6panqxUHj9d8V//6Q/xk//H7+Kp\nKFkP/+Uf/U5urxqO+z2qytNbZp2ShKuv1uJIkWOdJS+pykaDdwbvGnLOWK2wStZNPgqAcw6ZUCXA\nUilAF8mvu9K0peX/cxpKYP/GG1y8Vmm6ju3pCTcfeoiT6ye4xtF2K5qux/oWbS3aGGzb4hchbUnL\nmZELGWEGhTmSh5kUFco5qrYY37HuVriQGY+zkL6ngTAvESbhShDeSBG2hARLYCRLzlei5oTRBmuK\n8Ing6zl8MaMKUAshzGhladpuMRpYSk6UGJhSIpUr0a8WFxowx4hvGqwxxBgZh4H1dkPTafqu4di2\nOOcFpJeLZN8pwzxONH1LmCZ2u1NWq557b9whl/z1ld3bDPX8N2K/ds7T9i0xD7imoQA1pfuUwaZp\n0UZTF8TxMM7sL4+UVFGdoVLJJeAQBbn3BrZrnnnHU7Ra876nHuPG6QkF0M6jDMQ4E8cjaRrR3qKd\nQymDW+/YZ8ULX3uDN+4NdN2OH/iBj/Lrn/3rPKh7WDnF+Ry4jNLVSY7tA1D77Hn6oVvcPT9nuJwo\nMeGtpWrNyxdHjiGw9pqnNz07Cvv9wBhGSpnBG6pRYMUp45wAtJxW6CLj1loqOVVQlVoSYQz3g+nk\nOACFhqrRRZFrxVTp9rzVdM4ye0OIeqmSNcoZinKUvIh0k+LhteOFizf/HmHP45sWVKV9Kx4Dz7Hx\na8ocQFfZVVvLd7znW/iVTz8I9rXnI9/2FMPFG4yHA8PZGWkcKDnhWkNB4ZPDNQ1TzsxzXEI8Iy7K\nNAarKSVRAG8cSjsqmporcZrEGhtGwjQzB+lOShZeRVGVkiOCuNCUVClmQdd7cRBY46AUhlyoMZBz\noRaxGSoFY4I2NGzahrbpCCEzTZHtDowWEWnfr5hj4HA4st3t8M4tOg6La1pcC9du3ODajeu89tob\ncDF8g+7PP3xXrfV+HIlSir7v7iPcUxyoSrM/nHN253Wm40iJlRwL1jc0XYNvPSkHpkGylvp1j7Ga\n/X5iOg7UUrDOfz2/yVhx9qxbtBZxplHyWVbIOsk5jTEeZ2T1aEzCa4tzHtd53LrHr1bY1qGXWAVR\njViqWkwCcaYmqY/sLJoIrcA1jhJmvG3w6xWXhyPjMBBTYpzEAo2SqBStRANzJf41Rhoi5zSrvuFk\n17DuPX3b0bsGa+widtfyukpCKem+f/jZp3j/4zf5u59+kVcvX+Sxm8/wg+96hNsnK87P7i3GA2Fc\n1aoBg5YSTXRoeXmQY9EqLWLqhlQiUKjFoq+mNjFjo8TJeKuYopL4hCznpvyqojvyFqMVRiPp5s4T\nQ6LEkcO9GZUD0/78fvL5endCv9nS9CvJT+taoacvZ4wCVBaDQUmBUhK2Vo6Hc4bDnnmx85uuJylP\nrHWhrSdquopp0FSjqblII+U0KEg5oIzHOrfEN4je0RpDbQwhZqrKaBy6KnTRGCURGClGmranXW/x\nvpG1UpSgzrwIdXMRGUM1iikG+pLxXUfOgSkkyQqUJeMSjrqSohnRmJkriF8UgvB2e8rJ6Smvv/Ia\nIUa8a7B2Fr3P/59XS1orVuuO8TigNPimJaQk/85ZmrZFG0Mp8iGMKTEMA/M0weJ60gsqsuRAzQ0K\nS86VECJKK47TxBSCVJlaYFR1QYrHFGUXqBUYy/P37vLxX/41XnntjIdv3uL7//j38vT7P8B/+p//\nRf6nv/4/Aj9LrR/gShD3yHXPylWOl1E+qFU+Y2tTOaTfj9r/jm99iL71HA8j++HI/vLInWPiq1Pm\nKp9D8Rk+wx2+9x3XePLamvY4klPAICPjrCq1OpyX+ANyWm5CKYi0kd+S4sUs40OBeulU5GbIhVpE\n92G1JO0qlSkeVn1DBspxIoTEHCEsojOKQeFYNYp3X4cvvJkN83bLjW1LTpGnt5UvPYjHwJ73Xb9B\nGc5o+p5Ge3xNPHm64s/94Lfzt/7B7xcr/sSf+i6ut5q4PyccLtB1olspjF9RnUPvD6QwUQqYLFOm\ntu8xTUvKlTIFkoqUHBchrtys1keadhnRVzBKYQ0UJUJdVYrspvuWlDM2VxwSXhfijLKOvlvT92sa\n36CV4kwbDvuDdLRF1kpoRcyFkAJUCTQd4sxxfyScBBrXiuDdWqZx4PzeXa5fu86qWxFSJuZMKIl+\n1XNy/RoPP/4oL7/wInffOF+C2P7o+te7RBxqtFhUvV0iU5SmFLHyKqO5uHvG/vyCFPIyyaj06044\nUxamWUb8282G1bpnmI5Mw5E0z0u+jUwSrBVOzelmzenpCq1Ff6LrQqks4kpzWgoBoy2+XeF9Q9Ou\ncH6N6zY06w2+7zDGEKaJtGhbShFqK0oQ/8q2tL2jJs14CALCDIXDMUiAri0Mx5EwSQEex0DOEe8M\nzoAcGTJVsVrTeI13nvW6Yb1p6L3FW0vfNrRNi7Meg4H09bW1GGjEdPD4dsV/9sffj2lbqlYc7p2T\njqPENlwxtkoRYaw1VGMEGJoSuSh0rpRYcE2Ha3rmcKAc90IMtpoqFRc6JVzMpFToYhRIaRAae0mF\nvMA5s5LpjPFLaGcuWG9o1y3eiQvNGCeuzrBk9MWJ4eIevuvoN1t815OX54ldijkUKOMxXuEwFG3Y\nqox1hdFlhotL4nigmhZlJTpHVZmwKOQ8UrmQY5T1NaLIKyXL1NA4bNOLuWGemIcor9UtqACjUcZw\n2I/81guvcnYYabqeZ97xTq7f6mjalt3uVPIAS6VeXjLNE6XIBL8oCIv4uDMWpyDMiRQztchy0RiL\n7yQpPeWMb1pAMspyLqw2G6By/foNiR26uERbi/MS3fJ2upe+qYWMAvq+pe0bYgy0XYu2CruIyhrX\nsFqtl4gCUZ6HEDkej8QY7z+AKwqqjKdCmNBG3SfUVqOZpoEwHUlhJCVPDBa0JgVBhLuuAaX4e598\njp/6m78MbKA+y++8+Bk+8Ruf5S/8hZ/g+3/4ozzy5EP8nf/tZ3nxS7+OIrHbrdl5jYszm9YQYyam\nSmMUfaPYOsUxHAjxk1hteMfth3hot2Z/PHI4DgzzyH4KfHWqvJlD55/8zk9z64O3OTldQTKCgV6i\n0L1TNF5j7deFeCzOGmcsxilyVpQcICuZHOQia6XCoo1RX++WtJFaTkkEQuctOTlKqcwpEWIBDFoZ\njHIY73js1HG9c3ztGJjSr9Fb+JbTLbvGSDHQNtzcrfiom/lHz/9+V8SPvv82j9/qaLyj7RzaFIgH\nfIKPfuAp3vfULT7xm7/DncuvcH37GN/5zts8dP1EJnXW0rQe2zh0Kyms8ziCpE4Q5oidISuDsg1U\nLdTkkuVBsiDoc87oFPBVJi4gFs+c5AbWxuJbg0qFkIuMtLVmfzjyhRde4fw4oZ3j0cefou8lh2e1\nWVPSLZxxWHuHy8tLmEZiitQqxMyYMjHOuMZDyRwuLzhcbuh8CyisFbfIcX/BxfkFq37DnCKxAs7T\nrtesTnbcfuQRrl0/5aWXXqOE9M28ff9AXlprrDXkUkgpoE3HOA+4tiWXhHWWGCbO7txjHtOSQC4u\nEmcNbdeQghQSbdOwO91hG8N4b2Bc6LzOy+Sx5srdizPulYpJkWffdYtr214KhSqaNatFwHoVnliK\nkTWl8kxzYZwHmmzBtmjXklJhGhM5ZIyCkhZzRJilKFqeFXGaGEJkCpF5Tgz7gWkYaVYdxlq8sxRT\n0MpTssYaRVXiXKpVdFveG/res163rNctXetlkqEU/ncF/6pSgQyqYpSYFlQq0qlnuedqETdUGCZi\nTpSQoSiZyJTKIhCS3l/JFF7cgEKmLclKlVUUGoMWYArGOHmoWYPzlRwTeVa0udB7w9BY5ikSQ6ao\ner/4yUs+X6kwjiNtLVjfoZ3H+AbfNEvqvUYv/KGYIsfjnnkaSBWU9TT9FmUs83Agh4DvWjbXb9Ff\n78klEcLIPBw5nt3lcHnBME6EJNl91IwqkRwiKqVFRaLIKhBqwTYJ5z2lQhgnTAbXeJp2A3UmjQM1\nxsWdCl/8yqt84rkvg9ouWXLP8dKLv8KzH36Wx594Aqh0/YrtTpoupcV2H6OsqFi0RSVFFJUwjgz7\nA9v1Ft02S4yHYYiB6TigTm+A0vchkE3XEmNkd3LKerfh4nCQn5GVAGL1NiatfFMLGbNk87S9uASs\nVWgjb7rSmrZt8U1DyDPaaBGrzUKerYX7LAWqJHVWo0lFUqlTzsScUBlimKnLXrEqLVkcYWIeR7Qx\naGN44ZVX+am/+cu/J7/nigj8N/7Gx3jX+57msSdu89F/7wf51X9QufPVl2R3WAvaKdrOssuGOUDT\nC/r+7PKSeZYfeu81thb2F5ekNDGNgTglLkLhrdw/n33pnO99ZkfXelS7xJ8rw2rdsepavDVLEaNR\naErMomErmhQKcYpoDN40hDoi63aFrppyJRRbIgcUFqMyVmU652Altsp8LIQCMRZKqYsmR77iqm14\nz7rDiLoVq2XcLPZkQ996PrRb8c5Hd3zu1SP78Dlubrd873vfw42TFdZ6un5D266EXFqqgPcax+mN\nm7zz6cfIS0x8nAf5eSkrh5kC1XiS1qSQsVnTnXj8SaFSGIeRcTiKhXyeCeORkoI4D1p5r7VRKCWJ\n6XOYKVphrIh+K9KNKiQA1OpKKpkvPP86n/j1L/7eA+Glf84HPzTx9DueIUZJQu5WPZu8E3Gi0YQw\nE4P8eVdhkk3boKhM48jF+QXr1ZZutabfbJjnEc7PuLi4x2q1Am1QKaF9QwiJvve03YbrN2/S91/h\nIhy+mbfvH8hLaYX3jYhCs+zw53m+j6KvZO7eeZWzN86oSYwKwt9Y9GrekdKErpXtZstqu2OYjozH\niRTSwlcxHA4Dr79+htz7z/LGvc/wL37rZ/kv/uwf4/s/+DAshXU1WgoXbVHGkROMxwPheMQbjzYN\nucCkNMREyYnD5Z4UM0Z7csoMxwPTOFBylPWBMtQCaRpltR4ivXOoLqFMQZss+hcjU3GFoxahxZoq\nU6mmMaxWLat1S983NI3DO9Efaq0Fp28MchjJ+5ZrEXZTLYvei/v5PmXRzhQyMQWZJovuFpBcN9Gn\nFSoWVaoEYitF0ZCqnPWqgDH+vnjUWiuaxZqpFtH+aYWLmYaCyRbvHeMoXxOrqEYtKxOZoBoNtQqk\nLqVImifmUci6ynjatqVbtVLMhCLrKefRGKY5kLNoXubDHqsK0/5AtQ3VtmxOdnTrG7j+BLe7wF3c\n43B5yTAc8K3Dmh05JNJCWldqCdoslTzPMiluoBZNqSM1J5zvZP1TBc+hU+HsYuATz335TXEZz/3G\nxzjZbbDGyYrLGdqupdaM1jBPi4alsljZI1hNzpHD4cA0jovey2KMo6TEcX9kngLWe4lU8Z5YKtY7\nttdOOb15nTtv3CXEsoSHqmXO9/Zc39RCxjnHar3BKIU2Cte2OG+oMVOVoutbqspAwTeeOQSGeWIe\ng0CrmkZYAzmTw4RyDbleCcA8VSlijEKEBJQVxHcIM/PhnDSPVCN6iZ//+7/2Fu6an+Ef/vI/5sd+\n4j/g9OSUazcf4t5rbxCmidrtUKsNuik0XaV3G2KJfPm3P4tYtr8LeI7psKdX53RriyoJn0W6Vqri\nrULYDvM/ZZ5mnHG0TYNdQr26vqHrZGdeM2QqVWWef/WcX/rUC7x6NnL7dM2/+53v4fEbJxzOztBF\nGptcF0BbrfL+GbMIw+Qh3mgNJkGMVDy5ZJTKDCVzDIEYsvBktMJqRVGW3nu8b3BG01qD1QVdK1Vb\ninOcbDx/8uGHWK83bLbrhc/R4tuexrdijdZ6cURU2X0bgyqFFGZKEWFhWuzyaIXylilm8uFIGUbG\n48xxCMR5JpZMsYaqFakIBVoDdtGalBBRrqC1l7GsaygU5mnCe41vevp2Reki8zAxTBPkyOEY+MSv\nf/FND4TPfPqnuX5tR9+vl0DTGahLsVKwRjMrEZCWXAghypRocRUc9weG44G2k/dls9txPFxQlmDB\nft2RlRIBYYyU0mKM59r1m1y7dsrF+R8VMv86l1osvQrFqu1AKYxzgFncTJY5jrzxxmsMhwFvm8X6\nXnHO0LSCjEglY13D5uQU2zSMd+8SJgEpaiOTWyliftcUdmma/tr//jHe9egP8Mi1FboaNA0YjzKt\n3AdhwBuF9x3OdWjlyGnm+MYrTMailSGkQoqVEgW2GXKSB/tyz6eSKClTwoxeJhrdqsF1hlQTqRZU\nUaS8wBaX/DBtRF/RNYZ+1bDadKz6Fu/FuSNEdkmDd1ZE9VRNRS/AQchksfTqSjWIKL5kKI6MoCFS\nzctDTUkRVCBTSKWSKSi9KE8UVAulGmHyVMmrQ4tAVSnJtPNaE9Mkonvr0MpSTIQijk9nZR0Wk+g0\nSs7ULGA/yeSDvMDjNEXW0kJbgGqYrWfYNxJbszjU2q7HNw1FG9EkosB4qi4cxgPj4VXmYcZ3He16\nBdZhm1ZWjU1PiPIzsqbBrh05SKhwigJHtfcBgwswtVRUMdQcJMOt6SXk1DeMKfOFF17jgRE26md4\n5aVXeOYZ4byEMFMRXpFzTrSDNVAXaF5e9IKUyjgMjNNEu1phvce3PVpbpmnkcn/Jar2hhoBfrRin\nwLVrO7r1mhs3bvJK/xLx7FLcbEq9rb6lb2oh07QNzhuc1qAkKRYFKQ40RrrmlAqbzY4xzOL4OIzk\nVGVHvOpEkV0rZKEkppQZl1RZ0cGIgjoXuTVyFPt2mCZijiilCcHwyqv3HuiuqTzLy8+/zJc/99t8\n8tee44UXXmI4JBSe080TPPqtz9KuT5nnwN2vfZV/9kt/mzeLcn9+/9M8s7WsG0fKmRAru6lwnt6c\np6B4jnUjlW+YEeW/hqbTNJ2n9Y2siJTswn/x01/hr/7cb3Cfhqs+w8c/8Xn+yp/7KN/5xHa5waW7\nyaWSaqEmYRLUUpebXz5UqmZ0iThVWLcOszAbclIMUyLlTNGSN2WyZgqJMGda66guY8hoA5GKLoU6\nBDoXmWeYYmG1zrRdYZ1lkuS1p2kbrPMopSjIa/GuwW9aEoWSKowjxlvCPEpatvGsNxZyZbi8pExn\nhOFILgXbrCle+B1aK+IUiNMkh5tvoDrIGVUyJAn/M85TVGTKB6xraLqediXao3Q58/kvffUtDoSP\n8+ILL/Jt73sfbdMwjSMxzhK+uTxIqOIQ0wC1kFOQr4uM+/eXF/SrDucsq/Wa67dvc7g8BwV931Ov\n3huqWFCVouvX3Lh5k+eff+nta2n+EF6SeC2OHFkx6QV4ZsQ26x1x2rO/2JNCwihJv85ZODHGyRo7\nzZGTzQmr3Y5YA8NhTw4BpTRaw34/8EDOlPoZ/tGnX+bP/9B7AS9wN+WkQTNWcACuFxtzTEsIqTQW\nRWmqdlSVyUmmLTVnnDVgtNhqowhcda1Y24BuSGkGwvL7GqstMUUJESxlmSJVnHO0XtO1jq5vaLtm\nobPqZdotax9jHEY7VFniDWqV9csy5CjUpTio5JqIcyJVDdbKpN03lBAoNUuTlsXeXapMblTNXx/V\nhEpWCmUNZQFO1io6SHJBF3FsUSo1FYmm0RrjnMywk3BvWmtlkp8yca6EWJhyhRCx1uByxdoiaehG\nL7BLQBVimglHcQ0qbdBKM+33Yi025v6kOZWMabyIga0HPbO/POfi4kxcbNairQXXoKyRCUkqlKqx\n3Zret8RxIIcJDTjtBYdBJmcJG0Z5FIU0TkL8NS3JZfbj/GCESH2Wcfzi4naTdPUcpTiiSN4SOd23\n/5ccUUk0XCkE5mEgbVc472i7ln69ZhwOxDBRck9RaqFZS3o7yrLenLBar7g8v0Av5zOSifC2XN+0\nQsYay2rdUUtEaSfZSq4h5YB1jm61RVsrECXjyGViHCcOlwco4Fov8ebWCqfBCPynKNgfDuSUyClj\nqCKQrYZatfjkYyBMM7kUvBFex7Xd+sHumvppLl6H/+6//WugdlA/SOU54Iwwf4HxGGiaBqcqr3zl\nizwInqf4OK/OkfdvOkJIoApPbuGF8S1C2NYtBSTfZypoVehay9q1NNqis7gHvnpn4K/+3G9Idsn/\nq8v7b/7Wx/ip/+iPc+JEe5FKRsco4ZQgXApl5CCqFYVGG4u2sts2FqhiA9S1wVtFSIa85HSUhcej\nMxQ1kyy0Xka2ShV0koMs58o+zFy8+joKTdt3nN64xvZkgzYKYw2b7TXa3YZu3dOvV1KMpswcJU1c\nxMkO7RS2JEiBWAJ+4zlpbrN55CbjMHJ59y7DNEthpC1ta5lsYGKmpIrOFVRGaU1NiXg4l2R1taUq\nS1WZKU7EMOKaXpLV+y37YXrggVDrh5inf4nVUKyRThUgC4CwLPoBpRVWKYySnbNaEmdziuwvz+n6\nBmMN29Mb3HrokYUIqyj166uMaRrpN1ucl+iC7XaHGPD/qJL5V73kebzEdSAGgFKypKL3Pb53THcD\nYYkiYEHlozTtagUKwjDS+pYbtx6iX6959bWXmYZRSKbWoo0ml7eg2tZnuXP+ZaxaOvgseXDWWNr1\nCYpGuC4p4Zse5eSzoWIiTnKulbQUONbcX51XMrlEcgpL4yLYBYCylMYpZVKpVK0XIKDEAzhn8I2m\nbRxtY3FW3w/901pRSpKHqHEy8lUGMIsWbyk8UqUa0bpI/a15+TLyf/7GV/jq2YHrq4YfeNdjPLJb\n0yhNGCIlFEoWkXJdpkL36Y+lLEWkoi68G6WugkSUUHtLpaQipImcqTlKgvZC6FaIpkN0JxItUYwl\nEFAUppAl1ywrUpKG2xpNMgbrnMDmDGI2uXoI1yzxLyVJgViETp8rsDjhrDXiHadIE54yKWTmkkEZ\nXNtivWwUalFkpUnGCqizX1O9k2iUPFGVx7UtTSMZUyAE35oLJY4UZVDWsN30i739zdO8t5tbtI0j\nNJ7gPORMrAmMIVuDyhoDWK3vrxlVrdSUGY5HpnFF03a0bc/JtVNQGWMlyFl0CBpqFsAhGu9a2rYT\nd6AW088VBf3tuL5hhcwVEbVUWan0fbOIVj0pFU5vnLA5ucZ+f4/VWnH95k20ExT38ThyPBy4uHOX\nOM7YJZfGWUtdOnfrPc5bpjkShkmsbzmii2SWhBQ5zgMlFtLlBeF4wPcbcqmEnPjod72Xn/+Hn+LN\nC4pLXryr3nSdcH7+03yL3nOtFRjWG9MEbwGKG9Kvo7STDGmtWLeGD9zw/Oad3+/++cA1TW8VCgdY\nYk5sese28/RNi/UO2zis0vzip57nrWjC//i3XuHPfvtTTMNMmsKiRRFbpgj4ECGvkXVXomIrtNox\nxUBrDU2naZ1h1WqmkJliIeUl6VYrrDdYwJjllyroq9Ft47BenBpOGfI0kY532c/nzGctSUkX3GlD\nSInNjes88vRTzBmmVLj5xNOcXLvOdLzkOAw0tmUYYXv7FtY06DSwMlK0xBg5HS44nL/O+Z27XFxe\nkEtitb3B7vqjhPHItN/LuqBtaPoelIYcIEdyVTJeNxpVyuJs22BNw+lu/cADQannONneomukgCmt\np6xWeLWsM5XCGyNj/ZQXx0HBWjBWU1VlnCb2+yOr9Y5xGNhsT9huTznsL0kpSrGVE5f37rHebGU/\nv1uzu7F5+2/aP2SXWiabKSe07rDG0HpH10visDJWQmpTEY3JsrLu+jUn106wplCS5fTaDU5v3yKq\nyDgcKSktGURaRLLO8kCqrXqO26cPi9MFJY2dAde0aN2QY0FJGB3VODFATANhHMnzJFrAUlF1OW8L\nYqHNkbI0cVdY/VwXnUkRBklKmVyz0IydxroFjdE4mtbhnMFq4Rnphf+htabWxaJb5awtJVGVoygL\nVFQpYrleRLFo+HvPvchP/sKn+N2xJT/33Ev8pe97D3/i8ZuEw0yaIzmLOB6ll0kxUBbhq5K/CGpG\noVHklKAWjJYHuqqaTLk/WXJO1te1SjJ2vSqMuEL4iwbF+UwTJeMqhEBOgRSrrIGtpaSINrK6sk74\nMfdXcNos+qD71Q0pJ3FXWREllyrWd+safNfJZGcehdYbR1oc/44AACAASURBVIoqsl4vlZIyqVbS\nJKubppWJbYkjKSVKCJhuRdO2UuxlsVznLPBEpzUffNcT/PpvvcCD0rzf/+7vxrceYoNOK45KMXBE\nFYVuG4oV/IZaBgNayXQqkRnGPcdjR9u1NF3H5uSUlBPWerx3WN8wxwBLI5aLZGQ1bUvTtoRFO/Z2\nXt+wQqbWq5RryVcwVsuHC+mw2wXMo5WTw3m9JhcZ9U3TwOX5GZfn59KJ+FZGud6I8AioVMI8czwK\n/0MmMUlAUjmQL17j8NJAdJIi3ay2GN8SUoaUeeT6jv/4hz7M//xLV/HuS0FRL3n37S2//bqivtk6\ngY9jVvChd91G256L33mNr37pwfC8zuol9+MK6KR4Yu241mhe2h8Z4z9h3VieOenZdVbSeI0kOXtn\n2G07TrdrGqchFbEpanj1/MBbZpccviRMA6UwZrHuVU2ohXkBnLgroa51eDxziIzHA1ZBs2plTD1X\nDAmrDd4qAUzFzByWZFot5M6QQWuP8x7jZFRdlKFqi248u4dv0rWNiG2tTBK0Mmhv8K2lxsgwH0lZ\noXzP2dde5PUXvkgs4LoenSoXr36N42/sUc2ORx5/BjTMcabdbNic3sRvH6PPLeiOaX9OmCeUsmyv\n36bbnDDuL4nDkflwoFvtaNbXgUJOIzUl4QqZJWtmPlK15cPveYpf++yXedOCt17y/nd+Fyernskn\nnK6YXGiN4niIEia55DIpLdkuikwuCZIIO3OJDMdADIWcEsPxQOM8RimGcWS13tA0DRd3Xmc8Hum6\nHm0s2901vPfM8/w237l/OK6rjlDdD0gUt4X1XtaS88RxiuwvD4JZKJWUEr5pODndsV63zOOetmm4\nfusm/bbj9TfOieMSDqjrksGlOL224u7Zq7z5Z2jPj3zk+9C2pRCx3mKNR1XRsRnf0nQrppg5np8R\nDntynMRJoheUgtFiSlwouFdT6ByjZDIV4UPJNLWiSoIaUCrgTF0cR4rGWYHLNU6yiIxQXBQIYK0U\nylKcmAWbX6mipSChlF6YMRWlFimnMrx8b+Anf+FTv2d6fPX9/w+/8tM89qfez6bAFCJZqh+UYdHZ\niN5kGYihFpOD1mph1izgz1IQX4SmKBHaWKNxxsgkoaTFQSivX1m7ZNqBNZDz0ohVjVWapKVwLTkR\nU0aXhM0Gll9XD2KlFEVLXIVQf0Vjo0oW91HJUA1KS6NEzaQ4o7SWLLUWcoyyJitFprFaoWKgxEnW\n6Rj8ekWzbikpEmOAEtGlwfhO9NUmYZWQqomRm7sNP/Q97+OXfvVjiHv0WeDTUPf8wEc+yOlmxZwL\njXfkxpGDCJejqjLpWbSnirJsyMVKr2CB4wlNeJ5m+tWG9XonRVaVqT2lCu14+Z6stayW/24egzSS\nb+P1DV0tyRgWQC37YrFZa2OxjSemEU1ld3KC1oY5SJbSYX/OvXtvcNjvyaXQWkPbNjS+odSCwSx4\n7kwtWSxjIZFiwLeivehP16xvX8dbh3E9pSiG83OmcUBpzTxOfOczN3noz3w7/9eXXuMwf4nrm0f4\nnnf/MX7uVz9Lff2dvGmRoD7EbD7PzafeQ8Hzkf42v/alv8+DVkVPbrZApvVO3CvLD7v1iod3DVZr\n5JwRx1CpkgvSGsN21XB907HdrNmu13QLZVFpeOhkhfr/yi6pi7dJySQLLa4CnSUV1Sh9P9wup0zJ\nUbqwpqGqgqp2scqBz3Wh30IsiSEkUiqkWcLzShXugEozujG0bQ+lkOfMnEYuK0xB8ku02BewTcfJ\n5ga+bRnynjnPNP2abr2VDnAM2JyJ88wcJ9qTa/hyQgwHXn3+s8zDSEJh246YkuDldyc03YpaKsY4\nYhTGgWs6Vie3YDWTpwNx2jOlCddvcO2KZrVbbP0VXSrWZEIs3Niu+dE/8UF+4Vc+Bur3Hgh/4tvf\nza41pDBQqnwmnTeEqaJVRi/FdYwFo2VEL2avTMoRiiGjiGEkhBGjd1ArOWdyKUzDyCYkNps1jW85\n7C/ZbHcoYJwj/Wb1R4XMv+Kltbr/d9G3VjEK5MIwHEk5c7G/ZH/3AsHACkit71acnu6wTjOPld3J\nNU5vXCfnyHB5Sc0FYyRcMRd5EDeN55mnH+XLz0uMCjyLWnLR/vKPfxdPPnxdigxdMbpHF0eaxG1n\n+xNCCkyXd0nTAaUSziq0dTIRkGgi0HIekgMlzKRFc7I8V8XVGSIxRmqNWCP5SN6J88q5JT7B2qXI\nEzep1tI0piLgNKrBGouQhK9iFCqlivvRqCpZbiVTDVhl+MXnXuDB0+OP8ytffp0feuoWpSp84ylG\nMS8Nq+j7RG5WUPeDWCXDSS+uM3/f0ptzkjNogfnZUmSCVDNGW8BRqBRdJD1cqcUFW9BKAowbb4Vs\nHKSxFpJxXaJhygLVk+9CKYMumkqkEiha329aGq+k2FRXELlKLRGqCMHzrNC+oWn7BQor5HHX9jTd\nihKiTGzCSBgN3p/QbjaUEqV4yxVSwTiHsVrEzUYKER0C73/mUR67ecpnvvgyZ/vfZr065b1PvY/t\ndsM8jsSsJENLSbGqkVTsEAO16AXgaKnI1C3HTDUakibGsmACCmGe5LwuiXTFhDOaYTxy2Asp33pH\nt1rhvVvWTdx/D9+O6xuukVGI6yYXsfLmlKTL6HtCFOpl13XyQVSaUkVJfjwMzCGhtMFZEbrmnIhz\nwPhW0j9jIs+JKczCAUmJUhzWOKxfg9+KQ6doxvO7DGd3mHOma3vG/QVhOnJj6/jT3/UOVv0pfXcN\nUDx88zXUl99cP6N4jkcfeprtyUMMU+D29YYf++4P83f+6fKgq78rTfbxEx67tgZk751SxhvhAMcU\niVNkrqCMrMrUsi90RrFqFdvesl23bLqezveLw0cIvD/8oSf425/8bR5UQP3guz9MjkngT6lSq3RX\nRimUQRgzMVOV0IO1Mqy3W7E+x4E0Tyi7jHc1hFKXEXslJ03vHKkUhmYmBAFPaWPQjSXmTBpHvDFY\na6gmE+JAKhEzAlWEZcY4Ll9/VQ4qY3Bdh2+6pWsJGOtpuzVxgTblmtBNQ7/e4rWhGAvjTJlmTE6o\nkggXd8njEW3EeVIyKArBaFzb03Y9zWqDbQw1TuRwINVMsxawlSqavIxFbaOZSuJD73qK26dbfvN3\nXubi+EU23Q2+9alv42Tdo1VmnkamSRFzplYFylKqMHjqwqhJJZCNFkCnUgJkrCBREolxGJnnmW3T\nipvLeuFN7C/E8eUbDpeXXKzORJagNdvdjrM7977Rt/Af0EstYndNzoUwB6zThBiwsyXGmf29M6b9\nURhErcM5z+76jm7lmccDRnuu37iJ83DnjdeZDgNKLQJOpTFaVjWNb7h2/RZPPfE453dex9Tneerh\nJ/iRj7yTJ29vF6S/xjgR86cQyVbExvN8ZD5eQppkKmu9BMmmTF0iBPTy/ZRlrXGf55+XojkEyXya\nZ0qJ+MbS+pa2FQu1hNTKva6NFHf6StxKve/eqYi7SWkpJJQWHpUxQhzWaNSVY2pJxy5K87XzgbfK\nors7fE5CCzV428nEtmRZESlFppIKxCIcmbpM09ASOGyUR1tZb9ti8EVTixUSPOq+M5JqqFUAiLqq\nqx5bAHpa461weKKasUrjrZF0+8VCnpOs8eQf5bNjFtcbRSzbtSBOqcVBabT6PcUyud4nHSugJk1J\nGdP2aNculnmFa3pM78jzRBgHShiZBr+cYSuyi8RpoqQkDB3rpKCtYIzBNw21wrXtiu//8LtIFVIR\nMOo4TRyHxBS5L8y9KthESyThyjkpETprRIitFblUaoI4z+JuXTKfNJocC8M0s9rs8E3DeDkxDkeu\nX7+BtlZiWtqeWqVhfzuvb3who/WyJ5XR7ThOPNq09KsV6SKiVMQ6Qy4JYwzzlNnvj8xzoJSKUeCb\nhqZfc/x/2Hu3WNu27Dzra/02xphzrrX23udS5bLLZWyX7dhxXM7VsUwSkzhxIJigCCNBJCAJIEEA\nKU+RAjyA8hLxAuINy36JQNhJJUIxkIBtLEhkghOXDVEgSkxiW67b2Wfvtda8jNFvjYfW5zoVqIpC\nfM5LXOOhSqXal7XnHL331lv7/++/3Ns8eFTm67ZRSkar4Z09EIIjRoBO3Vby5UQ+HenrCVHPNC08\nvH7g8eVrm1t6RwwO5zo1n5AQ+R2//hv5C//rz/GlioTv+paPUy+PSKnItvGtby28+R0f51O/8Fnu\n15/mJgV+7Yc/yrPDzLpuA+YXDHne2xOkTrDF+5Q62m0x3uwib7/Y8eLZbrBjojmYrl9X73z0xc2X\nzC75Y//0b+QjdwvH4+NT+Jdgc/TrZwdWzJRaUAcxJFLcUdo6FOwbjNlvtMoHF5sJqh3QLJU2TJ7a\nlTy0BE80zy7Ubr9OBTu4h77JuWi/ZtgmdVwrr5wLFLSbHuF0/y4jRJreG957Hh2kORlXZrAPLMG7\nIrUiKGEya3/v1UCIRall5XS5sL95xuH2TaKHUu0domTwEyHtCcmbwy04QjOr9JvPDvy2T3zDyOEx\n4WTvjboW8lZ5/fKIem+OuVYN865KCoEWGqU0s3p2A0/p+C6cCK0Uzqcjp8dH9suOaW9dxW27cHx4\nRfqCTJP716958fw5MQZun91+0Mv3H8vnSqgHQNUiKtaA97Nlk7XGtq4cHx8o22YF9bxwuLnh5nZP\n10prjed3b3C4O5C3jfWU8W7BRxtxWMCgWB5PjAQfuDvMfOLr3uJbPnrgK55PTMETvB0cIh6PQ+tm\nIw4fTTtxWnG9EaMF/fUBT+sIKgEZVDGLNpAnIaoOnQyt4elIgBgiIS3Mu4l5svGlD+49QNkYs8m1\ne6BG0vTOojRU7bIZwkhZDoGQJoJPOIlItYDU3ixZ2qkRkj/y4vAlu8fCp3hzvyMkAbV9hmYiW+et\noLLiQ22kXftYOx7n00ig7nRRYgjEuFhJ18yB5cSE9vRmXfutIWqdUhVjgok4kni6QNVimpnoaM0+\nA7Nod3oLw+05ihK1PdWycNxwyvL0WT45c3gvFuE6klLFCrHocb2g5xM6LYSYzPKcCyHu2N3sSHFi\nPR/p5cLl9GBFX4iQGkULfVDDGd0l5zxp2tHU0/NmmlJVpHUqlVbOnO/vueRily7U3vvacRhmo161\nVNot20nkqYPVe6eUQs7GupnibK7Y3iiXM7UW9jc3+POJbb2Yo7h3m8Ykc14xzqD36/nAC5kwqtqU\nIiEGtFT2+z1aM6iluea82pfvhPvHR9555yXb2RTgIVlsgXrM9z+cGrU1A46VPAoDxQXPFAPRAdsj\n9fVKyxd6bYgkVD2vP/c57t95ifZGnAPBJWuF1hN1e6B1z23c8Ye+5zfzg/+DFQlXOq3yyB/+nu/g\njdBplwd8K6Re8TPcfPWbfPyjLxCEViqPjydOpxWKzUnLSJS1F4Kx6Gx2ajfBhguOZXa89WLh+e3M\nzTKzhGSq9Gvzr9uNS1X5vZ/4Gr7tq9/mR3/mF/jswy/y4edfw+/+5o/yZvKcttX+vt5sMeJQaaha\nV6cPxoQ2xbVGk8p6ttgIJ8axwBlgytOhFpw2ulckmiug9UrE6J81JXIulFxotZvzQMxG2XonF8sD\nsY3bkoB9MPgU0V5DNa84MmzGgv09tEbrylYKu3kyDcP5kY4SYyJMi4l43Q7Xuo3JesV3ZZoX0rwb\nC9Xw8vl4z1kcd8/eZHdzYwdTzpSt0toRP9nfocOl5UNk3h0s/K1XvJjeq3ePJsgPR/L5HsTThmU0\nCBTstibOm7Gjj/yrp9uIFXa1FE6PR477I4fDDcthz27Zo63z+tVLTg/3PH/jQ8yzRXv0Zy/YHw48\nf+P5B718/7F8rodJHzj81ho5Z6bZNEc+eLZit8laKs5FYvDs9wvTnOi9keLM7d0d4pTj4z0lF3y0\nhGYFnA9WLDlGcd9wdLyY0cc7R4hmZXbjQNThuHEpmjC1FIQ6zkCHilFonVOkCyrVAHFXtJizwkPV\nYpA9SojODg8/YhJSIKRgOgY1mFuMYdgArpicobXARLteRldjxAa4GJAY8HEihARq+j2pDdds7QtA\n9BAiv+83fT1/+n/+Et1jfeS3f8PXEJeAhIZuja51eLe7aWIEpBVc7Ti10MqaK85XEGc/jweVAM7c\nRcErThte+9i/GhuZQqP5QGuZ1jJKQ64FCFYIqrf059q6ifRbG2B0E/QOCYmN9kYXRLXjuvXGnIvD\nnWOFTL12dWS8e2rOT8GNzlBH+0bfOp49MVokQr08EOSGmCZa2yhbpq8nSgiEwy0+OGiR3s055V3E\n4SmqVFWcj8Rk73ztgGtWADtB+7i8OaNVi5pDabtygHzAiXXiBLXMOemI86NraDTf7byyXw5ItBT4\n8/mRy/nIsr9BxLFdLjw+PFByYcuZmBLzPBmtvb9/Y/EPtJARZ1WoE1hmE1HO0w2H21tKvlDzRoyR\n0/nEvN+zrmdev/N58ulCryaUizGR5gkRq479qGy7Kr1bdlKvDSeO6DzJe6YQiM6RgkPCTClwOW3c\nv3qH1y9f0kojpMCVphmCbSYuBUKt9P7Ad33tM77pD/4ufvJv/gLvPPwd3jq8yT/1a7+dt24W1u0d\nPA1Jke5mVA6g0EplPV94fP1IK5ndfmI+WObPljO12ty11DZEuG5sMBC8MCfP3d2ON58v7KbIEidS\nmnDOD+Fgs1uKfbioNj5yM/Nv/JZvQKojt8Y5r2zHbJkZ1cZ5vZvlcqQUIC6OzdwOVGUUHd0Oe8Tm\nzzqcTl2F4AVPHy1BIeeVvmYT0zmhi+l62pTMWbFVttxH8dkHT8LRR2fGDQGYc+CCJ6U4bj0mGvTB\n27+xWwEk0jkfLxQ6wmS3RIMgUNfTsGkLPk3M857uPFo3eun4tJCGtqStF8p2oZxf8yjKTfgQ87Ij\n+AnvNup2oZfVFrILJpJ2piPoBCjbuPmYu6KpYc5D8PRmt+La1GzeKRl52jfjXGiz/J4Rs6HSbDOi\nk3Pmsm1c1pXeuuHgl4XzObKWC7VmgnM8Pr7i9nTHstzy5ltvf5DL9x/rp/duDp/WEN5z8vTeOa9n\n1m0d835L9Y0xcnt3S4ye7bxxszuwPyzUsnE5nqm14XxiihNTiJR+ppaKT5EgM6KdVjdcn4jOiLM+\nJiPfjsNSu+LibOPGfKa1DKPTYlhcO1ia6zRpNLsmPBnwbQxikSZT8oM5Zb/fe2Pm+BTHGN/0NeJM\nPuvdKLrVdHAuGAbDycigFm9rdkpIihCMPoxa9pE0cyt5wYJuB/Q0TZGv/+jb/Inv/638yR/+gu7x\nuBj+W7/zW/jar36bUgrb6ULROi5XmBWdNhJWjAkTsM+i10LJ5u32zqECa7HvbJoXwn4hOjWRripK\nRlInOEfr3gCCVYEwpA+KeE+nU6vZ7a+i38awIataRwaGZkJGETPgbmq2dhH7PBn24jC+IRvTGzun\nN+sWIc72uTTiGUo2u7gXes1sj68JcbI/L1iQcr6ccDEyLXt8EsgrWm2s7ULE9YbvjeSEppEuggti\neVHaSfPM7vaAuvP4rC0FXWKkNCVXhWJuMBmjyt6N32N7sZK3zPl4Yb1cbFw5H0B3rOcjj/cP7G6e\nIzhayzw+PDBPcYD1vEV2DInF+/V8sIXMYBoELwNx77l99oKwJKpaRlItxv5AhIf7V9y/epftsqIK\n3hs0L6U0KIN1LEprA7bWjXhaux343pO8Yz/PTLs9boqU7ci6nliPr8mXe7wobhJcMJGwaiOEhTlM\nhBDMLidCq439TeVf+dA3Ms2RtMzE3WJW5VqMw5BhWxvn48r9y3c4vXpJPq+4MLF/9py1FLbzhfN5\nJW8ZhgDN0Z8WhKp1PeZd4PZ24dnzPbspEESYUmSaJxzeBGaMbB0/fqMNPmmlUytsrZJbpWs3Z0yz\nG4yIWB7dEO01Riibk6HhGDcFEbPcPbX97M+/FqTarWWLMxbANE82MWpGpsCPTaF2gl/xoZI3pQ3X\nh9ZmRZwDrwFaIDqhZkU3y1O5Wvb6pui4IYk3h8RuSfjgDb6now2u5lAYFzhrk4rHTws+7YfAutCz\nZ97fscwH6nZmPT1S1zPHV58HfcGy2EhJiOb6qNVGAi7RyAbr88NmreBEUOl0bRzu7ugI6/E0cnjM\nok5p+GyHQyuNXowl5GK0mXrruKBD8G1F3LZt1FpRLZRmyO9eiwk3gbZdOD3cMy879je3TPNsgapf\nfv6hHwvbtK5Ma3b4izMNiA/CVjKn4+MIKuwkEZbdjtu7W5xrSE08e/GcaT9zPD5Sy2CH5I3tsrJe\nVrYtWwZRnIgxmuh7raB74hSfujHSTNnSbcOztPaW8aOA0cF76k2tsGkVh9r55wXpQukW5GeFhCDR\nI/7KY2km+HfOoGsxEqKzwqoooo6olnvjnjpI173b2Ef+WsSkRJgnJE5UdWZcKBUtpv1wqHUexx4d\nlmgaOYV/7tu/jm96ceC//blf4Jdf/R0+dPdhfve3fQcferYDlPV8oudCL/aZ07u5NJsaiHM4ldzQ\n7RStlPVEawXfEj46ghOQjFdoIdDnREw7puChbrjFisVSNlr29Jpo1XKGau3WqcBZ4SPdogvG2hwV\nC60306Jge5r5WXQ4trwpidSs3dcxtIizIkfNqo13EGxU3lRHlyvSVGl1fM+S8D4OCN1KnBem5da6\nL9g4WqdOmif73Km274VgnaFuP++T+2ho8sQ54rJw8+IFIUaD1rVO2QquKedinCsZ8M46LpJWoV47\ndkLrxtwppdJHtIefTQdzPJ1YLyfLvfKBx+Mju93bJqEYxdH7zb963wuZ64EozjJGnPfEKRF8Ikjk\n9u6Z6RtqI6VEozKnCe2d4+ORvJqwU8SEotM8E2Mg17PNe0NCvKPlQtmyJRUzVPYocwjsFqO7bnnj\ndP8uulkbUbwnTEpXs6qJVrRccH3Pbj6g3rzxIYGKWcR82jPtbonz3vD3pdDXlfXhnrreo1vB9co0\nJ/Tujt3dc1Q87758xcOrByM1FgNExWAwO7wbIKBOSMLhEHl+t+P2Zse8BKL3eDEGixN7KbV3q8jd\nwHZrx9IqOl0aRTtlpGLb6EkgBjNbZJtRIt4WD4Ypb9U2xDYWGW5oTpo5FXzwUOzXl16sCPPm7PGK\nBbYJpn8al4vBC2OKieAdKVRaFVrtBuAqbdA/m42nmonTkDF2wRG6H7dk6yrhPC4mpmThcIJaqB22\nsJyYFBEnSAyIVtrpEeJEXPakONFaYTve4/a3xGlHrxntR9jObA+m0J/mebgT+hOeO07LKAD76IZF\nSwp3zlr6suJS4vbNN5iXicv5glNHyZW4FdZt5XXZxobRCMkNuZDxGczWaN2vkjPrurJumbvnz5l6\nZ72ccOKo1ZwmKUbydqFVo1QfbvZfLmT+kR57e8ylUQhR6M1YVCWvbJfNqLiIFY2HG5wHrY2b2zue\nv/kmLjnqw8M4CCu1VOqWESBFY2qk2SI/atmIweERpjQhPqBVjfosNp2RYdu9XtgkGiG2qUI3x4iq\ns1GxZS+iMv6MMQbqTunmW7ZioHvcEID6EHEx2B7UheDNyuz9F2g5RpHkvOCCH3qMiTjviNOMemei\n29JGLEJHc8NdnT1iTin86KO0ihLpKnzVswP/9u/6BOoduRTTVFRzm1KLjd4AaQqtj5RlQOzndyHQ\ntT+NyntXSt4odcPFwDRF1HlUz8PyGzncHNjtdkjvRNegZ/v78oaWldPx0TQfrZBrNSBiTGOUZ+9H\n73V06xq9uaF1s25R61e8Ak/5QfYjmxi6i7ddTTxQR9E8gkBJRgEXHftnGJMHI7I7PC5ZNpsPibAs\nti+WBjioDbd44v5AjYVc7OdBrXiSEfYpzi6tJW9m/UZYdnu8d+TzauHLYUPWTPTQ6sa2ZmqpTN6K\nWlGQrtZBHLwi6NTWLNoCQDrzNHE8H8d+FaF3Hh7uefvtD7Hb3/D48EB/0l+9f8/7XshcgXVX1kCM\ngd2y4/buGVNI3L0wRXPVjUsd6c4hcN4u5FxH5R2I0RD5UwrGC1k3YLRjnaPmQlk3tClxikPoBvOS\nWFJEayFncxw078cBqxCUgAl8gyrkQn73M7x+fOTw4sOwvMDvbkj7O3xYwCe6etai9JrpeaVfTvRS\nTPORArWDXjZevTry6rPvoghpTqSQUN9I0YNG04MMjoiODeywm3jx/JbD7cK8RIK/2t7sz1YYWjFh\n6NztdiXQxboWbSu09YJTDykOHczYCEZlbtHshle3OAAL3+y1M2KwzTYq3gqntqLN2q/ir2Mwhas4\nEYawzBa890MfoKPI6NYFSsGj3cZGtRRq9WNebDH19KuV0ebN0btBx1UCNgrDj0LVAaKjQ8RAXY+W\nuLGwcU0J0YQIrW6UC8T5gA+R1guX+5ekaFlPaZox3EVjPR/xIbDsb2kx4teNrVh7d5l2HC8nruwb\ncUIPnnU7UbYzoTtkmpjCnf3/DYrLCMoyWULw0+1ofHr2n3YrcTgcVsjUUmlNCWlmtz9wuVw4nV9R\ntgvRQUxpcBxO1O3CvPy/nSBffv7hH6U1WNeME5hjYD1fLEy0WhrzlCYOuz3zFKnbBVHl8OYNcbew\nbuvT4VFL5nLeWNfNLMFzIjhHbcWcNnljv0zmhvERj4x3b9iJg4c+xr1O6N0OQjBSNs4hIZpiofVx\nM69YBpod/tdbbhuGOHHGjrmS0BGQbmLQq6TXjQPXFp0zYbAHFyMuJHyY8NNCnA+4NFFKZV2P5HW1\nDmNr+K54HN6NC8oQ8PfWkFzYarF4hVJRcez2dzZ+2jL1kqnHlV4K5IprEGX8PF0sriAraoxQq/j6\ncFbZPJ9SK1IFbRMaLQhRxJFCou4r4dmeaUqI6zitSM30kRTtwkKpNrqdRqRDa22gQ8wJZsWBEaBL\nKbRW6N30hq2ZyFUGLNANS7yIezK46GD4iPinoMU2rMt+0KQ7dhN03nhfqImtHCbsVbEO27TskMTI\nXrM9NSwLPglBMjqgpeYmY3SpbeyYzxfWxwectwueb5luJgAAIABJREFUn/a45mhicRWtdeYYzXhR\nhnZmuNnGckHUmEvXYqTWYfIQm1QgFg6tpsqk5o3Tw2vKlolTYl4WxDO6zu/fSv5ARksiJtr0yEg/\nhdoqdzd37PY7em+4DnnL7NINaZn53DufH64X+9CceGIITMuEBOW8Xqw74aylmbfV0mqDJ4REDPbr\nQ1CUgqcRfKAUqHXDu473tkmkac+UEloz8x6WtCfdvGB5423S4Rlpd8A5x+Xhnnx6ba06CZb/IYL4\nHboc6LKR11cc13c4Pp7Q0pmCp/QCFBuLYFtG8AkEtrwi47A/7Pc8f763Ima2uaG1T61N6X3CY9An\nO6ybqeSxIgaEX75f+dFP/T0+/e6Jt28Xvvubvoq39zOxYyOw0oa63oSzOlxTxj3QJ5GYddEcwQdq\nP9OzCbGunBmjNDcoRnikGRY9yoRIHDH0tiGLXDUIJvzrvdFqoTlHj+PvEoxIOSyw19uxCXxBkkfx\nls7qLdLCBcEFNwBl3YorZ2Mn8XHcCB3BeSQE6qC25vUBP+2I84LWzHp+TdodODz/EEIfbB9HOV+I\n00JIFoTmS+OSV0Q60SeK1gF3F+idum6U4xlRT3IRFxP75YZyOYMXanDslol5mvByGWuDcWiMUmaM\nqeidvG3kbMndj6cLb7zxBvPuhvb5d7gcj3gnhBjopfLw+iV5K0/r5cvPP/rTWqcU06/lbTOOT22A\nGQ12B9NbaNnY39ywv9mjwLpVcqms28a6rayrFTJXUWdrzQpblF4qPYbBmQn4MOG8InV0FYMfBUoZ\nyBo3RpdiHUkV68IKNCnYCVWfujE6Oolox2l/ek9dDHjx1r0dug7RK6l3dHo9o/sSnjrBfp5wcULC\nhHgLsqzqKLlR10ZbM3Rzy3iJeOdxNHw3qGfripZO04qq0NYNzZXWhfO7j4hXQuuErRJLh9yR3JGu\nBGdICJoVK65afp5OigSPd2Ip9dqJHrSpjQUpo2NRKE7Il5nL8UR+Xtg9e27nSfS4vtEuZ7bjPd17\nQt2Z3TsXat6oZX2C7FXVwZ/paBh2/XztXXUb56hjZBeM8ft7nS0Ntpc7BcQT4owLgVLMNaVugOFE\nntQCXa3ENGjctfNuNu2uY6Q/2F/aOjUX/BQttqEbv6ppHcWs7Q9lXbk8PLI+nJgmJfkZP00wTWy9\nEYIjpcBuWYzmPLovzpk4uD/pKRnhoNVG8K0ZLykk9lPicj7aOa3tqcveSqbkDefdkIoE2kiQf7+e\n93+0BCPa3eBK4oRpsnj5XCqI3X630yPShf3dM8554/H4SN7ysPcF6+ZMyUSWtZrK3wWmGNm21VKE\nUcs8igYy8uJGYFkfM0k7dIMPVLdZRIKfLOqgKSks7G6fM+2fIX6PxjtUJmpRhIZqxE/PiH6i5czl\n4TUP9695/e67vHr5krxmfIjQOu18JvZmgYeSyN3cPNdDvcqo9GmkObBbAnc3C7ubmWlJdoCrUpqS\nYiT4yRYAI5YByzBxKmZB98qP/szf40/96Kcw2JQJ6P7r/+3n+aO/81v4J7/qTXrutG3wD9SEWt05\naNYuhasdUMbKVBPgygw0QjKRK3RrSaog6m2DDBb26CXSmyDX0DYUPHgniIs2T63QHfQUTNDbG/SO\nui94/WzV2X/re0TPawvyWkzByDrBihkDLQajfKplGSFq9s0YCApXYF/fCiHNuF2ijRvIsj/gq2XH\n1Fopl5V0e4ObZ8Rl1AmlvzfRdc40O61m8unC5fE8ujSJ6SaS0oT2Sm0F1wJTmtgts82Zmw7Muzfu\nQu9U7ThnRWBthXW9cL6ceXh4YNkdLF8sOQOcNbVuZimcHh9ss+vvb4v2V+vTu40PuxrRtdRGCp40\nJXa7mZQsS+vZ8zfYHfbk1iiraWLO5wulVnLJtGqC/N5N4B6DuWyGrMJGC+JwPg63iok+DYhnF7iu\nZrMWxNAUbWhQRMB1tI8ieODsUbv9OieIih0sYl1W500MK32QfcX2ZOfAqXFAGMwaFyZLX54TfopI\nnMDNqAvUihkVcqYPJ6ajG7NEPFEcTjvRWxYeJduYpRqxVqoJpgWhHlfjq2gnbIWpmatIxJODUMUh\nwzHTPNQoT+C/VjsuCPG6nkax5oK5r4b0CSeN1iws+Hx85PbNN0lpxzQnQniG7Dd8iPj4yHY60lvG\npx0tr1xOwtY6gqEcxPnRpWlITMZBwVFbto4K0K8dmGDRBbY3hVGoWOaSdkFro5u6YOT/Bsu5c9ap\nlvZeJ118QHywUaE3eGatlchMSBPeWZivE2eddNftZ9Cxz4xAVINrnjk/nsibgQu1NvzikeTIeR1a\nVgtnNkGvyQa89+bA0rE+ejc7uxrht9Y6Yj6U5y/e4t2X71CyxTxMcQJM87iuG35yXM6ncUl4fy9g\n7/9oSaHkZjPnPjJ5YmC/37M/TORyNlV/rRwOd0y7hc98/tM83D9Q1g26iXzTPDNNka6N9bgSxFwc\nPjpOx0zLeajp3/vAg/cs88yUomVoqNDqsBmidrj2Rtku+LDgl4VSlPzqFWV7BxcXlttnzLs9ToT1\n8UhdC14CeT1zfnjNJWdqg/3uhru7SKuF9fFETwkJDtVKr9to2crQg0BvDe9hniO7neewn9jtFpL3\npBiGa8HEtN0Z+EpGlW5jGIZN0LQsv/jyxJ/60U99Uez3f/5jP8jHvu/XcyeO1uylFWcFkBcrNBgz\n5to7vWQUu+2tQJySRTp4wUfBO2VeEmB2bcFASYLScqfmbjcOmt0ensYoDPeCe5p1N9fp1UBMV+OU\ndmPNuC/oLlxnzMLI6pCBYxcjZ6pa50/po40aQRyxx1GkdRzeEnbx9C7UZrthmvZWYG4bLU7EaUai\n4uuwkq8rcZnxKeEximWIo22vZpGtNbOeL0btFaHnZoLJGIy66qyNnFJimSeidzSxzh5uMEHACjpV\nvDeR9Ho5s17OBtm7rNzsjS1xOZ9QjAWiil0U0vy+q/9/tT4CpokQKKXRmxLmwH6/Y94lfAjc3L3g\n9sVbEALnh9es5wunx0fW04VWm0HEBmeklkqK0dxttSJDxB69pTD3ZmMFsAtMs+oDN4r/Lm1QYI3/\nQTNxuA4tCqVBqbgh5nTJm9amdXw3LR3+ijHwppPADa2JFQq2lh0pzfh5IUw7fJyQ8Q6Ln8AlmgpN\nM70WtBU8He/Mlh18IBFsvCQWa2CZRzKKLBsVh5RMDFu78UeqXZoM7uAJEonJfm9B8a4To1IqeHUE\nNQejilJFaQKhVba8DZqwoRz8WA8uWheq5ZX8eCSfjsjuGS7EIQp2pDQhJeNKwcmE85F1W8FH4rSQ\n80ZrBbTRaqar0Hqg+4iGyUTDPdOHAV7GKKkzxNvqRrTCGO150wpqbXRMh+fDTJA00rEDASxrqTfM\nBj063OJwaqLh1hoxzYh4pJvGhWiFrE0JhSAmS2jaabVwfHzgdDpZ0TEClq1Y8WOvts5RHE0EJ18Q\n3fEkVrZ7pvMGSa21kHNhK4WH44m3P/wRUprJOZMvKyVGFAgpcj4+MLWZdz//WY73D8Q4kXN7Kvh/\npc8Hl7XUrSp16thy5nK5cHN7sLySHhAXaeI5nh55eP0ul9OZshZaNo5IiBGfoo0GtpUQIvN+pvbM\ntp2p2UR1zpsw6uXL17zUjtbMN33NG3zk7cWqfC14pyRvLV47WBO1CZfHR4KcSCGQwp4QAvWy8nB8\nsNFJafTcKFvhcnw0J9A0E725ENplQ2sl0GGeqFVMgNyuynY7qb0XUvLMS2BZIrvFwumus8fWzEGF\ndBP1tYphocdGIJ5GJwy6JiL86Kf+HvIPCI38ib/9Gb7v4x8BsZsk3rG2DUcnijO7KabTKF1tBDWB\njwnx0UB63iBIIcWxQdlUxKMEp0hrFMlU6fQUERq9vVcUqdrVw+bB7YlV0cUbaEmwHBQd8/2xUPqA\n4bmhgwlixYxD7XYQIrZcRwvXe4PsibcOTrNFfJUPIw71QjBFHl4rLkRUHKVkXEpM04SZBMwZ1pvi\nk8G2nIB6j0fRZptMLhvny4mcsxXexez1MzPORfQqXfaeeUrE6Mh5FLemtbR/c7fDKcZIE9PJbJeV\nXht5W2G3Z54PHI/HkffTqGW41xTicL/0L3dmfgWPfU9+BDeCe9qD5t1ESubGeP7mW+xubzhfzmyX\njfPpkcv5PJbtANMJbNuKts4UI9oMwGaEV2cEXBdAve3fQxDZWsYplkTtHH4K1G3EAggYH6baRadm\nWtnGmMrSjq+xAviOqh+YBTHXDB6RaJe+4MbIu1k6sxgFNs4LYd7jptkOVSIdb8nwvSGakV5xWnHY\nSCuIxxOJEgkYOymow/VxkIZOd51feveBP/szP88vvzrxkbs9v+fjH+ajd7cWndIVlYj4CkFwarEC\nPZphoVSlNugMwKAXcs0U6dQeuDhoV9rwVcogljqvKK1skDfK8YjervjbA0EcpXeW5UDQRgwRqjmI\nkvf4KVLzgj8eqesZLRua7M8rXWlR0dhwm6dVu2wrQ/DqDFdRezPhce+WcOFs1IjoU5CyoHi1HCd6\nxEdvxPqghA51gA+dM+goajSxPjQ8VwF3rcUkA2LmD9TcqEY3h1w2LqsFTtbaCL6QS2HuVvAZY8zb\nqAsrsP0gN4sPqLgnC/yVKSMOK0pLprTMZb2w5sI07RBG4de6hQZ7z/n0QMkr96/f5fh4pLRGSImS\nDUD5K30+OPu1WBvee2vLlVoQEWJIJlDtlmmzlpXj8YGas1kYayNM0dgeodOr3Up2+4XlsPD69YVt\ntTl2CJHzeeXzn3+NjVc+wctXn+Kv/82/wL/7/d/Bd3/7VwKjKEKJGpG0o6tHz2ccwjwveBdp6qFn\n8uWe1jo+JLSJtfTLRowBUU93grbNbIdjli0D1tfUFOytW5Cad44QhBiEafLsdhPTlEjBmA4W5sZw\nFNnn5ZLBgpwDtALOblbV8kz8EJx+7uGC/oOw36e/8YTH9j4hzpvKXuym5l2gNSVvFUqnjpl22SqK\nNwuns9tNbjCFyTJZnC2+QEdcI4qjpeEY0ooWAzRd84JwFqmg3T9JXDvRgFCqY1HaHN1eG6U2g+hd\n03Z7V9NbeW/OKtHh/DEBnQ8J5636760jI+umqz7diOyCJIgfLHMPiB0mrVVUjJ6rLVCyjQgsGK/b\nzBcrQETMrVRaoTa7UeR8MWfHlplvvOls4pmSbV4dQrCCQ4qND7WPWbiVO9YpcwQPuVihIkAtmfPl\nRAwTu+VA6401byb4PZ84nt+1lnAI5Jw/sKX8q+Fxg/vx3gERTO/lbNO+vXvOsxdv4abI5d13R2r5\no0WmeI9uBnnsvZBzJjhvWoWa8WIGiK6j9R+uN/A2BKIDPtfNXahqN3YX7BBRtYuNOfSGkHaMkpy/\njhDec75ctVfiBtX2KtYcBowQI6LWEQgxMS0Ladnh4gRxxocZJJmLZ1yXr6JipxUtGdeVOEZRnkBw\njskLQd0Q6TbUKT/ys3+LP/7Jv4zILarfhvCz/NBP/V/8R9/3nXzft38cshJqo1cdLqDOVle029pu\n6sibXQztO4J5SpTeab0x4ag9mJ6o24H4ZMBCrXPUG33N9M0Sw11acBIJSWhtY4oLWu0yFbXQeiFv\nZ0IQ2r3pZIzBYpfS1jtdKgFHC7bfXbWHOGNlBe0DOmrd5c5IBY8WW2KIjIKTiPcT/UkWIUZ1DmKj\ntcE7Erk6JbFoinzBT2ZaEGu2gwRSnFC1SBQVRxeh1IL3jhij8XpKIWazXcclEdI0wibr6A57wuii\nv+eNHc+AlnpnXb1aCmUzMXfZMjHNOO8tUX5kNV0dYOfLyno2EnrNlivlRHg/1DIfXCEzJMl+ZDUI\njeA6LRfiFGAEf61543K60IflV0cK6LLMdLJ56H3gcHtDmKwdVYs5VFrvo4j5I1zHK5ZC/e/wn/3w\nD/HNX/17+IoXO3PeiDOaoJtYt8ycZqZpj5fxEbSO84Hd4ZZalZozpa5m+V92drPP2UBwdbPio4sJ\nBbvd0nurtJ5BC8Erc3LMcyBFZ0yY6drZsJuDzS8brQzQnQS8C3hnh/41aNOLmN1yCEgE4SueHxD5\nWfgiqdvCz/Dm/oAEJSygrVgmB2obI8PB1RqizcByMhwAF9uE/DLTB568Fx36lz1hSviULEfJ5Lhj\nlAOuV3rJtJLNodTrkxFDB7tDRUa6ah+AKXMCaGuI2MHunYn7uHZQvLdR3ZDz6Cj6ZDgybKswnfwV\nD+5jJDhPxzp22jpNQZ3dYHE25xZs1l5LIYRko6FaDZZW6kDNR2oxXDfOQ7eWcUyRlBKlnFkvF8J8\nYSmVabcQp2kwYayATyEQ/CD/1k4bTjLbhGy0Jt6hpbDlC7lu5LpxOh8tB2aaqM3+rHk5sK6ZvD7i\nxGB8X65jfgWP2Kgzl0JMfjjDmlGdxZHCxJtvfQX7u2fcnx64XFbOpxOX89nea7EiyDnHtm2UUk33\nJtbhc2LS29YUBjXVHEnN9F5d8TGiTdBuQDgaSBcLJFRvN3kHEjrSPOIj3RmM0WHam+ustjfFEXAS\nTNTrFRmHLM7hxz5D6Pg5kXZ3pN2eEGd8nHBuQhs43eg0sla6j4DQ1oIrFlQ4LXtCmBD1eOdIYmMg\n1DE5z8+/uuePf/Iv2/hb//7x93/43/wQv/Wbv46vubtjUkE3O9irNlKd7bOSQNfANHUbxXk/OgjW\npa+lUGMklwt9jH/a4Gj1sZ5CSkTnkNoo68p2PjOFNLSNhRAXIoKGTutKl4Xeil0s1Pbm5hLaLQKl\nNLuw9hjpodllppVhpFBzOWHYla7N3Gdjz9XIsF2bw6fr6Cz7ZB3a3g3OfAUKOmP5WKCl7V1XA0Mr\nG8070/kk03w6H23a0DvU0f1W6+I6Z1RnWR21VLYtk3NhUojT9HQR0sEiCt49EYLNXGrTAuk8Od2E\ngdLA5B15vRC9Y5oPVsjCcHnZ+1JrpmwWxGnj1DYwJL/y5wMrZEzoKmPGZsF5pWwcT2fSbiaEQOuF\ndz//OU73Z2t/ejuoPVZ1N+9ZT0d2y4794ZbcK3kt6NDRHE8rXzJVVf4M/+Nf+7v8oX/mW0dbMhqY\nrDd2aSHs92Yz6w03TTgiJTfathpoKa9P6n674Vh96oat0MY/ZqHrrY6MloqnERc3ujCBeYqWKD0E\nye4LMk1a76gWtCleAtIdeLtJSbARipOAUxkZJlahOx/4Z3/D1/On/5e/xZfKg/rub/446TDha6Ws\nmcqVvqlPbIo+NrfAqPil07VQcqO0go+ekDxelbbl4US7ZZoW4rJnipE5BbwovRnyuudMzRu9FWo3\nVfsV8/2EhNcrR8AWmw9WAGnJoCMp2ilVTbfgQxgbg5GGVYLNjp0dAr3b38H14HABnEfEEUNAvHUB\n+xD9XtvutTcbewnmWPAraZ7M9t6h9IYPE+IivWcomMV8zMBCCITocc6Tt8LpdGI+nwhpIqaZEC9s\nl5O5K2LEec/WmyXHDoGnjn9XZ8Q2OEferEsZp4SKMIU0vOeBECdr6UswB0mrX3Yu/QofJ3bTryPH\nR4eRxDkh+sDd7XPuXrwBDh4f7jmfTjwcH8jbBmNMGlIi5xPbuiJ4YrT9SNU2+3NtfO7dE5959VP8\njV/8NP/89/xGPvr2nb0DboyPu9FZBdMkuGpdS0TozjR/EPBe8dHZYe2wMXg3um1rbVisheAjLgS8\n2MgG7CD1fsGnCTyEeSbtXxB3B4v7CAnvEzU3Op7aCqFXoq5IruY0Sol0OBBvbi3OZCQlh/EOu2Ad\n0R/5ib+OyB3oF9+f//yn/g7//u//XfQGnCu5XmgDSFxqp1WhFqFNgnhHnBMxBYRGOZ+p24W6rWzr\niVoztW7UvFJpaIiQZlyys8Zgkko9Z9p0QaIhD3bL8nSZ6OuKVzU9okRC3NFvInU2Im5rG6Gs9GqW\n+hoqoTcrnooxza6dZhUZ8FTT8InzV8sG2iFGh5Lsvu/su8SFccG6CrvNyOC8UrN1SxCHhOFcrRVx\ngzXGoA67xmfeeZcf/6uf4uXrR24PO77uK98gXgXh4iits20m91gOFe8nnDtbp68P8bD39Do665ir\n0sTqPLnfrhdxN8aml/WCThPLciDnC6VsT1OLvF3YzhdqbSM6p79vRQx8kBqZUciE0XoTAuu6ERdr\nt00pcbwcefn5d8hrZorz0DErabKsitIzIp797S3TsnB6/ZKSswk/QxghXV98vIJ+gs+9+rsInRAj\nVEfPF4KPxLgzIRadaXdDFUe+P3J8/S7Uy8Dx89SSVW300uh5o+XVKvCBo9Zuxc92OeOks99PTCmS\noidNNlLw3pD7JmY1QRY0RCspObRZ1yHGYLj7KRLnyQ7kakp2123abUGTka/9igP/wfd/J//xD/8Q\nIn8W1few3//e934bH//YV9Bbo2wbK8KmG+T2BGFTNRCbD2YNFO20MT6pvVNKJq+dkIzOGdxI9PWR\naV7QgycsN8yHW5bZAu7qekKzddFq2YbwuZlNeVvNgt2q3RjGYjAAlQMfUAK1FbvTOAi9D0aNH+Mh\nHbEBg4khVugIJva7zoj90BPRG9JsoRIm08pwbetW2+C9dW1ar5b4LRBisjC3Yoqgz758zY/91F/j\n0++85MXdLd/+LV9vbJ/RGg3ek0thW038OS8HcxX4NMSWQggOdZBLJSu4EIlBrMM03lofPNNk8L7z\n45HD7TOmSQd9tD8JnWlK8IFty6zr9veJpL/8/P9/QjQ3ncNTSqUJMBw4Mc7cPnuTuEycLkeOj/em\njTkd6bVZFw9n48JSRqiq6ZZUDZfwzv0jv/CZe9O0ybfwf/zfP8t/9d/9Ff7Ev/77+AO/8zcMwJoh\nClDBi6dTMaWwaeW02YhTnDMtiZhLz2YucRgPO0hBoxJDwkcLmo1iQuBeO17iE6U3zjek5YBMO8Qn\ne+/9Ff1gl0WLcBBCV3zruCkxLYl0uMUtt4gknAYbL3lHmBMSI+ICv3R/HvvSFxl/67fz6ccjhzff\nRrdC92dSCfTgbRySO+VS2bTTfWK6PTDd7giTx/VKXc+09Uw7n9nOJwsHXo/UGGlB0TDRJIBPaJzN\nsRQXXBcbL0lAowE2S62EEEkp0Gun+oaThEseTY28mQ7EqceVSM+ZXis1VAvwVIu3qGWztfp0WHsC\npp2yMc/Vaq2IDDfSoO5avISYXaK3wc0yCCDO42SE26p1anAW2mlMIIMa9t748Z/6aX7gk38J4RbF\nRnk/+Vf/d377t30tX/vihuQcTWx/v1yM3ZamaegLdRRLAk6o2snFRvJ+dBwZ0L8nrZ82Ss20Xjit\nJwQs4LaZVtT5SEoz6/27bOfLmFHJ+1rEwAdYyAg2dnHiiN6xzLNpU65irKGduVxWaml43wb10JHm\niVYzl9ORFBO3z57jox/smDpyJ4bd7kukqiKf4kPPP2JjGokoFUfE+2UQI4V4uKU7ody/RtdHgmR8\nFJJ3lmLcR/opimpBtKC9YPdnSwxtuUDJBBrTHKyQiYEQrJDxVyvbIOL23kcb0OyLu7QAARUhjk3A\npRkfE1oNO04zaqcLtpFJdIiD3/8d38iv+9hbfPKv/J98+tXP86G7D/N7v+07+Mo3blFhJIMXvLcD\nV9TEs2Yweo/m65xHGLkpXfHaKb0a+KkVNHrUB7x0cvCsIZCnhTYfkBiJ+xuo1oWQXtGyUdYzrWz0\n0sh+JcaZVjZT+tc6isRGa8W0K8nTw0QteYxjbIOwhWuBeX1EEIgbSvohmO0yChzpBBcQHMHPqPN0\n8QPhbb9OxUSBiH0vJnQTRoOeXivq4+gmen78p3+WH/jkX/z7NoYf+6lP8b3f+ev42PM9XpXZC+qF\nrWZOpwem4w37/Y2NCIZVVpyjCWzNBIPJ8zQKsHRwiNHjQuJ4NtdSK4WyrVxKtdFjiqzbRlCjrq6D\nefLljsw/+iNjg855gwh5zeCEyQf2ux03t89Ybm4oWrm/f8XleORyOdFqGfRYb7qDy4VtXS0vyY/v\nVZVSG7/wmXvgj6D8p6Dvjb//5H/xQ/ymX/MxvvLtW1reaKXY5eVJ1jI61M7ZgTbMAxrstkxVpOoY\nDZsY07lkhU4MhgWQEYzbze/rp4RbIj7NpPmGkPa4mMCPcVO39GoLEbScMZWCk4pLnpRumHZ7wv4W\n0h7nF5ybkG4OG7dEiAENkY999UcR92PQvsj4Wz7FP/HV3014/hacVyAS8oZG64bmvrLJhk8OWXYs\nz54x3e3xc0BaRbcVzRt1Wynbifz4mu00U8pG90LzkVKVhqfHHdPNLbu7/QBhRqbdhEToWunlgrSM\n7+DUtDoSA8EtiK+2X2yF1h0+JjqOfu3GdKWPjk4tdmHrORvbZkDvatsoQy/ofcIO8k7HQQh2ORkE\neKnGElLtI3gyoG5Q1t1kmpVu0RXOGThVonWcf/HTn+EHPvmXUP3D9q6xoKNL/5M/+4N85Lf+GvYx\noNo4lcp2sfEow2Vnl1w72ypKbp1NbVpgQMUxnhyj/TD0OetmEEkXE6sLpuNx9ln5MKE9ox22gUyx\nicT7W8x8YIWMc85orrUxT5OJ2vDjwBBcjJTaLFG4tcEXMRTzctgPe2Dj7sUb3L54Tu2ZnsvwyAuI\ncnsz8/r1O3ypVNXv/S1fhw87FAgeZFroxcRzcbeHMLM+fJ6eT4QISLIPpDWk2jzQIhd48uV7b2Ai\n7dXYA16ZDokQZ6adCWKDCDi1Tob376k4RqyAODdGbp45zDYzHxAq4kQXb4VGNeulDDy++c0VFSsA\nnDi+8tkN/+bv+NaxMBhJsJ6Ss5E0a0Vax3clcOXGdNO99GbgqWStRFETV3tRkjMekDEnOuIqsFHz\nifNR2KWZ3e5mRN0HYopImAwcli8UcWQVqjb8fqLvxwy7FOq2WZFTVyREdBQq1RUDazlbIIpZ/kSx\nxS5CVaN2itj/vrrDrFOjg7ipIGaBvqZLqpgihvFvCm6y2IRiADMfIuqHfkEU7+Gz7zzyA5/8i190\nY/jv/8oP8S9/z6/nNjpS8/Z+5crlcuL+9UtbTM69AAAgAElEQVTaEOSVnO04EjOnb802vTBmyzLa\nsiImxJzTnnWIjVurrOuJx4cjaV7Y7Q/03JmS6S+2bAGTV7E47+8l51fNU3JBu+mksigpmUPy5vaG\n52+8YHfYcTo/8vD6NefTibJV67rM/un3ldVca4aCsK6rqvLy1SP/oPH3n/uJv84f/f7fNvYG8Nex\n68gb0tZHPlIcQbn2XV9dOTIcMEa8dkPIbtgB500IH/084JoOH4JdhHzETwshTbgw4Zy5mtpAAUC3\nNaaO0Cs9BMJ+R3KBMO1x6QBph6QFCbOJ+UWQOcCyoPOOf/UP/kv8J//ln+NLjb//tX/hD+D2LyCs\nEBdk20wntmXYTFMy7RJ+fyDtFvyUkCkiGiy0crcj0pi2C3WZydsddYA6W+uspZIb9LSQbg8sN4uF\nEE+WzWQxDxbGSinQjBflxUS9gjl/ZJpAmnWLe7eukQbrwrQ+DB7GA/I42jUYUu07Cn3G16ENwfR1\nfRDsZYz/uhjg0PU2hMLtquBF1ATALlr3pV4voU9CbBNG/08//XNDVP3/fdeQH+Fvf/6e7/qGryKU\nQH24sK0Xjg+vaSWzrWfrKKrFkJaubM1MCc5fK2tzYF0dfZNCVTWIZK2g5rrsao4tFxJePFWhlcbl\ncjFK8gdw7/pAQyMVc6XI1R7aG9NkDpNrho0xFngKclv2O26eH0A3ovO8eONN9rcH3n352eHmsINI\nmzJPka/6yAt+6Zd/EJE/A3wCGeOVP/Yv/mY+9uHnhJBovRKnHRRPLhk3RVxwbMdXsJ4IjgESCmgx\np5DzCRioahQfBGPIWTGSHExzxHmDVqUpEVIYnY+GjnGHF2FId8FDD95EaN5cWy5EwjQTdzMSExVv\n7q3S0Gwi26tbAVHjQ2gzyq/reNTyWUrFpcQyzf8Pe28ebFt+1fd91m/Ye5/hDm/o93pSq6XuRjNq\nSYyWBMZIgjJCBGwQNiFiFASIqxxCYuyY2DFWJYCNsQMmSkELIjkMkhAYh1IKM9hYMtiGhsQB1AKp\nx9ev33TvPfecPfym/LF+577XqFtVyGoq2L2rbpXUw32n7937t9f6jpoVMEVkCMgQMZMq7I23TEXz\nKqTaFlM25KhDlnUaRhhT0jh8IzgnWk7njIYOmkxME/1mw3B8xPrKJbwY9k+fpe06bNESMdPOcMYR\nY9ZEZKJ2loSJaXNM7KEMNXFYhFgqxG8bQpwUCUuxwp31hqqhiClnSpIaJKWISlHpD9aoe4k6HJT6\nldFMBUeF5Y3FNFYFaxQwTp0D1kHRRONf/Xf/99MfDLybBx69zGtf+BxM59j1De0m8PDjVzm8epU0\nBUWg4ljL4PJJIvHJEVQzdlzjtRHWNzStJgEntL/HNY4sME4T1o5qjRSDdUZFqdVS+ewc84ldpejP\nWaoMQNN4W2bzGfunT3Pq7BlcY7l27RL98RHTNCFoQikGwng9IbvUWHtbG+1LzIxTAD6dp6NXHrt0\nWeX7xmIbweZcLds1Wx6rsH+tsaAK9qXGB0mt6CiS9WwSA/UFab3HNg3Oek2UNRq+5poG28yQptNg\nvmywos+NtdrcnHPUF2QpkCPMltjGqZavmYOdge+g6cB5JFcVPhbcDFmc4lNedhtv/77/ibf+N38N\nkZ9R15LcTylHvP3vfBefcs8LIRdKs4R5qJkuI5g1fpGRKr6XtkNaV0MyFcWgW6h93IAJA3axwIXx\nRKuXhpF2ioqAugY7W+gAU/ujlB8RjOugLSAByfXZsqbm0FQUO82QboGPvUoLciTlSIoBE0INuROS\nGBKWZLVfS0PxLCWDS4E4qfBVz0N1BBmrC1kyULymkttkiTlSKq1UaoimWAdiQVJ1hsbqltLl+NK1\nI0q59ynvNXgF6/B77J3aZVaEIV1hfXXF6uCAaehJcbyhCDIzRQ1nrf3XlQ6r+k1T2RDr6EeNAaCo\n1X3qB2zVd8agztacE+M4MY6j5qmduFE/eem+z+Agc92ZImJo2oZCom0dMUyUsqQfRuUFY8bYhPMt\ne3t7zJczrj1xQNd27J3aRwz0mzVktbIqNKc2wpvO7nDrbc/h6pUDJH+Yu297Dl/6OS/keTcvsV7L\nJpx1GGnIaVB0wXWkfkXpN3hnyMXU8j4hW6Ektc1yg+5CI5cVNm6KqS6aUg8tjc12RrDO1Idfp3Nb\nzBaNq8gONfnWaptsO6ddaI/JVKPSY/2S2mNijNF2Z0D/ZKN5CSlRYsakrA6HCOV4JE0T9CNmjNgx\nYqaEEwtNA5JwDnKjmVox26q/AGks3mhYYUwBSsSZumHWkCtbnUdxGpmOV0yzOWmxg8SgWiQE23Ta\nehuTcs65kKWWr8Ue5wrRQfEtkgqxJEwMKnKkEFNbC/wiuRa56bihiFIk1qHFVFu5pqJaUcopoVC8\niOiWlSBmIGvegvGVqjIG37YUbckjZb1Xty6nS9cOP87BcC/H/QPMd5bYFJgv9mmHyMUrRxxePiRN\nUVE70cEljJqAuR04Sk3J3DrTyrakrqjtO4zanL5c7rKz3OW4UhqNdwjQth07y32e4Aly2irwnh1l\nPtFLQwalusAcu7u7nD57huX+LsM0MBwfk6aIiKslfLpQ6H2qoutUdWxG1KmZpdA4w9PR3yL3c+v5\nTz1JyZYckKCos7pBaiBapUspuSIxtVTQWsRX5NFo0oepkQTifY0lcCri9W3dkj1+tsTPdinO6/kc\nS81mgm34Polar9Do4mT2sGZPkVHbaeKva5VGKuUEwabar0UcWM/XfPVX8ZpXv4b73vkuPvrgQ9xx\n61fwtW/+Cu658w6IUVPKEciRMvWwylAstg5IpnHQtUjTEFLi4OpVNn1Pu7PL3rnzdLOFanxmc2yJ\n2Dgh00Beb/DThA+FoRhy02mQW83h0idFaWbx/mQYK1HzrgQVT1PdT5It2epZXHImFR0kbJggqBYw\nxUQUDaxLJaibsxhSqgGWRnPRUlEHZK4W8VISuWhNQLGOkqoz0qrwvGgyXUVuDMUIJKk5Qds+Jzh3\neq8Oik8hteB+zp46x87ePtk4rh4NhMevstkc1ETkDNZoRcowEaLSZmKkLtIGV5cn45x2HmIISWvT\nc04Mw4Z+M+K99sSRRsTrsjWMGtyXs/ZAqbbnT8Egsw172xb8ZdQpY6xlvTpEnOHw2qGevUbIpdA2\nDfv7e0BhHCduv+UWljsLjvtjxs2Ab1otM7MOIWOdxzUtOztLbr/5PLefbnnpHbvcerrVydtoBJuz\nnjLpbOl9oxv9NCKkCtNqz4m2hSo9QQ0HEgqm1FwTgbbxiBP9d0u5PsE7zZ6w1iB5q0epFJLRoUdk\nSw8ZjGvx3QLfLhE/I5mGOA1MvRao5TBisyiEbQVTDKZoEmNJRbU6okm7TgxJCnmMxNWgKFjOmFBo\ncBgHyWrPkbWWUoSYwGchFYXHrVM1fCQxJUPKjhRHdGEoW7oemwvYjJMIsbbIjgOp70lOIdstKiVk\ninUYX0vGkkKXvk1k48mtbsSpROI0Qi0S2yrbM1VEFyc9FFKiZMGZBpzmSGiujMVZFSPnrbJ/e59E\nzcexGSSq9geU6rPGglWYWsRg0vUAslwK507vf9yD4fTezcxmc3wpzHd2KG7CGMOw2TD1E8aCWMV8\npmm6nhtU3XMqglfqMYaJMOn/3lIK682GnZCYzZeMw0i/WZ/kf6SUWCx3cbUR+NnrE780amUrZjR0\nXcep06fYPXUK4wzHqyN9LrNC/GIUGSupUFKsxZBKK2lnkan2jszebselg6s8Nf19xJd+/qdrzpMI\nhIxIRkQ1K1vKUHuM6nlaBflYixFXX8Jqz9beJUX5OBHteqxvFYHxreZUNTPVxIghkVH4VRuOyZWy\ngpMzrpQGcQ5ar6J52yp1W4Qw9sS+xxb0fLYWckZqdYIAdz//uXz3d30nkoCTrBfV+lCytlwGAXS7\nl1zAOqT19GHi2oWLTCmx3qx5/LHHWF25ws58zm3Pez7n77iT5dkz+J0lzHd0UAkbrO8w/UAeAmZK\nRGylcwypaBGuqZEW266zklTviHE6wAkaEidFU5Vj0HNVdJkU77CmARPJMpHKhC2JaDzFNGQSMQRK\nUH2mSIvNmgBto6IzitJGnBFdroqmFtsaaojoe0Rq8OG2UkYi5FTjI4wDEV732Z/O+375g095r8GK\nP/Opr2G2WBCK9ieN48RmPWglkDeIFcaQmKZYazXUprRtHNfCS1st/erm3UpItJrDElIi5VGF4s7i\njCXmxBgmxmlimqaTWoNP5vUMlUZWR0nldHNKbNZrZrMl6/UascKVJy7QH64oKdPMOsRYFjsLunnL\nsDmmbWacOnsG64ThyjGCxTWtCsqcU63INmq2JCiRkv11lb33aiOj2o1TxLhW6YZ+g2Y4UP/9TM4R\nW6K2jBq90dU0oAOOQyjW6t/HIlmtzFasip6MPelMQTQFV1Db4LYnyBp9sUnTYPwM2yxUVe9aUrbE\ncUOeAqSAzcrDO2M1VsAYvNHDJsVcKa+kBV+16TTnRBRROFIs1huSbfDow5GlDhQZUtJpvig5hat9\nJSlHpqjBbTE1Cl0m1QQJilhIFXo1RpAYSH3PVAdNMQ5DxrkW0yjSILWnJGWFvX27RJoFcYqEMGIk\nqdJ9DDW2O9ZsFbWdphhI40CJEzkJFP39hzBUWqnaGkvdHioEbY2luMLJL3oSiBPF2mpdFT0ctoI7\nazApV1cXvP4zX8V7fvHXeLqD4TPvfS1N29IaTUdNm7HaGgco6lQyVkglq7U3J7aoif4Z2jhujaua\nqEyxWRuwc2YcRzZDz2J3n6bpWB0cUHIiOiGkyN7yJnWQPTvI/AddWzeGGjYsy9mcU6f2me3M6Yc1\n6+NjppCJ2RBjjQhwGuqZU9TQzBh1OLYatUAV67aN5/zZJRcv/yjwbuDlGPltYMXf/C//As+99TyG\nTKm3hohRJMVAFv2Lvg4Hml0FYh3GNxp+Z5WqFqqzRDTlttQB31ptWzZOBb627WpmTSSHUIt4HUxB\nd0qjLymVBWjEBNaDEUrbQTfX6oKUKasj0tXLDAcHxHEC65mdOcP83Dlc2qItNSMJ9FwtXB9mtkhk\n5Y7VOaawdcgjq2tHXL5wkYf/4EGuHR5xvD5idXANxp79mcdceoxmfUR79wuw+TzIPtI2GNtSWkWr\n4xAZY2KIgZxbZp3HuIBFl2fJUt8TSu9l3+jOZrfPlC5UQr7Bwq5oiJSiScxWSCZqurBTZDg7jU4w\nNiAMJ5SyBcS3JGM1r8rr57BF0YpUh8hcB5ZSqrGhOpUUZY71GDEUo5qoQuG2m8/yzW/+Yn74J687\nWbdSi6/8gs/itvNnsW3LarXhaLVmve4ZNoNqORsdnELVtRZNEqVU0TpQHW1Su5UmrHGarx4iYQx0\n8x3aJjMOA+PYU7JnqgyKiIrip2lSZ+D/30sjYSs+UlVyDIFxnPBO6LrMtatXOHX2FOvVAaHvyTHR\ntIa261juLsDo9rq7u89sMWcYNZthC0dZowLamIMiD+jmE8JIGA05zmqarULwUrT9uojog18SRjJi\n1QpXjCjEp2dF9e/X75qrNqVk7SiiKJdZDxxT6QxnrledmypMNaK+ffEG6x3WOpzV8CLbdphWxcap\nGEQ8oe8pKSI5Y9GAPGscFotTcxGNdZDBWdXKFIEHr614z/0f4bFra27ZnfFFL76DO8+cAqrLp6AB\nUbUrY5t2m7Mh4xQGNrYG3Sk3HifNjElxJE4jKU6UFHRDq+I3aVoVIYpFiiOHTBpHkoka7W+9Zl8A\nvqAR21IqZ1+LJ6WnFEVhrDFEER04szkZZJKAd07dE6kjJ/1e1llc7HRYTiruy3DDwagusUQiG7UF\nWe/wVognm5h+Hx1sFKEpRpRFxHHrzUv+yld9Gf/wXR97MLz5ja/ltptv0lwNq5Dv1WtHXLt6yDBO\nOnAmq7bIG0OlKvtTzwkdoKpYMMdEcdqCHWIhi6Ffr0jpDE2jBWzTOGKTumpc0zBbLOqz9uww84le\nqpvMlEorzbqOxXyGSOHo4Bp9H0AcRbQ2QkrBOkdkJMZYgw9jdWRaqKLz7da5vzuncZp7NWt+h5e9\n4Pl87Zf9Oe5+7nmlLko+uWe1rwelcSulbIpuxlvhujgdTKhnrOTaqL0NjjQGcU7D0mylwsTUeg9F\nqaVu29szkq3zreRK58Y6yCiyk8VgXMOHL1zmHe/9eR588EGeu7/LV3/GvdzsDZtLl1gfrsizJafu\nvofTL1L02pjZiV6NrD1DkkI9RCttllUjKUX9heH4mNWFx7j62KNcu/gE6wsXObx0uSbAD7RSsHtz\n7P4SNoekYcWH/nDFj//KB3jwiUvcefstvOWNr+OO3QWro0NW616rGvJMKxUaV3WCioIY51SL4/RL\nnTtZRdTGY12tk4kRQiW5S0JCArKaBHxSgXftXUqoZAEr4NBaiRgxGHJFM7DboVGHgRRzfadAQjWU\nuZhtEcsJKi4JTK6Lm+gCpott5vM+8xU8945b+KV//VtcvvY4Z/bv4s/c+yncvLOoGTKFixevcOHC\nE6zXa9ViZqe/b5SCV1opP+n5sNbhXVPRK0Wocqm0eUr048SuccwXS4a+ZxpHhELfC841eNfUnqek\nfVN/WuzX288ZQmToR8xcSwfDNHB8fMgw9lqyVjnmrmuZL3S7NBh2d/fwrWe10XK2FORkgMi1urxx\nnsZVB8fQM7YKBUm9OaRUWkRKpTtK3Xqo8eNWy7OMKHRa0H8GSBWBsHK9F4OSkVR7NYTaz6L6GA3V\nsjXESOOlrWhrs2081ncquGsaXNti/AxcRymWECaklrGJKVrAhsLCHofLGm7lq+VYQ/Pgp3/7w3zn\nz3yAG+O/3/HrH+K7v+xz+LJXvUjTkrPqPUpNj02Umm3kKdmSkyJGzbLDtlrPHjYbPTynkbHfEKeB\nFAYtsesapJlRjEf8DNPMaGcLmupMc047sjCZnEZMLkjM6pwS9NCwXjU+Tau/GyKWQkiREKfrzqOs\nyFMWSMViO6fdW9NQ6y+0q0WbrJPC5JQT62MumsWhNuuseQhWU31LERBX7xG9b7QfTA9UsSqy+/zP\n/jRecOdtvP8D/4YLV55gf++FfMa9L+LmswtMipiYMGIZxsCjj17g2rUDUkgVmocK+Z08Dzc+vqlS\nTCEpWpPrAVpq2nNBGDYb1usVO8s92m7G6vAACjij5ZjO6ZAcPol8839qV96WklrBO8tiMWe+nDH0\na44ODjGmVRSjitU739A0DUO/Vho0ZlJU/ZM4RUZTSJC2IWKCc46zezvc85zb+MLXfhq3njvN1qK9\nzdwypjmhZAVdwiUr5aQvXhW8Wqc6haIfHqmLgDU6GBjfYpv2JLtKXXw16dc4cFZrEmJR+Z9Uuqpk\nSozqOhFFG0qu7d0x8U/e+/N869t+AJE9SvlUhF/h+37yZ/lfvubL+aI7byavrnHw0Y+yevgRDh67\nwNlXvJLTL3gBbmdRE7EzlIjkBDHUZ7CBYjApqdtos2Z84nHGhx+GK1dp+4E9yWQTmdlI7qDxjv3F\nnL3FDvPZjJ/4wK/zbW9/1/VzUH6O7/uRd/K93/xVvP4lLyCESDNfULzWHZSsYnm7jXHIhiLq3lLb\nmQYUateQoh7bWbL+oHQIc4qiSlRXqYmOXDQgTjCkMYIpmK5S9VUTl0WwORLSpH13RUhYBK2EyFY0\nvC5nLexMKssgqzTDOE8yDsmFLFKLRLUt3JTC+dOneNPrXkMuAW8zNids0pyaqweHPPLIo1y+fJVp\nnPQ/BSilBirW8zQXdXBt1URbEKHkpL/HmAlMTGMgFtHm95KZd3MoEMKIoB1ibbvQJGUKKcc6dH1y\nr2cMkYH6gomJMAVSYxnHkbZrGfqB49UxKVY7W0q0TVtLJQe6pmP/9CmsE6ZhIoTENOk0R9YNHESD\nfKxhChNlGJg6VzUrOpSQdGJ2rr64ts0RFRqkbJXYtRE2CylOVDkdZtv4WdMajWwFVrV8zbkKSxqc\n3Yru5IZBRrC+wTVz3GyOa2c6yLgW4zuKNISYKOOAkayJnSVhU8HbBr9FZIyjMYI3BosOSx+5dsR3\n/swHnjL++79/73289qUv5I4zpyrrphC1WEcxQgiZnAx5Eop4/HJBtz/Hd0453r7HpEiZBobNsQZP\njT2pJGgasmuIRSimQeYLZsuZWhubppYYCli1cZppQAvMPPgW02jSaEkZK0ZTlUvElIRJms2Qa/dM\nCZqtkGMiSETEYmzEGNGsh1j0EHRgSsYWzcDIpHroeLahedukTShVt+UqJaU8szGWUoIGAkIFdLTs\n7+Yzp/jqN34+xyGyDkHTTk1W2s8IZLh6fMyFRy+QQlK+u558ah3XcWaL2kGlXVMmVNdeHbUQUZqv\nDJOmIcfManXEfLZktlhwdHigSKGxWp4ag25lz17/QZcYwTlL1zXsndlntrtgtT4mjJFuMSeVxDCs\nSSFg2w4KyvdP4eRFomF2gqSsdv9qv9127mS0S2vTj4SQKJ0/eUEqYlIwGWzRQE5baepSHUy2Fkrq\n0GNrZIIiKlb0BWdso1qYtsO2DrEV6Svaui517S6mIquIDi/TRJwmdUzZmnZd9N9N48gDDz3Mt/7d\nf6DnDU8+b77tHffxyr/+zZxetISrgc3Fh1ltVjSbDbNpYvnCFyCn9xUtNdUFqRXy9b/fICUgeYKx\nx+bCbL7AFkO3GJnNW/YWnimcIpmEtQ3zxT67N9/GY6Hwbf/rO5/yc33HP76P9/y1b+b2c2eJOTJM\nI7YEpqhZMo33eFdF9irvve4Cshbj24rQqnZO3Y0nwhWVH7iM5IREgQEkKbVvc6EwUiRqbIc0WpGi\nbyAdniI67OaKtmWjZ4+BmpilFLSFoimN2rVl6oGSUQ0LGklSKtWZqkFCTMEZg7eCc4Wxnzi8eo0r\nl64Qx6DncLl+70qF56rcuz4Y14tuY9ay0GIMuSRizIRppIhT88fYs5gvMaKaP8hqdnGt6hWNPQlj\n/WRfz8ggo9oYHQCSNWiTc9aWTlQv0K/XhBCISf/Zbjanm8/YHA4s9/bZP3uaKY0klEdNQYPzBE1e\ndc5jndHOijDCOOqgU/Rlb7cPbRGcb2vLcrU0JgcpkSkK1ZbK/YkKmlREUidttTMo6oJgs1CkKDXl\nLBqlplkAUm8wkSoCNk6j6psO33Tq5vEd3s8wriWWTBhGDdESQ5MzhIjNQjeb0c6XSNTSx+t26A5x\njnf/6v2I7PLU8d/v4b2/9QB/8yvfqNz3OFV8sKEYIQ6R2CemVJBuwfzUPu3+Ajfz2JxgNiBZ6wrm\nY0/e6NCZjdJUsag1L+JgtmS2mNHOOpotBFvkJOtFGh007Db3PdUHVBQFUzG1qYgUOFN7RwwUlykm\nkFFkJwSN+rddo8r/MWiQVNEmb+3v8ASmmka55frVsoq12BwIJVO2nSdafqQ6iTroYfVhjiHgu1a5\n74jSbamKvK3QWIcvQhwnVoeHDOs1rcJwbJOfbS32yxm1zKt4TDfxrIPaSXZHUWqzaTzWKFpTcmFY\n96yPV5oBYlXP4Rpf6aRykhj9ZLzn2euPcymyalkudtg7e5pkhGGYFD1sLJtxoO831d1oCSnS9712\nK9V+H1cziKiIitQhdzuslALDOHF8vGGaAtCdaB2U0a7nBnBSsZpBrGr25EYK22oUgS5S2v5unQZq\nYj34BryiL7at91ss5KFXHZizpMUCaxp1F04Rom7hIdR6kRhI00QcJ378n/0iT1838B5+6nd+j+/8\nzJfgp5G1v0qII/LEo4Tf/z2mmGnuuAPOn0EaXwMgBbxHMNczc6TAbE5z7hbc8hSPPvooP/Yvf42P\nXrzArYuOL33ZXTz39A7OtbSzPbrTp/nB9//Sx/lc7+Znfv1+vuVLXkeKE7FPmCD4VkMDMXWwyjp4\n5BTQUeOGZ1SEbBVFKVB1ePV8K9twt1yD7RySKmKRIq7MFHk3tt4LWqw4jSNWhK7pCDViIltHsBEp\nhSgZUqiLjaavianDcI7VuWQpRt9TqkFRh63i0pUaq6GerRMcsFltOLx6jX51TEPBN1YlBqU69qyW\npork6ydJUdovxcg0Kd3mnK3JxUlpSNHw1c1mxc7OKZq25fj4iGka6ewM71uiB+c9z8AMAzxDg8yN\n0JE6UBJTGGiTwrOHhweVm1Oqp2s7ZvM5YRqgZHb39ukWS9bXBlLdomOKDMPAME1KC6GlU87KCaoT\npolpqu3NzusNVzLWenJSt4q6hhw5lqr0P/nQFfosuoVME8SEsarotnXiNTXHRk8ZhRClNtBK5Tw1\nD69gjcM1HW03p+kW+HahKZjikFRhX9+RkwqhiCCx0HQt7WJJu9yFseDaOSZnGmdw3RzbdDx6NDyt\nNbhwL48crunO3ISME7I6pkyB0rQUDDEMTLnHtQ3N7i7dYoHtZkhrFXlqWg2RswWfIqXfUFLNdoma\nhxBjZsKSfIfrZppKa7VCASu171H1P2LQhOIcNd0ZV5GxwEkmzjghaaLYpobSaVKvuKJ/dtKdCWfJ\nzuGtJzESS6/9IBVmFe/Be4oFMY48JVKocKaxVcKQKEUf4FJ0OBGbEKNtw1b0fjC6XOEbx5iGuq1F\nTRIWR+MsjbHEceLa5UvkaaKRjG80iAyxap00hhQyZRp0q6tXqc9KTnXTyuqOc87SNJ5hKmrpHCdW\nRwcsd/dxTUtOgXbWUVKicZXKNPKMQLb/KVymUgzWOvZPn2H3zCk245pxHFnMdjEijOPANEx4sYiB\nKQQVLRZ1z6XaUZPJlEpLbOPeS7meUj1OgaPjnmEM6q7b6uyAxghGBWz6kqwaFlPFvKAojTVO9S7o\n5zbWYW2LbRqkaSlNowLQOpxj1bothEqbgnFG0doUIIyksNalkMIUI+M0EcP1AMuPXrjI09YNcC+P\nHG543C350d9/nI9evMRtyxl/+dwd3NY2NEdHyIOPUPoIt5yDWQNWpQY1UAVw4DpkuY8xM/73X/8F\nvukf/MANdNFv848/+Jv8o6/5Sr76c7m9VNAAACAASURBVF+hZ2jX8dDlg6f/XOVeHrlykX7YgNTe\nP2tocofYQog9frLkdoaUGb5xNL6pRbEVCSv1zAeyWMp2Yc0RYgARsvW1BFTUrZUyYjwYPZdK1S3l\nnLBR8G5rz9eYj1wKyTiMa6o2JjOFQdGcarXPhepy0kBQ5zwmJ2IOSBGKsSTrKTKeaCItSp813mNL\nIYaJw2vXiH1PY7JW4lirHXSq/FFTQgwn51TZ/uGlUFJSk0R1+BnLiQOTIqqNiROL5ZJrVy8Tp4TM\nlfJUpkPFy59M2/X2emZzZNAm5XHUjp3Od5AK69XxSfZF03jm8w5LYjw+om0a5suOWDKxGEqGWNul\nQwiEcVSRS+WGs6s/bAohRMYx6PcuqpUxdeIvKVUlv4BxGKtOpS2sX6jcdFFhidQt2XirEKKUaj3T\nrJSStEPD1E3JipxsS840eNsg3tHM58x2TtHMd7BOkRjBkSalQFophLTB5gNyTPiuY7a3S7Pcw7cL\nmHV0y33i8QbXOuxihvEtz7vjduSDv/rU8d/cz513vB67cxppA8YvICZwTmmmcEiO0LQNzdJjGt0I\nJaMoyWwGXat3R0nINEBRt4aEgBtG8hDwqTDiVOtirNrrnQoKQWvvTUF/rqK8strbe+V7vUesBYmY\n4ijFabmndTUsqWBtQ2k0oM8VzVYQ11KmTPJVzJ0jpqjS31ptrdWeLk/O9V4xKtQWY3BVC4MYnPG6\njVHtl64FyZSkFCNVzDtth1fqLCwW7xta7xmO14ShR2JgZgqLzjDfmeMWS4px9GOiP1iTjoYnbSQq\n2VJkJqWiUffjSNOoBiOlAEX1YJvViq5b0viWfhoRNEivqVSe2YZOPnv9sS9TQ+Wsc+yd3sO3DYeH\n1yj5elxDGidyitjGIxQdbMZJXY0qXcduNWJGiULdda4/C0JmjBOH6zWbKehgLdRoBqUgbXXDSNZU\nb9X21UHLyAmVvf3exuoL0LgGmobSbFEZpaC3xgVQrZl4RQ4wAimTxoE89uQwksJESJEpTgyDJr+m\nSTOtzu0uELkfniKKQLifo+F5vPw7v+dJg8cP/dv/l7d/01v42tffRbEzGDPlaFR9TmN0KQgRQlFK\npjQYb3jg8uN80w/8ALl83XXavNY6/FfveAef+1mv5nnn90kpcevp04j8q6f8XHA/Z3fuou83NV1f\nkUxxhb5XmsRZA2mJlESMHcwM7axS0vU9IFYHQlODNTH1Ne/s9bqUXP+5nJGkdDauWpStuialVpaY\ntiUDYRqQYkhFQ1jxav9X+NYgMtVi4SrIFsAoaizeU7KnhEzMAzlJFeVWE0vSPKrOt3Rdi8mq55k2\nG2xOzL0wXziaxYLiW0Iq9GNgfTwwbQLphnOqKkXISTPFpOZ1OSt1AVMmYxoDm/Uxezu7quzIWiIK\nmWHYnGhynonrGU323YocpymSk9Bveo5Xx1irvUk5C7O5inyNqNxpd2eH+XKum8AQtHJ8GAlTIITq\nVBIhhljFR+UkaCwjhFC0Ar6IakJyJKZUDyu9AY1VbYTNThu3QyLlQMmaBUEdWAql1sbrC0LPhYwk\nQ0r6/b33+mLLGZJRlb/xGNfhu452toefnaaZLfDNDOs8KRakCNM0Yio9avKA8YZZu0O3u49b7GL8\nAucXWDfXAWbWIIuW0na85c1fzvf+xD/l6eK/v/7Nb8YuTkNXKDu5PmAROV5hF4m2RmObWUtpPcnV\nRqKkEGvaJEjgWw3QMq3XN3gcMZs1shnIY9DsmljpN6sbnqaj6qGskHohV+EcFM10EcA5snUU1yAN\nmDyrNk2UPzeOPEWKafCtisUmKxjbUeKGmBO29RhpKq2kmQcxF6zxaktva3ZELlVbE4lR6UFvG102\nqsAt5lTrI3zVHgQVHhsVdjtnkV6HHmssTdvRdC1Nt2HRtuw6aL1jf3/G7vmztKfOEorl8UsHpIN1\nzWa44ekoRe/IemiWmg7rnKNtW0UXk4p+4xSRIsznc1aHV+n7kW6xxPpaTGm34p5nrz/WJWhWSBZa\n7+hmnmFYsTpcMfM7KvZMSuFpf1oLIicFkVuxr90WsNZ5N6ctvWTqi0yLP6c4sd5sKiIjFVkpUNQp\nItbUYEelJW2pgt+sH1ac1ziHUsMxnUecBrrhnSKpqA1zS5FoMJv2kYlYpdRzRLO4DMlB7CelX6aJ\nceiZxg1xUro+hsgXvuIe3vlL/4any8N5/2/cT+EbPmbweOvb38Fr/9zrufv226sZQnjgQw/wjp99\nHx99+BHuOH+et3zxm/iU596li463vOP9v6C0+VPWOryHH/2lX+W/+/IvoV9d5Qte9gL+0c/9n0/9\nuVjxeS9/IVOtarHblNyQEKs5YxQYxwDS0xWL8xmfUn1ZQwmjqte8Iroq4K5VJtZtsRplASxo8ZI6\ne3RQrYm8OVOqxjBFDT10voZxphrCCTpA1FgGECRFzb3Z0lk5k6UGdxrBNg6ZLLlEbZouanKhDjW+\nbekWC13IvGNu4VRrmC88O2d2mZ05C+2CdR+4eOWAeDwxpfKkhQsU7U1FazBSysQYlY61Vg0dCCkE\nNqtD5t0cqXRaN59R0OqbG+MnPtnXMzzI6JWS2v2maaIfRkQsMdZJzgpNY3HO0M3m7OyfwXUdx2t9\nkKZhYNj0hClojwblhEaybasvmpSQoi+jkIpCgHXrcN6TZcSQSUE5UKr4Ths/a5eReKzNOAu5JLJz\nqii3FikRclKONCUkgbNOI8BNgysGQV9Cxnts19EuFnSLfWy3i3ELMDMQD6loEm9SMSAidMZQvKPZ\n2aFrZ/jZPqZdIs1SbdqmxbamKuo7ZLbDPS+7g7d/79t463f8dT4m/vttf4d7XvCSE6pMh72IbI6R\nDM44ysxC65ikcOXKFY7W6tA4vnyZ48sXmTWe2+94Pufuuou9W29B9naR2Uy7mVotrEtjYJxGMkEh\nTzRQUL8Eby2u8tC2ugEQQbJRnVHV0xidgFAvqqYr46yKJm3GRluF26o7SjkiLuNmVvUANSQwTYEY\ngoYNmqJ9JUUotiFRc7dyBJlOuGULZFsj33MGpzZTi2UTVqTtASE13XjrRXKOppvTzjuWexM333KG\ng3M7eGvZO3+G/dvvoDl1EwergUcuXuO4Hwjxj0KqN8R+A6AUkfdKix6zIU8jptUQwxQie7unueIb\nDg8OsZ0Oxt57RIZnUZlP4NqiqKWo/spI5vjogKkf2Z2fwXpPMEr5SRG12peatVFpyZSiioUbi7OC\nVTmELk3GqFNu64pLmWGc6IdB/3xjlOrc9upgVRyKUYS0aFp4nXYRU2rOlcOIVwrDap6MPj6G4hqK\nszVjKVNKDVoUNOIh6rNaikbtkyNGbK38KFgzUXJWB2FSK/mtezP+2ze9hu/5ufsQ3kPh5cD9wIpX\nv/j5fOB3r5DyUw0e7+VH3v+LvO3bXw4ivOM97+at3/W3rzuf5Of4ez/+Tt7+XX+L/+LL/gKZwkce\ne+zj0lh/8NijrKaeIUzsL+d8+5u+gO+rn4v6uQorvuWNn8PZvYW6XHPBNI5iLSFWpFWEmDNxfUQY\nVrAYabwjtV7LZa3OXiJFw/NqYGKp6d+yFXJTalKtULJ+6e9IxdglqwBXoAYVNlhjtVcrjOTNhtQP\nsDWiVATGoDo/I5lk1DSvcoaqzcFovY0UchjJOVTtin4e385oZgua2Q5SMnun97j9tjPMJNC0np1b\nbmZx7jai7Xji4mXGx6+wHibiH6kOEO1pqFpXW12lTnvinMVnZTJSLAybNeMwanaRGZktluSorlR9\n1P4UDzKgMHoshSkEMEIICSvK33WzFucc88UOO/unwFoN1RkGNsfHpCmd/GKzCFPQ3AZpW0qMSnmI\nYYqJMW7FUFoKJlawbQMxVfu12vxMEf1r2+nTCNZbpYho1DIttZk41hJDgUzCtBrOZ6zD4HDiMZol\njesa/LK6lLolvp0jVuOcSZCLYMTjGwEzQUrYoA2vbddg3RzT7oDTnBmaRgOrEvUDCBSH2I63fNVX\n8epXv5r73vUTPPjQw9x5+1/ma978Zu5+/p1KCeWsiEPIyDQq/JlF+XML/dTz+IUn+ND/87tcvXKF\n48OrTNcOoF9xy9l9bnJCOr3Lhw8O+PF/+UEevHyF5z7nVr7mP3sDz9vb4/jwkNXBkaIxThEb5zQI\nzrmal9A4XKMpoDZvK+vTCeytBaCirbf1Hs81bHAbhU2J2oGVNDPDxKQNvtSgKIEcI8ZMWJ/IBm0m\nT1ET052pG4LaPI0ZMVOoycCm1i8o712M1lAULK5ryEkhcGpOS6mblvENvp3TzhZ447nnJS9iLomp\nH3HLHdpTN5GbGYdHPf26V3r1jyrdir6oaluOUlmVf27aBu8cQ5i0gdwI4zhijWe5s8fR6pix13wM\nV0sknwk3wH/slwj1p69IbUwjQ69onQbPOSBWlLE6IkVzRLbFsTknvPGVxq5+gqxOjwbV1Gzb1K1z\njCExDKE2ZetvX7IuNhZ1XtZeXFW9i8NbW4cPvWeLddrSbjRPRoUU9XnIhpIMxQLiNA9SlaqI1VgJ\ngmoh0nDMNE7EkIjjqF+TZp7EqGg2MVHCyBe88Dm89Nyb+IXf+QMuHD7ELaefyxd/9sv4kX/+bz+O\nTuXlPPjYo4hEHnjoId76XX+bnL+OP+oweuv/+Ld4zWe8irtvu4U7bj6HyM/zlLUO3M/Z3c/gcHPM\nmAuTs3zevS/ieTef5Zf+/Ye4ePUCZ/aez+te9WLO7e8o6mlzLaVFF6ISGEtP23bMurkGmVpFafvh\nGAyKtM5mNL7Vs4oCOVCkZl+cDMCFUs+hXCM4xDfojVC0uDerzknP5JpdVdmElB2+7VRrGSZEtL4g\nhK32RIdWMXpPWNHqAKWZTL0XLSa5ei9XoXaJii43Ha6Z4a3h3G138OJXvJKr5x4mpIzbPYXfOc3x\nmIjxCY7WPZtx0u//pIdEaTmpziaV/WnmkvPupJ5BjFXtayk0Tcs4rNGsELRaqGjFwyc7DA/+BAeZ\nbUgeKJqxTdN0jVMPvrMsd/dYnjrFul8TpsiwGTherTDGqjDKGEoMjMOEQeOac1FBleYVJfohEkLl\nMEUzEAzUoClbSxg1J6BUyHVb4eVM/WH7Blx1waUCRnMclENSntk0Tp0C4nG2w9kGIxbXelzbQC2D\ntF2LkVbdUJUvNcaQa2KvsZmSWkra0VoFN4N2roOMX0DXUGKkpFghaiBqD5Mg3HPX83nb//A3qmhZ\nBVmKHql7hiIYEqSgKFXTkIaB9bUrXPj9D/HIAx/h6mOPc3R0SL8+RMaRZWtYhI4mjPz0r32Qv/qu\n9yHmyRkNf/9b3sLrX3IP/aAN1sY3+M5TsOoIEk0DNTlSksGJocSiB/RWEOCUx9+GwuWYdQWyUErU\nVGDvoWgsvIQEISndV1/aYrepvA2Iw26pGBMwcdRgp6JBgFuroxVH8YKpTayxqFCYrcXRCLEIrp1R\nwkSOICGf3G8569gh1uOaGa6dc/vdL2Z//wz96ogxBoaQOVodkzZrUogn1ssnbSQF7bRx6kpQ1Eef\nEe8b2q5hnEa2VRl9v2G92dB0c6TfEKcJ2zQ0XXdysD57/TGvG89syeomsoZZt6gdZKIv9TFolobT\n0MiSszr5kmYVWavi/VwSJWVi0iK/GCOpGg3EWAowToGhn1QKIfq7N9ZCTOR6/0ot1tPkZ0Opg5Pa\ngrVDiZK1JNF6fXlaRRyK3vCqyzGqGysUchzJecJWOjOmzBghS0NxhRgKUSJjToyT0vohTEjM2JAw\nKfOcvQXf+GdfUX0xBZqGc/s7H1c/89zzX0QZj7nvp37641BG7+W+9/wUb/u2b+XrvuSN/P13/hOe\njsb6gle/ilW/0Q61klmPa2Yy8edfeie2uaeeD7BZb2rKt7pmfcm4rMWRrfVIckjMJMkk1xJNi5Xa\nZ1SDNdM0YRp/fZipcglcexL0Z0At7SnVt3wVbafxRJYgxkO3oxTTOFHCVGdUizUzim1w4wbCoP1w\nRmsEQtR0LLFOc8ZE625KdS5ZAyZZjLO4VFmGLb4rGmTXNB2td7jzt9I4z9mbb2WzWTOExHqYyIeH\nrFZHrPuRKaaPcRZtUUWpvX/b/980DX6cCDUoslvsUrJquhbzOQdXLzP0U32veX0XW+EZmGP+5AYZ\nAOfUfmWMpWla3ZgLxBhwvmHv9E20swUHqyPGaWQ9HBNCwFtfOclEihtSzDrFGqMvvJLZjIHHjo54\n7OqKP7h4mTf/+c/m+befgYqqmK3jpG5WGOWjTdFhRvlqp9uR1SA2U0uzimwnYBCnqZlYh3Uabudc\ni7WtJvd6h2taXLvAdnMViRWndnBrENG6hJgTxjtsKeQ8BymYxQxxM0oz0wZZ48kxMq5XaqG2Fr9Y\n4FLQG760lRxRYl5U2k6JQf+aUXu4ErACRm+m9aWLHH74w4QLjzMbN+ybgGVk2YKdtezOOm46fZrL\nEf7qu35GMxrSkzeo//oH7+Mnv/0buO38GS0dM4WQIznm+hAa1SoZh5ikL+hCDexSm3bhxvevUTum\nqTSTLXVA0aZawaruKQEp1Uwcq0K7orHs4hxb1aR3HhMMTCOMk1oFjZwkpUpNC9xyuUa0+TalevBY\nTeWNRN2STdKtSQxFtPCxSDXfe4c7fZpmPmPcbOiPjzi8fIXN8RpXg8q2wWc3XtsKD8r1SgvYDkmK\nyhirPVrWOsI4cLQ6ZOfUHtZZNps1XddVx4T+yp8pMd1/rNdWSLlFTLz35JxJkw4fMUb61TFpnJi1\nM4pRenIIA2MItRBQ6T1rBZOyZnhkDXxLVMdcKaSimvthDGz6SR0cxulZ5GqWDCgdCkpjGF3GnDH4\nZqHJ2lVgqnKKbZKvoVhTK1ZU4ycorSGlUkmanKefT6BYwXaNLo3TxGQyyQtkh5kcMorGG8Sk27jT\n7a5Y1dylMZL7yBte+nz+j1/9TZ5Op/KX3vA5hM2ajz78yMdFbj7y8MOkaeCuW8/zg9/xV/jW7/mH\niLz3SbT53/jGv8T5s3uETa8ZZXECY5gtFkzDQAg9aVS9XEKrJMgaveGjllx2TYOUGRbBiQbsGVMX\nomaGdDu6TNX6AlKhlKj//SjNq1U0sDW1lKI/W2OVeolZF2JBEL9FzCb93frqyDSqj8ohqXXfgOSo\nDk3RBa9IJBIopXZEla3WT6GRbWJzKaWiaErxbGlN766bAZpuwc5ZS7fcYbM64vDKZYb+CXKYCMOo\nhcW5fMwRIglM4ERwvnUttW1LM4z0DKSgER8haFXH7s4eD5fMarViZ39f3Zklq+P3Gbj+5KglABGm\nGHE5M1/M6TfDiSh0d7nH7v4pUslM40Q/Dmw2x7oFo2JL65xu1pUjBD2ErhyseejxA2AX4UX84WO/\nzc//i9/ir3/jF/Mln/Py+uJJpDhBzDpdbm++lFVw6xxiVbibS9IetoxynUYTdYvRFGBjHRhtlHWu\nUYitxoaLc9hmRrPcR9pFza7Jtc9HxVrbKd4bIY0T0nTaDbXooF0gfg7FUI4OSZcv0V96gvXBAX0/\n0J46xc5tt7PjPbbtENqTbJGSFXkhjEjKCjNjySHBNEGcCEfXGJ94HDles+Mb5mfOsjtv6PfmRBNx\ns4b5bJf9s7fw/b/1ezxtRgPv5uf+3e/wLW96HZlEngalsKwhZo9PDiOFYC25W5CbVjUIrUKgBQ2S\nQkSdFM5BmE6QGHyjvHOuymCrYl9JUuPSVUeSaw8UKPxJdT2BWsARMLiKYCVNlqQOIkUPfWvtCewZ\noPLjgnZqGSSZ62nRxqpdsmix4zZHwVijCZbiKCEwec+inTObL7FNQypaDXHjlUsh5kQuFlfzo02l\nwEC0adYY3WSMEEKkHzac7W5mMVtw7do1vG+qoDPX4fDZSeaPc2mnWKatS4V3lj5Hjg4OWOztM4w9\n69VKNRWVMp2qwyyMEyml+iKUJ23k206aLHWgR9RCWwohwxgLJWvW0hadtA5sUb3B1mLrjKcktekW\nq05M9b3WADMqVbzVT9TQPKSKjUkUYtXXiJ4rBlKeKmWgdSCBwlC0+2zq+5rUmuohmJWirXyXWnUz\nRfSle75zfPsXfRZ/759tqzzuPRk8/udvfQtnlg3rwyvcfmYf4Zd5Osro5jOfz9HqMuOw4Q2vfDHv\n++7v4N3/4oNcuHqNW296JW967Wdy9vQ+m75nnALHh8ekoYeodFiIAxInYtRm6WIKYYwUsZqAHSMQ\niJKJtiH5TEgZ321RZEjDAZuwJnQLutkS39YEYKdLlbZNVyF1rtTSVl1LIYt+addAU8+viYJg/JIy\nBQgRvKVMg5ZU5lxDoA22a/BWn3VrLN5YKIGELkKxZEBTeHVUq4u699AU8qB5WSLUAs9I6lWKYZ3T\nwWa2JI0jjRQ652ibGaUIQ9CU8T96SbX8i8SToUgDJP2JriwTQSBMEyFMtN0c27Y6aApEChg5WRQ/\n2def2CBjjDZj5gmaDprW4SYV2zrjWe7u4RrPcb+m36zp1xuGTV+nUwDRgrYQyal66nNhmkIdYr4B\n+AEKM0pVzL/tf7uPV73oTu64eecky8EarUncWutKFb9a3yj3HKNqJmryr3EWadXOKK62SuO0Yr5t\nFJWxLc6rLVqaBtct9XuNa4yzFAw5BqU4cqUQvKs19ijfXQyYhgcev8J9P/suPvrgw9y5v8NbPu2l\nPMcb1keXGB5/giu/OyC7pzn1whdx5mUvY+f25+B3lvqg1ZtF7UMZSgCSTns2UfKASZH53im6dsEf\nXrzMj//Gb/DRy5e4bXfGV7zyRdx580007YJmts+j/+q3Pq7o7rErjzMMG/JQTsSEprHE7AnOYMh4\npxB4SpmuGKwr2KIur634q3jNm9G5wpEEzQYqKo7ccsrkjDQdoGhIiUmFuF51CFWcUEFv3SCdWWA8\nmBAwozqdsrGI9ZQ0EcNAoVFk54RWQrnnyoCJ29rwtSBOkhpgSwyEfoOERqsonDZ8W6BtWpaLJbPu\nsML4HztgKCKj27oOt9eptxBDdYJZctagtChC32uz76nTZ3ji4kVAsFuE61mNzCd8GWfxjQeBoR/o\nj9bcNEXYDPTrdR18UcomREpQvYMWCSZympSF9l5Rjwli1L+vnTiadxVToh8Hjldr+s1A2ltqYzzq\nRknG4EVfnsYIkrQ9WVwLpiFJzWiiUqWlUqIl6GLgNTdGQIf8UpeF6qGVXChxII09MWUQbX8vIYBY\nUi4M/ZppvSIOG1KYEDRLyXh3UiKbc+3ayYkYI5939zle/A1fyPv//YNcXD3ErWfu4i/+2U/nec+5\njdXhJYa24Ys/62V8/0+8j6ejjN7w8hdw4ZGPsD5eM02R/a7l69/wuSeayDRtOLy4oZ8mjlYr+vWa\nGCYNabNCThOxQA5ag2DI1dGlv+OSCy4KprVAIoQBUwJTLnTSkF2HLHYo8w7TOLLAepjoxNO2TvWW\nuaIzWaliXR6s/u4BStE6C6NMgbQzclmQhp5ms9JKAxqM6yiN1WHWRDyZEKKivL7FSpVTiMdkq8YF\nEpJrmKjIyUKW0EWvFLXRl5LVLZUgDj1TAYlzTFsZhRyRHLHGMO8WNM2GUDJjyB+zbAEqaM8B72pu\nmlxfuKxv9WxM2j9GKRwdHrJ39hS+65RaKwWcyknyn/ZBRgOBCpAZp6mmD2rjp/MdTTsnU5S769eM\n04aCeuGtNRp2N4wKc4oqqa2FJw5WwNPxru/mfb/ym3zbmz+XUgTrPK5aD4lT1Uu5Slt5pGhVWNs4\npjhBsVjXYboWGi2c1OhwC86ANbVZtsX4Fte02LbRm8VcL65Ue69O7Cd6HdRVk62QRXtTfuyf/iLf\n9He//wZF/y/zvT/xs/zQ138lf/Eld5FXxwxPXOLowuOsH3qI4wf+gFs+7ZWcfulL8OfPYWYzqv1G\nNynViiklBtB4zOmzdM2SH/u//jnf/EM/zI25Dz/8r3+bH/yG/5yve90rSQh3nD+PyK89JfcN93N2\n9276cdIApkmL4LqduR6kxmLcjIIwDgOx/n3vvboynFRtgNHY6zQpgOR008GgzbJeLZNpyidVEiWr\n4wiTKhVVNUxU5K8AOSE1jVeRmgaRpGK6lMBYHLZqHGqfTE5KNxpFjBRFKaoBsmohzNs/Owvx/2Pv\nzcMtO+s63887rbX3GWpKUpWqpKoSCAkIGhCQSQSCChJBQLF5cEC5DA5td9uttva96oM4tO18+3a3\nSkuCimhrWhCQ4MCkHQRFEwgRSMhYSc1VZ9jDWusdfveP37tPBaiKqCTPc/tm8ZwnIanss88+a73v\n7/39vt/Pt++Z50h2LePRSPk5RrDO49sxzUj/7GQe6VL5PI2M7os61gzhTC6Oc5YhRqy1jJZGyDzq\nDBzoUqbrenbu3IEfLanQtGkJLjCU4Yv5yP7/6jLG0i6PyaLpvTkmvLXkODCdTjBRW/ex74izjpxq\nMrT1CgKPujEYpwV0KYMyjGxNnK9FZs6J9Y2eD3z0Rm65624uv+wgL3/BV3HZRbvVsesVU+C9w4nB\nlIS3rurKKsVZVAdnseAbBV16f6YbV87o/ra6NoYFVY1h3hNTrrllPZ1oUGnpO3LfobRtBVV6lHps\nrK2hlbUbk1H9kBTioIGyF6wu8+rnPZVmaQkTtBA4feoojfOsLG3n/Dbw+m99CT/+2/cLYTU3IrLJ\nD7/0eTSzCUfumNJ1c4aocFRrLUNFb8QU6VPU7qgA/Ux1Qq5hFqMeJHxLKRZXCtY3NKMlfNACtRRh\n6BKmhS4UjBSIAmWCIdLNTuOWV1javoMhNFigbVtyWUE8NI3ajK0LdYxb1wIU478VFZILeehVoF3A\n5hpA0oywJsGQyUNCAOcbPcSWhG0MJUYoqAY0aSiyq5Z53fPslstRMDWPK5HijG7zJMNsE8mCC2Ms\nkGdzHWOOIya1hCaQTb3fR6v0g6OPR1ifdnQ5n72fa85MVKxV56j3CgFsmgbnPNYs8uX0sNV3HcE3\nzGdThmGg67p6Knwwnt6HqJBZAEPLogAAIABJREFUjIEW3vP5dE4pDWPvGTeNKseDYzbM2NxcZz6b\nkWMmuEY7FyJ03Zk0WWcNwUHwVom4PJGzz12fwOHjpzAEnHdgEzZX94s4SuoxxhO8P5NZIpY8QNOs\nYoLXNm4b9BeIoa0J2sVkBItH8JJwRXUgxtecExRoZZTHvegGq4al7yg1MyMZQ06RW++8i9f95C8p\nBOpzFP3f8xvX8tSf/SEu3LbCeTtXGMnA0E9xR++hv2XEkAru4v2Yi/Zidm1XAbMxetKSWhgYg3GC\nXfHcdvgOvuu//epZgVPf+9+v5VnPvIpLzt/Gy5/zlfzS297FuWbfz7ry0cyGvirzlUicjIVYyEQi\nWu/Z3BOM4KwQGksqDU07onXLOFMhUFLFtHnAugZ8o8hvayj9gM0Z5z1ZMlkqp8ZoNwapAkcRbM2W\nkpxUH5ALktV1ZKuwrsSo1GYcoWRiHqq2QBd8Maa2cNH7pkAe5pT5BC+FJCA5kWZTbIkMUhhGyyyt\n7qIZq83eWmVHzOdz1jantWV7lmViwRKxbovQa4yKwkMILK+uUphgnYDx9CmxuX6aXeedxwV7LmQ+\nmajOwz6ct/RPvRYz/8Y5hjQQU1TdlynMuxnz6ZTWtQzDQAielCI5R4pExBSlOKOGQg1kdCRjGFKk\nsUadLugJemNzynQeOXLa8KlDl3PDTR/imj+4np/9d6/iZV/9dGxWJlAWFU06RhhT8XqmovDEYktU\n3UszgqURJgRlbBUtYEqO2jFyQUuaErXrkyPGBdrQUmZzfCO40pE31pieOs58c1Of577HJY36sN7r\nWljBbiXVEYqtQaxWwaWxmyNWE9pNJQqXQeixDK7DYHja/vN402u/iXf8zcc5vHY7F26/iK95zCPY\nvW2Fo3fdrTl6JhPTjBSzvn+vELhidA/xTYttRmCWSfMZUgaa5aUt27ofL6kmoxRsCDSjFus0ILgv\ncyXCi61aPXQs75S0m6anmW6eplneztLOCygrDd4YXBcp2ei4J9SMNatdNlNDb0Uc2IAYj1vStPoc\ney06rRJ0jfUwcjDMaraTygIKmphN8MjQUyRX6rN2bilgRdEUQtEmnEH/eQGb0bGh0aLI5YzpO6Uz\np440DeTV81jatkO7hsZjXIOUKWvrE05tzBjSubslOl6yOGdVC+ZUyL4Al9raEbbOkUvC+cDqyjKz\nyaZiV2YzSs54p/EeX+zroRP7VjGSqa2/1jl8O2a8tMzKthVWd6wqUXI2oZt3iHja8QrOa8T5ZKNs\noZcXkffWOtomADdxtrkr5u/Yd8GV2MbjrYPcIV3CGk9oG3yzkxS7rQR7qlBJlem5ugMcRjI2i1qM\nXdEbx45woyVCO8K3KlIVaTESsIPOLVNolE9TwFIR/SWrecbAkLMGB85nXPu2d/FA2Um//dcf41sf\nfwVvvu0odx47wd6llpfv3scjd6yylBP2vqPIWk/avx9z4QW4oDNUQ4YslGSgBKxxXHP9ex7APXAd\nv3H9e/jBl72YHStjfvRlX88bfv8aMNeBnGE0fN+Ln8ue87erkasJSvVtAsVAl3qcsSw1ntAs46XF\nSiZZTxSDdw1Yp2CoQUd9LBZcUKGioAyMrHqUMGpYUC+NFVxoMGYxnouYlPTE6RqMa3ClUbaCdCj+\nULUARdQpYESw1SVVqhvMmDpyrAI+75ym/+YBqTNrSiHHOXG6SYy9WrZlIA8DwbVKIi5JRdrzjlOn\nN5h2/T889hGBYjBJYzPapqFpWy38Zz1DjGQ81sJ0c435rOP88/Zwx/oak8lErZoPX/+ky1Q2RyqF\nbjqjpEQ73kYxQtfribIdj8g5klKPNdD6huCCcllQJ4nBITiSmC2+iBGp+hZHipHpPAKvRvgVkDG5\nHiD+/S++ia943OVcvn+finyldlNNgXA/cWktcjXY0SF+hKSCNVHvXwrWqDVW7vcenDOkYY6UhG9H\npAJuNCINmfnaGl3fEws6AjABSwXGOSEZsyXgL7lUpD2a+zNEch8RY7GNZ+hmMHRYoxlk3WRK33WY\notb0WLH+X3PRGNm7pNyVtcMc33DEQUdvWA2sNFiMb7TT3HiyUSF8HCIBSzFqL3a+jlmqe8A5hwtK\n23VNQ0ZBn8pWCSAJkzpybzHBkwwMGbJT63vwHis9/dp9lNlpyso2yvYdLK9uA+cpw4AbBvx4pCN9\n9SMr3sNUeF0NLra+Cntz0c5J5XqFpkVyr0GZZbEBiWp1HDDMsc4hI0dJA0Q5E0IKNQbGYovBDxmf\nLY1tcL6FIVOGnmETGgNOErlzeDuibVewdmGZHphNJ9x37DinJlPiORhUpupYvVcoqK2a0ZgiWQrW\nOTQVw+JDIEomYVhe2YFzxzUCpoafSpUUfLGn4A9JISOi4jjtouetatkZw+rqKjvO3wPBMz15gjib\nA9WmXISSErHXjaDU2ax+BkLOkV07Vzhy/F7O1jVANnnRc56skewA1TYrpgotJWG80yKnAqlsqDdi\nJWVqunFdDKTgite8pJG2TyEjwwAolRJTEKc3sFvYdetiQlVvRCnEnCqSfkaczrj76ANnmXzg5k/z\ni39w/WePgm68lTe+egevfPTjMO0KJqxAEm69+RO8+Y/fyZ33HuLghRfy7Ve/gEv2XIwPI1zTcNfx\nYw/4vT59152sTdeZl8xVT34CB/ecz7s/ejPHN49xwY5H88zHPoI9O1dVSCca7yCScTHgGq/iZ+uR\nvjDrTmMQ2vEY01j6LLiUFSaIpWSwqaizyTUYEzAmqEiuQghdfXAwOuNlMBQpWBIi6ibCOAwJYo9k\nXQCN9ZjQKlOj5DNzZmPwYqE4YjfUIFC0SF6I57yyiEzJuGI4cvw0f/T+D3Ho+Cm2rSzxrMc/muUL\ndiA5YiQhXWQ+GNwwqJYg9nSzjpNrm0zmfRWpf85VRc8iSuq0VhdnYyo1uFHtiw9V5F60zB76OWsn\nj3PRgQN468lDV++vh69/7GW8UUw9EEJgc3NC32fcaktoR6TTat83BnLJDHHQdnkc9N4vQjG5Tm8q\n2M4q2ZeF7d/oSGk6nXPOMTjX8bvXf5D/63WvQGr4pK0ZXLoj1vernlq9T6yt2rdIiV431cUsub6G\nLECTsXaMm4ZsFfbZ5YF57MkFjF0mtFCywbhMCA5KqA4sRehLFbeCQvLS0JNjVPKxRV1DSVPbnTEE\nY/FZRfHkQi4Fl1LtuqgIfxhyRWQZJEOMvfKWjKn6nYTHYLMnl0JxVg9OxpBA3YUSCM1InaxGR82F\nrMGqFhX4Zx0NN01D40e4Skguoi5UY1ylJ1vdoIthvDRiPPKM2xaThX7tNNGWOiJvaVdWaVa3Y0bq\nZisUnCi1l6w/g2pEqk4xGN1vpAVJWrDagNSutneeZJQkbasUw9Tk7CKGlFI1NpS6TtqtNSuSuPPo\nMd59w99y5ORpztu2zFdfeQWP3LmCFB1T90VoSsGsbkMQ8mzg9Ol1Dh09ycasO/saxRlmjHPuTGdm\ngVJpGkbLyxTm2qnxjjIU4pDYvm2barsA77Q4zuVzqcFfnOshBeKBinRD8JRSaNqGbdu3sbw6Is5n\ndJtTKNC0Y4aoJN7GORW4iUDRFpb1Xi2twGjkufjCbRw68ibgD4ArMdwIZsIPvOobOHDxXqwTbMl6\nGjdONRBSwBsdDhUwRVvE1jlKlooC15ESRbAYgvV412KbMWY0xoxaJKjtEeuqDsNAHDDzDpqgXIcF\nY4BC7Dsm0wmpxq33/Zzc91y4cxvnYjEgf8df//068JrPGwW95jeu5Rlf/VwedeBCCGPe/Pa38drX\n35+c+XZ+/prf5Nd/9Md45Uu/iWLg4N69GPM2zuUe2L3rKUz7GbN+IBnLhRfs5Buf+liGftATgRU2\nNze0yKgK+VwKzmdc9jgLQzdjaANNaBm1Y5IYXfynG6TYU9iBGEcwmjqcc8J7jzUFyb0WqwvirdUs\nJylatEjJmFwXJwLWjapzyyv5NCVEYl3ES50pG4zxWLGkQQMwjTUavZCNWrpF9TogWgQ5i82Fd73/\ng/zMr731TBHJTbzvIx/nNc9/Os/7kgM4CjYLw3CE2bBOu20nxXq6bs5m1zFP55g91+dCjC4AprKV\nMArpKwIuNISmJWWduXe9kLuO40fuYdv2VUbjsS6YDxcy//irOjtERImupdB3PSnXNrl1lALWaCEp\nUsgpMZvNGYZYNYxe04ArSkKKhs5SFSvaKVOBZsoZJc+e/QBx77GTOAO+aHSACSrYlALiKjm2krBt\nMJSi97ixqrFTbUX9G7FVwxOq+LNQrOZGlZKZd3P6viPlDsgYb3QzdnUUjcMGtWqXZDBJixFZnNqN\nQvlKEI14SJn71qZ84NYjHN+Ycf7Y8az9O7igCaShCoRz1me80mcVbpnqwVY7ijYnQIm4x/o5Hzk5\nZS0JO5ZannDRLnZtG8HgEe9xoxYnAUMhl6j7RTPCGsVdqFs11nGcGgekZLCtdnp8gw+Nxk5pUgBY\ni82y5QQc4oDtJ/S5x7dLjPyIxoo6ILtNYimEnLDjJUXNaIpSTRJXh6OiJ1QjZ61B4gxiX+F8YFBH\nWRbRta1oXEkpRe/R+qXSPC2epRTtAtX+8Xtu+Ft+8drrMGxD0DXqzz9yM9/zvKfwtV9yECcOmW4w\nTx027oLxErFLHD+xxvGNCf3nUcfrr7lqs7Z4OMZUG7YnjFpC0yA5V9u16hGtgaGbYyu8M8dBmUML\nc9eDcNkH52Uf4BtWa6kItKMR45VlcEpU7IeBWCowR2oAoTOIaIK2bmQVz6zVCCLCzm1jHnFgFzu2\nRZbHf8VFF3j+5Tc/n6u+4nHkrOOcIhmNLBjhm5YQWoLzeEv161uMazCuxYaR2qpdwPtA07SMmjG+\nWcKNlvBti/MeH1qcb3FWYXhYVOtRFwJwmlRroAw9aT5jmE+R2DPMNphunGC2cZJuus4LvvwKRDbQ\nztK8flpnFP3WrKInuUXhsRgFrfKm9/w5sjTm1sP38NrXKzkz50OU8r761+/gtW/4CW6793aM9Lzy\nhV/3gN/rhVc9g3mK9MOcLnZ0KdYiEEQSQ3U1xPmEYT6hm23S3/9rPiMOkbJYhEsm9z39dM7QR2IR\nuhiZ9x0xKywui55apQzqtjKy1bKlEk2lCnJdaBDXIG6kbjERyJpLVBDEe4oVjCsYW7b0N8ZajAsK\nGVsE73mn3SGvLAmNIVDRmsFwz33H+I+/9lZE/g9KuQ+R91PkPkS+kzdefwPH1zdpgqNpLE1jt6y3\nAmzOO05OpvTpHDNhrc0pKNyKygExttp1MYRmxKgdYzE6bgoNBks/n3Dy2FEMBed0I1to0R6+vrBL\nR0oKhnM+MKSBYRgUjGkcfd9V145gRDvIcRiYTqb0c2WC2ApFE9RKH4eeFIczTqH6JVBhhzdy5plb\nXHqAuPjCC/Q1KyMmFwXr6UhUuwx43ViKaAYY3tdupLJlFtZgqS45MYU8TBn6iR7ejKEfemLqEenJ\nwwZDt0Y/WyPFedVnNcpAcejzU4GMLA6TGOUjOTUtkBLvu+UefuC6v+GdH9/gr+58LO/6ZM8P/smt\n/K87TrCUE6vADu9ZEWEF2JwPvP2OY7z500e5/u6TTLueFSls857twXPTqSk//4nD/MUR+NiJx/MX\ndw/8yoc+zd/deh/51GnSqdOkySY5zun7Kf1sg9RNKMOUEqekfkLpZzWoEUwRgrN1idaiNKWkzsU0\np49TjSMxBtcE2vEyvlnFjXZgxtuxK9vxy8swapHlZcz2ndilZVIcmK+dIK6fhr4WJyVDikjfY1PW\n/cCoZo48YLyBEHRcR9KMq9iRU9T8rEXkhDcKXm0DxWnHx1iNUMFqNyZJ4u7DR/nFa6/TNUo+e436\nr+/5MCfmc9pRoB1pHpQYwAizbsY9R49yYmNCOptdCbZ04s5aQmgU7GcDLjS0o3Gl0Ttdg0Q7dtbD\nfD4l58K21e0Mw8Bspo7RB+u49ZAVMgqc0oc+54yznqXRmPHyEkUK081NUkxgPTknhr6voVQ669WA\ntkRO2oovkolxIFcEdOMDu3ascMHObezeub2qpztyEYpofLiIrWRCt8VocK6laVqc1Q6Mq0GQLni8\nCwTraVyDd2qzdq7BNCPMaAxBk2ddM8I2Y+0aGAOhQZaXkLatv1zdiGOc0XUbzCanGLoJOc4psSMO\nc3ZvG/FDL/0qrLkGZ/ZhzbOxZi/WXMOX7N/NuQXNj+eue+9DUs+b/uD3MWY7Zy94tnHtdddhJHH5\ngYv41R/5Aay9Fmcvwprn4Ow+rLmGH37lN7F9pWFjskE39PSxY2OyzmS6yWy6wWSyRjefkoee0vfE\n+YwUI6V2EPKQiYOizWOKDMOcYT6jn00YppsM8zmx60ldxzD09DEy7wf6QX+3OaldVVdpDeFEMpJm\ngOLV7aL71bSIs8q3cGqJX2TMWKfQQuNqy706gqQGjC50UBipvBnZWugVtKj6grf96V+c+zNllff/\n/V0sbV9iZdcqK+edx9KO83DtClkCJ9Y3OXzyNEM8l7jN6NpWrZzWO+04mhqnUP/nnFrrcxwIztH4\ngLeO9fVTzKZTLaoX3cOHry/sMtA0gZJ05NKOR0ymU6aTjpIF6wOz2YT5bKoclxqAGmNkGNQOXOpB\nKpczfx+TIiJyVlQ7Rh02uQg+OGCTsx4g2OSbr34W0QmdEQYKgzXEcUMet7quUIuYmqmD8TpisF67\nNAvmiwFxBiGTpuv0p0+SZzN1/cRB3UfeMZSEOOVR+aap70fdMSUPxL4j9Z1S/ETUAVhU7yEpYUvG\nl8TRE2u88UOfQXg1RQ4jfKD+9VW88RPHmETLajNiJbSshhEfPt7zbz98iHceEj5y4klcf9jwox87\nxo2TxM7VJXrreMudp/X1qK+Hvt7bbj/BkAorFkLfI+vrmM1N/GyO2dgknjxJWj8N8w1sP8cOPfQd\njWRCSdiUMDFCP+BihDjgpOBFCALBO1yNSxHj1VFqHKFdohkt04yWCM0StlnCjJY1yNcKZZgh85ky\nYuqaj2QkRyT1WsA4i2nHamRoWkw7qnyxgjUJS9Yiw9stVywhYEdKiDdeqwprq06qdmLf+b4PPeAa\n9d5P3s3yrhVWzj+P5Z0XEMbbgIaT65vcfeIU67NOCehnf0zqAdBt6bOc97WTiXYIrcX7pgJlVZTc\nTSd08xkhBFKMpPlcpxIPUiXzkJJ9QYE4+oMHmtDQNA3dfMpkfQ1Mo62q6SZ5GGiXlrG+4kGqMDan\nVFNLVQhqhaqYLlsCua6PHD++xmQyZ/duQAwirlIJVfjmUKskUsPggpKHrdOzurMeoyY4rPXql/ca\nPcBojAleFeI16+ez8ngcOqLIBXICSRRR6qLF4V2rdmI5A1fLkvjaxx7gcee/kHffdDtH1u9mz7YD\nvOAJl/PuW27nk/eeGwG+f/fzGebr3HHP3Yh8GecmZ97NMN8kxsg3PPMpPHLPT/Lb7/5T7j1xkj27\nruR5T76SnStjTh45Qt9HRkGTWmPf0w0dRRIF0QiGAjkpe8L7oALaCgGzGM0ScY5iLX2O+NqlMt0E\na3KFKOka2fc93lnyaMR41NKEBkFtlrZpapGiC4a2eXQkuIi0V31TfUKEem/Uk1GdIS9E4gYFiomt\nv6fg8M6RjKZ+G9EiqOgTzH3Hjp9TTwSP5+TsCNt276FpljAEkhi6wXD65HFuu/coJ9Yn55w9w2J/\nqCRpo3b+Ulvbyh6R6hbwxEEL95xlS1Qcu6kKFEOgs5YHhf/9v+G12AQ0lFELx42NKXmI9H4GRa3J\nQ9+TkhYv3lc2Sw1htTVzp2SpWIjqNir12Osc1nuGGEkpgtFUjpR1DG64EmNvAjb5mR9+DZdcokJf\nnI4WrfFqbRVRlEJJeo8uTu1oQrO29VT/hTEaRSKQhjlptolJA+K1GBJrGVJCvKNdXlFxMxHrPeOl\nJc1Z6ntKVJuwrWY+WzK2FlAlq0uz6NviLz5zrI5dz2Ye+H3ef2rgex5xECPCofU5v3zzJxBejdQx\n+YL79d/+/k085fJL+dDhw3U0fvbX+8Rm4hv376WLAzFpKrxNpTq2IiZmgkEfrqzRNqHYmssHfpQg\nBWToyDlA22BcHf3FRBkvs7y6nXY8wloh58zQ9drNSY7iPdYvEdqxuibjCJsTJieknyIyUpzHlokA\npWKIkHOPGO3U40CswuREkjqViMqAsQZwW1EFZjF6Tvq5L0J3nXMcOX6qGjHOtUadZMfuixBx5GxJ\nxbG5tsFt9xzlrqMn6YZ4rqdEv4yrQcyKpsDkrf3W2ID3Y6wb8MYQgjYiYjdj/dQxVrbvxIjeMw9m\noO1DqJGRrbAoZxV1HEJg1Abmsymb6xNWtp+HIROHrp6CdKwQY6/J11ubkc4SSyn4egKvY1BEYIiJ\nE6fXOXV6wsFUoPU4a6tzqeaeLBaBpBuva0ZasNQQN11ItKjRU32DaWohY0UJutZDsfX1DGIqy0Gy\nwqmyZqGU1FPyUB0M4EVIQEmpYqUr7TEmLt425rXP+FJMCKQqqnvuoy/mrX9xE2cHSW3ysuc+ndlk\njYvP34nhvZxL+7Jn57M5cfwwfa8L9M5R4NuvejpdN2fezYjzKUdPHqWLHWCYNY22tEvGNjoqs7ZC\ntYrogmtdfchMnZ86bNWzDEOPBE8wGsqWESRFylyL075XZf54vMTqtu3EUpBuRmoa1a8Avh0Tllax\n47GeNGsYpgoriw6A5LOtzWK1w2HE1GIm6cmoCMYvYUJDiQ5jBILDtCO1icdeO3xSKbvGcNGeCzDm\nr86uXTI3cmD/E9l+/n5Cs0QRo06l6SluuetuPn7nPWzOu3/w2TjTNdRTT4yRkDW0UNAAttFoVDdQ\nYYhzwOJDqynwRjNVXHXGPHz9w5c1Vru7Rd2PKuLtoBRiH4n9HNfKVt5QP7c0QTtjpm6SknMdD5y5\ncs1eQnSMLqJjbU3J1vH2KFi86dg+/hhP/NLH8NpXvojLH3UQzXNVJ42zXp0+ggpuRe95itTui6a+\nb4kPjZ6OyUUheiVR5lMkJmw7xi2tUPwIwdIgxBSZyybF97jgyZ0hl4xIwjujFt2i65fJCTtEjM78\ntVjyHmwgm4a1wQCP5+wb6RM4We5l5cAV2CK859M3YB6A+/XnR6acSIZzaYngCWyUO9l70aXEOJCG\njlIieei3goGLM4jT7pU1omtWStx3asJ7bzvM8fnAnu0rPO/LLuOiPTsUiVHqIZeMtXOGnJBuymi8\nRLu0onuRs9o19U4P19bhwgomRGSYUXr9silix6sYbzBGwaskKKIRCNapg0uTb0zNypK6RuXa+fBY\nW9RwYKprrVrQixTV+6Bjsr27zwfzkbMfdM1NXHrg6ayet1+T17ue6fqETx+6j4/eegf3nlon/oOH\nn1rQAM46Fe5ah7V1ahE0DgMRmhDIMZOHns210zomrQc1fVAenJbMQ9yR0eo0NMoH2b5zG2EpsHZ8\ng+BbfBuYdYoEt1XlFHOi7yMpazeARe6R0ZaXWLXk6j8sW26k9dmMY6c26IfC6mpQUaqUM8Il5yrA\nqsGL4MRiUOGpWbATjNWejHUQgs6jHdp5qUFtUu13RlDqZ1HRn7VWqZ5JyCmqWtt5is0U58nekaic\nmVxIQ8ThqohOKE6RzzJEdo8d/+4FT+EX/vjzQVI//bpXcMHqiNl0nZc860n8ylv/kHORM7/uysdw\n7J47mc2V0zP0c06fPkU3m9EPg55AUw/WENoRWRSxbs0CrKV6FxGUmut8DdLTz3ZrbCOarKuw4gZX\nUfs4Q0E0z6Pr8TnivKNpPUUSMVuyCcq3I0NJjAGJkTAsY5eWFZS3AH2loot3JTEL1PlyUEu201ME\n/RykU92AyzXvSVOMk0HhhSHgmkBaUEsNSBRe9NXP4Deve89ZP1Nkk1e86GqWtu/G+oaUMhubHbfe\ndQ83fOwT3Hn0xFmR32cuHUeUIixCKDGOXHGRoDlkzjlCo69vvaMfIrNuDs6RS1TQY6NJtMOwAAY+\nfD3Qpa4Q/Zx0ge+ISdkrIplhmGHmajiQlClOSb5G1NW4iAiwxlaYooo5hXqgQjkw6jTRjUIqxRkR\nllrPFfv2cvXTn8ze83apU8W5mnyt960gmALGCJkFBA9lCkmuGUBqYNARlmixUZRVRd9ru3+0jGmX\n1D5dNBm+m83oZzMd9c6m5NiRhx4rkfuOr/HO/3ULh0+ss2/HCi+58hFcum0Z56h5cUZDVlHXz8E9\nuzG3nh2BYcxNXHLwSaweuJzGWI6nG5BzFD3CEzg6PcJF5+/R1zvH4eHghY9j53mXIBLJaa5xCzli\nahFZFvo6kbpewLs+dhs/9yd/jbrGVAx73d/eyr9/4dN4/hMu0Rwj62kCNI1XQ4m3NNbgS9biJAeo\nieCpm5PmM5rRGB88gsW6gLWZHHvt1o8Uymcrf0eDgzOkOYL+M3yoQkJlYxXqWNBZqBPpanmo+iWN\nuVm4bMFw9VVP5y1v+1POxft65UtfRLu6k9j1dBtzPnn7nbz/ozdy852HmHTDF1BaLLo/vsbytCzg\nf6W60qTo6LuI3h/eeYa+YzJZJ1da/pae7EEwJjzkhYwPHmMMo9GY5V07GHKin/U0zQhMoes74hBp\nbYMgDHH4rIpxkaLtvK8kfl3yNf+hqFJdYB7nHD+1xmzeI2aHtlUXFXCVgWswoHrxrWiXxlq/pWmx\n3mJ8wFi1wVKydmBCC26EiKMkQacVFmd1pJTjgFip7GIqnC6QKQwuEb1BCJjekwcoVHiTNZS6URdT\nx1QmYV3hqst385jdX82f/P0hjm7czd7zH8kLn/HlHNy3h9MnjxCCY2djeMN3vJQfvfYazoSt/R0i\nm/zbq5+NOX2CI6eOMfS9nmZSx9B1upGKaNfLOXzTgvWklBFbEKeMhEWnw1qLC02dizq8t6riH4a6\nIKtdr2lH+DDSXCRX26E1PdUUJfU27RKuWQI/ogSPbVuydZhgsTXUMfVz0ukN2mE7fnkVmqAFn5QK\n11z0bg1bJ2bfghWMWIhVGH3wAAAgAElEQVQZ5wvCQJEE2d4vt0uDH6naKbUHSE0Th4MX7eM//Mtv\n56f/n2tgUURWls4PvPJlHLxoP/iGYgwbmxt87NOf4t03/BUf/eTtbM66L+j8UaqS2nkNrpOio80Q\nAsPQ04SG8XipjqEys+mMuLmJHXSk53zAeg3jdN6RhocLmQe6XG35LxbUhQavFMEkLQ6GYcB43fQV\n9V+0yyELsrhukBm16xtjMEXUeQJaWNQASVlY50U7zCUXUip0Q2Rjc8rQRdim3zdLIckC11Cq2LKG\ni6askLkqPralRhRYWwWmCaogvsSoG0rb6li2ugvJPTLMYZhDN2D7AZfLVrf4XR+6hTf81ns/C/Nw\n7ftu4mde+hz+xZO+FBdajPdkMaQCqcBLn/oUrvnLc3eMv/Xqb2D1/IuxWTi47wDGfPAc3YMbufj8\nx/OSr3gqv3nDR876esiE7/7Gb+b80Ziun4OVmjE3aPfIKFBQKAr2Q7jz+El+7k/+WsNvPwc2+rPv\nuIanPeogB/bsxAQF7blGQaw2BNVAVgerMxaSZmGJJNJ8kzxxyrIZjVQWYT1lmOKz0LStHpxL0eiI\nEKrMoVRIaR1516TyXPQAI3bRt5Att5IqBu1WAYFDxd0pc3Dvbn7g1S/j5//7/Q663Ahs8h+//7vZ\nv+9iJl3HyePH+bubP8H1H7yBD99yK8fXJ2T5h9cKqVBXsFujcFiYCxQd4ZwnmUiJkZyyjseMYRg6\nBTUuxO8P0vWQFzLWeWLKLK+uMF5eYtbNSTnTjhTSk/oeKQXrqaKz+59m2KrsvHV4o04Bkdry8mjs\neU4MMXFqbZPZVDdq01Q2gyj90dqAr3oYKULGElzQyPukrhljLAtYFiIqJm1GunD4hS6jCkNz0igA\nkyusSguZYtEZpzHqarDCYArz+YzZfEaKfR2dDWiEk6+LX812qRyJGHvOHzu+/alXaKp220IwTDZP\n0G1avHF443jOoy7mLf/m23nHR2/mvpP3cN7SRTzr0n1sc3D3bbdssRKwKma11mF9qzj+rPbOkjKF\nTCyZ7ANeKpOiQAgNoRnrf4dFihabFrVYmiJb4sOCCrutM9p9suBdW0dSBucC2BFZAmICYaw4ce90\nxAcCzmCNEMZLSEpIN0NKgwkNGF+zrMBI1I6YZMSOavu2/g5DwIqGQkpdLIxzWiilopA9qCNFLW5z\nzoixuCbwwuc8g8dcejFv/7O/4L4jJ9i2fBlPuuISrti3m0N33wHNmLWNTW659Vb+9IaP8De33Mak\ni3whAY5SHSlg8F47lSlGDb2r7CQf1EXh2oZh6AkbmxrIGXtav0TOSYvLirbX8diD5Q/4//61FehY\nFLq24MFshQAKZ5gp9eDrnI5e+qGjJA3PW/CwFmyNQkZyLWxY6PpqkCTomlJHM0WEPmc25nNiynWD\nQyc31epdhoGSCh6jLJb6XqQK08VoN1iKjpwk6/stsY6rg8ePArQe8ercMTmTh4gtQls7qtZAscI9\np9d5w2+9Vzf8z8E8/Mj/vIanX/E4HrX/QtxoTMoZ6XtKSjxi/zZ+5jtewY8sDlCcKfZ/+Xu/j8su\nuBiTPbEfePkzn8V/+aN3cq6u8bd81VVcsudCfuZbvo0fecv9D2QaQvlzr3kt+/ddzNB1LK1uZzxe\nIg8D/XxKyhEWonkr5E4DC//4/R/lnOG35jre+fFD/NCjvwzXaNEitfNvfMC3LX7U4BrN29OxjlTz\nSKaknlSyim9DSxaIOSEpE/oO67x21/JQb4Oasr0Yk0vZmriowcAsJpP6yzY1/mBB/Ia6H1FH7XoP\nPv+ZT+ZRB/byjvd+iPuO3MOulYv5uqc+gcdcso+PfeIWjh47yi23fYYP3/xJbv7M3ZyenJsb81nX\nYnJ5P8GvGOXbGKvPkXOOtm1rjpJVB1jWvWLxMxpjt1AHD8b1kBYytlqmwbA0XsJ7z3S6Qap0wDPd\nFqdp0BhyVGJryUVPRqAiXRY8Ay1EvHd4MUAPRj35pzZmTCad/rfljAXXVfy3FG3fakqo1bAvieCq\nZiYEjHFIrq1ig84tna2mGkVWG6QyAbI+BIs8Asmk1OlYTHThy7UFXSQhOSl9Ng06x3UWsbrJIlZP\nFMYhVpBKpk2DhqTZkjDRYgSGqKcPimCLsBQjL3nkTrqLloh9T5qvM0uZvh9UVAq1K2U5No381b0n\nOTkf2LU84kkHd7NrZYQftSQppKGD8WirYxN9IPqOJjR458EKLjhwAW8M1pUzn4dJuohboZCrO8hq\n98CrUHrxMHRdr46jWChOSaq2CUjQoiVLweUBGTrSbEPF16MVrcmoC7uoXsbEXu3Y1ZIqziOuBnSK\nZigZtxgdFjU62xrUZ7QTRN1MFpveRXvO41Xf9Hy6ecfptXXWT5zkxLGjfPq227jprqPccfg4dx45\nyfpszj92DpwrLMw4i3VC6nvVkXmPaxxioGkDxi/RdyrKHLct8z5qFINo4KSvz02KiVSFjQ9fn39p\nN2VxOtSNIC/Wh6qtyDlTkqujG3VcFol03bzSaVWrkJNq+aQygBb3EVhy1PGPcoykOu70++aSmfc9\n09mcvh8+a4HPVaSeup7UDYyaFl0NLYiKi+8//iZFJCVMqSfmQVOpzdhpRpzX7mVJiZIyDgPWY2zG\nuIAPLcVa/uhDNzzghv97N36KH3vsV2BDQytCGKfatXW86oWXc9XTvorfuv567jl6lIO7r+Lbn/1c\nDu68gNwPxL6nDJFLd+ziV177Gv71r7/xs4se2eQXv/O1XHHJo7CN59u++nk89fLH8Ls3/CX3rZ1i\n/57n8IpnX8XBC/dh8Kws71COzHiEdZ5R3xOHQQtURI0dqWAFjm7OzinYF3k8R9YnhKXzsK6Kq12F\nLziLDXpAsE61gMqmseRiFOYpdUSUs+5VYgFHHjpyN8f4QHEeI66ud14LzoURJEbtpBmp3djavXMW\nMepiMk7X6gUuwCxuYrRDm2IkpcSFF+zi5S/4KtZOrRE3J2yurfO26/+MI+sTDh89zl1HjnJqMidq\ny5B/eIGQM/e0D5olWN+LD6rJy1nz7kLTqpHHOeZdTx97iB6y4FDd5P2dVl/s6yEtZMwiC2Brg4jM\npxMka2tKqbCuetbbGpu+aP+WijquDBmohYHeE/pwam6Pdwrt2Zh2rK1PGYbM0lKr7UKrpMqSkxIt\nnYa0ubYl50xwDusXtjgdVxgLYHTuqfnpOks3KtDSHbK+U6sQNaQQY4fkqDyIooTJHDu6zdMa7pUG\nTIyYNKjWxGkng+CqsNNoXpADQdvfGWUfyFw/R8naYi6xqGgtF4Z+IFchcSmahyBZkKjo/CK6cf/1\nsSn/4/YTbEGUjt/EB+78OC+5Yi9P3H+efp7BK4SpFiclDdgmYyqZEmew0mKcbv6GOsfPHpcLNmco\nDtfUAM2uI6aCGY3wSy2mJGzqMYOFuSG3mWZlRU8+tTPhmobgA5iCmAZSJnYznIC3q4gP+l6dVZCd\nUVEcUu43Snb63NZC0qAAMGUqaBq59bUoFdXguJrwWuqpQvVZBWsF14zoZomP3nIbH/z7O5gOUtu0\n/9iHVDfSmNT15pzTn7dtWRqv0IxCZRypXsv7hpWVVTbHY7V1F+UtUU9yzju892fsvw9fn3V9/vK9\nKILRZ9BYxEA/DJqIkSvuoWRiLMQY9eRplA+VKVuftSZWq+VfisHYpJ3BOocyVg8eUrKmYHcdk6pP\n03Rt2eoI4Sxu1IJxGOP0IJZ13XHF6AZalLFlYtL702qeUMoRsQ7XjME1CskumZzU/uqtV6x/3YwL\n6pQ7fOKBN/z7Nme0u3brzzJEiktYq4W0KZ7L9hzgJ77jtVsamlSp20tB6a6l68lDzyuufjFPf+LT\neMufXM89J45x8MKv5xXPuoqLl7frOKxpcKMRX3b5o/nSK74E2zb6M5WCa3SMm+cdsjkQMDTbRzQr\njUItrUFcUMlBTNiceeRF+zHmXeccZ110/tOIvSB5AKKaF3zNPguG4KEJFt9qhpJtWkxG12Ix6t5K\nA/SLtHqlCKchYmJSh5JYdZ4taMum6jUXX6KyFymCqaG/mrBla2dwSxiqxcWWHkvdatahXXajn1Hn\nx9x25BDv+7ubOXRyraZa3//O/0LXhkX2myUEj9NzqRbVVePXtI0G+jplL7nphDJTPIoLQWMNFl/O\nkc/F1fpnXA/taMmoqt9bDyUThzn9bEYbVnHB4UfKBREpFUxmqkMgVxFtUWhZtSilnIhRC4gUo7bK\nRBmEucC87zl8Yp3NSc+27ct69naujjbyVnvO1hCwktSeayp/RL1mW31m7ZKUhfBVapttcUtp8VR7\nwxXgB9Y2OCfEEkk5Evsp/WyT2M3Iw4CVQmOtPjhGEfVovBtiNEMkpYEcIzkWktHNskipgCVtZ5c+\n6UghK2XTSMGXotlWWTtBpHpSM3B8Hvkft59AFrkvjJHa4v3DT72Jy1Zbdo28dkVyxDpLg8XFhOsi\nppI1faspsdZGRR8UzaJyoeBEsCVhxeNM0XwQDB6DiwbmgpQRlpFuwNnjaJAYSUNPKdrR8T6QmkCz\nNCaEETRCnE2QlPFBacoFjYUwdvHQ6wlGi72kAsi6wOZcsLJo1+qJZ8FGUIeAxZozhYmpYmfnrCab\nO4N4x+mUuXd9ziz+U4sYvUQ0isMgeGthNCL4QPABby1iDU07xudESXMFSS4vM511WoRh8HXUZ13A\nN7rhPpy/dK7LYHVfqf+vLtbWsogZSDGSvN1yWw7DUHWZmtfFQqBtbB0Pqq7K1cPOVkq61TiNnLWo\nLkXUKY0wH3pOr20wmUy3xslFLBbVkvnxGN8IRIWrKfao6sFqkCJD0m4MgM1I6ik56ui5aTRssWTt\nVsSELegBzTokeJCGYgp5gAO79z2gfuXSvS8gNCON88BismbwGGexbcA0QTfYQRlRGEMzXqYNQfU/\nAZUHhJZHXXoZP/1d/wZnHSnOSf0c6aOOd71mSYXGVBuzIUWPGPBti2kb3C63FWFCcDUWoHYnra/f\nSA+Ur/q6q/mF33sr5xpnfc2XPZ77Dh9n4/RpTq+tsdHPiZJxzrPezfnr2+/g6Po6s2HgvJ3bufIx\nl/HKFz+XR168i4weHlWbNGhhGAcYelI3xbXNGe5KURSE6i31cG5qR1gwWwY0qWRfqesTUO+NeqBk\n4dJdjKUrpdxpRzFROLY54c7jp1ifzv+ZB5ozhb72MYsS0OvISyh19D3GNRY2IXgPNaBUpxyyNR6z\n1vBgrEoPbUfGaBvdogXNbDIlx4xt6mJA/fdGb2SDPigLWJluJk7DkqtLRvktqurPonXigm8w5MKR\nU2usrc/Ys2cXbbB1xgwEr90DY3D1QXBGFyNjTbV0C0jGGNV9EAKMRnpKL2dcVFsiYqMnJEoi56it\nROMRSRQyOYu2YqtDxY20jWmLr/PXWjPleiOL2tZyzqpmV60gR9anvP/Thzm+Oef8sec5+3eyu/G4\nqBqVynfDGsORLvLee9c5Nh84v/U8a88q+5Zarj96snZizs5quHmt46VXXExxhoyKCr012FJwotIv\njcir1FPAieHo+pw///S9HJ/27N25yguecAUHdq9gnKiA2ViCdzQVve+ahhBaGt9UzZKtbdeIlFhF\nxEKcgaRtStQ0noyhzKeEptHN31p1KJgKhSuyJcDUjC51gRnnIWuLHbfQOVEXGHWMqJizKJ+IOvKj\n6O/Kanekz4nbDh/hvo3Nf1YRAyqeizHWjqPe81L5N856XBu0dVsa/JBw3uIXTjAsJetGptoxsKYl\nDr2ewB++znF9tvBQAXMqas85V5S/PoO5JKQ4LEp+RlItPBYnZHVCFtGAyJwTMWqmUK4uuJTVYr/1\n/YD5oJiIzY2pdkzrOFOK5uxYZxaNtpq1VbY0Fwv3nhQt0g3ULkCn96rXkWSOGnSZhwFTwNqAM3pY\nK9XZk3Oi2MK/eO7z+a9vP5d+ZZPvfMELwThs22CbEdIOCsgzehATZ7n1nrt48zvfzl1HDnNw3z6+\n8+oXc8WBSwGD8ZHiLRmja2Or4lcnDisNNrSIsbrWIXhjue34Ma55zzu48757OXjhXr7z61/M5fsP\ngBQVWjdeC5aup3QTdcg0I+oHAlLYv287//n7v4/v+6X//Hmam3/99VezfnqdT33yU9x1z53ccege\nDp9aZ5YSE2s5kjILpxPcBHce4v03fob/+3f/iP/yf34X3/Li5+jnn5IWwH0kdh3STQnOIHFZi5ys\n1g/JBXzYkkeYzJakokZ81qgSqwYS56ly7zPFjD7sekgzSnwWWWDUhc3ZnE/fey+fuu8wG90XZjg4\n1yVVu7PwixcEvMc3DePl0dboyzpDaBqaUVbArLHEoiLykhWoaIx2jGOMX/Sx90Pbkan7hlBIJbK5\nOUGw5KriL0NP7ge1RVs0w8PozLjkM8F6pqq+lYIKKeUazladKyIUCrFkjp48zdFjp3jkJXthZFVA\nXNvAxjsNv6qtX2vvr6yuJ6qFqts5HbNYsN6AOGXFQJ1XVoVfQXU2kjG+oRRLjJkhZ2LOCB7jxzo7\nd5r7YU2rY46UKH1UK0AdwxVBH3ovkDIf+NR9vPFDt1VXweMx5kbe9alb+e7H7eG5F+3Q0QRqlfuz\ne9f4pRvvrn/2iRhzI++85xDf/6RHsCEO4ezwPHgCE/kMu/fu125HjYhwRrTjImydwmwdhznnePcn\nbuc/vefD3D/v4/f+5lP8+Dc+lxd9+WXa/WpHhNEKvtXkWB8CoVkmjFps46EyZMSUrRamSIacGWZT\nfLNEExoVKOcJeT7HtWMF52WFS+lnp04OkwtI0kWkWmetUTiWdmwXugi2Tg1b8qtFWGVt2VKLQ2c9\nQy6c2Nhk0nX/7BGOCPR9pO/mLI09UrOnlA5qCV4t7KYIzagleC0GF7lgOWfUH6f6JOcsTQgM3fDP\nfm//O16l5No91WvRdTH1lJty1jVlMZ4T1bY4q/EVUoqevGu739QCyBmAcuZELfffCLQbo50fUwum\nwsZkzmRzhuRq6+Z+p24sxkGxjlz3Ere1xEktyDVEkDre6Ls5WEuziHAZej596+285e3v454jJ7nk\non08+0lP5IMfvZm77jvK/t17+ObnXMWFqzs4b2WVH3/ld/D6N3+uyHaTX/3BH+aySx8B3mHbEQQH\nSwkzxDrbt7z53e/gdW/4Cc7kvL2LX/id3+GNr/9pvuMbXootmTYvI8Cthw5x7Vuu4+5DGmz7nVe/\nkEcdvFTHxEUzkq5959t53U//ZH29KzHmHfzCW3+bX/+xH+MVX/Nc5tMpw1xDa203pWysEycTjG0g\nWCSAaQwlCM/7ykfxnkt+jN+9/i85dOQYF+64kmd/2WMxWbjr7kPceded3HP0CIfX1jkZExMpTIoA\nr+aznU7/CpFrEPlGvvenfo2nfvmX8IiDF4IxpCGTck8ceog9eQiUbkbxjRaRLRoQKeWMcNb6WlML\nuAq/s3qwVtHxYipQVQ1WT+J1Il61Usq1MSaDccQCpzamTGZzvhiPv5ppLKEJiCRCO1InZTumSCH4\nButUw+mdZzwa03hPGTRA01qzxVdqmkDsB/IDYin+8ddDWsiUvJDYFVKKxCFWcZAK6Oyg3AZdHio6\nntpqK1W1vxCtOasaBuPIRbUCupJotVSKkErinsNH+Z13/Rnv/Mu/4hEH9vLyr3sml+67oM7Ew9ZJ\naisyXmztxtQFymlrjGrZpOQ6x0Q3v/txTLAGSVa7Aj5QjFI0Yx6IedCugDVabzmjAjDTKPeABFlU\n5lO0zWhRx45UwezR05u88UO3cVYq5s1v4ikH9nJwxzaCC9w76fjlmz5+1j/7yx+9hhc99hHYQzeR\nz8Zq4EYO7Hs0u/ddpmMqb8g5Yim4Glrmm4Z2PNY9vxTuOb3Bf3rPh89qcXz9ddfwtCsezYG9F+DG\nY9rxCj4ExKhrKjRjfOsVwe1UACzBUyiUMmir3EZyhjyfErM6lEQ0nNJ140p7XhSUGktgigrBqUJL\ns9DDOE9ZALCsQvy0Na9dr2Kkgs7q2NBUsqZoMrB1HuvVAp6/CCuFiDDESN/1DEOLdepOiimSBcbW\nqwOgFNzSMnFpmZXV7YzHU2azCZJQnQIqItROjsNauwWhfPjSS0BHsvVW0W6q6pSk6qhSzKQhkRol\n5FrAGS0+JNfMLwFZwDCtqVTmWvTnvMX5kEXab9VA6NhIAWcFYdr1rG3M6IfMeFH0SNXmuIL1GrWh\nG16qu1l93SFShmHrHi0pkYYecR4nBZMTv/mH7+Ff/dSvY9iOcCUif8wvvfk6rNkOPB5j/phfectb\n+e6v+3oO7NhJP53w/Ve/iFuPHmGeNrlk71fybV/7Ah5z2SPp8ozQtIBQBh2/lV5Bn3ccPczr3vAT\nlPIqPvf5f82P/we+8slP5LIDBxETuPZ//gGv+9H/cL8C5W383G+/mTe+4af4tm96GQa4/TO38rqf\n/smzvt5rX/8TPGZHYM+ObcxzBgttCNiY6CenifMe0wbstgDLFhE1TezY5XnVC55JmnQkgbVZx92H\nDnP34f+XvTcPt+yq6z4/a9p7n3PuUPNcqUolJhCBDEQQ8OUNgyh0GKIg4AQIYqsg0vCIrTjgyyC2\nbatvY/uCJMggYEIEERBkkEEEX4aAgoSMNVfdmu50hr33GvqP39rnliEVUNLwPHZ2nnqq6ta5957c\nvfZav9/39x0Ocufhw5xYWWWxaVlNMAKgy7c7G7H+Y+BdwB4Us7zphr/lFb/8k1KUkMRzyNfgm2k+\nYGxrGecZNR19p5Ab5s6TR5NHNqCMkc/txlDktSpwbQZH5FlXaIyriEqcmAUj1zStELG/7eclIyop\nRYxWhJSTsLVwWUtX4sp+HjMptK4pq0peE7rmT+fmMI/wtZ4qphRrhf63s5V+ZwuZTqqolDj3KiV5\nPLWnHk8wUUx0YhBYNvlwlvkPdNwQ30YMFudKNJowaUhRXBwjcvCHGBkOJxw9sYQ6PIdSO/jYP32a\nP7v+A7z2Jc/hGY97JCkqsNlIKmqUy1H1KquayP8O4klCKxyalO3NYQoDonT2qgkEDEGL5bUPDQmP\n1gFjEkoFGTshnA4C2QOhhRiwOsPbvsXEgCOhM5n4k7cc49xW4Dfw0YWaX37ABRRFyZs++hnO6aDJ\nDZiyT6ILjryLVwMr/PTVT2Ln9vOYLC1hCkcbPJpIdrHAVj2qXo8QPKHx/OmnbrxHxcO7v/h1XnrB\n/cA6tColYkDpzJ81pBZoPLcfPcBbP/JJDpw8xZ6dW/iJ/+WR7Nu5AW3B+4Rvxig8OiRi29KEBlMU\nFMaiy2y4pILED2gj46Og5f6CtDFG5vpT6KUrgLp/1wqFEK479M8YyaIxTrxtlNJZYXBvIB6CCNR1\nS1M3uFLM2lJMRIPIQI3Bh0BhHYPZeVoPqytjQmhJsSFFWYvJSyp4Z19+XyHzjVc379fZi0g+SNf4\nEnygbVt8K7N+GTlmvlX20JBCRlBblYtGiZTosuBSdmxOORi0+/odx0G4M6O65tTiMqvDMfMbZ/I+\nImOmLohLxWlJvfb/EIV4L7YPsn5jbPHthBQLfOu59bYD/NKrXk+MXXNxCLg/8DziXeTVr3v/teyd\nGTCqG2YGA3Zv2cqFW7dxXq/P0cP7KYqWTdvnmVF9XOtoRzWTlQmxBe00f/au6+9hv3kXf/aXb+bV\nv/wibj50lJ/7jV+7+4LnN36dKx94Efv27OKN178Vpc7tAHzd+z/Ai57+wyQHOEsoe5jZdSjtiItn\n0JUiDgL0Yg7a1PjQMm4mpABNSoyaMccXT3DroUMsLC2zGgLDmGjoJh/nciu+DDhESpdyx6FjtE2N\ndo4UA6EZ4scrGN9CjISEBGxqaVZTElsI7SREUiTXeXRI5mie5beitMq0AtmXyIHKHTFcKvFc4Bg5\nq0bjmsn43kM9Qoz4tsG3tZxZSqYqSmmKosIWPSIJlxLGjATZNkaClLMJpFYKZ8RLTTy8utHtvfIW\nv/M+MhKkpqemdJPRhOQh1A1JBUbDVWihKius1SQv8K6wuwFkA5jOCo0UEDEGtI4Zb1O0PrAyqiGT\nWVNae2hf9gfX8dAH3p+L9mwnYUDrbh+bojFTeYNSIonWcoB33dB0lNRxY5SQvPxkKJwMpQldO6fz\n1EvLa7U28pOPERWDuOC2LTqBSQEVAjp4bIwUKYF2YDWnJ4F7ergW/CkGOy/AWcex+h+5JwfNsT/N\nK5/2VF5+/Td6NbzmOc/m8oseIDH3tsJWBUFp4bAkhMCVx0kxBFIbOLZ8z4qHw6cXUarEN4HhcEiK\nER8Dk7rhlmNHePdnP8sXbr2dW44ey0nfD0apj/B/vfmveN3Ln88zn3gVAdm4ldbEVrJwdDvGjQq0\ndVgl2ViKdporA/J7zDJ9kcerLHWETkGHEqk2mbxIyA9ZV7Bm6aPJjtCESNPce6ObGCONF06F7hQa\nRtRe1slMOuQwQutKev0+M/OzTOoRqCHj8WQaGpmSeOY4Z2iae+Xt/ee9Ojloyl4yyNkQQ8zhtuTA\nyJT9Q1TOdgs54kuaGGMMWuVKKBM3/VkHSbdMRLWUiFqQmtXJmI987ia+dOd+7nfRHn7syY/iwr07\n5f1kfxmV35fSevqLjoSpcjOVhFwZfS12FW3LW97zYRRdmGAFXAv/5u/QFQdwPYdXlwnAicWGI4tn\nuPX227jfzp0EG6k2WnpbQMcJKiSaSY1vQakBWhvuXDh27uefy7h9/y1MVr/Ote+4/twFCu/ije94\nCy//X5/B7Qduu4f95HIOL50h9hLJCk/Et0vUIWEHfYxTKDcm6KHwcKzsCtQtk3ZCaB0TIqt+zKnh\nIkfPLDL2gTpBg9QKsv13SeXfiFjDc0F9gG0brqCpGyya0DbUw0Wa8Sq9LEJQuchIusCYUkzoU8oE\n3zQ1TExknpbOyL8CpQxJZUQJCfNMIRB9yM12RpqnvyCFwOrqKquj0b2WbZRikglK3WCRBPi2afAh\nUvT6uKrChxZrKvyzcNcAACAASURBVCZWQp5V9jiSkaeMlYyWPbbX6xEzLSOGe6eY+Y4XMiDVp7UO\nazWt96RWAvt80zAZT9BRM5lMsikaWCuwbchsf5FuJ3yIQvpMZ4cCCsQ3njRwDx3COz74cX7zZ5+B\nChFlrXi1+JQJoVJxZlE3ZJRHK4P8yDqyXcqjbEWKLX60iB8NUbaU+IIU8SSSMSTrSKYFY7GFI3qF\nr8coRHFilEUlj21bTA6g09rmLCCLSo69W7agbj23Ffj55/0As9svgJDYvW0nSn2acykQdm96CM+4\n6gd52IOu4B2f+DgHTp5k5+aH8YzHPJoHnb+PwcwsPkIxkz1zrMWWFWhRV/kYQBvhy9rA3u07Uer9\n5/x+OzY8guWVCacXz3Ds2FGOLBzn0NJpPnP7fv7xtjtYI9RNiGkFeBakpwMv5Bdf+Xq+/4oHct6u\njXIvMLShoWkbTFsLdNtMJFxSKYRB58H1QMn9SkqTVPYkyhlNdL4MSsyelBVVko4q568kyLlgIUip\nm1JEk2j9hLqp7zXSmiDFIotP0eO9mHkVWVFXlj1iGxk2KyilcUVB1e9R9Ac0bWAyadBaiV16lvAa\nW7CWsnzfdfbVFaCdr4XwXoQ70zXEMQrvRegmQWJGpsXJWeRdJX5SYjMvhPAQJc09q2WnvZHqNveA\neF0NJ5wZrsCBC/n0F/+BN77z/bz2V5/PM5/0WFISn6ukUm6GtOxVSgEhjxpyIxbE0TcFj8JCihw4\nctfA0zs5d4bRZVg+iUEQiQg0JEZEVomMdSKWllRaQmjxZcILNR9KzY6dmzhXJpniJnZsewiTeIo7\nDu+/x4Jn/5EDtP4UO7fNo9Rnufu97iZ2bL8C1bekbLURg6KuRzT1GKMDytQkq9GFWGkAJFdTx0Bd\nR4Y0LNXLrEyGTNpAS86/A5yCWaU4Ebuk8rMR618CloH9kFZ4yiMfQDMZ04ZAGI+pl5eIbYMqe+gc\nNJyiIkWIjWQnmcrmg7xrhqWQVoncZOWzJosYYuiYU2m6VpXOnllJXKBTFHWm9w1Ly0usDofiGP5t\nX7Jfep9o2xabc5VSSjTeU1pHUTp0k7DKMipLyqpPUfaZTCZ0wGLqMvuMpiwL6onJzcMawvntXPqb\nv+TevxRSibWZqCaumQ2TyXA6G5TE2ck07VrMys6So8U0VUVDnuVliXZMKSs2zv3AHDp+EpARgtJi\nzibSbCv1bSZSpdTN0zVoKxWzBvnmGRlKntCMiJORdPhGDOJwJaY3QPf6JFuQsqMjQPQNR0+e5vV/\n82l++y0f5Q0f/CILp8f0KBmoPrPFHLPVOmb7m+gPNtMbbOXpP/CIs8ZB3QG1pir4icf8MARHCoYf\ne8QjSWnpnK991uOfTDW3gftfcDG/9VPP4Y0v+VVe8/Mv5IpLLmUwM4e1jqrsUVZixlV05nIpEpox\ntDViABhIeH7q8Y8npXO9t2UecfHFfPX2O/jsl/+Zj/3TZ/jrT32Ct3/8k7mIeR5wFPg4cAR4Tv7Y\nYboo+jff+EGsVsKtQcn4sZngmxqf/XIk76khxgaSBMh1Vtkd6tLNfGPmXKXpv6kc0MYU9qQ7uOJa\nx6My2hFCFCfRb+EJnB5k6pyvICVoW4/SksbdfV1rhLRcWEeZvY6MtVRVT2bRRYWyjpDJo9ZasUqH\nafrufdfdX9NiRndkPDLaklGZGARC1/KPa6G1+eU500emTqIekiJFNu2QEjGS5fGI6WX+XIkFUQhi\nfJSUPkaIh4nxObzsd9/A7QePSN5XVk8mnYhWE00XY0Iuvh3CxVkjJ2cgkd3bNqJU1/gA7AXO/nt3\nSbExbxXrjcIJ8ExIkUlTs7S6yvJ4TNAaihJV9VD9HqlUNIxoVM01Vz+SxDn2G5Z5+jX/FV8W7Ny5\n6S7v6d++h53b1tEqz1Ovfvg97F/L/OjVD0VVTlRQVhOdJtrIymSB1ckxmjQhFiXJVeBKoi0I2jCO\nnpMrJzm9fIITJxZYXFyiTdDm8V+lFdud5kGzFY+Y7aG4FsV24L8C24A3oihQ6l287MevYseW9Uzq\nCaPVZUZLZ2hHwq7RzqFchTJFRidYi6tIJk8C1kbUkrcm0L2yFu20BPXmzK3UcfX02QonBGlWKkcQ\nSo7d0uqY4ejbFyF0V5wiRrJ3FtZQVT20MZS9HmXhxHNHa4qyZGZ2ntnZOcqymD4f3ey28zaLKd1r\niBF8FwoZlUm0bduyurJK07S5kFBTWZlsJJEQPHU9oW2E5KbzrDoBPoqrJpl300FzUrWSzfc6aPDs\nSx6YXds24bXCG4VXiaA0sSiIhZWZZAxCNI0NYjo0rUDETTWz91TbkEZDwsoqsY3oqo8ZDFBVha76\nuKqPWLgI74cgSpr3fepLPPO338rbPnwrf/fF7bzl7+/gR37/XbzvK0dwxTxFsYFysJ1qbjdFbxvY\nefbt2MvvPusZaHUdRu9Eq0dh9A60ehN//Isv4IKNW0ghYJTi4m07+T+e/Ry0epO8Vq+99k9e+GIu\n2bOXyjpsUjg0fVMwsBWVdjjlUJmv6I0lWguuQJcOnCFaRaSlHS8zWjrJyuIxNvcNv/8LP7v2/abv\n7Tpe8pQnkFLNLQdu42u33swtB/Zz7PQZFhvPGqGu67o6Qt0c8Ea60dQdB49kt15FIuDrIb4eCvky\nSLcclcrFYiHpwCmJcV/Kqb3IbTRGOA2du3EymaCt1fQ2r1XMKcdimGlOVDe6rJvINxtDn13EnHtf\nkS69acQHwxghmYoPkZj0WWMoe4NMKtRU/RlmZuaxRUVRVsKHydk7RVFI1MZ9iqVveqWU8tiXqYx0\nutFmCbwQeXVWNQqC160PbeSgiSnQqYlC8FOgruuKnRVkT17bsbPubu1L4f7O9350qkyhKywUBC0F\nVOoS05URYnp32CAhlt63PO2HfuAuxcDPwDmKDVjhytk+e8uK9dpgEcRoVI9ZPH2S5cVFmhAJxpFc\nRSr7pKIgmITXit17d/PKX3seWl931n6zHa2v4zW/9hzO27cL7wqeds1V36RAeQTeGHbv3c5rXv4s\n+Xrm7P3rOn7zBU9k93kbiFbJHq7y707R2EDjNKEYEGyfoAu8svik8AHGvuXQsf2cPH6UowePcPrU\nCk2UCMf1RvM9VcUVszNcMj/HVbs28+LLzuexFw540K6vcsFWw+Xnb+NHHr6P6176VJ74yCsIylKH\nRD2pmawuEXyDdhZTlGLZkaXykEhWE40Wu4YupoDY0UgywqYkNdtJ3yxRMrmZno4WZZ9KWk2NW6XJ\nVKyOJyyuDKmbb8F0TsFZS/keLzFs1aI+UoqicDhn6VWVyK21EQTTOKqqpD/Tp9cfUORw3i6XSWI7\nxNpCYkK+fTQGvguGeMauSaAn4wlN3aAp8DHPdFBTl8sYhYfQ1JnMqHSG3kNGXQRGVdPTQggpKSYK\nZ5lM7g4alA7haU98tHikGJVtw8VGOSXR5KvoUSkIuSllCVz0CLkvqxViTnluJqhxLUTWoocuxMlS\nhUAYT4iTMarx6NajY+Tg8ZO89m13n2nya9dfx0P3Xsi+7dtws5tQRYlqAzQtoHnW467m0Q99JG/5\n8N9xcGGBPVsey7Of8AQu3LkbX/ss3tJQBX7m6qfyqIdfxds+/EEOHDvKro0/zE9c9Rgu3LIVkxJl\n1QNnSSFw84EDvO3Gd3DgxHH2bN/Oz1zzo+w7bw9GQaonwkuxCT9cZXxqgfHJ4zSNx0dIJpIcPO6h\n5/PXF7yYd33s8xw+doqtsw/g8VdexvzMgEPHT7BwaoHDJ45zcmWV5TYglOd7ItTdiUDJX2Tr+gdT\njyYkVxKDpx4t0TRjbNGbHiwxISnmXd3Z3SetUJGpIgS0qI6sBkKGc+VQMs6iW4/xkZTEe0Zif5Pk\nNSmND4HRpGY4rqV4uOsyz/yqTh6p6DjBa8VUVzEppabk8dZ7cYY22acoJowR/g8aCleJh03T0BvM\nMDM3z2CwSPQtw36f0XA1B7YJj4MYpqOT+667v1JGTbqu8Wx3XZ0LV2MU1pg8Xs57ATJOKooSaxQ6\n5eTltObQ202epVvOBmLZL0auc3HYLuPQ0QUZd8XUmYlPofipf1aMuQHMRFAlRZVvGqgn7N66nle9\n6Bn8+h+thQkmClK6FqVuQHEZIKGyT9m1gQtcwcnhBKfgzrZlJUiMwtKpkyydPsFoPKGNGu3Edj+Y\nJCZ3tiKYkic98bFcftnF3PDuD3Po4BF2bnkwT33yY7jg4vPw+aHYvXcnv/tbz+VXX/HGNW5efg+v\n+pVnsvv8XZJNZA3XPPlRXHbpxVz/7k9w6MgC2zc/mCc96gHs2rERbyuSdkTVSBMTDV4rWlWgnMWb\nPkGV2aNGUuRXJw0ro5oD+w+go+LYidOsLNcMjGa7UWypHFv6PTYMeszNzNBb12fHljku3bQeN9PL\n+X4K5wy9uT5JG9qQ8I1kwIXRKhZRdBpb5CJBzA1V18lkd3RbFEj1nNVoJBlrO1G1SrgxIjYIoQM0\npk26mi4KMqFH4UNi4fQZTi4ufVOS//S45JsVEmr6mzYmR/OIRxEpYI3GuQLrHJPWo42489vSUg0G\ntI2nHQ0zGR4ZJeXPqetuiPntX9/5iIK8sbYh0DStSB1NpGlacCJXU0mgsi5Hoq4bfN6g6bSMJEIM\nsgYARWeKpiQwTUjchHAtcANwKVp9CVjh1S97Hnt2i/YfrdFFIam3eecJKUneTogonQ3mogTxKZ05\nMjkYjCBJswC2sGsz7BTF56GeoHzAITJfrTV/8w//LIS3cyh83vXl2/i1Sx5CMb8BYx2haemFBAFc\nUXLJnm286vkXgQ/oGLOrZoFSoiAy2qCd/AAu2biRV110CaFuGA9XCfWEZBS2N8D1+ihnue797+b5\nv/dq1hJv38f/+Y6/4PWveAXPeMyjqVfPkGIkGGhHKzTLS4xXl2hGY1AWPV9CqaDw7Dxvhp//8auY\nLHnCSsB7xXI9YXG0xJHTJ1lYXma58UzonsNvQqjLo7AnPfx7GQ9XwXlC29AMV4nek0rEYErbPDoC\nYiD6Fm0zrEvnSOkJSTraLj9HqQgm8xDyupqGhXbEhs6XJokFeohR8kTuxqdFQJ6ueMgFBQpFzAnt\nmayZuRIKMm+nW8gW6xwhBrwXlYNK4H0jUkdXsLhyhqqq0MYwMztD8A1VP2eXjce0HQk5RYzR94oM\n8z/zlUJCZSSmEzFlMelUxq61yWPkjqfQITVGFClTP5/8NbtCtkNU0tr+ssaruvu1LyOWqzIylF1b\ntbh9ExJReXRMmJxhFqfqqJzKnMNVjdE8+aorecCFO3jXhz7D4eMn2Lb+Ui7fs5PP/svtHDm9nw3V\nZh6y9QIG44bVM2MsEpA5qB2HJg3jkFhdWub0sROcPrHI3LYdlLOzJKOY+AmjUaAA6DkKq9i1by+/\n/KKfol45g44KU/UJ2WdH6nfFU695FN935SW884aPcujwcTavu5SnPfnRnP89+yRJHoi5Adi9dzcv\n/uWfxPtEmAypVxdpdYkdbBe7jXpIrAMhNxinT4+Zme9jBg6nZ4kEdIpM6jHLiyMWjp3i2NHTxDbR\nTjzzSXPebI+tGuYrw+xMn2p+hsG6efob5+lt3UBvfg5nNToECX/UglAkEr6dECcJRitQ15SFRIQY\nI1lE2hi0LcBYVEiIqVzIY0gjFhy5aNG26+VjtvWQ8y4GUU5OlWsq70cqxxkge5oPgaWVEaPVb3Tz\n7dKBpn/vRlRJyAFr19oCPSvZKX+OwTiDti7vlDINca7IPw85n2L0GJcNDrWoLVNKOFvQtgFUwpUF\nZmzuNWXVdzw0MsUoBk8xMWlamklDUeR5WdvQNhNslI1cBdlcQvCE6DN8JWMfmeH6rGpSeRansveI\ncCC00SgVsGaIUZ/hkvP38JKffQGXXX7xdEGkjh+jhK+jswLJh4jO0HJMCR2DHEdRDkSC+L4Qosz9\nSFhnUU5CHnUUl0+tFM5adIgYW5CKPsfPjEjpHN1YuozDyyPc7EZsfwZXOLEWH7ekVhyxtLHY0pFc\nlKwmo8WxtrAoK+6fOmfGYBy3HD7Ide+9kTuPHOK8LVt49uOv5n67dkHV45aDd/L833v13fs1/NZv\ncVFfs3Wuj3KaWAgTXfcrrN2OXzwt5mKzhli1UGqxF1eBoDx1CDReMwkNK+2I5WbEauupMwlaBNB3\nj5rBIoo/BTXipU/7AXZsnmE8GRLrmjCZSBHV2a1nTpLSVtJJtAGlhTMQOlVS14LEDKnGLMHO/jK5\n84lBChCUymMDIGrZMBJgRIA+HI6k+D7rmo4C8tdU+QNK67X4ACuZUyEEcVQNYlGulZhO+TZhTEVS\nDXVbMxqNcYWlqWuKXp+yqvDthJWlMwzm5ikqyWWyzhGT+NHEEKYHsLX2vkLmW7hSFBNNrckBkV3Q\nrAPIaAriJpuLVGMNSiXhSuVmRuh0gvTJGlA5amSNk7N2bJwbMX76Ex8lIyQiWjlJijdkNCa/B5WR\nHtUZ8AUZRSSPHy8TSARbsHPLRn7pJx5PbGvq1RWaxSGXbJ0V9/PxkOHSMqOFRclrI+GcYa5o2WAt\nC01LagOLR09y4Nb9zO3czfpynhhbvn7bHey/9SC79uzj/EsGzPVmGPQKtIblcQDfUFmL1YaQbfQB\ntHXsvWAvL33ps/DthKO338aGbXugvw6MIBVKIwqdthaE0SoillMLK9hqwLqNewkEmIxh3OCHY4ZL\np/jqv+5ny8Z5Lqi2smXzRjwtKdYMR2c4dfgkB2/fz3ilwUXF+qJgrjSsqypmrMYZTW/QZ7BxHYNN\n65jZvJlq/TpsYVC+keJDa7TJ4g6vUdES65q0uoJrG4zr5SyrEuNKMJaYM/uMkmgTlf2KOvdumTSI\np5ZBZS9WBclAaEW1lvLqWttkzqqS4cCRE1z/3o/y5X+9jROnlrM4gbU12f2h+3vXpOU/K929SlC9\nDkUkiVoq5v8sVijeymCLUqI0ihJjHUobXCYDu6KHscPsiSPr1bkCa1s5y43FFS7zyeK3jRp/RwsZ\no4UbI52MZTic0NYNRVETfYtyYrIUfMA5jelXMvbJMFZ2XxN4SjENjZyOpKaSRXnYOzjOaMX6wYAL\ntmymZyQd2BhDVOLXEfKmEJtGOBaRHAynsjeMELGUsZkA2mTHWC1SOB9QhRXiXc6KStmW2VmLcYqY\nDBFN0mVW+JxbUbR32+MobA+jZVSlSlC2xY8mksnUK1FVwS2HD3Hdu29k/5HD7Nm5i2c/5alcuHtP\nPshlIV73nhv5uVe8nDXzqffzh+98O//jd17Fs5/xTK5937tR6u4lmYp38da//SAv/NEfJLmcBaIt\nqIjtD0BtQKeaVE6INoozr7Uo1ZLshEnwjJvEqh8zCWPa6GljFGJdEhBnvYYT4VpURs3gJhIr7Ns8\nzwPP38YTvu9iLr5gB14lmnzYNKMRvp5QKHG11FlpojKOn+0NibElBSu27ioT6VRAWy2cbS2xbJD9\nP0LuhPKGobTOIeZSBB08coL3fPBT3HbnQU6dXpQ8mbOu6YaR4V9jLNoVaCPjTzF1lAc3+C6hWkz5\ntFYQE5PxmMQ8ZSVmg3XT0Nat5GjFQK/fI5FYPHMS7RxGG6qyoldUmDx3bluxnHfOYe4j/H7LV4oJ\nYwyucCgdps3RWrabdJOC6GlZY9nzKnaIQ875AhkLSapxmh4WMaSzCpmESKKvBy6bIsav/JXnct6u\nrZkr2EWcdiGBsr6TskSVCy9UpwJHW4sxLW07Ea6MLYnOYpwhppbY1oTQkHREaUsxO0eqeihTSHSA\nM7iVGmc1hdWsbyzjGGmWVzly8x1sv+B7sK7i4OED/N3ffYJbbj7IlVesMr9hI1U5oHR9tNZ86fO3\nMzewnH/RnpyUnKTw00ZUnEYTlafxnv1HT9HbtA9neyRTiupTKXzTEINw3ZJWRGs5ebompmV2Xyi5\nfJg+xjUsnrmdr970Nb7wua+yadDHmHXMbthFuWED2jiWTp3h4C23c3z/MWZTwYyFDWVFv7D0nKXX\nLyl7PXrzs8xsWs/M5g30N6zH9ipSaOniIxSCjkTfohqDsZpUN8S2wRiNK0psIYZwynSEXpMDSZGx\nWcfHS7kpJ035dxKBEafVbsxiA7IijWlRs1bHvPfv/oHXvu7tKOaISfZQaOlemAfsdKagnfeZiFmQ\n/XCKPOpp1ljwYoSnlMEYh7WSGyVotqPqzWCMoJK2cJkcX+DKiqrXp9frUVSlBKcie2JROMYTeWYU\nHa1jzTZiOpb9d17fcUM8ohLjuQTD1TEpeCajIfVkTJE19G3TUI81/apAK5lP+wx0Qe5ssqSrk8iC\nIoYoyqXOdyGPEYMPtN5zcnmFk4vLnB/WFkOnYtEpUY/HqKSpihIwgIS9KZ2yV4OREUXM5hxKZ/fG\nhHYFuEI2mRBkTh0jJhMFkzMkVRBj4Kcf/wT+5Ma/5ZyZJlc/ibLfz66eQrJVsxozHqF9RFnDm97/\nXp7/O6/gbHfM33/zn/P633klz3rKj4LW3HLoAD/3ipffLdryc7/56zz0iku4ff+tpHT3UQUpXcah\nxSXoW1IRSBZRTyRJsI4hovQErb0E1BU9lBU0JDjLMExYGg5ZHi+xsrTEpK5pUyQCA63Z7AwXDCpm\nC8cdrWeov8T2jfM89tIr2b1zC65y9HslxpYkZWiTIsRAPVoFX2N6VZ4/g1ZpmpGl8n09W0rb7Q3d\nhtFxF/KfpOvJGwbRkzEYUSkZzXs+9Ale9Yd/Dtl+PaWjwN0T6pSWoMsiy9WlvJHMHt82EseRH9jp\nCCuJp8R4PKSuG/oz8zgnWVwhyjpsmhaTVUmnjh+j6A3oz67H2IKyrHBFgTGGJtV4n0nw6d6Bbv/z\nX7lhSQrnKrQLGJfXSibpdjbrgrh1o6iMsnRBkemsvYUO6EsYA9Yogk93WTUJxTL98rM88OJ9/NLz\nnsrlD7wQjawL1RXZMctz1Ro5Xc5DWbda6cxPKPCuxYeaUI9p25aUevhkpIiJgaiiuIkrhS176N4A\nqww6JZy2jPUKpjDY2tNvWto2stp64tEFDnzmC+z/2i185c47+PyXb+bkyWWKxrO9X+BPfQ/7Dx3j\nvR/8e/bvP8D5e3fxnOc9nUuv/F6itmhdYMsSba1kBKmWpm45fmLIjmGgn0qS6WFMBQSiTgS87Ola\n06bE0uIiX/rETRz88m20KTI7M8vs7Cz/8uUv8rV/+WeOHDrMEW3xAVaWFrnf5ZcxN9/n5Ne/xpn9\nBxg0kdlej55OVNbRKwrKylHNzzLYuI7++vUM1s/Tm5vFFqXcwCgIvEjb45RsS0wS5ttMMCrien1c\nf4Are1jr8hhZnn+VFFPlkZFxd0pCjwgpiAItFxMdaSXFmJ2CA8F3CCFCvSABmgOHF/i9172dlJ5L\nusseL0WyoIcdkKONFv6O6UjC4kcjxFsh4oqpY0CpiLZgncGZEmsrlIo5wiOSArRNi/c+C3gaYoSy\nrCiriv5gQNXr44qSyWhE27RTZkiIfvoz6J6nTqAg+YL/vn3rO1rIhCD+HSop6qYWsk+MNE3NeHWV\nmFwe1bQEb4nBoxVYa6bVY7cYUsry2JiAzF3wYarPl9DEzARXUDctS6tDziyu0DaBXj934inhvaew\nwv73baTUHRJDRnakalRKkeoWP66FV6MjMTT4FGRWbi2kRPANvp5glUIni1JWouXRJOvZt2Mvf/DC\nF/K//fe7hpit8KcvfikX7b0QXcgIKapE9E3+uUXadszNt9/J83/nFXc/DvrNl/P999/HhRfu47rr\n33aPaMsb3nod2zdWKD7Hufwatm//flLfoQrxkxGfYUWgpYnLxHZIbzCHdSXYkmgEGk3WsNyssnDq\nCEvLK5w8forV1TE+wryx7CwL9lSOzXM95mcHXLpuwPzOTcxt20JvMAAdJTgSQFkxKJuMCHVLGA6x\nwWMAayzWlkKINXYtjEYpeVg7CPUsGBXyox0lm0jpjKBNU2zzxwEiHDx0nFf94Z//W3L2XTaLbqOQ\ndApL1RNEra7r/KCLJYCECMoaNsbK7Dp1HhGR1rf4EOn1ZyQY0miatsWH3ImjqKoBMcFwZQVXDkhE\nin4lOUzO0RgrplVtOyX03Xd9a5fPUHevKEmhIfqY3b9zI5bW0JFOPmqMFmViG3OxISiwz4GyMSaS\nB+NEhp1kIj29EjCoKi7Zu4f5wUBQXiedsIoI90Wc1KajbrLCSvIpyKnnfULbYtoa7T2pDcTgSW1L\nNilBFRbjrTiJk1AhYq1D92dgXSsjcKWwozHFuKGpW9pxg2s0vq1Z+sq/cCYGhsMRG+sxzkTiiaN8\n/dOf4JMf/xgf+eoByFlrRxa/xD+84Lf531/6fK75sSegPaLoMTNSDMQaH8esnBqyfGbM5t0Oa3qg\nHTHUhJBofeLOOw7z/vd9iIP7DxBWl4hHjnPHF75A4yVguFc5xuNVQlMzmyI+RI7ffhtfPnOS9tDt\nbNo4z+LBA1TDlh2DPiUWrYSzVvQq+nMzDDatp79pA4MN8/Tm5rCFQ+UA4ORbohf3dalLck4SEJua\n1E4wBorS5VFvhS7ES0zn5GtiNtqzBcoW+caLeERn5EabNVVkShDbQPBdWrqe8v3EjFHGUn/9oU/C\nORzVBelbzugyGGuFnO5KfI5u0Voa7+BryRfLYyCFrGGNknFXNg41riAAdTPB1xN804hTvZI8pWZS\nyz5oFLZwOOemUSmTZoLJiE838lcqB0VrRUoZuVmjB33L13e0kOkccWOK1JNG4No24JvAZDxGmZCZ\n+jEXGC0+ZPhd6an2XGXeQSc4TB3BMkaij1OGtNZ6KktsfcvycMipM0vZkbWbK8trlLEUc7O0ozbn\n9FhiEzBJOh2sJalESG0mhgaCb2ibET4mVIz4uubr+w/y5zd8gAOHj7N3xw6efc3VaAre9O4PcOfh\no+zatIUfffh/4Unf93Ae8Lt7ePNHPsT+o0fZOvsgnv2Dj+chl1+WzdASCY9vPb5paEdD6pURPgb+\nx7tu5J7subExywAAIABJREFUwN9ww1v4b7/4Y9xxx1fOjbZwGfuP7Oclz7ma1739fZwr4v4pP3Qp\nVB7lZNYpdbQmFolYKZpJwtkKTJWzq4S7FJRmZTjk4P6DLJ5Z4uTJZfy4ZYOx7KwK9gwqNvVLBvMz\nzK6fo7d5ntldO6nWzWCVkuJNCXmxbobg+6iUaFeXiaNVSpMwZNNAbeSQT5kzkwShU1nNIQT/LGM0\n5Dwn4Teo3LFI+6wBi1aJkIMyU4y854Mf51zxC91mobMDbFkWFFWFUoa6rmnqOtPnUkZihHvjrBP4\n3LfEGCUmrONUaE1vMJuNFhOjyZDJeMy82kRoa8piQFENGA/H9GcmRCUjhbKq6PX6hFbukm/bzPm5\n7/pm11qwo6eejKl6mtC0BKPE0Cx1r5EbFZMESwrtw0iRGqO4S2uNBVqfI1O6Bmw6JAKVi5zuGo1r\nDh1Z4PjRk2zbso7SOQzC3+usAkJIa926gogk66AU2pU4IIQG42tMDOjWw6QltV5Ip1qBFpdoIsQW\nSB6VJJS0nF8ncn/n0GeWaOwYY6RrN4UYLbYpUkRYN1Oxu9CMBiU+eJZPLfCRQ0PSWSGLXbbba37/\n9TzoQQ9k3wW7aMerVAPN4aOn+Mt33MAtX/sqo5OnmJnZwZ7z74dKhhQ9wTesrCzznne/nz/6ozdM\nhQiwn5SWud/AsNloCWocKeadFqJtz2GNpSwtFQ3D2++gOVCQfKRKjuQsTmuMlTOkmpuhXDdHNT9H\nOTOg6PWkcU4xFzJy9mCMRLTo7j7KaDHlZrusKoreLEVvDltUGGuySaJeizHpihTkLAxBbqTRJhc8\nOo8ucyOtZOyUMoqjE6gQpqBfjJEjx09yLoNBuAzFJ6S/sxZXlJRFJft4Wwu/UYkHkYAAZ7nsZlJN\nV8A3bY0PnspWOFeglCYmUMj/k7GGRGQ8XhXnd6UxVhRMIQaatqVtJBB6uqaMxVqb0SAp0ORZ/PcV\nMfBdcfZNWdATUGjptDN0ppWQE5WqszFVom1rvK9JKucseT/NNenyZNAObRzGBoFkc1GDUnJ4ZJTm\n9OIKdx48zHA4ZHZdH23yDDwXSLYohPcSvBxiQWbQUxeZDLlFlSC0RN/i25aUO+u33vi3/MIrXsea\n+uej/OGbbwQUOo+A4AP88dvfycP27UUlxWrbCMdmZZkb/va9fOGm/8n9L9nH3ou2s2HLAF0YfOOp\nh2Pa1qBsxf4T5168icu48/gxJmqVHdtnUeocaAs3sXPrFezevZHXvuwnedlrz4oqQKIKfvsF17Bj\nq0U7BYUjeJ/5zQrvSkIl1btXFTE5dLQkIk0Do0lkZbXm2MIZTp9Yohl7NijDlpkeWwrLfGmZmenR\n3zjLYPN6ZrdtpbdhAyi5xyobDuoEoZlQr2qKUoIgUaCKEl310a5gzWC1214ytyU/bGdn5CglqgJr\nCxIh02EM3V2WWXEOLI3iF3T4m2wW8AlAkMOqqlDaMB5PaOp2+vEQJdzOGkevL1LOpq7xvpW1bKQz\ns9YRQksbPJUpmDRj6tGY5VMnmJubk85mPMQaSx0DK4un8ElQsqo/z2B2QtO0OQ1e4dvm393d/P/7\nSrRtw3goHJHOBmJNji3do85wXUprHi7kTlSb7NbtM68GIOW1qSPJf6Mte+1bjiyc4M4DR7jgwl30\n+z2MiegUKDoMaDofNcKRSREVM/qs88GRO25di9OzqCvHgkwXVkap2mCdxnvhQShtsW4WVxa4spCz\nN3iUj6ggz0LIDWYREv0oitJQOnxVUvuWDx05zbmc1OF63vLHf8rzrnkc0Vg++sV/5U/e+TdrxUm6\njc+/5g959le+ysOveCDNZEhoWm4/dIQ/+ssPkHgu6S5I6NeG17Jng2FD1advHIUVEq4YxmmcEzQg\nJUVqExorgbc64QqFqyxFVVLMz1Ktn6Oan6Hsy2g8Ri+U1+QhtJCC1CDaoI00IsqId4vRGlv2qAaz\nlDPrKPrrZFxnHTo3TBhNiiojKqBSwMeIj4LUyghKcvgyvVv2LiJRZWpDYsrZUh2/JiW2bd6AUv+U\ni8ZvVH4qBUVRUBQFSlvaHE7bjalCjIQMHKhMg+hG0ik7ziYlI7CUEmVZMuj3cEUBian5bDcSGo2G\nAgr0ZnHG4bRF58rEe08869wWdLwkJb7tuJfvfNYSAis1jZCjpBmWwyv4jNjkkDSUuKd6H9Ba7Kjx\nfkoIMloOLZXNeBJk1CRQN63Mk/NoKKbEpGk4cuwUCwuLbNq8nlSUJB2JUSEumyZLtiX6wGSjIYSz\nR2o9tBFDhoe9yMNjUnz94GF+4RWvu8u455+Rg+65hLs8iJ++/VoqwOdOrW80BxeOc2L5DIMd61hX\nzzNje9hSEXQQy4jKYIseu3ZvOTdZmJvYtfNh+KLgx655JP/32z7CudCWpz7x4URr+JEnPoLLr7wf\nf/meT3Ho6Em2b/l+nvS4B7Nz0wDvJ2hboN0AjBBiYzD4YJiElsk4EQt5WHQqSHgmXrGyNGbp9Aqr\nSxP8sGWjq9g622Nd4egXlqoqKGcHVHMz9NevY7B+nVTysUEJZV46FaTQ0CmRmhH1eBmTPK6cwVXl\nWeZ28qvjUSltSdqhtSOmCKrNvg7diDKSyC7MSkGDKJmswiiDQVA8bRQ7tm5EqX+82593t1k4Z+n1\neoQYJYfGB7QBmx/YgKIsKno9yaZpJuMp50IyR5OMCpTCt57RaMRMf0CREo2qGQ+HrCydYWZ+DvDZ\nuRpWlpeY1B5bDbBVRVH1sK7AthJxoLUihAnB38eV+VavLv6k1y8JShEyfapzGMcqfFQZ8ofO5FOp\nIGitEQKuMQqtyfk6ZL6fpsly7bOvECMnl5Y4cPgYS8urbNgwlzPlsgRbKawV1WaG+OQPEQiZgIzC\naIc1FdpMpDFEEX0AH1BlgbGaqBApt/eoGEB74UMUJdo5ekm4GdoLGuFaTxt8RrxDJqpD1OCMpoiW\ncVKcM/4gXcaBWz/Pl66/kcMrY/7s1uMknvcNxcmb/vpamn/9MvOlRSf41NHT3H0C9X9HcT2ngud7\n52ZkjzBCeBbBj8Eog04qx5YYrBK1oDaKorKUsxXFYEC1fp7eOiliyqqXSfdtbn48yTeQPMZqyT3r\nRkXZ5Vw7CS8uZmYoegNcNcD2Bhjr1uIjyEadzpG0KBZ9RkB051hPkqJTk5VnQSwZckMiE3GxJ+mK\njJAij33k9/EXf/VhzhX+W5ZOiphsQts2EiYphYSsa5VREmsdJo+I2laKk6m/lrUUZY/BzBxlWQlC\nKJ+MjykrIw3eBybjGu16aCV0iy7xWjhBkmEmTUEOX1Zks73wH264vksT9Ihv8xGeIfW2bWnbNoe1\nifJCEmjbKfknJSVjHiUS2JAZ/DEGQtvIAskwmYym1pQHIG7AC6cXueOOw4xHrUguc0R57LodrUna\nEJURs7epGiGSvCSAyjggL6i82N/6no+xFobWHXZ/Aazj7tw7YTbHhomks46B1abh5HjM8dUhJ5bH\ntNaiqhI96MOgpC1ahuE0T/yh7+ee7MCf9iOPJriS8/adx2t/4zl36475ypc+jfPO3wWuIlrHnr07\neckvPZM/eM0LefGLfpw9+84nFHPUepZUbUTPbkUPNqOrTSS7jklrOXTwJF/90u0sHFnEFuvord8J\n1QYmrebE8VMcP3wCxpEdrsfuqseGoqBfFVSzfQabNjC7bQuzm7fSX7cBV1TobDpH8MS8FtBM/Yfa\n4PGTMSpFXCHzaFuWogyyTpCYmK3kVSKpKPBsknvVKUiMTmgdUMoDnoiXcVjXD2XycMrkzSf/0H/h\nXG6ksDItYpSSQLUUI85aepmzYqylN5hlbm4eDawuLYp5XQjZ2ltl4zVRu/ggHISYEr1en6KsCDEx\nXFlGK8P8+k0oq/GZz1NPRgyHS9T1hERWh2S1jTMOZ93/Fw/xf9pLfGJU7qbzaDLvAzp7DBnVKS6Y\nFoxroZ3yYaM7wm6nyEA+T33j94wkRpOa4ydOc/rkIm3TTsnEQqmSEbcy+t9IudEaZZxY4ZsS5fqY\nso91pYw3bEaBsiiBpHLn7bIc1mFRKN+iQ8AYTdHrUc3PU61bRzk3SzUzoN/v0+9V9PoVZa+k7BeU\n/ZJev2LQr9gyqFD3EH+wpeeYsYmbl1ZZQ26+cU+89cQSc94zGwN1e+6YGbiMYUg4KzEe1hhKVzAo\ne/RK8VsyxuKMpXQWZzRlr2AwP2CwYZ7Bpo3Mbt3K3NatzG7eTG9uBuu0xKAoI3YboUGFFhUCRosi\nyVUVxjopnlJEW43rVbheD1cV6NKinBNvK+OEnNJx9mQFTZ2jO4qE1iYrnPJrUSQfxScrrqnWVOqa\ndZXRZsXs7CyPu+pKhKu3jbUohWspC0GIU0o0TUObm5uisFgrZHHjLNWgz+zcPP1+H20NnZmjVoIS\nOycCA1OUFFWFseLw2zQT2tZLc+sDxjiUsrRNS1NPhBZiZOxk85gJurO+ofXN1EAS1viL/5HruxIa\nmRDFkWzeYsfeti1N02RoMDGpx7i6FEhWKalgU4ecCPkoxiizuRgEus8s6JiEVCzThIT8/IQ1vjwa\ncefBYywtrbJ+4xwm+63EIDJqk4lXQWWr76YllCUmxrVqGGQcFTzBi5xx/+HjdzN+uJN7ehBL9Ql0\nEjeJAPgUGI5WOXXqJIuLG2kjKNsd8Fo6r9qzc9c2fufXns9vvvoN3zAO+m8vezY7z9tOmze/pz7l\nKq684v785V/9PYeOnGT75u/jmsdfwb59e6Hsg3byYKCnMLmyBqX7BL/KiZUJcX6OTbO7cTGi2wCj\nmhMnb+cL//Qv3PyFm7j4wBkCfS647FL6/QFnmsCZI0dJSytsLSpmgb61OGtxZUE1M6DaME9/80YG\nmzZSDGZQRmXPhEgbvBSOSgrMFBVG94l1jfE11cyAojeD662jqGYkVBSNzmmx0rVmtUkUr5aQQpby\nK0FjvMy7RaiUc2oi5CCtHH0BSWvO27WDX33Rs3jNH10H3JDv803ACs5Cr5KIgE6OXRaFoIXGYFyJ\nK0tiCAxXV1hdWRVym9FYI+Z4EjQo7zkmMcCajEdMmpbeYAbrLJPxmNWVFSaThk3bdrL+5EmWlxcJ\nKdE2DbFuSX2B/HXusLpck24Due/61i/vPW3TUpaSYixy0dz5x6xiRBRlmigjB1SOYMvzf61wOtJk\n6D5EKRS64+rs5lMBTQgcP7PMoaOnuOCC85jt9ySFXYWsUhJIPnUhqFoBVhBMnWQEosC0NcYV2KLE\n9QIhadqcoi0HozhVK+Uwooggti0hjTCxhzGGk+OW937uZo4cP8WmXslV529ja+lkcKsURXJ0iqro\nPY8+fxsfPvhV7t4XZ4VH77qAvjOsBLinPXGSPsf6QjJ6tlYlN698iXQOw8wNhaPnSrSywjHJXiYY\nm/c0L0iWljBZNyip5mao5gYU83NUs7NUMz1sZSEFQdxj5l2yFkJsrcNqMyVvaJ0VaipN1YlFWWEK\nh3Y5fNYYFGKahwAX8jW7USDizyLqNLGQEF5kJ5RKJJ+jKEBQNKNIHWcrapoQOX56kaoq2bhhhjNn\nloFPoDVUZUlRlqRMx0gJiszDkUgfcULX1uW9ItA0zdROoEOKtQHtzFlu42JvEnxD6wPj5UX6/b6o\n4byY2Ya2oRmPRWmVxOm4KEvcpM5J2p7Wt8RkpqaSZ+cu/UdQme9KIQN5VJOkCpNsEHH6tU6IbTHK\nxuGMyXyZmCO/12SJQuhNksSceTBdAFcnU4mZ0GuNHBKjpuHg8QVOnlpk957tKJeZ0ynQtg0mOnQS\nMlekUz0pCeVLAWVNfkhkjJVCS2wTOzetQ/E/+bd8lL3AhzgXR2V7YeknzX7fMkyJNiVWh6ssHD3C\nwq71nFlapbdBCHjRaqJThNSQbI+rr34sl19+CTf+9Yc5cvgY2zddyZN/6OHsu+h8fFrrIJVW7Nm3\ni1956U/LLHK8SjNexZsKV82D6YHOm7X3BN/KIlcRbxInTx1keekATq3Hh4bl06c5vbDAV774Bb78\nj59n4ehRzpxe5uSx4zz45q+yb+8ulhcO0e4/yIaYcLMDLELMdYWjmpmhv349/fXr6a2bo+hVaAsp\nBVQQYarRmpQM1hm0Fq6Lygu+7A0oBnMUgzlsOYOtZkV14cTDhzyHnioLpuRx6DgwAquGvGkoYit5\nTZ0MMKpI1IAVCXZQmh981CNIRvOmt72bhYVPkVLCWiH3OmfymAiKwsn7VxpTlAxmZgkhsLK0xMrq\nqsymjcY6R1E4IRaSpsQ7lbkXzWTCeFyzdduAfr9hZXGZ5cVlFo4dZdOWXew8bx8Lxw8zWlqmGY2k\nuM73MFOdgc547z5DvH/3lRK+aSEUqEI2cZ3tHmKG1LUWi4ZORm+MnrqkipRUpKsRUchlmu60Wev2\nv47zhzacXhlz+8HjXHJqmXXrZsUlNpPVdZagRZIcbDrnLClQKma7ByW8DeNwRUloA20Tpuntaz2/\nHGbd9zeIJFanhvf949d49Z+/P3NYLgNu4sabbuEFD/tertq7LRdDUoCjBAG9aGaGn7+y5f/5nMQf\nnK3EfN4DzmPn3AyhDWwbVKjTd1+cKG5iU+koss/JwzbN8vEThzjX2OSRuy5kvt+XvUFlHy9t0bYg\npkiIwg+zzslYbaZHtW6Wwfp5irkBxhlpJrIqTClAR2JbkyZjiEnGtLlAWRuTZHQlBYqypCx7uLKP\ncaV4jWktexHiaExKWfEZp1ElYuORpqMl4ZEL1aKTQcfpmoF82MnXTTKNWBlN2H/oKPsPHaOetKKc\nNeCcjJM6Ra5Wau19a3Hm1bYQz6mmoR6NqeuJBNLmQkdlpFi+pkEhMQ8xJZyz+OAYNS2j4ZC5yUjk\n8fVEHOC9Z7i0RNKOoDVFNUOvN0s9nmS5uTSoOomHm+LsYuY/Nlv6LhUy8hB7L5t/iN0oSRz/jJYH\nX0N2Yu5g/uypoLoiJo+NskV3CGSrbvkenRolxUjIM7pxW3PLnQf4s+v/hur9H2X3ri087UlXcf/z\n9+B9kCPXSlVtCicOucZMx02CNmuZnYYwVcM8/TEP4U9uvOus8seB3+NcD+LDN2wgtIHBuOZAI9km\nq03DwsICC4c2cPzIKdZt20ExGBCMJlnLZHia2Lb03YAde/fxohf/LEoFYj3+f9l786jLrrLO/7On\nc86971DzPKVSCQrEJAgiAhIFUZC5EYVWEVG0UZvWZqndSLfaArai8tNfN9qoCQ5AC2SwBYJAUAER\nRSChM6eSmufxne49wx76j2ef+75JqmLo328tdJGdFRKg6tZ9z7D383yf74Af13Q5pVrlkUzfoSgt\nhVnblSw2IypbovQUyk2hTCVVdmrwQRxxfdQEY5g/e4rb/+oT3PaxT1I3Y86eOs3S3DkW5s4SlhZY\naxWMFzl//73cefY4p2YHOBK0kRlbZn6/wOzl1IDBmlWUq2cpp6cluVkpVAwoAjF2IknUAa0StiyE\nsIcheskestOrKFfNYssCXViUK1CuylkzGZrs1QERQuxzYpep8KonTBqVSWohF8gy2kkolNFoa8Uv\nIcHSuGZpaYQ1SqT6Ski8g8FAZrsxUjgx74pJYazDlRXedyzNL1DXDaCy14elqkqK0skhFQPeI+qT\nnNAtG0yNxjAzu4pzZ88xWljg3JmTnDxxnNWbtrBxwxZOHTpMU48J3gNZYQeTw9VaN4n3eCxz6dEt\nURVJgdL5SEpW9qvePwObN/zlX2+1BZ2Ioctu5JJSXqoKtCd0XUZzew3bQ/7M/MwujpZ44OBh9h04\nwuaNqxkUjmSXf7VSAr6o/DzHmHPCkkJF8bk3rhTSb1OgdS0HWeqNQjW9Us9aKzyHCMo4jNUcOHue\nt/3RRy5oNfDf/u46rt62mU3VcDLyEAWeoEUvvmKKJ2/bxM33HeT4wl2sH8zy7dv3sKkqCJ1HG3j2\ntg189NDdXAy5uWbLbqaGQ5LS7KpKfujSTfzRA2KYmcjIMwu89omX83Wbt8n+qxUKi9JWeI0kQooE\nXaJLiykL7Ow0btUMp+qaD33uS5w6P8emtbM875uewNY1sxLQWjhU4VDRoVu5n6YqMVMVtnDYiTxa\nCN8GS1mUMnJyFdYWTAKQjQYkyDWRxJQzn2PSHBt6ZS2aFfuX/JoQPH3g6CQqQBmU3HyatuHIsRPs\nvf8AZ86cg5SwVuOcpSiKiemmFLUmm3tqtCsZDqdBJRYWFhiNlgTRjTGr2lY4kWeCs1KiNG47T+fF\nTLZwBSPV0nRi8zCYmUU7Q1TgY2C0uEgXFXZqGm1LjHNZzCD7k/dt9swRTqzWmqIohE7iv3KuzFdt\ntKRyteicFSJu01HULdbofOZkE6iJ/XbvoSAHkcoEJGlS5EaH2Bcx2eU3/7siOyQCTYD7T53jgdMR\nxdUo9Rn+8H0f5u1vfj3f94JnE3SebetEcmLEZxVSQfdhGFqRYpsdgQ0pRXasn+XtP/2D/Ow7Vqh/\n1Jfyw3gtWl8/GUmkNM/3Xr6ZPYOKpcWaymrWtZYTjWeu7RjNjzh64BiH7z3Alkv3MFutx9gB5xbO\ncsettxNxPP7Kq9lUbcEWU5iypGlOcPbcQYYzJXZQEoyED2prwTpBlaKnpeHQsTk2bV2DXVth9BCl\nHIoWHxJ14znwwCE+9JFPcOTgQfzcGfzBgxifaBuPbz1TTjFdGjZMOUorhNtBUTCwGlt7FAajCno/\nAOsUReUYrplluGGVKASmB7jSopBogJSC+MZ0DSiwgxJbDkR2CMSuI6mAriopYlyBcUK8lBtk6QF7\nRcoInjxsKxUfanKE6EzYC2R3RZafJIXSLmeqCF/n3Nx57r1vH4uLI5RKGKOZmhqitcnPscudtUEb\ncfMNbcvC0iLjcT0hsCfSxJ1TuBPy88tjLOoG33la07C0tMD8wiKzq6YZTk0zd/o0C+fPcWT/XiKJ\n2VWrmVmzmpMnjtGOWkw9ppyaFndXZycoj3OiVgiPSbEf1ZKyVxqUGL1Y0WtRW/bjat2jKjGStMG6\nAuMkFV38rxLDYYlPirg4InSdGJP3qpP+z0o5oyklktKMU+TQ0ePcdfcDXLZzC2tnp0mFm3wvpeSA\nkSLd5wPRyrumpWFRJGxocM0Y51pc0ZEnHDyoiNJqRUxHAg0f+uwj5MDxQW7Zd5zXfuMVxLZHT42M\nUZWiLEoet3maPRs3yRgiRGLr8Z2YpsUYmJ6KvP7KPfzul1cgN7k4+fErdvP1W7eI+2+SAv8FMzM8\nectmbjlyilP1XWyaXst37H4SW1etQWHppchJZGUYZ0EFvEqoaoCbGqAqh52d4ZN338tvvOdGxHfl\nKlC38v5PfI43fu938bxvvkL63iDeNGpQgUpoJ3wSZyU3qX86tFFCdC4yf8Tl8ZYW3zDIyH1PDHZW\n0BnvJSNPKcyEyKuluEHkhb1aTCfyuD+PLHMh7GPk7Nx59t6/j/37D7O4NCIpaaSqqgLE1dxaO8l6\nA4kUcEVBjJ7x0iJLi4vCcVEK3Y/+C4fLar2UlZY9ahSD0D9SVr0ZlejahnFdM7tuMzOr13LmzBni\nSNLXx00n7uu5udLZ8FYQ8UI8jtIyGq21FGKqp5LER79ffdUKGUB2hUy8j12gaTqKQsKnJihT3vCN\nJucyqMncUyuDilFMe7QlxY4QU4/QycudIXaVFGHSEQljPq1Inf7Zt/weT73q8Txu9y6R3kn4DRLI\nFogBVJRKMWTSlkB0ljiuieMRL7vmyVz1+F2876Of5vCx02xa+0S++2lXENvIX/zNFzl66iDrprbw\n9F1XMOs9o5PzmJhwTrOmcWytG+Z8wbxSNHNz7LvjHjZftoc9qzYwHp/mEx/7OB/+0C1sWLcJzYDZ\nmdU4U9It1fzDx/+GB+66m2d8x7cynF5NsmVWTli0m5afpW0IZeK+ew6g0ypWb9mD0eJG3HmBn2+6\n/iP8+n/9HZSaJcargKOkNOKJ04ZthaGwBTNFwUzlKDKpVPwCbCZ7aZSyWJUJpxqKoWOwapqpdWuZ\n2rCOwewU1pnstyGqihgkgJMoFb+8gDGjFBCTZG25ssJayRZS1pAMJNNbe2f+ixIFg5B+Eb6MSn1A\nMGkSEplHnD4XFyFNeDKyscuoyseaAwcP8sADB/AhYpxlOBhSliV1Pc7ETyP1SUro5OnqMaNx72a5\nTGZLKRGtyrNmmU/rQufOTZFSEGI7hi4EFhbnGQwrBsMpXFmxcHqeU8cOkhRMr1nLmg2bWXP2HG17\niMZ3qKadkMiVFmi7tx7//yug7WthpcRkM++6Fm3yWGbiIJ+WDcwQibZTkqUV2uzE2op/i8pqDZ03\nM2vEGM+H5b0w5s69TZFzcwvcfs9+Dp48jbKaPbu28gMvfS6X794hY4rc6MnIIktlc5cPSB6QK3CD\nKYog8H1Si/iQJqRTCXG0aGfBLhc3x88scLEcOLiaU81xptesJjYtKoKOSggcCEJpnSEln8fUnmBb\nsnepNBd4vmfVer5xxw5uvv8gJxbuZfPUBl749U9jx8x0digWQmwKAWJk/TrFN+zag7IWbRxJWwKG\nGLJaTGsinqQipiyI1qCqCjc1haoKYqk4sjjHb7znxgcjTXnv/833X8dVj9vNlrXTJC88EaOQ+JNC\nCNNaSd5e0sIZsbbEZTNOY0tJqTcOpQwp5WaclEfcGkKQwjOIoEEB5BgTpQwRGUFGL15omdcAIHtR\n5s/ECItLNfv2HebOu/Zy7OQpuhCwtmAwrNBaHHZNfjblWcnkbuNo6jGjpUWxaOiT2BVoZXG2pCoc\nxsjeG4JkzRmd9+MYxSbFlLhCRk+jxTFz5+ZYs94zs2ot5dQUc+fO0rYtvmlE6m+djC21nvCqxGMH\nfGiJKb8IKkvaszpvEqT7KNZXjSMDLLPotRLVSGbWO2vwymeYXfwXNDksjax31yKvi1mPmFIgEnPY\no6KwCm3A+zyLplc8XkzOdz1/dtMn+E9veI3kYQC9h0TwYnqkYkCrmCecuShSAJ6uXSKOC3asm+Xf\nveqvCMpeAAAgAElEQVR52cgv0I5H1HNz/PCzv0H8V1LENzXt4hJWa7TTqLqlXGopnWa1T3ilWQyR\nhQNHufOTf0tbN9x+z338+cc/zZGjZzl/co6/LxTzD9zFsRMn+Oytd3P8zBxTpUNpxeza1RRr12AH\njhk3oHDTHDp8kj/70w+w9967WTpxjLSU2L7zUirlOHboACePHAKt+PVf/W152R/iGHzH4rU8YfOQ\njeWAQmmsVVnlI0oMkzQmqUy6sxg01hqKQUE5M6Bas5rhunVMrV1DOVWios9SeoEzkxffGGMc1hhM\nEgdoZ5ww3yM4bSiKAa6oMLZCmzJ3M4lopZAJSWUVhxGkJwYSGpPIaiQNyhLR6JQfithvHJOBZH5A\nxdTs7LkF/vEL/5u5hSWZEVtHWYkPjU5RpI0+4vOIs+tGNE0zIbD1HIhlJ1hD4VyeWecICy8dbK8A\nUHlE2HYNTdtRVEOm163l/Px5FheXKM6fJWqNdRWbtu2ia1vOnjxJ24ylOcikvS53w4+Nlb6yJe++\nOPB6L/P8wkl4IT4/99ZgCyuxA77FeJEje63EQyjVVNWAwhaUhcRTgKhsnBUkN8QHZy+lBAtNw+fu\nvhdx5b4a/dlP8Xvv/RDvePNP8KqXfkdWd0QmGTUrfr9K/chHRpuh63IsRkf0XjgcPopJnti9knSa\njIq2rluNUrdy4Ry429i59SqmtmyCuoUmv8MZ+SxcyaAqSU1H2zRiWe8ExlJJSKvKiSpmds0Wrrzs\nCcRaTNLcoEQHST7TWvU97DIKZSSjSWkRY6QAbdMSFFA4QVpVQk0NSYMCU1XYQUU0EKziY3/1KS5q\naqmu5yOfu43XPv/pckVTQsWANRqjDNa4TE0RGbxWGmsKnClxRYWzVUZiHChRKj2oZUiJED0xBRlf\n9xEpRmTZSWcCd+aOBBIB+WcUqZyMwxM0jefo8VP87zvv5f59h1ga1Sg0ZVVSOCdmqvkZiKHPkoPQ\ntYzrJcbjEV0njsKTpWQCsfKqpxBkf+wFOUDXeZq6wXeBwWAaV1TEMM/S/Bxz586wZvNWpqZnhcIx\nHtHWtQAJRUmXjUEnCr6QGyxjhHuWHhxXoNRXtl99VQqZybw+JUIXJnJR8W8IWAPKylyO2AddZU5M\nTgZNSnT08sjEiYwakItkDMaKA2cI/cgJxNflwkZyh46fIgTJvTBGE40hhdypC+MuPyQZck6BpJMQ\nxMY13fmOUE4TijKPVKyEihHFGTgJ+7saTmOG0xhbCQnt7CKtqbFtQ/IyRlmDZuQj/r697Js7zdmz\n51k3WsRViirWnLv3Lv7iztv5x9M1ilkST0ONb+M3/vhGzi3M869f/b1U6zfRtSP+8A9u4K1v/3+B\nWVK6EtJRPvOFP+C2L3yJZz/1ao4fOsjx/fv53L7jpHRx34ZDTeLSadk0lMrxAEYKl5iraW3Fw8Fq\nTTkcMFwzw2D1LNWa1VSzs5RVSUazJQiua1C+JtUjSOAGQ8y0jI+sMRSlI6SOmMc8KnmRjWb7fq0F\nWkcZxMlbo4oik7wFiVN5M+h5M3hEVpvIBHJhxiQthFmfIqkTPkHbdnz+C1/kzrv3MR7VWC1FiAJS\nAOdKmrZj3NRZMRVpm3ZStKiM1sgSBVFZyjguxWyuaA3GFsTYSeS9j5QhUY/GjOYWGA9X4YqSVavX\ncWbqJKfmjnDuzCncoMKWFcYVbNy8nfHCEovz5yb+Oz4r+1YqAh5bj26l7D0VIwQf8SlSWIvL5oZC\n7lYTImR/wOEMUbXUoSO0LcoaisJRVY46Y7nGaJwFH9KKEbhsL2Hy35d9VkKQZuJn3vJOnvqkx7Nn\n11aASeZPbu/k0FC9es+SlBg/FuUAHwKxa/M4tcnRC1aCXgHftcSYeMk1V/Puj36Oi3lPvfJ5z2Kw\nfr1kvjWtwEoxoWISfkpSUEYc4leDD9mvJsl3Kwp0/jnRBj8aC1dkUNJXjuJurcRhOAsrsgkUKCFU\ne++pfEcsS5gaiqQ9yuhZV+LXknSkS4GkFcfPnOeippbpak6cO4UikjJPT2duoSmG2Gpa6AahJaZu\nsucorUXRlBPtUz74e47e8rO00sV5BcE3TyNUQpDkmFWaQNIaac3l/oaU6DrPuXPnueee+7jjzns5\ndfocKcRJEUNSqCThlN57uhBzIe5FkbRiH1CZjwN5eqFV5lWK2KIXSvShycEv572Nm4bpNEtRDVBa\nM1pa5Mzpk5RT00wNhjLKbmrGS0uQFGUuYfpiRSkl1hM9n/NBsuvegPJfSCEDy4gHWVQRg3i/BCvy\ntJiE9CnFY59xEgXmyjkQVhlCl/NH8iCp3xBEB69yp9z/6bdyUafbzd8mbopR8keMlY4sxIDJNyAh\nRj7VwGIJUBu6okR1YvSX2jEhtHKYommbmhQ8KbWopFGpRGlDMZhBrdakIFW6LSxlV+K7RFO3hHHD\njBOmejd3nktt4rJL1hNCYKn1HFtq+NjxJeBH6cPCUt5w/vDGa1m843Z02zBOipsOnGOldXi/MX3w\nM9ei9t7DmspSKUNbN8A3czFYed5/HqdB5wA4XQhcaYoSZS2QhKSrDaZwmJkB543hL+/cy5nRmM3r\nV/P8b7mKbWtnICSU0bipKcIoUTaNmI4VsjG4wuLKUuICukQxKHFa5eRq8TdQRlJlUZY+Aycqk/2B\nxOtH0ytCZBNMuv99NssJxQI8GjE+C8h+mhBy59Fjx7jjjrs5dfoM3kcGg4LhcChQr4+0bWBhJIx/\npdPE/2PlSmm5mLBWglDbpsZYzaAY0Ltixiw9N0rm65FE07WMxyOq4ZCZ6dVUgyFKR+bPnaEaDrDl\nkLpNFIVjdu06mq4hdeLqWukKrQ1d1/1/el+/1la/r06araRQHmJUMhI10nBpY3HO0KYwKSiMFkWa\n0p0kvfsO5wyFM4RYEEMnTYBVuNDL7VdiKnBR1Fhdz3v//Bb+0799deZxaeG4qP6wi6Le7CIqKDQO\nYyuKMornkNbS1BmNLhxYg3ZODqx6TAiRnZvW8suvewm/+PuZ68eytcOv/dS/5vJLtmJ0iVUW4wXN\nNIIforXh/iMn+JNPf5qDp85wyeZN/MA113DZhg1S4NhCKIaxd1vXhFFDsgZVOfoZlBjIaWxZovK7\ns/fYMf7klls4cPIUOzdt4ge+47ns2rKZaBSqdIKUIRlpMSa60OHpUNETUmD7I5laqi+xec0TMBqi\nsaCFe6myukcbKwc9UVB5LbJhlfcj5SzJOgIJHaPwNlNufOnH2FnZloQbI0GkGRGTjkrQ4zwKjCjR\nPqdICInGB84vzPPA/ge48+57OH78FJ0PFEXJcDjEGDPhwdVNR900GU0xmZ+0vCfp7F0TslLTGENV\nVriiz6YT75cQxCOG0Jv3iSqs60IW5gj6tLi4SDp1DFeWDKenmZpdhXaOGAJ13VAMpjDO0rVMDEzF\ntb+bCHZWNn6TIN2vYH11ODL5Ri5LqDMMFkSG3bWJwsmD4oyVTSBAF2SjcK6QrJrYZUlYzMWOFD39\nJYjZHE34ESqPlha4MGN+nle86NtkDpk84ORmKznsolkmLWEQIpjS0vEUpfjNhI6mbolGModSkOrc\nDktQ4GtPTB3KK3RZolfNiGFaNaSeP083v0S7VEOKtMRsl68oQkDl0zXGxNB6/v7smEeyBD94Zp7n\nbpzh48fnL/rrFB/gSB144tpprNFsWuy4d/Hivg0bqpLpqWmMsRQup6EaI4oHY4jJk7THlgXFqtV8\n9tgJ3nXL32by4NWgbuWDt3yOf/89z+E7n/JECU+LCaMtajgUGWmhwWTUrvN5Ju0YDCoxeFMGm6Fc\nrQti0hl2Fa9eYcH3AX/9/Fc4TZM02pSIoZkkF8uuJdlLxECICZ8Sc4vnueOu29l/4CA+yAtflCXG\niEtm3bYsjRoJQ1X6gkWMPIfCrRL42dD5jhA8QzuY3GNyoex9wMeatm0J0dPFjrqtWVpaYjicYcPm\nrZw7c5Lx4nFG8wvYsiMpRxMD1XCa4cxqlubOEn2Hc+LfoLVmfn6BEOrHRkyPYk0Qkszt0DGJJD8m\nVBJ+nldK0Eij8bGdxJoU2jCcEtv+btxlTkvAWocrC+qRZDKhejVtjkFYcV8uxlFJ6WoOHT1Jz6JX\niKdL71YdUwKfchFTYMoStEQZON8Rkow3dFGgiyQqwYxW2qJEebHmf+mzruKbrtjDjX/9JY6eOs/2\njd/M933nM9izbRMqZdM4azClzaNgIbn+yUc/yY//2jtYjmj5a95x45/zrl94Ez/0/BdIYCIRgvi1\n3HPoENd9/KMcOHmCXVu38JoXvoDH7dwuTacymLKAFLnuz/8XP/7Wt7Ey+uW3b7yR333Tf+T7X/Cd\ncg1SIsYWHz2EIMrSfLylNvDy5zyDP7z+o1xQQZoWePG3XInVimQzp0UbTOlABWJs0ErQdGNKlIoo\nJFJHsqkKcKVQDpSELPZDGlakz+uEZDhp+TOE1CyqzeAbQkyTUWPUivv3HeZ9N32Ug0eOs2HdGp70\n+EvZe99eHrj/AIujsXBFXbZ7SAEfAuOmo2nFQoOYqNv6YfYL0pALOqK1oigKrNWQvKjabI+UWJQS\nzl7IQbcglg6t99iypBgMiDGwOHee84OTJCTwdvW6DdSLI7pM9u4NALXWE0fj3rR2wp3JaExvM/CV\nrK9aIYMgjXJ38ySvz3voA84UCmcd1nS5YhXMpde2ixmdMJ7FRTNf674Y1sub0fIkOiEuiB8Arkap\n21As8Cs/+yNcsn2zbCohS3KjbA6JPI3oCxlEyqi1w5RDTAjY0GJTwGTDn1BLp6GNwtgCikwSbDoI\nLTo6dDmE2UKY4oWhsWLFH7sOY8uJ9E3FSOi8SDqTeFMshMTFxmRwNbX6IuvWzDA+ucgjumOmf2TG\nGlDw9LUzfOrUES4mF//2XVewenoa5woGUzM0jccah1YyasJVmOEAOzXgZIy865a/JaUVOSmZXPdb\nH7yOq79+D1sHlXg2+C57HWi0MzjnJkoxrYTIq5OhMC4XUAM0Jg/Q9aT56av42JN8+42j/0v1Lwyk\nHPLX39+kFPfvP8x7b5TAz43r1/INX7eT22+9nVOnzhFjwlgtqbhaMpzarjecsw+DblnxffozSrxF\nhLdiM0G6//8nT2dK+LalWVqkKx1dUdFNNbRdzdzceaanVrNu3UbOnz5DPR5TKoWx0KWEto7p6Wl8\nU7M0d54QxpRFSVUVxDiVIebH0JlHs4QEKRB7JFtB5PmByd257zpsUTEoC5qmPxgMw6qkA+bDvBC3\nYy+FN7iyJHQ1QOb65cybnqoVI4+EGm/f+hxCSliV5d8p5/D0oyWdbQWyVYSiRbUGbZw0YsZD7PL7\nIp+stIaiRCkjnxUjuzbM8sbvfy7WDTBmkBsHLYgDEa092og6TpuC+4+c4Md/7R08OKJF3vcfe+vb\n+NZrruGySy5FFIKB666/gR9705tROYNOqQ/zm3/6Xv7gbb/MD730peId5Sz37j/Aj7/1bRf83Ne/\n7Vd51tO+kT3bNkseXx5xpXy4GK0hCeH18h07eOsbfphf+J2VqlJBmt70gy9ix8b14oCs5HDHGIwz\nECPRdwRAF5UYd8Z24skiRY+gOJLenAm2Kv+deXjSrPQEbblbmQgh/E7fo8OyF/zPmz7KG3/pt1kO\ny/wU705/wRN3b2J+foHWB7QrKKoSUziatqXpPG3XTagbXffwxkopGWP1KKC1Mr7zbYPWCTuQey10\nlb4plHMtxETTNIzrMeO6ZtXsKoYzq3BVxWhhgdHiPMVgSLKO9Zu2srQwz5mTp2nqkciyvZ8EP/fh\nzzEyaQTFk0koI/8i5NdAJvrmf6ef8+YZml6OSZd3tCfX5vFOinReCGwpLle4Wmuxdo5IoWGkilYh\n8OD7mYB5rPo0e3Zs5Sdf82queebV8llGiFipz5rI87oYhUiqjcoE0oSyBaYCmwI2NtgYcSnRLY7x\nzZgUS3TlhEFuDThN6qRQSb6BVKKLAa4sxHDJaFTUWO0yQVNIcr2vSOhnHjGxaWaIOnMbFwoLU9zK\npqkBlXVsrEoUFzeg2lAVFDnde0ep+f7dHe/Z93Dfhh+94nF83dbt6CT5VmUxZFiqfI0Vyhn0sMJN\nT6GnBlz/159Cq1WEi5Drbv6HO/jRFz5LCN0KVBSiolYW64YYZwX4wucxonBwrDMoo2T+HnLMgLLy\nHZIYIpJD1uRvGQ9g5NMyE1ZiEHK2RyTy3ptufsjG8TekNMdlm2dpGo+PkidVVgOUgqZt8T7kYLo0\n8UR62HOe38g+26TzLaRIWRXCodKGECJN3cgIKKYcO1DT1C3jUUO1OMIVhSgiYmIwnGVqdpbzZ8+C\nNrhSoWzEhwZSZDCcomsaFhfn8d0SLpvu9Rb6j61/evUNlTI6j0GQBkmJ4sIYRdMFTPSQBBEJIdKM\nG6atZXZ6SGg944UR3geM9yhtGZQlrZb3WXhmWvgr+TlJj4Qap3le8d3PFlkz2XMoj0Z1z0MAYi/b\nTDLC6Qmz9C6qKQj3LxdqSomcgqREOZgbtRQ6orJCqs9eJEJUDSijMIWGjJz/0YdvZjmi5aEjsRu4\n9qYbeMvP/xwauG/fAX7sTW++YHHyo2/6RZ7xLU/l0t27SBquu/4DmfR84c9994038ZZ/93oZbkWN\nCpKVRlrOlLJZIfPy5zyDJz/+Ut7/sb/h8LFTbF53NS94xpPYsW414jQfMk9ET3LZQGHyeDqpJEWt\nimhtpVAim9n1I+wojZTIr4VELWRnKWRUTrRHxeUzLmVndSUE3737D/PGX/rtC16f2x+4lrUDQ0yK\nqiwpc0ht2/Y+bEKmvlhjleiJ3YhXltaCYsVIURYY4ybOxQlR23Uh4JLEIvRnUT2umZ1Zw2A4Q1kN\nmD97htHCAuXUFEE5TFGxeu1G5s/N0/l2wmFKUZyGu25Zzbksilg2u03/Esi+/UppeQSgMlN90sFY\nqWxDzs1BJfFPSFLIhA4SQohKIU7Qmr7LCJlv45zBWYFmYuJBlZ5WmoG2LM4tMV4aU7kCQ1aRZMOa\nZd+RnnFs+i8u38k6nKsIxRTRJ7qmw6SIar143pQyooomoq2lKB0+dEBA+Y6kLboaUkxNceTkOf7i\ny/s5dvocG4YV37Z7M1uGJV3XySaScqR8gudeto2/3PclLmoJvmM7hbV8+7YNfOzIvRf9dc/ZcTkz\nU1MYV2K04fkz0zx162b+qvdtmFnH8/Y8hW2r16JtCclIhklRCJpmNWZYoYcVZmoKOz2FHpacHo0e\nkVx3/OyZPM+WOALVj3+URdsSVwxQKhLbRUFrtHBwYpaaCgfJIKnCrDCPQjbpTH/spY5qhStqisLK\nT0EcfPceuPjGcd+xa1lVyDUvihJQjOuaul4e09R1/bBne2XRMMn6yuqhohDPBpszSDpf0zSNFEPS\nMtE1HU3TYMcjRovzlKWTDdoLh2DNxi0sLC3Rdq08g9ZhtMGnGkiUgyGt7+jqkXxuTzV7bD3KlZPQ\njab1gah6l2QyD0YTs0xfRpRmQvT2lWNYzaDWreFMTPhaQjuNTRijGA4HLHpPl2QzT71kjnz704NR\n4z4O40de/kI2rVsno24VSQSS0RnPjpNCPk9aCcHn3LnMe9B62Q04xTzeyGOEkGmlGnTIz24SJU1K\nPnuKKCHz62wb4Eq0E6TmwPELRbRAPxLbf/ggychnXPeBRy5O/vAD1/OWX3gjKkYOHDr8CJ97FfuP\nHhMZMwaUl7e+V7QSMcoKX9JIkbZz4xp++pUvEP+UJH4nyUuWkjGWlPlOWFEsadMrwwIxtjIe0qCN\nw7jszxUCJjvLk+SMUillomxcbtiFDbxMekWJpDkGfBJn9wC898aPXrQohA+w1CxQVBXOlcQIo/Ei\no9Eoj2yEE3OhcZJSajJOl2gULUrhECVjqyyyw24v8RePo65t6dqa0LXEGPC+o2s76rpmMBgyPTPD\naaUkRuX8eZIp0bakGk4zmJlhYe5cnmBosSdY8d36ayHvgcomfMvn+KNdX9VCBpj8AEbb3G2LOZDR\nGqNyDk4KuahAyHedz5kRIs8O2ZCht+cWHw5RBTgTcVqsDjIfmJ5B7VPgyOkz3H7HXr7hCXuYmp7C\n5PA3jUYrRFmTr3tSvSpAL3f8GIyrcIWYxRkzltGXEtmjHKoapRzWykNugsZ7MFFCEJM2fOTvv8yv\n/nFvC34VcBs33LaXNzz9Cp61cyM2c3KMtqDgsmrIG77lifzO34mxlGx4XyKlBX7iSZexe81qYgjs\nLgf8myt283u3P9yA6vVXXs7Xb9tBYeWlVCgIkU1aceUle2R0VohLqHYVKCM+PoXDVoWoP53BzExj\np4foqkAVBpxh59bNXDShW93K1nVXYJQQ45IV8q3KRNyUAgmfu4YCVCSlDrBoZaXTMZakhKkvOrLl\nQoYkKK7KrtB9ESM3MRKJy8Re4D03PPLGUft5XFFgrSXGyHg0npA9ffAX7Hwe6qTbM/F7229tBGFS\nOY7Dh04gVq1JkcwV6+jamvFogeFwIPe+0rSxZXbNBjaHwImDD0ycr42xpJhoxmNImtIWJOdJnfDI\n+k35sfVPL+GHi8FhiImgoOmCqPEKjTWiakJpVLaM0CpLVMc1VVkyNZzCr57l/OlATFD0hmDWUlYl\nTd1M+DLSicrYKuaRNuTsHBTb16+nsiWHD5/k0t1b0CWE3L1K7OwyIkNu2FIMPdwt31OZPO+QokXe\ni7wxaoVRTvJ9ks+bm8l7QiCpFqxGZw8nOeQlXV4Zza7tW1DqZi44ElO3snP794AOJGPYf/iRipOr\nOXD4iPhVApfs2IpSN1zkc29j144XS8RJhOhtHv0kkXL3vknJ5z0kkKInhJZJWa8FZVO9zDib0wWV\nQFusrbLtfk1oG5IGV5TyG5UjaSdNVNdNRnzaGAG1UCQkuDgohUqREJX4bWmTaQyigPNEuiQqpYMX\nzO2Dng4Q+DRF4SicI4TAaCnvR8pMMgsf/CyrB+UZrSTTBh9QCorKiZrSGmJWJ3VdN8lr89kXxjeN\nyPlDy9LSImVZMjO7lsFgitFoiXo8wrpE23ZUwyHTs6up65putIRWUFXl5Lv0FhWT/TOrBP9vXMi/\n6oUMSHgVScYVrlKgIismT/RR3323EmLAIBLrEEUaZrIfh0mgQiQ7chNjpCwMnYbed6f/z5hgbjzi\nrvsPsH/fUbbt3IQzhsJlFIhlDb3IMeWfkrVusjmsHEo2JmzXYcsl3EAqZV93ghYFMjHPkLQDm7Ap\nSMhc6Dh09Ci/+scXtgX/nc9ex5Vbv11swYNUYkYbnLW8+PFP4Cnbd3DzvQ9wfOF+Nk1t4nmXPYWt\nwwHZRhSAl61ezzft3MFHHjjEidFeNlbr+a7dT2H3xvVUrqC0btncS0vsfFlWaFuANZJM7cQ4LwBq\naoibnZ6MeEyOC0gaggr45HnFd34r195wMxeDyF/0tKuluzGi0FGuwDiDtoqUOkJQJGOxxQCtAsEv\nYZTLUmYpYNFSUAp6Jj+uTBXFfKw3Luu5BPlGysZEwiPyxINHjj/yxpE+xdAVk42jbVvEwddckHPS\nq/FWvozL/95vIlIUxxjpcnJ7TAkV5BQKnuxuGWmbmq5raJsa6yrqZsxgOM2unZcznj9PvbhAaDti\nFPdMaw3tuM2kR0M0Mod/bLT0FS4FIb/3ISraDspCUFmdSashBCH8ho6kEsYUpAhtRukGhcPPzlCP\narSxaCfFzGA4xXg0JiFEyAlpF4VG9jTpjIXEfnp+gb/74u1s3biOVbNDNm5cPTE8k8yjvkfLvyfK\nWLyPbFFJxrNaGRTdMtocEyF2KC1p0QrhjqUUcEqJ70zqO2e5KJOsOZBN2Wh++BUv5Deu/TMu9r7/\nyPe9jOQ7EpGd27eg1PVctOjZ8QpBgYDXvPLlvP13r7v4537vS8XZOxh0yigZba7VIqELpGzO9yDU\nK/oVQhG5Tj7mIkXLOYI24jfVZ2GFBqIiGSdISvCoVArBKXUo8jgSMpKFHDoIeVfnmJjemDMkMckL\nMRJSn+eX2LJpA4pbLnh94FaM0pRFicooiMQGyDn1SFYLDzPmzL/WOYcrhALhXEETm4wQd7kwTgQf\nxHG86WjGDU01xlnHwoLFuopqOM3i0gK+6wBD0pamqSnKguHULHN1TdeO0dpQVQUhVhPEZ2VhlVLM\nkS//AlRLD13yA4khnk2Wtu0wxHzAZhIvOhcycWLp7TIMH1OSwkYpnFV0XlRQ/XNktPg2tBfIcOhi\n4uDJ09z65bt4yjc/kWHpcoJthByDgFY5hykRyAFcJmdSWEXyLTp0WFfgioqi6iBZfBwTY0AlCXNT\nKKLWYIz44SSoBhU3f/ILPJIt+Cf2n+BHnnIlqRUY0BqLMw6N5rJ1U/zMs7ah+hTOKDJwcrCbSI81\n69Yqrtj9dSjnUF76NzeoxKvF5OwY66AsSSlRDoccOHee93z27zh6/jw7N27ild92DZds3TbJH9GF\nQLEphfwyejweQuTSbZt46xtes0yuWyHjfPNrXsL2DatJMaBtIWZMxqJLmWX3brvKSEcTYosiyvy3\nJ3D7gATlAcmTsidBynNxMtkXpcVLJsflpRhXcGNkdLlt6yaU+jgX2zjE5t+hlGI8klGNK8pJUf3g\nlTvjFWqFlQVN3wT3qddd60VuH4SU3HMbfEwTOaUYUdUURUUMHfiOhfNnmRpMsWrNBsZLS3R1DV2L\ncY6qrMQaPvfpKUV8PnQfy1x6dEtl7oi4n+YMt6gIUREwWKuxMeF9lx1/Y0aGNT4qOh8xXYdKisGg\nzL8/YY34SimgLEqCF8M4bbSMjbXIU2NI1OO+u06M24a9Rw7zt1/4Mtu3bGR6OMStcjIm0vRPt3S1\nIQqPL0rIrhTPRopvnffRKCMtOdC8oIMRiJ4UOoSUa3JxlInySviBoV0eTSRliUpx2e6d/P6vvonX\n/ce3odSNpHQlSt1GSvO86+2/xJ6dW0mxIQXLa17xYn7zv1/LxYqT17zqpcQg3KM9l17C7//WW7mI\nWYIAACAASURBVHjdv3/zwz/3Lb/Anh1be+hV+HTBo7PsPXpPaDt5n9pWBAC5+PO+pVtaIkSPGw5I\n1vT0Q1LqXXEjwTdSUPpWikHtJKpG94aGAaUtKQhRV2klcTipf/eCUB60SLhZMR1IKRFVDgANEIOm\n8x3f+W1P411/csMFrw8sUFWVNFGNcFV6xGUl7+ShK8TM+ewFERNzThn3GJ19wLQieJ+bq5gRY/FS\n6jpP09S04xFdVeHLAYsL56ncEDcYoK1Is2NssJWhayWapRoMqAdDFuolxuMxqSxxzjIcDokh0rSN\nXG9ysZz6fLxHv77qhUx/4X30jEcjUnJYFfEpEZ0m9WmcWZlkjLj3krK8GkDJzNhasbw3Xk0cfWOU\nCthZkZI99PqklJgf13z5nr0c2n+Kwdc5Cm0xCQJarMmV/JM8wvBKgri0BvQKt0dXUJZDfNsKV0bL\nE5q8h6xQ0UqLOV4Oa8Mojp2d5+K24E/idHOc4bo1qCaQuoBB5QgA4asUZYFFCZSayV6pk/webSy6\nkCiFpDS6LCXLI4EeVihrsU4QGVWUmJlVhLbmfZ/5DD/1394poy6uQvFpfufDH+adP//zvPoFzxfS\no1MkvHAwvBRvSsmbqlvNK5/3bL75ysfzP2/+Kw4dO8nW9U/mRc96MtvWrSI0nVTdOuKcdDJYGavo\ntLxpSip1h1EWkkEX0yhbCNKluklBqDJ1KWNtmfQo3VdUEUlJyX8pLRtIFETm5S98Lr933Qe52MZh\njcoqOU9Tj0lJbLvrup5sWsvr4p1E79+gjcQz+M4zHo9p2054YSsyeMgE4p5IOK5rqkFL19WkFGnq\nEWdOn5CASlMw8kvEGDGZgFyUBSkGVNcISThFfCdqwMcyl/6plQmwxk7QsxACzmk6H2i7IMTvQost\nRNNhFDiniJ1w89pWxogWBQZKZ2jaDt91aJVocxetcjNGVkNp3VvuI+RT1OS5XRjV3LV3P//4xdvZ\ntG41xWU70VO5oDAZmfQRlZE8KVQgkVO6M/FUhBZi6plJCZBCDioUVZIos1JOKc7fIMcGpBgIvYdN\ntGgsGvjBlz2Pp3/jFVx3w80cOHKcS3a8jNe+6uVcumsr+C7zVDou37mF3//1N/O6n3vLBYqeN3PZ\ntk2kXMgonfihV7yIZzz5Sq573/XsP3iUndtexg+/4iVcvmOr/FwpkLK0XPbbjuAFDY9th0qR5H1u\nYjyhbQn1GD9aIhCwhSNZR0KI16AyMg0qBmJbo3wj6ddOxuzKFCQlsSS9h1kikHwSxWXfrPRcJKTx\nldGVnpi0CvolAhXvE3NzC/h6iRdc8yQ+/NfXgvogpEwbYIGpQmOdeGC1XTcJJ40x4rOKciX629Mo\n+j1q2UFXls6TDJXH3T4E6maMD172pKQnRVcIAd81NPWYrmnomobgO0KXKKdnGEyvYmlhgZBFL0pL\nMZNCoixLxmVFMx4xrmsKJ2TporT4KHEJqiejx5y99xUUM1/1QmayMhtakdBDl02B5EiSBM++AxD0\nRhxZBeCURFIgIWmsxuCNWIuHBJ2XZE+r1XLxQ991Cffl+LlFPvP521m9Zopiq0OVamLGpI1EIghP\nKgrDPCkSctFRFl0OcEqC3PqwtlgEOaRCIFmbH+gcOFfoyfm3de0qLm4Lfis7t1/N1JZNGA+q9Xke\nK7wio4UwapLGYLCDgRQzXYdOSBLuYIA2WkhvRSkW5cagpwYoayRFWlt0UaKHQ+6+/z5+6r+/k5he\n+7BR10/82q9xzdOfwqXbNqFUzN48GbJMWjI7tMOYAt/U7Nm2lf/wmlfQdjW+6+iyXbq2FoVB6YhS\nUbpKbQTtUjbD6h2ha9E6oayVF957onHih5F9PSb+PlneKJJrZKM1CXK2Usp3L+XqJwZFDIaNa9fx\nY9//Iv7Hn+aNYwXfaKaAoDSRyLgeiUxRyZ8XQnhIEbN8LS62ei8FgLbrqOvmQWmv/aajEO5XUwtk\njWooiiWMkzDOuqkzP0cLGoWmbcbo/F4YramGA0yraVuNzTlYXecJoXmUL+XX6sqNU28nr7RwHZBx\n33hcM6wsVmuqsoSk8MFTGgOFJvqEbzqacQdRYYokypckio2+YDHWYRuXM+SyDDcE4W8F6YJXPk8x\nRU6dn+PzX76TtaunqSrHrp2b0arMWWNkRV7IZNNlcjxIBlCKIhHOVEGROWtFyjxDpSymKDGplwIn\nSB4VhOehVT6Q8/cJqW82IAXPJVvW8Ss//Vq0K1DGSRcZW4FZwzIS8f0v/S6e9qQn8u73/wX7Dh3h\nkm3fzQ9/74vZc8lOUtuKyhMEIUKxZ9smfuWN/2YZZUUItcRE8J0UKPkA9EHQsRgiMXSk4MUgs/NE\n34GX5jISUdYKT8kHTFkK2yhFVPL50I+k0KCix2jJpjLOgRFURqGyG28S/hGBqOXZyQNkJszVPA4X\nEUuQhO6YRJgSEqOlBY4ePsidd9zOTBF5wTMfz5HTi8wv3kkMhq4ZsFjLyK3tltE6EK5LyMZ1j3ZJ\nYyWcHmssCkU9qqlrQaEmhKvYS6YFVQxeFJ++bdHW4mPN9OwqVq3fKHyfpiWlhM1BvvV4Uagj5YDk\nM8oV+pgEKeDl+4uVRZ8RxwWAh4utfz6FDD23IM+Zrbg3xJhy+KHJnbBUkCF3BmL3TCZMJqxSOGMI\nVm5Eiom2i1SZoNeFZbtorXPEudIs1C2fv+0OLt21idnZKVE7pey6mHryn0D/Yi0P0WRPS+0y+z9i\nfUU5XDU5YKIa4aMcLLl8l99TOCnUgudl33o1f/yxz3NRW/DveiaDtWtwqsCEJIUMsjlabdh36hzv\n+9RnOHTmHLu2bOHVz38+l+3ciYpIoFlVSUelFXuPH+Pdf3kzB0+eYOe2bbz25S/j8m3b6eFnrOGP\nb/nEI6oKrrvpJt76hh+TPSX11ta9iZLOHi4JvJZxmG/Bd9nhWMpTVEApg7WFkAB7XwZtUabAokke\n2mYJFVX2G0r4diwHdTHI8RXCVdITODdmRVmf7Ctzc5QSu+6YC+F8RrRty4njR9m6puR53/I4DpyY\nw4e7GVaz6FBx4OhZxkHY/d57QhJCeZe7oQevHlG58NunlJrEOqTebyj0OUg55TbFiTzSB894PMqG\nZgbrLNVwSFGVGZVZIgYZTyUEAm6WRoS2wxUF1aCiLCsUMPYjQeH+L8ymvvaWdK0+9NyDfkxAJj4G\nggdbaozVVFMmExeTyFdLS2saunFDDBETlIw+ktjQh6QoygFlVeGD8AGFWCkjoZgSMatbHvwsRcZd\nzX1HjjD9hdtYt2qa6UHBpk1rMZRZDkz+vimP4SULSScpZpSysr+SHXR7qbYSDxYh7wp7NuHpJdxK\nKfD5CTcOrJNRmvckWlQw2aVc4b1HtS3KOlRhMiohxVLKSIRPkV3bNvNffvp1dG2XM9AUvm4EzYhS\nyAhpOSMLOn/PnhIn5EpilCLGdx2h9UQfaetOrmXw+CCocfAe3zREL6aXyYqhYc//iTESlRhfJhQh\ntMScXWRyRpsxVngw2siIqZfAk8nT/YPSu/nmoR8RyZNTmqjFK8VnE7vWB0bjmlOnj3Ng/30cPrCf\npfkFZmdm2H7FesZNy/0HjrHv8CkZfUWhV/ggnxdCfJh778pn+UL7kVKScaiMhDQaI4aeo5GY2JFF\nEvLjZPQ6F9w+hNxEeUwyEm8RIjMzq6mXFljszsn/RpZSp0RoRfHlrJNiG7mJ1hoScs62raCCJnsk\nqQt+8wuvf1aFDOSNwnuqYTkxFEoKjFGT9FajjRC0YsDlG9F1wnhOEZyxpEJP5tYxCb9Fr4Tu8xKl\nbqRNLYePHuMfvng7WzeuZXa4m8I5TExonbIVfkZ0ovgNpKTEzyHJg4Ey6KKkGEpmRsxBlipEtLHE\ntgOScG+KAqMVzdizc9NafulHX8Qv/cF1KHU9KV1Nb9b0X3/qVVy+YxNaFVgzFPv/JJp7ow3v+cSn\n+cl3vBPJW7oKpf6K/+eGm3jXL/5nXv2Sl0hhYB3KwLtvfKgJ1U385rv/iN9/+1v5oX/1EhIKZRUH\njh3lkSSPB44ek26kz8LSClNI/pC4nwZyeHj2rOhIUSBekkCpKTsDhQQ2KyBQYjQXfYfCEPMLIoop\nC8pBghBajJrKM+1E9ALta7J7pNzt/BZIgRBCwudg0j6DpAuRufkzHNy/l8MHDlASeMrjtjE9O838\n4hJ333doIlfssiGhfMckHd3DNg4pSC70CvZIjGTzKEKIOdAxTKDemKsrqWtE0dC2NYmE95IdVg5K\nVhdDhsNZRgtzEgLXdjRNLeNDHxmNa8rcoRZWcpd6G/CYHn3H9rW7pNhtm5pCV4LKIu67RksshtIO\n7SzeSy5PWUlBqTASUaAUoesyAixKId2jcUnlotYwNTUUnlWt0DrgO1FqpthLUld+K4lema9H3HPg\nIP/wpdVsWLuGYVWJu67LRNYsikhRRivRByImP8vZcBRDiKyQ4zLJ+iFFAlEKr5DQuQFLOruL2jRx\n05amQvyfCD1xNhIxqGoA0eWwVmkAU5cVgymRWo9Vgmp7yAiLXKfopZBRMZ972pCsyHN1itAFsWIx\nmqCEqxLalmY0JnSBphEUpk9XDk1NVzd04xEptJKVpXOJqi0J6NqxcJSMEbTEt6TQ5Xsuxn9KWfJO\nkw/pjFpFsQfBaibKFJW5eSmLExLEHEEgeVGRxnvGdc3Z82c5dvQwx48cYWF+Hq0UVmu87xiPG+q6\no/M5eDM7hfcahxjDhDf60Of4YqNulc9Rm8ebIrPuGI/rbFCnJuIa+SjhXoEWXkszpmxLdJZrN0sL\nlIMprCsFMWoblJexV1mU1N0SXegLJDlHFTl41RY4Y6iNp8t+XKJVURdAvC+8/lkWMl3T0jWaYAuS\n1YDPc8TlF1EpuShai/49AU0jBnm2EHtu3XrGo4bYhYmZnVZhkrsUcky8yI8S55eW+Ifb7mLf0RNM\nz0xx2e5t/MBLn8vlu7fLIdP7L+SZcaQ/sgS10cqQTIHWHmdLYjUUJYoXy2iTFDF1JGslkl7rTMjr\neMkzr+TJj9/NTZ+6jaOnz7Nj81N51Xc9k0s2b0AjJk9GBbQRxMoVA/YdP81PvuOdF3bT/OX/wrde\n80z27L4UgL0H9l3UhOp1P/sLPOOp38ilu3ehNOzasQ2lPsBFJY/bX0ySKoWUpDvR8pYKuS1EUg/3\npkhUkvLqvSQA+67JWSaGFD06SpijtSK9jjGQfE1slgQJs054MdqR+o2GmDuz/FKo3vBNlB9qArVD\nVELTjqRJIdOGwOJoxOmTxzl57DCLC/OZFNyHrAVRjiDdVV9k9N36xYPN+kLmwWOBvpDpZ81a64kq\nCZZn1z1loicKhtChgyIlw9JSwlhJ2Z0eTKOxhC4wWlpkXNciodeGmCJ1PaZtW+qMWHovnelXMnf+\nWl69x4juDMFnpNgnsrqXtuuwXhE6n8mWNtvigzWGqqpIMVAvjeTeGydjTh8gqSzpDQyqgRjauTHt\nuKEzBtpW4jkS2RBz+XvFlOhC4vTCIrfe+wAb169n3bq1DIYVxhSYjK5AEs5cCATv5a3IYyGVOSDE\nQAqCGi27XkdilJFF36hARFnk34OMc1VEwiC9x/ggOUr5PQQklbrNPJWURBWplFjdI89713a0Ud7N\njEmiUx58tcJqEyA2FwdWYZzBKEVsvYyDnKGNHp+bi67xtLXY8nvf4btaXH+7jmZcC5E5xXw9BAGW\n9Gm5tjpJ+ry434pwAVtIEaMNPd0kRWmktckFF3KvROyqScoIcS+rLJXWJC3oTZ+l5HMu0tz8PGdO\nHuf0yeOcO3uOzkfKQqJQfOupxw1N2wmfRi7exECx34cujMY8Ml+vdxdXKLrO5zH3SoQ4Tc46UkZi\nsnqpHo8lrsUWQGI8WqT1Ht+Jb5GoOb1E8OQ/p9OagDTzIcqc0aBxzlBWDmMiTdvSeTH3+xeNyCgl\npnht0xFKC6XLjG5x51U9OalHa6KoiFyK+WYHFImyEE7FKIU8TogUlcVZReoSE75jhm9jioy7jr3H\nT3L/8RrUk/jk5z7F/3jfh/itN7+eV774OdmMLi7PPPPMKaFyJotCRy1+DG4gVTOQmjHeR1RRolSe\nzWYJoy1KgXQT7Nq4hp/5vudgXYEpKqwboJXNvjUJ0XFHtCvQpeGPbv4Yj+im+YH387Y3/wcSimvf\n/8gmVNf+2fW85T//HClGXvOqf8VvvPMPuNio67Xf9zJxQDYqc08SkhobJnBu9EEkezESEFJb17V0\n4yVCPUKXBUYNwBp8hNh1uVDMz0DsSKHF5G5JW5lPYyzaWCH7TpAwcopw7i6zUonccSYt/g0h9fPo\nyKiuOXv2NKdPHefcuXO0bcC4QkyiOvEEmhhDZbg4xihdibqYzLEvYjQPhXRXqgWkmImTz78QgjMp\nZvJcGoTMN1pcQqFZ1HNMT62CpGnqMfVoLMWyLXL35FF0+YCSMYMPFyu+HlsXWoIOCxGRCF3mySil\nWFgYkVLAOv1/2Hv7YNvytK7v8/xe1tp7n3Pu7ffpnu6ZnoEBBaRmgCAgCigYI4NTAScIGgQMAf8Q\nikCMpgIhlgQlgcQIFYQkoDLRlEgiSIgYQULKClpWGN6EMozQ8z7d09333nPO3mut38uTP55n7XO6\np29P8/JHi72qdt17zzn3nLP3Xr/f73m+z/fFR5rrtmBF9ObklLzJ3HnmGTNcy5moSvbxeZkrvTSG\n0y15e8qw23Nx55z95aVFZzhnZkUTn/N7KRyWyhNPfZB/9gu/TBoH3vaj/ye3Li543aMP8SVv/v18\nxCMPOR8vOnp8tVauJlbGIamlEMNoOUJBfB27iq7b3rhyPbpadEuLzWTYMZJ7R4erUUQIgZCglYU6\n2QEobuuwUi+0d3qpqPuoWJK3I15OiFW1wtE+BkQhZssrM2VmR/piB6w7Ynd3jW3dEJnWCnWe0dpc\nuaTHcZLPxI8qRgvgtH+DizTcc8cw5ECTQMBcxG2stUrnHYRh3YMi6siNSrC9TWwP6mqRIodSubi4\n5NbTT3Pr6ae5/eyznF/s6Qp5yAhqcudpMkRYuyNtV8nsqvJhmip4/t6yNlVHF10fc9u4vB//T18d\nZBU0WCTHPJl7uARh3C5sduZDU5eJPh3o3pS2agW09k7q3YMpBwTzhEPE+ZIV1WCGnikyysBq3Ffk\npRN+X3aFzArVaVdKbdQayP6irm67IQoxCgWlFqsCc04MKbHMhWVeCBLJMTIO+dj5BoFxMMb3Oqv1\nn2p8FYVjmrRuaZ4N9HXf/F387jd9LG94/FFb3D4LdQGjOcuqolUJLRLijhQsODI3g8tqt5khKRyJ\neCKQR+d6HIllzYqDEOhpNDVRyIY4YKTnOGQkRZ54/5MvMgJ6E7/27ncbYSoEnnj3u170a59497vt\nlRD4iNc/xnd/+zfzVV+/Sh6vckm+5y99E2947NVm1R3FmszFZI8WBmcbgBbrmGieI7Is6FLoxTae\n3I0vIN0k6asdNtjoTk03b6MxdyAlBJvfS/TCxVCZGIK7QYp1QBKPUK7J0e19aii1K/NSOb9zm1tP\nP8WdW89ycXHJXDunp4OpepaFVhZXFNi73KsT9Jr6YXC3jcNn4s/rhq4nvq/38XU55HPVBHINnfEg\nNZPIUWs3CaMKy1JJMdKa+py8IUs98snQRgjm2mmu11ePVwqaD38ZalKPCsPqDUiMnf08Q1Bu3Dgh\n+eudYrImxN1ux90NYowczs+teCmVmDIhRzqXRp5UJcfM6ckNM5rL6arQbYZmijwXlQFrkM6nmbe/\n49f4qV/8JYLcBN6EhJ/kr77th/mOP/eVfPG//XuJOZMkHEeYPr2x8ZYeGRy29ziiIP6zVcRVSpVe\njSN4JOKHYr9bzHQJjk5bo2eFTDaeSfU9ujcv3o1roc3JuNUan5gCtTdyNnfZ5gWUhQRnU4CKmkgg\nrBwVMek4GFekNijmD1Na8UIQCJFGM2RY7edZ52lmhtqrgSdie0oXgV7QNpuyzNIeIYgVMyYOPfI/\nbDwlVxb7VqnZnqbqCI2NpBuW2zfVhYuLO9y69TQX57fYX5xzfvuci4s97pFoKsl5Zp6Ly5r16Nzc\nXOkE8iJN1RVn6oWaKuCK9/U8N+CjD85amKnSWmEps52WAsNhYndWGYfB/K6WQi02Mleg1ErrSm6V\nYRzJ43jkU6bYXDJubsFLreSUbcKSEr035ln4EBriXa6XYSGjx1l+64aySHR+i/NiUjSoKiYveEph\nHLcMQ2aZC4ep0DWw2W45Odna4inGpM7ZFokunVJXP9j1TT7jhVOif5C/9UP/iG/86i+9IrXi3b70\nI08GzAI8RDNnCm0mJIPWQiuWaSF+eInJF0MUI4H11fvFD+Te0D7TezJeRU5mDR6iea/ExOsefXE3\nzccfeytmLw6Pv+bDmFA99kdBjSCntfAn/7238Om/+xP463/7B3nine/mta/+fL78rZ/PRz3+mC18\nUbpWWl9Tde3GN6VApdWFVhdD0kqj1+4wQ0RyPsobe7cxlHVJpoRQJ9il5GF1ktYqE1UbkzQMghbU\nBumSjIToibJ4F4QjXysfZ66Ny8OBi9u3OZzfYbrcc3GxZ1oWznx0WGbLUaptla+qm1Xh0PjdVpdc\n+zOwjpfk2K550B+2+UlwBUjvx+Ji3TyO42E1rkyXiORITNliLUJgWia6y0xNudcwgueKVlq3hGRy\ntHygGCMh1Fck2C/hWseA6/bQOy7Z71CV6bAwjlvy6UgKMOTMdrsl5gEbHgRObtxDTJn9+QW1GCwf\nREh5ICC0XtF5IqXM2ckNxu2OmDK9P0Vr57zYTt5R7kwH4Cvoq7qwWfP11d/6PXzqx/9OHn/1Q6bE\n6R6Ei+f6eD6UGSiq6xAKNB9310rtPkZvFdWKKKQ8ItnWQleQlGnaKfN0dJgm2h6FBLQ1lmmyHDFH\nI5Zppk2LcdU8cTumRGmNlDM5Jzv0fV2knC0cMTmZ1hVfMWfWPDpUbJ3U5mReWwv4CK81i0egqUu7\nsf02uv8L1woTR4NDr0jMCME5kuaMbMaV1hgjroxc17gTri3SYVUUwq+88z18/9/7BzzxnvfxyKse\n5N/57E/jbJe4PH+G6XDBdDhweXlgmhdiGuhqCKyFQRZKa6tW5OhJ1PVDC1y7rjdUL/DZa81Md6+h\nFSFe73v7Oq59DzWuUXWepyjp8oLN+Y5wdgO65Rwu04FpNsdqCdEl4sXGU+No8TbJvLyi8QbMwz2Y\n4jgiSILUoolrXuL1sitkYN1AnCFdGqUrQxZSDizVRhkxRfKAwb7+hsRkFvdzKUasDcJut2G7G5gO\nlt6ZE+RkOn5Vofbr3fULe7kob+Kd7/0ATZWo4qRhuWLP40QuN40KIRzPupgyKWeS5yupS9k0hGM4\npnhlvYbAEZIlkDal6UQMgTDYWMVaAfs5X/YFb+bbvu/ubpp/6os+32bConzZF76Fb3sRE6ov/8I3\nI/VqMwrARz3+av7LP/tnEIeae7eOZhW+9GYbRndjqFYqdTb3x+qqnjWro87zMasDh0VFzZ6/t0LS\nAQnFzOzWHKQ8QMi+8XLsRKSZlXeM2aBfR7RslGuQrwRsJh2DRREo1N44THsuzp/lcHmHZZ5ZpoXD\nfnJn3U4p3TaO6nJOuSL0rQv9Re5c/3PdSCKmORVQz5ESMJ5XIKgRKc3q/kO/m0G/HP0veu+ElBl3\npwxD5tYzTzEtB88HS2Q1B071UVJfoegFNOnVRPRFZuevXM+7nveem/zUVHa9d/aXB0trP9kSYmbI\nA5vNhupFUNrsuHn/CTEO9N7YX+w5XC7kmNmdnTGOGxu/1gp9w+nuzLh23XyQ+u1z+uxhos/5Vdb3\n8O7N1/f/6E/yDV/1RUgXHxn5w7k8iBm8QTAuTW9uoqioVnqtPl4ydVLvSlHMW0XttSBGWiv223Qr\nIjRkcwIXqPPMfHGbMs8EMRXqvN9TDsUyrLohhiEnuorl0eXB0BbfXWNKbE5PiGNe+wFiTKQ0soYI\n9+bS9VpsVASG1vROr6YEjFEcMTI3cXs5rPiQEBFcROJorniWm6q7GftDrjUkIisaEo4RNkdUJpjX\n19t++B/yNX/xr7DGzwj/iO/+/h/kq7/sj/B73vRRdvhPB6ZpolYlJhsnzkthWgpzaZTeHaXyZt+n\nPne/rqPCz22qzM/Gx9lqz3dFh5/rRn6NRXFcDh1xz5ppf+D81i20doY80mtnmvZcXu79fctWkC7F\nnJRLYXCfs1rqMf7AiPDhGDEkAVKNLyjOudv1Mi1kLPSxN1vMS3c32yHT3UI7xmAuvm4B3Woj5ci4\nHSl1ladVWitsBouwv7zcmwW8WDGSnGtjvLWGhbO9kLvrz/DwA59lVSbO0xGcPLF2/eqM/0CQfsz4\nCSGTkj3AvG1WKNRGCCAxmeNnbTaCas3IYtohWhFhs+qG9oArE/nIx1/Nd3/zf8JXfcN/xVU0vRlL\n/Q/f9l/whtc/Ct0q6I9+3aN8z3/9DXzln/1mnhtjf85f+5Y/z+sfeZg6WeCgnZ4BXfxPvGDpzefS\nBjOvvhe9Vuo0GVlxMTh0WSa6VnpZKNOeMh3odbFCJXnsveG5NsdPkVoKEjD32lZpMaKS6THSUyI6\njJrWoT/XNxXvgnz03RV+5V3v520//GM88d4P8OjDD/GWP/SZ3DjLXJ7fYpr2LGVmXmaKEzB77Syq\nTIuZTZkMFo4RCB8WxLi+eVzny/im4KQ/C0CNDIM9j6X3F/ze6+Zio4VGKTOljAwKQ9ow5g0lHtzt\nORDCQMEKSPV73Lq2Rq02v+/6fAO/V65fz9X76ktla2C/n8wVFUut70RiGsgpUKqSYmZ7coOUBysU\neme5c0EtFZqPo8bIXCw4MKuw3Z7x4KsSIWd6fw+13n4BB+mVh/Uizdf7n7TtKZhFgp3clsIeRNEm\nx4Pa1lD3PaaD59utA3SH+Oitshr00TvUYBLvtaCond5n49O0SllmyrQ3Am5t9FKpy0yZE6NJZgAA\nIABJREFUC8tia0xFkJTM3TulYwAqYl4tcciUsiA5E5OQkiVSR9b/EzFCvjVFvRlCXGshrEi3CJos\nwTtkI+4S7XF9vHscpUj0oiki7uLOcbwdPY9P/bW00QvY2bD6RKlE/tW738fX/MW/8oIii7/617+P\nx/7jP87JGNnvJy4PM7V1BjVD17k0ptJZqistffy8FjN3v66Pkq7bLbggenV5Fkeh/PmvTfhz8o+u\nf9fnjL/tzNzv97Ta2Iw7QhDmaWY6HOhNiR6joK3SqhLmwuzO0mY7wdGTqNaCarf3Pnr23q/DKuJl\nWshcwWa9B1QrpXS2yci6fWk2u9wEVKzS690+dnZjRxfY39kb+tE6ZBiGwUYL+wvrlWM03kk37kTv\nQu/nvCBi0c/5jE96kxUhCajGVlfP6BCxg6irJdCWWgnqkF3taDejOJFmj2CyPCOZVULcGBGsFlqZ\nCT3QJRCSdQ69d5tTF6XSIFXLgoojf/KPfi6f/smfwPf9nR/iifd+gNe99i38qS/+At7wEY+DO16u\ncMaXfv4f5tPe+HF839/5YZ54z/t5/JE382Vf8Ll85OOvMRUAeoyEqHXdABISg8GKZUKXilSroDUJ\npTfqvFAOE+VgSpnaCrXM9DJTp4OZg00TTTtpsNEbrtjqCpGI1qvZtZbZ5eUKUl0+Lzbq6RBScMBW\nMd21LUbrFipK5m0/8hN87bd851UXJP+Q//5v/ABf/5Vv5dPe+JFWbJXCvCyGznWoxebac1WWtvKm\nPKtm3bzvegnPLWTWj5klvZmHQY7Zn1MnxUjOg48rmmsOr/NprOu1zsTkoMvhQEzn6LRA72yGHcsy\ne8dphmxxlbljm3ut9djRr54Xr1y/sUvB7xehuy3+5eXBOaFCGjZsTwK7vGHYZktxT+Yzdc/9D1ko\nLsLhzp795SVoJ29Geswg1oWP44aT0zOUzuHignk/caiH53Corh4/ywuOi3k7r3n4s5yErMbzaBwN\n8GJwTl6wXBsViCjaylHKG0Sd6M5xNLqOLHU9vF3m33EflqZWzJRKLTOtmQCjLvU4WuvN9lz1MV3t\nDUoh5ExYIiXMTkZ1o86UmaeZkCIpR7KjmdKFkDJpHGCNsvGJiq7cOHcqFmz0FDSi0dREEiMaDK1Q\nN95jLeKAHsxFN+WBmEZTT0ZDM8RVWE7ntQJhbaxi8jwq4W/+8I+9iCDj7/ITP/0L/MFP/Rj2h4n9\nNHsTbsXLUrsrLJ2ov6JyH7YRkec9VkTGxoroeh6ZdUaIgdCdd/i8UeZ1VEZd7KBBkWw8pdaVpRRq\nPSdIcKSlUWo9yq+F7ii/KYdl5byCuZxHQTXQiyWtD+77tRY5L+V6mRYy6zwamijauqmNupJCYNGG\n1k7KpmpaMy966+y2O2IeTOt+uVBLJQ+J1jqnmx1JLHWTyrHT1a7mc4CifC/wA1in83bgnMfuv593\n/tr7+OiPfA0PPngDspqqzlnf0TONglyR5sxHRqm92QHZPbk6GrEJrabw6Q2RQqFSmRHa0bSsa0M0\n0HullQLJ5u7QLSlcE/TCRzx2P3/ha77EFmcaEYm0eW+kYYcCaR06vPZV9/GfffWXW8SCV/a1VZsl\nLwtKJaWB1tWoJ2poSRO3/242b6+9GDsd82MppRqpr5pigNWM6miXDmsgpfYGzaXsYo7Dii2qXosV\nMnlrz3UlybVuC0+t0wshHlGZ9aYXhKDCO979Ab72W77zBbugb/ue7+O/+U+/lJunW/NfWRaTDbZO\nqeaauZqUrTwCsDHk3c//wHNn0j5w9M2i68wxI0wyEoVaD+7uGkl9MLLuOnZUPY4vjwGAYtZ+rS7M\nl3fYdwv2TCkR0mDkSTCvmeTdpIgrAC0ArjXbrKUrfEiH/8r167m6Gvuhts40L6zeSEgg55HNdsfp\n7oxxt6Mp7PcHxrzlnnseuOI/XMy0i0o8HCCPxM2Oksys8ezGDU7PbnLfAw9yOEzU0pjn5eqeP44u\n73C3cfEXfs5n2L3kX43z2CyayItl1A96GyebGDe4ZcFaEOOOtFdkoVWQoa35yMOCLu1RqE6Y781s\nD2o1E8HuIxIlIDkTqiG8LswzxLa6ZYNWQ4tCMI5gTuScWZKZmwYCYZlIS3aLBvfIWVVJKhDtIEWv\nrDZW4EWPSeBmRHidHitRCDkR8kDMO38MZsgq4rE1RmQz2k4grEhzyJYJBzzx3rsnWau+iSefeSfz\nPDNNM9NcWIpJj/FmsjUPEHUj1/Vx92t9Fs/nyATWEw4McSKoB51GyPkoKX+hRucY7OhojYiFCach\nE0Ng2l/aGaV6RbXQCsXvst5N3CLJ4i9WxK5VqhupBucwSWis5qov9XpZFjJgFXXrnZS8UsQQjyEE\nUoRpWcjB/ULEciqmw8KQF07OTuHB+3iqP2umVrWhROpU2J6cULvBm4bod/dyMUMjK0LuAD91/F2e\nvdjzYz/1zzg92/J7PuXjefDBe4jBjeGjk3+PB57FbmvvuOWPw3j2uQZoMzKy4jwZ55kIQswjUaJt\nMKqGqrRCLQDG+u6IKYLcn0Z8Q5EEWve2+POAeugirRnZr9phKTGxzFa8mNDA/n+dZ7oIKRlCId2T\nuwWadELMRsDS7vLGar4WxZ0e1U3ueqe0RlWBYYPIQtSG1AUtha4Dsj7HCFGCc+R8XqpmGtY7dCxM\nz0Zw5kBpEQQ+jtHg/JMrSPdtP/rjL9oF/fj/83O85TM/gbIUSqmU2piXwjwvhBBM/trW2Trekb7Y\nZOn6FnjtYxrsfsAQlXUsl2KmqyX0xpwYxlVlZLNj8yqy/7ZCveCFVTdiZe0WfJdTNuJozLa5ivEF\n5JpPhO3fyWD20Gn9QGsH38RfuX6jV1dXoKHEKizzzPmd26QQOTk55d4HXsWw3Zlp3mGyPac2hjyS\nx4FpP1E8koAuBA3UWJkPM3Q4vXHGbnfCyckJ+/NLanHSqu8rtn3vgO8F/i7wRtbm64999meyHbbU\nokfVWgBHQvwJeJiqhUl2QzWIIHboH12n1fWZsh6mtk57NzPKVk0m3qvSy+Kqv+KW+Wsooh6VSut6\nCUHQaNlQhrCYAZ8hKSsC222kk6OFEuZIHAyZiSESupJCIo87Q3RCRVI4kkfDOgoSQ5VDTEh0NAYn\n7jqy1OE4NoopkfJITlti3BBjJgfLB7JxkhdYYgVVjBGJpqiyLDeh9s4jjzyE8MKBtMLbuXn2KHOp\nxssr1XO6FpTVt6X7/tqPxdmH34eevxcZWdm2GNunkeAFn3kGJY9qqK3dhWB+hTZbA15AhGGzI4XA\nNB0opRDEBAXRgQX1s7AbKdLRwIEYnafVjSpCr/QutCa03ogh3UWN9cLXy7aQATyIMTMvB+fNdMjK\nMESW2giiNG2ENWumFC4vL0gpcPP0lP6g8uxTT1OWxma7Oc74NtsNvVSmyZRMMVqFqg6hPtfjQ7mc\nJ37+V97B7icy4zDwKZ/0cdx//03iGOwcFStZ0I4080Y4unKGSHBL8OIma0bsdcAzBAt660KQgRjN\nYAhpqDTvFJRWuhUsIZJipmGHWhohNNBlAekGrcbRfFPWe08N1WqqtA65K3VeqMsCghcjDikTSbF5\n5V1sc/FuM6Z8XOhKp3h+kikBLGG21mKW4KXSSvUU23o1qyeiwhGFCUA8EuqsXZQ4sKbLqnsWWBI2\nx81WVB3axV8vMal2DLzzw8jSn3r6PQaHOupXq7laztPsgWyWc2OJ5072fcm8kis4V0n+9wYYbNrq\nRIrDseiyAMkIeGpuN5KieicsIqSUjj9/TbAGaMXUFbUspDyS4gA0/5pAjHav1d6cOJn9nusILqN8\n5fpNXSsJfT14Doc9vTU2my33PfgIp/fcTx4i427D4XCHsp9pSyPFTB4G2tJMkh2cGOlmYMtUOVzs\n6Sxoa1awutTetu3rjy1wAfwTgsB9pzeZpsbP/dKvsdl8NPfds7V1FWwkAxj5MAwO9a98PXcijuss\nwT6nTqhXdSqwrMoZHzW446ugSGtuuwBafc0GQ66PRn2+bs2fpxGjH7zNSbtVDb2p9m9TGyV6rLRF\niEukpmTFhgQKldLUpNspEoZIyAEkIsXu+7Axs8gQs+0fHokQfG80MM3l08Fy7IY02vcM0Q1JzW33\nOI6JHgLrTZRFrHgopCpTrXzeH/wM/trfeOFAWuWcT/yYx22/dGl6b52lVFSgNGtsSm3H8+jFd6Hn\nj7bXj2X/e3MkCiAQw0Bt9p6naIrImJoLBlbPpPU+X9FvQ9VKWViWiWHZmjJXjJyrqu7rlqkYmbex\nig/UTBRZfWxAxNC1VbFpROBmbs0vVXvNy7yQwZNgLZW0U6owNCP6DoPNK7VjXIocKaVRSmPa78kx\ncDoO9Htusr+cQGAYLcRsM3h4lXtv2GjCNwUx/f6ytCvvBTq3D5f87L98ByfbLVkin/yJH8v9D5wh\n7jRss+SO9GbEXOthWC2wDcpPBMmEYHek8Y6N8Gpts9Al0DyOvtduXKBoB2E3qc7RhyG0gV5t9qjV\n/BRiiqCN0g4G+WKS6FIKHXPWDK3TisG/4MToXo343NSVRUbwMy8Tg19DssC0lM0LvddKXRa6Gx9V\nT52ttVDnyRCe1mwjSOviz7SVNBeMtdy1+aTDk3ZDsBgHn0+HNJozKrYILVDOU8kFn3UnCBli5DWP\nPoLIj3E3qfm9N1/H0oq9P15gdVXmuRxl1rU1Vr+ED3/J8/4mKAlh4xuCH3W9U5YDITRCCseCJATr\nYnLOph5pVnCuGPJqF756cIjD2nbLqZkH9k4NxSHdtQivcDTlMiNBQqazQeXSCsxXrt/0pWr+RNI7\ntduY9QPv/wBnN97JuNlxeu8pw2bL9vSUeZqRZWEYN+xOlWk/QfeGRsHs5iv7/YH95R1SElpdnP8R\nvOFKCBn1RHgr5DcEUaByMU/84hPv4oG3/xI3z3Z8/Mc8zskuWyirqo1t3Bk7iKLBUZfeaVJsdKQ2\nCiAIlnV0fLZ+O6sj2bAaUMp6n4kiWlidvtX1zXbfunGeqo+I1fYCH3BRlS4dCTbux3mO5l1jY+SW\nGjF30qDg/KM6TfTeGWQg1EaUZPJenHo2ZEO7czZE6noxpea8HFO0dRUCKY2kYUNyq4vgKE5Ixukg\nBud3RKKu7ZRNCBow1cqd/SU37z3h6/7MH+fbv3ONn7kSWXzR534K997YcX7nwooHH7HV1tHF5O9r\nEQPek77onXhVyLgxBYbOZNvT/TMrSiIIQaIhxSmQUqBl907y9xeuOHvdx0MhCL02ynTgEmGJg+14\nKVv0A5CSB+u6hF6CHN18W6tH0Gfd2648ruzoOYpLXuL18i1kxNnVweTG82Jd5jBAzJGcLQDSfAZM\nnBNisgKhwjwt5EHYbTfENLDMi1XSwYillhqdjYyrRlyzRWYHWwtCD1eGPE07z9w555//wi8RMcfJ\nT/7E38m9954i2VJUbbzkt5uIywEX634aQCLGTnfyp3R8M+gG56rQtdrhp+4i2yphsDe5NkVKoMVO\niJaFElsjxGzjJIBSrUhzBKt3O5TLPJkx37LQpvlo4Y3/2bRbbkatlmUUogXmBSGkiCSTxRmsGi0c\nL1h4p8W5L6AWglirGd+ZM6YVGjZqycfZ50r4PSI/CtqrzZ2960l5S8ynhGT26wE9GuDZWCpaIq3P\npokWEPlFb/nDfMf3/QAvzB0451Pf+FFGOHSZ5upyWZqTFFuj1ILqCsd/uGvlLfjsnwRklAErJtaC\nwjJelkXJMpprcVNUGjFAHga7H4rQl8XuBXUzx+Df31VIIaxoj8O92qE363y5TszsQLIukQQ62gEo\n58ArKdi/FZeher7pA6DcOb/Ne9/1q4xj4uH+OJvTLSlki09JM3ncEvNIiJdcXu7N2r1DqabmWZYZ\nrZ0YAFFvqgSO95Zx5AzTXFhdvwFq7zxzfsHPv+PXeOi+m9x37w1e/9pXkVNytBhDaHAkRWwddSkE\n3KUcfJxvWAsxWoB1NWsEnCtngK+a7NqocS6cwEepNgqTYwdu+0mrjZgTkWSoS7NRfBUf92AeXS2I\nj5nU3bwVLeKNqCKj5bwh1qQ19waLYhYMIXmz07uFD0umBxNliDeptodE4pgMjUnZmqc0ImkwxCFn\n2wejuIopEmIyJMJly4Y0C1OtnE97zi/P2c+X/IHf+wm84fFX8Q9+/Kd5/5NPcu+Nj+STf9frOdsN\n7M8PlGmhlXZEXKqjX6VaqGS/BsXICzJY1ut5HD3W+2VEKXafYI12azOtJVaGtEhkyN5YemNqvdRa\nzFy5la+igVYqUztnCYlhGN3tPfn9pWY94r+S8cKKOfn25k3ZFbp83azTqhnnJb7E6+VbyGANaevY\nJtwapUHVgIRECo3WbaZoczkb7Wk3+exx0eSBHISebJOIvbtPmo2tFieptl5JvRki09Zm+Lm3zNIq\nT966xT/9xX9BjoGTMfOmN34Up2e7IzpAECPEKkir9GWmVzDyp7hhUoCmpKhMhz3aYcgjIoHa65WM\nWI0HAc3jEQydInYkLEhNxHFDTEaCtVGMRTk096YopVo0wLKY1fX+knqYKYt9rPfqiwXfvaxSHzY7\ncspoENKQrVgQIwZqU6JaN4IrmlSbEVvXeai6iZQa0a5XxzQ9NXZ9fSUo3ZNRV6PAkLOPSkai5COs\nG8AX3hrAaChDcAml+rjusUcf4S/8uT/NN/3l7wL5X0HfCPIzqJ7zZW/9LO6755TD/kCZF3ppnrZq\ncHCvntFSHVrlOspyty1knU2vsP8IYQe6BZ2v3UeJrpfmwBuaQ6pXOVNxk614jwsgtLm7y7EV2+Yc\nai+jdUdW8NnLEpyw3p334FJrtw2smlAyQbauVtig7RJeGS/9llzdncgdNGAuC8/eepbte99DyJmz\ne2+iantNTIkhGJ8i5kztnYtiHJiyLJSyWJHdmx1wGOLTenAEJmEaI/dhsOOPVa4fJFB65YMXF/zS\nu97LI7/yICe7DQ8/cNPUhjjcj6MpElGtlnOkgSgmU+5rSrH7XaGgVV3Z43uk8+v6UmilU5ta0aHq\nY1MxZWG0UXHvSoiJKkLUYChW9UNcxLknjiqmQBoMeeq10EuxcTXY2KubMZ30bryX1tHqJpC1I1FN\nJRmE2IHSIHZiMquLcOSOiHNnrClKyZoMI+snQ2tyJiYnpIZgWXlisnshoL7e5tK4czhwe3/BfplY\nykJZZu6/55S3ft7vY5lNnjxd7pkOsxetxVCYFflYCdLujfMcb5eXeD86gxMYgNE/GrEi2DLvlhhI\nQzqmTcdgqHBJg+cTru739lNjDM/x0rKCRGlUUw3n9bXLyBqnE4MFmobAUhZmb3pNUCFXhRJXCJe6\niKarRRi8lOtlXchYyKC7KXYztCtVaRrIObANkWkulLla6OgQ6M2QiHkxZ9xxo8QUyAKlN+ZayTGy\n2e0YNhurMS8Php44hNm75Wo8nx6uKHOvfOD2bf75v/hlbmw3bDYjH/sxH0FMCTuNV3UNVyZtcEy+\nNW6LVbb0Ri+TdTBhJEYxs6lqEkXtzTqoWmii1unHbFJlFGIkVs8p6bagFaGLGc3VeWE5XLI/v8Ph\n8tIq4nmmHCwczBRF1Y2tshHkQiARWS4PxGEkpEjwUZKg/ju6ogks/yhYBspaUHSX+MYYiZh8nrUL\nlECQiLv0G4xdm21E2M/PMTOk0YP4zDU5iJslRUeIYrAiRiJrbIRKoPTGxbTns3/fJ/Oaxx7gR37s\np3j/Bz7I/fd+HJ/+ib+Ds13msD+wtMri0mtz7XQvIcFHO0cPVOfu8CJn/kq+VGyjGBE5BUZfqN25\nQcY30La38MyUDM4OhqilGMkJLyY3ZtC3zF7M6DUp9jqz7tDDcd5s3ZLNt408HBDNmP863lmOBmGH\nEdbssFeu35LLXlfj9jWFw7zw7K07DNsnWeZLulbSMJKHgRQSEjJhDAzjAWRPqdaxtlqde+I+TQqt\nC71nL17WYiZgaJ8F9Nk4yMQP6p95+jDxc7/6BEOO/Fsf+wYeevAmMdj73rEvEtTUkUEchU12ELWF\nNaerd3terIoTl/7ISmJ30qzQSSZ/QiQb5pPc68VVMYipV5qHTrYWqSJWJOV8RDgs8XpAUoKyUA8T\nZS50FVqwJso4dtYERZTQGjQbj0lOpthUXyOOEgVJRvxVRVKiIaSU/SBNpJCIMdv+48h0CPGKE7P6\nzxyLmECnMS2F82nizv6Cw7RnKQut1mOOUVkKy7JY4VL7MRyx1FXJ5SOVZpOB1fphJSkcpfAveK3N\n1PrIICOK7UM2Rh6xwmai94VSF3PTjcn6zW7J4ylFak72c92I0/YXiwbq/SpE96qxarQa0azIGAhi\n+U1SgSGQPSMrRNuPNBgSrV6oSAjkwWgLquZmLvLbYLRkEi7rWDma9DSmaSbFwI2zkRQC2+0WxDxB\nUgiEIYMGylLNWrsZIZgox6Om1MrQOydnpx5GaXNtbepcksaaaXH9shsN5tJ41wef4f/6f3+ei6Ww\n/B8/zn6Zef1rHuZLPu/384bHXgWtH63ICS5Jo5vTbg9uOnWlSundfFy0OfTWTGIegDUFuetsizqm\no7NjzZN1CK3S62LGZ3FA3TZ8OVwwT5cs+0uWaYHiMuD9RK0LS++oBOKghBSoRSli47k8bC1Hxhn6\nNh8OpGTS7d4KYQnENFCLzeBDMItpEeP7WMiboRUrGS5EU9QY3GgScwnJHD5944h5NBVANAhXgvNC\nfD4t0VO3NRx/VutwOc2c7y85LAceeuAm//5bP4dlmliWmekwcbjcU5vJRIvLPE3BYIidBZa5SVjA\nZvgutFgX7fPv1KtDBfu7DKCDGf4dR00DaLIuSSKql5Q6E1t2S3pxo0f7GRIyKieI4Aq7fiSrm3HV\namR2rbARk3zjX8dqdBY64wBpMOOwUpQeEu1D1A2vXL+xyw8P57CAITRzUc4vDgzP3KLViRiVYXPC\n7uSUkE1NZPw8WxeNTlVTMJqxmzdWKvSeUF3vs7WY6dh4cALnYh2dxcVccnsMvPfWs/zTX/hlROFT\nPvHjeOCBG0Q6oUc0NESbjXTphFSRZnYWIu6x5YnXEDzQ0QsY57QBdq+naMWBWFHTgYqYxYBzJlCX\nWAfPRqqNlmZzfy32lFKtzkFJ9JVLN2woaUPZLJTV4fYYHOm5USGQOvbz6ebgpI0czJhUQiQ6ThFj\ntCYFCDkzDAMSg1EO8mhNXEzmmJ0jKSckmZqJaN9LjsWHciiFO4cDF9OeabmklMny2qonRvtjXirz\nXGx8vRTKvLDM9nWGchnPKrj78hqiI2sRc9diJl57rIXMDrjhXz9hhYxZWoB6lEwnZ4+HaYZWDcNA\n77A4gLCKLkwYY2hva+bOnpKjgmqNdymTG4i6a3tXlkVJsdGxgs1Q+YxIp2GCG+nCXCKtmb2IZXT9\na1/I+IxPbEYr7mFgnieN/cXEZshm/jUEdqenxHmmLMVZ0Bb+d7iz0IKFR/ZaoFdTQjnUpa2y22zo\nKJcHk0bmITPNM8uyQlrPj0i3RbQvhf/v/R/gF9/7PkRuIrwJkX/Md7zth/iOP/+V/Ik3f6YtDAI9\nOLtfBRXrwC3107gOOZupXu2rnT0mra4NxJwzpbkLJrZRaG9mXb4kZBht86uNVjpt2dPLbE6wi6kk\n2iK0Fhy9AI2RKCOxVpop41BX3gWg18Y8X1CcvCbRPE9iDg6xBsSVVHmzIQyjFztCHKxYiS2YPHJj\nYXghWW6JOiqlvSMhMOSROFg4W0wJ0mAdT4yEnEjDQEqW4hsEg3pjNv8es1ilqXI5zdy+vGA/T+7q\nXGnFzLiWyTaMpTRKtZC03ixWISCksIavGWFPnaQWwouR7FYkZuWr+FiJDUq299LVcMIGaA4fG6Ta\n2mSW6nk8qpiO5LegjGM2Tou59bl/h9+Fq4rgOX9ffx8z6yJ4YZgSacwoB5YyoS0htLsUZq9cL355\n5xsiSEYk2yEuyXlJ7lmihVIbl1Ml3DrQmnJ2OhBCZZIDIU7kjSJ5sEI/ejjqkVhpowpbK5HeEnoc\nK60qlAnYY9wH8/YIEo7siBiNG3VolV998klqaWzGgYdedR9//6f+Ce963/t57OEH+eI/9Jl81KMP\nYiGjERIErdS5o312PoxbUTkPMMRAEkGbKzDzKuV22q5anO6Q0jFE01ytg3PmoM3WtJV5gqWjxfaE\nXE21E11BaBtWoG46tdmovBYb2+tcfU0ZMpujEIeRNERyNB+YFAcC9tpkd2GOY7bvGwKkgRTdRTiP\nxHFLygPiRZjte1bIEJONlfCmoC5MtXAxHbicJ+biyk0f519xnipLaSxLMeRtKdRpZtnvmfcHltk9\nWMSd1FWP4gz1PftDN6LrnJirfUhIKAPKFmSDuNoMBrtP7dVH+94z8TIhDHSFRCDnSFcrzvWaDP86\nCrNe3j+t/7L3s8/evFoEUGuF+ej26WO5GOmaqd2Iw/Z9A7OjfAY4/2vPkXFSEZ3WC0G6VXhqBLOG\nIiEz7jbWRRMYRzNQ0w7DOLA72YB29ud7SJnNOJK3I8tieUB1mmgSObl5k82Ne9lOB/bnd7i8fe6o\ngNfD+qEZFOtvuPQOfAWq/53dNJ6W/dV/+Xv4tDd+HK9/9UPE0Omibm7k886ghKD0bkWXWSUodXEv\ngyAQjNSsQdB9t/whNeZ+x3gTvRZ0KYj7umhttKI2tphmUw4Vn0d20LLmdSiazQY8Hib6YvbQLAVZ\nGlrECqLVRCYFSOIO3c5NcStxAdphJpZKGo28B9GMpCJIKfZ/R3fGdHJcd2+bJDbu6MEQgzyMBLI5\nT5JsE8oJSTZ6SkP2TCuDQyUNVDqXhz23pwv20znLsjcpuBN3W1dqx50ym5OeC2WaqYvJW6MEYgiU\n6p2oqL8vgShGnn7hM3/tgLwLYjBERkb7t3YM+t84TC/uJgq9QlkKIewRthaSmSzpt9cJacqwGel0\nDpfGmVivFaEB5xYpqNgozDr8gSbZ+EiSqFUsoLwnVNa5+SuIzEu7vIsNzn0KWyTUxGfBAAAgAElE\nQVRtkbBxzopzxHpB+4LqAmo08VICl3vbS1IKbE4SpZllQVMhY4qZEJLvOxGNiRqae28ElExXW1d2\nj2WEBWXBihg1Q7YYfUwajlLYrhBCZKLzjve/n3f9vR/lH//MzxLkJsobEX6K7/pffoT/9uv/A/7Y\nH/hUxO3+W8V4LSERZPWQcdPFnO2wbB3VQuuC9ECM2UfEhmLGPBC3G+PXKcfGLW53SC3UsEdVWcYd\ngeRJ2I1cio0zQrSMp3mhdWticsxkScx9oo+CDN0+N9hoPwnkzZaUI0MeCWkgRytK8rhFhoQEyJuN\nmVMG573EgTA4EpMGQshG7VkbgmwcGg223rsagXVfC/t5Yj8vTs7tLnioLMXGSNNhYjpYcOY8G2+m\nLoWlGjozzR4KiaPDtboxXThOs10TxoeeQn5/XtuHlMHQGN2ZklNcTEEGzYYu+4Sg9wO1LSQGVgNQ\nCWIRQENCdUPrlVJm0CtzziskuB8LcKNQeEPmo7AQo4+tVrONhLRI04SEAeKIz8+c3Ns5EpNlecmk\noJdpIWNZDIfDgQ07Ql4JaSbxGvLgHABc0rq3GadAdbXP5sZNdqdn3Hr6KcphZhhHeggMO7OXPn/2\nnLIspJQYdiecnd1gf+OU26fPcOuDt7g4v6BPC+LeBy983T2w7W/+/R/nP//Tf4I17TrG4CoZIcaB\nYRsNhiuLd8adGKuR2lql92ocGxHSmHyerQaMVlD3LlCttHmBrtTZ5rCtLrRlNqJgN8Mm22ibwbAA\n3YoJxJAWxSvvrlQFDYIUbIbZAloCNQQInRAWQur0AbOgjurKL9DafW5sY5uYE6GDTsWJc2LyPtRI\nhTESEPIw+ka0JQYhp8F8DTzxO0aTqUvOpJAYCEaGlMa0VC6mA4dlprQrCXiplbma2dS8VOalmF9O\nbZRSmeeJaZrNSdOdObU1msdLqNrCjME5My+IYFyfS6/d8gYrFNZ7J6DiHaDPqYQMYaTJHZZyAPbE\nHEljYtzsGNmap0RdbNYfAsvlgTLPTuI1JKa1euTNiBM5xV1MQwpIGAlhY7+bjIQ4IGlDi3do5YPQ\np9/UOv3te1nhIHFA4g6JOzSeofGmFTIx29HSFugHqAdUrxWGQcwXpStLgTB3LufATkc2sZGCjVim\nwwGiNQUhOqlWvJlBQJM/bGxgo0Pr2qEg7sxqHD03vvODxhKgxd7zmHnm/Fl+8V++A/gKmj7X8fo/\n+vb/iU/9+N/BGx590DgmYHk3caTFQM8WAyPRLA5QRZdCq0qM1lwSQLOl1QcSabMh7gZzYe++dnIm\n7nZIKWSJZnoaTO3Si8UdDNUCK1tt9P2BVjtRzaxNgzkCd0cYRAtt6cblSzb2zuOGEKOhKjEwbk4I\nYyJvT6ghoH0xifW4dQRL0Zi9kLnGjRGz1I+DjX9VTGzR1c6npRQOy8K02F5Tqik2S6lMy8w02zh7\n2h+OhcwyTya+cBffBaF7PlNwf5pVgXUkWHK8Le5yXR8p+RibEWRAGDHkLvv7bfuQScUb3X2n1qK5\nA1GVIJ0YlDwOdN0BSi0F1bWZMhR45U8ZkuwcKjBU0vRuHAUaEqgaUc2gA8LOFJQ5GPpicijos92X\nfebFnvXzV+vL9tLW7GAPw9G4THUxp8PeWMrMdpucFLkYhB4tYbjWxr0P3c/J2ciz73+KutgbUOfO\n6T03yQ+fcOepp7l9+xnGMpPCwNnNm5y+7l62Z0/z5Lvfza2nb9H7fFQCfeghdvfAtife9yTNM5is\nYBbCEKEFQjKSnrSCHWrW0VELYVlN+lZPAifD+NgGPB6g2v/t3QhTvQm9VLTMqEs3tWHzdR+XxGjZ\nVEGBVil1RhQ3XEuEFOhYtH1vFknQilKXRtNia0oESRHN3gmNTngLnbY0wmBoknQhSSQ5YZfW6aW5\n+2ZEmqkaQrJNWLp3bEMgDgNxGG18lKwIlBCQFGhxDeczcuK0LNyZ9uyX+Vik1FaZl8Ue88w8zczz\ngWWZmGcz8aut0dQ20JgSMVZLTy+W+SFu8IVWG2fJ6vvz/Pvg+iYygpyAnIJsgcmqO3z0gIBurFsP\ngbC5l+3Zg+TwQerhKS4v7tC0ccIp42ZkHLakJbHJG3bjKZfxDue3b9l4qBupPIRrfZrLSVOI7pQ8\nmaxVqvMrFiScIGGD6BYJW5Q7vKJc8ktg5ThJOEHiPYR8E8lnSDhBZYuKmVsaoXq1ShAfLfG8nsf8\nn1rvLLWzX5TLQzBX2tgJQVmWauq51sy63SF8EbOTqDX7e2f3kMpgzVWv5jlBR9WapNWLSkMkdZx0\nL6gmlMgHn7kF3MXxmh/kb//Y/803/odfaPtP3qDRQxbjTF2uFWkxuEFeoBdFm1C1mAGnH8ZCIoZM\nzidmo7UshC4wjkgY0N2GvL1hzV20e7gti+1nvheWaaYCTSKUTgnmZD7mQF4sjLZVdZ+qbGPocSAN\nozW2KSIbIZ/syCc7k1IToBuZecwDMSSadDRGeo7IkAkxm/omBh935+P90VUtkqUWpuLJ1LVQqqnN\nlnlmmWfmaWHaTxwOB2ZHZGotZsS5VKapMC+F2j2OwVGNEFa1ZzvGpABHFMRQ3efftFdKNitittce\nlm5ujdTOiuKVOAyYZcalNfUxomFwXqLSeiUE81/rzaKAzF5s9Q+6QmaOBYfa9ES9OTcTvuB4ks/p\nYyYNJyA748R0Tx73qAgYoA8gl45sfvjr5V3IrB1ni3RPBEUbMsCyFG61CnLC6enWRhUKm+3GuntR\npss9427Hfa99LU+/930WtKeNZ576ICFnTm/cJKaExsDh/MCyNB45eS2PPvwYUQLD9oSnnvwAl3cu\nYHmhzf5uadlv59EHPsOMkqRZnkUwmWHr0EsnBbVFFQJBO6W7Q3Ewpr+4pXYvC2vwGevsUBoa3Ciq\nVrRU1FO3g9rISrqsenTwgpcoBCyHR4OgMdgN3c2joQcxKXUpSKtIgLhNJKLByLW4WsHKLyuIjEjt\nzD6DH0ulj52GkVdls3XPBSE0V954w5mCSfY0qMn3xoE07tygyg6HEANxyGiIqLPeS7eMp4tl4bAs\nx3TYNZeptMqyzMyHif1+f0RflrmwzAtTaaaUiGsCt6mGUoyU0o8ywxCDqabwoLPn7CLrJuIP2T73\nQcc2koiQOUZWIFZQ5oGz+x7h9ORh9rd+jVtPv5PLO7ep84GTkxN2uzNSzGhIxFEI99iocdqfU2ZT\nM/U1AuEIHKplnKxUDZno7WByazE/G9oJvUdURl5qx/Pb/4qIbCHeRIb7COk+JD2AxBMkJpDkhFel\ntQXt07qosIQijA+1Bt01ATE1EQitB+ZZOb9sxDxS5sLJzmz3p4tnmQ4H2jWpaQzRUt/7SMOT4sW6\nbGXCoumr75FXtvIhuorPYB167yy1sNTGtCy8aFr2B55G0kAyiZsdMmImljFkehwN2XU38t6TkZBD\nYciNhtDjSvo1pWjsiowbat6RqtqkI0XqOJIYyAqSQXul5gJiDuHUhUymMlDjTD3M9ju0VS5p+VY5\njshgyso4DBYsOW7I2fePUWzEFAdCtjGtaCZIJmdz2E4pmApqGKzRihnJGyRFfvWd7+Jt/9v/zjvf\n+wFe8+jDfOG/+7m85rGHmWuxnCDPk6vV0JZ5mpgOC8tUmA6F+VBYJvuaeV5YlpnqXJnZUZl2LY8u\niLkHLyEarxJ8/GWGi2Y8eH3EtKIwazGzBU5BbkI4BSw/bx1JItnvyc4qUtAQabqn1omYA8TROUNQ\nlgUI5M1oI7Nl5RE6yVv1yO+zf6/8VpPWWCm9ooyNmANpGJGQKB1EEyLDMZjYq2H7Zn24+vuHuV7W\nhQwYsiJikd/mK2MwfwKWpXLn9oFh3Jl6qTVyzJye7IgxcnGYaZLZPfAAj77hJk+9613onWeZL/dc\nnh8YNPHAq+4lbRLj9pTDVLi4uCCPI/fc+yo2uxsQhF7fw74dPF5gvQS4W1r2bX7XY6/lzu1LTs/G\noxQ7qskzTa6GzZklm1FfUiQkWqjm7qqusw9u/a3OAvexDxJRd1EkREQDSRMaAk1moHjXZoeaRMuD\nSmDy7BjJKVoRUxdTd/UO0eR3vXd6DITR5sZSK2WaTaIulh6bst0+0pWgfpx3m1OnoMQsDvlmcszG\nQwGDpoOpd/I4GJEuZvJ2Zz/Lg9+MLibmJjwMNIkowQqVOjNNE9M8W1fTzFq7LIbGLNPMfLBCxrqk\n5ZitNM+VeamUct2nweTdKSVCaJTWqThaFZQyW1zDFSJjc2lxLw8zv9vZbDpsAMvQAgWJ9vCiwQzp\nIiFuyZsbnN6/Y3fjjHxywu2nn6BO5xymiVZhyAM5D6aSkMDpjXvYbHdM+0vKfDCSt3sGWRyEdfSl\nXc2XtTeLK4jqDtaXIEbOVufX/Jt7BUNg0n2E/GoYH0CGe5FwhsgWkQFfwNYU6GxZX5pQrPlQMb8l\nJfpr2VylsG7Kxg+YK1xOiuwjUYXelJOzSOuF5TAdLepjiPTg3JglOdnT1XBg40A98HwkTcSt9YeR\nYciEICxloV9U5mlPSoEXS8t+7JHPQSWRYrAsMMmEHAlppKetocAubSZYAGpPI1pdvu17M0EIHc9M\nUzPuFEzhVBUZrPAPQAxGFg5xoG6sIJydzxdDIG9HahiYJdNToc02Nh9iJJ6e2v64ScSUycNoEvIQ\nGTcbK7iyNUFgcQTG/xit0HEZNTHZ+HYY0Bh9/Br5n3/oR/nab/xWRG5gjrw/wnf8j3+Lb/2mr+OP\nfO5nuz3IYr4opVCKeXUdDhOH/cRhf+BwOFjMgGe5zfNMmQtlqswuKllqM47MqkhMkRDNr8sQcg+q\n7MVHTsd3nOciwr4HhVOQE0Q2qBb/OufuqSPHCkhH8pbh9AYxPEUtt5BlMs+cYctmPGPYNGpdiCV5\nEHKnFZs0rM2e6mrYGRydtCIa99khmPgg5kTebICZeakIW3K86Q1VQrplVHV1E1lZn9eHv172hYx6\nroP/CxNwNLOJVuWwP/Dss7cRuZ/T01MzNSKw227Jw8gyN1KD03sfQh8DfZ914drPOcx7nv3gBzm7\neQMZEpvthmUp5MEOou1mx0MPPUwvlSf7k+zP99cUTCsv4nt5fmDb2WbHT/7023nVA/fySW/6aLbb\nRBTQFI3X4dJBiYNV2GFVJ/kcWg0hkYC5v1bLQZEQ/XNGlI3damtQtCy0xdwuazdjKkFIIdm9m9xZ\ns6kR+kIwnT8NUjKkKGIKoJBI2xOKKpqSRdmzpW1OjnlNqlaw6FI9uTYgMZBjYtgMDNmySoa0IYtt\n3CGYuVQaRkIeIJmayYzBBiSbn0uMkZwGv/l9/k80boBCaZWpNqamLN38CkpdKIsVLWWuzFNhOizM\nc7HoiqWaasmh/DIvriDw1Gm15Z6iKRRoxTpksd87xmgLt699RvD5sxVXhBFkA+EE4RSket9kB5C6\nLNrMLCxINA9n7G7cy9n9Z6RwxsmNLTfvuY+L208xXdxGS6H0wnxxjgjkcSTnkTRuGYfRzBIFSlnY\nn5+zHPamcHO11XqJuTMSYyWPhTg2msBBheW6X9+/UVd00u49xOFBNL+akB6CvMP8NxKdAZGMhFVS\nXJw7ZZ2ISANtqHhArFRbRN3GPwbfe/EaAl1G5jYS6inaEloXunQrCBxhtUPBRkha14yt4J10gO6c\nHCf5Xr9W64IQ7F5ttXA4HKB3Wp053e14+pn3cTfH6y9682cbihMEGTZksx4ndEVjQ4M1R9I6Ehsa\nGi12I96roMWCaLs0em3mjDsaOq6lEJK4mR0e5DiYG3VXghoVVEVJMSMZuvhIfdwRNxNtnmgXl/Q9\nMJyiY6Jho6m4Kr5CJITEOJoaVcZMGJLxDXsjhtHCIGM0f6iU6TG5j5aNqCQl/tW738vXfuO30v9/\n8t482NL8rO/7/JZ3Ocvd+/Y6vcyiBSEigQEHjBMVtlkqsQMpIQlbcgQxKLGrEoUAwojgIg5OKBSy\nEEiwYuRAsIUsidjCLlyppIKrTMpxJUVhY4EkJM1M90xPd09333vPedffkj+e5z33zjAalDgEjfxW\nneke6d4755739/5+z/N9vkv6TuCFfKL3/MhP8PrXv4YLh/vCexm0SepHuq6nbVsaLWKkkBkZul6C\nFYOITeIYBJmZVJRREF+yWtkpap1S2kREyNhJioiYdQ1TajPlyFRgZ9JImZpstGvOTovgQmfjsl4y\nI7Yome9sM6u3GFZP067u0zQnZDLz+YKyqvG+wPkSawq8KWhXJwx9t1l/wpOZUJopDXzizCip1xQY\nV5CT0985q/HnWub2zDDJKcqpxRCnzd/vdX3BFzLAJvMB5KOLKWtFJ7/metVieEAKia3tLeqZqDbq\nyjNfCulsGHtm9RYXL1+n2XnIs+YmJ88f07QNw9iSjIFiRjlfMI6Rwpfs7O+yu3eOGCJdK9ycvu30\n/p2dR47AP9J3WLDue/7Bb/4zZssFVTXnda99hHrmcd6SokbMWx39KJphKIWVEQMpjhvPzqhKrYyT\nwMQkRDgxoQKb1URJmfBRJlBYK/JLWQ8OV0gCtxE9uwIGhfycGIlDIA9JOVoWCk+aqmpjKXwpXi05\nEweRF+ZxEHTJyNeLB0FBVVUUpadwJaXxeOOF9zKbSZSDsxhf4KtafAiMxRQlyXq1cC9wRYn1ls8+\n8wx/4/3/M089c4erj1ziLf/GN3PlykXZEEiEKATeMA70g/Bhunag7wJtO8h9Uxi370aGToh2oReX\n1SEEiSbQsRSAc8LLcVHcTVMcxBtBkRtjwWRLzqUy8UUmLdB/rZ3PWfi21O4iaUckxDpX1swWO+zu\n7lMVgX4xY2fvHOuT+6yOnieOPSZ2NCcPWB3dFzL22OFSIc7LZY0rPX3biTo7Zhh64VxNsyYjJme+\nmrHYOcfOhass9y9j/IzbTxU8+/FnCf2/KJlL06Y4h+IQW53Dlofg98BskcwMSwHKKUnaxVorPDYZ\n2USwgWwCBi9jXtADI2xGfBnHFBkgC6YAMyPmOSFtgdnmqD8mHbfMZkt82ZHtQI6BmA3EQoqdFGXt\n5EoOpNwg5M3fPeqeeIQpDypbFvdfYzM5DhTW8OpHLvDJmz+LMR8R1ZLm/vzgu/40B/u7BCTET5oo\n0Vxb7bxTThDFy8lmyHaUEbmvRCocRoyRlLkURvAlzslYORJx2QqiYAy5rsTLaAwU2ohZ5W74WYEt\nMqHt1UDPyggiOeqtBbmekcoKZmI7EVPAZSkqXVFjvNgziGWTkPgZOxEY+FKeG4zUnFUlvlRFIblN\nXlCaX/joL2PM5+ATmY/w4f/pV3jXd7yFcRiUEyN8mG7zZ7v596EXpGboe6a8NAlTRG1FkirMdDSu\nZH5rDSap2VxiI38+VR2pCmlSs5kZ2IWMlcwSCYYNsv4oOQ1GtoLwWYstZtRb++zsHTIuZ3Dv07Qn\nd2jWJ4q+LSmLispV+HmJN9J8S9Bwz2SoKVQZNe6DjVDFasCLK0qMKRlGS4wOa0tw8pzJ7x+Ez5nR\ndT6Ny75IEJmXunKGME523DCMgfWqIQxBIPkIrqjY2aup5wu29w7ox8DRwyNssixmOxxekhuwur9S\nJ0VLjC1jAucLYveQsRvZ3tkij5HSOWZVTehHTaB1MhrCA8LqtrYl0xJT4t56za/9s0/ibYGxX8vr\nvuQ6s9LhchJJpJd4BDd5PxgLKeGSjB5kPh43MfbZCBo1eSEEdc+11sjGh+RIGRLeZ51RCsRnnMbM\na9bUZDZlEFkkKZKHSOqVNKwPtnNOyHhBNvGscGLMhhH5uliJDNr5Al86yrKgmKr4Qublbl5TLbYw\nZS2/S454Z6kmRMZ5clEy2IyrJNvEljP+5sf+Pu/+4bPQ7sf4r9//C/xnf+l7+FP/2teTw0AcB0IY\nhH+ks2fpiNY0TSNd0DDQNS19329SuUOKp+6kRlGWLOM1CSI1FN6q62Ykh7zx0TCTb0iWsYFwJGYK\nkQqqRJZCU8ZI02Zj9HCzGFfgyy3q2QFFtUNRDszmC7xPNCfbrHcPdFzWA4mQRtYP77I6vsfYDdgs\naoqy3qZcjkQ7w/o5oe+IcSTGVrOrPEW9YLl/nnNXbnDu0nXOX3qE5d45Pv3xJSfPfIKHd5r/vx/h\nP4DLgqkxfhtTXsGUFzF+C+MWIkfPXkUTCs0h9y3jmcIApRB1GwLmlKslheMZ1YXy2aTTmg6NGbgt\nMEtyrjHWM8SOk7YD66mLJa4M5NTT95F+9ISgkSQq5TcpkHODmOC9GEaT5zMEWWKSz5fIpsd7KUrq\n0nLj4j5f+8YneOruA1brm1w69wTf/HVfweOPXuPB8X2s9yznM0qrclot3ClEREGQvdKaKfQ1YJBi\nwdW1jmpkzGSsxSXZd6LRSAAhAGLKQva4MeKDmNxZIx5VxmSsi9g0ENqg5qER5zxlvcS6kuQdpnAS\nKTIKXwhr8VWt4aj6vo0qgQqHNU4QZi+RKyNZ9jnvoKjIhRgI4hxPPfMcOb+Bl+QT5Tdy85nb0ggN\nI13b07Ydfd/r33vWq5am7XSc1DEqCThqSPHkVi/eYGwSxUW+rXlRVvgyKcrIMcasSIyEPeY8rc+p\nWaqlmDFz4XvlQY1/SkVoPEJA1zGQ8RSzbZZ7B+wczkjDDF9Zju55upP7jGGkWa2JRaAopUAsypL5\n9hbZQtesiWMv748EU96frk0pbgLkbrNXGgo1OC0xfkGkIidLjpPFiRZrLxiZ/d7XK7KQma6c5T6F\nkMh5UOJj0nCzQOFLzl+8DNZRVY56VnG0PqFbt2Qi3guKEEKiqirpGDJMc4bbt5/h+OFMOpwY8d6q\njBrYLKDpkBoQfZC6YebMvfUJ/8dvf4rdvSXVbMYT1y9QFQ43WY8j0O0UKW+s5pOgaz2O2qVEValY\n8VOJUagvWZx/C3WnTXpYihpX0ANcgS1LzQoRWWE2DuMdNmXdWGTBiAwvb0CDmBJuDOovE0Afsugk\nnyPlgpR6USNZR+EriqoS1YArhDhWKM+mrnG+0kNeLMHl5UVOORU1vsD6gk/fepZ3//BLQ7s/8CM/\nwZe9/jUcHuwy9oEwyAx60Bn06atT1ZJ0SUPfS8caM3lyB82yiWCMjs2SevlYnMuEKCZnCTap0jk7\njK025nZy4NW6FmRdGFtKF50ApgJn1AfakWOmO1nz/O0HLBYzDi9sUcw9znbMtyzLnUNSGlk3D7AG\nqnqGNa9mtWo4uX+P9clDUuwFjo1Zinc/Z1Q3zJQGDBFflix29zl/5Tr75y+yu3fAweEFdvcOSM0R\nv3VwyNG9Z3+/H9U/2MsUWL+L8Zex5QVMuacbewGap2MQtDHrMynutdL5miyopMlRJdbiY4QVFMBk\nKzVORv+RtKCZpB0eXIVxc6yrMCZS+EixlZiVJduLHbYWO1gTCH3Dg4drQiPpx7KmKulwWSG8vJHf\nXchMXiIFORVEHGMw0EXKEua1ZVY6louSi+d2eMNrb7CsSuZ1xWw2I4wDbXPCQ+8x9gA7qyT2xU2Z\nPah9ArJXGREmYII8QM7KeKaosGUpTr7G6rkU8XEEYwjdILl0Vgwy0YBcX5ZkHK5Q1CuCKStsAmcz\nwReYwuF8hc0iUrCFIw49Po3Yag7FDLzfqDuxbFQ1RguciQid61LI8taCL6AsoXDKGLBcu3YZY/42\nn4tPdOH8vypxA32vKExH03Q0Xce66Vg1HW0r+9DQd+JbNYoJp1W5ddRcusk5NyEco6zuyNZMzt3y\nSjmr1HnyrHK6CixQI06+taw3kowhSUgho+eUmTY8sLYQRHj/kIPDBTktqGeO2XzG6sEdmqPnCX3D\nEAOxa3FuEBdkFWOURcXQN0S1uogaNpm1QcxJ4lJSGMhpwPmazJxskxB8oyexJGUnSrU8wIbTc/o7\nfj7XK7qQgckiWv4tOQlua9qGfuhIIXHp6mNcunqe4WRFIjN0Dc3qmBShcBXz5Zym6clZlAKZTD90\nxJAYxoGuWVNYA1Z9DPC6GM7ahRsEVjuNSpdk6MBJGPgnTz3L/P/6TYYQefWjl5nPSkElSg9ReC8W\nyLkgFRHjIOYoTO5oiWHAxEgehWx1tnI1WbqmwsnDaKyiLFoguVlNsVhK1knOYulvC3zpsWEkjgPZ\neigrKd6jSEqTgTgmcjsI8dA4IYtqMJ5LkbFtxdmzqnFVgSkUjakqfKlFihf0wWYjeh1rVd7ohVjr\nCsmc8RXZWZIR4t7f+KW/+3tCu//Od7yVlJJ0RlrEtO3pptK2PV03iBSyk0yuOLkng0ZDaBdtpPAT\nHoyUhNkaMSBUf5bp3sLksjpBuhM/ptJZdCLnTuWwuokY+fyN0WIowurhQz7zmx/nwXPPcfHGVa49\ndp1HHjlgVtcYN5LMyGw503vpycbgq4G6WrDcOqBpjmlPVoS+p17sgVswBtmoqqqiXsyo5jN2Dg65\ncOUau3t7lIXHl2JcttzaYXtnb2Ni9cV62fIibnYD3DmwC7ItMBQq6ZcMGBOtemSItNoQdFTkMMlO\nk38wDmsKGSlZkWBviB9E/R5NGQZAHam9o6gd8y3Lzr5nb69me2uP7WVBXWYqbxi6NQ8ePKSLd0nP\n31Wipvp+5A6T15zGEUzXWfmtFD1SzBhicjCKlUJpIsWWY1Z6vM0QekFUU0nMojCMBNr+GLMykHdx\nsxm+KiVYUUl0xomyBiPIC7VRXxmJdTG2wJQVxuv7VgQGNdSTQEEFvawlu4wpvXAejQG1vLcpQTEj\nVxEXEo6oZ5pkveUkYwxblfhCRtHRFSRjpJCxkn4t4YNpE3dikjx/0VqitWTvMJUUMdlbfZ+Jt73l\nT/KT/93P8ZJ8Ik74hq//OtqukyKm62naXgqYdcOqWdO0LV0nPjJhHDQOQPKwBP2dRkxnfFxerIg0\ncr4lY9Q3R4uw7FVO7TZjo1OlpOw3eaNKKE9f2kTK98g4f7bcZ7F9jsWyxOSCqvAst3Y42T1kffQ8\nQ3vMsHpI+/B5+rbBjD1FUUqo79Y288VCnHv7nna9ZuhbSc5OkuM3RbmJdWoFT8UAACAASURBVEpW\n7p4h2wEYyQQSqrTMoyqyrK6ZaST/e1+v8ELm9JoCtmKMdF1HJtKvO37jH/2f7OztMMRAUc1Y7uwS\nYuTo/jE4i5/V2HLF+nhFRJCOse/phl6hWnGHhSQZH8memd9NLykspo1QABEl71nLKkd+/bOfZbVe\n03U9r3vNdebLWjxvmL5dHrbKeVIMBP2Z47CG3GFHgRYF+nb4sp5+cRJKGkTgYONloRVFgatrbOmx\nMVMYgy0qqGtx681iVIUVqV0MowRCFpYcxR04Gkv2JanU7KdhEK+LvscWHdEVmKqgXMzEUbOqcd6r\n/LGQzUENpSatQmErsQ+3DhSNid5hCk9RiQTy6Wduvyy0e+vZ54gxEsaRThGYyQq87wNNO9C0gxYy\noloKYyDlJIm8QNbiM0tc+Jl5r3YsoF4IG+IDG/b/JpagZCN1dAvIc+ExxDVg1LdlS4pcnYdvfl5M\nDM2au7daHtw/5slPfobLj5zn0dc8zoWrByy2LYUfiaGlqirm8xl933LiC6ypSckT+sg4DviipqLS\n+2nxdcV8a8lyuc3e/jm2t/dYbO3ivVX+VMFie4/t3XOi7viivSwUB1BeFBQGHeM6j/WljFnV38JO\nTUJKkAPiMOp0hOSUlKgFgxE1JVmUGpNBnYx9JGxR1IiOalGw3Ks5uLjHpasXuPLIOc4dbLGznOOd\nkYMujDx8eJ8hGrBHxAB5SrvOIBD9hMScJUCeLWIK/bvIxXOyBCJpHAkmYEMlAYspkcaRrMaiMQv6\nmnIkpoG2W2Oyw2WH97WMpY1yY5AogsyEwJSYQlx1XVRprhW7/ymjDGPkY0KIuEQx5yQp78iW4IXY\nm70TAUTM8qvUE4cwCSEwR2m2YtocyDZPKIX8Z0XuKBxKkmaEa1xDNpGsggacxVQFFF6VoFNjnLhx\n4wo//lfew/f94I9hzEdltM2vkznhe9/9nRzs79KuVqyblrbtadqOddOwWq1Yr9aiqGwH+l7ubc6R\nMIpcXqZvVsMX9eyKU4zNaTGTc9aiBzW/tXqwn73XZ7gxViIJhDsT2OxPKG+PMH04bCwhkiUFB8wo\nq4J6NiPGLWbLJd3uAWO3ZmxXdOsjjh/cZXV0j9h3GOspy/pM091IYRYDYZR1akzafKZGC31jA64I\nGD+STEvMHqI0f1IMW+X9TCPVz69E+aIpZHKGMQjJ0SCLIDDw9FOf5Nf+fuDaq1/N1uG++M1YqdpN\nMsznO1TVAmM9J8cnEhsek4SZRY0CmOLKE4g51dmXAbVUzjracs5unDazkZnrSej5jU9/hna9JqbI\ncnvB3/nVf8jN557j6oVD3vZNb+KxSweCUBgh5qY0YkxBYWuCDwRd0bYwGC+m1WYMKsmOhDEyEvGl\n5iK5gtKX4pWTAo6SwtXgPNFbsivwlCSTyTlgfSlVsxGOjbMG6prkE8H25DHiXUHse1IRcdUeuXDY\n2lPMarwrsEbk1k5HRWhekrOS7G2tpywqyqqUTsN7KAuy85iyVgmk4eq1Kxjzd/jc0O6bXjQ6UgSm\nH2i6lqZtabtBHDWHKYVWPHmyk1HBtEHEqNlLKq+e0n1FSepQFygl9roXvsw2xh6S7SGYpch1Y6eH\nm3ZKdgZ5VB+XiQQsa4Vsyckwdh3H7Zrj557lqU89ybUnHuPRV9/g8tUDtvcPqCqHs1DVCCyPoe2P\nyCu1uFcliXWeoqyoZzXz2YL5bElVzoRMGEdJXy4KCl+wWO6ytbP/Ah+IL87LkSikGNF4C2PF7G2a\n6mPAOIOJgskkNfPKKWAopYgxUtBk64QrozN88UlNcnh6kU8XlaOaVyx3trlw6RLXrt/gxuOPcfmR\ny+zsLCUhOmVCGFk3a/U7aonBslr1BDVllDV3tls/lXSfojFn+QR62BkhUppkSanXwghsln1P3IFR\n8qkQ31NIIgJwiW7oeMAxxlh2t7aoVL2IsVrvq2zZF/qnJRfTpymfiMz9EyjvDDW1zMaSk4c0bkoy\nk3W87oTgiiq+jLpRyr9KhlWOQQtLiUgRSF6t820GAjlZVSrpDzPCdUrOEr0jWUcunI6T5F3ElIRf\nliTg8Vv+1J/g9V/yBB/66N/j6VvPcf78m/gTX/9H2N/bZrVeSyGzbmjalqZpWK3WrNdr2qaRBqoX\nIUJOQVGKvDGSm/oiMSzUsfamyUEaYX37pyPtadxypohhCXYf7J42VAsp9tJDVbcVUtyc8UHKWmGm\nMXB05x63PlXh8hXOX9pjsb2kKFvKsma5tcPQrxm6NZkrXIyRZvWAo/t3aE8eEocRjKUwDuM7Yhak\n2nQtJozkNEoYcpbYFFdW1IsdZst9XL1DzHNW68z65ESMO6d4BS3Ep/f9+VxfNIUMIImcOarKQG7Z\n8eqYp5/+DK6u2GlXWJuJKeKMoa5rsCVFWbEcA1070K2FR5Enb5IYtZCRnJpTlvj0Skxd2KRSMNZN\n9nXkJEmhlI7WDvzGUzf5zU8/yT/4jX9yJu/kV/npD36M//L7vos/843/CuREyjIKMc6RvdpN2xGp\nag22KDAxkRmELxMHnDMUZoqaNziT8THhcRR7u3hbkfqBMPY467FlgbMVk7omK2/HWChdQYyOlAxj\nSvh6DikSupa8tuRYwXyGnVUbTqNzkuRri1Jm2d5JF6deEQawRYEvSokDMAYKGUm5opKCphQ7/j/z\n7d/KT/7Mz/O5oN1v/ON/lF69GdquZ61dUaNE365rN+Z34zhI+Fk6Y+1iTzeHjBacNkMyZCuck5Ay\nSQ+HlKNyBUp92EA6nS2y1WLFzBV1UUKdLci21AMv8YLDBoXSXxw4mGD94IhP/cbHuXvrDleuP8Kj\nr73BtccvMN9yeF9SOE81a9ja2yWmkbVz9M0AQ5LRXFHg64pysWC2vaRazPCluP1OGU3GWmaLLbZ2\nD3Dui2ob+N3XRIQy6vtjvQYY6nBas17E9sVKSOK04efJ1EsLB13H2Cy0EKNGiqak8NvU9Q6L7Rl7\n+9vsndvn/OFFLl64xIULFzg8f475Yo6xjnEYaNdCyHZWPKL6fuT4pGN93BHHTFZX1ol3c3Z0ffpy\nL//KBnJJzJEUZdQToxJMs5j7xQGxpKgqcmkgQ0gD605RggS72zvcuvscP/dLf5cnb93m+pUrfOeb\nv5VXPf74GV8o8SUy1sikViKqmUIP7YYEL9w5XAEkTDQQ1OTNWPKUcj9R0HTEK/exwGRFY6xVH6xR\nzn+LIgAWk2RkT57M44RMGp0jeE8sPNkLCiOGoJEQR3mFwDgGxr7n/ME2f+6db6ZPmaEbaNdrVicr\nuqalWTc0jRQx67W8mkaUSn2nZncxkqISlqeyLUaSqt1SUiNPzXRCUcGI0Twn5fIllF83mdppQK3d\nBncA5hyYbdlL0rEUMTmLxYBdyFpP6D8mHl2kObrPrd/padcrjh5c5sLlA/bOzZlv7VDUgXI+I8dt\noSVgCeESO+cucfzgHuvjB8RhwCRDWfdgC6yf4duWMPTE0JBCDyaLQnNrh+2Di+zsX2Br75BytsX9\nhytuPnmLh8/doztuCf2g90vH8f9icGR+95W1grXWEg30IbJqB569dZu2aykr2Yzmiy2KsgSLHLpG\n/EqSNSQjNWvUYibrRpiTeoZsiEgW6bBlJm6UAyLpyRJlH+PI0AcW8yVlmbnz/BH/9OO/zUvlnbz7\nx9/P177xdTzxyEWIwinJriAVNeU4EG0vMK8aO2EzOTsSnuRqUYZqFor4NAiUa40hDT3RJEyIOMRP\nwRXKqUkZ0kgmETEbJMnPC+l2xkFR3QGXC5zbFgfiusLWpc6sg3hteC/jpaKQzdJknJcwO2ut+DRg\nyV7g3OQtuSyxZUkunNiV58Sjj17lJ37svXzPe370FNpVqeh7/sPv5uDcPu26Yd3KjLrretZNy8nJ\nitVqTdd2DIMGRE6FqXZEnOHJZGQTScZKM2uzwNpm6lbFhNC8IHlYHxtbyUiJud7HWu9lLxutmSs8\nOh1GUzetm/TkyDkVM9ao4GUgDB33795ntR557s5Dbt26yo1XXebw/Jy6ihhTsLN9DhOhLhY0bU/f\nBWK2uMJR1SXz5YLF1hb1YsFya0FdVYIWlKXkyTjP1u456vny9/eh/IO+NrJoq8aC+pkrapDjaZGC\nMVrQThu+EHqF4AtFmSmLxHxm2d1esr+3x96uZ7mwLGaO+axgPq9ZLmfMZgsWi20W8y3q2Zx6NsN5\nT4ySrO7c5Cgto6l103D/+WOa9UBKTsdKRtfr5BI8raOz6+mss+uLUZkMpiDlgTEksSoI4kibYiCN\nVjxuVIAw8RvImURiHUWN8qFf+V/5i//5T59REP5t3vfXfo73/9hf5p1ve7OgVFM+1JT9RVLeiVHU\nT/KZDMg4qtDTNYKmGur7tvp3JY2i7rB2UnElKWxARBDZqjpHCybnpfDU3yNrAR9yZvRoEeNVCSqN\nahgH4jhuAh9P1UYaRTCMUrys1hsenkQQdKzXLat1w7pt1fIhMAyDcCpzJkUZHQlqpEUZk9QaAlkL\nQCmipf7KG/NXoc9YLWzVDwan+88WGFHDYRaI2EXgN/GVkZBTKYLDVK0z4UEpRZr1mvHmbU6O1ty9\n9SznLu5z8fpFDq9sM19u4cqANZnCFzIaKyqcrajKJd36hLHvMKYkREMyFW4WyDEg4akB52G23GF7\n7xzbB4ds75/j4PASu/vnafuRJ+7d49mbT/LUJz/F3afv0h6NDENLnmJxPo/ri66QEVjTkY0w1ENK\nrNoRHh4TyWxvVXhncKYgDoJ4+BqMc+oOWRKGccMuj1OWhHEyVspOO7tSO29JoJ3C2+w0TzaAyVrl\nC0k4E7l3/z4vl3fy83/vV/mP/923Y7EUxhN0VIMrsK6kSAmTkpDdQhQUqMiQLBYJsktRzNgEualw\nVS0LOGVsUchGUVUSfFdJ+qgNmrSqsl5jEi5lQtPgx4DLEJTHUywWuKIW88XC4VIiDj2mcJhyhi0r\nbKEPi5Xu3zi3gfNJmWQtyTly4cmVIDHZGrLJCvEG3vyt38gbXv9a/uaHP8bTT9/i4oU/xjd/45vY\n3d2maZrNq+8lV2mCePu235jfhRB0dhs3ZoZJDePyJHcUXbvM5jXpfJNTg3xd2sCeWpgYo4XKFmIJ\nPgNbYtJDyINuIgspZDZjAaub9MSr0v/exmdEuAbSfRtydvR95rnnTrj/4JPcfPIO1x875OLFBfsH\ncxZbBkvJvCrB9BROUKeyqinrino+w9kS72bCdfAlldq3G8B7x/b+AVu7+7/Pz+Qf5KW8ignTt+IT\nMvGCctJixmhTb+Qgzllm9oYRY3oKn9naLbh4acGVyztcujjjwuGcg/05y3mBNxmL5iUZUeVJqKsU\nKpZM2tgYJHH61pRh6z2RzMOTNQ/urxg6VSsZqzEjPSZ3yJE3jR+mA+ksymdPC4FNsSacupQtfYh0\n/aCZZFLgexNJToin4xhw40jhnI5oDCEnfuszv8NffN9PkfK/zYsVhN/1nv+Ir/uar+aJx5/Y5Pfk\nLIVHnlAGsoTQWh0fJYTUa09zg4zAYxjrZO2npFw1KSqzjnwNSNGkpHljDZ968mk+8Isf5smbt7h+\n9Qrf+dY386onHpUiSseEIRmCzRvESHKD0maMNAwjoZfA3nEcabuOfugZNLOt63vadUOzbulaCYFs\n245m3XCyWnOyWtOsO7p+pB8DYYinxN50WpwIKiru21G9ZBKZaYKI/jHFraSklK2Nc+9E8vVSuGz2\nH91r0gpyp2u91iLGKxIzoXi6NxvlO2XLOCZOHh7RHj3g/p073LvzgGsPrnLtiYvsn1tS1oZZXUiz\nOo1ksyGGTBgTuExRL6hNSRFFaOILR1l6irpgd/+Q/cMLLLa2KKuSxdY2u3sHHHrP1Ucu8+pXP869\nL3s9T33mSX7n47/DnZt3WT2/pnnw+XlcfZEUMmceYlsqedXqAgqMIXLSBIzpSdGxs11JuODQg7UU\n2VAvFqKmKUqs6zSDw0s3HyeYV+3CEQnzRqWwgXyzjoVkHYUoKpgQI0MIpJjo+gFxAf4ceSe37xKN\nl4BHDN6JGZ6kzgop1eYMMZJ9hJjEGdOUGFeSQySlUR50A7ao8OX81FvBOLJRmyLvsWWl/jSSuGpw\nlNWMENYYI8oqG+XwLmuLKS3W16eIhlXmiHfYsoKyAu+Fw2PyxJgVzwkn4WspJ6I1ZF9AJWThbK1y\nEyS3RDaYwOVL5/gLf+5tdGFkjJl23bI+WW1m0k0rioG2Fd+Grh8YxsTYi8eDJACnjf27NHYGiaeJ\nRHVaVomD9imKihujMu0sqoENpJuYxkryqpEk3kCOx5jck82uFDpUYMZTmDQXisYoPD5Zz5taFE12\nWs9Gf25FTp6xT9y+dZfj+/e4uV9x4cIWFy9tU1ZWvH+SWJqP44iza4qiop7NMb5gvjPQ78PWjmWx\nnZgvoKzEBXZ794u9kIGco3JOHcYqyRylPp21fM9SaG4S703EmsBsHjl/ueA1rz3kS193yPVrS/Z3\nKhYzR6kF+9C3dI1IUVMUNEAOMUPKAWsC2YgHTdZnwhr1frKWIWSOjjtWJx0pKrk4Z1G/5TUyvk6K\nxZgX/4pnLuHynBY5CYwnIYVMP04pzTL2iDYQgxOTy2EgjhWuSDijz2OKfOx/+YdgdiC/lILwo/zs\nBz/MX3nvD8j73RQvKCdDaypjFDzSIyfrP4w0L1kVSdJhyLMn/k6K8ChpmGkUqOO//+EXP8p3f/8P\nYsyOIkUf5X1/9QO8/30/yjve9i1kIzSdYLLE+JDEbAdEmZkyYwz0IQiXboyiVu0HFRFM6qNeIgea\nhn6jjGxZrVacrE6EG9N1m0IxaYjn1BhNJN488fzjpIJl83lNe41OxF4wWkqqkDTGKyo111HStqAx\ndoaUg6pqM7WgxaY8/ayn9bEpZmSNGLUIyFmUuuMw0HcjzUnDycM1j3/Jda4+doG69mRGZvMlOUly\nu3FOG1DAFvjCS55SITERs/mM+WLB3rnzHJy/IKNVA9ZLbEHhJVh4Oa85f/6QRx9/gie+5LU89enP\n8ORvf5xP/OOnf4+nW65XcCGjN8OVMgc0FThhOWeSchqCHCI5EkbLus2kFPDlnGpZ4L14t4xDB8bi\ncWpgpw+ikdyOlA05Fcp1cLxAFjZJNrMaFm3C2zxFISOVGAJt2wrZ0nteLu/k8vk/RkQMj3BGScP5\n1BZ8VGWR9VAabMqYMYrzpS9JFeCMzK2NwbhSAtOMFXjRuqnKEmKxK8jeYIywQWKWTIzsa3EBLub4\nOsqm5D1UWiCmiYyYRdqIGmQ54ZiIlCBJh6sdhXFepYRZR0oFlKIeSFlQkxAGQhxE/j6I5XfXdXRh\nZBgjq5MT1scrnU2fOmmu1q0oCHpJpO2HKES7aQM5w5cUDqCGeMa46dJSSFq0KhKT8hnTqqmQQQ48\nuxBY1yoSQwHphBw66YDsXDYTI9JU+d7JLC1rAezEjM2qdBtE0mpUQm9LsJWuRxlvNqsTupM73H9m\n5NanPL6QjbJ0JSYnwtARx16Syd0MW24x3z3HzsEFtnZ3Obx8yJUbFzl/cY+dXUe92Ge5c+7/64fz\nC+zKyosRIr2glprkq2F9cggopyILcddaWC5Krt/Y5su/4hpf/uVXefTGPttbDpvFrj8l4VMEI2nW\nERlXxBTIWQsVhyCQdrJqMBuEyHqRBbdD4uiopW9G8QbKEmfCBvWN+pucHSudLWg2hBJOiehWeRWe\nlB1jCAwhMYbIGCIhRWKS/Sn2A9F5YjGSNKFeeBWR23effxkF4Rv49GefIoyjWDwoVwZj9HOdKK36\nXqfxk8AMbNiMRn8HlWpPYyL51fR/ByYLA2Pgk5/6NN/9/T/4kl5T3/W97+Wr//AbuXHjKolEMspa\nHHrSOJBdSfKeoPtMP44M40DoJaFawh8b2rY5zU5qO/pOjDWbSWq9XrFqGtq+px8mtEtGdDlGTtOh\np09DCpUQEyHI/mhyEi5liNo0Kcl3o2oyamYn60fyv7bI6uCLmUnhm1YQHsiasUuM2RJkmPHMGpma\nftigeVNDBWACOUlW3YO7D+i6yHo90HWJ66+6yPaOF3qT89TzitlyRgiDnH0pknREVlXlpojZ2tph\nNl/ifEFZlngvWXrOia+Zt5Iy7n1BXVYsZzWPXL7MtauXaZ//nc/rCX9lFjLGY2wFbokp9jBuG5kD\nJ3IaIPUK7083SU6xYchA5HidqJaOxdxTedm4+kEyeuI4SD88SXCdw+IJqdIEWi8QHgamuaNigtOh\nKeZwJd4LKXQYepq1I8aR+WIB957ipfNOjvmmP/pVrPuBRV2ruyyIBiBijJOFEuMGhvXGYvoRhky2\nFluJjwO+whSFJvdqjHoKspHkjB2j+Ic4VeUgcQbeOEzpMGYOQcYtVjcmvJU8pBRIYRTJoy30Z+iz\nYUFc9pRVOzW3uskmA8EaQuHJlVdZpqScxzAShlEzSKSI6fuBfox0Q6DtpFhZa45J0zS0Tce6bThZ\nrVitG+HL9D19EIlmzknhfDWaAsRVE8YgvBmnn0ka46Yj2gTgTZA3XlC5jBSym9n0HGypnVarm64W\nOBvGvW4gG+8ZtZ03TgocU+rmpF9nZPxmpnGTkoHJDlJPHBNNe0x33ELqQPlJ1qi/Rk46U5+B38He\nWeHrBxTVkvnWDoeXz3P9sUtcu3GerWXC+a3fn+f0C+YSRNA4L4o05cVkVdxnk08PyJwwJlDUsNwu\nufHoPl/1hx7jK7/iUa5f32e55TCMhCEQ1W9MvidN57c2NVGVOlmiPeKIcVLok8XNWvhrAiD3o2V1\nMjD0gTzVKmcLXx2ZnxYx8IKR0osVdeaFB1bOjjFmuiEyjJkxZsaQKFzChcCAwRUlxTjixgguymQr\nRQ4PtpWf9tLN1+HeN3N8/3mqxRxfzSSJ2gknLhuUv6JvPSc+8ZnP8oFf+CBPPf001x95hHe+7duE\nNIxR47/Ty7wAjdGtSsfmP/uhv4UxO7y019RH+dkPfoQffu+/L89EiuQ0EseWOPRQCiodBilEhzBK\n2GzfMQ49/bqhWZ1o8GMvY+u2pe8HuqGjbfpN89QNA4PadExKV9IpCmMmPk/OkIw2bYq8aKOXdC8S\nArCMlqb1ufGrmjhQZka2O2BVpWRrHQasIfeA7k92Lt87jZWmIjfLOYiG/8o+VMoNsqV8vYEQLavV\nyFNP3mPdRB4+aHj8VRfZPyhw3lLXW2xvJywe52t8OzCOgMmUlaeez1lsbbNYLqnqUsQg6mwuyslJ\n9Ws2z6U1iaqsqKsZjD17e3uf1xP+CipkVG5nZ+rSuQd+B9wSrCelnhwaTocDeuOMZSLtpZwYY6Zp\nA0cngWwrxjBSVw7nDSf9Md16TUoavGdExpwoyGNxhsugOv008lIum8aoc2OMdN1AplXm+UhKmcOD\nHe4+/7MY82HgjUz+BO9+x7/O9sLx/NF9ktljPqsxQKEqE1EjeUgJu0nGNhhXy3PsvJy7VmLtrfJg\nEiI1xtXyUKWIK9Q/Janc3DmylQ2WwuNlqi/liOYj4R3GWSmIxl7+O5NbbxSHzg2EbDJTjohAl4oI\nm8xoIRYOnN3I24cg7ryhH0lBFBxt09OP4tDb9D3NumXd9DRK7m27jlXTcLJec7Ixoeroh4E4hW8K\nUxc47YZQpCWqgkcyrqQrmqIKNu6UQMoynzbZaHG8BeyD2VX4tpJxUjqWonkaKW3GUBPPCh3JTYfM\nNFYqZG1PBM3kED6E0QJQCKo5ZzZcGozA1zHo5hWIL+jUi81hFgPELtGHkXV3zIOHLTefvM1vnVty\n4cIWd25/sUcURFHB2KwmXUrwzXKHJxDBF5m6ssznjsPzO1y/cY7Xve46X/a6R3nk8h7zhcM5GVM6\nm0mKOmKmiiiryaJmXVn1T1HoPaGmm7YCK+TIVRe5+6Dn3t3A+lg6W7mFk0pJZfovGAec4Vy91Muc\neZGRsFXHEDJdP8mCMyFkgs8yEk2RYjYTtQxykBKlAPjj//Ib+Miv/O98rubr67/2Ddx+5rPM5ktm\nWzvMl1tUsxpfVILIZsPkdPyBD36Id33v2VHQL/LjP/1Xef9P/BjvfMu3MZHizdQEgY6WTtGyrJ/1\nZ5+++TJI0Rt58uYtHeNpIROTjvZKcjZSxIRBitJuYOx6xraj71vaZkVzcsLqRNFfHVv3w0Dbi9VD\n2w50w8AYoqApmoU07XuA8iWNosGKxoRITGmzT04ZS3kaJaUz2UtYMl4QXyN+L9gdMPunhYzx5CzN\nO7bU5mqBcGqiroNCkeF4BvHym72HSb26ESVkJDy1pO/gzrNHNKuOh3fvc+Oxc1y6ss184fB2xnwG\n2BJXjaQh4ZzBl55yNmOxXDKfz1huLanrEq+hnM55mSogY3uT5bMSUYjDWsN8saCuZ3w+1yugkLHS\nsbptbLGPLc5hin1wCyTYTSrtnNXjwegGbtXnJVswantsIik7+jFz3ERyabE5syxHtrdrsBCi5PaQ\nRPlkTEHIpUC6Gbn52SMqAjlAXnylNHFhIs5BCJaUDM4GsJnd7QVfevUCfYr041Nc2LvON3zNv8Tj\n1y7RdSshwZGIeQ/qWmSepUSwy1gJIaZmzVSaleA1PZp0OnpyXooTLWQmxGQzx05ZDIg0mM2qFTuT\nC2ZlNnNeJrKes5sxlnSgmpFh0BGSFC3T85BdBmc2YWjBnB4AJmYNfUuEmBjUoXfKTOqGga7v6LRI\nWa86mvX6TDiboDGr9Zqm6zZdkbhkqnR22hin5jQLF2hymjTWIMZ4YkufozYkG+lmJhnHqeS60k3k\nHMbtSyGDxeQTSI0cYGYKkDwjHdyMqI0EToKsT1ucFjMTSZPTjX9Tl2zsUCfoffq52l2ddZLVze9U\n2j1ZlMv9DMPIcT+yenjC7afvkNrV/+un85VwGTPiXA9GeF/GZnzpcWJzxGxeUc08O7sz9vcXXDjc\n4vq181y/foHLVw7Z291iVlqclQgSi6jcJkK/1Ax20/zgnCBkrlD0dhaJ3gAAIABJREFUZY4paiIl\nOc0Yx4J1m3l4NHDzmSOefuoZPvuJpzm6d3xa6G5moWcl15z5u3yd0eIlT2OZTcGjnS4GMfXzjMnQ\n9kF4HMPAGEpilqAV4TyrIVyUcTVGpMMX93f482/7Jn76gx/AmI9AfiOYXyfnY/6Dd30bu9ue+w+e\no25WzMeOMXXM05y6nuO9KCOtgU99+kne9b2fYxT0Pe/hj3zVV/D4jRtMtvyTldq0oWQy2WSSkRLv\n6vVHMOZDvOSY3vw616+/RSl6WT9PwBSbviuMI2EcNbm6I/QdQ9cxtC3duqVZt5wcr2iatSC9w0A/\nBNq+Py0IlWeX0pnCCxT5BnRdGEShJC62sgdbHaOlJCPJiIz2p0ZKnmoRGZzmKe2AOVSX6l1BXVIQ\n3xhaNmiMmek6OLt+JlQ4yVoxWsBoYY2OVuXrEE6jLTFYYogcP2zo22OO7j3D/WvnuHh5j2rmwEOi\nwGWPNYnCeYqipC7n1NWSej5jtphTFBbvCqrZDLLR89Wob5kgypv/zXqqakZRvrhIfenrC7SQ0Q/d\nlhi3xPpzkpFS7IPf0k056yARSFHlsUKkzEY9O6Z5q9Ea34i7Y8DTjgaGCnJB23SE5KhmS0y5UoWA\nfE8yBSkVgl4YB9SY7BHnz4EXozEgBkc56gaS9QQ1AV8k6spSFZ7Dg21e++gl9rYWLKqSWV0zDCOu\nCoQ40HRH8sCGbcx8SVGVeugGNYzSTscWEsZYlFD40xn0xPMwVs69ELWY0cWdNQivKiR6ICHJtkke\nsgjiNePgdD6k0K+x2MKRTdKiQTbyT376M3zgb32EJ28+w/Wrj/DOt72ZJ151XX6PFAlZNiFLluTs\nlEXuDkKI3pDuRlULdPRr2Uiadcd6tWZ9spLRkaIx6xOZYQ/jKAqkdIqoTKmyws6X31egWymeUElt\nNpmQMyHLRhIzZzoio3bgk1R6JqNMuwN2WzeShhyORG5o52yswvM05zcveAk9GikybI1xlfCLjBYw\nRtHErJtQzpvxR86nRZrclzMy4U1chkpxTSEF/cQPsZMviQaAxkTTRBiKf/5H9gv2ytRV5pHrFbPF\ngtJnytIwX9RUdUFdexaLmuVixuHBHgf7Oxzsb7O7u8VyOaeeV1LwkE8BDn3GMZMSz2N9xrgotanx\n5GDIpiQExzjUMM5o+0zTjzw8bnj29gm3n2t45pkHPH/nJqt7T7M+WSNFyRn4fxrRvuAFL0RoprUF\nL1xr+u/KgQjJ0w4DbSdxHiGUpFxiXIUrCpJxjGPADqOOeKLwfWLiTV/5Ol5z4wr/2z/+p9x9eJfz\nh1/GN3z9V3P14gFh6GRfMgbXe4oOnB+xdiSmAqzF2ZIPfPAXX3YU9N9/8Bf5yz/0/RvVp+xfeUP1\nmUYvWE8G3v7OP81/8d+8n8+FFP3Zt3/bhO3oc2NIyQh6QiaGwDiIwmgcR4ZRcpH6tlOF0pp2taZZ\nt7SKCnej8IuGYWQI4wZBmdBoYxzWqS9MliBMma6lzcha6hunnmayZwXdd+JE7s2ZlC1p41tVCNLi\ndsGdw9gDstsGDCavyelImmszA+ZsOHmKBG2S2Kd1YyaujTQ5xpZSOKoHlsla6JhCxk9I49etV9xe\n3+X43k1ufWbOcntBNZtRFAXWWFISrlRR1mxtb3Nw4RLhwJPiyO7+kqpeUBQlOSZ8IXSGlAQHtBbQ\nMFLrLEX5ii5kzAaBoTzAlpexxXms35HK0ThFvgKYQbvsrMQq3fhNVCgvKrdB2fQARgiWIVaMYYkp\nloyxIR117GLw5S6YEwoD4xjoBk8MVjcuPaAYkQfmpQoZIddN+RY5eWK09COEmHEpYGcWbyBHGdEk\na4hlJYdpSsQcsWmk6xtZ/GMi41jOZ3g7qY/06d4cVpOpm9O/c0puTZNkTpKwyUZGEsZgvAc3jWCQ\n1ky0yQKJq7qCCWmZ5tVaSE0DmJ/70Ed413t+6Axk/GHe9zN/jZ/5iR/l7W/9FhGOGkE+UhiI7ZqE\nJRUlMRsxoQri+9INnWwo3Zq2OaE5WrFed5wcH9M0rcghu14KmXVL1w/EoBwY9ayI03u1dtMtkwUB\nyiDFmMnaEaWNc3PQzSQybT4eY2bkVAA12G2y3cbYJdnMZBNILTne13NlqbCu54W+H2fhf/0MbSVF\njC/0M0X9S5Kucb1XusYFLhKS6ekAfeJQsPlz40A8QcemIJtCCPE45WCocV8KwOL/+WP6SrmMYWfb\n86avu8rlq1epCileikqIhrO6wjlHVZTitVOW1HWtOWAOP3mimKxIF6DjPqw8bwlPomDMBW0I9G2k\naxN9B+tmZN0MrFZHPDgZOD6JPDgaeP75hpPjgXXTELsjQnNCDJOFvEUOoaAHy3SPz4zNzyIxL/h9\nz/wlmzPvtyBR0Aw9TTuoz8koa98YsnVkYwhRJNgmCy8v6wGWs+HC/jbf/s1fJ0aXhceWJXFQszeT\niTmQ0kgKAyl44mhJeZA9p0h85qmnX3YU9Nlbt4iF0+1FqsYsMwcwRpqejHrSOF716lfxUz/94/yF\nP/99GPNLnHpNHfNTP/mf8vhjN8TPBCncszY5KUUiUSToo/LyFKXq+46uazZE365taddr1l3Huu/p\nRyk8YtTcOyNnD0nTuIwlGbcxBZxMAEGLmKzp4c6QECQnpKxFjNl4x8RkiFn3nMn2wW6B3RMkxm1j\nTA2pgTQpJaXREr7LNILUfWVzTE2NjiVbHWnbyWQvoynCug8pQjyNs2OE7AjjwEl3TPvwGfVClIRx\na7X5sgbvaubLPXbOXWG2c57tg10efc2jXLl2icOLJYt5hbOASYpcqs+Oc7hSuGyutPji82uyvvAK\nGVNgikuY8hFsfQFTnMOYBdmW2sFaRdpHEi2TAYRJkyJfpWBEOQimmzHdSTPNELeIsaaqlozW0owj\nbm3Y3t5iOZvhXaTvevqHkZCnm1pIYZtbMg2/e6x01jRtMi9y5OSIwZBypBt7xplkieSYlJsRNyqa\n0A9E7/HWkW1iCAMPxocMYeRg3GdnuUVVlXzi6Wf46x/9ZZ68dZsbVx/hO97yb/KqJx4T3sk0R5nI\nZopIkA3Z2U3Hb4xRPwfIJm4OT2MNblrLGa3I4fTJRD9zgdI/8enP8q73/NBLQsbv+p738pVf/QZu\nPPqIbIgxkOJAyCPZFOQoY6UweVsMA2PXMXYtfdvSrjtWJytOjk+UzCuz6lYdfft+YBwDUZn/1sjv\naJPbbPIW7fCmjg60+j/d4NK0maAg37SxUCIHvc6n2QGzIzwH43SW3wCjoDHKmWFjgjetOyOfLV4/\na4OQ1iW0kGkel81pqvZUJmYld09z8HQWlTlbyEzfNakQdGylG1ZGkp7l0m4tR8if3xz6lXqVHl77\n+Dkef9UV4b0Vki2WxkxZlsppK6gqKWqcN4qbZWxO2p06RQjkviU8/ZhYnRju3eu4c+eEO3ePOXrY\nsjpqaE56ui6wWo80beZoFVi3hiF6YvSEaIgxkXMgx4EUOuWTFboOAiYPOnDIL7rDZ8dHL77y6R8b\nUEYO/pRL2sGy7ka6Xkj1U5acVwRSxrwBFOqfDpikPyymTAz62STJkrNkcGKdkPU5TEG8oJz1Mi7I\ncO3qJYz5GJ9rFHTt+tvITvbqrCg60+ga4ZrYzWcg19vf/ha+5g//IX7+5z/Ik0/e4vrVt/Fn3/Fm\nHr9xA3ImTAioscKP0mc8hJ4QRsI4iOxci5kwiOS67RraTnyq1s2ak6anHUaGoGMkYyXokizqzkkY\ngPp3qVeUUVR44k4ZC2rXtyk05XOf9pypobIkamCGoSCbOZhdNrlukyIyrcnxSG64WShnZjr8z6B3\n+QxSZ6ZCvARXSyNsnLz7ifNlw5mvnZDkU9VdTokQemIeSHlkErwYLZwMFccPG+7ea7HVPerlDree\nPuLStbs89uprXLl2wKXLuywWBb7UAtUYnNMJirU443DFNNJ/+esLr5CxNaZ+DFNexRTbGDsnU5Dz\nRIjUgLZswET5wFOQrpPJYGly8synW8CU8Gukw7Z2jnAbOmbLSF2W7G3vc26vYDH3xNBy9PCEVf+Q\n/HClN1FM7cwmbvwszHsG0j+rHDBygJAgp8iQDF0fiSETQyIlXcxxJI2WYAzRF+SyFMOmOBJSlg0n\nZMaQ+eVf/TXe/Z+8j7PeCT/+fvFO+Le+/a2g89ec85n9TN+rZsbgvSAy5vQ3mEhgEqwnYzkLbBQD\noAz8Ce6RDfWvf+jDLwsZ/9wHP8oPv/ffE/JglmLTuhkpO0LMxGEkDgNx6MVhcxgY255h3W38G5pV\nQ9s0rLuOpuvox8QwRoZBipiUVe6IdEVYL6m3aAaLfhY5yYhGfHrEvVm6v1PlmfB2JCA0ooZSOEVb\nRPJopq4nriGdyKZgt2QzMV4+HzPNo6VAMZPd9hnkP+e88dvY/J8v9jOZuvI8YtJkipZe1K3rz9sc\ncqquM5rIrfCx0feWJddCv716+WfylXxp8bw1L9leSJaY8fJsjkYCRK2ThifFgJv8TJDOWaS+U5qS\nJWZP2xvuPt/w5JP3efrJB9y8+Tw3n7rN3dt3WR0f0a/WhGGQBiZ5EqWsIzsHN8P6GmPFk0qYIKOM\nJQHZkyRVO+dJEflSIyXzMq8XkDX038UZdgiO9ZBoupF+iAxDpCgDRSGScRMtNkaSzbismI85tSSQ\nwkJHs2YUZaVz6kM18UXSRjrshO1Myol3vPVP8l/9t/8jn2sU9I53vHXzmZCT8EhAEaF4BqkRXtvk\n1/XE44/yI3/pB/SwlkDKrIRZKawkmiGRSNlseHkpGlKIxA1XRjx2+kGCaNumZd00nDQtq6anGxNj\nlMLSO4fB67hx2mfz5jMSsVWWR18NPmMMFF4K5xDSJnbAKLp6apSXhc6QKzn7TKlj7F35c8ogygOk\nNULonenXLPSe69oxQLJnmnpdO6YCN8e4klO5fOaUJD652OuzIJsnv2u/yWeVu9OmJrYcISRCHyGO\ndKFh3d3muTsNTz15n/OXdviSL73Gq197lcPzC4q5pyg9hiisEueIIeP8KxWRwWHcFjjRwOcsRDXh\nKRTKczR6QCmhd+NiKTPrnKZhtvIHzCZgR9AJa/CFYbaEc+cdFy/ucP5wyd72nHld4Ezm5PgB+aln\nsM/15Cyza1kM8Ux/dAa+e7H88UWyyJwNUBHzQDtE+i7Qdz3/N3vvGmtblt13/eaca629zzn3fatu\nvbret+22aTc22I47BiwHRchfEEi2McSOwgfyAQEKMgITkIhBGMRTCRAhRRGIgIMDAvGBD0EikRCK\nhfErbrvbXV3vunWr7vM8995rzdfgwxhz7X1u3eruIFmptu+UTp1b5+xzzt5rzzXmGP/xH/9/2hvI\nJdDlTI2e4jw56eSO6/OMqhQqJ+sj3r71IX/u3/tPqPIYwty/9m/xx3/4hxWZMUJva701hBHsyPY7\nbHppRpsYcqCvybvtAdtec5vmaWhDlfItpwfev3X73N/ShrdHilBzpqRMTVXHn2shF5X4nsbIuNkw\njRvielQxvPWK1TgRi/kh5WKwvyYzjQQNbssXmgOFBhOcI4ROiygjt6m+iCYGSkwWKguQpb53fn+G\ndZ3bQ6cABMoRUlbgm0Denu3Jsn3/dWTsfAHtzCXYBAq1sjMfJMGQRTW+cw15MfFFt2M6KTOHArZ/\noEHCC3B7OPOCcmFQRKhay0tQ62P59qqe79SVUqLzjs6bYrMhrJ334OyIdu0gcQTx1o7QlrTgdUgg\ndxyewtvvnfG1r33E1776AR9+cJ+Tw1POTk4Yz47I4wllWkNONoW2gG4POq96TlQk1Hkk2XmdHFSZ\nACu2GuP8XEICLVHZEny3X23tUnYOH9r9DPb4jig96xRZx6oqtDExJFX5LbkQQiWXhJdg7mCVoNWB\n+o45UwB3qlpbrIXSd6afUxKlqFlgyT2h12dbRXj11Zf4L//Tv8C/9PN/4ROtoL/8l36Jm6++jDHt\n9T5AkQ4nYn9Tdb+aqm9rGXnnt8mEWIyq1cjLrZ3UZBWqobfeTBnVuDOlREpK5p1SZoyJ9TiyniLr\nKbGa4txWCl6R6FaEtORFPxl5Fb0uUvTc8cETxG+JzPZctq9DRS019gSKLBDpEXqLK9fBXUV1Ywac\nJCiH1HqG0guuaJGFOUl/Yu+0zoQmWFp4DTg/zJvI2di1WOG1W3FJK5wksW15Nopya6FvOXr6vFtr\ne0CkJ8ZCPj5lvYrc/egOd259zO33P+bzX/gcr3zXszz97FWWg7Z0tUuQZwmTb7U+g4lMRSSikzYt\nM5f2LcQHu5GFrUtmB77gpCjHQx3LDLlpjsOKPnS9sH/Z8/QLF3nl5ud49fVnefapS1y6cMDQBzab\njRpheU+4/ZAYdebfzSS8BqEZhP9IIuMskZHdZKbJhleo0jPGzNl60tZIWjCkQBcCwTn6rqMklcl2\nfYfvdPNXqZS84X/5m38L5y7xqSqbv/wr/NK//W8YBO62NxjMKJVDOTFvvP0O/80v/w3e++ADXvnc\nC/zzP/NTfP71m0pWrtuxaU0CnQExem1rrTZBAC++9C2mB176aRwtqVIiWa3FbAOKikGVQs2Fmsoc\nWGJUMbyNid6tVytW6zXrSVV+a9XAofoEour+LaA5ZqNKV511IDUI7uo6nFPd3LlGIh1FltTqQTpL\nYp4CfxUx+Fa5Mce6MV1DY4ZzyeDMcXEttBhy54JyZLqljs5US1KkIDQOjFgO2pJH7HnKud23XQ0V\nNGTQLyBYEuOW1rZoP5Vw5QQpR1bV/eFdMUYVlzO8qhZthbT7SonvFR/8OUwjl6oJv+9Z5547Dwpf\n+dpDfuO37vDWNz7m/p0jVqcrctyorUky9eiqQV+auWG14QApqvJbkxUZAZEEddKfadVym7KZkZjd\nlKW1TLcf233Vfn7n4fPyQE9hYBUjY6rEWJhiZhkzecjkrtL1BZJQvBBEpyerVciy2461e9+h3L/S\n0ISmGGxaV9L2cPW46vhTP/1P8eUv/yB/7Zf/V9774ENeeemn+dM/+1O8/trLOrRhU4R2wtPGmPWy\nOJNEaQjRFikW+1tunlAyHRZ2yP945fGIUIszoq220qZpUmG8KTFudCJpnBKbGFmPE5spksyTy5mT\ntrR6zs4WbzHSWVUoxdmwQGBY7tHZdZlNO9lS9dvQUxFPYUGVJVV64AD80+BvQLgKYR9ch5QVku+j\ndgQHhtTsofd+41q1faQovKpFtzioXnwN4YI2ULC7Z7bP0klCZIQSjaNXDI1pH+29aEM3u23thfFw\nVEw1xUiaYNqMHB+e8v47t3n1zc/x+e9+mVdee57rNy6xPOhxrqfrv1PJvpJxZW2X1qpaU0GdGZx+\nB4FxPbiivAMyrYWkP6umVTjVkeiXgRvPXea1736N7/7eL3Dz5ms8+8J1OueIY1TPvpIZc0bEM06V\ncZ1sAmkXzlXSqi6389lMzR5FZmbxMwcMxDJxso5sNpFpiiwXPV1OeOfoUiLESL+JCqs5ZXDrqHTh\no7v3vgn68Q/y1jvvMK7O6AYlkbqwI2gHcyLz3/71X+HP/vyunsPf4D/+y3+Fv/Kf/Yf8mZ/+qW0A\nEa+ENtRMU3wbSRakUz7On/oz/yz/+X/16dMDP/ezP8V2tDhvqy2UsV5KIcdEScqRUVG8SE7qXD2O\nI+txw3ocWa0jm1z0kAGFtX2wILJN2nwT0motJQn4bmAI3VwNte9Vpx+t+haD4SuDRhi3bxXPVetP\n72nSXO7j6jHCQhMZv2+JTENQmJGrbSaJ7YnOiL4LC9LFEvZG8txOHAgFarJqKKHaJW0v7nIlmnCW\nIjH4pZG8zxQ5SiOUFVJPkXwE+RjKGcrx+cO74hSZciYXnSKJsdAve20zFFR9u8DeoAarOQvdsCAX\nT4qBXAMffBz5zd+5z6/9+m3efueYs5M1KRadfK02xTSTswXm9nemaU6Jj7jaIcVQWi/4OlLzBk2G\nA1Ldzu9oUD40JOZ80hJ2/v3o9NLOP50+xqHSEZskrMfEmAoxazIzpEzfJ2JUsrz31f66EDqvgtM2\nGoxYm8br701UUq02xu22SIOIET8UHa2l4l3m5ssv8ot//l9VRmMINAsCbSnl2TZC2n0j0HyX2lDC\nzAPE/o60tk578W36Z9vOroYmlVpN5Tgy5UhMmRyTJjJjZNxMrFYbTWCiulir9gs2HtzQ6Arilexq\n4cZ5LZ6KoUjiHC54+hCQEJRknS2Zck1niHPIX60LS2KWFneegnDNWtdL3U/lGMrainjjxngT7DyH\nprT33q7K/KXOztGGAs5ZmQIFriWT1n6uEVejtjtrQwx3ZR+2e0xaIuMXilT7AdxCE6lGeZBKioWj\nhyvOTiMf3zrlna/d55XXP+aV11/gpdducOXaHmk6l41/6vpMJjLIymROrDdK1gMVZ8RIm8ig1wPF\nlW3AEHtjfIFQ6fc69i/uc/XGVZ594Xlef/UmNz9/k5defpErVy7TLwdyilCEWpNxJ3Sjr84m4piZ\nORLVsXWifRTS301odj67Fmi6OZHJ0nEyRjZRNR328oKh9mrcNka8OHrfqT2Bc0ivjPIqlRvXL4H7\nbfgUlc0rF36MD997i8Vyn+XBBfYu7NMvFnSmJArwjXfe5s/+/KfpOfwCX/7hH9AKqRm+ORCvo9KK\nbKgujAsq1PbNpgf+8l/6D7j56quKvLgw/6xCqK2nXpCStVcd7SNnG8dWPZlNiqxjVog3F4rp/ITm\nzdIQEIcFYqsQap3HqYM9vtZCjJFCnXlEKrHaRjUd1TyOHB4J+xAuQbgMYU+T57KGfA+IGmRMnFFv\nZJN8rZXzq5HOtSIimMiiNG6X1VEzamLBQkz0roxQI7MtxtyXDtvHsgES1BNIHyLFIT5b1b/RfVM3\nlhTtCq794V05F8ZY2MRK1weSeCiOlIOO4xLItRA6R/COGCtddmxGeHiy4vbdh/zu75/wm795jw8+\n2LAZywx8NNHCNsY/V8Ez0dsS0xo1GTVOn6CE2iojpYz6UGeI7zk0Zndt20SPa1/PyYzbiUGW8Lr5\n5zqm7DmL1VR+q/FCopqJ+kDwgvNqWaKu8F5z5x10o1AQURJvlkwshV5074p4pKpSay2V4kRf2k7b\nx82WC+rvRlBxz1rrTs3VWt6CN/injS87ExtsnJ1277dEC+PCSWmKuVvhuZKKKbmrbEOKybh4k7pa\njxPr1Zr12ryTSqGWqrfzzkFcRe0FtKC2o9ztHryK/gZD28vj7jNn745T8bsqA6XqtKvan1wBfx38\nZZw70L1RDqE81PfDX9AExy9pI9eObPHE9tEOSKf8u6AiqsFGq6XME10WDGfU11GNSzfpRzv7pNln\ntI5EW036QZMXnGnUzEKe3gjFmiDVrHsnjRvWJ3f4+KNj3vj6Rzzz3FPcuHHA3Q8+ftwt/Yn12Uxk\n6hk+OLtOjdRY5izRzTeoJjTO9YhTPwnnMt2icHCwx6XLl3nm2WvcePYaL3zueV544WWeefpp9g8u\ncuHiRYZ+sIxd6DpPzjAsOljDahw5OV5REsyXSSYdd5u9K849cc4HH9miEK21hAcZKNJxNkbWY2GM\nSlpNOROcn/uUfVoQUsLXpVUbygH5x3/kS/zP30Rl88d/5Hu5d+cWy70L7F+9zAW5wH7dYxgU3vPO\n81f/h7/+Tcm5f/VX/if+3X/nF1TbpCXsc66mo9+ubitFnOPnfvZn+PKP/CB/7b/7H3nvvQ94+cV/\nRiHjV19WCFJ2kgYrOmuDf6v+kVLUzC4lkw1PavwYU2JMyQSpImNSKLPv+xldaTWHs8quHS7VnrdO\nYjm64HXqwrl5msvtBB+90j2lLpDqt9MCXAb2cSyNm7VGSBpIwiUIGkykOS23zKQlsqJtrXnMsE2S\n2d/UDNEqe4Lp+VhgkdYiTbYHz6AeIXJi770aCp7beyKQHtUg+bQD8g/3KrXy8UeRK1cdwavnV9f1\nZMs3QifkBKddBKmcnkXGdMrDw4l33z/m3fdPeP+DyN27whR7U7QWHSt2jV/l58Os4Qm6OQ3mdwmp\nEakGt7d9UiekprZ7bX+0dvh5REZ/7y7iu1t1Mz9u/pDte71tR3VkWbCKIxvzFYqlozcNJ01kwFPx\nPlBDr95P1YQ29ficQSO1hWGW528KtaWoYHgSndypYoKbeFPYjXazVrzvUel+T0XNBOedbAkJXqf5\nxBngKe37ld0R9FrrnMSoinPdIdBWNQvOmZSTTUqW2e16s9lan4zjRJwyKe0Sh6EpkdeqxZJUQy+c\nnwchWlHV9f08AYoIJRtq4Xbu/BYTcYj01Lqk1gHY07jjrrK1Iui1QKnHQNQWd7iq8ceZwrq15Zy0\nQRfZbg+xczMMuH4PFxZ6MUsbJmhgQEOTlRPKTOjNOMkgSVuijynmZfYiXFpbe0GbmlS0GBzVOu42\nlFMrQiZWIR1nztaR27cesr9wyPjuN7232/rsJTIUpK6BiA96yNaifBdnN38jWbm2eXxhsShcvjjw\n9I1neeaZV3nmqQtcu7LP5UsXuHLlApcvXWQ57LO3r4J6rlbVGBABM+/yPtD3C3y3YIyV9Xqjorf0\nFhM2zBXvuUr4UYi/BRIP0pKYdqJ2IAOnmzUnZxs2V/aJqTClSnAV8epePezvscBruz1X1WcohWev\nXeFf/JmfeKzK5p/7F/5pblzfJ6Y1LjjC6OmHoorCdcIFhwuBdz94H5Ev8enS3reppr+ia8sL0hvO\nCIcm0oYo8e/111/lF3/xF6wNppWllDIHE3aKpVIrudat+FO1aSELiCllpjHpR8ykpOZu6tpbDQ1q\nE0aAM4jXe9pcg7dqMojgg6fzGoZrwfaOx/lqWlF2w/ueKnvU0qYFroN7RttKpsNCXUN6CBJwbVLA\nD4auGEH7UXh3lzdj7asmza1/ulqVp4m7kzXkI6hHUB9CeWj/PgOJ+kELJo8j9z1ZbeVc+b/+9tf4\n6leLTa5vxRFD59nbW1LFEwaVdzg9i2ymyslZ5OHDyPFxZn2rW8IVAAAgAElEQVTWkdMeRZwWnB69\nP2QrPig0Y1k33xfb6lUPCZEyk9E9lVpHPRgcqA9NS1rrzsejyO+2ZfDJRKY9cqbn7/ws4AIiA+tp\nw8mYuJIS+2Ug5kyXop5zzuFdpQsdznlNAIqfi4TdkdxahUrGpURO2Q555czkIlZ7iklMBLyhIq0Y\ndSZ4pZ3saghF2LaLFAbZXk7v7XhuicXOaLo9Xq1XKtmml0rR+JOTxo9s8SiXQk7J+DHKx1ubq/Vo\nU105a3wRDH0xe4vatSREW1h+vrf19eGYzRGplZKyximx59nEOu3nKh257lHKAmEP/DXlxbjrzNw7\nybhyhtQILA0hbjYFfkZLztMedveKFddhieu0sBVJdv3qzh6Vbf5jCKEzD7cWb9T6d7coan9D2+ba\nUtq3j+2ggZ4JidmzoyWeroAXpHpyrOQ6Mh1PuPTtqY5/BhMZtHIpK1yvrRNXBZGsUxwkqB3VB0KA\ngwPHU0/t8dKLV3nt1Su8/OI1rl3eY9FBcDoJ4n2gGwZqEdI40nVbuqSzdoN4j5NACJ06v0pHrp5S\nrUKeM9yWuLRL17RkHkliPhFktoGkugWbCMerjfoJbZYMi8KiE3zQ/mrKhVwKPkZ87YBCzZmai6ls\nPs/f/rWvcP/oLjee/iJ/8sd+mBefu6bjhD6TJVFypMSe0keyVypy5wde+tyzOPe/86l6Di/9zFaU\nVt+RbbBxYoEWG0u1am93OsKE5mwsiEbMa/dtRfvV4hTzzKWQqrrx1qJtn2mKjGNks1FfpSklUi0G\nUGgFVKVS0X/rZAI6MeC3KItUwYdA6LxyoHJB5mkix9yWkkboXpLrHrV2yocJz0J42qoeY9AbQVba\nyLU/0Jv00YPH7WC60v7Tqp8RKSeQT7Xfne4i6T7kB8pnqacgoyUt007i8oe7DfQHsWqt/M5X3qV7\nY1LAt1R77wO+c/R7B4TFkn7vAqFfkouaKuZUydlTsjcrsYpI0oG00iG+JfSt1b3T3pmLGey9b0lK\ntUPCsU1aRH+uoc9z22938zyuzbSNM9ux5PmYf+TRmoAIHqRnkxxnY2aTsrVOFJnwQPCa9HsqxWtb\nxblGfLbXVDSzyEAxVds0TSr3vyz0InSiHf4SRF3hvYPsCQ5C2E7s1Tm5d5oQiOygLnaPFlNWprnR\nYwiDn8m1tVZzNbeioOhHMbfvZMi3IjJmFDnqmLUOFair9XqMjFEFOksxHTgxFHWu3ZSvI2HOTai1\njapb4RSsHSaiBF8LDdLijqUcIp5SF6SypIgJ34Ub4J/VAirs63UoKygn+sf8BZy/iAQV5dz+8k9J\nfA1Nxzn16/Nhft7b+Nda3G0PaXLjJCIyoX5OBffYvdiQwtZW2tO4GPbBLXFuwLmgIrBSoSQ9Hypz\nMrdF1nRHSK3Uwre1PpOJDDVS8ym+f1rPAt8y84wwIQh9H7jxzMD3fOE63/e913nt5as8ff2Ag/0F\nnsq4OWMaRyQnSqnkFE2zpfWvMYhPVQRd8LjaMSwO8IszxpQZN9mgMrFqCfRNfrQy4jFfewzk6zR4\nCgNRBg5XI6frkcvjwGIKpKGjdwtCP1DFM8UI3jFU5e9IzXMF8My1i/zMT/wowUhkruvIU8LblFfo\ndXqgyfHXWvHSQXX83E/+BH/xv/5lPl3a+yfZEtgrc7rSMpGWJNhjFIlocKljvsSuXTEbfRTUkh4l\nCQuQSjbfF/UtmcaJzarBulotjWNS9d6yMyZeKyVXSigU58HQmCo6vaQTKQqBd8HThWCBDoOrmS2L\n5kSLQC49pXgdvW5VUbCqyOtoo9QJCTZu3V3Fmcusq8bklwyMmohU+8xoaMoJyCmkFYwrhDXKW2kJ\nS7Kk5du8g5+sb71EWK02uHGlxP0qYN5s+ICblvR70EdwvbVURFEIqab/4xyQjcMdVC27OuahAzyu\nMTd3EdmdqRBEpz+UuD0x8wzaz0g11NnQzN1K+hOHx+7/77Qpz5HL52/bwxtXryfVnvUU2UxK+M2l\n0tdKztkIqkFnPZ3TdhM21dVeU3Nq9p4iQpRMmrJV03avV5g2a8oahr0lPgxkN6l8v1vogSpOr3Gw\nBMm5mVrWXlVDL5y4nYNWH4t3W7TX0JhqyEwuRQcIkhJ2o/ExppSYkir5jptJ3a2nyNlmxWpcs4lR\neRtVSDauXe3v+pZYzWiQHfpiHlXOEXqnaIwLs55Oe0OqPW9nvCNtCPTEtCDnQGUPnVJ6zvyULoFf\n4ChQRoSC+D0trPyB0SrsN9edPdGGAWT3HLIuhk0rVXZ4MS3Bwluy1lpKEakWx2pEz+Amj7hLOG9q\n9kvUSmEf1+3jwhIXlngT4qyGCulT1kNBJ2ytCNBK1WL0Vn7kW63PZCIjkqj5DN8ybg+tT+ecY29P\neOn1S/zoj77CD/3Aizz/zAEHC0fwQinKr1DlVpWjFnFzdk7ozBDUEcxS3S+WDIs9EoKUgLiR1UZY\nn47tGSHnqu1HJwiwr7XR60eh3kcgPtfh3AEn48jR2ci1iwP7+x15f0ERbVGIc+Rc8CnvVHRiAU6f\nEaaFQK24nKnBqTZGB7lmsl2LPmVC1xGCQ7zw6svP81/8R3+ef/lf/6VPknP/4r/PzVdf1kPZGQTq\n6iOv6JEg6pil/+dgI+060e76nWpBA03JrZWUKaZj0cYgY7IpgpiUM5NFkyBRQmYVlMiXK9WbBodT\nHZkqzvquprLpG4m2vV32XvhW0QlIoJSBlAZKCahewzM4fwMXriF+oQlZvq+VESYo5bwmJmUFslJ0\npZ6AHGorSI61py1neng13QXThHmc6eiT9QewpCLi5+DZkFUlpgo5e1yxw8drQtKCvLSqf9bSKNTa\nWXu7BeAGq1v16yrKaWpIiwOJiAxW4erXpWbbfzvo3Sfgennk6495eY2Dde5GbRu+JVPVWmodUgfG\nKTGOmSlVUhFCVtJ97x2eDu8XuFKhZKqr+Aq+6+2AbpfVCoZSZ05JyRgnRQcxVlOiuEC/rPQ+UL2Q\nqQTsupgit2qzbF+5HsTtNbRiytCbWZKjzNSzamhNsQQmFU3MZqE704cZU2RKmWmKbDaKxExRnazH\nGInF2k8yR1pFo1qxZgKJRVT5WUQLKARCF+h8IDRaQEtibF9Uy2/F636R3BHjQIwDtS5w/hrin8OF\nZ5T/YnFHJRImxC0MKb6K8xfQAqo5gj/SUjq3XdyMHIoP2+/PsdntfLS909pN1sqWpMTfJi1wDokx\nDoxbbBOZnRaWOks2lIcd+sGjqKPt4YZMfpsI9GcykaEmJJ+eyyYbInJw0HPz5hV+7Me/wB//8us8\n/+wBXSjkNBpsJRRX8F4IHvJORqeKlAVPIUumQ3BdT5UlsGCMhVu3T3nzrSM+eO+YkuwmmiePgAYD\nn1uO89oxu3Deo8se6xZs0oLDk8jppYmLFxfEmBiGTOgyoRZCVShUfSerIg22O9v0gOq5aOVEEopp\nYQQTeEopkvPAUOrc1qEG/rmf/Cf58h/7Yf77X/nfeP/WbV566af40z/7U9x87WV79mqdMCcf1hef\n97hT4Tm917fQpdYo7YVbH7uor4kmldvn3dCi0qBtS1xi1OmB9WYixkzMlZQrpSiXpiVIYv3qUkz1\nU5RUW4uOjvrgNKg4FSTU1rWiNxpMHK5z+BKgBmIeiLmjyj4uPIWE52G4AX6Jc5O2fPLXIX4EroMa\nUK2iM6gtcTlBuVQNmdnVWniy/r6tFqydHuiN14URcmupKl4WvKI2jYxtW1kVDLatA70JTKlZ7GCw\nn9m2oFsbUfQEcx34RJWoEvZFiZNIVdh9Pnw+DeX9tK8xyxUB5+OOtLulmZVaIsDAJm04WSeujokL\ne5UuqLikDwHl926LBwUxvaGwNnpsvBaxZC9GTQ5SHElpST8M9MuBISxxnXqqNSeUmpUq4E1cDlTa\ngab9RFMdd3NuWBtvBtWwwRIXBLMXEXIt2+nH5mwddXBgSpEpTta6njg7W7E6O2O93rDeRKYpE2Mh\nRrWLqblYkqWVkPpPoXHQKZLQkCcDhwje2+tRHmCblNJCr26fe3BIDUylZ5M6Yu3AXYLwHK57Afqn\ntXXknOo95RPVcHHKjXHhIm1qd4sCb6eU2nu/u2f0uTeCl8X4mcxrWjCzSd+u+J2p57fzYAdh2v7+\nph+ztURRJf7OyO2dFcRltpNrpGToELuHnL2vcq7t+q3XZzORkQTllIZAOAreZ/YPAq/fvMyP/aOf\n5x/5kdd54flL9EMLFJArzcdNfULQnm5JBcERBlUc9N0evltQ3AW8u8wYA/c+XvPmWw/53d/7gA/e\nfZ877z+gFDTAVGcH+m57aRfu3a16+JTH2OMc9tgFWZYcr884Wo1cWS/Z37dEJmRCiITgbW9pe8cL\nyoDHEhkXlGtiiYYYVNiFQl8V6cglU3Iy4bkKRdn/tRZefek5fvHf/FdoPjJ0qubZrOi8Mz7L3Lfe\n3sitKtGNXXFmVNleuyDzxEG7hYuhMGq3kMhFfV5K1UmCOE1McWKaRlbrlVoRGDmvVJk/z8BK+2ui\nPAjvvbZfRRGk4Lt5PFvFr3bQV8es8yDekeqCMQZSTlbdrKG8B9NtRCLCKa4cQb6t+isuMStantNU\neEK8/WwuO2123htnhzAlQYrUPuO8aZvgmb1+ZoTlkWS0cTVcQ/a2KN9MiJ31mDQwSxPonCvdNoas\nz+38zvlWicz553LuENv5Tds7psUvj7iBsXiONxOn6w0X9gZtEgTFlXPxSnDxBV8LUjv1kq1q/mo3\nnRYTeAiemDPrccNyvaZfLAnDAF1HPwR85ylS5vZFEJAiBKkar6sSZtVPSa+dN3K+grl6yCpg0CYg\nzQBSZGu4a2hMiZE0qbBdSkVVe7PGlmls39N4E9NEihMpRmKKpBxVFgKNDw6srWZGFU6RGEw/SKgQ\nlNjrg41n2yU6N02Pa0cVWTxjGVhPAzEFRA6Uj9c9j+tu4LqrOL9UM8g82gBMs0lRUTwH1nbbLZZ2\ni0+/k+HqfvAuWKKlRO2GsHxCTdpimjs3PacIclMTb6jZOe00b+1aZ4r71noqYCgMaGW+s3+d4Lxs\nUTZs7Ju2X771+mwmMhRVLixr8APej1y65Lj53df58pe/ix/+wdd5/rmLLBZaJdUquum93lyazHi6\nroPFkkoixkzwAyJLUj2AtM+4Hjg8WfHmOw9486173Lp1xsP7x4xnh8SzNVsjMH1OWwKeOSg/NtA8\neoi16mwH5nUOKFRZcprWHK8y601k3CSGRSaERN/12lryjqpDifhaqW5rjKjFpQaw6qqyWUSYStX8\n2CqGUkUNKZMiBIFACLpxask4F/W5eZvK2U24mg7FDENiUj0OdYJwc2XrkFkXpbHR54kkQ19Szoqy\nmBhXzIkpWQIzTuo4nhPrOLKJE7EU8lzRiB4ULV7PiKjCvKEhRDgNOE2bYieZqqJVUsqF9TgxpsyU\nK+vNyGasSC7gHkK9peeNRNTlvMGpO1X2k/WdsxxajeoxgiIJVn3KBGyg7GuiIUbcNckE3fpmTdIg\nSWnTk+jjfKdt69lJuAPSvFGdTaq06lanMHUfOTtw9Pe3tqM88tGg/EeLpt3vPa54Yudxu+iyp9Cz\nSZHVWFiPkd55XL/lwThf8EGHDjpDGfRs0r898yssRqRa2Ywj6/WKxXKfMCzwXUfoAjlr0tG7hVo1\niCoCV6najC9FJw6dWqN03pLJ9hbtvA4tkrZWIqkqxydbQZRjIluykkzMLqUNKU7EcSKNE9MYiVG/\nV0s1SkIiZbUxKXVrRaPDA7tRviHNYqr/ynkJQYXxpHlNybaTWbOoorRtxlw71uPAZuooZank3v45\n6K6rHpVfKrE6n0E50dgaLkB30eI0llCUuVuhW7NNk2LJN7R45YIzoe+oTuuFHV6fjkDrvdFinCVJ\nte3Jxt/Tlo/uqB0No+aUHRamUdMbqVjbt5SsE0u1QPXgehWydcWefBOU1fNSr/Wj3Y/Hr89oIgOw\nIXT3uXz9KZ577iLf9w+8yJe+9Bqfv/k5nn76IovFFnr0zqu2gw9kMrhAP+yTcqI4vVG8gyJLxrHj\n6LBw5+4hH350xge3T/jwo1NOTxIpVioZSlbSHaCVWWuztHHXRxOYR6slOf//56ql9jW0vVSXHK4n\n1lNhNU4M04Kh74kx4302jqH24n2tBK99WO+dJgpVtRuKq7phQqejzXMrRvdhyY5c2whhxVe9ZgqL\nGuJT2ibyyhOgBV+Do1tEsXyuwezSbgIXbIROTIhKNRca4pIa6c6SmFQqqVRtHcVEmiKj9dlTI+el\nQslVD4xGpgvq1OqqcXdsEqQWVRwOzowAnbCJkc2Y2EyJzaiu2c0xO5Uyy5S3yQTYeftk93+erO/o\n5dBkw5vibmn3aQVUrK7mCCUrmusBAs3wsBasrYklIGxhelRvw7GP9xPVbxC/QQXETLxQKq7aoeDN\nq0bHn5iVruf9tjux9Pf2EttveBwys20BAOyBqLTBelOZpkzqM53v1UuoCKEInZhHWRaoQQcGCLPl\nhwDq3VUJQUg5MI6R9WZDt1jShQGPpx86+l65iiSdBnK+qtu16Li1MxQmOI/4SuiCjri34YLdeFMr\nUhSByVVJvLklI+NEtiRFkxLVjZliI/iObNZqSDvGpH5KqTBlHRkHj/cdoav6HHeJO5b8VrNwaT5o\nM8BgxW8TmKtV1PSXaurhnloHxrFnvXHk7GxK6Rnwz4C/rOPRIeDqGTXepeZTcHu4YKaRzcttp520\nfY7K1dyicFZ5Olhc7nj2Cxe5/FRgdTTy8KMzTu6dUtYJqvFnWiLc4KTapAMisyDe3DIXVCy2eR4O\nqIjfPhIWuNAjvk3zFd0nRe8xRUibH1zbr4JWj4XGyXGPoqCfsj6zicz+UvjiFw/4h/7Y9/P5157n\n5Zee5tq1A/b3l/S9Hb7Om86BThb5sKTrO1IZibUQpeN0A0cPJ47uTXx8+yM+unPCrVsPuf9w4mwt\njDFQpLOZ+hZQKtXkmL0baP5CW1SFnX/vVkiPVFFGVj7/PfTG9Ep+KrXneNpwvEnsm+9JN6nXkw9a\nFQZvRGZRRr84UyHZycS1Ty2ml6CTQCr4pEG4FL2hvFQ8diOK3rRbrRudIqiWHXsCTvJ2j1Xm1+Ck\nmpmbmLqyvq5atPIQESpaJZVSdQKgVKuOrGcdI1NM5FLYjKrjME2RaVTdmFZNVakzXUqDnbfWlxjc\nra60602kVFGkJ2p1lUqb2tqiQk3c6sn6o7PcHDidVYKwdRUviEzUPEE0Gwhv0vl4RAq16NQgbVJJ\nBKrXNpQTfXxoHx1kg9ZndKWRfyeQDqkd4pK1BXQznpvIeez6Fpu2Tao0rgPCPC88I6utFVCBQC6O\n9ZQZYybmQter1ov6WqoejC9V9V+oSDbkdUfPpUpBiiAZkg+M40i3WtP3C/puIAQtvHQ6tDPOjWpx\n9UMPQ68tHJtYEnGIL0rA7gI+mHCl2Q3ovbyVqFAnaxtuyIlYsqqGyxaliTZyPU0Tm/XIerMxbyW1\nKIilUtDR5BC0CFTHbYs3bmcf1YKzosoHle9wGAjt7DiubJ+rNPSqUsQxToGzs444CuL3cd3T0D2t\noppugbbtR6QcUesK8T10xotxzYZgiw7LrCTd8CJw9IbYGCrTFa49f5l/7E9+H1/4vmc4Pjnhra+/\ny7u//y4fv3OHhx+esDkVpOgZ4KqJ3klTBW9SEK2lXmjI3tbbrQe/hE4d3r0fgF73WyP2NkBAjAeC\nedN5B53gXIGk4pHIxGyV8y3WZzeR2Qt8//c+wz/xJ77IlcsH7O/vqR6IwY/OuXlz6aSBQ4rDcYDU\nyzx4sOLrb97mrW98yDtvvMv9j+5y/84R67VQXE+bcw/9BejbZEDriTsbMOsM4DJVYdcCBOwmMebF\nzU4ZtH3IY+Fe/d36zwVj6niwilzaRPb3Jvo+0HXqiO18p26tUgjBE0KPeAjeUIoWWL36iNRSyFKR\nKTDESN7LFCpFmrGb0xFLNhbcVD7bdY2srMmNCJSaVWMHfR3eaaVRTRjKNf4AxuUpSgRzggURTVxy\nTNp/nqIS76ZMTJEYlYzc+tVjjNQaqURKnSglkWvUQGm1Qi11q/gbo6I7KZGLzND/9vOT9WS1JTiv\nUgVSE7jcvqz/kYiUDTWvAQ+h4nxvbR9M96Jo0t8q1p1iRggqoOiWCv37QYsViTTypABUh6ttVLWa\nxH0j0bfppkdbR48gvI/GGXvcPLn0mO+d/x3tAOrItWM1bjhdJw72FnRDVZfw4KglULKRPDpPcB3e\nFXxVlKTiKAK1TVZZC3uaJsLpCZ3zhL5DjZqa4/NE6MpcjIhUegcSgvkVGTuiKDrji99JJqw1XIWS\ntXhJzaRSWtGkCJcmYZropJwU3Y2RuJmI46ixyMxpsw2JeK9jycWQHsDOmaZLJTYw4PDBVKK9nRnm\nXp3tLCjzRI6dDKLE6SkNnKx71mOlMqi8g39RW0tB20ZOgHSKTEdICdBdgnBJdasAJCt3pbXbjQ96\nLuAJ6BmjyF+3CFx/7hI3bz7L5195mlKv89orz3P3B7+H99/5gLe/+ibvfPUtPnrzFpuHE2SbtiOC\njDZp16Qktlwrb+0gMXNIuiU+7BH8Uv++C/OZILVN/TXemLMj1+sofgiWuAhS18qLeuxe/+T6zCYy\nOU5QNtx46qK2UaRYLqGWfroxTFRJdBb/eF15771Tfuvvvsf/86u/xztvvsfq6Ii0WlPzBi9Q6RG/\np9Bdv9Csu1pbRDqct7FBqZq8nOvRPdpO0spmq/fwqP8JnNtdLdDM8AJAT5IlR+sNZ2eRSweJuIyM\nKeBjhzgIIiCJTjqc99Ta6Q1u3kAFwZjJFKdTOyLC0HXsLfe0X10rPguOhJTEcn+J9x21eop32h93\nTVzL4NUmVlUblG6bDtkOKolODNQmQmVBJNXtBEFKkTxF4jiZSm8kxpFpHJk2kWj96ima4+xm4ux0\n5MHDEw6PTlitR1PaVE2gJ+vJ+ntdIgWcN7PB1l7ZRU8z1BHJG6oLyoxxBZrP2qP1SPVUc3RWq4Jg\nlh4dzg/gBx1zrW6L/NSqAKiYR5zoAWnqJGx5WLtrd/y6xZVvFuB3nqhD/+780CYN0UoThfZjXHO2\nTqwuRJY9ZCdk70heW9q1anG36FT9XOU+hOYoXdtzqxBLxtVAkEKXR7rViq7vlXQPs6q3Dx7fdVp8\npgy1zk0Eb+1j74KOf4szJWVUIbhkTWQMXS2lqKifs4GC1nJqdgSNJ5P1ccmSlCZqV5ofk1SqaW9t\nW11G4ga95jPh180fmoFp5TRj5DuQryZsjil1HJ8NnKwquTokXIfuFeheNG6MuVfnNZIeKJ2hu2KJ\njH2vNosAa8E8tvWyK1mne33YC9x47ipXrh7QDT2L0NP1Cy5cuMDnbtzgu2++yvvf/z28/8673H73\nfT584xvcfedN4skpFFGuYN0wDzjYPtTX22tLqbsI3QUdue7UW0lFbAVX9ZyVpnC3g7A741/VJovQ\n7DvOtUK/+frMJjKb9Zr7dz5Givp/YGQ5kc6uo3Igqg+spo73bq34f3/9fX7177zBm2/c5vRoTYkO\nicrOlgpllgnsEJ9wkqh1goKhPEKpiZqTeR61yr4lKLstppaotMCy43b9iWSnoTYN5kW/5zqQnsqS\nszFyvI5cnxIx9fRm5IbTN8mJIFWnt7zvFDQMNkoshoaIIMFbIlGY1pFpPxH3K4sKUjNx2nD3zl2e\nvvECV7o9wqAZtbMevhcH1TR2vG7CFmalig1jqIhVhZmE26YIStUAk4tVQzYKOY0Tq9WazXrDerPi\nbHXG6emKhw8P+fD2x9y6dZvbH9/j3v2HPDw8ZjNOf+B77Mn6I7TUphoVwTMtjWoQt7SDZwI/gigc\n7iqIdybeaGhsq7L1RKYGGzQwfSisMhVvhnlOtYNUTNJ0g6rDsa9/R/T3G+xDs51oQga6Whxpa7fF\nvR2p/gTwu826mNmqYr/PBZyJmOXas44bNmNmWvQsumYhUvDV4fqA+O39rjQ6lVnQtrZO9lRrwWfz\nL8pTJHYbVqGnVtjbKwyLJV3f47F2Ew6Xi7Wu9Pkq8pvxGZSPE2iCf5WqCK2hMllUsK6IGOFXLcZy\nFktmzLctJk1kajURf42RivUamqEVGc19G5i5J+3S6Xi614juleSrSvD6/JoQp3r4od9zEEvheO05\nOhNSqjiu4/zLSHhJ20p+X/emJKgrfe+7S7j+iiYJc5uytULtHJo/s9NabE94mwAv9nqef/EaVy4v\n6ObcwNF7j+87nr52lavXrvFd33WTh3fu8tHt29z64F1uvfF7fPi1r/Dw1vukcaRN2WlWuUXwFYm8\niOsOoFsoQmNTSyJZBV1LU6y25NRp8S++x3cDAaHmNbU0Lk5Bifffen1mE5mUEg/vP+D4+IgrVy+r\ngq05W1eU0JRrz+kq8Ptvn/F//533+K1ff58PPzhlszJRNBqwhwWsthEC1IiUCbw6vkpNpjCoOg+6\nBdStUy8oO3Dy7npcEmPLkpaZyOce+Xnx1vMc2KSOB2dnXF9v2L+4YK9WSs40jVc1Z3akpL1lH5RY\n67tOVRONAyKm+1AQUiz2kUkxEUKgW/Tc+NxLQEfMhSEEqhNyTIQgdF2vqI+o+KC3VlvTRmg3dgNG\nBKjmYl1KJebM6XrF8ekZJ6ennByfcvzwiIcPDrlz5z537t7l4zt3+ejOPe7cvc/JydkM4z5ZT9Yf\nzBIgz8mGzFLqzSutbeasLaQct49zZmlh6tGqSe+1zVSS3Zzq0eRcB2GBC/u47iJIRDCiZNkdzw94\nyYAqv2oO0kZnPymn+fg2U/t6a2+3R1jCtTveSmtXsfPzHqHHs6AwsIlrzsbIhWXH/tBTxc1XpmnJ\nlKKRV4KbR82d8QoLgDgkV5I4et+R+spmmvDdms6Dd8arMANXcYL4YvyYdiRqUllrpOaIcwPdYp/2\nAPFu9mTLuaBjBor+ptK8kbbfj9GUw2MkxaTtdTwJLVVXj+4AAB3ZSURBVNQI2sbvPQRnnBNsTHhG\ntpz5zim65b3He09wXicjndPE9ty71V4HxOpYjQMnxz3TWMBdgO556D8H/VPQX8D5hbZv4kMkHUHY\nw/VXceES4jpmpd05OdlBfeav7bzvu7yo4Ni7MPDU9UsMfU9O1qY3eZiUNbFdBk+/2GPvmWe5cukC\nzzxzlc+/9jKHP/hDvP/Bu7z7xlf4+O03mA4PcUWQolQGJFODx4UBwhLCYEiMURFyVo23umOG2t7w\nEOxpWjHc5tXn1/QdnsiICKvVGYcP7nH5ykXUHt4MvHxAas/ZNPB73zjl//hb7/Cbv/EhD++dKQpj\ncHDjrYhdKC2x0A1RJyg9Enpc0SREgsPZ7LzMNvPtvy0I7QS+T4Sc3cqpBRkd/G3TQA2N2YUrhY5a\nl5xNK45WkUtTYblU9AVDOoJ3JNce7zVtMk2V4mVOzJ2ohXsVx+Qjq9WKYbmg6zutrLqOoRvoQlBp\n8VKMYtMZF6sQdiojb3LSwbU+91Y9c73ZcHR8wuHREYeHRxweHnP/4SF37t3nozt3uXP3Hnfv3ufe\n3fscHZ2Q8hMV2yfr79cSxHUGd5veRW0tgYZwOJCMVEVrodcixOkBqgmMTfPVrFwXGUA8zg14bzyz\n3n4PZ7MpYuiEMAQW+/sM+1eJ5SKr02yYhrW85mf67TIDDAnaRYDnAYPdr7ff3eJWO6BNvdYFYvWs\np8KYCrHCogp9la3ESFJ+SMEh3uPpZozEeadcCUOGVaE74r3y8EIIhJZL+QXVQ8hF+TjDgFSvU2QO\nnFQ1eS1i9hAVickMOi32UGYZBZv72hL6RYgxURp3pqjHkhrOFhvldtTilD0Aqoyb8ywA6qVqHC3K\nq5qTFReU0+1R/k8I9i7oJW70JO8cAaeodC2spoGjk8BqjMCAC8/i+tdh8SIM13DdBd2G6QwpZ/q+\nhgvqseSXdghZh+Cc/kr7bO/3rF1k77ElA6EXLl0/4Mq1Bb7zpOIsCREdoqu9clRqQapyfxZ9x9NX\nr3L1wj5XLx5w9coVXnvtC+ZDFTl8cIfb732D47v3SGsYJ5jShuoncAVnAyTSRq7PSQpoIiNOp9Ik\nQKGoSrIhp/pQQzm/jfXZTWQQNps1J0dHeqCi3ii5OEqG9VT5+ruH/M3/8x1+7dfucnxUqNKmEpTv\n4Szjnkm6lsS4mtDgMeJqsxjvbApBp3BUXhutwmbb0sf1puWRz8yPU3jYMky3CwG2x9mkEBXckpQH\nTleFs9XE/lLZ/lKF3inyoiqSgpiUtHhPJdhfqsbtQb/nArEUVpsN/dkp3TDgul6DuHNI3+kINpXg\nBpx4sstafcSmvKtZ8rQZOT5WvsqDo0MePjziweER9+4/5P6Dhzx48ID79x9y/8EhR8cnxBj/ILbE\nk/Vk/f9fkrd3qEHas2DXOfRC4Xqd6lM9JuWFBaqhCDo6ba3iHa6MhE61Onyi6xydc+z1++wvOg4u\nDRxcv8LVp55i/+Aab711xFd//Q2VmvEeLyBNmPJca7o1NXbbTA2FaT43+nXXSPeuxZtdLlDlfIxq\nS5OxXAKbKbKZlIu27AK9VzuQUDzVVysQPc3yxRmnwTlFKFqyJ82A0rdpSJTn2A90iwy50+ZOTKi5\niMOLtWpEi7POdeA7Q4QEX5rWiVCkJTJqsFtn6SqxMXn9aMlLESD0uCCQtUCtIoayOGrKKqJnyYx3\nitkpKKMogXcqdue9Fqdt/Nob90e1ZgwZE8FLwFWIyXG67jlZF5uOfQHpPg/dizh/jeAPcG4AOaOU\nB4hM2lLqLuL8UpE+G66QRkxs1AQc26ERS2R2uwb6ZAg9PPfiNS5d3d9aSxSQ4tSUUSyxk4pUSLGa\nqr0m5hcuXmK5XHBxtWJK6tQ+fM9Nwo//CTaucnJyzO133+XjWyecnezz0e2RzUmlxD3j9poOjTNE\nqWV8DdWzVqKUhKsbnViaaSDf6ToyAquzNQ8eHFNqIFePVM8mVu4/POX3v3HIr/7ax/z23z3i6NCD\nBRGdMlCYVw21VB5Z7/DWU2weKEknGCTja0d2Pa4r1B0eTNMJmOf05wpnN7kRzgeb9hoeaSk13g0K\n1UIzpFOoO8keJ5szjk43HBwM9J2m/6qQXXA+64bNGbzDu840YBR1UgHiipNg6r2VMUZW6zX9oKZt\n3nd4cZSU9cYLCQkjVNiMI0cnZzw4POTe/Yfcu3ef+w8OeXh4yMnpGScnZxyfnHJ8csLJydmThOXJ\n+g5ZAmKaTDPfpfX4d/lvso0Rpkq9a8I4Dy3OnkZu/jHnoOsLi70VBxePeebZjhc/9wVefelzXL10\nkYP9pVXwnsOTkaPj38E8R4zOYLFi25iY//2J1/KY9rabD7bHFVrnp0S27Qf9WaGnyoKYImNMTCmT\niloDCpq8VYsvzptDdZtmQtTmAwddIActpmrN5BxhU/FUOq+O17Ff6DXue+iGOSEUabos4Hwge9la\nr+BoxkXeqw9duwQCSuatlVKdCu8VbcuXlElTpGabpsTNV09VeL3ynGKhRHVj9u0NaarqojIPwQnB\nPLecC8ap1GvZppq8qazXUimhY0wdh2vH4cryp3AD6TWJwV8Bv0RCj3eFMt2jTEfamumuQLgAfphf\nv3POml4N4d+tiE2Fet4Z7XsefKE/8Dz/0nUuXNizxAVK3jXhZCY+55SJ00jOEeeag7gwrSNUx4X9\nCwz7e+ztLQnO03ULhhdfxf/ADzBK5vhsw2//xhvc/WjNx7ci7/3eHVYPCyWP2madyck7+1T0+tZa\nbVLJ79xs3+mIjAhnpys+vv2Q0xPHNBUeHK744PYRb759yFe/eo+3315zerpEWEAHQZSYhhtwvoIv\nCCPb6mtbvdC0YSRTS8G5uDP+hUJajQQogmsz+7rLd5/pp70C5LFBx77kzgcsoSOz4DSteHg2cfFs\nwyJ0uKHXgNdcQn2HDxmyyh4FUS0LCTP+g1Csd5moFDgVcoF1LBycTYh3nKxWHB6f8ODwmHsPD7l3\n7wGHR8es1iOrzZr1esNqtWG9WZPSk5bQk/UdviRbUaKj0oSgCKwLdtfA9nS0JMa0QJwhqs57dWk2\n8z3fCd0ysn8l8vTzjtc+v8/3fu9Nbr72DJcuHbDoOzyOPK7I0wjiSTlx98EJJycrJCvpUXMnkzSA\nuSWua7c1BJ/g4YEdYn7+F7hHDrTzjz7/vw6ko9IzFWETM+sY2S8Dyzpo+7oI0ln+VlX/IwAq0Y/p\neTlIOrpdDDWJqeKkJ0fH5Dze94TQGxywUCTGO9OiUtKtc44SiuaY3tGUYRHBVcilUKu2Karx9/Sg\nD4gUqqhDsxMVNqVWJCdq0naT5IqrFV+z2lKkaAKooumgD6p1U7SgnYU1DIGRig6a9MaTMXFOsfet\nFiUhTzlwtO55eFoYp4q4K9C/At1L0F1THkkIuOAp+YicVzh3gPOXke4iEpao1L95gDXdmEaWnRNp\nK94NfZkzE2e7wcGFK3s889xl9padGaS214rZyABSyWkiJU1ialWCbkmJmrLqBxVtR4ZeqL6wvHTA\nxUtX8IOjdpGL3QVefOppXnvhBqcx8t7t+3z9t97mjd/7iHd//W3O7q3IGyGJOrDjWls1UClUyajO\nkrWhvOc7nuwLcHpyxld+512WV97k7v0Tbn10zEd3VhweJtYrGDcDs4xyRlUEJYCp3OpIZK9kPKfJ\njE4PGG9GqhKQ/EQto97TFd0cmHdQE407129+FIFxPC7AnH+cbDfbo4+xJquwINUlJxs1c7uwTBow\nOiMSZiF02kLyRUlrrnZaVThHlqrM/FyIKTLlxBRhMxZWm8RqipyebTg+OzMhKHOYTok4RfIT0u2T\n9Yd1SdYixe3cxy0m0FyXK+cQ1nmaSc0imzyB7xx9DwdXKi+8PvB9//ALfOlLz/Pyi1e5dLDEVaGY\noGbNMOzvMblKjhXnB6oTxsm4AOxMLUndIkCPXS2+6GPs6H9MRJHzoembLk3sHD1VOkZDZcaYWQwF\nF7x+lIov2nruXRPrbAMGmix4p6PozgVNbASyOMYsFCJ0I/3Q04dA8AM5ZFxRbTBxTVvGK09PmrYV\n0K590PcjhB6HTlapF5LXYYfgSCVZq8tRnbmLi41sl0TNxTgxiZqzqhj3Ad8HJEXTydIEyQWvRpB2\nHau1vZxUfFWITkEZN+8anKNI4GTteXAorMeCuCWuewHpXsMNz+D8JeW+uCWuRMgn4DxucQUfLuuo\n9XzQK5ooVSe1NDlpHQF9Yq7thnPshoZaeS5fusjBMOCd0HWKWrngKFXPis53SFbDz2mayCkiNVFL\nJKdIiZEco7633YDvVEfHAzlGBtdz+eCAvu/ogqcfFhzsLbl++QLf9fJz3PqhO/z+D7zMG7/7Fm/8\nxu9zcveEcdNRWdi9tU81aYJ5zzpDTb/TOTIA0zjxla+8y63jrzCmnjFWG6vTCSYXPOSKq0l7plm1\nCfQm6/DORvfmCQRBmqlWg3JFXUjF9fgKrrhtC0iwUGFjYlpD7FRwj6t2zgebcz3B3eRnLpY8bm59\nLan1AqtN4vgscnU/MnSe4MGLClHFpD3fhr+UClMqnMXC8Xri6OSMo5MVR2crzlYjKZet70dzY22N\n0ifryfojs/L2vt3KtAJ28AMzX8Yp2dNJwknAu46u7+i6SreAi1ccz790gS988UW++MWXeOXVp7ly\nZY/F0OFFiGNkHAP90JFkQ5yUfF+KOsD3vqMPHbMw2JxcqUHupyK5n7La47cpzS6a87h20+4PW1XM\ngipLYopsYmWMhb0p0wdvUzqZbOJvOA9BD3rlxShBV2MZ59osOqBRkTTh1sqxBg/dYKq9RROWolG2\n8/p8SxVctjjs3cxnab+/1qr6JlXF8JLou+vEzbYAvjMxvhLUm046JKnJpCLW4ENHN/QMZUmfMrmi\nfSBRqQnvdWKtttZXy4FtckkvoSa6wSlncZM7Dk8Kq1VBZMAPz+P7m8jwDAyXwe0DPSIr0tltvGS6\n/irSXQa3B64zfaGqBFzJ1pYR3aMIs0Hk3GWzhGbuPLTHOGoZ+Pj2yMHeKVeuLVleGAhexUXVGi8T\n40SaRqZxIqcJJ4UUR+K4wdVKFwKh7/CdTZ35Tk9GH+iHBeJ6chX6DoYhIKnqfbMfuPT6K9x4+gW+\n8KWbvPtD381bX3+Lr//mG9y/dcx6pSq+rjidbNpp5epr+Pa6AZ/pRKZK5eTkhOnjh4TFU3qrVvug\nKT4W7ftVFA4sDWJVgTvFRJsniqA6DWLTB4ZA+B4dlew0QZr71dLQu53l2Cr5zh1XtgGjBZNK68rO\nMO+sIVPZDTIyozwBJx0xe45XGw5PR3COcQj4TST4jlyE1Thyutlwsho5PtPPU87nM/In68l6snaW\nqaFi0us1q3aS13jgTEfKe51M8V2lX2aG/cTy8sDFa54bNy5x47nrvPTKs7zwwlWef+E6V69cZG+5\nIPSt3VzoOkfwQflq3mKCKFkUASei7Vpn7WI7tNzsXNw4ELs39C7i2xpIO0WTm1VYzj1mu3Yeu9Pa\nnitfWVDZI5ZTplSYYiUOhSFlNeG1Nop3QpYMDrpBpRo8W5IrrqpOjnjEZWrSpCF0AykXxjHRdxPD\nuGLR9ySfqN7hOyGY8KA3lfKAvicOI+eayrJOKGkSWJ26Xsv/19659chxJFf4y8yqvnBmNCRXMrUX\n78rWAjb85D/hZ7/5v/of+NlY24CtpSnRImgOybl3XTIzwg+RVV09IiFqLxBHzgMMplXqbnbXVGef\njDhxDhTrib1/jGIC7OQV5wKNw8auU0bLiLaIoMEhTotgd9+cmyK1fGPmo5M/TFie+UUFLQPdGHh7\npVzfCllbC4Jc/S2s/hq3+hxdnaAaCGR0uDXX9uYhvjnFhSMjIopVDyWhmov53T5Xybm9xpL5dSz/\nzpNmykTpz796zT/fDPzmi5/xV7/9lL/84iEPf7Zhc9Sw2hgRjUUXNUZrJ2mO5JiKjUnZyjvM0bhZ\nWVXMeXJOdH1HkoHghDFkMkJKRrziIKQo7EZhrSO/+fkpj7Zf8vMnx/znf/yOf/2X33HzaoD0CWQP\nuWfOdFpGLHwPPmoigyqSB/LY21ksKbF2DZdId29eBBTVtYiCc+YKSSjTS8UAa8pamUjKdIFIBD+g\n0kJYzSU9VxaFMnXPVM797iLzPiwmBaYKjAq4iXktjbDsdYh2QOR6N/L8bOTl+SVJhL5MFMTqbFtR\n8cOhEdUrKyiEkQef2LTgZnvEZrPGN4HtgzWbzYa2XbM9esDx6TEPT4949Okxjz59yKefPebx6SkP\nH51a5tt6hQ9WAZ5NI7FsoNXGEeNQwiltHfChBbVR4X7o5grR1D45zHSbF4zF7yXc4WFdHLu7Rrm7\npIb9cXVMAwhOV+TcmMt2yR+KGVo1t/OUsmlCnLMgVy80jek8DmiWCpP4OOeEZsG5QGTEe09TErEd\nju3RAxu4Kfu8HKxyPFU7fBm7dm7fept+xFEMCwF8GXSwgGAwx14jJlJ0NbJ3Bi6GnQkhqRaTPCMQ\n6xBonFp0QTm59niT1TbOz75adhodeEdMDefXgfOLkWEE3GNovkSb3xqhaR9bpl+8JnXfQryEcIyG\nYzQ8wPtVaRREC1fUiE75RrOT79TqnMhL+dstW6bzdWTvfUwdL152vDo749//bc0vf/GQzz/f8tmT\nDU9+ecLRJy1Cz253zrC7AonkOJiuKI/kFGl8IATwbTCvMYrwOYAiSBqIY0cae9I4EMeeOFqu1dAP\n7LqeOHTEvicOPbe7Wy7P37B7e44MsXRIJuKyvNY/bHf+cRMZFJUBSR0uFwtw3OHHejaZWxrpTOOV\nDS60+LBCwwrNK5AW3Li/r5iAyktE3Ai09i+rJZrue9AfQmDuLjrL8eu8vxAPdl1F4MRgTJQeGBlG\n4awOBVVU/EngnPCrLxwnT45YrY75xZe/Rsg8evyI008eIslxcnLMdr0lNJ7tZsPRdsvxdsN23bBe\ntWyOHtAG8xVZrdZkLS0QbxMgUNYLtY1U07QgQvTjfFwVxnGk73fMKcVzOb1oAnSxps3V2nfo7yby\nchBdwOKxd9pKDr7zPFOWlLPx6qSBPo0MKTHkzFoybXaEbLvspgk2OaQ6+7b4ItSdTeQU8DoHKEoW\nXLLKV0yRvhtw5u2LDyaudb4x7co8Fs1MWFzY29xrFnMXxqMhkLMRFqsDTGG4kweWvb8ARGdkRcuQ\nmk5mpSX7YB5dx0bFzU14+i4ploPFZE6LpmqaVlJXInJuW95eZrpeUE4g/ArCr3HhM3x7il8fI5rQ\n7grSDfgWbbY2veUV1d421XmHys5MW9W+F1QjDqvQTPNLpvvKe41OMZNTMk6zkSCfIA2Iiwwk+vPM\nxYvMf/nEybHjL54c8eDEk/KObndJHHZIGknjYD/JNDM5WaXGhMD5ztfgvjm7H4PSedtvl7gurtlS\nDpg1aH88Pn4ikzsk3lraKBMT9osGT8JNOSYiaCNoKCN6vsWFtY20+W0RWPXM7oIAZFweTXDnG1RW\nloMyv4SyiLhl+2i5YEy/5c7tO9WYmcBMZcLIZEdeUVHx50W7avjHf/oH/ubv/p6TkxPAgThiFtrQ\nMoxmbdC0AeeFzXqFd7Bat6zXDTma3sC3LVNmk8MKxTibZ9xXZcqYbLbPfwgBFwJePRKy1V9jcRr2\nC3+pmZQEPnxdKLq9g5FqDpeodxZ1pjuUtUqt/aWsiKmjGyPdOLJeBdrGE7zgvZByIoSGMAVbKosq\neNkfzlUQQTykrJBHfOMQsaBHP0a6fsC1raWFh4YVpj1x5UvQCJPgC5lwOZvoVSHj7fld2S6K2Ne7\ncxACXluCqE3D4PDNiiSjOfs6Z38Pb+fZ7CvsWLNuLHgyQ6ApnFKZ+KYRM50N+ZyzoYvb3nP2JnN9\n3VnHwD8E5/Fc4uQbyOcQV/h8Q+6ew7izIRRdQw6IK07R0oPcotIVYjPYRldHlKlKU74/1H6U9I5j\ni1T1JdEoV1aH0r2Gs2/c4qplcS3uSciHVkV+THz0RAYd0Hxjpjq+RdxkBBUKY8d63lpaNGIfSOca\nY89ugwtbXNiiviTTysAcc68Z1b5kp3hUG9TJvlR3ECuwaAPNP3fcMmcSM7WPZPG7oqLix4BzcLxZ\n8/j0iNWmNa3GZo10A5IioXWWLdS0WEhhY8JUXyYfgy8VFdPmZbEv2uD9onWj06a9aGLV1pmmwTXR\nsoB0hbiV7eqLJsZNJpWHr5j3t5aW+rrl+rTYZCnMQwa6fFw5GQePmUTOLciWlDuGMTMMkX61om2U\nxgshCCGLBdCqlNFsQcThGrdv88yWFUVfMbWOkqBOSC7hc6IbR1zXQzCzwZQy7aoltA2NDyUY2KaI\npikosFNqsSgJdZY0nVIiFTIYU6bvOvquZxgGm8RJiW7XcXN9Q98NDN2Ovu/ph4F+GEznEZO1m1Ji\nHNMcJplzgmw6HLnTwrPKFHSj5/bWpkXtjheQv0ZiY0T3ctrE9mju2GtAln+igz7hAu87/r5jH45J\nB3Tf8ZETGTCfl1tc2uHdCmjKZ9SEXTYHP7WUCpvUaVejVqr1a1zY2Fib3Fp7ickKucShl12Fm1pP\nYmFvKgnyLegVsAMGe+ykGj/oab/PPbOiouLHhpXnA03YEEIiBE+7ahljb2LQxmz3nTMHW1c0JDlB\n8I1N4ghFbDk9J/btNolEy/9TMHt7dTjxpKhcvL3h7M01L/5nRx5N1OlUZ32IYoJW1YCtMcs20FLo\nO1VuKGQll4pxwwGZOXjzi4dP3vzzU0/kxwMrRFpSTCb6jSb4tUFQh8sNPgsuJbN5ESNzlhlVzoGK\nvULfGNFyZkiXouA04hWiqNlBDAPrXUfbrmiaxuIAmskx14S7WWRe4tMUO5AzKac57TrGyDAmYjRX\n4a7r6fueGCPjaFYTQz/Q94MFSI6jBVumREyWjm3ExaasJFvFZWpv/fCL7eqdp7/iz4N7QGQETTfI\neAU8wImzDwa5uBGOiMRSYZkcOZmNmvANLqxwzQaXtqhsIe9ACynRyc8BUI8Mb8wcL12WHuW4UFFP\nBGa5C6qoqPjooZjxpff0/YAPgVR8RNbbNVkU9dYc8pPBG242ewvOpnMQLXoGGzpwfqo8wHzLBUQc\nQydcnvd8/ewtz37/khffvuLVqwtevXlLdy2gNgVkxVojF9MUk5EKa2e9s+IyV2oKodFpWrOYxM15\nS+w3eUvRr3JYmZm/rM2ELGbox0jb9zivZG0Yc6JPStsnGm+j0ubC42bNDM7EulltDktUzJ8qiZ1j\n55DgEDyp+Oi4eQhDLXy2TCWlnEkxEVOeKyUxJmKMhXzYf+ec5+r8/PbeSz7u+K1U/CTw8RMZsvUM\n4wXCCS5kXGj3H1SVOZ8DrEKjGSRY4Jijh3wF+Q3IGeQzkNcgV0AHpe9ILm2i7CyrZFaJ15ZQRcV9\nhwJpTPgQzFMpYaJIH0zvMHd/FfWCTxnvAqgrLQWFaZpGsfFd1RKOtx8NTgmurxMvvr3k2dO3fP3s\nnKdffcu337zg8uI1cRjt/pJL9WXS3i3cWWe8q7qii1vLvkDZ3M0kaNmaUiZfrL2QWA8HJeb294ho\nx5h6rncwpIHL20DjzWTOTOtKS6tUxFV0rmTk4lOVSlUjT8fl+zZ/S1JVt4kVPwz3gMgIyA5NV6i/\nxTvFuWwmd26RkyI7K+fpGSIZNwzADU4v0XQO6RxNl0ZqZCn4XXywObxZUVHxE4EqY9+jWWjX6+Iz\nYiLdLFN3yO21jWpTOFIyfNRB48P8XIragIAoOTn6PvP6VcezZxf899MLfv/0Fd98/ZKLt+ekYYek\nWzTvIA9l+sTWJU3JiIHsbHOlI7YuTRXg5fr0rk3Vgqyw/7V4I/a4Mr783Tb43WOGnKHL0PV/ipP/\nIaiLbsUfjntAZBS0g3wDuUNdtF0AI8qASo+mGxtn0x7TsOxQuQHt0ImwHHg0VFRU/L+CKmPXkVPG\ntyYiHceBlBN9NzKOCUmmt7C4ZBNniiZEzX/Eq5ohXIrEZJEe45jod5Gri5Hnz9/y9KuXvPrfS8Zx\nQCXuW9MyWKqvxjIa24N05tyKFtOzuKgC391k/ZE7rLrsVfyE4f4gIVNFRUVFRUVFxUcA//13qaio\nqKioqKj4OFGJTEVFRUVFRcW9RSUyFRUVFRUVFfcWlchUVFRUVFRU3FtUIlNRUVFRUVFxb1GJTEVF\nRUVFRcW9RSUyFRUVFRUVFfcWlchUVFRUVFRU3FtUIlNRUVFRUVFxb/F/ZzGB8SQK0dUAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "###### check augmentation options\n", + "\n", + "bb_dir = '/Users/arik/Desktop/DATA/face_data/300W/Bounding_Boxes/'\n", + "img_dir = '/Users/arik/Desktop/DATA/face_data/conventional_landmark_detection_dataset/'\n", + "mode='TRAIN'\n", + "test_data='test'\n", + "\n", + "bb_dict = load_bb_dictionary(bb_dir,mode,test_data=test_data)\n", + "list_gt = load_menpo_image_list(img_dir,mode,bb_dictinonary=bb_dict,bb_type='gt',test_data=test_data)\n", + "list_init = load_menpo_image_list(img_dir,mode,bb_dictinonary=bb_dict,bb_type='init',test_data=test_data)\n", + "\n", + "ind=55\n", + "plt.subplot(1,2,1)\n", + "list_gt[ind].view_landmarks()\n", + "plt.subplot(1,2,2)\n", + "list_init[ind].view_landmarks()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 3148 assets, index the returned LazyList to import.\n" + ] + } + ], + "source": [ + "bb_dir = '/Users/arik/Desktop/DATA/face_data/300W/Bounding_Boxes/'\n", + "img_dir = '/Users/arik/Desktop/DATA/face_data/conventional_landmark_detection_dataset/'\n", + "mode='TRAIN'\n", + "\n", + "training_img_bb = load_bb_dictionary(bb_dir,mode)\n", + "training_img_menpo_list = load_menpo_image_list(img_dir,mode,training_img_bb,bb_type='gt')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "batch loading time (sec): 4.31799507141\n" + ] + } + ], + "source": [ + "np.random.seed(0)\n", + "\n", + "batch_num=3\n", + "batch_size=10\n", + "\n", + "inds=np.arange(len(training_img_menpo_list))\n", + "\n", + "np.random.shuffle(inds)\n", + "\n", + "batch_inds=inds[batch_num*batch_size:batch_num*batch_size+batch_size]\n", + "\n", + "t=time()\n", + "images, maps, maps_small, landmarks = load_data(training_img_menpo_list,batch_inds,save_landmarks=True)\n", + "t1=time() - t\n", + "print 'batch loading time (sec):', t1" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "diff landmarks to heatmap peak response: 0.669163\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzsAAAGHCAYAAACXuEwIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvVmTJNmZnveczd1jyX2rzKrK2qsXdA92zAxFghqKkhmH\nxlvdUBQvKbPhJWm6pekf8EJXuiAlk34ATTcaM5lMohltJBM15HAIzAKgG70Waq/KysyIcPdzji7O\ncQ/P7GqggWmgu7O+B3DE5uHhHpWI8Dfe73s/FWNEEARBEARBEAThoqG/6B0QBEEQBEEQBEH4dSBi\nRxAEQRAEQRCEC4mIHUEQBEEQBEEQLiQidgRBEARBEARBuJCI2BEEQRAEQRAE4UIiYkcQBEEQBEEQ\nhAuJiB1BEARBEARBEC4kInYEQRAEQRAEQbiQiNgRBEEQBEEQBOFCImJHEARBEARBEIQLiYgdQRAE\nQRAEQRAuJCJ2BEEQBEEQBEG4kIjYEQRBEARBEAThQiJiRxAEQRAEQRCEC4mIHUEQBEEQBEEQLiQi\ndgRBEARBEARBuJCI2BEEQRAEQRAE4UIiYkcQBEEQBEEQhAuJiB1BEARBEARBEC4kInYEQRAEQRAE\nQbiQiNgRBEEQBEEQBOFCImJHEARBEARBEIQLiYgdQRAEQRAEQRAuJPaL3oHfFEqp+8Dki94PQRCg\nsI7KOhQwa2pq337Ru3TROYkx7n3ROyF8EqX+mXw3CYLwqnIS4z/7tX83vTJih/RlIl8ogvAFoFUy\nkVWMaK0ZFQXjcoQCItD4lviF7qEgfGHId5MgCMKvkVdJ7AiC8BtGAdY5rDYAhNajAaM0hXNYY4kx\nMqsXtMGL4BEEQRAE4XNFxI4gCJ87Ki9aKZwxOOdQUdHSELzHe08k4grHmDHF6Sm+mROjyB1BEARB\nED4/JKBAEITPFQ0YwCqFIbk53ntQEWMNSitCjHgf0EpRjSpK5/pSN0EQBEEQhM8LObsQBOGvjGIp\ncnS+TXZpYgz41tO2nhgjMUa894QYQCuctYyrisI6lFJf2DEIgiAIgnDxkDI2QRA+M1qpJEhiTIKG\nSNdo82kFaAoIwRPyc2IIKBQ++OTuFJrRaMS4bWiDp26b38ShCIIgCILwCiBiRxCEX0hVloyKAms0\nMQSaxYIQI633hBCIgM9qRylQSymUnB6lCUAIAWJEa0UIkRADSmustYyqinlTp2Q26d0RBEEQBOFz\nQMSOIAifQAFaawprKMuSrbV11iZjtILTkxOOjo5YNA3zGGhRxOzwhLjcgCJVsmmtsYUjomjbJGSS\nQ6RRSqGNAa1x1uGsRWudenwEQRAEQRD+iojYEQThDFopCmuZlAWbK1Mu7+2xvblF4RzHx8fca1uO\nVSpH04DRiqgUOoL3gYjqxUyMEWst49EI4xxN07CYLwCwzmKtwxYOu7As6gVGG6wxInYEQRAEQfhc\nELEjCAIA1mgmo4rXDq+wvbqCDoHFomZlZcp0VNG0Ht+2EMFqk0MIchiBUhhriCSRorXGaIsCClek\n+GnrKF2BQVPXNcRIJGKMAQVN0yQBJalsgiAIgiB8TojYEYRXFK2gMJZxVbC1NuVge4ureztsrq2h\ngKdPn/H4yTMKa1Ax0jY1vm2xxlBVFY33oGoWbYsPkahSlDRKobXBaENhLdZYQhtoY01Rljjr0pyd\nGGnblsVigfeepmkIIW9DEARBEAThc0DEjiC8QijAakVhDZOyYG0yYmd9lcu7Wxxe2uXSzjagOTo+\n4cVzIPg8K6fFNy0AhXOMygofAsoYWCwIi5rQprABozUajYJclmbT80NDqzTGWowxhBBSWVsWOyEG\ntFbYLJBa335xb5QgCIIgCBcCETuC8AqgFVgFTivGzrI2GbG7vsb2+gr7O5vsbG2yvrpC4Qw+gIoe\ngkfFgIqBpq6JPuC0hXJEBJTRuHqBMRpiZF6nEjeDxmiDUgqFwiiN0oa2bagXC0qt0Urh87ydtm1B\nkcrXDBhrCTFyfHKSgg8EQRAEQRB+RUTsCMIFJrkripHRrDnF1GlWRhXr62vs7W6xujJlc2OdtZUx\nRWHQKoIGFSMacEYTvGc2nxGipihKxpMxVVsyrheczmZYrcFHrG5ovQcM1jiccxhj0FrnYaLQNDVR\nQYhJxsQYc+maTuuFiHPpuSezU2IQsSMIgiAIwq+OiB1BuGAkgaOZlpatccnW2FERiSFQOMtkOmVj\nc4Od3W2m0zHTyZiqLDBao1AoZVAEfLOgaRaUviH4FmMLxqOCyXRKG1vm8znPtKJZLJhbi1GGxnua\nEDFGU1UVo9GI4D2L+RzfNLREZqenRKWwzhFjpGkajDE0bUPbJHeoKEucsdSxkZk7giAIgiD8yojY\nEYQLgDOaUeFYHVdsr05YHxVMnKHSChVb2kWN0ppqPGJldZX1jQ02NtcpSkvpLM5qjNFoZfA+4NsF\nTTOH2GINrK6OsLagKA3GtKgQqRVokgOkAWJIM3UU6OzolGWZho7mkjUfPIumwQNKa5qmAVJ6GxGU\nVoQQaNuWoihovcdHiaEWBEEQBOFXQ8SOIHxF0UoxcoaRNWxMR1zaXOVge5ODrXXGVoNvWdQ1p/M5\ns/kC6xzjyYSV1RWmqytMpiOUjlitMVZhjUYrTVPX1PUM39aUTrM6HVGOxiit8QR8qPPrB6zRFM5S\nlo6m9Un0aN2LHaUUxhiscxRlSYyBRVMTmobgPW2bEthUTmBz1qFUEjxVUbCoF/ggYkcQBEEQhF8N\nETuC8BWjcpZRWbA6KtgcF0wNXN5c5frlSxweXGJjdYV5XfPi+IQXp6eMFhVNiFjnqKoRo/GIsqpw\nzoAKaAXGKIzRKWK6rWnqBYrAZFyxtbVKUVa0ITBbzJkvGnyMOGsYVSXtdEoAfFTUdZtdG4XOCdIx\nRrTWuKIAImW9oG09IYQ0hDRCCCGlsDmL0WmoqNY5la1NSW2CIAiCIAi/LCJ2BOErglIKZw3X9rZ4\n6/oBdy5tMjWeJw8fMKkqdjembK1NmaxMGbW+Fw+LpgVjMa7A5thnbQzaKFAtSkW0VihFKiVLGQWU\nzjKejFmdTrDOMa8bmrZJ6xEoiwKtLdpYjHW4ouLF8SkvTmY0PhBz+Ros+4hUUVK6krle4H1LzPN2\nvPdpwKg1y6GiMWKzQxS8iB1BEARBEH55ROwIwpcYnQXO7sYq37x7nW/dPuRwd5OV0hHamuOj5xi/\nwBrLZDJiPK4YjyuaxtMGTyDiWo+2Dm0dKpeWpaxnCDEQgyeGACpNx4nBo4mUzjEdj5mMRnilMCHg\nnKX0BaiWGBVagzWGsixAa6wr0Nby/OiYxWJONRqjjUnJayTBZqzBGkPjW9q2JSpFjDGVr/lAMEnY\nGK2pXEHbtkkYfZH/EIIgCIIgfCURsSMIXzJS2IClNLC9MuLW5T3evn2Dt+7c4NLGKpWzBN8yn81w\nKjI/fUGMEecM1ihUtmes0ZRFgXURZSxoTSQLHaVAQYgWv7w3uSi5R8Y5S1EmN0jFiLOWsigIIdL6\nQOM9KIU2Cq0VxIDRislohFKa2aLue3GA3uVxzmGtRTd1cnVyz45SSdwZpVBKUThH4Rw+Buq2i7UW\nBEEQBEH47IjYEYQvAUrBtCrYXBmzszZle2WEDTVrpeHmwSZvHm5za38Lay1t29IGRWEt09GIUVVS\nNw1KRWLwBN8SQ0BrhXMWiwJt8DGQqsFiLy4UGrQBAknu5HK5whEiuVQtlZW5LEza1qc1Y0Arg9EK\noxUxBIL3WGuYTqeUI0/TBDypJ6fDOkdRFCyamsZ7Qoxp6KnWWA1GKYzWjKoKYyxN8JzO5yJ2BEEQ\nBEH4pRGxIwhfEMm9sExHFavjgoP1CbcPtrl9eYe9jRXqkyNOjo5QSnF89Ixnz54yGU9QRGKIGA2F\nMzhraJqaEFK0c+fMdGIHpQhoQhNRvY8Tz+xHmiSaytqss0wmY5xr+/k7xJhcF52Gf2qV3ZyQhpZa\no7HGsKgbYgRrLUVZsqhbGh9S7HSbStGMsZRlyaKuaZqGEAMGsAoMYGJAoymdwxYlo3qBs47ZYv4F\n/CsJgiAIgvBVRsSOIHxBVIXjcG+b33nrDt++fcCaC0xLw/raKmtra7w4PubBg0ccHR0RY+Dp0yeE\ntkkhA1lwxOBzZPSyDM2YNBwUbYgxFai1IZWYxaiISqF06pNJvTK6Dx1o2xZXOFZWVmjqFleUBN+C\nSr0+GoXN83NiXVO3ARWhKBzjMSzahkXt8b5FGUPhLFElJ8iHgAJsWVIUJc7N03G0EUVM83lI7lQk\nxU8TI0anHh9BEARBEIRfFhE7gvAbwhhD6Swr44rvvHmH3337dd66fcjuxiql8sxPnjOfHRNC4HQ+\np6xGXNq/xNr6OvPZnOCTa9M2gSYkUeCDp20alFJYa3HWUZVj2hCJTYv3kQh55g0DYZOuRxWJxFQC\nl3t5tDFUVYVzAZWT0WJMQsUYjbUmDfwMnqYNaBUxRYF1Ja0PwCmtjxAjgUDwLYvFgno+pygKnHO0\nbYvWBq0NzlisVRSuoLAObQw2J8eFmFwshUIrLRHUgiAIgiD8UojYEYRfI9Zo1lem7G6uc2Vvi5uX\nL3H76j439ve4vLvF5uqUwmqCb1iUhpMTx+npKW3bonTAuoKpcVRlRdvUGJVKyhaLOaezObPZKXXb\nYFyBKyqMTaJDhYiPihhbQoyoSO7TieScAKJKIiLdSP/T9fIYa1JyGxpNxIfYO0FaawrnaL2nadoU\nGx1aXDFmNKpoWs+8bggx0jYN9XyBb2oU4KylcAWLxQJIPUPWWKoy9fF0A0hH4ymj8Zim9RhrKcuK\nqq6ZzU+JkssmCIIgCMJnRMSOIHzOWGOYjkdsr69ysLPJ9YNdbly+xI3Ll7i+v8vVvW0Ka4gx5sb9\niNaWspqgtMZYx+nJKT4EQhYp1hU4Z9FZnEQFx7MZ86YlKkNRVNiiQmuL0garFS4LlLZNPTxGa0KI\n+BgIMXJGM+TrKiehKZ1T0dAQSeEDeXsqpjCBwjlqa6kbT+sbtG+xxlAUjtYHFnVLPZ/TLBao6Cmc\nYVRVOGuJIfXxhFxGZ4xFaZ0jqpO7ZK2jDaCNxbmCqhwxr2fEIGJHEARBEITPhogdQficcNawOpmw\nu7XOjcuXeOvWNX7rznUO93e5tLXB2mSM1qkXxXvfJ5TFGIkatHKURmFyY/7pySlNXeO9R8WIyfNq\nrDMUjKgWNcWiAaVxRZkEg1J9746zlhBCcnJCwGiD14EQgBBJ7TxquQ9An0ytVSodixrvU+/McEio\n0QpnkwixTUvTtjR1DVFjtcYoRWhbfF2DDzhjcEXJeFShNbRNQ9u2hBDQStG0AWN8EjyqZT6f48qK\n1vs+1MC5AmMsMTb9fgiCIAiCIPw8ROwIwueAMZrdzQ3+i7/2bf7W977Ob925zvbaGpNR2a+zdHI4\nc7Ke7tPJbVEW6wxTV6K1ZXZ6ynw+o6kbfNOm5yqFMgXT1XVMUSXh5EOah6OT2FFap5Iwa9LgUFLP\nkInZoSEQFJCDANJ9EZVzAJRKPTIaQ4w5/ECpfjho1wdUOEdZlPigaVto64a2TfsTg0cpKEvHyIxw\nZUlRFpyezljUC2KMOXhAUTctSqsUfBAVs/kC42ZEnd6XdDyWshgRvMdHiaEWBEEQBOEXI2JHEH4F\njNZUZcHe1gZv3LrG737jLX777dfZ21xjY2XCpCqxORQgZEekEzhKqX52TVc25r1HKUU3jkahKIqS\nGGIWG6ofvmmL1LxfjUZUoxF1XdPUDagkaGJMQiMlraXX0iH2r6V1iprWKAKR2CUW5DCAZO10dW0R\nrRXGpDCDNK800saIQWG0wdmCUWXxXuHDHN14OknknKUajZMjoxRN03B0dMTs5JS2abKjlISVUoay\nrBhPJiht8DGSdkf15X1VNWFRz/FBxI4gCIIgCL8YETuC8BlxzrIyHrOzscbV/V1uHx5w+/AKt69d\n5saVfQ52tnIJFxhFEg9Z4Jwvu+pESCdIGHgmMQY0qfcnOIv3BRDx3mOMwTmHcy7N6clN/VprQgio\nXCZHkjGD1+26YZJwyv9FoXoRFGMaDJr3cLnfCrTRGFLCGlGhY8wzdgzWREJIYs05i7UGo3XqETKk\n4aDWMl/UzE5PODk5oW2blC6X3wuVk9nKasRkuoLSmuPT0ySusgCLEbRxWFvgfdvPExIEQRAuEvoz\nrifpnMJnQ8SOIPwclFJMRhU7m2vs72xxeGmXG1f2ee3GITeu7HN5d5u11Wkqx4opojlEUEQ0nxQ5\n6fbS4enme6r8HyD103QiQ6eoZygIIZWqGWMwxqCUwhjT97547/ttxFy6lm/0pWi90IlJ+nTlaaHb\nl5Avc+ZZ3qNUwqYhBkXMx9btn9EapQIqxjRc1FqcSzHYSnucS6EJ3rccHx9TL+Z4n9wfncvtdA4p\ncLagqkbYwuFRqSRO1Sy61LcI1ha0eYiqIAiC8FVHnbt+fq7a8PGzP+B9EunnFD6JiB1BeAnWpDK1\n9emEm1cP+Oabd3nz1nVuXd3nYHebnc31PLtGZWeGXrhEsgHy8z50u8/uvL7SChUV+Fz2FpJ4gE7w\n2NTjYu2Z1w0h9G5P7xTF3LcTczXaYB9TAVsqX1s6PVnwoHoBhMriq09p02gViToSA+gIQUWMzmVy\nCtoYUAqsNSk9rUqpb85a6qZlPptzenJCk4WK1hrrklMTQjq25HgZxuMJ2hXM5nPC8Qmns0USPiis\ndRhradtaYqgFQRC+0nTiRr3k/u5y6PSkBNPE+VPYCLSf9w4KFwARO4JwDq0U22srvHXrkL/xrbf4\n/ve+xdUrB6xMJxil04BNdf6DOaNUHqaZ3J2zLG8ro/o+npBdju4/PgRCmz6wu2S1jq5kLZWdpcAD\nrTXOOay1KaygTda+DhC0Qsc0O2dZstbrsn6fu7K60PXs9LFs6XiUDqiYBJhWCqNIPUSAVqB1LoEb\nCJ6qqpJIQ3H04gUvXhyxmM2oFwu8D737Y/PMHmMMbQjUTYu1BaujMdpY6tpj9EnuJ4pY7XC2oNZz\norg7giAIv2F+2VPHwCdLzjRnRYzmrMB5mQAabu/8Z3/M99nBOlLmJiRE7AivPGnQpWM6qjjc3eLN\nwwNuXt7lyqVt9i/tcvnSLhurKzjnCCHQtp/swxkKku7+JHjodUMEMNn1ieHMnB2lVOpx0WmYZ9pQ\nv4Ve3AxDDjqBYozpX1cphccTQyQQ0TE5Mkkg+W5rdG1CvQsVdYqoHjhASpHcJh3Bg1I55CBGVLJy\nCD4HIeT9Db4ltB5yVLYxhqMXx5wcH9PUDdqkN6ALPdBaEWMWZ1kw1YsFp7NT1qqNJIaMwWiFURFi\nSE6QtyyMpRaxIwiC8GtmKEQ6fp4YGXK2D3RJ96NaV7Jm8jIUQOdvD7fZffYvA3GWr+EHzxPBI4jY\nEV5RjNGsr66yt73F4f4eV/d22F2bsmIUu2srbKxOWFmdsL65zmQ8oiiKMwlqn5jzMritsm+yLGWL\nKcksN/hHugGd4Yx4QesUBGAMwRi6dOUz1cznHKVhsttwn6KPKBWIhCR4gs6CJ7lSUaksiCBElZPP\nFJ/4QurUWpfOFrvyt3yMIRC9z6lx6Xbn7KBMGmLqU0+RUsv9N1onsaMUIYsfrU1Ok4ssFgsIEasV\npTVU1lBoRV17VAgU1lEVJXWz+CX+1QVBEITPjh5cDgXPeVdmUA0AJOERBusOS8/CufU7QWNZCh4z\neO7PEzvdZfd67eB1h+IHRPS82ojYEV4ZtNZMJ2O2NtbZ393h1rVDbl+/yu2rB+xvrlFFz/GTxxit\nsMZQjSom4wlFTj6Dsylqvbjo+m4GmiBN7EwPLoUOfULaUOgM6aOiu/6b7gXC8nE4K2yGAqjfv/zF\noiNoHfvSN7TKIQOaoAI+REKOeI7nhM5g5miKpx5EVC/XjoQY8L5NCWs5la0TMU1T432bvtKMxlmT\nUubydrr5PtoYjNEUhcM5S/SBtmlQEQprGZclk9GI0LaoECiLgsiE49NjQpQvMUEQhM+HTysl04Pb\n3eWniZ9OfAwFTidO+k5Rzoocl693t/Xgciiiuu21g6XbtsnXO9HTvd7wecKriIgd4cJjjGE6GbO5\nvs6t64d8/c3X+MZbb/DGrRsc7G4xLiyzoyPuf/ghc2cZjyqqsqCqSsbjMdbYM+Kicx9iCH0ZWpeo\nBt3HauzNHqWyNFDdHJvu/qVwOTOLRymUMehcMhazG3TGuTlX0tZd9uvoVIKmo1o6OlpD5+rkQIIk\ndNIvYF0wQX/ROzHLGT39Pud+HQXE4GmbmmaxwAeIKomtuolpgOh8TggBZy1VVbKoa+aLOvUXxRqU\nwmmNNilKu6rK1L9T17kfyTKZjKkXK7RNQxsCVVFhneP58TNm89nn9aciCILwijMULkNhMxQmQ0dm\nWIp2phuUJDqGrkvnwnTbG4qcIi/2JUu3P0MXp8nbXOTL7nabt9tdZ3AfiOB5NRGxI1xotNZsbqzz\ne3/9d/j9v/17fOOtN7l8aZfJqMJpBU3DydEzTo5fMF/MqKqS1dUVRqMRzlmMs/jgUW0abJmiltOH\npqftZ+mknpX8IR6X7o3qm3aWwmQ5WyfRiZ1O8HT7rVQuFvM+C5Jlr87L+ne67cbeRQKU7ntthkGd\nnfE0kE+cj//sd5107Cro5X5nsRdzmEK9WLBYzPEhlcW1PjKvPSezmpOTE1CKsizRxjKfzWl9oG5T\nnDTKYFyR+paswRUOY2zq69EaZS1VWTKqKkajirppUuKbcWyub3Lvwb0sOgVBEISX81l7bGApRhRL\ngfNpl8OeG8XZYIBO4HRio7veCScLlHmp8lLkdUuSEBq+BnkbDVCzFDsLYD64Dp+MoO5eV/HJcAPh\noiNiR7hQWGMYjSo219d58/W7/M53vsl3v/lbXDnYZ3trnZXJhNJZTIwQPI1vWMxPaZoFReEYrUyY\nTiZUVYFWGh88IXhiNCkKOkaUzr99GUtUZlCSlgROCANZoeBlZWvDPpuha9LFSWutIbsnaI0eJK8N\nxU6M8UzZW4gRlM6X5PxplXti0pLK7bp9XDpQqNjP++lmAJ0pHliqH/prvVBrGVa6Ka2wNgUQWGsx\n1qGNwYcFShuMsagQ8K0nRp9cntDNFkqv3zYN0cTU32Mtxlp0jqZWQOEKdrb2ePj4IXWoP+8/JUEQ\nhK8w50MFhmVn5+fYwNIx6RyXbhmWmXXOS8FZIdKtB58UOzVJnHQCpRMandAZk0TOKF8f5e1P+Pli\nZw6cksTNLF/vFpNf63xP5/lyN+FVQcSO8JXHaM3a6iq7O9tcObjErevXuHvrJndv3+TW9UMO9naT\neNEKTUTFFJEcvadZzKkXNQoYjceMqpKiKnGFSyfdrYI8t4ZIauqPvo9r7iKdA52gWS6dvRJiOFum\nBmfECpztBUoR0GEZ+5xVxJm5PkqhY8QH3zfXRACtUdqkPYoRRUTr5fBPrTTL8aVLUZar5xg6PJ0b\nNEzTUTq5POS4bKXAaEXh0pdSG6H1kaYNRDzOGXwocS65OgFDUZ0yq1tCVCiVZghZ59Le9GV+kaZt\nkwDKPVNaa7QxOFTq8dEG5wzj0QQffB5UKgiC8CozLEF7WZDAy5LVOrrP/068dCVm5WApBpdD0WNZ\nOjtd+drLnJc6P+ZI4maSlxVgmq8bcA6sBqPTfIOuQKKN0AZoWohN3uYx8GKwX534eVm4ASxFnVQE\nvCqI2BG+kmitGVUVW5sb7O/ucOPaIXdv3eDOrRvcun6N64dXWV9bwxlD8LluN4Q0lyVGVC6/ahYL\ngm+xOX66KBzWmnwy3QmQdBIeQyBG8Cq3PeqlaEiCxg9K0WIuJ0vi6HyZ1cvK0IaP5Qe6O8705fTX\njU4f5cosW0FVEgIpiCCHI0RSGptK6Wd6GDTQZU/3F3GQmjasv+5E1lJwpSCC5KaVRYGxkcZH5nVL\nG2J2dyyVKnBFhTIWHzVGuz4YwTnHaDymqkZJ5GVhqLWm9b7vieoqBK21GBPRxmJM+tLeWNtgUc+Z\neendEQThVeV843933zC+uXNtfh4xr+dYlpWNOevAjDhbdjZMawuDpWXpwJzm6yf5sZIkcFaBNWAC\ndgRFCYVKuqdiqbc6M6bTTadF1k41NBWEbr9Kkvj5RWV73ffbJ4OChIuHiB3hK4XWmsl4xNbGBlcv\nH/D1t97k219/m7u3b3J4+YCt9XWMMX0iGIBWup8BE0NAZxfGNw1t3aBQlGWVXJ3C9fHJSmmMURCh\naZpetMQ+/WuZ8HI2Sjr2aWjxU5LCXpbENqR3VTrLRQ0CBHrhY9DKJFcnhxgordEkNyrqSExNNGht\nBu6OSl9L/b6GPGtHoVRI71e3D7l+Ld2VyunioJ9IkfpqCpvK0hrfELxPg1JjxBiLdSW2GOXEtzl1\n09A0LVppRmXFdDKlKMskLEMcCMOIbwO+Te+59z4ltUWw1qGMofEtGxubPDt6ynwx/4XvqyAIwsXj\n/DwaPViGrsv5COmX0fXXdGKmc16mLJ2XMagR6BK0OxvgBssf0YKHMId4SnJbToDn+TUqYB3YBL0K\nhYWp6u9iLb9cyTKjwLPUTsfAM+BpAc8LmI3AjyB2pXbDYzz/PRyRMrZXCxE7wleKlcmE//Sv/y6/\n/5//Hr/73W+zt7XNZDLGFQVapaGUvs3BASrPlsnPjT6gQkipaN7TLhbEGCnLEmsNRVFQOEe9mCcX\n6MyPPsMel5B7c4aXSTTA2daW867N0KF5GX3IwLKRpntiv07/sa1SWVlX7qZjfp4KqKjSwE+tiSai\nfMAYk/t7uvI7+kS5pC+WsdWfmOeDGpTu6RRYkJ0d3ZfzRYghl84prDa5rK4gKkXbtCzqmrZNUdRV\nUVKWVSr18x5rbdqnXMpXFI560VAvGtq2JQ0UTR9Z1lpQmqZpGGfBNJvPmC/mn+nvSBAE4WIwjIHu\nBM8wRGB4vVtvGCownIkDSQQYkkuShQ2rJBWyQXJjFIyy+zJmmSnQbbYhV5IZOJnAYpyED8ck9TIj\niZ1tYC1tchvYHSzr+WUnefuKpVF0DDwFHgMPusXC01WoR5wVO105XcfwWA1ne4yEi4qIHeFLizGG\n8ahie3Nhb/s0AAAgAElEQVSTW9cP+e43v85vf+dbXL96he2tTVanU5y1WGPTyXmMECL4VFaWSrji\n0qlAo0hOh/ctjW/RRuNMQVEW6QQ6JnckBI8PkaHDrXTaglI6N9OnmTUAIUaSiRPpgpy7PpOuJGw4\nVPOzxEgD6RgUOT4tz/ehrzzrv7qGiWxAHuKpiCqVk2mj0T45O527o4bPz8fgvc9ujUFri1IQQnJ2\nVMyzfzp3SOu07dy3A4bCWkKpUBbqNtK0Db6tqdua01nN6ckpi3qBtSlIoqrKPI+nYTQeo43uBZjW\nBqWaPMcn9wgN3q/u/YwR1tbWORWxIwjCK8UwFroTNOdn1xTnbndCYFjm1X0f+bwokhg5J3JcBas6\nuS5rKl2ucLaarUuFPlVwRDJynil4ruBoBYIjiR0LdgqbCvaBy4NlnyR+tiKseFTVoHXA1xZOLTwz\n8JAkcj7Ky6pKl/cdzDfzIXVCpxM7naPTiRtxd14VROwIXyqsTTNxtjc3uXpwiRvXrnL35g3u3rrJ\nnZs3OLx6ldFolD6iu2b2GIk+9nHIsAwi6z7wYj8EUw1OlnUqsbIGY21qvA9dTLOC4NPHvqLvHVF5\noynsQBM0qG5eWi4Hg1QClwSF7oVPf3LOWaHzMnpjRSuWqwyEkjq/vvrktvpotCR2jDFp0Rqbr+uQ\nXKCUxEaf6JbERuwDGLrNaa2IXaobKQCB3JuUHBmFs46oIq1PbkyMnhjIg0dbiFAWFVVZ4Yylbtv0\nfqoUnRB8oK5rrLX4kAaWet8mR0mBb1tiBGNjdpUUO1s7LOoFRy+OaBpJZhME4aLzMqHThQp0wQHD\nUAE3WIZlbV3vSvdF1rDsqdkAtsFMYVTApkmuy166m02SFhq6L5GUQXAMPCG5L4+ABwoeGHg+hplL\nwQMbFq4A1/NyE9R1j7s6Y2XtBZPxCVVxirMLtPI0vmTRjJjNxxy/mHL8cAXetbChcnhb/unuUQWn\naxC6NLhOxHW3h2ls5/tThYuIiB3hS8GoKtnaWOdgb4drVw64ee2Q13Ka2uGVy+xu71CWJSjTuzix\nuwzZGYmxL8FSDJPLUn9KzGVfIaZGe20dJs9ySS5NzC5JjnfuI57TPvYOTHYVUiJaFyFNKsciDsTN\nYB/ORzarpdA5K1LShjpxlF+OGFUX7taLku65LxM6S7coiyytMCaJHGctrW9pvaENAR/CmVnXZwWP\nXu5WFoxaxTOlcF0bkUJhlCZajY/LLRqjUD72fTdGp0ADa2xOuAvYwqWXCSEFEyySy9S2KWXNe59T\n5VR6PPcyKa0xRrO9s8PC1zx49IDnz0XsCIJwkRn23nSOTbcM59YMwwS6SOdunfNipxvMWefFAVtg\n1mDFwa5KwqRb9oHdgN5scasNxvpUIh41vja0LyzhoYP7Cu4BH5Pclw8VPCrTrhwAN4C7wN2Iu71g\neu05Wzv32Xf32NaPWOM5I2ZoPHMqjlnhCZvc39nj3vYBx5vrLFbHhMoOqtJ06t+ZrZFSDJpzx+YH\n72GHuDwXGRE7wheG0ZqqLFiZTrh2eZ9vvf0m33r7Td64c4uDS3tsbW1SFAVKG7TOtcWxi4xU2VVI\nH9T9jJksFLpZLYmQFINWEDUKjY4G2/WcQHYgkppQOdEslYvlmOqosuhIJ+2dC5EL1nrX6JNCp2v2\nT3vSuTLD6OlO1HTiYJiG1q0TAsl9CZ90g142pLRfiP0PV0qnoZ02WFxwtCHS+ECT+2HIM3ro0+WG\nLln65U/l9RTkuT0aqzXR5B3XEYKi9m1yepRCW4tuGnzb0NT1srwPsqBpKcoSAB8CKsbUIhtM7ifq\ngiFAqfSRlYIMPMZqMIq1zXUaWj669xHPnz/7K/5lCoIgfFnpwgg6odPNvTk/nHPC2XCBcXpcF6CK\n/Fk/KGOLHuICQk1qjNGgN2Fq4EAl5+UGcD3CjYi90uJ2Z1Sbx6ytPadijibQ4Ji3FccnE+YP12nu\nF/gPLXFTLx2gbrevALcjvAH2zYbN6w+5vvkjbvIOh3zAHvfZ4CnjeIomMKfkuVrjIbt8bA/46eZ1\n3lm/yf3xZU7cGjGa5XidU5t7hdZZJsF18dddaZuksb0qiNgRvjA211f51luv8/f+9vf5/m9/h92d\nLapqhHMuzYrpeksGwiWlmw3dkuVQzk6wKECZdJtuLk4nhFiKGZVPuGMIOVY6pq8QrTHkOOegUkoZ\nACYPDA1nXZb+F7LYn8gnR+Sso5MIfcPN0uE5kz8wOL60ryGA1jH34Xyy72fY7xNjN+QzDIRSOr60\nw6kfx1mL94HaNLlfx+MDaLN0qnwMRB9Tz2muC+y3NdhPpTU6xNS7YyxBgVYerTTGJtHYiRqfn9v1\n/ijvaeoaxuOUnhdjcppi6I+j9Z42tETfRU/b9AuihlYFar+AQnHpyj7Xn13nvZ+++yv8NQqCIHzZ\nGYYRdIphOAOnEzmrL1lMKvPqzJ6u7AwgKKgtLCycjJMO0EClktC5AdwhOzBg756yv/UR+9U9dtRD\n1nlKxRyLp8UwM2Oerq7zYLrLx1cu8+TyLouNlaS5hodwCNwCvga7Nz7m7uoPeZMfcpe/5AbvcpkP\n2eIxY04xITDXFc9Z4x6XeI/rbPGIiTrBXW34UF/neL6ZAt+6sTt1AUerpOahU87mWFvOlrJ92ulw\n+yn3C18lROwIvxGsMVRVwdp0wq1rV/nW117jG2/c4e7Na+xf2mVzfZ2iKNOMGKU7WdJHSCs1DEYL\nvQNDd79OLgJaoYxJTkTwvVsDA5EQYt/Ar3QSKX0AQAgodHJRdH5iDiPoRFUIihADxugcTw1KpR6g\nGDtXSffeU+ewdINGu/KvYZnw0K1ZCrlOzMW+TG5o6nTP6YaRLmf8nBNE+TFyuV9yZbr+HZPfA5XL\n2WKK7iY7WbnbKf27BIieEDpBkoRelwuRSstinuej+/c3oPLMHUNVONq27ferKApWplOMWc5+8N5T\nNzXWunw9RYTHAC7PQtJWE3SkiS3aOJSCK1cuE7znj/7Nv6GupZRNEISLyLBHpxM5nYLphM4GfaiA\nLmDVJqGxqtJlt3r3sdvN/pwBRyoJhSavcwW4CbwO9u0Fq2885sr4fW66dzjU73OJn7HNIyacYPA0\nWE7UhMds87E54D11yHuXbvBhcY2nxd7ZMTzXgFuRncN73Jz+JV/TP+Dr/Alvxf/I9acfsXL/BPek\nQR97VAMr45qNjVN2Lz3h0t591tRzSlWjVMRvWN59raR9NoanKvULPQeOLYQJSQh2/UuLfOBd786n\nuTtx8CYNkZK3rxoidoRfK6vTCTub61y+tMP1y/vcOrzM3ZvXuHn1gP3dHdZWpzjn0MZmB2fpmKCG\nJ/6w/EBSy9kw+f5IAE3exsCaVp1rkrYRQkhzYELAGpP7b5JAQus0dNR7CAqtNFF3RndE5VADrXQa\nKoruy9VSKd3ScTrj1Az6fljuytn7Bg/2s23IYiKQ+5KWPTyd6wFLR2fo6nT3d/N6QtfTFEJKjiM5\nWNpZtHVE3dBGT/QBRyrbSwlr6Viyn0ZEEfLSvcvpdrqeBoNqUCR3Ju+HsQZbWKyzaJVisZumQRvN\neDxGW5tiw0OgbRoW8wXBJfEWmpaQU+KCb1HaYZ0hGoWKBlMYCqvZ29lmXJbcuH6dn7zzTgpDEARB\nuBB01QJd2lq3FCRVspKXLWAzJZ2NipSets3ZQIGV/JQup6AlCZ0XpEjnJ/m6ohc79vU563cec2Pj\nx7zBn3GXv+Am73DVf8Tu/DHFvEH5SDCKeVXxcLLB+xyyox+yUh3jthui1hzNNwgzCzWoKx57fcb+\nyofctj/mTX7I1+of8trjd1j98Qn2xwE+JM3TqYFVT7HnKW8uqF5bUB3OCU4z1xVHo1We763x4PAQ\nfkbqE7qv4KmG024g6jCZrhM6nzZ89GUlbl2Qg/456whfRkTsCJ8rSkFVlqyvTNndWufGlX1uX7vC\nnWtXuXXtCtevHLC9tYHR+deS3t2IZ7bRXcn+xJm45UjoBUi/DZWb8SEHFXQMrvUzZWIvlHxMiWJa\npRjlFGCQhY1REFNQQch1a10ZnPLLvp0YFRCWwic7N1ElWZYNj949UllMdCLoTAhBf5z5GPpeofQ6\nXRhDODN8MxHCsvSrc3aG93X9Rj5GfAzptyljUdaCtgRy3Ha/f1kpak3rfUpiS80/6YCyA9e5cOkh\nnav8csiBDxhHEjsuCdqYS9XifA5KYa3DaM1sscB7T+NbmjoNJzUquW06xFRiF9LQU+ccxlmiimir\nGDnH6njE1uoqv/3d7/LBhx+K2BEE4QKhzy1d8lpF6seZ0qen2RVYdbBDChLoll1gO8J6QE88yqbv\nx9Aq4qlJwuChSpHOj0jlYFeAm4HJ9SOubL3HG/yQb/AnfM3/gGun77P79DHrj07gGagWKKBZ0+zt\n/YzdtcesV8+pzBxVROpdxzu3C2ZHU+KxQe+2rOw95bL9kJu8w532x9w6+imbf/4C/hj4MwjvQ/sE\nQgPFGqhLYH4G49MFV8t7PN/7CU/KDe6bPX422efhwQFx16ZI61XSPKDTLqShK2PrBI/O971M7PQx\nqyxFTXc+kStCzszoEdHzZUbEjvC5MSoLVqdjDvd3efu1m3zv7dd549Z1DvZ2WF9bZVRW6URZd30h\ny64X6Aq3ugQ1lUvHcilVFihd/Ff3sbPs51l+WCmdTpAjXflX/kDv+k2UQqsktroBpMaYNNRSJbcG\nk5vyY3ItdDRpX0JKYAvKQy7d6sVEJ5qUSrpG9eoMFbvwAlBR07ZNv7+dyIHY5wR0TtGyzq1zdMhC\nJ4mJ2M+g+aTYiTH2vTKdMEolaJEmBBY+pBZNY9GuwDQB37RpVFFYJsKpGGlDwAx6dBQxDww1aB1S\nj1UMZ0SpHqTEaZPivbXReZ9bvPf946MYWSzmND7ta2hbmoXHGdvHS6v8N6O1prRpNhI6og1UWqOa\nmo21Nf7a977D//aHf8hsNvtEmIMgCMJXj+47bih2ulS1TuisAZug12FNJ3FzmJcbwGHAHHjMdoNd\nX1BOTjG2hahoGkc9q/DPKvwDS/jYED/UyR25Avrags3NR9zSP+GN+Oe8zZ/y1skP2X73GfbPgJ+S\n3CCfdsltBDavnbD5W+8yPpihp4FGO47VlCdXNmmeOJrHY9xGy874Eft8zBU+5Or8Y/buPYUfAP8O\n2j+D2Qdw/BQWLWxOYbQH5kU6jShW4crKx9x3H/Cevs6WfYTdOaXdmhLXTZ4BpDkbv20GyzCC+zxD\nsdOVugWW5yzDRLfIzy+HE75oROwInwvWGn777df4u9//Hv/Jt9/ixtUDqqpK82ty6kvIvTZ9R37n\n3PRnyMMlOS1dVFkXIIDO/SBap+jpQcN+L5Ry7VpX4tZZRdraNPMsBGLwy7kv+TXToMzhUcWBe5Tj\nrLXqxUnwkRh9KteKPpVuqUH0dJfRdn4/Iyi9DEUgl63FnLSWRE3X49OFL6THg/cpejl4YvREkrjx\nuTRvWMLWtun4mqbBt6kMLCqFV4omBGZNizIObS2jyZgHT4746P4TNqYTdtbXCGii0nRNRp3R0/VE\nKW3QNqJjxCoFPuCzUDPGUI0qWmrQhqgVo9GI6XTK0dELFnVDzANcZ7MZbQjMF/OcoaDS8YVIGxuS\nrtJJWMaIb1q0NhTOEUKDjhE/n3H06AFlDEys5mBvl+OTY05nMmRUEISvKucjpofDQbt+nTHJwtgC\nvZWGfV4m9dncystdcLdO2Nx+xO7oAZvqMSscY1VLRNFEx8nahKe7m9y/vsezn22zeGcKHwA7sLb7\njMvTD7nBu9zhR7wR/ozNHx1h/i3wp8A7pCGfnmSgbJPKz07g8nfu095wPJ+u8oBd7pX7nGxv8NyM\nsdOWdZ6xyVN2eMjq8RG8B/wE+DE8fBc+eAb/LsL7wOvH8DdquARU68Bl2Lr9gkvjh+yUD9gwT1jb\nfM6z1Yp2YpZmjoIUGdq9fx0jzgY+dHSOTSTV+A3FTndbDdbpyuFE8HxZEbEj/NIoYDKu2Fydcv1g\nl7fvXOcbr9/k9tV99ne32FxfZzweYazt+0WSEwH0joDqRVC6O/aCRxFB+dxQ3/XwZEdBpzKqbg5O\nP82ld0OS2CCEM+VsqSlf9Q36nTsyDAOIMQ0njbnjPpV++Zxk1tWaLUvhIKQgA8PSzSEXoPWNR0uR\n0+1MCBGCIkbduzghxByc0Dk2gz6fmF6vbZdzZ0JsCaEhRN+Lndb7JJCy0Gqahvl8wWK+SGVhIeBD\ninWuQ2DWtihtOZ3X/It/9a/583ff7/+N7x4e8g//3t9iY2WSysXy921U6diW5WwarS0hqpRfF8BH\nj7WWslDUHua1J5IEcTWqKKoSTmb5WFqaGDipF31wQaqc0zjrspOk0NbgCkfrA4t6QV0vqCqXosNj\nYPHiiCf37sHpCU3TcuPSDh/fuydiRxCEryDdiffZqoVEF0wwjJdeATVJLsYey5SzN0C/0bJ59z4H\n0w+5WrzPgf6YXR6wyhEVcyKKhSo5YpWHeocP9FU+OLjKvdFVHm9cAmBtdMSeus9lPuJqeJ/1906x\nPwyoPwH/JzD7MTyeQR3SLqyvwspzQINZiaytPOPq9H3eU9fY5QHvTU8grKELz5hTJpywwgvK+Rye\nQHwM4RG8ewp/EDX/vi8Vg+/Vmv/pWeC1h8Bj0E8j5c6CSXnCRJ0wUjOOqrDMI3DD97RbXHrPzpSz\nnadzdjpx083qsSyjq4fuT0AEz5cXETvCZ0JrxWRUsbW6wt7WGjcv73Hz8iVuH+5z+9oBh/u7TMcV\nzianIJV8Lcua+p4U1d1QXZtN7l1JTobqFYOmq4VV6DQjR+te6PRFb2bQ7R+6Tp70Gp0IIERMjoM+\nV/CW7suJb9CdxOeBoiTNlB9I+xiWS9+qkuOm+/UYDvTMrsxgG33PUO6LWfbgLB8jH06MgRiWAzZ/\n8uHHvP+zBxxsr3Gws5YFT0wujvcp2jmLvKZumM3mzE5nzGYLmqYlBHpn57SuCUT+lz/8f/npvQXw\nPwPfB/41P/rgH/Mv/9f/gz/4L38f080cUikCe/l7lgJl0jiG9FdCUAEd0yBR6xSu8czrFt96fFQo\no6lGFbZ0LLK7Fn0qJ4xddLhSWGNTAlz610+uktGYLH5iqufDFRodA9q3qHoOC4sLkbsHu/zo3VWe\nHb2glt4dQRB+LbxMjHSET7n/F21rWLJ2/nrnTnQDRCtSCdsKuAo21LJ87Ta41+ds3n3Irc2/5I7+\nS27xE67xHpfiPTb8MyqfUitnuuSpW+dn7PNTfZ2t6hHT7RN0GXj8fIuJe8EmT9jmETv+EcVHLfpd\niD+B2U/hvcfwf/tkytwGvjeHwwDVGujLMLk2Y2//ITvlQzZ4ynTygie+RoWIocXS4GgwbejH4bQz\n+CcLzX9gBfjv6b6b/i1/wD96/oL/c5bWVTXY4HG0GDwGvwysOzM3tHsvLckNG/bunBc8nbPTiZqG\nlODWDSVtBvd3dOKnO3cRwfNlQsSO8HOxxrC5NmV3Y43DvW1uXtnj1tVL3L6yz+GlbbY31hiNqr53\npl/IJ/YxRRd3zf2xb2nPd2RhkoZ35g+jqJKD0NkjuU+nd2C6nVOkHhutiN4TVep5USQ3yXdiJ6YS\ntQjL/o9+0f19eZOgUvRyF1SQqu9CZ+ykuaZRdSsv5/xkQhZdDNLZiJwVNL3gGTg6PjfuDx+Lqezu\n8bMj/uk//5f80Z/+x/51vvvGHf7bf/h3mFQFTdtSNw1N2+LbQBs8bdOymNecnsw5OZlRNz4dmzZ4\nIvOm5uHz57z78X2S0Pn7ect/nxgjP3r/H/Dh/Udcv3wpCa8sanTuRUplhDoZPICKAR2SJtURrFEU\nzqH1ghA8bZv6mkaTMaPZjFnbMJ81eJ/cqu4dTGV/ScBESBHZ6QFG44rCuRzH7bHaUCjDpHSslI5V\nZ9BEbl/a5ur2BvcePebx0fHn8X8FQRC+Enya+Pgs/KIT1PPbPnM2fW47L9vWp21/2I/TvcbwbN0M\n7utO0rtStgmoMYxcKh/bB66BuVOzdusJN7Z/xFv8KV/jB7ze/gWH8w/YPH7Cyskxdp4EWV1ajlem\nPJl8xO7oIevmGSM3J65DrV5n4o6ZcMxKfMGqP0I/CfAA/IMkdP5rr/njgbj7TqP5Hx8G7t4H/QCK\nZy2r8xNWyiOmHDOqTnHzmniq8BhCljxe6/7wfhThjwgkobP8bgpE/q/2H/CjBu7kdYPWWeYYPPps\nvHX/lne/rg4HsHaisXtPh/04Q6Ez5+xQ0lm+v/u37y6HP6yJ4PkyIWJH+ARKKUpnmY4rttdX+eZr\nN/jWazd5/cZlDve22VpfpXC2d0UYuBhdfHRXUpYe08v+HLp2HTX4TSzNtunmz0Qi+BRbTN8QP3Bw\n+gADjUL3nTXdPJvOQemOpbtU2X1RWvWzaSCeSX8Dhe7FFdmVSY5IfpVUfqdiv8SB4IkxiYGYxZxS\nOrs1SdB4n4VM6HpwIsF7iGl4aNuk5v0QYu8WeR/4p//8X/D//OBjhu7L//fn/5j/7n/4V/yT/+o/\nY76omS8WzBc1i0VDUzd4H2lqz2xWM5/X+AhaO4xxKKMJ0fPg8Yt88N8/91fwNwH46P4jDnZ2KIq0\nL4a47N1RGqUjOa4gOXUhlRFqpTEmzdEpneN0vsj9UYrReMRkZcrxfM7JPIUSdI5O9uvwMbBo6nR/\nTslzRcHKykp2uzzBN6hoGZWW9emYjUnFWuVwKjIxU27ubfGTj+6J2BGEV4pPixL+RfyiJvOh6DjP\n8PW6k+rzp1dd/8fL6Pb503p07GC9rtF+0LNjXapm68TOVRjfeMH+pQ94jb/ga/yAr/v/wOtHP2bv\nwyepx+Yeac4m4KYtk71n7N1+xvqV54xXTsHATI843pgy4QRHSxFrynaBmkeYweIE/puF5t+fc1/+\nmD/gH7Uv+N9nAXsKeg62iRTUWBqsbtExEmrDnBEnTDhmSl2WsHGM2oAPRt178/Lvph8XcGcD/Kpi\n7kpOGTOPI+pYEGqdDJiuAg1YlpmtpPese/9UCcql911ZiD49KXqILWlDp6RppackwfP/s/cmsZJs\n6X3f75wTY8735p2HGm4N7716PXCWG7ItAaJNwAvDMOwFYT1CAgQKUHeDpg1pSXvjAV5YC8M2YBvw\nwpBJgIChhRekJAo02RRFsVvN7tdvrHm6detW3SFvTjGdc7w4JzKzqus1LZk9sJlfIZB5I7MiIiMi\nM84//sM38o/1saq9vywcY8FS0vajU0uws6zvqkYS8YXrl/mFL/0Ev/Cln2S10yIOQ5SSBEqhlJOE\nzcCO9BKwOkhglpZmMVaA9D4aDyBU7b2ZsUFOJgd27o8R/k6JT01z85j5RBzgcBcIqw1G+6S1uoRn\nBKRE+AQvIeUMLM3ZmFqUNVPXYeuLjgCpfBpbIJzPRrheL1hmzTit/0GbZSxQ+5Hcc2M0ZVmnjy3I\n3jxzo/VsFwI+MU0bn6ZmuPP4KX/4/ge8zr4Ya/n23ff4lx/cppEEjCdTJpOMstSu8amGqjKUpUZr\nLzmjmH02i0GX9ZXg9xaWDfD/AFAVBRejEd1uywG3yoCtHLviwyKs8DDQWBB1LLj77EEoCMIAJaX3\nHglQkiiKCOMIoQSV0Y5FQ6CURAnQ1lCWhiBwcrY4SWi1WsRxTJZNsEYjgThUNJOYdhrTTiLacUBg\nKmRest1OWG+lPFCKQi+bwC1rWT++9SaGRbxh3mfVosn8T6vX3/M6sFn0cby+/Pp99euLjE29vYsA\nZ/FxkdWp+8V4sJOGLnW6j4uX3oVuZ8AlHnLAXd7mI945u83ap+fwLeAj4BA3fgc3/t8BnsPGF88w\nN+4z7cec0eOUVVx/NYkWijIMsFEBEdzR8LXPYF++xnvcreCW33yrwPjPaa3A5gIzUQxpM6DLGSuM\nW03YPYF9uHYNB8o+49p0/SawD4ONBqdpjzNWGJgOw3EbM5Tus2UsKM0iXGJd4D9w4i68MRCLhdY7\ngSd2rFet1SB1DFz4KfaP9TGrm5TWjzXKWnp4flRqCXb+gpcUgjSJWGk32Vlf5d2DfT537RLX97fY\n31xjY7VHFM5Pkxok1EDn9dhnM2taWQMegbA+oliBEGpGzMxLzIHCjDGogYS/cyIkSOVAhPfu1D80\nQtgZkHG+D7cMGbhlClsHEbCgLqj9NABy9lNUN82st4s6GMF/ViPqz6lnA3oham4DHy4wJ6Ccb8j4\nsAEv7zOgjXY+lsoDGyFmIEdrF4JQlJrJdMpH9x767XnzHa77T1+y3W+RFyVZXpHlJWWhfUaDxFrl\n94/wMjoHLsBgtKWXNjmfftnvmL+Cu5h8hV6jyXg05unRc7TV9DpN4lAhpcIKUEpirdsnwu2UOdCt\nWTYEUvpJuLakUkriOKaRpsRJwniaYXXlsaxEKictNKWT9VW+705RFCRJQpmXVGjiQGA6CVEoicOA\nKFBIayinE0anJ7Sp6CchjSikmC7BzrKW9eNXrxv55cJ8+Yb3vV611Oj1wejivEWp0mJjz8WLWM3E\nWL/M+pppFuYtrnNxuxcBziK4iZizOCGvNsSs/TqJ+7v223vAE28NWWm9ZJdDrvCQA+7RfjJCftvC\nN8B8CNljmEzdFqQtaOwBY1DCspqec9B8yLNkmyfs84xtx76IFmPZot05h77hcaP+TJ9xbYrhVh+K\nFcmolTCixYgm0yKlGgbYQcDLco2jYIunYpfD5hNWL52w+rkxN3P4hW9L/snzL6MXrk1KfIWf35fc\n+DcNvANHjU0eiz0O2eFltU7+oos5UTDAETBTv7vKDtgmBBJSBS0JDeEsTynzVOo6iyAX7v+OgbGA\nURuKOv3unO8Gom+qf1Xf1rK+X7UEO38BSwpBEof0uy02V3tc2upzbW+Ta3vbXN3ZZHejT7fVIAyC\n10CNq+/6GxZ6w9iZmd0y76fjTOYegNQwYYZ6hPd/zOOanTLOgxyhmAUTyNq3I+ZqASGRUrnGnz5N\nbfgEoPcAACAASURBVCaV871e6oS1OgzBgaBFoGZfu+TNtFpu3dY6UIVyhhTMQp+g+nPOG5bWn1tr\nw52HT7j35BlXdra4srPl46DdAL4qCy9b0xhtZolrpdaMpxnD4RBh6q36DPalLDkZTNAG8rxiNJpS\naYMKIgIVImWAsMpHWwsHIMoKbTRGa66sdLhrzhnm782W3EmaXF7tMRiOCI4DpHRApddtkcYRSiov\nIfTMWH38aimjC6pzoRP+sNW7MwwUDaVoNZukoxFqOKQymlrHOA98mAczlGVJnmWUSeL6BlUFE2XJ\nsxRrmkhh0bpkkuVkg3OyyYSVNGZ/tct655TzZSrbspb1Y1KLv9uLwKMGHDV4EAvTZzE8i8aO+j01\nC1MPVOtlLg5q6+eLgKfut1JPi0BHLyxz8TWYszW1D6dmblLmqWu1ZC167b0Ntx2BcG/37XbSzpiV\n6JR1XrCpn7M+OCd6WMGnUH4Mw0/h6AL+pHQEz60L+DemLrVadSHeLlnZuGBr+zlrvOQpuwzockKf\nE7nG+taQYN9w8zrwHfisa9PNG8AlmPRTXoR9XrLmGJxJm+okxh5Jzo/XONzY5X54hbXgBa2VIcEX\nHtKUGb8eGX7xfxny2w/m16afvyb59b9nKH4y4OXeCveiq9znKo/MPsfZJvowdI1Rh/6QbOCSubMQ\nitDttlWc5K/j9hdNv3sDf5hqW84IR+CcSDedKZgEUEYL/2FRIVIf6/rcqVgGFvxo1BLs/AWqQEk6\nzZSN1Q6766tc3Vnn2t4mB3ubXNleZ3ttlTCIXmFr7AIr8vqjq4WI5MXeNjOjn5en1ReA2kszW4MH\nOp7dMViEsV69tgg4Fi5ui8lpdQiAdPyMMRYrtF/BnM1xPW3wgKeW3Hn53Gx5ZpaRIATOkS8sWNcI\nEyNxo3hnznfLnPe1mTUE9YDv5GzAL/+Xf5/f/Rdfn+2tf/unf5L/7lf/FpFS5HnuwE5VMRqPKStN\n5UMKsrzkbHDBcDiiKHKubm7x4PgrHmC5O1yCr7DWbmOMZJJbKmMZjQqGF1OkCkhThVQh1kqq0oEz\nKSS6MhRFRVWVKClQIuR6v09hDFYpkihEgouFLg3D0ZjoNCAMAqIgJAkTlIypExusFTNwKpVCGotU\nFqPdDpmJGq3rnaOkJAwj8qqi2UgJwoCyKmf9hbSYN0U1xmC0A2VlWVLkBUYbyqJgiiabTjHGUFYV\no9EYOxlTjieEImC10+TatuHg5ZDbz0/+db4yy1rWsn4oJb7Ha9/LyL8o/Vo0979peTXoWBykLprT\n614qr0vKFue9vi2LYKdaWF69zHJhXt2gclGaVoOaOlY6xQGa+vkCu+Ml3Vg1V7T5tydhRkuO6DCg\npwekL0rUoYUnkB/CRyfwVSTfrAflJfzlY8n/lRg29kA+g/i8ZHX7lC4DBJYLOjxjmydyl+3tF6zc\nuODmheYX/oXknxy+xr7wFX5+V3LjLxvKG4qzfpcn7PGMLV6yznTYxhyH8AyyBy2eNPbpds5oqxFR\nXKL2DdvqBa3NMf/3T5Xc/xDuPIWDq3Dl84Jsu8mzrS4ft67xkXibT7nJo/wyZy/WXEOesd+FezgP\nU227GeHAzqafv4pjwzoWUguBBS0gEzASjh06BZ4DR8CRhOcxnMdQBB6/1Md78bypB0WLLN4S8Pww\nawl2fsxLCEGoFGkSsd5rc+tgl5955wqfv77PVn+FlY67Ux8oJ08Sb7gmLAKe+u+aPbFWzAaziLp/\nzgKAQfr+OGoeMuC2bObjEcLJyIyxGAFSgVqAQ3UqmpuYsTm1lG0mEXuFcfKIxW+r8XSToJ6H05NZ\n7/+Rs48wu8En8CYeYzyQcaEJ1q+j8gNxrHWgyQM5a8Fowy//F3+f3//GXRZDBf7gm1/lV/7b/4n/\n6u/8dYqinLEWz18cM8lKKgPaWMaTjJOTU/IixxjDTx/sMpne5fnF/A7XSrPNu5d2kFETGQSU04xJ\nPiErIQ1irAgpjYt1nk6mYC2BCsBaqrLAGEOUxAih0NagsERxQqkd81Tv40pbJpOci8GYRtSgGbdo\nRIEnYubGzDr0wcnblE8DtzNWyOiKsqiwRhNFAc1GSrPRII4jsswltmnjXjeVdH2O6uNlDFZrdFki\nLOjKktuCInfR25PJlFJrbJYTC0Wz06bVbHAjavL0YsrvfHCbatHTtaxlLetHtGow8b0Az+J7Xvez\nvD4tGvzr/1sPTl8HI/WkmN+dX1xGyJvXVQ9oF9mb6rXl1vHFFXMmoN7+GuTU9EyLeQ8dHy0tGzOV\nwystYwyvBouFEIqSmJyEnMRmiIl1TMfAhQr8KpJvvRYq8Id8mb/+bMg/Ghi4ADV1PXBSpiRknNPj\nIZfYlM/pr55w460H9MSIX//PDL/4Pw757fsL7MuB5P/8sqH6acnZW02e9Le5x1Ue232O9DbT8xSO\ncdMDwdHqFnEwJWxWWCnIRMLV3fvs7j5hLTtn96dK9kpL2RA8b7Q5ijZ5yGVuc4OPeIePq7c5PL1E\ndr/jmps2gbdx1/I6Y2DIXH22Y2Ef5KZG9g2yUyEaFUJp0BKbB5hRgDmT6GMFhwIeC+jhsOdj4KQF\neR3PuhhTvcje1WEFNWu4lFP/sGoJdn7Mq5nE3Njf5Be+9EX+6s/cYmetRxi4oIHFsIEapLxedjaA\nr6Vnr782Z2qstgjXYZNZrpaQ3qejXDNRz8bM/DDMG4vWiWlSBQgVOPO+ASsMAo0U0geg1fHWYrb2\nuUrNvjLP2tqD49YtBC4wwTpDvcX5RIQSSIR7TdZbb2vk4nrBOCoI6bXZOptitXGDfM8YgQNtnz54\nzO/+8dd5PVRAG8sffec9Prh9n/5KjyyvOB+OeHk6YDotKCrXHDQvCkajsTPsK4UKE7506wbnoxEX\nkynNNKXX7RHGCUJJ8qJEmwoZJrRXGkRBRFEUjKcTqqIkm04JA0USx4RKEfnQgDBUM8bLHQOFksI1\nm8axMEoEmAqyacl4NGXUyEjjhvNy+ePgmJi5n0spfxyEIIkigkBhdMV0OiGKE1QUIawliSLajSaT\nsduXMzYH7Y6YVEghZ8deIpBBgFISYzR5VpCNM4YyIBGKWMZEjRZps0WaRnQ7HT43mbLbX+HpydkS\n8CxrWT9y9a86DKnZkDeBnBo01EzJos9lUfJWA5FFMJL5v+s+KvXA9HXWZXH5IW9mdurl1uCm8M8D\n/1gv3/Iq0GnjtFW1vqoHouF8Jq0Ff0niV197TL4XLoRXSIU7FfzxZ4QK/OPyPW6P4cYbFnFOj4yY\nLhc0mGC3BNfTh6xvnPNb7xpufwh3DuH6Ptx412D24fleh7vpAd/hc3zKWzywVzl6vk/2uOHS4A7d\ntts44am8hNmTlM2QgWeRtnnGanxGI5wg0eQi5lz0OGaDp+zygCvc4TqPjw8Y3F91gOZd3H6qD43B\nsToD4KX/MLsWrhWsbLxkJTmlIwY0xYSQEoNkalNGts151ePF+Trl/Sa2H8xyDWan08uWO21mQLY+\nrovnF3x2Ct+yflC1BDs/RiWlIIlCOs2EvY0+b13Z4XPX9njr8g67G6us9dpEgXollnkeNuASumY/\n2d/Fts5ZC994BoRzbMyZlteNnnNmxXXndHKzxbcJ65gSgfd6qMA1JZUSY0Ea5/URKnDGeObMEthZ\nkAFWermZu6A59qWOiJavXotqmZSUc5+IlCjp/Tizt/vtFk4GV/fuwVgHcoTE1iDJWrTRs744dx89\n9Sv8DOPm0UtUlDIYTTi7GFKUYFWMlAapNYEMSYX7zEHgPDOJrmitrDPNcrI8RwtBFCaoIMBWY6wM\niJImjbSBkpLxaISQkiSOaLdS15MmDIgDJ0kLlJwFShgPCnWlKYociUu3U75ngbACUxmyrGA4GpHG\nEa1WgzDwgRMeSNbnk7UW5Vm4IFAkUUQUhlhrGI9GyDBChTGNOGGl02U4HGG1piwdwPTQdCHOGlTg\nfq7CUBGGIbp0+ztWEY0oJQ0jYhXQaLSIkwZhFBCHgr1+n3/ni+/wG1/7Y0ZZzrKWtawfZr1u7odX\nDd7itb8XSzOXpi0CmhqMJAuP9fPXAQ/MAc7Mjc7cqFE/L/3762XXkrJaTlYjjnDhc70OdHJe7dEy\nWXheMKdlGswMN6zg9FUtSGPoKGemWcExCzXpUw+6a3wWMMNppQ3JiclIyESCbYkZdnpab+5nRToD\nN7qgU8WYJlNSMhJOx2vkZUTay5AYMpVw3llhN35Gb+uc3k9M+UtWU0nFw7DBedLjcbLDHXmNj3iH\nD6p3uT26QXavAfcFPMGBnUxACCUpz6f7ZHstXq6t8ZQ91nlBVwxI1RSFJiNhSJsT+jwz2zwtdjl7\ntsFk3EauapL9c7qtAWkwJZQlAou2itwkjMsGw7MO2ija/Qu2WofsxU/YkkesckKbEREFFQFjmgzo\n8iJY57C/w7PGLifdTaaN9pxNq4BKwEkC5QqvNh2tc6//v6LRZX2/awl2fgwqiVyfkc2VNnsbK1zZ\nXufGlR2u7W2xt7nGWq+NUvOwALuAZOYBBDVr46VbM9Ayf14DgNqnQv3KIphYqLopJtZ5aKT1kcwL\nsmYnea1ZJQ8+8AEEQiCU/z91NrOYL3u2gBniqsMMhN8mN1gWwjoQ45t9Ciscy7TwEYUQoOQrXldh\nzWxfGR82oCuN1RqMcayVNQjfQ8dq6yOTKzZXe37hbzZutlsdRlnJKCsoKoMIQsdyWVCBRYQWGSZz\nCaEQSKlRsWu+lmtcI04ZOomgDAmjhCiytFotAqVI0xijNUoIl+0TuMSyKAgIAoXAUhaFCywwlqKo\nmIynCFuhRODXLX00uDtPqqpiOs2YTKfEcYhSwseGux25CHZqXKx8+lqz0SAZjcnygjLPCcKIZiNl\nza4yHI2wxjCxU0xVIREoL1M0rosrUrreQFKFRFGAlhFhGJE2mvS6PRph6JuZBigZoJRjrza6Xf7K\nu2/xO9/+mKwsqfSS3VnWsn44JRcmsTBPvGHe66Bo0f9Qp5XVIKSeajDS8s8T5rf462RPFqRHBjcw\nnTJ3pE9xoKS+MVL7ZZrMe7QkIAKQASjlVUpiFoKD0a6nwCyyuO7REjOP+Jr61xeSBVgF+iDa0I6g\nL2EL5zFZdy/RW9iMeixd4yjc86xIGJo2A9nlXPWYboSobY3atby1i/OgfFak8w2wW1D0Qs5Y4YIO\nQ9qMLtoMz3p8bAVlJ+RCdTgONtgJDllvvqDJGIWmImBIixPWeMIe97nKneIaDwYHnD9ex9xWDuw8\nxYGdgT80pSIfNzi5iMj2Uo6bO7QaA5rxiDjIUMKQm5hJ0WA0bTMa9RhetNBBQLNzwWr7JWutY9aD\nY3piQEKGwFARMqHBKSu8aG+Q25jV+JQb4jZXxX12ecoGx3QZEJFTETKmyQmrHIltHkaXuR2dc0/m\nHMk9xrY77zM6FZAFcF5LD2swWwOfuvForWapqaZl/aBrCXb+nJaSkkYS0mum7PS7XNla5WB3net7\nG1zZ2WR3e51mo4FU6jOCBV4t+wqVU4MbJxQT4tVLDgJmYrFZPxw3ILf1HflaRmZ8OIEUTs5mxWwV\n1jBnemp5m3F+FxAI5SRwM4u7tQ4QzPr61PNqdCIRwsWp1IN0Af5CZLyZ3s48N0KK2aC8Vk87rLew\nTGqg49LStHbekTqHzFrXFLSqtDPXG0NRFGyurvBz797i6x99FWPmxk0pvsqNy1dptlpMswJtIAgj\npAqptAtNqHsKSaHQ2lBpF1Ndae1kZ0KBDGaBCNo4xBeFIWEY0GymJHFMFPScXNFHY6dxTOwZHayh\nLHOqqqDUJXlWMB5lKCxxKH1PIIu2lqqqCKPIMSsCqqokLwoqXWEJHcDxx9sxchbpQbUVLnI6jkKa\nzZRWo0FRXqCrEqwliWNUGDG4GFIUBabS7vJgQUk12w4LCCVcgIWAKA4hUjSaTVrtNt1ul0agqLIS\nU1W+X5NrbtpuNHhnf48bO5ucjSecj+tRwbKWtawfTC0O9urHN02L7MtifHTtgamfS+Z6rtrb0vaT\nBzoqhSCCQL26Cphba7QFXUGVgcn9cup+KmO/LZ35skULgtg18Yzkq8SRYE7q1Kq1ykKZgm6Bnfht\nHjJnmnK/vR1mjI7qQjOEXeEM9vt+2gaxXRKsVIStCplopDRYI9GFpBoFVMMQUwVMsybnxQovknWO\n1AbHKytEl16Q3ix5dwj/7l3J7wzeECqwJ7nxlwzZpZCzXpcjtnjJGqflKtOzBsXDlGeTPapLivP2\nCofRDhvqOX1OaTBBYigJmNDgzK5yZLd4Nt3l6Gyb86er2I8j+AQHdIb+GOQ4eZkFRgL9IuTiaZ+L\n9T6qnxG2c4K4RCqLLhT5JKIax5ArpKroXDlhf/URV+N77POYLY5m21ODnREtXrDOYbLNmBZdBrzL\nB1w3d9jNnrE6OaNZjAl1gZYBWZgwSDocN9bYUM9pijFRu4BL8JiQYpK6AIMLYCBhFEHVYg5qJ7wq\nnVw875dg54dRS7Dz56yUFERBwEo75erWKl842OHWpS1213v0e2267QZxkszkaq+HC7ypbN0Uxv3l\nAI43lbtrg3fHzG7giwXiR8wnFifp8wGcyVziGBrpmu28EmJijZ2p4KwG66OMlQq8TI05C/TKupgt\nS1jhGSLPRNRvZb6pryvzrJTzRqTeBG+sAem8KrNEMO1YHdf4sgaBzMBcVVYUReklYZAXFZO84D//\npf+I//p/+3W+dXtu3Ly2f5n/8K/9W0yyjEobhJIEUrqeODjgUlSGoix9/LKfV1SUZUFZOXmZlIJA\nKaqqhEpgfLJaGkc0Gwmddpt2s0kSR4TS9a1pNxt+XZqyyMjyCZaKosgYj6eEoaSVJhiDBzmaLM+Z\nTDO3Pt8Dx2KptIuuxgNQKSRWunNNGAcqhXF+JiUlQaCIY8fkjKdTrDFUZQHG0kgS2s0mo7RBlRdk\nHkBKvOLZywwdu+RAaqBCokDSbrdpdjo0mg0SBIU2ZEVBVVVoE2IJCFRAt9Xk525e497zF0uws6xl\n/UCrBjF1vZ5utjhv0ez/OtipPS71ranavF8DnR6wArLtPC4NMcc/tS1mUWmW4+7Mj0I3TVoelIyY\nS+Fgpv+STYiieT+bDnM5Wb3Z9eC9Jm+GAgYpDFMo2mAazNGR9G9c2H7ZgUbkQM5V4BpwYOGqJbhU\nkewM6HQHdOILUiaEVFQETEkZli0Gwx7ZYY+iSjnL1jhMdnjMJe7xnM6ljGhyjrKG31CGX/yHQ377\n+UKowGXJr3/VoD8vebm3wt30Ek/w/Wsu1pm8aMAjgX0UcHy+z+mVVZ6u7bKSntGT50TCyZ81itwm\nXJgOJ0Wf0eEK1aMEHgL3ceb+sT9cWwunwNS/doZLPuuC7iboRjL3J9XqsNQiL5U0v3DGzebHvK0+\n5i0+5cDeY1sf0TcnNIzz+ZQiYijavAjWeSz2OBMrNO2YL9hvc3Nym5XHQ8KHOMA1BcISelM2ds/Y\nu3JIrzcgDCqEsBTNkPGVlOPTS5iXykVcvwTOBVy0wF7wajx4wDyQYnZFW9YPoZZg589RCWCv3+En\nb+zxk9f3ONjp04wjkigkjSPiQDGLWdYaq5yh/nsBnkVGZ973Bhb0YSAW2BDmLFEtNZuDD3f3Yi5l\nEs7sDjOj+YzBqddifKpbzSDV6Wx1z5a6V44HS1Z6psfOt1XWqMb4+a8YdJgZkCwLMdmzdzig54LH\nJEpItC4dIyUs1riBN8ZFYi/KALXWlEVBNsmYTiYYBFZIJnnOcDxBG8Pf/o//PR4dPufwxQmdZpNe\nu4MM1KzRqLVQlCV5XlJpy7TQjLOcvChJk4Qkjn1MdoXWJUWRoaRCBYooCJFSYI0lEAFJErOyusL6\nep92s0kjTYjDkCgISOKYJI4o84zpZIwQAUnawgpNUUSkaUzVsaADylJTFCWTLGM8nhBGIcb41BnP\nsmitnazPGEKUawK6cOylMRghENbJzwQQKEWjkZKMY8rKUuQZ49GQ1BoCKUijEJ0mKGuYTiaUZeH8\nQgRICSpQWF0hBQRSkIQh7VaTRiMljEJCQOgAUyqMqai0b54qBFEY8TM3Dvi9Dz7h0YsTimp50VnW\nsr7/Vd/dFrzam0by3Y0y3/T4Jman9kCkOMTRw8m/uiAS6AnXQ2XVv9TFYaKEV8HOBDfoHuBSuk6B\nFzGMQ9CJ/0/aLSiKnG9mnVflZDXgifym1WBncbkvcQlhLxWcdZk3Ba2jshNm7FEjhl3gCvBWPWni\nGyP2+k/YCZ6yIY9Z4YwmY0JKKs+knAc9XvTWOWpv83S0y0XU4CGX6XNCiyFJL+edW7fZ6JyxsgW/\n9QXD7Ydw5wSuX4IbP2HgKjzbX+F25yof8za3uc4DrjA+6cFh6GKdT4ETqJ6mnG0mDPobyI5BRAaU\nAS2wE4UZScxIYsfS7YvhfHeyw6tp2uAUX7WCcIiTuEnmSXM1brgMfNGSXJ3wVusT3hUf8gW+7Zia\n6g7bL85QzzTiwrr1JQLTO2Kyf5/d1hOeq02UMXxh8gGNbxWoD4B7OGlf3YB0FcQlSI9K3v7iA8ym\nIo9jLuhwGvR5ubuF2UngqXDb2RQwTMC+HmLxp6UKLusHVUuw8yNcYSBpRCHdZsxGt8n+epfdfofd\ntR6b/S6tNCJSLplK1GyLJ2DcoNw4EOGBywzYiPnzWVzzrEcOLAIdI2qAU0vFmKWp1fDHzpgcHwft\n85ulkKA8UJHK96KxWAyy9hBRS9EcuBDSIoyTPBuhnc9HqtqCs5C25rdIer+RdRkFwvjtrDVebgXz\n557qceyEG/C6PqUuIMHi5GMSOwsisMYlhGmtnSleV8RhSGkERakpKo0WahaBPBiNGIxGTLMMow0b\nq6v02h3yoiAvNabSTj1hLGVVMc0yJpMplbZkhSYrHPBJowCM8mlwJdJU6KpExTFJEBIGAWBRStFs\n9Fjtr7C2vka32yGOIsJAEUpJqBRx6ORmU60xUYgKXMS3sRVBEBCFsWPVKkk2LciCHCEFSimSNKGq\nSoo8pyhyTFUyzSaMxiFuE2KkBJREKuX9RfNmtEoKAiUJA0Uch3RaLcbTgqyoyLMJYIkUhMKiMChr\nkLZmsBRhECCEoCxylHDHVgpFoARxqFBKoAJFrCQRMVQVZV5grcb4uPBAKrb7K1zb2eTOs+ccnp7/\nWX5Vl7WsZX1XLQKb17vN10BnUQe2GDaw2NOmrsWEK+v/7wqw5tic1Htc6h4qtc/F46AZAwNzm845\ncIIDI8eeCTpWcJbCNHLraYawLt0yd3BsxNbCsuuErnoTM5y86RQHdI5wyWNPhYswPm1AIdwFawbo\nepAmsC6cZO0a8DYEn5/SOzhhv/eQ6+FtrogH7PCMNV7S4YKQYu4xEX0OxTYP5WV6rTOemD1Oij6f\nRG8RUSAUZO2US1cfs7pxQns85GBquAoUqeK41eJlY42HyT6fyJt8h3f5VL/N0+OrTB80IffbtuV3\nfSmxz0Fnysnh1kqSVk4SZkSmRGiLqQR5njAdNihfJnCoHJhpA10LLQuRB7GlgomEM+GOx3O//05x\nEdUWBwLXId0es7P+mOviDm+Lj/gc7/PW2V3W758R3ykRNUNU+WPTB3VQcfX6If3dAbkMaH5YIL9p\nEd8CexvMM5iMIE4g6IM8BDEGKSr2fvYJZ2tdnqtNnqhdHm1e4mx9i2o19qERtWa+Dqx4HdgvAc8P\nu5Zg50es3B1rRTMJ6LcbrHUarHdbbPSabK10aDcimmlCqLzEatZHZv78VY1YzWY4aZoDAnPQU/ts\nYPHrOGdN7OK82ltT+3T8fFGnn3lWZo5MhJOt+V47COkxh2NMUA6kGP+3qMGKAGFweueZZEF670+d\nbuC2Q1BbeMQchyF81ObC/pip8IRneOzs4zjd28Ln9cDRGtfM0nq/jtFO5ibAmforTVEaSu3SzIqy\nYjgaMxyOmEynFGWFMXYmh9PaUFWVC3LRmrJyDEpeFJRFTqUNVVFhKoMSCmFKdOHWL7QmlAYVCOJA\nkEaSJImJoohGo8HqSo/+Wp/eSpc0jgmUY6mkELNHrTUmDJAixRJjhaGsCgIVYEPnF6oKF7wglXTs\nURRSVBV5UTgWCUNpnYQty6ZkSUgYOCDjVHd1xPc8qEAIF58dKMXFeMqLwdCHCEBeZFhdEYQBEoMS\nECpJFIZoY730UWCNpsgy4igEoxEWlLAEUoCpsFYjpUAGiiQOsUbPTwPh/F+r3Q439nb49oMnHJ0P\nvJdqWcta1p99LXoUFoFOPRisZWIpr0Yv1wlq9a3818FO6ac66aoPQQdakQMktb/Fe13Erkat5ySd\njCCsUMrJlnWlKIqI/DRBPw/hUDpA0sEZ/0MFp04pwaZf5hU/XbKwX5FsTEk7U+I4Jwxd8pfRkrIK\nybOY6bBB8TTFPlGOCWr5jxYEcNJwYKsOAxIptJQDUHtuPeLtgpUrL7m2eptbwYe8w0dc4w572TNW\nJ+ck0wxVaYxSFGnEeaPDk3SLDY7phEMiXfCgusLD6WVEYilExCDo8qy1yU7zkJ4+J6lKLJAFMedB\nl0N2eMQl7nLA7fIt7g7eYjjoYtoQvDVFJRVCWawWVJMQXSqCtKK9dUG7fc5K45ROeEEqpkiMSzbT\nTQZFj8HGChe7XaoiIElyknRKHGcEqnDHRIcUZUw2SRkPG+RPmtj7Ch7gktsGeOmbobE2ZDd5zGUe\ncoM7XD1/xPrdU5JvVPAh8ADMqTtVZApsgDqC5jgj0gVFJ0DetogPoXgfRg/gG2fwcQnXQ/jiKfRG\n0JBAEzo7YzYbL9hqH7EuX7KanjLq9qm6sWOoGv6UNSHYRbaylmIunsdL384Po5Zg50ekokCShgHt\nNGClGbPWTthabbHebdNtNmgkEVEUIUUtIdJobQnU3Kg/AzwwYzLmuMYBnRoq1ICmFng5/ODM5ELI\nWcDADFjYWromZ5zOLDlNOMDjmod6UONZIIEziQvp7nIY8KloC4v2yWrWAMovy1iXomasRz7U9bXI\neAAAIABJREFUkQCzmGzsLLpgpr4TErBuPda4RqTU61xkeXAJYzOwM9sv7m9jHLNgKu3N7gbrgY4Q\ngizPyYqCoqzcVJSMx2MuhkMmkwllVaG1Yya0KamqijzPKYoSbS1lWVKUlX+fxlQVRlegNcq640qZ\nUeYu+c0lmgUEUUSSJrTbLdrtDu1Oh3anTbfbodtp0UgTlHAx2jXIsdadM1hDEkfEcYjFUOkSJSRG\n6VlyXikqBM5nowJFEAYEZYVUDuiAQUmLrkosFu29O5FUqJoxFA5YS+mirYVwPqZ/8Ftf487jJ7Nz\nfmNllXcvbSFFiSAmChVpEiOFJFAhMHa+JmPQRUGJJQ7qBDwHckyVU+YZRZFRyojIWgIJQeCYJYNF\n42SYzTThxt4OlzbX+ejxUybLGOplLev7UItBA4tenJA5mKmT02ot02J6WgQqdNTzYhkDpgRbAx4L\noueYl03pPC4HbhLXKqL9nMbWmNbKKSvJGQ3p+qiAoLARQ9vmfLjK6KRLttugeJzO+9jUeKyWTV0H\nboC4oYmvTWlsDFjrvqAfn9DlnBZjBHYWW3xuu5xUa5ytbTBab1OsxJCqOZFjFbxIIZduJaGCjoAN\nHHt0BZqXL9hbfcit4EN+gj/h87zPpcFjNo9PaR7ljpGa+u1chenmMf2tl6x0z0lkDgpyE/FJ/g53\ny5tM4gYvwzUey302xHO6wQVR4IBGRsIFHY7Z4NDs8LTY52iyw0XepRkPia+NSZtj0miKlAZtFJOs\nQV4mREHOpc4jdnnCJsf0OKPJBIWmIGKoWpymfY7SLZ7098hsQk+c0xcndLggZQpATsyQNqd2lWOz\nwcv+NqOVNmU3dqjjAdAHuV7S6lywxRE7POWKfsD60SnJBxX2m8D7MH4C04FTiIQxpD2Ih148GRvC\nvcIBqEfw5CG8dyz5ZzUAKeHnBpL/3RhutYFtCJ9Ce2vMavuULgPaDFGNan761vi8CMB+L6BTfyfm\nI7Fl/WBqCXZ+iCWFcINKJVjvpGx3Uza7Kf12TDuNaCQRcRgRKDf4NsYgpHteVdr1dSF0lk3LjNmZ\nxf76f/7ekavZwL5mfezMJ7M4Ub/LiFkfHJd2Jmb+HRbmOZCjHKipwY7F3+X3g27PKs0kd/UWWuvu\ncCnmQQP1dtUa6zrOE4WQxgMe6+CTXfwxsTO13WzHwAzkWGN8opeTVhmffGbrXSOEk67pClMU6LL0\ng2szA1bWGqbTKXleUBQF02nGaDTi4uKC4WhEUZVOVa5cP5iyLB24KXIfZODAzizhraqo8pyiLAEI\nlSKwGltU6Cp3Q4c4JpYBnXbKar9Pv7/GSn+VdrdL2kiJIkUcKCKlPNgJEMINFoyxVDPyKgBh0aai\nKEBG83NLa4OM3Y+zxe0nBEglZvHTYago84iqyAHNy8GQRy9O2N/ss7+57tN9akZmntT3D37r97n7\nZIRrsuo6dr84+zLv60M+d3kTIVPanQ5J0iDPCvLcgcLxeILV2t3HFS6gQynpQH9ZMBkOmIwGTNOA\n2CYu/U1rf6wcE1dqjVKSJAq5urPFtd0tuh81lmBnWcv6M6/FMIJFRqcGOrWjv8U8PcD7VWQKInSL\naOAGkPWiLPOEswLXbRrtWJK+l1cdALcs4i1DcnPI+sYR+8kTtnnGOi9oMSSmwCKYioSh6HDc3eCw\nu8PT7X2O+3tUSQCR/7EMcZK0q8BbIN41pG9P2Lr8kMs8YI+nbPrkrzZDACoCRrQ4EX2Owi0e7+1z\nf+UqL3pbFFHTLVcL/zkCeKHAVm4w38MxO7sWLls2V484iO5zk095137A58r36X6SEX5o3cD/GAd2\nvEwrvVSy884L2j81gBQyGTMIOwzsCrfvvstFt81xZ5NH8WVW5AltMSISBVgcKLFtzswKx9UmF2cr\niEKwtn/IjnzKmnhJjwENJgRUlCpkFLYY0kahucZdrvCAbfuMVXNG044JbEkuEoayxbFY56nY46G4\nRCFi+pywwTE9zmn4zOyMxPW2Eescqh3u7Rxwr33ASXuTKkzdfluFuDel0xywyikbHLOdHdE8msJd\n4DZUH8GDC/i6dhaj6yP40glsW4ibIDb9PvPeo795IvnntHFNVt216et8mV8eDfn9FwbOQZxDlBe0\nGNFkTEKGjMwc6Mzw/aI0cVk/SrUEOz+kCgNFr91gb22FKxtd0gCSAJJQEQXSNXXEgxIPCIxxjSwr\n7cBOVZkFRscN7CpjqKxBYZGiNu/PmYsZTPF34etBqawDBGoJl7V1WxoHTjxjQy2Fc+4W73WR88Ht\nQk61tcwlbR5RzEGYBymeaBECx54Yp8c2xiCQSBl4r85caoZYYJeAOSX83aBn9sHBAR3fRBPhllC7\nmlTtXcJgyhJTFtiywFY5Urq0M12WVFWJrjR5nlEUFUVZUBQ5WZYxmUyYjMfkZQlKEiYxRVEynU5d\n1LJxIEpJiQgVWIMuK3SZY01FqCAMQ6IwRBgLtkKGznvTaDRY6fXY3NxkY3uL3toajVabMEkIooBQ\nQFAfdwRSKIRwjVndeeP8N9ZHSWtjUNLdZXJ8jfC9bQRFnrtrfSCRMiSwAUEYEpUhSRlRFgWnZ6f8\nxm99jbtPn872+LsHV/hb/8Ffo9Vs4lsGYRE8Px3wyYOHOKAz79htsby8eI/SbCClJE0S0kRQxCXT\naU5e5BityYvCA3PHTsVRQBooApzn5/z0hHYsCU0TLRXSuPAHJUPHMCmBVBAYxd7WGjcv7bK50uPZ\nydm/xjd3Wcta1veuRUanlq69HhFdBwusuHmxcr6HOjm6lnzVDTBrq84Y1wpnJGAauMFmbei/AeKW\npf3FEy6373MtuMMB99nnEZs89yxCBsCYBmescsQWj7jE/fgF965ccC+8TiEbrlkkOH/JAfAOtN8+\nZ3/3Lm/zMde4y1Xus8cT1nhJmwsfuxzNGJKn7LLFEZ30gk/2Mh4Flymr9tyEX7ffGQcO3HmwIzYN\n4f6Q9fiYSzziGne4lt2j936O+rqF7+A6fx7iwFiMC2Q4ADmCDgVXPv+I816XYzY4Uls83tpj8n6X\nY7PPyfo2qpcTtyZEUeEk2HlEMUkxZzE6VvRWT9jfuM8V+cDHOT9jlVNajB3YIeTCN/c0KN7iE65x\nl/3sKd2LMWpkEZXFhoJsVfGy1eNhcJl1XqBRbHG0sMwRAFNSTunzjG0ecck1+mwO+Xj/bR5zBZsn\n0IYoKWipER2G9BiQXGik9/jkL+D9c/jbVvLNBanYzyD5zZeGy89xfqBNdz59OobfqwwO6MyvTQbL\nH9j3uJ3BDW8Rc7dw3SQxSxfOn7Nagp0fUAn8nXElWem0WO912FjtsN5r0U0jpCl9M0dn0re+0WYN\nJMA3kfTLqnRFWZVoHXsvhWMpjPBgxxqktbMvpAQvUfPpZgvyNikVSvo7+n5wbOoGnDP5Wx24XHt8\nFoMNhEveWvQAWSdBU/7OnPEiKG0Nla5AKKS17lGoWciCtcb3s9FOTiUs0qqZr0YEygEjKV8R5b0i\nUbMW4RtRzoCZqefPGS1TM1+2jpjWCKMRlUZpjbWG2/cfcvfRY/Y219nfXKcqS/K8IM9z11dHa8rS\nSdQmkwllWRIEAWEcgZRMy9zjP5eoZnVJFKVuu4xGlxAFijQOieOIOIpRUmCqAiUMaRzTajbodDus\nrfVZ39yk1esSp01kFCNV4CRrgAtatgRCYK1E+2NgrZ6xU86DVPkECAvWsSBSuH1ZViXCWgKlkFKi\nrQOHgXEJcEHgjtVv/ubXuHc4ZpGp+ej+V/hf/+E/5Vf+k39/JveTUnB6MfRn4Zs7dhdVxXg8whhD\nkqREcUQQBBRlgTWG0XhMnufoqnI+qqoiiEOacYNWI6IqMoaDAREGkSYEgK4MSmrH9ASKQAdobUiR\nXN3a4PMHl/mTO/f/f3+vl7WsZcGcgllg/b+r8WeTOcjpA10IE+gqWBXzBLWun2o5mcABnQIHdAY4\nE/s57ifey77kzZLmrXOud27zjvqQW+JDbvIpl80Dti9OiEcFKndevioOGK1GHMY7bMtn9OQ5SZhh\ntgRPsqtMph23ziFwAK3r5+xtPuBW8CGf4zvc4kNu5nfYvHhJcpoTjCpEZTGhpGoHjFaf8Gz1MSvi\njFjmiMRg1iX3b74FFwou/PafCwd4EmYYUPY0vc45G+qYbZ6xmx+xcXyG+sQgvgPmT2D4AP7oHO5W\ncE3BT790HhMFiBb01wfsxs/ZSZ+xIV+w0jqliFoUd2PMXUXZCSnaKTJ08mVTSqyWsC9Z6z3jWvs2\nbwVu/x1wz4G68pRWNkWVlioSDJI2z4MNCiKu6AdsPzqh+XhCeKQRZzilYQLhJsS7Fa3dnO7mABCs\nn53RfTkkOisIJi6gQCcjNroD9tafs7N2SJcBoSzRTUm5HfHs5gFcgJIGJSoCSiIKZGkRvqmqmcCv\nWMm3XmNq/iVf5m+OhvyjiSHM/LalcHeGWN58bboTwg2vtizDgIyY3E/GiLmNzBON82a1y/pRqyXY\n+T5XHEaEyvkZpHDMzVq7xVq3zWqnRStNCQLhUseMRFBRf1mkVCilkMpJu2oWR/tksKoqqUzl0h6N\nQOMGp9patHENIaWfhJx38Z01GQXmyVnyVY/OrOaSNCPqTfNhB96r43CGAxLSzOw0WGPRQvuUM4H2\nkqKiLBFCIWWAlAYhDEo56tdYx76UVYW0LpRAGu0Gzkq6u/vGp6UJ5l4/ZxVxZX2wQS2VM3idHwuE\njwMCUuD8QVp7mZvzyJydnvFLf/fX+Md/8M9me+Kv/OzP8N//vb9DEoXzppva9b9xfpwCFQQ0Gg3C\nOGKa5ygpEEFAGUgCCXEYkESBY5dMgCKBBkRxTJokRFHkgB/aBVU0ElrtFt1um5WVHu1uhzCOEUq5\n44HLbPCxAA4cGktlqjmTpQ3Ghy04sGPAGCcVNNqfCw4USqxjdKzrtye0QBvjQ/Zcstrz0xM+ffjd\nTI2xlg/vvcfhy3O21/sozyZt9lf8e97csXul02Y6HmGtdelrofOnNZtN500zGl2VlIX7TLoqESSk\nSUy73ULZkjybMA0laSgJowiE6wUkqpKgrAhkRakqdKzZXV3hCweXaCYxk7x4raHuspa1rO9db5Lo\niIX5iw1Ca1angaNrPNBRPUhS6L2WcrbJHPQ0gNhfULRwLMZALKSn4RK3doDLlvhyxm7/MTfVJ3xe\nvM8X9be4MbnD2vE5rSdT1AuLV0xh27CyC92tMd3+iEZzghKaIo3Id1KejQOKSQMGFnlQ0l9/ztXk\nLu/wEV+03+LW8FO2nz2n8TBDPsZtU538tQat/QmtgxHJVo6KNZUMmDaanF9a5eK4j34RubSxY1zi\nWJ3X0ATVNHTCIT15Tp8TetmA9HnpetDch4cP4b0jyR/YucfkS5nk/7CGa223P5Kjiu7aBf30hK4Y\n0AmHnDQqihw3ws8VJlWYOvm6B2LH0Fo743LnPu9EH/BFvsUt8yEHw0esnJ3RPJsQXWhEBiaFfu+M\njf4JVRLSvRjQ+GaB/NjO46kLdwzVFqQHJeGtcxKbQQWNhznRfe2aiw78adMypFslzatTGjfHqA1D\nFSqmqsGo3WFw0Cf7sIWxAuNyOzF1k3FvCbur4Q95M1Pzu+Y97lTwTuD39wZc2wfeh8+6Nt3Y9bK3\nPmSp8zUNaTGmiS6UY+lydwzmYGfWsfYN3xM/Nln6dX7gtQQ734dSUhKGIUkY0UxSF/trDVaXxKEi\nCQOw1vUzKSuUUIRSIJVylwlrwGqkUjNmp+4Ro333yUpAWTlZlVIgDRjjwILF3Y2vvRjzfm7z8IGZ\nbQYHpOb9dfw7BTiZmnuPBR8bbb2AzQE4hP9+1xSvrAMBXK6AwaCVaxKqrabUJUVZIFAoZRBCeRZL\nEkUWIRXaGMqqRFqBFQZpXDNJZRRWC6ySKN+bxUncnGF95i2awRnrTa3Oq4OpKehan+ffaSxo7cGB\nAz2/9Hd/jX/6zz9ikbn42je+yn/63/wP/M+/9quvpKvVE0CaJDQaDYQUZFlGpBRWQBUommkEaUwQ\nBJRV5Y55MyGKY5LU9dQJw5AgkERRQKOZkKQxaSOl1UhoNhKiIPShDp6psU6yZZC4G00GYzWVBwkz\nP46XzJk6klwbhw6NnR1rKS2Bqj1TEnyT1Ppn2TUIFQwuRn7Om++GPT8dsLW2hlAChWJ3c513r1/j\no7tfcSDPd+wW4qvsbWyxttLjMJs4b1HlwhxUpIjCkDiOiaOIqVJUAt+MtMJaSxAGNBopUktMVbiQ\ngjKm1UhRMqAsXWx4WZYooVBIyqigl6a8tbvN9d0tPnr4lKKqWNaylvWnVf3bKheeL762mMBWhxJE\nzFmdFq7p5wo0Eljz6WmXcCEAexa5qwm3c8JOSRBXyMg1c7RGUeUB1TCgOI2ojkJ4rNzAegfkXkVn\n+5wrwQOuc4dbfMjb40/Yffic8Ns42dcRjhkSILoQ7kH/7SHx2yXBpZIidRK00+4qo+02J4MUGpDs\nDtlqHHLAPW6aT3m3/Ij9J8+Jv13CB2AfAMfuOigSEOsQXDX0ziYEP/uIciNkGLc5UX2e9zbItltM\nt0JYEw771X16fBq3iAwJUxpMnD+kyByo8x6Tv3Es+UP7KnPxR3yZv3HiPSYv3fviLKfFiAYTUqao\n2LhDMsUlz9X2qRVgw6IuF2yuP+EgusM7fMTnqg94Z/QJm/dOCW4bB7ZOgRxUCs2NgubVwoHTY+Ab\nYL8D5SPIz0EXEKSQbEDwEoLC0FMTdww+AT4F8xiqEzfeUF2QO/8ve28eJEl2mPf93pGZdXRV9X33\nzPT09MzO7mIPEseCgC6SJoMh0hdlRsDhZfCSSGgBypKCkEXZZoiyHQqaNgGIIYUsWxYpy4ugSCoc\nCtMEDYAkABIgrgUWuzuzO/d0Tx/TV3XXldd7z3+8zOre3ZmlD4IMx/bbqO3p6ursqqzMyve97wK9\nbRlNepx7+i698TrtYIydYIqNyTm2qmfJhSaxEbGs0KNOWlPYlj+sbpedPQ+5Nt0O4HKpnqzAxafh\ne78s+dTOc4Xf1F+bFB/iu0clq09aWIF4PqBda7HLFAdunEPTJO9qz/z1/T4hx/uvhmmBJcvzRmBz\nyvz8WYxTsPMnOESRZlavVBlvjTI1Ok6oNM5akmRAnPbR2k/uvfQpJQ01Sjic8pHCSnqZEA6k9NGb\n5anh8BIzg8UJS2AkWZ6htcAq4VfvbVlW6eOcj+OpvaToZDrIcdGoLwA9KW0ThRKtDCNwRQBCaegf\nAqficTiQzuFkESzgHzGUhzknsNZhC78R+EJKEGSZJTeGarVGEEUAGJtjCmZGSv8EjFIIJXFS4pxF\nKoEqJsBll8/rEnyKBDUPeGyBb451t2KocrNF+pqXeL12607B6LyeuTDW8bmvPcudjS0mW40hkLDO\nJ44FQUClUkEpSZbn4ByhVuS5IQolgaoRhCF5ZjyYk5IoqlCr16nXq1SiEK2LyOcopNKoo6OQINBE\nWhJJgTA+Jc5Zx631TW5v7LI4O8u5+QVyvHxP2kLuZQ3WlUlrFpMb32/kyjQ1v3992IN/L6SwSIxn\nfcD7lSyF/0uCdCxMTRT75MGrYTMTk75EtmCDrHP81A/9Zf7pr/0WL10/buxeXljke555mjRNqVZr\n/j0UgixLh9LNUg6nlO/bceDju60pAhMCAi3InSkS77wBeaQ+Qppa0iQnzwyJTREWBlpTH6myMDHO\ndz39Du5s7ZyCndNxOv7YUSZLnfz+pGTt5FTiZNx0xOtZnTGoRB7onMOnnF0AVizqnKG62GVyZoNx\n9mnSocqg8MJoujRo02K3N8XB/Qny6RpuVEJTUJ3pMTm+xQL3WOYWF8x1ZjZ3Cb4C7qvAVTD3wRVg\nR7ZALnnj+UgWsxhs012+zg5TbIo5tkfm2ZufRijBRGufuXCTJe6ybG6z0l6HK8DXwH4T7E2/7dyC\niiCYArkLpDBST5kPtjk3c5t1scAdzrI2eZbBVA1G1bFHqaxmKayxJ2Va2uaeJYnhtaOHe0w+b5/l\n2hGsJnhAYiwBGQEZmhxRyi5CfBDCDDDpYMwhF3LChS5zaoNz3OKie43V/g0WbuzCl4GXwN0Bu+df\nFxWQsyA28MzaAHgFzMuwfw++EPu8gMvAd+xCKwYZ4l/vjn+svQrJXWjvgVZQb0I0B+rIP82JZpel\ncIPtsTvcZYlpttkbmyeVEd10hMNKiz0mOGpVGZnuUlkwXFoGXoOHXZsuXAC3AG4RrJKogeX5H7Z8\n4F91+OTW8bXpu6ckz//7Fvc02McFW3MT3K0ucI8Ftu0MB51x8v3ASxG7QN8VRE6ZolGkBQ47oU7H\nn/U4BTt/AkMWDe31SpVAKkZqNSbGxmk1mmRpSr/XI8tzBMLLlAofjC2sJFluEM73oWilUVoi8UDC\nllFhQ9uJ/0ZaS55bsiwn0BqlHNo4rCk6bIrfcdbfZ4VDSjGUrr0e8Lxxla4c7nWqtvKUFcghI1MC\nHVEyRA6u313nzsYW5xdnObcwg0kdTvmUNl8uKslzQ5Lm5LkHPUmWkeaGqjGEUYgTjjiJyY0m1Bol\n4NVbt1jbus+5M4usrpzz4M35WGEh5LFETaoh0CllacIVjBmc1LsxTGizFmtznLPcuHu3+PmDV4fW\ntu8z2WqQ5xlZlpDnGQjQWnvZoZAEWtOo15HKkcSOQB0zfkmaIpUiCkMqlYhKJaQaKZT0741QGhkG\nKKERSGxuSbPM+2mM5eCww9/95U/whRdfHj6zb7v8KB/50Q/QrFUJtcRmqWewnMHanI2dPbbbR5yZ\nnmJhZgKHQ2ld7AUPdFwRuW2d9dMVUQBj6Z+777uBszMTPLG6ykvXX8/USPFhHjl/gYXZ6QIc+fhw\niaNRr/K3fuQH2bi/x/r2Do1alWoY0u33yfPcX4PDEKmUj8AuAE8Zpa6UQlWrhGFYACh/JCopiHQI\nJiHPEnrxgG4/plZtonWAyQVZlmDzBAEMEkUQKCabDb7/ve/k137/C7R7/f9b5/npOB1vz1ECm5NS\nNX3iPvWQx53sz2ngwU4hXVvEG/8vAZeh+tgRM1ObLEbrzA8jjNvU6A0jjLuFIX6zOsfa4hLrk0sc\njM5iE02t1meKHWbxgGdi+4joNeM7V74J/Suw3YEXM1h38LiC9+1DYIE6VCZjzpy9yx15lhm2Ga3s\nUxnvkiQNGuqICfaYYZupeBduAdeAq367WxvwpRxuO7gg4Jk+LKXFy56F0cU28+MbzIT3fRloq81g\nbISsVfPsSoS/uBadqc5C7sIC6oQYpYa78sZw3vwQj4mA1ar/20YrMgIMCoPC2WIuMQo8CiyAmE+p\nTnapN3s0giPm5SaLrHM2XWPm/o6XeH0DeBEGN+HoAGIHNQGtOR/nTLt4DWvwyn348VjylRPsxTOH\nkl/dsKxO4YHRBvAq7N+E24fwVQtbFi7vw/tzmC86VlmC1mKb2bFtJtllnANUY0C/P8bh0QTblRm2\nmeGuPENzNqbySJuLR/C9L0g+df8BTM28ZPW9lvSSpHO+QluMMi92GWuk/PaK5doVuL4JF6ZhdcXC\nEuQXJXurI1yvLPMqF7nJeTbzeeJ7Lew97aWI+/gSWVsay0pN28nbKZvzZz1Owc7/hyGFIAgCalGF\n5kgDZwwSMZQyVatVTJ5jTE6apFiXo7QqJoJhkVQmvf8GLyHyYEZ4MIEpJpMUk3k3BBdWgHGOPPdM\niVaGXBWR1MYel2ZSgJQToGaYfua3PLwP/AdtKZnzWMdvxwwN/RKlPBNUbrwskdxrH/LX/+tf5ne/\n/LXhPvoL3/4kv/QzP0ZrtIUOKkgdILVGIsGkPj0uz0kzQ5xmJHlKfaSO0rIAO4r9dsJP/4OP8nt/\n9OXhdr/zO97Dv/jvf47x8XGQyksAlQUXIFUBYJzB4T1BHilahgBuuGfcsLfIWh9KcG5htvj5g1eH\nzsxOD9PswEchK6UIQw9mtdae0VIKISxaOJwLh4EKOogIo5AwDNBKoESGdDkud+QObm8dsLZzxMzk\nDJMTLbI0Jk/6mLhPNoj56G/8HlfXXh8O8MLVD/F3f+mf8EN/6b1ILIESaBxxHPOvP/8C1za3hq/i\nkcV5/ur3vY+5mUnCMEAF2jMkYYhS2oNiqVDCe7+KAGtPggnfCfUzP/KD/MK/+HW+ee14Nezy+Qv8\nxF/5y6WuER+g50M2nNdgMjs5xlhzhG6vT6fbwxQsjQ6CIpwChJRIJdAqQGtVBHUIlNQ+vCAIkAIf\n+GAtYVghkHUGPUea5Rx2jqhVR6hH9cKPBpnJ0UaR5b7bqBYFzE+M8W2ry/TjhP1Ol9NxOk5HOU4C\nm/LfJ7tDynhdceL+k2DnZK9OHWiBbEJLwqzwYGcFxKOGkSfbLI3fYiW8wQV5nXPcYoENxtmjRh+F\nJSPgkCb3mfE9MfI+LXXIjQsJu/fnCCopDTqMccAEPjRA3gPWwN6Bl9rwXCb5ajnptPAX1iTP1y1z\nc6A2La2DAWOjbVr6kEZwRLXeIxmpUpV9GnRocUQ97yF2gU0wG3B7H340OzG5d/DunuRX71subgLb\nEO5ZRhZimuGRjy4Oe+hKTlZWDoUcg50EbCLpU6VHnQ4NBmHVe5gmYWWOt2Yu5vGszQQkVd9b48OS\n65iB9sEPYwZ9PmZqeofR2h7j0T4t3aZOjyl2mGKXVrdDuGF8xPU12L8FG3vwlczfdR54ZgtmFTQl\nuFngAP56T/K1N4QDfInn+Im9Dr9/YL0/5z507sOrR/AhK/n6iX333kPJJzYsZ7aBXah2BzSyDiNB\njxp9wkqM3HX0zAj3phe4zTmmxA7NyS76csao6PG8tHzgf+rwybsnmJplyfM/bcnfBQfLDW6E59hm\nlqP5u8y2tmmtdFh9KmN14N+PdFTQHa9xvzHFWnWBb4rHucKjXE8usL67RH4rgHXh5Xv7QM+B6+ON\nZQW1Rspw1fl0/JmPU7Dz/3JIQElFpAOqkfdSxFmOCjRRVCGqVAjCoJjoeQmYMZYkThHSuVUfAAAg\nAElEQVTSEQS6kIEprLPeX2GEN5MbL9Eqk8Sc8HIiIcQJL86xOivPLbmyKFVGUhusKdmdEylq7sGn\nnWd3HNaWIMGVpMfwVDXOecO6dB6juXKyXySNOcdP/Vcf5/NfK43rhc/lhQ/z3H/zT/nln/1JdJig\nA+9RkUKjghBpHHma0et1MdZST2sgHZVqlSRLSHN47ud+iS+8cPt12/39L36YH/3bP89v/A+/4Jkd\nqVHa4LRFu6AISPD+JeesN+KXaWzieC/YwqdjTF5IAB3nl+b5zmfeze9/6cMYe2J1SP40733qac7M\nzdDvD4bysBLwBDogCAJkMbn3skaDVCGCHOt8t06gFToQgC8jNWmCy3N2Dzp87Dc/z8u3j4s3l+fm\n+L53P0rgMtJBh529Q165e483xTg7x63NZ3n1zhqNKEA6g7Q5v/ON62y03ev23avrz/HRX/8dfvjP\nv4PWaJNms0Gj2aQ+MlIkwoUExbwll0UHXgmGi3lPa6TKz/7YX+H2xn2299rMTk8yMzkxBNriJHs4\nPNAYJrRRyBtN4ZWKooh+v48xmY+5jiKiKCSOA8+YSYmUeGApwJmMPI2xJkPJKrpaxRpDr9ul1+9z\n1OmgUCjhU+U8G1T4lwoZYD2KeOelFa6tb9Lu9oYLC6fjdLy9RwluThYivjFKWr/hvpNFiid/v/Tr\n1ECHPoRtFlgCsWKIVnssTvvizMd4mUtc5YK5zvTBAfVOjyDJENZhtSSuVTgcvct8dYMx5UtCRdNh\nkdSU7z6p0ffxyP0c2l52Fe/DhzPJC2+YhH/OPsezNzt86rJFtiHoWGrNAVUGRDIm0BkisAQiJywz\nuGzi09M6YI7gg903T+6/wnP8RLfDZzsWuiD7oFNDhZiQlEBmSG2P8WC52zKgB7Yr6WYNDsQoe3KC\nvco4ndkNRs7FXHwSvudFyacP3sxcfFdLsvoOC8vQnwvZr7XYYZJ9N85h3iI3GjWbUp85ZGpqi/PV\nm8zLDWbYYpx96vjS1Rm2qQxiL8Xb9rdbh/DXMsnXTjAU74ol//Oe5bEJYBpeS+AP7IMldp/Nn+Va\nH1YtEEMSw982khd5gPfooMNn+hYGECSWyGQEgZfiBUGO6Fnioxqbk4vcGN2jKY6oVgYwC0vhBq2p\nQ37racuNV+H6PbiwCKuPWbpLERuzLW63znCFy6yxxG5tkqXaGlOjezRneqgsxyrJoBqxH45yT3pA\ndZVLXEkvc2dvmd6Nlg95WMP7wNoOEkuhZ/MvkLL4tmR1TkMJ/qzHKdj5fzBKH4qQAuEoEtb8pD+O\nByRJQqC1jx4OApTWnhkpVrgtgizLfBu9K1awpcInh9kiytj7V6Twk7vjv+ylPP4xwqetGbBOYIxn\neJQyZKkhS3NMZIsFdjGccjo40Z1TTkihZDusca9jhcqv1vlgBCv863aySB+gMLs7w6279/j9r3yd\nB/lcvvDis7z46g0WZ2eQKqI+0qBeH0EHAUoHWAZ0en3iZECcJqhAowKNdZYbt+/y+a++8MDtfvoP\nnuXazducW1oAkeNM4CPEnPeXDF+D83KuMoGsfM1DL0vB6ljrNc3WWv7ZP/gZ/up/8d/ymS8erw59\nx1NP84sf+amhlHC4bdzQPyKL0AQAJf0xooR3XvkSWINQksykJHHGoNej1+0y6Pb4J//7l7l1P+ck\nMLm9+Ry/8Xtf5S89ukinvcu9vaPi2TxYxuCCkOboKP3OEQf7Xe6122/adw7H2sGzfOPlVzm3MMX0\nzBQ4zwYpDJEC6cSw1qiUuLlSVuYsJk8ROJZmJzkzNzMMlsAKnHBFUrgY7qfj86eMQPchC2UgRKg1\nPWuJ4xidGyrVapFGqFFaI7UC6yOznbWkqWEw0GRZgsMRBhGuWiNLM5I4ptvvEShNNaoilSIMNcIJ\nH4FenASBkjx2ZpH5iTHubO/QT9K3OPtPx+l4O4w3Ap1SrlYCmoDjApyQY2d9wDHgOQmSqkANZORJ\nnnG8V2QJgrMJ4/P3uaCu8Rgv86T9Bo8kV1na36B2PfMpZ4f4+WIFmOozcX6f0YVD6q0BOvB9L4Nm\nlQyNxCCxKIzvKcu8X/xqCl9+SELXp+NnuXYAq4WvXDov+ioySDkurD6h5S4uIa+l8Hn3Fv6ZGC6W\nv31CJT4shCh3dQuv8qv752Dbik67xe7EFBtynvVwnunJLc49ukHQt3ziP7J84N90+OTOCeZiQvL8\nD1jcE2AeE+zMjLJemWej8JgcHY5iK9BoHbA4e5tH9FUuco2z3GbBbDKeH1DNYiSWmuxTG8THfUB9\n+Bux5OtvACZf5Tk+2Onw2dQiArg5tMs++Nr0ag/PnAC3HPzRQ96T3zVFv40CK32thTux38QAsoMK\nB/VprldWiaIEIZ1nsubrnJm6S30pZfIxw5RxWC3YaSi2WuPcCc5wjVVe4xI3WGGTOe5wlolgj0ar\nQ0RCjqJPnQPGvEyOJW7H51nbP8PBrQl4RXtD0l082Dm04BI82Onx+ni2EuycZHgEp8DnT3+cgp0/\nZojSiF8YtoUUBejwoCDLc0QSIxGY3BSFjT5ysHycNbYo2PQmfSWUn8ApDVIS6BByh8P4VWcnj1fS\nHQWg8MyO1sr/jcLoX4SMDQFPJnOyJCOvGv93rRs+Bkfh4/Db9YWjRcKac0OwZcseGucK1qkIOZAS\noRyuuJY5vNHdmIxX76wVe+zBH3RXb66hUFgLUbXG2Pg4o6NjhJUKQioc0O326Q/6KC0ZaY6gtOTu\n5vZbbvfWnXWWZqcBSRkdJhBQJNlBKcVzYH2njH/9rphs22OggyvAq6XVrPPr/+jnuXH3Hldv3GJ+\naoKlmWnMMA3MhxIopQgC3+EipcCY3Bd4SrzZXxikS3HECDKEcOQ5DBLD4dGA9sEhB3sH3L67wc3t\nPR4ETLYPn2Vk8tuwNmMkTvBXoJMyhteAfwbAtz31JDWl2d3eZPfwrfttDgYxY4dtojCgXq0yUqtS\nCRTYkLIvQJTsoJQekBtLnqXYPEMXAA+kP0aKIAOHV2j6jlnJScCDc0WJbRF8Yb2nSBbsZZ5lpGlG\nGFWIwipOOKSSSCX9sWkz8hxia+n1JL3C86OUpl6v45wjN4Ysz+n2++CgVqkRhAE2L8I7CiOaFILF\nyXHOTk9y5e69U7BzOk7Hm6RoJ5mbsjOnzEk++bUEQCdZHvCTvRoEka/YaeHBzqKjNtvnbO0OK9zg\nEq/yWPoy59bXCb+KT+u6A67NMdiZhWAdZp5oE12+hp2CLiMcCD8pNWgMipQAq6U30VfhXoCffz7M\n55LBhRCchlx4S79xCuMkzigyFxJTYUCFRIVQ60ED1srC04dtV8HFEXB1yEJFTERKSOY01kgvWwuA\nx/GMVwOoOFxXEm81uT8yy119hmlxn7Fon9HH27QYMFo3/PZ5y7XX4Pr2scfELUH+iKTzZMit8CzX\nucBtd46tfJ7+9ijRdIeF0bs8pl/mCfcij3KFFXODxd4Wo+0eotzXNfwlpjgEXssfzth8zjzLtQxW\ng0JidxeOr02v4VGB95YutIu7mrD5x+07CastSBoB/ahCTJWYCmkaYRIJu5DaiDv1FcS8I62EHMkm\n22Ka2+FZxmcOqNNDYsgI6NJgm2nWWeKWW+a6W+GWWeGeWGBK7jAqDqiLHiEZFsnAVTl0LfbcBFt2\nlp3tBdIbVXhV+GPzNj42e8/BIMXH5XU5lq+V5TvlQkEJbkxxfuScAp4/3XEKdk4MKRVaa4SURXKY\n72Hx9IZFCOeN0lqRZZmX4lhLlmWIYpKd5zlpmvr7CubG4idgxlikUlRrI1SqdZQOcPjIac88FExK\nycJY/105T5TCx1BLqbDGkRlLbhwqdyjpJ5s+9czPVb3MzYMYmxucLFdH/IzUYCgZH+fKaGtTSOWK\nPp9C1mYdIAXSGSyW3OZY5yeV1uRMT40We/HBWuJKENI+7GIcmPYRB4cdxsY6jI6NEkUR9foIgzim\n0zlka3sbqQUzM1OcXZx7y+2eX5zDGeNBmxFYkZEjcM6HBfhkOR9icDI6zjnvzyklhCV4EVIj3fEy\n3MqZeZZmJ0nTjDwzuCL2WIhyoi/QWhNFESbPwBifZobB5im4HCdyHBmZyRkkOd0k5qiX0u2nJLFD\nRw1iERV/8cEf/tWxCTqdfcbGmkzvJewcPYejA/xr4DPDR//6//EZfuTf+35Gak0WJqffct+tzM8y\nEghMltHvdUmTFrLVKGRjygM/4dDSM3tplvvkMge1agWpNMb6gA1rjS/EVWAsRUy5P95FuTJXRJXj\nisCBokjWLxyIomsJ0jRlMEioj3jgX5aZWiPJrSUQ/jKS54YkTsiNZ+SqlSpCSAb9BCUlxlriJEYJ\ngdYeYFlnSPOMNMsIg4CJRoPl2Wmmmg029g7e/KFwOk7H22aU04GTaWoni0FPlMFQK27VE/eVBpSy\nCRT8map83FaZUTAOaiZmZPygCBRY5zw3mdo8IPgG8DXgJeAOpPv44uUqqDn8nDKDuu6zMnqD7WCG\neyxwRJMeNTo0OGSUrLkLUwlMw+o0fh76MJ/LMrgpSCYFXVWnywg9VyfNIuhIerbGES3ajNEJm7Bw\nAEuwcg4faf2wjpZlYBH6syEHIw0OGKdNi06/QdYN/K49D0wXtzGg7iAyULVsxrPU9QqNyhEVBiDh\nwiM3mZ3co76asPokrKbF7h6FZDbg/twoN8JlXuJxrnKJm/l57vXnsYFitrLFqr7G47zMU3yDJ+yL\njF/vEt3MfGjAPsdgZ7R468bhRq18XQ8BJiGsNvESu6uSTx1+EMsvAl8fPrKBIhkYH3m9AJeW8H/z\nYe/JI8ASdOsj7DHJAWN0aJB26rhucNyz5DTr8QqDM3X2m+NsMM8UO4xyQI0BCkOOpkedHSbZYo71\nfJGN9jz96+McNqe5O9Gj1upQrQ4ISTFIkqxCr9dgsN8kv68x6xru4MMpbuElbPeAbopPJzjAy9cs\nxymExbH/pmGK+0t52+n40xhve7BTqVRpNJuMT0wyN7fI+MQEu7t7rK+tsbuzgy26bGyeo5WkWokI\nwoCjTsfHC1tb0N2gC6N8mcoFEFWiYz9CnnvTdSHfQqoC2AiUDnwhp3DHgEV4sOMlbv7iEWhvIreW\nIsbZoqREG/DeEY3WAcPY5yLu2WAos5bdUM/mJ6E3721xd2uHpdlJzi3MFcWlzocdFLHOTggPxkyO\nS1NMEfWbphlZnhPpgKcfWeUbr765S+XC4hK1So0490lxeW6wbgAcYqyj0RxBa021WiVNE7q9I27f\nuo1WisWZKZ556nG+9OKHC/B37J95/zu/naW5Sc+kOedldlZAXhgDnUUWZapCCv/5YvBBDyckeK5I\nbhMFq1NGbwtBwSaY4ffgiihkiVYSrEBYiyBHkiGEKYBrDi7DWYOxObnNSXNDmjmyDIxVBNEI1XqE\nDkIOBzl85WUetiqWpTFJnmOF5D2r03zlxj6b7efwM4hj2dvLr32If/4b/xsf/A9+gNZKxCNLV3lt\n/c2paatzszxxcRVjU4zJqVYrBDpAaz9R8WENpfzMszrCWbQAoZQHekKAM+TODEMRrBNI4YYpav7D\nXPqUuUL2afCLBmEQ+JvW5MYRKE2gA5IkJx4k9Hv9QjJaRLJLiRQeXAYKD46ERCAxxuGcJAwjavWR\ngl1TCGNITY4cDPy5I/xCRZKmhGFAICXLM9OcnZni2r0t+ukpu3M63s6jNJCUrE4pWyuBTR3/mdMs\nvtb8zwMNocSfmIKhBta6omxT+IcWgKfSihmtHgwT1GY7u4xsDBDXwL4CyUuwdQBfG8AdBxeP4N1H\nMOogrICatDQXBsws3mda3+cm5zlgjPtMs80MZ6bWaSx3UevwSBu+e1vyu70HJHTNSVbfaYmXArZq\nk9yXU+wxwWHSon9Qxx3AkWkWE+VZtqJpFs5vUL2XcbEN3/MNyacf1NEy45O/uAjtsRabao4tZtlj\nkn67hemHMA5i1RCe6dFqHjJS6VLRAwLhryO58j7Uu5zFCcGAKgfROItTG4w39qmf7aNtTi4Ug7DK\nQTTGRmWWWyxzlUu8Yh7jzuEyyUaDkTMHzFU3WBa3uMhrXMpeZfK1I8Kv58gr+In8DsdgZxafnDYN\nK+eBq/Cwa9PZIzyjMw6fuGxZ+aM+B+4WJ69LPZ7jb6Yd/rBrIYNLl+B7bj5g34kP8d1Lkgvvt6Sr\ngp3mBOssssUsO0yRHYZwILx87EBACnk/ZH9/mv58nY3xRcZaezTkEVURD2PL+9Q56I/RORqlv9sg\nvlfF3tCYekA2qolbdVTFIJWf75hEYboau6/9ftkUHpyt47/u4tkvq4sd1jpxzpxkROPivDqhYwQe\nXDh6Or6V420JdnQQ0Gy2mJqeZWFxibn5RWbn5pmdnScKQ65cuUKeW5I4IY0HxHGfzPlQgUq16o3T\nSVIYnT3zIb1N3/sDoohqtYpSyj++WkV3uyRZBkIgpTdNI6S/Flg/+ZMaJAbrrL9PFNozr2UjFzlS\nKKTUaKXJTO5LSaXEaFdI3fSwn8cVK+zWOhC2MGgX3zs46vX5O//oX/GHJyKMv+PJx/kHz/0nVMOQ\nvJTfSR8bnTtDlqXE2YAkS0mShDhOSZKUPDP8h9/5HvqDz/LqnRNdKnPz/MD73skgNUSRB4HKeU14\nmhl6vQEIQbUaIYSiUqkwGPQ4bO+zvbmFdI6//6Ef5r/8+K/wRy8eb/eZJ5/k43/vg2Rp0ckiCp+R\nLFixHF/kKks2rPDSSF7vubGFXEuUQQ1wkk2z1pyY+Ftf1izxLJmwOJdhbYIzKc6khafEFJHXBmsM\nucnIjSW3YJ1C64B6XaGjOtV6kyAMMHnO8uwst7Y+CG9YFQuDiN3dHdLcEAQRtSjgfY/W+PU/fIU3\nSQuc4+UbzzJIM87MzPCzP/IBfukTv8kLJ1LTnjx/np/+d/8ikZaAf35CCCqVCJzvsXHOy/KkUj5Y\nAFdI8yRCSrQs1q0EBEoWhI3AOJDWSx+d86HWzloPdvDSSQ9EJKHWREFArP0ql9aSKAyJ45Q0iel2\njgjD0DNE+N9RUnqwoyVKaZwtvGdFjxMIgiCkUqlSiSLyNCHudYnjAUbnBEGElMKDnSRAK8WZ6UnO\nz83QGrlJf/8U7JyOt+M4mbz2Rn/OSZBT0jMt0DUIQ6ho/+N68dCIEyo2PyHFcoyXahBUMkZ0hxaH\njHFA/WhAsG3hHth7cP0+/FhyIuXMwnszyfPrlrNTIDcg2LGMzR0wqtvU6LPDFPdY4C5nWGhsUD87\nYOyoh7Dwa6HlA5/u8Mn9Ez6XRcnzP2lJH1e0zzW4o8+yziKbzNLuj5NvR7AtaB9MsB3MshYtcVuf\nY3r0PkuPbVIzKZ/4a5YP/EqHT66f2O6S5PmfsPA0tFdGWB+Z5xbnWGeBLWZJ9mq4SBBd6DG6sM/E\n2DZzwSYTco8GR1RIEFgSKhzRpE+NQ1q8wNPsMsVcuMlkuEuDI0KyooNohH0m2GKOuyxxI11hrX2G\ng/tTuFgxWttjRm+xxBpn0jVmd3YJX8qRL4D5JiR3oHvo1SBhALVpqKwCl+DiWfjeluT/fABj00Kh\n94wHO6OwY+DAGR4kefuie5ZrFlYlcAG/7361wyfXTuy785L/9SOW/CnYnJvidnSWO5xl3Syy1Zsj\nv1+wOtt40DEAjiDbrZAthnRnmxxOjRGFCVr7QlpjFZkJiA+r5Lshbkt7ZmbNH+JuRJPXNXmFY8VZ\nyjCIgnbx725xf4DvRtJAIiGtQiLAlOD/EM9wnuyiOjlKedtxCNXp+NaPtxXYqdXqtEbHmJ6Z5dzy\nChcuXWb5/Cozc3M0Gy3CIOCwvc/O7i7NZotarY7AF1yCIwgCwjAiDEMqlQrGWrI09avewq9eSyWH\nP9daE4YhURShg+BEXDFDx6K1jjQzaKnRRYpXCUoQjqJ6Bed8RHIucyIVoJTCKEdaxE6HuZexlWyN\n9/AYpDJFjLUgK7wMeW7ACX7mY/+SL72yxckVmC9+88P8Zx/7FX7+gz4EQEoNyqe/xVlKf9Cn1+/Q\nj/sMBgn9fswgTsgzi0Dy/e9/F+9/4lH2jzq06jWa9RrGOeI0Q4ehTy1TGl28Bmsd/f4AcFQqIUEQ\nUqvW6B61OdjbI5SKqYkJPvZ3fop727vc2dxkeWGWi+fPFNHeWbHC74OxnREccwrOMy/eXIMqGBtK\nRVvp5QGklENZVZ779wBnj8HO0NNjUcJhXY40KeQxZDFkKTZPiwLV8nf98WGM8cHNQrG112Gnk7Kw\nsMDq7Bz1ZgshJUftfX7ou97Dx37tk8TZ61fFsuw5Pv/Ca/y5J1eoRxG1QLG1d1gc1Q+WFhwNekxM\nrlIJJ/nHP/s3WNvYYH1ri8XJcRYmRsmylDRNcJgTgM770PIsx1o5jH1WHuUgi24lhA8vkIDUnnHJ\nbcEGWos0PpDBY2znk/xKwCOEl5UJQaAVoVboggUNlCQMFYGWxIOYfreDiSJ0oBDO+kCQEvQoL7Pz\nctIymt2HS0ipqNXqNBpNsjTBWUsn7pMOEqIiHt4zSAmEIdOtJufnZpifGGNz/1TKdjrebqMEOMMI\nEY5joyv4mV0TD3KKW1iHhh7K0hgrHlICnrLJ3uAnpD38RLFQuWmZE5Hi3RgD1MB4NVAbzCH8ZPLm\nlLM/4jl+dKfDp9sWcQSi66javk9PI8GguMsSM2wzrvepziQErFGtDhidhd9+zHJtHa63i4Supyzp\niuLgQoO7U/NcY5WbnGc9PcNRewzuadhw9NdabNXmuRUsMyp9RLM8Y5mRe4yMJfz2o4Zrr3iAdmEB\nVh615IuKo6UKN6bPcDW8yDVWuWvOsd2fJ0sCopk+03MbnG9d5xy3WWLd9/vQ9pI1IKFCm1F2mGKD\neW6xzDWqrLNIjR51ekOw06fGoRtl10yylcyz3Z6hd6eJ7UQE8wktccgku74rqL9H/U7mJXhXYfAq\n3N+EL2Yes1wE3tOBqRxC5d/b51csK1/rc8Drr00dnuPHjzp8bteCgRtDVdaDr0s3QrjYAlZgdBp+\n60nLjWtwfQdWzsLyE4LBQpX7Z6tcCR/hirzMdXeBtfQM7Y0JWFdeCnefIgkNf9zsAvckbkoyGGsx\nKAhHP4HDW2lKtdlO8btlG0MBwIcZG2W+hit+Ny1Oj1Zxm8WzOj2gI6CtoT3i70tDcKWU8+QCQjkK\npcPwa3nfKeD5Vo+3Ddip1epcvPQoz7z3z/GuZ97H+ZWL1JtNdBB470makiUJQkh0EAzlZ3mWUq1U\n0UWDe9mjUq1UwDkGeI+BkIJAexmOKszxJVNQrmSDXzXPjSmYA1+OmBuDlgLpBE46lPNeIeF8klvZ\nY+NskRzmrC8fVZosSX30dOEJ8sEFjkzliMy7xA3Cy3nyjDhNSNOctc19vvjSFd5oiLfW8eWXn+Xq\n7XvMTIwjtSa3EMcp/cGA7qBPv99lEMf0+zH9fkKSZijpY5ejXBCGFWYmIqwx3vQtilLTQGKFZaQ6\nQqVaQ0uFsYY8T8nzHGs1oVaM1OvE9SaDQY+jwyMCqcDB0twM5xZmPCjBm9uFE4WZvmCyjPDdpqL4\nN34/49QQ8JRg5/gmUMqHPzgAUwYvmKGBvkxyEzZH5DFkA1w2wGYD8jQmSxJyk8MwdtmRpynxoA8C\neqnhY//2y7x46zhW+pmnnuSjP/cR6rUam40amc2Jsxj4H3ljSMHW3rPMzv5FJpt1IikYH+vxm3/w\ndR7qx1maY2SkSrUSoqTgcr3K5fNLuDzH5jlZ5t+vPE8Kz5IHPAiGEc9aa7T2LKQS5THtrwRlLLnF\nK1W0hcxYKFmhMthAeJ+MM14eoKRCC+G9uUoRBh7kC4FndgJNJQpIYkkS97F56kFwqFFSFEWxDqz1\n0dWZwRRSzvJ8U9KzZ1GlRiWqYvOcQe+ITruNyQ0Cf65mQYBWkigIODczyeWzi3z12s0/mQ+c03E6\n/n8zSpDzRvla6cVp4NHMJDDuk9WmhA8aKG+l56TpPDaKislbKvwk8BA4Et63LUFIh8QW6WlFEIoB\ncrgWwxfeKqmrDxeLkKtyGxJL4iLu22la8oia6KOrOeYMLE/fprZokHuO8wPHeQFUBfmcYG+mya3a\nWV7hUV52j3GNVdbaZzlaG/Uz/w0Bd2B3epLrjQtEQYIWOWkQsLp8jTOzG4wfdFh+CpaNg4ogHpMc\njI1wR57liniEl3mMq+4yt+Nl2jenERMZs1PrXG68zGWusso1lu0t5twWY3afmvNgpy8qtMUY29IX\nZ45xwCs8ynUuMHBVIpcSuIzMaWIqdPMG7e4og81RuCO95KrukKuWuugxSpsx9hmJu0NJlluD63vw\n42+IlX5PR/Iv71pWx4AIdvpwwIMZm8/bZ7nWhdUYVmbKLTzEi3MGWAQ3B/klSR5Jzr3bcU6BqQj2\n6iNsVGe5zVmucpmXeZSr9jL3uoseKd3Fg509fDhAimdcdguZ2VhxuFY5xhsWfwwWLBAHxe/vO8iF\nB+AlIxngwyIm/KHOaLG9qNiWwx/DAzzQ2scDrV08ANutQ6x92sXr/Drl1bJojn0duBHF/afjWzne\nNmDnH/7iP+bsufNMTc9SqVSPO3AEGCOw0pDhitNdoIOQSr2GwxGFAVmWoIQgCgPvT5ACG2icCf0E\nt/gvyzKSJCHPM4KioV4UK9FKSp+klhucdUihUAqszclyv+KM9LG9Qitv8nZmGFrogwQs1uQ4oYdS\nOOMgtxyvrhuDyHxkY+ocLkl9AanNyTL/t27e2yz2zENSzu5tE0VVMmPoDxJ6/ZhBEjMYxPQGfazx\nsjljFSiN0gEqDJCB9sDM5FibF+lyhjh10DUkaUCeZjhjqdfqVCsRrWYNa3OE80xWNYwYbbUIA41S\nkjTP6fR6OCS1WoWqPF4R8Zfpcv8775dx0n+hTAaTOHscn+17Y/yHTcnmyJPbLP05zmLy3PuUrMEZ\ng80yTBpjsoQ8jUmTmDQZkBeBFVrrIpXNd/eAQ0nFx//tH/LS7T4nV8W+9OKH+dYwe/MAACAASURB\nVE///i/w3/3sT4MzdAalvvfB70lrdIJHVpapaEklDHjXV67y1Stv9jK9+x1P8cSjFwkDTaAVUjic\nFbgUDI7c+S4iKSVx7MCkgCQIKkUAhyyKUuUwMlVKhSiip01uyI31ZHyZUljI9Ev/GsV5hBA454E4\n1qG079lRUqKlItQBURTSHwwIlH9dWSUkHWjibpckjZGuQiBqhKHyi26FrFMKgS4CEEoAZowlTTPS\nJEUgiKo1ms5hshiTZcR9L0sNlKYSBERakgvH7ESLx5aXhsEGp+N0vD3GybLQNwYSlGCnCUyAGIUo\nhDl8KegZYAlYwN83DXIiRTdidJgjlSWNQ7JuFdcO/GTwPhCAyRUpITERMRVMRfpJZQtu/XFJXfiU\nM+qQyqjYRkS322BnfZHXVlJkaEkJORQtNitzTC3v0jxzROQSr1KSFfb1OFtqhtuc5TUucpVHuNq/\n5IHODel9LPf8y0/qI2ypJTgLuVB0GWGHaW5Hm0xO71Kf6CMx5ELTlSPsygnWWOIm57nGKjd6F7l3\n/xwA85NrXKy/yjt4iSd4kcd4mTP7W9S3+6gdi+j4z59WLWZ64oiFufvMzmzRoIMqvB5XBo/y6t4F\nxJGEXGBTge1JbFvBdjHx18CYQwQZkfAdPxEpgcn85L8L8RE813tzrPSXeY4f73X4bN9C5Gtl3vI9\nkbBahYuPw/d+Q/Kpew/oAZqQrL7bwiXoLFe4O73APbFAtVkwWTKiLUbZYoY1FrnBCtdZZW3/HL2X\nx7xV6A4e7OwCh85HPq9HsCc8yD5hIxuyNJbjkLQuXprWLYASDmrCH+pjxXE8h2dvZvAFra1im6Xn\nNy22sc8xS3QPD4zqwFYAR63CzwPHIKcEOm8cp/6dP43xtgE7WZbRaLYYH58Ypo+BlzoJ6X0ItkiJ\nKtO1arU6GEuK92loCYEU5HFCJEBqjaxQhBEIv7qf56SZT2MLgoAsywppjZe3CVFMhK2XvkklcWky\nXCG3rkhntw5VTOOdO5Zb+VJEg7JFhKEoJnnWkRtHahzKOoxxyDTHZd6gnRuDxcuJrHE0RurFnnlI\nelqlwt5hh/4gptfrM0hS0jQlLpKyrAWpAoTwXShS+VV7K7x7yQqHFSA0RdS2KGK7JUk84Mg68jQh\nrVZI0wqBlshKCIFE64Bms0GlEhWAwUsr8kKCZ4Ii+tvHzxXMjgOkT8WzPjHOeX0TAuW9PO6YnS7L\nLaUsQaP3lljjmQF0ANZhTY4tghWsMZg8I8szsiwhTWPyNMEag5SiYNvkiTjrHCFgfbfNN25t8CAW\n7Ytff5aXXnqZsUaNi+fOvOV78vQ7nmBucoJQSQKt+Oh//hE+8gsf5w9eONY8v+/b383H/97fol4N\nEVhkGcQAWOmj06WUoCjYFI3DP/8o8gWeUkmULEIdCsg4jJA2FBHoElsASC/bc68DPGV0OYiCnSyO\nb2tRUhcdOl4qFwaaOIYw0L6DB0eWxBy1IU1SUhyVQBFU6lSiiEoYUAk01SgY/k6eZ0jht+//PoAY\nyk61hDxL2dvZIY0T4kGfNAxxocIJzUioOTszyePnz3D1zjpJdrrSdjreLuMks3MS6FTwQKdYLq9G\nMCs9yFkBLgArDnk2p7W4R6tySCM6ohZ0iWSCEI7ERPTGR+jONjk602R/ewJ3EJC6kI5tcCRbHDDK\nYDQknwU9B6uLvCHCuBxFytl5YB7spORAjnHIKB0aDLIa6V7Epj6Dmdd06yPsiknWxCLT0Q4NfI+K\nA2Kqwx6VdRa5nZ/jZmeF9r0Jsv0IAuHZKgvsg3tV0RcNNrIz9OeqtGtj3FMLzMhtJuQedV3GHIeF\nf2acTeZYY5GNgzPs35vGHCmqFw5ZrN5lVV7jMld4LH2Flc016q/GqBvWg5TD4u82DcGcQa8Y9KWc\nYDkjk5oBFQ7DFvu1Sdp3p3E35LGv5MA/X3p+H3mJg28NKsOQhkpFBTcM/OFDWLTPmWe5lsJqvYiV\nvvLw9+TCHB4YXITn/6blA7/c4ZO3T3hxFiTP/8cW922QPi3Ymprmqr7ENVbJlE+ljanQocEeE2y6\nOe70z7C/M0P/ZgN7RXuUWzI7hwbsANiDvAa9CiQRHBYpd2UgkeA49MziV4WzDEwOrubByQQesC8X\nt3PAmZxovk9jrEM97BKqDCUMzglSGxJnFbqDEQbbI+RrlWNmswoEEjY0HNS9eZiUY6DzoBscp7Od\nytm+VeNtA3b+4HOfYWFxidnZOYQ8QS8Wy//lJFAqRVipUKvXqdfq5HFMFvcJlCRSAu2XlgkCjZbl\ngSqxQJamWOtTyrJCrhbHMUmS+Eme1kOpjS2CDUpewjpXFDf6pvfcOPzTPP65EBxPuqXxaVOi+CBz\nkFlIjIXcIm2OA3JrSNIUYy1S+edpLTQbDR5bOc+Vm29OT1tZPItWAfuHHXr9Pt1unzTLyHJDluUk\naYpzkiCUBIFGIHzYsrNkFnAGk6c4m/mQBVUkaiHQKIzNSdMYrMHkCVnapxKGCFtF4lO/lJLUatUC\n1LghMKSQ8zljsLnAqQznipm7lLhiFl+a40VZLmqPTfT+vfbm+1JyiHMY4eUQxSUBqzzbVrJHzlpy\n46PF47hPliY+clmKoeTLe6vyApj529rOfnGcPHhVbGPrPkvTj/LUI4/w7sce5SsPYGve/65neOLx\nJ7AmR0uBkoLWOPwvH/0Fbq6vcXf9HstL86yeXUQ4S5bFRc+SRWBBWM8aKoG05avyYEcIh1TCF+Eq\nVRTOHp8gPpbcFIEOft9IKYYAphwlQyakAENxXOEJHiV9YERxnxSykJtpX8RbMEmVMCTUCpOlHB4c\nkA4GuDyDPCOQUK94sBMWfh+J7+ZJ4tgX/SpNGEbe0yO9JDUMAu8DivskScZRfkCeZsS9HmmgCF2E\njCJmRxv8+acf5+72zinYOR1vg3HSJH2yRLQsDC1ZnVGIqjCuPJNzAbgM8nJG9XyP8eldFkbvMi82\nmGCPFodUS9+JijgMm+zWpthqzrI2ssTB7hR5qDkcjLJXn+A+09yvTdCc7dJcHfDIPnzvFcmnDh6S\ncvZOS3ZO0Z4aYUvNcJ8p9s04vXgE9iWDvQZbvQX6s3XuN2a4W19inH1G6BGSFmCnwhEt9t0YR7To\nMkKuFLV6n3wxIx0NyaZD2NJ+ct0He13Tj5sk3Yh0qs5Wc57R6j6jYdv7jjCkBPRtnaO8xX5/isNO\nk956i6xdIWgljI/tsKjXWeYmK+lNzu2u03i5j/gacBXMGuQF2AmaIBdB71oayQBd2aI9dZP9cJz7\neoat+hyH1UlcX8AdcZwSdohnOUaBFFyqSF1IQoUBVRIdQaMHTbhTeqveirEZh4uPwvd8XfLp/Qcw\nNk3J6hMWlqH/WEhVOX77Ysa1F+H6GlyYhdVVi5kVdM5VuD8/zqvRKld5hFd4lG2mcUhSG9LL6hwN\nWnT7o7R3WmS3q7gbCm5yXOS5ZyGO8Qhv1x+rtgZpDdLK8bEshoWAnEA7xaFf8Yf4hPDH9Apwyd+q\nKx0aMwdMNHeYqW4zzh51+mhyLJKYCoe02DWT7LZm2B+fpDvVwI4EEBZmVichC6DTBBdzTC2Vt0Kz\nOZS0lTK30/GtGm8bsPO5z36Gdz/zfi6sPkJ9pDG0jDlXFh4KlNZDg3yj0WRkZIS4c8TAuSJ1ShFI\nh9WKUCkGaUZq/OTYRxQXnTTGDie6g8GAwWBAmmV+7ayYhDnr5UBG+U4fg8MW5m+Hl9JYWbTNF6ED\n5f+MsShpi0mpn5obBLlzJLnFJtmQxcny3P9tKQnCEFekv0kp+PEf/D7++b/5HV46kdS1vHCGf+c7\n3kW70yNOEvqDQVHc6NmovPAFebmTRgUaqTVCebDj8hxnMkzmwY4WAicFQityJzBCe5lYKTmzApdD\n7gwxBkxGnkaEgf6/2HvzGEnT+77v8zzPe9XZd/d0T/dcPT27O8slKUum6FhOIkeQIiRGDCSATNgb\nx1GURCElx4ihIIFkBDEEJIHlyIiRQ44N2I5DWQnsxLbkUKZMHbAOihJNLveae3r6vrur63iP53ny\nx+95q3tHu4qNmHTCnQcodE9PV/VbVW9V/b7P96LZagnTEGm0MsIMaTUGFLZylMqFxzQk3AVZ1XiP\npE5pkxKdsZzQRAZlIpS+AKBGeYwWgCAAq+DSiSJgp6woipzRcCjhCAHoxLHIwopCopzLqqQKX6fb\nWbiR998Ve+naMtPdSZIk4Sd/5If4T3/yp/iVS2zNv/TJ38//8N/8OM12B+990LiHUtSq4s7NG6xd\nX0ZS5Gy4VHhfyWPMBesiyQISba61JooS8eUEz5LWjAtW69LVuoC1BjvgUV7jhTcKDJqAHWXkIsXR\nNeAMbJL24FVg1uS5iEwU5HZyXiRJQjNLwVl6J8cU/QG2LNHOop3IR2OjiZRCeU9VVeSjEXkUYZTG\nZBFZlhLHIifUSmLdldG0u1O0zwcUo5LR6SmDQZ8sMiI/VIpOlvLJV1/i7//ab9EbjKjsC3nBi/XN\nvPSliwlfa89Oyhjs6BZ0Y5H3XAfWQL1a0XrplMUrz1jL7nOLR1xnnXn2mHLHtNwQPOQm4UhNsasW\n2NDLzHf3uN9eY/N8hX7RZqd1hU2WeWJuMDHfJ727TVpWfNY5PvW/9/jc7nPswPc77McUvdUmTyeW\nWGeFLa5ykM/RP2mLTO4Y8qM2+8tNjpen2Zufpx31aeghka7QkYPUURFR+YiYkunokIXuDrZrGNLk\nbNSldzrB6KBNvpXhHhnoaTjS2KzBQdHgaDhD2h7QTAYkukArR+UjijJl1G8wPOiKb+ZAQdcT3SiZ\ni/a5onZYZpOr/W2m1s+lU+grkL8N51twfi6fXd0WtA4hGYI2ntZEwVJzm+V4gytqhxlzyJO5AjeV\nSerdLgIGThF2IgeGCjfQ9H2bUyakryZts3DlCLUEa9cRIPFBjE1g0ZiEn/4jjk/9bz0+t3/pOZnR\nfPZfd/iPgb2rOLg1iW0YJhYHLKxVXMkdGMVJyzCcTNmdmuY+twXo+Fd5p3qF9fPrYKEsY/J+RnGc\nwX4s0rBnly7rHnY99AtwtY6sh3za16mBdcqACb6Z+gM8mLwA6ICeEDB4JZzTd0C96kjvDlhcesa1\nxmOu85RlNpnhgC494lA4OiLjkBl2zQLrk9d43LrJ+uQ1evEMVsdgtTz2IyVsU9EJgGeEmH1yLspF\n60nlxWfN13t9aMDO/t4O9++9zUde+zirt18a/7z2GCiviKKERtaQJKdWh4lOh/5xxjCOUA6MEg9D\nHCcYY4g9mEKM7MPhSECFErlVWcrPi7Icszt1yaUJw7WY80XWhg+nvdIojCSyecZsj3JBfoXC28BC\nhE4er4SirpxiVFpyJ5HJdWiBQ5go7Q2lteR5iTaeqekJ/qM/9m+xvrnD+tYOjSQmTRLyXLpz8qJk\nlJeUlRsXliqliOKYRqNF1mgKYFCIFwMnXp2qxJUFVRG8QlpRakUZ59iyoNVuEkUxSWxoNVKaWRrA\nj6fMxfCfG4O3Fc1Wi0bWII5C2h3graXyTh6TSuSCJhJplHZS9KpqxqYe2q2VBG00Wmserm/zaGOH\n1evXuXPzeigU9SLBoxKWDy3MjhdGzVpLVZYURU5RVURKkSTiOUkS2SIry0IAZlHiUcRpyu2VNt+y\nusJXnmPRtP5hPnn3Lh9dXcWkGVGcMj2Z8NM/8eOs7+3xbP+I26urrN6+jVNKpI/eoaRkCVuB9YFh\nGevELFWVi6/LWRQerb0YgA24UmSQzjm0MiRJjFIJ2oAxklbnnA2JgNUFyPEe54TZq8oStMYkibCK\nCgh+HgFWAjLA14hT+nKCd6qWUmgdQj/ihMgYtFY0spRIazSOwewU+fk5571zlLe4MqcY9okUmFgK\nTXMbfGhlRZ4XaB2RZZlsKHiH9RUOi1eKKG3QaHdpnPepBgNG5z0GgyFKKalBbDRYmp7i9vISh2c9\njs/OvxFvTS/Wi/XPcdVgB97r2WkwTmHLzIWfYQW4Bckr5ywvPOXV9E1e4W3ucI9b7jGLbovp4oTm\nIMdYGLYMR+kk22aRJ+oGkxyT6RG67djxV9jwyzziFtPqiPbkOcnaiKXsgMkJz9+/63jwICR1LcHa\nXYe/oeitZWwtzXGPl3jIKuv+GoenCxSbbdnor8vsTzTVToOjuQZHE0AGKvM0Js9ZXHzKElvM673A\n+vSIw879OS1OskkOsjm25pd4euU6w4kuvh+h6rQ5C5xEjDa7DIcTIntTQKlEQhaS5dhDfCRzYDqW\nLmdMccyc36fbPxMPyn3w92B/HZ704CvInH/3BL4zl4ddTcljP/PSEQsTe8yqAyb1MelED9uJcU0d\nopARsNNnfBzuVHPspjjws+yqeY6aU5Q3npHc8dw5ge95Q/P5g/dn0W5/wuFvC26YXIT/66bj/rvw\nYBduz8HaLYdfBndHcfrxjKeNFQ6YJclyJhbOSBnhMPRpccwUOyywznXu+TXuuzusn9yk9+VZOdY8\nHPPJpceuTl3b9vK1qMCfIgkDZ4j5aMQFI1mfw5dH2xrw1OkDTemFmuNCvnbHk9zNWbnxkFeMnM+r\n/iE3eMK826PjeyQUODRD1eBAzbKprnJF7TAZH9OcHvDWq69w7mZwoxj64Tw4RZLayhECzOpy3pKL\nDYYX6xuxPjRgB+Deu2/x5PFDbq2uBQ9C3fuhsdiway09OEZrIhPRajYZZA1smWMiTWKk2NB7B0qG\nYqOVMA0hdtgGoJFlGSYylAH8AGEIk4G89vNUlZVAAh+oVwXYKoAfkf14vJjBVdDgWo9VFus0VkkT\nSeULdGkDO8TYi6SMYVhUDCtPUUp7vDEx6B5VYFHnp6cZ5QX9ANqEqfJEcTL2BdU79FFgwJQR2Rbe\nYkLhpPeWsiop8hFVnmMiI2WOkcL7ijx3JIkhMQqtYmINaazFaB4AT808K+9COECFIgq/Y8E7fGUl\n/csoVN1HZIR9cc4QEaNVjNaM09EUnqPTHj/wo3+ez//qb4zPi+/+A7+fv/GTf5apiQ44G4Z1HXpd\n5FwonaMqC8pCwie01qRJRJrE44LNUZ5TWkuaNciaLaI4IYolvOG//vQyf+Yv/yy//uYlf81HPsJP\n/snvJ0sSnJYy2ChJMGnK7du3eenVDB1F4C3Cowh48QjjgrciQdMXUdriWZGfEdgPCRAIri8V2B8x\nqOE9YwZEHic3Bnre6OBHE+BTWSs9RdrjtREgDqILh5Bc58bsmgoSOMImAVoS85TWeGsRECR9OUkc\n471FK0iSiIlOC7cwT94/x5UF+SgnH/SJjSLSmlg3iZMYrRT5aEiZpUSVoaoKrKvwSJmrd9K1YExE\nlMRkjYys1WTUyygHfQH/ZUk1FHlkZVLWlpd4d33zBdh5sT4kq5avXfbsNMIlg7aWILYrjP06S1Pb\n3Inv8ZFLJvuFZ8c0NkeYfYc+BSw0upYrcydMXuszv7JHU/eJgpE/L1M2+svcn1yjoYaSqNZM6d16\nxJWrO3T2R6z9Ps9aBT6DYhr2O9OsN1a4z23e4lXe5i4Perc53poSs/iMHB8TXJjVYzkWGhVTU/vc\n7D7iNve5xjpLbDHHPl3OSMkpice+kR2u8JTrTE6esP3aEpWLaeoBicoByH3KwDXpFW1Oj6ZhK4Z9\ndcFEHCEfZLeB1GLSIS36dOgx4U9pDgfjJK/zXbjXhz+F5quX5EyfHGr+lyPH6gFwCI0TS3t6RKtx\nTlMPyBojRqnDpYxjvcfpYyfAPrh9zeHJDDvTV3gWX+NhtM3U5DG3PrJJ7Cyf1Y5P/fUen9t8rivo\n33f4b4Hz12KGaYPGrZLu6pC1j8FaHv7eJBTzEXvzkzxMb/Emr7LFEhURbS4AwohGiNGeZZOrPB1d\nZ3/3CqN7XXiLi86cnABUEdBae5BOPFQ5+DoCrc6c7iNg5/I5rC59BQEUTcbJgklTWJ3aq3MDstU+\nV1ae8bJ+m4/xj3mVt3ipuseN3jPSnQpz4mAUZpO25vrCDsvzm8xm+7ToEymLa2neufYRzs6m4MTI\nIR4CfQNlxkVyQg3Gngc6tW/nhZzt67E+VGBnc2Odx48ecHR0yMzMHFArwy7S1PBKdvRDfG2702Vw\n3mM01CgnAGS8i62N+H+UGr+snPdjNsd7H1K+hBWQpC4dfBK1lhTqJKkLnakwPM5brLPiuah39XWE\nV8ErEeRvlYXCVlA48SOCsCBRJD4hrcU3JCoikbTh6fUHeKcorSMvSoajXDpzrBW/Bz70z0jkdhKL\ngV2OVBipqiqwZY5FYoslsrlCK0+SRqRJQqOREhmJRYmMptXMaDcb4r9IY7L4omtFK0JggJK/azQG\niXz2Vszwyjk8IuNzaGwVHn/vUNqgcVgdfCVao5UX073R/MCP/gRf+I37XE5F+4Vf/WH+6H/8Y/zc\nX/lvBWy5i7QvE2KRhUmpcLbCKEXSyEiTeHzc1nmUNrTaXaI4Ik5SosAAohWzSvPX/uwPsr57xLOd\nI1YXF1m9uoxSAnScjjBJTJREmNigtAdX4MtSAK8Pz78KLIv1WEfwNFm8q8YJeN5bATteGEEAFUBN\nHEWoVOGMl+AGL4l02uixhM05LwBSgTZBz68NsVHoSBOlsXi0rBTUSjjGheRNceH58c6FoAM9Zs9c\n8FOJD02H/qqEqizQSvp2GkmTJDKU+RBblhzsHVCVBTZcnEtQKsYkEWVVhhAGh/MWlA8eq4qqKiUZ\nUUsYQqPRoNVqMWw06GuN9XIflLW4osJGmqWZaeYmJ9g+OGJUvCgZfbG+GdfzhYfP+3VCSIHW0FEy\nGF4BfbWifeOIlcZTbusHvMLb3M3f4uqTPbKvlpiHXgbXE8CB6oJespjbluisQt/5GjaRxLLjaJKT\nbJKnRzcxXUuVRPR0h4N0lqV0i+nkhGw+R3mPNZrzpCnSIb3CI1a55+/wzuhljjbmqU5TmHWol0q6\n86e0s3Ma0ZDYlCjlsC6iMDHzyQ5347e4y1vc5gHXynVmBidk/RJdWrzWFK2Y49YEz9IlFtQuXXPG\nYmMbj6JDjwxJzRTfT4ejxjS76RUOOvOctWYodEPm75B4hgdlHDqyRCKeI3IVprIy3OdQFfCfOc3X\nnktF+yKf5t877vGFkYMSdAnGym1opGNPRf69c74PfzekhfktTb7eZrtxlYfxKhPqhFY8QC0rluId\nJuZy6SB6Bx7swO0VWHvVUVwzHN5o8aS7wqGZIYtzZltHNJeHGFvhjCaPM06zLpvpAg+5zT3usM41\nenRo0SdGFA45KT3X4biY4uRwjvOdNsV6hn8QwX2E4aq7mIbh+M+A3ENRQHnOBQo6C9/X9FUNduoH\n4Hm2shW+NuWcTgJTOQcsgrpe0Fk85kbyiJd4l1d5k9fO32Zle5vWowHqEaiDcFwamLCkyyVLawck\nNyvimYpKRQxMk9O5SarlmMHuhDBRM4iMMU/AtsIxDORJHz9p4wbef/qX8Yv1T7w+VGDn8PCAp08f\nsb21OQY7AWVQkwPOudC7IgO+a7Zottqys10g6VxK43Ai4TKRMDIo8YEoJT6CPB9L10xgQKpKmKAa\n4+jAHFglvTu1VMwrYZfwNsTgVhKB4GxgpIJXIhQ25pWjtFYGN++xIXDBRCLvct6T5yNQEqmdJDHe\nV1SVRylDZR2jPGc4GpFfGu58eDwkMSsmTVPpC3ICgipCKoKrUL4MAQ+Qxgkm0mNZUiNLiSKD0Yos\njmi1WmRJSiMRoJOG//Phsa+DIkChvMNVBaWrQtJXzVQ4tILKm7GfxhmDNhHGRzKoK5GsGSR17dHG\nNp//1S/yfCqatZ6f/5XXuffwCWvXr4YSUWGQ6rdN70UipoA4EhAXRfIm5bwkgDXSjKzRIE5S8TJp\nOR98yLJWynC3O8Wrd9bQPkIHfbzDgNGoSKLIFRassC/O12lnEjSglTwvpYfSKqz3wb9jBRAHQKlr\n4xLyfwopvFXeoLzCKY93egzIxfeEBBkokJzCcPFWfDkajBb/lEdRBbBTWocvKnRVBbulyNcCbBcA\npMQnJv8VBJlao70J52Qqsjslz32WpbSaGcpdxVUVvio5PjrEO4n0rmyFR6K+qX1CGqy3lGUxfkHb\nqqTMRyGQwRMHdifNUnQUja2hYzrReWa7XRamp+m0dl+AnRfrm3Cp5y6XfTsRAnYyUIlgnjbj4dDM\nV8x297hqNrjBE27mT7m6s0fzKwXqS8C7UG7C6ETefhptiK+CPoIsr7jSOuDG0lP2GvNsmSW2kqu8\ne3iXx3aNvNPgqDnNFktcYYfp7IhGNkThqIg5o8M+c2yzxLNyhafnNznYnaM4aRJ3S5qzPSamj1hs\nbzGrD+hySoMRGkdBTJ820xzJMOve4ObpOrN7hzT3cswhMsxG4GdgeuGYyYUTpmePSMm5xjoJBZNI\nGMFlo/qunmerucyj5g3W05vsx4sMdUcegPXwEDuFdwqLwWKoVIQ1BuIKUqnF+eIHpKL9Yvk690tY\niyXN2GpDRYTF4LxIg8eWlHq46CNgZxfYUPjZmIOJKzyKBmTNIUZbylZMb7nFXPeQ1sqQhY+XXKk8\nLtHstTJOJztsTcxzjztssUQcl8zGB3Q6PWIKLNFYnrbFIutc43Fxi53eEoN+myQSHxMeKhuRF6kw\n6ltN/KaWx2YdATrPwjGXHioPhYW8BF8i4OAMkYH1EKBTF+cMCRnSXACcy+xOfQm9UTqGVAvzNwMs\nQHZlyOzkHjd4yioPebm4z8r2Np03BqIpvA9+F/xQbkpPANchOymZs0c4o+lNdjhkmt1sgeOZGQaL\nHZjVF70/5zEXTacxvxOYOd67+fBi/bNeHyqwM+ifs7mxztMnD3nl7kfQupZhBalY6FXRSkmCU5Lg\nqpIkS4mGMbYsJVpZ16epuuRVgCRO0EoCB8qyYDQakSQJcSx+jqKQ8kxjZIdZInwj8fc4h7USGW0i\nhTIGrNwW3oXd/TDYhsSwg9Nzjs9zkjghTTJKK+CnqixoRRSJt6IMBZlJ6rxkHAAAIABJREFUkpB5\nSSgpKxfS3ITZGeXiNfHekyQJxkQyHnr5vTSOiI34jUxkaKQZtoopIkWZaLwriCJDHEckaUySxNKb\nkiZkaUISRyRRRJampOFxirQm0mCCPMvaSnbZkVJV7yyukuhnFPK3tao99iKpcjoMvxFRYLIiFwsr\npRQm0uAjtILHz373bqH7T56yurww7tWhBhkh3lrhibSAliQRMGO9QzlJdms0m7Q7HaI4qedmYfBU\nKONUGh++Km8ksSXEZQuZJYDFuUKis73IIl04jnGsMwrrFdYpLDoko4l0LdKGyGiU9ziLsB02XCuE\nXUAAUTVbruowO43SkZzTrsI6YY/q6HMfotckbEATRRrvFVoLeHHO471cr2Z35K+N4QQ1oal08EMp\nYfHiOKWqirGczhhDlsQsLMyjvMNWhVxsLROtqJzEqYtUMBozi3k+kucO6aQq8hHWijxPQThHE5I0\nRlX2ojRVSbrbRLPF1bk5Zia2ODg5HSfIvVgv1jffutyzUw9egd3RyXurdqY80VTFtDpknj2W2GTh\nfJ/2wxzeBN6A0T042YEvDWSG/WgCv+cYGrnMmcmcZ35in6Vsi3m1yxTHRFHJ8fYso16D47kptpKr\nzMSHdM0pmRqi8ZQ+pu9bHFfTHBUzHPZmOdqegwNDPFswtXLA1bkn3OQJKzxjgR2mOKbJcAx2zpig\nwZBb9hGv9N9l7v4p0VsOniBysr7cbTULzesFycv7dD56iutoShJa5YBO0SNzIxyaQqecJW324jme\nmuuS2jUxQF93bHKDMk/Fu2HA55oqTxjSoE+Tc9Nm1GjQmu7BDGy1EMnTB6WiGVibgrwV0Y8aDGgx\n8g3yYYobBkN8iQAFELLjGOncWZfnr9+dYDO+hlp0VJnI9XaTBZZmN5mdPaBFH0PoJ2KCXRbY5CpP\nuMFTew2lYEof0+aciAqLYUiDUz/BXjXPfrHAzvEV+k8ncNvJhWKr7rm5JK0b99NsIX6cQw+jKkQ1\n12U2g0uX/nP/vpxwJn12smqQ83x/VGAtjZFzus0Y8LQnzllId1liixs8ZeV0m/YjATrut6G4D/kB\nlLkIb7I2NPZBlZAmlun2KTe6T9hQV3mqbvC0c4ODuXncVCpAp4V4hIbJpWOp0w9fAJxv1PpQgZ2y\nLNnZ3uTB/Xc5Ozuj0+kCBN9MKTIlVxInEY1GRpqkVPloPJCFMRxtNGmcMBqNqKyjqCzOy44/YTB0\ngWXJ0pSsId6dYlhgc/GENBoNPCGdzRjKUUVZOqoEYiMvWK/kReu8kuFNKRyeYV7xuS/fZ30caQwL\nk9N8fPUmWhnyIg8SIYV1lqIoSJKEdhuUMljrx8Ot9yJDsl58DVkmMp80FemZDkWfJnS7JHFMI81o\ntVrixyxHlMUQZ0co7YkiAUZZmpAliXShGENsIuLQYeScp6ok8UzjweXiP6FOaRP5Uw0+vfcYrcCI\n58Nr8FoF4kJhqwJdSjpc7SeS62i8jcfStNXlK+HRev/kmZtLi9jKorwUYHoXGCNb4a2VaOPAukXB\nD+WdwmmRNHplBMwYIwZ950M0s8SDe6/GUc0qJKqpAGKsBawPwQDSEyQr8CAKMPXOlZyLWsVBEhlY\nwgBGNYRjFnmdFKPasMNWUeYFRVGBE7lmrCJUkLWZSMCZJkJ7hXGyK1aG7iiRLlqsKzBxjDYxxmhS\nJQBZazn3qhDdPI6wVl4qkQLTo0EAvRfAHScpGzs7HJ2dcW1xlm67idaaRiPDXF0cp77t7u5RVuKJ\nK8qCYT6i2+2IXNBDaUW25l0AjraisA5PjonEG6S1Iklj0iylHAzR4by0SqO9opmmXF9cZGlzmyfb\n24zyF+zOi/XNuJ6XssHFbnMszE6dVdAC2h7dLJjgjGmOmfWHdPo92ZV/Cv4RvLMFPzDSfKl+/yrg\nDzzT/E3vWJwFnsHU3RPmJveZiY6Y0Kc0J86pvtJgeN5lONtle/E6jfkTGs0+aVRgcFTeMCia9I+7\nVLsZbBsZkF+CqVt7rE7ek6AEf49bPGLJbzHjD2nRR+MZIYWVTilmBicsPjiG3wS+Ksft93gP2GED\nolPPRJVz+/c+ouVHNPcK1G74PYA2VPPQu5Kx0NylrXpEqsR1NcWthK3hTfGanCo4NdheRm+xwzFT\nHDDLWavD9LUe6lpIPftduoVWXwF/FY4muhwm05wwyZmdoH/awfXMhd+lIGzeWhhq2DOinGrIfTtT\nMzxSKf2VFod6mk2uciWAzkYAhhWGHl3xLYUQiSeD6zhtmMgkVlwrh/ciTzuvOhyfTVJsdPFPjYDH\nPQSD1IFjJRfytNrLcgQceAGa1FHS51wAmPzSZcRFikEZLvXvPQ92kPN3DCgugZ5ICdhpyvPHtKfR\nGEpoBPsssk26U6Aegb8P9h3YfgS/6kRtdw34tnN4eQBxBsxAdm3E4u1tFpJd5thnsnFMNjVg0Enl\nbzSQv4vhou30Muh5sb4R60MFdkCkbA8fvMvB/h6NRnMsMSPsRGsUaRzRajZot5rkwz5Gi7dBYpct\nEZqskTEqKorKkeelJEPl5Xi4G41yer0ekTGkaUqWZWMfTx1L7b0nThJaWmMrF6KiLWkcyxaCNnhn\nEEjgpGRUGT735Qc8O7Bc9p3snXya377/mG+7c4eydIzykaS8QZBbKWzlGA1zjCkxkSRxxXFMo5mR\nZhmNRpMsy2g2GzTSdMzGNFIBDJE2gakS75GEO4DWFq0c1hYo5eStRTH+6soSW1ZUo5z7m095sr3P\n3MQEi7Mz4qVRFuULdJBJKaUxzon3QsvwroJUzXorxZ9G4qO1ERmbsEJOYp/LChfkWVEUY+MKYyJu\nLV/hu37ft/GF3/gh7OUeG/PDfOcnvp1by1egZnRCl4+tKsqixFUVNRXinYAwE4FS0llTOZECKqNJ\nrCWKY5EihuQxwVt+zJIopdAoSWP2de+SlfhuQtFt6AsSCVzYdQ2eLqU0kTZSSkt4y3Qe650Y7ot8\nDNK8reSPjKOjBbApo8f9QNoolOa9MdOecUS0VhLYUVXSs1RWBVXhUcrKbWktjFea1H8KV79mQmBB\nMFbhnJXfD49Nf5TzF3/m7/Lmw0fj1+lHb9/kT/+xf42skdJst1lavoqOI7QxHBwe4aynKCvoDxh1\nhozyEZFR4bkJHh4fvEwoKuuoSk1sOiRpSrvd5rzVYGStyDTTBB0lRBiMMqyuLPNwd583HjxklF9s\nKrxYL9Y397q846zfowJSmSXORqRqRJMBLdsnGw5lRj2CsyP4wZHmt5/znfwj/2n+6E6Pf3jk4BSS\nU09zrqAZDWioAXFSoNIwTT4EP68ZTk2QN7uo2AUdscINFe7EwJF8yKo1R/elA251HvBRvspH+Sp3\neYu10X26O0OSfYvuOajANxVLM4fYGYXKrZjivwZ8FXqP4YtHcM/DLQXfvgvdMzAOaMP01Dn6wEtE\n8w6iqALogFmE7mrO3ZcfEs1X2ESiq3tJh4Mb05TbbXwvgmOwJ1GQ4S2yyVVWJjaYfWmf9n7JnRy+\n5y3N5/eeS0VTn+G7bmjW/kUHd2G/Nc8Gy2yxxJGdxu2ncKQl9escMdFTyD/yDI7bFyFlCrCQD5ps\nHd3g4OoMm1PLzCQHdDkLLJilIKFPm1M/wWE5y/HmPPlGBqWi15hFpxIGhFP4QuH6Gntk8PtaOok2\nEbAz4ILZqbFJHUpWl6CWNvzgmIsYubqHpr5SEb4fcQFuLl/qrpr6/L18Ll/ujxLVwjhZvQk0LHE0\nosU5Xc6Y4JTopII98DuwtQff5zS/eSk04Fuc5i+dOu4eQGMPzD40Di2dhT4t06dhhsRpISCnDo64\nVO343lWDoBe9bl/v9aEDO4P+ORvPnvLuO19jYWGRrNG46NqpWQylSCJDlslgH4UhC2QotUpYBR0Z\nkjQjazRxDMUo7gUQjfIRvV6Pbqcj8rFGA9PrUSBSttFoxPn5+dicHcURtrKURUUZG7I0QfsIpwwO\nLW/2SnHWzwOj817ficezf/Y6B8enaJQUBCNyoDhOiKNknECntCZLU9rtFt1uh263S6vdIcsapElC\nmiYSHJAkZHFCmsTy0ad1kAIJONQI2WAMaO3xvgxlnyW2yCmHQ4rRkLOTU7Z29vjv/s9f4q2NrfFz\n8dLyMv/2d38HM1MdtB+RRookjohMNC631EoJCFJIoWvwsFgLsY+JSdCIL8Z7j6ssXnlKYyijmDIu\niKIAPDz85f/yT/L9P/YX+PyvXyTPfOcnPsFf+fEfCc8feCfx2bas8JUdP6/hP3HOYm3NtgTgh8J5\nS1HkIRXNYqIYrSMx+Ssjsi6lx51AtagM5+SDwysMXuLHg+Sq7oBS9WOvw5u5l+fXWTs2/CsEiFVB\ntqh9LU1LLpL8UKRj5aaC4H2SYwvR0z6kqgHeW6ytgY9BG4giSVizzlMFgOkrQk+URhtFmibCZDnP\nqCzHAK9OxnMhcAGl+O//5t/h7Uf1OS0D0tcefoaf+Bs/x3/1w58iTlMm04QojimLEtCcHJ+QFxJl\nfn5+TrvZIE1iNGCzNLBz9sIHJMJCnC3RmJCml1AEr08UGbJGRozBO8VSt82dmze5fv8B+0cvwM6L\n9WFZl5ieWodam97xKO3RSPmywaKcH/cjvlvAr3+A7+QL5evc78GaBW1BO4fGym3VJcbnCCvwSOG7\nEbaJDIphSB9v8LeAVY9ZLrna3OC2uc8rvM1r5Zu8cnqP7sMe8UOH2kRm6ArZYV8Adx18jLAoT+Dx\nU3h9T/OP/MUw+8kjzV9TjrU2qCWIWk76ct5BBvkTZIbugroK5tDTKHNufWyD/myH42SaXbPA5uRV\nduYzyvUIBlDuRuwfXGFjcoVH8S1mzAHtyR6r3/qUJHZ8tun41P/c43NPLqWirWn+1x9zFB+P2Ji7\nwoN4lUfc5Fm1wm5/Ab9jxABf+/YHPphLTsBngd1pBj8iUjLa05QHKeV2xPZ8g8PuFeJGSRRblHZY\na7B5RDFIKM4Siq0MnmkYgk3j98rTarXZKcLQ1BK1AwTD1L9X45K6/bwsJF1t7Me5HDqQhyvVgKe+\ncsl7yzjr37ksM35ecqwufTVc8iCEWimH0ZaYioiSmBJVehiCG8CfONf81nPg/St8mh/yPT43cjAE\nNQJdQORLuR1VYbS7AJhjtdplid3zx/hCzvb1Xh86sFNVFfv7e/zWb/46n/j27yBrNC7+cwx6HFpL\nKlRk9Lj00EQG62QX2yO9PM1Wi3ZeUFbBGO0Rz05RMBgOyIsCozWNLKPRbAqj4zx5nnN2doZzjm63\nOy7ElI4eg/epFF7qGK8KCUHwcHI+Cgf7/tres8GATtoE9Hg3PolToigWv0wqBu1up8XUxARTU5NM\nTHRpNptiFI/Fb5MmCVkSk8Zx6EDR4+4UH+RX0uMSYpGNxzvFqBwwPB9wdnzM8eEBx4eHnJ2c8FO/\n8CUeHzguD7T3Nj/DX/38r/KD/+b3EnkV9Mbi24l9eHf2DqO8PBdpjNEKZ4WhcFUlkCtIAanDHzz4\nSjpxqqLAxjFWRygPk80Gf/snf5RHGzs82tjl1soSqyvLgfkXVsVXlaTKVaWwEIRy1/ChL9I2cMFD\nZIIvR06dAPZgbMyPIlAGlDYiB4xjkXypkNTnhNWTDcwQwRAowtovouvgBqFfRCLnpD/IO+mRGQc1\nWIcKnUhGSTQ6XiSTAqJCVjUeZ8sQYCCgCny4bpDTOQJLEl4iToGX14UxHlVZSizWWsqiCEBNzpck\nieW++RBiEDxMOjBIzlt29o9540GdjndpQPKer9x/nfWdfe7cvEaWZmRpRlWKDK8qCvLRkLws6fXO\naDczaAjgcbYSf1xId1NamCkTxSicJNmFgIMgrAMlUkmlNAmKrNHg9vUbvPbyXb701a/+v37febFe\nrP9/rEuxt96B05fmTo0tJU+sICFXKVUcQbOEJmzG9RU/wHdiYS2DKoMyiihJZLwsI1ylZHA+QNiT\njLH0avx9LT+aBLNY0l484Wq0wU0es+buc+v8EbP3T0We9g74Z+CPxAZi2qAWQW8jMdrHwCH8O3ua\nX/O/MwHt+497/OKhQx8CbwOPYPQO9HZgOBCPZZZBax8aI1ARdKcGLDZ2WU42WNTbzCX7HE4vUU6k\n0FP4DcNgvctmusykOaGlz0niEnXVM6tP6Cz2+blvLXkYUtFWb8P1j2nOF9o8mZvhrWyNN9Vd7rPG\nxmiF0+1p/KYSOdgQmfN1zWJo+aE7gYGCvVA8OkRwxYGCzYjRbJvRVDvIrUKqTAUMlfxeSHRjB8El\nigumomZsRlzI006AMw/nDkY540QdR9hhq0HLkAsvTu3HqX+WhztTcXHy2ef+7S79DlwwOL/bCnE0\nNfBzgNN4X8N3jcXggyzlfglfcO8P3n+N13lYwcdrNZpBEnQlRkjmNXfxJy8w2PNgrD6YF77Qr/f6\n0IEdgN7ZKV/+7S9yeLhPuxOARs1XeIevu0IUGC3N8lEk8cgu+EKEedBkjSaNVs5pryfxyJUwD1Ul\nA9eg36fRaJBmGRMTE+A9g/6Aqqro9/tUlfTzdNrtkHIFRV5SlBVxQ9LeqIxEEnhHq5mGe/H+2t4s\nycbyKQVEUUyaZmSNlIlum26nRafTpNtpMz3ZZaLbodlshAE8HjNNSZKQRJEMtVoFKVM97cvunq2g\nKksxjhcV+SjnYG+fna1tdne22dvd4XDvgMPzPo8OjvkdbJT33Ft/nb4yLE3NE5UDlM3xzrGxf8zu\n8SkLEw2WplpgFIkRr0UURSHiWKNceJ6M9AnVXS4ohbciN7NlhdWleHi0AeW4vbLI2sqSkCpVifch\nYlr5IIeTAV4CE6R3RysdAgeCp8hVYtBHEykl4RWqVms5XFWXczqMcZgoITKxBDOE5DiUQnsp/ayB\njgsSsnpHVTaiPKYOGPAej3iICIO6BCLIG7lWCrSRzSspuBFWRZtxQlwNWrU2IQSjjouWXSYdpHMq\nhBXgpQRXQhPk7BKfEEFmpyiKkJJmrTBaWiScpbW4vKSyDoVEgFsrgGfn8DCcD+8/ID3bOWB1ZQnd\nkA2DKwvzDM/7nPd69Ho98tGQ/vk5/WaTxBiyJEJ5z2jYp5EmQWZpMFFMpBMiLaEfzjkJOBhHVgu4\nQ2u0itBoVpZW+JbXPs7P/L2/y2A4eBFU8GJ9k60PGrzCcOktVHqsJvJDjR2mDH2Tc9XizHQZtJq0\n505hAV5dJJjs3/+z6fYKMAvDbkIvadKjQ9+1GfWbuKG56FjZQGbXOhhhFulFWQGuOsyViua1c2am\n9lhgh2U2WCk2mN07gjeAfwzlm5BvQH4mwV6NBjS2ID4FfVNu/94Z/LJ9/2H2V9zr3OvDywXwFKr7\ncPQEnpzBl5H5/9Uz+BeGcEWBmZDj6y6dMj+5x4w6ZJITok4BXQ+VgmcKZgz7U1d4GI+IshKnDIOo\nyc2VxyzN7zA56DH7UcccHtvQbDbbbKXzPOYmD1nlAWtsssxJOYU7iwUgGsYgkJ6Gww6UFYLozgRk\nDKahioXpOdMCKqcRk343XD8LYKHOBzhHGJujcOmH06MOE7ssT8t9yA6w8oD7kVzZ1UljwUc0NhbV\nNN3w0vf1zy+zOf7SdetoZnfpNi930lzWivn3udgL4FVjrtxQVQkjMkYhPMI2z2ASnoyn4/f/bFpP\n4OOT4LpQtgxDlTEiI3cpZRW/9664+rhroHZ5vejV+UasDyXYyfMR608f88ZXfovJySmmZ+bCUKhC\nT43o/WsfjwlpV4Akk6UZSZJirQ0pUErkPi58QFiLt55hf0Cv10MpRZqmwuCEwsqyLPHOkY9GOGul\n9qrZItKaoigYjXJamUjPHArrZMCc6rZZmZ9lY//TYfgSbS98honWBK1GM8jYLFormo0G01OTTE52\nmei26HZaTHSadLttup02zUZKHPpzTBQTRQlJJKZzoxVGG6JICjZFViVAQMZyi60K3nz3Hu8+fEwK\njE7PWH+6zsH+PmUxQmvFcVW/mN//TUN3Jrj+0m3K4z12N9f5cz/9s7zxaH38W69dX+KHvvfj0Ckx\n7RaNrEEcJ5ixJ0ahoggdOoU8YK2wQraqqIqS2MT4OBaQghsHBTgbQEKIqQbGYLeWrVF7V7SAXrzB\nuxLnPMYpVEhVMxrpqzECjHxgWsrCY7Ulsh6tDFVgdXQAHxgJNrCBHeJSMadRoL0EGpjwM7kPYS8r\ngJnKe+oqT6MjASu+9uD4C9/QWJ5W73L5YEWSGOn3LoVWRvxPRoWUttDBgzCYtfrDGAn1UHlBXpSU\nRYE2EVGcStBH5agqhwtBGBhhweYmJ8Lfev8BaabbpigKbFURaUO71WZubo7Tk1POT3sUwwG2LBkO\nB0x02wG0a+niKQtc0FlKwl9KHGlcYLkkVS4kxHkBPxBhQ/jD9NQCL60Z7r70Km+89VVG+YgX68X6\n5lmXd5TrgbLeLc/BF1DEFxvu5xrbSzhhgiOm2WeO0+YEc9dPYRXuHML3PNF8/vw53wmf4bvmNbe/\n1eGvwXF7il0zzyEznLpJ8rMO/sxcVKbUKqYpYAkpCV31cBv09ZzOwjEz7UNmOWSOAxbYZerkjPSR\nh3vAfTi9B89O4EsIdlobwr/ch3kLSQzcgIfjGfP9P5cee3g5AfbgbBvePpPSzzcul372ND+z6VjZ\nBXahNegz6U/oqHOaDIibA3Srg6sSOZAmDBsTbETXqZYMI9PgjA7bapGFdJeJ9JTG1BCDlaQzJthj\nnk2ussc8Z3TROFqtHudrLXI9gW8hQOUyADntQFUiqCakBRQTcNCEs1jASxvpUKoDDGpmrpanjYCe\nv2BthuEUqX1c75nd6/OmLhc6C9/X51SNMGqG5nLQQB1C8LwP53LwALzX11IDng9al9mgS7dZuYs/\nNwTOFaNS+pJOmOSYaa7OHuJXClZvA1+ED/pseuUmsALlYsTxdIsjpjlmkl7RJj9PLnBcTlCtXH6N\nvVjf6PWhBDsgyWy/+IWf59bqS0zPzIW0NYAwcAaTugyUwRAfEp/iOCKOI4nArXLKYkRkINI2JEGJ\ng6IsS46PjynLkna7LQlnkcTeGmNw1gqzU1WMhiPiKMakCR5FkZf0B0Mi41DKSCSwtziv+IPfusY/\n+M17bB1caHu7zQ63l1YgGNdbzQbNLKHTaTE52WFiosnUZIfpyQkBOc2MRiMbF4UKeyUeE5E+SaSx\nVoQY4xCDbOtmesuzjXV+5M/9j/z2O/fGxzHXbPLabJtGEtGemqGyOZ3KIbtM7/+m8XtevcvVKzMU\nzZQ/8xf/Om8+PuOy3O3N9c/wk3/nN/lP/tWPUY0KJiYs3W6XtJkRxzFOECnKCGvhnMNWFldWVChK\nIzJE+V0x3Wovu0D+8vulD8CJC3CDisB4vLEQS3iBwlOVFo/DWoeqRGqHFiYlUhql60YgJ9jFebyt\nsGVBoRQEKZ6JPCoGFQetG3I7ynsilEgElZNkNBgzMF5L5LnyIivTyKGqcPyXI9XVOBItyMdC+Sfh\nfHcg0sBxKAHUkoD6Z8L+gNYRUaTGoNf7wF7V8etJAmjyosRaR0kpDKOO0MpSVhalpBxXa8/i7DR3\nb63yzuPPhNuQAUmrH+LuzetcmZmUc66q8M6RxDGddouZqSlOpqbo987o93u4qqLMRyJd0y3iSLxS\nUSRSTqUVhEjsyBiSNCbOUkRGWFK5ksJVOGJGHpxTpE4xMz3P937PH+Lx+uMXYOfF+iZc9UAYXfp3\n8Er4AgYtmV2PgQOoTiL2vEQSr3ONxfYO07eOmDo6R5XwWeP4I5/r8fOHl3wnS5rP/rsO/zEYvmbY\naC+xznU2ucqBncXvG7n92ndSAsvATeAO8Aroly3TazssNjZZjLZZYJcZDpjmkA490lHxHsnVwyH8\nIJovXxqIP5Fr/uqR4+VjYA1WF5FQhA9iopYQ1qMUH/1/jubN9yn9/OOnPf7hUIZoUzjiqiJKShIK\njKlQxl140B8CMQxdh42zG5wuT7A/Mcs6W8xwSJceLc6Z5ogJTmky4CqbLLDLkIwTpiQSOr7K+tR1\nnn70BofNRYo4u8AbBVAYOG/Lc8gBQrkNgA6UHThqwam5qFWqU5FrIuYyBnGAHUlqKhYqE2b2Gu3U\n4OQyW1PHQ1/219QH+H6g5nk/zgcBg/8nsFD/DfPcv8MDY0ORa59xKtxg2GCfObZY4hnLLF7dJn1p\nyJ0jx/f8subzG+8D3uc0a5908AoMlxohNGKRPebpnU9THjTl9nvhYbCXjUv1/a3v64v1jVgfWrBj\nbcXXvvplHj26z/WbqzQazeAjQIzVVobT2s9gTNjVx4+lbYws+WjAYHCGtQW1eR7F2ExelAW983Oq\nqqLRaEjErXWYyMgQBnjrqMqSYpSjvZilC6OoyoTYGLSJxTTvJM7aRIY/+G132N4/YffwDKNjmo02\ncZyRRgnNJKHdzOh2mrTbTdqtjHYro9NMyVIZVgXEOOpOG60URkGsVWCykPvjhPmwwfie5yP6/T5n\np8f8yJ//n3jzcS1Pkzf//cGneeNowB/65MdYu3Obw8M9Dvb3WNzpsXNSs1ErwN9DqZ/iEx//Fm4t\nzlENhzx88owvfu0t3s+/8dbW6xwPKqYnJWwhThLSLCNKEyprcSqY+IN3RQX5mLdaQhOsxZaV+FU8\noCXxTGKWa8mWyMQcRhgVDSoKDEkUvDGRDSyewYdSTWcd2tRR0nVAeQA7wWfjCeZ873CVgDDx/3gx\n+aLxQRKmkefCKNBOblOH8066Mg0eg1IRKAEukWIcNAAXDA6Ec1GpIMtz45S3MeAJwMg5ubIx4iUS\nYASgxh07KiS5eS+3YZwJxaeVsGlKQHIURXgkIto7Fbw6BoUNTOZFjPYP/OHv5S/97Z/jrccXA9Kd\nayv8h3/4XwmyPTWOATdxMi51bTYkJr2qCrRWkpxXFnjnJOXPaOJYflcp8UtJtLkLIFKkeM4JK2u9\nxysVotgdTnm6k1N88pPfwf/xs3+L3vkZeZ7/s3sTerFerH8uqx6skhvhAAAgAElEQVQkLw+E9c8u\nTbm+kHmsDsvaB7sdcbRzhc25FR4le0ybI1rdPrc/9ohuNmRq3vG5u477T+DBkUjX1l5z2FXF+VrC\nk+4K98xtHnGLjXKZvdN53I6GveA9yRE51lUE7LwMyd0hc6vb3Ore55Z+xHWecpVN5tmlzTnz7GLK\nCobgg7H8TxWarzwHTL7Ep/kPTnv80siBgzt34bu/pvmFo8vD7E+j+C/4vVpxo+clVtvDU/vBpZ9f\nqF7nfgFrCdjYUBoJFaqIsDbC2eB7GiHsjgefG4rzJie9iOKlBNWFLBoxywGLbLPMhhSr5qdkodi4\niBWHyTQ7epGn6joz0QHNqM+DGyV7dolR0Rac0Qd6CqoUhm0u4s8CneH7YFtgEyhjyGPQ0UUghfdB\n8mBD701tzBmG7w1jc+x7AMplhFRfaqBzWXpWXfr382EDl+Vql801l8/dDzqnHSG6L/zsMhgLVJW1\ncldOw0OyB4PdLntTSzybWOERq8wmhyTXS+bLIz77px2f+gs9Pnfps+m7rmk++yccfCucvdRifXaR\nB6yyznW2uEqv14UdIxjzNDz8ZcXv7Aa6fL9e+Ha+3utDC3a89xwc7PPg3tu8cvc1bt5aCz8PL686\nzrgqwFmMhjgKJnQcSkm5Z1mJUbrIR6L5B9lRNgal5cOkrErcwFFWpRSMOodCZFjGyMCKl1ADBTgr\nspuqaUGJl8b7CldaGaBlk51OswEOKqfRJiaOI7IkopVGdNox3XZCu53QyOQSRxq8xZYFpYLIiHfE\nGxMGatDKo+vo4QCuysoyHA057/c5PTvl6PCIL3/tDb726DHPAxPw7J+/js0aLK2uohspJ4MBn3xl\nhV9/Z4Ptoz9O/SL3HkbDIU8fPKQRG+49fBxu5/1lBSOdMn9lkWYzI2s2SBsNMAZblYHxUOPYauVr\nNsXJJUQSj1kOwzg6uwZJSilwCo0Rpk+HQVs7YbxMhHNyMTYOJZoSCOCsw5ggC6uT/cLx+HGpqBmn\nr7nKYimFLbEevMLFTrw2AXDWoeNieRT5I1oAmXdigPTGE3kvz5vc6fcAnToBbRxjfen8vwA7RpLh\nlDB3RkdjaZdFYZULIQVyu0L86CDF0xhMSITzFwyQEgmkDWlxCokVN0Z6npyzYuLE02pk/PD3/Rts\n7x+wvb/PdKfB0uwErUZK0JWGix/LQCVlMCKNa2+ZpN1554KcVK6klQrMZUjGUyoUqkoPzzj4QYv8\n0JnwGlcehyNrJFy9do07L91le2eL/f3df/o3mxfrxfr/3Lps5q4HxdqsUWuYhgJ4zmM41LALfkOT\nP26xkS7TmTyjGQ2Iogq/AItmn+5Cj+wk52a/4paFqq05nUzpzbbZnZnlbfUKb6lXuefusNFfof9s\nAv9MSWTxITIDLiD7YbcgXhsxc3OXtcl3eJU3eZl3WLUPWc63mOydkuU52lqy02JcpXIP+DX//sDk\nl6vXuV/BWgRMwU9/u+P7fqnHPxi8Tk1reOCLDr77vuZvJY6pZdga5xh9QPiCltLPUSPl3LTp02RI\ng2qU4kfmAi/sILKxLjCrITcYHB3OucI2d3iXV+y7rJxtMnl6SutkRNyXuaJqwvzEIUuTe1zp7NGN\nz0gp8F1FdS1mbxhTnaTj8AV6BkYp+CYycddpZ+eMc5F9KqDHBpc9cAE+arlZ7aWpwc7lsfF5eVo9\nyNcSterS79WfP9Vz173sv7l8qc/NfxIQcBns/N/svXmMJFl+3/d5R0TkVVn32V19VR/Tc+wxvE3S\nC0k8YMKAIegPew0PgZVgSBSXCwEUTQOiZEMUBEIADZ+CJNqyQYPcpSnDkCXbJEVyeVkkV8vlzuxs\nz9H3VV33lVV5RMR7z3/8XmRm9/SQMrVL7ezWAxJVnV2VGREZFfG+73tVrz0uY6u2fwCDBhwYOUYb\nUDzKOJib5V7rgpSmqmPMZIm7aphpHPH/XB9w60249RAuL8Hlq57ijGJ3aYKHsyu8Xb/K21znDpd4\ncniGk82WnM9bCIA/RtLnhuEL1TF6Fgiejq/m+IYFOyATvtu33uHe3ducXb0gz0E0iYvvwxc5wRUY\nPNbIwoB3BSCJbTpOIsuyFLmOMZjKixHTnbzzFK6k7DmSopTI26LAaoc1BpskMVVLGB68sElFUeB9\nhkrEzK5KwyjCV6OtkfZ4TDRhgzFeem+0w2jZ5jTRpInBGvHdDFO84gMvMcAS11sidhePLz2Fc3R7\nfXb29tje2WVnb4+9gz3eePtmPIrPv/hv7h+ytX9ALy9xAWpZDWMsSrUJ4b+nWm370rs/wo//vf+O\nv/NXf5D5iVZ8jefLCj7y0jXOnD+HTWIQgYLCe4LyEmmpFDoolLGRRRE2QPZT/DsVUyBxzkYkYzC6\n94cIKtAErWKimoAViX8WgGqMHQYYeB9wpUcZJwEI2iMdQWPBlxWYquSSURKoqsk8AwkCMNJ/I7I8\nHf06SmRYETCFWHKrxmowFAEVHCGUw3N7fFSMztCXNAZ2FIhvyAdKivg5KQIelML6gPMl3quY0Fbd\nnNQwStsQQxVcZEiCioAHXCnbZLQisVZYoCqEIf7VKaVYnp1hbqJBWeTxswvyuQYkfc5V4SEVExlB\nipbwEBtjwAkSh+1in5UrS1lYsOJDC6Uk5nlXopQmMbFzylrKeMyDDngV8AqSWsrLH3mVG2+/ye7u\n9lNg8nScjg/eEJ/f07m41WRxzLNTTYxP2gJ2ngCzwBTstBe5ZQvMhMMZwzEtzs/dZ3nuCTPlHo28\ni/bQq2Xs2WmesMJ9znObNd7y17nZu8rWxjLhZgr3kdc+jJu1iDA7Fxztc/ucm7nLdd7iQ7zBS8UN\nLnXuMre5T3IPmUwWiAzLgZqCe7VqP98HmAzgSlQ6TZfwcy3P93Q1X2KCMMYE/Xb5w/xHb3f4paue\nF88hsdPvJ3l7AcIZOG5MsMss+0xzRJvyuAbHZqTq6sdDXAfmPdlqjwvTd7mi3uElvswrxZtcObzN\n3K0O6lY8LrHXJ2nB9FKXqStdpi8dkc0OCFbRU3WOptocn2tytLkA60iowzZwZKBoInnRhzydgFYV\nXI6VbgJPMy352NeKqRkPAhhnYyrgMg5+nu2PGT/Pxif5lTxtnJX5NxnPgp2cobyuaMJBXcDIE+CB\nojvf5OHMeRqTXSwlhbEcT7W4MHGf5TN7LFwrWcwDGDhoGjozGfftOW6pNd7hGjfCS9zKr7D3cJHi\nTl0YvE2E3em5KAGswM54AMO4lO2U2flqjm9osAPw8ME97t65ySsffpVWqz2UMhEFTfgS7UtUqDoB\nwAcvLexJQr1Wo1GvU+QDrNakVsLVi7IkL0uSJENFqUyIBYY2seCDJFeFgE1HkjaRjyERu0UZO04U\nSpmxibL825qUWk1FhkFM7ISSoCr3oMcoyNKERr1OvV6XCG0tE7zESP9IcKUkqxHwpUJ58ejkecHx\nSZfN7R0ePn7CxvY2x90uKMXs1HQ8gs+/+B93DviNX/8srSzBKpGsPtre4T0SNR/4wluvsX/Y4fra\nBb7jlZf53JefKf3Un+K7PvwK3/LRV7CpAR0onSMvcnxZSECAJn5mGoMSzxEMmQ7vHF5pSqSTRxmF\nODKFkRBJn4oSNHmtEJ9RqkpjM5HhcRiToJWUgIqxX8o1vXZgrPRRVMRJBaFVlZEnQw1DEAJSjFQS\nSoU3Gm8t3miMTgS8oaO/yAtWq7YyBmsMfTbyn0NQA0TA9jS7Uz0XQogGfvl/a+WYCEMlkr9gkdhS\nSkaFozGyOZ6vCo21MoFyrozSNmEPSy0eJZBgABMZN1dd29WILTLaEoxD4XEu4JynLCpvm6PIC8qi\nkHjtmBpntZzTNhFfltEaVzryQU6XE4p+TpJkzM7OCrNTlLiiQHmPNYbESjx7kqSgLMbL8QsavA6Q\nJlx76UOsnF3l3p1bdLsnnI7T8cEcmtFktZrgJoxMG5Vxo0QmxIcwaMJ+IhPDJlADl9VZV6v0z6cc\nTzTZYZbH6gxzbDNlD2jYLgA5GftMi8k+nBHAU6yx83iJ/EZLaJgHyAS9QCbpi8AymIt9Zqc3WeMW\n18LbvMKXuL57m6m3j+HLEO4gE/oIdtQMcBbWLiIFoO9zb1o7RFLbLgI9eHsAbzxHouYI/MrgNW7u\nwtU1+P5bml/dfk7p5znN5e/yhCuwOzktYQJhgV1mKA+tALJDBOhMIYBxAezZAe2VHVZ5wBq3uR7e\n5vLBHebf6MAXgJsQHsff9Uhy2jKoDZg8OeH6R2/Rn8k4VJPsmFn2JuY4Ojsvx29Oyc/vWSga8qGR\nMWJ3iP9OGIHfcRAz7jEZBw3PSxKrJuvvF0bwR0nPxj0rXwnz/rhnZ1waV4UndMC14KQmYGdSwQSU\njYz9bIEbH1YUacIJTXbVHA/MeRanN2lPH5GS41H0aLDHDI85wz0ucCdc4nZ5mXvrV3G3E/FlPQCe\nBAE7RZ9RvHYl76s8SuPH8zS84Ks5vuHBzuHRIY8e3mf98SOuXXspNtEjZuZA9LOIPEgkUVJS6MsS\nHVPWGo0G3jkSYzBaSb9LXFFO0iwuTAdcDCQIAWyS4AqJp8Z5suhFQKmYeMVYBLKJq/JplBJJV4k2\noJSTSbL3hDiR12jSROKjkyQhMcLqSDGnIrFGggliSlVwJY6Acg6lwBUl3ZMuu7t7rD95wsPHTzjp\nDdBJyvT0LO2pSVZWVvhXtx5wf3M8Fe4zwH/J4tQkV5YX0cYwOz3D7Mw0D7Z2kWyc56+2HZz0mJqY\n4O//55/kr/30P+Q3vzDSyH73qx/lZ/7mD2GbTcDhfYnDjYhxFQ36qOG1IjEWZ0oxvXspk3QaYVKw\nKB2lSkFYH9AYFTAqoco1A2KssoQfaCwGD8FjjcdZh3c+ftYR8CiN007CDbR4WATrSApcxdAoqu4c\nYW2UljACHzzKhWi+0fjgITiUBlSgoosqoBHi9g3NOoGnGBxgGEogu6OGHp5x8FOBHaNEelbEc3i8\nY0dphQoGrT3Olwzj2mH0M9GzU6H2KmpaO4Vy4msyWuG9IqhAiOxo6UuR5YmGTOSkhcdbH/1Csn2u\nLMkHAwb9PkVRYI2llmYoLVI/g3zGPi8p+wUFBh00iQnkeUHwwpiWgwLvAkZZiZqOcdPDHYqnkovy\nvNnFRVYvXGLmxpt0H5yCndPxQR8V0KlW9RNEX9UEJpCZ8jQyM7cx4QsBPJJBgi9T9k+WuHFhgp2F\neR6pVWbYo80RdXoA9KnRQdiOLb/A+t4Z+vcnKG+nw+Q07sXXrSPyrmlgASanj1iqbXCOh1wKd7nc\nu0vzVleAwOvALWATXA6qBmYWWIWrL8P3f0nzq1vv9eK8gsLuBnnfNuDh0XB++T5MUA5XX4BPX/J8\n/H/u8MsPx/wblzWf/hsevhnuzp/lVnKJe1zggTvHk+MViu1EJrz7CNip9nEGapMD5rNtzrDOOR5y\ntrPB9P3jYXw2b8PxY+gcy5SkmcDEKtiufGRJs2T1Wx/yUJ9lmQ1majs8WjimmGsOJ/HUFXQqEFs9\nYBT1PF5yqRiBhOoxHhYw7qcZH9UBHAc7f1TIwLPjWfbnTzqq9zNjX59NWzgBjqTsaas+SqJLwWtL\nx83z9oWEw9lJNrNFFtlknm1aHJNQ4NH0qHPAFJssss4K68dn2bm/jLuVwA3kvHyAMDt9xERGhxHg\neTa04TSk4E9jfMODne7JMeuPH/Hg/l3W1q7F7hKQGOooEKqYAVfiS4cy4KM0ppHVabfaJNrE7hUp\noaxlHq0N9YkJilIYnLIo6Bc5ad6noeox7hryPBcglaaReYmytMoojvShJGlGWZSxh0UmkpW8x0dT\ndmINzWaDRqNBLctIrYnG9oDycbKpRFIkzIcY6nGB0sm27O3usrG+wZMnT9je2eWo02WgLLre5NrS\nCqur5zg8POTj3/vdfPpXfot7myO9M8DmAfy/bz3gL/4H38vK0hLT0zMsnT3hf/iFf8r7rba9cGGV\nVr3O9ESL//2n/xZ3N7a49fAR588ssLa6jDGgVMA7hmbyqldmKBWLs+6A+HCMieEEoRR/oA5oqwEr\n4MOXOC9pZHcebXJ/Y5srq6tcPbuKCiMTv9IKE6fSKlgBT95jrRRUei+BF1JWGaRfxwiTpHS1dX5Y\n/lklplV+UPHkyNBE4OAi8NEiqVIROCkdW6Ar9jHGJwcn/iG8l9dVMWGByCBVsj6qgtSYZhBjrAWb\nKKRnqKTfz8lzKXczMZiDKKfTxuAj6KtAkoKhN0crjdFetokgXh1tKJXcQCW8Q0AoECVzwz0Sfq2S\nkVbBCNU2QwRjOd450iTFZzWCL7BBoR1QOEpT4lMvxbpJirVW5KS+IM8LiWZHkdiEJPp5QtDi8wpq\n2MUjyXUwOT3DuYuXWVhaYf3Rg1Mp2+n4AI6hdiAOjYCcqq2zAjrTCMUyDTaDthnhngVgCYmEXvak\n8z2mWntMq33aHNHimBp9DI6qqLEgYUDGSWhyMpjAH2awp0cJbIfIfLTNqFtnGiayI+b1NotssuQ2\nmHjcxb7r4Qbkb8L+XfjCiURIrxl4dR8WOkAKn37V8x/+dod/cfK0F+cN4OMnms9ses7tgqnBi9NE\nqdjz701Xon9oehF+6VXPzXfg1g5cvgQXPgrHZxrcmp7jRv0aN/R1bnGFR/k5eg8m8Y/MyLvRQeR5\nTWAS0uaAab3PLLsssEX7sEPy0Asr9S5s3YfHh/B6KQq6F4DvdDCdQDYN5oxj/soBC1PbzCa7TCYH\nNNrHHLWbEkddB5KKtUnjZz3uacmfOS+q+8q4pGxcdvZ+YKca49K08Jzn/jTGOLAa9x0ljKU3QKhJ\nMMOWhVTFG6/CFQnHR1M8OpNxMDfH3ckDput7NFRvCHb6oUbHTXDQmeX4oE1vo0F+uy6f2y0EvK8D\n+wFcVVZ0zEjLWMkBYXTc/djXU3bnqzG+4cFOWZZsbW1w984tvu3bTkjM0AGBD/JwpSRoeVfKZNIY\n8AFrpOhwcqJNLU3pHh9LMlScRCmtaU1N0+0PCAryoiAfDOj2emiUsDlJQlAOVzr6gz7eJWRZijEp\n1hq00cMJptYWHxSUJUH56L+RVXgFpInI1SanJmk1G9RrKVkqiW7VXumYGCaTXLmYecAF6fzZ293h\n3r0HPLj/kJ2dXU76Ob/3aJf1o0M5YL/2G3zk2nU+8e9/H3PtSf7yD/xZ/sE//zUebA+e0jvfevQj\n/JPPfo7/9m/+GPVGg8tZje/+lm/lX/7BeyVq3/3qN/PSpQuxvFSM4pcvnOXc+RVccEMGIBAI3omN\nI0Y3E4RAEWZhTF4lthuIhvXgPDoYEhWG5nvvSvaOTvgrP/U/8Rt/8PrwnPhz3/JN/OOf+BTTrVb0\nSFWMiJEY6jGw41zAOD9MLZMQGwE8QekhGAiIlyQoHyWJcVv96MZSSdIIREanhKBRXg+T4yrQM/TL\nxNUrCZMQY74x0WvECEhorZ96TmlNiICnktMN1dJePGiSPBZIVSoMlCJ6lyTyOviRzE+NAycVS0lh\nBBZjOprzUo4qgKvyFoXh/VZHX5ILTmR7USIXM/PkGMd+H6MtjVod5QK+0CTKoIMilBIJ7gNok5DV\naqRZhlKKohR5pnNe+og0JDaNYEfhAhKcEOQcCTHsop7VOX/xMmfPXeCtN79Ir9v9KlyNTsfp+GoO\nPfaomJ2UEdipGJ1Z0DOQNQR4LCtYRuRRS8B5MC8PaJ/fZ2nuMRfqdzkb45GnOKBOD42nIOGQNjvM\n06CLUlA2Uvbn5hjs1iWxKsriSBFVVR1oBmgHGkmXSQ6ZYY8Zv4/d8KiHEO7D4wfwH+9rfq+aRJfw\n7QPNZ3LP6gxMW/jFBc+fuav54jNenM/zw3zipMO/OPGYVXjFwPdsaj7bf34/0JUPe4pLmpPzdXqu\nztTLJd+soMws99t1tiemuctF8W7wIjf7V9naWsHfTuCBklCCfQRbZHF/6wGblTQ5YYIOkxySHeew\nBWED3Dq8cwifKjVfHAMK39HR/Pym58IG6G2o7xVMtI6ZSI5o6hPqaZ+jepD3SRlTplUMzjjgHfeL\nVOcFvBewPM9j835jPFjg/2/IwFdyVNsqCgQBGBWDGYFfSKHTgvUEvBoq3cJ+QncjobfcZG9hhu3J\nJRJbyAJeUBQuIe+lDHYb+A0Lj5Wk9lWPdWDHQV7Fvp0gH351PKq/Pz/2fTX+bRyrb4zxDQ92APb3\nd7l7+ya729vMz8/LfDMoXFCUXkm0cWXkh9hkL5Pg1Ca0mk2s0fRPuhhlSDKLtZasljExO0un26P0\njsFgQFEU9AcDYSHqgUZWp9ZI6ff6lHnOIHhsqlFWoa0Wj48x0TOisNrgjPwxuBgnXOQDkiQhSxMm\nJppMtts0ahn11JAlCVliJXlN6xGjE1OyQCbv/UGfvZ0dbt+5ze1bd9na3KYoHV/Y7bF5bBiPl37j\n3U/yD3/xn/LX/vwPsKf63N/e4nlenM+/+Rrd0rMyPYc1hp/5qZ/kr/7E3+bXf3ckA/jYt3wrP/O3\nfpQ0TdGEIQhwzklAgNJ4FeLCi3iTggsEF8CNAZ04YZfLuAclwMLHstfgRIpY4YkqvOCHfup/5Lf/\n8OFT+/cbf/AjfOIn/2v+yd/98ci+RHZBK3TQaGNQZTTma4PRCT4yOAoVwY7HaxdBRozDVALQgo4X\ntOCFvZGstSHY8ZVzSEwjKK3Fl6S0XJQBpQzaSMACThLGquAApeSmpSv2ZiyRrSrSGRGYamhPJni8\nikEGMSBB+pUCVZKDQoCT9jp+HmOvTQQvSpg1FeWf8jvio7Im4FEYoyhd5TWqvEchhkBoYcUIAvaU\n7HvV9+PKgFaWRr2JDmC8orSGxCpJN9QxwMEYkiwlq9ep1eqUeUHZzykKATtWy99pYhKUthRBi49I\nG5GqeiRWPIBGcW71IhcvXaXdnjoFO6fjAzqqydU42KlQRtRXqRmoNWBWCRNxLj5WA5zxJMsFE1f3\nuDh1mxfs21zhJhe4x0r5hMnykJoboHGUynKUtNkyCzzQq8ybbSZmjng7fYFttcIgb0JPjWwkVd9L\nDag7Uj2gTpcmJzT9CaoTYA/cDnxiT/O553TevHbU4df2PXoabjtiz857U9l+k9e4NYDrK6DPwP+m\nPB//3Q6/3BmTqC1qfv4HPeFF6Jyrc3/pLI85Qw3p2xqXMz0Mq9xijbv5Go+3ztF5Z2YkZ1pnGDJA\nFBaQgDIBS0lKTsYAk5dwAuEYimP466XmjWf28ff5YT6x3eGzx36oikpdTkZOQoFVJcoiNQbj+OWp\nz3/8ycpT8+wPPg/YPAuC/qgxDnb+tEf13pU8bhzsRA1gXP6lAPZbUFjoa/mcdoEnEOYM5XSDzlRj\nlOUQ4ktVhM0uwtxtIf6xSrLY84yKUscZ1Ap8VcBzfJvDM8+djq/kOAU7wHHniAcP7nD79ju0JyfF\n40CIHTNKJnQh4m+tSIxBeQ+VSRqFd+Kv8c6T2IRGrUa92aBRq4nettmk0WjQ7XYZ9PsMYuKUKxx2\nchKdWExwEmmtAh6Hi14NY0xlgRBfhZZ/u6qYtChIraWWJTQbDbI0IUlialgVqxzlasP+FoQ98M4x\nGPTZ39/j/v17vHXjBhsbW7jSQdpg4/iY5/bePHiN3qDPwFcXvufrnXcOOnz0Q1NopZicnOL/+l9+\nhlt3b3Hz9m0uLC+wdmYZXxbgS4jMhPeO0kNIkii/EnkVPuDLgC88ofRiiUHjgh8yBENyRHnx9rhC\ngtq0j9aZKJ/SntsPt/nsH7zxnv1zPvDrn3+Nd+8/YO3sUjTPjztUYqR0iP4bYzC+ukgJoHHOY5wj\nGDu8fgWipGy4uhZBVLw4C14L+KBRygjzY2S/VcVWVYc7+o+EgwyYuG0hhCFACSFERlA/fXuqQhEY\nbdfoq0InmnqjjrGGosjFJjT098gNTGuL926M9YogxcX4dUVkmBSllFcJ4DEaPEPQ7pzHUYUdxEiI\nWOgaxiUTSvbUeShyh9Ep7WZGajSJNhRFD6UcxihMaklqNWrNJvVWi0ZrgjRN6fkuLgTywhHKQFqz\nJEkWO4E0OEn4UyYRQ1yUE2ofwMPy0gprl6+xtHKWzY11Tsfp+OAMCc6RR+XdyBgBnRYCduYhrcO0\ngvPAWvUIsOawF7osLGxyVj3iBSQ04KXwZS5zizOdbeo7hUwYnbxsuQA7k1Pczc4xo/ao00O1Am41\n4cmgBod2JGd7Zr6t8Rg8BkcSCpmY5vB2B37TPx/E/Dav8e4xvLQkC/Yynn9vumvh+hlgGqbn4Zcu\ne25uwq1juHwWLr/s4TKUr8L67DKv82He4drwVfpkHNFmN8yxySL3/Xn21pcYvN2EtxBP0n1Eg3aA\nEGd/3FCgjCii3q/X5zfy17jZgyuVxUaNrt3+vejmX2P8cSECz/77a91jMu7XqQCPYQR4qhCO6scd\nHLbhOB2BnQ0l0s0J5E8jY3T/rbIOKsDTQRRy1ds2AJfASfUCVVFVMvb+zwKdajur7fpaP8YfvHEK\nduI4Ojzgc7//O1y//jJZksiquFYoZdEmiZG2EFxJ0R+Q64Ik9RibDEFLZZ5WIZAlKXm/jzs4oFsU\n5PngKZM4iPekP+ixu+ckEjd4rFFoo+j1+xRFSem89PdUUcExvMBo8ec06jVcMSBLbUxdq1GvZ9TS\nVCaCcZIeXEz60hqvkFhjBYNiQKdzxN7eHvt7ewy6PVKjqbdadHUNWa54/s3ipHRcXj0bn3u+3vnq\nxTWytIZosxxlkbO6tMiZmWlCmVPk+RjQkeJO7x2uYge0EbA29D7G7px4HIDhRLlKZ/YxTc6VTsph\nATz4wuFsgTMWrTT3nmzFbX0fY+qjx5xfmo0SrshCDJmLMYN/xC9a6aGMzodA6RXKCUtSMROSQjbA\nWiuSvSoKGi1AL4j3ZujpESJmtFhVIa+g5Jg5JUxEBLJDwcG4p2QsjQ3GwE0Io+fiS6JBB0k2k3Q2\nE1kjN/SvVOew0hrlA0qNXl9rPfLuBAn3UFGmVv1/QJLqTD1/DHUAACAASURBVOx5cs7HT1FKPVVM\n3/DeMShLevmAejGg7mpYpUlrNVpBfFRWKUqXy0qacqSpIatnNFotas0mNstQxuADFE5CPKxNUFaR\npCk2SdDKyKIG4FTAafHNoeRvEudRRrxH51Yv8dFXv43Xv/C591xDTsfp+Noe4yvK1ep2ytBEwizo\nDKY0nEXSyq4CL0L9pQ6zK5uspI9Z5SELbHKZW7zCm7w4uMHsW8ek90phMQ4Zgh2zBLPnOyQX71E/\nK7nLfWp0JiYYnKmzd35ptCp+wlhHpaEMCQUJOSl9lUHWgybcH6p+nn/dvqPhpZUIBm7D+8ZFX0H2\ncy0ekg240ocrGknoWtIcna/xoLHKDXudt3mBt3mBHeYAGJBx7Foc9qc42psjX08p7yeCVCr/xgNG\nErYGoxTnPvjc0KfGCU2OaZE3UpgZwAzcbxDZoPe5Nxnp9WESerZBjwZ9agxCRqiSjZ8K+xqPOv7X\nZVzG2Z0PmrTqeRHZOU+DDMVTH4ibhL0WHCsBPC1GVjYbv2/FRw2xtc0zykDoIQDoCPkbOAQOLHTa\nUD6beDhaHH06xKFifqqQhdPxlRqnYCeOk5Njbnz5dba3NllcWByaqpU2KC0rASrIRNu7gjz24mQ1\n6fsQOZPFux69Xo8QPEnPELRhEAK9MicE6eapWtwVBmNi8WhRiCRNI10iQG+qzyDPSaxM6nTlcYjS\nI6MVtTShyFJqWUqtltFs1mm3mtRrNWmJdyXaOQzi5VBK5FtOptcUg5xBr0/e7+PLkjSx2PYEU1OT\nJI023LjD+wKZC2e5cOYM3/HKK/z+l38kmsmj3ll/io9923eytnpWgh1iqacvc0IZAY4TkCP9ME48\nLQTQGluBCeIMHgkU8M6BCihTGdnldyovilECAkaeHkEiIQIgX0qhZzCeC4szcX+ev38XV2YJ8UgN\n/TRq5C+pJvAjSVgEsgq8UrigxUMiGrFhsAQOQnD4YLFWzjEdQdOoH8dHOZr4eqrOG3n9CJAUAg5g\ndE7E7amKTasktiE4GenGhr8nI55XWsm5GTTaBMDEBLuql6ditaKXKMrelFLCQCqF86It9EP5XBjK\nPrWOUr0ghZ7i5Ym/F6GaxD5rfFDkoWTgCgpf4vF4NMYa0iyV0AjvBbgbI96gLMFkGTpJ8VpT+kDu\nPInSlN7jUWibYI3FJqnI3ojSSOXFv6YEehnvMaWTvx/v0SGwvLTMy6+8yuTUNJ2jo2GR8Ok4HV+7\no5r0VWDHMDJ11HlqFtc2sKhEtrYGvADNlw84s3KfS43brHFbJGuss8Jjzh0+Zu72IennPaqKkd5n\nCHbUGUguOyaPj1Fqnd5SnQMzzY6dY3dijv3VGcLDBB6pUZVLH+gq+k6S3A6ZpGPaLMwfYZacBAa8\nC+97X4pA7doqfN/rml/beo4X54zm6nd68hcUe+enOLSTNM+dYMuSoDR5ktKpt9iemOE20qXyFte5\n2b/C9qMVALwzFH1LfpRR7mQC9B5F/8YD5OsO0BvIXDbP4r4BHUXeSziizQGT7DJLf/IxnOmgVuHy\nRcTr835A7Sq4M4rOdJ1dOyW9PmWb7kmDcKQEOPaIGQTPTqgrhcLzggTGRxj7/w/iqLZ//Bo9DnYc\no86bmNhWdsFNSFpbYeTHqz+POYa5HUzG59P4UlWNzyHC4u0A20o+w20Lew2RbA4nD+Npd9X2PeuT\nOh1fyXEKduLI85zNzXXeeutL1LOMLLHDiF6UaPgVChXE/FzmBUYbstRjUytgI8vod0/o9boCeCIj\nGawBqzEaalmKLwqCCyTG0Kg3sMZycnw86hKpQA1KIqu9Fzma1pLMVf0RB+n9SawhSQxpIuxOrZZR\nq2WoEPCFRBonQGrtSBLnvbx2WeDLguBKjIJWs0GaJczNzrG8uMRHb23w+p1PRn+P3Cy0/hTf9uJL\nXDl/Fp0k/Fc/+kP82H/zM/zOH47FRX/zt/GP/vZPUOR9udx4L+/jSzQOHTwKH6ON5SGeGmFCjBWQ\n6T0SD+0drszxvhAWxWhUEJDonSRrKS029uCBsUJK2V95LsgLggtcWprnz7z6Cr/1xfeGJnzso69w\n+ey8sBBaZFnyYcpEeJh4VhntCXgqUCHPB6XxQw1ble7lIhMVQZqSx9OrUIDyw8+YMJIpyBsLmAgI\n2AmEUYCBknPWjAUOxM0egZuKpWIMqIXRbSCoZ9a/VIzfVhW1NO7TqYpFRz8rBFxM/1MjeZ28h8Rt\nm6AwWuF0BVQk4c0rYYTQmhAMXgnc9Ii8syprRck5FbykE1YFu0maoq2V9TrnGJSO1Dm0kee80uKF\nS1KMTdFGx8ADeR0fPGVwSOyfQ5UlypVoOamYaLe5tHaZl17+CH/4hc/RO+3cOR1f02Oczan8GlW3\nTuWWj8vXJhX52jJwDtSax77YZ+nMI67V3+IlvswL4R2u+JvMH+3S7nZobXTJ3vDwBfBvQW8dukei\nFE5TaD2B5Ahs8LQbXS5MPeBJfZmHepUHtXM8XFylPzspUclbyISxo+AATsome8ywzTxbZp6Vs5vo\nS46rH4Xv+0PNr+09B8RMaa59xMM12c3P/JDn4//4mbjoi5qf/5Sn/CbYvTDFzak1HumzNCePycjx\naLo0hn6c+5zntl/jXvcimxsrnLw5PUpu7iIT3D2EndpEJribQZ7r9yH0ZGPybJh8zAEMOhm7xSxb\ndoF1tcJ2+xFT5w5pXB9w9QS+/13Nr+4+Zx9jr8/gkmG9ucATs8QmC+wPZhjsNuBAyXucAHkFYp6l\ne54FMs8DOx/08Uft0/j/VQsA1d9EkD+RJpJAeBZYjV+XPWqhJJ3OSWol2sqx9KWmzC35fobfsfBE\nS7HoZHwdayTqujcu0xjSmGP/9s9s19fbZ/Jvb5yCneEIDPIBn/vc77CytMT51fNDH4KKDI+Ok2li\nvHQlNbLG0Gw06DUanJyc0Dk5odPtMihyWb1OLbVGjUajxkSzAaWjGBSkiaVRr5MlKcVggI8dPFob\n6o0m9UaTNKvFle+4Mh69HnuHHXYPjkgNpGNsET4mSBEN6jp6SpSS1ewIdkKoUtwCSnm0ClhraLdb\ntNtt5ufnmJ2b5Sf/4l/g7/zcP+P3boxuFt/+0kv8vU9+ApsYTGKZbzb42b/7N7jz+AkPN7ZZW13l\nysWLaKMpBl3BFt5DcNJZpOJkP5SRrSkJwaG0khAFI34jrQ1eecoQKH2Bc7mwFBo0WqKeS2FrVPVh\noGN4gZciSzec5g8XUSTgQMz4/+BHX+OHfvpn+fWxXp+PvfoK/+jHfxCtAkGJ96QSRgs742L3CyPQ\no4nsix725qBGErvqHAtx4u+DR3mHWFxCZP1G/TcKjwoOwjAegarwNoTIdmlJRAsRDUlSuhpGZQcU\nMSRuxOyYauITpWeM2KRhkp0S70pl7REPDZJg50cMTwV0ZP8E8PggiX+6kshV1/YQIsmmYr+QRusI\n9mLaYFCl4NP4WSojaWlaR9pfAcrjcRSuEOloIR1REkSQkmYWjMIrReE9uXMUzmN9iFHgBq0VNkkw\n1sr2B+GUJMiipDSp+O8i0DHBY/FoJIZ7YWmRP/u9/x63b70dgwo+yKufp+MbY4wHE4xL2DKgAbop\n304jqWtnwVwomb6wzVp6i5f4Mh/xr/NS8RYXj+5Su+Uw68jE/j7wFnTfgfU9+Hwh6bvXgI91YMqD\nbYJZ9Mxf3mcp2WI+3WI62WOi3WEw2SZMxE3sMlwZ75y02Wov8Niu8NCcZWXpMcvXdqh3Cz7zn3g+\n/pkOv7w1BmIWNJ/+8x4+DPl1i28qmmcD//fLJbduwu0nsHYeLr0cKJZT9i5l3Gys8Yb+EHe4CCgs\nJQFFnxqHoc0uc6znZ3jSXWF/fZb8nRa8jQCbHgJ6Yvcqewirte/h2CN9B7vIhLYFRRgCOXYg38nY\nPZrj8YyUrS7WNmktHbP6oQ0SSj6deD7+6Q6//GhsHy9pfv4/8+QfMuydn+SOvsR9LrDuz7Dfm8Vv\n1uQtq7TjgWdEmT1bZlldt8aXtr6exrj22z3zVTECGoGRTm1KPGtzRtjN88Al4LLHnCtJV3rU5o+Z\nmtynpU9IyOMrWU5osn8wQ3d3guJJjXI+lRLZhordrQYe16GYYcQmVY/xEtZq+6rKh9P7y1dinIKd\nseGd443XP883v/otLC8uYa0wDDIxs+jY1K61p57VxHehFKmxNBsZ/f6A/c4x3ibkaE5KmeBbVxBU\noJZYJlotVOkZ6AFGSdDBoN+XaGQlyVtZmtFsNpmcmmSi1ULj8PkA50uKPOdXfv9LPNjcHG734uQk\n3/XSefJ+n36vR97vU0tTTCJpU0qBCSGu64WhByX4QGIhsZoss7RadZrNOtPT00xPT8e+niZ//0f/\nEo93Dni0s8v55UUunl0GFMZabGox1qKN5trF87ywdhGljEwgnR+t8kNkSAIqlLGXpsS7Au+dgEJt\nI3owKJXE41FKiz0OhQAyhZLI5sjeBO8JKoZEeI8rpQ/Ju5jCVl0whsxxTHNTnql6jV/4L/4Kdzd2\nuLe5zaUzC1xYnhEGJpTCIMV7gQ9e5GdDhkaAl7IRhMAQ6CgtDIZwEvK9VtW8v2JWwrC00/uK4dFR\nJubxoUD5GDOtJf0NxpVnAnC9YCyUFwZKgcSjI+EZPCthe5+LZxVqMCwarUBSZHZ0MNG3IzcQhR4C\nwmH5aPwstBpnf+K+VhRVPM/RSKIbAWUsSpeRcYxr0UpjdYLRAkp8kOAOHxx5MWDQz/FlCQpqrSat\niTpJavHBk7uA0obSSSCBMVIGrJNYHmqsSOVQeMWQ1XGuxDlH7rzEZKPJlMZrKUFVBKZnZvhz3/cD\n/B+/+HPs7uxQlsWf/KJzOk7Hn/pQjLwDCVAHXYcJ9RTYSc7knMvus8ZtrvEuLxdvcX3rFuoLSHni\nQ2Ryfwg8hjcO4JOFjgloMr69o/lf1z2XF4EnYDahPXnEdLrPJEc01TG79UBoxM0pENDwBDqPZ9lo\nnuXBzAbz7DDJEdmV11lM95ieCPzSWuy82YLLC3Blzcvq+3XYvjDFcatO/VKP2XyXyweBqx7yOhy2\namwmwti8HeVpd7jEPtOYKFvuk3FCi4NyiqP1edz9RBDcXcQH9AgBOwMEoPUQH3qXCHIq9/oeQ1O6\nL6Xgc09YLP844WRpmgfT55hVUsaaTQyw1wpWW5tMr8AvfZPn5i24tQmXzxNjsGFrZZI3sxe5oV7k\nNmvcL8+zdzAj2/Ukvu0R0CsRNFYBnfdjCqpFsK9UwefXygjIPo1Pdat0tAj0mUDCOSINM6slhfAC\nQ88a10umzm5yduIhy2wwp7Zpc0SKLBiXWI6YYGtygY3JZdaXzrK5uAJTVsjTiqQpFTxpgJti6BWi\nz9Ngp/qMTiXSX8lxCnaeGUVRcv/+Xc6unGV2eib2fijxRhhDmqZkaYYyltI5KHN82cfUEianJ+nk\nAw76fQ56A1QuLe3Rfo5RinqSQuaxXsmkuSzp9fqURYFGSWR1lmFtQmJTjDX40lO4Eu0Lfvn33uDR\nds54VPLW4Q/zu28/5C8szoukK0ZMJ0kihaLOYMsc5cUbE4KSskUj0da1Wka7PUmSpCilaLUmaDQa\nGGshTkbPL8+ydn4RG4FNQIlvJq62D5NPwlgBZYzL1uMMh3MCdHw5NMgbazFxf62xaCW5mVIsCa70\nBOcx8fXwULoSVxSEWA5plERqBxdwZUlwYagEEy+Pkal/XOxRgdjcIsfiytlFrpxbJASH8+UwJECC\nEwwELfKq2L1EJKh09KpUoQSVCb+a5AtgkOMxDCOo5Hp6qCobAZghCHLyPt6hMTGkQI/CEobauoot\nij6ZoNFezPooK6tJQYsn6JlRBSxUvp7xryAR09HZE49HJVnzhCAMXGWLkrhwed3qnSpmVF5Heoac\nl34jdCLnkNKAG3p+qrwHidQWmkfAoJwD3ggrGXAoHcjqNSaaTaam2zSaNZQWhlYPCkonIGaQ51Sp\niVpbFOIr8nGfvA8USpErQ65TBg76RcCWkPhAWUlJY0y41oZms8XLH36VnZ3t02S20/EBGdVq8bMd\nO1aemkBWomfAzvdpz++wzBPOqQdc4g6Le5uoL4L6V8ANCPeg3IFiALUAP5prXn9OHPR/ut/hsyce\n1QN6YJ1DogcKElWi0jDCXgUiZ3sCPICDuWlut9do2WMyBjirWVu9w8rkJjNXTrjyUbhSyK6UU4ru\nYsJGc4nb2SV21CxKB6azfRpzPXQI5DrhWDfZUXM8ZJU7XOKWv8z97gWOHs6hTBC2vFC4nsEdGdxm\nAutKUtUeMYqT7sTt9dVCWg9cRfUcIYDnGPFF9cD14HBiCOa4pyhmMh5OXaax2CfJCrzSdG2D7ZX7\nzM9uM9k/YvU7B6yGQF5PeZhMslWb50GyyrvqKl/mRd7mBTa3zjB4tyUs2ybyHl3AVxP7OqKnepbZ\nedbD8vU2qnO+GuMM53gaYRv0JLSUgP3zwBXgJU/y0WNW5x9wqX6HC+oeqzxkmSdMcUCNPorAICbz\nbaglHnKWe/WL3D5zmfvZBXLdJHgbQwyUYJuDCSgrHeQAAT7Vdv1JEvVOxx83TsHOM8N7z6NHD1hf\nf8TkRHvohUCJt8CqlEYmaW29Xpc87+N6JaVV2KRGvV6jXm+QJimJTSh8GXukJchAOU+qNVg7TFsj\nenISm1Bv1GlPtpmanCKxCd4HdvYPONjfw+J5uPXeTptAYH3vNQ5PeqzETqCyFNYkURajhVWpemaM\nNjEJTICVRAgr6brRmkajQVYxVyZOtKOMTrzxkRoOTjpkgixb6BAn7sJljBwhgchAuFEindaRJTMo\nrbHRNK5jKhlVg33pCKVHRYCmiFIy5/GlJ7gggEMJkHExhEAjvS4iN4t69aBGRZWVf0Rp6U2K3peR\nPC3226DQoquKEeRjxZwV46GChFkEP4ZaRiOEECVbMXp56HkhMkARFBg1Aj5j3iDwEPQwPlxXviCt\ncRVYIeq/fIgSOB0jo4kJdcT9ku2rSkbHAc6I0RFZnlLCZghGDcOeoRBMDF2ICYU+4CKAq4IRqtfR\n2mITiXB3oaT0wvgR3FOSvyq8QGslUeHV9oIEapSOsiykGycxpDUp5K3X6sxMz9CebJPVLD4U6J4i\naE1RSA9Q8IGiKDHaxMj16nMOaGMJypArQ19Zej7QdY6BKkjzgqwoKcoygqORPC+r1Xjx5Q9z483X\n2dnexLmvx4nC6fj6GmrsAaMV7kQWTqrkqTakkzlT9X3m2GGJDRaPd2ivd1HvADeg9ybsbcIfduG2\nh4aG3wvvE5VcvsbNPKajRQIhxLuij9floeKoj7AkM8CMotdu8SRbxZ4p8ErR03X2a9OsJo+Yb+1T\nW+qjvccbTT/N2K+3eaTOckddYpNFCmWZUofUdQ+FpyDlhCa7zLLBIg9759jaW6bzaIriVl22o/Kt\ndxHMsh0fW0RPToCOh3wAIWe0Kl+lAvTi9yeMmJITCCcwaMCekWjjSQhtxaDV4L66BPPQr9U41JNs\nZEssZptMt/apeZlQ903Gvpphg6UhULvNJR52VznuThCCkXn7FJIS1gWcgaMGYj4Z94g86xWprl9f\njylg4+e75WlWs8Ywdi2xMKeGxblcdaTXu5xdesCL2Q1e1De4wk0u+rucGTyhcdIn6Zdyf8wM/WbK\nk9oid80FZvQ+9XoPveB4MLhIt9+GEyPn0xHQNRKCQBMBxLHodAhGq0dFCZ1K2f5NxynYec8IbG9v\n8uTJY86dWRWzfJUYZS01pWjXLFoFEq84KR15npMfg88KtHfU04RmrUbe70FpBAQEoJRgA6sNWBtj\niF0sW9RktTrtdpu5uXkWFxYJKvDPf/W3ePjk0TPb+Pw4yoNOl8Egp9/vUa+lkFp0DEaQ9DKNUWCt\niavomiRJKMsU70MENwKA0jQlSdIhS6F1XOMPYsUfypgIw4eJZvTYiCLe+likWSWRBcBoi0nkvcSb\noyPQqSa2YjwPTjwUwqBoTDTmexcIEeiA/J94qYKAI++HjIv4bITBUUFJKWd8qKCG7M64r6Qy+Yvh\nf6zIYEg7jAGaofFefu/p/xKwEsZeV46nHjE6WuKXRaYmv1eBncrQryrZW3ydysMTMWGFOUbR5BFo\naoK4/WOctby2GgKdahurUQG4arur9/cVAEQ9BZLAgA+4eLxGgsHq2Ml5Y63GB43zitIFnIpSwAik\nKv5IEcFf3KTKDhRcwBUlRV6QJZo0SzCRLWo2WkxOtWm2mhirKb3GhRKvFLYA7+JnHffRexf7sKRU\n1ybgjWYQYBAUPRfo9gvKMIDagLwoKIqCsixJkmTIRiZJyuUrL7ByZpV7d27R6RxxOk7H1/6oEMdY\nWIGyT1t4mmDrJS1zzCQHTLPPxPEJ6YYbMhu31+EvnejYBcOYOup9opIVXJkAJmBgUolJJiMPqeCF\nCjNUiVYTQANcLaFjp7lv1sinMo6ySbbMAvfNOrONPVqNYywlJYYTWuwzzQZLPOAcG/ky/bLGRHpE\nZgZAoPSWXtngKJ+i02+zvzNN/0ETbluJi+4zwgJ9ZB66z6gL6NBDpwTfZaRby5FJaiVJqjwyPUbg\nMjIIoQEHLdiIwCQTP8dhmOFerukuNNlpzPFQrzKndmjrI2q6HzuHHHkEa3tMk5OSUNAORzBhOFl1\n9EJDLpxWRYJAQ5lBbyoCs8ojMg7Sxr0rFer8eptcP+e8H4KdJpi6eGvmkICOVUgu5sye3eJK7SYv\nqzf5EG9wbfAuZ/eeML19iN0OqCPkHtUEPw/TCwdMzRzKealKXM3QW66zcZww2GtJStsOsK9gkIFr\nISd8DTlfzDPbCae+na/MOAU7zxmHR4dsbD5hZ2+H+ZlZjNZkiUW5hLpS1A2kFuokpCHl8LjL8ckh\nea9PIKFuNJONBnm/hyqjlM15ijyntJZas4VRGuc8eV5gjMHalEajzuTUJPML88zNzfOZf/Z/8mij\nKvX8d4FfAH6M94ujbMfS0k7nmFa9TmjUZcKpQGmD0WCVlJJqrXHOxRV1LU3ySYIxRtiWODEXtkdm\nvipGkqkgq/AmyuV0ZHN0lGwFJPEs4IcAB4QpMcaircXYFGstVkt4gtaK4KRjJ7hCwhq8E9YLJSER\nAZGYuRjCEMKQ7SFUBno/MtUbEyVLjKbT0dwfxqw8AhIqqV28KCoVpVd6yPgEJyxIpd0aelwqH4se\nrZqOAIHsm3TJyHFTWg3ZGa1HvrDKx1MNFQQM4TUqCKQkfg1B4Qk4H6LUcuxXg8BQHdPZGHFsT41q\nG0cs1UjWVrEzQY3/ZgSGSsIFRG4nK08hKCRxOgId5FzQSog/a8DZgHXCkPjomxIcFYaHTqRyUTno\nVGT5wMeFAhopaZJgUikDrdebZLVMjqFRWG1J6zXQmjIB77SA2xDwrsQVMU3RF+Lv0iJL7DvNwHkG\npWcwyClDHzUYUOT5MBbeORf/PuRv48zqOc5fXOOtL79xCnZOxwdkjEvZ4kPLhHs8pM0kjowBDbo0\nOcH2ylF3yD785a7m809J1v7oe9PlSxCWoZizHKZtDpnk2LfolXVCV40wQg8x2NcY1pK4kHCUz3Jy\npUFnbpLNxhJzdptps0+DLgaHw9ANDQ7DFDvlHFvFArv78/SP69Qmu6S1nBAUrjAUvZTBQQO2jcjT\nHjGSp1Wx2SUxBjsInjkJ0HNQFAhjU5mVemM/XHW25GPPVZ0qlUckg14C2zVkFRLBFrnh6HiW7lqT\nndVZNtpLzLPFtNqnxTFNusyyS5MTZthjmj3OsE6HCTabi6w3V3gwvcrj6VUGzQlCKj1hwlJpeFyD\nYhJCBcIqn0jlZ6kAztcbq1ONypNUfT9eqluDJBWAPYPI2FY9reUO5yfuc4WbXOcGL+U3uLD5kPaX\n+tKh9ARhaTyoFphFmL3aofbigOxcH59pTmhy0JqitzTB1mpDUto2iL1SKZw0EUr1GDlHnt3OU5Dz\nlRqnYOc5o9s9YXNrk62tTRZn5zAqULMGmyVkIZCZwEQjw7QaNGoZAMdbO/jgMRYaiWGy1aAsC4z3\n5ANQvqTMc3JrsRMGbcXv4JzDWE+S1mi2WkxNzzA3N0/npMPdh/d4WrL214GfA34Y+SP4GPCbKPUj\nnFtYZHKiSX+Q0znqMNFoUEsTDB5vDVaBTYxImoKnGBTRZyEXtyRJqNVqaK3Jc1nNDkHYnjStRcDj\nQUUmJYIiUDLZ9146biIlUEmjlNKSemUsmARnrNxch9IlKZfUVN6cElcWBCdFqgYknU1pyjJGLnsp\nFR2SElEyzRhLgVboql5aRWYlyiV8QFinIWBRoIgx0aqiGMSrRZR6OS/2nWf8Lc45nBeWgAAVPTNi\nTqrwAZDunCBgwBgUJkq3qsQ3qFDLyNhvwBuCM4IAlCFEtqnaflf16ChAGYyyWC1luEqJLMxVfNBT\noQEjpmc4BCnGQxlG191xdV4lAdRSOBoclM4zKESyIQmGsV8nBJQTps0aKcKVOPWCMgj7p5AEQk0R\nt3P0OQxBqa8+A4/NNGmakCQZaZYQtMjotLJYm4IR4KqNoCZVMVDlgNKC0mJC9rknLwuZlnhDXngG\nZUFelniVU+byqJgd59zwmGutWVhY4uLFy8wvLPHg/t33uZqcjtPxARlPlbuL0AwQWWzph/P4d0/g\nX75Hsvb8e5Phk3zPiubKt3uKNcP67DQbdoEtFtgp5jg4nCKMRyVXoGdzbFsc0NO4gwbrqxfZXFmm\nNt9hsn1IjQGGEo+mH+oc9yc43p7BPbLSeXMI3YmMbsoogbmPkDIHahQXvYn4cHYZgZ0qJAsQ4NIh\napAYizvjaYak+j72tpAhk9aKJooT7I4GXxtaXcnlpcv9jM7JLOpVz1QiIQ5r3OY891lkk0kOyRgQ\nUAzI2GWWJyzzgHPMZrs0l7u827jKQLUJhRVc042PvSYUrbgfVTqb5RvHJ/KsjK0CPClYLRkFUQJo\nV/q0Z3dZ5SEXucs13mF1c52JL/bhc8BbCEA+jC/dO/JPMwAAIABJREFUBlaAXWj0c5bDDv2r77LN\nPJss8mRymd0zM7iFhrzHBMLqnVQgeHybvhE+iz/9cQp23mccdQ55vLHO1StXSdOMrNEgcYaG9kzW\nLBONFFcO8M6RGk2mEVma8mhtCbWE0Gpgg6Pf0+SDHqEsKIsCFzzEokqbJpG5sKS1jEazSb3Z4OFm\nZXp+Vhbws8BHgFEc5YWlZX7g3/kIiREfDEpRlAWDwUBW1I2mlsgkWBbiPd5VvS8+MkvC7AAkSRjK\nrVz0/1hronQoSoIEXUTzPYAiuHKkZlAao8zQ94OxhCifc7FTx7vYn0KIKWrC6KjI2igk1MFo8cXo\n6MsZZ3UlBS0CED/eLaPGynGIC1YVG+FxvqAoPcFEYKD0Uz9ffTfEU6GS4sXkLj/O7EQ2RCMgbcwX\nI5K1+J5OjPU+pppZK+BHqYAxo46cUXqaSA3xBoxBBQlZiBQaKoi5JcTup6pUVSuNVkYKTVFURqUq\nkW0c7FR6OhX3MeruqtiDMbQhEjOJuo4dN1T9N0iAhzbxd9XQ10TcfxRDz1ISLM55Of7exXMmhjtE\ncEb0PwUFG3v7HHaOuHBmlnazRggBYzVJZkgS+/+x92YxlmTpfd/vnBPLXXKvylqz9q5e2eyhm6Ro\ny6RNiqJBQ4DfDNEQDci2DFgcyjJgQC968ov9JOuFLzZsgwbsIfRgwIJhi7LGtCiQtkyZw/ZM9/Re\n1bVlVe6ZN+8WcRY/fOdERGZXz/QMumd6iPwa0VmZeZfYMu73j//ykeXi49GZiWwZKJuYPwm8CM4i\n2dwZwed477EBZnNL7R1VgFltGY3HHIymkFt8PqC/NKeKgCf9vSQga4zhxu073Lx9h3fefivGUJ/V\nWX3VK93Bj5Il70/aBGoIVmPJqCmoKPFlJtaGJfgoDVL8HJ9Nv3pD842ve+ybiqNXenxs7vCxus1D\nrrE7W8duDuCZatPDZvLZwBR4ooWVmMbf7Sp4DO5CyfRcRrW8hC7lGhqcwlcaPzG43SzOuokgKg2v\nD7TAIvlxDhCAswvsBTGNhwqCjdfNxNakaaAJkR3TytaSzyLt164fJqOlrLpoUsF8FQ5L8ddoYAX0\n9ZrhrX1eyD7gNd7mNd7mJd7jtr3PpYM98oMaNZPrqe9r6rWMRwsXuZg9ZUmJXE8tBz68+RLj0Qoc\natnGA+DYQJ3SxyZIkz2jZROyuN6msz1/HqvLbpbyNVNN8jRrMFiecK63ywW2uMZDNg63WLw/Rb0D\n4TvAd+CPn8Hbc9hQ8HoJV3bAVKBKGKzOuHbhGRtLj7isN1kvt9lauczB8kB2/xDIkxIk66yP6qzf\nn1eW7cdTZ2DnM+r4+JinT5+wf3jAUplT9HuUTjPIFMNehlGOqra4ypIrxUJZ4iYzsHMw0NOGKtfY\nXoHBkytw1lDkcjcfHTCFoV8O0SbDB+gPB/SHA7I8Z2E4jGtyWhbwFuD5K3/hDUyWsb62yrnlpaYR\ny0w01uuOTMqYZkp9y2ZIi5llWePVUUrFJjwjy1pJlrA8ERiYCHhMEM+LjolaSiRiQoq0s3JMXJfG\npGI01oNzNjIyPs43cbg4IFQFLw2r3JNHddgc7yK46FyII4SJfpZIF3nf8dcEgvLSmisnjiKhXMBG\neZ5WMqtTunRayVYCAeml2oACHYGFV74FC/Gr6gKthoXxzZwe7w0hZM3rOe2E5TERqKgsskRJwpej\nyVv2Kr68UUbS5+JAnShgixI81bIwMRGuTYlLLFy7D5t/d7YjhAbSxP0nKWa++Vl7vLPIFCaPUiOR\ni6ubWCStZTZVlrmYzuZJ6XeqWRvFeDbjv/+ff5937n3crNvPv/Iif+8/+XdYXByQZ0ZmPWWmGUyK\n1gQfz8/kLVMiTdTBQPA4l6GdQ9XSzLgQqOqa48mMvYNDDo6n6NJiekPm8xnWtsxOF+wAbGxc59bt\nu6ysrJ2BnbP6CajkyWhy+KWpP9XT1/OMY4Ycs8Ahy0wXC/xF0JfgznUkdvozPpv+8S+CvQEvvCRR\nydNrOc82lvlk8SrvqZf4kLvcr26ys78OD40Y/3eRhnzqgCn4OUwG8KwHMyNkREoxW9P4ZY1fzEXu\nltifBGIO4mN3EECjaCfdJ8YmhaYdAxMPMwtVAjFTWgCTnjCnTU9I6VmJHUmMDnx6hk2FgInuPJXo\ndzS69cevAVegf2XCxuoDXlTv87r6Nl9zb3Hn6B5rjw8ZPpijtuJ6A2FBnlNcqxhcmdJbmoEKVFnB\n+MICj6/nTHcWhb3aQcDivAA7QJr8pF1MzE63yf48EqqfxIGXaRuz9qvWcn4MEB/VApRlxZI5YpV9\n1thjuD8le+zhPmx/AP/2Pc0/9e32/2yl+W8qz4t96F0AczMw2JlxfmGXVb3PkjmiV06FARoixz0n\n9k1dRict3f7hrL6IOgM7n1Hz+Yyd3W0ePX7Ey7dvYfKczEBuZLCgm1d468m0YbE/RKPwbpejWY33\nQaREwZEhSTGmJxeXIjeYXIM2aJORlz1MlmGdZ2FpiV6/DwpWlpa4sXGDB4+/HpurKFnj61w5d46N\n9TV6vR5lKTI6FRmQlJ7W+DFQZCalr0mgAPFuvMI0Ph1QjaQtARWltNwBtxbnPFp5QpI8hY6+STXt\nbOP/kfk+neYaeZhWyP88hHhH0ePibByL8ildLfpaYtMsaVwOZ6VBDg2QiWAmdLCNRM8RvMargEP8\nLSiJqfaADgHnDcortLNxsGWM1A5dZkJ8K0qrhlVKQCYEgzYBg4FoeO/K15LUTb6PAFMJCAsqMg9B\nYVQmqX0ZmAxMlgIM2tQ2E8FfsLISKqgGpGFMBIAxXjlGbJ+EW/G7yN6cADvRVxVOrH8COmnHCthJ\nICd5hJSO8MoYTHxu8rc0295sSwKJiL/GGGwWsP6kiSq+NL/7D/8x793foxuz/i/e+zp/53f+Ad/4\nz//jGFkuQAetCSr6mZRCaRnaSmThhOVRhPh3p7QD7QhKY71nMqs4HI3Y3d/naFpRDALlwpRqPsdZ\n20jZumBHKcXq2nlu3b7LjZu32XxyOkjkrM7qq1RdoJNojtjUR4zBMTCC+rjgYLbCbnmOLXWB3eEq\n5y7vs3h7xos/A//GO5p/sv9bUXbakayta/7yL3vcm4rjF/o8W+mxt7LMw8EV3udF3uFV3vMv8ejg\nGscPlyUqeRNpyEcBKksTWeUXYbIkw3GmuQCYVSV3xheId8dpA6tq2iC0xNqM46Z2JXE2gPVQeXk/\nn1BekqkltiZpzLpenLR0B0ImgMOpf6fGugt+NNJZF5L+tUzjEzFXK5Yv7HOzuM+LfMCrfJe7hx9x\n8aMd8j8D3kfkdsfy0moRuAKLr0wxP/0MfdtTLZaMWGJ3cI6jCytMrwwEUK4hjfYoB9vnJNhJjX8d\n1/nzNNvh1NfT//6qVtq+FEEdlRLJrxZDOrKsps+UBY5Z4Bhz7BoA/dc+0vwzfzJi/U/5Lf7D+Yh/\ntOfpbQO7oA4DQz9myJg+UwpdC8iJyjnBN0oS804AnTMZ25dRZ2DnM8p7z2h0xPsfvMsLN66j8hxC\nLR8XThqeXtmnX5T4RUdVzQne43f3OJzMCb7GOIXxjkyDzsuYggY602AMplfS6w9Q2tBTmoWlBcqy\nwDuhkH/9l/4i/8s3/4BHz1pZwKW1VX7xtVsRyEDKwBLTuyR7Be+p5hXz+Rxb5vjCRNZFZETKSFpX\nZnK0NtG745s78UnWprXG+9B4OlJ4QfK9yI3zmL6WmvL43MQSdefORKcJJoItH2VS3ofGo6N1kmG1\nUdPOOnwAaz3WRSkRJOTUNPAoCFrYjcjj4LzqBGt6NA4TFCFoVAw0cM5JEADyfKNURyYXQY9WESjS\nxFNrAjroZjsTLjghbWtKPgS1CrHlSNsh8rfKW5TxZHkgi5ILE0JkxkAMQ3XjNdJJIhYUOgSMlmhs\njTBhCTyouBEa3cjwCKfXDRkGGp/XDSig+ZJ4nCDHvJmQ2jI2kvAXGqBjrW2YHTlcAmAhAlqjyZym\n7rA/Cbg+293jux9/xOmYde8Df/TWb/Jwa5+X7lxH6SwCcJW2FiLg80QmJskiIxqWGUWGoDQOTWUt\nx+Mpu/sH7O7tM7WBHobhbEpdzSOzU58AcKnKsuTGrdu8/rU3+b//+A85q7P66lZXA5xYi9i8Ow8j\nBYcK9qHaLTg4WOPpxUs8YoNPiuusrB/Re3WTbOb4hvP8xv804vc7n02/elnzjb/m8a8rpq+U3L99\nlU1zmU0u84gN7oVbvO/v8tH4LvsP1/HvFzKo8zHRsO0RA/0RQvVEFsWuyFySIyMpVn0NPdUokJpB\n8xaoQ2SnAkw91M+bJ5NATGJqxrTGlgmteT+9aHp815vTTTNzp147XVu7jElXrlTI11y1s43OQ3lx\nwrnlLa7xiFvc43Z9j3MPD8n/FMK/gPAOVNsxCE6BWYDiMqhjGISKi8Uu0xc/4qm+xGN1lYeL19m5\nuI4/Z1qfSJEhBqZkzs+fs56fp9lOcrdUXWnkT2ilQ5SD1p4MSx6FnMoGmMP7O/C/z58fsf7P+U0+\nmMHPNerGgMaRYcmwaOU+jWm0Apf2/RnQ+TLrDOx8j5pMJrz3/nf5S//aL8OgJCiZFVI7GOQlC4sl\nvVykSLPpMc5WeOdwfh87rQmZhkGBxYgh3Siqao5zjryUgaGVswRrWRwuRs9MwNYVOEuRaX79X/15\ndnd3mUwnrC72KQnic3BW5FDOYUw7q0UBtqqZz2dUVYG1Jd7nBLSQAClBTSu0Mvg0z8a3QQUCdOTD\nISWyJYbGOWlipUcXYGAalZrItaqqavZhAk1aRVmY99KWBt/I01qQY6Qh1hqDbiOSYxhBnJtJgnkq\nJpgJsPCRbFKQhp0C6DhTRXlcCGjnsOm5QZ8IGhDVmiZozQePnvLJsx1ub1zkztWLYGTmTGJvtJZB\nnQLMopRNKZSP3IeXgO7QWXEhYTSZNgKYVYigzGO9BRWBnXMyTbXIUZmJQQAWFTLSjBuvZP5PiPtI\nRfZFEJ8j0lcQ09gUxIQ8CPjm2AItwEkR0x4IEgHtgwAdYbaEMdKBE4wV8KnQg274he4CHp2GkYbO\nediCy8Qi7ewfxB88P8r2/uYuL7/4AphcvDhNKp/MwgnBo330BDnXAXkQ0KAz0BmOilll2T864tnW\nNtu7u3hd4E3OdDphPptiK2F3ZBiu/xRQvH79Fm/+3L/Mf81/+dzryFmd1Venuo17R4rlKzguxXC9\nAzw1VE8XeHRhg4vqGefZYWFpRPnKlCvFLqvn4R+97PngQ/hwG164CHdf9XAbxncLHl9b5131Mt/l\nFR5yTUz04RqfjG8weX8V/3YO7yHMzkNEyjadEs0ltJHOSZs2BL8Exz1ZVP7Zmxig9dik10l+iO72\nJxnarPPv9H1q3LvytK4fh87330/OlWRTHVO8Nq10ahlYgcFgzDkjc42u8IT1Z4f0Pq7hXQjfgdl3\n4cEY3rKCD18z8Kt7wvqzCP2LM65ubHJl+IR1tcXacJen68eM1npNlDd5Wp8uUkwgJ4GXzwNYkr+n\nm+KWnp/Yw5+w6twD8CF51nIsRpRmBXxUpwd/xucS8HMJSxYKj4lQJxP/bfc0+gncRT/JdQZ2vkeF\nEJjP57zz7ttkd1/g8vIQozOKDHpFTln2KPNc7vBrWF1dYVbNcQTM8YTjeId4HhR1CDKc0Fk8HmNz\nqtmcyk0xOqfQBdN8QoamyDOqqmY+nVHXNStLC1xdX2PQLxgd7DOdjvHOYutaJGpa/Bliogej2+ay\nuVvvgyRnBfBeyZBIbGyGaXw9eZ6LfC0yLlop8jxHZ5mse6hRRlMWpcRIq/ZORGpk0/tqLXN8ErND\nCAQb8MHhfds4alQDcrSKMqz4usmn47xsm9KZpARF079ssyNoJ1HHkcE4fb1OsjIHaO8wThOMxDoH\nnTxBmoPxmL/59/9H/uBb32me+ytvvs5/9Xf+OkvDgQCnENmdjn/nxJLAWfD46PUgptUpY9AZgMLj\nqf1cWJXIdmlnwTuUt5JMZ9oIaa0yjJF0n4DMv1E0SFN8OpHREjApEeJKm8h+eETZFRP0tG7YsxPB\nD5HYCZ047nRGJYlZYu66g0mbgbEddjD9rAEJQX7nvccpATzd+PJEG55fXop7//lRttcuX8A6j3Je\n2EqiRydIahtOgi50ZLgk+VBgnvVRxeICs8pyeDxmd/+QvYNDJtMpuoC6rqiqGfPphGo2w9lapJYd\nT1IC+EXZ4+rGdX7pl3+N//f/+WPG4+Mf7EJzVmf1pVfXh2E5CXhm4KYwKkWqswU8UtTrJY/P3WL5\nwhH9copWHtvLOb5znwuXtljcm3L3LwTu1kAP5ucU+8vLPBpe5UN9J9rrX+Njd5tnx1c4fHaO+eMS\n/6GBD5TE936CSLOqikZD1wQBKFrwMY6/i4xESKxEt1K3mmRpKdrN0jI7KXQg0HpxupK09P3pRj59\n7bI4px8Dn313Pr1/BBhGt3ON4myjXjFnSY1YZMQKB2R7FvUEeAT1JvzZMXzdab6VumQHv7il+b0H\nnitXQG9CueNYHhyxxIgFdUyZzRkNOu9j0rqYzjp163uxPEnOkbY9SfRSEEPaB56TgPCrVqeOqQ8n\nSE5mUNc5YwaMWOCIZexyButw5wbwx/BZn0uvngMuAOcgLCtGejEGhw+YuVJO7a7Ny3ZZ1i57eFZf\ndJ2Bne9Tzjne//B9Lq8tc35Y4GOChompTx4BBT4EsixnOOiztDjEEtCVZ4pG1x5qiyeQEWSWzGxG\nTcXcBorekMrMmZoxBoXvldR1lKHVljLT5IWEFrhqjrMVztYiCVNiUcl08pIEaappTf2N5yJ4nEMG\nfQYkFlpLhHBXuhaU+FYyreJcHPEBKa3Ji4JSC9jR6BNNbgI7XRN8Yg8aJgDw3saABGnW00wf8RRJ\nYy2gLGCtlcGO1soE+5SaFjwuWEKjO2/jl5X40hvpVUMahCDsTgCrHMYZtPFIRJ3U3/z7/wN/+NYT\nuj6Rf/qt3+Zv/Bf/Hb/3n/1HScjWgCfZzuRFUQSlQQeUl6bdOYevKzkWSqFDhvVE1gqcAu8sKs5c\n0F4TvCM4g60qAaFN4EOOymV/hci4kKRhSgu74TXKZOJXUQats2jWN3G9g4CYOJRTJTYMYYdCzHVo\nZXit5E0lpiecjN/uppSdPhcA2XaS/C80qXOiDhQ5W2J/5MzxXFhb4pVbt3jv/tcFvEZfgNZ/i3/l\njde5eeUi1sqHRMgk8ECGw3oZRmsTaAxprqq0eS4wt47J3DKe1ewfjdnePWB375DReEJtHcY46rqm\nms+YzybUswm2rrC1xTYhBS2AVkqxtnaeX/nVX+ejD95lMpmQAkDO6qx+vJWaqWRscbSNaWJ2Irhw\ni7BvYFPBMoQlxXxxwD19G3XeY8uMsZahlxu9R6wuHtK/NEd7j8sMx2Wfrew8D/V1PuI27/Mi3528\nwrNnV5g8XMY+LiWu9xNaRudJgGMPdoSwOimDehrXN4GWNAAyRfWmifPd6qanpcGZc07eQg+cBDwd\n39KJvOlu05k+QbpNPJ3XCJ3HpOoyJd2fRQBh1Emyp4BMW0rm9JgxYIKeORhBOITqCP6207zFSa/I\nH/Fb/LsPRvyTVz1qBHoS6IcJPWaUzMl13Vpzut73kDwrqrNuBSe8LM/dhrQP0tL9vrkV1nnsVy1V\nrAt0otHLu5N+rxHMZj2O3DL7Zo1t1jlcW2BwbcKLX3P82jc139z6tF/tV/qaV14RdrO+rjm8MGBH\nn2OPcxzaZaazgeD1FOhXIx+4JySRXRnkWX2RdQZ2vk+FENh8+pTtnR1uXDjHStEH5C50krU4F7C1\nNON5njMc9LDBoytH7gIKCTMAh9IK6zzVfIqz4EKGNz2q6YypFs+NUoGqmjOvKpEzZZrMZPT6fWw1\npK6mVLNAZjTGiIzMaIU2AhKUUA8ypDPeiQYBHC745nKkc0lKMybOwtFpskKQ5jqmtIHELRtjyMqM\nIi/E6+OCTKLvNLhpOb0Pu+b3tAbS8OpORHNKdZPnWGepqpqqqrB1DQQESwRczEhVyoHybQS2es57\nhna4qQ8Bh0enIZGhvZh//GSLP/jW25z2iTgf+IM//U0+frLNrcvrzZ39bmkFIR4H5VMAAE3qW/A+\nJoUFGYyaQhRCwDstoQRaSaiCtdi6DZzIMkOe5ZAJC4bSDYRTSqRsSa6GMmi8sDzKELRH+wwdIhgM\nsu+10c06dnIK2n3lk+spvVMKMfCfCXS6ICidDxK3TQcUy/wbBa1ksRlOq9p7iiHw7/9bf4n/9h9+\nk3c+bn0BP//qK/y9//TfE8Wd83hfiSQwy6LXSoaH+simSUqfnFPeQ+0C89ozndccTWbs7h+xvbvP\n/tGI+bwWkO08tpbo9vlsRj2fxZsMabho8j419xEYDhf5mTd/gStXr7O/t8tkMv7si8pZndWPtDwt\nq5OavNOxZCNgCQ6H8NSI+X+ooAcH2XnueUV1vsdBf4VNLnNZb7La22fQk6GeNTlHLLHDeTa5zEN/\njU8mt9h8coXpewvwQSbaq83Osu3hyIKdIB6dfVpmJ91m17TzYKa0TvLkNelWl31Js25ODMvp7I8u\nQ9Fdkr7oNIuTXr/bjH6/xvR5zMmpX58gT0LDUCt8w7YHDx9Y+BOe7xX55vw3+WAEd+OqaHyzqM+l\nlUqhCd2UsoSMui1i99z5LHD4vP0GX40mPp0f6finc8yJ12usBGvvwXyvz/6lczxbushjrvJ4+JCF\njTH5a0f83l/3/Mbvjvj9px2/2rLmG7/k0T8N/nWY3O7xaFG8ak+5xN7sPNP9YTuL9hio0v7szmpK\n++mrsL/+fNUZ2PkcNZlM2NnfYzydkq+vUJaa3Ch0SNPYY1Mb/S0LgyHKGMra0ZtXaGfRc89MOeoM\npi7gqxpjRcaDtcy9IzOaupQgA2myKky8866NoSxKGA6oZn2Ud2SZaeQ/yZ4t/V403nuLi3IxgvhB\nghLmJ91N11pJYIGO82qCF++MaZPd0uT4LMsoy5IsywVEKWGTjJIPnXQn/8QcFz4NdpqUtjT3Jc7v\nSQ17GuSZZvxItHIMeiDgcWg8XqVhnbphqxLjkSRuXX4nvb8LARMk7jj4xIB57j/diWv8fD3uJ093\nuHP1Ak5FsVjsdE94RZSwLYkJc0YArI/AThkTwZxIrkJk4JSTyOjQALMQQYDGm4yQe8hToptqPiiN\nkUjlEKVtKE2m0h01I1Hb2hKcEcZOabTO0CqyT5ENTDN1kn/LE/1JhM5ndnju8ex+7zrgOpUAhOgL\nC0RwKoDLBAHtmRHAY5TCx/NnoVfyt//qv8n23j67hyNub1zkF37mp1haXJAz3oMPSbIGQUeppHci\nZUv7MoALCusV1kFlA5O542g0ZffgiL2DEcfjKbUVb49zkdmpKqpqTl1V1FUV0wC74K7lovK85PLl\nDV586VUePbx/BnbO6ita3UY+mfQnSPe1B/MMdntQ6rb/9Rn7s4tMbw85uLLCZnaFc2aHJX1EXyWw\nU3DsFzjwq+zYdbZnF9h9dInwrob3FXwEPEAkcvvAnodxHd93R96bQ1qwk5gZ4r8zpCnsNuSfBXbo\nbF/62n1MFwCclqJ17/o/Dyh03+N7VWKNToOF+DVJpzr5By5kVBTUFMwp8aWGPughPGhIrOd/Nn3o\n4YUhhJ5irkpqcmoynDctHukG8Z1gOLoDNrsJbWk/p+r6nboyyMSk2c6/07Wx+1nw42Z40g7ohkzE\n9a4DHCkhF7eh3uxzcPE8DxaucVE945zaZenCiP5PzVgyNf/bVc+Hb8OHT+CFRbi74eEyuBcUs5cz\nnl1d431e5GNu88BfY+/oPPXmQII49hFQNQ+00skUiNEFZGf1RdYZ2Pkc5b1ne3eP0WTC8toqFxf7\nLODwVUVVO2qnqJ3D9wrsvKDXKxnMpkxmM/LgUDmYQjHxmqkHlRu8MzjvZKnnuAB5lmHrHq6OYKee\nkxstAQMhkBmD7g8YDod4WyPUULxgeZp5Ns0deOexVgCDtQYVnKSBGQEzPkTJm1agkSGfISZ9QXye\nxZiMoiiboIJqPsc6i1EGEyVw0IKcBGa6DXGqFJFNlMulxjZyEfIYAKRpVcGRaU9KWQ7eN3K2zGQE\nxKvj8U2iXCu9Omkmb5gHpXBx/bxzcpkJsLG+Gh/5fD3uC9cutnHUQqHF4ace1QFX6QKvkGOqiN7/\nuO06QHAC4FTc/+l1abbd43zABUetLFVlqfOaoi7QGTEqWwESWpB8PEpneEs07QsIclY8OkoZTFZg\n8p78Xvt0UEgyR0Ia9NkVADYOsM+82dQFsqePufceG1lQFUKT2pcbua3pvSbPDLkx+Kx1CaUPp/Or\ny1w6t8ri0hCTlyiTo5Q5FbAgzA0BCa7zCu/lZz5IvHXlFDPrOZ7M2dsf8XRrj2fbu+wdHHI8njKf\n19gARmm887jaUVeOqk6x51Yi0GsBU+KlklUwxtDvD3jt9Z/hrT/7k7MY6rP6ClY3mczQgoek3ymB\nHow0POnJwyzNUM/ZzpDHN27z5NJNBucOGAyPKfMZEvORM60GTA6WqLYHhE1NeKTgnhLX9n0E7OwS\n/f8zpLNMt7rT7e5kaug2gN05Nl3m4bOqC1i+nwfidGN5Ghh90Q163JYEdubI/p1CVRfNXKNDVrAr\nm+L/uAQvXkTw4Gd9Nt0CLoJb0xypZY5YYswCc1fK63dIjHafpkp5yOlrWlJed9eb02UiuoEOY06C\n0RQKMedklPWPG/DAyfNiCkzADmHUl/NzC3gC4ytDPrl4k7X+Pgsckxc19prm1oX7LN2ouPsa3E32\nzCGwDsc3Sh4uXmnCOT7gLverWxzuLMv5/xTB9odANUfO+a6J56uwf/581hnY+Zx1eHTEs50dDo6O\nuby8IMMMjaYsPLXXVA7sVDOzDhvm4DyqrtF1TaFgoVdQ5jkLQ8Hyx9OKvdEYjmeMKov3QWQydU01\nnzObTiB4ClOiUDhrGY/H9MucIs/JMkNl53h00EFTAAAgAElEQVSPAJggmmytDThpwoXhcSIHqzUa\nRx7nkmR5gclzVEzzcmLmkUGgJiZ+nUpogxYAKTpNeqxPxRnDCZkTRG+LkUn3ntYjoiIiCEGaSlvN\nsfM5KliyZNKPwywNGkWG0ZJK5pwj+MTyJCmVj0lzMdo6+FPrF/mwjvzq5oU1/vU3XuWfffu3cb6j\nx9V/i19+8w3ublzCWotWAZ+iyiKzo3XrMyIZ9dMwV5NF30ls4hMoijoFpZX4peK8I++9sHBR8uat\nNN22dngfyAuNyWT9lfI4lWSAJpr8AeXQyhCCxId755u5SQEdB3DGsa0JaHVYJbyEQKRuPrF+IZy8\nGD+Ptev6tBoflU4zkzzOzjGmIIuDbJ3TZJkwOyqm9qVBoHLsZIaO1pK8lmUleZ41EeXeSnOT5Goh\naHzwuLjttXPMK8ukchxO5zzbO+Thk6fce/CYza0djkZj6lp8DSam3OECrnZU85p5VVHXrpkf1B0u\n2pVs5kXO7Tsvcv3GHT65/zGjo8PPcWU5q7P6UZTl0znNGa1ZoXs3X8NEweNSeq80gmZPEZ5COG+Y\nrC4zW1hEFyIh9l7hpwZ/ZAi7GraVNHaP4/IEka3VM/ApiKAbRtB04pz0wKQGO61/8oY8LwjgtPzn\nsyRVdH7ffa/v9/PPU+m534sRifL0ZJcaAfswmQ7Y8+fY1utscpkblx7QvzOleOp5ZQS/9kjzzdFz\nZhtd1dz9ec9ko+Tx4jqb6hLbrLM7Ocd4f+HThFkj4bLIwKIciWpLSwI9OSeleAn8paGq3bjukhao\nzk49J3miUrv542jo03nTZfuSH+wY3BAmfWFengBr4FYKDofrvPvyy+jMY1XGsVpgq7zIxRtbLF4+\npudmKAKVKTnOhzzrrfNAX+cD7vIuL/MeL7H76CL1h30BO5sIoBoDLu3DbhLgaVngmZTti6ozsPM5\nazQes/lsm4ebz9g4t0zZz+gFj3LS9GqnwIve31UOO7fYqgbnyGPKmc4LVF5ilWY8nVMeHBH0PvP9\nY6wXJqOuKyBQV1Uj78myjOADk8mEIhvGu+KGKohvSKusjXCGKAsLsXl1OFdT2UCm4sBKo9FZRpbl\nBCLQUYosy2Mam2q8PsZk5HmGUjRT5EMImDifJ0TpluLToKcra0qNYTt3RSXNGRB5iYBEd9c1tqoI\n3slHmlZxe1rZnFEIQxPfRym5gAq4cbIEF0FOh3WJyWVB0STOKZ3E0YHf+e2/ym//zj/g//hWq8f9\nlTff4Hf/7t/AiHitZZlCiP4jWuMLwlIB8c6/EhDS+IeihM0YSVII4uXBxGGXMb4apfHWxxS65I0K\nEiaR5WRKSZMRbAS6Shgm79Hai3dHyXwl8aEEtMnAWbSrcS6XcIN4vqS+QWlZrW4atDBkkfHxrTTs\ntHEpNDNo2nADiLHiWiRn3lu8sxReYXIBaVmU+mljUCp6fKIkESXzgyT4wYDOMFlBlucxzAIIuk1J\n8+B8ShzUWGuZzR3jacXheMLW/hGPnm3z4MlTnmw+4+h4QlVbcGCQ80J7kfh566hr8Y21c3acsIud\neTsto2m4snGdm7de4J3v/NkZ2Dmrr2ClhlUhDat6zqLBBRgvwWZPgE8afbOpYBX8Yo5PKV+aFhQd\n0xI26S55UqjNhYmWMfVdlgk+PcgyrR+cZBXUqeec3rbuNel0oMDz9kV63OnnfRHVstMn5YNzoZ9T\nAN0hsAvT3SE76xd4vHSVT7jB5d4m/etzzo8P0Qp+r/D8xv864ve3O16R65pv/LZn/oZh9/oy97Kb\nPOA6T7jC4fEq9VavZRLGgE0BDhUCZhY6ywBUDmUGeUyMy9KNMOSi7ALUPagd2EUI3Smux3FJx+X0\nMU3n3elBq19mpfNdd/6dJJLJBzaWxQ5gpwdLCpYgLGiqss+zcgN1GSaDAXt6jcf6KpcHmywPDukz\nRRGYUXLEEs+QuVT3/U0+nt3h6bMNpu8tEt43wm5uIsdjPoOQ9teUk8mBXbB95t35ouoM7HzOms0r\nnu3ucu/hY164coFsacCCBuO9yGaCwVtP8LE58xCcyK16RUHe69EbLlAMBtRBMZnXmKJkbh17R2Mq\nK8zOfDqVGTrOYvKSPMvIYxpaNZ9TVYXkpUSmxVmL0dHr4X307ajYrEpzaV2Ftg6d59KTp4hkrSVO\n17eenDzPoqlcUqYE6KjY6HV8GvE/HzwqKLoSNuhIxjpm9RRE0AAdTzTMgwqKNlTBto1zI4sSJkQp\nhY5sRFCKEBzKRSlc8pt4j2sa83SxkPWV67aK0iYnvqWgG4XW8rDP7/3d/4AHO/t88myPu9cu8OLG\n5XitlyhjFeTSaQlNapkAn9iky4oTs+YEVDTYLkAQ+ZP3SPIaCMqIQQNKGbSSD0fjgxjircdG70sI\n0f+jEjtEjBZ3BCd3EZXK5DGk19TRDeXwweJdLSDHg7T5qgkr0FowmEqeohDjwhN4jGzcyRCIDsBp\nWEUJOUAH0ALYXLDga3wQo7HWmswoskyCGEQG16a+aaWjPNOI5TZI8ILWAnYIJxk95wNWsgmw1jOd\nycDQg8MRW3v7PNna4fHWDk+3dzg6HAnQ8TIzKsSUO63ibvVBwiJiQIaztSS9hZOhDI0HDVhdXePm\nrTtcunyVhw/uNbOGzuqsfvz1PLlWFzx0/+3AWzhegaqAsYF9LTHRaWZLH+mXU9BbkmSlsTVpZqdC\nZD6lAl9AnYMtpbk80Swnv8iEk4lg0N7x7jbP368+b7P4ZTaUp30iqdGuoLZwlAkw3AL7uORgfY0H\nwxuc1zusqn165+aoVx+wNDxm5YLjH/2054MH8OEevHAd7r7hmd7K2b61zL21641P5GF1jdHuCjzO\nWp/IBAErjU9nSRa1AFkfylLAazq+ieBJ2MQqAawTDeMcxj2Y9cD2wQ0QlHs64CDt13QsukEZ8OXt\n926dft8E+HJaz9oIfA/GBWxp6CsoIGjNjEU2Z9eYXhyyt3ieR/0N1tlhkSNK5igCNTkjFtkO62zN\nL/FsdImdnfNU7w3hPQ3vIwmEmwGOHNguQEw6w9NAJ637Gdj5IuoM7HzO8t6zd3DE/UdPeHbnNgM0\nFIYC8SEYlcsMnqLElj3qak5dzQl4TG7oDYcMFhfpDYbMfSAvLbXz7B0cUhrFVEsC28Q5SldilNzt\nzjIjd721yJtmsxlloRuWxCXJVqfB1DqKmeI8G2srMpOjdI42WpgSlYzj8qEnM3ayjueiTeyyNn3I\nqEampONAz+/12ZOAjjGmA3QgPVEhTFRKTPPexaGa7R94oG2glUY8RvH5LgItacZ9nN/TSQjrNKRx\nhfCxObZBgI9RCuNjullofSsvXDrPSxsXZL8724KukPwkcbWQOGvng5jwQ4r1lkwdFRKI0M1xkWhv\ng/IG72pZRyOzcJQW4GG8gBqdgXEBq63MiYkBBUFpAX86yHBYBc7JcFTv2iADpbRIE7O8SflxzqJ0\nhTKSqBeCRyPrl/w7wua4JqSgOQ4JOHYACaFNbFNAyrD2IQZkBIsLVvxpYqiR7QjC+hijI9jJ0DGC\nu7nDnHwxSuNcYFbL303hBWTgVWRxJFbaWU9tPdZ55vOKw9Exu3sHbG3v8PjpFpvbO+weHDEaj6mr\nCnyQY9SAPRFJCtnn8U7YnbqO7I63Uc4n51jyq6Uqyx43b93h+o3bvPWtP2E6nfxA15mzOqsvr1LD\nmRiH1IB378SnxyWZzxyqZagGMMphNzaCPaBQra2jO2PSIETBCnA+/j71lzPgWMGogOMC5gtgFzgZ\nJ/29GBt76vvPs80/7hsOaV8nM3pssOsBjDK50/8E+EQxWR/y4Px1FhZG9JkSCsX0Uo/b5+6xdukY\ns+e4PgtcB8JAMT5veHZ+lY/Lm3yXV3ib1/iIOzw6vsZod1HYtWNakkwbUH0Iy0AGegmKAhaVHKtV\n5LglwDOgVQ8mxeOIlunby+Ewh/EQXMEJKWSz79N5103AM53f/aiqG8HeHSx7jJx7PfBD2OvFG4+i\n1qGG+eECz24N2btxns2Ll1k0RwzVmFzVIo4LhkkYclAvM9pdZf5wQcDNx3G5DzwKsBPARhNc41Gb\nddanywSe1RdZZ2DnB6jRZMyjZ9scHE6oVtdQWUFmICOQm5xMF2SZbkAGwVHXBm0URVFQGIPRigyZ\n04P3uLqmzBSZgpmtcLXkvg8G/SZSWilhPgKB2WyGjvMFlNbtZSQ23Mo7jOR6YZ2itjXWGkKZSWMZ\nm0pjTCNLy/O8Gf6ZfgbS1CePggAWI3N30twXHeVToUU8n0pigyiZy+J1LTI/PhB0y/4E4p1/75qG\nXmsiNyLSMWPAGIlP9s5iK09d29jg+3iXPcREuugxoTXNt2yEIwnv6pQK5jWhQ68rJe+ZZHehA/aM\nVngV0DrgAngc1jlq65t9oDvsvwz2lEXHrwpwPh4bbyWwwRiIYAdtMEFDUDjnUVakJfFHBDHCRAWc\nEYuNcqSBoSJ9E2bFeY/24mEymceYKD3McvASh669eNCUVrjgcF78UemQJfwhKsDQ+YySxkMFnxSC\nzX7yIeBrS11X1LZuotqttZJeGMMZtFZoQ3NuauNQzgkBGM/t4ANVbRlPpkxmFQZNFs+O5COra0sd\npWfzqubwaMTTrR0ePn7Cg4eP2T045HgyY1ZVWOei5yqetxBBW4hBCgJ0nJXhvdbZRsaW2MPTM6ZS\nXbt+m5u3X6A/GJ6BnbP6ilVqQE3ne3vqd+lnXfP5gvgaxgOYxNv9KoKdaM5mDWmUl5BmeYEWDCWr\nxwjp8ZLMbU/B1gBsDiHN0emCnW6qWqpuPPRXqZ43qDOtf1rS/oxzjY4HIvVbAdbArpbsL17k3dc9\nKJhTcsgyT7NLXL62ycrVAwoqApK6dqBWeaSucJ+bfMgLfMCLPOAa03ooiXqXkP2dQKgGtkqYnAMy\niRdfV3ARWS7EZYVW3ZY+FhMuOECO3Tay7s+Apwr2lsGlgILuMXzeHdEf9bFLnq903ihOBiokwKNh\nfknkbMnaNEG2eUdRP+qzu36FveXLsBhQBfLnUkGYKsKeIiS/2ibiV3sUv+4EmFbxxZK283QgRzq3\nz+qLrjOw8wOUtY6D0YiPnjzh7o0N8t6QYWkoNORak+mc+SwX+Y+XO9jTicCR3BiKoqDX65EHxby2\neC9m9zI3GDzB1vigCJFhUSp6gKzDagEw3jtmlYQSKJOByUFneDQugPLSqAfnsFYa5QAxeCDDZJLE\nFghYWwO6AT/OWWazOSFAlmWNDaWbrNaVpTWR0QlxxVKx8UtzT9AxKSz5dYI07EQJkNaK4FUjr9NG\ni1Qszg/VimZ4qhAPHu/BeUc1m2NDjfNi6E8MhAS+iaRQodFaGnSXpF4pjS1ILLHDkOFJ5JOQOLqR\nzCll4iwj8b8QDEploCw+1FjlUcrHIALVgJG4uYDCKGFutI4DRFWMWvaRzVAi0UqGGZWBCh7tNDoz\nhDpOvlEgLieaFDKJnc4wGcL2WGGaXJTZVVVFVVuM0eR5QRE86EyYDCPnn0TygcPH9LgAHfDahjlI\nWpygbI/yDpXiwFMoRgQE6Xi34Ej4JetlWzIts6K0gSwzEVSrCHRUa+vyUFnP4eiYzBjm/QE9beKg\n0xC9ORXT6YzxdMrhaML27h6bz7Z5urXNzv4+s3kt79tZnwi9EycVGT4fPVJO4tudjTN2bAeMt1LN\n9PeRgP7S8gp37rzESy+/xv/1R//nD3OpOauz+hIrgZr0t90FDomuPx3Re4zc5l+EsCpf+1qYgAvA\nZaSxXkcYgsQOpDmVKdVtRNsopyZ5AdjOYbQEdWqS0/qk9YgdZbPeiq/GwMrIQJ/4d3f9EsJIADLt\nzzjbqO7BVk9AxxDoK6zJ2VOXeO8GTBYG7JjzPFTXuKC2WNIinQpATY7B4cgoqbjGI3rMOM82m6tX\nedq/zO7qOpPBihwHhXzwOsBlwtBdUbCBLNeAq8ixXK/JVirK4Ywsl5to1SynOurhd3snwydWZL0p\nFewMYNaVi3Xn73RDJujstx9lc59YHWiZtq50Mq5XtQq7Q5ibJo2QbeChIqwqwhJyvFKGQx1f4ogI\njJDzO53nhx6qKYLyD+L7ds/dJPvr3oRICPWM6fki6gzs/AAVQuB4MuGdjz/mL37tDchyin6PvgGD\nx6icEKCuykbO5uoKlKMsSnqR3XG1NE/eOYzWZHHWjrc1QRkyoynLAqMN3nvquhapj9EEB9p6MqPA\n5ARdN7HNyXDvIyuRksgUCq2jATw22nInvKYoSrQWr4K1NVUl7wUZTUpXp1RiO9JClGbF63mIZnuU\nMDDai2wiqWZbmqDTSEdmSGlhbrSWO2QCBgTYaRXSO8Um02GtDH60vhYWQrW+kTYVTMVUMqLuyuED\nKAImSpXE7+ITRyEfrwF09MaARiuDMibOJhLpmHYOtMGjooJDwgUE7+jIvCXEqOOSPghjdLQGvOwT\no2LqHDReIJQCI6ESDfpTsieSrck3MjIBWMZEiZtBpps7YRBrW1NbsN7hCDgCRhdkWU4W8shsxcuq\nioclngMpkCD4IGAxfq+8E99UkAtyCOKXSixIy95olFfN35F1TsC51hilyb0iy4KA8YhqQwRx6dDV\n1rF/cMjkeEw/y+hpI7ONUFjrmMxmHB2POTw+5mA0Znf/kP3DI46Ox0xn80jkNAieFLDQ/r+VTCaZ\nmgwNFubIOpHlCTPY+plOpxDmec71m7f5l372F87Azll9RSs134E2oa3iJMhxz3lMnMcyVAJsrgLX\nkUb5GnDVYy7V9NamFOWcPKtFMu01dZUzm/SotvqEzQweAucQUFQq2MzgYCEmhnUG0JwYBHl68OKP\nsxK46SbDpYY1foY2LEfysgTaJIcehBKmOWwZ6ClpnoOmtj12jy8yuzxk59xFHi894Sb3ucpjLvGU\nFfZZ4ZAlDhumZ0afA1bY5BIPiht8XNzmXn6bx9kNjvUKweqooFNQRdnaTeB2XO54erePWVw5YnFw\nxELviGExxmhLQDOzPY7PL3J8eZmjm0tMHi7i7hXC5KXwNjLYGUbA053BkzxXCfi0YTY/ukrvmTQX\nSVv5nHCM4KGyMmS3LmQGT2LglhGg06PtoD0taRejxBulWsI1PkNuGCTQns7ptA9O74szlueLrDOw\n8wPWbD7n40ePeLKzy+2rlzm3OEAZBU4aPaUUJs8pyl5Mr7IQLGWRi3SsrpmMx1SzGRrolYXMF3E1\nvq5RuSY3hkGvT1kUqCCMUl07tDYSz++RKF+dSbMd7+6nhLDQNL+xIqOgom/GeY+3IhnTMe7Xe09V\n1TGsoJuaFl8iMjDi10l3wWk8KE0fabT4LpBEtwQsdExASw8TfRcNyxOiBEob0WklQ307NFW8NCFI\n81nbiqqqBOy4WlQVJoKv6MuRFDcBTSFA0MK4pNfUENOfA/HlZQnyW4/GqAyU+GlQaR+CxpEpJ48L\nCh/BjLWuAR+J4RJmSX4fQgR+SkCdUgYVmR2jBEwRZG5QaFixdj+bLBOvjdKNP6idnZAkYYZMx73m\nA8o5AWRp3zmLn0+pbE2e9cjzksIXOB8DLHQKBYhsW3vUBAW6uM9iKAYpBCKcXmI7oCUiuhteITI5\n5LxUhswHsjwIs2MMStnGq0MQxsU6z3hyLLHsVYXxXpLTtKayjvFsxmg85WgyYTydMZ7Omc0rautw\nLsLB+HrdJLmT/2qXNPDVR/CWQi/8iZlKz6+LFy/z+htvcv78Bfb39xpv3Fmd1VenTjM8Fe3532Um\nFNLNLoFahbwv0qfrwB3gBeA2lLcm9C+OWVg9YHVxjyV1RE/N0HhqciZhwH61ytGlcxxfWWR2sY9b\nK6RxzJD3CRnsL8ZY3rqzpAax2yRC68H4UddpoJP2U3ZqMXx6UKdCGtmx/C6UcLgAT0wc8iwPqU2f\noyKHxcAiB2g8KxxwnQdcrx6wPt5jODsmc5agNFVWcNxbYHthjUv6GSvqgF5/RriqeOByZuMB4chI\nAw4iW3sBeDlgXqpZuH3EhctPuJI/4pJ6xjl2WWBEhsWjmeYDDvIVdhbO83j9Kk8XN9hfOsd82IdM\nt5tlM2F47AqtROs06Omm8SXw8WVX9/r+vWSQ6e+iBlfDaAFmGRxmsG0EnC8SQzdoD2+6f6AQJm2J\n1oZ2pCX8oMpkcO+JWUYJEJ8CXMBnD2g9qx+0zsDOD1jOew5GI969d487Vy+zvrRAqTO092gvHxx5\nnsNgQJFnaA1VNQU81XzOdD7ncDSiri1lnrG0sEBZlgQn0hmdeTKt6Zc9yl5Pood9wFqPyWSWiIoB\nV1n00HhrcXiZOaKJTXLLIEgamBjVFRJMYOtakrCyLIYQuBhE0MpxxEQeW13VskNaG1AaH2FIQOEV\n4uHJMhkW6hy1tXjnyHSSgnX+YJMXRsWEtBAa0qcZtJkuSik4AGFgamvb6fZ1jXU1Ougm6jn1skJK\nKKLWSdgcJUTKietG058rJMZZBnKiczAF2uRyaY7SNNkMTfAKJZssYEhrlInejihnU5G9aPapD5Hg\nEcZGhozqZmZMsy+wAp61IaCiHA2yLMfEoZoheBIUkeckgKYxJpePkhAi06aFnbeVzF2yFW4+JdMV\nRd6jKkqyXOSMWZ41LKCAxbT+WmKpE7GTophD8tckQBEHx8qKoVycnRNOgnGltbwPBmN8DOTI5Lnp\nHFAmHk8BO9NZxc72LqODferpVKK2jWFmLbOqZlZb5rWNgRECqhKAbQ42xARBTny+NIA9JtxFOjAG\ngMQkuoYHSmmBz7tKBIbDBW7evMPX3vx5/vkf/yGj0dHzLyhndVY/1kod2ulWQCNdWg+5G70ALEG2\nINK1KwjQeTnAK4H8bs369SdsDB5wlcdcYIsVDugzbcDOsRqyU67zdP0SD1evsbm+wdHyOVwZAUBA\nLs6VgdEyhDQHJcW7JRnYaanY977x8OVUAjcJ6HTBTBEXSZw8+X0X8HhE+7QHVQl7Rl5qiEgCA5QL\nYy4sPuFl3uV1vs0b/i1erD/g0u4Ww4+tyMkmcTWWwF/a4erdR6wODxlkE5T2VFnB+OaArYMNqr2+\nMDuLyHF8CfTrjqW7B9y88D53+ZCb3OMqj1kP26z4I4owx5Ex1hK9vMklHnKNj87v8mH/Lk/6G9TE\nAYJzFed0ZnC0QktzpGi+tK+6aYCm8/2Popo7hM/5OZyU3aXkvAUZPDo3bWJ7xP+NZLMff5ZkbWmO\n0kFc9hTsGNhZgqon6W+f8qiFU0s3xOHHLdn8ya4zsPNDVPCet957j9fu3ObO1cssDwp6ZQ/lLBpD\nGTS+16OaT3G2Yj6fMpmMqeuKysqQQp3lDPolDmFLbIzNVT7Kk4Ki3xsSUMzrKkq2KrJMY2vBMnmZ\nY0wmkjgPXsX43dhAN91ckJjplIrmvaN2lkHZbyOso3k8sTpdP4KAHN0sGINXMuixMcorFe/Ka4IX\nU3xtJULaNPK5lPQWVUQRiMlwk7ieITIvnUjlEBtOTrA6c+bzGdbW8ffqxOddijCWFwkN+9DOiKG9\nWRJomnpjMkxeYPIeJi/ReQ+V5TIsFECLZBDl5KMuNvYhODAGZZKhPYYmkIijtsnXQYCcgQjw4swi\nkjwQlA74UEuUspd0MU+aN5P8UmmOTzuEk3hcUtCBCgGtPJnS6NyQ2Zz5fMp0Jkl8tnLM5xVGZ+gs\nI89zer0eRSFDP3VkrJKcDOK5pKNMsnZYb0GFyOgJVkj7M0QQnkCCboB0AjwRTLmAMhqTaXQmzFJw\n8fHpvPEyi2heew6PZ0zHU4yRgIjKusjgxHAGTzxm7V0xOR8EFKZzMG5SBN9Rdqgj0NJJQtdhqwgE\nJeCHCNRPh3Kk115dXeMv/9pf4Z3vvHUGds7qJ6BM52tqSkuk+14CPZCG7jJwAwE7r0Dx2pxb197j\nTvYhd/iIm9znCk9YY48hYxSBioIjlthmnQdc54LZ4sO1Iz4a3GHHbOC9adO+xsC4FAM/E07mWXdj\n3+BH3wCm5hxOAh2DAJp0x77X+ffpJeu8FjTNdeFhyYg8MO7j1XN73Co+5iXe46f4Dq9X32b9gwOK\nb3v4EElxm8SXWga1AcMnlpfeuEd+2VL3co5Z4ECvMLp0jupqXx5/Pa7Ky7B6e4c759/lVd7mFd7l\nRd7jJve5bLdYGY1RM9m8yULBznCFh1zjHrdY5ojeYIa56vnYviKvm+YGHSqJ1W4yytO2J03X6eP4\nvHpe4EO3Pgu0fK9K7/f9/F45sr4pzGMAvVxkl5fjksIc1hHgOEBOgYTd0sDYPcTDk0ILFoCnuQB6\nlyghaCPvunK/xFwm1vBMIfDD1hnY+SEqAE+2t/nkySbbB3e4sLJIVpRkwYkJPejIlFRYK1PYq7lI\nxDKtGfT7ZGVJMBmVA20MTumYDJaR5QVlUbI4XJA/zQk4W1PN5wSfia9FBZzRZCbDqYzgLE55tEem\nWWuP9yJ1Qklil1ICqnyczVOWJVq1iWsppliAgoQApJhprU30p+gGKMikeyNDSqP0KSWrKa3Icjm9\njMma5LjGJ5Eiizt+E61NZDiktfZxBk0CXnjXeI2quFhnIwMQwZPEOMTmVSRsKoDXACm2WUWAo5uk\nNK0NmcnJs4Ii72GKEpUVOB1Zntw0iWoK0M4RjEXZGuWsmPRVSzkHakJI0ifXNPsJ3Dlv0Q6UyiIo\niFItL6l0thb/VFVVzCtJGfNBRTmaAAqRhsW7nFEOBrKOPrQJdEoJiMiUwWQG1XyGBOraYytHVVvc\nVM6Vfq8nzGJRUmQ5eZZLXDZKgJYSQOCslTlBwTfH1BOHoCapVwjNDCfnZSZSV9KGjsddS2S60Rqj\njdz3jIlwaJH/oQwmK9FZiaeg8jMIlkCUmYWYIBdaoKOSFC+omJwWQzAiW+WDj+dPmovUHEIaJNwJ\n5wjRt+S9vF/WkqcteAoCgBYWhrzxtTe5cfM2Bwd7TMbjL/AqdFZn9WVUAjqp2RsiXdxQ5rCcU9Lo\nbQC3YXBnxMaV+7yavc2r6h1e5l1e8DQghXoAACAASURBVB9ydf6E4W6FmTiUA19oqqWcvXMLXNFP\nWFN79NUE3XO4FzMOJ+exo7JtlA+Bo6EMrmRE2yxXz1vpH1ElJqfL6KT91AU6fdrc5u7Si0uXUk6N\nbiHpaYs0kd3FpWPOLWyzoR5xk/u8wIes3jumeMuj/hT4LvAIqrEkSmcrAnY4AOM8F352mzs3PuKZ\nusgTrvJ47RrTF/pUSz0YOky/ZnBhzMbyfV7W7/IG/x+v823uHt5n7ek+5ZOKbNfDVD4CzZKjvFiz\ndvWYtQt7lNkcFFT9gvG1BXZ2L+N2cjHlbytp8scL4BeQY5iQQHdfak4GFpyWcnW/f55k0Zz6Pjzn\nMacrSei6YQAJxJ5mM2NM3kIOF1TrUbuBeNQ2QF+uKc8dU/bnFKZCEXAhY24LxvtD/HYpEsXkUUsz\np54a2B9Atc5Jf1paumxl+tlZ/bB1BnZ+yBpPp3yyucmjrS1ub1wCk4l8CMCr6CUwHT9LjGs2ilxr\nirKErGBeB7KsEA+GMqgso+j16Pd6DAb9mDRVMZ+r/5+9N4+xJbvv+z7nnFru3n1779f99mXemxmK\nlkhJlGTLiSWIRgAn/xiyJWrshDEiAUNJsYE4SAQ5NpDFgezYMZwgRmzZRuJQEuxYTAJEVETRIkWF\nFClpSM769qWX13v37btW1Tknf5xz6t7ueTOSyCFFBf0b3Hn97uvuW7eqbtXve77Lz6VuWYMuLAWG\nXAmqFRdkUGiXMmaEwAiDFlAITeFXu4Xw3p7cScuSOCaKIyzWpUxpU/pxArgIfh4RVvetm05vPRiR\nEb5BdYDHrZ+7hrKcreP/C+b203IDK4KETXgw4Vkdo33zONE8a+0Ha2pvGPfR0sqb/wP7YP3Kvffs\nhCAFhItJcM26HwbpgY6SkQM7cUoUJ6jYHR8tFTaKubexzcPNLa5dusBzF89DUSCyzHlOihxM7oIh\nwA0eNcbFY3vGzOGEMDMmNNwCn2eHMdZ7arwhPs8ZDUcMhkOGgyG6cMdMqMgl0QmLleMABUGEDXNp\nkKUvxlrr55V6OaNUxHFanpNymGPMiKIYkuXZONlsMCSJEypJSpokKBX5WGg/+JMQoGBd6p5y+zJM\nHA2MSBnNTPBTQbiBuS/FmDWU0sdPu4Q2isDqeamkFQgZo+IKQiUuRU8bsE5KZ04lBpYsGc4nFeYz\nTQ4BDQjFnrrHhn3mjhFerDne8gDCmXg+cF/h/hzHMQuLS9y8+SKPHz04Aztn9S1Ykw38pDQryLF8\n4ydSqCjXrC0C5yG5OmBuZYtrlds8z+v8CV7hZu8O53Y3aa53idZAHON6uAqYeWhcOKa1NKDR6qOS\nAi0j+s0qd8+nHO9Fzqi/jVsJ78duYCU1xuaIyYGV38yabM4D0AnytAByAqhpMM7eboKouNTUOIZY\neYuGOKEsIKfElEwBbahNdWkn+yyyzTm9yXJ3l8r9HPEa6K/C4E34wh7cyeGSgPftwPQu1HIQVajP\nD1ic3uXc1AaLbNFO98hXYuScpZL2SaIRaTrkknrEde5wy7zBrcO7zN49IH2zgHu4JLE+EIOatlRX\nc9KbOdHNnGIpZlRNOVZN9uszdM63GDxtusZ+EyfxGqRerjVpbpk8huHCG869sJ8n9/vk47TMa7JO\nA513kzeeDpQ4db4HnZ+YhUrqgE5gM68C16FytUtjvsNU45Dp2h7N6JiKGBKGjPZNjYOpNp35NkdL\nbXqLdexMMsbGUrjQgt062GnG3rRJX1PwFp0Bna+3zsDO11jGGDa2t3m4scm3Xb/GfKtJHAuEN20b\na/ygTtc8R9kILCjpTPhppJBxTBrHXtrjzOVxrEjTmCSJqVYSLJBlMb2+jyjGyeiKXJNLQZrE5eq+\nNS4W2QiLxs09CWDHDWXUaJ0jsESR898YbRxQsgYh5ITx2l8MfLCAsdb5P4xxRnlvpA/+mnLOSLAy\nBF+K316rLeNlcxivpjBeEp+81tlwqXJ+nbBPw5wTbbyUSEqkikpvy6THSASvSRnC4qOf/eq/APd3\nFaGiyKWSeU+MihKIE/a6A/79n/0v+bXP/VZ57H/o+7+ff/F3/xbTaVqyFwIHKIV0SREWiza6BDtC\nugu1xPtR/G422h2fLM/R2pAHIFcUjIZDBoMBRZ65cymtoFSMQWC0RVmfuBbYnSDlk45AK4eQah/Y\nEAkfLqGIowokEUXWJy8GDEcZhdEkifMnjYq8BJajzL1+kiTEPqZcSkEUZi0piVUuKc4lrhnPrDiw\n5ebkjBPcIHh3AhjzjI4SKCWIIkmkXOqdwY5PGSGQMiJSiYviRrjgAWs8KLKeiLGn5H22ZFsmJWdj\nlaM/2YT3qwlOhHEo5UBpAGxYETig8vT1P3aipJRUKlVuPv8iX37lS2w93fC+uLM6q2+VOs1WnPag\nJEDVGRNruIVun8JWX+6wPLXGFe5xg7e4NXiLC+sbNF8fONbhEY6hKYAayEWoXcmpvW8Hda2gmJP0\nVZ1Dptmbm2N4rka+WHPzeqaAXQmjBDd/J+GkZOw0A/CN9uycBjrBjxMkawHkTI0fog5JFVIFNeGA\nzKSpPWx2iOWWnOi1a5U+U+qINgfM6AMaO0PUmoWHsHkPfnRN8tmJ5v47jyT/uG94oQ5qGeI1S+P8\ngNmpPaY5ZFE+pdU6os0h0xxSYYDAMss+l+0Drmb3mX+0T/yKhi+DvgPZBuQjZ/tM2hCfB9mBlh1w\nMV2nGzfYiebZkOd4Mn+efKlCMa+crKshHMNT+pYmo7gngU4AHpPnYvi3iLdfWeFkwICdeC78vgB8\nnpX69iyGLpzrAbR6M05cd+fjCt6jBuKWoXbjmIWVDc5Vn/iEvK3SoxZkm13ZYK82y0btHE9a59mc\nXqHTmiGPKw7oaFwq3iCCXmvCo3Y6xW6SAfujCuT4419nYOdrLGstu4eHPNp8yubOHsuz08QiQhkN\nWoOVxFFKrVane1xhOOjhkngFkZIkUeRM7caA1khjUFhiJUhiSRQJKmmMVIrRKHGAyOiySTRYslFG\nFkVI36y5RDYfNy1w/gUfhSyEIM8LjNEkkSKK47Iht9Y4XRQGP0/Urazjr8ehMTUO2FAa+UOjj2dO\ncGyDDXKgsZQKIVxamm94y7mUfuXfmvFFyRrfwBrtgFIwhxsDxo73gZcqKeUSyvyB8e9XltHTVvjZ\nKp7JAf92EQjpJFZxnBDFMVJGPrkuQkQJH/3Zv8WnP/8m8L8C3w98hk997qf4yF/7G3zif/y50sti\nESVLZayhMIHVcYAB7dW/UmJVBIWmEAKjDVmWcfvxBo+291icmWZxZgqjNVmWoXVBpBSVakqlVkdF\nsY9Edkl3UlusHAd7Y10Cm4uAtj49TGOsRhWqBCtCxEghGY06HBx2OO53SSoJrekplIywWnuAIMkL\nzTDLGOUjkjghTWJq1Spx5AbmWimwyvmJJsMtAiAwfshpybj4cyoknAW/j4tXF0SRIEokqnBA1bGj\njlkU0iCVj7L2vqzgxSlZHTsBQBwmZwLjlIyhO2H9eWg9oyhkCd5VKauTPjlvstmRYAMEevvtWHhg\nnyQJ164/x+r5i9y7+xZHR4d/sAvMWZ3VN60mV9PVxGMC8KRqLLGaBZYMU/UjVljnIo+5yj3O7zyl\n+doAvgj2NSgegTnAee+qoBZA7oDIYTY94Gr9PruNWTY4x5PGeTrzsxwGsNPANf49BUXwuQRmYLI5\nDtsM3/gmMLBfk0CwgpOttXAgZwZog2o6FmdOlE+VRvYaY1+6YTx2p8PY91GBVI6o0adOj6ruuxEt\nu8AO/KU1yedoAv8D4b70O7zMj+fHfObAoPaAA4h7OS061OhzhQdUGLLEU+bsLjX6PtLGsKi3WOlu\noO5aeBX0V2BwB76w5XDrNeADDWgfQFQADZhdOmK1tclyY4MFsc1MY5/u9AzFdMXtjrp/jyXYeSeg\nOskoTl5jYQyOTtck2AmSr8mZTAEYBODzrEWmScATzq8JtKmqDqQuUCYPiluGyot9zq/c5Ya6wxXv\nUVuxG8zqfVI7QlhLJhzY2ZbzPBbnWUi3uLtwxJ2pG+yLJYoiGYc59ASMqpA3GQc6BJ/a5D4J++rd\nGKuzeqc6AztfRx33eqxvbfFgY4Mrq0vU4iYJBmEMSgiSJCVNq0RR7GRgQhCnKZU0JU4rFFa6VWLr\n4oFloYmMJlGWNJUksZP1JLFjI4b9vpfXuECAXGu6xjDIMg67XaaqKfOtFggXaiP9nBKEJM8LpPC+\niDgmjhMA53MI0iPvvRDi1MXFN5FC+M7yXT5nopwlc2oGiRTIICHzYCewRCHpTGDBFi75ShdonWN0\n7htv97CmGAOskl1yXiPwxndtEF5uJXCRy+XlwQcqWP87pFSoKB5LtKQz9yMVd9Y2+NXP/RYO6HzE\nv8OPoLXlVz/7Em88eMDVpTmwBQiNRpObnDzPKPIcnecURYHOC0xRlHNbwgydPMvYPerwc//yU7xy\n/3G5D1+8eJ6/8me/h7n2FK1Wk1azSb1WI0kqIBTGD/20xpJrjTQW7YgVpAdfLhHOlMdAaz/o1jhg\nIjzOHo0K+r0Bo1FGWq9SqddJkpRIKmIVoYQgH2UM+n2y0YhcF9iRRnpQonz4hRCRk7KJUwyKB7eO\n2XEAQyoF1pYJgNbibFGRII4FUQyRAiUcS+kYF7A2MC0yjBtCCom2p7TfJxjE8syceL6E5x6Qh6eC\nrNEBnRJQeVCMHEswBBFKRqU07p0/D4Jz51a5cPEy7ZnZM7BzVn8MarKh98xFrMqcAqZBzQypV46Y\nY5dlNrnIYypPhvAm8BoUX4G1DXglh8fADQHftQntzKu6ZqDZHnCu4SRW8+ywVu1zGFidwICoyIOd\nAHgmty0kZn0z9oc49ffAAlQok+poA3MQN6AlxkEDi7iGeXLYaoq7ZIXAryOcx2XIuKcFBAaJRnqG\nHg23j+HTucEBnfF9yWD5PC9xZwDPB1JAUwKaW7zBCutlWl7N9FFak8kEOYTKhnUH6xE8uQ8f2ZL8\n1gSA/K6u5J+sG16s4piOJ1BbHDDX2KPNPtMcslnJx0A17KJMgjmdWFfS9ZyMOA/AQ01832lpG4wB\nzCTg0aeeC3f9yUCE083LJLNzSo6YVtwxW6YEO9VrXVZX7vOCfJ0XeZXneNMBfb1Oe6eP7BqHuSqQ\nT0dsNGd5IC4xxx51+sjE8vpNxdFonqKXOoAb5owe10DXGXvUJiV/YT+dydm+1joDO19HjbKMrb09\n7j5+zIuXL9JIIqYrMTFOnlTYAikUUZQQxQkyElSbTZI0RcUJOjcQOS9EEkUkSlCJJLVUUU8VggKB\nQElLJEHiJWnGAafhKOezbz5g42C/3KaLc/P8e9/1IjUZO1mbcSvog4GLv66kbpSyMTAqMh964CbZ\nW58qJgQoZSdWwwO4wKdneZM5wqemhdGZYy2PWy0fz/sJpvTADDmqRZbRwT4fGGuEA0Emx+oMTAFG\n4w1LjjnRntWx/se0RUTC+YasdQDSz8QZL927i2Y5mwa/eh/ka7EbrhkaXIC7j9f91n//qSP/pwG4\nfe8uF2drCD9oMs8zRt5jMxoOyUcO9IxGI4b9Pv1+n+FwiNaOpRJC8Hc+8Zu89qTHJHP0+uOP8c8+\n9SX+6x//CzTqdarVKkkSI5T0bKDzNoX5QYUuEMIiFSi/n4PkL4DOcFCKQvv4axcHHsUxU1PT1GyT\nRrtJUq2iQsS4il0cdJqSVCtkoyH9Xo9hv0end4yQljSNiUTkQI+/KAeQGZLXxkM3RQlStXVsW2DE\nHMvmgEwcKaJYISWISZ+XGAdfRHFU+pCCjHMsw8QxLhMMTmBaxv8P2yMczSfxYQl4r5o/naV0wFlF\nSBmVIRplPPqkfk2c+IOQatiemeXq1RusrFzg8aOH/ric1Vl9K9bp1W7PpJzqBSvNIY2kS4sO0/qI\nmeMu0ZaGDRiuwZ0N+Ggm+VJoli18T0/yrx4ZlhZBbEB6kDHDPtMc0OSYJB1Ao4BaNA7wUqEZfcbi\nxTetATwtd5oAgaXJZgZYgEoVZqSL5vYGdjdsFVg0iPmM6lSfOM0RwmKMIhvGjPYb2B3lZF9DoIDC\nKjISMlIymThTe81yr+zXn31fuh/B8w23aSZ1UGeVNS7wmPNHG7S3OiQ7GepYI4zFpCOoCYSmBF3/\nwbbk86eYoy/xMj/eO+ZzhwYOQBxCNMypMqDKkIQMGZuxJ6UkcsJ+m5SuheMXGLJJRvE0E/RuzM6k\nqX9yHpOaeD58/yQjGF47nEOxf3jjlPD7e4YykCO50mN+ZYPnlEvGez+vcKt3h3PbW1QeD4nXDKLj\nXspWIZotWL2wQ/Nil8ZUF6W08/JUq9xeqXC8G8OOdB61HWCYgA5BFqdnNX2zPWr//6szsPN1lLGW\ng06H+0/WefJ0m3a9SnVumiiWYDR54SjNyHt3jIxI6y2SSsUZzXNNXBkQxRUiKYmlIFGCWhJRSSTC\nFpjCYHWGQBNH7oLkpFGWz7x+j6dHlslG+fHex/g/vvgaP/wn3w/GrfDnecFgMEQIiKMIa9w0+iJz\naXESN7xTGw3W4tR1akIWFBpIFwstZVi9d89OluN0JojWgJJ8UxvkbqGZtMIxW86dMznZ0zM5QcJW\nshSO0XCP8O3u78Ib9oPfwhnm/WtJFyus/c8LQPrhoUw2r17mZqzh0vKSf1efYbyCBvAbAFxanEbn\nQ4R16Vx5ljlp4XB4AvT0B336vT4jD3TSNCFKK+wc9/nq43VOM0fGWl65+xKHw4L5hQZxHPv4buHZ\nN1HKrRxwcPtHYUBqN2/JjAdfWi/hM97Poo1GCOctUnHEdLsNSpDUKn5QrWO3rJQYKZ03J45QSQxS\nuKjnYZ9BNsQKTSpTBy6sY3gEE+A23FhKXZmPsS7Bjtu2MppaOplnpDy7IlykuhUhftMQKUkcR6hI\nUc67QSJKBuiUUGLyL/akbwe/rW4z3ShZJRxzJEumJyoZn/AQwcNGyRE9s4RneC9ducbFy1f5nd/5\nghuKelZn9S1Zk0zlxNdCnAgfi5OMihpSZUDNDEh6GnkMHELegZ/IJL97qln+Ai/zY7vHfPLQEHVA\n9TUN06MmBqRihIpySDUk0USjPClv+v229xtRk/K+SfnaabAz6/w5M5EDOJdxHo8roK6OqJ7r0Zzu\n0Kwd0qp0qKghUhi0VQzyKp2ZNt1zLY4PmvT2G1BXZCqlR50OTbqqgZ4FOQ9XzwNfhHe6L10PbNI8\nFM2IIRWuco8L2+vM3OuQ3i0cg7OHwwJ14xiMGWAAtzvwb4pnM0e/ZR1zdN3jCGksCk0Yw+2kwLz9\n8bbjFE4mGKOj+Bl/ng40CNd7w0lDfxhsE+KZw7+907kxyZZMyja9Ry2OHUPVpmToGvPHnKutc4X7\n3OA2t3p3OP9ok/rrw5MeNQ2iCmIBqtcz4l4Gzz0in084Fk32RZu9uTlGK1Wyx3W379vAvoRRPOFR\neyfpX9gPZ1K2P0ydgZ2vs7qDAU+2tniwtsHidIvpepWKqqKERRcZGNxqdRJjVExSrxNXqwiVYDJN\nWh8SV2pEUUQkBLEQxFIQKwEmI9eGbNTH6Iw4lkglKPKCvV6PzaNDTjfK1loe7rzEfqfHzHQdoy15\nXjAcZsSxKhvMQru5JNa4OGZtxlI2pUApU8quhJBIz/SEBnb80QvStlPGCC8NCt8ZlEJBPmZPQCLv\nyzFOphYGiJZMTgA5kw8TvnYeJaMNQlnPzPggAul9Ht7rYYXGGDf0EytAufSzQmsK7b6O/C+3WnNl\ndZEf+NB3829++yfRxuJWzn4DJX+KP/3B7+DK0iy2cNtbFNoxOVlOnuWMBkO6x8d0j48ZjTKMMURR\nTLNZpdlqUalUWb/90O+sZ6/QPT044saViwjlmRYhHMmFRAhTAjWELVk8rHYeFx93HTxTYf8ba8q5\nMdY387V6HRUpiBQjXfiY8DBbx8u4fBhBVdQRCvpdQTYaMMiNiyWN3b8HGWNIuZPKII1x4ED46G8c\nsedm7bjvtdpLKHEgI/LhAFLY8lzx8RxIJYmTiChWHjSfuKueyLuAEquf8u2cbur8iFyrkUJ5hscH\nFfjhr2NW0//eEq39/nVu5TxXr15nZmaGjfUzsHNWfwxrguAQ0jhZtJdITYZG3R7i5U9vb5Z/3b7E\nW114QYPQvkH2jbJ81w/TNxrUvNNrTsqrnmVk9xI20XAzcpZxQOcGcAvSGz2mL+yxML3JSrzOEk9L\nI3tEQSEUvaTBXjLD1tQS6zMrbC0sQxExlRwSUdCnxq6a5WiuwfT5Lje+w/Dh35T82vbLuOEM/r7E\nx/jBpuS5Fw1cgdFKRL9VAQOXeo9p3+6S/K6G18A+gmzHrSlGdYiWcFKtiN+XObor4HoVqICOJBkJ\nOTEa5ZQZYfZreYs/sfzJmBkLvpwAHP0vLRv9MHRzkuEITX4ANCOcv2XEeABt5v8ueTvgCYtmk9f+\nSSDrfTtp5OSGnrQTiwXNxhHLYpPzPOEyDzi3vU39jSF8CcyrMHoIWdfv0wpU50DuO49TO+1wsfaE\n7fo865zjSf08hzOzZHP1sbSxAvQi0JPg73RKXfAinfl2/rB1Bna+zsrynN3DA24/esTFxTkWp1s0\n0ohaJDEmB21Q0pLEikJCnKbE1RpEKTY2pI0BlUaDtFpFdbuuCyw0EWB1TjYcMRp0McWQJJYIociV\nZLAXtMrPviDtd4fMTDecYtVo8qJw0iAhS9kPBAuOH8JoC/eRkn5qvNEY443+ZcxuACFjP0g5Wwd8\nVx28G5IQGBCAS5BVOSuGLX04VhcYUzhPjjF+e/DDIQFTKtkYr6eLCZbHusQ3vxAnPeAR/j1K6S5y\n2lpy7YMOjEWqzA0SVRkqSohi3+wLMBT8k7/503z0v/jv+PUvvFTu4X/rOz/AP/rPfwKrdfnaOi8o\nssKDnYzBYEDn6Ig7jzfZ6w24fG6RF66t0p5uu2OtYp434WL/7BW6lfl5tHGpayUDIsYxzIALg5Ax\nwjM4xlgszq/jjq8/Pp6pMMagvYfGWIuKVMlWaA8chWfJbGhDbNiHEFVS6okiShQHBwVFNmJUZMQm\nRqAQRB5sOm9OZN3sIGGMZ9Ac2xaYpzL+21q0ByAhltuBJ10yKMGvc9A5Yn17i0GWIZXy99PADIbI\niMAxnmRexna009I6d6KUEE9QDhYNYEdOSNfGED6sZAqHwMuPwMnGbGZmlqvXbnDl6g021tc4q7P6\n1qzTDZQ9+aUfB6J1RG4jchGTiQRTE9iqW9F+XJ76z743PbDwQupm74xkyoiEnAhtFBTyZKP8LVHP\nkvYFsNN0QCeJXHDDKj61y6LeX7B4eZ0r1btc4T4XecQ5Npg1+zRsF2ULchHTlQ12mGNDrPAgvcxa\nuorAssRT5tmhwohDOc1GbZH0SoHqDvj4Rw0/8s+O+eTT8X3pB2ckH/+wgfeDeUFwcL7FUbNOOztk\n5mGX+HUNr4D5CowewRf34L6F51P49iWIDoEPwNUl4KvwTvela8vAHNgZXPQ0Tbo06FNDj5TDHhkT\noCfMkLGUAzpLCZplzJCFmU4hJCAF4aPrRGBfcD9rc7AhtayHAzlhIm2Xt7NCkzV5Yj0LyEYQyRMB\ne9HckGbtkAW2OWc3OG+eUFlzHjX7KuRfhu0N+B3jCJ6bEr53G5oZiBqks4b2dJeV686jNscua5U+\nh20LTTFOV1cKdJD1PQuUFXwLfTD+WNUZ2HkPajAa8frDB7xw6SKrczNM1VKSZhWDBuM+lEoaUAqL\nRcUxIk4wwpJUa0xNz1CrNZDskY9yilFBJBRZljPodclGA5SEaq2KkIos1yzOTPtXf/YFqdmoY2Xk\npFvGkOc5lUoCcsx6qCjyACWsnsPYrR3+Gj5YY6YFtLt+GYk00qWBWQPWr+rDWLbkfRfWN7c2IJgS\nOLmfdfHUgU3SWG19mpgtDf2u3EBI5dOxtHasilQGl1EgncwusAx+U6Sy7v0KiTGWIs8p0FgjQo/q\nJFRSoKzG2hisot1M+cTf/xnuPdnk3pMNLp9b5PLyPFmWYQq/nVpTZG5w7GiY0T3usbaxxd/95U/z\n+trTcl9+74u3+O//6n9IpdYEBFcunOf73v8+Pv/Vk8yRlD/FB289z/LcjPMnRW6YKMZS6BBO4JiR\nAkPkB8ZaLNq6OUph5osDsgattU9hcxIybT1rZ4QbfOrC13zqn8C6LAM3O0iKcnFOCJBxRDWqk5mM\n3vERhS7IioIocal+QkiUcCEP2oKQ2p1TJ7SN4VxzbJyxFqEmgIWXsAlrfCKboTcY8o9/6RO8ee9O\nuU+n6y1uriyhxthmfL6OuZ2J5/XE814aIZ28TgJS2jL4QPokNiWET4Abe46UT/+z+PNTWk7Cm5Ml\npeTCxSt894f+JL/5mV9/l+88q7P6o6wQ1xtWz72pu2DcT/Zh1EvpTdfpJE2OVJOjdsr0giZestxa\nxg1QfId7040LwCLkrZgjpjimRZcmWV51MbxhoT7DDXab3I631Ts9/17Xs4zsXsIWNRzQmTCyx7dG\nLF5/ws3odV7gNZ7jLa5wnws8Yql3QNrPEdpiYsGgpdiMl3gkLjLHLgtskzLykcZPaXNAnR4W2Ftt\nIqShXRvyKxcNd74Kdzfg2ixcv2ScV+gadJ6v8KR9jh41bhZvIdcN3AfuwqOH8KN7ks8HSdgI/tQT\nyS/nhvYU3DgHH56V/Nre25mjH2hJrr/fwFUoLkJnus42C+zT5pApsn7s/PV9/xjheiDw+yvxxyyw\nL4bxgKEmLujB0xwSqIjxTJqAdYoIsgSyOuQWx/AMcCCn449Nj5PJfZM1mdr3LCAr3oZnq60+U2mH\naQ6ZMQfMHnaJt7Qb6voEbq/DR+2ER83AhzqSX35iWFwC1iE5zJhjlzaHtOiQpiMHphqMMV4kIZtk\nmibj1s/GFnw9dQZ23oPK8py1nR0ePd1idX6W6XqVVEEiLFYXFHlGkY8w1kX6ugAASSwklWqVVrNJ\nq16nkiSgLf1un16nTyEMg/6QknsHgwAAIABJREFUIs9I05ipqQbWSkZZwQUVc3FhnsfbL3ug4i5I\ngo+xMjtPs1ZzTMiEXyKs0AchWmBJgvcmeGPCLBtjNFEUnQgqKOfwGA9QfLqYMU7WIIRbkRAnMROe\nKil/BmuchycEE1gnMTPaNevOl2R8jLLbUFHKkVz6WhzFSDGiyDVKaUxkUQZkrNx2COkaUfdDSOXC\nCKTKIXdytswOPbOUY4ocnWfE1SpRtUpUrZCQIOOYa6tLXFleoPAMjskdgNCFG9yajTKyLGc4GNHt\n9vl7n/gMb64PmfRTfeH1n+Sv/cP/hX/6N/5jtHFDP/+bn/wof/0f/Dyf/8p4he6DL7zI3/zxHxvP\nD7Luew2M94mXUEncIFkhJdaDmqIo3L1BBf+R8+kYrAOJYS6SlGNmxEwm1jnwa3wamhaO1TFQEiZK\nKaq1GkWRkY8GGDy7J53kTeAkkw7kjOPCwbE5smQWw0kZ/FZO/hZJ5QMY/GBSafj5X/oEt+/vnNin\nh72XeXNtk1urC+7c4CTqCQxM+HOMmcdeBM8nOSawjJ8O4RU+lMAHE0wGWIBnyIT2Py9OvOpkCSFY\nWFzi/d/+QRYWl9jf2z2buXNW36I1GeHrgUZuYCBdD3kE2X6d45lp9pI5tsQiG+IctZUnxNeH3NyH\nH7ot+dThM2RW85Ib32mw12GwVGWDc2yzwB6zDAZVOBCuZ+3jwJUOcWWnp8t/s0IJ4O1JYWG+jh+2\nmkgfxw2sgLqU0bqwx5XoHs+L13k/X+bF0RtcPnxCZX1AupkjjyyiAJtA3IZ0aYOpC12a7WPaPrDh\nsnnAXOeA2mGG7LsFLFXRqErO6AXgkuDa+yzXB27zTBNG84rd6VnWG8vsqllaukNj0EXsW9iGwTb8\n5X3Jb5/yU33OvMyff3rM/7NnUBfh43/B8CP/6phPbo3vSz8wJ/mFP2fgTwDvg+2FeR4lF1hnhadm\nmd2jebK91KWLdXDH0eD2ExIHZDRj6Vkfd1zrONNK0+m/agrqasysBDVbCXaAoXA/fgwMBBxHkE0w\nQmW297MqDOx8l5rEPhHEqiARGSkjKnaIGhg3MLcDWQ9+wr7do/bbvMyP7B7zySNDfAxyoKnSp8KQ\nlAylckgL5w864VGb9OicvpdMpI6e1R+qzsDOe1DGWvrDIQ83N7m0OF9K2abraWleL3I3M6XIR2A1\nypvhK2nMVKvBzNQUe/Ua/V6X44MOW1s7qCRmVIwQQlCvVmnWa2gjiCJNHBd85Ae+m3/xa1/g0c74\ngrQ6P8+fed8NP9tEltIvxBjgGG8Ox6/6T8p4jDYYZRgb3GG8El/+z/993MSWTas1CHtSXz3+t/H3\nlF97dscGaZUu0F7SFjxDAZW5P0QZF62Um8xWFBqVa6LYoLQB6TwX1gMKN4CUkhGKhKJAkBcFmbUu\nIjrPyfOc4SijUq9RyXMqWmO0IUmMl4BZdFGg/aDWIi/I/cOBnYLBMOPB5i6vPnl78IA2ls/+3kvc\n29xhZWmeHEG13uDv/acv82Bzi/WtHVaXFrmwtABWI60tE8eCVGtsSxQeXjiWRnr2zIFU4xg1xmlh\nBsqZRlKostk34ECI9a8hQGiNsBKLwghK06mwbp+6+75FRhFJmoI17rYiHDMTRf5n7TjRrwyX8Me9\nlIKVs4AmmTvhjpNSpaxsa3eP1+/deds+Bcth/yX6o2nqaYKU1kW0EhIE/bZPbkfgvcQ4ZZAA+KXw\ng2YVURQTJ4kHPBFSOeAjyn0PY0PQ6avCabQP1WqN1dWLfOd3fR+/+ZlPncVQn9W3SJ3WjAU2JZi8\nh24lvZe4JnYf7HZE59w0T6eWWGOVB1xmarmLen6XSp7zC9bwI//6mE9uT8iszkk+/pJrlo8v11ib\nWuIRrlneGi3SP6y7OTKHuCZ2CBShOZ6cLD85SyVo695rdieAm9NG9lMzdqJ43KvPA+egstxnqbXB\nVXGP53iLF0ZvcnXrEdO3j52R/SEOEBQgEohmIboyIu7uI68bmrNd2v0OM5v7VNcyoqfWGd8BmqAX\nwayAnpPszjYZFBUKEaOSnGqlS0TGbH5AM+9REz2iQiM8kfLGMXzWPttP9WnzErcP4VYC7evwKzcN\nd96Au089c3TVwHkwVwU7V9rcbV7htrzBfS6zZlfpP21hNiOXLHboD1sdMAmYyLF0hYE8MDtB79Z0\nWq9qAlPKBSXM4rwsJ2LI/eZmOKDTxcV1H0rYk3CgoB9BNilhm2T3w0LYH+Bcmfw2cfKJsg3yp92d\n7J09ap+2L3GnB89rytVC4X1q5QuEL0/ejN5lw87qa6kzsPMe1uPtLdZ3drm4OM90o0K9EhMHn4XR\nFLogHw1BayIJQil0GtOeajI/22Z/qoUZDuh1umw82aDSaBBXYxqtKs1Gk1ZrmqKwRMMRFW1oNVv8\nlX/n+7jzeJ2j/pDZqSmm6nWGoxyCvMaA1m7QZfgMmQkQoI03iPoYqzCEdFzPjqAuCSM8EDEWysQs\n970+U9h9bSZX290H3q20mwnA5B+mwBqN0foEq2MDUyDc6r9SEVJIjC7Ic43KCoRQbr6QdVI2bR0o\n0UWBKTTDfp9Br8vAp6MZY1xjHcdE8YgkHVHLc2rakBWaSl6QJimRchdOYwxGu23OsoKRZ3TyPGeU\nZQxGGZuHx/6dPluzfm9zm4WFBXIT1igFq0tLnF9eJsyoEQh3jgBjwsDJp6xwg1JLhsw61qf0R0EJ\njsLXLo7aer+OdkyfCZ4Zn0LnTgGklUjrks6slFhpnbQtnD/Y8ngoFRHFsQO5UqGUcilpVqK1LFPx\nQsrdCYbOgx8Haj2DJ9xxUyqwOxIpDDsHB++6T0d5QaNS8dZNdwJI4b1h/ly1/v1NnIoTYQbuc+oy\nvV3UtIpjojglSlKiOEJNzmIKDKn3p4X0uXcrIQRTU9P823/mw7z+2pc5Pu44YHpWZ/VHXgEwBFYn\nMCojoAdFzYGdMNhyE44vtFhvr/KwssUM+zSnjpFXLQvxPu125prle3B3D66dg2vPG/RF6Fyt8Xhh\nhbeS69zjKo+5wO7hAsOtKmzhUsIOgKEBmzM2nYcV+ckH/IEb2K+pAtiZBDyKUsoWRaWvgxlgSdOY\nOWYlXueCH7Z64XCd6bvH8CXgy5A/gPzIkVYqgeossAPJUDMrDmlEPZrrQ8SXgdvAOmOw0wJ1DtR1\n4EUYPpew3ZrFWElr2KW632fm+IjFvltI0anfNRKInZ/E1Tvcmwq4FYO+CGZFcuHbBJeHGhsJBo2I\nbDalN1/jdvMyr8oXeINb3CuusXm0gn6cwpp0AEQzHj0kpPNijShPJ7Ia5DW3E+Ka253zwrFjSzhJ\n4Lz/+ZaFqgXlj/FQQlc4QOWHrLIFbArYjmE/hkyADcxOOLcnmMpTCoBxTdxAi/GjKCJyk5DJhJGo\nUFQEcQ1EHR6XBNKz9+l9Ac/XnUdtSIURKRkJ2kRuBpGfh+Sw++93Lp+Bna+1zsDOe1g7h4ds7O2x\nfXDE3FSDmWYNlShkFCNVBEXOaDTE6gIlIY4VohIzM9VgcW6a/ZlpRt1jDg87bG88pTY9RXu+Tbs9\nRavZZnZmgSwrUMfHFLqgUq2glKA36NEejPysmMjJnnQAExajLUXu5qvAuBHW2oEdGcwY1oIczz0B\nyp8Z1ziVLczacetfvosso5H9xaRsJv3T0t04rBVl8oCduHmVUjrtk+LCCpsQPlrYPQLYSZIKo1FB\nnjlRuZshI4mKlLW9Q9a291icbjJXS+j3ehwfHdE5OqLf7ZHnORZBnCQkaYW0WqVarTLIcwZ5QW2U\nUR2MqFRSkjhFSeW3HSyWLMsZjTJGeUahNYPRiFGRszw34/fVszXrywsLFNblfxk3MMenlYlyP0kh\n3SwZYZ1k0DqgqSInETTaOJZJh8AHW8ojwQEVY0OanZtlZLV2gEc7yZrRehyprOQJtkcoiRQKqw1W\nibHc0SMVIQI7EubcUDIiSjqwo6QqGZpISnIZ8tRwwNqO2UNjjQ8FcNviwggUSkmEsSz8Ph61Rpqi\nrERawIwjSsvEa0dwYYQYB5iW52bgysK5pkBFJeCJ0wpxkqL851gqVe6zsP8mQwvGoJy3Va3e4APf\n+SFWVi+wvfWUXq/79m86q7P6pla4xheMm/nJtKs+6Az6Xma2BazD4FGLreYqd1Y6VOSQSBQUsxFF\n4z7nlnaQW4ZLH7RcskAFRm1JfyXiQXqRt+RzvMYL3LbP8aC4Qm9zGvsohk0c2DnEszpDxuaPAHYC\nKAsVlvy/0QsHgrfFT0fRWG7VBjU3otFwRvZlNlk1azSeduENsK+CfQWOHsOX+s5Cc13An2pB0neX\nnXRKk8YuMY3fBfMmmDXQHuzIBqhVkIcQa835xjb5akwz6zP/5ADu4vahX2+TTbddSGAKnp8FNuAd\n/VSLwAxkq4ru+yoMRYVKPqSIFF3ZZJc5NjjHAy7zJjd5U9/kYecKR3cW4QHwFHfazOFmC01kCpSH\n8hg4FLCfwiB1DE6b8Wyi8xbOgzhnULMa0dKIaoFQTr5lhzHmOMYeCvS2gg0BT4QDnDX/mrtNGAnG\n4QgB5IRzaMRJOVgAGZ4tNBYKUW7zcFChl9fppg06sklvKiGZK4gWLLeW8Cjy2fv0uYvAIhTTMR1a\ndJiiS4M8r8BAjU/tDMd8lYzlaeBzBnS+njoDO+9hZUXB1sEB67u7LLenmGnWSaZqqDghSqtILxPT\nRQFaIzAoJahXY+Znp9mfn2XYPcYUObuHh+isjy2qCDSRVCRxhThyjbb2YCdJYjqdDtvFDkWRI1RE\nJYkZDrPxyrm25Lmm0NrbIyTWOvmXLpyXI5ivSxaBMdtijHbgRrrVEoEzXDu5kZ+9w3hezrgmkI6X\nVbnry/j3unk6xnt3DPgIaox262nSwSlr3cZJzzBIaYnjhHqtwWiU0+32GGUZcVbQGWb8t//7p/jS\n7Xvllry4usSff3EVm4/KwZpZnnuWRKCiiE5u6VvB8uw0l88t0WpN0Wq2aNTqVKsVosjJ5oxx6WYB\nLBovLxsVOUZKLl9a5buev8XvvPn2yOrvfv+3c371HNbacl6Ltbac9RJ2vxTWp+cJ8CyXAzPK7eeA\nFbVjaqwYp5gJqbBIt23hmCuBRKF1gfbgyfhIaIt7PyGOWViNpvCMjCCKJEIJkOOUMndc/Ywiqdx5\n4WOn8ZLI8B4jD3jUaebDUgZTqMD8RMKzJ6JkSySC5dk2L1y7xhv3PuYlb26fwsdo15vU48SfgwLj\nI0p9rMMYc5RAx0s6wYG3EhAJD96U6zy8dE2pCBXFbphpFP4ejWfunGAz3/0aEUUR09Ntbt56kUcP\n75+BnbP6I64AECYBQxjQGJbi+8AARjXYSVxT2QamodNo8Vb1JmLWUAhFlwY7yTznFjaYnd2nYodI\nNIWI6cgmO2qBR1zgHld5i+d4s7jF00cXyO8krllexw1ZPADyHo4GGE08TvstQhxxYGC+UX6GSUnb\nRMpXIHk84EkbGY1Kl2kOmGGf+d4RlacZPAL9AB7fhx/NJF+YHLZ6JPnFx4bzM7iAgyZO7vYqHL8B\nO7vwe9qNxnlBwoeOYVrjkprn4ILcRGxbeAXHBG3gAIX1v2sZuALMwI3n4YfuSz7Ve4afakpy/XkD\nK9CfqvNAXOAtniOOczSKHjUOaPOUJdY4z32u8OTwMnv3FuF1HNBSuDS6ht++oCQrcKq1I8aMzDbu\n1FrAydZWgIv+56/kTC/vMpvuMiWPqIo+MQUGychW6NoGh/kUO8fzZPeb2NloHN8cAth2ajCY5eTw\n0SCHDFTKJBiaeGQG+spt3yGMDmt05qbZTWfZYY7NeJnayhrR9SE3DuDDb0l+7VketQXJ9Q8YuALD\nxZRNltlhjgPaDIap2x/BozYCdNjG0wDt3UI6zuoPUmdg5z0sbQx7nQ4bu3vsLS4w123QqqfUYkWU\npKiiwBhLnuXovIBUo4SlksbMtKeYn2/T7x5hTU5ckaAkjWpCJfaNojHEcUwlSSm0pJKkVCoVZtrT\n9Hs9OsfHFPmIOK6gJGX62dvZGQeY8sI10Ur6QAFry1V8Y0OKl/PQIATCSIR0LIKclLf5nw3skIUT\nAQWibH4dmDFGY7SLmy4la0WGLjJ0kbt/sy49TEp3kzHGsw6exZDGopQlTSvUqnUGo4xBv09vdMx/\n9S8/xauPu0wa2V9f/xi/ZJ7w0z/4AR8tLcjygrwoOOj3+fjn3+Tu9l65f67Mz/LDH3qexZkZpltT\nTLdaVKpVojguZVnGumNeGE1hNCOjSes1ptpt/s5f/wl+5h/+cz77pbFm/Xu+44P87f/kZeI4LqOf\nrQ2eKen3pwOMAnz0spNlhZZa4CWIuqDQhRsEG272QV5Ygk478R/4CZ3l9jhpmZ2QvLnXMMZQkCMj\nCSL293g7ZueC9M1KpHJMoourduk34dWFcKBY+bQ4d644/Zvw3xSYHScj86/jZXXCgxPpX/g/+uE/\nxz/6xf+T1++N9+lMo8XNpVkPmgEUMrAzAufZKd9ZADOUr4938EgflS2UAziRSoiiBBWnREmCimOU\nD4wQUiIj5QMNRCmPKz8LgUqaqCBxk36u0c2bL/DK736RzY21s6CCs/ojrtOrx5OenQB2OlBUoJu4\nJrUB1MGmEX05xe1rzzOaqXCYTLMplllUW8yqPSoMkRgyEro02GWOdVZ4xAWe9C7xdG2V/M0Ebkvn\nZVkHdq1v+npMmHcYu8YTv62Kk2EFZuK597pO07QTN7eJES1xlFORTqxUp0fUL5yR/QiKI/jLmeSL\nzxi2+tLuMb+6b0gOcTKwkPJ1CD9RSH43gCMN3/dU8guxYXUJ2IQoMg4J/R6Y16H3GPpDwEK1Dq1z\nuN14DcRV+PifNfzIp4751cOJ8IFZycf/XYN4H2S3YHdumnviKq/yIsc0yYkZUOWIKXbtLJuDZQ63\n5+k9bmHuRw5gLTHhtzHQKJBxAVZg8sjNkDkUTna2ifuZPmPp2gJEl4c0rhyy1NpkpfKERelimlsc\nE5OjkfSpccQ0O9E86/EKm+kKu1NLDBuN8alR4KRzugJZmzGaCP6vwGKGCro1/z15BbrKAbN9YEvR\nWZ5io7XCY3GRe2zSutAlGuyQFpqPi7cHOvzgiuTjHzXwHXBwpcGD1ioPucQaqzwdLtI7bLh9sY97\nnQE+kGPIGNhPspnhc1oagM7qD1FnYOc9rk6/z/bhITuHhyxMN5mqV5zxThsMEjRuHkueYYoUKQRJ\nHNGaajA3P8Ogd4wxBWk1orCGSrNGrZKSxhGRdN+rdYS12q+IKxr1Gq1Wg1E2ot8fOEeMdsNArfYD\nG+242SulWKceQPmZcoDHgx1TIIwqAwPkiRk7xrWLNoiDwlr6hEcDixW2BDpheKhLXsvdoE+fWKfz\nDGMKv44mUQLPWkg3sEx5AKcs0kCEoFKvUTeaHHj4ZIOvPFrjtJHdWMvrGy8RTc1ybm6awlgXUFAU\n/NNf/CT3dzST4OjB7sf4xc+/wUe+732MRhm9wYB6vU61WiNOE4SSPNnZZ2P3gPl2i6W5NnGa0Jie\nYmp2hmarxT//uZ/l/toWj9Y3Ob+8zIXlRTe8Fbw3yWDsOM7Yhh1vnQfEAT3ntbIeMLoBqg7kWM+Q\nBXlZkIcF+SI+I8348AchT0qr3NBVO+5vJCXDJKWL/FeRQCk338bFSo9ZEOHT3LzRx0k1pfJsj0Aq\nUMaeSDCbnMuE9/6MycQQM+5T26SYAIDQrNb56Zf+ImtbO9x//Jis36ezv8tg0HdyOzEed+vYGffG\n/FjU8n2HMzTM5glAU0oXjCC9hysOfp1SwqYmEtcmUtlsOD7j3w9jgDNZUkqiKOby1eusnr/I3Ttv\ncnh48LbvO6uz+uZVuAAITvphclyTGAMdsFUYVWE7hUR407jAmJjOaIZHFyRHs23W6ueZT3eY4pAK\nIwSWnJguDQ6YZqe7yMHxLMdb0wzvNOAtHCvwENcEdyyYHq4pxb9+jZMyMsV4lX6yAsvzTWoGxemH\nl1ljUGhEAcIvyt8ewG++g5H9N+xL3O7Bi8HTcgiDI/ipoeSVU+Do/7Uv85c2j/n1IzP28tyB/C3o\n3Ib1A/iqcbjx1hF87wDaAuQ0cAVmluCTVwx3HsDdQ7i2ANefM9jLkL8IWxfmeFi7yD2uctve4MHw\nMiOTkuUVRqMa/UGV7n6D4kkFu61cb75o4ZKmutynNtWjVu2TJj0ilWORFEXCKKsyGlboduqM1mqY\nx7FjNVYt0fkh1Xaf6dkDltpr3FB3uMhDVllngS2mOSJl5BmmOnvMsimWeRRf5O70AQ+iIZtyla6d\nHidRD3BR5pnPjy6fHDIOu5gE98GjNoC8Pvao7QAbkuOVKdZbqzyoX6bNAY1GD3tFOI/a/Ihfed57\n1Hbg2orzqHEJDi42eDh/nrfiG9zhOo+5yP7+AtnGhEetg2OT3tGjdiZn+3rrDOy8xzUYjdjrdHi6\nf8Dy9BTNSowepcQKt6KtBNkoIx+NMJUUGUeoSFKt12jPthkO+lgM1U5KYTRxJaXVqFOtJCRxRBrH\nLuwgz8mGQ8gssVI0G3UG/R6DXo88G2KsSy2zQqJ14QCPmWg2y756MoLatYVjWY9jFYzRLhraKowN\nSW3hEWbAGN+c+0bS3zwFXjaLxtgCawsPdowDOdrFPhf5iDwboYscYY3zkGBBOKO5RWClkywYz6zI\nyDFRsajQUBKSmO7DDX8knm0W7GjLc+0ZssJFND/a2uOrD59wGhxZa3mw8xJdbalJwSDLMEKQGcOw\nY/if/+/P8uqDR+Vv/7ZrV/mZH/+LTM3MUGs2idIEC1w4t8CFc0s+hM76FD7nWbJGeMbKHQljxkyP\nnCAHAk4N/huDcftFSZwJM1z8fKx32XVbn0bmoqclcsykeEAVfjLA0/C6kRTEkSSJFUkUIRQOsE5s\nl/BBEUReDTbBjAgr3TljzAlQAGPGEe8zEv6cM/78ND4u3CXRhffs2RepWJqbJ1URa+tP6B3uezZx\nfE5j3SymAOyDsm5iE8qvRNhP/r1LKYiUJI4ioiRxgCdOiDyrU/4mO56rE/xUk2zOOwGeMEh1ZeUC\nl65cY/Yrv3cGds7qW6CCaTs0V0HKNsQtl/vMaZPC8Qw8jTxTjPNGHCk6e7Mcn2+yszDPZmuVajQg\nkjlSWLRVDIsK3aJOb7tFsZE6Z/dDnHztEW6l/xDIwip7BaeZ81Pty+EtA04mbZ2u8Pw3AfCEXtnv\nMm0UhYkoZMSIFB0LbAVE1b1VV8++Nz0AXgxjaAy8meFn4Twj5St/iTvHcN3gmuUNGG7AW3vwMpJX\nJpig792V/OuKYX4VxA0wN8Feg2vfAdc1mBpks4rhYsrRhRpvpTd4Tb7AbXuDe/oqd7afIxukmEEE\nndgdo6c4tigCsaiJnxtRPddhsb3FYvrUszFHJGRYBCMqHNPkwLbZLJbZm1nkeHaKohtRW+0zvbjD\nXG2bJbXFeZ7wPK9zlbusDDaZ6+/TyLrEJsMgGcZVjiottisLLMZPaYpj0sYIVi2PTcKoV4Uj4YDg\nkXCx1EULh6x6uPN5iDuHAuiZBDunPGrbwBoMF+tst5a5k16jooYoocnaMcPqQxZnD4ivZKx+ULNq\nLCaRdFoRw/mUR40V3opu8Covcts8x6PBZbpr0w7sPWWcQJhPorR386id1ddSZ2DnPa6sKDg4PmZ9\nd4/V2RlqicIWNeppQhpHKDT5cEg+HKJrFSIlQEKUxjRaTeYXFkjimF7PeVBQgrRWo5omJLGkWklQ\nSlLkGfu9LqNsgBBQTWIatSpHkWI4ylwzbcGIAlMUbj6Mf+ReNjOO/LUII0pj+ORKlbWGonCT6qWN\nStP7GOy4VTRjnXSglCsJEFaUjIQNHqAAlDzgCalreZaRZSOs1igVfo/1SMmxG27uiiAEGjgfimN/\nKkoRpSnvv3XDH4lnmwXPLcyhhQTluvatTvBMPPsGJBtNzl1cBeuGh+Z5zv/0iU/z1pNjJpmgV+//\nJH//f/u/+Pm//Z8RJzEmRFVb4yOU3XG2WP8+DEY40ZcbTOklXR4ASMSJFDaEcLjGOKCjlJ+toxz4\ntdZgdWDQnKRQEEIk3HNWaz/UlUDdOYWakJ5JAiE0whqUsCTSkvrmn0gQ5u8EhaI7RBOeFeF8O1JF\nSJzMLwDgwDgJ/3WYz4R1AMNxL8YzgQGEuIfBxbc7ExoIfBqfjNw+wIIwbh9ZgzWgCEDnVENkx8yU\nUv51S12b698c2FEkcUQcJ0RR7Jgd71ML72GMrvC/5+Txeream1/gypXrLC2v8OD+nbNUtrP6FqnJ\nle7ApARneYIDHjEcNED71Ks+bgV8D+xawmA+YdBuu8X01P+awv+KI/d9bOEavac4kLOF60UlkCoo\nZn3gTQa2h1v6Dn+GGSoTWukTNSlReq8+V/bZf2rrwJ5XPxWjmEFRpZs06NBk0IppzgjiOctzS7hU\ngne4N91cxXmhau6xUaqsnn1vumvgeg3HPBxB1oe/iuQrp5igz/MyP/b0mE92DHRBNwXD71HEHZcq\nmVcFnVqNp/ESj7jIHa7zhr3Fm/YmT/IL5Os17L6CvoCudQBgD5e2dsmQvDBk5sZTrsj7XBIPOc8T\nFthiyh5RZYhFMKTCoZhmR8zzJF7l0fIlHrYu0xm2uDx7v2Rx5thl0W7xgn2N68VtZteOSR8aBzgG\ngISp9uj/Y+/NgyXL8vq+zznnbrm9fPtar96rqldrbwPDNMMWKEAIh0MOy4owMEYN2IBCpmmwjTAQ\n2CgkAggQthERSGIwjpAsaYzBYYVsOdg0mgVmhqF7lu7p7urat/eq3r7ke7nce885/uOck5lVXe2Z\nnqGbccT7VWS8qleZNzPvvZn39z3f5cfMwh6LJx8wNrlNonKEsBT1mM7JCvd2T7vXtyUckNhXsNvA\nZVi3cOfxox61R2WbXTe0dDt2z30HGJUcNka4NnIWOWIxStIWVbazSeYX1hhf2KHGERJNj5QDRthg\nhjsscp0V3jDnuZKfZ+3FinieAAAgAElEQVTuMvpGPJBtblgnZSvD1N7HydiO6yutY7DzDtRRt8f6\n7h67h23GGzVG6jVGEhcmYMoeZbdD2e2giyomibHWuiGNtSoSQb1aJe/16OU5udagJHEl7a84x1GM\nLgvaR4d02y20N/encUS1mlIWBcaDAmNKxwL1eh5Q5PR6PTe0syydZEiCFdI30dI32bZ/n7IsvVE7\nRoWEL2MQwpnAXXNnMMY1zAg5uATZwEho788JsdJlf4ho8AWVRQHWoIR6aNU8fCFZIbFoLBptNQaB\n9PcN/pCVxXm+8ekn+LMvPBwOIOWP8b4LF5idmkQbi5UgpGRhdto/0+MvQE9fPM/y/AxCSIqi4Pqd\ne7x+581MkDGWT372OVY3t1leXOhbN+I4ct4jz6pYG0IBJNKJqLDGARkHDkNQhOgHEbj4ZpfAZpWP\nO7YQWAu0QGsdwrwJvimHRSSREbjgB+d1IkROe7maEMazJrhwCGtQUhAJJ8UAg7TKe538wNHAjPjI\n6uFrv7Ge0RASbQdsRvDvBADk5j357QgXRCGFmwMUicj5lKTwvpsggxR95iZsL4oURg/N1bFgjPbs\noESIR2UAAx+Q9QxQn+GRgjiKSKKIJIqJk9iDnciFLMiQPuhBuA1JgV/69wO4Y7p86gynz5zlpT//\nJN1u5+1t4LiO6y+8HvWOCVzT1V9+GKoCWk3n4+kw8DasMpiPEuY7+rv3+8g9XDO673+XAicY9J1h\nBMsRcJA4r0dZ9w/IGDSrkb/T8GsLf/+L9u0MN8XB21EOZmR6INfdy9jvNNlOxtliivV0msZMl/h0\nm3PPwHe+9ngj+7ePS86+x7g0sgYwCxfncfv0La5NK0vufrTc275Wwqffggn6o9LNezkHFCJmPZvk\ndrJMSUQuElrC+anusshNTnHNrrBm5rES6u/ZxhaSoheTtzL0dtXJDRVkp4+YWVnlvLzMBS6zwlVO\ncYt51hhjl2rRBgkdWWFbjHOfeW5zkgm2aVRaHGQjXOAyZ7jGSe4yywNmzDqL3XtUP1cQvWYdQFzH\nHWqF8wQtQnou5+zTd9ELMb3UgYvtZIK15TnMgwzuKQcea8DuUIJe/xYAheXNgRz7UKSwP+beqweg\nJok5EuO8fvESndEK2/EE9zjBLA8YZY8KHSSagoQWDbaZ8B61Je50llm/exL9hcgFSdzEe9QAM+xR\n6wydY8PM0/Ew0a+kjsHOO1C9ImerdcDGwT6jI1VGmw3GZEScVhCRQqDpdXp0j9pEcYyK3ayStFIh\nkopqloE25EVBN88pjIbI+SOUABk5n045Ooo1JUftQ/KiIIkjGrWa8wRp4+frCKzV6KKkyAuKwgEL\npYSTkPmoaKOg70MQfnK9ZzPAUpYFcRx8IrZ/M9b4GT34lLfgSZEIL40Igy4Do4MtHZDSJUVZUORd\n8qJwoAq3YuLM/yGeGM/s0F+B9xo7DyrkQ7HI//CF7+Mnf/2f84lXBmbBZy89wd/7oe9yc2Pwc2mE\nZHF+lq+7dIHPXH7BBzkMgaMnn+TC2WWUdAZ7Yy1HN+/6LT5+te3u/Q1OL5/sS5tcQx45psFa953m\ndhAegziQ4gHKYOqzY7WsCVI040bA4EBE32RljU9SCwyJcs2+dfOAsO4xMRIr3NycQaqaY+6M1Rgd\npGUO6CirkGiEKTCFG9IghfI6N4uwHlz1dXBOCOcJI3dOIPrvK0jegicIJbDSYoRjuJSSPq1NIKX3\n0YQ/fTARGEV3P+WT0qRUWD/Y1DmfRJ9J8i+u3wMN5Jlv/p0ULu46jmOSOCZJksHPSBEpSSTlUALh\nm0mcMCcp/P1xFX4/v7DImZVzjI9PsLZ277H3Pa7jenfrUWZH4ZouySCWGsAnaXZHYLMC+xJ2hAM5\nIwxYnchvJoCYHJfSleJSwlL/7/C1F5Q8h8CBcIzRjoJd6cFVYJfCaxmW3gkGXgeGNvoXye4EiZ1H\nObqAduJw2A6wEdFeaLAehq2KU4zO75M91SXpGj5UGj7wr1v8wdAg8L86LfnQdxt4D3DWv71VuNCC\n77gj+fDBY1K+5iRnn3UpX+wAo7Aahy2+BRMk4VwTimrMrhjjNXWBLaY4osYhdbaZYJ0ZuqQkIues\nvEomukRxickEvVrGYaPBweQoO0vjtLtVxutbnI2v8DQv8xSvcMFcZmHvASMPjoh3ClRbgwBd7TA+\n1uLE9CbTo5vUoyMqssseTZ7iFS7yOkutNUZ3D0h3e1QOcuRnQbwC9hroVWgfQRxDMgFqCWQLElly\nKrvH/mSTB8kc96ITTE1ssD05Tzmu/FBS4XMrEhzgiYZuksczOy2g4oIKNjLIhHuoFBgd0emOcPvk\nOXZnJrjXOMFUtEmDFhkd5JBHbY9R1tsz7O1OcLTapLwRO6BzlYFHrWXB7DOIZhuWsYUwgnDuvXnh\n7ri+tDoGO+9AlcZw2O1wd2uLiWadyXaT8bxgrKGopHXK3hG9bpfDVgsZR1QbdWcATxKUkIhII40l\n0Zooz8nLAo3F+nSuSEpUJUPYJqCR0tJut8EaynoNY4yb/9IrKUpNqZ1nIy9K8qKk1JrYKgxugKcQ\nLu3MRSgPwERgcPpzb6wGO5CxGd+5C49EBv4MPw8HJzszPurYSbUcC6W1G/RZFI5pyvOe9zQ5KZTz\nAeEbd7eqryJv2hfOu+HAjvBeEtF/7pF6jX/yMz/C9dUH3L6/wcLMJEuzM5TaASwXsmADeuJnf/i7\n+YXf+h1efG0IHD31JL/w4z9AHMde3ueM6+fOLPt7PH617czySeI47qMA4RtohWNjrBQOVGCdZ0cI\nB8C8F4oQ/mCMj0ge8srgZWFeqmat7YeQWb8vQlS30YOEIoHzCjng6QMLvL+nLAvKMsdozZ2NLVY3\ndliemeDC8gKxkigh+14vUIhI9eWNAzgh+oEFfcmdR1MWiRWyPz/HzXGyWGEwwqCFwUjvZSIwPAEo\nuScYDAYNIMYFCcSRY10c2Cm95DHI6xzLMwAjA3DjX/IQ2HHnk1SRm4mVJCg/WydJEpIk9oxq5JhP\nKR4CNf1Nisf//q1qZKTJ6dNnuXDpyWOwc1xfJRUaqmGEAoMPTPi9bxBND3oN6GWQp7CnIJWDRXSF\nAzNV3Ap7DRc13B8Y6X8XMVhg9wZ9dnASrQ38wMjEgZ6uBDsMdMLqPP51qaF/f6WNYWB0hoMbhqK5\niwJaySBO+b6kfaLBvakFZrMlpsQmzfo+0bJmSu4w2ij5/XPeyL7hwwHOOdByuJLRns0QBiaf3kNY\n+J3Y8IH/6xFwdELyob9jME9DdykmXStR85YLC7jm+S2uTWdXwM5BMRqzzThrzPMal9jU03RtBhGk\ndJlki2mxyaTYouFT0CyCtqyyF42yWZlitbnA/d4cU2KTs1zhkn2NZ8rPs7i+xsi1NtFV6+SJh+4w\nxY2SbK6kcbpDfDZHThlUptljlGfs5zmzcZvxOwekt0sfUgHcguILcHgTXtyB1wo4q+CZXRg9chiG\nBtTn2szUNphP1piWG4xnO+w3pymbqQPdVbxNJwEbgHKIER8+xoFNCaEcKdgU2hIeeOmk96jZw5ij\n7ZjeiZTW9CjrtRMkSY9IFQjpvFt5kdDtZrR3qxT3M+ydyAGc2/52D9gpoQw60CDVHAY7j0ZOH0va\nvtw6BjvvUPXygjsbGyxOj7NzeMD40QgTzSYjtSpW55RFh1brECslKo5JshQVqb48SWqDwoUPWN/s\nW+l8DUJY5wOpVV0qm9EOJHmAopTi6KhNO+rR7uTobkFpLHmp6eUFeV6QJCFdzX2QlBIYowZNs5cV\nIegb593rcENAy9LNulHKCaaUcN6dsOruAI8AK/uGdOM9GtZqtNGUZeGkdb0uuiyJler7I0BirfRg\nyfe4epD2JqRAWoEOCWXWr+gLB9oQglMn5jk5P+cZIksgJiLr4xOEa+KbI3V+5Sd+kPtbO6zv7LI0\nP8fywqx7jiC9ityslfNnT/Mtz34dn3jxzTN0vuXZZzl7esnPXvHyLb8vlRBuTdRItB+Yap0iC6uk\nk/YZ/16NS7gTdhAN7XCfk5sBYLzMUAcWzgdCSOUkXsb2JWdgkDIY/zXalG7fF27fb+/t86u/+xE+\nd3PQcL/v7DK/8rf/BrPTk8RVly6ESJAYhBoEHeD3uQhDQKUbuimE9GN4nPxNKB/MIN3r0h7sGOED\nFyRghQdQ1kefB4DsPxNyEDaglCJNMtIkQ0rl9oNnfwTWe76Mk1Q+RL0MK/39axfKpchFMcQpIqmg\nsgpRlpGkDvBEcdyX4A1v7+0CnPAZBTdzZ2n5NF//Dd/Cxz7y7yjLR5Oljuu43u0KaWZhKaNgwJDA\ngNkIhu4OrjmsetCTAjGIGBIJVeEGTE7gpGr+JudKoomCqFGgKhqhvPy0lOiuotiP0esJ9r50Up8m\nHhRFsFWDjmQwMDKAkeF5KuH1D65Hb6/Cty68CeD1jezdISO79Kld0F3N2Jya4/rCGeqyRSJy9Kgi\nr9xgsrZPcjpn6b0ly6XFxJKjRkQ+k3J/YoqtyhhRqYkuXqOWtWnOaH7/ScPVG3BtG1ZOwMozhuKU\nYv9Uhb2JGrPLu1TWcy4dwHdee4t5LyckZ99v6C7F7I41WWeWLaa4UZ5hXc+Qih7zrLHCdU5xg5Pc\nZdqs09QtYlNihaCtKmyrce4zyx2WuJau0KDFGW6wYq9yaucO9S/0kJ8Bexm4B0XLnT5qBNQ8iHUY\nL1rYJ+9ipwW7cpRzh9cZv3xI9LKBK2DXwO6702r1BnzvhuQTQ4EL7zuQ/LY1PFkH5kGsQn3hkInm\nFmPs0uAAVdUuHj1IKWMgj0EHNkcMHVu/4T6zEySS3p9mFezXwSRQyH4SO5tQ3ks5nEo5DB61xA7I\norZwZM0WToYX4rbv47xqOyV02zhUv8tAwhZSBofP7WNG5yutY7DzDlWhNes7u2ztH7B9cMD4yD5T\nnSbjI3XiNEXrnF6n009ca0ZupVoqhTVOgqa1kyIFZgQhMJ6dCKlR1SyjrNe9LElgrCFNEyfvUR0M\nbbqF216hDb28oNPtEcWCsix90ppBaek91wNmx02HjwZzeoaCBrR2Xz5RFHuJUrggOjZHeFkTXoZm\nTGheHZtkypDA1qXIuygpieKU2M8zcZ2rN7xL0Ze1WfFwk2291M6la7tkONfUh/kx9O/v3o8z7Csv\njQrMlRBw5uQ8l86e6je0ws9eiaIIGUVIFSOjmN/4+Z/khb/3P/DRTw1W27752Wf5x7/403713/tS\ngl+FgQhEWEuJpbQ+HMI371aGLty/L6VQff+NRIfhq77btyKcE4abq+vcurfOybkpzpyYRwg3yNP5\nV1xMtbGGXOeURpPnPdpHbQ5bLfJej1/5vY/x+mqX4cCFl679KP/tb/5rfuPHvosaEEv/JmTkQLDf\n//Rjm538K5KOaRG4EAih3Dwax/Y45tAIF7LQP5eMG5jaT53zYKfUxh1zI/x+cuEOWjiwkyQpWVb1\nwCbQNGH+k/PTCN/wPAxQPMgUPtJcKJAJRBkiqSDTGlFWI8kqJGlGkiT+vHwY7DwKdL5UwDN4HYKF\nhUXe//5vYXRsjN3dHTdw+LiO6y+1hhurR+fWDIOKHGem7uC8NAe47rIBjIJKHdBZxsmtzlhYsagl\nQ2XhgOb4FmPxrptHg8YiyIk5tHV2iglaDybo3a1gpiQ0pXuKCEfdPsigN8YAeA03h8ORwsa/h7f7\nuQqPHwZ6xj9PeN8+Ga6swbafP7QKTER0mg2ujZ0lrhRoFXEkauykYyyeucfkmS0apkVESS5j9hll\ng2nucJIdxqlGbfSM5NT4TcZOtkg2DaeetZwyYOuC7pRkd7zBneoCLUaoLb1O0t1FCsuHEsMHfveR\neS/Lkg/9uEG/R7C1OMb1yhK3WWKVBbY6k8hIs1i5w5O8yiVe47y5wpK+zUy+wUjriKjj9nunHrNd\nG2FNLjCnHjAi9pFYTti7LJV3qFwpkZ8H+xkwr8Nrd+DlI1iy8FQT6gugjoAYJhoH6OoqI0mL6esH\n8HnAP64MIAn4/kPJpx4JXHiJ5/k7hy0+vm0Qu8AepD0316hChyodZGoGIKefRyCHbkGOOTz1NCym\nBolkuK5YFwy0PwLdFI48iPHgljEcsGrgg3z8pno4/BJCOTZxwGcTJ10rO3idJg9L2IaHitqh27Fn\n5yupY7DzDpYF1nd2mRypMznSYHtvj8nmCGO1CmmWUZY9OkdtDvb2iJOYaq2Gkso36QNPjAM4GqPB\nlAJVFOg4IUkSsIYoklQrGS5iuKR1eEiWudkgIkroloZuq0NelvR6Jb1eQZJIiryHwEDkU9b8aw4+\nGSEEUaRcky1DOpoGG04b0Qc+UmovXRtEgoZ0MQfY3EwdawqMycl7R3S7h/R6HYwpSeLMvXcLRamx\nRgximvFgR1tkf7aP9TIp93/O7O4aWNy7cnOCTDDMO++MtS7ggH76mJ/oIwVRFBFFUV8SJ5V7TBRF\niMgDGAHNkTr/66/9fW7eWeXWvTVOLS6wsrxIFMdEAex434gDW3boa9ZirdunAfBY6welDkvB/DFw\njX+IhZYDcIRkr3XIj//SB/n4Z17un3Pf9MyT/Orzz9GopJiyQBcFZVGgdUEn79DNcw4ODthY3+TV\nK7dY22/z6r0HPG4u0Z9fe44bq5ucSxOIFSISiAiUcPN0BA6sPRTXrNwMDKv9bB8bBnYOSdk8kJVC\nIvH7qn/uWcduBbDqmZ0w5FaIaPDh8ujImhCZHiRww2EFwyu8gx9uCKsEGYN0nxMVpyRZlaxSoVKp\nUKlUybKMJE4c4H0E6Eg5DPK/vJJKMTY+wbf+le/gw3/8++zubn/xBx3Xcb3jFRicUAFExI/8O8RT\n13AfLq8bihJnnl/C+VAuABcNycVDFkbvsZCtMiPXmWLzIalU10cUb8ZTrM3Psza2wNbsDL2RxqAv\n1bgV9vUM9Aj99KzAthAxGEIaltm/0gogLzAAQ74OXYG9xK3W+7dv4ohDNcEbFy7SGa2wHzV5wCzz\nrDHODjVxhKKkJOaABjtMsMY8BzSoc8QBI9yP5pie3mB0Yo+qdQEmHVFhTzVZlzM8YAYBRA3N+fNX\nmWlsMzYDv/+0n6GzCSsn4ewzBlZgbWGcq/VTXOYC1zjDLZahBvPc5yKXeYpXeIbPcf7gJmP3DlB3\nNHId139HkI0UzM3uMrF0yNiJHdK4yyENZsot5vZ2iO4YuA7rr8MHLks+MpQw+ey+5Le14UmFGzx6\nAuqzh0TNrjPqXwUuw+4N+OgOvG7cUfzYWwQufMI+x2sdeCIcFusXw4ZlXuHwP1SP/SUDMBGkbI9b\nuLLQG4GtisMjhzj5YvCoVRl41ALpGE6T4OnawSnVdNf/5YjHDzwdvh0zOn8RdQx23uHaPGixfXDA\nbuuA7f1ddlqjVJKILIrJKlUQkHd7HB0eIqQkS92gUREpoj6JIRBlQeG9Lj0vQSry2CVolQWRhGqW\nYHSVouiBKInTDJVm5NrQzZ1XxXlkctJUuUAAn8AWBj26KF+BNm7ei7GO3ZDeCGGMAVmCiIa+DkIj\n6hf7sT6SGt+0uyQ2bA9rupR5h173iLzbQZclSjr5mpASY6DUGqx0g0M9NWO8vE4bizZh9o+/JBsH\nCJw7xWJCVlYAQEifaKY8ADE+4csDKt+4Rn7lXspBY648AAq/c2DE+XfOn1nmwsopF9usFJFyvg4h\nhJOZOUprwBJJgcQSWQWeUcIatJcH0p/dMmA9zFBct4v4tgEV8OO/9EE+8bmQDOdjRl95gZ/49X/G\nb/z497nkvbxLt9ej2+3Qah/RywtWH2zw23/4Ird29obO1P8F+A9xy1QQTK0bB22eiBVCOEYOIxF+\nfw6SzCQC5X9Kf944sIMNyW/SRze7c6l/Xx9EEGKoA3sI+H0d7iO9RNJfhjyOkUIhZTRgd/on5QDw\nOFlbYCdxrxvpgJOKkVFCFKckSUaWVcgqNbKsSpZWSBLHNvbPiyGQM8zqDGR9X7wefUy9McI3f+u3\n8/nPvcTBwZ4PBTmu4/rLrmHAEzq4UMMr4SGJwLM6cQXGpAM7y8A5UE/m1C/usTh2k7PxNU7Jmyxy\nlxnWGWGfjB4WQYcKO2KcB8xyN1rkRu00N+bOcDdZomOaWC393EcBXQV7DTBh9k6XAeh5lJFSfPlS\noEfjiYfmsQTAY1LYzqDi/UrKhcUc9sa4uZiyNzPBanOeaTZosk9VdFBoSiLaVNlhjI1ihjZVGvEB\nO4xzTzjj+2gUUr4Mbars02STKTaZpEabQsa061VOnrzD5MQOI+0DltolSwLyLOZBtcZufZyb2RJv\nqHPc4SQKzSluMiU3meUBK1zjon6dC7s3GLt8QPy6dgBkjT7YEaMgTxjUeo8TvQ3KxYSN2iS1skO0\nb3zcM3zvDcnHzMNszIs8zw8ftvjIuiHeBLkN6W5JbEon8VqHW2vwvVtDkjXAAZOnHzke7tp0K4Yn\nvB9MRxE5KTkJJZFTA7wpxGwYsIZfBsljYHRcGI87iBUciG8ATRA1SGOXNjiB851N4sDbCI7dSRjM\ntA2A6AC3bwIg2gH2YujV3eLxmyRrwXcWvGdhBtaj5/RxvZ06BjvvcB12uuweHrJzcMB4vcrW3g6N\nSkLUqJNmFaSAni7odrpuGj2QJSlJ5IYzOrYhptAlhS6h16Hb61DkXfcR8JIdqZwvIoklWRqjrUXG\nMamMMRZah0ccHnW8RyanKBIHXMSQ5yXEnvnms/TSKTd80noGp/R+DOkkTf3GzdD3/IcPqHUcizAl\nwuZo3UOXXXrdI7rtDr08RyBQcYxSMYjgGfKSOu2ATWhkLS7sYBA0MOxnCes6TrikA8sTmmy/b8N4\nlL68CZyETjqwoqTqe3WkUi7aWHnfjnKNtVQxQg3AXn+ejXSNu/SgK5iNpBAooZyEzvqYZyH6M/lE\n3w818EYFeWGYhRSGuZalxmrLjbv3PaPzMCOjjeUTX3iO12/dZbJeod3t0Ol2OOq06XS6SBXzLz72\nBW7vWIZBErwA/C3g3/ptOVPryskZ0iyCCKQwHpRBCGB2UjGJRCJMCEjwe8bSBzpCyiG5mewzM34a\nkFecONDswjAG8jMhPf8jJVp7mBQ8QpGTPcoywtjALuo+IHJnhul74aw37Qjp/E1CRag4JU4zskqV\nSrVGtVqlUqmSZhlJnPYT3x4FOqHernxtuIQQVCoVLl16mpNLp9hYv8/Bwf4Xf+BxHde7Uo82W6EZ\nG8iWXRvhG0NRgUrsQgjmgSWQ5wrqZ/ZYmrzBE+oLXBKvc44rLOV3mTrcJjvqEpclVkCRxBxWa2yM\nTHBTnqIp90krPewM3D5/hrxTxR6qwcDIowTyKtgabpU84+Ekq9AwDntwvlgFn8/wPnhMOEE/H3sf\nSKCtYD0JF0GXTN1OONyJ6S5mHMw0uV89SZJ0SKIcKYwbQlqkdHpVDls1Sh2RNbrsNKa4Xd9kPNqm\nwQEZToWRk2KQaCQFMQUJVzhHS9V5UJtmrvqAcbtDVvRAQEdl7KsRdhmnQwWFZo41FljlDDfYZ4Qa\nRyzbW5wpbzB+a5/o8wY+C+UV6K5CrwAloTIK6RqIFlSjnIXsATYW5CZBeIx5ZRs+3H08G/MpnuON\nI3jS41LVtagwr/YQ/vP1N0vW4Hng+4DPDh0Pd206vwDCh110KhX2adKiwSE1TFcOfP6BLLGPerrC\nsbX+fA7x1AkDOeYYMAmyCbUMJpQ7r+dxaYKzuHN9wsJIiUw1Qvrwoa6Cg8ilFG7gvDr3cVLHtQh2\nKs7X0z8tw3k2DMiGwflxOMFXUsdg5x2uoijZO2yz02qxd1Rja2+HsXqVWpaQVjIqlQq25/wznU7H\nNVRCEKVZf2p7FCfExnkbrLDooktZ5hRljvF+ExEphFIO5EjHWCglffBBzNb2Dp1uF63d8M6iSF1j\nGIzrJkiuXPNuLAjjvuCFFBht0FIjtWteFRIhFINYYBxb4aVNjqWwnhEoMDr3QKdD+6hNp9vFGEMc\npwOgg5t7IgRoTEACzofh4UmpXcNfliU60OQisAwOKBmr0dYiZISMwmwX5QCDBxUCgbTWAR0hvble\nESnV9z8pKVDOeoKSECmBipQfMBkPhrJ6mZk3Jzm2I3h1hECFBjnof637UnP3cfDs6p1Vbt5bY2lu\nmuX5aYzWHuB4AOB9XGVRYkrDjZurfqc/Pmb0jVt3YWGKXpFTWkOuDTZKOMwFb6y9WbbmvlSfw11g\n7qDkC3zDxfNcWJpGphIiifVJedZrnq3xLJdVCCsG39XCnUOB+ZDCMTou69qdYVjP5hh3LMI1x2ov\ne9Smn/g2YIZU2L19WWIcxY7Z8exS2JCwJsB299Ma/7oFSM8qSYVSMVGckmUVqtU6tWqdaq1OpVol\nSTMfTBD1z6HHBRKEOUJvt0JYQRwnzMzOcf7CJa5fu3IMdo7rq6we9a7AwPfwyCp4FLsV7mlcM3gS\n0qUjZqZXuRC9zlO8wtPmZVY615nb2mTkbtfJv7p+k3UwM1vMLK8zOrpPJekghaGIYlqLdbb2Fyh2\nKs73sIlbMS8roIMTPTSrweT9dqVswWH5qIl9OMZ6OKb4iH6MsU68kT2G0jfbLWBLUK5m7M9k7E9N\nQV1DVrprW6mgEzngtu023R1vsHdinM2ZaeojLRqVAxrJPhU6JOQ0OWCMXeocIjGUROwyTk7KfTFH\nJDRp2iOiRHqdg0IzY9Y5o2+Q6R7CWnKVsBuN0pUJM3qTmYNN5HUDl6F4FVpX4c+24TLOcvW1mzDZ\ngooFmtCca3PQPGI3VX1P//Vu2I+Pvy7dEvCk311WOSWyBK4cwUfyN4OkwXXpV4Hvph+40JROnnca\neicidmujbDLFtp1gz45RHkQPh5vlgB0e0jnM8oXjGyIEQ3zgCDAOYgyqKUxLOAmcwskzlyzqREE6\n1SMZ7RHX2iRJDykN2kjyPKM4rJLvJ+TrKXo1htvCkUUpECkXa304NnReDdNRwxK2Y6DzldYx2HmH\ny1jLwVGH7YNDWi7UF8wAACAASURBVO02e6199o+ajDZqVNOEShJTFdDOu5RFQbvdDgvS2CQlUS60\nIIpjpDXERcc13WiMKV3DrFzCV1kUFMZQFC54IBKWOI1JKjHNZp3dvT06PuY57/WIYi858s10f4q7\ncA2cNsY1jcKDKK3RQiBE6VbF+9Irz2YMpbXhZVdWGLR2vpEiL+h0uhwedSi1JlKOJUFKtHG+FXCD\nNrVxbJGQgSdwTX9RaopCU5baG9uFT/2iPwPGBPZG0JenuWhsH4kt3EwXZSFWESpyjaxPRnZWDuU9\nPb6Dd9wFKMc7EaKfXbMeVvfFgFGw9BPypJDuvXnGxpSlZ6Y0O3v7/ODP/Rof/vSL/XPmW7/2Gf7R\nT/wX1KsVtDaUpUGXxjFdWoM2TDdG/L0fHzMaK8Hm/j5xmtAYbTJSqRBHKVdvbfj7Pf5iFH5+w4Vz\n/PqP/E2iWBIlyvm6ZIQRMdgYbSIfROF3mhXukCuGIstt0DV6ClJ6Bi6cZG5Qqik1QiX+t+5oG2M9\nqNUYAyoKgNH05V9uLo6TsAXGTtrALMn+JUwMNS3u6DlWUsqYKM5I04ysWqNar1OrN6jW6mSVKkma\nOrATucGlUTQYiAr0fXXDCWtfDuiRUtJoNLhw6Ule/PNPcuf2TcK8quM6rq++CsxHWA0PQxqrkEX9\nxXAHdixjU7ucym5xlqs8wau8p/cy0zd2iF8GrgH3wbYBBWIE5IJl9H6H7GuvE8/mFElMSzbYrY7S\nmRtl70QGq8KtkI/g0tD6YGd4fsqXw7gGY9CwtyN65Hdh9b079BxedqQN7DeckT2kcW3g5GDjOAlU\nRUGqBhgsyJ32/aZHBdyPOJoeo32qQbGU0JzYY4E1lrjNLA+YsNs0aKGsphBupsu2mOABs9xhEQGM\ns8MSt7hgL7Osb3Git0azdUR85EmOOuw2azxIpxEdSXVNuzjk23DnNjy3LfnkUJP93rbkg/cNX1MF\ncQJYhfhETqXawdRBNOHMXLj3469LF8dAjgNNMDXQVUHSsFzvExhvdV36SX+Dvzol+dDfMNj3gH1K\nsHmiyb3qHKsssG5n2OmOo3cjJxc7wIMdC3Y45WwY+ATgHs7loZANRiHKYEoM/GfnrAvaWMkZPbHN\nzMj9vjyxwkCeeESN/QknOdzYnWdvdgIzqqAiIPEozygX216MMQDow69xmFmF4Ng9rrdfx2DnXahe\nUdLqdNhvt9k/OmTnYJ/RRp16JSOLFUmcYIWgpwtKY2gfHWGKkjJzq8tx7Joui6UoS8rSScSiyA0j\nTSoVrJTkWtPt9ZC9HioxiDh2Db+C0dEG1c2UPO9Slj16vS5GK2wauQn0QylsCJfq5iKSXVKWki7m\nGe0AhlIRFoMRFhMm3OPBQZBkYSh0SVmWFEVBt5fT6fQotUGphDTNSJIUISPnx9EGHZLojPVejSDV\nk47dMAMwE74AQrQ1WJ9SBkIoB2jEQOimpHVsmbVIY4iEII4VKoqQyq/YWxMSixHWy86sY4GEdcEJ\nVjvJoPQmd9lnMJyMy6NFhnv9vkTLaMqiRBcusOEHf+5/4qMv3mBYUvYnn3uB53/5t/jHP/HD6NJg\ntDPtm9L0tzHVaPB1Z8/ymWs/6o/dtwIfRYoXeObsCouLC3SLHs3xMeYWFkirFYRVyKTpz8rHX4x+\n5q9/O9/05ArnlmaIa2GQaIJQMUomCBE7wIObORMYl4eOBfSld9poSq3deavd7CCPEfEzTB1rWJZe\nDuckfwLhQjmM8axjmAHlj7N1jF+cRE420P8/4bdj+5eHcGYaQvKa8+nEaYW0UiOrNajWPMip1Ugz\nN2MnjmOi2Hu2lHoso/MoyPlyWB7h46+Xl1dYWjrDtStvHAcVHNdXaQU5W2gOQ0Svj75KpQMgY8A0\nxHNHjNW3OMFdznCD81xh9MYh0Us4ZdIbwF3cCrzCRUwvAvuQGMvMe7c4u3SVTaa4zxyr44sczVYp\npqrON9HAJVz1hkFXNPQav5QktvCeQg03vwHQiUd+H/wdBQ6pRPRX420JvSbcr7jBqJt+f4wyGLYa\nZqOG3jWo4sJTLbjb1OI6K6OXucjrnOcyK1zjBPeY0luM9A6JC+ilkoOkzoaa5i6LTLLFFpPMsM5T\nvMKl4nWmru2T3C1c4MCBf846NGfa1E/ehYYY+Ev24Ac3JX/2iKTsszzPj3Zb/OmOwe6A2IO4W6CS\nkp2pOmPzR5x70vLX/kTy77bfHH/9bZnk7EXjQMNJ6EyntKOU6YUDzqwAH4e3ui79wROgT8PKgp9L\ntADFGcnepSrX0hWucI7rnGY1X+Tw1gTmfuTOix3gwPqLQGDjcgZMSfCdDZ/HAew0QFWdN2cROANc\nAPGkIXvigMXR25xM77DI3UHwBCF4IuKIOltMcp9Z7o6c5NbpZe6NLpKnDbx8xecSCNiogm4w0N6F\n2/B5VzLw7RwDnrdbx2DnXai8KGl1euwdHjFaT9nZ32OsUWekVqWWJiRZRpYmKKModOlAhtb08h6l\nhchYEuvCA3ql7jeNSkUkaUa1VidKU6wQFFrTznv0ipJeWbqGUkrq9SpHec7tzR2a1QrVLEMJiy4t\nZan6rE4YsGiDN6YskMJNuJchPnjIRB6kR1Y41sT0wY7xPh8XIVyUml5e0is0QkYewKXIyDE7Llra\nDMUN+9bV+36sBzt96ZiUbhVfgrVOrBR8L85A76XT1oApne/Dp4JJAC3AgzkHbpyMzb0hEMZJ8Fxi\nmH+jxkvqhKG/wP+QR8W62TgySKXE4HFox5Jpg9QWU5Zcu36bD3/6JR7nu/nTl5/jxq37nJicwhi/\nb0oHCrTVWCw/84G/yS9+6P/kpauDmNFnzp7ll/6bHyJOFL2ioNqoMzE9RZSktA/bLMzHvO/iE7x0\n+c0g6dnTZ/iPv+YJqs2KT7VTWBFj+1fmyPupRP88kSHUIcQyy0FAAVJ6/5SlNIbSg1VtHX0mhGsY\nQj4DHrS6eHIvZTNu5a0PJgQYgYsgjwRRGpFkCVFXURZu1dV5gwYBAE5X5yV3KkXGGVFWIak0HNCp\nj1CpNciqNdKs4oBOmhAlDuyoWCIj4WYFfQlR028H8Azfb25+geVTp5mcmjoGO8f1/4Mabv4z9+9I\nOBWQtzvUmy0mkm1m2GBWP2Buf5vseoF4DfQr0L0CD/bg1RzWLFxK4X27fmtVqE92mW1uMT+6xhQb\njGXb7IxMUYxWBwNJYwEiAhuATgAvX0pS4rBkLdw/yPNiHmaKgqdjGEw96u8ZapyVcH1zE8fqTLp9\nQoOBlCkQRSHvoMSBohMwtrjJcvM6F9VrPMPLPMkXOL17h9GNfbKtHtG+RuZQzaDe7DI+dcj8zCaj\ntT1uylPM8oBzB9eYvr5L+rkSEQIH9kEY9zrUgkWdK2HZvzUDV9rw0fLxvptP2ue4WjqCAyDGea3u\nJieor1xH7RX8bx8wfM/vtPjDoUGo3zYi+Z33G3gKuAQHyxkboxPkJmV65YBz3wDf+UeSP773ZpD0\n7WOSv/YtBt4LnIJiGg5Hq2w0p7iXzfOqeILXuci1/Cyr2wuY2xHcEy74YBdoG79zj3j8sM5hOWZG\nH+yoKjR80MYJ4AzIiwW1i/ssTVznfPQGZ+VVTuPCNqbYpJ4foUxJKSOOkhrrzHCPE9xQ6zQr+yRT\nObcvnaJbNrC9yL8s4VjAwxroOg51DoP2cH4Gz9xxfTl1DHbehSqNod3N2TlsM9musHvQYnvfsTsj\n1SqVLHOxvSIiNsoNF/SLEWVZoq1LHJNSkhcaIxQySlDSIpQiSlKyWg0VxxgEVV3SLQranQ6dXo+t\nvRY/+xv/O3/2yuX+a1qZn+Fvfed7qctK3/8S/BFSSox0CW1lUVIIZwbvMxciSJG8r8K42SnC+2uC\nyd4aTVEWFEXphpkWLl40SSvESYKKnVfH8UHWS5zC330Eth8kaq3or6Q7UicMPg0l+iZ04QMAhLXg\nfU4u2jnqX55seK1GY7RFCuv0wyE5jUFctEIgLQ7MGItUuAhsEZ6ZQDUBfqClDCZ8J8ezWmNLDUWB\nzEvoFly/cdc/5vHU/c3VTWYa4x4EavKyxGBRsSJJU2ZHR/j1n3qeK3fucXNtlYXZaS5dXGF6dpbS\naHplSZwm1OojSKnodDW5yfmZH/gAP/+b/4zP3hhcjJ49vcLP/yff4VKvfTQ0Iqx2uQu+RToQKrwf\nRg4Z9qVEKImM3B6WAtDSgRNC/oDtx4C7oAdn/JfCDSENMeW69AEUWrt9LgK7584MIyxaAko4mWYa\no+IIrQt/jgzFTwgQuOMhZYyMK0RZlaRSI6s3qNab1BpNqo0RD3Yy4jQlTmKiJEbFChkNhqJ+2eqY\nL6FGm2OcOr3CwomT3Lh+9TiV7bi+iutRlsPN0npocbwO1bRNU+0zxi7jeo/KZg+1auEO9O7B5XX4\n26XkM6GJK+FbO5LfqxomZyA+baid7DAxus0oe4yoA9Isp1XD9aVhloqUfmDk4zw3b1WCh4FOePyw\nUT1+5Gcy9P+PAqoKMAKyBpXIMU9z/jbPQ2Z20dTISolUBlMKdC+CAwUH0q3wLZdMjd7nVHKDC1zm\nyfJVLu5dZfzaAcnVEu7gGS1QFVCTJdnSIfXzbaLTBaphmCy2mV3bInu5hJfAvg6dNegcOmtpJYPs\nBET7bjuccfv0ev/9PP66dB041wN2IF3PqU712BxN2JybYPLJHcainD+YN1x9Fa49gJURODtvYB7s\nCnSeirk/O8Pt9ASlTphY2GPi6X0+9Hc1H/i1Fn9wa2hG0JzkQ99lsE+DeQY2T0yyO9JgM5lgVS1w\nmyXe4DyX8wvc3jlF69Yo3MDJ8QLY6RocgAgRz0EuFuRh4XwZPnmrEKcOeM7gwM6yIVs+YmHqDhfj\n13lKvMIlXuNM9ybTu9s0Wi2SVo4sLSYR5LWUuZFN5sYeMJ5uU5FtRGopZmLWTi3TadVhTziv1i5u\nIK+u+vMo0H/h8zUsZTuuL6eOwc67VJ28YPegTXuszkGrxe7+PjsjIzQbTWrVumtglUIpQSyd1Edb\nQa7d3JlCu3SVUltElBBFEiW8GV4pVJwSZRlCSmIsUVkg4xjRbvOz/+CDvPjqOsNSqev3f5R/9Uef\n4Qf/+tdTauXYIh9SEFbqhZT9RrsoSj9kU/qmVaOtRhg/s0ZI55vx8rWQJJYXJb28R7fbJS81Ko5J\nsypRFCO95MsKh+ysEJ4pka6t9bK2IFkLqcshw2tI1eRh0gDoOKmTdoyBUL7b1kOMlPEWH9uXrqHB\nejO9tCAtKDyDZIJ/JzA8fvaQBzmBRbDCgoSrN25z/fZdziwucHpuFtPrYfMe9HJMr0fRaTM/8jhJ\n2RXgtwCYbY6RFyWlMRS6INclURJRa1RpjDap1muIKKI6Oca5S2eI0oSxiXGao6PkZUFeaIRUxHEC\nVqJUgrGCerXKL/7AB3iwusbW/h5L401OjjYQaJSUKKmQMkbIsKLp46Gthxsuzg6PJB725fhZRFj3\nu3BMEYKQYYAUTlKnHOARwp1r1rhzUJclZVFgtNMsi/6gUPxgUi9MlAIZeRmiCOEJwa8VUuCEA1Mq\nQkQxUVolqdRJayNUGiNUR5ru5sFOUskcU5TGRInzcwnlQI5Q4a2KL5m5+VIqnDtxknDq9FlOnT7L\nJ//0Y8dg57i+iiuAnSGG49FAqxQSWfhBj0dUzRFi3/bnjXQP4EdKyecekUt93DzPf3a9xR9eNLAH\n0VFJjUM/NLJLFJUPZxEo/GrIsJfocTXsdwgr5cNAZ1iWN2xWzxggq3To/+JHnisGMQrVivN4nMTd\nloAlg1zUJLM9ktGcpN4mTTsopdFG0utl5K0qxX5G2VOo+Q4zyQOWuM1Zc52z7etMX91FvmThVdA3\nodwEnYPKIJoCtQpRyzAvt2ifzagftqneyp1U8DVovwHrW/BS7rDSE8D7D6BhHInBKDAGZ5aAl+At\nr0sCzDrIa5BOaEbGjhgd3eN2dZ7iVMRkbZd0rseZCyUrR24P6zqUUxHd2ZT1xXHeSM5yk1Nopag0\n2lw4f4Nm9YD/eyXn5ufh2i1YmYazZwx6VtBeTDg8VeEL2TluqyXuM8c6M6yywM3eae7sLrF3cwJe\njx0au4sLvjgwbif1B3aGaPIQ0RbOhWH/WQVEBqn3n00B8xAt5YzNbLGSXOMCl3mal7nYvszC/Q1q\nV/IBAC2B1JKOdWksdWmeP6A620ZVNKWIOcpqtOdHyPdS9IPEJbRtAnuR8+/YYbAT+9c6zCAe+3a+\nnDoGO+9S5UXJ/mGHdqdHSwj2Ki12Goc0R9pUa11ULFGRIpYSSYS1lkgqhAZbaLpFSenDAJI0JVUZ\nSriQAmQEKkLGCSiJspZIClLg6p37/Mlnv8CjUilrLVfuPcfGzj4L0xN+Nd2BC4QbsBnHiTd/W0qt\nkeUg5a0s3SwgpPTkqkIG+SvGgx7n/XHzXgoAZ/xOKn2jt8VpmIzQIO3gIx0a6/Cn/9kWboZP8O1o\nMwA/Es/mmEAFOHBkQPiFEWtN/7oc4p8j5Rp84QMFBnI1uH5njdv3Nzl9Yp6VkwsYYdBohC0RyjXw\nxuJYCGB/b5/v/6mf5w//9E/7x/7b3//1fPCnf4yRKIJuF93tkfdyZqsNvunCJT515QW0aQG/C3y4\n/7hf+zf/lv/+ue+iUkndfAktyZo1xmanmJieolKvUVpD0mmT5T2SNKXRHKFSraC6OapXoLVjOiSS\nWMb9CGyp4PRYg7ONDGFKbK+LSiPSJCFJEz9bxrNuJgCc8CVrCSnSzhHlDo7GM2nWBSkYz34JOcwI\nOj9WYGD6oQUGH4EefD4l2jiZgZTCM06Bwrd90GW9vNN6mZpA9hcApJCePYqQUYSKE+JKjaw+QqUx\nSqU+QqXRoNIYoVKvU6lVSSuVPrOjYoWMHWByvZT1rN9Auvioj+crrcWTy5xZOUelUqHX637xBxzX\ncf2l1XDD5UJgHho+r5wEOaIkpkTZcuC/zuFKFz79FkMj/6j3HFd34KxfgFcYIjSKEiHMm3DWl1YB\nmFgGrc8w0FEMAE0AOjVcvFxYcc/oa9DEsJwN90JTCeMe6JwBVoBzBrlSUFk8YH5sjSmxyRg71GgT\nUaJRtGtV9sZH2TRT7NoxYlkwKx4wzxon8jUWtjfhNeDzYF6G7g14ccvhmIsCvmYSqntugY4qzMys\nE7UMrIK9DdyCl7fg+Vzy2SEp1DdtSf7VLcPJWZwvZRnOfQ18559I/njjeTRvvi49vy75vZ5hLgUx\nAenJnKnzm7weXWSrNsnsqQcsLK4xcbRH1HU9S7em2Kk3uM88NzjNG5znHifcBgUcjdY4PXqDuVOb\nLD/Z5dSR+6+iAUejGfcbk9zkFK9z0T3WnmDLTPHAzrK+MU9+vQpvSBcddwMHPDYsHPVwyQ+PRrOF\naOdh/9kQyFXKHfIwU2ceGnP7nBi9yyluco4rPKFfY+HOOpUXNbwK9hbYLb/5FOSk25+1vZzF997H\nnoGWbLDFBJvjU7Tna+zPTTq2bw3HRLVjKB8XthHO0/Ca4VjS9vbqGOy8S2Ut9PKS++t7xCNVKkRU\n4oxqVqNWrZPGsUsNi7xHxAxWtJUURJFCWFCRIk0iYimQtsCawjeRPrZZKjAaKSOi2HJvc8e/gsdT\n0pu7LWbGRyiLwq0kW59WpiRxkhDFMbosEFqjtaAsJVKVXkLmc5mlcDKwkJwmvNzID8HUFmQUkSQp\n1VoDIXy0tZc7WVuiC9cc636Kl2dJCF6iYaWYxhinjwrOGNm/4AXtmPeV4F6bEK6tVvgZN1K6tDQP\nKl0ynHSNPbB7cMiP/PIH+fcvDvL9v+3rvpbf/NkXGB9tEicpMirRVjigWDgw970/9fN89MVrDLNo\nH/n0C/zAz/0K//OP/TAiLxDGJavl2vAL3/Of8tP/8nf41NXncWLuweNeuvoCv/x//Bv+6X/3X3HU\n69Dutmk0mzRnxqlPNInTlG7eQ+geiUqoVCpUqhlRFFGI0vupDEoq0ihC6RK6R9hOC9lro4oekdEI\nrAPacUySpmRphopirJR9UGFClHaYP+QBjJOvOe8Ows1Bcj4dPyzVz8npMzBKgQDjU9UcU4cDN4Vj\nEMsQVGG0lyyGIxsGrIZQA/d3pRIXPy3d8E/HTHkfkYpQUUKUpCRZhbRaI601SOsjZLUaWd2HEtRq\nJNUKcSUjzpwsTkVuzpJSYSCqD6MIf/7CgM5gpa5SqXLmzDne9+w38sd/9P+8rWGlx3Vc726FVDLc\nT2MHibk6/EqSk9AjpRTxwBJRhTt9UuTx16ZrGs5WwCZuGwUxmsgtdoXneVsD5gMnHD6zjzI6Q6ly\nQYfHiL95o41IIJYuTSsWA2ZJ45K1qrhwgVPAOeBJqD5xwMzsGifjWyxxhznuM84OdQ6JKDAoDqmz\nwzgPxCyrYoH7zDHGDlNsMtrZd7KsW8BNuH4bvn9rKCnNwjduSv6lMCyPAPNQu1u4fXMI9hDyA/iv\nc8nnH2HRPsnzfP96i3+/a5zKa95t70Pfbfief97iD/fffF36M57nu/da/P6GobYBastS3y1ojB/y\nSvQE1znDrHrAWH2XtNbDoOjKlANG+mlxNznFA+Zwg2QzdhjjPnPMVh8wlu6TmByAnkzYU01n8uck\nNzjNFc5x92iJ/fVJyu2Y8nYEd0R//3ATBx6OchzI2WUAdB5ldR4N2/DUZKwG6dMTwDTUqkdMs8EC\nq5ziJhN3Dkhf0fBZsJ8HrsPeDuQFpCmMTeJYTANZVjCV7bO0eIc7LDHNBvdri+xPTjpPVxg4Giso\nh4HOsFT0iwVtHNf/Vx2DnXexCq1ZP2hTL0tUaVAo0rhCo1anEkdEQmCzhFjizOzGeXVK7Zu6OCFJ\nM5IkRkmcJ0ILb/AP6V/Sy5Bdk7+yvOCf/fEpJ5PNmmtmtUaX2s83sUjpmt84jsl7XcAiyzDkMQzF\nHBoUKUFaGbKyfJNmKK3GYImShGqtRlapUhalCx4QbnpOqR0T41b1y6EUM+1W8Tx4Qfi8AUMf7CCU\nTwUbrL6DV1QNv1YsSkAUhlFKSYQDN8LTMwIXjACW//IX/ykf//wdhr/kP/qZF/ihf/Br/Iu//3dJ\n4hKpFLrUlHmOLkqu3bvPhz/95zwucODjLz/H1Zt3WWw2/QwdKC3EScwL/9F/wKf+x8s8usKpjeVP\nPvscLQwzJ2ZpHbVIKxXSRo2okqHiiAjjEslKUJFnQIz2xLxAGIMunCxM5h1U3kH2OpB3EVa70AbP\ngKjIJY85UCIxQvRbg75EULl5TkJJVCT9350MTUjHqlgPeJwvasjbo/xNSgdUsC7LQQlsqSl1jtYF\n2pQ+ic0/vu/Pcuf05tYW99Z3aDZGGBsdI00z0qyKxW07iiKEjNx8nDhxgQNZhaxSI63WSao1kmqN\ntFbtA520mjkJW5p6kO8H+ipFJJWbKxWCrMUA7Lhz7SsDPMJLAt3nTrJ4cplv/Oa/wsc/9mF6ve4x\n4Dmur8IyQzePOoztszZh3mbXZBxRo0WDlmpgJ4VbyZ6FS1O4PvQtrk0ry8A0FCMR+zQ5YIRD6vy/\n7L15kGTbXd/5OefcLfesvapr6a2qt/eeBDICZI0BsTomCAIznjCa4YE9hvAEi4mYmCAmbEzMMBMO\n/Mc4HBPYgQEzeAgjgQePPXhBmEUC4RFCMgK99/q9Xqu7qrq69iX3e+85Z/4452Zmt+pJTws8/VG/\niNtZnXkz8+a9N/Oe7/n+vt9vmoZuYN5nTH5hx7almLV/fua7mFopqKezgE4Vx9zUGfZ1UYUodjqc\nqhytUmIEdqzflgin8bgC3ITqi4csz62zltzhGne4wgNWeMyM2aOuW4RZjpaC06jOnpxhSyzykMvc\nY5UJjqnQJkl7iCPgEOwufP/+ZzqlfYwf4vsOWnxk38AByCO/Lb7D+J6GP3wTFu3D2cvc7cKaYNid\nN1GGf3jJ8OKfcOZzPsrLvNGGd/VA9EAOILA5XSo8ZoU3xHWa6piIFINkQEyLmncnW+DJyTInrQmU\n0LQXqhyIabbEEjNyzwXJMgCgT8wJLkNn2y7wOFthd/cCrUdNskexaxt7Ihy42WJ0201Bt4BjHLPT\nYaTZef7cKPpJCmARQRCMgHkdZHNAOWkxySGz7LLAU0o7feRDsPcguwuPduHjfYe5rvbhq1K4ZCCo\ngpyD0nKP+eWnzLLLJIeUkjY0U6hF7n0S3PsOT6qC1Rmvwq/8vD7fOgc7f46lLbTSjGNrCI1FCWc7\n3ajWqCQJgVRYC0kYEEgQ1rXz5MZipSIMFFHkXKKkACtxts9CeAbFBzRKr1ERkmtXLvKN7/kqPvKH\nP4I2I5cTIX6EtcU5Zpo1pw/SzhLZ5ZoYpBCEgQM7w8dFIcsogjJzhmYFRQuYGNkAF85tUkmiKCYp\nlQmjyOeh4NuXjBdDSPccb24gkAhhhmDHAgyBDhhbDOeNa2EqpCIwHCBLOVqUFARSuoGrD0UtsoGM\nNmgMVkqMgXubT/jwH/8JZ4GWj/zxy7x+5yHXlpYRCHSWodMUqzUPHqz7dc+eqVx/sstMXHKOe0Ig\nogiVROz0Op/1edunJ6zevIIouQDNMEmQQegc5pTLfzEmB2MweY6Vyrd8GXSeMmh3GOgc3elAv4fM\nMqwxQzMKqQrmRSEDhVQj4AIM1xPe4k74fTo0JVAjkwJgCEyFZ3WGcMnraKQHuUWoqsK6/W/0yJ5b\n5+7ckR5QC0G72+Mf//K/4dV794Z7aPXiVf7ye99LuVz1pgcuhFfIgCCMCOLYGWKUyiSlClGpTFgq\nESUlonKJpFQiLpeIEg904sg9T4UEMnBtf/jFSn/WyC8Z0Hm+hBBMTs3w4ju+kuWVSzx+9PC8ne28\nvgzLT0IN2Z3cUe8Zbkzpc2M63SpH9QkOgil21QzHU1WaKy3Cq4YXjuBbtyS/3flMB65vXpCsvcvQ\nXww4btTYZYYDJjnKmvS7yagrqY97T1sE1owDnecnCeTY7bjmqNDgFGxOAwdyJkHWoBxBQzpHtSm/\n1P2q8djLFKKs3QAAIABJREFUZgzts8UlQ3Cjz8LcBteT13mJP+UF+yrX87tMHx1SP2mRtAfIgcUq\n6NdjLtR3uFB/ynRlnzJdBNa17hnjPloKd1rwe/ps0PJ7+mXunsBaAQDLDLvw1qNiH7wJi2ZhrQJj\nxps8zD77c9Y1vCsA6xctFANiNu0ST+wFEtsnkBkWSaojummZVn+CVqdG+2mD7CBGSk2/H3NanWSr\nukwjOaKq2kR4ZoeIVl7nuD/BSXeSk6MG/YcVzL3QoYpdHOApbo8MtDJGjM4RLtl1vIWtAMTjGpjx\ncyJwHSuFOVsJgnJKKexSo0XDnDKRnhIeadiB/Ck82IHvGUg+Oca2fVVX8sFtw8V5CHYgPMyYGJzQ\niE6oiRalqEtQTclL0Wi/y3HQdda1RbzJ/ef1ueoc7Pw5V27hNNckvQGhOCFUAbVylVq5QigDR2JU\nSiSRAuMyaiyggoDIzzS7IEUHdIQP7jReJyE8u2MwTrIvJL/wD/4H/rsf+9/5nY+NXE6uLc7z1973\njqHQP880WZaRZRlGu4FwEAREcYxSijxLyXFtTHluUMppeFx5k4RxHY5wGgwrLEEYECVuICmVQoUh\n1jjthpu9V8NBrSxE7GMX00Kzo31LnCl+nIRzgTMYB1zcprgtEnIEzJQi9NbSCok0DhYNgY42vv3K\n6VPuPNryn+tN3GgebnGxOukE+3kGOkNiWarV/Hpnz1ReaDZJtSWXCpFERPUq5WaNF8rBZ33etRtX\nSWpVrFJYIwiCBElQeDC7a611wv4sTQnCyDns6Zx+t8vh7i7d40PKSEy3izTOnlkqxwqinP5KhE7b\ngpJ+8aBFFm5kXg9TiKqE9YGuYsjsPGte4ADOONvn+Rn/dI0wBoz2wMetaYwPT8UxjMq3yP2TD/y/\n3L6/zzNGG49/mH9vfp9vfc97UWGMClwrHlIRRAlhkhAmJcKk5EBPUiaME8IkJi4lRHFEXIqJ4pgo\nioijiDCICFXkgI6VCA9ypNcEfal1Os9XkiRcuLDEV737PRwc7J2DnfP6MivfKjwEFjludG1ceGNH\nDMeanYMqB41ptmsLbMolHlcvEFx+TL3VReWWD0rD+3+3xYeOxhy4FiUf+AFD/qLgeKnGRmWBTZbY\nYY6jzhSDo9KzY1ht/TacBXbGAU+BSsZn8gudRgmHXrxnNpMQNBzQmefZZc6v0jCIkkEo668Fws3b\nRRY1ldFY3udy9JCb3OYd5tO8NHiFS3uPCe+AfIQbnPtsnXB6QG1lQPNKi+pKC1XSrItLAGghh5KS\nB8PP8llAS+Q/agWYBTEH1y7gAMGbsWiFV07md8UErM3jdEJv8pzrk24924C0GtCTJbqU2dfT3O9d\nxZwEBJHGWsjTgLQdkx9UnBj/iTs/jAzo7jbpLjTZm5+lNNEhjvsE0rVhZzag3yvRPa5gdkuOtdkA\nHvnbbbwkx0Jbw6AwI9jHsTotvxSszjjzN67bGrcd97O6xekRgApzIpUSMyC2A0q9DNmx0IG0DT8w\nkPzxc2zbf+aH+Bu9Fh9qG4I2qI6lNBgQhQNiMSBSKUGUkz/vMD0EX+eg5ktZ52DnbaiWgZo2pP2U\n0+NTtre2qZYq3gxAeKYjweYueDIIFIlShEHgLKD94E8IC1Yj/LyYNhryHBEELvvGWDAwVWvwa//H\n3+Pe+iav3HlAYHIOd5/Q6fSGbVtaGtLUgR2t3exEEITEcUIQhqSDAdbmKOXYBK01GaPWOWUDrNVD\n8Yy11mkuBARRSBRHqNAJ65QK3Ey+zp2uw3+5lVSgAh9ommOt9q1txmXN6CJ/R/rwTmdnnJvcP184\n5zQv8HFaHkEgpNPkIBEWn+ViwQvldZaT5bkPMzXMVqv+SJ39I79SaZC2+t6lX6NcJzkrzQn+4tp1\n/vDej/jPtQz8WyQ/y1ev3WBhegatBOV6hWSyQWWqSXWywZVamW9873v4yP/3LPum1I/yTV//9Vy/\nfh2jDRCiM42SEZjAOd7lgBUYbchNjrGC2ArSdIBOczqtFhvr6zx47TWWp2eZqVapyIBABi7TTlis\nBJT0gEcNwU5huWyD8TbB4gd4bCBReEMPtTVjOUwU54PbzuK+4TGwjskp2jDdeeOOhwVU6Binrd1D\nXrl7l7OMNh5svEzv3V9DrVYnCCPiUhmpQoI4JogTVJQgo5ggih3QiWKiJCEuRURxOAQ5SRQRhzFR\nEDnGTDhbbOmDU4dMWAHqGDmpfSnAjxBi+HrVao2vf9+38Icf+yiHB/tf9Guf13l9aWoc5GhGjgMD\ndzuInYXyEbALZjvheHaax9UVZsQeUxxQvtwlUE+pxAMmpuE3bhnubsG9E1hdgdWXDHZNcPpizObE\nAne5xkN7mQ1WaB1Mordj716FA1V5weoUg9lxxun5VrbxmfOiZagwI6gzpG+COtQj9xM+XCwsgViw\niFmLbA5QFe8OB2Rp5CYBlSZWA5aSTS6Jdda4w83sDa7uPkZ9DMRrYB+6/WO7OBO3aRBXoHyUsqx3\n4YalJWtooehFJWzTbdrVWRyj8WagZRaH2QIHQgjc6147gG97IPmt04JFK65NP8M3hJLVUwP3gEWw\nS+7h6y/At35S8tsnZ2TflCUvXDewDNl8wEGtxhFN12qYVuk+qaE/XnZgwTJi/E5wVst7OAyicML8\nWcimyi4/qWCYisPaG3veLs5lbRvYtu62Z8FoHPI98ifFKQ70dBjl62T+/DirvfH58uOS4hInnYZ6\n+KgQw0vg3RQ++iYtgr/Py9xP4UV/6tkhmBm+0BnvfV5/FnUOdt6GynDfz56xiF6f7Z09rIFcGxdu\nGUVucGUypNVeJK1QwufHMPTEci1c1mtajNPeSKRzKSti6o1FWcHa8hKLU1Nsbj3hlU6H9mnXh4G6\nwM48y0lTH2oKKKWI45g4Tuj3ehiTe3tq69qNpPDtUl7v4vUXQgjPmOQYa56Z9dcYrBBewO5E6Nq4\nbBXnxoUXp/sQSu0eN9qSa5eVI4aAymX85IBAIWXg2qyKmXf/g2SNY3CcnbWztMZYhHGD1SzLSbOM\nLNdoo5mt1/jqa9f4xN3x4M0PIvlJvuLSVRYnJulnGVri+TON1BqjNT/xX30Hf/dX/hWffPh9FD+q\n7rJ7AduosrC4QDLVJJ5sENUqBEmEVIZf/Lmf4nv/1v/Eh39/NMP5Td/4jfzy//mPkEEMXl9jRA4E\naKmwQqJNQG4hHaR02m3yTBPHJZIogVzTPT7leO+A0/1j0lINojIisE4jY4wPy1QYJbBKYqRzVZP4\nYMwioLPI0inSWoXf/9YHgAqBGkshL4JChxbhwxZ/MTzWLvlV+kwmB5DcOeHaH13QrWvLfHpw7F/5\n7BnNfpoyP18jiGJKlRoyCJFBhAwjZBQhg5ggjogil6MTxRFRFBLHoXOgCyPiMCIMnFGICgJnw12E\npvrlz6OEEMRJwtq1G1y5usb+/i6nJ8ef+4nndV5/plV8kYsqNDIDhoPKQQwnymspgMdwNNvkYfUy\n9dopFVzLbmfhLivVTWYvn8AerHVhTQJ1yGckOzNNHpYucZubvMKL3LerPGpdpLdRck5bT3ED32Mg\n6/OZyfOfzalqHPCEPOu6NgGyCvVw6E7GKi5Fc9USXuwxNb/HRHBIXZ1QFl0i4Vqu+jYhEDkB+XA8\nu8gml3jE7NEe6tPAn7glvwedPWcWFgONOQgPgQzCMGd5co+nUxscRQ1OyzX0CqjLcO0l+NbXJb/9\nHGgR/AxfJyVrhwbuAjOgZ8FWISy73fFL04bvaJ3yMfvstamdSR4/gIuzOOZk1X/uA/jAdxre/+st\nfvNw7LpUl3zgfQbeAdyC3nLCIy6yxSI7zNLqNtG7iTtGO4xwRnGaHOHaDwuNUMefK1W/FFoo/PP6\nONxSdKUd4FvWgEEO9oRRjk6bEcgZt5oeDxN9/twYN9rwjxd3affUtBfRzxN6QUJHlmnVIoKJjHDS\nsvk5WgQfBfBiA/KaolUu0xVlepToZwlpL3q2s85PPn+ezhvn9RbqHOy8DaVxYKetDcLmZLqDRFCu\nVKnWG5QqNZQKiaQhUhAZn3FiXDilkdLrSyzG4NkMkLlFkLtZCDdNDoXFr1VgDYEKKZfK1Ko1dsQO\n2tv5FmArTTPSNCXPtXNgLFrZggA9cEBIa+3GqUJg1WgO3wEfMczPkYFEaccO4PU7Ln/HjsCOd2DL\n7cj1yxg7BDy6CCgtdDhKDdug7PiPgW+tstblsAhjEdpy/8lTtnYOWZmb5uLMDFabIdgpgFCuNZn/\nXBZLbjQ//t3fzv/6gV/nj+6+TBFzbYD/vN7mB37+F/h7f/WvUK6WMQIQTneiAkVlokEQRUhRx9if\nZkhp3/8R/s7/9S/4N//spwnqVVSlBHGIcE4TTF1Y4Fc/8NPcufOAjSc7vPTii9y8fs397ubGte8J\ngw0suRQgNMZoUp2T5pp0kHG4d8Dezi5Yyez0DCGK490D7CBnfnKGZqVGICQmzTFZhjQaJUIUgTuf\nJOQeRisPeLwFm2c1nDGBk0t5psfnKUkhMcKOgItxAFxYN53lWtMceHXH2fjcHufMpz2Dl+eaPM8d\n0BHStS8aw8xU0x/os2c05+bmKVWqhHFMqVpFhTEyiBBBOAQ+QRgRRm6JwtCBnSgcGnEMDQkKBnUM\n7IxXYXn9Z1EFuxMEAZNTM9y48QIP7t05Bzvn9WVS46PAon2tGFC2QVegE8OucK1e65A3Yw5Ls9y+\ndAOVaAYi5jSss9eYYT7ZozLbJshzrBBkYUgrrvIknuehuMQdrvG6vsnd3jVaDyfRD8JRhsqBdW9t\nikFuIeApBrVnCdHH3bcKvU4J177WdLe1CBaEy8dZA25B8EKPxvIhC80nLJY2mGeHafap0RrqS7qU\nCMkJyTBIeiQssclcb5/GTgdxH7gD3duwswMf77m2s8vAu7ddfk2t7Fie6HLOdG2f3WiKzegCCxNP\nmVs8QkxZPnjL8J2fOOX38hFosUDLSF7fhmuTIJdA7vAMq1LqgbACQQ071m71CX6Iv37Q4ndPjGNQ\nUjDzYN8Nkwl8aNlw9y7c24XVJqytGLdvbsLJtQrrU4vcY5V1LrGplzk5bcC2dEDnDdxr5n53F8YO\nk4xM74q4omIWt48DsQUTVJA0bf93F+hnkHXBdvzKBdgpgG+fZx0sxs8Jy2cK/8cZS+NaIwdiaLSh\nTxO6gyonSYMjMcGemqYynREuDVi7wmdt91u7CixDOh2xr6Y5YoJT6vQHFUwretYoTj+vPTsHPF+q\nOgc7b0NZoG8tXQORNRgLnf6Ao+NTdvcOSCo1kIp6OaFaUiTGorVjbUTubJ+NlF7zYpz7sxEO7GgN\nahTCCA7zuB85SahCSkmZRr1BEif0BgP3dbKgM02/P6DfH5ClGaZsUUqRJAlRFJGlKVobsryYdXB6\nGOvtoh3YkY4tUhBEARYIlGNjCsMCZ6bgtDaIEZCxUoJxyo1ivWGQqJAEgULJwLWyWT8Yd97VULBN\nODbhuNfjJ/7Z/83HXn19uB++9sZ1fvJ7vot6EvuWbqcByj2wKjIxM50TR4qf/Ot/hf/xZ3+F1x6f\nYMeAyyce/DD/y6/9P/z9H/heCANUGBCGAUkc8eTwmD984zZnmRt8+OMvs9k55fqlRQhDB1o9Q6KE\nIMgMq9fWuHbjJrVaA+uCKrACtNDkwpILi9YpNtNYrb1BQk7eT+mcnLK79YTWSZv96hNKQYQZ5Kjc\nMjsxRT2pEmKdXbl2Oi9l8fkYEqOkmy30bB1e8zTS5LhQWVuYUhSsTQFwhLs1BYszxNvu/gIo26J1\nUUiMFeTG6btybciynCzL0cYglRyab8xOTXBrdZXX74+zbc5oY/XyNebnF5BBSJQklCoVgihBhRFC\nhQgVIIOQwC9hGDib7TBwhh/ehS70t0EQPMPmPN+i9sUCnTd7/vj7CCEplyusXbvJ/MLH2dx8RJqm\nX9T7ntd5feFVsDqSswGPBztUoZ/Afjzm2KzoxxW21TJmXtEuVzkIpthUS8yU92iWnWuXRdAn5pgm\nT3E6nYfpZR63LrL/ZJ78tRjuSafX2MbN7Gs/Gn3WrYCRLmc8W2dciP58C1sVaEIYw6R0FsyXgGuW\n8KU+U5eecqn5kGvBHS7xkGU2mWOHhjkh0h7sBGVCkxGaDC0UHVVGCEu91yY6dGJ2nsD6HvyNrvQZ\nQ66+qi/5hT3DrS1QT4E9qK62kVi6skQ/ioZmCA2Bt0mpYcZAy6f4Ib6/1eLDBwZ56B3ZPKuDgTsp\n3q76DEe2/GXudmDNXZI5rtVp10tMVk+oXByw9pJlrQcor9FZVJzOV9mcuMDt5Dqvc4N7XGX7ZJHu\nds0xRDu423RsF8/6ZYqh0V3hGkeOwyuFt8ABDgRYf3q1cFbOac6IIip0OcXxL6ylx1orh2xOcc7C\nqJVsvOWxAEQDyBPoRUOAZQ8DOr0a+40ZnjLPFotMXTghvp5y/djybX8k+a2dM4w25iTXvsaQXZOc\nLFTYYpFt5tljhk6vCodqZBbXY6wlcxysj7WMf4YO7bzeap2DnbepXCubpSQECkFuLKftNk939iCI\nyIxlZrKJbZaJwoBKlqO1QWiDEBoj/Oy4sc4RC1x4ZpFfMtRQjAZQEomSUE5KTDQmqFZrpP51sYI8\n1/R7fXq9PmmaYrQhDHx+S6lMOhiQpv1hHg+4QM5cO5ZBGlmIM0AIwjDwYZ3evGDYWVYAIzegVkog\nROCc12yOMSN7X7zWQwhvGS2kCz5l1CJljBu4W218UKXgx3/uV/nEG7uMi9k//sYP83d+8V/yD17+\nLvB5LbkQZMaxQaEUhIFw2hcp2Dpq8eqjRzwPXIy1fOLeyxwbzZXFFaJKibicUCol3PnEp/x6Z1Pa\nD55sc/1d7wSp3Pb76SypJGGYo3M/x2QEwdCEwZlRGGHQOqPX7ZJ2e5g0RWhD3mnTPjxhcNrB9FIG\np202n+6TBDGNcpVmpUo5ilHW5Q4hJLZgyIqcHG9MoCUgvCW0+wehRi1sRfCqk9t4K2bXxOjCRf21\nowA5xphhKKkxI2ancGazCA/aGQLpLHPtkk4zJIfBrX/zv/52fv5X/y23749aKlYvrfL+7/ougigk\nTBLiUoWkVCKIEoIoQarQmWcob0WtlAM7QeDZnJAgHNluF0BHKfWMEcG4nuaL0ee8FaADzggkDEMu\nXVllafkit29/mvTw4At+3/M6ry+uxsFOMQteDA7HvKY5BR1BK3Cz+4mACKwI6Gd1HvVK9BYq7NVm\nWQ8vMRUcUKNFiLP+GhDTsjV281n2sll2j+c42ZzEvh65wMi7OLCzY6Gd4UaKbb8NBXgohCL47S3y\nScbvK9TnMSOP4QrUJEzjs3IsXDc0V/e4Wr/Hi/IVXuBV1uwdFnvbTA8OqPXahAO37f1yTJDlBJnr\nvuiWSxwlk1Q6XTeI7wAt+FtdySfOELP/YLvFb7UMyrMYkU6JSMlRKKuH8qg3WvDh/GzQ8gfWgZab\nxZgfhjmoG2FxLD+LuUEZdEmwk8zwuHSBhfpT5hcOidoZIjMgBLosOZks81gtcZ9V3uA6r9lbPOiv\ncbQ1Q77uW9hO/TbUAK8DYsnCoiGYywmaOaqco0IDEowWmJ4ibwVkhwH2aQAbwmUMbfrD18WxHzob\nO+cKW+mCzfFJtEM92VgW1PAcKEDEuP6sAO49yCrQidxnOAR2oXVS48nUBR6HKyywzczsPvGNlHre\n5QM/aHj/z7X40OaY0caK5APfb8jfJTi5XmFrZp6HOO3ZdnqB9nF11IpZMFZ50RY6zkaNM1JnuQye\n11upc7DzNpVvBaVnDKGUCJ1z3GqRGUNnkHLa7dGamyHtT6GwVJKYcqmMUo4JcYGdfhoGgbViNGOu\nrWspAoYzXAKXjSIVSVJiYmKCWrXGyckpuTYYBFprev0B3QLwZBlxElMql6nUqvT7PfI8c4yINgiR\nk2aSMAvRuXYz8TZww1/p3Kuswovw/GBOFBp33y6lBEIorJXk0v34GJs7psoIjBmJ2S0WKwwUbWhA\nlmZY48CXV5qwsXvMx2/f4c1Ayt2NTRaaNacdUgGpM0ImlJIw14RJRFQtc3pw5J979sVhEIZcvnWD\noFomLMeIIOAd4Wd3Vlu9sQpKFWSUs+EWzopFqhgVeME+Fo32gv0MqzOUd9zrH52wv/2U1uERMteY\nNOPkYJdeu0U9LjG5cpHDnX0CFNWkTCVKIDdkNkUqiRICEQSAwXqgo6IQFUdY5Rg2W4CcwD0uVAF0\n3MyotAJtcSAVdeaE01DbVQTF4oBplmXDQFGExAqJxZBrS5YbMm0w1uc4FQBLGsrlhB98+a/y4PEG\nT57uMTU5yaWVyxCVnQlGkpCUSkRJGRVGBGFMEEROf1Po3nybWuDBjvJhp0qNQkSHuT7Pua59vi5s\nbwZsxu8vXq8AgMV9xf8Xl1ZYuXiJiYlJjs7Bznm97VUMEIup+GIGvcszbEkew07Fm1sJP2sv4Dhi\n9+IK+yuzJHNtGrUTarRQaCyCjJCOqXB4Mkm2XcVuBE6Qvw7c97ebwKH279li5PlcxgGZPqM2tfF2\npZxn7IWH21tyz5WB62SbARaAiwa52mOl8pgb8nXewZ/yTvsn3NSvUV9PCdatG6x23avH9YHbFX0g\nMJQaHaYudRx74S/Nd1L4qDkbqHzUvsy9FF4Q+DGtN+FBkYlwGAe0PiSE3sQtFLhZkFbekY15uLmI\nAyFvdm266NbtTIWclKpssMJdeY25xg6NxgkhGRpFn4RDJtlikUes8JAr3DdX2dy8TPYgdqxb37//\nAqPcoasWcdUiL/aYmD5gonREnVPKfgemhHSocJI32G9PM9hqoGdDzwAJh00V8DiGkxqfwcYMNWTj\nzEhxW1QBForzV53xOgPQudMaHImhKUJ7p8aTqUXWp/ZockxZdFFLmouVDRoTKf/hhuHu63BvG1YX\nYe2mwS4LWtcjHjcu8Cq3uGOvsc4lnh5dcAzYUxyDdYR7P50yco4bZ6XGdTzn7W1fSJ2DnbepilO3\nD8RFqKcxZFrTHaQctducHB3SOZ0lH/RcLo1R1Bp1krJEhoGzBbCGNHP9zqEQPj9GYqWbbacYVEqX\nSVPkngRBSLVWJ4wPGPiZdKQkyw3dXp9ur086SLEVS5xEVCtV+r0eWZaSpSlSeie0XJNmKWGqkFJg\no9BR7FIhfW6QMfjWM+NBmRkZGwiBUgJrpVuUxCiFURKrJVZa13JlLNZqMqNdi13u6QNjybLUWS0b\nQ27gjfVNv5fPvhis7+4y1ywTl8pE1RomiMgsGKMJbE6lVqE5PcVfmJr2zzv74vDCi7eoTE0iSzFE\nCqskqy/d4lu+5Zv5nd/522g9RmmrH+V97/smrq5dQVvjjpJ0zQjWSizatYkFApvjWs2MdO56gxSZ\nZghtGJx26Gzvcfhoi9ODQ8hyOicntE+PUUrQqNeo1MvULywih8y9a1eTQ5bGXU2tMMhShEoSZ4oR\nBNhAIIPAsSpS+vBYlzODlRgftiREgLQgrBwyVGYM3BQsjrPAdreFFqdoZ3PBoV7DZZx7X65z5+JH\nAeJ9S6P2ZgXCMtVsUElKqCDEYhzElcqbEJSJkwpB5PNygvCZtrRxwDMCQC6fp9DmPA9ovlQ202eB\nn3GQM/53UY1Gg6ur17l48QrrD+9704bzOq+3o4qBlhr7//ggsYMDDz4UUSvYjZ1etBjDHQN7YDYi\nelNN0okaB4lB+Je0mcD0JPpYYXelGzhvjS1PcGSOKQQg84xm9ovb4u/x0NBCpF6AHXhGsyMTh3ka\nOGZnAaLFlJmZbS4FD1njLje4zVr7Ho0/SZGvWocqnuKIJYkDSl2GdtJMAleBa35XNeD+5xCzr8fw\nwoRbtx/EdKjQpuoCWaeewqzl6hKfXSOy6LafGRzQKLl9d+0YvvXe2e5q3zwnWXu3gVU4qkyyzQIP\nucwDrjDJAVXavtVQ0ifhmCY7zLHPFKfUyWVAeeGEDk3yWuzee9MfsyXgBoTXBkxd3uZCtMWi2mKG\nXZqcUKaLxJAR0qLGgZpkpzbHk6tLbDWXaE1MQBHPYPCdihGcNhgB7ZhRC9t4u1pR+djf47+x421i\nxXnswcagAvvKgZ0t4EFAu9Hkbn2NJOwjMaREHNebLL20xcSNIy6/Z8BaZskiyVEt5iCcYiu+wD2u\ncptb3OYG9/qrdDbq8EC6fVS0ZGbFxMHzn+MsV8Hz+nzrHOy8jaVxYCexnrWwAm1zUtOjm2Xk/R5p\nt03W6ZD1Uvq9jJnZaerNBnElQQYSpEVLiZECg3TBmSaAQAy/wta3Fwk/GM21xlhIymVnPICbcZcy\nwBjLIM3p9fr0+32yLCOOI5IkoVKp0uv1yPIMpAsEzY1mkKWogRs4xjoGK1Ae7CAExjNNxoC1AuO1\nHwjjUleku18pBWGRUKYQyjjHNGHJ85w0S8nTnH5vwKA/IM8ycq9jEAJya0lzQyyKH7qzLwYLMxNU\nmnVm5mYpNycwYUxfG/pphjAZSRxSnWiyOD3Ft3zde/mdP3gOuMi/zV/62r/I2o01ZOzcvkxQAEz4\n5//in/J93/Pf8x9/c0Rpf8M3vI9//ks/DcNQTT/AxWKsy8QxxrNWWYYeuNZCoS2ml5K12qTtLoc7\nO7S2d6HdoyJ8CGgUE1XqYDWRlZBmRFEJpeTQLa0IghXKualZKRAyQCUxIgpdho8AK8SobQ0BViKs\nQKI8IHWf0bmfe9YF6T6HBzkFsBkHOyNg45bCxhkhhiA/yzV5rofW586K3Xo9j3btbtpgco3EEipJ\nKAXWagdkgggVJoRxiTiOCSPXplawNeM6HCnlyIhAqaE2RxS3ZwCczxUk+mZg5osppQIuX1nl6up1\nPvr7v4sx57qd83o7a7wNqGBKMkbi/zbDrBIEpA3YK8EgdCTMMW7wOCWxE5K87pPqA0Zi+h6j9qF9\n3Mz3CW4MWPbraiALIC1DGoGugR34J7Zwg9/ClWv8+1rM6o+HiSYgo1Gm6AQwYwmnUubDp1zgCZdY\nZ/lzlXKYAAAgAElEQVTkCc17HdQfW/gU2DsweAq9ttN6VpvQ78GgByqA+iSIPf95LgKLcPUK8Aq8\naabaFbcei3AaNYZi9v1wiu7yQ8qXU659pbeEPjjDErouufYOA1egPR/TnipDVTDz0hFKWz6oDO//\n1y0+tPtcrtHfNJh3CE7XSmyUF3nERR5ymde4hUKT0KdMlwodKnQISZnkkDqnpIQMSDgt1Tm4MMNh\nc4rjxQl69xuuhW0FKtdPmV/a4HLlPle5x0UescA2UxxSwWmTUiJOqbMrZthSizxUV6hOt1hXV9iX\ns649spgh7knoh5DW/XEeBwn5c8f8s1XRGlYwQgXYaTndzknNna8bQE2QlkvsxwvcvqTJopCOrLKv\nplkqbzLFAbVyh8BoMhnQCsvsMcsWi6xzibt6jbv9NQ7X58juxrAuHIja9adt1vOfZdxZ8HnNznl9\noXUOdt7GKiYpBp590QICa5HGINOM0zzHDPrkvR6Dbp9Oq8XcwRwzszM0pppUamWCJCQOQyKlyKUk\nFJJQGaRRblDrZS9COoZFG0uqc/qD1OfKWN82ZAn8hNcgy+n1U7q9AYNBSqlcIggjSpUypV6Zbr/r\nXNUEztI5zZBCEAUBOtdOR2S9e5d37RLa+dQXYz8hhB/UWufqBj5UNERhkFojnU0XubU8erLDg41d\nGnFELVQ83t5n++iEWqhYnp2kWquhohgrBTPNGjeWFriz9ayYXYof4R1XrnDl0grliQaT83NUJych\nikitoJdrTJZh85SwUkIlEb/0sz/F9/7gj/ObvzO6OHzde9/Lz/7D/w0Cx+agXDaN9RBmcmKKf/fv\nfo37d+/xxhtvsLKyyNraFYIoZCScZWjqYLTG5BlCa0SWo1sd+u02eZQgEPRbHdr7+5zs7XN6cEja\n6RJaqMYJoQpoxBGDfp/BoIfOUqS2CG08mJBYicuKUc7wwEgQQYCMAmQSQxi4fFKfTSRg6KImrNOC\neaO9kUzS2uGxLe4s2MnnmZvngU6e50P3M6WUZwhz0jwnN8afr3IIhgptmtXu+AidEUlBKZTECt9c\nYT3gCQmjiDhJnnmPcaAyDnakdPtFyJFd+Rfbrvb5ApzntUDPt7nNL1xg9dp15uYW2Np6/GfmBHde\n5/XWqphlFoxagOC5ZEScQ4mGQR0OK9CP4EQ4NmQCZ2BQZkgEAc9Oro9P0NdxbUzF22fCDXo7AbQD\nL9lIoB+DLSy/ihce/y4XA+Gizc3bT8tgqG2hDmJCk9S7zLDHHDss2i2mjo+I7hjsbbCvwPE6/NER\nvJ7BCvCuY3hlAHc1XBbwNccwlUIY+s+5Ate+Gr7t45LfenoGuzIrWfsag16VtBZLPI1necocJzSY\nkvssNzdYXtuh1E754H9reP8HnwMt05IPfLtBvAOyFwQHC002SwvkUYhde8BkdEJzJne5Rvfh3j6s\nLsHai4bsouLoSpmNqQvcC65yn6s8yi6x0btEWO0zJQ+IGVChwwLbTLNPlfbQea4ryhyqSXYqc2xW\nlnhcv8jT0hKtaIJ4scfC0gbXa69xi9e4yW2uZA+Z6+1S63SIB31ngBYG9EsJR5UmG6ULTHJEKe4h\nJzUayVG64A0DhHdpk5BWcIiq0O4EPBsSWtT4/8UZj49nNXmXBOPPp50QygISsKGiL6s8scukszFH\ntQm2o3nmecoEh5TDHgE5OQEdyhwwzQ5zbA2W2Dpd4nBnhvS1ErwhXULsJrBnnbucLSznCv1RAdzG\nHH/O6wuuc7DzNpfGObMZQCEIBAQWQiGcWE1n6Cyl3+1yenLMk+2nzC3MMndhnpm5GaqNGpVyiSSO\niMOASCoi5YXWSmHlSK+TaUOa5/QGA05aLY6OT2j3evTT1LW5ec1Pmht6aUqvP6CfDsiynCAMiJMS\npUqFsNOi1+v5WXdNrg0YQxxGTlyeGx9W6vQ4SgmkYARupEJKg1Lat7TZoamCY4MilNEIrTk6avNj\n//jX+Pjt+8N9Vg4TutkoVX5tboYf/c5vYmp+HiMFuUn5se/9L/lHv/Jb/OmYmP3dL77IT3z/d1NJ\nAsJShKyUiKolVJIQBwFlEZDlOb3Wqcu0kZJ6tcav/6uf4/76FvcePOLKxWUuLS+Rp9qBHYHfx25g\nLq1wLWpWcG31GlcvXSTNBp75sAhjkd6i2TsRIHSOyjVCG+wgJztusb+xgc00AsGg0+V0/4CT/X1M\nmpFEMXGpRCwVoVKooEysFD0pSH2gqhLCDTsKlzsvljIezahAuYyfOIRAYgQI493ZvOnAyCACrDHD\nDCN7RojoeOva80zO+H0F6xNF0dDW2Vo7NCbQ2olgR+DMuz9ZC1pj0z5Kp8RxRCWUBNKBIEVOICyB\nkkM9TuG0Nt6eVoCdwvBiyOgI3973FlvYvliA82b1fFgpQLVa58rVa7z0zq/kyZNNrH2+ReO8zuvP\nswqwM+7MBiNF/Ph6fsZcZ9CqQ0vBiYR9CSXpiJXn3aCLr1wT11JWgKLYP2b8W3nB/yh/JYCDigM9\nOnIdAs94GoMbRFpGwMy/uVQOG3mvAlXLSCotGpwwwRFT+RGVk66biX8ETx7CX9uT/Kex9qJ6V3Fa\n7AsL725LPrhpuNgEtQz2Ith3wS//oOG/+fkWH3o8BlSWHLui3yVo30xYn1jkobzIBisc0yARfSbE\nMclKziwH1Mspv3HRcPcNbwk9DWuXDXYJ0uuKo+sVHtWXucM1eqpENh2wVl6nOdsi2M9ZfpdmGYtN\nJK2JgNZ0hY3mPK9zg1d5gTv6GpuDZXqdKs3yASvyEde5wxUesGIfM5vtU847hDbHCklPJuzHk2wL\n1/7WjI9Jlno8ENeZmNjncvUet3iNr7B/zK3B61w82qS+3UFt4Rg8gwOaMzC/uMfkwgHlchelNDpS\npJMJnatNst0Eu+t1NPsSjiOwJT4T3I4D7+L/Rcmx9STPAvQC9Hh2R5fgsA6xhFCABKslg16NrbWE\nk8UGe405JsIjqsEJJdlHCY22ip4pcZI3Oc4mODyaorPRgAfKhbfeBR4CTywcazCFr3bLv/e47mh8\nOa8vtM7BzttcFkdaGkBZMwQ62moiqz21n5KfZHS7XbZ3d9l6us3806csLi8yNT1FvVmnUa9RrZQp\nRRFxEBKFoRssKuFbkxT9dECn16PVbnNwfMzW9jZ7+wcMsowoSVCR++FOc00/zegO+vQGA/pZRqAj\nZBhQrlapdGv0B32M8bqdNCPPMuIoojxw7WU6z5FhiJQewPi2J2Osz5I0GCP8gNiHlYIXZUpEGGCC\ngL/7T/81n3jjgJGr2nfQzR4CP0/hZHN/94f5xY98ip/5n3+MsBSjdY9Qan7xK7+CN9af8Gj7gFs3\nbnDr+hp5ltHrtjB5nxRNiiaSFhkq4jghFAIRSMfwCEnmeu+4unaZtRtrgMDmBks6bLGSxoJyLAhI\nhBFDa+vCfll73Ynwfe/SgjDGLbnGaoPIc/QgIzvpsHd/g+ODfee+Z5zwKZKKKHEtWoGU5P0+aSH+\n9zqoKAgdU2aKrCW3HdozcQAyUC44M45QUYgIBG6DhLc0dWDD6Vk8u+IDPp0NNa4N0R8u9xYWo+0I\nuHozhXHtznhLG4yE+O7xEUACn6ckFa6Z3wPiPCPtthF5SpQElEKJDARZnqNMhsIMg0ALE4JnAc2z\nYOd5EFSwOp/zOzsGRM7S2Xyh9WavJaVkZeUSX/f138xv/8d/T5qeX/TO6+2uAsiM14Ax7peRecEA\nd5VrARXolKFTYkjVFCYGDZwEZwEnqp/DgZ0J6ybvSzwLdlo4AfkeQxE5VQE7AZw0IVOMWoDGHbnG\nmaix79tYZ5uKNUk8IGZAmS7lXkp8bNzA/Ai+50DysWcc1b6DUx4y7rD2SX6I7223+I0jQ/XYbYb+\nWmjOwH940XD3Nbi3CavzsHbLwBK0L8VsLsxymxvc5RoP7WWOaWKFpEQPKnDz+m0W559SuqxZfadl\nte+22zQhn1HsLTe4o1Z5lRe5yxqn1Dmhzm55loXyNpPLR751zNCn5K2+53nMMvdZ5XVu8HrvBnvZ\nNFMLT7jJa7zIK7xgX+M6b3BFP2TqoI06tEMvCFOD08WIrfACM2KPqmgTyox8OWCCI65yn5v2Ni/Z\nT7O2vUHySuYyeDbA7vv9XwIxB/HVnOVbuyQv9rEVQVeUOY6a7C9OsbO0QraVOO1WHS/VicDG/uAV\nGq2cUb/j+O/l8wYV4xbkhTNf5M8ZH/RjyrAbuotd0UbXAQ5D2ovTtOeneTRjCJod4nIfFWh0rhh0\nE/LjCuxKd25u4pwEN/zfGxYONJieO6k4YQR23iwE9fnv3Hm91ToHO18GNf5TLLBInJZF42bctXBR\nKKk26N6APD+g2+uyf3BAtV6lWqtSb9SoV6uUSwmlKKFaKRPFMTIoQiAl/Syl1e5wfHrK8ekpp+0W\np+02QkqsVESJQQSSzOR00z6dfo9uf0CapaR5RBxExHFMtVql02kz6OMH9AaT5/T7fXr9Pkm/T+hT\n6wUWEbhBspQCIdyAzhjt8rOwFHam1nq2QEiEDbi/fsgffHrcVe0O8CnOdFl7/WWe7B1x8/oquQ0J\nA0NFCt7ZmOLqjYwoqSJLZSp1RXmiRp52XaCrNQirUVZjdIaKS0TlMll/4NqytEVq7TZLCG/XbBGB\nRKea3GcfqSBwA1VrvK+QJwkCSSBC9xrWonKNRDgQo3Pnq681JsvJe306h0f0Do5QWUY1CAkix96E\nSjkAKwX9Xo9e15lFSG/xHUjldTZOm5Xp3BvWiWGGjc5SZKgIw4jQ/94LT57YcdcxhAepDhCMdF/O\nerYQ+mvffmms8SS73z+IoRNblmVkWfYM0CnAiPAgSms9XMcY64wQrCTTbidqq7BGYnKN0RopIA4D\n4lBhMCg0Qg8QeoCyOcq3qI23sD0PeIBn7h9v0XvT7+lzYOQsFuaLrTd7rYnJaV5657u4fGWN9Yf3\nGQz6Z653Xuf151vjVy8Y5dyMO2GNUzGFzXPkb5uAF7RfwNkTrzDUuDBvkTMZyUSbKEmRUmNyxaAf\n028l2L0EtoUfPOIAUxk3GD4oQ3/Gb1cx6M34zBamz6/u9OAjzziqvcl1Ccsf4BzWvmJsN+1cnyS+\n3OfSu3usDixawXGtxGEyyZNogQdc5nWu8xq3uNde48TU6TdiJJo+CUeiyUptg5lr+1SudAlshhGK\nnipxHDR4Ihd4wBXucI17XOWQKQ6ZZJsLzLHDBEcOOGEZkHBCnT1m2GaBR1zimCZ5HDAZHHKVB9zg\ndd7Jn/LOwae5vL9JfC9FPrKjHJwARANqyxlXrz6hspgS1lxzcZcSZbqs8Igr+Tqrx5tEn87hk8Cr\nYNeBfSdVlVUQC+7/9GEyarOyusV+/SHbPnfpcPoC2SzO/MFnwJKX3DIELOMgtmBvCtv08fbFAiAV\nWUvefpwaTrxV9X+HkAu3XUWbZctv5xPcudsU5LUyJimBsqAFpi+gJdx+2mcEyJ/421MNeRu3wgGO\n2Sn0OkVm0Lgj23l9MXUOdr5MapRg4PJKDA7k5AJnFQxQBG2mGfpE0+v22T84IkpC4iQhSSKiICQK\nAhq1KqVSQhBHBHGIDANybej2e7S7Xbq9Hql2OgkVhKhBSpxrokCirWGQpXR6XTrdDt1elTAKh9a8\n5UqFarWGtcZ1P0tJLlNyren3+/T7A+IkR0UaKS1WCZQMhi1LjA0S7TCXx+t5bBELqtjaL1LjC+ea\n+8/9vyjnZHP/4TqrK0uIUEAQEMQR5ZKE1JBZgQ0CZJIQqIQoj0j7bTJrXVBrkINSSGuQKkAq7dgm\nY9C5gcyBB4HEmkJ45HUkeY7MMowsWr8s1nhwZCxSG+wgQ6cp1hjCMMZmGbrfJ+8PyAYD+u0O3ZNT\nesfH9E5OiKUkSkpI4YwFlAcyeZqSDVKMzpECQqWIC+2JP0esMWTe5QycS/fjwwO2Tk9YnJnkam0B\n6VkRIYVvT3uW4Sjo/yGYsS401OUl2VELmymCYs0IMBSPjWXrFOyOM8JwGTJSyeE6DhhZtBYeNAVo\nK0cW3QjXuawNcaSIQkUonSlFFAgsGmlSJBqlxDOOa2dZSRe3BbtTiI/eCuB5OyoMQ6amZvja9/wl\nDg72Geydg53zerurEHdLPrPFpvieFCBjwAjgaNxINXRK/hmcY9cVnHvZqoWrhtrSMc3GMfXkmFp8\nQkl1CYRGG0VPl2hN1DmdaXK8NEFnsYaejt34NPSbhIL9EgwmcWCrCJtkbNvGvs+FiDYDk0rSLCJV\nESkRaaTIyxBUR1eht3pd2pDwFRUwFUG3HPFGuEpeCSjX+wRGo4XgNKiyL6d5wgUecYl7XOVO5zo7\nmwuknRJmLiZbCDlVDfbELBvBCjPBHjVaBOQeWJQ5YoId5njERdb1RbYHS5x2muxH02yUl5kO96lz\nSkIfgSUiJSRDYqjT4goP6JHQVlWskiywzRr3uJndZnl7i/KrfcSnca1YhfmCAtEEddGiDlPmBvvo\nq5JOtcIhkwRkXGCbucEOpcepY3Rehe5rcLgFn+rBIwPXI/gLpzAxABFBMG2Ymj3gQn2LeZ4ywx4P\nJ1r0JmNsI3THOgGE110N9ToBz4Kd54FPyNkgp45Dyw13fxBBKfRZUWL0lBCH2x/jQEwNqAsoK0wR\nkFqcSx2cKccRjhUslm7qgc6xv6PIiyrAzni+zngm0Hl9oXUOdr5Maui5IXyGDhKNcHJKr+kxFkI/\nmDZGk2U59PrYtnM3cxkqEiWgUkpIkpi4nJBUS0RJghGCXOekeeZm/rEYCwZBP82I04wgcpbCeZ7T\n7fdptdvUOzXnbhWGqCSmVCpRrVVJs4EbXGuJUpJsMCDNMnq9HklSIkpK2NDpgIRQSCGxwg3GhXDa\nHawzLnCyDDsMBZVSsHp5we+dwrnm6nP/L+ojAMyWEvqtFnGlhBYBJhaIMCSMIUs1OQIjBCIIUYHA\n2IwsddlBMleEQeCAiwwRUiGEdtbHuTNhcIGuRauXAuMycRwBYUcmC8DwR9YCaUbWatM/bWGzjDgp\nkXd7DDptBp0ug16PfqdL2umgBwNErolVgBUSk+foPHPCfWNci6DWBFKgZEgYBCgPdAqdTQEXhTWc\n9Pr8/Q/9Np98vD7cW+9eW+WnfuC7qQWBowwF4B3yVBA4e3JvWGCscS14xoJ08KdoDLHF31535Zit\nscMyJrgf1/E4I4GR1bOX46Bz79iHQkpHOxkfqWSsM9MwWKIoIgpDlHDvHUrI0Ujj3PQ8fnsmHNRt\nzmeCnWfbxsRbgDtvX5XLZb76a/8L/ujj/4nj40PyLPvcTzqv8/ozqwLswLMmAMXAzDCyWSu+VwnD\nTBxVgVrgGJ1LwDUQtzTB9T7NxUMWmxssRZvMscOkd+0KyNEyoCPLHIcTPC3Ps1lf4ml9kaPqNL2k\nNhrVaCBVsF8BW+dZ0Xc6tv3egSWTw3xU3Qnpdyt0kgon1DkOa3QbCfW5PldXcETOW7wuXV8G5kFP\nKY6iBo/FCk+48P+z9+ZBkm15fd/nnHOX3Gvfq7qql+rut83CzMCwyQYrPGGIcCi8oSF42Ahsy5o3\nBFhSWA5ko/ASyJYcDiIUSCCDjCQ0KGyBJTuAwWNgRjAzDCNmeWtvr9eq7tqrsnK7957Ff5xzM7N7\n+g0IDdDY9XuR8bqysjJv3nsz7+97vr/v94uRCoUX33dpcMgUuyywpVfYbp9j7+Ec2fUanCjaexF5\nFtOZnGSnucRcuuPdvzilTpeUDPChrB0aaCJiCmp0yUWFIzdF96TFfnWOmfoesxwwhc+5mWWfSY6p\n0kfgyEhpyxanNJFYNrjD8vEOjbf7iC+C+wLk16F3DHkOSkK1BtV9kDlU45z5xgHnG7d5wCoGyQwH\nTOQnXvN0H/QdePsBfP+p5HPlOdSHb96W/LyzrE77c6Jx2GNm7ojp9JAJTqg1TzltTVA04pFMR45p\nr4YanHEdTnl+PhkmW2XE5EziXTMmIKlCGkFD+rsmw8OGrxeesnSHLr0RSuKwxNDlyNspwRjQQt/A\nIA93tPFg55jR+Fqfx/U6ZWd4ZlDwr1pnYOcZqSD38P2hBVPaX4XfeVACLnyIVfgXzueT2ML/behT\n6ff7JHFMpV6hXjRIqlVvVS3ACYcVo9EjY/0Y0aA/IK2kSCXRBgZZTqfbo9PtUq1WSNOYOI5IKyn1\nep1+v4/R2rvIRcqPT+U5vX6PNK1QrdWJkmpgSPAMAoCQlAvq4CAEhtqhdZy/bV5a4tu//iU++fmP\nYmzpXPMe4CNhr3gnGyk+ynvPX2CxVmVwfAxWUxQxKEEkBDaAKmuMd49zIKQiihKKrE+RFwghUSoG\nclwsPQgDTKFxToQsl5CNIyRKWgb9XjBvSFCiPlr1F9622TmBMw7dH9DbP6C9v0/e71NNK/Q7XbJe\nl3wwoMh8iFkkvJtelMRIB0WWcWvnEXd3dlmcaLE2NYUUkESKKLA9EoEzNmyv/086QYxECMePffzX\n+ML9Y0aap0/xL26+wn/1s/+En/orf96HtJYOZVGEiiPPuAiBxQ7PRetAOOlNpgMIGgKeoVFBWUH/\nMn5+B4BunQm6Gq/9KY0btPZGF9aAUF4zhBBoN2KFCq2RUnoQH0co6Z9XCbDO4HSOKwZg9WPXhSfB\nzjtqbJ5kbb42Upw/UD3tspakFa5cfZ5z6+fZ3n7A8dHhH/l2ndVZPV4lsCnDGcv7SlMAx6jNKG3J\nmv5WrXhdzjJwHrhqiV/oM3PhEVer17gob7HBHVbcFvNul4buEjmDFhEdVedQTXKfNe7E57k1c8St\nyibb8QY5iQcuGT7I9DSCrAlugG8my9XzsiMt/HfGIPHNaQfsScTgtM7h9DR7zPFILbI4uUfjwoAr\n74MPfUbyib1xR7WvvC4pXuFPT0suv9diL8JgOWaHefaY4w2eZ9fN+4VMJ+nZGqemxVExxVF3htPb\nM3BbeAblFNyuot+dYOtSi/b6BCdpkzYtpjgash4t2kzjvxNWeMCJmmSvNsd2dZm7dp29rWUKKqT1\nnGW22eSGt4DWj5jUJ1S0z47JVMpJ1GI3muNQTLPMNvXdAeoWuGtg3oD92/DZzOvsN4D3CVjJoJKA\nnIF0OWdp/REL6hFd0aDuutSK3rC3zw7gz59KPv+Y7ulTfMZ9hO/ZOeU3Di0cQXpsqfUzqmmfiuhT\nSQeoiqFIwulUGpw+ZjYAj4MdwUifU/5Rab3XwKOZGRDTEFdhSnit2Fy4lSYZdTxGKvF7GS11gmdu\n9sOtG343cEGyZiE3Pqh06KteIqAOI6BTgvFxxAQjN7az+lepM7DzDJXXtYCUDlOERtKN/G5s+PD6\nj7EMQ0YiLMy7YfMJDEeLSr2G0BqJ9IyvKIflwCLBCoqiIMsyiqIgilOMdWR5QafXo9Ppese3SkqS\nJMRJTKVSpV6rkw28dkQpRVqpBLDTJ4raVKs1RJT6AEoRAhwj/00hbHg3zo7cwqzfNmQAP8Df/e+/\nn//4r/4Mv/bbI+eaqUaLo87o5/dvnOevfOefRp+e0ilyOu0TolqFRp5Rm54kqtWJhELoAnSCCDku\nSkQejBSFdyITCmUEQjtAkWc5g24PFSmqtSpJEhMJ6bX8CI4fbpNlOY3WBLUkJo4UzhgwDmedZ5MG\nOVm7y/HuDoe7u2S9Ps1GnTzLcNZ4zY2EJKlQTSskKkJYx+7BAf/5z/wDPnvj2vB9fvDiJn/9u/4M\nk/W6P/rWogtNYQzOGD/3LDwAioTi7vERn793m6dpnD79+svc2dllbXHG5/4EVmeoPQrnENghsCm5\nHBvu86DGP2vphRBM+EbPYcsA2WAygCWpJMSJQgiLMcVQ12OMwYR9Yoz2jE/hQ2SzPKfQBZUkoVqt\nkqYJUWCatHVkRpNnPfJBF1dkWGueOnJWgp3RCGXY/t/XJ/SPpp62LQ5QUcT0zBybl5/jxrU3z8DO\nWT1DNQ50Sl0EPGbvPO7tHKX+nwv4EbZLIK/mTG3s8WL9dV7kNa7wFpvuBuftXRayHSrHDqnBxTCo\nx+w2J7nHOebZoylOieoasyl5mG+gO7HXS5wAxwJ2mmDKRrMMoByGP3i3uF4SHg8cCfKTlEdukYcs\nc1+ssTy9zczz+1Tbln/0/Zbv/vunfHx7dB2aiRUHxZjD2rzkY99lce+B/EXF4YUG91hnixVuukvc\nMhcZFBWMUWS9FH1chb0YdhiJ2O8yaqobwBqkbsAse2xyg0vcZNXdD1qcEyr0MSj6VDliiodiiTti\nnTm1x7VzV6jT5Tne5AX3Gs/xFpvcZKGzT32v8A07/hBlc5KDmRZbcoV5dkkOc9gCtwWPHsC/m40x\nMsDXOcnf27JcnoTKOYh2DVPdEyYbJ2gVEzlNZPRwmvCtHvwW47onKHVOnzQvc6MNmwU4g782Y3wk\nBSb0Pf+yNZ6rVBoR1BlZ/k1DVPUGGcvhnFwBlpw/RycZuQLGjFibNgHoCK/F2cazVw8YuUi7Muy2\nz+MBuONja6VGR/P4CNuzdGX6k11nYOcZKod3uUojQY7BaIcZbyIZN1X0cEcBSIkJDai1DiUZjr3Z\nQAkNQyydH4sLSAOCQsgaTZ7nDAYZUay8c5oQQ3an2etTq47CGtM0oVavMRjUyXOvIYmkF7/n2YBe\nt8dJfISMUqRKiOIUayFC+dezPiRSWz+epI3G+m82ypUMYx31Vo1//OM/xJ17e9y+t8O56SnWmi2u\nXb/PzdvbLNbqLNYbDLQh15qiZzAD0HkfKbz7WcVYrFRoGaG0JjJ1iBXO5nSP22SDLkmaIBwkxoHU\nWAud4zZ729tIZ5manqZWrYJzfuxskLG3f4B1jmZrkvz4xDuXGYMeZGS9AfmgwGiH08YHbNfqTKys\noAT0ul0/PicFsYqIlcIUmrw/IM8y/uLP/EM+d3OHcUbmd95+hR/53/4ZP/0D34uzgc3Aoa3GFnh7\n6HA+OBwPjsqr19Nnye/u7LO2PO8ZqxCu6c+RoMGxnqGxuOBUVp6nASiI8hzzx8pY61lGNxp1s11w\nXBUAACAASURBVEO3NY11GikdcezpS2O01xcV+fAc8qYBIuQwGbQuKPKMIs8wxlCr16hVa1TSGOEM\nOEekHNKCNjo8doCz5jGm5klWZ2guMPbZe9ZLSEm92eTKcy/whd/9HPfu36HIz0JGz+pZrPJKVd7K\n0aEUqEEl9iNCs/jGch1mFg7YrF3nKm/xLr7MS7zK2t42E3e7xNsOcYBvlhNIJzVLS0fMXOjSmOoR\nJ14QP1BVeufrHB/OYnZTDxx28Q3pMIPnFN9s5oSESu+I1a/7Xx0ADyHfjnm4ssSdiQ1mo31ask08\nVbD5jbeYbDl+ZTM4qm3DpRnYvGi48QBuPoRL87B50cIG9K8qHq3M8SZXucYV3uYCW+01Du8vYO/4\nFsz2JZzKEUPwCA+6cmAGz3xdhtnz22y2rvECrwZAeJ3z7jYzxydUjgpkz+IQuLqkO5OwMzHDIg+Z\n4piYggoDnud13u2+zLtO3qJxu0t828DD8HoADYgXLXPrp0xs3MJOauTAQs/LTF7ufCUj80U+wn/G\nKb+cWSo9EH2IB5DWM0+CiIQ8SqhX+1CFrWHn+fRr001gswpUwCaSgpichMImWCMf97/4Pb+8n2R2\nyvG1Ft7pYAJqqQc66+F2Hk9ZnXOo1T6tyRMaaZeKHKCExjrFwFboFnW6J00GD1tew3M3PG0lnOrb\nQKcCpmQVS8e1fjj3xtmcJ4EOnLE6X7s6AzvPUBkLSElaiVBS0O9rdDECPM5/jaECyFFCDNfPgjQe\nG3JQXAkktBfYOws+JLLkflz4uxBsiR9lywYD0jRBqRgpIS8KOv0unW7Nj7JVUtJKQhzHxHFCrVYn\nGwzodk79ml4co3VBXhS0T9sklToqrqDiFBnFIWiU8E4EZT4NQobBPD865fBNtHBghWR9Y5EL68vY\nbo7tZFxdX+HS9Cx5p8+gnyOyHKE12MCsDDJ0+5RMgMtzjFQYB7rRRE5PoZoNjMnZ3X7IydEB9XqV\naA3UBOj8lG67w/7OLrvb27i84LjRJIpjrDHkeUGhNQ5BkqTQ6ZPtH2B0gbAWaS1oizUOGaXESYVK\nvU4jTWhUUqQURBKKQodjCs5Yijwn6w+4ef8Bn7n2Jk8yMsY5fuvGy9zZP2Z9egbnSitli5UOZz0w\nsdZgnGGx2Qx/+/RZ8vWlhQByvN7LS4z8yeaszz1yOJwUSKEe03p6tkeEoFo7Bni8xbYxXn9jjcMY\nD2ys1UOtljeuC0DImCFQEyFjRwDOeoc8U+RYXRBJQS2MU0aRAmMxUqAkw+wiXeQU+cCfB0+5Co6D\nnGcR4Hw18OWzgSLObVxg9dw6b7z+ZQ4P9p/yyLM6q2ehSsAzzuyEpfGqHIGdZUjPdZib2uG8usNl\nrvM8b7D+YIuJtzrEr1sfwLgHFF68LmYcybomaWsuPHcPsxDRTesci0n2GrMMFht0l1O/yl5qLooE\n9LhFcdlohtE2Y0IGkF+ld/cU/bkWd69u0FAdEpFDDPl0wvxLB0yst9n4ugGXeg4UDFqS85njUuaw\nCvotRbvVYmdiltvVDd7geV7nBW7kmxzuzqKvp/CWHAK4oWlYirfebobNmwKxbkgvd1mduMfl6Bov\n8hrvMV/i8vFtJh60SR/kqB08WQAwAZXlPrVzAyaXelQaGVYKYjSXzQ2u9K4z+WYb9WUHb+GZpJPw\n+i2QSyA3DdGpwbwIMvhQ3BjAb7wDI/NpXuZWAe/1WdaAH7vvU6MtJugkDabm+7AIl1fxQOAdrk2X\nzvl90J+KOUm9bqrr6vT7VUw/8oeuxAduTHs1BAalxuVJ0J3gwU6DoSFBtQJz0rsAXgQuA5ct6YUe\n00t7zNT3mE93mZTH1OmOGUJUObGTHNRn2Z9Y4GBxhv5MA1uPw/EM0yrbkbdat7VwgEoHgzBCOTTP\nGM3wPKYnO6uvSZ2BnWeorHNYBFEcU0kjHBkDNLqwGOc/Bh7sOL9O4XxI5JDWDavWQxtrYym0QRcF\n1lhUJEZdnhNDObYQQYiuC7JBRl7JiZOIKBJo4+j1vFFBrVqlVqtSzaukqbcQrlQr1Op1sqwP1iKV\nIopiTFHQHwzodE6JkioyTpEyRqqIOPbic6m8IYNvsr0S3Y47tDEai/J6JomLFSKJiSp+pEFaEEKB\nFLhcgBYIozHW4Pp9cmsw/T5WSgrrsN0eibWkArTVHGzvsHX/HrVKQmpALeacHJ+wv7PL8cEBWW8A\nxjE4OiHgAKRUqCimVquREOF0l745weQFsRQkShEJQRT4t2qlSjWKiKTA5jlEygMC6xkPow15f0DR\nG2Dzggd7B+EIvgMjc3DM2vSCZ8GEQCqLjAB0ADoa7RyrM9N8YOMC/+LuK2EkLcySyx/kgy++yMbq\nks/NUQFsurEmuzQnwANpr1Xyo5ZCjLQ2xpb/97qeob7MOowFY9wQBDnnj5WUyrvahcf5bJ0SfJcf\nBoszGqsLjM4ROKqVlHq9RhxHXvPlBEoKhLBB6xbG+vIMa/WQ2Xkam/OOQOePUadT1u8FwhYWl1nf\nuMjs3MIZ2DmrZ6jE2G1cO1ECntBoKjlynZ4B5qA5c8J89RGr3GfD3mG984CJG13i37W4L4G7AZ0D\nj0eiCNIpSHaAAUxEXVbTbQ4XJngkFnmgVtmdXqK3UMdNR76nbQCdOICdOGyTwzebfaAHrg8nNdgV\nHohNSVwzZq+1yI3lHGqQiZTjaJK12XvMT+8xUZxSyQuchF6aEmtNYgxGSnppwo5Y4IFY5W0ucMNt\n8oZ+jq3dc/RuN2A76IpivAFYE0jdqCvLgI53AVPLhqn5PVbje1ziJlf1da60bzF/7Qj5qvNUyENG\nYGcSolVH88qA6ku7cMnSr1ZxSrCWbTG3dYR8FfhdKF6H/hb0e2AtVKpQW4T0xE+VRxPhOSfg9u/B\nyNyP4L0tsA3IahF96XN8wHGQTrO4sUd0Ea4ewL95TfL/nIzrnoLOaVay+R4LF+BkqslOPM8+sxwx\nSb/dwJxEnpgrtfyupHnGbZqfBDvl+VcmxzaAKYhqMPm4SQYvahqX2iwubrPRvMU691hmmxkOaNAh\nphiZSshpHqZLPEhWud06z8N0jXYyhZbpyLAgk6Ar0G8xGlvLKP13R9treBy0nQGdr2WdgZ1nqJzD\nN4VC0mpVvNBdDOj3C4rcAx6No8AR4zA4pMOLxhliGGwIlDSANl7zYArtDQqkQDgR5tk8PipDKY3V\n9Pt9BsZij05YnJ9kdqpOf5Bx2u1Sr9VoNGrUBp7lkTLx7E4YZxv0un6sKI4xOmHQH9Dp9VCVLjKp\noqKUKE1QkRfBC7z1sXMSKQXa+Ju1Pm1IyNLyWGKlwEoJcYRIHKQOoR3KOmIhsAqsEpALRAFFkWGK\nHKMLbL8HyqcX5YWmrySpFDgB2eEpJ9t7nJiCSq6xx212dnY42N/DGsvkxBSRjDGFp5viOKZWrVOv\nNUji2PfG1uKEQiaSNI5Igjuac2CkJBICYQ06y3lta4vbO7uszM6wPDNNobVv0PsZwjgSoTg/vxDO\niKeveq3NL+FUjHPaZ/4ohXTeKEAEtCEcSCX4a//ev81/+09/ic/eGM2Sf/DFl/ibP/x9CDVia8YB\ngIBROCgusG4Ei+rSnppgO23D+JrDIb0pgxMYFxgdazHGs1wgiZRCCBVYIQ90nLUBdAuE8Fo0a40H\nOnmG0zmxEkw06zQbdZJIIjEgSlYnXDacReucbNDH6ALnPLvjwhge5U/jb5Qw4vkMgJzfs8I2TkxO\ncf7CJqtr69y49sYfmx32WZ3V4zXugjWeXj+eb5JAEsBOA9/kT0MraTMvdlniISt6i+mtDvENA2+A\neR06t+CfdzzBswm8rw7THbxubxJa823WZrZYjraZY496s83x9BS6FfnXqeJtrimV7eVMRMHQlYA2\n9GPYT6Au/DamgkGlxTbnyJcSTitN9qNZ7rLOjNynlZ6SphkOQY8qSVQQobFIetTYZ4aHLPPArHIv\nP8e9kw0G11rYu5HvZS845LImntKohkZWLCLyTa4dKExXoXVE1CyYj/dYkdusc5eN/j0W7x/CF4Av\ngr4GxUPQPf+u4ibEq6DaoJxhrbXD0fIdCqWY6R4S3wJugH0TTq/Dw334PF5q8jzwjW2Y1RA18SGv\nIez18nn8a77Dtem5c8AyFPOKw2aDYybYYYEODbbSB6ysbjH5fI8os/y8sXz4/zzl43tjOqdFyce+\n2+LeBdlmwk5rgXus8dAtsefmyQ7quP1oZGDWBWw5jljao43n0nw1F7YW1Mesz887uAqVqx3WFm/z\nXPVNH6LK25zT95nRh9R1l9gFsBM1OIyn2I6WuC3OMxGdkKxk3I0ucuzmsFnk5TkdoBdDVvPpq0P9\nzoBRJlBp8DEcAP9qH7Sz+gPUGdh5xqrQlkFuqDdqfsRISoTo07UZpgj5OwHoGG8vUOKWErmEZxJY\n59DGoHONKQqiNEK4MToFGP9w9bOCL914yHG/P9yejeUFvuObnyNNIk47HRr1GtVqlWq1Gqx9JWla\nodlqoYuCwmbIKCGuSAYaerlG9QdE1QFxkZHkFaIoJgm5O0j/QZdKIrRvdrWVvpEnMAZ4OtwgvMFB\nAhQOV1hsEbJ+lCBRAiMdTjqMLXBBuD9cY4wUQmZkxycc54Y4jmmKiOm4wnG7w/23brJ/9wEnp21k\nJJmdmaGe+JAyIQRJnNJqtjjONW/vHbE6NclyowHCUqmnYI2/+FqLCe5hWE3e7bBzfMyP/KN/wqff\nemO4b7/xuef5sT/3MlONBlFaAeO1J+cXlvjWqy/x6evjLnSekfmmK+/mwtIqVheeCTQGKwDlraMh\nIkKhhEPEinoa87df+QG2Tk54cHzEuZUFNtaWQAncWLZeOQY5PDOcGK47QRiXE8HiXKohMLLOszfa\n+KOkbWkz7YGO1oY8yym0QQhFHMdEKsYHh5YjbhZnnXeEk14vposAdooBzuQkSZWJep1aWiFVDmHB\nOZ9REQmBEg7pDEWR0+91yYPGxzoLTj4eBjp6V8OfxbOMdp7YtCiKOH/hEpuXr/KpX/+/0frMgvqs\nnrUqdRJPptUriMVomqjpoAn1qMsUR8xywLQ5RGxZuAfuNty7Cx/uPC6I//qu5B/ctFycBnUfao8K\nptfaTE0eMckRrXqb/VaObtQCaCGQTeP6DcGI2eng57hq0FbwUPl8ldi/Xr/f4v6VKvsbMzycXhqz\nw+4Si6AXcikRmihcmQeknDDp3dwGixxuz8H1BK4LqDu4AvKCprF2wFyyx4Q8oUaPJNhI96nRpsV+\nNsugX2FW7rHII1bcFtOnBz6v5k1wr0H7OnzmEN7A6+o/ACwcQdOCqANzMDuxj02hkXW9JmgL8vtw\n/Rj+ApIvjO3fb2xLfu6u5fySfxyXgYtw+RvgQ5+WfOLRUxiZGcnmByzuCmQrFbZYZYcFtlkmpmBW\n7tOqnPKul16jWRkwOYXXPd2Cm4dwaQkuPWfhPLjn4O7yIjfSC9ziInfYYNsuU+zFftv3GUXTmBzP\nlIxbNpcsyZPHvGR2av7nCTEyyTgPXHasLd7jherrvIsv8YJ7gytcY+P0IfXdgddUZeG0noTucsLD\nqVlm2acqvHW3mYvIXUKnPe1B2YHwf9eNodsKG14C7nK7DI8zPWf1ta4zsPOMldaGTtfn1VTSBJqe\niXEWbCcDU47i+JG3kUG1LxEsP53/wfvNGEORFURpglDKB0kOaQCGY2SvPjjkuJ8Af5dSeHj34Sv8\n0m+9wfd8xwfo9fu0Tzukqc/akUqSpl6HU6vVyAYZHQt5XkAkSaswyDKyYfZOnyROiKIIISGOffaO\nlHKs2RQII7Au8iJz6TMQSuttKQUyjvzFSwd9iHC+cRcW6TQKS2ITtHM47ceZjHVgJa5wFJ2MolcQ\nq4iaTDi3uML8xAR5npEVGWmSkqYJjWaTSEaY3IARtHsdfvQXPs7v3L093N8fvHCRH/sz38lMo04S\nKVzI3HTOIYKmRjnBj/zc/85v33jEuOHA5659lL/6sx/jZ/7iD3nHMudto6WQ/K1XXuEHf/Lv8MlX\nR6te3/L8e/nxP/efBCMEr81CCYSVPthNSKQXcyEUiEgh4wiZxJxvLXPhwpofIRHycVdOMbbvXfmV\nW9IeAqckIlhu4wjZOx5M2zDG5qzDOIs2IURUe8BjnUOX+iUliaLEZ+gQzmnjgr7HjxyUFtVFUVBk\nGVbnVGPFZKNKs5aiRHB38yI0lAAlBZG0KByFLij6PXQ2wIYQU4QNb/Or2E4/Q+U/wV+9lpZX2bz8\nHLNz8+w82j5jd87qT1aNR6MkhkgUJGRUGFBzfUTXQRuKE/i+k68UxH+ej/D9+pRfO7aosMqv+pbK\n5IAKGQk5Shnf25avI558YRjZapXi8QpoBcc1uBceU5I/pxGDnQm2FmvsTK9RaXZIq32iyOs38yIm\nkgalDNZKBoMKWadBcZT6Jv1h5HUqSyA3c1rrR6xMbrGS3GdB7DDNAU06JORDZuiIKXbjeY7UFC3a\nTHDCpD6i0e5684VtuH8XvvtQBnczX1+H5CePLS8+gMoq8Aia/VOshiTTQ2KhN4Af0pIvPbF/f5uP\n8H2np/xG3/rHGjy78z742CuWD//UKR+/N8bIrEg+9j0W3gfuEjChadFmgzt0qXOfNV7nBSI0uhZx\n7so95ucPae4O2DzybB01yGYl7fk6DytLXIsv8Sovco2r3B+s0749h7kXebCzhwcSmrHjNy7yL78P\nn2AVS1ZHVD2YncLro1ZBrWtmV7c5n77NZa7zIq/zUvEaS7f3qdzMRyGiIUiVGaisFaxe2qN1oY+q\nWwoZ0xM1uvUGnfUJD5of4k0yDiV0S6BVYaQdK89H/fv88JzVH6TOwM4zVs5BXhj2D3uszDZppAnU\nHCYz5P0CHVymvIdaaVkwMleTQjwWP+UCu1PkOYmuoKzzQCewO8L5Z+hmOYfdPh7ojISHzjnubL/M\n/nGXaprS6XSopMmYdkISxxFxlNJotCgKQ6G9u1uUJETWN7+DQZ9+v+eDSSOFkA4IwEeokF0TQ+TZ\nHWM1Fo2zxo8jhR7VgyOHi0FULMJZnARbCN/UugiJJRKesdK5b6r96J7CobDa4axGRo5EKuJ6k0a1\ngtY5g0Ef6yxRFBEnCUoqjDPISPHf/dKv8LtPZNZ87vYr/Mj/8Uv8L9/7Z1HSM3FSBH5ECCyCm4eH\nfPpphgPW8Zuvvczd/X02lpZRKkLJCKUiGtMxv/Bj/yM3793n7Qf32ZiZY2NuniLzuTzlgJaQAhkr\nkBKhBCISiFgiI4lQ0oMbFXmQG/mfPTAUw1wnKYIxQLjbT325oNUROKmQQmER3kQjjIZZ60fZytUo\nGxgaIDi1BeBjPST39uMxUkTgRHAP9HPiznmzA4E3NyiKnCzPwBoq1ZhWvUK9khBHEmHdcBs8qRU0\nbMKhnMXmOVmviy4yElPDqeipvE0JEJ4lAPRUoDP8gI+qUq2yceESH/jgN/NL/+wXMObsQnlWf8Jq\nSCU7r7t78vcOrg/gU+7pgvjf5GVuZPD8cAbXIUPDL3AMRYjjgwzDlfPyU1YyAD38avsROAmZg4M6\nGDVyDD4SuIcR2bwim63Qm6yhqhqp/HOZXCKUQypvFmMyhW1Hvsk9wffis6Cu9plb32Fj8m024xtc\n4G2W2WaOXSZok5DjEHRocMAMD+USD+Qqh0xTYUC1KEh61o9xncJ/tCf5zFPc0T6an/LLp5ZKeFza\nL8it9OPeIX/zjoHfficLaP0yNwawKcFFcDpTY9CKmZk84ZevWm6+DjfvwaUWbNatX4Dc9bu6clKw\nvLyHWjWoxKuI77LOF8V76Ko6e/VZlpJHTE2cUMkGSBxFFNGp1NmvTHGfc9zkIm9xlWu9qzzcPoe5\nlsBt/KzdHtC2jHy5S+vmcXZnfF75iYwdWfWTbBN43diCJVrMWKxssyFvc4kbXOjdZvnBHtUv5Igv\n4197lxHYmQN13iFPCqbMCVdeuEY7aXIoptmtzrOzvEh3YQo3o/zrVMtxtUq4lezOEImf1R9inYGd\nZ7C0sewddphvVmlWUmpJTJ4mdCKF03YIdkxgd0ryUwbLAYnwbEe5Uh5W4J3xJgC4wAC5wA7g6GVl\ns/R04eFhu8fizAS9/oBOp0OnUydNU2RIqE+ThGq1xmCQ0R9kZFmOlJIoinwgZJHT63WJohilvEan\nLO8y5bUcSgpKY23twjhb0HEQWAchQUQCl4YpcSn8F7iwCBcjw6q/CQ5fzjgECmd8phDWAzznu2uU\nlEQyIZKKCIUMI2GitJRRsH14yufv3eGpmTVvv8x2u8PFhXmUUsNAzGBgw/bx6Vfdt/cOj7h0cTOw\nXgmRiohUQhTFPH+5zuW1DUyvh80zz1aFcE7nrCfoIomIBDKWyEShYgWR9HooJULSrEJIiSsNBmQA\nNMFSWgwbDygHu5wAJ/2d/lzymjLv+SbC+KRvKqz1ALeMNnXOURhNVhQYE8COjJDCg1tnHVZ71sdo\nGx4D1gm2dvfYerRLI41Ynm5STVNvIBFLlCrNEfxrSymQogQ8AoXF6Jy830XnA6zVSBcPneucc8P/\nP8v1e7E7UkqWV9f4lj/17Xzq13+V03Y7GD2c1Vk9S/UUO5ASb5Q9qZZo662FM1JykUC1CzW4M7xM\nPP27820Jz9fAVcEk0tsTE6Nd5C2Ky4X+4UfjSU1EKQTv4duh8J1vnQ+F3K9DpqAr4BC/Sj/tGQHX\njNFp/LjXQQARw587jNzWlh1cdkyt73Nh6iYvRq/xPG9wmeusdB8x2T2mOugTaQ0CsrRCp9ZgpzbH\nreQ8b3GFlAzhwlCGg+sd+HX9dLDyWV7mZgHvL9efnEOLGJdI6q0etOBB5avv35sCNpuQ1xWPmrMc\nqilc/S4zaZvNimVzkVG+TM+/d9GCZMUSb3ZI7QC7rBjUKnSpc40rnNLkIUssxI+Yjo+oNztIHBkp\npzTZZ5ZtlrnDBvc6Gzx6uEr3+gRcxwOOLeDAQd/gg25Kt4KMUSDnk5qdcd1ODDL2uqwmMAlyxlCd\n6TAvdllhi3P2HksnO9TeyuFLwBegdxu+tAc3M7gYwbumoHIEkYYotSzM77M2/4AHyQNuRxtMNQ/o\nz0xgpgLYqQGRGHMELMHO2Dz5cJt/P/z+Wf3L1BnYeQbLWke7k9HrZjSimFRK0iQiTSKKXHsHrKFu\nx1tRw3Bxy4u8QwaLNy3wjaufBfPjVaMPk1en19PyVHi68HCy1aCwjn6W0+32OA3jbB4UCJRURFFE\npVIlTXr0e32Kogi6HoW1dsTsKBnATWmdLJFCIcJzycA6qCEDpRABwEjns3OQPgRz1JSDxWCNwhnl\n94NxOAtGGCRq6FBZshfWBN866XecNQasQyqveynBjlSSndOg/HwnwHJ8wubqKkJ6oOMIC4tCsL7w\n1Q0HLp2/SLU1SZqkKBUhnEQ4gVQRzgkQWdDnaExwmrPWeGZPeC2SSiUqUchEeaZHeaAjpPDoMNA4\nIuwvIbxoXwRWp3T0c8J5+3LnPC4suUPnTS8I43ZQTsCJsO88iyOCnkdrTZZlZFmGNtqzRMIDSM/i\nWAptyXNNlntHut4g56d/8eO8cfvt4R66cm6Nv/Td/xbVNEZKf5V3wuKE9awW0hsUCM/sRM5ibE6R\n9SjCKBuxBamGQOdp9dV+90ddv192Z3p6lne9532sndvg1o3r9Pu9J//qrM7qj6Ecj4OKcXcs60ex\nS7fdgYCuYmCqdGhwSpO2bDE/c4KaN96i+C14p+/OyyvAAhTTkm6twgkTdKnTK2oUWTxa8C/w17/H\ntq+scuxpvOl04DQUDg6rMIi8LfWO8I1raXpQwferpZlW2Vs7Rlr5FnARxLolutjn3MQ9rkZv8RKv\n8pJ9jUv9m8zdOyG5bx5nDqZ6sHLIwsoeE7PHVJIBhYjJopiiKkkblltDEPcO7mgK3h/MIPI04lQ1\nIFVML/RgBa6ewzMl73RtugAsQWeiysNkgV03T7PSZooO7Fl4Hew1KB74zFYhIWpBtALiCGpWsxI9\nortaZz+a5QGr3OQSD+wqUxwNdUoAOQldV+fITrGnF9jJFzi+P0t+veb1SdeBO3jAeWJDds0ho3DO\nktUp0W3Z55RmGSXYiXwTUGHoQh1NFDRabWbEAXPss1DsMXnQhmDk8OhN+K4Hkk+NLSh9S1vyDzPL\negpiBirnLDONQ+aSPWY4ZEK2edh0IzfAUjtmEk+VPTZOOU4/ltt6xtZ/LesM7Dyj5RwcnQ5oVSrU\nKylJFJHGip4Uw3ULz+wwZBAek2HAyArYls5Y5nFmZ0yd0ahEzDSqHHQ+AmPCQ8ErrC0u0Ko30NqR\nWU2n2yM9OUGFEEqBBztCCOI4plqt0uv16PU8uImiCOc0eZ7R7XaJ45gk8SNsUgqkVEPRujf6EsNG\nWkoJmJC5Y4aADTyoU0rg4uDopRRWKqySEAuUdShrMWGcQSoR/Bs820UIvLTGN/HOGIwxyJD5IwJw\ndA6WJ0v/zadfFM7NzWKE8JlIwVQBqUBGrK+c41tfeDeffvMrDQf+tfd/Ey+98BJJWiVSETgwuQ8X\nLQqNyXOKPEMXGa7Iubn9gLd3HrIyNcXa3AxIgUpjolQhEomIpbcoUjBEAYzGFkfXeDFkc0rA46TD\niNICvXRYc0ict4y2bpifQDhLnPN6HWfNMBC0MBattWf0tMY6iIREBK9xZ72FrNE+B0oXPsT1p3/x\n47x155DxMcEb91/hJ37x1/hb/8X3IiOHw2ACzJfCoZQHzJEURNIROYPGoPM+phhgdRH0U6XNegBq\n/x9gd5RSTE5N88Fv+lPs7e6cgZ2zekbK4Ru1kvKwjIQvGRTVUbxNGziGjq5zwDS7zLEfzXJheQsu\nGC6/Fz70BcknDp4iiJ+SbL7LC9o783UeVbxF8SHTnHQmyY4roz64R8hkGKeUxret4PFPW+kbnAOT\n0GtBrwr7yjfIZeMaM8JIpca8/OAavB5kHliEaLlgafEB58XbXOEtXuB1nu+/weyXO/Aq0W62PgAA\nIABJREFU3mpuF09UKLye5Bw0nutz6cV7yA3LF8W7OE6adFtV0rkuFy8An4N3ui69EMAgs3Baa7Ar\n54lqlnPnd2AbLp/Ch96SfOLwKft3RbL59RYuwX5jhi51WrRZKx4Qva3hdeBVyN6ETz+C14ALwPtT\nmNuFKPP7qTXXZ7G+z/LcNvPscoNNrg82MULRrJ6SBkMGQ0TfVjntTdDZmYYHwod03sEzOrfweUB7\nQH8Q/tFmdJDLMbbSoKBk6krwUBoCqNFdQUKjKpp61KVBhwlOaLQHxI+c1wdtw5/dkvymfXxU8NN8\nhO/dPeWTW9azTXtQz7tMcEyLtjcsaLiRPCcBlBjbjhLwCB43Kjhj6P8w6gzsPMN13MuZywrqlYRI\neW1MFCm09tqI8VG2cq1KMKZFCPdZ59DWjwtZYz27ESyC/X9+TOw951p84U6bw95IeDjdbPKvv+cy\nRltkrDDW0s9yTtptlFLEcTQ0LNBaI4SgUqlQr9fpdrvkeY5zLrjKCbJsMAQ8HuwookijtfGMlPBf\nTkKo0KcL35BLgbMCnzhqQ/Co8/oNY5HOoYQgihXOxlhhPbMSVuyt9u51zlqcsVhnEDiMKTBa+4wg\nCONYFh1pkiQljhOscyw1mnzDxkV+58nMGvGDfOPmc5ybX8AK6XkQKUEqRByj0goyrfATf/kv89Ef\n/3F+4wujfftt3/Ct/OyP/XUqtaZnqYxFFzlZNiDrdzF5hslzbJ5zfHzAD/+dn+CTr39p+Pff8vxL\n/E8/8B8yXa8gY+kp8iiMngVXOov14n8nUM5/sY5Nq3mHNelvBKBTjj46Z4cM1XDMrbzfiZGttLM+\nKDVYVDvjmafyJJRK+tG8yAPi0nLaWv88Uioe7R8GRucrxwS/cO1ltg6PuLg2B4B0YK0E559DSOGB\nj3AoYVFodN6nyAcY4y2o/ZDb49TIs8Lk/EFLCEG1WuMDX//NfOY3P8X+/p4/l8/qrP5Yqkx4U0/c\nN54Mn4G2HnwEoMMuHJ9M8qixyFayyh25zsLsLqtXdqhlGR8zlg//3Ckf3xkTxC9IPvbvW8T7IH+X\nYG9xijtig/usssUy/ZMm7EXeBeuUAHYKHtd1jM+3lfqPcI0Z394hKquBqXnQM4hBRuNfjGPsq/8e\npoXXhUwDc454rmBB7LAqtljnLqvH20xe78HnQHwJuAlmB4ouKAXRDIiHILqQOM352haH0zPoRHLU\nnGL6UpfLXw8f+pTkE9tfCVb+jUnJ5fdbeA64BIe1Ge6Jc5AKWottzr37EZGwfCyyfPjnT/n49tj+\n3ZB87Act5v2CvYsT7NbmsEhmsiPqjwrENvAA7t6B79mR/OZYg/7+TPJTh5b33gPW/HuorveZnjtk\nkmOanEI7pr0zS7c7g4gDyLQCmwlMW/lg10fAtvBAorwdAFmX0YHtMtLslEDn91ljWaNSOmJRkJAT\nUyCNRQT28foRfNI8fVTwU/ZlXm/DCwG8R1aHQcqCSBQI5UC5IIxlhG3GFh0f/7yc1R9WnYGdZ7gG\nuaYzKJioGWKpSOKYOJbkuQijbKM1jK8mcXMCH2BpzHBUSzhASJzwzI50gjRSvPfcFI/2FcenAyIp\nWZiqU+Q5WhsfBopfue/1+6RJTLVaGVpRK6W8ZkVKKpUKjUaDw8ND8jwPwEZirTcr6PViosg/3ut4\ncpxjCIBADrUkUoK1IoyHlauFZji8VwZPi3K0zTqsMAHseHbGGkshDNppnLNsHxyzdXjEXK3GQq2C\n08YDP+fQVuMcSBkhpMFo/0X+X3/Hh/hvfvlX+e3bo4vCN1y6yv/w3f+BNwEX0l8AlfKmAElKVK0S\nV6rUJ6f4hb/xN7izs8vbjx5yaeM8l89fZBgEq7W37h70yfo9sn4XnWVgCqQ1/NBP/m1+6817jLMe\nn3nro/ylv/f3+V//yx/2QCd8cXuQUwZ9GmxwhvN5NHJI9nhWT3pWTo7GIF3YcWUOkpTBvS0YCrjA\n+Gjt7aXLfSxgCGLKsbahjsS7IIRt8SYE3oXNg7Hdw8OwR58+jrG9d8Tm+hwO774mpAzbUTI1IKRD\nWud1O8WAPOuh9SDwn18Jbv7EgZ3yAjm22UmcsHHhEhsXLrK9/YCjw7OQ0bP646zxUbGx0bUhcMj8\nYtXAwbHwzesjGGw32G8tcmdmnTmxx0R8AmuCZbnL1ESfX7lkuXENbu7ApUXYvGRx56B3NeLh0jw3\nKpe4zia37QUe9Fbp79TgkfDuWUf4xX9d0kllU+wYuXSVwCcb2+aSjRrgG+ow92SrYJ+kdcarCq7p\nf10DmiCnNNXJU2Y4YIFHrLhtZtqHxLcsXAP3Ghzeg985hpsFbCh4zzFM96EmQDYd1aWc+fout5Nz\n3Kut0to4Zabb5mMftXz4J075+P0nwOC/Y+HdoF+S7C9Pcjc9xy0uomVEpdqH85KFyh4TSxm/8m7L\njRtw8wFcmoTNFQsTYE8d9Z0BK2qLSr1PojXqBA9SD+H7tiSfdo8zHr/LR/gLvVM+eWiJj0GcQDTQ\n1OhSpU+FAcKCOUgwNxlqfYbGeKUL+AGevNkB9pzHm1kP3JF/cY75yhG2EuyUTMnTjk+osdPTObBI\nDAqL9FrXcHhvDdePnn5tuu3ghSAFskJikNhwG+ajP3kbVnmundUfdp2BnWe4CmPpDHL6uWaiViFN\nYpIoYqAKjCk/oCXD43UXownQYEIt/PiOcQ5tTcg0MeAib5Ecxtm8OYC3BmgkFWxiyArNabtDu92m\n2apTqcQIJXFWUGhDf+DH0qrVKpVKBaUUSZIEh7aYer1Op9Oh3++jtSaOY4QQaF0wGPSJ4gilYqLI\n21eXXwJR5MfTvKhdBnG59JqcMDqHEN6JzTlk6YKmJM4qZAhlUzYstknhjQnIaXd7/OjH/imfu3lr\nuJ/fu7bGD33bN9BM0sBx+dE/bQyi8PtMIGlWqvz4h7+L7dM2WyfHrM3McH5uwY/ziaAtUpEHOlGE\ninymTKyUDxZ1gkura5xfvwBSkucFQpQAQWOKHJ0NyLM+uujjTI50lrs7D/nUa1/kaW5u//zVl7mz\nv8fG6gJO+uNtAtAxVmOdQwrpnd6EQpYanAB2yqgjIYSfELR2yAxKIRBSodQIyPhQTuNbAW28UYDw\n4EPgdVCm1BaVYCesdg7H3oK9tLWjx041auF9PX0cY2N5Him8AYcL43l2CHjwDJLwRgUSjTYZRdal\nyAc4q0faJFGePn8ygM47jbKVE3gqipiZW2DzyvPcuPYmx0cHz/x43ln9/6XKIevxhPvgedxP4Cjy\nY1sPwd5NOJya5Xb1Eo1al5gC3YwYrFdYnNijcq7P2ntz1rXDRpJ2I6Y/VWV/YYKb0SVe5wXecs/x\ntrnA4cN5inuJZwJ28H1x34HN/GsPlwcrjLrscvtKgfsg3FdmuPQZza2VM0njY0hlpcAMiKb/ZxiT\nipoFtcYpkxwzxSEz+RGN457fxntw/x58eEfy6bLxtfD1heRnnOVKDaJVv59aF9uA4GG8QHW6D8/d\npVU75ZfPG26+GtzRmrC5YD2jtAA0PNsfCU2E5phJ3pDPE7cKKmmPJMqR1rFpYbOGB4cPgF2QO9A8\nGJA+v0N1fUCukuHhvH4Cv56/sznCjQE8H9yghbUoDAo/USFE2K0P8SNq5dRguatP8YCnDbQNdIqQ\np3McNvA4PKDHiNUpUckTI2tDEdUYAC/HDAN7YwvFwFQYyAo9USOrRJgWqAm4OA/chHe6Nl2ZASaB\nFmRRSo86farkLoVMQC7G4n+epmNzT/x8Vn8YdQZ2nuGyztHNCrpZwWS9ShrHpElMHOXowgSwY33Y\nJiVweUK747yI3QeMWrTRgd2x4GTQm/umtrR1jqOYOI7IdUGeZ7TbbaZ6LeqNCnGSImWE0z4Lpdfr\ncXp6SpIkKOVF4OW/q9UqjUaDoijI89y7tqUp1lrykL0TRWP6HeFDJZXy403O2cDsyKHWBheBkEgr\nwflATYlDWoMKjbQsQVDkUPjH4yCylr/2j/8vPn/rgHGG5EsPXuF//vXP8qPf+W0+G8eGZtpZCq1x\nltDwe83L6uQkK9NTRDLyhgbSu8dJoQgGzp5JsQ5hNOTCjxfJHFcU6DjBisCaCHzjb3Jvs60LsBlK\naISyKAHbB7vhiD59Zenu7h4b55Zwwg6BjjYGYxxSCKI4ppJUkM4hrA5W3n42TQkRxgdFGFELQAcP\nYLx5hAznY2B2nAfPpcsaQoV37UGMLgp04ccD/fOJ0UnpnD9vgyW5CeBoulnl0soyt7ZfCX/jxzGk\n/EE++NILXFxZBKHDSBrBZKF0EwwyVAFK+nMBE0wK8j7WFiD8hcQFrdIzHyQ6fs0TT1wCww8lo9Zo\nNNm8/ByLSyvcuX2LPM/+CDf0rM7qaVU2ceNAp8A3p6eQpXCsYFd4J68p6LYmeFA9T7SisbGkJ2oc\nVqdZq95nbmmPCU6IrKYg5lQ22WWOLVZ4m4tcd5e5rq9wv71OcasGt5XXdzwCjhzYklkyeMDSwtMu\nJZgpO+0S5JSdcKnbyRkl3j+puSjZgwjvYxx+LiNeUpCpJU0yavSo06Xaz0mOnQdi+/C9+5LPPiVL\n6D89PeVXDy1R6O8rekBCTocmb0ZXUIsFm/U7xBM9Nmdg8wDPiJSExw5EWJbEAWb1LVRD83r0AnfY\nYJ27DEgxXUl83+C+DNwAfQAuB5FANA2ch6RtmbHHmHWBq4JI4dZwYuwdrksxPB9clm2sKEqnPCI/\nqWHCNt7H74fhYXD+NOlayG0AqR0C8mGk0+mFWzmaCCN76fIYBUOCIeAZ02tpoC+gC7oX0c0anFQn\nOGKSk2qD/lxMY7Xg8lX40KuST5x+5ajgt9clm1csbgXsErTTFkdMccwkXVvHncoRHivf3/AzYUbb\n8ti/v4L+OauvQZ2BnWe8Brmm0/cJ9GkSkyYJkcoQogiMDiFvRw5HiSReqyFc2dA5n3RvNYUt0LYg\ntgpc7FfrhdfwEFb541hSSSOsizHWMOj36Pd6FHmTatUDE2MN2loGA29F7fNyRqLvNE1JkoRWq/X/\nsvfmMZZk2Xnf794bEW/Pfc+qrL2re7qHs3ABSdESYRGirX8kyLaAMTGgQYiQ4OHIIixvEGgYsADZ\nAAnZsikblg1ZluAhBEg2YREiTXJMcjgkRWpEcmZ6eqnqqurasir35a0Rce/1H+feeJHV1TNNanp6\nGsgDBPJl5ltu3IgXcb77fec7jEajypkry7JQt2HJ8zHDocjzsjQjMRneC8uhYsNTVM0eWWHSFOUc\nuGAjHcGOd/hQtxF7C2EUOqy82dJyb2eXf/H6mzyvLuQPHnyanfGQzd4c2itUTOpdicLgvQBFVYC2\nobYoAZ0atBYWScBEAAC+hPAaF/S6Xht8mmIbDW5vb/NgZ5trFy5wbXMd760wa8aLvNAk4BTae65v\nbYSxvos5wsYq6GAP7Qi6RdBek5qURtIkUSmEwn4AvFhuCysWbJl1cJ8LIEdVntQQNYHeBXMHVFVT\npcLrowW1DVbjZVmA92hjMIlBm+AKZ4NLoBeW0buSIp/w5//EK/z8F7/CrUdTOcb3fvRlfuYnf5RE\nieWRV27qs6MIPY3kcWLE7rtwHu0tdjIinwwoygkZz6/b+dBGpRYSsHrx4hUuXLxEr9djf/8c7JzH\nBxkxeQNJOutL9g3gVGRew7YwLzWnqr6Z4Q39CqPNBsfJDE9Z4R6XmeeAGU5JVElJEnrQLPCENR6w\nxT17mUcHFxm8uiDOXXeQJPopcOwRFsAjS/A9pkxAHFcscG8wzUzjFpPTCG7ifj0rk1p4/nRoUDqK\npEQopUpfkUhvnr57TcgX+TRvjOATAXdpLwzJmAb7LHCFu5Ab1C7wGuJY9ghR3emwqxsyD5uf2EVd\nV0wWGpQkbPE2iw9OaHzVwh8Avw/lm/C7R/BmAS8k8D1zCNBykLY8aeZhAfwSXNsC/iW8233pxhrS\niHQRJq0Gx8xySpcBHWyenCVkHjFtEhoXNqsGRxHoDAgoiCnIiVvNaY1G+JmFx/H3aJtXyI/R9K3L\nw4yTozn2mks8Vas8NhuszO/TvfkUDuFzf9bxqV885ZeOa1LBGc3/+YMOPgL+BRheT3jaWmabNfZY\n5NDP4U6U7Fcc/tiH8UY28Xk1Rv5d/n4e/zpxDna+zWNSWvqTnNGkYLaTkpmENBFpkXNWjAbCCrcj\nGpWpwPpMNwW4aNuL9GlRLq7my/+U1ygcJjU0Wg2UUThvMYmmKAuxES6aJEmGSRNwlsI6RuMx2XBY\nc1iTRDnLsqp2ZzKZ0O+LJK7ZbGISEwrdITEJWdaUnj0awOF9Ggra5eZyRpoTJFOxpar2DuMTCPIs\npbX02DGJOJ2WjmKSs314Et7g+StRu6Mxl5ZTtFdop/DW40phwUS+JfbU2idoEvAWTyFCDe9wzso+\nCGrBG40LRfnKaJRJOBr1+ezf/Z/59T/4UvXpP/id38X/8jf+Y5bmemLP7BXOalxZ4p3jxuWL/Juf\n/CS//gfvdHP7vu/4GBfXlimdDbU20njVKAGfqU4wSmOUxuNF+mWnKX90vyPIILMkDcApmBU4ka2J\nLXjAPjXAE7GQc5aytNiyPMPYWCcNWVUwbfBezqn6c4pizGQyYKbT4q/+xR8CkzIuHTcubXJzax2j\nQeHwTpq0GhFCyOdGCZ3WaBzGQ5qALktcOaKcDCmLsZzv2n/bQ53nKtACOVb975nnKBRrGxfYunSN\nxaUV9vfP63bO44OKWH9gar9HZic2gGwAbShSOOjVXM3kql6UGQ9Pr3GyMcfj3iYr6Q5zHNFiRKJK\nLIYRLQ6ZY4cVdg/XON2eI7/XgtcV3EKcux4iiSYK8Yuur5jHccWEesDUySAyAzHi+GMxeUybZGlR\nfm+9cyriYn0BrtQULmOsmoxVE9sw+A6oLrxV4aXn35ceJfCJDtCBQqeMaZJSsMV9LnOP5r2RGBx8\nCdxrMHoA45G8Q6sH7YuyW8rAQvuAK927DLM2K+zS2M1R98Dfgae34d/d03zRu2q3v39f849xrM+A\n3oDyimJ4NaF7peCF74I/80XNrz59jjnCjObGx8XJrbgKJwttdlhhj2WOmCMfZoI/60Zqtg9+yJRJ\ni0xbBKPRiCCipKCROwNs4s820+adLaayw6b8343gtCWH/AB4qih3GjxZXedtLrGqnjLfO6L74oD5\nos98C35xy3HrNtzeg+uzcOOKOAG6j8D4lZS3Gld5S13jbS6xPd7k8MkSbkfL+5+EXYDafsXxnwOb\nb0Wcg51v83DeM5oUHA3HzHVapEaTGF2taHsVLtteEjnnRU40VYGKGYExoBONTjQq0aDDyrqvuvFI\nIbdSGK1oZClJonFe3K5sWTIajWi1G6SpIUk0SoszV1EUjMdjhsNhxQroGkvQbDZpt9uMAgvkPTRb\nTSSDKxgMBmRZMzBDDu8aAmR0FmpB4hglpmMmMAsaZQw6VDABpI0Ubx3eAsrhvOfKxbXwDs9fibqy\nuUar266YHVdaijzHFqWIFUJ3bK3Eyvj+wS6PT065vLTE1dVVlHJ4r1HeoBIj0kDvxYJaKZR2fPZn\n/y6/+ZV71GV0X/j9z/JX/tbP8E9/+r9CKekN5LynUF4khij+p//8P+Iv/zd/h1/7V9OVpe//2Cf4\n6Z/8cZmLcH+q/PWCJXOaJCRGnO18kJwpI452UaKmI4pRmiTUxVjRmlWAVNgfPSV6nJsKwXyocSoK\nYbKcxXkXDBLiuejDuegpbSmGDGXOZDJiODgln4yZm+kyP9tjfXWF+dkZWs2M1GipzQpjUYghhVEK\nlIAuFWq7hK1yJB6MkuaiZT6inIykuahxImn8NoM8X6/ExtcffJ3ndbs9rly7waXL13jzja99E0d3\nHufxR406oKjL2KIMbAAcg0+lYefTFuECBaWCkWJy2OZgxzBc7rEzs0mjNcGkE7SxeKcpi4zJuMVo\n0GL8tIV9kMI9LTbF95BakAIhcuaVNJE8MyQvq+yTBpQd8GMkQe4jGXC9u/2Is0uHdcfDWPvD2ed4\nH4COgjGUw5TBsEO/0+WEGY6aXUbzGe2VnGuXEN/md+sldAFYB1ahn8nrQbFa7rB0eEJ6r4Q3IX8d\njt+E3z6FNyxcBD46gLUxzCeg56GxWTK/fMrKyg5zk1OSoxL2odyDT+1ofvsZs4Hf8Z/hR/ZP+aV9\nR2MP1JEndY7JDU02cPzcX3J86u8/4+S2pPncv+3g48BHYX99ngetCzzkAo/9Bruny0z2GyK3ix4D\nOeBypB7nhKnsMUrUorlE/FukgKJUrYGAmugL3kWs8OIW3Aa0qZpsU4SP2gO2FfZhxpO1C9xd2Gcu\nO6aTDElmSy6//JDFhSOyKyU3Pgo34mm8BJNNw8lml8cLa3zVvMwb6iZ3/DWeDNYp77XEPnsHATwD\nV9uPunvcOeD5VsQ52PkQxLiwHPTHXFx0GKNJjcEEhyznPaUXoGLRgVT3IbX007UoozBZQtJIQ9NJ\nmF6Y5TWx07DWSGF68KN33lGG+pxmq0mj0RAgomSF3VnHZDI5A3Ziw9AkSUL9Tpt2a0J/MGI8yaXn\nCtIPZjyeMBj0MSaMPngdV/UiGuoJauztQmAyULKyjzegLXiHSVO8spUFtU4Sbmxt8gMfe5nf/spZ\nhkTrz/I9N29w7dIGyoaPc+CKEj3R2LxAIyDQaM3pKOen/sk/47fv3K7G9APXb/Iz//5fZK7XBePx\nRq6nKg2sTqK5u7vDr//h7/M8o4HP/96nefPBA65sbkjNTWkpShcSeEOnO8M//K9/ijfevs/dx4/Y\nWlvmyuYqPqzCxWMtTVm1GMNpsXw2Qd4ICMOjEjxWLKfDcUKpUKcjNT+xOCcaAHjraoudHryrZHM+\n9OQpykJ66wTnPxtAT7Syts6C9ZXErcgnTEYDRn3poN1tt5id6dLttGhkCalRJJpgsy6yTAh+fAHk\nE0C+nCce7VVlQW1tjp0MKSbDoNl3VRr2QcKdb+QfMP23mv7wZ/9zNhRJknLl6g1euPkyv/b5X6Qo\nim/CSM/jPP64EfUE0Qygzu5E32kDXsNQwdOGSJPHCNbYA/uowWClwWBhDmY8tEpIHFgFYwOnRpLI\nYHLAY6RGpx8+chXJcxtMfQSicm2s4ETBSQaDDEZNmGRIopwxrcWpXymipC3WVsT/1UFQWK33FnJT\nSaXsUcLopMthZ55dlnmarrA2v0v7yh4vfBJ++Hc1v7L7LvbRn3C4a1Bc1uw1FzlkDodm1p7Q3C0x\nYd8fP4IfOaqZHACfKDT/44Hjux+Bfgz6CTSPc+aWj8iKCTr3MIHXjuHX/POldL/uP83rJ/CxCegJ\npIXj4eoKM68M6DWH/OIlx61X4fYjuL4INy47/AaU1+HkSo+7c5d507zAHa7ywF/keGeB8kk2BQEn\nHspoCjFAENCkNp914BPn2YVjFF0gWuFgd5F6rOD7rZuQNSHV0uMmEjz1w3oEPAK3pOkvznE/uUxz\nboRJSsrE0F/ustV9zMzqKVk/xxQWpw1lN+F4rsN2e5W3uMbX+Ahf4yPc61/l8PES3NHCLj5FMNzI\nhv17tgFq7K1zblDwfsY52PkQRG4tx6Mxo7zAaEWaGJLgkGW9VGIUNXOC2HUnurNlWlidJEswmUEH\nZsfh8DZIvxSVQ1e8EkgCKfUfRVEwGo0ZDoaVzbQODJPHUxQic6szO8YYGo0GxiQ0Gk1mZmYYTwpO\nTk4ZTwpAQ5biXDQriBK4aFRgQuNQGUsEUJGxqiySlbjNeC91Jz4YDChjZD6cF0MDPH/7J/8DfvJv\n/wN+8w+nK1Hf89JN/uZf+ncwzUySZcSC2pcpSZbgbSnGBeH5P/Vz/4zfvbvHGRvoO5/lr//jf8I/\n+OyPQ2IgMagkQWepjMMkPDj6+vbKb7z9kNXlpdCUUyyZtdJVf1C85+L6BhsrS8RGq8FSrwI6RkWw\nKTU5STBB8F4ATDR8EKaJar59/eLvqVzTqp47SHNRX/FsclH2Xpq2llbMHIqyIC8K8rKgsOIG52It\nDyW+kFqtshhTTkbk4yFlMWG212Futsdsr0u7mZEYhcaFYx4+KyT9Il30FfiBWL8jBhvaOlIFhS0o\nxyPK8UgkgZmYdajpblbfmfcr3juwqUdtkGdG+/VHurG5xQsvfoTFxWWePt0+d2U7jw8oYs1BTC/q\n7I5myphUYlroz0HZlILxEyWr7Y+Qev9ZoKsgS6dlFxEzHSMJ82F4PEJKZ6JDVqwHikOJ9sbD8Jro\nYrxrYKcrDU9dvRan/h2K9RZx/+JzYgIeLcXGwlIMWwK8DoE9Q37Q5unaKo/Z4L7aYq23y+KNY7LT\ngs/9aOgltF1jSJY1n/vzDv9xKF/R7F/q8cBscsg8XQY0/QSGXsDhCfzY03eaHPwhn+En7SlfOHYy\nP6dgxpYWI1yicKmQXnertZF3sVcu4WOpkHG5Sbmtr7Fw6YCN2R1mNgdsvWS5PPRgYNLRFMuGwUbK\nW41rvKoFBNx213k0ukD5sAUP9NQp75hgQlBnPE6ZOuNFUBBNCOISboYAnTrImZUTQHfBZNDW0zKt\nCHwjlvW1t9wD7inowdPWOko73IxhmHTYZ4m3W9sst3aZWT2hyZiclD499llkm3Xe9pe45W/wVn6d\np482mbzWlbqx0GyUEwdFzlTPVrfKrje4Pbehfr/iHOx8SKKwju3DPutzXbLUSD2LVnjnKVHi6R6e\na0JimiCMbZIo0izBpFJP4tSU+fGhZmPqxOurReTYPNI5kVYVk5LBYEyzNSJNM0xDYxIDymGdJZ9M\nhFkIQCdNU0CRZWBMSqfbY8mL5XJ/MMSWFu8aZFlKnueMx+PABCWkaUJRyOmZJC40pRQpQpTI2ZBE\nE8dLuDXF5jw4QKOcR1nZh9lem//tb/wV7m3vcO/JE9aX59lYXsCWFmdDzYs2GBQ6ETlc7EvkvefO\nkx1++81bPNcG+vVP83B0wrULm6g0RWcpXmscAryuXdkKz3++XGF1eYn+pKC0LlgwEIWwAAAgAElE\nQVQ6G4ySnkq4ItQ3GbSRecUXUwaGIDULxgHRqCLYFogRRdWAU4vMzVRTV7En9agDHm99JUmLSbQn\nGl+IEUNeFkyKgkmek09yyqIU1o2AyazD2pKymJCPh4xHA2wxodVIWVtdZnlpnpleh2YjI1EBtHuR\n3Kla/i/CRof20kxWAy4gIWGnEKtv67B5Tj4cU4wLTEPMFL4xbPjWxllI8m4WCuodz3w20jRl69I1\n/sSf/NP8/P/1c5Tn7M55fODx9ZK3ehGahfE87HQCOKCy86WLLNw3CMWnTBf6T8Omw/O3kIL8FWpA\nCUlwVXhdLM+JfVy2mQKjbQP9BShDDWg1xmflRlHKFnVx8f+h1sQWUhMS+tHwFMonKY+vb3A/u8iK\n2mGueURrc8gL6T3mu0gvodfg9mO4vgQ3rjnYgvImnLzQ5A39Ird4gaMAduTOIvHmAP6/4vnMzO/y\naW5ZeNlOh+qVYthskfWGJHOWF1eR5Pxd7k0fWZY5srOak16DfRZ5xCaPZg9Ym9lm/sYRTcZ4FEPa\nHKp5nqpV7nCVN3mB13mR28MX2L+1AbcVvI2wcAcIIKxqcSbPbLGupX4eRce1CHQ6VCCHeXncU/Jw\nsbb1mJbypGEuImg+RViYBDwZ2/kWg6tdjpbmeMIqK+wyzyFd+jSYUGLo0+WIOXZZ4TEbvF1c4vit\nZYrXmvA6Ujf2IJxfg4IKlZ7pDRTPp3PA837HOdj5kERpHU+O+8x3myitQi8aDTY0z8QHCRPSgFRr\nMqNppJpWqmk3U9IsAaPEjIAAa1QtvVKh6DwAh1igXpZl1fxxOBAjgixrSENQk4CWknFrLbYoKPKc\n8WhMajLwwrg0Gqayo56ZmcVaaS46GFqcawYGJzYlFaAUQU0MpXTl+iZ21CbIpIIdsacCOtHMTTmp\ne0EL86HweOW5vLHMpY1FCucobJBkKRdeJ/UraFBoSaBDgfijk34YzfNXwO4dHHD1xiVIEnxiRObn\n5TMvXljnB7/7u/jCl95pNPC9H/8k62vrFM5jvex3EhqVOidGCc45gbUKYTt8kJN5sZgW2ZomScyU\nUgg9baR4SaSK3jucV2ivKuYm9tAhNOzUgSFygT2T4z+Vj3kvAGNqde2w1lGUlqIoKYsSV1qp7XLh\nODhHOZHzY9A/pX96jCsLFubnWFleZrbXo5FloT4omAn4WE8km/dqysgoqv0Gj5OCNWHDtCK1hiL3\nFMOCclTIzS6+37cg3o1Y8c/8/x1PU6r6owxVvq11t8PnhVKK9Y1NfuBP/mk+/8u/wPHx0XQx4DzO\n41seUcIWz8G4Il/JCGrPC7UMrgd5Fw7acKyhqaZAJ8qPIrESiaI5BOBshe0SsA7J6pjmfJ9Wa0Sm\nczyK0ieMJw0Gx13sbgseaUlI55HunQmSnB63oVhiCmRiQbyrjTnKjzxn2YdQVF/OCNjZA56AfdvQ\nX13k7WtX6LQHpKrAJZrhSpuNzmPmr59y45OWGyPZTz8HJ4ttnswucj/b4mt8hNd5EY1jiT1Guonv\nATPwVjWd78LMNODlgANs29BXXXIy2stPaFwecvOj8Gde1fzqybuYDXzUwWWYLGfsqFV2WeYel0lU\nwYraZZYjmkxwaIa0AwhY5iEXuMMVHhxe5uDuGryqpWfN24js8DDSdCcIGIhuBVG6Vu+fExm3CHTa\nCNCZA5bkICYdWFKwqsQJrr7NMgU8CVPr6wECsKNl91sKckP/dJ47F5o8WVlnobfPTHJCmyEpOQ7D\nkDYndoajwQIne4tMHjewd1MBc/V97FsoozwvmmFEg4I6s3Me72ecg50PSTjv6U9yjscTullCmiVk\nWUJpxUXNB9lXajSNRNNIFI3U0Ew1WaLJEkWaKIyR1W1BNKq2YDxdUfZRxuTAOk9Z2JCwg3U5qBOy\nrEkjbdAM7l3RH81ZR5kX5HrCUA/x3qOUFOunCCvT7XYoihxrS8bjET4kZFqrSlZljBFGqUr6NEa7\n8H6q2rTWoRGmABQV6lUUWpznPGjrwRiU81hnUEouLt7rcDsOibSyaAfTCpdwUxZ0gUJx6cLXNzm4\nuLWKTQK4Crr1wjmct2jr+O//s8/y2b/1d/iNL9XslT/+Sf7b/+QnsIicTNflhF5AgvMWZ0tK5USa\npkNzUC8sntGaxBip5zICdqIBhTRkCWAvyNDFXY7Q4NNVYEehUWoKnnQEQ4rQqDSudyqsd1gv5JIN\nZT7OCgsULbCVF0mgKwX8FJMJ+XjMoN8nn4zptJssLS2ysDBPq90iSYWxjBHSfJGwqSjQlHErL2DH\naFnujc1njVLBxEBTlo5yOGLSP6UzP0GlGUqZqsZp+ik8F0j8UZqPfkOjAX92Lfu9harG8V5kab2Z\nWW7cfJnrN17ia6/+IYNB/xu+5jzO4/2JutwrUjL5c54XkUsODMEPoOiJW1uewTARpl7H9wkXyaaC\nZWATuA7cAG442tdOmZ09Yr69z1zzgF5yGlgHyGnQtx0OZxc4WVrgcHWe4UoXN5PVansUkMJhB+w8\nUxBTT07rtRZ1mV6UY4XmKscNeKoD4aCxcxlPmhdJNyy+oxnrJsfZLFvZfZbbe3SXh6RliUMzaWQc\nNOZ5lKxzhyvc5gavuZdYVPusq8ccmVnGKwmttZxrV4EvwrvaQF+UefJrkM9l7LNIQUp3fUR2M6dx\nWvJzQ8enfuGUXzqsSenmNZ/7txzqo5C/ZDjc7HGfi2yzztf4CCNazHHIDKdk5Dg0Y5qc0GPfL/F0\nsMrh4RL9B7MUt55hPHY9DEtEx/Zsg9AaDVVx8RHoRDOCKF2bB+ag0YHFRM6HS2HbAi469GZOe25I\nszUmTXK0FjOhskgYTZqMjzoUT1rC7hwADxTuIGW4nTDeaDJYmCVr5yRpidYWj7w2H2bkxw3Kp015\n7QPgftgeeXmvvM8z/tOcbbwTmatzwPN+xjnY+RCFdZ6j4ZgsbdNoNehYj1aG0iu0TkiShCxNaKQB\n8KSaNNEkGrRyksRG+924uBaZjOqnCoSBx1mPtdI80oZVc2s9thzQTE9pNzu0siaZNhhtgkUwOOvI\n8wLUWNzEAvvjHALIsoxup0NZ5BR5zmQSddDyZRcZnK6AjfyeYI3FOKnnmYYODVHBK4/DgFci6gs2\nzipReKWxoe7GWQRAOI9RCh/7zChhteJWJaZKB+tlxbVLG/wbH3+F3/ryO9mZ7//YR9m6sEqpAh3t\nJKUurQ31N45uu8X//jf/C+483ObO420urK9zcXNDgF04JEIvRdtnsX7GC6sjtUOS0EtVizAZiZE6\nLmN0SP6D/biTdToV++EEIFGvuzkTFc5T09cg4MniKF0YpVbC5rgoZQtgR1RnMkZtMMqIVbW1crzH\nY4b9PuPhkDQxLMzPsbq6TK/XJWtkGBNNNqYSDZFZxgaiKrb8CRhOwFk0WRB2U46/Aem3Mx4yPD6g\nu7BIkmZSsFrb2Wed/qqpeI9A5+syOM+wN+/ldhbP++fFNwI9aZqxtLTMd3739/Hgwb1zsHMeH3BE\naU79hhN/xq3OikSg0AcycE3Im0wtnxugGtBKJM+9gACdl8C8WNC9ccz62gMuJvfZ5BEriG11kzEA\nExqcmBl2W0s8aa1zr3uJJ70LHHcWKJLWFJOVCiYpnM5yNjmNzmCRGoiyowjYItg5BTowWoA9Ja5c\nbaANg2yWh36LYiOh3+myxyL31RZLjT16jRMa5DgUA7ocMs8T1rjvLnKvuMzj/CJ51mS38TZP9Co7\nswtsXNrnhe8t+OHPa37l0TuZmR+a09z8pIMbMLqYsT87xzbrnDBDe3ZIei1nyR8x37JiNvBWsFde\nCvbKlyB/WXNwY4b78xe4zXXus8Wd8TUOxws07YSmGWNMCV5RuJRx0WSQdznZ62HvN+CegbuIU959\nhD07KaGMRU2nvJPxqJruMK31itbS0ZAggJ20AwuJgJvLCPB9wZFeyelsntJdPGSpvcecOaLNEINY\nmI9pcmTnOBwtc7S6yGCjQ/FWA3/LBAMFhbuXMZrPGPXCx0bBSezTc4ywQk/D9hh46uHIQT5CEM8B\nU2vzZ62z605/54Dn/YpzsPMhi5Nhzly3Ra+dYbSh2WjgnNSZJCYlTQ2ZUaFGXkmjShVX2MKXqdLP\nqJBMy+o5PrhrVUDHUZYeZ8FaF6REnrwsOTnq02kNaGctMpOQZMHFTSmch8JafFHAxKDMBJTBOk+S\nJKRJQqPRoNPpkOc5eS5Obs65ysFNZGoCjpJEgFy0STYmfk4wKdC6ci6V+6eq6kR0YtBonCpFToWw\nFM6Cxwb3LkTSFeyLVQAZMkfyfNSUefrv/vqP8dd+5u/zhd+froB938c+yk//pz+GjbUlwbJZfAGE\nRasScq25cnGTrQublF5RBuaFuD+h2aYOeYFI1zwq0WTBnCIxMqjCC7iJzmpxx1UABjrUqGgT7MAV\nlWytApeiBwtyP10Bnmj6gFHgpT9PtClXQZ7nnMc5Fc4ROVe8j45wibgGBrBTTCaMhwP6JyJfm5lf\nYH19jeWlRVqtJmliQr2RMEzgxXbay+cr5QK7IwbUtYokxDadqQIxAHztSmw+ZHC4y2BugbTRRBsZ\nG2pa5xZ5TWl4694VbPiKnnnn//07HrxX9fU3V1bXbLb5zu/5fr7wG7/K7s4TrD23NT2PDzLi/Qck\n5YjJbPx21MFO7EEyYGornNW2ZUgyqclYRVbvr4N+qaT34hFX1t7gRd7gGrfZ4gFr7gmL5SGZm6Dw\n5DrjWM/wNFnlARdZbOzz5lqfO53r7KoNXJmIU9sIGBgYtMB1kSQ1Jqpjpv1d6jUXcR+i21wDXBtO\n2lIL1Awv8dAv5pnkTY63ZthrLHPX7DGnj+jqAWlgv0a0OLZz7NslnuarPDlYoxy1aS+NeNzY4L66\nxJp6SudSTjI64nN/zfGp/+GUX7pfY2bWNJ/7Cw4+AcV3GHY2F3mreZm32WKXFbmSLjto3WVx7hRz\npeTqJxzXcpn6YkZj1w2Hl7vc7V3iq7zMm/4mb/lrPN1f52h7CfoGWl4OjwcmamqqtoMAgEdhe+hD\no1cXGI99zjYMfbb/jEivZeLiFo0JArOjujCbij33JeAm8BFHenPCwtYOW/N35VzgCQsc0GFAQolF\nM6TDgVngaXeVh50L3Fu9zGFvlXGzjX/VTE0GonIusn9ygN4JeA6BfSfSNTdGisKiC8OzgK4Objzn\nYOf9jXOw8yGLorSM8xLvFb1Om05LkkwIkh6lSJQPyZ4PQGeacp2pF6j+parfnWPK5pQOW1qsDVbP\nIVwJp8cDmtkRWdoQABOAljxLklDrxKVrMskBYQIajQyfZSRG02w06HW7uLLg4PCQ4XAo+6GnFtRS\nxyP21TEpTFOP1qYqnldEaV5c/YltMgVEGJ2AAaetZMFOg4rGBkEWFyQSUrbkK8tkH2zKxP1NAEyn\n0+Tv/Zf/IW9v7/D29g6bq0tsri1htKG0TpgVr6s5lb43YrCgTZBkgDRFsn56eLwHb3GuxFtLJeJy\nwnJkaUKr2RDgE2VoiRHDcE3FCAnKC/tPAB4B7Pjq/cIxJz5XV6UiTvRhFfitIYLaOeQDWBCAUxaO\nIneUhcWW4vInwgORsdmyJB8N6R8f0j8+otdpsbSwwNLSEp1ulyRN0TrI9sTSgfqFX9gbPR2Hisc7\n9P+JK2OB4TMJGOswtqDMR4xPjjh6+pgky9Ba02h3q94bPoBKOcfeu2Ts3WLKUb6X+OYCHYA0S7l0\n+RrXrt/kyfZD9vd2v+mfcR7n8UeLyOAAZ77bniloiPUu9Y73gc2hixRetKGZSsH5BhXYmb12wJWV\nN3iFV/kOvsxNXucqd1ifPGXmSS45JkALxnMpO4tz3OY6sxzTZIzuOCavZJwMl3D9VPLv6NbW74Ib\nMq23iPeimHz72vgj+zBGEtwGjFdgvzN1AAsuy8Vhk/3Hmxxc2KCxfEJn5oRWY0Qa5mlMk9Nhj+Fe\nD/e4iX+ooAtHjTnuLV5ikX1mOaKxOObFV+6wPHvEL1513PoK3H4QmJmrTubpOjy9sMDtzlVe5ya3\nuME2G0xoMKHBUWeOiy88YPXGDr3xKaktKUzCabPLvlrigb7Aba7xBi/yGi9ya3yd/oNZ+IoWo4FW\nbVoi3jtlWguziwCfnTCFLqKD2HGz3l00ytievYo+j9mZhY6Rkp0LwFXgJVAfm7C++TY3O29wg1tc\n4S4XeMAyu8xwSkqBRdOnxx5LPOQCd7nCfHrIrWs3eJxcou/nBZO8ijBSRfj4yOzE0zWeGkfhdxsb\n+ESLwFiPFM+faKsdAV18fB7vZ5yDnQ9ZlNYxHOeM85xuMyMxBm8EjMQcNRawy9p3zFZDTUaN2JG8\nuCYLcqF+o5Kv+UqaJGU1Mc1VTCY5RyenJI2GWFonPdCGJJGGltpLslyUYp3jvdR8eO9wVgrXNZ40\nTaSGpywYDIeMxyI3cM5hrQ31O0mViEZpl4nsDwhzEHvu+Ag0IhCaJp/VLlTJMqg41qn3dgWgCMYG\nse7FQ6gjkmR8a22ZrdUlSucpreh4fXBSExmWSOyk9sniS6lt0l5AofMipyP0ytGIkYFIzYStErAg\nsqwkUYCtuaRFK+nQRDQ6rClfk7aLzbSu9TDytf/j5PcoarPehZoYVRk+VM1nvbzeAd6Ke51zCuvF\nLTAvLEUAO84JK2OxYEtGgz4nR4ecHh+RaFheWmBleYmZXk9YOyMOg3KMrTQ0ddF4Qnr0WFsKEIrM\nlQacCno2XbFZwmyB0WCUR7uScjKgv79D2mySZhlZmmAamjKcK2LcMK0HOxvPgy7T70IdF31jkPNe\npXFTQ4I/St0QCMs7v7DI9Rsv8sbrX+Vgf+/chvo8vk2ibtlc/1udKYmPDZLUxiX1DugEOkqS2zXg\nArSun7C2/JCb+k1e4at8B3/IzcM7LD06JLufYx56yaW9vEVrNWd964DelS/TmhmjEk+pEvpZl9cv\ntZnsdYMVNZKkjzJwjTCGuNVX4us/SyRpj+M/lMdjxGkuOoCdAgcK/1ThH8J4vkcx0+ak5VDGhz5v\nGjswuEMDO1rkUZswbM3yuHmJzpqwQFYbhr0uW9cesLi+x8VP9Lk2ku/7sJ1wMtNlr7nI3cZlXlc3\n+Rov84a7yYPRFieNHqdJj121zANzkUX26LYHJL6UOdEdDljkMevc4zJ37DXujK5y/MYK5esZvKmE\n+SjUO+29o+vdUdj6DvIJuBMEBDxbx1KXr8V6HcXUqrzO7ESw04RZLSzfBeCKh5twYe0BL7Ze46Pq\nK7zMq7zALbYGj+kdDDHHJbrw+ERhe4bTxSZbvfssqT16nJCqHNYVDwvN8HR2ilfuhcMZcUlULpZe\nbublGFwENHXntcgKjjgLbuI+nse3Is7BzocsnPeM84LhOMd1SrI0SpBijutDJUcsYI8X4ijLogI5\nlSLHT5Pb0k7rL2xVeO6lPiU833lHbi2ngwEqSTBpStpI0UmLJpo0Fo17JQSK9ThVSnLvRdIUewVp\nBc1Gg5leF+8dw+GI0WhUFc5rLQ5sJkmIblwoRaogUYnsu5OLjartH/U+LN6LTbX3Up8TzIuV07Xe\nMapiWCoiI4AiVXPHkvcLzFFguwyIZMukKK1FgqUIP0VmFeuejAdtfJCTRbAjPXG0VqAMysv4Kgvp\nALaUd1hXSiPQCMZUaFpqFLFPq485f5Cnxb5H1kuTT+enkkava0DOR0ZLJG1iOCB9dGwwMXDVOeAp\nncM6XTGBRWABY79XPFhrKSdj+qcn9E+OsWXO4twsm+trrCwt0ut0SNMMrQ1KxdorhVdlGAsVuHMB\nFIoU0KGdEnDoY32RRjkbJg20EcmjsSUUUAxO6O/vkDXE7ryTpCidEq0K4vn2DmBQYY0AcJT8sTq9\nvu439o/P3DwLdOqPvx540VrTbne5ev0F1jcu8PbdtxiPR3/scZzHeXzz4qzSYPrtiTULEejEFfzI\noITmkZkWR60FxF56A2bnD9lsPOQqd3jBvcmL/bdYuX1A46uFFMTfR3JPD/RAr3sa1wqyYcG1l+4y\nXmxwombY1cvsLq+wu55RrLSCdbUS4FM05fMrCVVK7WbDNImN+zZiSnWIlJeRg92ugJ2+msq8FsHP\nJJTdRN663gMmKuIiQzIG20o5bi7wVnoT5hUT3eA4meNJsspa+wlzc4c0SlkoGiUNjtI5tlnjHpd5\ni+vcym9w9/g6Jw/mmCx1OV5aYLu9zjrbzHFEWw8xWCyGIS2OmGeHFR4PL7BzsM7x9izl1xrwuhaZ\n1wOqHrFnSK6oSJyUMCnAjpHk/ygckD5TRqdexxLnMszdO4BOOBdUS5qFzigxqtgAs1XSu3TAlc4d\nXjKv8VG+wiv5q1zaecTsgwHJQ4vaCx+Zyty3Lw7pXhwxszoka+ZYZRg12wyWOwyvdmDHwI4S+d0O\nUovDGLwVPXw13gh0hrWfcd9izdezYO7Z78N5vF9xDnY+hDEuLINxTmFLGqmZrmiHGgeFJfpW+Uqv\nVpWFVGzO9FoditmB0ims9ZRWElxrHaW1WOukMiLUaRS2JB9brFKQGNJmRpIZvG7gDaSB2YlyKW+l\n0N55h3ceaw1ZasgSg9GKVrNJWZZY5xmPxxXg0dpggvzLex/YFoXX4LUAHuddoKaCgC2AnWk26gIj\n4YO1skFZUN6hg5ObD7bK0cI7hopiMB16EUUgFZ7jnTxOgvECgUmJ8ynsh8NZJ4wDsaeRqmReOliJ\na6MD4eSrJqKKwNR5jy1KvPPBmlkYDadBJVoYnSBlqxqEKlURVl6JBbVzpcjkcJXMzSH34nhsIxCT\nRqEO6wXIlDaCHRVMCcRuvLRIbZcLAC7YjeM8pbcM+n2Oj48Yj4a0Gg021tfYWF1hfm6GRpZWgCzO\nsfahb5SmxsRFeVmAD0qhtJfpDudZVbAjxVkB7HiM9uiiwOYjhkcHqMRgUkPaaJC2ZzE6C+YHBGc/\nX5u/eAYg36fqEbh4nsSnv+Ob+s2XqL2XUEqRpimXL1/nwoVLdDrdc7BzHt9G8WyCp2p/rzu3xVqN\n6MDVgGYAO3PAkketlcy1DthQj9niPlfcPVYeHdB4tYAvgX0Vxg9gMpR3b7ShuQLJoSwOLvaO2Go+\nlJoNdYH7nS1O5xcoFlvTZpRNIE/BRlZn5jn7UnK29ijSGzGcJMdjoMxgnMBxYI9iL6AW04aXMJVJ\n9RFsMAlT0oAibbKv13BXNcPZNnvpEg/0RZbVLjPpMY1UTA4mNDlmhl1WeOgv8Gh8ke39TQ7eXobX\nNAcbLQaXOhwsLfKwcYl22qeZjNDK4jBMbJNB3uN00uNkf57R/S7cVWKtfBdhOx55OLUQr9dRnl3a\nIAmJpg1xR/qcBQMRGdXBTjwX4o0tbrGGqwW6NW2xswiseZL1gvW5h1xW93iBW9ycvMnVvfvMfXmA\n+loY8w5T8m0Z0suO2Y8MaH7HQ8otxSDpcKgW2G0vs39hifHajNhZz4fXHnjwcX/qIG1c257dr7oh\nwXkj0Q8izsHOhzDywjLKCyZFSa+VoqusMHx5fOiZUgGe2otrQMeHxNShpGeKk0adeekpS0tpz27W\nTVf5rRW5U26dCBPSlJEtMIlifWWRtZXF0PFeYQKgEtm2R6kySMFkw2iM1rRbrSqZ7Pf7DIZDtEnQ\niRSTl84SLd+i9IpsuvIfk15xUovgJ4TW4rZGkK8pqWnyVsBXwGbh8dQJDZg6fOkpy6OUEkc3pn1u\nsgjKgnlCWZbktkR5H6RXvlaAP7XONqnBpCnaCJrywTzAOxfAkDiUmWCgUB1K70O9jkcpGYsAJC/y\ntXAWOKwAj7LAugLnxOUmgi4Zb2BynJNGqD72z7EUVuRppXXikaa1nDfeB0DkKaytGJ3IynlbMhkN\nODw64PT0hETB4uICFy9ssLAwT7PZQGmR+CVpgqkApapspZ2Snj9ORXPzyGj5QGz5wKJRzemU4gNj\nFKlB3HdczmR4Qr5TYp0jazaZX01JmonUgDE9l+KZE0k9Vf8+KRVuT+rM8Xi/wE1d0lZ90nuoK1rf\nvMjWpavMLyyxv39et3Me304RKQCY9uJ59vtTX9VvABk0tLia9YA5T7o0ZDY7YoUd1v02m8Vjknsl\nvA7uVRi+BttP4UuI2uplBd93ALMl0IVszTE/f8J6d5sVdlhij4fdCaezXuRyLWQbGLBZ+OA62IlA\np+7GFreYCA9qzyugnIWTLvQzONDQ0YE0UtNWMjBtNTP2smkFiaoYFDtO2etvMrjRYWdhlbezfebN\nAV3dJ0PqZCc+o+97HNk5dvMVjp4sMnmrC7eQ7RFMtrvsrnXZXdyE2ZyknaONxTtNOUnxRw3YC7U5\njxGL5fvh57aHoxKKIWdZurI2B/FnZDwi+Kk31qzXsTzvuhbPjVi30wTdgK6agp1VT2NpzBpPuMAD\nLvu7bB0/Yv61Afwr4MtQvgXFLrhJaLi+BOYp6CFkpuDq/F32ZhZ5nKzzoHGBJwvrbK/08IvhsMfa\npNIxNR2Ix9vWHj9vv5610z4HOt/KOAc7H8LwwCi3HA0mLPaaCMCByv6rtnJ2FuhMt0h8WDdNdMVW\n2lGUJXlRUESgU5ahx4rHekfpPTYCiaJg3O/z8HTEuJiuZF25sMlf+OEfoNdtkyYGUdtptDGBOfAU\nZWAXnArNMBPa7TYORekcg+GI/nA4BQ/OBtbEV05sVY1F2E+twrKYlzmogAUenRh8ZIHQIo0zwk64\nMqavgbFR/swqvwAeXZknVElwkFopL8YExoR6HOdQRmyXdSqLXSK1MiK3UjqwVokk+mmC95bCinxL\n6nB0VV4kibUOsqkA5MJ4lPY4m4vDmncoLfOlnAv1U+C9pSxzYXaCHExVzI/GEwCOd9J/FDFYsN6R\nF0UAwtJnBytyQOscpbPkZUmeW/KiFNDjHE/39niys0Pictz4FOVKlleXuXT5EivrazQ7LUxq0ElC\nYsS6PLJakT9RShzYIth0WlO5CVTMjheppI+lWNGmeto3KDGQJQpbWigc46HRYhQAACAASURBVDxn\nkucBuGtmVxTNzgzKTBvWxrMhri/Lez1vNfr9jT9OzU6MbrfH9Rsvcu3GTW7feu2bPLLzOI9vVsTm\no/WoScCq+hc1xT0NUC1Pqzuim/TpccpcecLc0QC9DTyE0QN47Sn8ZTR/UNMof/+R5v+555jfBLah\ndTpiiX1mOabHKUlzDF0HLTM1gdMJku1GdidGndWZcFa6FGs1Yj+VCIiGQEec2kYdGIcul8/7nvsw\nP74E1ZhOS1RNncJod5bxRo+nKxcw82Pa3QEmsXivKPKUybCJPWjhnxj8IzXtBXMPwW7bSA3UAtDO\nKBvZlKUpmCrP9pjaK0eXtX4Jth/+mXNWjhiT/dhDqQ5+4t8iKPh6QOd5UrZE/pzJVNKDdG5Cb3Gf\nBQ4E8NhHzB8eCgv1NeBV2H0Av3Uqf7oMfO8OLPehrUHNQnPNs/LSPmu9J6yww6w54um8x85QY98U\nlNFEI0c0fHVQU2+GWt+vOsA/byT6rY5zsPMhjUlhORyMKW0XYwxK+dqqdFiBDs+NIrYooRKwgFgG\nO4cNMqSysEzygklRMCkj2HFSHB4AhvPTrgKBh2CUOyxt4H9FOjj/Bvce/QT/9Je+yKf+3A9JXYUQ\nAhij0AqKshRWxGm8MbjEYxKpOErSjFa7g/UwmUzo9/sUZUlpLUqp4NBmqlqUJElCYhyK6SsOICTF\nkQXyOhTkB+CFwbsgrUNkbolJBBqFIvgIeKb+BYISXXBIS4xBJUqsv7XsW6xr0SBNPoMd9zRJF6Cj\nEzFeEFtohcdMGbkwRiqmRECZj6BWKWkkqqNyQJgYvEVXS4MeZaWRrCf0xKnVJUUgSDiOUZrmcSIV\njDDRT8+hOE8+SNZcMLUoXUlRFBweH/OPfv6f88bdu9W5ujE/y5/73pdY21hjbXONVq+NbmT4xOA0\noSeSjMhVp284f8OJEwGiCo1io6JQGB5HdXgCeEM50MKOecAYSB2kypFbz2TQZ/fxQ3TSwHrN/Iqn\n2ekJi6hNGEv4TqlaSXXFzAVThyhJfJ/vW3UW572aDSiluHTlOjdfeoXP//IvvF9DO4/z+BaGqvCP\nakCSFGQqp8mYRpmjYz14H8Zj+KtovkwP+Fnivel3/Gf49/ZP+X9PHOYUknFJ041o6jEZOSYpILOQ\nGcmQFIAB04KsEW5kYTjeBwzjZbXfRzlTvUg9FuAPOctwBNrIB09qHyVb8c2faWDq5+C4By6dfsQx\n8EThVwx+UePmDKftJioLw8sVbqjhUMOuEpDyJGzbCG7bRnDcjBLWrBGG4ZhK6aLRwAFSO3QKTCZg\no+XaQdivCHZiMh8T/yjhij/rW72nTlysjXMQAa/irEOfkXtDLOFpQ9Ip6KQDepwywwnd/pjGrpP9\newRvbMOPnmr+RW3R6rud5v/Yd9x8BGob2IHetRPmOKJHn7YeQc9Bx0sT2wxR0ikDPqmNs0BA7rO2\n2fXHdcBzDnS+1XEOdj6kUTpHf1RwMpyw0GmQKln19rUksZY3AlQmXd4HFsc5bOkpgm1wkZfkecnE\nFkycJXdOCtNDIly/FMXLhfOI4xY/y7Rz84/gvefuw0+zvXfA+vIiCicyMe9xRoEt0d7irMalnsQb\nUmWEiTCGRqNRFcWPx2OKfj+4s0kfHgF4kqg3m03SNBWww9SZTanQrUXJBVPkR2rKAOjQNybUASkv\nxd0KjY/W1JXkTdUy7FBLozWJNmIuEEALSowRQtWJ5N2EcYQ5NEaTZik6SYjNMsU6WuNVUs0T8TgG\nuZwNb+C9k2OpvDAt3tWssr04mdWYL/FA8EHmRpWq40HpeJYgtTZ1CBSAg1Ia7920HqeyfXYBZFms\nKylswT/8v/85t94+BP4RMbnYPvoMv/qVt/mzP/ynmF2YI202MKkJdt/TW0B8JCAjzkE0HzBobXFO\nBQOD2mviiY0P84I42rkgd9MebSBxkDpFah1FWZCfHnOw/YAsa0gz3izBpB2sV3IzC+dTBDxnToFo\n8x2kbOHR+xL/Ok5qS8sr3LjxEtduvPRNHNF5nMcHHOrsY19VIFLlkbcLQmJ79t7k8HzefZpbI3jx\nzNv46RvWP0cD8wpSI2xP7LWiOOuYPQTGKYwakEe3sMgEnYYtr70gSPMqq+1Yl1IHOzFZRl5XWjjt\nCbMwVFOTgwXETKFrcG0jCTlMc/DjsEWwsucFh2mgEeR6babGd3WwEwmrIWKyMC6gmDBtMFN3Vav1\n8wOmAOcZ4HammWad0Xn2KvrMga5vEf8EskcnjlQXNBnTZEKSWwG/wfztx481v/cM8P0Sn+HH+6f8\n6okjC+7QDTehxZgGEzKVozJXkUlTmWF9LDAFeHWwU8+W6nNyDnQ+iDgHOx/S8F7YnZ3jEb1GSpbp\naWE6iCxJRbAjUh9RdglLUJZSfJ4XlmJiKXJLkZcUpWXiLbl3FN6f+crWN/kMFbo1g1w86vGnANje\n2WduZkYK9r3GKo9NNNpbTEhsY/WO0o5EySp+kqQ0GmI/ba1lPB5zenpaNRmNcrLooFWBn1jLEOVe\nkU2h6sQSruOqukwprTGJAaMwKgUvJisKj/Yak+jKEMA7J316kBqa2AdIBzc1G6SEKgAdX42DKrk3\niSZJBBw5BLyIsk5c1YxKKqAnPYQCkI2gyGkBOMFwYHqrB1AVE+QDC2WdAB1VuzbHcakK8AQuTNVX\n1GTMOsjxKiAd/iemBgHolDnbT5/y5r27CNA5C3zffPhpchSdTps0SzHBjCF8cHUsqpqfKZ1EZCUj\n8FIqsndM73sBZMpjsetWWqRu4swGxgXAoxWZBlcWTI4PONq+TzNLaTYz0tSAaQQgLSuKLozAR8vD\nZ6Oa0ymH+u0QzjmKIkdrw9LSygc9nPM4jz9C+Gceh99jTmnB51AUGbnLmOgGE9Og6CiSjkd14XFM\n+N/l3nQHeLEHRSNlpFtMyMjJsDaB3Ez7Ps4i1sazCH5pMWV8og9B5ZoWWJSjBCYNKBPw0XXAhydF\n14EhZ2RZVfL8LLMTmY6w8xHwjFIYpKIg6ymRpEWn7vhx0S8hegL0EQvofgmlNC9FGUTrqyHRUhcU\nwU4ZGKvcyef6nLNmA9FwIKKhCGLi8Yv74GoDcrW/PXus43U3Pv4G19JnnhKXeOOyXTx13hzDF9zz\nge9v+k9zawIvh+e+4z3i+N7TZT0yN8/OQ/3xeXwQcQ52PsRROsf24ZDN+Q7trOLbJdHXUhvjHbLS\nX3MFK60lLyyToiCfWPLcUhShiah3lPiwvZOAjZsO0qzp1/c3mF5EAH4dEHlVfziWMTkBO94G+VW1\nQuJQymK0FeCiRKKWpimtVguQBPb09JSTk5MzTUe99xXTk4WGkTFP9s7jlBhNm5q8zIdxxWut1kY2\npdAYnHX4qmpDoZMApIIkKrqqRUZHReOCSJshxgFKa5EJ+lB3Erp/GiM1JdaLIYTU2ii0ChIqXesZ\ng9SlohTWOowJQMeW2KKgLHOpWzUyflBVA1gfgY/34bVUbFYEWNrowIaoap6nkrsIBBN0cJOLk+u8\nWIiXpaUoRMK2u78fjv3zk4uj/phWqyX7EADKGYAQgaGvTuMqqiGpCHp8YN9UMH8g+hYEQkoAD1p6\nDxkv82JKT6I9ifJkeGw+YrD3lF2tAwjVtGYX0SnCssVbXmR3wngqE4wppJ5+/z6AmPZe8lhbMh6P\nOD0+5vbtN/iXv/dbPNl++IGN7TzO448ezy6xhTtR6WGiYAR+oBj3WwxaHU6zHsdpj9P5JrNrY8ym\n5+V1xJXgXe5NN64AazDpNThknmNm6dOlHDdhaASTKOA6wpwsIICn7QWfKEIJjjrbQHMHeKrgaQLH\nc5An4WYXeWHF1HI5Apk62InJft2VLFpdRyppAOUMHM7AoRF2pq0D66RqNtA+ADIvW+ERqV2kPJyA\nsaIFRb2Zq6p9XqxHGjGtSZowdVSLdUl1a+XnJfoR5MS/RbBTv25GdivSNvFxHE9ti9gpbN5qSp+Q\n02CiGpSJwbdBdeCtSof8/HvT2wZeDkA211nVbDX3Gb40ZxV3z8UsZ5eBz4K98/h2iHOw8yEO72Ew\nKTkY5rIybeQKpwBlA8MRbSCtJP+ldYyLguEkZ5wX5EWwFw79UeCdJLPnnbcej8Kp6PSmgc+E//wp\n5GbyE7QaLYanQw4OjmBuFtVqkiUaq6bsigOcknohQylNNEHslEN9TrvdrmRqg8GAk5OTKkmuszre\ne3meMdjAEOA9WkR0Iv9SAcYEqZRcSiN4QpiqeL+J/XR0YBZ0uPC6CiXhFdV7azf9TA/BvMBN2QDl\n0UYkYUUhBfIOjzROzYhyOnFf0yhtq2OoNCSpABrvAohF5GvOOWR4scYH4g3EE38HJ4MlNghVGpSW\n+ieUEgMKF5kgKsc12VWDMYicznqKUgwJysJiC4crHEsz0aXo3ZKLizUGjsqhLkxNADSq2oTRsjWT\nDVUzIIgAc2qvjSJICAWMayUkmHIKHxqvosrQtLQM/YsUdjLiePcJhbOUzrF1TdOeW0KFJqdSnxbt\nreOsyk8xvBB3ug+Sz3HOkecTRsMBe7s7/O7vfIHf+LVf5o3XX+Vgf5eiKD7A0Z3Hefxxol64HrbS\nwCiAi1NFftTlZG6e3WyZbdZ5nGzQvfg25oWSF07gh29rfuXoM0GBIPcmw0/wQ+uaG9/l4Ar0F7ps\ns85TVtljkUk/E+BigYvAJrCB9PWZRwrVGxa8gkJL7h/lZE8QgBWf9xDY68AoytOeZTyimUFMxepX\nkXjnDX7TVbZdZ1eOgQ5M2pCHPkDq/2fvzZ4kydLrvt+97h77lvtWa9fSy/RwgBFJiSIJPBCSTHrT\niySIGj3ITIvZQDL9CXrQv8An8kEPMo1gMpkkM5lRI0IUQAoADQZigMH0VlVdWZVL5Z6Rsft279XD\nvdfDMzt7lp4B0FOMry06sjIjPHyJCP+On/OdY64vxxggAeNnhvzAj3eJ8w5nnmG6WZ4eKlsslx3n\n/M83h/Hz0jJucx7zXYV/zbIRwc17WdpnrjsxpdWaQD4NmWRNRlHbAtdWjXRNUN0yPLoHfAJfdm56\nfB97nDexwJkuI1pMdBPGcj525V/P3HxvlueOFvV1rAXYeQuqP07o1erUGxUwGpW5bJxMWQcqpUEI\ncmNIVMY0S5mkKbMsJ1PWWc2zHmW5Vznf9wvsjjGl6xcae/b5TrFOgoBqWOX4+BSTa3Sm0L0OrYb9\nQhbhfPjeaJsXU3TmxhDoAC3mgKZardLpdDDG5vCMx+MC6BShk1pTr9cJKxW7KN84u78Zrex1IweM\nhO11rZxL+IbWB1gyb7w9iACHjqQNFHUyQRxo8eIq7RGHCJB2jKcU2KncHnPeXkIgQ7sdlsKxIMM3\n9X4OyWhdAABrwoANSJUSrYw1b1BuVkdrx1Y5cwFj0Ztlu3QhcQtkYOd5HDNi3ByTVrmT0fn1dkyY\nEIWMTGvn3Jco0kSjEkOv3uTBxgavT77r+A7XXMj/hr/97V/h0b0dB1zMte2zO8SxPF6GJqRj1zyL\n42asdOl5QiKlRhsrV5PGjulI407h0knPJKCFHeGRzkIcvHjSZhglU8b9U44DQa1aYR1o9FYIwxpC\nzGUVHmSba1a5dt/MjRMMf1nQJ8tSTo+PODzcY/flc54/+4TPX3zG4cFrLi/OmU7G5Hn+kxe0qEX9\nlVf5M+X/fcPOeRbBSFpS4gI4FvQ3l3jT3GZf3OVVcETv4YC1+Iqqyfme1Pzm/zri+yfzc9Nv3JN8\n77/S8G04ubfEy8ZdXnOfQ3OHk9kG8WXNkhVd4F3gIdTujmgvDWhXhtSDGRWZAJDpCrGuM86aDIZd\nkv0merfiGCBcvy7gtArTLl+euzLji7ItfyYua9LKQ0IetNSwRgcOrJigtBx/Js9Lz/EgxTNLnjkq\nszq+yuyO98JOSv/22+Kb/puXR8vL8cvy5SV7/vs1YJ6jEzCfaYqYZy1FFLMx2jjMJ2AI2WWVYX+Z\ni/VVTlnnKNxkbeWSzad9nv4b8O/8ieR3zr4IfP/eiuTpX9foJxA/Cjirr3LCJmescaW76EsBQ2F3\n9QzLjn3BUtqXl+fdBu4W9VdZC7DzFtRomjGeZnRkBaE0aZJZaVGao7IclEFISYZhpnMmecpU5cTK\nStW0a/pd537tq+qmqrZ0TRvXmdr7G0PUEk0Sp/T7A4yy0po8y8iXevZrrxIRBYJAghJWKmwK1GWI\nTIgJBCIQhWytWq3SbDbRWpMkCaPRqEi895bBQkprDBpI1wxLjJe2KfeVK1w+DQ5IuG33dtKm+A+k\nAyDa/cYzPcU1NwHXWBRMYW6g/d4TuAF/OzslpB0ikUJgLL3igIhxwMM4iZdv7DXFvIqUCGPlc4GJ\nEAhykVuJogMoxjuqCSfPk7LYKqWUkw8CQtqvaa2dCYAsAJ4xOMAzD5K1PztQLCRGQZ5p8iQjncVM\nBkP+ztMdkvgFR4N5c/Fv/uq3+Af/3W/Z4yO87EwWWBK8AYDz0StAkABnmiDc9lOyoy4/Tjg5mxT2\n+AY4S2ovL3SYNZDC3RsULpPISf90MmPSP+Vkr0LgQk6bS2sEYY28tO2FUxx+fT2b95cjZkvThP7l\nBcdHh+zv7fLy8+fsvXrJwcFrjo8Oubg4JYnjn7ygRS3qa1fly2z+Z9/cz+zg/zi0g/anAg7hameF\ng/o9Vhtn9OQVjdYE9egVa9VLltZT/q8PNc934cU5PL4Hjz/UqAeCk7tLPO895NPwPV7wmNfmPoOT\nVfIjZ2X2RBG+G7O80We9d8RG9ZgVcU6HITUSBIaECmPaXJoljltbnLU26PfWmHY7dn7GX8RTAeQ1\nSJeYgzcPHtzsDBnXAYI/+3rtVMgcePh94g0OPCjwYMUDpPKlSw+wymGXnjkqS+luVhlo+XX2x6ds\nQFBmNm5r9k3p714+4QGWXwe/PRHzAaRq6d5ZryFBpzCtuFkpMOeS5LzB8foGh+zwSj5kuXtF42lM\nezbje/+F5jf/hxHfPywB3y3J935TY34VsvdDDnpbvA7usc8dTtItrvrLmDNh329DLNjJPdjxgOe2\nyWa4fiwX9VddC7DzFtQszRmPEyY6oKoNSZKSulkKnSvL+EpJgmZqcmZaEWNIjPsadc1++SP6kz+u\nP76l09igycksttbEylpap0phBOSNGrUoJAokoRREArTUViLmr54HEFbCayxArVazuTjOpa3f7xdy\ntyBwGTbYkFMRBH6Exs6xGMfyuNUvQIDx4KKUaeIZBgcACrDCfF7DJe4g507Pc0c0M9+L2mgndQO0\nQYqIQAoHchyT5lgZpHVrk9ILp5zLkHRqZumAZWABB2FEEOY2CynPQSnL1GHBnJWpSae+UxghMZ5G\nkwJr/20KoOEtvIWQBcvlGQ2lbM6OcSBEKW3nhpKYZDpmcHlOnsz49371Ad2VNbpr6/zr3/4W7z9+\nQFQJXSir3/el/YaV+pmyHE3MgQ7F8bcApMx8eWkb4MCOh6lzOOI5IitvszjYhrtaVzvplmFMjkmm\n9I/3kAJkYJ3/at0VJNLZYpvi3X/zuuXN66G/SNBjjAX4p8dH7B+8YvfFM8fifMrRm0P6l+fMZlOU\nWmjEF/XLWP4zK7gOdnxD7WZEdMsN5UsrGduH2XqL48Y2z7ZG1KMYiSZervKwts/qap/qOwnbf0Ox\nLUBVAi46EeO1Oi9rD/hUvsdHfIPn+VMOxg+IX7cwoxCxpqi9P2H5wQmPay94KF9ylwPWOWGJfgns\nVBnS4Vyssle5x6vVB+zWH/Gmfp9J1LZUsydDZhIuWmA6XGdYIq6HTt5WZfDngcuN3JkCNPjbzcuW\n5RwYzyp5QBLwxayjm69fvukbt7Lw3R/PL2M2PBjz6+vX3QOdKhboNLHApsHcGcKBOhlZCj/Hikou\ngRNBdlzh+N4Orxr3WQ4uaNdGVLdj7nFEuxvzj59qXnwCL97A4zV48q4mvysZP6xycWeJT4L3eSae\nsmve4Xi6xeywA8fCmkBcAVMNxrNkHjwuJGy/DLUAO29BZUoxnMxoJYoegjTPSLUprkZjJEoZZkIR\no0nQ5MIyKtfIZkGpTeSWz+4t7Zsxtz3QfdUZcqOYpjHZIGeWpczSBGU0y70e7WaDRjWiEtg5Hmsy\nVsq1CeZX5YPAfhEXwaNak2UZ0+m0ADpF9o6QREYgQ3s1X6Ftkytc8+wc4IrVF5ZQElhHr+uWx6LI\nnKHkEmZncTw3NAdIVvKlrZQMC4q0A5XWFc4Gd3o+wiCtXExbnsFn7nhGxjgjBen2h8/VFIaCfQh1\nhSDPyfMMlefkQU6e5ZY1csGlQkqUyjEit9lGfpbIbYt17HNHzTiuxDjzAhmAyRxzZPdPnuakcUKe\nJKhkRjIZMOifIEzO8tI63/zGu3zjww9ZX19HSkEQWGOGQsImS6yO93V2EKIAEn62hzmLIx27ox1M\nLAvG/OndAhhbBbkj/CyPZX+kNEihXXs1P77SGKajCec6t68tA1aAsN5BBJGzMZ9/GjzTY6lBP8P2\n84nYvFROa43Kc5I0YToZc3x0yD//3X/CH/z+7/Lq5XMGg/5iFmdRb0n5xrg8nF9uzr1kawZxBS6r\n8AYrF+sKBu0lXjYeI3uGJKhyJbocNzbZbhyxsn1BgykGiKlzRY8TNtjjLp/zmOfqKZ+Pn3K+u23D\nNjuGytMpq+8c8UHtYz7gY57yjPvqNVvqiGV1SVVbNiYRVUZBh7NwlS15xLK4oNkcE97NeS6/QR6H\nMJUuckfAMISsBcbn8HjZlpeafllLVpaT+RBWf0u4LgcLb3keN57vf/aPKVte31aeXSpP8pbti8rG\nAz+p6S8DHf+6EYUcjzp24KmFCwAC0QTZABFat7iy2i3FzlgdgdoPudzc5NX9d2g0pkQyR1UC0gcV\n7q8c0Xw44963NPdjgwkEcUcw2qhz1F3jOU/4iG/wMR/wefaY8/46vArs++wUFyXkJYdTrsv3ys55\ni/o61gLsvAVlgGmWMc4ULSTS+Fbepr1oIVAytF9v2pAbjfJX8ks3vyzjQdDNX37hVX98zb1WJKnS\nZKMJ0zghzTTTWcrq8hK9TotmNaIWBphAFOGZ2miqtQgj7KxLGIXFjE4YhtTr9YLhSZKEq6sB/oqR\nFBUahIRK2lkOB5aEs4cG21AqB0iEsBP/dj84hkcKAunyXQIrh9OBLhztMG6uRFy/fqWNz4nRxU71\nvm74fBoRoLUFNkIESKSVQhWPsSArCALrpOb2td1+idKJvYJvDJGQyFCCc4ZTQY6QGXmu/PgTGuEk\ne3ZKxSC8WrBorP27QBtQOWSJIs8URgiCikTKyDIxSpFnOUmSkMUJeTIjno4YDy6ZjfusrvTY2lhl\nY2ONVqtVANDAszp+b5VftvyeKrM7eEmdKB5sGScxf5gRVq5mcHI34TDcHDi55CQ3r2WZncAZG1jA\n5JcjIM+pkaOTEcOTfYyBWZKxdvcd6u0lZFS5cb2y/On5xZQxhizLGI2GHB8d8MM//WP+8Pd/lz/5\n4z9kMh6TpqkLmF1owhf1NtfNmZ0pMLKD+H0HdtyFf12JuNJr/PBpg9FKm/NwhQPusM4py/SpEaMR\nJFQZ0eaSFd6wzS4PORg8oP/5OjzD9q3bOb3tC55Wn/EhP+Kv8UM+4GPujw7pHYyRZ9pKmgzQGGFW\nLnlyb4/VpXPa4YiIDF0JmN6rczS8T9qvW2bgApe/2YJ8zFya5cHKzXkZX2UZGVwHK8GN5/+4Ks/U\nlJdVlrL9pONRft7NHuAnNfue0fHl2ZyQOZPTZA5yloElEA2oCJsj5P/cYK7ak27T3rintWCvdh+z\nbVD1kCkNLlnmdfOAtcY5rW13jAgYiyYXcpVDtnnFA57zhE94j8PTe0w/61h/8n0si9gHZjlz+/CY\n6yGpP80+WNRfVS3AzltSqdHEGCSGiPnXkggEIowIqnUCo5BZDFmM0Zlt/HAz945Ese5oJVK6kLd9\ntQ9wAXiM5UCyNOesf0WubRM5jRN67SadRo1mJaISQCbssD+BIDTChVYqwjC8lqtjAY9mNpsRz2Ku\nzBBMSCCrICKqtbkkzBgDQUDgJVAYUmUIA3dd3zjLAO8+hrTOaZhiy00JiMwd3JzxgHbmBErNQzHd\nPjWuYTfayrMCYV3dCjmWlAQCjJAIaUGZPX7ONtpgHyslIggxIrND+T5ARkg7/+OpJamRUcWeNgN7\nAlXGMX2lm1IKg3YYzEICyzJpx7YEDla4/WCENUPINHmi0WlOMp0xGQyYjgZUA9hcW2Jna53V5SVq\n1apj3GRJwub5EDsFVZ71uvUd5mymy5ZrwoMaf1+e23E/oQ3CiIJd84AnEIJQCEIp3D6nOI720oDd\npcpk5NMrrk4gzjVGBixvauqdJYKoYhk/exTxDYoUc2bJb8/PAoOSOObi4pQ3h/u82v2cF88/4eWL\nZxwe7nF2esxgcGWNKha1qLe2fCMuuD4E75mdIVCFJISTxny8A4HJQpJpi727T7jaXOagfZeV6IIO\nQyIy+51PxIQWl2aZ0+E6o7Ml4v0W+lVgr94/he5mn7vtPZ6I53zAx3yTP+fe3hs6n02IPtfWYW3g\nVrUFbCjMI8XDdw+ROwbTEsSiziDsMtzpkJ8E6DcVOAHOsAxP7qVanp5oMmc6ylWWrvmzcplJKP/9\nJ33bfBkzA9fB080q2xTdPE7l391c99tKcH1GyFM0NSyC6QA9rJ1dD2o16Eob6lq2/265p/gsJb9r\nZgKeQR7VOUrvke3UGHS6nLDBljxihQtawZiIFEXAmBZ9ljlhgwNzh1f5A84Otpl+1oZP5HWwM/GB\nRT5A1UvZbs5WlUHhor4utQA7b0lZot+QYWji3L4CiahUoNFENtsEGNRsTDYxqFghMU4tK5wFs3Bf\nmxY0ZZiCHfh5SjtZml/ONE4wDEjznGmcMJo0We606bXqluWJLNMhMytHCzQoLVFKEUUVgtDl8FQq\nNJtgNMRxQjxLuDJXBEGEDEKMMVQqIUHoBE4O8MzlUxaRSGEKwGObjHSZFAAAIABJREFUSUNg3PxP\n4G0GrGtckQsj/L6xTI/R2oEdtwzH7ns5lp09ka679tkB4NkcIaSVrgWhnTVCODtwawWNsaZ6JlNk\nuUYby1YFYcXNt1hZncU6hkrFL9puuwUwnuuYGxBYFstZXQvhgJpwnbtdN43NA8qVtSnPU+VkbBmj\nqyGDy0uS2YROq8n25jpbG6v0Om2776UsnOG8zTTCgq35oL9/bxTCsPkcDvN19iWElSqawqxAYoS2\n7AzCZkC5964wjrXBbpIU0obBCmFljXL+vrQOfYZIGEI0QsXE0wEjIzmp1MmUYVlp2ksrhFFUcmlz\nVtfO8Q6utwA/rrIsYzQccHiwx97rl7x+9YJXu5+z/3qX09MjLi7OiWdTay++qEW91eUbRZ9oeXMY\n3zfGEejQZuG8cV90Cpu/MwqZnrdJ7lYYrXY5ad6hUk2RgUJgzyNZGjGb1pmeNywI2ZdWotQzsK7p\ndfvciQ54yC5PzHPunryh+9GE8E80fAJmDzIHdmQbwm0QZ9BMY+6GR8RRjfPqKkdsctjdIV5vMVur\n2P69jWUpkghMDduxN7k+xyJu7A9vDOD3RXnmJuOLc05fVrfZDpXlg7dL0ue/u02iJm78XBYVf1mV\ngY4HfZ7NWQJW7M/tGqxIG+i6hb1fn/+ZJnb3QWE/zQhLdO0HxHmL03HIbKvJcXeT1cY5veCKJhNC\ncgyCCU0Gqks/WeFyuMbgokvyooF5FsALLNg5BAYa0ph5iKoHO2Wzhpt2Tov6OtUC7LwlpbEfvSGG\nTSdd00FIVG8Q9ZYIe0vE0iBGVZTQ6DxHqJwIUQAejCNk7SS9Hay/ZjH9Vcs10O6LUGnDNE7JcsMs\nThmNJ4zHE8adFt1WnU6zSq6qnA+HTOMZG8ttNla7NpdG2PUNQxvqWalUaTQsaJnNYsaTCQaoVCsO\nW9SpuMs/BTdwDexAKG0mi3C2zf6avFAKoSyQMLg5HVMaaNfaMjnKGyvMjQbsnImNOJIFsyELWFlY\nkTmGAiGsw1poB408GFEOpAAYpa2rnVJIIR0wCgtXOYkk0GAigwwCh++MnQcq3MIc6JIBCB+eal/P\n5ywZv5MCl7eDzdXJMkWW5mRJTpZkzKZTBv0rhoMBIYaN9TV2trdYXV6m2ahZUOokgHZT/YnQ2gXY\n3V9+dzleRsz/ZcenxHVmp8ywaQvMhB34cuyOdFzUnF2x+0jbvD0nBwykyyxyQNxo7DKMIRQaIQ2G\nlDgdc3V6aKWYTmLZ7i5RqdYQshQG6Fa8HIz6hU+CO5hJHHN+fsrBwWt2P3/Os08/4vMXn3H0Zp+L\nizPGo+HP+iFb1KJ+yasMdvzPvpm/mb0SgJEw6IKJIL+ed6MOqkxWq0x62D46covJsGq4K6y07Awr\nT6oADyHYSOjWrtjghB1zwIPsNZ3dKeFHGvNnkH8MozfwgzHsGXivBt86g8bULqO9NGOrc8adtQM2\nOWatcsZ5d4vZcqeQWFEFpqFjd2pcb/7LQZplxzPv3uZNDbzls2+409I+MzduvvSX/O6nrfm50VY5\nANTXzYt5t9VNVseDnR6wDNIxOlvAHeCeu+0Y5J2caCUlameEtRxZdZciM0E+C8nGEcllFXMYwrkk\nnTa4OK1xubPE6fImjfqUqkwJhGVeElVlmtSZDVqkR007s7UHvHK3A2MZv1kMZohldXyQ6k0Z28/f\nKS3qL64WYOctqhi4xBAgiISkHlYJ6m0aS6tU19eJA0PYqGPQmDQnm0wJjft6dcSHdFMd9jPrJV3C\nzY18xQ+yX5bwX4SgtSFJM7JcMY2TIiy0127QalT5/OCE08t+sYhHd7f5D/7dv0mnHRAh0EYQhRak\nVSpVjBHkShGPxvSvLqk1ashQIgIKW2rlsmrcGuC1ZsJIROAaaZdNA1g7YuVG4Y13awODBJfbozKF\ndvMzaGPts41lybSTzxkkQlqWw58EvHxNlECPBSFWyma0QRvlMnGEY100mZvFCcIQGUYYMXcJ8+yR\nDEIL9LQFR4aSXKt4jCBCFOyOLlgt26wbJyXMne10muekaUae5mRpRhonjAYjRoMBeZrSW2lx7/49\ntra26XY7RJUIEbj8oALAeDOC6+8Nx+W4X3iPO2/BbeV9Gj0Hh8LaiYtS5o5x+89yaNaDTThmRzos\nYgkrTSAkURBQCSRGO9AlDFqAVpYFiwJFxbFGQmSMplcM8pwsTcjTBLV9j6XVdSq1JlIGc2Fe2WhB\nz5kr7Y5FlmXEsxlvDvf4wz/4Pf757/0TPvrhD4jj2OXhLE6Wi/pXvbxEypdv9gNsk+nF185jcdiG\nvAJTAZfCNqcrWLlTG8sAhKVFxdiL81fuVgXeAVqGRm9Mr9JnhXPW1Rnr03PCA2AX9EvYewX/8UTy\nRx4kjOHvvpD8b0qzvATiDtR3pmysnbDKBT2uqNRT6BhoCtvXV4HAg50GFvC4UE/hV9TZTBvP6pSy\nhq4124G79987Adczb26yMbdZQsNPL7vywNPXTeldyI9ndXxFpZuf1+mB6Fqgsw3cBx4Bjw08MoT3\nc+p3rljunrNU6dNiTB1rsZ9SsZK0fImz0RrxQYd8t4LZD+BQYvZqjJdqjNvM8SVYgOysq7kAjtzt\nEHhj4NzATGF1i313P2V+LLxJwcKg4OteC7DzFlWG/SheIWnJGrVqh2pnlfbyJvXVDWaRIahb6+Z4\nmjBKFDpVbibEuohZYly56xXSNXGC2784f9oqdEKup5VFc2+ERBnDeJaSpimT6YRpkhOnVeB/BH4N\n+Ge8PPgt/ud//Ed859//dXJtg7S1MkSuoQ6ikGq9RpZnTKYTrgZ9RCBsbo0UhM6gAGNQzj0r8Bk9\nxjbHYeCsminl9iBcvow1HLCMje3QPRNiGR0nc1MWRAkhkMZtZ7HL7L+1cTMkHti48XlvHCC0RmmD\nNsL9nnk4qAxcrqmFpVluQRcuZ8doO7guPHNicOyctb9GWimXEAITBkilyLIMkxuUVhi37bmxcrlc\ng0KQ5Rl5npFlKXmWksxmXF2eM5tOqNWq7Ozs8M6jx6yub1BrtgmjKgRzqVdhyX3tPVSWPRhPKeH5\nHs+TAE6qZtGLdVbzVtQSqSVGeumgl7LNl2IBnpOx4eZ2pCQMAmvkgMa445VpUeQKhUITidRKCtHM\nUkXczznNE9LZFJOnLK9tUm91QVbItMaIsDBnk5ZaI8tSxqMhR0eHfPrxn/Mvfv/3+PMf/kvOz0+J\nZzPyPCsZRSxqUf8ql8E2jyFzVsM38Qnz74vyXEQKsy4kTStHu8CCHA90fAyNx1AphdcBAtihiG+p\nVFIackKbMS01pTJwyzuF8QX8pxPJH9MG/gH+3PT75rv8R69HfP+RRpxBNM5oM6LFyEqmogRqGirB\nfCZfSreCHuwI5yQtrltJZlh5AIY5LTXCdugj5iyJZ7x8Zk+5ys5rP0+VgU1Q+l1Q+l2ZmboJesqy\nuZuzOm2gA7U6rAF3sQD0feAbhurjCdvbr7krD9iWh6xh844aTAFIqDKgy1mwxkl3g/3WXY569xl1\nluAz4HOsLM07W/tV88ZqI+aA5xwLmAcGssT94hKLjMvzOuWMHV8LwPN1rQXYecsqBfYwfBDW6DV7\nNHvrdFe2qC6vMok0ulohThXD4YzZOCVRU/Jc2avfMkBLY6/6S1FcO8tzRZ6naO31qb+AD7NxTAay\nkFolRpGrnExlwD8C/r578N/HGMPu/nc4OLpgc20ZFdqLXqYSErmB/yiqUG820RjSLOVqcGUti6UE\nA7VqjSgMkc6gADc8rz0gMDbMZj4A72VgVu5VhG5idU/CzFkSZydQWFNTSLQKLqewLdZaI7Rxcjh3\nAhE+C8cCQgNFZpBwzbrxAZ9KkeUKpbTdFmEs0+Rd4IBABu6FDUZndl0cWMNvl7EASWm733OV+1cj\nzxWZUmTaoIWdl8qyjCSZMRmNODs94uL8hCyL2Vhb4/79e2xub1JtNOz7CFmEvOKAjr8Vszt+71x7\nO5kSQDT4jB0vWytsqqVj5LQDPCZw2wQebYhijsZus4WU1plOCpuhE+Y5yjMwAmvVpnGAShFoRYim\n7li6OFXM+hlZPMVkMcl0xMrGDs3uCiKsYQILUJMkZnh5zvHhPq92X/D5i894+fkz9vd2OT87ZTS8\nWthGL2pRX1qKeXNdBj2+PHJx6MXEoFoQN+C8AVcSIlEQJkWnUzZ4S7GNtbuyIgQEQln21332hX9c\nBp/O4A/QWKAzPzdpDL+jvsNnA3g/B6kMITkROQEKGSgINYTBfCRHBDZaoQq0JFTF3JzNr6sndWJg\nZmxOzyyEvAGmje3Or5iDnbJtt99Y//NPclq7WeWLUv65ZfaofPOvXc76Edz+mv64Ca6zOl2IqtZx\nbRt4ADwBPsjpPLnk/vouT6NnvMNL7rHHhss7ajABIKbGFT2OxSYH4i4r8pzW+oTX8hEXYsPuw11h\nQc+0tKsS5oBnjN2lEyBOIZ9yndEZuT9OmMsKb1p5L4DO17UWYOctKwUco3gcVWi0uiwvrdJZXiPs\nLRNEhqxSYZLktAdjhqMpOQEmzwnDwEqPwgBZCR3jIBwLNGMyHhEnY/I85udxGpmLlGzzbua+wRZ0\nFFdJfu3GM38dgNcHJzRqdRq1Giq0w/s1Y3NchAyo1mpoDHoyIUkzBsMhQkqMhnYzp15zgMe5g0mv\nccKzD9aNTuKc6JSVkxlpJVHCNec+b8YyQMJxX245cws7VyWpGm5OBDvmI/wIT0niNpfNednZfBbE\nGPc3bV3UAufkhnGOc0gLoGTgHNpMwa54KZwHcEorlFLk7qaUlYUIrDlCntsZFWUgzxR5lhFPplxd\nXnBydMBkdEW7VWVzc5WdO5t0ex3CSgVkiBGWsSr6E8/K+B1TAl5237stF247hGWyhF3xAvR44COF\ndMA88LQX2lh5oT+Wfr5HGLsegeVwsK5ropjdMc4ZruCVvNMbIIQmRCFlboGWNpgsJ89jLlVKNhuR\nTkesbt2n0VtjnGreHJ/w+tVL9nZfsP/qJft7Lzk+esPlxTnjychv7KIWtagvLc8ClJ3Zbv7tZg7P\nGEwL0iakzqYtCOZ5bf65SrtrdnXoyWvZmBqJIiAnRMlgTkBUYL/42N5+bnqZwfsV0KEgJ7TLQGJ0\nAEpej6WpC+gEc+OxNnZspc7cYUxRctwWcCUsiBuGMAkhDZnb0d00NkiYsw5lCXqZTb9tn5sb//bP\n8ecnL2Pz80U+I8evg3eX8+DnZpWDSX2ujvOTrkXWbW0LO6PzGNoPB9xbf8WHtR/xIT/iKc94GO+x\nOr6kNp5RiS2TlVdDZq0a/XaP3eoRXXFFrZogVg25CRlMViyYOcGyNwOujzulBjIDcQYqBuPpnpsg\nx+fr3AQ6N/fdor5utQA7b1lpYIhmHAXIdpvO8grNpSVEu42oSLJKxCTL6Y2nTOKUaruDRFCtVag1\n6oRRhTAKrWxIGbIkYdwfcnF2Sv8KpjpH6a8OdgQgpM950aXvCP9FIbFfHv+M+dUzgN8DYDSacnra\np9vp0KzXyHON1oJKFBBFAUEQUqnWyJVmOouZzhKUubKWyi6Xp16rUokipBAEgWUDtDYoF6gZSDAO\nDBmXcyOwmTrGadesZMzCGysLk56cYR7W6bbZsTfCzeQELjTULscggpuSNgqWwu4a95plkwG89fJc\nJmanq0AK66/nTQG83Ms4owKlFXmeo5RCaYNS2llO+31tyJVB5RqVWzlbmuSks5jxcMjF6QmnR0eg\nU1ZX1rh7Z4O1tSUq1YggDKxEQzpAWzQmpjAecMTY9feFB3RlK2rPwLm/+9kl/LyT3ydSWkCj3Qt4\nxzz/fyHtTJoLEpVuv0gnVZTGyTT9jJA7hHgpowAtFFVhXzMwmkTnpKOUq3jMdHjFyfExotbh8OyC\nZ89f8OL5pxzsv6Z/ec5kPFq4qS1qUT9zlQHPzd+V3drKqGCCbbgbQBVUBVRwy/NdY65k0fCaBJK0\nykzVmQYNJkGDuBtSWcqRK/DeMlbe9CXnpqc7wDJkjYgRLca0mNIgzyoQyzkZEGJdxVaxzNIqc0vl\nJnMzhRzLOvj5Im+ocCLgNIJ+G2L/4HKVraX9945nxn6SeYDftzdZmXIIaBlk+Vu1dO+pNG/eUt73\nZYAaUIAdUYNmYGetNoG7huhxwubGG96tfcaH/IhfMX/Kk8lLto5OaR3E1g564BbdBrM5YOPuBZ2t\nIY3GjCDQZNWI6Vqd6ZMm+WUVcybtMTzAAh+VglZYdxrF3NLNg5sx8xmdGRYhqRu3ryrvX9RfZi3A\nzltYBugHhrzVoLG8TKXdRjca1OsVsmqFntEkShFUKhhtqFar1Bo1KtUqYWS/PE2uyOOUeDxl2Ogj\ndUCeZmRpjNIZP5uLi18r2/pa57OC38EHk/jW1pgQ+K57zq9jTya/hSTk9PgCcsPaasLKUo9Oq0GW\nKRq1KrV6RBRZSj2KqkTKkMUx48kMlWuMm6uhJDWTTuJmJChh5UthIIgCn3ejixkbhC4aaaUVRrnZ\nGAmBkK4ZD6wqrdBFYbNzHCCSQYiUIUZIN7NkG/ggDBEisPNTWntztwIEeKATBhItInBAK5DWhSw3\nOUabIlPIGO2AoHL9vluOMuSFDM6aHViWyrFIBpTSjsmxNtNZpkinMdPhhMHFJWcnJ/QvLtne7LK9\nuc7OzibdXssGuLrkTi0MxuRoXRxVa9f9M5wUPA4uTpfehECWmDMtiscWDFrpBCscg2TcfpFeiuge\nJqUhwK2X0RihMeI6q2ZBrCYkR0g78xPkBpXMGI2H7B0csHc+5vnBCZ/v7jKdzZzV9+IEuKhF/fzl\nG3e43sCXm2fvUuaH9r1+7bawzRBrjabd1XxRsCfTqybDZpd+sMRFuMx5t8PG9gD5QPHhB/Bv70n+\nn+l3nWGPPTcF/Ba/sSJ58tc0+i5Mlxqcsc4FK1yxRBpXYSzmvgKrWDbnDnDHwCaIdY1c0oiGQUTG\nms1lAjMVmKFAn0sLct6IOSiqSHjTsLih2B/FoA/Xg0jhy0NLb9ZtFtbl2SAParyb3G331dK+LzNO\nHph60OCGpQJht2kZazF9Bzp3z7nbes0TnvO++YRv5B+xtdun8sMcnoE55BrYEdtQfZzz8FeOCB/l\npM2IoexwGS1zem+dweE6+aELoz3C3quyX7Uf5oqxwGbGdWOIsnTN71t/llrk6nzdawF23tI6S6eM\nA4jaLeqdJnmrjq5ENKshJgqoN5psbm4jhCCqVAgrEUjb4KlckU0TktGUaThGZgHTYcx4OGY6HZFk\nU8zPDHYAbBNuHcJu/9J1EZ/YqyrfKf0lRGK4HExIM8V0lhLHKfFSj1ajStZqkJsa9VrV5uqIkLBS\no2oEs9mM4XjG3GPYybiqVZvFE4UEpXBRFQhMNSKMQnzOjDHazgg5RsFCtbl5gJ/VsdIn6ZiHEtgJ\nHOOBNWQwxjnDCfd413373B7tnOOAQq4WStAqd3sScI/1+9bOmQBGoXKDMdasoJCuKcviKGUKgJO7\n2R+lvLwNskyRZ4o0U2SZJk8101FM/6zP+fE5w8srokCysbbKzs4m6+urtJpNC9ikRXoSVcgAi7mb\nm8e69LsyMLAsDk6a5vWNc6DpWTPjdo51mpszPlJa61ojTEnFYY+XNqIITlVCYbwNoXcVgGLOCKzD\nWiAgEAJhDCpPiZOcq0nKJwcXfPT6lN2TK/rjGVluGbMFyFnUon5R5T/Azp2sYP69TCtgPtziG9Kb\nNtV+fsR/V/owzxjSwErChsAVqLM6g5UlTmobHLLDnrzH0qNPiQYKYvie0vzm7474vwfzc9NvrEm+\n9x9q+CZM361wtrbEITucsMEFK8Tjqp1vH2L76btYp7GH2CH8+zntrT7d2hUtMaZKAgIyEzEzdYZp\nh2G/S/q6Da+x0jdvYR0Ab2oQd7k+O1IOIYXr8zQ/qW4bvPdytWrp1sAilKb72f/b79/b2ktdOk4z\n7LGtQlNaELeEZbu2DOvRGTscco/XPEhes7N/QfAnGn4AfALsQX5plRiigwWPV/YltioXDO/vcdLc\n4FBss1+5y3RliXy1al/DSwanEegMq22bMLfrKzuteTOC8q08F7Vg7X8ZagF23tKaZDFX+ZRZqFlb\n6pA1quRBgDSaqF6j1WyRZTkikISRlR8pbaxBQJKRRjEzUUEoST7LaXd6NNtLVIaXyNkApb/aMJ65\npu8q/netpJCuYYwoX9vXCNJcM54mwAiMIEtz6rWITrvJUq9Ft9uiVrdzOUIERFEVpQVpNmYyjQnc\nkIz20m1tyFVIFAZEgSAKrUV1rhRCSmvxXJrrsQGptqGWwq6e0c7hTVtQYtkbG3yJsc1zEIQEMkDI\nwIEdtz+Mk6xpg0GhtAM7SrmZoNwJ1uZP0M55DWMcWJpP+xjt85GszM4Yy+7kOi/mcrS2oEYpg1IU\nN/s7RZrm7paRJCn7B0e8fLmHnkyI+310plhbXeL+/btsbW/T7vUIq1VkEDqfZ7ueBYEi5tk5FtCV\nZnNu1E0ApA0Ibzjg9oEHmMYBNj/LY1m6AAIPVKwUzmhraKQEjjkTGCWuzz+75Ujp33vu2GFfYzhL\nOb2acnAxZO9syMH5iKP+mP44ZhKn5GpxwlvUov5iyjM4YJvuuTT2emPvb2XJVXm4HuazJo4Niutz\n6+FTAUeC/s4ye+27bAQnrHBBa2XKww8OaIdTlpfg+080zw/gxQAeb8KT9zTmMcTfkrzZ2OR58JiX\nvMMe9zg73yY+bljJ1BQLdN61t+jdmM6DS9YbJ6xXj1kLzugyoEaMRJNQYUzbMhOVdU7aW5ytrZN2\nG1AL5vgtl3BWt450pMwbdd+se7AnSvvF70tK+7Is8bsphfPSNe+e5h3U2liU0gUqEIVQDWxwalVe\nx1baWHCZBRDXIGu5XiCyjy+yRTVyKaYb9FnnlG2OWE/OCHc1PAM+htEzOD6FP0utS/R7ffgbU1g2\nQB3CDc3SUp/t5hs2xCkrnLPfTaDXsIYQfhPiCmjfZyRY2VoxyHPjfVUa7gJuZ8AW9XWtBdh5SytO\nE05Hfc7iIQ+aVSrNBoGURAZqyjbUKrcNvQxDRGCb/DTPScOERIRIJTCpIYszmt0ezW6P2lWXcHKJ\nShMwP6ud5VzK5iYwbn3UvBH+4jClMpDmmmmcEkgbIBoIw3A4ZDJpM4t7dDptGo061WoFGQREYZVK\nVZMmM0azBCMmGBGiCMiUJs8jqpUAXQmRMkIKQ56r+YxNaE8U3k1MgnVyQ1p3NOOzdqycTbj5GzeF\njwxCgjAkCCOQEq3MfJDeNdNKKYtaNFY/rDRa5a7R9zvGyu78vJBlL4R/GQeClA0R1Q74aO2AToY2\npggqLYMca0ZgyPKcPJsDnYv+Ff/wt/8Pnr16WazCSrXBv7bRYefOJncf3GNtc516s4UIK4XJgpff\neZZLSlGAOstAiS8wObe+D0qGDfP3iilgjyk/smDc/NvMzuFobfOOlGOtcDI74Way5qSQcNbUgAlQ\nGMaznIvhhJPBhKOrCYcXI477I84GU/rjmFmaL7wGFrWov5TyHzQvHZI3/lYGPGXr4/Lj/IxIYXEG\neQsmFXth/wQ4gPFOl6PWXZ4vXdEUE8JqTr4ZsV07orM1onGU8WRizcJMA9IVyWizxenGMp9VnvIx\n7/NCP+ZV/oDRYRe9H1owJbG5Me9B7YMxaw+Oudfb5SG73GGfTU5Y4pIGMwIUMTWGdDiXqxxU77Bb\nfcjLyjschXcYh10wYclZLoS8DlkHi6rK8yWeZfHgrwx8/P67bQ7KS+JyLEisYZkbD3B6QAdkEyp1\naEhoibnld4P52I7BXm2KgWkAowBGEUyNXVVPGtVBNDXVzoxWMKbHFct5n6Xx0ErP9mG2B8+O4b9M\nJP/Sgw0Ff/tQ8r8IzeY6iENovTth2VzQE33ajIgaMaKlMA05jzaSZQbQlN4bXrLmjTDKkrWboGdR\nvwy1ADtvaWV5zkn/nMPLU74lDfVGzQ5iGzt6IjRWAiWwH/jANoRRlhMaSaAlIgeTGbI0p9mLaQ6X\nqPeXCIdnpNkIY76KDfV8EsNelb82lVHUl13514AwglxpZmlGME1QecJ4ZBhPxkwmE5aXe/R6XVqt\nFrVGnahSJarWyLQiyTL0NEEL60TXyhR5TZGrCKPdPIYUNucGnEN2UMzCaG0w0uBX2/bVc1tp47ZL\nO1agyIKRgWUepES6+RvrdWDd1VBz2Zo9JRlnqKAKO2mEwASBZWxK+9EbKRSP13PHtVwpm4+T23BR\nZbx9tWO1cjeTk+WkWUaW5vbfaco//O3/neev+5Tzji6S7/LD/pjfeLDD9t0tOktLRLWaBXcl4wFv\njCALlzl7kvCua+Xj/GV1LTC0HEZakoD72RoLTG04rnNpcDM48/eczekRc+MG6Rgh/1xhZYz9cczp\n1ZCDswG7J312T684HUwZTCzAUfpnfc8valGL+sWUbzZx9/67xTfv/m/lQXx/X8F21Sm2w56A6cK0\nCheBHXjfg3y1xkVznc+rTwkbCo1k2mhw2eiys/aG5Tsjgti+Tl6VTJp1juvr7PKAZzzlU/Mez9Kn\nHJ3vkL2KYE9YwmAJeATRezFrD4540vuMb/ART3jOA7PLZnJKNx5RzWOk0WRBhUm1wUVlhdfRXZa5\noNUcE+zk7Il3mGY9Z5nslj8LYeBlZWMsevDA0BsJhKVbuW662+XMWaKMuelDGwtyVux91IR6xW6b\nN1oomy1USofFAzMbBmgNF86FBZr+0FRA1jS1ekxNxNSIaeYx9XFWPG86gN9KJD+4kXf0h+a7/CdH\nI36nr2EAlVlKU02ph3Y5USVFVDWmjP0KQFwGxmXg7AHgTce1BdD5ZasF2HlLy2C46F+wf3zAMJ7S\nrGxakKMglILQCLQ0thl0WigNZMK6U0kjEO7iRZrlNJOY5rhHvd8jvGgjpheYInfnZ1szf3VeFCcp\n/wXiAENZ5ma++GwN5G62JAkz0JokSZnOZoxHY4aDIaurqywTNES+AAAgAElEQVSvLNHpdWm020S1\nCkQRWkOcKfLRjDTTJM0aWauOUjXnDmcIQ0kQSkKlHQYJCcPQMiMusFPnNt26kFCF1jTArptBGu3c\n3tyGlJp6KaWT81mgZJka/zdhAVco0TmOnbFftEaAUi6A0oMGx5aYYu6EgoFSWqPy3M3kKHJlQ0K1\nYzlUbgqQk6QpeWYfm2UZr/cPefZqFwt05pkSYDgefYdKp8Xq+iqNZoMwDOeM0zWwU2LmSurF2+o2\ncCtclo4xlsG6znJ5MwsvbRNgZPG+8WBGGncsKPnYObtw6ZzsLPiz+zlOU/7o2QF/8Mkezw/PGUyT\nryDWXNSiFvUXV57JgXn4qP/9zU+r4IvBNX5A3oWrpFW4rMGRsH18G6bVDgfhQ9Q7kjio0RdLHIkt\ntqI3LK/0qRIDogizPGeV19xnVz/kZfYO+/37xD/qwnNh52wM8MTAI+g9PuVh5wUf8iO+Zf6UD/Qn\nPEx3WToaU3ljbFOvsGBhHcabB6wvHdMOhtREgqkL8s0qL5M2+jKwrFEfuApg4NmXmrsFXDcOKKGK\na+XTVsuzT3HpPsJqzDzQWYWwAd3AuqdtY40FNoA1A8sgegaqBhFYsQIJmIl0wZ3CMmlH2PsJ1zCH\nkHYGVeJmNT1YyuBZCv/iS/KO/mn+HZ4P4WkOMtcESiND9/0v9FwO/tOMLhXvMw90FmzOL3MtwM5b\nXINBn4ODPY5Pjtl554kb3DdIba+Ah9JeLTfCNd2uQcQIy1wYKzZLckUjTWh1O7SXejR7PWaTJplK\nMF/JhtpfkftpnGG+WAbQRpNpyJSiGoXWfSxNGI6nxLOEOE4YjkZ0l3r0VpbprPSo1GoEUYRCkKeK\nwXBE6pp8rSxbYjRUQklUCakYASiESKlUTDG7ozHkKgMEQRjMm32fjWOsu5e9pmaZCc+qWPQUIHA5\nOA6U5HmGMRopJWEY2OVGAYbcMTcWIua5n+nRhUzNGO/85TJ/hCwCQ/M8J8tyK1HTGqWFzc3JtQU5\ncUKSpGRZVmTpzCYTdl966drtmRJEVZaWl6hUKoXRgTEWwkpnxICRLhdIWxc88eWMHXwJ4CkAkyiM\nC7yJhZASYQJ0bpGUlaRZ/28h7ayPEHauSRpKYGd+3Xc8SzjtD3h9fMmn+6d8vHfCxWjKLMnIlVoA\nnUUt6mtdXkrtP9G3nY+8lKvMXniwMwBVg2nNNt0NbF8vIVE1DrJHTN5pclZfZZ87rHNKj8E1sDOm\nxSXLHLLDweQO/aM1shd1+Ax4jsUQG8COQTyK2anu85TnfMDHfDP/iA8vn1H5JEM+N9YSue9WuWOf\n13gQ8/D9N9QfzyAQTGkwqHcZ3Oly/mYHcyQsaGhj83tmDSy4abt94o0DGsyDfL6M2fGBmdPSzSMR\nD3ZWIWjAmoQd5oYL97EmAVsg1zLqy0Mq9ZRAKLQRpEmVyaCJuahZV7kDYB8LBvcpRqlMKsjTkLwW\nkoqILAjI6lBp2FV4U7QNt5+bXhh4Woe8FpJUIjLcLaugc/kVR21+QWHqi/orqwXYeYtLa83F2Rkf\n/fAHfPtv/h3CWmSbP+OaPwOIklzLRkhfYyEM0MgymrMG7U6LXq9Dt9tjfNFCxaOvaEPtl+ylbLc/\nQvhhlPJT8GDHgodcaSpRRBBGGKUte5FphsMpSZIxnkwZjMcszyasrK1RbzSQIsBIyJIMM42t3Mmo\ngmGpVSOqhduawAgrAYsiy/AIhz40Vq8mlJsiEfLaqvrREbu+xjETYi4fdHNAKld2psYxOLmSVEzk\n8nvcgTIO1Ph5HAdmtNbOQrr8RSycGYELDHWOaxqLtTKlSZKcOE6IZzFpmpKlGWkcMx2NmFxdYUZj\nt6zbMyW++f4TqtWqzWNyLJPREEQh0llt2x1hwLjtYD6zY//0408enh0SznFNaxy4dsBJCoQWLkNI\nFzveS98E/vmWvJQCEqXoDyccnV9ycHLO5wcn7J1cctwfcjmyUrVsYTawqEX9ktVtWSeeKvBX6P2g\nfuLupxTDIlkE/e7crdoAmSSfRfQv15ltdDhZ2qHZGdCqTagRA5CaCtOswWDUYzZoE580yPYieBnA\nS+z0/DKwBuFmztLqGTvRIQ94xWP1gofDV9T+PEX8APgY2/h7sNPCAocTQzVO2Qwuebjziov6Csdy\ng6PqNhdbm5g1AUvCgqOagLgKpoZt71xgJxUIQqgEUBXWEEBCoT3OgSSENIJMg8kowCBVt0JOwiYd\n0LkrrJvcI+CxgSea9k6f5d4lS5VLupU+9WBGKHKUCZjV6gwaXYYrS/S3lxjtdMlWG3NnuQkwAz2V\nzMYNxlGLoezSD7uMWk1WNiawDe/fwbJDX3JuevwQ2IRps86VWOKKHmNa5LM6ZhrOx5lS3HZ6hcri\ne/9trgXYectrcHXJxz/8AcOrPvWNLSpRxWXA2KvhBkftCuxsifFBik7aZqBer9FoVGk3G3Q7bXrd\nLv1mm2TSR+UxhQbrpy4vZftyk4KfZgnaQKo0kTJUgoggBJ1rhLaD9irPSdKUyWzGLI5Jkoze8jLN\nRovpZEb/8op2s8GyaTlgYLmYXENuBLmxLIjGu30FPi+zsCfW2pC71IVABsXQu2d2jNEoo0EpyzQA\nxgh83owFK3kxm2O0RiuD1hlRGKK1BS3WeMCQZbl9vmOQlPKgx9lpu1vu5Wv+b25dM2VI0px4ljKb\nxcymM9I4IY1nzMZjRv0+s+EVYjpirVbnPP6uW9dfB34PKf5r/tavfMg3nj6ymUJuXsbOJgmCIHTy\nMFEwXEIYjBGlnJ3b5CZcA0Fltb0U9hj4/VVIEUruabrQz5kigBTpaUsrxXx1cs7u0Rmvj8/ZOz7n\n4OyCk8sR/fGUWZIuZnEWtahf6rr5+S3P75Rtq1MsoplQWCqbwDb753X7uAzbFA8F+WmN8WaNyUaL\n/vIyUSsjkpZRUiogiyOSfhXOQyuFO8QyFfvYL7AtYAmC5ZzV2jmb4oQdDtmaHtM7GMNHwJ9B/BGM\nD+GHU3iVw7tV+NUzaEztWG29m7HdO+JudZ9t+YDV4Izq6pR4pYXpBRaL1ASICEzbbodsQrUCdQlN\ncZ3g8T4FWriImQAmgd0t04p1KsucawBToAVBC9qBla09AJ6C+EARvh+zsnXGTveAO5U9tjlihQua\njInIyUXINGjQD6yt937zLm+adzhvbjKpdW0n+tIdnoEkv6wx6PQ4j1Y5kRucN1ZZeWcCb+CDAfxb\nu5J/Orwl72hT8vSva/JHMOh0OGGDc1a5ZJlsXIWBnOeExjjb6XJ2Ttl8oDwftqhf9lqAnbe8ptMJ\ne7uf8/lnn7DUXaLRbQBghEZjs1jsID0u7yVABv7KvLDNfJ5Sr1VpNup02m2Wej1O213GgzpZMi6y\nX362MsW9sVPkX8rwXHu4/1FY5iVVhjDXSBkSyIggyC2IK7EeaWalXHGScnU14vXRJRdXl8XyttbW\n+bvf/iZ5bk0CcmNIlaaWW6ZIIwhkQBBohFAEGEQYYnxei7YWySYwVpqGJ24EyghQmW3ShXS6YcsY\nld3TLCVhwadWysrVorDYBuugpq1LHLJgVDyDU2ZxshtAx9/nuSJLc+IkYzpLmU5mTMcTkumEZDol\nGQ+ZXPXJ4gk6T/j2SoUfXMScxvNMib/1zQ/4R//9f0sYRA50WRAYOrttCwJvc1uz/3ZH2pkKfLmk\nDSjmkAq/AWflbdx7RUARyiqldFI5XbCUqdL0ByOOL654dXzGj3YP+XTvDYdnfS6HY0azeOGmtqhF\nvbVVnu0RpX/74fsZ1/NnApguw1nNWiSPhR2kPwVWwSyHZN2QrMncZcyDohGWkTlzjz/BZuvcx831\nG4KmosuAZS5Z44zeZEi4B+yCfg67L+E/G0o3jwIk8GtjyW9rzWYP2IGlp0PWOuesVC5Ykn0a3QFZ\np0beCuzr1Dx71YEogGZUKM8K44A2Fr/4bfD4b8LchvtCwkUVBhU706RHIGpQq1lJ3jY2J+g9TeWD\nGSvvHPF+/VMeyxc85CV3zQFr+oxWNiU0CiUks7DOebjEIXfYDI553r3i82rCXviIRNcxibT7+1Jg\nTiIut1Y4rmxyIO+yXzli6/45zf6MINf8ttT85v854vtnpbyjO5L/6T/XmG/B8EGDN61N9rjLG73F\nSbZBdhlZRmhAwSKhb7OYvjmjc/vFuUX9ctUC7LzlZbRmNBzw//2/3+fxo3dZWV4HYVBCFFfB+f/Z\ne7MeSa40Te8555iZ72tE5MbMZGYyuRSruqqmt2lppgHNjKQWNHMjYSCpJRQ0AlpX1QJ0oT+gK/0O\nSYAagm7U6MGgS70WpltdC2tjkUnmFpGRsa++u63nHF0cM3ePYCZZ5FSPppn2EpYe4eGrmdPNXnu/\n7/mwOZFXInE9EIKCPmbIskqe7tRoNZv0uj1a7S6DSoNQjkDHfLEvg4UtuHjVZ8qRd6xQGGOJU40n\nNcqTKN9zpXXGVX8J4daBjiPOT2K2D4fEus4qYezw5Pf57nvv8x/8xjdIjSHODO1mRqNeJdMVEBLP\n81DSGSllFDKntWnrsilrDCYrAAPuUkqJsAK06zHKj8KROZba2CK1MXmvDYu5OGnqytqMtQsDk2mD\nzsyS7GbFsicnzcjy2xRDRLU2pJkmSVKSOCVNHG0tzs3ObDZnOhoRTadk0ZwsnpOFU4Rxddadus8/\n22hR7/ZpX73Kv//r3+Q3f+3rBI0muihfs3l6km8TZ+QuGh279LX55paLtIeVWxeDVbHLOUIYR74T\nuFI2pdTSHOYfBSml2y3ZYn05dPbR6ZD3PnrKd374c/78Rx9+rk9mqVKlvizSLIeSwifL2Yp9UN63\nEq5D0oCphIlw5uUyYSxg6Z1SnNkpDM+5dT8XZ2lyVoCsamrMaTKhzZhaHDoi2QnoI/jvJ5IfXCKM\n/ZX5Nr+7M+Ev7hg4huDc0tiIaAdjGnJKrRoyqZqL7AEB+FXHEbjGEhxwFXddx0LTIgJ3W5sBoYDx\nirk7wtHpDgQc1SByJNECmsBrwBug3orp3Tnma40P+Rof8FU+5L55wq10h6vhMdWBRSZgfUhaHqed\nFjvqFuvylJaYEFQT0nuKvfguybQGD4UzJPtwdm+dndotNoIT+t45re6Yd35li2Z9TveK4Y+/ani8\nCU/O4f4tuP8rBnNPkHxFsdm+y0PvbTZ5gx19m6Oza+gD3723c2Bs8zK21blEhdkpNuzqPJ1Sf9dV\nmp1XQFEY8tff/VN+5z/9z3n97n28iiOxCGmQwnM9DRaEdYQqKS0oi1YeSmmCIKBarVKv12k2G7Ta\nbbrdPmetLvPpAJ2Fee3r59FqOdNnlbKJT/zsDrQtQgq01WRGY4WkUglAWbLYYrIUjM7LySDLLLFN\nuUxxsViOzr7FyfmInrakqSEME1qtOq1mLTcPGpNVqVcDqpUATwiskBdfuQCTZRhsDhrwkCLDCpCL\nZEO4vhvI05rMHdjjjJmx1qU0mSZOsnw2jutNMiZ3b9pgE43OMmdg0pRU6zzZcKmJMzgxcZQQhTFh\nGJGECUmcEEcJYRQTxxHxfIZJI8hihI4RpEhpqFd9er02N167zv037nL3/j2uXr+GCoK8+FAiV4hr\nxlhcZd/SuizPprL82RaI7aI3TOYbU+RJUW6C7CpGdikpPVwauOzRQbiEazyZc3Q2ZHPnkB98+IT3\nn2yze3zGaDr/jM9XqVKlvvwqvk8+uT9xKg5yE9BdmLUhqruD70PcgX6N5dia4iGL9pYc7pazC1wP\nTSFlEH6KwqDQeGQorRcsgAdT+Gv7YsLYX6bf4vEA3sxBaUrn98fgoRHKLsMpkb++DS7CA27myxUQ\nPY3XmVOpxQgBaeKRzqroQc0lUwcsS/GauMRoP3DvtUBM3wRuQ+/agPuNx7zNQ77O+3yd97l9tkf7\naYh6bhHnbnXiQ9DNuHpjxNr9Gd31CdVKhEUQiSrzOw3ORtfIzqoLYEG02eKgdotH61NqhEgMUa/K\n6994zvqdAc2ThDeHbt4RTQjXfc7WOzz3b/FAvsOHfJVHvMVucguzWYPn0r23U1yC5VxeviRcNDdl\nkvNlU2l2XgEZoxmcn/HxBz/j7r03uXXnHlZI5OJceoGBXpZfSSlRSqKUwvMUlUqFWq1Go9Gg3W7R\n7/c5bncZDRrE4RirP6/ZgWXfzuLXSxKXLi9eb3OzY6xB2wykT6VWoe7X0UmVNJyTxjFZlpJlZuVA\n/MUUl8PTM5TySLQmydxMnjiOSeKYLG1hdV6KJj2syJGaeamVFYAnFvAAhEthUqnxVIYnPVSeyAjy\nAaDWLKhprrTLGRuHinbrxrhwg8ywuM5aHNQgTdF5olOUuBWlbFEYE4cx0dz15cxmc+IwIk0SsjQl\nS1P3Za9TpEnBplgyAl/QrDdYX+/z2s3r3L7zOrdfv01/Y42g2cR6PjqfnyMXe1e3LEvCPmlelxlO\nflukM2a22Oyr8c/KZYGiKx4nT8asFaRZymgyZ+fghGd7RzzdOeDJziFPdw85HU4YTWZESbrs5ylV\nqtQrqqJnB5Zn719kdIolARtCVgdThaTqhmBKeXEkS3EmTQNZ6qocDKAquJiFfFSLwGYKg0DjkeKT\nKQ8qMeTH4U4vIYxl8Gae3GipSPHRKDTStcwWi8KlObdwZWb3cPCA+xnt60N6zQHtYETDn1BVEQJL\nYnzCTp3pRofR6x0GJz2S7Tr08tK4APc9HLE0O9ehenvCRv+IO/IZb/OQd3nArZ0DOh/N8T4w8ARn\nLCJcitQH75bBO0+49dUDspses3qDAT1OauuEGy3GV6sufdkR2DXFoLHBlsyQfUMmPMaqxZG6ylXv\nmE5zTCWNAUg9n0nQ4ijY4Bl3eMJ9HvIWT8dvcv7sKvaJdPOOCrMzMThnWtSzFelOaXS+rCrNzisi\nrTM++vBnfO0bv8prt26jfLfpBTlmOj/YJg8PpBQo6ebNqExdSneadHs92t0etdMW8+mATMd88WY+\nBwYgf0VLvczsFHcrzvAbtMnQVqMCRa/XRdkWWTQnms+IwpAojLFhwijJeBnFJQ4jzgcD6nGdqJoQ\nRhHzecBsXiXLHD7TCg+NomYVvi9z4IABa/CMXDk2N2RWY22KJxW+8vA9H195SOn6dbTViyGf5HbT\n9diAzsvC3NweTZIZ0tTNyrEWjNZYrbHaLMrU4jghimLCMCach0TzkGgeEYcRURSRxjFGZ1ijEdYQ\nKJA2QwlQvsSr1qhUfK5eXee1Wzd47eZNrt64xtr6OpV6Den7GKlw6Ox8aOgKMa1AlV+UuGR0oDgF\nabELWh24gZ7uLkU/z2oCtMyJZmHM4ckZm7uHPHl+wLO9I7b3j9k/Oef4fMRgMvvsj1ypUqVeIb2o\n2Ty59PeiXyNliaaug6mBqUNaoNouu53CaRTzaQKgB9p3D5UAocBEHiE1ZjSY0iQOKtCdwRq8dQWX\nqryMMHYD6EPck8yqVWY0mNs6cVbBRHJJF4NlP83bIL+SUXlnRu/qKTebO9zw99ngmB5DquRmRwVM\n/SbntT4HXGevcZPj5jUmrS5Zpbr84j3H9fv0gA1o9sZcqR5yi13umGfcGu/TeTLD+4nB/hTsI5ic\nQ5KAp6DagdqhW0UNL+Ja7Zi79S32xQ2ei9vsd24xudLBNjx4DmxCElQ55SrGSOb9OqdinV1xiyve\nMV1vSI0QgIgKYzocs8EeN9nWr7M3us3ZzhWSj+oOAb4N7AMDA2mMi3cKUkExY6gwuy+i+5X6u6zS\n7LxC2tp8xPNnT/mVb/4a3X6fVRPxovkmMk92lKfwfY9KZWl42nkpW7PVZTw4IYsnX5jKtvxNrNDZ\nXl7aJgpjhos9rLBkRpPqFIulWq/RqgZI0ySNQqLZnOl0SmM2Z3A8YZZ9O39eR3GB36fiVUiimLNs\nQBjFVKtVgsDH9z0a9RppZsmMJLOKzCpSLahWLL5SCOF6m1Jt82GVy3VqtCHDJTy+Z6j4Bs9T7nrj\nZt8YgIJgBos0B1exRpIYwiglTlJXzqatK4XTGrTm2e4u+4fH1IMKVd9nPpsTzkLC+ZwkjtFpmiOr\nNeQDNj0lnAkTgmrFd/1YrQadbpsbN1/j+s0brG9s0Gi1COo1B2RQrm5bIBdgAAddWF669118hort\nahe/L/LDC4lNbnfEMmkkNzvFLbIsYzKdc3g6YHN3nw+fbPP+oy0ePttlNJkzCyPSrKytLlWq1MtU\nGBPB0vikK38rDnYTLpgdAlxTTDGfRrLs7i/m0xT3s0AHTMv5njB/mKnAzBRj2pzT44w1xvUWGzcH\nqFuWt9+F/+iZ5M9nLyCM9SVvft3ATRivNTir9Dinz9h0mE9amIlyIUWSv8ybwBvO6NS/OuHqnV3e\n9B7zhnjK62xz3R6wbs+o6hiBJZYBY9XihA12uMWz+hGPbrzFs9pdBuoKRvuQ5kQY3709etCsTFkX\np1zlkOv2gO7BFP+Jho9AP4DxJvzV1PmMe8CvHsP1Ofg+iB40r8+4ce2Qq/4Ra5zRbI0568ekTc+t\nxm23euO0zlF8g+n9Buf1DXYqt+l553RkMe8IYipMTJvzrM9Zss7pdIPpdpfsURUesTQ7xxZmKW6F\njfKNc7lnx1Aani+fSrPzCun8/ITn2085Otyl2+sBLAY1XmivoCgXKsrZnOEJAp9q1cEKinSn1e4R\nVBtEU4W1XyQCXhwKLxvUL+gz+nksDrhgDGmaECURiU4Jqg0alTrKttBJTByGjMcTqrUqP9k5ZZos\nKS4V6dOv1TDGkoQRYRzjBwG+7yOVol6rEyWGOLWkWqCNJEkN9WpGrRrge8VgBrNYb0oKN8/Hihzy\noMlSi84sFd8j04YkTUh1hhE4tqjI5/rYHLVsBZk2xHFKFCduHk7m0p00SRiORvxf//I7bO5uL97L\n1e4a33j9FjZNSOIYk2VIYd0sorzHVElBxZc0ms4Udtpt+mt9Nq6s019bo7e+Rqvbpdaoo3wPqxQ2\nn50jc8S0LLaYEMvrRdFzs1IbX8zXES/ammLlbwXooChsFBhtSXVGmiacng/52Ueb/NFffo/vvf8R\nJ+ejsjytVKlSn1NFuZpi2XhemKDiuoLWFrEkthVmR+X3WXCbV+5jcOao7npYC+DbFBhDNvY4N2sc\nyyvsixsctTa49uYB7eMEG8H/qQ2/+2cTvjNaIYxtSP7gnxvsu2DeFhzXrrDHTQ65xqleJzzpYs69\nvAcFV8L2OnDfUnl3xtU7u3zN/4Cv8BHv2I95wz7lZrbHenpGbZohDUQ1xbDe5Ehe5abaZU2cUfVC\nZF/z8VcCplEfO1EwE84PNi00oepFC7pc35yhDg3sgt2GnefwX00lP1hJ0349lvzvW4b7PfBeh+px\nRm8yodcf0GFIqzah0opJGw0HddhiMRPHTHwmJ+tMbq2ze/UWje6YemVGhbyMDZ9Z0mA6apMct2BX\nOHOzhUNabwO7FoYW0ghHkhjnG6fo2VlNdVY/K6W+DCrNziukyXjM8+db7Dx/xv233kUptfhbUSh0\nmaS1MDvKw/P8RTlbs9mk2+3Q7fZoNDtMhzV0Upzh+rz6RUEFl1U0vbskINWG2Szk/HxAt16lWQ2o\n12oEjRq23aTXadPttNlY6+X44RmZzjBGYACpBL7nM48jwnnK1IJB0mymhHHMbD5jOpsynU1ZX+vR\nabdoNRvUq5XFsFFjDFIIfE/hex5KCIRVYAyZtWidkqaOwJZpTWo0GQZjHYzA5qVgFunMV5otytOS\nxIEFHHAg5A//5M/ZPwlZJcsdDb/ND5MnvHulh9EZUoCnFEEgqAY+tVqFZqNOt92i323TaTRpt1t0\nOl06/R7tTodqo45fCRBK5WmLXJSsKSEu9MIWn5NieCcUJWj5WbGX+JFFp49gQWUrwAVZmjGeTDg6\nPePR1jY/efCYn370mMfb+0znIVGclEanVKlSX1BFyZrHJ0vbCvOS4gyNd2l5kdkpEoCivC0CYvcw\nM9xx9TFk+z7HB9fZu3KTZ8Edrohj2o0x7/7aY3zP0uvBH983PN6GJ2eudO3Ndwzcg/Qriv2762wG\nd9niLs+5xXF2BXMoXPnbef6yr+OSnfsZaxvHvOU94l0e8E1+ytft+1w/PKH+LEEdasTIvfRKXbOx\nNqF7K+Tq/WOa/gSPDCMVcaPKR3capCc1OBMuDPGAQBPImCoRVWKqNkHMLIwhHcF/N5K8d4ks92O+\nze/ZCX82NXgjYAIqNNSZUyUiIEFJvSTLhbjnK3DYR8A2JBt1sm6VSd0ggrwqIBOYmcAMlevJOWIJ\nWtjHASZGQDLB3WCQb5yZ21YvRE+X+jKpNDuvkLIs5WBvh83HD/n1v/8P6XS67iAV8rPpl/8HL9Id\ngecpPN8jCIIcVFCj3e7k6U6X06CGSefLg9xfWKulBfn8lfy5P03LUrb8sNlKtLHMo5jz4Yh+p0mr\nUaVZC/ADD094VKsB9XqVTrfDxsY64+mc88GY4XTOPExItUEqhRIV4kwTpQ5UMJ/NSJOYJA6ZhzOm\n0wnjyTpr/R7dTod2q0W9VsP3g/wAXqBEhpIpnhR4SiHz2T9SgOcph4Y2udkx2oEJrMUYMMaR2pI4\nzXtwHGRgHobuch5xOjhj7+QAZ3SW9B6wDObfIkzrtGuOHNdq1Ol1OrRaDVrNOq1mk26nRa/ToVGt\nU683qDUa1Bp1qvU6ylMg3fqVOIPjYfEQKKwzcPm2s0ViI/LfsSAude6I5dZczFQChHBGVeRghuFo\nxP7hCVs7uzx+tsOTZ7s8293n4PSc8+GYWRh9js9VqVKlSn2aVqEFxX6ooEAW+6TC5AiW/TpwkTZZ\n3LeKO1IvIp0Epj4MpGu63xfo7Sr77Zs89oc0xRTfy7Briuu/ekDvxpTKUcabI3gzAxqgN2B6rcph\n/yqPK2/wgfgqD3mb5/O7nO9cxe5KdyA/z58+n4HTvj7gRnOPe2KTd/iYr/Fzbmwe03gQoT7GJR2D\n/J00QF41qHsJa9OMt956StbxmIkGQ6/L6dUNTm7eIAGyTy8AACAASURBVN2vrQDtikLy5WnS4kv+\nUQTffQlZ7q/5Fk8S+OrqKod88pwbQH1hc5ywnI1zgkNn9ySmLTHFrKBiU4Y4YzRigfR297cw15BN\n8zddpDqrcIKihLE4dik+A6W+LCrNziskay3HRwc8ffIxZydHNJutRZ9FfosLt3eDRpflbJ53EVTQ\nbrdyUEGfaq1FFo2xWfaJx8kf7SXXQ7GTsfkX3udNeIR1R9PGQJwaRpMZg9GEfqtJp17F+O7gvZKX\n4bVa0O8ZwjhlvT9hMJowGE4YTaYkmaYa+GQW4swwi2OiOEWnCdMsIY4jwvmc+XzGcDSk2+nS7/Xo\ndnvUa3U3YFNKN4RU5n0xynHLsG7sgvLcDtMYjbaGzGiyvNQtTd2MmDhKmM/mzGZzwjAiCiPCMCSK\nIuIk5niY76leQu/xahVu3LhCp92k1+2w1u3QbDZo1Go06m5pNRoEQQ0/qOIHFbzAle2Rmxk3e8ki\nhUWBMzoU5zQFVrqtZYVd9lAVy8s24cL1uF+iKGL/5JStnX2ePnvO5vM9tnb32Tk44vh0wHg6I9Nl\nKUGpUqV+2SqOqIt9zipsoDBCRYlaYW5eBNIpDoolzugUzTpTmHbcgM4jYEfAuuC8u8HW7TfwWylG\nSOZ+jXsbm1xrHtO+NsWPMoQ1aM9j3qxwWu+z7d3mMW/yEe/yMHqH/eObJE/rzrQc5E/bx5mBq9Bv\nDXjN3+N1trmrt3jt7IjGgxj1Q7Afgt6C2ci942oDKldBnECQGNaDAbfv7XLa2nDwgPptJmtrpOs1\n5xE0kEoy6xMTuGxHBNi6gCY8WxSMvHjftKngq02wDciqMs+GKqTWR2vlfEfhPYoqsynO9LRxkIQm\nztwVz5WxwHgzw80LGgPTDMLYkfUY4ozOiIvla6tPuDpEtEx3vkwqzc4rpvFoyPazTZ5tPeHmrTsX\nStkW/2vnJgdWyGxKoJQDFVSrVWq1mitl63Tp9fo0213mkzOMTl4CKvisL47irFqx6ylu/+mggsUj\n56VQ2hjmUcpwNGXUmdFtNahVfJSUeELg+x6+7yGEomOh32lzZRZxPhxzfHrG2XBEkmmQHkYo5knG\neDpjOp/lGOqINImIo5DBcEizeUa/12N9bYNarYHv+VSDCtWgQuB5DCcTxuMxG70eG/3+onTLYLDW\nLTqfrRPFDhU9n8+ZT0Nm0ymzmYMMpFlKkqSk2g0b1Tly82X0nq+9c497N2/Q73bodtq0GnUqQUDg\newS+54xfUMHzAoQKkMpHKjfsUywSHdxiDQqZG5+8XE3kkIEFa+DTt2/xd5vPDRpNppwMhmzuHvCz\njx/z4w8+5smzHU4HQ6bzkDTNPuPzUqpUqVL/pnrRQW2xLyoMzurg0ULFfrO4v88nSW5jSGowlHAg\n3UF6C+JKk0P1GuaWIKpWGckOh+Ia12qH9GoD6sxRaGIChnQ55gr73OAZd3gavcnz47uMnvZd4/0W\nrlRL4QxA1yLWNR1/yFWOuME+N9J9Gk8T1McW+wHEH8BwD34QOujZuz785ik05g4RXekb1jojbrT2\nucoRG5zwvBVCrw1V6QaQzhRxVmFGkzFtRqLL1f4IrmjeugV8AC/bN711E7gG6Zpi2qwxpMuEFrO0\nQRIGS0BaCmQWQg1RBmMPahKqAirClboV3rNY9amFKL9PYsAUcc+Y5eTXKUswQcqydK3ouyqNzpdR\npdl5xaS15uT4kJ/86Pv8xm/9Nn4QLCEFKyoOTpf9GNKhqFcMT6NRp9Np0+/36PR6nJ1UyZIZ2NUm\nv19Ul8+mfM7+HVtE6pLUZIynIYPRlF67Sb1WRUmJkBZprStM8Fx5WbNep9vp0Ot26bRbNI+POBsM\nyQyooMaGHzCLEwbDEefDIaPxmFkYovPeneFwwPnZGcdHpyjlUw2qtJptqtUKP37wgIPTg8VLvH3t\nFv/hb/17+FKhbYYx2hHbjMFkmStRm82Zz2bMpjOSOCFNE7QxrkBMWKwwSAmBEjQrVabxRbKcEP8D\n79y9w3/8j/8hrUaDerVKJfAJfG+x+1Z5T1Hg+0jpI6RCKIGQEpXvPKSwLtmxdgVGAFYKtLg4X2fR\nbnOJ7rc0OLhZSJkmTlKmYcj3fvoB/+q7f8NfvfdTdg6OP9+2LlWqVKlfuooEWXFxAGmR8qzuk1ZP\nxhR0toLIVkQRFaABEwWHgTtIzxkHc9FhN60wutPmvN5nV77GOme0xXgxQDPDY0ybU7vGib3CnnmN\no4PbxI/q8DGOMPYMlxqt45KOlsXrzGl6Y7oMWbNnrGdnyH0D2y7R2dyF/zaSvFe8xxT+wZHk/9aG\ntTUQd6D+9pw1e0ZPDOgwIqjPEe0MGwQuYRnCLGlwZvsciw2O5RXuXt8nuJfy1q/B77wn+dOTF5Pl\n3v41g30DptfqHNSucsIGZ6wxmnaJB1XnRwqKXQYwAzuCpA1JBUY+S5dzWUU/1uzSUpStFdCJeb69\nVkvYiu1f9ux8GVWanVdQg/MzfvLe9xgOz6nVanief/EGK5VkBaRASotUAuVJPO1RrQTUa1Xa7SZr\nvS5r/T4nzTY6npLFX2zA6BcHFaw8BAKET5hoBpOQ83FMs+koaQaL8gxKaYQEJSVSSXzfRykPKSWV\nQFGtBJwPx2TWUq35dDpNet0Wa5Mup2fnnJ6dMZvNSJIEnWZMsgnhPEIgCfwKjVqDg9GISShYhQfs\nHH6bP/yzP+Mbd++jtcNBYxye2hqDTpy5SZOULEudCcINKCVP2IKqT6vVoN1p8ZVGg/cePmPncEnv\n+eZX3uF//h//BRv9Dp5SKAESgacEWIuwLp3xijI7T6I8hZAqD8fMIn0Sefmi9DwHK5CSC9041rie\nmwV2+pM7CGMtg9GYw5Mznjzf5acPHvPDn3/Es90DzoYjwij+xH1KlSpV6v8/FQe9Rc8OvPzk3Wq0\nUFDcVgluY8gqLpXYU8uQKIZsEjA6u8L8Rp/dK7foNIY0/SkVYhSaBJ8ZDUZRl9FZj+yght724Slu\neQbs5E/pu6cTgcWvpFRkTI2QZhbSGKWIc2AAszH8XiT58SV4wN/Yb/NfnE34k5FBjSCYpDTDOfX6\nzEEIKhFeNSUlWAAXRsMuh53r7FVusinust4/5d7bO7SSkD/4PcPv/q8TvrO/Qpa7LvmD/9LANyH+\npuTktR7PuMMON9nnBvNxC0489/gTcrOTsiQVDPN1ukrGW23aKbZBzAISwZxlVBStXB+v3H715GxZ\nUfBlVWl2XkHFUcjezjY/ee971H/7H7O2fuWlHTVFsiOFQObpjqckvudMQaNepdNps7G2zn6ny2xy\nTpaEebrzebTa7Pn58p0lrKCQJUk1k1nMcBLRn2dUqxLfCFJt8bRBKUGmNb7RKOnhKUW9VsFTnfwg\n3jCaziCLqdQqVJt1mvUqnVaDfrfFYDhgOBozmUwJw5gsTcAKTKZJk5RJOOEyPMBiOZt8i/2DKkFu\nECS4uTk6w+gi7XFfvFLi5uH4AZVaQLPVpNvvcOXqOusb6/TXevyzf/pPmM7nDEcT7r/+Gm/dveWQ\n2QKEzXugrOu1ca00Ek/KfMiph+d5bqaNMPlKN65nZ0HhK4yQQ2Jji34cu1LqWKQ47netNaPpjL3D\nYzZ393m09ZzHz3bY2j1g/+iUk/Mh8yjCmLIBtFSpUv+uqkgJXqbL6YKHcx4SdzA+xx2gS3f1eTsf\nyyPyKjeJOZHEr/lkGxvMuh38eob0DQKLySRZokinAdmJD4fSIZV3cSZnD9ev0+ZC0C6Ea/SXGDeo\nuSgx1vAwgr/hxfCAvzDf4vEM3tHu/Jq0Bkm+COPSe4MLrY4g3qtz2r3K5pV79MSAljdBXIfbap9e\nb8ofv2V4/DE82Yf7V+HNNw32Jszf8di9ep2Pg7d5yFts2jfYmd5iftSEgxW63ATICvNYNOP4LOcd\nrZYXFv1WGS6pKWbnFAjx1esuk9cMJZDgy6/S7LyCMsYwHg357p/9MW++/S79tY1LoAKnoidGComV\nFk9akBIrndmpBD71Wo12u8XaWp9eb43B2TFxOMVkKb9YFCxWLj9vomNf8LM78M6AeZwwms4ZzyI6\nnTaZEWQaMm3wjEQbTaaz3OxIAt/Hk2C6LdI0RuuEaRij04ha4DsoQ7NBv9dmPl/n9OyMs7NzRqMJ\n8zAiChOMFsS62EG+uEFzFk5QfgUlJEYIrDEY46JzpcgR3x5+4FOrV2jmwz7X1t0snLWNNfr9Ls1W\nk6Diu5I0z20TL5/x43yjMzDC5AV+UqKEwlMKXzmDJ6V0VcrWLnDORU+OkPlgHiHckNN8Ha9upeUg\nUbfenx8csfl8j8fbuzx5tsPmzh47B0ccnJ4zGk9Js/LMWalSpf6u6NP2YasHx5KlMSrw0zMWhsgI\niCSc1SGTbmbNCEdp2wPdD9CdgLiJ60Uhf7gQd9B/jisfO8rvcwycW2c86oAWi2N3nSlS65MQkCif\npKqo1TTUYW/hz168b3pq4Z066Kok8QMSAlJ80sxHZ3LpGQ7BbvsMe2ts1d+g3pwRkGAakuhGlRut\nIxqvzbjxzYSbmcFKwajmM+/UOdno8sS/zwPe5SP7Lk+y+wwONkifB87IHeEIahFgCthD0XsDy0Tn\nstkszGlheIrL9NJ1hcG5bHTK0rUvs0qz84oqjiN+8L1/zX/yT/8z7tx5g1q9ceHvIj9RX6CUEa7n\nBSmxSmI8j0rg5ti0mk16vR79/hrHrTbz6YA4i/j0mTuXTc5yqOjLLc+LvoyKA/AiEcrTIQtJljGd\nhwzHUzbWegSeT6oEvgfG2LxfRmOsBnyHhJbQqFXpdlrESUScJOgkgmoVT1YIqhU6fhMp11nvdxhe\nWWM0GjEeTxkOxoRRxmwec34U8rIGzU7Np+EHCCldnmUNQjiIgu/71OtVms0GzWadTq9Dv9+lt7I0\nmg0qtQDfVxQeVYpln41YoJ7ztCynqynl5YbIQ0mFkBKDMzmaZY+NxG1v8t4ckxuZIuUj/0xYC5lO\nmYcx56MpR2cDfvD+A374swd89PQZR2fnTOchWZbxGfyCUqVKlfo7ptWxCRa3vxMsIQWXDsathWQd\nzioQ+TCWDpF8AHRwAIMaLriAZUtJPpSUEc70jCxMNMT5cFStFgGGDQVpWGHerjPxWoxVi0m9TqU/\nRV2xvHsNlwh9GjzgCkSdCsOgzYQ2MxrEUQ0995YVYPtAG6J2g8PaTbzbGaICoaxyXulzs7LL1fVD\nWkzxSdEopjQ5ZZ09XmOTuzw2b/EofZvnwzvET+vwVLnE6jB/n4sStqIMLczX7WUM+Or2WAUNFMZm\ntcRtlbh2+bLUl1ml2XlFZYzh/PSEjx/8nPtvfYU79968kO6sWhDIy9nyVEcphed5+L6fgwoadLtd\nNjY22N/vMTg/IQ6nl0rZcjNTlENduL740pIsoceX9eIU55O3WZqeTGfMo5DheMxwPMVXTXzlkWbS\nlbD5Ep2nKhZnOIQE3w9oNhrESUKUpEznITqLMakPvofyPYdwrm1wdWONLMuYz+cMBmOm05Aoihn9\nIOP4/Nu5+crhAfw+a80W927dQEq5WM9SSoLAp1arUq/XaDdbrPW79Po9Wu0WrXaTRqOGF3j4gUJ5\nCqmkm2ezigcXBS5agHFzfawRIPNZOV5RliaxQpBJgTXWpUvWLgGqeYldsSxAAwAFeEAI4iTlbDjm\ng0ebfOevfsC//PO/5mw4IstKVHSpUqVeBa2anMvXv2j/lIJpw6QDsyqcO1yzQynnhLFVs1MkKfM8\nxZlY0BpnAKZAB9IaRMpdNZHoYZ3pWpvzSp9jrnCiNujfnCPvad4+g995LPnT8QvgAeuSN79hsK/D\ntNPkmCucss45feJZw4EBprjAao5rnakKItVgU71DctNnGHQ5FNe5IfZZ45Q2bkCpRjGjwRl9jrjK\nrr3FVnqXvbNbRA+68BDYxJmdI5uHOAVBrXjCIuriBev78vYoVuAqeOByf05xm9LovAoqzc4rLGst\nDz/6gG/8vd/g9uv3XP8GvDBfWT2jL3PDEwQBlUoln7nTZm19nV6vz8lRk3A6Qqfui8WRvIqkAHfA\nvHjkgnJTGJ3VGtwX6DP+fPn9JWnCaDrh9GxAreIR+DV8D7JMkGUaiXSlbDpDCs8ZBSFRvk+j0aSX\n6dwQGXSaYDPfnUkzqTN7QYCQVbrtBtfWe2Rao7Xm3Xde53/7w7/g4dayQfPezdf45//ot6gEQY5w\ndkS4oOJTCQIqFZ9qpUaz7gZ/1ht1PF+hPImUAqHcjB6pxGJVFuACpRxwQC76gEx+vqpIdRRSKYTy\nQDiz41a3zA2MoLA79gUrVwjX4zSZhZycD9k/PuUH7z/gxx8+4sn2HqeDIZPZHK3LuudSpUq9irp4\ncm856RIWRmcRjYRg6hDWIa7BwFsGFqtU60WllXUlXaagixU0sQrEFZiq5TDNYxjc7LHfuME2t7kR\n7LH+1hn92YQgM/wf1vBf/9GE75xcggf8Nwb+Hky/UmF/fYNn3GGf65ywQTKqLId7jvPnKV6vARMp\n9gd3GL/e5aB7nSvBMR1GNJgtzM6cGmPanLDByfkNJrtdsme+o8o9wZmdXVx5HhHLOGu6st4Kchq8\nPNlZ3R5m5Xr7ktuVehVUmp1XXDvPt9jeesqvfP1XF6CCQquGx+ISiAKV7IaMegRBQK1Wo9Fo0Ol0\naHe61Bsthl4FncUs3Yl0hscu5+jYC6VrBdHLlQS4NMG+/ASOsBcNz+rkZfcIGGFJtWYWhpwPh3Ra\ndepVj1pForUlywxSZGRaonSGkhlCOqylUj5BtUojy5iHIfMwdCVvOgXjI6whUI5m5imVzyGqIKXI\n+13W+V/+p3/B7uEp+0dnbPS6XFtfQyCx1qUvSuWDWn0P31coJQn8gGpQpRJU3Awkka8D4crIZG58\nHPE5LztTEqVychoiL0G0eb+NW7tKKYSSC6MjFjNyBGjt0NZ2CR1wLAI3/ydOUrb3j9jc2efp8z2e\nPneXBydnpckpVarUK66iV0RxkeRWGJ4XNc/PgRrYGuga6ICF0xErB/G26C1JuEgXS3AxUAypcf5n\ngDMhezC8ucZe9SbP6ndZE2e0qhPuv7PFWjCiv6b543cMjzfhyTncvwFvvmMwd2D8lSrbGzd55L3F\nJvfYNnc4PL9JfFh1vTSnOObCcf5WLJA64EI2qjA+7RNfrXPWuY5fT/CCCKk01kiyNCCNKsSjKvFx\nDb3rwbZwg1GL5cRAHJPX67HERccsk5niiT8tTbs8L+ey4Sn1qqk0O6+4Tk+O2Nne5PjokPX1KwC8\nEFaQlzMVyY61Fpn3mFQqFRqNBu12m263R7vTY3h+BibDmtSVU1lwbONlhfPS6FyGE9jcvNgLz33h\n71xMID75iq0b2Kk1SZK4UrZRi3azSqseOFBBZlASMq3xdIaWGRIFUiCkQnk+QaVKpVojThKHh84y\nrNEIq5HW4AnwFfieMy6e7zDNUkqEVLxzv8k7b9yhMHRSqrw8DId+zg2P50kEFk95eMrHU35RN7ak\n7EixWABsUcYm8+RHCIeCtiCkcr03dlmCKITEigJAcGk755Q1Idz2iKKYwXjC84Njnmzvs7mzx9bu\nPs8Pjjk8Oed0MMSYcsdRqlSpUktDI1kaHstFdPUqnjrCDcapsKxdy3HKdvWwrDi4L8xOcV+La/IJ\nwSQw9+BcuX6XXYiv1ThuXuNp8AYNb4ZPStbzuf3mHv3ekNpbIXf+fsZdC1lFMW4HzHoN9q9s8FC9\nzYd8lYfmbbbCu0x2uugdz/UWnQADCzPtQAtGLvuKBmAOfMIrPuFaC9oWqhqUcYCGWLoE6ix/nEPc\nYxZUuVMD8xjMojkJZ3ZWh3++qBTtRSr+bld+Lk/Ivcoqzc4rrulkzM7zZ+w+3+Ltd95FqZd/JFb7\nONzsHVfOtmp21tbWuHLlGnE4Z1TxSaMZaZqQJRlpli0OkFeTncWMFlt8MTn0pjtWX+kZsatnabjw\n88U+oOV1BkOqM6bzGcPxmH63RbdVp1ZRaEOe8Ggy6ZIdKT2U9RBCup89n0pQRckZWZpgMo3RGqt1\nbnoMSnh40iGdi9k9QuajOIUzOEpIlFR5OZkzNgI3u8jLKWpCkOO9QUoL1pX2CdeIk5sWt/aK1iax\nkt4U71kIVxRo5UoPVk5VW91+QogF/tkC2ljiNOFwMmD/6ISPnmzzww8e8t7PP2Y6D5lHEUmalrCB\nUqVKlfqEFl2PXCyTKlKFy3NgipkxamW5TBkzl+5XHPArnDnKS9qiwJmdA6AP9BSjdo+t+j1UJyOT\nHjPR5KS9zmvtfTbsCfU4RFhL5FUY+R1OcKVrT7jPx+YdHoVvcXD0GnozT2D2ccnOyIIJncHSgaPM\njYUzMftAD+gCTQGB596OwfmVEJcMFSnUKXBqYWAgjcEWNXKr/ToRF43OannaZ2nV7JR6lVWanVdc\naZqyt/ucx48+4jd/67fpdLsI4YqGV9OU1Z6dVbNTpDvVapVWq8W1a9eIoohqtcLofIPJ8JT5dMps\nOmU2mxPHMVmml2VPovjH5j0jK19k1h3RfzLHudj8+aI5O8VjGutQ05FOGE+njCdTZu0G9aqH7wmU\nNCjpENSezjBKI4WC/L15ypXq+Z6Pzs2OzQxWGzBmmU0JuUhYlHQGB6FcnqMUSigHEcjR0AJXyiYl\n+IXRyf/mZhqxTFpEnuZcAtgJKRHKPYfzihYryFM38Yntt7rdiu1pjCHNMqI4YToL2dk/5l/95d/w\nV++9z9buAXHyRQbElipVqtSrqOIgXLFEUWuWBijFHXZ5OPMSsDwMk7wYzrNqeIpSrABnlObABJIa\nDAM4Eo7sVocsqHGqrhO/GzCrNRnIHnviBtc4Yk2cUanGCCwxARNanLPGHjfYtnfYjO5xcPQa6Qct\n+JhlP82Zhci65wSIm3DadAbmDPfc7Ry6UMtfZmF2Cr82wYU2oxxEENn8fQxwic6QJYGt6NVJuFiG\nVs7FKfX5VJqdUpyeHLH59CFnp8e0Wm13oP4pKg6UlVqaIs/zaDabXLt2DSkl7VaT4fkG48Epo8E5\no+GAwWDEeDxmNp8TxQk606407iVUNXft5S+0Tzub8yJim3skiyCMIsaTGZPpnFajQuB7KIkzPDpD\n6xRjPIyUSOMhAE8IAs+j4vukkcIaTZZlGGMW+OoLz7toNXKORAq5wpgTeHnpmsA6epossNF5CiQk\n6gINjdzkrBDR8rI0KdSCZGeszcfqrKAfcuLbavlh8bjGWCazfPDn830ePH7G+w+f8tGTbSazOfN5\nRFLOxClVqlSpz6kiyVnt4VndNxVH/kUPT0EgLS6L/W9xcF8sheEphmnGuOSjAtRcunNYdb/mAZE2\nPuNwg49vdzi/ts5u7SZrnNFhRJUIgSXFZ0aDAT0Oucrx6WtMdzukm76jpD3B9dMcAMOCBDfBxTQj\nsG1ImzBoOpy2j6vQq+WvQ3DRr83zl55pMBEX2dpjlsi3IgFbHQS6ipYuVeoXV2l2SjGdTth5/ozH\njx7w2q3X8Xx/8Tf7gpqly/07Sql8Pkydfr+PlNKVttUbNBt1arU6QbWG9KtY5WOkjxFz4ih2PTC2\nSHPEJyzKstFzVfbSb5fL2y7/HQyWKEmYzGaMp3O6nQbVisyHcFq8DDIp0cpDCZcmuRI0ie95eJ6H\nlJI0zdBZRpqmrvwtT6kK4+O8jxviqaRESW9hMpQQeFLl17NIcQozI3Oz44zMMn1ZDNMR+c95/w3I\nZaJTIKFXttEqOrp4rOk85Oh0wLOdAx5uPWfz+R7be4fsH59yej5iOJ6+/INSqlSpUqV+Aa0Sv+TK\ndUVfTwEvKE4oFQZmdX93ue+kuPTz+0W4Q7jcXZgA5hL2fXcGTQOJxMwE0bnH0Y2bjNbWqDRDKvUZ\ngZcAFm084rhKPG8QjWtEBzXMtgfPBGyxhAecZZCGuARmhHMtKr9sgm65srbUg9iHqQdiBS1nXTUE\nOgVTgBpmOHMzX7kM8/cW8clenbKGutQXU2l2SpFlKUeH+/z4R9/nH/z2P6FWq3/iNqsHzJeHSxYY\n6lUD5HkeyvNQnisJM1KRoUiMQKMwQmGRxGGI0SYvWXPLSoZRPDufZXg+FVVtnSEqyGzj2Yxp2KbR\nqLhSttSS2cx9nUqFkSovS8upaVLhKQ+lFGnqkNVpUhgenyzTeJ5GGZkbDrFYL77ycuNSPJbM+3dc\nwiOlcOhnrAMYiBWjs6CmFUCC1d+LMrSXG50i2cm05nw4ZnvviM2cpLb5fJ+tnT1OByNGk5kDMJT7\nkVKlSpX6JekyGayIOCQX4w5WrnvZ41xOMoqSt6LPJ4cbaAHjNux5kErnFyYCTiG+VifeqEPfIFop\nquLMg8kkJvTcHJ0THHVtHwcO2M+XMw1RCHaIKzUr+mkEy4GfU6ACNoCsApnPxWinMCwFbCFaue/q\nZQEkeBGU4FIlRalSv6BKs1MKgOHwnJ/86Pucn51Sqzfw83TnwlDJ3MxcvizMjTHGHXjjvIvGoo0m\nNYbEWBJtSTKLRmKRWANaG+JYuzM+tphGvURQXzQ6v6DBuXQTN2PToq1hnsSMpzMms4het02qwcOS\nWYOWoLMMrdK8pEyAUDki2kMpl9IYY0jTjCRJCQI3b0drD2u8xTpTSuIpie+p3MTk18u8b0bkuG2E\nw0rn91vtp3FVDQ4sgMj7chZv++UmB9z7nc9DxpMZBydnPHi8xfd+8oAPH29xeHzGLIpIyn6cUqVK\nlfpb1uoBelHaJi5d/3nmvhT3EVyEG+T7jUzCoAGp7+ABIxwqegMHD2hLbKNCFqw8dYTzL+f5cooz\nPmcWzjWkc5aNOQOWpWaWpWmZsTReRS/SqrG7bHgKQ1P05Kz252SXbr86L6dUqc+v0uyUAiAKQ7af\nPeUnP/o+zVbLzdy5ZGxWtXpgDfnXrxQIT6GsT2CqNIwmyVKSLCNOM5LMkGYWYwUYiTEOHqB1RpYa\nEAbsas3yy+pyv9iZHWMtUZIyms0ZTGasJRmV2FgxuAAAG7NJREFUoIIvQVvhyGw5qEAqBcaR0woz\n5wyPwhiN1i7ZSdMMrXVOmROOvKYUUhZAApfkyEXa4vpwBOT3sYv1WczoQS77omwOcHhR6nLR6EhE\nDiVIU810PuejJ9t89/s/4c//3x/x4MmzL7TOSpUqVarUL0uXS9u+SO+Jyu9fdPwXWunvMX2X8IQV\n51FOheu5aQMNXD/N6m42ZdmKM8IN9hwBkcH10RTggHG+FJS0winFuMPJVarcyw4vi7QmYQkeKH5f\nTXOKF1canVL/5irNTqmFoijkT/+fP+L+W+/QX9t44bydC8pNUFGB5vk+SDfLRRtNkAX4vo/n+/h+\ngB9UqNTqNJoZRudfy/k/s4lBpyvt9ULkSY9dXgJfxOgs5nIi0NYyTxLOxmP6wwlVXxJIj0BKjLEY\n7WbpFDQ19x4dKc33neFJU9ej4xaTmx2z7Nm5oNzMwMLwCAHWutubvL9HKoGwFpnHYqKg1FmLFZ8s\n41s1m9ZaJrM5Z4MROwfHfPj4GT/76DFPtnc5Oh0wnc0/9zorVapUqVJ/W/qiNLFVh/IygEyRnMwh\nbcG4AbOKMzxVlvCAIgwyy5sv5pVmGegCHjDKl6J0bXXQZ0GaK8AJRXldYXxWtdp7VBicYrl83YvQ\n3aVKfXGVZqfUQmmS8vP3f8zW5hNu33mDTqf7idsUNDBt8iheunIsjMlDCYnUOSEsNwJZlqGNwSKR\nysev1Ki3BFYUs2hcP2UYTknjCK0B8qQnBxc4w/N56GDi0n/LUrw4TZnM5gwnMzqtGvVAUfWkI/hb\nizYGqTVCajefxhYzhbzFUNCihMzo5XssljTNby8lWmqkBCtUsfZy9IJxYIXCLBbDQK0AK1dMU4F3\nu9gnhRBEccLB8SlbOweuB2f3gOd7h+wcHHNyPmQynZOWRLVSpUqV+hKpKPe+/N1elMYVhiEGQtB1\n0DXXRxMGoJRb8p5ON5DOODqaTt2QUkIuQgMuwwOKvpoCGlD05kgu9hNdll25T1GeZlauW01yftFZ\nOqVKfbZKs1NqIWM0pydHPH70gK989eu0O918sOelr5y8BwZhF6QzbQ02b5YvTE6SJM7oaE2mHbXM\nWoHnV6gKtTAOIie6eeOA2WREFILRCY42tlrrKy6/kpdIIPNaYdcXA25QafE+DVHsenfmUZu4XiEL\nJMaKRVrjFo3QckF7K8hzQshFIuXer0VrTZpmKC9dzNNZzM0hb7ux1pmZJZ86l0uE7AJUkL+LvN5N\nFG4QgbGW0/Mhe0enbO3s83hrhyfbe+zsH3N4es5wPCGKky+y+UuVKlWq1L/TWsVQr0qsXL/aFxOy\nQFObGpgKrlmnSGEu99MU4ICQpeHJTdPC5FwuN1sFKMhLy4tU3Ody0gMXDU+Jly71y1NpdkpdkNaa\nRx9/yPPtLe7cu49Snksi8koqkeOPDRad6YUxSJIEYwxCiLyXJSXLU4Wid0Xk2GQ/qORLkBPbPPwg\ncGVwQpAZQxpabGF0rMm/y1fPAL1YYnF2aQkAyPMQ969wvLcs00xmM6aziLBRpREoMiUwJp9Zk2My\njdaY/ItZSkdYU0rlZWgityYiNz06T3qc2dOZRkuNEhIjC7NTEKTFSimauPgOhFgYQWNBG0Mcp4zz\nUrUPHm7y/Z99xE8fPGb/6JQwikmz7IWY8FKlSpUq9WXRqqlY3RcWhmF1WTU7xfCdgAW57YKKRKgw\nMgUwoOiriVZ+vgwPWN3vFPCFl83qu2zULhudy++zVKlfjkqzU+qCrLVsbT1hc/MR3/jV36DbX3Mp\nDsukwVpDlmXEcbwwNnEcL4aLWuuSDmAxfydOMuJEow0IsWz0r9aq+IFPpVLBUx42BwVMjCBLEzDa\nGQ+rcsMTc5FGU5yZKtKTy7MKCkkEZmEutNZMpjNGkynt3OxUPZ9AgndhWOjy7NMSMCCXz7diTqRU\ni6GgEolYCXDc0y57by4P+QQWcIOC+gaSNEkYTuds7R3w3R/8lD/51z9k8/k+szD65W74UqVKlSr1\nd0BFGrI6tLTondEsU5eEZe9MlSU0oKCkrepyz8xleEDMxR6b4nUUpuRySd3q/KDi8VcNzOUTc2W5\ndam/XZVmp9QnNBycsfN8i/2DXTpraxdABUV/ShiGhGFIkiTEcUySuNKpIAjwPA8hRI5k1nieR+D7\n1OtVpOejlI8UbiZNksRUgsCZHc9zVLE8nYmjEJ1lGK2xJsNoH2MU1qQsmlqEyHt7VortlpQDPoGt\ntrjyO2tJkpThZEK7WaVV96lXFL4Q+J7r29HG4Cm7yIYKDLZSEq3z0rMFgEA4o5PP1vGVh6dUbnxc\nKZsUArFIuVxfzxI1XczFEczChNPBiN3DEz54tMXPPn7Kw2c7nJwNGE/nJTK6VKlSpV5pFeZEcXH4\naKEigSlgAavG52UzfVb7fVaNz+eFB6z267wMLFCWqZX6t6vS7JT6hGbTKTvPt9h6+ojbd+8TBEFe\numUXvThJkixK1YrrjCkSlkvzYgDfVzQaNWr1fMZOXvpVWRDbcrRzPtATIZjPpqRJis4cIS1JYtJ0\ngs4ijE6xpmhwzA1PPuMHUZSz5c+fX+nG0xTDajSZFkxnc8bTOdNmnVatQkXJHIdtMEpjjUIq5Vpm\nFg8mckgBOb1NY7TOHzvv70Hkw0NzUyOUu1TigtGRQoKQaG3YPTzj2d4hWzuHbO0d8GzviL3DE9eL\nM5mSZSWRplSpUqVKwUWjcTmpKYaXrpLSVufyfNrjFeXiqyCB1b99FjzgFwELlCXXpf7tqjQ7pT6h\nNE3Y393h0ccP+P/au9ffuq47vePftdfae59zSMmSnLFjJ+l0UDSDoFMgQAsURdE3/Sv6xxZBW6QX\nZzCZCRxfZVsSJVK8nfvZ93Xpi32OLBt27diT2D5+PgAlkCKBTRAg9XCt3/P7N7/+97zyyv3PBJ70\n0rW2l69hDcPwYoj/sGTUe0+WZUynU8oJRDKaftjPxQDRkRc5zllyl5PbMfC4zLDbbei7gWEIdJ2n\nqVu6rqDvd/ihxg8dwfcctm2Ow/37k5gX1c3sq5tfqjeIaf9Pgbbr2O5qtlXDvTtTZnmBj+BjxMWA\njQHr8v0y0JfrniHFiPcBP3i8H+d10uElHkLRZ4PNy6c6ISRWVcXF9Zyziys+fHLOwyfnPDm/5Op2\nyWK9oesHzeKIiMgXOPxs+PwpyWF25uWygJdf/zJfFGi+SXmAfmbJ94vCjnyh25srPnz/HZ4+fkz8\nReLk9JTJZIJz4zzJ4YraoZTAGPMi3AzDeM3Ke0+MkTwfZ3KMyRhCYEjj7M7hxMNEQ+5yCpdTOEfh\nLGWRsdvO6LqetvVU9UC1q2nbnLYt6NqcttnRtxCj36/iOVRyvrTs9JB79iULJh2CzhhW+mFgV9Ws\ndxUP2lNOS8cQxiASQiRkgTzFcbFoZnGZZcAQ0rgUNOzDThj8Z8sJYtyXOrw0Q5QMMYCPgV2943q+\n4qMn5/zu7Q/43R/e5WqxoqobBh8UcERE5Gt6eSbm8Pfnw83hdOerHE5yvqg84POzNyI/DAo78oW2\nmzWPP/mI9999m8nshLBvXTs5ORmvne3ncg5tbIcTj0MAOsiywzD/+L5D32NSoihy8rwkdwVZypjk\nE1pbUNqcaWGZTjO2d0rquqGqO4qqJ58UtE1B1xQ0dU6eWyqb0XctwXuS92NL2ospm/Gk57DdZvzz\n00a0SML7gappWG8rtruGV6YlfZ7h84wQD7uCIs45JkVJ8IynTWn4dKloDC/VVY9V1CnGF1fmxut/\nkd4HmmHg+nbNb373j/z3t/6Jdz96rLIBERH5lj4/P3MIOS+XCBx++fZFBQVfNPtz+DiRHzaFHflS\n6/WCP/z+Lf7ml78iL0qMGauXs2wsF8iyDOccZVli7XgPOMb4IuA458ZTjn0ACiGSmYyTckY+nVKU\nU6x1EDMG1487bKyBPBJzj88DoUj4HLw1JGcppwVDmzObFkzKgjwvaJqavm0Z+h4/9OP8zL4wejQG\nnLh/Q7aPQ2b/vOPpTsNys+PB3RNmZcYkZBTREEMGMWGxmMyQuzH4mP5QNz2+HK6zpTK+OJVJCZqu\n49n1hovrOY/Or/jg8TPef/SU2+WaTVXTdt1f8ksqIiI/Cp+fnTlcZfuiUoEv+zjdMJDjoLAjX6re\n7fj44Xs8f/Z03LeT0ks1yePcyWGW51BW0HXdi5OdQwgK4TDPAiZarCtx05KsyEkGgo+kDKwZyLBg\nzNj9EgL9MNB3A7EMOGMpJjlpljNMC8oyJ88LqqqibRu6pqFta7q2JQZPioGUwnh97cWxfNrvDYpk\nmSWmhPeeum1Zb3fsunucDpbOZ5Quo7BjCUGMAYzFZmCd3c/cBFJMxBAZ9s86eA9dx6qqWWwqzm/m\nnF/fcn59y/ObBTfLNYvVlhB1FUBERP6cPr+75uuEF/1skuOjsCNfqh96bq8v+eiDdzg5vUNRlC9O\ndqbT6WcKCg7FBYcTn8N+HRhPT8Y9ZBabHNaWpMLiXaRLPb7v8THQOU/jenamZZ0qVmHLeljThIaY\nDEU+pZyekMcJaTqhLAvyvKQsp9R1TVNUOJtjcAx9S/A9IQDpcMpjXvxeK+3XgSYgxEQ3DGybhk1V\nc/ekYBZyhpDGJaMxEoIns2CyhHNj/fQY6sarbMPgWe8qrldb1nXLzXrDxc2Cs8sblpstm11N2/Uv\ndhaJiIj85by0nkHkR0ZhR75cSnRty7tv/55/+a9+yWuvv8EwDLRtO14524ecw4nOYafOZDJhNptx\nenr6osHNBIOJDpMcCUuXBYZU0/mBipr1PtisugXLds6yvmVZ37JpVnRNhws59yYZp9O7TLIZ1sOk\nKCnzkqIYA0+RT7BZgTGOpnH0XQ09+BQh7dtpjPm0ojolDBkRwxAiVdux3Fbcf+WUu1MIyRAx486d\n4GFsicblGXnh8CEweE87ePpdzbqqeXx5y5PLG66XG9q+Z1BdtIiIiMh3RmFH/r+8H/jog3do6i3T\n6YTpdApA0zQvws7h2tqkLCnKkul0xmw2YzItyex+EDIZSBkhGFofaHzLtt+x7JYs6xWL7ZLFdsVi\nu2CxXbDaztk1K6pmS+g9U6bM3F2ymRtPeIKDckKZF+SuoCwm5Hmxb4szZNa9mB1KKRD8YTnaYTAz\njacs+7a0ECJ107FYbXn93n36WcJPLCFaYoKYIlkKGJthnSFzhiEGrldbnlzd8vD8kmc3C3zQFQAR\nERGR7wuFHflKwXtuLi/ou5qf/fwXDMNASuN/6sfdMWNgsJklLwryosDlbgwSY+MykYBPnjYFVqFi\n2WyYVwvm21sW6znzzZLlbs2q3rBtt1T9jj42DNaTiogzicEFTGkoJiUnZkrWJ6bFhCIvKIqSPC8p\n8hLncnJX4KzBEIlhIIQekyImpcN6UWD/iPvrd8EH6qplvW3Y3fG8MjUMhaG0hhASQ+zZ9R3Xqw1P\nnt9y9nzO1WLNelfT9IOCjoiIiMj3jMKOfKUQPM/OHjG/ueZvf/V3TKeTfdhJZJnBmuzFTpksc5hs\n7PNPiXF5KJGeQBN71kPNZb3gej3ndnPLYn3LejVntd2wrndsu5omtPQMRBNJRYaxGcEYfJGIBbhp\nTmln5KUl5ROczXFunN8pinJcAmotJhsXh4bQ431L8odFay8VFiSP2b8WA9RNx2bXUtWe9jTRukTX\nNqyqDYvthtvNhuvVlpvlhvWuoWl7hqCraiIiIiLfRwo78pVSSjw/f8rz8zO6puavXnuNRAQTwSRI\nCR8iQ4wMoSf2QDI458gLS7SJLvWs+y1X1YKn60ueL66Yr+dsNyuazYaqrqm6ls739Hh8FiE3GJeT\nJQCHd5FgE6bMKIoJk1hAXuKsJXeOPC8o9qdKmQWyRMQzDC1tWzHE4aWimfQi8CRjMGms0+6HwK5u\nWWx2WAOXDOzqNbfrFfPNhnVVUzUd3aDdAyIiIiLfdwo78rXM5zecnz1icXPJm2++MVZGm0hIgc73\nNKGn7jraxhP7hDM5p9MZs2xGMtD4lmW95mJ9xbPFOZfLaza7NX3TYnyPBSY2B2NI0YLxRAOZg8wY\nDBafRYYsEJ3BTnImzMhcJM8ynLX7cJXjCgc2kbJIiD19V1NVG4JvifHTkx1DelGnncz41hgju6rm\n4vqay9tLNrslq90WHzwxqslGRERE5IdEYUe+ls1qybOzR1w8fcLf/dtfY5whpEjlG9bdlmW9YbHZ\nUK0bzJBxp7jD6/dewxaOECObbst8s+Bqec3tdkHV10QiZZEzy6fMTAFkND6w7moW7Y6anmA90URi\nMgwm0TPgswA55NZRuIzSZuTO4XKHLXJs4UhmvD4Xw0DXNex2a3xf08f+xT61xMtlnOMG6cTAcnvN\nchv3rW0KOCIiIiI/VAo78rWklLh8fsHDD97jP/3n/8Lk7il99GyaiqvdLReba67WS9ptx5Qpb9wx\nPDAPGOJA1/Vsqi3L7YpltWLX7xjiQFEU3CtPeXP6gNem97BZTtX1XG2WPJlfclUv2cUaj8dkEI2h\nT2PRAVkkLwwneUFyGXme4XJLtg88ySQigRAG+r6lrja07Q7vW0IcSGncshP3n1siQYp8umFaRERE\nRH7oFHbka7u9ueHhh+9z+fySn03+mjb2rOst15s5z1bPudwuCV3kQXGfV+0DYp5oQ0fV16yrLatq\nw7rZUncNGMNsMuOn917nbx78jJ/NfkJOzq5pOXE3DH2iHTxhSLT0JAuQERKENM4LuRwmJsO4sXLa\nOodxjsw5EokYA8H39H1Ltduw3S7pmh1haDncSEvAZ/d8KuiIiIiIHAuFHfnadtWWs7PHvPfO2zz4\n6eu09GzqisV2xc12wW2zwkTLtDwh5EBu6ELPrq1YV2vW9Yaqr+mTp3AFk3LCgzv3efP+G7w5eUCZ\nCnauIfWG5XbHvNrQxGFc7GkTNmXEBCF5ovFkLlFYg0uOPGcMOdZClgGJGD3D0FHXWzJrIAVS8qQU\ndT1NRERE5Ecg++p3ERnFELi5vuT//p//wW5X0fWepuvZtQ2bpqL2HU3qGWwk5pBswuOpu5pts2Xb\n7OhCv29Zy7DOUeQlp+UJJ3bGHTfjXnHK/eld7s/ucmdywiQvyW2Oy3JsnhNNpE89PvVgAzaHsrBM\nyoLJpGRSluRFjs3tWHndN2w3SxY352yX1/TtjpQOC0ZFRERE5JjpZEf+JKvlgt+99Vv+63KFe/WE\nEBJdP1C3LcEkijLH5TnGWtJ+oaiPnrbvaIeWgUB0ELJEHwe6vqMferwNJJMwNsPljsmkYFIWuM5i\nPBibsM4Q8fSxpYvtPvBEXJbhcMQs0g5j+9ri5jnv/fH3/PEf3+Lxw3dpmooUtfRTRERE5MdEYUf+\nJN57lotbfvs//xt/+x/+Hb4IxGTIXE6KAWdLpsUJs2JGYUvS4MmSgZSIMRKiJ5ERTaKNPctuzU0z\nZ+YsPj8lGsNgA+SGrDS40uCyjJQlrE2YGInJ4+NYTY3LGUJkdXvJ2dlTHn78kI8+eJenTz7i9vo5\n2/WKtqn3S1BFRERE5MdEYUf+RIm2bfjfv/0NJ2+8yuTnD/A+7NvNMgpbMstPOMlPKe2EYFqccTgs\nNhmSj6SQ4Qnsuobr3YKz8gJjAvfLV8iSY+sbqlQTsoAZV+YQAZMiKY7X6Ya+Z7lYsHtyw+3ZORdP\nznh69oTzZ2fc3lyxXS/p+46UdF1NRERE5MdKYUf+ZMF7Pnr/j/zy0a95/eRf470n+AQ2w7mCST5j\n5k6Y2inewsSWTLKCPDnsYAhdwrtIYzvmac2jLKOPPQ8mGwpT0HUDi3pBPVT42JNigOiJITG0kfXy\nmkdPllzUker5nPNHj7i9umKzXtHUFVHX1UREREQEhR35BlJKbDdrHn38IenBFH+/JPoIzmDznCIv\nmbgppZ2QFzArpkzthEnKyQdLnzyxNAxFZJs6wnpO2/dc5ysmxhF9ZNdsWVdr2rZi6FqGric0Paxa\nFs8W1GeX7J7fMDSdwo2IiIiIfCGFHflGgvdcPH7E9M1XeeX0X2AiWGPJczcu98wMGQaXl0wnU04n\nM07tlNI7dn1PIhCysTEtho4wJJZph/MJM3jC0FFVO+qqolltaa6W1GfXNM9uie0AKZKirqiJiIiI\nyJdT2JFvJKXE6nbO9cU5vHZCNjNMg+VOzDnFUdgMYw3WWmbllPuzV/jJyT3mmyVtPbBrBrq+xptE\nlmUMWY4LYJqeuK0Jqw27mwX1fEW73DKsa0LTEbvh81tARURERES+kMKOfGPVesP86gq3fEA5fZXT\nlHE35ZyanDLLsJnBkjGbzHj17gN+/upPabqWBFy3G1ZNTYweMui6hmq5xc/X+MUav9rRrrf4qsW3\nPWnw3/WnKyIiIiI/MAo78o0Nbcd2saSYz3n1jXuUNufUlpzYnDKzWDOGnWkx5SevPMCkCAmKvOBk\nfcPz5S3Xixu28zn1Yk13s6RfbgjbmtD2xGHQ7k8RERER+cYUduSbS4l2vWV7teDur/56LCYoJxQ2\nx5lxZseQUeYl+Qk4DCYkTIjYITLcrFk8W7J++x2qy/kYbkRERERE/pko7Mi3ErYNw+USdh3uryy5\nLchtjjUZxEgyiZQSYQh0dUO1XPHJH/7I37/1v/jwvXdY3NwQvNccjoiIiIj8s1PYkW8l9gG/rOjP\n5pS/sEyyktKWOOMgwe3Nc84fP+bs4w/55OH7fPzwfZ6ePWa5mFPXFUGnOSIiIiLyZ6KwI99OSgzb\nmu3Dc2b/MWdmJ3Tbio/Or7k4e8qTTz7m6aNPuHh6xvXVBcv5LXVdk5J244iIiIjIn5fCjnxrvu3Z\nnF2yfXbNY/8uDzcVF4+f8MmH7/P84pz1aklbV3ivRjURERER+cv5MYWd6rt+gGOVQqBZrXn49//A\nP61/w/OnT1nN59/1Y4nIp/T97/tLXxsR+bH6i3z/M0mD4SIiIiIicoSy7/oBRERERERE/hwUdkRE\nRERE5Cgp7IiIiIiIyFFS2BERERERkaOksCMiIiIiIkdJYUdERERERI6Swo6IiIiIiBwlhR0RERER\nETlKCjsiIiIiInKUFHZEREREROQoKeyIiIiIiMhRUtgREREREZGjpLAjIiIiIiJHSWFHRERERESO\nksKOiIiIiIgcJYUdERERERE5Sgo7IiIiIiJylBR2RERERETkKCnsiIiIiIjIUVLYERERERGRo6Sw\nIyIiIiIiR0lhR0REREREjpLCjoiIiIiIHCWFHREREREROUoKOyIiIiIicpQUdkRERERE5Cgp7IiI\niIiIyFFS2BERERERkaOksCMiIiIiIkdJYUdERERERI6Swo6IiIiIiBwlhR0RERERETlKCjsiIiIi\nInKUFHZEREREROQoKeyIiIiIiMhRUtgREREREZGjpLAjIiIiIiJHSWFHRERERESOksKOiIiIiIgc\nJYUdERERERE5Sgo7IiIiIiJylBR2RERERETkKCnsiIiIiIjIUVLYERERERGRo6SwIyIiIiIiR+n/\nAccz4JSZQJc5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check loading function (image/landmarks/heatmaps array)\n", + "plt.figure(figsize=[10,5])\n", + "ind=0\n", + "\n", + "max_map_lmx=heat_maps_to_landmarks(maps[ind,:,:,:])\n", + "\n", + "plt.subplot(1,2,1)\n", + "plt.imshow(images[ind,:,:,:].astype('uint8'))\n", + "plt.scatter(landmarks[ind,:,1],landmarks[ind,:,0])\n", + "\n", + "plt.axis('off')\n", + "plt.subplot(1,2,2)\n", + "map_vis=heat_maps_to_image(maps[ind,:,:,:],landmarks[ind,:,:])\n", + "plt.imshow(map_vis)\n", + "plt.scatter(landmarks[ind,:,1],landmarks[ind,:,0])\n", + "\n", + "plt.axis('off')\n", + "\n", + "print 'diff landmarks to heatmap peak response:', np.sum(landmarks[ind,:,:]-max_map_lmx)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(-0.5, 1535.5, 767.5, -0.5)" + ] + }, + "execution_count": 105, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgYAAAC3CAYAAABpNpZZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsveezpNd95/c55zypc98cJuc8SINEkCIBEUyixLSUREoi\nvSvV2pZL5bLXf4Bqt/aNdu312lUbXNK6tEtaoiRGiRQpkmIASIIEQAwGA2CAweR8870dn+c5wS9O\n970XIGXJK4oAiOdT9Uz37Xm6+3T3ec75nl86wjlHQUFBQUFBQQGAfLUbUFBQUFBQUPDaoRAGBQUF\nBQUFBesUwqCgoKCgoKBgnUIYFBQUFBQUFKxTCIOCgoKCgoKCdQphUFBQUFBQULBOIQwKCgoKCgoK\n1imEQUFBQUFBQcE6hTAoKCgoKCgoWKcQBgUFBQUFBQXrFMKgoKCgoKCgYJ1CGBQUFBQUFBSsUwiD\ngoKCgoKCgnUKYVBQUFBQUFCwTiEMCgoKCgoKCtYphEFBQUFBQUHBOsGr3YC/K0II92q3oeBvRgqB\nFKCUoloqIYA4imjUaqytrrC0sop2DuNAAEoIwiQhCiP63R6Nep0bSwt/73Y458Tf+0X+Dgjxu0V/\nLPhbce53i/5Y8Jrh79ofXzfCoODVR0lBICVCCCIliSVI54iCkMmRBuPNGnt2bKUxMsrp58/RGJtA\nG8tTp56mHQaYPAcHUoBzjjzLAYFzjkqp/Gp/vIKCgoICCmFQ8GMQgJSS0XqFrRNNJusVgrTHZLPG\n9i2ztFfXWFxe5ub8Er00ozE+zvT0JDu3b6NcrrC81kVYgwJuLSxgrMUaSxgqXG4RQuCsIwgUaZYi\nEQRhiJQSa+2r/fELCgoK3tAUwuANTrWUcGzfTg5smaDmumydGuPcC2e47967uffue1haWmFpcZFT\nJ09SrdXZsn0bNxeWEAqCOKJSqzMxPUGlWqYUR2AlywtzxGFAe2UVJSSVcplKmrLS6RAEkjCIUVLS\naDTppSlZP6VcqSCFxFIIg4KCgoJXk0IYvAGIwoDjB/Zw77GD3HtkH9umxqmWSiSRopzEOOuwus+V\nc88RhgHbxmtcvXqd1aVFIqmoJDGTk2M0R0cZGx8BKZBhgJMBIggJI4UQmiSK6PVyrl29iAprqCBg\nx7YtlGslhIAsyzEWhIWReoN+u0tSKWNyTbVWRUoJ5tX+tgoKCgre2BTC4HWMlII4iiklMXEYMFIu\nMTVSY/+urdx/4k5mp8aZnRxnrFknDAKUgFCANQYzOLIsI89zrIyZmt3K3PwtduzaRbVaZ2lxnlKc\nIJwDZ4hChdYpUkkmxsfQSKwTGHKscSgJi/O3kM5w8MAOermmk3Z9LIK1jFbrtPs51XodnAPncNog\npWR1dRX5UwnTKigoKCj4/6IQBq9xhBBUKxXqtQq1SpXZmSl279zBzu1b2LV1lu3TU8xOTRB22zzz\n5BPkOmXH3l3s2rWLPM+Rg2BBKSXOGIRwCLExAyulfCBg7qjURxh1gtXlZcbGJ5DOsLS4yOrKss82\nqNWRQUipJMkt2DRFKoVCkVmBM4al+QX27N7F+FiTueVluqkljiNq1RprnQVKpYRms0na79PttFld\nXSGpVNBa41wRWF1QUFDwalMIg9cI1UqZRq1Gs1FjcmKcPTt3smvHdnZu38rs9DSTE2NMjo9Tr9Vw\nziCFQwJC5/RWl3nx0kuMjDSI45CZ6RniOMYYg3MbQsA5MNbhrMU5h3MOKSVBoDBGo52iWq2TpRnd\nTpskjogqVbLlVZrjU1SqTSyC3HTRVnvTvxRo44iikKyfEUUhU9NThEFAKSnR6vaJY8nExBjaSeaW\nVpBSIpUiSUqsdjtorVlaWiIKQtI8f3V/iIKCgoI3OIUw+CmSRCG1aoVapczYSIMDu3dweN9uDu7b\nw9bZWer1BiOjI9RrdcKohMNhrUMFAViH0ZpASIzNEdYgrCXvd7l+5RJBINi5ezsAcRyhtSYMQ/Rw\nonWAAOsc4HDCIdTAoo9DBAJhHEoKkiQBIIoioqSMDCJ0ronCCCsEQZqRa4PApx1KIX0qAzA7O0NS\nrqARSCFwzqCkwhpDrValm2beheAcQRgggSxNybKMRqNOu9elsBsUFBQUvHoUwuAnjJKSOApJopBK\nKeHEkb3cfWQf991xlJ3bthBFMeVyhTCOcQ5UEKCiGKFCnFAgFSpQCBwCiXAWl2ucdeRZhrAOAdg8\nw2FZWVggkIKZ2VniUGHtIHrPOsIgQDrQuUYIi3QAFisMFoOxPs5ASj+xp1mKsJYwDAnDEGstUeRF\nRtpPAXDWoZQkCANElmGt9WJDWByOSrWCteCsRSlJFEbrFoVWt83M7Aytbko/TRF4PdHPUsIwwhqL\nkBJXpCwWFBQUvGoUwuC/kkBJAiVRSnHXwd289a4jvO2uoxzYsQU1eFwAYRzhABXFRHEJi8QOK1EL\nfysGy20BqDBECIG1FiUlCIHJNQBhECAGwYPCWnrdFoFSzG7dhtU5Ns9IooR+r49OMzCGMApRIkCb\nHGP86wgh1l0JQoj1GAQ5iDcY/l2pVOh0OiRJghQSZx3GWC8GjEEpBYDOMqyx3i2hAtrtPpk2KCmJ\nwpBuv0+z2WC100c4MFqjtSZJSoRhQG4NtVJCrCSqqGVQUFBQ8KpSCIO/AQGUk4haOaFZLbFr6xTH\n9+3k2N6t7JqdIIkCyklMtVxCqRiB9JPrcGJzDqkU1nqTeaACnwmAxTiBkCAVCKH8fSlBedu+dSAE\nGOsnchRIJZHWYnWOlECgBmIjRgmH1RptDDiLEwZHTq/fo9cHGE72XhBY560KUspB4GGOtZYgCLwQ\n0RohBGYw+QshEAjyTKPNj07aQgh8owfNVZLAOZyFKI5hrYe1liSKWFhaZmlpmVqjifXJDpRDRTUO\nMdZSimJyrX8aP3HBq8KPG3Je+XsPzxGAwuewur/h3IKC/xqG9ko23Tr4EUfmjztv87k/7jmvf97w\nwiAKJOVI0agkjNbKTDWrbJtocmDnLJPNGhPNOtOTozTHxojiZH01PzTBS6mQYqPzCCEIgmB91c0g\n8M9ajXUSpwKGNgLhawMP3AYW5wxOO5yQoBxWChD+JaR0YC3gwIG1jiiOcSb3pYYBISTGaJyzSAlh\nKEmzDDOYaIUUL8tIGGYBDAWCHFg5nPWrfz0QCFJKVKBw1qH1oHKhG14OAr8Xl0QIibWgpEIpgREO\nSUC12mBuoUXa66FwjDTq1BoNXjp/AYdgpNFEBQGT45P0blxnrdv5h//h33CoTfcH/einhhwcCj/k\nbB5gDRuT/7AvhYPHwsE5Di8IDJAPbjeLhc2fbfPrFhT8OCQbfW3zxO/gRwqsbYxvL99z0OD75E/7\nWvrp8IYQBlJKSnGCEgJncmYnx5kaq9NIFKHtUY0l440qzVqNUimhHMdMTYxQSRLq5ZhQycHkz7rp\nffPk74PweJl5Hob3wVpDnhoQCiUEQRiglMRJ8O59h3MW50AqH2fgD8CxHiTo4wccOtc4awgDhZQK\npwzCKVwYYnOH1jnOeVeEUgpr7aDM8WD1Lzfa6px7ueleCJRS68IgCAKstWR5DkIgpMAxuCycwFiH\ndRKIfB0CYZHSoawXPEoqBJpA+e9pcnKSbppx9cYt2q02UkrS3OCEQgYRcZT8VPvG65fNg5Ti5YOa\n3XSO2nTucAI1m24tPzoY/iQJ8BN8tOk2GLTFDtqQAn38IFwCYqA8ONdfS9AbnNcdnJsNnhtsep8h\nw8d/Gp+v4OUr6lcWI9m8oh7+n3zFc165+v6HWoVvFp7DI2Dj+rBsCNDhNRJtOsJNbUsHR8ZGXxy+\nxyu/h2EffP1YGH7mhIH/SQRhEDDSaFAtVZDOMTMxRZ6nzM1dY6JRZfvUOKPViLy7SimAUDnc4Aez\n1rCeUi+8VWAYSf9KnBua0Af+ehzOah/pLyQSgVQhSircJquCkBIhFEjp33VgendqoEyFQAQBzmic\nsTjjrRSBCgiCAJ1b+v0+cRwRhCHWGv+40SAEzgJCIbAo6fxnGLy/FA4nfKzA8DMNBQ8CxMDSoSIf\nH2GcA6V8+9gYzrXzWRPeWjB8XdYFUZ7nOGvReYaQkmajQVKpcunKGebn58h1jgwCorjE5JQXDEL8\nuNVfwQabVy8hP7pzusWvqmFj1T2cjAdKc30AHA5sw79/0u0MBu9dAhpADagDyaBdGj/hrw4OB4wA\n44PbyuC8bPD/i8ASsAy0BucPB+zh5xv2zmzT53NsfCcFP1mGfXE4Gf64lfXmSVOxIVaHz9s8qmw+\nftIT6LBPlvDCc3gM2zO8JoZC1eH7bA3fFyub2tbG98H24Bj2L8HLxTiD191s6Xrti9XXjTAQQhKG\nIWPjE4yNTzI+McHslm1EYcgX//wvWFq4Bdbn9zv8lr+lKCHr99m5bQelJGF5cZFqrY7RljTNyRNF\nqVxG6D5JEqKUwhiLkRZj7Xpf3+wScL4xPvtPDjq2cKhNJn/rBj+6dDjhLxbhJDIIkXJgaRAKJ+R6\nbQEZSFAhQoWgAi8YrMMYg3Cg85w8y1DJ0Nzv1iP4rbNehEiJCgNikaBzNfjOBEpFvu0D64BzOQ6L\nc17FOmcRgoE1QGIHk7sMQz/J44MicQIpc58VYczgvf1uiQKBVHKQDuldHTrPyDJNlqUIJOVymTMv\nvsjc3BzdXpdqtYGQimZzlMnpGW7MzYNUfs8E99q+cF4dQjZW1cMJd7j6Bj/45PhVtcNPwBX8wDZ8\nznDS7OAHtM7g/OGk+kqhARum/P8/A3Ww6f3HgWlgK6hRiKq+0xgDaRfcInB10K5dEExDveS1QTxo\n3oKD9trgvIvArcH71AdHiY3BvTv4XGuD+91N30/BT47hRDu0Cm2+P1wZ52yIM4Xvgwn+h908Ief4\nybjHhqjb3N9eGQfwd115b7ZSxPh+MuKPpAKlsh9vlQCtIcsg64HueDNt0oSkAaWKP98aMBq6bWi3\nIF/CD5gZGyJ8KFaH7e0Njv7gGF6nr90x7nUjDP7sc1/jwKGjqCDA4TDOsrw4z4tnnuWx732fXqdN\n2mtTKSf0+n2MNqysrjI+MsL4xDjLi0t0ul3CSFCKq0il6KcZ5TAiSRKC0E/yxhqMFVir/eSpQCuB\nDXzEvBMC65y3KDiHHPjtLevaASeUvy/85CyEQmuHM5ogDgiDweMojBDIIBo8R+HkwFfvJN6gILHG\nEEURoVK+JoDWCCkJhPDmewvapP5x63BOIKUiyzPvUhhkMxhrccIiHP7wIQ6DzyCxVmAMWO077LAA\n0tAdYaVACjl43lBkiIEgki9zT2idY7RmZXmZzEiQEWtrazhrMdaQxLFPpwwjVBBQrtYZNXBrYWnQ\nsFenn712GQ46JTZW3s3B/ZiN1c4yfkLsA6PAFDABjICKwVmwPWABP7neGjynix+shgP8cCVnNj0+\nHND+tnaCH/RLg/ffDXIfzJTgMLAVqAItBRdr8HwN5ibBrUJjGu4RcALY6aDiYEnCGQFPNOBUA/ql\nwXtUgC3AGAQ1kIGPwzFr4OaAm8D1QZvWBs8pxMFPhqEoSAZHGf97lAbH0ALQw4s0i/8dqvh+2WAj\nlqQ7OG9oEWrh+5/l5ZYIePmqe3j7Nw0Wm2MJAvw10wC2AVthLIRtIVQFlAR0LNwysJjBasdHRs/U\nYLbiz9saQs9Cz8H5BpzNYLkMPQ0mxwuOxuAzDl2iDljBX2PDYyjchzEKrz1eN8IgjGOCIBiY3f0/\nUklWV9colUpUKhWksExNTXDx8mWMNWjtffZCStrtFgBaa0rlMlIFGNMfrHQDcmtRQmBMjpIOYzXa\n5jjhMAKsEyDkYGXuFYBSwUZVQQMIgcVPsgjhgwilQsoQKb0fPQwiwE/CQimCIESEIcb689efLxUO\nOxAWdmPitRbsoKiQszhAqgAVxFhtfWlha0FaRAg4gXEaKSQykEgkVoPONNYOBM7wAnLDgES7Hivh\nnLdaWOuDDmWwEaCojcY5iZJq0D7vxhgqDl8/AbTOaHc73JpfIYojn3nQ66ONoVkvkcSxFxzWYdJs\nPX3zjYngx1+WQ1EwOTi2g9gKQeR1gQX6DuwKflW9BGwDtQu2CNiO1xEGuFmBi+OwvBM4A5wD5vGD\nWpmX+12H5v7hiqfHhh8WNkTE5jYL/MDYBHaAOAh3RfAuEA8ZkmMr1Bot1hZGSJ+p4r6q4CtluFqG\n9wK/bJl66BJHS6ep0eIWU5xaPE7nC+PwKQHf3u0HY6ahWYdDwCx+PO4ouDICZ0ZgdWbQjst4QTAU\nOq/Nwfi1ySsj8jdP1DFQBVGHoAFhHcKKP5wBqyHvQtrygk1GENagPAnxCCLwY7PLerisC70EuhHY\naPD6hg2hutkqNrQopPi++Eo32LB9Q4uEGLS1CWIKKlugup3Svj6lw13CkRxV0ejVkO6VMtmVGvpy\nHXJLtFcSHYbyni7l3T1sT2K6kvZYlVYwhr7g4HoHUg2lSUhGUEkFESY4Bmnh3RquV4U0gUyBW2bD\nVfLajDl43QiDcy+eYf/+Q4O/fEpflucsLS1TKpcZGxtD18pEgaLZaLC6skIQBMzOzlKp+IJCfZ0z\nPT1JrTFCFPkCPc5acL7AjwwCsiwHochzi/cmKCQK5xhM0oHPIpASKaR3PRjj9wyQCoS3KiD8ql2G\n3g8cBgHIwEftK4kz3nRvrQMLKgoxzl90xvqVOg7/2sJvVmSNQzqByR1KBBhhccINzPcSFca+I2qw\nOJT0P2+e5zB4besc1grc8HDOf07hb63xtQp8ZoMPQBzGIhhrkFIQRjFh2ENmOdr695dSYoxY35vB\nOef3V6iUSU2PIIRKtU6UlLlxawnjeui0z2y1QnOkgckzSqGiFkfMC/kGjCkfTsbDyP3Nl+ZwtTWF\nn+GPw0QCtwnYC4zhx8prwk+Ip5qgl6E6Am8R8Bbg7sHTcwcvCXgM+FYCPzzCxsA0hp/MR9gwB7fw\n1oVlvHiQ+BXgcIJQ+Ml3aELdPIBPA/vgWAS/AvWP3eIXJ77A/XyPMRa5NT3Fd6fexFeO/gKr9Ql4\nEvh1eOvbv8JHxf/Dm3mUEZa4wnb+auwd/OePfYyz7ja/APv+Pjgi4CHgQeC2PuVmm95yHfdMBH8N\nfK0Gz9+5qT3DSST7e/5WP+u8MmJ/2C9fGaFfAaZBTcJ4HcZrMB3CVAi59UL1Rg6XMkgdxAqmIjhc\nRuxRRCMZQVmTXVPk12vwrILnGtC9BXboNhuK1WjQti7eBbaCjzsZuoo2Z6hsdmkMLV8JMAXBLjja\ngDsFOw6c5/D+Z5iozNMIV5nPJnh+7RBXz29l+XsNzIpky1uvs/2eKxxLnuNo6XnaqkRHlXh85m4e\nPfhmlr5bhr/a7puwv4zaG1De3Sea6aBdQJ4H5M8F5M+Ow5UQrpYgG7r0hrEGr73R7nUjDM6ePcO7\n1//yRX+iIEJKQa1cpisdEyN1VhZuUYtCTLlCKBX1eh1gffKqVKretC6VL/0rHNpYpLNEkcA6AIW1\noHM/iUqpEIOgGTEMDETg3CCYT3prgnG+DLAXCAIZRl4RO0kgQ4RSZNrXJrYWhHHIUA3M8cq7KmSA\nc74dwkmEjPxEa+zAVeEQwoKUCOUju92ggwnhkFahnUY4H5XtCyXF/nPmBq0Nzliw0t9fN//7uIUs\n11incc68LC0T8HUStB3s1Ch9GuQgZWIoYMAiBVijkcIN0jFBBRHjk+OsttqstDpIFVKt13wdhiAg\nTzPiKKJcLlNOSqSdN9LgPQzSG5pl48HtcFAbfhfTwDHYn8B7BLwXxu+4wkSyQGYjri1tof/1JnxB\nwGOj8ADwG5a9Dz/Lm8qPspNL9Ek4fftRvvPAz7G6fRJUCI8fGbznDmiWYFx640QOLDmY3w3uGnAB\nb5oHPxIO2zs0n1YHn0PirQsT0CzDA1B//yL/ZOIP+O3837PzW9cJrlry3YqH7v0WzZkV/vDDv0ka\n19j/4El+S/w+H37q88R/auAqTB87zf7fuIiZVvzrd83SfmoCugI+CPHHV3n7zr/ifvFdxlnk1ugk\nj+26j0fueIh2fRT+OIBzu/ETyTBIbHNAXMGPMhQCw2PoMx/+PeiXog5yGspbUbMJal9CtDcj3Jvj\negLbUeRnyqQuxrYllEHt1ZQe7FO6e5XSRIuo1qNztkHnpQapqJPdHMcRQmpAhBBOgKqDjH3TTAv0\nKuRzoEO8YN1sBRpa1mIQET4FSwOJtxYkW1CHLMF7++zeeo6fm/0mO9QFJswtLoU7iZMO4oIlyw+Q\n3YzZcd9lTtz/fR5a+AZvW/w2a7Uaq/UaajrlzPG9dNhNfnIGOoLwNk35/jZjty1Q3bNCSkyaJ6x9\na5S10ghGBpiFMmgDdg1vfRv2x9cWrxthcPnyBWDgebIWZyDPNDbXlMKIShQTCMdYs0l/YYlyuex9\n7kLQ6XTIssxX5gtDHIIs1ySRQusMYQ1SGsJAo1SItRKtHWawghYESBmCkxjjV/wg1s3ww/o+ubYI\nCYkKscaiAjBWIJ2DUPoNjJzFWoexliBUSCtxxkGuEWE0EDAKqQROO4T02yWDtxhgrBcEUhDEIUgH\nzuByge5ptHPkxoB1KCkHdQccee6rDfoWK3q9HgLo9/sDN4B3s2it0aaLw6C1Xi9wNExptNqincOF\nIdnACqGcxOSaIBAYk+GsGdRm8CmSpVKZVr9Dt7XG5StXEQLGxsaISqVB/IIhTTOghHOOSqXCcmf1\np9zDXi0i/KRcwU+wI7zcB2vYCKTbAbNl+EWo/A8rvGPHF3lYfpXdnKdPwg+rd/L5X3sfp8buxoUB\nvBduf/dj/HfRf+D9i1+ieq6NSRTnD2znk1s+wv/9y7/F4q1ZuBzC2iFvgbgXb5ofG7zteQFPRPDE\nLpirsJFm6PA+23G8n38LiBqEgQ9gSQ3Qh2kJd8Dtux7nQ+ln2PeHV+Hfwc0rMLHfcOx3XuRDH/00\nT+y4m5NH7+Ue9QPesfoN4v/LcPkTcLkDR6ahKdv8/P/01/zl7Lv5/t4HoQPlD63xq7v+C/+t+Q8c\nPXmW5EZGbybm9PGv8h933OKTH/042eUqXJ6AfBJv8RhaOwp+lKFFYGj9GYq9YWT+MGAwA9YgCmCs\nQbgtYuLNi0zdt8Ch5hkONs7QsyVapsrzO47w1P67WOqPQWyZmbjGW/Z9m+PlU0TXMmTbsFCZYP7o\nBCdbd/C0u4P0XB0ubYOGhD0VmA4RdRDOYW+W4HoA5xK4MAZcGbR9GI/QBCYgqEIcgvIuV0QA4QSq\n4ZjZep2Z3de5/cZT3P7UM9QWbmGX2szuSHn4TX2mghX+fLbKXGmK49GzPDj3TSrfvsSZR6FWS2nU\nYc/xi9xz4nGSiYyLe/cROM3uE+fYs/sl9i2+yNb5a+hYkcYJTzVv5+TDtzPvRlm80UDfqEKnArrF\nhjvkteXeet0Ig5s3rgFs+LxNzuryCjrX1Bt12itVpM3IjUGpgJWFOZr1JtZabt26Sb/fp1QqEUWR\nzz6wmiy3lBKFtRqFLw4UhmW0tlgrSOIKUVTCWTDakrvBqth5k3me597FICUaB1IRqhCd+30OXA4S\nBxKyIPeZENqSOEGcVP1KO8+QKgLrfKljIZDDrZGl87EL1k/0blDgyEnhD3xFRB9w6MjyfJDBoFFC\nkGmfX5jnOVPv+zhz/9s/Z21yjDzLkPgNk/Lcr576/T7Vp06z79Nf4tv/7OMgNcZ6d4Azjm6ng0AQ\nJAmZkDgVokWAyQzSaVSoQEZkqUEb43d6kIokiVjurBGEAf21Lu1Wm60zW9ACwjAc/B4BfZuxtLRI\nFEWMNUe5NndjPX30Z5cAP9gOJ9jtwA4oNaAe+sW4BroWVrveR3sb8Evwnp2f53/O/w13PfYM4ZMW\n6vBzP/9dtuy8xr9++H/h7PnbaL55ng9En+UjFz5N/d92MY+CrMHtHz6D+vgnOT+7m8888OvwiPDj\n6Ydh4uFrHJo+xZSco+VqPL92hMuP78V9SsFfTMLNjA3T7SywH+ItsCvwbo1x/Pg8D5wre52z3bJT\nXmDf2jncV+GbT8PTwAOPwd2H4NA7z7Fr7BynGnczKeaoXOvB8/BEG14Awjm490WYtdcYlUu+rXfC\noUMn+bD+M+759LPw72H5PDT2ptzz26dY/kd/wsk9d/DUHW+CbwGXR9iIn1AUFRR/HENLwXDVPYIP\nXJ0AMclGFswacA1iDdN1gkMx02+b58gvPM17si/xnuxLLAcj3Iym+GL7fVxc2sWSHoHAMhNd5ZeS\nz/KB7udQz4I9q7j8wBYuH54F6zhTPkzaaICuwlYQDznkUY2czsBZxOkEe7KGy8bgoq8w6y1Bw4ya\nGRC7IWxCJYBI+a46SOaRYxnT225wfPcPuf30Se744jOkz7W5cQFm7p/jrokXmD7U4qnZE3RGahyP\nn+Vtc9/izDfhhd+Hg/WMrbWM3b9xkRO3P0E6UWJh3wxJ0uPYXSd5YPIR7vvOkxx+/gVoQjoa8Zkj\n76P7QIRbOMLqyUl0uwr9CuiEl7vlXjvj3etGGNy4fs1HxlsfYJdnKRJNEg1S6gY+bidDur0+xlqE\n9BP4/MI8SipvAleKNM0oRxKHRVtHCFg3DLiTGOuLEUkZDCL1HWma0bUpSgYDP/ogwNB5H7sVwldG\nVM5PugKyzBAtr5I2qyhXItOWtJ+RZZaaUJQSSZblxNKhMEiZ+BLJwlsBBlF+oO3AJC8wzqKtIYoT\nHy+oDVhD2uuTpxnoHIXEak2uLVmW0mp3MG9/CxecZe2l8+Ta0G23QEjCKKLT6WCNRgeCF3fOcPrU\nabTUZFmOEookTMjSHBzE5TJ9m1Mq17j9+hLP79yOERLjINWD+AwLmXFYBEiFthYnJK21lhcXQUCv\n16Var6F1Tr/fo9Npg/PFlcqlEkEQkOuf5QjyYYGVYTrfAQj2wN4Y7sKv2kfxi7OLEk5W4UXgCMzc\ne453iS9z1yPPIP6l5foPfdbVyNMdPvQvPs/jjbu5cOd+JievccI+Qf3LXVp/CF9c8S/5UAZ77z/P\n7Xc8xRcOfQC9rQLvhCO/+iQfjT/Bw+nXmFxZpJuUeKxxN3/09o/wDfVu9HIEX5yG/hx+IN4L9W3w\nNgkPQ3wrH+bNAAAgAElEQVRfm9p4GyEsrZUa/Uer8F0BRrxs2FvPZh+Oh4NHbVey5EboT4ZUdvQ5\nGEOcws4msB0WxDirNPw8sM2xPzjLsZXTuL+A738bnnZw91W4cwcce/AF9o29yFM73+S/3ssxG+bw\ngh9lc7zICDAGjQl/bK3BjhLUFIQOOhHcmADjYEeF0r4ex6rP8a6lrzDxxFkuPWGJ4i6TlXn27zzL\niX0/oDmySE8mbF+5TP10m+wFuP4cLFx3VINVdiSOUbNEtLOLDEvYWcne0XOcOPg4WxtXCZZy8jRk\nfnyCm/dM81J2gPPsgctluDIOJgLKsKUJ+yuUt/cZnVmiXO9hnCLNYlYXR+j3yzApcMIfSJ9VJRhk\nlQ07ag9MT9IOS6yVa9QbKQfrGRNToKYgG49ZCxp0ShX0eEAtarEvPMvutefonlnizCNQTSCqW2rR\nHIcPPcdaaZRLo3ugJmE5hHQ4/b72AhBfN8JgaXGBdrtNqVTy4iBPweQkUUCW9kkzTblUptNLWW33\nKCVllPQm8zzPEaGgVCr5qoEYKkkZIR3WalA+CNBvDmRxKKwIyCy0+imZWAMpyTJNJamw57N/xdKJ\n43T370Fr44sVKUmGIXSZ388Ax+zv/T7BjXnO/O5vU66OMjI6gXaC5aUlWr2U6elp0iyFwCK1RJqM\nJGyC9ZkIWBCDLARrrffpK1+rYFiBUDiB7qXk/RSbaaRz9Ht90l4PJxW35hdYWV3jhfvvYfHCVYwT\n3FxYYnWtjdGGfr9Lt90iUoKs3/PZHM9dQMY+BiHtpSgZokRIFEZUq1UIclbXLvI7jz3LlYffQufo\nIZLIxzE4qRBSIVWIFJa0r31lQxX5EtCD1MbSYGOmfq9Plmv6aUocxvT7fYIoJFDqZ1gYDEegEn75\nu9OLgntieL+j9J42Ow6fZVrcpEeJCwt7WXh0Bvu5AMZgNrjBAV4g/K7lwg/gcx2YWoWPfh3GPtJi\n9/3nKU32SMI+NdOGFVhe87kKXSBdgtKqpkKXqNxHj1SovGeBX47/mP/+6h8w8okWnAJm4OAvn6d0\nT5+rb9nK80/fBU8FcH4cUD6Q6yEQ/9hw4OGnebj0NQ7yHBLHCzsO8JVj7+SF7bdh5wLO2r282NjH\n9Lse520X4egFGD0E7p3w7Ng+zvX3Yi8pTro7eGT8ft7733ydw7Hh8FXgOLR/JeER9Waenz8MLwE7\nQKFR1kC6EZLWGRSlk9qiMJuK7G2utsem+6+tAfnVY5hZkuDl41YvCrZPwP2BD2KdMYiyhrkI99QE\nLErYIinNrnCseppfWP4yF7+Zc/H3LdvLXbaM9jjw3rPc2P0DGiMLLIlRtt26RuPxFvnX4dwleGHF\nck+yxuFam9H9S0T7usidVdydIXviM/xq4xPcs/IE0VVDp1PlxcO7OXXoKNYpzgd74NEKXB8HUwfG\nYGsED0oqd8+xbd9lRifmyYlotWq4k5L+S2XcJJuEgf/ocnCsl/PoD4RBUKLVqNGow9Z6hpoGuQvS\niZjVsE4nqWAmFPWgxb7wRXavPsfFM5qr34JpAeMVR/3QHIfts1wq7SEcy70wCIbZFvBacyPA60gY\naK25eP4sh4/e5s3maZ9eZw2T972JSQqcVOQOnAzI8mx9ElJKsbKyQqPRII5j+mkPFYQwLPLj/CRs\nc4ERgFJooVjqZqxkmmxugTAKEEgaFUuyZZZb45O0r95CBRGlchltNL10FWv9roKlpMQLH3wHnXYH\nLtwAMc/0TJtdu3bT6S9xY2GRIPEVC6W0RGmGbDYJ4ggZWVQQequEtTjjcNrgnMU4i1MS6fxOiLrb\nxaZ9sn4K1pJlOcsrbYy1zC/PMb+0xPziMr00J7eQW0cnN6ikisktoKjEVfK0T6dvSXMIkzJa51y5\nfI0oiGg2akgkrm+ZW15EiC79LOeh7TNs6/Q43u4SRwpCgbMOJwNUGPngRmGISyV6uQ+TzPOMxcVF\npmZm6Pa69NOUMIrodruomiJKIqwCGSjvfvuZZfPqbDvsi+F9MPab1/jI6Cd5j/kyW7OrdFWZH4zf\nzafe/yt8t/4Q7nuKzIVoAihBEkG9450RVMGVISfAacFSa5Lz47t48x1PsO0EvOckNCVU7oX53Q0u\nsZ3u1VE44Dg6epqH+Sojn2qx+m/giTnYFcLuZfj5I3/Nl6vv4MyRY7jZCM43fdsPAu+CI+94kt9J\n/k8+PP9ZRp7ogIX2mwOO1k/zb3/xf+SZ/3IPz5y/i0/v/SBjH19g/97LjF4z6F2K0/fs40/5MM9e\nOAaPC04eeRP/6d5/TPZgxFvv/Q7VlT43p5t8Wb6LT+pfZ/kb03AaOCy45HZyrrqH6Qef5KHTcOAi\nTO4G91Y4N7WNi/lOuIGPT3uZL1eykWc+dCn8rIrQvwtDUTCIdQlHIJogPhKQvHWNfbvPc3DyBaqq\nhegaWkGNGwdnuNGb5aaZ9eb80EHJUsUx04Nm4ohih4gcNhD0ZMKyHaFa7pLuiomP+bIA8iY0dwV0\n9wdk5QizFFOrdmg0V9i5dJHpM3NE51ZYeNHStilNKzl0OOTxyv1wxMHZCGQDRiowFjF5eIHtRy+y\nd+Qshy49x9S5W+gwYFU1eLpyG2duO4SI4YWLR9hav8Xs225QOTyHnu8yv7vOmR1bOKXv5saladbm\n63x/5j7cpGXP7RfZ/bGLpOMx2XjM9yfu4dlLx7k2t43+jRLdRpmreitbyztJts+x/bYVGjGU64LO\ntiYX5U4W01H0WgDdlq+1QZeNcQA2Ync2l1B+dXjdCANjNGfPnuHg4WNorckyTa/dIu11ydOUUlKi\nUq2R5RqhQhSWNE3XNwfKde4D26pVOt0eVjtUrMjTPtJZQqGwTtLPDdZI7EqX1V6OkIIoiQhyfOZA\nLDm1fSfdG4v00oxev0+n2/PujbxPp9MlSzPGx0YpRRHCQVKKiMKIWwstOn1NrVbhyrWrTEyPA4Y8\n7XL8/b+F2beL7uf/M8oa4qSKDAKszhGpweFQOJ/qqHPcWopwDpH3sXmfrNdBa83aaovWWoeFhQVW\n2y3Wej2MdfSzjFRbDIJcexdKN7MgYozRWFWiNDJNf3mFUqPOtetXaU5spd/tMb/cxmlDHEak/T6l\nCHJrqdbrXLxyg0qlxOjoMbppSimKESpEKIu0EIQR1nbQ2hLGMbkxCKO5fuum38FRa5IoJpQSgaNS\nr9C1GdValU7nZ3UzpWGxokGuf1KHu6Dyi6t8dPST/LPsf2XHH83DE8AknPjgKcaOLLL6phFOv3CC\ni72dPFm7i3veeZKZZ3J+8ztAHdw/grOHt3GaY7Sv1ui2ynx1/GFuf/vTHNcvcvgHePHwXvj69rfy\n7fSt8KSAhmNMLDCT3YAz8OwcfBe4mcPuMzB+vcXE/nmiZkZaGpRXDia8MPi5nHclf8mHLn2Bkd/r\nYL8IwkLl3ZqP/Ms/5tz4Hi7cvZ/WZ0b5g4/9U25OTXPfWx/z6YpM8R33AF+/8U7yP6rCI4CEP7e/\nyov3HeBY6RSN8hq33BRP5Hdz8893wp8KeA44CacunuAzu97P7D+9ys4tt5i9DOyGSw9N8xk+yMlb\nd8JJ4BpspLYp/Ip4WGBGs7FPwxu1dPIwtiABUYVoBKoTlG5bZuSD8zwQPsKvdP+MmeWbsOC4Ut7C\nE3vv4MnwLp44ey+t5QZ9FdKpJVRKfWqRoVT3WYx5M6AblFl2I1y3M4RVTfdomSSBvWXYdkGQHotY\nvaNE51qZ/GpCfWqVvWMvsXPhMvWvdug9bnnxKqyWUo5Ft9ifBIyOLsNBC+ORz44YC+GgZObodR44\n+G1O9J/g6KPPM3vhJq4sWJ5sMnbPAvHRHmeuHeH02dsZmVhm5N0LbBWXGNO3uBJv5wf1+3nmzB1c\nObeV1fNNvn3wLTx/dD933/0DTtzxJKthg7WgzrOXjvP0S3eyfHmU/FpEa0uNs3ofkyM3OXpQsydb\nQTXAjEpa+yd5Th7hZm8GvRRAK/XpxLQH33uFTYXmX3H76vC6EQbWWs6++Px6jEGa56wuL9FtryKF\no1ItIxXcuHkVIfqkaY9YSTqdDhPj46yurLCyssLi4iJKKbRxIBQO7wOX0kf99/oZ3TRFqA5RElFv\n1NFrfbTVjI6MktNida1Fu92hn2asra3R7nQHrghBKanQqI+SuZhuq4fRGeNqhGqjgtOWufklwiig\nVK7w0rmzHDp0gIWFBV76s//IyJZZVJqS9jOwEEYJTluUs6jhngzGYI1B6xzrLPZ736d7ZD95lrGy\nskqaZszPz3PlyhV6OqfaaNJeXWVxcZncOXr9lEwbeqlmtZszPTWNMcav2FVAEIZ0uj3qjSZjIyOs\nra6Qdjr0O12EsVTjAG0MVms6nRQLXLsxx5abc+zeNuV3nERBrtEmQ0pFFEXMrywRlmN0KGl3Wjjj\nN3mqlis4a331SaUYGxllPHAo4NbNW39Lr3i9EwANaASwH7btPs/D9qvs+ON5+Bfw+EXYGsPMZXjo\nnz/CN2a+w+nDJ2h9dYrPvO8DzBy9zi/8q69Sf7aHq8G541v4RPhrfG3xYXg0wJqAL2z5EGyHd//C\nX7L7nRfoi5gfBnfyWT7A09+9F74DnIBlN8qtaIqde+c4MAatRdgRAPtgaabCEmNka5HPsAJvd52C\nye3XOcZpRh9fY+VL8IVLfoj72Geh/KDj8K8+R31kjfaNETr/xyh/9vO/zucPfJBSvUVvuUF2uoT7\nhvLB5TP49tyEF+69gxf3HEdUHXZJwvMSvodXLL0cHg1Z3TvKf/rYb7I8NsKbf+kRJuwCc2KSR8UD\n/MXy++j9yYh/vXQFX4+hinfdxHgR0McPzr3B/w/L8L6RAhOHLpVBdUAZQiWE8ZDxiWX2Tp1hz4UX\n2PKDC9SvzdFagdq2DkfGLXY64FKwhzkxzbPqCF+K3sXs0evMfvA6djTEzESc2nKMF5YOcWVtF4sr\nkygneaT+ZtI9ESX6BNtzFraNsZCP8ezl46RPlCgd7tLfkpAlETQFSQPGFiCJoVR3uBHnL52e8GWM\n6UKlBFMRjYkV9tReYsfaiyTnr2F+uEyUQHVbyszBy+yqTnGlvZP2uRrnr26nVL6Nico2Rspd5kam\neXbsCJfTnaxN1NFpwHJ7jN6ZEkkto1+t0Fmo0GlVuPH8DCvPVEhvKliBlU6DZ3cdw+4JWJyZ5mL1\nMqasSMsx3zP38sIPDzN3dhq9GEIvBjusFRLz8n0ahuW8h8XEXp19FV43wgB8AKJD4owl73TIu2tk\nnVWUMDglaLfb3LxxBaNzAinI85yr164xPTXF2OgY/X6fG9evMzkxSZ4pgkaVQe1DrIr4V3/xHX7v\n8EEeL9XppykqVAQLaySlmJGRJmvtPmudBVqdrg/YG+T9awdZrimX6xDFaCXIMBhhUJGj1V8lWIGd\ns7txztDpdKmWS1y+eJ7t09MkKmK+3SLudkkEOBGQ9/oo4R1gmU6R1pdfHpYbHgqk8OQzuDxF796F\n1ppOx1sLlFJsnZjg5sI8ab9L1u+CVOT9nrdq5JpqlJCtzfs0TmOolOuIUoK1jtHxUcYnxqiUDpD3\n+whr6Xc6LC0ssrzaYnG5zerasi+5TMjKQgs7sw0RKozt++4swDjjy0wbv8mTCBTdLEVJSeAgtRoZ\nxERlX+ZWOktZSraOjbyqfe0fnk27DiYCRmAsnmdr9wY8A6cuwNctbOvCh5+E+rUWW2auw7iDPxR8\nb/RBWm+q873J+9kxeYmUhGc4xlcW38Xyp2bg60ALWmKUT73nN/jGHW9jtnKDlJir13ay8v0x3BeU\nj9hvCp5dPcw3xh7k0C+fY6zb5Z1PA7PgPgrfrPwcT3AC91zkTfMq8gYPC1JYn5rqY2DXK8BbA9Li\n/fzCF/HiE2AfC0i310lLdV/A8TCIX8tRlT76Vs2nK8wBo+B6CncdH1PwFN6CYrV/veeAPxGstGf4\nxDv+CZ/b9QHqtVXa7SZrL46Qfy2BrzGoDF2H5TvBLeGdLsPdKLtslIWew1sVhqWT30jiYIj0ZaWr\nEjEJU9WbHBenmH3hCu7TKXMX4HIG4s41tu17AdUo8x33VjphhcfEfVxTU9x5/w+5c+8P6YYVVpMm\nzyzfxlM3TnDj8izpxZh+pcrn3vJLfO/Q3UyMLVDLW1zPt3HtxjYWTk/Q/2ZCR1S4eWKGhdEx0mMx\ndQuHAugLid0fc2tvmfRaBJcltPr+d02aMFKiUu2wJbhGvXuTpWs9ls5AXYJc1ZQfXGKrvUp9cQ1x\nznHl8hTLV44RNQLCmTLZ/iqt4zV6tRL6UAQzArqK7AdlLjT3MVefxVwJMJcV/ZcgO2tgrQ95xEqr\nwTNjt3NF7ODkrttoHl0mIyI1MXMnp5k7OUN6KkEvBNCrgdmGtwgMU4BTvCBYwFctXWVjQ7Sffk2X\n15UwuHXrls8S0IZ+r0faT0l7HbK0TxJUkUJQThIEEUYbHAFr7RbGGOIgJA4j8jTD5Dk6G2yYZH0F\nQiMC/vd9u/iWk2Rr3vdtdE6pnNB0Alij38+wCLp97/zWWlMul5mcnMIYgzYWYzSB1PRaLfJ+j3IS\nUo/rmDTj+vVLTE6NE4oSpSShWaszd2OOrVu2EEcSozPyLECFYPMUnfqNlxwWazVa+9c3Zmhicqz+\nyi+RZTk2y0nTPu12CyH89sZr7RaVJKS9qhlrlOlnOTqDpFlBBQFZt4vOO5STCs3pCUYmpqjVm4yM\njjIyOjC3WkegAtrtNVbXlpiYKnPj+hyhhEgauv0+cRjS72W0VjtEo76glFI+CyTTliztI3DUazWi\nJMbgBjEhkOmcRr3B+MQEgYRYWiYrJXQpQEnpN7P6mWRTvfdBSfmOqbIWVGEattdh3//L3nsHWXbd\nd36fc/N9OXbunu6emZ48mIRBBkEEAaAAiqQYxISVtLK1krxWrUq75VD2lqvWdql2vVZJKu2WVVyZ\nIkuixCBGkQAJgMhhcs49nePrfv3izff4j9sN0GXv/mMKNLg6VT3dMzXz3qn7fnN+v/P7fcNGouqu\nD0Ina9Aklwj7LED8pzrnr9zN1cMHsMsOMlRoTuXgDQ1uAPtIzpwahF+yWHhjJwu7diZ09DqJEnKb\n5MJ4Eprf7+OvPvEZ9DGfx/7F81Qb63SsNCdKh/kyn+Pya4fhLZLxwQPaO5ec2mIfV7fvZuNImtLD\nHT7yQ0CC+ih0H9C4wh7aG9mEvuiQ7G0F+CRkP7vO3aOvcEg9S44m8xMDvH78PppOke25a6QUh0Vv\ngJuLu9n4XjWhQxpakrtvkyg5fwGCt23qozb11EBytqZJio5/TFIYTCpwxoLbA0lXIrf5+Jc2Ee3r\nQyTVx/TmZ/OfY3Gw1Sl510J4C6kvkCgStBjMTQFJjRhBDL4kqOssXBqkPpsnsnUcO0PXS9HcyDHd\nHmPRGaSjpNEzPkFaY1psYynuYaQ4TY+9wtLaAIvrfbhKilgouOsW9atlble2c6LvGG01jZn2CSOV\nlcEyU+ooM+4INEAZkKgPx8TFRHfGdS1qcZlyqog26GBOuGgqyEGFdiFLTVbpOinkuqDdztH2R9BV\nBSurU0432SOukjXa0A9RSaW7ZuM1DayMg2V7rKVLrOXLMJBoyQRtSejp+GmL9SWb5tk8tVYZs+ng\nV3XCvI5uhBhZD3UsxNBd/NUYv1YiliqkLVAUcAPoOrBuwkYKQpME8LblM/H34Tb5H1/vq8JgdWWR\naJOq2Ol0aDbbdFttiCI0RcXSDYYHBnGdDiurNVAVQi8iCANUBLZpokpBt9XG0hL3QkXVQSg4QcQP\nTZ2OE6JgIdCwTIN8LodtG9iWSalYJJ3JIlQ1oT06Lq7b3TQkMum0GnS7dUIkQegnDAdV0qzXqVRK\nmJrEazdoiQhTrzA0NIjruHQdl1QqhyIkiowSDIGqEfoCNQ7RVZWIiDAKCILgHSVCVU3mokEY4Ps+\nnucRhiHZbBbDMMhlMvi+RO+r4PkBjh8wOjSAZhibIlEehqFTrVSo9g+gpXKohomORJUkBVYU03U8\nRGyh6QVSroppWVTyvdTW6ywsLeN7iXhUEAXJgBkQQqBqGoYeEwQJJbHQY6LrGkLd9H0g0aVQFQUh\nJU6nTW6oxJ5t/USuS9oyaXad/3hAvO/WFsjrJ30I2tCIYFplZmGcN4bv4tjHzlKY8/nYiU36+Kfh\n4o4JzkV3JAl9CXhFwgWBvy2NX0y/a1C3D8R/6VPZXsMyXVzfona7Qnakya6RSwwrs3iY3GxPMHlp\nguCvbfgO8E04r9/F//ZwD89VH6c3vUyLLBfb+5k8vZf47zQ4Cvq9XQoDGwgkzY0s7q0sPxp+jP07\nL/Kh/+6HlB9OnAyb91r8YOgxno0ep/lWKck3nwO2AQbYTzb59Nhf8Kv+X7D35lXshku9v8DLQ/fS\nNjMc75zC8jzmc718f/RJvvzM53CeyqJrAd1uiub5EjyvwA+Bv5MJhvOwgI9C/slVxoeu0auv0JUp\nbtV2sfDGCPK6irgjwOpziFwV/0Y6GU+8mIer+zbz4VZy/M8NaxADTqLI53rQgA23wLTcxs6BG6j3\n6BR7IbMKrTGbeqWfaWOIVjeDvK0QzFvESyrXe/ex3DNE6KkEXZ3uaAZnn42+3yNrbqAoMW2ZQ64Z\nGFpINt0iyi2hWz4rO/pZOdBHEFu0Xla5OHEA94jJwKF5SuPr4AumjDFmVsdY2BgEV6Af0zEfTxFc\nNnDPClZWejjlHUPp8zn6sMO23U00C+oli8W9Y7wtjzMXDSIDASM2HNBI7WhQ2bPC0cIZHlNeYLu4\nDRE4WYu5gX7W9Tw96gpVdZXTu45wyjnCvNvPslOltaHTXROEswpch+gNDeetDF7BJn5AgXskld45\nBobncB2TbjfFxu089atFfMWAYZF031Y1mLXgbBoulaBrbo7tFN7tGLx3xcH7qjBoNRus15aJA5/Q\n9wiCkCgIUREQRhiajqWbieP2sE2sG9y4cZMgCilk83RbbQrZbGIAFIabCoMaUsa4XkAkQbdsLM0m\nY5pkc2n6esuUywUK+QzlchHDtFE0HVPX0VUV13Hw/SQxNzbWWV6Zwel2UNQEWCdIhItyWZtyxiKb\nThGEIRtrK/RUeynkcuiGgYxCRBxBFKAqAhn5BHGEjPVNvwVJFAUoikRVBVJuMiqERBGCMAxQFQXD\nMIhViSLANDQyVhrfEkhVxbIt9E1hIamZ6Nk8pqmQNTSEahBgIxQDW9n00osEfhAh0DHNPB1Hw9Q0\nMlaOdZqgCFRdY319Hd/pJC1eNpUhhYa6KdhkWwaB7+N0OuQyGRQEURhAGGFZKYSUuJ0undYGtraN\nnlwKL+xga8o7d7f3//pJ5HeKRNkwCwTQcuBMhvVXe/jqL3+SwliDp/7ls2Tn2gQZjQvbdvMl8Xne\nnHwAXgUmge4kXO2Hm6nkZYaAz0ryn1/jQwPf4l5ep0yNNcq8OXwP/SzydPgdhtfn8TWTc4V9fPWu\nT/Lt1Mfxh1NJ9+AlWLwwxuLEWILPc0i0E24Dj8fs/NAlHk0/ywEuohFybXiC5w88yqnJu/jDoX/G\n1Ynd7Ju4BMBl9vKD8AlOvXYvXBEovxbQc2yJbb03MfCxcXgm+hL3fPUM0V+Avwi9h+p84ve+R+Co\n6N+MYBW2H5tl/DPTKIWI3uwKGdrMM8ArOx/g1YlHcaxMAkgsAx+BsWeu8KnMX/EL4Q8Z2Fiia6R4\no3qcr3z4V1h2+rnbfo0h5hNp6GP7eeOeB2n1l+CvLbgwAbJF8jC2rIJ/nguEnxQ02vrSIFSQnmCj\nUWRqaZybqV1cPTRHT/8q6krEWrXEDWucc42DrM5V4Jogvq4R39ZY3WGzur3vnfqq3FNjV+YapUqN\nnF4nloJat48oUNm9fJ3RtUkcw6arp7hS2Ed0h4a3ZsIGNII8Z6ND3Ii2Uw7WEF2YbYyx5veQj+qM\nF29SHKpRHF4jaFq4U2n00Of24nb0QkRmRBIM9IAJNbPMJXGYa7O7cRWbntElsr1tcgNNcuMbZHeu\nc6BzhqPXX2Nn7ToyBke3GKkOsFEoUnCXyPkrKJUOxjaX+WiIRbefpluk4+RYL5VZ7PTTrOcJlg20\nekjpwBoVucp2rrNDXMMrmHR606yk+1nID+ErOlbVQTUiwraBM5JiVellParCbAAzW9LdWwJO7x0Y\n8X1VGASBz+1b1xjqHyAMPHzfhzDCd32iGEw7TbPRxNRV+gf68DSNhaUlaiurZKwUuq7RbrUp5HIY\nhk4kJVKoSKkjgXQmDWgUMiYjfb2Uy0WKhQK9vVXyuRyWZaFuOhnqWtLq1jWVIEi6GFIOEsc76XZb\nOK0WMvRBSmIpCIIQVYYQJ4qCQlXRFYmlCxQREXo+3XaEnUonZnlxhFB1pCrwvQhVEei6tlkUSDpd\njygMCaMAZISmSExNIk2I/BApXaLQQ5EuQomIhM3S8gJxt0uMyggpFvv7SRkx5bRFJp3H6NQJKv3o\nhoqMA0IZJwZNcUzsh6hCYusmvgywbJ1smCYmxvcd6l6bVqtOPmugGQaKSOyoxWYhommJF8RgXz9T\nUzN0WiGaSMylLMPE0HQafkAuZTM/u4DlOaRNg6SV9vOwtjjieZIs1geMgFoFYxPU97LC6dK9/Ov7\nS7yY/yBDhTk6pLkYHODU7eO4X87By0CrAVSgJwVHSMSQBsH8iMMzA1/gN53/g31vTiad8TH44F0v\nk41ajHxpk26QgV2/NEX50XWaB3JsHMjTJsv0jR10fpyHb4oES7DlxPybMPGLF/inqT/ik7Wv03Oi\nAR6079U4VD3HH4//U95+6UHOjhymr7QEwGqjivNSEd4G9VM+H7j/OT7G1znmncGIfKbsEfbevgFf\ngTefSxr5H7gKo6Og346Y/CoseXDkxzBkrPKPPv1ldp6cQSxDsA/u3/U6f3qgwTc+8RniaR0KYD+9\nzq9k/pLfXf1Ter+6nuASeuDwr1wmu7+Fbxs80XiOwek13KzC+cH9fHHs83zps79Oa7kEC1mo9ZHM\nOt6MUH4AACAASURBVNr839kKP29LISn/t2y8M+/+LLIgoL5Uxj9toAzAykQPpYk1bMehERa4Fe5g\nZnKUhbODCfOjRVJj5EkUsjcdmPdtv8Qv9XyT7c4tjCseXWkzt30AJ2uz4/QtRq7OEhY1wpLGC70f\nJD4i6MRp8KHl51hfr7B2vpfO6TysQWc0hznqsm/0Iof3nGRsZYqxk9OIUBAd1zjlHOGFMx/kx5lH\nuDq4n1y+BRG4dYuZpSFW13oY6J1j99OXOGBc5qBxiagIDSNN+dIcwbeaLF6EUAJWQHpglXyxyUbN\nYXo9ovSBWzz2UAu3naa7nMLLmPhDBud3HORb1i9xbvshuClIdboc2XuCewZfY+zcFOPnpogLCmFV\nY6HSz9TYNpQoon99Gavr0qmmmK0M80PrCV7vuQ+eL8CMxrt21FuW5//QMfh/rCDwuT15g75KhdD3\nCIMARQgUJKamYRo6uqKyvLSE63QJLRPPcwFJs9VioNpD22+AGlMs51BVga5n6Ha7xDJCkRIpA0xd\nwTIEubSFbWq43Q4p0yBtmaRMA9MwUBAIddOGWYKOwHNcZByhuD7uep1WfQ2abTq6RbpQIpcx0NWE\np6oKQei2cSIPQ9fRNIVIjQnVBBhl2CmEUJBRiGFaaHrCGAiDEN/3UAS4XsJ6EJ5L3GoQtRpIzyMO\nNwMojmn7HhtuxMLaGq1Wh4XpaY7OLvPQwjofHB8mb0qk2+V3Vzs80PH4V5/9BOOj2xjtq5JNG+h6\nMmqRgIglKiqR56KrCtmMhaqrqLqKbaoogYuqqptCIcqmvLOCoWtkMmkaG3VUy6aUyyF9HxlJdE1D\n01QkIeVinowwITIp9faxY3CQydX6zzLkfkrrJzjiVIEdoEwkHu/7gFHgqER/wKFnfB6pSL6z9jTu\nQhFZVxJd4LdIxgc3QkDA9hw8BcqHI0rH5xnNTGHT5Zf5Gvv+cpLo30NwE/TtsO93boEF0b+B124l\nQoB7ZuHO4XP8zu4/YTBapKaWeXXn/fzN2Ce4bh2CL4gE7Pc48EDMY6nn+OTiN+n5tw2Cb4AMIPNw\nyGf/5Te4PTbKtaH9NP6owozMJbl0haSz8etw6K63+G357/jlc38H3wRacPjOK8jtQD2xZVoA1mIY\nXQMuwGtewjLMLsCBKzDxZzNE/wGiFdAOwwd/702WH+vh/IHDXN93EDKwt/cKj8of0vu1dTr/K5yf\ng20K9Nfg0T94gexSl8yfeIRvglGIOf6Z8yjP/Dm3t43x/fs+lqg01npJEuXa5uf284oz2IrJbDKv\n0ouQtSGbQqlaqD0ehulh1X3aQxluDo2h5YaIUajPl5k5M0b9bAUuC5iWUAIxJMmMtsjuaKIXQrRc\nyLHcCT4Ufp/x+Ws4Z6Clpdk+2I+XS9Fzc5Hyc6sYvaD3QufeFBvbs7TtNCBYXBvkxqzC8kwfjbdL\nBIsGhFCo1NlhXeeD/c8zcmOSkbcmSfVHWOMgfcEra/czvbGNa2IXYVuDUCRF7pLAbHpUt53l+L43\nObbxNsdqb+FspFgOB4lvuugnO3RPJyakuh1RGWyRK7TYmILaLExYy+wcXyZeBecqqH1JXV8cWOfM\nnoNcH9pJkLewag67h67yaPY5qvNLVF9YwixLjEFYPlRlpn8IxfXonZ0jFTh4VprJwQlu7xrnTOEI\nwS2DUK1CvAjS5N0R5HuDuXpfFQZhGDIzdZM7Dx8l8Fx83yebTlPIZmh1XQrZDHo6TW02YLExS7lS\nwNJVuhIMTWNxaQlFxBTJoqgCTVWRceIW6LsuruPS29vD0MAApXyGfCa9iTGwMHQNRcaoMkR6EYEU\nuEFIx3FobKyxujhL5a++yZdyaTbWaojIxzZNvnJjme/ed5RzuyZI2xqVlCSXyWKaBpoqkHFIGLqg\nKbRjH0mMLSSGaaKbZlK8vPY2PPIoUqioRowlEv0F4ojI93CaG7Q21mm2msg4Qtc0HNfFdbooZgbd\nKjA6vg3NTAGvc8aw+US1h89/4pNcPPMa09cu8ceWwp8aA/S0Wky99jpec53etM1/e+EWr//2M1T7\nezBtC1W3sAyIFYVIKli2AUqGbmuD3/+zL+OlLP7yd38dRVXf8ZE4Or9CLWXTWFpFDV300EOLIwIp\nSaVtDFPDMFR27tzNvj17CNsd8qbFnuEhnjt78Wcddj+FtdUtKJOoHO6BuxR4EngEinfMM25O8qTy\nfQ5zBguXa5VdPFd+jBeuPIn/jRR8D1iuA3UojcPjoP+TNh/a9R2eEt/hIBeQCPZ0r8Jz8MZJOAEc\nPQUPPgvsSZTmXiUpTUYuQfZal6fffh5xBeQI3PvpN8mVmvzhE7/PwqXRBNzXA/kdK+zjEtVz67S+\nCd+eTO7Tn/86pO6HA79xkUJ1lYZRgS+QYPdC4EPAYZ8H9Fd4aPYV+Dcw/ZdJyr3jAKj/I3A3PHEV\nltdgfCL5PXOw7wIUYhjMACWIvwfPXki29NhzsHsP3PHgOYatKa4PHQQFytoq25x5uACX5hJixmgM\nnz4Hvct1lO/C4l/BD9eTS+0jERx98DJ37DjHSxOP0e3N8a6z5c+rdPKW6qYBpEEpgzEE1R44qiEO\nKqT6QjK9yxwrnuRY6STZSgPLcrjNKGc4TGslTfAq8GMfpjWwVDgE6t0RB3ed5a6JN6jIdUpRg12L\n16ieW6F+HW5eAafs03uwRo+t0VzusDwFvTXom4btwXU+3PQITB0kTJVHOTs0zeX9+7l+ew9L2X7Y\nAfpQSL9cYe/sNRoXG5x5NWYoA6M9UJ5Y5eCBM7gtjVunxlibLie5NCVgn4Z6KGS7dZtHp19COzHP\n1Js+KUvS27uAuRaip13ELhKzPB3SFcAGbRlMCWobxBIs3YAbb0M+AzvmIX2wy9DROUYKt1mpDKLG\nEWXqDK/Ps7HQ4cItSe889E9DuttmWM5Tb0VMvuGitCKGrjuUd28wsGeekf5brBV7qKWqiWyyv+Xv\nsWV3/fdfHLyvCgOAhcX5BA8bhZQtnaxpoIuQ2U4Lt7lGOp8HVSeUEqKIUjaH4kUUCmWWl5YJAgeE\nIIxCwiAx5jA1FaKQlG0wPjpCf7VKyTZIGQa6AqaqoBAjfY+W59JptllaqTG9sES91WJ+foZUfZUP\nLy+xoVYZveMwpgarizP8z2PbyB0+yoN33U99dZHu7HVc38PzutimhqWr+DImk83iul3iOEJKMC0L\nNZ3C0DW0xWWYnYfRbYmUAYmpIlGE026ztlYjdDqkLANVVXAcB9/rIgQ8/u++jtQMbv3ZH9J2PC5Z\nKooa8E+mZ/mT7/4tSJ90Lo+hCp5sK7SP3kmn3eHWxXM05+dQ2l2++oUvMnJgJ/sP7qd/aBDLSqEp\nOroKulBRpEY2k+ZPfvtXCQ0DU6pYElAEhmXRE0YMBCFLCqRsi1KxiOcFuEGwKS4FOhH7dm2nkEvR\ndroQR+waHPjZBttPZW15w6dIoPJjcFCBj0PPb8zwVPrb3CdepZcVPjD9OukXPGjDo8de4dBd59D2\nRHz3yY/BZQ2WU4mV7F4BT8AjE8/xz8T/zn0vnkJ7KTks5AcAFXQlQZEbm/R0xmCsH47OJoVBeieI\nSfD/CC4uwd4iZGsBT/7ec7xceZCFO0YTup8gsfMmhiix8NiSBYo2R6CKjBMJ78T6FIIbwASkBZne\nFgPMU5ps0T0NL8iEHJi/CNsvAGfg9bUk4T8yCbsuJ/ttyQTa0LMOd117930DEidTJIlrKZtC911o\nRTlqdpHtI3OMF2F/HUYEKNtgo2RTXHdodBLspgJQA1GHFF0ULUpy5c/9+kkHxSxoJcj0oQz2YN7r\nYj/WpVRYp1xc5u7oFT4cf4sUXUQTXjPu46a9k7gh4FIMZyOIFKgoqPsiUk922Fe6wFOlbzLUmKd3\nfRmrFqCdh8mLcOsGhMMBgwsblAuwsAJT86BpUNZgyJ9hdH0GkYjScuvOMTL7NhCZmJWdvSzpAzAI\najmixAYj63Ocm46ZuiQxNRjKQa68wdiumyzNl1m6XGLt+VyizDigwA6BujNmpDvH3csnmXw75OpX\noS8VMjrukMuRTFcGEqdmqYPsUfAsBTEbYxCj+IK4LVhfkkxel/RqMNwEy/Qo769RTa/QzBRR2gq2\ndMm3myy3QmYaoDagvAGZnEOm6uCvweWTEK7BQM2j4LSojNTo2bWEk02B0Quhsmltv1UYvDeGS++7\nwmBpZZkA0HSF/kqRHrOAGrs47TY3VxYxtBxZyyZ2mmR0E1uoxJZNo7YGUUwum2fnxC5y+TRq4KAo\ngij00VVBT0+V8dFh0raNEfhoxFiqggx9gihmvdXkwvnzXLt6Ez+M6R0ZY/fBO9BMk9VFna8XbNJe\njKMoWOkUoWGxUSqTkYKsbdI7vp32Ro0j/80f8LXf/DBOSqPQWyWWgtj10SyTIPBxOm2y2VxyAkYx\n4SefBsVE+h6KjIhDF6KQ0HNpN+oIGZPPZ9ENg0ajQaPZSIykooi/e+ZRjGI/ys2rhKgM9lbYrkiO\nX1niofvvY3VlFSXosqvjcrg2z/PNDjkrze6xHbiFEn8+NkZpbpL11RUWZqYo5tNkDQVTA6EqRDIG\nRZKyTNpxjGmmAFBViWUKFE3n1PHDNOcWob4BCIYGB3Ecj5VaDRn4ZFM6logp2BqmCqQMIj9ioFxE\nbBpVvb+XRjK/rUI+C/dA+hNr/GrmC/xO688YfHkJdVbCRVj/G2j7MHxXxIP/05tcufv7nLjjXpb3\nDMGbOjgWbIfsnSs8rLzAPafOoP5BzM1Xk/NvxwngSThyA4bOQTFPAmcAYjXxwckbiTU95+DtmUTK\nYGEZfvFt6K0v059dTGoYG6hB43aVawd3sXZHnsoTDT76HYgCyN4P8gG4JPbSqFUTCrazyb0ECMDr\nGLTI4VY1zL6Q7Vc2ByqVZF/STyb5AYlNPZuTkq0jcEu/Xn0CHp2He9ehsB94BC5Y+5nvDCdziDpc\nb+7i5cqD7P3lm1TWHD58GpR+4HNwpbSLe46eZXwffPQcFLLAPbC+K80MI7hr9iZL8b0Feb33awsE\nawN5yOZht0H+yAZHJ05wsHCW6s1VqjdXGalfQ69vQJyg4vsPTnHvB1/BzPq8tfNu2oslWFPR7YCe\nniWGemfYceMWIz9awF9scG05omjAQF9ihlVagrAD1iTJY64ldEhVA9OEdh3aVxKWnpTQ7etS7i7Q\nn14klekmW+5AtKyyPlJgun+I1I4NDu9vUM1LjAHoHMwwlx1iQR3EMXOJ9XLgJ/oXvp6E5qbfUj4D\n21TIp8CoJqk2WoS4kehw+FWN9rE87b02reUmyqkmXp9B/ZBJLg44suiRS8dkDsDMHRbL+V4WOgN0\nFtKYsxGTpVHeqhwnfXiG/WszlNIxqRIoQxCPQPYW7LsJMgulA9A+qNKo5FiOe+j4mWSvwaah3jv0\n5vdGKvl9VxisLC/gey6qIkjZBrYuaayuocUxZhyQ1wXDlRKa3yFyPexSBbebiAVVKxXGdoxRyBeI\nIgcZ+vzWifPM2SZfrObIpGwytkUmbUM3xtY1ZBQQRYkK3+nTpzh39jypVJZ/vtpCSINrdxyinM4Q\nZwqM1dvM7BijE0lypk117x381n/4Cq9+rszizRsYqgqazo2PPAapNE5jjYaqMTQ8hFA0pKElH30s\niYKQwHFRhIoWg1QEsfTRxJbGgYPvdNAFZEtFok3nyXypTL5cTSSawxAhVBSpg5FDtbPsGBpBERH1\nX/k8HxImq6s1ROAgwoi6brG93QEpKewYxGttEHSajK4MUFtbwvddTE3FNDTCOEJXBEIKnMhHIU7o\nkVFiGa1rAqkqhHGiaWBbFrqu0Wm3yfXlqFRKdDptdE2QNnWyOnQbNZppHSMGzTAo5rNoikIQvZ8P\napV3XRQLiWjKIcmxwbf4GH/L8BcX8f49LC4m3c6/W0ta7Z/+MfS8DrvvvEo5v8RydQjSSgKWL0Ip\nVWeUKYwLIbVz8INOclz85gkw9sDKTfhBkCjGfeTHgAbXZ+GVCIYdGDkP+kOJ58ygn7AIRQVc06aL\nnWRrH7gJ8nWN5yceZf/QRT76L75D8f4OBODco/Lsjkd4lieony4nVErXJRFnacBCgeBKltO7j3Bx\nfDd3PnORB2yI66A+CJ0nTdIrHo8sQrMOA3uAh0DugrumYc885EchfgLmHu9jeO8SqZUEfPjGoUP8\nLR/lxpU9cAFYhbUfDfLXH/0U6Z0dfuG/f4HS+hqubXO67w5eFveTe6LNfnGTnaeTZ+g8rfDt7FO8\n4t1PeMaCKUhQdF0SwZmfRw2Nn5A/pgDZHOw2yB1d5Z4dr/LR/Nfou1Gj52/W2JiBjRnegVn0fXya\ne/aEiLzGre17mKoZcAt06dBbXWR3zyXGn59k+BuL3JgMuTkL/fdC6eObc/izEK+DOQU4INaTwk/T\nwLDAacLSEvibeljqni5FZ5ne/DJ2ykm23IJwSaU2WmRqYJjR7YKJAx3UgRh2QmN7nrnMMIsM4hhZ\nMNXkgiVDcGPoQFxREkfEXIxuSPQsqD2CsCWJ6hDOS8IQOobB8kiJ9QeLKG9JVK2FO2CxfkeOQuQw\nOBehFyO4GzpjaZYzfSyuDxDM2zDlMrlnlDeLd3LvQckRaxGtJ4RBiDYdl1MGTFyQKAWQBwTrB0w2\nygVWgl5cL52E4TvFwHurZfC+Kwxcx2FlcR41DjE1gaEqjA6PkrVtausnqXUaWCKiUsgRhT5SgGFZ\n5A2LoZFt7N+/j/GbVzl67gxfeOAY39q3nVXbJNd1sAwdXVOxDAPiEFtRURVBs9WkWV/DaTXZNtTP\nrp27WdKzrFkmor7GWE+V7f393H/iIs1j/aw+8hCGaRHHId1QYduTjxD5iSeDGmXxP/wEeyIHIQM0\nLRkb+GGYSIwEIV3XI/I8ZBQhoggpQyIZIxSVMA4JvO47AkqaArqqEAlBOpenUqkSRCEyTuygkQLh\nKQTSINJs7EwGI51CS2dxY4V8uRcZ+AS+DzJiIA5wu200VRBmTfx2inQmRX9/la7TRtM0fN9H1XSi\nwMPxAgzNoJTP4HgR+OGWKso74MkwCPB9D03VMEyLTrcLQqAoAlNT0YgYHxmmUVuilTXRYkE6XSCT\ntlHf94XBluTs5i2tAMpgwBhTHGxeRrwAb16GsxKOkcDefJKDFBN8YRBJNTkTtr588KRBhzSyDKkC\nDC5tWhmXk3cLoiS3e2z+MgRDBdi7BsMa6NuAJ2B0FT5/CdRx4FNwrrqPy97+BDi4CsxJeFZwftsx\n/vjh/5obozs4OHoBlYjr7OQ5HufN1x+C76lwUfLO9Z1lmMzDK4JXDz/E/zk6RfC5r7DrvpvoXsD6\nSJFXcnfz8G+9zODeGpkaRHsFpx/YS9Z12LFzispcjD+qcv7YTv7cfIYDT10kzwazDPMSD/Hi9ceJ\nvm7CSZns9WuCU+b91B7q4UfFR+krLNElxTnvDhY7Q6yXSvzCx37I+Edu0VHSnOA4X4s/zs0XDyRs\nj/mQBPLY5l3Dpfd7t+r/bW3Nl3TQdcgraPmIgteivLBGfc5hbgYKXcinE3tsoUGY1fG0NN04RRhs\nmpz5EKPgxhYNkcMrmrBNUGnDnrWkIWH0JWFrmYkaqqaBYcNgHtI9UK0C1aRGGchvdgyAhSNlrlbv\n4IJ7gPWVUkJd8cG1bc7aRwnzOsOlGYYfmyXM6zhlm8vOXq69uYeNkzn8eQ+8LkQdcCO4pRC8meLE\n8aP82bZfpf++OXq0eaKsQXcoh+05lI+sYjc7yDhmvVzk9P47uW2Nseeht9htBFw4dCfX1o+Ty3eo\nfmCF2FZp9WW43pjgxsUJwusm8WmBt6IyWdxOpGpMazt4vecBFFNCSyDjmJiYbG+L6qM1dD+kNZZj\nNjfE+euHcCdThNc9kjhs8K4B2Hu33neFQRSFdFsNcmqEqsTks1nSVgpFxIwO9dGcWiBtKOhmHlUR\nxKpGT6WM4/rs2ruHGDjb20tncAAk1GwTy7KRJLffOPDRRYxmCETooqk6qghR1Zi+vir9/f0MD45g\nG2lKUmLaKVTDJJIKs//6f6FU6WGsVCGWEk2R+L/2DGW3C4GbJHHLwAs9ROyjiZAo8mh3O8SuixoD\nvo8Mw8RqOQgIvQChJpRHTdOJwwDPdYjDMAEfhiFR4KOaNp7v03EcDMtKRJiEilB0NEtDlyqKYaAY\nJhgqEGBrCqQ0fB8UJSIKQoQE01IgCkGHSFWw7RRR5GOYGrGMiKIYVZXoqiBjmwhVo+34qEQYKoRS\noiqJsqSUEs91cRwHkLiuS6lUYW2tjq6rZNIpbMukXMzTri2gECEUHd/3yWfyVPJZ5mrrP9ug+6ms\nzSTzzjclYaDoEaZIgE22Ck/tBb8J9kPgPKJzRjnEaq0/ybedCKSAOZXlyQFOHj7GI/f8mOHPrPDR\n75PUIB8CeQxGL8PH3gQ7DTwGrY/aFJccnn4bqEL0ScHVJ0bp37uOtejgVUxOjh3kS8rnuHzlILwN\nLEUQtOBcAZ5VuZg+wtrREm+kJ1EJmY1GmL4wQfCsCaeAVoek39EFFmB1CF5I06hU+eKn/jFXRvew\nb+dlLFxmGOGav4sT1Ts5/vET5GgyxxAv8DCGFXD8A29RocYKVV6P7+P52mPY0sHUfJpejvWzvfCs\nAs8B0w6wDj8agIbC9LldTO/fldAvtrQYOvAXH/oNfjz2CGVrFT8ymWuPUHtxIKFnviLBXSJBQDT5\n+e0YbM2oN/ULdB0KSWGQd9uU1taZnZVcmIZDaRjKJG1+DGjmNNytwsDX3i0MhIIT2zSVPG7BRI5C\npQbFGaAAog/cMHkdKRJQn2nBUB4GekAZBUYhOwGZiWS2j4SlSlIYnJ88SH25lKhmroEjbM6Uj3Jx\n8ACD22YYPDRNS8tQF0WaJ4u03ijivxUh59bBbQBt8CTcyuArBd7edozb6UGO3neSO4+foC0yzKuD\nFGWdvdFleuQKCjFLoo839Ps4ox7G+qDH/vtnOF97kL+qfZ50scXAzhm6wmbJ66N5sYj3WorwTR2m\nQryuyi1znKloO+rBAPVgAI4CLQURRwg9oK93kYmha1i6y4I6yNJqP+s/7sH9QQqurZBQezZISvyQ\nf1A+/E+sKIqo12ts2zHEUCqL7nZotDu4bpdCLk1ftYhwYuqOx0Zrg3SuQqyqDG8boVwus7I0T2tj\njddyKbKdDrapoxk2hlQIo4gw8FGR6JqCoVtoqoZlWfRUq1QrPdi2jW1bpDN24hyIgm6lUXWLWKqo\nuoYiFDRdJQ5cdEVB0zWEYiBkSChjAl3HVFSi0MFxOwRxjFA1VEWgSFAQKFISeD6qqmOoGrqqIhBI\nKdBQURBoikooJMgAXTEJhcB1OkgEupkiRibFg4xREcSeB0EbnESOWNc2hY2kjkCiioDAdyD2UUVM\nLAJUNbGttmwby0polYqaFGgSBT8ICUKJSCegRtULcMMIKSVCAFISxRH+ptNlfb1OtdqHBEzTIJu2\nyKUMMpZOaJl03IDhvgFajS7dtsPRHWM/B4XBltxsF+ol4hmD60xwKn2IDzz9NvfMw6FbYO8F+Y9A\n71Fo7zP59vAv8O3wl1h/qy/xBnB8oAlXepEvmHx3/GkGK/N88p9/jYGnawDMHyizrPZyrHSB/rMh\ncQbqD2b52uCHefhfvUDv9AZBWuWtyhG+Kj+BMeLTM7JCnSIng2OcunQP/pdTSaJ0OmAX4GHQftXn\niUPf4iPym9zhnkeTETfs7Xz70NN8q/gJWm4J1jIwP0RyfV8FrsG5vRBbdOZKvHj8KV7c8VQy493M\nwReOH+Eb43OYikvdL1I/0Q+a4LsHniZjtmm5WdqnKvASbDRI2skNErTiVQkrXeAKiSKOAz8agYsG\n9IqEU+9ubkWRBCdT3Nq1j1sVkqQ2S+LNcCGG9mKyX1ZIqomfrbvd3+/aikcPPA+WI7wlk7mRAa71\n7UIcXGX3co1KT4JFuWpOcEHfz+0dY8wqQ9xYmGB9qgJTEaz5RLpL82aa+ZMjnOYI5aPr5KpN0nvb\nNHblWemvotgdyh+9jV13WJ8oEpcyKEMxYk3ilw28skkzX6CRKxALFSTcbo5y5uRBZi8P0bmuQLMN\nRQOjT7JtfJLRwSnGvEnGrk7iZww6uRQ30rs4e/AQy04Jb8kiWg0gaiTghrU6UjFovagRuoNczIa0\nU3k836TeLZK2uswUx8laTRQkDT/PlfoBVjb6OBHtxw+bnNnYSWMjjZM1CMoqvjRoOHm8WQXOt2HG\nSeLQD4luZ4jiNMwbcCmVtAK3MA7pFCIjEBkFXQ+o+wVa6xnc0zHcqMHaComYSIPkH7633av3XWEQ\nxzELC/McGO0jny9QLaRpuDGtukhm74qGNz1P0HaIZcTa/BJGrkKYKrC6tEinsYEqQ3IpE9/tks+k\nIY7RVZVMJo2qKHTaLdSUQSgkYRASRSG5XA4hFDKZLACqJtANBaloGKaGomkoqgEyoL1RIyJGExJd\nSIg8ZORDFBGpCoppIaTAdwJiL0CNJCKSIJMbiqYKwtAnjHwQqU1FQYESayiKgtRCdFXHMEx8v0sY\nRagyxjIsVFXB7TqEEeTyJexUhjiKcFyHIPCTt5AxQoBUVWK6+MIEGaMSJxRKCSKKkiIm8DEMA9su\noKgy2VcYbE4LkucmZUgokw6Ch8TQFBw3SLQMpERTFExdT4qEUNLquAmgTIkJ/RaBm8Y0NbLZPI1m\nm96iTxRFeJ7HobERvvXmqZ9dwP1/XlsY/s1b7eIgnBScunEfX9nxKYqfW2f/7luYc5JoTHDijgO8\nzZ3cZpwX44c599Kd8G3gggRmgCbcqMIPVKbLu/m3H/s9TmWPsuPQTUByXe7ClRYP3/k8Y3dO4WNw\nhsN8L/5FviOeZmDbPF2Z5nK8h9NXjiNXrYSm0CDJr68CP2bzFh7AAeAX4L6DP+K/kn/M46+9mlAn\nAzh031Umnr6Jv83gq09+FnnegPkeEgfD6yQKSxFc2A2TGXhJJLd4M3kUuBDvNJkf2p4k/DoJbpqA\n8AAAIABJREFUFQFoDVZpZarJyH+OZExRJzmxfAnSJTk4Zze/uyR/uQZLJVgqkpzAcvPPdbjVC3kB\ntkhyflOCF5CAC6Z59yD2ftpB8P+jtUnp2IpJx4X5CGfW4tboNs6PHGTvXRc5mq69c5M/a+zni+oz\n3AonaHs5unMZ3Bs23IrA7xKlXTaupnEqBd46fDetO9P0HVmkz19ixhrhXOYgvb1LPDzwQyphjUlr\nJytqH1oQIsKYlpajpWWZ3tjO9MZ2/MgAAf6SQfe8jXcewisOdFswkcM6GrLvwAU+uP1H7Dl7nT3n\nrqP0SeJRhR8VHqZ5f5q2doDoYoHolgBvEcI2bKwhOwpuq4R3ssKV3hy3enchW4JwVUUtxOg7ApRS\nlLC/2irdmyn8acGb3QOc72boRNvwIwjMFK6VRsYKkaeC14buGvg1CJuJ0MdUGRbLcCoPRi453+Mo\nMapSTNqpAlO5DEKRRB2VqB0iO+vQrUG4SBKPHd71r/iHwuA/uaanb9Pct4sFNSAyBKrQid2QoOOh\ndtv0maCldWJH0ggDQsfF7bapr6t023VKuRQ5O83ifJs4CtCEiWLqIGOiyMc2MhiqShR6yAgymSyK\nouB5Pr7vUywWkMQgY3RFoAqJKiKESCSQNUVBA+IwwA8DZJzIHJuWianpeEFM7PsEroOQEhFv0sFk\nSChdgtjDkAa6rhDLCM9z0TSJqmpsXsJBKKiqhqJoRGGEiEEVSRdBqhD5PoHjYhsWhp1GWhm0KCSO\nIqLATxzxABFGWKqKpiZ4ijjwCKMAoaoIw0DJ6URBnAgwxT6GYaJEAs93E+lnRUMqGgl/TBBJSUii\n9KirOoqU6AI0TaApCmEQsFGrgYgwdR3LSDoyMhZUe3qZn5un3qiTsbOJBsLO8Z9prP10VkjyH3wJ\n2oPwepngKwZf+PX/gsXBfu469jblY2us0MPr3MvzM48TLxlEZzT4kYAXgOYySYZsAUV4aTu4CrXr\nI3zj+GdQBhO6YDynggIvHnuUYl+NwNfZuNFP+IbO5fwRlEqMdATytgJvieQlUyS5cIEkPzpryQ/a\nIRgBcdThA8pL3Hv5JPwBXP8BuBIOvgwH89d4+OEXeWn3YyxvH4KsBq0MSaZf5p2E3anC5SqIdPJI\n5Gar/koZVDXpbAdA7JC4/JnvsrLiFshloL5pLLP1PLfslLeEE9zNP8tuvv+WQFGOBF4ZJcPyFO92\n05c1kJXN19mSQt4q5n4elyRJMi7QhE4WbhfppmyuF3ejGDFzyji3Jg4SFSA24JWN+7myuo/l1TLh\nakx8yU9uxl03+WyUgOhWBUcpMdfpI2iqzFojFLU6K0EPk844q0YfZj4irzeZ9wZZ90socYSIY5w4\nRTdKsVzrZXm1hyjaTEuLAdz0E0vHtQhSClRBHwsYTs1xpHUG+9YirdeXKZZiqkMwcmCa8WO3qJUr\nhMUUXlYDqSSUl7ABoU+84sKGR7eu0l1WoCuhESfg3oYG2U0vEyeGhQ1Y9mh5bVqeJImvKaRqEKta\nMhsJJcgtZ8Q6SWwG4PkJxuGdmLSTLzsFaUGU04jy+rvSGZoCkQ1OmiRILZJ4VHkvGQnwPi0MFpcW\n0TQbTbfRTYkaQaQbScKMYwb7+hgaS1OubdA+d5XFVhtNEaytLqEqkmK+j4yl0qjppCwDU1eRgK4K\ndKEgRIyua9imhqYaBEFAEIRkMhmiKMZ1PdIpC01REYoGUYiqaRAn0sxRHBNuuhKquoqiGOiajirU\npBsQ1HG9NqoKkYQwDLANDc8P6XY6SBQUoSS3chlT/LV/QbRjG+7/8PubuAHQdY0wMFBVA9/1Cf0Y\n00pc0ExVA11HhiFup4up6Mh0HqnoqGqMoZsoMkqokPh0fQ8/DAl9nzj0E3xBlPg//F/svWmQZNd5\npvec5S65Vta+dHX13o0GGkADIBauAkmQ4qKFokRtthQcz4xGoRhH2J6ICf9xeAkvMT/GGocVtkNh\nx9gOT8imZkgtXMR9E0QAxL6jgW703lXVtWXldrdzjn+ce6sLEDUECbARjdCJuFFVWZk3b2aePN97\nvu/93jdLDHHkyyZKQJoOcaIgrgeIoMEwycmNwQgPYiwW5yRC+YYzKSRSSpSARqwJKNi6eoXOhBef\nasQx460OUkiUDJienicfDfCLuGJm4ka3X66CzBC/TX4VXqzDn9Youi2++HOf4ZtHP4lqFBT9gNHz\nddx3lSdanQVedTC6iC+wXsEvFKc8u/AHB+BUhPuGwoyXwXUNiCA5PMaV8TEfbFfwHQNSYltlZ8NV\n4LKFrOd3MLYAN6r+gWdJSmhDZ3aTPVym+UrC5jPwzcK/mpnHYe452Hv/BZrNTVbGF0v+SoCPvKPy\negfleetlAVmxUzO1bbA1yFV53x5gPXWbAI9YRvjgv41fsgz+hZVFbkrLP/Jd9w3wtYRF4ARMjcO7\nBNwGLOGTCevCK/c9OgGnmmCi8jOrzgfvPIBguZbB2oJBE05nDEcdXgxv5kK+jweXhtSXRpCCWxZs\nPj3O2mOT5OdT3OoGrPVhMy1B3AAyC2fBrUVsnm0xeGScC82coJ6T9SKG6zW22xNsHJwhaBYkmxF5\nL0DkQOEwmcKkimwL7Fbue2EB0gEMuz5Ap03PhJwS6IWCOXuV4xdP8cpzKU/8jeVQCM0OjA23OXj4\nDCvBHOvtWTbbY5DIkuHfBdYh74K5CkUIW4EX5Mgz6Afe2VCXghbWQDKCbOjLEXTxgT8EE4Atw6ez\n+Lk45Fo7T9W2u4kP8DHe2nMPNGPY4+AAcBQ/TQfAVQXPtSEPYZBD4VV7/Tmvb1nrhgQGy6vLOCGp\nN1rMzTRRhWVzY5NBbxzhMpoTY+hGC1lr8dLZS1ztrzMa9On1tlmYn0UJQRQGtBp1FBYlDE4IAinQ\nSvqds8nIC4FRDoGgXq8jpVfzM8YgnEQi0dJb0JosQ0hFGGiIauRBSKA1oQ5QQuIKg8kysiQlT0ZE\nWpNnBaNBAnmBkIpsMELkILWCwuFygwwcw3/5zykmxrB5n9x5vwSllWf5BzUSkVKkBgqL0A6kK/37\nBCYvSAdDQBHGEYESCONQQoJ1ZAgKpX1ro4NAhQRhzcsUG0uWpViTgbIIBFE9oigco9GIMAzRYcxg\nlNLdHmKtwzmLdQIpJQKJsLK0ww5p1mY4+8oZ+ptdookWjTAmlIpWs0mn3WE4HLG07yAbV5fZXlul\n057wpZgbflQL8SZwzu8ynjkCl1vYhzSDxbZfN4b4zPgpB90BmD4+ql/CB9Yu1/qZEzDrsDoHq2N+\nhw1gEy+C9FgTdKnel2aQbZWPDa89nnVgtdyFU17jsLzelk9NZYJhr852s00+qWjOGA6f8/eaXABm\noCdbZFnZ4mherwPQ55rXfCXrWgGDSq9/t9xrZV4UlLdV4gZZec3V2N2+VWnIVyCsVPVjGjgCC+Pw\niwJ+tWDfXWfYP3aaUGZcGS3w8oVjpH/Rhn8XwmOHy8V4tOua32nDS7L797MPxQb0VjCXJd1nQ7pZ\nBy5Pw7L2walfwAsFPDOA5U3YWoV0G/9ZlIcF+hoGgrTfIL3S9Lv7mvLn2ExJm5L+1dj35G476Fu/\n0y7wIDcDhkMYjMqUKPhZVoFBAURgHK7wyqt5qNFhTqMkM8oG2EiSy4DcaayVZasiXAvUQ1+GMj0f\n3BNdvh855BpGdfzcqx5TzYfqu1GpD1aiQ7tLMzvSX7tuq/gBAmoO6gHxkYzm7VeZONxlZvEqtdaI\nLAvobTW5NL7IytQUvDgOL+02Uap+vz5A9YYEBsYYeoMB/aRFZuqEJkdJRa1WJ603mOiMk0lFd+si\n2WiISUdsrK0yPt5hvN3EmhysxjnjtSNciC41/gWWIsvJXUEYepvgMIwBL7QThTFSKZLhkMIJsA4l\nFPVajNbl26k0OvKOgkprpCtIkyEmy8EaYh1ii4ximEBuiHRAPkpJByNsbgmlRKERBlxR4MbbKGEx\nNqcoCnA+dW+dACfQKkYIhy2MR7lOeNdF7WWflYBsuA02QkcRUgZI7Q2aNCF1k0FkscZQFAXGGEAg\nlCKKFdYqBI7CZOR5gdYRtZqg1x8gVEAURcSxIen2cdZzJYSUOCsojEVJWepD1Nkz0yHZ2mIs1kxP\ndGhGAe1ajTwvyLKCeqMF1nD10jkGwz7NWv0dIHJUqvYwxG/py1T4+jw8OA1h5NPpxkBWseWW8Yti\n1bJULUyC1yzsXAbqYGN2FiMXlOnIqsY+wu/EC/xXvnr8biDArtvr/nbTh0st0mc7PDr/Ll6+/avc\n8tnTPDAJIgE+CKsPdHiI+9i4NO3LEP0qzV8tkNVRuRSqXc9V5fMrG+rq9mpUYKFaZKs0eDWqRXn3\n37vkfpmDeAHuB/XZhAfu+QqfkX/K3cmjxFnO2fYiXzr2ST73H/0Wy2YfbMZwal/5/ledCdeXDf6z\nH7uBgcCDQ+FFBE534OoYPNmCRsPX5Yu+J/1tDTzDP9/Af75VtmbX3HEDSGpQ1KGv/JwuDGS5l/VN\n6/62PIei8ADA2jJ4WyiG4IZcmwNVYG0CEeQ12KxjVhVr0+O8urhE68gKd9ye0pqyhEvQu73F+fYS\nl64sMurX/bTPqoBaZZkqoF4F+eo9qYBqNR93B/zKxKgC0WLX7+Xr35mPbtdt1l874zDWgYU2Y3dv\nsvejFzi59DTvDR5iTi+zpVq8WuzjK0c+zsptH4DPt+GlOtdMlKrMWHXOn+24IYEBwNZ2j2E6SRjX\nqVMQBjVMNqLIhmRZxmq3SzIakiYjkkGf1tgY9TjybohZRp4p3/KnJFKAkgKtwNqcUTKgHndQYYgO\nA8/qV4p6rY5zPjXemZhECUmapEgpsdaS57nfRWuFEg6LoUiGPptgrBfH1RpnLf2kT5HmKATCOtLR\nCIlACYkWIcoppBMIY3EmLwOuIQg1Ujis8ROkMBalNcKBMQ5rvYStcw6BA1sgnSREIHKLlT6rYACk\nREU1AiKsSSjyHK01QoiyfJJTVmfAOaQICLSgMBnWCOKoxijzLpdRFBLFEf1hipCe3OWEQOmQIAyJ\n8oBOu8HxIwe4dOYcxbCPy1qgPe8gS1LGxjo0mm3a7TbLF87QW98imJxkaXqCc6vrb+d0ewtGtRhX\nO+d1/IIRQjFeaj9IUBGYDn5BqIhHaXm8TsyAhB2r3J2Aa/ALW7TrtmpBrBa/KsBWi97ugFsp4/XB\nrsGLLfgufOPER1mcv8Bv/aPPceCBC8jCsLZ/nM/Vf42/HHyKwbfHfOdEMeBa4KiyG7vPv/s6K2LB\nGxlvJJW62wegBczCIeCD8K47H+b35f/GJx75BuEXLHThyD1nOfqZM2STAf/Xx36P0RMtr71QdPDd\nCRVoeqdZL1eBMGeHA1IE0K3BwEHDlTwMB8J6QomxO+Ro/1mkXGujq845giLyx86cLEFhrkuwWpWM\ndutE2GuPZ8S1wLp7N96CpAkXW2Qvhrw6s58fHHw3B/acZ/9951mfBrNH88zYCc6sHebquWmSNekz\nEMXuklN1/KhRyUVXAb96/p+mvl8RZAQ7rqrjDTgUMX3TFidveop76w9y8vzfMN+/QlJrMdc4zLn5\nJU5PH6T3xDi91jhkTchqJYfh7yWRf+xY727RGwx9a14YIp1llKRsbm0hNTgpaTWbbG/3EAJmp6eR\nSpOmOS4Q9JMEpwOcUuTWIq3XKiiKEUGz49PuYUiSJtTrTZRSjEb+90ajAT5OE0URUnqwIEqrYWet\n1x8ohYYknrynkdjCs+3zLMdaiwDyvMBah9aaMBQoAhQaLRSB1jhnKQpvsBQENWz5tzEGh8UKi9QS\nIwNyq7x4UF4gld6RfLZInIXMOVRgkdoiVIDSIU4CzqGUwjkPKqrfjfG20OBwGIwBKQOEKMCB1gF5\nYen1+tTiGkEwwhpfUgDQQYhWmr2b2+i985y45SZefOYZ8iwvDZ8U1nqC5czcPEqD0gFjUwv0rm6R\n9ra59/C+dwAwqHYjbWAWOAjqCCwEcBgvWyzxyYFX63B6BpIpPLdA4vkJ1SJVLarVAr17F+P427tw\n+Ns7X/EjbjOUtH/8jvmy76L4Wsj6+B7+j1//Jzy9cDvHjr6EpuCs289D3few/IX9vlPh5RyfNtjk\ntUGD1z3Hj/r9rRhVmSIAYlBNTzE4abk3/AHvP/MQ4b+ynPs8rKZw8tuwv3aZD//6t/jq4Y/x6pFb\noBPA2hgeWL1+V/hOG9WcbIDqQDwJrSnYH/hDtUDHcKUDF3JY78LWOmRX8cCpAn7Vzr6aj1VpaIc9\nWv7dL2+rwC28dof9emvh6v0v1TSHDTg1QZKO8VTrTq6Oz7KnfYE9H7pAWovp1xpcuLiP008cofto\nk+xiAummLxvsCG//uN32j/r/6zNTb3RU8zECmjARwzHJ4uwlPmi/x6EXHmP0xXUuny6YavZZ3LvM\nbQ88y9qJKV6YvpXn947Dmob1CEzI9ZyLNywwWF1bpTvYy1ZvQFjzqXelA6IoRmvL5FiH5e5FVgYp\ncXOMyfFpUJokGyGUIjcCJwMMAuschTFY64iikEarSRAGjEYJrVaTer3OcDAkjmtEUcRoNEIpRRTE\nZeB2O1mDoiiwzmGxCClQSqO1LJUHIE0GDAcJRZGDEFjrsMaAEDghEFIihdqZA9ZaLA4hNYEOkE55\n9G7AOYsKFbbwgVxKicNRFAXOpUjpULrmz+E8ERCb4wpBbgw6sEhnSYuCKNLoMMRZiyn8gq6UoigK\nQh1S5B6YFIXBFDlKhlgJJk3RSqG1IkkSGvUaSXeAlJKiMFgEB89e5IF/+1W+cPI44+Nt7n733Tz8\n8KMYDHGzRlSPcMIQ1wKcNQgRUG80UErR6w24eWH27Ztob8modk8NfL/eIQiOw73AR0C9J0cfSn0m\n52pI/mgIXxfw7T2wXtXjU66R4ipg8Hctcoq/vYi80drk7sU8BwZwNYSzsP3MFI807uPixCLGKc6v\n7CP5mzGvGvgUvlWLdTyo2L3wX89RBaTQ8y5aIGYSFrhM80qf0ePwrdTTOFun4KbnYDG9zGRznVc7\nQFiVN97po1I/jEGMQTyB2NNG7Y1pHd+mdayHDBxCW4bnG/Qmm2RnAsyZELcpwCQlWXV35qnKrrwe\nlMJrQdbfFWhfP6d3uwlmUGTQtRSrirX1GYa9Bsm+kGxJ7QgcrV2eZW15muSSgO0U8t3fmzfS8vdW\nztfqNQdABA0Ns4LxsU2OiZdZWDnL+Ucs6eOOcDylfnOXPXdc4mDtDMutRd/1O5B4V6kf9Z3+2Y0b\nFhhcvHSR7tGjrG1sMrNnGps7nAXjLJ1Wk1qtwfLyKklWcPDIAkuLi6xvbdAbbOGcpBZ6wSBrLM6B\nFIIoCqnV6tRrNYaDIbVagziO6Ha7xHENYwyj0RCtPTnFWouQlMJDDmu90p+SEqUDHJ6EJ4WkKEmA\no+EIoTTSKRSGwjqcBKcVmSkwAsKgwJCSFJI6dXz7lhc3yvIMZ649lxTSCxWVGQupQAtfrjY2J8v8\n/5UKkFhMnuGsRerQ8xiQSAxFgc96KIVSyoMEQBc5WEkuFWk6IgwiEms9AVMItNIM0yGBDsjyFJzA\nGofUodc3KFJOLS3w/B/8FnMmJ4giTt5xBxcuXGJra9uTFU2OFCFxFDIc9KjhaDRqgAMh2D8zeR2S\nZz/rEbFT99ZHvL3wZ2H+t1/lgehr3CqeISLh7N4DfOfk/Txx5D2+3/4Ls9DfxhdLS22BHxvk38xO\nXOLbqtrAIoyPe3vof5LxsVv+nI+Lr3CcFzFC8fTcbfzlr/wifz37YWwRwJ/NQW+THZEC4HqkPV87\n7LWfroBE47o1erTI2iHNvQlHX/JE8EMdYAG2gyb9tOkrBxbeucJG8NpgFYMcAz2LmJlBfSig9f5N\n7pl+mHumHiFUOYHMeO74LTx+750sPzJF7+sNslNT0OuVrXhVWWt32v1Hfd5vBBj8qMdo/HenBbU2\n7A8Jj2ccvPVljt70ArfyHCeuPst2q8laa4LHZu7meyc/xJXeLLw6BpdSfF2kymK8HaN8XwoHiSOz\nAdu1BvPNGvONhGCsoDkLw3nJqFlj27VJTeS/6mZ3KeP6jRsWGFxevkyWG1avbnB8YZo86WNtzszS\nEu2xMXr9EcvLV6kJ2Ds7xsLcBNv9TUIpMEWOyXMU0ksKG4uIQmr1Os1Wi+FohEISx3FZivAkPs+6\n97vzKIrAelAgpSTPc4wxPqhqjZOS3LqSX2PIE6+lgCnQypCaHsZmOOlQkSYfGd+66CA3OYHTWGso\njEFKgZIK65xXHDTeUyFLM4yzyEBjrUVKgXOWMAzKLIZAVHVCCmzukCpEWIMrMpxWICVBWU7J8xzt\nXEkc9ARCIRV5XrC+vkmaJtQaIUpr8iLFOodDolVMmiQoGZIUCVppssKLhBR5gckLEBJjLNZYZmdm\n2bd3iSsXf0Cvu8VGHLIwOwsmJx0an0ExOXEtJFAhzXqTQCuy4kZdsEtdesaABZjX8BGY/60z/EH8\nR/yDwb9h5tF1xMgxvCXmK3sf5n++/z/mwfUPwVkF35/Ddyas4wNu1Z//Vg9VnjvEtysueIGjj8PH\nbv4i/6n4Q37uB48Q/LXBabj/Qw9x8PYzpPdFPHz6g/CcgMf34MsJ6z/D6/y7xu7U9hCKHlyO4UXB\nI7fczbM338S7/+GTvKdTGjndC4PfUHxfvZ/LZ/f5y+5WxLQqpX1jw9EfPaoSQs2XC2qTyNkOjfu2\nmPnly7wre5hPFZ8nciNCEiaX7mfQiLDRraRnDpCtjUO2AWmXa0z93YDgR71nP837WGVvSmAQl8Dg\nZMbBI6/w/rnvcvLCE9xx4QkGkw0258aRNcELx25lbWUa82ANK9vg4pKwfb2BQTV/Sp5FamAL+kmD\nS2qWmfYs07ObNJZG2CXJ9r42m7UJ1kdTDEd1GDnIS4D798qHb2xsbG0wTDNW1zfoDfoE+RBcSmd6\nD2Fnkq5ZozsYMjfRZP/CFJKMIusz6ndRgSbpQxRohHOYwpLnBXFUwxjPvp+ZnCbPM4wpqNUaGGsQ\nSIJAowONlGqHIC6UQlhLFEZIIXDW4YxDlazbZDTApCPiQICUZNmIKNTkxlDkZXreFBhrcNaSl3V+\nZ633L1CytKAVKK0xzuziMzjyPN/hORQm86qMQUAQeKVE3y9uPd9BapRUCCVw1mBNjgpDAlk6OzqL\nLAlqzhic8Pog9VYDKwxU+gpKeJ6Fc+W1eClnay1aKbKiwFqDxCGcINABoQ7RQhIqxdz0NJ1Wi2TQ\nJwrmMfmIPB2iwxgtLMYa4iigWWsyFTYJtL5BgUGVlg6BJog2HAT5noIPxd/ks4N/w54/XMX+W99e\n3f7AkF/+51/hwi2LPP2ek/S+MQ1PNqHX5vrUvWV5rW0I6nAUWu9d5QH5dd73wx8S/LeGc9/zRjh7\nHir4xL/4Bo/uv4tn77qDwaEOPBmDbe661us9HGXvG7DmVSK/B9+/40P874cvMvzVP+G2Dz9DnCVc\nHFvkS82P86fFZ9j+1gQ8jZeB3gFgOe+87EFFsCtNvaIYZhWNpQEnOs9ye/44t/z1s0w9eJXMFKSm\nYM+7X+LDHwppthL6B8bpX2lDrwbbVedLRWj9WVxrld0ogcHekPBowgHOc++pR3EPLfPMQ5ax8YTx\nhS2Wjlzg2PHnGU3HLE8s0GsJGAWQVSTd6lqvR5CtQGopxrXchCcsr0wc4vOHP82puaPc/KkXmdjc\nZDRWY7k5xw/Eu3n26dtYOzMJqxkMEt+CvMPh+Hvb5X/vcM6R5Dm94Yi1jS3GtSEZ9RiPAuJmi9xt\nUBSOsXqdVhyxuX6FfneNKIBRMqSXpNy92eXZg0tgfddBGEX0B31mpydwwpGOEuK4rNFbR60WoaIY\ndEguFE54oSErpWeVIxCiRM/OqxGm6Ygiz7wEsbNI6YjjkJwCkxQ4ZygK34ZorcVYiykJjFJ6n4Kx\n/+p/wdx0gOHv/BIOH4il9JkKDDhrccJLGRe5Z4NLWSOKNGGorrUFCwlOIKRCKE3hHIXN0Q6UjhEi\nQCpfkth5n63nSoRhSKvVJs8TrHUIce1+FcfCGP8TUfhMhSsBkii7LZBEOgDjsHlBox4jXEGoJc04\nRmGRzlCPI65srGEK3+0wVa9RCyMGyY0oVVulQ8uAq2swA3pfzgnxLNNPb2C+AF96yifgP7YFs3cW\n3Hb8GRYXzvPCwjTE0i/Evq/lOlxvuRhrYAKm6msc5jTxEwXLP4Qv9v2/fu97ED9ZcHD/GZqdPoPx\nDoQSkipYUF7v9WT1V3yMHrAMvT3wrTbJRJv/9zO/ywvHj3N8+gVqjLjAIo+svZeVry3Cnwt4tsAL\nSVTkyXeiu2L1+Zb8giiGGUVjz5DjYy/wc8V3OfrQS0z+0TobOfRzWBi8wr67rpK3Gjy+7x4uXBiH\nszV8ir4Ss/pZjQqoNj0wWAwJjvTYt3WBu888zpPfh6c+D0c7KfsWUxY/cYkjx19ifXKc3nibXqsG\nhX4dMLgen+uuTAFDYBNWJyAxnFk8yLm7F3nx5mO87+e/z3ywzBYdrnQXePqpu3jpqeNwOoXVXVoR\nO50c12c+3rDAAGCUZYxSwfZgSGc8Jjc5WitqcYjCUpMSUwiyYc6F1fO0GiG1WszVtS4n1ro8cO4S\nzx7cT1FYgiBke7vPzHSHKIwZDUcoITGmQAiJ0horJMZJhJMEQYhQEikF6WiEyQviMPLLYRUwsUgJ\nQahK8qHxqpe5I8u8EVGWZSRJSp6bkjcASIlzkOc5tXqd/Pd/k2zvrD+js7iSFwG+o8haS2EMeebQ\nGgqTUUhFoUK0Cgmi2J9TKjDKvw5jQVUZB4OlQGmJK4O7lHKnQ6HiT8gS/EilS1AgUFJijPH3L3K0\nUgQahkmBdRasRVhRXqsgVJqtzU36vR4YR3usRRQE1GoRY60mTmiUBKxBSkfhHImV7J2dY217+7rP\nsbdulKQ475IFAhQGkThc4vcUPbx0v0ghIEdT7OIc7W6juh7D7XSK5U6TEEMTajWYxDe2n63MAAAg\nAElEQVRgiQ7QhIQaplC7COW766HX26Gw2qVV4lAvwfM3w+caDC+3+cFdH+YHh+6H0HhS5RPAg8Cj\nBpLzlPUE3rnAYDcPwHotgQJsIchsyEjUsfWAYBJaI9Aj6EeagaiR2Biby5L7er3q3rs6cUwGQw19\nME1BMQYzc3BbG6bmIDwE2XzIdtymZ1vkWVB2zb6+3bDKmvysMwcVOCjVOLM16NVwT41hVZ21pTme\nnLib07UeSVFje7vF+ivj8EoKr67h9TRW2ZFY/vtSwhsbwzRlGAj6wxFyZgwZNQiCgFqoaWnHnok2\np15Z5/nnXmZ8tsHSvkU2t4ZYA2dqdf6HPfNoC5HUSCXJspwwitneHuBsQT2KsNagtdpJ21tr/KKu\nNTLQmDwljCIIwp0gXcZMnDNoLRE6QAqHsAKBIU1yer0eufWlijzPsdYLN+F89sE6C66UV16cRSvl\nCYg2I7MGSp0CpQTawWAwwOQFjVqNQIc4AYnNsEbSkAFhpFFRjLAB1jmkNSS5F2CKdIzUIYV1PnDh\nr6UCBDjnORaCMjOQQ6luqLXGWIsQRZnl8N0PWkuGI4soswVKOBq1OkEQcOHcOfrbPZq1Ou1GnXoU\nkScpg/6AqalZsjRh2OuipSCXim0bcOzITTzx8qm3d8L9VGO3SErmpVc3Y8wVzemDh+ieaDH9wBYf\n70J/AIv3gHm35JQ8ypXNPT62pY5r7X8/i5r97nbHXZK5uYVLkuVLe3j88J188APfY+YzXX796yAD\n4JNw6T0TPMXtdK90vCZTWnkWVFmCilm++7p/1otxJUG9ideVtvDiUbjUhu8rmFReFbJHKSqZgDuP\nt2xc4ZpA0ztNvwD+Vm++s6XKqiSzESNZwzY8MGj3oCXAhgEbokZqIw8AC58NvH4peQeUUskDg+uD\nmYRiTjA965hrg5wDWQKDbtSmZ1rkqS41GHaDodfP9esFDIA0hkzBkw77QoO1qTk298wgGg6XguuD\nvWzhauolmzmD91kYco3geX3GDQ0MVtdWmY8XuLJylbZ2RFGAMw6Xp8TasbRnhpXlSwy21zlx8hgH\n9x/j3PkLRHHMq+cuImTAKDFEOkSWhMI4iimy1LcWZilh4HWzfRD2qX2lvMyvAKRSSCEwRYEtSgRe\naQEEytsd2xxX5DhXkKcjNjbW2OpuoiNPKBQCtFZeJCktyIXAWuOFgpxF4dBS4ASkziCwCGcR1rsq\nOko9O2cxWU5uHEWRE+RhaRLlkM0GQjucjVBaE2qFKRRah2gZ4kyplliWRaQQJQgwOGP9ua1BSoUx\nBToIoLA4Z0tlQv9/hPKSzZUmAp7MKBWEUUieWXpbQyZaE7hhQkvXkJlDWoXJDGmS0N/u4XLDWHsc\nXatDEXHi9tvhy3/xNs62n3YYfLq1DFa2D6+2MY8FfOueD3Pn9ON85p/9GZ27+nT6kN6peei+k3yZ\nj7P56Kx3Au5X+v+VdvpbNYLX/QS/YOb++fJNeG6S4psNvrT4SfYuXuDT/8WfM/kr2zgF63c2+T/D\n3+Wrw4+Rf7fmDRXZxEfcSiXu9c9RBdufZVrUcS1lXNV4r8IggFcbcL4MDoWFfA3fvHgJr0rZ45o4\n0zt5lHK/SQqrhuHZJqcu3IQ6YDCHIsRvgkoKVGJ48Y4jPB2c4Im1d7H1SsfbLfeHXDOderOfY1Xe\nqPr+q58Vadf55xpuwSsBo0drPBzdS33xHzB3cpX531klmY4Z7q3zw/q7OP3SUTaeHidbtZANSk+H\nSiq7WT7nbsBe1e7faqBQvS7FDonSNX05saFwY4qio3xFpo8HMc5AVimlXj9OwevHDQ0MLi1f4pa9\ne9hOM9ARwllslkKREDcilvbtYWt7nULC9MQ4zXqT6elJJty4BwhRSJaNvOeB1kRxVPohVDXzAhWr\nUiKYnRS7kr6EgPBpdWMKkBIdaUThdQCM89oDQhSQWgqTY7KEXneTjY01jCuQQbQjbCTRXj5U5ihX\nUGAQyqEVKGFxRe5FZI3FWoMtawm59cqH9WaLoCiQxmLytFyXLdZk2DwhT4bU622iuEVhNdIoAql9\n6cOWwEfLndcI7MgQO+HljXDXygzSes0En1kAIWTZLupAaiwFRggyPEgoRIrVjlGaMjU5i2t2CJVD\naUvQbDA2NUWr2aS/PWDQGxLrmHrcZGgUUafDvqMttNZeEvqGG1Xdexu4Aufm4OuSlw/cxh99/J9y\nbmmJ23/3aeoMeYXDfM19lL964VO4Lyp4woFZ5bWiQW92J1stutVRORFWuymL36lchOcm4CuC56bu\n5g8/Ueex9l0cee/L5Ghecsf4dv5hlv+/A/BV4FzqH7MjZDPONUBQGc1UtdJqsX6rF73qtdWACbyr\n4i0wNgYngCPlzQWwIuGFGXhxBrIxPLKpwMQ7HRiUmZ1kBFcMw7jBC2dvYfmWBYpjGnePIXQpkU15\nWN7Ld+T9XF7Zy+ClMTjdhd6Aa8DgzQavChQE+OBd/dzdu9+DYQQvthkwxff3vZ/n7j7GbXc9w20n\nnmYr6LASzHDm1GFe/uFNbD7WwKwMINvepbcQ4udFdb3ZrqP6Tr2VgXg3KNB4BNCBWgNmFOzBC3BV\nluMGiKr7vl2tlX7c0MDgysoVclFwtZ+gojo1ZUiHfYyZRAcBR286SqNRZ6PfY2Z2hkYcEQhJoBVj\nzQaDUUJU2QEXhlq9QZZ5KWCUBFt4EaFKPMj5UkJVd/cd2g6kQDjfJSC0ujadXU6RJRR5gikysiyh\nP+iTmgIdBTh8cJUCsAZnzQ5elsK3CjoUlsALJUlFUAhSaUnThCz3/AeHRGnlA3KeIZ3nWmitSdOM\n0WCIzQ0aibMGqTQqiJDK+54LBDIIy1KJF1liF7fAGs9/QPisBNIDkiyzOLzNbxDW0KFl2B+B1hgn\nQCqQDmGhUW9Qq8Uk/SFSS/r9FB2HtMdbTM5MMzEzi8kLBoN1hFCMtZs4AvqpI2i0GatravUGve3u\n2zjj3swo2CHEZefg2wcghGeW7+H5+29n9uBFlDasXZ1m9EgHviR9sL26DZzHUxMrnfc3M6qFJ8bL\nBjfxmgUVOIBrxjGJXyM3gEuwMljg1fgA0ktucZYDXL1Ylju28Pr3O+JLS+W5Sz0KCjww6pV31ryW\nVPVWjVLcqNKM4BbY1/ZaDB+F+H2bzHRWKZzm8tkl+HYAXwa+uQ8GlWx1JYpTXfc7bewqF7ltyFew\n6wGjx1tYNcWLSzfjliCQOYHIObV1lIvr++g9FsHZHvTWIN/immT3TxtMq8BZgYG2P0TdHzsdPa60\n1tAQC2TDUg+HTKoN5vUV9pvzbEVdavUh3c4Er0w6inYE2oBrAXMgaqADUJ78jHHghnip4T5+blZu\noG9ECOmNjKr7owGMQ7sDnSaNYzljt15kcu8W05NXCYKcXr/F5tVxVifnWJ/owOUWXJkrz1MBm7fq\nun78uKGBwWA0pD/sI4Vhezhgemac5SvLdGaniWsxM7NzdNpjrHe3sGFIs9XkCoZud5uxZo2NjQ3P\nxHeOOK5Rr9UZJQkmz3FGEkcapfQOMBCilGupUuRlF4KSElsU2MKUO3CDcAXOpJh8gM0SKAxFmpIm\nKUppgijGFmVNHl+3d4gyFa8JdEQYNNBxExE1sEKgpSKKA4xTJLnBZoVP7btSYTGQuDAgH3mwosKQ\nAEU6HLHd7eMs1JpD4lqMtjHICO0sqjBEgJW+hVHuZADsThnSOkPucowoMFjPd5A+SyAk4Axa+/dq\nlKZewRC8OZUpfDeCs4zSAYNt3645N7VAgSNzkDjHsD9ERhGNIEZLTS+zmDgmiltM1DvU6/UbFBhU\nqcHKfvhlGCr44l44KzDfibk8f9h/GzfwlstPAZtbwAt4o6Sq7v1mAlUlF1wuVEzityzzeJBQEbIK\nPGEghv0CPgYL/8FZfmfyX/NpPs+x5bM4BU9PH+NzB36D//s//Cy97jSs1OHygn8ci0AHAulPm1m/\nEO+k7Zfx2yR46wRcqt1ZXL62/TA5Br8A6vdHfPj4V3lAfZ0jvMKIGk8ePcmX932SZ2fvBKPg63t9\nf/6OadU71V2xrNkj8J/BRdg28NAS2csznD5whOX98wjlkMoxuFJneL4JKz1YW4H0iheCeA0w+ElH\nBQpKPYUdIDfrlRhVu1T8w5cCXBdCC9MBwVLO/omzvCt4iHs3H+Pe1UfpTdS5Go1jOwHPH72N1cuz\n8FDVTtkEkUEYQKyvJa5Mt7RTXuW1Es7/PqGmn+b1lTLoUxNwuEXnfSsc+uAr3LL3WU4GT9CUA84V\nS7y8dZQf7n8364sT8OA4XKlUT7v8+z0e3vpxQwMDgP5wQBQK1rrrHNs7i90ybG5sMD07iyw5Ac1G\nAxMoalHA3Mw0/f4WtVARKeH77Us2vZSegKikl0lWytfTnfM75kB6HQGFNzcSeD0BJ0EUFlvknnho\ncoo0wdkUkxeYwmByQ5pkjEYpSvvAn1N4S2ZrMQ6kCgBLEEY06m1arQlUs4mRASiNxYJNUNoQNywG\nibH+SymU9mZKUmCFQ2BBaRQKVViGwxRjSnOzYkhhCoLIIjKBkwaTJei4SRg3kEbihENYr6XgfK0A\nKQW2zIxUrZRJXho8AUpIQq3pjZLSb8WVZESQ1oHJaTRrtBstFub3oAPLytU1ssyRpAUFglqjTRRE\nFFnOyCQktYh6GDHenqTd7rCyfOXtmmpvclR68hWwyf2u64l5eH4cAl3aFzhIe2CrINrlGrCodiA/\nLTio0pnjwF7gKDRm4KDyGffx8hKXQzh9AK4YuA34qOGTk3/OP9781xz6fy7At/yp3v/xxxj/nS6r\ni9P8uw/9NvaR0AODYBEOaTjGNQ+IdeDVEF5qw/Y08Fx5Tbvbut4KcFDKzzIGah7uAH65FGiS/yPv\n+eFj1J7McXX4+fd9i/37zvKHH/vPePnV2+ClAF5ZwAOXLa7ZQ7/TOhPgmmLhENiAXMFaHbcV0x/W\n6G8s+IRPE0+9WAG6GtIIbGn+RcA1CeSflIhYlQ5ifG1nGsanYXwGPRUSTmlU6AO1GQZk6y2KUMBN\nEeGhjP3hee5d+SHzz71M/uwyjamI5p4tDo6fYal1lu7MGL1am7QRw1yAnMmpTyTEnZQi05hck11t\nkK2GuE0JXeGNnoC3rpxUvcYWMAUzLTgZMHtsjXdNP8at+aPsO/cCtXTARHuZTrjNxuI0l8IFkvOa\nUTgOpgUmKs9TGaH9vY7Bjx39fp9GK2Bta50kT5kcn6C3vU270yEQUBReIdCicbZgcrxDd2KCLEuZ\nnhxnfbNfSvIK+oM+WZYSBoIw8i6JCIexBcZZEL7soKVEVFahUuy0aEkcWIMtMvI8weTesdAVFldY\n8twDBKVDnAGtQ6SQ5FmOsWCdQKuARmuMZmuMsNZENsaQF64gb7sNmWVYtUUgJbESGAtJmgJeV8CW\nQkKBqHtSICBdgdQBSNCRAqlQgSbPDflgQBg4pMwARWQFSsdIZUB4AmPh7A7HwFiDeY01s+9eMMYg\nSsKvkJVMcuLpM8553CwESsD4eIdmc4x2e5zCjmhmLUZ9w6A/IgpDrBNk1vs39PKMfl0RGYilYM+e\nfbx86oW3aaa92VHt0qrfd7kOpoAah3HtaeCuDd02bExANo1n1lfkOLhGEPxJRrUIN/AZguOwMAMf\nBD7siO4a0BzrURjN9ukO7sEAvqlhCWaPX+A+fsD+v7nA8I/h4We97Pb7z8OtN7/Cvfc9zDcPfZyN\n/bNwZ+hP//MQ/lyfyel1pLBsb7fpPToJX5Pw1SlYPs41sFQJCb0VwKBylhyDMIbjMHnfRT4pv8T7\nHnyU8L8vuPyIb7uc+JUev/bffIEnx05y9p4j5F+pwStj+Gj4s+7Pf7tHBchSfCq9BI1WQXcabOxB\nXZ1rm3lVg2wWcsm12nwVRH8SAFWRC8PyCeaAA7CnCbc2iW8d0LltnXAsR+AYrURsPd+m6DXgpoBw\n/4B97jz3vPwYV77b4+mvWxY7KQcWDHvvvcRNH3qe3liDV6MjpBMx3KfQd+dM7V1jZn6FgasztHW6\nT7TJHx3DvaDgxbAEBrtf15sBBrt5Ew1gEuYbcJdkz/xlPrD5IPtPPUn/29u4jYJ9B/tMHE04d2If\nr96yxMpDc4zq85BEYEO8cmPlVvn3wODHjv5gwFSjxfZgm0E2YqLTYdjbotvtMjsxxVing9Caq9sb\nbFxdJYpDJic69Id9ZmctSQG9Ye7liIuUokgJgpAgUAgJeZFSmIgIL1BknS379gVSWF9OkCBxWFdg\nTe6PPCXPEkyRIyzeP0AocIIiN0jhRYakVOSFJTeWIjNEjRqNRou43kCEESKqE/5Pf4y7+12YP/hH\nmNHQt0aaDBkEmDTZUT7UgSaQIZGue3lkY0iKvk/9BwIVhTghy/sqkqJge9An0BH1erO8ft/iiBQY\nk2OcRSjPhbAlCNgNDpTy3RRFnu+QMkWp+OjdIxUf+Ktv0D9+iODAe2i169TqNWQgCWRMs92iHkuy\nUcpo0GeQZoS1Fn2nWDWaQa5phzVsoFg6cAC+/XbPuDczqi90ZQu8F+RROFKDu4Fb8EHV4nV2ngrh\n4UW43AYXcC3lXqWB3+gCUQnahHgTp30wNQM/D+ofZtzx3oe4n++wxHmG1Hn64G188+RHWJnbBwNo\nqAHTrKEuwNYVeBKIHLzvDIgLMHnfBmGcwS9a+AUQBRz+pWf4RPRlbuNpAjJOzx3imwcf4KHDH6CQ\nMXx+Brr7eG1t983W86tAHvqjAczAntolbuJFogcLLjwIf9n1/jS//Q2Y/rVtDr3/FRrTA7Ymaz6l\ntrNDe6cP99pDWYgdzBrknpyxhS5jC13fNl0ohssNemfbZFcmYH0IgwoMZOX53kiv/e7ugwhEE6IO\nRDM0Dqc079tk8ehFlvafoVEfIHBstcc5VzvARjKF2OOYnVxhsXeR+a0r9NYc7hSoKUPNGBrHhzTV\nNtOzK4hbBTPTq/A+iE+OOBS/zN7aeQZRnWFY50xxmNPhUXouJFkZxyYpFOu+b/AtSd3vVm6sQTOA\nBUG7uc2B7XMsXLrI2cfBLMPEaEi7ETJ1Yo327BZbrUkvLyorQLDbcvkn+e7/dOOGBwab29ssTtbZ\n2O6y0d1iaXKS8U6HwWDAltR0xiZodjr0B5tsbawwUpK42aDZiMhsm8QKtk5fIMsLer1tBJY4DnbY\n98NhSqNuS+VCVwY7ixAWhwUrcXmGtRkmSzF5ii1S8myILTIUGisEDosQ2psVYbEGgijA4EAojBWM\nkhStApI0p43AOEeajOB//ZeoUJNurWKH20iTk+YJw3TIcDTAOkctiku+AqVdMpjckOWG/ighrDXQ\nYYhxllFmUTIgjCOQOaNRQmEdTSFReR0nQYeBN4hyzrdZmmLHK2I3OHDOSzKbwts8U7Zf2lLeGSE4\nddtx9Ikj3DI+Qa3RJAhriCDEOIcMHWEo0ApwCaN0xOYoYStVLG8OCWsG68A6x96lfW/3dHuTo6p/\nt/GU5GNwRwyfhtov9Dl08/Ps1ecxKM7khzj7w6MUX4jhz9rwyhF82nc3Me6NLlxVx0EN6IBYgNtB\nfqrgA+/9Ov/U/REfufItWk9n0IGXTixxaPo0f/y7v0cn2qKuhiwzR3FYMrnf8v4tz80Vt4A5AleY\n48jC83zwU18DHMvM8yt8gd9c/xzT3+tBAsO7Qu48+gT/6q6cb//SJ+C0gO/PgBvDZ0I015z63uwo\n01cljiqcxCK9mKP2+YS4+jgCsCicKzN/9q2oL98IY7cCYg3UGNRmYHIOdb9CfWTE4faL3D72FA7B\nyMacWz7IC2dOsPFUC/5mAc5UpYSKi/FG2+t2Pa9sQqcOMxFzJy5w+N0vc0f2JHc//xjjoy1wjsut\neZ5YOMn5qb0EjYzJaJ3ZzkXSKc30gqHRsbT2QHgTpIsRm7Vx4v0j3vPr36cz7GLnBXGYcuiZV1l6\n+QLFVEAxpfnu2PsI7s05O1hi5dQMSa8J/TrkEZ4Y+2ZFkHbpRewSk8IJ8MlbQglWlCXeAJyUGBTW\nlfPXvT3z8YYHBtvdHnm3ybYpuLrZI3GO8WadQEKaZaz3BoShZtDrEWmFqkX0Bn3SNKXRrLG33ual\n02cpioLtfp9m3ff5+1ZEVYr4qJ0AqFSAEAaM8GqCWKxNwaYUWUqeDhkNtrFFRi2KCAJNYSSuACkK\nanGdqxvrCBXQQPoShbUooTB5wXZ3i1ApavUaoRYokSHyLlYIitEQZyxJntHd7DLo9UiThOFwyJYQ\ntFtt+kGARSC0tzAe9HukwwEL83NeVVAJSgUGdBSggojcQq/ve9NRATWaWBdQYH2mQPpAb63DlM6O\nXsjJ6xcUhQcGkRIEWqK8JALCGrRyrO+fYV9Lo6IIp2JQ3nmSktxoXeGlmIMQKzX9Uc7l9W1WNvrM\nz5gdsaU9i/sIo4gsvRGlkSvUXxoUsQRLMXwCxv/xFX5j+k/4RfOXHB2+jEHxVO02Pv+eT/MX47/K\nqN+GrQlY24Mv1lf+8j/JzmGXkdNYDCdg8p5VfoUv8Omn/gr+BSSPgO7Asd88z2//J39CVE+52zxK\nLUs4Gyxx5n2LHP5n53nXt/xLcR+HR06cZECT/7L4r7l59DwKx6naUY6b55n874Ykf+Y5h7UPZHz0\nP/8up+88xEP338foy5PwaBuGY/gw/Va0Z1XvRQ6MYOhgWXBxtI8ng5O8+yOPMv94zme/C6oB7lfh\n4p2TvMhN9C83PS/UVen1d2I3wutHNR/rnuw3No7a22birhWmPrbC7f3HeH//QZwQjHSdTmeb3nwb\nEx5geK5BfhnIV8HU8O/5G52TVdYgAtmAsQgWNbMHV7n16FPc9dxD3PP0Q4yvbOIcXD68gDqYMLtw\nidrGkM7VLvPNS5imRC/G1E9EmP2weSsk8xGNbEhD9rhj5ofsFRcQHUk0zJk+e5npb60SzUM0D/33\n1bh41zzDs3U2pmdJLsU+dZ9XNseSn76cUAX0ij+TeNXGtYBhUGc5nKU2vUJxYIRoWrb3BWxPTbFF\nh8FGk3yofZePrbgOVQnh+ohK3fDAoNsbsPbyOQbNmDOLB7j12E10mjXiMEIh2BoN6Q0MMooIZcDM\n3kWmrOXSyjKDNEdkFiUteTbChN74pepCSNOUuFbzpDtrMSYjCCLwyXlM+R1wNsPZhCwdkgz79Le7\nNGsRWpb6ADLAKIdQmnp7jO1Ll1npnucX/vw7fOfTH+Ls2TOko4QojpmamibPCgoLe6SgoydASNI0\nI09T/n/23jNI7vO+8/w8zz92nJ6cMYMwyCBAkASzKDFYkklTlGxZsi37bOvsvb1a37pqy7Vbrrqq\n84s7u3znkveudn27e+sgR0nWWqJIWokSRQliAolEBCLPYGYweaZz/8PzPPfi6QZA2esVJa1k0fpV\ndQ0IcHq6n3n6eX7hG4wx1Gt1autlFpcWWVtdpdlsXhcUchHsPnWFk7fvwQ8CSsU8g/19uEFIlGoy\nboh0vDabwSCkIVcoYKShUikTx5puowlMiHAcpOtYVoJWaGXaBlEpUhgSFaNMCo4mjhpkMIRBiCMl\nruPgOy6GFMeRlHp60Uia9RaucJFCoZMYN02IlQU4KlyaSrC4XuH4mUs0CejdEl+3mB4aGSWbzf2Q\nJgZwgyZYBDlqefWPGh7rf5JfT/4tOz45g/mqZVbteO8Mg+9ZYH1XN1986H1wTMDKEHCZGxX2W2l1\ndjQL8pCTMApjQ5c4GB+DZ2Dm0/BMYvsYj3kw/uACvznwMcTfAGtw/+2vcPI9W/nSz9zPnp85hUZy\nlAM8zaP8S/N/s+fPL2M+DygYeOQIbAHzFHzqsp1gP/4lGL07Yc/B1xkvzXBupNcuRSPghjri9yI6\nlMOKFbc5nafy7ABPPvE4m/bO8Njvfp7wNYUJYemhPH/GR/hi492ow4Flg7CGfcVv98SgA2QNsD4E\neZjwCW6JuG3kNe7zvsr21y6w49nzSMegii5dW2qwx1DYUuH85E6W5kJY9aEc8NavkjZqX3iQc6Af\nenJrTMnzFBevsfJaTHnaNnCaUYO+Q9OUVssUv1ileLJC7/51gr2Kc5NjnPvlKVTJQfQZ3ETx4PTX\n8GfKZE4tknOqFN4l8Ps1a1frzJ+FsXkYLUJ+pMKmu6aZ98fw8wnkBJQ7dN7vBb6kkxw0gFWYF/By\nwPRt43zxlofYdaiX4b6LhM0mV3sHuJrdxunWHuZfG6cx40KrCsqaA97A4fyIrvhtRWoM9ShGJSlX\n3rjI4oEDFDMBGU9gAEcIvGyWbFcWHdcJiiWyvodXKDC3sEBzcZlsxiWJmiSBNQZyXWtbnKYprvRI\nkhTpKjw3tIqEKBxHWgOkRGNUgk4b1GoVqhvreI5ESEmcWOlhx0mJkiYidPFElqk9u5mdX0Aa6CmW\n6L7tELVanUtXrvD6hYuEs/Ns295CuR6tZkI2kwUgjmKiKKZSqTA9M83K6jKjo2Ps2TtOJptDG026\nsk73XIV03wGkgEzo4zuSNE3AaGSqCdqjC2Ns6y/IeOSLBVpJi/W1dSq1On19feQLBTzPQ7oeJtEg\nrKqkRJFqK7TTbNZpxi3iJMLJZ6ymg+OQKmOpwgZcP0Oh2IPjBBitiJuRrcxUarsXRlCPNRvVFgsb\ndV45cYbTl2bpHZ0EuN6dGBkZI5vNsbG+9oPabt9ldA7jIvgCtsDIrsu8k+eY+tIMye/BseMQSNj3\nBtw3+Sr37j7MC/vupzrRCy+GvFlv4K2G+6Y/uiikUdCyDq917BGmIsguRIg/hLU/gpUUtu6Hvfoi\npx/fzaf5ABNM0yDHbbzG1Ndn4N/DN47Yg/yBM8Dv0PaDaNeQHfbWzaHhewvwu6k6YwP0PLy2HZ6E\nb/Q+TP3+HC8PH2LLoxdpEfI6+/jb+L1c+8RmeBaYa2JBnp2OzNuVkQBvBsdlwM/BkEswFbOr/wyP\nes/Qc3aN7k+t4TsabwC8H0upHwxpjGZYGB1maSBjq+BywN/95f5D0VlTCaLdT9v/e7gAACAASURB\nVM9B1q/TJ5bxa1Vq8wozbX8D3nCT/vV58vNL5J6vkP1SnaAGbk5SnihxYd9WEsdFaMOe6bMcuvoq\nmReXuPZl65/U1wfBfljYgNky5FswVAZ/vUWXKpOTDaSvwBNt7nVnzPLdRgfg2XbsXAjgaIG50hBf\n334PqxNFbhvNkxc1pvUE59enOPfqDlZeGYCrZYg3aEsicoMl8aPE4NsKDVQVeI5kfn6BkyfOUCp1\n0V8MSdOIoKtEodSNNDHKBeGFCM/DxVAsdTHxa/87Qzrmb37sEHES4zgO2UyGqNVEJRGB75GmCW6a\nEvqO9UNQKShlHQTTCJXUqFZWqFWrBH5IPldECodES3SS4vsS6bikGpCSIMywaWKCC7/1r+gyhiSK\ncPJFdvX08OGP/WeSRouPaVheq3DLrl309PTiui5xkpAkKWsb68Ra8POffo7kgbvZuO0ulDYkaYLq\n95n/qccRbaqgH2RwMMSpwvddmlEMxgcESidonRCnDplMSCYoUXZi1qtlGs0GQ70DdBW7EK6H43mk\nKkbp2AIT05QkTa0nhDaWfeD5KC2RrotFYkgc1yeTK5IrdhM6DiqO0TrFKIFKBEqntJSgHGuuLm7w\nzSMnOXX+Mo0UetBYL3IQQtDd00upp4f5uas/yC33XYYH7Xk3JSi6ZUaYR56DhUvwvIZQw+5T4J43\nDO++RjbTpJrHJhNxhyb2VqODHG9Z6dUFwVx5lPPFbdx9/zG2Pw+/cBSyBXAfsa8t+iY807QqCj95\nFLa+Ag88+hyloy3CEwkmD+V3FvBnFcvTcEzbo2vnJRicA/ET8MRnIW1A8T5ovsPnBPuZXpu0MgYx\n3DAr+lZGws0XzVtp53a06VeBWah2w9/2oSOXV8/fx6lbDxL0R2glac5kSA8H8EXgJQPqKm/2Sni7\ndw06Ie2F6AqEZwiciDw1YhWxGBuKyhJmnKoiSCN8EeM41oTNXqRvxeDrZnpqZC2FKynMw2J5iOP6\nAPsmYnY/vEp+TwttwBlI8VfrpIuShfmYRhPGl2H0imFyfgbnVWXNnSLo1yvkTY0otnpVSQTJAhSG\nYXwTFH4CervBK8HKoQFOZG7hSmuC1loIGw1IOqDDb92PHcBkZ97/7bT0O0DhKuDCegAXstQ8l9nq\nOK2xHPNdEwRuTLlRZG2lh6UzfXA2htl1LF35ZmGz71+S+kOfGBhslROkGrNe5dwbl5javQehFV15\nn0KuQBCGpKlAmgQlpGUDGA8/E7L6sX/DU1/8AiJW6DTFcRw836fZqBPHMYlS+MJDCosTMI5BmARt\nLNUqipqU11eoVstkMjnCMEcUKwQCz/PRGOJUI6Qk1QqNVQQUOOjUoDE0DWjPx3F9TvybXyMUkjvW\n17h0/jynzp1nZLROvlC0enNC0MKwedcuVn77f4VtW2k2W8Q6JlKGVDhIz8Wksf0IGmHBgghS7VgM\ncZK0P8YaYwRJrDEmZX29xsXLVxibHMMTDqvlDWqNBj2lHhzXwQhDIi0TAcBtKyRqrUjSFDfIQCoR\nMm6LNbmkWqMQxLHC81yUlqSpIIkNKhXU6jHL5RoXry1y7PWznJuepVxvIYLQlp9toSSwCo2jo5s4\nffL493+jfc+iPS9sY7bqOs8aPbAJuofhljKEApwJYBRW6SVKArvJk4740HdyYXVm5xXYiOFMwNKx\ncZ564DG2P3yeOzIn6D9uoAtW31UgX6vjljQD7e8uFIAu6D9cQ/6O4dorUPCh9PNVeCf0TME9S/Yo\n7N8FTMHSE0UGHqhAE+oHQr68/X6eVo8Sfa0Ep4FmFavTYCm39nIJ2j/xZsGZziH97XDLO5dODVv9\nS1jcBU/2w+uS1uYcrZ6c/V+WsCrIsxGoK1gTpWVusCTert2Cm6NdHYv2Q2ocofCJqKCoAKSQbwhE\ny+CoFBeFELr9rTcj5b/d6FAcO4lBAvOGhY1Bjsf7GRxd4Y53nmew2rBy7U2DXI9Yv2JYXtXMKshU\nBCNzgrGVecZX5iyRoIadhe20SUHDhSQWxGsCsSYY2CTp3ylgGMwQLHaNcMrZy0x9E63VEMo1SL61\nMu+8r84orpPE/reAlp0EiPYL01DOQbmLermX+qVR5oc3c2IUC/NYAxY1zMQw38QKT83xZin0HyUG\nbynqQGAMnhDMLS1z9vwVwp2b6enKIwUWNAc4rk+qFCa1xkCu9JB9vRTyRTY2KkhhOfie6+F5Hq0G\nxElMlsCaBKkbZhtGJSRJi42NDcobVbKZLJ6fRRkHgyRRtLUPJCqOMBhSbdUOFBYlbb0SFE4YtoF4\nVpjIzWTZ1F1kaHiIWrnCyuoq+z71OZrZkKtPvJet27bQ3d0Hjk+qNKl0UNIFaayLIwbXC3HRKK1R\nqbIYFm1wHY84jduytjbR0NoQpymO57Fj127CUh5POoSOy/rSEisbK/R1d5MJfVw/vL6G1lVRWvEn\nz8PPZFANhUFghAAp0BqW18qcPHWWkVK3BQ8mKVGcsrpe5ursHNPzC1yYnWNxeZ1EgxAOjpE40kNI\nH4HEaInWgpGRTT/QvfbdRYfa1YBEwbTD/KVxDt9yD3c/+BKbf+Uaj3wV2xB4HI7espOXOUT5XMla\nEJhOm/zbTQw6B3Zn37aAFevcdnSM9OmAp4beR7rD5cH7vsLm+y5TJ8sp9vJ460lu++kzPKIhWoXw\nHojfK/E/o7n6VfhMCwaAD3wR3A+C/F/gtu32R5mH4OwDm/hj+T+w7Scu4hNzgW08mz7Ei0fuh88J\nOAmYBbsW17neHWpXRyu+w9vusBVu1jz4hxKETgLV4rqUZL0JJwfhlA++sZ2oKMUevPPY6qxjotTp\nYrydo5NwJUADojpcS4jOZ3l9y14+I97PxN2nmPj1U+gUVvyAs9umOFy8l1dnDrI63wvzGmox/+09\neXNH4eavDdCrUOkDqqweL3JuYBem32O6NEmht4IAevQqW+JL9G+5SmlkheJCFbOtlzMTJYpfXqN4\ndJW4amjFICddgj0BcVHQtU9TUxkubRnhxNAw82aUBYYwvoSWw9Gr+5lb3ET9GwX0ooTYA13iuhvi\n9a6VwOotdECWnc9hZ/b/X2vz32wGFbQfPmjXAtTq2OTUYLfeagrVjc5/8GZDrx+xEt5yxNhfpZsm\nzC4u8tWvH8YXiuH+EirRpK0W2ihC18Vppoi0fXkqgWt8POGDFm29ImnVDV3XdgwSlzhO8NwYQYTG\nQQhDq9WgVq3QqLfIFUpkwhCEpNFKUdoghIfnGlKVEEUttFZIx0NLByNcFAYjrLuh54BHG9Pguvi+\nhxCCQiFP7+AAo2oz6dQUTl8vu3NZPN9HG4NRCqUNQeAjpcDzXMD+vecK6+ioNJ7rEDebaKVIU0Uc\nRXieRLeph47rWK+IMCTws8SA9AKk7zE4Psa12RlqrSpuUMAVVvZYtJkI9qHI5LI4rmeNm4xBGxCO\nB0IxP3+Voy+9Qn8hTz5fINaGWjNmcXmV5dV1ojglThK7/jgIx8ETDq7j43rWJwLsOGFs/IeZsniT\n+qFagdcHUF8M+dz4++jpXuf9/+KzbPrAPNoRnB3byifEh3h25hHMVz24YLCnSJV/uGtwc4XzrW3e\n9uydy9aC+MkizaTE37znZzl8yzvoylZIU5dIuFR6ijj/48fZevc0XjNlabLAynCR3U9N47i2yHGx\n8vXaga998E6mHpkGDW/0bOa/8AH+aukj+DrGEYr1cjfNV0rweeBLwEYLy87YhW3fL2Mv6Wz70dES\n6BzCFWwS0ZEqFv+VNegAPLuAfmAS2AT5LugTlimaAmsurKUQC26cIJ2D/nsl0fyPOW6WRm5C3ID5\nhLgQcPKOfVRElkfvctl5+wwGwTIFzqZTHI7u4fTGPtL5AOZr1kb8H2RxdJLTv2/k0LBYo+oGVKus\nHiuyxjCX7tnGV+59ANmXIqVmq3uRh/xnuSd9kV17E0ZqTc7193Gma5LR1y4yNrNOrabYMOD5Hvk9\nWYL9Dl06IaWXs3I3R81BjjRu50RjP6biQtUjPemSfsPBnAOWNETt+d715PNmtdG2jwOt9qPTomh7\nivwdGWXxLd/f1tYgsGJFStxwU25hP9rltC013REzq/GjxOC7CAVExiCMBTnNzV3lK8+2GC51ky90\nk3d8ENb0SGrLx0cKJC7SpLiOh1ZgHOsR4LUvo0QpkiQlSWKSNMJxfAwaozTNOKLWbNHT248jnXZH\nIUUJazBkVESSKpSGJFEYo5EmRTiCxCS4fojnByidIoS1dPa9ED8IEG1rZ9f3cb3AKiUODaPbTopK\nKRxj8AIflaSYtraC0YI0iRGuxHMlCuv6aFQbOGidSHBcYZthRpOoFOE6uJ6LMgaVpOD5GOOgkWhP\n0D3Yx8rCLK3UJYcFGnX0DKyWAbiOi5DSWkULY4GQaLSRNCK4OLvCrL9o2RXa2NeqACNwpIvWpv1R\nMui2i6Pve21ZawsKBRif2Izn+yRx/F/bDv9IQ2Grh87lfBXO9cBTHlez2/l3T/wa3xy8h8nJKygc\nzidTvDpzB9EnuuxFeq3TGr/ZfvlbD4sOP7zjTtc5kDrRrg5ZBnMe3tgG611wTLC0Y5ylEvagGoE/\n/PCvcH50iv0HjpOhwQwT7Oc42971p4wcSfm55yFfAh6Dc1s38cf8EuWuLhwU061Jjs8eQP11zgo1\nKWzhPtt+6zuAvSFUQpjuh7VxSDvz/SLQZ/ntwgUTg65wo7W60l7HOm9u18KNyiyLTQqmwNsJewXc\niWWB9CmbDExLeNWFF8dgMQfmZpvmzvO+nUcJna5KDNStPPf6OupKyPo3chi5jed7HmK9px8QtFTI\nGys7WJwbJTkOzKxby2q9wY0b7lsvxpsdEzsVcxtjA+2f74DJAwFm3cdccYm1JJlxEFmDEIb5rk28\nPHoPq91DHBGLdAcbbJCnGmS4607N6K/Okm+08FPFwu0DnB/cy2prmMZCnrWkh9n+EWazY8xVx2mu\nFjAzDsxIuw/2AVsUVDWsurBQgkXX+n5UG1aqPHChO4RSCLUEaik0qtCotC/yNW74Rtzc8u8kqf3A\nKIz2wXiOwmST7slFsoUWnoxpNTMsLQ1RnsvBuW64rEBpUJ093klWfzRKeMshJNS0QSuNVimz83N8\n7qlnaCYt9t92C6WeIsLzyQWB1ZqQAsdz8b2AfLaIZAkpnPYFZX0B6FgbJylxEhFks2gBRhhaSczA\n8DChnyVJUoxJiRsxGo0RhlinoFIM1mQJIdEaVKpwPB/fcxGOlRn2cHC0IMhm8Hwf4UrctiSzxsG0\nvQmklGSzWYQQpGmKg0AJgVIpwjiksbKiRLaLT4pBq5Q0iUnTGNl+HiHbHgcCkIJm1AIBnucjHQcX\nD+2C9izrI9uVJ2zkaKmYDAohrVysFR5qyx77gV1TV2BEguOBwUEl0Iw0sTLEzaYViVJtF0cclNIo\npa1nRFt6GWEQjsQLfRzPRTp21tzRMgj84IcwMYAbB3EF277OwdenoOGyfm6Yr+x/zM5IFVYF+TXg\nm8CZFnb+PYc9gDrty5uj04LvaLNn2l+z3DiIm9jDZQSruli0DYhXgSPY+zYxsFNQWezn6Xd8kKd3\n/ST4Caz7PLzvScYPXeU9/8dzZE4oVAEW31niU/5P8sXVd7P4pUnIGKSvkCWNPJiiQwdeFJYKeAg4\nZHA2p1ZYaFlijjtw2IcXt0Bzq335W7HrEAL10HY3LoxC2gdcai/OzZK1na83aTUwDu5OuEfAhyDz\nvnX2jxxljFmaZDib7uTyi7vQn3ThyW6Y3tFe205b/O0OPvwWSeTUh411dCtDxXRRvzzA6vYhXtxx\nP8aAiQTR5YDmyQxMN2BlBdQ8NmFr8ncBezfTIbPccPHMcIOr0hnZtLUsyi7MCMwVBxPJttiUYHl4\nmMrBHo7vvA1vKMUfjcnEZYrOOiP3zHHXLa9QbCX4Lc3VwjBHeu/m2MqtzJ2ZZKNRQu/VpEOS5noB\nM+fCKQHHBewH7gK6DCLQcNXDvBrAsSLEvVBXEHhQdGBSwhZhJ07XDCxXIdoAvcCbdQY63abOWCwL\nDAJbYVMW7g8oHpxl8/6L9PUsk6NOudFNsuxRPluCz/TCfA6iCFTHi/lmUbPvT7wtEgMhIcx6pHUr\n4auEJBWC81emqX3mc6yV19l/cD9jg/3ofIEgE4AjSQ2kRiNdj9SASTVRZHnzQZCxlMM4xvfddkVs\ncHxJrVojzGYolrrRqQFcWq06qUpI0hhjRFsZUYA2aAXSWJOhwHcxUmBUhB+EZIIMqhWRzYQI10E6\n4Hi24vdDHzfIgfRQqbJVtOdhtEa71hXSOJKoZXCFh3YlSeKQJAlap/ieJNYaD4HrBKg4RsUxRoAy\nyuIfhF0Dow3IFKE1ghRSK2SENqQGMvk8SbOGdF2kDHA8BbJlpaS1/feOLbXdv207aWNoNGpWTlpr\njNEYDY7jYYxAdjoGRttuAxIjbVIQZkLcwMfxb/CKR8c24QcB1Ko/sP32nUenIm1ie4dYAZNXpuBM\neMOp2GAxeZdp29texF6GG9jD9Fur2Q4wqq1sSD9WW7kPa1ATtH9u2ypXTsB2x1bQE9izq9z+MSex\nZkqbwb29yoHBowyKBerjeU6ne/gd+a95eeoONk9doUGWYxzgb1vvZfGzE7BVsev+Y9wmX2WQRVbo\n5bWHb+Pk3Qfh6x7+Bxrcufnr7OUkoYiYMeO88N57mH9yG5Ta3MYe4HasPHSh/ZJPAc8JeH4YZkNu\nYA4Utt3aWQPaa9ANbIJdAp6A0Y9e4Bf8P+ExnmJKn6cuc7zkHuIT936Yz+Y+hK668OleqI5gq78f\nxr31nUbn4qla7EkT1EIL1YyJqx6VxbbHRhrAgoRpYM208Rmd6lj8PY8Q+7voAfogU4RiFvI++Naq\nnXpiXTd7uqHHpzBYozhURaQG05A0V7JU54t4vQl940sMbFpiILNCj1zDE018GlTTLp5s/SRhnODr\nlLPXtnP0/O1sRN30uUts7rlEV3WdbNogJqQ5lGW6NcG0v4nJTTNs6blM6Ftb43JPFwu3DrOc6Wcl\n6aWZD8lva1DcXKVveJm+wVWW1/tYWeunctandqqIWkqgUoe485nsJAkC2ynJWGOOTI6uLXV6bptn\nz8Dr3LZ6hOGlawTNFhteN/39q5zZMceVXVuYmxm0ycF8p4VX581siP/+8bZIDAyCQiEL1GnWUmIk\nDWOQRrKwuMLnnnyGYydPcmDfHvbt3MnQyBBhIQdS0oxjltbWaSaKwHVpxQlKaQrFAkEQopKIOI4x\nxra1hGNwfQ9HeJZlYASNJGq7HAocCWlq22paC9JYIHDJOD5CgtGpBRkaB1SCMQpXGtK4ScbJtBtw\nGkdoXAwu5jr2wT6TIE4VUgg8zwMUiQSpDAhwpUC4DlpDpJv4gYtKQScGHInwrLeBIwRxotBK4QqJ\n7mDUJCgVI3yN8BykB8bYTRmEGTLZLEq5pGlqzZ9Sq+mQy2ZtoqE1KrWmVEZYjIW2yEeE9WdGSNFW\nTbQjAzDXzxMjbCcnyIRk8zky2WzbztmOE3K5PAMDw6ytrvz9m+EffXQSg86f2wC5Wh+c7lRUIfaW\njLEVmeZGK7YDfuq0gjvqdZ2kYBzYAeEATDi2OVAAWg5cG4R1A9sF/AS4D0eMbL5CTtaoqBLzpyYx\nn3egDyY/eoafCf6cR3mazfEVNrwSh717+KT5EB9b/NfsH3qFHZwjQ5O7gxc4+jMRU8E5fln+IT+2\n8RXC2ZR02OHZ3vv4z4c+yje23c+He/+SnzN/zq0zZxANzfKWEp8JH+cP3/9RTmTuxNlbY6B/ianM\nOW51jtLDGksM8MqhO3j54APQLeDT3bCwhRv87s5YBW4kRz2Q6YYD4Px4wof9v+TX1/89/X+6hngR\n+rvrjD/xNF2PlFm6dYDDDzwMrwk4MYSdfXQSsLdzx6ATHUGoNhJON6FSgcY6rGfhfA5EN+BCLG9M\nDUxnVNAB17XHAtdHCFluSH9vhlwXTEgYkdAl7Ldc0zYh3eXBbo+erWtMbrmEdBWpclk5O0jyTY9c\nUGfX/a9z67bXuG3tONtbF2i4HjUT8oWlR/n/zn+QWAdIaahfzVI5V2Si/zKH3vUStw68xqbLc/Qt\nrNGc8tnYWuQL4z/GF+54Nw+2vsT7Wk9TqpWhYriUm+TlvQc52n8rJ6u3kg769D+0yOSdl9nvH2Nf\ncJLjyX6OJweY/voEkbsJdaob4ibEbfolrfa6tjsGIoR8AH0e/VtX2LH/NPeuHubBV59n5PI8ckVT\nGS6w49GznNyyj2d2Ps7c0jCYDMx3Yxe847D6/Yu3RWKgtSGbCQkCyWxrnVaqEQY8JI4ypNUmJ19/\ngwsXLvPi4EtsnppkeGwULaBSr7O0ukKhVEJqSJQmThJKfhf5QoFyOSFOU6IoomAKSEeSzWXA2Cq3\nlaSkOiVOYtI2JiFOI7QyKCURsl3ZS23thx0H17PGSz4GVwokEs9xEUbjGImHxBMOQmkcA8KxoB1h\nDRvwHMeaMLXfu4MdSQitrdqisXe853iA7ffHaYQxAsf1SVoR0kgCo0np2CkbLMZPkc/nyOYDcGxL\nX2CBhL5jwZJpaux4BOuu6HmWxWH9EaxHg0oVOAZjNK2oYbsBuv0ekGBssmOzJZsVaAHSkQRhQLFY\npFgskslkbCLhSMuoQjC5eStnz5z8wWy27zo6XYMYe4B2LqAsOAMwGNjOYxZoZmC5CxbGIFnE9uPn\n2s9Tw/6Wbx4fjAMHYKQL7hdwP3CLxuuvk9QCOOPDgoA+2PLB0zyWf5J7OEwva1xljOfvfIDPTTxO\nUsnwoeCv+PX1/4eBj1fgGIwMbbD1A3N03VGhMFTh5/gL7l9+CW8joTyW4wuZRwhp8f6XnsH/jwrO\nAFvh0Y9+meidPrneOr8Y/Ql3fuIEfBKowMS9i/zC//wXrI+XKLynwiPel9jGecaYZf/5s/grMdFw\nwOHJO/hPBxf4XP2nMfMSnhmEqBeLN2hw49DsdE4KkJWwGTZPneYdPE//Z9eo/T4cvQK9HuxZMLxz\n1wt8aewljuy5l2g8CydDMN+Jit8Pe9zcAtdt1HwW8iEM+ngFhZ+vokxAHAXosgeLRViPoZVahs11\nMKjTfhSBQSgNwEAP+S2G3j3LlMbXyRUaSKlZW+mmUi2S2doks7XFLucUO5un8ZyE1HE4k99LdUs3\nubDGnu7T3J6+yNjlNyhemaHncoAYzHKBXWzKTBNd9RGXFfIaOAuwVV3grvWXmBInCV5fJpyt0Fdx\nGG/mmR0ZZWZ8nO3HTrP11VMEKxWaFRjdVubW4YSugQojY0us616G5BzDa1eZrJ9lU+MczmiDntF1\nXpy4l5UDI7SiLCx3Q6WBTeI7WgdtvI/wIXShJCl2VxjvmWHT3DQjZ2bpeX2Rxhpkp8psfkcdFUpe\n6rnHNvvyHTfUDiaj04n5UcfgLUWSJgwNFKnUmqyvtmgZu6whEk9KUpPQiiKuzs7TVDGzyyvgCBKj\n0Ej8QhEXTTONiFSClpAtFVktr6LiiFarhUDgeyEAcazRSqNUguMK/NBDpQJlUtLUVseO46E1pDpB\nmY73gsBzXQLPw3M9XOlglEYikUZilIAUTKQxrkR4GisXYNp+Ah5og0kT0lZE1Kyj05jsx/4D5X/+\nC6Q6bbMCDGmnra8MwXqdtFgEpXG1INUpRiikSNCpIk0TpPHIBB6FjMR1JXgSjWUZeH6I7/kgXYyJ\nkVK2ZaJTctmCJcVd91IwSCDVio98/E+Rvs9/CYJ201G0hwKm7VFi+dOuEBgH2y0IQ/LFLoqlPoIw\nj+dm8KRECgtOnNy89Qezyb5ncfPhOQbsht5BuEPAPdg2eklBWcJ5AS968OIoXMty4wDuUBAdbrRs\nN0NfFzwqcH+xxb7bXuNQ8CIjXGODEqdv381SNEBZlfil7B/y0ZU/YfjLq7ZI3g13PvQK+aEah3vu\n5aH0Kwx8skLzd+HoPAxnYfNiwjtGXsAbTnji+S8g/hiYhe59VT7yq59idngY/5OK6T+Hb0Zw8Ajs\nyGru3PMas/1jHLhyCvVxOPysvdIfPg/dm+rc889f4IBznIdPf43c0chaeP81qMuQ3Rnz7n/2NWoP\n5jl17x4uPr8PvunBYi9vnld3op0cBHZ5S6LMENcQF2FuEV40MBDDnrPgXVH0jy3j5lOiDNYZKv3W\n5/unEILr+0h0gTsEwSbY48A9DuFkndLoGpHJsFHtIT4XwOE+OB3AioSy4AYdttNBKAFjMNILd3r0\n3DrPrfteYefIGUa9OXwRczLax8V0KwO5JQbyS+w7cop9r5zG1zEmFDybr3O2tJegO2JPfJbd54+z\n+GyVUy8YtvTGTAxo7nvoMMMPzcEFhXw+xq9pgi4oNmv0XVwhuVDm4vMR5fOG3RcUm8602PTQLLcO\nH2Xg9BzRJ1LWF2EhBXnfOlM7TrBz4AoPlA6TLPuEZ5r4rzaJ5irE12rserjB/ofPE/s5jh24nY1y\nP5zswo6fAt48TmmvRVvZMeM36RMr5MsVuJRSuWAlC5KemL7GOgNqiazfsOPEoAPc/F5Jhb+1eNsk\nBo1WTD7rMzzUS9RcpF5PiTFoxA2dKiGs06FwaKURQuj25Cak0YrIdoU0Wg2arRZJqsgXCkjXIW4p\n6s0GWlm7ZMf1wKQkKBzXggKlMCSegxACYSywzpES65UAYNAaQCKUpd7pVFnkvtKkqgXttvrmf/Yb\nzP3eb2GGBijEBuFbsaJMLk/wN0+hnngUXW8g4haiXiNZWKT46b+l/vADtHJZUmMwWPEhVErfn30a\nv95g+pd+GoOi2ayTpDGNuMW1+QVIExw0m2pNklv3UMjlIQjxvQwaK0fstgWYXD+DE2mSJLFYBqXJ\nZjMgrMeENqaNh3DAGL561x18/soMplaz7A1tgWK2c9ARSWmbVpkY3w3wMwH57h4KpV7CMEcYZOy6\nYoGVP9yJQaf92pmFT0DPILxHIH82YdN9F7i1+BoDLLFBiaONW7l8106SBZtgpQAAIABJREFUvwjh\ns92wsA17CHV84zsc614QY3BIwAcVD971eX5V/gfum32JnoV16qUsC/1DLOV7eS54gMebn2P4P65S\n+0+wugJjW2D3v7rMYz/3FBt+FwPVFTgLZ+at0/WWBoydhMJylTv9I/BHcPpP4ayBe1+BwVKLiV++\nCvNwKbJwha4Ets9D2GxRoEawooivwXlsYnBgFYqLMMocW8/OEPyWYuV58H24PA8nUrjjDdg1oLj7\ngW+y0znDxc17oE9aJsH1g7OjdwA2aUrs0tSgQoEV+jGbYXQAbrsCvS6wFdSYZJVe0rrThm505sNv\nd6rizXEzeyAHTjf0d8NQNwMHFhm4d5H+nkUGcgskjs8GvSx1DTCXjrLh5DEn+qBssOOxMtcTM5kH\n2YM37BMcrDO2Z4Zbu4+yPzlCb3kOxySEfWWGB6/RE67SG6ywaf0iQ69cJGwmuCFs3TPCzk2v445q\nxpyr9C6uUlnUNC6AW9WEccxkfIXB0jXiOCG9EpFpGboc8Nsfj6UIkmtQPQ9py+DHiuzeJkVTIWy1\nEGVtC/0EnGpKmLYopRGTtRnchZj6Nahfg41ZaC1Az1iNsVuvMdK/gDccQ78DQQdP0aEIw5u6MKmx\ngqNJyLrpplIoEG3yoCUxTU0y4bGRL7Fi+mi2Mm2WYkdj4vtrntSJt1FikCCVoqeQo9yVJ2pYy06F\nIdUGIwSJ1tZGWHUgMwaDBczFUYxWhmYUU6vXrYFSmCGTyeIKSKKIqBWTJgbPc/E8B8exdsxJktjW\nehqgGh6pSWjWW6RJ3ZobKUszlG6IVk1u+c3f4chv/ybS9fEdi/CPVYLSGi2gsHcX6wm4c+ukay10\n0sK4EjdfYOJ/+22W/YBmfy+B0kRxTCtWzP3+/0kagY5iC81SykoYq4T5B++3s/7FRcqVDRKVsFEp\n4wkf9eXn2Z3LM9rTx5bzlzm8bRtrK6t0Z3ykD0ZItLAjEYSlMEZJSpIkGK1RWpHL5hAGEpUSxxFx\nnOA6HlEMZwYGMBcu4AsHqQVax1aEydEWpmMMQjgIKXAcK72cKxTo7umhUCgQ+D6OENfpigBjYz/M\nIkediioDDIAch9sE4kMpd/341/gl80e8a+N5emprlLNdvFA6xMff8Qt8WT5GuuzDZ4dBzWHn4LX2\n8/lAD/Q4cAAm7zrPh+QneOzIF/H/raZ1HEpjDUoTl9i58xK7PngO0TSYr8PzV+B14J0n4NBh2PLY\nDLmeBuWwCOOwuQB7qrDFA28SNrqyFJsV9AycNnAWGKrA4Cw4noYDcMdz4C7AlANiHKIwYIMS61sy\ndB9s8s4rVgV3ZCeYW+znMPyqovI0fLJu06Vu2pJDbZhFLm2QcVoI33bS/n7jpXZSQM0iyi86XLyw\ng69tewcHf/wEQ6trPPSifXL1PsHXJ+/gJe4kOpuxXRPTwSz8U8AWdKJT2QZAF3i9sC2DuNOw9/YT\nPDj1JcbnZxl8fQknb4gnQ44N3MJn3vETHO3Zh9ooYC5JLGizQ5F1wQ3AD8kNRPTvXGIq/wYHXj/J\n1MUzVKfrRKlmx/3H2HvoMmZQowc0Zm2N6Yua7AbkXCj0znJf/ss4Y5KiWCNpZhjujxjuj+naDEyB\n35siY0Mr0axqQyGGbAV8DQzadKc7b8/7nAIdC+oqxwr9TIznyN4jKcxB1wZUJvIsd42y0YLRM3OE\n34yZrsJCDWS9jaQwVnoBuNH464xH/45aZ2z3VCWFWZgvj/CyOkRp1zq7f/4Mm5ZWGa3AcrHE6W0H\nOKrv4urymNUsWWuzRX4AcsjwNkoMWpHCbRmkAznPazcYTVvfz7awjRHtija9noAJAQZFFMWkqSZJ\nUmq1OlHUIpMNyWaztIym1mzSqDfo1gJHBnieQKUJSqUYo9BaEQYusePQnL7GpbV1wtllZn3JwEAf\nRroILyQb5tjW2838yhqBkEjfJ8Eh5zvWs9GRzN1zCKeeEuuURq1FKK2Xd7Pc4uof/AFpnFCdXyNN\nYrR0SIUku7BAtlJmbf9emklEM2qRL+bJF7pZ3VilVo0ZHB6mIgxbJsYRSJwKnIwCcrks5ZEBLvyk\nz2CgcbIOSkWgfHBdpHAIwhDfDcFIkkSBECijEa7Ez4UgJSIWJHFKpGIMPp4TEjciTBKD0ggCHCER\nom3ZLARGW26lkBJclyCbp9TTR1eph2wui+/7FvQJdNK5kdHxH+BO+26jQ2NqgwV7PTgE4/de5uf5\nU37x7F/g/gGo01Da2mDylz+LOKSZOTjB6btug1clTPdhRQGsoJU91HP2Nt0CW7PnuCt5ieBTmpm/\nhudasO2kPbb2DkJ/s0zrpx1EBooCisYysshC6joYBJ5OILHj0QyQN0ABktCl5XeT37HEXYdhIIX9\nI8AuWB4qMtK9AbFFQ6wpeO8LMHbxGs6A4tnhd/H4v/wCWycVVEHfBefevZnLTLCbK2jnRhP/YAgT\nBiZHwNwJ54LtzDOCWXHbRISO8Au8uapqAWVoluF4D+oLWT41+mHyQ3Ue+42n2LI8Ryvj8WL+dv7K\nfJhvvv4gPCfhksGKLNW4wUf/pxCdxMAHCtZEYCJEHFJsnrjIu8KvMLB0ldzL62S7UrIaCls2OLZ1\nNxfczTSe7yJyu0BnLb+5k/hKDzyfoKtOaXidIX2NTXNXGTkyz5UT0GpAr6ky4AnifSFxT8iabLEW\naEQIngQ3aNEdruBkHByRQOiQ9QWBD37BYiJdR+PWNEkLVhToBPrrYDSYHvsyilm79zPt99siZIMu\nlkeHuHbnJLmFBmJNszoxxFlvO245Jhs3GFDrNAVUA8gUJW7GoTqaZT6fZV2XUGXH6h+kNwOCO9FJ\nDBpQb0DSZG22SOPSdsbG59ix+xzxVIawkrKQDnNM3s3Lc3ewcHkALiaw3sTSmi1j4keJwXcYqW4b\nBTmebTlLgVI3Lae4MVK4nhhY+B5ap0Rra6jRAZI0pVyp0Gq1kFJQKHbRrNdwHIfVtVX6hsbJ5MBx\nXcAC7wwJWkuEdhk4fo5d/9ef8cZH3s0vfuElPvFj9+KPT9HSCZX1JRbWlnj6I++HeoX+UoFcd4FW\nK6UWN/EzPmEQcOD3/4AXPvzTVKa2owMXJ00JjCFwNWm0QpoqtCdIcyFhqYgvDBvdPnu7uxnbvZ3l\nlWVWV1fYun0K1wu4Oj+H53vkigWGNirkiwUWry6wsXiV4b5BRFcOX6Q4UpHtCnALLqnEajkIB+n4\nZIIMjvBpNZoIaYhNTEu3cHIeTugiHYlWkESpzZfbAkjNZgOlOxs7RQp7+kvZBhxKYUGFUiLckLDQ\nQ3f/EKXeATLZPFIIa1xllAUrAiOjY9cxDj+c4WARMAXoEbANdvac4r7ai7gfh/l/B9/UcMuzsF3D\n3ZuPsH/gGKd33WaZiNMlbjAXNNcr57aeUVY2yNcj6/TasimEh7UFqC/CQ8dA/aKDeb/ivhW4bxq4\nBcxjcKK4hzJFehrrcBGOrMNLWJHAyXOQX63jFmLMDMwkVrhVJ1hBNwRUoF6zV6zGOh/nahAQ8f+a\n/4nl2/u44/ZXyNHgAtt4hh9nkiu898GvUXqv4Ve+DE4W5E/BYA7Mdlh7oouneZSXrx2y7Y0lg+2Y\ndPjzHYaGi00YVoGrcKYbPiu47O3i9z78G3wl/yCjfXM0yXBebefk8UPwV8BzQHUN26Oo8NbsrN8O\n0RHGytgRQI+D3JxQiGoMnVqhfrTGudc0vT5sX4LsbU1G759nU+YqczlJlCtY1kvUoRXbQgYNRgs0\njlV89exFHTjg1mDtFahXDN06oWdS429TlH7K4Co7TpoeGePr5hG8WcOgu0awdJHySkprFfqvQX8e\nGAJGrd7QisICyC3xi9SXmBByjsEThjAEUwAVOMT4nBjaxzl3O0EjwmslLJt+LlanGGnOM3nXHJsn\nLzG5Cj11QTwaEo1luToxxcsTU5y4vJf66Zw1PKpucEPPQd20pm1DlHQNzDzpiQLNv8xxYudBGluL\nlAplHKOp13PMLY2wcLmP8pEMTFehVsGOZjrP+SOBo+8oUqWJEkUYOjjCaXcCbpoWmk6LQFpNAot8\nwxhDMYr5qzeu8tujI6z6eWq1GvV6w9IWC3lWFiVBGFLf2KBWrVIoDSACW1nZZzUIz6oXmnffw+zu\n7Wy7tsoX/sUAfqGb8S076RrsBV1lbmGF3r4RNhbn6S/lmZjaxnK1SXllhb7+bor9/cxsncIrN9jW\n3YfXVUA4AkdrBh55ArRm9ZnPkO3vxSnmkKFDUl9jYXGRrm3bEBh68i5+T4Hi0ABRq0m2lGVwcJio\nmaBSiYNHEoNKI/q6MgQyResWrmcxBG6QRboBxoQYJfG8EMe4iHa3xZg20FAbCrk8rutitKHViqjW\nGhhtIYZKaVqtCMcRVio5SXFku5djLJ0RbSxWzPeRmTz5Uj+l/iFKPb1ksjn8IMBxJU4HzwP4fsC2\nqZ2ce+P093+jfU+i82Y8W+znoUiFQqMKV+ANban7PjA1A7laneJAxdoJBPBmv/jOLDK1xe4SzMXj\nXCxsYtOd8xx8Hornb9TT211gBOZzI2z8bI47Dpyy9+EUfHniXj7Bh7jGMGu5EmyFQyVobMCUBLkd\naj15RqaXia7a17gE7FyCXVehpUO4Gwbug5/9CnQXIXsfrO4qcoGtfGX6EY4P7mdb5gIBEXOMcPmN\nHdy74zm27bzAB373b/FeAjKwcm+Bc4VtLMl+virfxaeSD5L+dcFmKdUKN8yObhY3MtjEoAzMQhLC\nV3dAGcqnB3lu73sR/RpigbksrYDUC8BMBYt8WOKfnrNiZy+2cQYygKyBnhR/NqKwUGdjLmJuTpMK\nmNDg9SV03V6hFKyz4g9BUICk8xztubpRoBQqlkSNgEaQpVYo0BjIwVCK01Q0yorKWXDvdMlHIXrc\nRRY8tAetEGZbOzmycR/+1Yh7iy/QagZsOFDNGnzHIZc6iMhAHSKtiDOpbfUXIMoHbGTzNLMO9DUJ\nRmLSUYfqSIZKpki5WWLRGWSpNIDs0oQ0KS/1MHtpgu3qIndtP8LUrZdgEXJVSbylQH2yi3PqIEfU\n7Zxd3UHzmA/nmlBf50ai2tmPnTGXskZRpoK6lEFVQy5em+Li6lbLPgqxuehpDWcTuFiF/5+9Nw2S\n7DrPM59z99yzKmvfurt63wB0o7EKGwmQBAmSIkFSpECKI4890vCHrNHYVsTMD48djpiQrAmF7Vnk\niZDlsS2K2kmBpEAQJIidQAPofd/QXV37nuvNu5xz5sfJ7GpwGU2YEiGC/CKyuzor++a9N0+e857v\n+973nV/tHO9m346fZQz+qyJVmigxPQSe6xoevdEhNOCgo2Kohfnb6gADgBWh+WTWIaMlY65HKzTm\nSGErJMh4BNkcoQJlB6zUGxTCEC+bAdtoBKRagUqRWuLnfPKbRhhKbVYiB9GKaS0tkS/mKAz1M9Ez\niHAz9G8aoV1bIg0sBgbGCXoKOJYg6O9jZGAId2qOXLZAfqAf6VlIrbGWr3Dl+HHGt23DzeXQjodC\nkbqKnAYrV0RICFIXW+QR0ieNa7iWMMJGSqOjCJ00SeevEzTWcMM2yrXIVkq4mTzCzSHsAKUtbNvD\n67AntDbMDyklSmOEoCQUc0Us4ZAkknaU0AwjtLZNBgCj9qgBIRS209ExEIZTaQkL17XAsnEch1yh\nSO/AED19g2TzBVzfx3Vdo3WgOl+OTq/B/lsO/AQDg+4ynZq5ZB2W6GOp1Mum/XPc8S2wl2FfEcQt\nUO0ts8jABjvvbdr0HZc6akZR+DScntnH1yYfY/MvXmVLfp49p0Ffh52Xwd4L6S/Bi4W7+Us+zqH9\nb9Czf515hniJn+O1o/dT6l/j2bH3sPeXz1JsR3zgFDAC8rPw5sgtBLxKz/4mD58ypzS5A9gHp629\nTN81xoP/8nXGPgDkof1Bi6dHH+bZ9sPobwYsn51gedOEQT1LwCq8/PjDtB8MODpxgO0TF2kTcIp9\nvM4dLCYDzJ3eTPuZHDwJnNQYsacVzM3rMjS6Wg5FDEOjYp5LQ3g9gPMChgQ6Z3e8EjCZh3ge0yo5\nzcau76cFFMDG9qmjryEbsOqjr7o0Mnnm9/aRWU84sNSklJXk98LVvRlmyiNMrU1QbxYMIE26x+g0\ncKZtoEVr3mHhxDDnJ3fz3e13Uhv1yN+9SG59hYqsY7kpM7ft5rXCXhajYRadIVLpQAsuL25l5soI\nxUyV7952J2pXm6FPXqD3zhlqxV7WimXsIYk1JBG719h3aIUekZAbg9lbRnhx4B6WCmUmP3aBwdvm\nict5auUKr+fu4MS5g9QvFGidyyJijWOltNMMUZRhpm+Uv/A+wdGJ26Ck0FloLweEUxnm1oeZWxtm\n5WSR5FgCM+sQLmMGVMgGU6irwFkGexjsEcjmoWwbmudLLbAVOJZpNFwJYaUJ1W72YZkNmeWflRJ+\npKiGCQMlM+laQiARaGFhIToaOmpDWAfTWGc00i1OADvXqgwN9xNaKbVajXq9QRD0Uyz2Uqu2sIMs\n9VZIO4qMo6DnY1mgSEnSlERKtC3wXZtiMY/OtpHNmObSMvMoRHYHOlfADRy8Yg6pQxKhEVqS6+0l\nDkMSYeEGAeXRYbQU6IyPsiyE0ighKG7ZhM4HKMdkPSztYFl5HM+I4EglSbSN8nwaKMIkZX11HaUs\nLG1z+cwp/HaEXl7Fidv4no2by9DbV4FcgLKMj4LSCte2sFwH2/NwA5+kJWklMdVWkzBO0VrgOT6W\nFITNkFarTSoVruOTpoJ2GNFstAAjV2AJiUXH90AItAAlBJZjE2QyVCq9VPoHKZd78f0AR1imWVQZ\n9oIQG54J+289yF/82RffmYH2I0d3MV+H5RE4Y3F2fh/fGnovWz9/lR67yQNngC3Q+EWfZ8oPcbx6\nwFgV30ijd2WRuzSxRaOS+GaZ6MkSf/zLT9AuBzz8mW8zHs0yWp2h2Kqxmu/lxb57+SKf5fnX38fz\nwftxgpS44dE6nYfnLJYfCPjip5/AHYz5wD/7NpX6Ck0/x2vlQ3yT95MMujz+699gchQm14G74K2f\nH+IZ3sc1ZxNn7nuKHfdcILE8jogDPCk/ypmXDsA3Mb4PJcyGqgF4IFdcDl99gNOHDpDtMRmnxkKe\n9mt5oxx9GTgOXEwhvYCR3+va0Xa1HLqgYBiYNOqOwx01yR7MvLqEaTJcUHS0bTFoaoUNk6afpmxB\nN7qlmJYBBssO+nKW2r4S09uHmazFbF/W+L0x+nZBdbjEjDfKzNQoacOHVrcno9v8mRqhpLhBON9L\neGKAi9kdlA6tEY67bLcusoW36ElsfBnzir2Xv3Y+yEWxm4tyN3HbN+vhNHAGkh6Lw/tuJx63eGhC\nMyTaXGecGT2KI1JckTC5fYrtB9tk8iHsEFwbn+CZyvuYKo7y0KPPscs6xzJ9zMUjHD15gNOn9qO+\n7cC3gVBsSIH0wPzOYb4++GHoU5CXEEh4y4bjNkxrM4ZmmjBTh6i7iHczBgpzsMAcTAyBPwSZQawe\nsPolYqmJvrSOrimU8gxTS9ZAd4+1Yj4LWrxThl7vKmCw3ooQQmBpw/vXwmj9R2gsFBKBhUYJiUYi\nU4Hj5AxLQcH6eg2lIEklS0vLrKysUCqVyGSyxEmC47rEcUS9UaMYFig4BTwvQCpj7yysNtKykFpg\nBwGFUoE4SknqdcKlBdavBuTGxnAtF7IeKpW0WyFupoBwfYxdswQlwTbqgq42Zk+OttAyJeNlsG2v\nQwcUSKXQQnRMkFLiJCSRbZbmF/Bsh7S+zonDb2JbLts3b+eN77zElt5exoslXNcHB4JiHjvrI23b\nyDI7NoHrYvkuwrHRtiBRkkRJUq1oxzFRqgiyeVzbR8YpOtHU6w3iRBFkPJJEoRTEcdphHaQIDaKj\ndqgBbdkI28XJFPF7BygNjdM3MEC5VCQX+Li26BRrxNtAgRCCycnt7+hY+6+PLiUuBFbM7uFwwOK3\nxvkvn/g8aszmkX/6LSrrVWqFHC949/FH8We58sJOk/aeVWxYsnYn4hZmx3IFTu+Hv3CZTSb5g/f/\nKt/Y/CH68wvsHjxLL6ssMMCR5h1cPLwH+Uc+jVXfzGF1zEQ8BSxZnLUO8ruPDPL00KMMZheok+ds\nbT+zi6OsbKuwfleZu/e9gRslTJVH+Gvrg3xl7XFm39jM4b330lNeQiqb5eVh1r7bB1+14EUNtRWo\nFUxJxLEhtOBrFpyxaG4r0ayUzCV19ZyWMMY1URUDCGY6T3Z3U4oNtchBYCdkJ+AuBx4A7tQE43WU\ntIjfysJhC5634OggtGtsqP61eHtD409LdGV8O0A1WYSLLtopcjK8lS/5n2PEm6P/7kUILFqFHJcW\nt3Hp8k7kcQt9rYoBaTdnW7opmRmYl3DYorpY4OzxPayNVzg9chs9lTVyThNbSy6ubufC6g5WZorI\n6RCiGJRlpJfnNK0ewYw9irzsstrTz8v5B6m2S9TiInZBYRUkw9Yco3fMIHxNu5DhitrCqen9hEHA\nuf7dtMpZqpRYTXtYOZdBf23VyA4HWegXpncnx0ZF6nXgROffSsN8DRZCqCbGBbHWgLSG+S5WO/fv\nJl0R0WPUR3Oj2IcCrDtCNvVNMVl5C6sZEq0qllb6uL4ySfV6Gc5lYNrrHOsHmVL9eOPdBQzCyHS6\nC43W0NaiY5CpcFAEQD7n4ecclE5IU9NpYFmCTMYljtsolWA5Lq12SL1ep91uk8lkCIKAVsvsfuv1\nKq1WGd/zcZwcnpMxvTbaRpNiOQIdeMisR9CTJ6djZKNJ6/o0zdVVCkOjFHbv4NK50wyPDOI6GSxP\nUa/WKDsOOpG4to9KElQUIVxNqoSh9FkOOlGoNEVIhUoTnKjN6tQMweAQSa1OY3mFi0eO0KrViVsN\noqjJzNQMs8cvMFkZZDCbI6k2wRV4/XmsQgbtuwjPwfI944fgODi+j+UY18Q4TYllihIYkCAlxUIv\nmUwOmUoa9Sb1Wt1oGShNKhWJTAjDpjGl0gLTlSERCrRl6JvCz5MpD9I7NEH/6Dh9/QMUCgU8z8W2\nrRvmUeJ7KIu9lb53ZIz96KG5YXXLMnAVjm2HP7E5Iw/xbz4wxNf7HqNSWaEqS1xc2sXcCxPw5xZ8\nV4G+iqmFt9gwrul04jNtmCTf3Q5LPu03ClzZtocrg3t4bddDiEKMXvPglIDDmIVXY+aydWBZQ8Eo\nI4q8RiuLFVWhZhWZXx1j4dQoyWs+3zzwEc7evo/Jngtkcm1mw1EuTe+k8Z1eyCmirQGx8nDsFMuR\nWCWJ6rEgLyDuM07LWzCZgwiTFTiHKRVYKQgFYQq6zgYIWO1cY8fv4UY5pUv/LAIj4I3Dgw58VjH6\noWvc1/McW7mMxOL8bbt45d77WNw8AY4DL20D3XUH7BrV/JQDg9iFSz3oOcFJ/xbO9O+lZ+cyfXcu\n0CbDam2A5lt55AsO6rUQrlcxmZebZaQTzOdlGafCpSLVEyVquT1cGN+LOKgROzUiq8EGed5CnbfR\nVxvoa81O76fVWRclYcllenmU2dNbOLblDsSAQtcE1IWR/B6G8s5leg8t0rZ81pq9tJdypNMeeavJ\neb/NcrlCSIZWmmHlvI/+61WTIegLYMKCHRhsGXYu53VgSpjeiUSbsagWNyituga6ihmLN5efOsZJ\nVhmCQaiMYD0Q4v1ym8n8BR7ynsMhoa4LnFvYQ+3CZqqvlqGmYdrFmITd3HD4zsS7ChiEiSSyFNoG\nz3NoK4XuigxhEfg2hZ48Ts5DaWnUPxU4jqBSKWO5giSNcZwMSsWsr6+zvr6O4zgUi0WWl5fJZrM0\nmw3CsEU+VwBtIYSHJYwcsaUTbC2RGZ+04KN0ih37eGEL1WyRhiFtbVPNZnj+K09x19234+xOmZ2Z\nY3F+kb0HDpLN56lHEW6uwPj2Hdiui7CNqla8soYVBNiWhU4lQqaEK6uceuY5crk81ZUVomaLcrFI\nzvKYWW+ScwWHdu5FtSW2VFhKGxqiZ+PksySuILE1tmtjew62a4yesMByHBCgUkP9lEqitEIqI2wk\npaTdalPrgCg/VyRKJW2hiUWCcBQi1VjCNC8KYQAUlo8bFMiU+ugfHmd0bILBwVGKxRKe52Hbpu8A\n+D5QAD/JwKDrCthpLuAtaHrw7U2wbLP05hhLO8aMcFwDs3i/DhxTUOvm1bv+CV3edIe7zxygQYZw\nfjNcLkHJNQZFAwId+OZtI4yB0ueBidSoUs/ZcEJAC5z/JubnHvgWj/NlDiTHceOECz3b+OsHPsRX\nRz5G6696mCuP0d7h0lNYo64KpA0fe0vCofe9xIf5Kgf1UWwlOT+2k6fGHuXZkQ8R64w57Q9ICnvr\nuD1NVOTRvJoneTFjSg2vOBCfwYCmOhs201Hn0U3XdpkDXepnLzAB2114DCY/doYv5H6Pj9WeZOvU\nNKkLF8a38ieDn+QPPv3fMbO4Fa67cHWCjVTwO6My985GFxh0MifagWgWtI06lUepPPU3ssj+IVIN\nzVCRTodwxjNeBy2HDV+EkI0UeAKsmVKtjNBREa0yqNkAbB8WfSjloBRgVxKcR9uMrk8xsn4FJW1C\nsqylZZaSfnqcZW4vPM8WZ8YMiSlgBNQ2i/N92znfv53tQ+fZFxwDAVXK1HWRll0gWw/ZduUiwxfm\nSHyXhszx/PqdLPfcRea2lPwds4yNzbJl4CqeE9FOAhaXB7m0ZQfz54fhhGX6Uql23rgLfEI2slbd\nsdilfebALcKYj71LsX/iNLcU3mTfxVPsP3EKV6VEuYBKsYYuu2R3tpg/Ocz6VQcaBWj1spHF+vEK\nG3XjXQUMpFJESUIum2F8dJBW26SxPdtYajsixXNBCuPyZ9s2YBaebC5DnMY0mw0qlSIgqNfrrK6u\nUigUKBQKHfdARZom1Ot1SsUewjDE9wMs4eLYIBONSCS25+MWMsRJhJ3zccIMqe1ipzbxWou5k+fZ\nWR7krVePcvrFl8kXC5RLfbz8l09i+T7FSoVSXx+NqWly+RyOl8NFSwOFAAAgAElEQVQP8ixcv47v\neSRRhJaSqBWSNpqUsLGaISOFErEXEIYtfD9gfGCAVrNOgI20BK5jI1yB9gRuMUPQW0J5FtozpQPb\n87A91+g/KGlKMhrSVCKlIo5SY+8sJcXAQycRjWadWrNuTJqEEVdKUk2r1SJVGiFc46poeIlYTgY3\nV6BYGaA8MMzwpkkGR8Yp9fSSzRrtAsdxOgZLPzjK5R58PyCK2j/0NX9/o2ueVMfkzIEwhFc3w6kM\nVKyOVwKwpkzqklnM5GTGpvl5jQ2r4O59mOcGPSEtw0rRPC6XgSzsc+FxcD/VYt++o2zjEg4JbzHJ\nibcO0TpV4OADr/Br6v/gEyefgq+bQ9993zF2v/ccapvFs7/8CI9X/pwH9fMMyQVWsr28eOB+TrGP\nf6R/n09f+zLO14EYPnDfi+w9eBpxm+apxx/HG4l4aM/TPMjzjHOdBnmOjB3kqQOPMVPZaubZVyc7\nPvcrmJ2n5O0qcN3dWRcYOZg8cAH2QOahGh/LfYXPr/4hA/9bjeRbYAWw98OX+Ue/+p+ZLo/zHx/+\nArxswbUK6C7do2sG9NOUNfgeYIA2stCyDaeH4dIwbScgtitoQpReNx9FlIfENhkqipjxl7ChQnnz\n4rkMMg+qAMtFWC/ApbKh6o75OJ+I8T7ZYqu4wl28SoLLKr1cbm+j1exlrL3Ip5K/5JG578AL3JDw\nTu9x+HLxIySlj3C3+zIfcr5OVoTU7AKrQYXF3gH86yn7nj/LprPX0SVBPVOgWqvw4vCjFO5dZPhT\nM9zd9woPO98mT511ypxs3EprMcf8yWFoiQ4wWMcAg+4962oXdNP9NhuGZjkjtDDu4xyQ3Dp2nCf8\nP2LkxCwDv7+Ml6SIQUHfnWukj1nobYp4k8f60AjMFaBV6bzPO8NIgHcZMFBak8oU37bpLeUoZhSW\nMJLEtqXROkUjjVugJbCUhTI1AKSUJImkUQ+JIonr20RxTLVaZX19nZ6eHkqlEsvLy5TKJWr1daJo\ngEzG+OSaRcxFJQlogUoSbKVwbUHiuRD4pBJQNpaSiDhlcmyCaKCPWquGZdskkWJwsJ+xiXGazSbN\nWpP68jnatgVuBq/cx+atW7Bdl+WlRWKZks9lcbJZVheXqNeqRFEbKSW+56EsC1tr8n4GmSrjvGjb\npDYEpSJeOUfqWPiZADfwcf0A23IR2gUFlu0hUyNxrBKNjBVhM6TZaOE6Lp7rkCQp7bBNqxkSBDlD\n4VSayqW3mM/lEMLFDXwsy8K2HIRt4xfK5EoVKoND9PQP0jc4RLmvQr5YuOGmeHOG4HuzBQCO47Bn\nz36OHn39xza+/vaiO7G0MROOxOwOFqDRA40yG5TEIUPqzm02L6vR+eN657GIWTy74KB73A446E5U\n7If+SfgAFL6wwmeGvsgn9J9xuz6CqxJO2vv58paP86WRX+QhnuP9899C/zYsfMlAkB33wR32Kd73\n8DOMV6b4tfj/ZPPXFuA8sAkefOxlvlr6IB9efAr7X0D1jyFKoP/98N5/8V3O3PUUx95zgLvs1/h1\n/W954NRhrFNAD8w98CSbctf4d5//xyxdm4ArAcwPYTIgVd4OfG6Obvd3xzgpb8MY9A8ucYg3GHi6\nRvqf4M9mzR14dAUmDs5x+yNv8uXdC6wPDxvEILtytj/N0c3CtDAmZ3Hntis0/Uj6oezDUA56NRQ8\ncG2z7tcdmLdhKQ/pPEiBGX+NzjHr5m+dGI/21DcfXQm8TTF7Rk6zr3KMvRfOsOf8WaRj0yzmKfW2\nWO/rpRKtMnB1idL0AovT0JiGgevQd91i/5YTVAdybLl0muypGQphm6IV0De8ysCuRWSicK/OUn9j\njWwO/GyC7USwy2Hzpil+rv959iwfof/UBQrNFv1eDlG2mR7eRLglw8LYEKv9OZPVa2XZGIvdxt+b\nF+0u9dMBy4HAQhQVJb/KGNfJNtZozzWxWopCC0pbavTKVcrZdfxsDBlhWAo4fL8HyI833lXfBq0h\nlUZOUyCNi6GSxm5Qq44EsikfaGUEWbQUpKkkjCVKS1ZXqgwPxxQyebQymYFatYbn+RSLZWbnFomi\nFEu0qTdqZLJZXM/Gcz1Dw/MCs2uOBUkcYjvGQjiTM138URIj48ToASQCtKaS68WyLaycw75/93s4\nlsWRX/mHFHyXXLEHtCIWNl4+h05ilIBSTwkVpVSXlllfq2ErSSUMkX0V464oU1QqcW2HZjs2ro9S\nIi1BebBMUM5BYHbkjnAQUmBJGywXqQSW42JbLolMkVKSpintdptWq0Ucx5SKBZQWtKOYtXoNiSCb\nyVBvtHEWl8g3m7g9/fQNjGK7LhqB4/oEuTxBoUi23ENvXz/FnjKlnh4KPUWCvI/j2zd6CozV9Q/+\ncliWzd79t/2EAoNudLvquxmEbhZgM7APRjy4RZj6Z2/nZbPA6SIc3w3tMqY4391Jtzo/dy2JO7Mv\nA8Ag7BTwMDw8+DRfSH6P2/78HOIpIIL73nuEwc8tsZ4rM851CicSwsPwVxgY8sQRGD0KWx++zK7k\nApv/YAH9u3BlCsaGYXBmjYd//VlKR9u0X4Q/jcya8blXoO9V2H7XRbbZl/gYX+HB7xxG/A40XoOg\nH4Y/v8ZnfvOPOerfxl/e8Tl4FpgvsdEN9jdF5zUdZV/XaZOjCVVorBl45AKtBvhVyNLCsxLz5I3/\n3+Xh/7RGNxPTLXV1x1Ibc1/K0B/AwZLpEdlkQVbAvAdTWXi9CI0Y2k7HcwJM6afLWOjaY3vmV4EH\nW2z82yPuHH2dJ5z/ROXIGr1/uIaVAT1h4x1Keev+zWRkiPdWROs4XLgE09Nw4CxUyoqd3gVKEysk\nR6qE/6GOu5TS78X03NWk8tkVaq5m/lrEzHEYtCDIQHQXcAB2jFzgI/aTlE5MEf1BDXtO0l+s4t7q\nsPx4H8mQxZsjd7E6tsMYmLV62WDD/LAUfwccCOuGuaJvRRR0nbZssx5pyg0z9drVlCBpE4g2tpO+\nk55J3xfvKmAAsFprURkqoaVEKw06vaFhAIAWIAVCCVKlSVJFO06JYokWEMVNGuttBnvKWHZCGsU0\n6g1y+SL5fIFiqZfq+iq2ZVGtVslmc/i+j+u4KGVsii3tYmmJ43mkSQxxgpcNDDcikshE02qGRFJi\naUFO5wmCDI7jcvHXfwNHK8qBh+862JZAK+NwGFUbTH7hH3Pln/4PNCbGSdsxroSeTIHy1cuki6tU\nxzahUkU7aRE2I6SlcIVFAuw6/DqX3ncf2d48TmCDbXbenufh+z5Ka4RSWK6HZdtIKYnSmDiOabfb\nNJtNWq0WjUaDsdFRIqlYq9ep11u4QUA7TkiUYtn3mdm5E1+7DE9sxs/mELaH5Qd4mRxeJkumkCNf\nKlIo5MkVsmTzGTzfxXEsbGHdUDn8YWHbNnv23fJ3O5h+LJGyobNeAIZA7IZdHnxYwGOSkVuuUfFX\nSJXDTGOM2rOdLv9nRmClKwPcTbV3a/AK0011k6LdJsjfusw94rvsO3YB+Xtw5BVoKrj/LGwfu859\nj73IEgPQA24vjF02wKBQBirQIM8ttdPwMrxw0RAlDl6F978E2U/FkAE7Z1okfMDNmsuK8QgI2ROf\nRXwbzn8HvhnB5jX4yDdg6LE1dtx2EbFJo3sF2BmQPma1h400/w+6fx36Z6RhFWr1MlfLm+EglO6B\njz4PgQulg1DfHXCNTayu9JhkzQ0Z5Z8286QfFN2yQhckdUS4em3oF5RvrTJ81yw9k2vki00cLyWq\neDSG81y3Jph1huFKBd6KO7ojTTZYOF0A3AENtg0lgT0oGfCX2NM+TzofkZ6N8X0o1GFkaI6xaBqK\nGjUgaG3K4VUjijmJ2hSwOuSjClASVZJai+R6Sm5JkckpknWP9aSH9YINQ8sUtiZkXHByYO3UsEOS\n628w4CySra1Rv5KQmdbk+iEeq1OS65T8Kr4fmYFsO3R+4PsBQTdTcFNZRkZQlag5i7nJIY7rWyls\nvo7/yBxJQ1ENXOb3DHIlO8m15ibq6wVY1xDdXDZ75+JdBwyWayE7RwwwkEqhtOpkDIwan1aglIVU\ngiRVRJEkjg1AQECSpCzMrzIy2Ee27CEV1BpNco0WjutTLhVZXlowqf5mkzAMiaII23ZwHc9YMSuF\nsASW5+JID18qBDZJLNn9x1+mHQQcufcgaWict7xEgo6JLUWQy+HkcsYC1vNMXR7whY1r2dR+5Vex\nd+0jh0ZkQKQaWwsaew4gd6SoKELKNgiJEDFJkpCSom3B4LVrtOU96FwWZWtc38XzPCzbQmpFqjSu\n5+O4rmmxSVLSNCWKohvAoNls4rounu8TtmPW1mskSpN1fcJEEktNGMdkCyU8L08pyBLkyyjLAcfD\n8TP42QxB1ieXy5DNZshkAjJ+Bs/xsC0HWzg/NFPQDSHET7iZUje613mT2+JwFj5sUv6Pbv4a7xff\nZBuXaONzJH87X/70xznSey8qcuAbQxAuYrINTcyEfrP6WrfuCeQgFzTpYwn3umLtKrwhzd7w1kvQ\nexX6WeYFHuTcvk3seuIaH/KNVo37EKw+UuAi29llX4CCOds+DAggB9KzuXpgkM2fWOAjAlQE2fdC\n9YEcR7idJnlDP9UbZwcd3G51JJW78+vfWFftSO/eSIE3oJ3CJYeVMwN8a/wRDhw4xv3/8xtM3m9u\nQfx+wYs77+bZ9D2krxaMTpLsshK+V+v+pzW6PRse5pMdgrES3GEzemia++94jn25U2xanCEXNlkd\nKnF18wRPFT7M7OgofKME1xyj9scyG2yPm49vgSXAFQgffJmQr7eZbUpmIuiLIFiA3GqT0WSGqNel\nfcihNdzD+Ng6m2fbtG4tcn1/rzH6sDVFV9OXa5FJFF4vrPSVOZXZR7PXZ/ftx9mcr+MXICyBP6pg\nJCWtCCLHJ49DgZSMo3EyoDIWqe2Q4CKV9TfoC90MorpZlxCSJswlyDM2Z3fu5q/4ee449DJ3jrSw\n0pRlO8/5zFZeLd3FmxcOUZ2rGI2EsFsKfGe1NN51wGClHoJld3oJBMoyVsBCa2yEMUqSFmmqCaOU\nVrtNkqakUhq8JyXT8/OMTAyRyZbwA5s4hbVqHSybXCagmM+ztr5KJpOhUKiRzeZwHBfHNip9sTRi\nyUoAjo0beEgJfi7D/D/4JDUbctU6ca0NbU2aSrRKyReyWJ5DggZhk9ouWDaWH+AEGVOieOwxMkKQ\nSInvBjhYuLZLa2WNtNVCSY20EpSF0SaINVJrgmKWS//8N3HyAdoV2J7Ay/jYlo0SkKYp2rJxLZDC\nnFOKAVZxHNNoNGg0GtTrdYaHh3Ech6W1NRqtENv1SJWmHSW027GRnfY8gnKZYk8ffqaAcHxzfNfD\n9z0y2QA/8An8wKgrWubhWA6C72ch/KDo7ev/Ox9Pf/fRtbztdNY7A3AQ+Kjmg5uf5J8k/4aDr5zE\nOawhC/d98DVGJ2f41w9nOHPxDjjjwPlhjAjBOm83AOqq2nUm5jrUWwWWegeIN9kUNkvunIamhtJ2\nYCss0s9FtvNM7hF6//s/ZeCOOo4F0zsH+UrvYzzD+9hcvMqOj06xfwomz0J2K/A4nBrZwZsc4olf\n/1NG3zeHswatWzyeHb+Pl/k5phqbOZ3bw+0Pn2bnEeg5DsVeEB+E+a39XNLb0NeEydbKbhq6OyN3\nr6lr+tPtLfA6r2kAs3B6C+opl2+NfRB3b8Llh7/KnvecQQqbY+I2vqJ/nsNH7zfCNmc0plmzq2fQ\n3dn+tMdNNsxUEINZrNsVAzvnuS13jFtrr1G+MEPQbDEelRgYn+f84G7eKKzRPu0SeeWOqVK3Ie/m\n7F9nRywTaCjUqsVKpcIVJmmNrKBuXyNRgkbJozZcoC6KyLaFTB1spckr8NHoHLT7oeVmaYkMQTEl\nO75Opi+FAWhuyvNWfgstK8su+6qx2rZB2IqR/Dx7B0+hYouj1w4yLnoYuGWGZGtEa8Dh+vYxrjmb\nmVkdo7FeMLbSUbdB82aU0LX8djHj0Mdk/Qqmj2JZIy/FTJ8ZJtlyF6Io8AYsHJFSV3mO127j3MXd\nzB0bhKkUalXQ3WbibmPjOxPvOmCQpAqlA4QWoBLD+VeGmhjJ2JQNIkUcprTjlKZOSJVCKbOAKqAh\n17g6u0BloIgVOGZHHobGQlml5PM5VleXO4wFU2LI5XKmJm5ZCGGRKnMsYVnGJtYW2K4DwwMEkTFl\nUpkEQkVztYaKU9K4iVXXeNmCoew5AdrzyBRLZEtFnGwOK/CxHdek4lJF1GhhaYFl1xAyRSYxComd\ncbFzDq4VkLXBzmRwsgEisNE2OK7ZdSutidIEYds4tgOWMDLSgg49UaGUot1u02g0cByHnp4e03tR\nq6O0he9niBOFimPa6ytUSj0I1yZTrFDqGybwM8Z22rKwbRvP84zcsee+jYHgOM7fWEK4Ofoq7wZg\nABuTS8HUXnfC4J1XeVQ8zcEXTqL/lWbmTVMfrZyK+dhvf43DpTu5dPte4s1ZOF/A0Bi6X+fv9VFo\ng2rB9SytY728MnovD+97jtt/7SSHJjHz3SNw7oFNvMgD7OckjzafZuDP6nAYRAGGH19g7NA0DTvP\n16zHGH//NLePnCR/FeJNNsf27OGv+Bi3cILBlQWcZ4AZyF6Muf8XXuPkyH5OOvt5UnyUTQ9f487e\nYwycjpF9cPXOYb6U+yQvrD0Irwt4C94u9MJN1+WyAaS6153HlE1WYKEXnioTWkW+8vOf4fV9dzOY\nn0Eqh4XGCLNvTsBXbHhGQ3OFDbZHt5zws9jYBWeAEk6fhbcnpFJYZsuVa5TOzjL13ZB0RbJlZ52h\nXUuMHbjO+NYrLFUGWQyG0KmApKMcdyP93m26bUJUh+kC8Zk8ZwZ38leFD7HnvtfZM/IGlnBZyfRw\nsbiVI5lDZKdC7r1wmJ5za7SPx7RWFH6pytj2mMuFLSwUBikMtJD7O2WnIQi3BSyWBmjU87TOZOF5\ncxpOLmHv46d4/Na/YGpqC39y4nPssk9zz2deoJitEWbyXHa385q4hxNXbmN9qgcWNLRjvl8Eq2uG\n1lXd7BqGVyAtwrpGJ1XWX8oQVSdpTxQ5O7YfYWvSxGVltpfF86NwXsLVFdALHfXDbpblZwJHf6sh\nF1uosE0jatOOE4TSWBmXWhpRa4fEiTKtB0DY9VJgY+jGieTRk2dYr5Robd+CcAS2smiGIRaKQtan\nVCoyN79APp8nnzd0Rtfx8TwPLTANdyrFsgRRorCEMRKyXIFFAAp8P8DOayxXIMM2lhK4kcIKW6hO\nf4GNRjfrRGlCnEpUmiMIAkATt1o019dRYYiIY7zLF0j7KigbvGwGO2Nj+TZKgxIWOBbaAayONgBG\nJbKdpjiWMOcsjCdCLBWxlCilOz0GIe0opFjMYzs2jUabRiNBao924pImEe3aOoEOGSgOU9eaXC5P\nuWwoiDdTDz3Pw/FcbMfBtt/ebKg7/SD/fzIGxWKZYrFErVb9Wx5BP87oXmenhpkF+mDYnmMHF3Be\n1bx1FL7ShL4m/NILUDoesvmBq2QqIXE5a+qf0mejeylgQzI5xix8c3BuEr4jeH7fI1Q2r/DJT/05\nBz90DC/WnOzZwZf5OGfUHv6Z9Tts//o0ye/A0TPQb8Hm63D/b32X5ydeZ5Ir7Fk4h/00cB283ZJN\nIzNs67/I+6rPEvzvirX/AOcasHcI+tJ1PvAb3+Qb1qM8eeYXaO7O8dCB55g4MEWdAm9wiKerj7L0\n5xPwHWApYYN22b2Om+4ReYwXwiDGXq8CTsbcSxXDhTY0fdR5h+u7t3F9YJuZY+cwzk/HFSxXMY2b\ns2y4NP609xh046buenwIFKI3JmOH9IWrFOfXSS9DOA+uHVEoNMjvr5PrrbGeKYAVdYZ1xw78Rh9I\nt/TTgrgGsz0kZ3Jc2bwZvedBVMGi52BCbLksWxXOqD3MJGMMz8zjXpZkj7WonTBmhoN3temtRsxb\nIY6vSNCs+6Ys5TugbIEUFjK0UNcF6qTxddIZyejPTXOHb3G9uoXXzt/D8kgZb0uVYn+dmtfL1do2\nzlzey/UT4zAVQbWOGYtdoKrZyFYVgF7TkJOtQLYHgiJ4PsgmqBbhYpHw1RKr1yucm9hqStsxMKPg\njITZdYgWQc/zdqGod6609a4EBtHVOYRMaWlJiIUWDo1mSJWEkA3WqeDthpYdwV0UmqNJyvnZee4d\nG8VyXXzfmP3EcUzkQDGfp5qts7CwQE9PhUKxiOsFYIsbeNsSPjaSjC+wUtPYlyQxtnJwPB8hNY4n\nKPkeOpHEUcTe/+m3EVpz6X/55ySqjZ1qSDSSBKupkGsLqL5e0GaHrqMmLgrHFQz/1r/C+Sf/I+Gt\nexCehbI1ytFYlsBS5oqVpUFoHAscrUFrXNvB8Tw8z0UJQZSkxIlEakEcJTSbhoFh2SnFUoaoHbK+\nViWOJEE+SwLEcULcDtk8NIBra5wkJZ/xyeVyZDKZt8kZO46hLQpL3AAF/1+aBT8sbMdmx649vHH4\nuz/6oHnH4uYvv7yRaU1wCclA3iQRbtTy84Z2HxIgZbf+2YW0FmbH0u0C73Kt68B1WB6Gb2ap5vr4\nz7/wDzm66yBbsldwsinX5CaOXb+TW4dfZ8KaglNw5YyxNhhU8MRR6J2qs2PiAg/XnyP/bxNa/xec\nq8PuERgMV7nnN16lr7GIPA7PNoxDcjIPD5yEobVlBvsWSM94PH3+43znrocpVdaIYp/a2UH4joBv\n0FF3vIgBBnXM7kmzkSXIYcDAZhDboJKDSQzxwgXWA6OcfFUZ9eTnNRRFh6yhO7r+MxhO+jwbUr7v\njCb938/oMhMSIEK2PKKlLMlggJqwKK3CnrOQWNC3A8K9FvW+Aouqn2aqIZrH2ByOsLHLbnFDJ4HQ\n+HoslVEqx1K+h6i1j/pgL8cGDyGxCeOAdsUnM9FgIn+VnGqgQtNG0tDQm4AVaobdeTw7on6pzqVX\nYso1GM2Bf2eDTf1XCcmQjatEoSFLxBaGuk2KZUlw4PqZPp49citeXhEPDFFLhli+3A9XEphaxIyT\nJTaySoINGvAAsBlKFdgewKQPmxwjs9zMQMOHa54Zk9OhcfKUqWnOrMew2oKoBnIZMxbrbMghv3Px\nrgQGbhpRRNMGQscmCXLUwxqh6riDAvH3gDH9tp8EXxKanuk5hoam2bV1EksrVCzwLaPel8kGFEpl\n5ubmmFtcwM9lCXJZbM/GtmxsugZAZvE1ZQXz5o5tYwWW4fRKBZ6FnRUEKuD6v/8tHCXIOi6W46It\nG4WNbTvYNox++pdo/Ot/CXfejsh4xJ6EVKISyfKX/gupawMp0lZIoZCkpFrhahcbGyFER2pYIzv0\nTeG6CNsjkQKJIo5T4lQRJSlpktBoNGmHbYJMBtt2aIWmrGDZLlJqmq06tfVVKqUCveU8zXaK79rk\nswH5nLFOvpl6KIRA2NYNp8Sb42/KFNycUbBthx07ftKBQTc6k2cLmIHL1Une6D3EPR98k6GzEU+8\nCKIEfAIu3DrBafbRnMqbOUslGFriHjY0DLriR03MZLMInIFT+yH0kW8FHLvlbo5N3GVQ8qyAVND8\nlTzruTIMw/gA7Fg0y3BmHFoDDg4pA7UF5BvwVN1swJuzcP9RGFlepuEXKWxaYSdmatubB8ahVspQ\nk0WzIfp/IJ4ostRTNJc9g9m8X5MdUPAWG0Yy3QXbw2RC+oAtYO+B2xx4L3APsEuDm8K8C28Cz1kG\nFKwtQHO9c4/Dzr1Y7dyfBm/X9/9ZmOj2ppj0uao5qKkMtVyJhcFBRrcNkt+RIEqaeK/N/PZBluwB\nVmcrtFtNtFcH4YIYNh2oaWh8BdJ10J1GT1mD9XVUI8+6LrC+WGFq6xhs7YDdlmZwxzyT/ZcpeFV0\nBlrFgGhAEuc19bzHqvZx05Sx9hxXllOuXpGoJehzwemN6KmvkukJEMWUZr9rgEHWpp41vgltmUHH\ngsULJRaPbTH11U2DIPJwVcByDfMFm2KDpgg3eLHkwe4Dbxx7qEhwSxvvYIS3o4ozGkPDQVcdGq/l\naLYt1MUIfakF7W4fQRPT31LvPLpKiu/8WHxXAoM1FGO4rDo2gyNjyP5+WtNv0VqcI9eBALEFkeiU\nwPRNi5Ew2gJaC+r1FhfOXqGv0IMzUMLFxnYtwijF9QVeEJDN55memSFfKFAul0393O000WkQWqLT\nFIlGODYkAkdYaCVQtkRZxlJZuA62ZSGFQCqNZTvYjofteKAEthegpGLp//5d5OZxdNw29X+p8B0P\njSJ1FLFKOlbTRuwpTlKymQDXEQbcoPBc33geJIpESRzbNnplnb4IrSRRFCNsh7AVUq3WEJZDLlci\nTaHVDAGBY9tEUUirUcUmZdPYBIGtiFKFTI1uhOj0FQA3sgJCiM7U84NTZVp///M3P9cFD7Zts33H\n7h91uPw9iG5jUw3adThRoP1MhS8//nGGd87xof/1G/RfqCOzcHrHFr7oPMEzS4+iX3KNQrKbg2C/\nyRw0JGaCucqGe2BXH+Et816Xt8D1fnheQE9n7FeB98D0yiZezN/P7R87TmW2zuMvGdl38Rk4Prmf\ni2yn5eUojbXZ0TnryQAYhlbe5Yx/C4//8jfYp2H3FNj7ofU5lxfcB7iwvsuc7yngsDad6RqjsidX\nOuc7zYY/Qjfj0W00zGHcbrbCAQc+Cz2fm+OBvue4hRMEtJnaNsHLd9zHqV13GMGYrw5Bo46xpuzq\nO8RsZFS6Erc/i43oZgs6JagZBS+5XEi284f3fIbDYwcZfnSOIGyzOtbLdDDG0TcP0j5SJF0O4PYi\neAJ8C6rSlIZWmrBSg3CNDYviJQMcVoumJr8WwGXfmBalisaaZKo0Rs/oXiZvfQt7SxNnfZUgjbi4\nYzuvjm2h312iz13Gm1hgxy2LFMOEYg+sHMgx2zfGWn+Z3o+skNvTBKWIXY9jBw/xqnUvp1b3EV3y\nYa4JcQjRMszMAw40fQw46gqINdnw5rAxNb8y9ORh3KH3tnZ5mA4AACAASURBVFW233uOrdsvsSmZ\nYnBuEXIWyYDH8/fcz/Pb7qP1lE2y2IOO28Z34QbY6Mp9//0pZ70rgcEcFndaeUb6hyjvP0Q4VCC0\nNa3VVTLKFBDanXRZ+3uFKm5agKTSzC4scOrseYJgH66Vx9YKRyQkboSTcSgUCjSbTebm5ujt7SUI\nAkqlMlKZD9gWGKlgx0YLjRP4yFjd+L1lWx3FRonUCmFZJFLhuy4ShYojZKrwlTk1OTJKGkniNEUr\njW97RFIhFEgZYdnqxiLq4OK6Hlkvi5JttIrxXAfHsQnjCKmMLLTtmIVbKUkqNXGSIIA4ilhZXSVs\ntykWCjh2QBwlhK0EIRyUVLSqq6h2i53bJilmfYhbaC2QN7IcP6RUoPXbhL265/yDQMEPCyEEE5s2\n4zjGifInM7qTcEcFUc/AsV3wZXi9fB+//WCRVyr3sOmeKSJ8TrGP7yy8n7U/7TcNVTuAx2wjgJQA\nszac9UxDYtSDKS9ozM5ksfOidWNmdL0Xrged3xfheJ7aN/v4syc+RWm4ymO/+Q1GfnWWtuNzqm8v\nX3I+w5H4APf1vsxHP/sM+yLYNQXuXmg/YfNy5l6e5KPoByzu2vc6hXadxXw/z5fv54vpZ5l+YdL4\nPlRT4A02BkBX3KnGhv1xd9HuvqZbzx2DoSw8DL2fnuW/7ft9/oH8j0wcn8NpSRqTeb4+8j7+/Xu/\nwKvV9xgjnFfGQE9jJviu0mT3vv+Movj26GYLUsxnsQCzPrxa5kpmE1M7hhjaPcueu89ScOpM6Qlm\nZseonqgQ/UkO+4CPf0giSgqR16h5C3nJRl1JUFEToqxRVdQNYNVIX68XzWMqj+kfAUhpJmWaQ8ME\nOc3EzqtkhuuMiylyNDmvD3BY3cWkdYVJ6zK7Rz323BqStVowKqhv6mG6OMFccYCBB5fIPRRiI4nx\nOapu5+noAzQWy0RXXFhIDDBIFyBcwYyNPB1ZLDaySgqzZHZtvktQzsFOm/LBNW49dJT7Bl7ktpPH\n2T5zGWszxP0BckRzvLQLtTBA+lwZvb4ASafZ8EbZ5p1rNPxB8S4FBopMtp/+vbfTe9udLGcUU8sr\nXD59haQVInT6/7L3nkGWHeeZ5pN53PW3vK/qrvYG3Wh4NAEQJCECFEVKIilS5MxwVhOaiTGhHxMT\nitjYH/qxP9bExsbOTsSGdrWK3Z3RyuxQQ1HC0ItGdPCNbgCN9q6qu8u7W9cek5n7I8+pug01SJAC\nRaAHX8SJsufcc+/Nm/nm973v+5EQo9FI3nznmiXTzl27SqlaRuzZiSoEmCTBk5KcDHBdl6GhIebn\n57l58yblslUoSMeS/qTrooXtJRJ4PghDHIe4nmdVAVrjuS5a2wVdK4MUEh1rtLAI1XF9pOuRGEOs\nIFE2owC2tXGj06aQyyEdiVExAoHnuQghCQIPKQTKSLSQeJ4HCBwpwfMQ6cIdhSGJiUiUAWlZxLf4\nFng54shQr3dotUKEcGg2mnSaNXZPjTPSV8E1EUk6wBNjcDx3K1tg0tdYd7/U28SOnyq6wcP4+BSu\n672LgUFmitLB7iCuQbsEXx/HhC5nz97LxfsOURhoopWkca0CP3JsuvwY8MsJA0cXqZY2UYnD8tog\nze/2wtdc+O4kbGq2HehSa1oa2F15ZgUsgR1w9hD8lcv5wt3826d+l+8PvJ+p8iwdcpzWd/Hq6ftQ\nLY8/evDzOE8k3HfgFUrNBot9PXxv6BH+RP0DfvDaE1w6sJt7Bk5RocYSw5ys38e1H+yFL0h40djn\nyAIWDMB2ZiDqOjS3ShPTrnUMwbSARxQfGP0On+/8MYf+z2vwBYjWYeCRDX7jX/9nFg8Nc+79B9n4\nzgi8VICwBwsuBO9lCX5SZGqWJrAKrQCWPcyLVVSrQG1sgMvlA/huSK3Vw2a7QiTyOJ9T3LXnNQ7v\nfZVqrkY5qDNXH+PSkT3MnRlh5dkqrfMVWO2BelbiyspFWVOxAPs+eTDnwfcT1pf6OHHoQRYmR6nm\na/hOxMzGDm5sTrAwPMHZ4bt43Zlh50NXcQJFVAmYiXdw8vQ91DpVGl4vp9z7EUKjtMu5pQM0lnqI\nnkswS0vQWQadqWCyslKT7b4PGadgiz3GFseglIcph8pQnf3hJXZdOUvtR+u89gqMDULPqGbk0Xnu\nfvQVLhYOcnmwSFjzoVaBOONdvPPUMHckMIgxlKf3s+PBB1E7xomlon9iJ327dhPXGxgdQ9gmaTVI\nmvXUjOP2kWiII8UrZy/h+jn2Towg8y6e7KClptxTJggCgiBgYWGBvj7Lwi9VKqjUqEVohRSCrGrh\neA4eniU/KoXjSDzXwWhNHEWUSj1oBJFShGFCEsXgeBghrbuiMag4RhiNMCBNgoraSNcSHD3PJfBc\nMAZHYFszu7ajoeNItBD4nk+YxFtZg0QplAYhHRDQbrdpNhuEYUgpZxnfYRjT6cRoJWxPhoUlBicH\nGB/pI+cLVCe9J62RQlofiZQYJ7oAwVtRHPykyMDB6NgEnufR6bT/ztf8xUW2e21iF+zzVjv9tVE4\n7ZLsyLHZk7P/lhGXn4LCP6vzocNf4wm+zW4u0ybHywP38fSOj3Nu8BgmcuFbE3Z3spVGb2MX3gbb\nnsCpAVKnDH8zBU2HubPTzB2ZhrEYQgeuSHgeqMDT8tNcPTrNfZMnqFJjiSFeaj3IuefvQv+lz5md\nD3Bm7wNQjmHNhdeFtUh8TsPmIhYYdO/eYbuumgGCgG09PdipKmfvdQiKezY5wmscvnQR/efwzR9Z\nO50nF2DoYIf7D73EVHWWjckRqyRbzrMNMN6Njbf+PiPjdaSLVsuFtsCsGNSJIrXiAJv9/QjHYNYE\nJifgH4D/2ZDDI6/xqdEvMCGvM8I8p8w9/LX5MCd2PEArrNJqVSCsQj2rqbfTI1t0HexuvWIbCi0q\n1i70s3Gll5d33Y/oAQKDmZGYmwLuMojDMHRojuGHbqBKDptUaJyt0PxBD9HFHOfydyECs+X9pc9I\n9FkJ6wtQWwK1jAWpmTolA45v9CnwuZXzUoRyDiYdKoN19oWX2XXtPCef1cx/y7os9vVpRooLHD3+\nCq1Cmdn+XYTLPjQrEDfYLiO8s+KOBAYG6Ln/MEN3H6RZLSHiiGP3P8jO3XsIw5B6vcbG8irz12Y5\nfeIllteu8Wa1HWMA4VBrtDj5+gV0krB/ahhIEJ7BaTkEQUC1WmVhYYGlpSV6e3txPA/HDzBGI7TC\nlxBrg+v4+MUAFSskCl96aJWgY4XrCIJCAc/3UQgII+I03WniGI3AlRLh2cXdAntFoRQQuNZjQSWG\nfM7KJhOVoJU9X2BLBsYYDFYWqNLyhXQdMBqjDUI6RGFIs9FgY6Nmezikqfp2u0On3SbshDz1V19h\nUBlO/jf/jELFRSUdNAqZGoB5QkLanXH7tXzz3gc/axRLJXr7BqjXN9/W6/79RqbvzsCNBjqW3X1p\nAi5V2DKJkTn4sED8WsJTh5/mX8f/jkdOvYjzIlCGJ5/8DlPDs/zPH/5drl4+DOd9uDKOrd+vYyfg\nbFee7cgT7LJ6DpohfH8HnM3BiIAez/7rCjCnoN8hXsrx8vse5eWDj0BRwbpjF/8fAc8ZyIlUJeDZ\np7QALIaQZG2jb2KBScitxkUZEAjY1ocHbKeV0q8euK4iIMSpQ1KzRZJloNkCNtN+CCLc3uj9gpvS\nvDsjk7tuplruGHQDWgWMcDB+DmQfXq/P8NACE8OzHJ55nT0/uIrbXKXWalCdvsqjR76H78HazmFW\nFnbYZkvzVbbHY5ZKz2SS2J+ND8qB2ir6igc1D/IOuALWY9hQ0C7AjQKbrxUwY+Noz6FjckTzkvhs\nG73cBE+Dm5YutbGlg9UIOqugMzVAt2S12/2xmB7V9MhcDov2+zCBmiZse6z1V2gO9zA01qRnZ8jA\nIJhxQX28zLwcoxb3oFsybZr4hhL2OyzuSGCgMIi947iTw+RclyDWVHIl4skdREaxvr7Bys1FSqLM\nyswyq+vXrXXym4WRGOmwUW9x8sx5Oq06d+2dwA3ASG0rT55HPl9gcWGJ3t5BCsUeXCXwXccmL4VA\nONiygjAoo5CeY0sCCThS4jkunudZ2+YkwXcEMp9DG4GRLo7r4uYCEp2glYvQVtUQtTtpKULjBw7S\nBRxtu0r61jwoSRKMMYRRBFJYzoMxqCRBG4MyoAwkYYdmu0Oz3aTVaZErFJCeS9KKCTtt2q1NNtZW\n+JtPfpiD+/YwUM3juKG9ZyHRGByhEShkihJ+HoAgCyEE4+OTzM5c+blc/+8vsvRtZquadV6cZ2un\nTC8Ed8NhGLtvhl/hyzzyzIuI/w7Wn4FcGaon23zi957mpd77uPbwXsw3fLjSl14j8znoluZlKfUa\nW70W9AosDsJiD9s69BawDM0R+E8D8LxjgUPOtX+aB24mEM/b61ztwS7GEXbiXcESIde51VBIsb0z\ny3OrWUwfdjJ22XY31LY50nKJmb1TLB0oM/S+Ok9dhXoCO+4B/YDgIntZjoYsWmjDNtv7x/rbvhe3\nRBcpljZbPJU4B5se5Pqg38UfrjA1fJV7+1/k8LdfZ/cXZliYj5hZ0VSemOWx/ALOUI4Xpo5zfnU3\nnClh39cc9r3vLu1kVtdZv4Cm3V1fK8H1PEjfnqPblrR6cxDcQVpBnk4wDMbBKIGJW5hwDVQDRAIi\nzUwZY3+XNMDUwWTPrds7oKtUQF96jKRHWuagYV+PMIE1Q9gKWCn1shn0M7xD07s3xNsFyR5JbarK\ndTnJetRL0nShY9JeEu8MouHt4o4EBgCLcZuj1R5EkiCFpiQDlICOVohEoioxG5U1itUBpMylO+vb\nhyMkSks0go3NFqcvXGbP8goLj9zL8IjEdCIqxQKVcpXFhWVuXp9ncHAUP0ggFxB4LloajCHdrdvd\ns/Q8lFJIx0EgQEqU1hilcaREJ7YE4bguhVIRLQTCdWmHKjUocpEaPMexleokxnUNQoKRBpmaB2mj\nEUJiEo3rupjU9lg6Eq0EnTAE4Wx5GGzUN1ndqBElCXkh6XQ6hM0mtY1V1lYWmRwd5sjh/VRLRXwX\nlIlRBqSw5Q+EQaAw4tZJ+O0EB914e2xi8m277i82soUrm5AzcOBgDX3G7Hw6CKP+HIc4i/MDmP0h\nfLFtDZA+99cw+uk19h6/RHmkzmZ/P9umR9muOeh6PNieFDNAUsfu6rvbEWc7qjmIhuHyEFwup9cN\nsaWBZWx6IErPpeuaWco4Uxt0SwQzMlcZm2oYxUoSByw+yKenrAJxB2ZBvZjj+w89zld7f5l//F//\nOUMHDcObYB6GUx/ey9fNR5g5sx8uYD2fqbHNXXgPGLy1yPgvGajKMgi51PK4aP8urNWwdDWuTPBN\nTLGt6FmFYjuh4Cn8XAfp6XTDnS2+eaw7R8StYyJ73JR/YDoQ1yEO2O6EmZ4T2/FqmgWUzKdN8kjP\nzfqHdFtdpz4Kt4zJ7sfN3AwrIHshNwzFQRjvgYkyXl7hFhSq4RLXShgvgBsOK68P8uzgIzSHSuw4\nNMtQ7zLRUEBjsMgLyUPMvjDNxoUyaq1j5Yq6zXbG7J03Hu9YYHD1+gz5oEDgKHAVOklIjEJqFxUn\nxNUeSn19BP294OVA1d/kSgZD2rJZGwTQ7Bg2FtY5/+xpjj56F6MDHpKQYi4gV8yztLLA6voKfb29\nuK6DwCCFAVeisIu9F3hIzyHBECc2Be9IUMZghMaxWkebyvcknaSDMuCLHE7gY6IYow3tOMQkCs91\n8fN5VNxAa4PrCKQj0CjiJLQfRge0Y1DaYByPJLGZjFjbLEYYJcSxptEIadabBH4OR0O72aCxtsLq\n4g2GBvq4+6799FaL5H2HJAox2iBTsyRjDJ4rkdpgSBDurYqEt4VfQNdHSQgmp3ZuOSe++yMrK2Q7\n5EwalU5s6RyX4BHhgQe+D6W23d+INLmgcNA6mySzidbFAoys0102IWflhGyi6rCdws+miOyeNrFg\nZZbtxT/r6thi29DGY5volz2n28kDs/7zeSwo2AvsgUMe3AMcwIKDNlZt+WrOyh3/Bs7tvYf/7aO/\nw43pCe77nZfJmQ5XnZ18kyf58vVfg6exJE2dKRKyReC9eGthuPXTlnFhNOBZrbcyGCWItU9b5IkL\nLgxAaRlGXJCBQFcdooJjOVeRSdsyG7ZsPrfGRrZQR9zasjnzn8jS+FlWIQN8C6ADMEEqPc9o45k0\n9Y2dMzMA3g0IMlCQkVx7wRmG8gSMjsBjLjzm4A/WKQ5t0rmZQ12pol7z4GWHhfYI3xl/ktOVo+w5\ncp7hh+ap+VU26GX2pWlmX5omejVGrTahvWlLMu+AnghvFncsMLhy+SK+m8NIRSwSlLHuf4GWKAPt\nTkyhp0yxv4rjByQ/ho9kjN6yECZdgL6CxJlfovHcqzx8/zEY6kMKl1yhwGazzpWZKxRLR/BjH6OU\nTevjokwMWuN6rq1mORIp7LqdibMSFeMKgUp5AJ4r0FriBnnwHKT0kAjQBqlsu+hExRArVBQhpbU1\nzuERJyFKxTiOQEiHRAu0ESgVkWhNFMVWMKMgSSTNZodOO8aXAZ506Gw2WF9ZYv76ZYYH+3novmMM\n9vfgCY3QCcIopNa4BsJUYRGpBKEV2th7s03z3r5sQUpj2CpH7tqzD8/ziaJ3HonnZ49uMl6WVm1s\nSctvdMZ5OXcfD3zkFYZfjfnc8+CWwPkkXDwwyescpnmtaovvWwvxbrbT+xkjusY2MTEDByr92i0x\nzSbPTnquy62Lf3af2dF9bjbx3W535GF3aFVgHNgLj7jwCcj9Wp09o+fo9VcJdY7LrT2sfmscvijg\nBTD/QXJi7RHOP3qE0R0z5ESHhY0R1l8ZIflaAF8FbrSwIKaWPqdMHvZevPXoBgbZohtZ++l2jNqA\ntYU+rl7fxYXyfqYeuoE/1kTsD6k9UGW1b4iT4THWb/TCDWl3/qUyBAL8ku2pECcQtuxhMt+NbExm\nWYvbzSEhdky7WL/37H672xe/sZ6fgYo3Zo8yIFwEBqAwAvt78O+W7HngPLsPX6ZAgwIN6gNV1ot9\nzJlxrq9O0WiXWX49oLFZoDPsc6NvnIYq04hKbJ4s0HzZwJU6tNZAZ74Iv3iHwzeLOxYY3Lx+jSiM\n8AMPKR0CmQetkUZgEsjnAwo5l95SgXy+QPim3LW/bZGYLXJKG2ZuLBO45zCH94EZoKdaoFCsMLe4\nRH/fPOMjo+QCn5zvkiQQ+NZ9MNGKONJ2KAoJxmYOhAGtlE33G8ARaClBesQakkjhei5SOmid4Pku\nCkW700EpcKVEqQRjNM1WghAGIwxGGQSSKFZo4RArTbMV0kk0SId2GBGHDpubLcJWbJ9nollbWmD+\nxgxjo0McP/4gQ/19OAJrXqTTF8TYXYDQKYASgEkQIm15/XOOXXv24fl3GjDojmxB3oS4DafzrHxv\nkr/6lV9l6ugsH/rvv0/v2SamBFeOTvAnxc/yvdUPYZ514ArYhfwBcF1r4BVnO/wFbK+ATDrYYHt3\nD7dOxJm2NNO4w99e/DN+xBt1qG82BtIJnRy2jrsT7nLhkzD2W5f5TN9/5MP8NTvja2wGFZ4JjvOF\nT3yGF8uPoZue7ZB4TdL4dg8XJ3ssxljDlg9eBW7WgbPYssgm2zu09+Jni2yBTQFk0oFGSLxkmL80\nQuP1CpXBJvIjMX3hCj3tda70TfPK0D2cO3OIhbOjcM6FTgn6ctDfA5UE6sYe6y2ImmDm08frbol9\nuxJQBkoz4uobx1z3Obcbg2/8XXdXyWEoj8L9HvmPNnh8+Dt8duDP8C4k+OcVq5O9LO4f5BnnEb5u\nPkbjdAleMUTf9VnoGWe1MEQSuSShQ7LWgtVVaC5BvIgdpJk08j1g8PcajfomG+uLjIxN4AsHa0ss\nsKV8q+cvFPKUSiX8oEjXPvQNYW4zzZmtLWuiBDcXVvGcyygVId0JfD8PosXVmRsUc3n6ensIPC+1\nALacAaMNMdZ1MEoSVBRjlAJlcIREOxIcF0d4aFyk9EkUSAS+9KxBozA4DigZ43geUdghQeEIAUKS\nRBGOaw1upLRdIBJjMx6xMoSJIko0RkInimk1QjphglIGoWMWF5eYn73CzqkxHnz4QYaGhvFcCcoa\nIBmj02yDAm1wpINKVNqcycMkDgb3Z7Ur+MmRXnjHzl0EQUCz8WbloHdzZAtxB1gFcx1O7oUvCX40\n8CGaD5R4dsdxpndcoUOeVznKt1efZP4vdtiFc8nA2JDN0I9gM/brwGwBLvfC5hDWj/g6Ww1ubrub\ngu2dWLbjvl1WoPt/f1JkE3oB6Ae/H+6H3CfqfLbvz/idjd9n+i/n4RVgCI5++iw9e2qsPjbIpVeP\npA6KHTidstUlNlXdaKfe87NY4JPZK78xpfxe/GyRZodMC+INdK1C80KFTnWYc4cPYAJNn7dGb3Gd\na42dvPraURZPj9G6UUYajb8nJt/TptTXIF9p0annaTdytK7maF0rYtYV1EPbb2FrvL3ZeMzip80C\ndYOJ7EjlrCIAp4gs58nvbDB0cIH9tXM8dOV5Gq9C8wRUj1WYHO5htdjPMwceRW4o9HOgThuaOWXt\nueM4LZ2sg97AEnCX2VbkvHOJsHcuMGjWWVtZYnRsArCCvexNkFLiei6FQoFyuUwu/+OAgT3bGLFl\n7S9SgIHBEvYSxc2FJdqtTQyGyakJSqU+1laXmF9YwnM9PNcB7aCVJB8EKGVwPMe2OVYKgbQKgTix\nnRAdl3zRRwgPIRyEcPADF5m2XDbGIFwfiUbEEcVKD6LZoN1sYgypb4FLFFu0HeQDWwZhWz2QaFBG\noBWEUUK92abZaqKjDss3Z1i6eY27D+3jsfc9SP/wENIPcB2BikAnEcpYJYQ2Em18DFFqc+viGB8T\ngyMystDPL/L5An39A6ytrvxcH+cXE9nkmGYMmIXNHvjmIEmc46UPvZ9TD9xHta+GUg4bl4fghwK+\nBZwC7hXwBIjHYyo7aji+otPI0zpVhu9I+M4gzHpsp16z1O1bWUB/lkU24xRk32fyxB5Lf9gP+8de\n50m+yfSX5un8T3D+HIz1wsCNmKf+h2/y3coHuHzsIGbChWsJtE5bE54tUloLCwYyN8XMdvY9fsHb\nE1nZqAHMW5b92Un0aoG58+M0TpUJ8iFBLqKxWWJtuZf2ZoGk7RJMh/QdX2H40Dx7gouMezdZiEeZ\nT0a4/uIUsy9Nkpztgwtpt6QtrsHbyeLv9kzoPlKvAulAIPCLEUPlRab9y/RdWMd5BubOw9nzMNJp\nsyenGNi1RmGogTsZkhR9tI4gvGkzAzpVH5iMe9PAlhDeuaTDLO5YYNBqNlhZWYJUBQBsEdSktD7/\nNmtQoFypgnDBRD/2mrcLbazLH9JhfmkNdeI1olgxtXsa5QVcX66RK1QQQtBbyaMVeL5rz1ESo2NU\novAdK0c0xqb9pXQQ0kULQeD7GOEiPB/PzxNGIUppXEcSJxotPBzPI1ew4zAOQ7xcHscoOmET0ERK\n4wqPWCviJCIxIBxrqhRFCc1Wm3pzk3azxdHnX2S9tc7RDzzEB99/nJ5qCddzcTxLpDQSNBqVxCn/\nAjLGu+UUGKRJaK2vQBKC42NSjsZP01b5p4mh4REuXTj3tl7znRNZ7b+O1QVKmD8MXxqAVx2SXUVW\nq0U7Vy8Al4B5DcckfM7Q97klnhz6CvfyMgVa3GCCHx55lBcOvp+okIM/r8LyLrad6LKJ+O2sxWf1\n28wsJiN6ZU5yrs1m9EG/s8x0fA1Owrlz8DVgeh0+8zKMz60xXpkjGG7TKZfT62ymrwvYyTYjr3UD\ngvdAwdsXWRarDazanf1CgFnMsbHksnGtHwoizU65sOBDVcIBQXFfg913X+LgwdPsXz/DZH2WuZ5x\n5ksTeLFmzRuikQSoG/2YZhvMMvY9zsZJFm/mA/BW5pWshBWw7ZmRSYJ9261M+ghH43shebeN346R\nixAvQ2MV1EaCX9cESYTjJ4icBkdZBUWygs3AdSuMuvk37/zM1R0LDIwxXJ+5itbW2MKArZtLYb37\nHYnv+xQKecrVKsLxMMmbAQNzy5ft3woMgkgJjAiQhKwurfHSSydJPIeRiTE2Nlpcu7GEIwWeKykV\nPMI4IZfL2X4JjgvCECUaicRxcyANjh+kmQGBxrH3Jxw6cYxKCYRRGGFUQqVUss6JCKQX4woHLSVJ\nojDSw5gEbawyAyyYiJQiUdZSeXOzRX2jTdJsMX/lNJurN9j7qY/y/scfIZ8PkI5In7rBaJvSk+nr\nCFmFRIMUGGXLG46JWZ+/QXNlnvLQBFrbZkp6i4fw4z/Ab0VgYLIkj4GhodGffMK7NrLUfrvr5xDa\nE3B6BE73sD0hxsAKDE7CB6H3U8v806H/nX8S/Xv2vzSDWIPwiODbk4/z+/fX+ErtU3BVwjcmQc9g\n658Ntv0F4O++u+nmEmReBWVsCSFzNjRbxPSOzlPzKzAEYxXYtQmTEsQQNHpdGpSIG16XYVzWWjoD\nAdnEm4GB90DB2xvdMsaslTLWE2AzB0mA7esurcthqx/G83DUYeDoKo+7P+T9F75D7gdr+K/VmTh4\nHX2oBGWXmw+NsrAySP2lIslqITV+0Wzv6rsfP8siZMXK23EN3njfhm0Xw8y0KPPMyNvHUHnoVIhb\nDivtAa6bCWrTFcQTMNEHgQ/BUY/o/oB6T4HOZoFk0cW0Y7Z7K3S7KGZH9/2+s+OOBQYA12ev3vb3\nQoDjSIIgoFQqUa30IITzE96u2w24lIRoINYa33NJYqit13n5hRPc7/pU8mWWVtYp5DwCz0WZPMJx\nkY6H1rafgJQ+UbuD77h4QQDG4DgejhfgCAeNxHM9tHDQ2qS2yh4agRB2oU8ShdAQ5IvoJCYMOyTK\noJQ1NfJSjkPUTohDjfR9OlELrSXNWovNpXWuXznP2spNPvqbv85jjx2nUMynHIWsgxMkibLfC4mQ\n6WuSAQPsvSFBCk3S3GBp5jKVgSFMukt006zI7eKtNLxu4AAAIABJREFUqQ1TNCCEbWmdxuSOXT83\nE6V3RmQkqzbbZMRMNphj25ugA9wDO4AH4fjE9/iHnT/jwB/OwP8DLELwkOGX/83fsPDoCK8+dDfX\n794HzwrY6Md2N/TYlm/BNmGve3LLIptC3ugs2F0/7dKGM4iVJY5gJ+NC+j8Nm/2/ApfDvfzIfx+H\nP32BwYWYz5wAhkF8Hl4YvJ9XOIq6GKSKi022gUvXIvUeyfDnHN2GXDFbXhatvD1wse/7KFCEgg97\nBT27NzjWepXHr3yf1e9B/VvQ/xj0xXDh+F4GDz1A/XSFZqEPnALoLMOU9fTIFvfuXXjCdmkge9zu\n+To7JwMTOaAATh84gxAMQ34I4eWsrNwIdOKgfEOt0cPcyhg3e8e5/sAEjqPol4rNu4rM7qkw1xyj\nea2MmpHWNZQGFhx0uu7xnW1mdLu4s4HBTAoM3sB+E8I2EfJ9j2IhT09PGcf10XE3z6B7UGU/d098\nIl2iDEYkSEcx0NtLYzWi02rTWNvk5Wdf5mPjEywMD3BjYZliqYRwXTw/wXVD/FzAZrNNzg+Qnp92\nGzX4nk8unycRkjjWeMI6JMZKkyiNdFwSpVFKE0cxGIMwGq2tn0GiNYlRGCFwPB+pNUrbsodCIv0c\nkdYksWBjdZ3GygrzV8/Rqi3xkaee5Pjx91EoFC1hUYCUDmjbETLLvBit7VcB2lhTI0RaZjAaVwJh\ni8tnXmF4x27Kwzu3GkUJIRBSdL2826/rFof49kmarWyDMd1/Fezbd8je5x0d3TuQEAsS1tmeDAUW\nERRgAPzdTQ5xlkNzF9F/Ad88absUPPVVmD4I9z56gh3BNa6P77M+MxuZO2IBu4i7bKc+s8m/u1+8\n2/XY2feZk1334WMfYAzYY+9xyoFJYR/GACs9Nvt6Cha/OcV//LXPUt7f4CP/4zcZn1+l0evyXN+D\n/L/y87x09n2WRzGrsbWTrDlUt6Livfj5R7bYZp/Dbi5MlqbvsX+XIIME6caItiapwVoISxq8FvSt\ngttKyOkOnoyQjgGZt2kik6X7My5M1uSogX3v69xqpV1g26Gw21kxMxWqAhUoDUPPCOwrw2Effyii\nmG9ADM2lCmE7QC971L/cy3cOfYi1A31UDtaoDm+yXuxlqT7MpfP7WP7BMLwcwUrm8Jm1aH7ndU18\nq3FHA4OlxXnazQb5Ummbe2rAFQ5KSjwJ+cClp1wkl8sT39KHp/vN7EZ7f3tXaoxCkzA1NYYc6eH6\n1RnmVzY4urLCSKvNi0lCGPXjePNoA57vU8jn8LAkwFhpfM8agEiDJRgKBykc20YZiOMYpQxxJ8R1\nXIQjbXLNtZ4GSaJwPd8ujqJjlRNpCUVI614opCBGExtJo9GhUWvTWK1z+cwZmutzvP+xBzn+8IP0\n9vbiuhJDguMIEIrEaAzGOinqtLSQeTsgbMZAaLuTFyCkwcPQ3ljl/OlT3FUZtNmMFKSlLaXQQmL0\nW93pi66vt6K9vfsPbXVyvLOjWxKY9YfPUqhZSUGABCE0Eo0TG0xsp6sOEKbrvKsTHJS9xBZAywPT\nbGchMkBQw07AGYFKpf9TxE7EBW61uM1cDpvYSXoE2A+lKTgu4XHgPpDjLUgc9JUAngN+AHxR8EL+\nMZY+MMR3Sh9idO88DUq8yhFOvv4wnT8t2ZbTm+tYm+XMh+G9+PsP3XV0747z2LHRBjRCGIRUYDRJ\nKGl3PDYcxXJR0y8kcVtCCG6c4GhlJ0InB+4gmCrIEggfSECHluWvNtJx28aO1RKIcsoRKNq+IkjL\nHTMdUJspETC1Oa4Ow84RvIfBezKiMr1BX3kJ2rByTbF5oZf4BY/maz38KHiUZ/Y8yMjIAiO7F1hb\nGmJ+bpLwdADPaji3Co01LDDIpIjvfC7Bm8UdDQw2NtapbaxRKpW3fiew6gJHCDzXJZ/LUS6XCfJF\n6utvLln829rs7hC2B4HQ7N41xWh/mbPnLvPszALPKUUwN08UJ3afJcDzJIXA9jAwjotS9tqe42CE\nSRUDtim0Iz3iMCGOEoIgIIojorCFdDzb88AAjsQRYJKYKA5RRmGEoROHKaBQhFGEFJJmp4OSLrVa\nneZ6i4uvv87s5Yt85MPH+eDjj1Dt78P1A6S0zZa0UbfbtiOE3Nq928OkUlBAguNKpEjIoVi7doHW\nvoPkJndj3ACtEwsMhEEjMXTTin62csDUjmmCXO5nOvfdFxkogO2UafciHsJajvBGgSv3THN5YoI9\nT9zgl25AswaDh0G/H87IQ8x3xi1vrw52cd0PDIIfgOdAbCCKsHn+m9gd+kr6+L3pMWLPocS2tryG\nXbSX0nuahNwEfEjC52Hnh8/ySPWH7OIKET6vHzvM88cfYXl8DL4k0L/vceXVu7h69wH8wQ5Jw0Nd\n8uEZYcHDlTq2IdMKt9ravhe/mHijxLWboLiO2XDRZ/Js5Ps43XuY3gfmKVRm2H18kXhkkNdGhjhf\n2cfM1V2sXe8lqSvIOTA2AP0GhnwoOBBpaCi4XoGbA7bzZ9jBLvbDUKxCXwl6Aqi64AloKthMYCm0\nzZMoAHnk/gDnIyHH9p3mfdXnGF+5Qf5ci0h7LPYPMbNvJ6ca93FeHsCcd+CCTz3Xh8l5tOt5kg1g\nZhOub0BrGZJFtr0X3rkeBW8l7nBgsMb62ioTkzv/1t8yL4NcLke1Wu2SLL4xtksIt4MGImVbh6Fi\no1bHnx5ncGKUSqlErlDg4sw8UZIwt7BIs9Oh0WjgOpJqpYqfK+J5BkcqIt1CORJZKNDutIkdjXR8\njAnTLokKTB7PAxMrkjSDIIXAdV1UkpD1YVAmJtYxUZQQRQlJkqC1QKmETjuhHbXZXF3nwqunef2V\nF3ni8eN85KO/TP/QAE5QAOFgB7W0j4vZqudnDpDGQqy0gmBpmFIoXGHwhEMirBuj1AnJ5hoXXnmB\n46NjGNexrZi3kECa2TDZa/nW4o0WyK7rMTIy9pbPv3Oi21UwS5euwfUqvOTw7GOP8hc9v85v/as/\nYfDgOtUViI5JTtx/mC/zcS6d2Q9ngJoCxmGwYrHBFHadj4DrPpwtwcIA6BKpYYD9f/ZBsQ/GHEsd\nCLBJgtk+WBmDeA4LKMbggAsf09z1qZf45+IP+Njq1xi+uUTiO1yd2smfjf0mf/D532F9ZQj+GHgN\nzJhLWCrZp7YE3NBQX8OCglm2HfLeuZrw/zLijSqBDLy2gA3YyGPO5Nno7eP0+w9ROrTOI3d32J2s\ncM4b4qx/kAvn9jF7bhf16wHU2xYYTA3YcXMAiz3rWCuA50nHbAeiVTDDwG4o9Vii45QDU8ImsVaA\nOWNvZzW7P4Gzr433q23urr7MP23/IQcuXoAXoREUmHtiiFPTd1PvVDjfOQDfkJhvSep+L3W/1zo1\nRgnoWmq5vci2RDazYX73xh0NDBr1TVaWl7Z+7l5Isp2u7/vk83ny+QLSCTA6sq6CyqbOraWQQNwi\nlXlDaFBCslFr0g4jqrkCk5Mj9PT30dNzgbOXZ2lGCfPzCyyurBMmUCz1IJwc/ZUiQiiCQCKI0Imh\nmAcjNUZ0iJXCde3uvFFv4zhu2jJZoxJIlMJoje/7gC05hHFsk1jGkMSGODbESUynE9JpR2yubXLp\nzOucOXWC++7ey8c+/gT9w4MYJwDpgVEkKnUuNPZVMEbahLXQllhgjAUF2iC0SfetBmkEwhgwGmE0\nwiiEMazMXmR59hIDu44Qy1TaaN+Vn+o9/XGdGkdGJ36qa91ZkU3EdWABFkbh+zlu7t3FH37iX7Aw\nPMKDn32BIk1mmeK75oP89dWPov8ygBcMqAQOVuApkB9KKB3YxC+HqLZH7XIF/T0fvl6EUwcg0dgs\nwCHYVYZHgYfB2RviFBTxqo95zYUfBvDsNGx4kK/AUch9sMWviy/xX934U8r/rkP0ffDyiqOfuEDu\nX/wHrvXv5AuPfR79Qw++14bZiO1aR53tLMQqFhRkvRne3RPxnRdZxqAJrEAtgLMlGuS5EO0nvJlj\ntribkdw8i+EwS9Ew5189RPhaADcdGM5R2Vlj8PgNJnbPs7MyS29hnQ4B69NVXus7wpk9B+H5PDzf\nD5UeGCpSPdxk6N7rjEwtMt5zk8ALWW/0srwyxMzUTuamJq3n1RxUizWGcnOMLCySf6XN5mnFzXMQ\nljuUBtcYUUsU3QbsUFAxqRBjDdQqqMh+ZqixDQiyBmHv/rF4RwMDgJk3tOPdIr+lO+0gCKhWqxw+\nfISotcHKwhydjq1X2n2x7NqdblHjeOOCprVhvd5hsyUpFaHowPBAlQ+870FKhQKXb8xRqVS5OrfA\n+QsX8ByN0gl7p3dSyAcEkSTnOXRaLeJQUykW0UahMIShscQ/Y3fWidZIIfFcH5UkKKVptmzrZa01\niTEoY9UKYRgShhFxHNNutVE3bnLq8nVuXrnInt0TfOo3Ps745CiO76KMwKQpMClSoiECjAVFIrNC\nTrMGckuZkIImLRAqzSBoW98WJsEVDiJucOHEjxgYm8Ir9FkfB6OtmVOaf3ir0e2F0A32MjOr/zIj\na4rUABZBzcKLe8CXXFo9zL99Yi8TO2bIiZD1uJfVE2PwDWH7CVw3MB3Ar0Pun9T4pb3f4FF+yBhz\nrNPL89MP8fW7Ps5azxAkPpzaDYQWFHwa/M91uPvu5znKK5RpMM8oz330YWaP7MeUJXx9ws404zCy\nZ5b7OUH5ax02/wi+umSpYB9pwPSDNzl2/BR/tesztMc88AVEr7NN5krY5jhkgOA946J3ZmQ+GCkw\n2MhDc5Dm2gAX1/dx7dpenhmPcQYS1JpDsuYSvewTn/ShT8AOh+r9LfZ++AIPTb7ABxvfZ7e6wnq1\nzLXcFH+87x9xZmUfhDk4MQADPXCoSO9ja+x74hz3TJ7gQfkiVbHBZb2H1+t3oaYc5sYn4SWgBT3F\nDab9qwzNL+L/TcTaSXjtBujBmPuHawzlV8mPt2AqgWpaKlELoC6y3cehw7ZfRkYOfvfHHQ8MZmcu\nv+nfhBA4jsPo6CiPPvYYfZUCr518mYsXL7K5uZmq4tLdb1oTz+wPje2hnIbtwNgJE5qdBK0lcaIw\ngaFaqXDsyAGUToiER7W/h7PnL3Lm7Hna7Q7NVsj0jp3kA59KIUcp51Grh+gYYhVjPInvW1c3gyBW\nijhOrFNi2CCK4i2wo7TtbmiMIIw1zWabdruNimM6jSZLC3P8r1/+On9Z8Hj6yDSf/OyvMr1/P27O\nXl+SYHSCELJLFSi2rm9MmjcRYusQQiClbfIkjSUmSgMOEmk0njRoE+MZQ33hMudPvcC+Bz8A0g49\nYW6FW28FHryZ3HHX7v1v4ew7NTKGeGqdzBVoCvj2btu45vs+Nyb3WqJ2zf6Z14ytu8ocPATiMxGf\n3vv/8a/07/PwK6/aNgPjcP74NxkZmef/+o1/Se3aAMyUoF2GD4D4x4rPHPoj/pH+Yx6pP09xPeLm\neB9fdX+Z//vjv83znQ/AkrD2xQHk6FCmDhuw3LLiyDoQrYBTMxRoIQOVih0y/sQcdoGBbR5Ftzb8\nvXjnRTYeU68DvQrhdfRai+hynqgRwDUXKi7UFTRaMBPDRgRjPuz2GZxc5YHcyxxbfp7CyStE80v0\n9NbZ1a85OH2OI2OvslQpsCz70CMluFcwvGORh5IXOXzxJXpmLpFrt9jdF5IrxcwXJ7h6z05as2Wa\nukQrKbCkBqn1VEkOuJRimMxD3OPCjhy1oTKRDmBFQCsbd01uNQLLxmG3Vfi7P+58YHDtym3TzyJd\n2BzXoVQpMz45Sb1eY7PRZqMV0Y5niNttMCGGGIHG4NyaKBBgNXt2dQuTmPWNGuFwCa3tLl8K6KuW\n2Dk+yJWbS9y9fxeVSpGXTrzMxYvn2axtMj62g8P79zPY30dPqUgh59LOK5SOidEIx8H3A1zXo9Xu\nEMWxbd2MJokjojAmjhOiMKTd6qBiTZQYGo0mnfomrdoazfUVOo11/uFYlfGD03z+U7/CsXuP4nk+\nxtjXxnEsIVIp9eZeA+nTFkLiuA46cZGOA3GM0BLHpGoJFK6wHidKG3yhcHWLC688T/+O/fSMTKSq\nCfFTFhPePPbuP/g2XendGplUr46t68eganBmEs4NW1DgkmbeQ2yzGgXDu+FuOLTvNT7JF3noP78K\n/wu0X4P8JOz/57P85m9/kZNT9/DdBz8G300/Sw8bju/7Lr/Fv+eDTz+L/FNgASaOrfHbv/NnNPaV\nufDYQdafGYEZYB2W6oNcK+8kuecFpu/WfPIZKOQgeB90DrvMMkW87FsOV5zJMjMDo+Q2z/W9eGdG\nt98AWLCaQHsVbpRhqQRuHpwAVMeOx7AISQF6y7DHYXh4iYfjF9l35QQ3n26zeVKxq9piaMcqBz5z\ngYf3Ps9J/yirTKBHArjPMNozz/uWn2fq9EkWvtWhuaSZONBk6K4OFx7ax5nD+1n44TitsMhG1EMc\nT7M0Okz0uM/4CBwdhGbBo36sytKuflpXCjDjQC0ri2SSxyxTcLvuje/+uOOBwcrKEq1Wk3yxiGUN\nGIQAnWrupefh53MUykUq/QP0Do8yNLpGrdZkOZrDJJlbQcbOF/YavNG9zxDFMavr6yTJKHFs6/Qa\njeu6DA32cWNxkcDV3HvXfnrLeb73g+dYmJ9jbXmDlYVl/o+wyR/c/z4qpQLlSp5iKW/7KQiBUtoC\ngCQhiROiOEZHHT594gR/tG8fYatD3AlJ4hiT2K6K6AQTh6h2HVSbgWrAsWP38qGnfomxvXtSvoJV\nGLiObXaUxBrRRafodilMtLZ9HbaAls0maG2sNbIROMLDMQZpbKdHz5HpvcQUPGjpNief+z73feAj\nVHr6EdiN4VszN3rzuHb1EjNXL/3dLnJHRMy2nDDjHCyDrkBYgDDrJ5BJ/I5udTzekb/K3fWziK/D\nKz+C7yk4uA5PfB32fOoS+4Yv8t2JBPpcq0DcD8fcU9x79TTyj+Clp+GqgkdOwdiI5n2/+yz7R87w\n3K4Re2sXYOPEKN94/EmOPH6aB37vNLueBYoQPenwlckP8T0eJzqZs4YLSdYaulueeWdNwHd+ZDLG\nlv1ed6DTgE4mb/XZauNMP1balAfX4PiKXNCmSJtqPSFZgYKj8aME30T4bogrQeCB70BZEAQhfZvr\n9G7W2LgByRyU+mJMc5OCbOGVQxxPgYLweg71nOTcxEG+2fMUO/YcIPA7tGXAQmmYi+t7uXlhEl4G\n5rP+G5lnxrtbjviT4o4HBuvra2zUa3iFfGqsI229vd3eMtxJkoR6vU69Xgfp0ds/zOBIndrGBmES\nsp3g1lvfZwoA0p8AkiRhc7NBnBiUNiTKggPp+gSFEv19vaiog0/MscP7GB3q48WXXuHqtSW8pQV2\ndBq8+MKLeK6D6whKxSK5wPII4iQmUdYnINEJRhgmwjZDiwucTSJMkoA2FPMBrhDkPUlOaHxP4hYK\nTE/v58iRwxy86yB9w4MYx0cgCfxcalVs0Fp1gR074LuBwRYYAMtnUDo1QJKp9NLyEQRyuyeFa3As\nMQLXRJTZZGn+HJdO9XD04Q/g5avobSH9LWFBh0YphdaKpcUFzp89zbmzr3HxwhmWFudZXl5kZWmR\nMOxgjOG//b1/8/YPonddZLXPjCRYY9tjwGObINXHltkFabHKykPQqstsVm8rT7Y+CgFQhAqbeLUE\nFuCKshWKnW0YW4CyqlOgZf9XACdBf8Xlyzs+hZw2fPSpr7LnA1eIHZeX3Xt4Wv8qL/7oEfiOgCsG\nq6PMOtG9O41i3ovsfctKC1k6vtscK5M6ukDFtgVvQpy4bBYL6L4Co9UWfl9EfgI604J2T54NemgT\nYNDWOjlObZMDgRdAWULigJeHsChQniTBRdtmL+jzHvHTklP338vCw+P0D67QM7yKiiTLmyMsXxxi\n5flB+KGG5Yz4usm26uDOHY93PDDYWFtlbW0FIySVSgXHcdjY2KBer9Nqtcjl7MIYRRFKWZ5Avlxl\nZGySzdoG87Od1AYYMD8OIdpMQqvTptlsE/c4lhiYxGgnQDguQZCj2WzgSUM179O3ZwfTEyPMLSwz\nc22Wz1+7QaHWRsUaHUnWGpskUYzRBiOtxM9IcAMXz3eZy3n8y30T9AQBOd+jnC9QLRUp5HP0lkuU\nPJ/egT76B/uZmJqg3FPBz/kkjoMn3XQBF2kpIVVgiNSs6HbPMDUvAlJZpEEIB+l4OI5GG2PpYEoT\niwQjY1xXY5IELQyOKyk4ilLc4OaZ5ykXC+y79zE6xqfdaBK1m2xsrHF95hqzM1eYnbnC3M3rzM/d\nYH7uOvX65ts+Pu7MyHbX2W7NwS6w3coaD2s72LZz3RzMdHbyWmU/O5+4yV2vwugF6B0A8SRc6t3F\nRfbAddeKATSwBnOMUZ/KUzrW5tEzsGcTDkwCR+CGP8GyGrRlgQ6wVIevlGmJCv/p1z7Hjw48xmB1\nkUS5LCxNsPTCBDyN7QzZXMCWQzbZNs55L96dkYGCTKkQsu2/0d36uGGPWhlmNCvj/ZzcfQzZq5g4\nOk81t0ky6bE61celYA/XZ3dQqxUwpgU1AdcKbOzo4UJpD0w3UA/UkasJC3cVWJucYF6NsjnbQ2fN\nxSQduKkxLcWyrrAsBshPtOkprUFoqN3ooXUxB6dDmFmBeBWbMWiwPR7fAwbv2mi3W1y5dJGxSBGG\nIQMDA1s74CxrUCgUkNL2TugfHEAlhiDwCaMO7XaTlYUbKTM/24XdLqysrx2GNFod4qSQeg3EGKOQ\nODjSwSiFi818FXMuA9U8UxMD3HfsAOurNZYW11hZ3mBlZZ1ms0XUCREIHFfi5X2qPVV6h/oplYvk\ncz7VYp5iPofvuuQ9D1dYs6NCvkDgl8gVCwT5AOlIpO8iXAcppeUICPtVa0s9JFUKGCQIiTGKrR2l\nMUhjUAa0TpAyKyVYj3IpfAQJibTmSlpYBzQpDEYKEgObHUUzqrHeMVxZvsYzp87iVv6c5fU68/M3\nWJi7ycb66pvyG96LnyayyThrhtRt3pX9nFoqLwGvwoVLh/jSkU8w+itLHB05y8hFhRmFq4+O8MXg\nk7w8+xCc+P/bu9ffuI7zjuPfmXPZC+8iJdtyZMqOXLeVLQdGk15cGEETNHlR9G1StG/7pn9T/4IW\nDewABeoETYU4qWPLqS1bVkhJlnjnknu/nvtMX8yeJa3areC2iC0+H4BYYbkrLqHROb8zZ+Z5cJ0b\nRxpuwjuv/RFvnvsuP/i7N7h4MeHiEdhrcPSDc/zU+w73N3/XLWLsF2B2YWMdBnXyjRq7LzzP7vnn\n3UfcBz4GbgLdI2AT98FOL/ISX13l2JseU2aPipMGSRHQh+YSfFCwtXKZH//OX7LxtRd4+Xsf8tRr\nDQb1RY79C/y6+U02373KeDfGFB1Xp+DdCjtc4id/+B12v3Wey5fuUE/GtJYvsh1c4fbBixzffopk\nu4BkAHkEUQTxItxbI52r0AtXwRSkI6A/hFbLrYw15WxB2Rzp8Q6qj30wALh96wMWVs5TFAVzc3Oz\nKWqlFHmekyQJaZqyunqOsL5AkubU5qqYomDUHzIaTkgmA2xhwH7WfU49rXYA4yyjF8XkRpPHGaae\nYCs5Go12jQWmVREUvudTCQJ0EFIJNUvzi1xeX6fIC6w1ZGlKlhRuuj/wQCsq9Sq1udq0s6ChMq16\naLLc7Z4wBg9NJaxgdRXte2hl8bWloiHUyt3TR6G9AKWmjZG0mk0TW6Ux1nVzxBg3Y2FyV69AKQrL\n7BaCUWa6i0FRWMNoNKY3GNJqt9k7anLQ6nHQ7tHoDOmOI7rDmP4keYyz9pfRwwexsjrhtG1u0YJ3\nVkn/cY4fLfyQ/voyf/rqW1x89YAu53iXb/HP3b+g+/oTrupgewz9OrzlsXntG/z9n/0t/ReX+OMX\n32bJ9NjR67zJn/MPo79i/OaSCxPjPnAItgP7l2H/PPwigNo0kA4NjGLcDoQd99rZgVhCwePBPvT4\n8PPTYNDvw4MR7QtzdC5f4zi/wHBxkSfPN+ibJVqjNbbuP8fRB+dhZ8/teDhWcHOO4/kVblx8he76\nEr0nV5lXI3aLS2x1n+X+vWcZ3lhwMwB5G9IRRCPoT+CBpaBKpKehxcR8um7GAHcL5KtfvOhRnIlg\ncGfjNn/y7e+TZRn9fp/FxUUWFhZIU7e/H3Bd/8jxfJir1qnVapi8IJ1EROMxnXaXQe+YJDp24UC5\nLYzKlqd5hcLVEegMRqS5xQaaIi8weYbBByxae+R5TlG4LoVKKXzl4XkB2nMFl7BubYDn6+lMQ4XC\nGApboDyNmTZ98PwAbVzNAOMplHVdGCtBSBgErg+B68GIrwyhdtsHtdYY7b5nrHWLA7EuFyj3+1gU\nVqnZc67BgXvMioLJJCaaRNzfPeTDO9vcurfN3d0GvfGE4ThiFMUYOft/SZULEye4Nsv34JMFeKNC\nP1rjR9/5G9585fsszfeJTI3uh0/Cv2r4F+CjDLgP+TK8tQ4L8MvRd9n89gtcWbhHXY1oZRf46OAl\n7Bt1eB3YLHDbEpq4q60esAzdBehWccFlgjv49qZfQ072ij/eV2fidPlk7a7QhyHcOo8dr9B/epXb\na9fYmrtCklaIxxUG2zXYjuB4AEUTegqKGmNCDtpPM356md2VZwmCjNFwnkF7ge6dRbgbu2ZHZp+T\nmhgd3Mk/mM4Ml5+nDAflWCzXujz+zkQwaB0fcvXqVdI0pdfr0Wq1MEVBlmXMz8+zuLjIaDgiGWWc\nWwqgEpCME/xC4xUpvpezt9dhd3uJVlMzHraAbLrmALDT8sBYPN8jSVMyA1Z5GFOQ57nrdOj5eL43\n61/A9Ll6rYqvQxSWMPTwtEIpMy3C5KFRriKhDkFBjis+pD2NhyJLUpSF0PMJ/QCtPQpryE2OVoow\nDAjCCkprcvUZdRzLmYIyuZcP1i0A3N5r8LNf3eD6O+/z7+/fJk5SCuNaPcu5/6uqLIg0wM3ja/jw\nGjQq8J5ivL7GeH7NHQ93gQ07rUJ4D3eSb7nnNplwAAAIm0lEQVST+o8vwJ6idf0SrfVLrgx9F7iD\nKySzYaHYxM0ClHXky7q2Pm6tA9PPUm4By5FQcJacrsFhIW+5f/otC9sB44UFxk886XoyxcDEQC+C\nfhd3Um+7W1ujCvFolXhvmfbaCvefuOQ2PfQstA00Emj2cDWSjzjZfnjqdka5iOpTdRhO70I4G85E\nMIijMfV6jYWFeRYX5zBFTp4WoHyCSogfeqwsr2Bin0lhaGddIpVD4qHTgHo2zwoGPE2lkrG/lzMe\ndk+qKALl2dQYS7c/YDiJyGtV3H34gmw6psqiStZaPO0RhgFhEBB6AVoptAdh4E+v9F1tgXJNhFEW\nq6DiB27mwFhsYfH9EHxcd0GtXX8zA0VRTMNIgLHWbTVUCq3dPebCGCaTmEkc02h1eO+j27x78zbv\n3dqg3RsQJQlxnJAXZ+c/xNlRLkwsF3ROV4wfX4Tmk+DNuaUIBjetao6Z1ZKljdvlkMNwHX6+Djdq\nbpNDgLsQ6wFZB7dPYZ+TdrTx9OeOOAkF8OntiI/3VjDxecp//4F7tNP6FXEdmh70NeTW7VpIYtxJ\nvYkbV9PBmvTdTFRSg24AnoIkhyiDcYQLpq3pzyjbiMPJeofTweD0osmzNRbPRDAYDvp4NqfqhShf\nExUFqUqxqUEZd+JNwoxW1uVo2OWod8hxp02r16TV2qfbOaLmLbD2zAVqFYu1BY1Dj1G/CzbHKgN2\n2lfAFERRwjhKyIqQwhiwYKZFgwI/JPAD9zPThDiuUKvkKC/A9zwshjTL8H0P3/dRWqE9H6vKqoNu\na6ApDBiLVhrtu+2BnufNQkSR5xTGkGQ5vWGbzmBIs93j3s4+m/d3uPNgl8NWh8FozGA4ZhJL29qz\npywSVK78nx5o7Rbkc7jDQ/n8cPq6Ee7gOmF2greHMDkHkznclVcZONq4K7qyjnw5C5Cfet3pA3F+\n6s/i7CkXy5aFkUZgW5BUIAlxY6YstRw/9DWtlZB2IK3DoIYLrx4npbPLcXt6ZkrWr3yWMxEMBoM+\nRWoh9OglQzZad9hqHlKNarx86SXOBcs8GO3zH3ubbDV26R8f0+736aVDomxEOhpyZf4Kl1eXWQwq\n2Nzg6ZA9s81k2MEU7t6TxqDwSLOUbn9AdmHeNWOyrs9BURRo7eF5PmFYoRpW8JXGmgJDRm4KlJ6e\n2I3BZ7prgNkKAJjWXQBmV/9ZXnDc6tDq9jlu99jaO+D+zgE7+w2O2z36ozH94ZjheCIr/sVDynBw\negahjbuaL3cylFvMyissw8kUa7k2YJ+TggUGFyZSTirFlTsLyvEnB2Txecop/NO1D1zjtU9XVDw9\nxV+Oy3KsjjkZw2Xn0bKQkpTT/p+ciWCQZxmbv9ngxW/8ATvHh7y99T4Puoe8uPJ75H7BXrfBjd2b\nfNS4y3A4oBoX5EnEIBmTVwzecpVgaY5zF9YIqhZtwBpNGqc08ozJyE1HGVwxnyzP6PYGpMUTbgW/\nVYR+OJ1RMORZhjddE1ANK1S8AE8rtKemWwndlJbSGqU8rHJBodnpcdTq0jhusddosr1/xM7BEfuN\nJoORO/GPxpGbpRDikZUFj8or+ekisE8V9ioPpOXUanmfoZxRKIvVnP47y/eV75VQKh5FOXVfroN5\nuIOK5b9O75djMcaNw1PN3WavPXu3BL6oMxEMAH759nWeu/oS+90mDzqHjFXO4toymUr5eOcOHx1u\n0k9GXP3aFV5auUy7N+Df7r7P1uQAG2aE8zWWVlepV328woJRpEnKZDIkjvrYIp0uP9QYqxjEEXFh\nKKY1AnzloacVAd1Vu8IUBk97BEFAEPgorRmMJjS7fZqdPntHbe4+2GPjwS73dw8YTyLiJCNJUzn5\ni/9j5UGzrHvwsIfXmZSv17gD+OliNacPwLI+RXxRZQD4vO/9d+85/V576ks8ijMTDN658XO+99c/\nZL99yLjIubDyFM+sPUMcxdxt3KNTDKnNzfHK5Zd5de33Oep02Tnu0Jj0yIKUIKwyv1BnpVLHN4Xb\nYJWM6Q+bdNv75EXZDsiCKZiME/LMlaDNi9x9T7v6CZM4dVP8UcJvtg/Y2Nrl5uZ9Ptj4hHEk9/rF\nb1M5ffuoJKCK/09fZHzJmPzfOjPBYOPjm2webXLQbZACXz//PJfqT3PY2WIYj0jDgrqnXSEfawl0\nQK1So16dJ/MM9eo8C1WP1VqVQK2RY5nEI1rtA7buV8ljg6JwdbuVRxRltLsx27bggYnY73S5s3PI\nTqPFJJHOcEIIIb6czkwwiKIJv9r+Na2ox4WVFZ479xQL4RxNrSGymMQytBE3G7dZrFbIYs3In0DV\nUPEVQWCoVRTLlSroClGe0esvUq0G+J7FTGsLWGux5PRHTV6//hO3ruC3/csLIYQQj+jMBIMsTXkn\n2WHVr/Da4gt8ff4JKr7PUnWeFX8O02sQac3twz363RE1FbA/PEKTkR+PaO5M+OmtIyaHHfb2DzjY\n26HdOiZLY7I841R5oBnZASCEEOKr5swEA5sXhBPLUjjH5fPrLFXnCZTHpfMX+eZz17h7/T4btz6m\nG6V80hlhxxOiwYh0FGGzgnuFcbUIpM6vEEKIx9iZCQZYiK/fg3XL+7s/4xetf+Lo4ICj/T0O9neZ\nRGNXNEiu8oUQQpxhSqa7hRBCCFH6rA3LQgghhDijJBgIIYQQYkaCgRBCCCFmJBgIIYQQYkaCgRBC\nCCFmJBgIIYQQYkaCgRBCCCFmJBgIIYQQYkaCgRBCCCFmJBgIIYQQYkaCgRBCCCFmJBgIIYQQYkaC\ngRBCCCFmJBgIIYQQYkaCgRBCCCFmJBgIIYQQYkaCgRBCCCFmJBgIIYQQYkaCgRBCCCFmJBgIIYQQ\nYkaCgRBCCCFmJBgIIYQQYkaCgRBCCCFmJBgIIYQQYkaCgRBCCCFmJBgIIYQQYkaCgRBCCCFmJBgI\nIYQQYkaCgRBCCCFm/hMtqhTOrefrNgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABL4AAAJzCAYAAAABRNpcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvVmXJMl15/e7ZubuseZWudTSe2PfCBAgCYIYgAuGGnJm\nNDozH2Ee9axHHWnO0ase9A2kOXrVA0eaIw7X2UgBAw5IggQaQKOx9obeasvK2Nzs6sHM3D2ysnoj\nmt1Vbb9TURHpEeHu4Rlpy//+7zVRVQqFQqFQKBQKhUKhUCgUCoUHDfNun0ChUCgUCoVCoVAoFAqF\nQqHwTlCEr0KhUCgUCoVCoVAoFAqFwgNJEb4KhUKhUCgUCoVCoVAoFAoPJEX4KhQKhUKhUCgUCoVC\noVAoPJAU4atQKBQKhUKhUCgUCoVCofBAUoSvQqFQKBQKhUKhUCgUCoXCA0kRvgqFQqFQKBQKhUKh\nUCgUCg8kRfgqFAqFQqFQKBQKhUKhUCg8kBThq1AoFAqFQqFQKBQKhUKh8EBShK9CoVAoFAqFQqFQ\nKBQKhcIDSRG+CoVCoVAoFAqFQqFQKBQKDyRF+CoUCoVCoVAoFAqFQqFQKDyQFOGrUCgUCoVCoVAo\nFAqFQqHwQFKEr0KhUCgUCoVCoVAoFAqFwgNJEb4KhUKhUCgUCoVCoVAoFAoPJO7dPoE3i4jou30O\nhQcPAcQYJP3srKWqHARlvV7jQ+heq+n1VgRXVYynMwiBxdkZ1hhcVXH99PY7fMb/0zu8/0LhfuBf\nvdsnULjvEEQEIwZJj1WVNrTE1v1+pPQHhULpDwoFKP1BoQCq/7O83vP3jfBVKPw8cMbEmxVqVzGf\njtmZzfCtxxjh+NIRlXO88OILPP/SS9xZrfGqhDQvMgCq+Lbl7OwOo7rBGksInqaq382PVigUCoUB\nIkIKb6THQLrXJHYJ0j0uFAqFQqFQKDyYFOGr8EAggDFxciNEgap2FieCRTEolavYnU3Zm4zZm0+5\ncnLI/sEB6zbwo588TzUas7t3wK3bt3k+BJw1WCOEoJ0hQIxAUATwrae1Hq/RFTZqGqwxWy6xQqFQ\nKPx9IoiYTujqBK8BqnQuX1Pa7EKhULivkPSfbG0TjBGMxHZfJG5DBO3iHnG7agx+eB/wXgkhdKGQ\nyLlgSImNFAoPBEX4Ktx3NJVj3NSMakfjDBICY2s4vrTH7nSKCYHQrlmt1qwWC1arFaowne+wv7/L\n/u4OR0eH7OzuYozjuZ+9jPqW2WSCbzecnt6m3WzwPiACzhlolaAa02MEkNjBrtYrCEpdVbiqpq5r\nFsvlu32JCoVC4X1ECnoMBC8AVUW1n7FsPUcKmIjBI5SZTaFQKLy7GInlRKKA1QtZRgRrhNoKtTNU\nVqitpXKGyhpETHLzRjUsKARVWoVWhY1C23o2bUvrA21QWq8gARVP2CQ1DOj6At0W1koPUSjc/xTh\nq/CeZlw7dkYVtXgeOjnk4x98kqsnRxj11EbQzZrrP3uRdr3m2kPXmM7m3Lp1yiuvXeeV6ze4IZ62\ncTSTCfuHl9jd3WFvd85sNsMax3oTWNw5xRmDAW7evM1quaKqKipnWbceRXFOaL1irUVFqaqKZjRi\nsVzh2xZnLWKEuqqK8FUoFArvMBelMV7k7nozGBGClmlNoVAovJNUNgpVlTPU6b6yBmfjz5PaMqld\nF9huKse4tjSVUBtAPaoBOpOu4Inj81W6rb2yagOrTWDZxltoPV49EhRR4o1Y89HkrkQDQ3lLBvel\ndygUHgyK8FV417DGYK2J98Ywn0549MoRTz50mcs7Y8zyOlcv7WEFnnn6++wf7PHFL3yaRx5+lFu3\nb3N6esZrr77K08tbrJaOS7tzdvb2GY0aAooaYTyZYOuKnd1ddvZ2qJuaUV1jjUEwrJZrVosznBFu\n37yFb5Wmqmnqmulkytor69USsQbnLJWrccZQ1w3T2Yy6WnK2OGNUN+zMd7h5eht4pwvcFwqFwvuP\n3tH15oSuXMD+3i+gc4qhJd2xUCgU3oicQijD9EFiuZHGWca1Y1xXjOooWo0qx6iyjCrLtKmYNi4K\nXI1jUjvGlWVcGWobdxhCwAdlHRSvgaCBEALBt7RtvnnaoPigbEIgSHSLOQMBwWMICl6VVg2VggZF\ng6DEtEaPIqrp8wT0gjTHtxdKKRQK71WK8FV4xzEizKZjLu3ucLi/y+HeDod7O1w9PODK0QGXD/Y4\nPtjlcG8eV0y0lvXylBd+/DTBbxiNxszHFc8/9wLPPfsse7t7CIIzwrhp2Nud4+eBw6MDxtMZtnKs\nN2uayRivglhH0zS4xgKepjJY61Av3Lr1Grdv3UDcmLYNjMYzdqd7VKOaqqnxIbDZtPig1HVN8Mpk\nMoEQWN05o24a1iuLc47xZIxz5U+qUCgUfn4IxhiGU5C36+wa7DLObVK+ozWGEEqR+0Kh8P7GmRTk\ntYYq3TtrO5fWpKmZNhWTUcWkqZg0jmntGDdRwGoqS+3SzRrq7OwygrOAQtCAhlRXq3vso7gVQhKj\nFGvi66M7SyEoRtLNgFEIAtYIVsHlnxGsKsYoxhichQpDUCFoS0gyl9EAhNcPjhQKhQeKMksv/J0x\n0ufiW2s5Otjj0asnPH7tCo9du8LDV444OthjdzblYD7jYD5m0tRxNS1VVANt2+K9p21bVAOVnXJy\n5SqvvvoSxlU89sQT1M2I1XLF9VdfYTQaYYi5/rWzYCua2gGKEWE6nTKaCYgjkOtyBUJQqsoiCDdv\n3+a5Z5+F0HJ4sIOpGjAGcQ5r56xXC265Cp3NOF2sqKqGEBQrBkXZtC1VE1d1FBGWyyXr9frd/nUU\nCoXCfYxsubq2t/3d0FSnsfuZ6C4wxiDGoMH/nY9RKBQK71XqyjEd1UyahsmoZtLU6b5iUtdMRxXT\npmba1NGR1SSBK4lblTVYA0YUQWP9LRPdVpLG86ETtTSKWhogBHwIKIqB5K/adlb1t/ia/HzeJpLc\nZrlwfTq2D7m8lyI6cG1pjG6IxOCJTUKYMVFEU4UQNJ7XlvhVkhsLhQeVInwV3pA8UbDGMBo1TMZj\nppMx47pmNqrYHzec7O3w6NVDPvepj/HpT32Spqm7zibvQ0QwQGViB5mjO96Dcw7V2Cl5rxjrmO3s\nsd5suH16m1Ez4pGHH+HmjeusVktCu8E5R7vZ0LZr6moMqni/AQLj8Rg1hk1QUEGNwYc1q3W0YxOU\n1dmC2zdvcPnkMg89cplV67l155TVeslmvWazWhGCx1nHaCRYVzObzwnec3Z6SvCe9WrVpcucLc7w\nbVu6zEKhUHgLdOmG70BiyRumOxIFsej6KsJXoVB47yNpWcO41lJsN40I46Zmdz5hbzqN97MJe9MJ\nu9MJu7Mx03HNuIlC17iuYlpik+6txQLk1MLg0RDwwYMqSuidWeoJ3pOLbWke0/uYmiipzdWUQJgX\nE8kYGchegyfuDnD04lV+vrsZAa+gIa7SGJQQFFXTt/lx+ca+XpcO9qvJceZ9ev0FKwAPtpaxfaFw\n/1OErwIAzlqaJq5KWFc141HD/t4uR4eXOLp0icNLe5xcOuDq8RFXT464cnzEjjO8+uxP+OmPfoj3\nLdPdGY8/+QQ7O3N86kiMMV0nBcBg2fjhilv5tdZagCh+uZrdg0M8wmqxxFrL/v4BhMByccb166/R\nbjYAzKZzmvGYNihBDVYs67bF+w1BTIxOGYM3JgpkG8+tGzeYzyZcPjlmOhkTzhZpEAGjUcNsNmV8\nesb61p1o9a5rptMpm82G1XKJX5yxWN/GNU0U2lKUq1AoFAqvjyQXl019REhbh/2C5CnHz1EPO+/6\n6s8nC29lalN4NyjrxxVigLmpK5qqoqkr6nTfVBVN5ZiMR+xOJ+xMx+xMp+xMxuxMR8zHY+aTEeO6\npqpSmqIz3cqHzgqVMYghiliaHVGBZH2Kji0fxf/srAoi0ZslUUAyqY1U3XZswVAgkk7wurtq1hsj\nEldYHCS3d9uz28sYg0kpkbHGmCIp/dEYsMF0qY6i2glyAd1Kc3+ds9g669IzFAoPBkX4eh/S1DW7\nOzvs7+2ytxvvjw8PuXJyxMnxESdHhxwfHXKwv8d8OmU8HjGbjBg3DU5AvMevl7zywnMs7txhNp1i\nrbBzsM/e3h5N07BarTrx667UEsAMBK9ukiMxVVJV8UEICFXVMJ/vEryyWS0xwHgyQUVYvvQKi+WS\n8WyH6c4eo9GM1WZDG9Z5ra/kOotdVlDFVRUi0LYbNpsNu7u77O7s4JzDVY66rvG6QbHM5zOO2gBi\nuXVnQV3XXRHPumlwC8fZYo0JgfV6jfe+CF+FQqFwT2TL/TuM3qdyLhEd/HCRXeCtHvUi19cF+zNi\nCFpcX4W/D847HIcywflxRPlOPijUzrEzm0TRajZldz5lZzphdzZhPp0yn4yZjkdMRjXT0YhJ0zAd\n5duIylnsINXPisQUP2K6YSTEVWqzo0lDfBy0E72EgejF8JsYUwBz0CEHg/Prhs3yebJYdhHD7W/G\nhXuvfeRMkqABk+szqmItuFSl0QeDcWAVbADxw+ugW/uSfCGLrFUovC8owtcDTu0cD127zMNXLvPQ\n1Ss8fO0K165c5uT4hCtXrnB8eImjSwdMJmNIq7SogrUxCt9uNkguJAngPfiWWzde44VnnwUJHB0f\nUlWO+d4uk8lkq0O5qHMLqfMNKd9ftzqieGwfDKhBUJqmYTKZcBoCm/WaVRugqtk5uIQ5bWhGI5pm\njKsaAoZ162l9GOwzdvEiUFmH9y2qMN+ZsYNjOpngRahdhbMW788IQbDGxufUcLb6WbfqV1BNzrgK\nOVOC9ywWC6y1jOqGs9USXwSwQqFQiBOoVLNrO10lprvE16TJUJq4qKSp/z3ST97S8e/RD1203YgQ\nyvyn8I7jzt0DVIPHLf1E3BP/BgJ3C2KF9xqjuuZof5eTS/scHxxw+dI+ly8dcJLud+czKueorMVV\nhrpy8WfncFZiDVntBSpU0RBSKxgjArk2bq6jFdR3P0PWdvr8vmTWyl6tC11Y+Tmgmwd0T1zIvdvl\n1yvH+Hrt8fC57SqPfT+wneqYAtwaMKkIPppXmRweQ7cFLwMSBsFxEbxI0b4KhfcBRfi6jxk3NdPJ\nmNl0zHwyYWc+4+TwgIcuH/PQ1RMeunKZq5dP2N3dZTyeMJlMmM5mjEdjnKswru4KUYqYWI9LtROG\njDVYQEOA5N5S37K6c8prL7+EdYaTKyfMJrG+lqkqQnqdTbW9gu8jlX1MJU1vJDq+MKkGgIIPgWDi\nttAGRGOH75xjNBrRNA11XQNgrWM0HhN8oK4rrDHYtAJNCNpNqjTEypfZU6AKxhl2d3YBgxiJkbB0\nXsYkS/hKWa/XsWD/0SG37yzjZ8qiVup8vffxZi2z+Yx6WbFYrd7x33+hUCi818jL3MtA6NJuJrQ9\neTEpZSW+SAmkVBTpJ2uDt739c8rn8TouA9WYDk8o0f/CO4VNNyEOvytiSDFvs0RxK3vjPbBJ9z5t\nb++x7/Kd/XlirU1j7AmTUXRgTUYjdqYT9ndm7M/nHOzMOdidc7Czw8HunP2dHWbj6Moy1mLFYNKY\n1BrBGJtEpdi4xULvSaRR+vG4pvaIbe1/YLyCVOx9q03LP59vwoQYTcj1tobPd4+lvw1SzS9O9pO7\ntpznIoHrbTm9unPTbYewEVQFIaRyXYFkbEvuLjrRkDSut2oIEtL11s4BJhIFRz8QyPKhf/5VJwuF\nwrtJEb7uE3ZmEx46vsTVowOuXT7kkSsnnBxdYn9nh0sHe1za22d3d05d11Suohk11E1DXTcYVxE0\n5uljLdZarE2TjSQHERTUoyHWv0JbpHKIQNi0qLZYEdZnZ9y8/hqEwMHBPnXlmDR1KlIfI06GKFQZ\nMbSqqSOPXYhJkaigARWPSo5Y9dGrzKZtwcdi8cYYmqbBOYtq2r8xUXBqYwF61RCPkWqFWWuQDfhh\nWmXQFPESmlGDYDoHmohQWYe1jk0b0oQsOrrmsxnG1azbJOQNolKbtkWJf0whBKxxQBG+CoXCg09M\nsRGctUhyK8Q5R58aszVlGri+jInR9q5Qs8b2Nk5uhlViBtOv7IjIdWbe5GqPkiZ03TxqcC55rmjE\nlHTHws8Re8HPNXG0UAOjdD8UwLLwtSaKXIv0eJNuhrsJbAtmhbeGDMQlpakcV4+P+MSHP8gnP/wh\nHr16maPdOUe7O+zOJjhrupbJdu4jE9syE4PIShRdQnZfaf7t9HncAohKaptC1w7Fd8hd//e8efHo\nInHqrUn72YmVfpL+dpHC1q/I+/pHeL2skOF5bulymvsNQ1BSfS+DRPtWqv0lmJBWmTwnlBlVxCj4\nXGYldH3J3UmcRUguFB5EivD1HmR3NuFjTzzMJ598hE996DE+/sQjXD0+YDqbYESwrmI8HuPqhqAS\nKzmKwxiLiuBDKhRfubhEe+pYjI1RKCSKPcZoyuNPHXSIkwJJFuvgQ+zIVZEAwa9ZLc4gaHKRNcRK\nXCmO6VO0KgA+RAeWq7vaV0HjDcJWR+rTKjG5wL0xhhDia7wGTBKzjDFUVYX3vnMJVFWFkTjI8L4d\n1M6PowxjLE4Vj+K977aLCM45gld826bVH5W6rjBnQgie6WTC2WLDcn0b9Z7xeExYRNeXGENVN1hr\nCL5FEOqqwiCx5kKhUCg8wFgjOCOxeLIYVIRWwYfYf3iysyGnmJguB2a73ot2QQZUkJDScUTSClx5\nxgWxtHJs+/WezpeemPLST2QuiuBvzd8kOp1DW4SvwtvF0ItTw8cQh9wToAGmwDw9HtMLYNnltQLO\n0u2UXgA7PyFv03uy8OW5tyusEJHtx0lhMSgWaIzheHfO41dOeOzyMdeODjmYz5g0FUYEIwZrJL11\nYMcyAkZQie1dGLR/F8ko5/xQKTsxlea46/98kLfpQ3qDt7x1meftpTpe/Hq58PFwX6KxMH+eGxgR\nQlfM3mCt4FACYMVgFYyNzj0XhE1yfg17BFL/olpkrkLh/UIRvt5BslMpR7WtNUyamtlkxHwyZj4d\ncbA759HLxzxx7YTHr53w5LUTjg/2MEa2ohUigq1cTK9LIlDX+Cuo+lj+1KRIVN+Xp57DdJESRKLI\nFQIiNka4UXyKcltru4hOSLWyNHhWqxWqMNuZM2pqUGW1OENQnLN4bWnXazwtvhWcsxhrYlTGxHRJ\nkZDOKh4rR+xNEujykshA+pw2foa8TYTRaMRqtUJEmEwmbDYbQpuXM/ZJxAtp8rRdtyVuj24uaywb\n9YTQoj6gIjjroiB2tsI6GI8b6sUyCorthjt37rBYLJjP5zR1jbUOJ2ucMUzqitoazHTCzbPTv4dv\nWOHB514jyDJMK/z9EvszwVlDZXO/1rsWVGN6Yidu0bu+OmcVfRQ+d1LxYXJuqeCMiTUaU23JvtZM\n7yKI+05BmzdwfXXPdPUeh+6x9GxyD2jQmPLydlJyCu9zcvpiDgWawc/5W+iIYtcusA8cxHsZg61B\nbPzChw2EJXALeBW4CbxGFL/y/rPYlYWu7BDz6dg5PbKwjUAW4VMBeFQxGn87DmhEmNU106rCERdj\nymNyk8bMA5MYkNxcqlsLN+XDbTmg7koxHJzZm2x3tmpw5V0NHFHb6Y5vUoXK5ykXbN76afB9voex\na7iSex7bZ8HqzaY/Dv9qYp1I5fzLJL3fWtuLXig2CMYKTsFaTQXuNZea3ELzIgAXXZNCofDAUYSv\nnxNGhMpZmsrR1I5xU3OwM+Py0T5XDve4fLDL8aVd9mdj9maxRsDB3py92Qxrqy6KPXQ8bU0aJBaF\nty6m8Rlj0ODxCCFAwMRijTbXTIlxjX6SYSC7vzTE6HsSzOJSxQGxfd0VCbmjUsQIwRjEOurxOE56\nJIlMCl4D0ioaPGKU4Fs23tP6e0RuRAihTe6v7QhPTJmMDjBjBOMchIBPkxvV6NzKjq1MS4tvw9ZE\nZuvY+ThhsIGBNVpNGtxEV5kxls16gxFDXVXcOVtyZ7Hi9OZ1nKsZNQ3LxQINSiWGcVPRuOj+mk/n\nKV2mpBwU4OLUlCHnvyfm3OPz6TLDtJahRb9Q+PkjYnCp7mHlYspInDcmMUsD+CRgGUGCbn0j+/b9\nAqeCxAmKNTEKb4MBic7c5A0myMDvkAoQK3QBm9c/9634ft+30js18qQq7iqkOjxF+Cq8FYa1u7Jz\nK98c2234EXACXAWzA7sj2JOohWXD150x3JzDzX1YHAE/S/tdsp0S6YnOsGW6v0MUwEy6hyJ+XYT0\nQnpOc07PGIFx7RilovNWUgpjEswkldLQ1Af3xdilC97Cmxex3qZ/69z+3/wehqXt3zDVsMvMyIrR\neY9avI56XuyDu4LZwxT3i67RvVZ9vOcnS0JdP4aP4qWkhQAkfb6Yfird7zDPBbpQjCoBpR+uv/61\nvIfWVygU7hOK8PU2MAKjyjEeVcxGNbuzCUe7M65e2uWRk30ev3rEo1ePObx0wGQ6oaoqXHJ+tW27\nldIng/532PBnR1d2Q4lk+3S0WYPi/aAGimRLtcbINvT7HvTqGnzsaE2Mj4QUGVLRrjg8QZNzKg2Y\n0oTG1RUGB8ETfHRJSRLkvA+oesRA8mjhvaf1m0Fx+ejiSmcSd91Nnu4yfSfnmRDaNglhpttvvoaq\nGgchmpZg9qGP6m9FxLIgJvFaqCQbOlhjUYmpnRLAGsdkMuXOnZbNekNoW5ZnZ2xWayxwdLCPinDn\nzh1UYTIeM52OscZirKOua5q6ZrFa/h2/aYX7m2Hzej7lJdMOtrfcvdpXdgwMyROe/J7hfaHwdyf2\nPdFxayWmNdZWcDbV3krClygEjavwqmYHV78oyevX34r9lzXCyDisgpcQc1cstKlYcadJaXyHSRMe\nBQymc3AN+5DhceNpSedAGwpx2+JXf2bOWtZlZd7Cm8IR2/AseI2J6Ys5pTFvzxwDj8F8Bo8LPAk8\nDFwilvxqiUavFwR+WMEzO/D8JO1vk/aXp98Louh1E7gN3CCKX7nG6Dq9tvQPPenaBQVibSij/Z+/\nMYbxeMx4MqZyDpPGoR2pDRHSGLLb/MZC0jvLW5fPcpH9zjl74bnLXXvecuFmI9td7W9K0rzIzXUv\nl9e57TLY/3CbDOY4WbiUdGKxZrCimvfVO+9E7u6TYrwjX4dhP9BLXG9XnCwUCu89ivB1AdaYdBOs\ngcYZxpVhZ1KzP5+wP5uyM2k4mE+4tDPlocuXuHxpn9qlVWDGY8bTMaPZONWBSgJOCJ1I06UqGttF\nTTLnUxxzWoghdi6tb9NKJQLGItYhKoP0yNiha66nldJQSO8Rk6KFYjqXF0q3kkwOfcRVU6ILK7Q+\nFotXxWvb9SXWRmt+dH8pIbSIxNRHMYIS8KT0RRHQ0DnShtGxPGjIQl92eCHSRdhyp5hTIXP0HmL0\n34omC3oXy4k3zZ6a5KpLnZsksdGYKJgZY+I2LHU1YlWtCGHBZrOJS07XDdOdXZrRmJ+99HIUvoJi\nXawzJsZycHiIiqWpmyJ83ZPhEOL1BonD11nufp8fPH4vkdNchqt1Vfd4baBPT5HBe+vB/dCfn7/V\nLX2h45w+PFzuPu/rXuSJ0Hvt2hXePXL/EYM0+WdjoHIWZwRnohfLkFLIEQhxcRKfVs01JgUhBsJS\nJk8ghJjGaMRjTEwvr4iBoQBp8gJBNNX56s4wTjxTyGe4AOPQUdC9vpsk5ZUmTew7U6CEQQpT7F/i\n3481lvj3VSi8HkPRa0Rft2tncD+jL16fghaX5vBp4BdBPh2oP7SkPlzjpmeEdUV7q2H54zH+ryv4\nhsBfV/Cja+lQEg/rgZXCpoX2FvDK4HZrcI5r+tTIQnYK5b4ytwt53CvGMBqNYh3dKq4Wngu2a4ju\noBiIvXvXF41n35go4d/dF1/sLTqf5phfmsez5wWlPAbuHg8Efe2e1G3zuPSBgu5UBsce3ucn87H7\nc+jP/15ur9dFclvfi2j3og9+hFjqxGvMhAl5TpNqe4mc241uvf/uY2z/Dh5st1cn/fL6WQrv5bF3\nofDGvK+FLyEWR69dFbtB3zKqKw4PdtmbTdiZVIysYv2K2sJ8XLE7n7AzmVJVFeNRQ+0so8rFVQpD\nb+3NQtLW8ZKokx/nlUbQ7Y5su/OInaKgcUl4DYQ2xAmHGMTG6LS1JhauN7H2gMkpiyhKQIMiJhbA\nx8TXqUicOKRrISZG8H3fYxBa3xWFt+mFxjpihCjEYyarcFBDjhxpshgbIwQfXWqSbOKm63y2I/V3\n3efzGrreUqpjXrlx025idAfAREsz0KXJeASvqRNUk6ZiyU2nARHf2aEJcTIV00g3/XGByWTCaDzl\ndLHg+s2bvHb9NTQoxlraNtAGxUhgs/GIi+mShcxQuBnYD4E+ZS8/Hr7eDl5rBtvz30UWdnKtk3fb\noZHP0dKnuOQVvCq2xbs8eMgrdbX0jq/zq33l9+b3tfSpLevBLQth/YqtF4tfw4F2WvDhXb92hXeH\nfhWubeGof+ysibcUfBEEI6H7JnvNK+X2iYdiwITtSRf0olcUo+KKXNZaqsrRiKUyFtNuUAKthu6b\nrCH2KW8n6t5NsCTODsVIF+HfnnxtC2bWmNgXFgoXMgxSTIkC1z7RunUS76sRTGpopNeeVgq/BHwZ\nzFeWPP7BH/DhnW/zuPyQObdZU/Pitct89wMf4ekPfIRbVw9gbOCSxHTIHWL3sAJuC7xYwfOX4NUd\nWO8RHWfPnzvXXBS/fJ+7ILMO/vYHziFnDU1TMxqNcS4uEJUX5lCUEDwh2BQcSLt6nbpVbyTwbMsq\n935RPypOgYGgdx13+/jnZBodvl4Ht/Nn0ouC9yYHzGNweij03cv59uZEwLdON5VI86W8UqOG3i2W\n3WGpp+tGkrk/6rnY8bZ99R9E8lgxjxfdYPv5oGtgO9W6tCmF+4v3lfBlRKhdxWw6pXYVoW05unTE\nuK4JvuXGzVdxBq5e2ufoYIe9+QgbWjaLW4yc4CxUNk4Yhyl6QYergkTxRczFjfxFeey9P2kQmdEk\nCCgoaXl3axCikypHY5S0GmISu7r8RsmdYyzyjmQHVuqsUoNmnIUQUO/RbPfVXATSYGzeFNhsNrGW\nWe0Qgdaxcb6aAAAgAElEQVT76LAyBkKsxRKjYiHNvSV2PhiMTYIX/dL1JrkHzju/8rVJU6/4Lzm/\nUI3XIQl3KpJqlwU0dWFZAvECXsFHDS+KXskRF0/BoHFd4y7a731A0uAGVZxzjEdjXF1jXcXNF1/k\nlVdf4+zsjLZtwVics4ync5xzrFuPhriaZGEo9Aybmvx4KFYNo0jD92bnk5zbRzt4TyCKPuGC/fx9\nkSdBWaiq022Y9pLdW3kG1BJX7FrQ12nJroFZuh+lfeT9t+m1p8SUltN0c2lfPh1f6F0GQwGsZbsg\n8rAY8ntBPCy880RX1/mJyPm+CQKVgZGz0Z1FXLHWikSRSzxe+wmFMXR9YZ4TodvO3F7+HhzLGlxV\nUYsjSAsGvHhWwWPT9zFwkc0h7kdfZzpyUZHlu10MA3d1EoStxIVOfFhfvOPC+5jcN50XvQ6Ay8Aj\nUB3AZQtXiLc9YhO9AW4JHIH73TM+87Gv85vuT/g8X+VjfJuDs+ssqhE/rR7m69Uv8e+f+HX+ZO83\nuaWX4QngsbS/hthtvAL8EHgKeKqC7x/BbUffP2Zn8NAdXBjapmK6XEqdluhureuauq6xznVlSazt\ng6+xfuvF06fcxlzkcrrr+NIHyIfuqbyfi/cduvtzO92al1z8ue+xTbcebF2fThQcbsrXLGeLDAQv\nuLf4dc/rce75fNih7HLuZJOApd3W4QvjX2cKZKcAikW70ZDJddvSvRFi2EbiXAnYFkaHv5e7BMP7\nnexazePXYabB+XlMDtYGeidpKbdRuL94IISv2Ek1KLBcLPE+dvqxgUsCjwhNVTOfzdjf2aHdtIjC\n0cEBEmC1WlK7WFl0sViy2UzQAFVdY3WMjd6hvrB8irh40d46nMIKMVXEpI4sDbRTYx4Gwk5X8FE0\nTR4kCVihsySHnL5HTDs02DRAt2Cje8tkkUhA0rLymJh6F6NVgyY/CVWSi92LdM24iODbls16HSUH\nV2OsjQXnW0/btnFC4CwxVSWu2ugF0IBVTxBLdJw5xIBzIGIH0aD8W8uiXT9QON+Rx7pm0Z2iJjne\nRHDNiBACrQ8oBrExXVRC/iUkoStov+8c50nXyAx+b7k+mPoQa3p5pd20bDYtIsLu7g4qhpdfeY2X\nX3qJO4sl3vuYxmosdT3i4OASxjlu3LqND5oWLHj9SdmDzVAIyil/w3pVw8F5dh1lUSavhjUUkPL7\nM1m0yW6nPKvI6Unnxa8snL0TEarhoKFme6n6HaILYEYUsXJUbZPO+zaxPstNonA1pncNHIDMwI6j\nSxMB3YBfQjgl1nN5lX7VL6EXvrJbLDvIMnnAsqZ3jK3oUy4ftEFdIdKnMcK56Huy1nYCkcbWWQzU\nlYkr1ZpYi6sSg2jAeyWIYNKszZpUaF4En9pxFZMmS31QY1tkisfbbFoYQz1yaDBIC2o8q9azVh9b\nUVXac7Vf7lUgeSt4cu7WiV/d50/Pdamd8fOpxpqXcUXg8vdQgO3gyzC4MCK22ZeBJ2BnHz4MfAT4\nOMjjHnfcInVAV4bNqw4jykc+8C3+sfu3/LP1v+Fj336a+s9DrGE/vcPDn3iVJ/7BD9mfXac9dPzB\nr/8udum5/PizXK2eZ8KCJQ0vhCs8/6NHWPzVHP2qjc6wb16C09w/5jY+Pz7nAno/ktq63p1qYr3a\n9LiqK+q6xlXJ7WViNoW18feG92/qEg4dUPd4QRq3Czn1ens83Leb9/B1seUXOxcbuOs33Tlfh0/c\n4/vQCVyCDALl59WluIpvFFSHKY59ja/X5824wLqjJpNALuzQnWiXVhn350RoUYx6jA9ICJigSBAI\ngiGuNG+tozKBVjyb1JflMMv2EWRwJkPH3IPAUOjKY9d8nzMNhtkBedy6SrcsqOdSHcP6s4XCe5P7\nRvgyJqbzzee7HB2fcHRymcPjE05OLrOzs8tkMuGHP3iGP/z9f8fLP3sBIRC8x8SQM3ElQ6GqKs7O\nFqDK5eMTptMZt2/e5ObNm6jCbDYDgdYH1psNlbE0dY0JmygGNQ3WOtCYEmgl3seASRdCJtenGpKD\nKtLVoZI+6pybV5P3o10xe40K3iCa0ndCRpILTAxGbOqEYsF5xacVTUCsBVsh1iXBK3boeI9v29ip\nKP2KiukcJFuINaZUGhHUhzi56SJfqRi/q6Kg5z056hPruMTPNOzQVX1nTR5OtlV92l+K8qfPOxwI\nGJGYYpmsBlZAxKO+r9dCZ0kPhKw7Sq71Eic6w6ichpAcXxtWK896vQI1VM6hCi+89DLPPvc8q9WK\n5WpJVTeMJxNCUKbTKaPxlNF0zCbA6dkipnoagw/vt05gKHINU/2GaXu52VH6NL9hul5F75KaEMWg\n3DHnzjV3vgt619SSPgKVo0/naxWcT7P0g8dvl5zaWKfznROj/3n1rl2YjGBkwaW/+RZYeVgswd8G\nXgaup/dfA7sPOw0cSNzVlHi5lhVcr+DVOdzYB7+frk+eiLXp52m6DZ1mEK9vvmZ30v0ZveMMin39\nQaAXlkzqE/roSHrJuQyP2ESmNBAN1NZSW4ezBmPAIVRG4gqOSJSrBazElRkVaDWgKnjNBzgXr0/t\nosnOW4XQtrS+xTiDtQ7ZGIIq47VHPGw0oFbxxILFnRc4Txjz43PHgbudD/1CKDkgRUqRN90Es68j\nllaO1PdbG17YJjsf8iQw92e5b5sDh8AjUfT6BeDzwD8IHPzCy1w5/CmXJy8wYsmSES+cXeZsucMv\nTf4Lv8Uf8YmvfRf3f8KN/wA3b8GohsOPwPFzN/nSP//PvHDpMi8+csLj/IjP8Jc8xg+ZcYczJvzY\nPMpfPfFp/svhr/LMpQ9Ht8oa+KtjaLMbOLfvG/oA0fuYrlnqBY2hCOaco6ornHWpnRrUz03lQHKa\n472Em9er79VtHzRNmsbZF4peeZyczrkzi50Tut4M2x6p8y60fDLctfMt71Oeu+TboA02RgghXuDh\nqozd9X2dYHDXZscfBgGM6NpSNJZsUY0r2KcXa1qBPi6Eor27SwNGW0zwmABWDUYtoiau1ImJzi8T\nXcy+O/hQTMtnPxS/HhSGgdEcrJ3QB23zuNvRB0bzePEOMWibsxWyszRnD5QxZOG9y30jfP2r/+V/\n5fEnPsilwyNG4zF1M8I1NePxiNPbNzm7fRtjLF/d+Sq3b95ks1mCBioXhZ52syGEwGKxgKBc2t/n\n4NIl6rpms2lZLhconvXaUk9GOFfhfWC9Vuqxi0UusbGYe2oLQwgEgeA9qh7FokZjip0R1EaBCRNN\ntyp9RKfvd4eNffysXVKISfbr7NAiD9CFNq1AqBisCDmlSciimoK1iKlADCrR/RXFos4EHP8Zk8Qq\ncC529oYkLvm0IqPJluDcaccOrN1skmimyfIco/zet7RtdEwZazoxKjurAgFzrnBxpi+srPH6BiXN\npDqG0fvsnJOuSDHnBhH5PeeicF2UTfHBE3xgs15zenpG60FcA0E5WyzZrGPKS+tbnDE0zSjGf6u4\nimPbesaTGXtY1v4VfM4Bel+RnU+5Mx3Tp+5N6NP2sgMpC1QL4gB9SexUa6JTapcYSd9N+xin92l6\n3SnR6XQ93d8Z7Ae2U1LO/y5yBGvoOsvn9GYYNp1CHERM0rkeAleBazCdwRWBaxI3z9NbzoDXLDw/\nhefGcdl6Xo6fc7oLj5u42tfj9KkySqxZ/DNiesv3R/CDYzjNoqIQBx8H6Q0H6YBD4atN1+lGul1P\nt9P0/JJ+mFoGLvcbXT8hMkihGfQx+cEFTVNfCyvqs2NjGVuLNTG10VmJayhKShs0gg2xPUQsPvUB\nIRW732p4tRfVLGllxpRyrkFZrTa0IS6KUjnDxnoa14JTrMSak16VNuTJ1Pnl7iXNwYarNvbt/UX1\nNc9PLnuRTLqm2xgD77vgRaEni15DB3JF3x+Nie3+MVT78CHg14DfVT74S9/i86M/5zN8gyf5ASOW\nnDHhR5PH+ObkU3yQp/nF176N+wN4+ffhj38CPyX2fF94AT7ZwEMfeolPfvFb/MQ+ym/zB3zh1b9g\n9swd7O1AmAqLD4z42uE3Od55if/n8/+UZ25/InYjLwo8e0xf6P4OveP5/U76Ozfb4pSSyqHUTSxs\nX1d50AhEQceaPJ41WwLSWyrafu5cotaiSW/RC29b8Yq3JHYNhRs91+5fIH7FD5AWwnqT+5dhezyo\n88WgLP3g0Ftj/sFnDFncQgkEVOJjNNYXDhqiwJX33V2zPmsjf0QDcbErYsqjUY1zGjTdUsAmiV7W\n5HTH4fXt+4MHj+zmaojj8pyZkG8HaVsW/yBejwX9uPFlovi1TLcFfQC7jCEL713uG+Hr87/2JR5+\n+DEg+4MUHwKt3xB1kVifaT6fs7u7y80bHjXC7s6M5WrF7fWaoFH4cqn+UlVV+OBZrpaIGEJoWS5X\n7O7MqOoaH9bRLURFVVWIbgh5hUQU79tkmQ740BLURnHLgpdY88pKWttKcl0ukhNqmBIZV4vZiqJI\ntpfmbaZPW1RBtSWoItoXmVQ10ZYsMWplagdiY0qgV9Sk49KLcSIG41xXg8XauKJl7oiz0Te+L0e5\nQKxFNaDG4NtYH0yTeCRGUQmoCamcmHaTDtLExKpDwyY5rXqBKq/42NVSCMJFg7WLBge5DpghTfpS\nJCiElC6a0lTj9W63xEYNgbZtWS6XLJcLNh4CaxarwO3TMxaLBdYYnLWEAM5E50BVxe/GZrPBuYqm\nik620Hq2awQ8iGR312bw2BE70uzW2mdLhJEpSBZiWghr4qD8On2HOqErEGwOoR5FPWlCb+g6ncPt\nE9jcgfAysRN+mb6TzmmVOU1yuNhArlEwtG5nEe5eq18JdzeX+Vh5QpTrvDwM8jgcV/Ax4BPAhxXz\niMfs+uhZu2Pwzzv4nsDfGniqgZ88FHWqTwCfBflcoPrYmtGjN5jv3MaYwK2buyx+usfmOzX6dQNf\nN/DXB3Bz+HdyGewRTFyvG9bpI5/W8NoEbh3B5iaxCHJDnCANKWmP9w+m6086UtcxzDg5P83JkXcz\naG9zO+2spUkrLVojqJhY3zLEoA6pQLwATeVQYj9DAGNCDFSodu1xGwJGSJMMg7UxcJIni79zeofP\n+8D/fuUyPvV3rqrQVhHdoBr7VEHjN/Ou2d/F7rLhjXPvO5+GNKzJIxpd3NZaxLf3TlcqPOA4Yp+Q\nXREz+hT2XGl+Eu9PHHwC5IueD3zu2/zT0e/xj/y/43PX/4L97y5jbGYPbnyi5mvTz7OyNc1PNuh3\n4IcvwdPEFvwO8Jdr+PjfgnsmcPzLL/PfNP+O3/j+f2b+e0vCV8Ffh3ofRp/d8KV/8lXMxwOvNgdc\n/+wBrz11Fb4NvNhAu8N22lIW8t7HAliI0opxFSKKpr9vIf7tW+fiSt1pESjI482AagwedzVo03/n\nBfe3Rr/C7LCd2Wpz7hGs2GZb8NfzT92zCeuf1Ls3xTlN2panBSo5OA3o+VTH7gPERUSCQgqE5DTy\n+FwuvhtFr6AhLpJFX0UrVy+RkIPr2p+kDmSZoWKVlLZcsdGkQIuVKKDl7ssacAacFZwXvIspr+09\n/zS2pM7Xu6DvcXJ6Yxa99ohR2SvACbg92HExYSE3H0psmF6r4eUdWB6D7hIbtVvEsXuuO3uWjpOD\nyEX8Kry3uG+Er6e/+1QnfAGgMQ3BWosAZ3fOuH7jBojg6oq6qXGmYTabocDtO6fRGWTAurhii7WW\ndr1mtVqxaVuMNTSjMZPpFOcctC2oB01pkyZVIBIT0+i8j7VNUiQiikd9B6I5yj0oJGyMplQP03Uu\nXXC8c25Bt+6IxAKSYmysZSUupp1YSYXVa4yk4oQhdkiiuSaYgDEYl1MbHXkh+OwMUA19lGQwOdCQ\nHGU+djSGJHShaFrpUCQgpooBIvWpkH0UArHgjOsiOUFD/7nTBfLq4/u6VMb4yWMP2y9FvN2Xbkfp\ncwSInEKThK1Ys6UvBBoUrB1E5rrBS1a+4mvrqmI+m7FYexbLDb7dsFwuqeuGgOBuOtZtYLFcYquK\ned0wnU2xVY16H+sJtC3Gt5hsn77vycOLYbH6IdnBZYkd6YzYYx4Cx8AJ1HOYNf3q7kJf4ur2AZwd\nxtE8PyNG0a/AfA8eBh5hu0DwGniNqNn8eArPj+BsxrazyadzyTULcpF8ZXtVxGzVzql+GzpRDuhd\nbFnYy4/z9cjXZ0qcCF0BuQpXKvhl4NfAfnHByRM/48rBTzl0ryAoN/wez998mJd/esLiqzt9OuMe\n8OtgvtLy8Kd+wCf3/pIPydMcEt/36sElvnfwQf7msc/w44cfJ8ybeDpf349jDrGwM4dHBD4APJR+\nBU26JNeB54AfA8/swMsNtBP6FNBhgftSr+G9ST/puLBm11Zkf9vRcBHDOVWewFlncdZQuRgVN8ZQ\nWwErBHW0rSe0a5yxWGcJwcQJpRja5A62yRkWNGBs6lsk7sM4F/vVFHD5h+s1V1tPmN1h1TTRMSaC\nq2wSoZSNGjyKeEWH7ZD2Il73qQciVveywcQyu4W99/2kdbCf6AsI5PqURfh6P3Je9MoO5KN4k0sw\nmsQAQwM8CnxU2f/EK/zq+M/4nfD7fOGbX2fyf6/R/w82N8AdwN4vr/nSf/c1vvOxx+OYrYU2bP99\ntkTt2HgwBD5//evMf2/JnX8N338anl/BcQ0f/VuYtGs+c/hNnrr6F/zN7qe5/oET9IqFuYPrs3Tu\nuYD1+1z0AjqbUM5A0LwqLeSga3pVl+oY46hp4Q4j3fgRAv0QcltEf8NC829AXxP3vMjyJkWXHPXY\nil/lsdx5N5MkK1YaN6epiOb5iYmB9a63SOVWhBjs0JDH1N2lJV9n0V7Yi2j3OItqwxvnfh72bNlD\ndr69701a8V3dpxKSABZFL2vAqaAGghUqb/DW4l3oMm2C+rsMb4OrNJDl7keGtXez0yulaXMNLk1j\npsGTxPbsmKjrD8eO3xd4egyvPAKLBfhTYuA03/K4eEn/XcuB1ELh3ef+Eb6+9xS/+ZXf2dqmGus3\n+RA4Wyw4PT2lbhrmszkWxRloaseqckzHE5ZnC4wYmqbh8OiQ6XTKHVUwwtq3zMdTdvb2acbTWMgS\nh6bV/XQQaTA21iDxXqG2hCC0bUirIkocLGNS42mS8JU7jVQUXkwsju/j4N8YSQXpDWQbdRZmjETR\ny8bBiyAphdNGIStEJ5emEImkxyEErIspiz6eWuyqVDHd6wTfxmKdxsTjhgCEuA/1gI/2bp8mA3kQ\ngMQC+tbFzxXdcbHIsaRl41WVrkSK9gMK1YCGJM6ppsd5dcwUT1FFAwQfV84MwW+lN4ahWyz9LEZi\njQbnoiia0i1j+s0gKqcgxhByRC8dr3KOWoVVG/dlnGM0njKeTGlv3oxRwo1nsVkxspZ6lIQvW6G+\nxaCMm5pRVWHFPADVNIZR4ux6ukgAy51a7kyPgYfAPASXanhMYkd6lTh3EGK/+BrwU4EfT+DHDdzZ\niW7H4wl8nFgv5ZPAB0AOF1TNms2qRp8fxxD53wJ/aeGpA7ieBbj8hdsnRudzul9FX4vglBipup3u\nT4kDglwMODMs0F9xd7H+fKwsfJ3A/hQ+DfwmTP/JDT758Df4Ffc1Ps63uMrzCMor9pDvHXyQr+/9\nMv/l8Fe5MTqOxep24/s+8vm/5ivNH/Ib/Cmf8t9k/8UzUDg9rPnL0S/wH3e/zB9+7h/yN/qL6O06\nXsdv78UxzCcEfpF4Dh9ds3vtOiO3pMVyen2H1Xd34G+Abwh8YwQ/vJZ0Pp8+v0+3Mkl679DXeJTe\nanC34PVW9phTUqT/2YjgDIycUDulqmJwKaa/a6p5BV5bbAo8dX2HaPzWqMVom/qyGPCPsYzoyHXW\n4cTGII0I3nv+h8mIg6ridLOhjo1/N5ky1iDBcCLCP25b/jfrtr6WScoC+sDGcFWxi1Ifz18DDYEu\nDJICJyYFZKxxhLK64/uI4UpmWfTaI7qQrwCPQTOFaw6u0QdlJiAfCFy78mM+y3/lC69+ncnvrbn1\nf8BfPgcvtXC5gi9+G8ay4urxi3BVMY/Dwztw7ZU+1fETQPUE6KOwqSqOfnAT/hy+9TT8ySq20vUa\n7nwfvvRncOnLt3jy6g+4PHqep46XrA+mMBa4ngM/w4VlCpDFmiRk5FhB1oq6FEOhT3WMji9N7WRf\nc/fv4vZKB5XsJrpoP11YoheWuu3DqHC/hzhfyf1FriBsiCtASf9hJYaqwaT3xAWnAmFwfdKuAvFa\nqInuK0iSUtqHDorCy+Bc0o+iObiQA+T9nGqgRfbCWXpO03sCQiySMhDGtHv7YI7W/z4FSSVaFCtQ\nmdR1SKod7AxBTZetE/0DcfEWTR9eNf56hlLh/SnhZNEzu72mxDFyKstxbRLH278E/CJUH7/NpUuv\nMLYLfHDcWu5w8wdH6F9Z+AbwUwvPzuCFCVzfB53TC+xKP35cpJ/zIlaFwrvLfSN8fe+7T921LYRY\nm8mkVEENymQ8ZnnqmE3GNE5Yn91h3jSsqxWt2+CMZTqZsLe3R1VXmJT+ZoyhGY0YTybYuBRhtDx7\n3wlRIVt3iQ2+97HDAINvAz7QiT8miVaxGG/MLk9BZdBU8yt1FLHYfTLldo/TBEcMYg3Guq6+l8Fg\njUWMow1xdUmDxMgMmvLp4/7iyo4WyRXejekcyP1qLTbWE5O8D7rVunJ0Q8TGFMauPw2kYi/RhUYg\nBI9qSI6z2N0J2tcFS9cw+Jh+qD4WK9YgeJ+cWWklxpzyGDxxBbGQ3WHxvHIR/jyRaUN05UmI6Sm5\nVlksfJkmiMl9JmkCFu3Z/XNCrOEQfMtqtcQHwbqavf1djKu4fuuM5bpl4wPWVVR1HZ2FlcNZR/AB\nawyjpmE2nXJrccqqXd0Vnbp/yIPlYaH6nDJRn3ttlvhGxAnCQyCPwSMWPgN8BuTjHvuYxx6uoPLo\nWY1/scJ/x8HfSBSw/nYWvzqfE/iiYr684eQXnuXDk+9wws9oWLFgzLMffYjv/uJHufHBY8Khg8bA\n13fg9CHiCG0EHIPZAVvFH3NrtwA2AfwtomL0M+LKiNnJNYwz5s+a65MNV73JLqlckP8Aml14UuBz\nyug37vDZx77Kfyv/hq9s/piPPP8MzffijF0fgh89foXHRz9keu2U3/+tf8bibA4z5eFfeZqvNH/I\nv/D/F7/ynb+i+Q8tfB/wsP8kHP/Gn3L0sVeghtNP7vKDn34EfiRwKrHGzJfB/taKhz/xDB8ff4tH\n+RFzTlnR8OL+ZZ564iN876OfYnE8hUZAHTxzDTQXQx6u9JiLmhbeHYRh+ve9yf0SW/fxh1xzZfhk\nmvSkfir5f3EoU1czdTXjyqUVHU3sTVJq/mq9iTKwjTUvvcSVs7DCRgVtU/stwmMa+B9XG/5lU7EU\nQ+McI1thFLzQ1ZNcqPJiUMbB4zeDwvzkgJDwh7dPmary1cbwVZFuImZi5bHhZRh89F4g3PI5DLbn\nCZOYuwWyEEJMZW+L8PXgk90QOdCTt02IltyrxFUbp/AxiZPEj4B8wGOPPFIplpbL9Qs8wQ+YPBWd\nXt98Dv40dY/fWYP5Efza1+Dkt27w7S88zkd+/Yc8/GP4F38MP1nAnoVrHwX9bXjpY/vgPPIybF6C\nZzd9BcsV8KMAn38R6pdhzm1m5hQ38qxrYqE+zt8KQBTW032/iF9sC3wIbNpYozbEwWN36bRvQLpd\nXSSw5+3xPReM/7bEK7qi+VF4unt18+hEipLPUHDr9pD2Jyqd6BW3J6GqU27iCunpxXFsnlIIu8Cz\npnF5GsariWN0NcSsjiwIpuN28xr665QDCJiYgaKa5aq+FR7qWyG1wfFn7e7pguHp90PMKMlZj/3v\npP8McVmsJJVJ6P36olSGFHBJ1wKJwhcxcCOiaDC0MsjQTL+OsNXF3I/yV27X8uJRU+JY/TKcpGDt\nVxT76ys+9Mlv8Sn7TR7lx+xznSUjXtw94TsnH+WvP/Rpbj12RHjBwtMCTxn4VgM/eBiCpf+tzulX\nGz+jb3/ufztA4f7mvhG+fvTD79O2sY4SgwY/tAFjHN57ZpMJk6riRrthXDtqA8ZCEGFUVxi7w3q5\niul2Cr71rFYrfMgrE0bBBKKLbFQ5nI31ALwPBDzGaFztxdjkjopNrPcaxa82CT7iMMYhJrpjsmV5\ne0UUk5xacXn1AGgbQDQKN8amPsb2BfKVtMy6HTS7Qiw2H6NYVgXRKBpp6xFiZF6tJWhKu9xyPlkM\nFpOiX2Ileu+JTrKg8fgmLp+Yojsxmq9eU7H6dBrJCWZEkptNu3Qc730aTKQOKkDwIbq1fC9KBSUK\nYUFp2w2tb0HaQefZs52yEtAkoInNxwx4BWdjmmdoY62ZaPTySOrZQmjToCNO2qaTGbL2BBEwFXfO\nlty8eYvFYkE9HrOzu0tV13EVMhHatkUDjMej6KgTQ1M3yOL0PkyTyY6mocjV0Bern9CLYbC9ymID\nHIG9Ag9b+FXgyzD98k0efvQZPjz+Lld4gZo1t5nz4ycf5Tsf+Sgvf+gqm0tjqCUasL4I9T874xc+\n8HW+VP0nPsdf8Mj6p4zXa05HI55xT/L1/V/iP375S3x3/kk27ThqNt/chdWjUM1gr46pfpeJEfmG\nqOHcAn5m4Lk9eGUXlnkFmxytgpg3mAWvXJx/h76mS369ps9+B9iHaQ2PA5+CR554ht+UP+afL/8N\nj//Rc/D/wuZb8S3VY/D4V17gH/3OH7E6HPHCQ1f56qe/TF0v+Hjzt3wx/Bmf+fa3aP51y51/Cy+9\nFJ2Yh8ew+4PAp//lt3jlk4c8Pf8gL3z4IRaPzKPL/AtQ/+MzPvPxr/Fb5o/5Fb7GEzd/wmR5Rmst\nL+4d8V/dZ/n3j/06/+m3f4Pr4SSa3q5bePWEWKvhDn0qKNyfg7z7lT5KP3R2vbn39f1iP+k6N/G6\na5+pL9A4WahEmDjLvKqprWAN2CQIGWNAJUXODdZGQWotxNTHEFPeg8Y+EiP893fO+GhQPhSUp6xQ\nG2vy/U8AACAASURBVIOzprOBRe3K9NH/AKSJmUliFWmltd/a3+OzZwu+YRymbclrMG5NRP5/9t40\nWO7rPPP7nXP+W3fffQNwcbFvBAkQJMENpEhK1C7KY40TxY4TTzIf8nFSNZUPqalUMqmaKmdm8iU1\nVZlK5UPK8VScuGZqbMmWJUs2LZEiwQUkwRVcABA7cHH3e3v7L+ecfDjndPeFKFtjS4rA4FT1vbf7\ndv+37j7veZ/3eZ/nEz6qvUKKL26Ex8AVSYKxy60C1YPgmJKyt064Mz6NI7g2Dsa8IP48ggO+5lwr\n0DEBj0P0VM744SV2zJxnW3SdjA4FKeOsUKcFq9BZgWsDeZ7GsbpYBFbgit1O8nTBrvQGY0c1Y9dx\n4eUIrDzd4OW5B4ioYAzUKEwpiE3fn3GrhHgCGIU2dTo2Q5eq79vS+1INUGjuDDcGW+/8MMZQlqV3\n784pvSnW4PCzAj1XWDbPHeF+/9liYF+37tHjatZvQwgG+/8cGOYQKCmk34zpFdVNv5reZybZAKL5\n4wTPzDKbY0rAoXwrpwMDRXgZQburf36SoFIv+mihzwWcE7wJraHCPSbCb+nPy8/PfaxqwMESD771\n7g2oQ9nNn2Bfju/97gvmB0Qs8MpACIsUBokkkmF/7roZJdBGoK1w+s1I4khCZdDG9jhKm1l2t+tw\nOWdfh3cYmITaGBwATkD6+SYP3XWSL6nvc0KfZM/yZRrtFmUUszg+wenavfxg8hoXvryba2s7Wbi2\nhfZLI259nUg4OwOFwtFgr/r9BofH0t8S+l0Fd8ad8csftw3wtb6+xsrKCtPTM25i9cFIWIEuNZ1W\nG4EgVhFZkpIpsLqgUavR7nRRUhChKIRzLrRYL2Tu6mfSt2UoD5AURUWmImfMao2zxhWOcVRWFWkS\nI2XsWgU1nu0lHLsoMLx8BTHEzWCJDKKn69gPjK7qoa0B4ajEwjoAThhn3+tLIyBdgOk9H+V1tLxY\nvfCWvYDQFt/XCN4lRUjp2kdsMKySzmFROCdFK3yPv8VV251iMTJ2YB7eZYtKYIRzOjTWUlmLrirH\nEVLKs7hc4NHaeJZWP/BIISmKCiVcq2jhnROlZ6VpXVFpg9EV2nQxtuqBXEK4lsbQ9gguUdKVc/8y\nUmHjmEpI54ApJdIKtG8rFdZiTOVaWf2CQEoJWhOpiCQRtLptqqoiLzXLK2usrK2Qpiljo2OoJCbN\nMpSS/jOh0V7gsyxLpJLUazXkhsTo2ylhGtQACNpYwd54UNQ3o6+bVdK3OO4AW2Asg3uBz8LYlxd4\ndMfzPCGf5zivsctcJCtzltMxPuAQL08+wvOPPMXbyXHKMoMbIJ4qOHrodb4hv8XXiz9l37tXqJ3t\nIldBT8O9h89wcN+HjEarmKOS95bug6sRXFewPA57hGuVvAundbUFl1AEfbBzwPvAGQHvT8JacEUM\nLKcSB24Ftxuv68I4iARq0lfUgdxArt3Lx4HtIA8a7q6/y6O8xO5TV+H/hst/Ae8sOe2Wg6/B/huw\ntbbEw197jdP1+3jv0BHSZsl+dZa7O+8x/HIH/V14/gx4vIz9K/B5AcP7K44efZsD4kNObn2CzpYh\n2C/gUc2hw2/zjPwOf7/7J+x762Nqr5c96bS9915iz4OXGJ9aodoa8dxjX6B5eQwuCVgfgnLcX6Cm\n/wyEpd+dRcovagwWQ34aq+s/tJXmp+lS9e3swz1824pFSUuWxNTTiCSWJMqJ0AsERluEVWAtsYqI\nvFalxc3vjslbUVqNEZZYuYLPf5sm7FYVH0bOHVJFCi9BiUASWZyWjO4XHSIVufgiBTKSSKkQ2tC0\nlj/Xlkh7UxXdS0sITB0XtgYAwJAeWbOJDRfa3nsOj+E1t1xn6WNmGie08y53xqdtBIZXKOQE1+FQ\n8EhxgWMrpGNwyINez+QcPvYmJ9IXOS5eYxcXqdOmRZ0r7KAigjFIx11743se/Ipw3ZFMAiPQocYf\nDX2DRz/7CnuPn6dRtChlzM3GNG8NH+U5nuQw77F64BXGjnd44AMozzsblwngxFYQx2HtYI1L7GQ+\n30qxmDg9nm6IYyHJvAN89ccnz43aWLp5TqvVptVq0cm7rqhpb31maKdmYP7os6Es9PRsNwnN98Ae\n/BzoCxSBXWU9+OVft6nvz4ltIYztgVDSBvxKeBGSwTk+IFs9hKt3/J90/rb3X+HzBYP7fjijpt7x\n+HZH8G3yInStBJaVRAjTa2UPQvgE8Mvv7VYo1gbGmAe/+qyuUKwIt/71vPUserO3Z285prJjeUXW\n9pwijbAoDBGeBRa5/E9Il1cZD8gZD6AhBo/9di0FBnA/ws1rw8A0TEi3Tn4EDh96m6/Ff8Y39b9l\nx49vkr5SOfyqDtuPzLP3iUts2THPspzgw/GDvDr6IK9OPMpSbRsYCXECS9vgSoG7SqFzoE2/mDrY\nQXBnXXln/PLHbQN85XmXxYV5pqdnemCH9WLynbYLUlhLvVGn3qgjdIWMJGUBVuRYa9nYcAL3cZKg\nq4r11jqrq6sIIMsylFRkWQZodFFQVhopNDKRGKt9X79jLimlUCrGGMcqEiiSuEaSZAjhnP+MsRht\nfRD0hRzjJs/BVj0YkJFWkkjGCCRVZftMLui5mujIoG1JpTVFqVEqIRICJZMeA8pqx/QSsfCiw85h\n0QVq6e3knY4JJlgDm54LSwAWCVUcKRyLSvnylHYMKVN6IEoqjHbVMiUkuqp6LTpVqRHNFuP/3f/E\n8r/4753KUlm4cykNRO56VZXT6VJKobWmzHNmvvOXtGdnuHHXLiwlFkulq56xga60Ay8tZGmGiCNy\nYyitpGsEXW0oS4OxPngrgYwShBJUZd4D4xz7TpHECqsE7WaXSmviOKKTl7TbDljdNrMVlaW02m2y\nNCVJUscaMJYid0L4WlekaYqIJGpJOcbabTNCEpDgkgBfFWIChx5NgGxALNy/wa2tO4AtwC66EvRO\nCfdC9liTh3e9wDf4Y77W/h47Ti04FKcFu7fO88DDH7B/33mGkhatR+p8cPM+uASzd13mM/J5vt79\nLkefP4v4Q6hOO/17OQWjj7c58VunKY8nzNe2Mn/3dpYObYX3hcOqPgs8ZkkeaTG76xLbo6vUaVMS\nc8Nu4fLNPbReG4MXJNQlvDYG64PMtcKf+wwuVdkOWcOxx2ZwAFfmz39DwVIMN/xLpiDZvsYOLnGw\ndR5Owcor8Jc34YJ/yeUWbH0RRo5Ztj4yz676RSazJaoyYZIlpsolOAcXL8Mp+kuFd4C75uGuc7B1\nbZGJ0WWSWttV3PbD1D03eCR6mc+Xz3L3Sx8i/w1UP4budYgbEN9v2fEf3+Tz3/wrbgxv5dzcfj44\nfNS1mZ5LYXXQBWxwsXxn/LxH0H78u+nDDGzvluW4227fHKTHYHKPIjCufdFatxSWkkYSk8YRKnKi\n9dIXU6yv6EdJhNYui1fKCb+XWlNUJUIKtLRY6XQwtTZUAj5QjgGM9MmZNSgEyrf/S69BY611bepx\nhJXO0j5OEuI4QhAjlGddlRXam6KY3un2eQICegmjNYHRZr1UQF/TrHdNPGsiAG89AXwfK40xxFGE\nKO6I3H/6hqBf4Akg1zB9x8Yhf9sCs9IVU56wHHzkbb7On/CM+Q4Pzr9B+jYObJqA5pGUUzPH6NwV\nUXu44sEzUF2FeQuzAj4zBzwIN/eNckHu5s/tl3gnOcK+qbMM0XIxii28Z+7hgt1NLlPum3ibx7/x\nKo3C8vmXcIyxcbAPgf6G4P3ZQ7xh7+Pa2k7s+dghY63gEdmhH0Fup7XIL2EMMKCscIXmPM9ptds0\nW206nZy8qlwx1fOcLM60KIA+CNeG6OrYXlPK6/UK4zR9XbHbOAf0nrNhXzwfAijjj8eh8/3wawfm\ndyFB+PWsB7xcjiHQm+ZDccvvTzr5wXjhp00PbIlAG7Nu/hc2GHKZ3nUToVAvXI4hRHhdn/llRShM\n9AG4vqFVKE349yAAW1b0eYpBG9iDaAEAM73YtvncAq9JifBDoITE+FzHVAZpnWlEJCw2kh7jEz2N\nZRUpyspQFoZKW4wWvhhvPNngdo4DQdjeF7S3A/uh9sASDyWv8LT5K/b84DryDyztZ+HmNWhkMHk/\njF5r8bV7f4idg8t7t7AvO8vwtibfe/Lv0cqHMQ8peEHAiwlc3o5bR2d4Fyv6zo/QL1gFRtidcWf8\ncsZtBHzlLNy8wV2Hj/SEzcuyJO92yPMOwnhh8iQhSVLKrqasDBqBVRFaG4qyIIrinmX76soKq6ur\nxHHsBNHj2IFqnlFkcewMhPSoVX+itdYSqRitK3RlUSomjhOiKHFglQntH4Vv2ZBIabyNu+i5SYUA\nYXCaJwrlhO4rF3+UcMwsdKApW9/6p+jmBd1uQZo6of0sVSRJ5hlSBhkrYu2tWUIRR0pC/7tXUHGB\nRxtfGbcQdA2s01BDCLcoqCpM5cAgjEGXFUVeUOSFs3w3hkhFnsGl0ZVrVSzLkuH/5X9HXLhE9+Qp\nVg/updPpeHaY9a2HTlPD+vc673axa+vsfPFVKiW59DtfB2X822BRXiDZaEO306Eq3XGqNEErRZxl\nxEmNem2Itu32qjjaQFFVRLhAWBmotKXSBm0MFqeJVlXaGQpYSbPVotVqUa/VqdVqNLsd0jTptcVW\nVdX7nXdzlJKkSUJETBon5EXO7TEC2ytQoYPji1fwrY/3caBpXNxUuGLOEnAjgauzbuWxCzgC2/d/\nzOO8wJc2/oIdf7KA+SNYewfyNoxMQ+0zcP9vvkfzoWEuRru4+NAeinqdnY0L3GffZN/FC4hvweK3\n4eSC4yJtOQ8nFmB0CO7b+zZvTL3FyekTLO2egTnljvGrmq2PXeLE+Is8wOvs5yzDbNAl47KY480t\n9/PiZ09wbuIwWqWuGPX6BORB56rEAX07IdoO0wkcxt12A7MWhoyL2asKLuF0uJaAFNI0p06HtFMh\nVqC74Tosw1gBrjVhZAWyvEuDFqnoUpJikBgEKCfGGiT58e+M8p2oVg1oAWpgp2FqaIFDfMD+pXPI\n78Pqn8Ff3nAGmLUNeOxZOFyHHXcvcM+j77Jn6Dwfzx2i2FKDhoDVzL/34XNwZ/z8xqBA/d+k2fV3\n2EuotFs7APTcsi+B1zRxIFQsJMNJTCOKSKOIWEUooVzBQ0CcREgp0brqxUtwrUEWSxYltKoKYa1z\nf5QuJgkhiDxApoQzdVFWEOHaHoWvxlsZxKMtKo1JUuX2G0ckcYySCeBiuFSSylS9FnkXw1zM6pWJ\n/OluaqUJf9tNnpDOmVmbTe9HaNkXCJRyx6bk7VbEuDP++hHYD6HIE1rZp3Fz/zikdcjiPlXrbhi9\nf57P8GO+WnyPh197i/iPoDgF+QrUxmHosZwT3zzFG0eOcOzX36dOwedeArMMchLEw5D/Wsw7M/fw\nOvdzeuUBXlt7hImRFZIoRxvFRneYpRtTVO0EedwwlS3CvXDPyPuMfXYdtQbVCGzsG+LDPXv5TvwV\nTurHuP7uLLyHq7DkOU5jJxiWhJ7Ln6WgcTsn9j/r8HNHaAv3c2ZeGZqdnPsvX+P6tlnWWh2G2x1U\nFBFFsdPVLSuSOCJSqtd54aYMgVQRUgUDoOAVKDzuM9Ai2Bti4CHb/9UXz3IMsx5DzPbYVP2YEuYs\nbnnrfhL06gFcPzFC3PCgng0O8Dg9YB9HrJB9Bq3wWrkE70Q3/0rhcTuJZ6gFrTQHogWwy/p3YYDX\n5mrvA1cjzNbGC+lb4eVRDH1X91vOz3VwuHOJpMt2MI6kr6XXFMM9RyKQnkmnlCWKIdFQVIZc+jxS\nW3TlIc+gTXxbfkcG1/g1956OAbMwO3qNA3zE7stXUD+0LP0A/uKGMwCvdeCx1+CeEsS3IN0NOz87\nz9d+/fuUUzHRXMX1/2Irpz5+lGY8AW0BnQRWd0M1hWs5CK6PArfGDgtXQd/18Xa8pnfG7TZum8ym\nyHNu3rzRY3tprR14ZAwKQy1LiCNFVZZUxuk6oSIP+ihanS6i50LlQJBWu02e5yivIZKmKVVVUVUl\naeTRfwOVNsTCVZeltV4wXSNl5CoB+Kq49TpW2hAZg600lSnBuBbKQH3Gi+nbTZRakFFEIhXKqh7D\ny1hLBYx+6we0v/IkZaKwQpHWh9DWUmmN6XaxFFSVQUaOqVGWJbFIIAcZKaRIvEYXriITFBv9fRt6\nL0PeYPHX0bhAHrtjkp4RZipNWZTosiT0bQoftcrKAW/aGNrtLp1uh4V/8E2ih46xMDVO6/IVx+7C\n0m62aHfaJEmGihTdTpc87zodGGv5+PHjbNiK5sVLVEJT6YoiL7HGEEcJaZxRliVWW7K0RpyldKqu\na22MUk5cuMGFfbvpDg253v2ec6Vr37RSukYAC5WFKI4xpSavKoRU5B0H7jHABiiLgkY6jDGGquwL\neHS7HXdZfXKllCKJbxWB/1UeQeOkRl/4cg7EDphqwCFcxfsQDtga8y9p4m2OcWyuK7i8YQ/sz85y\njNNsf2sB8y34+AfwozWHle28Ak8vQmPUcNfcRxzZ8TYnJ09wbXYXW+J5dnCZxoc59jV4YQHexC2I\nLgFDV+Hx0zB6rsPc1BWmazf5cEqjZxQ8BrMnLvCV8T/jGf6MhxdeZ/zsGlGzQmeK9q4a9+08zUx9\nnj85XnGmeT8sKBebz0/gyuXanYTaCjti53TzCPCIZubgVaZrC9RUC4NivRhjfnULG6enHD0LyLsp\n3UZGN4uwo5ANwei8A+7A8QlmGu4aFmlChxplldDp1lhgmpvxFrbtW2Xrbnj4tDNhNLhOm7lZ4ABc\na0yzwDSdjSHYALmrYixbZhvXmbyxDmfg3UWXBwVC+akcdnwAwx/B7KNXmWaBaLSiCDJnQoINlPg7\nbK+/+/hJoOvnC3jdWu32bAMhei3gDvySP/lS4RhSSgpqcUQtSUg98BVJSRQplHJaXlIK32KuSJLE\nxztLWRXYylBaS6UhFs4oxXgGceCYSQSxVCRIYiHI4pgkdoYp2id5lTZUWpNGipHhIc/06puVlFpT\nGU3U6ZIXObrybcmu/I8Qll7rkE9sBtsZf2KYEOz6QOFm8AuEb/WUXpusutOZ8SkZn9T2M4mrmuyC\n2ghMK5gT7qExXD1gu2Xv6Hnu4w0OX/6Q+I81rf8HXroG1zXMRnD/FRiXhnu2fMS7xw6wZ/YCk59t\noTaACVg5UOeNqfv4TvxVXuRxlp7bBm8qVme2uDm4wkktXgUacDa6h28/IFiJx3nowKvs3fMx9apL\nO0q5EO3mDe7nx9VnOPPWffBc7ILFNXBVmHW8mwv9uSKw3H7aCO3+8OltRbJgtWdp9edkDRTa8MzS\nCv/46nVeMJa/HB4hSbNecTy00KnIFQdAg1BOmzBImVh8IXlwf25+2jzXfAIIFn71ESgcu6oPDQiE\nlyPZPLdJz4S6dYtuiv0ExmogYd36Cj8nC5wwvZvvTdjzLaBcqKq7QkofABO33BxItgno6l0iByRZ\n22s68f8TvcN0oJcAG6RejHueP2QZ2ir9Gt+R1RwzLuhG+hJJ/333ZmES/7cBaQVS4c+lQkpDVVkq\noXvHYnQ5cOy32wjzXuyW+16+dkysMsUitcUOnIVz825JH4RM3s/h5ik3Pe0/DfuvwmRtnV//3Pc4\nMfYyP6o9SbSr4oXPPE3nrWE4LuFazd2Wh+i7PgbwLfdbL/z9ijst2XfGL2PcPsBXUXDz5rzX9aAP\ngFUFpixJIrcwLcqCsqyoKk29XqPSlqWVdSptSNPMufZZp+9VlgVB88ot5gXdTheLJk0yJ0xvpXNT\nkf0KusVpVjmUQ2KRGKGorKBbaujm5NaClJRVia0EtTQjQnD0n/xL3vmf/wkqzTBao41nkUmJshYj\nwQjnkGi0q6APn3qboX/9+zT+t3/DG7//z0HGjGhLrT6EjGKazTZlWdHNKogialmNbtlFRGDyEqUj\npKlQZESROyd37N7CUTvnk9DuYbQTKBZSoKIYEcleNUxIidUaU5TookSXGltqBBZdufbEsiiQKqKd\nF6ysrNBqd8jLktbwCGvXbqKNpTKwsLzC2sYGVaERQFEWNNfXUBKSSKLLkko7kEtbjZEaGTk2VpGX\nLuhbgRQKJSNqtYJaPQNZkZc5szeW+cqbH2H+6iV+97/6bZRSpHGMUB7Zs47WLKRCqghlXWDtFiV5\nUWKj1OnMKE9b97piSeLYXkHPq3JCaZRVhRKKSmu0rojihEipT/w8/+qN0NoWHF9GcCv+OZgecsDP\nCQuPwcjxRXaMXGCaBQSGDUa4nO/g5vvbsSdjeEX4PKLLFuaZq64SnavovAcn1xxwBbBqYMtFeORd\nGJ7fYPuOa0zLRW6M7CAVOQ3TgiYUa65ONLgUX66gWoN4HTJyElEilDvsoYeWeXjiZZ6xf8YXL/+Q\n4X/XxZ4EOw/JsKZ+X8Fnfv1VkuMlG/Ewy8dmmP9gB3wo4FoG3RG/p1mYqsEDwNOW+tfWODb3GveL\nN9jPWSbsMhrFtdos740e5pW5hzk3ezecVBTzo1yd3M7HQ7vYc/81xo/BUzehseHC+30Kxo6DfQAW\nJye5xA6Wiknai8Oc37GXM7VD7HnyIsPnuzyl4dhHgIWJfcBXwTwFp8V9fGQP0FoYhhsCca8lEhUR\nFdLriOZ2c+rSASr/vwiNQiMc77+/PrUBJLkDfP3thvipLYx/a9Drk9aCPqMJhC4BvTa+wUp4EMp3\nC3Xbf61wQvVJFNHIUmpJQhIrIqWIlCBR0rF7PeMpihwAFUURFRVWa6gq/tfzV/jtLWMYbb0GpKCs\nSp9UhJTHtZtEAuppRKORkqURKnLx0xm5WDaaTSKhGa7XSLPUg3jukPOiQkWCLE7Im11MZanK0icx\nLgtRwpnZ/GRLYkg4vW6N7a8jZKAIwCbwK7TiKCV7bA9RlnfaHT8VI+hY1nCZ3yjOtXEfjNThbuAI\ncNjCbhCTFjKQkznb5DX2VheYPLcOr8LJy/Bjv9WPK4jPw4lXoPbFnKtbt3Fy9lH2zZ6jRocWDS6y\nk1P2IV4wj3P25BF4WcJJXICL/e8mrjNoK1Q25YO1+7j+4HZeH3uAOXWZmurSps4Ns5VzzQMsv74V\nnpPuQN61UK7jKjnrODpzgUsyBxkftxY3LP1oUfoDCS1qn0amo+ktKkSkevpaFfB7cco/Kgr+2cQU\n+xaWGU5S/vN/9a95+V/8M+KhOkmkCDB7YF/1AHbBwBwRGFx9fpAQotd1EkYA7INzep8FZj24FZ5p\nHbAkPFNGBOMsH1vEzzI3fRIL7JY5U/Qb5wPo1XOTDKCX350NYvzuBHqdKe60e77wvQ6awOjq1dk9\nwOXaG/v6XuE5+O4b4wkCYaFiffu8Nf5vgW8vde7qPrHyGxOupodFGUvkiz7hPN11FF6Oxh2jks7U\nJFKBIhfaLC3ayNu85dEv9m7BXiWh84c+qOjHOeAj/8CFJky8AtM7YOp7K0x/bYWR/2SN1WiMq0fm\nOPONB1wB/JyAM8BbNbi0E8rYby1msy5wOAjBHdfHO+MXPW4b4Mtaw9LiAmVZEHsWjTWGMs+pyi66\nysFohHW0Wu1bFUpt2Gh1nEmhMUQq9o6JmzWihhoN4jhGKtc+12NoDVQ2QqujQ/xDtJEYqSgQtCpN\nkVdsFE0MBqkcaCaMYqiuOfwnzxKtbVB//nWuHj9CUVTEvjVTSIsuOtj2Rs/pUUlBJBVL+3ay8Ztf\n4crxe8jnl0AoFlbbzMxsZWxsDBUlbLQ7tDoraCwTkxMUeQ7CkkYKXZUIXRFhkHGEMKEX37dwGtPj\nGFujvUuj9douEFolAaw26DxHFwW6LCmLHKFdm2G706XTcoLw2kKr02FxdZ219Q3yoqLUlk6hMRZa\nnS6rrRwrU0QqKIqCTlVQyRQZSdY6bVrNFmVVOoaesMRZhLEV62sblEVJvdYgiVOUdGYAq60mcdQm\nijXGai5WFb+7dYrL+3ZTX2uSpRlpHGEtxEp4pp2AAHwhKbSrSEVJQmVdJUsbTaVLtNG0Wi1Ghkeo\ncKzDbreLjBTaGIq8JIlTosi1SAopUPFt8xWjL2jfoGffPjTsbNufhOyZFocPvskj8csc5W22cIOY\nimUm+CA9xKljD/Lq1GOs1afgGgjpmvYirRE52GLz8tngfQNzEMYS4VpfKxuxboZZEeOYGUjn4NAZ\nV7/OcWnK7gzi7WC2wSpjtHQD2xUwbpiZnucYb/Jg8zWGv92l+wdw9k24ULma/j3vwUgF90x/wH17\nTvPa6HEW9m3FbE1gRHmXx9hV/Q8Dj8DQF1Z4fMcP+Rrf5YnOC+xYvMLocpMqFSyNT3Jm8iA7o8t8\n90iHd9v3oz+KeH/fYV5NH+KuEx+wbXGZ3aOw+x3QGtR+4HNw48kJXqo/yLvcw+p70/Ch4q09x/jR\nxFNM717g+O+8ydi+NhNn3TWze6D5aMbpfUd5zj7J26vH6L5Th4ugNyJW83EW4ik2ZhJG9hUcHIKP\n19y1i4FjMYzuAnbCTWZYZoKqFblEq4tnwYSkJ0CNgR0B/eQo1GDvDDf6YNcn2dj/vNsaezlRSEBu\n2U+/zbGvIeNe12+ZiaygphSjacZwmpBFkjSOSCJJLcuIYxcnjU8SjDUkiZvPlIHSwsOrLbYUFf/1\nwhr/tF5HqojKGK9laZE+pVNSEklJliYMD2U06u6WRC55E75AkESuoJVGgnot8zoxUBlL0iiJdURi\nJe16Rt7t0iWwAoT/S3gXSuu1GwVCqN57E/R1BhO9W+8PXrPwvziKKJXyOjp3Pve39wiAz6Br4xZg\nO4zW4UHgBIgnSyYOL7Jty2Vm42tEVLRoUKNDWhSIFrDi2tbDMMCihrIJyQZkdPkuXyVfrjMysULb\n1rnR2cbV5R0svz3jwKoXgDdLZ5Lime4U3kBoPoNCwqJg/cwMr++f4fS2DnGtpOzGmJs1R8t4D0eJ\nPmNgvYkrLy3ggK8gKJ3Sd6xM6LsYhzVKQV8Ivxi4HwCz2znR/+uH7ZUE3DxQ6YonpmeYWVtna5og\nVAAAIABJREFUeWWFB988TbKywuhzz5N/8WniSGGtk1yxA4yxHosrAF1hjumZOjHwvFtKS73WRfe6\nADA5PKs/b1vPBBMeqBuc84VnZP1t3qUesBXEgG1gc1nf7u1uQoqevnIA/iyOiSU8GLeJORvYXD1m\nmCcMCIsN7Yto+lpf4TgGUi9s7//hvbKiL3If4oTAm2MFuRbRPx6DF7vHmQIoAvjlrrXGonC/6cUC\nxyRTvm3SSIUWxhVkzO36bShx80HVp3Otw6od4yYztKfrDN/V5fAsXLoOV2xfbmPNb2EDeLUFxe/D\nfSOwq4DZ2RXue/I0b3OUiS8uc7W5g5sXZmmfGoYxAS8L+HCbTwLWcP0Pq7gZNMKBYEEWJrQ+3g7j\nr1vbDZ7D4PNuzQsH19u3y3nfvuO2ycqthaXFBYqiD3wZo6mqiqLbocy7VGUXY6qeSL1UiihJaQyP\nUFQVxpRUunLVaCGQXkS91WoxMjJCmqaufc2AFAorHOJf6Q6xBUxFLCMwClO5CVIoiRaKbmkom10Q\nXSpdel2UGGshiVKsSDn9zBe5unsX1w7uI19cw1iI4hKhumitKYoOedlGe72sOI6ppRlYy/t7d1PO\nr/pqkcKyytJykz179zI8PES7k7O8sowRlqSWkucdtCkRWUb26puIbTOYe+5C511EHCNVjFIxPUq1\nNtjKtTyGGo1rJXW6Y6Z0QKMpCnS37UjLVYHwop7tbk6rnVMUrtVzcXmZ5bU1OkXu2x0LOkXh+/QF\npTbEaYoxgrwyqDQiixJUVhIpQdwYIRkaY3V1FQskWUplSpaXl9noGKIog6iBFoqy1CgZYbSh3c2x\npkulCyqj+aMoJr2xyDYEtSyjVsuQXncAX9FHKmQEUmgwFVEUk6YpOtdEsSRKYsqyAgTr6+uktRrd\nMscA3TwnTRLXIltWCAS12ghRFlOYEpncDoyvwMsIi+I6MA5yFPYAD4D6Qof77n6FZ8R3+JL5PvvP\nX6J2o4MsDflEyvyel9k/cpaR7es8+7kvs/rn09iNlFVGWY7H0Vsl2ZzhwHm4Wbkaz1Zg3yiwA7pj\nGctM0LRDFMs1rk/OcTbbz0MH32DqM+s8cBnGz8PNArYnsPMo8Dhc2z3FOfYxvzGLvqGQd2umRubZ\ny3m2X16AF+H99+AHlQurCbB2Eb74Aow+2eHAno+YTa6SzXRpjyWQBdbbkJM3Owg8CHfveYuv8D3+\n/sqfMvfDG4jngEsQx5a5owtMfmGV0UfW6NYylh+Y4sqf7uX8uQM8e9fTjGTrfParz7H3rktkH1co\nDeUOuLZnKy9MPsqzfJ63rj8IpxSchRs7dvD9J76ErQnmD85wZNv7jLTWERjWGmO8P3yA53mC75sv\ncfWt3fCadML6VxVLrRk+GjrIuZm9HPvc+8xdhF97BdZWIUtg+hDIL8DC0VHOcJiLnd0UVxOXI7Ut\nfWH/IDgaWmIC0KUJLQv92/8/A7Vb3G9mdv20v3+u+6VfoQ9OvIOJ16C2l+hTeXuJjcSiLMRCMBLH\njNRSskgRK0GcKmppSpYlCOWSkkj2kbXQQmkqS1EafpClXJkc5VkpnU6KFR7EFhgr0cIt5pJY0ahF\njDRihmoJQ7WMRi111XQMMnJghBIN8qKgniiGkggrXA26MgaSFKMNSWZYz1KSRKFKMKbPfJAShHIJ\noQnXIFyCv+Z96V/PkCuF62UJovtxFKGkK3LcGT+v4b5DP30EBlKIUYPD8h8uihwS68FYNwZsgfoo\nHAU+A8nXW+w/cobHshc5xml2cZGMnDVGOc9eLqodlBMvE89YtuOwpxy3oJ5LIZkEOyZoMUSbGj96\n+yvU6k1MIckXMjirHBPibeBDCxtrYG/SB5g8ALW6DU5POrfi94FtYCZq5EnNTdOrwHUcznXDQnsZ\n1+d4zf+zjXtiELQOAv41fwvgF/TBrq5/Xe7/VvTd2Xo2TJ+q0QelAvClKYuCbt5lfWOd3zuwj/Pb\nt6G3z/Kl//MPWPqHv+0+kcIZeQjRB8x78y+Dc89PKYLY3o/e/sMv0Wt1dA+IsB3h4S3hHmNwey44\n+GX95rgc2ErhGER4rhgE/8OT3bzc26Z14Bc4/WJ3mAH5Gfxe9oGrQbfiQUDrJ26CvmaWx5wC2ygc\nj7UDfyN633rhGWbWGqR0hmKBjSbFgDGYP4rg8uhu7r4VDn5TwpkDhBgghWN99Rw3jUAL4TWbw3Xh\nNhuDruVtj9QDV+HK8hxnpg9zdtsepp5eYfia5csvwvqik4F5acXB6BYHS53CXYLOOky9DsNvG+45\n/gH/ZeP3WBITfDh8iFNHHuTl2cdYrG2nJ2S9tA1WJ6Caxs1TKQ4EC5+JLpsLrL+KI+R1YuDvW8cg\nmAV42HXz68MIc+rf1Gb+SfHy0zcf/6LHbQN8gWVx8SZ53qVebzjXv8oBX2XedeBXWVCVDnRq1IeQ\nUUSpDVGSEtopjDaURYEQwrnx+aoNOGfHstJ0urlbTBun62SqiqqySKMxwgn1agNl0OdqF+QaVOS1\nu7BktYyqhKIsGapnJFbS6ZQs7dhJZ3mDoqwoypJuXpAXhdPEqkq0doL17XabSEnGRseoZ5mr+BhL\nnETOedJa1ptdCm3ZsWOOylg2Wi3E4gLjU2PkZU6320IWhi3/zT8FYO2Nv6DIO0ijiRMnKC8QGKOx\nZYXQIShax/HwgdXkObbrQpcyFabMnblAt4PWhryb02w6vbRWs836+jrrzQ0KY2i1Oy4YCWcVXdkK\ni6DSkBcFxgoKI8lL7apFMqKZF0ihiGoj2GYBQpA2hmivrlCaiLGpbZhKs9ZsYrVFlyVZmqIrja5K\n0lhSlhVRklBvNMiLLtdu3GR4uMH4xChJktItu6RRDEK55FA6NpuQChUBCPKiwMoYqSIMrr1VRIql\nlWVKXRFHMWVZYoqSSCmnYaMiokQhYoXRMDwyTBy75/3qDq+W3tP48nonw7EDvo7BroMf87R4lt/I\nv8Xh588h/hT4AMghnWsz/PmLDH19g2pScXPbDC/d8wTVfI3L7OQDeYhHjp+m9lTOiQWYeQ9WNOwe\nhulHwT4BN3eN8xEHuG62Yc8rLm7ZxanagxyY+4invnmSelpy9xtw9xowBeIxWP97GScbj/AaDzB/\ncytckMi5irpqM8I6ahHsPFwt+z4yBXDeQmcehhZgmA0atJGJdnmBf++h5jSO98LwfQsck6d5qnqO\n7c/fQPwfsPgcfLAONQGHfgyNmyX3N97n4yMneXvoKFf27qP9o1FeHHuCclvM5aE5jhx5l21HriOw\nLDLFhxzkJR7l5OKTrD036VYS54BGxHnu5t8+OsbZkf0cHP6Q8eEVBJYlJjnPXl5v3c/iqzvhB8K9\n7jpwHq6f286r0w+xPzvLli8ssS1ZYOYoTF8HMQQchfUvZbww8wgv8wgXF/diP1Lu9c0SR/0KYsgp\nfetK6FfhCvqLpxCoP42tMJuHEJI0TSkKp5fj8pJfnEj95p3TWwPeCq6FJKb/uHWFda/rZb2eo4MO\n3NweCcf2GkpTsiRyrY1pTJok1OIYJSXWrfydUHOIdd5YptAV7aKiXZT8OI6JKvwcr4l80mMECCuJ\nlGKkljE6lDDSyBiqZaRRRBZHxLEAa1BJ5AxiIkVHSbIkIov8vCQllTYkWUahK0yeU6slRLFESC/f\nIpybulQuBhtrvAGxL3AYi4xEzzHYDIBXLhk0m8AuYeknOH4opUiSmKL6VZ7Lb5cR/ZS/B8etQuBi\n4H5IaUMS8LPOP2Ebgd2cAWMgxp1r4xGQTxUcvPcdvhF/iy/z59w//y7193Nogp2C5rGYN9N7Wdk1\nxsyjKxw/D/KsS+G2C7h/D6iHoXmP4jx7ua5n4aqg88NhN2Wu4QoVl3E6XnYRV3kIKaXBzbFtoAud\nDlyYgUs1ZzDZ8JdM+6dsADoHbuLaG2/iEslA41X03SmH3Pn2XCsDCwy/z6Y/wA1cmrvuH5P0gTGv\na/VpGgMgkbVOz7CoKsqyZKPZQlrNsyMNfuuPv82+t88w99obvPmv/qWbT2PZ6yARoUPEM74CXBtc\nHAP51j3PeoCrP7mHh93fogeg9f6Jc2C3fo613jmy93ws0lh0KHRYz8u6BWDrA1993CyAX1IKrLH0\nKFS96xLMSEyPXztQTqAXpMQA6BUQIiE3seoY+H/P2dGGMprogV6eL9fvtOk91t9fH3DE892MB9D6\nfDGs1yHG5TVWit45W0GPmSwkKOuIl8Z/FqwLfz2wzGl/mcFLcxuNUCzI6U0eN0bgLOSnx3jtiw+y\nN/6Y8aeXuHvoAqP3wuhVsFch/i6ka252uEq/5LkM5BvOqGnnyevsLK5jt8KNe8bYn56lPtnmLz//\nRZZXZt3Uc1XA+QzOprAe5iCBm/vCmpKBPfyyxs8Ch2g2M4ZD6/itAFiIR4Paigl98EsM7C+sJwZB\nyRD7KjYDZvCTBaDB+5/+dfjPY9w2wJe1lsWFm3Q7HcyoazOrfGDqdNp0WhuUhUOKkySh0WiQVwWt\ndpNOew1jc6zWSARGG4qioF6vk6YZ7XaLbrfLyuoq9XoDKZVz6ktjP0ErKlOicOKHRjg9q27lEgAh\nS6TqECcxtUaNOI4oWgXaarQ2ROkIoqtptzu02h26eUFZlnTzLq1Wm7woMda1ykkZEakYJWtEKqZb\nCkpdYKoKISx1m5E1hhHWIqxlfb3F4tIKo6NDZFmN6/PXmdkyycjoMMvrq8isRu1/+Mdke3airKUq\nCmxV+VZNxx4zlUZYg7C+IjJQ/cIY0NqBY4C1FfLUG7TuPugcHYuCZrNFWVa0Wm2Wl1dYWlqiU+SI\nOCaKYjrdnJXVVbp5iRFOxLjU2ml/FZq8cu6KIyMjpElCWThmXhTFTvssitDWueWMj08yPNRgY32D\nqiycHpmwKOGq/XHiXMBAODaegVK7tpebi0tMLy7SqM+ilEJGymmWVQKhda8ippTT8bK2RTfPkbFC\npDHdlnMQ1a2ma38J4vXGYCpNksQedG2gEsWQrDM2Osz1q9dYWVn9/+ib87OOwSq4BzzGJMxBdqDJ\nofoZHrKn2HvmAuIPYfnb8PZNt6y+uw6zN2BbbZlH/6OXeSs6xvtzR1h8NuPs9YOc3HaCPbMf8/g3\nTzE02eHAaRwSNQvmBCx8dpIfpk/xmjnO4ptz8B6syG386AufZbi+QXk44uHpN6lfbKM6mmo4YnnX\nOCfHjvN9vsSpxUdpvTwO74B9VNDRNVqqgRlzLlrTEaSVC/UKl5zUpoBR6JLRJcOUql/UDguzMWAG\npms32cd5tlxdQp6EpZPwx+su+EsL81fhs89Derzi4F0fsSu6iNzWwazXaP37CX74+Be4sGcv2xuX\nmY4WEMKwUk1wvTPHpflddF4YhddwmghLOL2XlmT50hzP3jvN6zsfpB61kcLSKhusXRlHv5PB6zjQ\n610DhYD3BbwScXrncUa2r1MOxTz+tRfY88BVovUKk0iWt4zwSu1B/oIv8Nzq51h9eQZO49DA3HPe\nKXEJUuRvYbFU4i5SuCX0GWIRn96gK3pM2+HhEZrNJnmebyq0/5IOg0EoRnhgZpCZBPQTrF4yFRIQ\nB+goIcmiiJFanUajRhJHZElMGinSKEJKl1xJIZ2+I9a74jrQq9KaoihoV5qy1AgrXXuhAIXBCOvE\nhyUgFMNDDcZH69QTSS1NqKcZSrp28ySOUBGoKEaJBIFECkEaxSjpkjAZRUTGEkUSkUM3iUiSiMSz\n1IxP7iIhSZPYXQvTz+hcXHNtl1YK36IU9L5C4tRfWArr2vwlAiWVY1X4pDBJEkSnPZgn3xl/7fik\nRXpIHILOVEgYwuMBVLH0k4AgyDw4QlIRWKgBOPqb3pyQrCgc62kIanXYKeCoZfqeeZ5MnucZvsND\nL7+F+hZUr0LZhmQGRk6UPPjr73Bx/xYav9GiERc8egqHXU0DJ6D99ZTnRx/ldR7g+sVdcB43z16q\nIJfQKqEMws4Kot2gEpd52wqqCnQLNx8vACtghmC9But1+uBTBxdM191zWPf3W7joHNSrJ4BxHM96\nAuIxSCPHcA5TfBfXYpm3wazSB9FiHBAG/Thw+49NhJ1NHxmL0c64SGuD0Zq8m7NqKv5odgsTecGl\nf/CbzKyuIhghNjFx7LSLwpzcB7rcPBRaHSUDhZI+4gQIpJvMEcL0wa/esYreHGSlRFgDxjss+mN2\n879FS+OYtyIYnAhfDHD72dT6PgB89Q6F/nEPXiCL8efn2hRdt4dkoOHQbX8TCyxsJwBivtUxXJdN\nYHZ/T/3dhv6TwPoKLeli07Z77Z6BMrYJ9Aq6YYEKJj1TzOU8wh+zAJR1TZdROA7hGGFIi1UWZQyR\nMsSRY0EZ/cmzTQDjzK8UOzh8dwvcvLEKLMJSA95X8KLgg5l7+d7dTYo45vFHXuTgkXPUV3OmX11i\nbgjm3oXrb8O3mw67V8A2AbU5sNeg/F0wOWQ7YPbzq3zxmb8i35ayODbFm78m6Dw6RPd8DXs6gtcF\nvJnAjZ2gQ/E0gF2hvTq8+7+oEeKRZDModesIxxCAqIRNJgEE7bLw3QrFC+1fE+JcSh/oiwa2GZ5f\nsbnNfFBvdxBw63/v++vuwTgYOjbujE8atw3wBbCxvsbq6gpbts46Z0UPfnU7bTrNdcpOGyUscSyQ\nEbQ3mszPX0HrLkpqqqJEiIhms8na2hpDQ0NMTU2xuODE7ufn55menkZKRVmUiKHUVypcu4WUEiMl\nu5bWqYh5N85ol7ZX+cjqGbXSJQhgSdKYLMtYXt0A2uRFQafTpZvnaK3pdAtarRZaV85BsTJEKiNJ\nBLVaRhZnyDTBVCWFzanKHCM1WZEyMTxOPa1jjKXVahNF0lWj84IrV65wV+MAkZS0mi1u3rOfyakp\nGlWJk6EXYJx+mI1jsGCsa6+UIYgIAdq5V4YKuTEG+cMfk/2P/xz91c+z/g//U/I8pyxLiqKk2Wyx\nurrK2toa0jvg5HmXVrNF3unQLUrKSpOXpWN/aYPVhirXyChG2YoqL6lyd43SLCNLY6y1dFtNhDWM\njw0zOjrClulJyrltlN0uRaeLqSqs0eTdLq12F5WkaGOcgYEBlcbkuWZhYZmpsTGmJ8YQgPEeOAan\n3aKt7dHJnXmCJkoSskadlWaTMi9ckBQCrZVP2EBECqEUZVWRxDFpGqMiGBsf48zIB7cB8AWbwC+h\nesaO9fEWO+Rl9pbnyE5pOs/D92+69g4NnGnDb7wOO1+GA1+8wM7xi4yMrbBot7LxyiQ//tyT1Efa\nNA8Nce/Wd5n66hJxVdCsDXF9cisn64/wPb7MW1cegBeFSxCW4WL9AH/64DeYH9vCW1OnmZu6TI0O\nGwzzMXs5zX28uniCm8/POp2UVdALiqWNGS6O7eTmzjG2Hl/lnnegPONwpVHgoa2gHoLm3Snn2cP1\nchv5cupKWR1fpw2dITUYkk1GWCfb6MIVuLrkUoIQXi4CnQWoXYexZouRsXWy4RbtqgbPARcTLhw6\nxOU9e4hHC4SwlM2E6loKG8LF+APADnfenPc3DfZqysroNqcjI3F5zTzOrv4ccFFD2yN2Z4ZgDDq1\nMV54+ikWdk3zbnI3u7deYHhrk4KEa8zyLnfz1vyD3HxpG/wQeAuXWxHhkqOw2EjptzqGJCsIkrZw\nyVAIwKX//HxKkiIxuOCgt4htNpu9yv6tLoC/vDGQLoj+UqfXxgK95ISBx8HZtydRRD2NGa6n1OKE\nLInJEqftFYe2HS9vaXRF6YsCRjsDj3ae0+zm5HkF1iKVY0NJIVA+ETLeoVFFMeOjGSNDCUpApKQz\nWzYGfFuikM6cROKKCSJJXSySAhlLhHKxyhQQW+84iSCVilgISmGwwmliJpFysUp6wWMEygN/YmBe\nB9Njwt3qtik8q0IQlsI+mZOCKFakcUK3KH7h7/LtPQZbQcKVHPxfhJtbQtIQWu4k/UV7SAI0fYZW\nGEGLKrAEwt/ws7VgB22rDBiCuoJtwF7YPXWW47zGscvvof4dLP57eOuiYynvzOC+c5DFObX/rOS1\nY0c5OH2eqS+tEK2CHhfc2DnF6amjfJev8MrGo7TeHHYaXNeA+TVcoPHOyY1RmFAOlwqmZ0UCGwks\n1GB1HLqTuIpI4s8rtC+G+XiQmdX2jwewsEEf8NoJ0SRMpTCH0/Kf8Jegwk3nCxIuDcF8HTaGcKDZ\nVf8eDra3h/fgNh+D03dPMNG1SVe6coXQKCKKYypdsrKywv+1bxc7L16kyguMrhgZHaZWr7nN+Va4\nUKIILFnrARBDANbF5sJFD8dx8huh/RACiGZvOeTQ6mg9ayqALcF9fPNpWb9za0ORZLOe0CBbGM++\nGqCa9dhSrlDgHBwH20P7BRnR24Z7XPbvD27vE4YduIXz/uRv8OA+6ANrBLZYUDnzFzUI3QvZE8zX\nwpmgGAKLzIKxCOsMX5Qv9mhrUVjXDiksUpgBxpe9BT295Xx+5aojwawirOU2gAXojsGH4zAiyOt1\nXitOsHDvFO+kR9nduMDuxgWeHvsrZu+5weipNtO/Z/n8Sfhow3U8HN0GjTG4/ofwzip0DBxowF03\nYMvQCid+6yRX41numXuXK3NznDlwNxf2HyCfbLgl5ss1uL4DbNcfV4f+XBeO928zbo07nzQCmBRi\nUIhNg68NK/1BvcOaP8YabgJNBrYVAMYu/XbxiH6LeZ0+YAZ9zbUubl3tmb506QNxMX1DFjHw2lDo\nCdsYjIODINydMThuK+CrLAuuXLnMwbuOuoV4WVG2O+i8jSk66KKLsBqlBAJDt9OiubFOu9XEGu1s\n0WVEN++yuLQIQBxHNIaGKPKcdrtNc2OD4aFhKuHotVIpn8oJEBHKKv7RS+9igd95+EG6WqC1pdlq\nkrVyVLSBkDA8PMSwihGFxtDFIul0clrttnN6NCCkayMxgNUFcZJSbww7/a0kQgtLXuXosouQhrQW\nIYSh2VpHWUF9pkGaJVhTorX2CU3GwrV5tk5MMjo8TKds0+60aXQ7xGninCqlwnoNgwQnLOx0W0qn\nwBWqJ9aiddVzCNNao+8/Qjw9ycpv/4Z/3KB1RVEUtJobNJtNGo0Gk1NTrDbXybtdrNF0O23XKhRJ\nqsJS5F06nS5FVaKihERBd2MRiSCJY2RkyWJJksZoY7BJRGN4iMmpCYaGGmRZ6phWRUUkBWVR0NrY\nYH1tlY1Wh/VmzvraOs1W0zHBlCISMWVH02mW2JEIGUtK03XXXwiEE//yQJ8mCCFLKVGRojKaQmvn\n9oJEYymqEotFJQlRkrjnVRU1q/h/2XvTH8mu9Mzvd865W+wZudeSWZW1r6yd+9Lcuik1u6dHFiwI\nmLFhwx8GsGHAlgH/BYb8YYCx/cWeTwZsYcaj0QgtTbfU3WSrmyzuRVYVayFrr6w1Myv3zNjudo4/\nnHsjoorsbkmjXijpEMHIrIy4ce+JiPOe93mf53ldY6h5ioL3Vfma5cmKtLzujPzlujElmlT1GjyA\n5SWLueTL6wow24bJB1BYjqnVVyl4LUQA+m2Hm4U9fPdrAfe8jeyvf8bG+n0C2qxS4yZTnDFHuTB7\nmPU3By3b6VMsmpQqbi3t4N6xjXy87TjDYgGf0HazisZ5cGUT6Se+BctOYVezacmDxTHODzzG6dph\nXvonb1Nqa556B/QCiAqoI6B/B65MbeMsR7i9PkV6w7NyvyZQqWZG7/aWGIcEB+NI8KEkwdM9iMcF\nm8wHkDiSGJdUZ1z5K9ik55wgHfVJy76d5s3AfpDHYiqbFih6bTpJwNpsnfTzApwBtmEbaxaxe4E5\nennOfSz4VZDgFSxgN4tlgKXQWKpz5sRTnNtzmJENcxRViwiX1ZVBGtcG0WeV7b55JTv+bgELJViY\ngnSUXmLav0nVWFbBQnbzsUmcxE5Ym68686vfl+TLQK0wDHGc3vf5VwJ+9W+gs/xB9u35bd6UeVqB\nZWoJQZr1yMr7czkIAseh5DpUfJ+y71JwlWVdKdsVWals4y8tcJbqlD84d43/df82wjChk8kbW1GC\nweB6EqUcHOWANvhSoqQh6oTEqcD3fUqBi+tomwYpjVQCLSRaG3RqX0tr22lYIlAI4iRFpOA49txj\nHaO1RuisdiogUA6ekMTCMhEcpaw8PwMDVQZOIg1CGBAZYPgQw6EvocwZDiJPWwFjfT4F4GQJVDko\n/CPw9TNHvvnvl2e4jzwm7xxcwiYNeeKQS0HyCngbu67E9BKN/pGDPznrtMPDYNnPW4cEPYN3v2f1\nNQ6b5D22cR3/bELnXTh1o7uscr0D7gU4/B4Mv7TAO6NPcGrD40yO36FoWjRlkWmxldMc5YPkSW5/\ntBvzjrR+XrMxNlq6oMYs9XingO3AJiw+FWDX+EXgloBrDlyvwWLVZpkym46OAZ0fLy/D5GyOfN4z\nGSejwBQEI7BNWB+zfVj/yo1Ycm+MLX7cxFoYfCbhQg3mc3bCo9L2fI6/2qNLanqI+mWBE51qUqOR\nShEUCojUIem0mV9cIE1Cok6HOArZoMfZ8dbnOBvGaR8/jOs4uE4mF9d2P4nprcMPxdRH6Fba5IBS\n1pVXZ1BQdpJ/nUgjhbSN241BKYkxAq1tLTNXNWgNtlPjF2bE3kQfY82IrrG+rVZk15Kxt0zOvPrC\n9T3MBesGr+6fBV84gZy0/DNBr955WpDQ+o3mUsmubLKrge8/roY0hzBM5iCVyyrzopFBZuBXKsCR\n2RWZXOaYH848dPqPYly/vqLYzxu5P1/O3G9gK633YD6Aj4uQQme1xJU7j3F99z4Km1c4Uj3DjdI2\n9u38jP985D8wELXZvgmmpgEf5CiEJ+GvsrwA4EITfv88bPsAdn/9Fv+i/q9ZlTWusYMPyk/yk4Mv\n8l7wEmni2iVsvgTxKD3Was5++tt4Cv51ZPS5ZDFnb+Wy94AeyJTnQzmglDOxJHbRrGS3Kj3/xHye\n8wLESjbPLrbKUMueU6IXz/LY1c/aXc2eG/edY7HvXPPPVj5HLXrrf65tycGwXzZr7qs6qjCCAAAg\nAElEQVQ3vioZOWCrzXfu3LEyBW1Ik4QoComjhCSOiKMOSRwhMpmEkhLPdYkdByW9zOzQtiFutJoY\nbfB9H9+zcrU0SYnDCIrWvDdNEoxrWZgGSBVEyuF/O7KXhdU2y80OcWr9R1qtkPVGC8dRlCslPDdB\niDaeF+P5KUlqaHU6mT8MpGlqk4Ky9YDqVneQJFrjuWB0RKcdkYRtXCWRvkNQCPClS9hqsbAwy+Bg\nnWqlhCPBVZJaucyaTllZWqHgBRQLxYw6bb3NpOOgFKASdByRSoE0DhiNQaNNikltUNTGzkn+pTHG\nkLqSmX/9L23VPEkyU/6IVqtJHMe4rsvg4CDaaMJWm8BzCdtNAlfieJ71BBMaV0K1HCBkEWEgiSOS\nKMJxXUquR1CrUixXKRTLeEFApVplaGiIoFDI4rINvq6jiMIOjcYazaKiXHNYW11Dza6gIweTON0O\njq5SmNTQbLRpt0OUtJs6gU2+lFKoVBMlqfWLS2Jcx8f3A7vxUZLUpGAUSgkSo4mSGN/3CQoFagO1\njFEBgSMoeZKhwGWgUOgyRH6zR5/BYh8rOkkVIR4dUYAaVEowNp/Zk2BTkroL1CAuS9oUiWIfEwK3\nwHxPMju/jb84Ms7ZDccY8FZRIqGTFpgPh1m8shFOCWv0GwFPYdftReBtQXK1xPTOfUyPYeONNjZe\n3xR2k36DjLEEXIK1s0N8OPokw5V5nD0xR//rC1SfbaCWUnRF0twScG3XJH/h/BZvpV/j7mcT8Jmw\nsedrwsYkiQXBFmE5rnPf38jS6ACDj62x+SAcvwiXEhvqni5D+SDoPYLb5Y3MMk74oGrjVhsLUs1g\n4+MJ4GuG4IUm2/d8zn51kUluU6RF2y1wd2ozn03t48ae3Yxvvs0m734X7JtLxpi5tZXmuTJ6xLEJ\nkyfs27Yi7Bzcw4JmiwJzVZFsLTMzWrZvUt6WJ9/v7MZ27Iyy3+8K2376RsXG8UHsXICNpSsSHozA\n2gDE9eyi8iCcb3rz6tZXA/wSfVIR+3tvs/owKNLb5CZJ8qvb1JrepqWbM+Q+VMIyuIQw6LQno1FS\nZgmT3dTnWzhPCkqOQ9nzqBYCSoGH5ynLYvIsc9URxh5TQormvz9/nV2rDY7OLfGTYoko1WjA92yT\nEM+18kiTpEgsYyyOQ5KMNFnwJZ6UKCFRSqKkAxocobqFBWMkRkviJEaK1HquCIlJTMYOS5DGIBON\niTU6TsFoKxwQikgYkBpXSTylSKUkTQ1aR2ht5fvW9d7Ox6OdL+0t73Rs5033S2eE/ZxIIfCkQroe\nvuMQJl+Nz/ivbuRgV5445FXtnM2VJxK5j2Q1u+WJQP68fB3JWaUhFsDJTRhz4CV/TIOHGU/QY6A+\nKn18lAGQ+VpK7GJesJ0YS7QQSxBmkp48MraAOQOsgL8aU0g7vCleoZUWKUhbvJgLN3BnaYLmR0O2\nkPM+cNVA2rbX6Y5ZwOsYcALcxzoUJloUB1fx/A6ddpHWfI32rSLpJx58LKAteurzCFgSMOvDvVFo\n1iDNk6/cKyyi5+c1AcEo7BPwBIjnNMXja2yYus2kc5sK6yQ4PDAj3F7axuLFMZJ3fSgKOFWAB5vo\nMRDy5C/O3q+vLsM3U999yR/IVBCGdrtNGIYUR4cZqIyQdpq0V1dYWVmBJCUKQ8z6Gs/+6fdQhQKX\nD+61wFKqbUMMpXAd1xZSdc7U7SuqmAy2MVZ9YNlYGUvD0Lf+P+r1ZTJs6pELyIF/aT/nObvVSh3z\nB+lugSfv2vjFIbqoYK8gIDPPMZk9x/S9fv540VdsEb3A2X0Z0b3+fgwsl4b2LiMrPfS0l903pycj\nJMtteh0g85nqssZE/7liPfvJPMP6JJ/2vEw3vkoJTnac1KQWCJOWDW29vjL7A2HVIj0GXd/H6Ddy\nv2/oATltLNCSsW7nt8CpABYEXJWkkx6NqVFOPvYin0we59XNP0QNpDz/+ycZP7qE9yDCGAg+Tlj5\nvt3m5lecAIsd2LYA6v8xjK41GB1qsPPoPbYcukO51CDc7fHxwrPoaRduC7g+RC8WtPlZzMAvH/mn\n6WfJ6PuPlc9BLj0MstesYMGlHJTq73bbr3aQ2M3xOIgBcKrguA8TvhINcRP0Gr0i8Rh4ZSi4Nuzl\nW+eoZMNcaxTC/PFz2fk1s+fmQFuZHviVz3QOYuZV8fVH5u/L4uA/7PGVAr6SOObenVtobTJ/r4hO\nJ6TVzryy2m2SKMFTVjbhSEW1XKHoexidst5oEiUa5bpEnZhmuw1kWzTHQSHQcULYCQk8lyRJSVOZ\nLfgSIV0SI/iwELDYSkiiFK3JuvkpPNelUAy6Xf46nXyRtDK4QlCgWCgilSKJY5IkphAE+L6Vdmit\n6XTa6KiN1BKDJg1DkjDEKAGRg0o0flXa9upRm5WlBB21GBkewvEr1AcG8FyHVBvWGk0G6zWKvpe1\n400gtRRpoxU6laSx6MlKJJjUoI2VN9qujrprCGwTF4HWCUliK1lxbH3WkiTBAOVyCcdxiKKQWrVM\nFLWJfQd/dIgoSWi1Q7zBKkIqpOMgpSTqdEijDo6U+IWAWq1OfXiEcq2OXyzhej6+5xL4HgJlg6ux\nwStNU9bSmNR38fwqxdjF9SSe8hmo1lhvtFhda7DeWMdRCqkUYRQSRSG66HYrUdbDxzK7HG19HTqd\nDoWST6lUwg986w2gVGaA71gfOGENlSvlMp7vE7abKDQFR7B5uM7mepUtIwN84jiEv5EG9/2V+ZwW\nG4HJ2iCuQmutxD2zmWlnkh2Hb1F5HL6xBB+v2SV3p4DJ3cBRmB7cyG0mWVutw6KwWcPnwF1Izxe5\ns3knd4axDqItYS1E7mDX8f3AlEEMxwg3RTc9mFX2MSWobFykXlvG99sYLWk+VmbxwRDRuTJ8hC3L\nnwE2CKYHd/K9E99itTzA5clT7Ji4RjVZo60K3JYTnOUI78bPcOHSYfjAs1PwT7Fyw7q21cJlBXMw\nf2cjF/fu5/zgPia+PkOwFPPMABy8B44D1b0gvwX3nhjmDIe5Eu+0lfp5bEX9AD0ZywEofX2Zp7a+\nw8vqxzyefsSWtbsEzZg4cLgzMM5HzuOc2XaEQ5xlGzcp0WCdKjedKc5te4wPx55iuraLJHQh0N12\n90yTVeuxTK5rwBi9IDuJZZEdT6jsWqVWWsVxY5LUZa1ZYf3GAOaMa6WmY1gWQg0bN3OJ5U3gmgs3\nx2E5r47lm45copRXxX4TKdY94127l+7f/D46+itl4qH7v2lFt7+b1t/8jHnouflpS2mBL5udGCQW\nXLJ/19k7IJDCEEhJxfMo+x7Fgm87KvoK5SkcxxrQS4GNORKMtInC/3F4J4dml/igUoJOjHAURd/F\nlRIHgyNt56tYpxQCz7LEUnuOgedR8AJc5Vo2mZSZZ5b1WDHaemAqZTDGxnMhM1DRSOK4gyDN3iEB\niSGJEqIwIk0SG7eVxNG287AvXVzp2lhpsFYIJoMsjM6zHnrJU94FTFszZwxSqa5XTs45kNJaH1vG\nuH29guv9I/DVHf1mvblPZF49zz1NcjZXPkbtTQxC4EPR7VmfpEBooBVBmMlFnCr4CtyMSRtr6MRg\ncnrUPBa9z6vlYL+7iodB+EfXpEzGktK1LuwQ0KSEGQS/CuMSbmc4RBErGqQOYdWlLQusxgN8+Pkz\nOI2UJFToOc8WED4HLmIzQomtGMVluw4/BbwCg8/NsmfsAvudi2zmDj7WAuDW4BYubtvP5ckDNIdq\nlu01bOwUt0S3mQmXBHwewK1NEPfLX1awC/8oMGb9y04Ar8Gm527yRP09jvMxO7lCnRViXO6KTZwb\nOsT7Tz3JudFjhE7FLuUflGF9Azahypuf5OyCr/AwjzB1eiiMvdOGVqvF6uoq7eEhRofqlMrDJKUi\nrbUV4rDDwsICcRzxJy8/zejWLRRXViiVSniui+d6SN/Puj5adlQON/VOocfmeviWn1MPIOo+KwdZ\n+iR+/RchMmBG6x7Alb9En90WORolMoZbLzblQFf+88OdHzN86xGqXK9QYN3A8vUzY0k9Eve6dip9\nU2761tz8iKYPIBRfAtA92s3YHisnEfQfu/8s84P3fug/O4EtvEhp/Y5tt2KD1NqyqaXsSVXz8PuV\nKGxDTwId8TBQlFW6l8ehOQA3HRgWdvn4wKP1Sp23X3yR5qYy17wd7Dx4lSEW2RVeYe/1W9QGYOOi\n3XKCXXmGqsAsLP7v0AihXoHK47Dr96dpvfhT7hY3c3vvFLO7t1q7jdsK4v6GG/m78ov2kvl15Ldc\nrZDff5knVs6UyosDdSyYNQgU7MZeZh12Y23zIVaxsUYAkxBUYNi1e+URenv8FrAsYa4Cc2VbKFYK\nhgO79k9gn1PODtXE7q3vKpiuw0LZgmEo7DpeA4aAYZAF8BS4KgtdGsIYdAcLYuZxMGeMQW+d/kfw\nKx9fLeAribl37xZGJ+jUsrzCsEOnHRK226RxjBISTzkoISkXiowODbO6tkIaR7RabTxfZYBJgqMU\nnu8RRTGu4xC4HkZrOq0W0gQYrXGUR+q41ovK2E6EjXaHdpyAVDhSoRyrqfc8j1KxRKlUIAhcgsCn\nWi0zMFDDLxQRUnUrGXEUEYUdwk6HOI67wXA1btNMQ3QOPBmDo6xfmOcqwrBJJ5R4bjlrC19ApzHr\nK8sIk1Kr1RgcHCTshAiskbxd2G2XKyk06BSjU5AJaWLQOsF1vW7iY3SK1glaZ0mDkEhlWQBkHRq1\n6TUYiKKoy/YqBEWbKAiB5yk8x1DwFKk2dMIQXRcox8UPApSybDmBQSlwXEW1XKY+NESxXCWVLjge\nSiockyLTFIwDQqFTQyeMaacp5WIRz1eEURvVAWfQoVLQNNc6rKyu4fk+ruegU8sUkNk+3QatvKKf\nAV/d7jwQhSHK6aDTFEcqXMdWD9IkIRG2SYIWuus3F4chYauFElUGygGbhuuMVQK2jw7hu7+JwFee\nqOT+KXlAzDKAdQP3Be0bZa7t3MXpwlF2HbjBtt+5x2YXxi4BCTgbQL4KK68W+Vgd5zO9j5W5OtzJ\ngK+bWCbS58AwNkAI0StKHwKeNQwce8BU+TrDch5PRLR0ift6I3fWJthSu8Uh5yw7xDUGWCZFMcsG\nrozt4vS2Y8xs2GJ9Wt4FToHBZXptD4uPj3F2/DCbxD3KboMQn1nGubG+k+VPRtHvOXYavgm1E7NM\n+HcYkCtIUtZMlbvNCRZPbuTU5HEmS7ep7Grw9H/3PqWjKcN3sDF6N9w9PMIblZf4KV/j5vQey14r\nA68DW7EbCNdO75FtH/O6/B6/m/4JYz9ZRZ3WiEUwAzBx9D7bnr/J/sJFTiyfofp5C7FqMAOC5l6X\nDwZOMFRe5ORzz+OLkAItInwW9DB3l7bQ/KgO79CTjM4aqAp4FTgO7isd9m85w17nM7aKaXw6hATc\nM5v4bHIfF7YfpbOxjDgQU5uap+4vI4D1pML87Ch8GliA8UPgfM16wnRp6f1eO79JwFe+OZbZfe/f\nfu6zviyveEjK0fevXwJs/Z1shPvBrvz4wgJeUlnzd50apLTyPyEsE0BknbmENDhKUPJ8Kr5HyfcI\nigF+YLvPKtd6ZtncRIKwzVvIKtsGydkNQ7ih9WV0EXhK4SuJzKQy2qRIZfCkJkxipNE4UhJ4Hr7r\nooTEwbGxz0gyX2YSLdCxQEiNSWPCKMSICMtmELTDMJMZSqSRKBRhktJuh6TaoKVEuArHSIRQuMrB\nVQ5GSbRrSKIYrU0X7zJgm7WgEdKyWnvdwOjK2nMWGFg2BhljzXXdruNI4LnIjsgMo/8hD0GP3ZVX\noov02g/mnQQL9CSPGtgIfgkmpAXYx7HZkoNdRpYF3PfhtmfD0TbRI32lQFvBvAuzBZivk7ULw2YQ\n/eeWdyz5MsCrz+i5Wbd5wxzMsIFbbMEcOIV/zPDkdXBn7Z+3Anv3AidgecMgt8QW5pNR9Dmf6G1s\n0rOKBaZmsb5hj2HZU1rZJGcYeA7GXr7DC8Nv8pL4CU/wITtW76BamsaAz9XCNt5zn+aNXa/w0diT\njBXnqKtlPEKapsRMtJG5GxOkH3j2eL4LF8d5WPJZpdudeR/wJIy+fItXSz/gdb7HS6vvULrYRj7Q\nGF8Q73A4svMM4+4s7s6Ej156muRB0U7rpSroGjbxa9Cjnn3FOzx+ARHpDY0himNW1laZeTBHtVxk\nYPMGxgbrRPUBlhfnWVtZZXV1lYvlEnNLi4xNOwwNDTFUH8SpWduLNEmQQuA6WaG1b8l4lOnUj8zk\nQI/o/peDYn2ByaJD3YM+8utDB82P0PfELrYlEH2xTkG/wX4v+NiFW/TKAiaLFUZkChGdkiaZTYjW\nGbbUbxvwMLBnsMy6nNyWE9zyn82XPiufN/MzY2xeGO9dbnYOuYSzb6q/8NaL/CkCoW3hQ5rM40vK\nvhsIbbqg4Fdn5HlISG9mdfb7OkSDEFVhpQI3fViwRYvl1jg/ffy3OL/3IBOF2+zkGv/M+SN2PXaL\nwuPw+hy827BL4E4BW6pw4zS8uWJXjY2z8Nt3YKSm2bnnBge2n+e94jPMbp2AUQVFCatF7KY6934M\n+fl7yRz06o8/eUOPR/23yK41Z6y2sXFjDNgMchBqEsaEzVHyWNMElg0sVqA5bM+lUoJdAvZiJeNb\nsNiUkz3+Ln2FiaItXBzCxoK9wBaDGGwjpEEvF22u9Dk2bzjjwvVx6EhsEJkAajCiYFTY9b6UTUkH\nWPFgtgjzA5AOZy9+P5ubfvDrbyMb/VWMXwRD/d0XGL9SwJcxhuWlBVaWF1GAThLSJM6YSdiujZmu\nPsnALNdxEdpQKljmkFcssbC8Qqvdtl5bxi5snXYHtyjxHMfi3zrNNsIKKRWptl1R4sSyvJTrIp0A\nT3oEysFxFJVKkXq9RrVaplIuUCoVGKhVKJVLOI4HUnXpz7n/SLvVIklSkiQljEJWl4dZWp6j0250\nwZk4jnEdRZqkJElMsVig6PtUfIdK0QPjkaQJ7cYajoRadYBSsYCUCkfZ+UBrRGawKZVA6BSdgBEJ\nUjrZom4XB4NG6xQhrGkx2MQKTAYYShIpbMcbneK6ru12JTJE2WiUEkjhUHADkkQQpym1egnf8xAY\nfNd2VNTSwQmKqCDAdQVF17EGy1ISozDCgouesCw3bQRaCxJhwCikdNHGIYqVlepI61fWkiEmFaRa\ngxR4vkuj0aDTalpJi8yTO2k7gwvb2dG2sDdZxc4hDEM67TaOowg8nzWzjslM860fTZYMxQmRhk6r\nRdRuUfAkA0UfR8cM+wJXfiG8/ppHLj/Jg0WJXrAAaMDyENx04VPJ9f07+OmuF6nW1vjtb73B+LZ5\nvFsRIjHE4w7L+6q8N/o4P+JVPp0/Sni6DFeBBQ16GVYlrNZ71i4FrFTvKLjfbLP74Hmect/jiDnL\nJnOPQIesqzLXnB2cHT7MHi7xbPIO2xs3qYdLpFLxoDDG+dJ+Jiu3+eGT3+BmtBczmXVnXAT+QrI+\nPcT5ySHObzBQjCB24IGyYNxNYNwQvLbO3l3neNw9xT4+Y8zM4RIzL0a4PLCbj771OJ+ePcEPd71G\nu1BgeniSPd++zAjztlLOZj7lECfNc3x4/1ma79UgMsjvJFQfW2TL2M2uP1mDMsf5mJfCn7Dh+8vw\nb2H9FHSWwatC+ahh08ISY0ffxvlTSD6EZBncIRh4POWV77yL3A2b3HtsMDNUzRotUeSus5lPxw/x\n/itPMT24C+14NrafEfAE8AwE31jjuamf8Apv8nh0ii2t2wRJm1AF3C9u5CP/OD+emuG9yjM8Nfw+\nu7jCOLMALPl1rm3fwbmNR7i5cSdJxbfIyMdVWJmgJzvK2QB5Ze3XNUQmXRO/AJT6Wcytn72R/U+R\nOT78uvY8fxEIJ0Svc1ZeZZZCZCxeW7GXQqCUzMhfebsV6+tV9jyqpYCy7+P7imLRI/AcHKVwVAZ8\nmV4lXwqsfYtU1vhXC1zloF2DUgJXCZsIYE3f0wSQkqgTkSQJLhKtHAI/wMtl/AZreI9GGglGESca\nHbZYb9quylEcEacxAo0Rysp1svXYQVJwfFvMSRJSDUIpG3uMRguB47j4hUI+0URSkcgUI6x0MZct\npuTdLXPSQg/M1Fp3ZUIYa0yNNniBwpVZ0ceReJ6HoxTRP1jWl6C3feyXjJTpAi4MA3VQFVABqGxe\nNTYG7KObCKipCGcoQXgGHUriORdzVcFFYZeVE8C4RlQ0JhWwJG2ycE3YjmTXR6DhgcmTpNyiITcj\nfjRxys2KI6ABHQ2zEq7C9UM7+Xj0GPunLvLYf3aZupvyyin7MMaBZ2D99YAzYwc4y2HuLWy2Sc4p\neurvLcBvAVPAhuy8tYA1y84tPbHCEyPv8h3+jFfmfsrI26uWabsGhbGQkeNn2fjsLH45ZEv9Ntu5\nzmZzl4AOK2KA6+52Th88yntjT9OoDmOMsmDg9DjoXOqSgY6bBewA/9g6Jwof8ap+kxen32Xgzxvo\ntyC8D8o3FA5FHPnWZZznDatBjZltm7l5cBdclHDXt8yFrgwo93P8irO+ftbIwCMDdNodHjx4QMl3\nqVeKjNSqDI8MUy4VaNYbNBrWS3ZpaYlOp2MbVsUJg7fuMvnH3+XmH/y3iMG6ZbsKu2b2OvDmwsCH\nG5ZkXLA+dpjpSg7Nl4EA/VWaDBTKYwBGZ3iPzkD+nvm7NqKrdDT0s66y75Gw4JXFjPJqiFWN6EfP\nJFtPrTek6TsV21VdGyvJt+lI7jP26M3u2bXpPTeHZow2Xb9he+xcpt4DybSxx35oKrKZNd1rooew\ndVEuvhDybTHIApBCgMgL41LiOApljG1Q2S2gfJXAr0fZP7n3V+bvQQmMgmQKrm6AyIUlQXLDZW77\nFHO7trL2xAC7i5eZ2n+bXb93k4GS4ZufYbeA26F1E85esRAM2O326Q584xLU7rTZsHWOurOEMxCR\nlArg98vk88/9z1tj8hj0aPzpl9HnBZh+4CsD+GgCAyAmoFix1h95k6kxbI4isASq+wKmBVwq2jhw\nEHgS5JMJxf1NRifuMOQu4hKzbirMLW9k5dow0ccFC1YFwLOG0tMrTG65wU73KoMsAbCyZYAbB7Zx\n8+BO1icHbaHalXBhHNIi1Ko2V9oN7MDGoHpGq1+XcE9YhvFlBVdqsOZZgLp7vflePI+Nv+7PaV4s\nk4/8/OjIC1Zu389/N+f+lQK+AFqNBrMzd9kwOm6N15PYth1OEkyS2mJg2kRKhySOaTWaxGFEpVRi\ncGiQQq2GlpLllWUaa+usN9epFssIDM1mE1WqIB3Z1XCnOl947ZtkEDiuQ9kJUI5Pyfepl0rUB2oU\niz6VcpF6fYBarUqpWKBQCCx4JCxI43pu1/hSZsHKdkWM7PVMbiCMttJYX6ETtknjBLTtxWh0rwoj\nhcDDZO3cDeBihLANYHWMpzyUIzOAKyGJDLEwOE7mdaZjtLasNSkFOoZIpFlHGmuKaW+KKIqJM7ZS\nkkQ2gGnL1HIdaUGsgkesIE1iq3vXCZ4EQwsjY4TrYGRKJ1xDpglaKoTykH4JnCImsR0lbXcVZc3m\nhcSgQAnb/ctmTzawZa/vCEOUJgiT4jkuEmuM7PtQLNiuPEIJkPbc47BFGLVotZoUAgfl2AYD+ftt\nGXkCx3HwfZ+kHSOFoF6rUatUWV5aJk5TWwkSNiH0XRdHSus7G8coAaWCT7vZoN1Yw0tinN8o4CsH\nvXws2FXE0mnzlud1oGQzwxXgAnTerPFB8CzxhMtMcSOHTnzK+LEZXJ2yqAa5LHbzAU/y7tILzL2/\n2UoPrwBrIZCAqNo8aDO2wj+ErYa/ELPv0Fm+rf6c19IfsPvmDar313FahqguebD1E3aMXOVA8hlT\nH93FO6kzU3cY3DvNphdmGdyzRFJ2+KsTivSEQ5w4rLWqrF8bgHMK3sJ6pHh+TwXSBA6DeCXi6O6P\neN35Hq/qN9gyfZ/yfAOZappDRe5s3sS20g0qexu8e/15/mP1d7iw8QBb5K2MeeYwzwhXWzu5d3eK\n9XfrsATy2yH795zjqeJ7PMa5TMYSskYViWHi+gzyR3DnDXhr1RKUa2vw7CrsqIJzA9b/HVy8DLMJ\nbPDgsasQaM2h//Ii24vTjN6ex290iAOXtfEaRybOMF6c5c9PfJurzYOwKG3BaB/4Tzd5fPJ9vsV/\n5LWVH7Hto3uo09raCdRg8vAcm566R2V4nW3DN3iBt9m/eomBxTUM0K4WuTI0xcnCc/zgyGucVk9i\n1l27KTg7CHoIS3XITT3zStyvssLUL2Psfd967dvzja555HceeeyXM7h+HuD119v4Plq37t9tf/mx\nc4ZXngBJY3CEBdKlkMRpYgn+ysaTVFuDeDA4UhG4DgOBz0AQUCy4KE8SFDx8oXBdxzKqpECSmSCT\nta2XAqmk9Qc2GldZ9a+SOjORV6RxmoFakjgxhHGCdJQ1B5bgOMomR0aTpjFI2x05jmPCpEOj1ckA\nr9iCYABC4ipwXAfXcVDKJmkm0QjdxpPSmswry7JWUloPHSnwAg/P9zL2giFsd2zH5AzQy0FCZfJk\nRlh2W5aA9VfupZDWtyXrPCywLDrLCHPwHHv7hwl85ZISQdbag17SMYTdmW8Etw41z1bQc/sWiV0i\nUuBlcJ4LGdk9y8TQTcbcOVscMGXudzZx99gWls6M4zRDBp+bp15ZpBA0SFPFemeQxYVh1i/U4H1l\nK/XnBiwti5gemyuvdPevRfkGOvduaUCnCXcq8Jlg6eIY71Sfpx6sED75I/Zsvsrg9XVEA+JRwcLW\nQc5sOshf8lu8v/407Q8GrMR8Bhtaj2C9tE5o6nseUK8tUPbWSbWi2amytDbM6Pg9nuJ9Xlo7ych3\nV4n/P7j/uW3QO1iGkdMw0ZzjuW+8y6Hyp+y4N01tbg0nTGhXCsxNjLC7domBkRV+/PyrLKxtgnkB\nyz4sj2AX5gA818bdLTA6/oCD8jzH1k9Tf2Od9I/gwkW42rHv3GNXYGMHdm+4xsV3EQkAACAASURB\nVPGDH3O6epR72yaJNhWhImEtZ0/kyenf9yGQGLSB9UaTmfszDFbKDFcrlDeMMzg4yGBtgE6nxdLK\nEs2m9bldXVlFScmWTy/ByipmfgExWM/8tviCpVYOeHVBJ4vGZ4WRHP4yXwDp878ZcusP0QW88lgj\n0bZzubFrmBRZIcVAktjvg+57Rn42QgAyzfKNXICYgVc5kKVzK0mBRln2l9QYbX21cvmiNjaPyh/f\nBb26ZynQBttVXafZY9Ou0f9DwFduuEwOiuXn0gPAdD+wmE8ZGVOtTzr5xXf7EfTLPPw3KUGoLF/Q\nBpUapEhJf0lAwi8XTDPY9VDQWyPzToS5KXtmdqtjC6gvFy3Ashl4QnBrdAc/2f8i1eoa8cs/ZdvO\nacq3wq4AwPzhF0ufaf6/1H5yux/+7vYnB0J+0egHvfo9uurYBW8URB0CDwper1FjamyRoxmCaYNw\nYbRsCzAngGNQ3LfCQHUFz7OAW7NZYnlmkORcAJ8Iu84fA/cbITsfu8ix4ikOcIEN3MclZlXUuDa4\nk08eP8bZjcdZroyBDyMv3eeZ4bd4mnc5ZM4xFs+DNiwGg5xzDvL+1qc5WX2RGW+LfRuWgWYVDpPF\nk5TKvmUG68sUC6tIDK1OhaXVQVYuDcIpBwYFnCvA7CTo3P8rj4OGXz/rK/f6zO/z91D03UMP6MoV\nJGnf7dF99N98fPWAr1aDuZl7jA8No9MYnSYWMEo1CkEnDDEqoWyqCG3QSUKn1SYuFTFJkXarRao1\nynHRRtNstSh4AZVKlbXlFZqtdaqVKqVyEcdVGAzKCdBadNF/z9PWG4QY33UJPE2lpKhWAoqlgGLg\n4LuSwHMpBD6e6+G4LlI4XZqsIyXSsfaJWnsIXSAKO9aHSwTooZo17G+3SXLTfttzkU5ojVuFiUDH\nRBkoJZVjq96ugyO0bXWsNUmqCU2MNAZ8+4FRxmCEQEoDSmFk3sJYoByFJx0rCdUJhpQ4CUkT2+1Q\nIPCExoiEOO0gkxYqCUHHeBJ0aj2/dJqiRUSUaFppRKujWV5corm6QrvRJEoMf3DuNv/qqeMUywXK\ngaAaKOrVKsPDYzzxf/47zvzP/wNBoUQp8HCzL4Im8/fSmjixgdLYf8AREqQk1ClC2K5jBTxSXSBJ\nYoxOiMMWSWrN66V0MEo95BUAlvHneS7tMCFJYkrlMpVSkXKxxHqa4EkrfzXG4Dounu8jMjDOl4qk\nFXK/0aEkJfWBUQZKJebWmr/6L8wXRr+8sYititSxJY4NwDCUM31/Wdgqw26gBOvXB3mn8RLXt+3g\n/eAqg3IJJVNWqXEnneDWrR00P6rBO8LK4aYBswLuMEw4tkpyAEv13QT4sGHPXZ5Tb/PN6Psc/fAi\n7p9rq/dfB39Us/m5B7i//wGjV1aQ/zesvgm3lqyqcXIbVO51OP7Pz3F953aGRhYJ6NCkyB0muDyx\nl0u79tP+Uc2CX+exxSwDPAscgu37L/OS82N+p/1ddrx1C/VjLOU4BH9ng9rLVxh+fZ7I95jfPszZ\nP3mSpdERPh15Almx1VC9rIhvu5iLylrMfMuw/7GzfMf5M17jBxyavoR7I0F0DHpAEu+SeDMRXIKL\nq7YTjsHCRufWYfIqOItw7nN4R9sYeCkCfQmeeh+Gdy0z8mAZ+Z6BB+BVYkpHFqh/ewX3YMyaX2Xl\nyBDzlzfDJfv+jWyd44T6iK+132L7G3eR/9bQeAceNGGoCLXjhomlOV74nZPsLF3liUuf4v00RlzK\nTm5yiU3PzzD+xAz4sHK4xvV7j9n3eFrB0hBWZpR7K+SJ5i8vyIoMHM+D5c/23TJ99/3gV+9vjz7v\nN6GCmwN2wtifZZYAOVLgKgUCtLTdBm1nxDRLbgSeYzs2Fn1FrVqgEgR4jsQLXHzPxVMOrudkSZix\njOlsemxcyG5IRGYkDxJXWBm4ZVkbYm1Z0HFqSKRAKcsElq6VDEZJlLWQd4hMwno7ZLXRYr3VphMl\nNukRFnQj8ytTAlxlKLhWJu95CqEFaAjTlFCk1sA/pTs3juPYrsWB7dzsoVGOgxMpDCmpyecUC/Kh\n+RdJyo+M4Cp9rIcu4El3DxanKVGicT3rEamM7TwcuC6NTudX9XH4DRj9HRtzACS/97Ho1kZgylbQ\nd0jYg61Wb8bWVQS2Yj4HzjdDDuz7hKed9zgizjDJbQq0WBNVrhd28PHEcd4bfpZ4KeC3Nv05u7lM\njVUSHGaL41ys7+eTyWPcGN+P8SUkAj4egHA8e5GcgdrfHSzfUPcbPK+AXoH7RTinSEZ9LtSOkRyR\nzHsjHN52li2Tt3F1xLqqcFNO8THHeWf9We69P2Xl9Z9l03IUeAXc1xoc2HqOw95pdmH9cDSSudIY\nV4Z2sUaVfXzGyIVl9A/g8w/hjbZNT0ZX4LcXYcO4YcuBOwSNiML3YrgArIK/sUn12Saj/2QWMyJZ\nGhvk5LE6nUsluC5hrQpp2b4ngWNrWiMpA8UFJrjDxOJd+Agufwbf7/TaAKzOwevvQ+lZzbaD19mg\n7uMNx0R5kxPpg85lQzmD4u/5yFjDcZKwsrrO7OwcI7UqpcBjfHiYgu/j+x7lSplWu2XBrygmiRM+\nPrKf+8cPURuqU09TpEi6jC/I41c/3GKw/l0PIS6AyOSLfTErY0cZYzKgx0rbTS7JEwaMlRz2Fvdu\npLRRUMqMASb7XrEfNusxxsjApFRDYgSptsoLYzKjeYHt1ItCC5OxwTIoz6QZOKXRxliAKzvvnNml\njSFJNWmqMwAssxChTwaZ+SD32GwZ+KVtcxKtTcYWe7gjpEb0riWb//wqc/Vjz+Rf9GJid0YEQmbs\nLmxc7DZrUYZE/3xLh0f3Fvk+5eftL/LPRv74X86wOawd/QzYnM2ZW1eEYBqwMgJrQzDjgw/hSIkP\n/edJdjjcL2/kwN4LbNg5S5VVnjx9jsIk7PkMbrftajyE3fqzFZobPBbkIOtRlWTdtS8Zm77XfHQ8\nKnfstuyhJ60fwcafCQgKsFnZX8foNaxqC1hUdq2/V7BTcFjAS+C+0mbb3ivsD84zJW4ywDIaxczw\nOJc37+HcwcMsbtxkfRufhL3HzvJN93u8yo84unAB/1aCiAzpsOTu5Bi7/CtUN63y9gsvo4vwteE3\n+A7f5ZWlk9RPr6LuWAJFulFy8NglJkbv4g+G/OCZ15mf3QS3s6l4AXjNsOvgeQ57Z9gjLjHCPALN\nQmmYa4M7ObPpKJc3HiQOAlvla5dheTM2BrayW27o/+sCvvK8IGf29UtTcw/Q/k6auSQ1v0/6br2m\ne3/bM/lKjVarydzMPdK9+61BfGzlFcYYlFR4jka4Pp5jIV7X8Ui1YXZ2jrX1dQh8QqOJwo5dQIVk\nZWUFd9Aa/WqjUZ6gXC0SBK71e5KONbrX2lYj0hSdWkmEoySFwMP3HIqFgGIQIIUgiSISL8IkHsJx\ncIXAc1XGqBJZV+CsEqNThEkxaYck6mCMpt1s0VhbYW15mdb6Gp1Wk6G1FjOlIl6hTKlSo1hQuCrp\nVoGETLMOlx2bCGQVc6UkRvlonZDGNsgZAY7ngbDXo6TC9ez1SuUgpZWUJGGKUpYZkKQhOokxaYIJ\nI5Jmk7jZIMn81dI0QWfGm0Yb4jShk8Q0Y8NKM2GlERJ2ElYW28zPzfOtB6uMz63w+g/f4g+3bMAX\nMXFzDYXgf5pdo9BOWPjDf8knT5xgbHSEDcN1BitFCoGL73mWfec43TKP7QdlSOMIkyb4notUEuU6\nSOWgXInvSprrimqS4huDclTmAZN7AFgmhVKSUqlIq5PQbKwjXRcFVIsFkk4bgSDWGs91Le1ZQqpT\napUyI/VBan4FhaBWLFL2PcYHB7k6O/8b4AmTLzpFbIVkCItCTUB5ALZi5RmbsZjYQYN/uMnIjhnG\n/BmKtOngcz3ZzvtzzxEaF/MgsJWgK9jN+XngegrxEjgjMOVYM99nDd6TLTbuvsWUe4MBVlGkHDef\nsG/6Ku5/0DT+GE7P2Hr1JHDgHoxvX4HTsPQT+OF9+zIe8PR5eKYA5QNNvjHxQ4gFxbTNuipzJ5jk\nlHeMH0+9zLtff5H1KPNwuWVgyFatnN1N9jmf8ZT+gC2n76P+DSz8AC7NW7Bp3wcwNmPYVFzi2W+8\nwwX/AJ8/fYjWv6qSum6vU+Iallm1DvyuYePBm3zNeYvfTv6Cox9dxPvTlPg86Ca4Iyn+C9ii1M/6\nKKSQLMKMtvsBsOdzXwMPQJ0zRG/CtQ9tbBwGDpyFoJNwcOBzjm/5mDPVoyzsHMdscpCbY8Zrd9nP\nBXbPXEO+Cbd+CG+2bPFquAUv/Rh2DcL2Q3fZXruL+CPofB8efG5Pc2QCCtdSdptbPHfiJFfcXdzd\nv5VwS9X6ly3llHKfX0VY8Vxrqp9vmn+x2bx56Oe/PrAluvfG/PVZX39jOaTpbbMROcTwUM8shDA9\nmYUEYzSeUjiOytjAAlcbCo6kUvTxXEm5XKBSKuIphec6FHwn+9nK7ruJkDEkBoQWthlLVh03wrLJ\n3AwwUllykWrL5EqMJiK1EkZ7UsRxiKMcwrhtkxgc1tttFtZarLRbtOOEJDUYIRHKZa+A/6uxyu9t\n2MGar9A6pR2HdNodGs0IJRJ8KXAyFpkrJW4eRzOJI8oF5dnmJFIiAp/A90mjOOt4qcnNHUWq2Zlo\n/sco4r9BcMTz6XUiy5KpLBYYCamxyZiRlu0t0CglKRY8RKPvrft7PXI5Qr55LdKrtOcS+QFgEopV\nOCqsxPoJTbC/RW3LPMPFBYQwNOIyCzMbmZi8znf4Lt+IfsThuXMEFw00wAzC6r5T7Bq5wkBhBbNJ\n8F+E/y+7mleozUXEPswNDXGhdIDJ4DbfezrmSucx9IoDDwRcHcVWOFaxG/9845yPvPId0euENWu7\nI56vQhESPC6sPsHMoU2cKp1gzJnDdSKausxMuIHbq1Osvz8MJ4EPsLYqO4DHDcFL6zy+/V1ekz/k\n+fgku9cvM/ygSeLBg8E6lyp7OKsOMcYcYtrQuAXn2jZ8gO31cr4NG65C/eMmnIPGv4dLNy0PY9KB\nqZtQlx2e/+cn+dzdw6dbjtDZXrJr8XQAaSbvEQIckAVN4HQo0yBoaFiGhaQnIjJYK69mC0prUKFB\nkRbS0b3GnF1qxt9n0KufUWXX2FQLZMaQWl5e5v7MfWrlIqUgQAmB4yjb1CrwqFYqtvFWFBHHEU3X\nRzXWcZWiUrKNnyzYJbu+slL2ARwm70loeqeT3RnRJ3zsZ0Nl4FEXrMpjYi4LFJatpPsegxH58pkx\nxjJmraF7b2mydletjclyH22tWdIUnaYZk8zCUKmBFCuf1NgO6DkbK8men6SaNLF+YNoY0tT+W9J3\n3FRr0uzvOasLY32FTZp22bn5sHL8nI1Gt8iRo2M9EC+7xt6Mksdb6JOa0mNYWxsBso7J2jLmEAgp\nUNLGYSXpsvn6x8/aAzxaZH90H5KDXlLKh6Sdv7wR0+umK+iBYHmBICIzugJdh/VdcD4AX9AxJd5/\n5nmmd21jS2GaAbHCM+47bDt6k9FX13lsAWqnYUnDuA/jJ0C/BHc2beKy2MNsZyPcd+yGv537jIXZ\neXn0AI5cmpmfYx6P8hg0CGwCuQWGC7ZR1gFgJ8itMaqWggK9LknvO3BNWhn9OvAEuK92OHrkA17h\nTZ5LT7KtPU09XiYVihl/nHP+Qd4qvcCbL3ydO7XtjJy4y9fcn/B6/H0eP/0pzg80+oLd4/sTsOv5\n21Re+0vMkGB58yBaCF40P+Gl2ZOMfncJ/T1o37CXE2zWjHxzhRd+911WN9e4PTTJe0fqxBeKVnjz\ncsShw6d4zflLnk/e5kDrM0ZWFhEGFmoDXCnt4i3/Gn95eJ1T4jnSpmsbi50eBD1Ir738r7Mbb84S\nzhvd5GqjAj3VUc4AA/t+5+zD9eznFr2IJfhPMev/ygFf7XaLB3P3SeKINLYyx1yGV62UKKaGThwj\nTUq5VMQrBBjHZX5xFbm+TlAMKNcqthuVEGA0UiiWl5cBTakYZIaNxiYYwiY8jlLoVJPGMVEnxHEc\nyuUSQ/VBatUS5UKBSrFIuVzGdV1cxyYaMqtgK2EQadytcqRaE6dpJnPsELWbqMuXuDs/z5UwZmV5\nmbWVJaJWE52knGh1+Gc3HvAn+7Zy7fBjyOUmgwNFik5kExvXy2sjCGMN69M0czxWijBDeT0/xcWg\nlEIJL/NRsTmB8/aH8Owz4PhZwuMQBA5JHBLnPjM6JYlC4laTTqtBu7FOu9MmTawnmJSSJIkJw9CS\naaWHkAGlik9QdXE8n7vTN9BG8kZlgI5Q/HjXbl46cpA7Ny9x9bPz6DTmfxkt8nuh4M9KHtV797h2\n8ya+AyOVEkOVEruQjG/aSDy5CeU6meeaQkkXT4H2FFFWMXIEBAUB0lhgcSnmW3/1LtHIIO99+2XQ\nAqFUvguwQQ3JiZl53iwVaa+36DTWIO7goQmUpN0JkVLiBz6O56CUxFEuwwNjbN2yhS0bxonbHTyh\nKAUuGwfrXSPqX9/IJY4uNmAMYEsiW2G4YgPFMeCwwdvdojKyhl8NOTH4Poc5yxQ3KdGkSYk7zgRn\nNx3mk5XHmf58lwW7PgFOA4sRxMtACUYdOA68DMNfn+HY6Ac8Ld5nPxcZMfOW8ZhKKp91MB/AWzPW\n6iQmA7g+h/1XQNyBmfsW6DHY0HgZePw2+NOw6a0FnE8MLMPI8DpTR2eYPHaHwmCL9lSBk8+9hL7t\nW52+D4xAfXiZCe6wde0OwZmY+CT81bx93QS43YDf/hjGD8HU43fYOjRNZWyR1q4q/BvIJPp2PTbA\ni6B2RUyVr3PMfMKB61fx/n3K4h/DhVlY1jDlw67bUPivgO2w5wzcX+8qDtlfAm+HtUUbVeCmdi48\net3EuAWXLsAb2JDgA+vT8LV3YPC5BlOT02z073JhtE2nXsGpJNS9JUZYwLsF+ipcCG2CBRazO5vA\n1BVwbwGr0P4xnLwI57Pi0LYb8NpfQmFHzI7t0+wYucbI0APubqhmTI7/n7w3j7Hsuu/8Puecu721\n9n3rfV+5NbemSFEiRYqStdnwJDYmxgQwMjOZAEEQJJn8kwAJECBw/gkGMAKMZ0VmPEtsSSPJpriK\nO5vNZrPZ7H2r7uquvV69etu995yTP869VdUkbckTiTKdA1RXdb3t3vtend853993kWAj7maF/OqG\nk7kJ9C8MXv3l9/vkYnrjcf/fx8YCd/3VPvV/kTuw5x1okYNd2e3CIoUk8JxHpMgEKr4fYIEYi0JS\njHyqhZAwUBQin1KpRBQGBL6H5wmUJ/GlJJIKq2TG7HLNEGU1xkhk7qWCcD1CKRHGIoVBW02qjQv2\nyDczViM8x0gzWpMmzvQ+jmOaqaHWqLO81mG1FdPWOfvKbSQ8JF8VguGwwJePfomPB/oQcYt4eZbV\nuTs05mbo1Bb5XmeVPy74RNqFm0jpOaDNd8wFqZz00Fc+SgqkLykWi9gkxbYtxqYkWcffKslFo/g7\nUcQ5KZ3/5aZNyLq5vXXG+I7BkCVkesoxqaUlDD3nAxn//0HuuDkEpYDbbORs4VwiX4RCGQ4LeAy8\np9uMHbnGPdUT7OcsI8zgoVn2e7g0uYNF+ni69Tz3vn0G/08syfuQrEBxCLqPN3j022/jHUjZWrvG\n1Mu38V61MA1+Acb3LNL/1TcpHmzRCiPqR7u4dWW785W85UGzBxcHvJmBmgNelg1PmzZuY5B5xKxs\nhffKbmK9A4tnxlncOoI/2EZ6lrTpoWdDuCgcy+s0jrJbBnaDPGLYsf08X1U/5budf8fW12/hv2Dh\nEngRjO5ZZujJN+k5VIPIbcakuHshnsOLKJxBzqvw5lVHou4AfSl87QPY8RaMH59n286rDPfMMDc4\n6Uq6r6Cd+XAZCx0wLUk7KVIPy7QqPsWBhGEF1cTBfhKYElDpArphlQpNSpiO3KSUya/fXwefmM9n\n2Az0cXwTy1qzxdzCEgN9Swz29VKMQjCKjjB4vpOW+8XINX6z0Ccdt2nUa3jCUiwU8YNg3bheCoGn\nlAPYtF2f9zN0Kj+I7L93F6lPyvlysMpNr25Nm8M34OqKA4YMItuI5GCYYZMMEceiypliBotOtZON\npylp4gz7tXFhUXnzxGiDtS6p1+TsLa2xWqMTp5xI0xSt9brnV2o0SZqS6JQkNaTG3NVYWQe+3Eox\nO667m0ub5+z83Fn/XcYUy59r0+/XL25+iXIcLL8tv1O2L9i49/rFdiCVFJ8Jcv08Rtfmn+9+L+1n\n3u9XO/K/6zy+JQe98mPJfbQU2BjWIoeUnwGThNy6tp1bg1soD9bxdids9a7yledeob+6wtQJmKrj\nOrT3w83jg7zW9SDvcj+3rk9kczYZFlPAKU8UrnnxyWPUbIBeeS2qAsMgx2Gk4PYbj0LwSIv+rXOM\n9l2n11/CI6VmupipjXNnZozW21U3dz8AOw5+xNf4Cd9u/in7z5zHewO3QPZg8GCNqYdn6Nm6RFzx\n+cn+Inv9szxg3+HAhfN4/8qw8v/AxduwlsBUN0xegxG1xKPfe42z3j7aRNyTnmL4nSXsv4Ozr8H7\nHXd191+CQy3oH1zlvt8+wbve/ZwZOcriWBGxXTO17yJPej/lm/H3OfTeOQovJe6aWRjZtsLgl07Q\ndW8dXVYs7e/lwtVDDti7Cix+lhLj8wydyhsl+fsVsuED2p19dbERiZnvGwwO9KrhGAt5YnMje86c\naf8fB3594YAvYwwLi3M0mw2nB9cpyhpKgU9fyUfrmIXFNUzL4JWKFLuqJMqnIyQ6bqOFoVwpOOZO\nq0MhLFAtV1leXqLdatOwmnK56Cb7bGLHZp12KUg6bdKkQ3dXhfHREYb6+yn5inIhwFNOFhIoSRRm\noJJOSTsdEqPROBlInGpq9QaLKyvUVmvM3LpJ884t/vtX32NXmvJ/DVYRyqMQhWBiQk8y3duFvjZP\n7cBethzYTzsVtOrLtJMOotEkCjVeLAkCtzGyaUqqQfgKITza7axLY5z5r/QUWvt4vo8XePgfnCX4\nh/8bdmAA/aM/dqoTKQCDzoqH1QaTauJOh0ajTmt11THnjCEMnIwzSWLi2CUhKk/Re3ka5ZVpPPww\n1d5BOknK3OxtwmJErVHj3/eXKJo2HZPSsZagXKLguc3YK8UqO4anmJzaycrSEjM3rjI7t8Dc5av8\nF5dn8AKf/+XhQ2zbvZ2hkSGK5RJBVMxqkkEIlW0Ywffdwr0VBLSLBRb7elgYGSLWAs9zXjZ5p18q\nj3/wwxfoqjeY27ODl6Sg3QJhUoTRWTomhFHkWGUCfM8lv0yMDjMxPko1ilhLUqQxhJ7HSE8PUvw6\nk+7yCSWPms/9WMagJ9O4fwn4qmXLoXPsjs4xpa7TxyL38h4Pr75L16U6smEwJUl7e8gbXfcz1D3L\nD48/x421PXAdNyclCWDALzqzyPug/NQCjw69xG/wfZ6uv0jPRzW8W27DGI+EsAjxwqb6h8OT7nRg\n75ugusBTIDexdPMlgSyB/EeW5TdgsQ2DFajeD1O/PcOTz73KjcokF3bt4vbu7esGwkQQeB0q1Cl0\nmjALtZuucZ9vY+eBlWUYug1hTVPpq1MurDGbE5uuNSFJ3YpxSxf0QtTbYsy7xVZ7hfLZFvZ1eH3G\n7Y808HGG2B0+6V7ISzdyNBMgkiB9ELtg63vwwcJGgLIGqENq4FZ7gyHQwXkrP3gHCvNQtTUqso4f\nJbQj1puakizJzn42pCPytc9lWJqGc3rjNT4GDt2E7deg2qjRN7BAyW+6+hUBnnDBAevF9Vc7XMhG\n6PwEP2OB+ZcxwPKF5l3x7b/E8cmO7sbv13+6myW06ef1jr7Y7PHimMmeJwkCH0+ATQyB5+NLRSdJ\n8KwlCBTVUkQp8ChEHpVK2cmwgwClXKCH8BybVfoK6XsoqZDKdZYVLhjEphqbSU7ABaNY4zYxncxj\nEZOl2mrt2LYSRKIxqZt3EytpJIa51TbLa20anZjYaHQm2HScB49Ue/zv1QHe2vMIwZGvMtofUbId\ndG2B+uwMy1cv8ugHb/DfLt/mucTnv+ztxxMeUjo2s1auU+8piS89AuFlCcQCSkVMnDGRNdg0cZso\nJUALfqbUXZ+DT6Y6roOP0mJIXRIyZAxhC0LS01XlzvwSf7NHbpDySXn8SPbVBd0+dAu3hj0M6omY\nnfef5WvRj/kKP+XI6kdUb60hEoiHFJcGprggd7H3+nn8f69Z+2N4bQHmtWM03XcDykGHR8beJXgt\nQf0TuPlTuJG4gMRDQxAtxdxbeZ8bu8b4qHKAub2jJBMF6JbQ3JwkmcuhBRuL6/yc8hTEZdZZDwsT\nsNYFM9IxmIcVSVfJPaSNW4vfwnVhFi1oDVs82AL+3g6HC6d4jFfY8cZN5D+Guefhcg0CAXuGoXQD\ndv3+Za4cGcdOCQo7LIcvwNJaxugCjnbhLAYUpLfd/J7zIJaBmTXYdhvEsqXKKkXZdKcbZqfldD3Q\nSWFVwbxkudnHjfIU032j7L7/OttOwVPvwCXcauDYABQegPQeuMJ2ZhglXgncnqMN2Nwv5q9bOvUv\ncdi7v6+zhIRbFzQTTa3ZolZvsNZoUi0UHdBoFMK6ZDkhs9WWtAjpZOFxu0lTOvaQpyReEKKEazw4\nmZ5Zb3RsyK7z7/au758F+Jh1OaJrOighENI1cwXCrTozZpTVzjBEiwzs2sSU0uvG8wZjdWYl4zyU\n09SRDNI0XWd8YQx7T5zh5s4J1qplt0/I64VJ0dqxtHSaZF8pUzfmiKXg6mA32miSjOmV6E2qGqvd\nMRhXC9cro9nwK0Ns5mUBUiBtdj1hnW1m8pqVUwNs/hPZoz/7uwPPxMbPOeC1CStzxOANf+BfFjvr\nrgbM5zpy8Cv3RcwBi26c6/s2x6g6iEspPAjsMnjDDaJSh3gt4q3Vhyl2N2iOF7nnOyeZemaaqNOm\nERa5UZzk7eh+nucp3pp5jOSdzCx+C2A8uDkMjTIbCcCbjyv3JMvn71zmlPjwUAAAIABJREFU2A2M\nQ7nk9jGPQ/i1Jkd2vM0x720OcIZRZlBolmUP53r28E7XA7w7cozFt8aoHFnkXu89vpy+xL73LuL9\nU2i+ADcXIBIwuRd6btb5yn/2GjPDY3zcvY9JcYPt7atUTjfhVXj9ugtR18CHy/CNk7B1F0w9fIet\nk1dZpcpEegNOw50z8HzHlRGAWxp6L8DWD2Hq29cZLc5QqK5BjyXc1WZf9SMe4TXu+egs/j/X1P8U\nLiy7eWJXD5SvGPZ7F1g49jrn1B5u7Z+kMdXrgMbFIhuBJPn7+XmOHPjK951dbPiwjQIDUPChR7rC\nHpBhXhZWumBtAPQaG4nNm9dabTaaWH+1v5MvHPAFsLS8zGqjgUUgraYaeoQyoqxS5y1SkCyuNWjW\nlhCGTKrnDNN9pQilR+D5mFIJ3w/BuoQqX/mEgUelUkEqhU5Tx/SyTtqgpEvSigKf/t4eBvp6qZSL\nFJWkHPoEgU/oKTwpkMZ5bEkpMWnMamONRn2N5eUV5haXmF+u0YwTtDbMzd+mWV/hj4a7mO80KFZD\n/Eo/jxw/zsrSPOfOnGKxVOR/+Nbj9Pb3Mj4yysDwOKtLczRnrtJYmiOq1WmWI9LYUCwESF+RJCnW\nehS8ItZakrjtgDzAD0KEtY6qLQXivkOY33oOfv/vuI52Bh7lHRYJYAxJ3Ka5VmdtdRUdt/F9he9H\nzgchiYnjDkncAQTttSZf+/5rSKl497FHKFci7FoDpQxBIOiThv/z3E3+3vaUd999C2xKEBUohh7d\nrZj/+c1z/OFv7aa/t4/ID0kbTVa1oZkY/vFAL8trNT744DRzi3fYuWsHY5MT9PX3ExWKTv6CzTxw\nBAiJ0BD5irS7m9eeegIrBJ5x/jIBZN5rCuUL/sl/8h0e+rOXuTg5SjA3TxAERH0hvheglI8xyygp\nMGkCJkVhCZRgeKCXnq4qEYbUl8TtFCUFI73deFL+GjOQ8kV/PglVgH4IKrBVwDFQz7Q5dPQEX/Ze\n4iHzFjvbF+jWK1TnmnT/sIl9E/SSS/0tHu3wxLOvIfdqVqMqP3iwh9rFIdeJmPch7XJpJttAHNbs\n6/uIJ+2LPD3/IiM/WMA+D/Fld2SFbW3YBWGPU2rM4qYyHxgIQBWAPTAyBbsuwXnrptAjCoI9YN+G\nKy/DC6uOvTS2Bl//KQz3w+j+2+w/+BFTwQ1uT2xzMscl9wLaKDqEJF4AFShVobrkwB6Le42oCKIK\nOhS0ieikmUG+AGwBzNvu4LI6rAJNQbSomDVYhLV517TPwbQOMBeDnQWx4iQud7LbFnEeX6OXIJiC\n+frd4NY54NFr4N0PvR4ovdH/6gEK3UAVd5w2QicKEkhXPVaSbmb9IdJJibfDsPckTK+6TVQZOBSB\ntwP0lECdsRm9f2MoPoMR9Zk15/PxD7A26/tJ9SmPjc0bhQ2vjJzK/8mxIWF03zd3Wz993583NoNe\nn71o/SQYJujG8oJJ+a70ub7+e4kQjkWLhS4hKCiFcboKkAJPSkyS4llDMfAplyIKoSLwBZVy5KT6\nwiPwfZey62U1zJMIX637TeYeWcZajHTMA4tjdGENJnUylEQ7OYsxWQ5ZLskQAq21Cx5BoJWknWrm\na02WGwnlJKVmNNY6VFeoAN8LkMJz8JfymQ5DtqSaoFyhu1DBlAqoIKSM5kR9kZP1Rf67/n6KRmdy\nTw/hAUKDtYRhmLHhPJSv1s3+47hJnEjilkALhckkotJhX+RG+Jvfuw1hjMiYFNb5VmoPrVPniCPc\nRqhSLjG/VHPn/zdybA5CyRsmeUrJOFTLsA0njx/F9VImoO/wPI8XXuRb5k94+OwJvB+DPevIAqVJ\nuP/4R2w/fo3ypTa8Cy/POkYTwPUUStfh3negcDyBn8HNV+H7a47DJYGb1+GZF6B0JGHX9otMedd5\nf6BJbaDgvCnXN0b58X+y/uXM55w90MLxbhOgA+0huDYENxRUJYQZLSsF1iw0DG7Htgj+tsxHC7rH\nZtnBJfYuX0H+DOZ/Bj+ac1aIHnDzGnzjJSgd7cA2xfz9FQa/tsreVRh5G2od6O+B0nGwXwE0eBmp\n9g7ukxkA3QHICpgCtAlJrL9hfwKsy4PiBBYCuCaYnxvgg/7DvFc+ysBTS/S06hyYcHYCFIBDoJ+T\nfLR9J+9yPxeX9hBfjFwBqxs2pCZm8wt98UdeGjLGlEDcNUvnZU7jvKRaSUq92WJ1rUF3sYiMQjwh\nMVKTWI01CRLpQJxUuwY6ZEnxxs1fvo8KXBBHkqZYYz5Vc2EDANkAtuynb19nEGc2I9m5mE0NLgPo\nu2TqDuTS1iUtpvlt2uCt1GgWCxitiZM2adxx8s08SEzrjLVl6Jtf4sAr77Lrjff5F7/3bacKyVhi\nxjhwzKQamyakOkF2Onz1zbMA/MFzx0hNBnplDDJtMtaXdtfNGlzjTkoH6KWaKE1p+O5KbQadcmac\nWb9uG6CexZXN/P38TBZ4Bjra7KYNdtfGHUT+UPfizu9LgpZ3A1+/CAj2ybXCZwFdnx/j65PDY0OO\nlluijMNA5BhVx8H7Ukz/0Wn2Fs4xzk2KNGlQ4jYjvBI/zh01wsnoHkYLM5RZY40yN5jgLPs5N3eA\ntB0QPtRC71Skl334QMBpCaersLQjOw7LRlhJztLNjy9Po+8Det0+5ijIJ1Pu2/M63+T7fDX+Kftv\nnyO4DHRAT8D0trfYUbhEpbfOi0eforuyxG7Os23+Ov4LhvYP4QezbivjAY+/D/dHUNgdc+BbZxiW\nd6hQp5LUEbPQmnbze763WwXu1GDqNqglTddkjQ4hkW3DmvPVX910pTtAKwvULLQT/GKCUin4EA60\n2SaucMCcxX9DU38Bns8a6RLYeRu+9wL4+zTb9l1mW89luqsrNIZ6XSNKKjAhm3jEn+PIm2W5vLGL\njVSzCRd+s0U60DMPPMvtY2oC7gi4LuFqD9SKrtgR8KnuxH8EA/kLCXytrCxTbzQo+ArfV0SVMiXr\n0x0JMDHWaJZX16ivLGFVkWoUUvM8Oomg4PkUlIcSkpIfkhrL2uoKJtFEQUhXd5WJyUm6uysQt1HC\norIugtUxvhKUuioMDfYzPNSP73l4WbKWNAZfCjyB88KyTtteq9W4ceM6169Ns7i0TKItxWo3o1u2\nUa5WCQohi3MznO2t0G6uUkgh9jxa1qIKJWwQYf0QEYQIqbCppqtUoCsYpi4S1OvvsPfP3+Bnv/Eo\nc4MVQpHih134vo8xBh2nSN+lPiZJgmy3KRRi17Fx1QErNOa/+s+xwsemcWbCqV2AQJq4TotOaDcb\ntJsNBIZSqZh5XHm0Wk0azSbNZpNOHLtibuGn332UcqmX2vI8tbhDnBoqxQjR18vORpuKkPz98a38\naGqMer2O1DEBmqemFyhow97lOrdW6gTSY6inn6oUpJUu1sbHWJmfpa+2QNxuMzd7h57uCtVSgYIn\nKIRO6iikS4wxGQgWBT6djoeUFukFTiYjrEta92wmeVS045SfPPoA4XINISRJktBV7SL0CySJYbVe\nd8U/iSkEHqQdCqWQrlKIIiXwPAqhj0kShID+rgqFMKAZ/7qgrxx593CzS6Zp6AtgL8hjKbv2fcwz\n3k/4jeRP2X/2EqUTbWcCFTu/p6sfw0wLBiPYcRJKaYd7e09xYXgXH3Qd4cMd/TCioOS5LnOPgEno\n3rrAPu8M93XeY+itBfhjuPgGnF5zR3b4Y9jWALUfHpmG0hxcsZlqv4DbZxXB63KHO95xZ9BXBjEC\nnUvw0ao7VItjKJ9swrMXoHynxcC+RbrlMqKrg61EDk1agNpqF7cHR7hdGWLrwWkKDxkeeRk+bLht\n0IEAhncDR+DOYB+3GKM23+cQqlWy1JRs0s08QHWiaBPRpAS9UOiH0WtuS5WSqSx9EOPAykYPK5+2\nNVlTUXwaePEBq4BB2LMF1s67PkgfcG8fcB80dobckJPcSYfpLEbOluGGx8zKOGcH9nF+fIq9T11l\n6wJ8612otaAUwdgBsM/A1R1j7Nh1k56tcGgOTqfu2HYBW3YCu2G52s0sQ6ymFbf3awFpttFa3yb8\naofFLdRdmqq4K1nps6QDmwGt7F6/2uP7BPi28Zp2HWjLxxEsg8DvWMP/KtW6ZNwds8UXgv8jSfEN\n/DdKYrH4nsLJ9C2FKKQchY51HFjCok8hcgxkpQRh4BIahVR4SrjfS+VAfk+tH6fKjH+tB4nRWFLI\nSgTGpTrmnfPUZmlW2abDGLtuCWOMYLXdZrUT8/fjNt/odPgd5XNBKKKgiFcoOcBLgNUJSWOB+vRZ\nGuOTMFHFlAp4hYhSqYAOfNJCyB/s2k133CIVDvFUnofGgEmR1hBGAUHgoRQoJfADhfACgk5IISk4\n0A5BarVjWogsJXgT2OVAvFxmajdtSJxMRljrGL9KojyFSBwCXixE1Nf+OgSX/LJHfm02b4K6gTEQ\nEzBQcolTmTw+2lGn1NPE9xN2DpzlId7igesn8f4FrP4Qbl2FdgojvTB4Eaq6Rcf4FJdjF8aYDQMs\ntCGpQZA1e2+1HOiV334eePA29N+BHrtMhTp+ELvCEICTXm9e3uZSzZANEC8HxnJ2QW7uPIeb4OfA\nlGGlkj0mf/Xcb2QJ6HUfmBAoQbHQoMoq/lKKve0Yw/lxpzhSdP0adM1AqdXgR9VnePq5FxgcWKT7\nEUv3Gs6juQ9EiKs1h+GhafBXHEtgUsLWbSCOwvJUhZtMMN8YdEWmjqME5wAeDbhdgovQeafCe8MP\nMNg/iz+ZcOy3T9L/4ALRfIKNoDZW4fLUVv4s+gqv6C9x+9I4nBHZQXeya7LGRudnsxnxFxT4zYmA\nkCEego1/s7osXIgIOPCro1ManRaNVotOmlIWIdZaJwWUG0CU86xKM1k4qDghSTUGEEohM2m2azO4\nJvk6arWpPDkDd5OxsJy38HrO4yb20uaap7NliXtud5sDlXI2F6Rak6aGVFv3szaUZm5zzz/911y9\n/winHzhK3OmgEwd8rUsV03R9TmwWC/zwiQeY6++h1e4g1uGiDPhKtZNFph10Fnj1z47tIZWCTpKu\nM76SNHHHYByolmonecQ6xpeULoDqb11fYMtahz/c1cdq4G0CvuS6ItGJdMQ66GVyyeMnrlH+9mft\nDzavxHI217r8kUwAk4UduLAZu54GnzeQ/jIJ42d+/DYDd/l7bQ0/52G/4pGfQ56Y2AUMQakMewU8\nCtEzDQ7vf5dH/Ve5nxNsb18j6nRohSFXoilO+Pfzp81vYoswzQRl1limh+tMMcQsTw3+iOJgkxYF\nbtpxLh/Yw+y+YZLhgptLT0SwOIaba9ts6K1zg/a8gVEAehz+tQ04BFv2nuMJXuKZ+p+x72eXUD+B\n9IxruvhTsOXLs5SefYH2SMTswCANWaafBSqrq3AVLmSgV95HOJXA9mkYuA5DyRxbgqukeHRkCGUI\nuqBn3k2/FldNqqFrmNuipEXEGmWWZS+9ozMM9sKOlSz7CwcDDVeBUVgqV6lTIW474/2gvEYXK/Q1\nVmAG5muOoQuuEl0Crs3DzptQjet0UyPy2xvsX09AvNk76/Mcm6118rXDMIgp6Ol2n6XDwCHwdrcp\nDjXwgwStFa16gc6VIpyRjkp3OoTp8azfkrOOczA09+v8qx3ZF26srCxRr9cIu7tQSlIoBPSGBUpS\nU19ZwCYpMk0IhWuh9JQKrJXKrCZtlLWYOKVYCkmVot1uInHPUa1W6B/qp1rtwvcVcaeJMSllY3jo\nwlX+ZHwAo1PKpS66qxV6u7vxPEXaWEOliWNOGQ3Gme03m00WFxY4+/HHnP/4AisrdcqVCk8lIEen\nKG/dhh8GJJ0Wq4vzgKar2kshtdRSy+kTJ4h8j0qxQrVc5vdfPsGffPfrNJcWmbt2xZnjtxsEW6bQ\n/js0CwVaqw2Seh3PCPr6elGh5zo/UoHvZWkpxnVukoQ0TpyZsXGbdyssVqhsWWOxJsGmKVanrvPT\n6eBJQbFSxfecNCZJE2f0HhboCsJM/2+QysP3A7QMKSkPAYRRgerW7dhkHLNvP5cefQxv+w4ebyUs\nLSyQthtInbBySHDi+GO0+wYpxpoojBjumcQkg6TNNXTcZnm5n7mFOzQaq8RJm06rhTCpAysxSIvb\n5CiFtcJJP7FIrDP2V07uoJRASes8YzJauKckQRjgB25R3GisUSyWqFa6qFRKVCpl6vU6SkKpEBL5\nEl8aTNwgbtVJwhApDUHgvGh6KhUqxQKL9bVfw19MvkjdTBEuuVbyELALogMt7imd4Mu8wNGTZ/H/\npSF9AeZuO2Dk8jI833bTi9+G4xfgkVdh4JEVtg9fZiSa4fzIAeKuIhSES0/J0oXLxTUmuMlY+xby\nfZh7D55f2ygUtxrwm6dg9FEIOk49sor7+mgFHjwF4QxcPAWvpa4MCiCuwdgHQPXTAlIL67YFeRdy\nvaCvADPQutzF+R27eS84yo4HLzM6t8juoktVNBoKE+A9DbWnIt7yj/ER+2ldKzs95CIZBTeTfzQt\nLAvayxEzyShXvS0cOfAhpQcSnrgB0Zw7nwlgzw6cjKUBB0/CzbZjufUCe0sQTILcCRODsPOGK25V\n3B5T7QGOQdcQHH8N4mXwyhAegvQ7gvM7tnJKHOFacxv6auB2XRcFd66N8nbvMbZEVyk/1WCiPMfQ\nPTC0CHSDPQJ3jvfwWvkRRr78byld1hzTsP+iu3SlCRBfhubxkPNduzjPHuZnBx3ytghYzUZyTF6M\nfrXDZAlYnwVhifVVa34cd3djMxuQ9fHzzfFhfRX8C47Ni95/ZDR/V+b+Z3eDci8LydeV5AzuuCSG\n3MPL4uaw6UC5tEPP+XFJgNQQhSHFQkgp9CkGPmEkiKIALwyRImd0GTylkEqgpCTwPXypUFIhlMpA\nxNRtv3QCwiA9C6nFJuvOkaRZiq2xxuXkSQfCCZuZI1vnudaOXXqj8SI+rFY4Nn+bZRXhS0Eh9El0\nm3angy8F0mik0bTmLlKbnkTv3wXdIRGaKG2y2liiIGIKXWViUaZtElKjMcLQ0Sk2dZuOYiEilJ4D\njKUg9HxC4aMrFTwExoBZa9NKXKy3Jz20SNAZKOpMhOHunXAuPdrIBQPnLef5CjrOuqAQFlhrNH8N\nspRf9djcLAlxG6BBYBj6i868/jGQT7bZvusiuwsfMy5vUqJBgRZ7zccEbxpaL8HrHzu/QA2M3IZv\nvgi92wzegRgGYfi82wjo7BVHCuD149bKBSh8Qj1dAcJMPZHgk6KwRmwEOAJ3gzG5GX85e/TmMI5g\n0/2bOB+RFm6iN9n9/ex65OBYnF2XElAD2wUaDAqNwnoCEYLv3S38DoFChr1ppTjLPuoDFY4+dYrx\nR25RrdXpe3kNXsNdEAWMwti3oe80pC0I+yF4HDrfELxbPcKHHGTp5pC7/zwQdzadxzys9sC5AIZh\noXeEnxz/Oqt9XVwc2MmO/st0pTVSqZhRo3zAYV7nEc5+dJT45YLbdFy1LvWSRn4Gm96p5qaz+wKC\nX2LzDyJbKd09xxsrnApCZP0tram3WtSaazQ7HddsVT7Kk24NKUBrQ6oTkiSTBRpXXzpJTJzEDtSR\ngkql6iR6wj3Okksd1yloDgjBWa8Yo9FaZBLJvMZs9q3a8LkyZKbymddWasy6t5a2oFMnL8yBryTV\nrBlDw/e4UK2wslonTVzj20keHZCnk8QBcAKkkFwcHXTHmiTrxwrO80un7v46idGpe9yVyHdNkk5C\nqt31iVPnH+bsa0yWzpj9IUvhLEuk4HLkU+2ktKRcZ7Stg1LZ++h82TbxQiyfApI2//cvqui5sX0e\ne+IaUiKrqwZpZcY6l4is1n6Wyf0vMpSS62sWozfsGwSft6Pe5jl/kzxN9sKwggOgHk7Yv+8k3/T/\nlOfSH7LjzDTR2Q5yAUwf7N9/gb1HzjFQmmc7l+lmJWN7TXKaQ3yZF9jGVSrUqVPhitjGib77eKXr\nS3xUPErblKEp4GQ3NAZxcH++1t4MuueeUSWXQj8O/u4Ge+U5HtDvsPOjK6j/23Lnh05J0bCw+wPY\nMwMDxRUe/Vuv8aF3kFMccZ+anIH3iStiN/1SZPuIWYaZKQ6zb98FontTHp8Fv+6OcruE7dtAHIal\nqRIzjHGDSS76O5h6cIbqKXiuCefvuPd2Tz90PQQ8BBe8XVxjC43lMliB0QqDIvWcn6kv7xaBRjg5\nJgGk0iNFZQA+m9QYv451Sb7WzT9HZdwOZwJK3XDQAajiCc3w0Rvsqpxn3L9BhTUSfGbtEJf37ODK\nvj10houufNsQrk2wkVKZ1+HNSc2/2PhCAl+rtRWWlhboq5azyRc8Ca1mk7STEiqfShTSaXQIfU0l\n9BnoruCZmNbaKlZrAj8g9hOUlBQKPqVyhbGJcUbHRxDS4q2s0BQpCs3/+ONXCBPNuVDxfjFACQeP\nmDQGGaxvJgqBMxrWaUrciVmaX2D6xnWuX75Co75Cb3cXe6u9/N6JM+ibd/ij0REQgqIV7JnaSmNh\nge++/AYvPfskrd4ehPKodlURQnDfj55n5+15/vYbJzm5dy9ry8suxl4nmPFx3v2Hf4+gvkJPbZk0\naaHTFAGUS2Xn0ZWZ3OedHWsMNnVm/Vp5eGSsNqkxdlOyjHbmnHGrSdJpI62hGAQEUUCqXVJWFIZ0\n9/fjKVfQ0iQlThK0Mc5PSEsQISIoo8KiA8QULmWxUKbHL7IWawYHhvEwpHEHqzVSeGw3htX6Klqn\nVMtFlICkWUe3mwwM9tA/0EuzWWeltkihUKBQKFIoFAAnz1TCBQl04oS40wGTUioVUF5AJ06JtQYr\nkcJ53aSZb43Nfd2URxgG6/RurTVRFFGplGms1fGkwBOWSjGiq+jTrtdori7hRwV8A0K65MxquUil\nUPg1/tVs7uJkBcMLHZtqDPonbrGXj7lv6Qz+84aV78Mr1523UzV7RJ4wqHGMrAdnQM1CD0tUZB0v\nTImLgC82WK4B+F5CSIeSbsKy8+HKQS9wy+nVFoxOw8UVJ+nLx0ca9t2CgQqsfiKFqgHYBkSH4cBH\ncCOTBvYB+zxgOzRGIha8PmppF3Y1cA9axG0STkk+2H+EibFpenpWeOZ3fkzfrgaFa85R3kxI5o5W\n+Vn3Q7xkn+DMzFHSD0JniLls3YvnHjFrBmYV+mLEtUPbOdlzD/smz3P4O2cp+5anTuIObgTsY5B+\nRaK6DVtm4bsn4E4DBkIYeQB4EvQeQf8ty7dfgJnbUI6g5wDYZ6H+bAFhoPhIm+KSxZYFyW7F2b3b\n+Alf41XzGDfPbXHd+muAhPStIifGHqAyUqfVVeThZ95g55OXKK8mNCseV8ItvMmDXGcLw/23eeRv\nv0VpS0zfeXex7RSkD3u8v3cvL/E476f3kJ4quWsxBw7Wy5NjPh8fO601Rik+ReYCNjYO2f8+A5TY\nAL/u7vZ+9vjFQa9PgmgndcIe4AMDfyg3tsEbBvaWjza9vBBZYbbOq6UYhvyhr/CVxMdFwSshCMKQ\nQuAT+YqwoAgiSRT6REGQbcI8pFSZtEY5Hy7hWGJSZYt1JTE45lyqUwTWsZeFREuJlZrUWgyGVBgS\nHOilBc7M2DgfFCk8EpuSpClrrYTYepR6RzgZVvhWqiBpIElI4gaJ1pg0JRUCL5NKJjomiTsoDard\nRDaWSGeuoBdvEvkQdneTeiGtTptO3CQ1mkCnpMYgrKHqR5ncCPAUBS9A+YrA81mVHlZbDBK7liWR\npR5WG2KrsXZDpmKMWe/eg9vUONTMOAYDGr2+MXBvWuB7eEqRpH+D5F/AxuI1D0PJ5PGlbtgn4Jgl\nemaNI3vf4Un5IsfMO2ztXKFi67RFgb52DXELmjNwXW9AJDeA60vQewPMQyCOwWNXIbwN8xYmFRzY\nBfJBqO336dqfsHsUHrwEF4yDXR72oHIYzG7BjBxjzg7RWitsMFDtZvDdZ50ZQF/21QOyCiLYxPjB\n0UVMDVeh5nGsrlnunk9i3CJ+iHWPszlgERbn+5jum2BptETP3lWGJuHeGpwyrobeq8C/B8xuWC1X\nGeYO19jC2WAfv+f/EVtfu435NzD9PHycuE/Z/d3Q9XUo/H7GqBwUrN4TcmLsCH9un+ad1WOsnak6\nmsKshXQNdyGa2TmU4dokvCNBSOYbE/zkoW/w0dgBRtUtSmoNbT0Wkn6u1rexfHoI3lDwOk5/GgOi\nJzv9ijvRdbNh2Eh3gS8c+PWJKT9neuWSw8zVLwMi3J1jbVhrNlleXWV5tUYx8gmjCpHngRSYbJbQ\nVpOaJEsqtFjjatZas0GcJghPIpSiVCwis3Ryq/NmTu7x6IZZB71Sx679lFn73QbvqbHoNGH7v/0x\nN47sZW50yIFJxuXXausSFdelj8Y6EMxo/uV3nnVeXis152uYNZiMMe73SQejDUo46xelnFZUa5cw\nL9yFdHNmJnVMkoQkddYu1jgFhmMOZzL61J2fsTk4Z9YBPKyrEdYK3hwo885g2YFQgk1sqc2+mZtr\neQZoik1+Xfk9RI6ObYBMm2/fYHY5kE1a65QiSqKsciEBFqTcsFT4K/t8CYFUCikFngLlKYyWxHGS\ngaXyl+od9gseFBvzfiZ19MpOjrYXyocWeCh4k6f1n3Po1UvYfw3p286jVw1A4f4OB793idH7/xn9\nF1bdFFSFtT0B7/cd4vj5E06rtwz0wNF7P2TPlnNU/DrJHp8z8/dibvhwU8L1HjBd2Z1D3HvVYaM2\nZbL1DFcp99UZlzeYqt8kOqUxb8LLm/YUl9ageBqm3oLJx+aYHLvBOzzALIOsVqp0b2+xdwQ+vu2W\ntgCHPegeB7bAbDjIEr2cN7s5JY+wf/95tnzrFqMKfvM0biqcAJ6A9GnFO+F9fGgPMs0Eb8iHmDx4\ni93/6RW6BiwPXMpOZwrMU4KL907yunyY062DrF7phgWIa2Vm+4e4WRihf+9FRrfAgwvwVuLO/rCE\nid1g98F8YYBZO8xap+Sa+00y6mferPk85+bNoFdurTMAoht2C3gb52qcAAAgAElEQVQQ5LOaXQ9/\nwBO8yIP2bXYlF6maGrEImfFGea90lFf2f4lXep4gpQxrApYDqI2wsd9o4phfv3hDGr6gwJfWmqX5\neTpDg2ANgedkeV2VCoPd3bSbDZQUrF2+Rq25ikglHk5i55ESRgHaaoRSFMtlpPIZGh5m247tlIoF\ndpz9kN/82av8o0ceYLq/yv/09CMcvDXH9ZF+Sp0OURAQBgG+7zYZVoCXxE46ogRpktKK28TtJp1W\nkyjwmBgfZXx0nOHBcd4Ym2ShVCLQCVGxSKVaJSoUKRrBaKL5zuwK177+TfA9gsBR7Nv7D7A8/K+Y\n+93fYlynmCTO+DsGkyTotAM9VWw65CZQ5aLXPd+nncROXiMlRmeL+Ngxvpx8w6W8WJOirQHpGF/a\npOikQ9xp02k1STttsNp1PQCpFMZCsVKhu7sba3G6/JxeDAgDIpVY7RHjYb2QsFDAC0P8KEJFRYzy\nIDEUq12INHWJndr5Hihh6eqpELebeEqC1ehAkDZ94k6IUoo4KdPb102SxAgBnU4Hz1MgPXQa0+ok\naCuIgoAgCElSSzvRKAmhUM4IWVgnj8i6Z1prOp0OnXYbLJRKJRDQarfcQkY7r5nAUwhjqJQihvq6\nsGmHem2Jguihkxp8P8IPAkrFkFIh/Is/1J/b2MT8kqx7FXcHKwwyiz+TYs/B9TkXWtXBMay240pN\n7inVC8gsjKNFkbaNMKl0D8iJNtmD4ySgQYlVr0LvYJORCow1nHWIxWFvvRUgYzlvDtuNAKWACZjq\ngpGa24aEwFYF3iTwKGxbge99ACst6Ilg8KgrJje3jPIR+5mOJ2FauP2MxNGoToIZKvLaU4+RDPnc\nUmMceOgMI8du45EyKwc5yz7e4iHeWDjOwluD8C5wwUI9l7pkMc+NQbhWgDNwa98krz74GD3RMvq4\nYMf4NSo31vDWIO4XLG7r5fLIJNuHpxnpWmDwPRicA/rA3AsLx3uY6Rtkd3CVwuGYyWl3bTgAC8e6\neGXsIRbpY/vEZcqs0SHkOlt4n6O8Fj/KqYv3wkueS9q8iasNVWiFPbzy5Je5PTbK6egQE8E0xf4G\nbQrcZJyP433UTJXlqIc7Y8Mc+c6H9K04EdJqd4mz4R5e41FebH2Fm+/ucCmeF4F6itsM1dmw6b+L\nevErGSYDKpAgjcgW0/n4eUBWPuwnvv/VCuhf+KybFqpHpcd/bY0Dvda71BaZsQhyhoGzlbVZZLoD\n7QueT0l5BFJlUovM1F55TuovBVHoEUUBfqDwfFeXPOXhBQFKOemkktJNb8qlfVlfuflZgGcFxgg8\nK10Ay3rbw2KEAU9grERrgbY5y4ssPdht6ATuOToaWokLtugaGEVW+liorZLUE0QSu16tFesW9zlJ\nx1M+5UJIOWlSvX6DrksnmdYpBRLC7jJeuUxsJJ6nCH3HekM6FhpJSgHXiU+MQYYeQRDg+wFJ4BgP\naA1Ck6YNdAwy9N0mK7FoYe563zZ7reQgWP52mowxLTNQMtEJ0oKvvL9hwFe+9c+lgBFQBdHvvBv3\ng3jYsG/nKb4pf8C3Wz9g69nrhO9pN0F3QXIUCEGFbvrKRwiUFFCA5T0VymMtwjDlsVO4BfsgcBxW\nny3yRuF+HvvyW5QWOzz9U7jnNgQ+dO0D8y2YvmeQU+owl1o7aV0tOQbqqmVDIpOy4Us2CIxC2As9\nyuFWve44kLh5clHCfA8sVaDdi3vCgA0dIWx4lYxB1Af7gYeAKZArijPFg7xQepKhL/8bynMdjldh\n33VXx7p3gvg6xFM+Uzev87vqJgu9fXxY3ceuxmV4F+68D3+WuPoogLkV+PbPoHAMln63xOnuA1xg\nF+/wAK82H2P6/a3wlnQFeynG1aUcARTAbYh9OD/kAkiWoHOhzKVdB7k0sh9ZirFaYJdCN59P4zar\nEngY57eyGMH8CNS6Ie3BHd0d7p4vE+5m2X6BhnVLwHx1lFcPsen2/D+pMTTiNku1Fe4sFJHrG8sy\nnnLzmjYmawDHpKljfGmtSVMHtGttCKKQMCrgBx7FwHPJvrkL/fqL5tfTgV3GGOIsLdLk8seMJWWM\nQeeeWdrgLSwRfXyR3pnbnHru8Uym7gAkg80eYx23WIjM90tnEsjUeXMZs16drDGOoZXEWL3JRD8D\nxazR2Kx+ydx43rqExyTVaM06yGbY7MGVA3YZ307iwCaAjJ0tMkYc6+z9DSaye9TdtV5kQJkQbt9j\njSGXLLL+6E33z36bf8+fQ2XVWgFWCoy0KOFqhpICZS3CZFLHjPllrfnEs3/Gxy3D3DwhkVI5QE1a\nfOW8M7ESY5xSJ3VmbD/nGX/ZI/dD9IGSm7QHgS2wvfcSB/mQXVeuYb8Pi//BBTjNWhi6BQ/dhsFl\n6P/pKvYCdGbA74PyvTHHv3EC+0fQOgGNVShWofQQHP3eeeJHf8xsMMjNw1tZ+nDIdd1vVSAu4eZw\ng5uL403HmMnpMlKyr2IKtInSFizD6pwrR/lIcPYerIBcM5RoMN8c5EJxN5f6tjP8+CL+dMozr8Lt\nJRdIMrod/Oeg9mCJ0xziUrqDy9O7eHnrl+jpWuJrz77I6LbbFC4n0AQzIljaV+XkxCF+ylc4VTvK\nnZVRoi1tomKbJ554ie3bpykuNN2esqfA9YlxXg4e43me4sr1PfCegtvQmo44N7mbk/49bHn4Nt3T\nazwUupR1YaF3EngaVo8X+bC0j3N2D8u3+13ZWrZgYtweJQsc+9zZX4KN5M1eGFKwG8SDmh1Hz/Ac\nP+Abnf/A0eunqXzQcW9WBIf2nmfH/sv0dy8gRww/e+wrtGfKrmt2pgK6G7fnKLAR+5LvUH/++EIC\nX8YYGms1jE6xOkEpSyEK6CqWiPyAOAppturMLi7SXFhBGvCEoViMqFYKeL6HRlIuFDOtu2V4bJS+\ngQEaa6ssFgpoIWlEERLoCMH7U2NE0hU1pTxn6BvHeFGAF3oIG4ONESiUctsHaxKwCUND/QwMDDA6\nMkZ3pRe7ZQtdxtCjFFGxhPJ9l6B17z3c3LoN79BBRqvdEARoo505u9G0/sHfpTuNMUkHaSI8JfB9\np3OPkzboBCVSPAUWTSfu0O50sMJ1JpSLOsGkGoLMNyDVGJmSZv4G2rgOBFJiUseSSuMYq3WW7Kgz\nmrQEL3D4RpLQjhOCMHTRvjiWAUIiUEgtwSg8JNbz8YIQEQTuy1coKSgoCX6ATnLwEHQaO/N95aNk\nADp1xcCTGOUMmR27SyMlBIGPRRPHHawN8HyBEoLQ95DKQyiPdqJJOh0kBk9Aajd0+uR0cWvRaUq7\n3V4H09I0wfMDlPLQukWSxERRSBSGCCzVSplqpUS8ltBuNfD6e0lSQ6cTUyhqKoUiPeXSr/PP5rNH\n1txxTA9XYG0Kqf40HfwB3FK3F3h0CMS9sLoz4jpTzMWDdBbDDIi3kFioS1iC1UaVG0wwHU0wee8s\n3cfg6y/Ch3X3vAe7oP8+YAK2n3Nmu1fJDOwjqG4HHoPRG/Dsm3B9Bbo92Lob1HF3mxyH0ZMwukRm\negU3jvfzatfDvMv93L60BS6QOc0nMG/gZAihYCkd5uVjT3Fx7y62elfok4t4pCzSx7Vkips3tlN/\npwteka4DPm3AzOMm3ibrcbs3xuADMEMBp8v3ofcpZoMhjuw+xcT2m0SmQ82vcFls5zLb2Dt4jgee\nPcHY8VsUkxZtL+RmZYyThaPcEJM8dN9bbNt7lUqnTqo85ouDfFjYx4s8wVW20c8CRRrEhMwxyJXa\nDubOjJK+HjqpzIdAsw6dEN4JwEBjuYfTh+/n4tZ9RP11gqBNkoS0Fyu0bhTRRjF7eJTLg9vZGV1g\naNg51CzRyxW2crZ+kDsnJrEvCXgbuGaza7HAxmYr3/j8ajtMFudTIqVaN6S9e9z9y78oJvyv5h/7\naebXLxI//gdCrjPTXBVxy3aJWH99ld3BUxKFxZPCMbqUl7G0DMViiJRuk+RJiKKA0Ff4vofvOWm5\n5/nILNRD5VHr0pnbCyERykNIiRICaXKWg8AKN2dbqdFWYKTETd0CozNjeutM7F1X37qNibF41oWE\nxKklReJHZcrdA1T6h1leXOROuwG6g7ApQhp84fxs8k9KiP1/yXuzGEmuLE3vu4uZ+RZ7ZERG7nsm\nM5NkZnKvJItFVrFYXdWjVi8zkjDQYLQ8SA/SgyAIGggQJGEEzHtD8zTqGWAkQIPpGUzPdHdVdxWX\n4lJkcc0kmRuTuUbukbFH+GJm9149nGvukazqVi9qlggZ4YxID3dzM3P3c+75z///h0mbk8xd4u/9\ny39Cfek+/+yF5+hNbSZtNghpiiqdTOcNDZTR+BAo8gLvAql3BO9IihKTJpjEktRqJMpQBvHd1MrR\nbq/SCz3J60bTLQUU7INdqup2x56lNuggsiBKUM6DdugQsEqjvMPlDvMrMyH+m9iq6U8bPbGipMQ0\npPN/AEaO3+fp9F1e9n/CwTcvo/4vaL8FCwsw1ISRJ4HvQOsQPHZTZHo5ovLevh84CisTw1zct4d9\n2y4zeVUou34cbu2Z5P2Rx3hVv0h2OOep/+xjmo92mbqN1D4HYfb4FK+NPM9PeZ6Ltw4SPrPiR7VU\nIomojcSiOEFK7YSxBuzTcAjxhNmCrMlBFDV3kFb/eQtfTMBChiyTq865j0+YEi3mbiOSz19zbH/m\nMk+OvcNjfMQYi1zbO8Omv7fM1NFFpq7E494HrEL2hwXZbAEZTD66xI7nb9GodeEOzK9LNAWJNrPA\n/QXYfg/aoc4bPMcfh+/zxZ3DLJ6aILxm4R2kIZMvIvSzNaTgkUFDEKDj4MJmuJtK42cGGNP4em2g\nFJkENiPeK5XR8AJSSF0Eztfh6mZYzwb77bvhVCDN1wj42jDErgJQNprbRygGrxVBRwAKyJ1jpb3O\n3MI8/+DzK/zekw/R67XIrMYYYfV6H0TqWJbR60tirU1k8uza2hqraysMDbeo1WtYrSubsbgWDdGw\nXoAl5yqfrVzM5osiDpTK4+8irSzKgtx7ch+48/wJFlNL5969mKck8/hobN/3vqruj1J2H2XtGgGx\n6PuMiU9XBYg5HT8DYqw1YHtphVGVzNCjtMIoC05LNzwy1ggC9Filo7yxArQG8sUNGRxP9FoMkRGn\nhKEbPfAlH8WfWss+tZJchvcPyNnUBjnhL9xUiN6hsUmFyB61FmsUyXcI60sFVASvlK4uqHwHlIqQ\n3AOMrTD4ERiw+1ToP88YQ2IN2hh6PZmO+dVvFfBV7/c9GIMp5tjGDbKrPdwncPo2fBIkOt4Fundh\n4g9gJoW2gytdmErg+AUY6cLCv4E37sGtAFsVPDsHkykc2naJR/d+wrsTl1jYNS1eh6mCPMZbhpCY\nto4Ea0dfzxex59IndKjTtXUYgdY4TKzS95DMgFZdiEe+pehQpwiWDznB3vQSo08ucqJxjqFHYOg6\nErOPwMLJId6afpq3Ocml2wfIX2vxvj5J2Km4NzzNo4+fZsvDd0h8yUo6xPlEGhNv5s9x44M9uMsp\nH558hvWDTS7bvRzefZZNu2VtPc8k5znIhzzOmQvH6fxkSBrsPSjPZHx+8DA/nfkWo1uWef4/+hnj\n+1aYruhou2H1qYR3pp/kdfUCp9aOk59qyBjguzBg/m6UBP5Nb19umkWpo6nDtIKDMHxkgRO1D3nJ\nvcJTn54i+xcF/nVYuQmNJqSPwt7fmYXvv8a94Wmu7tjNxSNH4VMD1xJYGmbQsao83/7i5/Y1Br5W\nSROLrqUYV6B8Cb4kLxSFc9RqGZsmxlgrS+gGbB2KEMjLHE+gVm9Qaw4TUNTSGjt27aQocnq9Hhda\nTf7+yacZsYZGLvTdJEswxlI6KEtPr9uT7k5w0ptQDqMVidU4F7BW02o12Lx5M2maMTY2xvDQMM3m\nEEZbSa9ao5MEbTO0SQjKUG7aRCOrUW80sY2mMH1difIlZaIJRU4oogG9aGFwRqMT0KQY5cQwOO9S\nKig1YK0E7lK6NngvXS0fxOdLCSilTNXfCFQj7AkCdqlQ5WMvi4QgYJNF48qC9fYaPgQBtZTCO+nk\naB0wyOQTqxUmVSjjCT4nFDlluYZW0WQ5aJwXOY4xwirwZS7U6rIHxOOhwBhFMAZrLcYYbFIjTZNo\ncCnBUBITaC1mngSPVYEkMSiv0TpAKbbYlWdClY2cF8ZXQGjMy8srTExORm+vNbz3NBp1mq0m9XqN\nei2jlqWErsF7B0pTbw7RaRcUvQKXOHZMTvyKvjF/xhYC9BS0Yc23WNRjlJMWvbPHlgmYvC11QAZs\nU/CtxxGsZxzCk+D/Fny+fT+fqoe5ubqdcCWRTvG6A0opGq4pVi5OcG77Ud5Nn2LHU7fYsXKLmU0w\n8wXyodoH4WUIw9DowA9eg+VrUK9D4wSE78PKb1qGTMnW/bD1OtCC8Cj472neP3oEdRQOvHSR5nrJ\nSqvGpdpu3uEZXgkv8s6tZ3FvptIRvxGAOahtkQX+HlCHS6b3z3LcfsR+LjLFvT7wNZ4soPbC+fYx\n/E0F1xXc1LAwzMAkeRm4C90WfDoMdUXh6pxafJprx3fxXvNJpvQc1hS0Q4NbfitzYYI9+gqn64+y\ns36NBm3aNLjODs74I9xxM3xmjrJ75ArDrFBiuccU5/whzswfY+ncFAwHefkCuKck2X2G+LKcCzAX\nfWpcBle3QDuDWwp3JmFt5yhrY6OSO4r4vs4CFha/2Mwbj7zMO7tPMrxpCRUCq8vD9K6PiHzyI+T2\nWYDVRWSswBIPMr6+mpH3TtqiBHS/YAB+wcNL7vvl4MRfzN+LfuHw5YdWUoShEFj7ktxB/ZnMszg9\n7EvGtkbRLzay1FLPDJlRKAO1rEarVhP5CBH0Si1JKpJFZYx0y62ROBfBLWW1FATaSHfZWNC6L/MI\nIFJ4ZUA5UKYPBGmbRnzLo42wW/vXQgl7TDmPcgGjjLC/lGVodIrWyCTDo+Ns3b6L9flF2r0euDW0\nchirwAe8UxgSplujNHorrFw9xT8/uIfji8OsbJqgWa9hswxnNEZrsloNE4G70gmrwnsPLociJ3WS\nqJQSCY62KQ2aaOXxPmd4tcm6h9J6CufoFjlFUJjYqUc+Tv0iMHgPxkTjafEKK4PDKxXZdJrS54T/\n54/P12SrOC+VPLCFSATHgCExGZkEdsDO0csc5Qx7Lt6EP4J7fwSv3hNMZcs8vLwIWxpg/zYcdXDk\nFPRyqO0GXoTOCwlnN+3nn/Kf8uzMW2yfmaVOhzVaXGIvH4bH+NQ9TJ6kXN+9nYd2n2OMBUoSbrCN\nUxzjzfAcry68QOeno3CKaBTWRqCjdaRamwZ2wVgTTiDsrCc96dE2k9tuM2EXcBiW/Qh3bmzDn84I\n7ysZzvJRC+a2MYhr7XhNJmC8BkeBk4EtT8/y3bEf8uvhDzm5+j6bLi5JLhyC9jcN939jlEbRY/zV\nNfTvw+prMDsnpdyWR6B1t0Pvv4BsBFqpXP2K1zCK4HUMQU9nLDPC9dt7Wfh30/AeEu/PBOgtEVv9\nDAqeShIEUEK5Dvc3w/1hOKNhSMlb+xjwZEA97mk9vMDk2D1a0W/lfjHJwufT+I9TeF/BuwbOTMbJ\nlpWJfmU4/OW5hF+DrbKSYvBT9e9WKK3QBlwcNqIkQFM4xz+8fJPHeiULH5/jDw5toZEYXC0lC4r/\n9d++z3///RN0qCTUhpZN+e/+3c/43//urxEIFEVOWRQCJBmx2yA4QmRwifzaEYLIHItCQC/vHWVZ\nkOc53V6XIs8pilJAsLKg5xy90rNoFUXek32BYAShMrN30fpUzjhEZmtlmq9VbF153wcDFV4Yykaj\nlXhTmQpsqjhb0Y9LA2HDFMmgDM6HvmJCvLgquaVHeTc4TgZ8t2pyZYgoXei/M4Om1UBqKJk1BBm2\nYtAClvlA0FVeDv21gVMbga7q9QQE1NX7plQfDjUKfHWLTPP+QJQo2/f9tUfMRaGfZb/0wauAYk1K\nfG5k5RmtSZKk7x321W3ml9wXL1I1uRxHSo5qB3wHFv2gxekQohYFNAo5ww7weQH5Ffj2O/DeXQlZ\nAAtBAKbnT0H9Uo/te68zre4K6BX9HVnfCkwj1iKL9BvNLNCX8K3I3euLLe5s3cyN5gyHjn9O+kzg\nu/PQWodugIdS2HsIeAxubp3gOttZWRvh1oW9/OjYKq5muPf4Jh46fpaJzjJeBa40d/ERj/EG3+Sn\nKy+y8MEM/BRWOhO8/vxLXD2wm3ftM0zW5rCqZDUMMeu2c27xMOvvTMJPgVnozTU5/fQzXDp+gK3D\ns4yoJQBWwxA31nay+vEEvKvgXeCU1PZ8rLi3ZTuvvvwdXMNwb+sUj249xQx38CjuMc0ZDvNWeI7X\n3QvMvbFDQLMLQMczUKVU8fkXxrD/DWwVfLyxeVaHLJH3dXtgfNMcD6tPebR9muxPC8rfhx9dFcLD\nEPDcZdhjAgd2zfLY0x/w3tCTXN+zj950E1oalir3/moy819uAfY1Bb4ci0sLEDytVpNtzWHGVEmx\n3qFb5PR6XZx31LKEkaEmLvWU6zk+L8i7HWEZKVjvtGk2hhgfn8BozcraKkW3TXdthSSUFF1Hnhiy\nVEAvbaxISYyWpNPrEWopykCSZVJoxOkjWZbRarVI04xarU6aplhr0ZYoSUmkWNMGm2YYm0lK0QZj\nNa4sIRcjXpmqKAv74Aox21UIjdhDaTROi2QvBHBlrz8lhSBdB0WcQhIDrCQlhysKjLGEJJEEpo1M\njvQBgyZoizc2+l0ZEmvxLscHh1UOqxRBa/COIu8BGptoUKYfsEMohSXmoCjbBDVgIQRF9AmwoC15\nsHJdQiCEghAKlCrRKvoe6EBQIZoSS1cny2rYRGOtloRr6E9GCQhQWZYO58FaMMbTLUooyn7XJvhY\nyAlyFjtcg7HN3W6XPC/Ic/GVMdaQWE2WQM1CagKNzKKbDTpra3R6BZOjY7iiS94r6JmcbRPjv7Lv\nzCDYlUgQbENZwnwCN+HezRkubt/Pha27eOKFM8xchd94G26tyJDGnbuA7wO7wA/D2r46lw7s4ofp\nd3nDP8etM9vhDEJF7faAJbg/A19I8D538Aiv7H6Rxmib7/zgdTYfukftvriGdTfVubp7OyYp2DMx\nS+N4zsQtxLDxiGLxqRFerT3H4X//HDMn5siWclxmWJ1p8snkEV7hRRYZY0f9OrV6hzZNZtnO2eIw\nF64dpf3mqHTEPwNWO6AmYSdSBH3LcfjEab5X+xHf5hUO3L/M6MoiJjhWmsNcGt/Nm+mz/OjQMh8V\nT9Nba8K8gtND0JtAQK+qy57C4g74sAVtDXc0i59u4f29W1ATXXTicR0Lt1NYhnv7d/D5nocYrS+T\nmJzSWZY7oyxcm8LfMtx4aCej44vUbBcXNGu9YZaujcHpRDwSEiWxv5DLzW1E2ngzwOoKUgTdQBYz\nOdybkbHAVxIpdoYZ6EqrNUUNYU2cUhRbhpgfGpKPzXo8xWtIZXvdw/pyfMPvxOvQRRJr1f3/m9/6\nC+OY9wYmt//vvn4Fev0yxhfAt4AfB8d3A7wehXyDTW34f3WPGsSbuEmMFZZqzSqaiSG1YFKNNZrE\naFRZUjcaZS2JNRgD1spEK0+gRDr2SqsNcg6Jk9YY8TLUwugNQWQp1dSxoEXUYYISlleIZ1G6fqd8\n47RKrYShEIwCb1BOEZzCBkNNJxjvUcExOTZMPrOZue4K7ZUuJ4ouHxkDaUJmU0bqQ2ydHKZBD+tK\nFidavDMzRmbFkD+ogDKKpJaSmBRtLF5r0hCwpQySCa6AXq/vw4gCbRNQilq9jk0NIZQ0WosC7QRL\nCIp2L8f5Aqc1RZTdEFRfhlN6LzJRJd3/MlTTvcBoi9EZJXk/p339De4VD07MGkVWq7sg2ywYUrTI\nGmeBzdymdrdLOAdnI+hVIhj6+6vwt86B/g7wX4G6CLUC/FZYPdbgk0MP8RO+wwfrT3KBQ2yq3SM1\nOe2ywd31GW7d38rapTFWjo9yZuwIu+zVDU2ATVxu7+PyjX203x6T4uI0MNdDaL0r8UhmgGkYqcNx\n4EWovbzOziOf81j2AQf5nGnu4tHM63E+33GAj6Ye5+LWw+StulS47w/D0hYESLJyTcywNE4OQnZs\nnSfG3+F7/IgXr73J8L/uEt6G7i2Z2N445tj2GwssTg2hX4eVn8C/WZDInABPnYOnX5EBJTwG234O\n3/sAPunIu/BIC1pPQ3FMM1vfzq2wlbXVplQJ7wJXSuguIrH4NlLsVF3+aqu8B9aQQD8F+Vao1eFx\n4CUYeWGewztOccycZi9f9I2GbyTb+OzIUT6eeZybU7vAaLm0n05BUfmJVf6OjgfNCr4eW4R+qOYl\nbuDByjqyohTpCKpbGQzyX28Z539a7vDDsRb/4N2LbO/k/O5Te9nZLlDAszfmeWPPZow2pGnGU7cW\nqZeeb35xkzNbt4g4J047VNYOJhMCwvSqvL3cBsZXEdelDh+qQjaAqqYXB1FmlCI9zdIEmySkaRoH\nPRFZaAJ+xU7BBvYX0cBdDiY4sTcxWtQZWuuBlFEhQ7a8JwQZAaxCpM9535d3Og9eaQoXKMrK8F8Y\nXto5dPBo5/qML6rzjzFZADGHCgEddATYVJ8xrZSKapPYmKoo4CoIEFXluaohHrNjJPvRJ67FxwZi\n01xeVT4jij6zTMVPiMg6Q/+nUmFAHqBaMfwy0CueYQhkPvC7RcGC1fzPdRsbcQOfya+WTFwNrYAB\nQyiXuzvAKjKhkDHKTZZsS87+DG71ZAUYV5rAg2MvSqKv7+LAK7h6hTXAd0HlkFAKkUQja9uHkeb8\nWgJzo7A8Au0JCHPxAV3Zw+IQzCp654c4d+gwHySPs+fwNQ78B1eZGg78e5+B6oKKTZfFF4d4h2/w\nafkInasjuJ9aTvsnWTw4ztmhh9htrjLSWiKgucUWLpQHObdwlHvvbIdXkVwzD/52jcuHj3Jl9wHq\nk+sY6+mtZuQ3G3BeDxrRd5C0dAXWPpzgwtYJUcwTL8BNJCBhnBMAACAASURBVHmeAy4EmOuCyuBD\nDTW4Efbxw280uTi+n33pF0xyn4BikVGuuD1cvHuIuQ9n4DWkKX3DxRecjy9QAV+Bv4wJ/F99M1/6\nPZVJLy3QI46xhqwdpm+swGfw8V0R0xCP2HjY8gnUL8CWp28zyRxZq0dvpCk1Sl/mWrHT/38AfIUQ\nWFlZptNpM9yy1Bt1xmoKX8tY6UHHGkwoGBvJcVqjVtp02m2c7+F0oFfkrN5fRGcNaqZO2StYWVqK\nnlzrGMSzKe+28R4S25CpKz5gtaZer5GlKQRPt91GZ5YkszJ1xXnKOO63VqtRq9XFC6xWl0CmwFiF\nTTRBaZS2YjxsNUpZtElQylPkbTp5lxA8moBRHh0cyhWEUMbpkTJS3pvY0Q+K4ANlXuLzEpwXKUsQ\nWq93Dq0UVmt8kIkr2paxgxIDc9yPDkakLzrgdUGpLYlNcNbSc7l02b3HJAodWVfeOXrdLs5DrdYg\ny6Q7H7yPnS2hfFcsKiLFN2iN1zkeIz5gUaurgsdEYEyYjHEFEjzOFYSgSdOUNE0wFrwv+z4IVK8R\niztrNAHxMrNGYZwkNWMAp8hjcaflA4ZWisRajJIwrtDkuaPTzfHBY4xCK4cvuhQ9UKGQCY6hwfrq\nGqtrbYYb8twi0tK3TYx91V+VDVtgQA3OgQ6UK3B3Aq5A+/NhPph6nH3ZF4ydXGGvnWX6IdHsUweO\nQPslw5npw3RtxvVsOx/wOG/65zhz9gS8lUiQvwkSupagbMIXo/ABdMZHeOd7z9PZ2eBKYzcPPXyO\nKX8PVOCemuYUx6jR4dnjb7Nn3zWGeqs4ZbjbmuJ07WF+yvP8LHuG3fuvMsYiPTJuspUzHOGD9hMs\n3p2iPrJMYguKXo3OYov29Sblx5l0QE4BN3uSYRvjInM5AZufvM63a6/w2/5fcezUWeqvF5J8Chjd\n02Hzs/NMPXeXkChWjoxy7taj+IsWridwZwzp/i/Fc44ro3tbYG1cqr/PgM0QRmo4g+TpOaQG2W1Y\n2DXDwviMBPM8/u06sAi97UPc3TQkg8NKuY/bSMFzSY6RJP6tA7Q99LrglpBMW0kQKwbWioB1t4fh\nXkOmmioDwYErwXVB1+B2U9hxI8hrE49tCbgfoNuFciEezB0GDIMOX11XabA5H7vwQNVl7f8O/EWk\niEJg+jJY9eXnh75vyOB5EmfW46PXv7SHX7YptbG0Ihr1CuCVKE1iFPXMRgmjwWiJgYkWAExrJUxa\nFUiMxYbYODAGSo9OY9dbIUVqLAxsnOSojQGjxY/ROZR20hn3xEIhRGaYTA9TZQ7KEdCxAAmyDxQ6\nKLwJgIFC8p9VCUnhcAv3CKbA9NYY1R10K2V/L+UfrXY56w3/44E9NNKURprSbGiyzIsPozZk1pAm\nCp0KY00nCSpLsSYRUM+IBDGxBkLAhwSyRKaOlVIkCotLY5XGZvJFaa0Mo1EMZ0NolbDW7YpsCBW9\nZvwDlYYPHhdCzJkl3hsIlsqlLPTTpiaxlrz4ehX8D24V6GWIohBE2L4Nsmk4aETv/gykO9fFLgCH\nKgKU8u2vOv+BaPeYQ8jg/PN7KZ+xJKFguTbExdo+fsY3eL39LWbf24Of19iJAp15fMdQ3k7gkobb\ncOfSTu4fnOH01BPYeknwinwtpXutTjhj4WOkuLiag7+FIPTLCLI/Ack47NHwOGTfWeeRR97nZfsn\nvBBe4+C9SzTudkFBbyrjwvRuXqld4UdHf433eY6wZCS0n5oEv4gEwhokmQBfu2HT3lsc42OeWfyQ\n4T/osv5/wrmzcK0LkwmcOA9DvcDEt1bgGlxYEGJaLCk5W8DhGzB5Dbq/rakteI5OwO7rQsapH4Dw\na3D7iUk+So9zoTjI+uURQc7uBugsMZgysoxEoTYPTtd1G/5dA+rQzOAw8A0Yefkez219je/xJzxX\nvsnWG/exywU+1axvafLzkeNsG5/lhyd/wLXeIckFc8DsJgRoW0KSW44kJL3htf+/vW0EMtSG+6oY\nHYL4GFanVLGCTGKxacL/tqPFfqMJWoSSul7jgx3TdMeGOb91guG4dk7SjKubpnlleoq7B3ZhlY52\nIyWhLCFJqKRucdFOwOODw/sS58s4KTLHeRfN4su+KXwIvv8TZIiJtZasVqPZatFsNsmymjB+EUDG\nuSgvjEC/9HcERDLaRDZXxaQaXBtC6ANxrpCpjyHKzb0XKaQr5RiLoqB0HodFlb7f8HHRk0wp0H5A\nQpZlu5x78EHOP8g1V2h0sA+UugLAydpdAKPqGAHtZUoiQWolF71AK5ArRLbWL/u5Yf8VG6wPsikx\nzBeWVwThYoOkesxGr8g/bwsKOig6xqCUEQARqIat/Oq2EoniHQknC8AtmC22czHZz9KRnzHzzZxD\nt6B+Cm51JQrNxmfXGOQBi7RP1BjsNXDJSZRqArtrYGegN2lYYoR1mhJGHkEk15WF7CxwWcHFIbhd\ngzJDFstLsDYjQfUTuPLQQV47+gLDIyuUL73GnqNXaFwsoQdui2J23zTvjD7Fj3mJT+8/Sv5xDc5C\nb6nBxWNHuHloF/XJdZJ6h+A1vZUW6zebFJ/WxNf2I8Q25RoSgz+BMJXSHknlRCvC8c14eHcKWZcv\nDMlzPkGaR614oTrx/G7F57VXkLX1GHw+JR+QdVi4vpkPj4xzduYYSVPc7cu2pXO3TnmmNsiDFxx0\nqwNYZMD4qnLAr2LTA1ViEkhMQUouH462qPA3bitArwP1NqTkWEqUCYN9VB2Cv+L2tQS+ANbX11hc\nWGBID7G8HBgNdbKgaKQJytUp11MaacZI1qOnV+kkHtMtIRTk7S7eJ2iVkbc7tNdWMQo6nTWKbptm\nltBqNFmaz0VmqEKk72pUkpLaRLrz1lCvZ2TWoAhiyl6K0aQxlno9RSlFt9sjhECj0cBHiaDzZaSx\nGhQOrTxKeRTRXMlJb0FHCi4xqRFE0knwaKOwxkTDYVAu4IuSoi3mkwZFcIMJjT6UBOXwylG6Hi4k\npDqL0g5P4Up0CCRKo5EE4qJ3i4rSDq1F3uGdLAYMisRIMVW6QFE6ct/FmpR6HdIkEYlNkqKdw3qZ\nmOi8wxVigK30QFqTJQa0LL6NVhgC3hW4DZ2tYA1kGWUklhirBMDC4H1JUfT6HSVCECmkNeIJEyc2\nBh9lLPHquFJo39ZaAfQQ406j5By10nTaXWq1juxTy3sTgph6Cj3Z0BgaZmlxiXa3w3p7nczW4nc0\nsGt66iv/nshWUaqrpXZkZIVlmB+F8wb3Qcq53Q/zw93L+CHNye+8xZGTZxlZzClqihuj03ykT/Bm\neJZbbOVumOZ8+xBzH2+D1w38DJG+dVcRcfkKkMJ8Ez60YBQr3QneOPkS5x8+xPb0OmNqCY9iOYxx\neW03jaTNmewou4avMsoSBQl3wmY+Dwf4eP44WdJj2/ANWqyRkzLnJ7lzfRfhfQuXYaUxPvC+nEeS\nzmXgfIB7HkkmEyLV2QkcyXm0cYqT4S0e/uwC9X9e0Pu3cP0KtAMcmILalZIj9gr3n3uNz7MDXDp4\niO7eaBw/NwyuiRSJi0jW8kAX2m24vAmupsLdrSMrqMprMiB05Ekl2b9qkq/FY18KslIYVnJOcbfM\nB/l7r41kzGq4cWzHsRJ/VmDUGgMG1iqyemmJ/NFlDAwh4+fCJ7A+Lmb9N1r8onSlx4BqvsbANLNa\noEUQ5CvpKlWbjyzYXw41bWTiVEDVgME1mAr14PMfBMt8jBXVonzjY0MIvA+kWtLpA/DZBqbURq5Y\n1RH2iFE6KgI0SlEzlppNSUwFiEESiHFZluHS2PcymEQbjNIkaPH0ch6niPJH6eZrbaSLHxcMVTME\nFfqmvNUAoOAdXgWUMZigQZdgYrdcVROsNDINV4pzZQw2Nxg8b92b5e9s2oqbu87CvYvknRUIgRqK\nO9NjnC3X+CeHdrOjlpAoQ2KVWAlYSBNNliYkWYJOjdwSi7HVTfzclNGooEm0FDsueJw3KF9iSocv\nSpT3sbtvMIlF6watsWFCgE1TW0jqTZbX11hvt3GFw2hDv1+vlAx68V4aLoY+y1r3O/HCxlZepD1p\nln3Nga9qUuUGXw42gd4CO6x4WX03MP6tezw1+RaPcppeyMgnE9LtJYcacL4t0EsTeEiD2QK9zZZL\njV38pPFtApqlMMo1dnKmc5T5n22DV4CPoZw0cggFg2GKFrikKLdkrE1Fl3xHX13OVeBagLkCWejP\nInHYxaMYh5FMvLUe82w9fIXv2B/zt8vf5+GffwGvQLiAhKw9a0x9Z57xk/O41LJwYpwvrjwsxdYl\nA8vj9POaVtIYmIYt2S32cIWxy8uEn8O1s/BKN1rLF7B2BX7wNrCD/vp/Yzkbv/6gYXFri+Q/Vkwc\nW6Z5Lb4Ve2H2+CR/wku8Fl7g9M1jhNOS85gPCOhUNV82+rlUMbiaeuXiBR0ChmFavM7s020e3fwR\nPwh/zG8s/hEzr8zDuxBuy0dg7OFVxl/+Cc3967SbDf74ySHuX9oibO65GnTjlBvW4wFXvmJfn01t\n+E/3f5N1myJ+9zUEVJw6WEnfROWx1Mj4R88coFVLaNRr1LOMa3taNLXBGgG+0iwjSzPmD+6WCZAo\nGXDipIldeWRprUWfEUEhIE47lFsfTCoL8lyAsMrjK8/F8ysvXd/XUWoIkdHX0oRGo0lWy7CJMGJ9\nIJ7TBqBG636+UICPhveudCK1jyb3Ra5wRkFICK6MjxFGmrCvnQxOiFCVDZrgJXYLU0r808BEcCt6\nmgUvwFcIUf4nckcVFAoba6IK9KoGxKh+EwlfSSNVLPelye4AVTV4nMNHkKtCOqVZPgD6VDz/wRoh\nGvdHcEsrmf4u5vS6f/Pe/4UZwL0A/009o5YlsbaLaxUfZBjZr4RFXPn2RZZoUcDtBC7Dzat7+GDf\nYxwY+Zzf+jt/TFqDA+/B/luw/TV4pycrxEMI+HUdWco+MQPmCTjShvqnMOtgp4W9R0CdhO5DNb5g\nPzfYht7bYfzkHDXbpfCWhbtTFOebcEqJ3PqjFC5spe/TEebh0gR8rCima7xbe55ib8KN5jYe2fcJ\nM/tkYNUCY5zjIT4IT/B29yT339ouH4DvRlBlSdP+P4ZpTwzL4C9FH/DjEnAxSJop56BjYGkULmrJ\nBTUkLxTAapAc5Xv0m8OdMZidhNkmWDVYuufE4QUdJKlVU3MXoV3Cmc0ydOWqwn2UsTadSWrT8tYw\nhwBql4DrIT73WtzXxobEV9uQfnAr5eW74DuatV6L5cYoxSQkM7AlhaF8MD7mgILRrRBmYIExVsMw\nZdcMeuvhrwfgfW2Br06nw+rqOsVQg9WVLgvek/oCrVJc6ei1u7RX1umuraCLnLFmnTRJSLKMkiW6\n6468yOm01wlhjPb6Ku31NTHBH20xOtyis7JEzxWy+A0erQxKyfTDssxxZUFwKdrqyErSaGWo160w\nnYJ0VNJ0cNxZmkmxoYiyRovWGqMQY0QVP5xKYVHSxXG+300JQRKKtSK7NNZiAjLlpcwpc5EbaSM+\nW+DRomuUkfFll9I5lJGkaBNDCJ6yzLGff4HbvwdTM+goN6xaH0pXMhmZouEjuy22iqKZskZZkciE\nsqTX6WCUxtYamLQhi73YEbLeYxJhdWmlpPPlnHw1vcdGvzFXlviyEEP+UM0bk6IuiUW5gFolzuUo\nrUmzDOMNRd6j0+3S7nWxSYrfwIJQRopD57z0QaMhmDYCdBkVPcmMxmhIjKK9vsqqVtjUxEVESjOz\ntJoNmo0mBEWzNUSjMUTwnvX2OulwQpomaKPZMjbCSKPBcnsjCfir3CrWV4c+wrI+DhdGYELRbozy\n7veeZWH7BGdrh9ldv8xYfYmclNvMcD4c4pOFY9y9u5niTmtAzT0FnPWwuIakuTn63BefwM2t8LNM\npkNdM9w7sIt723bCSAzCyxpuCFv59uFtjE0vULddymBYbQ/RvjJC+MRSAOenpqQeq8CtmwiAdB0p\nXmz82yoy1WTBQaeNZK42InsBNsHY1gV2cpUD65dpfdjF/ym8clmaJiWw7x5893WYOAAHj11iz/Bl\nhmbu051uyj50Bi5lQPCuQKA4Noa7ogtdbsBy9bgSSUQBro/BbEJEOCTOFBHcpg0rDTmhKDmQYO8Y\n+Bts/BwV8XW78f5qHmc12Sww0DSmSNZNGBS6NUQWtBnqYyKFnEaUTll82XWk0Lm/BVbHNkz3qgrm\njcfyFXf8q5b8oFX/AOj0i1vV54//+gXQrNrRX2F7YFcP7iP0fUiin1fsGCdaDNhTY6hbS4oiiSww\nsZjV0hVXBu1jURZkYeyVwxcaZ4kjUBFz/BBwpcOmCcZqglU4pagGZCktxYg24JXCR8MTjRVAy2so\nPVYnWBOwiSOEJOYVTfCxQDQaqw2d9Zz/cm2Vhiv5zq2L/MnEOEY76lqRJCmJTTBG8XtH9lPPDKnV\nWK1JoxTHGkNqxJheZQkqTdBJImb12vaHkOj4esoLC84YQ4mn8GCcAmMJNsW7QOk8Von5f65heGgc\nS8bQ2Bi1Vou1bpvVlWXKpeXoB6mF+Rs0Siqxvs8XKKqUZ4xGlR5VFcZBjPCtsZTu6zzdMY7H6k9i\nmoKhpD+5cOKFW3xv4o/4Hj/iiaWPmJm/QzPvoY7D9tvw26fgXhtGUtj5EKiXYf6QFBs/Kn+N+dtT\ndIsa7ZujhKs6MoQRr6yq0X0TiT9PAruBqQD1AIUedP6/QLrt14lTZa/HJ95HKo6G3HRdSGs7ID2Q\n82jzNCf5GQ+f/oLwz2H5T2F2Vr4PW7fA2HXYp29w8smfcc4+xLXDeyh2tMRbeblFP3ZWSosManRp\nso5e87h5uNkdyH1CPCLmkPB/BI5ug5s3BLOzwDN1mfbIITjLEU4PPcLeb1xi4hvzBDR3meYzjvIz\n9w3eu/M04ZWG6EIug+TxqgmRI/G+YvhulC1VB5wCTUhTYaztDWzaNscJ8xHf6L3DzKvz+H8Kd96H\nO/OCGW7ZD42lgif+/imubt/F2ZEjLBycwm9JYNiKtyUpA8lJlYS/HpuKrKYqVH856quNd0pIkOYH\n0TZESTxKE0stTahnKfV6jcQmWJNgrSVNZKJ4mqakSRYnDQassZFjKet9kewFdGT+eD9gGA/8viqj\ne/H8EhuOfHArBHgyVvxmy0JYWcGXGK3IshStM5LEYG0isncfcL6arijM5viiBC8eWVKvIOvnYHCJ\nJU8MZa5xRSG+9aqS/MnF8l78e10pXoxGQbByzZzzOC/1AoAPOvoqhtiqjawpPQDOVAhoBJSLUJSA\nhVEaWKXeyh8thAEgVVZTdxUylVJr8axUDFhtFeOLAeAltgRVKVSxvbQQFVQ8Zz1ggslnqlp3PPhp\n+oVVRWTnVUqWDarV/grlq4eQq0ZmRCpYhXIJbk7CWUXvvRrvjT/N8PgK5Yzl8b/7MZO/vsjoT9bY\nOwLbPpP+9/A2UDMQLgvTixNQ/ibY/XDgQzgwhyBiT8Lyd5u8OnKS0zzKNHd5dtub7GCWFmt0dJ3Z\nme2cmTnMud3HWJkahVRDqeDqDLg14A6s1eHTBmSKbt7kvW+e5Maenbw9dJJNyRwaz4ob4lZ7G9fv\n7aS7MMLQw4uMTM0zMrKAQgZxrdydZPXiMO79VOxbbhBVgz5Oc78nr4cHRqE9Cu24Vu83GHpIQltA\nYnFskGslS+003ioVSI5IOssmEssTpIbwUHbhxhQs1OG8EV/GjXS6tQDLDto9JNHcice4yC8a239V\nwFfFLq7qjq4YfC5lcMcwvzzNxcY+zm/ax5FvfcG+K/Cb78HdDjQMHNoCvACrj9a5yAGuFzvpzjWi\ncrPa58aa6y93Xl9b4KvX69HLc5Kkjk00Wa2OLTuYYHAqBnSAAPV6jdHmEN6mrHZzTO0Wq9fust7u\nkiTC8FldW6PIuwy16rRaTYZaTRbSBBUSalkifipWfFGMUTJ5SykUInuz1pDYGkYnKKVEQ196Gb+e\nZZSloygKtK4kdML2AmRKVjDoPtBFX9fuot5bay0FgRK/MfFrkW6TpqQsehRlF+8LbGJEctkTP7BE\nW1zpyLtd8l5OZdSoUTHABpIvrjH0D/8xbt9OOv/LfzvwcAkeYzTBmOj1ZdHKUjiPKwIhjRNWQM7J\nGFByXq4oyLs9grKoekawVuSdSrxplBVtvwrRkyBofJHjghgPe1fiikK6Yb4kOOmGFHlOkTu0ir4F\nVmOURTtPXuYiBTWQ1hLp1OcFhRNfsKA1rvTyVak8XdAorcTPIya2irZsNdRSS5ZoVhbbrPuSkbER\nrILMWrIkoZ7VGGq0UEqKwWZzSIqxjkx/zNI6gUCSJjy0Yyvvnr/4K/jGVIms8vhaR5bkQzBXhw8y\nCNBeHuX0449zZd8BWuOLNBtrFC5hbWWUtTvDdD5twmda4uotpAiZBdZXiQZTSMCtur5WjHFubYbV\nVvSPAsYVNGNbrfKXaoHfXmd+aqvkiaqzfxOR9+VIQVQZuq/FU7gDrPSQFYMVhobriXSv78E1h4zw\nUpJwGlA3HcZYYrizAtelM3+RwXDcWWB+HsavQ/1ewfjwAkPNFeYaxIEi0qkcIG4VA6qDJJyleLCV\nCWO17BEvPBiCUIM8YwAURf81cvrT1Hyy4W+9eMHWkIy58f2tZCbFl36vukk9BqAX8dhaSIG7A8xW\n2JTBfuS2GymOqulei/G9uARcqMO1GVivMRACbPT32sgC+5vfqs78nwVYVd3XB6c5/mU8mSrm25+/\nDH0AQAvxuNTgmRJ7K08Q8S9NjCGzFoMiSwyp0aRG2EzWB1kfmRDHzXsiUoVyAUcpjQOl8Si81TgV\nqMUB7/IJ1YOrIlWCSPNc4NBnX/DZ8f1xsS85JakaHC4CdSGWZsqi0ZSlEwNgr8TM3mjSLEXbNv+4\n1eBsZvho0zCtRorVsVjRWhoJCqwRkE/YwpbEptRsSpak2CRBN1JMLcNmdUwivjR9GUl1CshglVRH\n/0otOaWMkyuDVzgX0GUZhwXIPkZGJrEmI2u0yDRMb9vK4v37rK13yF2BNopvFiW3Q+BzrQkq9Aso\nUfeLHEhrDaoEFSQHl6C9pp5krH6tga/K3L4CvoaEqXQYspOrPDPxNt/nh7x07TU2/emyyMjvAi2w\nR2HHEdgRB6BwAhZfavLO1BP8nKe4fn0v3T8YkpC0GdjsSY63qbV6OKfp3G0RLiXSyNgEPJ6zac89\nxuqLpLZL6VNWukPM3d5M8VEd3lNi7n7OQGeIAXu1MohJQTekSTEFta0r7OIKR9oX4C1YeQN+fBW+\niM3+fdfhN34CtUcK9hy6yu7xK0xsus+d6ZY0APrATuxeR1/3DnXWaeJbGj0G0xkkvQHsNAUwId5m\nHIfsDrz4BqzeB5PA+EEwvw53HxvlNI/yh/wAi2OUJfEeY4Jr67u4c3E7nXea8DYia+n7mW00MC75\nRUlLddyVd1smRsPjoGY8E6P32Msl9s9dhTfg2rvwh4uSYdIuPH4GvjkBE4+tcGj7eXbWrnF25hjt\nqQTqikEVVxkNf722QFz6IYBDdbU2MnRDhXhteJJSsua1SmO1sHTrSUI9TWlkGWmcsGttQpqkZGlG\nltVIElkLuNLFNWZscMSmCFrirvZf9nkKD4A5kr/ER6tie5XlYOqikMg8eIOzBl+WsqZ2hfjxRvZu\nolNp2puq7hDD+T75SxH9vnRcN3vBaJTDEI81sRhfgVFRdukjEBQbPVWdoCOyE6JZYsVjDkoLEOYd\nBBU5XrrPAgMi2CgEA4nrG4bE9B8l5yBTKJ00exQMCuQYw+N6oKqBBoDXYCVRvf99YExVANeAEVbl\ncq3lOlVeYNWaZOPniC/9vgFJpbJYQQ/ed62kAf/VbdXarVIBdOkDOCtjMGvhumZ5cZz745tYpUXp\nDOGKkhC0E7JnJbwwA8tHGgx/0saPwPLuJhe272XyoUWmv3uX+mpOZzjlzsRmPhg5xqt8m4Did/h9\nnnHvsnP+Fna9oKxZbk9O8l7yJK/svMFPk29zv7sFlpQ0lO9vBi6DuwU3t0ORwaqiuNng2kMHmN2+\nk3SsQOlA2bEUaxl6S87Bw5/yaPNDHuI8U9xFE7g/NMkXrb18tPVxLmx5mF6rIad/AVjtITXOKoN1\n+gKDNf7GtXDFllPIGOTNMNyCLUr+OY3UOApZmt9XcLMut4UWhGGkAqmkigvQHoP2sEzlVUae6z2E\nLoMiain+rKYaV4NHvsr1eOWEtyFJsga9HtzN4AuYv7aJjzed4O30AuMvLrFF3WfPfthzB1l6PALt\n72a8t+047/I0V5b34s6nUn+sljxorfKXP7evLfDV6XZod9rYJKXeqDE2MUrN91Be0e3kFL02nXYD\n73O01QxPTGBqDVZ6BQWaO4vrLLUXqGUZvW6H5eVF6llGao0sxpOEVqtJT4eYmMQbKngJRFWyEumI\nl0IgBAil0IbjFBcxtU8wxtHtdnFFKUwuHVDKSEIBgitxroy092iSbxPQcixJkkiKUAqr7cAbwHsx\nvMx7GBUwicW7kqJbUHZz8YSxSvy1ujnKy/5VUITS4csSYxLCnu24Rw+y/p/8Frgu3pfx+BC9vzWY\n0mJtijUpeSgockeSOlQmExhBmF9EJkGIUyNRXZSyUKsLYGiMJEHvMbHg91F645X00J1zBC/gm00M\nialHenUhBZiJRpcm4CmxRous0nm63YLSSUGY1WvYWka7k9PLS/JCKNtipVB5usQOkpXX1krYZkZD\nvZaR2ITF+XnKXoei22GkVSezMiwA78Rnx1rqtTrtdodma4jxsXEW5+forq4IQJloyqLgyK5tvyLg\nq1q0VYwjjSxUb0BQcHMndGpwD8LFhOXdEyxvHpfgXJmnzyrpMl9A4v0ykPcYoE/34h+qxFABLz0I\na7AyAStT8HmUrGTxkCoiUjVAbBjJIVXDaSHuGgYTlvtWUgUDmWHJYFlRsZ0qud+XNl9BNQavtDTx\n7QASIu5JbcC1POLL94txNgx22u+4dxkUBFKmD7bKFaCCuQAAIABJREFUA2UhnozdsJ+qcCkYmDdW\n51RRlTeyub58HNVzq9+r19tw4uQII8IiVeEMqN0yW/qEgqeBx6D28DJTk3eoqzZlSFhwYyxemIaP\nrRS8PzdwdmLDdK8KmKvO76vbQlzMVt6Bf94mBcODTLBfPtlx479D/3F/7pSlIPFSqobqQzI4Jh1B\nLxUXtEYr6qkMDzEe0iifUNqhEOmjrsQ3WkuxoOQrG7xY73ocQRmUCdLJLh0oRQimL1/xQeQu8jyH\nNZr//Hf/BdoHVkeaXD2wA22t5AeIvi0BEo3X8h1JbA0VDLnKpThyoIzCJpYsTWgMDTM2nXPGGsay\nBKstKoTINnCU3skwF51iTIKxFmWtFIZWGgimnkGaoJMUY1O0Tvq1gY7vR9VJt5H5BWB0wEY9otEJ\nlXSmcGX0r/NYU4OGxugEm6YkWcrElGfr9mVu37zLWm+FSe/5ZyurBGDv6GhVcQpbwWiR3QSRO+Wl\nJw8ii9RKGNKJNiLf+ZXIU/46WxWDFINJTE1IjYBU+2HrlllO8BHPzL/P5A+X8b8HVz+Ca14GID56\nENR/CMX/IEXsldGt/FyLl8qbC9+k+15LOrbPwdg3b3EwO89WdZMRlumScWfPZr54aj/XLxyiObLE\nIzMf8qg+zW6uMMQqOSmzw9v5bNNR3n/oSRYmt0p4LTScGQM/hcSeKt5rCeA1YAgaQ6uMs8jQUhuu\nwf07opKsGh2XgBs3YNd1GG6vMD4uzOOqWY/WsQlRSGhdBebhrptm1myntzejcbzHgU9g7TxcClLf\nPDUNPA7r++vMHR5h9+gdWo9A63bc7xG4/8wQr44+z1s8y4dXn2H11hgMBQkbi4pwXcF5JRL708CN\nHPwNBhN1K9rARoljtX257E5FapOBHna0shUmuU/9bgGX4dKavE0g1+ZTD49cg7FZ2MQcoyxha+WA\nuaAshAou+ur5KX/d7cuRWm34d+DLv8THBBn+ZGKjIDWW1CZkaUqWJtSShDRLSawwXdM0i6yvhCRJ\nAYXTYq+RRC8tE1+8wkFgEOsqwKvyffLO4aJ3bJ73yPOeMLu8rBFUdGvXSKO9nqU0owTTKiUxOQSM\nEQl5YhN0lF+WZUkewTMF4ssVZYNeaYIDrwJBKbyOTfGIHPbrmQ3HK/VR6A9RqaSLSslAF1TMmQq0\nA+cGUxdlk3ejAp2Mil6VkXE3QCfjIIJQsb00zimUEvZJCCbKRRHWs2cAYDFoqgz8vSRRPwCFRV1k\nxe7SxAmWPvRtCZyqhuxIHvizViRVA6f/ugiBIgTbPx+llZAzOl8lg3Lj0VZ1Qg0yIzYhuzybpm/z\nuPqAF3uvs+eHt1C/D+F98G3pn/Is3Dw2zY/2vMie3ZfpUuOq2slpdYxNY3NsHxU21ypDXFW7OM0j\n9KjxW/xrfjv/V0z/eAX1IVKPjMHMiTl2fnuWxvA6nS0NXnv6ZTrXhuC6huVhKOrAdcn1t/fIRPnr\nwGnwmzK6rUxOZRj07/R45PBHfC+RgVYnOh8zcqcHHla3ppytHeLV+mV+9MgKb6uXpM6ZBxZqEPYi\n+WWJAdO2sgVoIoUNDAAnA2qbaPkOK/EtOwhsQ5pDGskjs0hddRb4tA7XtwthgIDE+JV4EDUIdVkA\n9pvlle1Jh4G/Y77hVq3Pv6ptAz22Pwl5VW63WnBBU3xQ4+N9jzE6uYifVDz/O29w+PkrqHkghbu7\nh3hfP8GPlcj77320TXLfdaBT1XzVQJWSAVj7F9u+tsBXWZYsLi9TeE8ZQJmELBU5SPCKer1Bs9ki\nuByTGBr1GsFaMheDjC8xeDrrq4TomdVs1GnUargyx5c5Vit63gnTyChUiNOiIvFWx8LFOxc9qBRY\nMRpO0wxrLUqpSDu2DA8PC22YmDSNRWkTk510ESofE60tPkkoTCJ9j0ilNih86SjLnFAKWFYWOdpL\nEvHOUXR6lJ0cHaQr7vKC/5u894qVK0nz/H4Rcc5Jd72nZ5FFX4Zk2a7urq6u7mo7PXa1ml0ZaFcr\nQMAKCywECBAEQYAAvWghQA+CgH0SVlgsNLvQzOz0tJtpU7bLO7JYJIvem8vrb7pzTkTo4YvITLLY\n1dUzO6wuKICkyZvm5Dl5I+L7f3/TbbWxuQA+WokpserdZPLu/Hf/JSoYx9uyRGFCZDuE1UnAMJNh\njKTWiO2YAxM8dnyQf4RujvLgrcV12+CtFBypkW4LXnxonMaZhCLYqXg84nwWlm7vEe/PKtXaCASq\nd5G3gxGkeAKU1qKUoVFv0M27dLsdXJ6jkpR6vY42OXkhBku3LcxEw03dY0UoJay+LKuRmISF4TqV\nRFPkJQklY0Nj1LKUepYwMTpKLatgdELhSuqNOqNjk9iiZH3pFmtFTjKS0M1z9m3e+Jn8vsgoESAl\nghRr9HYN3sHCBolvv5iI+eKo6nuqRO+pBQcrObgwkfUYVdFfqknf5jhuH+PkHJhXviHU4FbKbd2R\ntRqsjXJ7IoijTxteh7IKpQnPi12XyIAaFJgM+FaRIwBPWATW5eXWWiPMM82toSnu23uZ+kHPI6/D\ne8FzcZ+BDdtA7YPF2WGuMcfywkTvUHDxPQa18wW3g1ftcI7vBnzFDvkgkBIXC3+Xn8XnxoXsbkXO\nIOA1SAGOQFpM3UqRxXoS2Ch+L48CX4f611fZc99RDiXvsoMzjLJKQcoVs4njD+7jvU2PcnV2ixTF\nTkm6Vx6vwWC6V/ws92oEuSO3g1p3enyFez/2s4+PfhH3MUwMeBTPW3cr9NwnMM4C5yvRKqTkBgm5\nlwaLNpBkCZIOpXFoMAandSgUQoou9NKnSu/EG8RptBUGlkVTOo+2HmOdbLAj2KfF4Pdf/rM/5sH3\nP+Lsnh0ok6KUCaoLD2kiVosekQoiDKq6R/wcSyvm+BB8Kg31Wo2pqWnwFhOSh52zaJWEIkqhEpEv\n6izDpIasIqbPaVJBZRVUkqGTCkZV0D4VtpnRgaUmMe9oYRYrHQoYgucYCFNNp6AMXmuM83ib47oF\n1nlSDN6neK3JKlXqQw0mZ6eZnplmrdlk2cE/HR/hkhMpqiWw7JQnVQaPIxr9S3MnIIWIDyhKGHzd\n8s7fy8/DiHNSAEeoQ0ML22nGMp3eYKc/w8zVedRLcPot+EsvK0DioXkGnngV0qfgJ1//Ij/iWxzz\nD3Dk+iHmf7kJjivMcwX3P3aMr9Se53H/BjuLs4x018mTlKuVDbxrHubV/U9Ro8W3+AlfaL3B5tVL\nNDotijTh+vAc7w49zMbsCj9/5jkuFvfjFw0sZnBlIzKnRS/DUHJaBTk4ayhIsRUFdahkgt1EmCwD\nhjKgCqVJ6VLBOd2fcoGe5rss4XoCZ+DmmS28t/sgL489yte+9wp12+Wpl+Cp60gT5xGwvwOndm/n\n5/oZ7jtwjn27P2J8fQ1nFBdGNvI2h3mJp/nlzadZfXlSPDMj0Tf6uFwCLntY7CBMryv0i69Y7Hya\nzb/voT0+V1hn6OoMFwhyDd3nzoG4d2VV+Tp0qZCT9RRagQL06b9iv41DebwW3y4d9qD9VTfCFv62\nek4FID7KmxNlyJKENEmoGFECVIK8OwL7aZqSDAA2KszjRungWeXD27jg6WWJYU0+hFkpJ0E0ebtN\nu7VOp9Wm225RRNDrNkaS6jGGKmlGrVqlWsnQKvgR591QWwj6kwbDRh8UD16B9iItV17jVUhvNB7v\nNMaqHhusLAuKIvps3gF+IUwy6xxl6QKTq/+d6SVEegHq0NFlLV6CpMe2MkrmeGPE1zL6LXoQQ/3g\ng9YPuSKAhYH1dRu65XtMLnx/tRfJ4wDDK1C2VO874HtfDRVALmFvK7zRkEojy0ZfNOd7b3sbpKQk\ndCuSAeIByvHIOp2oBJ/cazA5vl/s+oaE35qCGUi3FOwcPsPDvM/OY1dx34ezP4ZXmrL723wLnrkJ\nm8Zv8N2tP+Zfb/gHvGq/wPnOfVxpb6GiO0xWblExbbq2zkI5hRvy/LH+f/hK6wVmfrCK/zew+BY0\nl6A6BOMPw9TiOs/+wxe4UNvO8fv2cW7XAWFPnapAMYRMkleANnQ3ioXLpRQaQR74EKgvO7btOcfX\n05/yh+Wf8vC7H5L9tRezeg9j93V48pn3GH58HVfX3HpwipMXHpagFRQ0U1gZh+VxaM9IHaQySEfF\nsiSKPwoEuCpz2FAR2f6XPNkTHab3XWXr6HkmWEABawxzoXUfN85uov36kHSRXldwajOUsYl+A6lz\nBtMMoe/FNij9G5QA3rZ43cMR67p4bKvAvLDWTtRhSrE2Ms3zz32NpakJTqZ72TF7htFZqTWuspGj\n7kHeWX+Ec2/tl7TK95AuW8/OoEWfAfGbjc8t8AWwuLRIp1vQzQs6eUEt86hCTM1N1NVXqjSGatQb\nDbrW02qvsLS0iC1yXFnQba6hFQyPDDNUl4UhMosk6r3EG4Vywk0iTHIq+GaVRSHeUGlCkkoXO00z\nmciCKbxWkGVV0jSh2+lSFqWQYL2XToHWkr5SqfRZB0oKI51o8iIXk3ojP7NFl7LbxVsxxEzwkKR4\nW1DmBWU3B+vIkoREKYpul6KT4wqRqGit0Ri012BFZujKQuSCyuOVSCytC/G8UsH0jSa9IjGZFFEu\n6OmtCycGlJZOkQ7+K1prrCux3RLvS/CZgH7KgE5QOiSVqZLElJIUxUBnKxrVQ1+njwrpNDo81mIV\n4r2m6EldW+02ZbtDklUwxlCv17DW0c3z0I2SFU+o3OKLZp3rXZNqRbp40+OjjDYy1l1JPdGM1CvU\nqxUqxlCvVinzgiItKAsrIGW1xtDIKFmlyvLiLaqVOsNlg92b5n5lB+jejLhbvbODVABrkvp3ZRSu\nh+QqnSDFQy7sLt9EELB5+mh+9JWK1NrBBKkIDsWfL9GTofRbdeF5UUMYxe/QB6/ie8g1lxFlm53w\nmCI8L4I/EYBK6FOPu7BcF0uAs2N8tH03R6oH2PX4GSZ+b5XDGew4A6WFsY1Qew4639S8UzvICfbR\nvDTeV3Pa+Nnj5BvBnrjYxM93J3gVQa3OXX4Wfx52Wx8DViKYdadR5WCh/UnfrkiZqyElzTTUGrAb\neBKGnlviC/e/yDf4K75kX2bbtatUVnNsqmnODvHWyEP8bOIiP/7idzhf7JX15xZwYYY+DXAQhLx3\nXl9eDfbuPz4+yfz+1407H/NF7/jXzvJDpflvlPlVzyJei55kJbCFEy1Sc42wiDwWlfQTNivGSHph\neBmjEFl4gMMUYJV04KNHoipKEiUFviqtzKsOlLWo0uFVn22GgjKr8O4Th1EmRScZShuclXk3iZiB\nLTHKkCoNeYFHUdEppiwoyi62lJQ9BySpoaaEmZs4K76LXsAuFdZMjSFLMqqVjDRLyNKELKmg0wo+\nzfBpBYx40GiVymdDPFx0MFwmmPxHr5Uk+JqJ/FChdIbXBm8SUjRlmVDSwec5eEhTI6CgVtRqVYbH\nRpjbMMP8zRuUzXVeqGZ0i0JSkRHpqCesa1qAMO3Em1J5emmYSstxpib5nAJfcZj+30ZBFUyjYMis\nM+pWqC3mcE0kgivhkSVwNoeHrsHwDRhlhWts5JXLz9D+/ojMmY/A1kdP8536D/g9/j0PnTnByPE1\nzHXwdWjv/pD9Dx5jQ/U6Bst3bv4VW164IezS60CjZPTweTY8c4vG/U3aQ3WWD0+ycmoSLipIhqA5\nBGs5dKeBJXAFNCuwCuu3xrmxdYZro1NM71tmeic8sggfSEAWD2qYehD8flgcHucGs6x1h/tBiS4W\nEm0ol+D6NJyE7rtV3pp9nJnRmyR7LYf+0VGmv7yEuenxw7Cyo86prTv4YfZtflR8m/FkiW3pBUbH\nV7AYrjHHR8UeTl/Zx/Ivp+F54GV5Gwh/dzy0O1DG8Jjo4bLC7Wm6dzMwdnf8O4fSwbrBLRuWm1Nc\nH51jcdMQUwfW2f8WLJyTS1YDvlyDxoNQ7oErbGLeTZOvVQRf7MarP+jp8jkcoYlgBzZnH9un+UGG\nkO+BX3Xn+eKNBc5ObCMLIJcwwJIB4CvpzVPeudC88MQUQuclW10pLyEiPXN38fX1LjBXywLyHNtt\nU7bbuG5H7nN9/6rBLYPI6pV4AicJCsjznHanQycvqBcF2gg71nlPkso6kCRSGmoU2nq0duD6ienO\nWazVvbVE/Ixt76z12Gm+D0QRPxODTLawBQ9zqA6NA0UoJ5RC6eilFtZPIx7KJgBk8ZxaZyXV14oX\no7y+6qlWIuDl43weGVwBzPK9UxebZ/S/AV6FQCzfrxu8730fJNUxkiECN9k7YWg7fzujMNQbSSLn\nOQ1kBxOZ5AEA1QjomCbcYxbx4PsE8EulPeasGbPMcJNNXIGT0PoQ3moFy0GkMpi6Dk8cg6kby2yc\nu8rVciPvfvAY/rUUqoqLk/dD1UJuYBoee/wl9mXH2XLhGvqv4eLP4OdrUmnUm/CVV2DvOGx4aIH9\nj33I9vo5zm09IAy0OrAe3d5v0m+Ej4g0sD0Hw3XYAuneLnvHjvEUv+Sh48fJ/pVn8Udw4aZ87C2j\nMHUO9qjzPPXUqxxP9nF53zaaX5iAg8h0ex2xbDnbgIW69Fo2KZHnDyPb6zawpOBmBbYDz0Lju0sc\n2vAmT6WvcoBjzHEdjWWRST6s7+fNA4/xxuwXuFXfJFPqWgKX55CJthXO7BofJwZAH2QatBuJf38W\nIwr9Y+R8tNZpiLroTTE+X12Z5vVHvszJ7Q8wPn6DRqVF6RIWVidZvTbF+rEReA3ZA3wE2CWk6bPM\nx9e9Tz8+18DX0vIinTynW1TwKKq1GiQ5aSqdcWyJMZ40M5RFyfLaGqsry+TdLkWe0223UFkVoxTV\nLCXLEkyve5EHnXwJPpHiIxQiMV7e+ZJOt6SapahqFWUSklQmMWul+1HJRNPvvQoLSyp+ZFp8uKy1\nPb1+nueiuU9T6Who8Z6yCnAlZVeAIJeX4CzGy4SYpBm28HSLDmU3x5W2142yeUHRzSFQcUH8sEwA\nvpQHrMNri48ddOfCYpGIahEfisqwkHmP1klgfA2Y3EdWRS8Fy4t5PS6wzEBbD6UsfrGl7kMX32QJ\nBofypYB4ZYkL5yMy5/I8DwtsoEMH4EopjTECdpVlHqSnmiytgCrpdjois0kyarUanbzsPRdApEFi\nfi8mnilpYGQ0ahU2zE5xeXyY9uo6Lu9QttuoTNh4OEe71aRWrVGt1mg0hqnVhqikKWuLUywvLNBp\ntXAjBXMjDRrVCuudLp/NiODAIBMnglORrdUGOyI3GvS7PoNMpSo9IIl1+uBUpNbG94qTbwSoIqg1\nKCqMxzQoDRwEt+Lx3Y09FEGmwfeN98fXjSZVTWAVbo2Ls/Axw7sHD7Fj4izTm+b55j/+K+o7PdOn\nw8vdB60vJby2+RGe5xneX3yE/GglpGkRWG+DUcHujlscd5q/w98eDPqbLmqK/vUcAkZhTsN+ME90\n2LftCN/ix/z+6l+w/eVr6Je9LPR1mN6/zPTX5hnes0Z7qErziSHmz20WjdCNCnTGkJV/lX7n6R4C\nX3eVK8roG9337rkri+uTXnvwtd5WhpM4/ieTikTbud7P7njn254XGyHOe0rv8GWQphhHbj2JVXRK\nkcxVDCKbMYpMeQkPwaOcJOsqH8KAFHinAIcvPUY7dArGK0rvwUlDSOlUCgAtnmBKZ6ikhkkqEP0X\ntRPT9rDeGetQOsehKb0AdQkx8QusMjirSJIKVjt86bBlinEWX1oKG6QgiUcrR6ITMlMhTRPSxJBo\nTWIytM7AZLgkI0kSYXSJ+7/MBl6RBJ+uyM41WhjJwkruGwtrnUISwC81wKjAUyrxgHIux3tLVkmp\nNWpMzkwxPjpMs92iVIDS5JShGJMiNRY+1jqMlqI1SQzkLnyf5LrVs4xW3v0cyh3vHOH4LbhSU3pD\nrjNsBXRVVobBMQqkgSjWpYLD0L1Vl/lyDJLH1nms8Trf4Cc8+d67VP5tCS8Cl0ENQf1wzp4/vEjl\n939Ee22IzT+9gf+/YeFVON+Spv2eN2F0eZ3n/qtfcHZsBx9uPcDRPRP4VenocxO4kMH5cbg5CnYZ\nFipwGfKLNT7auod3ksPs+fppKpfg8RQeOYFgfDuBb8HqFxscaeznJHtYvDjTt9G60/NmcQSOVfAb\nDBcmdvODL3+P1eoIJza8w67ZU4y4NdqqykW9lSPqIV62X+LDNw9iswwz1yUbWsc5Qz4/gj1v8Ee1\neHe9i8yp5WI4s3FtHWRYRwl/XHNj4fOrrmNkIod1vpPDQg0uahYWp/lw9ABHRh/kK99+ldEF+Nbz\nYG+AqkP6MPC7cHHvRo7wEOea99M9J80jkbnHY/i0jLPfwhGmaacDw2dga9jj6wyuAWHvaYD/4+0P\nqHjHn0+Psjy+SUAvk5LpRGwwBjx5oQ8SORAwLElAa5xSaC0ekJP//f/G9f/5nwaWlfjb+rLAhYa9\nLwpRooTgLQLDNlCT+scb2FTKyz7VWiusKBu8dZ2nLEqKpEAHQClJggw9PreUxHlsP1kS6CUXxs8k\nN/l5j+1U2l4SpMf3/K/6BLoILBFCXrQoXhSh0RF8s3RImNQBxDOpJBijgiG+oyzLcKVkbyTHF6+t\n711YT7Q4iYASAlL5frsxHpQPnadoF+B6csrolIxYE8hJgOAt5p3tAWJCnBCPTqWCx2WQ+CdJgjH6\nV9sn+FjbaAn4uidDDfw9IMaMW8fEk1CQUkATijasDCx1JQJL0Iak68koSHWOWvX415TMpyMaKhpG\nQf0XOaN6hZnyFsNX23ASPlyTLTrIrHe0CdtOQe28Z+axm0ywJLYoQwTLlNgQt/TDtYaALWA2yOI0\nB9mGNjs4wwMcpfKyY/XnEmh1IrzXjib8/R9Dtqdkx4Fz3Dd1lrntV1n8xx080Fwcpjg3BEeUSM7P\nK7EO3itvxSSytW4i8+Np+b95tsWTW17m99Rf8Bx/zc5jV9AXHJTgN2q+tP9VdtbPUJ9u8dNnv8ny\nrVk5T0t1aE7S9++KBIK7NTcGFTa/DfNwTBOOvsSLQCaBYKc3QieFm4r8VJ2b22rc3LgBVUGYyAtK\nmlmnEMDrlIfWEqJ1vMXta9//jzy+AJaWl2i223TyCqXzZJUqSZqAFb8N5xzNZgu/XtAtC9bznEqa\nUa1UaLeadDodJkZGGR0ZJkkSbFkG4/OSdqdLWRZiJKx1r3uhlcIYhVIlRd5CZylpVierVjFJIgWN\nLWWySmRDXhTy/0qlQqUikjhvHUVe3BaBG/1jeqCXlyLEeBeMGsXsXXlIQuGhlZLY9gF2lHcixPDW\nSZqKle5/mqY4G0sXMSo2IZHGaDGRLEuLcyXolDRQbJ2LtGtZKHsLijbgPdYbSq/R3gAaLbgXzlpZ\nlJVDe5HDuNJiEXaVcpKiqIzC4yQ5UkzCZAEKlOs4VOhcxbhgvJPr5QYWfS+FVGklVhk0aZJhvafT\nyel2C5KsQq1apd0pKGyBCnJVYRUk6FRTlgXGGCppSr1WobZhhm1bNjF/9Qa26GKLLso7jJJwhDJ4\nLYwPD1Ov1zCJJknrjEzM0Bi+Qdls4bptkixjbnyE09fm7/Fvy91GNAEeJuhZgI2gJ6FWk8UiBjZ5\noDUEy0PQnIY85snHzPk1+h3fiMJHBlaHfvJhl37HIu5K4vOizGZwWoqT2t1AL8/tQNOdk72jzwCL\nwN5NsNNwpg7vQGfDOC9846u4YcXN8Rke+v0jbOjeIC1KbgxN8QEH+CVf5OfNr3Hl3S3wthIt/ko0\ntowTcJQn3q3Y/TTsj0Fxyd/FiBuYgTgyhiCrwYyC7Z6J+xZ5JH2LZ+wL7HjhKv5fweKLcP0WDFVg\nZjc0bnV59D9/n4vbtnJiZB+39s7iN6cwZuD6cHjdCPQZ7jXN+m7gV/++Xw1KRWDr07K/cuA7Jg0d\nXPWJzxucw7yHIkg6tFZYJxWWtwrlFInSZInBoXHKc1+zw7mypJ5JyIrCoJQTxpNXOAXWe7T2KJ2i\nvccg4Iy1AlQ7xNTEGIfXjsSIhLBwigSR22uToLRC+VSi2YN3jdceaOK8DYbBQKJIfEqWZDhXIA4A\nhlJbdCobfF86jKhz8N5ilEMrT2oMxlQwiSE1hiQVY+hEJxBZblpRaBsM8API1yvgpFMv65buecoI\nJCfrj1IGZRKUCeuIVgL6KYuixLsCXzhs0aVaHaHeGGJ8corxyXFuLS9ROpFvls5J0iOBeecQvzUn\nZvpKCbMc1ZW12EtVl+mEVBu6nzuT+9ioiM2ENrSEGeRvZdwqZrmcbmJx0xizjyzz+BFYuw4XrdQg\nj8xB9TCUBxQX2cI1N4u/pWSfvhE2T1/iQY7wwPWPqPywpPX/whsfCcYzAjx+BbYo2LrpJmtjq6gX\n4erz8OddKWUy4KtH4bEpqB2y7Pv6cbbp81x86H7sfkO5mtC5VMUfT+B9Be8bibhfAS5A+UHK0Z0H\neX7uApMzCzz1n73O2J4m2XkPGsptipXDDV7c+jg/51neXz8ER4wAd6vQS+MlB+ahGIWzM/CaxmvN\nheYelp6Y4P3RQ2yoXGYoadJxVW52Z7nc2sL1DzbDC4ksQZMJea0hL7eEFEnnEWOwmyWUN+Sgex38\nKHmJLOMOfVn5JxU6kYUDfdZzC8q2sLpPKxaPT/LG3BNsqV1i+OA6+6qnaDzWIbkJ1CDfZ7j68Cw/\nG/kqL/kvc+naNjiugs9zQZ8S99vANPhbjEDxioygPtknQjSyhigvPlHeenCW//aRvfzBWpNLM2NM\nak3FpAJ8mZTEJCHNNgEl5vAoSRP3ShJxTZJKamzQzVV//grpiTNM/S//kkv//D8Nfl6FePmWUgN4\na/E27Mud64Fy0akq7p1TnYQERUvezSVFPjHU63WSNGPu2Bk2vf1TTv+TP8JllbCv7jNsZe0Mnz/U\nVNZasRopCvK8oNvt3pYq2e12e7eiyCmKgqIsxPvYqx7jS6FITGA1GUOSmFBbRe8sjYlsrwHwyxgJ\nL7sNdHNiseKdsORKG1h5vT3ZoOeYx0d7E62g8L4JAAAgAElEQVQHAM0Ae0Vt4+DdRJsCBtb8/p5B\nqfD+ka0X2GACaqkQiuIxRkvDJ0mF5RWaNgP4X3jvsG8KHmFGq3toGjH4wYNkzpc9gYdralYZZZEJ\n2AzDm2HfWVgO1odjwN4qsB3WpjIWmGC9GMGtJrJdft+DdVDT8G0Ber1SOBQ+Esy4vWWqQPx2Iyku\nXp/bttxxnmuFZ1bD3WmvV581WoyzzNTyOlyB5UVRkMfZ8zxwfgF2XYbRziqTLPJk8iqbkitoHPOb\npvlo024+2P0wK9umcKcS9L6CkX0rzG28yHRyk5SSVUa4vLqZ5fMzdFeq7N1ynK+q5/n22k/Y8dPL\nqB9AflKImtWtlo3fWODr332e5myd6xNzvHboacpjVThjoDmMNO9ryDwL/XrjzvHbAHjF4bnd4H6N\n/gXM4dJGWK7CWQOzCsYUPno7ryGL/k0PNwsE7LqC1JvRWicfeI/fbHyuga+V1RWa7RbtvEEnFw8P\n5RzKgbOOTph8wYKGRq2OTTKKomSt2UEpRa1aY3R4BIeiyC1FZtEa8tKJTCOVzrFFUVpLYgDEQN7j\nQhS7dKi9F7ZRpVIly4TK1+12SZKEer1GpSJu3mVZoLwWP68w8WndT+GCsMiUJYUXL5VouJgYjUEM\nHjXyOfM8GlwWwr4ibD9Cd0cM24OnWGB8yatIOkoSGGfW2d6EK8xgaYFEAM2WZU/S4byT7pTWcn68\nFrq0tWjne50ZpZIeQOVxKOOxYRHSsXtkrXSbVDC+dPJFNoEaHqOJ40LcGyaVzUc4Ju8tRenD8RuM\nSXGupLQlJtC32+tNrPMkSUqlktEtyrDQyfug+glic4srDHerFJNjNIaG2LlzO5cvXqDTaofz5Emz\nJBigC3iXJBptAvsCjclqNEbGWGu2aa83aYxoNox9lsBXBCSi3C06ym+WW2McNmrYEe6aoU+YWkN8\nFi8YODMu8bpljdv15nETHpesuPGOINQgEDIIfMXnD3aboD+5f9KyHwGwu3VBNH32URPpmlyDa1vh\nbUmlusJ2fvzY9zi99X7uV6eZqcyTVEoWmOSs38HJ+QPcfH8O/7NUKLfnnUhdJFsXKUJ+lczk0457\nsWDF8x2vf0j3GgM2eMbHb7GLU+xdPAMvwLWX4PvzcsayDhw+Ak+PweTBVfZs+Yht2QWObTjI+sw4\n1FV4zUHW3m9Aqfo7HnEj+qvArujB9UmssU8a0VS/H2Eu/7/ba3mku//PC8u/UKoXI4/vm+UmieYL\nWvN/drr8tJbxv05UKLrSPffGgPEk2oiniJZI+KIshTnrFcZHljEor7DeUSLpwdZ5vIVEC2hGKEK0\nFvm5CcCOBrx2GCok3mITYZY55VDaYbzHq0rvvKXOUdXQdRZrPYnXaC8yTK1CmEn0idTSxU60NF50\n6N5HJkXgWIWQGN1bI6PRv/GQYPrG/6HYE6aGGPkr6YOg0LIOkeB9inM5pqvwZYFyilpliJHRCSan\np7h2/RqtwpKg6RQFZSFrh/eu1yQSCwRLaUOjqOdrKQwzSXDL6LY/T8BXX6bUj2PvQNvBTQMX4dLy\nZj6oP8jx2SOMf+stquslX38N1hfFL2voSeD34OT99/E+B7mwvBN/QcPjoHd1wXg2cZXR6ytwFE6f\ngVfpZ1+pZZg+CrUTnqFdbbgAx7v9XJMucCKHfVdg9CpMsMD9nGLTjisUpMwzzZkDO7n44E7WtkzI\n0qaQauY08JZiccMMP3/m69jRhCubNvHgd48xsb6MV4ql4RE+TPbxEl/ixeVnWbo0J0vSFGJIfHIK\nVhIEkAqmW60EPpiSg1uA1ZPTHL1/ghMbDpDWC2xuyBdq+HNGjIuPhKePIdOl4Moyya5baEYT42vI\nZj/6ZUbWcwTB4u3TrjuDnpPBA+3mKHxo4JcJZ2b28pcHf4dm1uCJh15n767TVFodbJJwbXSat3iE\nF/kKr155mtYLo8J2OAOUq9xuNBzX6c/CV+ZvMXpkiQhehJpaRcgDgpYZH7bJkj5YUhjHi9ummFNW\n2koh6TGa3xstQL1TKrySQpm4JzfowPhRQeHR+dpTWF+y8uQD+FZLkhidzP2SFl/27D/E/8sP7Isj\nUKQxgXGmteqpS7xzGJWSVSpUanUml9bImi10u0veKIKPYmhAJ0mPQMCAob4cQ05R5HS6nR7IlQdf\n3Xa7Q6fTFsCrEPWMSBAdpXUhgdeQZQlZllLJxP8sS0Vxg++DTLJaxiZ4/FwhjIrA31ISMOK1ptQR\n+vMB0Bpg6cU/YjEVft67f+BXaLBN9is9QFVgI6t+SrOE10hdFL3WwovgER/mJBUGoApAXvRB89Lt\nl8drIRAI0Or7Msh7OgZtUbryK74A5dWU8w9u53i2j0OHjjLx7DqHF2H2I1jPYWoUth4C9zScn93K\nKbWL+fYsXDMBIy+gaIEagabCLaYs2XHmsynW5hqM7Wny0DswvyJz/zDw8DBUd4O7T3GNDSww0Se+\ndqA/F95l3vEWXAIObJmQk5InGqryFc8GHlpB8DiqUOiUbZzn2eJ5xldWwcHyyAjvVx/gpZkv8fzT\nz3LtwCZ2zJ3mserrPMAHbOESKSVLjHN6ZCfvPnCYD7oPsLtygsfsm2x77yr6T+DCT+DYcvASPgp7\nbsGG0QWe/IPXeS89yPEtD7GwdU4YZFeqoc6KrLb4Xfg8SMuFYS/focG9cAGsw9oUrA9LmmWaiQrM\ne/Ga6XbBtpF18BayLi4jXahobfMrrvmvGZ9r4KsoCpZWVuiMj7LWbNHu5mQuFxlflKulGUqVKAOV\n+hAtp1hrd1nJLTqr0agNMToyTumh3W5RWE+CorSACp33sFw55+Q0OwF9KpWMarVKtVYFPHmek2UZ\n9XodYxI6HUldq9VqpGlCURTin2JE5qHRvYJrsHthrbCrHMIyi5RcrXSQbQQduQdrc8qipNuRKGMf\nONreSVcpPt9Lm0K632qgWCAwdJ0LXx+RDGot4Jj3iKm/C8WjVuhUC5FLyyKpAmjnnaW0FmzwBtNi\n4u+DsaUKXRycheDdYp0LCWay4bDBQyBJDToAXyow2YCetMVaCybB6ARbFmKwaQvp6PsS5yExqfQe\nyxLrHEZrqtUqzVYHkyoqWUqSGEorx2VL8SLwSqGs4z/6i5+hFPzgf/ivSbOEjZs3sXf/Hk6cOEWJ\nw+HIahnVRg1tNChHmooxtceFRMqEWq3OutZ0O12SNGVyqH7Pfkc+PmJKYJQrjiCxXdthZAQOKDiM\nyEb2gt7WpDbUxpaazq1hOJXCB4SOehXOb4FC0e9Mx9sgEh83IHeCXoNphp9mEv+b9rwiGBcnyRwK\n1/Nb9BcTljbOcHxKsdYYYYwlFLDgJ7l86z5a747AG0qKlo+AVoe+wWJkew3KO39bhx74O0hWjYIG\nqBHPcG2FSRapX8/hHJxdlfILZM9zFDh4BkYvwJS7xZhZIqvkfVu23uvejV11b8avA66UGmjw/gbj\nToN8FbvhsUerBkEvGPwe3HlMzsM/K0r+x7LkORRf1br3cAtYC6VzvKE8p7znXyRDrBQpXiuMK0iw\ngTEmIJdSqQD/SEqYdfIeDjDBQ9GhpOgwIt0Xj6wAL/U8RSRUxYQCA+/xGrTKML4kKR3eKbzxkHnI\nbQgxcajA7nXao11CTB1yPpi+ewksMYEVpbyTzq7RmLAu+XBylPOYcCpVYHRF1pzAtprEahIbrmeQ\n1YOsT8aAmMboYJYMSiUolYK1WN0lMZqiLLBFTlap0xgaYnxyktHREcrVJhZFkqV0yhKUGPwbJYEn\neN9jMyskrcwrL8CYkcKzUamy2m795l+0z2zE72tk14YkJp/DlRROwOr70/xy41PMZtepPtHiybkj\nVL4IlXlgGIqHFSf37OBH6lu8UnyR68c2wgHFpkOn2ZOeZLO+xDJjmMLCOizYfqKiR2bTMtizqLBE\npXccZQUwifysRps/4s+Y5iY5GVfZyJHaQ7yy84u8NPwMC2oDrCvZK58H3gFXTblc3s+fPjXDRxt2\nsyM7y9TELTyKBSaJGWz7hj5gau9NTm/czcp90/CiEmnOe+OwFuV9S4CCdQdHJuG6ETbwRkMxVqeI\n7gCxYRRDGNtLcLkmFAYP+C74Fn0Z4/LAv+MZupNNVQ7c/+tGtCiIDaCQVFOOwslpuXZZjaOtR7l+\naAPvDz/MttoFhmtrFKRcZ46T5R7Ond5D58UheAFZC1cKpAM/uA7G8XfNYP40YxAs+DgIEmdkdxtp\nQOw54jNc79HBByTsVJ33weLDoZXrMVoF/JCdtVZ9H0JhMQ16NgrLNk2j3C02XKVR0f7K49BpyVzj\nA4PXiWTQOov1YW8/8Knie5qg4IhsIx18ENNEkieTROZ/nOPyt5/GfPUJutWMotsVixaUhG5BD5jB\n3Z4qaa2XxnqQMlprewywyPLK8z7bqyhyilIS7w8ttqmOjnB952Yq1QppYoQJpcXoXSG1hA+fN7Ke\nbpM8EjzRIoMrNnCitD+w4KK3WFh0CFAZKN+D1lC/brcijx3AFnu1k1Jyk1TOePyh+R7Ar953LjZv\neqCYuu09+t/MoORR0XvY99KL7+2Ia0HwaGoWcCnFnTZcPLiD17c8wc6ZMzz9x6/SGMnZ9R74JqhZ\n8E/BwtfH+GXjC7zDYa5e2CLM2WtAEQJC1oalf3BZc6XcxLHsAI/f9yYjz51mbgH+8FVYm4fhUag8\nBvo5uPLQBMfYz/nWfaJ6mycAX4OS78FaJPjftSqwAsVqg/mpGS41NjK7e5nZnfDETXizkE/7ELBh\nH7APFocm+N7Zn5K+WqDPyelw91/h/i+eZsPWa+ghx0dDu/mSeplv+L/m4flj1E4VqI7HzWmu7xrn\nhexpflT7NrPc4L7uOdK3HSsvw18ty6nwwOkm1I7Atjdh1zdOs23kIo2xZRamZiVgLMugjEqKwaT3\nO9Da38oRZ9G7BY81gSXww9CtQTd+RuifncgWi2xnsZW4vbH+m5+HzzXwBXBz/iatuVmWVlZpdydJ\njKDuSfB7KmxJNYUsSalXqqyttFhebVJ4GB8bY3p6hqnJKVqdNt1ui6LbxaeGMlWkJkgcnceHPQoK\ntDEST5xVqNZqpElKp91Ba2F2aa2FaeahWq3ivafT6eC9TIZOB3meFsNE6G/sBzX0SoE2SZ/qq0Kn\nw4lHjC1KunlBYUXKEqm7Co3zIT1Fa/AaG0A7lMdoC9pS+BxtQUtWNx4Tvk8a78VTy9u+f434BQjV\nOHY0hBKtUDoUgCGq2PmSspSfGROKFm0EEMOBtwKeKemQaDzKC33b43CaXhcMrfviuGDyGBcPnwiK\nL1JMSBOL+BLLJkwhna/CSupNmqakqRV2BEJDz4scbRK8dhSFvE6p4Iff+gqVTFNqwGjGJsbZvW8f\ni0urLK+skBcF3kOlklEUHbyvkWXBQLTTIa1UqVYrVKtZ6ExpSlsyWo+Rt/d6xAkjxtUHc3M2Q2NU\nzBu/DPqrBdOHr7F3/BjbuMAIq1gMN2dnOL57L+cP7KK1aUxYPt7AmU1h4x7N7aPXR4h+v+vwd/nZ\nf+gucVwcBj/vGLARJivwMPAlT+2ba+zZeZRH07e5n9OMs4RHcV3NcXx6H299/VEuDO+mtBWZq9+u\nQnOKvub+zk3/b/sYABkdvVrKeoPF4FNQFanzBunmKZCEXAKHwiHzxB01xWc+ItB0J6MrjjuZX3d7\n/uDoM4nCcyIog7/jsZ/sGyb4kmy3/3eTcNg6/iEiWdSRiadML4q+reB7tWHSbIhqdYgOOZQWVRHJ\nIt5S1Ulg58rvtggdUxwG60J6rwpsZGeh8GQqoZJJt7onkwksq1i46dhF99Jz1yYlSQVpimtUGc5H\nohIS46XxoSwV5THe4Lyi1AqnSgyKxCmUDR1sJca/1nusNrKxNzp00YX5pWXnHxIcVa/K0MH3K7KT\nJRlZNlSiFpJCx+NE9hjYbBrQGbiylICYsqDIO2TVGtValbGJCSanxmkWBRZNtVOh3WqLfDSJFH0p\nXpyXJolJJISmsCWld0EV7mlk1XtsSPwfYsRNadxshs7A9Rp8qOEVzanJh/jBwZzVbJRTO1/n/p2n\nGWGVFjXOcx9vc5gXy6/w/tVHUFOKR/a8xFf0Czzq3mJH5zw122K9NkR9wxL3VYTRtYDMLVsNVKbB\nzSmaGyuMPNDh8GswfwsuecHXHx2FoX1Q7NVsvHKTB945JwyqFB7Yc5YDB48zO3YDPev4yZe+R/Pq\naD/88JgDp/Hrmtb5Md547Csc3f8wW6fO8WVe5mleZEd5jorNaZkq55L7eGfyMC8/8yVOD+/H+Qw6\nCt6fClL/FcSIpQC7Btdm4XpF/GuqGtKAsre9sLnynB6by90Z0hINgOPtTikj9BkYd2skfZpr6+hH\nywfx6FoF3h8Cq3ELKTfObOfGnm3Uty6R1XNsYVg7PwpXMgH1jiKNr3lPX7rSGDjWeGx3hufc66Eh\nycLHjow43wOrwyNk+MEzebffVz+wXMieQvyewqOD8kGH5FkV0t611oHhKnI+71WPoaS0CiyntGff\nEVnDeMHtBQAKwHqYc3s+U4RvQgSFkLkyMmhNEhUd4kNYycTipVKpiDpFiVrEGQ/1mjSHC2FlGZOQ\nVUrSJCF6hKH6wI0xBucsqpCT4nr+XuEM3dHEj6wv5zx1k/C9k9fQyTx/8egBsiwLTX0fmjEStkUA\nttxta1Pf58sLE0Gs8oMixA/4ncWbAF8DzajA9oqf6XYo9G4bmf7nGhxqACwTQE7qHM/tKp7BcxHP\nzZ37kXjuvKen2JE1K3q+idLn3o5BZmkHWIH2Olwag/cUiztmeWn0aeojTZo76jz5j95h9PI6quuw\n44bLW6Z5kaf5if8Gb956AvdqBseR6TJStbwVFtgpuPHBdt549DG2Vc4z+q1VNowsUH/MUg9NlfKg\n5uozo/xV8hyv2ye5eWqzvN4VoNvmdrPzeB2Dp6Frw0oDrkJ+ocLJbXt4zxxk39NnaVzp8FgCe4/J\n79Pw/aC+Bq2nU3ZePU/2byzFT6B5Xl6xsQOGPip45p+8zPzmaTZyje+WP+SxNz+AH0D5nrxdutmy\n7cs3+d0/+EvcpOY6czR8CxZhpS2wTpxzmsBiF7YtQX3dUR9pkZkcUo+kDIW94WfYUP7bjZK+1c0g\nOWINWTuGB25jSBd9W3husFygiay3q/RN1GLtpfhN5fWfe+Dr1sI8RWFZXFphfb3FyPgQZbfEW0no\nS7MKw2MNsiwFlbCwdJVb87fQ3jM5PszE+AjjY8Pk823pInhHWTjKXJHVMkF5rRNJiRegJw0JjNVq\nFWMMrXaLolswPt5AKc36+jrWOuq1Ot47ut1uzzQySZLbaKtxAozFRGR7xVRBb7QYGMuDkeJG/ME6\nrTbdTkcKCaPDQmzBlXhVohJQTuO8xipFjhQMibZ4VeJQWKexLg2Rxv0J2Xkv0kYrssao67fO9iZl\nOSZACcOr58/lQ6cCi7WqJ23ReJSzOG/xlOIrYxLZOHgLHhLtKT1Ya4V2HUw20X1gT/tg1O9FGplb\nHyStvrfJwKqeRFIphTEp1nnKwmJMKt3+0oLvs9eUTnCuK0VdWXJu8yyVVDFRlnjvaTSG2LplK5c3\nXWZtZZVWc52iGCPvdsk7beZmZkmMwntLc32VSllIB0j50H0zeK+YHBoiSwz5PTOrjCOK5AeBoCkw\nk7ALeBL0d7rsOfwBz1Z/zlP8kj35SUaabazRXBmZ5Z30MC/t+jKvDD/NIhtk7llJYH4OWXzWwuvf\n+1S/j49YXEQJ3hAwCWZEUgwfh+zbTZ7Y9TLfUj/mWfdzNl2+QWOlhdeK1clhTkzvYrs5z48f/TYf\n2oMUK1VY0HBiAuw4sohn9Km3n+Xn/XVj8LhCcWItNBP8gmalOc610Q0sbWwwcaDJrtfh6lnZq2TA\nUyk0HgC7B66YTcz7GTrNap95fFuS52dX8H8y68vzqzYPd2PffsKbCBv2tpf6+ON7MkpUj3XrjUYp\nzX9ijASLhGNK01S8FbME70u6eQdrC2paMzY+RZZqWks3WC3X8MaQJSlUxLBeIeuTeFulKJ0GCbqA\nTRqPxQnYFQoSVVqMEfP3BAGklPNCbvDicyXeWeCMR6diZhzlNcYIjKedsCS8s2L67i2pN6A0mVZ4\nlUizwwYuRDxvYVNvtEZ7LQlYSqGMAWPwxqCMFlYiBMZwr8eDJKtJMeuJ8hIPXhhxKIX2Bh/WTKXA\nJAmVahXvGpRlLh5lriRJDcMjI4yPj7O4tk7hFK1Wm7Ve0hb9741XInNyYvqstUJZWYuc82A0icoY\nrQ2z1Fr91d+h37oRk5gcfeDrOhTD8NEENBQ2SfiweYj5A3McmXmIjVylQZOclGtuI2dWdnP57FZw\nmgcffIff1X/Bdzo/Yu/J0zSOdlHLiHfkIdh0Gp57B66swnAKu+6HytPQPJRwbmYb+75xhsatkm+/\nAUtBTjn1MPA9KEYNE/9Xk+KvYemSNMVHdsOm7y7w1T94kYWZSc5u38F7Dz0lYM0JYKEDJxLEbRjM\nQwU7hs7wO3yf7+Q/Yv+lj5g8s4Jah3IMlre/y4HtxxivLvHvH9WcXn4QrqvA3ppGWL8XkeprDVgA\nPwIrdVip0S+mu8jmPW7c1+hv1BX9jvhgHH1MR74zrv1vurYM2gg06bEHfAILm+DtMbiuRXu6XdHa\nMUFrQ7hWC/SDmLeHpw4rODUhBvmuOvA54i0WO58V68sP4BgDa/Id5IDYCowPVb+OPdBbGwhpvGF/\na4I3r4mevcK6upPhIwbnMk8nSUqaZSSJ6dl4+Oin6zzexkANiytF2mjD7U5APTLKRFoZ/A+VERAr\nFSlhYsTvy8RmckgUVMEz1xojV89a8q4wDZMkQTugLAM17vaaJcoZxdurQ7vdptMR+WNMYE+TBGME\nCKo3hvjxd6cYHh9jeHhYwDU8ONuby20A97T3eC0erVJZ9OsOGxr72ABuOYe34mfsnQ2NCUtMkuwB\nxjG5gAG/rgHKl7rLTa63J+heiauRUqDD3SJbHQxY0b0glsiS+/h+Qr5rKtLGHIJ4BqN95/oAmLmn\nhK9oERKb01GLvQQ3huFIApOKC5Vd/OCxClcnN/F241E277lMRs4qI5xnO+8Whzh29SHWfzEp88oH\nQLMVXm8KGsL6ZgF4TfH+1KNUt3fp1Gs8/uwbbDl4jUq7S5kmXBuf483KYX7mv8YbV75A+/UhkY5f\n9lCsIvPqnQnrkVW0BsvjcM5QHk05uWs/v9j0VSZmFvnif/w6U7uXGP4ofNztsHi4QT6RMfvvluD7\n8NpROCaiJw4swhMOajvg4D94j5F0lYdOnYQ/gcXvw4cXoGlh6zDcfwFG0g6P/9HbfH/oO6zrBkwt\nMTEKWxalXwMC9UxlwAQ0hzPWGCYvqpArWQb84J7689RIGxxR8qjpW62MABOIl8CM/L9WhWoCmepj\nlx0LnTYSJjYfbov0Wxfdgff4dOvj5x/4WlzAOs/q6jpra038WANX5vhS5GaNsTFGZiZBaZqtDkur\n66yvNaknmumxOhNjQ4yNNFhc0uDKoIcXthI+RSH6eDFmFIlLmmVUqlWqtRpFUVDmBUP1IZIkpdPp\nBMljJXhU9VkA0ZzdmEhx76P/NhrTB9BLB529JyRzEZ7iLa4sKbsdbN5GuRKjAV/gXBvnuzhfBmZa\ngis9Tsma5b14uljr8Il0QuJiihOjTaUMSsnjJJ0kSDxLS1mUlFbkLSoxPeozhMhgZahUUpzzgaar\nw/1y/M6V0nFTkh7jvSxWaI23IZFFSxFWxuJsQC9POKa4UDgvx95stlhdXaFWr2JMKHgCYOgCY09S\nwFLysiPFmjI4lwcaug4pnALa2VI2GuJ/qXFOQMBEG8bGRtm4YY6zp8+wuLRAu7nO6soy1SyhVq0I\nC6QsKEpZjHW9hsKTZSmpMqRJytjQELUsIy/bH/9C/50Pjfza1xDgaxImjKSSPAk7Dn7Ed6s/4Pf5\nMx4+cYL6Wx30dXn4zt3n2ffIaaYn5vGzil888xzNq+Mygy81oIxAUIv+Rv6z7lDEyTZDuguTMKUE\n6HsU9t9/hG+qn/D31/6Mrb+8gnnRiyxGwej+JnPfuMXIwVW6WYVbBya5cm4nnNJwqQqr4+E1V+mD\nbL/NI64kMd2rBd0cbiVwWbE0P8Xx0X28N/QAX3nudcauwzd/AcUN0FWo7QO+C1cfmOWIeohznZ20\nLw6J2mU9Fnhd+nTz345F+jc1rv+1j+k9tv+cu7HEfEDGfHyWErawSVKZj1WfJRh7+KUrcLlIZz0O\nZXN8t009qzIyPkk9q7Ny6yqtooX2JY1GSppK0ElpLcqIt2GSZGgj6Y3OyRbe2hKjZc4srEVnilQZ\nkeA4C1bWDa8BFQo379E+wRmFVhLu4mOH3YOzOiSUucDm9RhEEokPkneko69MiJ8PyJfScfvRl90r\nrdEmMH2jNJ/QWMGjpUsh6bsB5MLLY7QTqVGUv8iaJub4Tr4IeA/GJFRrdbqdFu1Oh7LIqWQptWrG\nyOgow/UF1rslWUhXjoTnwZAEo3VgXORoA6bUeKvFUyyT6z9aHWK5tRau7edlRBAmphdW5baUwbtD\n0FGUtypcO7mNm7s3kkxadM3hraK8ZSjPptDWjP/udR6vvsY3+QkHXztO8u8cvASdW5BNgn4c0u/B\n/bvhvkugh0AfAv89eHvrw7ynH8Y9pTg0eYL6m1C/CdTBPwzsgvqfF7T+FN46Au9bSbR/8hzsy2Fu\nyy0Of/Md3jCPc3TnQeyGuthYLlSkUh0GHoDx/Ys8VXmF77gf8oV33iX9cwtvAEuQTMLU4ys88ffe\nwR3SLFYmWHh0hqUP5wJzoQoumg7fot+RrsiBSvwZ/bkwyjXa9JskcQzOy3f++2/mYfLxEV9L0zca\nbiGyx1VY3wpnt8BW5DYK7IbKvlWGp5apkNP1VZYXxig/HJLkybeBd6twabPMHbclO7qBf39Gw0VZ\nDPQRL9Vj3d457rzv9v/fXnQ6rwKUolgYCeAAACAASURBVEDpnm9V9MfSRpiqOpqzK5mLtfeSNGuE\niSX1gDR3vRM5o7UWZ0tcGW8i+Yt/RyBFDjKYwftgh0L4t1ckWvfljdr0GUpKQK8ksM0k3MRgEiv+\nj0pji5KOdWz/k7/k0t/7NqClMYLUKp1Om1arSavVotvtkBddnv3TX/Cnzx7qJdVXKpWehFMbYUTV\n6nVUo4FvNBiq1TBKmgiuLEXeaMFrLVJFrcMxR1Zbf13t2aJ4i49+Z9ZKAqZ3EEz/5bGxuRT3AfHi\nhvsiq+1TjNuIfz7UOT6AU+Hc0mNrBQsYDz0VTmig9Dlo8r30XvVBuQjqOY9D2MrmnjO+oL9PjGvB\nNchrcGJD6G0brsxvZ/7hOd7Y8SQTQ7dIKWhR58b8LJ2TY5RvpfC6gneAaznSJJiEsXHYr8RW5RCw\nD8oReLP1GDeqs7yXHGTT1GWGaNKhwmW2cJz9HDt/iO7zVXhZidx6sYMAISvIfDboMxxl3YsSyHV2\nCN5RLG6e5eff+hqurri2cQMPTB9j9pkbgGIpHedUtpOvXXkBdRKuHYW3rbw6wJESdp6HLSdhZnEZ\nP3mO9P2C9ivwyjk44uWdP1qD2muwfS/MPjnP0J51LiTb2XXoMkOPwe/Ow+vrcrR7gI0PA4fhTH0b\nV9hEa2VElpU1oLjTz/Hz5B0aR6yPQuwzI/TURmyE4bp4S29AfM2iP2cLWDBwdQgu12Et/jAGaMUR\nObCf/mg+12NxeZFuUbBu2yytrtLpjmFsji9KjPFUh0eojU9i0bTcKsvrbWxZMDFSY+PUGGMjVZQq\ncWWXbqfZA1nKLpRp0psbozmktWISX61UcdbR7XaoZhVq9TrOWfI8DwCXkckrAEOm1xES/zHZmNNj\nMakeyyslYDxCjfayoVdKgXOUeZduu4UrclINWWbwrqQoi/+PuzeNkfQ48/x+EfEeedVdXdVd3V19\nHySbTfEQD5ESKYqUNBppZ7Q7s2sYOwNjZw1/Wi+w/mLAxsKAP/qDPxhr2LvwGDBmPVisjfXOjIXR\nTVIU76vZ7IN9se+juu4jr/eNCH94IjKzmtQ1HrHJCSJZ1VmZb2a+mRkRz//5HyTa97r/NtDEYgfJ\n+ZjK6GQrZi0JAlzZsuxTcyGsDHKs/ucpLh0h2bFwvfsAQWqoQSXizxXApz6t1/cWKDGn9D2+sELY\nAj5sEJQxGBeSPpyTRS88jndOiqL4tJQnCQED1ls0SR8s0woivTx22lQsyAJd2jvxDCtt6OrI43kn\ni3xqgkFocGjITMLYyCgTY6OsrSzRbjUpu13yehVvC1zZxSktGyAlXas8TcizVNJ+sipjw8PU8pyV\n5t0CvtJwGQJVlUSNAzB0/wIP1d7ma+5HPHz8OJU/s3RegO4NKeZq9zlmvnubZ3//JW6Pb+GjqX2c\nPPIg/j0NH6UwP4xs/FP6ANvdljzEAiROuBVpLuyBkfvmOKrf56nyZXa8fg3zv3sWfwKXbsut9+6D\n6lzJ441jXD68g5Pj9zJ3YJZiNodRBWt18HX6rxfuPtD3i8ZgFy+me7WgbMJcFS4olk+P8/bMw+yq\nXWL4wQ3uzc9QfaBLZQ6oQHlIMffFcX46+WVe5inOzx2AE1qAwsUS2Rxt0C947h745UOnP4Lud/w1\n/PzF79Wvb3Cverf3UXqHbIZ9D/yCPXguKkNiEkySYx0oOngV5jclqbrelRTW9eZij8KVihRNPc2p\nDA1Dt0ljqcN/PHeGf2K3obdvpVatUtguChXmmwyHxwavK2F5eQqNmNITmgKB5ZyUoAJY5Y0KzOEE\nRfCMQZGYConS2FIkhd46vEkonRfPQxXXO7m40IVX+J4EHiPGzsL2MpItHPwqUfSMgfssCYKU04Xf\nlbDHBljTOjRI5D5ODKidBV3iMQSHe6LPizSvcur1IWzpsGWBCxHztaEhqo0GpWqLCXFiKMvQ+Apr\nKehgQQCFb/fYZA6H80YaRdqRJimVNKdVtH/Nz9LdHoPgSADGWZJ/ewOLs/B2Q8zuzyjsTCak1zzc\nbRmZZn4Xds58xAMc4+FrJzF/5Zj/v+GlW4KRT9+Ar16HsQz4Q3DVhKJiWN1T472xI/zAf50P/SHW\nsmHWjjQ4sPccw6tr1C9alkeGYRnGTqwy/yG8ZWXWWUCe8r4PoHLKs/WxeaYnbjGyZZnF0Zr0JzCC\n420FtceyY/oCX1Dv8djtt0j/Elr/Dl65KMfaBnzxPFTTkiNbTvHAjmO8NfRFlvZOyQa9kcBqTLFV\nyLzXor8WxITieE6jdChKFweLl3ibO3//2y5wBgMMFFJ8BOa3moIZ4FHgWag+s87B/cc5wgfs4CpV\nWmxQ5+rQDk7suI9z+++hOTUscs4yg6uzbAb2Invtl9kd/DZHBDUYWIIGriMCEvGfnk9cDz7p6rCH\njPMnWvasOiTJ6mC+LlYdpsf+8UgKr7B4pI4wARyT5yNgjpjIOwG6SosrJFjKBiDHBeBHZI/RFkXU\nKNILcFgklCP6Acu8KaCYUbKvTQJQp4whUQlpKmCecx7rPY1jJ5n86WsMvXOCd/7lf9nzhC/Lkk6n\nTafTFa9dpXj+L15m+tptvnTxNice2IdSwhaTSwgvCYFXWZ5TqeSkSYpCQrxKwBUepxwmgIQqSkfj\nmuL764si4kShHrG2l3QZAa/YKI9kr4+9lXf8I9qofJyZNdA4C2WLCddJXeGDpWX8NMXnG75v8hHB\no3vELrlDeP4DdDPxDg2AXWQXEhQun+oo6ce5R/BrA1gEW4fLwzKnKiiWM5YvTLE6PIFPFbZlKOdS\nOKfhBHL5yEK5AIxCY7xvq/JMwfTD1zg8coI9XGCYVRya68zwV3wHi2F9dZilpXE6HzbgmJbmxHvA\nxRKJw51HAK4470R262Cg1W24ksM7Kb5uuOn38Bdf+j3OTxxgb3qeyXQehWeFEQ5wVpgiZSCL3HFW\nXJjOFZ5aq0DNQXcebvj+TLcAXO/A7puQrXcZYo3X9aPMHr3K/v/kEhMjnm+dDgfcBe45uPHsOK+a\nJ/igPMLKtRG4qmDBQ9kJryOygOMe67OqLPmk8UkWOztB74HpBI4glwMePVtiGqL1tusadyWVcJoP\nNHyQwY0d4U2JHnR3eiz/6vPyuQe+ut0uaxvrZKlmaWWFldVVGsZTttbwvktWycjqdUpS7HKLZqdE\nK8X4UIOJkQZZAs31JdrtVbSykrioNN2yZMN7NI4skUQI2fhKIiBKsba+QZZq6rU64Ol0BPRK00S+\nMNZidOispBlJmtKPNBY9iTYaTNLf7AfPFjwhTUWkIyrI74puN0hKApvKu2DkblAqQ8VOfOgcxYtQ\nbZ18LGIaTNwDhIk+e/M47uH78NU8pLoIq8ob0N5hrMU5jY26eRWpxwpri1BUeLROQ7CA+Kz10tII\n3X98T56pkkT8ggI12ceF2pjQBaHn89V7rj7AcGGxqVRyUCNYW+C9FCexaIrMs0i71lqLT06UIHnf\n68rZQIsTj5tIGTckOnTNAjtCK0W9VqNWrcp50VCr5eBKXNGl9JBXayJnbLdotzYAS5bVGBkeZmZq\ninq1IjXFpzaiRjzKHTMk1S8RhH2HZ3xsnns4xf3rJ6h837L2/8DPz4mYIwMevwGHDezce5Ojz7zP\n/voZPtp5gObWYagrmK/QT/S7G2acv2jE11uFxAi7dgrGa4vs5QKzC1dJf+5Z/RF8b0Ferwbu/Qie\newlqD8C9B0+xW18kne5QbMll7tYVsBmb01airOKzyvKIRVdM91qChRE4mcJrhvPTh/neg9+inVZ4\n/IFXue/AGfKNLi7V3BiZ4B31EC/yDK/MfYWNn46FDQjg1umne8Xu1GAR9+mOQXYO9NlZv8n9f9H4\nZFCsN5kSHbuE7eX5Z87xz23JH1cqvJekZHkFazVlt6Qo19AqSOZMEthXEJAxlDZkqSbzBa65iO02\nodjgvtVFEue4Z2GVt8eGqQ/VSJVEvOskEVVGmHcFXJPCSwVz+VDhYG0pcfdes/fMaS4dPYIuLSiH\nV9KkMFq8x/AanymsFimO0+ADAJQ4SRqTUjCYQFsL1oak5SBJUV5YN70CMHhwGfkd6BU88X3TyiPh\nlcLsMk7WGR+OwcA6FoshWehKvDdoZULRoQcANEOlWqPoivkyXhoqebVGY3QMq1aprkooTVl2wtrl\nUNjgkaPwwfrA4UMVFkFGg1IOoxNq+ecJ+ILN3XLoA/oe6EB7qyT63qhA3UgvIaXvn/4lYAwmmWeG\n66gLDvs+fDAvSheH9OfzRfjdY8C3Ye1IjZarsGRGWXUjFCqhRpP9nOP+q6cY+94G/By4BWOjq8IS\naMJGdzM01AZcW34x1pJQYlQ5QMZtQlaDIdCTjunkFru4RH4SijfgtavyMA4JLNQX4cm3YOL5FXZu\nv8KW7BbJVIdyuApVBauDDY8IbCk+eVs9GK4Sfw6iMoNrxmZ20d/+iM2gCkLtmoKRVAqPp2DkuXme\n3P0CX+WnPFa+wfbFW6Tdgm6ecX3LJK8mX+LHB5/lldrTrLfGBXlcrsD6FCJBiUVoBPru1vAf/30T\n2NUfik8+4x+/3vf+L5ZSwkVSSm8G7MMcFg3uITRew8EGUwoH15PIDFNevL1cWVIWpagQAtur9/i+\n7/nV8xcj7vJUSH/XPW/g6BUsc7rM65IqKeCXCiCYR2Gto/PIA1z+zwvm7j9EEqY4aUL35+YsS3De\n8d6f/H32vf4+848eYSowfY0xPf8ybcJ+PFi4JInB6MByUwrtPaUPnl3W4nVg93odACzbA7J6RvYM\ngF8RiIxr3p0AVq8fI2dI+fBe+Bg4EM9c8LWM9w+HiC3DCEA57zHK91h/0fnFh//1v8F9uK0POauP\n/dWHq5SSetCHBE6Hp7D999i5T2NfGeuEBAEqxoFpYD9UdkgR8CXgaRj54jw7pi+xq3aREVYoSZhn\ngosre7l5cSet6SE5VMfApTFwGexDAPZvFhx+6D2+WvkpT/FzDrXP0Fhv4YxmbmScd/WDvMRXePHq\nc3RODcGPlSwi54FbbURzfoU+8NWivyIMMpeXgOvgcji7VWrvdWhemuSt+57g1Oz9VGstwFOZ2mCy\nOs9aYwj2zDO1Bw6dF3tDD+zXMLENmIWV0QarqoEfgbQhZdTN8MgNYCqcuiJPaFLlZ3yZoZE1nn3u\nRWYPXmHoagttYWMm5fqubbwy9hg/5mt8cOMBirercBaYd+G1rbN5X/15GtGUP6puRoBtoHbAjgQe\nA56E5IkW07tvsG38KuPJIgBL5Rg3lnZy+/IUnVcbogt9M4NLMwEQHFxnBuuvX/2MPtfDOcfqxjoT\nE2OsbbRY22hSqaW0202KbhtlFCYVjx9JzBJgI08zKkmG7bZZXFlhY22JPNXgxJOr9IpHb8wxX6+x\ntHUqAFGeNE3JKzndboH3BWOjE5g0odVq4awjy/Le85JkyQSTpKgkBZNidSgKUOhUPKyclxSvGIdO\nSNuSbb5MeGVRUhZdAZgAlCSWKDwmdKtLZKEESXeM4Jd4sgho572Xr07cAASzysqZizT+x/8DNznK\nyv/8L2UBcb632CnoLayRakyQEWrtJXGmkA2dUgSGmwTFxo6G8gpfaJSVIsz3NPAKi8e7Eh18UrSp\nBNaW7rG9oF90ehfSZ5Qw07I0o9RQlnJ+fOy2xBHBt4FFOyaX9foqcQG1DuUleSfq+uNmwRUlRbuD\n8pBnks6pcFTznHq1QpqI0bJRUMlTNsqC5sa6gJVGknbGGnWGqnfD4D6CXxGYyiAz0AA1ZhmpLTHD\ndbbOL8IHcPYavEV/KSnaMH0cxk7B7DOXmOIW6XBX5rE6oI0sbD1w7bMy4utNxCwyR+TkaYtxFhlu\nrcEVuLgkwTNx2rzgYPEW1K7ARGuZkfoKZqgNtWFRuKjBcxl/fpZN7mMnLHrHhHSv7gicmYJRKPIa\nxzuPcOvoNMeH72dP7SOGamuUpNxiitP2MOcvH2bt5TF4CaGbL5QIl2M5HHMw1v5ujb/lzcHHmAPx\np5Lpune12nQXheKnSvHHCi6GrneWJWhVw1vDereLC8wvjGzIEy++JkopEm2oVQ3d9QWW125SFm2s\ndbxcq/NPduzkQsUwrgztrpe0YGPQJkMnCc4WuFI2zwkJqRGEQjnQAYPy1mJVyR/+6f/J8MoKP2vU\nuXnk3iDdUBhCkrDWaBLQGaWxlM6FCHmFocBaMDaEwXgNDrwT6bzWsk5ZJ2AaCHAlYSdJz7tFKWFm\n+YFp2yhFqiDtsYMRIM06KdYC8CUMsrg2BGAtNKuUsgNFYbQX8JgkoVqtojvgsWinyKtVRsYn0GnO\n2uo6qTEUyuPoH0NDj1WmnBZAECe9LN0H+LTx1PKU5WZoqnxuxmDHXNFHSjvAOrhhWB+F9Tooaebh\nFWwZ6ZGJM0oyutAUUumK3QzxrAJsgDoFE8dXYWOV7dvmOPjgRxx54jjv8BBPLr/B2H/coPtncOY4\nXO7ClIF7jkH992FyCrZcF6W9AbYDyTbwW6FVr7LGEM1Wre+7ThOSGuSgMk+FNjXEcLhYgrmyP/d3\nCIm282BWoOabVE0Lk1vKHt515zoXJYpxnY0jglp+4HZ34/MQn2v0vAzAlxmC7RqOQOXJNR6efY3v\n8Bd8c+mH7Hh9juRtJz2SMdj1hSvseuwG9dF12juqvPzUM7jLFfgI+HBEjtfzX/m0WSp3Drd5MrkD\nUPzNnl0fOCOoBSxe9q3Q66xEZpMi7jEHfHMjaBMYWCJzjB6CwZ9WG5EaAr502MJiy5KyLHv3dz40\nru94ej3zeaVJlJGUxAhyGUkcTIzUJIkxvYsKF5OkmDRFaYPzkJc5xdeeYrgocUUpnoaoAW+vDGul\n1lAKFr7xZUZ6rNi+T7HIKQnAV2h2qNC0txbtPTgNzlA6YTsL8KUgyBZFVk4AvqLMM7LA+mAYA4CV\nh+CRNgBieVkXVNjXy99CS15pfPjP0TecH/ycyPMmVGbyb99r6H+85O7dxhOFNP0PnxcmmIuPEdQu\nzsl86lyBt/L6C/vJ8tzfzhj0YarQ88ZVE7BDwyPA854dT3/E42Mv8wSvcpjTTLJAQcJ1tnFy5D5e\nPvIUr408xXoyBh0lQRpO9W1VHjzD71T+mu/yH3jg5CmxVbkO5GKrsv/Ri0xumcffo/hx9RusnNoC\nx4ClEuw1pEU9mK4elQaxYhmUaYYo4LaHk1OwmMJF8O+lrE+NsT4yBg0w32hy4d69nB3Zx+zj16ie\n6vLsD+HIJbHDndkP1a8CX4ET+WE65By55yyVB0sevwrpsjzaIQ2zh4AHYXXbMNfYzknuYZ0GV4Z2\ncv+9x5k+NIf2noV0lNMc5g0e4+XbX2b9pQl4k5Ag30VaRU02N5U/LyOuOaHepIKgV9MwWZEm1rMw\n9J0FvjD9Fo8mb3CYU2znOh7FzWSaM1sO8fr447w18RjrlTGwCpoVuLEdOduDAWO/Xt35+Qe+vGN1\nfQ0mJ9lotWm2O7h6ivOe0pbSlUgTrDI9j5BMaVKv0F6zurzCwsIciYbqUJ113aIsLSPtDn90/hKl\nUvz327aK9txIF6MsLBsbG4yPj1Cr1cX/qiwxWuO9xVov9N6woHgV4uR9jDEW+nNM6ui223Q7XZHU\nJUlPlBQpSz56pehgkp6EjgUKoxDj4thE9OKNVRalRAuXJWUZDDHj5jvIAK1zqKIUZtbRQ5S/82Wa\n//CbMqn74O91R+ckSgWdFzBNfLi8sBa0dG0iU8oWDpMGDwOj8U7hlcGXgfaNwVmPD7JH75HiqCzR\nFGKI6VXPz6And+x1vWK8sg+Lr+7dzrlQSPUKHdXbXIifghglmzTBlU7CP+Ki6r0sjo7AuINEaby1\nrG00aTY3KDodDIp6rUqWpmRJQp5nVKs5RqfoJI1+/Dhn0fJG0SksOsmZGBn9rX83fvkIm3OlIQk/\nTElCiQ6M4abf3FFfQzxO6UJKQUoRJKuElfuzsNn9RSMyMnyvPnFe0yWj1AlkUNNQcTKNQkgxDOzc\n0mhKElxp+qSpjwEhn5dRIq8yQzYOOaxV4b0GWIVdyLhxYR83Du8l37lCfXiDskhYvT0CZyvSdXsH\neNfDRw7cFfqx9rED47nb4JfUG+oT5I7xM9rvxt7pA/ZJvl2f5A2jIuvozj8M3PUEisfSVHiHYZ5M\nckUjaeDp0GouobSVDjghHSr4h+RZxi5Xsrp2WzDqvILJctI8ZcHUGNeQZSmF9ZjUYLIqOk0FmCm7\nuLKQudVolErD5l8CSmLsu3KeP/+TP+JrP3qBy/v3kTmHDmuO7H8NShmUl7ki0YBzuPCaXakx2lEq\nh3OgnXzXvAGNRnsksNKWYpxvhD4QvRpjYrEUEdIE0SgSFKlXPTcHF5sWEYwj6TEotI8siVKAN2Uw\nSqEdeO0kPCWCZzFd2Ilfp3OWsmxLoWoMlbyC94qRoRHyNKOjWwM9e/H8RJWB8uHRyghoGQJc8ISC\nExrVnHQ16aUMf35GgWwPJTSm30FfRwqhW4jpVjBIZ7sA6CHcd83XWVEjMKWobPfsrcOZDdmeVoB9\nGpgA+xPovAvdJlSmIf9ywcHmZbJnuox+tIp/DS4cg79uyyNnJTQ/hC+/Clseh2+9CKdXpQ9xeBtk\nT0HzoYwP63v5iD1sXJ3oW8BQ9OZ+XyjaVNigDuOQjcO2BM5Kng8JsEMBk+DGFE1Vo2nr2I7pq2k+\nsfvu2bxqDo7PgjdL/DYlCF2vIYbCM8Ahz9TsLR7Xr/Fs+wV2/+Am7t9C801YX4HaONQf8syu3uDZ\n33mJS43dXNqzl0uHDsC7Cq6k0By0O4hWB9Hr7FMe/k4Y4tfZnfyyW2x+r8X3F1DCiI0AmBkws9ch\n1dGHRnLA6IMfmDCxhBksh4/+XSJzLPEDHl+2LHuN7CizjL0WmUpVL9UxNaYnZ0xMEhQiIm1MtP44\n8KX7NiyR0ZokCZnL8M5ju10JuwqnoCwLiiINSgrZA0a1hQBTfeDLJCYo0/sNI5EnQpSJaxVkoEp8\nGr1G1Cthbw9SJ0Rpfr8CcKFGcYSWfn91d+JnLP5fnl7Aow/dlUGZIWoAtBpwZRwAqza5w226PgJg\nkRk2wOnyEfwKCb8qnof+HiTGiRDAN3RgksUgA+uw9k6G6G97KPrStAB8jTQkFOoxz/SXrvLc2F/z\nHf+XfGXxVSZPrAjzvwIcfJcLh99jqjJHsrvkh09/B3szhetKsJuD0Di6wCOVN3nW/YSH3j9O9c9K\nuj+B4pr0UvJ7Pdu+u8Az/+hn3B7fwvlt+zj+hVHc8RTOJNCK4SFRXh39veKcHCnIUe4IvTWsbMLV\n7XA9h9MahpVMhYfAztQ4duABfpY+xcwXr3LUnqW+17LnnBzBH4LyacM7997Lz/gyAF949D32/YNr\nbE9h+7vhqewEnoGN5yu8M3GU9znK1XO7ubawlwv37GVX9TJjehGtHGvlMFeKnVy7uJvi5Sq8ggBf\n1yxwlT6jLS48v2yN+SyOhD7wVQfGoToEexU86Kl9dYXHZ17mO/wlz3Rf5NDlj8guWtBQzsL5nbPM\n5pep7d7gh89+h2I+l67U7WEoJxFGXwU58VFe/6uf0ed6OOdYXV/HARvNFs1WG6+GMXkFVXQxRvyV\nPIaqgeE8ZaSS095ocfPGPAVd8CVbp6cgmK5bB+0s43998D6WAvVXwq5kc9tut8myOllWodXqUnRC\nsmKW4b3rGdPrsOBZ5/BWCp5eUmGIBCZo5E0wuowG614pAYToM6ySJGywlYTWK5wAD95hW11JFyxl\ngSqtdImKosA71esQKfpm8T74CcSUruZ/9l0IUcxojcVRFkW/YxKGxLSDLQvK0qLxZGlClhhZWLT4\n27Rch6yqyasanaQoo1A6sBEceBUSa7wFK50wg0HrFK36clFJZeyb6W9OSQndfcSLpgxeORHki12w\nNEnwZSmSIiXJi3IfhQ3U9EiXjh4DAkAqUpNSrVRxzrO4sMDK0hLeefIso1atUa9V0YEBoIFKnmGS\nHG8t3XZLDPy9xeJZt56urjI1NYM4xH6a404fEQulhWaCa2rW28MsZuOsjecM7+ywrwEn2zLtpsBR\nBaMzwA6YZwsrjFI2k76th+uhr3y29OdxoSig8D3Z/2p3mFtMszA8weR9a+w7BI+fhg+tLKkPZzBx\nEDgClys7ucVW7HJViE1NwEeKbez0x9ccifGbO8yfjRHlOBAiOelRkRd2wNsjMK+FTr5T0ZkepZOP\nyktbQSIeP0I09wsdKOfoL85rbDa3v7vj4+mOauBv4Rr1q+5zx98/8XE+4Tihyxu30MYrsA5XFNiy\nTV7JadTqNLItrK+mONumLDq0C4lnNkZTMYZvu5J/dfMa/822ad4fGQtyeI1JQCWgEyNeVJkirUja\ncGYSnO3IxtmDTmLilO37zSiP9RZD2mP+vvSd35Etg9JB0i1rjqQsJigtCZIkISXSObw8ALYQMMg7\nSYtUxuASSa0krF/Km578HBdJ6WWvaBOZuSdROvSctcDzXuZ3ed4alO6BXwRpv8KhnJUba+TkRHaw\ndwzwvcLjScGpTRL8IQ3KJcHk2ZDlGRPDQzzR7vCTNKEobDDsl+NEBzbvLEYFE2Ml5tSZCnsFFJUk\npVGt0C4+b8AX9L/D0ZcqemqU9DeaEUCZgNLDkoIbcLU5y4f1g9w+MMrWpxc5eAXyE3C7BeNV2L8f\nbBVOvwivbsgSMrMKX12H8SnP1L4lkmWLuwmX2v1mRBcRt/jboP4QpvfB9HlkgboPul/XnDqyj1d5\nkpPrR+CUkjssh3t3PCwo3E3N9c4MF/K9rN73CsNPtnngCmTn4GYJ23M4ugt4Em7uGeei3s3t1jTl\njVwITW1P38x9cK7/PEhRov9m6MDnBraA2VGyY/gi93CKfR9dge/DxRfhp6sys49cg28uw7Yp2HXk\nKvcdPsG22jWu7NiDm0ihZqQTz6D8v1/Wf9oj9uN+2bvhP+E3mSfk31oJSSX6LcXJXtToPvjnK9nz\nEhsofV9ZiPt3Oa4k9AkYpYPnbmmltgAAIABJREFUr0e2v973k93LQprXtrB9k/tger6pSRMuKlhz\n9MAtY8SmIwBsRpvN8kY9cHuT9EJAlPikgDLEMC6FwmkxvO9J/VxOWXYprQBdSsV9ue15VKkA8EXB\nhvcO5wNzDUl2974IFicir5fmQziXNnCvvAvCC5G3y0wkj2G9w3mpIWxgm9lo5eJcABMZ+IqqHhgV\nF2kXAbH4/t7xGdr8IRoEre74rMXbKR9/9BUqeAb7byo8PF5+9naMCsBIg0hSCsL5cZ9ST1nRl4wZ\npKVQBzUiWr79kB7tcnTqHb7Gj3n26kuM/l9N/I9g9SKkIQRpz7eu8/Vv/YiV0REuHtzF6QceghMK\n5oDtnsnReQ6pD7l35TTVH5Rs/Ad46YJgZynw2Bzcm8LM/gWOPv8+BypnObvzCM1tqVgTLlTBR+bq\nIOXeD/x+51wcrwtBJG4U5oZhLgMd2Mtvw6Vdh/jBF55HVyzzj73Aof0XqC03Ud6zNt7gw7F9vKCf\n5kfd56mUHWZq13n+mz9k965r1M93UG0otmqWDo3w5o4H+AFf552VR+H1HH8Mbu7by809ezAjbVBg\n1zK4ZkRP+QGSVnm5C+4m/YZyDAwbrDM+DyN+aKO0vgGMwnAK+0A95Ng7e4avqR/z99a+x64f3YDv\ngz0t71ZyAA4+e5nsGz+gO55xc+9W3nn4CfjQCCNubhzxnVmm7yf5q+X1n3vgy3vPenOdwnra3ZJW\np0u3tChlMGmlZ0KLd+TaMTFcZWJkiFsLS5w/c4HJmUlmZrcwPj5Oq13gnMJaz9pGkyuNBs1mG2Mt\nlTQjzwQwss6TZRWMMbRabVxZkKVJmPQ9xmT9KFsIi+hmIEZp3SuK8iSRxcwKQAahk+R93GdLh9qo\nsDhJLD2x0+FK2p0WG+vrlBRieBm6L85Z8IMJjNHo2MriG5JH5N+psNGMBmuxvgwLrRxPeSfJ8loY\nZ7a0FM0NMdDMcnxeQSmwnZLCd3FxAVCKSgD8hPot8kAVOk/dsqBblELRNjmJSUFrChd8bu6gim9i\nYigx6nTKBX+2vg5eKy1yynCmtZNzK+dMejey+Pse5TwmsWkl/ghpklKtVjEmodvtsrS4RGujRSXL\n8UWFSpJQ0Smq9LTXWyzaRSYmDSOjVdqdDu31NbAleZahk4y20qi8yszMjt/it+KXjQhKBJ+nbgnL\nCdzULK+Oc254H2fH9vHwV06y9Rz8/Z/B1QVoZDCzF9JnYeXhKqc5zEfdPTRv18TJcR0+nur0aY9P\n8hWLnioWaAvQvARcgbkbU5ycvIfjQ/ey/ZlbNG61ePwncPQaoKB+ENJvw9wTw7zLF/iwOEj3SipC\n/hXARTPNO/2sftFC/FlZsOLzbbL5uXZhbRucHoeLFUlCG0LWK0vf63rNQmcVWZRvIaBX9PcaNOC8\nuyNuvjfvGAfZXuGaHkDiN/07Rsz3j/VxFlj/sfqHlSlbEpl622QlG2HKku7GBql31Oqe/+HWbf7r\nrTvptBUdb8mqOQYxqG/kOR2lYGONlUYjfLodJlEkmcckhjSpkmYZaSUnz3PyNCFTitJrrFJkqTCO\npWfiSbQPcsggK8SJNCdIDXVIGUt0Qp5kaJXglMFpAb907Hsr0NqIz5cHrS3YAl8WJGiU81hXYnW/\ne+696vlyaaX6GJWORYFDefkbWsA3o5QkvCslEhytw1unQzaMR/XpueHYGowOSjQVirISTwTNZB3U\nOvhVJgmUiQCDodgDzX/xl9+nPneb+akRjmUViiIWHxZlFYmXxF9hXxM6+rr/EbOONE0ZrddZWF37\nDHwj/qZD0e/YxtTCerhUw/Xr0O6I99cZmL+4jbfve5gXGx/ytd97gcnKGgdfhf3zoMZBzcLGv4dj\nGwKbg2xdZ27CEyfBzhlM7lENmDCQWplZNCKmowF2K3S/q6gselwCt6bGOD16iJ+YZ/lJ8VVuvDcr\nHoTngFYI82gVcCPDn9dcu7WLd2Yf4t7Jkzz5B68zoi1ffB2KZUgnwDwKzW/nvLflKG/zMBcXd8MF\nLcXbRgzziJ33wWIxgoSf1THoRylsZxqghxzjZpFpbmLOQ/s0HBMXAEDenzc34O+dgdqVLlsP32Qs\nWyQd69IZSuU4ve7+3ff4NBoyrSh7yoX+rP+J0EWg7US+joo4N9BDUFTvX1jnKF1IQhw4khuQ3jkf\ngj00QeYnAVZpmpIEAMp5T/V7P6Z1/2Hc5LjYmpQFtgiAl7U460IDug94RS+xyBSKTY0od+yZ7CsV\nAkKiD5jqNeajz5jRBq9jVyKEigwEcrkkwSZWGGzRm8tWsLaQxnXY68j+PBjN+3hdCNaKWyDlQAnY\n5ZTsRRUOjcOL+77Yn3iEGaYGzn24eCf2KpsuViT4cr5s733wIU0xlFQDMLUwuCIw2VNL3vH5UAP/\n7v8ejWg2PS164Yzhd+0Hdn4DAFp/X6CIzLP4Zx/WN7RBGVlf0FHR8mnMK3G+H/ACNHWYBGahsW+R\nI3zAY8XrjP6wSfvP4fgxONEV68NHTsO+dZjdeoNHvvI2byWPcGH/IbrbG7JFHHU0Kqts5SZbF+fg\nJJy5JiKC2B6yBcychokPYcfzV9nCbZKhQkCvKmKrYiPo9YsQwZLNAVtxj95CCpagdqAKbhY+moG3\nwA9pTvAwGw8Mc666nwOTZ9kyOQ/AbbZwhoO8UzzI1bf2k+UtzINdbuVTHH3gONvvuUHmuiynI5xN\n9vMmj/Dy6tNcf2U3vI54x7wNTClsrSpPv4XUUFeRyXa9A/Y60mWeQ9aZKHMcrDM+6yOCqNHjKwXq\noIekttgJ2f4u91U/4FFeZ/bNG/Bv4dJP4YMVueeht2HvdZgdvsmjz73Fu/mDnD18mLVdkxJSNldB\n3sP4ef310OHPPfAF0Gw1aXc7uG6X+YUlrmdQzRKySgW8whci90i1Z2J0iKmJUdabaxTddVKzha1b\ntzO9bYZbc7fJ8zZJktBsNdGJIslTilJkHSYARVprqtUqSZLQtfIhFN27sL2yLFoeShqH0TrEzGsB\nfuhPel73pXcuTsk9cKfvS2V0giZQiZ3HuRLlhf7caW2wurrC+voaXoNO+gWaeLPIJsSWhUhAgUJr\nsh5bSqZmo8RTRTbxTsCpaN8YtPZ4R1TCx9vHTk/Z7YJSWFvibCn+L1rkmInykGZgpKPkvSJJE2Es\naI3TRjYEOkF5LeQh/CbDUJAOEtBjfRHZaIEJrLUw6Ywx9OKBCRuQcN69CymSRGae6z2GGIbGTYUO\nSTQGrTSray06rZLRxhhr5TI67VJPKpiAqyQmJ0tySftst2mur9NttUh0SqNeJ6vWaRWGtFJjx65d\nv/XvxeYxmOgU49WbYtw1n8M5xfzFLRzb+gV+lj3JxFPLzPrrTO6DyaC790eg/Q3DO7NHecU/wYXl\nA9hTuUjtV0tkMdlgc8rGpzEGqa2fNKXFFMMNYBVu1OAclMfqvHvPw+xKLjN23zJP/dM3SY+WjFz2\nYMAdUtx6dISfjn+ZF/0znL96GPd+Koyn1ZKPd2IUsvuPm/7ijufwWfEAG/Qli9uyaGjdgrIFzRRa\nRjYZkehhAd8Cv4BsGuaQc7BCP82xGDjm3R7x+/+Ldf+/zMR+EGTfBHr1wJP+7TQRMOtfr5WXzXv4\ntzCdRDZSese/vnWbR0rLn5Qd/pdGnUx5atWMapJRzTLqlYx54LtHDknhpECnBpVpCKBXNW9QqVbJ\nckm2zROD9iI5NEaAHo9IYLSyJIkiTcTPxSVpALUUGAGZUq0xStizSidyiXIYVEhnVOI5HBo4KIVB\nTPK9SlCqgKLA+VKKHC/ptgYolMGgA2tYEgSND9JKjPilKS3paChMwJJQCmc12sX104ePsMxnXjIV\n0cqE+rVvsx+9MHFxDXAo0/d1SUxCEe0HEvFJM9rwV//0j9j2r/83Tg9VScrIRnAopcXjpgzsL62D\nFN5DMDxGeXAa5RVTo6Ncvj1Pt/w8yRMUfRCjgkwENcToeAyBn8ZA1UFVgVS+8jeBk7Dx9ghvTT/B\n2MQy5faEJ//xK2x7ehG94vCTnvT7Dm83z4YOIeRSQua76N0e/SAcOA7zF+G8gxkFT0yCfgjWDlb5\nyfanWN0+TJeMm2zlNId4q/0oZ0/cg30xk2rqsge7CCxBZwOupXBSsXh8ip9PPMV4fRF/n+KLU8do\nPNMiWfO4UUXrPsPLI4/x13ydV8onWX93UgyHbxDOyyhSDcYu/KB5/WDT43MwNKDCnjWyS+zHS6wC\nen0kHaH9aHewCSK4+yMxmkY1pVs6Cuuw1g8oH/rzdZS/+QBay8zQH5tndR/mVJE6WuuZXG/yB2/c\n4PXnHtn0+NEHN9J6hKmbkKYJafD3UkphLlym/j/9KbU05fKf/yuKsqSISY6lFZ/GwGKK7FnC8zdB\nlhgllUb3pZZ9eDMwXRl4h+JShuq91ngLAbzS4E8swVsuAZO6IMWTBGPjLNZmOFcGBUV4rU4k596W\nWFtgy8BUU5FtFdQqWhi+GkTG2CewDQCOA+/EAK26l4AZ5IA9SaNzOO+wwQIlWrz0gDf6yJdH9TpW\nEVQMB+89nPp1P8/xc+Pltaj4MOHuGrVpR6QGZZaqD3rtLEr+xeIK/2JiAqcV3hu8kSTmQa/j3+4Y\nhPkCq8qYnuJxdGKR7Vxj6voK/h24cQ5e6gorFA8bTdjzFqTvO2YevMnM2DWGxlZZGGvIYTVoVZJS\nYKzYzBR+81qwARQF0BZblYQSnfj+1vXXBjkGwa+ozAhNkJ7317C8xtUaHBsBpSg3cs5dPcK5Bw4x\nPXuNYbUKwGo5zMK1rZTvVuAtKIdyfs7XuXT/bl4z55nM5kkoWPdDXC13cH75AOsvTYof7mvACS8v\ntqZkWQV54RseOg5pIN9E9PlL9H1zo4fVZ2Ff/ZuOOOsE3zidyWdpEipbl5nlMgeb51Cvw+234AeL\ncC3c88o6/PHLUHnUMfPIDWanLzNaX2JtYlKO0dufJPwm68/fCeBro7lBpyhQ1rHR6dDsCkPLO48v\nS7wtUFqR5wkTW8aZ2jpOSYe2K5kYa1Cv1qhV6gwNtak3amR5xo1bN/HeU61UcBst8IK4y8KVkqZZ\nnxkQQBbrXOgWR3YSRMNK3QNwgq4fBUY2xjGtpWfkbn0wow9gEwqdJmgv0rTSuhDfW9DttllbXWVt\nfZVut4NODWgjBr9AmqZ94EsXPeN2h8ViQwqjsAGUK/Glw2vxs1JO0hejWaVS4K0LCSPij1JBuj9G\nKZHy2BLnpO1hjKHb8ngraYdZnpGmVbJUFh2LRTsDHlIj56VnVkxIqhnwS+hRuweK1R4FOrRqdDDP\n9CEl0inp9rkAUEYWnkRCO9DB4Aod5J3CLtBaY52n7buUylJYS7drGWmMkQ1rMpPQrqXkmcZkKTpJ\nqDbq1IeG0Cia6xs015u40pFnFfKsBjrDekdleJjpHZo8z+l0Op/CN2RwRBQjdj1W4MYQfGhwr+Uc\n3/Ego7uX8WOap7/5IjP336ay1sYlmrXpBscm7uXHPMcL7We4+e52MTe/CDQ7yCR9p8nkb3PzP4jy\nx66CHrge+gVIG1maF2B9HM5k8AZcn97LD5/4Bp1GzpXZHdyz/TTjzRVQcKWxjfc5ys95kp/dfprl\n1yZFnXrBQ2udfoJVl74fAkQRl0zIg4yzCD66gcunPeJ2eMDcmEmkfTIDlQkYNeIUvQVhfCnk47IE\n3KzC3HZYHQl/vDpw7Pjaopzy7hd+sYFwp3zxl7O3+oXFnffrmRXfwQ6L99t060F6QZhTNJAoMY7/\nx8ND/FedDv+mnlE1Dp2JpLqRV8hC08B5S+lD99jIXINJSE1GLa0zVG2QZCmJ0QJomdAgcEak8Vaa\nAFma4W2J0Qle19GmikoGvGi0eIt47fEarNaYxKCC1FEYWuE10weNlNbS4PApGk2pZB6VElqKH+08\nSZAPZ048XNAhPARk3XE2SOGlqOylkYXT57yTNMdwLi0u1Nu23zlH45QkhEXmrlPCjlYuPH894Oqi\nArNBa4xJKFUwfzYaZz2dPOcvnnwUc+okynrSRIvMMzFiI+AtzgXfTaUobfjcqwC2eVnbhmpVxoYb\n3Fpc/pWf18/OGPTlaCDf9QlkUtgK2ZjQgEeRuiFBvvZrSCPk53CjMcv3n/pd5qameD87yu59Fxlm\nlT1c4Iuzx6nscdz7Eax2ZHrZChwYBfZDc7zG1Zlp7v29s4y0Pc+/DF+6DpUxyB4Bfh8uHpyV1K+N\np3Fas94Z4fbqFpaPTUt3/XXguIf1ZaSYCCm2c0PwQQLTmgvDB/nLB3+P240tvL/lPfZuOU+FDhvU\nuchujnM/H3KI5VsTmHoHezSX1/mOgbPTgUwQI9UjANbhszL/ffKIa09ogoWcE7dqWHJjzOlp3CxU\nDsIDp+D2mrR3GsBDVeAAtHcmzDHFUjFGsZKFZdDTL87uPivBaMNIo0a7sLQ6BYV1PdXAINvGOY/1\nCudN5ACFdHSZO+wgDkCfFRVDqX730k2mul1G15owMTbwDMIdQ+9Fa0Ua6geTGKInbbl7B6v/7T+n\ntWe2B+QUtqQog69XuDgrf4ssJiAwd1UICInJtYNw1uaxyeSdvldw7xmraNM+0Fz2SpizwTsyUK4E\n2Nca7TTeiZ2HCvtqHRhbyg3gVZ6QWklvHy5M494SOXDW+hStPh7lez+FnRVSHHv8rfgwfY2NmNsH\nP7bgyRaseyPHoAd6xcvfZESwNDK+/Cd8/QfbjJvwvIF//LOVVe7rdtlfFpxMEznfXoLAPj3gK464\nhw4wQbDty+mQ00a3HGxAs70ZtFoHWitQ34DUFaSUJDqk614C1jXNzhCLtTGWxoaZ2rPK7hHYfVv0\nAwlwv4bRbcAuYVktMUq5lsg2vgm4YDb8a+2hY1NaQoP6cri4vvnwM4NFJXYfi0iD++2UW9t3cytg\ndj27j0uI1K4m1119/yDX9u4hn2yhjaOznmOvV+CskhrpfeCMh+Y8sAorNViJYE1A+FhF1qjYTG4i\nEGCb/tryeQO+9B2/h/chlEt51qFGi8qagyVY3wjBN2EsADdWYc8CVLst6myQ6a6UWnGLYn9zb+m/\nG8BXq0nHttHKslZ00XmV+tAIrmjiyy44KyCU0YyNj7Fj53ZMomkWXSantzAyNESeJeRJQlqpkaYJ\njWqVlbUm1VqFjpEueNS3Z1mOUhprJd0k0apPaSZO0Kq3sY4rjeqvmb19kYsTe6QdB3NDrENZi/V9\nGYjvyRdLrC2xRZd2q8X6xjqtdgulPEYlMlH6aOQushPtnbzZAehSiIxS6NeRKm1kQfKy+CkfOyti\nKFn62MsURkCSGZRJsM6jrMXR6cU3K8Qcv9spJI2y7OKLCrqmsAg451yBtnIMpRPwFm9LYRmExVxO\n5eYC1NNnY0T/sUGyudYK5zW+jAuew4VFTesEk2TQdRSlBeNxymC9xRIJ10o81JIEk2rSLJUujlaM\njo/hul3StRRt6uSVlGq9xujEBONbtpBnORura6yvtyi7ljzJxVzUVGgWnhJNtd6grjKmpqa5cuXy\nb/fLsWkIw0Im0S4yyd6G9hh8OAyTsDE0xsvPf5XF3eN8mB1iz54LjLFMl4w5pjjBfby5+ijX3t0D\nLyQyoV+BvtxtMHYXfnsTdQS3op9IRj+tKqVP045d+GjoPg9+FC7PwBsKMsX54h6WHhnjwy2HmDWX\nGR2SAvUm05y3+7lw6RBrr47CS0qAr5tWzlvP7CulL/kZjLiPBVGUgMaCKKaPRDDs0xyD520IqVy3\nAXtgpAYHNdyDmJjuRAgeGnmZ1xHvr9MKTg/B9QzKQalkTIscLKzu7ujLHT8+fpmXF/Sljv349CBr\nC2Ec/eN/8nF6/SclUFGiPIlW5MaQJQmV1PCnw1WGjBGGcq0iEhg0qQelZG4ySuGQuT1Lc1SSkqcV\nGnmFShZSsxLxiSQR03ZjtHh/JQojeA2oDGUylDagpAjZNLdqsMpijSeJOHIiDF/wWO1xGjTSBOoB\nXwp8GhIcAytZ5OIlSVFgSpGZx+AQ8AJEGRVYthqVeEjEZFnF9UcpCQz0wg7ShDoglDY+VBBKKZTR\n4sUT3qPEK5wKzLRYBanwnms1gEtIOZIYQ5kkEjBjUnCWNMsZGRklTVOKbkGqdUheljNSOEvhhYGd\nJgIOepwwLKykLWslUqadW7d8joCv2EzIkHkttPrZKZfxCuzREku/PfwpR6a4JQQLvwp8T3FraScv\nPDzGuzseZsv4LYb1Kn/Av+fgo+eZ/No6R1dh5wlYbcLkJIw8Bu5ZxZXZbfyUZ1g7OsT9o6cY/VKT\n4dvAMLTuN5zbtY//t/J1XnZP8c7xx+G6wi8buKZE2ng6XFZXw5OZQ9amm9AZgtNbROHics4t3svc\n0a28tf0RZrLrpHSZ4jZbmGMbN9jCbQ5sP8u5LQc4fegelrdNQV2DT+HDrWBj4tadPiyf1SJlkOHb\nFqbBvMZeSbi6souTY/dycd+b7P36dfYuwB++I32e6ghM3g88D5d3beeUuofrzR24q2mwO4gyokG7\ng7t3DpRS1Co5SSKM/u6dIU/QYwkZryi96bG/orqutz8Xnmg8cA+4sc7zbw7s5MmROvnYMFMqegiq\n3l44AmbGiI9vmqQ90CuuL+3HHsSWFt/tiJG9tcFDN4Be0ezeWZwN65H3PXN8Ey5RrRhZsvLIAejz\nPqgt6M2xugeoSPHYbzwTQEEnTaKB8JGBE9yTWspEDQRPXq8i/PZxCK7PPlN9siCqR4/qAVv0PX29\ndz0ygKgyXD8rtQda+T6gJe4s2Mj6CjVCn/kVXmavcT5wxceer++/7/FXekvKx34yAH5tklYOnNr+\nUeP5k7/9d9MT7Gx1+TBNJSRGicec0upX7lf+9kf8/oY9apgumkWN9XQIO2xgGkaGYKQl8IxGloTq\nNDAJrazKBnW6Luu7YNxQLK5PcG7sAOeH9zLxlfeYOgfffgluzUEtg+kDUHke1h/LOMG9XCp3057L\n+9O4jzYjUWHwq0bcnzoCWoKc+/gzgicFrGyDExNwNRXPrTFkGYS+3cctYK2EzMFyBifAT6e0R1I5\nTBsBz64iINm8he48Uiwt0ode4ienQ580sDHwe/TMvVtJwP9/h7vj9/A+lAkU0GnntGoVOjUNo1Cr\nSR9tLdxjHJgOZUo7q9CiSuHS/hJjB4/764+/E8BXs9WkVbRJDKy1W3SsJavWsb6g6LQpiwKTiont\n+MQ4iTrA2OgYS+trVIYbjI4Mk+e5AFhFgQZGR4dZW1vH2y5pkOspFDb4dhhj6HS62NKijBBZVS9t\nhJ6sEcKE3NPoy0V7mdDkO9ef9OO/ldci/0gSAe5cF1t0sGUHawu8KyjLgm63Q6vdxAFJmoKWVEiv\nNIKhCWtAjB7F7LFvFixpXR6D8xqHmOtrYwLTS1Fa6JaeblcWYQKY5kPnSxmRCkZgkWCInCRiTt/t\ndikLWbiVBa1Mj90mEcoZ2qconUpB5T3aIL4rHpyzKKeCV5eMQa+vXhIjHjRCC/dC1S+co1sG6WKQ\nUGpvSTOF7pa4QrwTLKZPzuh5yECaJFQrOVmW4nwpHX1vaHdaeOVJqxUqQzXqw0PUR0fJqnXwnm5h\n6XZLjDZUs5zUpBRO0y49ZFVUmlOp52yd2fEpA1/xVcZN7yqyY70Gc1V4RzoQ62tjvPHIM5w4ej9T\nIzcZYg2LYdFNcOviNtw7VaHtvoV01IsFZCVYpT9h/7oL0m86okQvwv01+r4zIaUqdm96m5iSvhQv\nsJ2MEtxnxOPHHbXhdcbVItPcYoylnj/TihnhytYdMDEqh64TNpSVgeexhb4UKEodIwDURlbqdfos\nu0FTZPj0wK/YYYoF7RAwDeyBsQY8CDwBfMlR+cIG27ZeYlLPY3CsMsTNzjaW3t+Gf13DhII3c/ho\nuxgyUCCLdHzv756p8ebxm38GfWC0DoJeA9UAg5vjyByTeWMzCNbfCAvLSStPpjWZUVRSTb2SU8tT\napWEvJKg8oTEpBivMR6E/Gul6+2V+A2mNZIkJUsyqrUKSZagU0nN1ZnEwHsHKQZtEpztiqTEgyLB\nJCkq1ehAjlQqsr4IBYO8XqMI83opQI9SWGVDQ8QR7d3jzt4r5DsVQZPUk5BhfQflCja1w13cqGhU\nkqCNHF8kOkm/iAJACi9toleNwgYmhvSDlJjv94o+4St4B9o68QJB4TQo7wO5NzICpAnkvfhPpllK\nWUgSWmGFsTw0MkKeypqaKkWiJWBmA/GSdCg6rkBsDXwvuct6B96ifYLzji2To9QqOc32p83w/ZsM\nRZ9BG1KYmAH2wLYMvgA8DDzo0ftLsu1r5JUOnXZO91YDdyGB97TIDP8C2qcatHc3uFXuov77q8zu\nuszusUt86z/9IdmkY+t7sHUD2AbuMbj+rVFe4im+57/FaX2YR3e/zv7d5xljiTWGuMJO3uZhXnZP\ncezsF/EvpfAyMsUvADc8LHiwy0ihcQMpNorw8zJsaHh3HDYU3Nasnp1kbc845h9YnuNHPOFf4Yg7\nwbhfokvKDb2NY9kDvLDjGX707eeYZyesK+naX9uOVEOrbJ4DP4sjgnJdpIpbF8rG9RqcVdy6vo03\nRh9lT+0jqr/7A6aHFpl8G+nxjIN7BOafGueFoS/zBo9y9epOOKOkKdKO6+yg92VsOt2NIVK6PJU1\nP009hXWUViaXuI8USZxHOYmMwoWAKafA23AkNbBhJwBfAqp0Pdxo1NlFX5UQfRO1DqBQ2DfHlMN4\n/57/lXMyL5YWbSUgxJUSUGWDZ1W8TeLF18Oi0M73PLqSaKMS/MSisKSnHewxnPoeZCqCYIq+gX+8\nIfQYXMR0dd1f16IUUMUYRidyxh5rbvNbEVh0BAeSkCgcG/txnQ3rzyaQK4SDiZm9nHPrQtPb9d8/\n6/ryRh9/BlZYTKcfBJ76esRBrC/cJgBp+L4X8y9llagIYfXXQwXBnyz8Hk5cv1WouOMZ4YCzeSre\nYKE3agCvPObTJnz12PuaMqMVAAAgAElEQVQd2eOtpjAP87emubRjF5dnprn/4TV2HINvvAin2oEV\nOgn6K9B6JOHS0A6usoPlm6PSG18FLsDima28s+1hDmRn2fbkbWbVNSYPwuRVIAN/L7S/qXlzxxd4\n1X+Jswv3UH5YETbxWjScjfPsbwJ+efr70phaPNi8DcnFxRLMb4H5MT7+vsd04zkoanBiJ5zVsp2u\nIV+M0gt6s+aRff8thHUcPbtidvDgMaNKJtYHce78bDSR/+Zj8Ly3wbVhvQEL0L49yo3xGS4O7WTb\nQ4tM3w9fnef/Y+9NgiW5rjS97w7uHhFvHnKeJwCZyMREgABIAgRAEmQVWSxWW1d3SQttpJWWatNK\n1tYLDUtp0WZayGQymczUrZasB7JIY5HFESBBghiZSIyJBHJCZiKnN8bk7vdeLc69HvESAAssAgkY\nq25a5HsvwiPCw93jnnv+8///4ZmeUAju1NC5D8IdcHV6kQtsZ7mcG3EOGtue3w8Y/KMAvqqqYnV1\nlfbMJP1hn/We9AAyNmNtrcvy0hJziwtkecHE1BSdvGBqaoq5tVVqrei0WxTtNhOdNleuXsZ5x0S7\nhTWKQb9LCAaViUl+nuUURYHSil53SIhgiFaQ29iiuLkpxueq0FwACesXw95UWQmxMqFRo5JFkC9D\ncCWu7uOqEpyTNsdVSV1VVFUlevysiJN2iNUcqah4FyshRA8DldoaZxhbYLICnbXAFhL8jMEQyIOA\nYpWDYVXjQi0+AkrjglSztdEoA8EYvA64egjWorOCEAI2QFVWAoDV8vlarsRmmiwvgJraWbQusEFa\n99pMcqiApnYRrIvU8DAWIBNtW7qX1bggAk4f2XGpu2QIesS0i90cbex+U9cuBkZ5b2NEJqqU+Jdl\n1qKA4XDAYNjHlQ6cZ2JmkqJtwWic0hIevMcNSwZVjS1atGxGkeUoNP0yUFuF6UyhbEGnKNj2iRjc\nJ5Al1WeWgBx8Bmd3wqCAqwpOQvfpBd7esiCTuUMmm3OMKuqnHXSXkWiUgK/UUhY+ngWvYsTsSmDT\nNFKWSbeW6MgbWmXNqATTAr0obIXPgH684o57nuXx7Ic8zBMcWDrNVG+NoBTXp+Z5efI2ftp5hJ9+\n8Uu8HW7DrWewZODtOfAL8f0XZR9UG2whQLYH3BB8FY9LYsRFI2jpBjB2rG4m+GURsHAG2AoTHTgG\nPAL513rsu+t1Pps9zVFeZhsXsVQsMc+p4gDP3vMZjm/+DMuTmyQRGOSS+IVxcC+BYDfLjPV3jxtN\n6z/sczZsn8rE7/Ma495ejbdiU/EOsSIvEkdrNLnVFJmllRvahYDrRScjyy0mAvTBgw8OHVkINkpk\nCt3BGktmpFOtaY18WNAyD2MNSjlUrQlG5j6NwqDBmKZAEXAR+CIWDzwaK4vu2J1Lig41hFS59+Cj\nIbACFc3HTLMqVyLhR4NXspTzniyy3rxP10OkYvlKEgYzRlePlXc51BoxsBcGnvK+uaoSq8Hp0IBe\n8raRdRFAuYAoDpUUlOLxIAJUCfgKKAEUs4zcCvCltKHV7tBud6hWV8WPJgS8ylCqJngNPiYokdER\nnCRZTklM0fGQFa2CLZvmePvcpQ99DX4yI4H5GTK3RYmj2gFbM7gfeATaD6+z88gpDhevspuzTLJO\nf6LNhYXtvHrbYd7efyvdLVPwYy2g1K+BfdDbPsGTUw+Tzw9Z2zbJPX95nMVHrmP7jnIm5/SmHTzF\ng/zQPc5Tbz7Mifm7+O30newozjPFGgPaXKy3cWZtP++8sRP3ZBueBJ4PsFRDP7GOriGs3GvIvNtj\nNMfGCn9Xw9k5sSr7huPA46/yNb7Pt4bf4Z6TJ+g8PRRAp4A9t15h3wNnmN90jdCB7z34TdbPLUo1\n/93WWFv1tdHrY/l0tZ33jBjfKSYug1uHc204oej/cppnZx6gvbPH+vwED3zzaXbefxnTr6knLOe3\nbOZpHuBv+TJPX/4c7pcdeJloyrKKSHQGfHINbkbDh0DwNXmWQWbQnmjtERlAwTSML+VBBStgRPxe\n+6BQTuESS8hofEI0tMIj3lKJUZSgD61G/loqYkJoRbAKbzXepjk4MssIUtwuh9DvQa+PGg5xdUnt\nKpyvo3RavBCb90GmMRNkvWzifQJ+RUBKJcBrBHYloKdhVTFiRcdSPTCSizdbjXWGTw7ujXNYLKa7\nsWJRYvgqAk2n9QTyuQhy+fi6Lvru+jFml3Mj764g2zjvohxULF+c2wh6+cjoS8w+H0af08fPLM7F\nY55eKq1U4qcJoXncR2P89Ek/bGqdth0vg43uGzmENlBj/EUHRG2i0hrEiwVBiP7L6oMtGj6aEdjo\nVRgZSK4Ll2fhNAxPTfDilrt4MnuIrV+6xmK9xP5dsP8UUg8+Cv6r8Obh/fyKB3lpeIzwakvmiIBM\nyScUr+w7xt/sWyZMKr74+BPsvf0d8uWSYBWrWyZ5cfZ2fspj/LT3KJde3CaNSk4H6PYZ2YyMS6t/\n3+OS/L/6Y585FQRWkfjRQfKMcd/epLdcjx94FcopuDYJ11JBPs2vK4zmxSRl7L7PvibwLoz9nj7T\nJ7+G/vuN9HlSvIl5ge/B0iSch+pUxst7j/J08QD7HzzLlqtLHJyFA6+C12AOQPgKvPOFzTzdvpfj\nHGP1tTmx17kMDQ1xg8fm3z3+KIAvgOXVFbbMTjKsK1a6a/SrIdN5Rrdbcu3qVTrTU+Q2Q2WR1aSl\ng9XA15g8o8gtUxMdlq4rBoMBmVbkVjMcDGWi8Q4VIM9zilaL4IMATkoCLCGgddYkS9E+gMYk3UT/\nqjjZi5FoYnqpaEgcgwJA8ARX4V0l+nlXEVxFcLUEBuepq1r2z4v5fWbFQ8o7H0E3LQEFhVIGFf3e\njbVYm9MqxBw5a7fRWYGyOS4FuwgcGR3IckfmfWy5HGK2gLDKjFTIIVAZRahi1ctadAhoD9oFfKio\nhxWZrcgyJZ28amlFrLQFG6gVIiPyQd7fZuJdkJKaUbwlkbzS/CGBQ+SIyYMmdaRpvAoa8CtE2rlh\nUNXUrpbjHaQZQdAKcNHv1TfmnWiPyQwz83PMTHdQxrPe71M7qfw7L+w4j6bTaVPYDK00VVUzJFBm\nObY9gbYFk+1ptm/fddO+H6Phxn4Okck4TurOwaUtsDILbyG2T/MIRuKQeT6Ru1ZqqC8j1fQLjGSO\niX/6cQTncZleArxmEdbSdvl7poAZLaWnFH/6wGqA1QWoHcwokfJ9Fvbe/QZfy/6Gf1r9e4789iTt\npyrB8Qxsv+0Kez93joWD1wgtxdpdM7x7ZhecVsKQW5sHJiGfgtlMXneWUVfdXiGH5foMDBaQik8L\nAcFgBH7Bxw98aTZ06WESmAczC7s13AXZIwOO3PkiX8++x5f8jzh88U0m3+mhXKCcy7l8aJZD5lFm\nd6/w48cfp7syH3PLCegvMEr8UgXm0yH3CcGj9XtD3ft1c7xxUamipGXD5ZzuiEnBGA9AnhP/JdaY\nUZBpTWYMhTW08pxOkdFuWdrtjHanoNXOpYkGmhCUkKIiA1c6BUdJo9ZonWOtpigy6YyrhRHllCIY\nS9AGMYgHgiV4WdLL3G/QWUYd2Umacd+yOEV6L/6OPmBMXIB7NyrXhCjT8QHQBG1w3giDOBVukGRD\nG3Ba2FHJkN6H1LAl4olBvC7ThC6nJVkFiBEyURok+6gxKm2rSHvW5GAaghGwUUcWgtNEP0dLAtUa\nlU4878YYtLVYazC1xM1Wq03RFrCxUMJSLq0FnfpbBlwd8MaTGdP4dQaFJE9IAavQhi3zM5y7cFmK\nOZ/akQBMiyz4p4FNMDEJhxU8CJ2vrHLfLb/kEfsz7udpDvXfotMdMuxkvN3ZyXP6Xn5y62P8sv0Q\na9WiMKOeBpYhTBku5nv56wf+nPNbd/Gbzqvs3HOenJJVpjnNHo67O3n9jWP0fzZJ309z5eAWTmwa\nYHKHrzXD5YL6VAEvK3gJkdtf6UM4j8w9a4ySjDVkYdxl9C3tALW0/dsGPAATh9e4a+I5Hgs/4d6X\njtP6NxX1D+DSFcgNLN4Km/9ihS/8s19xZdtmTm0+xHO3P0B4IYPXNVyeRgJlkt4nOc2ncSQmQfKV\nuQzLU3CiDbNwPd/KTx/5Khd27+AFfTe7t52jTY8eHc6xixPVMV4/eztrT8wL6HgCWO0ja4HUgSx1\nj/7kjkFi7Fqt8Eok2QmgcgnESXJEDSoY4YgFRXABHQugwXspBgQVnx9QUh2gDjVVXROCQussFg5U\nBKhqvDh5g9UEa6itRlnplqiVEpaXR9afVUUYDFHDIaoupbjt6gi++BErLISGKSXL3tAUZsZ9KZPc\nsim3J1CqYXT55nmQAK2xWBYVIlJN8M1rJKlnA5IFj2oUJbKPobnFDo/eRZnlDY+7+JlSo6oEgjkf\nVTIbTesTsJXubwCuaHBfx1s6v4LJjbo3NkBYiIc9RDuYJu9JqODGa2kjgKWa+zZu9j5r3hDGtlMj\npvL488eOeWJ2SSfjEG0VZIds9EP7WHEvYAQiJDZVF8IKXJ+GNzTuhYxX9hzjB3u+Sj5X8bk/+xV7\n7z3DxKUaV8DytglObTnAD/Mv8xMe49xLB+C3CPbzRURZcGtA5YE3OUgf6RJ/YMcp5nYsUWF5l628\nwmGeXbmPS8/vhp9mAnydDQjolbqI/6G2Kjd2fkxF2y5S6U/qETO2fWJlDZDF/irCjE7bKTZIyRug\nLMkZ0/q4OetsvHb+vkDep3Gkc+IYqV9WYWUeTln8S4aTt9zGT/Y/xtT0Gl/85i/Ye/QdstMOo6De\nBWf27eSJuc/xI77MiXOfgResWK5cg1HemY7ph4s3fzTA1+raGlorXO1Y766x1ltnbnGOolXQXe/S\nXe+Szc6gtJZOI1GLnluRiuSZZn52mu76LMNhD6uhXeQMB6XI5ZwTWSMAgaqq8d5jM91UT7QRPw8f\nW+saI0tfa1QMdCLXUBHYUTrRg4mTvQNXS4UoBIKv8HUVpY3R3NJ5ggu42lPXjuGwisoR0ewbI9V+\nMYpHjPC9gFU6ENu15xRFm3Z7klZnEtvpUCpDHTt4AQRXRxlJwGaBAqmI1PXowhJvFdt0PzRKzJEV\nwhojKFkEOA+qFNkOmjzPULaidiXBOawtoueBwhio6pJq2CfLW9jWFNI7IFauYuVpRF0OEdgbuQmM\nJ68pqamqqnkcxDjfGiOVHueiX0xoHlexgiZJoKPdLjBqlk5rgsWFzUxMFvQH64RrS3R7Jc7BYCiT\np80L8nYHowzBeSpfMXSOQaZo2wynNK28xbYtO8nynKosubkjMJro09/RiyqsQG8L9Obh3ATC4FBj\nbNsaCQipi2NAgJQJRhNPqpwkBOijGMm4PrG9phCm1VZgH3QmYD+wF9iJAHZ53KUl4IKCtwsB9LYB\n+6F1xwr35s/ySPgZt7/4Bq3/o6b6AVw5I++yeBSmz/b4yn/5Cy7u3MbJbbdw7ehW6hdyOGFgbY+Q\npg7J67EHWAyS/1TAkpIq1xkLJ6elm6RPLZjTcU908o/yWH3QSEyEHDlfMzAxIft9d2Dx9os8kv+M\nP/ff5r5nX4bvQTgOlNDZPWTuC2ssfv07hFnF1e2LPHXfl8S8823g7c2MgL0x9s6nYiSQZOSrksbv\nqqBuYHzF547uErN01SDx8iMxvYRhNZK75FbM5zNryXNLqzC0W4ZWO6fVLsgy23hIEiIjNXYRTvut\no+SvMJp2K8PksWmK0bGbrxFpvBIwCiurZFfFxAJQWQushhDNiOWTiJk8I/srmfc8KC/t610dodMY\nHzRSJIns4sYMOuVmpAYs0g3RKwc2YGICgqplP4N0j5R01G845o6AiRWOLJbPQ3yvtJUK0SmgSeoi\njUsHvPKgjPhaqpH4pjHzRwotPogHkPfC+M2tIbceTEa7ldMqoiG1gqA9wQ3B+Oi74mPuJ1mo1Yag\nxOrAakB5AdicZ9PcNK0iZ703+Lsv2U9kKJrOS03zi1lQ87DZwGEwn6s4duQ5vs73+Jb7Nod+c14k\n71dk0313vsORx15lyqxR7bP89KGv488aKSa8Ji/tS8vSle385M6t/OqWz7Ewc5WMip7rcPXdLbgT\nHZFJPgssgd+a01vIRz5iy/H9TgdhXPX7SAn4kjyhkYr0GcnuSkZS9CiNzyalULE9ML39Gof1q9zn\nn6X144ref4C/OSO73AEeugT3KNi2b4mjf/Iyh4o3eH3v7axtnYdpBZcLZE5NTK9P0/w3PlLCNc5s\neBfCBJzdC79WUMHq1QWeueeLPH/rvcxvv0pOydAXXLuyQDgxIefnGSShPV9DuICc5GXkmCcmxicn\neY9YCsZqjIPax/lNicTZB4VMA3pU9FQK77XIu70wOE0zL0d7jVCjkKI31JRViUJT2DZW5bLmJQjY\nE203sIaQWbw1BGvwJr5niPyfEOIOi89tqF30891o65Fu7ynQJPQkgVLxZ0TGSAysENUQGxhgqdig\nU+VjBM+Md5cP3osiJL6uRwrDjTKlYW5JjkLMaZKaZQSEyWMNCuUj2JQYYBF8albrzdyeInmULzbs\nrtB4edUxLxJf4pG8UV5yBAJ6BAT18VVDPL9jf42OrVLpMAlYpcYeD6NfxgtggTD2e1p5eRgDIoGm\n02U6i54QGV+xE306hRqM/qCWBR/X8Mh3OVa816MX8K8VqzOb+MmffZm1hSnemDzILYdOMn/oOh7N\nBbbzajjMr/yDvPrKnYQfZ2IEfxD4YqD1SJcj21/kIG+yhUtoPKtM82O+xEW24YPimltk6eRmwvO5\nzDPPAMdDtFW5yKiTeJpr/hCQKIFf6bUSKSCpYszYtoGRJDHNb31k3rux02QCr8qx27gH7vhIr/vH\nOFIBJPmXXYP+Jnh7Gp5RrG1a4OfzjzKcyzk9vYejd73M1ruEGX+ZzbzOrTwVPsdTl79I76dT8Bvg\nZICyj5AI+oxA0JRP/e7xRwN8raytEbynqkpW++usrK1Qzc8wOTFJvb5Cr9ul3WmTRWPauq4pyxJv\nFKYq8XlOkefMzkzT7a3hXM3czBQ+BNbX+iKf8zVaK8qyogwDoTnrgDYam5noQwKoUUtdOcBSeTE6\nOqM0lGPf5IgqUoKJFSaCx9U1dV3i6grvSjG3dFIhck4meB+lgAHR4BudNUBU8IFAhQ9iWI/SaGNp\ndSaYnJqmaHWweQtTdLAmg5NvoY8dE1nhcEgwXVCazGi8VlGjXjagoVa6iVtGaYzN8SoFAKmIKx9Q\nxonMRIPJNV5ptDKYTBoElFWFc2BNwBgn+xq0sARsC20tyklyF7zH+Voo1TThWajUwW9YHCRZzcgL\nLLERVFM1sVmGrh2uqokUPenUxRh9XCk6Rc70xCQTnSkmJiewmaZyhqJTELC4OjDoD8mznKwoqJ0n\naIX3jmFd03c1w1zOSeY9eYDFTZuYnprh2rUrN/W7EpcsbJwgUthOlZ4BMA3ZArRzwZkmACyUi1JI\n722CwRqEZSQYJXP3xGRKnVP+0Ak9BZNxtlKU6bEXtkyIVO9u4E5PcaBPa2GAySJDYKWgf2oCTmip\nGl0FtsOm2csc5E0OXnuL1k9rBt+Dvz0HryNfy7tegc9PQHEr3PHPj3NAneI3W79AvSWXID6LAF6f\nAXV3TWd/l/ZCD5sP8d4wWJ6ge2YSdzyH54DnLLy1B2rFqGo0HmjfW0P86EY6hok1F5O/SWAXmAM1\nh+df5n6e5t6TL8P/DSt/Da+9LXu2dxZ2nYbZ1jIP/OnTnGgf5eQtt3Flz06xODttJHkiY6PB/6dj\nfJDJfZI03iiH3CiLDA27Sx4cWQGjuOG5G2UuOs6fWQRUMivMLZtlsTtwFosVuqn8aq3F60tnGG2i\nVFGYAzaztPKCvChkP4yRudUaYaomUEdpxJfFYW0EzZQhKBubdMliTsfGLbIwj3KO4Ln129+lXVa8\n8ld/ic8y6eyoTYxNxIq/LNqVc7KPfjS/OgehFgYwQTpFCkaUGAdRwq6MPJB8aRSjIoTyeB0wUWqk\nlAYDykcAU0U5ZgDwqKAkz3QIIGUEAJNjG8/YBkYEzX0CIFq5WUueKUyeM2y1sFmO1wLEVd7RrTx1\nDdpGO4HYvj6BnT7Eqn2Un6YuoHNTEyzOTn2Kga80FCM59ATYSXEsvhUmb7/KffyGrwx/zKEfn8f/\nW1h7BnpLUEzCzF2w9eoqj37j57wzsYPXbzvM+dsOCSvrdeBEBeuZhIvjmv6Oec7Pz0vo6CHyhbNx\n27eA5QqmLbTVSDk4BLo1rFVIwnGRkaxxjY1shcRuGk9eIvPVRl+WucBMZ1kM7S924SS8eV3IZClt\neRo48DrMnoIt7l0Ws6u0WgPWpolt6dO3PnUO+zSPdEySV00EOr2CM9uhl8ElBa+C2zbBlW0TQvwD\nOUdngJPIYR8gAHs9izQ/SKBfOgblDX/fvOGDgCGyJheWlnxPA97TyKGF7RWbYwSPUl7kcGmd6hu4\nJVpiuFi4Vnhqqqqkdo4gmkYU0Y8wzmdoBUYKFEmFQCwAjOSHoXnt2om3V1076mh0n7Z1kTUlTKHk\n6aWFgSpdqyQmqRGPZNQFMgFdkninsnEDfsX/NwrxEvAlDFiCGoFfIQjgFYEvYXO5KFlM948zugQI\nk1sQUCzlMInx5STvIQSM0gQV8LEo0QCAYZzh5RrZYx27YNbOUXtpDJYwtYSrhTg/b2B+hXSMmkPR\nfPrmaEhgJK2j1NgRe++lHTZc8YrRGqFZSkDjAzb2nzAL459Kx1ioQYcgwJe6Gd+l8fkhsWWvAlNw\nqYDnCjDQHSzwxGe/xKm9t7C5c4mpbJU6GJbLeS6vb+XyK9vgKQtPIYXoRz3zX7nAlxd+xEM8yd3D\n48z1ljDBsdaa4rXOIX7J5/lJ+RjLv9hCeDETkONlxFaln2xVrjDyU0zeTn+opDwVBJKRgmbUhCrd\nD6NcJr2nGdvuRjglAT7peCZw648Z5LpxjMvrU7FlCbgo19KLLShgrdrETz7/OKd2HWLnxDnm7XUg\nsFzPcaG3i3MX99D/xTQ8geRwl2uEVXCd0bXw4RUmfzTA13q3K2BRcAzKAd1hl9rXTLYK2nWLXq9H\nu9djZmqaVrstl3eAXjVgvdsl+EC73SIzhrmZGcpyKKyuoKlr6A8rMbxWYhbvqqF0WAkGbY0AXxqC\nGknjUheRpmKSAlBQUkmPTpFKSyZlQkoMBGQLvhbGVy1dEb1z4EP0Bw4klpdzgeCIEhSFNsIEcEgw\ndj7gaofVhiwraLU7tNodbF6gsgKVtchPn0P9t/8K7jhG+N/+NUF3Cc6hvcOogA5OjOidp4pG/eBi\nlTu1gbcYbyS5CAFXVThq+UwGMVXOLUGr2F3RgHI4VzMsS4Y4rM6wNsdmOQGHdxXeCZgHSoCvWpy8\nRhUu0eK71A0n3uq6brrSaK3j/bUwMuKiZNSAYET7FoPkwOHnjnPpkfuEZ5RZOhNtsjwnUSNsq2DC\nezIbqEuPq2rquqJy0ikkywp8UKx5zXowrDtLS+VM2gKfGRa2bGZ6dvYTAL5g1OFxPIhmSCawDcw2\n6d61W8FuBGOaRub52ByRcwbOzsKFSRgm0CMtrFIgGvCHL3zHZXqJrbQJ2AHzE3Av8BDoxwbsveUt\nDk69wU59nknWGdDiItt4/ZbDnDuyj/7mKfGcmYRO1mOBa8x2V+AUnHtH8rMEB56o4dZzsOMUbO1f\nZb5zHTs9gM1T8A1krp2B1iPr7Nv/BkcnjrOLc0yzRkXGuc27eHXPYd64/TArWzdLHukVnNoCIbUq\nTl2wPqoA/n4jBe5UkYrHUbca4pzZ6tjFWW7lddSz0H0Kfn5GVCwOeG0Z/vxJ2HIEdtx3iX2732ah\nuMaVzTvlNXINw/Eew+Pn7pOXdiXgSwCU3103ValKPn7NqlHFuQFOiJXdcTAlAYxJmh276GYmgV5G\nmF9ZhrWZmB3HZCizVooj2qJUhgrCSDVKkhttjTRpaRWYLJPEx0jC4zWxk5bGKItW0rBEdmV0DrSS\nboc6VvmVjh5gUvIWEAtQwwFhWEmzF2Mja0til47FgAb4ikUcVZeS1CkrPolBUwcVu5D5Rk6iQrM7\nBB3A1BEcEplRcwwjMyFVydEBbyOfTummTX0qGKkAJog/j3iPyU3AtcSeGwe/4jnVhuAVSnu0qeWc\n1HJejbG0ijbeB4Y+iBCi8pSlZCjWWqp6SHSQQWPQKoj1QJFT2AyjNSF42kXOjk3znL7wScz3v89I\ni/joo5gh5NrdsHfuNEd4hX2nzxH+Bq7+LfzoXQkHM5fhocuwbwJ2HniXo/eeYH92ivN7D8ImJSD7\n9R68ncG7bXhVSUfISUZ5RlTesexgsALhKgymGDUrSTKQxFZaZiSxTpKHZAycbhHduHGo8V8DBif7\nUAs7aHyUQBVrFDqBCIrRlPqhprk0L37SSU86LhUSf1LDGA+Vh4u7IGQjLC8q+tlSkU0Oqe4s4F0r\nkv8TCPv59QVYSulEqu6Pd3a8+dId5wN1HXt1J59AI2s+40egh05gDtESI9B4aYk9voBeGlEwSDFX\npngfAmVdUVYVtXPRA0w369V000pjogm91qYBWhoWmfd4V1P7ugG+XC3KFGEmjd1isSZJ1FOhmwiA\nEQswwoySPuUNyws/lof4OG+NLtz3uk8Rt4lo2jiylkCzBG6FkQF/ArnwyeNLGHDSnVKM+6VbZR2V\nLjfIH8fGjYw3F4GtytVUtfysa9cAhQKGebF9iUzfpGAcB8JCYCwvGwO+Ipg1ulrH4/3fZ4QNRzTW\njcYeGY1mHZEkkjFeKyWdmm9uZ8dUkF1H5t8L4DM4vR3KXNi4bxacO3iQc9v3YacrglO46xmc1wKO\nv44sab8Esw9e5cvzf8s/4T/y0KWn2Pqba+hTyDS0Cw7efYpdB8+RFyXf+WzB6auHRUp9OUB3DWH1\nXmDkbH6j1PEPHQmQSsSA9PODtk3AV1qzjzO+Grj1hu3T7/+Qxjjjq4/E7UvgCzizA+ocVsGd6fDW\nbYc5u+sA+XQJCpZ0BRUAACAASURBVMrVjPpcWxiDxxEQ9FwF1QWk8pKuhSRB/QcGfA3Lim6/jwmB\nQTlkrbtOvxww22nRaXdYHfbpdru08oKi1aE9MSnAT3eFwfISq6tL1GULpWGy06I70aY/GDI7b+mV\njvXhspiY1546yg9lYR7ZXNHctyxLMbov2uRx3xIbCSfop1JRdpLYXx4IoucPydMruAh+VfjI+gIa\n0EvUixalDK6W6gdIu3VjpaWq8kDa57ImZBKUrcnIskK2M0YAvcNHMPffR/hX/51cppFmrdLuKRXl\nLZ6qrnDeiXzTaDwOFxwqWJS2DYMgeDEIdgRq54TdYDNCULKw9KCUdNv0oWY4rKhwFAp0liFdc2qM\nr9FeEpigPAFpIY8R8KqhUr9fgKzrDcmOi5Ry8XlTTQRMlSTimfmv/pf/Fe0cr2xfJOy5n1aroNVu\nNcdNW4NRNSZztI2BFlTDAYNul95wQO2h1oZKFSx5w9VBzVAFDBlOCztjYXET09OzN+cL8p6RvvpJ\nPhhNjNkBZp8AXseAO4GjCLNp80AWMWuFBLbXEKnDby2cXIQ1zWiBmyruSerwh072ipGh/RywBSam\n4XYFD0D+9S53Hn6Wx8xPuJdnuYU3mGGFLh3eZj/PTd3Dz25/lF93Hqa/ZQoWxHsuLouA906bjfrV\nIdIvAko7Wv/5NfKiYtBv4Zfa3H/wSb6s/pYH+TWH/BvMDlfot1u8xX6eKT7LE9sf5udffYyrwx0y\nT68WcHmRkUFn0v2n8/FxAUUJ9ErnPGsUTWpywCwrzA+W4AKsXoYzfiSIvQC83YUt70Cn12WWJVqm\nBxMBCiUvN7yR6v1xf54PP9LC9oN8vTZ6Z4xfqzc+BoSUCijOVxU78wT4qih9lATEaIXVisxo8kxT\n5IZ2K6PdthS5ML+01hhjKYqCzGYYZTDaNsqXWBMRVnGeY/IMm2dooXE1noZKic+jQmOw0TMLMXb3\nCeRmNN/Jh0dr+QY4otGyEzbBia9/FYXGBoUNGo0R/xFrotxRZIooG7/uFaoq5flKg7YYE1nAvsK5\nUr5nnkaGH9AE5WOhROZxaYKWAAIvch8jHR+DjqbDWqG8QymHsgLsifWNMHUbxptKMlFJBo22Y53L\niPcTgQsl0n6l0ZnFOGFsmyyjMzFJ8IrghQXSL0sGZRXNkMXCIBVesuTFhiJrFbSLFigxY1ZKsXPr\nAp3XcnrDmy1v/31HAsqzkdXXDCxwjZ28Q+v8EH8Cjr8rdhsOmc2m12HfS9A+PWD7HRdZzK+g5oaE\nqZZoBq97cCfFH3FtDk5HOX0zagiJYXCFjT4rKRlJTNnknZI6fCXQKyUYqYRxI+gVEyXnYWBgTbE2\nmOJ6Mc/qdsv0rpodE7CjK93oM+AIsLgH2AHXzAJrTFMNszF/5Q+qNo8vsdUNP8c+800dKcFLsTkB\nUzkwLQy7Q0gjg4eg/eBVbpk+yVZ1iQnVpRs6XGIbp9YPsv7UJvECbQMvTsPSTkZ+NuOSoI9iDfD7\nDR+ki2OCgRqVXmR7pbPVEG5SHIigpk6FVQ0haDQhrvXjPBGLG2Xt6A9LhnUd02YlMsoErJEUH+Lr\npRr2TyyMe9/IGmvnpHhaVw2byTPWFmssEDVMVS2d2FPXW5RI5hpT+ERjCiMALEkfBfyKCboaL1hB\nc75SN95UHEmMtnSQnLxf418cJY0j6Wb6GWWcTgr6wvaKQFgYreFTfErEgfes6V0CuWoqNwZ4eU89\n7v2VXgPVGNvLMRTgrgHCghjjh/Ftxo5CChHjf4//Pto2AVw3Ch3Ht0ucOnlV1TxjfEhxJ6RrUcv+\nKm1vIvA1Lom2jJp2AHUpjbCudca8gA11acRGZAGZSmaA24Ae6GMlB7a+xsPqSR699nM2/X+rqG9D\n/RK4EvL9MPPlHp/9L55n5cg0Zyd3c/mubfSenxUA7Uqaq5IvYY+NxY2PctwIWv2ukebujPefxz+t\n3X1v5kjHMimAVmm+VTVwZhsstQTXfFFTz7eoJ1sSttNS4Dzy+GpAOqydjw+s87slpO8//miALx88\n15aXWZjM6A8GLK+tsd7r4WdmaLfbBKsZViWrKysoD532BKbVIq/65Di6/VXW+qvYPCNvt2i3MorC\nknU6VEFxdbUrzCnn6PX7BFeSWU0IQu3WSlhWpXOx8j6eZMXEC9Gka52mQAkUwVeECHz5SkCu4Gt8\nNaSqhnhXRcKlIWhN8I4kTgmBCHzJ5G0j1br2Xjz0tXSqKWuHd4FeNqQzLJmoHSYE8A5XlTi1jv2f\n/iXaWurVq5TrazAcYILDuSHDUroa9gc9hqUk6cZokXdojY0LAe8DTiGy07JmWFYMhiXD2jE1PY3N\nMgEBg2JYeaGSmwybifFwWVb0B0NqF2i3PdgcVVk8gYwMtIre+rEOF4Ohi4HrRh+E8cBZVRWuqiUZ\n0j4mvLEilbrJIIua//1f/Nd8/pnnuH7PUXZPTdHqTAhQajKCsTilcRSimEAjzQ8swWeUtaXsV6wP\nSwYBVnsly+t9tJlsWiyHEJhbWGR29pMCvkAm6zZSzp0GtoLeBXuVLHofhc7nVtmx/20Ott5kC+82\nevwzR3Zz6o5bWD6wGT9vIVNwYh66u5DglPxV0oL375vopXJ6hkyacX/VDCwaOCK+M4cPHueb5jt8\nY/hdbnv9LVrP1pI3zcGRO85w8Pa3mJla5d2FLai/DCwiviVLzLE0Ocf8LV0O7YI7zkgip4C7DCzs\nBG6BC5Nb6NHma4vfZyvvUjCgNzHBlcVN3MczfGP9e9z2whnxIrgM0xPrbLnrOHvvv8DcpiUGiy1+\n9uBX6J6dgTMKlqahmkaywSQ3ScHh4xqp6pQCURjlPKVlSMHAFjABrbZAodfiMzvAogWmocozBrSp\nQy6yzYbg935B59NS3QpRxnLj4p4xJtio09PvlBRoSWr+pauZBv4b5/ifTfJVERaljR6ChVG0jaUw\nhtxq8syQZ5YsM2RZTpa3KLIWhSkiU1ck8SJTDGgtTDBtNCbLsHmOtjZWf4WxlQoT2gioqYMSsDYI\nsBN05HZ6j1dBJPAq+Yh4KgWZOIvE+c+gTY42FmszgtZgLJkVME97g/cGTY74dHmCr6AO0nXYB7Qx\nhDwn0wajC/qU1K6MZAEHSuFUQKOxXjeJgtdAUBgtclmj/Fhi6qUzpXe45J2TUofEdIi3homXFlhK\nHk9+aSSmhFJNLJHtpNuv0rFrsbWoPJdCS1XjlMY7FT2pPd7H4kvwlM5h0eRZJkb/SqFzS12WuGiM\nvWf7ZjYvzHL6wuU//JL+2EdirYz+bBxq4lfjxmKBg+YxHfkyyoy75igkiboKTEBoIXNfArWimTJd\nRh2wVNwmvfi4FCdpH1PFd5xlND5uZB/1oBzCUgfeVaxdXeDkzCGOZ8d44NHfsuW051s/hPM9aGk4\ntBvU12D5/g6vZbdyqjrA+qWp2Mw4xbdxb6vEMvtdfl9pPs4YFYxu1nzZIL40Xm4sQmsWDil4EOyf\nlBz47Kt8vvUk9/A8+9xpJqsua3aSM2Y3z0/fzVNf/AInJ49Sqxy6Co7PwGArEtN6yFogyR1v/qhd\naOYCrUL0uZV5Rrnx3ZLHpUSQGhzFWckHgpL5RoASi/joClOs9jX9csigKqmDF7gvFVgTO8uYCHxp\nMaVfW0ctr+A3LYxZdDi8r3GuHuvmOPK3aua2+JoqAV4R/GrmQFK+Mco7pKuii803vNiOGB3ldA7n\nNVkwkTEGDUwTWboy3aoYJxmzaEmG9WGDpLEB8xLoVXtCLeCXq2tcJZ/T16NOjo0pW6CRc6Z9TkXs\nDbem4+NGxtYGftUYkJXM7X2SS6a8LITm/eT5YwD12PWRQsR7v6LhA/9qNm9ilcQiRYpFqVvk6Lw5\nBV5pISQkUE55lPGNN+XNGcl7NhVl0yergRXo7oN3FmXq2ArcETC3lLQ2D7BtR/CKcjVjcK5NZ1uP\nW4qT3Mlv2fzrVepvw/GfwbORZHvoeXi4B+3tjtv3vMatk6/x7OwD9HbMSNOoLIeqhcgmUrz48Gbm\nH//4R4Drg8d4wcezkUVogBJWt8KJCWERTwBZXKfXAXpebA3COuLjeRkpiC0z6iT/4dle8EcEfIUA\ny8srzNppyiqwurrOaq/P0Acms4ypTGH7opFf6/VwypIXBf3BgLocYpV0f/KuZn19jaFzKK2YmpzA\nFhOcPneBYVnjnGcwGECoMFpM2RPVONGbTUxgQIAyrR1KGZROFReZ7mSO94RQE0IZg0JJXQ+pyyHV\ncICvS6zW5Ll0C3JeqixeBZRyWCuV0EF/iLU5QWkyNLVPxsLCKAg+ULqS7vo6ucnotFqoPBMdDQ7v\ne9TVOsZoXDnE9fvS0RAY9Pv01rsMBn2GgyF1VVHXFcNen3arjep0oHKRii2Tu/eeqhwy6Pfo93ri\nAZYVoE2Ugyip8iCVjMzoyFQzrHfXGfbW8cqjsoyAIsPLSkWJhFO6TxKp35EO7hXjYFdaIMj14YU+\n7hxaeazOxNA5RaaQOuU4rLFoEzjx0GfY28kxeQ4mA5M3HdOSzFRhIp1cvN7EIybDUdMva7oucHVl\njdVezeSka7rRhBBot9vML2zCGItzN7PqmyaiJB+cQMo0mwXduAN4FOa+9i737/wlX+AX3MmL7K7O\nYZznWj7Ha/owv9r2IL/44sO8WdwOlYI1Ba9uhrDEqLtTyYg98PcNUinYJ8PlCcgnxcT+Vpg+cpUH\nW7/icX7IsV+9gfm3sP4krK3A5BRM3gOH/ulZ6q/8jKWZWRa4znYuUDBklWnemdnG9i9cpn265LEf\nwV1X5BQv7IbWn8LaFwre4BYO8SZ/znfYt3aObFgzaOWcndzOXG+Ngz8/R/g3sPJruLIKnRy2H4Vt\n717lq3/1E85O7uaNfbdy8rZjolF/K4eVmfh5LO9lJXyUIyWL4x09SwhD6HZgCdy1nAt7tvG23cut\nx84xfQy+8A7k63FhomHfbcAdcHV2kXfYwXI5IzSPNaBMAe3GlsKfloWJzAEbZZiMkgiVft/ICrux\nwjpiDyj+R2s4j+L/NACjbRNoppVIHFvW0DZial8UhlYunR3bRZu81SHPCwoTuw2a1MlQYbNYFDAZ\n2mqwBjKL0TYWGogyCEYylxCTIxcl3kpLEhdifMPjY/MTjMyfyZdSPLbEbN7YHJsXDdivjLDJrBav\nscR0Umh8DXU01JcFvEOHGhM0WmXU2mBNSxqy+KGAIdpIEkpoDNE8AYJDeUVQGm2ISUJomjomuWTy\nsNkgXbQ6zsnChAsqVvfHmBBKKYIZA8hUSjuUyKCcRpsMYx3eB7I8o9PpoJ1DeY9XUDlP5WIi5Wrp\njqlUJG9LdmS0Ju/kzGyeZfnyVQE0jWZubo47j9zCmYtXNrA3Pn0j+WS5UR1jFVaY5iqbKDdl5Htr\nDk3DuVVZis4Ct7eAfTDclnHZLrLEHH4ll+cPoNEScpmRkf74dzJ1Gxyy0bg4gXBjoH0joUhJxwd1\nEfTx+YmBFD9Q3YfLHTgFa2/O8OKOe3ii9UVmH1jlFn2axYOOxXeQXOs26D+a88zOe3hKfY7XVg5T\nv9KSwvN1z0i2njwOx6X57+f/khbqSRI4fvu4ATB1w/4VwBSozbDJwjFQDzkOfOZV/qz1bf7Uf59j\nZ15j5u1V7LKnmtGs7pvi6L6XmG8v8d17FK+t3Um4qOFSBue2QLjGqLNm8pW8+bHARUBEpNkjSETw\ndQGjm0I1OnKDUv1CiRQ7SgdVLOwGDBqFjeyt2nmGZcmgqqhCEAg2WpFkkelljUjbjRa26+R//69R\n15ZY/h/+BXSkdVTAEYKAX97XIwZU3Ndm56Wq3tyUvuH3CNgkWWRqAuWCsKRCcBJjdIRdEvuLgOjQ\nx9EdRYKtRa5IVDmGOL+Os7uixNF7iI1NxNze4Z0AXa6u8ZUAYSRvL5eYZfK6MC7/HFmY1D7enPh4\n+Wi5ciNLK9x4a0BAZP9uyBGaYxw2vsZ7RgQE01WkVFMukfuS/FONPz+dj5E1QLpvBH6N9jMBYRIZ\n47FXnsRebhrg3LSRCqVJi56A+h0wMS+5wkPAo44td51n3/wp9mRnmGWJkoLLbOLNI4fo1ZNs5jI7\nOQ+vwdJJeMqN+puvADvPwpFXYdvqJbZOXmKiswZzASYUZBqqBJSkuSvNY5+eNeY/jhtHOkdjvsJM\nIquFhXibA2Uh91KlXQ9QmRj6UzO1a2O3LiPAa7yD8D9I4CuwdG2JLa6itorlvMP15R7rw4rZqUCR\nSU278ope6Vjr9Sico9vtUbuaIi+YnJ0haM3y+jrd5WWUVhTtgqydkeeWwXCIq2uqEoyRqc3Eikui\n6FpryPOsua+qKgm82qKVdHxM7c4hxAAnHR+Cq8XPqyoZ9LtUgwHGQGayEe1aGQgarQNK1RR5C20y\nVlZXqF2gqB2d2uPrmnLYJ/jAsNenHgxESllXKC+eB7PB0Zmfp7AdsmAIZSWGoGWJr2qUgrqs6He7\n9NbX6XW7DIclw36f1bVV+v0BSkGRF7RaLfGCsRm2KMiyrNkHqzULC/OgLbUTX5SgFVanZE+AQx0C\nJkDuWtSDHv1ygF9fYaIdP7r2EmyVgH8hRR0pEY11ehlRx1P3GqEMB9Ceuiopco3KNcNKWAxGK/HS\nCQGjHBpP0cppdQrQmtoFrINMy2LHBweuQrvI1ANAEjaPpgqKfu25vLTOmYuXKX2Ond0UK2+JbabZ\ntGUreZ7T799s4Ct5MWU0Fd9iCvYouAcmH17iwR1P8hf8R766/iO2vXAVc8rDEPxWxWfve4l929+m\nPdWn92ibC5cPiNfgRQtLm5CQtsqIAvxBScmHHWl/c2BSKgKbgV2wc8sZjvISR06fwnwXLn0Xnrgg\nLOztwOPvwNZWYM/+s/xnd/0/7L1wST5LPxA2K67dMsX5ezdxsP0OU7fC1Jn4drdA97Gcp3Z8llWm\n+dbad9nx7LuYlzxqBcIc7P3MedY3t7E/9Fz7T/DdnuRCLeBPl+HwBGw6usTRB06wr3WKN3cdJWxW\nYta8kipYHzfwBRuXdLG1cOiK3OgSuNOG14/cxgutezjy2VfZ/a2r7New+7hsbnaAfgzWv9TixNxh\nXuZ2Ll7aLkbHV4lSn1Td//2C0M0ajZHwjWBW8+eNnndj2yRmUWreEde4/5eRZCmBMEADuigF1miy\nTKSM7SKj0xKZY6vIaRViUl9kORlStcco0C5KIEXSmOeFwJbRxyW6bEXAZ2Te7mPCowBljXQXCxqD\ndDgMwTUAWIiyGxDA31iNyUTGaEwmwJdtoU0uDUAykcUrJR5gWqeFp8wlwQoLjJDhK09mFcYqQqYw\nWY43SpRlQ0mAGu8yJZ0qhaUF2gcIYiNAsBLvlFTpx4+rIhnLqxtPFN4EMIkBEf1v4q4GPQLKNlTm\nFSgT90VbjC3wwZOhmTeWTcayUleUtaeqPaUTtlpwEt+DMSitG08WH5PqctBHEygi+AiKxx97mB88\n+QyD4ZBP70iAUk9+xGZa58tdvJHfwrtHZ5l6rM++i/AXv4BL67C5DYv3gXoMVg9P87q+lTPsgbNG\n5ogujIohyeg2+UvBRklcyUZQ6/3GeMz8MBX3xLAqEUBmGa7NwBsW93TGiV1HmTnyVVxH8/BDv+DI\nAy8zt9TFZYoLU1t4IbuLH+vH+DGPceXZneI5cgroaBhsip8tGfmmZDF1krwR/Brv8tWl6aq8AaD7\nOEf63uRxH6fBTEsTg8NQfGaVByd+yZ/wfR767W+w/8GLw/9lyBc8iw+s8Pm/eJ5wr+Z6Z56z9++k\n+8om8fR5pwNuEolt+djnvPmjdtHI3hLBhzgVRLwdlfyfYidGpfGJf6NB+fQcATSsMgTtRbqoFHiP\nIzCoK4Z1YnwF6iDMMSJrNMsz6dxrRYEx/Nbj6Jdeg6lJMY8bB2JIYIyUkhtGWAixUBznNp0ALqJE\nM0Vd8QGWrpFeopNKZ1zWyHVVUVWlSOhtgTi1RAAszq9Ac5k0qpUwAmi8Co2/Y3BjwFeUaIYIdqWf\nydvLN8b3aYfT6yBLeR+iyb+LXmd1w/pqjP796Jikzo4+qlxGzK0kmUzNa8Low4z/RG1oljXe/bG5\njeOOCpSX54qRg2quDzYwxtI1p5rfBSAbO7BjI0GzauyWzoVSTjzizM1kfMUd2LD2ngEWpenVPg33\nAV+rOHT/Kzzc/jkP8DRHeIUFrjKgzXl28NLEHfyaB7DU5JQwhGElM3AaJdALQB9M7bA4FG4UHtIX\nkvGf/zg+/SNdP8mmZgoxjdwO7AI1DZu1eIAuIiEDJJReBS5buDo/ducKozg+3jDg98s3/miAL4CV\ntR6rZYk2YnJ7addlVnbtZNPMJFbaLInEJGh6VcWwLEEpis4kVgdak1O0JieZmJunPT3N9dU10JbS\nefJMpri6GlDXRTTxVTFBkYplWVUyOVlLCiIhRClIECN8mR8DXgGMWvwSapwbUg2HlMM+g14PX1dk\n7TxWiWRBqJXBKycJgBWj44mZGa6urXH+yhV2nb3A/f/v3/DTf/5V3uqtsrK8IomGNhStgvm5eaZn\nZyldoNaGeSsgnSoKvPPUVU1VVQLQ+cBgMKS/3qO7us7169dYWVmJYF6Q7mTGUlUV+voKj3z3CX79\n8L1c2rMTbQyddovJiTbTU1NMTE3hEc8FnSm0yghKupmljpRKgc0LOsaAUXTXV1lbW8VVAecdLdfG\nZla6TkbfFh+EVee9VKOEXi6GptZAVTtqVyHLEUflBuBKjG6htcGYKGlRBqOFJRF8jVeeVmeSVrtD\nQFNVNYqB8AmUItQS0HVs11xHqaULmtJr+lXg2so6p868w7nLyxTT88zXLtXOmirT5s0J+Ord/C8M\nitHCdwamctgP6nbHrp1v8bB6gsdXf8Sub1/GfxvWXwFfQ2d7oPVwyYN/9Tzrt05xwW7n+/dspnxp\nSlphLU0iqH4CdT7qfc4ET5sEFmBRXWM7F8nPVFQvwWsXxQuxRsCvp9fhz18Ce86xf/0C9q8d/iWo\ne1Bsg62PLJN93fH0sTvYdNs1Zq91QcPZTVt4WR/hNPv4J/3/xJ4fXIR/BysvQrUKxSxM3VdT3L8G\nb8LxHrwd97ICXujBzrdh6k3Y9sBF5llCzQfCJBIDmu6HNyuQp4AxiLd1WK/gTEZ42XD+tn38/NYv\nMl9c58vf/Ak79l2mOFlBDW6bZvVYm1/t+gw/4Ks837sX93xH/BfeBQE5k7n0zfas+XAjJRY6VmBH\nI3V5fS/oFXzAGDE4blbA4+QTFCqMM8bkAR0bfmSZJssNRStnot2hXRjabQG+8jwnz3KZR5HtMQpl\nc5TVaG3Ex9GMpORBGYyyYuIeExyRG6qxj6TQWgokKkAq0ysA57FJzoeC4DEKcm0pdEahc4yOrDKb\noTNhfelcmLdieSN+MGLSLMfD4EF5lAXTsiL1tBayHKcNqqxRJicoKGvx5/DEbsExVTDei3F4CHg3\nYt8FJR191Ri7QdhsxMQipifKgwkobZsKecMG06OkgsSCU4kNoBszYaWFsZ0hSa8PA6aLjHlt6PlA\n5b0ktx4p2BiLrgLayXtpLSwRlRlc9AU0mQarUHhcXbF/z27uvfsOfvHrZz7aC/wjGWkhmSSE6+AG\ncLEFb8DVl3bym7s+ywFzitlvfJfZiTUW7w4sXgIWwN8Fq49O8NP5z/Nr7uetNw/KHHEBGDok3Ung\n1wfNFeNsrt+1oA1/x+M3bptArz6N3HK4CG/OwDPgpiZ4gkdZ2j/P68VtHGi9ydy2JRyWd9nCBbbx\nOrex+toik/vX6H+jg9uawXMKnuvAhT2xQp28TDoIm3qCkUQHNrDOWEXKJMmsOfmUKT5+sChllZns\no1Xi0XMADmx9k7t4kbvPvYL59571fwcvvgUXPGxTcNdpmFSBYwuvc/e+F3hm/l6O798EWxDPx95k\n/Fz52PuNM4luzqidp3aezJrolygr6WTvGnuWoIgAhiICWjSSvhQbrIKgAsEZlPJoI+wtFzyDuqRX\nlZS+pg6IXE0rlLEYa6Xxk7bRDxCqB+4h3HcnqpSmVa6upHu7F8afinOb+JS5aJwfvYKJOUTsWm6i\negIAN+IkGUK0H/FjxCMBgZwXL7HMWVSQ69IHR5xoUSrEn4xAowDKJ/ZkApbCRoliynt8ZJs5YW0F\nJ3mO5BUCeqmosggugnobZI1uzORf/k4FY+9H0kbvwsjjNxW6XRgBiUS/rVgYb+CtkLQp8T+tCEEK\nFiH5Y4YRDD+OVY2DXAJMjRhjoxeM2zZBWTVKnxEOppqfo5cLzXtITT8CslpH1vB7rRo+vqEYGban\nAvkksAlmC/HvetCz+67T/En7+3zTf4d7z73IzAv9pvp75+GTHL3jVRanrvI2+7jMZrbvXGZhM9xx\nCU7EZdV2YM8UsBeWZma4zhyDcgLWVRQSBEbs3yQn/8fx6R7p+sloWMUsIIDXbpibgP0KbgUOAtsC\nTMULYlULkeItBW8YeHMRVnMphgIb/SN/f5b0HxXwVXrPoKrIali5tsS75y+ytH+Z1bkZVAxcWkPw\nUrHBGor2NFloE/wQ22qTT0yRK8gmJjDtJVbW1im7PVqFxepAVQ0pS0WWtYR6Giu9tavRIaCtaei5\noskWA2PvPQonEkhFDA4qau4d+JKqHNLvC7vKVUPyTBbw3kNVB+k6pR3OVVRuiMlzlMqYmp9jm1Ko\ny1eYfflNtPPMVJ5t23eysLiZ9W6X60tLLK+ucW11nanry2zZ+v+z92bBch1nnt8vM89S690XXADE\nvnMDQVJcJG7apV5tdbTt8DyM7QfPg/1sR0w4wuGww36zI2ZeOsJbxHTYHeP2TLt7uqWWqJYoiYso\nEiQIggABYt/vgrvfWs7JTD98mVV1QahHapEQQ6NkFO/FvXXrVJ06lZnf//svWyi1xmlDWVpqtbrI\nYrzvdVmKoqTVarOyssrt27dYuDNPmqRMTEwwMjpGrVYjScSzK718g4ZKOKIrXN61Gw9UsoxKJSVL\nEpQ2lEVHXcS2zQAAIABJREFUPgqlh8STKC2GwlphrUNpT5YZTJLhVZWiaNMtNlhaXmKj3abeaNBs\nNkmyNMgRA3BWBiaHly6TCuCXmNVbStul3emE9J0OWWQNqGiEHLzJvEherIMkMVTrTbJKHa1T8B5b\nOAolJs3eChVdFk/5m27paHVLVtslC6stzl+5zocXL7Hadkzk9VA8y8Idx+T0FrI8/zlX9Kc1ItAS\nKcM5qJDwNw3pri4Hax9yjOPsOD6L+ws4/z14bVWmmAMX4ZlZaEy1eGjmAw6PnuadqSe48kBTWFjn\nE7DRu2Wwo/9JjAED9TCvKhyGEgrwXWj5zctiJ/yvcrGEl+HO/wMfzMFyCTvrcOAyjCerLP/jWf46\n+ya7Zy4yxCq3mWKVIQ5wlr2XL8HfwOXvww8WBeIZn4UX78BMk3uuw9FQFTWwqdk0P3+86/fpjcFi\nMrIMFqTwuzQO7yjWp4d5o/Y8fpditjnFw8+e5IHHbmCcZakyxGlzkDd4mp+svMiN13YLA+AMsFLQ\np3RE351fleH36QzpaP/i16NCwK/oBQVxwzpgYRv2sr1+pBIfx1RrsjQhzxMBu7KUappSyzLyLCPL\nErJE0m21NgLoG1lTTBJkgzJJoZUhCawurYywZb3Hhn4zXvy5ogSQwU240iIJCbt4oxSJF6ayU47U\nBODLp6QqE5ZXVkEnGTrJSfIqKklxYaNuPGKer3sLKmkCaW6gLANrFpJEoZIUjYHUo0wur2lDY8uO\nNCcA46IfVGRJ0CtwjI7VRQAcgweN+KlF2+IIipkAcgVz+9AcicwvYdNpvNYoHdgLUdYqF4e8f1rL\nxkh5CgcudXxr9g7/vJJhracM8h4XutDRQ8cjZmoCzknxWnS7VGs5GI3WUHQ3cGWXFz7/NG+89Q5l\n+VkCiQfniJIeMGMX4eYWOKUo30x5Z+oJmttX6IzkPPnNt9j65G0qGy26ec7c5BhvVx/jZb7Mm/PP\n4l6vSvLfVcDFBMaYxhVBorvHoEfXJ1XgxICHeMw1RKd9DeYTOF6XQ63lnHriGFf37aYxusruibPs\n4CqjLPII73GMd1g6NMxF9vDe9qN8uPMwneGmnLpOFeYfCK+viYSwjAN10Enft8Q6KAObjjsInS7G\nskcT6Q6yNn8aaYiD819Cz+sz9L+YgClus4tLVC+08MfhvUvwIydn7iMPXIIvvAn1L22wc9dlptUs\nbLEwagTn26jSDySAfuf//jK/SusonCXxfb+63jOSj2n/p4qekXyUvyvfZ/uI56DHDcxBymjw0ClL\nVtbXWN3YYLheJbOKFIVJU9IsD8m4Ue7mRb0WmEbOFsE+JKgHAiNKDWwWPPSALx+ek8GHPox4/ZaB\n0euc7+85lMYE5lSayPWneqzX6HcVGg5OzoHqpTfG6y6azod/BnYUPnCjXASgo2V7AG56LCsBmnrG\n+s6Ff/ve8a2VABBrBz28bPi5798sOB/TNvvsL3pMORcaPXJcCRbrm9j31B/hrAp7ODzjATlp/+Xe\nbTzfu0tP2bjph8THu/ve9FnGA39zbyuFcFP9OxsESDX6fu4Z4zOKc0SOzGVhn38A0ofbPD7yU77M\nyzz74c+o/l8l5d/B4g3xiW08BDt/5zZf/P1X+IvRJh9ykH1PX6bx9Q7PdWDvNSgtTI3D5PPQfUFz\nrrafC+xleXUEbipZMroxzCQm9sZ58bcA2Gd3RJazRjr9w8AWUDthqg5HgSdBPV0ydGiR0ZFFqtka\nABudJgsLY6x9MAI/MzCk4P1hmNtFPzgtekjHOuMXX1t+o4AvC6yXnqZRlEXJ4vwdbt2YZXx0lEQP\nU0013nfpWofKq9QbDSpZgi9beGvQWQWVSbJjojX1ZknhLH51jcd/8DP+5sGdeC/Ak3MZxhiyLEMr\nTbtbYIJhpLXiJ6WNxaSx+07o5oROPQjYUhZ428bbNVqtNdbX1rBlQTWviXxQGwqrcIX4QeR53xur\ndCKx0UnC2PgYzeER7L79nPnC02T1CnsUdLpdWu0Oa2trLC2vMHL8JDev3ubU6irzK6vs7ZR0OyVD\nzS55nvdAula7TdEt6RZdFhaWWFpeY7pQHJ1fZf3zz1PJK1JEOE9pSzoH6pz5r/8L2s0GjTTB48nS\nlDwRiaekhWm00XTLUgB8n4YFpgwS0JKiVOQVkdrU6kM4n7DUXWFxeZH1jXW8tTTqDVSS4QKgpggp\nlL4fbeucpVt0Ka10mGRRFY+AaBYtDAbxxrHOY31I8tGGNMupN4epVhshpdKLEaeV981ZLzHMiBGl\nSGgdy6sdrt++w5kLlzl97hI35+5gKo3QTXMDmy7ZfExPbyHL7ifwFZfVQY18AjqVDesoJGMlW7jF\nDi7D+7D0PvxoVWoXgNslTJyFQydg8vfm2D56laF8WfT4NQW5ho2oxx9cqD8JPX4AbmIS+xqsU2eJ\nUdyEJt8OexrwwZqUEA0koIrdyLz7Y/jxTVGpeODEOvzhKTjyOuz80i2e2fEGB69fIL9Ugge71XB1\n9xT5OUdxCt5alnARkHJlZBFmPgS2wdEGXFiTRkUDeLgKjZ3ALphlmiVG8NH6rOd303OG/5RHfxMr\nx1tHaMNzMDcE72SQK5bdGD987ut8dHAf+5NzTFVnSShZYpjL7OL87H5W3pjE/1AL8HXZg7stj8My\nfZ+vz+amxDlHYgZ2rKpvFgyxu715DHZmo0RZBdCDkEYVu7aRvyfpgiJ1rFZTKrkhSxSVJKOaVsiy\nVGTxqe6BXcqYIJ036CSRcJJIO9Aag5YiJ/SDtdESZmKlO++VkqwBH6s5+axroNQaW/pe2mNMk1RG\nPL60ScXQPs1IsioqydBZhUq9iU4yvI5Gu1ZYTBpUogXQUZpEJXIewk0DaC/eYF6jnRg8R7lle0Pj\nXRuNxyDG0iYUW0pJMSNSxv759zqeilCqhMrDQ0g4DkAX4sOo1CB4qBATrwiIIddAv01P/BzG44n/\nmOOF773Krrk7zNUq/DcjQ5IY5l2Qu0jhJswIi/PiSaah15DZvm2G9kaLVAmrYaPd4uGHHmRyYpyb\nt27/ilf0Jz3i5zZuLNeAeVgagtN1GFUsVqf47pe+wa0HZngnP8ru7ZdosEaLKtfYzkke4r25x1j+\n4RT8SAkLeL6N+Hqtsjl90Q98/bRHTCqLRdQiPaPkmzuhXYcFcHMJS783yfDOeQ5zmpf4IZ/jTbbc\nWIIC2uOa9xtHeLX2eb5z+Ou8mj6HXa8H7KoB3a3heNMwpGFCwYiSvb8Oh16qwlwDlibk/HIdoc7G\nucnTL/I+TeALerB9rG2rniotaqxjVi1uEW6WfYiyC9xy4OcgWS6p23UqSRsqVsC9JB4jHufvM/j/\ndEfhxINrMMVXGLrB14/+2VU+ghNxbeiDYnI/j1FamgDeopTDmIRUQeksS6srLK2uMjE6TGYNuQeV\nJJg0RRuROPpAHVIKXOmwpcUWlrIoKYtCpIFO1AmRjhYTGm0IckKBt8GbMkr0AlgT79cDgsLrMEGa\nmWWZvNta9dYxqWlKUU46gldxOCEBQRsEviJ4158/Q8NACRDXF/cFH6vBy7eHkwnoJa/JYb0kMlon\nabrxVjpPaftfrfVYBzak7PaM6QfArjiH9Y4b2GH46OP78+Asec49qPHuS/ZukOueD3Fv0GvTn6no\n79XfV/QPENJA6YNfcUY2RgJz7u+Izy2h569rcsHzt8P4vls8zPs8uXyC6t+UrP4r+OkZOOnExem5\nC7C3C9t33eTI86f5rvoqW/fe4Ml/dIKh6ZLmaaAA9QC45+HSs9t4NX2Wd7tHWTozKZvteQ8uNgru\nnhPvx7rx2/EPG5H0ECWOo8BWaNbgUeAlMF8tOPDgezyWHueAOiuqGDyzzUk+HD/Eu7uPcvaBo9KU\n8cAbDWhvR+qXNrKmxybaLz5+o4CvaK9cVYpO6blxc5azZ88zNT1NvV6HisYWbYkZr1apVmuYRGOV\nxSsP2qCMnBKVOLJKhUpRY+d//ycU125xcnKIhV1VyrLsSf3yPEcpaLc7pIkiT1PZAAdKr/JgIsPA\nObzvhqQXj3YF3nUoyxZra0tsrK9jS0ueVwILKFw4wecE77FWpkSTpNg4O4a+P0pTFAXF8BBGKdrd\nDl2v8ElK1hxiS1bh8++dx2vN/3LkWW7PzdHuFLRabWa2zFCpVESeohRFWeKcY3VtnY2iYHRymq/9\nb/+StNXi9te+THtoVBYpHIUTL7pybBzvnACL3pMkSLGhoCzbKG0wRveklJoSlA7G7uLLVVrABzN/\nl9HaWGGt1RZjzk6bm7duMzrUZqg5RJpmmDQN0lLxLXBYlAldtV4LRgVz0wBaedBJinMSOKD0QKGk\nFEp7TJKSZlWStEKqlfgT0JVURgfOapzTlNbSLQtaTrHS6nJrfomPLt/g7PkrzN5ZprSBOh8YaT0q\nc5DJNpvDjIyOcf3alfvzIfnYiJ3QsKAmoJKSnA6VogNt6HSCPUsYXWA5+Pmm3YKUEqMspF7kEr2i\n++5j/Cqb30hrDQWZ9bCo4AZcW9/B2foB5g4N8cBL8xy4Bv/ecbjVgfEEMWV/Vp7vyqzYUkX4rYvU\nZH4ezAo88f0P4G+hPC2Nw8rekgMvXpVruAvFwDrrkdARX4L6HIy04I9eg+sr0DTwwDHgq7DwWJXT\nHOZSsRt/RUt90/LIxB3p2/dawCOEMjh+lY65D39v6MdC3wSfw+UHgBTWFN2bFS4ceogLew+TjLVQ\nxlGuVvHXU9GQngi3Dx1sBPMfFukbTvYB6M/a8BGoiB6BoSDqg1+DkkF6v4uejRHgMkqBjma//d68\nUgqjDJlJyTO5ZVlKlhnyPCHLk8D2ylGJsIGTNAuJjNIkMdoIdKKQeUkHY1svt57prQ9FiJLCR2lN\nQkjVVbGs01IIlSUmyDyV73vdpMqQJylZmpOmOUm4qSTDpMLY8MGXUjuL8mUAo4z4W6HwGgHGAHA9\nY2jnlXT3lQMDJoMsSyi6GS7z2BKMtoEhB145nCtRiP+jVjE0xqN0LAoU2glw55XHCeUzsLiCT5rS\nPXlklFFGhm+U7+Cl8Ium9MIENChtAws5+IPZhJe/9kWef+s9/qdmldIJsDboU+McGEOPwWCdk8aI\n9yR5Lg0l7yhabZTSlA727j/Inj17P4PAF2yWBC4Dt8HXJcI+zcBrWouj/PTYC3xw4EEmG/NUTYuW\nq7DYHmXxwgy8pSTh9jhwyYENnlpY+vKHCJDfLyZQLCEHWWZhjvU5tHdCLYF9nolHrvNS9gP+wP4l\nz138Kc2/a8EHQAdq2+DzX3iLqadmUVXP6q4hTjz1Odz5BC4ZuDEtUZA7tXRd9iCpZ0Nhjl9XEk51\nQcM5DZenYL0CPjaKNhfwP399+FXOwz1+FhWY6yrAXg3KIUM+7pgx8JGVK6IKzGhQE1CMGNaTOi0q\nsJEO2HnFrrzn17kWRGDFh2ZAlKXrGAISgz96e0UfJGn9JoGKTFCix6BCKYcizB8aCmsZXl7jv/oX\nf8Vf/pP/kO7WKSwCtutE9qhKqR7og1fiU2WDvC+oLGxp+z7AhETG0Lgtg1E8kWkW5nxZH/ospZ4n\nWBnkfcF3Cy/yzCRNJSE4Dawr6/CqxAdwLHphKj8ID4WQAIIMkvg6BnhRA+tKf6/X3w/G1GDXe2VS\nP5R4Ab5w/exVpbBewglK3we8hL2liD5c/acX5vlIqRr8OshW69+995p662j/GfevB/qfyH/b6P3F\n3RuIwX1vQLL6nqH38KmMa9bAn8u1p3tpzvfoz32KY+C9JJPXEFRrE9k8M9ykdrWFPwE3LsJxJxDV\nMpB2YM8JyM44Zh6bZXWowb82f8jKQ0Mc232CxvW2WGlMGj6Y3MMrvMh37Nd5/8Kj+Le17DfnHNIc\n2KAvj/8t4PXZHrHZ0eumAOOgR2Gfgich+UqXY4+9yjf4Ds8XP+bQ+hlG15ZR3jM3NM6p+oO8kj3P\ntx9v8X7nCexSCnMKTg+BG0OusLVwrGgv8IutNb9xwFcbaFvRsKu1dW7dmmNuYYWRsXFcqclUSX1o\nmGpeIc1S0ArnZBPmlMYi0juFSE+yPGP+T/47zvwf/ze3E0viHc4KG0QkKQkENpFCUVpLkkYgRUsB\nUAZKrffS8VYOixjZdzqtnpcVeKqVGpVKHbymUxRolQYwKpjlR+8TrYMBpBPAjvBzG6jDKDpeYZXG\nJ+JF4tKcd/7z/xhVqfDIUINLFy+yMDvL9Vu36ZQlo2NjVKpVKSqQBXC96FIfHWFqaprL/8M/ZWRh\nkfauXXS6XUrn6JbioWC9ApMIRlcGc+KweInZvGw6rNOgUpwT7wIdkmxi59176HaF/dXpFNy8Ncfi\n6h22bJuhVqlQtDustjbodAuajQa1aq1nXmy9xWrXY0UoJZp42/MGECaez3JMkoFVmJR+xyxQxpUH\nqzTd0tHtliiTiP7fSYx9WYhhamkVrVbB2kabOxttrs8tcOHyNS5eu8Ht+UXWO4VcU4EZFhCziGGC\nh2q1ztjYxH38lMTNdETIA1XUF1BUoQVuI2OZYRbScXbOzDEyCXuuwpqTv9oC7G0A22C9XmeZYVq2\nCut6QI8/OAHFzfs/dAMcF7m4M1+Dbgtu1OAjmD+3lbceeYL9lXN845svM1VbZM9rsGcOaTs9Dpdf\n3MrOn96gOgYz1wWm8ciUPJKDGgWWwP8LmP0+fHhLjrZvFLZfB/17UN0Hhz+A2a4swUPA4QqoPdB9\nUZEd9gw/BsOzQA3cMVh4doTvVV/gdfcMV8/vgQ+VNPdbXWTivhsoGkysuRdYOGgE/ctq2+Mx4nlc\n6R/PO7i6FZarcENJ8uSMoWw25JAthNFwBUEOZy205xEzh1tsZnsN0o8/e8O6MgRrwMc6supe29wY\n4y6/GyiTNt3TK4UyhsQkIh1MUiqVnEpeoZpVqGQpWZ6Q5JmAS2mCTiUxUSspjIxOMMZsSi3U2vTY\nXtpL8dXrecQdcEB2dGQTaAVB3uO9wgQvFVVYklSCRJRSpNqQ6ZRMZxgj86JOUlQqckBcPwxFSpW+\nz4pTAvw5FT2Kw4bdEe33BRBLdJAhQpoq0iTFJkHaqLooXWJ1MDvGIPLFRDwgjUabuCbHLnhAsWIq\nrxImcWxguCBfJySoRTnL3b33noFzuAw8AcAzCqeM+NSQ0Cbjv9y7k43ZBbpuIJXZ9QE1h++lOlsH\n3oItHZU8Z2xslLmbG2gNaSrr+dTMVp75/Od59bXXfplL9z6M6OFj6TO+wubVabgwA61cPvJnNKs7\nplidnJJ9bSRyrSO/X0NYxNMaZkehtR9hDQyC+T78oebTZ4hGfk9c/wY7xQ0YNrAdzOGCvaPneJZX\neebaWzT/rEXnz+HqNTFlnhyCqdOw117jued/xLlsP5f37eHOni0iAdpI4Ahi/HzMkz+8zsj4EtWq\n+Hi2O1WWFoZpn2rAW1pup4ZhYS99YC4iSHGe+iSBwQg+xu/DetBCFsZZuMEMF9jN2r6fUn16mUcu\ngToL1wvYlsIj+0A9C2t7G1xgDzfZCreU/P0GbA45ief815DqGBqdg599Bb2U18iejQSfAb5PD7Pp\n50ES/LHkzpLiLa5hpXNsXVxBeU/l6nXWp8dwSgnolWaYRPaQPvhT9TyoXASmQiCTt0HOKDc3kGJo\nQ2CTMUbCoIIkXpsI+AukpESDLUbwTpQJttvFl0UA+AXYN4nBpEbYxtaF1PlAydKhsRLCXLQfkPZ7\nT5QqRnN7AZHia3AMIjPxHMeHthGgU2AF2hPJZwgGiIb10kjoC5+d75vr95Iae2/WAFw8gHf1n8Nm\nGLn/vAYe55ccvxgg1ge44lrcg5E+1geOkFu8j+8/gpJrNrnv5vbwseZ4/NZAQklKgSqchIQXm7k3\nLegF3ia2JMHyHb7OZXbxWv0MMwduonEsMspH7OWd1uN8eOEI9ns1aZycBYpV+vHhg/vlz56i4Ldj\ncAwmBwdT+zEjzaDHLfsOn+KrfI8/WP8rHjp+lvRHVkySFTywZ57Jl15n5OgyZSVh5aFhLl4+JI2i\nmxncGUU2GTE45pdTE/1GAV+RQxGzkiyKtY0WN27OMjI+jh6rM1pPSJM0IOeS4OIDfRkt8kExoPSg\nRA5CvUr76aPkJ9/HhuhdHYqGxBi8VuLJEoAV55Jefeo9WOuCNUnQn7uSouxQFiJBXF5awTlLtVoh\nSSsoneK86mvTSx9bGcEI0pIkKd2ypFtatEmDubomzXMKK50knaa9SUgrhXWW9R3bySsVRoxmb5qw\nZcsWWmvrbGysM7+yQtpu88K3X+GVb75ImueMjo0ys2WG4ZFRkqxCZ/cebLdL1xeUXlEqjUW678Ks\nEjWJ9g6lhW3gylLMisOilZgUtNC8HS4UHX2GVlkUWOcoypJGs0FlqMbo9DipSUiVRlnH8uIiy6vL\nlGVBrVYVZkVisMbgvPiwRDNMHajb3gtVvFavk2Q5vuvQBmI3Kpa0DugWJfMLd8jRNCsVtNaUpRWj\nTecoipKNjTZ3lpaZu3OH63MLXLx+gxu351hZa1FYL+47iZKCVSViuizbiN4x87zG6NhET0Z1f4en\nlybl2rA6BHNQ3E64uv8BzrGfx546Q/UL8KUFmLkon699wzDxLPjPw7XR7VxgDwvtcVGyrADtWDTd\nzfz5h7y+CJjFQqUNLAuD4FYNTkHn7Spvb/kczS2rlNMJn/vDn7Hri5dpLBW0GwlXRrbyfvUhtqzf\nIn/S8dXLUF2RumwncGgf8BhwHFZeh+/eEGzHA5cX4I9+DM2HgJfgwduw7R2YXYPpIRj5HPAluLTr\nAW4dmmLXU1dolit0dM61ynbeyY7ysvoyry19nrWfDYnG8grQWUMWcjH67rMgBiWosFkmMlhIxA5H\n/IT/olTfwcSweC2GYst2YHEaVsfhjBJpaKxTu8h7u+6gXAM/h7zhcwiTI1KPPy15zic34sZZosRV\n79/Q34z28CQEEI8vR+u+qboP5sK6Jw0RFmeqNXmiqWUJ1YoY2GdpTpblZJVcvBmTlCTLUGmKMgaN\nwSgJStFKYCOjBGvwUZbiNvfTe641SuFMAL4CKFMoBuYTj3ZgrMgJTWwKJHK8VBtSJUElqclDcm4Z\niodoGlzifSkFkQ5FiBK2U+k9vrCgJIlJOx9bD3idQJrgkhStM5RKQoqjQetUSkqtIJEZ2HiHcVbA\nJW16SY5yokOREoAwtAqsi0TMiSM7LiSe9VM2df9q7Lf4w5lx+NhBVuG5ROaCl6qr0y7pOEMXRWGl\nqSPsjbDxVr5X2IHGWQHFfAiL8c4xNNRguehSyXK0stSqFV54/nn++T/7Z7Tb7V/xiv6kR5QEdpAP\n/xryWbcyR1zfCrMN+EjBDuBhZDO7E5ikD4LdRtJFzgCnEvhwHJaygWPE2/2QRkfZhRn4Pv47A5VD\nXcEkVLdssDu7wIN8wOg7a/BdeON9eMPKM9yyAr/zPZja4Thy7AwHRs8yOjLPne1TMKFFlvEcqK86\ntj95nodqJzigzzLJPAB3GOPDmYO8v+8hLj9wEOoBqH2zAa2ZcL4H59JPSwof/R5jM8nDbQUX4Mr1\n/byz7RgPbjnF1/79n9Dw8OSbcGwOzAQkTwF/AO9ufZDjHOP8zQNStNwmbMBj0Mmg1+P9L1Tj/hv6\nwFY0uL8XL6cHlPu7fhbuIwB/bEiIRB3EauPloZy1pw4xPD3GDmslBTdJMEmKMakAZt6G5xUArwD4\nRP/XmPpdOvG5KsqSoiyC35UwwWKSfJqmYrUS1p8oQfQm1CLWYr0VyNGDK0tsqBOUMSTBf8wYh1EG\nHGIMr0TGbQhJuoAJXyW4UQA4nO2dI4iJ6jakKw54eMXERRcTGDd7fNngXWbD76Lvl/MyO/eArnB/\n3/t9P7G9P7/3b/1vB+SrXvXSMXsplXdfNPfqav094+69+8cZXH3GVJQu/n2PrUJnvA/CRgaYwgSW\nsr2vtUKcn8PeMfYqNmCVJssMU46mqJkWU6MwOifTQApsB9R28NOwUa2xRoMrt3dzYeEIP9kxy0hj\nkQTLSneIhZvTdM7UcW8bsdH4GbCwgZiszCP75dgQ+LTXi9+OX33EXWqKLIo1GFOwG5qHl3m48h7P\n2Z/w8ImzJP+npf1tOLMoW7AjE1C50eXxykluHZ3idPMItw4+QGtXE05puFNDipPoI/3Ljd8o4AsC\nQd9LmknHORZWlvnwo49Iq1USHmC4PiHghrVQFOKJ4jxpkJK40vaSFpUF4w3gybMKRid474hpUVGW\nAjpIGIqBCF6LNQVGDW5aZGEryy62LGlttFleXcd5Rb0+RJ5XQBu6hcgurFeCk/n+AmTLEmsL6BSS\nQILC4nBeSW6h90jSlkGnKZkx4hFgLd4hCWKZsArGJsaYmBjHWsvi4hLLy8t8/X/9lzRv3GL98Ue4\n88IzjE+M02g05Pk4hJbtvTDdQudIFt7YyXIkxkjKl3WRthCaRMJEMzqyr4ogc1GSgBUez1rxVlNa\nMTE1hc4SXCKpJqlJyNOUvJKzOL/A6sYaWSWhqlO0UejUyOI+2CULskfnPGmUpyYGXwRzT2Rx1KEr\nZ51lZXWd5cWzzDVuMNEcolavo42hW5R0uiUra+vcnlvg1u1ZFhaXuLO6xsraOq12F+dV8L3R4BTa\naxSh0NMiZ5AmmaJWrzE2fj8ZX3IdyohFR4iWX3NwXVOeSzl95Aivjz3Dzl1XePw/eJ/KqOXxk+Gu\nO0SPf+O5aV6tPs0JHmXhwy1S5MzGx42dmdiv+2XGvSR+EewJxl7MwmITTldhQjFf3cb3v/YVZkcm\nOVF5lN2VCzSnVtmgxhV2klJwcO9ZDn/rPMOp53fflZfMFvBfEhBP/b+wcUe8u+Kn9jZwawGaC1B+\nVWMajokTMLGEpJg9DjdenOAnzWf4AV9kR3qFJisUZFxlOx+UD3Fi+VHWXp6EVxCj57kO0sFyCG/M\nhCezFo6cDtwGp+gIfHUHbpHmm/KLsQJikmQl3EKUPU16XRPXgW4O80oe0xlwXfABdGQhfL0TvrbZ\n7L9aybrCAAAgAElEQVTwWTLs/vi4G+QaBL8iGEZv0wmIpfzA34c5eeAxRAYCmYPcJFTznFqtSiXL\nSRLp+GdZRppn6CxBmRSdpgKCaUWCgE9ayXWvA1jjjMKqvul7z5Ms7uo1+ERYvdqDCkb8RkGpXAhP\nkdeQaPEIUUkijLAAfJlU0oGTJEUhRY+1JU6XeJ0w9nevULl6iSt/9PvC3gosJ494inmUrKXFOrZs\nYbslyiryNCfLElSWQFaDylAkC0ghpUNCr/EkWkQw2lm8K8EF037l8YLmiSwpKP+1RiTtESSOb0SQ\nMor8p1+A9BkeDBjal8I2hk3Fjg6Rb8JM8OhuQbe1QVFaitJjvRjaE1hwMW1SKTAYlE+gVKQ6pbXe\nCuExVdprOVm1SukNrfV1Dh7Yz5EjRzh+/PivfE1/8qNAuqkFMi9BWMzBD8v7ud3AU6C+YKk8scHO\nB86xjetUadGmwi22cPHmflrvNnFbEqgoONGEpe30Ux0jMygWMp90MaOQOTKa7EbvyXTz9yrpeTen\ntYIxFplkFq7A3CU4EWR+IE2RC6swdQlGZ9tMjM7TzFdQVYffpWEb6OdL9r70Pl/jb3nR/YjDG6eZ\nLObQOO4kY3xQOcIrtef53he+wgccw7USWFBwagz8BFLkRfAovoZPcl6NE0hsUi1DuQLXhuE0tN+q\n8fros4zX5uGw4sl/cpz6Cx30ksOOalYPZhyffJS/Vt/k9e6zdI434RQhxGCZzeyMfyin5pN5laXz\nPcZunNl7YFbAuyMrLDJmZeqJBveDzQYV4iyCT5NWKK9xCrq25CPt2L++RrcsxYbDJBJcokWH4Gww\npw9ph85avB0AdlxMXCwpuh2Koiv1REguj1NaTJNP01Tkls7hlUd5A8r2GE8u6ANL7ylLS2E9pQWv\nNEmak1fqZFkFvHiOCRUgsPOSvkWIRxoQVmZNAa42vacBYvIx1THILXu3PjAmVjCSdG8D0Gdt/F7k\nnNb2G9ebAK/gAxb/vcmqfhPYFUGtaAsQJZabWWF/37gXo+tjJK27fx/O18+XO979Vc5dwzoKFO0A\nYurw/KNUP5RRGKMw2mDd/d5jxYZpVwDPJQO34PbsDBem9nBt1ySjz6+w/SP4vdfE67au4dB2UC/A\nyiNVzlb2MssUO6Yv4aYVy60Rrpw5SOdajp8z4ud1FvgQOOdhPoJet5DmakwD9tx7Lkzv8bO7x/0N\n1/jtiIyvDBIDY8CUZ2h4mT3qAvs750het7Rehn99U95+gI+uwjdfhsphy0NHT7JHn+eNyQ1aUw0Y\nVpAkUNboA18RZPvFANHfOOArlvGJ92hbwsYGF65cofCexBeMNSuMj45iS4/VBaX3GOVJE0NSBA8u\nIyfQOY9xGmc1mangrZKGjRaKsg50YxVW0LIosamhLBMBwGyJVgXahy6LAu9K2p0OG+vrtNsttMmo\nVhtkWRri4aEIUb7eK7ROMMqjrKWwlqLbxdpCFmSTgDJ4VeKUEf28F3mfSTTeOUyQSFqrSEl6UotY\nHGgtyYiVRoMtD2znwv/83zL9g9fRX3+JrVkmTDYlwBTIY2mlyNIEqxWlhjSkFcVI4TQJ9O9OB60U\nOk0ojabsdsE7rC2w1lKUBUkiIEdpSwGm0lRoz86SafFGsF7SeTKT47XBaUVWrzOMp3urzXp7nSRV\n5DoXkCnq5kNXzYb3wlmLSRLSPBczZH3XwkqoqLxno9Xh6uVLnO20Ga5WqdZqeGUonaNdWFbXNlhc\nXmVtbYNuKd04W5ZI/HCIzA4U9NQkpCG9TWkxg47PsVKpMTExjdYmeJ3dj6HoSw+iNmUZ1ltwoQ7v\naub2beOHT71ENWux/niDQ9vPMrSwiiod7eEqt7ZP8krlOf6Wr/HejWOSvHEOQYp63ZnI+vpFihk9\ncIv/HgS/IqDSphdF74fEd+anBiwsLs3w6uMjnN3+IMNDd8hMh9KlrKyMsnPreUYbd7Avfp89Oy/R\nuNRGrYOdhNv7x6lV2wwPrZPVYeiOLLMgJvXDDWAIbu8aZ/WxJsPPLZN2C7qVjIWpcX5SfZrv8hV+\nMP9VmuUqWdbF2oTV9QbLV8ew72TwFvA2wvbSHtw0sgosIQDSHaTyaiOUiSr9OHgB3+X1d8J9IgDY\npi9NUvz8NMXIItPhOBWE0jWJiFe3QqUBw6k8rZFwN5eGALQKLFZgNQ1vZ0wdi8cclLR89odzrs/U\n4uNd27uHx/c+tz5GymuRrsQWriIYzieGSq1KrV6jWq1SybPgoZWRJhk6TdBJgk5StDEhsdFglOmx\nXnupYiownoKMUaQs9IIprRYGVESjeqAekiwpRVaJV5I4rJUhSVJIEiomJ8lydJbjE43VHudLjCvB\nljjtKZ2hcfwtssUl/NoKZU3CX3Ae7zWlEgFk2e1w7cY1zp2/xML8MjWTsntmKwd2ztAcraOrHu8S\nMGBLhVIGkyfoRAlDWN6VEHlfhgAZK2ufjnWEnPd4lsSnZzPbTmSQ4UfEgkHmEqWSYG4fE7zUwL2k\no66UCunGwgbWlLS7q3SKDh3rKaw8vve+V+BE2Y2O7XyniZ8NraDbaZOZHB2kryMj4zQaTSaGR3n6\nmWc4ceJEXw7/mRqx2IlgeQPYAtkY7DfwLCTf7LDrqbM8XX+dYxxnNxdpsso6NS6zi3dnjvL66LOc\nHzpClwq0Fbw3Aq1JAj2Yvkntv62s/GVHXEMGNt+b5tacfrHkelWu9woxYRCj9jTZXFJpIFPyp2UC\nDo11BhqK9D/boDayQf2BZb7Kd/lW9y/43Lnj1H7ShY8AD+M7N9j+hVkmjsyjcs/6ow0uXjsIFwzc\nTGFhUMYRQbt7pV/+Q8cgizrKWVeBWZirwckUP2W4PLyff/PE73OnMc6pyQfZNXmRJmus0uQyO3mX\no7yx/gwX3z6I/5GWEIPZEvwCfc1j9OT59V3fZUC17n11CQwWlH30pg8VAbBB3yqQuWNAlutVv2Hr\nHRudDitra3SKQkztE9Obm5VC5haESeus7TXaI8U4Mr5sKYb3Lnp/BRAoSQxpaiQhOEvJE0my9VbA\nrxIrygoHBH+zyLrqOg+FoygdaE2WV6nXm+R5VeZjE9Yz53tfg+N/71QpfCTFDkgJe9BTWAojkBfk\nmtF8PkJSYX/vggKjdDYY2wsgFhvWNoJmg0AaQQYagbQw9w48engmgzLGyPhSm59pDxj7+WMQKJX3\nLR6hv04PhuP0ZPgfe5SBv+kdU/5dcY5/en2WZWP4H7dO9e6jlLAT4xkW5p1I/+9fbzGe3YFawa7D\n7SG4BK0zwxwffYxX0heYeGmZLWqe7fth+yVkuXgQul+DkwcPcZmdPMePGeMOHsVsdYozhw7xzrbH\nOX/qAO6jXFijHwJ32kiL4QZ9mWNsroaOX++diXXCIJP37tcQX0d8J38rlfz0xiAQFUcCiZYlrQZZ\npcMIS4wWi3AFLi3K8hjHGeDoAuy5DhPlAiPJEmmlI9dUCvSsSnT/8f9dTXWEfnncIdCVvaJstbhy\n5TJp2WW8UWekOUqaN8gTjXelMIWcQlkEzU76JsbaG3CWVIsZlHex6wlai5+LRJfrwPayfdZXUmJ1\nITHquKDvd7SLLmutFolJaDaaGHHG7S0SFgL448EWmEBPjmmR1trQaXLS9VaK0okXle4lyMjUqrX8\n3gQ/gjTNQoHQ9ygzJhNKtknw3tP61u/SMLJg9+SCBhKdCAPNWVkEFSjRL8pCpjw60SQRdEt0MPb3\naBu8Z1x/adK6v1g57ymdRTsdikGRrJTW4pQCJWwslATfOw1ZvUpzdIS15Tu0uhskuUFFBDh066Ov\nlwsGp8YIS0/pWCyGKdE7iYPWCoemdJqFxQ02Vpe4nQqVvVs4HCqAkx5bSvdOaxNknPK6eiPMt8Zo\nkiR0/sJ7ERdKYwxT01vIKxU21te4P2MQJAkyB5bALsGlKryrKUYrnEqP0Xq6wpV0Bw9uf5+t229i\nsCwxwjn28bZ/nJNXjrH+8gi8AZwG2uv0GUGDevy/b6WO3fhIix2Uo8QJNMoyLALUzQMZFBo+mhFf\nlVmwZ6rc2rmDW1PbUbnHd4G2ZuELk9hDmtnaNI8eOcG2AzdIXcGKGeJKsp1H3EmeffQdRh6CZxeg\nsiFv3yMJjB8F9zDMT4zyZ9U/ZqSxTJUW69S5wg7e4xHev/oYKz8eZ3luEioeCiXr9TWECTeH1FkP\nAq4CG5VAnhqGzhSCGN4O70cTQZ4aCCPL0Gd6RdvQZaS4WKUPMg6+v3ePuEGIxd8wEs3zgNzGKrBf\nwQFEvjQVDm3DYeLrOFuDa9uhk7N5Ybvb0+2zPbxzYVOpcAP71J6BfZj74ve+N+17NA7lBdSI/ViP\n6rGK0Io0S+WWJuRZTpZlJGlKklYwSYZPpQOmdJyPDMrrTQlYsgYFi3oVk6DAqbDR1joUIVHqgqw1\nvj/Hei8d9kRBog25yUiyDJNlZEkFnSaoVGGVSBmVd6jgReitx9Lh7H/yx6iNFu3UoLsdDA5tHZYE\nD2y01zl15gyvvnmcyzcXKTpdxlNDZ8dtRpXD6BlyJ8b0PnHYMkObWm8eNkZAPbzCK4syFkyCd9Io\nkarUhaaCxzjVazCglchBFcIIC+9XPHMqrBdKJUTIrCedRPUKl01SFeTcYjzKdSnbK7RtgbNlSG0E\n72yQWqp+o8UYPKX4d3qNteKzs9FqU61UUMZQlF1SA2makKUJX/3a1/jTP/1TVpaXP50L/Vcag6BR\nHWGGTsN4BkdAPefY+cw5vln9N/yu/2uOzZ6gfrqDWbK4YU17/xs8su09Jirz/NUTnjNrR/GzBmZT\nuDQFfh6ZxyKzLM5znwQ7KK4n8flXBl7DKDLHDtHbSbtKz/awWEtZYJxbzHBo31WGDsBTl+FNJyva\nbuDwFHAA5iZGmGWKtqmw84Vz7K2cZZu5QZUNXvA/5nPn36b2pwXu/4OL1+TV7ZuE6oUuT/zj95h/\nZJxz9f3cPrKdjZ1DMKbhTh18kz7w9WmMWPxZ+iEGc9BtwtkpqGhKci4sHuL24w/w062fY1tygwpt\nYfO5LVy5up/WuzXcawm8Cpx10FlEQLsIasZj/HoYX/gAfIWxGereRPQMvxuQo0XQS8GgcbtRgDY9\nkMobgueup1PK3r7dLcQr0aQDPMY+KCLeXjZIyK3MJ9YF0qPCO433urffds5KEzUxVCs5jXqNWqUi\nKX8evLI9L2GHJ8H1wacAZDkrFiDdssSjqFSqNJtDEvJlzKa5cPDWP5cBrlEDc15oAvX8yny0ru+v\nQf0z7HsPI81420tbH0xd7zHABmWPhK8uJj7G3/kBBpfvAVl9wItwfvoNijiib1jsXQ2uDWrgwtDh\ncQYEk/3z0GuiDFxhavDKGrzygN5j9U4qBZpLecZs2v+sK6VCY6f/+lCSEn3/fL7iHKEZSL4AvwwL\nTTirsMcTTu04yrd3LaFGPM9+43X2PnWBobkuZV1xe3yMU8OHOa0P8wV+wkPz50jnC1DQ2pLy7vDD\n/F3zAt95/BucsE/DkpKt/Z0BCw426INe8bVHT6dYK8TmTPw6OG/G5vvgV8NvJZOf9rjHnB8+nM4Z\nHEb2rgmkanN7JwHS8HaWOqHESP1/D7Bdxr/DqY5xeKDtPQVC8a16hW5tcO3qFd45XqdWrYIxjE2P\nolMNiSaxjixEontvQ7qfyOuMEY1+muQUhUP1inI2gUgRaBE5Y0G3K6byJkulU4FM9u1uh6xSYWRk\nDKM0RWkxCqyN5pOgTOjg2JLCCVLtXIABTELsnHjr8drhEaZBlqV4FJ1uW6ZY60NymDC9TJqIDMRo\nkiQVFpIR/ykthlcY50JnwfQWKAXid1Y6yhDTrrwkhHkbYu6dx6QJWkEZIt6dt5RFQbfTxZVleBxD\nonXwJnO0i4DUKkXhrPjDKPE404gHm7bgLXgrhQ7Kk6YJzfEROsU67aJNTdUwWJRKZGHxwuwQYEuQ\nOo8KEhkfmv8OlEUnwiBwPpC9fUqnVLQKT8cXAXCMaV2EKOWwVXK+l5Q2eBXG/yRJRxhfxkhSGfSL\n7KnpLdSq1fsIfMURwaQovbsJ7Sa81wSjKDsZZ2cf5erju3hz/ClGjUTNrrs6N8ut3HlvBn6qBPR6\nx8NsgTi3zyOb6TZ9+cq9Nr6DHfkIygze4kIWx0r4GosYJT8rgMvTcCeD8whjaVTj0/DSmtBebPDm\n8he4cmQXb1SfZtLMkSQl665O12Z0Tc6RF04zcqPNoRocOhUOtR/4Ciw+3+Tt6jFe989ytbODXHXo\n+Iy57hSr5ybhhBI21w3gppKXfic8xe2I2fEkfTBpSU43FxP4qAm3G4G6q4AhSOryEmP9U9LHvGwB\nbh4ByhbCOYrnhnCuB7sfEfSKbK86UvzNgNoOM1U4CnwO9OOW5GCXxswC9fo61hmWZ8doX2pg30vh\nZwreNnBqSzhE7ARGyVLJJy/L+eSHD3ODDoXDvXw6YpJj/Jz6TRskj1IGbTyudNIJD5tTFTriJk0k\n0TExJIlGpylpXkEnQiNRiaw3Woc5wcXNdBgavHYYJZHwAopJaiQKlDZ4MY8UGYwXZoPX0cfE47wU\nVAmGLM1I0wpJmpNmqcj0vcf5IFENKV3ee5R1GAcOh03A1jOwbbwtBfC3Yvy+1urw/slTvPLqm9xa\nWqPwigzLSL1KNc9pdbp0FlfksQGVAbpBktalKRL8y2RK1sR0YrzGOYXyJXqgjFHeYbwXkEnr4EcW\n31OPRpO4AGhpZM6PrDlilH2fRQcq1m69QrcnmXEeSkV7vSNOeBF0RAwGcFr8PY3BaA3aiPeKKvE6\nDQ0wz9LSOrV6g0q9iUOxdOcmd+7cZLpe46Uvvsj2bVv54DMJfPVKfWTeGAYzDNuAByE91uap6ut8\n032Hr5x7Ff4c7Btgb0Ey7hh+suSFP/wZ+qhjIR/jyhM7WD89KR39aw0oRpCOQIZMmHcXi7/K844F\nUY6AWw1kYZiUmx6HpCo9gDp9AsEcbNyo8dHBA5ysPsyhY+eY/p1FjnVh/7vQ7sL4NtBfgfLLmg/q\nRzjNIUbzO7yQ/4gn/Fvs7l6i5taxNqX2WkH51/DyaXgHWQkfWoVvfhvy3SUPP3iS/ck53hz7PBtb\nm0HGkUER2Whq4PZJBQDE8xMbTvE4YR+w3oRTdQEMFhPWPhrm7O7HODvxmJzOjpwnLiJJl+8jCb9r\nK/TX/+j5+OstLj1grccrJU1g2+fafBz06oNfvZUgNEfjfXWkhOkwpVmLhGholBI21Xqny1qni1UJ\nOq2CyXE+QanYiAhAviuliRAZtlb8AINzIZro9ajwRpMYIxL6PKeSZ+RZKqxlJ9VFaSNjNZzxwMYV\nPyx5vmWvee7I85xmc4Vms0me5ySJGfDp0gOs6AhY+cDc6p8552PHt+9PNugtuem/HpAWJJ3W9gAu\n61xP9hhZXsIUo/d3PcbVJvnjwHwd3jdpTveZWT4inVEFEv/GE1Lefa8u0Erdtcr3LoTwg2hxcBfY\ntelv+v/+uN9XeE79CwyrFH8yPR7+NSDH1XoTfOg9pEbLWnPfxiCw0EE2rrdhdRjONGFUsTI0wY++\n8RJLUyOcqRxk39bzjG9doE2FWabokPPH7T/n8M/Oo38A/gJgoLkfXvrK6ww/ukyZpiwdHePyxQNw\nTsG1FJbH5Fg91mvlrufWRSakWC8Mfh/nNM9ma5DOwPeKfkLkrwmY/40ckVjhB24FFDbUMIp2q8Jt\npriVbmHk0EX27YKn34f3AvH6cwYe2AMchGt6O/NM0lmrwLIKjjDR83nwvfvFrRJ+I4GvJFGU1lN6\n6DqPDsT1tY7jzLlzWFuyvLbCkYcPMz49QaNWEc1o6klIpXOMFy+RJCHRwZ8lkQ1aZAPEmOQoSSFO\nqM4HirHrFS8AeE/hCnRiaDaGaTaG6LQ7KJ0CDuvLQPuVjowNnQ6cDW9tiLWHALoEQMd50lSTaAVY\nlFKkqUb7BOMD0JSkpGmKSvqgl06NJIjJ8ts7f0ZrTJKQZ1kwxZfFSANoR6KkC2UQE2OLQ3mD1yL/\nFFBJgCtbSG6LSRS4KA9xAwugAILGCOBUWIsvS5RCnqOXTlTiJTDAG/AJIR3Gk1YyqkMNVhc7SCaM\nSDGVMSHly4SkHOn85XlGXqkRVTJKe1C2R0MHDdbRarcEdLSlGPriA9jleyyv3sLpYrQ1vTXQEb7X\nSlh1WSJSo+BVBvQYJZOTW6hUa5/a5+HeI0pLYkclpVeELO+Gd+qwquG6onVihI+2jwhBSCMTz20E\nZDqDbH5vd8HeQLq9i8jGNxpR3msyiqBX9FqJ0pN6uNXCvyMoViBIEuFnWxHZTRPquQBE1XDXRWTv\nHVWRI0AH/HrGzZt7uHlwF9Vti1SrLTrdnLRraQyvMVRb5sVv/ZiZw3PkF0qUh+4Ow/yhMX4y/RTf\n50ucnHuMOz/cAlshG9ugka+yZeYaagt02hmrN4cp3s/huJL5/xjwBFT2r9IYWyOtFHinaK1XWb4y\nDCdTkUAeV3BtBqpKXvYOpMCcCK+rDK/lFnAllfsuNcO5ilTvKCmJhc0gCysWOBlSBI4K6DVVg8eB\nL3oqL62x79BpHs5PspNLjLBMYRJuzGzjzMwh3t/9GHPT05CLES6nx6FYDxdE7MiVP+f9/myNuBmX\nj2i/Ex837hH46kvQfNzf4zSYMP9qNEoFdm6/qYtSjkR7MiNhKiJtDFK7JEGbVKTQSvXBL4UwY5Fm\nBtqFwssQsP7wPGTyiowm5zb3uWW4nlxEG4NRGVlaIc0qJFlKkkThZIEq2uBDweXDeuO9XEkKFA5l\nS6zvokoPTlF4TbfscP3qFW5dv8FIY4gszUhwNCop05NjzExPUqskPPqX30fVq7z7H30LgyOrhKaL\nNsK20wqnFVqJ5Ef7ANJqEPTK9dLDVCiwUEo8LuP58xptFUbHJx078QEM7JmihfUp/E4aXEm4nxSm\nCiQF0yuKwrO43qHd7Yh/ZngU0yuECJ74ImF3zgdgMsGYFG0y0qzK6PgWhptVOu0V2q01NjZWAUcl\nTfniF1/igw9Of/IX+ScyBufoGiQKpoFdsOOBjzjKuzx2+yT8K9j4Mzj5IVwpYMbAo+ehYeHhsQ95\nfPdx3h5/gnf3TIqyugoUDfpzfBxxw/yrjEGwLgJfk8BW0Nug0YCtWhoS0/RtFlvABviTKRcP7+OV\nXc8zNT7L83/0Klu236F5GppdYAY2nko5efAI30++yBV28Pv8Fb+7/m0OXDxH9V0ra1AdOAfXrgvo\nFTm5J4BDs3DwEmxpzTLeXCCrb8gaVgOMhiIWexGg+iSljhFES5F1t0mP/Ztsg/GKMH/3IutQHemr\n3EGW4UUE37qA6FOud6GzgNCC5+mv/zE189e7HvQ9vqBP5+pfaaENKWclNDDjNBKQcgEgfIRXFCaC\nKGWJVwYTmsdd61lrlyxvFLRLg84aKFORtUa5AKhLSq5WXixNnIBezpbBA6vfKEyMIlcpqZJE2Fql\nQq1SoZJlsp8Pz8hrjwpNVa9ULzGx9D6ASnK/ngLCWdbX11hfX6PV2qBer5JlSQC8VADodGCaDTDB\nCGund/3n6glqleDPFeoF3/P2ip5e4us1mF7ZN7Lvg16DbC7r+l5eLtw89IgJykdf4+jpFYGwwXc1\nzPUDjS038DvpJ0V1gRqYgTbPQxHw6q8i4ecq/vbue3/sr3uP3/+f+jn3ZRPg6vF4BYmRQLX7Nzzy\nGdb0GF/MA8NwM4ef5aBhbW2c1598nvO7DjDWWKCerZLokoPph/wj/pQD75xH/+8w932YnZdt0NYp\nGL5heeg/Pcv1R17jg8oRbh7aRndnQ5ivyzVk8on1QWxmgLyDbWQOqyJzWNwPV8PfqIH7RdZY9E5c\nG3hN0AfAfjs+ueHpN8bb0rBfAq7D4u0xzswc4t38Uba/cJvmzQ1erMHha/J52rID+ANYfqbBOxzl\nw/IQ6zcasu6sID7Emxruv9x795sHfClIUoM2jm43aMxROK2xSrHaavPhR+fZ6LRYb2+w/+ABtm6d\nZqRRx1Yc1SqYxAzMPWUvvQqlpWHkoVOUFEXflyrPc5RSIYnFkKT/P3tvHmvZdZ35/fY+wx3fPFe9\nmidWFas4z2SJokjTkq2W3PIYOEHSbaSBJGg00Ahgw0kjaSQNpIOgG0iQAEEA2+l2G225ZcmyZokU\nKYqDSBaLLBaHKtar6dWr6c3DHc45e+/8sfa+974iZbVsSaQdbeDivXp1x3POXWuvb33ft2R6VaQV\nKEsUR2TtgizPqFSr1Pv60FFEnKbYwpFlbZyDwuTkReGBlcLnadWpaZwN0nvpYAVmlnzHC5RTxElM\nSafYLCNSmlIp9Swv5X3JNFGkiGMvwYtLnpKtZOS9ki52EktBEMwpNaAjS66gyJ34xWhFESlsLDJP\nMVO2xJGicGC1TBKLdYTViZ/wWAgtWuE7UoGiDcZTs+XzGN/tVyhMh7IdxkHLRBhISiXSSlm6erFn\nr6HRUQFKdwAqY6FUEcaF8+aZIVsqvMRJdia0Wi2KIu/pUlm5BpzqSBbxdanWGq0irGe5SVEqGxDx\nFEtJ05QokQk/Ou7SygHGxieo/MyBL+jSmIOBsddmOwfLW+CNYZiNpKM7guQVjRQIywgIcw1obIC7\ngtCdbrBZ5vBBKHxgH4WCKiSuIQSlGmaz4TrIF+CK/z0DvUskNzu0bM4n/ENjJDcvIEHyAlL7jAE7\noHxole1T59hSucxgtISLNUvlIWbUbv6MX2N2cJoj973J2B3zaByL6RDvRAd4ngd5YeFhlr46jtpq\nmDh4iYODp9gbvec9C2CBEc7u2Mdbhw5zfft2OAH68Ra7Dp3lQPVtdurzDLJMTsJVJjm9Yz/vHjrM\n8pZxyetzSoCuPmA3sB/UtjZJvY3JI8yNCpzTAjS+DpyswZVpH/N7J6QFinjYQPdONCv5FxiDuF8Y\nbfdB/GSLe/d9nyfib/Kw+z771meoLOa4VHFlbJhX47t4avISTz3yOLPFbljRsBDD5RFkIxTOef93\n2JQAACAASURBVO5vP4kC9qe7rLXoRFhdFnpkjV2WV7dj63rkjl2YSQXgxim+2Mr4zVIiuIvf5AsG\no8XPK02xWqN1DD6GKK2JEEm4Uh7rQrrWOOn6O606bCwBu6Q000oGeUBIV7bTWe+8X+HPkqQppVKZ\npJyiUkWkLK5ooYoMHdisgdXmWWJilB9G1huUE7aXVTGFSlhtt8jJmdoxxeD4OKadUYoj6rUy9XqF\nJJG8s9o/QNw/hNZ1krhKuVSX3BJ5maLW3q1eobA451l4gVHrjE98vqMf6G/KcyO84UyQ1wTGHbCJ\nEYbnA3SKDtUtZsJRl3Nr5S7WsdHKmFteYcMaZOCZ5Frrom53XionnAs3kVqoKKWUlpmY3MK27dup\nprA8b9hoNChaYloexzHHjj3CH/3Rv2Ftbe2ncJX/JFYAvyoSpwaBcdjCHDu5QP3cBu55ePMdeKaQ\n8uKMgWIGjr0A1Ucb7N45w5S6wokpA0ORADyrodkRjn+IUX9ToKRX/hJAnWlQu2AigcNKJlEeBHYC\nY22R0zZSuKxhBlZeGuGpoU8QDVrmp0a485OvM/boPLHNWU0HOFvbyVv6EBkJd3CCX2x+i1u/f5ro\nzyz5i7BxHQZGQO3sksnCsv6T4oFsRYey8gHrpxFDw/HpaYKwBfQOmE6kWXMfcIehdmiZ0do8qW5j\niFnKBll6bxReSyXcXwVUaLK06TK9Qi748AvKwtiAX3Xaux1oaTP6hVLBUbMLnTjlJXxBh+4UkdOI\nX23we4xBaQpnyIyjlTtyozFWUxjZ38bas4mc7QhxrckxhdwKUwgghDTMlZb4UHYaIk1aSqlVK5RL\nZdIkkYnyXqqntJa9rtZYz1oyzpE7Ab9EzifxzzlhorbbLVqtJq1WkzyX19eR9oCXAFkSasNU3NCs\nxoNYXYULrsd43kszg5F9LyjmNrG6PJjV81jTYXIFmxLjjf17TmgvXqTFd9k6f05DjnabW0EBSOux\nU5P4rz2R4H3g049YSqqSD37cjwDBesDXH/bYDpkiNGhCjonVz1DqCN036o3t2UDi6hyYBC5N+UFI\n4N5NubZnO9cmplH9hslHLvHY4FMcMSdJnoXF78LXL8m2XAEHzsGnvgW1w20OHDjD7soML4+tMj9e\nl7CtYnDB43aEzZ6M0FWrDCEb/GHEwiMRE8YQlrKeAR5cR/aroVAAiVV+b/C3oGn70V69URa6wJf3\nJL7RB+c02ckqJw8c5Zn6MYZ2L/Hwf/4i9f1tpi7Kw90uWLmvzjNTD/JdPs5by4fJT5aFZbxUIOcu\nDDv48c/Z3z3gC0WSxqSRYtW2sIUVvw2lKJBE0GhlXLw4y9r6OhdnZzlwYB+7d2xnYnSEocFBSpVS\nx5jSAoW1bDRbtIqCzFjSOCY3ljwXaWKSJlRrNaI4xpmCPM9Jkzg0m0E7dKREwaEcaakEWlFYi1MR\nWdH2HRmfeDUIc8sXsU7jrJIkazUxkQBYDv//IotUSqNclyStItDG4IqcuFxCK/lyy0hcI7IQDXGs\nieJURhUri9J+KmEcU+QFGCdbpch7yhhho2mcJB4rATqKpBSwTknS1I44Fr8CnEOrWDhZvqPVKVJw\nHUNL/OvYTsaSJGvIsKUSKo4RGpuDiE4yLaVl4iQmSVOUTihM1hkBbTydWSmolCskSUJu2x0vATpF\nrrw3YwqslZvUvbpjQNorgQI8FTwYLNOR7oDcL0oE+CpVypTKZZJSKuOoI9Ux1x4YHGZo6Gc92RE2\nI/JhBQrpBmSjcHUcrvaBVoJPAWTKy9xyJIksIAllsee5VM/PXolGr5dXGXnSQSSxjQHToAehT0k+\nCyyuAjizp/s2tyHyvCPAUUu0w6CHLSQG14ixcxH2HQ0nlbylTziGH7/GA+Pf435e4IB7lzGzgFNw\nVU9ySh3mBR7g37nfZpu6yETlGgk584yyQY0Naui+nPjejOlDZ3mCb/KI+x5H8lOMWBlTf0OPczK+\nleeGH+bbv/A4s5O7OHL0OE/E3+IB+wL78vcYsQu0SZmLtnI8vYOnt3ycZx57nBv5FOSgt1nUsCWd\nanBg6hTbuUg/q2SkXD84zpmH9nHlxE7s1hhqCn5QEfYXLd4vOezd1YdjXkJAxTGY1FL8PWQ5evBV\nPsVX+ZXiz9n/vVmRr16WUzRy2zLbnrjCwMQK+UjC1+/tZ+ncGFxQsNgHzSG6vm4KSSs/Ka+en94q\njJ9+pTp92A8Ev6Bns+x/t8pvpD1W/H+0Cx6ylv+90eKf1Ssoq0U9aI00HJJUPF/iSBhYWnwMIx2T\n+HAmmLnERY0MHVH+u2O19xuzAgjZCKzO5X07kcY48GPOfVfcdjfMaO1ZZxoVyYROaxvk7TatZkFh\nhHUbRwKKRdZ7meGBL+tEUmMgUwYTK7KsSZwmjIzWSNN+ojilbgzUK8IYM9JseO+ze6n0DVGv9ZGW\nq17uGYlMUIOLxM+x4yViQyNBCWta+UaPC7b2wlTDdT0scb6REmqFcK7C0XBGbAw8yCXHNuRcKX1c\nRxMjj3TWsLK2wo2lZdo2wRgPiIVj2pFKys2a8FwxSgnDLy7FlGsp6xurmJaTplaS4oyRBpDSHL3t\nNvbs2c2JE6//ZC/wv9G6eUKWjyFBSVKGCg36WCVeK3ALMOdBL5AodNWCXYRoyVIrNqgmDSgZSCPf\nzwjVa2A3/SRWTHcibphY6ylqEyncCzwE+ljO6K2X2Vt7jzFukJCzSj+zbivnLu9lpLzIocE3MER8\nic/yVvkwI+UFFI4WZW53J3i8+A79dpWmqjBwcYPoLy3rfwbfXBLu0+Q1+Nh12DYIdy/BcSeR+Qiw\nfRzYC1eqk1xnjHazDqtK9vImWBCERkZ+0+cLF/hfB1QKjw/eZ31It2UaxhO4B3jckT7W5vDeV7mN\n19nJeeqs06bEHFt4c/RWTuy+h5WJEZnUaSJ4exrsBsKoCOBXkL1/uJPUjJGmgXY9oCMIQOJl0HbT\n5Mbeo+q5Rn6glfxJJjLKfeVxxk/TdU77uCVMq6IoKJTs//Wzz5GcP0f+K0/ijJHmiI8DHZAI2afq\nWJOksQxXRKxUSqUy1bRCKUmJVOz3/Z3Q7FUQciuAwkGBTGE0HUaUh7CcSA3bWZvM30xRwsZR5zM4\nqzqy+YDVON8o7hrXy/45GNb3GtrbnimN1pgO4NWJyh0QzPj9v+zHw2NN52cP0wu6vl69fyPIG0Pj\noZcBJsCfNd6jFzqxWyk5h8G790etbiOsx6ur0zjZdM8P+HfP/f4KqWQH/NIKYSHTYZrFShP9TIEv\n6A44CQDSGp0Ghclhbgus+KbsKDCmcZ9RlKIWgywxtrAG52FuUXCLUAm8Cdx2BXZdhBEzzzCLlEve\nwLwCRBEUGonfQa6e+keHumUJmAS1FcqpsInH6QohCmApgRtluD4A+RCSE+aQ2gW68Kjp+f3n68db\nXfsnWZ5FT46cp1VgHlbH4HQKLymuTO3mG594kiKKmds+xdHtrzPODRyKq0zwOrfzHA/zdP4Y89+f\nFtr0GWA9Q2rNVbo1z//vPb4cURwzPFCmMIaN9YzCWNp+GhNOoZWj2cppX73Bwsoys5ev8PbkODu2\nbmH3rp0MjgxR668TpymFFTPIS5dnWVhalsTpk0teGPK8INIxtVqdUqlM1mpirWxww0je1Gu1ozim\nVq8RJ7EkRlNgCkdmC/+7FKtKKZlq5YrO9JLCKPE8ISLWMoElIGtKeS2+cmhnoFA4bdCCS0kHv8h9\n0RWjnXi+xMob5BuDUwXOG/dqqZpwhQFr0U5YcFESo0yOizRFpHG5SGK0AhUpIiVjna1T5M6AEw8X\nawwml24W4AFCSfoaTeTEKF5ZK5wj1R0jrb1+MIogSkEnCqVl0pf4G4i0S8cxaVoiLZVwNkapvJPc\nTVFgrSWOYsrlUk+HX0kytBLwQofPOuunavpuntC6BJB03cTXpTg7ASehczxQoOOItJRSLpcpl8uU\nyuKjIFPKeqZPAnv338IrL3/fbwx+VisE+w/6exspY1aBYbADsFESx8EkhjQBG0MxAnkFQanm6TK+\ngmdNs+d5gz9E6DYH+sAYsA2iKRioisRiFzCFNHCCDOWUf7sNJME+AdWHVpjefY79ldNMIGDVCv1c\nuGUHZw4fZHHfOOZySv+jizw2/k0+zZd5ZOEFtly4SumiAB/tXTG3736d6fosX8g+x6zZztbqZY5w\nkq1cpkyLFQY4m+7h+KE7meYSn8v/nHsvvkLf85mMYQa27l5k9/0XGd9+Axtrnjv4MJ+Kv8Kv5l9g\n/1szVF4sBEyqwPbD8+y69yIjkwu4McW3j32S/v4ldg7OMM51qmxwLy9zi3mHwdY6WRIzm2zhRHQb\nz9/+EK8O3Ms6I57FXYfFSX/MV+my93rZE73AVxVUKsd3DwwdvMadvMqx9nPs+u4c7g9h6UVYWpLT\nPLoPBq41+dg/eI7Z4WnembqF5YOjuNcUvBNBs0Z3AmXMZqP9j/YqTEGapjJ0I2wwXbc4+GCPjkDA\ncn6TbfmvKwktB79bThnKDTY3RC4C2wXQtI6IdCzx20/UjdEkKGJfYFkVoEpNpGK0i3DWoKJCQDBv\ndqu0jzPB8NOBDPXomhrjHKIKFC+sIi5QuiBqZ9j2OhtrK5w5c56Zi1dYbTSJ44jBeo3x4SGmxocZ\n6K9IswPEfNmCIcIqgy0ybLtFKS5RrQ1R7h9h8MYC9/4/f8DZX/4UVx98BKVlYEoap8RpGeUHfBB5\nby+tvZ2XsBSExBWhIo1zCk0ETgaHKBuBtr7BQ2fCZmcyp/ITL4PE0cfgTcbDznmUU3V+emFpZ6ur\n0BibY/ICVxhWF+fZWF+X60PqEP9yNxcu0ixSaLS2KJWhoxjjLHNzc7SzJlsmRimnJVxhyK3DFRbn\nFNt37OSOO+74iAFfmyCC7t8CobMJTaqs00dRj0nGM7bGcLroCuentFhpFUOajahGkwq0oi423+mw\nBznc37Tg6D0nXprJEDAu02pvAx6F2pMrHDn4Kg/xHEd5g+3mErE1LMcDnFb7eXn6HkZY4BN8h91r\nF6i1GhRRzJW+cc4lOzmSvcnBmTPUT7Ql3fUhNdk78PxSN00tA4OL8Oit8Hgf7J+TuLF1DEq/BBuP\nlHhd38Z7Zh9r1/qE0LwMFGFyb5hgFj5b7yQrRxec7C3a4EcfxwB6BWBwDGpluBV4COqPr/Dw7qd4\nnG/zQPsHTC9dptJqkCUpiwPDvFy/g63js3zj47/IQnubH9KCNMk6BUlCF7z7cJf1ILyKVQf86rbj\nutyusBTyPe+E1V483P9qjUX7GOZQwrxVCAvMWrKsIGu3sYXBag9afPErsLYKTzwEqZaY6jxqFc6f\nHxAVuZhEOVThm6hRQloqiZxcRx1GqtQHYvZeWEvhLDmWwjO95CbgkTSRDcEw0jqDMTl5kflbTmIT\nrIuINkFNNx0f7cEi33AJKo+AHHWbRcGLq8donx7ZopcpGus6oFf3Z9f7q3N/25U7Gue9e3tidwCj\nPvBmu6w3F+SKSnc+nXLBC2zzd6f7yeVxwrrubZZ90FTIHwWC/ej7hhTWrTPCtahI41i8yP5jkLqf\n2Aos/t4VjOLXYWMUZgbhahXukSnrxkYUJOQlTaliKcWySwzNkRpQ9WVArlJyEqzVXbzfOSS4TkNc\nhVJZJgMq/9JFIcM0kiGYjkWevRdRgIwgYa6JxOiLwGnET/dKCkWvB5hnWMhIPH4OfP04K7C0Q34K\nP3sIIeR0tfLX4cIWeFVDFS6YA3z5rj7eHT3AnugsgywDjgVGOZvv5cz8AeZf3ArfAV4BZi1dkkWD\nro80/DiTg//OAV/W04iGBmo084x2u6Bt/KbKIYWG81sHY2mvN2k0L3P16jVm3pvhnXdPM7F1gpHx\ncdJSiXaR0Wi1WVlfpdluMTA4RGQdxilhfRUFDgTcqFTIi3ang5HnGdaU0UrJpEKN+H7oGHxCKKzB\nIr5eASgzRUFucmEkWCcNQETCp5zCKisad2SaZKTxjDLxHoiVSCAjJUylJEmke+Ac2jriWJOoCLG3\ncmLs7hlKSji8HVZTpDQq1h5kwo85FraX8l0e5ZOByIXk753R8tZRWPFbKwojUswo7kxvUQ4SJ+MC\nrPImz0o2K1GsAJlgWanEVKslolKMU9a/R0m+SkfEsSKKy2gVUXjWQyiOZAiAJSollEtlCs/U8woe\nTGEwhUHFYn5sbUGz6cNzx3QaOl1+1/Pvni6OQgst3oNySZpSqZSp1WtUq1XKpTKRN7RWWvUkN9i3\n/yBRFP2MgS/obpoVm6WJCgFJhoFxqFdgNJKE0o/f1ypYK8FiCeYHYG0YmUZ1lc1JMoBfls2mw6Hb\nvBXibSKzuB24AzgCak+T/tE1osiQZQnrL47KUyzLWx188gb3bfsej+jnuI3X2c4FynmbhWSEdznA\ni+P38ezDj3J69iC3bnmNx/k2T1x5mqm/WICnwZ2RTVz5cMGBJ88z+JklVqv9LDHEL/J1bp09Q+VC\nE9025AMJ83uHuGXgbbR13Hf2Vep/nGG+BtcuyKfbsgsGZho88p+8xPU9o7QrJT7Bd7j11dNE/y9s\nfAeuL0iyHzsEE59d4tivP8+V8Sla28vcxgmO8CZbmKNqG+ycm2XgrXWSyxbbB82dp7jjttcYT67D\nLsczH38crqUCpi0O+3O1iBQ1wbyz1w8iAI5VYV0MAdMwUb/GAU6z69p5kqcsi1+Hry1LHRYD96/A\nXVUYOtLg8JNvsic5yxvb78OMadm9zPd69YTz3svy++iuoiiolMqgvJ8imzfuP2wF+bRz3QjwT8oJ\nsXVkhaHdzjBZ4dN/8IGM0CrqmKFHWksH12m09zVRXhovETnyG/LISyfl/WitO1szh+vs1QNwF5i/\n4oklLGFRa1tc4XBZm2x5lctnZzj+/Mucv7LEauEwCuqlmMmhfg7u38PufTuo99VIIo12DmcMBbn4\nrliJd2m1RqneR1Kvo1SEK5Uodu4mGhohUopER0QqyMMjMYLWAZwSFrR8KA9GeXBPagyDQqNsF6AX\n2ZHznlq++eHlINazvgTT6pk8dhP45SwdZq7rlD7+sRYZGFM42u2MGwtLNFptXMefMkx6U76Qo9vE\nd4i1gRMGs7WOLC+Yn1+gUi2jk5RStYIqDEm5LKxoLEkc89gnHucP/uAP/zqX8E9pGbrbw8A6anYH\nAM7DVSY5z04au6tU7s649TQUp2HOwKiGO3aCuhcae6uc07uYYwtci6RJvw6bwZ2fxOS/EO8CsOMb\nMvEg7NRwG5SObXDnvpf4DF/kieZT7Dp9kcr5JiqDfCzm/luOs2/yDMPZIne8cYrqiUzSWRX2HD7P\n4bveZuj0Gsm/txTPwcZVqPRDei+wLB+r6woIaxaKJqT/CHZe9P+xAxoPl3hl/208qx7h5MZtNN+p\nSQPlhgXXO8Us+OsEyU/4nOEVwvkJ7C/T8/PmFb5soTjxFgNqALZEcBCS+5rcvv1lfomv8Mnlb7Lz\nhTmiF20H4NtyZJ6JY9eob9+gNVTmWw98irXzI+L1NV+DYpCu9L13rP2HlwvE1F28uTbt2HqBbB8H\nwv+5np+d33oOu3XWs3Llkcb7tToHWVGw0Wywsb6OKXLxd1WK4p//LqwtE/WVsO2mH4oUim6RlWul\nsJEmIpJ9ZBRJszuSqcBJlKJVBJ5V5re6WOuN663FWO/thViBGDxLytpNrKzAuAom870MLGu7vLeO\n7K5n6UgRBegwWBgHEMErS7oTWboy9C7bq0fi2MPw6tyseFRaZ2XYZc/9w80F6SJeYo5vbPSwvegF\nMNn8ezihm6JO71frAzCQ918b4dj8KLBLbbopHTC2Drz1vrtHWhr/zo+MD2y1NIml9jE/a4Dm5hgd\ngK8QrxTkNSF8rkJzvY/rA+Nc6p9k78E5tu0Q5uu7TiLDbcDoAeAWuJJMco0Jms2yhI4mYFKIt8No\nIiyuMaQRHiwPl2O4OiZbz3uAeyG6s8Xo9usMpstEuiAzKQuNEZbfG8W9nMDLwPESzGz1gy4CI6lN\ntwHz0d+3fvgrxHVhuHdta0LuDX/vXUvAnEyEf2dUrCvWIq5fmGbp0BivT95DUhE8pWgkNC9XKE6l\ncByxdjntwFxDKpMl5CLJ6ea///j1dw74AgFY0kQz2F+j2cxoZy0Kb+2R4UiJZOaD38Raa8myjPmF\njEazweL6CgPz88RpSl4UtE0uAadSoTYgxrc5hswU5NZQOENcSijVqqxsrGKcISsKsiyTzhBi5guK\nQvnxwoTxvGIeGccRzmhMAYU15Eb8wyTBKdlQ4zBOWFiJlu52pMSzK44ib2IfkcQJsZa0VLiCVEco\nLf5k2im0VWgLGD/03Slv0Ou7F9aJ9j3WHR61c1Z8CLIWtmhhjfHT5boGlZ3E6WSajAvH2GmizKBV\n8EXRYpCvDMYVxLGw2aSLEzwDCs+FcMRaUy1pymmETiIMGovteuTECZFSItfES0JRneknIVFW4oQ4\niQWs9Ey6kEwlIzpsnvEbX/giv7d1C8YWPsH5ZNW5wly3JeN9aFAKjUwSU5GYnSZpQlouU63VqVT7\nSNMKcVxC61jer+7OD9q3/4B4teUfhiwgFAtBIhLkITtAbxOT9X3+tsNJAgrTnRaAiwrOaDhdhYt7\nwFV6njts7MJSdIPkADAOaidsTeBB4Jgj+ViTXXtPc0v8DhNcIyVjjT6Ob7sTi2aFflaWBrl36Pv8\nKv+BJxrfYceJa+J91QS2zHL/va+ze/octcoG2b6EI5zkvtarTD63gPv38N734Hghn/yut2DnMkyN\nrHDsiWdxwL0vn0T/hYM3wK1BaUtB38NNJn/tCueqO6k/28b9OTx9SrzpFXDPAjxqoLatxZ27X+Oy\nmubQ3Fmib8DyV+E7F4Te3Q88dhWOaBjdt8TRX3iDulrnY+1n2XdmVui8TeAM2GfAXAJVh+rRNns/\nc5lf/tRXWCoPc/HwDs4dOQRvKTgdQTO4I5f8E4TNa+jKQCdZhYZ/n6M/WmHU3WBgeQXeg9PL8hbC\nOpHDvkswMgOT5hrD0SJqMIO6b+H5KXzdzV7Mj9N9+TBX8PmLlcaomzaSYR+vb97Euk6xY50j1hHY\nHI3GWEdmDI28TavdxBZ1tAuTAG9ikCk8Y8ADU76BEKsITdxlnzkPyOA6Y+dD4RZITODBmCgRzxfr\nUFZYYs6AK0BbRWQMRatFa2OdxtIyae7ojysCSkUF9TRifHCYkaEJ4riPVm5oNtvCEtZijoxSJE4T\n1/pIa33oSgVViclHxnnp//rXKF2WPBOOEwqLI4qEqSWsNgH5ArPNknQKJkdBx6wl+G4p5xlfUiDK\nqREvGxUotj0M3d7b+7axASjEeZDR4pz3tnHWg4aQZRnX5xdotHNfdMhUSVRv00KKO+e9w3qvFedH\ncCsVUalUiOKIZrtNX/8gpVIFp2JQBq1i7rrrLqa3bWP20qUf9xL+Ka9ez8CG6KeuKjgHM5f38PrW\noxyfep3HP/c8FeN44EVkXzoG3AP2s3By9wFe5S7OLOyXgShXgJZDJDPBCyqAMRl/s6mwYUOe0hmL\nWy/DDuBWy8SeSzwSP8Mns69x6OnzuC+Ce01etrS1oHxsmUc/9zxuXlH9owzzDLQvQ1qD+E7L+G+u\nwClY/wI8PSsfZ3wOjl2Drb8C+16Bs07KwBjYXYLKFLg7YPUfyh7wejLKG+o2nuURvmV/gQuvHZBu\n9hlguUA6O8Ec3iGBOjB2bza2DqyqYFEQCgHNB0sMe/OvN/4vVaSw3O8Y3XGDe+If8Gj2DHu+M4v7\nt5B9Fy4uw2gV+m+H8RsrPPzbL3BxdBunxw7y5oFh2KrgbAyL/f79BqAusI4/RODLOgpvzhtip0Z1\n2n1dWE58bLs+Ue6HEkAk9igZ0FEYD9ZLvG62M5aWV7h+4waN9XUGKyU0Ea6/D1VLiRtrGK3IvQ9k\n8KwNAJFSDhX52Kg1sUpJ4xJRFHv/4Z684OS9h6mIxoNfhTXkvUbx/kNYY3q8ay2hL9BhFfU0WDos\nrV4JuP/VeVQpGM8T9u50B1cFCWQHgaILuHUZnj1wWOf1Qn3kOrVFmEoZDPGdl5J2Dp1/cwKCBTDM\ndV9aKbpdFnpe8yYw7P2/dJZs9wM42uvvpTbdy4aagJAkAmtLd6HVm7cU4VV7mm06AF/QOUHOKRIP\nfP3st1jhG9Nrp5EjdNcqqAnYruFu4E7H8NR1FhjhJEfY/ugc5UvwWAzHzgIxxLeA+yWYf6CfN9Ij\nnC72szI32GW+VmNhcB1ALDl2OBh2ErZaShoSb/nj8KSj/+Hr3D3yA456pUaJNuvUmRnczRtbjnJi\n531kg2VpsrVSuDSNdHE26E57/NsxlfzDX72srmBZE4qKiv/bzX5sGWICoGFNwYlhWNIwo8hfLpOP\nl+VSCluDa8AlJKHOWrCBuncDaTGFxtnPze0B6bgURUF/X4VmltNqFTQ2CnInwJcBrFLESmiTmTeU\nErsQAYg2mk10kYF2PkRrkUzmOUk1pTA5rbxFVhTkxgNf1Qo6iihymQLVTGKRuSBeLjrSgMEUQr0O\n3ZcoisWw0OUYo1C5b1tbKYwq5RKmwAM6wgZwntUlxupiHp9GMZGKBNQKSaFw5LZAa+/YEkP6xila\nRw+CEg8qnCYpi++Gc/TIRzRon7wKi8oLyDJs1saurVP9V/83xcQoy7/1GXJjNtGOrYMiF+CoenqG\nXf/sf+Pi7/03rB/Yg3WFaP6zDGsLcptTWEOWtbFFgSlynDNEkXz24aFBShqcycFFJHFEERKmCsCX\nlollOsKaHJ0XHY8FawwoSFP5ImovPXVKpI44OZZOKbZcvMjotev8lysr/Hcjw15a00uG7+33yES3\nkMUiBU45tLYyOCCJKVVrVPoGqPYNkJZqxFGZJE6JtN6U+/btu4U4ij8EkVgIXsEMuI7QurZCMiWS\nw3uA+yC5s0n/thX6hhYpJW1aeYn1lSHWLg+QHa/CSwgKdGYc2iGJhMmOobgJm+4aAnxN86rLmQAA\nIABJREFUdGUoj0D/pxZ5YNszHONZ7navMrE2T2pyGmmVV2q3YYm4zjjnhnaxh7M8sf4UO750Dfsl\nWH0Tigzqk1B+BO7/zdfYuLXKpWg7W7nM6Pw86jisvgLfLiSuAqw3oO8NGD0BtzxwGi5HRH/qWP4P\n8M4lWDBSwOy+AJXYMfXp63AGLlyUBlI4Z6842HUZdp6F6WyO0dI8petteAfOezzLIan2hIODZyCd\nsUyuzbNHnWfH16/ivgrNU17B24QTp+GcEW7c3Rdh2sDWLfPcec9xXtL3cmHPXuxkSchel/vYPAkz\nuHtu7nNC758cXmCMjSKIbcdxJ6T+EuI9jgbrNIYIcSUPz/EBkqi/Jcs5J6yvJBUJd5HTsXLpGMu6\n9z1GKfF1McbLzJ0Gp3BocmNp5DmNhpgG42TAh+p5fEcGgsXgx9D7HrqScbOEQg1AR7FvknRZrEoh\nHixKgHsp5nzxBOIDE4G1iiKzFK2cpORjWaQYHB5k7+4dDC6vkzlQSUK1XmdsaitjE1spVWsYmhRZ\nG1cIS1Yrx9iNRR7//Jd59XOfZemeaaJKWWTwykk5qQockZeWeB8uLe9LYzuFiEZ5f6+YML0xHKTA\nPHD++g0G9938Is8XOWniaN2Vnm8CF4NcNTR1AKeM/yyeleyCwbiWLqR1WFOwsrxAeW6O4XbBsute\nC0JK7pW4eCDOMyM0wpZ2FtK0TL1ep79ep1atCEDqClob6zgchoTIwcTkBMc+dox/92//+G96Sf8E\nV2haBHPaVTDLcHkI3gbzUo0XnnyI4doi3AJ3/MO36Pv4GuliQd4fsbarzls79vNVPskLzYdovCKP\nYxYwK0jkjOlOTWn4n6HA+usao4cI5jfiNWAS4j0FBwbe4U6Oc+jUedyfwvWvwos3ZAu97y04Ogd9\nfU1YhbUvw1Nz8nZLa/Dg03CgAlED3piFN5CstgJUl2D0TTj4BMQvwmIGgyns2Q/qY7BwaIA/TT/D\nNSZZYJgzZj9vrx3m4om9XRnHOYd0ktb8ceij2z2v8f4JmKH4DJ5afnpWp4j7oAKulzUWy3OWYhgB\nNWUZHb7CPs6w7/oMfBdmvwtfXxYOV18DHnwe7hyBqbsWOPzIW2yvnOfM1ltoT9ShqmExRXL8R6e0\nCJYXoQ0U+pVBzigNCW7CdtwmRlgndoQnDf5+dMGTID9rtTPmF5e4MHuJazd2MVirEFfLaOPQtpDG\nshMLEGsKgjxdpHy242GlIskrURR3puACnYEmoHxD2ntkFZ4p5RUMprAyjMR22VYq0iTI89X76lSq\nFeIk9kCfl5FHUheFJrT1NUxotvQeV4mJ0ubuZZL1CBoJnl/BOqRzIDuoG90Y7Ty7qyPjtF2JY2B+\n9TC+gsKyy3zu+n+FFwrnvNOrdl2Rou0emZ48/0ExRxEYg9AFwLoHpPenYrMDXJdreDNz7ua9Rfj/\nYPeC6rbcBUJWlOLIN/U/jOZi8PtyyHc8AB1D4ouxB7gDBu+5ymP6O/xm/nkeOvMS8Tf82z0K8X5g\nC9gH4cadwzw/fTfP8DHemj+KfaMkAXUQGfB0F/CgpX50lZGpq4z2X6dERsNWubY8yco7ozQWaox/\n7BK/2P91Hufb3Ln6OmPLN0hNRrNUZXZwKy9V72Zi+zWefvxx1lsjQhhajmFtAkHZ1pBYG2qWn68f\nvkIDJjRPwnCyfn8bROrIUs9jCjp7CFaBGTANmBmBa2V4W0NdCV4GksZWHawaaLQQsOsKInMM5ysY\n2//c3B6AvBBfroF6mYH+Gu1WQZGv0WobDDLm1zolBsU2ACgK4ySwoCL5t6c+yvYvBmNo5wU15zDW\n0Gq3aLdbZFlGpVqmUqmQpAlFHuNci3a77YEXAVe0TkjiSMKisiSJnDCtlRQu3vA8eJhYV4hJssGz\nvLTveCNySsmORBZMHmSTjmCJrFBkeYF1bVAai6N2eoa+//MPaB/az9w//h3iOKFaMyRl0wmjSalM\nuVYj/Rf/AvM//C5FowlZm6goUO0mttUkW10naeU01tusza+InLGTYL2nmQKT5xSLazgHG2sNNpZX\nURqyPKPdblKYgma7SStrc+3KdbJWk1Is0yKfeO09Xn/iXiKrSOISiYpwsSLRKeA806FXRhOhowSt\nJTEWeY4pCgojI+pLpTKRjjodlLAhclakM4VzzG7fxp88/ihfvHIVtbIKQKxjnMsRRoHyYBe4IENQ\nch6E3Sbypjj2UsdajWqtj0qtTqnsp/HEcTcB+mQ8OjbO4PAwGxvrP7XvxQ9fgZZao+P5EU3Ajgge\nAJ6A4WNXOTj1Bkfjk+zkPDU22CjXuNS3jTe33sqb07czPzIpHmB5DGcnRePRmb7Rpit1DJ2BQdD9\nAq7dBuWPr3L/tu/xK3yRX1h8iq0nr5C+bQXcn4Q9R2dwWtOaKPPm2H40lq0nbmC+BOe+Ad9blVfZ\ncwEeWYDSYMGhyXc5PHGKCk3SLINluL4meS+sZaDl6dn9qy0pzp6Dl88LsJUB77Xhkydh3wswdOsG\nGMjd5p56BhjP/lbGojEi07JQ2M3h2eAvJwMTXKP/1Qb283DxW3B8WY7YgBJaeCiDskX49Zeh8nbG\n9JErTFavURtdY22oJKeuw9q7mRUQCtjwu3/zG8CyZrXo51p5gpWBAWr759k3AeevSW+lDBwtQ98e\nYA/MxVtYYAS3GMt5aQMusAzC+ttFFy+KgihJZfiHFgl7kA0SJBQ3L6dAxRirhS0LflKtxMFmVrDW\natFsSQ5w1nR7xM6hrCPyY+KtNhg/lUs7v9H1rWzpzQigJvII2dZHASBSsr2WQk15CNt52bgMQTGR\nwllDq2WIPEUsSsoM1vo5tPweJw7uwUYpUblCXKpQrg2QVvrZ99IPmLnzCEWtgjM5zhREaJIGoCJ0\ntU6UltBxIkbIBqwufBGTYJGmjNPWg4jy/Ve+AHCIgbxzGSBm/47AwPLFj2gPBTBT8nkBtC+GlEUY\nYK7XczHqKTB6z53yEkd6Jj2GJRWUctLFtqbN+o1r/NPX3+Q/W2vwiVIFnOwGtNtcsPhevG9iiTE/\nKIwReZFWhnZjheZKif5aims12ViaI29MUyonaOXor1ke/fiD/MWXvsT62oeRAz5oBeZQr9/jvEja\nTqa4Mc2Fof187b5fZrk6xKnpE+zeOsNAscp6VOO83skJbuf51kO89+ph3PciQYuugkzr2oJsjueR\niLxC15gF5Nz9OJ33Ximfb+SocsfqKxot2MIce5iBN2DjNfjuvIR7gAsF1E/B/tfk4755BU72vINX\nmrD1bRgYkCMRYr/DSxxbUP40HNyJ4FeDwD2w9GSN7/Y/yFN8gh+s3M/66iCNK1Va71bF6+Q4QgVu\ngETcaSQPr/lbmE7ZT3cKJnSG0HTuF/wdG/7zt/z9PugY9ky+jBVUQfcZBkvLjDJP6bLDnoXTG6Kk\nB7kKXgcOnobKBRh9eJ5BvURaz2jX8L7T4Xl7z8eHu6xzFDawQb3k0ck+GUXHt7fjr3hTyABuwkIC\n41YiutgR+ZimNO0iY2l1hQuXLnFpdpaJ4UGSaJBCWSJXkDiLctI0MX5joEIjxO+j0QoVRaIOiFKx\nSEEJy9jYDpJjEYmjk461AFRac7OHLE6AOZ0kJJUy1UqFvv4++vrqlEqJeAYrYeFGkZJGF+IDhpUG\nr7DlAtjXBbokV/V6S/ZMF3ZdV6/A1HKeHYbPWZ2mRLhvrzm+b3Y463oe77rgmJM2TwC7ek9T+Hcv\nYyrAURZBKwPeGbK8c66bG3qA0PeBfp2roPcGQR3i0J2/39yQ6fUR7QXCwjUV/i4elptb7top0jTp\nqFk+vBVUIt4zln6xztgGHCo4MnCSB3iBO86eJPojaHwZzs5Cy8DWQdjyCPA4XN8+xIs8wHeWP8HS\nC+OSAh5ChpBY4G7HrntOc2f/y9zOCbZzkRIt1nQfF4Z3cvy+O3kzu5X7yi/xWfdFjl14nuGn11An\ngDUYnGgyfs8i48euE48WrE738+L9x2ifrcGMhvU+xJ6lgsTScLz/dlh1/OxXIEr0MIYZQsgSU/Iz\nLUM9hYrqpoC2g/UCGmEgwXXgAjAPG0OwUQeVgPaQlCvAZkheW6K7P1hlM0Pv58BXZ+WFJWsXaGeo\nlVKG+vvZWG1RZOJHFXoRhTesFZ9V2dAaQb86S7brEtitMRS5AFnGQKud0Wy1xc/FWNK0RLlcwRY5\nylVwXu5Y5AXGQOw0USQsDB2kipH2mnpHuZxAkeDaEUQW25aJKK2W+H9FWjy7lNZoHaN1QpooTG7Z\n+z/9r5z6vX+MdjL5I4mkkCgKkWSKkaRldWyU+vQUF37rc6jFNZIogQ2DUivkWQu0QleqjP3x5yl9\n+WvY197gxr/859BsklqLzQsa7TZ5Ybnx678qJr0rOU7pjpeAtQZjCpwryIsMMzTE3P/430qHe2mZ\ndrtJo9Wg1W6xsrZCUViyVsbMmRn+l7PX+DdPPshvfPdVxhaW0WmZ9z41QJIs0xdHlEoROhKg0iKM\nLwGfxGTUIoVrVuTet0DYA0oryqWyHBNrhAqe5xSFwVlLpBPyQtgIZ0eGMRcvkmiFczHaKZwt/PXg\n/HROodBb5cBPCFNKyfCASCaolcplavU6fX11KpUKaSLMNL2pd+SvM6XYsX0Xly9d5Ge3ZBsg66Yp\nT30VOKjgIRh67DqPTX6Tx9W3uJ8XObB8ntJaQdYf8d7ANl5UD/CtLdf41mNPstiYggUF18uwNErX\n7yNo6AOzrCyv1Rf5ZAk7tp7jGM/yxPJT7PzKZdQXEBnKGqgtMHh0Qx66d42xJ+dpH1FEb1s2TsLz\nqxJGQabdjr0Dt78BA9dX2ToxyxxbyUoJDMGWfhhcldALfohMDRgCG0M8D1wWy5XQ+1kBZldh9xzE\na8B22DMGB9fFzBiEjb1lF/AwXKhsB6A9UoKdDXaMwfh1zx5AVKPxdjDboL9YIz4O6y/D08vdz1Fz\nXTaZRdy78iVIViHNM0qqTZIUPQNVQsHXK23sXYF515JEtATMwtXmJO/Ub+Hclm2MP7ZA/6zjM0/D\nyixUylC9C9QvwOrHYk5xmLN2D3ZWSxNmDaTQCs/9V3VNP5or94Ms4kjLFCzT49LTQUlch2Wl/Z7I\nOYWxoLt1iPBULLSyjNVmi2azTZbnmDxHWSm2IqVJvRTd+Fvoessgpy64Tud5xRdLagwPwKOQNkoH\nzgQl8d8435X2rC8DtHNhA4hapsRv/Ks/BMBMTXLxlq3ochUdV4jSCltOn+WeL36Re770RT7/r/8l\nzqRyVemIjdoAX/nvf5+oWpbpxToiTB52xqJ0gYr8tag0zkadDxKYFM6JD6R1nvOmYvEyUxaH6cph\nrOg0rWcjiLEXUqQ5h3OFn0CmPesr8iwvOkUtnaMViAY9/l+d5XAux7nCg4Rt3rlwmculEm83807h\n4zq8ETY9Fl+MOZy8DzTKRbRbGesrq9yICxLXwPSlEnVdzspsHzpfoVxOiNKIB+45wMT4yEcI+ApX\nlUVAlBXgBmT98N4Y1DSFSjmzciszD+zklYm72aLmKCct2pS4xgTvLh6g/YNB+J6C55GwdARYrsKN\nCiyPIj6Pl+iymwJI+uPITrrFZ3d5/zdvoKxKjgpNqmzAEmysw/WeU9lAJlPun+/+u/eVG0CRA+Ow\nV8PbVo5IAuxRUBqHfK9m9bdqjFxZw9Zhdtsoz+sH+QZP8vzyI8x9bSfMKAH/LiDeWHN4p2cF2SA0\nBmFjCxJcF5DCckw+S4Uu4SJYnLAu54Xr/v69bZ3mDzmGwcfTdA+d65Vvbd4d9BxRiX8qHG0fHzv1\nRzh3H53V9fhy3c/k94/KdbCGbgMD3sf02jT0BEB13BsJEwGNE5P73EKW58xevcqZc+fYtmWKvr46\nBQaVt6glmsgFViugIv98IdcEYTyeFYx/k9qfAEuXDuT8YyO0Ct6HfohKJP5b4glm0UqRphHVirBQ\n5VajXC4Tx7GA9l5e12XQBkmkf1/Os7JsYHsFQCqwvTzU5Lr/3zW+70oZ6blfrwl+h+F1k49XYMEF\n9lq3lSfnMcg5LbInD3JJOVdyDrWiw+ZWHvTSIad24LlwAYTz3vMEm74b73OMw4Uco5T35lQ9tgQ9\nv3efuOf5wn08oKZEmRKk86IcEgP+NEm8eujDXOH9B4ZnuTOnqjq9xi7Ocahxmr5XG6hvwXNvSxM5\nB6Ya8Pe+C1M7YPrWGwxvWeTAwLtsPNZH+7Yq9Z1LFEXM2rUhdo7O8MnKV/hFvsYDzZcYPt+QsDgM\ns3tHeC56mL+s/DJ38wr3z/+A4S+sof4E5o7DooXtVej/mGN76yof+/vPMlPezXvbDnJ5b036LhfL\n0OqnK81L6Prj/nxtXrrn1gt6TSETBcZF8j6N2OOM0CXRrSi4msClBC5VIRtAcv4VpLUyAK4EJkBS\ngSHWQoCuwGrunV7/4zbGuuvvLPBVZI64LdGtliaUk7hDpIebuwPdyU7Wd1Sc6yY/X/Zgre2AJVGs\nyfOCVqvL7IqiiHK5TLvZoFyu0G5s0Gw2KQoj+3dPW1Yq6tB+ndflK29YX04TbByTNzPajSYry+vk\nWUGRG2ERxZ6WrBN0XCJNShz5i2+R3Fggffr7zN92mBgB2JyKvI+KdFuMkkD/zm//BuVGQaLFV2tj\no0BhiLG4SNPeyLj6938FtbLO/D/6HZqX5ylaDSIn3l+ZEbq1BernL7Cye6eY8yOdtbwocMoSRxHo\nmHZRsL7RwLiCUqXESrNJs91ieHQYVa9Tjsq0V1p8+o2LDLULHm9FnPqv/gFHv/4U1z/3BH1azk1R\nZCRFhjMap7WAXkoRxzFxlKKjGIeiCJ20cKadQ2uZsKi0whmHLSx5LkMEcmvQUQmtIzSWvJVh8wyX\n52ik0+asJCOlw+QwcNrLdcCbUivQESqKSUplKvU6tXoflWqNUqlEnCSyqVA9+5ae63b7jl08//1n\nfnpfjA9cAYgKZsCDEA3DtILDkNzf5L6p5/hl/pIn57/N5NNLksHmoTRkOHzXeSafmKc61qA5WuHr\nD/09snNVmVu8MgR2EOFUrdItanqmC/ZFMAmlnRvsrJ7jsD3FtjOXUV+Fi1+DZ9uS56YWYccpKCew\nZRoG5h3t30lx7QyTuU3kZA/tQAuiwhJTsMIA6/U+2HmD0g44fLJrG3x3CkM7gL2w0N/PeN8qagjG\nZ6U+Mf7IjFRAh+bGraCPwD2XpYmx5F9zeQYq34BDR2Z4Z8ctnNs2zehjS4xdgs88B5eXxbpg+26I\nPgkLd/aRFSWmGvMUje7EG5D3V0ZCfgrsBJJtYKdgrVxnw9VotUrdXICnkHV+9q5QSLaRcq0JlxM4\nC6uvjvPyJ+5mV3KOoQdW2F2+RPmOnNGrcqrMUcXSA308FR/je/YRLszsw53SUrg1Crosg4/GFK8f\nd1lrya2hlCZSIkYRtgiuLyInkc6r9xXE+U0tnjXqQAsLSzlfaFlYbbZZWFtjuDVEnzE+r0ict71f\nfE1nU+zndng5tvdJ9NJsnCYYvnfKTqe6vUnlOkNJUBFWaVzkUFEoMiKss7RzBaT8ye//U/b94DiX\nDx0iilNUXCVKq6g44crRWzn+G7/GuQfuQ8USY5M4RqtIhrAUFhXFKKvkFgnwpSUwgolEsmlDkFMI\nkSEAiKozyENp5LNapNPncpyfOoYrcCbzjDmFiqXrEFgazvu/RN4EWpgJwZeGToHhArnABUkMHVNm\nAvPM30xhWV5e4+y5c7yUZTTi2NdoofC9uWgRBgkmx9oE4ljyuisoTESzCRurhnZNo+uDJLFGZavk\na1fJqwptqsSmwvbxOncc3c/MzMX3SWA+nCW2ChJcNF2ApQzrJXhjQLxW5hXmdB9v7bmbtyYMqprj\nWjFcjwXpX0Kwm19HroUN/zTnlOi/Z0ZhteRZYAGezOnKLINk+69aHW7H5r8517Encw3NBnXW6Iex\ny9QHxZJmxcqzDwE7S8AkkMKhOpxbEygpBo4k0L8NeAJ2LMGnT8BcGwZj2LsX4o/D4m01vj3yKM2R\nMi3KnGcXr9ujvGluZe70DvHDfAOh0y4i3mN30jVtbil5wcvAxX5Y6pNUuVVJfTEs7w2LJMbrwGwf\nLFR9AVfj/XLIcAw382E6xzhzsKawK5ql1hBXy5M0tydUDuUcfA1mr3bht3vLUDoM+R7NrNrKgh2h\nvZbKpZGFQmSzf9OHvcTjK8Ak+J+bze4D66d7nxAkPoD+FeKZBC6UFll3bixFYaTp4BTzK6u8PTPD\nXWnKrn/yu1z+n3+fjd3TFFlBVOQUhYBWIkfsAb08sGQDgOgyMAJoOVxn0qHSWlhj3tIjLwqSRpv+\nRou8FEGckmqpF7RSRLEiTWOq1TK1mh+4VC5TKiUkSdQBvm4+d70NgjAUSo5r14/LOToAFtZ2/xYe\nB+8DvPCM3k2SRtsDfvlc6u8qNy8ndSKLkf8z4rNsXYcvLJ6QqvsxVO+p7FiXqM65dr3368W5Nv2j\neyzez/YKjRXP1Aqf/SYwS9jO3BTflVf5SGHQAcF0dzhLuL9FkSbxR4DxBd3mqp+Q6JWPlUqDflap\ntTZQc2AuwAxdhuwicGMZJuegfL3NE/3fYax2g90DZ+kbWKePVbI0ZW7bFqo0+LT9Mg++8zJ9X23h\nXgG3Dmocpu9f4JOf/DazW6c5oN9l6s0l3FPw8nH4vm9KjDXgk9+DXdtg90MX2LfjDOMDl5mbmsYN\nxlCOxe+rM4gjfK6PFnj/0VihduupFZkEdkBtBA4oaWodBvYVlCbbRInFOkW+mGJmEjil5PZWH1zf\n4b+UF+lWWsEXLOSR4A12M+AV6pm/3vo7CXw5oNkqwMj008gpYt318wguKAHYl6AoYcs6mXLSaQ10\nnlOYTHmWURhDSkRuDI1mk3a7TZ5lVKoVypUKy8t+GovWrG9skLXb1BxoFRPHqQe7crQWHyuHR0KU\nQsfC1uo/d4XVS1e4gmHgyhJsNDhZjhifGKdcq5EZCzoiiVMWHryTHZNj3Ng2RbqyJJPCSmUyRAte\nSaSIsr4TveWF41y/7wFyZbBobKTR2lHCCutNaVyuuPHb/ylutYVt5rQaGVmRQaRxOsJqzdDpM+z+\n/J+xeMftXPkvfpvcFKyur1EoR72/j+HhYVQUsby2Qn7jBpV6meHREZZXVmjnGVumt5JnOWmRcO3M\nJV595Bjm0OL/x957BUlyZWl6373XRajMSJ1ZWVlZWlehUAVVBaAaqEb3tJyeIWeGs4Lk7jzt09JI\n2zeakTQ+0shn7o7R1kjazHLMdrk23N6e7ZlpAaAhClqUQmmVpVKL0C7u5cNxj4gqoIc9ogF0c69Z\nWkZGRrh7uHuce89//v8/bBzYS8n3uPv7v0UlBFNQ6IJB+QpcJhnKgSNtCIMQ3xcD0TTttS22ypG4\nlJSEQqmIKXhgFJ71SDrS4SxK4qzjjUPh42yHuBPJ5G3TbmVPK91Ndh8yTXaqK5/JgS8dFCiUB6gM\nDlOuVCmVKwJ8eT3Daqng8FDlZ3br9s/j6/EZI5c6FoAymEAW2XtgcvccT/EuX9l4k6nvr5L8Cdz5\nGJZaMBLClvdhdKPOid99h2tjOzm7/TA39h4UxP+SB61cnhHQM1zPqbKZOfoghINtxvUCm5N7+Beh\ncwZe7Yh5MMj6/hMHJoK91+GbP4byYx0YheKU+G8tpFlFCdg2CMxAe6DAOkNMsEB1fR0uw/J18cFf\nRb77F2PYsQiDDyDUbZJphb/bcewKtNoSXrcZ2LUb9BPQ3O5RmkvgLnwQCTPMIdDe1CqMXQR93RFu\n7fCWfpqR59fYGcwxfgDG7yBzxmHYeKnAmS0HmGosMDW6RDAKkwuSZFgkEXvGh6UYqh7smQFOQv1g\niWvhdubcFlr3BuSD1KA3MeRJ4qPiysw4jLqc0eUBuKjgbbg8fZA/O9AgLvgcP36aHfvnqLTqxMpj\noTrOx8XDvMKLvLnyHLV3qpK83XLQqSFLmVbfvn+1Fg0OiNIEpQJ8rUmNwlpp+iPfa91X9aa7OJV2\n4hpnQZpt5POJw6bQjmGx1mRko8bQ8DDlpI2XhihrpOurkr0rMp8q2bT4dmUddlWfR5UAYgaXZg1S\nnMuAL9eNR0oZHIYUg1MWsYXJq8WSdNi0QJpCHIZcOnkKXxuUMVjPQ/sezijQmqunvoLSCs9ZPLTE\nL88Da9HtBI0WoM5K90itfJwzWCegl+qXnrleVTwHEB1kEkgNyki8dQlknY5F8hjjbEwaR1LASH10\n1iUtZxeo/n2orMFIVhSBvFqegVaud0j0yUhUzkiwlk6nw937D7h994HMs/lrsn1awGRriZ5slYyt\nJ53ZcGBdQmINLpMf+55HIQzwtUUTE3XWaTeLoFKcSzFByIkn9/Hv/+wVOtEX0eTks0a/31YuocuW\njbUtcK4KDwJpFT8JjBhcaCQEjAE7wBxvM7xpmYGwjlKWVlxkbX2I1vmhrMsW8HEFFrbI9e/6QuYe\nVr9oPHlEzk0Erg0NiZHpkmGOGa6wi8ef+ITyCTi5BNXbgsXtLsO2x4DjQAU23YLvvgOra1AMYWI3\n+F+Dld8tM1JpsOst2DWPgFbHoPatkLc2HePf811usp0RlvFJAMUOdYPyvjZ3R2eo7xgRBpxDEoVt\nFn+yhfZS4nqIvR8KIHgOuKqkUcB+xD9nE1BJINGwpKVofhG4YODiKKzmiUMe7/PkoE0vscsBqgwR\n7ESwFOJuaxaWpjk/c5Cz43t58jfOMbUA3z0NjQ0ICzB+EPg23Nk3xVl1mJuNHUS3iwJkNhyfNhz+\n4ucCR+6Pm3NyenFa7Cmy77/Ly99ZcSN7He6zxO4ZU0iJrE0AKSeWBk5jlaIeRdy4d5+zccx/mloe\n3LmL2zSGl8boqI1OItJOQqvVod3q0G7HtCMpxCZIV0abFTw83ep6Elon3dyFMeuIo4g4jklTy3de\n/hi/E/H9rx4hCgtorbsewsbXBKGhUPAJw5AwDAkCHz+z3xBv3x4D69EmIf1ntMsR+w/zAAAgAElE\nQVTsIpc25iBd9nyGWKm+HynQ9MGNNis+uL7zaZFOjU5lc4giJe0SCmXO0D2iAk7AMFzv//kmP2P0\nYWEPPYYcnPr0uvxhgCsHv3pzWu/l8ncuoe2bmXpb6S4h+uWOvZxCd8832YSiu96R2akX4Mt8FqP/\n8x798ZYu6zN1sv6wRkMIqtizboLM7MQD7kPxX3d4/MAFtr54l+nN99jZuEGp1iENDPeq49zyZjkx\n/z4D/7ZN4/+Ci7ehFsNEAQ5cgKptcOr3X8UNO7gDnRtw3kqpHSRvuNqBbbcgvOMY3brMYLiBqViS\nEsgiLJ/Tvgxg4pd55DL2IlIGGQWmBfQ6bESiejJl+PElZsZvMlO6Q4kmMR4L8SRzR7dx//As9jVP\n3v5uGRZm6VnhLPPwfJ/PYXkRLM8t/qben73xawl8ATSjBGstnkYCsFIoLUG134QdyKKRQPTWOjFD\nz4JxdzhHHEfUajWGR4dRlYA4jqk3GnQ6HTHP1IpisYhnPGyaYIxHvb5GbaNGuRoRFCxBkMkg0Ght\nMJ6hOyVoDb6hoBSb/5c/Ype1XP+H3+AfvvwB4PgXv/VVRrbsoDA4yPrGKp1WjXq9SaoVt/ZsR8UR\nCk1xcIDCQAWspt2OUDbG+Bq/VGDThxfY8cMfs/XHP+Mv/5v/ChOEODxcavGTRGxJdYBvW8RRIiaZ\nLiU1mjQsYoohpXKJxKaslPfRenUM/d//M3aMjRDFEQ8ePKDZajC5aRPjm6botCOClWWKY1WGR0cJ\niyGD63UsUK6UWV5cIVqpE3diquUB1ienKAUa7WJRKQQeQcXDFAypUZmqMZO0KIPRPr4XEJgAayGO\n24DFKkfsYiIXkZgUvxSgfNN9r7WOJE5JkrRbUUkzRl+n0yG1/Qu3NKMciztAnogaBUlulJlpoJT2\nMEGRsDRAZXCIwaFhSpVBgqAgHgs6d+SxfYmhjNnZLwr46kfyyxLXxoAZmC3cYh8Xmbi8jPsR3H4T\nvt8UkGegDt94HfaPwuRjyxwYu8A27yY3Zg7K+8tAq0BvUvl0lYxs3lHG4RMTEEFL8JRa3xE6erK/\nc8Dj92HrLeB3wX8enl+EiWuwZmF3BSZOgDsBizPD3GA7e7hMqd2EebjT6BnbO0TuUl+FwQWoLkWC\ntn0CH7dFiWIRxdXeNSg3oJAm3dysw8NVzVYKNgGTgkfCBxyjUa7w3AtvsPfZS4yv1eiEhtuVaT4w\nxzjDYzxfep1dR25TeirlK/MwvCIp5mNF2HIKifNFUI9B+h3Fhf07eU89ySd2P+5KxqpYA7kqbXrd\ndnIALOe25Vy4BrAM0bAkS4MQF0q8Fz/L0uFxzgcH2Tp0i8GhdWICHjDFJ+zn/YUniH86CC8r+Ai4\nFyNLi7wzTj/w9cUnPH+d0YkTFAZfOxJPmKs2zXykcjk1uUFvjnB1y7pZJyeHp8WHw1pLFKdsNCMW\nV9YZHalRGagQlAq4RKQtWmu0VXiJxBIBqRROq6yrl2xT8LVsEd1VjTxalQeTHadVSnxe6EvuVO4L\n5iD0SDLvSLEB9+XT6QRrUqx20ugkf73SaDTWZQIP46ECsHEMLsUm4rPoGZNhQTnglB1YV0LVSwGk\nU6OWT+CQiTmLtdbGoFKUcjgrknlrY1ySYpMUbbV40hgnBv5OJEBdhoFkR3J58qQ1K/oAYJ3MH4BT\nWW9IBy51JHFMs1Hn1q1bLK2sZuyNLBXOdpAnJ93EmByAU2JF4ERyRCqsNYd4PnqeAis2B0Y7jLIo\nF6HiDnIUlscP72DT1Cg3bz/429/Ufycjv8fy5iQGka9nIEdnDO5Owr1qt27CduAk8CyMvHSHY/4H\n7NGXmWCBgIgVRrgxuZ0z245wbete7GAo98m7A7CymZ4vZA6A5UDWL7rYzQGfpvzUHdxTJNd8rh7Y\nz7ujT7N31xWO/v5FRkrwlY+EVKM3yzGvfa1CUlWMhjWmDsLkPJLAHYH6twLenHiGPf/gMtu/fgd/\nBWwJ7k8P81Z4nB/xNW6wg11c4XE+ZpbbFHWLBmWuDu7kw4FjvLHtOe4N7ILQMf7cLXaZ60xo6V7c\ncGXuuBkuLu4neqsqplpbQJ+Imd55g03mPgOqRoLHshvjxvp2mu+Mioy0rODDQVieoeeBkp/DfnZG\nzmjoyLnudGA+hCuKxasTvDch7N/BF2rsGbjF8JMwvCDX1h2BleeqvDJ4ktOc4Mb97XAhY/+u5+zf\n3NYgT1i++JHYnPmfsTNzcCIvQHaFc0g8UIhcLbvnuqCF6wH2TuUrRCk65C4pWRkA6xSLtTo/LIXc\n//oJ9vqKHfMLjJQK+EmMa7dIm3U6rSadVotWq0mrIw2zEicOwyki9VMojOdJB2FkHWk8D6XI7FdS\nlNKc3TfLyEYTXRmgnHV49z0PzzOSA4QGz89UEp5HEAT4vt/tFpymUvhX+Vr1EeCrV7Tt/WiVNXvJ\ngDqbprg0kR/RKUqBJJs/tMuYwchcKYBPX8fD/nmiR2fOrlc/uJWb6D88PhP4UjnB4a+4SfJr/hDm\npR7a2MMg4EOQVvYoY291Sy29fausMtad1/t2katAVKYIQYlUsltN69uTVorAM58C7j7/4egxcqyE\n2xo010ssT42yVBkm2QPeAXj6njTybSAYvmnA+y/D1Jsw8ySMNtY59a3XCP4fh3oArgQzR+5TPVVj\n8HwT9yp8eA1+GsteyzG4d+Hgdjh88hxnhw7mzgqfAjUMdGv7Fo1FwMSHl6mK/zj+qpHncDlBYgCp\nyGwWnf9x4Jsw+8IVnvde4yn1Lru5yhBrtClw25/lo/EjvDH6PO+PPA2EMsWfLkNrGpk3WkgRvcHD\nd3bS9/vv5o7/tQW+Gp2YJHX4gZZbXUnQ7a8M5JE0D0MOkZgY3e/CJL0/rHNsrbX4F3fu8D8ODtAc\nLGDTmHarTbvVFnmfgzAUn69Ws47ne1hrqdU2GG61KJZFOqCNEs+SXL6h8yW5w4QGVa2w/D/8E1aX\n1pgdqPDW3/8OtBKm9+1hfHYbw5OTdJIGaWed5eUVUutRHRyhtb6GSjvMbplhZHKSjU7CwtIqRE0G\nBspUJ8awRx9n1So+Pv4UFWsolivoYkiqHMY5POcwa3U2/+G/ZGH/AaKvnaJUHSQYrKArRbxygULB\np9OqM78wT+3f/CGT01NobYjjmMh3FFstRiYnKVQHSdY38Dsh49VNDA+PkMQp1mVZldJYZ6jVGmhS\nquUCpYLBuBibttG6hOdrfD9Ahz6e55Pg41yATcX401MhBg/lFGStmnPTy5w6bYwvxvaesABSmxBF\nMe1ORBwlcl84Jd5kSUoURZJImpy9EaOVsAx6AE52z1ihhRit8XwfvJCgUCYsD1IaHKJSHaJUrhCE\nBTzfxzNy/U13QuulT6Nj41QGBqnXNj6nb8mjX38N+LI2LgIVGKTGMKv4yzHpHFxoCszhkN+XUth/\nE4LFiOFkjQGvBgMdKZH7+T58er5TOXKftWDP/Hnjls+6q7KsRrAzMLgDDsz1mroXs/1B1jw5Y9ve\n3DXB5O+vURyNOHQGiZ0zYJ+Hha+O8nLhBc5wmBnm6AQBjLQYD2G403NCGQKKA8AIXA9n2Hn7Dmu3\nBfTKQ+49YGkVxu8Ca4poRhPsSDl4EZYjOc4ysGcIwh0Qb1YsMM4Fe5APoie4UDjAjvA6w5OrdAi5\nxzQX3T7uNzfjl2J2Hb/KzvodJkYcL53PPvR24BS0Zn1soGnPFji3eQ9/wW/wSuerLL69VQCo60Ac\nIehXbvzYn7Dmq8e8yr9BF+RcDeCjCliFXQu5fv0QN/fvYHRymYLpkDrFRrNK/dowfGSEnfEhcDVF\nQK955Ew26bWD/mKXY3+TEacp9SSmWPDR1uE7Jd1nbcYUyKq81kpxRCuVeYYkWKvQRmWeX7br4Zck\nCa12xNJqjfmlFapDg4SVMr6X4rTFM47QaFn869wfpB+s0ZiceaB7C3DlNEq7DCxCsCnl0Ii8ESXm\nxsZmTDVE/qcAtI/zRcCtLZhUYVKdMX0dsU5JDaCyOVNnhsZOZ92+RDppbW7MrPCUyAxd4nCkKO11\nmWoKkyl4hAXWZcmKI7Qs8HGgLI4Em8Z02nU8T4kkkLwBiZidOhcLAOcZNF7GYhbPzZz1pgFsZjCc\nmVmbzHC5SxXO9DOKzKPGWlyakkQRq6vLXLl6mVa7k7GHLToHDlyfYXL+O9umArRzGKXwjIfW4Omi\nSPI1pGlKpxMReCGBHxB4Go8UoxM8L8X4in17tnNw/84vEfAFEkM8eo6HeSW2icSbFXDj0J6EqQoc\nBv2VhK0nr/BS+CNetK9yqH6e8cYinktYKwxxdXAHb4bP8hePfYOPeZK4UYIVBbVRiMfpmdh69EC3\nXySu9LG96ACrUB+H6yX4SDG/bxM/G/wKVX+dzomQPZuvU5xroyNLPOpT313hJwMnWaPKU7/5Ljue\nvIe3GuMCzdr0IG+XjvFTvooh5eD0OQana6xRpc4Ab/AcNQbYxVX+UfLHHF46x/jNDdgANwp3t49z\noHqRUbPMj577BsN2lZPBKxxxZ9iS3KWQdlj1Brnq7eL9qSd4/ZsnuTO7g8rMCscn3uQJPmA3Vxhy\na0QE3NEznBs5xFsvHufSyCGSoAiRgg+GoT5FT4LePx8EZDMokrwgr3lQgYsaTvucnz5CYWebRlji\nxIm32PfEJUobMVFBM1eZ5h2e4WV3itNrzxO9Oijg3C2QUtVatt+ob59fvPw9zdaDXuYPmzeoyL+5\nvbur5wNms8dZTaMP7O75KooEL/ehAusUaQZ84QXEOuXu8hLNTpuFVouVndt5SXusbduM6XRImw1s\np02nLXlEJ+6QOovzjABdRhptbbl+n8evPuAnLz5Gu+ijlQBfJgPAXCrzzsLuLaxoQ8WYrjzdM+Lf\nZXyNFxq0kWKG7xs8z8fzAoz2uhLLJMngO2WzxlGqK6Hv+lQ5i3a9udFpjdKWJJF4bRNh7qrMyD+H\nhnTf+dYu35Zco4fM8+kHqZTE8W7QzVlp+Ws+DX51GVW/MDqUF7B7uyQ/tk89ScYozt+XfzJ5uWSc\n3X/3Mslurdd1X5s/r1Ve0EfkpjnolXWbz0cOqIW5bYv9hT7cL2HkBU6HfNfrsFaG+xBdHeTS3r18\naI6y6/FbTP/2AvsNzJyDZgc2avAf2rBqYbQFX3sf9k6D/7aj/gY0FsErQfUQ7L9/A8pQm4frcQ+n\nqgPXLRx8AOES3GWaI7s/ITxsefoGRA2JRhPAgVFQh6C+NeAu06y2RrArRqaXJJfT9yslfvXWr7/8\nkRe9coJEFRiHESVI5gnH9MlrfMf/Ad9L/ownV99n7HxNamQF6Ox5l4OzFxgvLGJ2WT44eZxkPoR7\nGi5XwVYR0CtXBuXG9fm1+LvtYPprC3w1o4QkzcyEjUj+euB5rwuIBN6+QJRXOLqhOiXn4FbbbXCO\ncKNBw4mcsRNH1Bt1Ab/iGGMU5UqZTrsJxuAHAa12m3qzSaETEcYpPiajRTuSzAgebdHa4hR4pZD0\nmcMU1hqM31uipkPqzRidOOJmG6yjMlClMF5lcGIT6/UOw8OjpO0WjY1lSmPDVCZGKHo+pclxGqsr\nFMOA0c1TKC+g+d/9M6bn7kMCw6NjFIeqWKPFkNg5vPkFin9SoVVQ+I8fYGB0BFMqQhhgPY1yEboe\nMOBbysMj6IEKpBZjDKXqMEGxQliokIN8QWAoFIoYrUlcKlUVp1Cpw7YiXKdDUUPBJtCOSUkwoUYb\nD+UXwCuCDnHaQykflEz8Whu0ki5hwtaz3e9J7vVlLfi+T6lUxigPZx1JktLpxLRabaIoRWUdc2ym\nbUoS+ZJpk5eYZPZU6pFKDQqjASVgqWc8TCGkNFClUh1hYGiE8sAghVKJIAzxgwDjeRljoG9iz+a1\ngcEqIyOjnyPwlXft6h+9ZJoUEjwSjLBQfBEt5qbciqyRUwDOKBJlZMFn1c8p9KZ9vzOQpO5gWdG+\nX+b2vq1cCvdy+NAFxl/a4JlFmL4NjQ6MDcKfL0vofdLA2AHgINzzp/nkyAEOzFxiZGUZE6c0Birc\nm5jijdJx/pxvct3uZE7PMj82ztgT62w+Bqc+hItt2d5Tw1A9AhxBuusF0pm5vxmvBvzM/78dhizs\nGWHr1+5xcAVGPoFGEyoVmDwGvAS3d27iMnu5tzbL3Xe2MLdjJ+XhdYrFBnES0KoPsLE4iI08fvrE\nGhWvzqkXX2bnrlsM3aujYmhMBtybmebs4D4iAu6ymQsc5K3WCa5+dBB+Ssa8cohGfo0eAJUzJXKz\n+7x5QS6FiZCE1Yf5aXh7QOQqV8DOllicKElulCK41n2ECXcNeBBBsoBQzZaRZUi/v9cX0Wb7bz8a\n7TaVUgmDQwVGEprIkeYLc6Qy7VILJptPVJoxgWShKt216D6OEmF93VtYY3hojXJlCB0otK+6XiQu\nt8LSvapwPj+hpWsk/bHCyxbTthefpPotMnTXW2GjnAZn5bcWIAsjbDNlnRhlIV0RHQqrFc7kgBSZ\nH5l4kuncg9kpHEYANQfaGVSqwYJxWdz0tXQi0x6pUtKtJzse7aR7okg9LEo5bMYXsC4Vtm2ayTxd\nTBp3sFFbmsYAKlHo1MNSkP1oAyrNAEhJQIVZ4LoVeHJfmIzt4bA9wp4TX0+biu/j7Vu3uX1zjjTJ\nC2I5o4teEpTXK/oYCCiF1QI++qEnRtnWIp5k0gjBofC8ED8UQ2lnI2yicaGP0pbhaokXnn2MH/7o\nzW7H6S/HyL/bj4JfOdA9CaWStKA/BkNPLfDCwMv8Dv+W41c/oPpmHXUBiGFi6wazJ+6x5chddCGl\ndmiAS3ePCnhyS8HCCBLPQnryil/EdyUHvRKE2VoH1sGuwlwIZwzxeJGzhSfoHAq5481weMdZtuyY\nwydmjSEus5v3eIp1qnzEUbZtusHgphoxPveY5hwHMaSkqeG+P0WRNqMss49P+Ef8HygcY9Eqz555\nl/D7icTnVcST5tlFBr/9OuxzuAHYzk2+k/wZs588oHKziW5APKF5avdH7N18iUqhzukjJ9irL/Fd\nfsDx9XeYuLFMYbVDWtDUNg1wZdu7TBfu8v0jMR93npUYPg9cmkCyjhyIyhsF5O3mR+SaMQFeKFPD\nfeBtaBcGeffUsyzsnuRs+TG2BreojNXpEHKfTXwS7efKnf3UXh+BnyEU7LV2tuMVvox+j0kqAHcX\nBxEsBZ0VGlT2d/avLggiAE0eans+Tj0maw6AyTyRuJ4XFcqQGGjHMfWlFVqtDsfvPOCFWw94//hR\nzjy2h4KzJM0GSactTZaMTyEMCIolgmIBLwxwSrHj7gYVrRkbrLJeDsE5fM/D93yJbWmKS7OGWcp0\ncx6jDUYbKdR4Ct/3MJ5I5j3Pww988R3OXqMQ1hcuyQAvk0kgc0/iLGZ3dYmZN2JqIStQuDTN4l5+\nsrPxqYrBw+f7ofHI/7uP+ylbLjPEzyWDZNPwI7vt/q8PQPtUZO1/k3r0H73fPQZctrNHjl7mCPcQ\n40sa1agultXz+5JCvOBc+uFtK5F6kgGf+XrCIV6Zoe+jM4nn5z/y1X9Kr+PvGtQnxffjHFx5/ACv\nbT7JxNQCL/7u60zvXGLwXRj8Ebz7s17ReQW42JRO7LUb8NN5sTcsrsJzK7C/AOYfQ1iBod5tiEGE\ndgxAUoZ1qtzcM8Ou795mTwtGz0K7LWvy6nMQf0txbnQ/FzjIwso07raW8NiO6XUJ6cLZn8M5/FUc\nih4rYgBUURoE7IHK0TVOBKf5ZvoXnLx0mvKfdnCvQ3QfghKETyQ8/lsX8F6IWQuGub9vmrlDO+ET\nDXeLUBvKtpvnKMJ3/WXlEr/GwFcqbemtxcuCf75mteLIIkGkD8jowV894Ksn23C8HhpeqAQMeZpd\n1lLwfJIkpV5v0Gw2iToRYSGgWCrjBRtEKYTlKu1Wh1qrQ7nTppSkGN9DGQ+dtQqWKngqFGPnCP0A\nX/toq0nqMaoFXtqhESXQbJLU6wSFKiaoUB0qYotNwkqVYjhOaaOMIib2HH45YGR4GBMYSBMIQ7xS\nmcHqEPghnXqL4sAglZERrO+Jtw0Ob9MkjX/1v9FaWWJgahJ/oILyA5zxsvMSoGxM0IkxhQrKL4Jx\naJcQhApPJxhVxLZjkk6c6UtT0jh7nFpsu42KY9zKPGp1gbDVwsQxaIVfDAUsKpYwfgGlQ5T2haZq\nkUqVn1W9jFC/kzQlTpKsk2MuW0xIU0dY8CkXysI4SB1pkhInKZ0oJU3B6L72w7a3oCFjSmjt0euy\nprr3kTAiDE5plAbjaQphkcpAlYGhESqDVQqlMp4foD3R5eucMm5drySUjYGBQUZGRrl968Yv4yvx\nGePRVUkmT8hzhhVYZZgFJok2BwT7Ew6dg4UlsRaZBo5Wgb3QminwwEyyyrD4jORNOOjw8KSSV4ja\nQA3WRmHOw17yuPb0Lt4pPM32mRt85ffeojQQsfs8YmY5Dv/Fn4Iy4O8G9Zsw/8QwH5rHeUWd4uDE\neWYm5vBdwpoa4iq7+Mg9zsf3j1FvDHFu9yE+LD/O1lP3GVxrcGgC9t0EFYJ3CNS34PbT46zaEdh7\nm+JhePo1eAf5KI8p2Dwln3Vpc4Uz+gBj/9kKlaE2Mx+DW5Hkhmfg7gtjvBy8wDs8zdKtCfixx1pp\njLXxURhwUpVfA+4pmHW8O3iC1p4Cc8EWDmy/wKZtDzAuYVmPclnt5nVOkuCxwDhzd7YRf1zGvWng\nLcSsrLGKJIqrPFwtgYdBrxJS7a8iy4ZRYARcQeh0HyNNCYazlxSQeaeebXoJSBvg7mX7yxOrFrL4\n6feU+dUbURRjMIRhSDttE8eJFCOyWUKAbpPJZsg6Xz3ig9L1RwG0I0HRTDSrtYh7D5YYqlYJSxWC\nIABnSW3SbR2vMMIEzYdTYDOTeLKeU6pvlsoXgjkbLU/IlMJ6VgAVpwRsyhfUiJRSK4UzilRn20wd\nKYJu6axxiPhZiY+YRXxyVKowykdZD0/7slcrB6O0h0K6CXteiPECtOeTGiPbziU0SHZobSTmxj39\nJlop/EIoemGXQhqh4wjbbuHiuAsqpomXnXMDgXQtcyRY6zLpTJr5xPSV7p3tO2mmyxrodiKOE5r1\nJpcvX2VtfUOuiesltipjfUDG+jP9QKWwKKzSpNYKYGnAZl3MklR+jPYFEDR+9l6LdTHKpZKI25RT\nzx+hVCxQb7R+qff7X3+IX5XE7hxQLyMA1QBUtDR32gd7pz7heV7nxbnTFP51DH8Kdz6ByML0JBTO\nJuz9x9f56smXuRHu4MbjO4jer4pX7sJg33Z9Hvan+qtGf3U4b+SxBiyIz9eZQfChE5c5t/gkt47t\n5PTodcZYwiemxgBzbgvzn8xgV33e3f40E1PzlHWDBA+/HfN7hX/DPi4yWZgnxmeOLTyVvsPeezfx\n7liwYLc4/B9bkv8T3roLSw42azh2GQZdkxd3vMpGOMgT8fvs+8lN9PcRJu0G+DOWiRdW+drvvkFn\nb8Bec5Fp7vOtpb+g/KcJ6jXEC7hsKR5eZeQ31yk812IjHGT+mU08uLJd/MGuBZD0JxMRAnqNICd5\nBhiDTQamlXiHVbOXn4doscTVY4e4sWcf/qYaxXKLOPJpLw2RXvWwZzW8q4T9eyvN5oR5ZCLJCy9/\nOwPiv8uRWpcxdZEiKXTBLqUy/F9loHn+PDwsac7YPxJtM9ZXxpLKt981Yc8kc7F1wsIlZWGjxv/e\naPFPrOUP66tsuf+AmZHhzEzS8L1X3+f13/kq5UqFQqmECQKcViQuZe6FJ7h34hD4hkqS4qwTqaLv\nS4zKGbhOujhqI2b4Wos/LWiMkff4vs6kjiZjdAE561gp8Th2Dp1YEp30WEj5yJiyztlMJSFSS5tI\nDiMF6J8PyPy8b3KX6dwtJsgDuR492akY5wvrWF7TB2iSXdi/UtP480ffbNF94tHj7RIj8gITj+yu\na0PQm3OF1dUDtvqlpPk2e9umO4/3ENgeAKcQC5iHfdc+z9HvwZT5BLIKySpcG4aPoDk9yKvf/BqM\nw8LEOM999TRH7Tm8H34adPABinBxXpazDonaH7Rg6xUYuA/BETj+CUTrshSdBZ7aDDwOy9NDLDLG\nKwMnKX3vh0xPrDB6Flm4j0PypOKTIzv4sXmJd6JnWLw0BVeUAP2dNj1WbA7W5wWU/zhkmL7feT5R\nhKIntZMdMDV+j8fUGY6unaH0ww78MbxxFa6nMKTg6UswlaYcmb3Exb0f8O7wU9zfOUsyGUJJQ62E\n5Cde3/5+eePXFvgCaMdZp6isWqvzKnYGeimlME5nQBjdSnseSJXKO7dIgDFas2AdXr1Bpx1RKobE\nqaPVbtNsNmm3OwRBSKFQJixUaDZjvLCE7SS0OhFRnJCkCRBmVRZAWZxLSPKOUtaBgdBo8DWlYhFb\n7EAzIUkj4kaD2uICcdrBFAOMH2C1j/N8dKFASQ/Rbq4J3yNNCY2iVK0St9vETnXBovLwECYsYLwQ\nFwY4z0h65xxWGdToCEUPKIe4ghiRO6Rzl8LHmBLG66B0CM7DJsKkss6AZ0g8Q5IkJNbSaUckqaOQ\nKtI4pVlfZ+n2HQY9Q7K6imk28Kwj8DTKMxQrJSrVKrpcxBrRYzuVJRGZjEdrqWp5vo/newJ6OUsn\nSWh22rSiSIBPB57nY5RBW0Wn3aFRbxFlTQq08dHKI00lL2pk17Gb2OLQSlhqeVWme59k857Sck6D\nIKBSKTM4WGVgcIhyeZAwFM83o7SYXkKXgq3yqk42BqtDjIyMfR5fjc8YedCvQ8fBgoLbcLuxjbPl\nwzy97x0Offsam2rw26/DyhoMD0LlBPA9eLBnknMc5npnp3Trmicz6cpb0uYLYZs9biGT5Sa47cEZ\nWD29iddeeoFisUVzX4lntr7NwO0I3bYkVY+h7TUwkOxSLD4xwiuTz/IzXuBn9Rd53z7FkL+KpxIa\naYXFaIzFi1tkcV6BjyaOMl29R3FLi6/+l69TPtrEfxDjPEVzW8Dcvml+HH95nlQAACAASURBVJwi\nIGLb07eY+K1Vjvmw4xOIOjC5HfgGtL/q84E5xs84yeL4OMf/3ltMv7iMblqSAcOtiU28qU/wI/d1\nPrrzJJ3TZTiPkKOqCgpKTkFNPj4HFFFU4YPnTnL38CzT4V2G/RUMKevREA86m5i7PYu7UxBy1W0k\nsTkPXHGwWkNgyBW5dg+da5BJJERQrGGk2r8JmIJgDCpKJq+B7GWWrgVY17PeptmTWRLJavaTS2ly\nWctfx4fnyzdSa9lwKePlMoXI0IlTrIMoEePgvFKbyz6ck4p4vkwX6YF0yk21+Etm/RiZbXVYXquz\nuLBIqVwi8D2JbZrMOwssJlv0akzmUWWxwtLK2GC5r4wM1aMpOIWxmb+XEddg5YFKVTeRQAuw1TVK\nUWC1Ap/M60p3u9jK8k+chq1zpOTm/QYUGOWh0Li0I/vSFmU0WnkYNDpOKN+eI5ndliVUFm2t+Gxq\nkYi6NMr2IUCh3y1DdXCug05jiDq4eg3WN7Bxggo8VOBB4OOMAe2jjAc4nHY4K4mf614j15O9yImS\n5NUJkOicE7ZXkpAkEQ8W7nP91i3acSL+Xt0CWE4KyNgFeRKje+dXqax3nktJ0pggDNGBxnjShMZ4\nQdaJmKwrl5jiS/5iBfxSmm2zE5x46gA/euX9X+bt/jccMT2fqHyRWgTKgqtMgtqRsENf53B6juCt\nmPhH8O4ZOJ1ZI+65Db/xFzCwPWXH7tvsnLrKprH73NpUlfCEzraZdQv7a5kO5+BcnpAFCEgfwMo2\n+KAIdY27b9g4M8a5bWOC//tITH6AaNzXIJqqcmfrIIVtLb55/N/xvfD7PF9/gx3X7mDuyDpt/skq\nk2+vw08guQw4CPcCH8Krt+GN7IjOWNDX4OjbUH0pYt+Ri8yefYD+v2Hh38H7SxJdd1yGxxcgLKV8\nffxlCnMpy+UBKm8kxH8M19+CG5Gc6v0fw3DTsqd6i2cOvsNH3lHmd8/iNhn5TPMVJO77cn36u3BV\nxmCHEnP9fcCOFH8qRhcsNtYkiz7umiG5GJB4o2LVGSNh/y7C7LgCzLfBziMT3BI9j69HpSpf7Eiy\nONbtngvZmi6L0V2MQfVAr77XZKrsHvczD7uOLnieZiCYy+KGdU7iqFYoTxOnljutiP2+ZnZ+ETNQ\nYaRaZWx4mAOXbzK5WuOlN89z9T//Hp4nAHqcJgKIe2BDQ4jDpVaammS2LFlbXJIozdatprtG1jr3\nzhJ5vDIapXX2mqyokqFNGV6PxDuRLBILwJUXebTWXaN6+fyZ7N3ajOWVxde+mPso8SsfKjuBXZP3\nLnyV/eRyxofepLonPc/Vft72+/fzKQbYI0/mNWiX/fNhmCn/qwdU5Z+997i3rVJq+ac3F3h5vMo7\nwwNZgVxn9ghKiiIqN8F/GBzrMpRR0rVS9X7knMrxFfygW0T/Yka+jo94aG24WoKPQygplvUUPz75\nTR5smWTAr7F79gZDjzU4+gksrcGig1EFBwbh4qs9Ftiju3EepL+tmUgtv/OugF/+BOjnIf6m4eL4\nXs6pwyzYCVYrwzz1tXfZeuoWxVbERqnMJb2XtzjOK8mLnL92GHfayPr5QZodd66UyFUS8Nl3zf+f\nRz4P59Y1BQgNVEGNxgwVltnKLSbnF1Hvw4dX4fU04z44SNfgW+9B4axj696bTOn7eMMJyUgoeJfy\nweXz/S9//FoDX80oydhU+SxFl87bpSp3iwP5srav56MDnMaokMQZXBphraVRb9FpxyQJKOdoNJus\nr68zMDBAGIaUy2UKYYE0TbvgTCfq0Om06XQ6FIohgQnwjI94jMgEY5UmVgmp1iTZ5OWFAeVSGdtM\nSOOUjSiivrhAs1nDKwWUUCgT4PIqjTE4II4jvEIBa6XtvFM6a5EsEk1T8PBSROKiRKOvnQCByoFT\nHqVCBd/PWozngVpnQKDTGD9EaQ+rNamOiVRKpBLSNEFHEXHUpl2vM3/vPutrG8zObqNUKDF35Trv\n/ew1Dm7bRtXzCbWHwaKMwgsDgmIBvxjifI9UOZnXs0lDex7KM1nnMwWeRnkeCid1XpfSiWOa7Q5R\nkoIyFMKSBNDE4lKwqaXZbBMlKZ7no7RHamXCiTpxJnXMJyK5cZTqgaFyI2X3jNZoz8MLCoSlAcrV\nYQarQ1QHq1QqZYqheLkYBcqJ7KVXKep9yZVSVCoDjI6Nfw7fjP6RAxa5GXAd0ibcLcMVWPloiree\nPs6Mf4fCqR8wO3aX8omU8iIwCvERuHNkMz8svcRpe4IHZ7ZIh697QNpBvFo69GireZWohVSHF+De\nNvhYwTBcD/fzg6dC7g5t5v3iMab2zlOgzQaDfPsP/hKHYrE6xMfqcV7neX629BILP5sRkGbYge+g\nrqWacxNZnG+B1eomXj71NRojZW4MbWfPyUuMJctYrbmjN3OOw/xg8T/h8PgHjMwsc/LvvcXkrlWG\nr8rhu+1QO1bivZ1H+Cmn+GnnJd7znuRDc5SZzXco0qJGhVts5Vx6mAu3j7Dx6qhkPheAOzH4Fown\npzzRMs/WlSRcd2D+w63Mz27BDEegIK35cNdIIjaXncql7NwuJdBeR7KQB/RMIaW5gwxFD/gaRDoO\nbBYX56Ey7FLSKWwrYoZQzC7PBgKw3UD2fddBu5HtPAe+cn+ffiP9X/2FQkOFDI/MUFxdpBBFpKlI\n0q1Nu/NIDnzJYyWsJZfFCKNIrYDz+YL8v25s8AdJzH/rwcLyKkPVCpVyicDzMJk0JQupIilUKktm\nekI7JTvLtth1EMlM71VX9qgyAMVkEkrQWYMtm5neZ5tIBXQ3ygnjysuSj+yghUWgcKkUUKx1KGMx\nSouoMjA4L4BUo9MIbVP8NMG4lLTTpnjtCnv/5T9n+cTzXP7a18GkaE+B72dzrsUaSah2/OAvufGb\nL4GW82dsjI07qE5E3GzSWF6h/mCJx89d58MTh/CHKgTlMk4byApIfhhkiRzgsq6XSqTuXZAKmeHF\n9D7JCvMi67G2Q7NZ45NLF7m/sETiDLbrCCpeYQ8V9VXOAXx4KITdnEQRcaApqAIYRaFYohCK/D91\nidwr2UXXystKcSngUSkHfO/bJ3j59Y+6svsv38g/eS5DDLr4Vzi8wSjLjDVWUbdg4xacSXrNSq4A\nB+7B/htQWaszPrVERdeFcVRC1tVxvgj+m1R/cwl/hOw18yZxFpamoTkkcfU8EvcGs5fn3rr3s7e9\nAN7+iKPPvMXX/b/kW4t/yeR/WEH9COw1Scgmn1/H3oL7P4FryxIidr8PU1qgoJzvZBGMKFmCYBVG\nOmuUL7fhXXhrSci2KXAnhfJlOPA+lGwKb8L4Rg23E26dgR9FEoUDYPUufOd1qDzbYtvOW2wpzFHY\nVKM1MiQ4V7ebss5O7AgwA6VROKjgBKjnUqpHl5mcuMf0wF2KtGhTYL45yYOlGVbPjmNf94SRdoOu\npRu1BJpZd2DuI0e1zsNdHb88926SOlInjC9HzvRymeF6zrRxXflj/wyas8JyIEyeV921Yc5S6jOd\n6rJ+tDaZQb0UTpyCdmpZWG9xZ2WNzTMdXpib5+6LT1MaqdJ4/kmKnhaFRhShnMLTRhxRVdbl0Zhu\n5bWrTAHx+nI5k0hnXSBzCZ3OTOhzFmxv/dnt0JgVc7rKGGchzZsCZP7HxghjV9EtLLh+IIoeuGNz\nD8rsfORljYeKEPStglXf40dBqUdGF/TqA84+c/3huoY23c8oTz+89s6P/6F99QFLXZ5frtj4OUsd\npRQV6xhJEva2Ij4cy69Fj1HXPx919w8P/Q+ArLuzVfqR/SrC0JdmaF/YyIvY/Wv5eYiKcH0arAct\n2GiM8ck/OMD5yiGe2P4Rj33rIhN1+M33obYOhQJcnoM3M2/83EK9AhwsQHE7pNs0c89NMDm9TOl8\nTNgARmHjUIFzswf4c/83OG1PcOfqdm7PbuWdwlNsNvcIKx3qlLnltnKpdoDbl7cTv1yC00gn3HZd\njrmbo+QOoTmz6cvTmfaLGfn99VnzsO6eKhVYQt2hQJtg3cGasJzbfa9edNCsQWEdyjQp0Eb5rrd8\n6G7/4bz4lzV+7YGvruVKlkRYHIlzRFmw97rP5liGw6kESyIgiXUYP8gmEUlaxRsqQhuNw9JsNllb\nW2NoaIhqtUqhUCAIArTWRFGE7/skSUKjWafcKhMWAjGbNAGeFxBkSVVqDdiYGCdAVBCAn2IKPsWB\nElGaEimLTWLSdovWwqIwDsIizvMgMFgbk3YiYpsSFhLSOEEhGn7nEPmfitBOEiLxNnHg66w9vRJD\nSptVpbPuiUqprNVwQpIkWCxaObR22LhD3Gyi0hTXabN49x7OWsqFIlGtwYObdzh/7jwr2xeYmdrM\nlY/OYtoJNDp4RYNntcgNPYVXKuCXi6jAF+Nio4SVZYRJpn0f5XtoI+2XLcLIiOJI/NKcI7ZWmg0g\nrZuLxTJGe6SJxcaWNE5pNVvEcUIQivG6TSWZTFOhjGtlUEpsSlV2/+hsBdS16tQeTvs4r4QuVfGr\noxRHxqmMjDBQHaRSLlMshPieh9G9BcVnt4gGYwxTmzbL57KfV7B19MCLFrABdhnmS3BOkc56nJ04\nRrCzQ71c4amn3mPbkZsM2BoNXeZWMMt75kle4QU+uvUU7k0PziJ4jFtEJsRcfpfTiGO6vgDcF5H+\npQnJTRLNnYUdzB+Z4a0dxxktLeOR0KDEjaFtWAyLjHPV7uLq3D7qbwzDKwjIVcpAxXa22/sIRnMP\nnNHca2/jz56e4MLuA2zmDkPeOg7NAuNca+zkwZvbefCVUeywZnHzBIcmzjEVL6BdyrI3yiV/D2/q\nZ/lp5yWunj6I9iwf7HyakfFFfC+inRRZvT9GdK1M+qEvOsn3kAzItqFThqISdlVutdVG5CI3ET+Y\nMU06kDV/7iBJxt3sJwJSC8k6kmgsIdSs3Mclr1rl905uRFlC2F6ToLbCVAiPK3gSOArmYJOR6UXK\nqkmCx1pzmPrlUTij4H3gHQ8uT0pbnrx1TxfW6fcT+9UfLm5TmNqCryuEUYN2J0HHKUpJImAy5lWa\nxiK1yKgCPSBMY50lCEp4xpBEHf7Ed3xPGy4OjKJqTZaWVhmoDuGFRZlTtCHQGu1sz8AXsspzz2sr\nl5c4sq6B2Wtkx6D8vKeYE0+vvFABEtfzyjI6S540WknMdAqp2GebdFahnJfbW6KcB6nIGT2j8LI4\nqLwCR//X/5mzf/BPiWvrtKM6UafDRrPGbBBwZniI9o2raJWgdeZJkq2jrLYceu1tZt94D//Ced77\nrVMS5wGsI2q1WV9b5878fX7vnYvsWVynncZ8fOoYqcrmBc9Da4fSFqPCLpNKpI+S5UofFZHEkzG+\nsqst59Mm2CRiYWGBc+cuUq81sc7rJkeflZjph57vr9wDGfshjmJcEqOUeNFEkZjEi9QzxroEXIDG\nA6eyxNRijMfxJ/exZfM4N259mUzu+8ejyabN1grynMaiHSKD5eHo0AMKyHyTsv/ma17d/w7d9ztf\nrv5/gey5xC6/Sus8JMtpTsDtcSnu+EoAO0XPD38WIcXuhPLROoeCM5zgNJOvr6D+FVx8HS505GiO\nvQvDE/DTBQnhADfn4benpcxwre/ox3zwq0AZ4iRArQGrmYI8e10bWGyJLVn0z+Hj27BkYeYt8ZHM\nG7xEZMDaPfAWoBw1KRWbFAptYWcF/efMIKnkODAGuzScAL4LW5+7zPHwNEfVh+ziKiUatCgxV9rC\nB1uO8vbUCS4OHYU/R4ohVx3EucR9OTu3a8ickHf2zRnAX545IbECgovqw3XzApf7L2WgV3b70q0P\n5AXQPiKI6lphZJCTy7r95kbu1mVeVJJIK6dxscKlUtCwylKLUxZqDf7+D19jT71JUC5y79RxBjIz\nc6UURit09p3SWfy3OXiT1eWl94oEJpN3Hs+bcynpHi9MLdXtGNgP1wtwZMk71ubycC3mZ90GUVrL\n+tRZaXpiFODSvnVqtp7VSsBB29t+P/Hg5yJGn/X0Z760D7x6aJsZqGbpySD7GVl0T9tDh6Dy7WRM\nv0d32ccP7MfBeqys7mfvgVDLhYD/ae8srcDP1v1955R+8Ivudh8FvzI0Vs6n6hnc536iYfhlYHxZ\nJHLl3igLgBbFyNVZuS8nYfX8Jk4/c4KZ0h1K32iwZ2KOoY9gqAH1PxLT+ka21Rg4AjxbgtGj4P0G\nrD/l87PSScJDbbbumyO0Heqmwg1/G2/zNK/aF7ny3iHsaY/z249xedthvLEWOohJm0WS+YDkqo/7\nUMta+2NguYlE0FzWAD1vD4+HGnB1x18FNH45JN1/+9EPCfXfX48WMWx3mrVtQzst0KBMZ0QRjjs2\nKam95Nd1RsPAEDAKNSq0KOIi3eeOkj/4fFjCv/bAl81nMYnjJA4iFB1EvGewGBw+UPIVQcnHL3qI\n90aC4CEJ1jmMpwlD+V+n00bh0J4mTUTu2G4LIBbHMVprCoUCtVqNUqkEQLvdpN1u0emU8H0fLwN0\nPBNIME401mqMkkWb9jQuiEl9A4WAYKBIwSWk7ZROFNNZWiZut4iNj2t3KOoZmp0a9+7dZGx8jMAr\nYFOD8kLajSZ+oSCVmCTFN75M4FZkHioWnyuXSocyjEZbI97+pFkSkeCSFJIYk0QkK2skpRgTFqDR\nwrYjGosLzJ27QG11jYIfEHWa1GureFHKhXc+4G75CsPlCge276KiNUmjRZokBCUfr1RAFQMo+DhP\nZwCXQvsGZYywq4zB+L6YcWoxbE7SlDhNM7NoSVDjNCW1lmKxSKlUwRifNE5ot9q0Wi3arY6kgFqT\nJBZrpSNNFHfoxO0u7Vg7ld0+LmNsOZwyKOOhvBDlFfCLgxQHRxkYGac6OsHQ8CiDg4MUi8WsVbT+\nTD+gR4EvpWDT9AzGeFgb8csfsrTrVccz3y0WoTYI56tQVTS9Km9+9QUWd03xYXiULcU5yjRoUOau\n28zV9h4u39xH9JMKvAacd7CR6+XWeZhGnFOk+/ZFAA0DZ4Zgw+DmNNHZAgsz21gY3ta1efmjb0/i\nrKK2PAA3CsKk+hBhmNURfGcp23wNiBwMKjEjm3KoMYtfiEgx1KnQpCzt45e2ULs8Cmdh0c3y509/\nl+tjO9gVXGXcX0RjWXEj3Eh3cLmxhwfvbIcboHZE6EQAiyItQhORVH02xnzSTUbK/uMIQ6s4IAnV\nNJIR5clWDVkvzCEmwQBBtgKPHDQsxMn/y96bPst1pGd+v8w8S+13X4CLi30HCIIgwQabZDfZJMVe\n1bJGI8/IksOK8dgjh8OOmL9gwnb4oyP8eeyJkcaasewYyeqWeqHYC8km2VxAkAQBAsRObHdfaztL\nZvpD5qkqoNVSS1Y32R3OiALuvVXn1Fmq8s33eZ/3eQauY8tvtOH/VrQ3FuBiUWkv2pEK964xYAbG\nSw7w+jxEz7bZeeAix+N32cV1GmyQEzBXmebc+GE+2HOClakJiCRYCee2gilshxP/viF9MPOXf5hO\nm8pQjVzVCTbnibspWa7Ji4q9MQhlB9od+4vVwgYe6xKVcqlOQsCtzPJ0STJqQSRQXkkYamxSrQ0R\nhDFkvt9NSoQyriiB8e0qbv7tA+7u/Yp0rVcJ9nOfm6cVUkssyrdr49ptChi/p6nlXCqtNc5JzPXs\n+ITJr71lgA0ClHHaXFHeJW62yKp1rFZse/Vlxs6/xwP/6//Ea1/7bbrJOjprI/Kc7z7zLEJY1MY6\n6AybJ2ijXUuizRE65+2tk9TGhnnh0G64eB2JRBvnshkurvLOZoflTpP/cXiEf0XAy4f3MmSsa01M\nE4IgQCsQ0nhnMXfOTrxeEhCAUX4d4LRu+qQMl9hpbei0ulz48DLXb9wm1S4dErjWSQYSwYE0yCXK\nsmCQe60w/NLNCoSR6NQibECaZshQUioHKKUxOkfnCdbGLlGVCmss0mqEVRzcO8uRAzu4/vH8PQnc\np28UhZMU2iFsQHepweLwBPNDI2zffYvaTjh2C97UbmbaJWDXdrB7oTlSY4FJmrrmprRCbqW3CM7o\ns5YKQEsPPPc3HVd23++GXtyxC5B7ZeROHWQFtpTgAHAY2AVs1VTHVpnlFns3ryLehpvvwwsdly4B\nLCbwzF0XxYrUYBlorcMTEyBWYFHDTACHZ0GchM7BiI4sY8ZBTsKWm65Gk+Nm6q01Rwx++YojJ2TA\n2abrSIzp+/QOA8Ew2GFIg5jURmR55F6QDZ4z9Bi/kwqOAo8bdjz+EV8u/SVfzL/LZ1pvMHlx051Y\nHdYPxhxpnGcyWoRTlo+axzBzgSMX3yjhwK6b/mYNttgXcf7Tw/YCXy8yhYi9A4CKI+x1d4g+z6OQ\nNyk664oxWJjow1+O5YmPET3J+wKZcpULrPFaiT68t5OM/+Ghg/yr20u8//BRhrKM0JuPBL64EUjp\nJVEcwNaTI/HO5QinK+aOX3jwqxju+YHWhf4zPbYUHvhyCaeRwovZ93UlhfDSvIVGowDlMBl0nvfA\nM9G7YP39/8Qoir9FLLvn772Z1YM/DuSyPdSqD/j1WGa9lkf6gNjAexf/CiF7wvjFPRU+Xjqw0w4U\nNoRvzOgz6lyclfe0cPbORBQAe39d3wp69ZDeo3hv97A9ja+fAL38z64t3nW2CK+5iRBIBHEUOZfl\nT3QUc7/ATdwFW8qADuHONHwg4RXJ+0MnifelbMZ1Hjn1NvtOXWLPn98mKFsaxa32W48LmHoSzD8V\nNJ8r8b3hz/OX+VdYYpwt0V1CMlq2wp10hivNfSy8O4N9OYAzYCuKdKsiHS25nSW4yfk2jrF6w8Ja\nEzd3zfvjH6MfVxL6gv3Ferr4v4BL+oUzNwYY+L+kruZ9llvxKFY6in6hqQACfa7Y1bAuYSFgtTvB\n9fJObk9uZddjtzl6DrLzcDuDqoQTExA+AemxgCvs5bbeRrYQuHytbcEOtsb//8DX/6fRzXNSv4A1\nwlfjsWgkWoDBoqwhFBAqQakSUalXCEsRSIsxORbnxoR17oSNRsUnGBptciIVgnHMrlarRavVIo5j\nwjCkVCphraXb7RIEyrc6dknThCyLsSV8RSZESusZVBBYRyeWEnQUYUqp15iJkFlIkKfk3S6i3UYn\nXUwQ0olKJLUKt27d4M23XueRR0/QKFXJmh1a7YTFuXlGxsaY3DZDFEXYMGJts4UMI6JAQebsk41Q\nTlDZGEQ3A5kjg8ixwLRBGEtgDVmrzeKFq6RJQrXeoLW2Tmt1lc5mE50klLVhbe4Oy8uL1BtVdk1u\nJa0nSCMohzGREV4PxfW/EyhEKcZGAbl0OYpUAhEqRKhcC6f/PgopnJ299O1EOqeo+fg1BsYnc2EQ\nEgQhWhuyNKfT6dJstUizjCAqIaQkR5MKSy4tmc18mdrZQ8vCvcyXhpwzjELICBmWCco1Ko0RhsfG\nGRufZHR0nKGhYSqVao/1V1DEB4GuIsjdH0S3bt2GUorsF4YjFIvUwglrHZdoVGEhgh9XIAG9XObC\nsQe5vnc3teEmQZSTZwHt9Srtqw3XqvgODoiaS+iL3d5vbS7oU6Tb9CdcA50ZuDgCCxVHRR7HZQLK\nHdrGtUm3m0KLZd3v7hFcy0rhQrjun78u3Kl8HsIvdTh44ANOlt/kMOeYYgGFZkWM8NHEAU6PPMz7\n206w+dIYa9+f5M3jo1zas5eJ8iIhOW3KzDVn6HwwDDcs1cfXObj3LCfCd9jFNYZZJRchdxtbOH/0\nEO/MPsKd6R3oOHY40V7gCLAf5LaEaCjBWkGyVIIboQPv3se3RRowbVwm6Fl4bNIHnIpHi74oZ9Fu\nWLh3FYuQEJf0TEBch/3Ao1D60iYPH3qd5/grnuBVdi3dpNRM0EqyPt7grfJD/GDqY/7qC88xp3fB\npnBB6u40Lukp2lqSgfv6yxjw7x1Zt01gW4wdO8nHS3cImivEaUJuUzJrEZ7lJYRzC9Za+0TBAV95\nniMQJN0uuYZybZggishb6xiTE5brbCaWlYVNhhsbhHGMCkNynSNy77Yo8K6RfVdCayUWMTCHeOhr\nYA7paVfixOkFEAh6WlXWJyXGgrAGo3PXZi9wbRV+H8o41lWhYaWUQeoMm3U58if/nsrCPG/8+q/T\nJuLC1hmSxz/PzUMPkqytkOQtNBnCZBjfeh8HASLLEEmC1RkGjbY5GEumJd848SDd5RbNdpekm5Nn\nGXuaLX771k3C4Ule2XWIqBLxfz4yxthIBRVaAhFAbsjTlCAs3ChTd7zCeKaE09kpMkOBQkjrTXod\niGm1xqSahYUV3nv/HJutjmv/H2Qq4JIp4S+7AMcAltK3RXlxBNtvkxBIMAqdWfJUI4RChYqwpIhj\niAKf3EicizEh2hqkv4vVcolTJw/zvZfP0On+Ioogf5cxqNVYFEzasFF1IP61kMu79/KePMaBx68w\nfKXNiQxmr0CuYXIK4s9B9nTApfHdXOQAc0vbXHKyXOy/g7uWQ/QBq4JdWmhIhfx08KsAfAabDQtW\ncxPHgCpYsNOwM4ZHgccgeCRhbMcCYyPzTMXzVGkRN4E12Ezc1sVYADq521vhxVzBuZDVfweePQ3J\nGlRHwTbB3oLN71R4YM+HmH0S+aThsSUYug3LOeyuwPYHQXzg+AjF2aW4UHYKZ35ZBx4adX/oHoz4\nuDTDHbbSnq/1PU567KuS20JVYEbAQWg8uMJn4h/zRf1dnrr4GvVvtrGvg1kCOQxDDyd89qtvo45r\nVsIRVo5NsvDhNrgoYD6GbsOf6Qb9ODAoZ/DpG2mu7wWxhBO1d4xQEMYXFDz7p7eY/Cl0pF6rtOsl\nHygWgPSECIz1bDAvBu9fp62lk6SsrK3xvz98mF3NFspalDHYMCCSgkgVrC1XspBen9Gx1Iw38nCA\nmDUOTLl3Pdk7CayVPZaw8QBgwYoqROrByYq4jgN/3qIPFtErvTjgS0l65yYQPYfMe1og+xv3sAFr\nHQMWWxiRuDZMJYUrEmvp9CCLU2DQW9f2dtVjRvWWlsIx7jxoVczZrFNr/gAAIABJREFU/YJRH2AR\nA9sVjK/+Ibr9ioG/3b927//SZ9UVrK8+m+snwa/CJKAAvaTX/urtV/Rbb52bowO/bI/97WJNICVR\n8Emn738d89bi1p53oV2FDxtQF7SjOm92HufO/i28Wz3Ob/Kn7Nz358QP5py6Dum8M3jfKuDYNuAR\nWH5qiO9u/QLftb/Gq83PsXBtmlK5ixKaLAvcXHcpcAXj93A99ApHNarSB742gE0LzS5kG7ggk+LE\nbaOBcymE7jdws3zRRVEUXQL8Yol+HlN8x4r1dwGdFzHy0zwGwa0iZygK5r0eRD+KPHGAOd3NYS6E\nq3D3zgxnhh/i6NAHjD6/xlDW4qHX4MG7ICogHobOV0LObD/K2zzCtaW96KuhIwW0tNsfHfoA5M93\nfNLfnJ/rSLWho3PKKqRUCqlWS2hSJ94uJIGwBNIQCSiHgmo1IiwF2MBpRSGsE8r1wEcUhcig5iZf\na8izFFFxjn15ltFsNtnY2KBcLqOU6gFgrVaLer1OnmtarSa1Wp1yWaO18ROhQhAihSUQAmNzhM0R\nwiDjCFGNMRi0yRDlgDAP0UkAuSZPMyIRojearH18m9WPb7P40Q2uBxEjImR5bZXl5WU6zS6VWp3F\n6S1E5TKqFLOy2WTL7HZqUURQKiFU4MTukWTtDuuLi4QqoDE0hM0ydJ6T55qsm9BaWmLp0jU219cJ\ng4Ck0yHrpkRRSKNep1KvMVGpMV6r0WptUJIBo8NVdKoh93Rw5VhdVkhkKSaslLCRIpeglCsrqUC5\ndpbAaZchRe9+ID1jzbexamPJ8ow8z131HCjFEUEgSZOEdrtDp9ul2WqDtASBdK40xomQamHRJkcF\nrjpn8bRzW4Rex6JAxQRRhbhSp1QfZnh8ktGJacbGJhgaHqVadVpvgXdyLB49Ec9B2vJ9Y4sHvn5x\noziGAslv4YLBHcfymZuBV6sOSPpQ0N3aoDvWcGvphF4rIVdwelDrXbA3cTXsIkUoWEGCPkhTJHOD\nlZI2mDFYnoTVIbhc6scY69+nKC7twlXmHwYOasqz61QqbawVbCwPk1+pODBuGXgu5fjRt/hq8Bc8\ny4scvXOJ8FbunOwmAq7vnmZfcInajk1e/fxTtBZqbN95jf3hBbbh9Ls6osTd+lYundjPza3beWzH\nS3xRfZfPmZfZu3SDaFljlWBtpsbb1ePsaNzgOye/xOXkCGYphCeh/OQ6O6avsiW6w5Bax1jJih7l\n43QHty7uwWwNXEZjFdwMceDSLX9PmvQNCAarUIOmAYN06wL0KuPSsmGYkI42cCrj4J6zfJlv8ZvN\nb7Dn9MeEP9bulpVh25F5tnxujuHta+SNgG+fqrH28aSrmC2XIR3BoWCb/j2KQP/pTHj+LsPkObc/\neJdHvv47JCsb3Fq/S9Bqo/IOOjTY1AB9EFt6zUMhhWv71r7N0OQY1aVUK1Gp1Lh7rUmz3WF6bJJa\nqcTS2jLVhRBZCwniCKkENveuhdJgRYAQ3iWxXybvtZYUblw/UX0ufpK9TXAmLQKNA4K0wLWlW+vd\nZZ3OpEYgbYAlRErlSkTCoEwGySbJ6jLXhmtMrC+ztjiHMQIlAi5um0GvzJFrJxEAhtwkWKOJhEIE\nETrTmCQjTRKMMBipyQykqWat0+Hu+iZr6y0iC0NhheWRGdJgEZ76bQ6NjSLClOpISFTJUSIhRPvY\naR14lRuk1hhtkFK72UZJrHd37PW5AFiJ1gZMBkaTdTt8dOky127cJM89sDnA5ygE8mGA8SG8PqjQ\nbp7EepaecY5qWPcZyCBPO1hbo5tkICXlWkQUK5fTSBeDjM6xBBijkIEBAU+cOsJQo/opBL6Kxf6g\ne+IGNMfhYwHn4dKhw7yy7Um2brnLk7/3OkOzHbafp99K+CR8cHgfPww+z9v6EZL3qi5+zIOb9wLc\nJF9QwJq4ebB4KPqw0N8Efg3OjcXCXeIyozow61q/TwLPQeUrK5wYPc3x8AwHuMgQ60SkJDWIhqEe\nu9m0YHxNAttr8GQGZxJ3VR4qwfAR4CQENRB/Cm++D/PrMPYenPrLNeTvwsI/H2L8t9YYLsNn3oe8\nCeGME23m38Hw1f6ZKGAqhmPH4EQXZBniB8F8Da4/uIXT6gQf6f2YK5GL1cvQ13z0rpvVyDGO92im\npm/zsDjNyeZb1P+yjf0j+PEVmMthTMGjZ6GsU07MnOHCzAHOjJxgce8UdiqEagjdGm7uHxQk/vSC\nXgBZbjDW9AEK2we5BDgUrMhV7UBDoLh3/hC+3cy1SRs/J9veZRDWISxurvCi737jAvgSFrpJzvLq\nOgvLK4zU68RKESk321vlWiRRDkSzEqwqgJGCger96XtV2ftAL/8nIfugHNBjjBWvc06M2rG7DL3u\nBPDb9lAiz7IqVsJCOOaSL+IawGrTc3Yc1P8a1Ki6v6hAsZ4fAJQK58aCldY7p+I8eiHRg0yDiJbt\n76pwWC7ArX4Bu/9+AnHv8Yj7ga9CY6sPbhlj7gGqCl01t3lx/YwH9ga6PKTs/34f6OWYwwPFLQ8K\nIqQvuBfFLVBKEoafhvT9fnBH4YCjZTBVuBvDGyXoQGe+zqUjR9n40hC7R67w4L73OfYbl5jM4avv\ngF6HcAqiz0D2ZcWFmb2sMMoESxytv8cHeyx3zuyGN3C5wBpuebyACxc76HcpFp2XC4DugF12x0QV\n14bhhR0jf63zokBWiBgu0jdxKlyFC2CoSEqK+a7IZ4r/iyLL/WvyT9MoAK8iT1C4pK7QhSzm9qLp\n29IvpHRwrOlNuFOGC9A5XeP1nY8xUV1E7jSc+v032PbUMnIBKMPGnogzY8f5q+BZXkk/x/y5bU5K\n5QbQ7tLXDS4kcX6+ceTT8M35uY1cu5bAchRQrVYQIqBey9FeADIQrvIaSItCo5RvXfSitkL4XnZ6\n9XXCMETrnG63S6fbpVqroJRE5+5vrVaLdrvd0/mqVqusrq72mAFpmtDtdsizjG43AZy1sGtrcboi\nwoLNnJuLkoqgFKN0jkgkMg5RWYQoRZCD1AIISDY66HZKJbcc3raD1twyP/r2C6w315mYnKTRGKW9\nsMKVu4uIMKRcr1Ou11nq5nSXlqlWa4RRhApKRKUqeZqyurjkQBshyJIUrEVnGWmng+kmREIwWq6g\nhCCoVLHW0ul0yLpdEq0JgoBSoBBRCSUUIa6yIwNJELigbgNBEAnioRpRvYqJ3E0RQYCMAmQYoDzw\npT3V1xovXiz7rSrGWHTu9Ll0ZjDauEavKEAZTZIlJGmXdrdNkqVIpRBSYHKD1r7NMc3oJF20ASGC\nHo260KMXIkAGJVRcplxrUBkaoTY0wsjkNKMTkwyNjlGt1ylVykRR5C2jgx6Q9bPYD09MTFKt1Wm1\nmn/ra//hRo6b5FLcRLfZ/7tNYX0LvNOA6wqGpVv5Fy9vAasW1g2YDm7VbXFCuiW/ryZ9xlLRTz8I\nfhUaY0WC44OmqdJvc7FwbpdzRjwu4AlQT+VMPvYxh+MP2Ml1hlknJ2BhZJKLew9wbu9R0nfr7D74\nEc8EL/L19BscefMS6i8s9pLLe8uzKUefvUrj6Tb5UMDGbIN8W8jT6gc8bE6zK7lOTTfpyDI3olne\nqZzgzO4TPM0P+M3un7HrB3PwiqvkixhqR9tMffEFhvav06lWWD0+xeLaNONfmOPxiR/yKG+w31xi\nLF9Bo5gPJjgbHuP1E4/x5tgputEQdAV0YljagksCC8fGIigMgkxFkCgWboWWkZsX3D2oQFiCKQH7\nLGP7lnk4epuns5c4+MY1+ENo/RDW5qFSgvoRGFvY5LP/2ZvcntrGxfGDnDk4it0WwMUAFhu4ADm4\nCPjVGXc/PE9d5Rx57ATrl96D1TUy3SXPMoz/KN5rQ27Rxt0PJQNnpGEt6IzVhTuEk1uYmp5i7s5d\n5u/cxIyMoFobVFYElZEylWoJETSQwiCywjHLs02VX3jTB70KoWQGWh0KXUC3oId+5VU4rSUP3vv1\nONa6yr+lqKwLAqsR1jEMrAGLJrBt7OY66cIS6eo6l8amuDg0guymiFz7O28xaYaQFqMzpwdjjbO3\nFwqTd1hVAWliyLs5mdC0dc7aZoe1dpuNLCfLchoETNeqbJnYzsSuB/ir538X1WgwEWmEWEfEOTLM\nkGQonBuyIOu362iDzjIwxgk9h+76Od0Zx1bGJw7GgNUWnaUsrC5y89w5kmbLt4IWmZK/XvSZIAR+\noV9U4q3sffOM1ViR975+SjhgS2tNJ81pdzWdxBLGFYTKXRyz2sV9nKuzsTnWKJCW3Tu2sG/3DHML\nf63f1Sc8HOukr9e4Cu0NuOzYvys7x3mp9jTBkGZ56xgP/c4Ztm/MIbRlqdbgw/AQL/Mk38+f5fqZ\nA/Bj4Sr2TSAcB8b9ejt1GRGruHlwlX7lfXDe+WngVzFHFQv82G/nNa8qZTgEPGqpPbfM56Z+wJfs\nd3gieZWDKxcpzblNFrY1qB/PmD0Gz74KF7vuKI5FUH0ODk3CoR/6SzKLc0v8GOyH8O5V+JYPe1JD\n9yY8/TpMfn6N957bx55dtwivZMiOJR1XqFQTvqf57AV36ksGdinYOwvhrwN7FKJkSPaE3Dg2xbf5\nEq/oJ7n+/mGnr3kNSAwuMyyAr7jnwhVM5UxX77KTa0xfXse+Dm9dge8W4dhAdtsdY+PplN0zV9la\nusP5iYTuWOiciXv6kb8883+aOxBFST8HCBzAJUAYP0dK/8QgsDLQBtcDYizQ05IqWsfdFv1ROB3e\nCw4UmyeZZnW9ycLSKlNj4zSqVeplgUGSa0jdJIyvjSNl4IXj8ZJ67gdtnRYtiIEW/D5I5E2BPeBi\nPVgnsNbFLOPBO+vEHClkuxw402crQbFf610sC51fz1S2uH1rgxkEv+45+T4L7F4wbuC5QdDLF7bv\nuXgDw2FUgsK1xcU4cU+x4n6mtLuEhXpvb0/9HwvWdXENGAS9Bgpefjsp+i2Lxd/vAbygD3gVYJff\nr+jpfgH3AGyevS2k72wR/rq78wmlIg6Dewhvn9woWv0KZm4xPwTuu3RnF3RC5xTfVqzsnua1k4+z\nJZxDfcGwd/pj4vMZYhPMuIBDlts7JnigeZaj4gPmo2nejY/xUuPzfPeJ57neOYhtKhcOGrhCyiyO\nHBzh0ogFHIP4EnC5DKtjYEughqEROHPbEXyhGbe0XsZ1uSwPQz6MQ9ci+nlKYRTlDd96a++iwND2\nj+IapO4afCrBr0L7MfKPMu5ieHYwZfp6LNDP1wqNX+/iuTYGHyqYFiyPzPKdp77EanWYD+uH2HPs\nCkOskxLxMdt5n2O8kZ7i3Nnj8KNCC9qAXcHlOfe7Af/8wK9fceDLkGQZ2IhQKRq1CpXYVbmlACmd\nnbgUTnMEqx11GO9uUlR+iwoP1i2WtUEnGd1OQp5rQu/AmGUZnU6HZrPptaUq1Go1giCg3W5TrVXJ\n84xOp02apcR5htYOIHFBy7m1aO2r1F5/RXgQx1GBFXkYYKLAGXkhsblwrYnaUA1L7N2xi43mOksr\ni5TjmJGhUQIZUS7FlMtVao06IlAYY8k2WyzPL7ARKsIgABEhyzWq9QajY6OUazWWFxcQeUqeZghr\nqAQKVa2QJwlZnqONxuQZeZ7RbrVd9Ug7V0ZhLOUwwhrH8lJCuqREgFYQRAFhLUbVyu71kUTFESoK\nUEGECgIvTKwc/OHbSYz2rLs8x+QWq0FnmrSbkSYZSTejWg6JQoXOc7TWZGlKu90BhHOrFBKLZuLu\nHMaEdKpVskyDCJBh6CAEX3URUiJUQFhpEFWq1BrD1IdHqA4NMzQ6Tn14mGq9QblSIS6Xeoyvn0qR\n/muGEIIwiti5czcL83d/Xl+LnzIy+pN1EU6Lnvd1YBRWGrBSBREMVEFjQEKYOosWucfpXeQZpCm9\n6g8rOJZQQakt3jMdeK9iYt2gPyEX4M0MRDnsjuAUBM+mHH74Xb4Qv8gp+2P2dy9T22xjlGShPs67\n0QO8tPsp3tz2KPuDizxq3mT/B9cI/p1l8S/g2qJj6u4cg+23YXs0x+NfepUbcgdjLPP15JvsuXCD\nytnUBdFhOPzAZQ4duci2ym0e7L7P7IsLmH8LC6/D/CqUAtj6BtQX4dF/8Q7Xtu3k3NQRki9EPDPx\nbb7ON3h86Q2mri8S39KgoLUz5NiuD9hWu0W0LeHVJ56iMz8EcwI2q5CM+OtXMB+KStLf5DhTgF7F\nowJx6KQMtlpGhxc5wEccXL8IL8Lyi/Dtu45sUUrh0Tfg4RpMHVnj8PPn2Fm6yoWtR2lPDUFNwGJA\nP+n5pHUm/uFHd3ODC3/1bb72B/89aw8f472bV0m7a3R1iBHaaf3R/z4Xi3QhpdNHFG69Z6xFZ12W\nF+5Qr9WxJqe7scZi2qESKBbWJLWFFerVCnEpJpISIxQ61zhjDc8mUtJdZZ+EBEI5913PBOi7dPnF\nvxhIIADper9d4QYQWqCt8sANYA2BkEiMj38aY1OsbpG1l0nnFjCrbWzLgUp5nqNNijA5QmsiJBEG\nm+fkWYLxrRkd4NTl6+xeWuHPTz3OHaWY31gnI6PZbdNsdrE2oKxitkVldjYazE5OM7RtL9WdR7Aj\n07SFRXsavIoFNlAIGRIIJ0qPSRC4VkJbIFpSumRT+6q71Z4h7M0IEEgTkGtDt9tl6cp1/rv3PuSJ\ndsK/DGP68Jj/dg1iYVL2GQxW+evlFv5F641UEAYQhZJASYwVZLkhyw0bGx2aGyVGhmKkkFiTI1VM\nEBSIpEHrjEAGTE6O8NCD+3j1zXMDDI1PwxhkexXCxiuuqj5fhdMBNBQ35R6+dbLCtcldvCYfY7ox\n79rLGeEqezi3cYRb53eTfz92JiAtnP5UHfdRToCNCBYnYGUEupM4WuocbtG+Tr+qfn+CUVS0JW6u\nKtGznaTS/30ygP2uvfHo1Ps8b1/ga2t/wbbvL6B+iEueYpg8vOH6DP8JHJ6Ag1fBBqDGcO3js8Bx\nMN+ExXPQPgv1OgyV4e4AYc/gitx6EXIbsMYQf7L1EYa2rlOmQ5Mqe9vXOP7184wLy5dPQ3cDGlMg\nnoTO10LePvYAFsFNMctZjvGj7AneuXISXsIZpNwCx1hY8xex6q6D17qXoaEsu1Rpu5eswPx9OcYd\nA8kilFehSosSCbJw4Qrg7+e2+cmONHdAkvLMGShAKOGYTR78KhrGBzUUC/CrQBl6/u8DoMw9qztb\nxAXjBMbuD5MCMmPZaKfMLa0yMbpCo1qlUa0RR16N0bjcJFACJfrAiRCeCWZxJhJInzN40Kc4BAFS\nSG+kVQAutufym+e6r8/lgS3jCzgOmxGuM0MWJ16cvHcPxhZSaFjrCjbWOyDfLy7fP+8BMKj3c3Hl\n+iyDghlWtETa3nn12WK9uFfcG0T//t0HfhX3bvD6CF8l6u0X7j0W0X+PHrOMooWyD1CJAYCqD3g5\nczDptxO9ewcMOG0WrptOvN5zu0X/GFxM8Vpf1sv24BhfUTCwDv/Ex6BWsMTFhOJzk8DqFtCjMKzI\nZkqcrT+MOqhZjsY4cfw0uw5fp67bjGVLjHzQYue35pwMVwjDB64z87l5RvesopXihccDVneNs3Fl\nFLogGxmNHWtU6h2U0uR5wOZandblOvaMd6Q9U4a1siMR78e5mc/Sd/Rt4kLLNVw795VRWC6BKQq8\nOQ70qtCPK4XmVZO+yccafbFK/PUodLI+DaOIi4Mg3hDuQozgCAujQNUtYqQCrNMo0BkuSBf53Lzb\n7vpWeCMACXfXd/LiiWHe3/oQW+q3qShnmLXYnmRuZYbls1PwmnLileeB7qbfzyr94v7Pv030Vx74\nyrWj5VqrEVKiAkHRjy8FbuHqabKFC5SvnfQq4YB73ljSXJObHKEEzWabbjcjDgNC6fRe2u02zWaT\nSqWClJIoiqhUHOsrCEOstbTbbdI0wVqNtRpjcscuU25iNEYhVYhAYPKUwi0mUAodhejMEJZiUpu7\n5Me49b7RGmkFgZLUS1VqMyUQktzkdNspJjdMXrpGY2qK9s4d5DojLlehXHZaJTonNQJZKVNvNBhq\n1CiVKyg76toyEeg0JW13yJOUjW6HLOmQpakLi8YSKUVYigmUcg46UpKnGUnuRP+stWS5RkaKMIgI\n6xXCaowOhHNDkwGBDBzfQQQEIsZogdUSp62lUITk1rlROjMdi86dvk632yVJEpIkYWSoThBEaOPE\n79vdLq12hzCuEEYxaW6Imm2+9H//GV2p+Ne//88JVEy5UkcKD0QinAFBGKKimFJ9iHK1QW1omPrQ\nMJV6nWqjQbXeoFKrUKqWnGtnqHz7k1vx3N/m+NOGUgG79+znzTde/fl8Kf7GMcgcGmyp6+AmpjJQ\ncSt+uxXEGNSla6EbK7v5UwE6gPUAlsqwWIfmGC6qxDgU6f5KfcFkKlhfhbFxofFSByZgJHLV+c/A\nrpMXeT7+Nv+I/8gD5z6i9HaCvOkOcc+BGxw59SHjE8uYWDLNHPvSK5Tfyuj8AL5/x3XVWODsEvzG\nGzBzFA58/iJHaud4MH+Pw69eQv1fkL0KzTmoj0Pp0Yz9v3WD+GvfpTyvCV4xLL0I31l3taEAOH4e\nnqxC+cGMI//4PLu4RjiR8Rwv8sytl5n4xiri+zgLMAHVBzIOf/kKta81WY8b3N07w/ljx7EfBnAt\nhMTbgBHRTzb+tpaSwVW2D3KhgjLIuqZRXmOCRYbnOnAZPlpx1wNcLee0gb2XYeQaTDPPGCtElYx2\n2R+GCMD+clX7/67jhf/j3/Cf/7N/xv7ZCa6M1uiuRcR5SC5zcgzK9iu9ThNK+uKIoNepbATG5GSJ\nZiXpOPBfSvIUVGWEZpIxt7hMtRpTqpS80UngFvqeySpMjvIVbaejIgZszG3vPYFeFblwKe7/6/Vd\nrGPGGs9asF7HRUkoAon1mjTCZuj2Cs2526SL66iuJTBgbU5uWmidoLQhyAUYiSpFZLkmy3IyIbCV\nMmmjzsfVIba+e550dh+duTXmzALa4B2NLQ0bsrtcZvvIOJMTW6jP7KI0u5tgeIyWkci0jREdRGgJ\nQokNvL6j1aAl1gqU0AShRCNcvLbWgWLSgHWi8Uh3L8AnsTojTzosLy3x2ntnqTbbvEPguh16qdB9\nn+1eVd76RMctCqVPsqwxhDIkFJI4DokCxzbKkhydaqRQSCvYXO9SjULK5RICp+0ZBAVzTPt2Fk2o\nAr74zKP86z/6Fp1OwqdnFEnwYLHCCysmFfhwyqELTcXCnW2sHhnnnZnPUBppIqWm26qRLFTpXozh\ntIK3cNP8c7hkZBg3tXRxa+IbwEcBXBqCxWIeLMD/YpF8/4J5cHFftHvXcYv7Mf9ouDX+DhjatcZD\n0Ts8aV9h9ocLyH8L11+CGwmUJBz/EcRLkP8eqIdB/gXwI0jOgn4HKruBZ+Di9+BHibsaI4vwXANG\ni/YbPyYANQqsGh5cv8CtkVn+jN9gnikUhqcqP0Q+rTmy5wLxeYg33OFuHK3w9rZjfEt8mQ85xCZ1\nLrf2snR2huy12BnLnAXWChHMNfraM6Z3yUwm6ZoSbelj9ohrb7znGCXEnhHRpkJChMnEfS5cv1wj\n1UWbuEAVoEcBUCEc0avQiMKXEWzBLSwUlvywAw/6oFgPIvJzuGtzdO2VRSrhABWJNZZOqllc2eD6\nrTtUSiXq1SpRGDiNRwlh4NafUimv0eXjjgdmrHBzu5IK02u97Otcua4DtxZ1c7tAKOXkQKz1gvX9\n47LGgU2FFpXotX/eD3z5vEqAlc7p0XgQyphC0+yvA77og1+iAIV6f+6/xl9Dl5d5IGzg+g9AQ71r\nLvwNKIC1Yh/CQ5lFAcMBRQXY5AGw+9lhg+BTUXHye72H+eXBq6LVsdDoVFKgJK4ddKAo0ttPAXpJ\n1bseg2fVv16ydyzuGvuyplJEYcinaxSFh67/v2AENwENm2X4oApVQUsM8VbrSa4f3smbtUd5MHqX\n38i+we7TN1F/ZElfgKvLTqN07w6o3+7w2d9/k7kdU4zXl7h2YCc3duymaWuUVJvD4Xm2iLuU6NKi\nysfT2zm/8wjn9x9Fj1X6deNHgZMQn9hgYnKButpAYWjpKgsbk7Q+GIE3Jbwp4EwV5ne5ABBZyAQ0\npHNmL3CvloX1MUhSXLFhnn6bZDEKMsGngflVsJ8jXGxs4GLhFmAa5CgMBzAiXWwsJNA6OKxruQGb\n47g87g5wGZIIPpyAroIFSfPiKM09w9zYshdZMlgj0IsKeyOAD3GPi8DqOs4qeBGXeXT5Remj/UoD\nX8ZCkpneZCSsdRVyt+pHFD0ftj+lWoocwHuzWBcwnHOgJc2cWyDSsra6ydhYSqNWRSiBtTlpmtLp\ndOi0O4RhRByXaDSGWV3bpNvNCMOYJElpNjcpl8tIJVHKM5D8CILQf08EWlikTh2bIFCEUYjJDSVd\nRpCSmBSdZhjt9EqMdXpVWEsUhygVUApjhisjmI0OD7zwJwC8+Qf/NWGokFlGuRQRKInWfgK2FpOl\n5Hfn2Bgb9VomlizN6DZbtNY3ydodwqTLw3/4x1z+J/8YOzzkJmZtvBZYjgBC6ZIJq3MMgkwbUq2J\ngxJxqUxYCVElhZWushQIhRIKifSMRwHWaW0p735VVHOsteT+vdI0JU3THuillKJUrmARpFlOp5PQ\nbLfR1hIHIaiAPE3oRhE/euwkt6ujICTlah0RRKggdBUWqVBhRFQqEZUqhOUKUbVKrd6g3mhQrlap\nVCtUh2qUamWiUoQKnSOnKpqWfoYWx/69V+zeu+8f4uP/9xjFYrao2hQc4EJIvYRrpN8CagZmcEDU\nHmCnhTHr5tIEWBZwU8BHEi5U4PYeyAvqbBEQi/crfi4mvWJyruCqLRVg2GlR7gF5vMvx+B2eMd/j\n4dPnUf9ek/8QOh+DjCB6wDB6o8kXf+8FPhw6RErIkFmDBVhZdSBP0RizCCw0YeYONFZzttTusvv6\nTdQ3YfXP4Qe+8DS9BE8swNYYtu1aomNjuAHX1t3UXaReVzRmWl0iAAAgAElEQVScuAulmzDRXGOo\nts4wazzaOs3kS6vY/wAXXoWz1p3ZQ+dhdtOya3yOR596izPlE1zefZhkNoBhAcsVz6obBJoKsc2/\nY6VP4L9P/ne/u2Ix1ecJ+aWXHayH3v8Z/tUEvIqxsbrKe9//LlPT04yP1Ngsx3TTAJVKjPRJja8o\nF6xQYwW5r+4rpXwiYRBW9NoUtdEkqSG3hjgIWdtssbi4TLkcE4QxoQyxpdDFJJ17PSyXBEkkWoK0\nBiFUkQ344vRAAiDACBcLjAVhHDPPWIPuwWLC64tYpNBok6HzFCFCFBa1sUT3zi26a+uYrkHkrp1T\nmwSTdUCnVBJDJ47JpcaIEInit86c549PPIhpTFIaGuZWVOWPJg4wv7zB3Y02leFxynmHuNuiRsxM\nucHO0XEaoxOUJrahprYR1kZABkQ6I7MJRnRQQep0EgOwSiB6OmsSRYYQhsAnoUUyq7VGity1BFnv\n5mgzhNFk3ZxOe4Mb1y5z9tJlviUFWoA1+r7Ep/dt6LftCOmvuXPrdSwJ52bn2lADgiAkjALSzIGJ\nOjXkqXWfCytJEsfmUzLCaPedVIEFYRAid4U6oXny1FG2To9y5dovmgH8t41BId+iRd0zejMBH0zA\nmoCPBdm7JbKtJTYbo/3q+gJu4lzDVeBPWoJjGeXda4yMrRCQ0ckqLN+dIr9Qxpz2ycjpCtyedZW+\nnuZIoa9SAGJFVbtgDddwi/sp3OJ+CmqBM08RwKhlaGSJ3Vzj0MZF5Kvw8evwjc2+ltf8LfjqDyE4\nCYyAeQMuvwyvt11OcPQmnFx1Ol+3/TZt4FITTpahkzkW1RDwSAStC1D+Q8Nws8kzv/0SN4dmOc0j\nXH//AOtHhliKx3lo/zvs2H+DKm3WGOYj9nOah3ml+yQXrx6Fu6G7hudwxihnLcx1cUdQuL8UrfEp\npBrWFfliwEJ7khu1nSzurTPxyCaPnoX8hvNVmRDw2BjIk9A8EnCdndxNtpAux+6CJJZ+oWoAEPmU\njyR32n89U6SeiQW9LhA8WbQPdnkQpRB5B+45X/ckg7CFe4lvg/StjqJojfYbWeGANoNlvdPl47sL\nVEolhup1GkJRGR1GRiFWWLQVBJ5dLaxAWOULIAPAjm9xzPMcKQaAL+8ozsA5gOi1J/bF7R05QBvt\n2sYLlK5nGfmTwJfyx99zLB94C2v6K4b72x0d/uNZUsK5V0ppXI4z4HTYE4kvkK/7Lj0wwEwrZmrf\nnmlMgW8NvG+/QASuo6f3u3XPW/+cvf8TYAvAq9hE9gpNcuC4+/978Ev031tI0Xtv67W7im0s/eeK\nLfpAqT8ev96QQKACojC8Z932yY9iXrA4EGOwILEItgQLe+HtADqC9G6J25/ZS/gFy+fGXmZX+xrh\nS5rOX8L/c8d1KQbAZ87DU1WoHUj4R/U/ZbU8wqVoL3PxNItiHInlRHaGHfkNSqbLhmxwLdzFj8uf\n4cUDz/Kj8HNkd+uO9PprGTMPXeXR6psc5AITLKLQrDLMpcZ+zmw7zoWZh8jrkTuNNd8pUcalQEWL\nZOBPcUXAnQCuB3B7h3MI7rXTD96ZT4NOZ5E73A96zQI7oVqFPcIZce0CJm2/FXRduLByVcLVGG7M\nQDfCVaUuuvaZD6dhUcElAVskeihCl3C3fx0X82/h6MXZut92jr6OWqFh/PN3dvuVBr4AOmnmEHgB\nVmuf+BmwGvsTQdtngUb0XF1y40TT00z7dgWXUCBgc71Fe7OLGZGIwIlZWq3JkpROu0MclwnDmFq9\nQbVWZ21tnShMEECn06HdbqFUQBiGhJ4NZv2+pQrc4tc4cXfltcVsliMCRViKEEJiMoNNNUY7YEon\nibNA9udSroRg3QQb1hpc/53fxQSSeq1OGAWE0gVGYS1IibGQdlLiy+8z9r/9G27/3j9l9cRDaGMw\naQa5IULRKNcYnlugtNlk9p33WHz+eQSghSbNLHmSOu0ABcpCgCLHMnHnDsuz0wTViLgWo2IFqqAG\nK5R04F4QhFghnHaOFK4yIotEw6B17sDILCPLMpIk6bG9Op1Oz1Uzt5CkGRvNJu12QhDFIBwYlhtL\nojVv7t0LsoxCUh0apoIgiksYBDKMkGFEGJUI4xJBKSYqlSlXK1RqFcqVMqWSY2zEpZggUg70kq5S\nJAeC5c8ylArYtfuTAr6gD0Yp+kGsEEmfBmYgnnZg1yPAKYgebjG8dY16Y5U47JJkJTbWR1ifGyY9\nXYUf46r6lychHXQCK6jCgntBsKJaX7C+Ku41I+7tt2y7ySE+5PDSJYLvaVrfhFeuwFXcdH5yHQ4r\nqO9JePrXfsBr6rN0KUMVaiVXyJj371YB6gFQh7QmCW1G9XYLPoD35xwbN8fN29UVGD8H6qpF7tMQ\nQ01CbPrKZRUg8JIqaahIiNjHZSbXF+AdWDgNL9h+QrXZhq+8B6Pvw+4nrrIluEswkZAMVXyHSgh6\nsK3wZ9EMGISwPKCYaugEmA3JRneYhWiC1akKowfa7B+HG7ddXIqAzygYPgB2H9xhK0uMkbVCl7Am\ngC2MEH55kp6/67DG8NaPXuG//IN/weGDB1i5e4t2e4MwUOjcYvxKuw9+0YsZWa4RoUIFIXgdrAKs\nN8aQWc3Kxhq6VqOEZnl9g9pKmXKtThBGSBmBUCjhQOBuBoEKCVRAoALf9mH9Yt0dh+gxDyxWFC2L\nTserEG0xmF7LOb02fleoMDpDWI0ixbRbHP+P38QuLvPi8SMYG5BrTZ52yW1Ommccml/imcs3+bNT\nD3FncpJUxUwuL1Lupuz96BY/qG3Fdlto06Xd6tBttfnq0k3emZilbgNGK0NMjlQYr09QG5kkGBsj\nGJ9G1hoYBDpto2yKsE0ClSIiiwhdccQqn5QIgdS+lbMnYuwTWeu5b0Z7gWbpmG4mQ2cZSZawsr7G\nmbMXmV9tkYlCG8/c0yIjCujX60sW2ZTAgZGBUmSmr3FicoMJPANZuWKPwZLnmm43o5tYyrUqMoAs\n04S5JMs0QZYQByWXUFn8GsVQKkX8p//JF/if/5c//gV++n/WURQw4F72p4GsC9fHYKkKF4SbdCv0\nmVwt3KL6MeB5zfQjtzk2+Q6H+JAZbhOSsR4OcW37Tt6beohLs4doDQ277bOyM13paasUjo9FlTig\nr+dVx/d4A9uhMQyzEg64X9kKKIgSTaO2TmkRuAsLnXtr9leA1bswNg/MQ+ucA72u+efbwPaPfrKj\nzQLlk/AF4O5r8GoK/yGFxiI89gocqsDwgQ2OPHGOnfI6l6qHubKxj9JwlzWGGWUZiWWZMS7ZvVxc\nPcL827PwPeEywxauMnPXwFrLHTx3cCBkTr/NZh1aGdxRcEUxvzjDu9XjHK2d43Nf/TGVPOHJ1yBb\nhGDYgV7dr4ecmXqQd+wJbq7uxFwOvVFzhqvQF4Cj5eddof+HGGnuVvxKij4o4iVFHABTAEnc8/0v\nfipU8Aclve5h82B7TKce6OUdH/GtiOB/Na4AL4DUwFq7y825RabiEv/Fq28R7pzl6tefRyhBECqi\nOOqBbj1wCDffCelbCzFEvmBbtC/2Ds3H6gLoGxzueB3oZUzu85D+d7mfJ3nYTghn3iHw3TTulbJg\nN9mfTPux/SLRvWwvJ9QvjXStgV4DSxUtg9zHtBsYDnZ3uUsBKJqirid9ccL452yf9VWAXEXByJ8U\nBeDlPhL3g2P+s0IftBvU9eo5NBaML+GYhYVepxDC5TE94Ev02h+h/3//zTzw1TsuJ50gcR8pFQii\nKPxrLvQnPYq5oGADQ789zs+Oc7OQV5xG6XFLKWwxwirjzRW4Dh+tuqmtgM3eN3D4Fmx5GaqvGarb\nlpn+7DK6KujWS+SxYvS9JuI9YBPGRtvMnlxg5uQdSvUundkypz/7WbKq4uCj7/F89B2e4fscXLzM\n8MYawhha1SrXxnfwcvQkLxxZ423zOJ12zcWsGQMNDSsB4Y4OpZEuUhnyJKC7VEZfjOAD4Zwlz43C\nWlGYLtbJgyymT5L1VeQPEpfPDQNbQOyA8SocE/AQ8IimeqhJbXSTqNTFIklaJdbnh0jPVeAtAacl\nXJiEDYHLvLxA59IYrNXgagSR6teicgPt1MvfLOGyjWVc5WsT9xkprtXP/wP9Kw98dZO8F7OKRa2r\nYuh7nYp7FQ5RxC+MgTw36NySa9v72fhFdpKkrK+2SCZyalFAEAZgBWmS0Wq1ictV4lIZFQRUq1VW\nllfY3GyilHTi+J0OpVK5x1qS0t0OFxi1m5Sl9MBXgNIBMssI4hBrBXlukJHi0De/zfmvPUeSdMis\nRmcatNO9CsMYKUFnqXO7mtlKFEWEylWDwiAcaLE0SOtYWtHoBChFMD1DOSyBFOQqg1QjLURCkR05\nxuJ/89/SnJ5G5Jo8y52Opw3BpJhUo6XGSneRG/PzHHvhRTojQ1z4l/8VpVoFGbqAIJVChU7EXikH\nchVJWxA4yrbxVTIHWuVkeU6WZT2mV6fTIUkSsiyjWq2iVIDWlnYnYbPVJtOGMHbulVmSkRtDlmmM\ndUwrGYbUh4YJooi4UsOgIAgQKkSFEUFUIixFxOWYuBRTKjuwK44j4nKJUhwTBIpAKhcEB4Cvn5X1\nJaVky5YZqtXaL1jg/v5RfDEGW0UmIJiGnYHTO/k1y/iTd3lg+gxH5VlmuUmdJs1ylRuNnXyw9Qhn\nZ0+wPLLFzTSZgmuTkN/vUjhoOQ/9HnpwG0buV29OOCJWmWaO6kILzsP1667gXXTVBx3Y/RFULxu2\nPL7IZqPOrWAb+47eonEMfm0O3s7dNHsA2L4POAbXG1vQxokL03VT8eCRNQGTQpCAHDVwGHbsgoeu\nwEf+Kj1chvp+sPsEd+JpNmlQpkMp68IazCV90AtcCGg3YXQNat0OlVoLFaXusgc4dkkP9PpZdVWK\nAFv0pbShmzltrjuSlZUJLjYOcn7oIKeefYeJ2/CVV6CzCEEJhvYCX4K5B8b4gCNc6+6mc6fiYlXL\nci/T4tOf8Px9x40rVygJySMnjnPr+kVWlhfodCXKeD0pBtrcrAYLUiq0wbkGYt3ciuiZXCRJQpY7\ndur65iamFNHsJGw02zQ2N4nLFYIwdi6Pws0/1mqsdgtflCAQPZ9HH9i8FT2il/QYazACtHHsNJeM\n5OB/x+JbY3CMBHKEydGdNq25eRa6XWJr0a2O+zTlKSZN6SSaVEXMTc+Sf7xAZ/t+ZLnBxkabj8qG\nM3sf4nxUprrSpBpGVISi3O7ymzfO85X5qxxOE67ue5jh+P8l7z2fLbvOM7/fWmuHk25O3bcDOgd0\nNxoZBIhIggRAUmGGkkeySp6pKZVVNfZ89vwD9gd/tMvlMMFjzZiampIsiRBFEQRBEkTOaHREZ3Q3\nOtx8T9xhreUP797nnG6A0lBiAKmFOri3T9h3h7Pftd7nfd7nqVCNa1RGZwgn52ByBmo1rM/J0ibO\ntclVB1SCCg0qCnBaYcyQCotCFs9WrM9knikSQl9iVNJu5HE4r7BWSdzHcf7yNY4cP0M3tTjCouAl\nbsrDbTplSqIQtl25oCj3IwhE5gBvsTbH2pAsyQkDjQ4iCAwplnaWsrDWYVs+zuhojV6SoDqaiqng\nrMdZMMqAMnhdJF8q5OknH+Z//3ffZGW1yWdrDC9SO0PPF+0tflnaIpo1uFoROi4KvIYNWtpOHvNs\n/fwZvjT2Hb7IC9ybvM3UtSYqdeTjAadntvJS/AjP7f0SL1YfJ2uPFhIjI5DOIPDUMAhTFkzKYs04\n4r24A8ZHZHF/N+K4eLDHxMYFRsImOrKsMNmX/qreEmpHgFoNSYSWIe/dfMQ9xND4sIIFL4WSOWDH\nGAT7wV+D87nMExmiAnOkA3tPQnwhZ8N9N5ipLrB161nuD17nLvUe27hAgxYdalxgG23qXIm3cD0s\nCrSXgRMOuutgOwgqtUhh6Vgce714BKK7eS2Gk4rVI9O8Nv8gM/EC+oDlnvl3mXqsTbQKNKC1P+C9\n2Tv46+gpXrKPsHB8ozDLLgG9Uruzw02tlJ/x9sfUOmHAqnImLbo6lIA2GomZZXdIyTYq4Kp+oaP/\nTFmoLsGk4t82L5wNrS2KDg6XuT6u4RnE4MLDkTT3LK23OfvxDS50ukRAs9MlGh0hqtSoVmK8s8Ig\n7gf/oq2wCEmyZyKL4p0TyMqDdwN2mLS6F8YmfnAczokgvTC+BgL3nkL0noGupVYFKFNqf/XxJFUI\n6eub1rufELgvRtm6L4CRR3tdsL/00PMO4266EOXV6BcknPdFc4jIDZQgpEJCzU1YXwl4DoNacmD0\nAScP/YtVvFc+NwCmbgW8hoEvPcT40qpkuOkBk7ikFiolzO3i+VJZrg9VqjIt1XKJC6BUdlATR2HB\nQvus3XfD3Qgl+FUakjjwMXS2yMUB+oBj4cJQwkbl8IBdgvN/DG0Hm8Zh4mUIvCee7UoB42W48R6s\nZzAdw/jjjp3tj/jC09/nYriVi3t3oaYznohe4OvZ/8ddR49SeyHrB+TJrW02PLLE9INL+Jpidc84\nx75+BzMzC8xVrlEPmtzINnBb9RwbzTUq9Gj6ES7nWzh71y6uv3Ob1FdC4J0xWN/EzS6FpdbXz76N\n78ePklBQCtmPA/Mw0pB58XEwX8rYeuBD7qgdYYc+xyRLODQL07Oc3LyPY3sPcnV+h8yDXsF701Lk\n4izSvzgN+Qg0G0gSU34/SxOcUg+tyaC9sY1U1H9+wOCvPPDVTfOCeSMtHsp7rLc3TWb9NhHncU56\n1a3TOCdVoixz5NZhrZdWFg9oRZrmrKyssbLaYrQxThgZaedznl6a0el2ieIKURxTq1ao1yqsr6/T\n6YTEcUyn06HRGBHGkkkJQwiDEO/kbynvhB5rNMpogiiUfTQOfEKe5tz2vZeYff84laVlXv29X8fa\nAJUV04LSZLnFW4s2hrga4o3GiaI/2gTkWpMXs7/SIUqJlkA2t5GF//P/kr+d9EAb4rCKqRUVHS+g\nYL59L9o6rErxLsFb8NpiwgjnPVmeiRiy9rS2bmbp4H4Wfv0pqvUGaIPFYYwmiCPCIjm03oPNRRNU\nKVRx/HiPda5ouRFadwl8DbO9tNaMjY2htaaXSItjp9eTyxaE/eqJddBLEqx3VKIIHYU06g0qtTpR\ntQE6xCoNOiiAr5gwjojigDgOqcQCekVhSBRGBCqQBwFaBX0thp+k1VEpRb3eYHZuA+fPnfnbP/Az\nG2UCobgpgRiNRYD4Uc/UE9f54ux3+DLP8UD+OjvXLxGv56QNw5nxrbxqHuS7G27w/cefYqG7Udof\nl6uwNMUgYSndtsok6tOXSIPMU5YBIRnGWsigZ28mx/YAW+Ayxjna1Hk3OMyuu86x+R/fYGcEO08i\nsXYb+Keh9VTIW/pevNIkkzHhfMJODaedhOkqsDeEaA7sjOHjuRk2f2mR2rWML38fHr4IYQzhPeC/\nBiuPxbzLXSwxRYcqnbDK2GSPeQNTbgB+TQG1AtBrNqp0qWHTaJDH9c/Hf8mEWWo+BMXnLP3Jxiaw\nUIEziqUPZ3h7473cFl9g8nOr7AnPM3bAM3YdqIHbB8uPjvDy3AO85B/h3NIu/NFAqM6reXHdEgaM\nwM+CdsFPf3x08SLXrlxhfuMG9t++l48vfUSaJKR5l9yX4rny3oGG36CFJMtyVFg4u2pDFEUCkGiN\n9ZDkOSZJaBnF2nqbxsoacVylUqkShBp0DEYTlAKjzorWoh4wkrSWxMMqcAgb2eNxNu8vP6XdEbzN\nxHjEOxEgtuIOGShQeQq9Ns3rN+hcucYrm6ZQsxOoLCPLc5q9Hp2OZbWdYsYr2K1b+R9/6wB55li5\nskovzcidYXFqI9H6OvVuxlwGda2pe1jcdSd2+QqdO59ka1DHBBFhvYGZmkJPT5NXR8htStZZJesu\nkqsWNkpR1YAwqmGVOFB6jLCTi4TL43FKgdKYol2+yMrQWhIupxzOpgIe2hxnLc21NkeOnmJxtU3u\nPZ5cHC3L200NihUaUGpwrUtdUI8ly8W9mCJZLtuGcgteBYRBTBBXUEFAjqfVzVhabbNhdhyspd1q\nEVYi8BHehngdoUwEvkLmK3gfM79lF7ffvpeXX3nr5/K9/8lGyXYrGaBlnb50uboB1KXCX7YeVrfD\ndqn2T953nUfHfshv+L/g8UsvM/J8gn9fPqo2wfSDK8w/dpUgzmndNsLrDzwGZ7VQrT6aRNo1lpHF\n83A7eISszseAeag34KCCx0B9ybLhoQvcbd5hDx8yzSI5AZu5zPWZEeb2Ntk7Dw+fhlNOtvKggeph\ncHtBnYPKNMx/LBCTo2gYmYSxfTD7PlxriyTl0RWI/h3MPybMnjKC96NmgRuZIn58JfwrnnHf5sHk\nVaaOd6UgPgIr+yu8WvscM/UbPPt5zYXmflhQ8LGGlkJ6Hi8yEPqfQgC/QqxYjUiCfR04Dv5HhrPj\nB/nm52E5mOTk7D52zp5lhGYfaHvX38kr9mGOvncfvCif4yOPHPU6A6bdZy3x/vThvazfS/HxPmal\nBqWlIgVHoUV/13uR77AO64YQlBJccrYAkYpiuXVDLom3rGduXdoo3dcUtEA7SfloZZX/eX4Dd4yN\nsX9phTgIqEQh1TQTy+Uh7TBbODH6LBPQSlPsjwDwMj/5vrC9x2N9CQkNwC9xRrfk1hZFgoFbpXNF\nc7z3aC2F2XJ7ykv7Xp9xpUrGlAPMgCA7VEQo18Naabzy/fOukeKMLsBArWVeQouxi/bSeWMZFBwG\n95JnAGIWmptqiKfmbz79g6LRrfzMcpE5fN3KwnXJ9JL3aa0L6RXRAi6Za/KcwJnaiM6XbFX3WV+y\n2ZJhLO/3/f0pmXyqD3x5xJmZAsjUxXc5ikKCwjX4szfKCFeex1bxewXoQealTWJd00kaLDLFYn2S\nrTsX2D8Ld16UcKOA3cBrPTjTk4izvQn7LsnHN4ewYw98eBye9wL7bwae+TZsmvIcPnyKA1uP8/2N\nV5mNb/Co/xGHzx6n9h8y0mfh0lnoetgzA+E5y+3BORYf+wEfVvcwtm+Nw7zPXn+KaRbxkSIkY0t+\nmYrvsq5HORPs4s2Je/nBI09wqnIQn4bCgjo6AemG4ri7DFr5/stzwZ/uKHO5AAGkKvS1LncouBfU\nU46D973Fl3mOR92L7M9OMJMt4LTmqpnn3eAwL449xvNPfomz7nZoaVjRcGYamRNWEPZXnYFwfllB\nKhOaUmytZGqXHUA/XzbcPwDgK8OiCHSJ5gta7rW0IOAd2ouUvSxYBRCxTthd3SQjyTKss8L4crZ/\nK+fWsry+zsLKCpNTdXQQEIaCqmYWOt0EbdrUnScKDCMjI7RaTdrtFlEUUq1WabdbhGGEMdLm502A\n1hqrlYBflIt38FpjwkCcoIKQqOpY+PozKJtz7sufJ253MVqTd3MBv3Ik+UIXrXqSSBVKB+IgpkOh\nBRuDiSJUGBegmCYYG0WFIXmvB0oRBREBIqRplCFptck7XWySyISpMzKlcMpDaNA6wGbCCzdhQDxS\n48bv/TZhvQKhxgegAk0QB4RRKJOh1thShBlNqMrltNgnW+fFhhphqGVZ1mfPdbtder0etVqNkZER\nPNDudml1OuS5Iwil9zpJM2lbzXKSNCUIY0xgCCrSblRrjBJEVUwY45QGZfotqUEYEFcKsCsKCcMC\nsAsMgQ4wxXv/LqBXOaq1Ghs2bvoFA18FytQPkqMifLgVOADB53o8OPtDvsazPH39eaafb4oz1zLE\nU5YD951n9vFlKht7tOcafPf+r5CerUvCsjoBtoHASRESAH9cS2hRLfDI/NGElh9hkWm6k1XGtnfY\nMQfbrgsuEwB7AqjeBm6LYrk2yjKTdKny/syHjH9tnZHpnuQIBvw2uHbnFK/O38dfqa+yizPc2DFD\n/YnL7LgKX/kAFrswUYHb9oJ5AhYPjPIaD7L97vMcik4xcl+H2mUkbu+B9sMRL8ef5wh3cNFt5YLe\nzuXxTczev8rMo56n3oQzTZkSbp+FyQfA3Q8fspdLbCG/VhHxsRZgywmiZMZ9mq6KQkCvcmIr7ZZV\n8Zl1YAWuj4j18GuGk5sP8O29HfI45PMPvczeA+eJ1lNspFmcGeMtfQ8/4AleWnuM9R/NCqXuDJC1\n+STLAj65qv/lH+12m7ffeYvaow8zMTHJgd276TVbwjjNU1xBGS6rvdZK0iHVXchzS5bnspQNoNvr\nYb203Y01GnS6bbKsRy93rDR7VJbWiOIqlVqNKA4wgUbbAPpAi8O5XMxPNEjFX/ZBG8ilmRHlbNmo\nAdbi8hycw3nR+ykdeJ11GOdQeU62vkqytEx3aZm006WX5SSpo9PzNFsZK90ezW5KQkigMxYuLaGi\nNnmaUwk0Y7UKobeEzlNFs6e1hpueZyyIGK3UqcYhb/7Gv6Aej6Aqo6jqKOF4DaohKQlZuwu+h0rX\nsOkSiWuDNhhTRxuRJXC+FOAZihUKKc54jcNhCsFgZUy/wi7MjBysQzlHluScPnuJk6cvkiYi0uyU\nAF9lFnyTY2fBCIHB80q5vuaLL853yVT1GDKvyXIwoRPNHUHP6OWWhZV1Ot0ZJkbrZDYhScGkIVbX\n0L4KukI3h5YNaWfQSuts2X07wZvvk2c/e/2Ln3wMt6mXP0tTlJK6WkF61fdAPYR50Htzts2d4XO8\nxuevv8HINxK6fwo3zopW8PgEzB6HzfkCD3/xZU5XdnNuz24Wdm0WLd4rAdjq0PZLxWFb/N06MAVm\nQoC2+yB8MmHf/e/zpPkuj7oX2bN+lonmKk5p1hqjzH2jSfrXsLgG20dh2yps2Aq1+8D9uuLCXRuZ\nn71B9UjOo23YeAUu9+TImlpguHg3HH8fjhVkh9MJ/JOXYN8MfLQg2FMdOFABtRvS2ww3KpPE9PhK\n/m0eO/UqjWe7+DcgX4JgEibu6/HoV19HHfCshJOs3znJ8okNcBJYiCEdRSC6LsI12wRqFmp1mDaC\ngY0i04RDYvm34XxzP6uHp3lv6k421K5Rp0NCxI1klprOM5AAACAASURBVEsr21g4uhFeQh4nALuO\ngJnDjK9SR+yzP3LnMVranpV3JbeGPnNpCNiS9MDdxI4qhwAqvg/s9P9d/DcAe37cvFjMz6pgGGmN\nw9NOMpbXmywsr/CFVouFew4xe+oMu77x55z+7/4pzW2bmH3rCFcP75cCsLXs/tYPUL0ex7/yCD4Q\nbVZr876Zhyl1vlTR7KI0o4tr5I06Sa2Cc7boOsnwDJweXQnseSlKlsBOEBgCozGBKda5RdGHogUc\nQBWOxKXAf4EMCvNYF+CiFF5wXmRonEX5ITBMKYxWiD6jsPFK5VldAJb4gQNnCVsOzu/Q1SrwrBK4\nuvk63HxN1C3XWvdBr0I/TImUiQl03+BGm5KtJgCYQvUF7iUPKFovi5+lxhcUTo/ovth+eSYLPkK/\nnKCKL2ip6xZFISYw8JmcE2Cw52XLtadfFMkyWIzgCiwvTXJqeh/HageYefwVqldSnv4WTJ+Fl4G3\nb9nqFaSZOwHGM/j1C/BuAXpBQYTtwsazoC/B1NYlpmpLbOccu7rnaLyRkL0AL5yR7sQM2LYAT/8Q\npnfDgQc+5FDlA+7mHb7Q+yGbr11mbLENePLQUDlqhdA8C4cPHmfXjjOMRE3c4YDTSwfwVw1cC+Hj\ncYRZtYasyRP+zvq8P5VRkhlKJ8dpmNaFxqZl+x0neJpv85vdb3L3sWNEr+aSJwUwvusCmx69weSO\nVWxgaN9b59pH2+CcEhZxa4KBSH0pmlKCbWURvuxAKfOGbOi1n2/x/Fce+Mqtp51CXAuLnmkr0b9o\n8fBWYZ0j91YYXbkjyzx55shSSzfL6blMNK4KxxPrfb9Sk3rPtcUlZjdMEVdHUKG0uGXO0U1SlGqL\nA3rBDKpVq6yurdJqtWg0Rmi12lQqVarVqlj3AiiKREr0rJwXO1+UAEUqVyij0GFA6BU3fuerRElP\nPhNG5GEGmSfvpGRJJreaS8l6GmMjoijGxBFGh6ggwgchOo6I6nXiag0ThaggIKxWMGFIZB3aBBgU\nLrN46wh1ABZ0KvpaOBHkRflC36ZgP/iQSHlUHBJVqwS1GF0R1xpvvFRFjIg7ei8Cyk6Jy47SSCuL\nUp9QGnBDWgp9Q4GuKC2Njo6ilCp01Dp0eynaBISFvleW5dg8J2m3webURkYJjCGIq1RHJ6k3RglC\nEbgX5xVhcQRBAX5FYf/3MAwFtDSmqIYJgPl3AbzKUavW2LBx/u/xrf9pjWEhxAYERjRRdsH8jgvc\nx1s8vPw6U3/eJPsGXPoAFlKYiWHLOzCztsZjv/MK58Z3cHTXQS7u2S+fPxmBrSPJSkm/vXWUrRMW\n6Mk9u6rgKlxZmefM7C4ubNjMzCPLjJ7zPPMyXLsGlRg27oboCejeF3I82k9GyF28w+7181SOpVJK\nWkDmpFlhcCQqpkWDH/IouyZOM/ZbK0xV2ux+E3bdADUB3Atrz1R4ZeZeTrObWa5jqm7Qu9KUQwrO\neXZsOMcOzvEed/KBP8RbtbvZ8vhl5pqr7N4Mt52XdU90EHgGTt+xlTe4n+OtA6RnI5m91wDfYVAZ\nGeYLlKPs2S8nmvJ6lRWX0jRjEdJxODEBE5DURnin9zkW9s5wtH6A7WMXGB1bJyXkBnMc9/s5efUQ\nyy9tgB8gK4QFL9thdWifyqT3lyPx+UlGmqa899577L59F9ZaRmoNNs5tYLXdoZdYkrTgDXsxUCkT\nBV20OpfOXWmWYbwjCIIiFuek3Q7eWVFJ8pB6xXqrR2VlnWqlSi0MCRUYFeAwlBJUWe4QB+BA4mYx\nDznrcFqR+wLM8kUiluf4LJXkxTuUs5DnkPQIcotKEjprq/SWl0lWWjSbXa6tN1nqdFhNPYkNsUSk\nVpG7iMbYFI2RSUIbUOlZVJoRO8tkbhlVinECvnL+XWaTNsdmN5NNbESHEaoaYeqjUK1j6iME1QbG\neGzWRnU6KNsj8x2c65LZNqnvYlRMoGMgxVuFUkGh1xXcJPyLKsXuxeWxr5dySwz2SlqQllbWeOPd\no3x8YxXr3dDrgwTups99SpXWUzDAinWEodR9kQRGFxcszzKcjQgDg1Ieh6PZdVxbbBLWJohqU3Qc\ntNcC3JrFqoxUB6znho7RZKZKHoTMHHyA6si3aC4vfWJfPhvjVkfg4faOCGEMh6Cq/bgbbUzZEZ3j\nAMeYfLdF/l145314PZNPz7Xhme/C7FbPzrvOsXv+Q2bqN1jYNA+TGqoBtAJkEV9lwDJLkVjYACZh\nrCK0gbsd83ec54vx8/yW/RMOHz1B7eUEdUZ2c9OuBfx34MTL8GoidYcZ4CkH9Y3QORzx2sT97Bw5\nxwO/eYSJyzB5rZCvBI4swhdbMDkKV4ZC9CJwsQd3HoBfi2FpQbpLJg+CfgpW7xjhmD7AQY5xz9rb\nNL7ZJfl/4P2LMp9OhXD4GDRsl/s3vsWp2b28N3UXK7um8RsCqEeQNorzPApsAzbCpkiOu9Qzm0Om\nXIsU6K+B/55h+eQGVnZNc3I2xYQOlymypQh3PpT2xg+QlqDldW524RrW+Possk5uHh7IrB+A2BRM\nTl/8RKAT7X1xNEPv62+lSOQKcKjUwBJndd9vf+xf/lJP5VOXg1JclMK2KYTsLb3M8vVTZ/nK6iov\nWcvVuSkcnuutFpv/4jm2fP9VuleucuruA1iXM5l0MWnC4uKStIVrhbXZwMVWid6U0gKmVLsZn/vT\nF8mqMS/+3tN47/pyK57C5bHQ/RLX+QL4UgL2WGNwRqMigw4lFhutQJtCU0xJRxul83rZN6mLU6FK\nrlP/9/7ZViWEVYrKl9dAF0BZ+ZqAB/11th+K2n2q2SemAG6+EJ+8KPKdEA2zAata5hQ9pOnV1yMr\nny/0h0vwSykItOp/pu8EqYYfhah9f67ql6sGc87QyRmcCTm8OBJTss/2EJ3S4u5DYkYbfBtu1OCc\nonV8jPe238kL8RPU7ujy0MJbmGOW9lmBim4dZcQBWYme7n5y9ek9Mi3EMMYq0ywywSoT2Qp8BMsX\nJbSV2rwXgI9XYPojGFvosG/LCQ6sfMiOly6JC3vBQQimLOnb0FuD0c0w9miHB37rXdJ7I6425rl0\nx1a6H4zLxm+MQT4qO9HPc36RcVIx6LAp+vZnFOyAxoE17ore4bH8R9x15DjRH+Wk34WLiwL87tgM\no5c7PPzfvMH1HTOcntjN0u0byN6qSjG9VUfm4JCBZlfJaiyv1rDWWbleGGYF/vzGrzzwBdBq5cxF\ndbLcYVOHTS15boskRSi3PZvRS1OSNCdLPTYRICx1lp4qwCcGwEt52VSacnV5hfmFFUbGaphYEegA\nhybNPXR7GK3xNicOA0Yaddab6zSbTRqNBmEY0ul0aTQywtDiQtd3nVFG453GWwHCCAPyNOsznjwe\nHSgiEwvLSinCKEbXPD619MI2rFt8bkFlkCu0UxhCggACBgHZKENFGSKtCcMYX63hgwAdRcRKoUyA\n7SVkeUba6aKdJ2238b0uWdIlTRMym4GBIBRATZU5uQZMgArlQaAg0KBc2UdS1DcUuc3xXhK7wARo\nXdCWve+zvnJv+wuMkvVVituXbC9rLd1uj06nh809ykR4HeGcIs/a5O0mtrXG7OgocSUgMwoTV6hU\nR6g1xojjuA9mAUWyacQeOgoxRVtmqd0zLHQJ3FQh/ElBsGqtzoYNv0jga9gmuQRV6hIrp4BNnm3h\nRfb7E8ycXkR9D869An+ZS8irt+E3XofdMzB91zL7HjjJ1ugjLm7aPxA5TurFdkumEtwcjso7rWQO\nNOHaGFyA5P0J3nnybn4YfsjcM1fZFtxgci9MfiSb9IfAPa14Zfs9vMYDzHOFJ7MX2PviBfx/APui\ngGRjDajfDRsWl3nkv3qFS5NbeF49yYfsZdfUWUaePkK0BVQTmIHV/TVenbiPV/g8e/iQBy++S+0b\nPfgLWPxAnLs2bIH4eMb+/AKPP/IDzukd/NGVf8rc/HXimYQv//PvMn//CuE14aynuwwntu7gu3yJ\n77snuHhhJ/6okUpLM5Hj7lfWb53ey3NXAlylCE1j6FEZOq9XYbUCb1bAKtKlGmfvOcTZg/tpbF6m\nXmuR25C15XHykyMCdr2NMPnOeHBXZBusc7MY5We14vj3G957jh07zsNXbzA6OkJjcoapqXXmmm1a\nnZTcSsIAg/iQ5VJpN0ZA8SzLZO7IhfnTqFYZrVcITMDS2iqtbka3lxAHEXO9Hn+wssZ/iqvUooAo\nNAQmximDwfdZAalKCLy0/fXjkwesJyir9UV7incZ3ot4vbcWnWf4NMW1OuStLr21dTrNVZL1LmvL\nTS4vrvIfr13nnrhKogPieIRapKiHEalXNJRhwnnG0oyadXzl+hmWxqaw8Sy1uEIlrvPxQ79B/ex7\nqK2HiFVMXjH4sRqViVlUIFo11qa4XguSJnnSIvUJue+Qu4TMJNz+2ptcf+gOutN1cSxWAcp5tFM4\nXYhGqzLZ0UVRS2NM0E80ZMlVtBwphfOKbppx/MOLfHDiIp0sx6sc77VonVG0SnIz46t4RVLUotou\nhi2q0PuUay8fFCAUpYWxrTxZmqDUCEopompMrit8vJyRRQnV0RqJ8ziXYUwIlZC82qAVVGn6iEwH\nOB3Q2H2IsY2bP8PAFwwWtQGD2FAK6haLYKX7dRQz6hhnlRkW4DysXoL3M4kuIOTgU+swewYmb7SZ\nnl+iFjZhxInFfGCRCWUEiZFtBhWIFKiDHoNJBbdBeDDl0PgRHuOHPHTqPfwfgf9LuPohBCFM7QLt\n4INEvKZAoLQTl2HmNOg1R0TCcjAhif0iHO8KDESxB+/34PFcIu9q8XwNMeg198DkVpi8JMfv7wD7\ntOKl6c/xEVv5Ai+w4cM1/Mvwzln4TlkETyC5AI++AlOPt9k1e4b5+hVOzR0kGw8gHi5QzQMbYFck\nWmaf83AfxPvWmJu+RoMWCRGL7RnWT83g3zfwusK/FpCOB4PcbB0J9Ze96HrZVQT0uo60lq7zi2hR\n+XsND2kmgInWYFxxX5cuiAMYQn73joEO0dBG+jqKhWaWFZ/c8vc+Q+xvyueUKrYt62/rCoAKSK3n\n/9i0gSe6XV7aMs9EvcI3/sXvUzWGhcP72fqjN3lv/07yZgvrMt44tEtiTreD6om+lHUFkOWd6G4V\nbXkA60pzbOdGFjfOsrbWxPvCLCqXNYaEPumG8S7HuhS8iOrHRmOiEBsYtAsxxMIoQwC3kvUlTDj3\nCczPM/j3zZz1EgqzEtdLRpQClMMrzwAS88Vrw96L9F8bCPPfcsr7/xv+5ZOML2mtRATob9IbG3Js\nNAMhe11qeRU/+y6XRftjKWhfOkFSzFUDwKtke5XfPJnPvaLI9ZSoQxVzkkPaXaM4xJhflhS+ZPUU\n+o8si+TJKQNvGE43DvOjLy9zZ+U98hlDPGGZiyBKJQaXQyFsWeFfFRwmJ+ori0gvwgywV4E6C/55\nuG/zBxzf8CMWmJZ1ghk0/DWHtmuKqcprxaRd5rZ3LqH+Paw8D0fW5T37x+B7a8Jp2nsJHroKIxXL\nvVs/4J3ZD3ht2+c4s21cfMCOBZCXjOdf5HUqAajy90K3OTYyfc57JiZX2KdOsa9zkvhHGe5b8OcX\nhVCsgIdW4IkIGnu6HN5xhJ3BWd7d+ADZXFVqLboCrsxDSmO0kuFWjuHi2C9S6+wfCPC1srBKlmuS\nbo9OmpDYogXFeXFLDKBtU1pZSpoJ4IWVC26BpBRPLLZXpuRaiQDtrmaLP37lDf7X8AEW9+4E46hE\nmopRwldJUzSeQEMlimjUaiwuL7O8vEwQhNRqdTqdjlTxtSEMxZlFaVnIe1tMBl7jtccqi9ZWXGi0\nJ/cKQtH/8soRBBodSXuFiTRkVpxrrKa6uIbp9cgDURE03qLDCIcjcTl5r4OKO/iRUXwYElfi4pbx\nZElCr90ma3fweYbKcoIsI37nDToHDqCMEvHlSoCODCaSCCMMLakIoRVlR8mgSlJMXsWJdc5jAtBh\ngAoMDtGsyZ0jt57MCevMWkeSJKRpQpoloBzVWixVKedIkpxe1+JcADrE5cLAsJkjabcJyBlvVPCh\nxuOoRCG1Wo1Go9EHvgBKl6+S9WWCAGV0HxgbdqoZaP38ZGDX8AjDkJmZOeK4QpL0/vYP/EzGsMB8\nCAR94V8aOaOsM+mWiRdSuAAn8sEk0gaO9WD7FQgWciZZZpR1GPFQUwWuFnJzUAy5uQJQBs4eQn1a\nguUGnDTwJpzYdJi/3rMGATz8xCvsPPAR0UqKjxSrGxocGTnI9/gCF7mNr/Et9i6fhu/B9Rfg24sF\n4asFj70It0/AxkML3P7541xjjq8m3+a+Nz5APwvZO5CuQ2UWxh/p8Ohvv0y+I4BMU3uri30O3nwf\n3shlb3d+BF98Dsa3ePbsucDuDaeZ33SZH15/gtZ0nXNmJ3sPnmLqoIhGXmUDxzjIq9mDHPvoTpLv\nNQRoOu8gLY67b6eYDp2fkkY8xMhjDGm6mUZ0XRoiPGZieatzkKewZOGNQFYK54DXA1ozs7SqszIX\nrSBc8nPAWQ8f55AuIhlQqe9SVvt/9Zhew2N5aZnxsUk2bdvGRyfPMD49x2ZnMVGFk6fO0G63yYrK\nui/XsV7asPtW5V50R3LrSdOUcGyE7dtvY3NuOX7iJKtra6ysrvC/pRn7UdSv3WC9VqFa7YgWVmF6\n4kwRO20x9zjPcKtE2RJSChI7l4tYu8/BCfjl0oRkbZX2whJ2rUPt0gIfJAmtVoLteX6tkxEA/yqu\n8Z+rI1R1TDWIMdpgo4BaFDNqNKOBZp6ce9sL2LzFkS27qFTrmFoDXxvl0uY9GB2DjqjVIqiHGOfw\nvTZ51iFNmuRpE+0SrOuR2TY92yEjoZonbDx/kYnmOm/u/F2UQ/RknALr0eU9oKRFX+YSgzbS4ihC\ngAqPLXuScFmOzSwL19d478gJ1pptBhI8NxcphosXfQCseJSOZaZvRS+s7PKzQMHc9oU5iwfr8HlO\nHGiwjm63x7Kq4CuOSlDBxzWyLKHqAyJVoUdAS0d0g5hcKxQB9bFZNu26nSsnPhgwKD6zowRCPDcX\nUYaedvI9dmgcGiIwRqaXcgRApIAY8qhUX9KiV+eBkRiCuYJc5iHpgV1DAtsCYopSEbLZBqhsarKb\n0xxKj8EPoP0c/PC0EIBNBnecgCf2fXJRbIpkyWuFJRB4pCDXVm6Z5mMFM1vgi014fVEi5N4Ydh4C\nfy8sfXEcnymyakhnJmIpnmAmXeY39V9QNR1YBrcEV265xNdycVyMlqBBiypdTOTIyg5PAMZBz8OW\nWIwDnnSMPLLCgR3vc1i/zzYuMMoaCRUu1zdz7O4DvLv1bpam57HPhfAKAzJv6qGZSc8pS0iqt8BA\nT600N/nsM72GR5KX7CUBgpTzAyyiZNUojx5iJpUvakqNLArR+IG4vRvS3vLD7X1/07gF7HBA7qGb\npHR6Cf/q3ru4Z3GFqRVFa/c2amtNdBDw7L/8ZzRWVrF5TrMeo5TBe8fmc5f4eOeW4iB04f7rhIUE\neOvFCd3mvLF9EyowmHZXOi2K1kiFwxjAO5zN2bC4xrWJCmiYX+vx6987xQ+eOsDy1imc1XKcunRo\npADXBIBy/dhaHqf8KFv4JEp6SlW18g1q6L3lFgQoBKV8f5PSFSORWami+PNpLC5VXIo++eTTQK/B\nqDnHPztzhY/rFZ7dNici9eWjAMNU0YbZB7iU7n+nBj/L1+kTDEqdL18WAZQI3BdHQfH1689ImtJv\nTRVFlYGDZRRGBMFnnfEFEqA1A6fHJhKjJ8QZcFbBPriezHEh3sbargYb7ltmyxuw7SMpgIwhhYUA\nCVGaQcbwBtL5/hDwLrJ0/ZMMHj8Ch2egeneXPbOnOKN38XG8kW23X2XqLnjoZXgrlRi9U8HWLcDt\ncGPjCPOLNwheh+4P4Nl1YYQ54O01Wf164B1g5grceQyiCymbZq8wzSJnJhF0zsDNxf2yIPSzGLeS\nB26Fm299zQjSV+jcV6Iukywz3VuEs3ByQUCvchp6z8O+j2HTeZjz15lSS4TVTGpOVWTydrfOnJ/G\n6PpszBf/IICvpfUWtufJ84zU5XS9XA7lNXli6aqcts/peS9LtnJxWxBqhy/d0BJZAreHXp7jgUtX\nF8g2b0KZQFrrvKYSBDjvyPKcNFVEgabRqNPpdWm326yvrzM6Okan2y20voK+AKIuqg9lG4fGoAKF\nikBbaVtxFrx1aCOuhNLKqTAoAhNQqVZxWU6eZehuxvZnvwnGcOkP/xBHhs89WjmM8fjMYl2GwuK0\nw4UhPo+QVarHZRm228XnKcbJBDn2Z3/GyF99C/07v8v6Y4+gQlChxpfMTkO/EoQzhWCjl2JXYSGt\nAeMlqJdi9iYIBmL3DjJrhWFRuNLkuSXJcnq9lG6vQ5Z3qVQD6vUI7y1JL6Xd6pKmFh2EhHGFzEKe\nZ9g8x9qMqdERRmpVOrnDOEscGCqVCpVKhTiO5SoPabuUrYzaFO0st4Befx+w69YxOTVNozHyCwS+\nhkeB1Jedh06SlVwF+EhB7PsKKyJrKrFQheACRU6ARQ+YrjcNjdTEHQO9kLI65BDApw0sQG8cTk/C\nJPRG67xuH2Hl9klOBLezc/4s4/Or5ARcYwMn2M973cNsq15klhtUP3L403ByXchUIBPpm8DODyE+\nD3MPXWerusTes2fRf+JZ+zN462O4YWF7BAcvQ8Pk3P8H77LgpjEXPZ0LcDQXrAiEEb33Yxg/B5WF\nHtMbFhljjY+P7+Sl8S9yYuftbBm9xCjreBRLdorLS7exdHqW/NWKaKm8D6x0Ed7BCsJ4G3ZQ9Nzc\nhjqClG5mgU3ANIzHMKUFAytMvegZWKtKHrOItLBcQFh8o8XmPAP36VUvlpN+EVlO3EBAyFKgslyu\n/+oOay3P/vk3+V/+9b+h185orqwzNztHJQxZuHqNPBGTEVc4LmmtC10YdxMLtHS17yYJVxcXyHGM\njoyCAhMYrIV/Xok4gOLjtTX2LK1QqcSEgSFGi/ZTGEgri5fqr1Ue78uWi3JdL0to17emz9E4DJ7c\n5mRZj263RbPd5LdfPcrMSpNT0/Msx1OM1Ou8NhpRy9c5OjrG3YRUiTDKi7uWCQiDiEoYUDWG2AQc\nvfMJGB0hHp3EVEfRcR3CEUxUwwQaXIb3CXlrlcw78A6bW9Kkg3VNlO9hfY+e79JTKbYa4GbHefOf\nPEWycVbSoqIi4r3FWdGAKQkBWgvIJcBXiNamn9tIF6LHywRCp9nh6KmTnDx/ltTJAtSjblqWFR/9\nxCi1vgYyLIVA9i2fFnFoi0NcmoPC0t5lFu0VNsvInUW5HlHDYlODiuv4MML7hMzKd8nmDqU9RgXC\nMKvV2XboXt756z8j+0zMCT/JKDnyFlwm4aMJds2wwDRX2MSh3WcZ3QP3nIc0keiyFTgwB+yDxalx\nrjPHejKOXzGSCX0BCYNdYFHB1Sp8XIGVUSToJaCMFGxGYGR8jSmWmFhqwVlY+BhOegl3AEeBw2fh\nziqsFbrym4FdM6B3QTYfscAMLep0tgfU9uXc+S5cX5ZwOQ7cE0P0MGxXMHMUXA71zbKva4/XeW7r\n41zWm7iT99m7cJY7Tp8kvpbhI+huqsCkkNRmtLDPyug6pSEYB0ahTZ2EGJerm/t+mIF6FfYBD8HI\nF5Z4bMsLPKWf4/PZK2y6doNwPcXGAUvz47xTO8ymqSs8/8iXuJTswq8a+D5wtQd+WS4S60OP8t8p\nAxeun4/9/E9jeArgy1OsOxWmWI/acv2mBve/KuEIP2g/k/vf9XWw5H6X+OBKAMwPgV5/45JwkFWU\ncho2z+jmKevdDv/t0RNszzLiLOPGmQuMNVv4IOC13/vHPPjcj/DO8drv/xZoxea33ufQD97kw17O\nxcc+R55nZGkqTu1FNcZZS5plJHkuIvGBEe0v74p1sbCDFQ5nM2YW1nnqtbNcn6jx/cf3Uonk21iJ\nYypxTBgMwP9+21/ZZl4w2PwAOZTfHX3dqnL10Ae2SgaUGgq0fTCyfKrQ2So/qIrz6AdFp7/LKFlZ\n5e/lw6jCebLvNlnqeJlC5L/IAYZbHodyAamhlG3w5bHJ3/BDLLC+pld5usobX/2Y41IQRyFByTT+\nzI8SBOkiQNASMArZBNyI4CKsXJyltaeBq8hipmsFak+QlefwKPOM4VbFiAFTdx04mcGBCxBdt8xk\ny6zHo3wQHmLPPeeY/bVVDivYeh5sBqMbofoktL8U8oL+Al/ufQ+uwtVlWfmWl2NtaB9yYCUD1wTd\nc0jJKhsQnA0MpEh+VqO4325idQVDv8Pg3P8ixi+W2fXjxj8I4KtpM6rdLgpLUuDqFmkh6HnLus1J\ntSfxAzxyUIf5JOjVZ3sVT7wGTGnFfLfDoaVlwigmCAOCTBMGGmMzMB6jHYqQKIppNEbo9BKarRZr\nzSZxtUoUx4SVmMAHKKVx1mMKelTJmhLXMCNssCCQhbdzYnEfBHil0VaW49oodByinUPlFj3iaT/5\nMKpSozpVxynpmncoVKil/VArdAhKZWz6gz9k8d//a0ygMYEgVJnXOK3QXqOcp/Pbv0nj+y/Qe+qL\nUn0wbgB6KY/VheCyL3v6kUBfOJMZhTiTlYmjMhAEoq+lA7Gg92CtI80sXunCLdKRJOLomCQJzloa\njZq0G2UZrVaXdruDdQKm5VlOah1p0qPdaVONQqbGRwm0l65no4gjQ7UqwFcYSqV6GPi6qZ1xqLd+\n+D3Dzw0zBn7SMTkpwNfS0sLf/uafyRhGqQoAKkWSlhXDDWa4qjfS3Vgl3NfhnmNwY0U4QVuAO6bA\n7IPe5ohrbGCZKVhRA5OTvqD9JMJSSooXSmZT+cfKCtES+AZcr8LbVVCK7toI7199gGMHDzEze41G\n0MSjWOzMsHZ2Fv2R57avXpT72NNnFA6PlMFzCk8j6TL2YQtegx9dEvIVwMUU4hNw+DUYfaxFvtMM\n8rlbR/F3So6CwcENTfeFES5va3B5424Y9QW7LPgNTQAAIABJREFUSgkSd1oJ9eA4cD0DX7aVNLkZ\n+CpduxQy1Rc6NswCOyGeloxxtxJ9ly1IRhYUm1lAmFynEZTueiJrkL4gfnm9m0h1v3ysISBcycIr\n2V6fvUntpz1eevFF1lZWGJudJVOW1ZVlxmpVZibGWVleJdUBqc3AeUJtsF40CIGB5kvZbgd0koRr\nNxZYXFou4rSANR1reROI19apXbvBSLVKNY6IjMYpiGtVCasBWK2FAVUMVZS1BSSSdgxRxBU2q8cX\njAVPgsFWavy/h/fzlffOsLJtD1uDKeqmQV3HXIs1W7DEmUZ7j3EJgc1E1yQ0hIGhEkZEOiSdniUc\nqxOMTRHEDcgMRikwGd52yJI2Nu1h81RahwpXSZ93cbSwqoclJdc5xAo9EuMrAetj0+g4JCiE/ZUX\nNrPCo5QkHcrIPIjWaCOmK6iBGxboQm4qI0t6XL16nbeOHGOx1RItsCEm9yDP8mjlS23rIQav7oNf\njjLBlc84J4CeQhdC0GIgY3TUT1psltHrdQnDOjhIk4S818Jl0g6goxo9Z0i9InZgyAlyizMBtrjH\ntt3zIFGt/ksIfA2L2qYS1q9DeiXi7KGdHKkc4q5732fumTUOdeH2d6HXgepmMI+DfRLOTm3nGLez\n0J4VCtbXEbA+QELVZSSmnVRwpAqXtoD9WP58kdN6X2gDlRf3ltCVI0DV3sdh/jVYbcLGeQgeBfUk\nnNs+zyn2EJJzeu4dDn/5Q2aW4Xd/BK0bUJ+E4F7gKWAXNC4Vh7wZmvcZnqs8zlF1kN2c5t6Fd5n4\nkzbqOYTSEEFjfw++CuoZeOQIZFdFyHkD8OgM6HugfcBwiS1cS+bIF8MChyonohnYoAX4uh/u2fom\nv6b+kq/bP2Xy2S7qdSSLG4OpO1bZ9bWLNOZbdMeq/Pn983TPj8i+LMQF2/gccrGGtdPKR1mo+uUa\nSVawMwGjZF2ttUY7iY9l2OwzQb0fYiMNc5d8H+zqx/iS8fXjmF7+1n8U161AgrwXK6vUWVbaLf6n\nyQn+hyBkZr3JK888xe5jJ1FjI2gTcvmBezHGUB0ZA+9ZefTzuJffYvVrTzMZBFibk6UJ1tp+HuOs\nJc0zMpuTI0wtCrZXlqXkWSpt5d5ic8XahnFuzIzw5sN7GG1USSfHeP5fbkJHAfWS0WQUptC0LLUt\nJYoWJQUl+mdyy4nx1QD4KudF+oDQTcDXMBgF0g5YIkMFAKn6LZB+cM3Ka6U+hXTXj/Pq5ieG3pCE\nhn+z/zaUlhb2stXR6EGHhzamr/N1a/FbF/s+OAw5DqXL5xV9fa+yrZNBEcZ7KeqUzDhApGz84NCV\nUsSVWByFfynGrSzgwm1crUI4C6MQzHQJyKhmCaxBln+6xlc5KgyALxjgTUOYoUifaLBoMgJeVI8y\nu+kGz/z+C9R2JUyfQsLYbdB9MOCtbXfyEVvJTQg1GNFQdYN2y7IPJkOK+9saYGYhmQxYY4w29QEh\ndti292cygqGfpXaX5tNhnVs1gi1YV6jIKHpplUWmWaxMM7LzGvtm4OBFKQYFwJ0a5jcD2+G6mmOJ\nKbJuMf90AftpAvWf3fzgl+Wu+XsN8ZSwjOAlbdMaG8fklQa4nLyVk7n0pmpPuSD+cXPYTTRepeh5\nWFpZ5/KVa9SqdaIgQFmHshmhclhT0lwDghCCuEK13qDdarG4tEgYR0SVmCAK0UYL8OI9Yt8O4j4p\nC+zcylLYFxVnRdlzbvDa47UI+HsAY/qYsFaK9lOPoL1CGSMaWiZAGaHvOy+tldpoqt95HrO6wti/\n/bck//0fYIyCUKNUgAu8tBs4B7Fi8T/+32hncS6TdgDlxELei1uMw2OUJijcM8vKR1BQpJ2SBMTJ\nToq7JUYs4Z2YCWS5LSyXczJrsbml10toNdskvZQgiIijCihNllmSJMVai9HCGkvznF63R6u1jnIZ\ns3NTjDRq5LlUuLQWNl4chkRRRBiGnwCu+gCXvqUqdcv4NCCsHD92UXTLZycmp6g3Rv7G9/7sRsaA\n/lNa03cFtLoGXISLne0cqd3Bfbve4fZfO8NMF/7Ra7C6DhOj0HgQ+Cpc3LeBDzjE+dZOAXgWgcQj\noee24u8Vgpe0GVSVm8i3tnwtpC/YfmUz5FXZ1hlFvr3O1bmdggFlCEZzGdz9ltXeJNcrc/Q2BVT2\n5ux+G85cl7dUgM/FEO+FfIfimtrAIXtENL2WByyucg9vpGJqpVsOGha7QxHt8xxcko6QFNiqYOtt\n4PdCa7bGdeZYyqfkkN4B3lCFzplURUsyG5eB6w6aLSQ7uVycrCYy/ZdMuLK6E9GnMjAt57I+DfsV\n3Avc76gc7FDfss7I6AqhyWn36rQXJ2idHcG+HcKbCt6OxZbMnZdr3BemLpl2xQKl/3vpxlJW+3/1\nh7WWP/lPf8w/+t3/mj379/Odk0dZvHaVIDCMj42Sr67hehZX9GCZkvV1C/hFf2FsyK0XN8BC49AV\nNGPvIXWOK4tLBFEIgQdtxV1WKyqmVnwNJE6U7djlgrusHWsGYH1ecIdVoYEVNxo4FeKq4zw3v5NN\naYihRj0Yo2rq1IKQQBuiXkroLSpLMVlOqAyKlEocEYYRQRgT1quE1RCCCNHLaZOlHWzWwyUJNkmw\nPkN5h7EW51LQFuu7ZL5HpnOsAVMP0fUKNo7xxhBo028PKQWiFeJeqY3tJxyAVN09AqwN1869R7mM\nzGasN1u888Fxzl+8js8l0VXOybdYge7buQ2ypXJLQF/E2LvB4k5rcWQzIK2lulg3KI32GueAMMSR\nk+UZWZJi45AgrEjbad6horqovIUNR7FhDY+0HEVBBaMgd5ZEgVOayU1b2HH3Q3zwvWd/Rt/0n8Uo\nE/yykLEGrSn4KMYfDbi8fwcv736YTfWPeeLrLzI3v0xwzNNIgA3QuTfiw0M7+G7wJd7K76PVG2Pm\ny5fYMnORSbWMwtOmzqX121g4u5HeW3UR1HojgDObwOfQDcUNeHWMG7OzrE6MMLl3nenbYP86nCyk\nRg8amNsPPAGjD8PomuxDcl/ApYdneVk9TETGGmO8Wvkclf+fvfd6kuPK0jx/9153D5kSmQlkQmsQ\nkgRAUItqsgSrq0VN9/S27Y7t2O7s/hNr+zgP+7BmY/u4Dzsv8zDbvWJaVZfoLpYgiyAIEiAkARBa\nJ1JnRoZw93vvPpzrEQEUu6qnRVVhOZfmloKREe4egXPu+c73fefNlC3DdygdswzPA0OQ71fcPjrF\n+TXPsOaFWUqkKDxpWuHQwnmet6dolOqMfn+V9D/ClffhspdofvQyTDaBr4P+V/DWCaTnMArqGHR+\nN+b0yEFO+2e5P7sZdzWWfLySIfvQRFCynbBm/x2OqE94uXWc0T9vYf8DzJ6EhzMwXId1+6G85Hnl\nX3/I9YltnNu0n/O7XhCLsLKCNDhDM4skryfj/tMZ+1Prgu9VADAo9sYEpg6Af4Jl0xsu5d3jAMVj\nBwEMd91fyHqCfNHnTBj+I0zr9agA7jc6ba6kHf7d+kn2vvA8Uw5uHDpItRSRRIbZ5w7KJMFQhxij\nOfVv/yfKSYxWYPMcbRQ2zwMoL3lMGY2yGpXnWC9NCOWsWLEo8Ea8EZ2K0ViO/9Z+SnFEKYkpJTFx\nHAWmE4F1q/oAob7r7N5L+iwAVGhMiOLDqR77q3ej9BNHgQI9waDzQinrUhN83xvWl3fFDqA4FxVs\nB4opnT3QSaneYxQC6BX+XAJ6Fcwv1b3WQgL5RcBXVwHypMdX+Lkrdex+lbzRPf2i8RL2BSpMxCx+\nq9GUoohyqRhe9Ju+ik5DMd0xqBXcgGw1G9BerjM3MsaDoVFGNq8wtg52z0h89uEv10aQ5vL9kTK8\n15bMshE4XAXTFpl4HThSg/gZ6GxPuFeaYpp1XFreC4MwMzbOgW+dZf1b00S5Y2GwziLDkGretj8i\nG4hxhxRjL3hePQ3n2nIOByugDCx1YKoKmw6BehNmto1wlR3cb64XetoCYD2PN4n/qVhXisdpZYXy\no/jab1MDvdqhkKZ3gCZ0cskv92Wy5pWxXVyq7mHyjTnKtzJ+5wdwcFb6TFs3A78NjRcrnOEg1/Lt\ntO5XegN+XZunSf7+pQC+ANp4xjCU8JRLVcpjEzAyiuk0WbmfkjYy4lAweCBXoQQs4mnRaehfXVhe\nklez1eHhgxkGqwMMlMqYgQqxjoJkQZFmlih26Ehhoohqtcrq6ipz8/OUymUGBgao1WokSRI6+IJW\nq9CpdN6BdeROTF6U0WJYb6Sw8U7hdehCaZEEig2K6erObVz8XgvTwMSYKA7mvlomcCnF6m9/jbxe\nIX3zFZTNu1NrbG7RHqHYKkMe2AS59mTeYYwwsqzzYvTsHXEck5gI433oBVkUmiiKcUqAZ+ucTNjy\nnlIcOm8hA4hlikhkcidj5PM8p9Vqs7raxHtFpVLDmBI2h04nJU1zCtNhl1vSTkraWiXvtBgfrrFm\nZIhS8DJQSkzyvbMiGSpYXfw8iKVU4cfwiwEs+MUg1xf9v36gbHhklMHBwV/6Gv+8q2B9dYBlcC24\nV4HLMHtmiuMvvMSGyh3itzK2rrvFwCswEDbq6WHFzf2b+X70dY7nLzF/Zp2MQ7+DxOSBMWEYOiC1\n0MlC8Cz8ROYRsUmx6W7Qm/6YwaN1sDwINyIhOw0hOFABJs2Cn9I8mpvks/XPcHHtTp776mesn4bf\nPw6NJSiVYXIP8A7c3zPBebWfY/FJ7Kh0cSavyummSEqZLIMZhXxQcyvZRPWFNiOfN3kug01XxT5r\nZB0MvAH+txSXx7dziT3M3JuS1v1d4LqHWEnkLXJhmkMr6H+YlpNnjseN7YtiI6aX7CrhwteCnoBd\nCl4Bvg7rX7jB/qEz7DWfMcU9EjKWS4NcH9rKmQ3P8dm2vbRGRoKbbhkeTiCUiQfhNYsEWRxFCyvn\naS58/qHrJ+/+kN/7w28zNjbK4NAIN6anydptarUy7UxA9jTtSAxTyMbZPe7/JJNrNd4WTKMwfTFE\nExVGwysH7cxyd3oWXxh6BfNgh6dUraCU6sKgygczXq0lX+DDRtmH+NbzITHGUC6XJL6VFd5XSG1C\nmoPOHUo7VBQTK5FV6kgRW0dsFZE3GBxxMco+UmAsuW+h2qt461B5Jkymdou808a6DK+k8xdh8aRY\nm5LSpry8RFV75ravxdcNlLTII4PXZSH27x5FF52iyBQjZVRgehUlqffgnABbeU671WHfn36X/+Xh\nQ1aaKV0GdQAc+7eIjyloAmXABemqicLreBfkTJInMpPjlJhIe+WF9VVITTE45cmdNG6U8kQ6F+/P\nzgp2dYZquUweG3IzhNOJ1MxZRrCJJjGGLDTYjvzuH3Phx9/F2afBULwASQpT4xawAJ1VuJXAp4rl\njaO8N/w60dqc+fFRDn/9UyZemsE4R7NS4frgZj7gZf42f5vbnU08t+EELyXH2c951vEQg2WONVwe\n3M1HB4/xyfrnmS9PyUuuGLjvpAh5AO3bA1yd2MmnlQOs/637DFz3vK5Ewq40jG0E3oaV364xu3aI\nJMtYLVe5PbSBJOpwxJ7im82/oVWKuZls5sPB57n12gY2HbhPqdMhi2PuD41zNdrJDOM8YoJXeZ8X\nH3zM1MkZ1GfhFqwD7sOdi/ADLxlOATPL8IcfweBrMPM/DjH+9pKkwSFY3Fvh3Lp9fC/5Oh9krzJ3\nYUJMWG570YaiJTWMApOwoXyXHVxl/c1HqB/D/ffgByvSY6k24MVTcGQY6s+12fP2JbZwi/Mbj8KY\nESbdcoXHB6MUNgT9zI2nb1nryKxYMxSSOQ09UAOFDhME8UERoYz4ZXmPVZ7cQ+ZkF+uVxroca50Y\n21uLd/33JqA7fcB6Ae/0Ilbg5AYEznlPJ7csNVaZXVhkfniR4UpFbFOcPFYF0MUXzFMlIJQK8cl1\nB0C5LgtNvAEFWPMux+UZrvD2chaNC8E1WJCYCK0hiUTWHhtDrE2YYBvAoqIJ7H249l6uUxQN4j5B\nuAq3BNXn8/Xk8XidVfy+sJbxvnsVXf9MAtNZPdlsemKFy/v536t+gCrkyoBJicBDywT6AgwzxWTH\nJwCvfqmjUtBt0PSYYQQfNP+Ywb3qXXuoNbt1hqLnJUcAw1CgDbVaFa1Ut8n29KzQUHcdWKzANGTT\nZa5t3sYF9rHj9dsMXPa8kcHem5BHsNyGtpeqYB2wbxLGrey7B9dAfTes+RxWZqFUh6F9oL8FD/aP\n8RnPEJNRzVu813qdq/EOdkZX2FC9y34ucCg/w6FLn1G/1kQ1wI4r7EGI/yU8Owo7bsrbMrQT1CD4\neVCTwEsw840hflp9iU84wsKVtaKkeADkRfO4S//iH8+AUvSYXcX09ioi7S++FtMVoQd4BbCLVSSW\nN+V4VIPritULQ5ze9hw/Kr3ByIEFDv+bCyTP5Oy4hZQbu2H55SofbHqe93idzxb2kX1WFjLDog3P\n2+Jp8f390gBfq0SsR/xJRocnqG/aBhNrSBrzrDRXyJurxPjQvfVkytMJ2qi8oFc9uXruuIB0VBYX\nl7l79x4DtQqRmaAU1TEGrIY8l4mSPhaAKI5jarUas7OzzM3NMTIyQr1eJ0kSoihCayMBzRcof0iT\nWofY6VFWqLguVEG+mHal+qQcTvxCNAYC1qC1wkQCqGUux1lPIHChlME6S+uVF8X3y4uxvHPidxDr\niFLwmunkGUo5UDJJzOXB30YrvIPElKgkFSKjcXkbvJXxx0bkKeJFI3/j8aGG6Wnki8mN1lqyPJUy\nRSva7TaN1QZ5bsWTK6mgVCRMsFZGlllhr2lNmqakzRXSVpPhgQrr141TjiOMz7sFjvdyd3tTWB4H\nwPrXF/O8+j8W/hf+/PdZ1UqV0bFx8Qf6tZgZe37OYN7PwINNcB78BsPZ8SMkOzos1wZ5/uhJtj53\nk7pvsKpqXDfb+EQd4Yf+Lc7cOIr9IBIZnwcOKxiKJD57YEnDbCwyxukhRJtXIGTIa9MI34dA7leg\nNQqtEXgwjIwQ7Tv3jcBVxcz1cT6eOMq26DrDry+ztXKPsX0wNofkiEOw8NoA74++xAe8zLroIY1t\nZxl6YZUXb0NyV6CoLRqe2Qn6KKzuTvgJb3B/copv/vffpbrBs/5SuE0bgVfh7MEd/Ei/ySfZEfKz\nZUmGD4HGQriW4J1HkTQaSAm0GL5v0OugFMmkAP4Ka88qIhNdC+s1HATehE1vXeZryfd5ix/yAidY\nPz2HSqG5RvNZdQ/vl17lB9u/xo+it8gb9aBmrEI6hvxQGNj3F62Fl8uXh+nVv+7fu8/Mvfts2bKZ\nXXueIWutcvXSJfIspVoyZOUY7y0+zwRMUbqbGZxzIl+gEL+q0IkWgEYmMIIxXmTsCry3NNptbj54\nRB7av4XSQ2KSBx9jUBCJhFJkgKGcCvI773vAm1KyWXdaU0pKuEiT+4jYi8lz3lilk6Zom6KIiTWU\n4hgTG2EGozHOobwFb1G5w6UdcB0MFm/Bdjqk7RVs1pLCSjnQHu09TltyWqQqo504vvrDE4DnJzu/\nRZqAM64HIElK6VY9WoWpYV2pf4zTEWgTBjwWEhOHuKY7fG7J0oxn/vR7bPvgNP+rNvxuJIiz7bIF\nis5WYJVp9fMBPoCIOjAWXPgd4X0GAbwKUA4fmG2+A0Qyct55cguRiTDaY31Oe7XByuwDauUSpQhU\nEtNRgyLPx0Hu0GQY4yCWrv/WA4cZ37Kd6WuX/3k+6P+kq/svAIkhq0gsfwTTg3AugmHFgpnkO298\nm5sbt/Bh6RLrxh8Qk7PEIHfYxLnWAe6trOel8eN8S/0l3+D77L12A33LgfX4Cc29/aPsMFepT6zw\n7jtfY2lpQuLtvBEjlpsx2aWEMzue48fDbzK+fYZj/8Mp6ts99evhNHeBfxM+3rKfD/WLZETUaPIN\nvseuT28TfWolNA7B7mdvcu3ABr5X+jp/PfJNqjTZzjX2cYGv8gNicuZYw/DMClN/NoP6v6F9BhoN\nWLMe1BZhDaz03akHwPIKDC5Aayrhf9/237LPn6epqtw0mznNYd7nVS6cPYz/mREdyh2PxOxEaqAa\nUIdBlhljlvJcC67D5yvSdwHJ6J+ncPAGlO5axjtzjJQWUIMdfK0qz9NlDXR9K554T5/OlTtRDyii\nEC8Rg/sA1Ritxe8r7PctCqt0iDOezGa0c0dqRYngkX1zP/PrC9cXgF9hh0sXFipAIaXInWe13WF+\ncZHZhQWmkhJHP/qYM2+/gTYxPolQ2qC8wlqZUJ/bDKUlp9g8I7dZ2F/bYMTv8N6ivA0jJaz87Gxg\nhUmjRJKVJ44j4kgTRyJvj7QhUgL+yLn2XUWYbOlxXbBHGjk94/rCmN0j8VKaDwLuWOe6hwts6UIe\nWdwY58M998VOJIBfXWaul9cM0x59YEj19t/qC9+gn2NsBYaXMT3vskLWqMNAK62UyO21MOT6JY89\n9psCo+kZ22u6SaIwqaR3jY/5TYbPUtHs8eH+ydAAL/dYG+r1qsj97dO0Jyv2lR3wDVgchjuQXinz\n2c6DfDDyChu23+fYv/qUwSkYuACrJ+DCBQl5nmDucRs2/xGwA7G23QkD12BgGgHvD8C9l0Y4VT7E\nXi6wkdvcGN3GKX+Yk+55pu1a/tj8nxzmFHv/9jr6zxBVxjJEGzz+NeD3wTwLQzeR9227vLhahXxC\ncXtqHe/Fr/JdvsHph8+TflKRhsRDwM7T83YpGLP/2FXE5SrSmKgjNcAI0gQPRpAk9FyXW0ju7bcu\nWQbmZLLmFQMfa25s2MsPXvw6rqyZPjjB/n0XGLXzOKV4YCY5Yw7xU/U6P7Rv8+jjDXBaSV3T6CDd\npUa4xn6g7zdzfWmAr0U0iakxPDhEbcseBrbvIh2t4BarPHo4TWN2gSjNQjq0qNA1ybwNXflfnvAd\nkOY507OzJKUSpXJJJjSWIgm+FiI6REYRlQWRrdVqwZOqwczMDJVKhTiOKZVKlEoG56Uo0qF7UEzv\ncs6jMESlROjMafAZUIG1ppTYUAXgyFtJGLn3ZM4RJwkog1IujGGWge15LgwB6zxWafKCjRXIP5Ex\nKK/JWilGyRh4RY7WLqQ3YVkpFJW4QhLHxCYG5SkeEZlItOlKPWYE3Z2YqJR0j7zHOSXTHPMcow0O\nxWqzyfLyMqurDTwQJ2Uik+AtpB1HnnmclaSRpRmt1Qbt1WXKsWH9xBhjQ4NELsVlmXSjvMKiUToi\nMvFjMprupK6/C3zqK5L+IQDX37WiMNlRa/NrAr6KUfT9BcscNEbgYh0GFc14iBNvv8b05ilOVY6w\nPr5HjQZNatx1G7jS3M21GzvJ363JxKgc+CawBZiy6KrD50rMim8p8bm6YOD6GDTisMf24VwK9lPR\nwegronwNfExPngk82gwXSvjjJc6vf5ba1lXatRIvvXmc3UevUVq0uKri7ugEH3GMH/EVPlh+lU2D\nt9m9+zJH/uU56iXH658gWNQk8AqsfqvMz+ov8bE/ymc8w8rYAIf/6DTrFmYx1rMyXOVCebewFLKv\ncuvsLpE3XgGWcjlf7tH74BSMuiAnpU2PYdUvL/H0jCyLay0DQ1BOYIuCg541Lz7g9eQn/J79c16/\n8SGD7zbhgty6oUk49tJZJl6bJarlrKwf5OSxV7HXY7ip4cYgkkiLkcRNegyv4n34cq7lpSU+O/8Z\nr734Ci+/+BIlFLFXXLx4HushiWPanYzIONI8lwIgGOLKhl/4+l0ZnuorlJRMY8wzL9N6tRYZjNI0\nM8fNe9MhTlo2KU8lVlK4lBU5vS4/aJGxKylgvLPhkM+amPJGxLEhyx3OGMIrYZxDe7B0aK+m2MwR\nuxTXMPhSGeM1EVrM1j2SOzxoKxMjc98Cq/DektsOmWuRqxzvLdV2inc5zZInjzOyElCNeP8PX6Dc\nzGhEQJpK/IwjvHNoJQb9xkdiMNw1sI9AR6BLGFMY2xfFhRdWtBcZqc0yVlcb/Ptt63izWuIPXBzy\noA2oWrGKWE9Xkiq/7ZVdPlRbWgkbpGDVRVqTGINTlkgplC9gglCKuRxvYzyQpjnNdkq5VMF4RyfN\nWJxfZmBgnjXVhMRX8D6hpUpYZTBacqHPIcKhTEa9UmLH0Zd5dP3KP2m++edbRQOlkMyvEHhHcH1K\n3suGojNd49SBl7m44wBDg0so5em4hMWHI9CM2bnvAl9RP+J3m3/F7h/fRH8H0svgc0g2Wja/NcM7\n7/wtnYkS00PrOPHsq9jzZbih4Y4WMutJxcNNG/jh829BBR7uXMehzWfF7F7B3OgQZ5P9/IQ3+IQj\n1Gnwb9P/mV3v3yT+j57Vk9BZgLgOA0ccu//oNp2v/pjl0iDPuEu8vvBTJt5fkVifweSGRSmSvgOf\nvQvvIVlrw3X4egPWJIFchUT2LcDIEDAOq7rG52YH7/ImLV/lYXsdt5a3MnNuCv++kSEolzz4BaSQ\nGevdagcZMTkRLjZQzqloiJ1kE4VgW6oMxJCpiIxYurOPKXL8E1+f/mWdTAVHWYkTHgGEIPxD133/\ndn2Qp2kssg/NcktuLXluscUEx67P1y979Z9vmT72G9/l8uCBzOasNFdZWFrk2xcvMZlm3Ni9jdbW\nDVgXE6tYYiDS4LBWcrV3DpvnOJvLtEYrucMX0kbvMBp0pMmc3BPfbWoV4L2iFAdpo5ZGtSnO1gdf\nLSd5TIbXBlYZSti2hcmkkiaPL2SOCMtWJOY+gFkCeOVWpIk9/8QAmKlChyNfnO+xwLpH3+O72JIq\n2F/FDZYciepBj4VRfQ+wEhaXMTpYsUg9U0xw7x5KdUEwea0nhl11/bwCwNXPAisOdPeeFCBfV7Hp\nCyZgII4purLWgkmntWGgXgvTLZ+WvVnxOUsRoGRepO/XKvCJ4sHm9fztsbcxJcv8s8McPfgJa/+3\nFVbflV1zkbXnEEnj5lUkXi2Hz8VhMNPgB+HW7vXEzRZ/cPm7qAbkw3Bvai37By8wbma4wi6e5VO2\nnr6P+k/w8P+FU7MC4Wy5CofvQ6UMK/8ChDT7AAAgAElEQVRdhVtfmSRF/IrnWEMcJO/X2cZp9yyf\nzhxl5qfr4WdIXF5u0fPGLeSOxbX/Q+KpoidvLNi4w8hkqklgLSTDUDOCgdXDw1MDyzHMD0JnDLI5\nQkcIudJZuDYBJxS+ojlvj7J8cIjLtd3siK8xEi/g0MwyxiW7h/MrB5k+sRl+iICEd508B4v0WF/F\nu/Sb+5n80gBfS0qRlIcYn9zC6M5nKG/ZTKOiWTSe6vA4Opmm016RoAtkeLJuH0iFEPSLlwesVrRy\ny91H01TrVaI4ZmxoAJcYvCbIBMWsWBlFHMcMDg7SarVYWFjoyh2r1WoPBArSDC19YKx3GKWIkghn\nZcKhx6EjCeA2gEZaCauq+BlAe0+sI/EgyaywxsLUyChKMHEicddprAtUW62JVCQJzYPNLVknJYkj\nktiA11JgeY/RMk2ySARJHFMYvWM03mtJosYIM0Jr4ijCh2ShtOp2qRyKzDqRtBgDypOlGZ1OhzRL\ncc6LEX2U4JwiyzKazQ7NZosCK2q3Wqw2VoiUZeO6tawdGcTg0CowzBBJpQ1dFG0k8QEhqXf7WL+S\nVbxPcRQzMbEWYwx5/uswke338ggifB6Br8L0JjhegTZ0ZupcPnSI29u3Uh1sYmKLzQ2rizXa1+pw\nVsFlBEv5Q0iOtVizcZrRgRlq8SrWGRbaY8zMjLNybgTWG/hQwdkhWNpCr2jKkaKp0JIX51TQfSN6\n+sERaK2DSyUYhWZlmA/feo3pLes4Vz3I5vpN6vUGKSXuM8nFfC+XH+xj4f21/ORfvMFQaQn3gmbP\n5FWG76xgliEf0zzcPMYn44f4Lu/w8eIxmnmNW+ObOR69xNrxaWJSFhjhBts4s3KIBxe30Hm3CieA\nqx46i/QknKtP3OeCVVVc65OU4WIkcgF+RUgCrMNgDOvBPJOzbeQaL3Gclx6eZPD/aWL/FK7dFDn/\nWA0mL8Dm/AGvfu19rpR2cX37Th5t2wBrgXslSGtIUi06/SlfdtALIMsyzp09Q2NxkeH6AM/s38XU\nulG2bdvKlavXuHHnDo5HrDQa5NZig4RaaSMFgfU4Jdt+aUaECZDB5ERh8HisFTmOVg5tBOzp5JZb\n0/PY0AaOPKwZgUhJHslwgT2riSKN6SnwpXngrbwOUsDg5PHKywYeH2QppYiSUjLRt9kia1sW8yad\ndJmq1UQmwkcJZSwGj/EerMNbi3I5yhusgpyMnA4dMvApxz7+FBT87LX92LLDGdBeMT9Yxw9pXEfo\nykqLt4rHY5UNshHwWkyRlc5BG8kFWgqKQjhUAF8i6cnxWYrrpMzNznHu/CX+vVGI9aUK7ItQ/HSJ\nLL4rGSWAiS5IllTB+g1dfOVlUqR3HhNrSj6WkioY4CtvcF4Hs2svjSkMeV4MaFGUSjEoaZS1mk1M\n2qTmFvG6gtUxHe1AeaxTREb8PrW3lIxmx4Fn+fS7Q6wuL/7KPv//8FU0UHJ6wFfoWucerq2D5ZLY\nGp7TtCeHaA8P9UZ2Kah8c4Xd1c94wZ9g+7k76D+Be9+Fz+ag7WDHAOx5ABP1eY793kd8Gj/L55v2\nMrN5SqgBdzK4bmBYkw+UuewPsHRwhM9HdrIj+Zw1k/MAzDDGNb+Di+29rIsf8ofR/8Uz9z8n/o5n\n+s/hZzPSthgEXp+BDTXYvesaz+06zdHpTxn/kxXsX8DsVcgsTIxDcgCaF6UeClb7LAFbG/DcJvj9\nDlxclYi7dxxqr0HniOF6spXP3Q5+fOst0tkK7ZkKXAus6bOIMdhiA+FxNYAhub2rwCLMM8p9plhd\nW6W2r8Oe0/DorhSPA8BzA5DshXR7zP1kklnW4OdKPbPibh7qn7D89K/cOdK8aOT0FaCuMGHv94Ci\na9punReP2TyXw9ouk9d1H//3u0dfDH8VwE4x8VwsgtpZxkqzyb87uI834piVNcPUs5Q0i4lig1IR\nxdSegn2W2wxrc3xgglln5WcnRbdWnkgLMKSDH6/yjn0fXOSzV/aiA9M+jgyREcmfeFsJAKNQFF7r\nfYkmAF9eYqxzXUaTdQHICjHbealhrPdI5dLbX3dbDar3VRotBWPOUbxsART2H/238gvvfDj/7jRG\n9QSgpQ1aQ6Q1kdbBw0z3Jrr3PfZxhtfj3z8OdBXAl+4x5VRw4izoXEp1z9GFa+hKPsPfKAofOh2a\nQIahoSGM0WRPxZyJ/r1usX9fALsAN0rwsSYfLHPJHKSxY5j2RIlN+jZrB1aoVAXimQvPNACMe5j7\nCJY+hHoJJo4iZva3QA3Blt+5J/HwJLAI0ThsemGa0W/8BL3D0TB1tma3KH/eIf8ETs7Cp+EM71qo\nX4VDp4C34dzEfr7LN5ljDQ+ak5TLbVZtjdmFtczfG6f9SV2C/EngtgP7CAGEGkhgLmqpf2gcLfbj\nJWTfP4xs2jeAmoLxMmxVsBXBwUaQkqETbtod4EYMtyZgsR5+MQPcg0YVLtTBK+xKzI3be3i4ZwMf\nja2QVNrgNO1WmeWHg6Tnq/AJclz2kBUT3+fpAXy/+VYoXxrgq6MN8ZpJ1u7ZR3XrVvz4KC7R1LI2\n1ZExosFhOrmXaSfe4VyGzVPx6XBfkCj/juVCwFpudrh2+z5xUsaYCGplVKQwyhNFGqc81cEqSimS\nJKFer7O4uMjc3Bz1ep1yuUwURcSlktB/FSht5NyQAOhVoQN3oBWRjkRaAt0xxkZrImOkI5TlaGOI\ny1W80uTWUZC808zirQXjwBihIBdSTif+WgrxKvPOgs+xWU7uI4wRTxPxSogkYajCEBgxcVYQafFK\nkIJOEpoY7HvZSHQTqCK3Uqw559HGBBZYTtrp0Ol0aLfboBTlcjl0PBxpmtPp5GSZgH5p2mFlpYHP\nLZMTw6wdHaJWiWRD0MnB2S7BuDfOuKeXF1CsF6jUF2xZ/rlWFEfC+OqbHvmrXx7ZAGskg2ggkc7w\ngw2wWhF9xkVoTQ3SWjMoO/gi2D5Adto7gK9C5e05Xpw4wbPmNNu5xiDL0kUpr+P80H5Obn6ea+MH\nJCp1FHwyAnYCKZaKbkIznJtFAm1B6S1kgEWCuC9jkk+WIYPWwgCfPfssn+/eR21qnkq1Raed0JgZ\nI78R484YmFdcOnsAd0gzm4xxcPNZNm66S8U1WdEDXNU7+IQjHO+8wt0T2/APND/bMcFHm1+mPr6I\n1o7mSo32vQHyywl8rOE0ciw0kSKloD+v0Ov+FEniyUmJhcFrAXQVq5jgkshRUTAOpckWm5Ib7OUi\no2dW4Htw/Cz8NJdXGV+Gb74LGzZ59hy7wp61lxkdmuHR5CSMGCjFkBYg4pMGmV/u5Zzj0mefcefu\nLdZPTTE4UqdajZiammTfof1cuXaVn/7kOOcuXBBQPhQEWoEKUxv9E13ZfsZOMTWw+Ew4D966wODS\nZJnj7v0Z2ksrbLlxn40bprj73F4S5dBxROQNXhsUGm3EvwqvQzdevFecd93OvlYOHcxhDAZPFP5W\n4esKV4nIm4ZOw5O1Vzlw7jwXN2xiabBOrjyxcCDA5WA9ygarZuNxxuO0wyoL2nF34wi5UbSiUCja\nIOPQHh0ZMAlaJWhKmChBJwlEMcrE+DjGRxE+MigD3hjxtlTyWgIYFkWRSHbILbaT02p0uHzpFldv\n3Cd10r4QA/y/O48LEFgUVNL26maAAHz1PGU8SkOCIbM5Rhm8odswcoFtjTL0pVLwioFqQil2tFJH\nJ13FddqU8gZDfgHlI1ajYfLI0VGGXAmTW3mPdo5NO/cwsm7qKQG+4HHZQ7Pv+wyyNjyYgpkB8YBc\ng8j1NJJL3oLqyCqb9S12uKskn1iW34MfzsgIew9cXoHKKdh8Ana8fY0twzepDy4ys3YdDAaqU0vB\nCQ3zYFdK3Lu9jelnNvLTTQ3qQ8s4p1ldGiC7XUPnOXtevMR67jN4swWfwpk5OBde7yFQnYOJT6F0\nxbFly20mTs6j/gJO/RROWInwBx7A6x3w6c9PJ8scmBdhy/Ow8SaQyBRk99tw48BGTprnudTcy/LH\n4/BnSsLCQ+A2cMtLscid8GzrgFjSyLw85tbCZi6O7uXqxs2MfWORkUXPN9+D/D7oIUieA/0OPDwy\nyjkOcM3ugBtKdP0NkHzboSfPKehkT/fKrUwE74+93ot/rXOFL32B6ohxuzGaLFhy5GHIkjCoCP+m\nHdb+gmmOfevv2kE++Zc+MKnS3NJMOzTyjCtTaxlzOe3MYdrglaeURALMBHDK4gP7NwBoPuAuXuIZ\nvmC2WrzNZA/sLYd/cIr1Vx8Q4bnyxgG0NkSRJgrMp8LIXc7VhzTlumyxYkKj8z1lR6GScV5kiQKG\ngfXB8zD4+trAuOsp23uyvx4Lyge2WK8S+2J/sAKL+6L3ouff1ZXMqydBLbGOiYzqMo37wa7icY+B\nXPRLHeVxPYBL9xomfcCXV8GfErqeXxTX2mWA9e5hAQJqrVAm6p7H4ODAF9qx/Gau4lqeVG08gGYF\nzornbL5a5t5/tYmbE1u5zSYOHLzOwLPw6m2IGzBk4HACw2PwH+5IWBwE3nwo2eVGDmMaDi/D8Dyc\nvAazDtYaOHweBlyTY//mJHcG11PN2ugVT74kJUuxQ2sBM2FQlmlZYnKus40Tp97AXotQZYdPFf6h\nhuuhuX8RCcl5Yeg7hwTTQsHRfw/+c5bu+1ro2dcg+s6NsDmBZ4HngIOgdmVU1i6TlFI6zRKtu4Nw\nKZKGyWkNZ+owvSWcy13wBma2wskBmFdwTdPaPEhrahAq4YO4pORG30AYzfcctGcQk68Zfn76/G92\no+RLA3ylsaG8eQOTe/fA5kk6lTJee4bzcTbv3EVcKtNpNnE2I01TOu0WqysrLM0vMD/3iHZ7mb9P\n4u8FXcVSY5Ubdx4Ami1TE5ihGt5lAlppj+l0iGOR1tVqNRqNBktLSywsLHTBL6/EBFEbjc9ylM+D\nAb8nd7IxT0oldKIEkCDDeylgIDQSnAuyDEkoSRSh4xK5tbTTjHYnJc/EtB4lU1+KwTTyLA58Hijh\nksDKiSY2UegAeayHOIoolUpEkQndMJGcOOtQGqJIoyITmjlhior35Hna1fWbQh8fioZiRLJzjixN\naTZXWV1tkGUZxkjRY61sPLI0J89yFJo8y9n9yRmGH05z6uuvs3bdGNV6Aloo4CgX7o14t0RafFi8\nd7hu2g0J3Adg7J8Z9+pP1sZEjI6Nk8QlWo8VC7/KVXTrLb3BwVH4uQnL6+HMINyKYFhLPC5IQgVO\n9RzwIlTfmuMbk9/l63yfl5vH2bZwk+qMJS/Dw3VrOFs/yGTygL9+Oefz9gHcQgQzCm6Og59DEmQx\nUr1NMatVfi7emAIQCmMdvZIJkO0qzCj8JUO2ybA4PsVimd4EyDtIQDeQU+Hi4hEeHZ7ko+oLjMeP\nSHRK01Z52Jrk1vwWmh+Oim7lOtipGLs+pj0y2MMHZ8LzXQeuO1hOww+Faf9q3zX03+veZ65nYm/C\nPY/5+Q9gAirq5sKokjOiFhljFnUL5m/CubyXcu8D15uw4RbUH+QMr11goLSMHnS4skG00XF4vf57\n+pudxH5V6/adOxw/8QHvvPM14nKJUimhpCNqA2VW2wtMjNUYqRrIFM0OZM7hrRPpt9ZiDW1tt7vr\nvesCXr4LyISOdggFNjALoigizy330xX+9aNFKjduc3rtMAPr1lCpVXFJQqwNyipUhDQLSELzAJG8\nuF6poJUnVjmFQbwvJCaIgbMuQRKX0WXFxN0l9t65ydbZh/zJb72K947YOTQpSuVoA7FyHDh3jZXh\nKtd2TWFV6OYrxdmdk1ivcN6Q5ZBpD0REukQSlShXKqhSGV8uoytVTLWKjkUwqE0EkRjtE7y9lI5B\n65AboSiBlLfoIPPJWh0+//w6H370KQuNlBSF8wIse9XznVGoXtzt79RTkAdC8UYxmVM80vDiTxPF\nEdp5bJ4SBRmNJxTJXrwpvZMBN3lmsZ0Mn2VU4iqxgWq1Spo72u0WJT9AjWUqHpZzxQoOF5VpmwSr\nDBkaQ0x1aB3rtu7m3tVL+Kfin2YB7nskKRTlaQa0wS9BNgyzIzAbUK8ogoPiA2liS5k2gyzDHCyu\nyna7uPQVYLYDm+eg1sipDa9SitsSF2NguAQbkC54FTGKOafIn0vIB0dpjo321PRLkHw7xyiLIUeF\nmmXVP16ytJx4FycdiNMO+gosn4dPrPT5AU572HwP9k/CcwZ+ZuVl1gAbh4FxaP1RiWgux0eK1vqE\n63um+Bu+xo/cm1y7vgvOKPGMOe0htpBmSIJpA1MQDUBU7vVH7gBXofPxCB+9+QIbk9sMvLHCjtod\nykdTkmnwdcj2GWZeHuIH8du8b1/l3sVtveEzaT+7+ovG1D+9yzofJjsWxugEBpLsYQWkkX/HXdBD\naTw27DNtV0FRMGqLYRe/0OPridWf6bsraNq8clgvYFXmPJ0sp5PnZM5Rn1+kNTZAZanN0T/5Dlff\nPMbilikiY1gzPcfy+nFC1wXT6aCaLZrVRCY4KhdYrmJEj8/RyoFRnHnnMNU/O8Hnbx4QRUYX7PLh\ns6W6sVCuMfhwBbN9G6SO1hfsLUUYqCg5qNuol7/LrSO3wpwrvL26AKQvQLQumUyAMx8YefR8vny4\nmcXjCgCun7XXsy3RXeCrB3qJjNF0/bsE+DJKtkM9z6/i/z/B8ApDw/qlksIiU30m9nI/VOH7GQgL\nvstqCw76yDgXubs98ppH3lKNByNML6U1GEN9oN5TqDwVK0euLEWC8wLdBu6yhnODsEaRX4+5sncX\nJ2vHeObQZba984BNHTDfgR+14U9asO6O5AGQiPhe1muRRxZGr8DyIrxnw5x6B/YKHP0Apl6fZ9OR\nOywnNewahRn3TF2HB0EOPgSsT4C1kNVjlhiiSZX8bgJ/Db6p5RIWEEDooYPlDvhHCOg1g9BnC7uQ\nf0zjoGh8FwOtBoBx0FNyki8Av+Uov9Zi6zOX2M0lprhPjSYr9QHuTGzk4qG93NuxnXRNSYZrfVyB\nR5PgG0i3I4fmejg/CncjGNWCJlYCIzEMZGbOhinCjxBmQ1HTrNBTh/zm54svDfCVxZpk+xSDOzaS\nj4+g4wiV56yLYyqVKtt37MK6nFa7RXN1ldXlFZZm5nh05x5XL17k4UyH7O8zSSl0ilCa3MLM/FIw\nbMxRfi3D1ZgoUugMVNPjyo4kSYjjmGq1ysrKCouLiwwNDVGtVtFRFKZsKSxSSMVKRrB7BQaF1jEa\nSZjeyQQSo40kpTwHFTT6KkLrCB3HoWhQxFrjjJbJkSY4vjiHRlEyWtgKzuGj0LGxDq89pSgmiUX+\n6JxHK0MSG+JIuiJeK/JcPF4krhddcklQNneSEJR0zJy1Iqt04tnifTDTVzoY21vabWF6NZuyeY5L\niUh8rCfLMtqdNp20TdZJaTVXGX1wj/Ue5idGGBypEZWFreZ8ELGGfKGRka1dY8+QNPunLP6ql1KK\n4aERRkZGWVpa+LWdxxdTVgsDwwa4UZgfgvkw51ebQOkowfYS7IbkaItja0/wdb7PN2e+x9TfzqLf\nB+5BVIENh+YY/doHVPc3WY1rLB1cw8Orm8SXZboEzWEkwBagTAHGFWy0/o6XQhJOWD6H2XXQGBSq\n7ygS0GN6vvLzwKKThNBQ8FAxe349s1snicY66JIlX41w0wlc1dLZOQ9c8zCi5DkLlkIbUTIueFhJ\nIVuklyD6qc+FhLNYhY9FwbYq0/PxKpJeEr7vN5ynh5c4sBgsBhKIS/LX/SsJOdTH8ljXP1qpa777\nX9YXrUajwfHjH/LmGy+xZu0EkYlYenSP21cucO7Eh8zcuYryFmMMUeSxmZisawq/JotCPBOl+BBG\nGCgy15OjF6tfbiOglSLX8O0oZrwUk527wr50K5MTIwwNDkC5DEFmZ2yOUeJb6J3GWRGUFNOCtQeF\nFFiQh2aExmmwSvzIIuWJEpjbtJafvPMVFoYHiE3hHZaLt5YVsEmnKfU8RTU9eeLJLLRzj3eG3Cpy\nNNZorDH4OCYulTDlMlE5wdRqROUaUblCXC2TVMtEcQQ+sG+VR0UaoyMwMUonwn4upFjBnNm7DJ9n\n5GmHufk5Pj13nvuz8+SFFB+FC8WH3PYn4/sXxHsFRZmq8WgdGA2u50+jvBeWgHcoFZF7KeZy73AW\nXC6sZW8hSy1ZLn42YgNjMXFElnewnZTRQUPFz5PkOvh6iQ11agyWGOcU5dogm/Yc5MyPv0v2JJXo\nN3YVMFVOD/wqJC9FEK7SnUjltkIm8j2bGtqUWaHO5PASo3VY/0jITyBlwEgMjMBqLaZJhU5WFtaw\nB14CtiHEqGEkvDaQguUy0gmfRvbue8GuGJbzQRbiEdIpRbLJ88wJuJ1JZqkDO0pQ3gRMhoLUijSt\nP6KDqDk5CscGYO0Nwa1GBmHdK+C/AqcP72VJD2ExPGAdF9jP8fQlLtw8hH23Imzh64BfhPRROPkB\niNfBmhgmhe3LIL38Mwd8AJfX7Oc7+9u0SlWOHTnJjj3XqbbbpFHE/fpaTkWH+bF7k4/uvEj6QVnu\nw10P+RxS0fV38P//kRty5+nkLsjrPD54HBbggg97d2V0l23rfCFzzLqNiMeAr8AW++L1RRDXF8Je\nXeCry/VRAny1s5Rmp82a6Ud869R5bu7YyJ2DOyi32gzcuM39tcNsuXqbw3/xEy6+8wq3n9uDVnDo\nL39MaWmFk99+nbwi09q7zK0AvmitiQIgdOa/fp1Y9VSFhT2VbBEKw/hiDy93z3kvHmL4bvPa+d4n\nJrRZ8EqFLYoKjC9HZnNymwfmlzTynQsMuu5zie9XF+TqfvU9wKv7+/Be+N7707u1qg/06vfq0qFe\n6k1plN8J8KVVP+MrgFvFQR/gpftYZH1SSNmaFe93aHgVQBiB+RX+RlwPZB/Y9RaWn4KJhw92LKbr\nPVev19Da8HStQvJYdMhnkXdRw8p2uFHGXzDMHJ3i+vZtPNCTbIseYK/C+23xUweBlmr0TENW+77P\ngcaKWFAVnNUUuJ+BfwhqHkq0uRLt5Nm9F6m/2uTFGRi4CQs5bKzA1ufAvwSz20a4wVYepJOSJ24j\nsTLzYSJ7IducCddSeHv1T3T8z5X+qb6jaIAnSDdnBJiAoQrsB17zDLw1x0tb3ucNfspR9zGbGvdI\n2jmtWolrtS2cNM/z7nNvcbr0Aq28LrmuMQirE/SSYRP8KCyMwkIFoiQ0w4Hcgu3P1YW35Eo4Clbb\n05ErvjTAV9vnuLXDRJNj+IEqCQqTO8qlCvVyDac83mhWW01WGw2W55eoxwNEacTC/QXmFx6R2SZ/\n/zdVEmjmYH6xgXd3yDsttqwfx0RD6NjhlZWUq8TYvVwu02w2WVxcol5foFYbJCnVMDL6BBOKlhyC\nHxbBN4Zu4pGhh5EwxKwDDNoTJI9RlyWVW4tyjlgrdJKQRAWtWPTjJoowcYRTwhbAm57HV5phswxr\nXehKOKLYiCxPAVrMfyW/RjLhsctqQDwSnEUZ0/Ul8wQALMtQ2kgHCHDWkrucTprSTlt00g6dtBPO\nLxYZSZ6TZTlZlpJ1WqwsL2HzlNPfeI3FdWsZmZwgKXu0yUQmqrWAhAB4sR5AJl+qX8Aa/lWDYQOD\ng4yuGePmzWu/stf8+fVFO7pCZriCBL8aUAKfgA2gTbJdCo3tMLZpmufMaV5uHWfqb2bR/wfcOA63\nc6gpePY4VBc7vDDyCTe3bubCmn3M7lpLPlmCQQPNOj0gSNHzjHmSUhvxeOnhw89L0B6F9jDMDoCu\n9l1eG1wTKWmG4fSIUKMuAuOafLAiuaYlT8N9pKEzm4GdhdUE7tdBB0aWt+BWwTeR5FCw1RZ43KOs\nX+9ffOiSvqMYTVwPX4sxxQVAlgENeb2OPHXWjJlljIes5dDOz6nvgaPXJDcvI7XfwTXAMzA3WWea\nCZZbo8KuayH6m35Arfte/5dVrI9OnuL4+z9j5zM7QCuunjvDpbOfcufWPWbmlmh2BBjR2pDEGptb\nfO7QsSbSIidUKsM5GaxRjLTXSgqCYnV9EXmcCapQXFOa66kjuXqHpZUGe3ZuYceWjYwNWarlEjou\nEWkbuvaE1rF+7DlAmiRiPJxTuEgqrcRz1zq0k/LQGs+97VMoZ1EqhyzDWyXomVPkWU4WR7z32jOk\nytHxiswpUqtxLsITYSODL8fE1QpJtUq5WiIplYiTBJOUMUlFfi4nRInBREb8IH0h5ZdKRHWLkxAH\nvAwS8HmKy1NcltJYWeHK59f4/OYd0tDEMIXPzC+J310mWLj/gZzcLVM1Soa6KIvzlnbapmIilJFz\nirUm12KEba3IjWzmcJFMck4zRydTtDNPJfbEyhMnwqKdX1xiZEgzNBCjmzfRNsWlEU5HuLhCWxmW\nnUfFhk37n6VUrT9FwBdIvCtMfgs2UUovuBYb+/WCQqwCC9BarXCfKW6orew6dI/aEfjmPTjRkb/e\nDWw+ADwLt2qbuMMmmo1BqUH2AkeAZ1Mmtj5gQK9glGPVVpl9tI7O2bqY9DYQgGkB7IOEh6tTXBne\nxd0NU2x77R47b8HQKbjXgjUaNhwE/RV4sHeExWgENt5laDM8Mys2LylCMls/COyC6HXYfjFc6hT4\nV+HGi+s5oV7ge3wDj2KOUe4sbWbh7Drsh5F4xnwKLBUyeQdsgcoA7NKwT56bjcBYuHUrSHF2D9L/\nVOFU50UevrCWT82zbKzfZqC+0vW2vMwern6+j/SnJfipEi3nXAu5ccUwmQ49z5bf/ILmly2RDxay\nxsAsImRipfFokZKh8d6QecjSVI4s64Jf/cBX4QX4S5fvASA9GETRneXXpYwVLCthqLXTjGanzcNa\nhaVahTvP7yMdG+b4f/PbNCsxBs/c5kmcMUzv2BA8HT0Pdm5g+P4MrpqINM4E6aYCcitKEnzXw6ob\n54qGCyFcBlpVl1EVWFmy83eBZeW6gJUPwJfzhAa7wynd/Z31nsw6cmt7EtIw9bb43tre8zkXyunA\nSH4S8KJg7fb5s/086FUAU3JEAZIRvTwAACAASURBVDzqgl6B5VZMdY+0yB21ovs34q0lB32SycIr\nrPh/PeZXT73ieycT6p0CfFR4LSCWQphxmgJslHzjEWuYSE5GmsthlUoJ5VLS3+p9Claxpyz26ivI\n3n0J8iY0yrAKLpWrj30qxOBmD9gqVhX53RAS6s8gUcsAlRIMF2SrsIYMqDpQgQZ1PuYIe7Zf5pU/\nPsVgFY6dArsM0XrQr0L7D+Dk4GHOcIiZaxtFyTENzOXgbyJ1SJMeALSCJJMidj5pX/KL1hc18Yuv\nOtyjKjAAZgw2KDgA0SsZR7Z8xO+av+R38r9i8v15ovMWNQ9+Hew4dJOdx65QjZu095U5PfcS/paG\n2waaY4GlVihRFpAmfRnyEuQFRFQ0qVr0mGxNHh/G9XSwveBLBHx18owV4zAjg/hSCZ/mJFpAj6pO\nsFqM6eMoISJCpYqs1malOkitNkwSV2h2hPL8y1aR1rwXI97cW+YXG9i0Q5a2qLXGSDZMoEZqoDNU\nFIHSxEmJarXO4vwSszMLDA2MUa+PEFmwkaMUi56/AMtkFRIMhfVOAqvREli1wkQGFYyUi128D6Pu\njZbOtcejjAB1UZKgjIxKNnFEatOuXxhKDB+dVlgjpFwfEpOJZfyv0gQ6gcKYSCSXSgVWlyTN4h4V\nSbboxjgvLAkBpSTgWyydNGO13abRbNFotUhtTiWJ8d6TuZys06HdadFurdJoLGLzDmvH1rBh0waG\nRkepVUqgMryy5N6itRhIWufAW5QSOVcxBebXtb978mXrA0OsGRv/tZzL46sgXheIfsH4CohL12+q\nkBoehHIcGhOW4YFZtnONbQs30e/DjQ/hr1o9o8rZO/DVn0DlhZxdW6+wIbrDp+Nt8rGSIGOPPX8x\nWv3JJNHvkwW9IJzS4+nWwFXAFcypwmizcAUehPZauDUOd0tQ01DR8pIZ0HRy+CaS/R7JubgKuGIz\n4vpec7XvKGSaT3aAio5OP5W5jqTyNeEYATMAuiQbH0GEBbBzbdHhPFK0ble5tmc7Z2sHeebgFTZ8\n8xEH2rDlU2i2YGwSzJuQvW24MLCPz/xe5hbG4K6SWqdV3IsiYRdF6tNf8PxTrdm5eX7wNz/i/Q/e\nZ3Z2nubSCu1mi9zKxK8stzjCZlhrTKzIEQlIUCcAMo2xMJyXRr9sgL+I9dUPgimpAHB4UuW5/XCO\n5dUOC8ur7Pn/2HuXIDmvK8/vd+/9vi8f9UYVqgpA4UkAJAG+SfAhkWyKEtWipLbH0dM9E7bDEbPw\nZnZeeO0I2xsvvHOEF47weGMvJjw9bY+6W29ZEinxCYgEQZAgQDwLqPcrqzLze9x7vTj3ZiZASqR6\n1N186CIyCpVZ+WXml5nn3PM/////HNzD3PQk9eFR0kSR6hyVegGKApvBO5F4+2DmLOyF2IuX551E\nnxKf4LForMR0oxBHMFDaY32FwuHQOK/pJJkUME5ToSkThVIZtdow9WYD3ayRNOpk9ZQsSzAmIclq\nJFmdJM1IskQMm4O/ilIapzRKCbPKKU+iPBqH8iKb8c6hXIV3lWjPtndYunGL985fZLvdETmpB+VF\n5qPx/Z7kHcSLKGe/k4+hQjM6Rh2idAdPWRVkwQjZmISaIYB+HhO68t5LIZcCVenoFp5uAc1aglGQ\nKEflLK12SatdZ3JXnfFRjc83KRnFFzXyJMObFKMNVitm77mP0d3TbP9TkoH/XsvTB1EqJLaX4WeK\nUJfCdNuWhxuK9sVhzh+5lzeHHuPIg9c48s+vMzvk+U/Ph7vuB/9NWPrGGK9nj3HO3sf6jQmoFOrP\nSvY+fo2HR97kbt5nmiUMlg3GuTB8nDP7H+bKoXsoR2ry9BaAi4pbS/s4PfYoxyc+YOS7P2Wqtsme\nB2HPCjAB/hHYeLHJr8eeoK2a3P34B4x+o8vXWjB3A3IPBxqw63monlVcf26ayZvbqNzjxgznJu/i\nJZ7m+/5b/OyN70h6WEfwrfPIJN73PCx2wc8jxdQxGB2FBxQ8CeorlvqDbWbmrjOVrZBRsM0Qt1p7\n2bw4TfF6HfvTjOsX7ubG/XfR2LtFo9mmrFK2F8ZxF2vCXHgLAf+uFEhnZwGhLXfCCb6jevycr24p\n1hiuR3buOb0ik87FNN6gobRUZUle5AH46vt7iTQvKAsH1mBzVMJ2Dz3q/01vBzxwmw93UL4XhyxQ\nekdeVbSM4m/+4kWmJ4YkdowNM4IM2dBjil/+j/8aDQx5YcBuPX6CFp6mog+uERiKicNXDoUdgOKi\ntbwMPRHMRti/LugO+2yqvpl9RKLihEvn46TIUPIr8CpMcvQe64TxFQcEiNRRGNC2kvuKPD+ITKK/\nl0dkkwMyVR/Pv4/MPYWPTZ5QV/QALxUYXsaQJKb/e4/xJc37HvClVbDpUj0mmNKxOSST6yPIhe4D\na4Psr548NH4eArO693nTfeaXC0wwIiMsfo6i3DJNAgNHB8BV6r2h4SZqZe1Tecx9dlZs3sb9b2wE\ne+h6aCuKPGPDj7Ghx3F7ITkA91yCZScRqQY8lUKawoSGiUMw8j5cKmHawOEjcPgauE1YdLDXwKO7\nQT0Km8dr3GIv1znAfzDfpXg45cG979C8VKC6nu4uw8rxMV4Zepy/9S/y6uqT0ox4F5j34FcQA+MN\n+vv6uHce3D9HdtsnrWhlEuubeF1c0YYkGNuniXRWTsLsiSs8bV7mm/mPOPDXy9h/B+3TUG5BNgX1\npyru3b5G69mfcj3dz3sP3U37rSlpdFwfBhuJBQtIntmin48HV3ydg3VCBLwcnxfQC75EwJd1jpXW\nFiprkJoEkxqUsmgFmRYz9ypQfH3NYhslneYI9eFhspERdK0BO1oYFr9z+V6wtc7jK/lCV96xudNl\n7OYK//X1Bcob0/zVc48xZgyuqPAqoZ4kNOpNuo2C7dY26xvrTExNUrMpWS2VYiARNrQNRpEeN7BL\nV70R71VVoYmGlNJ5dp4gUwldcG2onLwek6To4NElBRioRJGoBOuCXWXocKEUJk171GeDR6sKrzxe\ne3zsnOgIaAVTZQ14L8kl0SEhho2H0XinycsKlMeH8+eQyTbtdofW9g47O215fGWEDZaXFJ02ne0t\n1pYXcLZk3+w0dx05wNSuCRq1jFTLZEzrFZX3oXgkyIdkU6CUxxN8EPTtm5d/bMljTF+R8fXZWPFz\nPxjkIrAUzeWbwF4gfEgz0E3HcLbNGJs0ly0swI2qD3oBXHJwahEmF2CCdUZoYeq2r/JTUoTLUvRB\nMOgnlsHNZQSWoj9J7FLU77hvvH8M5rFbswJ2BLYasFUfOHaHviHnVrh4+vLLeH4q+smv4KOA12D3\nPJ67CHqNIu37WWAP1MZhPJWrxsMpdsC2gbURWB2CtocrCs4Zrp64i5eOP8vM2BJf+2e/YN/cEiPv\nwkhbDtk5lXDu7nv4afocbxaPsn5+SrjjCx5sN7z+eD4Gz9EfV1zn37/EwT3jLC+vU+QVReWFf+hl\nlLz3Cq0M4NHKBn/b3rwq+Tij+74kd+xXI9gVL3BHDAqdd4vDec3qVk7n/BWWl5Y4efwIB/bvY3Jk\niKG0hregUhVimsh3JAcE0CgcTykfUDWN9vQ37c6h8ajgG6PwMqRFJ6gqw9kSi6VCUxkxokdpNIZM\np2SNYeqNEUy9hkq13NdoUg1JlpFmdXSSkaQJKsvQqQBr2oex7SY87/Ad1BqZbeyVVEa2AmtxVUnV\n6ZCvbXLx7fdZvLWIqyKTTczhe2DXb1n9ASd9qXuf9RUKqCCzDk5sYWKaJU0ytDEkKdQxVLntsflE\nriNFWllV7LS77HSaNGt1asagfUXdSG7ebm3RLYYZnxjCZQW+s4ZihOVyG49BmyGcViRDIzz6Z/+C\nm//z5/G7GTvgOvyMnYVovNgBNkRycSWDtwxX7j7GT088z/BYi+e/9QsO33uVoasFVJDv1dw6PMMr\nu0/xY77B28sPUpwfgicsR596l281v89z/Iz7199jdKOFso6d0SaXJg/xi/RZfvTAN/mNP0V3axh+\nALwDnZfHeGXXM4xMtSjmMr7y568x+fQaabegzFJWZiY5Pf4gP+IFGnSYO3CTx//LN2nuKbn3PXqA\nXPGM4YMnDvEf1LfR+zwZBVuMcokjvNV9iAs3Tgiz6wwCfi0h9dSih9YWIpNfB2ahOQ4nFDwD6Z92\nOfDoRU4Nv8b9nGUv8zTpsM4EH44c4a2HH+TN6cdZ+eUs/MDgX0toT++iXd8lz209HPoyYpSz1EUK\nn3n6kvzI9orv2Rdj5ZXFfoS9r8IUWQM6lb1i5cnzgrxbUBaR6RUYSG4gdn+EXXT7fvH2+B7nxH/y\nit+SynlyW1JUJRYZCFKrZ9TrwuQyShhLiYkMoxBsom0H4rMrPo8BTXIKrJIJuFG+GZvSUb5HeJ3W\nhX2678kPo7ng7SLE219vvMUHlpfDY51MdHQ2nEcrDRi8wnqRBlsn/5eL1A8uAF9RFukCgBY92ggM\nqr4Xr9Qfg9JGowTQM8ZIU16pPuClhAWm4yRHwaQCA2yA9RVkiWjT9/hS8rsOTDA5fwJgRDVLOLE9\nfp8Kfstu8PYIeoU8JNOEgxeyFp9nwnUCmgkjanRk+FN8mj5razD+Q5/9W0gcXIX8RoMb9xzg/fpx\nHjz5DjNf2+DUEuy6Cjs5TA7BgYdAH0P2xqPw1Evw0E3IxiH5OrAM33oNdjZheBLMV6DznZTTEw9z\nxj/Mma1HuVS7i8X6DPfNvsOB2WvUyNlkjEsc4bR/lNeWn2D15b3wayVNiVZOnxW7Sr85EPf4sVHw\nSaCXHrhET99BP984YCqCgvG2hvTGZ4GDniPZh9zPWfadXcb/LVz9Afx6S0L8nmV4Zh12j8Gxg1c5\nefQcR3Z9yDsHpkQinwK2OfD4rYHHHqyT/MDziASIwYm/n6/88KUBvpxzrKyukJgUk2R47cBIEhB/\nqdhFBluz2OYQ7ZEutZFh0rFhVL2JjJX65LmxQscNMsCw21bItKeFTsXrruLDjR2u3ljm0NwUeINy\nBbqhSJOERrNBa3ubtY1VJltTjI2NCk3ZGKI3lXcIwCRCEJQCkxh0kgijKXQEnLWiU4/dbO8RMY4H\npXsTX4wRE8bc5jjRUpJo0fjqJBGWmJNRyZW1YB1aa9I0xRiFKyWpetUP1vI8LJUtpfOuwGuP01Ga\nCWiZeCV5WBIeAfQqigqPpigceV7R7eTY0lKv1TFK4YqSvL1Dt7XF1sYK3Z0t9u6Z4cih/UxPjtOs\nZ2SJxluLdxbtPNqLsXOUFWmj0S6MqHcWlO8Bdneuf2gA7M6arN5ssnt6FmMM1n6arsE/xorATZyV\nW9AfsxtvD1seq/BOUdiMPM3wdVANqN9xGseAeg2oQ0FGQSZSqtv2VNEUsz7wWDEIe/rgUkw48brI\nUOsiGXXQuD2uyGyKUyOjfDOCZPHvI8stHisPz+vOMBqTwZ0A3J3jjGNii8DXMIJw7Qd1EMbrcFTL\nVMzDyJjiIfpGzPPAJS1TVq4Cb8HO3Dg/m3oOM1mxNr2Lh7/xG/Y+c5PUV2ybYS407uIV/RQ/4eu8\nf/ZB/CuJmCcveCRVxnn2n7ZT9eVbtxaXGNEdGirBeUelpMAQ9yiZ4Kh8FVhGliQxPWkEKKyzJCqB\nxOKcx1qJQ845vLUfD3aFFQenRChWyhpLp7RcWeyy0mpzZHGFE0cPcXBqD8MjTRROpHiJeGM5G3rj\nSgc2kxXVYMhVMuSkkG+Sr4TFq5wQebWSYkppRNqs8EYM8ZVpoEyNJKnJhMmkRlpvkmY1lFEo5TEG\nEqNI0GQmxRiN0g6tHUpVaG/RXhHa3yEW0/OnkSdpUd7hbIGvclyRQ7fNztoG50+f48NzF1GdgtRD\nhqeDp9RSdCW+f+7khMazGX4GUPEjjY9AA/NaRe/oHmPZeyd+aNqRao3ONGVVkVcl3ji8lve8chWZ\nSemUHTY3WzQzw0izBspTr2kaBor2NmsrKzRHZ2g2Dc5uY/NFCjQlo3RVgbWwtbTA6K7dCPP087oG\ni56UfvHQAdah2oKLU3AaOtOjvNx8nuJQxvzoHA/c/xYz9yyT+Iq1dILz6h5e4wl+sf4sGy/NQgIz\nj93g682f8Of8Ox57522Gfp6Lp1cJ/uAG+55eZPrRFXTDsXV8lPOPP4j/MMTDl2FlaJYf/MmfsTQz\nzTuj97F/9BrD7NClzlUOcJb7eW31SSbHV0iyis0TI5w8+C4z7SWSqmJjeIz3m8d5KX2aH/kXuGoP\nkiQVnU6DjfkZuh/UcWcS+DkyHr6DVP5VG9wa4hmzDoyD3g2ziUztelYAvW9nf8ML/oc8vHmW4ctd\n9Lan2m1YPLSLl+tPMbZnkx/9yTdZ394D31Pwa/rpcRtJc20L1Toid7kVrtyi39H/YpnbA+SVANJG\nG5zrT9BTJsEkdbxOqHJLJ++w0+6QF4VI1gcQrI9rWPy+66M8sDtuCWGw8p6iqsjLksJWOO/QiaZW\nr1Gv1UiThCQRFpPRSvy3nAvT10N9YyuqqsJauShnwGqcLbDRu8wKk00FbqywAARQ8srhcOIzHD1w\nB56uYE/CYvYq+Hz5fklsIxOs1wRQgXWsAkanekCXxQvgFfjEliCTJBjeB9esyPq6HX5T/HenL/Pf\nP3a0Z0pvBiY3KqVIjOmBXB9hfAVvLqMViaZXx0QwKwJfShtp8AzKGuOURxUnOAqTy4Tn7gnAGH3m\nlw7eZz40enxPlinsQ3kCBJYYoY4K+4ng1TYyOnIbK/zztQab6MEra8PCzQR/IeHiY8d4dfZJjsxe\n4Wt/+TLNsZy73wK2QM0CX4XuE5qt0WF06Zl6ukVzCRiF1ZOjjHW2Sc46xlrALsgfSHhjz4P8MH2B\n14onuPXKQRaqA9y4/y5+tfcyM8kCNQpajDDf2cvyh/vJ36zDr7Ro2K9UYJfoTzKM/l6DwFBsfv+u\nFZvlEfSKfr6DdicRAIvHdf3b6kgtMFGym2X2VreoXc2x78JbW9LL9ggfbWoRdr8D9Vsd9hy9xS7W\nBCgcCg/ZjQyDOMgqp1/zRGuVHmdx4LXdWc98ftaXCvhaXloUE/Ykk85NYrHYANAqjFekRlGzjrJy\n1Eea1EaGyEaH0fU6v9MAamDFsfSCNfXpqt4Ji/O/UYaktcP+cxdQtuLg/r0wpEhMiso0Js2oNWq0\ntrdYXF4gq6VkaSoMpwCqOaVQqcBe3gY/l9QE7y+hxdqq6gVcp3qEK0mc4YvqlHRQvJNi3VpAGZIs\nwweHS51qqrKUQOssBLNl7x0J4nFQ2grvK4wXM/o0S4TMWuZYZ1HKhWSgJaE5j/MKLxgaznmqyoav\nVzS5NFjrKHJLkVtwisQkJFpYckWes7O5ydryLTrbW8zMTHPi7qPsmd1Ns54JEw0rxZsTT7NECfsL\nCB0+AcIUDutKSaqx8c/A+/ePsG7bCCnQSjO7dx/N5hCt1mdNxR8BYGG2CBgVA2QBhYUtjV8xbLUn\nmK/PcXPPLvY9sMbDr8LGFbhgJf4+MQRDD4G9V3Gd/Sz6WYrNrO8P6WMHZQS5h6bvRZXTB6Ei+JXT\nB7xiYI6hLoJNccVAbgbumyFJLYJScQ2ywwYln3dSggelIREI/LiuiAr3jVlsjNDGgd1NmYh5CtQp\nS3Zvh9G9q4wObWGdZqM1QfvqLsp3MvwbGl5FaNjDipae4e+e/S5X9x7k1fQJZrMFspDMr7hDnG+f\n4NrZo7ifpPAKIqmxmwjdICbz+Bq/WEXPH2J5IDWG/RMNVrfalF6Kk6qCqpJphhaFoiYTCJMEbIWr\nwqbVVeAtiVJ4o9DKUeFJrJfBBPFxorwxgDA9FhKA82jiZthiLXgNG9sdzl64wtLKKvcfvZtjhw8y\nNppSr2myTEEqMkKrNcrrIIGM3X4fZC59ZEemTjpQkltA4ZSV5okyaAwqTUmUxid1dFrHJHWRKGpD\nkmSYJAk+ip4sSTDaBGmgRum4YQRjLdpCrKSsd+DEcwcUJBqNxYZC1Vclvuziux3s2iZXzl/i9Tff\nJt/qMJwoSq8oXfzGK5TzMsTlY0J675seq+DwNvRYXx5wGhIdipR4roQDlmhICAw/5agliqoMMkwV\ngC+vyEyGs04mKVtHaYXhoJRhuCEF985Wi62NIXZNTzBSL3HVNbrdErtZceHiFU6/+Tofnj3DzYvn\ngf/2D/fB/iddMXdEVu0asAhbY/B2CjXoVkP86unnuHzsCC/Xv8puswzAlh1lvprjyvwx8peG4GXQ\n/6rLyeGzPO1f4qEL5xj6P3Py/xeWL0E3h337oX7J8oC+wOpXfs6FoeNcP36E1qEJ6eq/BljF2vo0\nP338Tzl77AGmkhVqqqDwCcvFNKuXZ7Bv1tm8a5r/59EaV4cOcu/Iu8yMLJJgWWMXl/xd/KZ4iLMf\nPAJvpP2XuIiwrS4CFzysbSITttpIIRXl8RoYhWQYDgL3wfDjKzyd/ZI/s9/jT86/Bv8B3Blw21Db\nB3d9dZ6ZP/9r/IhiY884P37sO7j3UgH0LnQlUPSMpdfvuMRxzLH58cWL/0UZmK3aBMTLi/etScWa\nxGlKW5EXFUVZYW1QLPyB1+ARBQzx/V/CZtADVZA65mVFWVkqZ2UPrxVJKn6I2mhMIgCO8jqAX4G9\n6jTeGYw12MrgbAJOhm3gFNaKF6W1Fc6KWX007UchcjwfpxNC3MdEmShe4dBY7wQmDWwsG7zAKi/7\n+57vF+C8wlnptngH1iqc13J98F2TLBNey8A584M1FRFkkwP/q/dvcLjV4T+/eIt/e/dcn+0Vpjf2\nwDAj778mGv7fbm6vtQqTHCP4pW8DvvqML9MDuaK9wSBjq8dtDdf5AG4FPJEIMypPaI6FGwKLTI4r\nQFnlRa2jFGHCpLy20QB8ff5WlLp7ZL+5A2yAy+FKAm/D1pFpXnr+GRpDHbrHMp458hK7bm2jlsEE\nz8T6B47uE13OjD1C/mxGgw4dGlzgGONscujoFZq02WGIixzlDR7lpfJZzp15DH4Efg223xrjwuGH\nuDDJ7V6JHyJx8xzwvkP2yDfoe2IN1hrxNX3Sis30CHjVkKZ3M/yM/8/C38e6o9O/byBlqcSSUJI4\niyrAdfrtf5CdVTucXlV5EioSqo9XMvbWIKAVP1d3xr/Pd1748gBf3rG0tEBlPU2V4JQNkxEVOlUy\nmQpDUonpb1lasiyhVksYGaqLabAxfDLx5rckyNAxBgl11joWljbI9BXwhv17ZsBr/BDUMkNzeJj1\njXUWF5cYHh6hlmaoEKRNMDm0BpJAK3POYytLaax08L0PLLBEigjnep0FayvZ1zsbKMgK7TVpkmBQ\nKJ2Q1jJ86CyY6CvkvSRZrbCJwuY53XybRGu8t+C8jE32YoqsNVhb4rwNycOD9jivqawUU9Zbikom\nXZVVJSOlKxeMLjXd3LKz0yXvFHgLmc7QHspOh+2tTdaWl9hurTM9tYt77z7G7OwMzXoNowMDIxYp\nygfJjgCF3jqMUnitUMpBAOfCuLPPzNqzd46h4eHPIPAVV/T/ipr2YIDYLWE1hWuKlZXdnJs4yVvN\nB5n45q9obuY8/3N4dBFqWQC9/jO4dN8cb/IIl1t3kV+pC6NpJwb9UWAaSQZx4x49xgZNJTvh+RQD\nz2vwd8vtwNdghyZKbmISuzMzRBaUu+MyeMxYwH2SRCR2eyLbawhhe+2BiTo8AjwPtRd2OHj8Ax5u\nnuEYHzDJKpVOWByb4f377+btAw8xv+cwVS2DlxCvli50F8c4/cCTvH/4BMPNHYy25EWN1vooxbtD\n4uvyOvCuh602Msc+TmkZ9Pf647pzeQ+domS0DiNZFjbNDotibatiy9dY6xoq18CkTSrlcd0dvCtI\nswbKVBT5jhQ2GtAK721PBjFo0gt9BpJC9f2RQyOuty1RscOusBXcWN5kp3OOW6vrnDi+n8e8xU9N\nUE2MktZq8phIdx6vAviv8Y4oxggdbfH5Ai3NFhDABx+owrFTnoLJUMaILEPLFMYkGEVL5x3ptCth\nfymqPm2isnirwqRLLeTqYIoMDqMSVOlByaRgD/i8C502rrXFjYuXeev0O9xa2WDEJzS1pmYtqVVo\nr9A9M2Z5bYNNBqntogwl+tdIR/22wQLKY5Qn1JMihYnNsMCI1k6jjKdZy/AYrIiTAC1K0spJ7q4c\n3byktd0mIWG4IdLS5nCdoirZWN3CJA02t9u88pvz/OL093nj3XnmF5bpttsycOYLtSr6MXEHiYmL\nwiqcPwCuBjtgr9W4ceIYNw4coTYl0yGLVoa/URPm61ngBIzObHLYXObu7gXGXm9T/QB+8a7cbIF9\n1+HFn8DEEbj/kXe5q36R4d0btGYnpO44i+BOi+Dfy1g6fJClyYNSo5SI0uUqcAHc0YRrN4+z8sAM\np6cep1nfRmtLpxhmc2OczQ8m4PVEjOq3kFS0gahk1krobCEywyj33IXkAo/kuHFJD/uAu+HeXec5\nxes8fOUc/F+w/ddw4RKsF3BwDPZfgmFf8dRfvMa54ZOcPv4IK4cPwAxwsQ72A4Sx0KUPNEbAK3rV\nxGLui5cD8ipOs1WgZOKqSVK8SrHeyATxvCQvKqogb+yb2f/HPfbHby0HUK7ByKSi1BHyUhikZVVR\nWhtM5OPexYfnKPJEZUxvW6ZCoPJh8JUKLDL5PRF/MKMwicNWCVVZUmGDwsCHJnDYP+u+E5gL3r7e\nQ+WV8NqDnYh1BHZXALqCR1dveXp2K9bKxYXmt+yuws8AaMmrjFM4CT5iYZJk9B0Lh/4398zRylL+\n6tientJFR6DLiBdjX/o4cLseALvC8BSTaPEtHpAv9oAvFY3sxesrShAj4yt0jQLgJXnZD1zfOx0x\np0YkrAd6yWOgVJBFelEnBRmrd/KYWilGRoY/p8BXXINevOvAFVg4AqcbMAXX7HFeerHDoeYVTnV+\nQ/LyNnwPdt4Wp4OhORj/WsGj//xtvnfXN3lZfZUrHGK+M8dQrcUevUCdLh3q0iBZOcLyuX2yXz4j\nD8c5RPo3gqSeHInRN4GbrsKNBwAAIABJREFUHjaivPE6fbbXoOrj08r9ooQwRZLJUHjQCfpxfxRM\nTXy8Qn1PUQmqxY48TsAJ/WbGBhOsZLso9iZkhyuOXxLleisc7fgwcAjyyRorTLLBuOShHUKp83EG\n/HF/Eeuazyez67etLw3whfdsbqyxsb7K6PCogEIxmCkTgnug1qYCemWpoZ4lDNUzmo0GxqSfUvzz\n8dkxbqxV6JKUlWdhaYPEXBfPqmAir00dbTLSrMHm9jbLKyvUszoKkUJmqRGfL6tIUi0G9uExSlfh\nre+BZNHQ2Fkx+ZUOi+sFUwtiwKtiIZQIMJWLxCVJjRQp2uBtJUwkrSVZeUtZFpAIddjjg/GnpyhK\n6eYrL8E80qM92GAErYwkybwoyEtLaR1eGZyHvLR4m9DtVnTaBWUpYFVkre1sbrK6eIutzTX27Zvh\n/vtPMje3j2Ytk2mSoZDEh0QfEnA0aOiJW+LmACeTpGNB9xlZe/buozn0WdbwD/biImDSkiC90IAP\nFFtnJ3j94OPsq83TuK/DE7vepPl4ya5bQBPcvYoPT+7jx82v80v3LFeuHYazRnLMVoWAXpNQN5CF\nTUPpoeukO8Q6YdRK+D9IwI4dksEi8eMC+GB/JJreQ1/GGf/mzslWv6v4/KTPUEQvwhRMhuQ11sZF\n3viYgF4P3f8a3zLf5xl+ycmND2isdvFGsb5nmLdr9/HT8ef50VN/ynn3EGwpkc38Ajl3ZxN29uxi\nZ3yXPEwXydlXEbbBZQ/tLfDX6XvJRBP+P0odf9dqdUoaqWdX3ZAmmizROGVo1upc2cpYLhtUukHh\nNVXZxVoNpobTNZJaHa0MVbmDdSVKK1KV4rUFX2KDeXKP6RV760oHQ/wA3ih6novQ74a70Fle226z\nc/ESfnmR/2m7g61n/G//8js0rCLNEpJEptuivIy0j8AbAoYpJbnFh8+q5EyPCpOCNaErbRK8Enab\nEoMuNLrno6IhmLgrFLJxVzEWK49RoCrVYxl4raCW4I3I4HEuDDzxeF+iXI6vLL7dwW23uO9/+bf8\ncKbB6uIaeC3G1aUn8RUNb2ii6AKllkqyT6jo8zhkNL3vNW3k/PaHDfiQF5SC1Giss73GinWOrnOk\n8WDOYkxKo5mwnQugoxxgHcop8SvznqK0dApL1vWMFYay8lQoVtfbvPvGJc5c/DHnLy8wv7hKa+dz\nNb7x77kGmbdtpNDQYr46vxdWmxK73gGmDPloyItRnf4+UkOcgkatyy7WmCzW4AqsXhYf91Z4pA+B\nGyswcRnGlttM7V9leGhLSLcNBCTajdQmmwgLLCgwqcJ1K0hh9CFwTdH+zTjtuTFJV8aLJ+xCuP19\nJOZuEdCCHOx2OJCjV/AkCdR1P23lTl7/CDAJam/Ofq5xvLpA82wb+wt49QK8YeWsnd+EF1+DI0dg\n+tQqR++7yL7mPCuzB6SuSgCbhjOxQJ81HZkLceLwF8vQfnDlpagcoiRNJwZUQuUMZeXo5AWdPKco\nbQ/EiZI6+I8Hv0I06WMfRBbTxzRdlYTJ0lqKsqKoLFUlwFRkVDkvQ0fQCSrJerJ5ibPyE2fRTopY\n2UM7vE0ERLIKV5Y4REnS88rSwQJEIb5XCCvLawGuBrJFKJvjkAD6IFXvtQ289ujbZV14LdLoti7B\nOh3YYsJqs8EfuA9+Oay3Pa8xG1oZPTxJKf798b29SZWJEaZXf3JjbMKYIGnU/b8NQJYJMsIIgiml\n0EEmGQ3sGZQ6DgBf8p4NvF7Vf5cHgS9Rz/fBrt5nIIBdDEglPfQkkFr7oJbxqHB+hoaHPsfAV9xj\nxr36JjACrgvbDSjA3FVxT/M8j/EG+88swP8Nl34Mr2xI1LrnIjy1DCMTbR6d+g1nxh/mne0HuPHS\nEXRqScZLdOpxpaZcTbEfpHBWSR45D2xsw/W6xN6Uvq1WCVRdkdyzgrC9ohR8m77q5PeJlRH0is3u\nCHbtAWah3oDdRq4eo58Ot2qw1oSVccjDmPYV4IbhOvt5j3t44uSb7P7GJifXYPfbsLoNs7tg8hSo\n52Dh+CQfcJz5Yp/krTXkBNKhD+DB7UHoiwV4xfXlAb6AvNtl4cYVDh06iIyQl6J2cEwuga6qjSHL\nMhkXW29QrzfQJvvdD9BbvwX4UkHXHm53KLqlY3l1k0Z9gbLIZfJXoklTQ1pr4ttdllY2aNaa1LKM\noXqd1Ax0F8JPEwJ0VVm8Dp1o56msw1aVmBMH4EsH4A0tskPlDUqlOG9QOsF7RVk58WNJAyUcAosr\nIRpbxuBcVpKElfehGyKsMl85klQHsC+aCwvDzHpQQe5YVCItLZ2TQO+hqCrK3NLNCzm+BeU9tizo\n7LS4NX+d9vYme2Z2c9/Je9m/fz/NZgOtBNjSGJSzPfNIB/jgmCn0Zi3dPCcgofYanMZbRXTr+Syk\nktk9exkaHvmnfhqfYkVQKI72XYWlMXgvgV8ZLk+f4O+eytlJh7hy8CDHD15gnA0KMq4zx2ke4Zfu\nWV5afJri5yNSpVwFTAYzmSgAJ5FcYZBuxSqwlMHCMBS7ELQno//OxecUmV/wuxOUH/i7CIDdCf78\nIZkWg3TnIWAcJlI4Cupxy6HjF/iW+Tv+ovgrTr5xCX6OTFCuwfjxFge/scDYsU3KesLS01OsXt4v\nRdZFxBz5IpI8m0rOWQ5sedjwMjHNLyGAYQQNN+lLRmMX64/r49ZOt6KTl0xND4XJ8xanYYIai1UN\nUwxRuQylFa7wkGhq9YyEFJzH1JskeR1VdqiKEqU8SeLB5VS2xGlPVVU9ECbCNEKACl4qH6nA5HcV\npIoWyJ3j7fVN/gevWJ+eJL90g0N7ZxgfbjLcqKGNh8TjVWie6CqwwTIBtpQOuSU2B4IHmFcSY5UR\nY1+TSj4wUiQlSpjBKhghRxlhbL5o5fHeol1kA4ciy3usMWgbmlIOUA7lc5RzKFvgqx1cUdDd7nLs\n//geE1cXeP6W4YNmnRGT4rwMu8gwjCUK6zXbtqLsQV4Qhw34yGrQt5/LQcadUipI+yXHoVTPKFl5\nKL2n7Syp1+haDVu2gYpaViMvLUUFXqd4G5jFSCe3sBUVila35NJ8i9PvbvLOhzc5d2mBqwtrf9gP\n7OdmxfgbB9cHuZ3bhvY0vLsbLhmJaQ36cW3bC7D/kLDTfZBfOaV6s1bunJGlBnoPwmLREu4ngeNy\nUXstasSLB966wl/XcFEJQ2ClhO1NeHcC5rUUUhNKGGNayfNZB1Y83HL0q5XuwOucBDULYzUB26aR\n5n+ChOGWkfDsgRqkQ12G2WG8u02y5CluwQ0rpQtILXNtB47chGyzYJwNhtiR9FIjWHMObvu3uF26\nD593GcsnrbxyuJ5kTGPQOGQ/2M1LdjpdOt2c0tqwH+0zcHvG7YPhYpA+ehuPlN/2RwPL928dAEl6\nDLDwo3LQrRwd68g2d3jse7/kw3/9l1gSjE7wJsXpGtZkeKPl8+M9eAu+QtkS44TZK8CVuGdZa5Gx\n7wZtPMbHpofCie9JAF90kFfaABpquZ/8eU8h3vt5G/A1cFtkcTnXGwxSVSL5rjxYr4PXV5jkGz3F\nIEyGDEwvAvNWRQ9IPcDeMj1mVx/silJHid0msKUGPb4S3ZcPCtil+sBXOHac2IgJvl4DOUV+qNve\n5diY8gHM8j22V5DcK9XzRZZjhPoj3tY7b15iio+eS3IelXMy1fGzUKz8vVY8W3rg/xmousT3CTBT\nObMscNBdQb0F62/DzzfgWvjrlQL2noFDZ2DqhRUOjF9jWG3j1hPcTxOqWk1iX+yR30JYXvMOik35\nxaVQNqET6weHxOlt+pMOI00qMmPjPvnTgl7Rsyuhb20yDcxBsg9mEjiGePoeAKa8/GkOrCq4quBS\nAhcSCfQ3gffh4pV7ePXgExyZ+pDv/uVPSMZK5k7D3KYc3j2h2Hwx5aX6V3ndnWL53AFhR88DtqA/\nyGTQmP+Lvb5cwFfeZf7GZeBP7khLPViGHpBkxLi9Xq/LpdFAm9/ndElnQwqG0JG/o1CJ3ZGycqyt\nb9HZaeFchVKe8fEx0lpKsznCTqvF6to6w80GWgkLy1gtUyhxqBCEbSWeXULDFR8tH1wmq8CYwnmM\n0VRKoxMtUshQvIiZogT/VEuXQ5sEkyQ4W4E2GKNxVSlTIEMiKPIuZSWylSxNhUnmRT5SVlH2qEi0\nsAacFzklSoWuVZjg4iS5Vc5TlpZ2p6LTFeDLW4stc9pb6yzfuoErOhzcv5cH7z/J3gP7yZoN0jSV\n41dl8CKTosuHDrv14FykI4dEogzBahlfJeAzPt4A/Z9mDQ+PMjW1Gx181T6bK8pUBuWHy8AYXJqG\nEQV1uNC9n/UHJnl78gEOJlcZZpuKhCW/m0utY1y9coTipRH4JSI1cYjP1b1IIbIXGBcjblpGAveH\nwHkFF4Zh8SAy/bHfg5T/R7PG3yeg/0Ns/iNtOGr8E/qTWobBjEjz5wjU7mnzSPM0f8IvBPT6N7D2\nU1hegtTA7H5oznse+a/eYf6efZyv3csvTs7g3sjkGPMdWOzAYiqPoZHWMRZJdOtI9twIl20k0f8R\n9Po0q106FrZyHk2GBSDyCdpXpHRpNIeZqk+x3CopVQJFjSxNSROFLS2+hCzRUKujOjs4tYOrChSO\ntJ6SuJI8z0FpnKvAi6GxG/j4Ru+pXk6JRUBgJsQOsMjbNf+rUiS3VpjYbnNrcYljB/ZxcM8sw0MZ\nGZrSOGEIa4nbMWtF8qvs3zVx+qNyOuQNmeAo0kf5zBiE1aSdMKiUDzQrL6wp8cq3KFeERhB4o3tM\naK+AqkIRWdke50qUdbiiS5W3KNoFl68u8u/HNN9tpvxVqmlWFZXWdBOxEsA5GmnCBIoV5ek6GRnv\nBroaKpzL6BczeH4Hz3P0VouSUoUWADKcHOs822XBRq4Z0pqa1tRSsJnGVfJcnK3wzmKUp8oLFhY7\nXLw+z8LSMksra7R2OrS7xZdg2/nbVow5FRKL4v8d0lAJksB8HPIhWI9QlkWKkQloj8AWdLoNlv1u\nlrJpDh+7ye6T8OSv4c1g6XpIwf454AQsT46ywCyt1rikrlOQPdlm1+FVpidvMJZuAor1YoKl5b2s\nXNqNe6Um03bfnIL5VdgwcklTSDWoQjY0uUMGIm0g8XYNCcbjwAGozcJBBSeQoucwsNtBw0FXw7KW\nBtCHchpslVCS0U0z3AioESGY6XCW6sBkCoyAbRg6NCjI+taUPeZSzJHxHFd3XPfFXZXzFFUf1PZe\nYauKbmFpd3I63Zy8rGQ/Gu7Tj7Wf/O0cIOF+9LaPsKJU/4x7BzbsTcP9RU6tqDy0iopW4bj/V28z\ntLBC/eYaftcUVqegM5RO8T5BuwjaiKchDsRjN/jsai0ASmgyK6UxhsB61ShV4SSCo7wNUJNHYam8\nB2dAizG9g9uQrd4ZGmAmRzTMhXMooJcXPzEXAC4JkViCJ5h34RLAxmCY70PPnsAk7hMV+l5eSZDf\nG9Wf6jjI7NJK9dQ+UQ6ZaDNwuwz9Msb0jhvZXj3gK5p/BVUJKrZS+rlDfOQ0PtRjPtSWPjK8ArOu\nZ2rfA82in5qSM+8hKoWUNihsDwxz3pPVZCpyUXzy4LXP9rqj7opbY2PJKGjkMvEx70o2iCsScQ+1\nIKsKUkoyCtlm30RYXbH3nXvYttCO91pEkLDQWeg9h9j0jkM+Bn2E75SCD4Cfn7iip+8w0mGZg+QA\nHFXwGPAYmAdzxg5sMDTWIklyirJBe2OYrWtj2NM1sSg5HZ72OSheafLK6Fdp7mqzs2eIR//yDFPP\nrJN2SvKROjdnp3m19hg/dH/K6fnHcL/Wck4WPfhV+sNMBq1bvtjrSwd83bh+9Xf+Tew+x4mFWZbR\nbDZoNIcwSUSDPyn5/fbb7xxLLxp+R7co6bS72KrEOcvBA3NMTE5Qy5q0Tc7G1jZDaxskSYrR0p13\nVmFLoJ6RqkRIv1qReo13XsyUHWhlBFBCRPnWBuN9A8YkITCHgB5MibMkFQlLYGdZByhNmqV0qgrr\nFbWsjknEELTodKnKQph0RsyOnbNUVSHFjklkgqMSHxcbzGrksBrnK9kQKI11FUVV0c1z2p0OVZ6D\nLVlfWWL51nVs3ubk8aM89MAJDsztJWs28EkiXg1KkkVVxolpFc71mROeNHgC2GAwGWbYeIUvSlSQ\nm35Wqg+tNfvmDpAkKUXxWZa7ePpm75GOVYNWBmfHoVS4lYTFC/tZuWeWs7sfQ2fi61NupRTX6vh3\njPignA2HeRx4EngKxh5dYqa+yHC6hcGyY0dY3Jlh7b1Z/KtaqMFvNOHGPvrdmLjbH5yy+E+xItAV\nO3sR9CL8P0x00TWph/bA6N5VjnKRExsX4ecCen3/Mlz3crQHWvDNBIZPtLnn4AWONi9xZu4xNmdm\npBKaB2HAdeX4LibzEkni0US5TT+5R5nLnZLOP647l/NwZbXA2QBieUPuLNpVNNOUZn0Xqdumsgql\na5BkWA1J5nGlxdkCrWs4W6K8J/U1EgW+qlDe4k1GWXbxtgCnqKywdp2DKLnzSIyNb1XYK8sGOkrL\nY2HnpXha2dqhdeEy1xdWuO9Yi3sOzzG9a4haprFpSujtB7ApFEo+dKm9E0N8bVBGQFylvXgj4tDC\nJUY7MLqSQs7LbC6FIsGirXhheVeBF0mtZIIwdMIJk8xoh/ZFqAEduAJbFFSdDvn2DvO3VvnV2xd5\n7+YCl0Yb7O6WNFTFaGWxRtgRqVbUk4QKj088vvRo1wcEte8XH7FT35M23tGk0k4Avdixj9YAERn0\nHvLKst7uUBtu0EQzpME0Uzplia08zla0Wi1urK+yuLHBVrtDO88FpPvjCis2K+D2zXgH2aAPIcVK\nLFJA4lXwS9n0sKhozY9z6dBR3slOcuzRy0x9Z5OHgSMfSk9saBaGXoDi64oztYe4wHF2lsZg2NN8\ndpOHD77B4+mrHOcCu1kGPLeyvby37x5e332Kd+Yeol0bl5TS3gXrK8AOlGNQxilZgw2YWMXFScH7\noDENdyvJc0+BOdVmz96bTNVWqOkOhauzWkwyf3MO+2YTroBdbrB4bJpr2Rz3H32PxsM5p64B61LG\nHVFw1xHgYWjva3KDOZaY7vvWF4RzOdjc8HwZip3BtVNUTHnw3lFZT5478k5FnhdUVZTS0QNe7rwM\nrt9dEQzeonpAV9yNxn/yp6EDHLcIXohVaCitp9Up2OrkfP+5J3nIl9T2TTPqPMYF+ZuT5kNfMhd8\nbQeLcyWAFsoEFlcEvKSpLdRGFfxBwBsZDOK86w27CqOAw+9BukiUOspr7kGrPv4MPsRBGu6c65/j\n2Px24ojYvy6yvfxtp1GmGcaGhQ7G/sHgXxsSFRhfqk9iiCBYZG/1WV99Q/tE9aWNqmdubwaAr3he\no/fWIONLmieRpQUCKDoEaPQ6Sh31AEYSr2PgGPR8PPv+ZgN/EZ6r+KsJ8KW1pl6v0d6JvM/P64qT\nz8PPMIzddzNajLBZG4Hdi4yMw9w14c6CKNIPNYEZaNebbDNMxzX6xKybFRQtZEhWNNHfoj/FPA50\n+ji392jfEn3IYh0Rm/3x/Tcfc9+44rchyhzriHZ9N6hpGVryFPB1GP3mEveNvc2J7F0OcI0GHVqM\ncGNqjncO3Mf5Qw/Q2jUh3hGvIbXShOZm7SB/8/R3ubl7L280H2P/XdcZYoctRrnCIc5yP2/feJjt\nn0/AK0oYy1vBxJIt+vv/wU/cF3d9+YCvG1dDS2YgganbO7t6oDvQA78aDbJ6Q9Ai/4croL2XLods\nkRQraxuUZRmSBOya3o1Ka+x0dlje2KHWGAlyQ89QIwUDugSdaKwPk6aC0a4tK7RSpNpIAPfgqQj4\nl0gYVUh+ymDSFK8MXhl0mqFNQlkJCOWsE6aYh6JyKJWATjDKkGWyObDO45UiyWoAlFWOHZDdyDES\nnIKiFNNQ+ZqFDkronJdlRbeb0+62yfOcstslu3WLF/6/X/C/372PE/ce59STj7JnZje1eoYxCSpJ\nxIQ/JEmjZBqOdVaKQ2IXLrJuYksNOfPeUrS3KXa2GNo1RQxqPhSS8l71u4T/mGvf3MHQ0fksA18x\nEcTEEqcnJiKte30cljR8oLBzGTtTmdQqFom7t5DO9jUvniaPA89C8u0Ox+4/x+Pp69zDeab9MgkV\nK2qKC8PHeXPmUU7vOYVr1qVbmjdheR99ivIghTf2xf+x1iDAFccFR3P+mCjj/0MnNgx2GR3aZJJV\nGotd/IewuCCnJvIg3nfw5PswehnGdrYYb27QrLXZbCLH6CXl69zejYrg5J0XT3/j8cVPfH+IdWM9\nZ22nYm5MY21OYjSNep1RlbGW1VFJiSu6jAzvImkM4ayHahvSgp2tDloZdGOEtD6M8g5XlihrhVGr\nd8RS3hh8JfHZoamqksrm4H3wcNQDMhx/W2zqjThX0dPQYx10Sphf3WRj+x1uLS7z0Im7mJudYHhk\nmCSRMe7aCGhlVQVKkShIUCSxOdJ7GPF61EoJu8tJYaGcQlGJL6R3Uivg0N6KUt4KCKt1hTYqMBMM\nyoXCjELyklfCVK66uHaXzY0trlxf4L0r81xf2WazUHTxZEkGOEbLktyHgksrAdiUkefW8/jyaB8c\nN8OeVPnIspCKU0J9iPze95phWoVBLt6L9MYLI8MAhfN0KiuSSpVAZamnhtKWLLVarO3ssNbpYD+z\nzN3PyoqxKBYMMWbFznuMo3FViEfKJqyOwxWDezvl3MMneWn0aWYOLfL8f/EyzSMdpi7I4fwB6H7V\ncOb4/fzUP89bW4+wc2EE/Yzjq0d/znf4G75mf8aJmxdJbsjTyA8mnJs9xuH0Mo1DHV594Wm6G8Ow\nrOCt3fJUJ5HGQz3E/S6wMQQrE+BmEQpCAcluOGSksfNtz+5n53ls7FUe5gz7/XVG2KZNg6vNg7w1\n/gCvH3mCxZ8cgFuaD9wxzuiHePiRM9z1z24y52HuNJJH9wLPgXtR8dbMPbzDfcxfOSi5dYnQwRzM\niSJn+7KtdlfALessRe7o5q5nZi/fTrHoEBP3fqHQqxkGUuRgtoxeYB+Vocv95dYQY3r37vGkegdU\noUBxVvbVBRWdbs5Ou0unLFidGWfWlhLfXIUKNh1CQAqgvFb4HhzVj2m9vS0quJb0h33oIPvs/11f\nZigSPI0IDRV9X+D4EqSwiI/TA8FCPK6cC6DX4NTH+OrD4zjbA8p6eQ3fY1cJMKUD/iSSQ5E0ipRR\nhXonGWBzRbN6HeXpBPBLS6smWsX0gLIB8GsQ9BKgqw96EYCvONUxgl+3vfNK42Pe0Lp3Xm7PAPq2\n37it7x7zku6xwbTW8cwCYBJDvV7/mM/b52FF0P2OeO9KiWdr4G6mzB/axwf6GPedusTQVzzP3YTJ\nteDxlcH4V8A/AQuTs1zhEGv5Lol3m0BukX3wBv1c0qY/lbETrg/Ab28NTmS3d/we6xtDnyV25/2h\n32yPPxNEwzkOzMBkAx4AnvVMfesmz03+hOf9TzllX+docZHmTsFWc4iLtaO8mp3ix0eW+En2Ip3u\niLycXwMvgysTVlfm+PFje3ntrlPsbq6SkdOlwa2NWbrvT8AbSqa/vw5cLRGPxxUE+Iso4Rdb5h7X\nlwr48t6zurzE5sY6o+Pj/eDi6bF/opwsBtMkSciyjEajSa32aYGv+AVWH736I3+pcE7hlMGYGpXL\n2drY5sNLV8irisOJoTk6jDUpG9s56cpmCMSexIBppJJQvEdrI1tG63pyFec8wqWKNFkdjIIVOpHJ\njd5ZHAoZ0ZuEYkr1klPlxFi5tJ52ZxvvPMONBmlm8OGxKSuUSSXZagN4vDZyHUJbts4KBBYmYcUp\njjZoT5z3dDtd2u2cTjsXFlm3zfryAv/JD3/CAyrhz0/ey56vfYWxsRGSWopKJCHoGG8iJT0kro+A\nVJFGPsBOlYmPlk67xebSAiOTu0kbI8KE830JzD848BWeWhwbHfdOc/uF8fXZXrFYiSvaCCsgB7sX\nPpyAhTq8GzxapFaV4mDLQSsHn8F9Bh4B9ULJgw++wbfN3/J192OOLl5hfH2DxFo2J8b4cOoQx+of\nMHKkxSvPPUNnYzTE8SHoTtIfOdxFElT0Sxp8zv9QK4Jeg4BXbeASbxsAvgaekvMGqzQ+VZDIgJfB\nnlICpHU5lNexk2zkYXv6g7i9WuP2KZODXavBiTRfjm7PH2qVDl653OJfPDyJScBkCbYy1FxBqrvY\nqiAzdUZGp7CppigqHJaicGSjk9SzTHwZux2qohB3Omcp2m2KHSeThp0YL5tUCgenOuBLsFa2Wkrj\nwvvso8HKwOrHqv4NUerXyi3nry6wsrnN8cN7uPvQHPtnJjG1BOdKvJGc4pzBYXBaxs3rIGnp+/l6\nvJLphbFJINSICu1lw6hsMKh30njRzoOqZINLmBDmgkjSe3wZjmUdtqwo2h2WF1e5PL/A9eV11rdz\nMudoeNh2FRtJHZ1kZHVPM7dor2lrhVMKV1XUMRilexMZVQi0jthhl5OiQm7S8cWpfpPMK2QKWjzn\n4X5aQaq8GFB7z1qrTTepuNTN2ShLlra77OTlH79Zv9eK8SsWJLE4gn6xEVeGbNw3oNgDlxpwBjb2\n7+FnX/s6fkyxvH83D+17i+n1dZT1bI01eKd2kpf5Kj/ufp2r7x6GKcd9x17nBX7Etze/z9EfX0f9\nDOwlkZzV7q54+JvnGXl2h85Qg6WDs7z34APCVF4G7kK699OIksUj6WcRuKbked06AHkbJmpwH/AM\n7P3qVV4Y+1te5Ps8sv4W06tLNFpdiuGMW1OznBl7gJn6Ej/6yre4/sMjzJ++i5ceeobpZJkXv/13\nzO1donkxR22B3aPYOjHM2bvu5gd8i9d3Hse+GSZeLgBuA6kGI7v3yxnzt3NLaYVJlVdOJotb359E\nSDRS78ELYW85CIT9vutjaoJPcy8P1nryvKDd7dDtFlRVibUCECifobHowLlVXgeGtzymjwb33vWa\n3t6FusPLwBHl5foPnMObAAAgAElEQVQoQ4xeXFGa6BwyAd6FncIdoJfAUwKKhUcN7Lge7NZjpUV5\now21g4vgFgMsMR8nGEL08dImyBqj11acwDggSYyAVqrj9GB6gJcOckUNtwFgWumeob3uGdr3j6fu\nAL/oNX90jy08CHr1c27kgylUmGY8WHPKDzXw/8iU68vqw717d4jzMY3R8h7hSYyhXq/93p+rz96K\noHwX2ITtcbimqD4wvH/yXl4Zf5LD917m5L+8yPhExTNnkfSwH3gWrj83w8tDT/IbHmL5g/+fvTeJ\nkus48/1+EXGHHKoqa0ahUJiIgQBBcAYpkiJFkZRa6n7tbvfG77yV/c479sp7L+zjnffee/EW79lu\n+x0P3e+5W1JToihRFMUZBIl5rCpUoeasnO+9EeFFRGQmQEqtllqtpoA4J1GFrMw75c344vt/////\n2+N8vBq4ydvEOLBrh0E7w/AYji1fNoaLwZYBcyus68PP4TU9DAoLAVAq6Ks7GIF4FLzcvvJsgzOT\n7/Cn/DXfuvMj9r69Ce8DuzA902L6qU/Y+/VVSpM9WgtV3nrhdfS11J3jRX9qq8Bnkt0De9md2ut2\nFXrE3PKvuwQs9fyLb3M3FTjkC3/4hbn7CvgCqNe32dxYY7Q27p4I8849MUl44MsZ3KdUqhWStOwq\nufz9zJv+5uxwoLv7dwsgFZmBbm6pRjFKJlD02K036F69jlaC44+cIIoTsmaP9c0dIiVIIkGsXDBO\n0ggZxZTLMXhdvFIxkYwwhaEwxnXhEgqhhLPysgIZRf6RIGREoUFFbpLWnppshfL6dDCF8/lKkwSV\nJK7rCwYZxcRJ6oyOsVijyXWBLryW3wx8vox1zC+J6ge33C86rJVoDa1mRruekbdzdtaWWbx+iX97\n6gB/cfox5l99kT17Znx7YnxQd+HBdQUzHvgKIUMEqpdnIttBMiNwnjYSpDWYrEN9fYXpfQuk5TLa\nRBgESqlfUsH79cY/5K392t9QEXB+3wHi+J878AWD6nEG/WBt8e7DOA+WMWiPAKWQfXoguQ2kUN3j\nEoinYP8TV3lV/ZC/6P0/nHr/IvH3rZu8C5g9vMPEK2eZ/dYqeRKzfWySs8+cwVyK4EYMK+O47KPu\n9w19BhowAHoY+v/f90H9KjpzOP+wn5CcJbgKTwUn06n64wpymGDqqZ0Gp62gDju746zV9lDfW6b2\ncJO5BXj0PFy2LuQ+LaD8CJhjsDEywRozNNsj7nRb+G0OM7k6Q+doh471/k1+/jHGBzeb/NnpSaqR\nQhjr5Hwio+huYIuC6tgBRmrjdG0XrbuYKKUyMkYUx0RKOhZn3CXRGSbLoNcljXN0nKAxxLKC7mVO\nGmkNShps0QKj+/VF6+c+wS9PqvrsL8B955zBfK4FK1st6u1rLK9u8tTDD3Hs0D5qoykJvmGJkAjl\nGrNo4RhbUlpXBCLMqxqvQHFHZA3S5Aibu0hnC9AFxmjfaMX7heHAQGfYn2ExrupuFdYIsm7O1tYO\ny4srLG3U2d7t0OtpYm0ZsWBiie5p6kVGkiREMcSmgyksQofzVMQelrPCMymEY0cHkle/qCGdNHQQ\nq4PvjQO9jHXpnWNMQ4RFWgNWkhWaZpZzZ7fTLxrp3yJuPBjDC/Fh8+Pw2QxX2ENrx1UHLn2kYASW\n7EP8zdcqXN9zmGPyMjNT6ygKdpjgCkf5bOtxVj+dx3yUUP3zTR7nE57vvcvhd24j/h3cehOutNwe\nj38I+9bgyOgtnvv6u3xSfZxrR0/Qe6jsWF5PAo8aKgd2qFQ6gKXdqdK+PgafKfgI+CSGi2MuWXsU\n4heaPDf5Nn/Kf+T1a29R+0HLSVjWIZnOOPbMLeb+aIP4SM7OxDjrT8/S+ekYH46dgSOwEU/z+NOf\nsPDobdIiYzcd5WpymHd5lp90XuHm+8fh5xI+BzYzXBbUZJDsfFkDlz/80egUdHqG3Fh6BeRaUBgo\ndJCYDXl6CeFZqN4by/4TXK97/YCtoSgc66vd7ZLlPUzew+oMYRMnQbeiz2QdXj9iDdZqtzbWrpui\n9WAWVvQBL2MGnRaNNlht0dqRc13h2g5JGkMTKDsAufxhD8tE+1JHfz2NNRTGdabMtduPNqbfOdNq\nv37H+XAJb04vIzVkLu9BKBVM6D3wFdQ6wzJGT2gYSBr7WYFzMRv6m/JdHQPzS/r/+40MWF/BJy2Y\n0venJXH3T0Sf6SWFwEhJ8EFzn2lgtIm+bNGIMOuJu7aDCF2H/f3ofcMwBuW9qL/aI7CqgmKkDo0O\nXK/AWcnysYP86Mw3qSYtWs//iIePX2R2aRdbQGs2YXF2gZ+Ofo3v823uMItIwe7HeQPvxrCygLNW\nCFYfOYM1cRjDX5p784MAeA13ZSzj1vEVXDG7zBeBr+AJ1mHAVvbAV5rCPuAEzB1e4mviXV7vvsHe\n/7gNfwm3PoZGBpMl2PM07G+s8fK/eJvrtcNcfug4S8ePOWuYywaud2G1DBeFs30Jxo8Fjjm3DqwZ\n6DTBBl+zYbZXj/spFtx3wNdufYfNjXUOHTn+pX8X/UnPoepJklAqlagExtc/qGIjGaQjv/x9VkCh\nNcROZ68LF4Bau21uXL1OnKQcOHAIgaDd6bK5XaecJsQqwmCoIFBRjgrm+0KiIuG6vUgHQCElSZK6\nTpY+SVIqRqrIUZu9t5eIYoSKvBG8q/BIESEEGG+QbYAsL8itl9AYi1QxiZAURUHug6pjs7nXCgFx\nHGMtFIWh18rQ1qJKCdoYRzE3hm47o9No0a7vsr22wtLiFcppzHMvPM/8maeZmh4njmNX/QleA8aZ\neBpj0D6oh840QgbTSOE9CQaOpa66ZH1lxyVq7Z1N6usrjE3NgAe8rJUDevEXFiS/fhWvD2gNDw/Q\nDdcT7mVujI2NU6tNsLmx/mvt5/c7QuWkxyCQBN+vHQbBIsEZ0eP/HgGPOWP2AyBOdnk0PceL9qcc\n//Qa8b+1tP4TXFhxr354BCZuGR5KV3n5tbc4n57kwvHH6B6J4BNgrQq66vbT76ZS/pJjDcyCEOTu\nNQi9V5Z4L5WZofcP/y1iYGI5gtP0Tw49agwo0h6cMh3YHoElaC1OcWnsOGfLp9n/2g8ZWYLvSnjx\nCsQplE+B/VPYfnqMc+mjXOEYrZuTjl2wE65/6B4Wji8AYcOf04Px24xWprm03uG5Q6NIlZB3muh2\ni17eZWRkFlEuI5OYXqNDVxsmp/ciS1Vn6FvkRFGJOKmgdEHeblOYXUzUxkYRcVxDRAmqYrCdOsp0\nKboa24kwNkPZgcOIZIiZyt2s1GGm6gAgc+AUOMl5uwvXbq+zuVXn2vIKT5w6xuG5KcYqAiEcu8xK\n67rkeYdhmztQLI4ESoCkQGFR1ngwKEOZHKzGaN9wJHxPbITQ9I9ZaoP1Jv4WQW40rUaX1dUNlpfX\n2dpu0smhyEAa6Yo7EsYihYli1lo92taiosR1JhMZaV5QI0Yo6YEvi/b+aAYxlKcMfL7MkMdXmNul\nFD4hMwhbOJhYOgaEFVDvZOz2WmQPvLp+RyMA9WFRHjwTNYN+7y36LbuyClyYdeyWpmJjeR8/fWwf\nbx96mdGZHYSwtHZHKG6MOkDoY+AYTI1ucYjrLNSXiN7VZD+G7+/Akt/rjTvwn70DU0/DiWcvcDC5\nSTK3Sy8rw59Zat9c49TopzzENSbZQmDZYIqrh49w7sxjNA9NQ004Ns5e4Agc2H+NM7zH83fep/ZX\nLfS/h5sfw60C9ioHto2227z2b37ClfGjfHr0US598CSt/zDJT/7429x4/BDHxGXmSiukZNSpsWQX\nuNh7mPpbe+HHOHnLVes7mG0w6N4bmL/3Hzjb7Gq6efCW8uynPtjg51UpkCZI2eA3YWv9pmMY4vXW\nUeRFQafTodlu0+1VyLOUIs/6BWmkQBgQQrn3+I045pRrEGW1A52M7yhlvZeX0c77V2vtmmRpPQBj\nrEXrgTxR+7zA981ykIUNz/tO8tr03+tsW5zio/AqD4ffOJ8wx2jTg+7tQhJHEhlFRJFrriU9yBXW\nywg868sDVF7mGMCvvqwx5HNBxiikv6be4F74RixKonwn4r68UaovAl9DPsh9eSOeuXUXWOU+OIPE\nSNmP0yaAhdb0V8f9LpUMST9D4d7fe665isHiul6GGGyQRComLX+Vga+wPh32CN517NRbJfhIUsyW\n+GDkebqPlVhM9vPI3s/Yv3cJRYGwMEqDBbvMn/LXHBLXeefJLc7WztBNq5AL1/RkZw8DX9sAgt07\n7s0JQuE4qDJiXB4xMvQYx63vR3CF7ZAHBBllHbcoH/YSG4WycPnOAhwsX+cUn7Hn7A72e3D+Z/D/\ntd3RTu3Cn38P9s9YFh5f5mTtPPtKSyztPwpTwu16uwnNbbg8wRfzHOuPYxOHgG0x8DcLIGC4/vfH\nuO+Ar3p9h83NXw0ghKqA6+wYUSolVKsVyuUSQiqnpb9rsTAcEIeBEMEXg+Xdr3UIvsVSkKQl4rhC\nl4wi6yGBTqPNtUvXOV7vsD0/j4wi6rstUs9EE1GEjAxRplEqJ04ikJZ2NyNSGiVDx0ZJcHpRUhHH\nMSpJMNZ1wBIW19I3ijFCYorCme4K6TzItAOnilxT5IY4VijAGud3oqQzxdRao432py4RSiF05KYP\nH2S1cXJIKSTGSqyVFIWm3Wizu7VDb7fO9p0lVm/fYnx0hKeefoKnnnqaqakp0iTy142+ESWeRu2v\nqLdwCylVoCGERMYM0kMBxvsVKGmRtqDV3GHpxhUm5uYZmVpwhvye7j38Ed57B9w77Bd+ufv1g4VN\n6PYy9Id7ELI0LTM1Pcv1a5f/Qeyx398IoEoILt6lkhYDIGp46olwNC/l8KBpGN+zzUFucmT3JpX3\nM8xb8P0V58lYAJea8N13YPYUHHvyBoenrlPbu0Z36rCvdpRABzqyxEWH4a4xocIUJvxASx4+/vD6\n8DNsKzxC8mWH3h/klAH0GsMZv8wDs1AahxHpHDnH/CYzAc0YtmIXj65Ddi7h4/1P8UbtJuOP1Hn8\nv/qckVMdxm66S2iOw84zY/z04LO8xct8tvMYnHXvZQtcoA3A1/Cx3R8VnX+qYSxcWu9x5vAoUQyJ\nSUg7EVOjU6jKIbZzTafTwZAyuecQleokuQVMRhQXSKOxuqDodrEZ2FRjdIdYGaRIEHEFGcf0Gmtk\njXVMkSMihcgEWnsw33KPv5e9OzoFYKdfgXcxygzMWQDXxGS73eOTKzdhc5t/0+qxcuY0F04eYayS\nEEXOAyYXAiUsSiiUiBHWJQxCahCFB+IMVucY3XMdHHXuWQzSf0O0m/sFKK0RhaUoDJPX7nBlapSt\n7Qbr61tsbe7SzS09LSmM8+YyWCdz8WyDESnRpYRWVrANxCIikhqlNNNxwogVrGCIKMikRVlJYgWF\nCMKRcJ1wMkt/zcI8HEzsnRG2oDCaTpaTFZrM6N9C+vRg/GYjzGHhswvxpYkzdomga+HCFNRjJ/P4\nGOxcid2xOTfnBmnIFVwu8gikqkeFDuVeF9bhVt1tLYwtoNGAqTswUi8YmWmSpl1ar2oOvnyJl0d/\nxMv2J5zsXWCiXUdg2axMcr70MD8ZfYm3XnmFm+IYphW5PGSfYZ+4zRF7lfEbO/AT+Pwj+L52KVJF\nw+sX4Im3IX0u4+hLl9nHMpfmnnTeLn8pWPz0YZaOHKE000TGhqyRkq+W4bJ0BaCzOHBvdwfnczMs\n/8/8md1/gG07Kyi071WoB15/Aeh25S6JUaDQGB0AqH868CsMp74W5HlOo9lkZ6dOs1WhM5rQ63VJ\n09QBQ17hKKXBeiaTwIJxxWBr7IDt5Tu8OwVkAL0cwNUHtPQAxNLaMb60L1AH7zMTAC87+N32fzfu\n/cZ4YGsAellw4NnQPrAQScmpjSZ/enmF//XFR6hXE1d0Fn06sQemHOsq5ABSSpCi79kV5Iru9UPM\nLgZAmBIDkKvf0bHf1XHI0N7vvw98+b/ZwPgigHEu37NB0hiYWWLg7WWFP39fhOpHDiG8wmZQuArd\nhsPvNrzGWpdLubNDRgnl0r1gx1dxhOJsYO9WoTkCn465lCGL+LzzNPUzNTqqzLxd4czOhyzcXCVe\nNFCGxsESzyx8xP7yEsmRjJ9/4xsUayWn6mvMgN7ELbIbuPX5vbl7YJ0F+WPOwPQ+gF6juMX7DLAH\nmIZkBNLEkb+ChUsbyCx026B3cKDTBn2ZZCCNjcE4O0yzgVi2dG7CufZAp7IJnDOw/wZU13pM6S3G\nVB1V66IrZYjCOu4GrkxTZiC9DGBi159zAzf/hxgQ/n7/gF5wHwJfzUaDzY01jNZIdY90yQaUPVBm\nBZEUpHFEuZRQrZaJ44QsDybZwzydezY0lFD8ykqR195bC6Vyyp7aCN3dhO2NDTqdLp3Ccnirzn+3\nucOtlVX+pxMnqFZKCLFDqVRxrCQESkUksSFJnVF8rj2gEyUIRL8SoyROZpM483obvusegCm8GXxe\naMf2ksLJIxFEUiKiCDC+s4gGfJBQzvvMVS58+2MliVTitlsUaO0WrAaLjdz+sqKg19P02jmdRodu\nvcH2nRU2V25STeDx04/wxBNPsGfPHuJYEcUSa02faSyEo0/3CcJCuhZcxle6sGHl4H6X+FKY7eMX\n1np5jbDoboe1pVssX7/K4eoUcWWkX5GiXzka/uSHmRV33wG/zvDM5S8ZgydLpTLTM7O/+j76ZzdC\nhT5IgwPtt8cARAIXBKbpV/F9bKmoDjXqVHstWIHmLTetB0hqFdjehpklSLYLxqZ2qZabLvCUcFW6\nPu04ML/U0H5DUBsODMNG73A3rTkeegwzv4bBs+Ge8T6iMQMcBLUXZlLXtvgwjuI84zfXw8XiRVzb\n+htg31cs7X2I73/tjyjSiKWTP+XhA1cY6zSwUrIxMs650qO8xcv8eOs1dn887aQ0V4AiVHeCeecD\n0Ot3OZa2uzRzw1zVoK2kmkZMVKr0yhXqjQZG50xO7MWUEmyagtakQmC1Qmeuq5+NUuKqQgsolxPy\nbBdpJTJKsSoiSiRSRWiR0G3vYmmDVW6OE/quhKzfjMPHn0hGzjxeaDSFl6p8+QxlsGTacHtjm3ph\n+OHbH3C50+HRw/uYnx5jpKxQWqOURYgIgQIVOQ8TaUDkrrRgLWiDLboIkyONcRYzIkJQoBAglDPz\nz3q0O4a580uc/sl5sgPTvD9RodvJyQsoPNhlPVvLTd/GsX4BaYFIgYW1To+mUIwhSYVljzR0bcwI\nlgoOY0ZKpHbb1NyTzAqGJI04j0dhyQtNR+c+6TB9ZtiD8fscA86Em+eGG9fkkLXh1gxsVOGCdEWV\nkn9ZhptzN4CncU3ETESPhCyKYQymK1BrunQFXJpULgM16FYkXUpk16tMfX2F12o/4C/4v/ja9Q8Z\n+6iBuuYOSx+7ycmnLjN3aBU1qvnrZ6usr+yHTwWUc0ZEg3FdJ93MYRmu6oE7Zhu42oNHViDaMoxT\nZ4yGy7u6wA+Bs2DnIzpj4y5MtXA5421cwFzV0Knj3O1Xudvj5v6Rttw7upl2Kgu8V5J1s6IUdmCI\nbi3KWowJk87vAfQKDCcLea5pNFps7dTZbY7R7JQY7XZJS2VUFPUZUMaDInHkCnbGaC9xdNJCUxj3\nXGEwhcYW2gFbVru5L3j7Fl72GLy4jEEb/N/pA18Ds3rTB836kkcPkjl2rJP6aZ9fFLn7DKwFqSLi\nJCJWEbWWQQlJJYppq+geZq5EKTkwl/ef1TBARP/nAEBSd/l8eV8vKYcYYkHyGICvAJwNTOmHPb4C\n8wsZ7FSkA6bwShchPCnLP2+Fvy62/xrbL8rj0hQxVHTxQNrdd5wHwOzw/yFSMaVy+Z6/fdVGsEkp\nGIA0y0AC28dhMYFNENJyVFzmW/yA76y8wcRfNR2r9SpQgdFTXR7/4wtUXumyWx1j6ZH93HjiEWeR\ncl3B7gRuHhznbq/IULwebqQSHiHrCKDXODAHLEA8A1MJHPAs3mn/Mu1P4Y6ApSosl2G35g6S7S+c\nvQlNJfxtlXA3uUKFf/r3S7BkGB4d3OQfiAVhC+G8evc8gq9XyFnun3HfAV/GaNbX7pD1epQqFeAL\nff48BVegBURSkESKchpTrZRJkpSsDX//jfLr30jWm2iqCGZmJklmamxUU1ZX1jD1Jp8VmncQ/M9I\nunfWmJyccHTXlTVfQbCUSgkVnZLnmkhGICSFNh7skiBcfxeJZ2H5SVIgUcpP0NaiCzcB2UJTZBlK\nOv08UoLxni8IhK8IIRxTTAg/sQdargi6dRdQsyJDa41UrhVvZlyS2OlktFtdOs0u7d0Wq4vLLN24\nTDnWPH7qFM88dZq9e+colVJUFHxh6Lc0Bscu88W6ftBwyxTR/3dAS/YLZUE4WJAWIS2xcibFzW6b\nW1cvMja7wPT8QaIkdUw/L20R/QU3GCHpl2n+wUN8ye9f3FBaKjE1PYsnbXxFRjjQYE48bFQcvnGB\niXXP4tuAtoqCiEJFUIZSCcpdRxoGD0lFOHP3RKBxBtx3e7Rb9wLXZgsXkZR/fri7SxMXpZoMgK3C\nv8c7yFPFBa0AhIWpc3g7oetY5l87hUO4DsFBAU8BzwCPgTzRYWx+myTq0ctK7N6ewV6KHHj1PvAu\n5OWUz81TrL8wzYX0BA+NXmNydIsCxRqzXOEYn20/Rv3HM/B3Aj4EVi0D08rQqeX+C2z/lGNtN2ej\nXTA/ERFFeHCoCbYHUpPUUkqTKYgyufbzBgJrFVoq0pGUSEpMkZNWS+TdDnRLqChyhQrhyIsCS218\nCtPrUm+2sXmGsBLXvsT6xfPdoJfjaDlQSEqBFe67pi0umfO3xbD/lwBWUfznHkyKPznP9ZuLnDy0\nj5MHZ5ibKlNKBFLEzmcklsg0Ag0WTWENGE1UGJTW5FYQGV/g8dIEY2A3k9RbXXZWN9je3CTr5jwk\nLP9HoshamTsfKxFohNFIa3wsEk7O7ud75dWTOo1oW812q0sXJ0WJkEQWxqVkjxUUxtIEjO94dtds\nrhz7w+A8HwvjDOu17zT2YPxzHCFhyhkwcEOsaYHdgtYEtCZheQSIfOwPXjJlaJRgE+q9cVaYZ3Ns\nmv2PrVN7Al7+qZuSAc4kMHsCOA03K/tZYS/ZSJkz4+/wDX7MS1d/wcj/1oG/ge4FsBrKpywTf9zg\n2//lW2zvm+DGzCF+eHq/77AoKGxMIRQmAZX6hrx+SBzYJhMX43JicuKBNdc6LqEbZxCaerhQtoOb\nf7jtX3iHgd9lj0GF//68swvfPVyF4q+f96Sg36XVSJzUkQCgDFhfv43nqxt/n2ZgaEVow/xs6XR6\nbGxts7Y1ytRoSqVSJiqVkXGCUA78wgSXKIsSwvloae/xVdi+nFEXGnInayyKYsDk8oBVXjhZpLU4\nab4J0lAGLC8vacyLwrORnFxce69hJ98bADrWe/pmvdwDj4I4TpyXcpKSxDGLYzX+3eF5CgGJtf0m\nVcHLK7CxBgCXywWk77KIACsDeMQA2ELcJYF0XR0DeBbAL9Vngbk3+xxCeL8vIRHK5YdB7iiUwgrp\nG6VY1y7IpwRWOqWNAwoHeYo1gw843H+I4Dn5RdDLseQ8u2yIFQYurpe/8sBXAGgCi66Fyw0siNjN\ncQeh8vAGj8uzPK/fYeL7Tcy/h4u/gI8zGBPw7FmYacD+ySXOPP8eH5ae4sax47AQwQSwO+a3W+bu\ngnhQRgRlSnPo0fbHmPr3zgEPOdDruIBTwGngGG65P+Y3tYGrN1wAzkk4W4XV/fSZZR36Cv1txlln\nBntQUDpmOXUelndd+XoBeKoMHIXdvRXW5Aw72QRmJ/VpR2CvhOuW8eXdKUOxIxscw33G9ArjvgO+\nADY31uh121Sr1bueD1ONwfYrAVEUEccxaZpSrVaJktRBsr+WweUw6+tXDRcser0MqQQzE5OMV0vU\nRsrcWlpheW2b/7awpFmPuL5Llhd940ipXNU/TSKSSKEEJKHigKCXZSRx7BIra5x0T0BhIRgtShlj\nrKXICqzQxCoiwlDonCLveaP/2He1cuwo1EC3bnXuzekdK8oKS24K8jzzvluaLM8wxiK1Ii9yuoXG\niohWq0On3aOz22J1cYkbVy9D0eHU44/y3Jmn2bcwT1wuEcWxS9z8l9gGVkG4zHddzkHFJFRJ+hUb\nwsdhB+xpKZDKPaeEJRWWztYG27dvMjk1hYhjUM6LTPatPY3Hu2T/MO52f/rNq4P3LqzStMTMzB6k\nlAwrLr86I6BRobMiuKuVMKjY++qD97XcbY+xyhx3RmY4/MgSyRnD134CH3VdvDgdwdwxEE/C+p4x\nltnH9sakw3uaDPkJLQA1EGMQpSAjd1/o3DGjbNPtkA1ctaTu3xdAr0BrruEi5yiDji4wMMnc9e9t\n+N9HgGkQ+2BBwLPA65bqSw2OHT3HKfkZ+1iiQod2ucKtIwc4f/Aklw+fpD1VgzcF/BzYFazfOsgP\nT+7l/X3bVNIW2iqa7RFaN6bgUxzg9SFwSUO2xt2V/eEg92D8LkY701xabfHEgRKlSFEtDGmnQbfX\nQkVlUpWiTExuNEpJonJMYQVCKMp2BKsLpDXoyDqJroHKaI1Or4sS2osDDSULyhrS6hSoW1i6gMGE\nWGSh32nKBtDfTXJxHCOwGOsN5nFyizD6882QhCPDGbfrAha3Gmw2LnHl5iL7Zmvs3TPJXKXMzGiJ\nkWpEORFE0jKztsPOXA2rLZm2iEKQaYHNexR5RqNTsN3IWG8WrNTbbNV3SXtdagJGKin/4+Fpx0bo\ny0NMn3mhEICT8Sjluvk6iecAjp5MUhIjafU6tI1l20ZkRUEtlhxXJWh1uGUsTeWuj7L9aOJ8bny8\n0qFJyoPxFRjBgyVI91q4ObyDCwabDAyIY7By6D2HYasEy7B9bZJzex/lvepTzH39DnvWtzg9CSeu\n4DzsToL9Dmy8OMr74hk+zx+hPF/nuLjI4+1PqbzdofgreO8D+NjX1h5/D54xEO3XPP4vP+VYcom3\nHvoGxbujsOgcGdYAACAASURBVJGwxiy31H4a+0eZfLrBs5ehcweWDewR8NQ8JE9A81jEIgdYY9ad\nTr8D/QqsxbhYFYC/LgNPmR3/CIb2HQaeLve3z2Mv15Sl9AD7ANSSUrgGHt4cJDzc+M3XdV8+AgD2\nRSAs4CHaegcp4Xy+NrZ2ubm8xkhJcXKjSeO5MWSckVtBSRtKSUwSRd6jtximYLnigzbOR7gwGG3d\nz8L77HqASxvHxup7dWH7mwirOe0BucKYPuvLYj1rjL5EMhTgtQfTtDZIKUmjmMiDXkmcEEWKWLhZ\n3iqL8tdDyGBwH7lCS/gMPFLZX99L0a9nW198R7jnJd7fy4NbwT9LBPmjl09K38yr39AkMH+FRIrI\nTwRywOSSXoIoBNozvnzPAG9W7ywENO4aOoaYM9031l2r4CcphOtAaUVgg4kv3AvDLDYYgF+VShml\n1Fc0Pwgj3P+Cu7qhC9F3DNlTW+MAt5i5Vcd+CEvn4HuZm+GEdTZXf/FzKH294OCpZfaOrTA6v0Vj\nctbhXCQ4alYF4hFQkSN1WJyBaB7YZhu4ibbEoAuuX9OzD+JpOCXgBeDrlpFndth34AYH05uM0qAg\nYp1prtcfYvP8XrL9ZRgR8IsyLO8Du+FkkOsCFuFm8yHOjjzGs6d/waHvrnFsF2q/cOb2M6Mw+izo\n7whuLhzgnHiUxe5+1yl4DehYBgWNEPcGhcwv+hebocf9Oe5L4Gtj/Q6dTgcYTBzDY2Bw74CvYHBf\nrVaJ45R/3ODnEiBrDK12h06nQzw7Sa0yTq1aolIuI6NbrKxt08l6WOH8sApj6BWa3Lc1TmNFpZxS\nLqVIbXAdtwxGFGSmQCtJrCK0FWRFjjE4MAs3rxhTkOcuKTKp8w+LlCAzBdZArgtCcFHSsXaMpy0P\nygwGTUFeFGRZ7uWNrsJUaMAKtDVkWUEvd928up0OzZ1dVm8tcen8p/Q6DZ556hTPv/ACBx86TFKu\nQORkmcMSQ609yyFUlO5NUkS4tiEBDM97Ort1P5UUGCHRAozNsbogshqRtdlaus7M3Byz1RGsddUd\nY+1Q9zJwqyYGpZzfcNzt0XPPqQjBzJ454jih+EqvVYfBl9ClK0jwOu6xWYFlaF8e4/yhk3yUPsGR\n568zd3uLRxM4eNVhVmP7Ifk27H6rxHvpGT7nEdrXJpzEfROv5Z+CaAJqKUwKVzUq+912E9hOYHsM\ndqZAT+A6nawwCAjjOCN6z2GOqzCSQMln2hYXvNoGWj0wTRzotI6bWmdgvOTa1r8ME69t8PzBH/Oq\n+CHPml9wcPs2qq0pqhE3x+d5N3qON469xs8qL9HIp+FvcTTua2AOJOzM7mEnEOR2/a6u4eSNq9aD\nXou4aNjEJUDD/l4Pxu9i9ArLlTsdCgvlJCKOJKnUlLBkcQWrFZEoEZVitAKSiMjPZ6YoEFpBnmOI\niVKFzg1puQJxgsBgigwhFCpKyDpNovIYIilTdLa9QXwAlF2CE+aSAdDvOtMqqUBoTNaF8I7A+hqa\neixuUe4W3k6UYa2hXRgWt1qs73a5vLTBZDlhrpoyOZJSK0U8mRme+WSRm0dm+A+HZmh1Nd3MkHV6\ndNsdsiyn1dHUOznNwtDKC6SEcWERkXB+mlHkGF14+ZGXpUtPGh1Q/4eliu6fSENqLTJy3VQbXc2N\nXgamoKwsC3GJNI0ptzMuGEFTSqzR9LTrvqit88F5AHd9FUeILcNAf2jw0WAgU+/zaHDz+zjcqTmp\nzMcJnxx5hjfmlhhZaPLSv/wZe59cJ77l3pEfliw9PMdPJl7kh/ZVLq+cZHRmhz2sMb69izwPWxfg\nfeNCEECew0NXYM9FmNqos2d+jfGpLTbUKNyA643DnK09zpOHzvLMvzhLrWf51rvQqkO5BiNngD+D\ni4ce4hMe4+b2EefjeAdf6Q+BIJxbqOh3GbAXQteuYXnLV3oh8Y8yskJTSpwkSHpyj/KsGSPCOm9g\nafKruub+rsYwFOD+b+lmOYt3tvnzeoc/urXFhz1Yeu05KjgQRkURylqE0eA7ugsA7/Glg+Sx7/Hl\nGUX+p2Nu4cOJ8Ob09I3og2wvSB61ccwmgSuMa+M6UOZF7lhjAfTKC7S1RFFMnCakaYk4SYni2ClL\nhHMpEbbPbep7eAUZZ18eONA/fkHe6BpZ4RqxyGB670GtIHdkiO0lHFNMSmeFIYa2JYRBCjtglgXJ\nIs4fri/txBeSpBzgVdb67pm+s70dgFVCgjAChLu/TGBrBzN75D1xSAx+fgnwVa5UUEqR/0EQeAKF\nYEiK6LH9lB4V2kQNDVuw3XCzHLjPYAsw3sYryXpUaRHH+cCthBhG5mFSOUHGuN+FAXZT2EhdTlAf\nB1vDMWYDk8oDX3IaDgk4A3xHs+/Fmzw/+VPO8B4nuMAE2xRELLHAudqjvP30i3w4eYaOGHcMrdYI\nbPeg23USyItw58o+3j39HPvVIt/9zg/YN73K7Aswu4OzRHkSrj25wJsjL/Euz7F2aR9c8oeX5wxV\nQhhIG+9dyQzbndzfq5z7EvhaX79Dp9P+pUBDGFJKlFIkSUK5XKZSqZIkJSeF7BsD37uN8P8v6/52\n7yu914oRWAm9Xk6r3UUbQxRFVGsjVMolypUKo6PLXFu6Qyd3E+XG5hbtTpfmRI12p0uSlihXx4iS\nKjUSktiCKYhETGELdAEyBaMVuckobEEUaecbY01fOmKsodvpoaRBSuusU6yll2XowlXBXecT5RMi\nADexF1qjMVjhjDKLwvkSFEXhi00OBOv1HPCVZTntepPVpVtc+vwcWxsrPHH6BN/85kscOXqUqJQi\n4xIyij3d2yXvzsA+1Olh+EvcpygPdTwT1rpuN0GqKRxrS+ECex+OEdaxIaxFWM3WnWUWr11kZn6B\nqJygfdDjrr3aof8Penj+puPLaPRCCGZn95KkKR6v/QMZgWobZCfbsDXlvEnOKj5+9EkO773O9PQG\nr//rN5g53mTiKm5uPwTbz1R5e/Y53uBVPl17ivzTxAFBm4Adh0oMRwQcda9nDkfcMrg4cRu4KeBy\nCa7NQScYhAa/mDlc3/k9sEc5Hf8+Bjp+C9QFrClYrMBiGRojuCpRA6IazEt4FEpfa/LkgV/wZ+L/\n5buN7zH/9gbyA4vYBjsNC0+ucOzly1TLLXr7U9584btwQ7gk5w2/z3EcacHgov0mLtLnHX8yqzjQ\nK3RrCf4E93eQ+6cYNzcyGpmgNhqj6zm9rCAeUaRxgqxWKI1U0MpVk7Wv6spYE0USoWMKYYhFSq+X\nUa6NEycJutMFY4iTEj1vqltWimptnCiKyRVgXMMFS+aM2T3o1a8gK+nkIcp19U1jKHptN+dZ+vzZ\ne4fxzzvZn2M/GAM5AqELbEeT9Qp2d5uUpSSVkrNG8URu+O/Xmuxstdjp9MgKTaElxghKSCIBBYY4\njlBS0StydoWlgmRUayKjfYLjk4khD0w3Bl25rHU9slxCIp2Dn7AU0hBFglYcs9gpmFKKUaOJix4P\npzE1a1hs5KwaKB6wuv6ARvCsCrKZ4NkY5PXx0GsDELYN2R64WIZfQHN6nB+89h260yWWZhY4MXWB\nma9tAJYVOc/n8iTv8DV+tvMS9avTjE9tElGgCgMZZD0364aR4wo19Fzn0picSBVuYbII9Y/neOcb\nzzOXrpB8o8uT+y5S+QgqW8A4FE/C+aNH+ZvoO7xdvMjWpzNOOrMEZIFdvI2Ln8PXIbCowyPIXMK1\neTCywvt6AVZIlAhsIQdmuPWj6wYrBXd1/Pu9sEE9cSs3sLbd4X+pWf5r4P8eSZnf2GZ+doa0pMgK\niy66xAJiKb0tiZM25r3MFaQLx2aTuGZX1ljnMeXlii6/ccVJYy2F0eEQvNeXY3oVuvCNn9x1CaBX\nL8vIi8J5hPnDV0oRR4okSUmSEkmSEkWRL2o7T2WMQRozMJsPtikE03y8v9fAW2vAgvI5lxAUHiCy\nwnt2CUcw6Hd6ZMD2YojxJfC2Ln4Z74C3wWft5IwDVhl9ry/pVDBeSqmtKxYZ3zggGNf3ATQc+OWK\nOSHaBRN96W1oPHHbndRdss5h4EsIQaVScTYAfxBjuMmUR/I8lp+R0KJCUVWICZgchdLOAPyqAXIS\nGIc8jemSUuh4YHU7L+C4guPAQRz4Vfa7WsfVja8IuFR1a/oixQFwt3HA16QrZp8U8DWYe26Zb0/8\nDX/Cf+Sl7Z8z+dku8rbFlsAcfZ+rj7zHXLxKfDTnzVe/6xheq8D2OBRbsFSCs4LugSq/2PM86VyP\n3Ykxzrz2HodfuU7FtmmKEa6ph/i5eo4f8hofXnse89PEdfpaBJcE7DJgegU21x8ECvo7Gfcl8LW9\ntUmz0biLZTPc8j38DL8H8CuOHftLRSk6d4sIKaUz7bVBY+snZFdD4NdiAVmwVpHnlmazQ6eXMVqK\nKMURtfERStUq1ZERSmmZm7fX6OYarGK3sUu92abZyUHGJGmFJC0jRMRIOcUajbECpdyXoSg66MKS\nximRVBTWYovMa+0tUeSqHXme0W57/xOfdGhtMFr0u7pYa1FKEUWR8wbTmizPHe3Zn7IDvyxau/cX\neUGW52S9nDwraNYbrC4tcfn8eRrbm5w6cZhvvvI8h4/sJ66UQURYGbvAYk2/LXO/T7NfCGClv+ou\nxBocY0EECrvLoPqVpLCgCZsR4V3WIHAMNomEvMPWyi02lm8ye7hEpMp4kRD2rs/1ywDQX3/8KrZX\nGLOzc6Rp+hvv45/fyHFlmJCgdIAd0LtwdQw+Aj1X5c1vfRM9rbidzPPYq2eZe3WFmJw77OFzTvEO\nz/PWzjdYfW8e3hNwyUJTw0QMjwtnXPy0pnyiQ3lvk+pYHWMkrd0xuqsjdC9U4BcCPhDwyTg0DuFA\nIwUchHQGjkZOw38KxAlNPN9DlTVYQVGPyG8lzjz5rIBPK3D7AOjbkJYdUHYMpo6s8Lz8Gd/q/ZD9\n/2kd/b/D9vvQa0BpAmpPWvbU63zzT95ksbqfqyeOsnjyuOvMdcXAYgcWQwIXFko9d836Ls1B0tLm\n7jbFD2SOv+ux3sg5u9hm30QZnXVIU0ltcow4HaErFCKyyFgRCQXWeVRJJEoJjCmwKESkiFHIyHl/\nCW1QGqBAJRE97aTqlbEZSiMTdOrLCGkQVqKt+NJZyMnSY0xSQgtJJUkpJwm93N8bNvQ2GaooY13T\nj+E50kpf0bauE7CxaCw93L4zFB0L/02tSmwFxrgOXS1d0Co0FkVXGBSWWILNC6RUGCHpWUNmBEUG\nOtV9uQd+DrdWusSsT661/cq980rDBQIhkQrvSSPIo4jdKCe1EFnJSifnZl5wITM0H3Ri/AMeOQMn\n4AFHcNBYBZz0sYWbN5dh9RB8EEEi2Cr28ncvfIere46zULrJRLTt2AR6ilvNQ1xZPkrxsxHoQOup\nETaZojFWxe5fZ3I/HL7qSLjgrB1H58EuQKtWZotJGs0xt+trwFuC87UniU8V7MZjXHz4Ax56+Bqj\n7NJklGs8xAc8zY+LVzh/8TH0TxMnb1/VYMJ838QlPgFiCHP+vUBgYMI9GAC5t+3wvQARwnq/ckEk\nPNtJSQdeYCkM/c5/5jfWlN3L4fr13xXuZm2hay03m11OzlU4ePkGx7ShMA4UstUyibAYGeZrg9Wa\nopeT9XoYYxAIlHQsYOMpSzYwlDxDy1gPcBWueB1AGGMthffqynON1toV8S3kWUaW5a6Do79Gkc8T\n0jQlSVPPeFJ9QEoJgVTSSRFl8OLyzCzP8nKHKFwjE8+s6udaQ+AX/v/KX2PblzcObVM4vzaJY/m5\ne2C4G+QgB5T9JZdx3y4Pdgklne+vcmCV9sV2KwITzhEBslw7cBDXgMwi+x+m8ehWYHoFXmE/HxAD\nq4J+Gb//evrHCAOp4x/OCPNV7qiIDQnrsL67h6Wx/WzsG2fqmTp7PoLXPoTPO65Z+pMTED0H3cci\nbowusMR+GrdrDhuSwMvAsxA91aNyuMnY1CblUoe8iKlvTtK6WSP7pOxyifcEXNiLa8OdASWQozDl\niunpEy2emH2fb/N9Xl96k9r/2UW/CZ1FUGVIT2mO/8kt+PbfslMeZ/HEfq6efhQ+F67rbkvAdhs+\nq0BNsBvP8Mbr3+L23AIfpE+zoBap0KFFlSUW+Kxzius3Hqb7RhV+AnxuoRtUJnUGjN7QkfLB+GXj\nvgS+sl6XjY07GGO+MFkMA2CB8RUm7dHRMeb2ztPa3aKxs0aeZf1KdKCmiv5kLH4J0eKXL7gzbdht\nZbS70KlI4sRSVpLRNKZaXmCyNsFo9Qo3b68yUhjSVpf1nQY79R10kREpi1Sug+Ls5ARxLMm0JYkl\nkQSrC4pem6JsqZZKSOGCW2GNM53M3SQaaMnWOgmINRYpFEpGfQ8Ua5yhpfDXwGhDrgsKY4eo0J7y\nnPtHkZNlOZ1Ol2a9wdrN2yxfv0Z9Z4OD+2d58YUznHr0OOVqCRU7s3LnoxVELZ6HYMMyIICWDgxw\ncc/0P4PADBiAmANQEiOcx70rYSGMBas9IKYRwpIIyHY3Wbx8jtHJKcpT8y7YmUB1DhDEgJr9uxoz\ne+ZIktLvbPu/nxGqExl9xhd34E4KH6aQCDbMPG889x2uHD7Kkfgqk7gK+zYTXMsf4sbqMTbf3wNv\nSmcKfwsnRTwt4BWIv9Vl36nrPFb7mKNcZYpNBJa1kVkuzR/j3ENPsrxvP7qaunhxtgatWSCFZAZO\nRPA88LJh7JktFuZvslC9RY1dDIINM8Ot+iGWHjtAvlB1FmDvluDGAqTCMbUOwMGxm5zkPAcurmK/\nBzd/DG/sOOLZ1C58YxsOTcHCIyucOHWBhXiJxYWHYDpyhaatBk6GGYCve+UsbQYtioN58f3btev3\nMf724w1eOlImiS0zJSimxujoEUxHkwiFlRKlIrCWyEqktOgix2iBUJGrbiOJk4RMa6wQFBREwiKU\noDI2jiigrCqUx2bZWomxoosSCmNUEP75owkJnQQZYaVCG4OSEUkcoU0BRnh2a7+xr2c6uNgl7krS\nxEAO46dPbd1cbxHkRrvjD6xYaynHEmET4o6mqy251W4DKLoePCswJEJghPJG/QprBdK6rmoCZ0SN\ncV2KQ8A1vkFJSFg0Ai2C2TJ0taWeFXTygsUiJ7OWprEPaqD3zQjfhWFPyfDdCH5goZlJGbISXN0D\nRQy70Lo+wbmTT3Np4QRJNUMIS7dRIr9RckWO88B+2Fme5nrtMFdqhzn0wjLp5zmvWnhk1X2X9u2D\nkVfAvCQ4P3aM6xymdXPCEXMvAx3oJWU+6Zzh9sPzfDj5NPMsU6FNmyq3mefK9glWL86T/7gMbwPn\nLTTruI3sMGD39hj4aA5LWgL49QDsHR55YfsMHWNBWDHQaQjn3xQJ0ALP+hqUO39frC/r52ojoJlb\nOpttWtkyjU6XdrtLvV7nwNwMeyZqjKbOlzfGATwBUOl3NpSSoNowxqIL4xQaRve7NGpryHIHcrm1\nuPAMMOfbleUGPSRn1EWB0dorQxRJHJEmsfPxiiLXlIogX/THMNRJUeKYX0IEub70LUikV334u7jP\nnBqwpBwGJLDSA2QMmGHCM/qEGORnoZNj8MUMr+vLK4VT4gDeLJ9+V0fk4KGNIde67+2lrcuhMu19\n0ozxRviyD15aLye1/jh9w8vB+fXPEcdku0faOFwnF0L0pY5f/RGkxUNSddOG9RFYhMalKT555jHe\nKT3HzB9tMNlpcXofHL0GqgTJo8Afw/XTB3iPM3yePYK9mDo212PAa4axl7d45MCnnI7OchDnydVV\nJZbmF/hs7ynOHXqStel5iAUUAi5PQ9EACohLMAscgrED2zzKOZ7L3qX2t106fwmffwyXes7O64kL\nsL8Lh2Zv88yzH/KeOsOto0fI5yvOQaUVAZuwFMO7CfSguz7OJ0+c4crhh6mOtFCxIc8iOo0yjas1\n+EjBB7iOK3d6YJdxxZvg8TXclf7B+GXj/gS+sozN9TsYo++aLL6M9aWUQilFqVRifn6e0489TrUU\ns3zjKndWV2m2mhS5W2QN4BafPAjbl+fdPe69MR2MUhSCVregkwlyoyiMSygiFCPVUarlUcJ8vrHT\nYHJqmqS0wfrmFvX6NlevG4QAXeTkhWGiNkakJHEkqZQSEqnoaoPRXYQRxJGiMAVWeqovrm27M/Yt\n+kaXAEpGKFF440pvhOlBsPAaly9JDIosL+j2euRZjtaFD6yaZrPJ+p07/Bffe4P/oTZOd3eHAwem\neeHFMzz+1ONMTM84jxYp+h4FgaclfMl/cElF//qFaoj/4Pp04rt+ejBSIhx7wPiHdf9X1nt/4T63\nyBryLGNj8Qqrc/s4WK0hSyOua1kQOgrPQRAC8VvON79qITUxMUWtNs7S4m+3j39eQzOoxLdwi/hV\nyFO4OA9FBC3F7q0pzj06zoWFJ5ATxlUx6wp9W2EuKvhIwFlcMlIARxU8C/LVgpPPfsLr0Q94hTc5\nnZ1jZtv1hVydmeCsfIw3a6/w/We/zSXzKKaRwLaCK+NQTMD+yHVh/COYff0WX6/8hK/JdznJeabY\npCBiRe7l7MRjvD32Iu/u/RodNemwp2biCG2eHT3NBnOsIm5Zupfgkx1HnrY48GtyFw59DiOLPeZO\n3KEmd1C1DF1xLAQ3Ve/iIni4T4ZbLwdJS+EfD5he/9Tj0kqb1abl8GyVWEh2I42UZWJtSZMyRrpF\nfNSXiTtGrrUCpWJXZFGCJCkT5RkFgixrkyjngSIihckN1kbEIxPIqIwtuggBisi1rPeJfpB9SOnY\nyloEaQaU0xRd9Py06cCksBAPnaFkP5K5YQFhrasXWG/cay1GSJcQaeu8uYQg1wYkREIwkiSMSQNZ\njs01iZZ0clgW0HFacyoIImkcK85K0EFe4hjHAZwbXuz3xSFCgi+QCKPZyQquNrqsdXO6xvT9Vx6M\n+3EMgz3mnueDBLKJm1Olm7cv74Mt4STmH0E2XSUrV93aoonDmhbxZjJQnCvx8cNP8FP1Ivueus0T\n//oiEwdh/Cqu4fQJ4DX49PHj/IwX+KT9OJxTrtvXEi4IdCBbLbN8+girRw6iZjWibLAdiV5X6CsR\nnBOO/XsW2OjhiiAbuLj5ZYWOBxDv3zdybfoMGon3uPZaNisCG8irAwJoMqQE+e3GP2xW6q90Azji\nm4nnGjZ3u2TZHRq7LVZXV7lzYI5jBxbYOznOWDmhGseU4tgDSt6A3bhGJ1gng8wKS7cwZIUh9yBW\nobUHtwqyQjPwtfLAV1H0Oz9mRcF4vcWpO9u8fXyeOJJEkSKJY5LEFVuUR3ecWbw7J+kJWwiGWFlm\nqEOj8AUhvM2I/919Kj7Ohc/FMb9sKIiAZ035To7c7fkb5KvhvVKGYrn0x+QO0mBdsxUPeIWu9QU4\n6xZ//tpaD9s4s3tjrfdcixFSOTaej6/Ol9ifUyBJhLqOGEgcRThPhDfvv/u+CfdjtVLx3stf9RHY\nSqFJRxPsNmyMwGUwHyg+XXiaH8ytUt7T4aV/9TP2ntmkvAykkD0suDh/hO8l3+ZHvMqtz465OdMC\nz0Pp9TrfmH+D1+Xf8YJ9m6M7N0i3DKYquDm3h/fEs/zd3G3+7pXvsJof8IKKBFangS1Qqm+0Pzm5\nzkFuMre8A+/DrQvwo54LE8JCYwv+1TtQ+nrO/tOLzFeXGZlqsD1eccgYCrjjtPA39rucYQXM5xGN\nhUkaU5MOte66XTsZpn/s5GCXcGyvLe42tw+Fjgfjl437FPjqsbGx9mvTlZVSVCoV9s7vJc9zyknE\naKVMmpZZXl6mXt8lzzM/sYKTkLibLyzgQ+QKbYnDfelhE7AGKyRZXtBqdyn0qDOODPpwa4iilNmp\nCbqdvRRFjkyrjNZGKVdSbq/cob6zw6XLl2m12rRaPQ7uP8DISJU0icl6hmopIVaCIv//2XuTH0mv\nM93vd875hojIyDkrayRZHIqkKHGQKFG83VetbndLfW93u+0L2DC8MGDAC8P+BwzDgDdeeeOVF94a\nMOCNYQP2xcW96it1q9Xq1kBREikOVSzWlFVZlXNmjN90zvHiPSciqkgN1EBxiBeIyqzIGL6I+OIM\nz/sMDfgCoxW1bXAGMZg0STgimUxqi1CcAahxVU1T11griysVBnfnCDJEeUVl7SjKivGowDY1tm6o\nypJiMOD4cJ//+u+/y5PjMV+xQ37y8Cm++AfP8/wXn2dt87TEMmvp7mhNAA6njK73w4Zi980TxKUz\nXZ042cVOl41TotcCeOHRWFkUIF42SaCHKyBRjmp0xPa1t2mvnGLz4lPMMruUFxPNByC4D1y/rHuo\nteaJJz/DGz/7NR78I1uzOnSN0HXDOegUvHMGegncUvjXDfWGERE/TFUqt4HrHu7WUPdheV1ihb8A\n5750ja8l3+A/qf9vXr78E/g7JhqUx5++y/k/3WHj8X18W9F/fpU7ty6K59fdZQHdngK+BGtfvcPX\nu9/gr93/xx+efJdzrx3JhiUF+5jiuSdf51z7Dslmwz989Y8pdpfkuHamr9SHBcyMV+573on41ZPz\n2KIV2PvWMp5pBnJ8oChnnDV1nktafh/lPXz/2pDPPLJC4zRtb1loL5GkiiTPqEJiFTiUs9gGEp2Q\ndVpok9DUDSrVKGXI84w0AajBWbJ2jkkybOqobEVraYkkbWPLHi4FayFtoscJk2AWlMTFt1ptbFng\nlaWVt7DliER5GmupvaJyUPvo6hVA/NAziJJyB5KC6ME7hVWyedQeUq1ovKdSYWPjQQcJeitVdDWc\nNZqWz7lXKg6rgp6CXBkWU02nZdC5ximL8orGu+lcStiD+BnOroNSQeUcQ+vYLWve6Y/Yr+YU/3n9\nsorj5oNlwQ1hbxMOunBFQ9dIA0MBhYe+Eym98bCWw6tw++IT/PvPf500bTj48rf57GfeprNdohQM\nzrR5Y+Upvs1X+Zv669z52WPSqHkHGFSCXLySwY6BKwp7NsWuprLhqRAS9DbCZN5y0B8Ad7h/wxMb\nHvNm5O5S3gAAIABJREFUxwepyt4vKZP1psdrMVnXEYzRCm3DqniGDTRbvxb7a7KgjTyg9/6Z8NeZ\nLcN0CRFMoioLx8OGYnxM77jP8eERezv7PHJ2k/ObG6wuLrDY6dButUgTUaa46MoeLk3jqBpPZaGq\nBewqa5Es1k1NY11IHxQfr9qJdUndNCLl857/5gfv0K0tb5/boLe6ICynmMIY9j2zAJSJbCzUhEkl\nclMTGF96wnbyYfyXPHUJN5kAX7Pr/ZnbO++mn20EyKbv7oRxFn3bhHkl7DNZi+kA9gVNhxHWlldg\nnae0AnjV1gbGV1jjBSaYMoZUG3T4vwNwMsdGvzJ3n3okooDh+KKsMjK+VLh+5lyJ52Kr3cIkn5Tt\nvEfGs5KJh2F/Da504J8U++tn+NZXv87gVJcrS0/y1IuX2Xhxj4qcbc7xBp/le83L/PTql2i+ncNl\n4BHQL9e8fOGf+Ev+NX81+Dec/+YhfB9Zpy/BM5+/yZk/O2Dh3JDRRodvvPiXDN5ZhXcVHC5BdU8+\nh2APmeuCNiP0wOGPoF9M/R09MjoPj2ChD7ktaakSbazcP4GpD/gWuBp2z8FxG95NYFWJesSEt2IA\nHHk4bKDphYN+sPkR54H5HPDL6pPyTflAVVUle3s7EwDnfWumu6O1Jm/lLC4tcWpzk2I8oizGjIqa\nUWUpG6j7fRnFaATEogkDVNBuPzivqZkrI79VQVXX9AYDymoFa9OJibvzki7SaWVsbqxweHxAb1yz\nubZBp9Oi3cq4cfMWvZNjyqKgGI/Z2zvk1MYpzm5usrjQYaHdop2lZImiriUpq7ENTjuULtEmCcyD\nBBQUZUVd1RNigHEW18hk58JEaK0VGWNVY2uL90j3qKwZDQa4uqQajRieHFMMTiiGPf775Zy/6Cbc\nfOI8f/zSc7z08kucO3+OLM9kYomgoNKYYNgYfcV+/uf1IE2YyWfntUZrg9cGZa1EVYeWWWR4aZx4\nDeBJtNCV8ZZMe7SvON7Z4vb1d1g6dZ60050xnfzw6smnPssnr5MbF+sVItmIi0ALDGHnNJwswJVU\nuiSdcLcKoUoNLYxiZP1pSUB5DMznCj7f+jFf8d/h+Z+9Af87DL4J29ty97MXYPG648v/1avcffIM\nV9Yusf3MI/hXFfwwE3/6xyF7ccwLSz/ma/5v+NOtb7P6//Tx34LiJugE8mc8T/6HN0n/4hscdde4\n+/B53nruedwbSTg+4ASOWGWXTfwjkD8Oz/wMdvsC9a0BLywAT8LgbM6uOcVxs0p9kodGjmdqVB8p\n4FV4I6YS4Hl64++/fnqjx9Fwk6ztMVhyA71RA80Y1Vok0Sm+qWkaS6JyTG4waUrTNKS5Jk0zGeuc\nwmor3ieJeIFJjzDBpppWO8ckCY4EozNIwNcjVFNNu8VK4bz4syy02pBl+GGPdpaT5jm+9hTeUXhN\nYRRDW+PwOKRJIIyr8MLCotuFDUgUklkvckWtNAZF7RxaQ+a0gGRapIqVVlSJofZi16GVY9nAcpKx\n2W7RTTVeeyp5linTgvDTTRstg8ZyXDt2qob9quGotgzt/Lyf169a79cRjyywIXAIbhlOujL3TLbL\nMX24B80G3NiEH2mapYzX1YsMP7fA1fYTXFq+wsbyPhrHHptc5il+NH6RW288QfU3bZHk33BQHwJ3\nYbAJV1bgTgcWwhyXMs18GXkYFmAPEcrZDoKIRUPjOC/MNzwfpBonCgWjzcRk3OvYXPVoF9IeIQAx\nzHhETReAs4Eiv7xmWqO/wu0fXGb6+/4S5bsisysdHI8s9d0ehydjtu4dcfbUDusri5xaX2VjfY3l\n5SWyLEUhsnCsg0Z+bxpLXdeUVU1ZVVRNLdJHa0OCu5PE9rqmDn69UcqXGsX/8uITPFo17C52aOtE\ngC8iwyzgRhN2lcjwI9Ck1RT4mpg5BgBLR7VGmJP0TFN76u8l+wSldGBnBfawinBXYHoppumKWry6\nmAGYlJi83fd8zge2dHg91ouMsaxrqsaKHQyBEabUBPQyJhHDeaUnMn1JxowBAoEh5n3kDAQzf4gS\nzulFT19FSDqeVSalaUq322V3ptn68ay4jo3r3LC2d124/TC8kkCquDd+mG9+eZE3zjzH+e4tVvQx\nFsNec4rbhxfZv75J9Z0O/COyDn8STl/a4kv8kD/sf48z//oI+3/AvVfhcAidDM7/ENZ6A/7ov/hH\nri0/xhsPf5bLT6/Cq8CVDKrudJoooLBt+mYJt6JRm7C6AMulQFEJcAFonQFOwSjtiCm/TacijcBd\nlL1LAZxAtQa7y7CXQ5IgnXAHTQQCj8LlUG4/SXOMCe7zddCvUp9K4Mtay+HBHmVR0O4svOfvcXLx\nCixeNONpQppnLCwu0l1dpdvbYPFkwOLJgP6opCgbmnI8mTTBi+zEw9SX5/66v2kkA2LV1PT7fcZF\nSb1gsNYHWqxDaU2aJix2O2ysLjEY3SNRltMbK3QXO6RGcfXadY5Phly/cYN7d/dYW9ng0UceYWNt\nndWVJZYWFuh0cjrtFmkis7rFAjIJmDC4N9ZSNzH22E2kf87W1FVFWVbUZU1TW2xVUxYVdVXhnLAI\nqqqiGA1RtsaWI+rxAN8UuKZksZ2w/dij/PGXPs+zL32B02fOkKapMMecDV0Ygwrxw79sQaGUwgVT\nTu8cykmnRyuNMxqa6ULFh/cSb9AkaBzaO2EoKEWiFdYjsh7rSLAYrSibMbu3b9LZuMLDlz5Dmrcn\ntOkPq558+rPATz605/twKnZ3NLLSHzGdXQbAMRQrUCzAYQd0Krf1Nfjob3WEtOUfkuTDM7B+YZdL\nXOGpo6u0vlNT/Rv45lV4O5xKzx3DHynoXPI8/9DPeKL9Ln//2DHjzTXZfKwCD8PauT0+Z17nxeGr\nrP5tH/V/wqs/hrdrSBS8eAUeH8PFM3d56Y9+wKudL3D9kScZnVkU8OwAuA03ehd5e+lptp75Jy5+\nfYfHD+DcK3B4JCS1pS+A/xrce/QMl9VTbNUPw20TmvqR6TVrUBzjiudd/o9S3T0q2DoouHRuDHZI\noptg1F6TaahcQ11XmDQly1uyKHYNOjHkeU5jxWdQNOvIbRD6q7KeDEWpDUneprWwRt07IM0WSNsZ\nRVGjmpqYgIVSaJ1QVjXOwkJniWGvj/OeRZNiaKi8pfAwMgpqg7MNtRd+ovcJs/rtCKjNCshiupUK\noBhB9h22AkQjgVIlbBuHVwqrEjazjjRyjCENdimxBSHQmwtNCWGfVd6zPSq4XdQcVpZ+42jCxmFe\n8/rg9eCZE1mzJbKh6CARujHVa/Y2Q8DCcRd+2gUF5bjD29vPc/2ZJ1m+sMdq+wiP4qRY5njrFOVb\nHfz3DfwA2UidDJCO/S2gB3YFekvQWwAl44IY6hXI2H8Ujitudh6Mr59/Ez5oOeeD9FzWitoJ7C8+\nhtIYjhjIVPY44/80Y43ym/l9vf99J2SwB27hQRjxUUmijCQIek/poS4cg7LkoFdxZ/+E5cUW62tL\nrK8us7q6xGK3Q6uVkycpGoWrLa6W1MeqsdRNHTx5g5QxeFXVjQRYVXUVzOvD69eahSzBLHWpVhfp\nKg3aBF8rAZo8YZ6IoFcAmcTQPnhsRXYYbgL4qAgkRWCLYFjPFBAiAmHRPwwBvlRgmfl421gTaeHM\nYwQZ4ix4hQrhKUzTHK0TlldV11TWijecSULIl5ruF7VBmSBv5MGmvJ7Mq2ryOU9OsPCaooTTTBlf\nE0K3uw94jefj6uoyH/+K75K0wGSsPQAyKHO4cl6GuyMYXl3h3UvL3Dj3BKbr8DXYnsHdSuANBT9D\nEnD/ELjguZBv8TRv89DWNuZbnuv/Hv5dJUvsDPjTV+C5NVh//oRnvvImF1vXufzI56WZ3gF6XaHW\nnxjYh/3DTW6eeoStc5s8+aUtHvkZfO27cLWGBeCFTTB/AMNnM260HmLbnae/3w0hvHHfUyPjeB/Z\n7+wDXfAdJLY7YUoMKJmO+zHEapbpNU9w/1XrUwl8ARwdHtLrH7O8to6AVIHQqgWkamwjFFUlA3uS\nppgkwaSGLM9odRboLq2ystpnOBgzHIwYNBWuiQPSZLjkfUGv2W46MVBeDONPen3KsgaUpCE2DY2z\n4kmmNVmasrKyTPvgCG8rWolieXmdxYU2nXbK25ff5fhkGBhXjs644H863uN/e+bzbK2t08oz2u2M\nzkJOu9Miy9MJKy12fZpG0lomz28bTFXyn73xBm8vL/PTlRWaSkAwWwvLLfB2MRoS5cFbfFPh6hHa\nVWS5YnVzg4uPPsyLL77Apc8+Q3fjVJiUNCZMEmmSEL1mbOMC6Kcm72Mc6F1I5ZntuMUFSHxv43Xe\nRzNJmYF06NCILEehnPjaGOG7y4TkAGdJE0XbOA77+1x76zVanS6nLzxCmrUBTxLZEb/hORkZdGVZ\nUBbF5Oe9e3e4fu0dXvvJK8Bjv+GzfBQrAl0w9SqJHY44GSwAGTgzc59o7l4Dj8vVC8ASLKQD1jlk\nqd9DXYfdd+EdL1MGwBUHL9yGhWuwfDRkvb3PwsqA8dKaTHLLwCnP0sIJD3GbC8M7qB/Duz+Db9Vy\nVHjoDWD1R7D2E3j0j65xTm2TrVWM1pF5+w7wFhxcP8f3PvcyF9Mb/Iv/6BucXjxm8YuOxWNgHZov\nKA7/cI2/XfwK3/Mvs3X1oshh7iBymAl9LL5P8b2a10ep+mPL1Z2Cp897Wu6ERI+xaYZutXDe4pQh\nW+ogpr0Ka4UZnGWZ+GcpIFFoqzFJileK4WhEkmpUAq526DRlZWOTjVMPMTrYZqG7yvK5s9waV7gq\nMgMBFDrr0KCpbMHm4inUeJVlZVlpNKY/xCWKsXWc1AKuNaUOwbmWZiLT91OegpJxWE0608GvxAng\n1ShP5iBVBmUgmnN5BaU2OJOQeVjUKYl30mgI0nIwuBAsgnM0zjOoLTeGNdcGJdV8TTev32qJrHcq\nF4+eiSky3gZNy323j2nEd8EnsHcRXunAkcLfMBQXuxTnu+wsPSoPfSQ35V1kPH/HwUmBAF57yKZu\nFG4Y5jifClVyIskcM50LC6aJvdXMsc+/HB+0bLDpMEo8mQzCzPFegkU0AngZFRMAVcBFpkybB+tX\nA8DieTe518+95c9/uCBTnByDNB4ii8h5sI2nGtb0y4b9kzGt7UM67ZSlbsaFTpv/+fIu/+vzj3JD\nK2wjhvbOiqF94zzWhfV/8Puqm0YSHp00MIzRJGlGlqXgFQsOOj74bwXmVTwWH4AuHaR/itnmtg57\nrWBQH3TtSim0icBP7I6o4Ksbac0Tg7AJQ0s+uZhcxeT9iX5ZkU0GWmxKJp+ngHBiiK8n4JcK3lnO\nWqzXOK3xOqQzB4uVSaIjAcQzAvx5raf7kolvJfLYkgKDNvG4ItA183sE/XQ0759Jplf3n4srq6u/\n7MT7mFSDjLuR9dVnAlXUDbxzDg4SkSCeVdiNDNtCvlZ9hBS7Ddzx0rdoKVho6OoBa/aQhf0RXIV3\nKhGMg4ykb5Zw6RZ07ng22GeZngzJHWTIR0PVh70VuAmD6yv8dO15vmv+gI2//H9ZKcc8dR6euhHu\n8zlo/kJx7ZlHeEV/icvjp3Fvt6cekfSQ8dwzDabKwvUR9Jp9T+KYX3E/03c+B3zQ+vQCX0cHHJ0c\ncy6ysiYjiYA/ZVkJEOHsBFipqorhcMhgMKSoapRO6HSXWFnboN8fUoxHVE1EqmcBsPeekH7m33iN\n92Btw3A0pigqIhNZ2EwW60LUuza0F7osLy8zLgpwNQmWMxurLHzhOc6fPsXbV66xvX1IUVg2e8es\n1iWX3nqNf1w/R5JotIJWK6PTbpHnGYTnjkCXJ8QW22bCX1upK5bv3OHC7g63z57BW5E+ahStPMUo\njdaQGEWivUgHU4/KMhYXVzh39jQXH32Exy89xvnz5+msLIE2CEErIZ34jBF8zexEex9ZLb94YRHf\n93DE3uFsBMuYaPqd1uA1ymlJ6pls5mQSwjnhHhiPwaGdJVdDOkrRP9hi68rrtPKcU+ceRquMCS35\nFxzbLAAXZZtVVXKwv8f+3j32dnfY29thd+cuuzt32Qk/d+/dZTgaBPNpB/yPv+D1f5wrgl8JMgHE\nLkfsbsTOe9TFB1kxDbA+fRjHxDDLhwUYGtIE9AxmJH4dSEdSi9Pb5Kuqw2EkHqNrWhTkRQk96LkA\neoU6AIY1rPWhTUFOgU6s3F8jqpQ3Yfy9BX648jKdh4cMlxZ46V/+iLMv7ZAWNVU75e7mKb5vvszf\n8DV+dPcl+McQW38Hpt3+WRPj+ST3UayqcVy+M+CvXk7JTInyYxKTUpYWlTl0JxMfLxTeOrCeJEtE\n8qEVRnlq63DekiSG1GiSuhYma2LQuSGxObrVZvPsI9y5/BOU0qxvnOXo4JCT3gnKlSiEAZBoTau9\niFOKg+NjjPUsri2zgSLXByTaYL2iV8O9QYlxmm3nqFAS7qGS+z1FCJxD70P3Xca22lusFomKQfy/\nHuSgaKUwYa51Ghp0YIvJ5qGyllFjOa4sx3XDQWk5qhrs/FSf1++s4ljqZi4104TE2bVcPKPDnI8C\nGji6AD9bglsJbCqZjjrhYUeEzBYPJzWUJwgStoPMHgNkjsuYelzGZfksu7dhKmeJ/48d/jnb69cp\nMXifJh16QHvwWofrmQEh1JSQEyw0okfwtNn6QQaq39agFh9nut+Iyxgb/mxrT1k39McNaX/MwYni\nrNK0RpbTr73Dv11bCB6OAZhRYe0U9iQOP0ltdIGGprUmUQm5MniVkpJQOU3jFS6ah3gdpPMg/lmJ\nyAVjimJMcpz5P6HBrbSf+m9pDcrMMLwigyqCXXoGzIoXPaETTNhhhOcMn6mfrBEVaIMPYJXWRoAm\nbVBGB78wjzYJifMon2Eyh7GWMjDj7ESuqIK3WWS8abwPTEI0XrnJMSsdWWkRxFOT9+Z+6aWZMOKi\n1b2eYX1NGF9rnxTgC96rYogrjwbcGPY34LgD11qQ6ykptwFGFsZjYS5kXQIiiYQOaFyiIPOTHUW0\nbcgBlcqVjez8pk/vQZQmR7C7BJc11Y/a/PTc59k8v0uy1vDP/tPvc/alXVq7Fa6l6J1Z5N1HH+Yb\nydf4lv0PuPnGYxJQcgMYW2RiiM3saEyfhetS7gfHo41JHP8jY2x2/prXr1qfWuDr+PiQXu+Yoihw\nzpFlGcaYCbg1Go2o65q6riWKN8sYDoeMx2OKomA0HFPWljRrs7y6znAwYtQ/oakKXNOAcgEIiSfk\ngxOdf5/rpYNQ24bReExdNziXSkywtVjbYHSKx6CTjFarRVEW4BoS5WilioWNdU6tr3L+7Bm2bu+w\nvb3L7v4B/20v4UrlUYN90cijKU3CidITppZzTUjq8igtscBBA4hS0EsU/8PGEkVisLYQP6wE8ixl\noZ2RZxmtLKXbymgpaOU5i0tdFpe6nLtwjnPnz7K6vkp3qUuaZThj0DoJaSo6aO9naePR1N7L+/mA\nrPBBuvlk3gu0Yu/iYkQmI2McmCRM5kp4RRoa7WiUxWHRxqG0pEk6I8bNRnkybVnQDUXZY//WZVp5\nzlK3S2ftNHV4PIK8x3tP0zRUVUldVVRVxWg4YHt7i5s33uXm9WvcvHGV7Tu3GA4FMB0XY4rxmLqu\n+PRWHMxhqvOvmHY/HuywWkRP2EzvF1jDPbvIAev0l7vwxB6rT8Czb04DXp7VsHIB/ONwtNFlnw1O\nDlak2RLnoVJRNzkjOgw7C7Q2hpwxwnzeC0fwELAakht7LDGki63MFKM6QJ50RXHcOsU3vvLXbD92\nnh/lL/LIuZu0KBjR4Q7ned1+jrduPsvw71fhOwhV+2SMbJJm44rnfi4f1XIert0dctgrWT6rWdCe\nVuY4Ho5YSFdQRuNwJGiss5jEoI0WabV31E1NUZUkRkOSYJRiUS8yHAzQ2mASgx0rfJJgM01ncZGq\nqUnzFq2FZQbtBRjJGKKAJEnJFpbI8kxk/WrE4fCExXzMykLKkoZUKc6anKW2IksLisOKgwps8CN5\ncEkls5qfxLer8P+U6EMiko8aR4ohGtKLV4uTdWiUCynNcVGzW1QclA0nZcPYepq4kZjXvH7nFc9w\ni2w4GuSsNj/n9nGrFEGyERTrUKzCwSKYXDbwUeNkC7DBO4w9QlQYQk+IgFbBe7v8saKUMW50IkA3\nnwN+k4oMJ1llTpMcXQC8hLVkZBlqPHiHUnYCyMSKzcwPv2ZAk3iNmkIEELhlavo3FDjr+Vvt+I8X\nFNdToD/Cz7CbtI4g01TJ4Jysz2MKoVEGRwLegNMkVlE5ReO1sKIIjGYfIagAJAVGUwSgJp5pkxxh\n+RCEAKamRvH3mbxH5hdMGpzh7fAqvlDkfuFvsk2YwkYRUNLahOZoYJWZADQZgzYJGE1tG6qqogm2\nL0prkixDo/CmohmPaWwIhZl4jJkJWDcxx1dIw117lIv7hVkppprKOoOcU5mp1FHeN3m1muhpNgW/\nPlnA1/t9n2ZVIAfQBGk4baZ2QpEhOwQ2oO4GY/iEY7vKveQMvdOLbHymx3Ovwr19yaFaAV5YhPYl\n8I9q7nKOfdanw3QJk7SR/ml4uwNnFYdrZ/jG175Of22RqytPcGnlCqvNCbVOuadP81Oe4/vNy7z5\n1vPwrQx+jCT6TuaBUXjcKKOPzf+oTZmt2QYNzBUfv359aoGvk6MjDvb3ODk5pihKlpaW6HQ6AlKM\nRhRFIQDXaES73abT6dA0DcYY8laOSVOUTmgtdNHGsFaUVNUY5y29432RySkF3oL/1bS3kTTUNA3D\n8ZiiqmmswVlCt0UEmXFw1DqkhFmHUZ5WYshykchsLF3gsYdP0xsM2d/b587WNunOIaNhRVU2VKUN\nskZJbXHWhk6WzAFoUEaT5imtdk6Wp+R5SitPWc2EKdbOc9p5TrfTodNqkSVGwK5Oh3aa02q36S4u\n0F1cpLu8SKvdIslSVBpYV0qhlZkkvYCSfADUg2S46ezNe6f7uNlSoWs36X2FTk2ckCAhpsV4DTWe\n2nsa7bHKYZUAClOgLRyEkWPMlWMxaTga7XPnyk9p5RkPP/0FCjKOByMGx0cMTo7onRxz9+5ttm5e\n59bN62zdus7d7duUZfGBz9NPX8XJyzDV+cfu+oNlmMZfBervUQr34ODmJleee5I3l5/ioX++zcKN\nkj8x8Mx1AUQvPAX8FVRfTXgteZZ3/CWam11pxvcQPG1XcTJc4cbKRW52H2b1pbc4+xP48+/A5UY6\nRM91ofvPwH5R8Q6XuO0vUB7kos4cIAbGt5bhewZqzXi3yw9f/Ao/+8zzrC4fkKmSyufsH21Qvb0s\nE+P3gVc93K7AbyPc7R4ymcfJbw4LfFTrzmHB1e0eL5wVk3ffNLQ6Ldp5i6HzOF9TVHVYdFscHuNC\nN1d52u2cNE9FPR4YCcYkwpjKEvIEisTTpBad5dSDEVVVsHxqk91bV5n4A4XOfJblLCxvgK/Juoa6\n0owBn7VJjWIlV+SpZqmbsZA5Ku8pD2sGjUMpR+3juOpnh2GRZoIsysPWJVWaNASSWEB7H7r4DuU1\nqZbHKq1jv7BsDQqOyobazYGueX0UajZl+OeBGZFTExsuwZiYLtgFsClBG8NUnhJSThgwTeGa9eiK\n7LKfVxMOD9Pm0Lx+k5IQEYv2DQ6NJgAuPoJe4LTCh8aEdk1Q3HmMMRPQITL4Z1lgv/sK5+CDi+HY\n9I0NiaCwU6LMC0oOBV7xhlLQBI+tALpor9FemPUBUpHX6KPXcLAJ8QblE6yTS+MMjdMT4EsuwUwe\npiywAHBppTHGTCWO4XUIcUsYXFHSOAHEAjAXGVwuJiCG+SlKGydiQBWlq35mxRQAOD2VIroQqGVj\nt9wojLTi8d4zKkr6wwHjosBaS5rndLtLtNptTJKCrvDOy+uIm6egAvGT9aufenkF7zFis54pgDX1\nM4tJl2rC9prMswpUTDueue/aJwr4gvul6CDjXlzr95EVeIcpSzaCQnGf1RZ/3D3gluJ2cYE382e4\neeEHrP7Lt1g98vyrf4DjXVhahNaXwf8V3PriBm/wWW4MHxOQagcYeya+Wn4HbjwE309AaY5G5/l3\nL/81b1z8LOeTOyzoAY1LOWzW2Soe4vDVc/BdJUb7r/uQzHsXmQ/iHBDlinC/ncn71Xz8/03rUwt8\nVVXJ7Vs3ufT0MePA+jLGYIwhTVOqqpph7lS0Wi1AujsKxcJCB5208A6K8RjvHbapKYuC8XhMVbip\nAeUHkCZ5oHGW0bigqi2N9djG4poab2u8a1A6QROMIR1478JA7ciNJksTksywtNRmfX2Zh8+f4akn\nHufoqEfvZCiXXp/BYERZltRVjbMOo7WkiKWGrJ3TXeyyuLxEp9shz3OyzNDJUxbaLbI0JTGaVBuy\nwExQ3pMYQytrkSQt0rxFlmekWYpJwqRggs7f6MlmyUxovVPfM/UA+OV9SEYJmzofJuTo2YWXzp3z\n0Ng6TBCB2uqddFqUQykj+7Do6hYSUnwkPofJFyUU6LL2DKqGylYMywG9ynP3uGCn/w7ffuV1TOf/\noj8uOTo+4fjogJOjQ46PD6mrTzNz67dRcZGvZ36Pi4gHb2eZ+KTsteE68NOMnzz2Bb7dfZdTz+7x\nwn/5BotPFZy/Gu72JJy8vMCrj3+Ov+OrvHn4LP51JRPdiZPN+i3F0a11Xjv7PN9rvcSpPz7gfLHL\nEw/BE7eQvcrnoP5zzVufe5zv8xJv9z9D+U5bJIo9hwBWPbhxFopcTAUua8YXVhivr8jcXSBkgFuI\nD8xVYK8Cexd5oEOmlOjI+JrDBB/VKmvHP7x1wDPPWxIUy901juqCfMFjlaZsElRLGMYAKEhQpKE7\n3ATRidPSN9GJQucpyoGjxhhNmrYgX4C8ixr1ubt1k4vPPMfW8irD4SG6qXG2oSxHdIBWdx1UTVe3\nMeOcxdYKeXMX09SkecPKoqFTaVKTUTrFfumpBzWVVROAy/vY/5eSTZRMc4mRxXrs26OEDOC1bESU\nrlWXAAAgAElEQVRqpxjWlmEj8sX9oqaYaxjn9ZGt2c76bKkHbhOTHgdItyRDltWzhvgRHCuZelLG\nzU70s5x9rtjoeVDCEgG3ef02yjovvrlqwhnCoGgmssboJu4D+GAwxuO8fLazioNZf9kPr/x9P97v\nr0pH6WJoAluEbRQSFlFKPG69lhRLE8CvaDgfQSbncC6surVB+ySEQ4WL0jQO6sZTWyXvkTLC8MXh\nnKKxBAuRALJpE9Icwz4psLKkUT39PYJe94NgM83QSTfm/ua4mOor+RkZbNoIz8orbONpXC0eZs5j\nA2NMaY1OkgBqaYqyoD8cMR6PqZuarKpQJsGkGSZJyFotqGpc3LsoHVhyMy8rwogPHPIEt4zHFz3H\n3kdiCwRrlpl3It4excbGBrIO/iTV7Fo3rvVjCFaOsKZmLVDibZaYULXudeAd2H/tHN/7g5d5KN9i\n4SsFj67eJH/ZsrkHdKF+3nDnxQ2+wdf4bvOH3LvyELyJeHKNo9dYHzEQS+DqGahTOAD7TsbNS5/h\n5vknUQsNWIXfT2FLwWXgDeBNDwdDhGO2x/3AV2xsPPhl/kUNmHn9uvWpBb4Abt54l/6gT1lWKKXo\ndDp0Op2JybgLEsOmaWiaRkCiuibPczbW1xhXjsY6qqItvovOUYzH9Hp9ThqLrUtZ+f/S1J2Z3oqC\n2ln6RUnlwHlNUzfYpMbbBu+ssL3i7b3oxLUKIJI2wRsmwZhEaLepptPusLG+QVM7oe2G11QUJXVZ\ngTdkWUaSiq49zVLaC23a3Q5plhIXXZnRZEkiPQxr5XhQkqQYPGXSJAOdoUwmgFcY5bWGRMkGz4Tj\nlc5G0NXDtGMWfbeYThweoSX78Jq9xEDKz5DMqADvfJgX48QRwbLpIKLwKKFUyKLHOwajgqNen5Ph\niJPBiMP+iKPeiKPRmONhyWG/oDeuqBpL1YjnQaQ/z+t3Ve+XvgVTECxuIgLwNVyHyzn8CLYfeph/\n+9K/wHcU954+zdMPv8NqcYTCs9/a4M320/w9f8Tfjv6Mez96CF5VAjwNC6hbcEXR/LDFqw+/yKkL\nO2SnKv75v/pHHnv5JtkdIIXBxYQ3Np7hW/kf87f2T7h55RL+NSM6/pN4XLvQlHDnLOwvwmUFG8jc\nnDCNrd8FjjyUPaTNtI1MkL3wOPPY+o9L/fDKAf/5oEdyWuSGuZ/KFJIkCXISAeUjU9U7+VzjEk4r\n8IkCZUjzDGpLVTToJEObnNWNc+yvbuIGxxzs3OXSC19k9cw5mqNdXL/Ca493NXVd4FEsrJwjdQMM\nCd0VxZovWS1HLKVjlhcznPVkWU3lPQeFoaktd8cK54MPlwrjJoAimClH/qHCK5HJOxQoj3WeUaMY\n1jW9smbQWGrn5p5d8/oYV9ygxIZmNGCOrK5ohh8ZXLE7XzP15ooSydmNzuw8F5kO8y/K77JsYJkm\nRge2j4xjRiMM3ImRvQLtJx6xk35FAIR+PY+v30bNQioPXhsqrH/dzC2n5vARcFJoG8CWoPecgi/h\nXg60D6+fhARD4jXGKYxTaG9oGigrKw17B16F9ToO6xXWeawW1WhkpkUWk5ChIpzD9Niisf19IFj4\nfzzecPP7336Zt5xXE78utA6NcUfV1JS1pbK1rOW9F+BKa1RiMGlKkjq0EUsCjCFttVCNGM5X1tI4\nS5q0WEgykqSiqCqsczInSpLWffuXBz6W+z4sPwGwJp9SUKdMzewJ869RoJUJ2JiegF/r6xtI9/ST\nVpGvZ5gybePaH+TdiX+z4W/RJH4X7l4U4OkfDG+sv0DrmYJhZ4GXvvgDLn7mFt1mQKFbbHUu8Gr6\nAn/n/4Qf3n2Z4p86YlNyx0MTGticMEmeryxcOwN7LQkvOQesG3xu3mu0fw8YH4f/bBPcgZFGSJQ6\nvt/4Md9b/i7qUw183bpxjZPjY6HEek+n05l0Olqtlvht1fWks+OcI0kSsjyntg7bH2KsJ80SPMLM\nKouS/kkPax3FaEhdFfi6Ccbk9y9yYvdCICAtQAyyoRiUJYOioolhiVYM7p1rMDqRx/Ox68R9E3BM\nSTFGui5aCcPKhEQVgnGnMYGC23gSk2NMIt4tzuKUl+5PYmasLhQ6MKu0AozBW2F64YRhlZmENM1Q\nJg3dFZnlEiVJj4nypMqRKHn1TqnoRR4qJqBMr1MqGGZ6hcOjlAvvJ0wYQfEugUItj+Mmk0LjPE3d\nUFc1ZVGyd9Ljxs4+N3cOuLOzz+29Qw57AwajgkFR0h9XjMs6SCXn9dGpBzWwnqnufw/sGtw6Az9S\n+IWUK/5ZBl9c5PLCUzyxcJW1hUM0jl1O8Y57ktfK59j7h0fgm8ArwG0H7kj8Wi534DSMV1f5xtf/\nnMFml2vdx3ny0hXWLh3SYLjHWV7nWX5gX+LVK1+Gv09Frnjdg42JlHflGH1PHvfeKbjX5n4PmUil\nPmKa9hXNLyPba67p/7jU8aDitat3+ezjQ7IEEmewXuMxGFm5ygbDh8QoAC8NAaNCUmJ4rNrJAryu\napRK0EaTmDZrG+dYO/cQzdEu5UGP46NDVs6c53jrOvXgCOctvqnxrsYrMPki7XwJW5WYxLLcXWN5\nuMcCNe2OIctTWgsanTRUPqf20GwXHFSGwgsvVvnpMj5uUqzXOGWCh6xi7Bwn44pe1VBaRzMfQuf1\niaoox4++MhEEg/tTIGcrjt2RSfYgm+v9nmNev8sSdYVHawFQvA8rcTsZnkOqo5pstdUsQDHz+++H\n8XU/AxdmSFMAaPG5lYWxGMtHL5MZDy/lPdojjC8Pyrq4mA4qCx/CeaNCI3hzWYXWCp2I55ZtPEVp\nKfKGqnbkmcIYg9eSsGgDEBVN5YUUIMcxaYIH8MtNWF7xharpMakHrnsAVPIRBFMaRRIAOAHeqrph\nXJYMi4Ii+nbF16m1MLnQGO2w2krYAaCTlO5CBzyUVYW1jnFZkeZtOp0W3hhq73FNg7MCaDfOyiFr\nHfz3I4treq5EqEs+julrVpPP1ou0ceLfr4jhCvH3eDH5z/Mk/CRUBLxgCltES5QHK2UqLT+A8TK8\ntQLLiiJb5Hv1P2fn6dP8OH2BhxZvs0SPkpzb/gJXmqd4/faz+G92xGf3NQ+HYwS5OkQYWiNk7C7F\nu/H4NByvwGUNXSVP74DCi9SSElnT74THOERQsTHT5se8mf1h1qca+Lq3fRvnLGvra3jvKcuSoijI\n85wkSSY6/pjqmCSJMMDqmqKsSBNDq52hMWQmg8bhqppi0Ccxmn5vSL83YNhX1PUJ3taIDl0MSkWS\nHkCvCXlVBsSmsQzHBbX1+ERkftZa8eLSwkYT8MqAF1+wyFLzgXOrvCIxJsQGK4xWJIkAX1p7SXfU\n8ryJlqQi513Q44MygSIdUCWTGDRG2FbW4ZyV+VRr0jQhNcI001rSupyXCU8h3glGQ2IIuv6YuCfe\nCp4I3E19ZGZ7nrO9kGnnh+n/g3beOsdxf8jhSY/Dkz5HxwP2D4+5u3/E3b0j7u0fsXN4wvFgRFHV\nlHVNVTdUTfOLQhnn9ZGr2c5PiUx0x8AWDDJ4fVUWVn3D9q3H2X32LK9ufolONsIrxbjocHRvDfta\nC15FLm8Co5g/P4R7F+GVDDSMxht856U/48pDz3B6cZvFrI9HcVisce/kAnuXz8B3U/gnJLmlNyLo\nHcNxRUbAETKJRm+CGNscvQtGyKQY/AQmbILoATCfID8u9b037/H0n9YkqcEOx2jn8Yn4DBJaAnom\n7tyZMLYSOB86Bo84lFYkWYob1zSNI8lzXN2wcWaD42tttPUMDw/pnrlAd/0MR4e7qEbyRxM8K0td\nkiwn6+SopRUa1aO9sMpquowuK9BgEk2rk7GhLSpRqETjbcMb92oOak0ZZI2gMN6T+AarNNZpkTF6\nR9E0jGo737bP61NQEcSK2WB65ueDt5t8q5mP4R+dqmonTVwlzCWPNB609hPgSykwk+WmjGxaa6yV\nz1HNAjQfck2kcg9eGX+JYFdMTIwMqlmQxYNykmipvJr5kxe/Xx9v50MatqgltNcT5YTyBus8ZdVQ\nlA1lbWlbTxYtTnRkxSmxLQmGY9N9j5oAaz6+6aj7wKD7dgERcJyRSSoV3g8vPr6ExMnGK5rGUtQV\no6JgOB4zKgrKpsZ6UCYRE3mTYHBY7TCNQ9OglRXGFw6dpKRZirKOui7oj0ZgUpI8J81zMmspehU+\nsLqbusE5S6pFEik+YLKrUW66BpCXMwN43QesInu0B0Cu9wO+fp/n4YdbEQCbtUFh5rroDzxEAKcc\nDjJ4pQOVwh61ufr8c9x6+lGWVvukpsJZw0l/ieLdRfipnu4JtmpkP7DLNIF3VnIZfUqWoO7A0QKy\nro/NkUG4nIRLn/eu6+eeXR92faqBr/3deywvLfLII49M0hyjqX1ke3nvabVaLC4u0m63KcYF1bim\nnThUK0elCa6BlhmhGjHAxBZ0OhkHB0P2944xiWYw0JTjHt5Vgvr78IWNuvDwr1JCvfb4aUxuGNyj\n9HIKfGmMSUAJUGatGOALJduQpgmtrIUKnUmTaBITDDwDwKR0NE4mmHomMoGEycfhsIE5pY34iuEc\njW9Q2qF0QhIAryQAbM6LGb9HJJjGGJI0lWPVCqvEeyuyBtR7Ea7J75M/+TBhhP8rBU1tuX13l2tb\nW1zfusO1rbvc2t7luD+gPxzRG4wYDMeMSqEgS3y1/JzXJ6EiEBRBox4TMOkE+PG6EKduQvNKh/2z\nHVhATqqYKn8LuILQmUfhxuzK4zUpXD8PdQaHUF5d4NYTl9i6cJFk0UIDzXGC30rgbeCtcNkfhQfe\nCcdUM9XznyDeBDnTSTp2fWKcZMX9XjAxyWu+Yfo41Y27R9zeOSFZ9RgNCvFRRCuUdkEGMpXIuCjL\nhgnTVGtDriUdyynNuChF7pAYvFNUzlPrhKTVoe6fkJx+iAsXn2S8c4fqpATvcE1Ju5WwuL6CtxVq\nqU3/5JCBS/DtNrnJ8L4CA0YrOmmKSRVJnpFlOfh93trzHJSeEkWjNI21OAeVc5SuEq+veedgXp/K\niuPyLzv/59+Pj1pVjVh1aCUol/dB6ujBaGGD6bAOld81Wjl8WNcCE2P7Wc+v30e9/zP76U8v7C1c\n8DCNuw4fwCKUhJGIFkPeEz8F/CZ7FC8XkKaM99K0tt5TWUdRW8ZlQ7tlydMUEoMyKjR85JGm+pcZ\n0EtHWxQdca/J3+WmAQSb9QWb3D/uE0J4VTCDsR7KuqEoKwG8xmPGVUnZNOLxhqTZYx3aeEziUN6R\nOItuzNRU3iiGRUHSCEjhlKaqavxwQNZqsRLAL6UHWBu0CCoAc7OHGjUw4bXdt915HyDr/UCumCo6\nfb+YXP/pqp/nwViHnyMElDLgErh3HoaLgoVdhurCIvtri7IUr5H+9DZwDZEuHoyQTcIdpGE9QNbl\ns4nz0Wj/AJFX5kw3sdHbMa7nR9wvbYxy93l92PWpBr6apqYcD1laWsI5R7vdpiwlucM2ljzLWVle\nobPQod1p452nKWrsWINNaFIY+YJxUQKKyhZUdFlVK9jMQZ6DSTCJI00bjmgoRjIqRhaZCnMRENsV\nIs1rLMNRIXK7PAsbJEmhsc6KrxVhsESYW8KW0qRJSpZlZGlCmkqgPIAxIm9MEoPSYJsmMMHEnJKw\nABBDYhmcjTakWsA1IWRJOolSCpOkwVNM2HEehfUOZ534vzhPphKUkfQL572EjU306wrlEekPsmjw\ngA8gVWMbGmtpGkfVNLy7tc1P377Ka29f4WeXr/LW1RuMivLDPGXm9ZGrCBjBFCZVct2ogLc3YSuB\nDQXLCNFKEZowPkjtK4SFFTs7J0i3CKgdXH8Y9hK4puAc+JWUup3KU8Wm0jZw10M5RNwwbzGlNMcJ\nrkaArZRJ8s+kIrgVfbxmDS/nHaGPYx0e9bh56y6Pf0ZRNDUd5Ui0wwV/r7iwn3ggmkSYX94jiVTi\nVag8GCfd9zxNsEpRjx1J3mVx/Qyd9VMwPqF3eMBaUXHm3AWOzz/CvdEBylUYZ2hcQ6uT4iqo6VAW\nOePc4NMOeZbSlDW1tWRZgk48OjWsGU+rleKaRYpqSHloGVaWgbXUVjy85jWvecWafx8+blU2AeDR\nAErkfoB2TECuKM7TIPYfQWEQ1/AgyououPgwK+IpP/fM8x5ZdAd/W+sF9HJqMv/4CfNK1k4q3GTC\nswqRixPGmyBleBzOW5y3WG8xPqxcGktRVYzLijxNyRJDTgSs3GRzEY0q9Kx8NIA573kXo0okKGQC\nFDl5FyIsJ5+LwoWm0LipGRQlw9GI4XhMWVcyb2mFzlK0NmLcjw97FodqGjwe4x3aiOex8ppxUaF0\nQ5IkOC/+vr6s6A+HZK2WBIC1WviyDM35AFpFUDRu9GY+rFnQ9EEJbQRRrbVoJYmhw+GQw8NDDg8O\nOdg/YH//gIP9ffb3D9jf3wf+u1/11PmEVvRfdAgoFcuDr6B3Fl5dh3cVrCpYZIqCDIBDDwceWbff\nQZrXB0gDuwyXWeArNqtjoInm/oTJqNSYVW3En/N1/e+rPtXAF8DO3dukRqHTjDw3WJejvLCJrFUo\nI0bEOhGzyyRLsW1NVUNlC4bVmAFD+mpA3ww4SQb0kiHjrIQOdDe6JJkmTeXLcgRU4xHOTlP/vPKh\nUxEib52jrmv6/QFFVVPbBOumyYfWNtiJB3xE/iWS11kbDBa9pJMoMPE2sVESujaJSWbufz9V1qs4\ncMvAjw85iN7jtUapabINWswzpSEjUkpnfZBUTmOLow+ZdWIMb62b0KOPTvrsH51wcHTC/vEx9/YO\nubOzy+27u9y+t8udnb05yDWv96kYBR+7K3EpGEGmAzG8Hy6CSkSz4JA4OmpkgttH2j3HTM0r47kW\nDOoHm3C5Czcy6CSQhMdpPIxqqEqkKxQnyiNksoz+XPE4K2TYjd+16BMTL3EynGv/P+5V1zXXrr7L\nk19zqCynbmqStiywCY0KPPcxB1wAu/CWRInnijaJbDCUJsnzwM5q8F6ztH6W5VPn0OMTiuExx3u3\nWV5dpbO2iUpSqGp0UzM43Kcs+uT5IrlawndXGDDCZosYK6zfpnGkLWHtqgSsd9w+qbhbKm6MHdcG\nFYWbb+/nNa95fTKqbBzGBKatkwRbjQoyx2gkrtAqsL88ocksFdfM1tqPoNTMh2XFDIykAugVgL4J\ng2tiIO+j3i5oH8PvAfxCe7z2OCVWKxZL4xu0VxjEU7hxjlFRkhgtYVYaMp2RJBpvpmyv6TwSAR85\nhonpi5phQQkfjen6TlhdDoVXBqUMSid4NHVjGdUVw7KmXxScjEYMRkOqukZrTZJmJJns66yXBo5X\nkCSiTFFamk4e+VxjgJjFo5ybWBREcKosS8bjMXmek+f5JBDNBxYd4XHi9WVZUZYlZVlSlRVlWVFX\nFVVVMR6PGQyGDAcDBv0B/cGA4WBAvz9gOBhS13Of119eDfdLhyCYbiHr/TU4WYaTLlPVhZu5TfTh\nOkH2BNGPa7YZPStxj88XQa9ZxleUuDcz952v63/f9akHvrZuvItB0ggb5bDGU9mK0tY0VqHrlMzk\npInBK09lGvpNyXE15njc42hwwHG/R284oDc45qS3T+94n3FvROZaLC2u0WmvkxmL9xbvoaePKYZ9\nvJMvg0K8sLwT8MuFLs2oKBgXFbXNse7+BBlrZWA1RmMSQxK9tbyXQTRNyLMUbywYPfExwDtsY3FK\nkaRiej+ZXLQJsso4L+qJGb5zPnSPmFBqY8drFjiT2GPx/zLaMC4resMRo6JkMBxzMhiys3/E9u4+\n2zv7bO/us7N/RG84pD8cMRiO6A/HVPMBfl6/csUuT8l0UomRxycIsLUAPoVm1hizYDoZjrg/ZSWm\nxMRkxkPwi1AsQtFiaqrZMPXliskvcaIchmOKMsW4AI1eLz/vtcTbzSGGj3N577lx9QrD/SPS9hJ5\nnuInUu8w5kb/lNjhdVYYsFah0XKWObk9RqLjfdWQtVuMhiPAsLi+iS4PGBxu0YyPqYoBNumSLGzS\n2NuMRj2G+zuMB0e0Woskpk3aXadsGirdQiUdlK1JUvHqOhxaXr854jtvHvPG7RFbBxWjan4uzmte\n8/pkVVkH+bmaYXppMF4sQbQSb1yjpzgQTAGvuBaO0rPfR/3CkdlH8MsGMEuoXCoSt5TMM/IfE0Au\nwosNN5wYsxPoxwJ+WWUjRwzlFIlWOJWI8XtRCQygFVmiyRNDajQJYlxvw8UhZvkq+liFVxRZdURJ\nX/QpQ7y7XAC+PAZ0AibFeU1ZW4ajmsGoYFgW9IuCYTmmrK3IU5MUnSQonYhvptZkrRZJmpCkqVix\nWEtVVSLn9zHQJdishJAzFbSVtrGMRiNi+mddV+zv7XN4eEjvpMdoOGY8HjHoD+n3+4zHY6qqpqor\n6qqmqsLP8P95Qvxvqx4ElmaliUeI9CNH5ImRoRUZXNFfN+4JSmSdH5N5ZxvVsXEda3Zd7x/4vWG+\npv9o1Kce+Lp5/RrKa7QyOGp65YDd0R4Hg/+fvfdskiS70vSeK9w9dMrKypKtADTQaAE1AHYAzAAj\nlsuZtZ21FUYajWY0fqEZ+Qf4keSPoRnXyJ2hcWdsuZzZHQWxA9FAd6NFVXWXFqlDh8t7Lz9c98yo\nQgODAbqrqrvu0+YdGZEekVlpEff6ec8575mQT0ratsPZtbOs61WMsBwWY26O97hzuMfheMh4uM94\nMmGcLphlU+bZlHwxwU5LTiVbrK2cps+AGHDGIoUiihIOkaTzqTe8PzY5dL7HXkictRSFL9EtTRfr\nVC18+UyLn/BovM+X1Cjt2xq19uW7wtVZBlv5DamZOy/csamkdQ6Jro0g6+CqnnDpfx2HMeZnfAt+\nnvA1nS/Y2TtkZ/+AvYMhw/GUnf0j7u4ecnt3n9s7e+weDinLUOIZ+KCp8MtZI341G1mK39xifnaK\n4rJA1pQiN22JdWvAcXnzGGjXx4PLZvNzsqXXao6mtLn5mSzdD3zcOTrY58aVy1z4wm8CBiMMQui6\nbcOh5Ml669vOVR1zyDrJLny7hZMI7z6MjmKEcLSlYHFwRNzSiI011jZPc7S7Rxy3WN06w+L8kIPL\nh2DmVPMxolxgbI6WMUJ1qEyXKu5Q2DaHh0O+f3XKd9+Z8IN35+yOw3s0EAh8vMmq6qSo6bilse6U\nkF708lrR8azBurNhyZ7jgXa1h+nz9Uv9JNcMjGqmM9b/HnFSvSaFRCjXtITgFF4gO/bV4rj6yylR\ntzqCExacQThJ5XwFVQlYUyEKUJkiijVRHCG1QuoIhPI/30kUAi2k76qpE/POclKFJ+ruEuHtASx+\ncFYjegkVIVWMQbLIc8aTKZPpnLQoKIwhNxVOCKIkPhatirIkkZJOp0dv0Kfd6YAUFGVJmqVkeU5R\nlJRVSWW8x7HFx0JZ7quyFvMF0+mU6XjKdDrzX0+8sBV4HFhOHpdLRzMBPuZnLUeWbUYePJav4xua\nGKIR2R60L2leM/C48cQLX3fv3CbPKqRKmBULbo92uHz0HrdGu9iZ42LnPKv9Ndpli3E+4+roFpf2\nrnPr4B7jyZhqOmM+WzDJUhaiwMgKqwpU4qCr6ax0GcgVKhkhrMNZgbNQFgZXOZ+dN/WUx7rAVjiH\nxZLlBdPZnKJax9ioXrgdWvnN6SQ74MD6DTvWmnackEQxkVDoOmtjWTLxFLVfmDv5kHr7rkYwuL8a\nxVpLVpSkWU6WF2R5wWgyY/fgiN2DI/YOh+weDDk4GjGcTBmNZ4ynMyazOZUJGYzAw6JpJ2wmpTRV\nXQq/1DUbU/OeXDaVb0qWm8eWzynwG+W8vhXcX/HVbIrLR1PlFUqan2Sy+ZRrb/+EM5/9Ip2ephSK\nsn5vCeSS12MdcDhXj0P3w0RwYGh8WcC6EhXL4/W7HUfkKkK3+/RXt5iMM5SOOHPhAs4ULA6uUhy9\nRz4/ohweEJ96BhdBlpdcvbnLjdfe4t6Nt7ly85D9ackiD+t1IBB4MsgLg5ICISWmmVLOSTOdEF5i\nkfXjsm6FdJy0ujXX4U3VVzPt8XGh6Wq8X8NytbdWXc2kODH2kiyd3ExWbGxVTloPaYzW6xbFyloy\nW2KlJJISiWNRlchFBkrhpASt6Upf6SydoLQCZb2PmJa1LYuqPdSW/xHNHdHIk/7wciQUVclssWA4\nmTCezSgq46/KrL+Vyg9kWaQZZVUSxzGLomA0m1FUJZPpjMl0wmQyZT6fs0hTsiwjzTKyLK+HnuWh\n1fAjxfLU3QdjgqYlsZFAmmv+Rihrbv8h1/HNzws87jzxwtd0OmF/74AzF9qMF3NuH+5wee86t2Z7\nDMSAC5sXEYlgkk25Pb3H5b2rXB/eYTyf4ExFW8eoxBs6zqsCIwSynaC0IOq2vfClV3G6g3Je9PLC\nV1WPu60wWXG8sFucL7x0jrwsmc5TyspQWYt1vpIrkhGxdgg3x9kSa3z7ItbWxpSCSCliHaGlRqqm\nlLjx8wJrHUqp+jFvTC+EoHIwGk/YPRyydzA8FrYOh2MOhhMOR2MORxPGkxl5UZIXJUVZUhQlJpTp\nBh45y/33zdVSnb78mWzMsq/Wsr9W7Wdx/Dqift3lDXOZ5VbG93utwJOKc5brb/2QV6b/gmTQRrbl\ncTuHkI2/yv3GtpVzVNZPgqQ2G9bCT6avXEUUKaxxqNJS2YokUoioT7a+wWC2YDIb084m9NbXWDtz\nkdF8F1ulTHZvA10Oj+6xc+1tDm9fYzEd+areR/YXCgQCgUeDcVBYRzeSGGO9248Ead1ykZOXWUTj\n/eXb7eDEnLyp+Fr2sn1sECdDHJtqNSn9gfCi3/EhlicISj8hnpPzpDjZrxrRS8jaGt85SmOQwrcQ\nOqUoHczzvB5mVf/8bhuRxP48B1Vt8eKrm/3wLW+d77zRV3M5Vhvxl3UlV145cgtZUTGZLzgcTzgc\njhlNp77iq6xYZBl5kdeTHb2QVVXm+O9ijPdTzouCsiwfO9Ey8EHwYEywnLhejgma+HX52nY81JUA\nACAASURBVD1cx38ceeKFrzRNubt7l40zZ5ksFuxODrkz3mdiUlYGa/RW+6Bhd7TPtf2bXDu8xcFi\nRCtKOH/6DBfaG4gSrh3ucWnvBvvlmEqXaA26HdPqduknK34aiMGbaluoysovuPmcopjjTL0rOI6z\nGZV1LMqcwhlKa7HWVwlIIdEy8hMYbdMk6T/Qzrm6pVKiI43S3sdLKr9pSamOy5mFEOwPx1y+dodL\n127xzrVbvHvjDqPJlDTNWWQ5aZqTlYX3+ILHa0MPBN6X5Q3rwR7896MRrh58jSYLpDmZHNlMcFk+\nb/m57/dagSeZnWuX2Lv1HmvnzuOaSVH11EYp7veGcc6hlcQIixNghEM5vPeiMcftjihQiaJUELUi\nhGqxfu4ss1lKns/JJntsbj9FevYio+tvMjq6w+53/pIs/fcYU4Z1PBAIBIB5VtFvx94vF0tlmktk\nx3HdUS0eSSlQSJ+FgGO/p+Xj4VOb0v+cbwm55KFVi17HIpcUtTF8I2DJusoLpFC18NdUeclaDKwF\nMGpx7EQixDrne0aUQmiFdY6sqiCtfPsoDoWfkKlki8iBph4agKBEUJaWNM+ZZxlZWZGVFYuyIi0M\n87xgvMgYL1Im85TxImU8nfsOk/mcNMtqj2R38hdZ/jrwhPJgTPCLijSWzw18HHniha8sW3Dv8A7P\nmhcYzkaM0hm5M0S6xfpgk363j3GG3dE+Nw5vc5RPsJFga+0Uv/HM5/lk7yyidGzcu8GiqJgfVcyZ\nIxTIKCJqt+h2e0hhULXpu7WOoizIijnz2ZB0McIaahNFOC5Gdo48r8hyU7clKqx1VKbAOntSeHKy\nwtOkdSprGU3nFEXJoiiYpRkHwwk37u5y/c4u1+/scPPuLuPZAmtt7QdmjwWuQODjwQdRftxsgk3V\nWPE+5wSxK/DzcFz78bd5/qvfwEiFrQMRnPCJEOcnOfrwxeJwxEp4RwkJBou0PmiIlfLLvQARKWQr\nopwret1VhNMMNjYZ7mRcf/sn7Fx+jTvvvsnBnauUefAeCQQCgQeZZiVnhUQp59dZAVLYkzrxpv1R\nCJ+oECcVUs20vqYCSil1/NjD44Fr9rpMTRx/Lb1jfzPWXfr7ze9MU91VP0cs339A0Gseh2YSJCev\nU+NjFEtZVQhncVWFqbtMirJkPJuTRBGq7j6pKkNRlGRFQVaW5GXJIq8T77mPX9K8YJEXZEVI2gR+\nXUJL4pNOEL6ylJu71/lUesj+5ICj2ZjcOlY761xcu8h6ex0zWTCejzhIh2RRRRQl9JIuZ3pbnG1v\nIbRj2F6w3lqjo/cpsUjhiHSbJI5oJ5qEmAhvTm9xZGXKPJswGvYYDTV5QZ1d8hUk3v8FiqwkTw3W\nRjg01jkqU2KcwWIpjaHMLOMs5+bekNwYpmnGeLZgPJsznMwZTqYcjqcs0uxR/7kDgY8wYQxx4Ffj\n3pWfko32kWunsXXCQkpRZ87r1pjGgKWWwCTUPl8S6Qw4QxxFVK4evuAsupWQqwhjBTfefo3rr36P\n4d1rTI/2cKbCVMGTJBAIBH4e06z0WpCTKAXSuZPWwPqcxherMYQXStXG8Pe3Op4Y3z8iTtz3T/aT\nY9GrFr6EPB5oxbLAhfgZsav5dwH3CWCuHnx1jINjHxcHU+H/Ns4YPx3RGJy1PmHvlvwsnfXthsZS\n1YJhkLUCgcCHyRMvfJVFwY1b73Hr6CZ7030m6QwbSTYHW5zvn2dF9TkoZ37SR1VgEkusJEg/ucQ5\nP6lRSU2sI5IoIcEghSSJWrQiTSeRdFRMJGTdCOXIiozFYszBSp8oicnnzchcn/FHSLCaojRMZyXj\naY40JVIUTLOUe8Mxt3YO2TkYcTSdYazzZcbWm23akBUJBAKBx4LJ4R6HNy5x5pkXKIlR+ADBYo8D\nDteIXgK0Umjns5IWkPX49lIKnFA4Y8mHQw6vXebyX/4ZN179W+ajA0xZ+BH2gUAgEPh7maYlSvqZ\njcqCEgZ5rBu5406MpvrLiftbB71/lTsWvZSSGPNwpzueKHRLpvSyqcjyPr4PilnvJ3L584Wf6G4t\nVVnVg1ScF66s8/etO55oaa31vmbHwtbyL+bCdhQIBB4rnnjhC+DGjfd45/bbDGdTSlPS7/c4s7bF\nenuFtmqhkd4FswJXQCkqjuYjbk5v0o8jEtthbGfkqsRG3mA+VpIogjiCTiLpxRFaxZTOUZqKXtan\nO+7T7XWJY40T7nijbKYrOirSbM5bVy9x5cZl0jxltlhQBgPGQCAQ+MiQzmZcfed1Tn/jDxAyPg5K\nGqHL0Zgmn8Qw0tWtJ857yZR5xuzgkL1332L3zR+z++aP2b/6Dvls8mj+UYFAIPARZ5qVKKVwzlL5\nIqhjH1wnwAnXlHz5aYgSwF/n4/wUaClAKYFzPkEROXVsHeKce0AM+gWeXL8K7yN6yQdaFRv1yVFP\ng3f1PcexgIVzJ/5YzifiXf395rHQZhgIBD7qBOELuLd7lzePruOEwOE4F63wdHuDQdIm1gqtFcoK\nRIYv7xWWAzHlzZ1rVJWlr/rszYdMmUJiifDTSrQCrSWRFti0YDZZsLe3x97eDjt3b3P75nvs3r1K\nOh/iXIlZ7jt2vq2qNCn7w+DPEggEAh9dHDd++hpfWszQK33MybiwkzOaAKn2WrH1fjS6dZ2br36X\nnTdfZf/q20x375BPJ9jQxhgIBAK/FpNFgVICY+v2PJrRNvV/7sS0HQFaCqyo29Od97FqrLO8nZav\nnnLOeeHMuQ9c63pf3PH/cM5SFxXfZ/LeiF33PYUHhblAIBD4+BKEL2B8dMS72R79To+zyQoXe6e4\n0NmgF7fQQtGN26y3+7Stxi0qClkwMXDd7DOdzOnLNmm54DAdUZUZLs/Jhin7xZAfvL3HT2Yls8Mx\nR4dDDg72GR4dMJuOqcoCYw3WWMLOEwgEAh9fDm7fYPfaFS58bhuExEqBqaeCAVjn2x6pKop0yp03\nfsRbf/pvuPf6DygWM0xR+IAmEAgEAh8Ik0WJkhIplgZGiUYS8i3oTgKm8blq5sLV89frNkf5YPug\nlN63t66Yup8PUAlbHm5Vi1/3CV6BQCAQOCYIX0A1WuDSChlLVvt9tle3WOn0iaVGo9gYrPHM6Yvc\n3L/Hwe0xO6MD5kpS6Jj9eYacLMhHE2ZHY7LxlGqe4fKKa6Xh1dJQZDnOhoAlEAgEnlSKxZxrP/rP\nnP/8N47DHikltiqpFnMWB3vsX3mLO2/8kFs//DbDW1dxNrS1BwKBwIdFaSxFZZFKevFKgqAePFKb\n2UsrkApc3UK4VFwF1L5YtU+WlA4p3UnFlxDBczcQCAQeE4LwBbisJLmXstqK2D61wdbgFImIONrb\nZbR/wNHuPd599xI333mdwxuXmRwdUqYZh1mBzQqwFme8uaOzD5o7BgKBQOBJx1Yld974IdPRAd1T\npykXMw6uvMXOWz9m7503OLx6ieneXbLpOBjUBwKBwENiURj67QipBKKSyKaKy48eqac+egMwJwTO\nWsqyIi8K8qKiKErKqqSqDMb4SYXWWpzjfQ3fA4FAIPBoCMIXgHPMX7/JdAyv//gOP/nf/5T9O3dY\nzGYUeU6R5+RZRlEWtTFk2LgCgUAg8A9j/723ufXqd5ju7fDOX/wJ84M938ZYFqEqOBAIBB4yDljk\nFYNOXA8YMWRlxWheMJrnTLOSRWHIC0NZGYrK+3vZxvC9nqgeJhgGAoHA44/4qEzpEEJ8NH7RX4G1\nlQH/8//0P/J3P/wB3/7+D5jMUwpjwgSVwPvwvzzqXyAQeAz43x71L/DQON9S/LdnV/nTvSnX0pLM\nOEIDZMAT9oNA4HHbD+I44Y/++b9muhhy5fIlbl67TlVWQKj3CnyYhP0gEHDufxW/6Puh4usx4NMX\nzvJ8X3HxlWf57e0OP715lzd2htw4GHMwGlOZEOYEAoHAk0YsBL+z0eNsovnvzq1wIyt5a1bw3qLk\nVloSasQCgUDg8aLX71OZkjPnzrDIZxwd7pOO58gowmCpygpr7LFZvjFhJQ8EAoGHQRC+HjGJ1nzp\n6TMUd95jxWVsDeD5Fy/ypeef41D32SsFf/af/op333vvUf+qgUAgEHiInGkpPtWJMUAkJZ/sJDzV\nSRhXlltZxV8fzLmZFkEACwQCgceEwWAFHQvu3b3Du5euMB1P/VRIl4OUSAFCS3r9PptrA/I0YzSa\nkOYFVRDBAoFA4EMjCF+PmHPrK/TKjPHOLTa3V+hpixOWSioG3YSvvvyb/O4//kP+7Z/9GX/yx/8X\n0+kktEAGAoHAxxwt4LPdFh0lsQ4QIIBICLZaEVudhM+udvjRJOdv9qcc5iWlsaGVJhAIBB4RWmtW\nN1dZLKZcufQOR/sHCKEQUuBMgW2ELQHCWjZWe/TPnmIymjEczdgfjpmmKdY6nAsiWCAQCHyQBOHr\nEaKk5IXtUyTpgruHB2wMnqF/aoUOkrywjGdjxrs7tC8+z4XzT3Ph6ee4e/s6ebqgKEuMMcFMMxAI\nBD6GrEWKT3ZjLILGGaZZ7i1ghcQlEa+c6XP21DpvDKdcPpqyN8vIaj+ZQCAQCDw8klaCjhTvvXuF\ng519Tm2cZmPzNNlixmw8pMhzsjwnz3PKLGeRZlw4d46tzS32Dg4wwiJnmkVakGUpWina7YQszfy0\nyHDRHwgEAr8yQfh6hKy2W7yytc4gmzCrKmZZSsUKSkrasSY2lmI+hdmUO7dusVgsaCUJWjniUuEq\nQ15UZEUIcgKBQODjggA+2YnZjjUnNVzeD8ZJiRGKUmls3CKXksIWrPfaPK0V/RXD4TznYDimqoI/\nZCAQCDwslNZMJiNuXb1BoiM+85kXePnzv0E2HzGfjplNp9y9c4d7d+8xmU/JC8tgdZ2tzVVkWzG3\nC8y9IfM0Q2tFt92mlUTYsqCz0sYaS1pUZGkBQvrJkkEMCwQCgV+KIHw9Qp7f3uS5XovIpKxvnSLR\nMcgI0WqjrSYuKubZlMN7N7l35wbZfI61BiEErTgmaYOtLFnpmKYFeVGE0uhAIBD4iJMIwef7CVKA\ndQ4h6j5HKTFCkitNpiNKIZmUFXvzlKPSkAmJbrXY6PRo9XqMRhPm8wVVWYbgKBAIBD5kqqrg7q07\npFlJf3OdU9sX2D57Hi02MFVFlqZsnt6i0+9xb2+flcGA3mAVEUVY5VCJxElQkSKONUI6ZvMZOlbE\nrQhTVlTWIbtter0+WZqR5zmVqTBVqAgLBAKBX0QQvh4RsVJ85anTdEWBbim6qyuYdoSVMYWKUFrS\nbVvm2YjD0YzZwS7SVhhjEVKglSCJI0phiKVkNe6R5QtsmeJsRV45iiqIYIFAIPBR4/luzJk48qb1\nApygFr8ElVKkWjMTkllZMswyDouCuZMUSlJYMNaidMzmqVOsr1UsFgtm8xnpIg0TxAKBQOBDIksz\nvCWjpN1dIemuUJgKpMPiK3Z1ktBbXeVCq8XmxiY6TjgaTxlNU2ZZyTzNqUxB1GohhSBuRbTbbYw1\nWASdToeyrMizDOEsvXaCkC0Wi4w8NxjrvYKDBhYIBAL3E4SvR8SF9QEvnRpgp0Na7QQVx0jlkNIh\nIoXAkihDdrTPtat7ZJMhwhqcc0Ra0Yo1WksqKzClwZiKlnR0ezGrnRadpMU0t1y+N2SRh1bIQCAQ\n+CjQkYIvDtpo2Xh6CRAShMBKQa41c6UYGce4KBgWJRMLhVJYqSmNAARSCCQQJQmtVsTKaoe8KBgN\nJ0zGc6wNAlggEAh8kFjjV20lBCurAzrdhMVshNGglGKxSMnzAi0l2+urrKy0KYoF93Z3GY4XLFIL\nQrC1vUWkFFI4nHUIJLPZgsGgT7fdYW93lzybIxHIOKbTbVEWBWVhUVGEE5aiLIP4FQgEAksE4esR\nIIDf+/RTDDAoLUjaLWQsQFVoWaEjgUCRxAphCiaHB+TpAiEVSgoiJdFKYoylKCvK0iCdo5dITvVj\nTvUlF06vcWZjndVOm7984zrffecu+9OUUAQW+OgQ/ZzHy4f6WwQCD5PzScRzHd/m6ATYus3RCUEl\nNanSjB0Mq5KZMSyQZEpSyQiHximBtCABgUPgUFKgtCJO2gz6HeazjIP9IbN5ijHBBywQCAQ+KATQ\naiVsn96i047J5mNyZ1BKM1+kpIsFnVaLzY01hLbMpkPm5ZxZmjIZp/Q6PdbWV6nKHCVASwUyYuv0\nGVqRxhQFVZaSRAqDo9tJkEoy0aAUxO2YsiwpitLvI7X4FTSwQCDwpBOEr0fAhfUBn99eQ1cpSSsm\n7rZQHYVRUBmLsZZI+4qudizptiJaSUxcSUyZY6qSzBQY66gqRyQFHSnZaCu2ezEXthLOne6zudpm\ntZXw33zlIv/kMxtc3pny6o0hl3Ym3B0tsGEXDDxWCPySJOr7sj4aHH6eXVzfN/X9X/RGbl4rvNkD\njz+RgFf6LWJRv28FIMEpMFKQKcVUSI6ynGGekwtNrjSVgMpJv6Y7h0AgpUQLhxQWgTdAtqbCOIik\n4PTmKoNemzTLWSwysrwM/jCBQCDwayKAlZUBW6c3aMWSykmyhZ/kaE3F5sYaSjgmkzEqjhhPUqKo\ng2NKt90lQhA5RZ5V6ETT6XYhatOOIiLhOJyM6XZatFotCmOQ0rFYLHBW4HBYa3HOobXEWr/2h5U9\nEAgEgvD10FFC8Lmzm6zJCsoc3emi25q4E5HVvlx5XviTpaDd6ZDEml5LM88dmbEYU1GZCicVSkYk\nSrIWCc4M2jy12eKp7Q7rq226LUUkKlCGC+sdLq53+PKzm9wbplzZGfMf3tzh3f1pEMACjxjFcYSP\nwFd6SU4ErmUqvIhl6qPCi1+NAKYeOL8Rzh4sdbTcL6q9H43QFgg8HM4lEc+1YxwOhMBIMBKsdOQK\nRkqwXxYcLlJmVYWJJYVUFE5gGtHLglAKJSTCGZyrsBgcBucsVeVwxn/Suu2YlV4bIQSLLOfgaMJs\nnmFCG2TgI8uDe8A/lLDuB349pJSc2lhjddAlkhDFCa6qMIuSWGtOb23iqowyn1MYSxK3maclrThh\n48Iqwjmk8+/DJNb0egOMUMRCIk2FqQxKKoRUGFeRFxlVhc+QOIUxhqqqwsTHQCAQeIAgfD1k2rHm\n5dNrJLYgiiVROyFqx8StmDy1lEXBYj5HCFDtLiKxGKmonKOocqRSyCjGVhXOWFpRxEqk2UokT20M\neO5Mj1OrEXGsiYTfPIXygoI1jn4S09/SfGaryx+8fI7vXT3k//jBDW4fzVkUoeUl8LBReAFK4Zej\neOlYftxwEpAUS4fGtz42PnaC9w98lh8zS+eJ9zl3+Ty59NqBwIeHAl7oxgwigRXghKOSAiuhkoKZ\nlBxYw16WM61KSgfGOApnqerPisRXeSkAY3CuoDI54JUuIUAh0HGE1gqtFbFWREpxeqPP02fWGU3m\n3N455GA8x5gQNAU+Ciyv+z9vD4D7Ra33O6e5BgrrfuBXp9PtsL29RSfSiKJESo1UGicFrXYLZwrm\n0wMG3YTZvGRlawvhLFWxwApLq9Wik3Tpdlo456jKCpvnFMbhqpIiyylNSaRjhJRgHapOhEtlMKbE\n1hltsdTqGAgEAk86Qfh6yDy7ucJntgb0dUHcbpOs9kjaMb4ZRWGMxRiDVAorI+blgklmSCtDYQ1O\naJxQCAmxtPS0YLMT8dR6n6e319jsS1pa+BDICYR1SCQYB04g6ulgWikSpfgvXjzHtz5zlh/fPOD7\nV/d59cYRd4Yp8yCCBT50GtGrEbpa9W0fSOqjxf1VWzkwBzJgAaRL328CHl0fD1Z0Na2RzdGcK7i/\nJdLW55b1fbn0WLiCDHw4DLTkuU6ExWGEw0mBEWCEIJeCiYOjomJaGiohcEL51kQLSiqk0kgrkNYi\nrMHaCmyBtSVCOZSUaKmIVESr1SKJ/fRgXQtiOIMQju3VhK3BNuPpgrsHU/bHKYusCu/8wGNKs9Y3\niZKmavhBYatZvyvuX/eb9d3VR1j3A786QsCg32N7exshoDI5gopFnjJNZ6TFgjTTVIsxrqwYj+ZI\nHTFP5yxGhyzKklbcxq6ukaY5WZZhjUFZRyQV+XzO0cEBKEm33yfSEZUpmWcLiCyRk1AqpJRUVf3e\nFe645TEQ+OiwnJhu1vblx5ruD7d0PxD4xQTh6yEiheA3njnLmUFCVwjiQZeo10XHCaV1CFWBA2sN\nRgjSwnD3cMS0KCkBISRCCJy1SGtJpGWzm/DUqR7Pntng9HqLTuSN7oUDYWt3ZCFxGAQ+9aOkny4j\npQQc7Vjy1Wc3efn8CgezlMs7U/7irV2+++4BVeiDDHwoqPqIgDZe4BrUxxqwCnSBDifLVIkXu8bA\nqD7G9WNNm2SMF8zipZ8BJwFNia8Uc/XPjjgRysAHRWbpvLy+tUvfC6Jw4IPn+W7MSqwwQvhwu57i\nWAmYoTksHcO8ojCA8IG7QKCF8Cb21vgkh7M4a3C2QmDRSqC0JI41rSQhVhFJHKOURGDBGXAWrMGa\nEoGjpSX9zS5PbfWZpiU7w5Qbu2OG04zKhDawwOOC5mQfifDrvl66XQ6SmnXd8LNi2XLrfIVf93X9\ndcn9rY9h/Q/8fLRSrAz69Pt9HI7S5uRFwXg6YzQaMR6O6MYx7cixf/ca8/GYpLXCIjXsDIc4JYm0\nYufWXazxl/CVNcRSEyGx1pBXBlNW5HYG4D29cOR5TlVPsHLOYa3BuZ8vBwghfEwRWiIDjx2N0NVc\nwzfX+MsJbbN0vxHAltfn5jm/iLCeP2kE4esh0m/F/NanztFqK2KliJIYqdTxtEYpFc5ZHJK8styb\njnjrvRvsjyekhaEqDUiQ0hFLx1o34ezGgAun19hab5MkBkcJTvqj/sA76xDCC2/C+cy/lF5Eg/p7\nUtCJFRc3ujy92ef3XjjHe/sz/s8f3OT71w7YnaShXDrwAdFUejWiVw8veJ0CTgPb/rGu8A8ngBWQ\nOxivQ3YOOAR26ts9Tqq3OkuvmXCyaVZ4ASvFV4uVS+c0FWfNxlngxbSmsmyGD4QEJ5eQYbMMfHB0\npeDFQYyUUAmBVZJKSiopKKVkZAUHuWFWORCq3iv8iHuHA1OCsL5mxVics0gBWkmiSBNFkqQV0Y5j\ntJBI4XCuwFQVuAol/ATIJJLEkaIVa5JIk8QJ55KYlyNNWRnevXPAj965y63dSQiUAo+Ypqorwq/j\nbfz638UnUlqcDExpBKxm/W9zIpQJTpIaBSfrflNVDCfCl+UkkLIEL7DAgyRJzObmJkkSI4QgK0qm\nizmT6YSD/UMO7u3RimJOrfdxVlJVlsVwSJrBbJoitWZmLKYy2Monwa0QxFLTabXp9HqopIdSknan\n4+sbtaIsS46ODtHaAYKyLLzo5SxmKYHdCF3N16KeGozlF67pYUxQ4OGxnJiIHvh6maYit/H+rfDv\nVMPJtf8vkjka2xMIre1PDkH4eoj8/mef4cJKi1iVRFojhUA5AIeTEgRUVUFhYTae8Prlu7x36w7T\n1JGVFuckWvnJX91Ycmqlw6mVNisdTUsZZJ3NdNIhhS/bbz7SSkgUfpNrhC/nXN3/X2+C0k8CU1Kh\nheSVCxu8eH6Tqwdz/u69fb59eYdLOyOO5nkQwQK/Bk1lVgsvPq0AZ4ALoE/DhoangbN4LayH359m\nAnaB2wJunYJRD0wPvyGO6tdbxVeMDUAkIKN6H6zAlcAEmOIDnFX/4qINQtYXfxW4HC92HdWvm9TP\nSevfv+RkU202XgiXhIFfled6EVuJwiiJlYpSCapa/FpIxWFmmRSO0kl0FGGFwFgvdFljMNYiVV3p\ni0UIiOOIdhIRRYJIgVaArfzUL+HAWZRwaC3QUpAkEa0kod1OaMURWikirWjFMZFWSA3b232+8spF\nrtwa8r3Xb3Lz3pD5oggiWOAh04hWzT7Sr48BsF5/3QFRB0puWdRa+O/Rwq/tTUIjx6/zU3wl8bB+\n/ZSTirCm8ne5BbIJugJPOlJCp9NhY30drTVOSLLcMp7kHOyPGB+MyOYZC5uysdpjfeMU1hjS3JBX\nc5QSVJWhNA4hNDLSaB3T7w/Y3Nxkc2MTFcdESUJWZmAtWEe2mDOdTBDrAmsN1vmpjnmek6YZxhis\ndVRViUPUlWAOh8XV2u3f9w5WtT6GAOtYGopVJ1/uo7n/oI1E+JwEfhHLSXHF/Z6/TSVvU+HVVHc1\nnRmN12/taXpf2/uDvo/LlidN0qMRzML79ONOEL4eEpu9Nv/kxafoSkMshTekdAIlBU4LP7JeOgpT\nsUhLRpOCm7v7LCpL5QRSKJ+t1xqNoR9LNvsJ692YXiyJlUHWAbgQAA6cwRqLlL7dEVztBXOycPgS\n55PnCCF9C4z0CnssFZ89v87zZzb4oy88y9t3h/zVO3f596/f5GiWheUh8A+kydxofNDRB7aAi9A6\nDc8oeAV4GXjeoS6ktFZynBVkRx3s9RjeAV4HftqGa+d8NRhtfMBzCtptGGjoCx/fCPxeOAEmazCr\nN8ZOG/raFwg08U9T4DUuIN8C9oF7+A13xIk3GJwEP4r7A6HwqQj88nSU4KVBglMKpzWlVBRSUmlJ\nLgUjKznKDamVOClxQmGs9baNzh1P7xLCt7DHUeyFLK2IkwgtLNIWSBxCOJwQKCWIIkUSK9qtxIte\nrYQ4jv1tFPmmAgGR1sSRRmgQ0tGTkq9tn+JzLz7D5et7vHHpDu9c3WX/cHJfZUEg8MHTBDBNUNTG\nJ0428PvIaZAD6CXQkScWkSWQOphVkBXQiaAdQUucFHzlDuYlFAt8JfE9vPg142R9LzhpmW+OB31m\nAk8iQkAcafr9Lk44ZosZQrVJ84rZNGc6npPOU7I0xTpDu9MCUaGjNrFzGDKUTjDO0e10OXX6LBub\nm6ysrrKxto7WkizLmM/nSCUpyhSkYJFmFKUl0i1UT1GZgqIosPVkXiEERZ5jTIVWMQ6BMVXdCunP\nsc75RIp1P5PUPk6W107EWmuccxhjEVL6LnlXV5EJ6T8FzviYQtRWK85hlyrKGimsbD2fgAAAIABJ\nREFU2WOEkljrwv7xRLNsf9JYlixX8Xbqxxohq1mPM3xCI61vm8Eky+3vy7Yn4NfzRihbXtMlJ0mO\n8F78uBKEr4eAAL7w1GmeHsQoU1BZhzGgE0nlfHZeaoURUDlJZQST6dxnfVQMwnoj4ihGuIqOgs1B\ni41ezGpH02sJtDB+lL0USO/mVY9ycQj8piTjxtdL1J/pps1RgnBIUX9fCO8nRi2ACYnWglODNpv9\nNl/95Db//e+8wL979Tp/8fotLt07ogzTvwK/FI2ZvcZvZqvAOUi24VMSvgp8E9q/NeLZrXe5oG6y\nJoY44NBucu1Lz/Le1RdwF5TXzGwM17bwG9xpOKvgOQEX8R2TA/wHcIHviLyl4Grb73FPC7jgn3Ys\nkM3wVWU3Y7gWwW4Pqhb3L5VNlqjJ9DcTJhUn2aPweQj8cjzTjdhqKZxSGKUphKDUikJLJpXjILPM\njMDgK3WttVTGv8d8sFD5gSU6Jok0sVYIYbHOYI1AKogxxEAUR4goIooV7VZMK4lotxJarYQkSRBK\nEEURWke+NV4IIq2JauHLYVH1cJS1dpuvrA340uee4+Bozo/euMGff/un7B9OHvWfNPCx5UFvyDV8\nwuO8P1Y7cEH4u2fx1cIRPiY6FHA7gsMINvH7wwonRV1DAfdiuBvBzgDKPnAXv3k0lQRpfb8ZrLLs\nHxNaZZ5UGtGr1UqoqorrN64zmgxZ3TiHFIrFbEqeZhRFTpqldDotWq0EWwIiQShJ0nXEfcX580/x\n9HOfYrC2iY5jhLRUecF8NmU0mzFdpGgtUUpTlSWddockajGZTBFKogyYLEUKidYaaw1atqjKst4/\nHFmeUxYFcaxRStVimMXUpmJFkWOtQyqF0pqqrKisQ9ddIdYYkjjC4ZBC4IAsK5BS4PD7A86ioxgp\nJVlRUlaWyviBEb4ZE5SSJFFEnGiU8t6UaWrISkOwknySWK70ivAX5Muev8063+PEu9HhL9gn+ATF\nsP56wkk7e4KPMxoBrMFw/3refN1cyzfnhOv4jyNB+HoIdJOIL1/cpEtBmaU+O6IMLcBohYw0kdJo\nFJGKabciVo1gs5+xO6vIjMMIjRCgBax2E06vtFntKAZtRaIsCluLVE3mxV+Q+cotjrUu6yzWeqN7\npSRKSoQ8mfbYPO9Y/BKqfg1Rm2Q6tJacXevyP/zui/zzLz3HD6/u85dv3uS1GwfcHc79pLFA4Gdo\nsvWCk/aUDRBbcFbCbwD/2HHmmzf52sZf8xX+jk+bd9jMhxgEu8lpfhp/lu9++jf5bv/rTOUGLCQs\nWjA8Dc9p+ALwOVAvlSTnMnS/AuEwmSa/F1O9k8BPhN/rXgH1UkG8VaB7lW81nmjyOwn2TQ1vCPiJ\ngivnIdf4T1ALL3w1G2S+dBRL/87Q/hL4+0kkPNuN0FphtKaUkkIpCq1InWNYGMYFVEKD9JFAZSqM\n9Rl163xFb5LEJIlGOIs1Fh1JH4glMaudiH7UJRIQJzEyiZGRJo5j4tgnNZI4IooihJQ+2IkilNJI\nKYl0hI4VQnm/GG8vK9HSC2OxgKd7fZ556izf/NpL/Plfv853fniJ4XhGlhehLT7wAdEYGzeBUQ8f\nEJ0HeRHOtOEl/PFZS/RMQbRagnLYTFHsxdhLEdwCnnbIpyv0RoWMLTaTlLsR7oqGt4Vf+9/egqID\nGLDNGj/Gt8BPOWmbTznxgCwf7p8k8NgghMAYw/7+PoeHB2xsrnPRxCRJwmw6Ic8W5EUBDvqdFQxd\nrG6xfuYUnU6fT3dXWFlfZ3VlhbyovPdXlrLIZgx6XeIkohXH9LodIq2YziYUWYaUAlMaFBXkCy9w\nCUukJcZYolaCKUvvG2ksQgtwhk4c+XOV8jFA7OOHsiyIpL96EbUlipYR1mmsdeTGoqRGCIGtSqQW\nxJEmibuArwTTUvjqMUAqSdRpkWYVxgnyosA6hxOOygkSoWpfYkusNVFHsuJiOq2YvLIUxjHP8uMW\n0KZLJWwrHyeWp7t38SLXJj4rvQXxAPrKL/ed+iklvoNjtAbZaTCN7+8eXhCrLU9Y48TTMeKk2muB\nX8ObYVlNm/tyPWK4jv84EoSvh8DZQYcXN7uQL8jTjAqFUD7rEWvlA5DIESHQQuIiSauToLUiUppO\norAqRgqHsgtWO5q1bsTmSoteS6KsQeC84bHguHwZAbLZIOrPsnEW50DrugRZCCzeG0Y14peUvk6s\nFsWcECd5zfp8Zx1SCs6s9fiDz3X5xqfPcutowfeu7PAXb9zg8t1D0iJkQAPLNIaVTYtKD9iEdgee\nB74E69/c5Xc3/gN/xP/Nb977AZtXjohvWRCQPad5+dNvcGZwF71d8ddf/z1me2twT8JEwteB37Gs\nfnmf585d5pPRFTY4QGEYs8rVZ5/lymc+zc4zTyHmhrUv7POJc+/wlL7BOkcIHAdscvXTz3H1pU8w\neua01+YALm/WulbjJZBzsnHOOAmABP7EJggKm2bg57MRK7bbGqsUVikKpciVIhOCUWEYZYZFKbBS\nIYVvUamqEoTPlksliKNWnbkXOOOIIs3qyoBBt0e3FbPSieko4fcPrRBagdaoKKorB/Ctj7FG68gH\nQUohlfZBkdIQKZ8McRbhHZOxwlcXg8M4EA5WV/r8q3/6m3z9Ky/y00s3eePtG1y6eofReBZ8wAK/\nJs3+0WTvB/j2xvNe9Poq8A2IfmvO+adv8szKe2zJXTQVM/rcLi5w4+VnObq3wanze5xdu8l2skNC\nztx1uZed5c7BRY5+tAVbdZvksOfjpBmQWpiegmqKLwve536/GUtoe3wykVKitUIpRVF4Hy2lFKYq\nyUxFOp+RLRY4azm9fYHf/p3f5/kXX0aoiLLK/TR3NKYqKbOMsvDeXHmZorC4MmM63McUc4TJKPIK\nm6dURYoWgDW4fEGbCllViMoSaUFhHc4WtLSiqhxCRxhr0C6iKita7ZZPVAuf8DCmBOmIWhFCqjoZ\nLmsvSetdg+uqrrIosPhhWV7k8smYSElirb3DRFmgpEMpjW5JkIoxhtJa37ZvHeAHbZnKghFoWYel\nQtFOJOutGGNbFGVJUZRYK8iLinlRUVSOylhCh+RHmeXW9Q5eqDoFXAS1DacSeBZ4Cm8FvIrfChbA\nAXATuN6Cm2dg1sHvD3O8aLYJrVbd2i78t5pir3kFaQZ2gm9r369/jzknvieNh2Pg40QQvh4Cn7+w\nwcVBhE2n5EVJYSqEqihtRY6lg0MhyOcLv4EpKKxjWjoWlUBGCUIoYkp6SnC6H7O12ma1mxBhEc4c\nV2p5rxdxXErsBFBnSKw98R+yFoQ6mVEkhUBIjapbG4WUfoMT4uQf0lSR1RNgmukwQsBar8PW2ipf\n/MQF/quvvcj3Lt/h//nhFV67vsPBZEEg4Gk8vprMzprf4z4JfKnglY0f8vv8Od+6/h02/mQC/xF4\nDxDQeqni2X96m+5//adMogG3PnGBN176Ddwl5Tezb8Gp//I23+r9J74h/oZXeJ2z3EVhOGSDN/Vn\n+c7W1/jrb36Led7ht3t/xdfEd3iBNznNLgLYYZs3Wi/xtxe/wbcHv81d+UxtHaDg3pbfOCsHmavN\n8g+WjuHSv3GB30RDEBR4fwTwiX5EL1ZY5b29cqXIpGRaGUZ5ydw4jBMIHEr5KlyH92uMIoWsvbqU\n9Fn3Vq/N2sqA06c26Xa7/nEJkWym+frEhtAKEUUorVH186VWRJFC1JPqhJI++JG+DdMhatHLBxoC\n5/cPZxHW4VwT+Eu2T2+wfXqTr3/lZd67eY+/+c9v8Ffffu3R/bEDH1GaS9RmgMhygLQOnPHtjS8D\n34T4n4356rnv8XX1t3yO1zjPLWJKJgx4J36e75/9Mu9uf4KX1Ru8wms8zXVaZEzEgHfbn+BH57/I\nd9e+xrXBp3BV5H9Mhc9v3JVwswXXExj18cmb5VbHB3uzQsD0pNBtd+j1OnS6LWbzOVI6et0BOEOa\npsymY4o8pd0Z8I9++3f52rd+DxnFzGYzZvtT5vOZF58cTEdDssWcONK4qqQqc0bTgvHoEKylXMww\nWUGZF2SzOUgoiwKoqBTkRYFzEpt7o3wpKoQEKXwllkaQtCJKBZGO6iVbkZcVTkdoaZHS+0gKIYmi\nCFtZrLK1QKaxzlEqIPYdIUIIirKiKEswBkOJkoJISV/xpQRJnOCERCnHvCjIygojQGtfnewcCOeI\nVIKQghKHLUuyMiVJFHEcoQT02jHaGUrnmBWCo3nBLCvIswLnRB3nBD4aNF0gjedvD7+uX4D4vPf8\nfRn4PPAi8ImC3qkxKjKksxbF7RVfofsq8JqEN1ZheBf4BMTrvpPkgvCC2QZ+66jwBV57Gm724EYH\nsgF+sY/wFWPNABMI03s/fgTh60MmVpI/fOEiLSwL6xAyRtQmknlRkJYF6XxBOp5ROYexBqNgURkO\nZjm5AXBIV6JlzvZ6i6dPDdjoRShhwFhYbm0EhFJ+qgteCJMIjLMI69sbce64jFnW0ySlkEgkwilE\nLWpJJEL4mudmK5FSeAcx5ae1+HZI4T1h6tc7vdLjX3zlBf7ZV17i9Zt7/PlP3uP/ffUSdw7HpEVo\nBXiyaYztm+Al8sLXedh8eo/P8hZfmL7Gxt9McP8GXvs+vOX8s754HZ5N4cz2hC/9/g/5gfoybz/7\nOcqLClah841DvtX/j/xL+8f8zvgv2fzbObwLlPD0xT0+9eXrnHvqLkmcM4kH/Ev7b/mt8d+y8u0C\nrgECnv/ELT7z+Suc2dpBrVb8f1/9Qw7vbnv/l5f8EAoKvMa1o+HeeShWwfbwG3ftoQd48Su0vwTe\nn64WfGrFm9pbrSiVopCK1FnGeUFaWITQteDlTYCdhFgoVCTRkaKyBhUpup02g36P1ZUBp9bX6Pd6\nKF3vA87iGsFLSpT2rYxCa39IiVASJ/1USSkcwhmkFH4QitQ+AVIHJtQVws45L5JZi8OANVCLX9b5\ndphOJ+bFTz/Fiy88xR/9wT/ij//dt3nn8i3GkzlFGYSBwPvx4Mh6gd8zbH0b4ZMmA5B9H9h8HqKv\nz/n/2XuPILvOLM/v95l77/MvvUHCe4IgSBD0JMgqsqpYxa6aNtNTrekYTU+PFgppIS0mQqGFFtoo\nFKGFNtJCCq1mIcV0THfXdJmO7uoyLLKKBgRBkADhvUkggfT5zDWf0eK7Dwl2rxTq6iqS+Y94kZnI\nh/fSve/cc87fPL/5HX5f/CVf7/+EvedvoM+7sLiYgKcPn2DX+FXO6Ed4rnifg3fO0TiXhaHWOMw/\n8gEHxs8w1Fji+0//LvcmtqCqDm8EZlFRXI/xpxV8IuBkBW5vChvEMk17neH7sLnyxtn/RUekNa1W\ni+GhJu12i9W1Zaw1VKpVnDV0VldJe120FDQaLfbufQQhJDeuXeXmjasszd9DKYLc3Zaev3iyrqHI\nCnqrKyhpWF5doZum9LpdbL9Plhd0+ilIReEsxrnSRN6G63sh8RaUEMQ6XPcLCH7BiQIlqaKQ1kGe\ng/PISOMRVKsVsixDSIEpMmKhQAqcd1QiSW4scaRRFY3SEd4LChuG095abJHjvCUvCoo8o9qKyZ3B\nZibIIit1+kVBt5eihSdOBLGu4oxDigiVxGR5RlYUQdJfWHLjSCJN7hX9wqC0QicRsfE0I02zFtFu\nVFFCsrLaY7WbUdjACLMbhmG/hRh4dQ1YvBUC22sS5DRsU4HF+1VP/aVldm47z359nknm0BR02k2u\nzuzg9P6D3N+5GTcahYuktzZDrR1UJE8ABz1ytyGaMIiKw+cCu6QxVyM4LeCUhE8bsLCtnG8NjO4H\nZ/uAkbYhe/yiYGPw9WvGCzumODw1RNZZxuk4GAdbj7OWzOakacraaodls0DcrKPaDTLrWFjr8cy9\nVb4f1/HeUlEw0UjYMt5kYqRBLQasQSJKjb5cL3asZ8sJQrMu0SE5UohgehmVspaHBmaeoPGXUgaj\nexRShH8LdOggrxlsVKRUYTD2UGSxILAKhBDU44gX9m/jmb07+NOvPcfPTl3ixx+d54ML11nrpxsJ\nLl9aSB4YFGsRljyjMBQtM8Mtxpbn4WOY/xh+4dd5VP0+DJ+CsY9h20u3mK7eIRrvUkxUkPsKHh0/\nzSu8xStzv2L0P3axP4CFy2AtjE1C8/U+z/7LD+kcqLPMEC9df4/2n+WYH8Py9VDmxnbCxBvLvPpH\nb7G4aYjrk9t4/7ExbDUKNXlAsb5LYKJdFHCuCbcjsAl85tU3SIyxbGyMNvAwBPDESI1GrDBCYIQk\nk4oUQacwrPZSMhMkJQiBGGjWvUUIj1IKFSkiHdFoNBgdG2F4aIh6rUq9kiC1xgmBk3EIPJFh8x7M\nihU6ioLsUaow1JIKITS+ZPpKPFKAVKJMBA4ML+GC1FF6QsqXs3gRBlhlXgqiZB0/bBkJMDM9yn/5\np9/m5u37nDpzlVNnrnLx8m3SNP/7P54NfOkwuI4YeEAOZI3w2UHYoEmqAk1ox7ANxKOW7Tsv84r8\nBa/3/o49P76O+k/Q/wjyDBrT0Hil4IU/OM7O/VfY9f5txF+BOQ75MlQ3wdiLa7z8h+9Q7ItYa7ZI\nD1ZosUpOzBwTXDm4m5sHdtCfaUJNwPtVuLEFXJ8gi8lYb5AG5/4gfcyygS8mGo0GwyNDDA21iSJF\nXFTAO5QS9Dpd0rQPQBInjI1N0GjUuHXjGlcvnef29UtoYdFRkJVbF5bfzhpMmpH3+6wsr5DmKWvd\nPp00I80ynAn2Jtb50Owj8FYQLtd9sC/B4r0g94I0W7+Gl6lB4ogrEWs6Je2nCCAql9hCQLefYr0N\noSZeYHWFSEASBx9JjSOOVdkbWLwH5S1RFKOTCHyCtYZ+1sdai/OWXpqTZ4bYKOrVCs1IU2nVcc7h\nXR5eKdagIhlULM5SqyQUpsDj6PRT0lyz2s/LZXwBIpjmI6BZq4H3NKoR4+1RbGHp5g7rJd1en34/\nZa2X089N8BjbaD9+Q1AP3Qa9wGAR3gY2wUgS0t1fhtFv3uXFyV/wMm9xxJ9gevU+qrD06xXOVPfy\nbvt5fvbCq5yrHKLIqvBxGw4QrE9e9owfmmXz+DW2JDep0yUjYc5Ncm1xN/cOTlFsqoanPlGFuRnw\nXdY9e/Pya/QPvR2oODau6T+v2Bh8/RpRjTT/9rlHoCiCXKVSIUoqaCfx1hLnGUoIKAzdvB/SuaQj\ns7D7zhLfvbnAd9UK/8WuzYxWNVvG6kyP1GhWFJHyYCQagdBhS2MH3isl24uyiKmycXHl50W5+Zda\nPUh8FIgHRvaBCRaiXwWlzp+SdiMEQgR/L1lq8b0Pgy68wOMfNFplnjGRUmybHOFPJp/jd597go8u\n3+Cvj5/m7U+vcG1uccMM/0uHgdxRrL8bQSQLEjJ0UcAK3EvDMn6AFSDtAx2opgWVakoUZ9CAxrYV\n9urzHMpPMX5sGfE9OPErOF6Ehf9jt+DFLjQmM5468AHza1O03+7i/xLe/wg+NqGcPXcLnshgeFOH\np/7oOO/rZzl18HHGnppnSC8TiYKeq3O3P8nC+Wn8MR2Y2R9U4PI068VykBBjCIV9o0huYB3DsWJf\nO8EKQSEFuZTkUpI6QTczpJnBGLDeIJQiioPRvFaALL29koh6s0F7ZIiR0VEazSaRkjgJVknQMagI\nKcOQTKvypsPwa2BqHDxWFEpqlJBIEZy7hBBIpcN9vEV6GwZvziGcQ3qHL7eg3rtw9vtwQTiIsh/U\nDueDL2SkJHt2zrBzxyZefflJLl65xV/98Fecu3jzN/jb2MBvFg83QJp1RvDDHw8wYFIlQA3qEqYh\n2pGxo3GZJzjJ7k9vov4Crv4APliFVQ+7L8Mrs9Bo9tnZv434c1j8HnwwC/cs7DwDT9yAmnYc/ten\nMdOaMeYZZomMhBts5ePmId5+9GV+OXKUlOFwxC9XYHkToVIlBDOwDmEQNrB4GFzfbAy/vohotpoM\nDQ3RaDRIsz5SRQghKQpHVliM9TgHzitGJ6aRSrB4/w4rC3dw/RWMN+RIvFBkeUFhCrq9Lnnao8gL\n1jp9uv2UzASJeYSnqjVSBV+xwoYhWCMKckAIAzTvPcZanLUhlESAVGG5IQqDElDkBVWly/Arh/Bg\nvafoplgPhSgQCLq+j5AKrSRKeJI4ol5PUBIkgjgO3mFYgzOWqPxYeofWAiMErXpMHgdFiZICm+cU\n1lCJJdWKQklP5iVCCbw3VKLAOG42KuGxBOTGk1pPYRzeGpR2eCeQQgXzfAUSg0CSxBE1LdBaM9aM\niGWDonCs9Q3L3YyVbk4vy8kLS242Xpv/NPj76Y0JgekFYfo0BLIOu4DHofrVZZ6ffIs/4C95ffHn\njL2/iL4QWLx+AnY9fZXt+29QiVKyAxUu3DkIPy+ZYt8y7Hn6DC/V3uYpjrOHiwyxTI8a1+U2Pho7\nzDvtFzjZepbcVyEVsNqE3hThDF8uv6aB1HHABJN8dqmxgc8bNgZfv0YcnhljT7uO6XfxQJQkRLU6\nCok3hiiJ0FKiRRhCZbHASY/3gg9rgvGRCv/H5AiTVcl0O2aqGTHaiKloAc6hZWhSvAzbHBf0iygn\n2Pv2RVanmtzZN4l1Dl/SoJVSgKewDtlN2f8XJ7jzzUOkE8Nh2CUEXshgACYH2/5gbu+9CEMu6R/I\nGv2D7X4pgRQDCWQ5BHtoYCbxDNUTXjy4k2cObOXG/SV+8cklfvDeac7enKPTz36Dv60N/NPB8IBK\nbPyDgJXUVenQJKtWYbLDlgZMd4LtJAQb48YwMAadWkKHBlm/CgZqtT4T4h7T2V3kWc/iJ3CsCHaV\nAMcczNyGA2dhanYFvEZ+Cosn4QMTShzAOzlsugQzn8LmxXmmR+7y7bHvs48LTHOHmIxVWlyu7uaj\n5w9zbOY5snYzvE6KCG5OgV8hmN0PtkYF666aGwOwLzsEsL0RUY8kTooHaY59D30L1ksiIXC+YMCk\nlUKilELHChVH6EpMrd2kPTJMe2SYRnsoJDYSjuBHLlxn35Xb/M3vvY7VQdYSpI0KLwX11S5/8t/9\nz/z7//V/oNduoZVG6RitFZIgbxdIhNQIsS5/FM6ALfCiwFkbkia9DEyxB6zf8ibK9K1yseHLxYs1\nBqUUo8MNxp56hKee2MOxD8/zkzdPcPX6XdY6vQ1pypcGD20+iAmNUDnUevD+gPE1YNJm4b4iCj3T\nEMTDBdPyLju4ij7t6HwIv1wJpFyAOwaGr8HjJ4M60nwAH9yEDwjV6HYBtTNw+BgMvbzC19K3qJ/I\nQgGpwuH953n08TOMVhbxmwVvHn0dezuG68DKELAXfAoslLfF8vvqll/BgNW40Sh9kRDFESOjw7SG\nhvAejPWAwjlFUeQ4p8iND4OrwjJ3f45bN69x7+4tVlfm6aZrZN0OeEWaW/ppTpbldPvdIBN0DutC\ncIiSgkZSYbhSpd1s4KwhjhW9Xo9mPaZZjVFCBcN4ByBQWlOYHFtkVGMJPgx5nJMIRDCekDKwrrxB\nCE9WWPLCAhIrJM47ellOWlhya/Aeip5hvtcniiT1aoz3hkgpIuHQOgJvwRYIZ7GlwiWKI2yRo6OI\nSHpSb0m0pJHENKoxnV4P7yx5XpBUKtSTGOcclVjhUCTRMEZoljoZK6trGOdKa5eQTp9mOT1r6PZS\n0rxCu1kjjiKsK9DCk+iIuCoZSTyjQ/UgETWOxbU+8ysd8tyQG0u3n+EcoW/a2Mn/I6JUeaAIjN0K\nQe7RIjjWm/B+W8EW4KBj99QFjvq3eXXhLab+ah73PeieDiG70STUvpLzzL/6mNUjdW42NnP3wGZW\nHx1BPO/Z8eQFvlX7Ed92P+KZOydpn+oGK94mmEc/4ODWT5mI7+EPwvHOUfw9BbMCzk0T7thhnb07\nSHB/+K1jXda+8YfyecLG4OvXhIpWPL99msQ7irzAJ5pIaRKlkVJhyi25qiQoZ4gUOOkopATrqCjH\nn+8aYjquMTnUYqIRMd6IaCSKgZhRCYFQEjuQIhLSZeLc0p5dJV7ucWfnBD50MQBYa0sfAIe+t4a+\nt0rjnUus/s6TeBW2I3iBCw5fOB/oz14MyJ5h4CUGccdiQP8sUyDLrscTNk7OB3kMMviaOUBKqEQR\nuzeNs2NyhN9/8XHePXOVH584x/ELN7izuEq24f/yBcJAwjL4W4FQNFJwPsyI5mGxM8y19nZuDs8w\n+dwCzU8cr70DV5bDhd+BGRh6DvxzcDbZx3W2Ye7UYR6EcCgCCwULxoWd+wAesB7IQdgg0yKFTrHe\nkkApSilDG0Xh2cp1XuAdDsxdYGhhmago6Dbq3J6aZl/9HO3NK7z9yldZWR2D+wKWqrA2QeCndcID\nUeGzRscbTf2XGXUt2NaIkBKM1jilybygm1k6hcGZgkQ7NJ64WkFECQUipDAmMboSoasVWsNDDI2O\nUmu10NUqMo4esLUePXuFsXuLJL0+K/UaRVFgtCGJIpRSbDp+CmksIyfPsPDsYaLIh3ATIrwMZ78S\numyNSsavECVDTCC8wItsXYo5sOoYpKoMJI6DPr/0l/EEKaR3Dm+D71ikNC89d5DHH9vNxcu3OPnJ\nJU6euszN2/c2jIq/0HhI8k6V9aTfFiFOt1l+XGGdNZsTmFR5WDaUll9SOWIyYjLoQT8LJ/AAFljx\nPFjku9XQ2gxO5RS454ElqF3M4YdQ/BRWFkIoWP0Q7Pi9WV57/efMt8a4sXMbFw8ehNMSrA5n/qKH\ntXb5NSf8w8vrgfxxA18UNJtNxqcmSKpV1lY75IUjzxxZv0+328F7SxJp4vYQWZ5z+tRJVpbmiSMB\nNqfXWSbt9cjSgjQ3ZMZRGId1HkdQbkgvqMSaqaE2EyOjTA6NgTV0V5fwNmNsZIhmo0KkVUhedB5V\nJjIKJbGuisQSaRDe4p0tA1MEyjuks8HfCxFSJYscyrRGZAQ6IreW1BhyYyi8p8gs/V6Ol2C9xfR6\n5cs5pAarKA6v2lL5IUqGWhJ7nPPYLEcXBpSE1JGZHO8sygtcYdHaUJiCShK2Ehk2AAAgAElEQVQj\n8pSsn5I7gYhiGjpG1iuYRJHmGb0sJ7MD6aKnnxfk1lIUhtF2jXo1IYpi0DFZUSAJ14oVJUmUIPER\no9UhokqCkLDS6ZDmhrW1Lp3U0UktvbTAbCxj/n9gIG3UhKVGnSBrHCOY/I6CrgASmhImobK1y7bk\nKo+500x/Ogc/gIs/gV9l4ap6+i58pQtDE/DU/o851jjLO5P3WN0/Qv2xFZ5pvsc3+Rte+vQY1b8o\ncG/D2hxUWpA8CY9/5zz+qGS+Nsqtg1u5c3onfApcFlAMEc7wgnBud8vbw4zelPXuYWP49XnCxuDr\n14SxRpWDUyO4PMc4h5QyyEi8RwlwhPQRLwRRrcZQu0UnT1kzKQmG8aEmtaSGVhEzIw2GKpJaDBqH\n9yIMvUpj+lAgS+YVUCSaT759iByPLUzwDMCXPmAeIYJPTNqK+eB3D2HGhojzAqM82nq01vhy4CXF\noAAOnu+zrK6HPcIeHogNGh/nHTjLIPj+Mw2Sd2glGWnW+NbTj/DKod1cvbvAW6cv8/OTF/nkym26\n2Yb/y+cfD8cVR4RjJyM0MH2YS+AarJ4f45OZQ7xfeZrNX7nF5t482zfD5tJ4PnoU+CacfWwn7/E8\nn64dxFzS0IesqLBMm+WoDZvuMLIZ9i3DJ4TStBWYbgCbYWUyobtag5lFpqZhyx24SGirtgLtkXC/\n3nDEo3zKEx+dpfbjPBTFLtSmVxg5usrUt+5AS7CyZYj3jrxMcbECVxV0muDrhAJP+B7JyreKdePM\njUL5ZcRYRTNVi0ApvNQUKPrGs5aGi3gtCtqNCvVaQrXRpECwkmZYqZFxgoojkkaD9vAI9fYQqlKB\nKMJHMV5IhPf81R++QbXbZ6maYNMUZwy5gEwGecx7Tx7gxtgQtzZPweoqcVLBudCURFFMJBVKeR4c\n+ZSbD1+e/VIhvA5GygOfx3DH9RJR9gmhRDzEBvt7dUMAeGg1qhx5fA8HD+zgjdef4/hHF/jz//Qm\nS8udf9pf0Ab+CfCw5GUw8BpmPcp+MvxbVUEi1wmzqYfUhpW/t+Eo7YNNFV0arNKCCRgegx3XYL78\nGxwGNilgChgDORrevUpoWWqDz48C12Dlz+DYVbjoAhfh+Suww3l2bbnJ4WdO8m7lea7v2kX+zXow\nobwJXBBwqQWzNSiq5fc5OOcHno+ajbTHLw7aQ23a7RFM7uis9VhZWSPvp9g0w2R9KtWYZqtBlER0\n+n3mF5e5dPEsSikSrfDOYApDnhuse5gTHtJMhActBVsnN/HdWoXm5BRXxiZYvn8X8ohEaqqVOPht\nAVmahX7AOpBB3ZHEmjiKiCIZpImewAorjfBxFqzFW4EpIuIkwZocrYJNiYoikAlCSZwQFNZgjSRL\nc4wxJYu3oNfrkzuHjCLiJA6SSWPxLjyfVAqfVDHWYqwNAz5jwBX4LEM5wAsiLxBpjvUOZwxGS3ye\ng/GIOKLZbNGsaXqZY9lZrC0oEOTGg1TIOCa1lsIUJNJR1456RWGsQTmDKTKUFuS9HlpATShqOtQ7\noTXDEyNkWY+irSi8pmsUhZMsr65x9/4qK91sw5/4/xP+/llfJxy0k8BmiMZgRMMmEQ7qZaAFlWbK\nuLzPdH4XfQH6p+DtDG6VjzoPzMzC05/C8O0uU/vuMtRYQuzwjG+7wyE+5vnlj6j+oGD1z+DEJbhm\nYFTCi5dgxDr2bL7Ck49+xAeVZ7mzaytMa7AC1Ex4EusIr8oOgf679NBtsN0Lg+KNBPfPDzYGX78m\n7J8aY+dwC9NbxnqHJAy8BB6cL2OCY5JqlVqzjteK2/fn6KxkREIy2aqSJZZKUmW4HlGVHiV9eCwR\nfFeEENgyQcs5j5QKKQTeOYpmBW8twhhMkZPnpjQ2jrC2wDpLFCnWWlW09disQApDpDRRFGG0I9Ia\nJSVOeZRQwXZWSsps5DDoKodtQgic9bjCoqK49AgT68eAd6FZEoHpZp0DBEppvPd4PNVIcWDrJI9u\nm+Y/e+VJPrp0i//w5oe8d+4aK910wwvsc4mIUPQGMpbBFr9F2OT34P4QXAR/QvHRriNMbLlH1Cx4\n7bs/YduRe6hZCxI6OyPOTu/i78TXeNN9hdtXtsFJCYuwdq/B9S3buVDdzZ4XrtA4lfN6F3bcDr3S\nrjoMfRXsy4Jz8T56wzW2PT9L/Injd34KZxdCGds3DO1XwD4nuB+NcuDCZWr/Iaf/Pbh8CZY97Ehg\n6opnihVe+cO3OK/3cnrPYyxtnw61/FYDsjahCK6wzv4aRELCerHcwJcNj41UaVUjsjJFMfeCvnFh\nU11kVCqK0ZFhhodbiEiz0u8TS4fRFYyMENUataER6sMj6EoVrzRWxwgdhbPUGNCKtVYdWRhcUSCt\nRQBOeLLMk3m41K7h19bwUpBnWWgy8pw4Tnj82McMd/uc/9031pMfCfLFhxm9UggQCic0fuCFUXqS\nizIoxXmPEOuSR1gfeHlfPo6U4EJ9qVcSGjNVtm6Z5GvfeIq//ckH/OpXp7h27Q55bj7zOBv4POJh\neePDQ68pYBPITdDWMEM4T0fLuxqCldY9BbNxSJ3vAwuQzcfccFu4JPdw5MkzREctr92G4TnoeNih\nYPdz4J4HDoE+B0dugLwJ9x1sV7DnEeAZ8Cfgyl14x4UT+h7gerD1BETnLdOHZ5lK7rL56atkTyYs\n3hsjv9TAntRwTMDxCC7PQGEIYwzz0G3jb/eLAq01zUYDkxtWllbprK6BydHSIqVDxYpGJaISCZSw\nCG/wrsCVcr5eGQQyGIvCZ/86BFCNY7ZNTfPSIwf473/2E+yVK/y7r3+ViJR2PULLMmDdG7KiCEbz\nApACJRVJJWEUz3/7/mn+t6OPY5IIbGDsKhVkjAIwRYErDDoOipDiwWMFmxQhfDC614KKqOBFRF4k\nWGOIpEYJQd7PKHIFShBVFFKVQzILCBUiKyKNtQbrPMYIrDEUWTf0KB6MBZdb0iKjKHIKk4ML7Cyv\nHIUtkL014mqVJJJUVYW0EuOcpJ/l6FjjgKzwjA83GKqE/AuKDmmnh0LSqNcRwpNnBq0l1husFWit\n0EqTp4a1bkG3l+OEZaWTEScxWyZGGa7W6BuJS5r0s4LFxXmKIqfb7YYhIGzUp38AwbqUvU4wxZ0G\ntkF1DPYAjwJ7PWzzyDEHZ0BKR4RB+yDLMFk47gewQF4KR8ghokAJC8MwkcyxlZvULvfxH8Klq/Ar\nE/Yk1xz4+/DP3ofWa3227r7FVHyH6mSX/nAbnhJQi8KLsU8YxN2rBVavvQvMlt/LAp99xW4ssz8v\n2Bh8/Zrw9Ud3M9Ko0kmXSu8t8MbglUdWNNU4RmpFUkuIKjFr/W65PQeFp5FEtBJFEkli5dBClFRe\nGdK18PhSm2+9C4byQgSTYWfL+4bVu1QapQkUY+cQKkLJKMyonQIRwvU8IJzHFxbrQspjHAUvgOEP\nL9N9dv9DhsWl/9dD/l5CWISMUDIkMjnEQxr5crskfZn+FQzyQzyLC1+3L/1ihGWonvDq47v4ymM7\n+fjKbb7/3mneP3ed6/eWWEuzDe395wKDZK6YMORqEYreKDANcgSq9bBuXwFOgB2q8ctXX6G7tcFl\nvYu9uy8wunsBgDtMc4YDvF88y/mLB8l+0oDjQATFmTqf7jvIr9ovsXn7HY78q4+pbDI8eo4wY9oG\n+SuKi89u402+Qq4ipg7f58C/vURrOzx7mfAC2A/Za4rzT+5kLW/ROt2Bt+Ddi3CMUGOnMvjWMdi2\nG3a8MMvOLVeZGLnL0tR0YG+3NazugLRHKI53y7eaMAAbJMIMGqMNfFmwqaZ5dLQGWuGlokCRWk9q\nHcY5YiVp1mtUKtWwsZcKFcdhSy81Iq5SG52kOT5J1GjgpcfLIIN0QuCNJbYW5T2qHEVpKcAJcAZn\nLdYYrHUYHErr8H+toW8MJk1J4pjtb79L1TjOvfoitl5HKBVSIUtZoxceJwmBJkIhpQ6yRA/CCwRB\nOiOECI1ZaXD/DzDw/3IOZGCrDa4dPVCrV/jOd17i+ecf4+yZa5w4cZ6TJy+yvLLBAvv8YiB9jwmD\nr2GCg+NWqE6GKdQB4BFgh4cpi6oavJW4+xFcE3AOOEPoQWbBXEy4cnAP744/z44t1zjyh6epNHNe\n+IRALN4E/ijMfWOEhak2e4trDCWerx4HvwxiGniBkAT2DvT+HimrA/R70OhDTMEIi/wx/zcVlXJ7\nejOnxh/jzPZDLI5NhR6vEHBlE/geQSLTI7B+B+b8xa/3R7yBXzu0Doyq2du36HXSUsEgyNIcIRyt\nVp1KEiMFOBvOXm8tskxWN45SzPgPrwG0kNSTKru3b+XRPXsYHh3l//rKV1nsd0l7a0TCIbTDe4sx\nFm/sg4Wy9R4dRUidoKTg6M27NAvDI90+F5qhrsiBFLJk3roomN17H5IV8ywPksciD4wwWdqW+GD9\nqx1IrRFxjNK69DCuoF2McxbjcpTy6HqMF1HwFFYSrVQZgKVQIixFizzHmIJQAhTOOLIspdfrkqV9\n8iKjKFKKIiczBbkx2M4KSikaUlKXEVZKskghhEMLS1ITKNfDrll6uUYKjzQ21KdMg5DERNjCUFhL\n7iFL11hcm6fbt+ViR1CtNehnAtvto3WfCIFEkcQJu3bvZ2xslDiOOHvuPLdu3iDL+vR6XXq9Hlme\nk+dfdsXKw8ElgyXHGLAZaiPwBPAs8AK0Hl9kbHKOscYc0euGuaVNrPg2C2oUv+UKzR1w6DZ8SDhJ\nh4FtLWAH9DdFzDPGatrCx1AhpUof0fWYDixmnxWZL0M41HsQu5yYHOlcaE++S2hVBOHoniVQgy8B\nlyagUwEfE163A5bXRojV5wkbg69fA2ZGhnj5sb3oYg20xFhL7Gx4+UtJklSpNppIrTAup9/v0+t2\ncOUwyBtItELL4OclcDgGkfLgvR2MvoKEURCYUw5wYYAkUBTGYE2I7pVKlZv4kN6odUhwDKldEi9E\nEEy6IJ0UUmE95MYycuwCm350jLXLd5j/N9/AizB6k36gegyDMKmjgfFX+FiGQ+9BdLBwobKKkjlA\noEi7wWSQkp0tRJkOJtBKcGTPDI9uneDm3AIfXrzJL05f5b0LN7m30mUDv60YRNEr1odeo4St/vYg\ntN+kYRvByHKEUBfvClZ/OMa7z77CqV2PsXnsBkOs4BEsmFHu3tvMysVh7K8SeI+gZRwGTsKdHdv4\n2SuvEiU5q4832L/jPOOr82hrWWwNcbm5i18mL/I3vI5BoxuW1aM/Z8fBa4wurSCc5/74MOfa+3hL\nvcTv9X6AvAPZ9SCFHHiGzQOzq7D5Fqj7luEtSzR0J9T0mfLbvZ3ArRjuNcA0WU8pg1AsH97+bxTL\nLwMk8NrmFpVYkUqFQZNZQd86MuuQQtCs1qhVq2R5jpNQS1pEtToahVUR0dAYrbFJakMjCKUQ3oSk\nR8AaizAFytrg3eI92gUvSCRY4zB5kKcIWwQJehQhvQmOe70uuYrwSYUf/sHrNKMYW6RU+qCSGAi1\nIth8DRYXsqxDqmQzlym/wf0LKcPfuADkA3aD/wdbce/LRMiSAeZ9SDDzLqQST0yMMDY6xFNH9nP7\n9n1+9vMTvPf+pywvr21s2D9XGAy9NIEBPGB7bYbqBOxXDxqhyrOrzEzdZDy5R1X2yIlYzMa5vTzD\n6slx+KWAdwkyw08Ec7s38/bLR2nGa/SerPH4rlOMz64g+tCfVFwf28K7zWe5wzQvPPkOh2bOMHy1\ng1gBOwFz20eYzhcRUzBVheEsWNTHwE6gthmYhFXZ4r+583/SXlvG1hWzM6O8q1/gJ1u+xptf/xrz\n/U1BCbMSwfwE4VFWCBWkIJz/ko1z//MNKSVZ2qe71qVRa2KNIc974B2VOKFSqRJpjS0X0UpG1JIq\nUkT0swLvDaZUPgSU1/JC0a402LF1C4/t38dwo0rWWeWUhFxKMBlCAQisF1ivcM4FxYUPrBPnLM4W\nGAt/s3OKa5tGmR1rIpxFKYmU4f5RlJQhVSHx1/tgRK+jCGcSXJ4j8VhvccIhI4W34ZyPpS4TgmMc\nHicdWiiUjMhzgbU5STmAy4scqUQQi8iQKBypCKk0ziV4H34GqgzNMoUhSzPyLKXIc/q9brilfdIs\nozAF1lrwHuNDimUuPM4bhPMoL/E2xxtLt18+txAYY8lSg1YRURQhhEDLOCRvFg7T93Q7GU6HhMxm\nlDDWGObW7F2WVlJmRkfwxiIKQ4ynkcS0hkf4xjde591338FkKZVYs7K6wvLqKt1+n+WlJVZWVuj2\nel/SWvXw8rtNMPAagf0yLBu+VbD9qcs83XqfQ3zMNm5QjXvcn5jgp7zGBbWXg4fOM/raKs8sw7ZL\nsJrCzAQMvwC8DOdGdnKZXSwtjENX0KPGGk38sERPWKbrUOmG9UNMuExnEvwodFWNnq9SVCL07/cY\n3XSfpl4DAV3TYPH+GNnJBpwA2hJOt2Fes57yOAjrgvUh2AZ+m7Ex+PpHhgD+xdGnqNQSZJ4T1StI\nlz5gYQmpUVGM0nHww3JgbYExRZD/OYeWAq0kWgYGFqVUBBW2NEE0L8rNetDtCwTO2RAtHMVYHy4v\njTGlNcu6B4vW+oFhvYrCY1jr8UIhlMJ4j0SiXGhA7j65k/EPLjD7x6+GfwtKR6wPdvdCSEQps7TW\n4YQM36sP1GZjHa783oQMsfYDExhrbbl5kkiCdEZIiS+f2zmLcwYlHDunhtg23uSNI3u5dGee7x87\nx/feO8NSN93Q3P/WQbAeS18lDL6mgJ3QaMNBAYeAQx6x1yEnPaLh8Ebg70vySxUWP5lhcWwmsKMl\noX+4BZwnbPvPeZjPYSmG4wLf0pyNDtM7UuN6vI0Dw2cZH76PwrLMEBf8Xk7Yw5y6coQ4L+jsa3E5\n2sXeiQuMTgRW2TxjnPf7SHyGkRoSSKrrbl0QXlc1DbIGPhLkRDgEasbg/3OBmxNwWcKnAj6N4NNJ\nyAfJZIOUxwFHe6P5+bJgWzNmW6uCVworFIWXZM7TLw2NE62pVyrgBf00Q8QanSQ4qRAGqtUGrbFx\nWkNDxFGMMyZYgzuPz3uIokB5T+QcvmR3SSGIpERaS1FkiDxDu2AcLK3BmwyfqzBk8h7jJX0VMZdU\nWKvVqC/exzWa4GpIX0FFA9mjD2c563724QRXZXpjGUU28PvylIzkcG8v12WOD6c+Pvh4UCN8GKBL\nPEoroladVqvBI4/s5J995xV+8pNjvPveJ8zdW9xIgvxcQPNZ6UsTmAA5DVs0PAN8yzF2dJYXhn/J\nYT5ip79M26+Rigo3o8180jjEO5tf4MrwAbxS8HPgY7BjMacaz5I9WeF2NMNj46fYPH4LjWGFNpfY\nzUfuMPN+jMtqF4c2fcy2TTeo02WZIWbZxOv+b9l39Aa7LsHv/QKuWWgIeHw7iFdg7dGEF374IfI9\nH4ZbQzB2eJlNr85Tm+jRHa3x5gtfp3+tHUySF+vgWoQK0im//0Ea2KAObODzCCE8Wb/P2OgEWmpW\n+muYIqcWVUiSClFUQUhFGHQqkoqggUT2UwrbJc0LKNlPeF+GqAuqUYUt0zM88ehBxtp1+qvLpJ0V\nKAIra5AS4rzEOjA6olIfRuGxeUaepnhfYEyOMRnW5pxr1NBpPyQvRj4MqCKNjkBphXcCVQ6+ICJK\nYmxh8EnyQJFhfRFYv0ic8Q8S3WMdkn+NyfHeIZWi1qhjTAUpQAqFThTWGTw2sIG9w9sM7w06isok\nSIHWCUoqqAlcs06e5xjryLKMfq9H1u+TpylFnuFMgbOe3HgKa/HCYmyOs/ZBKIoLhScoWITAGhvq\nhBcop4njmKRSwSHIrKcZGWK/yN28h7MG4QvqtYTR0RGWl5bJraPdaobeJ+vTiGNMnjM5Ps7TR47w\n5s9/ihQJ4+PjbN66jcnJCWZnZ0nTDB1p5ubmOH/hPHfvzgW1jv0ih10MDJ0HZ32VcN6PwGgUrv+P\nWnY+c4FvN37A1/3f8WznOGPXVhFr4MfgO1t+xP9S+Xds336NF//lcWpjGdtPAX3wU+BfhquvTPOW\neJkTxWGWr47ArOBub5ortR0sHKgx/dwKB86C+yR4fI0JOLwF/POwvLfB1Xg7s3aGsem7HKl/yB4u\nMM48EsciI1wc2cOJnU9yY8c+XF2F65J3G5BuJozSugQO2noK9wZ+u7Ex+PpHxtbJMZ7YsYm036UW\ne2rtGs4afBFMgEUUkVSrqCjC2hxRmr97gn7dW0sl1kRShM9BmaYVZIVSgBD6gUt8JAEpS7ljYIlp\nHdPPckRp1ogNBpODAZMHdKQCAwuHkBJrDEIoKGWKVimMlCgfzC/P/Ne/Q5wXxN4TRVEwFpCiJGqH\n2HvrHP6B6X3Y3JRfPkqCLQLj60HKpBAPpC7OWxgIZLwMrDYf2qosywINu0yNrCaaA1sm2D8zxr/+\n6iH+6r2z/PLcTS7fXWK5m1JsNEC/YQyGXhFhy9MkGBZvgnYLDgk4CuorOcMH77Nr+gJbuEmTNQya\nO3unufTYHu5c30L2y0agGM8R/F0WCNTjexZ6q8BtyGfgbBu0xKWaq7MHuP/4NB+OPEst7qCEo5fX\nWVgdZeXKKJzX5HnEJ7NHuP3IVkYaC9TicsOTNZk347ww8kvuJNNk+86TPGl47j6otdC6bJewfQeI\nx2F1a50FxtjJVbY/dY01msxmm5id3cHKySH8mA41/3QbujOsb/0HaTFBLrHRAH2xEUnB/pEa1UST\nS4X1isxCz1h6WYEpCuq6gvQeaw0okCrCOMi8R0YxjaFh2u1hkjjGe4uwBRKLzzJ81kPlhtiD8h5T\n+jhKKXBSgTWILCWyBik8CYbCW4rCYvKQ8quERAiNkoYs7ZOtLdNdqdBqD+FGhqHZRFQroDVKhbM4\neNS40s3xIS+vknkwWEeUvVppdB+GYOF/uQd/+QPZjS8TICk9cB4Y4w8eoJQK7dwxw5/+yXf45jef\n5/jxs7z33ik+PXsFY77IzcQXAbq8DRYi49CM4CDwEoy/dJs3hn/IG/w1T81/xPTdOSqLBluF+5tH\nOTR2islojr9+Mud89xD2fhSYX28BOVycO8jcwWmOjT7LaGUeLQ0d02ChM8Hc7U1kyzVu7t3OB+1n\nmajcJZYZPVunITpURZ/2N37EpFxi6x7YOktYvBwC+zI0Psjg38Odk9DtQa0Gkx/AWHeFl/7oV1xp\n7uDi1H4u7W3CZgnXY1gd+FrmhEawxzp/eGP49XlFEiVs37qd8bFx0l4PLS1ZP0aFmFFyE063Xppi\n8tJ03otwjV0uBJQOLViw5QphVfVKlQP79zA1MUJvZQGb9YhkUHgYm+OMCSnrUmKFwnlJbiDRMUJJ\nlJbkaYfCpuVzKLIsh0rptyqCl6Iqn09HGimj0q5ElHL2MCQyeQFlEqRzBmNypJPEycCry+G9J441\nEkee5ziTI0UUFvg6QUsVeDAmxzmDcwbhHUIF4xbpLDY3SBEhRBiiRVrhlESrsESvVSvUa9XA9ipM\nGBiVkn1rPbkxOF9QFCkYGxhw/qFF+sD6BUGeG4wJtcl5h9QqpD4CQ7WcWBRkCxkr3ZSs38EWTcbH\nhun1U3p5RlvW0d6T5z2WV5eoDw0zd3eWXbt2cuP6NW7fuoVDYIyhVqszOTkVvl4Bjzyyj5eOvsit\nG7dYWFhk/v48d+fusrS0xFqnQ17kXzBW2MDPcSB1HIKkCduBAzD05AIvNd7mDX7E0QvvUfu+gePg\nlsMuZPPT8/yPv/s/8f9s/i6r+5o8PfUJtbkeKrdkrZib09O8Hb3E3/I6n14/jDlWgWWYv7KJjw4c\n5i11lG++8SZtOjz2S3hsjkA6ewKyNySnduznx8U3WBZt/kX9P/IKv+DA8nlaa6sI71mtt7g0vIPd\n0SX+5pnXOeufoOhUQx/yaRvsCGEj32fdiHIjwOS3HRuDr39EaKU4sn8PjTgm6/fIRfABqNbq5KnB\nSomPQFYjklqFrFeQ55YiT+n0+mRZhsAhcTjj0VKWxTAc2N45GBRLIfBChgZEKqwfxB+HpEilFA5P\nUqmgTIj2td6jVPiVW2dIkrBpEULhBfSzAoxAR4GN5sri7J1DWANZ6cWCQIgYqYLRvUOGpoR1/y8h\nw/YKwibrgc+ZpyyqJsgdvX8gnURGeC9K9kFJbPOglUZJURbfsK1xLrDBxhoV/s2rh/jOM3s4d+s+\n712Y5Z3zt7g4u8gGCew3hYdljg/p+vUY7JTwHKhvFux96jRHq2/xDMfYywXaLFMQc4OtnGg9ydsH\nj/JR7RlWzWhgeZ0E5gvIu+BXCCkr8+ANLG2FD4ZgWcINQefkCJ1NwzDsw+BpXELdIYYLeMrBfAxz\nmoUz0yy0pqDlYMFDT8FWuPid3ZyMDvHI42fY+Xuz7JIw+Wkw2KxOQPUVKN6Aj9sH2MxNnuAkNbos\nMcLlZBcfbj/CO6MvcqOxG+vj8LjnJyBf47OeLxtN+pcBQ4liz0gNHUVkhEYltY5eHoyOpXPEIgzI\nECC0xnpHp9/HxBWqrSFawyPB+0uEzb50Bdgck/bw/R5x4cAFqQreIr1BSIGTAozB5zma4EMj8UTO\nUjhLZi3eFGHhoCKEjILhsXN0+11Mv4fJethsBN9uUa/VEFH0IGAF7/DWBqNk7xA+PH+YdJXDL7n+\nsxgscUKjVfp6hc/wYOLlBrJ+EGrA/lq/i/fgnENHii2bp5jZNMFLLx7m7Nkr/PTnH3D23DVWVzd8\nwH478XAj1Ay3rcD+IG98buQd3uCv+drVXzDyw7Uw1JoD3YDpIwsMv/E+yZE+K9UW9w5NMn9hJiQq\nngXWwM8qVk5NsLJtDDlskNpjewp/V4clSg/md25iYccUejxHxg5bKBq7lok2FYhRz3PfeZ9tL96g\nuZCTVyX3RseYmb2H+Fu48A78XTec4kkXXjsGBydgy1NzHHjiLDOtm1yb2YMZSaAiYXWC0AhVWE84\nhs8yfjeGX58nCCFoN1tMjE/QaNQYGW4xNNIIKeoZFBYcitVeSr60RPe+wVoAACAASURBVLeb0ut3\ncTiMzellKUhBpCM8IX3dWUurXufx/fvZtXUGW/TAZdSqEXnqSXNACuIkDubsFqTz4S9KAjiM82TG\nlMtfhVISayHNC6z3VOJ1310dRQgVg9SoOCbSUSDplsvpwZJciRiswRY5woYFhy5VHlEZqDJImfdK\ngfAI4YNqJVFIIXHWI9BoFVMUOc5ZBAKFBBdk85FSSOcQzoDlgRca3qMFSCURkaYSRcEv0oVBYhhg\neQobEhttUQSyQckejqMYVVquuFAiw89AKqwPrCtjQ2+hpcQNN0l9zvXC0OtldLpdRmoNRkbaFFlK\nbgtGh4dIi4zbs7McHB8n0opet8cjjx5ESMXCwn2cy0jTlCRJSJKEXq/L4sICQyPDTE9Ps2PHLpRQ\nLC8usbayxK3ZWS5du0ya5SyvLJOmKVmWPTDN//xhcM49LHVsQEUFb/u9sHX6Mk9zjGdun6T2Z4bV\nP4PzV2GlgKkK7D0Dw7bDa3/8Jv/72H/F8fZTTLbnSMhZpfWAxXv2yuP0ftoKtUJAeqLGh9PPMDa6\ngN8mefaPj7PllTvoBY9twPzMEKfHD/C36htcMHv4uv47/nnxlxw+d4rGLzK4DDiY3L7ElqOzjB9c\nwFcE3UebXL7xSEhvvx3Bwgihhq0QBl854Zp+sOrbwG8jNgZf/4ho1Ws8sWc31SSm6K/SSQ31iiKu\nxwgtyawltxk5GUlUo8CRm4LcFHT6fXrdLlp6rAQlxQMDyjD0CoVAS4mSCo/AOIdUAq0jNAIjDLk1\nYYuhBMKG7blUilgpnPOlF5jDU0ovH976FAWFLUBJpFdooZAywniPNQZjDFUcskx0VErhSqNML2S5\nyQkMAIxHSouUCqU0SimED8wCj/t/2XuzJ8mu+87vc5Z7by5VmbVXd3X1Xo3e0N3VjQa6ARAAAZCi\nQFKkpJE0EZpFDnle9GA77Af/BQ6/TzjC9os0down5JHkGYmiJC4QSQHE2vsGNHpfqrqqa99yufee\nxQ/nZnWRMwppRhRJgPWLqKgtK7fKPOf8vr/vUqTJhO8FIFQB5q2f/0IqjbUQ6QS8xeKLhJlwiQ7V\nWknBQFeJF/aP8MKBUf6b1SO8+/FDfv97l7nzeHkzDfKnXh0Pl06SYw0YgF4dDItPe0ZfusWX+Qu+\n5r/BS9NnER8QWF0VOHHkY44evMZw8hj2wvsvv0w6XQ1eLo8N+IniwssEAKlotJvb4PIwPBQBKDsl\n4AUQJ1N277vFKBPUWMEhmWWQ2409LFwdDc1QXSC2CrzxMCe4ef8Qb+99iYHaHL/yz77B1l1LdF8v\nbm4rtJ5TnN0+To9b5JVH7xJf84EONgTLx37Ige7r9NSW+A+nf52pxT0wJWCq4/kyQzgEFHE0m6aY\nn/na0Z0wWi/htCZ3grY3NIyhVTQ8XZGiK4lIIgVaIJII6xx5Zih3JfT0DdDVXUfqYAYsbIayOSJr\nYdtrkGV467HGB5DL5ghvcMJjRZCaC2MKY+EgM1cdabk1uDzDWTDkBfglkBRmx97REg5pc6TJOP7H\nZ5l99RSN3dvWWbvO2SBl9w6FBVzh61ho3ouzoC8AL3ChW/NFWmRBAkZQeOJ4hJcB9LKsSyspkvYQ\nHi9cYBcrhdCKwaE+hob6OH3qGFev3uLN733ABx9eodFs/y3/lc366dbG42Znb6hCrEJ6424Y2TLB\ncS7w3Nx5+r65ivu/4JPzoQ8ZAMYvQqmV8cq2s9zcuo+LW44zv2crfquCK8BZv+75xbDEVWOcIiyz\nS8AUgWS1ReCHFHl3OfQrCSyd3sJfvPEVFgZ6+bh6kD3V29S2r2CI2MU9tp+Zwd+Eq60wcoGwHVxr\nwdgtKN33DI7PUpfL6IrB1BLYJyCqwuQYQe4oCa/g8B750XV/cw/4tJSUklKSsLCwwNLSAkkS091d\nIUnKGCURefDlrQiJ86ClRi4qVpvLmNwhlEALhRByPZm9JDVHdu7h5KGDxN6Q2YyuUgTWEUmFUJLc\nRAhvwBtKngJQEgitaeeGNE+RsSQWCd5rvLekeRbO8NZhrSOOohB6kkdIlQbLkwLAkiIktUsEsuMz\nLMBkIdgk0TEuy3HeoZVaT3b33ga/YMD5ANTEHQkjYLzBmxB4EusIj1r32Oqk+moZBRl9kUyvCiN8\nYy3OmuBZ6cP+pZTC2jCZd8UeFasYpxU2Dr7GaWEsX0oSYlnI+QlhLNaF25Qy+KPlJscYQztNUSvg\nfA7W8WB+mfZak7TaZOtAH0urDRZXW9TqvXg8S0tzzM/OUO/pY2JygmpXjaPHxjl79gOmHk3y8OFD\nBgYGKJVKlEslVpeXmJ+Zo1zpIkk8a60mlUqZSMLK2ipHDj9NvbeXLM9JsxYzjx8zMTHB3Nw8q6sd\nRtjP6EX/966OoX1H0t7xdUzCR5WwmG/1bFcTjHGLrqstzA/gysfwAx+W6K418GfgyC7Y/sIkL/a/\nw//g/jU9YomYjCYVHi+M0LrSAx8AZwjrfxX8gORRzx6++aVfYS4e4HrvAXb33qGHJVpUmGAbV/xR\n3jPPs1ve5WX/NifuXaT6bw32T2HqVgBIR3dB+VbOyX91hbnxPm51jTF9aDuN3XW4ImC+Qhjsdzx8\nO1L2juRxM8Tk57E2ga+fYO0aHWXfrh0kNCCXZN6inCVOEiIPrm2xzQar8/NoHZMDba9oWkmz3cZZ\nSxwHinCkQ0SwdWFiLiQoJdZBJy9CY2KNQwgDBRgWjIMtwgfzeekgdxaKWHlnTJG0FSiormMGhiBJ\nErI8x9gMkQe/Lq0iKDYeJyVaO6KC9mytQqmQDtmh57rOvXAOZx1KaaIoDqwyD1JYPCCdKmjPfl0y\nE5IeLUIWBppCBK+v4vrwhVTTF993rJJ9aJbAoyT0dyV87eQYXziyne9ffcB3L93jxvQiMyttWtmn\ndXryaauNm10X0B0cJZ+C5MQKp/iAL5jv8dyVS4g/hvRtaMyATqA2Dnt/fYI3fvk7PC4Nc3/vLu4d\nOBA2mntlWOkidDCrPAk41uH2RDf0VOE4iNcdw68+5LmB93iWM+z3n9BnF7FCMqm2cbl6hPeee4GF\no31sLU/RxRopCY/zYR7N7ORM4ySUYV71M/7iRbafekjJpMyX+phmC2P5HY68dxP+DLJzkK6FULL6\n59q8/ptvkY9FTHVv5c9PjpBfK8MNYL4Gvk6wyO/QwDd9AT7LJQW8uK1OFEW0hCKzjpb1NHNHagyR\nd3RHCV2JRmmJiyToIDU/tLjK3J6x4OsVx2EtNznKGaTN8FkLabMwJTcESYUtgC+b41yO8QYtPBpP\nZhzGOzQerQSRVsTOkVtDbgjDBVskLArCJB+PbUMqPHJxiZGLH9M7Oc37/9PvEMWheZHe471B+uDh\nErT1BUolxZNXuChM8Dc+OZ2feJ7QfDvlgkdLZ0zvpcCL4vrXmySPUBIvACGJk4Tx44c4dHAv9786\nyVtvn+XMuY+Ymp4n35RB/oxL8qM+XwmUJfQAWy398Ty7/D0Gp2fhfbh1Af6KoHIHaD6Cl96D6CXY\ns/Uu25jg/JDH9hNwpYVVeFyFZRUAsJjwutKEhqswqKe7+HmLJzL6JuSrdd499Rq3dh6gvzJLWTfY\nrh/yu+rfrN/d0o89oliASgAFOYEtWe5vkH09wo3FcAG4JODGcCD5rr/+N4Jfm6DXp6nKpRKDA/1Y\nY1hphpClLK1TrXThnCTLwVhDK22zutYizz0Uw2KtowDYFJI8U3jzflkI/s3t6/zJoTFm+rqQypJn\nGdYYvHFoDIgwOJaySM6NJEIoHEFCGSWaNM1orznarSdsoXCGtlhnQnp8wYbK8xxjbAE4QXWliYoT\n0noXHoFSURFMIhBRjDc5TkhMIclzziOVIIqiQo3hkF4V/UpY670vWGmRLngwIqQVF8xfrXXxdUiQ\nz/PA1op0hNQaqZLCt8sSxa7oBUCr0AdYaxEugIeRAqEjcmOQXoXnXIbLSimROsILTW49UmqU1GEY\n70t4IMsyyuUIJR0mzWi22kyvtlmZWyBWGiUjms0WSytrDPR04dI2M5MTbN++B2cct2/d4sChQxw7\neoy03WZmZgYpJeVyib6eOv09PWTWIpSi2t1FFBts2mJlJUVIQW+9D6U1aZaxd/cYT42NsTg/y+Pp\nKRpra7RabRYWV5ienSXNMtrtlGar9XMkj+ycaTu+XglhxeysmtETF5QqVGhQYwW55EgX4L5/AhWt\nAQ+AI9OQrKbU/Arj/hJvfv8rMCvD2j1NSFy8AdzyMJOCiqEUThyzSzv4znN1rm05wnB5ipJuk7mI\nxfYgU0sjaGsZ2/UdDmbXqb5tSL8F378J1wir89g9+NKbUN0Hh458xJi+xbu9KzS21KAuII4gizc8\nVs8T/8ZN2ePPa20CXz/BOnV8nMHeHtRqE5donBP4CNCgDMTO0W43aVioVmsQl8isZ62VYnJLpZRQ\nLsUo4YvJie9oA1EipFtJoQrgSxILRW4taTsN05koXtfmu9yQZ4Z2K2Ot1aaV5eQ+gHClOEErTZLE\nxAnoJA4pK1rhkeTtFo1GA+8lkY6IdIQSAmcd1rYwuQ39iFQIZdBahwRHFZp4mxd0z4IynecGpWWR\nLClwTiBl2Mg6Y37vA5AXehoTPM/y0KRIQhIlIsgbhRAoLcEGpoGQAuGeRDNTKGOqScSXx3fx4tgQ\n9x4vc+7uDO/dmubCgzna+eZB8x+3Og1OYWqpZZjy7IDRwYcc5TKH5q5T+k5O/ifw9l24a0Lv8tIU\n7BCwe/sEx5+5wAddp7i3Zz9sEeECK9XiejdOV2JgCCpVOACcht7Xp3m97zt8lW/yysJ71G8ukzzO\ncJGguaPCib0X2F6aICtHjHGbGiu0KPEg2smlbcf4MH+OD2ee537fLt5NXmBIz1DSbXI0r/M99tx4\nAH8C838KZyZhwcGuGMYnoRx7xv/lVS4NXuTMzpM83HUg2JyhCQ+iMyGSbNZnu44MdbFzsItMKTIn\naTlH03jaNvg7loSjO1ZUYo3XEqcVRkmOLjT47y/c4u5ci2/83u8Eo15nkM6gXI4wKc6kYQruwTkb\nUnJNDjYHk+NNhrA5CosWAdQS1pIoRTmOUFIgnAvvVBlMjp2zWGcDdF0Eqsg8x3jH4yThG7/8HG77\nVtTiAkm5RFJKQmCKM+AM3hcR3yJM5wUyJED6MJjBO7wI3na+MGsOcSqAtQjh11O+AogWHp8nyFs6\nPl84VwyFZPHz4r1UsBTKFcWhQ3s58NQob7z+LO+fucIHZz/m5t0p2u1f9Jj5n2V1hiLF52KbEGVD\nWTao+RXKyznMwj3/BPSCYE78zDzUZ6DGClWaUPGh54iA3loIiezjSSJJixAofBjYD+wA0d8Or7uV\nGCZkaJxuA38O5mbCoz27ebR1J3Jrjn3mQ6bKW2jtUZQPWp65BHNL6972nKxCdBDyvSEcZS83Scba\n3Nm+m1v7D7I0OgDdErwOcve8XdypFk8apA4LbLM+DTU40M/Q0BBCSMqNrrBGSonJLa12hjHQzlIy\nm5GbjEazSau9RtpukOUWJaOg2vANvHXUKzUObd+JuHeDknTEwiCExfqMdtrCZgalihTFqAR4rLVY\nawKbV0oiJXC5xWY5WZ6RW4v1AVSzPgBtWWZI05R2lJLlGe00ptlqYp0lMpbX//Jt0Jpv/fav4L3D\no7DWBYUHAictMo4AR55lSBHSiAWEYb0UQfkhQCqFEGCswzsbWL1K4r1DCbWuapcF+OW8x+SGLMvQ\nOi6AqSCXEzJCEa37j2Ed1pogsXf2STgY4TlRApKoaG9dYJpJD9I7Iu0pRQqIgqewjAooWlCuVEhc\nBS0tUoTB1Fp7gUZzlaUFTVfPABLJ1KMpuuLtKOFYXpjlzs0bbN+zjzzLWZibZ+ypg/T2DTM1Nc3y\n0jJKCky7TV9PD9JYRBwFT+ZEEinooQ+HRytNlmfUu+rEcQVnMpKowvDQVlx/DiakXVoBuXNUurso\nVercvnuf8+fOMjnxU38r/Fh1/BtjwgJcJZhq9REWYRWWOQvkkFKiRRlfFaguT1+4BJawpPcS/tyU\nNS1RJhNx+OU3CcKJRQL4tQC0loDHYHrg40FoKZiF9EadO3tq3Ns6hqpYXCqx8zG0Bdu+fI8+Fhiw\ns3AXpibDnCItHs014OAMHLwDw405+urzJJVGeFgVip63XDy2mDCM32hl0jlnbIJfP0+1CXz9BOur\nX/wCur2AEx4ZaYTT6EiilUb6HGEMttmi2UyJu3uI6z2kJmf8j97hrTcOopVDyCJBxXmED95XSkuU\nlGgVqNFSFCwRFVJd8AabO7T2RDLCekuaGdZWGiwuLdFotVFJiXJXlUjpgEfnhmYrRaomlWqFru4a\nUayRShNHCWlrjWaziRCBklwqlSjHCc54nMsRKkNITQnJrv/5/+TRv/4fi1jkQL0OFGSLMQbnTRF9\nvMFkMpiABa8XEaZWwoti4g8CR0f36IupUWdQKgvwjPXtKngECCHW/QI6TDAB1EsxR0b7ODxS55+c\n2MHE/Ar/x9/c4J1bj8ntz8uk5LNSG5eUDayvsgj734CnX8+zjUn6ZhfgPFy9GZjKnUmPnIPeS9B1\nDXY+c58tTCMGwNcIG856l9NhSyWEXagvBEfuA056TvSe5Ut8m688fJPubzThB8B9UJGnfrTB0a/e\n4OFXtnG6cZa+a6uIwviydVhzru8YQ9FjvjH0NT7+4Qk+6TqK6DMQG35z2x+x092ndD0jew/eeRjs\nxxzwMIOuS3D0Keh9ZYmdg/fZoh7zcPBAePwloJVseAydaPuITVr0Z68qkeKVpwbJKhVaXrCWWhoO\nWtaTO49ylqqCWkkTK4GRHiHBCMG93SNMTCzwzd/9LZAhAlgiUFogbEjFEs4gfQCOjMvJ8xybFT4n\neQY2A2eKyzmEcwjvySKNEwqHC2c3GeLlsZ7cGLwxYa12rkjm8nib44HprhKltEW85LBpGbqqqEoZ\nJRze5kVQScHkVcHJRRCm78I5XMevy3dMH8M+4HBIWUh31tlfhTSsE4T3YxXyTwpPMOGLJUGse4EJ\nEXx09u7Zxu7tA7zx2nEuXLrJN797lksf3fsUyEY+6+XXmyCfKXIfkYmYvCpIun+0EYLQPkWFbWSb\nhIwomJEawtp/DNhZfF0r/qgBlEE8bxk+fJ9dyT36mUdhWaaHe24nE3d2Yd8uwzsEn5izQK/EfTlm\n5sAI18sHubV1D0d++SZDC/Db70BzHiq9oF4A3oDbu3bxPO/yHB8yyTauJEd4e+fneLP3i8yr7aEX\nWo7g4XaC7nKFJwDYZn2aqr+njywzaKUpJRW8F2RZm7Sd0WrlSB0TxwnOOHzaIDcNWq3VsD5bh0x0\nYGCZnEQl7NiyndVnTvL7r53CuxbC5bi8jcLRXSnhohyTG1LTRsWVIAH0ljzPwtC5IA3Kwm9LyTBI\nyG24nEktLrNEkSRJdMH4SsmyjCgKiYtps8EHO4cR3d2sra0UyfIaa0zBvgq+vt76YsjsiqU7JDka\nk60DgEIKokjjXGAWOyQ2N2TNtDjuaKSIguewc1iTr6/l5VIJKYNE0hoDwuOswzmI4iJZWGg8EpQn\nljJYoEjw3oYkyMJHrN1uYawJgQISsJ7MtNFRhJSu8AGWJKUKSZIgo4RWnqF7e1AixwIracbd6SXa\njSY9/YrRbSPcv3+fRrPJ8ECd1ZU1pifvM7JjJwNbhpmaeczWbaO8/uqrzM1M8/jRQ6TLcO0GWbtF\n/9Aw3sNqY41KtYrUmv7+firlMtOPpsjaGVu3bSfSMe3cUC53026nZGlKnjbwztLdUyPNU7R0PPPs\nCX739/47lIw4vO/3fzZvCCCcYTugV5UnoVZbgBGgJ6zJJYLgYUYwxwAP2YHZfZ7kWMaJG9CeDVjW\nLuDYDuAYrGytMSFGmfUDsCoDHexNCC/8NYLb/AzB/mQJ2hlc3wozURhqbBG4eowrEY7ZC8AbFL1m\nSI2G8PXG8YPt/FBCx2TU++Jw4SAwW/YSdqYZggh+gSehVbAJfv381Sbw9RMoIQS//Zu/xfDQAKv3\nZzA2RTqDtIBTCCIgxXlPO01ZaLbJyxVqUtL10X0qk3Oc+PZVrnzl8I9EXwkRIuJVYbaS5zlKBXAK\nCJG8SlEqlWi3UxqNBkJpvIcoiumuR6A05TTHCUHmHJmBKE6Ik4hYafI8p9HOMX6VUilM78tJCV+2\n2NzQaLZZazRIkhK17nqQvggw3pM7w/4/fxex2qT07fdoffFUkCIKjUDiCGmSSI8xhW+LCKb3oacK\n4JRUOnghO4vSKgBXQhaTfxv8XILHZeAFCI91wbC/Y6TZ8QpYl9F4EIh1SjcE/5lqpBgb6uZ//bVx\nrk4u8q2rk3w0tcLUcovl1ibw8JOpgsbxI98Xn5RHC0PJt9GpgUY4/m985hsEE3nakJgUrQ0kJlCY\nJSDUBt/IDRutUGGf3QFDYw85Ii7zzOoFur7XxP1h8Ir5pBW25xM3YLgFXzjyA0p/5HHvQWsKohpU\nThhe+vo59AnHUtTL5NFRlv7jCL4Ro76SkdCmkqbIZU+2GlqYDn+wTdj+WAHdspRpkZAGnKtD8W51\nngxNkIF2Ur42adGfpRLA3sEuenu7aUYRy7lnxXtWnKRtAWOJnaFWKVEtRQjlcQKs9KhIU6338Me/\n98+JS+WQCIxHCxuAKOnxSuCUIM8teWZIs5w0y8jbGSZLsVmKMwH4Ut6jZTFYcI527khzKMURiZbE\nWqG1CMxe4XHCB3mhA2FMAMCURJgcn0lyAdJZcu/JBWTeEkcSQWDlejxSeIQrFm7lA+NLSsK7RYc1\n3ju8L35WpIcF0EwUBvhBzg4iyOELOcw6X7cDfHUu5QRF0kpxO+HvhRToSNHfV+f1l49x+sQY56/e\n4a/++gI37kyxvNLEbKYB/yNWh93agbEMYSKeQsuHQfmsZj4f5H68g9nhQUZPzjB+CdbuB6ZXD/Dc\nVqichPyY4B67eeS24WZEWEKPAc9D6cgaleFVytUQbpA2q6S+xPjIh5zmfY5wlS1mGuk9s7qfG+op\nPth3mjO155ktbwt9yluEhXxMMH1nhHf7XmBbeZLS5zN29j0kftFRWwDqYI9Ac1uZPd9+SHzbgoa9\ne6fYf+omwwOPkXXPn730qzQn+4N2ZyoOrARmCXtXZ+jRSQXbWJvI7M9bSRE8cG1qSSoJJje004ws\nz2mnKaBJkhLNVpOFhTmWVxZoNtvBasQCeJwz5HmKQFCv1hjbsYP+egVjlhC+hbdthE1RzqN1hLEe\noQUIhTN58PLFoyOFs548TTHGkmeWPM1RzgdGrxDk1obhSBQUF9YKnPNY5yklEq0F7WYLbwzvDtep\nVCpU2w2SWOOlxllPpCRSgvSSPM8wJi+ei8D2kgKctYWcUBdDaBmCurwDlyPxaC1w3hMpRaQ77WeR\n9u4g0lFQrhA8uWzhAdw5z0t8CKMvJHVBbRLCrpCgpELoHJXnAUSr1PCFvNNkebBg8Za02aTgECOk\nRGNw0hJFipLyuCiB7l6GrWTnWspKI2NqucXc3Dzbdu5iaGiYpdUV+gd6EAJaa8vMzU4x9vQxTN7i\no6sXeNTTz2uvvc43v/ENZmancKZFpVohT3My28YIR6IVWW5Q1S66urqoVqooEVhuSsngxyYF3V01\nlBCs2hZra2uolkDHimZjiY8un6VUqjA6uuun+C748eoweDuKhm5gCNgOciTYj+whfGwj4EQrcGd5\njIv1ccYPX+Dpf3KLITxffx/ay1DaCuI0ZF+TfLRzjEsc5cHSbrhDkKfjCKhWi9A1rBW37wlUMAkL\nPbAYwW0JJR1+3QZ2C1iFVrPMY4aZUlsZ2r/K6G54cRGuFLO2fcCOYWA/THZtZYYh0kY3rIkgmX9J\nwGMB0/2w2A15DzBJWMshbGyeJ8qU/9r1/O+yQ9ncJ/5LahP4+gnU4MAgv/r1X8NpgZEO4wwlqVA2\nwlsVpH0qwmmN14pW3qY1P4vuqbG4rc7cFw4xt6uXRBJ8rIqDfjB4l+AhzcPGVq5UUDouwKGw0Gsd\nIZDYVpMsy3EejCvMLB2sNZsc+2SWv+qLSJ0kSipUu7tJymW6urpJylWIJLlztJfXqMYSrQRdlRJZ\nmrG01GB1tUGaGuI4IY4icpOT2zbXXz1Eun2Q9MWDJC4LyTBIrAv0ajAIJzDG4YnQSuEtwbASkDpE\nPweCV8HwsjYAXt4jfIj3KrY/nPdFcxQ2BkHwevHeY4xBFhIYChDMObvOIusYyTjvkXiOjNQ5PFLn\n/kKDj6aWOXd/ngv3F3m82t5kAvyDav3JLsqGJjoHmoKmq7AoemnVypS2NdhXgSvNMATSwB4N1SFg\nGBZ0H2t0waoOfVIO+IwnUFMnJSsJcsouYAj69TzbmWBwZh5xBibPwXfbYRYDsDYHb5yD2p94mn8I\nH30M91swoOHYLejJ4HDvJ5x86izne09w6ZUu0sdlrEtoUWY1rmJ7BbrPs5XQzxjCnGt7CeiHvDui\nSYU2pbDZrnWels6hoPMYOs9X53FtNuCfhSpFigNb6qhYs+o8DetoWE+7OFQpb6goR29XiVKsyTuT\nRSlJKhW6e/tIKlW8DBHvSvrwa+PBhRRFkIWXTEpjrUHWbpNnKSYtpt55jrM5iY5IIh0k416QGY9x\nlsw4YgnlWFGKw/oshSASoSFCdPy3XPCNtBafZTjvsB6cUlitMEogfZAYBjmjxeHAhTVaoAN7yxfS\nlQLY8r7w/5IS7wNgVvB114+J6zBXZ5iBJMCAYY8UQSvZUc0/YQoLtz70CM4yxWMRglI54dQz+zi8\nf5RPbk/x/rkbXLx2nwcTcz+Nl8YvWHXW6MIkizJh7C+AFmQWZhTch4n5US5VxxkfvMzALy9RamS8\n+C4cn4W4DOWT4H8dPt67l/Oc4N7iXvwdCSMgP58yeuwBT/ddZB+3GGQGhWOuPsB9dvIyb/Hq2t+w\n4/Yk1ckWwkFrMGZh3xn29N2lMtzgO1/4Mitzg4FycAG4Cvm7OmCs2QAAIABJREFUZS4OPEuyJ2Wt\nXuXUix8y+vQ0paxNGiWMzd6h+/9t4b8D0/dBK+jdB0NfXualf/oec9sGuDuwi/ePvAwXI/gIeNxH\n2KwWeWKKnBWfO9TGJ8Dtj36/WT/LqnfX6K5Wg/LChYTDShzjvIA0Z62xRqPdYnZ+jmZrmTRro3WF\nWMdktGlnTfI8R+CpJBUO7t7Hrq3D2MYimV9DCYMkR3iLt64Y3uY4G0Ath8Q4h9AS5zxZmmNzhzMO\nZww+D9YpHoH0gkgI4jiwvIy1CCWQKoRSaQFaSJQKgwprc7I0RQoHPoE4DECc00USoyzWbiiEHVib\nI3JHEod2Usii1XfFWcZbvMuDB6SKiXQXUSyQosOycWHJ9gJnTeDAy6iwRpFYZwvJfUiI7KzzpSRB\n6xACI0SQ5ofgFoW1Fuc9SkUoWfRLPvQW1uQ011bJ03YY0jhLmjZBWLw0SKXRGrqqVbwT7BjMWV5u\nsrg2zdLSIqXuKj21Lu5PLNBdrzLSU2NtbZXZ6Yfs2Lubob4+bty4yfTUDPvG9nN0/Bne/M43mF+c\no7tWQ+kI66G3vxctJB6JUhHGQqW7RpyU8UCet0nTZjDyiDVZqtFxGaHWyLOMJCkjyJl79ICbV8/z\n/TffJKAxP+3qDLo3BJbQD2wDtQ22lcNQ4gRwDEpPLVOrrxKpHCsEH/Isg8zgPvdt9m+5Q/XVlPIK\nMARLhypc27Gfb/EG77ZeoPFBX0jvfQgB7KoXt9dLaBAqBFqZhiJhFOOgKaDZJgBRFVjqgilYmapx\nc8c+rkRPs/PUI3q+tsYLwP7J0LL0DkP1l6HxcsJleZQb7inWTBccBZ4izC7uEcK0PorhzjA0kuJ5\n6Xg4dgY9nv/ywXYnGVNs+Hpj/fgesSmX//vUJvD1E6hj48cZHh5G0MAiyL2gojWymJw7pVFJgijF\nyGqJqJVgJJgsp9FoMj9So0TYKJQoDKp8Rw4oCnZTHtKrOj5ZANaFNEap0BrKpQrkIbZYek+7nSGV\n48RUm9NXpzkSKf6Xlw6Sq4SJxRZrjxaJ45j/7cxN/vff/iW29PeAh8XVRRLliXVEd1eV5aVV1lZX\ncA6SpEScxOQ2wssSstni4cERalkwZ5RSoKQu/AEs3qbB90UqlCxj0VgXUsY6qZVCBJ8PYYP0paPZ\nDzH3HiElToRJkXVmfcqkZZj+SyUxxhSJYeF5DPiX5QmCFT67TrJk8XMlJbsHa+wY6OLVA8M8Wm7y\nl5cm+cMPH/zUX0efjTKEDbDzdQak0PABdZoRzORD3C3tZnbLIL3PN9hyA37tfbjZDtvY4Z0QvQD+\nhOA2e5lgFD8twt+vQkC/suJzBy0QT/w0S5DINt2skqQpzMPUBtALwn7VWoLuD+D2Jfi+DduoNtC6\nDV94FyovNxnbe4un1RV27bnL7O4h7vo9PGIbd9RuThy4SuV0m2cfQDQZrnO/hN37gedgdXs399jF\nY4ZDcuRW4AhwvQcWOgbPG5+3jQDYZn3aq6cSsXuohhGSNLe0ckdmPLlxeGPQNqO3mtDfXUGJMIEX\nWqPjhGq9TrWnBxEnge0lw/Q8hJJ4bMFktV5gvaeV5ay1mrSbbUyWk7czrMkxefD8SmIol8OUXUsd\n5CdKYrG0s1ZonGxCJSkFs+EifVEohXUO6y2qgJsomgongh+Z1ZJcCQRRYI1Jsb52e2dDE+YdSusn\njGYRGiLUk/dAaKhUR7+4ocUvGLuAdwKpQuPlhfhPYQDvguQRiusJYJrHY33RRAJeSgSKru4q40f3\nMLZ3K69OLXDu4l2++zcXeTy7/I/3wviFqg6QExGaki5CY9Ix4uoPgOgj4BNoXujl/R2n2KKniY7l\nvLj9XUovBU8vuiE7Irm2ax/fFl/infxFHn8yAlcE4us5+05/xBdL3+VVvs8RLjO6MIfwnsf1Hi7r\nozydXmPnd6aRf0EAnwxU92ZUXp3mS7/yPZojFaYGRnjnxKvwUTFomQHegmZU553XXuPRUyNcUuNs\n7Z2iSoN/wb9F/zGk/wHeuQoXXID0Tk3AyRyGdixy/CuX+KD0CR/tPcrK6GCgrj3uGCJ3WHDwn9rm\nw5PGCZ40TZus4J9lDQ8OopRibW2NvJ2GdclD7ijCmBzLyys0m2sIIdEqodJVp1LpYm11mWwpx7kM\npQTVuMz4gcN0x57W0gw+8mjpCvArDINTkxfqBxeAIevRUuEyg88ypHEBEIoifCTRMgBnxliE1kip\nkVIWieoaHWl8ERKlAC09gsAKwwfZYd52SO+xWU6sJVYpvE5AhvukpQoSQsLfCMKwHAL4JJUmtw5n\nbRF0ZbA2p1yuopMYhCWzLTApGoHSZbSKkUoXc2uLTmKE0gHEciLIIj0hiZ6wz0gRrAEsxQDFuyLg\nJQx8nBEQx4UvGshIE1EiiqrYPENKT9pus7a6TKPRoJ230HGCVhFalygnZYb6+ti9LePRUpP24gqt\n5TnKOiPWktm5BbYNb6GMo7Eyz90b13lq/zhaxdy79zGtdpvx4ye4e+tj7ty6wqPJCebn56jVeqnV\nupBK0TtQp1SusLK8ipMaocBlLby3OJcjpSYEfymUTtAqQUlH2k5D2iee2akJ/vqvfwj8i5/224En\noIzkicxxCMRWGC7DcwI+D/oLDZ7ac539+mNGxSRlmjSp8ogRvsOXWIj7eebgeXbsv0/Zt1kR3dyT\nu/lQPMvb+UvcvXQwyNCvEZSNSRWirnDTxgfiVyKCl3CvCPMVQSEx9zAbQbOgfM06uC8x10p89PTT\nvFV/maG9s3zuX35IZUfKyD3C0rsd2p/XnN/7ND8Qn+cahzi44xKV7U3alJlxgzyc2I07WwqKzoqE\nyz3Q2hFuZz25vbOG/30H2xuDrzqDkc5ZaaP4H57oZYro7B+5jb8NMOvUL+Zesgl8/QOrVqtz8tnT\niDjC5UHm571AqbAQGyDHBQlfpUzZOwaEIPWC3FjaaStsaL6IJu6koRReXp3klDhOSMoloigJkxAR\npj1BLujCBhtFJEoVL2VJHDuSJGf6RJlbTcOZU4d5ptqLrNaZWW7y8PEcx989Q6WdsfubP+R7x/ex\nfbiXerlEO2ui2y0qSYne3h5y62i2c1JSjLNYDMiQlKJkY30KJJUgUhYpwkZoOxpFwmbmjA1G9oUR\nsfeAkuvmxcaaMNNXwUzTe4cXARALUxxbeIIV+KArUsicR3mJtU/eyM668Ds6jC+3Hp0MG3ByEQz0\n40gz2lvhX720h984Psq3rk1x9v4i9+YbrLYNxm1OW//u6izOnWlHRqA6GZjWcBumbo9ycXycd2qn\n6PmlFYbEAtv2wbZHhN7oOLS+FPPB9mO8x/N8MnUgMJongJYjiAs7m8kTRsc6HtaC1JVYoUa7VKLW\n32ZrAgMBA0MA/QLKPcAcPCpAL8K9ZA7w86AXYbg9z++K/xsnBVPxFq6qp7nAcS4yzoGD1zn+mx/R\nk1g+f56g2RwBPgdrXy3zTv+zXOYIXaxR/40Z1q71YrdpqAk41w2zu4o73CZ0Wa64B5t+X5+F2j9U\nY6BWZsG5kKZoHMZ6rLEIm5Mow1BPnZISOGOIlMIqDV1Vuvr7icoVrFS4Ir1QCoEsUm4FHucFxkPu\nPHlxG2luMbkjTS1plhfrn8IaMG2LUhBpSSmJkXFMJAN7LM9Tmu0c7wWVBLRUCByy8Ez0vmDkWhvW\nfSEKRoIhzw1jN26x59YjLvzGS/iuUuGzWHC2HLjc4KxD6oKj1VnACSllQqonpvUi+DbiWQeqRMGC\nkWJjDmqQhjofjO1lwTTznsAULgAvhy+AtuKZEyI0fgIcFoSkVCoxOjJMX08v40f28tZ7Vzh/8TYL\ny2u02p+GCPmf1xKE9aww5qKHwHYdATUE1XIgKQwQtonzggf1A/zlKcNyqc7NgTHGvnSLblbIibnL\nbi5wnHfMC1y69Qzm7RKMw9D4I14v/zW/5f6Ik7cvUH7TwU3Awc69s4y+8teoZXD/Hia/BWcLx/zD\nV2HsMQzWl3j2V85zoXqcT/YfZOGrw7jDOiQJ3wS+BdlMmU/Gj3Pn4D527r/Nfyv+gO1Ts/AxTE7A\nORf2kVXgjIOnLkHtOgy8OsdgeZbueJWVrsFA+F0HAzvAYHnDc7WxNjhBI3myP2wExDbrp1VCBNlZ\nFMUoqbBZTtpuI5UKg4Di/CkIKenCe+KSRChJM2vQzht4MgSOsi5xZP/TbOnvpzV3F5c1ySw4aZAY\nIqnCENkYjA2sp6iDsnkL1iJdkLBLrfAKrBcIUUKp4uzsfQEkuYLpFaxCECEkRCIRIoRJCQ8YgxAS\nYx35WkoSR0TVKs7m5NkaVihMlgc/sSJ0S0capToBIyJ4l8lwmyFsxQTQRkmcN3ifIqUkUhF5lpKb\nHJcDsUVEvhj4h5RIJYPUE2QICpaykFaKghcQ+p9geu+x1qOkJI5jyDzWGoTzSGsLhrHHIhFSE5Wq\nQTETdaHiCta08eRY48gzCy78L+uVEju3bmFupYGQsNpuIlptapUK8ytr3HnwgJ3bhiBvMXv/BoO1\nPvrqdfr7+7l+/RqnTj3P51/5JeamH7OwOEklz0i0ZmryAU5Kdu7cg7ExSbWMVwphLa01R5a1ilDj\nCEGMjiGx4X+ytrJYsNJKJOUSi0tLTE0//hm9K34c9OoB+qFWg6eBF6H7jQWe2/MOr/E9nrHnGW08\nomIaNHWFB5XtnNEneZ/TXOYIvXKRkkhp+jKT+Sj3VvcwfXEU3tIB+FohMK76ZZihKKAtQltQBnYT\n9pSu4m6tAtMiMLNuR/BQQUOEnuKC4PGOnXzv5S/iKzCza4Bjv3OZoaUlhIeFviqXOMYZnuU+O/nn\n4v9hj7hLjRUaVLmvdnJ591E+3HKKyZ49WB1BLuFaD6RbCKhbiydG93+XZLEjF+18jooH2AnD6khK\nO32PI+wNlic9kdlwOX7s641yy45xqudJL/WLcdDZBL7+gbVl6wgHDh1BRAnOxqBLKA/aBVmKNTm5\nEURxhI5jykFUTtsr5hspuTHowpDXeYf0ge0lCjYU3hFrjY4iojhBCIVSCoTCCodHBLNgIRE+SCN9\nIQMJ9N6QfnjntRP0y4i4XseXuzFCMzm7wB/0dHNvrcH/V4ronZxjbmWVoXqJ7QO9lIWgubiKFiG+\n2SNpZzlZmpF7j1SacimwDZI0I0kiolQiEo+WEulcIS/x6wwsZz2dN5srWjih5LoMsfP+1IUJv5Qa\n6yFL0yBtdKqQMbIOqLnO7XgXou2LqZTznVsorpuCCm1Z9wTzxfW4IoESAgjWU4n51WMjfG5vP7fn\nGlx7tMLFh0vcmWv8giwN/zW1cfKjCAtrStipFuHxVrgO/v2Ec1tOU9uyDCPw/K+dYcsL01RWmthE\nMTswwLWBg3yX1/lh82WWLw/BRRH0hO1GcX0NnmwkBXhkHKwomIP5rJ8HlR3MDA0w8OwSWy/Ba+fg\nZitsISeGoOuZcDUjEVTysEVpgk2Y6AcieOr9u4hHd/ExtHbFnDh8ga1dj3iLV/hzvkr2XMKBkZv0\nPVhBrXiyIcWNnXtpDsUoDL/FH/OYYa5sP8KH/ae5OnwUF5fCXf6wG9ZGisfS4ImWc7Oh+bRXd6J5\nZWwILyTW+WAybBzWOHAGLQx9tSq1agVsOLwrFZNUK0T9/US1GkZr3HoACIXIL3h5IyQOhXUW4wTO\nFwbCXpKbwD6wXiGjkLio4yAJifKc5xaW+X5vF2lu6CtFVFWCRJCbHN8yeCsoxxFaSpwqfBWLJgOK\nQQtu3e/ROUd1dpm4mSIzg1ufvosf5W0V8nspQhMilcSvA1IBoKOzb22UL7rg+SUQISVSysIG0yNd\nZ10H6KRGdq6vSH30RXokncuE23FhnoITHqEUcSJwLqK3B37plXGOHtjOJ7cfcf3WJPcezrK61v5H\nf918tkqzLkOnROhStgI7oDQEoxIOUhipsB6M5ZYUty8cYn77MJe2HWNUTlBljYyYKTvC/YW9TN/a\niv2bEkwBn/cc6bvES7zNM7cvU/4Dx9pfwqOJsANt2wLdN4HjsHQB3lyBu8U9fNiGf3oOBs/Dllem\n6K/O8cLA2zz6wjYmlnYx/dQIvK3hh8B3gU8gf60LszciinJE7iELas2Nc/wWkBYWZspbIgJr50eU\nK+svSk1oGDuU5Y7UsdPMdCY6xRUW49RQ/7nTyKZU/h+rSkmJWEeUyyUkgrTVQgDWuzBo9R6XOySS\n/p5B8qxJM09ZXlsmzVqYrI2zObGM2Tmyk2ePjiNdGkAO58htjiVH+hwrZAB9hFwHmWIZFFwOT+ot\nwjuUlDhncF4gpSKWgiiOwVusMRhvAtsVUQwEAmtKIJGCYE4vPJHWRFqCCussIjCqjMmD1NFKEGHt\nt9aGNF1UkAYqvW5BYq0jN1mxTnuEkMQ6QqnQ48SRRAgd0tqlxcqsUHlYEAYVJcVZ3xPSuyTIAujy\nxXqODyb7hXrDUTCGCwWAEDrsM4WksyOp99bji/eR0glCxAgpSJIqIimhJEihaLY6YQRNlFTUKjF7\nRgaxeZuH0xnLS4voai+RlMzOzDHYWyNRkqWlOZaXZhjdc4TB/gEWZ2e4e+dj9u45yHOnP8fF8++Q\nthZYWVqg0VzDC0+koG9gmHrvAPVaBR3FLCkQDYWUEXnmyLOcKJK02w7ngiIg0hUq5To6EqyuzpLl\nPyv2TufcXyS4UweGwhD4aeAly/jOM3yNP+Prq3/FlguPSS7ZIMHoh73j9xl75ibd5VX+I7/Gd6e/\njFvUmEzRmi3jb8VwGbhCWO5Os57Oy4AP/qENAY8ExKDHm/QMLVGOW0jhaKYVlmZ6ya+W4ZyAszLI\nJSd8+L4KdzhA80SF2wNjjMlbDPbOIvAs0ss0W9jCNP+Mf8ephfP0TCwRr2XkpYjl0TrnB44wVJ7h\n26ff4E7jAH5OwUwMk/3g5wiG+x3wa6O9ycbqfN8Btzqp9WXC/tmxCOjsqZ4nicCdwXmHXdYuft/p\nwzpAWgcAcxs+OkCZ3PD9Z3//2AS+/oG1b99+tu/aHTYKGaFUjM1zkBYlPKbdxniDl9VwCJcaHZWQ\nzpGZ8EaQSm7AgcX6hy/AsziOUVqHdsJ7vPMgw2cH669nD+upikLIECccCTSKWAYzYZVEyEqJtTSn\nsbKAz1P+tF6lUq1y6OSz3LpxnYs3HrK82mLvlgHKXmBaayRakihJRuEdlkGrlZJ3uRA9rDTWONIs\nQ4rQVHTOeM550jQrpI2ymN4HiaNUEmfSQgEjULLwHlC68GoR4FwwsVRgsgAmeufXnynnOuaYpmB1\nFc+DEKAUzuYUfVFgiHUM7wtg0bkggwn+YYGebW24zr5KTO+OiCMjdX51fJRLDxf49+cmeLi4mcT0\no7WRklvoDSlBEewAj2GtBh9XYRAWakN87/UvsTTcy7XaYca6b9HDEhkxD8QOrvI0H/rnuH/uAO4t\nBVeBCQOus5F0FnnFOs3L54HOfA9m72zjyomnOVs9zo4vTlFrNjiwDfbdD3dV3QL+BsQe2LcPWtfh\npguDohMjoJ4B8RD4d8BNEDFUjmTs+eojvvbr32Sp3Ms3+SqP1RaO7LzMzu0PiJyhKSuc5Az7Pl7k\n+NzHeC1wuyXntxxitDJBdDTlXPZ8kDpOAx/1EmQ/88Vz9bfRmTfr01Sf29VHf61MQwqsC6CXMRZj\nLficciwZ6O0mVgqbZXilIUmIajXivl58pUyuFBKJ9AIlgnxdiCLBVmmQGi8sSIXUMTouEyUgiEHG\nqNxSqlQolcsorWk0Gvz7M+epWMckgislDaUIqiW6ywlSKGye0UxDwlYSR+iCYRUm7BKhZVhHg1XY\n+lp7/vRBbiqFqpZJnC/CGIvDXGdvKvYv5z3CerzcIENfT+0Nw5p1HxkAFRgUYT4kC3m8KJJ+wz4g\nnQcZ1nAKntdGyaTvSCzp3Jcgn0e6Yj8VYXAUgY4ilI7o76szXo7YvXOA2bllzl2+y8c3p8jzzffl\n312d/aAD5nR8DUegPARPSThF+DhpGNz3iH41R0JGy5eZaQ+xcGeQhXcGubzXIsoBYLILCndHwUcC\n7gMnoDK2yD5uMt68SvkHOa2/grevwKXi5XVwEb6YQ6UMq6uB0dupOWCyCYMLUMlb/Cp/xmt8n1vJ\nXs4NP8PbL7/MzdphjCnB9wneMm1oNKss1eu0+iRd22GgDluWA6CmCKSD/lFgFFaTbpao0zalJz1K\nZ9CHJYxaugjgV8KTk9MGCjNrGz4ywpjmPxNzun6dP/71Zv0kqlIO66kUQfgthSrOrYIst2TtNpGO\nqNV66erqYvLRfRpLczSbK0GCV6yJte4ahw8ept5dpbU0jXUZCIHJHS7L0Xi8dLjIomNFrEBYi/IO\nKRzGg3QOZ/LgtSgFXnXWSFGAUj74Qv7/7L3Zk2TXfef3Ocu9N9fKWrurq7ur9wWNpRtLYyGJhbso\nypQsjcahUdgxngmHNXrR20yE5x9whN/8YtkPlmNmHGPPSDPaRqRIiSQIEsKOBoFGo4HuRq/VtS+Z\nlctdzjl++N1b1aA1cpi0ySGIE5EodFVmVm51fuf3+24qEFTJjkWsPrwTHy2lPagCbTWGQPA5LncY\na7FWPBt9EM9dAWdKYNN7gq8CqyxxHDEahd3PtQ8YEzCRQccxBoMtzeyVKdm7aExSpzCarMh2epZK\n8WK0kbRIL16/SusdFpsM7XY9G+WxKIyJZMjlA94ocDkKhSsEHPE+QPAYo3AuIwSHVhFJHFOrjUnw\nVuGxxhBHin6/IB0NCUEx0YrZPzOOCgU3l5ZZGfXRKiZHMRyltCYa2FizurbIzNwR9u/bx80b17h2\n5TLNdotHnjiP8vDOhRfpbiwwyrqsLy+QDraZPzoguIzO9B7aY3OoqWkIis1hhvc5xkJRZICmXm9j\ndERsEowy5KMBW1tbFMXPUrZWDWtqQEcOzHPAKZh96AZPmb/hl4bfYv5bC6j/E0Z/Iz6743ug9umC\n4795hy/+2je5o/ZzuXWK5W8chtcRC8QFxEdkL1IvPgPNx9Y5MH6TKb2GJacfWtweHCB4xdnOmxzX\nV5liFU1ghRmu7j/KOw88yMKB47LVgoAmi8DzELqau7cOsXz/fl6cf4ZGZwtQDLfafPXAH/M5vs1X\nP/wrkr/IUS8BS1CbdLQeG7H3q6sk96VstTssnJ9j+MGEsISXOpCPITKWLrtcdX3Pa1ataq+27A65\n6kjd7LBbH6owFNgtJttIT7TNrnbF33PdSlZfHagqtlhVX+4FVzS7w7CP7/pk8PUTLGstv/SVrxIZ\njSoLQC1KyDCkaY41Huuh6A8Zek8cJzgXSIucfp6RZkOh6iJyDaNF3ojSO9G+xmpMKXXZGYoF6SSM\nMSi0kBRLlqIrHAGPLlEbaw0oK8bD1uJL5KMWWWwoaCcapQyDdMjqRpflXsryep9RKj4xh/eMMxbV\n6A+6aO/luQJ54QhpwWB7SKOW0KrV8LE0eXmW4xDWl6gUZVgWQolWBY9WpoxcDuAKQf6VAhOjVFSq\nlUvmANXzKGWKxuBdgS/kUCc+AuIlELzbYX9VyL8LAY9HB/m5d07kLiHgq4EXuwMxkVQKO8wgzyky\nntganjo6zbmDk7x+Y52/ubbK9bUBG8OctPj4T8n/46ui5VbofgvZsMfY9XNpgU/hbgNels/xRncv\n337iS1w6ej8z8QpNvU1OxHo2xZ3V/YzeHIeXkMvFAGkPqYAbyAZfeXxVm/8GLDbgAwivGN6YP8+e\n6RWSuYyv/faf0Uw87n+CV18TmwCzAo9ehwfOw+PPweOriO3MY8BhyP8V/PB1eC+XZ/XwTTiSwcxs\nl/PPvcpr5jH+XfrrvBEeZU9tkV9Tf8zXlr/Bvm+uEr4LxW0JoozOwPlf+SHJEynbcYu109Ncf+i0\nNG+3Y+iOl69Zj91kr+q5/W3rR9Giv4s+/Qk/8ae9ppsxj81PEbTFeaQhyguyQtKlrIZOvU6n1YI0\nF3lDrYZut7CTk9ixMVxSQ+kI6y1RUOjgyrDCgNIGE8WYGEwBUR6IE09SC0SmxuGtPr/35rv888ce\npti3D2UM2/0+Ic34e6dP8Csrq7zSaGCyEVv9keCC1tJKaiJzSYcM05QQPDVibCz+KlpbIamU9hPV\nnmmDNFt5bNHe45xII0WyrnYGTtUNhXmgdmqWKHc8Kjh0dSbc8X+U2yuqQVhVB8ulKFnSCDugZDRU\nyY47nl5iDlNKHfU93xMageSfyL+ttURxjCtyEhfTbokf2RMPH+L4oRnefX+Ru8tb9AejT5Ig/6Or\nQpkjpBkaBybBzsJRDZ8B9SXPnk/f5tzU6zzA2xxAfF/6tLieHOath8/y+szj9L83Dpe1bPsbSLNy\nE+knnoVGu88UazS3hqgbMLgFV4K0BQBXAzx6ExoL0GrD1KJUj4CMnPbWgDZ0Xhzx2HfehRl47IG3\nOLP/EuO1Tf79Q5YP1h+EJS1ejcvQX5zkWucY77Tu55nPvMz0Jfjlb8K1rtSKU3tAfwkGT0R80DrG\ntXCU7vK4pJF9xKdyDmlsJkE3QddBlx6ZPgc3hNArn/gmApBsla+tY1eqcq9cpULt75VHflIHftKl\nlKLTmWJ8fI8kHuYFwUaoWp2+y0jzIXGtwVh7nCwv2NpYJ8tG+NLYXcKa4Ly22GMnOTo/Dz4jTXsU\nLiWyBqMTRi4TfyqMpNQGRXAFrhC/XELABY0JXuSEzuE8+EKUFcZY4XOUG6wNApa4EMSv0Xvy3OFC\ngdcKZUEFS06O0gEdJygtIAvKo7VIFgulsKbai8tkSu8IGMLA4ZzD2hiCItIGrTzBp+goAgLeS19j\ndHmu9znWGIyJsbEErwQlDDIBxUugvExt11rCBFDy3DJXYEvJqVKC/psoFogkKKx1FEVG1ToZo/He\nkaUDAbhLi4woVsRJRBRHKKAgJ1YWa1po7UiSmG63R5LEzO6ZxkQx/XzE0p01Rk7jTcTKyjqdZkSS\nJKwsLxHevsD80fuwxrK12WNleZXD86d56pln8D7l9s1J0Y09AAAgAElEQVQGd259SG+jy2g4IjKW\nQa/HAedojk3RaI3hMk82FEDX4UjqbWwUE0cxg36XLB3S3d7GuRGrG5v4n0ktqsDa6hIDDTn27wEO\nBw7b69wfLjL7/irqP8Cdb8K3N2Ub338DntmG/W04cnKR+85cYr59k+U9h+Wo/wNks34IeBbsl1OO\nnb3IE7VXeJC3mQsLRGRsqQ4XOw8wpMZzPM99g8tMjtbQeFaTGS7XT/K95Gm+/fTneF8/hEsjyEt2\nxgDZXv9a4S5EuL0RaacNh+DIr13kHG/x1NprJH+SU/xr8QS+k8KMhVMXIUkdT/7Xb3J57hRv7T/L\nO8ceF7+vWENeMXkrUoBjFxD60eXYZc212fHAZAbUBNg6GHsPITiAy6Co+qK18lIxwmrIsKwm78kO\nm+xeBnEfAVYG7DKKKyXNx9du5ZPB10+wHj//BA8+8AAqiI480grdaLBVa5P2M+p4EmNJ85Th9oBR\nlOOCIguOreGANE1LGi6EoDHaikSw9CuxWhEZKwMiY0qTYyONTznQyrynKAopDMZgfSDNc1CuTG5R\naBNTZFB4Rfv2Cq49wo93sNZQq1lcKOhu93n1pRdJPWAM/azgc1cW+I5LOTY7Q83GDHs9ijylXquR\n6BhbBFw/pW/7JMbILLsWoa0nNlrM5sumR2QyVaSryAlxOd5L46FKnwLlkYInMD/gy+Gg+HQppYis\nwWvInNsZevkiL1POAt5VvmeCBJUvMN4XhCDpL1L4SgSskjwijLDyAcMOS0AQJqWFfVGz8NSRSR7c\nN8atzQGX727z9t0u76/0fgEHYBWyb9jdaDvIhj0LzIAdg3YCDaEVA6Kv34BwJWHh8FEWZo9Aw0Gh\nYNUIsv4BYkJ8NUBvC4H4V5Ah14hd75PKR2wVRpNwuQ6vwNbMDG9+9RFO1d7DBQvvZty6IqqVQfkw\ntoDZ27D3HwKPwPqBFjWT0/iXKXffge/nUhMVMOzB7AVoXHQceGyJuc4CaVrjdvcwTx14kaeKl9n3\n3VX4V3D1JbjehbqFk6/DTM9zX+cqjz/4Chda51g4MU92oAkdDd2qOImXxUdf0x9dVYrLj5pX/m3D\nr3t9YH5x9Ps/y6UVnNrTZnqsAUrjgqfwntyJ5AQCSawZH2sT6QiPk0aj2USNjxONj0OtgTIRWkVE\nWOKg0EEG+AWSpOijBBUpoljhC0UaOWxUYCLDufVtmsB9zTZ3pqYZjFJ6gyFeadZQ/H5nDPIcnQmS\nL54oKXEU0azVsFaRj4bk3qOLAh1VJy3xlFRKo7WR6HoPxgciAiaU0hNfukco2JmSKWEhh5LxGyoa\nmPeU+fQiO/QBjMhgquGXVruuXqDKuiKDtepxBSo2LyWbt5K+aCoRuw+7LDWvqgleJd90wqBWoK3B\nRFYuuSaylnqSkCY11KTliYdbrKz2WFja5O7KJmubPZHpfLLuWRUYcq/8ZQ6mrAR8PANzT1/nixPf\n4It8i/O9Nxm/u0U0yslaEYt79/Jy8zH27F/mO89+gbX+PnhDlYmIHgZ9eLx9D1mw/DRUH7cfeSRa\nAw2YfAy+uAFvrcrOeKoF+84D65D9jzBcl0ThsU8PefLvvUHxqGWpMcvdRw6y/fYkXAOuw+j9Oj88\neI4fND7N3vNLHC9uMnPEM1NRvk6C+5zi4un7eFE9xTvDB8kuNndLGF1kRHYQ9ASM12BSyXywgfwB\njWJYj2G9A71pcOvs1omqNtzr91V5aublpWpy4JPh10++jLHs23uQyYk9ZMMuwRTUapZRNmBrq0vh\nAs1GnSxPGQ76ZINtCAVRpKW3DPCfA//CF/wJnsVGnay3gvEjslGfYZbRqCck9UjYp8jAx/uM3GUE\nl+0kM1IoCYkK4BQUXvxsffBoU+EAEghiVSg/LcJuDd6jytv6ImCwBKtwXmE1RMoikLoqwfQCrzXB\nG86+8h4XHjtJ8CWIY+R+s2xYekEqFAalJaFRrBvlPO58IcMtHwS0L8tK8OJvjPYCMmuDqeTuZQ+h\nTFlvjNQCX0oejZEkYhG5l+FfSgZh1jtsHhHwFHmlEomwponzGcHl2NgSxzFaKZxzpT2MsIhtZGnQ\nxtqIwivCYIg2MVobsmwvt7dSbi1ugfWs5wNWmoZ9+2YIRZ+VxTu0O5OMdZoMlnqsLC6ycHeBMw+c\n45FnnkO/GtPfTlleWmDUT1lfWWY07OMKR2wTDh4+hTaGuJaQjRRxUidPPc3mGD53ZMU6EBimQwbD\nPmsb3XLQ+bNY1V6v2fGlKsEEJnImWGefW6R5ZwCX4MKmMGM9giNMrcHe9yG6mbHvzF2mWNvBysmQ\nAdpZ0J/NOPPom/yK/XO+6L/JqdsfMrbSxeSOUTvh7P6LdNtNHrt6gc6LQ7gKOJg7us6xJ2+y9/QS\nOvZsn21zpzlP0kpROpD1YorbDUlmvITcbha4D2a5yzGu0rnaRf0ALr8F30qlb2gWMLwMj/0Aak+N\nODZ3lf3c5p2582Ii3AT6DXa9HBWyuVd1ET6a4DsqrzuOQDJzoPZBqwHTRhhvE8hr64GugrUEFmPY\nHINssrz/aqjWKe+rulFlQ1MxurrIM9ksL112K2eVMHxvP/vx6SE+GXz9mCuKIn7nv/1dakkEwaNL\n2i+NFnpsimywhQsOaywqqTHIMoZpzjAvSH3B9mggfiel/M8ojdWGSElbYJQiNhZjrAy6tCUohbGR\nIOZlM+EKGezoUgJijEEVBc4VWBuhtCKyMcYa8t6A0//rHxG05sN/9k+oNVsYK14V7Zoldxk1bYmS\nMf6bjR7/eCvl7NVV/mWjxtzUBI1mYGN9xGAwpFHXaDQ+9+RpznZ/iIkNxiqm37tLVIvp37cf76H6\n4zFWo3RJh3YF1UxKG42OLJTm/joIhTwoaVZ8yFGhDKPXqirJpdzFi29BeQlU8c/i6+KdREITipIV\nJoMu5xy+LKA77NNyQIbSYuR8D7tAGiv5XpUI2Uwsx6dbHBxr8MSRGW5ujvjWpbu8u7j5C2SEXxW7\nKsa4g+zQc8A8TEYwr+EwUsDGy6sPEY3/e8gkao+CxMqe3EOAizvAmgO3hkzCFssf9NjVt1cFoys/\n83dh6SDcjAhbijyNaNe2ibMM+tBzu0MvkG2/n5ePqQbt1SE6DrAJ3W15mCDvfxdwW6C6EGU5MRlJ\nY8SYWucIH3Ji8yq8BNdfgz/pCpaiC1i4C7/6PDQezzh+/wfMmxs0pgZkk005HCgLoRp6Va/n3zb4\nqnT51fOuBgLVNn4vlRl20aV7JS8fbwrzz3rVI8PZ/ePUkpi0jGLPvScPgjBrA81GQrPRFG8vE2Hq\nCbTb6IkJVLOFtxEoi8UQKUOkPAS1G46tI7wCFytwSnyG1JDgFWjND06d5t25A6w3WyQ2woUReVEw\nykb0hwOyPGeyPQbKkPa7bG33sSrQiC3NWptGq0VhDaP+NnmeY6zCxrbMCAkSxBgQjxUDOniM99jg\n0cGBLwdRRrxVRI5STSSqxkSCW/Cu3GbNDrsXX3pzwY6ZcTXm+gjzWSHMrnLfDirsKiaraymFLh+D\nCkHqiQJXHjiFv7DLDBZAJOw8XK+ERZEkMfVaQp458uCYaNdI7Az7ZibY2k65fP0Oa+ufJEF+dFWG\nxxWC3RJflgeg9qlNPjXxAv8Zf8bnr73A2F/3UW8g5+8ZmH5ii9mvLhCPZ2zt6/DC459ndKUlHdMo\nhVDbUQD2tsZY2TPN1mSDcBRa8/DAKryK7HqngYlDwP2gTgq7YOY9wIOdB5qw/nV4cQEWPBy5Ak/c\ngTEDD8y8z7n5C7y69zzvHpkUJsOH4F+3vH/4NN8480uoWuAzT/+AM4+9y8zSNoWF5clJLjbP8B3z\nHH/FF7jzxjF4A2mq+gFpLA5DfQyOazgm/2Rf+VKBFKe7yLDtagI3ZmGQ8FE7gapxqljClZly5Rk5\nZFfCkvFxaVx+FssYy9TULBOTM2yt5xRpzsb6Cqsrq7g8UItjEpWjDejYEWMZbTosmsRGZC7nYr1F\nOuwTnvkCtijY2lglZH0aRtPNC9Z6XbQRH6woFgN48gKKAleID1Zemq+nRQ6RJfWyd9kQYYPC6Axr\nFcF7Ab6VqB3E8SeUhve+PAcXWK8xug7loE258owRAiqSJEXnch67cIOzF28zttXn+WcfwJhSiQHA\nblq6MRptFM5rokgAHO/FbbeSO7rysYHCefk3AQE7yjN2CBKiou9RvChtQSkhCIRSfl+lu2upL0ob\njLEYNCGRvsB7T56OyAuH1TWKIiPzAwgG5xRxEpdgjiqHgl6M72OLMQbnpCIN0yEKzd7pceb3pVxf\n77M2HKBixd2VNZIolpBB3+f2nWvsmTtIno7obm1y4+Y1ZvYfYO7oMXq9bXpLG+RZwdbWItloAOQs\nuQJtI2xUQ5k62SgDXcfaRBhyWtNstxmMmmSjQJzV2R6kdLf/U7Be0btfq3KvPRE5NjhUOY+/1+nK\nU86ER6CKQEyGwe3OaCyyLz4Ac/ff5Fn7PF/L/4yHX3+H+OtefL8GUJsb8PAzF/HHFNE3Coq/gNVr\nkDs4eARaV4Z86r98ndX7p7gxfohjj37AtF7F4On5Nrcfmufa48fZ/ptJeAE57LccLfp0whbRZg53\n4Vo59ALZYT/M4dwC2LWCcbfJmOlB00kvY2EXpFDIJK+qh5WkvWKB3QtaTCOF8qAYEJ9CvDAPIwO5\nFrLdbyDM5ysKLsXwwUxZH6o+Yj/oMSlkYwpqJcOtAHoBtiZg6BAa8gIfldkrPpouX7GJq/Xz3Ud8\nMvj6MdfZs+fYf+AglZ+W0ZIWQr1FMjbJ9uJNnB/hlaAS9WaMCoFiOKDf3cIVftdgEoVRekcIYhRE\nkcVYi9G7mnddbvC+pEyLdFCjgpYilos3lS7leUVeoJW8xUkZDXz117+Aa7YZiyIOz80xGA1ZWrqL\nbWU0awZnE3Stxl/tn+Tpd27y+6f20cCxvT1gvFVjcmqK7a0tnHMY5Qi+QAUpFGlRkKUjDv/Jyyit\neeef/wamNEU2RpdJl0G8bvICFTRWR/Lcg8IgSY44T5aPZMilpGjpEIQiHRRZluJcQZHn+CJHB4cm\noOWmO15dzjucd5Imhiulj1Kgd9CyyhzZ7MoyfSnN1EZeO7EQk6bKORkg7JjjB2nOGonm0GTEb51v\ncnN9yJu3V7mx1mNjMGL0sWUDVBPDSkfeQJheB0AfgP0JnAPOAg844vkcM16gooAfavLFCHc5kuSs\nt5BNvBcgKyALSGlZZlfeuMGux0nGbvnMkfJZ6twLB6MIBoosrbNJh81Wh9n9W+xvwYGebPWKMgBm\nDPgAshcgpA4zD4zB7BRMrMl1NTKbi2bATyu2602uc5gwhEYyYIwu9U0PS7A4LNUs5SO8Bqytw75V\n6IQt2mwTxfku+LMjCQIpPE12h1/VYaIyva8KZMEutdzyf9/KCz6aCFaUF8vPe9H6T3nt79Q5MtlC\nwkoChXfkvijTAz2xjRhvjxHbCJen6CRGN5qEdpvQbOHiBK8sJhgsWj4FqrRpNwia7rUM8K0ht5rC\nKAoNeSgTbpWiPzmFLQ/8aTZie9AjTYfkvsBYy9T0HqLgcaNtJtbX+LdXbvE7tRjXaRDHNZQrSLUS\nc+RC44pCVIFlDdoh71Z6RYIACw6U8rvMKi/MrR0W1o5WErlN8OBl764MlXeARV8aHAOoUDK/SvaY\nLgdqwZePA1QlWyynX/dgLrJT7RLECCrgSo8YXbLIUPL9oMLO1iZJaIoQNDayWKvRWmE0RFa+Pz7R\n5P7WUZbXNlhcWGXQT8nzYgcg+cVbFfpf7V+l70tLwQHgVOD4zAc8wUs8cfd1On/cJ/8/4O47sDKE\n/S2YfjewJ+/xzG+/wPvRCd4+9CCLx1ty8P+wBoPLsHEa7kJ2vcPVPSf4YfIQRz9zh+a1EU8rOHEF\n8gHMTEF8FFiE7ElF+D2NugW68KiNgPt9eO02vInslqsOWtfgyQvQvNnn4PxNZtSK9CMdBKgZh6zd\n4qXo02wfaXMlOc7J9vtMtNcJaJaZ4b1wH2+OHubqD88Q/trIL7jukXo2CRPjwn57FNR5R3xfRrKv\nR3NMqsd2t016u032bk3Ybq8qeGsKthXCCKgJaEKAUNXAHrvofa+8DMtLlRb8i/q5/MnWvtk5Hn30\nUYosZXNri9Fgg7WlFUxWMNNq05nsoBX0elsMsxH9Uc4oz3DOEWuDtoHpo0f4n599jomax29tMtha\nJx+tExFoGEvmNZsbPbJ8RECGUxZIIk2aedLMMXSBYVEwcIGRCxQo0AodNJHSzBtDN7Zoq6nHmroN\nRHgirYiNEq9ISiBXkGnyNMcoDdrhVI7XiiiKQWmUFXziB2cPsH95i289cwqNeH6RS6+itSJ46YWi\nWD6T3msUFoWoVowV1lZ1hgbFKM127EmM1iLjLDKUFYTCF6JY0aXaRVuLMRHa2h3JuinP6cLsrJQi\nBq0TvPMiz1QQ1RqMRkMKV1BTdRLXxLmcohgxGuUkCaXHsMY74ZBaY1A6ptlsgAkUPiXPPVEcMdFp\n02k2WO8PSHPNZj9ldXOLmU4bl2dsri9RazaI4oilpQWc1hw8cpjJPZMcPnIEt72NijzLd2NWV27L\nbUarBGPRUcLs3EGstoSgGPQymo06RgW88jSTGgZPEiWsbfbJf2Y9RpUgGNhlleY7s/fQTdhgguVo\nmtG+mMbRjNNvwUIuO1QbuK8J9jCks5YVZthibNcPfgzYD+b0iKPtKzwRXubMh5eJ/41n8Ifwzi3p\nCI5oOHjdEZ8H/w144YeCMzjgoYvwrIL6Yce5U29x136LPX6Z2WwJGxyb0RjvJyd4ef8TfPdLz7GY\nHIHXNWSaHMtQ1XENAy3PhIbI7/JpxxXoNvi6ZmRqDKlBZu6xVrwXpJ4qn1AJAu0kNcKul+MiMAd6\nPxyN4BHgqYB9LKN5cou90wu09DYFlvXRJGu39jF8qwEvGxjTcKEDvSOgExirSYNzCKmbnfJXjoBl\nBXcMfGjg1n7IGsjgqzxMfYT9Va38nq8RP89G+J8Mvn6MVavVefz8k9QbdQBCUBTKoLzHKMvY+CRZ\nrU62tUEROeLYYKKImtEUWtEd9AUBFygcow2RsURaqMbWGolL3jF6FBRE6VJioqSZkEspG9GKwnlC\nmpHlI0ldQeG0w5kM4w1xFNM7e5K0CFhfMD89TSOO+aErWFvNaPiCkMR4o4mTmH/9lad4dGycjbsL\nbCzeIbPQSGJ0q4UrCoyCPOszGDhsXeMLS47hjX/wKWr1OkFrkTAqiRsOQcydgxO/GqXk56psdkLh\nyV2K96l4fEWCHKlSygBibO/yFFcUuEKGHyF4aXh8FW0sDQylp5cgPuLb5X2QRrQckFX0YFU2ckUQ\ntoGgR2Kcv9Mv/Ugj430ojfFVeQHQHBhvM9NuszIYcXuzz9XVTW6tbdEbpv+/fzZ/uquCZEodCePA\nXjBzcCCR9JVnA41PbbP/6Iccb3/AHpaIyekyxs375vnwweMsnjggVN4XkGqV9ZBx0yJSELbYPcBX\nGvRq0y0L7c6QJxOEdBNYVPS2xvhwz1Hei08x9elXmb4Y+Op34c46GA3zU9A8DkvfgzcX5DccfwvO\nPAydx+GLfwNXN6Gm4fQc1D4LxX6N9Rlf40+JWyk3wyGG1MlaEI/BuJVWr/KY2QO0S2/KgWoypI7L\nzS5IHygfe4UKVYhQNfyC3WFXxi6aX8lLa+wWrYrKXF1/xEfTXjJ2adY/uu5FdX4+C9rPej05P8lY\nPcYHyAmkXhhCeTmgadRrjLXbGB8I1hK3mrhmg4cv3+b1Q4fBCNurAgFEqOcI2qEIGC/+JSEE8bZC\nSXR8pAmxIs8c2mqSRkJRFGR5TpFneF9gI0McxwyHGTfu3Ga60+HQ7B6ezeVAc6y3zftpk9CuU6tF\n5Kll6EaIRMaBL6XziNeKVxCsLxs0h/NC0Q0OdvVm5RApKAjybHQQBpsqpen4QAiCRqrgCRLLCyiC\nl2ZIaWEAKy3DP/lHOaRiV1KPLo3zqwCTcs8O9zwUTUkLKweK5dhO7kuDChptDVEckWcWV+SgkNcv\nichzSSc2SqSiDhmQTUy2qTdihv0hg0HK5sY2272hyDd/4VaFOt9jetxWMAlmf8qcvcNJd4WZq+vw\nHXjnDXjeyc7W2YYvvgon5+HA4yucOHOFA+O3WZw9KqoNW0pGNpGI+rfg4vEH+d7kM+w9vsQT/8Ub\ntP2IuW/C5Uvw/UUY+yacvARTg0D/dy3vffkItTzj9L+/RtgWSKXqVTLE9D50QQ88NVIiSqPHytLm\nDfnqhg1+eP48N08eYbyzQbPWJaDoDzusb0zRvTguTcnLwDsBBl35Te2ODL0+C/azGQfOXuXBzg85\npsSUGRSr9Wne33uSd46e5dbBQ9AswZFXJ6A5IdYBMfJZToFRgO0U8m12AaOKbRDY5S9X/96ZMJff\n/2TP/7tWZ2ycpdVFlpaW2FhfZdRdx6cFBzpjTM9MkbSbLCwtsdXbpp9l9AbileidwwbF9MQ0Dz/4\nMJ1Oh0F3BbI+4+0Wm+mQYW8THzxWRTSSNt4ZhqOcNMsIPsNoxyB3jHLPdlAc8h7rxAVC2ggZPBwF\n/nsPLyn476wmNopEQ9NampGmYQP1SNOwhggBmxUKUwRs7tGqQAVhcnlV4JTstyGImfy/+cIZ4tJg\nXtQPhTCvqmR1p3FFjtaayEZoHaGVnDcqYFlrYfvmeY6rLEkACDL8UgEfCgE+jL3HIrJKrEdqRKly\nCWUCPMGjNOV9GLSJwFISCLRILa2AOAJ3aFzhcUWGS/vkaQ7OC3DjHIVL0ZGobpIopnAF9aROlmYU\nWR/rc+oqEKMpvCbLPFu9Ac04wqpA2uuxtbJEe2KaLB2wtbHCjWuXGZ/ocOjQMWaPHKA7WGOUdRmm\nPbobq2igt7XJyvIdJsZbdGZm8E7R287IMqgnCVpr6rU6wTsGxYDltXWy7Kftx6TYVSWUw3cccsbc\nhv4e2URvK275eS6bU5w/8QZHPn+H46vQfBu2BjDehNmHQH8RFk9P8x6nuTE4DLeR2yfAJDSn+xyM\nbnGsuEb7Qkr+PfjOLbiAHKHf9vDVN+F4AmtX5PsV+PxOgJMLcPQq7Ftb5wuNb3Poym3qVwrIodgP\nDx9/m8P7r9MYG/Knn/lVVrsHYUOxwh7usJ/+gSb1Rzc59z4MbwgzeFLBY3NgH4b+sYQbHGKZvbCi\npGUZwC5rapZdv6421BOIbOUHAZmHdATFJOhxIQ08CnzJM/bsOg8efpOHzRsc4xrjbFJgWajNcfHE\n/bw2e55bs8fIk5roni92pBV7EHgYOAPJyW3q7SHaOIosYnuphX8vEcbcBQ2XJmHDluelqhJWPUkF\nlFc9RUUbU+zK7H++zjifDL5+jDU9Pc0jjz5aItCyAuJFooKh1p4imdxL2l0m84W0riFAScv11dAH\nGWTF1hLbiMgKImPLzVZrhbWSUgJgdEQURXIfSkztTWn+iwKtRUfsA2TbfXKfY2xElo9QRpEYTa1m\n0V7RH2REGPaOj/PAqZMcfvM9/vD0rBwqo5iZ2TmOzh+lU6uzZA1uc4O8v03Qipo1eC1FKneBLB2Q\nDSy+bgmJoTfdxjfqNMrBVslTo8gLiiJHeUdkYmEEAFZXMpcqVdFT4MAroU0rLTyXwuHzHEXAF/mO\nTMaryidAEAelxDxTyzxQ0my0xjtH7h2F83gXPnLMUzujNUpGgURUi3mxvMbhngYmBDFE9l48BvMi\nULhKmqlRGiZbTVqtFof2zbA5SLl0e5l3b91llOd8PMgA90bv1pHddlaQhtLHpf7Lmzx14Ps8a57n\nId7iEDepMWKdCS7Z+3hl9gme7zzH5cYZSGPRrV9qQbaCnOaX2TVfrNhOldwP7nF6ZEfq4VNYb8JN\nRffqBBcPPsiLyaeYe/wux9NbzB6AvddL1dVx6P05fPeuSPw9cHMArVfgyG/Bkb8PB6/Jda0GbkP0\np47TK9fY/8t3MbOOf6t+k5vMc2tyH8fO3eXYq/DcG8L0qgFPRtB6BMJZuKkPschehtt1kXoOYden\nrMVuMEATGSZWPkSVEWWfXTS/UV6vxW5XZsv7S8vXbBPBxKoUsAqd2927Plroqte2GqB9LD6oP5W1\nv1Pj0QMTAjgAqXOk3jHyjiI4rI4Ya4/RqDUwWY5pJ1Cv8cAHd/jK8xd44PoSf/BPf4cIu8P20mVj\n6suUQu0CylEOi0qcNQQUnqA9mRvRHXRptRp85tIl3p6eYj021GsxQXkaeUGaeza3ugTvaNY0X2/H\nvPfgPEutmHEdyPMRtXpMrRZRZEb8kXzAFyWYogwKL1H0QZU+iQIu4IRJa5QV+y6lIDgRpytTStHV\nzuArBCeDPB1Kc3tDqXcnlOyuoG35ka2k6OX+q2VvlzJ8z+dZlw298zjldwCLan8XQpewiJ2vhmdy\nEUxJHqsNEcoonHcls0ATxxF5XFBkBVoLCy8ETygEgDEams2YiYkGR47sZWO9z9UrCwwGo4/Jnv/j\nrLI5KstEPJYyrjeZSDeJbzu4Dpec7FQgYvarPTh8HezdwPSZVTpsCVheL++OGPp9+KAJb8DykX28\n+fTDPJa8xmcaL8MyXH0X/rwvO58pYPU6fOkFaD6VcmLqFv1GTDFhiGYcBxAVYlb+ioMG1DS4MUuP\nNinJLu5SABs9eKkN6xCuGjaO7mVj3x5olaeKroYFJSY2l4D3Agy3EaP6OZhXcB74Ipw+/xZfiL/F\nZ/kOD+TvMrXeBa9Y2dvmgj7HCxNP85dPfJnL4QHoRpApOIggKk1km94GVhXcrMHNBFbHyh/uStFk\n3esRWbE0YNcov5LTf7J+dEXasnh3gTurS6zdvcmeJGLveId6rYkPsLi8zNJGl6E35MowylPSLEX7\nQDupc/bUGY7NHyaOjAyUlKc11mQ8qtFrTLDV6zJIR6Spp1lvEVkvyelFShEcLk8ZuJxh4fmD8ux8\nSmlQVsDekLMY4CqBPw7QK7yEnwBDa+jngcR66ucvd38AACAASURBVNbTsoGm0bSsxuEIymO1Q+N3\ntlnxqBQw2VgjNceK9M+a3ZT5dDTE5eIRSVTDFQVJrUYcJxiqARUYo3bkkEVR4LzHRla+Vybr7gwC\nvMdT4HUB1uGDMNqC1zitqdLYtbFEZYiWLxxZnmEUWNuQKqzEa8yYGGssulbHeydBLR6K3FHkEtri\nfYorhmgKAgVZNsQ5RaPWxNgYoyxW12m1LGnqqakN2pGiFUWMUKRFSq8/Yj22dBoJ3jvy0QgdvLgl\npSPWFhf44OLbzO47SKvToTM1zfTefWSjAdlwSJ6mBG1JBwOWF24yVo9IkjFGgy6DPrj2GI16nUar\nifcFaxvrLK+s/gwSHe89+1cphC1kD9mAPMAdBe/DrWsneOXE4xyZ+JDx3/oLJseGHHodOf9OAedh\n+fNjfK/1aV7hcVau7Bd/3+vsYLs2KWiyzVjowhL07spVqnHfBqK0ON4Hl380y7aq7nio90ec+N4N\nzH8IMh3LRO4++9k1nv3NFxkdrbMwPsd3zo6TvtHm6tox3po6y8MHLvDpr71GK4VnX4J8Few4JI+A\n+hq8f/wIb3GWK5vH5eC/SHm2H5Sv0SxwAMYszOpdBlZSPsgtDasNWGhAN8BJ4ElofK7L0/Pf4Zf1\nX/B08X0O37mLWSsIkaI33+DNzoMcbN3i64/9MpdHD+HWI9nSDwGfhfiZAUeOfMDx2vvM6GUSMrZp\ncfPYPO+fPcXy8XnClIZIwRtj0D1QPuZqoAm7apERu+zhe5Mg4eetV/hk8PVjrOPHTzB/cL5EmXeN\nc9FWvtZaJHsP0e+usLFxi+AKYqdQ3pI7hys8wYsmPTYRSRQRW0NsNZE1OwaOVaOqNWg01kZYIxp3\n8UjxJQrCTlqL0hprLHEU0dveJssL6vUGIMM2bSOMikhiRX8wBKX51T/4d9Q3t3EPnuTa8f002006\nk5M0Gh1CAX58ktHkJCt3eqiiIKlZTBKBUiTKMEyhyIZkwxiXxOikVkoxpToHBQSRrUgojQy0rC2T\nwkpNvxC/AmhJ+PLe44IkvRACeZahvLDHfOlrULq37KBAqmzCQnmwU0qVXmH3mNgradaqYqG1Lll0\ngih5v/ueeiXNmwpqV4VTMr0CYpLsHOQ+4LzCB12ODxS+TBGL44RJG3P+RIPTc7O8f3eZGytrbPT6\n5P7n/ZBZFb8mO8ldhxWcA/1MzqcOfZ9f54/4pdFfcvTtRYlTHACzNzn76HscP3iVZr1Pfi7mw6XT\nhDsalmJYnGBX4thjF22497BerQqlqDxN1mG1A+9bwmuGi0cfoHN8HdvMee6Xvsv9565hFmVoWvtW\nxmADVsPucX8DWMrhyAjUr0P0FqR/CFcuwUoB+yOYvwydfMiz/+h7vBed4jKneT1+lL1f/ibNrYwn\np+DJm0hhOwP+1xRX7z/A6+oRPuifYnitJbL6XmDXqP8gMCNmxyaRE2tUPr0MKAK4HoRVpD1slddv\nSxJYdWgMyFDYVbKXZQQ+i5DB2Y9SmEGKWDVYrIaLio9zssv/l8tqxdPH95LUEpzS5CGQBmF8pU4G\nJ41Gg/Gxcayx2ERYwNt4vn/uBMfurvOvf+8fSZpVUETKiB2qcnglbEbtg0j/fECXBsXByXA+CfJR\nG2Upw/4WrYWCL37vBZ6NIv7Z3/9V6kmMx9OZiNFxk6TWwypPf9jHxLAxN82hyTaRyzBFisKTRIYs\nNgTn0UoGU0Xuy78TYSB7r3eaGV+62uvKI9Er8TVTfmdPrxy7TOnPiHc4H1C6EP8WLewukSPKANFY\nUNqWMklhwMnwSkCRHRbAzld29uZQsglCRfm6Z8lAzO+ALhB2ZPLBe7m3MngleI82GhsZrDVCtrYK\nnMIXgnpqJUlohXc4p0iSiOPHZjlyaJpbt1a4fXuVzc0BWf5xlb7/P6zybBy8wmEotCEkoGrSNlU8\nJA3UFegIgoWMSN6lj2z7BfhNWGsIwj4Eox0NBtS2HKzAzUzmQVBKzgP01iH5EMb+hz5jk31JC/sU\nnLsF5hosejhk4L77QH0Kto61+ZDD3HIHpZnpIWUmDGHNw2tNuGlgRgkFoF46i/eRLXo1wIoDt4nc\nwZRIUk4CDwcOPPkBXzTf5DeKP+LJS29hXvDSOAGd4z3mPrfCzPEVfF3TPzvG7RtHYRbUKY/dX6DL\nQZvraorbEVzU8I6CCzHc2A/u3mFWBaJUb4bnozL4CvQI/Ojfyi/6iqOY2Fg219ZYun2byOVMz0wR\nKUMaNBurPTZ6XTI8I5fT7XfZ7PXAeerasHdimjPHjlNToPMRdStDnsh5avWEmk0Ya42TFo7Nbo/t\nwTYeR5ql9La3yb3DdLcYuh495/inCgrliUMg0RBFMYW3DLKU/4qAR6HL82swEcEmZHgxdDdylMgK\nT7/w1CM5m9c8RE5SDQU4VqhgyPKUKBafYAJoneG1x5gIfFGqMHK00hjtMUaXJvqSMm9sTog1rmQA\niwReaqKNI/JMzh5KiWG/uYcZ5lxKUWi0iQm5ByuyePmPmNmbIAn3uapUHU7SKXUuZ/MAKgSiWoy2\nWhLulS77EIsxmsxnwvbSDpfLENh7SLMRqnDUm2NEpkZkIUkUBs+dxQXa9YgkgkhrtLIMspyl9R65\nK+g0awz6fbbWVkmSOv1ulxsfXGE0yJibP8axEyeI4hp79+4jpAOi4FleWqQ7HOHynHTUp7u5zvhE\nTJGn9Icj8iIHPUUjTrA2ZjTK2Nzq/pT/Giq2VzX0aiFn/+nysld+vAhcAvdCxIudT9Oc6TNs13jq\nN19i/rMLRNuBvGO4PjnHy/oJvhm+xGt3nyJ9rSlgwWp5dzl4pymIGKkE2lBvCfl3C9mpLNCOgP0w\nexzOvCdMLwecUjCzBzgC6i7oPwzc+FN4bSTdwulL8PASTHT6PPxbb/FG523e3nuOO5ttRq9M8PIX\nnmQ2WiR+IuWhyctEn8mJVwJ+QpGeiXjv1BG+br7Mi8Wn2Hpnr/gW30J09gyAg2D2wUEL9yN7/9GA\nmvXopic4hV/TcFPLbW8rMaZ8zHPu8Kt8ha/za6M/Ye7PNwjfB38LVB2aD434yleep3V/j36tydLZ\nfaxdmZMn9TgkXx3w6flv8yzP86h7g9nREkkY0TNtPoiO8/L44zz/+ee4VH8Yn1ohHVyYAH8AeeWq\n4JQKSN9GCmC3/P8h98CJ/Dz1Cp8Mvv5fLq01zz7zHO322M73SsKVnOu0JaCJp2ZpDo6yOVhHZ+u0\nFCgVMRrlkh5SmtnHUYRVBqM0RpVodylhUZTG96XEUVhgRkzutXh7FaVJpZjDSwPibKBWq+GDotvt\n0k23KLIc5zxJrYaJEiJtadUtw+GIF3/3N5h99V02HzrB3tgSRxabjcRbxkGDnEcXN3mp1cL5lCTS\nJPUIr4VtENUseVHAjoyx9NjKM2xkUUaGcWL4LvHFykSgjBy/XCFFltKIsjKiL+UqvkzckqRGGWK5\n4HFBGAjy+pfGl5S+Majyek4kiWWD6JwTxkHVFFUwfCgJBUKskAIKwkYo71McwiQW2pdm085D4TxF\nIcwvHxSFV3it8ErjS/ZH4eVnSRRxbO80E806d9Y3WO5u0xumjH7qVOWfdFWmjfdIWRgT+UVpYHz0\n5CU+w/f5fPd5Dn9jCf/H0P+heBN3ZqD52ZQnfusNRg/UWGjPsfTgfvpvdWQ4ttqGosVuGkmlKf/R\noVd1WK808j1gHfJp+GACXoG80+IVPk1vfoyrteOcnH2fqdk1jnGVp994nUZb6utKeY/jCNOYSWRu\n9AN46x34XpDtfiqHz1+A00dg+qkuxx+6yl/yZf5KfYH6oSGP/fab7HlkHbMkD3t43HDz+Dx/1XmW\n53mG6zePww+1JHxtVt4sh0DPwHgD9ilBhMaRjtAhtWZVwZ0xWKvDcBKiBozHgvxPI7NHhczRNgws\njcNGGwYdhEV25573qtr6q0FiFWVcoTpVMlhFZ/7EF+zvWns7Dc4cmiHUIvFXdIE8FGSCp2OspTPW\nod1sYX3AWEWmFL3C4ZM6//s/+QdgxNvLKI0hCPquHF55VAhVFiJqJz2xwLuc2DnqwePFeAqXpVyz\nEf/bM0+xMTfHeK0Bk1P0hkO2nSdKMtrtBrHyRGHEdCvm5PwsU42Y7bVl+mt9QgBrINKQO7cztPJA\ncB6nHcaLx1UIRsyABX3Y2f+VK8GbitqrJYhEyTxp12PGCxCkjOzLEmSiCc7t3FSVDY8qwYTylRDW\nAbvDrer6HhmcBa13pIahZK7tgFWoEiypRt6qNH52kmTmPLZkN2RFCiVrwVqFseXjJZTvDVilS/uB\n0jrfy/tWiy0nju1lbnaM5aUNFpY2WVntk6YfxwFYJX2vwDvYYeOOgB6kq3VW3QwLdh/9ozGtBzMe\n+QDSLQEdphU8sB+is9A/ZVlgjpViZhcDKWBnQOM9pIaQa0ZFjUHUIG8rorHAtP6o5HyvgnoGa/+L\nBJe0mzBxDszXoPkP4cnXkGHVLPAk3PiVOS7MnOEqx9lOW1KGOuXPb7SB25BruDMJizUxNDalxDd3\nkObgh+WdriM1bEzsuY5A/FCfc/oCz7gXOPf2Jcy/8Ay+BYuL8nhn5qB9Pef8P77A0ok9vD9xkuUH\n56g93efA3HUO1z9kgg08hnUmubp9jMX759k+PAYtDdbCtT1QVNL4KtJ+B0nho/t+Xn6t5C2fDMCq\nlcQxBsWdmzfJ+30Ozu0huMDA54RCM8o9wcTgU7J0QL+3ReEcVskZ/9D+feyd6FAjw6cDTBk+pZWm\ncIWYgMfQaNXpjLfY2OqSFhlZkZPUagxGA2HVoug4x+U8pzsa0skzrAqoyJBjSH1BUbiKGFvulZrC\nS6BTgWNaKZ7QEe/EliLPGOQejCGPAoWSOhO0wnkrwSClZYgvAnkoubWx7L2uyCH4MtFRwGQRtxQY\nI2xebU3JSBNgIPgcFZyUBhy+BLlz53B5LkpmAjaWZHpUwASHwuJDgcETaTBRzL2Bv/J7I5SK0JFB\nWwOFx2UZLg/YRHzCxF7FEJyc6LVRmCTBDXM8GhPV0T5CRZAWIsmM8oykUSMQ41yKqllazRpxZNAl\nW9mWcPt25sk2BxQ+MNFQNPKMyalpvA8M+9ssLy1w89oHHNw/J6SHKKLdHmNrbY0oqRG7DFSB8wXD\nUUptNEIr8VJTxhBQFIXDuYBzgd52/6f4l6D4v9h7z2e7rvTM77fCDifcnC9yJEiAiAQIgk02muzE\nbkotaUau0UzZ45Jd+uIP88X+U1w15Zoqu2yPu2RZGoUO7FYnNpsRIAgSicgZF7i4+Z64915r+cO7\nz72gpKpplUc0u9Sr6hDEAXDPPuld633eJ6wlN66BXkOsMZrsKIwm4uU4iZScu7D41gQ/OfpNHm6a\n4GNzkE0Td6lNNFmljzts4rzfx6V7B1h4a1wsTy4gZ+8asAztxQoP3DR39Wb2PnONytGCV2bhgyXZ\nErYr2LkN8ROehlcM7JqR7WFyAvq/Ae2TlspbBcsfwy86kpMCYqoycBF2fQyTrz9k48A9BtIl7o94\neEdzdWgv3zvoWE4HeG7XabbvvMFAd5VGXOGW3soZjvCr/CUunD+E+2UEnwAzDvycPIFoAnZaOAa8\nAMnRBiOb5hkdmKEWNchDxMLqGHNzE6ycH4b3FQzBwN5ZDnGWE+33mPjhEsX/BjPvi01LNYatZ6B/\nAY78yTlubH+P82P7+NXuabgHyUtNvrT5Z/wBf8ErS79g56Vb2E+Rgcw47D30Kds236aatCkORlx5\nvI9w38KMgYWNEJcsMJEUQDeDvA1hGRmkz8sbs7bH92x8fjPSg38LfP0j14YNG/nKV14VDyh6vCyZ\n9haAMxZHREjqVKe24LoNGncu0s3a2BBoNpsUeRttY5kea0l0jIwp/bAMxppSCqkw2gojSUuFd86j\njDCUrDHgPc55UBqvZNKTxonQi3WE1oalpUWWlpZot9vU+/qI05QoTvABrCsIvmBm/zZM3sHqGOVz\nsmaBM8K0mv7gErvev8DQxAA/OThFFFvq/VWcCrS6GUEpKlTASxqlHHulAdLl81MlOmitmPb3dP1i\n5+KFmho8+AJfZDK1URofxA9AY8poZ6FFe0Kp8y/n9SqssQnESwZcKCgcOBcoihL48qVUpjRIJgh7\nDhRFUSZ6KZmMhjIFTK1jY6WiWePQ5N7TdY7MIQcLNM6XwBgar4wAY75nuq/k5gORNQzWq2hj6O/z\nLLdaLK+2yPPfJACsx0rsGRjX1/bAaEeLXfYqh90Ztp6/i/6LwK2/gXdaUjJ334TnF2BwwHF0y1k+\n6LvAu5tepLllQICcaykUFdble73H+7vLs645z5BtcE6uZTGBj6qgod3o5+Ojx7i65ykmpmbYZa7y\n3/MfYD/UjsLLD6C+KOV7dwQbDiAa+wS4J14aPfbAInBrFXbeBTPnGWKRPhr8xaf/isaeOjc2bufp\nyUsM5KsUyvIwHeMsB/kVX+L9Wy/TfrNPaNY3ANcEqqBHYWskE6G9wHYkHLOX4DKPAGVXgIsR3BqU\nP9+DJIKVhvwY5EIfIdqdywauDsJcCl4jb1CtfL96oFbPN6w30Vktf9/is5Oc34Jf/9DSCp6aHqRe\nS8i1wqlA4Qu8l/ANgseamP6+PhIboZ0DrWnlOd3YktTrqDTFq56hvS5twXsQjkepMuFKgdJShbx3\nWFcQ+YIUkY1EaUKz0SQ0V7kwUKOuoKIVycAAA7WUtstpdHNcCFTThGoMg1XDWD2BTgOjCoLP8EUh\nzGGrCbkc7BW9xC2Zqnu/Ll3pBYdAj+lbFk4tSJTSofRRlOGFIFMCGqkeaqU8yotsUylfhrkEVGma\nH4ICW9btkjlAOcSAdQ+ZoHp1aZ1BHMpUsaD82v1B+fKMptcnHkG8IgWYC5hyKEUQeE2XJs3WWowp\nJLQld7ggjBqjNaGU7kuacJnBrBX1WoKdGqC/bhgbTnk422RuoU2e/6azfnurxwTohZ30GAEF0ISV\nEXioCDcjbh7fxrnKsxzc9TF7Xr/JpjYMn4V8BZIhqJ0AXoPzE7u5wF5mZrdI+MksAirRkMfpOlg1\nhAXDYnuEu5VNPBgdZ8uhRzx1BlbPS9msAccrsLQCf7sqO8Qw8Moj2FqH4r+Du/96ivF8ltqMNOUD\n0Srb/U2e06eZq47y1smYheVJwbAWE1jpQwryPLgUWmU08Jo0vTcl7wFP2wUYHZbBxsj4HLvUVZ5q\nXKX2dofwPfj5dbhUnjeeWRRT5tqOnAO7PmanusqtvdvZl37CCd7hGS4yziMKLI+Y5EJ9L2/vOcE7\nIy+xqCehq6CZwP3p8j2IWWd9dZ64vhXWZfS9et8b5f625gNYY5lbmGdhYZGpqUmSJKWdd3BoCu+I\n0jpxnNNZzWi1WxSFK+sX9PfV2bhhnNh6LAXaZFhriHUV5RRZnlE4kf5574gjy3g6RKPVpdFqUPiC\noAImMvTX6mTdnNVWi0ac0Oy0ablAZmIUitgWYhtaJpgTwLmCzDkSozBRxH9stZhs5/xPI4PcTapk\nRZeuV+RFkOFJL5jFeYwB8OR5hinrmstFvuidAGKaQBLZMhXRrPVGReGEcUYgNjGEQJbnUl8RX8ZO\nu4UvCtlXCk+Rd3HlGTx3OVESYZW8Lke//x5nf//VkoUre4syhtyBCxZPkACSSMzvfQAVWSJt1gbm\nKogPs/QAoIw8FxNHaJfgOg6lFVGUYE2M0oZue5miyIl9hySKyDwUBCJjSSNLJbKsZoG+igWjWOo6\n2oVnfqWNcp4oTRgjMDA0gG22gIJbVy+xc8cORscnWJ432Cim3t9Pu9Om0WmglQByQWk63QLnATRZ\nN6PZaqGSFK01S6sNOt3P0zu4N+yO+Iy9CTsgHYKdRmxOngZ2UhrcBigMCzcnee+Tr/DxgaMMjM2R\nJh3anQrL88O0b/eRf5TCe8Bp4JaTs/FyHR5qureq3Ni7kzP1Q+x5+gq7f+8WGzWMXALXgXQYov0I\nU6yA9DjsqiOlbid0ThraT1sqPyxoteU43VurwIIHViBtdUnoYkwOUYALkJkKF1uHuHtgE2dGDrFR\n3aeStumS8IBprqzsZuH8NPkvEwk++TRAo6z5aiNsjEtZe2DwK484MvEBh81HbO/5dSnL7YEtXBjY\ny+mpY1wd2wPzEZP1GXZwnQ0PHmLeCsz8En5UBnNFHTh4BV5+E9IjOXs2f8oWe5tfbcxgb8SmLTd5\nkbf56vLP2fGjO5g/h/xj6KxCfQr6X+lw7A8/onMk4UFlmkd7N7B0bgyuK6E8jyCbpgc6CuYTmElg\ntg9ao4gO9e/CR728zi/+QO+3wNc/Yiml+Nd/9F9TrVbX7/QeLbkqpQ+UEkqvjYn6xhnaZtBxSuvG\nVV78n/8jP3htD8F6lMnBJmAVJtIinyAIs0v3Et5UKdFQ4n2CEvaTC1J+SuNHU04BDFZQFgVJXMFG\nnjhJSJKE5aVFVlZWWFpYIEkTkmoFHSRzRYVAgsIqTxQcrluAK0ReEDx3nppg4nw/N//wVTYVBZ2s\nQVKzVOoxcbtFluXoQuHzgtiYckoufijWlKCdUhhrwazHKRujRPevwDvR7Kuw7j6hlHjcBKVE3uhg\nTRlojAhBS3mXmNCXTC+E4SUtlMYFRe56UseycXNONsI18KZMy1QGpXXJQvClH4D8rRAUzgVyB7nz\ntHNP5hWZVxQBgmRHirRSSQMUCLii558hz6UIgcw5Ch8ICow11Gt1rE3odDM6nQ5Zlol06Au/NOuN\njhXG1yBUhpuM61mmWo9IrjjCWQG9rpT/6kMHk3dg4GOo3eqw4dn7jFQfc2d0twA4VrEOepl/+KHX\nVs9osUfJXQIeCMXj3hbIKrCocLdiVreNsbp5FP97mjPVQzxz+AK7/+U9piqBb/ecMjcDL0NxUmPO\neVS6TqYK5dX0adBV8LEiIybHMj8/zl/f+30uTuxlk7lDX7qKwzDnRrnNFu7d2kb2TkUSK7cr6T0u\n9MPjOuyMyolQwD5fMLbnDhvi+9SRBJfHjHHv4XZaZ+uEt42YUu4MqOcDdn+HkR0PGbRLaBxNasw+\nmKJzoZ9wSsMHCj6swP0t8iRUuv7S9nICQgZ+EeG9zZe3J6UxgfVUsN+uJ1dfJWbP1BDBe3IH4mPl\nUC4jKjJsUaCTlEqclKyhiBBFFApIE1S1hlMCd1mMvDVBwB9JgxQGkdblgd8Lj1T7HB1yYsRvqlAe\nrT3GKkmlyjNCa5WgA3ElYZicP/k//hP/4X/4I7JKBWMtcaSpxIFYFXSLVawJKOUgOBIboVKLzwS4\nsUai3wUfcqXMUQC4EHrf0fLXkiyigoSTKN/zK5Pf9MIggy+fj/Mc+qu3uXPiGRY2jaOMw0YBW8rV\nddDCEnDSDIQeaIaSJqys+5S2AMoYGUAUsmkEI3sCumec70vppC9/X15yUGvgngxyNHFkKTJN7nO0\nKsNn4hibOWIb6KpijbmmS0dL5xx5NydUAyY2KOVB9fa8QF/NkGzsZ3RskPmFNktLTdrt7Dc8CbKn\nzY5Zl7+MlLe6lOkZ4DLc+XQ3bx94kanqDLXv/BUbJuapn/eoJQijkB80XNq3g79VX+f9/DjLl4dk\n85gJ0O2B9BXoFDAXw03F3PwE54f2cXbgWUa+tUitkfHiOLw4A1Qhr8PP3hT8zJc/4WwLtl6EZqPG\nqF+i9jPZq1iGgfFVBk+sMnZykWgkpzFR51fHv0L3ah2ua1ipI5tFwmcTFnt+jL39uwckaYlojYF+\nqNg2YzxmuD0H1+H2Hfg4rLumXPCw5yFsvwmTS0uMDc7xUvomXw9/y5cXf8XEucX1/mPHeZ479CEb\n4vvEkzl//erv4x5XRU7/sB/C3nUpPJTUyCaEJQTJ67HSLOsjnrXN4b/Mx+M3eAU088uL1Af6qVSr\ndAqR+Omogk7q2NoA7eYi7U5bwJ3SZzZSmsmRESZHx6AoyLIWkeoKy8k40nSYNO0nBCdnXAV5kRNc\nQTCGzGVUXIqxhk63Q57mFN2cJI7oq1TptDssdTosZQ6KgorSoC0mSLhKUAqrNWkUUasmVGpV/p1X\n/Fcri1yJU6raYbGE4MiKQBEpGWio0prEiWxQaqLHuRJYK4fYClUGgcToUo7eSz+3ZXeZZd1Swq4o\nigJjZCCsnME7R5HnaC3KjxAyHJ4QDCpEOBTWwd6PzjN96Qbp8gpv/9vv4PHkRZfIZdg4QaExJsKY\nivg2Ouh956wXP+Iey8v5gqDFGgavxPsrln1LK41REBnpSYKVa8g6y0TdDklFjPLzTo4qYCBK6KtU\naOZNkkijlaFbFHSdppUrHq90UVGDsVaTjRs30u60aTdWaK0u8+DBPbZu205aqdCME7SNCAqSOKHZ\nXmV1eZW+ekbwDXIXsLH4InfaLbT3xHHM3fv3P8dvwZMWPBGfSXFPh2CvgReBFz3x8102b7nKNA+o\n0aBLwmPGuTa3k5WPhlj++ei6OmEOkQZeAy4HuO/B3QOasLwTbsVwTnN9307eeuYlRvrmsd/5Ppu3\nzZJec+gU+Dm0/wbu3BKf+B0TUPkaqD+G2Zfr/MKcZA+XGB65Tl9dCGmfls9qEJiMgHFo9ldpUCcv\nUii0tBK/gGI2ZvHTad7dPQ2TDio5dC3MWhkwn0OS6S8GmO0i7vxDUK0ICPg8pF9d5KsTP+Y1fsCX\nuu+w7dFdoll5KR9vr3Gmdpjp6n2+f/h1Lt/aT59qMMAS6XIH7sDNVSnnPfHhLQfHZiB9AMPtVQb6\nlkmGmoTtCdtq1zkYzrLrym3UX8K9P4M3kRHHxhn42jykAwWH9p7ldO0w740fZ2nTCOzX0ldsCqi6\nYAlhRYsFzRXgkoHLNXi8A0IPp3gypatHD/li7xm/Bb7+EWvbtu28+OKX/s69CgkcFrNcqyTdxCtF\noSNMbZjBrc+y/c4Ctaxg18WHfHJ4gqCV0OKtBqNLg139xMdFYYxMT5Tq3YR66MtEFQFqSsN8LxMI\nowNZLlp3W0ojFZKwkqYVlpcXaTUatJoN3BrSfAAAIABJREFUkiihlqaSHIl4Aqgix6zFHAcxAE9j\nPvk3rzLQP0hcqbHSXMGHDoNDFeqhS2u1Q97okne7RFFEbCOsNhJhXCZTBh+EqeY9zpUG9IpSehjK\naZd4vkgfYtCq3IzoSRMDaFX6mK2zshSgtPjKOOdKjxVXen0J3Vs8YkzpPSDMrhB6Xmkl4aB8nb1H\nNk/h3Ml1Iayu3AVyp8hKAKzw4u/lgyp9ZcBrUzZiSqjVaz5jBXmRy/WFQO4cRUmOcOU1RDYm6U/I\nsi7dLJNp4OduXPn/cRnQWqab1ku0sW+tH6ehbDxyOXurLBCTYSk+q5D5tVev2PZkg6XBZk/WMTsN\njTrctiIzOah4sHsbvzxwkoFoha+++lO2bb1L350mOof2WMTijiFujm3kQPsifUc6HLkJ2aK0BlMK\nntkK9gAs74y5yyaR4txXNN8Y5uOjx7mw6Vkq21r01ZeJGxnj/bNM7HhEY0ud2fkpFu6Mkp2uSprl\nNQNPg/qGY+TlGQ5PnOI5/SE7uMYwi2RE3GMTFyb38t5Xj3N95Gm6EzXUwZxt+69zuP8DnuZTJniI\nxbHEIFemd3Nm5DBXtj5Dq3+wHOCnck4ZR8DFCMEJV4HZGGYmYKkffB/rZvkBaeJ68pieZ8xvV2/t\nHOtneqDS00YLYB9AO4fOC3ThqPSnZcpUhI5TVJoQuxQbRXgbodDEaEnaCogvlkD4pVgloFUg6DLl\nsUwxVTiMkibDWbCRBJi4wpPnDtdt4nAYUvZfukaU5ey9cZs7B5/GmIAODpXlEDKMFxmJVR6rNXGk\nCbnGaEn5UsaUhao0buyhVyoIEBaE7YtC0h+VMJNlBxIAzHtPKJB6jrCrvPPU5pYZvPkIWl1m/vAl\nlDH4WFKGbRxQsZjQP/HToPyZIai14YpIHUtDZRTaGPFIc65MOpG9M/B3QAD52xKkUnp39tLHeoOc\nvCvDEK1lWBHFMUkBnU6Xtg8EF9akmqHwtH2HrFahVhMHK2vB6JQ860oyZIAUw/h4zNj4MI1Gh7nH\ni6yuttf2nN+cFbHeEKWsMwGmwUzASEUsDDchZeSc4szAUaLNOct2gOdOnGbLkXuk7ZxWJeZyupPT\nHOXn/iSXP32W4u1E5C8PPYQFZDcpw0xmKnBF0fxwkFMTx5jsf0i8O+fwf/MJI8cXsY/KS/v3f38W\nXX5lGZhrwp9D/l24cx1WWzA8ABsuwGR3gS//4S+5HD/F5Q3PcG9nTTaBewmEzVDR0gMm5Q9sA80x\naHWh6HksPpIHDE/cKKVoSsueqdZnEbDOraAMcUjocoJ3+OrMzxn+iwbhx7B8A4yB2i6Yem2RV3/v\n5yyNDHBr41Y+OnAczhvplkaUyDR7jgErCubq8LgGjWEoBvlsbOWTDUzOF72R+addCohRNqVaq9LJ\n22TB4V1Bf98IlYER5A00tDtt8iKj8MIm7atW2bZhIyP1Psi76KCITSw13cRYWyGKE1ABbSAoj+pA\nlkEUR1SqKbnLcd6R6pg4tWRpjI5jkiJQ6eZEq00Ozs7ytvIUeLxy6LKzC0GA+lqtwuBQP7X+AYKt\n8KfjE9Q6K+j2kvB4XU9dofAegu4NbBFfLNsbDq+7f6qyzkdxhLJGBo1qfcjdq5/CEsvBaFF7aI0K\nYU0KLt5emSQ5agXBrNmRuKDAwccHthPygvPP7yVuN1HdLlqD7awSRQlKGUwUk2cVtI3RJsHYGK1j\ntnz3z9F5zr0//mOUjQm90u/B5cImtmlElCR4L0N/HWviqIbN+0BFrGY53W6XOBYQTduY/nofI319\n9FcarHS6a/7MtuUwyNm+4wJLq20W5pcYGxwkbzXIuzntZoOVpUVqfXUmpjawND8HSixtQoDgAj53\nNFaWSCsOG6WkSZ2AQRtD4Rzt5RXu3Ps8gS/kc75mZj8AjIi8cbuBF8B8M2fjizc41v8uhznDTq7R\nzwodKtxhM5+M7ufdl1/kykd7yX5ckZp+GxmILHpoNCDMlncAjMPtUfgY3GSVD+onCBsVj6Jxnj1y\nnpefepvpP5uHn8EvbojKsAC2P5Igk5E9EA5ZwqDCdqB7TNP3kufkCkzMiP/blj7YcgT8cbjTt4n7\nbEBrh93SpXgtFenlu4ib/hQwbCAxUhYXy0u9hcgbV1sIilfI6zMN7AH7QocXJt7lm7zBtx7/iMkf\nLMHbEB6AqsLYgSYvfes9qgdarKZ9LI6MkitLToSLDdRh2EJarOsw6oCtQKhAFkV0SXDOUunrMKEf\nsdHfQ12G7BMBva6Wr+gjYGoWnrsAo7cabNj7gJHaPLfGPPyrnOGdc4yPzTCYLBFQLHcHmH28geXr\nQ+TvpWKrciqFBxvBZ0gT0TO67ymAvtisr98CX7/mstby/LHjjI2Nrd0nZCyLCwaFWztO67LYBxRe\nJ+jEsHTiBLf/29tcbN8j1V20NTKhKOUroFDWlJr20uHL2BLsks1IK9ClzNEYK1p1bUBrsrwgwJrB\nZJDoSLQRYCyKY2wcEcURrcYqzVaTTqdLp93BaEUcRUTGSLqkNutR84CxCXGlhraaoDyVagVlYuLU\nUI8rpDajYzt0Wk0U4ocQxRZrbSkJEfDIuQJfsqisNWsTJOf8OougyCGANpE0MKh1k/wgHmsmWvcM\n6Hm2KCR9yzkBzgJqzfCfHgBVmuGHICBaUL2NXuQ3qmduH3w5+ZfHE98uR+FF7lz4QFZQgmDg/Drr\nIPQYCEFkqcHI750rJMnGudJ/Rq+Z30uLo+gdOLVWRFGEMYbIWoEcsm7JAvs8Pu3/mNVr0MrJcIk9\nZZ2E1dBHI+qDSTDTsP2uDHcypC2a6ge9AfIRzRIDNHx9XRXiez/z1109cLAHfvW6iwxoQWsE7gzC\nYj+MGjpvVTlVfZHuMxEP00n27T3PhqceYEPBvBnmmt7JCv3072qw73evMpUHvnkG8iYkI1A9DrwO\n5yb2cIG9PJzZLBv4NaAf3GSFjckVDptTHBj8hClmsBQs2UGuTOzizMhhzmw+ymp1bC16eOiVR7wy\n+hO+rb7Py523GL6ySryQ42NFa3OFS1O7mLIz/PBAl3ODh9i55RKvxT/kVX7KkaVzJA+66CKQD0dc\n37iRN5Mv88aub/Ke/hKtlUHpR7eWtzHk7NJGSF43kVjLTytwawN0UmQD6zU9BevJXz0WwBd7c/s8\nVmQ0z24cJimn3zjxAlQugBN5s40SqrU6tlLBpVVa2pJU+7A6YAhgYwkvQWNRmLIqBOXwFOL1BfRk\njwFhDykjNj7BKvFi8Yo4aLw2FB1P14ufoTYOig4f7N3C48kB5rdPkrQaJQ4UMMqhlWP65iwDi3Os\npJLspYInsoYktqAMhZPBS8CXddeX8kZJWCzDGtGlL5ZWItkX0Etqm8hjQqlxFyDMO8dSX4W3/sUJ\nVuspebOF0hoXZQRXIRQel+eYJMHEBqvFaF6VP7/nY6OCgG1CIlOlbb0pOzSF0AB6oF25f/AE61d5\nCRdQBrQVBgbgSwNkpQIhiCxHAUYLu1mXz9GjZN94wqMsLxwBAQ611hgd0e1mtFoZSoXy5yjiOKav\nr0a9XmFpaZWV5RaNRos8/00YekgIz7p/4AByOt4Aehq2RuK98iwi496Sk4y0cInmvbkvcXd4E6fi\no0ylM6RphyZVAfpX9/Lo003kP6vA24gGsL2MFKxlpIDNweKQTKLfgfvD2/j+i99mtVbn2uYd7N5w\nlbFsgWc+vUqyLeOps3BvRbCgceDZFDEb7gf+bzjzEbzlpeqlj+HbH8DuTbD1+AN277jC+PAM9zds\nJQwbmIqksdmI6CYrSFlcQrqLuwncGYPFAQgp0JRJWWlF2cqrzDLOQmWYyV1LTG2F/ZfhIvJN32dg\nchOwHR7Wh6nS4jlOMfxmg+6fwoXTcLYjbeiBq7BvFSbHFzj89Y85lVzg8s5naG0Ygm8iNX+0fHsy\nhOB1D7ii4HIVbk9DliAtQS8h2T9x+034HP7TLGsM1VqNSpqS5xndTkYcaYyOMSal8IEktrSaDVrt\nRpmEGLDKMjE0xPYNG0mMyB6jEGPL/TOgcUWXNI6xNkbbMkE2kvoaQkSSREQdiJwnDgaFxUWKIla0\nOjlN3WZ/s8WfLM1zE/iTWg3rPc6okoWqsTahv1pjsNJPWu1DpalIATs1OrOO0CiwRmNMz/YjUBQB\nY/ya9FubCKUNRQhiAl/kKK3WzveqDNySYYfBWEvhPQqN1VHp7RVKlUW5v3lHKCX6uROvL62sKORR\nkqRoIgmicp6PntslScB5Rp630DpISFY54NdKPLx0lApQVKkTRSmLUSBWlla7iYkL8U02tgwpMQQv\nnlnaSF+Vddtk2mPiKkmlD6UiCIHW4gzBgYksJokxiaVaSxmspjQ7HXHMC1BJIpq5eJZBoN3NmJ2b\nZ2psiOAVWTeX7O1Oi6WVJSY2bWZ1aZG826LVWKa5uozPuwTnWFqaY1hrhoaGqdeqJGkN7zytZou7\nd+6xurr6OX4T/m6d7wdGxWd2L/CCZ+qFW3y9/w1eD3/DsbkP6b/SIloscDVNZ2uFi1vOMJ484nuH\nCs61juIfGmFK3SvA30GK5xwyjU2AB7BchbNVSKEZBnn3xEkePjNFUYk42j4Dd2Hlmhy92+WV3gFm\n52D4NozMrPLtuz+hdr6NW1awD8b7YfgChBzsRggvQ+tkAlXPIT5C1QN9R5c5PX4Mp2rwY+Q6P0IQ\nJ4OUxZ5CvNsEt0ipxQeGwEayyWyDsS0zHOYMx5dPMf7DZfz/CtfPwL0O1AzsOQP9qzlHhz/h+pYd\nnBvezwM9zQzTNMbrDD3bYMtOOPqpAFgV4Lk6VPaBe0pzN5niMWMUczWMWSAiJwni3t9tym755Go4\nBEHrQESOMY700ApPj1zgaHyKp7nEOLN4NHPJKJc3PsXp8aN8MvYcnWqtDHmswtwG1o3ueyFdhi96\nb/Bb4OvXXP39Azz33DGM+fuyq6A0oWwIe8MEFUoTXgXOa5rNJtfrCSYzaB2hjSG2lthorEK8QZBW\nQswiKWWNyIRbKbBGfF60/BpQa6lWxmiKQhoRA2sJiUprvNalwXKFKImp9fcz0OnQ6XRYWV6mubJK\nq9MF54mtJTKW2BpMVDYWyoErqFYMcRJTMRpjA9o4rNGExIJDmgLviSNNZC1REpfJjSIRDL1UruDX\nZDJFUZRGjZL6RXClAaWmcCXwVRLQlBJjYVVGHwvu5deaGOc9ZegZHomq977cZoMTJlfJmPNe3iNf\nGjQLcSGA9mvg0rpZchCPLq8oPHQLTzd3uGBErijbNKKzMWuAGih8UZDnjsI5XHAEXRox6x5YJmCC\nLo3ElIKiKNYm/j1/tzRJ6GZdPvcAl//s6k2EyzTAZoA5RetBH/d2buR6so19+y4x+HKDlx/D+G2Y\nD7Ajhs2HIbwAd7aOc52dPJybkiSYFcQUbS1h8Nc9dPckj09OrHum9wsQ6rCyF84OQKToFDU+WD3J\nzb072F65zoieI1I5K2GAu8VGxvQcI+kc6estdkw/oHbew7JIcbIjmrM7nuEN9U3e6x5n5cKgUIHH\ngWOeZ499wOt8j1f9T3muc5r+q4W8TONwaWozb5mXGZpY4qff/BqrYRSeDRwcO8M3wxv8i9nvUfvL\nDuFt8A9EmVg9kPHSt0+TPt+mEddwuxQv8xa/5/+SY+fOkrzhCJflrVAbYOTLS4y+tIivKZY2DnHm\n6POwzWAPZIxsv89U+pAKbdqkzGRTPL6+GX/KwHsK3rXw6ZjIiD4TW2z4bApYDwT7TWOn/JdbW0f6\n2DTYB16kIN6JPFFkyoZgImFxVquYJKWrDYXSKJvK4TnvopTFBkOEwqqAKdlcHofCY4IAZKH00Qp4\n8TRUQSTBkTCZlA2SwmsCJgoYLyxWHUsCmHeee6P9RI0G2lqC1mgkTMR4xyt/+jYQuPH6dhwOq6BS\nFeCp0xVwSKkeG1gYW2ipZUHJhF5pjTYWY6OSbaxKFgBriYkOYYj16rZ3MqBY6KsIEJaJDL3o5hRZ\nQRR3xYslSrDVgrgGg81Fdv+nn3H13/1b0OtwobDBwlr9JVAOgAx4kY0KACeMNR98aXCPsMk0gEUT\ncE6BCSXrutwLQ5B6Xvg14ExrqdPK9VjEhiQ2ZHmHbienmzm0icFJHTM2JooTcleI31ugTM0MRLFl\ncLDOyOgQnXbO/PwSc48Xce6LfJDs1dyex1U/MhqfhO2RyF9OBvSJgp27L7CNm4wyBwSWGOIWW/nh\no9dAKeKoS9ZOKe7V5YT/CfAh8EmA+S4CWfUaowJ4DKEfrk1BXRGM5U5rD3/5wjgXRp9lg7rHs5Vz\n/Mn+/4UtX51lxyz0vwWzbRivwtgR4GWgBcUtuOjXmcld4FYDdt4Gez8wsmOOQbOErnncoJF/92xA\n7QqoaY/qD1AowqzC39JwScE5DWdTuL8Dwj3ASRfyAOZmR7k6sZPL/bvYfOI+tctdvmrg4HX5mE48\nBXwd3EnFJ+YAGTGbHj6Gs/Dwihg0944Dq23Y/QHE5wKTLzxiQ3KfgfoSrYODqA2e6jMLjA/OUqNJ\nRsSjxgSr18bwH1qRwp+ycE7keOuWAb26XwLIX/Bm5p9qGRshTiNlOJJ3dLuOel+doBRxZHF5i8cz\n99De4V0OQZFGERvHJ5gYGkb5DlrluCwDAt4X0hu4Flo1SXyVOFTlvJl18HmTotPBdVtUYgs+EuN3\nE+FjYVaqoOi2OtwfH+PC8hTfHRtnemWF+aVFGq5LESmUssRRQqVaJU1rpGmVtL9OlERkTUWxGJMp\ngzEOpf3a4EIstEJvuk/hPHEiAJDzBdYL6BXHcem9C1FsMdqAh8I5CDIssFoG+AoJNnHdLiYvyILH\nK4WOLAGD0iKXlARdGRb44CiKnNzL+R3v0UG8en0h8tAoekJiXhR4t0gUJ1SrdeK4QvOFg9ikim7M\nY4wlsjFpWqMoLJFJSZIKzjt87iTx3lYoOg0K1STuT0hrNbwZJ2jImwtEviCOLTrW2EQzECdi9Z3n\nYGOsFUN+yrGQ84H5xWUezS8yOjiMsW2arSbz83NcunSR5wZG2Lx1F1mzxdzDGZRSpElKu7NKp9Vk\nxUYMDo0wZEZJI0vXtzHKsbi48DmrQcoe50lPXz0EG5Swmp7LOTb4Pq+FH/K7t38K/w/4tyHMgBnw\nJAdXOfG7Z7EvOJaSIW4f3cTS5Q0ycL1hy2Nkzzi9hdBoH0Gowv1N8E4MDUW3VWVx0wiuYnDKgBDp\nidrrV6qByIKKwS45av9XG/8OhNlAMQDmCNj/EXnMMeAx1H/R5WDtKvufusaz288xHs/CTvjg5JcI\njyLJhrrYgfkWAv4FBOzp+SSWekmq8ucVI5a6U4GJ9BE7wzU2zD1A/ypw9034PgLzkcPSTTj5JqRH\nc3Zvucwmc5dTD45xcfoZzo8/xfjX56jMFXxlAE7eEZYYByC8DrMv1DirDnLZ74abmnyzZTXUWVTD\nhKnr9G2EXbflVQ0IaDadApPgxxQr9NPOKhyZ+IDX1fc46d7k4ONLxPel3re3Ks4PPsOW+DaVZ5r8\nkm8Q5o30anODyJOcLz8TvTfhi22L8lvg69dcW7duY9fu3f/An/SaPjn8CXwhIFaP9RV8QXN5nm5z\nhYiA1ZpIGyKtsHjwBY6eTESDFk+rPOsSPCRJgrW69Jpal3Wo8hYAoy3KiBQDA4V3pXRQPMA04h8Q\nRTFJklCkKdWioFqv0x5s0m136Lba+DLNqkAkJMEFtHIUWRffbqCsph7XMRox1s9F4qECxNaggiIy\nRm6l2WVAQCnnXMlmko9dnjuyLCPLcvI8E0NHrTFGwCelxXMrBCT1S2uCKzGRtVdb0CnnHL6UTa6B\nX0GtNVye0nTe90Cskmq9dmiXf7MmVynlLi548eNygaIEvjIXyEsT+8L1JDilV1nJz3CIp4HPPcFl\nhDJx06PInScvROqyNv/ypVkzPSbCZ5dEO3+RDp49E8PedLgDLMPiMNxXcNlw+eDTvDd8nO3bbnL0\n33xEZbhg/3mkZ5kG/zI8/togv+AkZ4pDNG8MCfNoBsgayIbS8xnpTZ5/nevqgWW9WwcZyxTAQ3gY\nw+mK3HVP8fjpzTzesgk1kqGjArecwozh3qFlzA7HcjTIwcMfsW3/LWpZh+Vqnavs4hRHeTM7ybXz\nz+DfiYSI8O3AhgM3eZlf8lr3hzz30TnSNwrCBbkMNQ17vnKHgVfewI9p5oZHeX/fSwzuesxBznKs\ndZrKGx2K78LN03CzATUF+y5A/yocHPyUq0+fYpFhjod3OXj1Asn/6Vj9K3hwV7yeJ0dg/BZsNfd5\n6ZW3uZzs4e7eLZhKxtGhU+znE7ZyiypNmtS5HW/m7J6DfDT+HA+HNuOVFX+Dy6OQ98zuPdIM9ajN\nPVDsydf9n9dKrObg5jGSSKSFrgTuxdRKg4lAO9DC7lXGEpQmD5q281AetE0wxECEgF4KJ8OGUGDx\nIj4K60A8gjHhNWL0HhlUMAK+WfHTssgeExwEJQMZHxQUjlDkFEaXrGONKo3yf/oHRym6LZLUURQd\njAqkkaFI4jK5Vv4uyBBCl1L2nhRGW4OKDESGYHQ5EChZsCW7yzkve5Mrk3ophws+4EpGbAgB5zyZ\n97RbbbQpBwomwlTaJPUue7/7Y2oPF9CXb9DZvQMdGdF8IcCTRoYca0uJZCd4jfe5NGtKxrY98WMP\noAvKi1SyTFgWMKuU268lLiuCdxA8xlpMZMldgS88oEv2sCbLHd0sJ0nj0n5AS/OZFORZi7zH/gil\nL1zo+VM6an01avU6wyNDzM8tsrLSoNvpfsF8wHqgSM/bqwYMgRqHqQSeA/WqY+SrMxyffIcTvMM+\nf56J7hw6eB4nw1wye3h34gTvLH6JmZ9tIdwy4ptyD9kP7nqJYeQectpeRA7YDgHBYujGcH4IcgNL\n0Lg+zEebTnBhZ4f2gQrbzQ1+51tvMNq/yNjhwNhjYATCYZh5YZzpd2ZRiQzzn1yVXo8XQ0FETiQP\nOwL65ZzBQwts23CFzdyhn2UKIh49NcHVg7uYPbCR9oY+6TTeV3BvCHwbZmtwS1Gcq/HxjkP8onaS\n0Wcec/CPL9K3p8PkDXnssBsaxyuc3nyA9znGFA/RXQ9NyNqfHQc1gZUmjDYhdhmWnDjJGDgxy/7p\njzigPmELt+ljhTZV7tY3ceHgXs5MP8f86CTeRJCVNb9oIjW/V+//eQ83gvcszM9SrVZJo1jO73FE\n4RzNVgNlDfOPHpJ1m+RFFwhEytKfVtgyNUliAoYCfEGWtSm8JPZpY3C5oeh26MQNjI1K/1vIul06\n3Q5F4QAFmUN5h/NdPJoo1dQHErQdIMscP9i/nzQv2NzXz1D/AAurDZZaLbrOYZMKJq5gkpRqkpJa\nAfZDCEQ2ohMU3dyhrSJYg8YQa3BBlRJ2Lx2N0lgrAL8xZk3RAaCNXePYaysAiVECgqFlrxCPr4za\nUpMTf/shl57ewLVdU/jCUQSPdwFvwlq9VXgK5yiKTPqHAD7kFJ1AXniy3GONJYmTssfR5HmX4D1R\nUdAtHNa2SNMKcdLG2AgbJUQ2ppM1iWxMFFep5BWMsmhtIYqo6BQbObpZg07bU+0fp1qrE7yjmXVo\nN+cIKi+VLTG1SkQ1jlnOCnwI5D6nCOtndQe0c8ejhWUG+vqxVpN1Wsw+vM/FT84yPr6BvXv2MrFh\nI/fu3mB1eZ6lxTl8btDBkLebPJq5T7U6AASWl+bodjPmF+cFYPxcV2/AUdZ6E0nI0laY3HaLA3zM\n0aUP4a+g8124eA5u5TCi4cBlGMhhz+h1jjz1IR/2HeG9XdMwrSR0fKEXuuQR4Csgtd7KIeHBZuhL\n4BCsNPt4xARz9RG2P32H6uHA0Xfho24ZUGVgYitwEPgBLH8PfnkbZgMM3YMXZmA6Bn4HeB/8m9B8\nBHEVkv2Bvb9/Fb4M8+kID3dOcXvfbrig4U4kckwesh4YUgM2QtwHlQj6lGBfvb0j9SS6Qx+rVFda\n8KgMdH/iVb3h4cgijDyGAZbpYxXVjjnVeJ7p+n0q+1scTC/Rf6yBvi8E4my35dHBYX4cv8qb7mXu\nXN4N70M7qXIn28qVeDcH9l1g8JUWL8+KtLOZw1gVdj4HfBk+ndzKp+yhP17ma/yE32v9NTt+dRfz\nIwhX5TlUdgaOfOUitS+3yeoxj3ePc/HIYbiqJaBrfhh5A5dZB7x6vpZfpLPK+vot8PVrLGMMx449\nz+jo6GfuV7CuF//MYVQOv6FMiwp5m9bCQ1S2inGZ0HMp/Ru8K4EZizVyoLZKE7zE6IpPlpjAgzQ8\n4hml1ibqijKJsNTcaxNhvSPPc1xPgKdYl9Vp2ZyMFlP9arWCK8Rk0uUFRVbgcydTlVCAURgr9GWt\nwBWZDM8JBC8bU/AFVkujY414cCkUKuhywi+NRPCOopQ85nlOt9uh3W6TZYWwBbSkWj795gWuvrpX\n2HHKlGwHtfbC9yQiRmv67s8TdbosbxkDAu6JxxC2V29wtc5MkLfMlfcLg05o3j2uUDmtKZuywom/\nV7eAwgmAVZQMMoX4tPkggtciAFr8DAC8d+RFFxdkEhZAWGyUYFtp9i+X+ASgGcLa/wOfc3rLr7N6\nEoheKuAKFF24XYFPYH77FL/4ykmqcYvm/gr7pi8xtjhP3PSsjKTcHtnMe9Xn+XH4BuceHiL7MJXp\nz6wHv4IAX73Jc+/w/Z8rpD0wrjQaXpPp+fK+cur+cKMkxtzX4jMwpgh9Cc4kpUcLdGb6OfXSl7j7\nzGberz3PlJ0hsV1aVLnLRq4sPM3chSmKnyfwDrAVoqe77Kxf5Xh4j8M3L5D+Wc7Kd+HTRWh7mbTs\nuglTao4Tf/AuF6K9XBnfy0TykG3cYOL+HPpduPs+/LgtbV0UYPE2vPoeJC84du2+yjWzkz3hMn2n\nO+Q/g7euwvnyWY48hN/5JUzuhD3HP2Vn/zV2T17iGXWRr/NjjqycZfj2MnaloOizLG6vc6r+HBMj\ns/zo5Gvcb+wQM7O5BB5OIE1QHTl8jOYpAAAgAElEQVSMNJ+4GdY91XrSmH8+a7y/xvaxIZGsOJG6\nm5I9JC5ckuwq8meDtjHGxvjc0ckKrLaS7KsgVh6zljjoCBTo4MSYF9YTC8spfC8pEGtKyZwAJyGI\nDLJ8SIlsd+Ib5gglwO5QDrxThEiSqIyCpckBvEvp6zYhxCRxRBwb6tWUIu+S5SJ3Ff9khY3t+i0R\nKX0vUStog/NSe3WQ5jHPxePQO2H4+nIY0POuLAon4FfPq7EEwVCaoDTOGFQ7wzY7vPH1o4wvd+hY\nRXVugaTeh0lSlI1LwNGsJQkrKP/TS57UZSKwLyWX69JLMe0Pa4CXgGHlvmQirPEQPM7kZMqhFWUT\nqEEFvAooFXB4AdqATjcjzRPiWGNMjNYBa6NSIkTpOyk7tQQF+N7kBmU0SZowNjHK4NAgKysNVpaX\n6bQ7cp1fiNUDvxLkADwMSV2SaQ9B7cQyL028yXfUX/HKys8Z+2SJ5GYBHrKNhuee/YQt43eoDLX5\nwUuvM/94g2hVPgAWF6FoI0yAh0i7sIIMMwrWw0+MnOrPT8CsFlnKRsi+lfDRxHPUppu0hyoc+/op\nNj7/gErWoh1XedQ/ztV0B9/Z/QPSfY6XLkO3JY8wBuwbBf00NHZHzDDFfGcEf0djvpGz/finvFh9\ni+d5n91cYYQ5uqTcZRNn+w7wzr4X+bB+nGU1Ck0FrRrMNUVncsXCabi/aSs/OvYNQqqY3fcLdm++\nzmB7GRUC87UhLtWe4i39Eu9znG/xAzoDloFxGBiAsVVpoLQ8VQamEIPmpMYq/UT1Lq/Uf8Jr6gcc\ny06z4f4s0WqOqxjmpof4sHaQ6bEH/Pilr3O/sx2WDCwk8HAEwhzrEpYnZY9flM/c57eMNVSqCUkc\nidm70RTOk7dbFCHgXEanvUIUazpdSSM3SvPvWyucGRvCqgLtA3nWxfsMihxjNGlSI4n71nydnCuI\nSll5bAsqSUaeZ8KCLRzNbkuGByFgjaJe66caJ3TaBUurDVwBSb3O8PAIG5xhZXWVVrtNAfzRrWv8\n+eRGYhS628H7HNdoSViIN2S5Ig4Gk8bybVIQSrP9oKV/IChim4A1EiqlTQnmm9Ify0tf0pMelvJz\nozWeQBmiTrAGrxVZbEEHiqJLN89EueIjkUM6jQuF7HlFgQpglMYVhUjF2xnea2wU0yuXIcgwwgeP\nLTyqUwg412xTq1ZIYkOcpMRxFa0iKtUaLohsMzYpOk4g0hSlSb71OZ2sg243iNMhdJSgkxpZu0G7\n1URrQzWpkMaWaqVC2nXkRYEJwjvufVd6J9DlRoNGs4FyOc7lNJYWeHT3Nh+dep+d23cxvXkrjx/e\np726QHt1iZZzWG0pCKyuLHDjxhUmJqappDKIejj7+P+Hb0NP7miBiuA+A8A4TEczbOE2AzebhPfg\nynn4eS6nx8hD+w587QOovtxm+/abTEUPUBMZYSgRoGihwno9t0jt6TXYMTAMSwnMQPt6P1e37eKT\ndB9PHb3OyHeWORDB1mvgMujbBJVXga1Q/DWcvyek4QLhDEcL8LtngH7ovAFnrsHNDAY0HLkMU0Xg\n6ckbHDnwIaf7jjCzczPZZFVSrRoV5CxsEP34JIylknOyRX5LH0+oxhUFhi4JeWKJ6wUDyG7Z6+gG\ngTgGqtAhJSMmOMXdUzt449jrdGoVbu56n11brjHQWSXXEQ+r45w1B/hVeJH3Z16k/XYVfgV+LObG\nwR28P/48Wzfc4sV/eZrqQJdnPwGaMpPiJXj0ygjvRC9wiT1M8pATvMOO03cx/zvc/wlcXxSHiJ11\nmJwJ7Kre5sSL73I+2set3TtobRySpz9fZY3ltvbe9ZwAv5j+kL8Fvn6N1dfXz2vf/DbW/P2XS/29\n/yklhtJmoIKn+H/Ze/MYu647z+9zzrn3vqXq1V7FYhV3USRFiouohdSu1mLLst2Le3o6CRpIOj3B\nBDMIAmSA/Bk08lf+CPLfABNgkgABksyge9w93T1u2WPLkmVbOyWKEilxE3cWWcVa33bvPUv++J1b\nRXl6m4ZtGR4f4JG1vOW+e1+dc37f33fpLNG9c4PE9qTACWAIElcfu/jaVIkiwvYC8cpKkoTEJLHL\nK1HuLnhZWJLKrF1kG1V3XSFmvEppfPARWPN4JXCcCiJPsSGIFDERVlZRWuk8u4DPPcGBx4vcI1Hr\nfizBic+JeBlYgovJWU6YAz5JUDqJgJWAPM7K5r4s+pRlSWEdeZ7T7/fpdvv0y4APAsTt/+AaW968\nwNjH1/nOHzwTWVkC3DkvHjFaa7IsITWG4//7dwB4/Z99FZcZrIsLZiB20oX15Xz1syDXS8cFSlQ8\nyMWQ62FtBKiCEkArBMog/l6u+lmUOaK0yCCpwC/i4p9AAsYl6MQTnKW0VopPD8F6lN9gPKhYnAHr\nkdCVf0IZ2RC/GKOiPFd/DwVSKiwC83BtK7yvYExzduAg+UMZ12uzHJw8xfTkTWoUrNHiLPdyMhzh\n7aVjdF8dlyjjMwFWewjkU228/z6ASlUU5Wx4UinWGWEhh+4kfDoF51Jp2lRhrSVQV0Krvt3k8qf7\nuLx7H0yVkDnoG7iWirTxY6TIWgYehMZEh23JZfa5T2i+nxNege/fFGsAgFYBv/U27NoD9z19jt3T\n5xlKV2mqHi3a1Nt9uAHXekIgq87udQ/9eajfgpF+h+GBZcbDAlyDhRvwARv8q+vAlWVJzRxb7DE6\ntMQB/TFf5d/xlavfJf1TCO8g7OTxnOFHOsx8/duYbY7V1hB//OgsnK+L1GhuBGmbrcbbUrzOi8iW\nRiObgOoa/acDft03O0kSi6BEKZRXKCXSNxsUhQcfwzI8YNIMVaujQonYAooHo8z5MU0xenglSsJS\njA8k8aMbIEqyo59UdDDWSkV5n8D1VQgIVqOKEB8bWbdY8dgCTAgEVwiwYzQKjUk0DVPHKCFQqRAw\nOpBoiw59tArivVJLBeyqpaQNSQk2SYqJsfbVvI8L0sl3jqIo130Og/cyx0bWrQSgCOBVlpUfYkXt\nVQRtKKwjlA7Vz+mZlFWTkF6+THNomYGRcRrDI6SDLXTWQCUZyiQoY2JoiayBKvrAyBrgY9MjAl1U\nMvfI6loHvBK0yUhNiVUlIYj5v46+NYoodVQCWqIjxKYFKOjlXbJ+gkmboCTxsTL+l4ZLlLG6ID5l\n2kSmMqiKCawUtUaN0TSlOVCn6OesrrRZ/cKl79UaoFhPN2QMhgzsBA4H9txzml/j+/xm598y/K8L\nwsvIvOkg2+OYfGGJr/zDV1ibaXFtapbvPzADp5SYXc0nCLwzh6wHbQT0qli9lfQmMlKLDlybhmsD\nMr8NKRbrm3n5S19hbvM0H9SOsG3TFQbo0KXBNbayiVsc2fkhe166zHQb/ov3wK1CMgnqaQgvwqnh\n/ZwO+5lfmCFMGqYeu8SXGi/zG+FPeWrhx9TeiofYgEf2fcTRAx+wuTaH3uX54RPP0p8bhFsaVieg\nWIBLm+AdBY2ET91BVo8Nc65xL7uHzjM2dAcFzDPJ2bCHk/lh2h9PcODox1wY2cHUIx8w9QG8uAgf\ndeWsHxmH9CnIHzZcGZnhOrPs0Jf4On/O77T/mMG/cITqGEdh7IFVdn7tMvXpPt2xJn92bDO9zwaF\nYXdnDIpKvpKxIWX9T29oralnDfCa9lpHQBzrpY1Wzwi9EqNKajVN0YvitqD5P2zBs86x57Xv86Pf\nfIlur01wfYSYmpGalCRNSOtikxGcRlEjWIOppdQaCijorK2ysrKIdY56o4WzBUXRh7LA9trUB0ZI\nh5piqt7u0O0VJNoQgqZZrzPaGuS/f+UvGW+vQb3Gv9uxmzKUWFtQ9EtUDv+w8FzsOc4MNkiTJklq\nCb6I/oyIUiI2AkwizXbnHGhpcOi0Fr2JZSPtQ1i3YlEI6OW9XW8+91oNvveNx7DOQnDr+/EiL8RU\nPInm9pE1ZWMQiNaSNImVEBalArboEZwVha7SuODISwvRZyzJMtIkofCW4VaT0lrK3FHLWiSmJE1S\nutYTalDDSNpjpgnOoMII2nbI+10UBqNraJOh0wZOJXgvksRarU6j2US1exR5X4INfPhcDFAI0O3l\nLK2s0KppfFHgTEJvZYmbVy9y5cpnHH3wETZv3cmta5e4lV2JTGJFohSdvqXTbtNurjI+th1HwuLS\nFzX5V+CX2rD8akCDHkOskq5awjxcL2SHCLKlvh0gzIFZDAzaLoNph7SZU9RqMomtz+XVXGORvWWG\nPNMazI/BZQUfG94/8gA7xj9jfPYOv/773yK7JzB2DlQOYQfMPTPG+OkVfMexaj+/Q10CWUquwOnP\n4DvFxi/bi/AP3oHaKcvuw+eZMTepDecUo01oVE2eDJgWk+JtqWyRDwP3B9gBTJaQOFipw4piuRzj\nen2GhYkJmofm2P823D4vJUQLeLQFrYMQDsA1tnI7TBHmFe7VlE/tIeafmuBUdpBt2RWGayvYkDDH\nNOfDbj49dz+8loqD/SXgY1h4ZwuvvvQMA2mH/qEajx56g/ELPehCGINPZ7fxOk/yLV7irflH+ceT\n/4L97gzmTbjzQ/j2Lek9AZzL4fe+B+n9ju2Hr7Bj7DNGR5bpTo/CiADg+BobKKhB1uhK9ni3MuQX\nY/wK+Po7jC9/+UWmp6f/2t/fLT1QMcbYRxFbqizLdxbI19okSpFEGaMS7QdoMYSsDHNVBGYSbUjT\nJJovxoRBEzftStr5QSmCkU6zMA0MrvTRQFJ8wRKDAGXBbbDTUBH0kQ6M0oHSOozy+LgJT1LEV0Vp\nLD7ebwO0q6CoEATQCjGhhZiCpcUtnpE/+gG2n3PrNx7CuQJX5BR5QS93dHo5q+01llfW6BUKTEq9\nXueNPTPkqzknHrmHsNyN2sYq30zM5xWQpgmJMfzlNx4htZalfo7OhSKdGkWiTTS3jyyuENYlhVL8\naYIWfzSlJSUTL14ryiiCE3DLRhP7yszeBoUNcv+gtFwHpUTiGKRiVCaR3wfQOsEkAXIr90U8E3xM\nGHPR8L+SvFQsLwH3sggQ9n5BJC7V4pSyUegMIHoOB6xAPghnhiEzhCLh0u0DLBzdzHsjDzNcW8ao\nkp4d4E5vgtuXZ3FvZtLdfxu4HuWI68BXJbew/Md3DirPr2pU6YSVbG8JuAV+CNYGYK0W718ALeg1\nhBF2GunijKSQpTKnLyII01WERLZNTkWSWlqsMRjacBvu3BLVTjXWgLkcdt2WrtPgdJtarUehU/rU\nKesJjOZMpjBQyhErREWftiAMQyerUZKJ7CaDWiauOgvxNVJgIDbkypp83u7hAsdX3yb9I+j9K/js\nJMwXMN2AXWcgKyzHfu8En07t5eSWI5zbdUi6VyjopbA4Dqvj0BuHMM9GAtjSXee2Gr/84Nem4UG2\nTgyTW0sZAjWjxQUnerfkKn5iQ2SNotFZhq43ME68iJQRA3WjVeQHC3NLqxA5LOJcVREXNYHKQV6L\n61e8FyidEhIARdCakBhU4dDaQ+nxzqKVx4TI+lUIi1iFdam9SEw8xkBQYijsrQBULkgDJMlSdL2O\nqtdRzSaq2SAbbJI16hI6okXyYp1fTwXDeayzlM4Ki8tJA8VaS3B+ndEqCY8hFg1Rdhil6845mTt9\nICiPL0osmrJfYPOCfqdHbXWVgdFxasMjJM1BTK2BCTVUUrFotay33kQ5o0HpACSo4Ag+yhuV/tz+\nWxuHNqkEyvgALoKSQUnDx1oSpallmcjfIwCJjuyvUJCXXRouxbsU5QNGybpjjMb5yFZQEPsd6wRy\npaMkNSZWSrCBotUaYGpynBMnfvaf9b99JMhckCLrwKCYvW8BvafgPs5w1L7P4Csl9pvw6etwqiOr\nxYGrcP8K1CdzHvjtD3i3/hDv7n6EtS1TMul91mTDNb7D50GvinHq2ZBXdJGWwSa4tgXezsBBsTDM\nOw8/ydld9zHaXCJLCkqXsuxHODLxHtNDcyRf+i5bZ66TfeTRa8A4dB/I+OS+3XzXPM/b+SMsfjRO\neqDPscZbvOC/w1OfvkPtj6B4FTpzkGQweBB2fv0mX/nqd1gYmOCz3Tu5sP+ggH3nEyjWoJvAR2OA\nhnbCzau7uH1wM+9tvkMzkVm/UwywfGMc+1EdPW05lR/iR7XHmX3mOrPFAptnA5vPIvXGHggvwMWD\nO3iDxzjPPXyFl3ms8wYDf+wo/x+4/T7M3YHRQZj5AOqr8Ph//SYXR3dxasdBTu95SMz6P1JQDCJr\ne9XBvzvR9xdhH/LzGRIwpel2u6RpivWeot8TsCNJUd5S5j2cs/SLPiEosjTjfxwZYFct4/3ffJHE\n9iFY0kQyaTOTiAewc9iij4qqBpNqlMpQSUJAGgCFt+gsYWJ4FkWgvbqMW16EAN1OB4emOdBisJGi\naTLQqFOWirzTY6BWo9Ua5F/9zn/Oo2/8iI/2389Uu0O3V9IrPfUkI2smfPniMmVW4w8HRkjrKaZe\n4Po2Nr41qDQ2ASqgXhobYhCfrisbRLlQgpF1KSChULAh4yaE9aLTeUdpC/G+9R7vSop+HxO9w0Js\nhvggwFdZSsPfKEcWaxYB+RxKy/wpjQhPaaOHWh4k/Mt7+qWlYQzWl9R0SbezRlHkpFkd5yQnOSiY\nfuX7DH70KXP/7T8hGWjR792htzZPopukGkKjyYAbwXtHanIatTqJXsH6go7NyVHiO+k+77+VW1jr\n5bRqDfEtK4t1G5zLn11g5579jEzNMDq1hZGJa6x1V2h3VjGJNMfKomBx4RZZZljrOVa+sK5HZXMS\n5L8C6AtTqc0gdtBQGyuZzWCwkF18grhfqUlwY4p20qRDE9vLNrb4/4Gqo5rXc2Tunwc/CRcG4AQU\nm4d5/UvPwLBifniSw189yUzvNsYG5lpjLOkRnrnzFtms454WXFyT/nQd2JcAs/K6Kz/BJ7gDtFdg\npA11+tTpYRInW15DZIePS2LXjhSOA7/maR5vs23PBe5JzzHJPAmOtdkWl9wO5tQ0pzjExxMnmPzK\nHZprJc+8Bo9ch0YTkqPgfwM+O7KZ93iQ8+09uM+MNJ9vweK5GX68f5oTs2vUmn2CU3TvDGE/q0mT\nqDLev+HhAw0jcKFxP3/+UML1wVne0w8xe891MgpWGeIiu3jfPsCH1x+gMd5mkDatpUJeq73RdAdx\nnrm6DLsWYNDKfbOkkBOZAKmGfCJet4V4W4nf95B9wd+nfvvZjV8BX3/LGB8b5ysvfnV9c/63jXVw\nQokU0Odd2nfmCWWB1gle2fUNtTSdFdpElleIwEfQGyQk7wkx69roKjI40olNIvCaEhtkghQ9ClCx\ni00EUAhGmADriZMREAoeHJgQTX8jHVkbhdYB5QNJlGOWwUr33UffgaBEtmJLdPAkRpHUGqRpJvI/\nH/BlAWVOyLs4X1LGRKvlTsHSWp/5O20Wl9fIbSBJUxLTQScpl2fH4OaySACDxxiNTqVLZtfZTyLx\nvJGlpFlCY6lDvV4DX5IoqCepRM8rFRMw5cQf+uF5Tj66i+AtQUdPGC2sAOcdyos7TWnFi6t0YL2i\n9IoyEF14wK1XR9GDBg0qIUmzWLR5iW42CUE5YcihsD5gvY+lbiVzlM0BVWInG4k5pbXkvzAyx4QN\njX8TgVxGgPF4GwMVF7NPEIDoGrQ/HKO9bRTGPCQBuhpuaulQfAKcAa7n4G8hiNISG939agPx9wFU\nArKgKuSgKuJ5ZUq5wgaAV13PAIzC0jSsDcOl2oZuv/J3r9R+vVjB+QEoIThNQUZf1aEJg4NSv1Vb\nFAO0EmAQQhMKUhiwLOhxrrKV5U2jjB7tsOMDeOo0XCjlZR8aheZh8PdrLqXbuclmrqmt7L7vJiP7\n4ekr8G58h7uAnduA++Hm6ARtBtnNOUZOdXGvwemT8IO4IRnswXMfwqGtMPb4IvdOnGNG3eDc9v3w\ndCKnajlekkvA+RbcrENZAV/V8Gx0eH65gS+lYMf0CI16Su5KTJBU2BQBZlwI5CrgjIBMzntMlmGy\nGj5J+cq3X+blX/9KlHZLqq9W4qOiVcWnVGIurCI4tbGsCCgEsi5A1TKRwA9TJcsatCrRyqOMwzsl\n0kYtUu0QnIAsiijpE3avzEfS5Q/O4VwE/rUh1GqQZKhGHdUcQLVa6NYgDNQhS4QNoOT9+rKMjQQf\npeIeG1N2JQRA5I54WSdLL3/jUrhoxCbG4H2g9MIyrhoNwuCKq5gtKfryOGctzpbUi5zacE42OETW\nGERT48i/+L84+d/9QSSvVBJGOW/hrjNbSRuBDaAJCZFJjaGepoTSiphaK5J4nRKtqNcyrBcPNRVC\nbHLI3O5cTln28bWaBNLEIACjE7Qq17f7wcseQhpNmiRJopS2jAEtcv6cV9y8eftn/VH/O4y72UCV\n11dt3eqrtWmRzdxkZvk2+nRg5RS82ZF+AcBSDtOnYPoDmHxyieltc4wOLLI2NhUNtxSy1iTI/FzN\n55V8/W4JXsGGLLsUE7yL09CpwxyEs4blrZtYntwk030fqMPbzz6O2WZZHhvm4SffZfPh26S2IE/r\nXBjaztsc4/v8Gmc+OoJbqjEzc5b7+YhDi6fJvl2S/zG89QmcjXP1Y1dgm4WtW+Y4+tgJ3mwe48K9\nBzckMCuTwGey9Lw/DksKLoN7t8H89BY5fBXfyk25q3/ccHbHfXz33uep1/s8/sKP2XnkEqPXe7gM\nliZbXNq0ne/WnuV7PEdGyR7OMn3hDupVuPRjeKUrRd1AGx47AUdHYfhoh32/9glbucrpmYcEsBwk\nynlS1mWk68yvu8/7L/8wWvaGg4ODqMjWNMbQaDbITEpZWvrdNioUlN0uGkUtrTM2NMzLzz/OdCgI\nviQxiuDE28sRSEjAFwQFJhWPRAii/DAOtMMHi8LTaLSo1zJccDQHBrFlQb/bAaUobY9uN5DoFO0V\ndW2o1w11M4AyGcaIhPvHDx8jsxYCmDTFdAx5nlMEy/+9az+uOcig7aOSgqSRonxK3rPR01AClipW\nsFZK/ByVzF93dwlEug4y58nakmixYAlxnQxOwCzn77pZK02F4HClxynwTqxRlI7+kNYRtCFYB9ai\nPYBBKQNBrEcICoM08F3ZJ2Ai89hSMwqTpqAVed5HObOupPHWrafOd5aXaNocZ3soVcdkLcq1ZUrf\nI8nqZEmKrTWgLedgoF5jsJ7J2hB9f/kr6kUfAmvtLrZVp3AeV5TU+wWm3ebW3FWWFueZnd3BwOgm\nGq0R6gMD9PKuHJet1sqU4ErOfHr+5/L5/6tHNf/2ZMpdAW7DnJ/mit7G6s4mg4/02XMO+h/DZyVM\nKjg8C/oYtPc2uJRuZ45p/FxN9pddkAm5sjWpblUjuovUBDfg5nZ4P4OG4qbazsuPfI0L2+7hXn2O\niYEFNI5lRtnKVe675xzbnr7Fjivw9RNwfQ3G6rBzH/AEcF3CeVvFhn5hh4KBKWAcVhgWMK9MNkqR\n4IFpGK8L0+sZGH3pNsenfsQT5nWOcJIt9hqpL7mTjXPG3MdbHOMM9/Hv9Qs09vc5+o9PMny8R2sO\nqEFxwHBxzxa+rb/E6/ZJrp3fLp5iZ5Di4QLwrqY/Nky/ObxBW7uN7MsvIYiV78LZSQk9KhWX5vcw\nf/9m3pw9zsTQAoku6ZVN5uenWbk8RvFRg8nfycmpkTc0g4PQyGT5rnbzLWAkZhkUJqMkw3ktl2oS\n2J3BzU2wOIw8sgoAjB1b+mysGfonPksVEeHnO34FfP0t44EHHmTnzl3rgNbfGQADlLfkq8t0lm6h\nfI7H4oIAUir+TfuY0FWlWyVoTCoeAaAkHOSu15Rp2qBNKjI8JGoYbYQYZaQjXQFDBi16fIhJY8KW\nChHc8SC+BcFJjybE51cq6votOkhR4YPIODzgnHT1vSvBe/HbMknswEg3h2BZ/o2HKfMuruyT9/p0\nejkr7YKbC21u3ekwv9ym3bPkhcNrMaY0xpCmGSgdPWsgqSXUGnWM0eINo6IhsvOYxDDQqNFq1Bmw\nBdpblCtJCNTTlFqakiWGJDO8+CfvMbqwhks0px7aEVMbRdIiF1jkKs5BaT156SlcwAYtnl4I4OUA\nrwPei4mn8Pv0euyz905YBtHYQGxjlJh1OgHBpG8SoqGzgGTEy50YMQ4Vhlr4Akws/6qR8jljS8bi\nbQaYhtqQYF+blOBhGTI5XkBQme1KsnurBvIiQu66AfT7CHXqJtJvqHxcCjY6P3/fEe56/N0phTmy\n3N2tTSd+vSq/s8OwNiKMMDI2ut4xk56t8rgOsAK9dp1bbOKa2srh+85ROwTPnYMfIEDTPuDAFuB+\nuD49xk1mWFmb5FpnllPbD/LB2H42f/kWteWSR6bgocugBkAdAfV1uHh0Eyd4gDPcxzZ1hT0PXmDm\n1+9wv4X9ZyCUoLeCfh7y5xUna4d4g0d5hLfR855iDs4XG/HGK8j3hy5Dfd4y6pYZMis0Dq7QPN7F\ne8Pq3CjunPi28YGCExl8PCsIOVUKWHVeKybGL8Ln9Wcz6lnK1snhyOqNm/3o0RS8xwVPSExkpyp0\nkqETmaP/mz/83xibu40dHOT1l54X4ItK+h4wQaSL2ofIAlbRJAtE4Kjit9Vv4+cxzkEumgmroKWI\nSmXONiZgvCIkCuMUNjZslY7NESPgl3UiXfcq4JQh9w6LwqYZpBqVpqhGk6Q1TDoyQjI4yIv/67/m\n1f/592PIZ7kexe61SPnXi5sQouTci2w+Ml5VqNYdAZikhgrr66NIAjXaW5yPFgLRyB4tDN3gLbbM\n8R0onSUv+jSKPoxYHv6X/5YdL3+fwatX+cH/8j9FvzQFUY4Z1hWVFSBWrQWh4uChlMIoAaKk/Atk\nxlBLDD2gcA6NgGPOe6xXeOXXkyytc5TWYb0wkYmfB6p03xDWWcnVsWhdrUty3gShE+Crn5fMLyz+\nvD7yf834ye3jXSBYxMCS1FKnT1JY1DKU3Q35C8RpcxWmVyHpy30zVUovIvsrnnd9VABY9TXI3FM1\nN+L9XQE3ZsRQ/pwST5JWfNsfaG4AACAASURBVG4LTEM7H+HVp7/E5d07eC95kE3Dt8nIxQSerZzK\nD3Lj5C7CaZFvjiWLbOUKI7dWUCfg4ilR6Xero1iC3/oABj/y7HjwMptrc6hNHcLogLw2aTz2S9Dt\nw+lpuJxIETGMENx0PDnLwC0gU3TGRvh+8zlWt7U439jNvm2fML71DgHFbaY4o/bxFsf5+NYRHpt6\njTF1h/qdPlyGc11ZWUFm6rM5HLwK6S3LuL3DSLIMrRIG0yg7yuKtYnRX8pXqPFdFzS/3aDYHmJgY\nx/tAv9/HOZnLvLeQpBR5jgqSNGhUIDENRgcnmBqZZHJkHG2X4x5ZZH3elXilxbTeeRQDmDSTsCij\nCXiCtzLXaE29VkcrMaMvy4LgSprNBv1eh34/x1iN1SX1rB4b5uKvm5mUei2TJEIr9iAkhtpAk/rg\nAI3BCKD1+/TzgnanR7/XpdYIJIlB11Osh2CFSZWkwsIyJpWQLaXkuHQiwVpaoXVCkvjIZDXR0kOa\nxwaH1kF8KbWEhpgkIQmO0ornFYiE3HmPjd5mKshjnPfCEJNJEl/aKAn3eCwETfAKrVNqxkCweCef\n01BanAoURU5ixAM59zmZyzCqRpbIsRb9HiF4zj9ylOtPPk5DBRpFnyytkTSHyLtdSZxUmtTUqKVN\n6rUeI60Wo4NtWlmDjARXFlFpUjVRoWpPFaWjW1hZH3o5zV6fZnOAxds3WLh9hR333Mvw1Az11ihp\nbQCTLNHvden1CpqNARr1FKUCV67e+GL+INZBr+jr60q4ncIVuH7xHk7uPsyJsSPM/Por1At4eBYe\nugqMgDoK6hvw6b4dvMdRPu3ug4tKaoA15PnWPX3vZn6VyH57GbgNZRM+nQZnCG3DytUJ3r3/Cd7b\n9ijJWBdtPOa64alD32Vf4xO++tsvM5L02LYXtt2Kx/IA8GvAm7D3I3Bvi0/7CPDYOJjj0D+quMgu\nbtoZ+ot16RpUUyCDIuU/Auq5Lo9O/5BvqG/ykvsWm95YRX0a5BRtuszh46fZOfMZ3wzf4C/s12in\ng5zbcg97Zs8xEpaxKuGS2sFJdZjXeZK3bx4nf31AWFxXgtRJV5QcXAuZku1dp4TqdEW/lhUHHxjo\nKMJ1Q/vDEdo7hrk+ulvwgTye8xMKdkJ/aZibI5u53NzC+MFPmN0LT8zDe1Zm/aPA6CHgANxuTnGD\nGdZCC/bLaeAT4CMNp5tweRsbDapqjfZ3ff2Te4bKruDu73/241fA198wBgYGOXb8Uer1+vrP1s14\n7/r+7iGXWzbtypW079ymbC+DyyGUBKx0ISJ4UhiF8Q5tLehA0EYm9rgbV1phjMAq3nvpQBkxv6/M\n4JM0I5gEnKQ6KuPBKpSv2F2ycVeB9bRE6W4HdNBoIzIXYTsBIpQU+UeUXnpnca6slDZ466PhZEAb\nQxoTwkAkGcoFKURsX3y/rKPb67O02uP2cs7NO2vcWuxwp1PQcZ6ydLigKb2w3lJlSVHRrF+jeiVJ\nr8ToaPoe/W2CkvPTLmCt7xmoJWQmkAaH8Y5G6mhmjkwbstTwzS8d4vG3zvPWgS3o3JGm+nOSde8V\n3gvIVToVJY5QonBBkm5ckEJFaQH6Ko8vpStTevkcVD4HPoJ3KJG1WCfynTIWQ1LYOFIdKeVKrxc9\n1jo63Q5f/IgnCIP0tVvITn0rmK0wmcBeYI/8iE1AI0CppDNxBQHAziETeTdAr4zx6UsI2HUnfr2C\nlBGVMeJPazKsutUVeFVJIfts+JYR/68YYQPxJrl7G8XAKNR2wIyWBTCeov6FJuf27uHEwBF233+B\n3b99hW1J4Hc/hLIPjVlQL0D3xRrvZA/zoT/I0twInM04MfEQMwM3qO/NOfb77zN4vEM67/A16O2q\nc2n/DN/Rz/NDnuQ6s7yunmBq8jZPfePHbNoxT3JOTlmYgZWjTT64536+p56jHwnboaFImpKwY/zG\nMjQKMAy2oejrOiN6iT8Y/peMsEJByty2ac5u28uZvYdZ2ToiMc1OwbnJmABWMfMq4OsXN8b4pzFm\nJ4ao11OK4Ne5V855EkX0ZPKSzOWh9J6sNURSb2JR/PM//Ge88P/9Ka995VkSrUTypnyEzYl+XxvM\nLm1UBIUEpZGfK5T2IgH3AeW9MIODgorxFSEbpZTgONFXEA/aQ+LjGqKUsKhic0Rpg1NSdFilyJXC\np5qgDCZJ0bU6yUCL+ugY9aEhdr9/ntGbixz7P7/DyX/6DYLNxVBfRRN4W2DLCPo4Fzv3ku4YgoBW\nxCaMeMqoddxrPcUSRWrEU9BE8AwfCFh8Ke9d1kKHLXNK78htSekKfHC89Z/9OmZljbf+h3+KLgpJ\niYzgSFj/qjpvchPJo7C2qp8Jk05TUeWM1mRJIjJEK1YCFYCnlBJvSyeG+rZ0OOspSotPJAQFk8hN\nu2j076ONwQbjrGLIgawvIcgvuu3ehpT0CxkV0yNDkJLK0Dae0VxBF3qdBisjw/RadcJmqE/C5qUN\n0fk0sHka2Az9Vo02g3R9c2NKAT4Pcv3kqH5eJc1mbDx75RGzCnYCro/C9QyS2HxBw7SBXFHONTl7\n8AgX9t3L0NgaqS7JfY21G0P483XSHT0mfusGe4bPMsECTXokpYWerFb9u46oj2S80INa6chqOTrx\nuPX9fdURWojHugSdcegMyXmMoQz4qktu4EQdEkXZbfHWo8/w2e7dTDdv0ErWCMBKOcat7jTzZ6ah\nZnBTGkuCz9Q6Aa9qRyjke1UHUoVVCZaEGEsdG/AJghKCVFcxXW2dOV01PX55wS+tDVOTm5iammJx\ncVEYUkVBp7PCwOAgtaRG0OBKD86hVEK91mB0pMXWmU0kSuZoW+ZoLImSBFlXWmGKJobUKKp2qjEG\nj2wejdZolaGaVRJtILUObzyJMQwNDaFDwJYWWxYUwYs/YACvpaFd5B1M2gCTYEwtNmlkfkkHajif\n0hhKQWnqyyu4sEJmClQQj1qTSWOdWGNoLcm0aZKSpSlZrYbWaWyQE5m4wghzTgA0jKbI7freGCpf\nywxjFN6VMmcqgzISmqJKK/6Pzgv7y1l88DEARM6Pdx6jzHp6rtZGpOcAGKy3JEHk8VqJOX6R52RZ\nRpJ6bPDUkJ8ZbcgyqfFs0UPhSRKDyXtoBd6V1NMEXc9QAVKTEJRioDUSGxaGoeEeA/W5yIuMRIPP\n/W3I3F04x0q3oJ4mtNsdvF1AK01jfoEb12/gvGV80yQj49Nk2SC1pEk3tElNivOeXi+ncMustr+I\nmqCaHBzr+2O/DDcm4QzY9xLenjrOxNA86t4ge9gn2qQLFtcydLc3OLt7B99SL/HD4imW3tkMpxAL\nR9tjI623Yn0R/6/mmwShOGkBlT6dhHYG1xScVIRNmrI1LL/bEXh38hgj08vYEcOjv/0OU8fvkCw7\nXNOwur3BJ609HB07yZhtc+AeOHAdmRgPQfG1hPdn7+cdHuLi8r3YT+vSoF9xQB3GtNibHPIcmP2Y\nZ9SrvLD4CtN/sUL4M1j7RNaAwWloPdfnsd97m7XdLS76XXxr+Wucahxka+0Kg3SwJMy5aT7r7OLi\npXsJr9WkU34KWOwCF8E2YWET3BkQ/+FNSKLJYTaCMHsKFpXYs9wJ4uY/B3ysYFQJRyFRcn6WkN5+\nBr1LDT7Zch/vpA+z88mrjN7ucGQQDpyVWj/bDeFFuPnYGO82jtKlwRNTr3Ln+XGutLcx/8kW8h1N\nGFKgUrg6LXgHPTY8li2yT/hJxtddslksG02hny0L7FfA198wZmdnOXTw0N94n58EwRTxkgWPz7t0\n7sxR9lZJkUQsgsdb8YkSI+RE5CXyBOsGv0EJZVijwciiqpQYOlbBhFor6Xwrg0cLbToxsnApE3fO\nbuO4vCxO4j9CBNiCLLKx8NFKRbN8Kapw4g9jXSmsL6JvFbFIM8kG6KUC2iTCPnMeW1rKvMS5gl6e\n0+7lLK30uLXUY365z2LHslg4OvE9S6c8RLqyJvUi/zGJQSUK+rn44ejKuF+kL9okGK2pZYbBekYj\nNTRTTSPRoBU+9yQ4kr5Qnb99ZCe6W6JVoF5LaCqDD0rYbN5jbcBajfPCjCi9wqnI+Ao6pkQqoXkr\nYVkI0KUJXoAVozVURRobXX3rPBXvzlMBp2Gdcl2v1zE6Xf9sdbtd+v27t9VfxKiKv7s7wOPAZkg2\nw1YDDwGPAA87xnbdZmRghXrSw7qE1f4w8zcncCeaG15e54igyRUE8IrmlXTZYHpVUeo/rc313R2I\nqvj9yfeo2EgpTOPxLCOT9hDiVLBZYrX26g1Ty32WxuY2dZ9zfXU7Pxh4mvGRRcJLr7J39yXSs5D2\ngU1w5/Ag704f5d/r5znRfojO2WFw0O63uDiwix/xOLe3TrF55iYj5RqFTrmazfIhh/iMnUywwD1c\nIABvcYzbm6Y48qUPmHh0Ce0DnWaT0/W9/JhHeSV/llatzRW2Yvck1I84HjgP3euyNk4Bh6aBo7C6\ntUXHNPkH4d+wt3uOgdUcnypuDY9xIn2AV7c8w6tPP8uc3Q6rGtZSuD4FoUpa67HB0PvllMMkRrNj\nepQQJAxER7ArbslFZuEtRR7oofBJjVqzSdoQ4CsvHX/+u7+xPudWjnni51V9H9lcUSIiTQsfOw4R\nLFIqus+L51O1DgmLN4aOmJhiGzQqJKiK3eRBOZHAiFRe5iYXAl6D1WCDozTg6wLQmDQjzRqY5gC1\noWEawyMkjSY3n5vk3aEhbh0/iMYKGKdStJKI+rIUb5bSirRR5IgWb52ATS7E9UqjcXilpRCq/jQj\n0KNgPfglILIZ64SJXJYF1llMvY4KNUgESAxdCEpjveJ7/+Xvkqy1MbWUrJahEwHy1TqwFYHBsO62\nyfpcoLTIDtMUn2aYJEEZi/JeUpe1+Eo6KwEqVM8YG00CYIG1gaIoRUoaWb9ojVcxKCbOSwFhf5fW\nioQ+bDRUlJIGWLf7RXo+Vk2C6GrMANL6HWHdd6st5vLda8NcHdnChdZ2dh27wsD7nuc6MHNDLu2u\ncRh4AuwxzdXxWS6yk4WFqQ3S77pU4m+S2N0NihV8vttcsQWW4nHWwdbBKvn66iZYbYqU+2NwswMs\njQzI1L8C3CuplIf2vcvj+kcc5QTbucyIXUYPBNgM21swtSbELA1sU9CYhLAJluuDtGnh1uob2Nx6\nI6eDrHmryBtuAE0ITQiVx1YqSPUcUgzNQ7houLV7O7e2bEG35L37lUQKnuvAMVh8ZJwbzNCZHqBx\ncIX9J2FpTmq3UeDIMKT3Qb4r5bqZZZ5JWIzM5RGgaMDyTsjHEK5YHVmnf5J597MvUr6o0WoNMTm1\neUNq5x3OlShkT7zWaZP3+9iyR6oDNZ2SZSnNesr4yAC4Am/t+qQbgkOHyPBtpOvhVSJll2AoHcM4\nCFGPESQ5VilFliZ4n2Ctp1lvYPMuBY40rQsA5kvyPCcJKnojtiHJ0LUaSdaIIR0JxiQ4K/fRpkSl\nCSYpqdUCNZ2If2SSkER/LZSi3mhED7KAMglpVqNRb0pdEX1ptRbPQqUgMxKUEpynlklzQJrn8nlx\nUdpujKHRaJD6OtbmOBtBDq/BgSsdeW5jSruT2qWam4OTWsFosYFRCpN5lEnIYkFduBBDUlJ8qSny\nPkYbklSjU/HQ9cFRlHm8FkjzxEioWKGI/pgNkpjqGRKD0RkJTZKyT9LvMzA4yEirRs0EaYABGw3W\nOJSmdJ6ldo/RVpPCevpFm9GxcXCeWzdvsLK6yNDQJKNjmxganqSzskCSJLJe2ECZW67duklR/HyY\nMZ8fFUgRTb1YBRZgaQhO12BKc210J3/52FdZGRzhk8372L35HKPlMp1kgCtqGyc5zBv545w5dRj/\nQyPgzg0P/nZ8vg5UtfL668GGv0g1/1hwPbg6DvNDcMbI9rwRD+0JxUJrmm8/8VUWZiY4NXiInXs/\no8UaPRpcZQuX2cHi7F/w8O++x8xTc9RveVwTFmeH+GTTXr5Te57XwjPcPL1FItOvAL24vgwBM1Db\n2WF3co7D5Ydsfn8B9Sfw6XfhvbYc7b0X4aE1aI1bjv2jd3in8TAnl4/y9jtP8NGmDklmCVbRW21Q\nXqzDGS1JVR8C1/vIhL4G1EEnAnjdCxwA7pFjYCieplVENHMeOKPg0wBlECn9GrIEViKX5SBr3JTC\nnso4vft+XtnyLEOTqzzxO28wc2Ce9JLsL8JOuHbfFGcm9zDCEv+If0lAc5PNnBncx4+PPMa7E8dY\nSydkXe03YG46HlBVz1X7hUoWXSEl9q7/7w6sqX7+s9nj/Ar4+muGUorDh48wMzPzH/UYSdUSFpft\nrLA4d41ge6BK6S9HNpcNJcoEEqcJxkMIsRMti6zX4iGC9jhfEmzAqBoqGIIrYzSwIjHm8xIJvd4z\nX/dXqRqIRsmGsFqovDaxgIgbSi/yRh0N632Ml7dliS1j12W9uxPpzlQSFfFCQEefm9JSWEdRWsoi\nZ63TYXWtx+Jql6W1Pms9S7twFEFRukBhXexuS/FG7P6H4MlLR3DSk68YESZGKXtAm5Q06utDCBQ5\nlFmCGmiKL4OJIj0FuAKdyybCaGFaBUqyzKO1xMkXZcB6jfUBrwSYtNFDwKuYqIacf+c9PghDIETZ\ninS3BPgyCoKRc9wvSspY8LhwV8IkIZqHarKshkJHLxfFWvsLj+1ig+lVTV5R5qg2weYaHFPwPDS/\ntMyBmZMcMR+wjSuMsEyXJjeY4fSm/Xyw+0HmJ7bEmF8Fnw4IbZmbyCS5woZk7icXvp/mqIqi6rmr\nbtLdwyOrRMIG42sImIXGKBxQ8CTwrGfkoTnuGz7DNn2FllrF+pQlRvkm3+D28CRHHjzJ5gfmyELO\nih7hE7OXNznOqzzNtTd2Q6kZf+kaTw2+xpP8gAf4gC1cJTMly2aEy+zldZ6kIONZXmEvnzLBPAHN\nFbbxMQf45+afMDmygMGxyhAXuIfTS/ez9K1NDH/5Fh9OHOLM9hMc/foZxnrw0jvg74AeB3MM3NcU\nn+3ewj4+Yf97FzHveNRNeftbDtxk1zOXGB1fxk0kfOf4V1m5MgFXFdwZhN4wUvh2+Hwqzy/f2DQ6\nyOhgg9I6vCKm5wqzByqWkyP3nlxrQi3B1OoEk5A7h9UiY64YuNLciMCXUnF+E59GQX90nGejF5WK\nG+kQ/xFcKz6REaWeNQSlwWm8cojiUEWWrEatrznib+hR67JxMX3PCGlkWymDSVPSxgDZwCDZQIus\nNUTWHCBoYSjcevwhjALlFGUocVaInLaMrFmvKR0467BFQVnYdZZXCCFKB6teYFiHnlWQYilUnZZY\nACot99JKkpGd9yIvIWBClIwaDc5RFjm+06Z0irRekroa3juyRm2dkRCCj5LHEIvU/5DhpZNE1gfn\n0UkPVE5AZDhpYiIzQDx0dBVAsy53MQSvKUtJtgRJSK7gmWr9VkrYwd5ZXBAvTUXlTRn9PwFbWvL+\nF8WqvJvpVbFhY54900Sqr2BNV4AzKaf2HuKN9Dg7HrrMfb93iYlJeOy0PJveCepZuPrCGG8mj3CK\nQxSfDMpj50F26RUL4C5G2V85Kj5Tdd9qM91H1pbsrpuW43RtWNwCyyNwNnbFm/EtHYP0UI/7953g\nt/Sf8FLxMnvOXsJ87FHtIPc9DNOPwNfegLNdeej9W6D2GNgjCZ8me7jKVphLheC1BlIMFMicWbGo\nKkeVYYRJ3YJJDWNK7lb5A98G/gxhVY8Z/ICR0xG9n4mmzRdWd3F6eD8Xdr7D2IunmFiCr74J7iaY\nETAPgf46XD80yYcc4mKxS2qs3QjwdUPB+RQ+G4eFETlXVOykiokd57xf0jE2NkG9McDyyiLdfp9+\nv0O/3xGPPWspii5FkeODI9GJpPAZCL5PLQ3o4Cm9X5/jgwskSUotrQnLk4B1VkKsFASfE3QM+wiy\nFxWZZAlobFmQ9zvkeT/ugUVdolVCrZYS+hpvkIardVhn0S6nWGvjg8NkdZGqJ2LHYRSkxuGMJriS\nViMlRVi/XgHKomKie9ZIowpBUa/VSEwijd7gMSYhTVOUUux97wzzO2fozoyjlJcdVvRHNLUGzhfk\neR9XlOvqmSSpCfbnHYXrQwg46ylzS1GU9PKSsixjM6EiCURwz0vjPjGGNNNkSq2HiKHEq1LhyFRG\nohXKe4KVYJR+v0eSChBofUGiIElSadrbgrKU+si5DAg0VROlNC5IfaaibydKU0tSxlsjjLYGmeut\noUt/V5gY3KWnp19Yuv0+3hhyZ+nmfXqdLt3VFW5cucjIwUnGJqcYHBql0RikNTSIXy3QVpMkmoWl\nlS/I+qTaNxdsWH0sQDkEF6ahYXBJxqW1vVw/to0TWx5ghhsMp6t0aXKbSS6s3sPaO1OEHxv4ERL4\n0Y7PwzKfb55WNUBlrKsRKjCss3nDIvTGoDcE8814v2FIZFe1tDTFKw++yHv7HmRm8DoN+vSpM19M\n0r4xwcqOYT4Z38fusfMM7V8lp8YNPcOHHOINjnPmvaOE14wAUReA0AYaMKhgGAZaHab1HDPdG6Rn\nHPYE/Ki94WG56GHTRdj/AYxfX2N293VGpxaYu72dzp+PSD8BNmxfLiNr32oHQbGWEObtdpjNRHf4\nKPCop3X/ArOt64zoZXxQLIcRrq1spfv+OPwYGFbCDhtDXqeywLyFJGPeQECy9xRLmzbxva+9gB1I\nuD45y/1PfszE4wsE4I6e4KLewdc7L7P50wXUFS8kke2aq4ffYEtynfr2nJef+zphIZNy7vYw+JF4\nXTPkICpf4OoPo/osVbcOG7Ypig0A9KcPfv0K+PprRqvV4rlnXyDLan/3B6lYYKiAcSWd1UVsbwUV\nmSsheLy1MflPmEg4j/aSEJVpg9eyCdcaPIYken0571HBoXwJShYGXfmCONBpikmEKRQigCSVgniE\nEKLfSHDCHsChlHQnHArvYxESWV7OWlxR4pxdN32sui3Vx7ZiGQhIE9Fh67HWUuZ9in6PvBAfgbV2\nn+XVLsurPTpdS79fEpwnCYHMWrQXQ0qtpXujIltNeY/x4sNlEYNkBThddeMrWYmW1Bc8Hg/OkhlN\nYpqkSYaN7z/RRoDHvMTogLWe0nqyNKGWGbQR9pwLPgJdBq/E6L5wYV3qqVTlO+BBJeKrg44+XRV7\nTorW0gWsdeR5SV6WFFY8X3wEvVAb8lnvAsZI8dTr9ymKX4Qo2Ar0qlK7hoFNMDgE9wGPwvBz8zy+\n9VW+zHd4JH+HbatXGcpXydM6NwemOTlwkJmhG7zy9AtcK3cRljUsZXB9Epn128isXFFef54yisDn\n5XkVG6wy9c0QaecE6Em4V8FxMC+W7HrqNE/rV3mUN9mbn2OwaOO0Ya4xxSv6WX7Ik7zBY0wmtyXl\nhUGu5ts4v7iHpfc2wTXF0JcXeGrwNX4rfJPn77zK9IlF1BmggG0zC9x37DNa29oo4zm+8A7D7/Rl\nZTVw3/6LHDhwhsmReb6pvsHH7Ke32iRNSoy3DDzYpn9riDeHHmNTdguegL0Tn9E43SdZATcK3b11\nLhzegrUpB390FvP/ejqvQfcW6BoM7YPx6x2e/6++z9zQNOe37OaD/WOEkxo+SSLw1WTDA+4XJYjh\npzsSo9k2NRo7yCEC3dGw13u8K6SRYC0FChuTd53SWA2Z1ug0ocrEVQR0AKOIoFdMaIygGKwTnjZm\nXqUhOHlNorykkgwS8EbhtcXpRHzCnCJEj5ngXQTA0vhsmoCJCWNB/B98qOirERhTpI0B6q0W9cEh\n0piWqFPpqetKfhni+uagtIEitxR5KWuBd1gvDOAiL3ClgD8mcttCZL9W71nFozNBziuxSUCUbepo\nxm+0QqeSmBu0EQacrs6rsKtjhC8hlFin8YU0fjyBrFHDJJF5W801QaFjMR8iIw4jaWs4S0gMRMax\nsMDEi1GSmqsHCaIZgrCnA0GaQU4+G8JYjqtoZJwJo2sj6ER8zTxa+XWmnFIim2y3e5E58UUMxYbk\nu2J5zQDboDYGUwZ2IDKMMeA6XDt5D68ceY5G0qf99PfYfc9latelc15OZlzaOcOrydN8232JT84f\nhneV5LwvejbYwFVB9LetCxUTopJeVmmPKRueBpVsv4mAYmvgY2rt6jAMpGJ8fD9M3DvHk/p1Xipf\n5sD3L8CfQPcElGvQmIL0OKivw5Z7YMtVpMA4DP0vp5zct4+3eZizy3vFpPgasBbi+xkGNrNhZBbT\nr9QWmKgLALULSR4bR5bdnPWwGC4gxVg3dv8KD10HWzP4BHrvTvDWk8eZzW7QfK7LPcNXaTxWkM5D\naEFxf8KN4+O8bL7MuzxIsVpn7IXr+DyjWKrTu1wnvJeKD8yHCVzdKvG0n+vEV8Xoz64z/0UNbQxD\nQ8N0OqssLy7Q73VwVgBVaa72SU32/7P3Zk+WXPd95+csmXnX2pfuqu6q3rvRC9Bo7AQBYiUpUAQp\nydKMFSOPX+YfmJkXj8MxDnvCrzMT8tMsD2NrZmzZlkxZ4gZwBUCCALqx996N3qrX2uuumXnOmYdf\nZlU1BFEciSRMBU/Eje5bdetWZt6sc87v+/suGCVet0YpjFUkiWFspEk9EXYQ3q0D+iJhlLR2V6g7\nbFLBmMLHz3uUy1BF2q5SGqsszqfynAzvelgbBFz3CcZk5JmjWpXIuVINkacZvp/ishysIvR7uLSP\nT7sCymvZ4ySxhUgXQL1DRwkmjsicJyiHjgxJzaIMRbPYkMSxyB3jTeE2SlFbabHzxGmmT17k1X/4\nAtoUc7kuA5vkHjFGU6lUyLIUaw0uKNrdHlmW4TKHyxx5ltHv5SIN94Cy5CGggsfnjtQ50jzgg8Lo\ngNUpUaZJck/sRWZpjKFqDUFLeq92OeSSeBwlCT5kpP0O1Wqt2LJ7CuEKFJ6RKgSs0mS9Lr0AJrLE\nSYJNEpGmVnr0K1WiVkQ1qTJYaVBRLfQngcIF+OUDtLsZGFHGLCwtMVCvsHVhK7evXWHX3nsZn5xk\nfGIra4tzeL9Kr9fCcO3a4wAAIABJREFUG02712V5tcWnM0oQqpwHSibtDejE8MEo9DXc0WTn6pze\n/QCntx6TePLUwLyReeskwvQ6C8y3kM3sLTZS3EvLjHJkbBgDl9e1ZICtIWtEDUIZgrIVzk1CGsFt\nhT8bszQ7zdL4tEz5pb/wArz021/i5NRhJis3qJs2fR+z3B3l2so2Ft+fhNcM/Bj4MIBbQboLs3JY\nBqzOiUmxPoc+dNp355vnQCeH0AGVBiIyrMrkMn5UXAMPdAOseljbJM9nDOx2qS8HI7gfeD5Qfb7N\n4X3HeYDjRRN8Ho/mDuOcGruHNz/3EGcmDtOv1lG7HdFkhqk6fKbIlyPcpUiSe99HgMe3gIpiIZ3m\nG5/9Tc5N7mOmcpkxO0+VLvfzNr+z9DUmv7ZMeBm658WeNN7r2Pn8TX7jy9+kNdDg+q6tvHv0UTip\n4YyChRGkbkqQvUITWcgiNoDN8jNsFefc4m5mXwmA/XzXl18DX3/FuPfe+zh8+Mgnfu/jPl/AuhQB\nQAWPynu0lm5D3sVqSX0yXuMRLy1PwOWgnEc7AZxskTRltBj+ShpWQBnph/sgjABZJHOCUvgMvMqJ\nqBQiCb3OyAKFMlrMkL3IEJ0TAMjneVFuuHVPGfFgQYCvLMdlGbnLyH1OYMMBZfM5G2PWN+1l2qLL\nM1zWgzwjTzO6PUe7m9Hp5aS5J8vlZ6tGodOUeqyJ4oQ4TmjUG5SSz36vD3mOCgZvLSkBp4J0XIIj\nzzN6/Uy6SsGhvCJPM7RRODJ6XY8lB1ehEidYJWmMShmyLMW7jNhaYuexaU6cWpJKBWMjSeRSAa8U\nOYG89OZSAWVKH55N/ji6YA8Un08JD7rg6aUp7V6fbr9PL03Jci9ea6FIu0FYI1ppOS5v0drQbrfX\nvd4+3VEyviLu8vfagri1PxI4Mvs2L/B1vrL4DaZeu4X+CXADGs0Wo0fPM/3kTWq7OvSGK/z5QyO0\nL4zIxH+7AdkgsqDEyML3cR34L3uUUsjynEu21yiMGvEye8Sz/YHzvKC/zlezP+O+Sx8w/F5LujYV\nSA+cYt89F/jeyJP8K/8HfLf9PJ25JlkW0Z2rEc5EcBX05zJ2TZ3nCfUKzy1+j61/sgT/Ee6chMzD\n+AREzzge+oO3iaOU5h/3yL4La1dl7zp0L8y+eIsXfuslFgeG2cY1tgzcJCZlrdbg8ugOPkwPcWlp\nD38++mWW42EevPctdu2/RDXt00kqXIxnWWWQL935FskPclp/Bi9fl8aTBR5ehPsiGNnb5shvvM9u\ne4H3Zh/BjWu5FRaqEErQa52v88v/2H7BY7RZY6Aak+UyZxYuWuvzlXaBzIk/SWYMaZAAjjgESYA1\nBqXNBsMpSC6j8cIM1aV9FFC8rYAmxXNKQEzc2QUgozDDV4UfCw6vDE6LZ49xwvDCK0KRkoXSKGUI\nykIwhKALy8cNf0KK9zYmIm40SZol6FUBI1HzikKCWSQueqfJncLnSny88lyCPMo0szzF5xnKixF8\nCf/5UKQfrqN8wnDzhSxIWMrcJf3URhFFUuQBBK3Xwa+gDcEoaYAoj9IercVnwuUis/HKE7QnUnFx\nzbWkzToBqULZVFKKUACYOFd4cxmRBxUJlGpdfl9YFXhwBTIZgjSGFHod2CrBr1CAjHcrFmVjL+lp\nHkIGQQCwEAL9Xp/W6qfl+Vg2QEoWbNEAYRYaY+LveB9wBNjviac7JLUezlveu/0A7ck6l+0sB3ac\nZnLHLQw5dxjnLPt50z3E+xeP0vtuVaTwF4F0GVkXWtwte/9ZQL/NbIFSOr/Zp7J8dNkwSVEQBwGa\ntgA7YdfweY7yDvvOX4I/hZt/Bj++KUqR2fPw6BzUfh+yf6AJkcdHmoWJEU5N7uc7PMMPu09z50Qh\nlbkMdDtAE/QkVCPxG9MIqNTOYVssBc4DwFFPfc8KA4OrRDoj85a19gCtc8PwtpL4+hPA1QBZITe/\nNStpYNNwcuQ+okMZ7bjOQ8feYPeBy1T7PfpRzLX6FMfN/bzD/YyxwO+P/RF12nSocW3bNk7uOcil\nnftoTwwWlyeBa1PgW8U1K4FIV9wTf7fCTOIoxnnH8sIt8u4aJniSWDytgvdYvOwBM7GvsCpQiS2R\nCTTrMXFsZI/uHQSHEQQIgiJzmUgGtSbLMvK8qCcMWBWLYoDSMsMWCbwaFdep1xCVQgi4LBBHFYLv\nkedpYSpfHH8lQRtLv58RXC48yDxDwDHZ2yoNeQhYFDY2kkZoFMpYdHBoa7BWmFQ2MiRJRZhV1q6D\n99ZGskaFQDo6xFtffYp2s0YArImFVRsE7Are44PBmIiQi5wbHUTR4lO8d2SpJ+t50r4nzwLOib1I\nWvjheh9weSB10MvEMkZrjbEZsXNUvTTSK3FCpRJTiQpgNijIUwLC1sqskdCvkONditaGLO1J00QV\n6cR5VqytFYLPUeTSnPJO6rCgibUljivYJKFeb1KLKlStBXofn9jvGmnuiukssNLusbiyyvLiHdoL\nd+j2eowPjTEzu4OFGxdYWb5Ko14nzx13lpfpdD+tZvjmhNdk06NgZHWCgPIe2Qe/gbCOqrHgVGvF\n168CN3PorCK0o+tspLiXnlBwN3C4GXAvmUBlk7UMqNKsx/XmKVyaEE+sc0pItMPF4faLXxVDr9vg\nwu5DXJzai63luMzgFxKZq08hwNDZAEtrxYF35TiKYPh+nrDMIKvRAGyBxgzsWRBf+j7ya7c0pZ+R\njWtWGKTdr8vbtICP2pCVzZkuUAUVQ3M7DGnpK1WL03oIak+t8ejuV3iBv+DJ3qvMzl2jttghGEV7\nrMZHM9vZEV/iLw51ODtykKnRq0xXr1FXLVISbqWTXF+e4eaRrbipiizj7yIy+hXoXh3i/QMPcHb2\nIM2hVb60+2sc4wSTP1gm+zfw0Y/gvTWIFRz6EHYvw9ToAg8+c4IT8THO7buHzvSwrKELteKiD8i/\nSQyVWDq9KogMs5uJ+TErCPi5gKCSJfjVY2PN//mBX78Gvj5hJEnCiy/+FlEU/fUvhrtAMOmje3rd\nNVaWbxN8D02OUbKYBg952ifPM5xz2KBERqcNmcsxzgl7SJfvFAjOlygJ5AFtEcN3hSyuwZOHgMtS\ntNJYI3RmSRMUhMVLtrAUDdZKdz7r41wuTDLtCyaYFq8XXzC9nCtAL7VefJXvY4xZB74AYTqkfXye\nFimQFDp2Ty/VpLnGe43WgWa9gncpLvYMNBo0ajUa1RqRsXTWOpJ6E8cYKwmWKqmQG0uILJl3mEgM\n9VvtNYLStLo92u0unU6LWmyoWE1kwCqFz1Oy4MFEZGle+N4I26vvUmJnBZjsZyS557c+uMq3P3NI\nmBoh4FDkQWjTAkzqgt1HUY0Z8TZTel0AoJE0nMw52r0urU6bXpoKMOgcpZOPVmKOj4IkqYjUU8v7\ntDvtT9HH5eOjXPQSoCmT81ZgD4wcu84D6jhP93/A9Hduof41zL8G11rSqJg5CMN3WnzuH/6Yy+Mz\nfDBzmA/3j4hc46SFrIEAagl390s+7aGQKbIKNEBVJZd5HzSPLPNA4y2e8y/z2Ok3if8fR/ge+Kvy\nsvi+wK6vXsV8+XssDo3wf+kxbpydge8YYf9eA45Bsr3HnuQsR3mHLW8L6PXO9+DHPen7HLgGLyzC\n8K5VlIf8j+G10/CBk7Xws9dhfwYTW5d4+vPf5yl+wN7ly5huoDVU4Wx1Fz+KP8NLY8/z2u0nuTI8\nw1uVB5lO5qgmXbpUWWKY3+ZPGFxZhlNw/rqQCcptx4k+7LwIo2dh6rnrjEYLqJEeDDTk0qyDgyVY\nWArX/u4UQ1opxgbrclYuxymFDrrwIQ/rCYVa2QIoV2SFZ1QwVlL8jHTkDQobApYizTGIs5Mo0QsO\nVMEWLYynKJ2nRO/BBjBFmbAl0j8QVquyMco5VK6lceI0yuSFCT4EZeURLN7rDYGhEuN1p4T1ECcV\n4noDU6kTogqP/LP/ldf/p/8BbawA/wXo5bIMl3qcqBgL/EZke8EL8yF4L8nBKCItTCiX+0JqKT/n\ni72tcgHlRNqOpmApgA0CFMQ2wlor608RBKKszMUOJRELCgIeFTKCtwTnybwiaIPTHqxCWU0U2U3z\nuRLWbi5Sc680QcvxlNJHE8UY28enOd7ncu2NfDBh0+ZMaUmBzHJh6EFYZ2oZU6QfFx6cGx/sOmFM\nnhdFs9GQZY7FO0sFK+yXPUowe7PP4wiwDRojcBh4HHgKmo/fZl/jDNvMNZpqDYfhtpvgkt7B/337\nH7Bt4jLDLKIIrDLIlaUZ2qdGcT+x8JoSj5NbXQg3kYKozQbb62fdAK/fhMVzywZIYzadwwQwLZXJ\naAy71AZjbQK2coMZrmBOejonBPR6vyBZXc+hcREefhfci/D9Y0+yoEaZU9O8zxHecI9w/p1D+B9a\nOA7MeSCBLTVJPh5nQ+3YUXAyFp/Mp0A92+Xwzvc5YE8yo67SoEWHGlfDds7MHuDMPQfpjA9JEeGA\nqzXwt6C7AmeGoQH9pM7x/uPcfHgL7+ijbG9cpdbo0CfhFPcwyAqP8joP8wa7OU+z06Yd1zhv9/CT\n6iN8756nea32DJ1+U5rxizVoTSJFyhob7IyfFYz81RnaGNqdNei1Jce6WmVwbBJtLNUkYfH2DZZX\n5ulkXeoVQ7NupaYjI896uJDhNChV2JgUHljOO2kPKU0I0mxeW1ulXq/TGGhijZRkAsB4+cOPTCGF\n1sRJldw5NIG0n4q9CJ5+2sMaDT7Q7+cotMilC59ZrxU6ilCm9Mf1GKuJY4tNLFFsSPP+Jg+uDGs0\nSRxhY4O1kuoYR1ERaiWWJoGw7u+ltWZt2xZAvC5NlBSew6FU4q8TYgXMSyQd00uTPe2l9HuetAs+\nN7hcAq9S72j3UhEve02372mnjk7qyLwizwORgUbV0IgDscmoJ55m7gmVQBQbCW5QilhXMUqCt1IF\nuvBNTqIYrxT9boaxMdYmUJATnEuxNsL2u0x97c+59V/8Dnm3t642iWKLNoYkrjBQrRFb+7OV6MXa\n7kOgl6YsLy0xd+0ay3fuMD4yztadu7h25RzXrpwpXu/o9Pr0PhV/r1LibpG5cwCR4E0D26DZgGkt\ne/opBO8wyLS9zAbgdQnodyHcKr64yAboVUrAS5n6x4cvvh8hIJFlHYFaX5+qrMvl3Bosj8HKMFyo\nCou9JAI7ZO69BWyBMByTJfGGV9YtZI9+K0C+gIBzN5A6JRfm7oJi9eYgV2ZnuVDZxT33n6P5VI+n\nlmDbJXmb3RWYfBj4DJwd3clFdrF0e4u8f5viuE8V57QTzDDs0ML43YHUWANyanp/xp69J/m8+RZf\n6X2NnS/fwHw/iFxRQ/OeHmPPLTH4+ArduMKe7ed5gOPs5jzDLNOjwtV4O+9O3MerI0/wwfD99E1d\nLt+J4qP4CHjL0P9Cg+Hfv8NOPmLHnevwFtx+D769JuWLCjC/AjOvQfSYY/qh62wbvcbAwAqdseEi\nvVgD26HahC1azmW4uIRaQUvBfAI3YrjehHwEQRwjRNO/2dPz57vG/Br4+oSxf/8BDh86sg7ofBx8\n+DjbC4ptVsH2aZw9zZWoQ6e9SERGEnKs10TGQhyjVUAp6RTluaQXhhBL5LnLCzldkE5y4e6ilC58\nWMqOvdw7KrgCoMoIHoyxeBthMovSGudDURCx3qFRBNmQu5zglHi75BlK+fXNuDDDfHHbFaAX0tE2\nRQF31/kX3WxfJHdluaPXS+n2UlqdPq1eSi8VIC3RYCOD8xpVqTDQiBgZrNGs1Bl59wI7b63w8q4p\nkrEhiDReW/pBo7p9/v7r7/Lv9+9gbmwIG0UMjYwxOjZKo1lnZWWVhTt3SDstyPtUImHfOedwKZKs\nVXxYuZeuUZ7l9HQuBv1as+PmCrvnFvh733yLf/Xcg5LiiMIrJ/1jI8WhWBFLoqW1kTAOCtmOFKiB\n3Hu6/T5r7Q6tbq9IGnOyKAaF8oWNtRUwM4pjCIFKpUaaZaTpf26SsZh18CtWUvdMwzZ7lf2cZsvF\nedR34foP4esrYhlST+Hpt+HoKDSOtjnw3Bl26o/4cOYB8TAZAFbrbCysZUfe8umkA5aFkUUm4LLD\nVYVKImv9tsDI2AKH1Accbb9L8pKj96fw2hkhKtSBRz+CncDOXde59zPvsbd+jkvT++jmTXgVOe9B\niAZzJrjNNq6iTsLCGXi9J+siwIkAM3Nw5AMghysfwptswIOvdmD8Qxg9CQcPniX5cZDCcQ1qW3pM\nPHiCqcdvEtf7dLbWeP3dp7jZ2UE0LsaaabfKfTPHoSoMJNwnbzlK6yPtA+anLkDlZ1hKY/9uJDxW\nY8tQLRHQwYvkWelC5qiKcAqlQFn6IYicnYg4rlJrDlKp19f9FzVSOAhHTlhfqvCm0oW5ulZe5gZF\nIfUrGAasoyKUpu9ifiz4uRjranywhRRTCdtLa4KzKJ8LGCelCc4bHBqnZVPrFGQhEIwlShLiWh1b\nraOihMf+2f/M2AcnmX35Va598bl1aWOeOfJehus7fA4aXTC1inASACV+xRiNVgGrlDR0cKUKSMAv\nFwhe4TOHTwu/GzH8AqOwuSZytvCulCKuyDDBlg0Io8gQAMvrIMUnGd45MhckPbgwbZZCsIKmWAed\nk0INxPSfIF42qvzMtchotKYXhLmtraQPl3ivRuGVJKzpIuXM+0CW5WhdUDIQvzBJtywZ43+5XNrY\ng0C306Pb+TSDTjb7ezWAUYhGYaeGh0F/IWfnZ07zRP2HPBzeYG9+nsFslVRH3Ii38q66l9fGHuet\nS49yeu5+aCvBUG4gko/TwBngWh9ZPW6wAXyVcoe/aSOoTIyyxfHXkAVsCvQszFhhqx0LqCOOZGef\naDAlpk9CD9oB14HVsLEVz4ClALTAdD09Kvxr/oBLnZ1cW9pG+8QYvA78pDg3reE+LSzpvcCsR486\nsODbGm5q8ND84iKPzL7Ks/q7PJy9yWznCjXXoWOqzNWmeTN6kO/seJbXPv8Uq9korClYrcLaXnA9\nuJPC8QgyhZuPuHLhAFf37aU6JYEzDMHB6EOe0y/zwtq32PXONdRbwCKMDneYuX+enQ9follfo78z\n4dUnnsVfi+CSgtPjyOq0jIBfnzY7+xczFOD6PeLgsFqzbWaGwfEprFVEStFrLbHWNuQuZ3iwyvBg\nQ0D63GG8QnmFVjI/qOL9jApoXQZNhaKHHKhUEuI4JjKWyFjSLMOR45TGIMFR3vnCUkRM8nMnLLBq\ntQI4QtfTTx15mkOWEcURIReZYOZzgoYoToiimMyJisJoTa3eKIAbmatS3RcvQe2JtDSXE1ulYiI0\nAWuUMHKVMFazLJOkxIIFVoL44lMb6PXzonTw4slCkAT33BNFCQRD3uqT9wJZD/K+EwacA6MtrvDM\ndEqTZo40z+m6QMtBFwNxQqoCndzTauUk2lGLNY3M08n6NDNPoxZRSSzWGoLLcVlOFMUQRJ2SZwod\nHNZYvBN/YlMVMM976PZa1Kp19vwv/zvx0gorR+6hs2cXylisiYmTGKM13jmqjSr1Rp241aLTTze1\nMz5pFI0OD/00Y7XdYXm1TXt5npX5WwwODLJ7z37On3qHheVLpC6j1xf28y9/lE2PUvFRzJ3sgIma\nND6OAIc8dldGNJahooDvarKFCHcuFtbr28DpCqwOQVhCrkGfuwNM/ro942aJddnMKI9xs7y9AyyI\nttvVwcWQlTK7VECx5QacNVAzG7G3fQ9dJ3Mp8wgIM49AWVb+XRiEq4pwOubskf38uPkYO/d/xNH/\n8iS1oZx7TxWntQ3ck4orz43ziv4s7+ZHaV1sCgB4myLNEmA7NIdhnxa277FAdLhPMt0lHmhjtINc\ncyR+n8f4EXteu47/I1h8GU4uCGVgz49g+EZgZ22Oxx58ncf1azx0+x3Gz6wIxjgA7QMR9279gLFk\nHg4E3l55FH8rkqX2Yg4n7HrvOmn0qNHBdhwsQ7e14UQZ5MpyZxGmlqCSSnZ8bLJNVl4VmKzIeleY\n8attObohK6hbMTBnxFvzlIIzDZjfiRgVlut96Sn585XU/xr4+tiI45jHHnuckZGRn+n1YmgvIwDD\nP/guu//JP6b71We5OKGpekclUHS6PUGrdTNL5QIUkeTOe/ppKqCKCgQdIJeF0RpbUGsVeV502L0V\nrTAbfWYfAoqI4DJSD1rbgiQm3i5aabyNiuQYSWS0PiYPYR2wEj8RR56LcEYVXi8Ej6g8hOVlN9Gd\nAeLLt/EWQjOWAiPL6fZTOr0+7W6PfprLMRhDTSsiq3E+wuOoJhGjI4NMTWzh8NUVkrWM+w/sIZnZ\nSl95QpQQooTGQouJDy/xWK3BHy4tsfzRMkm1yvDYIrVKhaFmg2ZjkGatTmdlgby7QmSgYi1BaVIt\nvgCZ90UgjMYh/l1ZEG+tNwfqsHeK0zNbqWQBncSgwJHhiu5WCFK8CdPAQgF6qYK5hRdPml6astJu\ns9bt0MtSMi9AoiRrKly5kQ8UnjGQVKpMTW3jww8+IM8/jc7OXzcK+V/Z+G9AkzXGWKCy1IfLcHZF\n+iNFTcCpHA5egeS6YzxdYCBZgWYfKtXC4qQsSErA6dMam0Gvks5dgl+JyFKaoEY8zcYSW7jFljsL\n8B6cvir1TUlCTz1MvA+ND2HmM1eZ4DZJs093uCnI2LqHdkDjRJKbQebudshyQC+w7tFcZieWo4+Y\niNOD5D8Fsj+G66eg24fRJow+DDOdmzzx/Gtcqu/k/PZ93P7TGbLzTTIN7IHWdJMFRlkdGKCxe55d\no7B3QRp0FjgYwcB2YBZuJeMsMkxYTaQe7YEsTAq5ISpsQGcpGwvWr/YYadaIjCZ3RfGhSumdzL/O\nB5QW/yeHQUUJwSY0mkOMjIwRx3FRFAiYY4o1wVB4fFH6dPl1sKpsr6hQ0qDkK1JIlE5hAUKRtoVD\nk4vkXRVgl0XmOrQAXL44aG3wThVuegJPBWXIUTilMFFCVKkTVRuYKCFow2v/4z9i1/dfZe4Lz6MC\nAtzkG4/cleyGsgVQ+HBZg3Gm8DcLKJeLpDAIy1j5IHOmD8X7gMsD3oVCpSKsZWUUOlfYPBdWcggk\nkSWOLHEsDR3lA0ZFJEmEtobMGAG3jCFDkbqcfp6Kd5hSGCvGzMZEKCShVwWZ231xsUPB4Q1BmNja\nGkwhA6JIdtRGr8swpTgtgSyH1grnpGmVZVmxZjq8C3+JvVViX6WdglIievLO01rrfIreXh9PchwE\nRmEwEen3Y4HtD1/gi/Vv8CJ/xv2XPmDkzDLmOlCHzq6Y+w6+x0T9NmyHV5afIX+5KkyowiaG2w5a\nHTZArwU25C8l4+tvMpfoTY+SsTDEuiH/tBWm1TNQfWaVndPn2V87zTauMswyXWqECUVlMrDjLFzP\n5IiGgF0xsBV6gxVW1CCL+Qhn3rgXXtfiZXMS6YY4RML4CPAYDByeZ2z0NiP1ebT2dNI6C6sTLFya\n4L7tx3lR/xm/ufYNtr15i+gtL9344SV2HrvO7LFr1EdbpLMx3/vs5/FXEjmgpQgWIljyohA9HuCO\ngrMQpg2dsRE6M7Dldy/zaPI6z2XfYfdL1+Dfwvxb4qc8WIfhYzC7cIunvvBDrjS3c+6evdw4sFsk\nMect5ANsrI160zX+1Z/nQfb0kVaoLCMEaI4OMzY2TqVRIU07tNbaAnz3UuTPMSaohDTrY5wHB8ob\nAil57sTRJsjeP+ALz1ywJkhjpFYTQ/nCND8UKgsJyQBUIChPwFHQgjHGkCQJIVii2BInEe1eStrt\nk3Y6eO9QFiJj0F5qlCgW8CdStmiCWyKjMVpkfVZr+pnDB08c2yJsyZAkljiuYq3scY3VuDyHIpAp\n+FAEsqjCzyteZ5VJE0HCsoJCWLfO0y+uCxShT5nDuVCSmdGRNJh15ottkoBquc/JPDilaVjLkSzn\n6wFyHPgcEwJxH5JcMZQZhn2gHzxD3tGoRQRv8P0Mr3tEVQECTdjorWitJKAg5GRZj9TJPW2t5tR/\n/98wcOYinR0TRL5DIBFpvdJElTqVRoPGwABDzTqNhYhWPy9ahD/978ID3X5Oq9PH5Tkm73Hu5DvY\nqMLU5CQzO3dz+/YF+t07tLrpp6AC2bw3L5se48A2GK/J3PlZUE+mbNt7mR3DF9lqbpDQo02dOb+N\nS0f2ML9/EjcaQ1XBO4OwPINsIDtssHl/1vVtMxOoHKV0vWQF95Ed8xIyV21WcDlkkmxCtwHdCnf7\nQrbY8J1aLY5vCFn3Yjnsi8DbcH3PLN975GlqSYfWww0ObDvPwNIKNnN0mjWubNnGj+qP8i3/BT64\ndB/ZWxVp9Cw4CKvAFkhG4YCGz4J+Pmf8gTkOjn3AXn2OCW5jcCwyzCS32N+6AD+G+R/DNxaEI2WA\nK7fgxR9A9VjGgf3nmJq/Se3fZfAKdK5BPAT1+zMeePFD7GcdS8kwV49s5/apHQLEVa30MwoFabdb\npVWrkw4YGBVL56G1DRHiFmB4DBiFblKlTZ2+K65NJrcHDwGPgXk0Y2zXTSaGrzOQrBJQLHWGWVie\nZOHsOO6NRC7viRrc2A6+lLyWa3/5mf989j+/Br4+NsbGxnns0c/8JUZTOUqg5+OsL2HxBNqH78En\nMSfHG6j+IlHwMqkWnWuNx2gxMg6RFfRerZcw5N6hfU7IxcfKG0eIKngPxhSiQ+expugWIMwsAakg\n95l0kSWWRRarQAE6WXxuBRBTBm11Ad5ofK7xThWbcdalO0oXwF4AExRGG4yNijRJ8fUy3ZSx//Ob\neKU4+9++QJql9NOMXprRT3PywqDFRjGxA+UhthbnFWkeqFZqDA2PMrFlitXf20bv9iINY8BqRkZH\niAcG0LUmmY05c/AAb12+Qus732Uld8yOTVAZHeOdd94hMZrJ4SHGmnUmBmrYPKO1ugheZIRxFKOM\nQuWyiXABUCK1yb1oXbRRvD4yTJwFfAyJlyIx6AyvPLmTrp1DYZUUQ369ONsoXDLnWOt0WFpbZa3T\nIc1zMcKXuweSOikdAAAgAElEQVSUKvy7PCoIQ0Ybw9j4BBNbtvDSt7/1c7mffzHD3/VfiRTQ68rA\nkhdQvkoDqiBQudL8v4y88fDz1G7/9LF5uttMo4W7C6Oys9VAFroBeUnhw4ENRCajQg/bBdrQchvT\nM0jJ1ulAow0xfSIylPby87Au6XddyyqDLDLKzunbjE3C/qvwpuyfmQZ2V5HmWhd2D8CWVQEWQZjl\njRHgCPj/DT78CbzclWV6chlemIfJrZ6dh69wYM9ppmrXuT00I9TmFTnFm+0tnGvs5dLkdiaeWmD4\nUuBLP4SF61BNYOQwxJ+HzpOKkxziI3bir2g5SQDVgDDLxudYSow2b2R+dYsirRQTg3VcwbgNQaTn\nuohsd94XHXjEmFgblI2wcYXRiUkazQG5370vzNf1BsMLUPiC4VUUCiXiolgvHHQpb1TcZQJfemAR\nPMrnKFUwSpF5X9SWMs97j4DtyuALSWYavMCUSlJ+vbIoY0kqdSrVOlEiRRkoglJc+fzzWBQ4J2tU\nIYf3vtSweImd9yLviSKLyDkibHBS/GWyToWiGYT3BOeLFGFH5hR5MBJI4oRDq7VcF+0hD3IdXZ6T\nWkMSR9SqFWEUWIf3OcaAiRKRLWowVmO1xSlFHqT54cvUx7yGihKMivBO7ANgA5sOxZNQzNNKKWxk\niSIrzQmjRJKvtawrXkJYXJAAhBLA2hwGQyg9Qe/eRxQq/ILpJ7dMKNhi7Vbnp9nG/IJHebeVcvc6\nqFHBjvaCejDl2OBbPM9LfO7U6yT/NocfQrgEqgm1+1L2vHiV3/zNv2CxMsKVQ7NcOHlY5qF3EFdg\nv4C0wReQHfgKsosuN8F/k0ZQuRqVj82shUkYrgtb4UkY+NI8j06/wlPqBzzIW+ziItWsS9/GhKMQ\nPQ6PXoeBs7DgYVcFZu8HHof5baOcV3u4lW+B8xp+gABFd3JhR99rxDD/i45dD57moeQNDqsP2MY1\nIjJW7CDnans5NXKQI/Y9Ps9L7Pj2DdS/gdUfwlIbhpow+DDM/O4Nnn3xFeYGtnF23z6uPrpfZDGL\nSLfighYT6ateTJnPa1nGngYegZnmRxziQ3acuw5fhysvw7cX5aqPA1+8DVPNwMy+OQ7f+yEzyRVu\nzOwSmX+NgqFdYaMYLu+LX905/q4RBIh3mSOOYiYmtzI+Ocb8wk1u37xFr+u5dec2q61W4WPVJHUx\nadqjGcVoGxeN6CJQqmxE+CCBSNpjtCn8/3IJztCBbr9LNa6sN5SFceRwhc+r0sVaoIXdaowiywMG\nkXpHkS2cN4SBnLkMZQzBB4w22CgShpgSnzGtFN458iwVAN9a4ijBFwb+4u9lxTtM28KE35NlGd7n\nRLpCbGNh2Yai+RvEO8wYXewNw6aaCbzyaBsTeWko5GmfNBMmrkeCV7T1REbjCOIXHAI+V/QzRSuF\nldSxkmb8MPMM+MApFG9B4bWoxC85g7W+o5N7+s7hXY7WRbiA6pP3s8KCRhPbRFjRQT4zLcUOLghb\nTWlNr9/BGEV/3yyJ64E3aKvI+5o0D5gopjEwwMhon+b1m1SjGKu6lAnwcl/91bdc5hzLax0WFpZZ\nuHOTixcvMHfzNp/57OcYHJ1kYHCaO3fusNLq/OLu+586Njc9msAENJvC5Hkcohdb3L/3LZ6wr3A/\nb7OLC1ToscogF/Ru3tjyMK+OPsHJ+jHxFG0pODEMfgvCHO0goFU5p/ysc/1fNeeUEshyP1/O/5vH\nGhs+ZaUxfukN2S+Op1d8b5R1P8taE7YrmCle9n3Lqfg+ekcrXKts4+DUSSanbhKRs8Qw59nNcR7g\nxNVH6H+/ISzgswFaZVrxDthmpTHyHOx45gzPxN/hc+r7HPXvMtW6g/GeW0NDXGYHtcUUrsPishC5\nykrmI2BhDrbMwY7rc9ivezr/L7x9Gj7KYMjAY+dgNIPd45c5du9x3mo8yO1DO+Qw7iDGvjeAeVi7\nM8aV2VkuD04z8cAy48fhmUX4oCtX5P5BqH4W0gc0c4NbmWOa5eUhWYdWkQTKZyD+0ioPTL/FA9Fb\n7OcMo8wT0Mw3xjhVv4c3Jh/mg8kHSJOqXP5ODZamEYitbPXnbFDy/vbj18DXx8aRI/cyMzO7/vyn\nyQ9gU6mnxHQyHazzzX/5L1g+8QqVnseEgjVlpINvdenHAj4xZMFJvaADQctCkeWpyAAzhSu8uqwR\nHxmlNeL46IpkmLIbrhEvr0DuHLnz4j9CQTxWBmNiSVdRRjodJhKGWchFrlJIHEsdPsimu6Rqa6Ux\nymJ0hNJaOlM+J40Nd158hF5Fk2cZaZavA19p7vChMJXXBqMtCukoBTQ6g0atTq1Sx3mFaTSpTtcw\nvS7tTptOq4OpNmhWa7hajTs2ZuXUKfLIEA80SVGsdHrcXFpjtt3lH5+b45/smGR1YoSJgSoqarC6\ntITuZDSbVYyJxPuAUDBu5Nj6TqSqOigyPJlykHiUV0TWYmxC5HVR/FCw4yStRitVsL5Kuaen0+uy\n2m6x1unQ6nXFzLJI6JRrDsoI08sYTWQjhoeG2bd3HydOnPjPJM3x4yMgE1C2Yc64DIuMcJ0pWlvq\nVPenHD4OczfEc7cGPFSH+ABkOyJuRJPMMwYLlQ2bkLuSXLJNv+tvOwok7q7nm/9folDl4hkhi2AV\nEaOPIpXdJNgRiBRkEDqadlpnOR6iPWaoTztm6jDSl2naIGGXo1uBKbk+qwyQ962s76WP5Tz078R8\ntG8nJ809HH74PMmzGc8twfRVuSo7qzDyOfDXIX0X9Hb4jfNwSSyKuGcL1J8EFqB1WRalMvPnMvB+\nFybPQfNOi/Fd8wyYZRhO4eFYZEWXYfW9Cd565kH22PNMPHmbWXuDgUOegTkgBn8EOk8n/GDoUV7n\nEa4u7kbjcUcLY+YhA2dGoV1Kkcr7pNxE/GrLHScG61ilyPIcQsAXqYrrEr7gN6SOSOCFCzA8OsLQ\nyAg2isgKhpYKksYrssbia8qjtCTblkPk7cW8W4Bf8lwV8/HGvSxf92gyAeBRFCQqAb6CfNdh8EZ4\nYS4o+gQypfBa5i9vDJiYJK6R1Ook1To2inHFVKl1Ea7iCu+uPCPkGbi8oJXlBJ8J8KWEAaetRatA\nwBKIpJOfGjKl6HmPz8XTTBIYhXHc6edkGLp9x0Qn41a1ijXi2RgpReQC/X6G0xmZUmSpFYmi9+iK\nfCYqzdDWoLVBF9dcaUUljvAo+lnABWjemOfv/9N/ydf/xT8iHRlaLxqd94TCwDo4T0HtEPJ9ALRG\nWUnoDEoVASeFb5nPyZ2X192VaS/7CZe7wnKmXFk3f7+E2jb5noVAt9Ol1/s0ZY6wMZ8W4JE2Ugvs\ngImd1znCezy09C7xN3J6/wGOn4QzXsqkx67AdA5bpxc49ugJfhI9woX9B2FbAcq0UmTrvsxGslOb\ngtPK33zDW0p0SopytXgMgW3ClIJDkDze4tjUG3yVr/HFtZeYfec6+gQyoY8jm/gvQ1KH+48jmNxW\n4BFYfqHBGyPHeIejXL08I6cxB9zIQfVgqgFHQT+Zs//Ye7xQ+Quedd/lvva7bL22hEqhPR5xcWSW\nH1UfJSZj9vQt+CZ89B343pLUIhNt+I2XYNsAbD10g3uOnmJX5SLRVzP6/YTl+VH6H9XJ343huII3\nNJx30FmCxrAsxsMwqhbYwg3sFUf/LLy7KI0Uj9Q9x1swdQoa17psvecmo2YeNdQnNCpy6VbLSPoy\nzOTv1lBK5jldANw2jmi1Wly9eo3F+RV6PcfC0jz9NKPeGMXWBshDhg+WuFJDRzFBuaJJIqEjznm0\nBufdOtgiLH9TNExl3VRaFwmImuAzSRY0EQqD0Yb1bgYCLikdk2VBGKjeoW2EsYrcZcQqxpYhGii0\nNlQqCVnBZDNaEoeDh6DFWzaySTGHeazRGBMV6eQeY4T540KK1hZjY9C2YMJKIBPeFb6PnuAD3jvZ\nIxsK0/xATWuyKKLf79HvS4CX8wFjYkLsiTVEcUS7n9Na67HUE0+v1V7Gaj+n4xWprvDbDcuX11Y5\nERQei7Y1okoDpaDfW2Ei73FiJeW5NOdK35BhCzArpaotOkvptdsEJ2mNlUpV1iylIFisEbBQGQs+\nF//gWhWbRBhdpvXm6KCIIkMcxyRRRC2KGKwkzBste4byb0Rt2tNu+q9HzO7XWl26vT7Bez46f5pT\nZ88S8Dz/xa+wY99BTp79kE7/l72XKq0rStZXIRFXw7BVw1EwT/Q4uuc4v2X+lC+k3+LghQsk7+cy\nfY/Bo8feZO/EeQbjFbLHLGcX74XrGq5puDmGSKcXudvu5G8y/KaH5i8zhsym15bfK1mr9mPfK33G\nSqBvEtgJg02RxN8LHA6Y3RnRWI6qBK59tIfb2yf5Sfwog2EFQ07LN7nZ2cLSmUnCT6yAXseBuRyZ\n1SOILewG7ofhJ+d4Ovkuv+P+hGfnXiX6gYNzQAaDO9rMPHkTO+yhDpUKJKsbCpA6UC2sK+2cJ5yA\ni6fhtUzKDu0g3IQXXofa0112HrjMVDzHnkfepXO0xsqtCXoXq7jjEdxQpOcTTk4f5HX7KDPPX2F8\nbY3d47D7XHEpD0B4Fm4c28Ib5iE+9Afpnx2U5ssW4JFA9blVHpt5hS+r/8QT/Vc5eOcM1esi71/Z\nXuHU4H5m40tUD3V53X0OtxTDTQXLIxCGuTv0AH5e9im/Br42jXq9zhOffZJ6vQ58Muj1SUMat+LL\n4tMua/O3Ub0eURHFLpFdShQmhSmx0po4iWWRyXJyHdAmiG8MRae5kDamKpWOsxeKM0okNy7LZXNe\nsLacF6PRQCDNM/KQFuaamkjHRDbDmgSrZAEK2hG0aPHzXDrVAnqFIi1L5CQaMYk3xmCsxdhikUOh\nnSf4jLWD2+n3O2TdLv00o5um9Po5/SwnK4oA57xQuBXEcUQUGZyLaDbqRNbi8pxut481lqRWxyaJ\nvNdqm7i6RjWqSJJWnjNYr2NQzF29zOJyi26vzxdzz2CaY24tcLrbZW10iKmhIQaHJlhbXmRpcRUb\nW2ySkAdDPw+Feb0hDwoXFEaVyWRgc4XxAYJC2YgoaJGaer/ekVNFi16HgPMSINDt91lptWj1erR7\nPbppuk4LX/dq82JqbExMtVpjdmYbh44cptFscurkyV/A3f23HaXeruikuEJGcQ2uLu3k1Mg9XNw2\ny9gXlxlaDrzwY1hclIl49DDoF+D64XHe4z4upLsElbmNFBbrqV1l4f//h/L8SWPzQlZ2o8sFtVxU\n/aZ/y99VFkdDFGZeYKZhoAY7lXTVtwCZZnl5jAuN3Zwb2s19T55l5hx85Q24sQK1CHZsAfM0rN1f\n5Sz7uJLN0J2vFVSwIKDfZUV+OuH8gX28NvE427bP8dDvvUtjoseR91mnC/ubcP0/wPFF+bHdETy4\nBar3Aw9C+/mY2kfpBhjzsTPHQNCKJYYZN3fY8+BZbkxP0359WNgWx+H09GG+vu8F8sTw5OdeYfbg\nHNVWF68Ni2NDvNc8xBVmiMj5zMj3ufL8LBcP7mNx9zh+OAKrJc66U2gy141KyzS1n58+/5c5YmsY\nadTWGU0bBYqwsUpgQgBsK+ASmv/qxjzHjx0jrtXIRSknn48KmBAwwaO9AFYYuQeDL/vDm5sN8nsI\nfkP6SAGaFMCJUh7tHSjZZHskEVECOcChCVrhtCbzSrwNgSxovFGCwOsIH8XYpEZSaxBXqlLYoNFe\nrduK4QPeZ3iX4vM+Ie8T8hR8TghOWMo+EJRGRxbtPIpcvL3iiFhFeJMR8lzSi/HroBUBstyTZoEM\nz9O3VvmD223++fQYJ+o1tIJGxdJINNooDCKXzNOMXggiWQmKGFDWoLMIExXokXOgHVZbKlGM0oFe\n6ph9/wy206N57iPuPHgUhVo3Xy7n9uBykZuGDev6oBTKWhzi1blxd/t1wDJ4kTzKB1dKH5WY5cO6\n31co7quNR/E7ijvBe8/C/HLBwv40R5mKWIRZaNbtXsbNHbYxR/1aG/UOXD4HP/YysyuAZfjKu5Cc\nydh29DqT1Vsk46v0B4Zkx06FjXCTZe6WN/6shvZlR788zvJrCVKwDcrBMgQ0ZHHaDtwT2LLrOo/p\nH/F89hI7v3kd/h3Mn4BeDwaa0HwM1N+D1u9V4QueqJvSG6iwODXKj4Yf5Jv8Bm8uPEp4vSpexXMA\nq1AbknXj3sD4fdd5svZ9XuRrPPje+9S+lUqKSBfq0xlHPnuexjNtbk5MYC45svNwemkjKG0OON6F\nbeegNtdn8tBtnohfYYhlekmF69NTfDh5iA933cv8+JR0RryB042NS1GoDjQB8lCwcu6+uiXDv+wN\nltEXH8Nw/84OawxxFGGUwkYRrXablUst5hdWWVpqkWYpvSxHmyr14a3o6hC+t4YxjuAt3b4ndzkq\nd+jCIkRaGQEXZA4KJfNdF6mwBrQS/6EszVAo8rxHmvWp1aPCRiOSGiLk6/v00qKE3BFrmc99rNH9\nIrk9FFYqzqFVRJ72hLGFJ4SCWWY03ity7yRxEfHXQkFkE5KKJM1rLUBYElfl9gjio5hn8veZJAZt\n9PqNYq1Ce41zOWgIXglgphXeBLTJ8EHmT21igVasImlonFcsLsxz7fYaS50e3czTcQFlIyqVKrHS\nLOQZf6gNyudoo4hrTZpD2+Se11d5rLuAchl7uoFvZo6265Nm4FGMR5bICnDlsi6KCG9lDc9DToqn\nWquKx5r2WBtjrMVqjwqOEAomnfLEKIgt/TgiQlFB0bCGqlG0CuLSX7eb9QGyLGV1eZlKXKHfy7h5\n7TrVxmk+8+wXePjJ5/jJ8bfp99/8Bdzxf93YLHOvAE2oVYTxdE9gy745Ho9e5Yvumxx+5Sz230Pv\nDQmwbYxB8ig89Lvvkh5NuBlv4ea9U6y+PyGJibcT8GW41RqFdwZ/O+m02/SQOvaTRwmQre+UN43A\neqhVKescbIh070ngcxlTB66xc+Qc2+wcVTp0qTHHFB8t7uHyyh6ySxW4pQTfuoA0mk8DN0sPy1Vg\nl/TXd4A+knJv7T2e4BUeuXyc6I8c6Tfg5iXIvSS8N884sv8auA8m98Kji3A6l2rnaBUGHwJ3pOBY\nLMOdbOOKegRGCqtgVqCapRyN3+UR3qCVNLg8M8P7U/dxatsRVl8bxr1vOT17hJd2PU9S7fHkV15j\n+t4bNG708RpaW6vc3DnJt2vP8h2e4dzFQ8LgvgDsBX00Z9/sKT6vv81vtv+Cnd+dw3yn+L6Gwf09\nHnr2Peqf6dBt1rhzzzhnj94LZzRcLMAvbiH3RpnM/POx//k18LVp7Ny5mwcffPgTzeuBT/z6Rty8\ngpDTa63Qmr+DzXNsQfvFSrKWUUUi4Kb3k3Qn8S+RgD8ByZQSW3sVCnaRctLl96HwkSmAuVB6Bnic\nE+DL+SKyXTuReWgjnQy8xCobwEuB4pURmnHBNiinCK3VerEnIM/doJcqzC1DCKjgCXlOnuWkuaOf\n5vT6Gb00Ff1+Lt3rNMvxeU4UaaqVmGolJk81SWSwRoqrXq+7DowlcUI9qZJ7mPrnf8j1f/rfUa1W\nGalUGY4jaiT0VxUrIaMaW/6PRpPvuMD5PMV0UrRawzjNttFRGgOjrK0s0G6tETsFcYVcGZy15Ej6\npPOeSCustuRK03cem4tMzyhNoUFaB702D7n+jtTltLrt/4+99wyy80rv/H7nnDfc2DkBjW4kIhIA\nEwDmIWdITtRqXZIs7dauLXutKltb5fDFX1yusqucPvjDVrnsXZfLJa93bZVkeRXGI41nhsPhDDOG\nIBhAZCKj0d3ofPuGN5xz/OF53+4GJ8ieHQ1HXp2qZgNE9733veE85/k//8Bqp81at0cnzbDOic9M\n8Zrl1uKcReuQSlxhemqazz//efbu3cP3fvAq7fYvU7JhucpJSqGb922YacBl6LzXzztfeJzp8Ca1\nZzocHb5E8wQ0Z5Be4xjcPj7KK33P8QZPcefKHmkObgFpjrRHXe6PMv5ZVtnwlEW6bNJ+3FSnvJ6S\nZeaK36kjbK/tYHbBZAhHlEz8jwIHUhrbVmkHFc5kj/BG+DSjz60w6eeZfgCmboOqgDoCvS+FvLfn\nCKfUST5p7Se/EEu9W7HQ9XAjhDOKuV1TvPr8F6hECa2jfRzb8xETq3MEmUd/H7I/hbeX5JzggfkM\nhubgwDCsf7HCtcd2cMRfob4Xjl2GxbaU1J3AIwPAflgaGeQBdZnfUC0e6vuAHzZPcGr0Seaq0/At\nSL9d51T+NMsHBzkfHWb3+DUGx5fJCRhiiWlucISzKByLjHBBH+CtHU/x2vDnuBYdxCcG1gxcmgC3\nLO+RDfDrr2/iV7MSEepCzsyWFKsCIHFO5CyBMYipvOffuXOPf3t2kbdPvc839uwSLys02vsNIn9Q\nSiq8w/sch8eoQtu2IVYsWvkiFfE+flABemmliuFGjvO5pBCqQIRhTlKwcsAame4nTrxbcw++kGTq\nIIQgwsRV4mqDqFbH6ADnxaC9tC7ECYu4BL1c1sPlKd5lwvgqXQuNRvkApTxay2DEFRIdrQ2OFGcz\n8izFpan4XHqPUiKxbESaTuY43+/p3utw2YS0EkklS7OQzBh8qGkGilA7jE1xuaXX7hZ0rII5EcaQ\nOdAWp3O8kuTHQAc4o3GB4syzx7l1YC/pvl3U8lyAL+HuymvsnKRSboQLQJnmVdZEijoeBMIWMEah\nbIkdeAmGoPSH9KJMpVCGFmxBCYfZHLaJ+bXBOc/qSot2+7OSuPy4VRwiyn4hhJgeMQm656ANi8nm\njNYju4FrgVqDMLXE1YQwyknKsOD7QjFgE/D6f3PQ3brvl/t8+UkJkIPzcPE1hUgcDYxpGAe127Gz\n+QnH+IjdF2bgG3D1ZfjOslSm7cBLd2CkH/KDipcffgHvFGu6yXV2c5pHeW/xJPPf3wFvIRv1asFU\na2gJjTzg2Tt6kSd4h8evfUD8Bznr/yd8PAM9B7tj2HERdjJL/Vc6ArLmP3r1OUAh+X2AT3h08Sxm\nzeHqipmxYd4KnuDl7S/yva+9yFy6UzDEhVBejDbQgmUGWGQYt80Q7nQc+hButmQmMwIciYBd0BmP\nuRcMs+b6ca1oczsn4Uel7P//WWEQYpQu1A+eJE1odXqstlISK96smYdGY4T+8QeIKhVce4nca9Z6\n66ysd2l3utRVRkUV3r7K4QrgKIgiuSMlZ33rcwJlMIHG53bDZsR7YVkFRuTnufXSExhh4GSZnPvz\nPBWfrkJerov9KE3TLR8N8YBMkhSljHCy85woisQ30APo+1LatdaExhB4iuOSIogqYgy/MXgBpTLx\nITYBWnuMjuR8WwzilM3w5MXQWySMCoNyCptKXxOEASoMCcMIFyfMz65wZ2aRtbWcXirn9UY9lrR7\nbcisQ+mQDnKutjal212QdEtdRfkef4jhvKlwVkPgPcl6Sp7lWOVQyhJQo1lRhJVAzMNtD1SIzSHz\nlkA7vM2IKxVCYzBeFRY0TqxnwrBgK1u0Er+02Bj663X6axXqgWElczilwDn5pGhV1PgfXc5DN01Y\nXFllaGQc5zT35u9x5fIFPv/CV9Bxnfwz9Xgs/RFrYgY/AWZPzq7hqzzKGR68eoXgj+HOn8CpeVj0\nsNPA81ehUs84vOM8D23/gHeHTnJu9yiMKagaaDeQ4UR5H+Ve/i8rnd56xv9J/w6bA/HyPktmW8EM\nZhRqfXBIwTMQ/q02Dx7+gGej1zjOu+zlE/pYo0WTa+zm3aHjvNF8mvdbj4uf1/eRfmfGQ9IGfwfh\n2NaBCAYUjENzxwr71GUOdy/Q//Y6fAPefg/es9Kh7L8Hz1von4L016E6D4/V4MgNedpqe4Cvwtrj\nTYLZnMZwlx1VqBUqkECuBDUMdgimzTX+3bv/FN1xZE3D9ZFJ3gye4uU9L/JK7UXW/3yEtTcG+V7t\nBTrba9xo7OLQ0fOMHFrEo5gzo5xXh3nTP8UH14+TvFwX4MsB01Db0+FI5UOe5g12v3kH88/h1stw\nZV1mModfh+FZz8HGVZ58/G3OBke4dXg33al+GFawUiveb2Vd//lNXv4G+CqWUooXXniR/v7+v/Tn\n7vs7crjF5Sibka6tkq2vUXWWqPCA0YHGaPGEKoEu78UvRmtNGIbFNMVsxB4rLWCLRkvSV+Hvgipl\nGHJoFiN1OZwLG0ko1gRivG6MIgxjMfDVEToMQBkxbSwm2HkuExulwBfzv3K6rAujzyAw6CBEm0CK\nV5ngaK0Ua2vJMksvc3QzTzfztJOMbi8nV5rMSqHF58RRnXq1QjU09HyOwQutWiuSNCk8TVLSdoco\njNn1B9+kdukqQ//sj1j57b/D7rExbl+/wlrWZaRRxecDWBOBiel6z3C3h3eWQMHi6hreebaNDBPU\nmthOj9W1DnFdo+IqThUmxoh3T249KlB4r8gcpNYReI9R6sd+7MSHQW4hywvQq7XO6nqb9W5KWoCL\nQUGh9l4mbB5h723bto0nH3+SY0eOoZTnwoXzv4Sm9mXxSNk4PTMPizU4p+FNxcXxY/z54S7duMqN\nh99m/8OXGEhX6JkKV80e3uNRvuc+z6mZZ+i93oCPgBsesmXkdN5lk/X1sxT3rU1PmcRY434Nf2mi\nX5okp2wyCzrFvxeFjikYj+A48BxEz3WYOvgJB+MLbGeGCj16VHiDp2EYPvfrP+CB47fRiw4fKrq7\nAk41H+M7vMR38xeZObO7MAemYEW14MYonNG4wYCLlYfpPV7hRjjN4b5zTPbN8OTqD3lk7WPsmhDB\nS1C6AyykcGAFGp0eR1+7AhdBnYAHl2DyPVhNYWQI6i8Aj8HE1SUmzp/CTcKdfSM8UL9MY2id7zz3\nZRaWtsN3FOlKnY9PnOD8g4eZnL7No/o9/rb/U15ofZ+pD+dQF4qnbuoaJ06+y66hm9RqHf74czXm\n5ndLLb8TQGsMaaNKU9GUzy6l82dfRinqUbSRdFsCX9ooVOnR5D1REG6wcDMH/9sDO/lKavnzX/sV\ngA0Td58BZIsAACAASURBVO3F1D6ADdaXUVakjgWLTBdSQlV6Q3pfSAllXxYrQY8qPfUKo3TvbWG4\nL96B1vpNZheeJHfk2pBhyND4IEBHMWEUE4QROqoSRhUqlRoDS6s8/t/8I978L/5TbKUiwxrncD7F\n2RyblaBXAjbDu3zDy6b0Nyu9aLTzuDwThoOVOqM92CwnWm3TUcXeqkN0XCeu9lP1AfniKjcqOb+5\nZwetnqWbpQQ+wJkAm2q6zpHqABsH1ENNlGekeYpOkiKhNyAIEpQJZEijjHhbGgGqAqUE/HKe2YF+\ngpVVFIpKrbbBrvNeJI7OWUzB+BIWnsIrCXgRuwCRuxotfU2BYImHTmHC731hAF0MtcrG1m6ktRUM\nDucKRrHIKG2es3hv6TN4929dpbStlDFbIN0sCT3oUGeNPrJmCONdpvtgYE12AQNsU2DGwI1Cu1ph\nnQbd9ar8fgabKU5wPzP3p61SgkPxvUzi1Vv+rpAGYxjYA9EETBk4jJjyD3vUoGdM3WMHtzEXoXMe\nzhTyQpBB/VgLXvgY+m93MDsd/0T/eyxng8zn49y6MY1/qyoylreBGw7sPVD9QhgYAbXdsUvf4KC/\nQHQ6p/cDeOOq/LgHzqbwm6/D6AFPeiLGTbWJH3A8eBaurUjjMggcDYDdkIwaJl+dJ3jNizdLHww8\n3GL7cws0tnVI6zHfeqZJ+/qQGBefQ16MW3Cru5ML1YPcO/oaO15YYv889J2CuQS2VWH0MfAvwfze\nUS6qA9yw03BHS7BZG+6fvJfIpd3y/a/3ataaxcA6wFSrtDs92t0EEzepR5bllVmcM/QPTzO28xje\nW5LlKgtr6+zqrvCff3KJP985gqlFGGXRhb+nnPmESaU0BEZCSUT+LI6HFD6C3heeWyYofHbF8xcn\nliNQ7jfSe3jlCCsBOgzlTO7BmRQTSZ3Isoxer4dzjrBS2+j5RY4pe5MovLx4FzpLGAQERhf3Z0Sp\nVyggjI5RRsD8KKxgdChDcCxmgzwjpvayPxbDfK2ljjhLZ71N0s3AaazNCEKDiQztjmL25jy/e2+F\n7zbGOdtfI/WOru3hbIbCSl8SRXSCmDQD43OytItTCegQgxj5X65WaQYG73JymzGb5yRLKb3MkucZ\n2/oyvLLEUYALQoIwlKEPllQ58jQh0JAqj49iojBGG4P3FlN6rilJutY4TK3C8PgoI60VhtrrtFSP\n1DnWky7aWerAyk8gIKXOcmd+nsvXrjA01Edfs0p3fZVzH73HzTs3OHfu47/S9/1fvspBcix4RD/o\nAce4nmOam4TnHMlpODMPHxTXeNtCbQaePg1jt5eY3HaHoWgBPZzi+mOIFbRLD66tTN1fxCrPo+X9\n2uJ7CcJtSbAcDeAY6GcyDhz8mF+N/oxfyf+Co9cvUPkgL8JH4Kmj73Noz3mGw0WyYyHvLz8BN7Qw\nvXoJQneaQ3qoAbnugoxcr7QZUksMdxbRn8DiWfhAAhUBuODh4F3ovwKdZoVoX0/sH1aLh3oA2s8H\nnGo+zJH4Es0nuuy8AC98CJ/kMKThsUkwTwIjMPzHHTgNvgVqBIZPrrHjpTvE9YT17XVePf4V3F8E\nrH99hFee/iqXHjjAZHCbQb2MR7GUD3E7n2Lm3DS8HsKbSI8zKl+18WV2c51D3QuYt2DuTfj2svAd\nAG4uwW+9CuEjll1HbzDdd5P+vhW6Y/2FrXJQvBZbfTp/PutvgK9iTU7u4KknnyoMHGVtjRj/SSww\n/BYsMrOkrTV00iEqpIsYhddegC1tNuUTxW0GgbwExpiCNcBGPD2qkEZ6VRy6tfhqFM63NncFm6Bo\nxpwUlzgM0XEk6VNGE5hADuk62Jgi50VzpVTxYS/ddIuL8l5YX4HRYqQZhML2MrJJlJIcb3PyPCPL\nc7JcIpXbiaXVs6wnkBQGMaUFjvJgtMZgcbkl0KBUYeRPjtEOl6ZkRYElz7n5W19hZLCPG88cJ5y9\ny0i9zlijn/WVFWKtGaxXsdqIzMjDUH2A/mYfKk+ZuzPDwvoqqcvpbzbwlSrdXg+fZlSjSlG4tBxC\nEHN77Z3IQZUis3khSTRkmd9I1YrjGGPMxsEBoJf0WO90aPe64m9mxdBeIRLKUholjDlDaEL27d3H\nsaPHGBke5sKl81y8eOEzSG35y9bWyUmZlLIAnX64MARNRVKpcSY9ydz+MT5sHmOKmzSjFikxM2zn\nYu8AV2/tp/XaMLwGfORhpYsUgVU201h+ltj6LdSDDQPOevHVLL6qSLWOttxPl01m0mrx//uBCagW\nEc3PQuNrKxzf+ybP8X1O8EOmWzNEWUoSxVxu7OY0j/G/8/eY3HmH/p2rZITMMsGHHOXM2gkunz0E\nryJFYQZ57liCNIQLg+IdlsCN2f3ce3CC02NP8MTo6xyvnsGNKcJtnqk7RfoxUi63NxD7sY/BfweW\nzoF10L8DBl6CgT1yGUwDr0D2MbgexNMw9cICL/3K90kmK8yNjvP6I0OkF6rwhjws36vSv22VZ+LX\n+dLaK2z/0wX4OiyfB5dD3yTUPu955rdOsba/yY3qNN95ZILso6o0WBf7iuc+5n5j6dI89Jft/f3j\nVxQYKkERce7F80kYuUaYUF4kIVobkRQ6j9IBzYFB/tHv/luEymNLw3or4SCBokh0BO0Lby/K5CrZ\nKMX0vvAAK7yvFBZdmC/qQjLHBgOp9BjTAkt4R5paktyT4khRpChsoHBRiIoqBJUKYbVGGFdExhFW\nMEFIFIbs+/o3qc3O03/jFisH96PwOJfibIrNU2yeCOhVsL3ExFnhlIYgQDkvbC8HKnfowKDCSBT/\nzmOCkEcuL3Lgw1v86SPjrA31QaWBrfVDrR96lnxxnXYvp5PkWG9AK7qdBOs1URSQRoBRdDMYqAVM\n9DdR7ZY0eEmG0j1UEOJMIHuvDiDI8UUKlzGhGCg7B97S63Yl5SwMpKHz4AvQC+eLQZMvWM4CaNki\n8UviyjZfP2+FLWaKOiqgoShKt4I6zvn79noBvoraawzOe9ZbHTrdz8rbq6SHlwzaciJfAF/ew4qC\nOZhZ387Vxh5mp0cZfHKNscvwpXfh2io0Qzg0DeGzsP5QhUvRPm4yjZ2pyVbYgh8dfPxlAEq555eD\njnLAUe7xW83XQ2ASggnYa+AJ4GlP5dF1hqfm6cvacg4odH/uU0ElULRIBbFR43BWc+bjk9jTFRlm\nXED2vhsOktKgf2ijT1S1jDpt+u0qzEF7QfCo8tW/B1zpwegMDLUXWd7fZOKlFXbdg994X8zt+ysw\ncQx4EeIrFv4YZt6BVlsCkqffhIHldZ76rbe5MTLNxdFDfHywH04bSSC7DVyC+UuTvH3kCXZGN/ja\n177N6MASE8dhYgnBBx+Fu88M84PBp3iHx7lzdaf4zLSKp33DDqDN5hDpr7+XY7n66n0kaYt4cAhb\n7ccnPcL+IWq1CbLuGqutRcLI0BiaQkX9JO01MivJfr+90GGss85YktHtb4gMTykURtQORiTQcrxV\nkr5oDCqUPkBAMJGsB0EsMkSfiw+WtWgMqBDnxM/RGAFeKBioWuuNsBHrJeUWLZ6OKI0JzGZwlVIb\nw3dVyBNN0fNoBGDzHnQQ4r3ClEb2aJQ3aG8xRs7GRlfQOsT5Ht7loIqBvFJo7dDKoBSFOsXKNeU5\n1oJSEY16U7wwLaysrFHveA56Tb23xo1KjZ5X+MSRe1uwhzVeyUA+tHJN2msUnlBBFGjiaoV6o0Ec\nCQOt01kl6XVJMsvNlYRenrHazZhKHSN9FaqVnKry6NDjrCNPvDymnkF5iwEyJwb+YRzgbBelij3b\nxMIVimNqfQ1JmK/VGLDQSi2Js/xnvQ7HrOfvI9vep5f3sLC0xHe/9wrHDj3AxMQQN2/f5tqli7zx\n6vc4+9GHv4i3/09YW4cRanP7jSAkI6YH65B2hOm1da0ArIPpQuwTIpWiQ4fTiA3QfUxf+MUHZZS1\nRrOZ/FimujfE2HEHcBAGD9/jqcobfIlv88g7Zwn+CHpvQKcF9X6Ij8OxX79E9mTMbHWCW8emWDw7\nBWeB6xHYGrJnbnk+f0K7o4OfcFIeg4Hf65H9BSxfl58ZnIYoA/tIwGxzgngwYfuLc0Q5PHIWHj4H\nagB4GPgicBaSP4TZc9DpQl8fTHwAo+01nvnVN/mkuZeLBw5x590H4HXw1wy39u/n1uRedH+GUh67\nEotP23m5Pc4CLQe7NFShGndp0qK2YmEeltrSw5TrNnBnEXbOQyNbp8E6kck2eQoGsJ+WoP581t8A\nXwhr5+SJk0xOTv3Iv/1EwOvTP+fBpSm9tRVCMkKdoZRMYhQawxZ5nC5kL1vYXxvAl5eOShX3bbQB\nr8HKRu+VwqnikIzHqoJqK8L8wjurgokrErFuCskkBVxVRMY778SouEDuPAqxI/AbYg+tAkKtCYwR\nNpoxhUeVAG7OWXpJlzxNyJ0nzYXx1e5ldHoZSerICh8Bj2j8DRqV53TX1wkNVGoVUI7cJkQ+JjSa\nxDvyTFJnsgI4uvuFk+S9ddqddYJKjamRMWyac3tuFmXbhTDCEUYVRkZHGRsawvXa6KTL9ZlZFltr\nZMpTjUNSo8HlVDWERYy0M2yZyAsWYbxDZRnK5igvIJe1liAINgDLku2VZhntXlc8vZKMJM/Ji0m+\nMVKQxexTdrM4DtixfRuPPfoQ28bG6LU7vPb6a8zOzf3Lvp3/CtZWmmnJ+loA6rBYhXerkCuShTrX\nHj3EzN5dRKMpJk7xeUC2EtG7VcGdCYUK+wFww4KdRY78ZXpXKYsrG64ftz7tSFI2ZiXoVUfAq35k\n9DCC+LqEUDGSsOU8JB4yu+Va7hXfm6D6BDA6CtGzbR7Z9Q5/mz/jq2vfYvqjO1TO5oKXDcK+Y1c5\ncOwKf1b5Gv+Yf0idNjkBS50hlm5to3O2DqeMjPbPAb1lJIulmOOsKjgzIA3kDU1n3wCdrwywd/Qi\nV6LdHDl6keoTPZ6YheYdWPWS8rjjMeAEuD+FC6/CD9blmTt4A57fB+oL4A+D+V9g9s/g/RasOzjw\nERy6CyPVVZ78N9/kff0Q7+95lKWpqlAbAtAHHQfjCzzKe2w/tYD7F3D5VXi9Ja3NwWvw7ALURnoc\nG/2Yo0NneW/yOLNTu6Vx0gG4KpvVKy5e07Kd/OsBfjXjGK3YYGB65SU1CsE6lCmk6g5KE6+4VqVv\nsJ8gCot92qKc/I72oCn/7FHKorAo68XDEY+XGD+RQSpQxftdY1E42ecL1leJf+EKVpGSpirNxfw9\nsWADIBAA0iuDDiKCao240SCuNwiieCPlVymD0pqz//B3uPnFF2hN7UB7X7CIc5zNcHkiwJdNwGXg\n8gL0CgpWlZL0UmUgy4XFYAxhFAkbKknQStOeHCG/OItv1ojjCqrZh2sOkoZ1smSNTClSJYBdXG/S\nrNa5t7BEmuc4LB6N1g7rNGE1IomqhErj222cTfGZRaUZpBkuDFDGoI0qhjAeFYIuwK8w0FibkvQ6\npGmFqBoV9U1YzRThAt66jWS2NMuxRWCJsDiEOexLT8iCHeGt22g05QmQmrtV1ljgmQWw5oo3l8Za\ny9pqS+7nM1nlPlw2Af3IEGFQ/u47MFeHa7B2fpQzJx7hzdrHjP3qHCOs88Bu2HkTdB3MMeCr8NH+\ng7zD43y8chguqk2rE9bYrAHlHv+TrnsrkP7pQUdjy59jpC44YBymC9DrSzD85RmON07xqDnNXq5S\no4NDw3aoTsHBc3CnJ9VhFDgcADuhPR6zpIdopU3sTASvID6Js8BqF+wCMtMumrfiMrw15ASkOoIa\nhBV5pOWqFI+cGuRByOvxkzz+ldNM9c2z/RRsXy6e/seAPcD/CNd/AH9R+D7Ga/D8Ejw8BNsfuseD\nT59jqnqdK5MHSUbqcgezwDlI3qlyevwkjYl1emMxJ756mqnP3aaad+gEde7Wt/HD6mO8zItc5AC5\nDmAXwpLrKLg4JrMiMu4PpdlqLv3Xc0VhhMIT6ICoNoTpmyTC0Dc8Rb2+jbmr75HnOXFtkFr/NvIc\n8iwrkhM1//XgJK/1B0w0+xnTsheII4kvEnopgHSHdQUT1nsJUDKaLMuwNiOMIjy2CLtQheegR3ld\nsH8Bm6PxRGFAmsmAwXtPlqbYNCW34tNhQoP3BoIYax1BXgwmghCvBbgxqMKORfqFMKoU94sMDRDp\neBDFGB2hMCRpj9DrAviK0DpEe3A+A2WxNpV+RhfMti3vD608URQQRRFBWEUHMdZDq9dmpdehMzjA\nvxifYjXTjHS7dLIudROTuIB2bvFZRtcmKNXDBDmRV3gLgQ6pRhHVSpW4VqPeaFJvNNFG0V0P6HU6\nrK93WVtb5dZKwmo7pZN4Mu8ZysTEX5kaodGS+Gsl0AYcgTbkmcLahCyToX8YOBwRziADlUCuKa5W\nMWGVSuTpeUujGXO31mBkaZ6fJlrPreXCpassLSwwMdwkCCNaq2v84e//Pq21tb/S9/5PX1vZvm7D\nvtX3FB1qrNEPY1Abhz1FiiBItdgFsB2SEU1LNenYOnk3kO0+KwfqW/f6z3r/KAcmJfAVyBB5J0yO\n3eAYH/HQnfMEX4eFP4G3bomKcULDc9dgIHTsn7zCwwfe55364yzu2iGU54aC1VKFss7G0KAICutm\nVZYYYrXaD7tm6N8HR96TlikF9gETI0AV0j+B06fgTCbP1sM34UQPmhM9vvB3vk/QcuIfeUt+We0C\njoD9IugeuO/AxR/CK115GQbb8NIy7BmHyUfucvDweXYEt7kzuRs6Br6BRMwPG1zdyFuhjbRNd4qv\ndhuiGHINOaR5SI+YvKKgAbVIqnVpgdAPDBQ2aqmJSAllyHlfe/BX8174G+ALMbV//vkvEJXa+y3r\npwFfpdExAM6Rdttk66uEZAQ6Q6scrxTGKzS6MI3fBMBKRlkZN6zRwhKjIGA5meSI30q55cghOrfi\nSSUmxwLYhEFEFMUEQWVjWlRSqfGeNM3EEN/7AgqTSbYcwoWZEBSAD3gMxeMqPAZEoiHNVZZmJL2E\npNsVA37r6SY53SSnl+T0UkuaOygmM846nBUGm7XCsmo0qjT7G/gowHlbxA0HBFEkDDKbY5QnSz3a\nhYQmwOYZnaU2A5Ua+ye3MREEnPzm9/mDJx4kqNeIKnWq9RpVrXCp4ct3l/jn1nMKT6fXw2vItDC7\nVGiITYDSFp17rENASW0IA4PyDqM1jaTLP3j7FP/Do8c2pKm2MBV1TlggaZ7R7SW0Oz06vYRempG7\nchInjVBe+M9EUcjQYB+7psYwrsW7b77M5Uuf8Edf//oGo+yXZ5XSkVIqWEcaDQOsgL8F9/bAm6Ec\nrK9oksk6yWhdfixFFG93kRH3Jx7mLfibyG5ZjvxLxhdsTkM+vT3lbE6GSmZASb8upY2DSKtSRCpW\nGhLIMo7gX5Xi11rAYggzFVjuBzeAFKQ+qMcwrcS4c/cMT5o3+WL3ZfZ/9wb+/4D0NLgVke5UH085\n8ncv0332u9yJJ/nj27/J3A+nYFmJgf9lZCJyxcP6CpKbNc+moX8O7Skxhp8xsKZgP1w4cYgfVk9w\n4MgFHv7XLzLY9DzzAVJsdoD/nNzE8nkBvWaLZ6VlYccFOHBenir3Ory6IoQEgKsdqH4Me38IO55f\nYPf0dUZG51ka3S5P3SDooQ4TzLKrewPOwco5eLW1Kf1Zy2HqLOz9EIa/tMjE0CxD4TKzg7ulewsU\npCX7YphNDzeFlD3FLzs7IDSGRjUuQIsChFKqSOLSGC1M2vK9qrRIQuqNBv0DAwRxRK4KVq2jYAAV\nwqDSF5FczHpcaXzswRfJkQqsaB1loo/fOICX+zalPG6LyX7mnIR25AKMhTpAxRU0isyEEEaEUUyl\nWiWuVgmiuAxUFLaSc1jnWd05LSAbXgAvK0bKAv6LvFH5kp0pQIQqjZoL42SvZeChlZKhSa7F3sQ6\nlrcP8Z1fOwHtNloZ8iBE12ooHdBzuSQ+BiG5sijnqcUVtk1NEYYBS0sL5Emb35pfZDU2vKahWasy\n3t/EO0XSEXm7sRZjLS7Nin1YhhBluq7yYFRANZJUSKecGPfn0ow6VyQpe4f1DlWwsbynSMyUVF+l\ndWFk7ws2b2k/IMwBNtgdYO1Wltcmm3wDaCuCARSKNM1orZUZrb/otXVfLfZFhpCNdDvoMRgO5Eeu\ng3/X8P72E4xsv0fQn/Psb77J1ONz6HmPi2FtX8z7A0d5mRf5gf0cKx9sE7n7dSDpIBvy1hRH+PHg\neAnGlX4zjeKrfHxj8l03Sord5k0dBB73DH9phpf6/2++4r/FM+lr7Lk1K8TjOnSOKmqf9zwyBwPv\nwYqDqToMnwD/BbgzuZ1Lah+zyXaZds8BVxyki8guvMiGjMUn4l+zBn7eMLt7nFt6B8cOX6bvMDx+\nE9I1ueoDGg7uBg5DX6vHb1z/Jtcnx/nga/vY+fxtquuWbjPgZn07x16/gr8Cl9Y2J+hd4HQGh65A\nfMMz/PQCQ3qZsJGR1IuX8o6X53xQs1jdzre+/GVmhyY4U3mU6cpNBlhmjX4Unj7WOMk77OA2H+8/\nzPtjx7k3uh1CLY3NxRFIy+TN0p8z4xfP1vj5rr5qnSxNMc0x6hNHiMb2oagQV4bord9jYfkWadah\nPrAHHdRJ2i2MS8izNsr2aLdbXO4bZMx7tAGs7Kc+yzGINYkxwgxN85woDAnD8D6ZswlkgJClCYSF\nPDLfHJTnVlIZPTlaiw+Y8W6DwaWQOhWFFRwO2YLEWB4n0vpAK8I4JrOW3CaEWuOtwxhVSLiFceq1\nwaMIo5gwqmDCiDiso3VAlHQ59t//Huf/o/8QHUcopXBWYYKwkE5m6BKk9hZb7KNaeYz2GAONZo3c\nGpQKcLljvdMhimPGB8epx/00M2i2WyyuztFJOuRKkfUS/pOr8/z7jQaZDvDa4jSYakg1qlINqgRB\nRFytUa83GBwaplKpkDdrdFqrzLNA3En4n1oJfyv1pK6NI2dHXyiWK0GEjkSRAZB2E7RX2ExhYo9O\nU4JQGL/1WoCJY6zzZLmVdM0gQJuQKKoTGqhWDfVqjT/PU/5Jp0uv1xL5/cbkCsr67j0kmWVmbpn1\ndoeBRhWvFJcvXvqMPhHlKlm4KdCVwfGSws4ZbuXTXAke4NmH36L6lOXJGxBehTUPkxoOHwX/FMxM\njHNN7Wa+NwYzocx+e55NvfvWIJPPcjBaviYaiDfL36iEuExzk8rFjPx9+Og2nJG5JXcdRPfgK+/B\nwPU2O/beZiyYJxjrkDfr0p6sliqI8rqtTLNnFSt3Brk2uZtztQPsOXmDvpc6PJvAA1cg87BzGwRf\nBOagew7eywR3Angvh/3nYew8TF2dhzPg/yksnYLbLRjRMH4cTAUYh+5NSXwvZZR3gYs92HMFGnNd\nRg4s0dBrqGaOrxu45+ESUmpLmCQFWh5shmg958EegPUAVqGzNMRscxs3Byd48MHr7NwHz6/AmVSq\n93ED/Q+DOwpz1XHm/ATr3YaU0DVEwrLRE/583w9/A3wBhw8f4eDBwz/jb8vh3ijora+SddYItZX2\nXCsMAZE3GLRMfxTSPLHJ9EJ7Ab2UsI6ccoBCB2ZjMqx1IEyKQi9oClmkSCMlTjeIAilOulpsvhrv\nBKDxTg719lOMgQ2Bo5eJlNalFMcRoNEEBV9NrhUv/lvdboek2xZTdwfdXka7l9LupfTSnDSzWF+a\nM0sD4JxFBZowiqnWGtTqVSn6RoPypKnFRDFEEcpa0nYKeUaQayIXUqnUqIUKcke3vYTLLE+eep9t\nvZRn4iqr27aL/t55dJZRs469K+v8TrXKrcF+Fltr5ElGoCR6ONKKUNnCs0eT41DGQMEO0Epek1+9\n9Amja+tMra5yY3QEEwj7qwwnyPKcJE3FzD/LJMUSaXYCY2SbK1LLvLe4PGF1YZ6L2Tp3P7kIScL1\n2SVWVld+5N312a6tMpcYmd+UHlgFkyqsy0QkRGR8HYQ5VBJ9cuRsvAaspJCsI93CPJugV3loLg3m\nS9Dr06CzZ1MKmXG/IXKVjerElKQxTsTS7BxEnN63e6h7yBUsKZmGXAYuBHB9DFYjoAu1AMbBTKfs\n6LvOET5m7+3r8E24+y14dVkuZ+QefGEBhgbg4P7LHJ0+y5vDzzC/vB3/+4Fc3hxiyJWvIkDfDFJu\ntiZZduX5XJ2G23X4EO7t3cEPTj5Ps9Ki+/S3OTB1jcZsC9Nz9AYrqJ0Zzf85I8/vn5VlxdNNghSf\nxftp9TnQ6gLLoNY8FXpEJPepEk2YC2s1c9CBNLkfpip9kulCYC0xiZjDlqojrYv3h0Kq2FJxzSVT\no8fm9PCXk/nVV6uKuLfwe9Ja2LcmEGZuGAj4JRNxESdqE9A/OEi9ryl+id4WMsXC3wslbgXeo1wG\nPpOnw0oNoTBRdzhs6QwsNLHik+BxG9JHAWCsd4X0DjLryfKc3CqUComCEG3CwvS4uDklvat8sj3a\n5oWHGQUAJsCCUmVirQxYJLxDAjy89QWzCWE3YTAF8CezEYfXGq+0GN3nEpSinSfPcnwvweROqksQ\nkXj5JERaiQelKdImo4BUwUprlXVrmZ7eTbO/T5i9vZiX5ubo9jyvDPXT66SkFUsYRFgT0LMJQZ4R\nZAmh9tIk4giNMNsKYjUmKPiigZZgAC+1skzsVUqV9mrCxEJJYqUJcLnFbZEqBgUrGiX/3xaWBuVT\n5ZzIYSUgYUvLs6XpdRueAJr11Ra9XsJns8r9N0ROuwPI2HsXNAdhj4ZDyN66C7CWtXtNvld5ieWh\nQc7FD/LA/ssM718kocJtdvAxD3Kqc5KrHx3EvRoIU2rGgruHTEe6bNaBn7Q3lN5d5aCjDwHXJxHK\nQT8Manmo/ci+ZpHt9iDEx9s83DjNl/23+eqd7zDy7RX8D9gAvmrHPDwN/A7s/gApT6PASbj9zBiv\n9z/JKU5y98YOqR13gDRFhBt3kX3OI/WoDetDMKfw1zVXju7nvdqjHHv4I6Z/bYEHNGx7D5IUmtsh\nizkO0wAAIABJREFU3IWUh/9K7nPXE3MsfbHLG1NPcq5xiJyAw5zjmLmCj4SVvnXFgCqyXByanGDz\nvWuA2MItBW8ZyKA9N8Lbzz3PnYcmeSj6gBd4mRd732VqcYZqt0MaRiwNDPF+/1G+PXCHl5/9CreT\nPYXTQQB3x5Hq8mm23l/fNT7UD5Vx6nufYOTws+jqIOvLa/Q6XRbnP2Fl4RpaR9Sb47TbayKRteuo\nrEOedXF5j16vLaBPrgr/QlPsE5K0KPNQRVikuopBvYC9myoPCMIQ7yFN88JPUjwJUY40S2RYrSUE\nIwiDgnHqMEpjoojcWUldtB6lfaEWkYApVKn+yCToCit2H9qiTVh4ionRt9biC+yVDA2UCQiCiB1v\nnSZurTN2d4H2ke1YZ1HaiRTYOXQQ4HK/AeoLc1kS4q0KiCpVcifBJHiLKWTy9UqN3VM7aeQBtbjO\nYLdLOBPR7q6TuYzdC/cYdZ7/IKrw39WaLLbb9GwmNdobvAUTaJ5MEm40GjRqdaIgJMvqOLtGnKb8\ng26HaeBZpTmNptNzdAJLu5USmxRfddjIEpgQhabb62G81M44CjDOiFF+nuJNgvUBWW5xBdjulSaO\nY6p1jTZVwkY/rfYaQVhFJR2MUUV4gvR6W/c6X5AcVtcTbC6D9Xb30+LrX+QqgaiMDcVHx8KdAH9J\nc+vh3fxw6gT7hi/z1K+fpl7r8cS7bO6dT8DirzT44fBjnOYx7s5NifR6DuiVqoutgRk/je37i1xb\nBieFqCQiIyaBridrw6q7v0q1ANqguhC7jEinheXR1hsybPoKr8BiE26C/yjmw0PHeL3vWbbtm+XE\nb79Pc0+P6csU3rrAQ8C3IftU8IkEtBU3OwO8CnfegG/0Cm2Og2c/gEfGwPw9gRKE07lZHiKACvig\nSAZHg1ObBOx8FVY6xU/6LdfQkuugArYDSxW4CZ3bNT6efJB3gifY/vwigystHuuH/Zfl3FU9AP6r\nMPPECO/Gj3IuP8zqJ4NFi+TZ7DTKuvLzqy3/ygNfcRzzzNPP0mw2/7//spJJivKi+26vLuOyDmZD\nqlhIHAuWigMxrdWmkMyIsa93Ylqpyh6+aGic9+CE2qyNeEOhhatllCRXaUSuFwaByEmiKiaIMVo8\nqxwK73Mym5GXflTFQVwXBycNBbNMFSbz4HOP9Vo8BTwiHVlcI7x8m7UjO7F5tsEOyK0jyS291JHm\nkOZeALYCmvNOmATaQ1D6hgXSLOG9+HzhyfOMxOTowBA2anTzHsl6QprnZJnGuRwTR4RVDcZgV7u8\ne3IfQ8vbWW6EhOurAvypQJK8h/o59aVnuOo9U7MLJJ0uWe6o1avU4pCKEZ8d52zxWmi0ZkPuqASr\n5A+PHWJyapLbg30E2ojvi5cXzDlI84xeltLpJaS5xcmLL22+LmWmBfNBecgSbG5pLXVJ8GjrubXY\n+tnfxH8lqwSfPj3xL4yjzACMh0LhHUWajAjZo1aQ4fcMsOAhXwdXOlStFF9LyKbWYTNw99Mm9FvN\nLstiWMoqzJbvMfelMQaTMB3BSeBx4GTG6L5ZhisL1IM2zhuW00Hu3ttG8mG/yBBPKfhgUKjIEdCE\nsD9nNBDT4/iCI/0QTq3K4AMEuhtYgBfPQvNGj23Tdxmp3CPYm5FVA5jJ4N4K0tQtICDQKpvshvIg\n0ZXrsn1wuwpnNHYo4GztUZJjETPRdo7t/pBtu2eIfcqSGuKY+4BHt12kfxT23oJ7Tp6pSeCBfoSY\nMQjVURhd2QS/KkBfDSEk9Gk61EhcZdOvuAd5p8oq/SzV+5jaNkdzBKZvy20ohEu3q0/+0KnVWGGA\nnq3IZUTAfg2LA3CvAekY0hSWcsfytSyPC7984FcUGOIowKtyzxbWrQ4DwsAQhuIJuMFM1OItGFcr\n9A0MEFUikbF4i/IWrRzGbcLI2jlwOZq8AIrK56UwuVfl9NfjjCRIOoVIXUTgXrCIxB3MOwFV8tyS\nZh5PgImEpWudw/Z65ErhwyL0JKtgshSTBiidCtjlFfjiESrEd0ZpvM1FseXUBgNK5PkK74WZJFJ+\nCSdRhV+M0w5vrPi9mAyVZ+Ij4yBLMtJeSuBF/KK0JATaPMUpTRAHVBtV6ragwC+1WO12uD5zi4F2\nH3EYoGt1/tuHjmG1I2i3WF5eJQbGBvvQgTz/uZPEY517lMpxCvKeeM14E6J98aFRBUtL+cIfx20w\nvUWluAmCSZNagIBOAMAy4dGXgQewKV0s/uzwKCesagrGtdRfkZJKWqaEEmgQU/uFz8rUvjyll4yv\nJrLJ74TGkKTcFj5ZtYdXmBy9zVC0SKhTEltlhknOLj/ExMAM/WqVlJCFZIT5u1Osn23i3gqL9EMP\n7VVkbr3EJuu3kNP82MdVgnFbBx07QBdhJPuUmNbvQvbA0lJlCVCe4al7PBKc4Yn0LUZeXoH/Fc6f\nhjsJNAJ46G2orUP+96H11RphlrEeN7jbN8E71RN8iy/x7t2nyN6sCY32Nkg9W2WztlWQmrYK7XG4\nFsNZuH14Nz948DlG4wVe/Oor7Np9h/o5R30NuAb5N+GjW8KoHYngwfMwZNc4/G+c4436U3zEEZq0\n6O42VPdbDp+CmQUptQPAkwaiQ5DvhVkmWLJDZK0IHkFKznsBfOTgegrVCMbA2Jyd+gZf4lv8a60/\nY+yVVYK3nTSlfR3Gj66w/bk5qg906AzW+MZzA3SuDUnjerdevAaln9rPz3z4s1hRGFFpTBBvO051\n1+NklQl0ltJZW0Dnq7QXPiFdW6ESD1BpDOFdD6zFpm2MTel1WvTSDmkakucJRtdQTuOVw4QBBkdu\ncxQQhTGBMaKIKPb6Ug3iy7OzK/YOK0xS53whJZcE2TTLybMME8SEBqx15EmGt44gFHBKKS0Sw4IZ\nrAKD1oYs7ZEkXdIsxbtcWGZBpXgs8tkTNqvBKE0lrOAJwAfS0aiAuV//TdqPnSTZt08kmcqJ5Ntt\nyruV1uDktgTo0aACuQ7j0YEi9A5jxEdsfHSErrUoa3He0MkzVBRTrw8RBHXWO+vc3dbH/zUwzsV6\nhUNpxmo3YbXdobPeJUkzlA541PX4j+9c505rlX/81HO49XWylTXS5VXCJOH36lW+l4Wc9Z5+bQly\nT9LJWaSDIcCpGOsgCDxBEKKwRAbCTIGp4FWIMh7vUrA9ksxhcw1BVZQx2hBGIWGuSQkJ4yo1FP19\nQ9g8QSlHmvbI809bd8jySEDxejejIAh+hqsEpEpf3JakE97uh7OK5YMjvDH8DH21NdLDMQ9NfsTk\nV+6hOpAMae6MTXBq4Djf4ku8vvIM3Xf6RAVxG2QiscYm6+uX6SxYXHNxLqYNbWqs0o8fVsTjnp1V\nuFDIBWtsyjqzUUUrqLPuG2SdcMtMYKt/ZRtYgmQMrlTgDNzbtYOXn3kBXXEsHRri4OQlRrqLKG9Z\niQepuZSpc3epb4OpljxzHrEg6xtHGgAFXIcPe5tKkFXgQgL7b0Kfg8oBeOgCrK7Jv20HHhoCDsDa\nRIO7ehur6SB+JZSXqOeRInJty+Mvh1QlODUGfh2W+uGKIfso5vzeB3ll4vM0tq/zzN99k4mjSzRv\nFI9xD9w4MsYPBp7lVZ7n7N2H4MNAasuCR2ppGSWc8fMEQ/+VB77GxsZ54okn7zO1h58mcfQb/5Uk\nKy34badNd3UZsnTDbFJpTVDIEL2SBgljxAQYLQbJiFmxVmWqot+QPzoK6Z+JUCbGa2FxGXGJRFn5\ncxSGgMfoEBNEqCI5xuYWa8UjK8stWZ5htJbDvJfJs9GFFK9ILVRGo4hkYui1GDAX4NfIf/nPwDnW\nfvdrJMMNKcrOC8PJK3IHaS7JiOLBUko5pfAaI6BXGBgCowoTf0+gBJzzqovEpFcxJiSu17Eup7u6\nStpNSLKM0MVE1ZgwCIirAXmuWR2s4rotknaLVAlXLQgjVBTRDRV5mhKqjHoInZ6jHoQM1epExm1M\n0pTy+DAEHWCCCKc1eW5x1pElKbf7m5LmVUhagILt5siso9PL6KY5mQevjVQtVRxmVBEG4GXTC7UY\ncFa0JnCelSSh+5n5uPykVU78S9+sAaST2AvVAdivxPPjILDHo4Y8VDykCn9XwXUlxe1jBVeb0Gsj\n2r+7CADURjayjE2ArbyvCtLYlD4usEmDLjfCcrNNEVClxobEcTwWL5TPe+pfWeXo1Hsc5132cJUB\nv0yqImZqk3w88CA/fOAEt8b340MtA4aP4g1ikjK+YD7m0IW8A+0t/ZgD1j34DqgEIlIMFqV9QXgK\nEXjsJlKi1pE72ciFZ9PoMgJmodWAs30QKdK8wseLx7l2chdv9T3FqJrHYOljjUhnPPzkJSpnPJ9f\ngPGbcssH+qDvWcieULgRRXzS8dIc1FvCSj4cwd6DwGNwZ3qYm0wxf29cHuYycA/cnZBbU1NcMvs4\n+sRl6qfh83MwOieP9lADmp8D/yTMjoxzjV3MZ2NQ82KcOa/gmoJPQrgQwuJu7vds82ymav6yve+h\nEoXC3tFQPm5ljMS1G02g1UaaqxzYBTeqNZvUmw2U0VhvBejAYpzDFIbByjm8ywUQ0r7Ybws+bVED\nhA1U7k1eZIObaSd4J/VELPBlSJLnjjSz5JlDGfGQdNZiM/Hnyr3sb1opiEJ0ZDC4Yg8u2MQ6RhX7\nsjDThGJfNkMSbKhwvoTyDQpJOESJe5kuUsmMioRloC0qyCHP8CrDKJkiZkkmASuBQVVCgtyikx46\nCOmr1xgeGSIz67gowQYBaqVNZnO6NgUDVRORjI0LeHW9Q7vdYs0E9DfqxGGMzbrSGLqQWAXiread\nGPInGmtsUb8RgLDwKSvZbcLQcsXrIsCWcuLp5fymMf0GfGstWeH1U7xw/D/kvdeTZFd+5/c55t6b\nrrJ8tffdaLSBaXiggQEwmBmOI4dccUWukUJu31YRelo9SH+DHrSKjVCsFLHaXUkbuyQlkcOxnMHA\nD2w3TMO1993VXdVl0l1zztHD79yqwpBDarVDAow5EYnqRmdlZd7MOr/z+/6+JuJaYlPgPUrL+w8i\nuxSmtYBeIQJfIdKkl+6skOeflxy4BpcS1pOtZmXYcZcSRtTXPTue+5RHeZ37eI/d4QJNhqwkY5xT\n+zg5eT+vnnqad2/OQaHWt8HTiNfhR0E8QbjKespVH2khflmq8UZfr5qFthXYCzu0DDoeBvWQp3F4\nlbnZazT1gJKEO8Mpli/PMTtxg/2c5eC1y/AyfPgO/HE/jl4quHMVvvEzsI/CR0cPcFIfY4kJLrGT\n9/y9vH/tAXo/mYSXEdlgf0A0+GKdsaZYozmXK3BpBk4qhtvGeGPucZiD+bE5jj1ygj2PnOeen5wl\n/DG8dhp+EutLVoA7Affugj1P3eChI2+xL5wlI+fj6QPc/xsfs+k2/L3nYXEexrpirBy+Dlf3buZM\nOMDXzI/oPrnMCw8/w8L4dpl0rmiRGU0A+6B91yIP2rf5sv8pW793h/CvYOFncK0P0xlsPgrjt/oc\n/0/f4tLWXXwyczfvHnwMtisYU7A6gdTrhM/6bX6xpex/0UqbY4zsNjqzDzA0HfzSZczSMsXSddzo\nBktXL6AqS3t2Czq1aD8iVJLm7l1OXvQoqxErfUNeVvjo6GitKDxcOSTgsMrIfq4EHPHe4bwnsfVZ\nJw6MgxawyLN2vxDkXK8wJDaNAwtFVTqKvAAXSJIUrMjLvVPiKeY9ZemkL0HO+1VZEqoCpUW5oLWN\n7F8ZBqeZlWCrqPwwJsWaBoaUEES23t+zD4MmSRPKCpwrY2CI7JHKC8gvQwGFJpG9NIlyeAeVdhhj\nKYqKTitjTFtcUZEXJWE4RCUNbGZIGh2SNIGgWJqYph2GZFrT9LDNNqhKTz7MUcHjq4KLruAP7rmf\nZq+Hz4cYN8KkKa2JaaacY7kYsaPI8UWPhhKvzeHQsXCnRzCesTFD6g1VVWK0wihHGbykMWdNYdmY\nAqskgCWxKd4YlE5QNkUnKZUb4JTHeYcxCRPjs/jKUZQDQqj9Q/9ysMd97qCXZl3m2AfuQLgj6oQP\nLH7Ocrp9L+VTlhtmM/dOv8fO6Ys0GbHKGOfZw4lwjFeXnmDxxW2S/vdhEIkf88jeWZ/nK375/v/X\nverBykZVSQFVEA/eG3C12M6ZdD+9exMmnsy5/xwkH8B1JxyAg4dE1nlr1zRn9H6u5VsJN7OogA+s\nh7jUUpg4+Lm8Hd5SMGY4w1FWHxnn3Nge7uqeZlP3JorAgCaP8xpzj96i+V7FV3uw94a8Q3tnoPs0\nhMeQ3iWRDmrjsggEQQLq67C/B7tegeUlGN8MyRPgvw6Xd2zhI3WIK8V2YQjfQhqdtTCwO/ER66F1\nEa9dD1iE1Sk404bXFbdmd/CTb36NUaPJ5ZkdHH3mA2a4RUBzg018wD28Gp7gZ7efZfjiBLyJhMVU\nBXLR6l6pBoh/NXXl1x74euLx42zZsuXf63vkWBuih4QG7yhHfUb9JTH8NQJ8GaWE1aS1sIC0jn4g\nUHknlGRtsEZkJxJ47COdGBRGpuE2IZgEF4uHaP3VmhwlRI8RFxTKxQQwrUVuEYteUZSURQWREq28\nRylEYqnFq0Rr8SsRxxkpqB7xFAC49t/+HubsVfrTHaqiELNfh6Q5VoGiCpTluqeAGObH6ZHWJDrQ\nSMRTxVqRxcikSeFVAO9wZV/ow1FomaUNXDpiVJQMiiHe5WR5SqvRwGpD1m5gbEllNVVeUhaOwnsG\nVUUx6IsMucgpyxFpqhnlFaEqaCRdEqMZ5jlaKRpZirINkQt5R3CO4EW+YlT0fHH+M4BoCIG8KFnp\nD+jnJQUapyQpzAcBFRMt4KR3DoPHKMiMItWaVMlnaTmvvlBzjnUJYQ1GdRA5yU7oTsARmfirpyrG\n7llmdus1NrdukDFiSIsbvS3curqF3olx2KJluv/BZhjWYMfGW+0bVjdY3XirDYrrlJVaxFfrJleQ\nZqnHZyQv7Y6AcY/B2G/c4akdP+UbfJ+nBq+wbeEa7dU+VWpYGJ/h1OQhdtpL/OCBb/Dp8ChuMV2L\naaYA1zes+C6Legq/E1r74PAncLMQkKkFHGqA2gPlNs1tZlitxnB9GwOvAtJhXIvPc5VISkaKxihe\n3+huyQ35+8JueGdM7n4VBu/N8OGuGZgOkDm2HrrI9ukr7N5znvt//yNacznHTsWH3QF8CS49tp1R\nknHo984yNRb41ikgB7UT+DIsfW2MV3mc9929DC+Mi+zzplxu/4nh47sP89rk4+w+eIF7/t5pxmZL\nHv8gPv2dwNNw8cktvNg4zln2M6nusOm3rtMftekvTLJ6rot7KxUs8p0mXNkhtKTPvPcVUoK+OE2S\n0YpmlmFqOiwCXsfgvsjcjDLAmLBbeo9OUtrdLkkjw3kXWVklJnhs8Bjv0N5/BvjyWqGCwSgB2ZSS\nfVLpCJvU+NIaZRQg7vdB7lMn9I7yijyvcBVo63FuJD6QBCrnqAiSchgC3kJQDvKE+/+371I1m3zw\nX/2+gHBKC3DrK5HZuyqGcoiPWAgqClaEJaW0Wb8e1MyxIBT5YAjegDcob9aMmo2Wn+OqAiIL+bET\nFxgvAy9+8wlcq83MeJcCzcgvMXIZKkmoXCDLGnQ7HeYmJ5ka7+KGQ/rjE/hRzupgxO3FJSbaGTp6\ns7kAxIERBELlCFSo1KBcwJeOyoHXBm8C+058xLkHj8bIemkQrdZSmWOymkJSmHGGyufC2Ia47/t1\n+aOSSiqNrVw170SmSkw58yEQvCM4jwpglcEXntXlz9PbC9Yl7k1gHNQsbI2R7l+q2Pv4R3yD7/Eb\n1Y+4d/ED5uZvka4GhhMJNzbN8dbU+8wcuc13t/4mt7+3A15AzHavB7hVQVFLv2+yzv6tfV5g/bet\nrox1U1KLMjrIdGGzdBwPAV+FzjNLHDrwLvfxLvs4S5cVShKuNbdy6sARRqFBlxX5kbdgvlznG4NY\njq3ehO5t6IQe73Ifr6w8xc3eZm6fm4W3UzmcvwlcLyFcR7iw9VCj3suijIUbsNCC99rQgdUww4tP\nP8v1nVu51NnJP+Kfwy0YXYezG4YqOXC5gnvmocw1D908wfSdRZJRSX+ixfyxSSbbK6QPOWZuIaWz\nA/lswqaXF/gn4/+Uq3fPsGf6Aq1swA+e+Ba357fBFQU3lZCjt8D2qcsc4DTbz94ivAAXX4Mf96US\ndXJ4+iQ8MAXjjyxz16bT7NSXeH/n/fiZptTJ1TrE5BcZ2n/7VtKcosqmGaJZWbqFHt2iudLDj1bp\nzZ/B929IUnpjjNGwj3aOBIVyOeVwFedyHI5BkdMvCpw2mCBm8c6VoE30C6xZoERptMJXkgAu+6PB\nmASlNFoJ8KCVxoWSohC/xSSxGJPhjcLFECVJdUwEJFM+yu81yjm0CVgv+7IPTs743qFViF6VULlq\nLeREa4PV4nOVppl4VCqD1RZrbFSfaLS1ktqrDcamOCeJjr4U70pZCqUMRmcYEwihQqmSSpVYI6Bd\nkmRyT6MF8CtKyiJHeUUSh01lVaC0w2iLsRKg08tHjCUWmxgKrWg3OxJI4lKe//JzbNWKfDTE0SUE\nGA1HVGUJAUajnOGwz6C3TCgHlKM+WgcqV7C8NMA7Q3c8pdXMZDDuHT4onJeeR2vpeZzTqLSBIsWa\nhGazSdZokiQNAkMaaYNEaQZlTmd8Am01dxZvk+c5ihHhLzn/fDGEwxsZX3Wq+zVwHfhkGjIFDi7c\nPsTCsTlOTD/EVGuepHQMBx3uqAmur2xj+G4X3kCsUOYBv8y65+vGBF7POvj0N7FqdUutHqlDmSKb\nKS/gegan4eb5nbx91wM833qG5779Mt20z9Gfw9EF1hJxV77V5J3t9/IGj3BxcZ9IRK4Dg8BnZZ0D\nBES6AaMGfDwNVkPfcPPabv7svllOzj1MK+2jlcc3FFUrYfsDVzn4n51nbKfj/tPxofZD8Yzh4vFN\nTF1eYfpoj3vegIXFtWM9j0xC5x7wB+HSns1snbtF+qRjZhmYgfxBw6V7t/Ojxlf5uXuM+fe2C6v5\nOsh5vZa0bwSjap/l2rD/NtCFKzvhbQsZ3Ch38+PH23w6e5BdzfNMqGUCsMgUF3p7uXR1D/3XJ+SM\n8C4wXyBTsiU+ey741X0efq2Br253nKee+hLWJn/1nT+z5A1QUZuofEFe+3sFybzWUeqGUgQdpSqw\nVqRU9PsC0MZitBKwJer2A2K2LtNlLzIMvy6hFPaR0AO0B60sASki2gWCMTLpLyLLqwoMekOyphQY\nrYPIWawktmiTYJKUNJFNXpcFrqoIrqKMzYlqZ5SHtlMMh5RFSag8ZVlRlp7KQxUUpYcyxjVHeBCr\nNUYFUgOtZkajmZEk4qMlAJgSeQ9RAhSNo5WxZNaSKAXOs9pbZdgbMljpMUwz2u22pKdpRcgMxmpU\npghlwFdBkm3i9F4bQ6fdRilDf9Cn328wNzuFsZa8KCkc0cQ5qhi1wSo5cAQn7IAkTQS4jJ4spXMM\ny5LBKCcvKxwBr3U8wASsMdiY4GmNsAYyBYkKJAQaScqQitXy85pw/LJV23DXkpJxYAvoGZGSPAl8\nI7D3oU94uPNzjqmT7OAyLQYMaHG2s5cTBx/gzc2PcnnygDzkEPhwJha7HuuMrxQBhyaRyjErXzML\nTSspjABFgGEFeW2keAuZCNSeYGPAjHz7QeBRx5FdJ/k6P+A7t7/HjhduwCsIvbrhGTt6nbmvLNJ9\nYJlRq8HifdPcPLNTGA13QzLWw+6quDrYycedu3nkwNtseWaRw9dg6kNY7MHsBGy5H3gGLm7fwhn2\nc6O3FXctkac2qpAisdGgcWPBsPFrrWWvp+UBFrZDvwvXrMQEb0Im7DOW+e/s4GePf5lGY8TSsUmO\n7P6Q2ZXb6NKz0u1yeWo7LzaexGEon3ue/YfO0jlXyPBqi+Lq3k28Ov4of8ZXef/2/RQnMinOV+LT\nO6m4vncXzz/yHM3GiOWHn+fQvk+Yvb2AqWB5ssWlmV282HqCj7mbB3iHb0x+n4SSlWaXM5P7eH/H\nfXy46yh5tysve9SC+R2sG93Xky8XP2tfDOZXmiRkqWVjkRXWZvRg1JLcpLRC+ZjLoxTNdotOt4vW\niqoqCThM9JWywWN9QFeV+HhJzJuARE6hDOiwLpkXaaNCycxE5CJ1T6kQM3wXQRYnwFdVOarSUVWK\nUOQ4n1O6Su6DF7/JxKKCw6qKqsrxWYpzwpg0xQiVCPssaAiIVyKVF/DLuZiCIk0MiHS7Bsu0Zp25\nVl+9IIOVNQll/P/CMBC/GF+VKALeVzgXqHo90IZ20mDT5LjUgMaA3APakmZNumNdup0OqdaUIdBp\ndxhmS6wu9bi1UGEZZ6xpMcZK4mRQ8npQAl5F5q3WISY9ikfal7/3Eg+/epI/G+a8f/xBFFKjfACc\nx7tKpJBRCiQsXmHpiWTRU5Vyn3rVKZDOeZEdeQ9Gr8MDG/y9VBBrhOEoJy8+T7bXX7D/Zy0B1Y/A\nxL0LHG++zLf9d3ny4zdpfT+H14FVaM2V7H3sKuPfWIG9cGdykh8/9k0Gn4zLfa6WCMpe79935BvX\nmF6GaMTAOjN0I/iVsm5qPwOdNhySQUz32QUe3/sCX+eHHC9fYdf166QrBT4zrGxp8lbnGK+q44xo\nyNSiA2Pms7vPFNAcA9owVE0GtLh8ZQ8rfzwlKo+zyF55o4TyKtIVLLLu2Vg/0gg5uDfldnU3vGZh\nAOW1Duf/47u4+56PyMmgCekYTGzE+YAJDbRALcDOH92EU0Af0i0D8qdKyucUZ+/Zw+zNRWZeW4Yf\nQvK/lFBC2AVbv3abL//OzxjsaHJ9ZisvH5skP9UWdC+maU2wzDQL2BsOdwEu3pFGySFchFMOHjgP\n6WXPdH6HbnOZxtiIQbMZZ1K151q9/nbKHbVNSce3YLuTDMsRRVESlpdxq0u44S1WF65AKNDZJCrt\n4sjwYYghJ5Q9ilGPosopvReJvDJ4ZQiIL5dNUrwPuMjucsFDVaJzGWQLuzSqJIheWtFwXiuhSmEZ\nAAAgAElEQVQl/rhKkaWZzI8ii0oAdDlbWiNSa200XonqwjvA5xA9Fgni6+WqnBAq0swK86r2L4zy\nSmssRhmMNiivMElMdlfCCE6siX648vfgHEorbNYAl1AFjXKBoMQzMcTJTXBhTQ5vtEYTSKxChYo0\nsWJh4jVZZvFDRzEc4nNHmrZIrfjlVpXUtVYjo9vtgtKMBgNKKlRiyDX4xJIlKcZA2hQFjPeBRrsh\nzNqoqhkOBoz6HapRn+HKMsoXeL+KJ1AUnuGgEta2LqhsIPWaoBsErUlNE9scp9GeZOgMvoIEhVGa\nLM1IkhSbpOhGA4DhaESj06A9OU7hYNjvkQ+XJdjwl6zAL2wKn8uq9+AC2dd6yN59WbbuE21YbMJN\nxerVGVaPTWMP72S2fZvMFGg8nfYy1d6EctCAoRIW8KnJ6K5es8mqDbfA3xzzq/bdqmtL7RsZvYyd\nXkvE7Z/o8MbcE4xPrlDtTXjg759g23PXyFYDeddyY2aGk9P3iqxz9Un6r0zKvn0ZotExct6vX+/S\n+s9fAU7MrAVjVe+0ubG1La1NDvaJEX927DnSpOBLj73IwQNnmFpeRIXAwsQUZ6b28bp+hC9tfomH\nvvYe04ue33gdBncgacLEMeBbcO6u7fxh43d46Om32fbgddIqZ5i0uNzdxuv6EX7qv8wHZ4/BK0ae\n+w2Qer2y4bkPWP9c1J/R+hpeh6oBpzdBJa9r5cIspw5OcnrbYZK2eBaW/YT8SgNOGWFPvwecL6C6\njlShjVLHjRLR//D1aw18HTp0iMOHj66lLNbrL0tyXJMwIJML8PhqQH/pNlRDjPIRnIr3UqCtHHjL\nqgKtsdqSJBYVIOBRNhEj4Ci78yFQxSlxCFXU1ftIGQ5QOazWEP1FQoDMEFOOBXRSAVxZYZSWn1M5\nVpZWsIOEtJHSzCw2DRASglIoY2m0x2g0W7iqoBpJ0lThxFA5RBZUWVZicByCML1KR1558jIwqhyD\nsqAKKnoWSHMgKZKQWkuzkZImRmLkE4uxMpXSKvZViA9YYiNSiIW0wVh3EqMMuDusrqyy2luht9Qn\naWbYRgOb2Hh/TRVkr/JKrqX3ELwk2bRbDbxzDIdDer0em+ZmQSlW+wN6I4cyGiukUFzlMTaRJM3o\nR6YQ09HBcEhRVRSVo3CSQFl7MGglzV1mNalRNLyWzwGBZlKDX5DYhJVyyKD8YjT9n10bo+Inkcm6\ngaPAk4E9z37IN/ku3wjf56nRS3Q+9rJPTcHtA21ebhxnanyBHxz/JleW94v8bT6F+c2sm517ZFeP\nSWHshGYmf4xexWt83VUFiylcTeFSG8pZRDpZ/+7GuJE5YA9MH73OMd7h2eFLbP/ZDcK/gDsvwKc9\n4ZEd2gfNhZwnJ9/m3J69vD93D/N376BxZJmDcx+yh/OMs8Qn3M1bPMSB6dM89x+9SLczYNdbsGsF\nmIHwENz+2jivjT3GW+FBrl3fDmcU3Agw2GAO8Bnjzrqg1183GpfWB4wejDbDpVm41JGBSgbco6jG\nUj5IHqJ3vMVFs4vDs6fYOnsdg2OBKc6xj5PhPhRwrbmVe/a/z+b9N0gpWGSKT7mL18OjvDZ8gtsv\n7YC3kGZuwcFIwQlNNZVysvUY/QebXLC7OLLpQ7ZuuoahYpFpzrKXnAbPhZ/yKD9n2+ItbA5Lcykf\nmsO8lD3Fjw9+lZ+Yr0K/IW/3QgvcDNJSbWwUvxhzTRBTe9mXw1p4RZKIUXxi1JqBeUDhlRehapLQ\nHOuQNTJ88LiyAuUwymMIWOqEQQHCjAmoKGMUIxeiYF6mysTUSJHbAkaLTEnHegGoEFAOnJc9uShL\nyqrClRpXIQywoqCoxEA/bRiyLEWFChMKkmpI0Wpy4neeImmNYYuh+E4FCCbglcU7qSHOVQL6bJD+\nCVqnoqRfyR6OkjrlVGTExQRjo6li4mMwAW89KlGY1GDjdX7v0BYKm5APe1Teo8cmmOxMkM40GO9O\nkAfwOiFtyDQdFNVoRGItjTQVmVCAwXDIIG/QbiV4bSkrT+mFTVX7cPkQRFIYpYVOedCa57/1FEdP\nfsI7jxxFex+HHojEMTi8c1IHvYCBzlWSAunrAABH5Spc9PAKKBzCEiPWRCBKjaRGy2MJSyyogFKe\n3nCwIfnx81g1wpqwBjK1EtgK6i7Hjm3neEi9xZfuvEzjDyH8a3j7jLRCO4G734fpapVH/sHbnJ45\nwKnZeziztwvbFJzTgnlzFTlID4m59qyzezeu2kek3iMMa6iN6sKsgbvAPpZzZO9Jvq3/lO8M/oQd\nP70Fr0C4LHedOrrM1m/8mO7eFT5VB5nfPcbcsVUeeBOWT4sCcwL4ioHkAQiH4YrawU23ieFKQ3xH\nfhQE5ypGyJTgRrzVbK86kbIG8y1ruVsOuLgD8gzGoLiVcrPaxCW7g+rgm9j74UvvykPfitfxwSlQ\nT0DyI0/xh/DRebliuyzs+LQk83Dt97Zw6OR5+GO49H8JuXoIHD0FDy7A1ESfx/7B67xtH+T9rQ8y\nv7MlDLk4qI+ugmACyvz5SJkE1hSmLgI5a2xU4LPA5N/elWQtJua2k3VauMRgK0XhFEWxynDpGuVo\nFecNWXsGsjGBaBU4X+DLFcq8D6UMtG3WQNskJsKuKzdcOaRyHmuEQaoiq1jCqzaEaQQxuzfGRBJt\n3PPRwpxKDCrI8MFicVVFVbmoBBEWKUFyhF0lw1zngoRx+JKqKsXztypJEkkg1MjgxTtPUI6SkkRn\nkc1r0EoEj0ZHn1p8HMAjEkxf4SoZ2FP7GEaFivzZrzFj5VULwqa1BIso5XAR8DPGYhoW2hBcyWg0\nQCtFuz1BM2vIsL1YpRoVJIkia3XJGtOgDFp7qrKUvTkEqVFehis2tQQgL2TPrlxFmhm64y1CVVKN\nZihHA0a9JaqqwBhFo9EgyzICTdJM0+2OMTY+QZI16IyN02iOkTtFXlQonUZWr6h5lNI0mk0qo6li\nfdAKmu0uo1689uovO/vU+/AX4ferDpMqkf2ugZzjNoNuSouwO8D9nq0Pn+f+5kn2c4bZpux/t5nh\nzKb9nLjvfq7t2A+duIe8PQ7DLQjAUYMcBesU97/us2EduPSLXsbbgN3QGIM9wF753+Fjw+X2fr77\n9W8zb2d5b/IoeyYv0KZHn7ZI4sN9/Lz/GNdf2Q0vIuDR7YCAORvPvvU1raeaDoYj+GgLXIqg04SS\n1qYB1bDBO9mjrB7pcsbs5+DcJ8zNzaMI3GaGT8JBPgyHcZlh/KtLHJq+QOcx6Mwjj3E/XHpoEz9q\nfIXXwuO8ZR9k++RVGuT0aHM57OBUdYRzHx/E/yQTOf+pAP0VpLrXDKyNw/sKqRI563LH2/K6Rh4+\n2gS3EzgPfqtltKnDqBW/vb7rZaS+LnqkwNbyk9o+oK6rv7rPwq8t8JWmKV/72tfpdDr/Ht8VIsAZ\n4t8UKjiqasRK7w5VNUIphzEia9BKPFiCiswtkAlvdLI3VgpJsJbSOVwEWHyoI+pd9E6R4uGCTNkD\nxIbD4KOHFNGHS/ZJ8XchGmYqYPzqAsM8Z+X2LSYmJvBjbVQrJU0sJjEEBORJGy2KkSMPjsKVaw2g\nCz5Oiqro7QV55chdoHCQuyAGjyiqKDFRBLT3SEaMw6qE1BrSxGDjTWtDahOC8pRVjISPtGI5CIAK\nFYlRdDpteT7G0O8NGPSHrC4u49UKNk3AyETfB4vzmrzyAkpV8kuTJoaGSUi0Jc9HjPojFuZviReC\nUsKk8AoXKgkVEMcm8aGJAKPSaq1olt4zzHPyopCJvsSsob3HGkNmDA2taAUtMlJrMBpJkvQSO31h\ncekzyWCf/9roM1E3Pl0wiSQj3gMTD87zFC/yrfJ7PPXh67T+1OPfAbcEdhpmHu/z7Ddfgf2w3Jng\nhw9MsfLJtFCcFxtQjSHNi0ImK9vXUxiPIFLFu4AdFcm4gEPlsoXLVgCaD4GPGnBjF7gGa8UjUWvh\nY3PJPPs4y+yNedSrsPAi/FFPRIcGuH4evvQiZA/A3bs+Zqe+xPlHz/BM6wUe5zUOlx8yMVrFa818\nc5qT+n6G25s8/vtvMv7UKmZYUbUTbu/o8kp2nB/xNd5YOE7+6pgUrKsgO/sy68X8L9q4fxH88khB\nrFlgtxENSwvyKTjVlbeoEGr5/NEtvDX9KN1sCYNjULVZGM5w6/RmjK24vH83L3eeZCa9jdUVK1WX\na4NtXLqxm/y1rrDg3gAuVsA89Nvwwbi89YXi9I37uHnvNt4cf5zxbFHaJANHkg/4u9W/48lzbzD2\n/FBYaUOY2Fbw6PF3mX5iEdNxrOwa551HH8edS8T37eKU/BwW+Kzv1+e/GqklSwSA0lqTJAnWWtIk\nIbVx+KAVzocYdiN76z1FxVK7Q5qm4CXVClVhCAJ+BdCuEpaXdsKkogY+BGTzCpFUx71elIOxu1Ss\ngUy1IbqKCV81+7SqKhlKlFDknl5vxGpvQH/QxysYn+gyMSmAmtcjnHZUyq+Fr+igMEHSbRWA8oQq\n4MtybdCxHhGn1vwoN7JzlIrvqBG2swoiXcEJOFZqLUCYVRKPVaXomuEYPMoFVCjxbkDpwHpF2uyw\nvz+kNz5BvzW2NiTKy4qQ51SjEXjPpqoiU4p5YxiVBXlZYY3FoSgqj7YeITdLIxc0MW2swgeNRqOC\n55/+d/9oQ7vhwYNT0R8sxD2e2j+txFVOQmPWUhnXUzbF00bsDConZwcxtZfAArxfk5G64Ah4YRmM\nPs8Er3pt9GtKpC+YBDPn2G6vcIDTNN6B6hV47SL8DDkGnwLCu3D457D5uXl2TV9kNpvn7OaDhKkE\nWgaG9VS9xzrrt8Gfh12q+P/zDc+pNtzvQNpZs53s7l3iAf0OT7qX2fGjW7h/CYuvwfV56LRg2z7I\n7lQ88J98wKe7DvJG+jBf/uortHo5zz4PT9yApAXmfqi+o/nowD7eUQ9wtn+A8kxTzuN3PBS1PLMO\nLenFW81Yqz1xarZvvWIjt7IT5i3ubMal+/ZycvoYR3d+yNHfPM1U4fg778BwCdpzoJ8AmhBeghfP\ny3xiBMxW8K0TsPsQ7Pzdi/AerLwN3yeqUuIznPgU9p+E7b99je3jV2h3l2B6s7CoB8AiLLgZrpmt\nDHdnNI6W3PUuXLsC14KU0gdbwP0w3Gu5kc1yixmGt9rrtjxrMpS6tn2RzjL/31ej1aU9Po1ScXBM\nhk6beBPIi4Gwk0wT25jAG4sPYhVS5Dlh1Ee5ASoUWGNodsbwJgEUynuRHXoBtp2PMkO7fp2yLIup\nubVsSBiw4LE2iXu8eG+hIDEWnZjIWrIoq8Q3zNe1wOOdSBe99/hK0gPLqsC5ShQdkSXmvTCLJWky\nOhZ7hQ46elU10TqN/x+0MlGn6QhOQjuCcygvwJL3ThjCZQG+kD1TBZH3uwJjDWiDDhZjHRkNqqqI\n9cVEv8gUmzYxzpL3+2hEnpiP+mSpJMGn2Th5MWTYW6Yqh7Q6HZLWGDptonRTmM7RW9gVI0y0kKmq\nCpMEsSioNKkVhYbVEiIWKk/eH5CPViGUZGlkFIRAq9MmTROCl3pR5TmDSuF0A60TjLVYLRY3BDDW\nyuDcqDUSwKDfp9kco9VoY60RNvcGhnA9MInF4gv061QPmBVCl20DM6CnBaV/GNQznoMPv8tXmz/m\n6fACd6+cZmJwBwXcaU/wSfsuXjJP8uNHvsYn/l6q1RQWNXwyCW4K2U9HfDbh8a971QMKE19X9I1U\nu2GmIz7GDwD3ebK7hzQmR5jMUV1t8erMcT4yRxnnDi0zYOSaLOYz3FjYwuDNCfEyex0446Csz7wb\nU+zrwTisM5qiRL4/BefGZcBoDUyKt50fNPjk8jGu3buDN7o36SSrQKBXdrm1Msvq6hjJgZJ+2ubR\nB37O/nvO0e0PyRuac409vMVD/Ixnef3a4+T9jG53hcSU5C5leWGC8uOOpC2fAE4GWBggzcx8fG71\ne1PfasWNZV2+WX9wS/n7rU2w1IDTCbS0fEvd5vQDrBZQ9ZGqdYN1kG2jH9qv9hfh1xb42r17D488\n/Nj/v28ORJliQAXx91q+c0s2dlORKI9RCp0k8nF2Pn6sA6mxGG0l9cQKqEKSQACvglCggaA1WDA6\nETDHlwSlcShSm6JNAtGnS8UPmvNOtPfxAC7hYIHOmSts+oPnMZu6/OCuaa7fuI5WcyS2SzrSWO2w\nJjDqGbzL8a6iKAp8kAIZlHiTrEWuV568cAzzilHlI+jlGJViWJwXJVUseCYEtNE0rSXNErIsFdZX\nlq4lO2plCcGjKQkodJDrqpQ0gQEnVOvE0NaA1STNBklniFrpCQg2HJGXkqpYlFCUEjufZilJomk0\nLGOdMZRJGaQlK8suYv2xgYzmzAowMY3NJIZgNcEYdJIQtBiGOu/Q1uKKgrIqoS6cKHAVVgntPFGK\nhtY0kxStE/LKMRiN6Fc5GYGhHzHf6/+Hf5h/5WtjMWgCbegaifPb69g5eZ6HeJtjt07S+r9z8n8F\n712FhQI2NeDuj2E89Dn+X77Gx92DvLvpGKt7JglbNJzJxMB9zRdkC6jtsCMTc+LjkDw2YtOeq8x2\nbjCZipHinWKSW73N3Dy3jfLVhtSnNxuwtENGr9pBbqRPakNTj5hgmVZ/CJfh7KqAXjXf6ryHB29C\ndgOm8juMN5f5RusH/Jb/Yx659jYz7y5hrgIJFHs1dx8+y4uzj/Mv2v+QqbsWaTKkt2HC8/7VB1h4\nebMASaeA5Zz1Bqk2Pf5lE4u6wG8Ev+rGaSleq2jev7QLTk7AioIrisE7k5zfMQlTEZToa/FwOQ8u\ntVy9ey/XduwgnSpQxlP1E6qrKZzRAla9D1xyUM0jk5YWLO6Cd7pCL7isWHl3lpWtszBdkewuePDQ\n6zzGzzl+7U3G/u0Q9wdw5pIoO7e0YO6jwL7qCk8+9wqfpgc4v+8At/dugTkFVzOoWqz7KNSN7t/E\ndO+XL6UUnUaD4AM2MaRpSpIk0fRXi7l78ARj47ulMYnhvz99kftGOf/rnt3c0Sp6J/oYWOJQRL16\nlNd5L1K5CBVB8LiY3EuIB2Ft1o6ZIYi3FCr6f4UQ93Wi6TwIUCdDkdI7inzEV949zf+xeZylpWVG\nZUFRlNgkkYN7Jd5W3pRUKgd6YqAcjZKV93gtNYngxCgfxLvFVZGtIKwzr8XSsgZ1ItErNldyv6AV\nGI01BpdYbJKgkrDGEKjDT7SCNIavlIMh/cIz5u/w2z95g/54l3/3939XzJeVxlZVHI442onmH58+\nS1GW/Dd7t1A6R+EcbdsQthmBwntwNaAYQcfg8b4En0jT411MTY7Dl9p10yO1Nj5PfPwsBBdN/31M\nvPTRA632Q5MGSykxB1axwgi7QqQ33glbzEU2xGqvoHJfHAbkmuwxzkBU09OhJz5Zt2FwEy6U6zvY\nCjK8PXwDGrcc3bBCy/QxrYoqTWL/VEspFes+jjXwVYPh9cG59pVxrBuox/tbuxbkOzN7jQOcZv/N\ni/ACXH8Fvj8vR+ikB499AMfHYfLYMke2fsj/k/4W6eGSB2dOMP1oj8Y80ILqLvhw3z5+0vkyL/EU\nV87tkYCWC0CvQhCfa6xPo+tGrU6d+otMeANrkv5BKQOcU3D9nu28OvkEc615eBqO7PiE9IPAWA+Y\ngvIuSF6G/JKoLOsWaRG4tgo7r0IjjGAVVodr3DKIz2y5lDektepojg9Jk9E6qS6GDdy4uYNTWw/z\n8ZZ9PP71d5ldgK+/BqsL0GjB+FEI34ZrRzbxvr6Hs34/XEjW8wjWPFjqRvWLyF7/q5dpdsWioyzo\nVyso3cIaQ17kKDyJTcBkoC1VWZKkFqOspLqGChUk1KrZaDE1OSmeu5WTczBVDHDycc+p9w/iwKIk\nSZJ4vnYCFIVAcAJKEcQLUkX5I0p8vdBagCJiG+qdsL/yiiIPDAa5KCG0x4Uob4+s3VpaqZQVRppS\nwurSEliSZA2SrIm1DbTJ0MqSYFBxz85dgTHR4ytIv6ErJ/tqWeDLEd7lhOCxBoIGh4RtxRkORhuC\nsWvXwRpLYjNQ8WyYBqxNha1WDvGuYDRcodGZpDE2SaPZJPUled5jdbhKUg5oNNu0x8bI0gwVbUec\nscKqdQGdWKzRlL7C2Iy2alJVjqAV1lq0srhxRz7ooXyBUZ7B6jKhKmmnLZSOQ4+8kDqtRQFCsGDE\nGkW4BzHgy4qHmwaMEhm7VglZxlq/pihjWx/ZlJ9BvL4otaDerxPWw6QmoZ3KkPoB2PLoJb7W+hF/\nl3/LsVMf0n4lF2m4hy37Ftj9+FXm7r2JbyhW7+9y6dJ+uKjhWgOWxuNj1ufCv6lVv6Ymoj6ZBnbA\nRAeOKTgO9is5Ww9d5NDEKbary4zRo8JwPWzlzPAuPikOMvy4i79qYMXAOSVD/g+RRmOwgIBHt1gH\nvmpmMLA2QKyBr5V43w6EFMoWzG+FtzpSdi7C6jszrG6dgYn4+VjR8iOagXf6jzF/ZBPvtu9je3KZ\nzkSfgpSrbOOj0SEuXtzP4CfjcBFGE+NyyUdIYbmEFPDzwFIfwlWk3tU+nDVTDdZVQb/4NYmvr07r\nXISyCwtjovpYO/PXPse1Z3OdjtxHhkl1/f/VJ7//WgJfWmu+9NQzTE9P/7l/+0vTHCOLKd6Tejp/\n6J/9cz7aPYaKZsY6eLRVKB3QSlOE9YNwqH+GiuCZscTdE60Uw/5A0iDThCRKT6rgcDi0VrgQKH2B\nUopEW3T0SaliQ6RihDtAmmUE51nZvZmJuUmu/NYTbBuscuvGDfK8EL8BV1FViqoYkPsSN+wTlBED\nfEVkOkmnJcXDUZSOwaikn5cMSs+wCvTznFGeUxQlRZFTBQH/jLVrlOF2q02z0RCzzHidNRblpQm0\nKoldVGwa4hTcaAEInfekJATdImk1SIsmppGQjTXp9XroviJxirTUAnwFyBoJSaLRqsIoOVgYxB9g\n0O9R5or2+CRps4myGUVVUZU5VVESTEKlDMGmYOwaU09bi1UB1+/JFC76JzRsQsNaMQ8NjkaS0DQy\nMeoNe/T6A4qiIDOGtJFxdvEOXyiy19qqfwdE8gkpNDVMQrp1xNbGNfaGs8x+vAIvwetn4Xki92MA\n7lN46CWYeWqVvQ+dZ3PnGmfnDuEmNaQbTZNbwHaYyuB+4FnQ3+7z6NZXeFi/yVE+YIpFAG41Z/mo\neYg3ph/ltU1P4psN2SOtlnqlrJz24/k7yHETbzTRRoWUz3IHTAY0ILEFR/mASe7w3LWf0fzfHeqH\nSNFOID3k2f1bV0i/8zNW5sb4n/ivSSkY0mB+ZTO9j2YIbylhTr0JXApIsZhnXRdfT8X/Iu+eGo5T\nrE84CuQF1YafKWuTj+UtcHIWLkYwchroRB+oEXJdok8+70KYTci7ifx7nPRzHVGKLpbxuV5Him0s\nWnd2wluTcjB5N75dT1qyPX12JRc4zIeMvTWA78NL78OLsf5uWoXf/iFs2um5+7GPOZCdZrJ7m9tb\nNsGkFk121WA9OCFhndr++a3UGrI0wVgBvbIsE3ZSCFRlSREcaWrJkkQ8GZMUkyT8z/ce5p9cuMyV\nTbO0YoKtwoHyKO3xOEqCJEHFlxjiIERqgV6bBtcCKbyWhiqm4noX5eLGo1U8ePtAVYr8TimRTZNq\nqtzxj3/8DrNLfXqu4v+cyOj3c1aWluh02rSbGalJSKwWf7CiEMK6lyyGxINKSlSS4qMExqs6odCJ\ntMc7kTZqYYih5FBfp1LqIMa/0rTFr1rjoz9akmQoCyROvGjqPTTKJtOA+JWVObcKz4mZLlf27mNw\newGVJJgsi8nAkDYsqtvizUMHWFxZJmulhKoEYzBJCibg0LgAlfNo5UWCY5T4rXnQQQJqhMsm4CLe\nS3JmrH0ySHIxmMCt+XGC1CoXwS8QDNP7EBMeWffmrM+3NcvPS2qwMAAVZeno978IbK+NKzJS63N5\noShJxJuqBWn0ON+4ugAtCE3IVUqFJTgVHypegLVP+ziiw+iwnuRb7wl1iljtJ1LXjELup9VaJspE\nIl5V6VWHuwiXoldVPVP/0MEjZyG5CFPFHXTq+TfJ73F2214ObvmE8bBCrlIuq+2cUA/wCsd59fyz\n+BcSmYBfIPpT1nKPX5zcb5Rsb5S1w/rGuwIsw4UGvK+otma8Pv00HIDFzhQP3fMWO49cosmAVdWl\nNRpx7K2PyNrSatZLI8pTlUFfd2BqgekO7Lgl/QrEHM4MmIHVacsqYwzztkjZcwQRPAOrp8Z5Y+ZR\ndqcXGXuiz5HJM4w9CGM341tzD9x4epyfmmd4heOcO31YGrorRMnqcnxtNfj1i6Df345l0yZGSzhR\nUQ4xVJjBCnrQx+Aog8NmGd4HimEfG9qktoHOOpR5g1IbEquYmJ6hKEouXbrI4dkjKGOEvRXbBWMM\nqRFpuHgzBrJMGEIyyJAEXekRZCCiVSIDYS0qD1B1cGwcTMv3rweMBJQ3NMwYZZGTVzmVHuG1nKWr\nSobKSdLA2gylNAYtIStKRi6JzUjTFlqn4ukYExnxFldWFC4nswbrJODEBUdRjCQJuazwLrK9kMGA\nNRLKgtY4guyxQYS2RoPXMuwLTuqhsRrdSmiNTzAc9RmsjvC+FCCJAUVuaNguSatF0mkTfEHZu8Oo\nv4QvB7TGWrTbHayxFNaCDSTW4pyT1+8SbJZhsFSFw1cVJjHoxGKw6O4kxgfwFaPWCivLi6SJJUsN\nxkKSGEyaUqoEdEJwISZBa5T3WOXB51hrwTbEUB8BQ52TlE6UIrEpVVFRRqBMGY0xSQyTCahQSAL0\nF2LVLOBoPsik5IvsBu4tuL/zNl/iRY699yHtf5lT/SncOidldtt+aJ8d8cR/foL5I3OcHd/PtXt3\nU51I4X0Fy+MQ2qz3HJZ1ps9fV5NU/6za1H4cmAE1KV7GjwK/Gbjnvrd4Vj/P47zGQT5mgmVKLOfU\nPt5pHeOl5pd44cCzrH4wK7Tb15G98U6AcBMZKN9AGG21uX1dL/yGP9fn/gHrJvt10kDCtDsAACAA\nSURBVP1AzuRvT4py4n1k+N+U8xdDZE+fUxS3Wpw7c5jzB+7GbBuStkaURYK72cGf0fBe7FVOI2VX\nsR4yeQtYdRCi6T43WAfshqzXNbXh+bVYsx9Y+3PGekhaGR/jGlLba9ipfr2j+NgD1odJGz3ffvXv\n/68l8DU3t4nHHnucJJHx11/tpxHitZesQvmvFIjOBx8w8drP+eZJzY+/fVT+3ZjoxCLgloqNC0g8\nsdcBW8sdQmSEVUJztjYhIEwvgky0TSKHc200wYtUwqpAYsS03lcVQWs8AVe5CFop8NJMKw0f/xff\nxA+GtHWguWc3+aAfqbYidqkqiQB2RmJ5bSIbc5zJr/mXlEXFYFgwLCpKr3BoClcKy8s5yjJu1D6A\nVmQmJTNWGsskwWojZvxBkWBJlMgbDEE8bfT6zwy1mEZF2Yk8E5LUCssqS0ibKb3+AJuKIWZiUoxt\ngGqQF46iyCmLId55jAq4qsAoaCSGyhpcVTEaDKg8YCRdUeQvAlZiDMYmOCWeCTYRAEwFMZT+Ozdv\ns2O1zz/bvgOXZkIn9wFjDNYaRqMhw8GQPC9xzku6pYWBK1ka5XxxV71pxSl7xF9sWtHSA8Z8D7UI\n4bb0BBvnU1cKuHce0gUYY5WGGqEaYcOeVxecabAtmRg9BI1nV3h6+0/4Fn/Kl/ovcfDmaRpX5ZEH\nOw2fzhxgZ/sizd0DfvLwNwk3LBxwmBk5WLqegZsCgC1U01xjC4vTU3Tvu8rdb8L1c3C2kqfxdAu6\nk6BOw+4/mec7T/0poylL64eO/I/g7TfhkyDb90MX4a4Ktm6/xf1feY8Hk7f57sXfZvXV6XUA6VPg\nowDXKyhvIuOXekpSN0h/1fSujNe8TpQpWWffOUT2GNMtwwosTsOdFiQWGjriZz6mZ8bHupxC28i/\nayAP8u/9EsIAaQ/nWS9u9bRmBGEG5mfhdgfuloQW2yqZ5A6zzKOuwq2r8L5ff2XXgTM5bLoKEzdz\npqYW6TRWUF1HaIjf05+XNH2+oJdS0GpkImlMDNZalBJJs3ciZUNDu9mkOTaGtRJXrrSmUPA/PPog\nU9pEvYgAX4pKGEE6JiuGgPZg64bGixQdBcrIFCR4L5JrV+GLgPKKoGXnU0bhvYBQzvm417rIDlLY\nxKKDprAF/+OzR/jmm6d54a4tTBelMAhAQkIqhysUIyVssST1GCe3ykPpPCFJUTaFVAB/lCGomqPm\nIFTgxY9GB40OFq3ktakoVRfJY2Qjm2jUbA3BJpJSbCtIFU45GQBF2WaIzLZMQ6iElfDCkb2gU/zC\nbbw2qDTBNmRIUvvhvLx7jkF/jHa/h3eV1Ait5FgZkOcf2RKq1mHiY6MXYuiARpkAPuCiCZLSag34\nIngCHh9cvCEAZOWoqmqN4QVhDczyUc4oWQYhNrgeVwV85VFeoYMMfwa9IhpXfxFW2HCLMbbL4BYM\n190WLppd5IffpvGI48FL4K/LLrLbwCObgYfg1o4Jrqgd3B7N4W5l8ewcHw8QM8cZYApUW7SG2so1\nDAGqHKoe694vLVAdMCnoZF1dUSJBHiSEhkIl0DCgNuAvTYQgxm04ePU03z74J/xr/iH/ht9jSt+h\nQ4+ClPlqjgv9fVw9s0tAr5cRZmy/Nquva3Y9iPhlDCe34WstXV8CrsFoHD5qykBfGd565jg3Dm7l\nrfbDbDHXyMhxaH43+yOOHPyU9EHH8etg+9I63aVh9w5Q98Npc4C9D12l8WzFN5bgo55s8bubsPMR\n8I/D6XQ/59lDf2lCvDZ7yJv1PvgdCafnDvMnR3+TftLm0Xtf5+DhTxjvDRk1Ei40dvAOD/C8e5ZX\nrx6HF7SYEF+AdenOX58k5W9iaWNptcewWqMaHRpa44Y9ypUL2NAjNZZ+JWzEUFT4YsCwKNFZiq1K\nKq+oSOmON1FGc3P+JnuoGNx7F40soINiNCpQriI1kkDoorefClDkI4xqQqhN7I2krCu1FqYEROao\nsLWUMWsyd1eUwpjSWvYl5VGJKD+qohRGbZLilcZFT0Lx1bJojKQ6esRbS4l/ZZI0IjCWYnVCw6Qk\npoVOrKQxBoMOFcWwjwueLEtIcYSqxPsqMpojg02HiIn6NQKAMM4cKniMDgTjZTABVHXQR5rSmuxQ\nlJP/L3nv9STZdef5fY6596arLNfVXe0tGo1GN4CGIwxBEATIoZndMbuxGikU+yBpX6QXhSL0V0ih\nR4VCD9KEdmJDMRtLrTZilrMcehIk4dmNRgNo712Z7nKZee89Rg+/c6sKCIDjSAIKnojqapOV5mb2\n+Z3f9/c1KGqqtXu0tKJlIlnmMHEN7TxRZ5gso+j2cXWJ9zXVcEh0NVmrh8o6KBNRGViTgRYGWKvV\nwaiM2gS0tlhriUSMtRQmR9cifRzvTTE+voWyHBBjjVYy2KqDwmuzHjYgZUUGWOusPJVTO8uoqgna\nkhUdtFa0WpZWkVEbS2x1iHWFC5EsL2h3xxmNarTWVIMF/OcG+GokbY003Qj4sg2md81xiPMcWT5H\n95cl7jvwgw9kqwjA8bPwpe9C91Dk+APvcSg/z492LeO2bRFLrStt8G3WpfXrnlG/TQZpc9ZuBstd\nYBq2KbFbedZz5MRJvsVf8Yejv+KpS6fQryFYUAf2HbvD4RPn2TKxiJ80/OS5l1m7PiF746kRxJvI\nhGCBjQHB5iH45tfWMIabgJdm6N0MTSr5WT8lZ/K7LRkip3Ae6gCVh/FCFB8fKuJeg5vs4Yqe3PVC\nejpXgYsRFivxLFpnGDbGW/fYCJ5pGFjNc2h6lM2A1zjyQZhGxl5jYNoi0yRCqCE0XseLbFgEjNJX\n4KMD/5qPDlJ+8+v3Evg6duw4+/cfWP/zrzezZx300iTmU+PFAqw9dIS3/5t/yev3LjDGajJUF2PD\npGTBpw0/8V0FDNNinKySQb1RAoplNke8w+QwHqPEFxuTUxiNNlZ8Q5RGJ6+p0BQUlcjmUYwnvXfi\n6eI93ovk0OY5mWnRaRXU5UBamajEyySCDzV2YYViWDM8tBMfPbWvqaOj9jWlc1Q+UIeY2jvx+nLe\nJ5NLkV8aBZnWWAWWQKaFnKM1GKPJtKGwOUZbGqNPZdI1SxKTJtkyNlTqZjqEGOAHJckw7Twn608w\nylvEGBkNR6gkj1SuJstB2zboDDWqKUcludG0pvpok7E2qhlVIxx1ioUmNXxaqO0hoowiz8W3wQdw\ndaAaVUyUJVPa0MsyVmLEpsbNecfqaMBwbU0i7JXGWk1uxFfg1uqI+vPT5XzC2ky/DesNRqg1VcwY\nIgd3+pJ9cpkN8GPagh2XfxvSpiQnOrUJ+2l8UMbFnPggmCcqHtp3mpf5Pt+8/9fs+/5NzN9Eod0C\nnQOeY187S+flAaPxNtce3MPy5ASTWxaYbC+iVGSlHmNuZZb5O9u4fX8n7/Ue5v3pw2z/6l1aizUv\n/gRO3Ja3dfE6/OoUTJ+Hve/BznKOe/+8gNNw7Ty8GpOFCbDiYOtJmHgXZl+4w7bsDh09YOXSNHwf\nGbMvACurggSu05qbVJLmhf9dDjCbrvl6Yd5cFBsOQ3KGjG2oOlAVbDDHmshhA2Ufyh4flRBtphcn\nFsJ62mIyEJORFbAC8SD4cWGqBGHSeSxYaSY3sxEgBXEa8EZ2TR/E52n9JX3OmiOjDd1WiyyT0BGt\ntfhaBdmHdGbJOi264xN0xvpoYwXwWGf9SKMeg0dpmXKr6BMAlpizkNg/G8yfGCNBJbCLSPCgg5jW\n49ImquW71gqdGZwiDSFSTVEKbZKcrjC0WzlFpvh3R7aho6OdG7b0ewSl6LZydARfRUbB4epAVnjy\n3KNrh6oqdDmErMCbDJUXmKKFyXNMlgvTzURi9MlrPzGlvCcqI9NqFJkx6Gb/CBC1Ilot03SfEWtL\nzK1UDy1yyejDeqIYCThrGY3NFHVUuBCo61pAJl8xrCJB+2QeL4BSp1vQamcEV5MZhclleKStTOdt\nnq2bSKMFVGzem5ASYXRU695byphk0JxYX42kMUJQCVTzXoIFvE+favH3Cum9Ds3ZLTZgWLomITH5\ngkFjCVVgbfXzxPZq9qt0YB06uG0Jlw1XF/fzq5nHOL7/XR794w/Y6WDyNSiH0J2C7FkYfT3j9MxD\nnORRrt/fJVPq28CgkXOMIUnBM9Bvw5SSc/MYaUis4H4b5lqwGqF2IquZQM7WHTZK1BIsDKe53Z5l\ndW/B9LGag2/DsQtwPUqLNga8dw/2fhvGXOCJf3WK9/e8zSpjnOEoy7HP8to4a9fGcafaYqh1CsF1\nFND2MNiark2G7O8a2Tfhkz0cfbpNM8XPkeHFJbi7D97swBDcXMHl4w9yY/9eWhNDTOaZ3X+dg/lF\nDh8/y6E/ucZ+YOYMlCPob4HiJRh+0/Cafpo9D1/l6J+dZ2s/sOVDxGR9D8SX4eYXZ/i5fo7T1SMs\nXU5N2TxS1M4amFCMsjF+VT/N7cPbOdl/hL32Kr0JAQJvsoMP3BEunTvM2i/6Ejn/LrA0QMYcm5O3\nmjr3225Yf7MrLzq0izFcpTHdFpkaUa3cwq/ekEFxe5KouwxdwFdrKDXA1ZrVUaRlKjJqiryg0+0x\nv7TEkZUV/ue1VeZ+8jqvf/UpqcpeJONRaWofZO9EGMLDcgRESSVXSVYf0ikgRLyvMNqg0xCCxMCN\nShOc7D++rlFZJlJta8TT3VXoQgbFUQulN8YgwxZlUEGYXirE9STHPCsIQWFtIV+mwCqN0RatFcZK\nerr3UI8qfKhSzZO9NHgHsUajRL4dvAzXmyH6uk+k1EajZZxtFLjoCI0cXHmMjbRMTnd8DK0jq1rh\nqyGjYUXEoKoaUzi0yVGxJcxanVNkhVjDxADeEqkgeHQuQ2ytFNZCKy9QJkfrgEnsZh8CnV6fzBZo\nFylXBoTK0+n2yVsted5KBiBYqILUpzAcEp2j1kbCtdLEXqHwvkIpeQyMwljIM02/18O4VZZXB5Te\niUUNCm0KsqIgs5pybe7TPrafwWr65GYYq9azT3p2lUkW6a+swAVYPCfzgmZ3/CDCsZvQvQAT82tM\n71igP7nE2tiWZPfbyN9/176vDcO4CUxpyzzmMIw/vMBTvM5Xqh/x2Jvvo/9vKH8GC/MyWJk6AXv+\n2V1e+eff41Z7G5f2HOTDh44TTxm4VMA9iwBdK2ywmZphyeb9sWFRNf83mnO/YsMvMgFf3EOG1WNQ\nNvYApNvUsLQV3u/D1UJqauMk4JE34z6wWkG1hEw/mulQAz41AFUz0Gi+mgHOZtCrh6CWM8CsfB8r\nYNxIjW6lm6+1YbkPyw7WtkBcZKNHGm36avqbzZYBv531ewd8WWt5/vkv0u12/94/q2JIbC+hfCoC\nKnhu79tBuH9ewCcMUW9QQk1m8Qo5uDXSQUICgMy6JjykOHsjN6IajShHMr1GZ7QKS6EV1sjk3iZg\nTOHXJ9ihmTpYSWr03uGDmB5Hv3F4N1qSU1CaEBUuxBRpDEYH9v1v/xEVI5f/hz+h7hWUpdClK2rK\nGKi8Tz4qKoFeYT3FMcs0Nmqc9xTGkOkoyYa5Jc8F/EFHtElRyUqhlZY/WyMg3iZ2l1bCGggx4NJE\n3cfIqBxSOWELZNoIUywTz4VaKTIrtGMbNUq3sFlOGUgTskiRG7q9MVAWf2+FelChdPI4MIpocqJt\nEUyGc8mTJ+1JkchoNKKua/58+1ZyDLV3OOdwrsK5mpGrcDEI+0tprDIYJeBfVLAwHH3ax+xzshoQ\nJSFegwDLmtFcmzvlLFeL3Sw92GL88RGvvA9hXs7Ts8BTs6CfgNWjlmvsZn40Q1jUspfWjRQigGrJ\n5rwHuvtXeDg/zbP+F+x/4wb6L+DGX8G7qT4c/xHsnAsc6l/jyZfewvcMt3uzHOI827iDInDfTnK2\nfZi3tjzBL+8+y+v+C+w21+gdX+WF6TconoSZ/wNe/y78yEkZ6a3BH/4CHtgN418oYQVW6w0/FZBS\nszyAiTVoxSEtRljrZP9fAa6PoJ5HCkmTWHmPjejfTzO2/3XXvtn0G2+batO/NRKgRTboxg38tHlq\n0hh2Nr4JTRPWFNHmfhqT6WbCpDY93lAYPiUwgHo1Y4FpbrGdo4cvM3EYnrkCP3FyT4eA41PAYZjb\nOs4dtrE2nCDeM4kY0AB7zffmNX12q9Mq6LSK9T1jYyIte2ne69Ae69Ea69MaG8P7SDUcUToxKk6m\nHslzUWQcikgKCxTOZNxw8GiAkNCY2iZPJ43C2CCgjIvE1MTYzCQ03hNS0Iio6pSEZiT2sA6K0M5o\nFxmrRmSMWls6uREvFqOIPlLHgKrBW9n3g4+oshKGll0TdmvewrQ72O4YGR2ijlgdUTpidHqNwctk\nJwWBKGWF6Zpi6mMQYE/SHDXBpNdSGFS0ctatFdEElE9ayyDeNyaFsmik3olXpiZEQxU1a6Fi5JxI\ndnJDXrQoio5IiKqK4IXpoGLAWo3ODCqBmrLiupQfkDTLhDMKCJacMxv5UWNCv562LOBW7SQ9s3Y1\n/mOAV4Nz0XinpQFTVAJ6eacIXoMyDEdBDPA/F6s5eDYH4RVYHcGVHpxR3Dq+k5+Ov8BMdhf1pcjD\nO8/TOenprCIErsfgzZ3H+a75Kj/nOZZOzcAHyFk3lMhFOShJKPs1PIBsHDuRc7ROD3sXuKrgloKV\nXM7X+5HvvfQ0l4FbsHBrB2cOHOVU/ygv/cHr9O/CN38C9y7Bt1cEwzqzDE++C1/qQv+fDvkXE99m\nb/8y3+UPGNDhZmcH5w8+wPnqQeLtQozz7yEKjQtduBDhThd8zobZc3NAd2zIcz5+LZt9d4X1fdgD\nt/bBUhtuKjitqHe0qSfasA2W/3CSnz70AjP9OYo//Wv27rlL/0Nkq94Ba08WvLHrMX7Il+l2Vilf\n+gEnjp8mu4xs/Tvg7J7d/Mi+yHfV1zh19xHc27kwk+fS+H+xD2+1oYLqXoerjz3AjQcOoGdH5J0R\nobbU8x38JUv8ldkwPb5cJTZDI99ZTddhMwtOsSHl+XyvotWj05rCxzaoNsavEIf3sDoQVQGhQ9HJ\nKMtlyrV5Yj0Qr0GNeIuqiomxDlEp1laWOaMiHxrNfzqwh4M+4pyYzCvFRpCRDskHrAYixigyZPCr\ntcW5GqUM1uQopXCuJtSlsI11YmuZnBiCAFJ5jjWGGDQKJ4NaFdE11E7jy5K6DlInkkWK0RaFIgYJ\nc7E2w9qCgMJmeQLqQ/L+UijtQfmU8mjFoF5ZlK4hSmiLkqkAPg3BiVEG3bnF+RrnSpFrNjUzgX/B\nA0GBEk/fmGTl2lpa3TYmKzC2zeD+PPXgPqPhAGMzMqXICoV3yEQTg/dKrAiMwSrLcLhMiCPyNPjX\n0ZIXOZ12F21z6kJ+th6UGK1oddoixw/INXUZ5WCFEEqp75oURKBR2lCXNa6uCXVgoC2DUUlV1iiU\nDGvqsA762axYH6wRImurK4xGFXVdExumn83pdjpENyT4z7lseJ0DolhnDinE0vRja11YFeJHT3yh\n+fnEvv6drM3AUsNka0PbSg3bA9snbnGUMxxZ+JDib2rqfwv/cQ7ORRmkvLgARy3sOjjHo8+d4hfd\nc1zcd4Rqm4GuEjUGGRv+tQmc+sShQLNPNnvn5pCxpr6USMFrzvSN56Vig217D9wULPVhuSu3VSn4\njlKUIqwgvcMcG8y6Zq+uPuWrAeSafqONFOtZ4AAUE7BbwQElIWiz6Wmq9HA3gasWLo7B1c4mdl/z\nnvtNj/PbBb3g9xD42r//ACcee0Kigv+Oq0mvCgqkfRH0QiN+Jr4upekxmqiCmNCHIGbosJ4GKPHF\n0hQJCOUgRaz7EFJiisI7T5xfZm1xgfmqpGj3mBgHegrdKsgz0DpKtLAR1lNKZ0dZkx5fQDgfA9pk\nBBy+dtjVIcf/n1e5+vIJ1ibbeIIkuyhhLhQmcv5fvkT7/oC1wuCGJVVVMSxLRlXFcBRZq2rKOlIF\njfPJ+Dgx2LLMEnygLMsU3qXIrKJoGYpWhs1Fx940IEqJqaQxBmMtbn1KJEwvnZpJKdkC9tVVhapr\nCmMxWYavHVprWt0uMUKv3ZF3LARcq413jtqLqXTbamIhJs9aRVx02ExRFAYXxb8raoOLBmUM2mYp\nEUYm/8aINDTEiNGGYA3D2lNXNcO1IWUp1M2oxRDfGotFoZKhtVGwNCxZKT/PBa0BJprNdhVWPdzR\ncNlyfWUvJ1uPcXzHGZ7443fJguebbyJ76QyoL0L5rYw3e49zMj7Krdu7iZeMNDKjBmyZhCyXCrIl\n0htfZa+6wgF3Ef06zP8C/kMtsw2AqwH+xesw8WTklc6r7D9+icV8igPLl5i+IlHig52G89MHONQ9\nT392mR98+HW+u/frqBZUszmvDF6lPg9n3Ebe1hJwdQ0OXAVzC9gFs+MwsyIkLo30ZNu2Atvhvhln\niT5lVUhz1gP2teD2LkliCXfYyI68z0d9T/6hG3oDYjW/r9iYum1uwpoi2TSuzXP4uGl0A441LDLF\nBo2iSewp2NDpe0lfuaUYXm1z/sghTrYf5aEnPmD7P73HIw52nYTSwcw2sF+B6quW091jfBCPsHBv\nWpq7eaBq3v8GDKz5KND3u11Ga2YmJ7DWivQ7SRyNMWhj0O0Web9H1u2iWy1iSqDFWIwVBqrWRthh\njdQxyeKMidgoQwqTIt1VMkUXNq8Ym4eEqFsjiVqyBIkRX3QtZugxErUwbUl+WBLhrmWPUZEst/TG\nOozW2uSDkv/6zYv85SO7uDE5lgyT0/PUiqgMrgz4OuCjR5mAyWR/tsGjDfJnG4lGUsmU0ajowbvk\nZxbQRmOixUSwREmHRJJ8jVaozKB1DsERgjRBWuUy7rcerEf7KMCXkz3eN0Chkk+GkHADEZHim5BT\n+IKoNSbLyFst8qKN1pq6rqnKEuekIdOIcX7UKgGAmhhcSv0ScEtpleqvXHutZVrfeHU18tLgEsPM\nK5yLKeSlpqo9LgR8lIAaHyMk02ijzfrhPnqRTQYfUGQoZRnVNWvD4Wfx8f+E1bBxm+nrGuus0Nsd\nOK0JOwrenXwM9UBkMZvm8QffYt+DV2gxZIUxLnKQN3iKn41e4PzJ4/CqlvH/HY8UiSnIp+GYhqeA\npyA/PqC7e5n+5D1s5lhb67J6Z5Lh5S5+wYjX4J5I66EhxdZVWt0BwRtGSz3Km23WbnZ5a/ZJ9nau\n0Dsx4HH/HtndyJVTsu00M/ZLEU7UMP0/wcxTS7zyRz/m4OxlBqbNtdYu3s5P8KPjL3H+4CHKYYty\ncYzRlRb+ZAZvKXg7g0u7RFK+LmHcnGzY7MHN2nyob7qAhvJZwtoOODMhTcGYlobpKIS+5ee9LxK3\nK+azLTzy7Cl2P3uVgor7TPA+R3idp/nlB1+k3N/marGX12dPs332NgbHAtN8yBHecE/x1sJTrH1v\nWnxdzgKDIYJCzsPcPnijDXMaPtD4XRo/k1G3xuQlLaWbXk4X73ad/qIx+K+QeuE2vc5mb/9te/T8\nBpbSdCd3Y7oz2O40XmVoV9HNDcbM4OqA8wV5d5JW1cVRMby3ghuuYFQAA0WnRdbKqeoRWkdGIfBf\ndApeHAzZWaU0X4K0l4lZGmLKBNbC4K2qCqJFaYU1SpjBKQ0yzwsiAqAByXvSYY1HJ8WEyLibXkWL\nP6EyaKshaEJwYpNixNy9VRRkxkCUABatLTEI0yTPc1CKECqiFyYvg2Vm/+LPWfvqN6ge/wLKtFCV\nAh8JcYhO0sUmEEspcEhSpfceG+T8Hr1LAwfxLo4oVNACXEVxwY+ACqC8RxtPnmfkRYbSGd6VGOXw\nrhRwzJV4HfGxFrDKRGHNeahrR6AkBo+xOZaMUAc8TpLcQ8AaS7tVoLWhMrmocbI0rQqgewWZKjCF\nZbgc8NWA6EtidEQHMVRoJwOtYVmxEkfUTqSnZVkzHHkqH7HWUBQFUec4H6hiZDQsKUceqw15Bl5b\n8lYbpTVZVrC2Ov/Z/J/4W9cmw/FkXbhadVlgmqWxcXYdusvMUTh2Bk5LieVBDVO7gQOwNN1lgS2s\n3O9vKN7iZuCjWb/pfUN9wu8bqWOSO2YqhTs6+vl9dsabTC/egzPwzhycTE9pALyxBjvfh/FzsOO5\nm0ypRfSYl56mAJSF2ABFm851f+tq+gXYUGA0oFlzfm5Ar82rkUUuAS2ICSCL6Qz/kZ8fILVoM8t8\ns9dYU98aQMyzYWDfRUCvrcABGJuCh4AngBOB7EhFa3aEGSshaNxqTnmjoH6vgHcUvGPg7BZYa4C2\npn429fTjNfQ3v36vgC+lFC+++GVmZ2f/3j8rcwg5DKOUTDaiRwWHShps7x3RiNGtJ5CnzTU2fi5B\nJG86vacNs0AlnxEfarQS/6pj//EtBmsD/vWBaaIZMNwSGPZLhp2CiW5Bv9Oi3crRVmO1SsVGQKja\ne3RKFNHRooh4LR5AdlhiRhXF1btUvZ342klBSlP2urC4fhs72cWtDKhqSZ2p6oqBiwyqSOVFUuyj\novaR4MXkOLOWzBqqlOooDYfB6EieWfFdUaCNQqf0Lq1UGorLd6X1RhsfhaFlkpTIpoQsj0y4lBGP\nsjpAMMIi09pQOzGwdEJhw3vWZZiZ0bSKPCXJ1LgAmTV0uxmjOlB7kTIGreUwIPFl674/0kEpXFUz\nGgwYjUaUo5I6XacYgkzBgiKkBipqoZMrLdf57tqIOnxeD4PNxKGZTKSNtKrgWgbvwZ0zO/jZi8+z\npZhHPRN5aNeH9N8fyX47DYtHery78yjfMV/nl8NnWDozLRP/6xFGQ2TDbcu1tEhAV17RZY1+vSLn\n8dEG6AVyzL6+CPZfQ/ct2PdHN9m7/Rb2+1HMdmvo7PEce+k846+s4Kc18wdneG/1GDdbO2gzhGQI\n3PrYK25p+XvawHMwexr+SQmX56FtYM8sFF+BwVM5F4qDXPb7Wa77cADBiy6TPL46cHMXjHI2Nu7N\nev6mAP1D35fAhrFNY8rZcNMaRtdmmrBiI8Zr89r8fBrD6D4bOv0JBNFrvLgM8Tds2gAAIABJREFU\n3I9wTRHPZFx6+BA/PfgCs/1bvPinP2P77gWm3k9PZRZGT1l+dfhhfpB9mTerp1h6f0qMNO9E8I2J\n5YiPmiB/NsyAyX6PTjsXU/YExhsjviemVRDaObrdwrRaRGuoUcIC6xiylgBA2uhk7RQE0ApOwCEl\nhABDRCejX6EEeakJaU8KUbymvJQUVNQpHdGIZkIFYlB4pUQWaJJXmkrgnFZJUilymaKd0e93mb4/\noBVh96jiBul5NZICL7HptQvUrqasSyKeVqdFp9cmz8A4hx4NheGlRfqHMgRXEusancA9pS06gIlN\nIi8y+E0eZjrtmdroRA5TKIw0gkpknDFA5oE6EJ1aT6xcb5tVFCBKWbTNaClLTkvArCyTIUOeS6S8\ns5jc4Fy9YUTvXWJGZDKwCCaBjyDeXhalk5dZY1UQFaS0Ru893gXx6ExS1KqEwShQVojPTxRmmlNR\nDJwBpQ1GK4ISGph3HnTERzGlDkqzOhwwqj5vfo9NIzJEwPPbsDoGp/vQhYox3nnxae4c3sHrk0+z\nXd+ioGRAm5vs5MKtwyyc2Ub8sZZY9/MRvASVUGyRTuiLoF5xbH36Fse3vc3DnGGW27QYcb8/weX+\nPt7f/xCDUY/7i1PkEyMe7r/LQS4wyT0chjtTs5zbf4j3rp/g4uUj/Pjwi+zNrvDA2CUmWmt0FBKW\nkF5VDbz+Fsy+B4feh/5y4KGJSzAJR4+e49ijZ9jWvsvd3gx1L+f6zC7O7DvK2SNHWdk6LWd/b+Hi\nLBvylYY92wA9m1lfDfCl2PAHa5qJxKaLk7DSh5U26J6k3rZgLUzx6nNf5toDezjQEWazxbPCGFfc\nHi7NHyZ8u83JZ5/m6uEDvDpzjcn8HprAauhxc2EX81e2Ub3WgV8AbwG3K6SazrM+4V/ZDh9MwPWW\nlIEe0rg15f9elETL0QrCElhIrzH5GXwkjCVRg9cbmqYmbTb7//wsrS39mQPodhc71mE0HKIqx1hr\niqhgWJbkRRvsBJ2oUVlG9J7VwRquWsXmhrzokRWKwbCkcsLeIUZGqyuMfCRTsv8H0tlSpcGIFj9J\nfKByNVoZilaBtTl17RgMBjjn6XZ6ZJnItJu9KLO5+NC6GpfYqEpFfFUTyVG2RcTiY5BhMoo8a1Hk\n4i3VaRf4usY7UTrYrECbnLxoYawwwRr5PipgvMcOh2TXrlI++QxaG7J2B2s1rsoIboBzQwkqUWHd\n74oY8VXFyNfUrmF7hnXfMq0CLtQQg9Q+pcm0xriIVo5ABTZDGUOrmxPqcXxucNWQcrhK9FUabmjK\n0SqtVgulc5G724Kx3piQAJQGnYM2ZCYjhsBouErUll67g81bYDNc9JBpYSNL6hZ1CHgl9S/LC6ID\n7Q11cAJ8abBGgVEUEWoVKF3JYDTAe42vaogFnd4kdVACDtqMXrvHWt4B7YnGMwwKpTKIGmsNg5WF\nz+4/xieuzSBIku3dL+AW3L+xhbNbD/P+2GH2PXuN7oURL1g4fENa35ld0PsDqF5RnGwf5xwPMLoy\nsUEaDY0X7mYp4D92v2hYaM3v9a+5LawHphhSMJ3D4DFVhI+pQCCNjhOeZHEYXPrc/B0e6u+8HBuB\nAmHTnzef+2FDsTFEgK3NSYtsuk0DLm321Gquc3PaaurXZsbu5pCtNhKnvBPaU3AUeBF4BXY8doVD\nkx9w2J5jknt4NAts4cLBQ3xw5CEWdm8n9o2wM9/bIv4I69YsTU9g+G33A79XwFe/P843vv6tvxfb\nC5qDNzS0yPUmI0WwE6GqKlq6JmTJ4wtSZLEUEJG4hGTbIuwoY0w6eAvrydXSLJncsnJ0H2vLI7Zu\n6XPjxl1u3VxksFoyHGsx6uRUY20mx7t0xrpoa0V7bxQhKrROPiRIwxEbOmFmGGyd4Od/+hyu3WK4\nuspoOMDX0lhZo2jlkm6mjHgRjIYVw1HJqK4Z6gwXdZJ9CJDovRj8EjTGyOsmpHQzHbFaElCKwlC0\nLHluJVQgmauEGCAkiabRGJIyxId1WZCkY6XUyijSF21y0CLTVFqDNmJmHAMEAfMg4Fwtkk/v5Tkb\ngw6RqnZE50FpxFtaibFuAJRBaSsHlSRDUkoaN2UMo9VV5u7OsTi/gHMO71xi9WmRkUYlwJeTIAOv\nkvRJaSofuLv2eWtyNq/Nm2DNRhrVIlzrwnsQfpJzeuJJeBQWWtM8cehN9uy9TjsOGeg2F+xB3uRJ\nXuV5PnznUcKrVib+N5uJfwK+GiOLGrzLGNBhkLXpja0ynsmxeik9m3HgRwMYex+ePw+HHDATWfp3\n8O6KbPeHDey9Gtmd3+HZb7zGe8UxrrR3s+CnuWO2Uh1W5A9Hnn8PyiDPZDvw0CToI1Dug7ceeILn\nyrfYuRNmr4DKQD0I7muKs4/u4zXzBa7GPRzf+w6j3R3u1jPMnZ2Ft3KRxryWwdlZqBuDxmYzb5hN\n/xjvk82ToI/7qHzaRKlhh22+j8hHI5wnkSefdPrdDCYV9JTcrEYu8EXgJKzumuLHW7+M6XsWtm7h\n0a+dYtdXrmOiY1mPczZ/gF/oZ/ker3D25HHiLy28D9wJbBgiN9fls/OCyaxhqi+Hd6UF5FMkD8K8\ngHaO6hS0+mO02h1CUIy8JGNZrdFKrUeSay3Tc1dV2OgSg1akH1E39O1kYpVAL4KkMoYQiFrLcCX4\ntIdrbBaxIoARg2Ale3rUIpsTID79XJTmiiSbKVqWe7sm+MtvPsxSbimGFf/stQv8Xyf2AyJVMWQ4\nHxkNhywtLzMsh3R7HaZmpsiyFkWm0CZgvXhf+SCgVPCO4EqR+itJsVpPZiRJ+tYTjA3rMSVK9vgQ\n098lDxStRG6DESk/3qJ9SJLCxLeOCexVOUFbuebJNF9lFpVl2DzDWImVz7QSj8cY8a7GuQqjNCbP\nxNBeoheTZ5fs/coYtBYfx6h0ki02ssSI8wGfCByhhuEoMBhFSqepg5VBUIy4qKmVJLMZjNxHnSjZ\nqd47paiTWf6gGvwdAnZ+16s59DY1YBG4CfMGXu/CAPzdFtcePsjN/XsxMx4MxFLh5zThnIXTSvyg\nTgNLy/Lzag9stXAC+LJn15cu8kr/b/gK3+dp/wbb7y5gy8BgquD9/kHO2wdY63W40tsHRL7IqxwL\np9m6uETdMlzrbeNtHud7O27x3swxWmbETbazvKXPxJE19h2A4xdk7mIRgsGbEbIhrL4Pzy6Kb1Z7\nGtrP1Bz80+v8l6/8G0ypGfQMF4qDvF48zQ/3vMRPv/FlFqvtUpSW2rAwy0eNej/No23zvt00/03T\nsZLuow20IGyHK7sl+XagGN7sc/bYcS7seQgzLQyjOFS4W4Zw1sJ3wF3JmTu8g/k929AT6TZrinDN\nwAUlg6H3gJsflyhueg71JNybhPvdNAVKlJc4griWbj9AhiRbEWSsKQ6Nh9kKG7H0a+mabJbNf15M\nujeWzQrGtuwFFOWoZLg6okckMy0cFtuZJutvYYQmOo+Nnu7EMnFtAT+oaBeKdscwqgcsr67ggqN2\nHms0K8OBXIEINkBQkaBUYnIFCGCyXOSG2lErR2EkaKoqPUQZJJelnBfzPN8UomHQUUAUCR+Rc74y\nFq0LTNZBE3GjESHWtLKcIjfkeUaR52gttUynPkTpDGWy9QG01lpYz1rOFW5mhtv//f9I6I1hYiRE\nSQnSOsPSwhNwdSWeiCEFgHiPBuqyIuBBO2G4eVHPKFTyBauSV6IXby2dE734fRGEKa21RpuMdqeL\nz3J8NSAvcqrhKnVdQohYLQnqKnq6nTbWtkW+qTRRaZTJUMZibIFVkRgrqFapB5kw4oyh1W5j84zo\namFHeyc12g3xviTTkBU5dW2oK+k9fF2CDontHal8zepoSBW8eEZWIyqjyayCKuIqh9eK8bEJBr0e\nzg0pq0rICiqjyAusCpSjlc/qv8WnrM1SuAFwD+524Sr4UwUnH36EH+cvsvXIHC/+V6/T3g/7LqYf\nOwTllxVvHDzBj3mRU/cew52x4o97D0SC1ygBmuHtPwb8sh/73oBHzWrOnQ2YBFCLFUsJcWBZdeMs\n5lMsT3WY3D3gsIHTToQrFnjIwsR2YCfMs4VlxgkDvVEKYvP8m7P/P3Q1tfjTmFCb5ZCNjUmDwG0e\nfDfXtBnGN6zuj6/m+jer6R8yZN/vIT3DNOwDngS+Cg986RQv5d/nBX7GcU6xzd3FKcsds41fmcf4\n6ewLfP/rL3NdH05lz8KlHUi9WEHe/6Yn+CTbgN/c+r0BvpRSvPyVV5id3f6p/w58+gE0agFrkuRO\n2EwBr2CEoookk/lUOJTekEpE8aoyJhdT+jS5kSVmu6KxV8lny3DvxUcJlWbf/IBHLswxd/kqf7N1\ngnp2Ctcv8OWQuLqGHR/HbJkkaylMZlMxUXiVphwBAY20JMRYa1npFJSDkpXVIatLK3jnKbI23XZB\nRWRUD6l8ZFgHBmXN6tqQpVHJahCWQJHlFHlOkeVoxCMGxGcmeo/zwgorsoyiyClySbLJcktR5Bhl\n0cpgbS4yGWPIi4Iss9Jc1RseOzqZCCsgJMp4lumUPoOwGECMNNGSIgMJ+BI9vsgoU+LlOotAroc2\nhugDVekoa0mpjMZCSuYU7zL5bBhj8RFu3bzF3J27VKORgPvpNkYLMGqaR0/JYXgnn4cAN1eH/z9w\nvWg268bjZQm4A3Uf3utDW+HJOXXvaW4f38nbY4+zNbtLWw0Zxha3qp1cXD7I3K92wo/SxP+DCGFZ\n7oeh3H+djKEWFYOVDje37uCS3c+Wx99lx6Pw8s/gvVK28cvpmc0DroZdpyD04K/vCaYCcM7Bn/wU\nth+P7PvSFfa0rnK0eJ+ajJM8yrED73PoW1fZPYz82TuwtAgzbXCHIFyD4i/g2Dc/4ObLU2zfsYi5\ngeyQB+DioV28ap/H4Phv1f9KKxsxoMPlYh/vPH6Cd3Y8zb2JGdkjKgPndiMN0YCNgu7YaBb+sWuz\nQebHi7r72N9v9g/YnGAzhhga7AR2QXcSdsnrZRdC/uqkp76EeBnfBn6quGd28J0vfosrs3s5nJ1l\nNhOJzQp9Lod9vL/6MNdOHiT80Eq88/kIcQkBvpbZkMNsPnj8btdYt0OvNybsUVsQIjjnZDCSF8Qi\nJx8bozsxiTUZ5aiiHJVQO0wAFTw6OjqZMHt9EAYYOmK1wkSPuJsHGrm8igGdUgFjYogF53AR0LX4\nMSiN1gYXI0VMEjwEWG9SsaA57oQUe+5RwROjAxXJMoNtF8RWRjdEHr5+j8Pzq/yrN8/zv5/Yg1eW\nHSsDbo110Qibth5WzK8OcZUjtwVFVpBbTXCa6BXexyRzlIZAjH4bFrQHr1DRoCLEKPVA9m0BvpTR\nmKxIMpwapZzIRI2kZ6koIS/WIyCTFyloDMKiJmqiyoVFZUSKrqwV767E+moYw5qIUUbqh7OYWq6h\nNnb9yolPWUSHJA3S4qW27i4WBZzzXqSOwUVC+l6XnsHIMSwDldPU3lJ7JdL/KBImZYwMZJIJdQjJ\nHFZrvDE4FOVwkOTxn7fV7BMdhAE6C2onTHZlwnsCOB7JDpZkMzWm44iVoR5Y3LKV9MBbSILUao3s\n3F3IJ2Cfgkeg/+QSXxr/MX/Ct/ny7Z8y9te1mHGtQntXyReffYfnZ9+hHLdcnt7JoOhy/MwZsp8g\nBaEDkw+ucvCrl9m25S5Xiz1MBWGVXZndwdavztFdcPzBD+Cpq/DGgmxFIDXliofFmxI2v20RXliA\n7TmMny1hHnpjsPXESfY+e5Pe1CqjLQU/ee4Vhpf7YtZ/vwt+AtnTGs+VhuX0SVV+c+phMwwZygsm\nY92xPxi4tgMGBVxXxPcMbtbgxpB6NGIjoesNDzcMvAdxxuDbRh6+TJf8NnAjwsow/eE60ro1YF3D\n0Lon709sJ3lOkyQckb16GtgPdkISTRpCQUPs8g7c/fTE5tlIBWtWxW+GxfGbXd2pHdiiDSFSrg3p\n5BktVeBWVwkx0uqOY4qCOiLAUNkmKoPtjqHUGoWtsFlkbm4+AVQqpZBH5ocj7g+G5C2NjUL2rXFE\nX8qYymR4LVI3pa3MAIMDH3ExpETZkAbMjuFQ6r02KXApOuGVpqTgPGujigLICVHOwj4qjLZ0ipxu\nYcgLi09eYt7nVFHALwlfymQ/T18xAf/Oe0xdUbdydHDgFbWLhMqte1dqY8hsQdQK7w0h1KiU7KEU\nAiAFJ3L54NHWSmvi/XoqrvcOnRjA68oanVKDoxeWcKYxNodcURnwwWGyjCafTHwdDSbJ1mOMIutH\nwqmKdh/nINdgdEv26Bhxg1VslmFSMIDz4t8chssE51FRQAW3btYPooWUAb6wexXBRQZrI5aWV6md\nsLnlNB1xwVOYjGpUUptIe6zH9OQ0g8ESK26JzOTSE2nF2vLnTea4eV8rWfeYHc7CWQtvw909e/nB\ncy+jisDcA9Mc33eamaUldIS7k31O2kf5GV/ke4OXuXVyN7yh4DywMuKjA4R/TDpso3xo7D02GfF/\nJE28AX+afTr1OiMP9wzcUMyvzXC+e4grW/bQ/9KHzF6M/MmrklrfUXD0EKhXYHCi4AOOcNnto76d\nyfY32NxDrfPWNz3+P2RtHqA092U23XdjW7K59myGeDYP3t3Hvv9tq7l2Kc2AaZjIxQfmC4HdT17k\na/l/4o/dv+eZK2/T+/lI0u4N7Dq4yJHnLrFt+1104fkPz3dZuLFTStFtC8MppCY1BeXv64n891+/\nN8DX+PgEL3zpRdGvf8JqAI5PAsBUAjI2syqUikQvhVwZjTFgtF3/jEsyYdO0CJCjg0fbfJ1x5pzH\nWklx8T6KYaQCg8TE51lBOw/sXBvByHH+5jwrKnBIT6NdzdOvn2fCw8U/fAa9Y5sc+I0UXaOEGZAp\nhVGR2st0W5Qmhrp2LC8PWLy3Ct4zPVWAzVGZwfmalapkYVCzMqgZVJH7tWallPhToyp6rRa9diTX\nGkOQxEkFLkbWSsegDPR7BUXRIrNgrcJmBptl2JiRZwV5lokcU2m0mOXQxKsKWKhkIkXEuZgAQiWy\nE2piYtbp5MsT1xH2SGi8whIrz2hDRIyJQxTKudJKmAxRU/qAC6CyDG2y9VTHBszSRoC2ubtz3Lxx\nnXI4WPeOMVokmFrHdSaGV4GohLVmosidqhBZKD/PbK9mNUa9jd66+arh3m54YxKudoknLXce2sud\ngztpzQwwLY/HMLrbgcsWPkSmzecCrCwjO+Ei69TWUMGiSOhWro1zZvfDvJE9xZ5nbzA7v8jxCTh0\nAd65CJeXN57dKjBYhqGXe2zWXeCGg+13YGxljSem3+I473KDnVzkAD+YeJHRN17jkekPKb4NrZ/C\n25dh4VWYfUc8Cfphjf6+NZGGXEX6kQdh3yu3+NIjP6M1rJi6u0hW1lSdnPltW/hl/zRbZ+/yNy9+\ng4XV7XLmv6slYWU9ErjpEH4byW2bC/in/X1TJC0ytWmz3tCyB6bHpaF9HHgsYg5X9GZWyPMK7zVr\ny13Kiz14V4ms8zswuDXF28ef4cO9D9PpDtEESpeztjhGeaaT9PzAuxGW15AWs2F8Nd44n00jpI1m\nfGIS0+qBNngjbFYXHSHL8HkBRU7e7hFNRhUCo+QVqLzsp7iKXEXqusJZRabDOujeDEcITpi/zdwk\n+X9p0qE4eIJ3lFUtISFKo21GluXYkIuHig/keY7NJNWrqU3iDbyRTKjWmVURk4lUWwPe11x8aBqF\n540dfXo1PHxxkT86dZN/+/gBTm+dJNN9gvMsLC6ysrjESm+cfneMkLWosyiT0MyjCeBqtHdoaaEg\nIgw3YwjOpCopxr9JKY4KMrGPifEclEGrWmQeOgjep5SY7YeICaREM2F+eS/x8QpL0AJ6YY1IFK0h\nWgGtotEok2OCFYk6EK341Eg2ikQMiA+bPDfxVZN3rREJN3RjHyStWBIdpU475xlWNYOqZlgHSqcE\n+HIKFxRRxTTQkSQ0pRwmKIIqqZzDGIXptJjs9bl58bLUqs/NasByg+wTY4ifx3aY6sr+8CLYrwzZ\n+eB1Dk19wB6u0meZES1usoNzRx/g2pGDrG0fl3PyLzO4vl1kzh0Fu4EH4eDuMzzDL3n29huM/XnN\n8P+FG+fEBnJmHGbeEhJ2a6vjyNNXiMdB/Z+w9COYuwNZBtv2Q/ea57n/7hc8c/Mtugtr+NywMDPF\nB48e5ED3Cv3HR2z5Doz/xcbRWpH8HZFd6D7QW4TZd2H+e3B/DTot2PkI7FiY45X/7Ptca+3i/J4H\nufDQQ/ArDZcLWB5D9tJNsvBPZbE2jUdgo2Fp4ustG6lZARgIo2ypJ4/TVfIwOt1sFfFIKW/A5XG4\n1YEi2xjwe2BUQ1lCWEUGTnOkqBY2hjENKzlPV6Txu1EIEDcNHJAggukMdikJF5hg42LeB+Ys3JiG\nhT7U4+kfP/7aG8bB52f015/Zi1GKqqpQytLrFNRLARc9AUMrs/hQQYB65BkN1qjriNMtgsrJCwi5\nsG21j3gnLFgXAnP3lhmMSmLWkj0sOvA1hJrcZgQVcHWNskA02NyK6bn3YpuSGLRGG0KSARpjxWOS\nQIgGl5KH87yFtjlK5cRg8c5TVpXYe1hDnlmKPCfLc+og52NjMjITk1exJjMKbYQx3NQYY6wMMHyd\nPqqWgHgUhkrSG4MCgpezssoSOxeyTFLZQ3DgNTFA7SuiigJWGZP2U1HGaJURgqhn8kyjlUEpTww1\n0Yn83CiTZgeGGHKyuiCk5t1qS3DpzG0LjElBAFoYcZnNyNpttINYVgQXsEbIANQO5T1+bYVYZngU\nOtSE4RLOeZHax5oYPT5qvEuel0qjVCYpkkGG66urA8rKEzF45yi9J/hAFhUtrRi6kqrydNo5vd4E\ndVUR9ZCorah3TMbKYPkTPq2f9WoYwI1P1D0It+HqdnjDELuGc/FhVh7tc376EIeyC2zZMo8iMs8W\nzvEA7y4+xq2TOwnfy0V6fcmDa4DyVeRc+A/ZI5qa1YBe+Sd8fVz214DxbZIpFzgvFoYXYf7iNt7Y\n+iQPdM/S/8oy+7ObbD8G228jde0xWH6pw89mvsBrfIHLtw8SPjByzF31yD6bhvy/lSCnzbLEzdeh\neaxPqkXNCWczGPfr1ma5aCN37IDqwhYN+6B9dI1j/ZO8yI/5wrl36P2bEfV34M5taem37YXuhRHP\n/9lrLOyb4mL/EK8en8a904IpDTfGkEF841f8G9OJfur6vQG+Dh44yIOHH/y1zK71SXoDgH0iSJua\ni9RUeufA1RTUkmQFKdnL4V1Kb9TgvHiW+BDkWKFERmeMsKWI0ozlxqA94DTKi2Tujacf57V2izsf\nnmdu7j5VnhM7BR+2c/bVnrmlFUKnw1i/j8kzgdyMQmPIjaQghhCIrsZXFdF5dIBnTl7iL6c7oA1j\nOmOkM0o0VYRlX7MwDMwtj7g/LFmqHWvDIVYp2nnOyCtKr+hklpYVo+VIpKw9S2sD8VQxCmsimVEU\nmSbLMoy2ZDqT36eUrRDTRL8xBw4Oo8TnpgEF4/pGmHzR0psiklL5xdVOYu+DlyTL9G+1Exq1qz0O\nDdoSdaQOYrbpoiEoK4VMW3SWE9LEX0dSoo3m/vIq58+fZ3lpGR0hz6z4q5H8XJQSdQABdEQlrwOL\nFO3FqmbkP09Nzq9bzQbZHFYTUBE83M+kH2qSbkvLiP66OoIWcmYeI/mFNIfoVvpaRg7b92G+D+ct\n7u2CMw8c44c7X2JsZoWX/vMfsefROTo/gD3/C2xZlkGKRoK9xmcgDoVw2xjVd4C+BrqQnYOX3vs5\nsdDU+y3vH9zPqzzPzemtPFJ8iLsKpy7Cj2t5da0B+HfhxA/lKd79a7hYykt6ZBby246j3zqPvhhR\n7yD9w5YR019YZuqri9hdjpWZMX743NcYnBuHswpWehAa0/hVNjaSzyLu/ePAVxNFvBum+vAootP/\nSmTniQscLj5gj7nKuFpiRJvbYZbzRx7gwrHDlD8cg58A/x7CqZyV2WlWJthgGswhiOQlJAlttAzx\nCkIBWWLjMND4OfzuV1G0KcYmGUYrPg1oMBkhy3FZzsi08M5Qr0EVRgRXrjM8M22wSvYFAX4CMTSp\nveldDoGoHFHiQ8SsVyXD9lQnmp9zrqKqSobDksp50Ia8aNNud9KAIKcuamlcihxNM5knSVsEeFdG\n/KlCZiAalAETPUoJc+zCQ1sYqyM+KO4d3EI4fYv52TEKA0ZpJsY6+LpkNKoIdY0fOXwVUEUg1g5d\nCsClQ4WNgZZV5DqSETHBp+ZIpH1RG7RVKBOIQn8iKmFWYXTixRp0Ar7iprOYQZQjMSphSgTZq3UU\nH62QWFMxMaqiVjJ51wk8S0wBFZNAQOsNeWNKMib5z6jAxmMnrxwSQOmDI/hagKko8n3vHVVVMShH\nDMqSUe2oHFRO4zz4ILIaadpSarHx5C2LtgXeObJ2zo7de+h2upx96+Tv/sP/ty7NRlLsGLAV2pNw\nWMNzUHxrjWPH3uYl+wOe5g0e4BxTfoE10+MKe3mr8wQ/Pvoiv+x+iRU3KVvfUlsAkj4pNcuxn8sc\n4zTjb6/hvgdvvwG/9NKObF2Bh+/KTrHTwv6TkP0T+P/Ie68gS640v+93TGZeV7dcd1e1d2gP02jY\nRs9gAAzGYLBjuAySS0qxYqxCT3xQhEIPetAjXxV6kygGGSFSsYzdWEkc7iy4M7Nj4AYDN3ANoNHd\n6Ebbqrblr8nMY/TwZVYVoB3uzO5igNk9ERVVffuavJn3nnO+//c3Cz+EH52D81Hm5vtuwgkNI7sL\n9LOFMMEyx7bDNxj76gq3vtRlvjPBzjMz3L0T+helLhlHLnntolOXKdfehh/kAhNlwFcX4fAobL/n\nBkeOvseOzgUubN+P36Qh09W96tTcX8VCY/XDxtraWrMRQE6SZzVUwI3CfFcSwlSdglVCrIvP8xA7\nMByBYWfdMXhWPcRYRi5C/ff6tOFa+pKzxpJos+b3uBca47BPwxGkObKOrAvLAAAgAElEQVQLAb8a\nrKVvXgROKXgvhbObYFCnDNfveZ0h9ucE+NImYWzDNMbnFIOC5uQkMQQGxbBK020RjREZXl7gXCSx\nFjuyAUuJDku0syX8yhLNELCJpYwKgsaVJa6MDPMSNdrCaosrKyZLtR8vXA7WotGoxFAWJWXwRF9S\nFjlETaITjLEkNqsAKVkvtAlo08QHRbPVpNVqk9gMFRJcFOZYLIcYHcgSTZYKq0urBGsVRTFEoSoF\nClWD14lpe4xYrbFKJP1GKaJ3Ms+q2kdf1BR6tRoS2V8Ma9fWmASIOO2IOEoXKV1BjA7vSmySkftY\nNf0l5T3EiPMF1jpCNKggahhCCcFgtCQqRqVIE0tsNUXqqBRZ1gSl8WVAJxmNrIGu1hwXAqWTZk2a\npERnKcs+ynlMUpXaPuDzPj66qtEd8C4nuBKtFamumGCoKhilkuhjqjUCiqJkaXkF5yOli+RFgfOB\nTBlSH8AX2CoAJ/oIxlJEg1eagEInGej0c8oC9sj8sA74YgZ6TXh3ApTCrWRcubKHG4e38eLWPq2R\nJbQOrCx2Ka50KE5lEhLyOsLu7S/Kc6zOe0DNuP6V54oaLFkPeLURQKuJ7HXrFEHLGou1j8x7TUT1\nsBk6lQnwKXCvNHh96wnGti/iJhNOPPUSex79iO5SnzJTXO1u4Y3mvfxIf5nnB48x/+YmeFvJXDjo\nIXvd+jVq8Otvwvj6VUb4JX//dUcNfNXnrmKB20wW0e3Q3tzjgD7NMd5g5LkBw+/Cc+/DySCPun8G\nTpQwtmuFu7a8x770DCc3H2Vu8zSMKZhJIdbSec2nf47+ngBfSikeevg4Y2Pjv+YDqbrZFVhWATGq\nkm4YrRkOBpQri5jg1oDKGKtNuCQSUm3C1z+X1hJdW9OLY1Ak1pIa6dKXRcAXpRjhNzLSsVGyxFIq\nzSD3XHM5LzYyzm1uM7bSo5y9wXBQMDo+TqPVoOapGSMgXu4dOE8sPaF0fOO7PyPrDXnDGN5sNVCL\nfRa8JlqLHwxZXlzgUn/IQq9gPneslJ6yFPpyZgsGhUgaXZZAK8NGGBaOpcUVVgY5I5nB6rDO2D6R\ngsiBSiqRTgg459HWVDKeSOkc0blKLiNfXO9D5ZcW1klEhdZcOodzAR8F8HJVqlbpPTFGXFAURUnu\nPC4II81L3hieSIiR3INDoW0qXgBaOgeqSmKzWpPnBTOXrrB4ew4TReefJQajKslM9QEJSuGoDEFV\nwFTS2GgMCyt9fnvGeo14bWY4DWYKdqVwHDgeSR7MmTg8y47WRbosE1HcZpLLc7tZfG8C/1IKXQWv\npTC7E2LtGbMCLMBwCs5beB2Wpjby4288yXA041J7Bw/e9ypfufIC2++Hbz4LF0poKji2CcwXYHIO\nHr0l6So5cDiB/fuBDOK/gXA1oJuB1hHHsd/5gPLRDJ06uAXDG/J8NXG4jyRH3nsWrs3D95ak8aOB\nSxfhWz8G4yLFq3D5LbgVYEsGm0/CpnKBR/7Jy5wd3cepjXdyfm8Xtii4mEKvjnipO+mfFeOvXsAM\nsrLXBW0X9il4JGK/PuTw0bd4Iv0pD4ZX2Zufp+uXyHWDq+lm3sqO8tz+L/Fy8wssxUl4RomM1SAf\nEVO9veUoTL4VD/EmIrG5gZSZi6xtBH4ZU+3TH63xjRSmwUruKX0gbURSa8FYnLKUIcEXMCiGLC96\nEu0JXnytUmtoWktDA1aLjFxVS/YqEl9LHAMV9FM1VoRmpIhoHdFKeEZj/YL/8bkr/Mujo9zEM50v\ncrPbodXo0Gy2yBoJmVf8wX98jf/w3zxGPjFCmmaSFplatFVgjDCiorBNKSPau8prMRKt+JeBJbQa\n/Ns/OE4sAo2hY9AvGDGe/3ZmkT/Z0GHZWqIrKcsCVRpUoaXjbQJaB1IDqVakSpHoKJ1zIjqIrXuM\nEHCrYFeMpoLSRQqktEJZUzEFQiVljKsySWmkVH/HKDIXFCaK339UEJTC64qtVcl95LlruWKtf5Gi\nimo9oQLTQggVAMkqSztEYQnHUPlDBieSIV/iXElZDhkM+/QHA4aFMLiKECkDlEHLpzkaYpD0Zx0q\n6ZDWZFmGakaydpOxsXE+OnUaV36e0n3Xg+OaVQ9ANQkTBg6CesSz9+ApnrbP8O3ye9x57hTpq1G+\n4qO3OXTXRfbfe5aJ5hxht+bZR7+Gn0nhioKlVKbCNtjRAePMs2FlgeRyoHcRzniBZUBKoatCtGGk\ngKd/AQcOwo0rAnrVK+n7Hh46K6Enl56H08vSZjj8CozN9bHdkqv3TpI/Zej0PE/+DOI1oANnzsHl\n/lpA/F4Db+drsvoB4h+56wy0zsP00euMq3l0N+Dr4NuPMaR+3VHL1evH9tfdVqUp00bm6ybE9dH1\nNXB1g7V4+0+yGoaseSmuN+JfP/fWLI66IKzlrZPANmiOSfrmCVDHPdmxnM27zrPZXqPBgCENrrlp\nZi7uIX+zQZw20NRwchT629YdZ83kqM2ZP3vwq9kaoWNS+vNzqGwanY7QX5nBFQPxt2q0iUlT8HIb\naCWQNMbwzYye7zGqW2xrO4aL8wxbhgWvmS8LnC9RIWJ0wtJKj3xjl1ZqsBhQVqK9vXRCYhQWVAgF\nsfKzEhk54pUYhNHrvMyeNjGkVnzYkrRNmrVpNBuVVxYQRInihn0S5dEppAlYE8T7l4hSpgoUEZWE\nzE/CqhXqrREPr2oN8NYRlcFEjYqG4CpJYsWE1caSWEuIkWExZGWlT5raCqjTKBK09ihtiRhKX4Iv\niUrM9wMSMoASf0gdNd47TOWjqaIBh/hYGivMr8qTMaOBMQbnHBphdUWrkDAVua/CkhmDczlhsIzK\nRjAGSkqCd7g8x+WuWsMCPh9UjRVFcGXFqjZVYyviylKa8UqtWhfo6PDOc/P2AnedP8/9i33+7fQe\nOWZraZgEW8p60sismNgrxcBHcqj8mCMKjSuGuOLzkvL7ybHeR2qBVYn3soY3ujBn4Lym2NugmGqw\nMjIhX/cFpHN9BTiHNEULQKUQN7A2L6wfv4o8+pMN3Xpv20VqlglgDFQLdItVRm0sIdSehCmY7bDZ\nCrh/CNgX0Vs94S3Li83HmJsY5/30MLuzjxidWKQg5SpbeN8f4Rf9+7j2/B74KeJpecUhypZ5Pp5g\nvl5q+Ns41rHBrZVlohNptJeY4jrbF67Babg4C6+FNS7ayx52noZtp2FjeZ2N2U2azYEYN7cAY8DV\n69ev57/+1x1/L4CvDRs28NCDD4upejVEVvFXU/1U1cKP9ZdPKhsxeI+wvLTEcGkOnEcnFlMtKKvP\nrysPL6WJQUCVekIWU2TpRisj6U91wmL0gVAKW6hhE8baTaZHO+hum8nRUcJwwEosudHrV34xwnjy\nPrJpappGK8V5jy8CQQV8IV384ANWG37yjx5n9ORHzBgYzt5kfuY6wS4Qk4x/cfMW7cGQ/3m0w0AB\niSIxlgmj2TMoeDnAcl6QWI0iYBMDVjEcDFhY7KG9Z6xlyazC6ohNLEnakGKkArAUsqivdsC8r1IR\nPSoEMZ+vTC1RcfV8hurcKjQ+OvqDgWwKKi8wAbOEiVf6gPOQFw4XIh5D6SNlDHik8++jwmNAW4xJ\n8crgY8VMoNLth8DtGzeZv3ED6z2pNSRWYa2pJDO1Eb/BKSWbiYoFJobKGctYlsvPn7nrLx+Kj3f9\nNwBbYLohEfRPRMa/fJ1jW1/lAfM6BzjNJLfxaK4zzXsTR3jliw/x3oZ76TVGq9CnBsxPIRv6a8ii\ncxtmWvCGghQWiymeffArnN1+gLHuAoceP81Wf4Odu2DnVaQWOwzxixBn4EAK298D56CzAzgIw9fg\n7Ovw4VAYYHedhE2DyN0Tp7h8dAq6kHZhg4EPq3UoQZrYGLi2IkcHslydA27PwsZ34I2T8FKQdzCa\nw1dfh0O7YfuJGe4Y/ZBNI7Nc3LIXP5lKJGSvLkbqRb2OJ/5Njfp1axp4bVBZF7SJFLQPBfbdeYpv\npn/Gt8N/4tB75+m8PZAT0YHDd57hyF2nmRidw283PPuFJ/FXmkKfOAnQk4+Mh7WO4AKy+NeBBjXT\nr/Y7+2yKH5O1SMc3M4iGoY84r/DBEGMC0eCjFfZODKAiro6gd5GyGDIg4pspwSpsagmpRVF7Dgro\nJIBXIKg6WmTV4n1NOK8rKbe1HJ4rSQMcDil+uc9/fXaZ/21X4NRkpBwWNFsN9t9YgRgZf/8i5w9v\nwzcysryBbSQcOHmR88f3oY0iGo0PWuSFQRhSHiWkKA3aGoxJiFFTlBHUgKIIjJZDJvOSx4YFf5EJ\nA6B0OZQam0d01JVkXWGNWfV3MUr4W1KkRJkPowYl3l1RI36TNUBFLQ0PBGWIyqPwq/tbWWGVMLYi\nVGgWShn5JsX1cEGdoCi+NVFVkFcFiNXMYEHKSirLl1UQLkQJBpAUybB6pVxliB+8I3hhKJRuwGC4\nzEq/Ry/PJdEYAe1cUAQMVZ4ZwYvEPVRAqFaAFfaCKz2Xzl/g3AenfwOf9l931B3XFCkiumA60hDf\nD+27Fjne+DlfCX/BsVfehz+ClZ/B4i1od6B7F+z53Vme+MazzHY3c/bgPi4dPihzxOlqu1ldZ4/B\nG02sQp7Wi+PC2t1YBs4WcGCmckL4xNHGbXDzZfjhstRVBrh1Db72IiTHS9xRy7sP7GfP+GVGH11B\n35AX2PWH8Dsn4WYPxhuwYxx+euH/f0Zi3QCtEdLadPRjR/s3GZG1NCtYS9+qE5DrNcR+4v4lMs/W\n8fbr15maTVY/l1v3mPr2+gybdb/rwnEDpBtgn4ETYL5RsO2h8zzQfYV7eYtdfMQIy6wwwgW7i7f2\nHuW1TQ9xeWwPTmUw1HBqEoqabVb793z6iV2/6mglLUy/IKQZdrRJGfr44TJJCNisjWqN4xvjlMMe\nBo+KBdFrSh8xeMYb0IlD4nBIDIYyL7AaGonBxUBZltxeWGBYbiAkRligxoDyRJ1LUzQoyuAIeFRE\ngHIqyxQl3oU+KoIXhlVCQmpbJEmbJG1jGxnGaEJ0qwBZUTiZc7TGaJHnuUolEZwGHar6xROieDfF\nAMPSEfqBsdEJSeB1cmyWFJNmFWNW+jo+RmKVFA9VnRQDijoBXSMiDknQjcqCSilLjQ9GEuirfX9e\nOFSm0Yl8dmPlK5aaVFi4zqGNyM6JXrwYq3nVKENqxRLAe49SJUmSoFC4MidNMkyFFyscrPQIRYmy\nCYYhwedEDDoAqAoYFLYvKEkFjoHoHJ6wCoDJSi6pyqEsKfMhS8vL3F4e8MjtRZLBADuZE0IkyxoY\n5yhdj6SVYoyEczmgUBqVZZIkHRUGjS9WcOXn0RJlvVdszUirObMOhtNwdhKuN+B9LRvqKQR7qjGp\nHdVt+xEBwOUOzGSQd1ljZdXjV5FHr2d6NRHAq5LmMw3pKIxkArKMsia26GUw34aVDbId3W7hIeAE\n2ON9pnZcY2pihjG7QEQx78b4uTnO88WjaBdw3rLSG2Pu2iTDdzrwGvAycCZCuM2aumF9UuXnY977\nmw+19ktVKgACqnqLlYvE6iio9nEOTGXzodZv9j6D8fcC+Dp2733s27d/lW1Vj78M/KrvU2+qRfGo\nVgEvudayyR7kJf3FOfxgRbo31XP4EKqJFnSIknao5UfbBJR0Poi6imxXGFMBbFWGe/AeVwZUtCQK\nxppNDuzYiu92SMe6UOTE3gplb4m5PK8WHoWam+een77B7D/7Olkzo3QFpcuJzqHRItNppKQJLNx9\nB1tuzLHc63Pp5hxzKwNynfFS7tmG4XaweBtROpCYyB/fWmI0BP6r7ggXa/pw8PTyIf1iQK8/IPpI\n22hSo0gThVICfNkkwSqDNRalFM6VaG3EtyaCd45QhQAQqQIAKv8aJR1C5yTKWfAzT54XlE7SX2KQ\nxBwfxTvHOU8pPswidXQQK8N6H8FFBAwLCq91ZWxsJJwgxFWDTe8Di0sLXL82Qz5YIVGR1CgSI6Xu\nWtEUCdiK6h0l4jhqtLJknVFml3rkvzUyx3oDXaPwHWQj3IZ9wAPQ+NoCj27+KU+rZ3iCHzP9zgL2\nhgMD+daUc7tfY0dyicb+nFeLRxjeGoFrGnpjUIyx1s0ek7VquvqZBMYCqhH5CU9gRj0nnn6Jfcc/\npHUz4DO4OTXKhZHdbChusWf/VVpno+znLwOX4PJJ+PFQlh0dYPk6fOdFaJ3IWTgwSTx8ifQYPHQG\nimtyv83A0W3AAWhc/vh83AGyFAYLcLYU+AYE0jnr4OBlSK7D+JE5RuwypuPwzVQ6u6sL86evW//4\nqF+7ltHUHgiW1eLGdKWg3QfZ0WUebL3Ck/wF975yCvtHgfgczF2G9hg0jkV2/oNZvvbNn3BtZIoP\nD+zl4p2HpaD9EOhVAQirbIUBa8b+q5pYPi6v+QyGUrQ3bUc3RysZXEksPKUS8IpKqhajFDcGIARK\nX+DLkrLwKK1IbET5QKbAeUfwwlgNKhCVJ2gB7oMoX+S11FrNvCp31JLo+87BjVydGmG2kzK6MCSe\nO8fy5DhWRVzuyGPOmxNt5o/v5eZkBzO/zND2yBoZD569ztHXzzN+6SZvfPt+8feK8nmrjdpVBTYp\nrUmswSQJWidkDWFX+eBZJPCHD2zhlrEYIz6KwedYb4glKJ2QGEuqNYlC0hx1IAZd+bxU0F4UoFB+\n6jVVVaCfAmWIWpomOgojjlABDGr1aOXeFcNL1bepKkRl/Re0WjNjbcxcg15Vg0QaVRICUK+v9Y+v\nZPb1vK2AEDzOlyJz9CXOOUpXkOd9BsMe/WGPYe7IHZRBrASoZY2IfyRVA0bF2uAfohNGxzAfsnjr\nJv2VlU/5w/7XHbVsrwK/jJEiZhdsmbrEEd7j0JUP4T/D7T+D5y/BhSjlxmNXYUcC23fPcvdD77A3\n/ZBLe/bBtJF5vsJy3K02t3dMMJtt4tDuszQOeI5dhpWBQD0ZVco9MmO1kMdObYU9H0lKYwO4C0h2\nwrU3RWENMrvMAOV1yBZg14vXmD+6zBv77mJp1xhb3RXuGJxjotFnz8uw+yaorfKCR6/C1VIePwHc\n1YLmHmAHXGeKBcYJy3qtkf+3VtDUcsC6e1DPo+sBL/WJ+9c+NfXcvv4+q7tRPi6rhI/PvfXasE7G\nQheYgokU7gROBLYfP8c3Os/w9fh9Hlh6g+4HfcyyJ4wYFvc3+cXYO2wYucX3jz/FR8uHiDc03Exh\nZhNrgSY1+6w+nr+68fxpjk42glEW1czwuoSihDqhO2kQ0jZl2iIUQxQG5TXFsEfen6Pp5mnbPmFl\niY7N8FGhgicN0uz0KlB4z8JKn17uKDJNFqsUw+hX5yOjEqLOiMGjdXVOYtVUrZpVAWmES+ZSQpY0\nUST4MmBsNc8CdbiTd04sVYxAOb4MFFrsN4gFqBRltKhRlISyBCS0Q6HwxRBtIzah4iqL/5bWEU2o\n1kcF1spzhCjhHaV4GTaSJgGkeVB6cuflk6dSUA1KV+B9jovyefSlx9uAVg5FHVwlr6tqokGk8tPS\n1fsMGJOI5xdRPNPwkkIZvfhI+hKSGpzTAnzFiCuHxFAQKSHmRC9p7h5p0oiPsJP1LNZ+wbHqv9hq\nrpemRoiRsizpD3OW+kP6ZeD/uOMwK0srzHtP8NBSGlv0MFbTanVwJAy9J0fhjZFgFqTmUUA+XFpV\nu3z+Rv3drZu3NThVhWR4B/PbRAbeRQCuw8DuiJ7KUYnD9zKYTeAssn98JxGQfNmyxkBdb4XxyySP\n9dxVB4OMIAvVNmAHjDVgl4a98k8mkUWjQBaXWQXnEiHN3gt8GUaeusXRza/zkHmV/Zxmiut4LNft\nFKc4yGvmQd65dR+9n3XhqhZZyFnEz/hihMFtROt4C6lxBqwZ3H9er+mvOuqNUyGFdZVxkPc7zHfH\nuTXWZfOORbZNwL55sQK2CIlu82ZgB9y2kywwRl5kayrQEFhLmPzN1Mh/54EvYwz/+B//3l9qav9J\nIOzjt9deLJFQGeJSd5MjgKK/3KNYnEP7svpMiNlhDYIprfFBvLtkE25RSOdaRVnYVKwndumUe1H8\n433AFQUGSGJgNLVsnRinmJqgu3MHGujdvkXvxnX6166xWJbo3PPoK28xMrdM/yevkz91AhsUw7yU\nhUJrms0WSid4F7DGkBhNkohBcDF7k8Eg548TS64SwFSq24BWkf9+0yhP9IdcbSUYJwvmsAjkxaA6\nZ4ZEywJjjQBERitskkh6fOnF8N2KTt97L34B2lSEVaGhBi3dquhkohCZY6z+jlUEvbh+2TTFB/EW\ncz7gvHgUOC8+hd4LG0g6ZuI14ysvMedjZc9siKr6qbhaI70+C40G/d4S12eusrI4jw4OYxWpNYJp\nIAbWLkRCkCIqRNlgGBTWJKSNLpObd/LSlVf47Rk1fVjxsfjaKQX7QT0QOLrlDb7CX/CduWfY8MwC\n/BT8BUBD94jj3qc+oP14j5Wsw8zezXx4153wgYZLGdweRTbDU9BowyEFj4L+hmPvw+/xIK9yhPfY\nHi9jcbzUOM6bW4/S3DqgT4tZNnOBXWxLrvDg/a9ydPc7TP+7Bdyfwq234IqXJacuDWaAwQ1ozkPb\nLfPGtkMc/dZpxsvAt36OVFobgYeBvbDnNDyyAie99JAesjC6H8pCGGSq6mhoRNWhmhATKEnxGKLX\nVTBNvSH9m6TU/HXHevCyLmLrvxOgLUkYk8AO2LLtCkd4j7tnz2CeCSx8F164JGy3yTl4/AZs1TC9\n6zpHj7/NgeQMF3cehGkt+GWvgTC8brMmb1lv6F8v/p+drxeAbbRpT+2EtIFSmiSNOFNUKVkV9SRE\nDBFtIjp6XJlT5gNiCGhlSdOUiKJb5jz70kv8/tceo0gNqQWrK8ZXCHhVASlR4ttr5ldAGMBCIzFo\nA1YZ5jcmJAFWJjP+l2/fB8PI2LAgL4YE5/GF52orJXHiD+JKh89LXtwywq6RBj+4Zzud28t0Rjs0\nGgk+lvgg7OToRToj8fUJNknRxhIjtHQTbQ1ZM6PXymgNckLUIAQ4jNU004TUGrLE0kgSEh2qBK3K\nc4Uo8pcKYAPxz5I/ZdOnK8aXpJ5VzKigIFgwIjEEqnVWih7xWqxurtAu+aXqu6JiXfYLMyzWIFuE\nusCOMVTSnup6BJE7ym1rEkjxlHR4XxB8ifcl3hWU5ZA8H1IUJUXhKEtHWSJG11XasdLyymG15SnH\nIxKeaovgI0VesDI//ysxzj/bURncV9MFY7BR32ALMzSv5oR34cxFSdWtg1/by7DjJDTPF2y7Z5ZN\njZvY8SGu05aiY4HKA1Bz/p69vGvu5IFj7zD5OwscymHrL6A/AGfghWXpm+9QcGwK1D0wfhCe/gHc\ncx0aBjbvBzMGE01o9teE5C3AjUHxr8Hud0x/bZHWP3qT704+zX9Mv83drZPc90/eYNuXbmBuB2hB\n8pZjei7yey/DzBKMadh0HOJX4MrRSd7nEJd6O/AzRuqaYUR27+tZVH/TUaenxU/8+5eNGsSq1+v1\noy621oNgkbVmCHx8ra9ZE2NyUrcDd0L6YM7DnZ/zjfgMT597VrwdXwY/B8mkY/qBnKe/81PMPs9i\ne5SZB3YxPNOWhsiNUfEp4yZrktDPqM3/iTE2vol0bFISBssBMSQkjQ6BiNcp6IwQQFXhUMo7YjnA\nD25h+zdpdwqUM/T7sDIcUvQcKZZ+8Ks+VP3CsTIcMmwLW9WYWunA6qUIXva3QamK3QTRCfBSFB5U\nSqc9QqvVFr/HvAK2sgbBG2ncKoV3geCrRmwIOOeIqsAVQ7TROEQKqHQDgwXlwWiKUGIUJEaAF1fm\nsr9NBGRSWGLIiR5cxXqKGDSJmMz7gC9c5WGmCEg9oXykLHviixgkgVKplLKMFGWB81FUL0rYct55\njJJERq21pAgrSXGvAS+tE0xSWZIoA15VcktNYuR7IyFeEW1BxRLvSmn41KFTweGiWA0EXxK9BGnJ\nylwpR0KJ0RprNK4s8NXHNjhX+QGLiX/pIkXp6Oc5S4MhRYgsoritNIV3aJNhY6QRC7rNFo1mRq8w\nDPsrhCwlaWTE0EQZU7H5LLf7i5/F1+HXGCUfT7Ctw7BGQW2AzQncD3wxYr7g2HT/Je6wH7KJ6zQZ\nskKHS0d38MF9hxjcMUbcIIoh3unCyhbW0mbrfWM9R31yfq3nsVqZMol0z3fDdAZ3I+qUo4Fkb4nd\n0iNrDigGDdztFu6jlPCOEZP9Y5HOl+f5wrbn+Gb8Ho8WL7DvykXSSx4sDPZoPti4nx3JJZItJS8d\nfhz3bgbPIcDXQoHII2YRJG0OqUJqoP+3Se1Tj/q8w8dZwwW4HOZTuKHo3+xwbmovJ81dbHrkJTqn\nA/9wAGduSe//jq1gvw6DE4YzjTs4F/ayPNeVPvlSFP++33DY1d954Ovhhx/hyJE7f6m08ZdKHism\nVqyYVNR0d1UthEVBf+EmvjeHCo4YHDFaYtTitWIq6UVUVf0rnWitdWUyKYuMmErW/EApi4JXYtRe\nlhijaVhFN0volylqfJSNm6dwxrDQbpCNdDBZg+T6Tbq3F/mzew9x4sIMs1s2sPX2Aq12A10GSeJK\nErJ2A51k5KXDJpZGs0Gj3SLrNGl2mrx3aYbZxaF0vV0kRk20GmUUl23C/zmiMSGKB4v3lF6hdcRY\ni0akf1mi6DQsqVXYxKJNgtUWbcQKM8ZYec1I0aSr2HilIi468UgQkxjpRrmyMrqvwC/hCFRFlCxU\nIUqAgA8KH6QY8RWrK2JQRuERmnrpAyVKUsK0ldSXCvAKUXHo6lV+/4UX+VcP3s/zeJaXlquoZQEL\njdGS4OKDpNagCFFXzC/xKzBG02iOsGv/nVzLHUv93yZ/L1ib9OrNcFqZEsPY3uvcxbvcP/wF488v\nov4Qzv0czi7JI+56D6YWYP/4ZR566GXe6hzl0h37KbY1xDN3rg2xC3oSdhi4F+xjOYeOvs1TPMOT\n5U84fPM0kzdvo8tAb7TNjelNvDBynJd5mDe5F4gs0eUobzF9aj2twdYAACAASURBVIH4LLz9Jjxf\nhQ+lrOVlbQaaU8A4LNsu5/RuzPHA7qnLjH65D8vgN8DS3hFscIzcHPD4D+DOGUgMjB4AHoPkHNx/\nHvJbUr9NAUc3AvfA0q4mV9jKrf5G3FwiDe686o58rNv+aXd9arbGejPKJmtmnwlSgdq1gnYcNnCT\nzcySXc6Jp+DsVXiXNSeH5gr87rvQuFCy+d7rbGjeIpnsUY6MyNOubj4K5M3XC2UNdK2X13x2BX9z\nYop0ZBznPaUL+KiIWoItojbUaYyGiHIO5wvKPMc7hzXCXNXG4IPnyzduYELkgWs3eXO0VUMsMg+o\nuEYsWkcyqshAlSTPgKlkf1G67RYtCVhaWANp0qAsMvJhji9zfO7QvmbRGgFUisD/dWIvZmGZWEna\nu2MtEhvXzYviiaW1RdsEbROZO2PEpimdrEGj06bTzcmHOaVXeNvCNNo0Wi1aWYo1Il1PrEJHJ/Nw\nrObB6DFojIoYs7pcCjhGAONB1VwuLedHVaw0XSdBigRnlT1dgWTEVcHiKqhFfR6pA2X06k+kaiLW\n8sX6p74Gq+BX3XCqm09BZI2+JFa/vStwZUGR55SFoywCrox4J546sQbjgifGArRBr0oAoPbFiEpD\ntRco+gOKz326bw22qDVCkZEmmMWhykAspERZX47ksErs0TEIazJxuHpaGjq4ZOF9OHdkPy/s/wKb\nx2f58neeY8O2ebonI90qhPCbL8HKMnTHofUwxG/DsJPSPFiw7yLSbc/kADbdCQ+9BWcKmdY2AT/4\nUI7p8AU4tAzt8ZynHvwRJ9qvcnHTVn6cPsFwR4PujkUa5Bzf8Cp7ulfpPAj7bwJd8McU10+M8xP7\nGC/748x+tKNq4AD9IVXGMH+7Xf2aVbH+OlTXAv2JM15zSP9Lr1v/3yfZv/U6sZ6VXLEnEiUL527Y\nteMDjvEL7rvxNvzfMPgj+OAUXClgWwIHzkDLwX1/8BbvTx/i9W33cXrPMVkgUwWu9in7VQMAPv2h\nlGJ8ajvOtoh5H3RAdSaJfoncBZSyaGUr1mbVfC1zQtFD5UuYYglV9NGuoNWy+FSRUzLwCUV/SGY0\nefD0+kMWFpbIOwlNIyKfEDzBe/HL8o7SiTWGzCEegseXDuc8adpgbHyUdreLslYatmVOmrawiUKp\nEu8VymZVXRFXU87LsofOB3gn39JAxJiE1DZIswyTSMquJ+CdRwUnc6i1FKUnxhKbpFgrPrVayXkw\nJkGrBIKq5tqAC55gLJiMNGuQpAn5YJlBPkCHHIOoLKxNxby98LiyIDGWRqOFURqrJEldAC9ZJxSS\noKiN+H0RECP8RIIYAtJoVkiTHRUguMrbGFBybgkKpSzeDQmhQGkkATiCrCIKIjgXVmu8OlyrrhEj\nVWiAUihjcd4zHDrKsmSp12dlWLDQ77M8GDDIB6RJk1ajSSc6uomm3bBVCIuhnw9Q0ZE0MnKl6YyM\n41wgsZEi7312X4xfa9SN1coLkk0w2hGKzxcizaeWuGffL/iifYGjvMWO8jLNMmchG+Gs2cfrm+7n\nxSe+yPn2QcqiAQMN701CsYR0o2tabW1s8JfNHbW3V52ashU2pAJ4PQaNJ1fYuucCRzrvspOLdFhh\n0G0yOzXNB/sPcW7vQVY2jaK3R/Zvf48n+RHfWvxztv74BvwQ/BlQGTT3B+796gc0H83pd1tcPzTF\n6WP3Cuh1FmTPexUBvRZYCxGpm96fZOJ+nke9Pqzz9Frd0VVqjjCAuQ58pOid7fDO7nt4vvMoG47O\nceT3z5LtKTnyUfXw/TD8ouXNvXfzovoC76/cyfDdEfF5ux1ZU4XU1/rTZ8b9nQa+Wq0WTz31DYwV\n3fB/meElwMrq39Sb2rUOlVKVjCN4iuEK+cJ1wmCZY29f4KWtDVwC0vQwIslQGrNqtCtPqlgDvUJY\ndSdBxwoEC+BCWZldlhA1CZqGgjYRegPahcN3myxnDVSnQzK1id975gWavQH/z7FDvL51itHFFW4a\nxdT0BtIkIapA8JAEkRP6JMFkmXS8rWGz0djU0GxnvHvuEjPzPfq+wMdEjjtWnWtlEMcYxKvMKNAe\nrQIJkUxFOqlmtN3AWgEMtZHOSWItWhtCrKjDUei9UjxJZLAPjjyXxBlrLXk+xJeONE2qr16URTZI\nQVeDXVHJ85YuVCW2FhkLEJXGRSWgFwqHogwwdBpjE5JgCUpV7D643ekQgfcWFrhR5vhiCN6vOXCE\ngAtRPF4CUjhViWAmMfKcrRbbDxzkwL0P8Nyf/PFvQXf/k+MT3RRrVq0/Jlrz7OAi2+avYl+NzL0A\nP+5Lv0MB16/D77wCYw/AvmMfsiO5hJkawoaGkMd0Cn4EWk3YBdwVmbxzlkcbz/It/6fc98Z7NH5Q\nwltAAem2HuNf+IjuE8uwBWbYwj28zd28wxZm4AoMLsCpUlgHIFP1ncgh37sReBCWDzXZklxl360L\nxCQwf7DDyb2Hsd7RS1pctDvY4md45J+/TvfOPpuuInXAfli+M2Pk9ZytQ/jGG1AuQ1YVZOXvKN6f\nPsC73MW1pS3Ei0Ya3MPaVHi9vO/TnNTXs7xqU4UOsinoIiYHNQDWkodUNY/FkVCiSqEw9/3He1QD\ngBzUEKz3WBwm8ZSrtUwtq6ylOgPWFv3Ph7RFpw0aE5tRCmySEJTHFQ5lNFZJx9jgsVoRXU4+rKj7\nMZImKdYmRK0k+S94/sOGjcyONJnZNs0GJXC8D4FYmfoKuLMOBIuKoIQRpKN4YqFtlY5Vy/k0xmYo\nrXFKmh+ZTWilDcrhkHw4oMxzBnlBliakqXiGiF+KYxgjMTge/dlpTj59F8ZYTELVSddVjHwqRsNR\nSdFgDMaKZ1fSaNIBPAnBNjFpk9QmEnWPFBXRlxJSoqRREGIk+ogysWLtajEHpk69kmJC61oSGFYL\nDWBVnhijRulQq30IVQ9eVJuqOkPr+DBx7Y8aZlREYbZJC6lCwMKqGqjqp4j0MK7dKEwvT3BOZI+R\nNdmQcwQXpSFVRP7Xty7y392xQzw7UZX8R96DTbQYR696WYqkKTiIlTn58vwcMXzeZe/1d7as/BmB\nHqzQYY4Jyg0Jje0lu0bh1OKaxfp+BewEt0WzkI2wzAjFcnNtX1s4uGjhHRhuG+Hn41/EbvTc3jjJ\n0SffZssjszTyIdt+dIvOEDofVIezBFyB+ESkfEiTXAwM3oELs3JNt0/A/XfDnX1YugT/eUXKEIDF\nPmx9Eyafi2x8cZGNWxbZ/sgMm++7yf/b+Rbf52soYHZymke+/DJbHpqhVQ4oTMrVzhZ+0TjGj/gy\nL99+hN6rXXgPuBrB9ZACp57rHB8Hrf62rsMn//3JefRXaSbUhWPdzEpYYwEn635XjZE62HEatjDL\nXs4z+mGP+BK8+x4856RcOV1C/j48+DMYOTFg7/Q5tnGV09PHRCvaBvp1w2V94Wr4LFkQo+1RRtIm\ny0OHH+SY7ggua8PiTTAJJC2cSoi+QHtpSuOGhOEytlyimwZGW5YkSei5wKDvSLRneVigYhDvKaWJ\neUF/sYfbNIbLINMGXERXya8xiG2GK0VKH1xJnufkeUmnM0J3dIJGs11d4Ui0StYio2XuViKF9KXD\naqk7nCvJ8yGDwW1isYIvBgyKnOWiBG3pjnTodru0Wg2sgbIsiC5QaiM+yI0GMXpCDAQUqSurfbpf\nBaOMsigtRvoBhVcKk7bJ2l1s1kQbhU4TnCtYWXK44UAYWiFim+O4xQX6/SWajdqA3mAyQ5JlYCBN\nU6y1wpyLEWPFS9h7j3EOa6VZJUCXNDZ8RFjHalUgWtV0EULEOScBLSFH3Clt5SEs4HHdpKrrvRDC\n6uuD7PvrZrvznrx05EXBynCFueUlFgeOhZU+K4MhWiu6zZSMyIRRTDQaZN0RltNEzp0CgrCcV5aX\nUVVK5cryLXz4PAWe/LKhWJs3qu6p2iShTveA+lLk6IHX+Y79Lk/zDLvenqXxYY5ejLgpzf1HTnJg\nxxlGGst8737L+blDxFkDsylcm0SUAwtIY6EG5z85PGtelKPABmh3RUHyMLSeWuTeA6/wuH6Wh/k5\nB8ozdFeGDFopH2U7eMMe4yf7nuCl8S/gjeGu5F0e4SW2vniD+O/h4gvw/pKoNg+9BptvwJ7OJY5/\n4WXesffw0aF9FNs7QjRbqI3zK8nnajOhZqrVe+F6jfi81oPrGyD18dfXufZnXAHm4PYYnEmJr1vO\nbz/ED+//KqoZmXvoBe448iHjw3lAcbs5wQcjB/iJeYwf8SRX39oNbyLA13JAdKd1nfSbUYT8nQa+\ntm3bzoEDB4EKc1XVxLamqPjYWAPAKqZW9WUTo93a30s6M8XKAm7uBtvPXeXe189w5A3Fv/un9wGK\nshRNe1q5Knrv0crKZr6Shyitqs5MrOKBVf3CxOhQ2qFViS+BaLDOMe4iK9du08sukO3eSTNJGNiU\nkY2bOPkv/jljz/2c3raNhCtXcP0SdKTRyNiwaRKbZAxciStL6bK0mpg0w4eIthqdGFQCJlEkJtK+\ncJWrt4f0vbyXUFUMWmmMEoPMqnkh3W0CKYGRxLChmzHSSiucWN6n0ULzNkZM/WuwyweHQjxmQBYa\n7yQtxnlHBEyaiKFmBXjFoHBOTDFLF9EmrZh1Bh+9xDlXTAfnhJU1dBGnAiWaMkIZIGDRSlMGUEa6\nOs55zirFd+6+k+vXr1E6h4mRRAcyrWQz4COFC7gIISpMlFACOYcJabvDrv0H+OJT3+DmyoBzFy98\nip/yT3OsA37rxkoLMpPToUd7OIDrcLUvcsJ63IywtABj12F0ZUB7vEfaGjBIx+R5VNVVbmvYAma/\nZ/+m0zzIq5y48Bb8CQz/BE5ekil2fxO2nIbN6hbHv/UaYUTzpfx59p69hD0N3AZjpblcf7cD0E3g\nq/cDxyB8AxojA3b9+4FMuA3gEGz50g2+v+Er3GaC0bjINTPNn+78Ont3nmMDN3EkzLCFy2znxJdf\nYtfGGdonA6xAHIf8Xsupu3bzFzzJy+VxbpzaJnr/2Qh5wVrnZz2N99Oa2Nf7srWRzcAkqxRwNSEA\nZp1IVrPVB9CjwzzjlOMJrS0Fe0bhnUVZkjJgpwK1A9wWxVKzzSKj5MsNqflKWGN41e+xnmg/P5u4\nrDtBMjKGK3O0leIhTQzOS3e3mWisAl/kDId9yn4PoyDNUtI0I6IovVuV18Xg+UW7xbQTj68IYJQQ\njGopowgbERgn4oOsI1EJw1TXUriKEWxISFQDtEJFaZBE7QWwajRwRYve0iLl4iJlmROLkiSxaGOk\nix0cv/v8WTYtD1kZa3H+xD7SxIoXjLEom6CsJWBwFVxklCVqI31vDdqmJEkTlbWxSYat0qtU9ESn\n8GWomg7iVbPKbKtYs1RAlXTJI0Qxrg9RhDMxrjcIBpRYRoR6jVXV41fPmjx3jZWtLeEihzSsrev1\n8dRVTG0hsMrEi4j0s+rg14/x3ldG9p7gBcD0LlAUJc5VBmRB8z+cusKxxT7/8vw1/qedO8AriIFE\na5IsodVukKaGGB1FWVCWJd5rcq/xEYb9FQa9z7uUpWZmVhKEEGFRwTW4MtjOmeZ+bu4bpfton90X\n4Vs/hysD2GBh50FQj8PigS6n9QEuxF3Ey6kgYysAPZE4vJ1BW3NTb+PPv/w0F6d28mZ6km+mf8rv\nnvyB+Av+Gbw9L7PnwTdh1wy0dAk9CM/ADz8UixgH3L0CTzah+0VYvrTmwwhVrMYy+H8DAwcbt0Dr\nPc8Bd47Hv/gs59K9/DB8lRtxE++k97B94hJt+gxpcCVu45Q/xJu3jpH/cAyeRxoyt0rWJC213PE3\n4eHy1y2Y6oImq35qFnAHgSzrZEiAZG0paTva9Bj1iyRzBXEGLrnqUiK/Lzm4/zokcyWjfom26UHb\nQWorrGt9mVFD15+t3830yASq1BQmEKxGGw3FMgpFNjpBnmR474guF8WBL9FuiHZ9bBiyfdMoE40B\ni3M9bi32mR+UKGvpNMTnMUs0uQcdHLkrGDrPIIXUawwarSuJI5KS6MoSX5YMBz1WegMazS4joxPC\nLAoBqwEVUSZUjfxAUJ7CSzMhxoCPenXO01pT5gUrt29TDHrcWh5w5dYKA6VotBps3DjB9ukJJtsW\nP1hiOHQkSYORkRE6nQ6ddpvUK6KFwXAo/sRGC6APgKnqAGnkW1LSRhObZeg0QRlNYhSt0S7OrZCH\nSMAQo8IEjdINhnkgVkzJ6MFoi7Uem0iTu34vxhiqt49SCu+kYRWtrti84mki8kgnViM6ER+uINYn\nOoSK0SZqk1j7CVftFTCEIPWCtTJ/G2NWgS8JQQkErQkECh8oSihcwfzyEstFyUK/ZGXo0BgamaWp\nPB0MG1sZGybbxIkJeiGhmVmaWULhHKHMmbt1A2M04+OT9HsLVbPo8zzWE0Jq4GlMNuE7gcMw/eBH\nPMrzPO2f4fD3P4L/BP4tKBfAbA2Mnljh8d97meGRlGvtaa7evZvhybbsnW+NgetUz1sHe3wy8a+W\n3UVkLuuAGoWNBg6BOZFz8I6TPK2f4Tv59zj4zkeolxGJ+ijsvOsaB7/0Ad1kkS1TM+RkbOMKe25d\ngdfg+uvw5/OyVOHh6hz8sxcgfdCz4+4ZdkxcZHRynpuTHWkQ1LYAWGRerTfX6yWb9ZxX+5h9nsZ6\nD+C6OdJiba2or0V9DebAT8KHG+F1KEcyXrNfYumuLmfsfvaNn2WyCj64wUZOxwO8MbyPy2/uI/zY\nwuvA2Yikvtey0Br4qgHCT2/8nQa+7rn7XsbHJgjVpCji+TpZ6+MML/iE7HH19ortRRVdC5T5kOHt\nG4T+IrM7J3ntibt4ecSThIhSCT4W1euIMWLt+2W0JbFplbaiBTSKFeer6kBH74mlp3NulhvdDtF5\nUtOEqLDGQulYunKNgY80du1g8/gkzmoGmwLL0xtoXTjPjaU5hguLqHyInV8Ea2l1O4DGBVAhkIVA\nqkBnFmsiRIfzlpFWxu5tm2hmKaMzc1ybW6JXehwK58Xry2pTiXICxIKIJHu10wYbum02jTTItEG5\nQILGItJNo02V5rVG+wyVsXBd3tSpjSAgIUrMg8vSrfoXeBdwIax6fbnSUfpIUXpKF8mJuADOeZGl\nKE0ZFUMXKFSsMPfK4waq7rswyXqDAbMzs8zMXqUsHbpKkLFoESwbjdGGRAvLgSCJZkopdJLQGOmy\n9+BBHn3yK+w4eJjv/av/nf7g8xpN/FeNdUwdF2UuyqEICX1aDNIGYxN9NjVhYiDTF0iIcLuyBeu1\nMgY0KYfZOq/KCKq56pmvpz3buMwBzsCbkP8MfnpVglIicGoA//BlmDoC04/M8jXzI3Z+/xr8KfTf\nFQ+3FvDgCAyXZAqdBu6ZBL4Ig3+akKqS5F/D8k9hYQZsApN7ITkPX//WTwhDyJY8/Q0J16aneG38\nGM+qx7jKVq4xza1yA+cae7n/wdfZdewCrbxgudHkrNnHa9zPs8XjvH/mTviZEo3gDMgZWeLjPjCf\nxqi7+TVLr4OAXlPANtBTMN4Uz8+tSCe+xRqCcA2u9LZztr2P2d2bGH38IzZfhm/+Aq4tw0gKu/dI\nQTt/ZIQPzEEus514pSEbiWWQ/v/69JrP2+ZNYTrj5IM+USmSNMXYFK0loVWHgHEOfEE56FH0V8BJ\nMaNCxBWOoCWMJGgwQZKeiugpcoVvSmKvilLQBC3glrBkY8VVqoCgyoQ9KgnbqLsyKtaspvD/cfem\nT3rd153f57fce5+l9wU7iIVYuYAEwH2nZNkUJVk1tmdqPKmZSVVqaqqSN6n8DXmZVCrzKkmlKjWu\neLay44mtkiVZomRRCxeQBAjuIIgdaKD3fra7/Ja8OPd2w5qZZBxbIq3LaqKBbqCf5z7d5/zO93wX\nkgi7Fle4PjtJVBEdwGpDO0mYKyqeu3iR8xMZb26fxLkSbU3t1aj5d08d4InPljh/zwSt1R5tbZgZ\nONb3bSfJOgRrqVDizaIi0Zh6gFEorYkmgXYbnaTye2TpoaKkD+tQM7pi/SprjdUabQwo8ZeRiJ9N\nhJDGvD5GjVIBmhTGWMsOowSFqBhriYowcH2su7VqGHMiF4x3gWDiB9bsjQRhC836PriauUAtgReW\nsKsZx772wgneyZDkPd5X0lOqUpKRxa0eReR/PHwPwzLw3++5B+W1SJYwGGNppy1mJqeYnu4ScfR6\n62z0+gyGnqoOg1lbuvWr/9b/a13Nz21d7BmAy+FmGy7A6ns7efvUSX6YvMDEb32H2dYqe+6HPQsI\nqfQkbHy5zWt7T/E6j/PZ7cPiRH8T6EdgFcIQLu0ELOQw6k/z/ksnOXngHQ7HC3AG+q/DD9eklAJc\ndPB7r8OO0/LXbl+Cz9g6Hn8GLC3CxA0Yy2BXv1agIL3g0wo+qJ/R3hvw1R/A1AE4cOIyR+c/5icb\nz/HOp49zce4Ik50NUltQ+YSNwQQbV2YI7yTSkN4BLleIl8ttthYbn29S7X/6upvpVW+uNtm/U0gz\nmJJ+bFKRYgniLE8nN5SkDEwXN2bJZhzbNCRBOpoF5rXMnG7C0jddcjLIzV234+4hr/nHP79LK8V8\nd5aYTBHGZnDFEiYqbF5QaYNP21TKE4fLWOdR5ZCYr+OLHtrntI3DFyNWigFLPbjZ0wwqQ6djIXhm\nsjYj5VirKpRW5N4xcp6sgDaatlF1jUTklDpAdIxGQ1bX1lHKMtMdJyqDC1EYyPWiwHmP0g6jLRpP\nVGKtkWiRHiqtSJKUtDWBtbNUfpU8H+BKRYgJ63nF7cGQm+sVaxs5R3dPMWZl2QwVeZ4TY+Tej69x\n3+VF3nnpafoTY7U1ScRbLwFQyshyhkiMBpO00CYCkrxo6/5gE0vS6pC6gCsd5TBnaWmZ4SAnklBV\nI1yiqHyODx2ZJYzelBlao9E2BW1rBy7xS3TeoYxBhQC+tkOhkSgqYi3bpJaVEgOaWs4eg/iCKZHf\nh1ivWZSY2uejIUlqsFbG47uZwcFJb3cxMipKNgZDVvsFvSKwuNGn9J5Wq0UrtUy0LTuzhJmxDunk\nFGs6JSYZpgqkxlAMh5RFwLuSsvKMuwlGowFfvLPTL14NiN681YvWKUQefchxmE84Gd9h37mbqH8P\nN/49vLUkiox9n8HpReiOw8ld7/L2zHu8tu8JLu+9T7x2jQXXAPHTbDGOmq/b2GY0gFKtbEi7sAs4\nCpOHV3k8eZ2vhO9z/MeX4F/B2mvQW4NWB2YegG23NvjN3/4BD2fnUQHKliHrFbAEg94WuA9yzF1Z\ngG2LkBU5HUakutjCujCI1LLpmwrR/NdU6c2AJ33Xx391nlb/71fTI5r73ELAuwlEMzPB1oIkZeux\nlzAYwLtd+aMBfHz1BDeO72N2eol2NiJGxbDosrQ6x+jcBLyhBPR6P0K5ivCy19iStf5qeuivLfDV\narV56KHTGJ1uAhjGiD4cRW2Q2+yNm/9tbaCpi2FESLGaWHtWRPq9DcrVRUwYEbXn8gO7CDdvUrlA\n5ZEUJFXHBYdAkrSxxtZGjrr+evK1RFaxJQkMKnDgD14hu7FM/vwJ8h07ED5VRKWWLEKWF/RvLxIn\nxhmbGCOPgV4+ooqOUaqZPLiP/MZNeqtr6H4fUExXgbGJCZI0lbRBHwlliQqaRCtaWuG0wacJZqxL\nZhLG2h3mp9dY2hgwKEoqH9HaYrXFaiON1xeEKPr/sXaL8SylraM0JEB5mY4iAmSF4GnCDcVHzNXD\nSpMuI2kwlfe14WT9uV4Mnb3zVM7JQIIwBcoqUNQshCpCEQQY804+7oAyRAG+UJIoZnQ9lHkZNX0g\nLwuWFhdZXlkS7xtrpSQoMFaSNxMr5tYhKqxrkjcVKs1Ixye49/hxnvvyb3DswRNcuXWbN86c+eV9\nk//Sr8abygnw1QNWYLWY5jp7uDM1z45TK2w/BV85A+8VUtZPdmDqIeBh+Czbzw1241baW8B+yEUO\nXNdY1Q5M0GMqrMFt6C3CZb9V/u4AF3PYfgs6/SEzN/rEP4Lr34M3lqVkHsng1B745k4oh9CehLEn\nYfWr4+gDnvb/WrH25/DjT+BikH516g48ESAtPZwDVqG7s+Lep64z//Iq3973Zd7kUX5w+yVG1ztc\nPbaPN7uPstveILMFQzpcZzef9O7j1vk9uB+14GfUbs8biPhzgy1a1C8rzbDZ1jSDTRcBvfZBsgP2\nJaL7fBBJuNkTYcIJW2XdwhKsvb+Ntx47zZH2J0y+tM7OZIX9x2H/LaT3PQTlV+HM7pO8xhN8vPCA\nDLTX2GJy/JXnWR+CvyhX2sIpDaMeaEXwKTbJUMZKnfFeDtPB4fMRVIUY3GPwzhFDRNlE6lEIqOig\nKqlcRVUYomuhMwtBNsixZnHZxneFhjFcL1KU1PzGb4rm4I3Uta99602mVnr8xW+c5s7UmLCWaqmF\nbbdQWUZr+zbG2obRYEgovfgkaoWJljcOzsNGQVU4vvzzK4wNK179e49R7muJOb8xeCvS7mg0wRi0\n0ZjEiEdlkoEx8ioGqe8NG6uRe2wymFFbwBlSq+9mAjcIlQqKqOqfatM04a0e3PxOALVaOkrcZEPH\nRlqJqgGz5raJ5DDWRv7By1JEGAOeEARA8zULuKoXJxKUUrOMfe3TGbyAXmVOWVWEoOoUMyeApFX8\ni6P7SUuD83UbjwqCQqPptNpMT06htchqirxgUG/wi7xPkX+R/Vuan9lGtpcDGxBWYGEXfKRwZxLO\n7nyEiT09/HzCY197k73PXGdivceo22JhYjvnJ+7nu/wWr669wOCn00LLugL4PsIhreWTl7bDWAr3\ngU6FWTThenAH+utw866ZYBm4XsCO28C8eC+qu8qLAu5swNUfiHLpQQ076m+1OQV/GeUrg3iuX1iC\nRz+FmdU15uaX6KY9uKbY+NN5Nubmt9K/loHrCLL2MXC7hHATObA3DS1nq65/kYCvX5Q3NsPMDAIH\n7gY9DrMJTCv5cIp8C1TIlLqoWGAHV7mH0f4O2SMbPHgB/GtOBgAAIABJREFUissC/W1H0pD1I5Af\naHGNe7jDdlhUMs+M4D/e+z6/3tBpdZndewiz4148lhBHaA86eEZVVYNKEZ9voF1FrHL8YBE/WieG\nSJpNk7THWVu9ykJPszjKGHnNRlXR1YbxzKBUpGMiVVT0ewX//O0L/MvTh/GpEZ9FpJ7FAMFXlGVO\nrz9grZczOztLkibSM5QALy54NEbqnd5Sp2it0LZepKBQRpEkCVGndMdmWE8nGekh7QxmxhVBW3ql\nY1R5bi6sQj7kyJ5ZJsdSjDGbNbGXWooY2ChGBJcwGg0IwdPpdNHGE8u8rvO2tj/RVEWfhIBRjkBK\nWeYQPMZaksSQuhLjc2LeJ7GWmCbiP6YgqkAVyrr/BYyR56qNRqcJmATXsL+SdHN+k74aZHldq1eU\nUuLRWMvstbAK6n4bN4Es550ocSKAEBREiVKinMUYSeqVuUUk61WAYDRVUAyKguWNAct9x9JGTu48\nKoHSD5nIJpjfPstYrEjHOsSZWbBdVH9IDDmlq6iqCpVYbALFsKTXW8e5L7r3Y3P9Ym3JNkUG6bYR\nO1lgb3mDzqcFvAlvLsG7SHW85WHsE3j4LRj/cs49M1eZt4tcnkPKkwWKuxNmu8ghtAFmmtCkAXK+\ndvI5SbIZ6rhr21WO8wHHblyE78Ct78MrN0SNMgE8uwCHO7CndYe9xR1wUO3W6MMRpqDdgXZPvgLy\ntJiYkXdKm5KT4aOVhzEL3Gvh5i4YNX6GDukNq0ghXK1/v4Gc10dsscI+b/DrbtCrScecRm7mPDAD\naQqdWlZjqJUiHgYO7nh4U8OSgs8M/YMz9HfOwHg9+PeU9NBLyMxwKUC/9i7gNnJ/GlXM37ZVwH/8\n+rUFvrZt287Bg8fJC4f3EZtErBGfEW1UnSZYs6w2gS61CYJJsGOsE9kjhoCpPU6KjRV8bxFDgbJC\nk21lGaNhQeUqMVbUEUwAk6CtwZgUoyxi1FtLKoMwyFQIUEfKh+j57B+/wK4//DFru2dIXaCsSmFK\nJZYMw5gL6H6fJ/6Pf825//qfks5OEUYD1kYDsJb99x9no9th8eMLbCyuoNd6uJFHrY049Mklln77\nyyS2kSkKmGRipKUNXht0YonBMTORYZMpOp2EjUFO5QIRjYpCb05MRMWW0J9DxCqNiUH8u1CEhtFQ\n309tNM55gvObG/1QJ+AE5+pjd6RyTlgAdcpMjMhWvgo452XY9LJ5clFRVYqyDML6UpqiluH4IK2x\njIE8QBlVPZILABkRhh1A5Ryra+ssLy9RlSWJFXagJpJoSLXCGk2n3aLdaskmrnSEBKK22LFxdt17\niMdfeJHjJ0/THpvgzLe/w9VrV3/13/x/K1ez8m0ajIPFDK7B8qXtfLDtPt7qnmTvM7eYXt7g+Dwc\nv4jUz/sgfg1uPDPDW5zmo+oY1cVE6tx6hDgE1d3C1byiJKXUKbTBppsOVMAWeZg2hFQTzwf678AP\nl2UeAVgqYMcl2P9fQHwAmIfRQxnDfS12f2uReA4WrsKHoT6LA2crOHUefArvvyIl+FAChy/ARBjw\n/D/5CR+OH+eNucfY+PEMlz47zqX998GOETarcMMMbmUyEJ1H0mHOR1gZIojQKoIW5vzyfK4a6Uiz\neesgTWuXML0OJfA48FxEPRm459jH7OUaU6zhsSwxx6XRAZY/3MPZ648yuXuNMK149vd+wqEXrpLc\n9oQJxcKOGc4kp/le/Ap/OXqewZsTdw20G0jzulun//lv9rcuRTo+TZYm2NTUoFMguhGujETn0VVF\nVgM1saowwYv8JQRCrPA6bqXGq4iOTjwaVSA4L3UkBPEdqWXsxmi0UbUAMG6angu4I6hNIyMPsTH0\ndQQi3/qNEzz7+gXu7JhEudpg2Uly7TDR/PCFk6gIk8MRykeGgwFhVOKUBKjoOj3MBc9379vJgzfX\nuRpKOmsbTCYpptMlSS2g8NZAkuC1liQsLdLvoBofRmictWTbLwPWpgl9lMEjhNqpTEtCFiagayN7\n6oEK/OZ2HSWsABpmXN0X5SdFpCU+iv+KUs2Iw9av9TyjNw28ILoa+NpMcQw1uFj7enmR2DcLlxiR\nFMca9IrB41wpbC8XCdHWEviKECKJNXRawhIYFo5YMwZiFakKR5UXVHmBMYEqL8iHZX0G0Qz66yLF\n+UJfDY+uROpWD1iC9Sl4rwMzipWxnfzg5d9kaWaO850HONj5jPGdPUZIwMf78QHe7j3Cws/3wV8q\nqROLHoFKmvALA24a8hQcRGfJaTFMOjABWW0H2bCIOwihINwSsHHuGJx4V0ruCDgEfOikHAEcAP7+\nPdA5BIuXkEN3fTWwvEhyYw2tRvRjOXF3m/iOgleUsNTWkWlpEUmy4hrygeX6g00CWQMWftGuXwS9\ntiG0iH0w2ZZFyCGEDTwfN8MCWFZCc7gCny4f5t3ZEzx84CxPffNtpir4jdeQvc4O4HGI34T3Dx7i\nLA9zYfkwXEY2VnlEzg9ND2yuz2/Ya49N0LrnGMOpPZAXZNUA8iFutIak0wpz1496FHmfECpUWeCq\nSHQakhaXbizQW9pgeRjoeUXaHcdmMCgLVvs9oMJaTVVF/udewWPA+Duf8kfPnwClcRVUTmR+vvKM\nhgX9/ojKBfGSDF7UIg6KgaMcWWJ3mpgYtIbEWpwPBF/S0o13o5yTBThKGBufYHpuJ5Ql/+y9d/mf\njhymO1bSy3PyqmI46DHcGHL7jkXHSbJMU1UO7z0fjCdcfOooaazI+n2KoqDValFVJZ1WRZq1iYkX\no3ud1Awrg6aEkKG0JYSIjQEbJeHdaeimMNHW9FVKknbI86L2xU3roCpPxOPRKK0IETIlM1usew9a\n1zbKwqCOtVIn0UrUJKpZsjsx49emVpnELWVNbHy94pbHMPJv2qQJHGsSMpFgE+/FI9hAiaE3GrKw\nNuD26oD1fo4ikulIVY0Y9Cs28jbjc/OUXSloE9NzrPSusry8zDDPKbyjk6UoL2zqfm+dqvy7BHzd\n/b7atIWymSOjoFXl6A1gVU7CzU9/DqxUENZBDwItcjJyKVPNURaD1Ko5YF4WZS22CF85tX/nClKc\njfyVMWAGpu0qO1kgu+KoPoAPb8BnUf7qGvDWEA6/C8pBeB9wkBwIqC8D98PO4/DCGrxdyPzxRArZ\no+AfgjtTs9xkNxv9CdTBQOwq2K/grIHezNbItDoBgx0QV9jqGXfft6HcsM9V9tiw6CxboNccm+mY\nrTFh8e1Gthyd+lP7wLKFRStNd7VOebwGbFcygqT1c82BpSgD1joQ7yDD4BJyT/pID20Gwl9+b/i1\nBL6U0nzpK7+DVxm9fkmaGtLEktiItRprdQ1+iRZe6WZjUg8fjf+HqjcGMWBVJDVQ9AeE9duosgfK\nkVgwKqHb7pDnFT5UqGgwzQbaKFxEUrvqFC0fBORJtMZEI2yn+gUP3hNU5NLvPEFYXGdYjWj5lJZp\nYZIEbVMqF3jgvY9orazS/ulrrD3+EGNTk9jZWTrdDlNjXTohQl6yWAR6633K9QEPvXEePcrpnf2Q\n5PB+Wt0MnRrGP71Mdd8+lAsiSzQKYyCxivF2gjVjdNsZw7xklJe4SphbMQgrSzfJlEGYEQFFFcFo\nRbBG5ELa1jLHIJHAdYSzD15MI70kwxSukgKpFdSpYVUloBdevL0qL+byIltRVE5RVYEqKIYhUvpQ\np5l5XPR4ZXFa4pyjNiiboK0W/68YcGXF+vo6S8tLlFUBRFTwJEphrMQgW61opyndTpc0zSjKEtA4\nB6bTZduBe3nixS9z/KGTZOOTrKxv8N2/+B5V9UXTcv/nXg1QUyJVfAUWu6Ifedty9vBpds3cpLN3\nwAu//3MmT66TLVSoCIODLW4c2cGP0md5xX+JyxeOEM9bOQz3HLAOIambA4QlzcKhHVxmPw88eJGp\nh+H522BXpGYeSuDBA8BJ6FgxGKkG0jaaawgsB9jvYOOrbT57cC9F1eaJ756DfwXXfgznhv+h6CIq\nOPMK/AQpvR9X8PJ5OPoajD814uDJzzhmPqL7jQHLi9tZe3sGf76NW2pLB20YAZeB6xE2mk1G0+ga\nFtQvU+rYgF6Nmf0cqG2wJ4VHQP2WZ/7Fmzyy7XUe5Q2O8jHb3CJeGW6aXbzfvp+fPfQUZ289wo9v\nf5nV+RneNw9wYO4SU3Nr5LS4wS7e40HOrpzixlv74EdaVnh3HMTb/IcGlV8U0AuSrMXM3Bw2s2St\nlKAVZVVRVY7oHG6UE6qSoCW9SgUxuCdaondEZQXcib7etkcxMK6leb4qcWWJqyxJaiQG3eq6Lsoh\nWwAxSZFqDtshemLUW6yvGEUqSKSfKP7imSPYUMnRREeUASLCJK4l5FmSMDbW5cCdNZ6+fJs/uncb\n67FNlqX19lszaCf8/EibMCxRpo/NWnSTlLTVwiSWSmuisWA1Pnrx8goepQRw09rUyv/GA0yjnPRN\nueSxq9qwXdKQPSqo2oC55k7HIIb6UaMCck8Aat8zoJZ8UoNpjQuYgDFRiWoy3v25NKxpasZXLYGv\nJfQhBHwU6aOPSsJQnMM7XwOQgeD9JugVnMMXVT0AKtDin6OUJU1apBaKSjEsc0lYwxDEsIdR4VlZ\nXieGEq0d6xvrbPQKqspQFCXD/jp84UNOIvLzq5Hqu8amF9TNvfBGCgF6a3P89NEX+WT/caY7K7Ts\niMqnbBST3L6zneqjMTGBX0DK0qyB5XuhnEDqYwmhgN4YLIFbstzYt4tLHODoqSvMnIYvL8GZZanL\nO4HVCN97Bfa14cj98MwJOHIbfAR68Md3OQosA+t3IExC7MMjGt4MUoHvAY7NA0dheXqWhJLf7fwR\nT3V+yse7jnFu30mWd+4UL5IfIcCXW0JO9ctsbe9H/NUD+xftujvspI1MIztB3wM723ACOA36lKN9\naEB7eoRNS4I35OttBtfG8BdS8jNT/Py5p5lrL6EeC9w3c5HxF/rYtYifVGwc7vLR4YN8m5d5LX+K\n0dszoiu9Brg+WwBhE/Lyef4MKNL2JK67jYHtoNoZuhqnzIcoN8SatjiQeUd0OUU+INFSn0K0YihQ\nW2f4dIJMQ6g8Plb0B0NCqCi8q4F5YeH+c21pG8WfHt7LrsGA1lgXoxJsAviKKga8j1RekaZtjE2o\nfMAPhiRJQpokmNRSOY82AR08prZviSFSVhVEhdWZSPiM+E2aVkp3aoZnPnyPKRd4RiW8s32OXl5Q\nVAWjYZci3yD6itXVEZ1OQtrSlFWFsZosTWmVBXmSkGUtKlcyGg4ZtYe0Wx1a7S5J0iK1qUjdlaaI\npQB3GJS2OCU9RehbliqkNagVN6Xv3iliInL7EAOVr0BFjLGyNNcBpSUQBh1BBQEn6wWKNpqQJbKA\n0Boj2JjMFK7CRTHD15o6OXPL7xHtqCpXL50UlavwvsImCT762l4FVG2To5VwkftDx8LiOgsrPXqj\nksSmtDQkqmBpMCB3sLgxTmtqlv6tRbKRZ56E4aBPb2NDvMNCoCpLup0xBsOCshzy+bN//nOv+Avv\nh83Av6KX0WeMXjqO36YweyL3XIOFKJ8yDeztgtkF+axhgwn6jG+VUw/QhmQOpjIBXeYR2lVD+FoH\n7mi4MQdrE3XQSP1QFJvLxmbXfBe5HKgrdh8+/S6c7cmXPX4FHtqA9J+C+gfwwAwcuwDRQnIU+Crc\nfGQHHyVHsTi+cc//zbV79nBx8TjLx+dx89nW3mgV6X2XNFyZg5UOhO5d96thVxdsMb9+1VfDs0+Q\njUcXoa/tBb0XZrtwH6IWORpRewN2tkSZiFu3hJsJXFTS59/L4FqExVz6pTWQ6vpGhzr1b4iAXUvI\nuaIJL2h6w69ubvi1BL62bd/LoeOPs9aryFJDq4pkNpAlniTR2ESTWIM2YK1sCQQAq98AcBgiRkOi\nFalW6ODY6K9QbtyGMMQYVw9IkNoUohiwWxQqSmKL1gnGyBtK4+q44RgDNgrI1pz6ZaCRnUdUgBGJ\nhUWJJ5g12LRFS1s+O3WSG9u3s9DuwvXbdNsdWhPjQuNSivbUJHP79lKWFd033mV5fcCf7N7Ofhco\n+gPGPvyUsfE2h27cZvrN8/hnT9J/5BjYiEoCiTVi5kggCwprMrpZSj/JGeUVeeXICzF6ThSymQ+1\nAaSPKCteMTa1GJvUSShxE1SMEYIXtldVS0KrylFUJVErkSIGYcFVlSdWgNc4L4aeLioqJ15eZRkp\nK5E55jUgFpSijBoXY53YqAhK7qEyWqSQvsI5x9r6GitLy+R5AV6AzlTLlsposEaL59nkJFnWpiwd\no7zCBUXS6nDg6HEeffFLHHjgBN3JGZRNeefsWd49/+7n9SPwN7ya+ODa+ZwNYAlGc/BJG16H9bl5\nfvjCVxjOd7gyu58jT37CnFtBEbme7uI9HuDnPMkb156k/9NJ0XVfjJD3kILXhsEsLIC7ZLlw/1He\nHj/F/fd/xMHfucF+A7Pvin/X2HbQz8LgKy0GezLmt63TmoGd12SpHBA2wJ4xYB7yTou3OM3Xij+H\nM3DnLfhWX/ZCkS2I6D4gPQhX3pb2A7VZ7xAOL4BddxzgEv+EP2CpNceFvYd5e/sp3r/5EINvT4vf\nyzmk4OcjcOtseb+ss+Xv9cs47Dcpis37jXFxvbFpd+EY8BhMPrfI89te4Rvqz3h+41VmPt6gdTsn\nWsVod5tHjrzFruwm2Y6Cn3/2Aq9deo4P9p5gem6RbmtA5RJW1+dZvznN8NwYvKHhNeAjD8UScmeb\n5/rLSDb7m11pZ4xQljhfoVwlMe7e46sSnENXhQwSgdr0NqKVDI0+hrpGx3rDKIc8hUdHYUUGh4Bf\nLpEDvJLXRsAWed2N1pveVaoxCK4/1sgIQ6jTBaMI/CRgRYGPnHr/Bu8d24NWsZZrAMqQZBatOoxP\nT6KuLpKkKdFFylihrZa0xswKTKYi5XBEf30DnaWYLMMklqgUvgGmCJuyyk0WVkDSLGvzefEo03Vo\niapTFBtZo/jXBBlvCApUvV2vUSqhXtVssob9FuvfNN/RKmp0zYQTgLr+NcjnK9P4YtZ/39+VwFUD\nXyFEvA/CjABckDSu0kliGSBsY4lchODxrsJVJa7yEDOIYqxsbUKSZiLrGYppbYiiFg5YlLEUwbM2\nKKhcjlEVo6Kg8AYfFYP+OlXxd8HrsalTjYdKjhxULbgEPtshLK07ED9KuHNgL3e274F2gCkF0xqV\n5OiDI8KOBO4z8KkSs673DHy6DfoGuAqMpODeAncx4ZOjx3lr7DRHHvyUQ3//OvsymH8PigV46xp8\nv35E50fw9bNw/Ouw52vACtz5E8juur0dYLGAn5wXqGov8BUN4zMwPgsTz4N7UdEJBV+7+H18Ylja\nPsXZ7ATf336NV178Clf9YTH1X9NwtYvUtjWktjeeho0844s2sN7t+dhG+kI91Mx14DTwIiQvDjl8\n6EOOd97nHnWNcXoUZNzYsZtPDh7lwyP303trjo/PPginIivZNKcOv83BA5cZq4YMbJtLyX7e4hQ/\nK57ho3MnCK8aYfnddhCXkd7QyEE3jT4/j5siJu3tSYa0cElKMJ6YdKT2hIDVHu0KnPNy9rMG5Uq8\nC1QhkJhAXmzQG/RAWUxqmGwr+sNVKufw3m3aqbjgRK1A5L9rZzyel5RtWXQk1kJ0BBdQyhCCJgZD\nq9vBJqmwY7WW+qckaEuWxFK7nK+wGMlYjBBcoFKyjFVKPA+VNbTGx3jniae5vWsXCzNzTBQlSaui\nKEZUWcLLH9/mD+enKaucXm9IUmhabUuayVm78ebN0oKyVWBNwmgwRGtLmrYY647THRujlWVYrXHF\niCzJsCZBJ22UTeoFj7BwK+eFYKDFQEbsSCIkkr6oNETkc4m+DgDzhOjEQ1ObzcUTsQnY0hhV9/RN\nA0hNjBqNxcWKsiqwRtX/br1OiZEQFFVVYoytmdJQeg+1xF3ygSFoJUnyEXp5yfXbPW4sDuiPHC0T\nSRPPWLtNrAIjq8mrikpZQjbGpYsf0d4YYG2btdUV2q2U4NtURU5VFVhbv7a+/Fx+Jv7/XQ1w0/SJ\nAQwmxPP8VovrD+7h0/QgDx1/n6ln+zy+CFOXZE96IIP9J0E9CYsHp/mMA9zs75LD/DpSItqTcK+R\nQ/pRYD8CfnWQUnIbYRp9CHyQwkUrD2UI9GCDCVaYIezWpAc8B6fg0oqczieB+xUUDl7ryc46Amsl\nbHsP9r0HHAS6YPcgxLMnIH9J8e78cR7mLE9VP2c1meYCh3hj/jFeffI5rh3Yj7UOHw395UmqCy04\nryQM5d0OXN7DXTKXX7h/n0fgRyNXbSxSal9gtRu2deAR4Gng6Yodx26yc+wGM9kyFsdGNcnCcBfX\nF/ZQ/XRM1POvKXkdqtsyC7kGXnJseZ3167dh/Wd3L0R+dcujX0vg6+iDT9MfeXwc0c4SWqmlZRVZ\nqskSQ5YZkkSTWI2rvZuM0VibgBFWklEeq6BtNJkFHQMbvTXWFq4wWr2FocTq2og3KjqdjrAJEIPc\n4LX4p0SwWmKPG2AsWgVa5BxRRxqoTXTkQSy/rMZkljioatZBoIyeoKEzO0PS7rKmLOlwSLnYp8gW\nGLcJfasYDjMmpyfpbt/Gnv6IF9/4NwD8Nwd3smozxlfX6FrLxKDFcitlD4p3JrtkNxdJpzuEjoCC\nppbr2NRiQiQYUDHFWoN2EZOkEuXuPQqPj+CdRNdjNaYljdxYK9OdFi+UEGvDeucoXUXpHZWT7XwE\nfFVv4evhKLhIKBXBVxTOkXtJsHFBzPrLKlI6qIhUMYrxPZLsGKgZFYhxs7IJRc308M7T7/VYWVlm\nOOhvDlGpUbStJjFixN9utxgbH6fd7tIfjOgPhuSFoz05z4OPPs5TX3qBPUeOYCemCMrgnOf/+pM/\npt/vfU4/AX/Ta2vAl8JUI/XxJtzYB2+J1nthtJdvPfNNPjhwnH36KlPpGhHFbbZxqTrIzQ8OEn+q\n4VUlANFihTCh1oBx6OdwpQXvK64/vI9Xjz/LXHuJl7/+XfYfuMl440a8C+Jj8MHsveSqxfSDZ+k8\n7nnuBowvySO8L4H5RyA+Acs7Z8komRytw2241Zeeevez+wcWdhyFT9+uzY/rjyXAjBIlZqYqnv3k\nDM+WZyi3W96fP8SP0hf4zr51fvrV5xn2psTq5WoAd7V+bovUrnJsbdubr9okovxNJTH2F379RY3+\nDMwqkbGchBM7z/Kb6nv87vK3aP9xgXoF6fY2ktw/5P6XLzL2zR4D2+XG4d188uHDLP+4xfL2HTIv\n5Qij/JoSxt9HwCdAaMwpm+Gm8V744gBf2iSgLfloKENMjMQmva8qicFjY8RqUNGDrySoot7wBhW3\nUhwJKC9GxFBt/lrlFfnI4jqtTVDfRTD1wlFTJy7Wm0iR7skSgKBonAy1ijVbqQ5GQeGj4r/9lz8B\noJdqPts7J/gbGq0j1qS02hlr9+7lW/PTlKOcLB8xudbj3pUNfrpnisSnZJ0WSht85Sn6A3paAt9b\nwaOyDG80UdcMLY0sgpqUY721MhXVogwyKGH1qqAwd90jas+VqBptpxcjZF17qAQn5UXb+p+NtQ5R\nXjOlNKZmaekojJ6IDEhN4JW6y6tFfLpq4Ct4ed1qXy/nPN7X/l4hUjlPFRpgH7wraxaAhBW4SrxX\nZGllNll9Rila1hKVph8KfOWkX0Xp8wJ2QlHVUlld4bUsW0IMrC/f3jJJ/sJfDrk/zZa2OSBHcBVc\n3SHs38+QoeRZBU9ppk7d4tDYp2znNiklAzpc4x4u3b6X/GdToqBINbw3B8Oa+dsv4EpGfM9w9YED\n/Oj484y3N3jp69/h8JFrdN6A4n+QGadZTgyATxwcX6sf1gmYfQ+eWYHXnfzRkwY+CLKMBlm+j2k4\n9hjwVeBRMKPI1P/eFwJaF7Y9uMzxr1xkYtcGbjzh3z23jfLSlDzP6x0Is0ita/p6U+++SFfzWjXb\n/Np/h3FgG2QdOA48BXy94Kl7/5IvqVd4nNc5Hj9gMmyQ6xaX1X5eTx/nB/d8iR/Ofonen2/jvcEj\nXHnyHt7qPsJOe5MxO2BAl1vs5OPBUTZe3w6vAj9H5P+jX/S5bCTwn9/PgdKG2BLgSycpuhiS6ASt\nNAGNrkr0aANUC5VNk5aO4WAdV5YEPGPjmp3dSaYmIyYqBv0+yytLVL6grIrNRYeElkjNDMD6MGd1\nY8S2sQyvIoGS6CthepWeqooonZBlbVT9WIyxaJugjcUmCcbIwty5CmsNISgSK4+98TNUCiIG6qW6\n0YosS7i9Zw+Jh0wnRCt//x+ef4fd6z2CMfzbbdOUZU5ZFThfklaaVgbeRow2+DJSjBwozahw9EYl\nhXdMdtvs3j7H/Nws3Vabjs0Yb3doZS2yrhZJPGIw76pK6m3NqooxUBUVWkWKBKwzeFcJMcAYQggY\nI4QA6YZaADAPkgweUFq8ekNDFlDggie6CkJzP4Rl7aLD+wrJFtZE3yhKKpzz2MRgUo3S4IOrU4gN\nEYVHUXjHsIosrA65vLDMyjDHG0XLwPR4QgwFg7yiiAlV8GTtDpNzc0xMzWBCpL+2xmjQZ3p6GoJn\nTUWcr0izFG0UPnzRasl/6qqoV3VsLUcGAlotABc0Hz19jDe7j3L00Cc8/Q/fYqwDp95FzpF7QT0N\n+e/BzzqPc46HWb20Q+ToC0jJOm7EouMp0E849uyXvtJmxIg2N9nFjcv74We1r1dbyyF+BbgO11f3\n8Mn0ES4f3M7RF66z/zr87g/g1gi2tWD2Yeh9KJWpqUYDoDcEVqH8X+DqRVgPcO84TG1Atify8u4f\nCpt1Hdh2hUceOcvhez5lIutxad8BtnObUWxzc/cuPj5xlE/vexB2KNk9+Ayu7UZ6amPm3qQ9fh6g\nl0bmBsOWRcoOmByDhxQ8D+nX+5w48jZP6Ne4j/fZzQ0snuVslo+zo5yZeoQ3tz/BSndnfVxI4OoU\nMnFdZgvMap7r8K73m+fe+D/+6vrCrx3w1Rmfw3ZC3k9QAAAgAElEQVR2c3Nxg247ZayT0W1ltFND\nK7VkiSYrDa20BsCsxlqFNQpnI8Y4WpmmlSV0Uk2KR1cF5XDA+s3r9G5ehirHJGCNQnmI0dDpZnS7\nXdZ6K1hSold4JUBQiGEzbaRJ9wJEi65rpXklxrybr71WKKvw2uEMaO1xocJER9ZOyFodJjBwe5k8\n71EsLFIC2dwkVdVm4D2m08Ztm+Uv/8u/xxsffEh/eQ3nS0ZGMeZhdm2Dlclx/s+nHsKubGA3+rTz\nDq2pLkk3w6aGoCxBOSrlCQpc9LjgISqMNWidEFyF0ZqYOMo8x2hNu5vRnWyRtlqSvqK2jJIr53Bl\nSVkK8JWXJZXz9ZCoawPj+r8o25dQQukceeUYuYDD4oKhdArnZTiqtCRnBR8ISm2+NWlhRhu8V3gn\nvgr93gZrKyuURSGDXu31kWhFWkti0zRhfHKSVrvDqBB/BJNlHDh0lOMPP8apRx9j14H9qFYbVxv4\nvP/Be5w7987n8N3/t3k1DrcKKdJrwAKUbbiwHZyBVYW/3OHCsYe5sOtBzFQOUeF7bfEIuYSAJIvU\nEnILoz31xm0Dqg24ksFZRb5jnDfbTxH3K+60tvHQ6XPsO32F3e4G3aURY29XPLr0PnSgPArhdzRj\n84ovnfEyEe0DnoPF56fI05SXb3+HzmtCIdnWgumBsI8VspzII/zp+/LwLNI7LXDIwJHDoB8AXoX4\nIVBAtt9x6oWPmH62R5yE5V2znHvkcfzHCVw2wl5jhAwYzTZjwJbpe5Ps6Oqv9NcFv5qBpmF3NWDX\n3b9vJC0d2VLtg7Hjd7hfvc8jxdu0vlfi/w18+gZ8NJBx6IH3YXcP9kwt8eizb/KWPs0nBx+AV60M\nMY2nQr9+He9EWY2FJQT0usMXW+bYloUGGq0MWkkMe1QBqwAjoI2uD8vRO9CKGCwqWJQRti0IG0xF\nj4oV+BJiSYwVPgSCaxPqUA0Xo4BeStcSbwHiVb3oUFEkkA2TTIXaoLc2vBfgqLmHin/xj5/k5Pnr\nfLhnEl0V+CgMAGXEu0TZFGMN7fEuJkvJioyXPrpBNhzx3vw4a5REIDNtkYWUFcNejzJ6xryjPTWJ\nbrWIWhENIv3XAoTFOiErKLCqZlk5B8Gj41YfE7ZY7XelAlqrOi13K6CEaIiqBrJi7QzfGOXXUk+F\nlTodJclSyGEiV/RB3lBK6PN3SVaCF6+14OsUxxipgsc5kcX7AM43acAyMIUQCL4SbzZfpzjWYGii\nEqyKRFfiixHeO6o0IURN3htS5kOCi0g6ZaiTJiMxKjya4DVOQYmnt7qM+zvj3dJcTe1vrrvZpRmY\nFuw18By0Xhpw/OGzPMNPeIhz3OOuknrHejLBZ/oAb+x4lJ99+Tmujh0iRg0jBR9sE61JuQ6X5+Ad\nTb5tnDe7T1HtTVm083z9vm/x5IV3aY/DNg3XwxZjdxdw62OI52FiJ4w9Ag914cjFOvRgCG8s/NVn\n1I9ADuEU6HWIfwBrP4G1RcjaMHcY0gV46h+d4drevXw0e4wz9z0Db2kxf18eQ+pryl0HNb4Y9a5h\nd93dJ2rTHTLE32sKdmo4BubJklP7X+er6tt8ffBtjp69jH0jwCJMjlVsO3GePU/eZHJ6HddNeOWB\nr5B/d5LeR9s5c3geva0k7RSUw4ywmMIFXbP6EBbGSo+tpcg6W+bFv9oB5xevpD3O+PZDmM4sZYjE\nqsR6WZCU2hDKHFUOMakheiOLU+0IVLR8JKkGaGC8axn0B5Suz8ZojUp5TJKQKI3zjtI7mqN+VIE8\nRm6vrrN3Zoyy8GQtqaU+esrg8UphkxRb++AaW4dhGUkzDMEBwnbaXDzU6YSyoJDNiixtRKop8E4g\nTVO0Eh+r6AKxkOX+v37sMV46f46/OLifmRgpioLhqEeeDzm2usG7nUCapCTaMFSVJB6WJYNRyUq/\nYMUFhkoxe+k6h3fMcnT3DnbPzODHxhnvToHJNs3qc+cZDnJWlxepXEkkUBYlw+GAPDiC7WLbiTxn\nbbCh8WLWdd8NKGS5oYBoTR1AGjeBLWWkR3kf8EHmLe9ETaKMBAE4J2nvWjwD0FpUPbX2nqqsJFzL\nBbQSg3wBvjS5Uyz1HJduLnNztcd65RhUOfmoJx5mlacqImWIKB1wbkB30jIx0WG41GPp9gJpq43R\nmtFwWEs1hRmYZZZB/+/KYqS5mrPeiM203ssdOA8bP9vOq888x0R7g+LhlBM7PqJ9ZYQZeaqphKV7\np3l9/BG+E1/izTuPU72RSd1YRgwanwDzcsXOp6/w2PhrPMQ59nOZMfr0GOcS+3n3wEOcmXuMmzP7\n8TaR8rIEfAobH8/zxunHuDe5SOflb7OztcL0icD0HYTYtBfS/w12r8sawyMWVjvmwA/gpxdE1FAA\nB3rw0s9h21GICzA8B8UAOjPQfhqe+v2zhJOa0WiMveU1SpNyo7OLt+xJfnTsBV7PnqLvZ8Tkvd+G\n1R1ssYYb7WbTR36V3wPNgqRZmE+BnYZ9Ck6CfT7n9OHX+W39p3yl+D6Hb15i/OoIVUKxy3Blz24O\nT15gfKbHK8/8JitL2+GOgrUubMwhKOQCAow2C/G72V3N98+v3ibg1w74yrq76Rdtbt4e0u2WdDsF\nk+2MbsvSaSV0WglZaWmlhiTXtFJDKzOkFrLUYzsZrbRFp5WQ6oAfDXGjIcP1NQZLt3G91fqALjTj\niJhRapOQJpICKNODxOGmaUrjD2OTFN0c+gMoI3IRQoAQMEFtmvACYnhv5fBslMMYi/eOQZHTnWjT\n2b1DUkHuBJJiSLW6ilGBcavx1jAoC9bznGu7Z4kcZvuVm6wvr7A6Kvn9m+scGRX88YFd3BprkwQZ\nBDPv6RYVE5NdWuMdaFmM0lQxULmKonK4asurxfmADwqjJDUzy1LSNKE7ltHptCUZ0Wiilobjqoqy\nLKnKkrIS0CsvShlqIjUjrH7+UYCyGGRrP6oqSh8oI1QxUHpFWQnw5XSs8zGEUSFSI0XUiO5fG2KI\nfOPDj/h3++9h2B/Q31jHlQVWA1aSaYxWsuPRGpMmtMfGaXUnJAkSy+4D27nnwL0cO/0Ye+89wuT0\ndG0MrUApfFnx4x/9kIWFL3ps/f/XdTcSX6d7NQfrIsCn87CSCah/EThm8Pd2YUckne2TbHe4ew3F\n/V341MiW5JyGDyZhKYF4CViE1XF4tw0d2GCWnz33PJcPHOTG+Pf57fhnHP34MmN/UsErkC+A7UJ6\nEtw3YPm/mmLua6uYIjDalnJ99y5uTczz0GfvM/Vvh4TvwsZV6JTwcgvey6W9PNyGSsHF4dbeoQO8\nbGHbC5CdBlah9x34ZAEqD3umYc9lOGBu8OxXf8IH2X18fOg+BgdmZKbQExCO1fdshDS2VaSTN9SE\nxsTgr0ttbtJzGj1+89a+62N3s76QxzQHc91l9nKN7QtL6Lcii2/DjwbSjhSwtgZfPwNjTwb2n7rG\n7vEbtHdtMJqakbnlIjWFyUFVgK+jPVliK7HmbtDL/zWe1y/3UkqTtTpYk4gXiBYjXpRGqSBgfZTs\nwFCbm9e6vi1zYStG9TSMr+hRom2EWBFDiUksSZ34WFYOaw2pSlHGgNEEnIiHVZ2OqBurePGk0kqo\nYeJ5JdLBu31InFK8ef8OVFUnRgYxja8QgAmtSKzGZAntLCFrZfz06RPYlXVCEkmLnLJyMMxJVEtE\nzDFQBo8yGmMtbWNQtmYp6DrJ0Og6vVE26kGL/DB6Ab4kyr6WFhLlPipVh8bompUVRDYSlRivyBMn\n1oxe1JZhvaI2J/aqdqOXxxOjyEx8UCJjj6H2+qoZaABeZI2NX5cLgcp7ykred0FkjX6TMiZMNGGI\nBXxV4VxJDI5EGTppikHRHw3I+2uEqsTrBBcN+aDEF2Xd5xOag5uIP2I972rK4Kl8yWB1hb+bl2er\nToX6/XEw07DHwMOQPDfiwfvO8A3+jJeK73H48iXGLvYxIyjnLOuHznBk9ydMTa7zZ099k+urh6T4\n3DSwXDOoVrpwrgsZ9MIsbz73FJyAo/oTHrv/XVqn4KkrYmzfQ2SLa8DPb8mjOrwMX3LQ/meikGEI\n4VtweEnUdiNECn/AArshJsAPYOmH8L2bIn/JhvD4BjzehskHe9y/40P2J5c5t/c01XxX9hnLXbYA\nQMtfPT5/njXv7v6QstUfMrbAr3FIMzFLOwqzh+/wqH2DF4sfceTVy9g/DKz/GJZHsp/a8RDsurPM\n87/7Kjcmd/PZnkN8tPNB+JaBn2nCdIs8a0k7W0Nu4lXgVoDhOmLwdYutaMfGvOfz9fgam97F9O77\nCbpNVQyhGoIviTZBpW2syzGxJFZDfOygbULbGspQoPIRaSeiK0VVOYb9NYbDDcYnuwStccMCYyxl\nVbHe75EXee0TLCEmq6OStWHJcFjS1glGK7S2/w93b/Zk533e+X1+y/u+Z+29G0ADjZ0gQIAASZAE\nd1Gidsv7MjWTcnKVqqnMRapy578gKd9mqVRNLhKnPE7NxI7lsS3JkrVQFCmJpAhxJ4h96QYavXef\nc97lt+TieU83qLHimYklUfqxWNiBs/R5nt/zfb4LJk2JKsekCdbIPDAM3XLBo5SiLHdkcGmaSn9C\nUwXx99JaJIEKJFSrtlsxSqOtxWhNXgww0WO1x6lAo9Xk2+eeYsyVxBAoipIkzfjk6hV+606PfzOh\n+M5IiiPIsigqQrBYq2hlkPuCsvLcXR3Q25xnY22T6uAscWqcUA1wOpBUTaLS5FVgZXmNrY01jNVU\nyjMY9CldiQqeRh3cAtSBV9V2oiLO440TSFdp6TOxAi1TGFAzy+J2kIoyChUkBTKESAwFVXBUldS0\nqBRKBbQxGKuFDU5kkFdC1w6R0tdLLaXIHaxuOq7c2eTq7VVub+YsDTZZWl+llw9oNlukpkGWNWkk\nGuV7lFVOq52RWsXt9RUq79g9OopKU5HBlwXKinwz3iPB/OU4Q6ljwXa6YrwDCwfknj+l+DA7xV89\naplv7eHB3W+xb/dNmuRsMMJFJAjjh0vnWH5pFl5RMiNkwClQn/DMPX2Jz3X/ls/Hr3F25Tyj1zdJ\ntyrKTsLG/hFenXyIme4iX3vmC1zdvF9SBX8AvAflaw3O7zpL98AmeTfj3OdeY+6xm7SKPkWSMXlz\ng+xdxyc2YHYeBgGOTsDYkxBeEfLYcFW1ANy+CzPX4fZX4OU1WI4wp+HJZRhvw7n2G9gfRNQi0IX7\nH7jMsUc/YLy1ij9geOXJ5ylutkQ1sTkKbhS5P/f4z1uE//899y7Mh/5eI9BMBXg8DXtPXeWT5lv8\nRv7XHH/xMvoryGKjgOyg59inrjP5hTXKXSmLe2d48bHPCdP3QwUb44jfcMpHpe73Jr7/4iwCfrWA\nL6VpjRyiKDKWlws2tyqarYqNtqfbsnSblk7D0mxY2o2UrGEpMkNZKboNRbvRodts0Glm6FBSDvrE\noo92JWW/T9VbQ4eq3j6L1E5pkUqiAjYx20lTMSDbF0XtZyLbaJCfM9pgjZGhihqqURqUGOE7PMpY\nVJrgfIV3FSkZKngGG5t0JibpTE7Q7jRoNRXri3dY29igXF4VMGdihKTdpL+6RFFWTI6PMtFpc/ni\nFe7cvMP/OtrgX5YF3xpskJU9WjYhtQmZ87TykrHcMVZE2qMtVCqbehzoqNEBVJAn6b2vk8lkKGsk\nKY1GRrOZYpNEWFdBACyFmDg77+kNCooa9BK2l66HmtrrpvZp8UOpCpoi1t5ePkrCile4oKkiFN6L\nN5i8kFCDVyiDMZaI4jMfXObzF69w4tYC/+rALFUhoJeJEeqUGK0NBEiyFJtlqKyBMymdsQmOHDjI\niQdOse/QEdrTuzCNbPsjHBFT5rXVVb7ylb+pE8x+2U9EilWBFMnl+uctuBGoMrENOQw845k6M8+x\nzgVm1S2aDCjImD++lw/OHWPp/D7ijIGGgldbsLIPuALxJtw8Ci8r2IK83aE6YJjjJufiD+h8dYD7\nU/juBbgaZPH+iXdg3AUm5lb4yuOfwivDqhrnptrL7/S/zOi3+/Dn8MobcF7eWs4a+I3DwLT4Nl79\n2kf5DCDWJ9mziCTnf4JvXBarEoCp2/DbL8OeY3D/o1c5On2Jid136U1MSBV9JJOXqgest2FxyAC7\nhUx6i2yvgLfPf4ynw3B7b9mRrTTZ8W0Zgl1DFkKyg4E1oKX6dNkk7ZdwF+6uS7sdvrtLQLkKagUa\ng5Jud5OslTPI6oe7GZFrwJCmPAT1Nuqvi3upyx8f0Asgy5o0m20x0I0I23b7Ah/xofYRCX7bv0tr\nhVIWlEExZKqKp4iKHkKF9hU6ODSOzIoU2qYJLkBROZIkITRkS+yiLAWUClKf6uSpbbN4H1HKgwbv\nZUjSRAKmTsuVIUhpiEYRIxy4vUk3d1zaP4nzDpQwE5IErLFYnRBNl6KR0skHmMRQbWzQ7w+wwZF2\nGpBa/uXfvMm//r1HSWwiSZRZhkoMWmuCUmDU9tICJQOJNDdhe9VOZbKcGAbCEMFqAoGI2k7PlV+K\nslivhwk1NPyHepGiCMPhJ9b7oDg0pQ84HylD7dlVyxm3y/026CXSex8CpfPkrhKj6BBwXrb/ROnN\nZsi29g7vKmLwQvpPEiY7LZT3VGsF/cEWOIdDUwSNyz3Rg0FhlDCTJZFMGMNBDHaIMVL2BlTlf8zn\n/ON47q1V9yQDtlriEH8qMnl8gWfTF/lS+Pec+d6H6C9HiVrcgmzWMfPkKs/93vepTlgWO9MsnZsi\nf2es3u63gRsQ5+HmQfEQG0De6HBp3/38eOoMpw++xUO//QETAb70KsQeXF+AP13f2RO/BhyZh+Ov\ns0141cfhiXkYf1tq3EEN+84CT4PpQbgIV28LVjOMb3m7gnMfgr0aGB+sMZ6s0hzvU3XaYgrJElKL\nW/Wfqilk27YAv4hzr4H9sBc0kfeqgTzWljzGlpXck32emdF5TvAeJ1ffI/laYPGv4G82RPU5Aryw\nDKeacOD+25x++k32d65wef8xylYLvoUwgIeezLWvDqGPmO8sscMEHoYADGUtv8jhXjG++yDtif24\nJMNUW4RQ4GOFS1tE20CFQCwGqETug9EVaOcw1RaonGBb9AYFvY0N8rIQf+DgyQd9Sudp2TalK3FO\nZGsCzMsiYbN0LG8M6I91GWsnda3WqFiRWEuSGVSit+V3MUbxYEzaJEbhtHzNaaUx2uJDwJoEV3la\nrTbWJgTnMCpi0Dgf0VFCpYyxNBpNGjRJk0LKtLVUDpLgCMFhs4okS7jcaRMXvsk7cwdpFCVZkpIY\ni1EJ/93b5/nvHzhOpxjQ2tqi3c9ZzSvKomDhzgZtnaCjIXeBTlWRNLqYpEUVNKurG6j6Y2Lquh+C\nhF3lRYWrHGVZ4kOFDw1aLbENsVbhnBjQa6MkSRmPChEXgwRsGek5QC0pD7joMKTEGCmKkqLs45wn\nSxtkmQWlKKuynhmGsnnu8YOMlD5ShMh633FtYY1Lt9dYHjhWe33mV5folyUoRaosOm2gsybeDVDB\nMTExyvTkKI1M0x9skmZt2q0O3c4IEOuU4AxflBT5oE6a/GU5HrloVkgNXEd8gLvw3hRkUFUZH6w+\nyMVHj/DK3qvMsEhGwQZdFopZ7l6aw3/fCuj1fUTPfgZ4ENKzOec6r/Dr/DWfv/wd9JcD6ofAMjSm\nHd1HB+z+zW9gjzhWu2Nce/IA8UJTyo0HXlJsNKf4yqe/yJ0DM7zVeJBDs1foskVCxbOzL/JgfpmJ\nCXj8XaAEdQTUJ6F6dceUBOrqaoC34Aergv2AhGmNX4TH34DkboQXYTAPzRHIzlUc/v15vvh7f8tt\nu5vLpw5z/e3jMlBcysCNIXV5KDX8yWnkZ32GHsH3zhVd2RDNAfdHTjXf5Ele4fD5G+g/g+W/hteX\npVeeehWO3IAJu8Ez/+wl3kxO86OTj7B1YEbkM1c7EFvsRHWKH67U/1+8pPdXCvhKszFGxg6hg4Gg\nKKqIKyoGA89GU9NqJHRbKSNNQ7dV0GoYWs0U003ojLaZGu3QaSboakAoBfSiLOhtrLN65ybF+jIq\nOKwRU98QwRjwVCgdsInG2hTnIsaEmncUsVpLtL1WWG1Rsf45bTBK1dv+UOvYJWkSFVBKY22DA29d\nptX33HnstKSroFCDgry3hQoen2WYkRHaWlMMBvj1LY586wds7Bpn/dQRRjstCqPJg2JqepKq8qwY\nyx/blDzPcYM+mbWkSUYjccwMDL954SbX985w5dAsnU6LtGFROiHRBq8rSpcL6CUIn7wmyPM0Vskm\npZbieF9RVWJ6XFWOwkk0cOkipZMtSxUVLogPS0RBjPh6C1T5iI+KUhkKD4UP9fDqiEHjNVSmZggo\nGT5MYjHaYpNUmFjA106eYLIs+R+6baqiQGuL1YZEg0E2/8pqUCk6adDodpncvYdd+/Zz+PgD7D9y\nH1Mzu7CNJsFK44xQb2uEpfHKy9/j1q2bv+BPwj/VuXfjDzuSiRlIRsQr5Amwv5lz8vQbPKu/y6O8\nxqHiGk2XU9iUy9lBftR5hBefeY532o9Qhib0FXy/C9UkMA8xg6290DCo8chUd4k5rrPrw03iG/D2\nDXixlrlci1AN4Hdeg/TdyNTJZf7n5L/hHU7yB/xb9uQLqLfh6gV4OUqRBnjZw94cZp8A+jA1BQ/0\n4IMgreehBLIHkASZRdi8KUPA8JmvA0trsHse7JJnZHqDVtaTGPjfQXpYbVvDvILLCi624e4B8MMc\nZsUOOFTxj6e5DEGvYWNqIVuUUaRDjdXvRwY6rUGJ6iNEvUFs0KNN1UxgBia7MLEpUBwIbpmOQZyA\nopnSo02Zp/ekzwd2zBsK+Uu3DSmH3w6b2sfp4qYYH58iazTIC4dzdYJiEJauc16YS9HtgF5KodGg\nLWiLV8LqJdYyx+BR3qF8hY4VaaJpNzMazSZJlmGsrS/N9f8e8Y9UO7JBtKrlk+JTpVREeUUMcvEx\nSsnv1ar2kArbUr5IIGB4+t0FjI9c3DtOoQKVK7FRPK2yJGLr+HaTJjS01EKsZWNrg7zKcVsDXri2\nSquoOPPGVd54REhWabuFTRO0tQLOaUXQIiuJul7YKNC1THPo9x9DnXxVy9mjhx0RSiAqDcqjosbj\nhImrtPhpUi+6h95mYefPBARUkx4QZAjxgdJ7YXdtG+IPUTKPqv26vA8UzpNX8q3IX/y2tNFaQ2qF\n4Wsrx794+R1uTbT5wYOHGGlktBMrwS5a07SGqDVl5RlUFVUhfUfrRIIQtDzXqGJtVSZ9XTtHsbFF\n9B+nz8V/zrHsSKlb0FSwF/SRwNGJizzMGzx86QLx/4HVv4CX5wULOfgmnLkGnXbOmal3+fH0W/x4\n8hEuHhyTy3FioGoDd6S439kHl5rwtuLuqV28NPosU8kS4RnDfbuv0LowwH4P9J/IIxoCXwYIHlZf\nhKVFyFKYOQGNp+GBswjpaAbCOcWNz08zvrhJyw4whu1BfPgsh0rBqDQeg1tP6u0A4nS8vZgfGtsP\n67ni53+hv7c/DIHJNju9od66q6YwE22AlsGMOMabq8xwh/Z1DxfgnYHMnSBw1fkSjl6AxjWYeXqR\nCbVC0qoom/XTXBjKV4aM8GF64wY7aV33gl7DpvSLO0prdh86hckaFL6qa46X9MEgvoS6XnBE18cX\nK/T7ERMDygaUCTRabXrLG9y5u0SSCrs2hMAgL8XCw/k6yTtitYAnQwVCEWBtUNAvSopKZIy6Zs1m\nSUIwGptZQlXhiop8qwfK0DMl3W6TEdtE27ruujo8BFUv2iNpIyUa8SUEJTxAZer0QkuIBu9lrlC1\n92DsD4jREqIiwZCmlso3+OPPf5ZsMMBWjnajRZY0eOzGTUad4/fXe3z14H5Ge1tM9Pusb26xublB\nqAqqXs7y0jrRV/SLkkYrkKQBZZoktk3WTPHkuFiQpQnGWIpBTj4oqCpHXuSoMqB1JMtaWCtyTudc\nHUBmxKu3xgnEF7iWmiM9MA4TgUPEFQXelzjnZIHuAsFCWZVEpFcYDb5wtccyuKhwKIoQ6RWOpa2c\nK/PLzNxcZSVts7jV5+byXXpVjqzTxJOyaTU2sRAVrijZ6q0xMdomMQHnHbOT0+yd2UOz3ZLLQYy4\nqiK6ISnil+kMl+IKuReusw2+r1s4PwpbChY0/p0Ol+dOcXkKweK3qBMPERPGS9Seswgj9QgcOPgh\nj/IaTyy+hvnzQP5/wYW3YaGSsPL73oXUex7/w/O8t/sE5+ce5sITp+CokpK4ZmBJEf6izetnnuHC\nsRNMdZbITMF0ushSNsXms3/P8SOXyW7lKB8pp1JaH+bYM47HVsDnUr3u07D3CKg6i2V4PCKfjwNY\n/Sv43i2poaOr8NQaHGzA7KFlTp99k8PZZa4fOi56ypaCfmPn9doGvX5yMf6zPOqe/4ey+KaME+PQ\n3rvMLAsc3LpJ9lZF8X345pLsqwJwI4ff/THsfR2mnt7g4KGrTHfvsjU9I3+HUhBTpEcNJfjwcQC9\n4FcM+BqfOkIzS9FhADEhIjp65z2uCORJSW+rYiuzjHQinVZkdmaEyX27mJ0eZ7SVgMtxxRbaF1D0\n2VxeZnH+FlsrC8TBOooggJWRQUApYXwpIKmHhmJQok3EewtDBfo2FSxuj8AqyvZGaY1KLM5L8x3q\nN6QpQ6OoiHnBhusxkmakMaNYXce7QNbuUASF6Y7SShuYjQ18GWiXHrW4TmctxwWNbWW4ooSioNtp\nkZcV/RAoqpK8MpTKggskvgQf8HnJ5p1lLjUbTIxUjI12aDQSglY4DD4aSu9wwaENtJpNklpykzVT\nskZGmiQkGoIrqFxFCFBVjrKo8B6Cj5Qu0K88hYs1qOXrITBK9HwQTxiPogLKoOoRWy4tcTuBUKKd\nlZJhRqPRNqkNomF6bo5D9x3h5RPHmXn7HdaXVwhlhfIOGz06OpSBtNGg2R1jdHqWmb0HOHjkCLP7\nDzA2vYus1UUnqdCkxam6drARpt7W5hbf/KmZ4cgAACAASURBVNbf0+v1fspX6C/rGUopmgjoMikm\nK6eB5ypOnD7Pb+ov8+vF33LfpUuMfNBHrQEjcPqBdzl+6EPGG2uEk4Z31h7C3WrADQ3XxoQeDaBM\nzVSKpLoko6zdJmGj+mg7WALyNWhvQjMMyCgoSdF4bKiggF7YAb1Avl/0YOnP4fYmZBEeH4EHMzAW\nJg+C/iLER0F9G7I2tDZ3OG4GaNZkq9hQVCRMsszhZ99n45ERMlsQgmaz16F3eYz4lhHmw/kMLu0R\n+vy2b9qQ8pvz/y15HDaN4QZ/RF579gDTkHWgk0BbyYUish0pzQZwF5a2prmWHeD2rmlmzq4w/Vjk\nue/Dhb78zacnoPUY+Ic0Vzpz3GAf/flRmX42YGdw2az/H0oah5r9j5e8cXgaWYMszeQCDHUalBbp\noA947+4ZdOqFgxL5tnCudA3Y6Dr9KdTMMEcMDkUgsymtVpN2p0Oz3cVYw3MfXOHF+/ZTeUhTLSm7\nOqK0yC/Et0TVqr8oLDIt9UPpWMsclcgMgxfQK0S8Eq+UGAN/+ewxTOHYsAYTPcZHPvH2DV4/fYgY\n5XFZJUwtbS2ZTTBZikksa5vr9IoBXzswxlLLcn7/CKxv4qOi4wJZS9hrxoohf1BRBjIjdRUjLGfp\naUNGmlz+FWKyTA18DU3mgxJZo9JKDO0ZeqaxPaCI0kNtDzAirlOShO1lQVL4UPeJQOXdNtNMQgIk\njVcjtgGV8xQukFeRwkWcH2JjEaPEgyXWywobPJ2iYqbwtBtN2o0miTEUhcgntU4lYdkVlF7AtBBl\nJywJoDuMLw0QIkZZbFQUvxK9YOgblQiA0gJGQE8FZpnnINfgTchfhZduS9kDuBKh/T488CrMfGaR\nA1PXmEiWYcbDqBEArUoRmOwmhAbcmIU3DdVsk7e6jxAehLuNaR469QbPHHuZw2sL7N4LDy+JP2NE\nMjxaBfzNTYkXyUp49DycawP/taY4ltJezSGB5nqBHa/QJ+DQD+D+a8L6aiGkXR6A6rBmsTnJbXaL\n9PfR+iHaBK7MQjVkOQw32MPh7+fpVzJ8T+5diowi5o67gD2QNaCbwEjdHzI+EgasiNuN9Sert2cI\nSMvvG/oR7RATeojr//B1GCZ09epvC3Zk/T/fxK6fdrQ2zBw8xVYImFASyrwOOYpE3yekCpV1ib1V\n+psLeJ+TNOaIusvGxlU6uoKyYtAf0Gh3iDGQVxU+RGySkKQpzgmAopX4JPqasUt0eDR385zlomKm\nykisw1cVvvKSDm8NaZLiUOgoksfeVs56XvA7t27zrQeP0my0xBS+KuslicNqQ1VsUeqIxogpu9L1\nmk2k3knawFgjy5PgSRKD0gnGaMqypChzlDKkWUYSvDDKWu1aDKVIbMalibOo0THe2rufyVhStbuM\nFwXTYwMeee9tvjY5iSsGVP0+m1YRVELA0daGTrNLI7HoNFA5hR9UmCQlyVqorRxfesq8wtiI0p6i\n0DSbnjQVBpev2bqV81glvpnEsMMaC6GW2Mftfh29AGbeCQN4GBxTlDnaiWTeB4dWEeed9DGbEJTF\nRctmXnFrcZWL84s8e32R/+ruOv2xCf6Xfk6/yuXmryTghRgI0WF0wKYZsTL4UNBupWgdaXe6HDl4\niP27ZlldX6PqDUSGGeX9qMr8F/vh+E8+w/usYUcRMrT0CLC+H94egYVUwK0ZpDxZ7lmqIqVjtv71\nVbb91fdxkyNcov1Bjn8J3noHXqzkBtotoXgXHnkJuk9vcHT3Rc7yOvYpJws5Iv18hJWNCdZenSK+\nZdj43gwbMzPQgSvHe6yfHuV6MscDc++xZ24BWclZnp1+mf3zi5xQsOcDcfcY2QPt54HX4OglmI9S\n7UaBuQ7oEt67JfldQ5ux1jrseQfSS57ZR+aZVndh0kPXyHWeZv2aDc9Qdvizvkd/pIjX5x7v4NoS\nMm1UdNgiy0vUEoRlsfgdProecHcV9i6B3XS06NNksKOuV8O/19zzb3x8zq8M8KWUYXLqIC5fACxa\nNdGqhdKpDBNB4StNnlc4Gyj7FWZXysTkBPv2dhkfbeHLnFBsoasBseixcfcOC9evsbGyjAl9LE70\n4InZBrys1Sgt8j2jE5GZhBzva0lNHJr7SsKUMrUzWIgSl6tEWhJDEFNh1I5/iQFl4f1njlFuDSiL\nASHfYipt0VCaql+wWUVILKPjE1ilWI2aUEVuf+qTFL0eXVfR2yyI/YpGrJhJmjRNSq8/IGtYHI5S\nBaKRL36nDJdDyR9NjKKspbGyyUq/YqJfMDIiyZVJYnBoXBSGVmpB1+mYaZaQNRuy+QBpPGVOcA7n\nIi5EXBXJC8cgdwyKisIpemWgV1bkTgZVH4J4GLggA5ASw+NQsydCjHXai0Iri/IeIqSJwaZZDXqJ\n4eeufft4/IUXOHr//QRXceaJJ7l57Tp3F+7QW12lGgxopwmtdoPJ6Wkmd80yuWeOzuQMWWeEJBHz\n6Kgl4UUH2bpRv0/Dc/XyJV555Xu/ROld/9i5t2gNPUM6kGRChz0OM6cWeEq9zBfLr/Hwq2+j/11E\nvYzYQI3ByNN9zv7eW/inYCHZze3793LngTl4T8GdhlCjkfdO1HSKPDTY0h1pglMw1YCk3NkVzAGt\nXfJrPd0moeIZXmKJaTaTLiOzK+xrw8G+LJJA1Ji6B19Zl61MCjyq4FNnEMbWMag+AT+YOMuTt18n\nPQPPLMLLNYB2WsO+OVAPwMr+FgbP7/LnFBMNbk7so8sGDsvNuI+Lh4/x41NncDNdGThCIoEA22ku\nA+TZWH56oxt6s6TIX1JHDbMf9B6YMnBYyYsxLW+LSBMRtG4ZuA6b70/xztMnebV5liOfvUJ3o+D+\nGTh6VWqLeQDUF+HSk7v4oXqcd8NJuJDIBLlC/XiH/ix5/diHnj/Drd/H7zQaLYo6ictTm8wbK4yc\n4Ig40aPXrKrhFSRqXYMYsl0ONZNKBr9Yx7KL91fWyhgdH2NsbJxmq8Mf//lXaZcleavJ28cOoo2V\nYA8trCCtBdwS/TswlOqJHh4djcgxa8Yr0W5f1r1yOCXAztaopDNG76lC4Om3b/LQhTtMrvf52nMn\nBeCzEnYfEHAJpUmzBq0QcCoyyHNenWoRBwVuUOK8yGN0ROpbYjGJgPvBe/Ew1ArRhgsIFryXPjas\nd3F7ZyNgVH2fUqqWwlsZVKKiZms5opYwE/njZls05mPExSiy9tqjywVFGSK5EwNh70PNEhM2nokC\nagXvcc5TVJ7CeUofcUIII2Jo2ER6CJLWPEgS/vTTj5A1MlpZA6UMLij6VcCRohoj8uO+ou89JQqH\nJiBgqkDXUUCwKGlvVsHq2hKu+mUztf9pZ7gZTnf80huRJgO6bMKahPgt3FPO+sCNAA+sQNpztGKf\nTOeQBtGOJPdewteBReiPw9sdaMMgdvnRxtNcPX2Ii92jpEnFnk/8Dc2Lnhc8PPKhfEzGD8KPLkit\nH+ZQvlfBQ9egdSfQTAv4Huhbkan2OvE08GkYn4cvfQvWrkOjA53TwJdg43SX3GY8zg8JxzWvjD7H\nup2EUsFmCgu7kd3/8LHfuwCAnw/Icy/b697+cADYDXsS2K9Ekrob2ZkYIAe/aVgvRlhqTDHYp2ge\nihxP4cOqTr8EHrTQOAzMwRJTrDGOG9idPQge6Q23kV5WsLN5qfhoWtnHo0ckWZOpueMsvX8Noy3k\nG6h8ncJHFAlKNaj8CmFzCVf0sN0ZksRwZ2WJQT7g0J5pWmnKVrNJvlkxyHP6eU5eDHDe0Ww0a0+p\ngDFGwJp75GuRyGZRsLa5RW8spZEooi/AWAwJ1KEoJs0AauWH5V/N3+SRzT6JMbz8+GnSNMN7D0o4\nXz5Ect/DVyWJybBaFu7DtHipowVZ1pB6ZQKVc0SvUNpgE4uxbbQWY30dA1YZXCUJi0ZprEmwJuXG\nAyeZ1FKni8GAYtDnzPxbPLKyyomi5E+OHgUC2cgII2NjpI0OjcYoze4YKoUq9DE2IVQKpyImEy/M\nQT6g1+thbBObyv1fqUCaWvFQ1kasU4Qjh3dOWLYxSBKkiVglM4ek/Hq8K6l8KTLHohRPzxCoen1i\nlN6p6r5WVoUEnihLGQxr/ZJbt5eZX15jJYevzu7j9xfX+Ncba2zGcI98X/qbNprSlSRVARjKkDA9\ns5el5SVciDzy0FkO7T9Ew6as3b1LWeSYZgpK41yB8x8PJsx/2hl266GUf3iLqu+KxTTMT8HtUTBa\nStVJ4BhwEFFXjNZ/pIfcOXOgHWmzxShrmFWHvw1Xy50s3U3gagWP3IJ0ueJx90MyW/BQ6zxttrB4\nFtszXJw4yo/mzvL2u2fg6yn8BZBC/libt5Yf44MHTzC35yoTLJPgmGQZJhSf/cOvM31gi6kPkGay\nH9muNOHhBehegMUAB1I4+BBoJ49p+A7G+umEAlQeSWNJoipIQr0Ivfe1Gp6f/PE/9bE/5fvwkfpc\n77SrwpLToEqsLLm60L0rAnYQ2G56BBiF0NLkNChJd/bh2+fjtRAfnl8Z4KvdGae/dRNdb/aVStF0\nsUlbZChJA21SlNL4qsBmmiP77+fkfbNMjGaCuBcluiopt1ZYWbjB3Zs32FhewqpImko0sK3TVpRW\nYoioIcTah8qLubvuidxO0rGMsAaogTKtsErXUhEpnuI9I01KaS1AGIGgAtiAS8E3LSE6VgcbRGWZ\niJpGq412gUZzlNQkFMHj0ox0coqQVxibYvIeHQVjy8s8/Hff5MXPPc/dTpNe1Gw5h/UVqRFJThUC\nA+fIS8eWsZjKk1aBZlGxOsgZG/QZHWnTbjcxRklzQqGtIRBQNiFtZihjhjy3WmIiPi2ld9KEXKSX\nO8oqslU4BlWk7wJbZaBwAY+SP0eUFC40URnc9taxBr2Cr+WjqmbhaYxN0GlCxII27Js7wLnnnufw\nyTMkjZQQA0dGJpg7epwiL3BFgXIeSyRNErJGE51k6DQj6ARl7NBEBlUbNQ//I8Q64AB88HzjG19n\nfX39F/UR+BmdoYfIcNppQ9cK2HLQMdu9yWn1FscWPsT8ZaT37+A7C1IgJ4BP3YZOGjhz7G0e2n2e\nH049xt2DewjTVowUB23gChT7YC0hLioWl3dzZfogVw7s5tCTt3ngA3BvwK0SuhoengT1DGw+mHHX\nTvFb/svsHixiQ8WKnmLPuRVGX4AvfQ0+7Mvbd38Xbm3AvJPa7oAPInziGjAJN35rF9/JnmOFCQ48\ndJN9v3uH+1PY/xb4AjqHgM/A4DMpK3Gc31j9a0bLNSqdcru5m061RaUtC81Z3kjPsH/vNb77hedZ\nCnugp2GjAXdm2JGBDLfitdv3RxrEkBpskU1+FzEe2w/pnFwaHgJOR9QDnnRvSTJSgQK3ZSkXUsL7\niSB8P9a8ceAsM3sXaUzkPPdffpfph9ZJFiuCVeRzKVfv28PX7Wf4tn+e6+/eJ6uri8DAIejXcNrZ\nhiX4uAwz/9BJkgStNVVVie+HEeB6KIsIwUGsP8/esx2IoSSUJCoD2ojcKQhYYxINThFUQCeG5miT\nkZlJxnfvot1oYYzlj/75r/PFl1/ne7O76KIINWNM19JGrfzOwi0GdJTav5P4q9Eo8XrcBs9FnuGV\nRmsv/74KOG0ITqQaL56ZY2or5y+eOEwWKkkZRot/ltL1Nlp0+Wkjo0mHqBR5kVOWrpb5RHrG1mEr\nHpslJF6GIlQUv3kFwSuiNQRdM+F8qBm6dVIWEaJCKyOM5tq+ItQeYMoKSOSDIyqF1kYYtMbIv0Mk\nRDGxLzzkzpN7TxkUZYCi9l0pvSxdZMiR99HEUHtJS5pj6QJlFajqNMgQIkZplBEGlw8OYxSJNURr\nMFmGMWkdGJmQh5TKjhCtpaoimyjWfKQfHZUI6olx6GHm0RFMFCZf3s9ZXpr/BXz1/6zOPYzVWt0W\n+4oebTYYgXFojsFeLUOBQwCUAwaYgXw0ZVN1yUMTciPlpKq/XohITVwCGrByBF7PoK8Ii5al6/t5\n47Ml+yevs+fgAmf/izdpzxXMXK0f0jVoXALjd6pSRv1x3gf+TyLLL8HVVRhLYe5VaCwDvw/JaZi5\nQX2Tl8c6+b11vnTw7zl137vMdW+Q7i35+id/jcFiV1KrwggsHod4iY8mVg23Nz/rc688JWXbfoD9\nkO6Gg6mwsR8GfcqR7cuxow4M+L6hXE+525vlQuN+Ppg8xoMvXGDvfOT3vwuLObQN7H8Q4ufg1ulJ\n3uEk13sHKG9msvbPh1L9obfjOh9N6brXz+UXz/QanlNP/RqbG5sMepvC2Pc5VTmgioosNAiDnCq/\ng9XQ6kwQjGJr+Tph7S7T42Oko11iEkmbDUaNZmR0jNW1VTa3rARj1MmIWSbAlPsJ+VqMEeccG/0+\nG3mLTpbQSFJS28THlOg8JrWEGDBJJKiSlJT/84FDNN+5yv+oLLtv3uXAwb00mhnGDKEtYXhFVYeR\naIi+XgggqhRX5sToMNZK8IhClkGIp6WqwS2XePI8RxnZC1mlMVpsWrQRRYXSEY3Gtlsk2vDh2XPM\n5AO+c+5JDoRAkiRkzSZJI0OZBJQRsMuLJxogVihJgrYJOrHkWyWbWz2SVNMgIbiIq0qCL1FWfHrT\nJMF5eQ1FzCN2KFVVYmr2LkBVVTjnKF0u6fGVq72FA2WeUw4GAkoSUcbiQp09qRV5HtkceO6ub7LW\nKyhjQnt8jJv9AfvbbTYH/Y8strXWWGNwzmG0koVUDPhQMTLS5s7iEnduL3F0bhdZu834+BTmsviO\nVWWJTRtsbvyyhp/AzgJ3WPdc/f0B22nm4SCMjsqd9XFQj3uaJ/qM779Dt72BJrDeG2H99i4Gb7fw\nIaEkY0CL0DKYjmNSi1Jbsk3F6xcL9luw7+oK+579FmcOvMXU+goqBFbGxvmge4z7kg/pPrDBa/4J\nqvW2JJW/DyE35JdG+XDqjFyvDUzsW8Tc71luTnL6c2+y74WbNKqCxeYUHsOp1kWa3ZJT55GSt0ue\nD6/AsdfhciGktQZwn4V0L/hZw7KeZI0xWE92SLDb92nued1+FoSJITNYIf0CdtLgDR8FLwvYSmAF\nthZGuTWzl2ujezly+irpY47nV6G9BkWE4xlMnYR4FlZ2j3Od/dztz0gLX0OKxzbb9+O3IP+VAL60\n1mRpgsuXxYRdASRotYZxGYlvkCRNEtPEKEO7bTh9/BRPPHKUuakRjPOE3GFdxWD1LsvzH7B46zJb\nK+sYH0lbaZ3AIjCHihGjDFabeusQMSbBxMjRG6usmYLQrrcydZEM0W/LRaw2WCWeWHUYYG3cKAPP\nMNJXaSRVLNNEB85GSuXIN5fo5yWTIxN0OiP4QY+edxS1KWba6bLlN6DdIO020FVF58Y8KsLE0gZb\nQbOHjJC2MWOTbPrARuVZKQb0ioIqDDdFIg1JlKbjHJuuYr0oGStKWo0ErTypjTQa8sGySbIDetXS\nD+8jIRh8gNI7cg+buWejX1C5SBUMgxDIvaKMYmBfOjEijkrhqVlzijoxTAnrQsxUSGvZobWWNEkx\nSUrUBm0z5g4e5twTT3P4+EkaWbfevkWijqTNlKTZkRCzKAb3EjKm8QGCkZQ2kdJI8pqYTw5NjIdH\nvn/79gLfefHb0pR/Jc89F+1UwSgkkyUz2SL7uc74lR6ch1dui9lwQDbw7UX4xBvQetezf/d1dqWL\nmAlHGLN1AGHNbCpzWEzgqmLtxhTnJx7iu/ppup/9BlNhndMH4cEFxLLkQSh+zTK/fxePLv+YXe8s\nkrwv/OO4B8JhWPlvu0zt32TqCuLZ0obbf/ZRkq8FghU2Wa/f4fvZE9xmN1O7lnj+t77L7H2LNC8A\nBYQ5WH2oS5g0nHzlQ5KXkOCqVsH00do0qw2HT97ivscuMzG9gpuyfPOJz9O7MSog1OoIlKMIHWvo\nf/KT8hh1z6MbbvPHgN1gdwl17Sngk9B9Zpn9M1c53LrEFEtAZIUJrhUHuHbqKKuvT8GPDVsvTvCd\nTz1Pf6bJ5cZhjj1+gWkW8VgW2MM7nOSV8BQ/vvQo+YsteQOvRXG9Z4Ud1tewWX98hpl/6KRJJma3\nIeCVwgxrLBCCI3iRa6o60Y8YiPXCBGUE7DZW/EIAazVWR4KSWPSs0aAzOcbYnl20pyaxUaECJGi+\n/PgZVG8LH7zIKWMNPmmpLVoJMGKUFrl8jYQp6nTHWlY0lNHHKEwiowNGWXwNfBntCEZ8WrxR/OVz\nx1AR8SbBQ3Q0lCY1lpNvXeGdB4+ga/P2RgYo8WFk0McVBUV/UDvJy0Kh4VKCSwipxVhTB7hEQb9i\nIGrZUA6BL600QdXZjFHJIiQgoJiugcVQCfNKaXltJX8ebN1Hh95eMcriMQZZlrhAGRS5j+TOU/g6\npTFqXBQ5fKiisH5riaX3Ae8jVZDQgFiz0ZSue62SJUmaaDKrUQHKMsH1PVkjxWYp/djAN5vYxiiu\nX7G1rFmLijyWsvgykg4aokNFJylhdZDN8vJt/C+db8tPO8OLq4eYSzlYhbiouRX3ckkd4dwjP6L5\nZOSJ29C6InPB4Qbcdxw4B4u7prmqDrJUTsMdLRNCPmQIlcgAtUw90cLiLPRHYVmDh/ld+/m7Zz4L\naeTOyRlO73uPzsYWE4N1Wv+m4PCrcPJa3XOAM03ITgAvwcIr8LVVKdGNUsyMnxsTWfv8H8ywb2ER\nXkGSgy/I10h2Pxz63ALmi99ic6bD/IFZ3vvsaXqMSUn+QRNWZvnoEmM4/Cl+tl4tQ8+1YbJv3R+Y\nhUOJ9IdPQPfpZQ7tu8iR7CLTahGLZ41RrrpDXPMHeJ2zHGpcof3JPodbt5h8ODC5CHQgnoa7z43y\n0uhTvByf4tqtw8T3rfS8DceO7L3io4yvYX8Yfv/jc0499SXubAzwUeGdg6gJOoOyIBTL+MGq8Diz\nEWKo2Nq4y+b6XUYnmnTHGqz0VljYXGbt7hIqahKdUBYFlS9xocJ7Xy9gDT78wz0yxMhqXrJZBQqv\nSa2t78mOxBiSVDzDRAliiUlFtJH/7fhRmis9lu5sUDnP3v0zjI+OYmzNFEtSrDa1aXydfEgUVrES\nz+DgyzqMy6JMgqkTjiMIDVccLvHekyUpjTSTRQHUXpNh2wheLBoNptkBDW9+4beZshplpC4aa9HW\ngjFyw/GOstfDlTnOF7iyJPggTGAjS6ayCjgXUdGitSycnfMoVVFVvlbueIIPaGvwWuGjl9E9hG3A\nyzmHDx4XPWVRkecFwUWqyjHo9ynyUuYLAK1wwVMFT+UDRQH9MtJzHrKU0ZFp5lf7XL05z1Z/8BHQ\nS1Q/oopIrKWRNQVAVJHxboqv+ty5NY8uA91Gk/GxMbJuG52lFJUTJnZUbGz9si/Lh31uWP+GtigJ\nsBtaIwLEfxL053PuO3GBhzqvc5z3meYumsBKe4IPjtzP+dmHeX/+JHeY4QZzFIcyumcdD1+G/IYs\nVfZoOGrgwocQL8K+XdC6APtml+AC4GHPkVUmPvka008tUlnL2v3jvH/wDHHWwN4AI/VjXrNwU8MS\nrNye4hvJF7h88DD32Q+ZsYuktmSFccZY54UHv8GDM+8x8cUVsn5Jv9sijirGWlvMzcOv/QgW12G0\nCXvvh+STsPRQm/c5znW/X0yD71J7sPT5D31x/6nv1UNwa2ign7IzVwz9t4bM4TqgYLUjeVwfprx3\n4gSvpY9y9MxV7vtn15jrwPTbEHJoHgL1KVj7fItXOmd5i1Osvz8lc84S8ps+ohaBj1M/+JUAvpIk\nJUkUMRTbE06MJV7lsn+KluCaeN0kSwzHTp3imXNHOTI7ShocflBgXaS/ssjC1XdZuXOR3uodYhlp\nNDokhu3iH4JsqbVS2/CHQmOUYeL6PGe/ep5TVvG///ZpQvCSJBUD3rOdjqVrY/saRqtN7KWo16IX\nXJIQgqX0gSSzVN7jy4rSBorBgI21LYo8Z7IsaGQ90rQB1pJmDQab6yTNBr6VCgNrkLP+wP28PTFB\nX2navR46aprdCWa742w6z/zmJlfDEqFf4FzJoHJiX+2ESr1pLFtZxoZXbHrFaNPSSgKdTDHabdBo\ntGh3OmRZUid+KfKyoiw8rnS4ypOXFb0isJFH+kWkLD0uQuEiAx8YuEAZRdoSoshjPJowHIsCwtJA\nfBMSI/5o2liSJCNJMxnItGHPvjmeeu55Dh29H501xItM+BTyn7lHsKXEy0ZH8ZWJRhh6wyGU6Gvz\n5h3YJMobLz42MfCDH/6A99579+f5Zf9zPsMiinzGEjBpINUlDWQYihsS83tvKV9xUG2A3YQGOSkl\nysZ7gkxqim/YhDtteF8zON/hR4ceZWp8Gb0v8tQfvsKhZxZQS0AL1u9LudC+j9n1RWb/6i7qy1C9\nCa4PzTkwL0D3n/d554+OcHLhEi4D+29hdg+cuCSpLG3gLJCcAH8EVtpjrDHGdxY+TdijuT29m1PP\nvM3uJ+6QxIplO8mIWef0Ny9g/g/Y+BZcXxbS2twMLN+GbgM6jwX2/O5dPv+HX2Uh3cOH9x3j/ZMP\nwXkFFyyUXWRysnx0UzY8ww3NsEG1Ec3nDOxK4BHg0zDzmRs8PfUiT/IKp3mTPQi7ZIlp3stO8L0D\nT/Pt8edZ0IeIrxvuDvbx9SdmeOvYaQ4mVxllHYdlhQkubx5m7Z3duJcTeEnBeSTXntvsAF9D6cov\nNo7+HztKKZI0gbpmyMab+seOGGu+X9jx9dJDfyotoFesWbohRpExaEn+i75CG01rpM3U7l2Mz0yj\nkwRXVQKgKZF8R6JcvIOvDeprBlcNwGmlsEpt8/rU0DNwWJHqFEetVc2egqgMRgW8jmgd0EbjfYl3\n0i+gNjFGjPErLWmRL/zdj5i9uUw0indOHyEqQ0CR1gui4D2ucuR5zlaxgXNVbeTfQcUMTTbsUgIc\nmtobyBjBmOoFRKifl4SL1K93FNaBPPH6sXlHVKZmKMhwLD4noU5DNHUaZqQKnjIEyhDIPeS1sb2r\nAT65Nmp8FFZXcPLaUXu+hEAtxayrZyJKXgAAIABJREFUl9EkVovHVwwyoBmNc5F8K1IOCspej1bT\nolPL0mZOMrKbiYk9mCyhWFL01jSDsk9qxIpAx4LoBwy172WoqPIBvd4mvzpnKOMbAD3oR1hQhA81\nVx46xmvTj3Ji/3uc+4O3mMzg2dch9MHuAf0kbH2hyY/GznCeM9y4PSfo1BJQBnYux0PfLCXfjzls\n7oH3Z6ELoZ1ykZNsPDrCxZGjnBh9n4nRZZ703+eTn36F7p3I516E/k1IW9B4EMy/AP9ncH1FKplD\nYKoPIjx1GewCpM0CLkL4v+G9V+DHfVFgPvQOHF2FfVOLnPvM6/SyDq3TfV41TzPY6sKygjdHIZ9g\nJ71wyIwesr/+Kc9PXtWHg0yHbeBrJpFUtOdh/Pfmea75HZ5R3+UR3mCWeQyeJSZ5zz7A9+05XuJZ\n/pYvUoxlnPvUD7nv6Q/pVFvktsmNdB8/Sh/mG+oFvtt/jq0fjgsT+FoE10P6Qp8dttuQBfbxPM3O\nGLsOPcL7b85T0kKHTUgasugolvHFCjZ4VDpOFXPyrSXy3hqjIymNJHD7xkXW11YITsIxgo9Yk6A8\nOF/UKbagtMP5oVH6f/g1EFCsFRWrvYKZdoPURGIoIRpMMyVNU2Fo1QBOWQI2oDIYabVZ26y4dXOZ\n9c115vbuZmpygm6nQztJ0UrVC2HxHByavGepFfZy9BAUOknQOsVoUa8EFWovsoBF0261scaggCxJ\nICq89/XiV56TNhodLd7KPKPrsCdtNSYTkoBw2ZV470aPUsIQrFwubC4nA7FNEumjLuBKBd4SamZX\nURZy71eyZBA/ZVmkE40s1msz+UE+ECZxVPgYycuCPC/YWNtikJe40lOUJaWrWd5a4UKQJMkoKhPn\nQWcNbCujOdIlHRlh4fJV1re2IO7w89Fagsmi3CESm9BoNLHRkqri/+XuzZ7sOu48v09mnuXut/YF\nhcK+EyAI7iDBTRKpxdOtXhzTM+6nsf3msCP8bP8Lfhk7HOFw9MTEeGIiPHa7W90atdhaKFFcxJ0A\nCAIEQaxVhdrr7vdsmemHPKeqKKnH8rTUTSojLgssVN17NmTm7/v7LgShIO53WFtYZKLSZLYxzv6J\naSJjGUYDrHBstWHcIf2dkMMXzKECaKkAEyCbcFDAIyBeTDhz7gO+5X2PF3iFc71LVJcSMBDPKC6N\nnOIn5ef4/oFv8tH6GS5OPMjZAxc5/+2LjKTwtZ9DtgXJEN64Bxc33f04sQm/FzmBwqcrkFg4NALj\ntzUn5C2evfAzrlVOcvPpE4zOLzPnLTIiW4ClbUa4l+1j5coBeEfS+atxLh17nI/3P4waixBKo+MS\nUxNLLFbnODN9ibnpRco2YlOMUaPL7/3hf2DcH7DvJOxdcbJAHoHoW4I3Jx7jHR7jzr2jTkWxCMQZ\nzkC3UFL8NhpkBaC1O+m3lL+q7CRKFnVd3swYWLgt4DLcOX6Un5x5nmajRfrNVzh66ialT3DL9H64\nf3yM10bO8wNe4uLKY/CeckEF6+CaWLvX9t1WAP/443cC+ArDACkF1roUumKSNMT5httzC5GOOXDg\nMC88c4ajB8YoCY2NYrw0orOywsrdG2wt32bQWScZDCj5ZUqBj68UVuTJTY4G5IoV4QyIhXXFQGt+\nghvnT/DTcZn/vdqeTK3NDYqFdkBcUZSBi5LPk0Fs3okv+QECDbH7uVIIacWSpBkkgmgQc3d9kU6/\nx0EZ0p+aplyq4qcZQblCpSyJsAgkqbGkniAdG4FhhIhjVJZR0hkegooMqDfGGA/KzFSb3G23uN/r\nsTaMMMYQWUM/0yQmo68NU0nK3SigpjJO+4Z4tIrnBxggShIUzpwzHsYMBglxnDIYRMRJylBDpCVJ\nCgU5KikM7EXh7WVACJcYJgTaWLTN3MJqRd5pkQSeT8n3CULfUbiFRPkh+w4d5ckLz3Ho2DFkUNpm\nJ9iCkYBjaLiYaYuR+cYtB2Ic2OXgG0kOeOXpaiDYhX8BMBgM+Ovv/qVj+P3ODoubwFwXkaFADxUD\nXaGj6uhJgdpjOezBrWyHAD0fQHkP2Elo06Bvq5ih3GHBbksm1mBrFK6V4Q3BWmMfL3/jG2xVRvmk\nfJwjp27QpE1MyBqTHNaf8dCVjxHfhZvfh9dyD4Cja/B0F6pjmqn/doX/c/+3Oepd58zXrtO8r/nW\nD5w3QCmA0QfA/h5sPDTK5eA0NzjC1mtT/PCxb3Jz5giHw08Z99bx0Oxhif/63r9GvWpp/wi+e9/N\n8eUIDnaczW+zB8/8FE6UYeJIn9PPfcRh7wbX9j/kGvJ1Ae0qv+AAuWsUVORCypJLSxmDSh2OCjhn\nGXlqnWcnXuGP7Z/z7NbrzF7eQNzArS0HP+PsY5eZG1nEb6b85fN/QGd1Bt6UpLdK3Dt6nHvzx6Ge\n/4Pbwrk7f4KLWv4YWEpw7alVXEE3YGeB/uKCXgBBEKCKaHMh8oRZAcJ1io1xD56zr3cpig6w8XKZ\no9xOFEQIpLAY7XwKJRmlRpnJmRlm9+ylWi0z6PewmXYpcyYD4eR91mRYrTFGozOLto45Rl4QFCas\nQjrASOxqpFjrQK+CCZxDTXmzBccskpY0c518Z2nsvK3cFGVBWrSwfO+b5/jmyx9y6fEjSCOQCnwv\nRKbSJQvj2E/T3SEv3Wrzrw5a+p7E9/JESuWYXBiBkIB1DRvn0ZU/v1YihAVp8mM1CFTegHIn5Eom\ng82/7+SdYK3GaoORThpqBGRYUmtJrSazJgfBLKk22zJl51vjmME6zcgy48h7Ojfc3/Yey034rcbz\nfMJA4SuZs+YUaM2gF7O2MqC7lSIzja8y0jSiHacEYxmxP0lWnmIzKTNQ48R+GSNSrIlR2kCWIKRx\nnmgShlHbgaG/E6MAuhO200aGPbhThyuCtVNTvPbUBUaDLdLHfR6YvU7lRoSMLfGoYnAy5KfNp/k+\n3+Cd4RNk79TcXLMEDjzp4OaYojPc4nMeUWkIH42CldiBx8rCQf72zBzvHnicudICSTlg4sIaJ8q3\nCc+lhItAGaKTAWI6RVQtlQC8aCeDrAJ4edL61EYbLsLKx/DjQR5mYmEzgX1vQ/i3lieDDxh7doOs\n5LFyZIrr585iP1Vwy4NoBDdHF930mF+e1/8+Y5fx8Lbn5u4OfgkYA78MR4BHoP7cOs+XX+GP7F/w\n1faPmXlvC/EJkMHRuUUeeuQa83vvEXgpL9uvs2Ym+cg7zT7/Dg26RJRYtHNc0Q9weeNB2j+dgddw\n68OqxtEW2vnz8EumLl/IMXf4QaLMw6DIrHCpiCqgZDViOEBmAzxZIzbQ6a8Td7aoVUJ8kdBdXkZE\nPZqIPPXPzU1pLq01woWSFMEW2mR/5ypppWSYGVrdIcNGhbrvWFpSyW3Ay/d9xySyFqt8jM7wSh5Z\nqsmMz96ow5/cW+V/iTIGG21mpycY6fZJR0eQgb/d/BdSudAPpJP64yFkgMLDU8E2qwosRurtpN4w\ncInCgAN4pI9SLmwLcPMrFqmUW1ulRErHDDbKYv0dGaI0QJZhkgE6S9w6bLK8ka2xZCANnlKkSUY0\nTEgrmiiJ8AYe1giqVYXv+7n0EcJSFd8PybQLvTJaE0UJwyhGG42UAYNY0+rFdLodtra2SIYJaZw5\nEa41CClJjSZO09xb2UcKSb3ZQJZKmFBx/MxJugb6b6Rk1uQ+jmw3vKWSeFJQLgUEvkfo+5RUCZtE\neCJDWcOw1aGpS4ziM2Y8esIwaLeR0ilHhoPhb/fB/wcdhS1Kie308ZHAzUsPGw6cvMmL3g/4dvYd\nzn14heBlg73hfrO8H5564T1Gn2xhQ0F3vM7PzZNMqjX88xknxz+j/FRMcNWy8b+6JaSACz+x8NBN\n+ADX1M6AY6vwjZ/C2Ek49dA1DtRu8czxH3KWixznGlN6DYFlNZjkanCKdx55jPcnH6X/l6OYv/ZI\nRj3Xyc6xoXvzR1l5Yor3Jh5zNYFMSWzIfv82STXk6T9+nfnzq6gtg6kKNvY0eavyCD+wL/Fq6zm6\n7zbgEq5xEBdBUcX8+ZveUxfrhZ/fiwo7DfQGzoSm6v5O5jWHMUAEWQtuN+B9RTJZ4e3y06QHfRZL\nezlz/BJ7jy/mDZQJrnOUt+wT/HzjAutvTMObwt2M7gC3tnfZsQL4YtUNX3rgSwhBEIQ5KOHYOaLo\n1AuRf5UoIZkaH+elrz7HmQeOUyuXEZHBpDHdtUVW73xKe3mJpLNF2usjLJSrJXzfc5N7we6STvOu\ndkXqFrdUANfPH0etrUISYa0kswKkcilZQqGtWzzBpb6I7eogh1yExCoI/MAxjbTzDkFJKEtMZrFW\noo1gyID68n2eur7K1ZOHWDh2mEatSeh52EGPQEmy4YCkP3SGjmlGEkekwkDgQZbbCRtDxVhmwzKV\nhsdkqc7aSMRCu8Vit81G2qerM2KjeSQe8L/1evxZGPCxsvyPUcb7KuDu/j2kWmOyDJNpdKIZ9COG\ncUacGLrdPoNhQoKTLxZSGyFy7xixi06NcACgyBdHDQiVM+3cpfCVouT7hGGI53sutc3z2HfwME89\n8xwHjhzHC8uOvbHrWSlumAtldLIYaQ0IVzQWvmt2e/O6w+uzv2pDK+DDix9w6dLF38Tj/AUcu+NX\n8q7/0EBbkd4PuT+Y49P6Me4feo+9z6xz9haUPoXVIUxV4PAR4BnYON7gU46xOJhHr3iuwkiKLnGK\na4WMwJ298LYrjtf7e3nl4QZX9pxhZnSJihxgEBznOk8P38S/ZtEX4fXEAU8AHQszC3DmY5j8qMef\nXP4OTEHnRJn4X1hqpyPmFnCY0glYe2KE1+ce5zWe4drSGdiEwb9t8tHpR/ns4DHCasSeA3f577x/\nSaUzgDtw+77DigwOErrGjqnyBwPY+wnUb1n2XFhiXG3AqIGacp+5TTHeeb4+H/mrdn31cQtUExoK\nDoJ40HBkz1We5yd8bf0nTPx5B74HW5+4aaRxAMa/2ufZf/46nX117o3O85NzL2IvB/AjXOTaBFDK\nP7+Pw7cWgPsaesP8XiyxI8mM2OnWfHGLHCEElWoVZJ7wKgXKU3ieA1S00a6ZgM0TFYuZO09xtG4z\n6uTMBRfRoNMYYVKCcsDU7Cx7DxygPjJKGg1IkxRfym0ZpbUGJZxkkCyBLAfSrMCIwtg0T56S5PJG\nQBgQjoUmRAF6uTVBKJf6aPI5y/mzOP9IKR2A5tyxhAORrHVvJwBj+ZtvPIRnzba/ipXWyRe9ED+Q\nhKWAh5e6TNBmVgUsJjG9Tg+lZA4aGqRxaY4OrJK5h4zN5ZuueHIm+vmVE8aBFSJP2BI5sCVtztrN\nvccMOUtMgiwKS5P7eDkmV2qc16POmcQGF5KSZBlpkpLGKVa7dd/mLK8ccfucl6aSAl8JPGnxBUir\nSZKUdrvL+noLoT1GazXqYYk0glBakrRL6+4nrKQLrPclAx1gVBVIQEMoLEHokdmIzLr42UH/8z4w\nX95RyNUK35YIaIFpwWIFLiv0VMi1+oNkZzyWgxke3HeJffvuEJLQpsFNDvGufYx3tp5k5c398Cqu\nQtkCB3op3IYc3AwasyMBySV9HeDSCGwpuA32vYCN2b10z08QPJkRhyWeevgNjhy/RbU7QPuKu429\nnB58zNTpFoc+gDPXYcE4O5fHasA5iI95SGvw24ZosFNIFUf2xhac/HOYbsGxyl2euvAGl8unuXn8\nFOk+5eqHjQqYHEXbLvwkf3/WVwF0Fa8i7MRjp2kSsO0BOerBAZAPpByd+oQL4jVe2Pwps//PFvwl\nbF6HTMP4NJRfTDj/T9+nd6rOAnv58drXuDk8Tq3aJfBjtPHod2u0l0ZJPyzB2zj5+60MuJ+/Oux4\nfH2xuvm/auw9/CDt9hY2G4ISJFKisiH1ZANlhmibEserDNpt7KDNRLXGnokmsxN1RsLTRJvr6EEf\nE/dY3VhiYXODzUSzlWYMi0QPnO+foMil/RXDCow1dKOEQZyRljO8MMRaSxRFZFlGuVx2jCmLkxp6\nDhTzQ0sp83haa8a0pTrQLCZtGq0uz2xssja/lzdOHSUsl/ADH4EkkB5ZkiBVgOf7KBUipOeaMEJg\njEvOFcLHUyI/7mx7r+xYbDmQls/zQuUBXDZFKA/lK5dMaF0apMOFNNYk2DTDphk6G5LphDRLyLKM\nNDOkqUYnGVhQnkdkXHM8SROC2CP1U3yVM5CFIzQY4+SLUjm2nlSCbDgk1RbhueT6fidiY6PPyuom\n61sb9JKIrGBki8JKwClFpB+gPA8lJEEQEFSr+LUGY3tmOffEY3R1wr/5v7+HduwGkK5pDq4GqZVL\nNGt1quUylWqIkiFRC8YaJTxryBKfsvKoJtCILe1ui8HaBmkSY6UkSn6XgC/YUSpU3KspYR+Ujg84\nWf+Ip3iDBz++RvBvDJvfhcXcLX12FCbuWo6p2zz15Jt8rE7xSu+rfLf0+7SCUc6ffJNvTP2Y0ctd\n59246xOLHfNNdrhTi8DmJowtQHkrY6K2wbf5Ds8Pf8LcnRXqyy5tuTdT4d6BdzhYukV5fsjPDn+V\nYVjfiXNv5qfTguS1Jrdkk1sV6wJaMsHNB4+wuW+cy95pDu67TWNfhyFlFtjLR5zmg41HWXl7Dn6m\nHPC1luEoUVu49XT3/Pmb2DPsljeWcCteE7fpn8KlwdehGjhscncafB/op7Cl4UMJJUFPj/LWMxe4\ns/8wb4zcZEKtI9G0bZOF/j6WVvbRfWvMrevvAQsazDruAnbZaWh9sZQiX3rgKwgCfD/Y3mg62YjJ\nTeK9XMqiKAclLjx1gScef5KJ0SZKpxg7YNBZZ/Xeddor98h6PeJOFx0n1GpVyqUQ5TmzeXC3TRbd\nmVyhZYXdpq1KIdwk6vuYeEhWJK9I33WXhZPT6FxSJ6RL8Sq64uQeVm6C9vBMQKgNQtvtBciUK46W\nm0ta1rAkNyWv6TZqbYE91qWhxH1ByXMdE+KEIIU0yzBxTGZcuqSWEm0zFBKbZHjGJYyXKhXGqnWm\nqw0OJUMWe+usRB224ph2ktHvJLzrZ6SBRzeF23MTeLAd5ZzEKb3ukHa7x2CoSVIYDGOiOMEI60wt\nfeXimDGIPIWmYM+5RBxXSEnAlwKUyO+Dk/4EynkpSOW8EJCSPXvnufD8V9h/5DheqeI8ZLalN7vG\nLwGWzqBYWM1OYe+mU5H/nBA7AFgxis3Kyy//Da1W6zf0RH/RRmFUq3GFyRB6GSwr+EyysDXPe7WH\nOT76Cc3f+xl1NeTU23B8E7wxEI9B95+UeGP0cd7jEe6vzmFvSrd37hcsggFuEViE1IPrMxArWBMM\nP2ly52CDhb2HEKFh9OQaJ2av4ZkMhmD67rd3H22Ugh0C/z2YZVB7oH5hyL1/PsvNP60ymm6RCZ/l\ncIbb4X7usg+BZXp0id4DDfixgn8Pw7EGwyca7J2/jck3ivB52KooC4sRkTdPMlwKLBo8zc5qXZDl\ni6dvN9BVFDbF9/Lumay42nAPqCMxJ/yrPMq7TLzeQf85XHkd3h66c3/wNjzegZHpPg/98Uecqn/M\nxYPn2Jzf43xsfoJjPYf5xxds5GwAZgtYwXX0t3ALV48det4Xm8USlip4fslJMkSxBjimkgOM8k41\nLn2vgLJt3nAwBQCGcLIGJXJZS0YpUExMTXLgyBFGJiYw1tAfRhjjOr9WazdfCefhaLIUkyXYTGGQ\nGCOd1F0Wwm0n0xMi9w4TFimMY4xJkW/0cymko3vlXmX5+RiFdASyXEVoSUVGRp4YjM5lIGY74l2p\nfL3BYvNAE6V9VKC4/Ohhrh2a5Okrd/irqk+SJkTDIX7gucQsPGR+HjrLC6Nc/m2F2X6srbU5286t\ndRa7DXpZuSMRl9YxtDXkwCAYK9G4xMY4MyR5emOqjWN3GWdor40lzTRpmpGmmWPamuLfVCFwBfIC\nx/cknoTQ9xwfTbuQgGGc0ev2ub+yySDK2DM5w/65aaq+wCQ10jSh1R2ytHWfbCNGxwH4E6jSKEYI\nNB5+uUm9WmKYRnT6W8SdHsnvjMyxmKMK4KuPAzxWYFCHyyMQQKyrXN04x+KZA7w5fZ4ZuUxAQo8a\nS+xh8dNDxD8qY69Ktx8ew6k8Vg6CGcHtvhWuS6zzzxrg5iDpvtefcevCou/28KOQ6JAP/cdZfWKC\nj9RpDtRu06h16FJnQIX/Ivh3vPjN12luwldrkNwHVYVyzvRdfnCCWjZkfLJNtQGNtpvtyA/vdeDe\nEvyT12HsNJx86AaHareozLZoT864ekJWwBSg1G7ZyN9nFOBZUUQW0qEwv1YhO4BYzvqqC5iF8v4+\nh0s3eJj3mX13Hf4CLv4Y3o7d2nTiDrzQhtrkkIcOfcDblcd4Vz7J4isHaQ0m3FtrYF243scNcoZe\nCtkqzuRrkx0mcNHN/+I2RMJShYnZPQw27yLimMDzIQA53MLvL5L1V+kPhnR6Q2SaMDtS5/D0NHsa\nFcabCtvboq9jqpUKXsWn1FljbGKcvvL5eGmFteEAIwSxddfYSrlrPto9RC4LF7TjjFacMh4rAs/H\n2AxjLL7ReJ5CSYXIwJA5SbWEUkkirOSV+YP8rDHGSuKyZZeEZZEOP9xqsfHpZ1SrFSrlEpVqhVq1\nShD6GBGisjCXyfsEIsULSk52nqeV68wxr0Bss2Vl3oBGWgwZxqRIlYeSZGw3XKQn81PWYMCYFJPF\n2CxBaydvTLOYYTRkOIzo9yKG/dgxvLQmNTDUGqE19SQmiASer1FexiAa5kEtZTzlYxFkWYJUHtZA\nmmmiRBMbw2ZryMryOt1WH60NtWqDIKzm3pApcdoDDMpTlMLQMcRFQGa0a7xIxdy+oxw+dYLZPTM0\ndEStVslrMpnbDlgqpTLVUsBos8los0EpqCFCSTQw2CxhrCERGoYdg65aiDLoDhmurNHf2nRpzRiS\n7Iu9p/r1xg4xZGffGoAKHMFoGsoTQw7KW5zmI8pvpPT+Fn58Cz7Nf2t/H37vZagfyzh69gaH65/x\nRvQclz59lMUje8iaijMjHzF6qMvEHnhoBd7Jp5zTwEgJgmjniCSg8h6BlYIjfMoT/feYeXkD+QNc\ntxoYOTGg8eINxr+5wa3yQT772hES7bPVG0MIy0R1HV+kxDZkYzhO7+okXBHwkYI2tO5M8cajL/Dh\n4YeZGF+hpnpEtsRGe5LunTHiD8rwlnCNg6sW0g3cHrvN56WOvylQqAC9Chl8EXyyH9QMTHou7Xfe\n3Rfq+a/1cdv+e75jpa3g6oUuJAtV7h4/zNL+faimBs9i+op0yYNPlaPZXcbdzHSVnUj4Ptsxkfyq\n+fAfb3zpga9KpbZNyy26FLtNBzEWJeGhs6d4/tmnmJudI5AanWrifouVxRtsrt0l7XeJewOi/gDf\nF5TLJfzAc0mBeUSxwIEyzmDdOpaQyMhsgsYgpA/aIDwnmTHbEhpXUBkh0UIQZ9rF86r8OK1jGsm8\nUe08qBSqlDPLEEjhEWSu8xFnbrPvKUlSDvmzl8p0N7sMNpfpxgNmB1OMhmXqQUBgJTbVSJchjzIu\nrtgIDyuM82YJfbQEk1kHQmlBSQgmVYm5iREOmTE24wHrcZ+NQZf/IRlSxrJ/pMZ3pyeZnBwD39Id\n9BlGMf1BRK83ZDhMiWJLnAqsUIw0G/iBwgiI0xTjLqiLpdfOd0dJx5DQWrv7KD33czgZiZTSJbwE\nrlOzJ035Fx9d5a//8z/k4Re/zuHjJxBhGbMrHvbvAr52/iwQ24DDzgZupzQuyuOdUQCtCwv3eOft\nt39HOvy/OJx0eMe/IwY6YGK4E8LH0H1rgjenn2YkbGOPCZ6ef4P6CzGya4irku6hKm80H+Vv+CY/\n7zxF+71JN1EuWEgH7AArQ9zMi9PAX5+BtQA+EzAl0JM+HIDB/gpd26AX1DBz4M/DwdUdb7EmMFuD\n5e/AG4kr0w7dhKfuw76R+6j/apwroyc5GV3jbPsSZ7nISnWaU6WPmS3f528fe4kr9hymFcBbwBlo\nmyarTNEdqzFyrMfhQ3D8Ftyw7olp4tYJH3jAg+oc2L2CVTXJJmMuzaUgM3xuEbDsUJJD3GJVfPV3\nXqKyTfyqTLaZY4l9W8twBdY/gZ8Nt68cUQqH33cmlONf22S2vsRI2GJzdI97jzSFaIMd2Uxx7ds4\noKudv3KQc5uB8cXu6EupKFcbIFQ+b+Rm9YDRmXNgsdp1e3NGkCNbSax0YJcLz3ANCtfcdbIVJSyN\nRoN9Bw8yMT2NtoZoGJEmKR7SMYy0RlkHtKTGkCUJmTBo38MKRycXWb7BERZbrE+2eA6c0a+U1n2+\nMC4ZEZy8whaNF3IqWB5+UsxfuSeYlII0N841NsMaBzBZTJ7e5QBYXfhNKovUFqUEU3HCububHFtR\n/E+Pz7jo9zTFT11irlBOVpJo7eZhJEgXxmJsMT8WjDmTH7N1oFceDmLzLUdx1honFTIGtDTEVhBl\nhkGqiYwltYJE5wmNxqCtINWWNMvIMr2dXFaEzBQ2BHm7gpfu3GVvNOTfP3AMsBhrHSMPiNOErU6X\nzU4HYT1KFUWjWcK3KZlU+GGJxGT4W1sE6RaV2KJ0D2NapJQRXgmvNkGlOU1JemQby3Ruv4v9nZK8\nZ7h5qAC/2mzPUS0F79egLzD3PVqXJ2kdnOTKOA6fyYAFgxrVqBMZ9pBAb7qGCZ8AH/lwYwp6xVpd\nJAMWTZbiPuZAmNmC7hh0R6FbgR8JslbA3ZsnuHf6CNW5FtVyjyTyGS9vMFFdp/Zgn4fKHxOeSygt\ng61Cdlyx/mSNV8tPc4jPeOqxD5l6F74+ALkB/46d2JE1oL0FY/eh1Eqo1zpU6z3aBclLFPP37vEr\nmOG/9hDsSBkLX5YKO0VMnR1ppQK6rsKrAE0oVWOmxQr7uIO8CusfwavxDoHhdQMzd+HMZZhrrTBb\nuU+t0oJAw3dydl3hXb9lYd3AIMNRgpdx9OAWny/avtjPe605Shgqupu3kcMAX5bx403oLhBv3mHQ\nXqefQOCVObx/D/PjIU3l0wxdpk1cAAAgAElEQVQtw9YGoteioSzlkkd7q4dOFfv2zNLLUtJOxKFq\nk8jAYr/LYjQkwuaOX7843PxkreXrg4g/2uzwcr3k0n89ibQGz5cItWMeLwGUQRqLCgq2kaIv6lR6\nMakVpAj+50mBZ2K8zpBhb4DvCcolB36VqxUq1TJBGBD4IcrzKGdVqs0xpFfF8xTGCGyexis9tza5\n+dQgrHHemCbFmtQ5OcnQMZGtQQjt+nrGKSeMBp0l6CzB6Jg4GZAkMXEc0e112WoNaHeGDAYxaZKg\nhWP3Do0gjmKqA2dBYj3l5B1KkGlL5KUOyPM9rI2RXkqcGNIsoxcl3F/d4Na9ZXrdAeOjNaZnJhhp\nNimXq1ih2Gx3WVldpt3rYrCEpZDQ91HGozvok6IxUUQcpTRrY5hUIwWMN5tUwxJCemRpipDWMbzC\ngEpYIvRDrPDoDWIGnQHK9AirE3hBDeF7GC8gyjLaW5vcvfUp6611/NBnkMS/lPz55RxFjVTMg7l6\nwfO23Tr8SsQoW0zGa3AP1racD33hcHsduNeGUwswmmwxQovQj9AXfTbiOa4/eZxL6gzHnrtD6VbG\n8wYOXwdPwsQB8Kvw2Lvwbube8xEFM/PAA7A202BCbzL1+hb8W1j4MVxtu5XlgfdhdgWmam1eeOkV\nRsubGBQLtb0AzHOPCgOGlLlb28fliTNcOXSWbmUMfiLgZUF6PaS9b4r25JSbpiPchHsP54dyDfhM\nQ7qJ04qss9Nxtuw0vot18BcDr37doXZ9LeMOZgIHeu2FQ8J5QJ4FcUrjzWWoUe3A+K4ku+9hrnlw\nSTif32u45f4OcEmQTQVkNXa88NdxGNc9C+sa9Ep+0ivssL2+mIFYX2rgy/cDPO/zp6CEkxBCLp0z\nmvmDB/jqCy9w7OhBQl9AkmGiLutLn7GxfIuk10YPE3rtLlmWUWvWCCqOleTkHTvvSe7H4v7sFgch\nbW4sqbFCUwoDlFTOrNE4c3jrCTLtigFfKde9tqC2QRWByjvmzuNXojwn0ZRC4XsuNUZmAZm1YCy+\nVMS5CaU2hgzNZq9LstCnISrcmZ6k7gWEVuAZUCKPkteZ8w6Q0m01hSEyYKRAK0uqE/w84ljohEBY\nJsKAWkkyWQugpCiVPJr1CiO1KtJTbPV7RP0hvX6f/jAiTjUG5ykTSkUYhEw2a85M0mSUjEdvOCQt\nUloEeJ6Xp3CZbYDL5Gw4iwMJvYKaHPgIL+AriyscDAK+fe5R/GPHEX6YO/iwC/r6/LDbxVF+Ez//\nBLEzGW3/xt/5DL711s+5t3DvP/qcfvlHAXwNcV34ZVitwmUF47BQP8r3n/jPWB+d4FL5DAfO3qFK\nnz4VbnGQS5zlnc0nWXj7gPMK+QzoFte0SKXK+Ly/Sw+2JqBdg5shjCgoCwb36tw+cIDrpSOcPHud\nkZf6XOjD7D0YJo4yPabgey24kn/CClC7A49+CFMrG8zceA31KnALsHDw+DLTz20yeW4NHUo6Z0a5\nc+uoi65fhNXVOa7uP8G1qcPMvLhGeVnz0qtwbgU85SbRtS6UfZg7Av5LsPlIlSuc5lZ64PNr3ef8\nbER+/tX8Vcu/lnGFza6iKieE+V6GR4ZILQwgjT7PwxoAvRQmh+BlGT4ZSugdIhnk13nFnfy21LQA\nuYqvvw0a9m9vhKVyzvx1PlNK5sEXiNyA3TgvRrvLW5EC3HZsL5fo6LrfUljn02UyapWQ2b1zzOzd\nC8oj6ndJ4jhPzLLYTCO08wnUWYrOMqw26NQZxxvPMU+NTtAmQSqQwgcRsE3r2jaIzgsOkR/dr2Cs\nul9xRQq5Ub7YxRIDk6cagvPXcolY2ghcQ9/Rsyw5Y1kajNXc21vlZ+f389FkmUoUY51W0nm75KCe\ntRZtjDt3mcNX1uaAowUc4GgBCu8uqzFC5Gy6zB1T7mdpEGhh0QJSLZz5b2aIUkOMILOQaLbBL21z\nCWSauWZJARzmRs4FCOiY35YnV1apJQkqjogJ8Ms+YViiHCiU51EaaIJyTDIYkGQDUj3AUwKku4aJ\n0UQmxUpNKRAEMiLJ1lFaQlYm62qSxihedRIbdck6S7+tR/wfcRSs34KJtbHzV1tzcHEElpTbKB8G\nToA4ktE422Lq7BLTtWVKRMSErPSmWVmZo3NxHDsp3VR3eQJ6ucfIthluAX4Vrm4FOL8BjMD6YXi/\n7phJN8C+49Ebn6BXnYBV6P/BGH/zyLcYBmU+O/FzThz+hGa/T+J53Kvs4UP5EB/xAA/xIfuevk/N\nDNi/v0vnz6DWd58GDk8q5YqRrCyJKRFH4a5pceff7d9/FIwxjx0T4hEc3XfCvWQdwhB8bwcRT5Nt\nkphQFo8UnxRiSLKdcylGbNxl9mJQxfog8sv+YQYD7aTaOsEhYRv5q/BtKdaIL37YCUC1NoKyirTf\nh2iIylp4gxX6G4tErRV0mjBSHeHg3F6OzI0joy2qAqSOIUsp+SXWNzuUjEQKyejYOKOjE5jWFocm\nZqh5JaIoZU+5x0hnk9uDDptG/x2lnntWvgUc6EWgIdaWSuA7Cw9fEpR8pFRgFQLPsYLTFCsyhNR4\nPoShoKp9pFdBeSGDfonu5hraxKjASd6Hg5Qk7tLtDAhDHz/wOT8Ycn3fHGiLp0qEtRDll/E838kZ\ndzMzJEgUQmekmas/jMmc76POUNID6QJMbGbQtpCbW9AGtCFLDNEwIYoH9KOI1fUt1lZbDCODVZ4j\nB1hJbAxDDSaOaXkuvMQqhcY1Pnw/I/BTMm0JAp/A91BSkFpBJ824t97i4+s3iSNNuVSlnxjWWh38\nUkhjtEGjWWdu7zQnjx9hcXmZxZVlBkmMVJJoMKQbZ8QZhGUQRjJabkKkyGxMo+rkjFZ4YDVSSEq+\nR8n38aQkSzK0HDKIBnTbG+wdt5RrNeLMox3H+LJPx2TcWr3P5c+u000igtCnGw22fdN+N4bZ9TUP\n9MklEVYrMjwSFUApwVdudiuArzIQCiCETHhoPKwVkIG+4vHx0dO8OvkskwfWePxPP6RxtM/8Ndy8\ndQDYhEdKcPC2e/Qm58H7BvReCHlPPcKTq+/hvWPovgM/art8FYCVDvz+u1D9UHDy4U8517uE8T2W\nRycRWGbXV/CTlLQUsDo1xpvBk/xg731++vWvsZVOw1/hULsNdrgBKW6bvwasWuhEoNdxMpdldhrL\nuBPeptkWIGjKNtP5115bil3tbqlpE9jj0uCPiJ2036c22Tt3i0Plm0zivM62GOV2coDbDxyldXAM\nmnlhcxX4JIZFD0rKvTX5oUUWBgkkxcmu4QqdNjup9cVa/sUaX1rgSwhBqVT+HMur8EYB8jQtQ61W\n4+svvsQj5x6iUashjMFmEf3N+2wu3iJutdBRQr83oN8fUKmXKNdKeIGHkE5eVxQfliLly/mdFAaN\nEvf/2hh3XEGA7ymSzBUIRhu0cX4tSnkoz4FKmTZINFY6WuznkgOtRaDwlESGkiAI0cbgaY3wPKQU\nDIZDgjTD95xUMAh94pGMP/3hJzT0Bv/7oM/C6BijlRplqSgrBSZDpylCQWaVMxGONKl0aYaZzjBa\nI0zmCh87xMeiMKhAMjlSoTHZpFQJ8AKJsBAlGp2lkLPQyoEr1n1PYksucXGk4qNsSlSkkGUuVSvT\nxlGIfQ8rnUzSWoNS0jEfrEVYx7rzgwDfD5G+B8ojrDX48I8uMH/mLOWzZ5GehxZFIuN/fPxiLPEv\nPF27/psXdvzy9q7TafPjV37EcDjgd3cUlsBF6lYHN8FV4eYe5xVlYGHrEOtnZ3j38KPMhK7QGVJm\nJZph/fYMw8UarEq3hz8GWAmfjcJWCayPm+DXcZvrFLfBXgPTgMEUxHOwCPaqz7WHT/Jm4zz7D9zl\nwj97h8qo4fQVJ2+UD8Dm/+EYYMWIgbZ1b+lfBH4C3R/C7VW3vBycgcrdhEeCKyydfo1PRk6w8MAh\n9Lse3ID4wxrv7XmUA/5tRh7q8nDtEtWzUL2Hq1M0zCy5S8JZaH2twquT53mT89xZPOIKwgVcQbHt\nmZWw08kfwel/cg0PJfJYBbapPjkxazCo0C3X6Y2EMAP1Udiz5qAsAcwCM5PADAxKFXrUGJryToNe\nF+LMgtlVFC8FAFYUuMX3v/iFjRCCUrmKEC6ZqQgeUdKlB2KdPE4UhufW5L5PjtFprMBIicxBr4KB\npbMUXwkmJyeY3jOLXwqIoog4ijBp5t7DGge66MwZ2SdprnV1x5KkGYHyUL5B2gzppW4N0c4oV4q8\n07ejpM03jALETiqlzUEwm8+JLoHWIJBID/I3wyVK5l14Ucgc8/cQrhnh1haRpyqSayk1SM1nh5v4\naUZFeWTaYqVb44zdzi3Lt1h54q2xOXO4eFatY5VJiREGowsPR6dz3FEk2pwVLdE41kJiNZHRDvTS\nljg3oo61IdGGOHNJmZk2ZJnzk5TF9co9lYRwgKBjSkv+5RMPE6QJQ8/Dh22bAZRHWG1SG/PxNvpE\nwwGDQZ/+sE9jcpxqvUqnO2C40aKXpqRSIkOFQOJlGcJqrI5J2hlrWqLKq7SW3vkHeuL/oUexcU35\n5YZQBMO9cG8PTOKmsUfh4PlPeKzyNg+L9znA7bwRUuVObT8fVM/x1uyT3Bx7wO1AI+DiGJhpdiR0\nUf4quFcFKN/Jv2+hPQtXx+F24D63gashKpCEZa7FZ1l+cJrLY2fY79+hMdIhxWeZGa7rY6x1p1lv\nTrJam+ZPnv+/ONe7Qv0iPPMafOgUW5wNYfIkcAYWRqZZYg/9jVE34fYBW8ybdtc1+U8Bwn5R3ljL\nL+YksBfENIz6MCPdMjGSn6sWsBW6SxNBFnt0aLDJOPOzm0xOw/FluJgzomeBfWX3lptjNdqMECVV\nGMocdzSQ3M1Pbpjfi0Lyvvu+FEXZF39tKFeaRAONtgoZd5DDFvHmfZIoQgiBJwX7piY4PFFjsH6f\n8VqVahDQ6m4hPI+lpWU+XVpl/755JjxBvV51zOk0o16p0vTLrLaXmQ5Cxuf2M7K1wqW1+2xqQ7o7\nCRG259D/BjjsKWYzy5xxvrae8pynsFSOeaU8lFToLCXVqfOXUhIfhfUt2gNrNfVqnXpzmmp1lPWl\n23QHbcoelEo+UnpkmUHrjCeXN3hudY39y+t89/QDpKlgUoV4XoD0HNvZGItOMzzh/DGVcs03a916\nCJ6bxK1bE1zAl3EKDemWLZv/nbYakyei9wYJy+tbLK11sF6ZfSf2Mz8/R6lcYavVYbPVYmFpic2V\nJWIduS6mUKSZpZpqymXISq5RUgpL+IEmCAIyfJbWOnx49VP6vSHj9RHq9RqlcolQKeLIMowNapBg\ntMVawcRog5GROo3RUQyW5ZVVbt5cA1Gn1miwZ2YP6IzAhoigxsz4NJI7pFoTCAg9lRMdDFmaYlJN\nP+mz0W1TFYa9sxUq5QYLCxlrrRaN+iRJKeRur81ir4tGUPZLQCtvP33ZR+GIutsHNgGdbffK426J\nldlp7nnzTJ28yvRROL8CHxj30w8A+44AJ2ClNMMK0wwGNWgLuAUr8/P86NkXsRVYOzrFyflrTEUr\nWASb4Th7kwXGTgyYuuU+mkPQerzCm3OPcYuDPDd8A9agveaql+KqrwKdDWjOaQ7/63vOHKwCe86u\ngAT1rnW9/nGYfWSVmQvrlKeHDGaq/PipF8naVfdmDdwy0CaXDOKmTItD4ujh5tGiaVTj82tpYSdS\nSP1TXHFRhIf8fz0nBWvMwy0M+fohJmEmT4P/imXyq0ucn36VC+J1TvMRs9xHYlhlio+DU7x58Dw/\nG32GJe8QNlbusG8C3TvQLUK5insc7TqvLXaCaoZ8HvT64sngv7TAl1Iu6WM3aCGFS5sSefe3Vqvw\n7IULPP3Uk0xNTLr4WZ2S9FqsL9+lt7WGjhMGg4z1dg9rDRP1kLASILzcTF26isRt9nfYXm7v7lIT\ntcmcl4qLAnNpH8ojSSJMkqLTDFkuO2+BPO1R5PKazNgc5CmmjyItxZn9SinxcqlMZgyBlITlkCDw\naLW2GA4H+IkEW8b3fQI/5fvPnmDv1QWuBZZka51St0clKFHxQ3wM9TQjCi3YXOLjSTIlSDFkWeo8\n0qxFS4H0BSVfUit5jNRCmhM1avUSsuTOO00N2uSAVxgglSD0PYLAc+fmh4R+gEdGlmYOtDISoz1U\nEOKhEUaQZY4FgNgBG00OBHpSoXzfdaWUwgqPSrXBqTMPceGFFyntmQPlkyFwXPAdlsSvIzr4VSDY\nL27vf/FnrLVcvfoxH3zw/v+/B/dLN4qN/C4mFmtAAP0APhqHgcCuSIaXa9w7fJx7e48jAoM3ndLY\nv8LciduoE5pO1mDzzhTJlQr2HQXvCvig4rxetrXgxepRyCA7gAQ9DTd9uAybb83xkxdeoOwP6Z2p\n8tixd2nejiCC0u2E+iQc+MypNAwOXpr3cbv+q5D8Lbx8xzUzNPDwZ/CVH0DtpObMiY844t3glX0d\n9PSYm/TfgtvTx3n50W+Q+T4Lp/Zw6tTHTETrWCmQqaC6nmACwcL0JO/Ix/ih/RqvtZ+h/d44XBRw\ny0LUYUcmonCylQl3YGIa/CaM415VtkE12vnl2YBkocGd8f18Ehzl4PklmpcsL7ZhZsNtPU41oPQc\nZOcFC+Mz3OIgm53xHYXKNopWsDeKIqa4z0Xn6TfJZPjtDuX5BKUyxlqMZdsLSynlfKkyjczXX7cR\n13kgoQvRcF6AzpPKWGcwb22GtRnNRp298/PUmiMM44ThsE8WxyiTooRBaQ1WQ94wsHlEu5SuiRBH\ncZ5yq5C+82QRCJQwSKHzctelgm0TiQvszUIu4ts+VimUS1m0Is+fdXLkbZK87+Fjc0nG7nTDYt0y\nuaQFsEV/3zgJpQsSQ1mLn1NmLRYpndTFGm87lRJ2AWoWMIbCZl9IgchBLpNLHY0ovM0KuU/OPsaQ\nCUmGIDYQaUusDXEGibVuC5izvVKdg17WOnmkMBhtHONNFNfNnZGUzpsz8krEYejM/TFk2tKPYlJt\nkH4VrcqosIw2go2tNvdX1hipN/CbFbRM6SWaSFsyqUA4fxlhwRPutmNSku4Kw/W7DFu3fpuP+T/y\nKNihu/8/wCEwVecXchJ41rD3q5/yTfE9vmG+z/nhm4xfG7q5pwEbRyu8VbvCRGWd//AE3GqfxK5I\nWPFgaRLX/Ojg5qaiCCiSoQa4pgA4IKwLWSF93EaCoBFCJtBbPhufzvPq8XnUvj5hLSJLPJK1Gnzm\njPJffvwP6F2ocaR8g33nF5lcavFg2ZnhI0AcB/st6H/F5131KNfMSdJboStsNgA9YCf1tmgc/KcU\ns0W3vkjyreNArwOgpuGQghO41wGLmDSIssVmArsh4ZaANgzWK9w5fICr8iQnnrhJ+ILm9zdgftkd\n3SEfJp8H87Tg08phbtpDtNqjsOx+nyTDgV632ZGqFF5eu83s2fX1CzyEIChVwKb40hL1NhluLlNW\nlrAU0Issk+UKY4Fk7f5d+sMho2GV1rBH5kmUsiy1WiyrChOqTCUbEApLZGJ8LwQryDBIP7fn0DFz\nzTG6xjDcXHdybLSrSdwBAYKuFNyIU+rDCFsvYYxFSJdsKIVwTWPjgCWFIPQDNDHWc/OskhLPy8h0\nhBAxjfokjWqVUEmW7nxGa2uNsrY0lI8Uzuv45yOTnO0N+FcTc3hrHaJhQhxHjE1NUamP4Pmh2/8a\ni5YSoyVaWjzlwLggqGCtJk76rnkEeSqvJc0SpKe2s01yl0k0hjgztLsDNrbalKsVZvcdZGpqirFm\ng7BUotmsMTc3y775eVaX7tHaWKXke0yOjzAxOorve2hcKq/yA6TnY40hTlK2tgZ89Mkd7q9uMdas\nUSp71Col6tUaoedRCjzSYcxGNMBXhnq1Sr1apxaGjFXKNJpNHjxyFPFsjZQKQ23oDrvozDDs9hmI\niJJfd/sI7aSlWZbhKYUX+AyTmOEwwugIX2ZMTATMTjUZqU6xhsHzegT1ButRxGi1hjc2jli9h1LO\n2P53xyKlOI9dtYKOoVWFVcFgucL1w8d4Xz3MwedvM3pnyOPAg1fdkl06AnwD2l8pc7nyANfMCbbW\nRh0Q9TMwVY8b6jSdr9ZYlHOcq3zI+dKbPJB8zOHBDQSWiy8dZTJYI5Yhy8xwhQf4OU8wzwJp6GNH\nodGAxtqOl2MdqI2C/RuIfgYbi1AuQfMJJzduv+XUHONNaD4Gs511nvnDN7k9coDP5o9y55tHqezZ\npDnSQmDp9ur0FibJrvjY9yS8I+BiFdb28nk/r92p7sXcGrPjiVLMvbCzJ/91wK/cX61Igy814aCA\nc9B8epPnZn7Et/kOL7RfZe7DdefLJYB9N3jk8Q+Yb9wlHI35iwt/SGdtxjXsl0IY+DjNY7EH2F1H\n7Aa7iu8VgN0Xs4b40gJfvu/nZuc2l3i4zbzJ5YJSCo4ePcoLzz/P/vl9BL4PWYpJI1pry7TW7hMP\n+gwGCa32gN4gYmK0TL3mE/oCT6ltz5RiwRK5k7AtKJzk7CUrtosAKVynPgh8BoMhOsvAGqTJdfq5\n8aXJJY0IHOtJOh8xiaCkPFTgOeaCEnlqVi6LFNYlk9RqWJMhyDBZRNkzCGNRWjCo+1w6M894b8jG\n1pDN3pDFTg8lFAeM5b/c7PLa2Ajfr1ZQwkNIifEEmbT5Iq0JkPjKoyZD/FpAuVGi0igRVIJcGmOI\n05g0MSSJKyaVJ1FGYIwl9BWhFCjfw1MKk2mM9smMJDGCSAuGWpEaMNqSZJrMOr8YVxI5+Y5Ujh3n\n+T5S+fD/kvdmT3Yd+Z3fJzPPcte699aOQhV2kCA2AiAIkuDeYi8aabSMHCN5ZsIRlh2eB0f4xf4H\n5sGP9sM8jD0vjpkYhx0eWRNSq9WLxBabZLPB5k4CIECAAIitUHvV3c+WmX7Ic+oW2VK7NV6i0Z0R\nxSoWUPeee+ri98v8/r6L8hlrjXPy9FnOPPU0U7O7EMrLD7L57+n/h/eftZY///M/o93+VTW137kK\nr6+E0QY9P50PI7gyDZ3QHW4C8B6N2XfqOqdqH/AonzHNChLDujfB9YOH+WD3GW7uPUI8lk9L3g6h\nPcuogEa4zXcxBdkA7sP9BfhIQQNu+Ef59hmfu/UF3gnP0Xp0kylW+b3md6m9GPH0Ckzdg24Kc1V4\n5CRwCrgGS3ccnlXMp24B7RWo3YGxzYjGVJtKbUBUHXev6R3IyiGXzWk2Hpvk09ZR9vEFrdImFkEY\nxDSqbRICFpnjsj3GpdVTLL09D69Lp5dfzZGrbVPLGs50cg/4szATOJnQAfctxnG9Mcpf/h1gBfQ1\nxeWDJ3ir9hx7ztzl0X/2Ba0ZzQtXcT3mIPAi3Dq3h7f8Z/lYP87gUsudY9ZgFCZQeHcVssvi97yT\nrv5wrEptDOX5mDSFghUlHGPOOoTFMZRcFJUDf8jBn7x3IKWT31kQ0gVtlHyP2ZlpmhMtMmOI+kPS\nOEKaDGEzhNFYmyKNcb5OWm8HdAgE2ljiNMNTKb6yKOkAJmkFmZFIU4BebpPlnHPBaJC+cJUsn6K7\n5QYV2xVOCKQkN5PPZ36et21mDxlWOKCrIA6aYqO93b9yab1wAxusAqMxSqJw0ZDSy3tQ7qXpWGcF\nkJazx+zoQa0x21seI+S21NEI4aafwsNa0FaQIUhxAFdsJLG2JBkk2hJbTWrd16kxZNrZBhhcImYm\nwJgMoRSekAijMcYNYqRwknhPSpdOKZzMFZ0RZSmDNCUTMdpIlF9G+iGdzga37yziqYCp6YRelLDR\ni4mswignhzXauLRQpbBKYI2HyhJssgym2Kj+Ki43UBp5fhXMpAaokqtZR2Hs9Bov8Cb/IPseL169\nQPUvIux7oNdBNWHi3IAXfvtt5DHLZrnF1qlJNq7OOFbsagnSJg6lr+ePX7BjC1bVgNGmeycDucw2\ncNTZAx/VYV05c/bdoKeqDMrVEdn1Xv7ZE1x89BSvTd2hOb/FC394gfHHNwluOVuKbJ9k+fg4Px5/\nhh/Zl7hy/yj6Y8/J9duaEfWrkP4V9+oXOdAW8hQYebwUh5ZJd+HhNDyq4BzwtKV8psf4/DoTzQdU\n/CGxDtjoTLGxPE334xbJvTLXHn2Mn4yfZ37fImf/6BNKUwlnrua3bB6yFyQ3z8/zE/88HyanaN8Y\nd/1hxbrD6nZ/WGfEBi60nQ8HC7hYAkEy7HPnxmXiDDCGiYkxRBZx985NTL/DVGsfcWeTB+0NpiZn\nMFmC8C1hGNLr9lmzHkltnF4mqKWGmq/wVEhkEwbDPpO1GrIU4qUxmTGEVrCvOU1PGz7fWCGyOx2/\n8lGDgRjLVm9AOtHYTp4Hp3CQVjiGWOrk3DI/fxhPEGcZSMcIM0lGOuxjw02q1SbV+b00qmMsP1hk\na2OZjY0OQhk8X1EKAv7V7n14Rjp4ohMxjBbp94ac1jdYOXQIz5Pbx+ddi0ssz81SKpUJwipSBgg8\nlCpjROZ8ja0m0ynWQppqN9rIz02ZhX4Ss97p8GB5BWs0U+MNlInob61BPCAIHZCdaRdW0qiXmZ06\nQnOsTr1cphwGzme55BOUSki/RKlSo1KrMRymfHLlBuriVfywkif8xpgkIxMRQeBjrCFLE6QvCEo+\nVrt9QKAEaa9LZKGEoDImmJxqEI7PkvklBl1Nu7tOb2udStikFJTQQpMlllRnRJnzA0uzFIuhJgSt\nMcHCfIXd0wcZ8+dohm3qlT71+hjdNCG1ls04IrWWjZUlev3ez7xfH/5VDLB77mOjCbcU2Sclrh44\nxhu7X2BqfJVn/vAdpg5tUSo24vtg/Uyd9/ad4jVe5uP2KeKPaq7OruM26VtQyQYcDy7zO9F3OHP5\norMsueme+fFHr9N/IeTN4yd5V57lAucJiPma/hGlYQwelCbhyVXXbiRwsga1p2HzB/BXa64tlPrw\n7HtQ1vBq372SZhu+8QYcmIXdTzzg0cZnHK5/xmNHL/MI15hmBYFlozbO50cOcnHhFDfnD5PVyq7E\nv1OH9lz+rIWdSeEpXQbC9P0AACAASURBVNyvLq6fdUb3DxgBYD8P/Cp6SeEPXAKaLvRkP3ACHtlz\niRd5na9v/A0zf7KF+T60rznRQn0PtL4+5OU/fJPuQp07k3t47eQ34GPf3awvJnCGXku480sxCNOM\nzhKFUqQYnP/ySRyL9VACX0IIgiBwU+q8kQhwCVue82iamJjg+eee59TjjzNWzSWORtPvbLK19oBh\nr008jOl0BqxtdJAWxmplyiUPv/DX8sRooi3Ylj66Z8xPErkhpBCQau1SrazF95wxfqY1Ok1J4tgB\nX37opuFGY4XA832skmgp0EIQej4yDBE560kq6bzKdIYSbBvBS+HMK3VWweoUbD5VSp1JsPEhCT3i\nSkBmBamJiFLLA2tpY7mQ9rk31PjSx1cepGCVhdxPsu75VHzJ2FiZyYk69ZpHGEiwqSv22sXJZxlo\no9HWOHWOcLJEJUB6zmfHWEjxSIUl1pZBohkmzsclzb1oMuOYcCPvI4FUCt8P3L2QCun7VFuTPH7m\nLOeeeZbJ2Tms/HLGXmFHv5Oz9bdNVX5W3vi3r50/u/Przz+/zms/+ptf8B37sK9cCrVdgLu4wpZr\nyc0uh+McB16BY09+xDfC7/MSP+LxzkWqKwmklmgq5OrkQV4vvcAPjn+LD3mKqF2DdQGfjEEygTtI\nFHKWCFei2sASRDUnbVGCLA64tfIoyycWeGP8Reqyz9envs/C/F3O/eOPaFZTznwCuucG5jyfX99N\nCBR4O4bVEpA5S9hhBGLUXzJcYomGdKvMnTOHWHlkN8FkjF8dYq0gKEXUqj2SNKC71aB/r0HyccXF\nwL9P7uK5wkjfr3C0rgXw5twY/nHgSeCUof7YBo3KFp7ISEzAZnec4adN+BC4ILm97wA/PPUblP0h\nL51/nUcf+4ypB12shc3pKrfGD/B66Tn+im9w7bPj8AFusrMJo0SundTqX77UlV90eb7PWGMcIYtA\nDAd4bR89Dbl00IH6VhRBKDhGLThJtxBk1skkJRZrNc3GGFPTk6jAZ5BEpEmEzRJH9THZdt3FWoTR\nYAzS5kH21g0ArDVESYJSdruOKSVJjRsSSBwg44R5OaS1LXcXoHL2lCwEhjnkbIsql8suKKLoQSqF\nMsYBeeCmQWL7NlCgYBabyxxzc3ybyz2Nh7KAMI5lppyfivvJHJzLL1HuALx2MsiMzgEqDFrkckfk\n9vDIGElmBRrH9kqsJtLGJTrqAuyC1EKqrfPKzBl9BkuaH7iwGosCY9BxQqYzhMhfh3Xsac8P8rAb\ng8kyMqGIUktmFZ7yqDeakERs6YytTpvrt+6x0UnIpMdWLyXRCqOUA/SEzRM43XtGKZfeqtMOD+O/\nn7//KtIEi0COOlQ9x/g6qJmfuMsZ8QGnNz5yoNe/gXfuwGoKEx6cugI1E/HU7ne4MnGED6fOsHlw\nErtLwfUANsvAnHtc+rh+UARtfNX7q5BalBhJMGpADINZ+HwC7lbcQ43h2pXJf7yNs0D5ADozk/zo\na18nmQq4NzvP0akrTJ5bBwvrwQQX/aNc4DxvbT7P1tvTjql8E+gPGNXTnbHtP28VEnb4MvBVHFrC\n/GInQe2CvZ4Dvb5pmHx+kbNT73JKfsA+blOnS6xCbrf2crF1gvfnnuT2R4dYvLaHv3nqa5TDIf3T\nVY4evML01ioqtbSbNT5vHuDHpfN8n29x+Ysz6PcCFzawbBil+RZM4IJtV+wBHq4+IYSgvbpIOhzQ\nmpimUqsT9TssLd6hs77Io7O7aJR87i2t0jUphypVyGJMqPBNwKCfsupVEfVJPKXxxRDheURa0M0s\nvVjjeYlz4/Q8pLYMuxGp1UyVyjzwFHGaueHFV25bZiwb/YihlkipCH0fbRWp0Yg0dYNu6yxSjDG5\nh6JE+WCthHzorHSbIQbPZjRbM4zNzzMxNcuD+4vcufU56xuLpL0Ofihp1pqU/RDf9/GVTxwbZm7d\n55l7N1m5dp0/OXoMTwn+6JNPaLTbvH72NFt7FihXqpTKNccKU+59a7DOJmA7sdpitSWOYhACLaAz\nGLC8vky7s0mj0aBaCqmUQwdmocniQc7+BWEspbJjgFXCEkIKl0RvA0QmyRJDGCis9NDCY3bvAo25\n/dSnZ/jxGz/io7ffZDgYEqkBgbZkWqOMQYYeFsVApyRRijCKQIYEykF8FtfjtNFIT1JtjFNuhtSz\nScLVDebmblIthfT6zlBCSOF8PIXrzz6asbLPxESNqck5JmsHGbO7uJFtItOUtN/Hq40TmYxuPGCr\n32Gjs06SPQSMyb/XKphJEa7IrsFgAq7X4ANY3z3Dq61X0FXJg/ldnJi6xES0gbCWzVKLq6VH+DHP\n8cPBb7D87oJLQvwMV9IPQnCix+ngQ16wb3Di0lXU/wL9V+H2ktsy7Z2F6u2Yl//4J3Qfq/MeT3KU\nKzw5eI+ZH6zDn8JHN13pDoATHhw6D3II13PyU2FGcr3rOspa/sqWgI8SOHADyvdTJo+tcVxd4mku\ncDr6mMbKAGFgMOlzufYYr1df5K/OfIP3/aecMmYN+HACRB1KHlTVCPeKrUv9TBIcyrecf/bIZRp8\n2ST+b6u/RV8ufIFz7+BxYA7Eo0OOyKs8wXtMvblF9qdw5cejNPgTN+GJDoxNDDnzn1zk3fplPjj8\nBO2FWfcYXxS9CUaDnqLXFYBXAXb98kvgH0rgS0pJEARf8vUqNqLuz3zOn3+GZ556ivFWCykE1hrS\naEBnbZl+d4N42KfXH7K20aPXHzI7UWesXiLwFahRISeXpmB3bFOkRBiLNjr3/1JYa9wU3DhflSAI\nCIOATGekSULiKYTJU8WUn6ezSFDOxM/kr0sGPniKVLskRmcW6Ty3DJCmaQ58gRKSUlDCVtxUyBpI\nY03gFxJNZ/ZfDkuU/JDOUNNPYv67iiIx2h3OpJOMOOthge95hKFHMwyZrFWZnhxjvFkhCMgZC+6g\nlGbu9JPpjNTk3ivGohEI6SGVRAhLqmGYZsSpJUoNvUjTGSbEqUUbd3etdSwNKKRIdjtUQHlusmWR\nVMdanDxzlmdffJnG+CR4Ptbm74Ec9Nq53AExZyH8XE+vn/3+3wV4WWvRWvOd7/wF6+tr/PqsgvVV\nNGuBK7DjzvTwMHDKsuvpm3zNe5U/MH/K2Y8voV612Ovux5oHesy+uM7kuQ1sKFk/NM61cyed7ORe\nCEstXJcr4w46RYFt41pVAFsefNCAtsAuevTfH6O/NcbqH1hefzGiGvaITwU8feBDKrdi6FuyKcGD\nwy36W2MceeQmU4/ByUvwYY5dn5Iwvgc4BKuTY6wyRXezMdr/r6XwU88ZKV+XRHuqRNNVd5mSUfBW\nhjs33CdPc7Eu8SRZx82SCof7SRzbax7m84PNK5bSSwOO73mfY1xiN4uUGdKjxt3xBS7vPcbVQyeJ\nX6uSvlnh3fLTDB+rcNPfz7HpT5maXkEA64xznUd4Xz/BxZtniH9YdQDc5xbSzfwaioNaAWQ+XIeZ\nnWusOYEXhM5rUSiEq0AORirqp7V5sqHeBofcKqTxFmXz8A9hwWqCwGNivEl9rE6qM7I0waQJymQo\nmyF0Ajp1SVZYpC20fRaj3Wdl4L/49A7f2T9DW1YReEhUPt0XZMolIxocmcpYx/iVysXWCyPBOBsf\nPEfG2vblgh2/Mvd6rXGPY3P6sZAOcSp+ZqR4LJxFbP69wvBfgrAoqTDFHkqQA3a5d6KQea0WeXd0\naJqwzsPLWpsb2QvcHc+3QyLnw0jnR6mFMy7OBGQYl96YOaNnB3o5xkBqrOsrBehlLRkGbUZMCJNm\nDAYRcbeP0JqwXEYGAQTOX8YId/0C5dI0AwWeROFTUh6lSom6r6h4iqW7d+gMIoZ6A+mXiTVkeAjh\nYaRxYTPSgslyw7KUOG6Txv3/D97dv4yr6JEFOyl09b8F/q6EXeVFDnKDXTc24S34yefwNybfImsw\nt+D8j6H1wpCDL9xgrnKPa9PHSZvK+UXKvWBnwW7gmFwhrqh6jAD7YqOd5NfQZ8RCLupaF/QqDFow\naMJyAY4ZthOEB/vgPQ9KgiWzh++98A+5NnOE/fImrfIGUljWzQQ3swNcWTyGebMCr+MGCXdTsCuM\nYtuL67L83WzZnalnX/0ejNheeQR9NYCjwHPQfGWJbza/x7fs9zmfXGDv4gPUKtgaLO1t8k75SWbH\nlvjemd/m1l8/wuWfPsnwbIkvvH08NnGFuYlFJJo2Ta7ZR/hAn+ajL54m+2Ho0ouvAemQUX8oAK9C\nsvJwHtJ9JVEmQiRthlsZS3cHbHW66DRm/+wEh/fsZn1pncVun9bMBBPVCjLuEw0T18432wy8kGZY\nQqZdPM9gREKqfTaiLusbqyRRlQqWMd8nBTpphEZTCj3GgpBOzvb56rJAe5iw2huwe6IBuOGIlC5N\nWFgfhcTqjCxN3Q5XGDeEUIKKJ4hLASYa0O+s40lDrVKiWqpQLYXs3rOHmV1z3Lr+GTevXeYftRe5\nlkg+rwQEZZ9yUMEXZT6tTHG6ss6/m9iLvr+OFIZ/OT7NH8QJb3X6hNc+p9kcozXeol6v45VKyDB0\n+28pQQUk0RAlIDOaNEld8Fsc0dnYYml5mXavR7VcIe718a2AkhvUO0m6wmiN53n52UU4NpkRIAUm\nMwQaPBSeFUgUWQZpllEda3Dq9Bn27J7nkfk9vPrdP6OztYXQGWQl5xdsPecVmaQuIEuWqYsBL//J\nd7j8z/+YwTDCK9dQWmGNj5A+KggoVcrMVVr83u//Ab3BBv/+P/x72v0eqdbgS+IkRdqMellSq3n4\n5TH6vRqdNZ96VVCyllKWYjtbhDNz3F68x4OVe3SHXWKTbXfhX41VnA+KAfkAB9qswJ0KfCCholiy\nB/izZ5pcnz7MoeAGk+EaAsumbXJLH+BS+wTtt6fhhxLexanrTgHTMDG1ymGuc3jjJqU3U/Rfwl/d\ncSFWGXCuAy99HyqHMk4++jF75fPs5TZ71+7CO3DxU3g13sGfymDhPpTnfrZqm7/lV1NUbSvdEO+3\nzHd56vr7lF/NsNfcSx/fA7Mv/pjpsyvgQ/fYGNdun3Tp9APpklJmGVn5aqArYDmA+wHcr4Fu4LT0\nhYHFTlVRASp9NUl45x4+B8FEuO2mMjbbZhcP2L2+irwMm5fhx0MHsQH0E9j/EcxchImXN9hVf8Bk\naZ12a9YdybYHM8VdKOSZO4G4h6dHPJTAV7VaRSkXWy9lTs3NPT2kUhw+fJiXXnyRvXv3EHqeY4Ol\nCcOtdQbdDZJhn35/yMbWgPXNLp6AiVaNWsVDeQoh3OGkkJQUnlOIQjpjt3/XLunK/fJFftiQFnxf\nEZYCkm4Xa10yVpZZMgVaWGeIjyBNFUQepdAHJdCZM0oEixLuNQqj8YST6ejUFe8i0Ecg8VVAKSxj\nNGSZBSuIM50TBgSBZwiERy1UDFKPbhwTabON1/pC4mGdJr4cEpY8JupVWvUq1YqHpwzSaUUc48w6\nv7E0M5hMO08AF+LiJkBOU4OxhmGq6ceaYZIRJZZhahimTtqIdU0PkR+itMZqk/sX+C4OVyqE8mlN\nTHLi7DM8ce48zYlpbG5EPYqu/1nQ6/+N9VXgzFrL0tISb7/9E/SvVGz9L7qKiXWRHFKDKeHIS8cj\nTqiLnDc/4djF66h/a+l8F5YWXUjU9AxM3ILj6nOWzv+Yq9Uj3Dt0iMH+umNVrZZBFznxBZMvyj8X\n/29hsBs+bcFSAD3h2FKTgquV42SPByzW53h/7AkWHr9HQEKbBndZ4GTzE+ZfWKR+N+L5EI7cc6Sa\n2f3g/xZ0XyjxAU9w1RxBf1F2ANY6YLrObPVKA+6XYEw4a5sieDHMvy7GRevAhoX2EOwqbl60hDsk\nlXBUgymXnHICeB7GXlnj5blX+Ro/5KnofWbaK/hpQhSUeNCc4ULwND88vMRbwcv0vt/E/mWJi4tP\nsnhsngu15xgL2whh6CYN1rpTrH4+A2/78DbwkYWNKL+GTUYHtYcjsfHvWn5YolJvIJVC5+CIkzCq\nPApeuhj2HPQyO+uEkG7goAUyT6ZSUjjet9DUazUmJ8aRniJOE3TqEr6ETREmRegUpTMEjuUlYBTw\nZpy31q5BwiOdAb//+QP+59MHQGrHXJXWSR5lzlBVBdvLXZswBiOkk7TnlGOjDZaMkZlV8bfzn0Hk\nyVwCnYEQuQVA/hzG5NtskcNk28mR+UMIB4c5X31JEWLsfsCNRfjSh2OY2fwra3XO+BJYK3PuiwOr\nRo5x7v5aBNpaMiFJhSC1mthKUg1x5ozttVBkeShBAXhte4hZgxLCAX1JRq/bZ9juoqOYiudRkgoZ\np3i+Rvkml0DKnIUgSJWPURJf+fhKUkJSKrVoVkpUwhL37j2gN4gcI9lKx7oTEt/z8H3pAFIdYbKE\nOI7pbf46DUCKVbC+2PbUVaGmrIZU6btStwb37Zc5UPdTiNagvAk1elQYIALrDgJP4Mi+D0JYmYXu\nGJg6I4kFuAJbMAt2MqyKifdOX7Cuu4gvpeQWII6FpAw3Zx2i3Ibh7SaXjpzl6r6jlMeGIAXRRpn0\ndhmuCPgE93EzA7OCS+kq2Mk/D/TyGP27UTuupTAj3sn6yll0tLblo/5TQ55t/ph/wHf51oO/Zvy7\nfXjb4W6iDrvObvEbv/kG4ZGYbq3O1hMtNv98mpsPjrJyYo73Jp6mFjoPmiitstGbYOP6FPrdAC7g\ngLy1CHfY2szv8U6/sofnQPPVNVarMTs1QRTFrCw/oN3rI1CMN5o8duAQtVKVz6JV0vFxqvUGfppi\nTUaAxbMWrxQSWE0cdRnaAZlOSDJDbA1xMsCKDL/sEw8iOkniaoy0JFmKiTNKQhFKL/cB/nKfNQgi\nAw+2OuydbtKqB1RCFwyiMx9pfURq0drZnERGu7OEErT6Eb//4VXen13gzUqNKG5j26uUwjJeKgl1\nQMkvU57aRf3UMzwytcAr732bo8OYf9HTbEUDSpUhzfIYwrP8m117EckQozVaCDIr+Het3dhOihAR\n3V7ExmabRqNOvV6n2mwQjjUQJScTl17o5P5CoHxLGsf0+xH9fsJWN2F9mOH1htj7D2jUatTHalRr\nFXzfI05S4jihOlZDeu4MZwyEQcn1S2OIo4HzxVQewo8xQjHsdZFKYlJNqVri6eefw5OW7//Ft2lv\nrDk2tifw8ElSJ5UvlcpkBo699xHhZpvy9VvEp04wjBJEf0g5jgmMzvcBHtL32D2/l3/yj/+Y9XtL\nfPu179PPhsRJjDXQrJYZr3mE5QBZmWZu35M0JvaioyGegHIWM+mBHbRpby7R7mwSJzHprxzbC0a1\nNcHtMYv9bhk+mwLjQReGt8d57/hzXNl/gkp5gEUQRWV6d+vwqe+sQT4Ermg3MStJqEPFG9Bik3q/\nC1/A/TtOyV7cyWvAiRWo3IHxtQGN6TZlhgS5te6mGYFe4DpKtw9lAwsKDmsHBAU4r9yGgJW2q+7j\nwJk6cAIGCwGxDHnuxtuU/21G7y9g7Z4bOo5PQfOW5Yi4yQtPvMm14DD3H1ugf2rcSQ594CDI3Qle\nOcNqQboewhfSsdsuAdcasO7vaCXFHj3jyz2jmE4Wqzib7Tgv5W1HSINPikwN9CFLvuzYmQC9BGYi\nkJkmJEYI465X7Xz8r/6+CyDu4bFGgYcQ+FJKUS6Xt0EvBwKJPELd0mq1eOqpcxx97ChjtZpje2Wa\nZNBj2N1EJwPSJKbbG7Ky1qY3iFiYbjLRqlAu+YjcyFHlQBpCoApwxjqpIejcaFhsT7mLZCkh3PRf\nSMGxG6t8XJPoSoqxTm+eZhaBwZPSRQUbCcJJA60EkyRYnSd/5alknnC6+YKEJvPDkGOYOcaZJz18\nz6daLuMpDxVFuQdakpvtW2raEmXQSHwGiSbOLNpqPCkJBQRSUC0HVOplGs0alVJA4At8P2fMZVkO\netncb8WllqVpRpaz1rRxZsRGWxKdMUgtgzilH6fEGWTGeaU4IDE3gTYuOQzjQK/A95F+gPV8ZFii\nOTXDk08/y/FTZ5mYmkEoL5f2OCBkG+QqzrS/oIzxq+vnsbwAjDEYY7h48WNu3br5H/UcD//auXkP\nAc+BQLPQmNnkADc5PLhB9b0I/hreuO5M5A2wcAe+9QaMH4YTj1/hYPUG1V2bDGbq7jFUGXShUS8O\nMl9lJeVUaj0Jq/kh4dMJdzmZz421x1g+PsdPdz/DVHkZn5QedTba4/zDxrdpHd7imf/qp1Qe08zf\nyh/6MGw+VePCwlne4AWurhzHXFS5r4DFHaC+AD0Bm00nx7kfgvAcCCE9yBmLrqMUEpw1RvG+3fz6\nyzhfnBrsEXACKs+0eXr2LX6XP+eVtdfY/ZNV5IfWnakmYN+Z+8ydW6Yy3mewUOanZ58n+T+r8H8I\n1g/NsT6/CzGWOT+ojoJF6fjcV/KPtQjMXdxBbZORCeUvr/nkL7LKlRpeGDoCuMlBEpw/o1IKMpMz\ncPU242u0nMxh5AVmHHBjMycJadVptBqkWUaWJJg03WZ5WZ0gTIrKQa9CcT8KF3Qss7vlEv/D0X3c\nC31MorGAEtpJwaXZTiRUeHhK5jJbJ5XX2kkopRBYKXKfr4J2nANMYnRgdkMXlctjXK+SxvUUcHJ0\nK4xTNhaPU0Bn+d/H7gCocvl+Dmu5+yUUI8Oxnayx/D0kHOhlrEGTyy/zMlq8y6x1v6vM2pG3l7VE\nRriPTJNZiVVyJM3MH0TkXwsE0hjSJGXY6dJb32TY7qK0wa9U0WGIHg4xngJfIX3p7qH0sNIlSVoc\n8Oh7Fl9CSfr4gYeSoK3lzv1l0kHimNz5vQh8j2q1TBhI4qEgiS3d9iZJHP8/eBc/rGtH/HqucNCJ\nJDYhfVl12E3D2bMXcBPApAdBC6jDkDIxJWxFwDeBZ3EnjxvAZwKuVOH2bjD+V56z4BHurF+GL4Nh\nufk9RRLVTkuEIlHXg6GB67tgzXM+Vx8Ksqkq3XLVXXgeLswdHC60mkC2hGPwrjKiBRfT76/WU48R\nSOjjGlX5K/9fXFfGdiKXJ5189ADsXrjNGT7g3Pr7NP+8j/5f4dpFWI6h4cGjH0NtEPPsf/ku12cO\n8/Hc42zumYbXFL0PJ+gtTEBTu9fTk87I/gbupPgZsDoEcx8HMG4yMuv/RaSbv7xLSUWrMYm2irWN\nTXr9HmEQUC7VmZyeZ2Z8nv7aCmvWoCs1QiVRaQKBgMTiWYiihDRx+9vMM6Rxip8aMk/jW4PvebSH\nA7IkJkQyHpaREoZJirSCkvQIPZ8oKQYvX14ZsNbvszEcsqCrkGUoPyAIQoxWxPGQNEvcNkMpN1TQ\nmqHVpNLSDyVBuUwUdbBxzLDbxo8MWivCagtqVerTu6nMnOOdhd3cWlpk4f4tbt+/xmp3lY1olYk0\nouL5+DjAx0ifzLgBSikICf2QfpQwiLt02n1K4QZByafSGKM2MU61Ne7S1pXCCEFmJcPMMMgMW/0h\ng9TQSw2i1ydJYjqDiMlEM2U0Qlr6wyGp1ghfosISSaop16CkoRQYPOvAOKtTNALplwi8gDQakvgB\nVgo8JfBaTR5/9mX6WvHqX36btc0VMmEJAx+sS4UPyyFhpcQHLz3P6snHGe7dT0O7gX0UxbS32qjq\nGKWmcoMj5ewJ5uZ285u/9bu8c+Uyi9cuIiVMjJWYajUJAonxFMeefJlv/eYfkT14wNq1Kwx1wsxY\nndlajfagS6+7xTAakur/2ACMX/ZVsL5S3B6zGDx4EGm4OgNbvmNxfazoT43Tb4y78tfF1f67uL3r\nooG44/bJXwFcrJDguRKpdpRbR4Bxf90qt0caUCFqSkoThlkF9dQ9FcC8gIaBex/Dm9rNqxvA08Ck\ngcXMpU3uCmF8HpqnwXwTbu7dw2FxjdpbCYPvwVuX4VLOhdnfgW+mUDuQcuTIVQ6PXef9+WXkf2aw\nWrgE+PElZkv3qXo9UhuwGY9zr7OH9cszmDkfagI+qMDqPkY+vEWPMYz6SdFbdsI4Rbc1YDNIPBjA\nsF+mE4wxrAXYXVCZgLk1V+0FjoQ2NQ3sgqhWYosmQ1MZtQIsI/YvOz4/nP3hoQO+KpUKnucue5vl\nJZwPllKKw4cPcfbsWSYnJvCUgkyjk4So1yaLB+gsIYoi1jc6rK5v4QOtRpV61UdJsMJzdFil8kNR\nAYBJjNkWd7gNeM4Ac5I68mRHx8xq3t/gzPc+4rQQ/Ov//Cn8INeq5Af4FIsnA5Rw6K0SBqskIk8I\nU7kwByQi8J28Ugh8zwftwBhhhTPElD5WWnxlsCVncCyUQnkxQkmyzOL7LmWxZDJqGpLUkBrnsSKl\nJFASXxjKQUC5ViYseXjK4ntOiJxmGUmqnfwkM6RpSqozUq3zibwg09bFxRvH6IoyQ3eYMEw0qbEk\nVjnmgHAealiTy5AMWIOn3FRdeQEoDxGETMzs4tyzz3Py7NPUxloIpfIgAZlb19jte+rWzwe9/j6g\n2FfBL2MMcRzzxhuvs/VrYWr/81auv5Jyey9fCiImxDqtaBPxBSzegE9xtRPgjoWlFRi/BbXViFZ1\ng/pYh9Uabr8vC0CtmFoUySdF8e8wSvdacc/PPHSUkz/2BPa+pPtxi+6eFrcmj7q/MgTR0PzgeZfK\n+GDPLMf+6WVmeYAA7jHPJ5zkDV7gtd5vsPLe7h0+Ln1ce9jEUY5z0+WsxGjyUsh+Mr7scbDBqDHV\ncB0kl7JUS7AbOGLZNX+f8/ItXuy9ycJfrmD/d4guwFoHpiYheNZyoHOPl3/rDb6o7ueLvYe5u/+A\nS4z5BBgX2Jrv/gkUZviL1m0kki7ukLaEa+1dd0O+dHh8+JaUikq9gVJ+zkJ1IkaRs34xkKUJmBHo\nZXN0R+S7I0FuEJyDOZnRWKEplUq0Wi2QgjSJ0XGCTVMwKUYnSB3jKqdF4eqwRSALqeEORvDtSonM\naIQ2iFQwkBlSFHxf56vlCYvKfaMk5KwrN5QwMmd4GSfbdLjWDg+zHJhygS6uLxbfd4CYM0wegX6j\nWil2ML1MLlV0ohwXYwAAIABJREFU90Lkfo05E9dYV7etyBljP2viXbDJrLBk1mCMS8s0+WNhBcY6\nlpY2hsxAaiWJtcQmIzKC2Aq0FaDUl2aJApGDXoCxyDQhyhIGnS7djS0GWx2yYUQgBLHyiIZDx9z2\nnAG9LwyqlGF9H4ISYSlAaoM0qavrmSHSmmGcMhxGJNkQz4dS1UNmjrksZYovFaVA0hirk1VC2m0Y\ntDvbwNyv1yo2winEBjqSdC1kOZrhfmWOjcNVxp/o89LHkC07yH0WeGoC1BMQHYM7LBBR4tTJn+Kd\nTOkyxuJwjs0rc9h3hGMSXwjg82lccMDO9MSELx+ILCO/wsIwWDJK0P3qtLrgCaSQdmFlHlbqblBQ\nBcJ8Wh5ZN7fogftimVEtLf5g53PuXDsPJ1VGMfN1HPBWZpRSWVyTdn9WEY5msMsy4y/xiL3GrgfL\nyDfg05/Ad/NnlgkMP4NzP4LquSGPfv0z9ni3+WT2Kdcyf5A/dSW37xji2tiydTiXGeBQvUVG/WEn\nkPfwvrfdXk/xYHmNXm/A+Fgd3/MpV5ocPHyYalhlJc7QtSo+Cl9IJClpL8JkECnFMI5JoowgLDn1\nhPSwInaguZAYYekkQ7JU0wjDbbm6ks6TynrO/1Hms4adXl8CZzPSixM2e320mUAn7n2pRIDV2ikt\npCVNNUIpJzbRhi0l+dePP4oyPqFQ1KoTxMM+W/0+Q9OjjGDSs5SiMcqRS0/M9uxjZmYXtQOHqF+Z\n5vNP38cu3eaf9Zf4n0pl51Gm3LX30hSBoGwqBJmPhyD0HHNtMBiCNciVZQ5fsxy08Nb+vZRqNfxy\nGXyPOM3oDQb04wQjPGIrSKOU2GjaiXbvMBvjKUuiU6QXUI419IYILyGxLvgqSWM8YQgEqIGgLgR+\nuYYKfDIp0H6ADEvuXCAk5WaTJ55/kV4c8/oP/pKNrRXKviIMS6hAEITO5N4PPNbm5ikZSJKMIDN4\nCAa9Hiwv0VSKSlM632EhUZWQE2ef4sXzX2N1bR2tYho1H98L8cs1jpw8zdknn2HXvj1ElTIbq8tQ\nDqlGZQKl6G612ex0GEQDjH0491y/2NoJ6g3JjWXd99MI7i7AYuD0iS0cyFwIO3rWlaA0It+8OgXI\nEOhAN6uzzDTtsTFmD60z+wg8dtURxCxwQsDEHHAYViYarDGJQXJnfDeHz93lkY/gm+/Ddeuq77kG\nMAPvvOfwf3BPPwu833Pbfwucj2FuDMTvwOe/v5tL4hiv6FfhC1h54CxTovznLwJHVuHYDWjFm0yy\nxqnah4zXNhBYUnwOcoND9nNabJKIkPuVOT6pnOQns+e5NHEW6ymIBVyoQzzNyOy+CBfLbV8o5R+S\nL0M5RW9OnDXMOsT3Wtxp7eFa7RAHnrxH/VnLb2zA7JrrXMfGYOw8ZE8K7s/OcJcFVjcn3GynXTxu\n0RMefrbiQwV8eZ5HuVzG87xtAGNb6iYE4+PjnDv3JAf27acUBk5xbAzxoEc86JGlGXFqaHdjlle3\n6PWHLEy2mGiUCJTb3CvlOcaUzBF/obalJUIITJ7+ZbYTrthmgllDzjzTbM03+eh3n+Du/DhZZ5Ne\nd0CtVsVagdYO5BESJ18xFmk1hH4u4dB5A7VIIYlT6+Jzle9MhwGJwgp32LHGXYiSHqGUQEyYi5SV\n55FpQ5KmzgPMuGQsi5MkFlISqRSe57xnpLJIobHGSRvTVBPnDLHMiJxdYYgTl6ilrWUwjNFWIKUi\n04ZBFNONDMM0cwb2uXRFSCcPLWSa1mpn7iwlnudRE4rpOOVOs0prepbT557i+KknqI01nIG1Mbn8\nx90f90uwOz7ZHe+L0dr5/z8P/NopadwJfBVsr8XF+7z90wvbv/9f75VTMnKmi7WCDI9MeBC6WOBa\nPAK+PCDwgApYX6BRaK12+CEWlBnB9kR+W5JXgF+FR4vEHSCcZxC9ebjUdPLHy7juVQyLUrCHFbf0\nEf7iVI3rE4c5oG4yjmtGy8xwIz3IZ+2jrF6Yhx/iqNZ3M5zXTOHjUoBvHqMDTQF8qR3/vyNOeLvE\nFiyE1P152U30vbmYhfoXHOEz9n++CN+Hz16HNyJ3Pplag1dehYVp2P/EbY4e/JTZ+j3u796Dafmu\n015xlH73Wg0MNegIt+lYxbXzLVwHKw6PxT19OJcfhpQqNcCBKUUNzEN10Ubn7ycNhaE9OT/UjtIR\nC76oxQ0tlA/1epVarUKWpo7tlWXYzKU4Yk2e2uh+imITa8V2eqKwhUi+eG+4WpJlhpgMxcjUHuOk\n+sJYrCfwBPjCYpXEk9Kxx4zNX5vIo+J3fAgHTBkLCAduWQtGG7R2fUTnEplCLLh97RQ1MwfPcqm6\nq3tFSIDNX5tjVDvGlYuyz53t8yUwwubYVD4AsRqTM+oKFloBernAFUtiDLGxJBpSFEZ57ucNeZ/K\nrdPcf1jotPnvL7zL/7hnF/8BS9IbYpJ0G9pIkoh+XyA9J1MxsUsr9nNw0UqBTCVkGUk0IMtiBmkE\ncYSOY+JhTJJqGo2QVhCSpJpoGDEYDjFZTDzIGChLEISkUcqg9+vi7QUjxm0BMOWsqn7mPEpuKO5v\n7uGD8hMcm7jKM7/zPqFJeeUC6A1QLRDPQPQ7Pu9OnGSFGV7hVea5R5khG4xzs3yAD0+f4sNdZ9lo\nzGJRkARwZ8ZJzrdBGfGVayoYXwUIVbAPCoBs9G/RfW12vI6+ex20oF11H9v6jowRe6GooYVcfJBf\nT3FPdu4rih5RHE6qOFrzuHsexkGWwCu5gY81oDPI8kCXUEAJRCWlKrvUTZ/yWgLLjjBR5H0Z4Ebm\nJD61VWjQpsrA9b4Qd35cjsH38hmSgUQ7ZnKhR2Wdkal90ecebhk8uJrxYHmJNEtpNZpMVGuMVSos\n7H8M1WzQXttgvdchER4qTdHDhPbQ1fxEhpQDTW+wRWx8PJt7QBpDb9ADYRzsm2Uk2uT1WZGmKUmc\nkKQZUZZhUBhtt/mxxRLFf6xTSXS6Q/r9mEpZkpkYrI8x0kkkMSRJipQmV7hI58OoU7IsQvke1XoF\nrKHb3iSKh8hKlSgZ0ttcQWpopin++ByqVKM6XkMdljT8Cr+XdBnbynizNM1NY2mlA/7b/ir/mxC8\n7pXoJ1soXxEGIYH1UVIgtMUzAhUbXuxs0LSGb2cJvVJAUC1Tb7Wot5qUKwHj4y3WuwNUp8tQp8Sp\nQVlNgiElpSTdoMj3UrAbhL0BQaVEYi2pMJTCKoG0SJ1gM40Iy1TThCCOMVojpSQEhBdgpYdRirAx\nxrkXX2IYD/ib7/4Z/V6fqrYYlSG3oNyoUG+MEUiNxCPTKVmWYbTBF4DOiPtdhO8RlCxeUAE/oNWa\n4OVnXuba5Stc/OIivciwb36GJ84+yaPHT7B3YYEgDDGNCZKwRM9mNBtjLHd6LK2t0+11sFiUp9Dp\nw8mU+b9fxR7e4Grjzrqco+66CWtNWCsxqpnF4GBnfS25722GcB/W701xfeIRLjUeY/7FB9S+iHi5\nAsfuumed2wf+b0P/uZCPeZxr+hGkNByvXWLim5uMxz2O74Pj93HHi+PQ/5GbbexcBjcKKL59DTi5\nBuV7UOplDOoVrBEuCE65MlsAXwFuK+5cAAS7WeS/zv4V40MnNY/DgJneCgu3F/FyFf7W3jKPT11k\nV+kBwamUj4dPkq2Gbr7y2STYYv8+YDQ8qeF6Sp0vh7sYRvV7C7Yq7sVchksHT3Ch8gz7nrrF4cEd\nWjOG54o0+ENgXoK75+d4k+f5ID1Ncrm5Iw2+w5eVIjvJJg/feqiAryAICMMwT2hyTcihNpJSKeTE\nieOcPnWa8VbLAUvaksUxw36XJBqSpglpotnY7LK6sQloWo2QRtXDkyCkA7ykcCwykZviYvMDk3Dg\nm84N7LVxnCxtHShicTJEJT2MNSye2IcnFeU0odfrI2VAGAiEsIQ+IFKk0GipMNpDm5RSECCsQTgU\nDbBY7Ux6pco9XPIJuDZgMovOLNZKpPAxJkVYifI8SkpQloI000SR3G6ymTE58OUALJMDYULKXMli\nMCZFZymgyDQMY8Mw1mgjydCkOkEb8EPPTcpj40CwNCVJUoZxxjCTZEaRWUGSuemWJ+y24bQ7RDnQ\nq/D1+m+ufM5UnPAvnz3P7uMnOPb4GerNcYT0tsGoka+XWwXjbuca/b1ffP1t6Y/F97TWaK159Yd/\nzb17d/9ej/urtbapF0DmNux5qnx/WGXJzrBWmWT/kUVax+CpC/C+dWX4iILde4FHYXWqwTIzdDbH\nXa8bAqYw053AFfQi2bFI9SoOPcUUv1ip+7NkEhZbsFqH62HegfJ1H0zX58Ht/awdneWD6acIKikI\niLsBgwdVsk9DB3h9iIvwjdfdD27LP4b5g+2UzeRI3nZ0WGt0/cKDoJBAGmd0VsCA+Y95dU1LbTLD\nMuIWxNfhUuzm7+AOOZ8MYf46lL/QTB1cpRVs4tVTkqrvLqW/hdsoWEYmy8UhpohILg40O729Ht7V\nmJxBet42oLJ9sM09GAsHLGNdtqClqAfuwxi25W5CuQOxsZpyGNIYq6M8jyRJyNIUkybYzB2uRf5c\nhe+UsOR+iwUALCjkeOAGIVKCMRpj3BBhaFxNN9rD+AqbZdjQQ3sKTzrpXagU1negsJC5z6QcSQeL\no1SOtYG1+UDGgWDWGAd+WZPfgx3H8hyss3kfsTiZaCEtdPfGoXsi99Iq/sx5eeVAomQkhxTFdtei\nrdhm4Jncp6y4RZmxOeAlSY0hyc3sk9x/w1hBJiypBW1zdpsFnWnQhqjXx2QZ3Y1NhspDZBqvYLZZ\nQ5ZlDKMI4Sm0sPg2xdcpgc3wrSGLErKtDjqNifs9RBoRCo3SCZ6wZGlKfWyMmdkp6mMN0iyh2+6w\ntrbG2uoWw35Cpi1BWOHB/ftkv5JeLX/XKmQWO+WEnXySH8CnsPHJNG/NPctUsIo8bTg5f5HmS0O8\nLaAJW0fLfDJznMveUc6bCxxbuUr9fh8Va+JGwPKhcd4On6Y1u8WrL32Dza1djty7UYHOFK4WJ7h6\nCyPwqugNRX3bCYAVvaLYNxSfi58tgK1VXC0vTHyLiUzhGdbf8bkYYhR1dOdWurhPxVS+iesLM8A8\n+DVoBTAhnLbGy3+kH7iDyobdvnSbSVIbkCiftCIJK4Yx3DEnzV/JGOBVwJYhokSKP/Kl10DUg6gY\n2xcDpIH73dHFwWgFiFekOT7coBeAFJY47ROEFcpBmT3TCzxx7CRxucz1rVXssE83ioj8Kl4akeiM\nLJQMtWVz0GOyLohthvHKxFozzAZEWYJFkyYxmVIIBKEKUEKANgx1RqwzBiYjNilSs11/7Y7tyPae\nVUi0EXR6MZ1+xljo4QkIpSDwA+dNlQnnaUwe1gKQ95A4S8gyTdk3hOWQJCpjMoMVHu1Ojyy1pFFC\nFkW0MklleoHMK1ELyizsO8xr4R8wtrnKruYsk9bSHG7RePc7HJk9yuVun5XNJTpxD5tkZAwxSiCt\nwEPgWcu/qFTZHXqsVyqUKyWq4012L+zm0KH91McaIAJWN/u888klLnz0PreXl4i0QdgET0DV9xDW\n4qcWbbZQvkcwCIl0Sqo19YrGVxJ0TJpEeOUylcEYCoEfhig/QEiF8DOUJ/F9H1UJqe7by9d/53dJ\ndMpr3/kOm4MesU0Y6ozG+CRT0ZCwrEgzDXjouIIZRlgvRFQqGK2JoyEGSUlIZ58gFfv37+fY0ePc\nXL7NxOwET509x+OnH8cvl0iTIZgY5UmGJmGAIZAl+t0OvXjAcNjHl4r4V75nFMDXV9P+curWdp0t\n2EqCkTdjgRoVgM4AHtSc08ilMu8dPMv+2i2mDq/z5D9/j8pRzZ5buFJ1GLaervL2vid4k+fRKFps\nck08Qn+hykv/6Rvse/Yu/jLbCvjS53DgCtxLXAVsAf8Xe2/2JNl13/l9zrlrbpW1L93V+wo0uhtA\nd6OxkQAJElwlarEke/QgOxzj5dEvjvB/MA8OvzrC4Rnb4xl5tI2kETkSIZAECAIEQaABdANE70t1\n9VJ7VW53O4sfzr1V1W1SsmckhUHoRGR0RXZV5s2srPM7v+/vuzyCm51X/F1JKUbxwEjoMMSdYCeT\nhy4xuQfO3IcPjXsFh4A9u4DDsBRP8NL9Nxj+cIPgpnFntVkQN0G8jmst6jD8WMKZb35I+ExOt9Zi\n6ZEp5k4ccj3IbR/6w+X7FeHArnHcAGUCaDr0LSwZvbocbNiSId3L4XoIH8Dc/gO8+viXiMKMF59/\nncNHrjK6uI60sD7e5ObEbl6LX+AVXubq1UddIv1VXD16YPivt90+netTA3wJIR6QOdqq0SgP59PT\n07zwwgvs3bO7ZHsJtCrI0oQiTTCqwKiCPMtYWl6m1+0xXPMZG4pohh6e9PH8wDGrZFlkhNzGEgAp\nt0Qe1aqoy7YsSNZW/I9yki98WvUW6+s9Op2EekMiBZhcISNbktUE2oRYG4Jx8kJfljNEKfCDAN/z\niaLIxe4qB/pprVFKo3Lt2AZCYgxI6RMK6ab10iWneKUxvdZskydaTMngssZFx1sLQnrkuaYoFMYq\nigKS3DJIDFZIcpM7nbr06OUJSeq098ooN/EqFIWRGITzctFl4yVdOtYmAwBdAoXO5N7zfP7gwAFe\n6PRoP3mGE08+xfD4FKKU8FQpnpufiep3sHmQ/fmfm79tPQx4VQDb9pvWmrW1Nf7wD/+vnwuQfXZW\n1TBUuvPMNSX3BRu3Jri2+xDn48c4ePoGo9/s8qSAY5+Ab8A7COKrwEtwLjzJJY4yuNNyOpgVQBfA\nAbamRd3ytsoWeNNji8pbcckqMKzsroomFDFbJsJNeHfUPcw1KPbW2JiquRoiyqe4j+M2X8cVpGIJ\nN+5YLJ8z2fbaK8ZZVYxGcMVoFphyUcXTwvU79fI5svJlLDXcZVYYTGk+7qE3CXQPlxMN21Vl7uc8\nsYU/kuNEpdU3VI1g+fvZTNnZ7oPz6WYsJr0uQVgjiOpUMFfF9qq4HQYnczTorTRE4RhfUvhI4Tmv\nRikx1gFbtVpEvVFDK4UucozKnL+XqVglenOvNxWzq5S7s8k4FSUZzJQMMDbZZcY6GbjR2j1H5GOM\nA/VNYAmlRUswvkGX/mFCCrwyYMSBdIDYAr7Kp3PGxyUApm35ganqJJuFausutsAuSsDLbAJclBcu\nMZtgngtp2fTcqmYzJRPafRyFY2u5R8fI6vU7IKywThnnJI6QKkOm3X0F7hoKRMlFlBghMMaishyV\nJHyUpnxhxxRpofCU2vxdg90E4ZRWdPs9EpXjpSFeHOL3Yvx6i8IK0sylc0bS+ebK0EljC52hdU67\nPcn+/dOMjLYxumDQa7KyHDJ/J+LG7Q5rnQGdTpeVxcW/2w/1p2optsCTVZgfgo/AzvhcGn2cPz9r\nWYtGuDh7mD07b9K0fVIRc40DLIoJXuB1nj9/Dr4D4gP3UPXZnOFne+z51n3MsGRlepTvP/0r7vB9\nXUBnHDd+bpbXUAH9A1xtSNhKrIUt8KZqYYKHfq5iGVTAVlUvqnAV2EKPKollJWX3tn1vtarnq1jL\ncXmtI7jasBfaNTgIHBCwF8dMLokNdCgTgYWjGXSAVY91PcrdYAfrU22mHl/j1DnYuOcsKEeA06MQ\nnwD7iGCeWRaYcrWmUrWjcWP/pHyi7e9bVR+qWyVl+fSfcRpBDNLSjEOO7tjH0wefZMfETj7uLZIM\n+sTGkuMRRnWS9WV6SsHwJF09YGWQENVi6u02QWIoOmts5D0YbuAHklS5VMIQi+dHYCQSTa4VidVk\ngUSIEF/4UHjO+B0239btJ1YrLJ0sZTVJ2WnrWCQK44I0rE8QhIjYdRTWWLI8RysFOB/ETCVopWnG\nw7SH2wyQ9NMUzxSkRc4gGaCURhBSaAu1JqIYEGUdAmtoPP40R8d2oMMaUhje//zXaRcev5slLK8t\ncO3WZebv32JhaZ5eskZ30KOXJ3iegTAgGG+zZ8cORkfHGR0fZ3JmmtHJSZpxxFCzzZFHmhw7fpLH\nHz/B7//5d7h49SrC5ijrkSow2rr3zuSILMcO+qwNBiRJTt5K8KxBq4IwjhkaVWx0OggFQ+02XpaC\nkO4vV+WERmF85/u1Y+csv/6f/A7d1Q1e+/6rbKxtMCMlRVaQ9jt4psAiaTba1GuKPMmRYkBUr1EE\nXZAudCZRGpkWRM0hWpMjHDv5GPOLtxgaa3P40EFmpifZ6PW4N3eLznqP9sgMS6vL9HLDULuFqWsW\n71wnVQXKqM/IsKSC5bd7MVZ7Z7W/brcKGWKLDTuJ2zfL3i3BgUDvwOLMbl558WVsILi/b4Jje3/G\nVJlNeIednBcn+KH4HH2a/Kb3JzyK+38tPG6O7eaHo8+xkzssMsU3+/+e0c8POHsbRs+7yjIrHXPs\nsevwIW5rfsqHsd3AQbhfn+AG+xhmncMvXKVxVfOcgic/AaWhuQ/kVyD5oseetbsEf2zgL4GrjpAv\njgNL8PG7Lmi9CXzupxAmipMzF7h+dA/vNU9x99AsaqYGwxL6lSS+em92AjPQErADGBFb6pYU118s\n1eBeGwrtCsV7UIzFvFN/hsGjdW4Fezi84zI7Zu5iEawwxiVxhPfsKT66+TjJq62ttN98ja2CUg2W\n/pHx9Q+yPM+jXq87uWHJuHKHeEFrqMHp06c5duxRF7freQhrKfKcIs+gTF00WtPrdtlYX8eognaj\nwUijRhj44AfIwMcr43Qd46sEk6w74Bu2JG+VCTEPSS6tdWmKsjQaNtbQrNepRzWWV9dBSALPww+g\nEK7x8DxvMznSNVUu0dDzQAY+fhjiSeenZIXEqS8FRikHLJnCgVTGmev7gY+QFpdm5poO1+QBnmMP\nWOEAL6U0lI8jhYdWThaplCJXkGsnc8xzKLRE2wJHvvYolKWXJOQatBWlvEWSFaUBvsldGpdwNPDQ\nd2w6qx0zzgqwwiA9D88LsEIyPzLCj84+y9OnzzI1uws/iP7ffUBKVsF/KMvrYVnjw6CXUorvvvKX\n3L9//xc91GdkVaDJNonIyogDjC4ILhw/wQ9HP8/43iU+90/eYfjoBvEV9yNmN3SeavDevpN8z36J\n82snyS7E7mcNMNvYSkfst6A/DmnmdDJU6YjV77dKJhywNd6uGrFKXrKtqJoZuDYOCxH8zHOT9njb\nQ/WANQ39ZNtzbeA29wrgytlqFAxbcsYZYDfUx2EPbuxzoLy7javxGziAb044H5lStq+7PqtmlPty\nGrVfEB+1PHEZVntbE6gTLRBHId3ts8QEa9kIas13BwJVgXGyvOYK2KpYDw9/vYmWfapXd22ZQXeD\nuDFEVG8hvMgNHWzJxyv1jy7N0VGWhJQI3IQ98HwQHsZoN4jA4klBHId4nsRo5+dlVGlmX0qyHzjI\n2SrXkE20yGFf8gGsqUKaRCV7xJRS8VKCWA4ejLFoT6KkLeXpThLvewLPEw74kqWcU5ZPsKUkLPGo\nrdroQDcPYdyQwV2ncO9LSSoRm8BXJX0vATBM+SQWoyukbFNTuonbUnqQWWMxVMOOrXfJmgqxlRQI\nUgsDDYkRZBpyLSg0KIT7pGpNYXASSVGCZbki6XRIOl2Sfh9V5A5Ms2CN3Uxcrn7HCMeySPPMQWg6\nR+QFIjNoKxEW2s06zVpEiMXkCVkvxaiERiMg8n3qsc9QK0BYw1AtYrg5Rq3RJGeFYn6dW1duUHwm\nTe2rvd/D7YWl75Udgssj0HCfjEudE6wcn+Tc8JNMx/epiwEpMR6Kb/IdTl/9CP4NDP4MLl6Frobd\nTdh9DWKZ8+xvvs3P6o9y/sjjLO/b5YbblwMQe12YCNKd63SG27zXy9sKbnP12EoErvy9flEaVjVo\nyXiQSVyt7QBawBYrzHvo+6vvqYCyBo79uxPYC9N1eBI4BfKUpnawR228R1QboLVHujHEYL5BfiF2\n/o1zwA3BrY29fBif5PGdHzDyjXPEA83Lb8LgHtTb4J8F/WuCi0f3co4nuLG639XU+5Q6nl75+pbL\n11hdZ8XK2B4K8OlneoFzcKyLBkdGd3Ny5yH2NWeYWh2mVySs2S5CWUI/RHkBNoxIsgGJgIV0wPxg\nwHo2YMgOkQz65N0BnqyB76E8IFOkRY7xgnKvVWSpIsZHC0Hf5iitMbnBj3yM2Mq/3T6mdTXCYITb\nE1cGfaxoE3gSX4BAb57nrWHT51BqiVQCKyRBEGKNkzz2knVi352hdAFpkaP6GXEYYo3zOm4MOgRx\nA98DqRWxDmlkCbEpMITluV1SCyJkq0mjHtBqhuzbPUu3v8riwh2WV5dZWV8gVT2aQwGzO8bZsWMH\noyMTtJrDtBrDBF6MEL4julvL0FCLF597ntOnn+JP//m/4NUffI/FrCAva4cQgoHRrjZaheglpJkm\n7Q0IhbNHGZuYJssF/X5KgE9Uq+MVBWHs+jBrI9dblOmSQkjGx8f50le/zu2F+5x758coZckGCd1O\nhzxLCMOYRr2NJwOk8DGmlJUajSlyjJRIfLTUpIM+UeSzd+8epkbGuT5/jcvNiDByqpiV1S69jZwr\nF69x5eJHNFsj+I0WndUl1vKU3BoypXhY9vrLu6qzaXVuqti1Pm4fjXGA1zhuAjANcRvGpNvvR9ia\nVXSAi2DrHlftMQYnW1waO8JBeZURVgHBEhPcY4YJlvgt/cc8t/QWkx9sIG7jtvv9l7l9cpw3Rp7n\nI/EYw/UNvvDrP6LZTDh8Dg5v4J63Dl9+FU7ehUDA1CPAr0LnuTrnxCkucZg+daYm7/PMP3mX4X19\n6pfLl7gHek/FFLsF7X+XoP4tnH8HLpSzl5NLIDW8Yrfk6p11+JW3Ifw87D98g13+bepjCZ2xmvN6\n3AxCmQF2QW0c9kvXZxzEzVTa1n1LXzh5+w3hjMuuOI8vzgOBwKYxF+6e5c7x3Uw2FxgKnL19X7VY\nTCZZurgD3vZcGvz7FlYSXCFZ5ucznT+d61MDfDUaDYIg2JSwVRN2z/fZs2cPTz31FDPT00RhiBQC\nkxcUWeZD41GoAAAgAElEQVTkesbJjFSR0+106He7hJ6gXY9oxCHS88qYeScnkZ5rkBwd2clWrBBY\nYR8ASkz5f1JWEbwOCTXWIBB4nl82Bz4Tk6OsdzbYWFuh1WwijY/WijDw8W3puQVbE3ujiUKfUISO\nOC+ra8Bt8lXUfdm0FUZhjMb3XbKKKGWMLpXKMaqMdQcCa52EROnCtWHGpU1mypClGUorjHCSFNcy\nS/q6QFtbNkWOtZApQ6rB4JNbyHKFtgalS6N7o0FuBQBIY5ypMALK90wIH+H5jkvq+UztnOXEqTPs\n2n+AIKpTKkz/XtfDfl6VkX1101qzurrCD3/42mdkWvOLVuVjUvm79IEVKCbgWh3OwcbMFD/4wpcx\no5KFPdMcn7nAaHcDaQ0bjSE+qR3hTZ7j+/lL3Du3B16TrmA8i+sRovLh14EFAbdimJ+GjTabKZKb\nR8dqirTdA2zAgx5ckk19ul2F7gh063A3As9J5TAFmKqB6rAVGzy17XVvl7v0cNOPIdwEZhe0R10E\nzJPAGfBODhifXKYZ9ZDCMshrrKyMkf5syDU154BVKOZD5ju7+Wj4MZ48+D4HXr7LoVVoX4BkAI0W\nTDwJ9stwbXYPP+NR7nd3YG77Dp8bVMyLipFQAYLVdeuf8/Uvx9KqoL+xwqC7hh/U8KMGjVoLSRmc\ngSl5RtWYXYKVVB5fxpSHMgkYg+cJ6nHkvKBM4eSN2rG9KiCt3KUfEk2V6FEpF3TMKsdOleL/6e4i\nSndCZS2/e/U+f3hgZjMtN/clsScJJHhSE0hJ4Es3/S9BrzJrpXxJDgyr+viSB+aklpXvmJHu2ir6\nGZXc3JSBLe56nPH8NuaX2MYIq0CvklEnqn3ZlMBXCVxpW93cO+9AKLvZYicW+kYwMIJcS5QWjnVs\nBUYItLXuZ612QJhS5P2E/toGWX9AUWRgy7RLXUpNK98zC0K64BSDdcEAnofwA4znY63E90MacY3R\noRaxJ8l7PQa9jKyXIYUmDDwG/ZRup8/wSIPA13iBpuGHtFWNkXG4vzKg3+ny2VwVyF4xpbo4VmwE\nGxI+GIJUYpd9lj6ZZengNPFEghdq9E7Lr4z/Ow7ry4QfFuRvwo+vwrvaPdJkD77yNuw7CJNnVth3\n9DrT4T2Wp3c59uyMgNbQFos2B7oNWB9xbDC7jjOMX8IVkOovr2Cr2ZJsNRLbeTdVY1Yd6qvaYrf9\nTCXPqTy7fB5MZayY0JUsv4br3nbAWB1OAV8E78sJh/d/wvHGefZygyG6FPjcH5nh4q6j/OzAYyzP\n7MT+QMIt6Lw3zo9ffoZp/z7RqYJHJy4y9FzK0DIuHfNYwOXDe3mFl3krf46lT3bAx8IlpCUDHDhZ\nWQYM2GpGN801t933y9GUh8LnYHsnL+04y147hncnh3SNtb11Bm0fg083Tyj8GBX42CBkzWR8dP8+\ni70EXwoKazBFQt5bJ2rGJBYSnWPShLTIy0G1G7JEniA0gg2rXOaasaTCYq1CUlFjYVvFcMsdxsmN\nYXm9S78Q1EIPjMaa3A3RPYEXSHTuLE/CwClDdOLYUJ5wA+kk6ZHLjDiqETUjDJY0L+gXBbLXochz\nmumAKIioRxGBgVDWWL8uaHQ6iLhBEMR40seGdfJQkqcd/KxDLeuiyGjWQvJmDVXENIwiqvnOb7PR\nxA8jPM8HIzDKQCBo/9s/pf+f/S6+787YLSH4bz/5iJcGfX4vCFDW2a5YC2iFttrdtKawPRCShieI\n/YA4yVhZ3QBdEEhJ2O+552xLpOdjSxa1MQYZ+IRxjBd4HDn2KF//xq+ycu8exep98kFGmrgzUhTV\n8P0ydMwaPImr8cZgigKFQPgxvohKAoWkPTREvdEiywxzc/MEQUSrPUqeCVYW5pibu4YqBuycPcj6\neo/bC3dY7W3QyxMK81nrH6r9pRqFVWfyKvCjUkrsdIOBg8BhHBt2qvwWgyMc3QHug/mzgPmbB1g6\nMc25sbOE9RxrBUIajk+d4wVe56U7b9D+4x78FXSuufaycQRmv7bMi7/xBuvTbVbkKD8+cIq943NM\nfWWRKMlJ6jGxTqmdMMzecpdpH4Xl08O8MXmWDznJPm4yxX1W5Shv7nuKmalFRrrOw6tbbzHX2sHJ\n+U8Y+Shh9QK8VZQ2WUCauldcgV7g5hvdZRhZhQZ9YhI8X20RkJG43mcGWmPwmIQzwBmIT3UYH1ui\nEfXxhSIpaqz2RulcGsO847snex9XC36KK4s3YfXcDKuz09DWZYvkubTfq2ylwS+mYOZxE/vt/sD/\n6PH1D7bq9TrAFuiFwApDq9XiiSef4PCRw9SbTZfAqA15lpFnGUbp8iSvUVlKv9clzzJqoUerFhKF\nngNhpMTb7u1VFSpTsZOcTGVzurwdjhFVnLy73xgHnEjPIKQg8CXNZo3h4Sad7jrdniHxI/wgoBZF\nBJ4iDhSx1pgowmKxQiN9yIvCdTnlTViQSLRWKKPKPUQifA+J8+hSwn0wlXENmpQ4yQiiNLMXGAxJ\n7iZTShkyBUmqyNICY7XzSEFQGEFhLaqk/CotyJQiV4VL5tKgEeQG0lyXfwqugRHle2mpPGocPcGT\nnkvdKoelxhqs9WgPj3Di1BkOP/oYreHRUjCw2Xn9va8KANsOeBnjfGOuXLnCtatX/0Gu4/+/a3sR\nq9hWa8AC3N8L5wQ0YF7s49svfIurYwc5FF5hfGwZgWGNUa5xgPMbJ+i8PYX9rnS9xClcsZuxzg0/\nDWDJc1Prj4EPJZxvwMIeHqRNK1wJqUCdqqhu39Z8tqb567gmrQEmAlNN6yuZR9WotHHc4e3SmD4O\nFKtovzUc8DXtmF5HBTwHfMUw89RNTjY+4Ii8xARLeGiWGefa5AE+PPw4N3Y/4mjKfwFclMyf2s3b\nQ0+zuzFH85vfZWpklan3y6cbA/sEzH9ugtdrn+Mn5ix35mbhinD1KKnArmoSU7HSqvVw0tgv37LG\nUGR9iqxP3l9FNYepRxFS6pIWRMkIFaU80SsBHYv0pQNZdEEUh9RqkWtUlAWtkMZ9tjxbBpBY7chF\nsCU1rPAkdzVlW1P6sdhKgikehMuExz87f5nD3QG5lPzJ3mkKbcl9Qe5LIt8nlBLlOR8sXzmvExeK\nYjdLghQO/JKyrEfbSpO1ArQtzZUd08UaDVaiMc6b3rg91gonezfagV4aB1jZElFy4J57fQKQLvax\nZLE5ppdBOON648zpDRZ3Cc63KwMGxjIwgsRIcm1xeQGi9Jm07gUZQ2ENWVGQJxl5t0/e65eSU+sY\n2bYc/uDqM6VsFSmQnof0BEYKpO8hghCiGD9uUKu3aMY1fCT9Tofe2gYqzfDwkVKS5Ya19T6Li6s0\n2w3qDdcUWSvo9BWDNGf53gLZoPL7+yyuCkCvPFk6wH33+VjbDT8ZgTvC7d07fdJaC3aD/0+7DLPO\naNZBLlryO3BLbxkD3wfm+rDvDkTdjBHWaYj+FuH2i7ih9zBbso77wG0BN2twowZJA7dve2zJ+rzy\nASLcvh2WX29na1U1oDrcb5e2x2z5qwyVt8pcuFY+X1UTq8FI5ak1CXHLGcecheBrPZ468mNelq/w\nDD/mMS4wupaQxh634x284z3Fa9Mv8srXv8JCvhdeAd4WXB0/xl+cVvTCJmcOvMu+fTcYMhukosYt\nbzfvitO8aZ/jvRtPUbwVuwn/XQOmw5ZNQMX83V4Tfjnrw67mFM/sPMZsOASpYT3I6Gdd7taHWfQ8\nOplmNR2Q12pIAmw4zEKyTt7ZwPehhmB5fYNuv4tRCoOkm/TohwKbZ6RFTuBJikITSg8fidQZORme\nBeNJfFuydct0XGFlKfl+8DwrSzbwajflXjelUWsg8hzhCZB+mebuYZUlywuiICIMochztFZYbd3N\najKlMFYz1BwmbsQobUn6CWtFSqILullKK2yg6w186eF7KSu3V6mt3kES0W6N4sdDmKCGDX2U1PT7\nq/R7K2xkHRayDgv9DYo8Iw4FhTIkaYHSTuWS5W6AKICp115j/I/+kOHXXuf+P//fCYMAogD99a+T\nz91m8oMPuD4353orIbDKbPlEaotNc/x+nyL0GY4hyRK63XVqIQyyBtEgodHIwViSNCfyAoTxcdXO\nWcpYIWi0Gnz+uefoLyzwV3/yh/QSSy81BJHzFQZNf9BBYPH8IaKKLa412mTg9fGCwIVraUU9jmk0\nW4RhjDWQZRlNa4jiGusba2ByxlttQiRrK4t0u2us9TrkWn2KoYL/mPXwqw5xm/owDt3aCbtqrg94\nyt38RzvMjN+jIfpo67OajbB6cxp7LoB3ge9A9m6DbLoBDTe8HPntZY5wmaf4Ce3Xe/BHLrHxA+V2\n+tPX4GQfZmZW+C+f/9eIHNK2z82RWX5/+HeokSCw1Eg4vO8S42YFg+COt4vz8jhviM/xOB/wPG9w\nrHOJeNVgIsHS1BA/rZ/mPU6xxgi7meOUOg896Pe2DFnA7cJ7H3o3JoH2MG6IQY2cEKPlNiteA4xD\nMAVHyj7jq5rpM7c43XqXR4WTc/oUbNDm+ugBPph9nA/2nYF26QOc45J814FbwtWHMQHNslca4P7v\nLo4xlm5QFlfcIKnLlr9X5dn26V2fGuBrcXGRer1Oo9EgjmLnDeX7HDl6lLNPP834xAS+H2CNRamC\nNM3J8wKrFVblGJWTZSm9bhedZ9QDST0OCcIA6fllWorAEw4AqwAbU6YQWkBqi+92U5R0h35jzKbZ\nfTXHEcJHVkwna8AqQh/GRlp0u22WljcwNscP6/RyQ+h7NGshjUoW6IxdELnrmgyivB7X+DgZimu6\nFAYrBXii9PDSbhLulYlcWITWWOU8vpRxaVmFUuTKJY3lhaFQAiPcdFwrQZEb58eiLbmxpEowKAyD\nTJMWObnVDnrQojRu9jB2q/lyZvneZjxy6AVlWqZ04QTCOvaUtQjh0WoNc+zE4xw5doLGyKib1ls3\n0d+alvGAaX3F0vqPMbF/2MtrO+C15aOmePe9n7Kyuvof9uH9pVrOW8I1PH02d8ssgqtTgAc9wcbt\nSX5yfJIP9z5Os9VHCBgkdfpzLfg4cBOFOnhfK2g/vszBiYvs4jYNBuSE3HtkmstPHmblkZ3kUzHE\nAn5ag4VZsBWzq5IdVkbCHltg1XZBgWLr8B/xoEwlxAFdM8AExEMwJBz7rFY+jALW27DWhsEkqDVc\nQQhATsOsgCdBfFlz4OmP+Urju7xgX+PR7iXGBit4aNbjYS41DvOm/yyvPP4y580pVK8GVyB9a4h3\nx89SmxzQH2tw9ld/wr7n7iITTd7yuN7ezY95hu+ZL/H+4mnMmzVn6TVvy/e/w1aSSyVj/OVsaP62\npbVifWOZnucTRyFh7DuwCIkt2V6e57n9SYAQlkIVWKupxRGhLxHGgFZ41qUiun1II61G2pIStSmv\nwzGrcACck6/ANi1emUjowBmQbr8Wkv/+5CP8d5du8K927UAaiy40uRLkvqEWQORLQusReqCQKGvx\ntMb3hGN9ec7AuboUKcWW/BC3f1pTmtNTMZWdsb8LAKiGSA7UcrJux+rVuGHJg8yEiuNWMb62gC/H\n9hKbaYxO4uJkjwpQ0pICiYHUOEP7whlNlkbN1S/QoHVBlqUkeUY2SDGDFJRBlnu/ty10BivwynAC\nXV2ecIMWz/cQgY8IfLwoIK6FxJGHNYpOd0BndY1ikBL7jrXgexqlUta7KXcX1/DrdRqtCFD0uhl3\n73a4c2eV+eu3P+M+j5WHVcUsfcg43UzB3IRLerwoYcSDSdB5QEpM4oXYJnhNByFVO3UN9600QAce\nGSGFDd2H8QvgHc2pzSQE7Qzha1Q/JluMyC7V3NDlA+DDNmzsKR8xZ2tQU4WPtMpbBYBJHmQLV4bv\nVYR8igO5Wrjx+RgwCd4QBLELUHG9c4kr5aC6JftsFWjDpA+HQT6dc2zfBb4q/4pfT/+Mw+/fJHjD\nwH2I6gXto9fZ/eI9hmc6qNDnL579Fr25cfgJKD/i48ETrB4f5/2hJ5gN5ml4fTIi7uodXO8f4OaV\nQ/CaD2/i6kOnh2te1tjy96oGR5/uxuVvWqEX8tLBF/ncntPUPYMeq5OHGXMbS1zraK73Ogy663jd\nDRiaQmoPY2O82ji+9aDokxYDbm10KPIEYzVFskw3T1mTPrEqyAqFF2h8AZ60FGnqmE5CITUMVE5T\nxESW0uuxStN9aFm3NxssvaJgbmmZ2ZGYwAeSAj+EOAxAOHN1axRGC6Ko5s7d1oWZOIZtQZqnpGmf\nrMj4ar9gdlDwByNjDLSPKb0VUwEraVYa5mvSQZeov0Lkx/TSdayN0ITIMEYEktWNRbrdVTpZlyWZ\nsSoKlyRpfEKVY4Vgsd3G9zwCIWnUHBj1yfGTMDfH6j/9b2gmGV4Q4HsBxW/8Fvss/Na3v83/8i/+\nV5bW11BsC2epeMtKs95PESqg5gVYa/CEO5cnScJQvYnVhn6vj4gsYRRhjcaTHhiDKnKsMQRBTKvd\n5stf+yqrd27z7k/eYnFllVajji9rWBu5sNMsIw9TYqUwqnA9lydBpWid4tsArKRWr3Ps2KN8dOkC\ncSOg3W4ReB69bof5uZuEvo8QHh9fvMBKd4P7K8vkSj1IMP1MrsoTsUomHAOxE6bqcBp4yRJ/ocPR\nwx/zhP8++7nOCGtkhNwPpvn4scd4b/cplnfMor8bwOu4rawt4Deg1lpnigV2d+7CebhxDV5TW8BT\namDXeRj9KUTnFCxBOK44cfoqUy8s0ZFDTG/cp9Yv6LVi5kd28XbjDJc4wlUO8Hne4Fc732Hf2/PI\nN3AMtBhmj60w/uUfUN+f8Af+b7POMEmjht0Jkztg57wLqQJHWj41Du0OXM+gLeHJFsizkB33uS73\nM29mSdbqbttOq/o1ATtcn8FLmn3Pf8LXor/ki/yA4xsfM9lfwjOKTjTE9aF9vBU9w+jBVd780ufJ\nekMOu+poSDbgbgz3fIg9Z3IKkBsYGJwpfpX0u8xW2u92Vcmnn7X4qQG+tNZ0u136/T5xHNOo1dk5\nu5Ozz5zl8OHDzv8LgTWGLFfkhSq9UwxGK7TKybOUXreDNTmxH1CLAnzfJwh8fM8v0xzLuGDPq9Qr\nDnyyxk2WrZtie6XeQwlRqj0kSrsDoe9JN4EvmyQhBJ4UNBox42OjFFqytLJOkiTIQuP5PplSpJks\nzYM11gZlM1O41BIhKZTFkwVy03ulQOsCjUULKMrGS2k3zTdGO728EI4arUzpwaVIsxylDYXSZIVG\nW+cjkOWKXGmUFSgrSApDUigSbehmlrTQKA0aSYGh0AZjKGU4nmPYgTNhFk4Y5EsPz/Ocib0QzjA/\ny0ppZkAcx0xNz3D00WOMTU0igqCc2dhN766fB3KJhwCxh9f2+/42cGw76FUBX9W/6+vrvPPO2+T5\nZ9HT5eFVTcElm3H2lVFlX8AnE7Dqu53+A0inRkiHRty3dHFGiwlwGIJvJBx64md8rvZDzvBTDnKF\n4WyDQVDnltzDB82TvPHEC7zfPENiW5AIGDShM4VrtiqmUyVd2d7MSB5M5apu1US+jgO8RoA9EEzC\nVAD7BezD2bK0y4dJcESxeeBqBLcmoVuOUaII9gNPwsTZu3yp8Sq/yZ9w+uKHtH6YOp29hol9XXY+\nu8CO03cQoaV7vM3VO8ewdyS8Aav+DD948WXu7JjlXPgks2PzxCT0aTDPLi5kx7l68yj910fgRzg2\nRb+6sCpq+NOftvJ3tZRW9AYKmQrC0O0xfukxCJV/o8VgMEbh+4I48okDH2E1xhRgKqBLl+b2DsgS\nlZyRkv9Uyd+33cAxqcT2e63FCg9sBRwL/qcj+0rZvCkTc00p9VMUxiM0lsj3CKwg9FwdUYBnHetK\nigr8sghhSsxLUKVdVsb1FUvZ4kAms3lZtgT2HGqktXGsYFECX9UsY9v2KjZpZeXeLByTzgWXlqCX\nERTWnaeKMqUxxx0+M+N8vYwBYS3CmJL5ZShMQZIlJGmfVOXoXIFWpcS0tBYoA1GgZO3J8vVQeaA5\nuwLP9/ECHz8KkIEAnZL2C9KkIOmnqKwgDHzCuIa1htyAtj6iEGz0FAsrPfxOjywr6KwNWFvuce/O\nAoPe9hnuZ3VV4Em+7b5KAt8BliFrQjYFwQisg12IuL9/mrloF8cPXyY+oXjqNrDujtV7JBw6BDwB\nnZkh5tnFsh2DpmHkG0sc3HmRw8HlcrqtWGeYm/v2cvHwMeb378aMRm6/PteGzg624tdDHGg1CYyC\nF0MtgqhEjAsLWeFutkp3XCx/rssWM2EWvHEYrrnwkilc+ajjeoENYCmEe2OwNATZGISRe9oDlvah\ndZ6M3+MlvseRN6/j/0tYeR1WuhAFsGs/DC0lPPufvs3dmWkuTRzh/WNPY9/34VWwSwF3L+9n4fBO\nahMDfF85b7D1mOJqDT4qwb8LwP0UN75fwtW7qmn59Aeb/G2rFsQ8dfAUO2vjZOkqy0XB0J5ppo7u\n5fXX32ZjcQOb52htiLRC6T7GpvhxjBqAzgs8z6crShN5o5Aqoa80N9YHTIeCppT4iJLRqrHSIMOQ\nBhE5hsAY2niOcVvuTVtV4sHlTlSGxFrurayx0RujNVRHGYuQGuNJ19tYZwSvrCauxQRRTGysk/nh\nQqs0UBhNnhdEnQGREVg9ICh7iFAIrClIlMLzA/JsgCoS0iLDkymr/R6FBWwIMiRH0+l3WM96dG3O\nIIQkBI+Ans6Jc0vf5Pj3YvIiZ6TewrY1Kiuw0ueNZ56jfuMWO3bNIgOfuu/hewGeJ/nCC1/g+o2b\n/Om//wu6Sb/k8dvNT6c1kOSawAqSGhR5waDfQ2LxjGGo3kCVv8e672G1Aq0JgjIsJksRMkBbD88P\nGJkY5/kvfZHbd26xdHeewSB1QVzaOAaxBWss0oDNNZoCTwSgFUY70FiUYStTk1Psmp3F+orJiXEG\nGwMW525hs4xas8GVW9dZ3Vjn9sJd1vtdAs/HlwGDfLBd6PoZWtWZvGLftoAJiFpwBHga4i93eHb/\nD/mq/10+p3/Ernv3qHUSdOCxNtXmwtCj7B26ySvPfIUb+VH0WgBvlQ8VQuAXhOSEiYUE0uLB8W8X\n6ObQfh3uXIeNAYzUYfo9mFraYEpvOAuSdRieThk+e4WpLy3xnSlFRMbn+SH7fzSP+N/g3puw0IWa\nD/t3QbySc+r3PuD2nll+xHPcHNnFrrP3iD7SfOn7cGsRsLBvJ4x+Fc7eheN3IKhDcBzUtySfHDnA\nOfEk17uHyK/GbvvulPLQOHB9xkkYP32XL0bf59fUn3P22rsM/XXmBh0ptGZXmHx+jclnlxBNQ2d/\nmw+eegp1PYI533kMc9WdQZO6+2PeJAdUtbuLK2YJW0nG2+vHp399aoCvahljGAwGJElCmmd879Xv\nsWv3bl74/AuEno/RGpUrrHYNijbOM6TQmjTN6He7SGuohY4R4HtyE5TxpPcA46tKCQNcIyHkprzC\nc3c5snzFyrLSMYcE2FLY4klZEpYstSiiVqvRaik6/ZT1lQ54EMbOE0upcpJvDJI6vuehPUVGhtEW\nIXJnhi8lUgJWo5XT/SvtWFwWKIocIQXGKKw1zlLZClSuyZUlyQoGSebsjaxFWemki9qxE3INmTL0\nM00nScmUcZP6sjBUg3orpAMXS18yT2h8LKZMSkNKhMQlZfo+VhvSLHH+OdZuMsDiuEZ7eITW8DAy\nCBzr7RdNyH7BepgF9vD6eUyx6mtjDMY+6Om1HQA7f/4DLl26+P/han7Z1/aNsrftvgLyAcxPwkLL\nbcbDODzKsDU0eBHEs5q9T1zhG7Vv803zF5yeO0/0oUIuWkxbcOqRjzl+/Dxj4Sr2qODHvS+44fUd\nCd0psEu4aYTGdR7N8lYZD1fmxVW6YQV4Vf5cNdz0fhdEO+CghJO4icoJEAcHDE+u40lNMqjRvzXm\nfFM+BM5JuDAOy4V7iD3AMcuxofM8z4849ckFWv9HSvFtuHfdNft7dkD9cs5JcYnlM69xpXGIG48d\nQb0XwhvufeksjXHuiWc5f/BJhqZWCcKCNInoL4xTXAqw70tXmN8D7mVsNTYdtkz+qwnRPy5whvFp\nmpNlBb6fUoubRFETIaU7YluD9CAMJPXIJ/As6AKrihLw0rgY3dKUVkBJaa1Eiw8osat3voKFZOnz\nZURpJWbNlmxQeFhk+SAepvLUMhajLIXV5MZSGAiNpfA9l/hrHfDlWTeAkeWtwrwE1Z5mNy9OCBdo\ngmUroMU4IA9rNzmcxhp0ydIy1bBg87EfDBAxZaSksAJjJYV1TZfSzissNZbcuuFQYZzUMa9UpCXr\nDGNAgVaaoijIVEqSpxQqcyw7FEa6fRhhkXibBv8gNmurEGIzJMYL/NK30wGDwhSYTFEYQ567UAGt\nIPACojhCeh5FplHKYvHwRICyIYMMin5Ov5uR9Cz9vmFtpfP380H91K1yvwe2wK9qyFBJ/YaBhvNV\nvA9cF1w9fZD3gyd47NRHHPr1O+ySMPM+mAT8neA9D8XXPC5MHOUCjzG/sIfxE/N8cfR7vChe5wQf\nstvcJrQ5S94En4hH+PHoM7x69st8EpxA9WPoSPhoDPJ13L44BsyCHIVp6UCrCRwBTAK5gLXQMdTu\n1KBT6k6Yw33yp3FazRnYK+CYgKO4RmTavUQUbkA+h0vC+lkAl9vu/vLpRyYWOcJFTq99hP89uPfX\n8N17bhevAc8uwdkYJo+s8uj4J+wPr3Nx92MMJoadP8s94BLonRG94cj1jxXgdgdHQp6jZHrdwU1q\nltlKJa4m9b/cjfdY1GZnYwIbB6ytJqyuZgS2gTrWZmHjHtnGMlL1SUuwU9scITWWFKs2sGodG9ZR\n0sNagWfcnmylIFEKLSICARESLSWZASENvnG+tr4XUhOGcRGyZDPHRHW7698Aerj+YW2QcGdtnfFm\nTGgMAkUuLIHnAP0oDLDGWYWEMnbKECkplMLzcnzPQwlNgeb/bEYEVpDnfWIpqckI33PDBmOsC8cy\nGhLfiS8AACAASURBVCs9MuPqXmYSBiZHa4/cSvpG0S9S1q2ih3axFkZSVwYtBQOrGBQ+wfoGURjR\nDGub/pC+7wAni6Uo3EA9RqK0Bm0ZHR7h137lW8zPz/Pj994htxasJjcaYSVeWcsyo1nNUkS3x7jS\nSAvD9Rhhc3KdUqgcpQp8GyN9jzAMKbSi6CdAhlACFRnCwGP/I4/wxa98lddf/WsGSjPIcoaMC8mw\nvuvbjHIKGaRFegKpQCiLJyofZkOr0eDAgf2sdhZQacrclcv0F5aZGB5h7t4d7q0tstbtsLCyRBwE\nDMVNskIxyD+rQ5NKYRHgNq4hYAImpLM5OQOPHfyQr8u/5LfyP2Lnqyt4b1m3OUYwfmydvS/fYfjw\nOlk9YuXxCdauT7tBeun2kWR1uo0W6+Mxkzt6jDVhct3thOCO6Tt9uHEevt1zHcFwB15+FQ7FkN+A\n65dgUcGe2LHDxpN1XvztN2kM9Tm+fAXxA5h/A76z4E7ePnB2A74wBGMnOhyZuczb4dO85T/Drudv\nc6iYZ2oWJi7jmOiHga+4rxsrOBX9Ybiw5zB/HXyJ1/k8t64cggvSvbZOqbBpS9gNPJJzuH2JZ3mL\nU/Mf0vr9DP0ncOMK9C3sqcHwRcMhPceLX3udq9Ehrh04ytr+CTeAuVeHQuBqA2z1SYYtBc3DipqK\nzlyxhT/961MHfFXLWku32+Xb3/42r73+GmfOnOG/+L3/nCeOn6AZ1d2mrouSGqxRSpMmCVkywENQ\nj2tEge9AGeloxH4peRSisrYvJ+SVr4kszYLZUrJgLcK4TdFKiS4TSoQ1lEGPCO0aJglEYUAchQwN\ntVha77IxGCALTRiGGFnDT8G3GunlFNYQFwVBEOL7Bb4fIqyTQgrhGgWtjZOvWIEuZZfgpB5aKzcR\ntw74KrKCNNekuSLJNV4QYoR0STR530l+kAwyRapgvZ/RS3M0EiU9XC1wyL01Tm4prWtehHVgl+c5\n9tdurZnzPYIgQCDI0gyrFFYVeB4EvkcYePieh/Qk2hrSvCg9eLZAr+1sr7/t8/A33V8lZj58f9Ug\nGmOdMb/RLpGnBL2yLONf//6/Is/zn/v4n81Vof7b5ykVGFaayOcjsDAMCw02TYd8Hx734QjUT/Z4\nqvYTXrav8Pnz78G/gexNyJYhaFriJxWPfusm6qVXWIwmuf7EPhY+3ueYTlc9KFo4kKtKzhoDmuC1\nwAtL1osBk4NKcODQSnmrYuanQe5yLK9ngS9C+9llDu36mCPiMtPcw0fTqQ1xc2wvHx86zt0De1Aj\nkUMa3gxdbzcNrT3LHOAajw0u0np3gPkuvPGxsyPIgMduwEuvwtA+y6NHL3K4dZnW7CJr07OulvwI\nuCswn/jks02Wx5pud87KS57DFcKr1plO2ru4TmeNByf6vxyF6e96WWspipyiWMMf9IjiOkEcEUYu\nPTfwBLXAQ+ep8+bSBcKYci8qje3tVjWwZWrUA0yqcuiBZYspJQWy9BKytmo5y72orBEV+CVKppZB\nU1jnf1UYswl8hcYSaIsnLb4n8KXElw788oRjlzkiVNnYaLNZu6oJji0n28bRB0o5vt3ac61xrAFk\nCXyV/1eGqVRpxxan3nRGKhJjHbhVGIHSkFlBaqCoGF/CkuPYYMZIrDX8ztxdxpKc/3lmJ/08Jy9y\ncl2grHIgl7XOkwyNERZKNpcp7QCq+iuFQJQ+ncKXzhsHsNpgrAJl0IJyuKSxBnzpZDeiNPs3Aqz0\nEJ6PFh6DXOAnFkSI9UNqQx69TkKW/CPr98H1sLy68hmsmFZrjvV1M4Sfwd0L+/jRiecZ85f5+je/\ny+zuBeJLOfRBz0h6j8W8t/8xXuFl3k3PEFnNi2M/4Df4U7609n3G3uw7mXwfpnZ3OfDcLXYduE0Y\n5vSP1bk+/yjMS5j3YXHEfaPYB602HBQugOQosNvgjSoIwAwk9p4HV4WTZn4Sw+0dUFSs4R0O9Doi\n4SzwHESn+owduM9M8w4tehQELJkJ7t7ex+DjOuatAJoCrlHaQVrajXUmWMa/p7FXYG7NEaNt+W59\naOD4NajPwbheZjhYIw5TBnVcz3hRuy6uJV16ZnV6H1jYMNBT7v3mHg7wqkCvamJfNTC/3Gu/GGFw\n+x7p8QPUjh6gNbfAxp11PuyssnznOnp9FdsaxfgSREQY+OSDAqHA5hmiGODpCCFCB34pRaE1CBdr\nUhgLngSjEEZgtKGGJPY8jNB42uJbSzOQ3C40xZZb7S9czn8SekZzY22d3eMjTPq+YyQXhkxlCDy8\nQDp2rnBp8LU4BmtI04xaFJHnGcZ3z6ekoa8UqSnoKE0kCo7lGf/Dapd/NjbBqik2ZeMW2J1lXK5s\nAcCpUFD0pcIaDy0tHV3wXynFCaH5H6OYntUMCkWtnzBRaKQf4EcxteYQzUYLP4yRXojv+xR5Rp6m\n+FHoAsQsHDy4j9/6jd9kYXGBa7dvURhXhwIENU8QhxJtDKuDhMxALCXjwgFSFoNYW8H4AVnoEQzX\nkfUIwgDdL9CZwvMCl/KMG4LFzSGefvHLjE3v4sN332GwtkJWKFqNGlZYMlWQFTmRkHgycJYr5e/H\nkx6EPtoXoH0a7QY3b63zyfVrdO4tM92aYPXefS7NXWEh6dLpdomDgIMzOxFGcH3x3meU7bV9+Tjg\nqwwKmQYOwtCJBU7J9/hc8SN2vrKC+JeWlTfg/gLEPuw8BvGy4tn/+h1uzOzj4x3HePvoNOwCrgBL\nkCy2uT66j4veEcaeOcfkBcs3XoHrPXdMe3QI1AE4//ZWXvsScFHB/uvwwcfw/dJzcqwHv/Iu7N0D\no2fW2HnyDt59jb0JdzecDVblNHzRwplr0LwNw2qdMMz5AV8gDHK+8NIPOPTIHMFCAeb/Zu+9guy6\n0nu/31prhxM750YDaACNRCTmDFIkJ2kUrkouSeWra8su29cPLvvJ9pOf/KJH2w92+bp87WtXWaWR\nbl1Jo9FIMwwih3kIEiSInNEIndOJe+8V/LD27m5QI2lmNKrSJfhVNRqn+8R9Tq+1v//3D9DdEXJx\ndC9LapA+1kiJucs4p3mYd7Nn+fDaU7i/Djxz9xb4IX3oPYGHoT7RYHd4g4PJJQZONbE/hLfPwgd4\nqGoqg2++CZN7HUefOse+/iv0Di+yOj4E/cIzkLM4f/aL+XsiuD/QZXsvkW37+Zen/r0FvrZXs9Hk\njdff4Edv/YgTx4/z3FPP8MjRI0xPjNIXS0zWxWYpnVaTtJOgZERUqhGVIsLQy/AC5cGvwti+MCUu\nVCoezALyKb7ITfQ3WxmXs8AokqbE5u2d88ksfiotUMISh5J6tcLy+gqdjkFFlswqhPGT/MwlRN0u\nlXJMqWQIVEYYaELlDSUEhkynGOtwyE0WlpTKM9CyzCc6Wu/tVVjTJFZgZIiMAhLjZYyZdbS7hm6W\nkaQZqYHUClrGkYgA40T+GM5HDzvAys3Xp/ASxkD5qfu+bpf/4eZd3u6r878OD3j2nXWE+XUCJQiD\ngDDw/mrGOQwCnev7Vd4h/qzeXX9fbU/kvC+d01qM3WJ5Ff+31nLq44/4/PPPfqHP48tRX6S8+nbZ\nT5YbeLSmSMEKgT5Q037SPgXjO25yjM84tngWvgsbfwIfXIHbxq/PT9yACQN7Jm9z4vhp3o+eYn56\nl5/Y9wDLNbaM6MehWvUGMUNsUp/JJGyUYLnkPbqa/eB62RTnMwLDAo4BL8DwK3d4cehVXuBNHrWn\nGFlZRRpLUo05X9vHO/VneO3xV/i8/DBZt+L7i5y1XSm1GWCZWrOJuAGtq74/K+Z7V4Hjc1C/AZXF\njP76Cr3VdVZrO3xjNA+sGrisYCB/DQq/3zTwdjHrGXSa+ZXv4TeuIrGrcML8cm1Qv/hyaJOiWykq\nCShXypRKAdUo8kCQ1h6MMhrpHNIvdjhnc5DI34dD5AGRXi6VX8uvKzkYVuwZuS3kZrrtFv7ub1XE\n1G/SrvKLOh+uGGfJnCOxjlDYHPiSOfjlbYYK5pcH0orH8ZuPfzyzqWy8z50/xyyE22J/WaEwUm4y\nvgr2mhBuU1ZpMDhPOwbn/bUy40i19YxhC4mTpM56SXz+GrzE0iKcZPdGk1o3Ielp0kozn0wsHSIf\nntjMQB5Os+n1KMFKz1ArwEIhc+nqJugHzpl8+GR98yj8Ou+cQwnlfT2lZxhYJwnjkGpcJohCskzT\nTTVmo0NcKVGp1uip1Lh18RzGfPX3dX85thIBFVtrkGIzECRbg9kh+ESSjJX5cf1p3B7JUjzMicdP\ns+vYbcJMs1aqcymY4UOe4J3W88zenuHogR/zHG9zcv4dBr/TIvszWL4IqYbBYaieMTz2Lz5j/ZFe\nrtenmT02TfZZFT4HlvrABtDXA8cFPAXiaU3fkWWGhuYZrCwRyoxmWmOpMcr8nTHSD2t+j/oggouT\n3hxeDsNO4UGvb1lGnr/LI6Mf8Cgfs48r9LJOQswdOclnu47x0fATXB54iEzGW0FmFjZpnwB5MMX2\nKnDk+35SxKdagDZ01qBTYivdmPx4t/B7wVr+vcH93ixfvublb6vRBJavXiQolxBDQyw0Mi6vLHOm\nsYZe70A7I6wFGCkwKFAakW6gdYSTIUoDbYsoW6wUWOE8XyWXdHeNoy0hsN53EOGoiRAbWAJjwThq\nEhKhaZgE81OAHQ4LQqKd4O5qi+MXb3Hj0F6qgU+jzTIvMwrDGBVY0qxDFEYEOTikKyFKlP361mkj\nk8xbllgHhBgkDWOpd1oIa0lbK9yOYspBSCgU3+hm/IvGOv9bvZe3ohCnBCFQtQEiKNOymtQqMCmH\nrGMYTdtktJwFq+npdNHOEZbLlGu9VGq9lKs174/svLwy7TToRopqqR8VR6ggACU59tjD/Oq3f5X/\n7zt/wO3FeyAEJSmoKkdZOmwYsJZYssx7bmqTkWRdXGuDR/7iNejt49Rv/grUYvrGxpFhBKQ4Qj84\n6rYRVhNEJaK4RLl3iGNPPsfwxE7ef+0vaTZW6DWOUinK2WkZRmuCksNJh5PeOqHb6aDikh/+KEUc\nlUgbCaKZUVcxc4tLnJ+b5fb6Ih2nCVXA/qmdDJeq3FtYopt0/+4PwZe+CqljbkuihD+FH4Ox6hz7\nuMLUnbuoHzmWXoO/WPGEryiDR87C0z0QH7cc+mfn2S1u8P7ODPpCv6ydgda1Gp/vOs475ecYeXKR\nveksE5OOiWv5wx6C5PWtHN7ilCsETAJXtwWtrACXW7B7FqKVlC4lPM3TEaqtlRd8CxDm2SlWSFJC\nLrYOsR71ciXcx4GpiwxPLQCwwAgXOMQsU9TygckSQ9xcnGbx0iTunch7NH4ONJv44cXkZrZKHCf0\nsk6fXoPb0Lzmr1r0GXeBuw2YuAnRvGOgf4Weyrqf85fIN5iCfWfZUux8MeG3uPzlYXltry8F8FWU\nNyE/xaeffUZPvc6xgwc4+dhxTh6fQSZdWq0WSZoiVUAYhUSxQgbej6vw9vIn+b6K74VkxIdG5dNl\na3OWl/KMAKEQzmLzab7NGx9nTa5uDlBKer8W6QilpbdaJpSw0mrzr+9s8F/tGsOlGWkSUi0HVEqK\njIDUZoQBhIEAm/qmzAe25z41efqjDDwrDJ/eKJz3OHPOmxAbJKkRtNOMTjfxDh0GulqTZoZOZulm\nDm18E5M4gRbKJzQah8kysI5Q5Rp661Ay2GR6gcU4y3UpuBMo/igK6LTaKCEpBRGBlD5vSaqcxRag\njWcYiCCAwDMjxGZn+NMBX38XI+yL8safZGb/RXmjMX6DbbVbvP76q15m81X9hCrAr6KDLuSPHbZM\n5POJOcP+Ys5wHlJL7OA2tWtd7Mdw8TJ8bP0tZx3IJfi1T6B6qcOug7OMx/cIRtro3poneS1HeO7u\nBExEMIOPQt6JB47KeByukJ9clXClDncqYCKgDXHVy1Ueht7nF3l+8A1+g3/Hy/NvMfjeGuqi8wS2\nMdj1xC12Hp0lDlOSg2XOPfkw3BAe3SrAA9j0VPpJn9xibXHWX3KFhqz4+LZuQKsX5isgC2d953VA\ntolvapbZanCabDU2RcrlV/XTltGa5kaDTkuiuyV6yiUG6mUPtNi8mXeAyQ2pchCpeN9sDkyJQmO4\nbRkqwiS3199cpQpqWP6bwkgf/2NLkQaWS9mtIXEOJSHYZNd6tlcg2Ep2xCf5yk2kK+dtFSCYAIHc\nfNjNXc/mXllK4qz0jK7t1xCF0jN33LLG+3vhjewz48i0pWvEpszRh6AYtI9kwdn8eVnL7++YxLS7\nLHe6ZCZDKJEHzUDgLG6TVe2fgcuHUgUOoHL0q7AW8OlmxesTBHbL/N/i90MlcmBNCM/DcxrrBD21\nOsOjY0SlMusbTRrNJhkpJjSEdYXTXVYWF36mz9eDVcUJcpGsm+LbiDz1d60Kn1ehKmjSzzvPvsS1\no9O8Gz7DeHyXKM7YoIdbTHFh8TCtjwZQ0132cpWHs08Z/mgV9104+9fwjvYwz8E5ONmGvhE4tus8\nhwfP8aM9c9zbsdcPQFQIQR8cknAS5Dc1+x75nCeiDzkqzjDBXWISNko9XC7t4+OBR/hwz9Os94z6\nl9RRcGMAestwyANnw8/e4+WRv+KX+QtOtt9j+MoyasXiSoJsT8BHI0eZqNzlzx/VfN59wi/X94Cm\nYK3Tx2J1mM5OSWWfZboH9nU8kbcH7+8c7wd2w2IwzIrrp9MpbQVqYfBDmy73y/kLeUrhx9LmfqlK\nMbn/8ldFlijVx1iRIebSHEtn73AxTmmOV5kjJUv9YEPYFIz35xIuA6tJBLg4QAmHNht+yVfCDzeM\nwWnPwF3raoxVpKUSQb6eDlrBetpFd1OUDKjLgERAy5ifrm30dFuwkt/pGH6vvcy9dsK/euIwJelQ\nKvTrtwSHRmuNkiBdQKBCqpUaQaiRQeh9DdttOok3mVepIsOSYnk1VJwqpdzBInQXsi4Cx58Kwe8A\nb8mUdaP9HiclJt8zrE0RxlAC/jv8+tnONFL4QX07TbFAXK5Q6x2kWq0SBrn1TOJDxgLlfTaDKCIo\nVwlLZSRQCmv86jd/lYU79/jeq99jI2mhnCQQhsBZBAG1sIRz1geXpR3WN1aYdRlXKiGdWsjc/G36\nd015xrK2mMyC0Thp0YklDAKUCgiCEKEEQgTsOXgQaTNOv/MmaaYRMkQGCm26pMkGQVkRqqoPSRH4\nVGGhkEGJQIT09g5Q7emj2z/E1bkLfHL9CveSBkZYBis1Du+aZrDex8byKq1Oi/SroQlb4Jf0LUIJ\nqENdNhhkmdpGC67DtRW4gV+5usDlDI7fhr5Zx0hnhYHKCkFfFz0ZwtP+SvaDkIvTh/jBga+jKpoX\nXnqLw4+ep343P+4ZRLNw5HNYXPcg0QTwcA+I2laWVTHCKQHE4ALBKv2s7YkZPNRh79twxD9Navh5\nSPwQuBlYCEdYcsMsXx9mbnknFw48xPjIbfrlKg7BqulnYX4HnasVZMXhMrDrCnMjgPPCW6mcBxba\neEVHyz/3/DyoUJxZoSD0IpoizquoQOCRHVWc98mfgF0VP9D5Ef7i2an+CT/78tSXCvgqKssylldW\neOPd93jrgw8Z7K3zq08dp88mtNoJ9XJMKXLEkV8MyQEvIB+yydy/RSCU9+0yLk/BElsNrKDIxcpv\nLwUK5X1chAdWjPDzd4XfICIliANBJBzlUNJXLfMv7zTZm2h+d36NPxjpJ800XROhRRkjNImRlKIA\nSUqaJKA1gfJpimAQUmCEIwgcQUD+R+LBPCGKuHlJYiyJNiQGmpmhqw3dzJBkGZl1pNqQGe9zYm3e\noFvjWQDWS31k3mD53kUglG+oUm0w1stLjdX8FwN1z0oQXpKjpCAUikgJZBgioohWN8EYGIkrlGt1\ngjDKGxuxafj8D2F9/Syg10/y9rp9e5YLF87/3I//YFTead5HjS2YXwI/0skX0CD/iqBElxJdZNti\nm7Bi83P7/F428P/IDsQmJSRDRQa9OeiugCrD7mgzBlk9mlLa3aE+skyl3KablNhYGKB7vYo+HcNH\nAk4FcGkHmCb0BLALxCHN7uErPCve5oXFtxn5t6voP4aNi2C7EI9B+QXN0f/4POuP9XKzvIt7D+1g\ndWbEe241oNmpscAw6/Ue7D4oH4Kjp+Bj41uPGQmDO4B90B4ps8gwjVavx7Da5IhDF5gDG4MN84NV\nGEi32TKbLPzKkm3H+8u7Sf1jlzGWtY02p8/dYvbuCvt3DdNXCSiHKqdrWZwzmwMxi8yldg4KcCWX\nAzpbAE35vwUmnDN/3RfBqOJ9EyC3/8Th7w/PMnDOMZyk/N8fXeA/e2w/i+UYaTzoJf2KjcwlK8WA\nZvP+cqby5nq4DW2ViE2mGFZsmd7L7aKMfDYq/JdPIbMenLMag8EYP2zJrKBjBB0ryITA4ND4tGKE\nB+yEBaMzVpOEJEtJdYYTljCIUIFCYgmtQMqATFo/5BHeMxKlNsFCD/TlA548gr5gCishCZ0icF4T\nKbAI4TwzTnkPMItFZwkycCAsUklK5RhtLSiBlikuTlBRwtUzV2muf+Xv9feXY0suUbB/F8BFMLsb\niKElyO7G3Dp/kFt7ZlDDXWSoyTYqcDf09NgM6o+2GGaRodYqwVWHPQt5GBcA5x3sm4Xei1CZ6zA6\nOE9/sMq9XvIuRnim1gkQL2j2P/0pv8Z3eUW/xonGpwzPNqADZhiujO7kYPkSfT3rvPHKKyxtTMCC\ngMaEZ4AdhPixFifGP+Kb/CW/vPBXDHy3hXsL9B2vsI+PZTz3yx8RPqJphHXmnxxl8dIu32HdEawt\njnChepBPasd58qVPGbpr+c0fwp11qCoYeQj4Ftw9PsC54BDXkr10ZqveZ7/t2BoqzeVHYHuAi+F+\nmUohOX2wWMCDfZOUjp3kZsfSv9gkijLGZvpZmKphrt7E2hSnEoxKsZSQWCIRooMQYxOU094T2GZI\n3c2HVNYb2KMQQAefht7spEhnqQroiWPWraZXBARCUg0jWpGiZXTu9rtJ2/vJ5Tb/4f8Qkhdw/E/1\nEscaLXrLMZXApxMbl+CUZ606Z3BOIaUiVDHOKigJAuXVFKU0pRJ3vGdiYmh1MgLnaIRQchZtLanN\nyJzlhoRnKxKVpch8bS3cIrT2So4QQUUo1rXxAXDO+55JoJ1lZFlGFJeo1KoIpbyXlzYIHEqERCpG\nCUUgA5QMECpARCFRSbFrT5nf+a3/kI31Fd764C0yk4EQ3o7I+rCXRBtW2o5SCMJ26XRafHe8n+Hh\nUfYMD1Muleg2GqSNlLTZJWs1CSIJUUgoavnx074fCQQqDNj10DG0Nlz75BSpUJSiAGMS2p0NRCCQ\noUKqCP8psEhnPSgSRgwOjdAzOMq7b3/A5fl7zGdNpICpnkEe3neA/lqVa7OzpNZg5VdnaFtVoDjb\n/yvRBFglIYJIQmC33CNDQOYZVlpKMgKkNJS+1gbpsG2JXghJztT4kXyBxnSda9FeDgxdYHBoGYvi\nGd5h5lt32L0B/8G7sNqC/h6oPwWuCk9ch8YqLDrYJeDIJLij0JqscIdJTocnOPm1D+mZN/zG67A0\nC+UqVI6B+3WYfWiUz4IjXEv20r1WhzcErYkBrowNbMUXb+DttS7hkbWi2ZnH41yLQCeFUHokzTT9\ndToO1gWdVpl5N8p8OMKhfVepHHM8vgDvZ74r2AfsHgNxGDZ2xNxjnNWNAT8nbwB6u3xxuyPtg8MI\nhi8p8LW9jDEsrKzxr7//Jr1xSJ9yTCOZzgxShigV+JP+TXdgh5U2b3BACS+FtMZ7QHlDYH/fxXbm\nzeMd1plNurrJ/V6k8Kb5UgTgnGc/RRGRkoQ4Bnvr/KvxlOt2g/8zCglbCaWSwoqEzFhaUUqpFFGJ\nNUoUlGfrASSBT6UUvhHLrEBnGmscigCpBEoFZJkhMRmJtjS6Xbpak2hNJ09wTI3GuFyw4KQP+M7T\nGp0pVqf8hSIxVuem+BajfbNnc9mndX6i5sEu6X1ohCAQglBKgihAlmPaWUqj3aJa6aFc96BXu9ul\n2+lSLnu/ll9kbZc3FpcLiaN1fxP0stZy9uwZFhbmf6HP48tZxYJpyf8a8H8ZZe6jzG4bTDepsU4v\nejAgGsvYWYGLbU8xLuP7FSZAD0s2ohotqmStaEvVJxXsVPAU8Iql57kVDk5/zlF1hiluUadJu1Rh\nducOzu44wvnpY6wMj3i6cibget2Pa0agPNVmb/kqxzjDxKfLuD+Hz38EH2r/lCdX4MU29E/A4QPn\nOdB3kXf7llidGIIeCfPQutbLtcm9nKkcZu9TN+i72uJJCbtvQqZhZAzqr4D+GpzueYhL7Gfj+qBv\nilYBV0zpC/cAte34FsaTxVe27XvR9HzFSvyHlrWOxZUGq+stBnvKTA7VGOmt0FNSHpjMBwpOeDmd\nXw4dWIeUW2dxLm9iHFtr2HbAC8TmeR850CVy8Gw7CdDvL46CHbh/o40AZtbb3IkiD+g4h8gDTIT0\n9DO/leX+ZAXaJvIBTUHd2hzduBwk835gDuGl6bIgIeRPVHjwygqbq7aEJ8TnrGK/loJG0bUBqScv\nYJXcBL38I0rvu6m9iTDOEYYKJwNkoDympS1CG6T1icBCKKyUPilY5o4toqBVWoSzYLfWeD9TFgRC\nojwdLD8mDiclUgYgFJkxOGMwaLrtNmsrS7TaLQ82CoEMwUnH+uIKVz+79I/ymfvyVbEHGPxi3eQ+\nWd6dSWhV4K706YPjCtNXxaj86sv4k/9n/d+ExA/c0OD0/QJ7h/eQQ4OwxV+J3Toxi4HdwFEYOXGb\nF3mTX0n+gic+O038/cw/fhPUBBx47haD39jATcBqXz9vn+ile77mm5F+fz9908s8zCc8l7zDwPda\nJP8P3PrYe8j0hXDoU+hpWI70XuDxAx9yOjrB0swE7p0QLsHGxV4+GXuE10vXqT3d4mD5GqWHNHvn\n8a4Ah2Dh+T7eHX+St3mOqwv74WzgGctrhvuTtrZ7jhZS0+37wfbLD071lwcRw6OkJUlL3abSGMeq\niAAAIABJREFUWae/7LidNXFpF5V1MLLtARklIEnJCH36ebtBEEm6UvqAKZ3l9h7aA/5SeJN7QFtL\n2/pzXStgVUDHOPpEgLR+mHKv2ULntik/fRmsg38ODC5vUC2V2DvQj4wtsfJDZxWFoCxJ0sVITSgj\nlAxx1qKEIlQhLiwTypAQiKQgDQyBFETSEWaCjtFkRhAYyIwHwZwrdgHvESaEQ0gIA4kMA6TzNiQy\nEzRSTds4UutA+sCsbpKQ6S7GpbjEgba4zO9NQVhCOAmZw3UTnGp7KX0o0SpAlSOmD87wjW9+i+s3\nL3L19k1SKek4gdbGez9a3091XUipPsTISD9Tk5OMjU0wODKC04bm0gIBEU6D7nZwqSCs1nA6w9ks\nHwRJhAwRCsrlKntPHMdZy/KdW8RRRigVVsbY1KDbHWRcgjhG4oE+IRxhFFAul4lLZe7ML7LS3KBe\nipgZnuSFA8fprVT58eenaTVbyDAkMRr7FfTFFhCvfVpaC1iBFdPPHGNsDPTQe7jN/l1w97pnfUXA\noxWo7gc7I7hTGqdFleeG3mZoaImAjAY93Ep2c2tuN6sfj3B67ilu7dnDQN8CPaUNhsQizaBG/I3v\nMz68QP0ZQ30FGAT9CASrMGHh109Bsw29/VB9Bty34dLOac5wlDlGqR5vc7R0gcqJhKF7+GblIMw+\nNsJbI8/yFi9w7e5+n7D7Hn4ZHsCv74LN17vpLV8s0z34bfIIUI78st0ClvtgyXnQ6h60b9S5OrOX\nz+IjHDh+mclfWeS4hYmLkGYw0AfVr0P36wE/Lj/GWR5ifW4IZoV/3LSD32i3g19fTjnj31VfeuCr\nKOdgrZuxBsx1G9xKZrnWtPyzx2c4NDnkp8e5x4oTLp9xO5ywXoLhBEa7TRmTEHlsej7911bnzYxD\n54ucVNKfyOebA3naYRyFxFFAoLr0lEP662X+sCcFo0i1wyUZ1kl0pumEGXEnY0Ol3tg3n8aU4pBS\nFFISEi1lbrxssVqDlQRBgE1SrO2SaUdmHF3rga/UOrqZJsm8+4DJgTov04TDnQ472gnfr1aRiDzp\ny/u0OOuw1viYZ1lwAQKkE7lvhdyU4niCjyOUgkhKglChShGJ1ayur4PFpzn29uGAhYUlBocmKJVq\nSCk3PVl+0V5fm+wua3wgwBcAL+cc3W6Xjz8+Rbv9oKaw/Dy1fRH1XnRbDIDEf8uVL3e7E1wr7WH5\nYJ3acx32XQP1EdxKYVjBzD7gJGwcrHEpmGGWKezdkm+MWkBNwmHgGah9bYUXx1/lZfkqz9j3mF6b\nJdqw6KrixvAYH8gneX3qZf76l77GYnfCbwANNmnWUT1liCV2MAuXYe0CfKC9QgX81Sfn4IlzMDy/\nznjfPXrKa4heixvP01fOBnzy0MPsHbjK6O4FXvpP3iTeDTsv43uUvdA9KTm97yhvcpJPNh5Bn43g\nGr7Rs4UfS5tNevNmFcewMJL+4v+/ql9kaWOZX22xvNGmWgoZ6SkxPVyntxJvylk924lNlpdPfNx+\nYpsnIEofRW+c8RP0gvmVI1/+FnaTTbwNGgM8I8sKv328PdjHf3k05mo1zinv26amgDP5nlRsZS5n\nq+XX841Mjgq47c/Us6VczjBDSJQwm8CXb9z87zfzfWTA/3jhKv/9ob2+Ocyfh0GQCYURApREhNIf\nI2fB5qEhmUZnXnqlgsBLJ6XzXjjWIDONyUweFpBbC+QpjcjisgfYRQ58OWOweUqlHz4JpPWASK4P\nQuElLkIEGOPAGJRTWCtI2h2W9SJBFBGXq5SqNZQJsB2YPXODpP2g+7P8LKXxn+AUv5YVn2YLNoGV\nUVgfgkvKn/BX8Th/ERI8AByHTqPM2nAfG+UqdgrkNBxY8FtAF5gExkeAXZANhqwwQJO6f8gEf987\nQB5Imalf4ine59jsGeI/zMi+A6cWoGFgKoaDV2FIrPH87/2I88EhPtt9nO6eKpwR/vmNwUjvPaa5\nxvjNZXgXZj+F7zX9wD7IYO0GfOMtqD/TZt/u60zFtyhPNmkP9sN7YD6IODtxnPKRNlkl5Okn3mff\n0Sv06A1SGTMXj/JZ6Siv80u8vvESjfcGvfTlOpC12QK+CgZw0awUtNLi8oM5CIlkyK6gjx1aw44p\nTL1E49xZXNey7ARN489IZddg2inEKTKNSIWCrEvU7WLiOi4sIdM2Mqfq+plFPhDYHFd46TVA4iwr\nWUZdCGRJYbspGZK1LPMC058D73DAWldz8d4yoZWo/hqVSBCXQlRm0ZlG4NlHoQqJwwpKRV56KHyI\nVpY5jPTn9so6KmFEJAPCLEOlCd0sQ2QGKQWh86b21uaMZiEQyp/HS+ePhMiHCpEKKCnFWqJpaYNx\nPuQqyVJ02kZ315FGeJArcwQqgiDyFgJaY9ptlHMoa8AYsjjFKEVQCjhwaD8H9h/g0uwdGqkmsRZt\nPatspLfOY4cP8uiB/ewYGaBaCQlDSRyXcKkmyRpYkWBVgEOhky6B9MMSlXQJdYKSvpdJCzRSCeL+\nOjseOkyytkqycI24pwJx2cvrjcGmGaExBM6B0RiZISRU4oiZ6Wl27tiBW59n5+QITx4+wczAJOcu\nXSLpJJRlSCdJvRXNA1/FGpXL65zzi/ltuLM4yfmdh7g4spfRl5Yo39O89CPozoGMoHIEgm/DwrN1\nznGY/VzmN/gTxrlLTMoq/VyID/L+rqd4e+R5br19gMXvTbLYM47sGqovraN3BbR6qzz23Cl2PnaL\nqmnRVDVulafYmd5mZsctej6Fng1gBLJH4czeQ/wg+Drv66eQypDEJWaPfMDMvivUdQMtAuZKo5wO\nj/EmL/Lmwi/RervPm9NfA1a11yOK7YfAQNYAoWCo7oczh4FpYJQtJtgaXtl+VcAVf5z4XHHh6CF+\ntOskI8OLfP2fv8rwrgajF/0hZQI6T4Sc3v8Qr/MSnzQfo3m+x7OoFwDT4f6U36JHe7D2iwcG+Npe\nXeO4utTi6tIl/t2pa3z74T38py8eZXygh3K5hNw0M/EgmHV2U+lRyCnAgzxOkssAC48fhzEGlyeP\nCCu8Nt1qpBRY55BSEoUhcSAxgaa/ouitRiRt7yFgrKPb1ZhAEBuwWpJKP4cxUqCUxKoYjacYe4N+\nwBmMTr1uWKR5bLzFaJ9q2UoSOtbipPLJWmylc2mRp0LqjN+/OUfkHG8OwyLCpx06ixHegNMbVjqk\nFbncJE852+zCfBMXKEWkJHEQUApCgijESlheXaPZbDIyPE7/4BDVeg/tNGX56g2Ghqbo7xskjARb\nJs1svh9iS5T6M9ffkDma+03ttdabv19cmOfT06d/qkTJr+qL5bZ9L9hJLdAJzMVwFZYu7eDjI4/w\nbnyO0V/7PrFM2b8f9t/D+9U/DOm3Aj6ZPsyHPM7F1YNwUXg0agM4IOAhkM9rnpx8j2/zPX6t82eM\n/WDDRykuAv3Q/+gGO35pjspgh9Z4hTee/AadGz2+mfCDzS1mge/cfSrdF15NBmBAaHKWjEWEeE+h\n68DH0Jgc4fWXX0aWLcs7Bjjxu58y0Vog0JZ7fQOc5Qhv8xw/TF7hzpnd8GPpE2maCVvpjIVHi/3C\nMygAruJ7sWF9Vf9YpY1jvZWy3kq5OrfB9HAPM2O9lOKQQCmE8EMAIXM2qcOzm4oqthGRM5dwZHlS\npAeK7DbZofDS8U121Nb9yNxHS0jJjXo19w9zeUKjvw+D8A2LzSWTQuR8M5EDPy5PIlZUrEUL4Z0d\n3JYc0uL3OymsB44KQK1YM/Em9kZI/udLF3mk0eI3by/w/06O+QGPEFgV4gj8rCcQnsWFxWYGm2Xo\nNMMmGc4YhBAESkEgcwNoC9Yi8funFR70E0oig9B7ZgqHCgKCwJuzCue/rASrc0Y2eSiBsFjpGczC\nCp9I7ATCSrTOMMX7ZQWZ0XSTjCjSBDJGRBJESHs9YeX28j/yJ+3LWF/0CCnWsA6wDmYOOn3QqeLP\n9LdJwcI6LEIy28vNPbs4VzrE/oev0/9KgycbMHodOhZ29UL/82BPwsWJXVxmhnuzk36PWMUDVv1Q\nGWsyFc6yL71K7+ku9k34wSycyh+xokGehpl3Ye/Ld5meus7wwAILIzs9KzgEYqiKJj00kCsWswB3\nm35+YvFQ1E0Heg6CJajoNpVShyjMaMf4JuZDyKoV3jMvs3pogHPhYabr16nTICVkjjEu6QN8tnSC\n9bdH4A3hga9Fg+9aVvConjc6/8m+XQ/uIKTkQobXJemZKyy5LvHecdKhQTrNjJZQBGEvtjqAEd6O\nQ2QZmU0JRQ1hDCJL0UIRRmWyNNmUiMugRBCVyJIuzhgP4ssAqQKc1WQG1pOEcimmaRJCDB0nWM4S\nsk364c+2V3tPXsFip8tnc/NkNmOip0LdGKLAqyiEtUgcpUiDdURRhrM5NOcEzqbgNNZqnPEGjsoJ\nYqmQUUxJBXSDAO1yixPLZsI5wifDy5z6a6xFGM/eKgeSeqjojWLW04yuzqiUAmrliFBoTLeJ0QKb\nOqSVPmTbxAhjMGlKivN7QSdBhm2II2QYEAZQi0KmJnaTOklLQ+YgEILBnhpfe/ZJnjx6lL4oJMaC\nznDdNkm7Q6ZiAlkiUhFRUMJFkd/3EAhjSJMuQatJkEbIKMSkGVb7YxNHA1R7+6n31Dn/0U2SkT6G\npmt56nMFKRRW25wlaEE4ZKgohTF7pnfztZMvcKG9wdDgAN35Fc7dXeXawhxxFBPrAHr6uNRY+8V+\n2P+9rO39QNN/3e2Dq5Cd7uHU+GPsCm/S89Q6x2sXiR7LKM2Ci8E8JJl/rsYPy68gneW30u9w6MJN\nLxnsAmPw2IlP2D1wg1q5yfeeDLgzNw1/LLGxpJEN8frLX2N+5zifhA8zWb9DiS5tKtx2OzhS+ZxH\nHv+Y3Y9fp0qbNXq5wgwfuCd4S7/I5bMPkbSrLJ8Y5vPoKLsr1+lhg4yQOUa5nO7n4twRWm/1wRv4\ndXtFg7mRL8mFgiM3jhc7YbzsbVoeBfGYJjrQpX9qgUrcwtiAldUBujf6yM6E8IGEc8BnkOzo463+\nk4iaY7l3gEe//TE7vnmb0GUsBwOc5xDv8TSvZa9w5ewM7kPlfcOWUvzGWJhGFhYpD14f8UACX9ur\nk2r++INLvHrmJk/MTPDMwSmOT48xPdJHvRRtXs+Ryz9yzb8UXu6h5Ja0pZg0B0p5WaSx+XRf4oTv\nsq01CKEolcrEUZckMZTigJ5aRCttkhpwQnmZjHVkqcZqh5QKpwRWgrIBtLubAF0BOAlhEc7gjCUz\nhsz6JsU6QZYZMq09ZVl5s3vr8JueNWhnybRGp5rf7q8yqh23s7y5Fp4VRqH7d0W6mW8aHL5RKoyH\nJY5AeplyFCjiIEQFATYQrLUarDU2qJSrDI+M0jcwRLmnh4X1Jteu32HXrr3s2r2DqFT2x1zA9riz\nbRjYT11fBLw2Pb2swxifemmMve86f/RHf8jGxvo/4JP1IJdja+pc+H2tg1mFuVG4IEg/jjg19hgD\nwyvYMckTv/URI08vEzUSdDlkY7SHM+MH+Uu+ybvN52m9N+jjS27gPw4TwD4Y33edJ/iQ5xvvMPKn\nG5g/gPnT0GhApQJjP4bh9Q1+6bd/xI3abs5NP8SN/Yd9DPJtoAVZO2SFfhYY5cDO2/TvhhO3vdl+\nih/C7OsFpmFttMwSg2x0e7Hr0r+0VeBjcHXJLbWPP3+kypWxvRwQlxiuLRBgWGKIq+zh7OoJ7ny+\nA/NqCT4ErhtIV/Eu/H9bU5ObRG2CYQ/WdOafQlkHVxc2uLvWZrSnzGhfjcGeMvVSANhtaYnivgXK\nOd9MODxTSZGzsKz1floFhbgAw+4rkcsSyYGsQvzoNsllLucl+BbIS1UM25hPFE/Hs7xKxvLfXptl\nPQj4/ekd+c89Y80zrmAb+Tl/DSJnOHgJoBGCf3lwhv9ofpF/MzkOUmKlZ0C4PFUY63LTeXD5QEUn\nKTZNIfMyRqkCVBDkBtIgpEBa7wcjjPFMOuc8wysMcuavIwhlEeDowTybD6Ok9ygTOWPBHzcPgAkl\nccbbEVidJx3n74nfx/zflFAgtcB2HCSG9bvLX7G9fq4q9oDtl4vwkwYelSrnX5Ito/ZxWK17ed85\nOH/sKO/2P83Uvlme+t1T1CYTDpzDzwZ2Qfqc5NbTY7zJi3zSfRh9ruqn24V8sARBqKnSompbsATd\nebjJ1iraAeY7MDMHLEJ9qkEtaELFeadgDWSQ5M6U1ASiDr0xRG1/e4W3Agv6gTokMiZ1EZkONm/P\nqfyQrMGFE8e5dXCa3v51ojDFOkm7XWHtdj/mdMl7R34EXMnAFCm+BeOrYE58NfzYXiUVUQnKaJeS\ntNdYX7TsGxyiOxBhlhYJRY1OtQ/tEkQYopCEgUFiSESMVYJK2iZTPvfNGoMVinK9l97ePubvzYKR\nfn2TQbG4oUVAV4V0w4h106FHKTaylEyILfAFcD8DKOkZxIJMwkKSYOeW6HZ7GKuXqJdCIikIcpl7\nFkiyMCVSCrUtLV0KiwoVcTlGKkOaGqy2hAjCIKIsBGWjybQhtYZUW3ShfHBsDk+klGiEV5VIf1lJ\nRT0K6IkjjIRqrcRIbw2sodNpo4iQubFVp9XBZhZhHNKCCv3zDCLv6UguYw9CRdJNcFZCUMJpSyQM\n/eWYpw7N8MjMXnqUgm6HTppgdIJ0GqlCZKgpVyQZAu28+X4YlkFFBE4StDtoq9GBQoYRQbkMWQZp\nQqQCglIvQSXm7uoiTdukPrGDOCzjdIa0MQqJNZ7xpXLfYxUF9A0N8fwLz1NdWmD55iwrtLi+eJeN\nboeqitg9NsWC7tDOkr/3Pf9yV+EFXPidbAALsFaD8wG8B9eGDvH9R36ZbqnErSPvMLPvKvVGGxsI\n7vaM8L56ig5lfrv5HWZ+cBP3p9A9C2kCPRPQ/1Kbk7/xPp39Ze5UJ1k9NkT7bK9nlV0Bs17lzJHH\nuLZnhlq9SagyMh2ykfTw6cjDfFh/nAnuUaJLkxqzTHF59RD3Lk6SvVGGRbhzaS8LhyeoDTWIowRr\nJe1uheaVXvhc+XX7NHAz3bZuF6xnAfQBe6G/7NNMXoLS1xvs3X2eh8un2ctVethAy4D5wVHODjzE\n2d3HuDO6G1dW8BnwBiyLSV575hvc2DHNe+EzjKk5AjQb9HDdTnNx7TC3zu2G10LfZ1wF9Dq+zyiA\nr8ID8sHbQx544KuotXbCDz69zjsXbzPRX+OhqRF+5bEZnjkwRRTks3MhUIHym5LJY91dfoK3qTxx\nKCWRCIyxWGex1uT6bukn9NaiZEAUREi6KBlSjiLqcUAnzdC5kabNN01nHalJscblUscAnWlk7n/i\n8JH31mQoZbFGo63DKeVZACr0jZGMsVaiLRhr0DojM3mMfAH6aMs157gh1eacyjdu4O0zClmOQDhL\ngNw0vA+UZ4CFSlIKAqJAeV8vJVFhQEMnrGysI4RkZHSM0fEJeoeGCMtlNu7OM3v7Nnfv3qbdPkS1\nFiOL7qagfOXyHpe/F0UJIf5WZtZ2MOs+Q/sC9NIWrS02lys5B7du3uS11374j/RJe1Bqu+FukTi1\nDKu9cLYMw5KFnin+6sVvsTwwyNnew+zrvUqNBl3K3GaSMxzjg9bT3PrxPnhLeOBrwUBZwqCAHY4d\nwW0OcJHJG/eQr8G11+HVrseiKg14pQUHh2Ds2BKHHj/P7soNbuw47FO/rgKL0J6rcGP/NOfiwxx+\n+BKDX/fMgn2XoJXA8DD0nQRehMs9+7jMftbWB71PzRqwruGcN9+2rZC521MsHxnh1MTTxD0tpDJ0\nN2ok9yokF8rwsfAb5KdAY4Mto6/Cu8Vs+yrqwduc/ilWJ9XcWGpwd61FvRQxOVBl31idclR4T7Ft\nLSpcPbbkhcXpj8wBrCLqvrjJprR7kyggNtelgglWiPwKryvP/PISRf/4NpdC2vvsS52/O2bjmPkw\nRLsC9BL3warC5cDXNi8w5x3zcUJihcQKwf+1Ywdu03srB76KdVn4AYi0DqMdJsnQaYrLNMo6n47l\nIyn9QCWQHghD4WSG0SaXlHqGVxjHBErirAGncTrL0zZ9amPxJaXMj+0m3OePKw4r/IBHGxBBRDmK\nkSrE78v+3QpUQOwUkbZY22VtcQ7zVRrXz1kF+FU0PIX5esQWXLQ9nbAExJCNwPUKnIbl3aO8fvJl\nomrKxoEeHpo8z2hrntBmrJX6uFLfwzvhs/yV+QYXrz6E/bH0LIDl/K41WCPpUiITIdQgrnnbriKj\nUwD1AKgDFUiJyAghFR6wavv7W2gOc7u2g7V9ZUZPZBz4DNbPwg3r25mnBoBHoX0w4k5pgnk7Rmep\n5vGqloN5C+8rz0a+KGnv6qM91ue9yAppy228ROYycM9AtoA3GltiixFcHMuv9oSiBIKxsXHGj89Q\n6akiqppF7pDINo12P+n6BpkDV64y0L+PbrdLsraMcX7A5KTwASa5f4fEgtUgHEmnzUqaQpYCDhGE\nqCDCpKkHtoIyJopZTTqkJkNFguUs9S5shRLkZx1Wifxvx9sXspJkyJUNOmnKWG+VioLAaiIcSaBI\ngpRACKIwpBKXiKOcRRVGSKmQyiBURtrNwOaDASGQSqKkRmpBIB3OhWQ6w1g/iPCDG3/OH4gAJyBQ\nAUopnHOoXNJeCRTKajYaDaqVPqrlGBXGhDJCGIewkCYJ3UbTs3WlIIgUURyhooA4jomCMqnWdFot\nlAyJpKIaCo5NT/LozB76whClU5zJMCZD5x6RCihFAUEUYyxkaYLtanrqilhFZFmKNQmu7VU4KgqQ\noSKIYsJKDYmjMiQxUpNFHuTbWFtBpAZb6lKxDhlFefth/H4XhAgZEMiIqeldrB89QbLa4tbGCmtJ\ni4lqD8d37CGKYy5dOeuN/h/o2j60LYYfi5D1wdVh6BPocshZ/QiLjwzzee0Iu0s36CutkRJxjWli\nUn7P/hv2nplF/TFc+y6cakPTwYFL8Ng89Pa0eHLPh3wSPszp6hO0v9Hr19cUWAJ3S9E8NUAzHPA/\nz4lPl2d6uLVnL+FAhgwtpqPIlkPSy2UPNn2KH6ZcEWRTFVZHKlvr9jpekngTr/5YcKCLNbqE3+s2\n2Iy0L/XCIeBJKH9rncdn3uPr4gec5C0OLV0jXM+wgWRlR5VT6lFeG3yZH7z4DW7YQ/5uPgE6kvW7\nw3x6tI8LO48R9qSIwGBaEclcTHophs+k7zPOAI11/OayfR/Z7s38YNVXwNcXqtXNuHxvlcv3Vvmz\nH1/ixO5R/utfeYIjU8NU4pBAep+uTRZRHiXvJJi8syhSuLwPmERbL+0w2qGk8nIM47z0wno5ZFkF\n9JRLWGNwmfdTkRSzPS/d8MliflpttUbKACGD3GtAUAb+99ll/pupAZbCfDrvhG8iDHlCiyU1OVBm\nTX5S7xlb4HJfGB+B6if8hceBQ7rC+ywHuhCEwhvRK+WN7JUShEoQBoowCLwkSCm0sKy1GmTWMjo+\nztTUTgaGR6n09JIgWF9b597dO9y9e5tut4hXzU+I8wZw+4nedqCr8Fv74s8LsOsngV9G221ML/JG\nUWGt4bXXXyVJHvQJzS+itqd7rQElsHW4OgHlAGcVi6tT/OVTE3y65wRjwRxl0Ua7gEU7wq3Fnej3\n694k8kPgovOGmLkvjOhJ6ZOrjOhFqnNduALnuh5GIn/Uz5qw6xrEty0jjy/Qz6rvUqr4huYW2HMR\nV4/u573Rp9k5dYvnfucDakNdJj7Pn/44mGcF15+e4s3oJJ+kJ1i6MuI3uTkHegO0g1P9sCLhhiD7\nuEQ2VqLRO+D7uwZ+47yF1+tftdDdwFPYFrgf+Co8vL6qf6qVastys8tys8vluTUOT/UzNVinHPmU\nYG8o73IS2N8UaLvNjshLJK0ll43na5hzFBRja/OhCdsAL39Fz25C+vReHzWZTyusZxoX62F+k0w4\n/pedEzlYtikmx2wDi4DiXhHSM8n81iZBSaxQOCl9UlXuu+WBr5yRa/09KTyDK0szdJL5qb/1T0YF\nCqEk1pOGvel8EGBkQGq9Cb1SPlhGRSFhuUwcBghnQGdknTZZp4VNDTY/zkUj59M2PWNC5ObSPnzG\nB9SgJJVaib6BQUqVKoLAp7c5gXSWWAhiGbKwskKjsfqL//A8UFUwvbbA4C0WcMBWvL3AL+yr4Bbg\n3k74REKf5Fp4iD95osyt2i4O1i8wXr9HSMYyg1x303yqj/P5leOY1yp+n7jkfApWV/gkrNUK82aU\n2XCSEwfPEj7meOEKSA3rDvZIOLgDxAlYnvFDl8X1Yb9lrfmnxC1YvTXOZ4eO8WHpcb717b+m1DSc\nHIaTs3jQ7GFwvw63D01wSj7Mxe4M9mrkN6QNwC3BmoRTA3AjH97U2PJ0aeKf0KKDboq/4Vz+tYrf\nsLZLVL6qoqSU7JzZyfiz4yw3Fli+fYXl1l2WozrdhZ102jGmKukdGuXYoQNcOHeGeyuLHuDyf/wI\nqTAixJlOLiH359wm6eCwhBh0UMbFPVibIZ1nhIlSFScV3aRFXQU0raNhDWa7fPfneL9kHqBi8VYk\nS5mmtd6ioQ3/uRRUhOOH1YDIaErOUQlCrDYIkeGEJJI+jVEKQRgqjM488BMEWOfItPZrpBQ+gV15\nNlsYKM+EFYJUZ6RagwVjnV9WpdgEzoQxXjKoQ2yaknUzjLZAgJMhKi5TDkMCBGhDlmWk3QQZSAKj\n0DohTANs1kWnXRbWmtz8/9l7sydJr/O883fO+ZbcK2uv6up9ARpbA2iCAEiQIE1KFCWFZcvyjC/s\nCDs84ZiYmD9gYmLux+GJmJsJT8zdjCN8Yc+F5ZEla6FEQiQoEQBJLN2Nbiy9V1dV177k9i1nmYvz\nfZnZTYi7CFKoNyKjMqsyv/wql/Oe93mf53lXV0iTPhUleOToAi88+SgL7TYKgbXer9giIaogkMSV\nKvVGiyCsoLMUYx1pkqJkn0oYg3NkBWAWVSKcVt6ORjqiakQ+6EDaI9/bIo4DsCm9nU1GP5/FAAAg\nAElEQVRUkiKrmW80KRC1OlGzgTIRzuZYk+OkIqjUmD99jsuvf5+D3X3OTc/zubOPc6w1zcb+Lr08\n8ZOCP9FR5gGBX8cUXrq9BntVeKsBuUDvRKzePMPqY6eIjnWptvqYbkDYtfzjs/+B4+Yu4RXL4Lvw\nrZ7fPQPcyaF1E558E06sbXD0+DJnz17lzNlr1OiRUmGDOW6tn2Hw1gTuryX8qRj1Xy5J0oUaaRsv\nbU/wDYpV/JPctJDYsXVbeOALRj7xIb6h3hSw3YD9BuSzxUHWiju0YS6AR0C8kHH+xBV+U/wJ/6j3\n//HI63fhr8AtA1WYfOyAI1/+Gq0zB+hqwB98vsX2rSXfsP8WsAzmckj/SOjzjyxe2rJXctPBPQe9\nss5Yxye0lFFO/mR6zx0CXz8krHO8ees+//Lf/iHPnJznpfNHuXh6kbMLbSarUQG4FBINJzCmKB8K\ncEVbD6x4M/gMq7UHlqxA55ZskGIzg9CGWEAtUGRhiLU52nk2gHBePilcIXQRpTGR735bYwt3IskT\nScKkNvz2xj7/50SMwcscrS0YA1Z4Xz3ri4CRzEYWvgBuOL3MFpiTl7iUXXXhZYzFlMYIQSREMU5Z\noZRASYEszO2FkgjlGXKdfg9jLUcWj3D8+EnmFhZptNuEtTo7uzvcX19jkPTY29+h1+/inEAIRblh\n8MAU/LANxMNTG8uftkg6Q1N74wpvr5GZffnv319b49I7b/98PkCf6LCMtm2lyfEOsAI2gPfnIAlg\nE9x1xerJM6zOn4F6UbBs4zsoH+C17deBbuGTYNvFx8Dbu1oh/UoWjvgDxbeEGK9KQHo5mEWOVJga\nnw8uwfbpBf7yS18kqmfsn5ngufl3aG50kNqSNmNuLy7xKp/na/w61+4+Da8H8B6wafFVzTbYLtyc\ngc0qvCu9SXO1OJGUURHVSbzsk7XisscI9PrkTeL6VY9BZnjz5hY37h+wOFlnfqLGVKNKFBb5gR9c\ntUZcKs/oogBnxiEy5+wY3u8KKaUsOK/Dr8BQYu9K/aNPGg8ce/S8D56Jw/kcwehgopBYjksXbcH1\ndbJgNkqJk8XwlnIoTMlvE6CK9GK0JktSTKqL4ZISlIIgwEmJEX5SlpV+SItB4CoRcVyhWq0SBMrn\nnQIoC3AEOCq1KoOOIjlwmNSzqIUSJUV52DNxeDaccRaNN8sP4phqo0ZzqsXE5BRBGGON96wMjSE2\nKdIZ3rh0nSzPOIyfNcqiRzJa30oWWPkBCvEVyB5wHwZVeG/Gf1YSxeraGbafnePNmedpVjpIpRmk\ndfa6bfben4XvCvguXk640QcGsD8Fa4L8Ro0bF87xZu1TPPLIdR773ZsckY7ffQeSLrSWgC9A7zcq\nfEe9yCV3gd3VObgt/EStbeBDweByje8d+TQL7TWiczkX/8Ulpj6zj9pw2Dr0z8TcO3eE/1r7Kq+6\nz7N87YxnKd8B+qVPVxeYhO0p2K76KaWq+LDmpSZyH58rd4vXYx9f0Tw8jeswypBKEjdC7uxfZ33r\nNjs7G1S7gpqRrK7tkochImohA8Xebpcs057RZB3WaITVGPyk9UAJ8uE0RodCI3DooAK1KZwMcN19\nlDO4uIqs1BBZBtaSS+hbPfQILVoZP/k/5H4QMtNS0XGOvDPgU85Rj0P+aLKBsTk6zxFCIWSIsiBy\nXfRf3FAR4a87pARr/J6+nHVSglnG+mFUUkmM8wypWIUIIxDGDgeZaGNwpfoiUKgwQKkAJQMw5XNJ\nAuUb4BI/6dI4bxMjlALhB4vkuUEbje71+fDOPW7du0WoLKdPHOUrLz3HY8ePUQvrWGvJ8hwjM6Tz\nyhZnBSpuElVb3otrkKOkoloNwDoGgz5hAOgEjAabI12MNZosS7Adg+0ckO/usL58m/7mKi4SdFCI\nLPd5LJQYBRUcrhJhTQ46B5mipEJGDdpHF1HtJvPTc7xw9hynWtNELqBS1exk6eFER2Bk2VFO/N3H\n738F7JyAt5qwJT2wc1SSzbbIai1IYPqf3ycmpUYfutD1qvUHomvw2+gEWnT4Kn/KGa7TLFQkdznO\npfkLfOfzL/F++wkMsc8ZEZ4CHOGX2YPisoknSd0DkgGwCr0W9KahFsBxvCH9CTzgVStOZK/4t+4A\nNxqweQqyCrABYew18WehfXqPi/GbfJFXOPedu/D/wMarsL8LQQhHjkN1M+PT/+wt7p08yrXK47zx\n2BzmRAjvA286zwxui5FNpi7Ofd/CfjJ2MpuM2F59RsqST2YcAl8/RpQA2Lv3NmnXr/HY0jSfP3+M\n3/nUWeLAT60C/Obf+m69dCCN982yRmO1Jk8z8lRjcovJHUmSkQ4G5GmOyf2EkzgQaKtIjQe9TMFG\ncqUxL17OUi4hAj9RxWB5NQz4HydqvB1J8kyjC+KAc74I8qPkfXHgCjBIyqLIKTej0lHaIg8LK+kL\nK4XXzgdCEApBjPLTG5UkVBJZgF5KieL3CqkUSZKSZimTk5MsHT/B/MIirclp4lodIwXbOztsbm6Q\nZQmdgw793sAzvEqwq5CxwEgS9OPED5jZD4EvizHuAdCrvP+HH77P6urKT/9hOYyxGJe5SPxycx9w\nkOZwYx42Kz7RzeGZWJVCXlIwoVkBdnLIt/GFwzSkbeiC2w3Zs5OsBQt0Fuq0z/d4+k3Y2PfPMg08\nOQHROdDHFWssss20zwUl2/cAr8lvSe6Ej/BfPt3g7vRxvtu4wnxjg5CcA1pc5wxvZ89y48Z5Bn/R\ngtfxgFzSxSeUdWAf3B4ctOGgBWsxqNC/BjYHk4HrMipqdhgVNWUn/2GJ42H8KoRzsNfLOOhn3N44\noB5HPHJ0iqPTbQJVMlKFZ82KMVkhpdzQT4f0PokjeEq4sWXQMVynRwMkLVIUkxOFn8DrjfDxHXlE\nUayUC2j5vOX6OLo9PK4oZZNFg0V48KgEqJxf5AtGMIWPlisYaKAKsaHVmnyQkCUpWmv/GiiJkBJT\n5AaHwyowSqGlwqiAqFKhMT1Na2ICJSV5nmKyHGMNwhqUcESRN7gPw4D+/h5Zr4PJDbJkfxWvbSlh\nNM4zFrQD6QSZsfSSFJkMiItMqqxAaAiMY21znVvLy38Ln5RPcjzsUeg/LaM8UUpgNoAQOhLenvVr\n9B1I326yutSESQeB83/fwDNvr1NIHPv4dreB3gTckXAF7j5xhlef+TwzrU3EVxyPn7lJdA2iAbhZ\n2L9Q543Fi/wZv8Fb3efoXWmNJJNbwFVwi4p7M6f545d/m27Y5MOTZ3hk6TqtvEOmQlajRd4Wz/Bt\n9znevv5p3CuRzy3LFAfZK35u41v0VbCxpzwCI/+bHj4ndPCUhHKSYzmF6xD0ejgCoWArY+vmGkFF\nciSe5qhrsnYrZ7C3j44tohHQr9a4c+cW/d0dnE5xVqNU6JUWxVRY3yiVw2NLHFbFUJ+BsAL9fZRO\nESrEhZFfR7MU43IOrPNN6+H67H4myGP4TjvngRsECY5/DrRwqE6P2WrgySdphhQBcVTBCUee5zjn\nCIKg8LU1WKf9RHb89F9jLDjvyWutN8kXzqtaclf4fZVTeYXfS2tjMQVbWCpJFAZEcYVKfYJafYJK\ntU6tUiWOKwRSeq+08kVQhTWL8A156RwKrxYZ5Cl3VpbZ2trg+NwUX7j4NE+eOEm7NYkMqgghyPKM\nNMt9XZVnSKGo15pe5mgyZKBAC6Iw9l7HeUqaZEiTIpzFmACc9g0V5xgkmswk6E7C7Rs3GXT6RO0G\nic4IdUbFalSeQGcfIRVhFCFUgNEOWTVIGVKvBzTnp7j48ueYCCPqUpEHFUIR0u3ts9Y99Ar2UYJe\nZTOpZPoWLODOIrw/BXdiD+a08STgz4NOAzo02RMTMLdCexbO3PcqPou/63wMzEEyLVhihS9vfpPJ\nDw8I9jWmrhgcr3Lp5NvM1DfhWcvV7nO+JDkHnLaEkz2EcGSdCtyLPLh0CQ9ovV+BpA0E0JbwJHAR\neAZ4TNM4ukc1HuAQ9DpNBtdbcEV4WeJbIXxwBPLIA1+TwBHH5Owm5/iQCwfvIV6B+9+EP1rxVYEC\nnt+Hz9dh8qkO54++x6nwJpePPEN3dsqf09oA+j3YjEfdfWeKyY19Ro2TPXwSLac5ZoysaD6ZcQh8\n/QSR5ob1vR7rez3+8t27/G9/8Br/w1ee4SsXTjJRDR9IcB6QAlVMVbS5weSGLMnIBjkm91Rja3XB\nBjNEMkDGEU5oXK69j5hzmGLairTeU8xaN9wr2SJRG+fZXe8Eirww7i1BHVF0rkqvGOeKTg9lwVNM\nGhMFlCYpjJTLtC28xFM4QuGnrIROEghJGJRML3/MQHpz/0Ap39/NUnKrabbbLBw/yczCIo3JGaJa\nAxlV6CYJq6v32N3dIs9z9vYP6PUGaG0Jw8gn3NKBpmQj/IgYB7weNrU3xht4jnvqlK+TMYYrVy6z\nv384geXnEw93+rvF7xyQgTmA3Vl/uSo86BXh1+N+2fLcwyNgG3ikqgYdBzsCVgR39XHeC8+zcup1\nWr9+g/lt+G++DTub0J6A6kvgfgPuPTvDNR7jbv+Elxtu4WWTeh3em/deQwPF+tox/uzpI7x2/kWm\noh0UhoGrsrExT3655Q2Hvwu85WA3xyNzGwyLNQ7w+pUYTA1MOc3F4pNOWdh0GLG8ytHCh74tv+ph\nnWeADbIB2++tMNva47Gjc0y16kRBMALApPeVErYwxi8kj67swPspIgAjzy8KLKoAcwTee8tJB9Kv\n1FZ6aWVpeuUK8MfhGwkOhqbx5TfRL/li7KNXULiE/6PFSxKdEFipPBMMzwjzh/VzJQEC4Y3nrTFk\nSUoySMiyDFtMcXTSyzKt9Kyv8rxlEBLEFcJKhdrEBNWpKeKJFipQqCzDaQ06J+sckKUJUiqqjQa1\nSoVapUJnN6Czu41OE1RhMYCTBdurAL6cN7/PnaPTT+npTaL9DnG1QhiGhAREqSLUmreuvIv5xMtT\n/rbCjf20+G1+WQyV+d072ZEkcHUBlgO4JnzRUC+oKim+b7DuvDzQHuBRpg0813cf7kzDOwJ9JOY7\nrS/CSdisz/LMhXc4dmGZCgk7TPIBj/I6L/At/TI3v/u4l9dfBTZzsAP4oAl1iQkibg2eYO3Ti1ya\nucCxYJlG0CEjYtPNcyM9w73LJ+FbIfw1cNnBQQ/fiikpv6K4XvKTQx4cBpN9xOWQ6fXDIhYVTobn\neGTxBPmUoLO9h7ufspreY8PtklYD4rqin3UxyYDApkRYcmfQWR+nC3sNZ8mzrJgO60PLCFFpo8IY\nk3RwaQcnAlxYQ4YRZAk6G/j76gd9OX/+2dwfcRVYTTXxtqHXrLLYqCADST/NCGWAjATaapRSBGXe\n8ZKRwsusYPvacn8mPVNXyqLp7PNLoAI0DmssudFY4zBWoK1nI8uCgRtX60zPzDM9PUerOUmj1iRQ\nIcL6vXcgvc+vCAK0tWjr5xAjBVI5Uu1ofP97NP/oDwmU4IVnnuLJUydpBgE6MyhyVBAhVIQMBEqF\nRNUGUVBhotHA2pxeVxNXaqT9hCxPwWqMznFGg83AGpLcMUj7VOKYuFJFRlX6xrB70KFnJBPzp2k1\nBLVajVqzharEWClJrUGkKW5/H5FkBI0GtalZwgYIk6KU4ORjj9Dd3iHv9iCuoTPD3XsfsHY40XEs\nSguPcSZ1UQ/QBTMJvSnoNWGlDksKdgX9nRorZokb6jRPXbxG/LLjH9yH2W1vn3hGwqlnwT0Pfznx\nMl+8+y0q/6/D/jW4+6Dalvhizmf//psEzxv24zbrLy2wvzjNsUducDa8wQxbSCxdGty6eJLrq0/Q\nP9X0IJxU8M6sZ1Y9BbwM4suG2efu8WTzEqe4zQR7aEI2Z2f54PQjXH3iGQZLDagKIPB5LHDeZqXh\naNYOmGGL6moON+Hujq8myjXj+xYu3ICJWzCtd5gI94krKd1SHo8GboE1XkUzjLKmKNld5fUyt5Ry\nl09uHAJfP0Ok2vB//Mmb/P4bH/DC2UWeOjbN2YUJFidqo+2b8BNQNKWnSjEOV0IQBtRC75si0xxk\niBUKFWpcb4C1eUHt8miVxXt/WeuKUex+SpWxruCJeOmJB7okgSjLI29jUEJIJejlT9INL0NIyYEU\ndsg+EKLwaxGCQPriJrSSQHmvFiVLyWcxgUt6mU6aa5xUtKZnmD2yRHtunsbEFHGtiYqqWCfp7HW4\nv7LGYJAihCJLcwaDtGAo+GTtnB0yHH6YkT08CHqVtx+c5OhH3lv7g4yvnZ1tvv/9N4bSyMP4ecR4\nl8eN3S5HGu8C98HVYFCBwbg8sjSF7BQXia90MrhXgfdg/dIxvvP8Z1iq3KP25ZSl6VXiFy2Lm8Ak\n5E8rVl+c5mt8hb/Wn2X92lE/2vcekCbAKvQFXJmBfeV3lJcU+0uL7E8u+pps4E+RO3hq8YfOMwvs\nqn88+3hQruBZc4AvagJGY4zL5F4mn3Ts9iHT6+9iOAcb+z22O3eYbtZYmGwy327SqMYFG4sxv0gA\nv+bKQqbopY0UrFtV3PSyROsAURjLCz8Zq2RgOSmGHi3WCZ8r8DJJWzCArfVyb3DIAtTClY2RAiQr\nnt4VLDAnlGd9iWLCIxQi+5Lt5XMExqLTjHSQkKWpHwVP0XpxrtRmgpR4ArNnusUqIK7VqNZryEDR\nzzOkiAjjmGqziTQaISA9cGitccr//xXXIAgk1WrM7uYmWZIOLQVMwfaygApC71kmAnILNjV00w6i\n0yOKYyIREhtFenDA1t6ht9cvLsp1L2c0T1QUv+8BB9CZhk7da0BCWcg6HGRlbimZVNv+/tSBe9Cp\nwZUaVCF3FV773MvcO32C11qfYU6uE5HTcU2Ws+Pc3j3N1ltL8JfAa3gmmd0FNiE9Au+2IZewDcmH\nU7x19rNcXhoQ1jOslqSbdbipPGB2GXjXwXofXNkc2cfnPI3PD4pRfihfh7IoKfOBZgR4He5L/qaY\nnDkGs8fJKlM4Aff3OmytDVg3NWg2+cJXv8hg/ghf//ormDSlWB6wKJzJQeTIagWjM5we4F97P11Q\nVNsEUQU32PMMbxljq02II5Q0uEEPYbVnwv6CU3hqHaudhG5mmatEzFYCUtslNQGNMCB0Gq2NZzhJ\n5a1OtJeGS+WljVI4rPX/rxCSMAwx1iKdQTi/X3ZCop303lhFvSEKOXyt3mThyFHm55eYmpxmot4k\nCmKkw++zdentJABXDF/xe0FrDbk29AcDFl95ha/kGdefeIInT59molpDWInOcm/pEhrvWWytb5KE\nFQIZYovnkcVUXyklOteYPEXrFGc0SkrP3DMZOtNkaY8oq6KCkG7SZ3VtjSzNaNabKGmRSiKlZzXn\nzvrGTZp4ixSxj9sLUMKShhJMRtRoIGOBmm6RhoIsisE43tq+R3Y4HOWheBj8Kr2Ay73zJh7ZOQYH\nS3BPkX9Q48MnHuWNiRc4deouz/y3V4mams9dxe/Pj4L9Iqx/ZZJPpW9R+U+O/n+E996GZQszEp64\nCu3c8vj0Bzx39nu8W32C+ImEz/NtLrhLzKebhFazW2lxVT7Ga0c+wzd/4wvcr53AmcAv3TXgeRC/\nmXP+U5f4cuXrvMS3eaR3k8agixOS7eYkb0VP862ll3nl17/EpjsKPQl7Dg4cGOHnVjiJQfm+RwiB\nfNAWowqoCIj9/sxvEcVHDGIcVyiVZIPxWmN8sMxhnQGHwNfPHNY57m51WN7u8BeXY5amGjx5dIov\nP36M41OF6Hesc68ChYscVjkkCu9i5TvUvrPuJSDGeKZYYgpNPIVfLwwLknJD74rOftm+F2W33onC\naFgMC5ghgVsOOWDFL/xPKVUhnRHFWHvv66WQKIQHwMoCRwgQ1k/EKUwynTDkxs8qc0FAe3qS2YUl\n2jML1FoTVOotwriKUCFpknF/7T4b9zfRmUEKQZqm9Hq9AnwachJ+qnhY5lheHCNAbDxeffUvuXfv\nUN7y84/xxD8OhJVyjm2Gq/9w6S8X6rS4JHgmVZEY147Bu8BfKS7NfIrKmYR+q87zL73BsadWqGYD\nsiBmpXmE70UX+Yb7Et+79zzp6zVfmKxaMGUhcgsGKdyYg/WK//sUvnZSjDEL8Ikr2cEjYWv4guuA\nEZCVMjQcGxo3w0cXNOX1Tzbt+O96GGvZ2O+y1elx8/4OM606JxemmahXkX50bTFcxE/IFdKvr6Ux\nO9I3UIT067J1frqvkH4sPMob29tic+QKb0UohpsUUx+tLTwfnZf9KWsxGN+9x3lwy1JMuPUA2DA/\nSDk0saec9ijKXORzjBIC4QQm12RpSpak2Nx/94cAWsFYHjUnJEpIhAWpc4I8I8hzRJaS6gxnNK5W\nRznrc2UYouIKUuU4INcZ1jmEDBBBRFitow2YLC+eR46yiAyQQYiVyjPOitfZYEmNg9ChYsneYJ9c\nH3p7/WKjXP9SRkwwzaj5sQlUQddBl9vWckJYFw+QlUzaQfG3LbBVWD0Or1ehD9lKjZuPn+femZOE\nzQypLCYLSDYq2PcCD1hdwstcetv4DskukEFnCa5MwXropZVHBHqyhq7V/Knu49PCcvGwTq8AvZbx\nOa6PL0ZKc+GPYq+X/3u5NynzwyET+IfFkxeex81OcuvuNgcrN9lZ3aKTKHatpbHU4KUvfpatsMk3\nvvZNkn4feru4PMcFnnUX1CcRhOSdPT9NXQYgI0RrFikVtr8HaR8VVFDtJVx1Cpt3cIMtZNZHCosW\nH8+7lDvLXuKZtb00pBUHTOSK/yk1/MeZJlUgzjUGD3TpLMc5SxAoVDlZt2heSFkCPoDWOGu8d7H0\n8nVTSh2l9x1uxHXm545yZPEok5NT1CpVpJNeml40UowxiEJmrpQsGM0eeJNSIqRgkGn+7fETHFRC\nzp19hOnWJEpWsCiksDg0Ok/RBj+xXkriMEZh0WkfnQ/IswSd2QLEK5r5QvgGjzM+VxmLs/671xsY\nBmnKvZVVer0ecRSTogmoEAYheZgjRIpLcwQSHWVIpbDOUmvUUYMD8v0Ik+dgrfeIDCROOLomRQp4\n/frVj+ET8asQ4+DX+Frfw++ZJ4EmdObhloJ3YOXRk7zymb9Ho9oleaHC+XPvMbtygMggmRFcWXiC\n+805vnrpm7g34MP34OvWHzG0MLgLv/bXMPGFHidO3mUhXOPLfIOvHLzCwrvrVG7liAzyJclTT1zj\n5JHb1Bs9/vi5v8/axkm/pleBF+Hksx/wm5U/4ffMf+Kpa+/T/P7A408hmEduc+rF28zMb2Hbgr94\n/jfZW5mDu8IrW7rAnmCvM8X99gJ7SzUmz/c5Nw9P3vTZoga8ADQeB3cW1oN5ttwsyaDi0+EARrVU\nmXzKHFrWTw6fb/TYfQ/rDDgEvn5u4Rzs9lJ2eylXlrf5/Tdu8PKji/yT50/TrirvZqEUYRiilCo0\n7wHgp6wIIclyg3UCKSStKMJEGmE0ifZgjcR5E18Ym2JYTMayQNF9d8qLF4tcNgxfrrgR00uMYC9R\neLoo5HC6mBDe06sEupSQRRkvQTovs3SlD41AW4Ez3sslqteYmp1nZv4I7ZlFqo0JolqDMK4hVIjW\nlp3dXZaX77C3t+ep5VKQ5Qn9QZc0G1An9udZMA6GRLWPmOA4eh9+UOJYMrvM0OfrQUYYQJ5n/Pt/\n/38XSfMwfv5RSvnKxbfsRCQ8aG5cxrj0o3xcKRHZhm4L3m1BS9ANJ/nWr3+J1XNHeFM+y/HJZWr0\nSKiy4pZ41z3OldtPw59X4FW8/GQnZTRNsUi6Zhf252C/DTcqD52/wWecHUbMgj1GhVY2dq7l1LJx\n4KtMRuX18nN22A38pIS1jm6S0k1S7m3vcWR6glMLM7QbNQIlhz1xLzkpgK+CiVtO0QIxZHSJgvEk\nCymLEUW5LCVCBQUzTGIKyZ+1woNCzvtyGQGlv5j/NIqCgTUydnYl82xMKlNeCqUjwhWAnQOd5SS9\nAUl/gNZ6mIDKddYa6+VAeY7CoVxAGIZe2KZzks4B1moqukXcqHsD/UGPQZ765k+aIZ0jkN582VjP\naLN5ziDJcCqi1opIewO6B12s9aBYEEYEcQUVxYggwkiJExIRKKwCJw1hFBI7QffqwSHr92OJh8Gv\nMk+UzOCIEVNq/DE5I9l42dUO8GCZ8B/4lVOwF/ni47Igm6+Stao+7Qzwy/kqcNfBqis8Je8ykih2\n/XmlB3BvAVYa3qarAYTCdyVLv+ZMM/J93CgO3sEDX2VR/qOA1cO88JPE+Re+yPLVVdI3rzG9tUk7\n1CQOErfPo49c5OiJKWw3YKpVpbM+wA32AYeIqp7BlYPLsoJFW0Eohag2wKXEBzvYPCetHkEtnEE0\nZ+BgHZenuF6XwCR+8fuYto7lzuLAWHqDjCjJ+GDXsQSsGPijqTotpRA2x1mNsQaJwOQQWYEQFqUU\nILHOkqQJBhjkfqJjZjW5gFwbtIN+MSAqCCKOTU1z9uw55mdnqcUVP3kxzwqDe4ohWsX3w1oEATIU\nhUejz1u9fpcPrt/i8v01Th0/yfzCccKwjhARDk1uUrTxpvU6BysEkcsRNsOanDxLyNMuIHA2wNpi\nnqazKCkJa1Ws0aTpgDzPkDhSrRlkmpXVNdJMU6+3aU20iasRlVASVyKkkKRJMYDDaNJ+l7hSRwUB\n+SAl6XQQUhEYQx4GqKBOVUh6AtIsYXtvl3evf/DxfCh+JaJc48qaoGxwV/Dr/C6wBbeOwFsCPRvz\nduVFkmcq3IuO8tTiZRYXVwnR7DLJMsd4mrcR2458A1b6fsUFnyHuAmyA3IKW7vBc+H2+uvMXnPjj\nNdwfAVfAZRActyx8ZYdf/6ev0Fuqc29uid2np0kuN6EK9Wd3+VT1+3zZfZ2LVy9T+XcG93XI7hTu\nDRcci7d3+PK/+AZbEzPcOnaat55oY9+K/DCtHWBVsL8+zfsTj/Jm5Wm+9GvfobkC/+jrsHcLKnWo\nXAD3W3D/6WkuB09wMz1L786ET2sdV7xWZcN9XBL/8Ov78PXDOAS+/pYiM5a/uFeXUlYAACAASURB\nVLrCd26s8+TSJE8tTXB+vsVcM6YSySIPiCIxRFhrESLDGDBWQBSi4wo6HWCdBUdhzOsLlnIoYxmi\nlJEMJSduNJmx2EOKUvpYNuyFLKav+COU7K6SMVYqUjxNGD+t0omRmTGuOO9CQoNFBZLmRJOJ2Rnm\njhyl2Zql0pggqrVQYQUrFM46+oM+99dXuXdvmbSgnkshsNaQZgna5L6TLz66Lwo/OQDmR1T7i7Uj\nUNBay5//+Z/S7XZ+9jf+MH5ElBv/4aBuRibHf9N9y0KmZIlteGnkegRvVPwY5N0a7z1zkVuPnqHd\n3idSGZkJOTiYYPB+C96RhdEkcDfHt282GbEFkuL6Np7qVcdXRRTnmBbPXUhvhgbED3uwlOcNI2+z\nMuxD1w+7+J/U0MZyd2OX9d0O0606S9Nt5iebNCpR0WQo7ihG6zEMSb0IPxTLX3fWSxsp0CfhwBlk\n6ZNUAFvCFY0PW0gUxYhFLIb39HJJ69yIXo+XT7qS7VWMAxNFrpB4w3hnNOkgodfpoZPUGyVT5Kai\n4SKcw1mDzoppw8airEDFEqEEzhjSXh9rLRWTE1WrEIY4pfxqYJxnHuBItcFluQfcHKRWEKqIeq1G\nFNXINfS6A6QICKIKtXqLqFZDBBEiCAujfnDKYZRGKugsr9HZPZQ5fnwxLnssmyXB2OXhPFE2R8qf\n5XpbfoEUQ+l8bx7ea8FyBC3la6tSUdl30NGQpHjQqpyEVQ4fKdf4HrAHrg0HdTioFc/hGLHP9hmB\nZfs8mCvKcz1ssP084z/8u3+NTELmu4CNUFTRkWRmYZIv/8N/wOLSccRezlQjZtUmWOWbtpQAuAjA\nDhDOETeayLBCkqaYNEHXZpH1GWT7NMJm6NWrHgDNE1yekBfN2V9UNpcAQhAIibam6At7CbpxgoGD\n41j+Vxz/ZpDQ3nG0w4AJIYhlwat3GkGGwlFNA1QYIUSAs94Uf+AE2lk818qhncU474+YmRwrJO1G\ngxMnTnJGG2pBBEGINKCEw2LQ1jcrlZJIJbFGkGuNMzmBCTGhZ/hvbm6zvHyHhelpzp48TaveQgpJ\nlqc4l2CsLprfAZVKtbAAMKS9fc8oLlhcFoch9PWJ83LOTGeEoUAq5f3YCk/kLLNs7xygtaTRmKQ1\nMUmt0UCFEiksSZbRHxyQWwBBgPNWL2GFaqNFGNfo9RKM2CEwBhFGCJWT9bvoNMEazTvX3j3c4f3I\nKPf/5StVDpbo49fODUhbcLUBkcDlivc2n2b98SO81n6JyWiLUOZ0NtqERwac5TquLQimYKEK1YE/\nUgAcAZgGOwVraoFn9NscvbQGvw/3/gxe6/sq4JHr8PQB1CYNL/7L13lTfYq3Fz9NUvh1TU9s8ah4\nn8f23qfyNcPgD+BbN/yMLgV8+lW4oGDmXI+nfusSZ8PrXDv6DP2FyGN6m8CH0Hm/yVvHLvKN2m0a\nF3o8+a/ep/ZMSnsFqIA9D+ufnuZb85/lVV7mxuYj8K7wEvw9wyi3lDkl5QfzymGe+ag4BL7+lqOX\nal6/ucml5R1mmjFnZpp89uwsF45NEigw2uICiCKFNRKEAW0JA0e9EpKmmjy3GGMJhSzo1CNjYjdW\nIJVrh2BsFHJBv/a+W2Ik+yilNGL0GOlG20rBSHIjx5gBpb7FWe85Zp1FG0BJ4mqFialJZhfmmJid\noTU5S1xtE1VbqLCGQxYTFTXb21vcvXuHra1Ncp35UcwFE03rfIS6ueJ/+zGiBMLKeFjiOPL1Ku/v\nwa/9/T1ee+2vfuz39DB+liiBrDLB/aj3djwhCkZUaOW18itHoV/1zfX3IF2aYH1mwnsbp3gcawW4\niU8Ym318F38V33opJTIlqBaPXcqpM+MstYQHPbpKxsFHTdt6+PbhNugwHow016xu77O+e8Bko8bx\nuUlOzE7SrMYoX+FQ9CWA4hMlCnN8fLPBq6OcX68Llq+XQ0qsk1hbML6cwBrn2cFibOEv2LSly6Nz\nxaC5kmFW3qeQs5fLMkIgnCuM8R06zRl0+qSDBKEtqlhgbfk8qgDNHDhrsbkHvnLtmcyhixBhCMJi\nsoysBxhDEMcgJbnOMdog4gphFKFzTZokOJ0RSUVQqSKt9+2RQUxca5Brgc4MDs8M09rinPFwnQRb\ngITW5mSDjJtvX8aaw83ixxvlWloCSqX3V7k7KX3AyvepbCKMm58kY8fLi9t7YNvQaXnvrwdAtJJZ\ndsBoGlbZFEkZDSBJir/X8VVMyVR2Y39P8LkkGXv8D8sTh/Gzxr3bXlK2guQ9ERGnMUFUoRLP8O6V\nK6ham/XdFJIBVSkZBJ7VFTTqZKnxg2gCiYxqiLiGURGqqpG1FrZ1kkBYgq1bZJu3oLeOkmB1irXZ\nL/TdFECApKoCJisVdnpdUuUIwoA0y4d+jk4I/mcHQW4Z6AEbAmpSUJWSqpRUJMQCokDwGZOxKzU3\nlMIh0FozwBII4ZsnRZ0gpfBMWAf1SoWzJ0/z7OQUL/3n/4yem+Pav/rvEXg/rLIh7usHn6+UUgRW\nFROCHcZq8tyQZhmtZp2lxSMsTM0QOEDn6DzBuQwHKBmihEJJ35o32pJmCSZLCyuYor2iDIEIQAjC\nMARnMSb3DR6lEGFEMuizu9/BOJiem6fZnKBabVCp1jAY8qRHliSkmSbVBmMtceHJHA4OULEiqgRk\nWqN7KcqBViFSJfR7PbA5kVK89d6hzPHHi3EFhGS0v95n6JW7fRy+14KOwC0H7DyyyM6JBeREjows\nejXm1O9d5W71OLuP1pl97oBH34fkXbhnYQZ45gjwAhycrXMjPM1vJn+Kugzd78HX+r4V7oD7DtrX\n4dF34Nj2Oktz92hN7LA+dRQiSyPuMM86s51NeA9uLMP3GXF4X8vh6Icw9wEs/dYKs2wQtHI/obKK\nr0c+APdGyI3Fx/jj536bpFJh5em/4uzpW9STHkYpdhqTvBk/wzf5At/c+jX2X53xU4JvAbqHz0Pj\nDZXx1/EwflgcAl+/oBjkhuWdPss7fb714QZn55r87sVjPLY4Qa0SEgQS5zR2oHHOEkpQocC4kDRP\nyQcOYUEJSUC5vSsZXu4BNYot2Vr4LpDEg1ieEOaGLhLAsKsvnBuW+eXFP0khZyyKG4rHI/wGzuGQ\nSlGr1piZn2ducZHm7DTVRouo1iSMGqiwCiLAOkuWZfR7HVZW7rG6eo9er+flm4UnjZACbTTWWUQ5\ngpKRzLGMv4nlVf58+LqXZdqS1vBALC/f4caND3/q9/YwfpooF+nxhdrT7T+6Ix4Uv+s/+GubwfYi\n7EzCh8JbA7Tw9UhZy+wB2w7cAR7wus+om18CWePAVskuGI/xUfLjbISy4Pmb/sfDOIwfHcY6tg56\nbB30+ODeJmcWJzk9P8VUs+bh4bEFUCqBUIXJPa5gsYJf8QU4i0B50MkaD/gXPl/lkFwn1OiRBbI2\n9IIUzhc7ygMDftCIG0kch80WwBbG/MaQ9gcM+gNMpgmEKhoRbnQMN0TMPPvMOpwxGG3ReUaaBQRx\nTFCJCFwEOKwxBFlGGAZIHCb3ZshKa5z2zylwNCcnaNSa6CTDpClGG8KoQrUKHd0jzQxWDBCpxopi\noqSSWKuRMsOQs3d/nd7u4QSuX44YX1dL0OtHyTXK9bn8gCaMOuEpI6l6FQ9alWt8Ca6VYFU5CavM\nDRmjJs2geFxZlA1dU4sYNxQen9J4OEnrFxEGS8cldEwCg31YXuf/+jf/CzMLRwmrLXYPuiSZhbhB\nfeE0WRAjckOQxdgkhXpMGgVE1RpxEKO1JulrsrX3UevvILLUr5o6RzgzxlUZZ638bCGlfEBqPX5k\nJygmu1tMlqKkQAYOhClWcFXwe60XBgsF1tIXjr5zSO09g2MgEoIlIfjXhZXK2UqAdJBZQ4ajIv19\nqiogDALfXLGOOIg5uXSc5556humjJzh48iabn3oOm2us1tjceFuXIBg2aaQsfYMdUgZYLEmeYXHU\nGm3OnXkSrCEOFMLkmDzHmhwZhEMtisAiyDC5IM9z8izD2BQpnPeXRCFFgHMGa/ygrSAIsRqMcGjn\n6A1SNje3SXoHtJotqvUqKgywQoBSKCHIhfCTK41kkOQYm2OV8HNiDw7QVuNsiorrEASoPCclIKpC\nXI0JQsV+v8f1u3d/Lp+HT1YYRsa6HYbNZwvsHoM32h44ugJMC2wzwvaBi7C1fIRLj1zgjfqn+K1/\n+Ar1FF48gt/ut0FcBP07gg/Pn0CLgIpNoOOH7m4y+o4NgIMiXQQ9R5WEKMj8l0Y6pNSE5ChjIPVk\n4XHheh/IC5FIREaARihXFuWQJ3CtAhOQxVXezl9g4+Is1yqPcap1i1brgIyQTeZ4j/Ncu3+B7jfb\n8A3gHfwEYzbwhU1ps3LYTPlJ4hD4+hjCOscH6wf87392ldOzDZ49Mc2TS5PM1UJqdek7zs5LIYMg\nJNM5Sd4lsxCgsBTdfuG9qyTFNC7pRswmMZKuiCGS5R9nbVkqlQwwf4yCYMCw9y/cMOuW8yE9kGSx\nwnn9fBzTmmwzPTfH9OwcralpVKNJUK0TxA1kUCl8WAw6z+h0D9jYWGV5+Q47O9tonY8VSB6kyrX2\nhpilr9cPmeJYxg/z9hpJHUvT5tHjtNZcuvQ2+/uHBc/HHz/MfPGjzIDLQqQDbhJ22rDT4MFixOJT\n0Q4+UZQj5UuHyLILn+OTbMZoWSwz1TizoLw+LsM8jMP4+UU3SXnn1n2ur+1wdLrJ2cUpZpo1wiBA\nSl9IICRCOD85q1ynoejO+8XfL/vl2uoZW4Hy4JfBFTJ7CmaXHDY6XHEMVzROKE3zS0YYXiZvrcUZ\nh3IUhvYZOsvAWFSgEE7gnBwxdsvjWC9rF7boQkiBNRYzSMjznNDERFYTUcFZg8szglqNKIoAQzbo\nc9DredAtMzQadSpRTBzF2CBi4AS9JEfnFuOnv6C1xliHE3kxlVJ59ho5wqUYnXKwcv8X8wYfxk8Y\n42bv5ZoMPNDCG48SNCsTfWkAHFBYHfODoFXpzTg+aTd96PkdIxAuZdSoGY/xzvuhqfAvQ6Rpwsqd\n66NfCIVQId3+BrQWENNHsQ1BUAtwIkbnGXlnDZPuYw4O4GAbc7CFsAlCRVgkRudjfHW/0g4ZUT9D\niAIo+puAL/AgTuI0O9pAtc7kTIPu7i5moHEo3zAWhpaUtKOAgTFkuSF3DJslGug7R8c5fg/fDlxL\ntOdRFvVCaKAqYWAtYZ7RiGOOLi5x7tQpLjz2GCePHSeSAbd+67exxuByjclzjPESRyFHe/AgCAoG\nliazOVY4rJAIGdFo1mlPzDDod0n6Bwz0AOmMn7Qb1ZBIjElJBvuYXo4gKqYVG7yospBUGgoPAN8w\nt9rg0GQ6RztLP0vZ3N2mn2XUm5NUajWEAOM0Shi0TdE6Y5D0yHRGP01ItEbgCAKFdgKTG0hSVG+A\nzH0edt0EZBOpWiBCCAJub96mO3ioSXsYP0Y83Egu67Ki6W3nYXkaViOoB95fseEv3cstXp9/gZnW\nFuqc4eJ/d4mJz3UJdjWmLhmcqvH+oyf5L/wOHZrsqxYs3GdmHs7uwAfFs7SBhQawCOlkyD4T9JK6\nTx1OMUibbNVn2Gu0qZ7c5ewEnNny3yEFPClhagE4DuvMs8sUphOMyL82hX4Olxseyd6XrN48y/oT\nS7QXd4lVgkHR7Tfp3ZiESwLexNu03NRgVvBS/FKGr8cuh/HjxCHw9TGGto4P1jvc2urxjWtrHG1X\nubDU4oXjbVqxN6CoVEO0EfRTg94fYLU3sncI71Eiig6nK6WPEitsIXXBa90BL1mxuMK83pagV5FR\nvX1L0Z0Xo0Q7BKWGEhqfOgOlqDbqTE7PMDO/QHt6hkZrgqjeQFZrxJUqSsbeXFlr0jSnP+ixs7PF\n3Tt3Wbu/Sq/XLcbbe4qakALjLHmeYYwumAtiJMsp4qPYXg///QemOZag2EP7ksFgwFtvfY80TT/6\nYIfxSxQfpV9P8ADWDn4WSmmMWW5LS5lLaUJf+nQlPGhGXx6vZJZ9lLPcw3KaQ0bXYfztRS/JeH9l\nm9sbeyxNtTg532Zuskm97iUkftIWILwflweWykLcM7xKhpZwJSXYfy+MtUPwyxUeYn5lF0MGWEmO\nLUEvh/ANkwK9ssVoe+nA5gaTazCl9BGG3w/nmbwlI00gENYPSxl55fuJkNY6XK6xSmKlAK1RUYhy\njhDQVmPSlDTNCFVIrEIUFmdyBIowkthqRNIP6eseOs99U6gA2bwhv5fZCG0I0FSUoz9IvS/ZYfyS\nx4/bbCjvV0omSyZBxgiwGgetynV93IOrZGl54Nj/blxyKXhQLjkO0I0XcId54pcqnMFpg95dhd01\nWH4H4io6quFEjLQVAjSZ7WHyFJEPUFJi44b3OTQpTktswbcdHvbHaND+qBBiBJ6V1h12/LiuVIsL\n8jDm2JnzHF2a4cobr+Ho+P2+sMOGsbUaLeyQEyyEZ0+Vp22BP2TcPAUPDArQ1pIYMMYx12rxwtNP\n89Lzn2a6PUGjUqEaRl5aL3xdkOscnWd+vRcKW0yJVEr5hnaWEirfeNfO+smZTmGNwyg/jTHXOc5p\nao0acbWGlAHOaP/Nsoa9g32MFVTjKlEcg1S+SeO8ekUbg1DCN1OsxdiMJE/o9Lrs7B+QO0Oj0aDV\naFEJQoSzWCxSWRCgjSY3GalO0M4Ug74kxgk0kkBCbqCXGSLhSAcDpIw4ulBDZRItHUYJ7qyv0zsE\nvn6KKNdtwYhHtcdIbn4ArINpFP6KARzMw9UIN69Ybp/lv37mt9mrtXl/6bucXrrJRL5PX9W4K49z\niQt8I/0Sx4O73IjOcO7Z29S/kPHFfTh6HxILZydg8dPAZ+Fa+zS3OEVne8rTwjTsdKe4MXmG6xNn\nmPnCm0xdt3z127C1BZGCuZNQ/Sp0X4y5xuPcMqdI1+PClB4PfHEfto7Dd1uwKeFDMG9U2Z6remaZ\nxeNaq8Ad/BThDQ3ZGl6UucNw4MqwsXKYZ37cOAS+fgkiN5bNTspmJ+XSyj5/fPk+v3Z+js+cnmO+\nXWd6aoJBZumnhqyX+w57Qf4NikXf4gsQ3/GXhf+WG6Y0KIsXzwaTRWGDEGMJu0yOngXmlYYe+Cqv\nSymIogrNiRbt6SmmZuZpz85RqTeIqzXCagMVxygZYowjzxKyzDAY9Nnf32VtbYW1tTX29vb91C9G\n4JpQsjCezDBaF/4A8iO7aOKB8/7BGGd/GWse8PYaj9u3b3LlyqWf8p07jF9slDKWsqteglYlLbqc\n+jVe1JSdkFJ+ko49ppSijMfDtw/jMD7eSHPDzfVd7mzuMdWscWJxkrPH5mk1qjhRrp8CJ2XRoCgB\nsNKzyw2ZvkY4jHV+GEnJgGVUYJW8liHHxblRk6TopFOyfrXx14XyE3O1LYzzS1m8P4Vx70VZyFbG\nv6N+6Ig3DxZCIKwFnWMSg5WSwFUgijDGoJMEl+dEUlEJY6RzZMmAfg+kslTjCkE1oNKo0Nnzk5Kd\ndSipkFL5HAMIa1HO0QwDJuoVbu3uFEyFw/i7E2UxP+4BBiPvxodjvHgYZ4wxdr0sMrzb0kf7OB52\n3n91woE1MOhiB13A760H5d+EwokAq2KE8Mwj9ICHPxui2CP/rGGtRUrp2VFF5Lnfk5Qwa+gkKEm1\nPcfxU49jB/uYvFibi8+4w0MEfW3JcOghI9ghnCRAYjE4CdIpLw/EN8AjAaGQVKKQqlJMtSZ44dln\n+bXnP8Ps5CQ6S5DW4XKDLfxWg0B6UE0IsiwjM5pYhEgpCZQCIdB5SmZ8I6MS1TE2xOZgXc5g0CPP\nUqq1CrVak2ocYp1Ea4NxFmMMYRhTn5ikn2YYJ0AGhcG/xdmcVOeFLsCSZxprMwJp2e/ucX99A4ej\n1Z6kWa/RrNUIhEDnOUZYtMkJ/EhknyMLbNxbBnj7FZdDph1uMEDvdwhkh6PzJ3ji3FO0G1P0BimZ\nS0ikZXnlHrk+XAd+uhhfQ0vwq9zrdxnJ1SOgAXkI1+ahKjAq4vbBedZfPMqbixc5yjKNsEdChU1m\nuXFwjr0P5xicr/F6/QXOPHWDp/7ph0xPOKaugctBHQf+Htx7eZZv8zneyZ9m704b7ghIYff9Wf5/\n9t6kSbLsvvL73Xvf5HN4eAwZOVZljUBhBkg2SKrZotht1KpN1iYtWjKZ9V76APoMWmqrTa9601rQ\nTM2WiO4iRBJsAGSNqClryMzKzMjMmH180520uO4RkVUFsAAWKquA9yvzishId49w90h/7577P+e8\nfOm7PBffYOcP73Nd3mfzWdi4C8QgvgrFnyr+/olv8iN+n/ePnke/ncJdYLJyoNwHX8P8Erx5AT4Q\nsEVoCs4I/4wLgjnlBKjnBM/mA0Jw8QlnI2Sr9VDDp6URvr5gWOc5WNT8u5fu8Z9vHPCNKyO+fnHE\nWhzRbSWUZY1zFuMFEYqzFq4gdAWLy9IRL86F4C+9L+cjxUMI5vKA7c8avJw/t+Nkl/taApI0pdPp\n0u/3WN/YoDcc0V0bkvX6RGlGnLSQcQZehmyEsqaqasqiYjabcXR8wMOHDzk+PqYsKuxqppoz8cv7\nEFqp6xpnHTKSHwutB5ZtlILzeV6rr6/Gqz827fWR94a6rvm3//b/bKrrv1Sc391Y2UlWU10RP38X\nXp+7rTv3eUPDlwPrPAeTkAP23r0jnru2zbVLG7TbKVItA+whhNj75W+4P5vudRAEKh+OB+50Snhp\nf18KXw5xOvW7mvRiefulgoZ3dmlHD/XyxocWr9AsHA404bixmuiVS5lrmTXmQ4ujWtofnQ9TCnIZ\nnh+ClQVYi68r6rlEL/MfY6GI4oRYSGpbYWyJzB0qDlPDSkSoNEJlCU4KbDAAwVIOjKIYiSeLEgat\nmFQpjsfjz2Rio+GLymohtWp5/Hl82mPCajqs4TeP8xNWFrzFVXWYll2FJK7+vzyFle7svTL87a9+\nTrk6f13ZHuVyQ9gvz+0VAodkc+sqly5c542/+yFlWQHhNgqBkwobRRjnl2UdHoUnFpJ2EtNJMtpp\nQpJmwR6IB+GIBfTTjFipIHp12ly/epXnn3uBjcE6Ski8UJi6AuNQUYSUEUJ4RBQjZYKSwe4oAGss\nzlikECAtKgrv3VmriyPB5xq9qJBS0ut2SFNJFIHwFmMMRmuquqYqy3B8iBLa7QRrPV6EgBZvHcZY\nCl2jBdRlgdaWLHLUxZz9h3sArK+PaLdbJEotX1eQwqGdxtUW4UvccoXkUKgsIvIxVV5gqgWmhtqD\n9RDHLa4/9RTfe+F32epuUc5zdFUQm4qqmvPg/i6+WVf8I1iJX6tz9ZizDewFZzm860AGdQI/W4Na\nwqGkuNHn7We/y9s734GWhlrBvoJ3gD24/T88zYvf+mM68YL8D3/AV67cJN0NTdRmI+bBtS1ebP1T\n/sL/C97e/Tr2pSx4IWvgp5I3r32d//jUn+JSyR/91z/kua99SHys8VIw32nzUvcbvMgf85f5H3P/\n1cvwmoDbHuY5QbQqCONcBfgjKNbgw8HyMa1W6I6zMpXVZVW6MucsquX8pHHDp6ERvr7A7M8rXnzn\nPj+5ecBGJ2WnFbEdWTIlsF4hRVioWB92apwIE13LI+RyUSHP2R5Dsdbq0H3+4hDLr58TkZbCkUoU\nSSulN1hjbbjB2toaa8MRrV6PpNNDZcuKeJFgrcA5jTGaqqpYLHLm8zmTyYT9/X0ODvaZz+cYY88E\nreUBHWdxzpIvcopFfipq/UPTXXA2Zv7RTC93XhhbbYoRPr722qu88cZrn9XL1fC5YjibGllNgp2v\nZ1ix+r3R5/68Es6ahW7Dlw/vYTIv+Ombt3n3zj6XtofsbA0ZDnvESRp+w30I6HVe4BznhDAXpN+w\n23E6+bWSgx+ZkTkVxs4dFbwDH6bGPB4p1alFxFi9FLBUsBYuNTBOY1f88mdZ2jSFDBZIDxBs+0KA\nFGFyTViHEoC2VGYeFnVxRJxEIRjfGYSwCOHQpqKuItI0C2HFjuXkc7DseCBBkMSKdqdFK03pZhFZ\nJHj/vfeZzeef50vY8NhoNjsafhV8EEs+4cv4pUWcM2u5P20jWb0Jnl/Mforvdj6z9tSCeCYD+DjB\nddaZaTgej9HGImRY0KVIdBLhswS3KFHe00lTtgZrbA4GbA2HbAwGDLMWcZQSqYg4jqjqAuc0kZJ4\nD/12h631IZvDdVqt/mmrokyzcO6+nE6TUuK9J44itBbUXmOdRaoIpUK4vrUG5zRORAgHZW1QUUwS\nR4hWG0QCGKSy4E0QvaqKutZUtaY2Njx7xiCjCK8UTkqmeUmxWOCdwWDRzlFrg0Si8wXjwz2MtawN\nBnTaLZI0IY4jhHOUVYHWNbWzRFkLISqQkrTVxUcJWmvqSmN8hcagjcdEKRsXLvPNJ77G8088zXp7\nREyCTCDKaqK8Zne6YG//4FGLasOvwPlzdTjb5F65OVqE3/iHgIDFZXhzHfZiuAHsACMBcRJuOl1e\nNQI2Yl6Pv0v9XMLd1hVeuPYmF649RGEZs8YNnuPv+R6v3v0dpi+O4KcE0cwAQ7DdNj/9kz9g/NQ6\n72bP8NTmTdY2x1gUD7nAOzzPK+Pf4e4rV+HFKGR03fGEabVVG+OqSOUE6BJGvVLOJokNQdwqCEJX\nvrxUnEW1NC3BvwqN8PUFx3mYVZpZpbkNZEpwoaW42k3ppwmxVMvWL7H02rMUexwieB+X1pdVNtj5\niS+W9cecWh5XeS94D1KSJAndQYfeWp+10Sa94Qbt3hqdTo8kzVBZBirGE2FdyPOqdUVdF5RlyWw2\nYzKZcHIyZn9/n+l0Sl3XjzzGVYi9FBKcp8pLqlKfNsF8Wj4acL9qc1x+l7MMMw9lWfLii3/R2Fu+\n1Jzf6ZD84gNAY0Fp+M1jPMuZzAveu/2QjdGAJ67ucHFnc5mJAja4EZcLJo/1YRLL+SB6rTY7Vvld\nznPa9Ht68aEpGL88dkiBt2GSS8nljrvWYZNECuQy9+tsylaGGEoX7seu8I/CtQAAIABJREFUJhmI\nVnFi+KWgZpY7NKGpOPwESp6b7HUeSYSTEOMRKjQay+X1WmlGK+tiqzxMGziHVJJEKXrtFv1+l06n\nQ5pmRBKK2ZQ3333nMbxyDQ0NvymceiuWH8SyHCQUeyiSqIP3Gm3zX26/7bSAhOX7b7hPn/Zg/QIP\niwXzusAuy0sSrximGTOlKb2mn8Zcu3SJ5598mqubOwy7fbI0oZXFxBIwIK1HOEO+kBhhIIrodAds\nb+/Q7XRxxhKJhCTJiFRoA45VjLF1iEzxjrKsqOsy5HpFkm67RywjvHPURYnwEhUlKBUxXxSQ17Q6\njkwldNMMj0HrAmctxoYiLGMNzjmMtSAkURyFUhUElbOM5zPGsyneOVppEtouvcU5jS5r8vEhSsD6\ncEin00GpMPdrtA6bIcbgXAjI984Fl4lMUFmC8YZFXVOUOdppyFKSzhrf+Z0/4NL2k7RzSKM2VBYV\nO6JOm1YSI6Xi+MYbnMymn/Fv2G8z58/zVxZgyVltO4R/VBVUU9jdhoc9SAV0ljdZxQEvgAGgQJct\n3vz+d7n59ae5tHOXEUcoLHPf5e7sCcbvbGB/ksDfAn8HPPThTl5ugYdy0uON3/kuN776VUYX9+jG\nczyCk8U6k5tb6DcS+DsRRLM3geqYoLytQulXVsU5j7YEr4Q9x1lEyyqmZdVAf75lvuGXpRG+vkR4\noLCeW3PD3YVhlFXstBM2soR2pFCr0HofJr+8cMspp/C1oCutmg2XuS/nDsJhMmy5oEli2p02vX6f\n7lqf7mBAf21Eqzck7QxQcYaMYpBhosxaj6lrtK4oqwVFOSdfzJnN55wcj9nfP+T4+IiyLB+Z4pJy\naYBZNTg6T1UYqtpSa0dLRY9MocGj012rj6spL2vtqcXROod3/sx+w2o3znPv3l3ef//Gr/sla/jc\naMZ9G3478d5TG8v9vWPu7x0zHPZ55voT9AcDlIpC8xRnjV52+T4fhrKWgtfppglLi7w4d1m+/zoX\nLJDnJnGFlJiqxtYG5UEhkD4IUc65ZS/JahJ5OYWmQhuWDX3Eof1x1Z7qfZiWWC4eQxj9cnrZe2yt\nsU4g4xjrNCpyRKmi12kzGq6zvbWF8Amz4yIs2FREq9Wi184YdFu0WykohXaGvKh4/713P7YR09DQ\n0PCPwfszIUwIj5DiH2d986BEyOZSQpBtX6V98SI3b7zK5OQQ4SQ+lmBjttoJ/831HkZ16A2f5uqV\na6x1+gySLqlK8ITyQanAGoeuKupiRpRF9FodOt0ea+tbtLoDPJKqrPBIRKSQKgrlJFISkyCkp64q\nlDFYY3DG4qwHDU5arA4ilpCCJE5JkpSqmqF1ja5KVOTQ3oM3COGQCpz1GKdACuLEkwmFcX557AHv\nPPmiYD6dIxBEUlCWC+IsQUkwpsTVJe12myxJSLMUpSKc90FE8w7rPMKDjFOUsyGP2NWgFALDeDFn\nlufUuibOEtJel9Glp7j+9e+x3tlkevs+VWloVRXSa6IoxiURSko+3N9j2gTb/5pYOTfO5zSuokxW\nItIh2DXIO5CnBOVrJSKN4egq/H0H5gJ3J2Lx8oh3r41gSNCcckJ+/PvAW8AND/cN+N3wPe5fhroN\nxwJ3M6J6ssf97V4Q2Vah9PeADwiTZ7cs5CeEkK99wujZKptr1SS8sm+uHtf5abfzItfK2vjpp0cb\nPk4jfH1JMR72CsNhaWhHJRtZzMV2ynoWoySEFscgKjnvsd4hln9eeVjCPFhoP/HiLFMga7fo9Hv0\n+j36a0Pa/QGdwYCs3SNKO6ikhVAxHom1QWzSWqNrQ1kW5MUsXPIF45MJ+weHHBwckef5cjF0Ptfr\n7OPKClPVmsVigdaaJEmQ58qXPmp5PC9+fSzbyzmcdyt3zulDt9byzjtvsre392t5bRoaGhoeFycn\nU1569Q0G/T7ro3WGwyGdbhcZyXAq5Vetv2GjZCV6eb+atQqEpdvZRolzIbfFeYf1jljF4EFXNbbW\nYF2Y9lpG2Ie39bBgUUriI3W60RJO684KR5bbEggVmh6dt8Gx78XpTyQIix5Ta7y1yMiRtWPWen12\nLl5ktLFJv7/O0cGUuqiIVcRwMKDbyminEWks8M6wKAtmRc10POb+7r3P7XVpaGj47cN7S1WNf4Vb\ninPvxiFwPhKSKO3w/Fe/Savb5ubBPahyYiFwMmG9t8m1Jy9w/ZkRw/4O7c5FsqxFrBSxVMQyWrov\nHVKCSAQ2iimkw7Vjuu0O/V6fTrdHnGSIKCaKEpw1RHEEQmBtsI6LpRBlrENrc66QSuCNpbQl3vkQ\nYyIV2npcWbEqMrG6onQGJRVpEhNFEcbUy2NEaNd2zuJMyCnTwiGkwjuB8opu0sJLh7c5lXXU+QJT\n1QhrGfQHtFqtYMN0QShwzmJ1hTEWVEKStRFxiqs1pXUU3qONpSoK8vkUg0DGLdJ+l9GFC6i0y3RW\n0U09qt3BuwJfFtRHJ9RVjZaQe83t+3fI6/Iz+d1p+HmsTL81j+b4LgjC0hFhgiriTPhaFV05ON6B\nV9bgroI3gE2C21AQNKlDQo78vof5HNweIZOrDPdxeBHmPbgdwTawRnApWoJwdrS8j0kF5hDYJYhe\nR8ufcZXPBWf2zVU28XlP1nkBzNFs8H82NMLXlxzrYaYdM11xb1EzTBRXuimb7Zh2rBDeY3Gn05NO\nhNYa70Has9BjISVZmpB1O/TWBgyGa/T6A1q9AXGrQ9oKghcqBhkyVIw1GBPyvOo6VMwXec58MaMo\nFywWcw4ODzg8OCLPi18oegGrwjCKomA2m2KMCaLXcgG1vNbHRsU/2eIYbI6rybbzlGXJK6/8PXm+\n+GxfjIaGhoYvANY6jk/GjCdTkuQ+g7UBl65coj3ohYB7ViLXMtBeBAFsJTG5lT3+1BZpsSaE2Vtr\n8QKklDhrqcsKU9VI4xB+2dkoBE6GMGghRbgIj8ISTvQE+AjngrU+hNpHSCXCYsc6hAe1PBn0eISQ\nyOXkhLM1cRKx1u9y+eIOFy/ukGZtdG0YH52Qz+bEQtHptcniKFh58gVlUZCXhqLSnBzuU+TF43mB\nGhoaGn4hYplc6nHIU3fEYH2T//5f/iseHO7zTjmjxtLKOjx9/Qm+95Vv8OzONpu9hHa2RivtE0UC\nZzVW10gBUipkFBNFijiK8M6glKeuC+KkjYoSrLEoURMLQaxCqLtzNtgFVZgSFkIgvCCKI5I0xUoZ\nJnadwztDXZXougp/H3WQRBhtwHkiKVFSEMWKKI5RUbS8P0ectEEbqrrEWh025Jein5IJXkiiTkSm\nFEU9Z1EZ6rKg0oYsaTHoDkmyJGQ92tDYWFcVxmhwJsS9RBKjYmovmFvBJK9CDlmUMJnlCCepnGQx\nndLaWCMb9EnjHpElHNNaEVUFRSKx0uPnU0RZs6hzbj641xSl/NrxPFpYtbL/VQRRKSYISWft1uHv\nMsKKN4diBPc24EEPlAw6GSy1NA+mBH9IEKv2CaNcBaeBYeUGPBjCfh9kcm4AzYMrwI0J+V1Hy8uU\nIHrlH/m54cyP+Uk0lsbPmkb4+g1CO89+aTgoDf1EsdOOudhO6EYy7MKIs7cBqRTCCpCSdjsl7Xbo\ndNsM1tfor6/R6/dpdftErT7IKDS5eIl2Hm881hqMNmhdY6ymKAqKIqcoCvJ8wXw+5+jokIP9I+bz\n/NQac55HRa9VHoygqkqm0wna1CEzQPhHxK/zYfcfnfg6u9iz+/zIMejo6JDXX3/11/ESNDQ0NHxh\ncM5RliXlw5L9/X02trbYvrRDnAWrupcy2B29Cy1Zwi+zIIMd0i57rpy1S7ticI1LpZBSoqsKXVZ4\nY5Erq+Nqslh48BIvBNaFkX0hJEosw8eExKvoNBAasdyoWI7oOhdsl074EFgmBF5FKCXJUsXW1pDL\nVy5y7fJFur0+i0XF+HjG9GRCkedEMkYiqMqSqphR5DNspZEyIROSar5YNp41NDQ0fNFYnbwKfJRg\nCNNjlohhd8j92zfw8yN2Loz4J1/7Hn/07W8x6q/TUimRUCipiGSYHglRJx4pPVEkUVISx+G9VNee\nNI6QPoK6oHQWE8XUMieKIqwIrZJqKVCpOA7TXjI4ROI4xlsXTFjLXEXrbfg+Ig7lKFbjvER4FVp3\nJaStlDRrgQiuEyEladbGajBmgUAjRAjOd9YhnARlwhSc00hf4Y2mLDVVaUnTjLXBkDRJwvFraW2s\nao2xDiEikGFDp7aOYlFghGJcampnkN4xm82pRI8nX/gmH967x+79l9iuLEYKRp2UuC7xkzFxmqJj\nySwWZL0W0TwmMzXjoxPeO3z4OH9pfstYCUKrySjJ2QTVarW7Cos/PyG2DJX3B2C6YDpQreSQVUv8\ngrP8rdXnK6thSRCyOmA7YFPOJrZ+3u1Xotxq8+/8uUfTEPx50ghfv4F4YFJbprXl1rRiI4u50I4Y\ndRKEXGYFJC3SXof22oD+9ib9jU06/T5raz36vQ5ZGuNkQuUiiqpmkVfU2qCNxVqHMxZtaoyuKeuC\nPM+pqoo8z5nNZhwfH3NwcMh8HuyNKz5p0mv5N4DAOos2FYt8htYVZ4194YGt3M/neVTwOruciWnn\nnhvv+bM/+/eMxyef2fPd0NDQ8EXHO8/Bwz1Ojo7pDvr014e014ZE7VaY+PJu2Qy8/JwQiO9Z5iSK\nIHoJJHEUgffossZojXD+3N6qPxvMl8v3a+/ASyKlgl1FyCCKeYnzAnxIWnbeoYQKkpt3WO8Ry4UP\nQpClEZ1+i9Gox6XL22xuDGlnCVZr8tmCo/0D5tMZ3jjiVoSzmjKfk+czTFHQiTPWun3yumA6nTyu\nl6KhoaHhH8CfzYQ4ixESLwVPPH2dTuyZHNzlqSev8Cff+z7PX7zGeqdFHCXgEvDgfI01Bm89cSRR\nEqSEWEmUAGkNVVFh6hqlJDJtoes6iERYRCTQ2gRhamnHkEtBKcoSnPeUZY4SEhkppA0OEyVjklji\nXIQzdTCZeYl3EiEVaZIQx4o4DfmToWBK0Gq18B7mRblsxRTLghILzlIXJSoCoXyYYDM1dV2A93Tb\nHdqdLkkcB7lQBFeLiCISIVCRwVqPMw6cxWqDcSWFNngZGu1P8oLW+mWefv4P2bj2FfLODd54+21O\nZhW6cLQ6klZRoyd7+DRCJikaj2onyEEb6wxvTvbZz5tg+8+Xlf3voy3vcBYUv7reKi9r1ag4JUyB\nxcvbLLNGT7O3iuV1S4JwtVpQVgRBKyOMisXnvtdKYKvP3a7mLNPr/KRXw+OgEb5+g/FA5Ty7ec1e\nUdOaVGx3Yq5sb/D817/NE9efYrS9TW+0TtzpIeMEKSOEd+gyZ5bnlPOSeV6xKGpqvQyOt+HAUdUl\nVV1SlAvyPD8VvcbjMUdHZ5leK36e6CVOd/zDR61rZrMpZVmGnSBUqL1fPajV4/sEi+OqydF5j3Mf\nt0XevXuHH/zgP/4anu2GhoaGLz5Ga8aHR0xPxiTZfbqjDYZXr4JSuGUml2dlfVxOYMllHqRYhc5L\nnLaYWoMO017SB2vO6j7cUs/yYTwARYxSSShEQeGWSprwCuEFCIVzoc0XYYOl0QFKIiNJ1srY3Bxx\nYWeD7a01hus94khitcbomvl4xvHBMYvpAikikigiUgoTRWRpRhSnbPWGrA/WePHHf92E2jc0NHwJ\nCBNOYfIWXn3pr/k//vf/jUGa8P1nv8aTa1t0o4RYJURSYb1Bm7DAjiKBjBRKSpKoBTikDBNfpq6p\nihyrNUIpVNYiydohSF+GjQ1jdBCplMJYS601iZKnuoK1lrLKMbVBIlAehLdIEeyOzlpQEULGeC9J\n0jaDQQ/nNdporAltwEmS4JxDV5q6nGNqg7OOOI6R0mK9gwyMqdDGUNc1VVXjvKDf7aGiCBmFiRtj\nDNaFtUoURUsbZSg0qbzGmfBzeetA1+A001oweOJZ/uX/9G+w6VXevXMAcQcvUqbTgthHrKVd1kmo\n5lNm+wt8kpK126goBhWjo4i/uv/BL1Xa2fBZ8tH8q5XVEc6mwVZbcqswfMWjbYr+3HVWAtYqG6yG\n5RlOkE4KwiRXfO72q+9lz91uJaS5c/fb8DhphK/fEoyHmbbMxpaH5QGT5AMufOUFtp96irX1EdpD\nWWkWi5J8XrKYL5gtZswXC8qyxliwDpx1OGswVUVZFeTVgqLIWSwWjMdjjo+PmUwmVFV11vy1FLrk\nuZT68+JXuE5Q6q21GKOZTCbkixxnQ009PtQmQwhnPt/k+NE2x1PB61ygPYTcmxdf/AF53jSuNDQ0\n/HbjrKVc5JSLOxzt7rJ2+RKt0SZxp7OcyhKn79+eYJUHj1IKiQiFJmUF1qGWeTTnI1m9ACFXJ58K\nKWIECo88tTFKRGhsFDJYGZ3DehAiwmFJo5hWK6U/6LMxWufChREboz7tVkQUeazRYQFXeqbjKZPj\nCWWuaXd6xFFEt9el022hy4JelLDe6XI8PubDe02ofUNDw5eP2WzCX//oRQD+X6W4unWBZ65c5amL\nl7i8ucXFjU22hiOiOEwyWVdjtCONU+IkBhk2mOuiRtvQpuicx9VVOC8XCqMN3oHVNVVVEicJKg4B\n9AiBrmrqKkyUCeuJECipaKUJSaSwtsLoGucUuXYY68myFoPBGu1Oi7JcUNUVxhiiKMJ7T1VV1GUZ\nAu6NDRsatsKjMWaOcQYnHNpZKueJ210iF9YAaRxjnUNrjXUWY+1y89sRO4+xjrqyWKOJlMI6R14b\nJnnOUV1x9Zvf50/+1f/I1ee+wcnckezuc/zgPgpHbRxCxaxvbNEzGWpS4copYj4lnVf4OFgoC13y\nozvvPd5fjoZzfHSyaiVY1ZyJWqtQefUJt4UgWPlzf16G41Mv70t+wm05d91VKyPnPjY8bhrh67eQ\neVnx8s/e4p0PbvHss8/w+7//fZ597jm6nT51pSlmBYtyTqUrtNZL26DAWI/VFl3XlEVBVeYsqgVF\nUTAejzk8PGQ6DaH0qwWTlCGU85MyvlashC+PQMrg95/P5+R5EcaVxcqj/ajR8aPi13nhyznwXixF\nr2B53Nt7yCuv/P3n8Aw3NDQ0fHnw1nJy5y6z/QOytSGt9XXS9SEqjpf2x2BfFMtpAdzS5ljViGVz\n1+nbuwCkACURSiG8BB9qup0XZ+/PwiOUR8ilqcc7PGFaN4ljklbMoN9jazTk4oUtRsM+vU5CGoOg\nxhmD1RpdaSYnc44PjphP5zinoB2+j10GMidpSjtr45XgzfduLCciGhoaGr68aGv54MEuHzzYJVKK\nQbfLeq/PpY0tLm9tcnFjgwvDIaNOh81Bn67ooKIknHNHESpNsLrCGYOvC7w1SBmH92nvcdbgncU4\nR0JwU1R1jXcupCdFUbAXOo93Hq0tzlqUCrZGawxCJWRpRr83pNXuUFYlZRVEL2vt6brA2nBbpMIL\nR6lrimJOkni8XV5fSKwTtDo92u0uVVmh6zKIXnWN9z5kTHqLMxZvlrZG43A2tGRWzjMpag7HcyYO\nhk9/g3/xr/8NTz7zNFIK2i3F5qhHFkMUQ2U0+9MJZRyjRlt0jYBFiT06Ji5zlFR4CTf273B/evx4\nfyEa/gEMZ1NboTri509ghQqgj0+SGYLgtRLOzgforzjfxvgJQdMNj5VG+PotJs8LXn31dV5//Q22\nt7d48onrPPnkdTZHm0RpdDpZ5VywuxhjqGtDkRfki5yyzMmLnMl0wng8Zj6f470niqKPiV3nA+lX\niHMrpSCSKRASISTz+YKTkwnGWNI0TG2trn3+Xh6d+gqX80H5q/t3zvHeuze4e/fDX98T2tDQ0PBl\nxXtMUTAvSvLDA+J2m+6li7S2NvFRmNaVUiKVwtbLUHttED5MbkkhQse9DBexXPx4K/E+NIF564L1\nUYAQHoQN077eYK1BSE+SRAzXemxsDNnaGDHaWGc46NKOBDE13hQ4U4Gw6FpTzAtOjsaMTyboSpNm\nGVIoqrrGzUM5inAWr2vKPOe927ce8xPd0NDQ8NlirOVoMuFoMuGD3XtEUUSsInrtNsNuh+3hOi88\n+QTffvo5rl+8SKQUKoox1iJUyNGqygVKxkRRAs4v87cAa7HWoiIV8n1rvRS9krAZogTehgW+Ugrv\ng8VRJRGpSEjTjCxrUdU109kUZ8rlRFhwayil0FoHO73zOAEyUiRZAr4AGaEiidYWKSOyVps4SjHS\noUUILPdCoSKFiMJ6xRqDMWa5HhBo45lVJVNteTCZkfbX+fr3/xlf+Sf/FReffoZ2N0Y4B0px9WKf\nwVrGZD6nFVuMlpC18MM2LbuFmpVUhcZPZ8SlRuuK12+9h27KUr4EnBeiPk1b4ieJVu7cx08e6GjE\nri8ujfDVgHOOBw8e8uDBQ376dz9la2uLZ555hmeffZYsy4Dgm6+qirIsKYqSoixYLOaMx2PG4zFV\nFcak4zg+FblW+V4/P9D+jFM7JBIJlHnO8fERRVHS6fSWi6Mzi+P5aa+Pfn4uVmw5IybQtebVV19m\nNmuCJxsaGhp+Ph6nNdVkQjWZEN+9S+fyRbLROkm3h/Bg62AxDDZHUFIGs6MQyybG8L4rlzui1tlg\ndfc+tHytvo/3COeQ0pNkkm63zXB9wPb2BttbG6wNe8RJyOqSGNAGYSowFcYa6qJmMVswm8wpixop\nI5I0RakIFcVkrRZeWBazCbOTKQ/u3m2s7g0NDb/ROO+ptabWmkVZ8PD4iLfv3OGHr4U2883BGr/z\n/PN8/6sv8OzlSyR4IilRSUxd15R5CSicC5sdCnCFw3lHLBSKcI5vrSVKYqRURFEQvKw1qCjCWkOc\nJKRZH6UURmtmsxlGa/DudH1gjaEsS6LlZK5SEusqolghZExVFVgvKWuDdT64QqyldhXeO+I4oq41\ncZzilcD4giyJkMay8I5FWWKNp7ZQOM9MSLa/+nX+4E/+W0bXXoBOD6FiYmlR0pLG0Nlp87vf/QYv\n/vk6J/v3ODw8YT6ZkvczTBajdraIZgWiNng9RTvNawf30K4Rvr5cfBbiVCNwfdlohK+GRzDGcP/+\nfR48eMDLL7/MM888w6VLl+h2u1hrqeuaPM+Zz+dMJhOm02nYqVnaGlfiE3zylNcnc659UYT/FUXB\nwcE+i/mc9eEQKT/Z5vgxq6N/9P5Wtzg8POCVV196JGy/oaGhoeEXo2dzJjfeZ9Hp0N3apL2+HqyK\ntQltjn6Z4ygEXngsHnuasxhskUIKokjgJWgbmsLAg5ekSUS312G43mN7e5P10Rr9fpdOJyNNli1L\nrkaYGlctkDpH6BJqg801i8mU+XSO1gYpE6z1WO/o9LpcvHKROIsYT07Y/fA2hweHzTGgoaHht5qD\nyZg//8mP+fOf/JhBp8O1rS2ubmxyabTB1mDAertNK8nI4oRWkoAGawWLxQJb1wz6a3T7/VCgVdcY\nLxDO41zI6BUSWq0WaSclSiTWGoqywJgaCOfs1liMqVECWkmCRyxzvcLhQUWh8VeqBG08HhPKrqzD\naQMCnNMgPFrX6MoilUS7gkWRY8qa2gtqKRESFkazV1o2n/sa//P/+r+wdeUab7/7AC88LQWxs1hn\niWNI0ogXvvos3/jWd3nxBw/44MMP+PDlD7hSR9CO8SJBbGTIKsW7lKNqwoezpim+oeHLQCN8NXwi\n3ntmsxmvvPIK77zzDsPhkNFoRLvdRi93bhaLBc65U8Hr/G1X/KIpr0dxeB9axISAuq7ZvXeP/f2H\nbG9vkrXS1T2G63mPte7clJc7DbN8VGsLwfg//vHfsLt75x/7tDQ0NDT81uGdQ89mnMznTO/tEmUt\nVNIi8gqxbEMKaRhL4Ytgf/Teo5Q4zfHSWmO9JY4SWu2MVjtje3vE1vYma8Me6+t9ut02Sgki6VCi\nwDuNMxpfFbiqwFUlaI2tLXpRsRhPmE8nGC0QkSAvSwyCgTakrRajCyNG2xscPLjPbNJM/DY0NDSs\nmCwWvH7rFq/fukUWx3SyjG7WYmd9nZ21IRf6a+ysr3NpY5N2HJ02+0ovsVWNxRKpmCSKAZBKEkWK\nOI6QSlHbmqqsqEyFdhoJWGvCscDUGBdslohVLqPDIXDe4vEY4zA2nNcrKVFCLOeIPWVd4rzF1DVG\ne6QRGKepncZ6Qxa1UU5xXBS8t3/Ivujx3PWvk402MFh0NUcaibI9pI9BxEgPSMH6Vp8//Ge/xysv\n/TWH+/vs3nibenud3uaIPJHoloBBC1HW3D+ouDcbP86XsaGh4VPSCF8NvxDvPXmek+c5u7u7pGlK\nlmUkSRJGoJU6vd7q8g8hxKPTW6vbn/deO+e4f/8+H354m+tPXSdtpQghcDZMc1nHMiT5TPQ6nfJa\n3bUPotciX/Dv/69/d5ZX0NDQ0NDwy+M9tqqwVQWMiZMM0i5J3AIlQ4uYcKdWRikcSItbWluEgG4n\nYzAcsLm1zvpoyObmkPX1AUmsiBNFFHlwGmEqFCW4Gl3V6LLEVTXUGqctVWmZLnJm8wV5UWJdinAO\n7TxVnvNg7yFpP4NU0O93ufH6G820V0NDQ8PPodSaUmuOZjM+PNgHgtg07HRY7/W5sr7O15+4zref\nTojjlERJYgmmriiNIcsyhF+uC6SkqIpguazr0BTpQViLNQYpBTJOsLrGWktVa4QUqEiFbRQBujaU\nlQ55wUs7faQUChASlASnHbGKyLopxjmoDHHawSQOaRKO96fcODji/XnB5e/8E5564ftEsoPXBiks\no7UWMvKUgHKCRIIVHpXCt779LE9eucStN0+4e3yPWw/2Kf0aB7akjh0pEVka82Y942HebKo0NHwZ\naISvhl+KqqqoqgqALMtotVqh4vhT8ugEmH+kqFGIlehlsVYynU64e+8ux8dHrA0HSKFWV8R7cJ5l\nSxjLFkf/yLSXB5x3/PVf/yVHR4e/+oNuaGhoaPgYug4hxSqKidMWKm1DrMB7hHfgDAhPFEuSLKM/\n6DHaXGe0OWI0WqPX69DtZKSJQkiPEBbhDc4WoHNwYeLL1hpbaax6d6eSAAAgAElEQVRxWAu1EcxL\ny9604GhRo4nxKsEiQ5eS9YxPTrh101HbCp0vuHe7KTZpaGho+GWwznE4m3E4m/H+g/v8zY13SP/z\nD7g82uDpnYs8e+ki13Z2uLC+wVAJkjim1gbrwSJZlAWVrjBG460jETLkiUmBFBAlMSBwSKwP017G\nWmpdUeQFVVmSZjFJkuBDRQrWe7zWOBdaHKWSECkUksREVFYw0TCrFO+cLLiVF6QXL3LhySdZG/aJ\nrOTwYEakUra2t8k6GdY6jHBY4cBVeA1i4YkXMbpOuHli+bP/couWWiDiFv31iIuXO+xsdHjlcK8J\ntm9o+JLQCF8NvzJlWVJVVWiPiePTy6e3N67wrJodvXdY5xAi5Int7u7ycO8hl69cIU3VqbgVmiYF\n3kucl3i/tNv4Rw8+08mEH/3oh1hrPquH3dDQ0NCwxHuH0RVGV8hyQZS1iNOMKM3IWglZK6Pb77A+\nGrKxNWK0MaTX79JuZ8SxIpLgvQmil/A4axC6RJQLnC0x1mCMxRowXlF5QWE9J7XmMPdMtEQLhRAR\nxoH3oWHSGU1xMmZfeO7d/IB6uWHT0NDQ0PDL47yn0ppKa966d4e37t0helkx7HbZ6A/YWV/n2UuX\n+dqT17m8uY1HUmuLNhp8jcIRxzHOKazxxMsGYOM8FgEywnmHto68qLBGk2YJSRIjBAgZNlVwLNvj\nI6q6xFuHdZ4oiul0h+yeTJiolKf/9E/RHz6AWzcobU1dVDx8eJenr61T1Zbd+wdsbq3Ta2cIPEVV\nMZ4WzHfHPLw95vbNPaTuoUSbqY5ZJEM2+jv0vcaNDzDSk8cdbty53UwTNzR8SWiEr4Z/FN57tNZo\nrQGI4ziEWqYhk+t8wP2jgtjq8+DdX/1V+OgIAZiW4+MjDg4OyPOcLM2C3fFjBxixvATxazVC5j3c\n/vAmb731s8/6YTc0NDQ0fARnNPVco/M5st9nY2ON6888ydpwjfXRkG6/Q6udEUcSuZzwwlu8NawS\nwkxdIcocUdVhF946jBNYYmoiCieZGsdhXjLRCTkdwr6HBOERQiIExB4i61gcHHF4/8HjfmoaGhoa\nfuMw1nIwmXAwmfD23Tu8+NqrCGBzbchzl6/y1MXL7KwP2ex12FnrghdYb8J6IEpQUUQkFRZFVdXL\nTC+L9Y4okstm+bBA8MsA/UgppFSAII5SalcTqZhWqwdKAW2e+cp3uPr9P2Lz24L+3/4tP3nx/+Pa\n1lN0+32OFwX3Hx5x984+nbgN0xyzmHDjpXd47bVbVJMh672rXHnuIt/55/+UB//3LpN5zXCrw3eu\nX+YrKqJTjqiwvDE+YvfhHTz/cMxLQ0PD46cRvho+U1YiWBzHZFlGHMdIKUOV/ccIGVynn3MmkAkR\nbIrT6ZR79+4xnUzp9wan+WAh4J6P5YqJpQ0SwJia119/mdls9ut8yA0NDQ0N5/DOMRuPeX8xpy4W\nfOt3vk3n6g7dTkYUSYQCrMFbg7MGvMPjsLrGlCWi0OAFggijBRaJESmVS1howeGiYG8mOC5jKtrh\nGOMdEocSAiUkiRTE0vPw/k2MaSZ+GxoaGj4PPLA/PmF/fMLfvPEavXabUa/H5qDPtY1Nrm5tcmVz\ng2G3R7/TppVlVFaTlyV1VeOtIVICSSjOchaUCo4ScCgpTjMj43hlg4RJlXNiPBtf/TbDF75BhaTV\nzcg6bbqDPpcuXiFOBhwdFdy+9YA7N/co7s/50e4dZvd3qU8KdNLhynNPsD66wEYU8fwTT/Hgm1/j\nB3/zQ8aL+2j/HP31Z+ktFE5PyO/cparzx/yMNzQ0fFoa4avh18JKAFNKEccxaZqSpilKBbviahLM\ne8GZJrYSwXz4z3uKsuTBg4ccn5ywvb1DHCesRLKPBup/dLJsPD7hpZd+ijH683zoDQ0NDQ2A0Yab\n733Ag937vHHtMl/71gs8/fyTbG2v44SDpViFdzhrsFWNrz3CRngf4UXIfNROUPqUhU1YaEnlY2ws\nIW2BK7G6IphlDMZ5RJTgkpRFOWU8Pn7cT0NDQ0PDbyUemOY50zzn1t4er968RRrH9FotNgd9NvsD\nLm9tcGXzAtuDNTIVobzFOY2Xgkh44iSi3WqTJBnOWpw1lFWJ9wKl4uAOmU+4PS0YPf9Nrv/uHyCG\n28yMQlhY67V54tolTFXxF3/2lxw+OOZkbDC55V79AHnygFYsSfo9tD7h3u2/Rcz22KgucWXzKl95\n6in+6u/+iv2T++yOjzjaiOgOtnDHltduv8e0WDzup7mhoeFT0ghfDb9WrLVYaynLkiiK6Ha79Pv9\nU8viR1sgw9fC1z1BQNvf22fv4R5Xr1yj34+WTY48cvuVmLb6HODdd9/mrbfe+Fwfb0NDQ0PDoxR5\nwbtvv8cH791kc2vE1775Fb73e19jrd9FeIezFqM1VnuET8KmR1VRVxWlcZRGMHeeuYU67tPpr7PT\nFiStCcdHB+STEzAF3kNtHUYmWJuQHx1Slc1ufENDQ8MXgdoYamOYFQX3j8OmhBQh4zeJIp7Zuch3\nn7jG169eZdjvIRAkSYSSDudyIhXhohjq0AZpjab2mhMHO9/+Pf7gv/vXaNlmOqvpeMnx/Yfce/1d\njm/u8sFPb/Du7QdM5uBkl4yE7VRx7dJVkl4bW87pu5xOPMHmN3nz/YfcOn6LeebJoi5lqTkoJ7w/\n2WXj6hVMmvDO0S7GNcH2DQ1fFhrhq+FzwxjDeDxmNpvR6/UesUKuRCu7bEYRAryzeK+YTMbcvn2b\nZ599jm63d5rx5b0PY9AfEdCEENR1zX/4D3/WhNo3NDQ0fEGwxvLw/j4P7+/z0x+9xHe+9wJf/eqT\nDPodlJTB1lhbilnBfHzMYjajrC2Vj8l9Sk4H1VWMWjusr29gXcb0JEf6HIELHfexpJYJRVFRHN2D\nJnuloaGh4QuLW2aXFHXN6x/e5vUPb5NEEZdHI567dInLoxEX1tZY77QZdLqoNEPYgpYSONrkNWRX\nL/P8H/5zCtmlmFQ8eO8BN156m7d/9gYPP/wQnxd44+nHbVQnxeqSqJ4Q2zat9lNc3nkae+ce260W\nT31vg/38mP0HM/LKcVLVaBtRVzm7x7fZbre5MIoxcs7NaZMf2dDwZaIRvho+d6y1jMdjlFKkaUqW\nZbTb7Y+IYGEHCO/J8wW3b99k9949hmtDkjT7WLbXebz3vPXWz3jjjdc+3wfW0NDQ0PCpmE7n/PDF\nn/DaK29z7YkdnnziMqPRFkbD5PCI+fiYusixTmBERkmLqdHoiSOvY1r9OYu8Yj6eYSuDAlARWaeP\nj1Nm99/GVfPH/TAbGhoaGn5JamO4ubfHzb09YqUYtNsM2m02en12NjZ4cnONC/0+7dY60caT7Hz7\n9xHZBj/7ybu8/dpbPHjnFh/e2mO2qFAyJU5S4sjTX19nlGZUe3cxVY7yEXsnc7Q4YnQ8pZzeJr5i\nefaZq7R1l1Ks0Ru1eegNu7d/xvF4l/1Om5v7bfZne3y4f+9xP1UNDQ2/BI3w1fDYsNaS5zlFUTCZ\nTGi1WgwGg3ONkGEE2lnL/d173Lp1k8uXL7GxsYUxZ5NeHxXAqqrkP/2n/4f5vAm1b2hoaPgic3Iy\nZTye8fZbNxkMBlzY3qKdKJQztNOIJGlhSVmYhMVEczTe53hcEKU9rANT1yhvUVhkGtFOU1q9HuM3\nPgDfWFAaGhoavsxoazmczTiczbi5t4e8+QGRkqy12ww6fS5fe4ZvCEeRv8yP/8u7VLMFPSRRNATR\nYsEJLRx0N+hc2OaJ4Ygay1TPmCDYnezx0Dq+ohSxybl9uM/Os1cppCKqFZfb17g2OmTv7ocUlUXF\n8ODuLV7+4DWKqrHSNzR8mWiEr4bHjvceay3z+ZzFYkGn06HT6ZCmGSIVSBFxcjLmgw/e4/r1J+l2\nugip8M7h3KOB9t57dnfv8eqrLz/Oh9TQ0NDQ8Cnx3lNVmv39Q/b3D2lnKdevbLE5usjG+jrWx5ws\nLLNyTiIq8mlBpWZIGSM8IAQWh0ZR5VPq6V2qycPH/bAaGhoaGj5DPGCdwzrH3mTK3mTKu/fv8aNX\nfgworFX0OzvY4TUGnRgrHVIfkeiakpiDgyltmTCKuqx1NsnrCd6NqY3ipLPDxrWnyTc7PBAZVVbi\np2Mu15qr7RHvxgPm+ZiidvSF4s6dWz/XedLQ0PDFpBG+Gr5QeO+Zz+fkeU6SJLRabdqtDu12l93d\ne/z/7L1pkyTXlab3nHuvb7HkXpW1L1gKG7ES4N4kh72PNBqbkZn0VaZv+hUj/R3pgzRj1iO1ZtTT\nzZ5psptNokECJFAAiAIKS6HW3CLCl7vow3WvDNSw2dwKVQXcp8wtojIiPTwyI/34fc8573nzzTfZ\n2jrC2to6AQjBE6c8ym3Pr1df/TEff/zhPX4niUQikfhNmNcNP3v7A67d3OfcqWMc2drAeoXvZhha\nqlwhWoG3BA9GNI7AorHsXquxt97uY0MikUgkPus09eL2/Zs7u9zceZ3MjDD5KoXK8GaFrrU0bUch\nC9pFzgpH0JOccfcxhJoWQ3n0AiYLtLcCo9EGTGZk3TWm6hYbNOzP9nnt55fwRx7i6v6Ne/iOE4nE\nb0ISvhL3Jd576rqmrmt2d3co8hIIbG5ucfr0GfLeGwxYmuwI+/v7/O3f/hfatr2HR59IJBKJ3wbn\nPR/f2OHarV3yLKPIc6YrU4ScyhRoDd4pQgBlMqwoQnDUBzt0B9fv9eEnEolE4h7S2TmdnbMAdlGI\nvIHJRrT1GTblGNvVNlrllJMMpSZ0Hm51mu22YXx9F6NGqNoyOl6zXgVK7VFNiwuKK4tddhY79/ot\nJhKJX5MkfCXue7z3LOo5b771Ordu3aBpa77znT/gscceZzSaAAqIdV9vv3WR11778T093kQikUj8\nbvA+UDctddOydzCjKEsmkxV0UWEwiFaIDihlAEW7uwM+TfNNJBKJRCTgCcHTtrt8cOUnfMBPMCpn\nXK5QjteQ7AhKn2Qkz3FqcgrZv0HWXmUyOUk+yTlx9gRn3jzLzZ0ZIRiu71znYL57r99WIpH4NUnC\nV+KB4vqNa/zZn/1bXnnlRzz99DM8//yLPPPMFzl69BgAf/Xd/4+dnVv3+CgTiUQi8bsmhEC9WNDU\nTZwIXBSMxxOM0ogSQlvT1WkxkkgkEolfjvUtu/Pr7M6vg7yDUgU717/L5fdOc2K8wrYueeTIIyze\nfYwj+hhr+QqTap1bHj74+G3arr7XbyGRSPyaJOEr8cBhreXSpXe4fPk9/uIv/iNbW0f54z/+b3jp\npa/xve/99b0+vEQikUjcRULw1PWCpl6wf7BPNZ4x3ThOfXAT1zX3+vASiUQi8SARHN7NmS/mXLx8\njTdF0KIo3/wu1Y8qtla3OL9xnirbpDJTbt364F4fcSKR+A2QB2UihYg8GAea+J0hQKbg2Fh4el34\n/seeG5/7Nc2/udcHkEjcB/xv9/oAfiW0Vpw9voX3gVt7MxZNh3MO7z0poCV+e1I8SCQelHiQuD8Q\nQClFnmmOb67y2NmjXProBm+8exX/gKyJfzEpHiQSIfyv8sseTxVfifsOAcYZHB8pTo41G5WwngsP\nrXXsXvXYBzkuJRKJzw1GK0ZVRm4yThzdom0tu3v77M7mzJuGuulw3vNAX2snEolEInGfk2lNkWeM\nq5y1ScWpI+scP7rGuDTUbcfb71+nte5eH2YikbiLJOErcV+hBZ48kvPEVsHYBLS32CAsGstGJowN\n7Hb3+igTiUTin2ZUZhRGU5U5VWEYGU2lYFxmHDR1FMDqjs56nItbIpFIJBKJ3x4ByjxjWhVMqpLJ\nqKIoSxQOHzxN2zGuMrY3V6jKjPYgCV+JxGeZJHwl7jkCFAY2SsUXjmacWxMmuTCdFMzrBc4bZgtF\nXsKJec3uzRSYEonE/c+0LMhEUeaaQgMedGZorEY5RZZn5B6MCYAQgqezjrZ1eO9SJVgikUgkEr8G\nIqBEGJcFa+OKMjcYpVBKYbRBa4NzUNcde/sHjKqM7c011qdjdg+SYX0i8VkmCV+Je8okF86sGM6u\nKo5MM2znmC8cEiyOQAhQZMJ4rFkRxbdKzYfzA3brVBmRSCTuX3KjWR2NGJcV46oiV4qmnRO8w7oO\nryAQrQiUUv1thtaaKhesszTO4ZwjeAg+EEJqi0wkEolEYhmtFZnRFJmhyDRVnpFpjVYKrTUSwLuA\ncx7bWVACOqO1nvmiYX1lhWcunOHSRzfu9VtJJBJ3kSR8Je4JhYZHNzNeOFWxWRV43+IJdLlib9+x\nN/fUjacoNEEcSgQfPKMMvnhM858uJXPoRCJx/1LkhulKRTEuycoSFaDxM2ZNw6Ku6Qh4Ty9kBZxz\nGGMIISAERCuKTCNKMKLJtMF7z2y+oKlbrEuVr4lEIpH4fKJEqIqMUW4oipy8yFAiMZ0UwPtACEII\nAgFCCDhrCUCW50hmyPKM/f0FB5OGh05uMxmVHMxT1Vci8VklCV+JT5XKwKmp4osnM86tFyiTIxJQ\nWcZs3tG0LRvrI/b2LYumY9FZilaTqUBeKCTAyZWMrZHj2jxVfSUSifuT8aggqzJUmWGqEtd0HDQN\ns67DeoeSKGoFwHuPiML7KOcHFS/SA4KIYIxmOh5TjQoODubMZnPa1lLXDU3b4X06FyYSiUTis40S\nITOaI6tj1iYVWiQKWoATwVoHfdwU8XGCcl8mLQE80V4lKEAcRabJlGI2XzAdVzzz6Bn+5pWL9+4N\nJhKJu0oSvhKfCoWGh1Y1z24bTq8JhVKYTIERnPNIgNVxSfBQe89kJUPVMF9Y9mqLEmEUhLWxZqIc\nD29obi48LpV9JRKJ+5DJZERQGaINTdOxt7PLrGmonaUFOu/xAUQJeAHR+BCQpV7GKIjFC3bnLHUT\nsLYjywxKKUQJZVVgfUfw4KynaztsMslPJBKJxAOOEiE3ilGRsTIqObI2YWM6JiAsmoa2c1jvEe+x\nNtqjBAKq/35PAOcRpZHeUkBCAOcAz6KuKaYV1nlmiwWPnz/JD3/2c5rW3rP3nEgk7h5J+ErcVUoD\np1c0T25oTk8VK7lQaIXWKlY0BIsXwbYdplCsjErsfEHd1EyqiiIzHMwduwct+3OHd1Dmwrn1jLdu\nWq7Pk/KVSCTuLzJjKMoR2pRo0bjOM9uf01pH4zyNC7gQsF2c5Ohj2VfMUocAXjBKoQMoNEoUXdfh\ng8P7gLWOrrMEHxAFRZ5T9J4mXduwmC1YtJbOBpxPvmCJRCKReHAoMs2R1QlHVsesTwpGmcIohSiN\nDWB9iDZdSggI3gtKAlrr6B/gA0g0uvdyx85DIPiAV9B0LXWjyY1iNpuzsrLC9sYq711JXl+JxGeR\nJHwl7gpa4OxGyUunJ2xlDZW2KITOOZQNZMoSMNRNwJgCQdHUDWIU05EhU4qDRYP3gUmVU5iS63sN\nO/OAmVtWpoZz6znX5829fquJRCLxCcoqR4xCG01hCpq2JtiAt4Hgo8lu9B8J0XvEAwREBELAh4AW\ngwDiwHcenMHagA+erutwziGiCD6glSG4AMFhQmBUGKoyw4mibR3WOtrO0bYWn1SwRCKRSNxnKBFW\nJxXPPHSSM5tTVscFWivarmPRNBzM5nTWYq3DhpgkisKXwqtAjsL5gHMB34+OiRaagYCLfY7QWwiA\nc0LrPfthjlGggmM6nXBsa433r968bT2QSCQ+OyThK/E7pdBwaqPg6ZNjTq9mjEyO6wxiFwQsQQyL\nEDDOkSkolCZ4h9Ya56HpLIUWVqoCfGBvbtnfn1PqwLHNEXULe3s1uzPHVh4YZzDr7vW7TiQSiYgI\nVKMCnQk6U+iiQHd9qwUKZ1tCiMLXof+I9LcBtMJ5H9WwELPW1nkkeEIXcMHi+uqwMKhmIbZzWBdb\nPDQah2CUphznaKUAwftAWzcs2o6mczSdTSb5iUQikfjU0UpRFRmbKxNObq3z9EMnuXB6myIz7B/s\nc/PWLaz3ZMbcTvLMmxYfwHYuxrUQJx57fO+LGf9Fh3uJnl59xZcQq6uDD9BHSjFCay3zRUORaRaL\nmqPrKxRZxqJp79nPJpFI3B2S8JX4nZApYaPUnFkVnj835uhqRQiKpm3IigwrFa6dk2mH88KBFUYE\n8lJhlGCtZWQM1guNddjQISKMSgMCXW0JdceoVGRrhnkrWBd4/IjiHz6qk9dX4gFF/wrPScLEg4TW\nhjzPUaLIswwh4L3DB6jbjra1OALWxUosgiASvUe89/GyPQRQRHHLe8AhAYJzcRiIilfyAYeSgIjv\nRTBBK4UxBieCaBO9ToLHGENZGVRVgFKIMXgP87rh+s4+t/b2o+CWSCQSicRdQICVccWxjTUeO3WM\nC6ePcWJzjbXJiIBn0dQ4Z8nznKosmc0XdN4hRAuB3EHwgrNg++t+Lx6tNN4HxMUEUh8i+6TP4auH\nEGOl9w7lBZEMCFjnaZqOuq6ZVjmTKk/CVyLxGSQJX4nfmkmueGKrYq1SGCy7ew2TQrM6HuO9xoWW\nojJk01Xmu7tkGqwSXBDmjSPLBSUg3jEymv3G0bYelCITT2k0xdSwN2+hdUgIrE8Litxw4qjmvb2O\nawdJHEg8KAiHgtfy/V+E658z3E8K7/2OyTRZFseqG63jePV+8pR1FusdjljtJQj0olecQnVY/TVU\ndQ0oFQUuQkChUCJobeL/g/Rm92DyDK0UIUicgKUN3nmUKBTxebrIKcqCSVEyLccUWc7+oubSlStc\nuvIxddNSN01q9UgkEonE74RjG2t8/QsX+OKFczx0/CjjIicAnY2Tjl1fAT2vFygRptMpAaHZ3cN2\nnuCETGV4rch0wLkO73xfKC0ErXsze8GHQAC06iclh2j4pZSOsdi62AIZAkEpPNB0HU3XsTEasToZ\ncW3n4F7+uBKJxF0gCV+J34jCKFZLw/FJxslphhaPJmCDYd56rt2q0cSxw23T4l0sSw6qpKnn5JnC\noQje4mtHphROoCyElTKnsZ791qGCi6XMSlibFnjnsU6oFy3eWpQ2fOF4wXffnpMGmSXufwTIiGX2\nw5YRxS/hUOSKVT7x1vb31dL/E/crRZ6jtUErQfCE4CE4XLCIhmCjx9chse1CRAg6oJRGLDB4gAn4\n4CB4NILWglFCpjVaaUQUpjf0FQGC4PB4cQgGlEGjUUrhgyMYiR83o6hGI1bKERJAjSueufAwzz51\nAR9gb3/G+x9+xI3dPXZncw5mc5o29ZUnEolE4pejRKiKnGOba1w4dYyvPPEwT5w9QZXnZEZDiK33\ngUDQGkQwRlBao41mPp8jwLSs8K1nL9TYrib4QK4NajwmMKdbLGKrP4JWQi4GpWOSaRgco0RuG90j\n6nbvo/ceZx0qE3yAtrMs6g43cZw7vslb71+9lz/CRCJxF0jCV+LXItPC2Y0Rp9ZKVkuDEQCPDh7j\nPS54OgvzueNKOGBjOiIzhnrh6Lo5ZWFogqaZNZRFjvOxosuFgJE+K0PAKKgyRdMFjBHafsE/Kguc\n18zqQNt2eNewZWCzFK6mCY+J+5I7q7uyfjNA3m9Z/7ghilyOKHC1S7ddv0ESv+5PlJLY3ijgfEfb\n1Bgv1HUNBJRWiIpjpuI1uLpdVRUARKG1JjgfWx2DRinBBYdWghEh15rcGIxSZFqTmYzMZFjrYmLA\nWlABIypWgYWA1gYhoDJNUWTkZUlZluQmQwJ4F6sJy7KgqAq2j2zh2o4nzp7AZAYnius3dnjr3ctc\nfPcyH3x8LVWDJRKJROI2SoTpuOLo2gpPPXSapx8+wyMnt9lem6JEYlyj99gKoU/zxSosFQL08S1k\nOeSOJoCYwGRU4dE45wl1i5dAZgzjcYUoYdG2tF2sGFMCRgTEIERbATxRYPOeICFWPyuJQ2W8JxC1\nsyDCbD5ntqg4vb1JnmnaLnWTJBKfJZLwlfiVObpS8s+fO8vRkWY2r6kbRxcc1nUYAploNGA7T9MI\nbSPshIb1aYEyht1FR2cXjErNbu1RnSMz4EI/chgAQRPwdIxMgQqKurGIc3gj7O7PMHlBVWiU93gC\nznpOjBTX5i41giXuI5bbGJeruwqgAkb9/QlQ9o8NdEDdbzNg3m9CFMEgiV/3H0opjNF455kvLAeL\nmlzlOOfw0X739lRFERUv5HuxPwAGjQy+JT6gxCNBkyNkWsgzRVVWlHmJ6RMEeVYQfKAJHuuJ49yF\nmEHXBpFYeeslUI0008kK08mUIsvBeZq2QYsiLwtWpmPWNtbQQMCzvb7GsePHWVtdwTpL29TYruON\nty/zlz98he+98iqzRX2PftqJRCKRuB84d+woLz7xEM89do7Hz55gparQOrbxB+cJ3iNaLRnRE7M9\nIrfb8GOBs8KIosjyGAsD+BBw6D52HrBoGtq6wXuP0Sp2jCgXH+/FNYWAipYAyvvoqRkc3sXWRqUU\noqP0ppVClCL0z2sWHasT4bEzx/nJ2+/fk59nIpG4OyThK/FLGZcZDx9f46tPnOSlh4+iEWYHC3Z2\nD9jbnzFvWloLeE2hYVrEnvpZXbM3szRNYG/WUY4Mxmj2Z47gQWlD2zgmhQFjcM6ilGZ/0VDmGskz\nbGcpsgxlCugUWI/WikXb0Tkoi75KxnQ8pgsuz2puLFK/Y+J+YKjgipODDtsbM6LgtdZvq/3tCCQj\n9sI5CB1R6NoHbgJ7/f29fn9N/zpJ/Lqf0FpQ2qF0IC9yWmvZm+/SLOaEtkMFeiP7mEX2PqDU4PGl\nkaBw1t9uExcRtCiy3FDkmiLXlFneG9grikyTKY1tO4xo9KgEVPQPU7ECzXuPtQ5jhLVxxdrqhCzP\n0UrTLBySafLSMJmMWZmOEedwzrMyGnFq+zjjyRjbWdquxnYtPgSefuIRvv7lF1k0Da+++XNeef1N\n3rr0Hpc/usLBfMGiaels+mwmfhXkn3g8pbMSifuNUZFz6ugWT58/zVeeusAjJ48xHheo2LrxieeK\n0AtLAaSv+iIgSO9H2ftsheh9Gf0ro1emDwEfwNNifUHwjlZdY+kAACAASURBVCwztNYxrxvqzpJp\nHf28tKKzjs7F6mchxkAlKvp5aY1SgTjDpffelIA4TyYGXBTBurqjntU8dfY4P7v0ITb5qCTuGbJ0\nq+/42qAe/ypViSmODiThK/ELUSI8+9A2v//8eR47tc6R1YJMKwKeyVhTFYoyE3Z2D5g3gcY6vPc0\nbWBzpWRrdcz+bMG1mzN2F5bF3JJlcULjzb2GSWEw2nDzoGNzoyDXI7rO4nzgYN5S+IzMeDKjUV7o\nOs/COkJwjDKhttEfQOmA0YqtieKpo47vvtv8028ukbhrKOJpdfDyyjhsZzT9tgkcAU6AWoVJCVMV\ni75yYkFXDRx42Gsg7AFXgGv9awixPnK4GEsCw/1CnkeBvywz8szgOsu8bQmdiwb0IbY4GmNwLqCN\nQOgnNIY4mt1ohdEKrQRtdJxklWnAoUVB6DcxBFEorZiMq14siy203hMv9H2Hc47OdggB6TyzvT20\n0eR5QZGXjMsVqqKgyDOUCxilWFlbYXU8wWjF/t4egYALFqUVq2tTxqMxCk1uxnz7pRf4+gvPcvnD\nD7l64wY392f8/IOPuPjzd/n5ex9w9cbNe/gbSdyfDJPWhov5XyR+eeLF+vK5LpFI3AuUUkyqkuMb\na3zhobM8/+hZnjh7imMb62glOOewwWKjvTxAFLSGlsbQ/5X3w15EQhzeIiBEccoH13/P4WsaY8h7\no3qPQitF5TxNZynKltY66qZl0bZ0ztF1lrptmdU1nXNximOIglaUCQRrPb7fP3jwDhNgMpqQ5zoO\n4GpailHBkdUpH93c/dR/3onPO4r/Oj7eGSsH0Ws5nt7JEDuH4VhJAEvCV+K/4qHj6/zLrzzOV548\nxbjKY7tNb7YdvDCZ5OS5RmswWtjZFWbNEHQ8N/cbCBnrKyOKzJDfOuDGzqz36dJYC7PgKDNwNqD3\nGzbXDD7ESY6Ipms7FB7JC7QExlUGkjGbL8B5xoWh8556Hg3utQo8edTws2sd1+bpIjlxLzDEADR4\nduXElsYxUdUa2htHwMMwGsNZBWeBU8Tir4KoY90EPlLwbgWXSjiY8MlWyCGAtaRpj/cPRZ5FvxIR\nmrrBNl38VARwIYDq2w6D4L0jBIl57/4cq0WTG0Wex8y00RqTGZSAtwFRChGDVgVGZWgJlJlmVGhy\nHdtFMp0TgqLtLG3j8Zroo2hDNNbHI14heZw6qcUwHk0pcs2oyhhVBXmeEULLvO4IXqiqipXRhGpS\nkY+iB5lvOhQa7xV107CxNuXRh88wHU9prWVnf5+r12/x2sW3+PO//j7ff/knWJf8Uj7fLGetzdLt\nUB2r+GQGu7vj/5+myH/n5XFKMCQ+fygRHj19nOcffYgvP/koT50/w7QqkaVrjhCiSb1CowQcvjfN\nGjY+cYkyVDkTJA6v6gWypR3e/noc2iLRP9NoREqsc5jMkOcZrXVkeU7edtgQ6DrLbDEnAPOmoW1b\nvPcEVNzEIBpUcCgBjVDlOUdWNzh+5AhVkdPWc3Z3b+Drhu3VMVdu7d5ZxJZI/Jb8KvKLIcbLIaE+\ndJAs0/HJ5NDyfu3Scw47DT7vsSwJXwkAMqN5+MQWX3vqHC9eOMHRtRGZFoSYffE+oFUMWIIwGWdo\nIFcakYDeF+q6pSFgveLGzDFv5kzynCPTCnGeawct1kVTyrp1uNChEfYXHqXnrI4LnPf4oAldoLUa\n5i1ZpvAEyiInyybM6xaco8o0pTE0FurGYjLFl89V/L9vzGjT+irxqTIEp6G6qwSmHLYzrhO9vEag\nStgYwxeA54GnPdkjLflmi2SB0AndrYz27QJ+ouBlgdfG8PGZvoWgW9qWBbDEvcRoTZ6VEIRFXeM6\nD0HROIfGIwRssH0GOlZ3aa0ICIhHiwcJiGRoEYwxZJlBmzitSjKDlpxMlxiVU+QZ40ozHQmTUmEM\njPKc3BQQNJ0LtK2lsxbXOYJVHMwXiNHo3KBEo3RGVmZxaqSofsx7g9BBLhTFiOl4laoak+cF4PDt\nHNGCyQxdY5nPaoLWrK6vsjIZM8pzyswwrgqOHdnkuccf4X/6V/8t127e4t9/92/487/+Hpc//Jhb\ne/ss6obO2k8uehKfUYbhHcvnSsNhG/iQzR6qvByHwz1s/3XhcNrt3Tq+ZYZMuueTiQfLoVD3y1he\nkKTPeOLBYDoqOXlkk+cunOdrTz/OIyeOs7UyxfSeXd776FsZewZjaz2CUhBE9cWaHh8C4sJhBRjc\nPtdLP1kx+HB7P0oE31eEDfsNIZrSE0I0rjcakbgWGaq4nPdorXEIbdfFATLEafA+BFxncQ6sAxkm\nJwdBBU+uFBuTFc4cO87p7WNkWjGf76OcZW+2w9akosgMdfv5FgsSvy3D1PY7h13dWaU1JHoMMRM+\n+AJrYszUdzzPEa1Phhi1vL9fNCjLcnfj6P1PEr4+52RGc/b4Ft949lGef/QUR6Ylujdh7qxHTAxG\nSqL5oxKiGOYDo6pAKxDl0AJ7IkCHcoK1sQqsXszIlKPIDNPK0exb0Bo0zDpPrqDzgTCLUxvHI4MR\njdXxIrfpLN5btFKorGWcFYgY2hq869BGM6509AyzluMripNrhndupCCV+LQYAtggeo2JYtcR4Ciw\nDdkYpjmMJRZ8nQW+DeabLccff5eH19/ktLpMxYKakg/9Cd568lHef+w8druMu/z+BK6e4dD03hLF\nr6Fa4vMZxO4XRkWBDgqxgc53iDIoUbjgCHiUisbzBRobBGs7nPNoo/uEQvQ8ib0fmkzl5GKwzuIR\nyqKgyidkqqDIDONRycrIMCphlAcyHaiynDIvEJXhvcI6aDtH27Q0dUNRFtggBCWIURRVAVnAGUfQ\nOSrTmCJjNCoYlRlVVaGUwQNNNHPES7xoaroaayEvR6yurDAtYzJEgkfRTyxRgvIKQXF0c5P/+V//\nd/yPf/qHXP7wCm++9wGvXnyLn771Nu988BFXb9ziYDa/p7/DxN1iuRp2mGZb9lux9PVBSGr7bcFh\n7/ed4v7v6nx3Z0vJ8nEMX1tuE/FLjw/Var9o8RI4zKw7UmVu4n5FiVAVOae3j/DCYw/zpScf5amH\nTrO1toLppx96528LVNKLU6r35wIIEkARpzMG8IE4Mfgfec3buQ6J+4v7ifv03t9+DZaEsEH8Eh09\nLrXX/TRkwfqA9SFOL5YCgqPzls65+NjQ9thr1gZBi5ChmBQj1iZTVkcjFIFcAvV0QtvOWasKxkWW\nhK/Eb8GQ2FlO8AxJoDsruIZYUXA4CGvc31Ycil+DiLUgDsDy/fOXZZ1B7BqGZDXENcNyLP38rRuS\n8PU55uFT23zzhSd46cnzrE8rCB5xFrwjBIt3YANoE9DGQD+XTCEoFSu3jIE8y6J5JArCgkXboERA\na1zXMG8W+HlHkECuhJlzgGCdxgXIBGwNEMhyyFTAmAJrG4IorI/+AYUIsCATIDe0raGpLabwVEVO\nNcrpfOD8RsflmxabrjETnwpDQMuIgWmVKHidBY7BVg7nBc4A28AKURP7Q8tzT/wt3zR/xUv8gEd4\niyn7zBjzjjrPD9Zf4rtf/BbfX/sqwVfR235/AotjRJP7g/41oyDxeQxg9wsiQlmW8WreBrTWBAGT\na5R4rLW9Ub0QNGRoOu1wzkJw6CCI1ihRaK3J8xwRhXcCymCKknxckmU5WdBURcHaypjVcc7KOKPM\nApmG0hSUeQ4h4IPQtYGmdXTVJHooOuicxwWHZAqv4vGIUkimIctReYXzQt2ADx3BdwgNIobgAm3X\nkBeKsipZXZ0wXV0lU0KuPEpC3DeCqN7LxfVNMQG8QJHlXDh/jkfOnef3v/Yidbvg8kcf88Y7H/Cj\nV9/g7378Km+/ezmZ439mGC7w75xou0a8oB+2nENBabhQP+BwqMcBn6ywGgSp34blc/ewCBkWFtkd\nzx0qa1sOha2cQ9FsuJy2S7dDG0rLYXIifa4T9wdlnnH2+DbPPfoQ33zuKZ586AzrkxFFnvWVyR7v\nY2XIIESF262HCt8/J+Y5luu6Diu6DkUtGAzlo4C2pHwRPvE8pRQ6BLzWt83ulQwdKAERhSjBiKbI\nc0RpGtuBtb1QpukyQ5nnLNqOpul6y5ZACB7XRduATMe2faxHQhTtMg2SGaqyYDyqqF3Dxrjkxv7i\nU/qtJD5bLA+5GpLjgxXKL4ozQ4wZE7tE1omLhnUO/VCGtsVB9LpJ/HsaL+13mAw/67d9YLe/vyy2\n/VNVy/BZi1lJ+PqckRnNsa01/uCrz/DSkw+zPh3Hj32wBK8QZWL+MsQSY+c9wcWgFsuKPUocWik8\ngtaGshJW16Z4RzRvnsGitXgfW3m0UXR1w2JeY8Sj/OEI4dYHggjKBXxwZLmwOtIoAzrL6ZoW5x0S\nAm0b8NZh8oAGqqIkOKGzHUjXV1wEzm+U/LhquZ68vhJ3nSGoDYu6CbAFnAFzHM7l8AzwHMiTjvxM\ng151iA5cOPcq/0L/O/60+b95/u2fYV7xMX6twjNfuMgjT7zFRnGT8LDwg298A/d+Bu8LvLlOXDTe\n5DCLk7iXGK3j5XsIeBdiO4ZWZFrQeUE999StJSAEAa00eZbhfCA4F6ddAcEIymhQCo9CKYMYwWQ5\nIhqlNUVWMF1ZoRqVTFcrNqYluY7j2zUFWgWUimPe9VTj0TRO8M6hjY5tIAKOENshrUdEoURhdAZB\n0zQdHbC/36BUzPZrbRiPxqxM11hZnTAelygDeI9SglbxYsr5uD9cbOkMEn2bhmo2pUy/iPKUZc5o\nlLOxusZzTzzFv/jOP+P6zi5vv3eZ//yDl/nej/6BDz6+ys2d3eQP9kAyVE8tnx9XiefITWAD9Cro\n0WHhVSCWi7ga3C5wFbjRb/v9/uYctnr/JnH+zrbLoepsvHR/WGAYDrPkzdKmOJxIspy5H1pQhue1\nS7ct//gUy6GdM5G4O4gIk6ri+NYGLzz2CF/9wuM8df4MJ45sRh/JEBe4ob/+D/h+OxSbYjWXJygg\nCBJUrPJCLRnTL4tf0oti8X4UruLzAfxSm/snaicFlKhYDS1x+qNTGu9c9Md0PlYUi2CMIgzLWSeI\nKKoyYK1jVrdo3SAqFiEPL+f7Y3XBM5vPmc8XWOcoi4yms1jboYyiKnOOb6zw1pVb6a8z8Wuy3Maf\nExM+BZ+s4BriDMRYVhPjW0FMoB8FfRQKE7Wvcb/bDphVsLsBi6Px201xGIo6+jja/II4urd0jB2H\nVWh3GucPsSzj0H7gwScJX58TyiLj1NFNXvrCI3zthcc5urmKhIDcrt4PBPFx5LAN4D2iABTOO0Lj\nUb2ZvdIKawM+eDIDuQmMx0Uf9DzKKMy8Zl7XdD6glGE8gSKDvb0FdWdpg0JMILSKzgdEHLYTru8F\njFGYTChMRp5pFvU8mkP7uFBTVsgN6KylLAVlFd5DPZuT5zln1kZ87Xzgz366i0uRKnHXGALakLUp\niZHpGNCLXl8Dvg2jr+5w7szbPFpdZEuuo3EYLL/f/AXP/s3rmP/DU38f9ndhPIbRlzxP/g9v4b5l\n+Kg4zuVHzvDBkw/BawLv57CYcrjoGhZmcfJf4tNHaxV9eiXgQ6DzjgJFrhUr4wmNzrl6c5e5bfEa\ntO9QRshcbNEQUbfbOlCCH07MuZAXBVmeUxQF46pipRqxOh0zrXKKIkMZRV5ojGQYSkym0BqyDIxR\noAweTXAWrTVKSbz4D4EQYlulC8SKLg+gCMwxOiegolm/itMlyzKnKktyk6FV9HRRWuLwk9hzEkUv\ngCC9h1lsfVH96HrvY8uM0nK7zUX6iuFRVXKqLDl9/Djf/vKXqeuWV352kb9/9Sf85I03uPjzS1y5\nfoPZfJEqwu57hovowatkTBS8toBToDZhrYJjEr+0yuFU212BaxVcKWFvBdyQ6R4m2y6LXb+u8LUs\neg0tl6P++Kb9gQxDSJbbSuYcZs73+69POBxeki09tyZWqA3b8L2/iGFBoZbup6Rd4neDELsyHj51\ngpeefIwXH7/A42fPsLk6pSri4JSAv+2nBTEM0Z+3h2QNEkWu4D0SBEEheESZ6GDpo0gW/+pdbKcX\n1e83Hsvh/tVtEUqpGDOHs4X0U44FQZbig1IKLZ6A4MPgK6b6P5uAkph8Uc5DXzlttCbT0QtM9b5g\nPoReoxZsdNBn92Cfm7s7nDx+hDGGuqtBQ1VVHDQzTh9ZxWhF59LfZeJO/qkJxUOMqTiML6sc+v8O\n/l3Dub8hClMLkIdhdQynFZwDThDzRVn/tFvAh8C7RXzZo/1LDI/vCnxcHsZRu/x6y/F5+P+yb+XQ\nRWI5bL8cKs0e7OmQSfj6jCMC509u8wdfeYbnnjjP5toKWmsk+LjoCAEJAS+K4Iey5FjWHPCIOJyL\n2RFnPc4FfAa5FhBF03m8tQiCyYTNIxPKUUGxa9jbE/ZYUNcO61vyQrO2OqINc+bzWMWllaN2cdpK\njqfp4OaeiwutqZAVhkxG7O/toyV6ixkUwTmMswTx5HmOEoMTCN6ilPDMMcNrHxnevpkWR4m7wXL5\n8vIExzXgOBwponH9P4OVf/Ux35h+l99T/5nn+AeO8yEZlhts8PT1V8n/vePW/w5/eRPeD3BU4Pc+\ngBNF4AvnL/LMoz/mextf5cr507ijOYw1LIZAOmSUfpVy5cTdQHoj+gA4CYgRREPXZ6WNxKqvaV7g\nnGNuOxrvyHRsgxQDBIMogzYKrU1sE9SgCqEYZ4zKgmk1YnU0YWM6ZnU6YVrljHLNqNSMy5xSl/EC\nX8cJWDGfEYd+0I+ON0ohQUPQGCB4UEZjffTk0joDrQlSkBmD0vp2FU6uM7RSmCxDS7+QGNpTbotX\n0Q+y19UA0BJi1j4E8A4VQPl4jvdeYj2BHBb7HBobB4q84EvPPM2XnnmS2XzGzb1dXnvzbf7ulVf5\nh9ff4NLlD7h6/cYDfAn2WWaolso4bG3cBs5CtgXnNTwOXADOEy/oK6JmdBV4F3hd4I0RXDoF3dBW\nOLRJLZvG/zpxfjkDX3HYTrIFbBBXDyPIFZRRiKYNUHvwHXG1ca3//k1gFUT3dl8CXYh/WMz6590C\nrvc/B9Mfr+FwATEsLIa2yOF2eZplIvHrMSoLTmxt8sJjj/Kdl17gyXNnWJtOyE2/7BOQcCiyRr8u\noG8nRBRBJPanC4QgSFhKVPRFXCJC/K/E59BXhUkUzA73ORxZrACLlV/9msOrft1x6B8G9BVlglEa\nHLH7w/daV//cOJTFxqnw9Mv5AApFpjJKk5NnhqZROAM2eHwgJmSi5IfrLB9c/5jtvW2qUUZjO4qq\nZH0yZr+ZEbTw8IktXr989dP41SUeCJaN6u+cuLjcSmiIyZE1YrzYBk7E6qxV0wtV/ee9Bg487B0F\ndwDb09gx8izwNHDBUp44wBSWrs5oPpzCWwp+SgwvZ/qXKPp9fQy8A7wBvF7BpZPQDL6UQ6wZDPQH\nq4EhATM83i7dDkb5Q8x6MK+8kvD1GSUzmsmo4o++9hx/+ntfZHVSLWXiASUE8eBjX7v4cDtIaZNB\nb6gsHggOS8z0OBfwPuAkYIzDGPBKEB8XN3lhMJkmN4IEi0bYCTXz2jFra8aZYntzTAgHXJtZvFIU\nTvG/3Gz5wVh4uRL2Ggv7MKoKvHLoTJiurHGwt0fbQVCxVNq1MVB2XUuZe0yhCMFBsIyyjG8+PObD\n/T0W3YP5x5m4XxkqBgxxQTdkclaATTCjuJB7Fqrfu8U3V/6Kf83/yR8e/EdO/vA68iYxhpy8BFsQ\nfgw/2oFX+o/pjQCjHTj2MuRvOk49epmj5ipmtcOt5lAIh9Nb/rG2mcSnhVJClhmUVnjtcUYTlEDw\ntLbD2o4iM6xOy+j2Ow/sd47WudjyoRTeC0plMUOdK8oqIy8ydGYoSs1kkrM6rticjFlfmbA+nTIq\nckqjGBWGPNMYl6N1QJm4ItEqRwJoaQkSCFqhRIM3KMlQ3sdzKYLJ9W1PriAa0TnDysZoE0fJi0EF\nkL5CV1Q/mdLEajfpkyegevHLg/fxtW+HnsMWmBDiRC8hinz0iQ0f+pZIMbcXS0YLq5MxK5MxZ08c\n559/6xtcv7XDW5cv8+rFt/nbl1/hx6+/yc3dXeaL+rYJc+JeMZwjh2z3hCgqnYTqCDyu4EvAlz3Z\nCy1rj1zh6PgaJTVNKLhycJzdn2/RvVzCf5Eo9v/kGLjBL2uYaus4XID8KiLRctvlcFzbRLHrBJij\n0X/xOHEBMe133wK3NFzJ4P0RtEfi16d5/NYN4tom2pDCDnC1gFsrYHf61/qYGC+Gc/ZwXbLcCjn4\nrwz+YMsJjVQJlvjHUSKMypJjmxs8/9gjfPnJx3n+8Uc5c2z7dqWttTZe/uu+wjhw249xmJ7o+ioo\nQkB6k3kFh2b23uNxh98rvQzdi1CCJ2jp2yXpExx3VpPR349xQCuNW5r2qFC3zfEVOlaOKR+P2xPb\nHAfPMfqFS185rUQTxJNpRSgCo6ZllBd0ucW3Hc6Dc3FIi/ceGzzKOz6+dZO33nuPUWUQ18VJ8gKT\nyZR2x/LFC+e4+P61T7RmJj7PLItdy35d2dLjtr9dI3aCnAF9BI6ZWMF1ihh+Rv237AEfK3hPwaU1\neBH4FphvtRx7+hKPl69zmstUzJkz5oMzJ3njxcf46LXzqNJx9JHLbOnrlNQsKPlofpJbF7dpXy5h\nW6DU8NoJsEMcbTlswRzxyZb9jhjMBh+xoQVzMMaX/jkPHkn4+oyRZ4ZzJ7d58cmH+fKzj3H25HZv\nChmJ2ZDee4WYcYmp9jhVLKg+2qB63dfF7H4w+KBw1uKtpbMOax1ax/76vkMnesGoQDnK2dxaQ8k+\ngUAgGjnPmpbVKmd7Pad2gWZm2fCOC63FOOHlcQ7OsztrePcKHF3NKfPASjnCTMbszmqaehFbc4gt\nNpkIwXXoTlOUsTVHa2F7ojm7nvH61TunQSUSvynLotfQoz9UCxwDjsKGgYdAPd1x4cQbfFO+yx/c\n/AtO/dvr8O9g52fgLKwfA/UVwMLBHddSswDtAsoaCloMFjFhqbhr8KYZjilxr9BKobVCKYeo4Zyq\niKlpQeeayWrJ6krFaFSirwvWORbW4bzHmIwiL8jznDxXlEVs+cuyAmMyxnnFZDRiZaViVGZMxxXj\nqmBU5ORKYitH0GgUSqLYpLWKcoACjeoXB/10rgBBeXzvoUJfoQUqtqCg0RJbIkVFH0eR2Nqi+v0O\nvisQR9bHdkizVOkliI+eYXFGcByNgoqtLHGAV5+t749tqArQfSumEPoJX3FBJr3BcejbXDbXVtnc\nWOOFp57gv/+j73Dtxk0uvvMuP/7ZRV7+6ev85OJb7B4c3JPPRGJ5UuJQ7XUMzBE4r+AroP7Ysf31\n93h+44c8o17hDJcZMWMhIy5Nz/HKs8/yw+Nf5traNmgDrcDFLbAHxAvxOVEwGka1/yoM583Bz2sz\nHpechdVprD57AniEOJtkzYMOMFPwkcBbwEXgzTy+rceAh4CTxK4V6Q/tI2Km/aKBn2/BjWGCZc0n\nzYmHFsrhPeVL7ws+mVEf2mHgMNuehLDPO7kxXDhzii8+/hgvXHiEx86eZmt9hXFZobWCEKJdSQDp\nBa/DaYyxhbB3mIztiSGawEPAK0EPf8shIEGi8NO3rsOwtoiejYEQQ18IQ/jD+6Gy61D8UqLwt30f\n6adB9hXIAkEcSlliFAhYZ2N1mRaUi4l2+qOML3/Yvj8clZLovVkYQ2EMudFx3aIPJXMbYlzSBIKz\nvPP+e2xsrnByaxXvLTt7+yidoZVhc6Xg2MYKH97Y/VR+r4n7lUEcGhI7g83J8pTiQRQbWgJXgXNQ\nbcKjJlZvPQs8aanOzCmKhhCEZlFQXxrDTxX8GHgORn+yzzNP/IBv6//EF/khj8wuUbQtdZnzTnmW\nvzcv8nfPfok1dniWV3phbMEBE94ePcw/PPcsPzz5Va6uHY/HVANvHgE/+HwN7ZcTDtse4TA27RBN\n8W/1t0PbfsNhVfKDJQYn4eszxIkjG/zL73yV5x4/z9baNLYAKrmdYZGlkmPvPRIUIr53fNSx8kvC\n7T59FwL4w4WRcOgO6fEED7bzdP2Ye1GB3GhyA0WuGI0KRAIm02gjtLbhVm1Z7DiEgBiDw7JjFP9m\no+CKC9jaMi0EnLA3awnBsz5SKD9jZZRztJjw0Y1A03YE22FCAO0hSB/cLb6N/mSZVlxYE96+Dl26\nPkz8ThiCXsEn23dOg5yAbQMXBLahOjvj0fIiz/MjTrx8Ff4v+Ol/gO8vYux54hJ8/Rbkp+EhAxfb\nGE4q4LyJX+cY7LDGPlPcQsdvtPDJ7P8QdJZLr+GwXSZxNzGZJs8NeSb43oMkuBCnNGoNRijHBSWa\n5mBOZRTTIkMpYe4UxmSMqpLJZALi0Bq0yjAqo8wKyrygKnNGo5Iyz8gyjdEKoxSZipMijc9jG6Oy\nMQmhVPTfAkKI5+0AhD4JEgTQQpAoLEmIWfaA6VtVBIICH4UqJTHrHkRuG/FHYU338UXwLsQEiuhY\nDRB8P5VS954u0RfSC7fH3MtgmnzH59Rojfe9+CUhxiqkNzYezJbjoihTmvXplLXJhMfOnuVPvv4V\nbtza5f2PrvCDn7zGX/7gR7z57nvs7O+zaBpSwv7TYMiEG+JiYEpMCuTxov8bsP0H7/JH4/+HP+HP\n+Ur3fTbfPkDtefxUcf30Ot+fvMj2kY/5D9/4Yz6cn4MbCm7k8PEw3GOPeBEOh9Wvv+yXO7R4DG0d\nK/GYOAPrK/CcRE/Gr3gmz97ixNr7rGa7KBy1G3Gl3ubaW8fx3y/gZWK+4yVQz9QcPXmFNbODENh3\nU67eOEr72gr8APh74OUxXHkoHl9Uo3v7lMChWct14sCSW0QhbPlcvtzOuTzF97cx+E88qFRFzpG1\nNV56PLYxPnH2LEfW18m0plel4vREgBD9r0SrPgnetxL6QAgK7w/bBKH38eonNWoRdN8pEoYqMBUQ\nMoIK0WQ+hF6tIvp8ibrtoSUhoFRccwwWlgztkp+Y7y7sSQAAIABJREFUDhkIfWCIFWQxQPgQfYc1\nQ1W0IHroRJG+vXIQ8MC6/rVCjFNKFHmWUemMA4nJfAmO4B0WiVVfEhsetdHstwveufIhW5urbK6u\nsbe3i4iQZRnWOs4c3eCjG7vpqupzyyBoDdMZS2ICZfWO2/+fvfcKsutI7zx/ac4515b3KHigYAhH\nOIIkSNB0s5tt1N2aHWlH42cedh83YvdhHyYmJvZxHzZ2IlaxbxsxsTHSjqQZadRqb8km6C0AwnuP\nAgrlrznnZOY+ZJ57i63WqNlqtRqt+hjFcqeuq0J+mf/vbwpAzOCHMmWQgen8FPC8o3Z4hq3D59mY\nXKZPzGGRzLp+Lm3bzOU9UzTW9RKtT9m17T2+ov6ML7a/xZaT1ymdTBEPwQ7B9l2X2HngNOu5xjh3\nOLLwDtXLbeSyxdQVMxv6Od5zmKHhGb5/9HPcWd7gbQQexDATZPoMQkVDXUFNdNX4Sw4W+2FpBNwc\nnrF8D9+jfroeLfBrFfh6xEsrxUBvjWcO7OJrLz5Jf0+9q4+n0MBbpJSh0bnAzvKHFK+PxwNetoC3\nci/BMX7C7+chvmtJ4anH1kAekhtxAovEmZw8y2lgKUWKKABSSgHCsv9+g/TuMn/Wl9BMHZkxtI1E\nC8FcpEAa2rlFCEdJOjCC+UaOdX4cZF1OTyViqL/EzJxjOXNk1oNwOYJEOJ8OqSzCCjKbsqbs6E3g\nwWoS8Wr9jWsli6Ewax4E1oCcgI0R7AcOgHzcUOlvMCrusp7rqI9h9n14pelbB8C0geHrsGsH7N4D\n8Qm4Z2FIws4dwLNwb2cvF9nCraU1ZLdjH8jSdHgErJD8FJvWlbHIK/1hPq0Hzmp9mkqSCKU9+0ki\nMU4EaYcFG2GMJW0ZhPNeIibPCg4WSmmiSBPFCiEdUigiFaFlTKVcolopUa9V6KnV6KlWqcWlwA5L\niKOYSEiks2ip0VqAtAQFIrKIk5dFmxeePRUYvgodPLVckLqIrrFwkJF4/xWf1IiWqGB0bAvflSDp\nxCmEUNjQQwTe9shZg0DhnERIiVRgnfEQhTFd9lc4wHgmmR+0yCDPofN97zND8JAxWH8AIkTdW4ez\nBoVguL+PwZ46e6a28K9/+7e4dPUm7378Me+dOcvpy1e4fPMOaZaRBenPav2yq1gnCx+tMFWeBHaC\nfnqRp6rH+S37dV6+8UPK30px74KdAdkP9SMNBn/rAdFYxsJQD987MMDSuT64JGC2D9J6uN3igFEA\nQf+t3+ZK0KuKR64mIOqDx4BjIF/O2XLgFE/It9jJaSbcbRSGWdHHxcpW3ju8n/cmnqI5WkOOWNY8\ndYn9yXts4xwjTCOwzDLAxd4tfLh+LxfWPobpScAISOKup3Fh8bUI3I/hQR1aw+Buh+d1ny47rWAO\nFN4qhUSlkHnmdGO8Vus3saQQlJKY8cEBHtuwjiO7d3Bo+xSjA/0oqQMrV3YkhUJJvzZTSBSVB7w6\nSgm/jhYD7A4YVVhrBfBL+NGEZ/kKiVQKK/y+wlpLbjKMMT7lsfB2DGNyIcCGoCzPLCb0Gbo+jq7D\nNfN9JfwbdqK4Jf8fUiIjjcThTOYfk/A/b13oFQiENUghMYVvmZAkOqaSlCipBm2Z0kYgnaMY53up\nZxjgKMH0wxlm5udZPz4GDhqNJSqVCvPz8wzVy5STiEZ79d/a389aCXrV8H2tHz/8HgIxACrpqh6L\nJdvipY0HgZcso5+/xgvxD3mSN9iVf0yfmcMKwYwa4mR5F69tOsoPB15Am5wnojf5vPkuu1+9iPsj\nyN4EMwtqAEoHU7b+wxvUP/MNBi4uUf5minsP7BzIEagdadLzW99Fj+fMD/fwg8f7WD7T6/vofA1U\nGdZLz25eE55KGd9K5gTcFd44/9oILNTBlfikwqRgtD1aQ/ZV4OsRLSkEm9aOc3jPNg7v3sbGiREi\nrQOwFQjEhUlkwfgqDIbx0x7vqeKTUQSA9Eb3/jqDjArTSW9AjLNYn82FCdMbowQ29wb3rjOBgcVG\n2x9ETEa71aSxnLH9+iKmmfHHZc18DsYKDAItHMIZIgmJlLQzUJFD+1MNy23jzTOdxImUWilitL/M\njFQ8WGqRpxDlljx3KAFZZoliAUIRK8uhEcX3bhgva16t1fqF62cd5oZBjcKGCJ4GXrDUn5xjy5Yz\nTMlzTHKLmDa0vTfywk/dYtPgiWP/FLadgG0PgT5wB2DxsxXerD/BW+4Jbt9dBxcV3AWWU7zuvqAa\nFwbSRRWHQLPiTfCbkMby61ZCQKkUIYVDEibO2OCNAliDCOa5rSzHOIdBYITGCNGR87mwLkupiHVC\npVSiWk6oVUte2liqUNIlylFCOU6IpEZL7Q18lUAFfy4ptB9aCNd9gHhml7EOC0jpp5bGBmZYGH5I\nPMtLRxqptD84BaaYEMKDXyE+HnyyFsbLHF04UDknOuyuQs4olPKDlyBbkeGxWus6TC/lJypeIlqA\nWxQcHscnN1td4b41Fil8JH0B9AEdw30tFc5aNq+dYNOaMb549Ah3Z2a4fvcepy9d5fSVq1y8cYtr\nd+7RbLdZrV9GFdvKwty+BPR6o/gJYAtsHr3MQd7l8P0PKP9ZSv4HcOkMPFiE0RpMnIWeVptn/sXr\nnOvZxkdr97I01ed//kIMaY1uOtXPE+xR/G0U8pRgNiz6YTOwH9TzbR479D5f4Fu8lH2PbdMX6Xs4\nh8oNy/UKN8cmmaqdo29ynuMvPMd45RafTb7Nc/bH7Jw/T9/cLMI4lntqXBrYwKv6Gb67c573zRHS\npYo3Hl6P9xAr0itngesECWUZ7qyHNAmPtWfFa+noeoE1V7y16PqdrTTMX63fhKokCZsmRtm1eT17\nt2xi+/pJxgYHqFeqSCk8K1aKoERcuebjiV/BLwvjh97FWl7I1z2Lq0g9LP6NOJ8qHMAnz9TyPcqC\nDz+x3rdRiHA7JieYfnV/xoY9hwkAU2CFSQROOA+7rUjmNc5gbB7ANouTAif9EMk61xm+F+cMwINd\nQb4pctthl3nZox+aRDqikpTprdUwOI9DCIE2liy35M4PfiKtkaFX35u+z9LkJP29Pdg8w1lDOYkZ\nrFfoqZRWga+/d1Xs/Yv+UcNPMcaACY8y9VS8j9YYfriR4Lfhi/g5xghwyDFy5Cafj7/FV82f8+T0\n24x8OIu4EW56PezYc47xoTuovpzLbGIPJ9h++Qru6zD9F/CTu55zNXwLnroLoxXHmvghvAGtP4CL\nVz3RY00V1p6Dftfg2X9xnDPlHXw0uZ/lLb2+j85VPRi3F9gDeqpFeaiBjnKsVTTnS6QXyvCxhA8F\nnKrAnckwTy/6UTGAKc4cj0atAl+PWAlgeLCPLx57gqf3P8ZgXw9JHHk6M4SDSlc77ycrMpxhAhMh\nJHgVCS1engISG5SMCuHCpCU0PIXr0JiljPxURUmEFH4CJBxZ5sEnb5CvaTdbtJsZ7WZKM834f7cM\nMDffYDF1nQmRwFHVApNb2plDKIGx0M4sUvsGZgy0M1hsGrRKcNZQiR0jA2V0ZLn9IKWVWow1KOXI\nDEQ5RMoRJ7BjJObCXMrF+dWEpNX6RatofAXwVaIjc+wre8bAUUffi9M8M/EKL8gfcpB32bB0k8HG\nAozD4AjsuA0f4lvEGLC2DEzA3H9XJvpqRmUup9WjuN0/xge1fXxbfY7jzaPMfzDgk1uuO8ga+NbX\nxB/6evlkokxBr85WvKV0fWVWD0e/rColkZd3K4XAkeY5xngQRimBswaT5zRbTURuaecGJ5U3czeg\nBWgV82/vPuD/2LyJJC6RJCUq5TLlkqZSiqiWS9TKVUo6phTFJDoiVgpF8GMRflrtDYuV7wVKdmQo\nncQtwOsfPbCUZzlahBhrJ5BKIaRnd0nnPIilBLnJUc4hpUagwoTdH7RsOFwppcF5b0VRsFACIOaC\njxgUDGQgHFicBem8TF4o32sKRoBX0HimgDGm8/MuSO0R3c8LqZuzDmuMZycXh6Y87+C9lVKZDWPj\nbBgf58jux2i22szMzXNz+j6vn/iY77zxNtfv3useIlfrF6yV62XwQKkK6Ac5mTKubzJlLjB8+QG8\nAqfehx/lXrhYXoLnP4S9a2DwyAJbD59nbeUGlyd2dROrlj5toq3ik4+nAvRDLfab/z0wsfM6L/BD\nvtr6cx7/4GOi7+SI00AbkjXL9B47T+9n5nCDkmw4YgsX+Qf8CQdOfkzl1TacBTIY3rjA+NFpxp65\ng4gdc7v6OXvvcSgbeqZmGKo+IJYZmdPMpv08vDAM70deFvm+hgtj0Dbd181D6niQa5mu58oCXW8w\nQdfnbHV9f5Qr1orBnh6O7trOM3t3snF8lIG+OqWkRBzH4apg5F4EknTQHoEMBEHpAtjkL6eLixWD\nhaDikMoPTorrhEPr7vCg4wkGYd8OGIMzDoeXNYoC8HIWAlNMYNFCY1SOccZzt1x4s102V8FSS/OU\nLM06qhRjLVmWkec5uTHkec7z3z/ON48e6ABhOcaP4pUfrDz37gleObQvhFwJnLVIJUiSiEqesGza\nJCbDAso4hMg8ECgVkfZif5ulzM8tsLiwwEh/L6U4otVwJHFEb7XMaF+du7OLv7K/h9X6daiVCe5h\nkMMosA7kKKyPYSfe83EzXcP6HK/SuA5MQ7K3wa7BE7zgfsTzN1+l54+aiG9D64rfU0XbYPJL0zz3\nD37C7Eg/AscEt1FXDNkp+GjaHwMsXjlSuw+fPQFsBF6Fd8/CcRfElcvwuZOw+1UYPTrL5t0XGa/f\n4vrIVlyf8H6Wz4B8PmNs1w229pxjjb5JhSZtEu7acS7t3Mz1x7aSj8b+ab9TgVvr8J26MLrP6LKO\nH40z9irw9YiUlJKB3jrPHNzDF449wZqRft+U6G7+OywvXGf4UjS5TmMKLvTShchS4Vlg0lm8uXHR\nIZVnhHWGQN43wCEQNveTJLPyTz0kwghLmjvSLEdpjVAZqcmZW06ZczAvQmOWkrIQlKSkryxppobc\nGaSzVCLJcuYZCdp5vzGbO5oOpMuhpmi1W1gcg/0JWS54ONtmuW3Q0sttjIPcWIyFegV2DipuLRnP\nsFmt1fqFyoPI3RSUflBDsFbAbtBHM45Mvs7X+FO+2P4mIz9Y9AaV8/7S+Ch8+R6MT/u5/TYNw0+D\nfRouDm3i3fgA5XUN2pS4zjo+cnt5u3GY6R9vgNeAk8Bdi/eCWcA34Xp4LEXKI3QPSUVzKj7O8Pdc\nyGNWD0d/0xrur1HWMQLI8gxhi4RbEM7iTE672UJJn4y1nKa0M4t1AqUUSmv+1eISvzs3z9Onz/LP\nnzhEqVKhUqvRWy/RUytTKiVooSjHEXEUk2gPfkVh7Y6UDIyqLnvMH3L8wQjwgwybg/SHF4RDKj95\nN3gpipcw+o+NMWH4EYhfGD/4sAIrFM5qXPBRNM519jv+uNMVvBSmw85YtNaewWUDSwxP7rJC44Tw\nABgWGWxqXBi+KKn88EUp8jz3B7EANFpnOp5jDsIhKjxfU8j6JbnNgtQfhFA4Z4lUhCorauUy68fH\nOLpvD//zP/4dPjh3nm+/8Q7vfHyG6dk55heXyI1ZTfP6VFWA8Csm5YFopWspPXKR3nyB5J6Bq3Ah\n98sk+FXqYhO23YBk2jHAQ3pY8EP2Ev52PgGs/by1cv0uARXoUzAJ8Y4GU31nOeLeZN/1E8T/yZH/\nMXx426+c22MYvuJYr+/x9Jdf5048zi53ikPnTpH8QUr+53DjAqQW1k5A+XzOdq5x7OgrnE+2cnHP\nFPsn32E3J1nHNWos+VQu1nBqeBcnNh5gYWjAx9q3NVxZ759vOTzkjG6wllnCG7XcxfcCseL5tXlU\nDh+r5UsIQaI1I/29bFszwbE9O3jqsW0M9PaENdl5X8SODNHhnOkAXx1UX3xSrlgMNDrM2/ANqVSH\nydsZlpgwMAjf94wwEEp2/L+E9B6LfpYe7scZsAXwBCbzjC3vHO/l/k52AS5jDdb497nNsWlKlmWk\nOPI8J0sz2u0UIQTtNGV5uQH4ffw//voPGJ+Z40Ac8/rjj2GcJbcGZA5CsOfCNZ44cZY956/w7//7\nr3jCmvDpkkoLkliTRBGR1uTGoZRACkkq8+AjJsDkKKmxuaHRbKGEpBQnlOIIYzJiJZgYrHPyqljt\nB39vqlBTFInAFToJxdEYbI18QvGTDnnAMLDzNhPlW9RYJkMzbUa4e2sD7Y9L1McW2KFOc9i8Te+P\nmtg/gbff9seECDh0CXa2YGJihv1f/IAbei0JKaLhMMswbz8Zb7IAHf95dxMuOT8OBz8SudKAqTuQ\nTEMf8/TIBUTV4QaBLSBeNjx2+H2O8QqH3dtsyS9Sc4u0RYlrcj3v1/fzk8ef4Xj9GJaSv/H5xPt+\nsYCns0V0LVcejd6zCnw9AjU5NswzB/dy9MBuJkaHSKIIIQp2lut4sRQlApuL8D0oRCYE40hASE85\n9iZdwQ6g6wEmnEBIb2aMdSFpxR+qtAKrBNZIP40JhvfOWnJtkQYarYwsb5O2W7RyQ8s5WsaRITDW\nUdaOahRRjxIqJYtWGc3MkeaGknJkuTek14BWhWmmI88l88s5lViwvOxTX+pViRYJDxcciy1L6vE8\n4iD3mVnOqWvJYElyc/nRoWOu1q9LCT5pjCzxB6eaP6isBXbC5NaLPMkbHFv4CSN/ukj+J/DwBLQa\nUB+A3sMgfw8O3cEPSibBPCu4+vQEr8VP81/tV1hOq7RtwlxjkPvTozTfr8PrwNvARYM/8NwP9z+E\nF+VX8DSIogy+G87zSXZAIzyHVrhuFfz6m1SkFT3VKji/DprUQm6QFCbCwVQ+mLqnmfGehA5y241j\n/8ORYfq05j9uWE+9lFCrl+jrqVOvlKmWSsRKUokiSlFMrHxGowQipYiUBmG667zoemUVn1sbkh4J\npvuBE+xdTixSevDA2TwkPQqi+w8Q7ZR8cg1OKBwahyU3KSiJEBk6irz03Qn6fvIazRde8EbIXk9J\nt+t4fy8POHlwTARGXMHScgJMsIlQEggsAEnB6II8zztynaLvSSG95CYAZf6g5r9njPf76khkpPPq\nF9NNF+syxuiAa/u3b2P/jm08nJ/nwvWbXLh2g7NXr3Pp5m1uPZjh/uycl32u1n+jVq4rQQZhgRxs\nJslcRCojTBVU3XNniyGaBPol6CqQQEZMStyNYstW3sen2WgXwFdxgNF+6RyCcn+DteoGW9wlkncc\n6avwzdt+up4CJ1L46lsw+Rhsef4KmwcusaN9jvjtlPT78OpZeD8806234KUfQc9Wy5apa2wZvcQX\nJr/Oi/yAJ5rvMDl7m6Tdoh3FPOgf5p3qfr4/fpPvf+ZlZtJxv1yvx7MG6uGFKWSRt4AbNbhfgnZ4\ngTrgX+Gz4la8SKvr+69r1StlJocH2bFuDbs2rmP75ATrh4eoJr6Xi0BklYQ9fdivew/E4vccZIQd\n0KvwQuz+3kVg2CLwa33YxxcyeGNcOCuE8KoQYiK1H8z4FPgQTIJFBJaZlgJpNcZYP/TODNJ6ppnD\nYoXDFiyvItjEWjKbY4xnce38r9/BtNq8+blnSI0lzTLarYwsy2g2mqR5ThRFWOf4v449wWdPned7\nm9bh5hb9gBt/LrDW8frYIKUDu/hgz06c9SoUKQXO+RCYsk0op23KaRz8yRzOqRDQEnjKzvqAAGtp\nNltIKShFET21GsbkNKRicrCXShKx1FpNi//NrsLIfmXPKNhegyDHYG0Eh0B8zjBw7C77R99lv3yf\nTVymlzlSEm6qSU6u28XbY09AKhnnLmvavrlcuwiv4mca4Hfpw6dg5BSs+fwtevU8DxnAjkuitZap\nk3Cn6a/rwQ9k2AAMg+jzcNx1fFdUwEAEugeoQpuENgku95+LpzO2P36SL/IXfKn1TfZdP0H1o9zP\nUuqwb8dZprZdZKD2ELtR8s7TR0lvleGGgLP9YIskyGW6HpOPButrFfj6NS0pJeMjgzy5fzfPHTnA\n2tEhIiVXAFmyA375r3xyI78CBytuERG8flQnRUt4BYpz3sjSFTSx4PXlJAKLKDyMA4tAhOZocoXW\nmjzLOo/LOcislyymDcdS0zK/nPFgMWe+kWIyiLVgoFZmoFolVgkma5BEGc1smYeLBoWjpATLOeTO\nP1ZdmBebHKuhnXt6slnMKCeCcjliPKoQL7SZXcxIjZdnVhNFbxzRTHO29gjuNVcTHlfr01bBLCjR\n9faqAzXffYaBdY5N+jK7OMX4qfu4b8DlH8CroUmNzMBLczD8j4B/CWYMFvqrXO7fwPHKk3yXl3j7\n2lM0T1VxqYT7Cq4B54EzwNUcmg+AG/gGPIk/sUVQ115GVCSFNYElA8sjIbL4HiHKZcVzatE9OK4e\njn6RqlVLSKHIjCE1Biu8SS7W+6YgNCLItV1uO6mHWkuEy7uuQ1rzh5s2Uk4Sensr9NbLVMqaUiKJ\nlKUUR1TiiFgqIiFD0lZI3JJBSgidNVgp1ZGUgGdBdb/vcMbnKcoAzPl0X4kUpiN1Wf+//5+INOPi\n//ZvWFYVEP6AZIUly1OccJTLZcrlEuv+n/9A/7e/y8xyg8Uvvtw5rEkZeRm9lCgdIcIB3QWWllTh\noBbk+dYJTO4lKnJF/zLGfOL5EHzCumEtElfIOoVA6GBbLBQmGN6bIL/psCIIzIlC9lNIcDrxY9DX\nW+fgzin2bdlEs9VidmGJK/fucOXuHd77+DwfXbjC/dnVaPufXSt9BoM3VdvBgiCfKXHfjnBTr2Fh\nXY3+vUvsPwuNab9SDQG7hyHaDfmU5AZrmWbE4/1z4eZo0000/DRVyLw0SN05y+gkp84CA8zAXZi7\nBxfoigcfADebMHkLqg9S+gbm6FlYRl6D9k1/bTFpvwLcvQU9V6E822Jg9CFf4Bt8Yfa7TLxyH/WW\n80r1PlizZ4axY/eoTi7THKrwvaMv03zQ69vMZocYSpGxwTQiuBP5OzoFnNJwbgiWErrreOGinOFZ\nbYZPDw6u1t92DfbUeeHxxzi8c4r1o8MM9NQoRzGxVKiVG3fnkE7ipGfjqgBqeZ9FL1F3QXZeyBE9\n47dghXm/xU6JMABw7hNsJessSmrP9JLBwN45TFCISKU968uKEN5YaCa9NFBKMM6zrpT2pvjWeDdg\nh+gEmDg8UJWbPEgYDU2tkRWJFYrMGhqtlMXFJQ+iKY3SMQ4VUiY135jaQt5oe9DLGrIsA+VI4phq\nucwHe3egZFfmj/DM6uJcVEkSWlmOtY5mq40JFgFK+iRirYM/p7U0lhrkaY4SglqlirOGNG1jrGHd\ncB+nb0z/Sv5eVutXXcH+ocMOLny9IvzCXAOGoF6G7cAR6H/+Hi+OfI+Xxbd4Kn2d0YtzRLMpNlYs\nritzcngna+LbfBTvIaFNqZHDMiznXdAL/MyjkQNNSFwLg+ICW3nw2JtMPDvDtjvQewLuLMFYDdbu\nBo7hQ7XOwlPngIdeXTmCtwtQe6GxXXGTSabbw7gZAUPQ/9gMh/VbfC79HgffPUHyn3PMa7B0B2p9\noA9adnztEu4luF8e4ubmdVzbOQUnBFxPYKknvB5hiERQkT0CtQp8/RpWrVrh88eO8LljTzI5NhJA\nqBXTHfD/Ll1oag4QeefDzpeKGwzNShRySIoJt/XpYsIGSYtEdnwACuaXDOcCL4HxhwcPuqnI05c7\nEkvh6b/a5ERS8L/+f6/xv3zuMeaWvalzWUegLP0VyZrBPnrrVUyuWZyXtNIGvbWchUYbmwtKkaRt\nTDgMCVJhkdrLYRLnDfcXmm3KkSbLHFlqGOitMj4IUgoWF9sYJ3m4bKlnbXprisPrS1xvtbg0u7oR\nXK2ft4okx6IJ1vBGM2NArydc9YAYaDHIA8bb90iuZ9iz8H4TboZbWXJwchqePwPtr0R8c9eLXGMD\nl90mPnCP887VZ8i+m8Cb+APeMv4UeNt5fjO3w1sCrAPVD+tWpLEM4HG5DI+03VNwtezflvvCYy9k\nESuNKB+tNJZflxJAvVoGBHluPGCDQCUKk1t/YIg8MKWdQFsJRpDlfkMfa4UUljhJKJW8d0ulUqa3\nXqderVBONOVEU4kiyokmiTVa+qGDVhIlQWmHUD6qvmPxgmds5dZ+Aggr2FJKKYwBYyyRDpNMK5DC\nUdJ+wmGc4+4//G3i2TmolEmUI207nIE8gzT10sFmYw6Ah1/5Gk+99S5XnniKaG6JKAEdRajIoqMY\nKwxSaLSMMSb3g5Uitj48aP/6OZTWOOt90iLlDyPOhv4UWGzFwcsJz5rDWj8EyXNUAMGMNT5BTIIx\n/nkrIcmzPNCePRvBOJ+s6Zz3p1GBKWYCOwEHUivq1Sq1cpnRkV4OPLaJ333xKK1WyvEPTvFHP3iN\njy5eXZVDdiqn6yfo8PBRAxadX9uuSG6ka/k4eoyDm9+l50vnGGzBV17H79gHgafBfRFOrd/CCXZz\n7d4mP8qeATKHF3IUFLBPk1i7ginjbIdB5qwgJ6JNGcqQaD/XX3koqWqgCq4MGRFWCFwgW62cMwpA\nBSWmk9DHHM/kr7H2m9O4/whLr8CtBgyVYWA/jM7P8vTvvMW1ofVcGNnGmZf20b/lDltKFxjlLiXa\nLFHjNhOcu7+N9ut9MCwgUfB+L7TWdl9jMrpS9uL1KQ4kq/uev4vSSjFQr7FlzSif2b+bo3t2BNWG\n6PhLye4EG6CbTUIBaqmQVogHnGR3CA4E2WMBhllsgd/LYv8SPi4+t3598z+nkVqjo8iHmgBaCrI8\nw4BnFVvjh+NBUu+cxZjC08t/7kN+Jc46Mhf+lVnCGg25NWR5TprltNKMZqvF60f2k+U5yzNzZFmO\njiLK5TqZ9pJI5yCKIpRWRHFKq90KoJlnhYFEaUFPT416rUaSJB7YsxZrTWAWh76pFaVIU0nijq8Y\nLiMzFoxFWc8wttb5Xuug3c4oR4I40gz09ZOZnEZzmX2bJlaBr79R/XQoyc8KC1jpW/uzyvHLTysv\nHpcOH1fphlkVSe41YMQzcrcDTzr2j77Ly+7WTzxGAAAgAElEQVRb/M6DP6fyFy3ccfx2vQS1/U3G\nv/wa5d1NlkSNBerM9dUYHltipAxjC160LvBWXSM1YBjmZR/TjHCTSbbULvDF3/sWlaplw5uwYQ4Y\nBHcQWl+IuT04xIbF2wy24cvv4hG0IeAYuC/Be717OeH2cO/uOrguYdIy2n+bfeJDdi+cIvlWTvqH\n8J17ft4+eAuOXYIJbdmz9QJndn7IG31PcmvTevKJEtRk8NksEi6LM9KjUavA169JKSUZHujnwO6d\nfOWzz7JmfAStvFGx6Oj36XifIIKBfWgwXkbSMVrxkv+imYZTUccJpZB5eBUKhReAd/AC50TncEAw\nFyZMbISUoRkDWKSUaK2KYRLOWdpZzv7TtwB4/Oxt/nSwipAgtSAWmoGeCpMTI8RRxMJim1aa0Mxb\nJJGmr1pidiEFB+VY0EzBWm9wn0v/WmTGkkiHVpI094ci4SwPHi4xNFBh7XCFhXLE7HyLLLcs5YZ0\n2dJbMRyeiLg+b1ZZX6v1c1Y4wZDgdTHB0F6NwSYNTwL7Db39c5QIqXB/BZbkwveEAInj63yZ0/d3\nM3NhBPNWAm/hDY4fGEgNpDm4IhJmIdz/Ougd8Caae4FdoKZSSmNNVGywRpIuxqQXy/Cx8OYBJxO4\nu35FGkvQHHUMKYvD4Gr9vBVFilgrL6dzgrKOfVKVBCu9FKUUS+qVEonWSAtW+oGCMRALhZaaKIop\nJQnVSoWeWpVyXKYUlagmZUpaUoo1pSQm0hFRFJFoTSmK0J1kRL8Ge5ZX8LgiJEsiO55XznUPK64w\nqhcSZz0rwLmMNPdDA6EUywcepyHAKZ+6q6QlTkDIGEeVLDdkeUar2SJNM374b/8dcmaOONKUSg4d\nJ+goRscxURLTUilKLdN75gL53j2e2WA7Any6fSmEqFiLFTJ4yogu6BV8v7xkE5RQHsa1Fqz3/BI4\npAOX+791GXphnmcdSb4UAq10SCN2YWgjSI1//WTBqpA+5SvPvXTGCYeSEpcZEqV4/vHdHNu1g5sz\nM5y4fI0TF69y/d4Dbj94yEKjSaPV/nsMhhWgVxuYB5PCjTKcgXvvr+e1I08zEk0TP5exYfg2lWMt\nxENw/bC8q8T57Rv5Np/jrfaTLJwd8ObxN4H2Ih74KvysPg14X6x1Kbjc07QWoblQ5rad4JpYy5Zd\n1+k95Dj2EN5b8nDSNgVT64G9cG1olJtMsqHnOhu23aS83fH4HHyQ+uPbNgXjU+C2w8JIjSHus/nK\nbdwP4fJx+G4jEL6a8OLrsH0Mxg7dY9vAeSbL1yhNNXg6Ps4+PmB9foNy3mYhqnJBbeW94QMc//xR\nrvVsJXcJLAv4uA/yIbouae3wurfopm4VB8tV8Otvu4SAWqnEcF8PWyZG2bF+DVOTE6wbGaJcSpAr\n1m1YAeQ7nzZIwbSSng0rgkpDBvaWoZA1Bj/HwKwy1q0INPFJjX6zXnzs2Y6iSPGVng0llUIrhdTa\nk5XxSYiRkuQmwziDdTlZnobHXTBkPasL4XDkWGfwqnrv4WWMoZ21abVT2llKO2uT5zmNVotWK6Wd\npjQbLRaXlsiyHCk1ifGPT+uEpJKgtUZKSW69Z3AUd9OrTWCOCQFJSXeuLRjB/jXqfqyUJIo0pUhj\nbBL6jIPUUM4z/qebdzhXKvP1sWFiKaiUyzgHSRwTJ77/pnnK/OI8Y3nGSF+V6bmV0Phq/dVVACPq\np75WDGO7oQ3d70GXfbXy2uKaPPzcSgDsb9JrV0oaE/wkuYqXdRRvfXSMF8eATTC65Rr7+JAnlt6m\n9I0W+X+Aa+/CjSWPD207A/VFOPw/fsT5DVOcZDdn5A76n3qXkVOOL30fri17VdXWOlQ+A+0jmnN6\nimt2PafyXdSiJdKhmEO/8z7DTz0kauRk1YiZ9T28XT7IPcZ46bnvs3H0BuXzbeQ8uAFYeKzK6c1T\nfEu8zFvNI8yd7YPToPZmDJYfMM4dBq8swyl4+yG8F16JB0CpDV/6EKKzMLHzNiNymrgnI6+Xwq9L\n02V6fRqvzb/7WgW+/o5LCMHE6DBHHt/Nk/v3MLVpPaUk7nqPCLzGXriwdBTT/QK5CbLGIEt0xbWF\nmVc4TxQCycCU7lLCVkhICvcXD6QFo3tb0AhkB2QDL49xKxYpKYNpvRAorXl/70bOLjX4ZgJ5OwXj\np0zlcon+wWHicsUnqZQEUVug2znG5vRUSiw3Da3MG9VH0oNUDoEzwejeO36SRP5+BWCco5U77j5Y\nYqAeUatEaBmxsJzTzPwkp9GylK1loiK5trSKfK3WX1cF6FUkOVbwzW8IBkqwG3jGMfjCXZ4d/TFP\n8Bb9agY3DnIL7L4EM01/yFkDTPWB2ATt0ZgHDDFPL9NvrYW/AM7hZSz3WmDu0Y2rXwxvwUyzPuDv\n92ngOcfI/pts7LvEuugaVbFMm4RpN8KVnZu5uXsD6ZqK79PvlOHWenCtcLsro4gLdsZq/bwVa+1l\njs4gsahwuBDST7aFFJQi7wEWS8X8/CJLjZRm26DjEk5IVKSI44hyKfF+XpUSSRIRRxGRlCRRTDlO\nSLQm0pokSYjCYUlJLykpJv8FeKOU/3qAgzysGRiyxfACAissN/7ncT4GXgDay0KkDjJIIdFSgTMo\nZVFRhJWCRGiyTBNFmizNMcaRpjlZ2sIZh1luoXSEk4IojtFRxK7f/7+pfXyau//u39DYtxchPBvC\nswRsOL6FDiNEx2zZORem+3QOhISpvu890vMXhQuSGBBOgPOgVwGMFf5iLtwmFs8QC6yyLukiyIGM\nAWs8bUFYbzLt/O/aCoe1uWdRS8HEyBDjw4M8vWsb88tN7j2c4+Ktu1y8eZdLt+5y9d40jVb7V/Xn\n+WtQxWGkAGAWgPtwZ52X6k0ITvU/jtpumY97ObTvHdZtu0Upa9OME66VJ3mXQ7xqn+XU2f3kryU+\n3ONODnaWbprhSvDrr+vpheyvSLltw4KDW4LW1SqXtm3l/fIBpvZcZuNXb3sA6wyYDGojEL0IC5+p\n8H7yOKfYRS1ZYuvRi/RfbvC4hI0XvE9d3wRUXoD8ecWpvh3EpHAD8itwbskTefGvBh862HYR4muO\ngccfsl5f5xn1Gi/zLbacvU7tyjJq3pENSw5t/Ygda87Sl8zyjYNf5vLD7bjbGqZjuDMQXuOCp7Yc\nXqMGfr0XrIJff/s1PtDH4e1b2LlugsmhfgZ761RLJaIAyjhrfceVXdZWccQvRlLIAHIpRSHvsEGi\nTVjDEKorXV9x/6JgggmBDWulVn7IUayX0JVGihCGIoLE0RuiWIS0qAC85XlG2m6R5XmAH4JHmJ+u\n46zxoJfx3l2jf/inXPvaF2m1WswvLrK0tEya5TTbTZ/UmBvPkjaWZrNN2rZIqXFIMuNIShHVep1a\npQo4jMkoSb//Krwhi56QZalPmnSmK2/EEwk6wS6i+5ZEGpMk5A6yLCXWCoGkLCRaKUpxTL1SpRxH\n9Pf0kiQlkiShkkQopeip1uit15hdnGNq7QjTc1f+lv+iHvUqGIcrARK54nuKT3rNFqnjxfU/C1gp\n1vqVhuq/jMTyYp+/cq8fBt2M+c8rMdSV9/ZN/JfHozts5hJjtx4gj8PVt+A7TQ8exRbmzsMzr4E+\nbJjacJ6f8AzH5VOMP3GHTe2bTK6BNVf9UxBTkH1WcnrPFt6URzi9vIurp6eYWzfA9OgIJ+p7Wbfj\nOjWWWKTGDdZx0u1iNh/gbmmMQ/veYXLHLeIso50kXIg38w6HeIVnuXDyMexrMTRARA4tc9+bQvbV\nwk+1z1kHaQOiJsS0ickQ0v1lst4jWKvA199hxVrz8vNH+a2XnmPN6HCYTMiOP1fHN4uiXfmPHM5P\n6k34PIBiBKZWgWv5H1mJoHd/vmB3FUi8ENY3kOJK4a/oRh+DELbzKFxYiKzNO83YBemIcYLlVpvT\nY73Yh7M4Ap1aGPp6eiiVqhgXIaRA6hilLVFUITcpZWfpKWtaeY51oINZsXVejmCxmMyS45Blgch9\no8xzh7CWdtbm4SKUWxnDvTVqpZgHC8tBjuQBve19glvLlvzv6yB+tT5FrZQ5loA+0EOwXsBuiJ5O\neXLiOF8T/4Uvpt+k/5stOAliI+w8CCPvwsMmjPVCz7MgPgN3tw9wlu1ca6z38p2zwBtA1gDu0G3g\n0GWbDYLsg014ltkXYOszH3FMvMoTvMUU5+hhgYyY62Id7/Ud4Cf7nuGNvucwJvbNbb4Mi2vwB6Kl\n8JwKX5jVw9CnqSSKsQ6sNZQS4UEv43DGoIEk9uCVdJCmKY12m8yB0AorRQi6EySlmEopoVatUKmU\n8Ocdg44cPT1lNBItJHEUBZBIoPGDD63UihTHgjXg2V5e1ugn3s7g5ekqIjee4WQIyY/OgTQ4maOk\nwjrj2cU4pPIBKDhLpLU/OSiJEYCUaO2BLw+qKZrNJu1l76+SW4txjnajTZZapM754F/+K/b8/u9z\na2INanYepQRxKQ4gokA5f78qeG7ZvMv26qQ5BqaYZ3uFYUwwV/YgmPaBKwHU8/L8HOc8WIh1PtXM\nOUwA1gTiEz5oLnwNRzDIX/G4rMba3ANlwV9M6ACnGUulXKZSLjM22M9jG9aTZpaFhgfC3jh1mlc+\nOsWN+zO/4r/WX3UVQSCF6eAyno10D5Z74eNeqEE7qvF24yg3903yXnyAicptyjRpUOU245xJd3Dn\nw03wAwHHgTMOllv4I8UsflErmKs/TzMv1tW0+5jmB+FqjDuhOL9rile2HmOo9wGf/51vM7llhp5z\n4fJRaBxOeGP0AD8UL/I6T5ESMzpyj5f+9fcpb3CMngtPdy3wDLy5eR8fspfH+dAfaqCztytKFf9T\nfr/Vzyxf4Bvs+/E51J86eBeYg3jcMnh0js/87mvkOxT3ayPc27OWpdO9cF7Ag0HI+vFDklm8JnQ2\nvO6z/GVm7+p6/8soKQW1UsLUmjFeOrCbx7dsRCmNkn7dVEp1PKZWBmmsLO9x6EEmKYUHvsJaHy7w\nbLDwox2oLNwmhVehkD5JvTg3WBdYYpIsy7HOEUeR9/LS/ujX7R0O4Qxo6YcgGKwxmDzDmNyvlc73\nBGe9T5czBivwrLA8x1rLyJ99m+Gvf4fK8bf4s//hnzI3v8DiUoPl5QYqiojiGCGk9/dqtmi12iRJ\niXKSoLSmVC4xODxMrbeHyDlsngWwSwW2tCHPPdiVJJrcaPI8wxhDGhIife/zSpTOcwtSR+c0pcSR\nOoPJY39takil4t9PbUFpTSVO6K1V6OvtpadaoZpEVCKNlVAvV+ip91COEyYG6lRLMcurJvd/RekV\n7yO6wFIhI/xp9KQYSBi6AFQU3ssV1+d01/GffvtZVQw8/rrHWgB0FbyH7zDeS3cSamVYB0yIDgZG\nApShIpbpY5bSYhNuwfWmd9QF36GuGjh4D3rvOPrbs+gk5/t8hqia8fzLP+Lxw2eQd/zTa62Fd+t7\n+ZF4gR/wAhfP7oTvSh6OjvPdg1/mnalDjFSmKdGiSZnp5giz58dh2XDtwHreTg4zUbpNUmrRpMJ1\n1nJmcQdz70zAK6GPDoNdUjSyCnNJL24IxDhs1PCx6cr7N2mojPvrF+hhiRomVSFZeOVr9+iRSFaB\nr19xKSkZHhpg+5YNfOWl59m5dVOnKXbkiYFa1fkY2XlvOwu5BOEp/k4CTiCs7KRhgfPhWt026cvT\nuYAumdRL/gMFWlgkEmc9s0pJB8J6g8pAu3bOA1xe3i/BKiyW3AlyC3NzTeYWlmm2W76BKyhFmqSU\n0NdbRWpNK4coTIyEVAilkCpCRDH1csxyy/Cw2Q6bCMhzQw5EzssyjYVmKyXSMWmaEmkv98Epb65v\nJA/mF6lXNP31iNxqlhZz0tww2SNYvyi5NP/o/YNdrV9lraRbKzrGlrGECWAbrNt6nifFGzy7dJyB\n/9Qi+88w9xG0l6E2BANPwfA4sAWyg5IHz/bxPfFZ3s4PMXdyzLO87uBlN7ECtQGQHpDIW5AXrK8a\njGp4DMQRw6b9Z/iS+Au+lH2Tgzc/pP5REzEDVOHgjo/Zvvk8I7VpxEbHG889R34n8b74p3rxXbsa\nbncllXwVCf55SghBEnv5IcIRx9r7R9mwSRc+Gj0Skmaj6ePa0xwrYpySOC287LsUUSonlMslIu2T\npGIlKcUx5VKMsxlSa2IZESEQwcvK409dw96Vqb7+awKH8b2g+C/3QJcQCmNypPS+V85aD3ZZg9Se\nseakw7gcZ0U4wNEd3Ao6sfZIiVay01KSuEo7UrRabRrNFnma+QNXanBSsegsP/5n/xxu3gPhiOII\nXVJEWlMplTwzQikipdBCh5AAi5RhlxWk98b65EwnLFqq4M/lmXYrvW+8eT3gJEpJ8izrsMCKwxT4\ntMiCGbbil+x9dXSEszkut+DibspkeG2tMwFOCPdVuPIbH/CirWSwp85gb53N4yP83ovPcvrKFd49\nf4HT124xPbfAQqNFmuU+6fORr+JAUxxYqnR9Ulp4590E3kmgLWBac/vMFm5PbaQ8ukBUyslaEc27\nVTgfeXbYB/j3D9rAVTxXainc3s/LYsrDYyoYX8vALJhluBrDR5BO9PB63zO4AcG9eJS9Rz5izZFb\naHIeMsg5pniTI/xk6RiXz22jsamK6HNMD4yw77c/ZHzxAdI5HtR6OBPt4DX3NBfyrUzoO7Q3KZJd\nhl2n4e49D0f1AvsrIHZCe4Pmnhxll/uYLWeuo/6L48Efwwd3PWN44iwcuAeVEhxc+z4f1vbx5ton\nWFrX630eSwKWFdzvg7leaAyCe4A3mpH4eyz+vopQgN+Ev7dfbQkBlSSmv1Zl/cgAU2tG2LFunLVD\nQ8RRUvh94FwYhvwU0lmwsRBemhgkDH4IXKzjAXw3BbsLwnA5MH3xYJn1EwpkYHSJwA4Dn5SLkD5s\nRRQqDtFhhBUBKF3vewfCoYIi0lqDyXOyLPUyb2cQzgejeEAsB+cHHGna8qBTmnLr4C5mL13mB4f2\nkd67T5Yb0sySlKqoKOoOMFRMnAiipERPT53enh6q5TLlaoW4VkHEMdoYRB5ANwqGr8E5Eby4LMJ6\nc33wQBdYnPPAmlKyIyktJJDWSZSVxFrhKmWiOPFM5cyQp4ZIKvrrdSZHR5gcG6FWKZMEWwOLRShJ\nb7VGrVJhqKdKf72yCnz9pVrJ8IrpBkMV6eOl8D4K1xZrcgvP4G3j99rV8L5EF/yCrnx+kQ5dieXw\n/ZWeX8UaZ/mk5+RP73OL/W8cHlcw2WItyHUwnsAu/NtOh16fEvWlCCCvKlIR06ZEHkfQY+hXUDL+\nkQn8Oh/VwPVCS5dok/Cja59habzO5XgT24bOMTD0EIvkPsOcYQfvtQ5x8tw++KH0sY+xwJ3RPFw/\nycPhSf+yNPEzoCuAkdw9v4m7mzcSjywRlVLSRkx2uwYXhO+fH+KVJXvA3tVML09wKdnCxclJthy7\nyY7LIE7CdNvnZT22DsTzMLunwlm2c7O1lvRO7BtSw9Htv4/e4HwV+PoV1sjQAM88sZ9D+3axY8sm\nyqXSJ4EuKTrnT9k1zfJcqk9MiqS3KxXgXIYM+xefnFI0WtHZ+Hf6oe1c9Amw3XUoZSHt0YXmCT4a\n3uGbqPXsMv89i3XFIcs36Sy3LC21mJ1dYm5+iaVmmyy3aCnRStBTqlCuVHAyIhfKm086hxUEo1iF\ncBHVSomBPGOx3SK3nnJd1oLUgAkbBpE7WliszSgnCpdbMmewAUzLbHglGoYkMlSrEbVazHIzRynL\nzkHL7WVL85ftjbhav0G10uhS4xtwzffjYWC9Y6P0SY6jHz3Efhsu/BiON31LHp2HF+ZhbIc3oDy5\ndxvH46f4jv0cJ67vx76lfGJjA9igYUD7nquAloCFCsxU4EEf5DmMCJiC+q45Dlbf5rPu+xz5+D0q\nf5LCj2D+DpTrEO+DbV+9gnvxh0z3DHNz6zqu7N4Bp4Er2rMuSOhuSlZSzlfrryutJNVyiSTSxIlP\nwhIOYiFwucHk1k+mjcJYvy46B0r5iHhT4KjCmwM7k/tUQitItCaW0jNBnEXasI0Ukkj4dV9J4YNI\npOpI9FQwgjfWopQO3ib+kOKcwEq/jkvwBwTnsDbrHNAQKrQGGw4LGokFVxySvNTPCYGS2gNeK3qS\nFP62kyTBe9JArBWRlDTSnMVGi+VmkzRtk6Zpx3xeaIGOFEkc0VOvUUlK9NRq9FYqTP7hHzHzz/6J\n9zMDPBHMy1ms8Gy0wlzcy108I2Alu8JaicCb2hvjGb9IgZai43uG8sw8ERqhdRZrXXfPbP1G3lkR\nnmtEB1J01stqnAUJeZBoevYGoJ1nTOQGhyE3hs0TI2waH2Chsczt6QfcnJnl0u1pLt+dYWZhiYVG\ni9z+9Ob8UaiVsvDCH6UPL9MeAcZAJFDRfp98Bb+JPg1MKpr9/TQj/LlmDrgVrrlpYXEpfOEOnsG0\n0tz+02y6C/llI9zObXhYhY9iKMGiHeQnT7/A1c2bOF6+yDD30eQsUudKvpGrdzbz8IMx3IeSm7s2\n8Y3DfVyc3MyUusBwn792hgGusIlTD3dDJtk2dp6zazaz93PnWfsQvvIWNBahXIGB3WBfhiub13BS\n7uLF9IfULzTgbXj7LrwfHvFVC+UL8Ph70HO2xbqD1xktTXNlDPhseClmw0t0UcCFHrhXgnRlqElx\n8Pt5ZKG/aP1VXi+PdoiKEIKRvh62To6wYWyItUP9jPTWGKiWiaPIp+s609nHrxxGhFvo2oSsGEWv\ntBlBFKwW7zcoV9yGkIU00TPBrJQ4Ibv+h86bshehIYQhdXFXSqkVHlgCrbUPOrF5WFP9dXmakbnc\nW6a4It099BHrQX6T5xiTkec57VaLpaVF5ufnaTQaLC83+Xj3FI3ZeZAK7z0ssEgU/z97bxIk2ZHe\n+f3c/S2xZeS+VGZl7Rv2AgoFFNBYmr2QzWaT7CFFUdToJJPMpJPMZDrJpIPMdNFpJGqOOnBMIxuO\nkUZq1Bt7n+5GN9bC2gAKVah9r6ys3GN577m7Dp97RBbYzSG72SQwLDfLqsyMyHjxXkS4+/f//osh\nzRIxq88S0JDVMsZGRpgYGaGe5ugkoVJQBe9hHWoT74TJrJG10FqZo+V0NMo5wKC1uivIhTBHxxIn\nSuWzNEGZhNR5Gg2NKx1Ft08tTZmZmGR2ZoqZmWmy1JAoJAjGOfJUM1a2adQbjDYb7Jwe48rS6q/g\nHfdJGlEV8dGf4zqwPQk9Nl4bDMEsh4Aom4hcOzR6mQr3H2HYeQOZx7rI4rGKgPqr4e+272HjfLc9\nBOVnJd3G/W/c448g8sYdMJ/Dk8AzYD7dZeeuyyy2LzCdLKFwbLgRtlSLyyyyOjvGyCM3OPQGrJ6R\nObsJHB+D+kNg7zNcNLu5zhz+Ws7r509wdv9hpmauM5qv4jCsdke5c2MHa2fGcN/NpOlzPjytFQS8\nqiGYYRFOOWrnzwA7FMXYCEW8/Q6yJlwCrlhJVr6ewDnF9as7ODl2jMPNDxj7wgZTeo0jL8GRJeSJ\nPwobv1HnpanjvOqf4MLSPtyZVBromyVDGX3BJw38ugd8/QMMpRSfOv4o//U//32mJydIktChCZKO\nqJVHIb5aKvq2SCEyFBuGjpFzRMN6vLBDPJaP0qjj38hvnSyKDNWP20WQsuh6vJMJxkcIzWtiW8iH\nSco7P1gYffA9sQ46Xc/v/h9/yf/6hWOsdSqKMgFlSTNNs5EzNTZGljfwJhHQzjls5SlcLLAylC8x\nqWKymXJnI2GlLzKSRGscigphM+hgRlxZh0cxUstxzrHZK/BKkRiF9YZe5bHeU/keE6MjZHnG+laX\nvdqycwXOrPwqXvF74z+eERfcCBDlsiiMgBrvMcVtZvu3yC6WVB/A28J2BmQZ33Eb5kLW/eVsJ1/l\nS7xw8TmKb4/Aj5WYNT8C7EckMuPIrNxBFrTLwCkDV43Ujns8kztu8Ih6mxPFSzS+XtD9N/Dj83DG\ny1bhmXdhh3Ic3HuWxx55nVfqT3Jl3x7KuTq0FWw1GQJfH9203Bv/oZGlhpFWRi1PqNVSiXi3FRY7\nMB6unKd0Fq2hCg2IRHmyRGOVx2sVvLu0eKlYi/YJiVIkWpMaHXy+cozTQ9mekjnXu9DUCHI/vA5M\nMHm/aiXgmEkUlXcYI8WDi2sHcX0QQ2Rhf0Xak8cWJTrVoDxJJF8BaIOrLFJTSJNE1g9JQ1RekaUK\nTUKeKNqNjKKs2GrVWFrVrG1K0VJVIk1x3gaJveP2zWVqecb4aJvHX/gxE9/4Jo2TJ7n4L/63IHRQ\nqBhXpg1VSDVWSpIohybRfiDRVyis9YiWzA+kjInWFLYU7kui8ZXFDJbPYBfgw2dDyRodzaWlRjVi\n6OQJgJgObDJ5feLRxSg/XHflUMpijMI5RTPP2LtjioWpNkf3zbHe7XH60g1OX7nFh9eXuLXepag+\nSaycCHqlSGEzjkxai8AsTKWwI0hFxsNdHbJ5/ymysY/WLRGXKhz4m8hkeAPZyUdj+7jh/tteo+2J\nh30GvmO+Dpd2gsugo+hea3P6vgf5cPf9qAlJTvWbGndN4T/QEhpyBvz5hJWr07x8/6d5bc/T5BOb\nJGlFZ6WNvZLjzhiSgz1ennqSXeYSI7/WYe/YFSaOwcQdpKZ7GK4/O8YPas9xixnqVQ+9Iqe5xLCM\n6wNLfbAroNcdLTap0WPqs5ep+y6lT1hZHaf//ji8hUgkT6bw4TwUJUNJaMkv16X/aMkQGRRxDYlr\n5UfH37ap8st49Pz9j8Ro5sfHOXZwLwd27qDVTKhnEjCSJ+IP6KxFOWF46oGsUQegXmw68B7th6xq\n74fsLgmQEoZp/J3W4jkV6wAxoRdmMUqCN5zWYSo3KC3Nhhh0EocP/wgT1gwaMADaaKwTxqtzjsQI\nm7ao+tv2/y40Z2yQNJYDb61Op8Paygorq6usra/T7XapKi91gk4gyDNNkpLlNZqtJs1WQyT0qSZp\nCts51wkZsr6Z8KyttQLKMfRY1HrIbubpdAkAACAASURBVB6AfFphfFwbNUpJ4yNNDWlq6HQ74fx8\nYH6JD2biDV47sBJWkuY1+tpQSzNarRZZmgkTGBdAOkWaJJgsoT3SJk9SMqNZnB7jFaX+iQaYRLXA\nR7+HoUF8G2l8jCPd4llENYGwVA2B7OWhcsj8fhvZyU5CU8OUkj13JOxuebgzAmvTyOJxNRwrYTh3\nRMDLcXfibfw5rgPbqOx3BVjNwEQTHgY+DY3fWeGxna/wtH6RB3mHXVxG47ijJzjFYa6wyE9nDzP7\nhdvUNiue+SE8fQVUC8xjoL4M547O8AZHOds7AB8qqpdzlhdmWb5/BrXXw3iJyipcWZPPz05kDZwK\nly9lSHS7gYBZl4CiL+dyuSlrSoMh+S1iiVUZ1tEcrk/Bu4r+Ky1e2vMU4yMruHnNU//FTzj4uauo\n20ATru8Z45XkON/Wn+eF4lnunJyTdfoS0O8jYGOXu+0GPhng1z3g61c0tFZMjo/xwOEDfO65pzn2\n8P2yIAUpTKQm+8DAGrKUwyZi2+Y5bu4EI4tSxmDGq2UREJaWDb8P3W6lZDpSQwaXR46hBvLJ0Iny\nEm3swt/HDU30gZEUmHD/QOV2XlF5oVz3CsvBr/6E+laf42+e5dzMKBZPohStvMbk2DitVguvNB6F\ntU5YWv2KonI4I6tk3DTkWc5Uu2Ljdo/CetJE00g8ZSHnpbwlVYpUa754vWLUOL4+nzDezOj0Lf1C\nEmYq5YOxsWFzo6DZzBkdyWk1DEfnDRfXuhSfpNri3vgHGtGHINKfY5yxHqyVSsft4VCOAMP++mB4\niPnkJSnFraY8/BPAHuCQI3uoR3Nhi5HxZdKkpNurs3Frkq1zTdzrGbwiT0WNOaZGbrPAVcZP9/Fv\nw7s34IVwwJtIAuofvA75Kc/iA1eZSW9RG+tSjtahHmnoMR3pHuj1dx0TEy3aow1Sk5ClCVo5yq4A\n9t5oSqtwpRtwHCxejIq1APIGhdKKhtHUkwSjwGio5xlGMQC9Um1ItKQ/RpBKq218Ae9FjheKHeec\nQD0arBPfxoFExgQGr3VoxTDKPsy3zllAYSvCWmAEqDGKsijl/Rs8y5yzVGUxOLYHsJWY1APeWmE/\nIJ5nqba0c08yXmOsmbA1VmdlbYv19Q1J/OoXeK+xRcVWUWFLx78/ehRz9Rrn/pv/komNDWpZSqI0\npRJppA6gUlm6oC4UZrQ2Q3mR1iqcl8eYBK3TwXUr+gUVDouklGlEDokjJD26YGQPKE1iIL6iItcJ\nrGxtBh927wVs9EqDH6ZAxtdN5KVQBgBSa0WappSVXMt6XmNhfJQUT6Yd02Ndlrf6rHcqev2SsrLY\nj60cMspWEqRbP4EUOfugPgN7FdyPxL/vd5i5CtOwuEJT3U7hghYZxnuIl9dmH/wqAv+sMOzorzNM\nK4wd/L/LiMhaBL7C/FcBF3bAVl2aEW9r3KyWus0wlJVcRjb+SxYuGbik8G8Zqtk6Vbsul6CDmLxc\nh+rpOj+dPUptb4+tRoMnP/UyRx47Tb1j6TZTLuSLvKye4Pv212jpLTpJAzsNZhYWzkhJVyB130ID\nkmkoxzWbtDjEaZ5KXqTFJn1yrsws8N7UA5za+yCrs9NiwGwVnFkE1w9PrBMesQyvWZSK/rwRX1P1\nkd/FEVe67X4+P2tNiZ48EZRRH7k9MtEiA+QfBwDTSpElhla9xnR7hMWpCWZHRxlttUi1EZ9Z63CJ\nw3mxHrHOo7RHR1BLBZ/Fwb7Ahz518AQMc64YyiciPwxJwCowebUxEiiFRmsB2pV8I6wtbWQfrGIy\n490hJzIviyWIUmJaH5scWidYa/F9h3MVVVGK3N3roYzbWWxk14b5vqwqAb6Kkl63y+b6Gutrq2xt\nbtDtdOn1CmGa6RQCo7feyGm1W9TrGUlmJPHX5CS1HNKQROwdpQeso/KO0lYUvoJEYaSzMEiTd87i\nETaX814ALZMMfCC1VuRhnu/3+/SLvgSjhBoIY3BeYauQABznZ63IslRY07YayD03N7eoaimpaYqz\njJbmVb2Wo1FMjzYZa9W4s9H9B3+v/uOM+Ln9qFl98pHbNYLCTAI7gHnIJmE6kR9nEWJVgkzFqwpu\narg6A6sjUK/DXsTTdmd4mBoyT99RouA+r+DCKCyn4CJoFZ+HYyib3GQYFBUFiP1wXxf+j55iTTlY\nNipr1uNQe3aDJ3f+hN/V/47Pd77L/vOXyD+sJBh4ER4/+AYvTh7nLfUItaM9jrV/SuOJDskNDy3o\nHsy5+NAOvmU+xwvVc1x/d48o9u9z5J/qMn//BQ5lp5nhJjl91mbHuHhoF2cePsLaA5OoArKpAp06\nbKkpbme4c5mEvbwDvJvBWh9616EX65VYhcSgkzUGIVmro/B+BjOK1dYOvvWZL7A0Ps176f3sXTxP\nazGsJ+zkTXeU1zce59JLh+BH4XjXLVJprIbHjr5sn5xxD/j6FYw8z/jcs0/xqSce4+C+PYyOjAwo\ntoQuvXSPFcr/HAp49ApwoMKSqkJku4BPsZ/MgDUW/mSg5797BKArFAmosNC6IG1ROnShdNjgg/YK\n74dA2MAMWY6GRVF5KCrPZr/iO8cO836vzzemGvitEqWhlSsm2qOMtUZI0oTSgrWOsqzodbv0+j2q\nyqJcCVWFdhWZAqMd7VpCK9fc6UDlKkbqhrrxOOtRXooV5SyThaOZgKs8aZ5RywrQYEsj3SkHtoKy\nqugWjmY9Ic81R2ZqvHur4r2l/9Dm7974pzW2L+7bFkMWoFkTf68JcN6wyji3sinKnQnpgYoHz8FK\nR5aZBeDwBHAAetM1bjFDRsFDD75K/0iT1a0xVpbHmZy5zUPTb3FEn2Keq9TosZaNcqG9l7cXH+b0\n/vvZHJ2Ak6BSSCkljaULbAbW8baxChSbUN+E1Jfk9NGJG2J598YvNXbsmKDWyISdZTS2sqBFWgjg\nvCYNHixe6+CFlZAnCUmaYq1FGwFwksSglUc5S6Y9qVGkRlhgCo3RoctP7NoPwa+YpBvTq0TCGEkE\nKSiHdSXEx1MOvME6O6ACiETQCUjjwhyPdMFtZQMIFh7Ta0ImWWjYiJ+KMQneS4S9BC6GBoxGiihb\ngPNkymFqOiRnGbaaCXeW11h1ln7psEZTWUtVenrK8d0vfon6zTt0u30mJ0bJTE6WpSTWkSQusN0U\nqRZJJd6jnJj6W2exYU1URuF8GQA+TxIk+qiwhnjB9bzzYpIfFlFDaCrhB/9XVREKVFBavC+V0qFA\nDA0mFwvM0LpSOvjNiAemKCoFuisrKRZxGldYXAVVIRLXzGhGmzWajYSycnT6BZ1+QVlW9ItSmkcf\nC6JBBDrifNlCWtSLUJuG+xScAJ6G5uMrzM1eZaZ1k2aySWFzlroz3LyzgzvvTMOPE2gqeDODlRQB\natYQJkBMcYwb7V8EHKmQ+T12/dfD7z3QhaU5WGvC2VyaBM1wetFKplNBJyRKdkZgqQWntNR49W33\nXQuH8LBVG+flX3uG6/t28GbjUXbVL9Gsb9GjxlUWeK+4n3M3DnP/wluczfZy9PA7THxqgyeuQusy\n3KpgVwoHHgD9NNw+0MYD/5x/zZ6b10m7BTY33Jod5xX9BN/b9Rm+3/o8t/vz8jyWE7g9E67hGkNv\nlr8pZXQ70zmCX/F36bb7xcUn2gFEE+u40GyXG8UCOT5mDD/wDENWIitjuywpjl8d6JsmIrduZCnt\nRp2JVpPxVotmngmYY4ISwvkh+3XQTBYpnyVIDxEwR/nY4A4glx7+T/DbEhaSMLtc8K7Sgd0VmxLS\nzAjKi/B4hON4rYJFiqKyFuccJkkwQXJtrTRVTJIOmb4K8I6iXwaAv8JZS+kVCgdeADEJ8RD21SDh\n1jlsVdLtbLG5sU5nq0PR7+OdgFHi15uSpikjIyM0m3WymiQimtQEWWZF1fPYUknQiwftILEeKkl3\nd9pj8gQTJIZGi3G/tTY04TUKgzGQJOmA0aadAIUx9dEkCTpJ8J7Axg5p9Upta1jIfC1Jwo5ur8dm\nZ5OZqXGyVp1+v0NZlThnyVyFT8zA6mC8WWNhauyfCPAVP7NRFrj9M59yN+jtkDVgHtgPYy3Yr+AB\npPmxG5ixkDjoGAG9ziJBT2/WBfB6FDgKyaEOo5NrpElB5RO21lp0PxyBt7VI/95swPlFYBqUCetp\nlDZuIjviZQQ5W0MmchiuAXD3Xn8Umrk0pR/y7Dp0juf0D/jt/lfY+60bqK+CfQeqAvLdsPBrt/m1\nL79Ab3eNv+SfcXbfPg7uOku7t0mRplzOF3iDR3nBPcPJmyfo2xo85Gk9dIcnd7/Is8mPOMqbLJZX\nqFUFy/UxTnOIV2ae4KVnT1DzPeaza9Tp0KHJ9WKOy0f3cuvIDuxsWKdeH4E7JdK16YTziuy2HsM5\n3wItuLwAL6XgYHl9nh89OspPF48yPX6detalqDKW16dZuT7F1juj8BLyddqDu400pNaRIuQXsRz4\nxx33gK+/x1Gr5Tz20P38p7/7G+zauUA9r2F0MowtVoAOBpMDpogOG+2hKf1doJWKG2U17Fr4kK7o\nAmOMSP/dlhqjBBgT5fvdaTKSIEPwBgu0bO8H/l3Ka7z0wkGBVsIoc/G4iO2JRdQevcKy1bNsdi3f\nW5ii2NpCa03TJMyM1RhvNcjTFFs5+qWl2+uzvrZKZ3OdquyjvHiupEaTaE+aahQpeWKZaKVsliWF\nlQ5MM4E0UfQrjbMC/P3buYxGTaEzKSSUgTR1JNpjcAJ6+YpuTzo9vdIx0kgYqWueXlCcWYby49pI\nvzf+EcZ2X69YyE2BGYd9Go6D/nSfI3vf4T7exylN5+GM8c9W3LcGO07CxrqY2tefBvU5uHJglj4Z\nX+b/JWsWbDDCudF9nJ47xKK6zOfUtzluX2N++Tam5+mPpbzXPsBP8qf51r5f5ydfeI7NrQl8Bzqu\nwbpuC3N8DuZqUCtladNIo6w2B0zDpm6xRZOqSLZ5Qf+8YjHh4yY1+biNkVaNsXaL1CTUsgRjNJ1u\nhc4yVJ5CabE9j9EVqUlBa2EIeEiMIUtTKmPQicEksknzLnScUyOdZC2Ni8SkkkKYBhZT8CrxhGTC\nyAKOfDCvhM2rjczhCmE5aYu2fuA90+87MUd2ThIRvTAUosek1gIQeV/gnABrSoPBSNNBBQmOk+dD\n6uT5KJEbOlcJC8t7KWKsmCMbhTR6vMf5ipGGQld1UmdZ3ezRKSxeK/pVgdIamyiKCtbWu0BCu6XZ\n6vZJjabVapJmcn0SFNa7UOw5lLNyHKUlTIBhYSPNksCcQK6XVgp8Jc/LDYvDyIR2TlKUvReAyiSI\n4b1cHPHIAZSSv3depPvOyqJi4zX2svYL81skRpV1QYqp0V6jrEa7FFUZKFUQa3qMVuSpFJTGJBSu\nYKvTYeXOP+jb/+eMWBClDHwQmQI9Cbu1eKT8Buz47HmON17mmDrJfs4yyhpdU+dya5G3mg/z8twJ\nPpx4AJtk0NXwxjj0Zxl2rCMYEs2Qf9ERCwIYznUVsolfg2IUijas1kDVwt2iN9g6g+65HxW/xK1R\nuN4ElYfHKsF1QTXh1RQq6N1qcebow5w7eD/pjg2yvE/ZzyiXRqjOJvgtzZnfOsTJkWPct/d9Tvz+\nm4wkjuNvgFsDMwf6Wej9M8U7Iw/wqY2X2fXydcwrXthlbZh/6CaLz96gPbdOfyLnu8/9BlsXxuEi\n4mPmRpHCbpO7waePFizbAwpikZtt+130orIM2VnRgLoWviJIFgvQqNEx3G1UzbbHKcNr0GewNx68\nRpEN9vcrp6nVMpr1OmkiLNvMGGpZNvDC8nFf6HxIijWyd7cepxzW61BrqyBlHI5BAzoAVTGtERjU\nBBHMctv+BqVDiqEA+0Ovr6FqQyPyR6c0Ho21AaDyDhVCSaTv4HC2wDqHNlrM68N8WBR9mbO9+Hdh\nQ1gWDmurwCD2wVpF7uNsRa/bYXNjnY2NdXrdLaqyRJuELK+R5Dl5ntOo12jVG6SJePlWQiWmb/v4\nSppDFZ6uE19e5TWJA105jPJYZTG5RqcGoxSpSclCIqTW4t2llJZGSBKB2AqDMJ2rqhRJY5qQ2hRr\nvcgRvbCixfkxXHcv55vqFG80/aLH8u1lJkfb7F6cp9/fotvrYJxDqRreV+RpQqtRp7CWhw/s5J3z\n1//e3pMf37F9LkgZqiCiX1dMbIyjBuyCdguODpsftcdX2DN5gWl9i0yVbLkmN90sly7vxr7UlB7z\nATCf7bH7vrMcyd9nUV8eMFuv7lzgg8OHee/BB2G2FsLJM6hn8pQMgdDrYWUUNmcRuu718Byjv43n\nbhZqEs6nKUzfBWA/HK6f4kleYfdrN1F/Che/Ca+syV/e91N4+AZMtDZ4/A/e4o32Y/wx/x0Hk9O0\nWxv0ybnFDOfYR1utc3T2NdSsY+PRNg2zxe/pv+CLfJ2Fl5cxH1jUFrg5xbHH3ubA4hkW0qvMc5X9\nnKPFpnhNZnt5ffYxfjT1LO+PHKVyOWwoeHMc+kG+zzLDebXYdp5hne4n8MEcdBNYUvRPtbixr8nN\nmQVU5vFW4W9ruKjgNMEf2EP3DgKu3UbWkcgejnP0J2PcA75+yaGUoj3S5IEjB3n2xHGOPnCEZrMh\nBsORnqxFv0+QTRgtWuS45VLey3vmLga52OdGxqIHsRtxsiP3fnib3B8iADbw/wqPF+URKpgwDzvY\nELfW4v/lg2DEBdN6WVyqsACKP4qAadZCaT390lJU0CscnW5BWXm0TknSipHMMNIaIc3rdEuJL17b\n2KDT66GrPrmyZCaY5JcWSotLFdbkVEbjU0OrnjNlNTfXPb3SkjlHPQNlPJVypAbQ4hNWV4paDmQJ\npTX4sqTSUBQeY0X2aK2n5z1VWVCUiql6wmPzileu9O+V+/fGR0bCIMmRcRivwQFQTzh2PXiB38i/\nye/Zv+CxD9+h8UIJN8Ach8mDMKmARSiPG258eoTbapLfWv8GC2vXyLuO9Xadi6O7+Un9Sdp2ky9f\n+zqN75TwNrAFtR0FTz31FnNP3yZpV6wtjnLyiaeovpZz4/kdnJvex/nFOfZ+6gZHzsCXT8K1AkYM\nPDYH6tOw8kiDM8kBLheLdG40gz1O7L5Hz5V82/nGSegeA/LnjfnZKfIkIzOGLElFPaEMKglzo3eo\nxELpQummaNUb9MtqwNzK8gyTJOR5TmIS0kQkk1mWkhhNnqYkSUJiEvHtMnrA9NVKEVUwkmYVTH+V\nEi8iwHor0pewzqQkuLISrxMtXjT4EGViQzJhNHTXCmsB3ACgEamgoiyl+BLzfGEaKDRWQ+ktaEWm\nFdoATmQy1oMyCcp5vCvBlShnMd6i8DRq4NsZVllcRxIXdeVRFGinxHcJQ9Gr6JsSW/UxWgyOvbUY\nbaicAqPD8/FDGaJcDHnhvMLHxEViwiXC2HIe5xiAY3K7SBpD+Yp1VlhcgCsiWKhwKgqa4nUdULoQ\nOzIpXm3lBQCLDApvqaooJfJUtqKixOnga+MgUyk9bwPLQRF0SzgqlJLH+viMCIpE4GsGJutwH6in\nHPPPnOfzzW/yRfcNnlh/hZ0XljDLIgW5vWeEdybeZC67yVeedLy/dRSWAgvg/Ham0gZDn65fZlju\nnudiAdQLx7jDAMjx6ba/idKZKLVcQ4CkhtxvcN8A4PhZuL4IvQZcV/gPFNViRjU5STdnaEh/DWjD\n6vQOfvTMc4zlq9jjhkfmT5Gf62G2HP2JhDsHR3hl/DH2FhfZ+/1r+H8Naz+BzRXIGzD+IEyvrPLM\n77/I5YlFPpw6xHtHRuGkhg8TkRAN0tRiEbS9WInMru2JbKEQHHhC1ri7bIgJazWE4dFgmOIZr20X\nYSHc4O5COcoa42NEOVKgMkfK3OD6RyZYNLD5u73/dUhONFqRpgm1Wg2ThHTDwacYHB7rRHLnswxt\nDM47irIgMRmqUigt7yGfKLwOvotepmkdFBnOhzlICXiktcYGrylHBNJ9wMV0OL6S/bVXmDgXDYCv\nyE6KDRCFDf5entjEqKishaoiSzO0d8N5BoPRRgAsZwPg5cJcbZFgE/mdD77BzklQS2R95Wcv8Pif\n/Bnf/b3P4Zyjco7KeXSzRt5sUc9yamlCqg2uquj0e8IwVipIJSWRF2+wWkGaIESvEu0UvijEbzFx\nmMqgU/DWkyUZtVqNPK9Rr2dkWT6Q+HsPZVlIg0aZQb2TJAm1vAYeirKiCF5m4MP7wAg0ay1lVZLm\nKUlixL8rSdjc2mRzaxOjxUPSIUw4EIuAVrPJRqfLgR2TjI80WNno8B/vSLd9NRga1k8wNK6vMQSR\nKiCBWlsYv09D8oWCPU+f4oR5kUd4m91cJLd9VpMxzqs9nDzwOK9OnuBme5FsX5ej97/CZ/T3eNK/\nzO6ty7SqDfq6xtX6PK+lx/jR/md5IXuWTTcFuRIJZZSmbwG3FVxScC6Dy/Ow2WAI3EcIGYYs1gDq\nqWxg9aXmOsxzjT3lRfTbnvW34YVV8ZEHWKpg6iTsOgaTz99hV/sSVTfjL0/9IflMh3Ssz778HJ9L\nvs396j3mzE0MlmU1SY+cz3e/w+6v3ML/O+i+DbYD+YKn8VzJ8//5a7QPbXDw0kVa7/ak5zIOm4+c\n5L7pDxjLVrDHDe+tPiZr5U0NF2aQTkhcM2OzqELm3tXhOVcOzs3AnQzOaJhR+DEjy5hlYIHJLQ+3\nCgTsuorIHO8gc3Wcoz9ZwVj3gK9fcCgFaZpy7JEHefbEMY4c3E+r2SRL04H3idYmMLxUiL0KnTId\nKcyIPCOkZSkXYSUIKJl0KZQCP1z4FDG1isDsAufi4pgA1TaGl8J/dJ8o9c1dtwfb+8G/Kt4WZJFi\noF+FNCvxrakclF5RWuj1+vSKCpzB+z5ae0bqOVmW0emXrKxvstXZxFsr00yaiMQySXGFw1GAtyhn\n6BWWQitybUgyw8yoFH6rG106lSLRMJIoMqUwSoyb08SQePB9h0kc9SylhydPDCaRqOLKWMoyCjk9\nReHRTrF3BN5LFRvlx6mQuDf+cUbsNG/vbrVAt8Rk8gBkD/R5ZOx1Ps2/5/EP3qL2J5bNb8LSTUgM\nzO6B7ItQ/qbmzYeO0E3rHDv1Du3vdSSmqwPjO7qMnzjF5HN3oNLU/7Sk/HO4fBa2Cpgchfl3YW9x\nled/5wecTg5x+uB9rCzOsXppmtcnHuOH+jlGfv1bTKlVjhyAIzflqfIQ9L6Y8ub8I7zKcc6uHcR/\nkMqatRb7xWPIgrXM0OsmFnSxyLg3to8kMcxOT5ApQ25SjJJNXp7mAoAZQ6/TA9tHuZQ0STHBb8So\nEmWESSGd6py8ViNLE9LABEuMCR1sQ5ZkpMHM2For32sBwryrBhN4BMZ8YOwKKGUg+m95kVGqRBoh\nPoA6XoErKlKtxJTfidei8oZB3z/4dIlXluA5sXAaMJdQUHpsYDA45dHekRhFYhJMEozinceVJcpo\nTHh/VZVFe0cthzYZJJ5O2SP3BlspcBWJMiRK5JidbgflHcpVdJRi7PxtdLtNubATTSrsZjWUH0ky\npiydYuWiJEXYB8aIB6PEIFqFc5NExyD/hMBsC6txaC6JYbVcwxjuElnTca13lQ0+atG3R+MraUL5\n2JgKrwVG2F8lJZWuKLyYthsFuVY4Z+gHdrOKr42t6HT+JqnaP9SIrKGPJN+aETGxvx/qj25xbPxV\nvsjX+fz5HzD2tU34MbJ/bsPU0Q2e+e1XSR+pWMva3Hxsljundorn1+UaVG2GjKLo0RJBk190RAAl\nbtojoyumi8Xz2a4Nj3I9xZDtkGy7Lc6dESArhCl2Zw4223ApG4aaRXuZjfC1B5iE07WH+P+OGm41\nZ3ho4R12LVyiTpd12pxlH3V6fGHpe/AduPp9+KvbUt7UO/D8T+CBCWF+3XfifRbrF/lw8TDFTBMa\nBlbrDFkZPws83M5yzpDqrxWecPyqM2R0WQTQ2gy3TYLJhXmRmvASeehZMUN2I+ExG6ASQuKGdFEH\nKGBw9qcWXovIKIum/LGQi8f/mxnKSkGeGmpZSi2XRoWLdiFa9tfeCVvTM2RWOQ+VFZ8/VGwOeLwX\noAbnY67UgHXrt33F4cJ9lRG/LR2a2Tps62Fo1D7w5bIOpSqsE8/ABAg5HhLqFDy4tPaBcRrElrHX\n7R22qCidA/GFx3mPxuEEh8fZKqQ1xlTHKG+M0lORfTvv5H9bUdmKsbMXSPolta0evlFDmYx6Vqcx\n0iar1wWsqyyuEvauR66Pcw6jDI1mg6JX0u8WpHlORcJmv0e3rMApis0OiYI8VeiqxNQ0tqrIVBlY\nbZ4kSanX6yRJnAM8aaqwVg0a+mZbyIDWGtPv47YchbN4N/RBk/VBmMlVKT6deZ4x2hohzzIJLgBs\nFSW4mdRCzlLPcxq1Gp31dR47uMh3X//g574PP7kjzu+GoddtNKwPZvUqeHLVkyGRtPLQ9TCr4REw\nzxUcfvxtvmi+yq9X3+bBGx/Qvr5GulXRG6uxsjjOfZOnmBhf5pvPfom59hV+W3+FL3e+yr73z1N/\nvRIQZgQOPniB/Y+dZWL0DsV8xk+e/DS9/U1au1doNrbQytEra2wsjVC9X4c3laQj/nQMliNbJM73\ncd6OI6g9AsaXZBU1ejQ6JWodio2hOB7k++UKdq1A2i+o0SNTffy1DEvF0YXX+S2+yufK77L38mVG\nljfRztEZa7A532D6nTuov4Tz34BX12Qm3X0RnrwDI224//kz5H/usC9CdxlqU9A6UXL8y2/hjmtu\nZbNcObrI+ruzkhB/sSZMZBoMmwh9/vocGZs9a7A6CestuJhDkHYLmmyh1wMXk7Ziemb09fLbvuJ8\n/MkY94CvX2DU8oz7Du3n008/waGDe2k1miQmgl1D80oGE69C6WRgbKn1tk2Hip1cBBBDCe0YFf5e\n5CcEqYVXfGS/F6CqKINUYVOo/PDWkDQFUb7hg9klRHvuaNK9jYcmzyV0/OVxNF5Z2SyERSamc3V6\nfSrnSDU45WlkGa1aja1ewfJWP8F1JgAAIABJREFUSb8qcN6LhAXPVt9SVhbvSqyFokowFnSVoBXk\niaeRQLNuaOcpzVqT8/42G1sdug7qStFKNZX1IiXSHq80ST0D7ciNIqll9EuHSTRpYtBO0ev3B5JS\nvMVZRztRzDQ1G6ufnA/uvfGrHHrbV6A/m8bAsqC5uMwRTnFs6w1q37asfQ1++D6852W7fuwmPGPB\nHHD4I4Yn1t+i9hcl9t/CqdOw4WAxh/l3YKG8hR9VqG/DyZPwopWlanwDvlTA4gIcfPQShxc/YHbm\nGivTc/R+2OSNvY8zPrGC2uF58g9f4tAzl1HLQAtu7WrzRuMo3zKf5wc8z+3X58WUsgfMK7g9AVtt\npANfZ9ghgmFRAffAr7vHSLPBaLMp0hgjS6c24t8VL5mqHKqqSBS0Gk2ajRarq2vgFZUTaYXyBpOk\n0p2uLDrNqNdymo0G9VoNrTxGm0GKoKT/Al7YQklKKJYCawmFNsEHUhtMkuC8RgWvF2WLEM4bTZQD\nAFaVWF/isSjtUcrhrKdfdjEmResEryRJF0LRpcRrJTEJVZDPUHlckPHpVGQozoFTkggmVlcirxRj\n5gRfVIhIxwvAkxnaSU5aOaxT2EpjS42zCuWhX/UpqoLEaAwev7XJ4f/9j/HG8NN/+cdUlQen0WmC\nR5hm3jmSJEF7WctcJUVylOwLMKWG32uRJ1pbYRJNoo0kVcb7WCm0VVxPtXT+rR1uKqtKGitOKzGg\nDp40ETiMBtTRJ0yKL4XTHqcs3kCFo/AlZUiEE8s0Scr0SgrUflFSfWwSH+N+ZhtDNs8H3vaTe67z\nmHqdZ4oXGPv6JuW/gp++C5crmNRw7C3Iu5b7R0/x+KHXeLP9KC8f3gE7DIwoWIlMpQjaRKbSL3v+\n8TFiXFYshvoMmx9xxKIvshvGGIJB21lhHYYm/BGg64vp4m0FywZ0fcjWd315gfujkEFlMz5YeYgL\nR3fz8s6zTLNEjR6btGixyX/F/0X9UoU/DR+sieiEcMTXCtj/PtTOw+yJm4ybFbJmSdFEFqa/0eRx\ne6MnsvZiGttM+GpAQ0kam1bCpuw46AcZ4g4Dc0rq4Qju9RSsJXArgTN7oK5hXMvt2bZLtuphZQyK\naaTIusLw9Y1ssJjOFqWQEYjcXriGs9GK0UZGu1XD6MBS1Ypev6JXltjg56dNUGXAcN8Og/AJk4iJ\nemkrNCakHloyrVHaYTx4JQwutW2PrZTGR5bWABATAMpVFm3AeGFqiS/htvk5sE11CESpvNxHQC/Z\n74qpvcdXDqUSSTzEBym5zBHWWWmWeDUA4W0prWvnrMgZbSWgnrNhXtzuOSyTT+VKSlthnefK8ye4\neGgfa3jSzU3aSUotr5GmKVVlsUUBHvJ6jayWU3lPYS1l5dBoGo02W+tL3F5axivFlvNsVJb/6Uc/\n5n84dhzjoZGkaF/i6NMYyUF56klOo1eIfYzS1GspWiWD2qayFhuk5VprkkRuk2RMWQv6iSRS4gND\nWmuRrCJpyM57yrJCKUWz2aDVrKO0pioq+kVBamSdVchakGXCQtPr6xxcmOGl986z1fvr78VP9ojA\nV5z/RpG5YB5YhFYN5rWwraaRaQOgo2BJyWf8QRh9ZIlP1V/gS3yNp956g/RrVprAa5DO9xg5cZ3R\n3/o+fp9ieXyKBa7y+eI7HPnJh5h/4ylegM0bUG9B/YRl739yjd/8o29wLZnn/KF9jD+4wqH0A2bV\nTVJKVhnjwq49fPDgES7vPyTTtQZOtmF9gaHp+3ZWKQxYpWUKfaj6KR0abDZz/ATkYzB1RXbMHpkh\n52tySYpGRocGfVeDadh16Byf4Xt8ufNV7nvxQ8xfeWnmWKjt2mD8Mxuy7X4dXl4TRaEHli3MfAgP\nvQn5suPOn8FLl+G6g0UDz56HmrYcnj/D0b1vcHL0cd7YMxuuv4KN7cy27XLx7e/NGDayBSxLU6JX\nQS+ucU2G3Rkbfo7DEJnw8n1kOio+Kcyve8DX32HkecbeXQs8/9QxDu4X0/okSaQDniQDLX780kHT\nrwL7K5pabudUSSNa3kRKM+gEE3xClNYhgh7pFEUgDA3ebvN4iairB2VQ2CCHVMGzxQ3ALzWQeoQN\nPdE9QIZSMc6dwZwgBVugVwcauNCcLdMXrvDED07yfx89gEsVLZ3RrtfpuZTlbp/CWixQX1nnijY4\nrymdp6ocCo13jvEK/uW5W/yPu+ZYaqVoJfHBuckxuaaRGBZ3THDlWkVRWTpVhdGKWqIxwSet33eU\ntku7neFsgVeKVi3Ho9jaKlCJoqYTvC1DYZRQr2sa1nFsTnH2HvB1b9w14sQuXk00gTaMja0yzRIj\nS338B7B0FU552Zp3gbcsHH0XWh/CRGeF/GSJ/T68/D58u5SP1FQBv/8j2LEHOODxZ+CUlZ4KCA/r\n4h2YPw/pjYrJxWXGzIo8h8uK299c4Dtf+nVWGuO8W7+PAwfO0j6wLh4ILPC2f5hXu8c59979+MsG\nHkJYBVeVpOGcyeDCTiijdCV+2LebC2+ng98bo+0meT1FZ5o0MyQqpdftk6WZbPyLAlSFNym1JCM3\nCb4qMMqTpim2L/KTuV6P2806RWkZyevUag0ajSZ5KmlYaZYNLG0iu1fBII5d4dAqpDmGDXsSjPCl\nuWKEjaXFQN0kCRiNL0us9yRZhlIKW/bBKGEiVVUwovcYL6BYRSWgmk6w3suWxkscvNKaNLCbjUlI\n01zWP69F7qM13krh771DeS8eXC74gCmF0obEKElF8w6toZanApoZhTOaqoS+tQOZokOKmqJR590/\n+gOyqWk8nspJQldZCIDlA3DovZOtX2ACCMPBBU/MYaGk8NiyCgw5hy2DFxnCMiCE0Dgrsn/rHT6y\nNLzf1lzycrzAyLZK4xQ4LDb6hA3Ar1BgeyX+XjrBOglhKWxF5fUAUHSVG0iwrKuoquF6/vEYca4M\nEjmjBNyYhrnWdfZwgcnTW/iX4dQH8I1+cB2x0LkEn38RJp7bZP+eCyykV8nntuiPt2UPvhI9ZX4W\nS+nvY0T5ZNzMb2fdx4IvBpzMALPiX5bmUujl4dQLYGtSgKAyAF9pS5hN9fCQMYyy6oGNqZXjcCeH\nN3PoKNw1Q/fdcd7b+7gcsg6JKXj6ie9FIYD0OD9yFprhbT97/Lz3y/ZGTw256NvS2NIZ+XGnnDrt\ncNe+gnU9tM45AhwG9jrMRAUp+I7G3TRwVklwwSRibD3NMKVtHVmXLhg4MwpLI2BjBV0yZOFFQDF+\n3yMa9JvgEZulmtF6SruRC5CNzC/x5XXeBW898UL0SECIdBDiHj36I0oTQWktnzsFVWUpVUVPiQeX\nSTw6yAEZHEvYt0oMpAjuJGg3lDSa0FiOc4HImV34kjk7N4bKVqTXl+hNTQrTKIBeSQTsvMKoVDy9\nNOAr8R/0FovCqjLs9Q3WJSirhT02OJYwuqwLx49rfpj7nLcUVUXlXZByevqjI2SdLmPtNkYbrHUU\nRUHV6aIdNJtNms0RSjxFVVJ52Oz26fcKbty4w+rSCr2tLuuba9g04w9v3mLH6hr/7YWL/OVTz6Kq\nkjs3r1MWBSPLy/z3p87xLx5/iM3RMRozNfmo9bp4a4JFslQwxhiSJA1hKzIfW0QOr7Um0RqjtAB9\nYQ0Cgo+l2MCUVUlRisdkrdEgSw2u6snjaoUyKf2ipHCgk4REG1xlGckTZsZGOH9j+ed9+D6BI0qi\no+S5jcx/u0DPw1xdknofAA579GKFGXGgPW7TYC8n8IGCA3Bg7jTHeYWnL7+B+TNL98/hrXOw4mFf\nBvvPwKja4sk/ep33Ju9jimX2Xr2E+SvP+lfg20tiVTixDs98G/bVYfHwEg8/9ha/2ZrkCKd4pHib\nueImqStZScf4MD/ATxon+P4Tn+VdcxTbzSU98t02FFMIe6kbzjNKrwvwBWzU4Tb4a3WuzC/wYbKf\nw4+fZ+SE59nbMHob+h4OpDB1Atxxxc3pWc6xj6ViitrIOvfV3+NJ9zIHT53F/D+e9a/CT5dk1nqg\nAVPXwNwHrMuziLNzAawXQrRyb8Bbl+GkE/jpmoX8Kjz/GoxfWGP3rktMmSXUdB8/GozuN7Yze7c3\nOhzDBk9ky0agO0fYe+OQtIdrVkzdLICqhGoVkTzeRqqUWLHEtOCf5Rn58Rv3gK+/xajVMuZnpjj6\n4GEeP/oAI82mdJBgWJAYgzJ6AHINIotjemMAw3yQOUbDeVHSG5QLHltKOj84KXqiLENAMSWLsg4t\n5MFmbQhihR+EneVD9eSHb0R9F8R1N1kxno9QvsOCEr3ClJINfNzkh8VRAXs/vMTUVpfJynIz02Rp\njktS1vuOSmt6RcFvn7nC81eX+V/27uTDdpv6WIupWgplj/7mFo+srDPiPE9vbfFXI20yDc4rekVF\nkibkWcb46Ai2rNja6rG21WGzKDC5op5rcOIVVpQVy2sV7WZGlngq20VpTT2TD2TlEjpVgUnA6Ez8\nDCrLvlHY09ZcWP+4dNHvjY/HUH/9RwdK+4F/0DDlSYYjShxghHW4DpvX4HQ5vN9t4P0e7LiCmGhm\nQ1eUeJhUgcrAm5galcgDXAJuwZ2NHfzw8c/y/uIDTI/epJF0KF3Kna0pbm9MU5IyM3eN2pd7eK/p\nduqsL43Sf6sJrwGvaTg1KXUEfYZyktj5/WTRl3+Vw2jN5PgoWZah0wSdCrCiCmETePH/JTO5yArx\nUHmqsiTVKdYr8jzlC1ev8fsXr/B/PvEoF0fb5FlKnmXU6g3ZnHtP4gP4ZC06SQfvQBu8FrVWYVoO\nxaoXcEYbBsWc9z4wrRTOiSwx0wKIlaWwidK0JgwAZ7FlAIWcGzCarHPBzL4MRRSAJtGybXCVRxuF\n0QmudOg0QxkxgPZe7q+1yHoInwfvVNhuye1eeZQReaSY0kOiQGcanSVUpSdxkGsta5rz5FmOMorb\nxx6lmddIXBWkLVLYRqs6T0wili/lhWEW12IQNrSwsnxgdDFgeSmlsFVFVRVYb7m7TSSeXZE1JtfL\nBtlR8PtxISnT2oFBvnUIo80phICmcZWHSuELoNS4SoE3AUKTa4yWNOPIEC/7sen1cRnbzdKToUVU\nHep0abGJuuOpluDG1rAvbBGLq0g6bVQdGlmHtFbRzxEAbSAv/FVuV6P8JXbINUPQawxBahZA7YCR\nEWHO7kbqwJHw1LpyDlzTcGlMHmInIpGP3jM9gq9XDW7MiYl+0ggXIzACbiD/T4ZDp2CfMqwcHedW\nPk1nV0rjUMn9r8OFW1J6NIAnMqjdD9U+uMEcd+wExWYq83sP7k7eGjL775Y4NhCW1xywG0ZH4QDS\nODkM7PYwGdLYegZuGEljs6Cerhh98A7T0zeYat4i0RWdssnS+ixLV2bpTozALkV2aIv25AZZ1sdZ\nQ6dbZ/3CGLyTCAvkBxqKeXl6FdCvguRmHXmj3GYI1Cmgx56FSUYbGSqwmLxXVC7MYR5QIkf23gdv\nvLDbjZTKwOSJKgttEklyVDrusAdNX+cczicDICj6eikjYSXWeUnTJdQA2lN6G/wZBYTZdfItLh57\nODyuSAmTNCER6hfapCi1ydilK9z/r/6U68+c4PSzT8n8rBRZOmRaiR2Jwmmk4b3NqsAR2KZojLMo\np4W1FMUhcsoiZ/dRHWKxOJwfGubjnCQ/FiW2KoVFpxOqUkzyi6LAOksrq9PMa2ilKcuCwsHKZpf6\nuYusdgtuKENN5ezcuZdr16+yUfT42oOPoMYm+ebRY4yPjpHhqacGW3b5zPkLjKJ5YnyW24s7aDQk\nTdEoRZoYlBaAUhsT6i4dAE5p9tvwVtcokkTWPxvSL5X34ikZAFGldJB1xnldg0mwKsGrDK80npyy\nKjDakGhDPc/JApi2Y6zFhZvLH7N5+RcZZttXTG0MplfMCui1WIcngKc82VM9pvfdYMfEZSYSUQ6s\nujGu3Vng1vl5irTBPNfYx3n0247yJXjxArzoZbf5XgG//RYcehkmn19mz8RFWn6T9tIGvAdvLImK\nL2LkrQ3Y8T40PoQdj93geX7AszdeZO71ZdQpYBP27rzOoWMX2PXgJepZj+KhnNPXH8JdNnA9gxtj\nCHutxzDAKnoZ9uVA14AP4P0jD/JS6wQHHzrD4f/sAnNtmHsbXAF6N/BpuPHZcV5qPc47PMTypVmm\n2rfZrS+yv3eO/BVH90fwV0vC6qqADzrwO6/Awh5gN+y5ITNbD1lpdo7JZS7egGU3nLUtQZuxDskm\n1FxBzfQweUWV5AHn+nmdj0iOiQy+IE9nFtgJtQmY1lKPzIbLE9esdeB6Clen4fYo2EjZHVCXwzFi\n/fDx/hDcA77+hpEYw9zsJIf372bfnp0s7JihlmcMExjBmCTE6arQYQ7AkTaDlSXKHwUsUuAVXkn6\niHQqxODSR319oFcNYtNV8A1w4LXBq3A/H1cvMaf3oYMdWWBKRbQ3mt4zAKu2j+BuMOiSSLSyHEJt\nezzvY1S7LAwEY8xXP30ce3gXm70+taKP14bNStFFcWd9ldWtDb6eJDyS19jascD8zDTtVp2JhmZE\n97l47ibnE83/nCScVxWpd+jKkRlNI0vJs1Q8CpRifLSN8wavDVtbG2yVJbXMMJLKEzXKsNZzXNvq\n06rDaMuQJZDnsuGwVUlm9ADcM6nGmBxlNL/7SIs/eXWFtd69Yv/eAPnABGNI76GrYBPWNke5055g\nay6lvQumJ2HfOvwUaWIfAUYOArsgrZeQgsmC2iQMjWwlqANzoO6H4+dgq5I+1G5g3zToI2AXDTeY\nZaUcl6KpC/wQWFX0z7S4sm8/13bsQdUcvlS4g4Z9u97nwdo77NdnmWQZi+Ymc5xZPMjbex/h1vwi\nvhk2N29PQhH5atHnK8bL3/ssgPh7zUxNkuU1UpOQ6ETYUSbHuxCl/v+z92ZBdl3nvd9vDXufsecJ\njXmeSAAECYCTSJqkKFKDZet6yE1u/HCT3EpSeUulUpVKUpXHvOUpL3nKdV1brntt59oyLVGkRIkS\nOBMEBxADMQONqdHo8Ux777VWHr61TzdpO0ndXClwxKVqgehunD57nz7rW9//+w8GQihIfJXgHFmn\nSx6n5d6IL8nFzRvo3brD0tQ4jWoVaxT1epXUGpT32JBgPBgV5EOXg41y/iCJi8I0Ul9i/K7WCmOl\nGVBKUZq/aBWi6b0AYVanhMLge2C1o5f1UN5DbBiLwuECaGNEGiRIGj7RaGVxTlgSwQdQHqMcLnck\naQUXFCp4rNX0Om2MhuBygi/QFvpmzD7IgMUXKF+gYlKlVxptHdZoqkmKw/aBvrKeWq0wpjS0lzTJ\nsjEkeFIr99L7gFca7x3Ee1feq6IQaUsowa9YQ138u4vsCe9ztFW4kKMMuDwVuSl+dagVAkX0RQux\neQre4wqHD0r8MbVCKyONpTLir+McvlD4Aqyqgkvw3oDVWKPE+N4XIl+NeWRr5ZX3z1rDEC23zhwy\nUjrUCA1FMgijVTDd1aPyKPS9rzKT0gsVXG4iTrP2On8dMgrPF4GgAQQI2gB6G6xL4EElQNA+YBsw\nnoPxsJII6HUOkZbXgN3AZqSb0chg/AZwHjgDuLp8nwJWlOzvt4FTSA+Rys8JhzR37q3nzPQ+zkzs\n5OEXTjN1B/7gl9C6B5UGDB0AXoSZXes4zT6udbaQXasJqaztWJULfvk+Klab20EEqYug12Ed09gC\nA0fn2Dh4lVE7R6IyeqHGrXwdMzNbyebr7Dz0GUcr73JQfcwGZqjSZSkZ5OLYdk4MH+Zn9ReY3nCd\nPZUzbDWXGWSJjJTbTHJu6x7O7XuApekxue6SIdcBZi3cbMLNOiwNIw1qaUMAUFBLEwbqFVoreTzD\nCgssc5GJGSAYEAaq8K2MiiEdZThI9PySRNv4K+w9RSH7DIgU2hsBuzxqdejVZw+JjLBkvSoV8H1T\nd/EFfuHP/pLR6zeYX1nkwv6dfamlSBxl/3Ni4Esjy9lqDe81qsxfvhyTFqFWqzEwOEiz0WCwPiDS\nS0KUrEs/sYpslddSyB4afa9W2Y0epTxKe4IrKLyLZ3zED6v8Tuco8lz2USQMJc8z8qwX99EQfS0t\nnV5Gu8iZa7e4feUa/91Pj5MD/+2jjzE0PMz23Q+wtNRipTdLcIFXHziADYHQ62BTy/BQE6sHuLBp\nI93HjuHGRxkvuhgDaapJK0bk6FYYyMYY6bmCDMx9UBTlHm4M1giomFiDK3Qc8KxVt4S+n7JHWMbd\nEKhWq+Qry3RzRz0V2WuRFxilsNpQTyvUKxXa7QWmhxoYrSjuy735/+laG2xRMr1KFugwsAFGavAw\n8BykLy3z2Ma3OGbfYS9nmOI2Cs+snuT0+D7eGX6U95YfpUGLQRZRs4HOHFxxq9Eiy8ClDHbfhOpi\nl+GwQAga2/WQyRawdsfqAL4AchjnLltvzbDuL+ZQfw2LH0O3DZOboPlch0f+6BOWjza42tzM5YO7\n6H7ckIP67BC4BqteZWP09dlGyT59EfgEZnZt4fXDzzKQLPH8U6/z4O6zNC730D0oNsCVTev5ZfNJ\nfsw3+HDmMTiVkDyd0WSZQbcIt+HePZkPlNcxC9xZgQ0rwDPw6F0Yvywyx03AcA6cgsp62JzCmUz+\nbU1eAZiCbEyxbBq0Q4Oinawys/7BOlkmL9f4ApDJVhgZhN0aHkRq1rZ4WyzSEtxGHP1PA58mcHkd\ntEuJf9knlEoR83/xHO6P9RXw9fcspRS1aoU9OzezZf06hoeHaA40MInBx+mKUipKPaS4KCJw1Qeb\nAL54yBZ0SwvFOdKcS1ctaVCEuRSUKgUTcVIVp57RLDSg5M3po04dqb6l4X1JoS4py5SJMcpROnpJ\nNVxtqvreXqVPQVjFjRX0TX8FACNed/RoMYruUJNKnhEqFVacolMY7i3d5d7iCr0s5/MK/OfbJqm2\nW0znA9R0ineGIiiS1KArCbODdZJeB6s9Wktj0POBSgBlLEYbCJrBYYNfMtRSw/z8AnNtBzXFgPUM\nD1RxocPdjmO+I6qDoaqm8Dn1akKlInT43BUEPK7wOOcxXrOxXuPAdJXjl1r3OV791frVrlWD174W\nvujAQh1uQevGGOcHd/JpYz+Tz7zFyMXAt34ED8xCqmDTNlAvQntHSm0mR22A5j44cgmWooHldgUP\nTyEo2V5gDnbdgXWnYSWDddOgngX3dcWHE/s4y17u3NgoTdMssJjDLwxc0DCl8FMWtoP5Xs7h3W/x\ndf0qT7nj7G2fZay4S6Esd5JJPqoc5Gdjz/Dq17/BFfbAshbfmUtTCOS2zBd9VL5aAKMjQ4yMjGBN\nissD3cKLdK8QaZ/RMjCoVCtgLQkQqlU6rRbtIsMZQ7Ve5V7S5H/81vPUGnWsAWMN9XoVa8W7Cg+u\nEEl7ogyqJCdEppH4PMmWrrTUBa3FNzJEKWE59fPeYyLLS0Q/oIzGYgnaU2QFXkfZhwODGNfnzuEK\nJ6BdBI2I8hulFUUAa2OFCgadpJi0IpJHI/5l1VqNxBpwjka9Tqe1QrtVyH6b5RRFHtOM/arsxqz6\n6wQle7O1iTDZgkcFaTaMTlBampjgHUFBkTu0FmZeQKRAIE0oIWCCBydgoQ8yoSy9vsqfWcTUr1IG\nKVYBXqT9RQ5OnleROayy+HhPfZH1k99yJfdTGwHVQpR2Oi+NlcNTuEIYZFq+xyvxmSk8ODzGirdm\nUQjzLC8KYSlgUEESjHN3vwHSpTS6ADpibryk4C7MZpNcTzfS2VkhPVqw92NYugCXnQyYnxoFjsLS\nnhqXK5u4Xayjc7sh21EbvhiZ/qtepTdKSl/bzjpgK6xL4VHgKbBP9hjff4Odzc+Z5A6WgmUGuOo3\ncXlmJ+13hlEDnubBRTZMXWJc3yUlZ4kBbrgN3Dm1ify9FFUPqEHxePVLGmYig+qz+HEXoQKcU9y9\nOMF740fZklyh+Uyb7Y1rDBz2DETTZ/cg3H5ylDdGn+BNnuDKna1wRkuoyVLJl+jGe7mW/bXW22tI\nrjcZFRnT18B8O2f7w5/xWPoWB/mEDWGGqu+yohtcSHdyYvfDXGAHL/EjXnCvcqTzPuMX2/LajcLF\nTevYW3kCvSuwn8943L3N7u45BoolMpVyK53mo/QgP930HD957kWWB0fQzchYWtHC0jin4JSGU3W4\ntRl8WZuEYXD9zgKD9XG8K4FrAW7El1DhgsJ7hQu6D9YrpTG6HBybL/j9ESL4FQGRgLCkvHcCRDuL\ncyaC2+JpWBSewuWSohjP/gKU5LjCUUksWdbhXz17jG+88gY/H6pibt8W2boxeBfEOzHuvcoq5oD/\n9bceg7xHfv06Osoc6406CwsLNBoNJicmGW0O0JhfoDsxjLEKY2PfEf3NCDGEA9BeU3r7IgJq+Qji\n+5Xn5T4o7KkyBVK+lkXwS0IBijyjKHKC91SrNXSa4FHkXrHU7nJ3eYUwOcnfPnmMzsAIdRIWllf4\n8OTHFFkgSVOstVQUDFuo+ZygDTZNSRNLo16jqCZUCaTUSY1C64BNNDYRexhjdH/fDwG0F/AKY1Zl\n6N4LezcpKGLwSLn/lwEmIQSMTnBoCqVYaq1Qb9Tp9HqstFoEV6C1JutlKBf7KedF7pgXDKeG4VqF\nuyvdfy870a9/rQW9SmPAmGjOADAJugG7gIfBPt/it7b+lN/mBzzb+xn7b1xEXUIIGpvh9OZtbKlc\npj7SIielS43QhLQBIwquRY5HBakDjEDWTGjpBl2qrEzUGdraZm8Cl3JhOiXAvhTqG4ENkLicyU9m\nUS/D6Z/CLwrZ5XafgmfaMDTpeXjHKd4aPcvY5hvMbNglgI6pRDn1JJhJGLCC94/ESw8IwvaJIh+r\n8eHAUfKdCTPpRh7c9CnrN93AkjPHOJ+zi/fCUU4sPUJuAht+73NG0zlyUnqqCnVoJLKzzsaHTpHP\nMQD8E2hY2PdX8PopeBlIV+CRN+DIQ/DgFghXoveXgYM7ITwOdzePcUHv4EY2DbdSGZq0A1IvywHH\nl88J0bO4P+DYCgPDAmRV02WzAAAgAElEQVQ+CupJx8DheTZNXWJS3yElo0WDm26aaxe2kp1owKSG\nNw18Nim+YP1QmF9nnf5/t74CvtYsrUSOMjBUZ2p8lNGhQdIkIUksFWtJtMg8lDJCMY4TYqUczhFT\nrtZIBJEiaq2V9JWY6CVeYIDWsvn2GVoy1g8urCZRidELSvRVoD3KKwIGDKiY8NInrpfssJKq1QfD\nym/of5qoDVnFwfqkbuJ1SPMfEFAvsHpd4pMirIQEh8VRrxqWOp62Uyy32iwuLdPNcoyC1ErapC9W\nWJq/y7rRIUlBI8WmdazJ6YYuRhsqiSG1CmXENLSTiWdCmihsUqWiPcPDlnbLMBpgpdVhvtsiVBXZ\nSgdrFDWjaBfQ6gayoiDtOKqVnEbFkmrQiUaFEpQMZJmnl7XZ3Ax8XFEs9e7/N+9X61exSsArjpTo\nAi2RWdytw0Xonanw0abD/LzxDJNH7rInXKK+K2ffZfp+kKELlf8hQw8Bh4CjsDOH0RPQzWFkDNIn\nkILzV7D0KizMghmBqVFQj0DneylnHt/OT3ie9zvHaJ0eEDbBLcRDJluC5XUwX4Np0McKduz/jG/q\nH/Ld3g84+PEZam9mcA1IYHL3MpufmWFs8z1Covi3RweYu7xRGq2ZFLIyDab0diin6vf39ObXscZH\nR6lVq/29usgLihBQMXnL40gTqNcr1GxCzSaEvKC9ktLqrND1UMRpcpJYGRyoQKNRkebLB2GSmQRr\nUxKbohDJIMQfG5QwqxLQ8eVRKiZ/WUPQsVZERpSxph9ioqRri/8d93YVwDh0tWyGEmly8oLCObrd\nHp08p/AyeLBWfGUq1RomZFTKVCwX0C5gjEh0krQC2hCU6ByD0xibYm2KK3K0sig8Ls/wzuEKAYJC\nVC8pLXu/VpB7eS9aZUiMJVEKG02ghWlVBrv4OGQKcaYUcC5DozDKRAmiFpANkTX6CLgRWcwhgl1l\nqqNz0hB65DlixJjAZeB1W8qmhsIXBCfS4IDBS4QkHo/HCcPbi1VA4RweL6ExCrxVhEK+hlaYxKBs\nwIWcIgQgwWv5evABrwJZBNHun1U+l5y+EXnegztVuAS3L2/k5O6HOD50lGe+9RaNbo9n34D2LUiH\nwD4MxXc1n2/dwUkOc669Cy5Y8Y5aCqz6OZXpi2tBm3+fqzz5lBKfCn0z54FU9vGnofHtRQ7teo8n\nOc4hPmJjuEZSFCzaIc7qPby76RjHm88w0Jjn8fQtHuQTNjJDQsY8o5w3O/ngwUf4YOoYowN3GKkv\nEIJisTPE3L113LswTvF2RQbyHyAd32lwb1b5dOowtZ0dOgM1nnz2OFsPzpCsZLiKYXZyhHf0o/yU\n53jz7tO03xiBj4HLgG8hLWGbVeArrLnutYyvCaEVHASeLth15BN+2/6AF90r7Lt5jtE78yQtT2/E\ncnP9FHtHznBcPcm3s5d57JMPqf+wR/hIXja1DrY9eYuhF19jZWOTI/599n18gcb7PQHkmrDzgRts\nf+QKQ1ML3BmYovetlCEt3jELfpiZ2U3MXVpH9l4VhhW8W4GrmxBtsDRcrU6PxeUWaTzXBlQEmhXe\nCujlXYheXPQH0iKCi0OB+D8i2OWDANZOlSBYfMzCyb4VAS9JefQUzkWT9ZIt6sh60VBdQa2SQHB0\nul3++OH90MnQ2mFtChQED0ZLIqK2mhCKaNgek9xNua9L29bLMrI8x9qE6fMXOfQn/4Zz/+z3mDty\ngEQZAd+CBKoQ2aI6KDwe7S3KRGUKXjwLozQb7+QMg4uhmwJ6FUVOUWR9QF+CrXoQAtVKSr1WRVlL\nERQ95+m5wPj0ekbXb+Di1DS9Vo/B5R4tDytFm7SeUKkPUWvWGRoa4KWfvU4jzzj+e98jadSoVCyp\nNVFWKRL4hCABJ9JSoQyr5IGouIrzCgEJtSZogzMWmyQkRUGSF8JQi5JXJ8IVTDDRTgBSm9BaXuGW\ncxS9LoFAlmUs+yWCd2LvXUittNF7s241U4ONf6TAVwl6VVjdB4YQlGgCGBFa6YiBnaAeLti/6ROe\n4ye8uPQq21+7jnoF3OdAALMD9r5wifqLbTpDNd5Wj3OZLTz2wElqj3gevw76hoSMb7Xw4HbgEViY\nGuE6G7nHKNc3rKf5WxfYdD3w7Q9hrgXNFDbtAvM83Ds4QLs1QHL+FuEUvFtE2TxCTNp2Ax48B+lM\nztToLUbTe8wMI4QnDTAGg0OwRQvLaQuy7w3EBynljqchc01OPPEoM7s2c3zkScYrdzHKsVQMcnth\nA/moYk/zDA8OfcoGZqhHw/er6Sa2PTTD8DF44XU4sSI71n4DW0aQrdcBy3BhBt5jlQn3NrDjBoz9\nLjw6h9SBceAYtL6dcHLDg5zgYa7Obpcz/C0kSZMWUodLJla5z5deZiWDbwqqg8LyehLstzvsPHCa\nJ2pvcoiP2MRVqvRYZoDzZifv736E98af4HpzuzxsFwG/WGC1tpSAW7LmSu6/9RXwFVetVqHZrJMm\nllotJVE2xtUHCB6jNTpGy5u+h1f5UaYzBfEL8OoLxrPlxAGt0EamFDKJlq8LWMUag9zVz8XvkI++\nCb7uT7qJFGwVjTNlkmMoDXxDTGrxYTXBau3zopyIlEmT8Y/S5HJ1MiTLR+mHPMeAVg5rPKkVr7Jl\np2gVOYtLS3RyDzrFpoaq8eRFD5soep0Wc/NLbGgOYpIqupbD4jKBQKOaMDZQoWagKHIJEE5TrJVu\nz2uLNop6kpBoS1cbbJLQXlG0221y7akmntRGRoSVYuaCERCs50iMJ02gYizaQmI1QXvAMFkJTFS/\nAr5+s1f52pfR9CvAPCyMwucp4X3DhY27eeXQi5AovnbsOLv3n2dsZY6h73dx34eTp+FmDqMGjn4I\nyX8A/FMYfRapD1MQjoB6FRb/Fn52Di4EKRcPX4UnE7AvODqhxlU2c/3GZtw7ibAAZnMIi8A90BNS\nDLdBfe8KhxoneZo3OHzyFOkfO7o/gmt3oaJgw3YYuNbl0T96n9vbJjk3vJs3D4zjTlThMwU3B5FD\nT4XVg9BXK0ksUxPjGGUJviDLe+S9nviGaCNsVKMYGKgzNjxMI01ppBVC7mg3qrRaDRbbPZZ6OZlW\n6DTBWEXFWurVKok1GJQYHsuUQeqMMZGJIAxbZTQ6HvhDBE+C0mi0PDcxPIkdARBAG/GJLL2nZHKf\nE5zr1zVrDaZeJVfQLQq8cbgsJ/eebq9Ht3AiNdQGbQ1pIWb9Na+o+IRaxeILT9AenRo8GmMsuS9w\nWY8ifmRFERnRAa0MQYs3mshmJOW38E58wxJDkqbio0YQUExm+hg8JtY6fMAktg9qKSMNX/AuypVC\nbPxUZC5IPXROGFel/DEEH724fPTo8XKfRJRIXmSEwoEGn2sCBS6CW5nLCcELs0JZ4kNGf07xjAlO\nAMfcZRQul9fFFeQ4XHBgFNpqVM/3bRKUAqclNTIojw9dfK7odXv3kY9MyYotQaloRJ4vw80qnIHW\nxwO8t+4xJgfvYPc5jv2nJxh6vEU9ptD29is+Xb+PV6pf5w2e5vapzSL1uwJkOXKwLoGv8iD/q/Di\nLPe7tTLHYTBDsE3BIag8t8LDO97md/m3vNR5lS1nZqhc6aE6gWLScGzfSXau/5zmyArT3OAb7lX2\nXT9P7WoPnXnyMcvinho/rT3H/qnP2MwVxplDqcDd+jin6/v4YPIIJ6aPUNQacrnXERDwbVipjfDW\nc89we9cUnyQH2Dp2mebYMj2qzLCeU/4Bzl17kMU3x0QO/ylwr2A1jr5sThyr6ZhJvOY6MCSR9luB\nB2Hi0E2etm/wnfxvOHbyJNW/KeAjYAnq6wq2f22G0e/O4zdojt04Qf0vMnp/BidvwKKH9Yk0n6Nq\niWf+wzfYefIqyZ96sp/A7dswUBOJ5vTv3OWZ33+T+clRGqwwwV0AZvUEn03t593RY7y38Rjdyoj8\nGrQqcHcjAoq2cC6w1MoYbVYRKES4THLGVf3hQohsbq3EzFxFaw85e5fgNdG7KqdIJcHRewHBSpCl\nf76PHr7OOfI8p9Pp9P2isjyjKDzGGCqVCllR0Ot1aXU6OO9Jk4p4eZkE7zxaRymdA3yBU2I3oEtp\nemTEFq4gIQaUeM9ya5lrRnFYKRYnxiici71CQCmDcUqG7YifYlCBoOVrKvYtLp7pjVJ4bSILN+5h\n0f9QmGuF1JDC0ev2cE4G+0ki53KPo90tmF9uUx8eZP2uXQxOjFN4z9WLV6hWNGqoju/lDDWaNJoN\ndJpQrVUptm0mdNqMToxgKwlGy2BfhhtBXKeCiq9dwCiNNUZqofd9Z1IV/ZEBCSBRcv1GaxJjSW1K\nZhx57vusPqUVGrGq6XW69LpdGX4UBfV6HVOtoAn0Om1Jp48enPhAmiQ0ajU8sH1qhDO37knIwT+a\nFRVFfY+/QYT6tFE+qoMwZQUUmgCmobl9if2VzzhWvMe2d2cw/ypw+VU425G3594PYMcd2DR0m8de\nfIez7OFDHubQrk858E8+Z0rBN05A0YLKBNjHofethI8n93GSQ8wyyc7B84x8d471tXk2vwOb7yAE\ntEdg/vkGb4w+zs6FS33C0ZczC3MPoQfKBywOQ7F6qQDDw/CQkuHzUbAPdhldf4dBu4RHs+IazN6c\nJHxcE+n6/5Zw+8gmZresxwwXkIPXmtGjd3hWv8bz/ITHeJuNN2cxbYdrGm5OjnLj8BSbfu82O1NY\nfwFufg632vDxTdj7lzDQAYbl+a4d57QQe0PWA/8cyMAPwc1N45wcPsDL6tv8YuUpWu+OSL28Vv6r\nsl5+ObESZK8vE3vHxKvyIeDpnL2HPuE7lR/wEq9w4NpZ6pc66I7HDRuWd77J3rEzjIwu8LfPfIdb\ni1ulpNwycG8KoSYvIf1Sj/vdIuU3GvhSSmETy+Bgg1pNUqkIUtp88CijyIOTSayxEBTOFdhoRFwC\nSaVOnOBjyRXAqGRMyZfka16F/hS/9NVaXQHtZbIUIsBFnCYRC3U5mVboeOwOaGMxKkozQjkhimwy\nZCpO+bO+fGJWkQIWPQUo5TLl90V5o+o/tkzDlfNo7xC3koK851hYcWQ6pViZhyxH2zoeQ88EfN6m\noSukWhGUIfceW2tSqVi2nL/C6Cen+fPNk1QTQzNJqFctvQy6mVyrNgYTk3QSY1HOYVIFwaOtYrCW\nkq2ktFstctclKGn2q8ZQNK3Q0LMguKTWFASKrEDlUEktVgHaUdGKI9MVLi11+EdVu75a/zcr+Qc+\n//dNJUrGV0kZXgHmoDcB58fgHUU+UOd98yRLDw7xud3JweFP+O9n/hfCCfj4DPygHPo5WLoGL74j\n0sVL/8UkWgeWGGDv9SsknzlmbsKpsFq4Pyhg/2kYOetY9/XbDFfnSWtZ33eTbhcZ/1QgqYk9wQZo\nTM2zV53hkPuI9GeOpZfhlStiJVMFjn0ITxkY2dVi//QZdlQv8un0YebXVWFIieknZcpj6QHy1aqk\nFcZGR+n1elB4WittCI60kkgTQSBJK9TqFWpVS7NepZ6kGBSJURiTUqgurWIJrcFai9Gaeq1GLU0x\nzqEoSKo1tAKlAzYBpZyYI5c+jjoaIcdmLkQjRmXEf1GpyF3wCpNYAXNABjZFhugoHTjZv5WP0e9p\nirJB3KO0RncsXis6RU7otmm7jG7RwwcjjK7CY6ylmkPDWYZthaxw9EJGhsFmObrbI000ymdkvRZF\n1kU5GQDleS8Cby76xShQBlcU5M4RnMJ60DoQlMImq/YBhS/ABywBQzQzdgFjxRQ6VlucKzBao4IM\nf1JbI+vlhODI8wwfXExwA4ejKORxnRPGhfeewmdkRS5NpBYPMZ8pfA4Fnm7eo511KUIBShhvIXMY\nb2gHLWb0WuFVgTHIfQ+eRtalVUsBjzUap4KwylzRT4dDGxkylUbL8bqKvCDL70cGpkd2sA5y8J4X\nE9zPEsIGw8WxvfzwccdSdZCzG3aza8M5hlmgRZPrbOTDcJjj7kk+PnWM8LqFk8DVgByoF5ED/a9D\nRrGW+ZACQ9CsChvgQGDD1ms8rd/gm+1X2PeTS/DXkH8Mvgt2vWPs6UWe/oO36eyosd1d4pG3T8PL\n4E5CyCFdX9B8ost3fufHPDJ+gp33LpPOCOu+twk+Hn2Abeklqrvb/NI9i69XBPT6XAkQ+GPo3m3y\n2cNHOPvAfoY33KNGhx4V5u+OUJwdEJbXB8CJAJc9hJiGwhKrxmGaVVazitddBQZhyEiTuzNn29BF\njob3OHjtM6p/XpB9X1LG5hEvml2XYES12fGfXaD5cYZ/A964AscjLlnPwZyEfcdh3xOXCT+Ge38D\nr18Vy5iBBXjuFuyzMLX/Dn8w/G9Yd21JAlyQH3Jqyza22UvUN7Z5/fnnye4OCrthoQ7FOHAPHwLt\nXsFIIx6Zy7AJFCrI0CAYAby0cv3K1sevImpS+EIqnw7keYHzDlQFdDmcLuWQ0QsMCQU5/PFp5lTg\n/Q2TOFcyR8EmCTZNQWkKFIXSYBKSinhhWRuHuk68AAmBpCrDgdQ4XCiiLJNVLzAv7CPiK7fSbnOt\nWuUv/5v/kqGhQRLnCN7Ha5W9S1lh+Hrv+0m0HgG6hE0sj6a1wegYyhGN+73z5FlGlvVwRY53ZRBI\noFJJqFbrNBoNjNa0O11yp2gODTKxcSODzToq69FEUQuBXq/LaPBUxscZajRIKxW6ypFWE2699AIL\n1YQGwjpTOLQVwFKFgNEKG4T5q6VVwSCqEGIqo2gdxRRAK2HoqQh6VW0KFlwSSLKcnsr66pzSnzG1\nCdYa2q0WA80GjVqNwUYdvMNq6KYJrVaLotvp/46BivUHNo81qaeW5e79y3b5u2utp2EVoZpuBDYL\nOLQXYQXtCaitHj3uGawtslldZVt2Gfu+Z/44/HhllXF1YRn+8F1YdxT2vHCWSTPLCQ7zsv0m4WnF\nnvUXSc440lbAT2iyA4ZfrD/Kj3iJd4rHuD27joF1S+SDlq997zjbn7lKuuDxDcX1qQne0Y/yc57h\nP6n9S8ImUDth56ykRGbILHh6TMzns/GEe4yy6IekjHSQ7e+AgqdBP18w/eQlHjYn2M05JpgloLjL\nOOdHdvLB1iPMbNhKeM3CawqfWPywhc1Q/2cLHBt8k++Gv+Ybd37KxOuLhBPAIqhRGD26yM3fGmf+\ne3VGBtp0/ms43oJLgOrA1avwvVdBvwDTA7B5SeYcCrnt01PABvjood1cqW4WOT2b+TAc5u2Vx5l5\nazv8AgG+5jyCRpWS9rXSw9LfK6EvdaxXYbOCA4HpAzM8XXmD7xY/4OiHH2H/EtyH4NtQmXTUnrzH\n87/9Bn6H4m5zjFePjND5bEjq0r0aMiQq68r9PzD/jQS+tNZU61Xq9Rq1WlUmKSEWHhXNJZVE/BoE\nHNNGUhKtsf1mRAE2xuRqtSpVFHut1Q2VCECFyATTxsSJRGCVhCXT/vJYp9d83sfGR75fmpPgAxiD\nCmu0i2uBNugDcyFo+gjsGqBLldOO6AfmKZ9ABL6iAWRQYc21BLR30gS4XMww84LldpcMh3KOf3H2\nEitZwZ+88Du0ipxb186jtaJqFbgWhdKYtIpJqhRZzsF3PmC03eHt1BKaDarVhCQFpSvi9VWyKrSJ\n0xtQMc65QoEiJWSBarNJmhiWlxV5kfHN620mig7f35aijEU5MXfGQOECLhh6WUD1AqlWJEkg0bB1\nOOWR9Yr3Ztq/wt/Cr9avdpXvmTJtDFble7DKGlBr/r6WTVC+Z6LUkUXgJixW4aOm/LNly/nug4wd\nucs/Tf4M7kGYhTtfOvPMANkdqMzDbJgia1cZcouo+OO+zF0IIGzOAH1r2cCaICvxupP0NC11rAmD\njWVGmWPsplTWa/OijHTxCj4EDlyC0cswlt9lrDpHpdqTIV+V6DFo+LsrPpnf0DU8NIBW0G61wEnz\nYNCEDJwRE2WFAPPGKNLEUK1YlA9UhgZJ0pyF1p0oTxM/Eas1ibVUkoTUWKqVFKUCuXYEbdAU0YPG\nE1C44EXuosTHChQG3ZcfBh3lHrEABefRKhrx6hh0EpSkKMaX0hqDtzaGfhToxGJF8EjFexpFQTfP\nWOzmONejV3iR5PUAnWNSz0AeWM5yqpUq1UoVo9sk1mCNwZqADgWaHKMcCmFVFVkuzYwC5zN8VkCh\nKXwgBB1TtwJKFyTKYyyoaAhvjI5vBy+BApEJFkKQNEkljytvlTj0CWLMrLWwJVAxydIJg6twLjbJ\n0vhmeUbwBcFn5E6YXc4X1ObuoXLDysAI7W6P5V6XPHicChQhR+H4+rsfM7Kwwp8dPUJLJyityUOU\nloWCo3fu8r1fvs+fPn+M86MN0jSNAJ1IilAKpS3Be7IsI9gEheqfLyRV7n57L5Z751qG7CwUg3Bh\nSgbMWnG+9SD3Do9xcvQwG6vXaKoVOtS4nU0xs7iFW+fWU7xRhV8CZwJ0lxCEY5Evhm78qqfJZQx8\njKUcUDAN6bYuOwfO8ggfsPvMJfhzuPkyvDsnvdSOU3BwBgaHOhz+jz9iy60Z+Ndw76/hkytyBdsa\nAhYN15YZnlxGvQbhPKChsg0Ov3CaxlNtus0KK3ua3Fs/wcLdcRZOj8A7Bt4FXgfOg9tYZ26yLvt/\ngaBRVxFT5vPA7RyK2why1kK+cZy+b2V/Ol8CX5H5VVUwBLWpDhvSa2z3Fxg+1cYfh59fEzlOhrQ6\n3/gUDrwNg/98CeZg+TZcXFPQ2sC1HPbdAq5AOAdXbkld6iH35IMAe0+DuRCYvLcEPwJ3Qf693g77\nXrxE9YWM9lCdOxvW8dFDR/BnErhk4NYAYsoD7W5OLy9IU7tqVg59Fm3wAa1KBYP8aeLZV2RyQeTH\noQzDWH2vlR5g3ov80BWrskbVbbPx/EXGteKtqVFAUzgvA+kkISsKuiviG2sSS21gGGus+DjahMRa\nrDLCJvMelBePQh39AKN0UkevRZD9TK5HGFAaQ6/Xo9tpga9gjHg7SiMhViySeijDc6c9OgRUlAZG\nMWW/e1hlwAnQ5p2EcDjnhMEaApVKyuDgELVaHYViZXmFhbl7KFtjdGqSUPS4du6csIZ7GVXg8XOf\ns//zi7z3+79PaDZQRtGs1qkN1qlUElSQhMvyOeAdus9MtiTKYkmERBBEiqmUBqWi+MUjwWAapRXW\naVAWbRWaAh9kv7c2kToaeyDvHVpBCOLblnV70KiTWotCkVgrdbQmSpeOAd+z0St4VR9jrGbX9Cgn\nLt3+d9h3/r9Y5YBzDfDNBLAZRoaFDfQE6K85Rh64w/S6a6xLbtFkmWEWGAjLcA/u9VZBL5DRx70e\nrJuFgZU2jaEWF7o7mUvHuZNM8tC+k2zZd5kKPZYY4iLbeYdHeav1BNfe3YU7Z/jZN17gzqYpPrUH\n2DJ+mYHxFbpUucZGToUHWVZNTlX2suehzxl9YZnHWrD+KrRzmB6BdY8Dz8L5DZs5x25mb66XJzmP\nJNU+AslzPfY9epKvm1d5xv+cPYvnGVpaIijF0sAA50Z2sKN+gVeOvMgpdRiWLbwqt4cXPBvXXeUx\n9TZPLR5n4q8W8X8GM59Cpw3NQVj/IUx37sJDEF6DhXsyggCpmleBxWswksL4C/DtV2FmEelDx0G9\nBO1HK5xNd/On7j/iRm89C/kYt+5Os/zBKLypRBP5uYP8Dn+X2Vv6FZevdcnsbYix2DSYbTmbhi/z\nMCc4cP0M9l/Dwl/AJ5fkVm1NYe8FGLJtHvmjk3wyfJBPJh7i0rZBmFRQT6E9gNSXkj3cQ2ro/cn8\n+o0DvqrVCkOjQ1SqFTFE9B6UJC155fuglSb0JzfCifZC+1VGzBTjFGGtfLDP/Or/onlpNoLu06n7\nZvOxly1ZX0qtQlYhAlylCb6wkUNp0SKNDh4dtBQuPKXhfogdcygZXJR/rmVvxJ+0hv3l1sgsCX2m\ndGyShCKuSuGI8qAcKiZS9boFncyRJjWWl9rcVaDXTfO1b77I7Ru3+Mm181SsAZ+jlCHohEpzjOA8\nc9cu878/uJUpFahNDDNYq2KCw+oC5wzWOhySgqmVkW3aKqxShKIgCZpE13BGE7IOWa4YaNbIM8gH\nC5YXc7qFIssdufPkIYDRaG0xxpMXHhnOKFIdsDpQST37RxVn78DSP6bBzVcrrhLsKidZJWL05e2u\n1MCXH/pLfw+sxposrD7W3Y3w8ZAMxp4KqAQ61KAJagiGvmSLNQEkw8Ag7Hn7IoPnW6ho/Ms22DgK\nO5ZEpp8CDwBD24CtcC8dZZ4ROlltNZY+uC/+gLjiEf2Lb/svf48vvzd6AcKXBjTlnlBGHoNMjf5x\nmFb+KtbE2AidThufO5SX5iRE41+tLEYlWFMjBItWhmazTqOS4no52iuW2x16WZugHMZa0sRQq1ap\nV6t9CYb4ViGSc6MIxhCMxsevm+hZAjKNT2wickECXgeMIk6vQZdyEAUEqWNSHzQKMWUHAeyMDajg\nVmX7Rjxh6kigSS93DBcGF1YIFGRO0el5iuAZX+iw9/xlPnhgP8Z2pTExEjpSTVJcntO+e5dnz57m\n3WMHqVRic+dEqmiUMIltEdDe0/OFsJ+8lyak6/AhI7GWkESAz9KPoVcq9JWdIcqLjDVS7WJDE4WS\n5C6Lvl4O5wucL0pqiDSXRWyKioK8yPAuJy96FE7APucLnvv+y4Di+7//uyy0erSzHK8VRZBmyyvH\ndWUpUNxtd+lRCA/KFRS5PObJ+Rbf8YFPZheZK3JSo6imlooxJFaT5fLeNIkl9OT5oBS+kCY8y+5X\ntpdh1eMrMmRJoZXAJ2Py6Vm4d3YdCzsnODN5AFNxeKfJ76W4S6nIuD8BPg1wrwNhBmF8LbPKvi0F\nTb/Kpej7oehUPGFGIR3OWK9m2MolzKew/AG8fk+YSwEx66+fgwfehw0v3SL5AFrH4Y1rojj0wJkW\npO/C1p1AATN/CxdXZNCxuwbrbnt21a7y+NfeYcreYW5ojM+G9vPB9BEubNhDVmkI8PUmq2rMSnzw\npXi7FgP0lmUKwyhDFDgAACAASURBVAKrni6wCnqVA53Sm2XNtcceOKkUNFWLwbAshOdbgqmVzORl\n4E4P/G3YfO42NKE+AOMKbsZSYYBBg/TTHshF0rP2Fczj/5kLwBm48Bqca0tZ2vMebJ2DLUM3OPbc\nu5ysPMSFHbtZ2jwmDtm3qxDqAGSFp93LSZJo+VGeqQPim1umviKflJZf9kVRMqyef0tz+77s2Xu8\nkfOn857cOzLnMEVBlmX8y0N7KbR4GWpjCEUhzKgIJiWVKjZNAEVeSErsYHOA4aFB6tUqaWIj8OIJ\nIYqog8M58dIKfpX5qePwOhQOjY69rXwuz3oE77HWkCQp1sqwvn86UEhOVlDR7F6MsrQ2wl4qVSJE\n4LD0EHY+eiLKkMBoQ7VapVqtgPe0Wm2W7i2QdbokqWJpblZUFjEsxAZFajRm/TTmxi0Gxoaxo4PU\n6jWcVTir8E4SI1VUzmilUNbKuFKX9UJUOYo49PcBY2Ug5AkUOvqz4aJSxJLEl9UHARStNRLCYqSX\n6zPggocEqouL7L9yjRtPPIrLC7AWm6QYBdpaqFYBT2EMHk/abWNbNt5cxfZ1o5y6PkfvvmTmfnlp\nVj0NS7bXOpE37geeAr5VsPfgRzxae4uHOMk2LlOhS0FCSzUYG2wzlMo5dzY+6ggwlMp/tOpVOtRY\nXh7h4sV9XNm9jbdHHmWaWyTRPP0GGzh/YxetE6O4XyRwFhY7E7z/yJOc3nKIoYlZatUOWS9l/vIU\n7dDAtgrePHKazZuv8ewf/YLaJOw5hUwhNgFPwoUnNvEGT3Mif5jOmQGhWnWAHcARz/ShyzxfeY0/\ncH/OwY9PUzueoT6X2zK9fY7NT80w8dAsoaaYPzLKjas75DGGIVmfsaF5lX2cYcP5O/AafPYOvNqW\nPW2gBS8sw871SCBADZI0Zg/FVUWIV6wDXoSJLTBxJb4ku6H3dcuHex7gLf04H6wcYebtbYRbBi4q\nMTL7DDjnoXsP4YrNIvW3lBuu3WnL1zoymqvy+qTjGZvSa+zgAs1PemRvwrtXZMBRAKcz4DQcfBs2\nPn+bbcOXGG/c4crUTvxwAhUD7TIFtOy9DL/6Ov3vvn5jgK8ksTSaDYaHB/ugk9GaIhraBiUSFEXA\nFz1C4VFBNi7vPFkuKVTVtCIb8Jf8svrsKogjFE8IZfS8FM+yufDeobXQmUNQa/pUmTitAnJi8Csh\nMw6lTX9aj1oDXPkQJ/0arWV6USY8oqK9caA/l+gDX0qBd31Arn8FfYBYy6QnBHTwfRYbyL3RwaFc\nTtbpURSKXBV0Xcaf7txMtTnIkaWbmHyeyZEKrdlFMBqXVKgNjjM60GD++kWW527QqFUIw01G6lXq\nqY333eAKQ5JIk+lVBBCDNDoGoqeNMCu8DngTqFpwWZfMwoebDJ11HtftohykxmMIVBJFpZ7Sy3OM\nCxTO0QuG5VwOAzbLSYJiqqpZzv1vaLt/v68S2Pr7VulXUP5Zfnz5+8smoJTplNTgaJIN8e9LrILH\nAUIF2oOwrPB3DbMrE1xrbmZuX42xRzocPgmtS6LUmVDw3ADoR4DrMPgnLdxHEFqg14F5HIafhz98\nBS7cEnnu+p2gX4LFozXO1nZyyW1j8eZwVKuU7IoeUBNX1o6FJVhaHmKuMsbCuioTO1psGIZdi3AW\nqXEPKRjbBWEbzCXjzIVRur3aal/ZT7mbjvdgMf69iPfuNw8FThNLs1Yj62UQoMhzlA8ksVYELEGF\nyPSyNGp1atUKheuSFznKWVY6Lbp5G5sqVKqwFiqVtH+YtzEUxfUBqChpAdm/lUErMEGLoS7IJF8j\n5vFKPKDKib41CqsVhZP9WmT5wmQQGb0cTqxJUMGKxC7J+nXROmmwGj6U/C+USrErXZY7Gb1uFxUC\n/9MPX0Z7z7nmAHemp9GJI0kM3UKTkLEwe4//+U//hDR43lls88Gmaeq1hBBliI00ZXRggGpisDqQ\nBycgnjagDAEtJSdKJCH6uShhXxtbGtzHlGFNTLKUZkZFVrP3BVoHAbRw+ChNDN4TChneFHke0xuF\n8ZXnPQHBfJBUODzvPfEwrXaX2dYi7bYj8yJ5FPWTMPl+um07YVvAJAlVnQgrpNOll+d0M89JU+F3\n9z+A9h6z2CbRkKhA1Srq1YSn7izRXsm4YkqGiQB6WhuCy8ny+3GCWh7lFbJHZMieGT+/XMBHE3Bb\nwVmFX2/pjVnZksuwwVvIuf1SgLyDQCw3EEl3ifiXoNevoyJHhKAEggzoxFOjS4M23IPWigA85bPp\nArMeWITqioNZaM3Ddb86ppgHrmew9XOYvww/vCeXDXChB7//OgwccHx98DihcZz56QYnmw+yrX6J\nvzn0HT7JjlAsVKQWnAmSntlfHtnMo9SUMWA7qAZys0HqVwl4zSP3tx+fubocOKfphZSOkqFObUga\n2luszlUGLegm1FUXv0+RPBJ48gz4jjzqDgWPrkcYD1tBb4aNYzBxW7gJFWCnArUDqMPsm/Cj5dUG\n+vwy/OEvYeKRwO6nP2dL5QrNwRWWRsfEe9umkMu1OR9oZQUDIRX1ghLAJIAEWBRFZBOJBLqcEWnE\n5L3PuIrX573vp9sGazBBztJ5UfSlgu1eT1hgxsh+3u1htCFJKyQVS7VeI0lT0jRBKU2n20F3M4YH\nBhkbHWag2Yigl4yiclfgfI4LDucVRS53Os9z8SkLAgxpAsqK4YlWJjKXJJm2KAqUUqRpTqVSJVTW\n/DoHUEHHEbZHY7EWVEik0SjKkBABlYIX6Xfhoi+ikgRhbQQs63V6rCy3aK2sMH5rjoev3OTDJx8h\nJZDEEBJtEyoVCTfprJvmzFNPMjTQRCcCFhVFhsty2euCXwW6tIrJwaHP2BMulwWlMZpISgCvAi6I\n/LR/YlcieVTGoIroqRyTLcUwv/ROEyVJ4SXw5L/6wY8xPvDq1i24kSEUChO9JrVSpNbikgTnCiq1\nKvVGg3R5SXquwjHWqDM52ODaXHl+ul/XWpCi9PcaRryfNBwAnvY88PBJvpP8gG/6H/LY7IdUzhSC\nmY9De7eCh2D8KLz0CnwgszceNLDhEITDcNFuZ4b1dBbrFP9Hhdtbt3B7xxYBe2yAFSWbyiVky68C\njwMtyP+qysJEhcXHRhg4NMf08Ay79p4ioFgIw/y89wy1SoelHQMc+RcnmL47i+5BZyzl04HdHOdJ\nXgkvcebyAdy7AqgRgB2Q7Ms4OPwRz/BzHjv9EeGPwb8MNz6HYGDddqhdzDmgznLz4Bt8Xt3FrQPr\n8e/WIIAdKBjR80xxG3MZup/Dp53VU3MbON2GHedBLYHaB1Nb4NF5uU8J8KiG9DCEPfDu8w+x59nT\nNG4VYGFuY5OT+hCv8Tw/8c9z/YNd8APEu2QWuB5gLoC/gxh83ab0PJT+4B8CXhMBaRO517rmadBi\niEW4C627wtotT/sdhLV78A4k855BFqnZDrru8JWknyL+xUn73zN1v4/W/++BrzRNSCsp9UYDrRFJ\nQ/TxstagQpz0GIM2clgO2uAi5VYVHrICn+Uit7OmXzRMPNiJxDF+QN+kXsAr8F6vpshEVlhJI1bl\n50r0Sx4g/tqoaMZLHzQrC5x4l8Tjh5LUJwHFoqyFEtACgo4MadGjh6AQqZRcSZnm2Dc8CGG1xy9/\ntgeFR0WzSzGULPp+KE5rHIpkYJR6WuCzNp/+9FVCnpPmOTRrgEGlDcYGmrTuXCVvLzE60GRieICh\nZpWq1eByuXYfDZ213C8XhImOF3q6RrxtlFNoFfBO4XoKEoWuWbyzLC+08O0OrqvoFI5GohiqJ4yP\nDbDn8D5CfZA3f/xzOrdW6GXggqLwip5TpChGU6gYT/d+7DV+I1d5elvbaK2dn5TSxbij9xNqGsjY\nvjRthy9OvjtImeqyKv/IWKXtlv5g7fi4XejE1LKLmtnb6/mocYh302M88623qec9nvsFZLfh/2Tv\nzWIsudI7v985JyLumvtWlbXvK1msYrG4N9nsvbV2z2ggGZIwGMB+8Bh+MubBgA0/jDEwvDz5wQ/j\ngT0jGLLssUYzklrdEtndJLu5FmshWcUia98rMyv3vPdGxFn88J24mWRLwACeaVe3JoCLysrl3oi4\nmec73//7L+kg6OPAy8CrcO/P4c0VaeW23oLnlqD9HVD/EPbeiS91AJZfqnN6zzHe5AU+Xj5KuJAJ\nL/phYF3Dn0PRg4dtuA9rM8NcGjvAB+YEL7/8FsM3Lb/yfTgxD8bAth3At2HxVIsLtYNcdXtYnR+Q\nWzgB5G249RgU9+P1BtZ9YKr78bcL/Gq3GoCjtJ+/buc9pBk60UjIlqOWJdTrGWVR4GyBt5AXOat5\nF5VpYakmsnFOTUKiTTXVoC9XRzy5jI7NTNzs+/iaRotMXqwXLcpK96aTOGHzAV9CYa0kH2phVVX1\nSAUVhy7CEEh0RqJScufwRgzy+55SPmCtot30WOejDDHQMwXeO/7b3/wNpu/e4/7IMDWtyNKU9siQ\nGAPbwMLSCr938nleeXCPH2ajhJkOxkCSQJoqfv/yVcYV/NmpY9QHGqSZRqeKRitD6wxtUoxJxMcy\nKJGqK4XRIdoThOhf6UnSFFSyDvSBNLexmQ34eB88QUmD44PFO2kWi7ygyHNKa0Xu6EqK0lIGEDt9\nODc9SbfIRV6TeZLIrAsqEKwCn4okKlWkdQkC8M5RqxlpLpWP9dZT+pIid5SJQgXHSteSrXU5dvUu\nwQf++cRIn3TqtEggrdvASnlkDsO6f0jlEVNH1luQtXUGrIfbbZitwaepyOmqoXCO6FM6OYRFZFd/\nHwFmluJz/LxkjtURQbYQ+kQ2V2hWabPMIEzC4BjsuSn+jCWCw2zPgEmk9+hBLQj8NBeftYmkwZPA\nTPfz8qAbwN21yFo4I8KA0UNrfPnr7zByYpluVmf2yAS3L+0XmtkNBSv3EIipGoakciZqHzTbwooa\niS9sgFzBchvm27A8DuUi66ijByx0Aiwoeg/r3LebuZ1so7v/QxpPFbx4HRoLMB8kDO3gduAkLGxv\ncSvbyuHf/IxN3vPdM9Bbg8YkqC9B5xs1HhwYYddX7zN9G37jp/BgGRoJbN8DfBlYEHnU7IZ7Mgs8\nLGFiHtp2lXZtlSS1UA8S8/cFO5m1rsWPyB7ZB1EGKBTWe5yTEI2K5aUVfQmxgv5QGsS3q3QFPhQE\np/FOY70GJ2sFgOr1cNFTN0tSapHVldYbDAwM0G63SbOUJNFkWQrBMzTYop7UqGeJyOhUQLmcoAIu\niL2K81bWh7KkLBy+CCL5UwHvCsoyvr5S6KBIorQ8eE/pDVVQfOlKrHdxf18XUhiIbQsmKliCJPYq\nDb2S+qfXWdq9Re5BCFHu6aO3sAzLTZKSJAnOi6F/r8jRJuGZSzdoLq5wWxnyeg1lxdZFG0NWr5PW\namS1Olk9w5tA4QpskECTYAXwEiWNiuQCeR8qWbxSYkCv8SjlUVqYXcIRiJ6XQYBM+ooZ+kP/KrUX\nlDC9lBbwK0kwSYIrCqyz/M/f+RYHl1ZY3DLFplQ8v3TFglMKow1JkgCKoBVJLSWr16MVi6aZpmwZ\nG+T2/NLPWCo/ekc1QE6RffIgNGvCmDoSmDpymxfSN/h2+T2eOn2W2r+x+A+gWIJsEprPBnge+Huw\nZ1gAfeVB7wP/dbj/4ijvcooL5RFWbw/IH/RpBPQaAdJqgAccDmSnOrQmOqS1Eu8U+Wodl2kO7zrH\nyeR9DvAJY8wDMKsmuFA7zCUOcNnv5e30PNOb75GRs8AIV9jD+fwYl24epfODIZGJX4mvPQm1ravs\n5ipH8wvwOnRehR9eESIVDo5+Bl/7HrT25xzYeYU9Q1cYm5pjdnob3IbgFQ5DSSpYUvKzTsJp1Y4k\nsPJKg4HZLs8Pwv4rkKUwuB/Ut+D+s6OcqT/OH/F32L37Co6EOca5GA5xdvUEVz88CK8hfiWnA/Ry\nJKl3Nj6qAUY1xRa58HqIycajlCF3ZOD6XNOlwSptGJQBxxYNM/FbGsCkAUbBDitWGSB3NXxPb/Cx\nXyfUyPHosr3glxj40lpTq2U0mg20kbhZmVjIRLiKM+8v7CGgs6QPODlrKYucPO9g8zq+aKJbTQji\ns2FCnJgE3Qe6NgJfMqGQxTt4h4vJItp7iZ2nwpaCTPgj1kQFVskz9WWQfankhqPyFAtBo3RA0har\nZ62m/Bu8vYgplaxPtYJS/V9ZteF1++ejRQoDFoJF4yJlXLT3wXtsiJCa0YxNbCJrDbO8sMzSwkNC\n6GFaGakt2L28wvjKKpfbGQoYGxhkeLDByFCTZj1B4/AFouRCEYKJBp0xdYdAcMJu03hM8Jgg/mze\nK6wB2wloNEmmaddqZAsLrJSB5W6H1dKhS0W3V7Lay9lzcJIt28a5N9NFaRAPZU8ZDIV1DGSa0Zrm\nbufR/iP+5T82+hBUwFf1+KKRokWW6gHEXGZ4w6ONVCHFegLZEusFo4rlrV6jxnojV5kdp/HngtSX\nFVhbbnHD7+CseYLkiOPJyTOMPr9GbR5oQeeIoflTR/d1+OGK2K8ExHll+BacugH8JsxuG8Qpw0Jr\nhAtDB/ghX+avul9j5t2t8AHS7HQtIiNak/PyHXjYgquKzsU257Yd50cDLzHyxCKPJ5/QOlCy91Y8\n9X2w9kLG29uf4k31Aokq2br7Bre/ux27rQE/Ad5O4dNN4C3rIGDJOivub9fRrKc41yO3sk77wpNo\njVE1aSi0J80MSaJINNiioBusmMk7QzcvKMVgRQYrSUqW1ElNRpakmIp9G03rTfQYCaGSNlYqFlml\ntZGmzSswUXqDF/lg7N7wQQBiE0LEwmIyGOvpweIcJmu29w6jawSf4FxB0lCQWEkZQwszWCt0Isld\n2iiWy5K1EPhk7y4GGw2yWkatUaNZq4EtKYpcZDGJ5nsTm8RsPk2xwUtjolPyrMZakbPctdikpK1T\naqnBekejkVBvNETKEwJeK0L0sxHWgkcHMMqgkyQaTVu0SeT9iexoW5ZooChy8WMJYX1YYx2ls/Ty\nnKIssc5SFCWlKyl8KdJ4L/XeAV5BVpMEz0YzEVaa0jhi6phK0STSSCcKJX7H+NCk023S7Q3R7RYs\nL62ysrxKN+9irRjuB2VYK3v8V9MjFIVjPi/pOoeP0k+Fxjr3iLGPN4JeKeuJYMNIVzMa/63Rp5vk\nCvJqLVmjD7b0ZXcryJq8jIwHKtCrkp//PI7YEVBAyGXesQjFXI1bbiuXzV4ee/IizecCL8/A+G05\n0wNN2H4cOAHqfbB/BJfuyY+PILYwWxTsOgJMQlNJlaoYAiPAYA/u/QVcWxVcZ++7MHofDtUv89wT\nb/FR+yi3j+6G9xK5zSsDCGS2ijzbNNQmYZOBfQp2Iz7VA8hb1UOIATeByxlcHYelypvlBrAGy6Mw\nk+Cu1rh+fDcfDB3n4P6LPPadT9mkAl87B8UqNEYhfRnWfi3j7YGn+FgfIXxZcXTHpyQXPa0OMAGL\nx+qcnjjB1WQnX3nxdXZlt5k6DFN3kF+ZozD/jRaj/9saw6n81szHezIKDKfAMKyZJl0aOGc+79u8\n4chLx2qnoJZWQzL6TNZKVq6VEqsLJXI32VZX+2xhk3o8zvUofQ1LjTJ4ghYGVqcocM72/XmzLCPL\nEprtQYaGRmg2mzQadbIspdGokabi/UgQCXdmDBkKFSQ51ntJdi29pbAlhS2xQQzsvfNkaNJUgDLQ\nWKuxthR2V1nieoEyrncKYcuiFKVV0R9MQrAaqiFJthFgQ+s+C1hpxdb/4X8hu36L8j/9jyi2ThEQ\nFpUNURyvhXmcJClp9B4MSWC00SRJMi787neoL63C6Ijw64MiSVJUImu0ThK8DnTLHEIpvUc0ZEzT\nhEzpDQyvSBwIMZFRQYIAfQqPVwVVoEvVwGilSQyEqs7FPsaj1qX80mRFT0j1ud+JSrWz1qzz6fgY\nW7KMNE37Spi+/YxWpGmG0Ym4waYpab2GiV7QtiiZHh4gNdJHPNpHtbeuBhctaBmYBr3Xsn30Gid5\nn5N3z9P4VyUL/wd8eF/A6Ok6PHkZEgMrv1Wj8UROch1pH7fD1T1beGPwBf5SfY2P7zyOPVMX4OlM\nfLkRxMH9FPCKY/vRyxxof8Iuc40hlijIeMAk99nMr/BnfNn/kJ3X7lKby0FBb1OdT7fv4FW+yvfU\nt/jDzu9Q1z0SY+l0WyzPjLFybQD/fiag1/vAnINdBgagNbDCOHOMLK7CDZi9J6rBtXhnLgLHrsD0\nNRhaW2Js6CGttMNsG1gFu2xYcKPcM5txu6F2BJ68AMsd6STGgSfaoA7C6q6MH297lud+931Gjy6v\nyxn3wv3jw/xo/Hl+yMv82d3vsmPqM6xLWFodZu3+CJ0LLfx7CbyDmNh3FyHcQmpk9YiTFrqspyx/\nsW/1Gx6FfOsSlPMpd+0015OdPHX8DPWnPS/cgfSuPPM24Mge4CTc3zTGLbYx3xnHzyVSrstq6FLV\n6fDXvPajdfzSAV9KKVlEszROfoWyS5DmwONASxqHLeVNKkuL0oo0S2SCbzIoRVbQK3Kh4jorcgpk\nchRQn0Pz+wmPGz6uGFXelwLeeA/GbKAMR4+wjQb4X3hOYYr5foGvzK43AmFaa7zzqKqQxbQZ+VYd\nzekRNkClVqRqplS8Fh81/ypOTaR0KBVQ0v4Iy0oFHA6DR+HAWWxuUSFB64S0njE6PcWm3fsocktn\nZZHO4jzF4kP+8Z/+UxTw3//ud+i1mrRrCYMDNeq1FKNjY5cYQqQo6w0suIowh/eitfcBpTyJhkQF\njFI4V7CWaHqrBRLG5RgeaLHNB2aWuqwUmsIFrFvDn7vM3N2HzM0+xFpPUWqslXtQyi6JLMDWluFB\nxz+iFn1/G44KsK3o2F+UL/51wFcdKTtjyHhnAtLYKDTjUzoi1jWFtCb3ESiqxnoccAsByyoQrU2f\nRdZqSCdzMDC+bZYnzFle8G/yzI3TpH8F4VPAi4SjudnBEnRXZfJf/YmXwEp1Hgbe3PIsn3CQOca5\nEA5xZu0ED97aDq8Z2SzcquCyRdbNiuclPe1iRnjf8On2Q/z5k9/GZQn3T7zJ4yfOMd57iDOGu+lm\nPg5HCSh+LfwbFvUwl0b38/7oU7yz+xmWm5PgFHRSuDnJevPZY72QVr5ov/yH0ZpGmlB0unF9NeAD\nOklxTuGdweiMykvBaIW3TnyqXGT+KgGMVARjkiSVFFmDeFQZGVroRMznEx29u0Los111kHVfiaYP\ntJY1W2tcWF/bUWASLVQRLZ5Ysq2VSXefjF7JKZWkXlkUigyCJTGa0hXCFqtpakYTjMLrgE40jWZG\nrVmnZQNrax2stbSbbbECcA63ukZDa0Jw/NdnT/OPDx/FuoCNZtNap2SZoVVL+asnj5MpQ0r0aUHk\nl2m9TlpPabZrBBfESFp5UpOANohvWSDVIZZGGT4ZJY8kEePoYH1MLROvL5yPSYmSoFgWJbaSN1ph\neBW2pCxKcmcJiRY/HG1IdILOUrR2pEkgNYbgBSC32uCUsOSU93IeBvEkCxqMZmQgo3RNChvorAyT\ndyyzcw9ZWVmml/fo9nqURcFt71jJC3qF+E+qqi9RitI+aptJzTro1ULW21EkEnAK9IAwjsbilw2y\nN14CZhvRF2QW0e09YH2tWWNder6R6fXzgv02slw7sOrgtqG8XOfqkQO8M/o0+3Zd4cTf+5ihNrxw\nFmkitkJ4EcJeUH8AN07Dj1gXEU4CB49A+quw/Afw8UOpVG3kTh4H6lvgj67JKq+Bo1fhW69D4/GS\ng3svs6t9nea2JTrjY1LPbtXjdzaAbVCbFj+Zk8CTAR4DvX+NobElksyyttykc3sMPlJwVsH7Gs4N\nwYyhrzvtWLiewMeKm0f38eOnvsR4fY7kG5aju65QuwC1NcS/54ka70w/wQ/4Gu+FU8w1xzhx9Axb\nj96iQY8lhviU/bwTnmYujDE/MMbzX32To89fYGghp6wrbg5vZj6M8dSxD5k6IZKpM/GeHQc2HYfw\nOFxLdnE7bKWz3ISHSm5sWflPrh/zyz02jzf6g+FquK21Jk1kWCaMH4PWwvKS/W9kBkWOlA2Boixx\nBKyCieUVnr5+i/91fIQQRDGitSZJM9oDQwwOjjA0NEyr2SDL0n7QSZpICEeoAHId0EVJkff6CbOF\ntfSsxXolQLoRVUar2UB56Q+8EhVEltZJfYqzFlsU2F6BsxYRY/joVawISuTzHi/hKEoArirNVmmF\nCxYXEryD2//5f8zEP/0XrO7eCWVBUAYbyr5TkIrSxSTNSLOsX8/SRGSMWhvs8AiZq3orCIlBJQlB\nJwRjQGvxmtRSo4iyydQkZB68jX6L1kqSI4E0hA2eyvIeeysEAhV7KDG5VyQq6WtYQlSuKANpSPDe\nUzonktYgKZHaGFRp+8CYyDg1ysTzyjKpt0oTEgEchQntSbMatgio+H3GJBhjsN4yOtBgpNXgwdLq\nv5sl6d/rUXl8xcFuTVii2UTBdHaXXVyj+VFOeAPeuwM/jWXoXA/UJTj1Fgy8kvPHJ77B8LFFFJ45\nJrjAYd4Kz/GjxS/Re2NMgKfPgOU1qDVhl4LHQX0r5/HjH/AV8yrPhLc5GD5hPMzRU3Vusp3P1F6+\nvPoGe16/TfhLYiQitPf3GP/mIsPPrlLWEn7cfJkt3KZJl7W0xf3BTVzae4B77d1SQwsFZ0wfl9G6\nGv8RlVQ/y1kyX9jqqqp5fgj2Zp1bS7v4ePQIV3afZt83brFzCX7vLViZh8EpMM9B+AZcmdzJm/oF\nbm/bwuFtF5niAQ7DA6Y4xzF+Ep7n1YWvsPbmIBc+PAn7ke33HUT1/wlwJcDqMjKguIcwomON+ly9\n/JuAp2qgE2NFVh3cN9grNa4/sZfT409yZOsFjn/3IsMavvkeUoqngBeg82sp58Ye48PwGPeWpuGa\nlrZptSIR5KwPsuBR7hN+aYAvrUXCkSQ6TnHWk0lC8HgXDQyj11bwAVs6AVyCxzlFWZQktZSgwBhN\nURa4PMEWaYUOFAAAIABJREFUJa4s8U4KSKbpL559dWI0ya/YXPI6IrvAKwLiLSAsgQgjeQ9afT5W\nmJj82Ed6QlTB9Im7VJHKUtxCpDYLQOCDWzfrVBofUyqr85VnrH5e9+PkQzTzrDTwIc5NVBB+ldYe\nnIfgSFTlKxMwSsBEpRUJioFaHWUdAYuhS+ZWUaFLu5HyB7//O7R6PbLprdSVJdOeLJNJkEae2yoV\nJ0sGrYMAXVqmcFpplAGNi/Y2Aa2cSGdUAGqkiaHXKFhbVBRdoVCPtmtsHm2zNtOhUzr8qkOrVYLT\nuNCkluYs9jxdpeNESZhwPsBQqtnSVNzsPFqz9l/OQ/01n0s3PBqsSxYr+WK24XurFMYU2AZqCwy3\nZOK9E+k8BlmffM8DtxXcaMH97ZAPsB4mnCOdxbj8oB6EWkPiVhQyrdoBydGSx8bP8CVe59SND0j/\nGaz+OczfBDyMTEP7EqgnYWgbHL0F7wcpDW1gR+xX8inDLbbxf3Z+mwcrm5m7P4493xKHyfeBjx3k\nD5EGcRHptFaAh+DH4eqYTLVaKef9U3QODXKpfYC9+jJj9YdMc4fD+SVennmD0bsr6B50JzU3p7dx\nYOAzhtuLvPry15lf2gQzChYbsFyJdCrfgL9dR2IUmdYoB0kRUEbcQ6wrSDLQ1FEBDCmJMtjSRnNe\nQ5LVcSFQ5jn5BmlKohRZImmNaQImWIJXeJ+Q6gycSCl0pI8H5UXeYUSeaILqSzmck/qhtMZpYTXb\nIL4oWikJLEGR6iSu/SJTV0YGQj56W0o9UeiQoIIRqolJCaHEF1CLQJpJcmqFJWs0GQqa5eVVlNI4\n61leWhbD+shU2/fgAVsXFvgvb1/nnz/9FN28hy0dqTFsn3vIf/b97/OH3/115rbvkKbNl0zOzfB3\n/8X3+NFvfZ3lJ/aTKLARtDJKaqaLH0fiFz6Ib2OiIdFKfL/i1yweb0ucE2aEQtIubWnF18w5ekVB\nXpZ0y5K8LCiKmNqmAsZoklSTGGmYjUkwCSSqFK6p1xhTo9QJQSthUThHoo2wooNHGUPhnHh8Ako5\nao2ATTQ13WalmbC21mVxaZmy6FAjpRtc35Q/yFuNtZ7ykWIPVMEhlTfMGP00MLMFJhMxEN4JTCNL\naYbs0eeQZfaqgRubYLGFGBHdYl07UTFNK8D951F/Q3y9ynwspvmuTMK1JpyHuwe28vrTLzGQrdB7\nNuPA1qu0bnfQ1pOP1OjsbDBwe5nWUsksn3fOWgKKDnAWProlJN4CuYsvp/DEKbj8jqzuxKu+i0jm\nGzNQ7/QYbC/TaHXpNIi6Gk0/ltdMS8P0AvAVGH/mHgc3f8gh/QmTzJBSsjQ4yPXDuzi//Ri3du+m\nGG5KPXy7DflRJBqvEFLxWWBK8cHAKdQemM0mOLb/HDv236BBlyWGuMxe3uUp3lh7mesf7+Puvm28\nM/AMm5L7pJSs0eJ2vpXrC7vpuBY3x3ZyoX6Y3Y2rDDcWyalxj83s4hqbX7jPloVZ9g/A3otACXoH\n8HVYPtngh8nLnMufYOVW9Ltcqe7S55u8vPSULlDPFJLwF9PTP2diH0CJ35/zMgCOXKK4F1YEF+iW\nBaX32BD47UtXmOrl/MXoCHONRvStSmi324yNjTI+Nk6zXqdWy6hlKWkSh9bKxSGuGOznhaXo5dhO\nj15ZYH3AoQkqwWQ12s06QYWodPAUeQ/rPEUppve1WopCY3RGo1EjJJZgA750lHlBz5eyP4/BJr2e\nj1L90AfRJcREGmTnHForQi3j1n/yu4SyELRoIyjgZfiulDCAPZBoI2b+SUpAUbrIVE5S6mmdSqKv\njBGGXTX8McKKleG8WLPooPDWEkqLtiXaWpRzqBBwceCjjFln5AUImujzKCfpWVfT9MkBgAoaFZnD\n1dRfE4kFkQW2Ue6apilpWiNJEpIkQxmNNVIHvLPCyE6MDMkL+b1SxmCDp3AOrTWtJGHbxPAvCPD1\nhSPiYNp4GnRosQpLsLYI976Ap8wEBH9ZBo3nn/EPWKPFohvm1up2bt3eRf52C15H0OxlYGdL9uIH\nQJ9y7D94kW+bP+c3yj/h6CeXaL1XCODTWmLXkQccPX6RkQ9X4Z/D7KtwZU7ev32bYXQO9g1c4dkn\n32YyzPBkfpZm0WUtbXKjvo0P1Al+fPIlzjdPktOETgTMV2FlYZiZTRPMjQwyum+JiR1wZBE+cfKb\nf8TA1GEI+2GuPcp9NrFcDMhCfhf4BO4e38Lbw8+wtXkb881X2TFxh+T5wMgSMA7Fcc3VYzt4tfEK\nb4YXeK34CrtqVxllHkvCQ0a52tvD9Xv7WHprDH6kxLD+PWSLPwfMBqHY+WWkcN5DFugV1r28KpZX\nJW/ceFR1bSPTegE6k3C9CRcVDz7ZzE+eeYGxbA73XMK+TddofWuNZDVQjBmW9w5yettj/AXf5K3O\nc6y+NyZ+aXcDckOX+RtpuI/g8QsPfGmt+ukcX0xYFJmgiibzUaeOTNm999iiIE1TdJQvFnlBmoi+\n3CQJwZVCJS6qzXOBc5L8GIjgVJya6wiqgY9Mro2FQ/W1hCEmpWgdw4Nj0xFQ61Hsah30qijY6//r\nX6F8XouBfpXmKKCeLPi+/4PCApNo5tC/N+vPFcfKah0cIwiwJTCZ+JJUrC+txCclaE+aQqbl80V3\nhe6Du9jOGl4rfK9DSiDL6jQHB8nHxyi8o+1LAbHwcfIm10PQKJ0SjGx0NaC0jyk2ChXke402GAUm\nCNtLKZFhqiDNaqOpyYxmbVmxuligrGLTcJ0HSz0WfYn1mvk1C2qV0cE2o+0Ga/kqnbVAiSZRxMBk\nkU3uaCXM5SWdR6nv+KU6Nnp2bZAo9L/WjI+KfTWEdFKDyMy8+vkCYQ0AejNsbohB53HgEKjdlvrE\nKjr15Cs17J0GXNISuXUuhUsTElfcb762gJqEoSZMKfF8H4kv6YDNkG5ZYzdXecx+SO1HgdUfwJsf\nwYXopbp/CX41B6bBvAzPzMKmG7CYw44h2PwU8AJcndrGDXYw+3Az9/9kh1DCryITsuseug+RxnCW\n9bhijew67sBKDc4NRH/jhCuHD3H3wDZunLzAV5O/5FudH/D4259gvu+FLt2BxnbP/pduMP6tBewm\nw8zkBG8d/zLFJw24rGF1EHyb9WCAak3bQMX8JT4atYwklThzHcS7wnnZFWmlMEYak+Al4r0oCvIi\nJUsTmmmN0skkvyxtZB6D8goVINWyzhgdRWDeoc263F0rjfYylcbKRl8bjfKSZCj1JK6LaKx1UdKv\n0ZEBJn5g4g2mQlj30gCqJkgbg1dBnjcASqOTulwnBp0mMhBK62R1YUllRUnDBxpZgnWepaVlRoZa\naCvrZWEt97dv5tVf/yb3du1gB8Kc8N6TmZQtqTQrY/WU1ZrCpwZtEobKAbEo0KmASkGhMRReNnQC\n+Ol43fSHL8QEL0l1FOPWwjphOQSLcwUBLzU8AmHeOYqioNfL6TlLtyworMVrUCahXk8xqSRw1kxC\nFlkbKE9wCLMMCRFIlRdJIoHgE3ACCrmQQwhkSuFQ4gfkAy6UaDz1zKNaGqNTVKjTK1p08oI08Rhv\npaY6CdsoStv3+/z//6h+kSo5+ADC9NoujKPtRtbcJ4HHobVnnoGBVbR25GWN5YfDlBcbwjg6DZwf\ngAfbWd+8bwS94Ocnm/DxmixSS7rAIoRFuC7nayfqfNQ6TnE05V6ymcd2fciWXXdIKVlgBI/m1+f+\nnNZkyZYMRgpZoRVSPhpDwLLMXCrhuAVul+B2QfMsZFZeGaJINFqmOWMoyHCl+UJgVw2YlGj5Y8DL\nMP3Va7w89Fd8mR9yktNMziyiikAxmHJxcC9vtp/nL5/4GmfrT1H02lJOEiXzpJD1ZTC8CU41OPP8\n09w5uJV3Rp9mghnq5KzR5Jbdzs17u3l4fgpe01w/sp/be3dQG87R2uNyQ2+2jv80gxLOP/Yk13fv\nozW6SLu5Ql7WGK4vMprO000bIG4irHVFMjR2A+oXofFJwVc2vcat2jZuH9jJ7MHNwlq734BelVgZ\n38UQ6BWOek0cd6rAkKBC9DckAmFxeK08UCX7VQbqCq8UhXOUURb4Px49wNa8ZKVeZzBJGRxo02w2\naTYaDA8N0240ZGhBwNkSjaGWGRk0Byspjbag1+viuj18bimtxyuDyTJqtSZJrUaWZiwtL1L0cryz\ndDsdiuDZOTePrddYnJ6iliakWqGMIjUZtcxggsKVJT2b0wsFZVnGddcRbKDb65HWaiRZiipjsrku\nxffR6NiPyO9V8OFzeHPw0kOI9BycC5TKo22sExpUlI5qnUgYB+BUQGmDUZpUGRJl0B6R58uWH2wh\nPl7OknoHft2kH2S/H1B4FXuPiN/JOVbsOCTJ13tizK8Ab5EA4fz6zwnzTfdrLUg9D2isA1RGPW2Q\nmRroRM4zyjK91qx1O3R7XUyakvuAVRKSVjoHSpOkKUopdm8e5/yNe49oIMkXjw1rbCS8eqvp0aBD\nE4agPgpTBq7Fy6kBUxoYhTAEazS5bndw5vIpigd1yps1+FRLUu97yBb+GeAAMhDZBI0jq5xov8dX\neJXjZy+Q/YGj9yrMzUIjg5GjMPZtAd5m34Q/mxPMSQFX7sGvvAFDT8D+E5/ywkfv0rrURc+BH4bH\nDl3g0NGLDKWL+IOGs0tP426lAujfhfxmm8ub9nEme4IdX7lN+2bgRQNHr8uv0Oh24Kuw+lyDT9oH\nuMxeFu9MCO50A/gQ8m1t3h19gXR7ycrIAKdeeo9NJ2aolTm9rMHtwU28bZ7hNV7hg6vPkF+pcXHz\n46SNkuAVxVpG504TPk7gHAIO3rRxs6mh7IGLWnvmEMBrAVmwKxuASoXxNw2IZH2TN9bGn1uWunaj\nAecUdrLOhwMncMc0D2pTHD90lh0HblC3BYvJIFf1bt7jKd5YfpGb7+8RW5SLiNmjpG7F5y15lJle\n1fELC3wpJSmMaSJRvX1q64Z/gT7Dy0djQ++8gFqA9wGn1v/kvXOUuSUYg8KSaXB4ClsSgiW4EsV6\npLCoFCuwKPpmBdV/zerrSpCd/vfKgis0SxWNGdeHKzK5qD6OYs3P/bxcf+Ut5qPBL/SfJDZEAngR\nJR7CfGPDc1V/JAKCySRFRdmj3E/xJOhnfyj69OMKn0gyw0DNsJg78rIkv3Odb390lX/59FFGxiZo\nDQ2T1RsCUGJR2qJUEDPNIM9XedmgE+K2IVLDQcfr0HiMhiSJschak2jINOjY/OgQZStFTs852oNN\nFCUrc552ahlsaXpW473GeZhfLminPbYMt6iZAne/x0quIstN3pfgAq3UMF4P3Fz7RYgn/kU6qgZK\n2Ipy/Iw9JLIbH2FdujiFZKcjGFilNusByxNSC6aRIvsi8KXA9sc+ZZ/+lEkekFGyyDC3jm7j0vMH\nWPvxhOBoiYIPh2FtSs7HbBc54yEFhxAGw2bkdQtgAeoDa0wwy+TiElyGhVtw0UkZAKn5R6/CrnvA\nr0JrAA6fQ2rEJKgXYeZrw/w0e5Zz7hhzs+NiAvanRPWPRUr9fdZNLKvUlhQpiJncw4e74L0BuALh\nVzS9wxkTeoaneYf9ly9j/tDT+dfw3ozMivalcOAGjCbLPPd7P+Hj5Ajnd56g2NWQW3y7KYb3fW+z\nqtl99Avbv4uj0ajhgFIjsmroy8Fl6BHIMnHo9tZSFgW9nqHdbJLqjF5vjbXlNZyNybjKYEgIFnTQ\nYAMmFYZyxb7Vacp6ORDGbQwgi4OPEAfXjsQk0fOqGvIIONZfV/tXEpMPgY2sY4WYxifBoPCgJaFQ\n6wBolMoIPpFhRBYwhcUkBUla0MsLEg2rax0atQRVS/BFjyxNWV7pURQl97ZuxoQSeTlFUmtgkoTF\nndv4w//iH1JmhlqiMDrDJAY/tYvX/sk/wiWGVjQVT4zBKWEUGy1NFSGQJDq6RrnYPVUMApHkGCNg\noskMRalxpaeX97DWEnygKKU5LiI46RV4o0lrNRrNJmktRRPIEgPWkWotlcl5fND4UFLihZFXyWSA\nYKQBcj4QQglBBk7SOHqw0S9PRQBTe7QJYGQIlNYMiVU0Gw2Uy7Arq9jSU1j7CEHN1bpdmdkPIKzY\nTbAtgWcVfBUaX17i0PSHHFCX2KTuU6fLchji2vRuPj56mBt7D8m6q4H3m/BwK7K2VVLHSnIYmTM/\nt6OSg6wiTcZ9yAfhfBtqUNgmH82e5MaTe/np6FUmmCXBskKbF3mT5yffYezJFabPwDfekfDFFnBy\nDJqngAewQ8HFsC5Y3wboAzC+F06ekx6oDjybQusg2IOKB6NjPGCKxdmRDUGMBaAgbUp9ehyGXnzA\nC4M/5u/w//DKvTcZen0V9bFcUpiGLc/cY+uJ2ySpo7u3zYdPnRR50xjrusuKXHAN+L6ivNPgzpE9\n3N25W9gaOkBXEWaAKwouKmmEPlbYzXXsUD2a6SP92j25s+HjlKXtYyxNjUIdkj09dj/3GgfCJXbe\nuIn+M7j9f8NfBql42+/DVx/C1JDj5JEPOb3pI346eZO57VOECQO1FHr1z717IUA3dww2xQfRaNVX\nfphM/u+jwsG70GeOVoSgamCulViHFM5TeseqSbk1NEgzyWikGQPtAVrNJrUsIzMpRPmcUTLc0H3V\nhMP7guAKyqJLr7uGLRyahJCkoA1eG3rO0ZmdZ3lphbnZGWxeYhQUvZw0wD96511Qiv/md36bdjOj\nmSU0MoM3gaSmaDVbZO0m1pWsupy1XgfV7VEUBcEHSmvpdrokOkEFkQVanURfLRPBJN+3S5Gbqfrr\nWwgh+ohJzfE2YJVHa49WJrKmdHxIBdNxoK1D9dkgISPxvuCtBLw48R2LnUesmfI3r8KGpHsdXye+\nT8FJiIF8Thh7xGvwcbgvA4P+mxvBrkpfoxCvxhQXAs4pbEhQSYYyRrwwI9ssKKg1GjgVWFhbpdlq\nobSm0+vRsw6HwgZPGoG3XVOjDDTqPCwfdbZ8BZhEwD+G8pYPU+67TVw3O8kfe4faU/DiJdCzsipu\nAZ7cgXg/7RjhJtuZ6UyzdnoYvq8Eo7mFDFr3yvdxCnja0To8z3TrLqN6nsNc5KnF82Tfcyz8Cbx2\nAz5FxtpfuiOza3bB/WXBm6rjM2D2IQzdgd0/vof6I+Bt4AHoKRg41ePY3/2U8DWYqU1x9YmdLJzf\nKoyqa1B+nHF+zwneGLvM5M4ZnvsH79LaG2h9iqyBeyC8AO/tOcYb6kXOuOO485msicvxuoZgNR3i\nh698k7v7pjmdPsn06B3q5HRocottXPSHuPLJYcq/qsNHsNrORKyikI14lS1yBcGQwr34Ah5palY3\nPDp8XtpYyRf/bY5qqBQZX/26NgANyH2LM8vPcP2Jnbw3cIop/YAsy1mlze2wjRtze1h9awR+rMRv\n7DPAz/J59lnlB/xoh2D9wgFfwnrVksgY/TvWwSDVZ3YJC2xd8riR5VSBT85Vfl0CrHgbKFWBrokZ\na0Aikr1SOCcgkyYWggDBORlAa6gmRsTn11qvA2B4gokSwrChiKh1QExV5wjr+BWqX4D6qY7IRKsy\nfJf/y2ZfzN/pT668k6h2/Dp9ex2gi/ctEDcFcnN9ZDSoWB/64J3wnKWwR1q4DhqXKmoNQ6sb6PYC\nf/+9j9i8mnPMwcOhAZJEg+tJhLKPz6flnI2q2F7y2gI2aSraudaR4UXAoEm0yBoTJZP2xCgaqSHL\nUpJEgRdQzdqCTmeNlYVFgi1hsMQvFuxVCSuuxxqOgKZnFXeXClqtOqMDA2zpWm4veHKnKGLDYuK9\n2tRQzPYUXffotB+/2EcFdlVMovQL/25MIhlCEKctkE3AaCYToy3IZr2JrOlLSOG4BewAvhRof3ue\nkzvf4QXzJsf8OaaL+2SuZCkb4NN0L+8PPsXrr3yZa439uDKFNQ2fjENoS876s8AzUD+1xsj2WaaG\n79LWK5RkPMzHWJ0bxQ9qnLivosznzzxFEhUxcO/ICPpJTeN2F1147FDKg+2jvN54gb/gm3wwc4ri\nnZZU/VkHq3NErjPS6VTeXpWB5cYNVSmfXzsMWwdgFNrjq2zVt9nZuUnrbIH7KXz/gRDcHHC1gOw8\n7Hofdr10n+3bbzI+/oCFsU3RDHmD78PPeKn9ch+JMSRpHRsESOqPI3wVjiLyPK1DXMNkqJKlNYxO\nWev2mJmdY3V1DYdHGU2aBtKasGS10uiY0Fits2JfZfEB0iQ2IsGjkjSCOSZuwoHo4UIkQKVRPoJH\nfBlVnH770B/CqOjtAjHZMTh0kHQrFDgXfZQiEw1AUDiHdwFMijKGJDGkaUqe9zBa0ahlkUmV4Kyj\n3qhJyjAxRMY7YZNFz5w0TfHNBlo7ktTQaDTIailZlkm9COBLiytKgvPCHtAKlIpBbhJtr4yYOAcv\nAFSIaZXGiMGzK3qUtsAFR+EsFo8NjiJ39HJP10E3QKEV2iQM1hs0mi3Sei3WQE+mFNrJfbR5TlnE\nRi2Id2dJjkkMKjGgDQ6H88j0PwJehOgz5DzBBkpbUgZP4R3dIqdbFPSKktI5Rq3jv7s3z/+1dYo3\nJsYxClYX11hzjwrbC2QtqNaGBoJebYLRGjwOvATjX7nHc9M/4sv8iOPlGTatzpDakrVai2utnbxl\nnuaHj3+FM+oURdGEFQVn29CZ4PNmvQk/3010iax3Fei2ghSVBBZ3C0C3quGOZuXcKBd2jEoNMqCm\ncoYOLvP24ElGvrbARLnEwV1w8Ga8TU9A8W1Des6x7w74C/Agh/EMDuyG8psJdWV5cQQevyzpp63H\ngG/D7KkRTqsTXHIH4GpdgKR54n1qw0gCW0AfLdkzcpkX1es8d/9dhv9wFfsvYf6yEGta4zD0YeDA\n37/KK8+8xvX6Tu4fm6a3v8nQ1CzDzUWUDix3Blm4N8XqpQH86ynmxZL2sXl2bL3GZu7RoEtOxj07\nzc0Hu1j4cIIwkQib4sqG27eKsAKWrSxUVxK5X2MKdkJ2vGA0mWfKzZB9Bv4j+GlYb3A/A7Ysw8RF\nMFdg06b7jKQL6CGPa0dZ9l/TxuSFx1otIJeX9UJXa6iSvbGLChAP/YArWYtl8VPKVOQhSdFNhCWV\npRJMklRMJr2equiKkrQe1zE8zhYYVeKKLnmR0+3l5HkJKkHXMlxQrHYLlh8uMXXjLr//1rv8k0OH\nKUbH2LlzDzeuXAEM2cgY//tLXycdH2dqejvB5th8hW6Rk7uCXsfTWZ2nmaYoHbBpgg+BNJXArrIs\ncdZS5DlFKqwyZ534hMU1VMdE30rWSH8PLmuqd068t5TUAGMU2iMyS+9k/hBZaF7LfdTRjoUAPkiQ\nB64gBBfXxrCBYSaD9moOrpTu+yBXHl6g4nA89Jln3tlY1mLwC7GfiQBbCJUdzDoDTBb4hEhzjsMg\nh/JBQs8UhJgT4JAeKjUpaa3GcLPJwNg4abPBvZkZ7j6cJ/ex3XceY4VR3EoM+7ZM8HD5UQa+KtJG\niay3PRm23klwVzJuPLGH05MnObjpM578zfO0lOXrp5FlcRLCc7D2Kxlnho5xNhzn/uwmuKZkk3nZ\nC0YzreEp4OuB9ktLHNvxLsc5yy6uMcgy48yR3SoJn8CNB6KgK5Bd75kAhy+AGYN2IstoxYZtA+06\nMAjqT+Hhv4Z37srSOHEPnrkHExns3X6bxw+cZ/fgc5zetVWGuheADxQPtm3mB89+ndBS3N+1iWNb\nzjEW5al3hif5LN3DGY5znsfpXRtEDTrCASNr70XEXiRXFLMNPjz2NJ8dOsjg4BKJtpQ+Y3lhkPzi\noKyL7yNeXQEpnSFe6FqAhRLKymv4AQIm6fi+VH6TG9ONKyP5f1syhuVn69os0ICFHbGuKbhnWDi/\nhXd3b4HJHJ16fCeD+0YW4w+R9/YzB5151lUo/0Hq+O/lqIzejakM37/wdejTVqtjnXm1DogppQQQ\n8gEXJ7M6QJylY52HsiA1ipAkIhv0AR8UJq1h4kR9/bw+zzDbCLKp/nkIQ6I6b2Hj6r7hZv9cqy5G\nrT8/WpqZjZemlUgzZYpMf+K/cWGPLGBAPlZ9KWb4HPNr48VEHKz/KRULgviEVVMBAecqc9AaCQMD\nGSudQO40f/iVxznQS1jYs43UWJlwKyUsukgXluuM1GrFBq29X5czxutUOqCDFD+jTTSzB5NIJDFm\nvTgnWYZSimarQbvdpJllLGiD7RWMhw7fvLjMKWf5n7bUcRbKAAtdx72FNQ5sajHYMNTXPJ1ewLp4\n35Q0tgOpZqppuL7yH1hf/9+O2K33Exor1kCVnFinn//bn/SPADuhNQZ7jYyAjiAeAVt61AZzXKkp\nHjbhmpFJTBuSFwtO7nib75o/5pu97zP94SzNKzmqA3aT4olDH7Fv12UarS5/+nTCjdn9cE/B3TYM\nKinWX4Oxl+9yYvN7nOAD9nKZYRbpUedubZqLWw6xwgAzA8NM7ZtnfBs8NgvnrJz9AWDzbmAfLLWH\n+ePhX2dyfIYaOUsMcZXdfMAJzt0+ycKPJ+EtpCgv91gfBVUeWx3WNf3VZKVaLBLEY0f1A3oyU9Bi\njZZdgznoPRDuWMXXWgHmO7DzAajFQHv7Ks2ks26dpuBvTs/85T7SNCUxCaUTwEgrcFpYp4qAc5ai\n6LG2ukKCopFm4rmFprSwsDjD7MOHFM5hspRao0aWaUwSMCnoBNAaFxQmgOzMvTQGaAGvgpJJM3Go\nExkEWvb/MpiJnowG3W/uxFdSUn5VTOxSIW7uEePePjteCQgnoJjGetHoVhN8rRRaOSxWWErK4EyC\ntha0Ic1qOCd+VnmR01nrYrIaWWkJXsC0shB/TGstJgRqjXpsaBxZlkTAKyHLElDgncVZh7cOlBLj\n/zSBLEEZjfGeYD14g9EJKsqKgwFnHTqRoUVCoHRVarP4obkgn8utJfclVnlMltJuN2m3mmSJIaQp\nyiRkWmN8lKIGjy3qqGWNK3OCjawnX+JswOWFzM21wgUovY/jG4X3QRiBpSOUMkzr2ZI8WHLr6OQF\na0WqJD17AAAgAElEQVRJpywYMZqm0uzQmo/bLTqLK5RZiQ+P2mayWsObwDCoYdgFHIPkpTWenn6T\n7/Cv+MbMa0ycniP5GFlwNsPe4zfYeeI6jbRH73CDj2ZP4G6kcDuBW6MQHsTn3Zjo+PPy+SK+nmbd\nDyVqiwMwPw1nRuGOljozjgwJmhCeqnF67BkmJmZJt5c881vvsfm5Ger3LaEG8zvbXNu0gwP7LjOQ\n5hx7G/wD0GPASXj96BMcmfyUsceXGboFGHD74d7RSX488Ryv8xKf3ToM54HrwEpAGo4haCnYDI0t\nHXbXr3CEC0ydnYe/gHPvwFtWqsamBfhqD8a3weGjFzkwfImb02fZwh0OcIlJZlAE5prjXNpzgNPT\nJ/l060H27LnC062fcJLT7OQabdbo0OR6spMzW47zxuiLfDZ6CLe3se5NcwNpllYA68GuwJ0u3J+A\n7XU4IuxSgyOhhAJ8LhVu45F78D3QDgyWBLtOFFf8tYd1nl5RkhgZYIsMXNa00pWS8OorCRCRVRvV\nBdW6hyLRJgIwkjCulCY1KbVandSIQkGjYyK6xyuNU0rWb28hlDhfkPdyut0epfMoUlCGrvUs9XJm\nZueZn19iaGYW7SEtPQODoxw48jhFYblz4zoD7RZzuw/SGhpi1/bN1GuK1cUH2GKZ3so8q/OzPP6D\n07z/4lESpbE6QTUbMsAxCrwBJ6xTZ+066FXaddawrmz95ajugdaaRGu81jjn8KUlYGToHxTYgNfC\nWA3BY71ItSQtUaN1IASLdZbgrdSkinQV6H+sK3aZBlDCaDYaFWLyohY2WTUw8nGw43zsbZQExcRm\nMAJesva7PtAWB65BmOsCcga0kkfQ0nJhNEFD4QqSxMR+wBFUIMlqNAYHaY+Os9Dt4bRhqVfQLS2W\nQDfPMUqx1umyf+skpz+79Yj5M1ZHtQlw9AenLEJ3Cm624WOYObiZn4y+wEi2gD+lObL9IiOX12AN\nwig82D3C2anH+Z75Fm93n2X57JjsX+8GWFmBoQE4DDwLoy/N8OL21/gG3+f5zttsvveAbKXE1g1p\nbgmlLBMbV/kcCBYYg62H4JWfCnakgGMaJibiZZyFD++Kb2KlkajPwCvnoXYtZ9uBW0zxAMYDtJXM\nMt4H38r+X/beLMiu48zz+2XmOefeW/teBRQKKCwECGIjQIAbuIjURlJSSyPNdIfd0x732H4Z2xEO\n2+HlwZ6YeXHYLw4/OfzgaM+0NTE9rXEvbG3Uxn0BAZIAQRA7UCgABdS+3e2ck5l++PLcW6CkcXe7\nR4I6JiNKBd0q3nvuUt+X+f/+C1f8XtYOD3Cq9xEm9DQPD3/ENqaIyEloso9P6GGV8V23ODHyGDcG\nd5HrkuCEFzy8DdwRxmtjvJfGQK/sn1OkDk4jLLErHpbrUsxUGI/7Qn64grCwlsP3dVps3pZh/EbP\ny+K9+6usz/a1JSCSvefcFqj1wG0t798moKeEK5xflsKLOo14jjUbtGnHBdjlkbPC/TSk+8XrNwb4\niuNCcPfzm59WMuKGVTCaCmDpHhlkmAbgZQpLMR1XIVw+GFtihBnkQox4HJcwOkgrfbtp4j15nrcP\nHRCm0DpIL+SxvPOgZPpfSFMKME4XoyU8KnBGhAkm3b01pQgTqgLoak00CDp2aFOVnfzbeocKkxzv\n7We80Da8buGxxPugmHyJ/KXNDHNEWhMFU2WtIzpySyVJ6bExqY65O9qD8Sk08jBVCdJSJfdpCCy5\nYNwscTUCUBpUoDYHDNDL5oMAFsompGBMINfn5WfeO3SkMElM5JBUMN+F900WsoyF8V7esNVgfizP\nO3OwWM2xXjMy0MvN1WVcI2tJQ73RWC/v6aYK3K7mpPf/3/V9vBTt6OQYOeAU6Yld4d+dG34nTDjM\nEOzRYtz7DJSeWOaBkUts09fpVFUyYubdMNcem+Tmp5NwJ2HbgUs8a17na+nLbPvuLOrPkM5Yg2ir\nZ/Bzq3zud96ltreDO91j3Di6C/+JEd+vLcBxGHx2hufGfsRX+B7PpK+zZWoePevwZUXtAcMHPYd5\nnWc4Ex1i/7NXKV+Cp3N4+FMp/707IPoSVJ8qcaF3F+/wBNNMEJFTp8xMbQvLZ0dwJ4000FPALY/M\nreaQjlPQiIuJStH0NPemnYXmE/pk7g1NEpq6JMrQXuiZl3sl/NcdCdADvlPRpERK0rYC8PDzPjue\nX1SD/7atUpLgPeR5KnLAUhzqao6JZfiRNx1VBYmO6Cp34HLPyvI69VpGtVFnrVZDRxEdlQ66ujqI\njDBqxY9KBiqZ86g4wqgIpUxr4u6dwFym8JFU4fitkACTsCHyXj4D3oMxES1ErPCJVBu+hVAUgpmz\nLlzgFdK/AqNMa7mPop9lWY7RkVy/9iKPMTkqivHW4mxOntdFC68NzTQjyoVNjYcsTbHWtvpxHMdo\nEwmbTdOSuueZQmlhFeRZhlHiPeO0QscxzmicFsN+rTUucyKdMQbvAk3NKVxqJb2x2aTz7AU6bt+h\ncewQ3jrSNKOZOZo2o+lSdBIx2N9PV3cnygoTRGmolEt0lTsgt2QuY626LlIcrXEmxnsdXnONzXKc\nlUFamjZxGrKQrKy0xltPnknfyK3Dp04O5j6nmqWsVpss1xvUvMX2dfFPju3FlcvoZkpHucyirmHv\nG3+vYiChaQeO9ENnqJl7Ycf2SxznLb6w9DpjfzqP+lOonoTqCgxvgcrzKfv//UusP/djpssTXN63\nm+pH/TJNnumBrBMZgpgNj/WrXMVBI91wW1H36lBfg6kBmO6RKVwHIv/LYbFvhFc+9xVWh7u5OLib\nXQOX6du3glWaab2Fm0xwZMspnvz999j0xQX0HPhemN/Wy3dK3+LcxKfsHT/PsJsjw3BXj3FGH+RN\njvP23LOsvjkgPewK0FwGFkENtqzWkkrKIAtsYgZ1BeYvCOg1H57FCrB9DoYuwOBMlbG+OzzNGzzH\nz3i4eprOaWH8p6MRp/r2s6NylZ8eeI5H1Cm+ync5PnMK86lDLXt8l6K+/z32bz7LYGWBV47WWD7c\nR+YT5pZGaHzaJ9f6voKTJbgWg70F1gqpoQ5pLWbV9bCoBsUHcxL2fSIjn8BlY7JDbmcMluhnxfXi\nq0oOnhZ+0QHQOU+tmdFVKQXfKWGHWmcFvAkqCKMLSxJhwXolgLVBgjpMkOkpL2wi2ZuKQbvRktgY\nRUpQOcSHKnMWnKIUyWe30cio1RqkzRSvIpyHerPB0nqN22srpJlFRwnndu7kfxjfxkKtSWlxiQvn\nzlNvNFFRhIo01jVIXQKJR5fARznry0vk2TrH3/qIfZ9OMVDPePOF4yK3i2JUZMTb1xMG5IrcSnKi\ntVa8IbWT5xaYWW1QqpB8Bu8upYX5nOeS666MMJQVYS8ewsRcCJ8yWkK7tIQIyJw7JBVvkEIWvsZG\ny+MQ9udyWxRYeuqeP8Piv4m0nLVsa3DkAxtarsU5i3U5ucvx4axQpHcWuKmQKQqOgUcbMLEkTjrE\nt0trIUzUajV8vU4jyyBO6OjsZu/+/cwvLrJWq4O15B46yiW00fSXy2wa6OXG7OL/n4L0b2kV+7gC\n+Cq8pBZgugM+0tiRhI97jmGPaubKwzw8+SHbt06R+JSq6uSy3skpHuHN7Gmm3t4Nb2thQs0iH4pR\nDfug/FiVQxMn+ar6C7668n1GfrCEfhupA13AIfBbYawPhmcFYykhWR3RJPAwxNvgkU6YOAsnZ+Cc\nA30e9nwPokx2yhvzBJc9uDrouqPsGpR0s32sMMgAYQ3cjYQ7y+P4L1oe7D3Pbi7yZP09Rq4uoRY8\nvluxsqvC+92PMNI9y3ef+ApXVvfBohZi1o0qLHSJUqNQoEThIlYQdtgaYItwqlXwEW2z+RQpZoWM\nsYGAkM1wR8Wz2vj9r7MH/2xfWwkXGdhk1TG4OgxTZenl44h1Z+F2MhJetzIw0wHVcdoDqc9iM37D\n9d5/6zcG+MpzSxRtFBGpFthRFGigLRksbtsobwzML2ttkJEIRTeKI3JXILBy37l3xF68pJIkFspw\nOCAkiQ9XgEzWQ+z8Rg8uF4A1uUbfYnfJgceitMc7hQryDCeGA3LI8V4AnsCu8kVBR7wIWlvgAGr5\nVhJNwWIL0hRfmNo7vM1RgenlvBegCc89uBcg9pWudX4S0M0EE2GDEmdKMawUXQ2l2FA2YCONdmAb\nNXyWkZsIHQXmVi4ySRU5IjTGuxBR7IL+32BQMnmB1mullWxDlAm3BYCsgO68Mjglhv5RLOi1tx6f\nywYmimJ6ujvJh+ucf2Ir6fQcnbeXyLHkCL27njsW1hsc3jXOzRXHQnWRPEyzYqVxSsDPjkgxVon+\nndfXX2kV71ThDVUkNJZom3QNIR1jAEwvRJVgKEegtViYVPA46C/lbHr+Gk9X3uAYJ3gwv0Bvtkau\nDTPJGB9VHubNI0/x0dVjPGAucth/yNipJfhTuPEX8P6yzMh33YCjC1DucRwZO80H/Wd5e8d1ZiZ2\nStHfBcnhOoc2neIl9X1enH2F0e8vwxuQ3wTTBb37LU9/5X2SQzlvJk/y0/Eneex3P6RjR53+Yiy1\nHWqPlzh9YC+v8iwf1B/h1mu72gO2GWQadB6ZHt3KIZ9BYm0KE8tiqlIwHz670S+aT9D8Vz0sKWpL\nXcxMjHOrspmHDlykdMzy7F3oqsK6hwcS2L4L1GGY3drDDbYyvzAsyNh6eN1bjbhgmv2iJve3a2mt\nSeIIa3O0sShtAmDliRQiGfGiktDKsF6tE0drYvibOaIkJc2aWK9ISiW2zi6wNtAf/gJy4rgkNU2J\nF1UhcbdeYYhwPsJhMCaWjbiSmHWMkd7gvBwglGIj+bnVI5xHKTH5LeQhPnh+iTmxb719LVk+0heK\nuPvicFgAVgVQp5UWGY8xaB/LxD1LhclmY6LEEqe5MK1yh/LyeuXhoNWSG4W+6DdIR5215DbDO0up\nlAiTwmhUFBEF+wGDRTsP1oNFWMLGSFiMB2UVzju0t+R4Rv75d6DZZG7PLmraYzNHanNSZ7HeUykl\nJHGEawobK7cObT2mI6a+3iRrNqk3azSzOj4PbAcXerIC68UDxrWGYIa8mVNvNoVVolQ4YnlSB2nm\n0DnY3FPLMlaaTZYaDVbTJl5DKTFkcYR2GVmzgYki1mobswF/3as4Ln4m1bEXsfmabLJTXeGAO8vw\nx/Oo78Gln8FrDdlmT16FZxswOAj7H7zEg5s+ZXzLFBcn+qUNRDoAX0Wgxi+h9PxbX56fl1gWse1B\n/ui6IO2EtAz1YSiL9G6+vokfP/Ei50f3MVK6S3e0ivOaufoIVdfFuY6HONuxn8ndU/TsXqFGJ1Ns\n40+W/y7vVm4zmVyj3yxiiZj3Q1xr7ODK3ANUXx+AV4EPPMylcg0bp+u+/Q8Vbte/4OXz4X+8hl5W\n+K3Gyxw8dZ74xw5/WX4WT+Y8+eWT9B9bxpQtj+UnePyjD4n/NMeehMYiJJ2ericbPPbNU7jDmk69\nTlk3qVNhanQbZ0f3c27bw6wN9Uv7zzRMb4KxCB5E/NKuV7h1cILzHbs5/OBHjD83z+E70HMRli0M\nxrD9GPjPweXt41xkN3cWN+NmjLTHtEgA/fnVaGagNJGRgUKWibzROTkzGC1Jfcg8OuzVpX7q4GeF\nk72ks1bsPxCJuYk0KlI47XDK4pG9vNE+SM3l3JE1mjTqTbLUYq0oNVarVebnl1hrNDG93Wzdsgnj\nDbXVGr7k6dZVautVbt25i7MZld4efKRJsyq2YbFvT3NmtIeEFNWoU7KKjz/3FMPrlo//3kv0axkk\n27Ih85Zmo4FDFBPO+cC+teJXaJ34ZGmNVu3PkgpAmVEarw3OxLjIBpacF0+uptAIlbbEcRI0ijK2\nL8K7vFKCNOlA0vsM+GW0DpYnhkgLw8spH3pYwTiWawdCkJfH2iL0K/wcYUQLaU/k9SI7t7ji/xfM\n39aZsQDQArtNg7IF61oIBlGsxIPRBaJElqOjGKxjcXaehvL0DgwyunkLF86cJq03MEaTWUdkYsqx\nYWK4l+m5xc9yM+6DVZBJij15B0Jf7YQkyG6q4Kbgeu9uVrf0cKryCN16jZ1cYYVervntXJrdw+p7\nQ/CqFtPzixn4K1B+QCx5d0Lv5CKP6FM8m73B2HeXyP4ZzL4L06swWIHxE1B6AbY8DV9/A6YWQFnY\nPgm2D0wdKIG7DW/PCNnWAreb0PkxbHsaJmOYyqQ6dwE7YzCbIBuOWNL9rNIDBWCeAs0mmBLshGR/\ng8f73uErfJcX5l6h+48z/DuQ3wXTD0OPrPPiV18j3pOzWurhzuPjVC8NwAUFt7ogvwELFVjooD2s\nKZhZawiguBi+r7PBWZy21DT9zPfPDl/gb8ZfN6fN/Co+B53AAPSWhaH3ICJXmXCY/lyY+GsGf1sH\nT0fgXAfM7ABX+DIXzK9iKH//+gH/xgBfLqQS6kLnESQEOhhVFuDXRt+sYhWgULHJL4Cx4mfOujaQ\nQiETFOprKYlIogjlRbKoCpsUH1hfxWTd+0CVZgML6zNgWJjaat2WO8o/AnDWOlC2mV0KWvLFYOHS\n2rg43zZxFD8vMYi0Lpcpj3NYl4OTKfrDL7/C6a9/WR4hULpbj1h0gSC39OFBvNoQC4wPDU1htMUg\nTc1Eju6eMia2qLolzR3O5uG5thNjIjTaG4y3RIFNYEA2H8qjlJUmSNt3RiHMMmmOOrADCsmmHHKc\nk/QYnYsE0lnbYtgVk6Tunk5sM2dgpcG12RW8ygM1W5E7z8J6ynotZai3k665ddJmTZo2kCNTUKM0\nW3tj7jZymvfn3/N9tFrzNO5lCIAcarqQccIwMC6Mrr6STIiGEWfLwt5lOcTdPeEYe/wGL5a/z2/Z\nlzl650OGzy8S3fX4ClQnSxza/QmjnXcxO3JGmGVL4zbJhYzsQzixLCxeh1hoDV6Ehz6C7ukaW/pv\nMmTmmRnaKQewHdCzfYGH1Uc8lb/J6A+Xyf45XP8AptfEb2Dvh9C95tjf/SmX9+zgO/qb3N09wr7N\nn9K/uoL3ivXuLi507+R1nuaV2pe59f4O+CkCdhVs4buEYJQaIvO5hczo12j7eRVN5bPMj+K2YnJU\nhaUeuA3ppQ7OP7SHk8lRdu67yu6/e52Jimf4LOQN6BoH9Twsf6mDd+InOOv3szY9KBKVG0iijJDN\nEaAy3fCYf3vB3ziKKCWlsAGWSbUPFHwVDlFNl8vxUmU41cCqNWq5pVKylEu5mKvj2X9tmm/+5C1O\nfvk5zj5xDLzDqIjIFNIZL6bmkZgMF3XReWEXaFUwcMVbSphSbUljG9hCWEdhoxFF0toLv0ejJYbe\nh8EOTlzLtNbYMJTJnRVT4Q3emMV9WGul/hqRmHun8FaGOCaKsKqMUjmoDI+kTxJ7lPXYSK45TdPW\n9cqk3YQ6bUUihPRTpyMipTHKiFm/0iQEE2ZnBfCyiMTGWDmg6QSUx9pMZJpeALup/+I/Jl9copnE\nuFoNm1maaU5qU7wBZy3V1TV8DsYlkoAZGerVRquH4hy5beJsJsMeG/yAIlBGDoc6SshdBhhwkvyY\nNgvjfAETUwdZmuMyS5Za1popa3nOWp6TOk8Uh94aGVyzKWExKayt30/AF9zLwAoAWAXohvJAjSHm\nGW3MUbqew6fwfkME2yD4/vgs9F+EeDpndNMsfSyJTVgHYXNVjOSL/vHrWEWd3cghSGmb3hestAjo\ngaaFi2PQNLAAjUs9XN61jytje4i6MtlnzCXgDDMPTXB67AjDPTN0mDoNV2Z+bZTbf7ydW1u3cW7z\nQUrlJg5Nc71EY7oL/4kWx/vTwDUH2SzSOCTsgRRYg7SWsMAQdxhjz/ab9G6Ho1PwfviVUWD3IPAA\nLA130p2vs+/0ZeI/dCx+F24syd2ND8DIDDwYX2Hh8TfZO3uJyssp9W/DqVtwK4NhBYemYdDD0fEz\nPJBfJ6rnZOWYmbEh3o0f55Xtd3kzeZ6l6oj0ukYETwJPgjqWMbT9LnGUco6HeG/wGM9/6zX6e2rs\nOo0gpUPgnoDZZwd4LXqGk/kx5qdG4aISWki9Lk/8F6w0t+TOU9aaPM/JsiAZDkBHbCQcS6GJKzF4\nRW29Su7Fk9Ag4VM+d2BtqD85CouJFVGsw5cJ9VihlUNpUX94LJnNwvBAkaaWhYVlFpbXeGbqJq/u\n2M5Abz+Dvf00q01cnBPHEQmaUhyTxAnohKQcYZWnFCkePn2al159i5+99Bx3Du4niUoiGTea03//\nW3QksdRnJamLPm+Q0j4TFQoTG84LxQjZO/ABTCr6jlEaQp+JIoMLB1ybW7yVAYrLLVo5XCALaKVx\nKtiQIEECCvECK0YAWolnr1ayry8kkSrs99tyRwiRihRwmdqgjyyCw4wGYh3M8QXo8hTm+GH47wPo\n5QLTqyBFONc6LxgFGY40bVKvV2k0S1ifCAjqfKs/29yS1hrkJifp7eHCpxeIkxImKZPaZSI8iVNY\nNM1GxmhfN6UoopHdT3umjfvzIkAqTC8qfXBAwVMQvdRg4uBVHut5l4f4hC3cokSDZfq4wk4W/QBR\n6mSaXNjRNlMggdiIS8kYjPXfZCdXmJy+Da/DjRPww1UpCeU6PHkWHh8BHoXR63B7Gc5Y+OQ6HJ6B\nfU2IDoNblIcpjl91YG4dtnXB3iNQOgt3qzDWCdv2gnkK5vd2cokHuOm2tL0Ra4AuCTC3HUZ33uBh\nPuTRpQ/o/qOMxrfh2lkhcw2XYc856KzC4d//mAuTJ/lw5DCndz8hIVplYD1GaLiFBUAB+hTeXMUA\nu/Do3biPLwbKxaClUHU4fn6//zexNqYxh/dcbYahDklifhJ4zDL40F1GemfpLS9iVM5qs4/59VHu\nXh/FvVOW49v7EdzYLAaSLVVK4UNWIBj3HeL7mwN8AcG0PqIwYxcQTLforWzYrG80gm+xwYrbXAC6\nCgaYVkRKGElpMON1XqFMjI4N1jlsKrp4VZg1QktiqBBpYKB9sXFKufEAsfF5tEG6e3/WTmqURuAC\n4FWkeREOMgSPL+usJFUByot+P3c51uYCgFmHzTKe/sPvMPnBWVyW8+E3XxI2mfb3sKcKyUkBwBlj\npNFoj0Lz8P/6bc79V78jtxlpQpHzlGJPTzdUuhzRakqjIRN/kbI4tMpRIQ4+ijTaeIxyYCReWocp\nmVEGioSWYFQpBqM6MBzkoKe0FkZDeOmc9+RhQuds4WVmW8EFBJZBZ0+Zof5OKklCrLPwe5LyuFaz\nrK5VMSomCu+pUkZi6BFKvFNQiTTjXRFXV+6nJna/rWjD98IYXW+4vUgCGwa2gx6G3VqmDA8gSYpD\nSG1uIM10GiqHqhwZeJ8X1A/40tSrJP8qR/0UuAWqAl37m+z5xhXM5y3L3X3cYYxSmqFXwa3JPrpo\nI01gKQVWQDccCSklGnK5PcAYDA/eYSdX2HJ9Dt6CGx/Ay8ty7NEW5q/BS69Dz2M1Hpi8wo/LX+AP\n+H12dV1iqGsBhWeRAS6zi0/WD3L75Db4sRIfr0+QO/JO4op9MRG6S1vvXwBPvwz0ypBas7HBLsNq\nMBg9rbj24F5eP/A0fT1LqK/9kAf3TFG5GO52DBYP9PDmwKN8373Iz6a/SONSh/xsGLhbgcYW2s2s\nMNP82+33VSmXKJcS6s118EUqsHiERMEPJbMOpxy5z8i1Ia3VqeWWzsTTUcnp7KzQ1VXh9u4dZG+c\n4Prhg8RRglGKKApG9DiUVkSRJorkkGW0CqmKG1LGZIyNUZ6ICEUsspMA/BfeNQULDMRbq6ijBUD2\nc0MhVXhNIkMCI4yVoj8Vq8UA807AreLxlHhmiUwywngl9VpZTGCKuQAcGGOIoij03jbTS0BFj82F\nQaFVHJ5HkLMrTWQilDNEEKSVXg5pWvzKlArG/FpSvXRuUbaJc45Gbw+NOMLWG8JscJ4sTcmxaKOp\n1+tktRrKGcpRF6UkabEgUpujvcZlwjBwznPsR6/x9nNHsQjwZyID4VDU8iTTEaW4TK2R0Wjm5GF/\nYp0iy3LyPKOZ5qynTepW9h8okVDZzJLHObnLaOQ5s/Nr96k/TLHCASrscbVxKBzG2dbgeuPM2gFN\nsT6C3BORERXHmMK36b7xCNl4+Chk5cUGv0b70NiQX29YuLQZ7kbBlV3h+2Kycizle1X+k/U9faxP\n9jI9sgNV8vhU4eY0/ImCAUN1qI9qF/LfrCD973r4WsjB3qQ9HOmT66l6mFfUbndw/cFJzpX28dCR\niwy/uMrRGuw5C9UGDI5D5VngOTjfs4dtjRuUT6TkP4If35TL9sBkDV78KQzu9ux79BMGr9bgPTh1\nHX4WXomLHpiCZ05A5/ebdF4McW9DsOmROTY9M0dlsE5jU4U3jj9P41q39Pd90PHCEgfHPuRQdJoH\nuEQfS6yabn667RkO/N4nTHzjFpU1x9pgxNXKDt6JH+dH6oucWHqcxskuYRzc8uDW+WXAF8DSyjqd\n5QQQWbKEZUhNjLUhMRFxlNDf14dGM5Pm1PKaADRh3+mtx1hPSSuR1nm5j6SUUC4nJJEJSbxBStQa\niEsdd85TrzdYXFxlaWmF//7kx4zX6nQMDXNqXGFrDRKvMKUyPocnb09zd9M4axNbwSisT9F4ylFM\nduQYvPY2azv3UibBRGASSBIJeTKxWLHkbgOji2LUIGoIdDtltvC9kvR0+cwrFIf+x/+FD/7Jfx0k\nniIDjSIBB1WwPzE2sKw8WJuHQUpQ4igTargJRIE2u8ookZK2FR3t/YQKdbBgKXsvkvzid7Ruh4MV\nPQ6jQkIkIQVZo53U7HByap0VCnCtRV5wbYBMKdB48rxJs1mn0WzQaJTwEcQYlAOXe7zTrK/VqOaW\nyYF+dmyd4NTpD2WvEMVkuSV38ppZZ+nrKNPTWaaxvP7/XXJ+pauoXwkCfPWAGoJNERwC/VzGrkc+\n5cXy9/gSr3Bk9Qy9U1VUzeOGNVMTY7wZH6d/yxI/fP4F1teGRfo32wHVDimZ4W57jJjY6xlPdhQL\n0SMAACAASURBVA2urUr1Kka25zw8NgVqFKYuwU9S2R4DzDdh6ByMHwDdAz0zgnmDnCSGO+Qxyv8A\n9r4Pu+fADIA6BvlvwXsDRznJUW5MPSAF7haQeqgoAeY2w+bkNru4wuCVZfxbcPkU/Ciwx0p1WD8H\nTw1Dz/F1Hth6iQk9zenxRyRoqxtYLyH78Vnkw1YAX8UzLPbxBTi08dwfwNwWnPfX8e/6y6wC7CwC\nxDoQ9GoT9PTCwwo+B8lXqjy4+yxHkxM8xKds4jYGy0I0xMXO3ZwaeoTTmx9hrXMQcgW1EtzZhLxj\nRSJzkTj5q/Tm/Muv3yjgqwUKteqkaMIFwAhG7L6N6LeSHDeAX9459IaJti+mzEq1IuB1KP5FIbTO\nCuunNQF3G8Cs4kNLAKza/lxsOGi0DxJtRpfchzQgZXTAzdrpjs7d+7seAvgm4JnNRRqSZxnOO/JM\nAC9nHc3mOnmatuQq3/36F/jGwhJvv/A5EmdBR63IZYrXSil08bxCvIrIDj0H/48/pvvqLTa9fobF\n5w6iTU6kDdoqVCKGyzmeONGkTUeeK6wLrARtcKEZarQYiapg4qWRKYze4DFwz4FNt9loQTYiJUJh\n8ML20kHi6jzGi/E0PsXnYrrsAaUNkVYM9lYY6K6wst6Q5hQ83prWs55mdHdJIk8SabzT5E4YYXEs\n1FXlPGNdJe7UHLXsftmg309ro2l9MVlIwvei4CoE2doK5SHYq+Ex4DFH+Uid7m3zjPTM0qGq1Hwn\ns6ujrF4ZomtlnX3qHMeyk5R+mNP8Dnz4IVx10l+fvATDFrZunuaRo6f41/pbVMsV3CiYMRi/CbNO\noJtBJPyQzZD1xKzSQ43OtpdxB3TpKj2sopc8dgZm1uS4U5Tzmx7y2xDNQWe2Tilq8tqVL3Ci/zF6\nSys4NLW8k6XpITgTi9/JKeCsg+XCyLKIF64ip5yieRSRxRunP79sFQeydeTksQjXB+EjhRuLeKfy\nNG7ScDcZ5dD+02zef5teVmhQZpot3GETo9zluW0/4v2ux5jr3AzKQKrh7OZwuFgP11qnnRBzf0cW\n/3VXOTYYUiIlhwIfpIU4T55mFB5dNg/blUaOyTwVr0hiT+ZyMpfLS9hR4Q/+239ER6lEZCxxFBNH\nEZGWuq41wniyiJdhSGREFd6PIvMoaqP3wSdMdvCtybxSWmrjBmazc66VNpZ7GWQArb5jYpG+iBwe\njI/Q2ojvZcCqHSINkhRhh/VBBkOQ7CuPTqIgCxJ5o81tS0piouieMBqjg4Df25aXmTFKJJg2Rith\nbik82sihU6tIAJM0Q+ce5XRgv2kcMs1XYfARqUTu2wdLgw0sgtxa0jwls028EVmjUgafOx7/6dvU\ntm5j5thhVGSwETgsKi7hY0dazdg8NcP281fouTnDv/idF3DOyWETAeS0B6zDp5amy8nEIYbcBwMB\nJ/4/mXM0fS6SHuVwePlMRIY4jmg0GuRZk1otY2Wt+nODs1//2ng9AQwPZNPGSoVlBlgo95FtU8Q7\nPQ9Nw0oulaMf2DkC0XaobYqYZ4gV1yvlpTUI37hZvh+ee3EIKeTmhQSl6HPFoSUDV4XlUVjulATD\nshLZkAOaHmIl8phRheuNpC1mSOl/y4pXWreS8uoRTG3Vywvoqoj71SxybGyEa6nDqoWpCP9pzNUD\nu3lr/DjjY7d46u+9R//oGv3noL8BjEP6hOHy4e2cjI7w29l3YBpuzsJl2hX9BjC3CoN3YGixhloF\nloQwUbwaFpjLIV0G9QeweBaWV2BwAHqPecbX53j6W29xtWMH0xOT3P4vN1G91kfH2BrHx1/jRb7P\n8cbb7Fi7Rt9inaykmekf4pOevbxTfpzmcIlVerjGds7kh/ho/jDrPxoSOdUnhACYWf5NwNd6vUEz\ny1tM2giFNpLCaPBiXu88HaUKnZ0dLC8t02zW255VQBEeJeCIEsZTYBvFcUQSx2gczoqXofIWvGkN\nrUUloSmVyoyMlPmj336A3zr5ITefeoIhvLC2rKLpmoxgefbcx6SXL/Dn/+g/p5RE4HJ8mhMpiGLD\nD/7pPyZWngQJMNE6eFLFhhyPzS1ZngdZJy2DeuVd2HJLPRTwS5LfXQgzQcPE//MXJIvLTPzZD7n2\n0vMBKDIt2aPXFkehVJH66/Fi31IIR4Ta1Tpra6UlkVeL71drkB2GMqZ1HtAhTEb2iS3/Y9oDGzkf\nyesvb48DL+AjTixULE5CT1pDHhWGRa51X/IVfuyd+EJ66WnO5VSr66yuGrpKkGuDdgqcJs9hbb3K\npelpFqorjG3ZjKuvY5AhkPKIj5pzaO9JIsPWkX5m7zvgC9pASEjnLXXBJHAQ+g8t8HTldX7L/TlP\nnTtB9DL4M2BXIZ6APU/eYOAbi9DtWdzcz6uPv4C/HMFlBReH5O5DqcyIyYihBLoTOiIwaZsT1AWo\nPmAA6rnsfouVIXbRJGCegOcXoXNRSt6DJRjbD+oxqH69jH9GYZYdjR7N4mQPJ7sP8z3/Eu+sPEn9\nREUkHzc95CsQ97UcV7qQvX60kuFmYDqTOYVH2tJNJ2KMaN7Rk67TVV7HdGTYUhKELAWUUjCCN4JZ\nBZBVmOcWt312/SpAouL8FSwK6IOoHyYVPAzRcw0O7T3J18zLPJ/9jL0LF+i/XYUU6psTLg1Psqty\nie6JNd58/nnWVvphXsFqD9QGkOH9Kvf7+eA3DPgSr684jlu35XlOm2HVnmrL77eljYWuv2A4+Q2/\nA23ZodJKpAlKo73E5Wqj0Aacz1sbbAG/9D2bUqVVqxjLOaUo1OGGomBTENQcKIMKXlxiyKhACRij\nlBEwL5cTVgFiyRnMUbo7R8ft29yanKDebNBsNMnTlGajQbO6TpY25ZoiMYj/l//eVyk3a2A05SJl\nEZn0iPF8QTPWkoKjIFISHvzJf/YfsOXVd5l7+iAllRJMG9DaEcdyGoq8I1Yaaxy5k9dRhVQ4pzTO\nK6wvHlMSzbzSElUvpzqUbr8+97IUAusZkdvLRI4WQJh7mbhHygsd3QtI5YtQAUG/KJUjBns6uDW7\nTFNBrgxGSSlabeT09SbEnSV8tUHuhcJtQvc24bDpPHQlitr9+3f9a1oFu2tjUmMnbQP7Mu24wG6I\nB+EBA8dBfzlj9LGbHBk+yUHOsI0pOqmyqrqZ6p3kzJGD3K2OMcE0m24twQdw9TK84QQmUkB9Fb51\nAsqfWLYcuE1/ZYkLpV3sO3SRzuN1nlyCweuwksFkL2w6Cv443JkY4io7uLk+LtP1gDllxDQo4zsU\nuhd6ymCq0roUcogzPfJUmqZEZiLK1Fl9dZRVNSqnhHWExDWFTJtuAOvLiPjnDtIoi6/Ghn8XKS6/\nrEkWq0jl2cD44g6sdsDHHVCChu3hvSef5uquHaz3d3GEDzi2/iHb707zYPUyWRKzPNLPqYEDbB68\nzfefepFbtV2wpORccWeUtjdBkTYTIgHvi4Pp39wS3xcBSRQi6bMZ4lHiBVxSRTlRCuU0PofcefJE\ngI1cOTKfY5XU1SiAPx5IkijMFIK0Q3lheAXAy5hi0GFbID+FwKPYJRIGJOGavbXSo6DlJVnI2Iu1\nUbaoAojlrWuZNpsw1ffeE6lIjOkdLRNobQKTzLclMhEKqxEfMt9+/QovsuIClDfCxg2MZJyY8Sul\n8EYGCloblI/DNeYo5TBeiXQzt2gv1+ysRTuHDj4wzkdBThN6rrcYLd5bzrpgrJ+TW2FGZ7l8dpUW\ntla5ktDZtAzX6qzduc2U24dxES5DWFoljaokpDbjyq4dNL/8PG91RjRvLZClKR0dJSqVhMN35rk1\nMUrmDc5a6nlKw+XkWgYvBTsPrXAaMIpIR5jciVeckTc4S1O8y2k2PbVGSq3xi/2Lfr2rqEnFNLsK\na70wB/mNClMHt/Jp9CAH951j5ItLPFyF4YvQaEBfH4w8Cnwerm0Z5wIPMrM4IeVwkQ2+gkWNuV/Y\nbsV1bPRvgbZMpZCjryOgVLekZNUKOSTIcyrBUidcLUFiWkoFUg/Vm1Atw2yJ9p62qO2rtD1iVpAe\n0YN0oU7xRgNYgsXro/ys9zmi7pylyX4eGTlN7+IKJrfUuypcHZrgbY6jcVgdQQdUYunSBTuvjFiW\nUYLMQFIF+mAbcBXpNBGwKYakARc/hp8FlkbPPHzhLdg1CtsfvcHhPR+yqX+GC+zhrZHjlGyTF9UP\n+Obyy2x+7S76DeAGJJ2ObQdmGf3SPCf2HuFPzN/hTZ5ianony9MDZCfL8B4hACZD+ucc/ybgyzrP\n6nqN3s4yzsrQWxJ7DTGK2BiyPKfZrNM/0ENS0uhI6nJRk1WQW9vc4Y3UtVb98qJW0OG2CEUUyZfN\n5e8kimJ6e/vo64vROsFECe9/Y4JeAyrSJDpBNT2u09PV08vpf/gfsdzVSV9/Fx3lEsZD2mjg8xyt\nlLBoZdKAd1rsV4zGFkP64GdlHYBBBem3QtJ/jTbBOkSFUA6H1tJclHNc//oLpJUKt55/GuUEQFIW\n8PI8xcdMPqJOizUJBZiFgFzK6JZfpNFG+qoiyBpVKyFTBt0bZPuBFqYD+LVR0l/I9gnqF9fyNpYO\nqXUIFAmDGgoSWzgXOi8BYCJtDCnxxqCz8D7ig5+YJk2brMwss7hwl9HBbrpKJXAKj2Zlvc6dxUWm\nbt5kLa0TxYbOjk46Ozq562eJVEQcx/T19VNdXQbn2LlpmI+vzdC8b+SOxTDKIH/JJaBLEKhx4AHY\nNXKOR3mPR6ZPE30bVv8crlyFtSZs6YGJSzDIOo//nZN82vUQH+86xPz2CdFTXzSQe1hXsAgLzUFu\nlzZT3RnTs7/J3o9g7jrMeBHbPdoN7JfH3tQP22tCcAWpOSN9wCZQz8FIB7xwGvIqVCaBz8HqixV+\nNPI55keG6GaNKp1MM8FpDvH+4qPMvrcF3jQSoLIQpHgZLRJWgzINyriKQfXkDBhIbNtefgBQ3eA6\nFfUo/G4abdieF/3AhzttfOY2+5nvvw7SRNG7CkJCoON1lGA78DBs3nedz5uf8I3mn/HQu5cxP0DA\nwhw6JlMOPXeRwc8vk/XHzG0b5uSRZ+AC4vtVK5zwy0gnKBz+7z+CyG8U8AUty40WK6rNtrrX4wva\nwEmxeS9uQ6lg0kj73BZuF3270HGFea/QJqZQJRYTA3lMR+FB0Zbn3Xu9RUBw0SCLkUibBRaKuA0G\nmS12kwclHl15lrXYZtZanILMZjz/T/9ndLPJt/+T3+OW0tSqVZrNBvU0DRNoT7lkSJKISqWCMYY0\nTUmSDOcSoREHb4Liun2QBRYGxFpLuo3yljvPP4lxcgr0KgcTmpiWppPbHIPFGU2EF4aXilE6IcvF\nlD/LPVkAtpUTYrW9B6ykoBQEtpYGbUSa6UXWiJH3xTqP0uCswofJObgW6NWSvlofklwMsTEM9JSo\nJNBIPZn1GAXGe/GAQFMplfFqVURdWgytvbdkypB6qDnoKsUs1S3/jvRVrILNtRHw6kU25sVXN1Jw\nFbAGgwkcAJ5yjB2f4sW+7/FlfsijtQ8YnlpGrzlsv+bOxCAnykf5UecXyYhRax6/DCuNlsgEjxw3\nagvQuwxlW8dieIUvsWvXVZ783Q/p6YUjH8vgPNoC6mlY/maJdzoe4yMOsXZ+WHb1C/I1uzbCze4t\nLO2usOlgyu6TsHweLns5cjzbC+oRaOyNmCmPcZcx2JzTO3qXtB5Tv94rG4Ai9XcRWC827EVqY412\nsyymQQUV+i/TNIK8goh2Kk8JXAluToAti4S07NjVeZmjvM+X7/yEkR8vod8Nl9BbZ/DQKsMvzdKx\nvc56dzc/eLSP5SvDcEnBYgekPcjRqEjaLBgP98vB9G9mxZEhiU2Qs+hgjOswSDKt9bSm1VpF4BUu\n96hIAHGnPHlImXJa4tFlEO1aAFixoZcpt0cbmTZb7zGYVrS6lMXC6FeDd+ReBj8bp+DKFOEqYbjj\n2yb2OoD2G9nPMkWQ1EUdSzpuCBwO8VyKODJYm2MwMtHPhZ0VxQabi6FzDjilhNHkfStYJomiYCTc\nHvx459AOTJTgsqb4wRRDF++DL5cOcpkI71Lx1QmyITHnd3glNV88ygr/SAlFKZhkNgshL9YKCzq3\nZM2UPEgdPWIlUIojSrHBm4i3v/5FsigizzNJXvQK4gijYky5TNzlaazW+GBiGzc+Oc/60irOW6JY\nsa9Z52vnr9Aol/ifXnpeACybkeaZAHoEwE9DZIz0r1jRTDO8U5jwPltrSZvCGGimlvVanUZ6v01X\nCrZnUacawCqsbRYJyQXFuWP7eGfsSbaN3eCFv/8TSkOO7WeRvfAIcByuPz3Ga/GznHRHWb04IHX3\nNpAVbNfCgRjur43zRvZtIWeDe5PR1pA+V7CdDe16noDthmoXVIufgTzfK0jv3Ah8OdrSyhrtwUM3\nLQOdjkHYr8U367mM8QNT7K+cYZB5FunnzY7Hme0YwWBZo5vrTHKBPRzjBHdLo2x5cJ7hvXD8bSEl\ne+CAhi07gIcg+hj4LiydlmdwJFzJMPDINgFFzmQyIyH87FwVJq9AfB1eOvdT1F7Px7v2MBAtMqeH\neZZX2fLqXfg/4dZbcL0qZLc9b0P5ruPgP/yU63smOclR5qY3w79W8BGSnDaTgb2NoKVLtEVRv3hV\n6w0qiYAvcVz4ekG5VALnyHJHrVElTiJKZQm7KOpkZBRxpNEm4r/7+BP+t2NHgiVIUUNz0tQRaQHj\ntZHArDyDLMvwzhPHESZJUF6ALx0nAW+QobQCkqREFCfE5RL1/j2UlKfDGGGTBcVB3mziXU6ayUDF\nmAilIlSofXkmtctZqe0SahWS4QMBRSkVUi516xzSCjFxCq3Ey+z2c8+grL8n4ZF7JIFi8k8kIFcx\nbNFhUBwpRawj4oJdF4YrJjBwpSkEkoCgi6HfFcwvgzbyPmmjWyodrG2f+0Jwly2eXJi1yP1sOI+p\nQBoIiZ4+gIDtpMgCHpMeagMQendmhmbaZGWhl45yGaUNa9UayytrrK6vk+aWru5eFhaWGBgcorur\nGxOGR3kufm0dnZ1UV5cZG+imv6vCnaVfDtL+alcBgMTI3rEMdElZGQC25GzlBnu4QMeHKc3X4cSn\ncNJJlRtchq+8Cdt2wKajd9m19zLjlVvMj01IWUqANIO5BG7C3MxmPpncx5n+fTz1wgf0L8OXXxer\nQtMNlUPgXwA3Cr1n4Gs/hPMhCPPgKFSOA0/Ah4f3sHfPJcrnHXED/Ga4s3uQd/qO8TJf4xwPYbA0\nKHOnNsbS1TGaH5ThPQ0ngIsWsgVaLOU1YB7mGOYmW6hPlqkcbrL3Y1i/LvPqIeDIMKgjsL6zwlQ0\nwSzD+LlEZhB1aCshNjKCf5GP169zFX7LRShNGegRtfxW4EHPgc4zPM47PHB6CvN/w8L34dyskJUf\n7ILxadiczPL0V9/kXLSPM/sPkW7vlb5+c+MZoehr6ucv4z5Yv3HAFxCKilD2iil1YRy/kRq70auk\nNR0PDS3UQxRC+bXWgvMY7TFIgY50OLUo+X1JTCzKrm95fbHhvmXiblq/o1Qwrgh9wxUT/nBR3lth\nPnlCoZemYH2QMuapTLqdI8vFZyW3GbVajX/121+n+/xlzq6uU12vkqapSCdCYmKkFdpCSSckSUyp\nlFAqi/mltTYYUCoC+VnwtiJNsZi0BBNmrWKUz+VwkksCWQ4YZYlMjBHYDhcOKd6HMbaWiZM2hrSg\niCvIAmKkgkeNo6CTS+SyaglO5YXzyrSt8pxMZoJVJlo7oSGHwqK9AitGlgR2GQVbQ2u6OsskcSTS\nIycHL6MkVzJ1KdZ5rFMtpnYWpKYORT13WO+JjQng1/12MPl1rCJ9q4QU077wNQpsEsF9ZyINsYjG\nzQalyT4E5UfrHO9/k6/wXV669QqlPwN/Euw8lEZh52O32Pz126hhR5Uu7IAiGoGhTuhsBs8tZFDV\nuwn8CKxFPaz6bj7lIV6OvkrzSMLBbZ/QcTVFNz21YcPtyWHeKB/nh+7LfHD7Ufz7RtyXF4EpWL45\nwtkH93MyPsqXXnqNcjXnmZ/A07dk+sMhcF+HqT0TnNEH6aDK73X/ISWarPd1cW3TJOcO7uPunq3Y\n/kQushbD6iZkgr/OvamJG7X9f9nJYDE9CrQk6uG+16AcSR70Vs/Ipjs8kbzFE9UTjP1gCfvP4O4J\nmKrBUARbDkBvtc6j/+EHXB3ZwdnBfSzvHoDNBi5GkHbRNnNW4ftnE2d+81dnOQmhF+1kKSCkOgoj\nFiPMXi8Fs7Xbbrqc1GYkRFglII2JNN5ZMIZSkhBpI/IapPaDDD2U1rgAeERaJG8aYRmoSFhjNsta\nLGJo97qWQfEGVpdICI2wXQmHjZZ03okNjZJa6vEip/RhWh8Z8jwTpoAKZvY2I3cel9pwwNF4LRYP\nwtIN9Te3oX4G+X4YMnnriKOIZrOBQgIEfO6CgbwkGBvlyV0u0k0T4WxG7sHmYhCNL9LSHDoxGBXd\nI+GRRF9ar4F1Ocqo8D4YnDfkufAelBdPNe092mvSSlmSwrxYHuTW0shz4midSiwmzV2r61yeX2Vx\nvkbakAOXN443dMz/1dfPD0cHMDPz9HR3YozH5Y6SUURaY2JISglaRzSzJr5epdbI2VJNud3bJYw0\nl4ee72g0chpp3pLi3D9rI9AT2F6siInijW44DdlkD29++WkqXXXWN3dx9PdOsWluAd3wNPsjLvVP\n8jZP8or7EueuPUz+TiJ1d86BX6HNaCrApPvTJ6Qt1CmusTjwNGgzKT67xS5k/0n4KthjGTKFKBjT\nGxlfxf0WFIXO8NUHahNMaEGjvmDZ+cSnvFD5Ac/yGvtq5xhJZ1HeMx8Pcb6yhzfNU5yv7+Xc3QN0\nbVnno/JBJp68yfCtFY4mcOCClImOncBXIH8Son8BCz+DV+7KcD8BDgOPHwD9PNhPQF+491nGQFaD\n5n8DUWeD0qPw6G+fIX9cc0HvYdv1O/jX4fa78N0lwTxLwPxF+MJPoPdold3brrCtPMWpsRXqpk/Y\nGnMpchydQaC2Fdrjr1+80sySW0cpjsSPC09iDF0dFerNBr4poU3GaAYH+lhfWxHGq9fEJqIUaf7x\nxYs8tLrKl6ameevB3a266UNKpA2TXO8cWsugNTIGlEb7GOWKz4IwtGQ36VrG7jomBHmEIb2S+p5l\n9SCFz3A+k2svGSQOGKl5gQkL7STKIo3SuzBDV0FaWKSjK1rWMd47cFI4C+wJwhnHF/uLwIja0IEU\nYJXCR4UJviFWmkhrYiUeapExRIHRJQPmjUPu4mxWMMDCwdxrlIkxkahhhHEXgqyUD8qPEOqlaJ8b\naGN0UPRH07qh+HkBiLni3Od98BFTrXOedgbvoG92hblcLFzK5QrrtRrr67Ui5JGZ23fQJiaKYtbW\n1+ns7CRtNknTJnMLCwz39+Iq5Zbc8f4BvqBdYwr5m5I/7gqoziY9rNFfX0Xf9aR3YNq1/9JmgetN\n2DYDpbUmPazSQVUUk0VIZLUJd2K4pFg938eJ0UcZr9ykcqzJQ12XKB1JKc+D74bswYi5o31UbRc7\nf2+KvnHP44VX/C7Iv6D59OAO/ij5bXZvv8SW7Tcp02CeQS6xmxM8yjuLx5n5eBvUtGyr5xHa2CVE\nGn3VQrqEAOYdkDuY1TAFU7cmOTN+kNObP+Lpr56gp+H4/Fvgb4MaAI7JXv/q/nHOcIjLzT3CcppB\npOhUafesAl24H8Cuz67i2jStJM9eYAA6JxaY4CYPVK9T+jCj8Sa8ekteOgdcXYZvvgtDD8H4kVkm\nt1xnZOguN4d65T7usbgpPlP35/qNBL42+na1kxLbgMs95vEbPLOAYhxwr29GAFpQBXgmLKgojlFa\nk1vZ4AjwZbHeCbWZDVP0jff5GX8vH8YOrXRHX3jGuFDQxRTYezGlxKmWPCPLM/LgV9JoNEmzlHqt\nxsrSKkuZpTY6Qn1+iTzP8LnDRAodK0pJQinRdHeU6e3opJTEVCoJUWxEi+9FblLINQtZaHG9LQad\nNhAlQlv2GeRatmI5aO+IfCSTLu2DR1oAnxDqnEhZRDKpaMsPjREZqUL+uxZ/XN6BVnv18oKh9Iaf\nqeJfUruKearBkLsssA9UmHQJkKYx4mtmYuIoZk+mueDhbmSw1lOOPD2VCOc8zWZTZEdKkmoUkDpD\nsyWLlUTR/krMepqT2futuP0qVzFFKNGK9mIQmAA2Q1+PcJV3AFuQaVKFthR+N2zddomjnOKxhVOU\n/iXU/ximzklay1gPbP0UKg3PE7/7Pq/0f57rmzax54lptn4CX/0ArqxBbwR7hoGnoXagzPVkK7cZ\n564f5WX3NW6ZcfYNfcKWIWmYCwxyhZ184I/wwe2jrLwxBO8qaZJ14CLUP+7k1OZjbOqdobS7yZF/\n8DEDx1bQd4AuqD0QM/3AFl7veoIeVvhP/f/OptVZoiynWSlzsXM773Y+xk8e/wLnSodopl2CSX3Q\nDc0RhJ1VNExob83+qp+nz5owdwJDolUZBL05Z6RHzDsnZ27CG3DlBLxSk3l5Rw7Hz8BjozD66BIP\njFzi/2XvvWIky848v98x94ZL78pmedNV3V2GbcludjfZdMPhaGc5mtXsCCMD8WEBAbvSgwRIELBP\n+6IXAcJCgiCtoJV2dwTMaHewy+HQDMkm2Zz2rrqrXXX5qiyTlT4jI+Lee87Rw3dORBQdOFpqWE3p\nNqKrKjMyzL2R5zvf//ub+eZVzm2/n950CxoaVpJMNQFfv5lHvWaj14dE26eJt3MyTFBWWGCydhoy\nI0bzVZRdO63AGOp5jdzmaAemJiyDtLlO0kGtNFXlsDbDWtsH/JMMJBA9UKKEXlvbH8akGicBJKpv\n9Hu3NESYSyqaYirii1Sm/zXvosdkFuLjBoKr+s1RkuSLubHCVdWg9laJiYZIIZOMnTAYqnjxXlRa\nE7yAX947fAyKMWnQEhQEhzUehYsMXYU1luAqAdNcGT3PooeLcsJW1ooQwwBwg9QyHxOOPnjy2wAA\nIABJREFUg/L0QkkZSnxw0gwpkbH6UskmKIDyApbJ9wIqeMrNdYqizaMvnWH3a+9w7f6TfFTFYBkV\nYg3T/C+z27EEahtttrxjtJnTygxaW2yuaDbrZDanLCoqV4GHT99c5T89d41/dHQ/Pxhr0Ss8VQVV\n5Skqz1b3XgWWkwQxSTrWgFsi0TuTwwQs5Pv5xqNf4eq2eV7OHmXnzgUadFhjnAsc4K3yJOcuHmfz\n+5MiX/sgQHsDaanSQOAnp+b34jEsXUkAVvK5TLVx+BgGxNJ9ErM3Odv0Xf4ZMMXSfRJg1gImZbhx\nEDgN048t8PnGt/k993/x8Pk3GXmukHpWwdT+q+x+4hbbT92ERmBzYoyzGw/w3OQzTO1Z4pN/8Crb\n71umfkGexu+D5U+M02p3Mdd63LkDV+MrKhA/sKcvQv0GrF4W9tcehEAxARyuwY/PwvUuzCl4/AZM\n5vDg/PtU8xa7UhEW4Oaq9KcgVfASEK6BWoCR7ibj9TXyZo9OA3mSxRKhZN9Cimn6nPyCKxT3l41a\njSwqHMZHWtRrOd1eTxihRUHwnsmJCVZXlvGVi/tGWY//0dGD/P7SCs/N72IE+soPUUtI+JGNTKoQ\nxOA+sxli424JzuCdAuVQNhAk5lCUJ9rIRQpOao13MYhD470DL+oNo8BaAZMq5H6EIMmTzsuwt3Lg\n5GsmMhIDst4boyEISxZjCEZJsm3w/cFOGJLIS8BTGKQLoyVMJcoGCTI4cCGlJipC8uyK50IbCScx\nNqYYOz/Y50cmmlIajY0hLbK/sDb+TCSApb5L1v3Yz+n48zqmFcfGIKXd9/tEgNgPJk9opSRkRcev\n2SCDIuUNzgeMh6durPDVdy7yPz5wgPdmxymKCrzq17zgHWXlWFtbY2V5lcxYxsfHubO4SFGWdNqb\nMDlBo9Gk7HW4b/ccb3x0jdLda2va0OuJNlShyOiR07M5oQUmksESvaABTMStpssNPWoU1AZhfj4+\n2KKDdy3+hYyPZo/x9dNfoZ2N8NiJFzly5COanR5lzXK1sZM31SkMFc9+9jl233eDVvREa0+OcH7H\nfr5Xe5rnw6f5fvUZZrM71Oix6idYaM+zcHsX6y9F/79FBmyu24iecq0L1RIDTf0U+DVYmIT3oXh9\nlJfGP8m2kVvkDxUcH/+QiSc30bcgTED7SJ2Lx3bxF3yZHxVPsvjqLllbt4iD/CZyhtoMTkJau4eH\n2MMy+V/nkZInVZ/wV290GWGTeruHug3lHdGmpFe7AtxZhplbkG8WjLJBky0hedmf8bj3cAjWxxL4\nAqIuXd8lcRxmfQ0ffcjkJ3xP7kquYkCRDUgDkVuip1cCpnzcUPu+30qAu4A2Y4w8X5Ci2AfA4vMN\nuGbi6+WCpAcaY6jKCh8CT/3Df8R3/pv/gl7Zo3QVlfNsdTp0trbodjqsLK+ytt5hq9ul7HZlomM1\nOtdYq2m0Gow1ckZrGc1mnboR41wFkcUQQItHWWK/CTDXf7mAwjtRvshp0aBy8TjA44L4CBTRpDhT\nGVo74WnFJDRS8xRTykwtw2oHvTJOqaIQNNXCAAEnqSwawPb3f86nwIEEZoU+uKaGpkgJ6FJBS+EP\nDpQWiZIyKGOZcZYn315mk8B/dXiCjIrppmJqPGcziLeKJHWJD5nDsIX4RRil5P0BuVXMtnJurPfu\nOVz/b+YYnh5El0imkIzf3bCtBaeQ8fAJUEcdzZ0r1Oo9XGXZvDGOC3Xm9VWO8CFT767jfwDvvAbP\nV1JCRtfgcy/D8e0w88gKY4+t85J+jInPb7CtWOXIXth3FUwTzP1QfVnz3n0Hua3neJhXmVdXOO8P\n8qPwaX5cPsFsfpuMinVGWVjbxfq5WYoLdVhTQlabRsba70F40XB1+iB/8dSXaWctLu7bz6FdFxgt\n1ylNxkK+nffVMfZwhS+v/2vmXl0ie8/BJoRZOHTqAgfuv0yj1qE6Zjm7eBp/OYerBq5NIS3CGgPL\n/GHzS8UvLyNM12C4qTJgFDTAjDhGs00mWSG/5gmX4Xxv0HBsAO85OHkFGgswzR3G1Rq2UdFLE7y7\n/AHu3YL2b3PkmUZlUUaCADXOiyTP6GgIrIJ4WqHFU0TJxttqhc1r1POcRq1Gq9FkxNRoKkvNZhgl\n5rtZlkkTESqUCmQ2AxSu8rE5EP7tcAJjQJo3ZQxKMBt0GtZAf0hQVRXWSkkfTjLWsUFw0UsrRO8u\nFROyVJTZ6WTa76QmaWX6bDZRuQjQFWLxM9ZCkDqmvHhqqTjk0UN1r3JO5PNaPpPeSY+mQoAopffO\noVHRykCaTldFuY73EYAUZrILDlTAaI8LJYpMgEElrZ6ryv57V0oaIVRiMgs7LBB9KD3C1vAB70Qm\nKV4wcm2pPK7juDA9zkQtx43WGO/lsCVvQmtFngtwKbLYiq1uj3/47of89w/dT9Nasoal1qyhgxFP\nncrjHXw4OopT8EFmKcqKygd6laesoFM4invGD+YnjwTOJz+uNeAmFHU4twO0wReWW7f2sHJqjlf3\nfJKJ6UWsrdjaarJ2Y4buhRbu9UzkJ68CCxWEm8iqlII0ho2B7+UjtQYOWSwTEJPWZTV0v7RGq6H7\npN1D9yfun44ErA2DZdGMehrYB+pEj9Njb/Akz3P6w3cY+d8Kij+H61egDDC/DZrnCk7/x+9y5xPT\nfDRxmD9/7qt8+9QXcBOGhV27eHD2LJPFMhrPcj7NSj7Ok+dfpp73sPbuVT8DshyWfgDfuCUwVBN4\n3MCxeXjtCrzg5YxcC5BfgafegNq5kon5VYJVqCyaXA99zGvQV3t6baiweDESjKcp7Tk8A6b0Lwa+\nvA/0yorMyvrQqNUZHx+ncmJ6X8sygvNsbWyya+d2psbHZe2vKrwLRFoR39y9nUZkYsmAQPakWiuM\n1UAVAz+kJhCHyUaJl1vIYj+g6XOn+lYjwRFCAcGK52/ct1otz2eUGPOLBYs8t6+cWKQ4hy9LXFEI\n88uDJQ5IlMeHOOgwossImSVYYey64NFU+KAwKqUDI8zaECWNyMs2pEmIfCEQ0JWnjENppR3eepyx\nIn+3FowGrTDGSriK9qjUpwWpKwPLFUn+1Urua6yO/pfgK6JPWSQy9NMY/cCmBSEVCOsrMsKCKGBg\nOGAMvBdJuUH1PZvRIqmU73vOT45SKsXlWk4/5EZprMlQWmpEvdFgbm6OsfExds3vYnllhZs3b+C9\np3KOXq9LIxclz/Rog7mJEa4vrf/Cz+vf3JFAmbT37IkEew24nXHr0HauZLt58PCH1B+oePiSYEXr\nyBz70AHgJGzMjbLADpbCtKAjG0Rq2Dp0A7w3CWOKnh3h7c4j3Dixk7fGTrK3fplWvU2PGjfZxvlw\niEbocKF2gKP7P2CGJUBkiGe5n1d5iPfPnsJdtZjJSq5B11AtZPChhneQ25X4lnyAqgduDakrdxDQ\nvAAshCVYHIGzGWGn4dz0Mf78oYr12hgPHX6Ng/su0Kra9Eydy9k8b+jT3GIOjKJ5YIX2QzMyJO8o\neHcOeomRm2T6yadyGGb5WYDQr7nOx49BWWb0qFFlFkZiCMGdwd1qwFjE91xu5b7YQcvSP9JifS8A\nfD/7+NgCX94PWF93+XfBkH9WrJVDyL+CfnLh3WmLcT2P3xdhnJGmQStQEvvuyqq/GQ9KPElUlA7q\nuHCmNJdkwi7Te/pT9n6aSARxKldRVeJQdep//qeMn7/IsX/yv/Pc736ZonT0ih5bGxt02lusrK+x\n2e7QLSp6RRcI5DajZjTNZs5sq8lIPcdmQrU2GjCBoKUQ6MCAJRen8qF/DlRkMghV2+iBB4DWWoj9\nysSURksZvMh4gkxQjLZY5aN5pfTdiQEg99FkVtPwwqbw3uEKmeTgFd5LMQ0KQrDCGIvXNSgxlxYf\nfEXQAiL66BMm8tRIkw5RJNlnfYX+dCkETXtyhHdO7eH7G0ugHPVcMTveYrTZ4NqdHqsdR89L87bh\nI8MtpkOmDYXVImGZaipWO+X/RxMeFbIJT/KNEWJeIsyNwKPAUwHzmZL5E+c5np1lD1do0aZLnesz\nu3iP+xhjnSm3TLZY4q/BxUpqL0gdPVfCsQXIVkrGWeVP+DuwDZ7+g+fZ9sgSZtHjckVvv+HSzh3k\nvYLfa/9LHIab2TbeyR7gB+ppnus9yxW3j4ONcxzmHPePn2Xr4RZXHp7n/K1jbOyZIEwY2dWfBV4C\nZzLObz3A7cdnOTN+gt32GuPZGr1QY41xPskLfHrtBXZ9/TbhT6DzNvhNsLPQeKrg9B++y+YTDa7X\nd3Pt6H5WDs3CuwoW69AbRdoFx93G9knW8ssWj+FGKTWkQT73lSJUAt46DKEOKoe6RlKP4k81FJg6\nkEFBTe47DCj/3Of7zTka9boAR04mvijxhUnSccF0fB8Awyi0FYFEo15ncnISWzO0anUaWU49y6hn\nOTqAjRIQ7ytMZoTTmjb9Sossz5dYW++zwkKQJMY01LFmsB4qRWS1Jq8W+ZzcnWIs67ivXATJUjMj\n676rHMbagbQzVGLOrBOklhhoAUfoswYGzOrE1h1s5zS6P4kXvy6Nt0Ostcj8MtGbC+9xPqCjnBJE\ndlK5kDqZfuqkwkLQBBcbRSN1YGhqFaVGimyzTWHlvImHDSK1j5L+oBWVd8Lo1RnWGnxZgHK4sqKK\ndUMrR1V2uDba5KMvPkVWVuyuKUY7dVS7zf/w41f5z555gtUso9vt0unC37l+g0dWVvkvXz3LP37y\nJKMmF9lOrHuu8vQ6JTdR/Nap+4TdFs9nUUoaWLvTxfl7taYkZhPIlU+G7hl0Mnh7FjY1XFUU7zQo\ndjVYnZqV3WYXQUkuIbShD4NEA4YriG5kjUEk+r0K/P2iY9j6wPLT63eSiP6srfcvMvNPa26qt5GB\nOwlsg/H5VQ5ynuObHzL+0hbhG/DcWfGB7wGnNuGz34SxA54Hj53lUOMczdMr3P72Xr7+xO9ybvYw\n+7OLTOdLKAKrYYJpv8Qntr3N1OF15ubhwffgTS+Q2ykD9hCceVn6zASBXnJw2sKSvzsLc8WD2wC7\nEehRY2tXg9H7t9j1Cpw8B+954Us8loE6AcVRzc3WDDfZxtbyyOBj0T9H6dF/OYb0VrfAeQHgG42a\nhGNUBY2aBd/CO0fZ7dGo1ZmdnpJ1qaro9WQIWpUxhTZKA4P3VFUlj+kVVemxRtZrsQbRwvZUmcjI\nY7iJJylSkD2pD+AkJVFZWcuslnVNx6VUa1mxtQcqJ6EeVYWvqqj0cHjnCVUFIWBj3+L7u++AMnbQ\n68R9tY8D3P7/45RbIUP7vq2X1uKTOzS2V0DcxEMvST0VyliCtZL+mOfyXhmYy+ugyBgEjGndfzQE\nnAJjNXkmr9fhCHiZu6vkVemih2MljLlY/5x3kb0Wwa7ISvupm9doJNRKI9J2QqphiqDFWuDWSJOv\nPXxUPjNAzVgqV6KQIZN3wuwzWlOv5+zctUMYxUYY0K6q2Op00NTIjGY0b7B3doKFpfV7YFBeMfAo\nLOj7B25MwU0FlxTnHznEG9lpTj52hn3XbrIvwL43oNoAOw88Dd0vZZzZeR/v8CDXbszLYrBE/OCs\nym29Aa/XoVC4pZxbH+3n1tF9mJ1tmqMdyp6le3scLmsYC3x06ig76tcZ02sENOt+jOtru9k8MwUv\naHgf3EgmL7+HELiuAVcDLDnwtxmATx15X311RZvBgOIW9MbhoxloKZytcbb9MLc+vZ2z9eMczM+z\nL7/MA/4d9lWXOBTOs2wned8c5eUdj/H87zzFQmMfoTKwbuHCDIR1BlL95Nv782R/aX+fvvc3YQSf\nPnnptRXQtrAKG4tj3JrcxsLkLAeOX6Zxv+dTt8F25GyesDB9DMIJWJsbY4GdLPVm5HpvpsceZmn/\n+j/lP+/42AJfkBIef/otDINhgyP0r8MwUNY3/WVgbK8hTgsCPoIuJvqa4GU67aqSPn8rToFEzhFA\np4KTgLjUkLi4SIc+GOe9sJlCgNJ7fvCHX2VJwfc//zRbd1boFCWbGxv0Oh022x16ZUlZFrjKoQk0\n6jVG6jWaeUazkVM3Btcrcb1AaRVlVmKzjFrNkgVQzmNjUQkEHFLI+81UwomEeyXnzckmwyTPFqVB\nZdJeRw8AHxy5s7FwVjInUl4aqIg7Ga0EgPOKWoiTfxNwRZBJuE+TME/QwkpD2z59WgUvmwijha0m\nLaIwHuJ51THBRqMiUKdlYhfLWtBCxz5zYIo7l9pkWyWNLDDWqtENGReXlljsVShncHi2PARXUY+T\nKxDTTpvSfTyM1y2dsriHf81/1Uc6n4n9k4CvcWAbNMfEUP2TUPviJp+472Wezb7LI/4V9rev0Oh2\n6eU510e286p5mA84QqFyfF2jW54JBgIQi+ztVRN8XVOQc5m9/HP+kA+aRzny4IdMsEqdLrNukaPv\nXaD1QiEF2ML80TsceOQqM/vv0Bpt06TNad5kj7tKrSxZrzf5kCO8su1RfviZT3OpdRTnajK1+hBZ\nx5dh4/w2Xjs8wzu7OuStHmrc8djMX/FgeJtd79+AfwOX/xJ+2JYasO02fGYTpqbg9ANv88rEWX40\nd4OVvbNCistq0MsRZ7IOUiyT71fnJ873L1MM06cv8cwLKD1sGtyKZbkzw7Xmbjb2NBk7ucWDZ2D1\nujDBR4BPjUN+EnrHDAvs5FY1R7Gay36hF5BCea8lrf3qDq0VjVqOJRsylqefBuxIpuoeY21/DfXB\n06zXGW00aWQ5xmqatZxWvUEty/vNTlo7hQggEfSimBB/GW2sTPzjkWpTYnDJUMJHAD+yc1H9+Pig\nkHUxsg28lwQzSVMUw2VjJIUo4OPXgjBiHdHkPjVlYokfvEj6fJR265gyTAK0qjICTUjUvTFigK8l\n2VB5kcgoY/CRuSPSyyFrAqXwQYDakKb3Xhoq7YURUVTCYlCxJkuOmMJjCVYaLO08RLmnWbjNjn/8\nv7Jy+jgXnnqYygXKMtDt9Ci9Q9dTOICWa2EyARhDHVe4+PWKqpQ0ZasMZRWEWeEKsswz2WhycmOV\nLASeWr7Dt+e34yqHs4E/27ubXBv+z907GS9LJkCYgt7hSkfZq+gVJb2ypFtVoDVea4qypKxKvPd0\ne11+agtzTx2pdU2g/Sp9lqor4MK0gPvva3EHHkUW9R6y1C0CqxVsrSOCisT2SgzY5I/ycQS/0vHz\nXrvmZ7OUftE6nxKTU92NrLEG0IKWFUbveHsNLsLmeSEuJxH9R8CJRRi9ACO3Cqb3LTE2usbq+Z1s\nXJ3m1fuf4L29J6g1uqgQKFzGid1v8MrIKWa++JeM3nI8XYfjNySMcurgQB2QPqZ9LsMo7Ddw0UXW\nNrCvBtlOcNOaK+xhcWqGz37lecbWHZ/9Hpy6CbUcxo9D+Ftw/cHtvGFOc44juPMN+XiswoANmJiA\nv1wt6hYVW52CiZlJRptNgpf9c24NIcvw2kiKe1EwPjKCNZrMGjpbHTY323TaHcpKvNycEyZw5Zx4\ngVm5FgNrd4XW4qVrtZak2yi/xnkBWlRMUCdK7YzuS96BCOSkAbuK+JgnVI5QCtNLfIkdKgQJoIp2\nLdFarO89FlBkmJieHoE0BYQgyYixjg38vLSoSJCtc5I6huD7jCsVExUl9VEM4ysgqIpgLN5a8Su0\nFWWvJM9zrBW2c8MYOS/GDljFolMXIC+IBFGbxO4dvDbvq2jEn4AtL/2F8wTnfqq36/dmaAHpnNS2\nZM+SUietNlQElJb9kw8BE0NaUIrKeVmfyx5VVSLJxI5up81We4Nup83li+dx3tGo57hSAopCZEmj\nAo1ajX07pnjjwgKd4l5Z1xJdJ4aUFAVcrcHbcP2+/fzoxFPM2UW+8KXvML/7FvUPCuwW+B2wemyU\nd44c5Tt8npc3H6d6dUS8Gq/D3XtZA8u74Y1RuG1kXz2vcDMjbNRGZGu5hlj3bVesvTrH2o45SZAK\nyF78GrKIvRv/TFhSBfS8+IlVydgrJb2mIUMCwLoMBhNrSN9yFVYtnJmUjXALNvZPMHKozSd5gc+v\nPcfOczeonfNQgJtXnD52hgPbLtBodfjmJ3+bm4vzcE3DUhNWpxggQRZ5UMVPW4QMs5kT8y69oV8O\nzP/rH+n3OzH8Iii40oTrEM41eO/gMV41D3Pw4cvM/3u3ODoK8+9AWcDYAVCfg/XPN3hp5DTv8ABr\n78+KBn6JeH6TdUs19Jz33vGxBr7EnNDHqcHgSB4fxoixYZp+p0It4E7idwEEgpcIddCgDQGD82L2\na5Qmy7PoWwLBBbzxkQnl8UEmMsF7vBJpjPQnPkpD3ABk6wNfUkDLUqSMvarEBZlKf+upT7F8Y5Gt\nrR4b7Tbdokvpou+J87H5CozUG0w0G4w1G6AC3W6Ptc4WrijRKLLcUs8z8lqGLyxVVpHVatGgOQNl\nY4EWlywBkKxUTQZsL6V0ZInFgu3T+dMELCrUUARm/vi7LP3h02gkHcYTokG8THh8kGlJZhUETWWg\n5yspWqXIXxwKlJHpkjagHcFYkvw0JZ8p5XExKSbJMWWKpTAYCO4n0mzidXUenRlGx1rUajlFWTJS\ny0EZ3rm6zOJaQVkFfOkplJdf3yAeDmKkjMhSQyVMEK2YaGQstsX8+Tf/+ImNd9+gt4ks8tvE1OMB\n4JNw/31v8TvZv+ar/l+x9+Wb1N4qUYsQxuHwgxc59OgFvtN8lqt6nu7eNxk5scWJ92HzjoAyO4H7\ndwInoDPfYIFdLDLDB2+e4J2DJ9k1cpUH1Rl+nz/l+FsfUf9nFd1vweINSXjffhSmv7LOU3/0Ima3\nY291mX1nb1A/30O3A9W04vT9Zzmy5xyjjQ2+fspw4c4xuK6lfp5BGArngJ2G3vQIvZkRRv/uMjOz\nd9hR3qR2zuHOwI/bEk4GUn533ITHz8LI+YLtD91gpnGHjyYDYUSBVdCah3ZiTNxC3vESg0SU4XP+\n84608U/04mSE3INOBYuGcFlza2UHZ5v3c2buGI/99mvMrMEX/wp6K2BHYPQE8BU4v38vZzjBtY19\nVJdr8pLaSVaSWBi/eZ/zzBhaed6XPgy/x/5GHI2JIInuNziKPMvIswxcxUh9jEaWY5WiqkpcJtL3\nKjissjEBSzy+gg8YIyuXMRbvI2PV6D5TObFt5Z9Sn0SWmOqYDE0SkATxG0ojdP6YdhgXSEWcbPjo\n3RKS1EM26c45sphqqWLkfeVlLR9OIcbHQBAjQB7exyGQrLk6TlGCdzJZVxq0jm0YqAguun4Iifx8\ncB5fCNAVYnMZnI9y9ig3rRwqN0Ms6th0Rr181axTjbTYnN8h0IyDovDRN0z3Je86GUxLBgsqjwbQ\nWUZwFV5F3zBtUZVHB1AlVGWJC54Xtk9z7YlTXJ6ZwgZHLdPgLVrX+PPDh8mLgqJXsLHRIzM5GdJg\nutJRlUGSjoMY6ZdFQVFWaG2oXKDbu1cao591JB+PNPBI/o4p7XEZfBfWGrA+AteaoLP4gfUCjFUb\nSPOxPHTbQDbjaZ35zQPY5fgVTvVlGyaDW8IQe//n31/p5MWqhKD9beANQ3tugvZoeszAlX+wn+dq\nzzBxZJWH/5O3GD3eZf4ycrn3Ad+Co6/DpTXpfaaBBxpg98GDDhrvw0IB2ywcfgDME7B8ssE5DrPK\nBK3jW3zia28zeqrL9ug3zXG4emqW7489xfM8yfnzx8XU/jKR8ZUikhP4lZq4X3z4EFhab3Nwfgd5\nbnFVia3ngBiuFz2PQdPb6lCrZYyMNhkbG2FjfZ2i26GrA5nREWtxcR9ONJPXoIxI0YVDhNGG3Np+\nQJJ3kiSYGRsTFWVNzExUlURg3zrfH1TgKgG7AiIljyEhVD6CUXINE8ATtHCyjAVUwHm5ygkjiJVA\nmFnENZ84fEf23lpHlUgaUKRpeNxKe5VM7ge+yTpJ3YOkGQctsveqdPRUgdaaLMuo1WoYY3BGU7dW\ngDAdA0r6oG6FUioGmImEXWxZpDZ55yLTKkS2nABfKkQvySEYNiBYlygd9YABRqxTSvb0xhqsyrBV\nQLsKXMBFD8o0UE/njTjQVzHJ3rmC1dU7OAqqytEre3R7W5jENg5iKVBVFR7PzukRJlp1OsUvTiL9\nmzkS8JJSY1egXIGr2+AtRW93g1cnHkPtCyy2Zjn18FvsfnAB6yvWsxE+yg/yCo/wXOcZLr1+SLwa\n3wdWC2TjuB5vJYQC1uegPQ1XGjIjH2NQMjbjj8wi6a3JC1jHl7aEJGAsBihW5fEiU1H2ppvxuVaR\nOtJmsD4MsZv6DCsbf2aT/voxBhyDg/vf5xme40vL32PP12/AN8G9DaEL9lBgx7PLfP73f8TW3hbX\nZ3Zx5+QOqrM5fKBgbRxCi0GAiWXg9p8Nnfvh15QUHikpPdW+X/U+2zEYuiQwcA02Z+GygrfgwtH7\n+P6hZ5iaXuaZ3/0he+9boPlhfEnzcPuBcV7c9jDf5VneWnwIXjcSRnwH5CINA1/3bg3/WANfkLy+\nTB9YAu6SQOo+q2uwIfCRsiz3lWl7kt0GhI2VoTAher3ExzRGobSkfuRI0fQBqJxIHJUY7iqUuPRo\nLZuSECSiPaR5uZhJFt2SnivZbHepKofSGVubHRbvLLPR3qIoK9qdLp1eF1TAGkNuFbVajfHRJq08\no4amqio2NjtsdNqM9Ap6tYw8s9SUwSiP1WKxqYfALK1kwmSsFe+VtMkPwww1aVP66S9exwkSqCCl\nzyHJK9PPn2XqO68y9sr7XP7v/p74EASDTeU2BDnFGqFDO0emAipUhKKUCHqvKNF4NAGHtjlKS1Pl\nlUXrEBstuabaQPIcqGJTpGPRDkGaNkk10+ggzjwoQ6YM4yN1ZsdGscGhjeby8haXl9oUTl5nYaIP\nDQprMgIBq+W5o90N2osX2UjNMDta48baL04X+s04hpue1Pg0kSo1Ll/bDRyB8U/c5LHsJT7nvsuh\n715D/4tA9QJUi2DGwD7iOHBrgWf/3e/yffMMl+7fwf1fOc/2Dnz1ZSgXIdsGPAF5VYVCAAAgAElE\nQVT+K3Du4F7e4iTXtuYJ07DhWiyEHXxO/SVHly5Q/15F5+vwvXOyV7bAky/CQ8DIwS2e+J0XGP1e\nD/UvoXpbpBdme2Dq0xs89XdfoHdfjVvj27hzYjvrb09LEb+zIZ5c12swpmG7gq+AwpOrEh0c9KDq\nxn15PALQcVIsqSCjQuOl5jbkPRHqMh27WoPVMfAt7i6Ow4/2s45EVx/+d/RqYAOKLixIQV58bzsv\nzj7Orvw6o59a576xizQerWguS52u7tdc+8R2vtP8LM/7J7lyZY9IMq8E2CiQTUUqaKlo/+YcjTyj\nURMPJpTqy8y01n32lInG8dbauGm2kmjbrBEaBjJNrZaT9e+rxIPQqD4bC53AoSB1ayhRSRMDToI8\nnwZpUvTQACfu9Vzl0VlkoUFfap/+TjACSAVFqARYM0pHLysfPbE0hMhq8+LxkhqpWB4juJS8K6PH\nl/YoB3hNX0wTXBwsqb7UX85R8nFxBC8x7zoyymK1xqrIpPYG5+Pr9tLshaoieGFTSxOT2GHx552k\nqEkgQMAHR6+ec/4f/If0ej1ct8CjKYPrp3CKNF5jdARiQFIfdUx3Q6NcQBsTJTUBCpGBZlUd0yul\nMfQV58dHMZXHGMVos0WzDkbX0Dqn3e7Q7qyxvtEjszmNzFIUBaX3lAFC0DilKKqCqhRfP60Mrqoo\nq3v19ysxj5LBevSaYhLpVqZATYBqDChBzkPVQRIbk9xkg0HjkVg8yag8pSTeq1LPX9cxPNyI3jxb\nwDq0yxZLTLPWGiccvs7offDAm/BakDN7RMHsTlCHYH2uziKzbGyMymU4j8iExpQoKDXwWcXVN/by\nrce/SNmw3Di4g2MH32Ubt6iw1Hs9Zv0mu2/D7z0PCxswXYNtDwOfh/wJOP4KHL8DzEJ4DMq/ZXhh\n9DHeCKc5Hw6yoUe4cmAPRw98wDRLlGRcYQ9vcoof+U/zo1vPUPywLo3whQBuCTE/2OLuGvTLNYhr\nW11slokRfZ6RWSPKDQ/KeTJjqIqKzMiAMzM2+g16jAq4xEwKAkBpD6GCSonCwGlFZmyf6aWVJPq6\nqkIrNWTyHn200n8uiF+XDygt66Sku1ZRDRLuepvi7ygsW6MjOzc4+W1Je+A4FNF9UBQyZfpG9CGm\nOAYvbGajUqCU3FLAFyH0zeOVkud2cQiitRa/rtR7OfFzVMrHQflA9pvn0i9lWUaoFDiHKSU52BiD\nMVYGEtFnUuTpFUprtIl9XLSgCUMgYJ/5lcA8H/r+wy6y4io/eGee0PcBS+/BaI0JKVRGao3JLFkt\nF/kkIguV4U9Aa/m31tIXbbbX2Oq1+8+RZxlFr4oYv6cqBKzrdDrUs4y92ya4sfLrBr6G2T9J6rgB\nLMLSKJxtQlOx6af5/me+wOWj+3jRPM62xi1qqsdaGOeam+fD3hGWfrwbvg+8gLCxig0Gru8WAURi\nmpVbgfYotMdhoc5ADl7I/a7OwtW6DIbr8WWWQBGQurGMDIk7DECiikE6epdBHRkWWzP075zBmhGT\nDSeBnWCPbHLcnOUh/xrb37hF+BO4+l34cUce9cRFOH0HWpNdHvmPXuZV8zAvHX6M9T3bBfm/1IIq\npZ8n9K4ZbymtN4GNqealmrjFYMituFs2/6s4wtCfJXK9lwVI/GgCXlO0d47zQvNp/A7D9bFdnHj0\nDLsfvYbGc5s53uMYr4RHeG79Myy+uB1eQRh8m20GwFdi1t27A/KPPfD1s/y9hv89ONLinYAw+drw\n30OQRiUoT1COoKRwWGPjhAbiLl4WvqAJrhI5XpQvCkNKPFWCc1HaEvC+JKWROC9pjYWr2Nzq0u70\nJMmp6LC8vMpGu81WpycLtIZavYG10KgZxlsNRusZmdH4yrGx2WFlbYOtomTfyir/9Vvv8cfHDvHS\nvt3UsdRsjteWkBlUlpHnIseRMb+Psh5hVw2nUoYg9OqBH5q0G0LTlgKBMShVESpYfPJR7FaHtS8+\nhAkOfCDXigpHkj6GEMT8U1dYpciMJ9MOFRxVr6QsvXgRKU3QFuVEhoL2YD1BkC4p6Eaoy04LUKYV\n6ADGOYySyY7zqt8QBW9AOWnUjKY12mDP9knK3gZ3OiULqz0BvRRgZMNikGJojfjcSDa0iYaZkf6t\npSBvH2+yslXQ/Y31+lIMphYx85iUZDIWbyPQVCJt2Q17G5d5gHc4cPEq5i8Ci9+AHy6Kk8v4Cjy5\nBntbsOfIbcZOb/BdnkV9wbN/doHmMz2yZQhz0D5e56OTe/gmX+Ich3i4+Qr7mpcYR7wSZlmktdyG\n83DzErzHIHb5TQ9HL8H4Bcg+DOg/g1t/Bi8vC5Sz63146DaMjsCj86/xxshpXt72OOt7pmBGQa0F\n1QUZHa7uhPEWbCmKrZxVP8GqmcDNQ+0QnLgEm7HRGAcOjILZD+UuuMMM69UYtR1t+PtQbmS46zX4\nUAlK904GV3ZDL/kuBKR4D89s04QrbVqGadLp32kTswaswM1ReE/Bjw3vzTzIv7m/x2Y2wqMnXuLI\n8Y8Y2erSrtW4XZvhXY7zEo9z3h+iutaQE+SAXEGRAM/E8AgMhDQf70MpaDVz8szQc5V4DsajH54C\n/WGK8wFjxbA4r8WkXKuwmQFdkeU1bKYw1pDXcowVppfSWtKwSHH3EVAainUXoEzSsHSChoIiJWyJ\n55UAOM5VEaxiKMlR5BsprVEj/lrBeyrvo3FyQHlhJRgjIJ7X0qwYrXGVTAaVDrI19jIc0LEhScwx\nAZ8CSZ6e6qm2EBBZTPAh1prIcjBGmizn8c6LRFIL6ylN5KW39NIg+QgABllni7JEG4VyeiCZFGo2\n3vmYuBmoKhdvgZ7z9Jyj50FZS5bnaKMxBIzWhGDwQWMyQ7BAqDBBpDhVVVEUlQCUKsN5YR1XKlDH\ns2V7ApYZTa1eJ8RwlYCmlmuMKXC+pChKCIFeUbBZdOhWlbDOtMeXMiQzCHOhLO7V36thaXti+E4B\n24GdkE1Aqybr5iSDiX1Hi5xisSmSlGIJWbOSrLHH3YzS/x/0+vlHkshED5nVBtyCtYtTfLjjCGdb\n93HgscuMfaXNpyzsuyy4445t0PoS9D6veaN+ig84SvvKtAxe2sDyKtwR+S80YcxAK+MD9yAbpyZ5\nf/IY+80FpljGozlcO8fvfOFbbBu9zcQnYOIWMA7+NCw/MU43rzP27Dr5ZkE5krM0P8HrUyf5Jl/i\npbXHuXJhPzfmd3Nm8iT77EUmWKMg5xbbOLd1mCtXD7H5VxPwHFIfV3sIJWQ4CfmvxyioXODO6iaT\nrQYSLKIJDqz2sj9GyxriHN1OB+dGxEsreoMB/TXUVxVlUVJkBUplZGYwNLDRT6vvg4jCahMVA3FN\nJOI1ka0kZrWSKtsHwpJ0L5p9aaUi2EUcnAgDGUTpQABlpE6IYiI9fnxdStbV5I88SKQPEMzdxPK4\nFo+eu8D6gT39+hdnN3EfrfBovFJQyv7k7se9+8iyGAKioHIVMltS6MpE83u5idScfi3TTmxSNCrK\n4KO5fwwaS0ciNITYaySAKyKDffAq7a5QkCyA+2xlBoBYlmUDEM57eqWM5ZVMfVBIfyhJw5qqCuRZ\njsUKwEagV5TC5FWBra0OjUbGwZ3TvHH+Br3y182GSSB6MmRfoe8feGVeBrMd4EbGhfuPc/nQIZrT\nGxjj6XZrdK+NwIdG/HAvI7hHA/ATsFWDsIxolG8ja316jhZ9j8K+Vschv9e3gBGo6rCZx9eZ2Elt\nBpYgqUamfW9iTyWD+WG/rOG/m6E/M2Qva6SNmYSxqQ22c4vta4vk73jcG/BcZ6DkWHMwex72noGZ\ny5vsOnCd6Ykl1ie3SznUqU8aQ2rkNDAKqo5QMQ191jO9eD6W45+JzTqc9P6rVFik85yudzs+701Y\nasCZGrQUK+UcP3zqWS7uPMSPR84zqxbReFaY4HJnH1eX9rPywjb4IcLyu1rFocQyg2uTrsu9CX59\n7IEvGCQ8Dss97jK4HwJvZDrt46Kq+sWHyIJSSqEMBBX6U3+lgjQjmR0Y//aHMIGgPB7d/5XqT7WV\nxpe+L8l45I//FS//wb9DWVV0ul0qH+h0ejinWN/osLnVYXV1jXanJ7HCKoCvGB8ZYWJihJFmxlir\niXKOdrvD4so6a5ubrK1vsrXVpVZ6ChR3puZQrQmqWo2uNWKsi4aeZs+lK/hmzvLBveT1OL0K4gKg\nI3uKCND15Srp/Km4fPg4gdEKpS0qE2P6m196Gu17WJL5chlziAKKisQ9Dk42A5mBZjOjKgPtjS7F\nVk/SF21OMBWhrFA6R2WGUFpsLuPIYJOUVDzVjI7MtEiIIL3eCGbKNCu+eC1TtiwzVBpWuiWdwtMT\nYhkEyJSmMgGMRgVFpmU6H9DoWExDDDyIdskY5ZkZqbGw2uE3T/GYFvPE8GrF2xQwF/+cloW9TuyH\nKib1Mtv9TUZvbMC78M6iSPQdUiNHVmHHe5BddOw4fYNv8GVumzlOf+IN9hy7RqPqspU3uFTbw6vq\nIc5wkhOc4ZO8wHH3PpMbG6DhxtgM2nuooKrubpkCUmd0FWi+X+BegeeXB6/jEjB6CR56HWYubbD7\ngWvMjtzi0uwRwriweOS9XwNGYbMJS4reQour9+/hw/wIJ4+fZdtnVzi9CNvPwWobds3A5KPA03B+\nxx7OcZgptcznTv4FGs9qNc6N7i6u3d5L50fjUh9fMPDRdugVDMzumwySvCyDxrAcug2b4Sfwaxk4\nL5OyM7vA51RlkzO9h+mdqtOt1dmyLQ6Pfcg462znJh6Nw1KajOcfM9zs7IGugbIOl+Yjfa1ENiFl\nfE0f/ybVaE29ZgWssSGmbGlcJWtVYlL56O8VkR+M0TTqdeq5pZFZ6rWMPPp/2ShhsdHPREfpXlAK\nrDQw/XSwODCp2xpVkMYEJX6GYpIs7Np+oqyLfAEb/1T8zIZDpZSuuHCHaPSekhdDvxbK+w2eaEgf\nfWZ8ep/SFPWBJh9ZAHhSK6S16bPHTJTGBxXQRpi6yon5cGatsM6IFILgKKtCmBGuwpWFyHyiDEdr\nhYsTfuf84L06YZhpK/VYrpU0Pt4HytJRlh7voSwqer0SbTOU1bGRBJRUJm1rKJtj8lzYHUHHdDYB\nvwglWjlQJS5Y8sYIFYHSVzRcXaQvKpDbmqRmBnABfKXRPmOrW4kspnJ0ej26zhOM7kt1rDHis1NV\nBCd7g3vvSMC7ZhBkMoGI0ffByBjs13BI/slOpJnQyF74JtI9XKjB+W2w0WQA6C8h60nqvD/e68n/\n+0cPaVrW4c4YXATOZrx+7BMcnjzHtv2LPPm152kcCuw/h5SEvdD+dM5b9x3nhzzFmdXTlGdz+dkl\nwG8gKJgB9sGZObkMa5aFi3tZPLaN1+Y+hR0pyRtdTk2+ytZEk8eefZn5R64zUrTp2ho3RrbzRuMU\nC2one2cv06LNFk0usp83OcVLG49z+4V5wvMZC3v3cfvIDt6cfRTbqPBOU27kdK7W4W0rTK+3gEsl\nVAsM5FNJDvvXa6xCCFy/vcTeuQlGWw0yYynpYiMAJvtaAb/aW1s477A1SySkyhpHTDSPwFdVy2RN\n6ysOBgMIX8laa60l2X2QQBYfEf4Y3pH8FHEe44QFpvtMJtUPjLJWGEppHU+AnPIhKtz7+ss4kpBe\nxgeEvRWN+d2wH5ZOHFp5cSEOLFoXLrH3n/0Jne1zfPC1f19EnEr3YQSvNFrJcMVH6Z8Mcu7uvVLA\nSHrNWhtJJkbes3MlVVUKg9pmaGXwxiP7LhOTfj02DpuAZHUpdSS+NxelhS7IkMcHgZ9ETu77ISIh\nXQSt0dZiKieJxxFY7FYlZdeJvY01+Cr1P6lueghJ+2LAG1Sw6OBRXpHlGd1ON753R+Uc1sQhTwjs\nmB5ldrzFtTu/7nTHaO1Dhew3DQKERFjg2k7YbMmy8LbC7aixMVmTH2kj57CJDDlmgOPIr+h1I8yn\nhQZ0hplOCRhJMsDUMaff4W58wAhG9eGJxAhLLKk2A7bn8BowDHgl4CUd6T4/aSMSj7jFtqqkTpda\nVcAG9FajteDQM3SiHZruemp0qdH7CSVjBuxAKGRNmLIwoaRlMvFBNlqwHmBlEtwccpLryGKc6mCP\nwZ7+Vwl+pfPZRa5JA1wdLu0BZ2Adtq6M88EDD3BpzyGyUektqi1L70ad8IEVC5i3gQ8C9JIOdZnB\ntUlD+3uzGf4NAr4GUg+QDXoCQIY3++l2lxSSWCu0aOeV12iv4gKOODwGjdI2yhSlcGijowSEvheL\niwa7Lnh8qPrTgwe++T0OPv8Skx9d4E//86/R7hS4oChLx9pGh42NLiuba3SLLhhDo9GgphXjjRoz\nUxOMT4ygtafo9VhvF6z2PKvdLndWVuh1ugQfuJrnfO2pT7Frz0Hm52Zo1msYPLkGX3Sxa2v87T/9\ncwD+27//R8JEGAGtDFnQdyW/6GjGDPSpzMOMa+cDhpgIqY34tcTv+6Aovfi5BBNDuINMFySJbJDA\norxjpGEoxjI6Wx2KTpz8uwyUA+PBZ6gMnC4FENSSvOKcpFUqYioYispLMosLYjOaJkcmbR4CElKg\nNd5keDLKIP5u1igxVFZKWGNKWBE+xShrKYzR2YyApkf0SQiBViMn3yzo/tonOb/qI8WoJ6bXBP30\nRnZBoy4e7XPxWxYwgYySPJToMkBnEFAP8hlqA64HeTeQUdClxv/h/4iXeYydzeu01CbtMMJ1dnEx\n7Of31J/yt/2f8dgHb2FeDGIsksHO44uSr7wfdu6G+aui3tDAQaC5E2nEYiG7NfQ6SmC5BL8Gug0N\ntsh1D5VDyIg1SCGL+TqszsJ1TXjfcO7xI7w08xj7d1/kmd9/geZkl31n5HnCNPAkLHxuiufMMxTk\nfE3/E3aEGyg8d+wMH4wc5cXRx3hx7NMs59tkarqRicdCSHSrdN6HNwo9BmadyUA0mSWn+3QGP1/l\nUnTnoLanw4O1t3kq/IBnO99n6sWOnKwADxy6yCcefov5savkMwXf+OTvsnprRjC/26PQnkLE/Cmv\n+hfHyH9cDms0dWsi4CRy9hACGIVz9GUlMFjnlRbJeaNuqRlDzVpybYWBFVSUaMTaEJmruc4jq0f+\nJzHucbItsVXSXClio6P6fjDBiXwjUya1UISgpPYpAdgSLuGckxCQSJ8KCLjnvJgDC6Aj6VjeS1iJ\nqrwMSLSW9S6av/sQUB6sNcJGUPRrqTJpZB7lLkF8a9I0PQ2SQmxOtErDFIcyOrZmwmL0ocL7Kg6j\npFaIZEXWVhegdI7c1GLSGQQvMkjvA8rbyMZzsckCMOKfVYpxrHiy6cjQUtS1RRmDzcXqwCvIbIYN\nCu9KtM6ibFRjjZzTLLeUwVH6CkxOr6qwVkz9E1BptKYoSoqiIozWsLrCB023AFd6Ske/EQ1OwMMk\nQSqrim75q5Y4/CoOhSzsqQZEP0f2wviEeDo+Ajwa0Pd7WvvvMD66hsGxsjnF5qVJ/NsZvKFgwsDr\nE7C+n8Em/Cela/eq1PPXcaRtevTto4lwimtyWdaAs7B+YI7vPfVZdOZZ2jPJg//B2+zs3UDjuFnb\nzjs8wI95gm/1vsiltw/AK1qkSaupjlxBrm0OmwbenJLl/ryi3NOg3NaQb8/B9z83we09c7yVnWLf\nzCVGWWeLJtfZxbv+fq66ebapW9RVhy4NbrgdLFw+gHslg+cRicy4opqvszlbl17XIaXlJsIguRDg\nTkCaqusMpDTJq+evP3RZXt9kc6vLru2zkjruS7SCDd+h1ymEqaOgciVb3Q7NVot6vUGvW0bjdS9e\ntK6iqioZAiQfqOgn5Z1MUA2gre4zpQjDqYhiw5GYSyF6Vem4eCYGqDH0h/rpZq0VNlOQfboMf2XY\ngvYEXN9byjuHr5wkRzqH8w7nSrxzkSFmYp80lFgJuBBY3zfP2tFDXPnqbw+YXtE2xgdhvmkfP5VK\nETLbtwaQtxv6rC1gKE0+sctC/7w4J9LOqqrQ2pJZMY/XOou1MLLYjNQTHznG8np8f913TlLiHQEX\nPKVzVHFoEpTqA2bS02iMsqIcKTzGGay1GFfKUEdrao0GxcYGlfcY72WgERQuGHxMGQYjYJ0SGwGS\n+qcq8VlOWUnfkzcs1hoamWLvtnGuL633e6pf35HW2R6yd1yl/3sV2rCyE1amhNlllABcp4CTwIMe\nvS/ATInKKsJGnXBVEz5Q8JaCtwycnYG2ZjCkTekmiV36k68lSRiHLT9SPUhD3fT34d/9YXDol60d\nQ8BMxGoKl9GmRadWJ8xBYxtsuyBwIMSVdwzULFTjhg3GaIfWkG9+BEOZh9na3YOgGWT5jqpOrik4\nX4NzNVhPtgHw02wpP/T3f9tDLBUG3mgaWeQNVBou7pKEygXgA01vrklvIkAtwBFgXcmPZfHlNpUk\nYzLOoC8oERCvwwBou7eO3wjgC6CqhsCvuPCkQ0UmmEqsypDKT5xuEMQU3RMlKZIcmBtL4g6lwYLH\n4FWi1capdXysyrm+p5iPkw5jDGVZ8crTj+E2N/nRs5+i2Nii9NDredY3Nlnd2KDTK6jKCo3CWsPM\n6Chzs1NMj42Q1yzOOzrtTTbaBetbBbeX7nD7zh3a7R6+rKhZTW4UZbfNxtoaO3buoNlqUYtD1XIj\n0FWef/pbz1DlwkLAO6Fy49Eq63sD6CjLudt0UpHmQmiS4lMaFaQYKCVyEDlXIhkSloPF+pjaFRTK\nD6ZByjmoAqMtjZuucePWJp2ywCfnUFWDTIqspKMYgnF4Lf5a8epI0xqnSD6EvkF137xZ+X4DppRI\nifJM2Gr0FM4rOj7QJVCEgFIGK6ZeaDRae4wOGO37xb8Kut/0eR8wmUimemudexTn/n9yJLZRanjG\nEYRrt8Q07crhKJLiuA/YEaDpoKFZC+PctjO0tzUZP7TFkdfg8pbMBVrA8RrU9oKbN9xmjlUmufbK\nYRaKfbR2rWOzisJlMBL4relv8Ez1Q069+R7mnwe2noPV27IxnDwI+e8CD0HrC/Dl5+DqHSFr7ZqH\n+leAvcAtaO6Gw5el9BZI+zZfB70d/CysMU7bjRAS2zhJAZI0x3Xg4ii8DRs/nOWHn3+G5ugW7YMt\nHt72OmOfaWN7jt5IzsLOOX5c+yQrTPH32v8TBy9eoXGphADFLsXCvtc4MHWBkdk23/7sb7O6PCs6\n0DsjsDXLwCcgB11DEBCPGHsmT4ZEkV5DuofUnCr6rIxpBBg85Tm54/X/m703i5HsSu/8fme5N5aM\n3JfKWllZO9dicS/uZLM3SexRa7NkjQXYY4899othwIZhwAPDsOEXPxgzAwMDYwatwTxMz7TUGqnb\nbHWzm0s32WSTXSSLS+37XpWVe2ZE3HvPOX74zolIUvRIblGaasIXSGRWVmbkvTcizne+//dfeIaX\nePbGq4x9s031PVg+LZc5tAMmvrTCF37/FRYmhzm/eRs/uedLMtk5DqyO0PcqSE3Y30YE89/s0azl\nNPI8GqnHqbcPgMJYHYOjVM+zEQPKSOy6okIHj0EA82TY67yPdcUj/yuvI61tDElxwuglSmOC6qVr\npbVXK5F8OCfScNNbiyMxN6pigxfAB8SXShnbk/6hHDponE+NhJQsAcCEMdAH0jxEMI2gxMi/x3CL\nP6uAECWbIRAFKMIgiGCXr6oIjvmYBgbS6mnwwlgMvhJDZBeHCgS0CpSukN/3ThK8vI/bPoXNFFWo\noqenR8x5AgqPUpWAV1UlnlxBURQVZVlFcFBqmtJytTUMdWXjvTYC/hEtwlUuwxxclChluLKiVgOH\no6gKSiqChgYSfOK91Ime/CYzBG9p5HVC6VhtF3TbHdrtLmvdLmWs9d45goFKTM7oFBVldSsOTtIE\nPnl7jQGboDUCdwNPg/1CwZYHTnPXwHvsUceZZBZF4EZrkpN37eKdmXu5sm2GcqAuL+C3B2F1I31P\nlvVpUGmz9v8fciTGdbr3G6A2JoDjU2C+3GXDgQvcnX3AODe5yThv8jCN2horDHKG7bzn7uWDa/s5\nf2IGXrQCPp3x4rsjtC+kOkdaQmcNTo7BtQZ8qIXBlwF7oHtziEP3P86p3XsYGVgkt12csyx2hpg7\ns4Fw0nBu/Hbpf5JF5BKCXzmkHl0Efk4/0MwTg8YCLJVQrCAF8UY8vwUEoIvGmb/A66PTLVhqd8iz\nTDykjGFgYIAyKNpFWxTZ1uKKgoWFRbZs2cTIyAhlUTF3c4EQZXeulyqoeiFKKnkmOi+m9kbWRknE\njSew7pST/YeCGKLVfyyXGL+pFhjT+y0V5eI+gm7iO6XQVoYKLsjgVgeNL6R++OBwQUAw8RNzcZBr\nJGiFODSIcnwZZCvO/M7X5J2YPLXiU6XjQFkHsCi8EsmjUrrHJuuHY6lev9RLKhZ6Mcbons+W84Gq\n7Cc7Ou+xuRAMJIjFoLzu93GxvvZALx+DASLrS0AvJ2yv2NsJTRh53uJwKeQZuhIrGqM1mZWxdp5n\nEmRSOYLxhCoGfYWcyhe9+ilemVLLhLlXI8+sJIdquf9OGRnIRHb03Ts3c+jkVdrdW2HIkcCQpBpI\n+91V5A15E7ozsL0OB4GnPc2Dy9y2+zS78uNMcp2MimUGObN7htN37+Ha7k0wZmS9ODQG7bS+r1cN\nrN83rvcb+yQgxrrzWq9s+LTr+Ksc6feT5K+A+TrcgKVLY5yZ3s7pwdvYeeAsjWcKnuvC5hvQcbBj\nGDbcDzwO5zdOc5bbuHllSqbps0BVgN0MW3O4DzgAen9F87YV6sNtTOaoCkt7oUH71ADhPStr4Ht1\nuLIZXPK3TN5l65UVn+WR7lWSfMa6MmbhAPAQqEc8Q/vmGZq8yfDAAkoHFleHWZqdYPnEEO5nuYQR\nHKrD1S3gk2l+GmQl/7Zb7/jcAF+S+tFPwIJ+jVkv/0jNSDqUQhZ65CkyotHrxcRLbHpcuH1AZ1Ym\n+Uq8E7SPfymIDCYgTUCablRVJSa7wfPiE/dTrbXpdEuch4XFNqtra7TLLu6KVYoAACAASURBVJUD\nQqBRrzM5McHMts0Mt5oYAt2qpNN1dJ2m8prF5RVu3phnebWD82DyHJVLAcm0o726QLfTgZFhyHPA\nU7qSlZVlVqdGGBoaZLA1gDUaV1UELMZ6LNEkuAd0raMW09fB93Ho0PMPCEoTlActGmYpihnaBWlK\nVMAGJ5RsH387aLQy6FCRoRgbqpEZzbXZNRZXHaXz+NiUKS0F3xpL5WISDgatBFAjyjSlYU3fc0Lt\njhMio9LcSgC4zFqMyfAUFCHggnSS1gDxPqTUr9i2UbMKryxdp/AetLHRdkDSRYdbTZZXC4pbsnn5\nRY7U8CQN4wQyvtgMOzOZ8j8K9sEuk9uuMN6YpW7XqHxGV9c4zl6ubH+TwWfOsu0yPH8IZudgrAUT\nd4F9Fq7f2+IY+zhbbIcLCv+jnOWhCVmPd8O2Xz3BPnWUOxaP0ny5S/dP4JVzcEKwTh6+Bgcs2J0Q\n/j4M74Xhs/GUZxBs6NvxUu6Ahy/D6HmYd7Atg5l7gMfgwuYpzjLDjYVpwnUtPUCRplCJr3YNrjfh\nsIERuFDbxXcO/joXxrbyVutBNu+5SJ0OSwxzmh1s4Bp/r/xnbPneLPr/Bj6E4CDfEdj+hSs0fuUV\n1rY0uTq9gVfv/xIcMZJDf24KzAQM5mKq36CvdFwDlh0slEgzcBXpSprxomvrnr+G9ElboLl3gX0c\n5f72u4y+tEr5x3D4p/BeV67svrNw9xoMb1zlgV8/xM9qD/P23ofpbB6Wx7gQ8557AQfQp2X/8h6T\nI4Oy1YrpVGhFbg3Oi8TdewVeGJ7GanTmMVmFsg5ULtJIxNRWK2GOVa6i8oaqEvAk7tNjfZJGRUJG\nYpJWLzlX1jEdPzsvv2+ixD6UUdKoPDql1vogwE2AKsRkr/jeCCFIApUSV5JeQm/o+zoalYZDcj+s\nFuZXUALM2MyiFBiTSS0NQPDCFkuyFp1kIEEAphDwDkJVUZYS+GKs/F5wpSSjlZJwqAIYZFgUA85Q\nMblX6kTA+VJYUnkTj0Mr029AXTdeqxLvx0JBMFSlpygqXBVZVd5j4+/lHrQKmKDQXklN77HXtETZ\nOxkCUVXg5Jy0cqANmUkWB2KgbLLY9FaKsqwIWvdYewpF0S1YW12jUxYUvktQUBTSlFVeUXqHDYGV\nTvcWYAF82hH3Az3wZRzUFNymJD3ki569Dx3mufr3eYaXuGvtCEPX26gQWJ5o8sHgPl4ZeIoXH/wi\nH6n9lMsNmNNwdBTKcfreLYb+Rv+WvBF/y0caPCV/xQFgGPQ4bDVwAMzTBbseOsKXm9/jWX7E/oUP\nGb6yjCoDxVjO+U3TLOsWJRnXOhvgmJVhxofAyjxCr5qlz6aajZ9XgFFYHhNpqskh1OBaTUrOEVjc\nPsXi5JTUpy6CT11AAK6NyEBsG6htJbWpVZSG7lINf6kOR5Wcx3vAqQBrBfgUdLCEFO6U/Jm8bxLo\n9YsBX5X33FhcFS/foOgUBYPDwzSaTVZWCmxmaTQauKrL/Nw8w4NDtFqDVIVneXGNypcYLXtIEJDL\ne1lfVNx/iipB90I8kt+UCusFw/LzRom/lcjrkXUz7sPRsi4JCzh6KioJ4zLGCOMsyHprTBzSII8h\nQ2AZeHS6nsrJEKCqKlxVyTkbTYgqDxXNroJ3PRuPNCRYn/qbzj3EDxu/41ToXWs/hfjjX68Hv1LQ\nlHhkaXTN4Jynq0vKqqLyJZUr8VUmKe4ojM4kVCuSC2R3nvgxct+qINLCyjtK73BR2pi4DkprtA+x\nr1Bx4MLHwmt0/L53njzLRIJuLNpkWDSVr2SvoFX0fXa4Suh+AvI5MfF3DmtEoeK81BXvhKm3ZWqE\nDaMtzl6d59//kYCuBH6l/jiZwE/DeF1YXk/DyK9d5+DkazxufswB3mVrdYHMl8znoxzV+3hjwyP8\n6PFnOZHfAWUm89kPR8FNIO/npFBI0sR0DvCXAyV/He+ohA0kT7BkMr8MN4fgAvhjNT685y5+mh1k\n210XOfD7RxifgINHIHQlsZZn4OKTk/xEP8577l46x1qimugg93BTDo/IzzWeXWDPpqPsrR9lk7pE\nnQ6rtLi0bTNHdt3B6Z376E40ZUv9ZhOubosPlBQdSdJt+KsDe3+Ve7B+iDUCbIShgd5zrL/SYd++\nI9w78HP2cZQprqGA2aEJjg/u4d1NBzi68R66raacVrsF89vog6WJmfdZnfdne3xugC/gYzryPg9L\n5BUJ3Ep5UH1fFJDNtTQnzlfkyka9vIrSDIPziXWU5CfRxySmmiQvLOfkSXaRMlx0u3TabdY6XSrv\nKEooKk+3KFldKyiqQujSQTEyNMzWLVvYND3JQD0nuIKyqii6XdpFiWoO0llc5O/+/B3+0cAANzE4\nneG1QoeSeqiwyhJch6Io0XkOWYZbW6a7Mgc4ms069UZdAKSygspLweylXIbePUuT/sQISMpHlBLf\nANVvrlAKrCU4L6lksclTyXJA8likXVYBvJN4eK1RRhLNjNaMDmkG6jmzix0uXl+jE71hVFWhTQmm\nS8gV1ksqmnO65+Ple39FfLdQMfZYxY2KipbMsXl79ptv8fM7J/HeEHQpUiOrsTKmQynIjcUqAbYU\nilqW4YKmUunNIwCYQqZfjVrG6NAA1+b+fev3P4sjebCkhicBXxthJoOHgC8H6r8yx8MjP+MAh9jN\nCQbCGgUZF9UWLrKV1wYOsunXrzKYd9h0J2y6AQxDuB/av6p4dfBRfhYe4tL5HZKk+Baygd4F7AsM\n1paY5goTKzfgCJy4AG+uq3uvFbD1BEwfgbmvNijuy1nQw9z+4/OEP4TwAzh7EQZrMHEnDP1H8MBh\nZG+9AcJTsPB8g5/UHuNQuI+bVybhlJL9f7ugbzYZzTfLFhzbAFYRCs3la9u5/OBt/HTPQSbzG+QU\nrNFkurrK/5z9Q7a+Pgv/Cs7/Oby9LOXgnp/DnsuwoTXHI7/+Noeb93D49ntZ2L5RCHWzuUzFd8g5\nMopgWskf9JKBswbOT4tfAIv0U2Q+AUZF4tfI4DxbuMjE3E30+4GVd+CNrszTAdpd2PoBTL0Hk0/O\ns3HjFYYnbtIZHRZcrQd4ZX/xb/wSHxPDLbyrCIWYGKs0GNZgMoPRGd2uEww0sq601uS2TpbV0FZh\n80AtFxapMWJ6n+c5ygiIYjIxuA9ePGKszaR+AIR1TQ2yHRdpNtjcSkCKc3gEJAsuSU2iw1ZiOauo\nyo+yO3lsH6U4JUoHQBodbVVvyBG8i+wwJXr1mP4oi7dCJgExOVL1fTT7EhbXM+0PPmCQ9V98vSpI\nse4I2BS8A+9io1hFOU6JKwqcKwhO5ICV9xSVE0ay0RI6EhsslaT4yhN8Kc1IUDinJFa+W+JdoFwr\n8V0vW2UTJUFKkSkjUn/END+UFViNDxXaGqwVQNPHABiTG5wThpsJct2VjymQ1kS5KjilqBAJk0Gk\n9cGJ75gPgTJ6voQAhStlnFLKgKZbVSyv3or+XuK18/EU31FoZrJGPwibnjzFF/k+vx3+DQc/fBf1\nMoRTgIeJHfPMPHOJqTuvQw5zd49y4dxuOK3hYh3mB+kbHrf5PK0tn82RanANuUdj0BwQFvO9gbH9\nN3my+QpfD3/C4yfexL4A4X2kZG2BqUfn2PTcZXQjsLBjhLf2PAmHlNSFuTQkSf45iZGRDKUXkApR\nFx8YBuDaVphrwQkkyGAwnppHmtybwOPAgQBPB2buOMJOTvWYIfOMcu7ANo49so/uKyMwrERG9WEG\n3TbywEnCn9La1jfLvzgoGgLMLiyx1G7TatRkf12W4udkZO1s1GsU3ZzF+Tlu3Jhl88ZNNBsDDA0O\nsbSwKCwfI5Jw5ySFMe2Se4OB9c+ekqAoFXsDeXVrSZZVkXWFrPsCsAfQAWWTH5bugU7WWmyWRY9d\nGVaI24iK8nWFCyDeVr7H5CqrkqIqhQFbSuKgDZZg5G/YzMpa5QNBa5QStplRusdC06lpDgHr43Wo\nOHRRCONK696799NYX+u9xTAWrWK/FofaWIuJZIGiKOgWXbST/wtWgDIVBziKgFcBh0eqhJfgkeDo\nm9iHnq9vsh+QC0UAyiB9ns1zMu8ogicYRdEtwVVkVoY9VVXhMocxMVHTiGRex6ZImMvyfRW9vUJM\nz5ShkY6McekVc6uY2Th6iwBfECdo9IGRpGUbAwZlgHwvqGfWODj9Gr8VvsWvFt9lw8+W+2lSmy5w\nz4NHmNl6hmZzjW/fV+Psjb1wXsHVGlwfR6hRKfUR+gFNn3YkOeRfV/au6EMdybYl0N/Tz0N3E5xW\ncBgu7t7Fyw88TbOxRvfpjHv3v0/tVIACyq2KU1u28pJ+hh/wRU4WOwlDWta6roKQiyTw8UDj+Xme\nmn6JZ3mJB8Lb7AwnabLGIiOcZBc/G3iIH+7/Aq+0vgwdHdfOFpRTyH4+DQES0Of5yyGbv4xBmO5F\nhtSSQWAM7DBs13A/6C91uHf/23zVvsCz4Ufc13mHkctdCLC0JeP92l28Un+K796zwuvqC7CoYFbB\nW8nsbR4pCOk5zv4K5/W3e3zOgK++vDBATGxaF30ejxCbhMRjStG96Xes0tSMxXjxo9LKy1Te2ij3\niBOHdewy+fv+Y1/74FlaWmJ1dY3Ka8rK0y4dq6trOF/hETlJa2CQodYgmzZtYnJshEzLhLsoRR6x\n1u1iay3WOgUDZ85z18XL/A/NAf7Hx58Fk3Hz8nmMKlG6ovIai4EsJ+QNtr53iPdH6lSrHRr1Oo16\nDiHgqkqov0b3DJRBjIx1nFarqIvpw4ihd8+88J9JqTBGxWl7nBQ5xA9BoYThFUqaJ6/R3bmhNy+C\nErTBWGR6HgMG6plic6POQKvGmcvLLBdEqWJFUBXKVVLMnAdjIo4Vi5sSA09FBCIjK02byPSK0tTR\nj65Qn13h73zk+UfTLUALTdwFvJJJlqSuaXKFGD7H6GWcAHg+TnC00hgTPcC8Z8P4CCvtLqvtWzWd\n6//LkRhfDWSRHIeRmsgbDwbGnr7C08M/5Kvhezy0+jbb5i/QutmmGLBcG5vig7F9HFb7+ebgb/DQ\nb77NxkdnyRZLfMNwY+MobzUP8P3wZV6ffYzVt1oyAb6E7HMj7tablMa1/5PzD0PyzIHVMMCr9km+\nMvcDeBnmXoQXL4qJfb0LDx2Cgw1w/7WinDSUgzmzM6O8MfoAL/AVDl17kPabQ8K6uuIhrCAVKW28\nbwA5tA18MAbLRtQYHykWbtvEwsgmyKC2Z5Vfu+87zLTPod6D+ffglWUZDAFcDzD1DowdgvHHZ9m8\n7RLjdo6F0Y3SkDyGUI7v8dR2tqkNdzE1hysM3bka3VMNeF/DIeDwIHQGhXY8TkyXiae7iNQ3IzJg\ng0M7Dx3B9Na/Qh1QRs9LUzgyCgy+j3/27jZ8Oh39l+8YbNYoXIVV4tfoXBXXC/G1yjKNzWJASEc8\nqbQCq3MsGsoSU8vJMFgNWlXUbE6uFZnWZD3JOGKbYWTtq6pKpIQ6I3mcWLs+DUwYpNoJ/ykELwwt\nL5+N6cusJb1L9eSZyccqVD42Z0HSqNCEIKbtoKJ3oQwdkmG9d0FSE6PMUoFIPExkAER5h/NVryEL\nQYno1TlCJT5VOniMJpo4C7DjK/GYCTiCc+AENCuKDt12R8BHJwnAvhe6Ik2Kqxy2IU2IBrQT2YlS\nIj1S2lJWEhtflQU+VFTVKqhS/Bu1JVgwRpEZTdAKH+9JqmwqpZI4j6+EpawJ6CzgVKyXKSnYBXIs\nQSmKUFF6T+VdL6HNO0lLcWVFVVSUpafollRVP70yz3NpRCtH11W0uyXulk1GSTLbNCUekvVmO9g7\nu9zD+zzuf8I97x9F/SGsfR9mL8hLdOw2CRB56O+9z7W7NnBscC9X77iNcqYu6/3iEPjEVE3JkYb+\nfuPzdKSF1PLxXWk61psyr7/29XW4Kd4qW0Dv8+ya/oiD/JRHLv8M+y9g9U/h0nHoVDA9CZNHYYpF\nHv3STzla28epO3Yzt2OTDFQu5BASUzinzzJIsqMVpIgk9+YRYFVYetdG4FpdgHEDeA3jGTwMPO0Z\n/vINHt76Ux7jNe7yH7Cxew3rKxZqIxy1e3hj4hFee+4JLtR24gsrXkAnx8HNxb+bPGNiguVnlPi5\nsLzGjfllRocGIATKsku9Jh66leuKRC0OuJcXl1kdWusBX5I+LuC8eFKVYrPROxKTSJ6+HnszyP+p\nkH5KmEC9hHS0yO9iT26EECXSddVPpM9rtY8Z2icQSUIlU5CWMIzKsqTb7VAUXcqypCqF/VpWwl41\nIUcFEw3mxRNMxVRa8cAyKC2gXJLzJSN+lASKEIc1QckgJEbEfIzhlT731DiByITVwu6NElG0yCB7\nvskhUJal1BUEqNJBFDc9RnQQsCvEoY9X4WOwaAIGVSQnKKPQ62olKs53MoOvDMFrQql6DLsekUJF\nJY/WWG3wuJ40MvUZOtYi8FRlIRYFRuOrEpU1ovG/JwSwxrBz8xhvHrnAWudWAgWSv5alt86PatgK\n3O25ffMRnuQVnl14hanvLOP/BJaPQtmFwQlofqHkob97iKXbBzk/tI3Zu6ZZOTQi4NjNJrgWss4k\nACqBUJ/2nv7rv9f7QE9izabhTS3+7aia8Nfh/BS8rQgjhvfsQxR31LhY28wdY0eYHrtKRkmLFdZo\nMskNfpXvsrdxlEP3389bk4+wPDQma+A2qB1c5eDE63wt/ClfWfoB296+ijkUYAUmJtrM3HeFLfdc\nojHYprOzztuPPoY7F8NGzowhljI343ORhkHZunuWrg36r3ZHn6WXwLL/t/qp6aczj8JQHXaAOuCZ\n2XOa5+yLfL36NncdOkbtRS/PHzC0o+TgU+8y9PAKxUDOzTvHOXZ6PxzTEl5zcwxJtFyMj5+M7m+t\n43MFfEHy+ooJj0CkdslLYL2GIE5Q4pfR2DhugINM2IKStEKZbOjYcNi4gKtewyL0Y9MDvpx3FGWX\nbrdgeWmZqgook1GWFUVRUK9ZNBlZrcnoxCRTExMMDwxQq2UQPFXRpSq7lJ0O7dVVdK2OsoabNy5y\nqtvlH+7awdmxaQ48+hQWeON71/DdgizLUcYQ8gHy1ggPf+e7PPjCn1E8+TCHd+0gq9cxVowlk8zG\nWAUxjrcH6Kn05lJ9I+P14JdKpT3E5ivO4HwQ77DUHIeAR1MFz8w/+yOG3j/Oxf/sedb2bZbiQzRw\nNgZlPMpJOlZqsDY0clRW4/TlFdpFfF4DmBAwwckSEAIGTUa6hjR1870CjkppO1H6ozQLd2/jSAi8\nsLyAuzgvrK0AGeLZopWhllsa9RpWKF9xY2LAe2oOrLLkXhO0JmhpqoBoLO15/9SlT2yKflmO9TK2\nRImNjC8zBBs07IPa/WvcO3WIr6rv8fz17zL5w0X0j4GrYAcrZu6+zNRXZ2nu7fAd+yu8Yw9w29bz\ntLau0KHOBbbyAXfxzrUHmH9jEl7V8AGyz90LbAcaijXfZJZxFprDtLbPsmMCdl2TGmGB2w2MbQS2\nwVU7TYWlcbUinIJLs7IeJzv4w8B9x8FcVVz+6hQ/HniMk+zkHe7jjetPcPP1SfgpwjxbKPm4mXs3\n3hPxaKLTgZOTcL0uhWECaSbug/rzSzRZo75WwRx0VvoGmSBksyurMDYPtaKgQZua7ko9ngHuhNoz\nq2zZcZZdw8fZxGUarNGmyUW3mVN37OHM7TsJ4zXpWRTCDtuCsMNMvOAbiJdKG9quwRKDdFoNmIbB\njbD5tMy8PKJMaU1C2ATdoZoYd3abfQseoD+hu/Xoy7/IMdisUxQlobcuJumhQusAukIbRa1eF5ar\nN5jM0GjUyKz8nA0GiyXDRgDMyofS5EaTKVDeRy8W3fNB0dqKTyJJahc+lkzsIiMsMyZaogiAhUqm\nur7PzI0Sx48n28rjhOg3FpA1USsiw1fM9R2uZ0qvQqAqq2iqLJLy4CURy9go7fBRgB5jcIP3kckl\n0sVQVHgcQVX4spQmKTgCAmqFIHIbVzqZ6rcLqqKMRGDXYxYnppdW8vepHNZYkaKUHhvBuOA1AR/3\nyYFNL7/O6Yf341wbFwowFqUt2spQJyhPsEE8wbxHa/GA0SHHxf2DKx0qKv0DjioUODRBWwgGseTy\nIvvxIdqKShqkxKyUlN0uVVFGiZGj3S0oijKi9MIm63S7dMqS0sNq51YelKR1L8bdkwkGsgFGNs6y\nmxPsXTnJwBsdeAF+fAw+CrJK7D4CzyAegnfv/IjdjRO8unmJckNdCAVnmxH4Wt+gfN7M7c26z6mu\n/ruAr9T0qXW/Exs3VZfeYgr0JscMZ7idI9TfCHRehjc+gkOCKzN9FX7lhzC1K7Bt/0V2bzvBZPMG\nc9Ob5PnLNXQb9Jsq6BtRJ6lKAt1SUVmm79RZh6oO1TDkG2AbUv8eX+Pgltf4uv42X1x9kenDN6mf\nKVEFlJs09975Ads3n6E5vMZ3H3+eKzdmRD55tQGLk/HxF+mnhH2aofUvdhRlxbEzl9i9bQN5nlF0\nu6jBQbI8I1DinABsRmvKqmRtrU1u69TyOsPDI7TX2qysLIsULxmqVw7nPBI8KECVBIOodc9yHKTr\nCCgpSVtPlvfiYSt7a61BWRX3wjKczrKMLM97IVplFU3xlbBJQ5SFhzgo6HQ7dDodim5BVVRUVSAE\nkeKbqFpJ5ymMXbXuI/YAsR8QD/yAr5wwWhM4lvhr0cQspeqmYz3wZbQRz0QhtEVPYfG/lHvlcZEZ\nppQiyzJQSqSPzlOFEhPDskzcyzsXkxsRVUaZgLB18ka/7vwI9FIlk4+YJyVixuF5iMMNo8nzTFKG\nlQUtAxmjFRZDwGOMqGW8ix7EsX4SJK1XALMS7/Ke6sjF4dX2jeOMDzVZ6yz+tV/Tn92RBhwW2Yw2\nYEjBRqjPrLAzP8n+6jCbD19DfRuOfx/eWhWYesdpeHgZhscdD+54m7dqD/HGxoOsbB2GSQWn69BO\na01aVz5tDfysjrRmGvoWICmYZYC+NUgduApLDfhgEHJFpxrg8NwDnN+9k482HObXat/hXt7hvnMf\n0Ly6hq483ZEaV26bYk/rBINblnn5iedYnJ+APYGN2y/wqH2d57o/YvsLV1D/GmZ/BisljA/C4EOw\n5/fO0v7Cq1xobuHCnu1c3jMjsu+LGZQD9AOtEuiVrkXz8XuXgK4k/67o9Sh/ATxMv7POwka1YFTB\nbZDv63D78Ac8yuvc/cEx8m94br4AZ6MsZNsQTJ4N7LVnePzgaxy1+7hwx3bWto/KIOxmk74P8N/0\n8/uLH5874CsttCbKP5LR/PqI3Wiz0vt3Ygnp6FMiUwOPi9MDFZK8UVI/dPRGkYm0IubqpjOg8rLR\nXV1Zw1Ue7x3dosvqaoHJMoYHRxkcHmJ8apLRkTHy3MZpc6AsJJWk9J5OpwPaUKsPsNTpcPX6Ndba\nbY4PNjF06cxdpp5ZBmrQKQoUGZiMoYlpBgcavLBrhrut5d3tW2g1G9i4SFsTlflKFnhr4xRlXXLM\neh29FEBiM5XMigMQpScpCcY5oSoHhVYWpQVwdNpy+g9+g73/xz9nae8uFA6vFSZIExhMJc+BEaNj\nEw2HUYrJ8YzltYrZxRKMQWUabcHGZK7cilF/pmPHp6K3mguip1cGYrNDz8BYDJHn9mwkvL0QKcmB\nurXoSI3WxjIw0KDWqON1XG6MQWFj86RAW/LcUqvXsdaS20zo2jrQ2bWN+eUO56/O/m287D+jow94\n9jfqiV/VBFqQ12Ea2B0Y3n6T++zPeZYfMvXni6hvwLlX4ZyDMQW374DmYsG9/+lhTt22gz/kD/gu\nv0aDNcqQc315itWjY4T3DLypROJ4DHgAeAp4LjDxyAW2t05ylY2cG9vGxqdmGTwBf+dFOH9NStlt\n+0B/EcrH4DbOklH2hkifXHoVkCnQpadT1Hl74AH+qPubXD+xGfd2DV5X8DOEmuWTY2VifHXpv9Gj\n2ZZblNSb+TE4VRez4fthbbXJ2kCDzoB4gdUHpFeZi789BGxsAOPQzWus0aDra9I4/AeQhQ4P3Ps6\nT6pXeZg32c6ZGA0/wAmzm58NP8irB57i7YGHqKqWPCcHKoZ332C8MYvBsxIGuT47iXtvEE7DzasT\nnBvczpnRzWx78CKNdx1fXIJts/Is3z4KQwfBP6A4NbKNc9zG4qXpvq9wzwz08wF6Wa2wGspCPDvE\nmD7E2PpoAF/VCaaGzTVNa6icrAN5bsnrObmtYW0NvMEXAZ/B03/2Q979jV9BmQxr8giEGawx6KBR\niG+LSSBO9ILqxctHVpV3KYpdWE7OS9Pko4mvTJxV72uSp4x3lHEIkVmL8mVqT+LnNH0XXyuRoUAI\nDucr8aqsQBsfZX8WZYQlHJyPLATwvhDmbQiEykcWVyXsLidG5XkIdNud6KXpCBl0u22KokNVeYpO\niStdz+srxG5FaUXlK7QVX7XM1sTXK8raFQKSaS+sgcSUOvDf/K/oomTJKOZ3b6NyYnpsco22ptec\nOOfI8yyyD6LPS2TDuUokNMYLA0NrgyLrMcXFbFn8zMqqizExGUw5yqrAVV2U7xJ8G1QlnjOVE/sB\nJd6Spfd02l1W2mtUPuC1obil04DXN8Vx8x1tHweyVUaZY3hlEXUKrh+DD4KsmgAnPNx9GYZOwvDs\nKuNbZxkcWWBpcEoWcJUm8Z9cqT8PR7pfieGQvk6pZWkLnhqU8hNfJ+PpdcnKKpd73wQ11GGYRSY7\ns3AOlq/AcSdwEQjT+ewyTJ2DwdUVRpljwKxAK0BNSTHsfhKES8BFmnakczT0JZBL8RpqCM14DJq5\nyC/vgR37jvK0fpmvFX/Khn+7hPq3CLuvgGyHZ/KZeb70uz+mPdPk8vAmrjwwI55jR4HFRFuuxb9R\nxPP77IySj5y6wBcP3k2WWYqiwFUVtTyjKko6nRUBv5T0Et12h6pekud1RkfHGBoUc/j7PjpGZ8s2\nbrYGqcqKyhoyawhBS9hTiINdEuMoru8YjLIoZWRmEXmnwmCNa7RWcHZFlwAAIABJREFUvQGA1oY8\nzyPbS56rQIVyIT6mEhatD5KC6yu6nS7dtQ5Vt6IqfAz5IA6B+3t9pZNkPDK84tA7IHJHozOR6ako\n20Nke1SxT0rSTAAVYr8jgG0aoqugyFRGPatRs3lMSA5xi6Z6nJ+ArOmuqsTv0VryLIOioFsUOO9x\nVUlFkLU6Dd/joyWfL5/m80rqSPoJVOgBiAEoo0daYkj3EoUjCGaM9H2pb1o/lEr2OUYrQtA4FeuS\ngqoSBle9XosgZbKRiefpJD1zoJExs3GEC9dvJeArrVcpTMMKu3QImoNrTOurbO5cJjvi6fwcXluV\nLFiQANYN52D/uzB5cZnNOy8xPjzLpfGdIhaxaZ1P4A3rPv9NXUcC8AaQNWU0fozFz4mBFiC04VoX\nXq9LjtW5nPo/XeIR9VO+wgvc8+pJ9AsBPgLa0JgpGX5ihYnfuk5Vt9zcPsGx/2ovm/QldqjT3MUH\n7Dp6EfUdOP4D+NGKbKW3XoevnIepUc+ee45z520f8ePWFS5v2wZTBloG5hv0w6oSEzo9JylcKvVo\niQlbfMpHAsPWA9uJvRul86YmBLMNkE23meEMd/E++U88iz+CH5yVtgxgxyr87vcgv6Nix51n2DF+\nirGROdY2jsogRZs4xLq1FSGfO+ALwDmP0f4vSBFhPdjV/6wgpl31Xxw+VLhgcXGa63uJWLoX2Sve\nKtHrRCmaax10p8tqZmivtVlbWe2ZSpZloFars2FqmvHJcYZHBmk2GyQree9dTISqqFxJp71GUXbJ\nBgapVJe52ausdQp0nqO9pWbgwuG3hFpbrVFvNggmpzY4yYYNG1i5cobl2av8T7//dQbrNRq5Jcsk\nrQQVp/nGktmczGai5zemJ+XsvUfiIXHNMuFP9663QUo6MxAJpRbT+pDo3Tqjqg1w5L/7B+hQon2B\nCdFoWWuUshgNWjt5K4e+qbE1huGhBisdD9agMy0yJCPyRWsk6lipEP3YogGnVpROvF2IGwqUIOAJ\n/hINncIoaOQWrSwOj84seX2AvN7E1ho0aoZWa4CBgRa1vEatnglQqCx5PaNWb0qDGeIUSTm8gycX\nOnzzuy9TVrf69Hr9BDpNFdbTatdN+zMri+QETI9eZienmblwDX4MJ34O36tkca8FuHkSnnwFxh9e\nYfemk0zba7x74iHW3h2WvfN1hI10EkkNPE/PM0Z/qWT708f4kvk+T/Bj7lg5xnBngfZMndbvdWju\ng33n42luBgYh+wZs0Cts2HsMbgf2wsZNsPs0nAuyzO/PQO8Dt1NxsznGjTDB/JkJ3LfqQgf7EDhb\nCfWZS3zc9DdNnVMiTPIIuAkMgd8Nyy2YBXetxfmpbZyo72THA5cZfQieW4J3I8i0twEjB8Hdr7gy\nvoFzbGe0dZNnnvouJZYudb7Gn/LVte9x1/GTqHcR8GkU9u4/y659JxmpL1LOZLz/tQO0Ni/w4Ohb\n3M4RNnGZjIJFhjk7PcM74/dybMuddC4N8d62e3i99hjbHznPTHmJsa2Bg8eRt+8uKL+gOffEND9W\nT3C4e6+keZ2Jl8gcfSnM+gbtl/OwRhOcjxtThbZgMo1zpYDfXmGMRZHjiiCSx0xjMkOWWWyegZJh\ng8lqBGPYeO0aO86cY/xffouX/sF/gjG12FzEWqRUb33MdC7ywjhASRIWSAzk5OnlcJEZ5lQaSsia\nK565Kga2OIwWoFpkGg6HhJYILuTRyvQeX8sXEBkE3aKgKAsajTqNupV13QVQXoz+laIKDm0cRnSd\nAoZ5B5UDXxF8gXclrixQOArnou9loKoKqrVSmAhFmzL9n1O4Sto/kZQjfYrJIuNBggYC4kcp5vnJ\nZDkmm6FxLvDm//LfM/3CD7m6fz96rYNWFpQ0WcYarFFYrahlFuXF2iDuBHo+l9KQGnypUKqfsmlU\n6O0XJEnMURUOa0QSWXZLQlGBV4QCQhXodgo6RcXyapui8gKCISEE7W4HF597V1Qfs0q49Y/Q208n\no2ivNFjQOeh15DWDMDSw8hFQeG8+YdX0y8iM/ncdaY+03h8t5+PNS2oCQa4/eWulBLT1zLew7nPo\nL71O4zAUNoMmGPvxaJMcaCigDqW2FNTwwYBT65Qwn3bvE/NM02eeJTAunadFaM5NYFj6yC2gdlbs\n0cc54N9h/LVV/Lfg9ItwaFmuat85uHcO8tGSA7//Hm8NfsSbOy9yc8sW6UfJ4mOmxu+zB0G7ZcWJ\nc1eYmR6m7HqqoiAzBkeXoliLwoYAXlipwuaytAZa1Go5Q2XBMxdfprh2g29u20IVKkpnyLzFOFnr\nZVUSRUB0cURhwCtcCCKXQwAXYzKR8kVlQlpngiJarMh+rOfpFffrIflJOY/3FcEVFJ01OmsrVEUR\nvy/S6xCMyPStlVCpdYmRWmtUL+E3nrkyaG1lTdYVykbFBUBRUKVewIuEvXKOsqrwTobieAGythw5\nxcyR45z8D38Tm+coGyV/IDUkiH9yiMOfEBU1QUf/sRyUsZRVRbcsKV2FDnFNNnKvfVyOlNZ932Hv\n5X6HgPdKGFjJLy1ed1BRNh/ZvQRHqCrwDu8Cj16bY9/ZWf7xzg2UCozV1PMaZdHFeXlsFUK0yhEg\nLNkVpD4xRLscmZp5MeCvamSZZtfmMX764QXK6lZb+9etCbEt0DqQUWJDCV3odvouTiCrQ9choeNt\nyCiFob4e54JP/uNv6EgM1RoCbg0jlKSNoKYgH4FBLd8aRBbKoiXUtesV3GPR/3HJ7foIB/0b7H73\nPPpfBeb+DI5dguUAe1uw6TxM5is89vWfcjTby377LnfyIdPhKtvCedQp6ByFD1aF0AqiQHmngi8f\nh6FzBRu2XWM0n8OOFFSNBuQJnEpqmxb95MX1jKoE36RepINcwHpP4vUS8U8brClhM0bLr1pzjREW\nGFtYhSswNy8tWno1nAfOzsHuS9DqrjDMIo2svY7kpURz3Dv/W/O4dc/sr3FIqpbHquT79InCGdK8\nIdKSERmJOAMHnAcflOAvQTbCyiFR99ArUEBPlqeU4ql//R3saptv/+7zrETvJ4JGq4zhoSbjkxNM\nTo5Tr9eEXZCkkSGgnCdUFc6VFN02VdEhyzRZZljrdFlaWMYH2LDpNqzJWF68iesKA8XUWphak1Zr\nmKHWENXcVVy5xmC9xuCAgDLJsyZds9Yak+WYPMPYj0+A4sgD+i0Bob9Liuy5JJeJCZgh3VqZOMm9\nMdJEaEWlFNppTNoCKIVDobVFUSK2ZBqlAsGX+KITwwoU1miGWg0pzJlUKGngIhU8sbii3EZpKXI+\ngpbpShQQdKR1pzTKIL4CjZo4IFltqQ+2aLQGMXmDel0Ar9HxCVoDTeqNBrVahrYZYgBq4v0ToK+s\nouEpgUcO1nnrwzMcO5mcnW7FIxUIRX8xTXTk9AE9QEwj0+aBQMuuMMo8XINwGS6v9RlNXQTPevQi\nZFdhyC0zmC1L0TyERPguIYDKbIAVBwMWdgP3BzYdOM+XzJ/zW+Uf8+Dpdxh8o406i7wEd0B4CtY2\n5DROl+iXAu1vwfUrMlSa2gHZ88AXYewKPPcyzF+HLIepXcDzsHBgiA9qd3A67KRzviXA28vA8hpU\nSR94I55km/6GP60lDtn8ryLFxkFYgoUWXAJ/THNkx528NfAQe+4/w47fvciWIZj6EPCQzYB6Bq48\nO8pbA/czzk3+S/5PhlmgIuMaU9y1epTbXz6N+ha034bFBRgZgvpjFXf+zgmq577P5dom1B2BA+od\nvsAP2b/8AWPXF9GVoztU48yGzbyWPcb3936Z1/MnOfPRHl68+wvUal2eeeoltu+5yND8IorA0ugw\np6a384p5khfL5zj90R55rk4CyxXy7Kaiul6S88t55NZilJFJePR8kn10iFdl8Fqk2pIeq6lZQ16r\n06jVqVnxWxFGlMbUMq5tn+b7v/kVFnbvpGEVykjzkjbl1toIfEUPRS0S8dR/KmT6bkyQ9Suyu4Lz\nMuMzNq7HIrNAJeAuRMZybFT7MVY9qJ+QPEsi2BO9EH0lQR4qhCg3FJayMdFAWKgCwnIliOTTBQHk\nXEzOrUpc1cWVbXzpxCPLpzSxEu8rnK8oiq7Ib4pC1mEjNUIZAb58bO50TwIko6F0v5QxvfMXtnVM\nuQw+GgrD2WceR1el+KfFSb8PAaUhs5bcGjItoQHJ4cs78QZFGSov3zdBnjwfhE1hjRJOQRC5vbYW\n7QPae1xVoStPqAKuDFSdQCgMxVqgu1bx22cu84+HB6m8ogietaKkqgJaSZqZu+Uan08ePU4GvSly\nB1iG1W6LG0yw0Brhtl1XmdgH970nc4SASNEnbwP2wNz4EDeYYnlutO9fHhKQsh6AudXvx192aPrM\nrmQU3aLfuCQz/1RfHX05/Qr9BqZDn2Ubp/qhgLUmLIK/WeP61iku2i3cvuccQ3vhoQtAW6rVDLBr\nO3AHzI+Oco0NLFQjortfA9qJKfDJtTw1Seu/55F9QFr/1zPBsl6ISn16iY1cYevqZexHjtXD8Gb0\ntwzAzQqmPoLt78HIs8tsGrzMWH6Tm+Nb+v6UPgGG6V5+9sfxs5eZ2TBMZi3OVeLvm9nowxSwVlEV\nUBSC4mZ5Rr3eoNVqordu4Y+eeZQ559BVl7rPccFRlFXfZiXo3t5TAmM9KugoLXSyxkTz+rggy+A2\nBncYo1FWmMGJmZUYR7LWOQgVKnQJoSRUBa4oKQsJzDLGoowhK0raQfynBOSyJF/jSPYCQgzysHFg\nHU3G0BhtyQca6Jqi9X/9S2783tfFz9BpJKVXWExl9BDzjigXlWsY7HaphUAjzwiZwauU6hhfVbHv\nClES2fM9UzomZMbBeLyeblXKPYwAIVGyCP3eRuT9KkK2qb8xUjfiz1gNeI9HRzVLP5Ux3d/m0hIN\n72kazWpmMHG/76r0mky9Uf9Ijy+nJoNSV3VwWgtbONfCMsewcWKYTRPDnLulTO4D/fUg9Ij+3TJn\niSEW7QhshMHtsPu6MHu7iMvHdAvUZig3KBYZZqXT6udT+FQ/ftFUxr/qkdhQCTQaRBCu20Bvgqka\nzCjYiXiXjSPLcwqOumBhHAamF9nGeWba52m+34VX4ScXhbhaAmdW4Fffhi13wLaDV3hi60+Yqc6w\n/cwlBq6uUvgaBHAeyk9cbgm9ObrBSciDDp/A+JvIXe3EExyJJzvExwcCaQ1fQgb1i8iU3CA3v0u/\nvn5KXQ0OvAUPrrKUZJSZMLrzTKDDlfijdaAZe0CnLQ6L83qdM8H618+te3wugS8Q2Z01Vibs65em\nNDJZdyRNftBCUfZeUTknSVQ6pkZVIlkgSiLThrUHnHnP8fvuZnB+kWx0mJFOwcDAgBjuxwI3PDpK\no16TYqdiN4SXZsNXeF8SXEHVbYMvsXkOlWNpbomlxWWyWs7OPbsZGhpjud1mcW6OoijI6k1azTp+\ndYnl65exWjEwMExwFQMDQ+S5JVMOnV6MWlJUTJ5hs6zH9NLG9CZLacK3PhwgsQjk9qUiHEiml73C\nHKR1NKhoni+eNAlMNFqjsXE3UBEQkLBRq5PnilB16FQVvvBUPmCsYWhA6NdeIT5mEVTszUGDTJ6k\nlgWCdqBV730eVIyZRqOQDYgJlnpWp5bloD0dH7B5k4HWILbRoF4fZLA1zOjEFI2BQYw1ZI0mJm+g\nMt0zp1ZavGa01tigcXECNDCxlaefvnQLA1/rU/qSd0tMbqJF3/B2nWAw0BsgOAwFOdRA1aFhQZX9\nktYEbJTWV8pQpefcIWOPswHCGoRF+emJEdgB9f2r3Dl6mGfDSzx67g0a/8LDd2H+pDz26G7geWj8\neoE6Amt/Bq8chcNxGvn4FbjfSfSw/89h+E4YPo/Ujn3Q+YLmJ+MP8ROe4PDcPfBBNKhfAMJpBPCa\nj99YoZ90lSbgRf8m9Hy/YtVcnYAzORyG8/t28KO7nmGgscIXv/pD9t59mvy4l4vYAmd3buCl+lNo\nPH+ff8rGjxbQNwKhBt2ZjM5Cjv0zz/wfw58vw6UgdfrJmzDdgHv2HOfube9jtOMrfI+nz75G7fsO\n9QHSUG6G6YdvcNsz58nqFUs7h3j750/ws5OPsrJ7kFPZTvZuO8bU1usoAjfUJEfZx9v+Ad4/cS/V\nK014G9HLdOcR4GuJfgLYL29zqpUit1a8PKLnR+VLSV5UkZUSc6y8jvJro7HGkBtDZjMyrallGXmu\nBbSPZsWXZjbTzBTaBIISdpSJiU4upGRb6ThCkPVfm8SA0THMQWCfNMn2Ia6FrsKqaG5PSsxaV8Oi\nxwuxgRDjXY1CY43Fly4axDtUlFElH8dabskyAbdDcHivo6SR3gTbiNkLriwjICQ10VddkTf6SiSP\nXnxmXFVFc+UCYxXtdjsyKBzayvoZlEKbVHPLeG+siGBi86ONloCByEY2xkqSb5QRrm8KtVEE59Am\nSDJnEL8WrRU1m5FbAcSsNiglwF5mM/FvRK7XSPWCIDJIHzxUARUHJ4qAUYYqgKoUviTubhXOBVwF\n3U5F0fX8t+8eYefCIotFwT8ZGaL00iA7J8ErXhtKf+sZwH78SJvZmH6Bk+XgKsxfnuD4xj181NrL\njoPnGTy5xmMa9p8A72BoH9ivAM/Ae/ldnGAX3csDcBlZZl0yEUzT6V/2I4FeidWVmpYkrxmL/27y\ncVCnRG7IXPyYR5oYjdyXCBCGNiyNwFXw5wyn7trJe3Y/+x87zNTpZe5wsPtdwcfsVjBPQ+eLGccm\ndvEhd3JlbhouIGXOe/rBLX/Zep5oZp+UpUZKR7zsvN6lTpusW6EWwa1K1Uj7gjawENWStlOJv6Uq\n+tuQuL/8mz6u3Vxgud1lpJlHFpUizzJCZDBpLb6GVVXgXCk7JeVpWIMZHODybVuZv3SJwaqk8o7M\nhx7zSYGsT94nNaJIBeOCrlCyD9cpFErOKSgB6JUW1dD6wbpKgwfvCK4A3wXXwfsyMotcTJqXepJF\nGpNretrdLpVX4sEbZY1ai9l7vyeX4YKJwFhAVBm1Wp2h4WEGvvEN7Pdfwl6/wen/4g9iixvTaktH\nUcia5rwAUSbLyOs1Lj/7BMtffhYz2CIlFaXgrDS0kAGDR1SBXoY/iNxQJYDOGjCaYDRFJRtN8Xik\nN3xP9iwh6id7JvbQS0I2CrSN5voRwAoQTfs91mo6RYUj8J3N43yzDuSWupJwgSSHNPHehRB67Lv1\nddIYsRAQ/zQBwEKQ85O0SM/4UIs926a4cG0h/tytcCS/qLjvXQlwU7F8dZALM9s4ke/i9v3HGXlq\njaevw9azslPe04CxR4DH4NjEDk6xk/mbUxLkuACUacCxHvj6rAGSpFJZ7+s1hshCtsLWTEKj7pcP\nu6/N8IZZGqZDx9WZvzGOO9qEa1DPOwyxRKu7groC7YvCeEpRBHPAtQXYdBXsXMWDE4fY+spV9PeA\nj6BercEWaG6HPUfgfEdGGZPA3QqYgfYWww0mWSyHqVayuBQHhKG2D/mN2B+xCWoZjCsYUHJ5Adl3\nLACzY+CmkWbmMh/3bWTdvYeP15MK2jVYgGJpgGsTG7jY3MjU3kU27oSD1+ENsWplP7DxTjm1uYEx\nrjDNatGSBX4FKNfL9W9d8OtzC3wJ09VhjHyWGHaZdocQ5YlJJhGBsOAdwSg8gdJpqghiQPxe6US7\nn+bNSRsPGKU5f+9dkkblhfFTr9fjpAZqtTpZlkkEffp7hMgqcxAczpfif9Ltys8qTXt1DXd1lsbK\nKmbTFpqtFrWBOo2hIcYnpxi8fp3f+d//N/75157neKYZGx/HGkXNGAYGmmgkgtcYiU8OMiDBmBxr\ncvGZMRZlhE6ttO35zYSgpZr4vkea1uumM3LTpNGJ65gwuaRxc9HoVwq4JmAJGlSlJQqenKANKmic\nh3ZHTPm01jilqYKCuRV2/5MXuPDbj9HeuUlYByqeV4gRyslA04ceC805j/PRjFhFVoA4EktR1BVo\nmfKrzOJ9iTKWWrNJljeo1Vo0my0Gh0apNVq9aRM6wwWF9sJE8Pw/5L1XkGTZeef3O+fce9OVd12m\nu9qbaTPd0zPT4/3AcxfE0ojcCJIhBoPSRuhlXxSKkB6kCD1I1IsYelCE9LJaE8tdiQAJGgAEMN6j\n0dO+p/20d9XlqzLz3mP08J2bWQPQgARBzJA3IlHomjQ3b2ad73zf30Wz0sj+0kLhACMbiCeffprv\nfO97fPzxx/+QX/+f4Cg9Q0qtd4mM9COb8wH5t64KFRaki7HIWjyrmFkZ42ZjkpWNVXr2t9jxIdy7\nDJeClJrHG6AOQr4r4UY6xV03RnO+Jot0M4CfRSZgAZI98tITgZ7hJXaos+z1J6i96sn/DN44JipE\nDew+Cs8qSDcCF+HuRTFSbsZ3dszDA5eg/xzMvdDP8u9U6Z1vYzPFzb4xjpr9vBpe5I2l52i/OigQ\nzmWkoaCJlLR5uoj7Wllf2RwYZGGv0WV+zUF7AS6NwGFFa7SXw/UnaE9XuZ5sYM+mU0xtuoHCM8Mo\nZ9lBn1/mt27/B0a/M094HewNMDXo2efo2dqCM/DeolifgHjoD83A8Ckw5z2T0zdIKXh6/h2q/9HR\n+jrcPSWJjaPrYOBkYMLN8vTn3+JctoOLm7cz98YEx+2jzO4e4qLeyrC6T05Giyo3meTKje2EjzO4\npwTOs+X7XutRk/FpL25/3aG1eC0FbSDK/oJ3MfQjFeaPUjjlMWlCJU2FQawUWZJSSST4Ik1kCJUk\nhjQTj78srWJ0IsMeHWnfSiQdAsYgQ/mYopVkKdorvIopuFFqQvDRS0TEZCZJYuJiCUBE5i2yVou8\nXJhipXNKiM9BUDjrYjMQObIqCJMtyGeotCHVRlz9jAAf3gfK9ESClyGTU3FN9ZLuSKx5Lggr2nts\n4Qje4pyN9VZF5pfvSE2SVJhyPrITgtLoCLSEmIqcIJ4yJhVgJjGpMNO0NIHSXIRY12Mqp9FgDF5b\nSJScUwhoD9pBkqoOKq+VxgdNcFYGeUrMl6WuQekZGXwcYiqFCdFRphCmhRQ40EqTF5bVvEXhCtqu\noGUL/octm/hX5y/yfw8PYnMxs+/4gxKHrJ+apuevOkoGwJoI+JkGXIZwLOXkA/t5vf4cYw/c5bHf\nPEpjV5OBC/Iwvw1WHq9yeOuDvM6znJjbT3EyhSvAXICwQpdJWsrIf9asgJ/VEXVBaKSu9iL1dAQY\nBz0GlYaYYA7RnX21gAUDsxOwPAx2FmlgSj+XyCqWO8LqCFxLCSc1Hz+wgze2PcN45TYv/PLrjK2f\nIzvjUQX4SVg9UOX43p18n5c43H6E9pEBYfHeAVngS1ZAWed+kmPtZxNBoKjQbC/XWOrtY7VRI0xA\nNgITd+JHHa/EVOxF270VFuinGWqfJLd1vGl+9LX+/o6F5SZ3Z5cY7R8HEPP4NI1JiC2KohBPxSIQ\n8rbcrJWkb53R19vLrUSz2m7SsA0qQdYsuWnxZCT6YwndFkpZu9Jikm7iIKYjtJBAD6VlfS4BEEKI\n+2y5qeAIkU3rvI2MV09hHbm14lGVSq2pNxosrzbxrSL6V+ouA6pkJ8VBFEr21C54Kjqut8pQtC1z\nv/0v6bl4iev/+neg2cLjya1ltZ3TbLUksTZ68yaVKpValVqtSlKtYONar0tmW1y/hRgA0mPJfrr0\nEA6ODvstBAmNShIBv4OSgZJWiqCD8F8i6C79iQYciSqHahEk8nT43B0ChBIJozIQgidNEipZRuEl\nzTjUqmRpQqWaUa1meBsBdmcJwWFViCxpH3kVUi+LwmFt/B5n8l4IkrSstKKSVQkENq0boFZJWWl9\nGsCPct31dNaa2QG4ZuBMxkf7dvHu4BNs3naZh3/9OPXBgt2nkOVjEtwziqsvjfKmepaj9iEWP+6H\nj5XYmhSryDq2NqX17/tQdPenFaSPGRWm12RMnH0pUHtmhW0PnGIfJ1jPdXpZYpkerm+c4qMND3Du\n5gPUelZZpU4rkTCR2gAMLkh34OOz99dB9UG12mLdyQL9BzDz53DynqyqD1RgwyF46AD0n4FFC2Mp\nTD4O7kXF5XXTnFU7ubsyQbiWynI8qGGwDnkdFgdhZUw07Bu0BFhtBMaQ2uGBFSWl4oqCS3W4PQ1F\nHent1JrPtFSsFMjULCYuuibMCRCVf1zh7PROfpgcZPuzV+i93uSRFLadBDT0bQP1OZh7tsGx3r18\nFHZx/8aICGTmiM9Zfr6f3hr+j3bwBWCdI027lNROQmH82TWop4PC6CijcMFjPbS9ogiSGmKdk0GL\nDxgtKSUyF4vyvVDGowdq9TqlzNIYE5P+kA21VzIcQUtBDEGSP6yVRVVJPLEtcuZn5vi1N94mtAv+\n3fQmWndvY+fmxG2h3cJcOAvNVdbdvsm9fQ8yNDhAxSiUc9TqVYxyBFcQeWfih4WwlZIsJUkS0jj0\nMiaT848mjYLmOBkYepG4yKXqykvK61ei7eWAzCuPDjo2R6pDsy5Fh85GWrOX8ZF2Dl0ECAWaAluA\nD5pkqY1uFTRuL5Dv3NQho2mlCN5hQsBaR/CeIjhG3v6IG4e2EUKgcKBTDcrG/VyJUZV/joaglUhb\nVUKW1ckqdUyWUanWaPT0Ua3XY6MZUCGJBqEB5cGpgI6okjIim/SRLRKCREqPjo7y1a9+ld///d//\n2X7Z/1ZHOcCIwm56kQIxhmjgh6BWF5PF/jXIQgtZzWeBj2Hm9jjHt+7j3b6DPP0LHzCwZHnpFTg0\nD5Uq9O4H91XF+V3THNX7ubS6jeJiTRbppRCfbE5e0yQd//xKY5VR7jHVvgUX4Np18b0vbWMOA9s+\nho1X5JfO//g2PMQ+bdn38O8rv4pdl1JECeG5sJMzt/Yw+/44vA58CNzKEZRkPp7X2qHXXybpc8jy\nWSInK/Gxt6WIHK9DHZaLIT548imubN7K+PA1xpJ7aDxzfpDd6hS/2vw/GHllHv4NnP0Qri1DTwLb\nj8PIL8pTr/zIKy85IUmYdiCjYCNXaLxtyb8Lh4/DD3I5o4m4TP1wAAAgAElEQVSb8IXvw9imwMa9\nN9ix6Rzj9Vss7xpk86azPKHf4SE+ZAuX6GGZZXr4mE0c2XCQ94af4GLvbopQgaaGk0PQWlpzXZp8\nltPXEq0p9/q6lEsH8IVHpyGuM7Jh1lpTrVZF3qYUqdGkRmG0WBpkRn6HdzI0CyIXFEaTsL1UHP50\ntCWq9ATRkSEbZDdPXD8oGWE6Mo8VOhFQQWstm/zIyKVkyAsZK3pPqm7SFsJaCj5KG72PSYkhyvbl\ngUaLLB3nhaEQB19aa3DSsAV8uYTLM0dfSu9yfNEGV+DyHFcIq8u5gHUiG8lziaYXNDzBpBkojdcg\nkhoDSmOtlTU3yDAuJBCSrimzIfriaAjOkQQjDYYSkEUHRZKmJCiMD6jCo1MjtySgdExeLNkPLgJY\nWoyYjdZop/HE5E3l0CYRBkQJoARpxrTS2ODInadtHaGQGt7K26zkTVbyVfJQ8D9OrqNotWi1c6yX\n60II+Dis+3Sn/5YG6yViH30NWyNwvgqH4c7UNK88+Tnohbu7xti9/iP6F5cgwEJ/H2d6dvAWT/NK\n+yVufzgNhzWcBxZLfUnpo/jZlk93jMyoxVuMX2RaJkBTmUhsNgOTRENgpOTcRYaBFzK4Og7zNaSB\nK59Xr3le5HLNwNLFft4ffQI7mHJ3YIwDLx9l4rF7GO9YrDc4X93KuzzJK80XufLhDngfcSuedXSl\nMeXQ8SdJ7C13UCXwkQPLsDQE96B1tY+rE9Ocq21l50OXqD5T8NwyjF8VvGvLIAw+Af5xxc2JdVxm\nE7eX1nWZIZ03V7KqfzbfB+c8V27dZ++WCQABQY2i8IbQNjhv0UE8ZJvNJtY6IeUGhUkzGj091Op1\nFufnaRVtKq5CEhJhOxkZtJRXUkUvKIWsaVoj9UODMQGtReJIZO/GGRQ6hMgSc7LHUXLNQwR6y8U4\nBMRL2FphS6UpaZrggoOgySoV8kLUKolJCBhhtUafW5D64OgGVTnnaBcF1i/RKpqwarn/r38bW7Rx\nwWG9p1UUNNtt2lZA66mrN2mvn8L195NWElGURKYWSkWzv7KPiCVPqa4iQ3WNVVwIYF1HOhpwHVsR\nbaK8HxVrl5aC4eO62kkyDugo+xdGl/pEfxOQ/ibE624STWj5zr7AaEWaJlSrFXp6esiSBFsU2CD+\nmSj5SIr4nrwvmYoqelvK45MkkYAtwOgk2gekBB8Y7asx0FP5FAy+SnCztPVYBRag3YbLdTgOd7Zt\n4NWnnqdRXWH5oR72TJylf26exFpWG3Wuja/nnfpj/Hn4EsevPETxg5qgtvcchCVk8JXT8QwGusOZ\nvw8QtQQeEqSh6ANGobcGu4EnAr0vzvLk5jd4kVd43L7PhrmbZKsFRS3lxtA6fpA8zJH1BxlApI7L\n9Trt3QmVRyxPzEFtUarV1hSmdoE6AKtDVfpebdJ+E753T3AFC1xpw1fOwvQ/hy1Py+VkFMKjcOOZ\nMd7qe4oPOMStqxvEBGwb8CDyx1H6IF/K5FI9CBwA9uT0TS1QzdqoEFhpNVi52ks4lcJR4EgK50ah\nVfozlqm4ZTgVfNKqZQkWBuGywZ7OOLtzN69NPs/Q2BxP/9p7jO6YYyDyE9gEMw/18sGGh3mFFziy\n+DD2WF34C7eJb7Acbpbr96fv+Ec9+PI+YK0XSmpYa8peHmVjEIuM1hglTUrwOpo1OqzrFpm1yGyH\nkR2fV0Xj4DRJohSlS1EuE7q0DnEIpQjBSUx9h6rsQYmJcvCB1eUmd2ZneWeon/7C0lyeoZ0vx9dR\nmKzC5Yl1/J+//VsUwyP0JQk9fQ0qRhGKnNREc02TyKDKSwOkok49SRNBl5SOso8ui60sEDqoWAoR\nw8f4PJKE6IUNtuaKdgZfIQjSFbSwE5BzUSaBRBgD3oZIzdOMfftNmgd30Brvw+DwVpgJrelxLv23\nv4Lr70VH+jeJRnX8EkRuah08+L99g+z+Eq5iuH1gE8paQpFLBHFSTsxKxCcyw4LHBUizTPy7qrKh\n6esboFavE7SkdMomxEfUSDYjWgWIyZXBSbsa4py1/J4Y4JlnnuHVV1/l+PHjP/2X+qc+FF0pawUp\nDkNILOBG0MMwbWRjPgVMIGSwgKARpSH9RcXiyUEOr3uMqZ6b1B9scbDvBLWDBdUZRC25Gy4fmOSV\nygu8ydNcvrgDTil5/LJDdrktOR+lOixlpT2agAkWrPTha7cETcAGZG1dD6NTsOGK7OU1YhNWnYIw\nDUt9Na6ykT9a/UWcMzTn+smvVHHHEjiiZOh11kE+Q1d7s9ZT5a9rxGy8jiULIgNuQ6jAzc3wdirp\nMFer3Ny+kdvT69GD8lzbt5zmwMQxNs1+jHobLhyGP1uVZ1EF3L0Kn38daiOwA+mHluIntqUGlQ0Q\nxhUWw/riOlyG5etwJpfSA1KLzs/D2GXoWVpmmBn6Kgts2nKOr1T+lK+EP+Phu8donGqjFzy+X1Ps\nStg7eZKR+gzffFxxbumAfOZ3Urg2jjRKpUlzTpf59tk6KqkYnYPEn5voeeKcp8gtOjGYiiZR3SQn\nkyRUkoTEaEzcwwuQ4DEqkCaGRMljDBoVNCrKe5UWSMR4SNLoseU9XsVEr2gEprTCeSe+V2iUhiSV\nDaLSnhBsZNoKsqyVJlgnwEoQNmx3sC9rnUYLm83JwKY0Tu7KA3Vk5CpU3Lj74DpgkHeuM/jyvsB5\naUBCCAQnmxsJZnF4Z7G2EOYVwkjTSmEtuEJkmFmWYhJhGaM0Rsmgzzpk0BQU3gXxYEs0IfGYLIVg\nUNqQKCPsiST643hJn9TOopQi1Ym0NCFQqSQUWDCGJDXoikJpL8ytaO3iVRDpvHS1AuQg8vvgXTRE\njsMfo+J1CPigOt421grD2TnwTlEUgVbb0bY5rWKVdmEpnI1MhXLboAkhwdl25zv26Tyi10vHSyQy\nvsI9uLZe1tE6XOABFp/s5WLvVrb0XGKk5x4GzwwjXGAbR5YfYu69Sfz3E/F4vOzAzSBrStkQ/WyH\nHT/bw6z5WfrLjAAbIVkHO7VIbB4B9nmq2xYZGJhDEVhp11m8OQonjNSkHwJH++D+NHJdBpE6MwJ6\nPWw00gQ9Eeh7aIYdfR+xmctYDOeTbZwa3MM1NnCKPazQ4KOV3dz7YAr/mpHB1yXA3UdQrLXXfu3q\n8Vcdju66X0pfV2B+SPJgzmpO7d3DB41DbNt7kQP/8ixDQ3DoJIQczDSo5+Hulxu8U32cYxxg5fSw\nSOrvQdf87W/DQPvbHwG4OTPPUjOnUUto+RZpmuFNEEDUxf26Uqw0V1lurtBnBymcJ80SqrU668bH\nWVxepNluUavVSb0nFIWwVHUcfigwUWoRlCQwCijuKJMcoQxnkjqgg0gllUyh8EpqgSpZUt7FYbki\n+IAtHEVucd6jooJDGUOCwXpLllUwJo9DObEbEQN6h5OcRFRwOOVJdYrXCbnNcXhM0BTBoKzD0cb5\nQGEdrdzSzi25E5v+oeUmT/zxn+OzjA/+l/8p7uVEdmmSNWnx5XcsspHX8kKCKj0qpZcQe5kg3zgN\naZCaTaybJahEaeZb+oQ5hw4hXn8B+4MKeKKRvVEEV1q5BJyzWG87oSVlf6OUolqtUK/VaNRr2LxN\nZgI69diyT3JExYmwsLNMPJzzvI1zoaPe8cGjk4Q0S1EaikIYOKlWjA80uDGz9KNf0X/gw6/5mdMZ\nfDED16fhGDBgOF/Zyx8+XOVabQN7x0+ybvw2KZZ5BrjEFn7IQQ5ff5zitQa8h6QgLjeRHWwDWctK\nEoQhGj3G1/5p9pJr2bZlGmIfmCGYNLAP0idzHtr8A37B/Alfbf8JE6/PYn7oUfeBIdiw7yY7XzrL\nzvo5NnOJ6Zv30C2PesARfhk2VWDqDIS2yMiT56H9FZhL++ibaTI/I0tgCQfPArOrMF1A+E1orYOV\nWoMrlY28mz3Gd/k8b91+muJMDfYhXiaDLbkeC1W4pkTmsQw87Rk+dJPd/afYnFxikHk8ipkwysUt\nWzm9bw/L60flEusEjo7Gz7C8lWt8Cebn8TOZheVRuNgDhxWzE+O8+qUXcfWE2xPj7PnCadbZ22gC\nM8kIp9LdvM1TvLr6ArNvT8IHCIjVLOgqZUoQy/FpBMf/UQ++QFhanQjgAGJgaLp6+fj3FgiS8hGb\noBACuXMURU7eblNYSVsk/AhNNnqAqMj06ZjEf0KX3z3KZqM7iIvFi2jKnoi5ZrvVZmFphdx63tg4\nhU4ShmoNskoND9RrDTAptVoNn1WoJwmVzFBNDGmiROIXnMg2kPdV7sskojcRo0ZjMIkw3bTusuGI\ndF2PUKJDRFA678N3B2BlJ1YyjYnshpJf1ZF2dp47yg8TuQ61m3cY+/Y7uDePcOF//l3xQHSC53ig\n6OuJ6IvBlOua8uB8HEiBdZZ3/9Xn2P3tY8w/sokseIIJ2GBlkOkUISbAKB9QGFDSYKZpRlKtUWnU\nqff20OjpJa1UIBZEXCDNynSYiNzFNDSUEnmO93gCKqbNlJ+sd55arcbnPvc5Lly4wOrq2hyUn8dR\nFofS06s0TJyG+ghs16KBPxAwDxRkUzmmV5pgt2zIr2W4MykcU4TDmvPrdvFnD32FlUqDS1s3s2Pr\nOQaYp0mNa2zgCAd53T3Hu9efxr+eSvG8Al05IUAuMsomsKzIVxvMDQ5ytzrG5k13mBiGfXOytipE\n+b5hHNgEYSf0XYUvfhceuC+BKNNTUP08rDxa4XT1AS6xhXsnNsqGv1SQXEQ2/1cduHuIer9swErZ\nzVq5xV91lBTisohEtCk4uL0eVhpwVcNRhV+X4HtBPWqpP7JEj1qiMWfhDtwu5NHlcSXA0pwM8Dbt\nhGfPyplN9sCOvaCeg3t7G7SpMnJ3EbWEeETHaxToZtqQyd+eR1M1TZ40b/Ol8C1eOvku/CEU70N+\nH9IhR/1Rx7O/+AFhv+J+OsTVQxtpnR6U4nu9B0I/XVNmw2f1qFaSTly5iVMs6z0hGFkbAiTBS0hN\nYSmKHE1KtVKhUqtRyRISrciMiSbwEE220EpjVIIOptzDRz8XHZnBkihp49oZCOK5GGV/QYkcQsd4\neRWbKE9AtOLSTJTjazoDMPG0ErQ8eoIZjVcuepmJ7M9o1WksIPphJknnXJI0xQcnwy9nZSiodJSP\nC0BT5LYj3fHO4rxIF7yV4Y5KJCEsURoVwSMV0W+TijQ0RE+0sj4nIAwxW1LYwKQJPvWgDUonsqFT\niSRmBY82qUySnAVnSZwwtEIBOZZEQcUkwug1mkqWkmph6moXCF7MqK0XGXxZ+5WCkATx4VKlnLJD\nQwO0+Ld4uU8ZqFM4T+48uYdW4VlptmV0rmz0e1OkKhE/2cIT0JEZ8Gk/SgmipjP44jY0a3B6SAau\nLcOdaxu5s28jvRvv0VNbRivPcquHxStDhJNpN9jkZIDmojxHJzTjJ/GZ+jQfiq7MpgSUJsAMwy4N\nz4B6yVF/eo79Y0fZxUdMcBODZ74+wOXBzZzcuo9rm7Zi+zLZVB7phYWdUk/8KlCFASPo/3PQ//Jt\nvjD0bV7m+zzaPMxk8yY126SZ1rlU38z6ynW+x8usztXxZwy8r8QLYOE2Ughn6LpP/yTylHL/AN2U\n40gDb43BpQocg7s7NvDawy9QS5ssP/lddm85R+1KjioCrXUJ1zav4/XsWb7rP8eJqwfg/cgAnPFI\n4s0CP54g/Pd/LCw3uT4zz76dU6w0V/DEND48zhcYJYEkAVhebdJs56y02mhnsSEwPjHJ3Zm7rC6v\nUDiL9TLoss6TmLjXDML40kIRJQTd8VAMkaSkkWG/jr5f0bldmLchguZImq/3TtZi52JivNwkJMOJ\nJD5JhC0rKD5plpFVKrRaOUWRE4ywmYT1K4ABQdQXebC0ipyklZBmCZVKhTTN0AZJLPdQOE/beSwK\nTEqaGsLoOBe/9s9Y2rFN1n8tHl1JtANQSkU5YvwsA90AF9e1LAEBjkMMxXIRjEidR2Gl3+o2bt0+\nKwRQphMIg0JqTIh8Me9IOn2ExjrbYS6XDDcfw7HSJIlhYw4VoFGtUtEydLPeii9kmkSGmkVrsaoh\nSGpmkiS02wJoaJOQpglaI8nQRhh8JQAdfGBisEElMbTtz7sWlAyhGM3IPHAHWnU4MQRa4/OMj2/v\n5s6jkxwePkR/skBCwYrv4c7qOmbPjRHeT0WmcQZZHqo9YLeBnUf+vu8ie8i1u96CLsDy0xyKbqBI\nA5K64PpbYfCBWxwyH/BS/iobvjmD+wNYeh+WZqF3CBoHA8PzK7z0zBtkbwSpV8sIAeAQhN+B5Dbo\nNqgeaO/SpE3PMLPQC729MLQoDwnxDHoqQD+srqvy78Z+lRlGuBqmOVE8yPEb+ylO9lN7eIHpTRfZ\nml1iiPsokEHi/s18vHc76p5h5KHrvFz9Hk/xNrtaZxkq5vAo7mcjnKjs4c11T/PKl17mjp4mLBuY\n13BlDMI8XUl7OfzK4zVqx8/4HlyvwpGEUNfc8lv51rO9XBrYypbsAsPpLIrAfYa4Umzi7OwDzP5g\nHL6v5RpddQhx4F58rfJ14G/uof7hj3/0gy8XE0eSxMRFtRsFL/8/3lEpnA8kEfl2ztMuPHkWaBeO\nwkpyU3BWmE7aSF1aGz8c9fKUuvmSuhvlMvIyXRNeiHTbUJ5LjK/3UBSiF69nFVylQq1eY3R4RKKo\nlabR6EEnhkatigueWpaSmRjXbgwojxi+e2EilcaLSmF0QmKisXOH5YWwt2RSJkUaMWJ2SoNJhFHg\n2x2JY4gDHxUpxIHSKNODFz8xpzwhNnxGiXl+x7TYBrz2rEyNc/6//nWKiSGC15gQjSd1EBZCnCwG\nBT4WCoWgYTpIk5e3Cja+dpqr/+IQqfJ47SGDxCGSFXTEGCLiFBkTSVqhUW9QbfRS7xsga/ShMxl6\n+dKTwXSHnIpYqJXISZ0zUV4UqdJIP1h+3iHIxmf37t1s3bqVEydO/Ay/7T/JsdajqY6gLxugMiqb\n86dBvegYevgO28c/YlNymSFmUcB9hrm4fSsX9+1gdsME/ADCdzNOrzzE/L5hjg/vY6O5SoMVcjLu\nsI4LS9u4dmkz7bd74U3gJLC4yhrHSyAX48v5GtyBpXs9nJ/YznG1j3XPztF7KeflP4G9szI0GB+B\n7Iuw8mSF2ztGmK7eoH8HPHgpvrVdsPJCxg937+Utnub0/D7x8XoVGXbNAgsellch3Ecwmrt0ZY5l\nA/A3NQHRQbVD1S6LSLl5aMLSOCz1SVGpGNijCF9QFC6jRY12r6E64BjUUiRLn7IxBY0Crr4Nb8/L\nWU0D64dAPQatFxOupBvZuXSextVVeB0u3ZCSU3L69gE79gA7YWGwn1tMYkk5wIccvHMMvg6L/xmO\nnoNbDqYSeOgSNAjsG/6IhzZ9yA+GDnFy6yHZONSBlTL0oEyVKV/ts9OwagXV1MQhj5HaEBw+iARY\nYTqx7TpEZmf0lcoqGVk1Ic00Bh8N8k1n/cQHkUtqQ6IraGUkft1oEiWeKx46yL4kzzoBTRTSEIVo\nWK9BfLYsCmlijEkiQyx0hlflQC0QKKyNXpaqkxYmz1PKbFRnXfPed9Yp55wspkoRrMfjifFc+GBj\nSq7vhJg473B50Q1mwRIQdB0NSVqLjZqCdoEpPCop8FrAlBATLZXx6FShghbWbPACxOjS20uRmBSt\nDDrJSLIKIBrTRJAFlDWCtpsEVQm43BGs1IjUmBhYo6nqlARDlghjTCMeno4ypVlShq11UQbjCUoY\nETotASthIlsrn5O1rnNztsDagnZe0GpbmrmnlQeWVnNW8oI8eDCGSmKwuafpPIXNKdynDxH98SOi\nUR2fqUVkDVew5OH4KMwp8Ur8EJbGR1nqGZWlYQmZb11FhhtXHazOIQ7rd+MdmvF5P73yiL/+WGuq\nXEFg9wFQYzCRwUOgXrBMPX+Z5wdf4Tne4KHmcUbmZ9Hes9Jb42LvJt6sPs33DnyOo+YQrlmRUjRb\nj5e8Vy7VNLAbao8v8tzQa3yVb/LizTcYf21WgKV56B1eZPjx40w9fZPKYJvl8R7eOfQc7Ys9AsQs\n9oG/xSc91X6S91j6xpQJ0AH57ObA3oer6+CIoRitciI5SPPBKjeyKXZPnmZy8iYJlvsMc44d/NA/\nwtGrB1l5fUCa5PNAa5nuMK6UX/ITnt/f/sgLy+Ub99i7cz1ZktJqt+jr68MYjUMYrCJZTzp+VtVW\nG7vqMZlmZHSQifVTnD93jmbeolKpxMFZFNqp7nobvIRZaBxWqYjdKtkr6zh4KrcTceCl4iA+BNn7\nynwndLwcZfDu479V7D0MJkmFkuyltiRpSr1eAxRF7qIFiRNPrdIDN8TrHJ/XaEWWZ1RsQZZlmFRq\nkMPjXKBtvXhZm4RqvU61XufeC8+I36XW6OgtXILqRN/G4GX4FVzpyys10Fkbh1axZU5Sgg4dOb/w\nQGOlK4kDcfOtWQM+xSNApxcTtY0ECUjQie4EB/h4LcprFyjVPh6NoVpJqFWqtJqrOG87ewGl6PRX\nSgmYlaYVKpWMopDAlSQG6JRwZFAK5y3OIx6XsQEd7a3TX8+4u9jk53uUA7k1Usfyb31Rw4cDsKTh\nBjRPDnBpagCGI9tuVcns4yYy+UkQduteZFt8K4MbYzDXB7YHWSfv/MjrKz6p7/i7HDGBvpQ7Zoij\n/AaY7r3KA5xh+vxtwnfh+qvw2pysOEM34JlF2NYH2f1A+z/BtfPQymGwByaPQvgtRfF5RXrVY16D\nyrc8NKFnuhDuwBPw/Hfh6IIs2Q9ksH4n8BBcGxnjDA/wnYUvMzM3xsL1AexildFDN3l87E2e4m0e\n5Bhj+X0UgbvpMKeTPbyz7UmGt93H4Pia/QaPXDnK4A9XhECgwW+9wvZHLrJu4i6qBt859BVmrk/G\nAJMqrAwidbbGJxMeSz+uBeAW+BQuTMi1W4LFa2Mc3j3ImQ17qdbbBCBvZyzd6INTkcRwBDjvoDWD\nFPlSxVMOvn7eg9y//PhHP/gCaOeus8Hv+J4EGQyVBo94SXdyRmO9oNZ4S17ktApL3hYqcV5YKsFh\nomHx2kN1/qccsHQZX+UgbK0XVhndq2Pf6BDEQumUSgUajYIkrZBVMmq1GtV6nbxw1Gs1lBbtfL0q\n6LyOWnRjBI1T2ogdQOlfEwumUSoyCVRUl8mGLXgnIJMHOgg3Hd29NF4yOPQ+yHTHSWKNgCtl+lVZ\njCI/TJVK+0hj1smaIZolKItDMbdzC0lwJL6AIFKhdHGFwbdPcvfLh+TaRfTHlOlbUQdn25aN3znG\n5OunGVjNufFrjwrrQIsRptinKLQWD5h4Yiht+JXvfMh//IWnSRq9mLSOSlLRU+ryfSlSk6CUDNhw\nDqM0PtKcjbX4RP6MtDJiUB0/5863IwRGh0d4/LHHfs6Dr3JYYeigIQwCY2Kc+Ajwedjw0gWerbzG\ns+pNdnOKcX8HpQI31SQnsr28NfUMr3/5BW5kW+E7wB8abl7YxJ3tUxweK9CNQMgVdt5gL6WEU0ay\n7Y8CN1rgryMFr0ysWoWwAnM9cEnT/KiHk1se5I2+5xjfc5cDv3mavg2Wvsvx9LdA+/mEo7t381b6\nNAcfO8KufecYWZrBJYY7jXWcrO3mVZ7ne82XuXNkShbp08DldjTZnCdOwOLPtf4DPwlSUTY6a9O7\nyqj6nvhvS4cZsdoDdhJMD9zXLDQHuNZYz42hcbYeuMGOw/DcCdn7N5BgANeAt27K70Dw+cEb8OgN\nmKv0se/ceSpv5qiPgCtwrpB2tDy7GlCfhPwxw4nxB3ibp6jSYhMf03O2hX0Xjp+Fd7yUqosW/EV4\n9h3of3GRzdMfM6Fuc3JdAf2pPOFKhW7Ts/b79NlpVntqqcgUZQQPpXwkKAhisK6Qgb5RMoBJU0Ol\nmlGrZWSVhMSIfEUpATWCToXJGozMi2zAGo9KIU2T+CqSgBUIkkqFDL+ckySuSjXBO9AmNjtKNvel\n95ZW0ZMKKDVz5eZfKR0/Admsl2m8wQestSRxzaRjVl/WwchwiOljKjEReXfCUoiNm3OuU7Oc89jY\npHRCQwhRsWwE4c6qGG2wuSWtpvigaXuHtQEbZLimlCJRSUymlOYoeE2Wqm5aJZ6UFK1SEp2glbAZ\nKvWqOMw1m1hboNayprQSxoHVBI+wuVD4YFAhwTsV12oF2kdPM9Vhdgl4pcFbPK5j9qyNilaRMgBy\nUfovrAULLscVLWzRJm/nNJttVlZzVtuOtguExKBMQpJkON8iOMjb+SeY1J/eowQLS4PcFbqSeQur\nTTi/Dm5UBWQYQBYyTzcmfgbIc3B3kNXsR6V2JWDwWbgef9mxdvDVAwwI02EzcAD6H53nmcE3+CX1\ndV649Qa9b7TRJ6XLD9Ow+ZFrrH/0OmnVsnygh7P3HpI11yGX6DYiB+wHHoCNk5d4jA94YuZ91n1z\nlvAf4daHcN/CqIHxo4GplXu8+CuvcDnZzNnNu7i5vQHHFVytrwExanRl+8SfBZ88ygToUuZeJqb1\n0K1387DUCyd6oKpotXo4PXuQj3fvYGLiCiNmBo1niV6uL6xn6dwoxQcZvKvEuPN6Dv428kUp04N/\n9oPQC1fv0GwW1CoJwYv8LktTtIIiz6mkFWxwtPKcpdVV6oWjXeQoq0iWlhkcHqFS+5h2q01uC5I0\nxXkvIAQa7QMJMcgq7sVxMngxnqjKiH9ha3oKH0ofXRkGKR+VFEHWYxfDWETZFzrM3SzNREZeunsE\nT0KIiYSKJLFYH7Ah8Pz/84e8+hu/JMzk6DMYVMCrICb9rk3RchjXJinSaDZv8AHahUgcK5UqtXqD\nrFqJflaSaGi0yDgDyOAvDv+884SY/uu9GMA7W4jE0MmgzkVimKdckxUqTSQEJgggqbSWcCxD9A7r\nNF9laZXeJWralVOYNeyzcvhVBq4IkKTxwWBdTlFYvPfU6nWq1QrN1aUIknmyNEMrsKGI/ZU8d61W\nI0kS8lyYxEmSkiSpBL0Ej7WKapZEv0+P96IqqiYid2RR8GwAACAASURBVPz5D75KgKNcg5fpyhI9\nLK+Hk2NwQ0na1AhQV3KXnK75+haE8Jog6/8txPjqI+BkFS5PQqvSfd6OD9Va79yf5iiHX6ksTRGH\nGGKWcW6TXi+w5+HUnMyPfHynJ5Zg2xnws3DiQ/h+W/7byBJ85S9gcn1A9wZ4FVp/BBeuwGKAzXWY\neA7457CpARNnIOSQbQDzMsx+ocEH+hCn2MM1P8Xq8jA0YfDBOzw79n2+xjd4YfYtRo7PklwVhY2d\nMjy8/yQbRq+xlYtMLsxQv7tM779t4b8Ni5dlBNG/B0a/Ms8Lv/Eas+ODfDy+mYX9QxRHq/CRjut8\njW7Ko6Jrc9NAPJ7jfdpaPiuAaxA+TFkeH2K5tLtZRmZo1xASwc0A9l78xS0+KXUsLRI+fcc/icEX\nEFlf0qx2VYpd1FuaiYgpSAUS+YIPFLagmbdpWYd1AWctPhHKr4kDNTnEq0Ubg1aqgygQZSbla5ZH\nCJFh5bX4qHiFSg2JSXBVj0oEfa5Xa2RZRu4stWqFWrWKdeJ7Uk0TFInQpU0caGnAqzWsI4lXLo2B\nlVLRT0D8V1SsEsGDMqFjAkkcfKE0BEH+OywA7+UB5X4Y+VlyvoLz0nyokhUTEOOuNLLDhLnWaZuC\niiaeEXlSih3/6x+QrLRY3r2J9papzjApePGACiFgc0tzJeejx3fSf/Ym1379SRJcLEaB0msyINRp\nrQCtcEGz89++xsDdOV48d4MfPHMQh4mDR01Ai/GzETPNEBBUSDtUMJjI9vFBGuQQh10yMPSR4mzQ\na75jzz/3PH/8x9/k7r27f6/f7b/dkdDNDe8FhqGWiqniI4GRZ67zUvW7/JL7Bi/ceZv6+22pDAG2\nbL3N3kPnmBi7TVov+Nbjv8DdG+vhGwouKNxkhhuNRowOmSndRB5/JcB8G1kgbyINzypSnJaA+3B/\nEC5V4YeaSxu3871HXkanjpmHhtj/4HH6b7dQAWYn6xzT+3md53g1f5EPs4fY1nue4d5ZAorbjHM2\n7OT48gE+/uE2+F4iyMQND8W9eELLdE0YV+h6ipTa9L+p8Cq6PgJVpHD0IYPEeFN9oOsQPfnol+vI\nHcW9+XWcGt7L0f4HGf3iDL2LbR4fh8evIjVqI9w/80kiuEOSpWnCxJlZwntQ/CnMfCRKr3IMFeKZ\nNTSoFFyvYcn0sEAfAyzQwwp63uPm4Y7v2l3mwF0vn1u66OmxqzTSZXTN4iupfG0+wfT6bB79jWpM\nCExIoqG5eF8BKHTw4t0VfPTk9YQYc55mmkolIdWKUIg0UtB1I4O0RAySrXcYV5CGNNYCiTgvPx+l\nyhgUFRMUdWQk/7gXpSSChY6MvrMOlsCFLr1QIJpqicQmDsmUEZZsWalUkOajXLjLOHYFFLaISqbQ\nSbn0wUeTfiPgkPfCdI6Ptd7jtRFPmcyQpQmplkFVmiEMA22oJZpiMWBzMXiXaxE7FCwqpiyqsmnS\nEEyInjQqpi1C0BqVZVSzjMJoinYLpzWVxRVWGlVCEIDEKxMln54iWDLnqFGToZd18XJpSQpzYIPv\nrOFB+VifokWCgsI64Q0HYYfnhaOdFxQ2xxZtfFHgbBvbapE3m7RXVnGFxxXxfarINDBaDK6No9X+\n0QHDp/koTe7XIvKejmmuX4DlQbldy/jkalTQBRlmkA3yHD/u7fVZP9YOiHqgR8NmULs9Wzee4Sne\n4qXlV+j995biT2DpBLQt9K6H6nOWXfllnn/8NS6lW7j+2AbCg5IE7hYTihsp7lQC5xTJZJPJyjV2\n+9NMX7iF+i6cfgO+i1zVYeALb8P2cdj+8A127TjD1PB1bk9vxA8kUNOSFkabLogxh3xeLT7ZfKo1\n7ylDClR/vA3FV+sF3QM6lZnVh8Ai+GsJy9sGOD89wPmyEV5CSNYXkUb4I+CKjb+8IQ+kFc+t9Nn8\n2TVQy6ttLl2/y4M7JsnSjCIv0EqRpAmt1VW8t1jnyYvAaquJTjP27t6NC5YrVy/SV62RZBmrKwuR\nKSQM2Qi1kyADc/EyJK6fvjM4d3EwD1IXSpUEwZc8JtklxwGX9/GxXv6/ABPCnkpMQiWtELTGRbC7\n9BFLkpRQ1ZjUY4Nn/x98k5Ebt9j/3oecee6JLvuKQO+de+z7i9d4+2tfokgMzlpyLwQCbSp4D7X7\n87ipCXp7e+npaZAmRlheWhi7ojQp+6loi1L2DT4mVPryJgCEdx7rxHe3CAVF4XFewKOQJZBoqq0W\nVDN8Jo28NqpznUrWlo3DLI+A/aU6p1NDpVmh7E0kSVPLUC5CEc5ZGrUqtWqVlZVljNH09/aysrKM\nc7nsABODtYUEbUW7ApFNWqy18XeGPC/EyiYV5hyRTehi8ItOFJvG+zlxbWYtae3ndJQgUun1tYBc\np+j7Zefh3ijca0BSkSVgD/BUQD/haByYZ3ryMiPMUKHNCg2u5+u5c3k9rcM9MKKgZuDEmCg9yjjY\nf6Bwk7JHjcKfHz88LF2Fk+2uAuMG4p87eQnUEeAVeOus2FvlwGQbvvwOTG2F8N8p9GmDcQ63znB3\nTz9vDx/ihzzMNFeZGrzBzOAI53ZsZ4T7vMT3efnua6z7xhz+z6F1Uc6tsskx+oU5nv/K2wwcWyJ9\n38Es2PfgjZMyd0yAA2/BIQ8DG1vs/9Vj7DBnOTH+MMVEFQYU3KmAW2tPUk4C+5HJ5bT4RvbVpA/c\nhPg7D8W7xhAVriLt2wwy/GqVE8078bZI1yamlKd/Omv6P7HBl6Dewo4VtF7FpEKjdceQVwzZFWhN\nYaFVWJrtJs1Wk5YtaDgng5006QiduiaVa3GzNayvqDkvmytKv6sAGPAJYtgeaceFdfSYBEKgVqkC\nkFgrSYwmIfGi5RfJojxf6aHlEamNjjFfJeIi56kwvkw1KVlfcfhVbvjj/X0oN/+OgMc7G40fhR1X\nmkqWccPl83d/yvmEELXsIZohx2sdvCywZXPhfRzAxffz0X//G/Sev87yxgmSLoQDTlJYeg5f4t7m\nYdrLLZR1fPTffJlMDBXAi+wwPlUsZt3rpNCc/62X6fnOCU4/9QhpkMbKB0MgMg60sBeUkuEXeg1F\numPsVg7r4jWhm97mQ/QDi0PP/sEBfve/+l1+7/d+jzz/eSa4lItfTJ0aU7AF0v1N9jWO8YJ/jac+\n/oD6f27jvw0z1+RRoxtg4J8t8+yvvMvcxkEuDW5hbs8IxdEavIIg/XVkFmSJ4YgelttgS2f8u4gO\nfCHeIaOb7jgPl8ZF9tBIOc7DrOzp40Lfdrab84xMzQCBWYb5KOzk5NIBLr+/k/ObdzHQN0e1ugpe\ns9LqYX52gNVjUULxA+BUgJXS4OsuXUQ5X3MrGQ1/086jRPZLn7RepEqMAVOQDkJPVX41EC9zQGrM\nY2AOFdSzVe6HId5RT1DbvsrDv3mc4cfmSI4C5yFchR4P2w0sOGkDhoFtNaQ4fQzhW/DuMTjq5axH\nEaCtCYwr2D0N5gA0N1W4zgbu+xEqOmeFBr5fk4x4plI4W8i7rwATSs4z7zcsJj0s04NfTdcQ4db6\nMHw6i9pfd1TShFq1QilXcCFGnEcPliQJaDSJSUmSDGNSsorcqpHpRfAoJAlXh4SgFEmqMcqglED4\nWkuyl1EK7YRpqijBCNlxqVIur5JPSOK1Vp1NM/AJ9qgqfQ3jIMUoLQh4lGx09vJEc+S4Xqo4g5AU\nWt9Zt03JRHYxpQpQQVgFIQ7iAtKc+ShtD1E24lE4PCrRYthvRAqapNEzUpkoAy1wwZNSodboZTUs\nk7faBOewRYssEbayJC+mUndQpDqN98kJzpOkIrs3aRpZZw5nHc4HKjduM/G//1/cf2Qf1z7/NGCw\n3lF4KJzDoyismD8TDKk2uGDJfUGMFhNmgI/Np/cEhIlX1nVCwDuFs468kOAW6wKFFW+vVlGw0i5o\nFjmtdgubt0Vy6WPIjFeYoNDekaUJ7cLGuPvP0mHpwvsliFIGe5QR8gmoTKTdxoPqB6egXUciPMv1\ns9w9/ejxWRoGlkdpPqrp1FbVkN5iFNQmyzbOs5/j9Lxqyf8CjrwPR3K5kps/gpeWoWe9ZfuWy+yc\nOMvXhr/OYLQZuMcoF3ds5eIDO7l/ZIK0VjCQLDBkZzE3IFwWUvVcPJv7wIVl2HwZ0uswvGOWfhZQ\njSBpktsAPwizpSRoLduubHjLz6YcjJWG/YPyphgDNQb1Hug3nfkXOj58kejnhtS+vvh0rXiCtxGk\nZWk1/uMG3ZTJ0o/mHybl8/yV2zy4YwOVTGqDRqRrssXzJCah2c5ZXllldnaO4cVl6j11TFql0dvH\n4PAI83NztIsWqTE4pfFCAAZtBBiN20UfQVQJw4h7YBP/Hkp7FCIXxnfXbkoBZcdqxHeAdIXCmIQk\nSTFKY32UasdgEh0iizU1mAySEDj9X/4Kq997mysvPUXdyZpP7Al2vnOY/pUm4yEw01OnsEWHGaU0\nTF6+xuN/8HXO//JXWX75eSqVTDwzFdLDUNYKJ/Mt7wX4Lgddsb546/CFw+UWZy3toqBtC2wAaz3N\n3GILh9GaSiVlWCv2/NG3aI0OcfZffFHAIyN787Weyipeb6VE3liCHGIyD5S+jD7K86O1S0A+e2ME\nkPKJRikZLtZqVQLSR2qVoKDjAZkYCe7y3kfPtZwQJCm0ZEiX6Y7GJOBtxKhK+aVisL/GcF+NmYWf\nN+sLuubn0GXuWOSPdxn5G52AdIOkST0L6osFux48weP1d3iQE0xzlSotFunjQraNH+58mPdGn+JW\n7zSgpWycHwW/iCwWJfhs17zeT3P+UcZdhq4vim/Wbcaxkym1bY7dx+DuvMAxA8DeBrAV9IVu5iSs\nyaDMgCUorsrcvrxCM8CdeZi8Dq12xntfO4DBsaD6uc0EKQVfC99gaHURpxU3a+s4lh3gPsMc5Ajr\n3p3D/39w+k042pZ3v/c87F+C0Tvz8AFcPS7uLGpFCLKlW/QHDjZehMlzMGVvMJrcI+1ryXpbR1RW\nrmR7Bbq93xCwAcwGmKqKb+TDwD5Pbfsyjd4VTGJxNmF5sUHrXA8c1aLcOQ7cakm8PGXae5n4XjL3\nPr39wT+dwZcPWCeNjRSULtoNUTuuZHrjI9OpNHC3FtrtgmYrZ7XVpq+nSsU5vAmxOSmN80OUUnpK\nA1C1phMpB0JEPxEZiMXGQxtSYtJj8BjjqKYZ3vtOAySmlSZKXpLOQq+06TxfCDGoWCPNTYxdR/vo\nCR86hbTDSMOj0IIqeSkSPgQIDhWsyDkIOKIBpIuJJ+XGKMi70/E8tVbd/6bWSjxFElK0LcFakYd4\nCE6ozfJ5yGN8CNhag8X9O6URCRJL7BBGWOP4RSb+zfcZHGxw+L94CqNi0lrwHTRHaxObVKn5Pn5G\nPs78tTFcfOFhVCEOAbIp8SJ50iom0QjzrRyCSUPXDS7Qa5gPHRlS/Jw7CZkgUiWteeSRRzh48CDv\nvffeT/2d/rsda9HbOphUUIH1MDA+xy7zEfubx+l/axm+Dm8fhWNWlsyHr8OhAoYmlzi48Qjvpk9w\nYuph5idrso5eboFvC8MpeMRtfRUpaiXCv0TX06Udz6kcfN2C5Roc74+/Trl0bSc3dm7ktfUL9PdJ\nXuHiUh/NqwO0z1QJ3zMsTQyztG4IeoM0sQtKSGWXkajHi/yIp8xiPIcytrlElX8Smc3a1JiyERhC\nIJKN0NMHG7VEMU4jppi98SVqYJ5b4cD0hxzMDrOLs4xxl1XV4Oj0Hj638hb8Kcx/E47MylUZ8fAL\n8ept6YXxQ0ia13VonoOTvtvsBOCLFZgehWwMqk8DX4bTEzs4xR6u39mCnnBcZjPtB96h8ohl/wVw\n5+GWhykF+7YAj8Li5l6u6I3c9uNwJ5F9zgp80mz4Z4vE/yyORq2CMUbkFT6atUdGplZafFVMgtIJ\n2lQwpkqaVKhVa1SrFaoVkTjEVgOtErwWlLlSqUYGmSDUJpHNs9JgbYHRmjTLQCu8UsIAiOwr3fGK\nlPMs13zo1igV2QGpkbItj/cRR+lu+EvwwYdAsLabfIXqNE5EaQdKPB8tpZdKiAxXaQIskkQVvJea\nqUAnJqJHkXGWKHSqMZkhzdK4/st6q1RAG0WWGhKdkSgwAZo6Yfo//L+c/vLnyAuHLTxJJRUmc5LI\n4wp5b85ZMKBCW6QyShN8IA+B4Arydk67ViXvbbCweyfWedrW4YKOZvNOWHkgDUmaCpDjhRns8R0T\nZGc8OEkIKJnHARWTGx2JliAVG42sC+uxNtB2jqYtWLUFTedo+oJcedra41T0pPQibUpjyqf7uRsZ\n/12Ocv0rJc/lIGQSmIKkD4YSQfWHEGAZoGngfgZ3GzDXD3YY2ZXfjHcoK+faxMDP2lEO9MpbNbob\ngx5oMcJ9xpt34RIsXYYTuVQjEMxo0w3Yfw76FxfYP3GUL/EtRtw9FHDDTHE83cebG57lzf7nuD83\nBiBteny5Hx0hpkp6HsnqkO9xY98ci82xLijzYS/cWY/U4hIIKmVHEZwtJUOdMJx1SPzYOtgQ2eJb\nkVo3FO+6inSDV5A6fIQYWUy0FAtgl4UlyL14m0cKTen39g+XCHbz7jz37i8yOdpPnre7+zwd/n/y\n3ivYruu88/yttfbeJ9ycgIt0cZGJQBAkSIhZYFJObVtuJ6nbrppuz9R0T9XM67xNzevUpCrPw1SP\n3d1lt+W25FbLsimSFoPEJAYAJAAiEDnj5nDC3nutNQ/fWucccOQZ22NJZGmzQAAX5+6zzz7nfmt9\n/+8fcLYgS1PKos3S8iK3Z25TuzrIlm1b2Ty9lWpVsWnjZq5dvkzRauN1BW+s3Hz9kSeK4JdzWCd1\npLOCKi2gEBrdAaF8WBdkh94LfkW2lwvpg0mSkKap1HDrMd6JhYsPQ26NGLtr2Udr5bn8xSfIABWM\n9glgzMVf+Tw3P/0pyrERBqLxe1hrjMlId+6ALMPv20MlyyTp2Cjxwwz9Rek8vszFM9JaCT5xwlyT\nJMoSW5QUeUGZFwxcuEx9YZ7TmzfQynOKwpHnYtyvPNRrVbLhQZaGBmluWEcnPquXItUDfhmlJZ3Z\npBRlIYMnleGdBFv5IOF3HZ8xsWuJ/pIq3CPrCpJEU6tm5O02zgYQyxiaTYtWilqlIgzj8H4Yo4NF\nQkr0bk7TFIXFO0h0ivaKvAxkAiRwZ8NYP7OLzY/JriqCX5GNG38eo9XFmGx77wEeh733HeEr2Xf5\nLH/NgSunyM610U2HHTIs7HiNu8ZOMjS6wHOPfJ6rS1uFJDSbwsw48vO/hBSOj/7Q/EOuO15rQ8ra\nLHAZLixPc2pgF5d3TrDrmctsmoVfeR0W5mBoFAbuBZ6BvgQOnoXGqlzVJuDecSRZawRMJqU9Hhqo\nGlAV8KnirNrBH/ObPMjrHOYlDl16l8Fjq5jrDlLYs+UMd+//gJdHHmaa8/Ae3DwBz7e7kV83Cxg/\nDps8nHoXfrAqJbRGF/QCqZZ5sBiu2DZJImELJOHCVFyX4goRCA9MAFMwWYUHgCch/XSL7VtOsKv2\nAevVNWo0WKWPq34jp3fs5Nyu3RRrq/IReH0YbkSD/AYCiEZw7ePt+/tLA3wBgronEi0bRyoqeJjo\nRIw6vfcoB6ny/KvlBuerFV6qZNgiJ2/l5M2CVjOnmlqJLtYflabIiYW5ZfFOBxCmm/YIdLT8JtFh\n8p9I6pYTOUmikrC42UDNhUTfubUx0asrGOrHp/dK2GMQfFKcbF50oE53FlIt7Cb5NqEkC9ClUN6h\nnO1ObWIgQKBXix+ANEkdEI/wOoPME62DR1h4hrhIe6E1R0aBeOsI6JQ5h261sfVUejO5fQGYsqjS\nURYFK+uHqd61gQ8e2YVxDp3JQkPwO4sTsS77zAW8sSs3wisBy5SijK/Lyn3RJu4ko8eCRYUpdcQy\nexenXrYbAQSLM6ROwfGQpSmPPvoox48fZ3n55xlf3Fv44oZWJFoMAoNQrzVYxw3W59dQJ+HiaXi9\nDHgH8FIB6z6EqRMwVV5iMrlBZbABIx76FCQK2pfAN+kumgVSmleR4hgBr15PlxWkkt4CNMxPw9uD\nsKDw5wytLX20NvSxMLBeviVKJc4jvgEWGFVQC6zAFYKixsN8AX6GLiV3lv9nXPrfh72kuDMcYBBx\nfp+GwSHZBBwEHnCkuwqqU0sMjC5iS8PywhAPTLzB5/Vf8enyJfYun2DgiqCKS5sy9PtQvAov34Z3\nwuXUgK9U4JHHw9PsRoC8xQ72cMdRTWDwd0A9CcUWOLtpmvfMXq6xnnIl5cLl7byz6T72rj3O4a++\nTk1ZHnkd2XeMAZ+C/GuG9zfv5B3u49zCNvGVuQY0PF39fpx1RZbcx//QWtHfVyVNUwF1AkNT7LJk\n8FHGuqnl6zHtt5Jl1CsSaS61MU59E0ldTKpok5Km4h9mwoDdK4/1IkMsrCJBQDUVDJClbkhzY3QE\nprphKHFTbz7ydxDJTKz7xgiLFetCaIn8u8it6UzqvQkEJyfDCW2krhauWzedK+XPSnJ1lc9ROqRe\novBOmgqTGhwKUzHC1jIKk6bymfQerEztoyG+UYpqkqBqFe7+7/9Hkpk5Vjdv5tY9d6OMEUYW4G0p\niWNKkSUJPhguq8CqdUUuDU3sIq2jqKQc/29/l6Jd4qx4zxQeAcAQC5jYMMY0L+U8qdKUXuLuy+Dv\nEzpTgCB/sRSlrIWlz6Vp9cGTxknKV25LWtbStCWrZU7LWXIFufKUWqSh4t2mwMu9bbXafPKOOPuO\n8u6QXMgWGBwQwH+n/JV1HobDQrmg4LqCcwpOp3B6DFaiUTrIg3qHD5F59Ek4fhpr7c5/VkpgZ+W9\nDPvKO1+dQ7AgHJjS8aUrL2De8FJ7NUxvv8WeB86wbs1NksGSH1Q+w1w5yg2zhnxak+123H8UFgtZ\n4dYCdw2D2QV2WoZ6z6jnmBq9xJtPHeLU2r2U1RqUCtqDsLABWRdbyNqY0jW6ju/3ELJIrId0LWxL\npWE66DH7S9JtbfrG5kmTgkajTvPGIOXpCv6IEdb1u8D1Avz18BwrdD1hYppyZA1ExsfPBwKYX1zl\nwpVbbF4/Iam3QTbogFazSaIreOdorK4yMzdHbXCYjZs3MzI6yvLSLLV6PxMTk8xcvU4ZhsM2cQIw\nIYmM/o49obCNjBOJtw92CN1UQzosJKUJoVSyj40WLc45SivBGuAxOhF/LgLzN6SuO7z4GXaeWz6Q\nd9ixeIX3QSURbVk2rOtsqTpz7DBQ1kMVTvzB/0ySGCpGo4RKLOtZqJ8qJO0q56B02FzSEPEKV1rK\nVk5ZFOTtNu1Wm8Pf+i44x9GvPcO89/TVB6hmNcqVeZ449j7Xtm0lHxvnzFc/T62eUsuSzmBd+hrd\nuUiRZCagDcYktPKiI9HvSB2DiiQmZForoSYuMOnyvE2SgC0L0iRDegFhiCWJ9BF5u40vLfW+Ks4k\nLK82ieEyxgg5oSxLSXRMhAku4TXCJyqLQlh/XpjmkyN1TmeGZv5xAf6jvL2kK5ULMYWVTBChfZ7J\n+y7xWPYyX7B/yQNvvUf6XYs7Cm4ZKuOWdZ+e4amvvkw5lTI3NsbCfaOsnhiGUwrm+sD9Y4YmxT1p\n6DvKJlyrwRmY/2CSNw5+iunKBQa+9p9Z27/A0L2eoVvAGNgDiuUnUvprObtWYNMbQkgdmYTscbCf\nlWsz+x0Hr4tMfQm4S8GmjaD2QHNjlWusZz3XOejf4eEP32TwT1rYF6B9VcjQ2e6SqS/f4LEvv0q9\nrwnLsNy+09pkBVgoYOM1ON6Uug5SHSeRymmR5XZ8BNgINytrWGCYYrXabbVsTHGM/mkVpG9ZA/VM\nwgceheTzKzy65UUO8xL327fYUpyn5po0dB/n02nerB/ih/uf5LXKYco8k4udq0O+BhlYLPc8zy9S\n0fT/ffxSAV8xAaXTREDHM8UF01+tFGliGPTwaFFyt/f8je8jL3ParSbLqyv0D1ap5jnVSvXOaQNh\nkB4m59FAXkCmboJk/Ls2Yq8cvadUoO1qHelJviMt9AAR+PKglAkLoZJpNTJF0sKfDfIVuSDV8YXR\n4XnoYSOFRc7HETeYsKGPi6snRA17F0O7glww3kVZQHVgNXXGJmED0WV7ycavY4ocgC/CQqM8bP7e\nSwxduMLp3/sqxVBdGGwevLIo63B5m2J5hXxhkfcf2iVluK8uPK4AyGkjL9JZJ1IjZOPgtXgtqJAa\nCbIZdU4kM846lEplPYyNlnZoZYMPWyH3k+gLBCokkEUJkVfhvXROQKXwmVBBRqq1Zt/evWyZ3sKx\n9479Y368/2FH3LNHeRalTBtzaPqu/xMEB6xg6WJKi0lskHbxEQTmJnfSluPUqODOibKnWyCjLXto\nelbWwfERuJKJVGIYwZk8XanEvIf5thT2LIHUhDXPQlEim+g5utPkBbqb+0jH/ftsMOLN6k3uGgPW\nQf+AgF5PQPJMi8m7L3Fg6AjbOMs4Mzijub12gklu8uXm99jxygXS570YRCoY3JHDCCzOw5Wetb4J\n3LCwewmWb8Lss/KjtXYK6vtg/1vwbmBzb9cwOQzlj4BXId0Ju5+6QPWzbRojfVzfMcmxdz7FG6MP\nMtY3g9oPd4+dZOTJBdJ5RzGsWdg8xPHNO/lLvsiPVx+j8eqY3P9L0G1Umj337+Mxm/y7HJU0YaS/\nRiXVaJ+Ig4zvTnsBogG9TsRQ3uEwRia69WqVLE0Dd0KDNZTWBZ9EZENvCaC5k19aaoRR4v3lvAVv\nUE7aE6mnCudKjE46Me1RHu+hI2XHh/UqNkdxfcHjg4+k9ypMqoOXlApsLy2GxdZZoupFzm9liBGT\nIZWAdc6HMA8ElHO2DMuPFwaTztBJIucPSVm+uzyF60Bk7kpBAoUtQINJE87/T/8D/X/1AiuHHqCS\n2+Bpk1J6YUJY6/C6xCEs6kR5fOkxlNKkOU3hpKF0paV0JYXNyYsSWypauadVOkofhBrRY6bDCJBG\nAwc6Mia8CWCoRyeKIjREGkWmKxSuhS2KkOxVwZmxxAAAIABJREFUkpctirJNXrRp5zl5WdC2jrYt\nKXC0nScvxfMnMv2s9+TO0ypy2vknAzDuHr2JwDWkKK8BNsPYANwLHALuh8G9swyOztPft4T3sNoY\nYml2mKWTw/ATI3jZuwMwN4V4q0ZfkI+bTOKjo4Xe6+plRCm6A5R4/W1oZbACdrHK7NpRbtbH2brl\nKgPTsOcaNAt59BTix8V26J9tw59D+RzMXpFnGpuGkS+u8PhvvMrMxjGu6fV4pXhf3c3+re+z8wsX\n2broGToCSy0YqsHYo8AhWFmo8vTySzwwfIRz6zezOb3I9/et8nbxIHauGhLoR8CO001xy+ku7JoO\ndY1JSALo9QioZyzDD82we+N77NYnWcsNajRZqgxxcWQz723Zx8WtO2kMD8ptej2BW0OItDFaHsQO\n7aNpYD+/tcV5z8Xrc6A0Q0NDYUguJuTNdoNKpS57RWtZmJ9j/dQU1VqFmbk5ms1lFhYWqfX1USCe\nwIUtSWzSGQQbHeTOYdjhgNJZtC0FSPJG1Bnh46V02E96J0xRo4OdiChCCivDCocMMxQ6rC+yfoF4\nFpbeyWMCgOVCX6FMVxqoI1CE+FDqwESOckHvXbD5iGn1GkNGYjJUx8vLEgNhlBeGF6VDB2Wjsh5l\nPeSOsigp2m3a7Zyi3SbPc9rtNn/9hSfxS8s0lVxHrd6HUQmpnWNqYYm1l69y/ND9VJMKqTakQeKI\nNtJfaTpqmsRk+DTBKYX14lUpTGJ5PZ5gsh8GEREEkz7FUhTtAKA5kkRRraTBi1O8Po3WFIX4fKWp\n+HiWIQBGGU2iNVlWRRtNWUowilaxT0OSnr0O3yO9W24tY0N9DNQrNPNeTs/H4Yh1IKUTajFsYB3o\nHSVb6h9yv3+bfedOk/2ZZeHP4PgVmHUwncGOyzBsGjz8e69yorabI+sOsrp1CNYquJAFA/aUrqz6\n77s3l/e9OzCJiYVLYBfgWgVOaIo3Krw79gB9m1dpVGo8+JmfsPHgddJGQVFLuT4+wcnkLp740kus\nn7xN/Yij3gImoPWA4ezuraStgp1fu8BuDeuPQzOHsbVQeRJan0+4PTjECPPcxQfc13qXwedatP4c\n3jkqQVUJ8NAF2FrC1NQNzh+eZGDyBmuGYWpWdCkeGSetHwI/BJWPzFYmNXyxT6rnhgno/xw0H0k5\nwR7Oua20btdk1r8I2Bbd5F6FNFLDoAdhSsNeyB5pcmjqVb7Cd/ns0vPsOHqR5KiT7f4Y7Dpwgc17\nLzMwuEy5I+EnDz9Mebkqg5lzI+AHkV4rDi7oeT8+fscvFfAFkOeWNJrPE6flchuk/EnRn/eO/2a4\njzJLIAAj7Tyn1WjRbrZpZS2KajUkYnWlb0qZLm221/i+p6GJtGVxSQmTFxXkhh1pnGzWkyTpnC+2\nZiqmfMUWLNRsY0w35t6KtNH7APoEwCvqaQRI615fNJZX+O70I/qcIDIXZ8VLJt6j+JHWJpxWC+gm\nOsvwsnuoUd45lHXhdoiRpSyaZed6l9auoTq7SCurg09Cspiww2wrp1hcpFhewTXaYD0mM2A9aSXB\n2xJlRIKkotdXjwQIFbenUhyVR15rkeOdbAQkBdKCjSwLh1NlZ4vrEZ+ZKHcksiCUbD4i+OXDZ8Ir\npIHu2UiMj4/z2GOP/pyBr1j0PvI152Wv2VS021UWGWYxHWJ0Y5PNY7B9WYq1Q/yj1g4DG2CuMsIC\nQxTtak8oV9z0F4gA76N6/bggxeuJbLi4yY53uACWRQ4zOyJpj6YmHzQAb2WK4yKw1YS8AnlU5UfZ\nRjSwjxPlOM1u02UY/H2O2OT0JneNiqfXFg2HIP1sk90Hj/F05Tke42Xubp1geF44c7NjQ5zNtrDz\nzYskf+S5+Sx8uCL7rl19MP4E9A2ISuhW+JmpAqMalm7DixfgjJOifc9t+PQBeOAZ2PkWuBz6+2Fm\nAY6+Jle67whsvgWbBm7y4DNvcCQ7wKm1+zh3ZDffu18zXxnlnqkjbN1wnj7boGHqnDebOcoBfrT6\nOOfeugteQYCvGYs0K1HPH8HLT85Rr2QM1DKyNKFpWyjraNkybI5dx5tPGQneMKkhraaklZRqllHN\nUhItm96YCuh1SZYlGO0wyqGx0hgYQ5KIQbvSqrPx9WHAgSdI7YSNkRjTGQgopYKUPADqFsBhTNKR\nmDvnKLzFYMiSpGPu63wIX0EF/0dA0Ym8F1ZXaIAM2CCfVME8X8XhQMfXI6RW+tgMxbmGyEDQBoXB\nqARvBDDTKsq/Q/3XwkJwRjKEIwNm/rOHSdsWncikXTlQpUVZQ+natPOC0pVUKqmAb1hporwiNWmQ\n30DRbmMdtPOc0jqauaNpPY3SUXqPVwkmzVCE985IyItzZYftEGcwElwsjZHSEnJQlBbnShmGoEMp\n09g83GtrKVo5trAi2ykteVlS+GCbgNxnvCcx8rnJc0tRfFym+n+XI66A0dcrAl/rYWhA5NdPQPLZ\nBtt3n+ZA/R12cIY13MKjuF2f4PT4To5sOsD5jbvIa3Xx/Xp7EJYmudNzsZeJ+4vYOJueP38U+IpS\nDrgT9Ep6vi+wDfwqLA7ADPgLCed2buM4e7n30WPUTngeaMPOE8IaGF4L/Y8hDKoPgL+AV9+D90v5\nuD1wDR4oYXTzMge//jZz6SgjzNFHg3ODW6h9scn0+E3Gj8D4IjKPWQu8DUPfbYKCvt0zTDw5x9Dj\nC7TTCjP3THDuwl5hEF9MYWEU6ZYqdN+LXsZXkDmOVWXIcxgmnr7K4ZEXeEK/yP32LTYu3iBtOFpD\nGR8MbOPV6sO8sOdp3kofZLU1LMy/Rj+sTCDvuUPW5QbdZvcXM1C5PrPA/OIKYyNDZEkqxuTBKL3d\nKknTfnJnaeZtzpw9w9ZdOxgeGWbm9k0+PPMBw8N96Cxlw+Xr9Nf6uD29WYSJijB09XEyjiIyjK0o\nFqwNlieyp5T6KbJATWB4KQfKh9rvKHFY7YFgJ6KESVoG9EyAL99Zc5wXt17lIntMB16NEgZvAOni\nOgUIGcBIcIkYwCuRTnpH4dsYNElIpzRKg/XY0uPzEpvn2ELSG4eOnmQ1qzA3MUY7gF1FZDsBWZbS\nGB9ltV6lphWVrIZJUlzhWO3r54XDh+lbN0mfzgRAtGInY7TCK2FhaZMENpcJOE0Y4BQhjEsFYbu1\nOFzXtsV7CMNwF/w+i7yNUop6vU5fNaVer+O9MLfEx6uNd45KJQsZXzLI14mscWlaoVqpURQFKLoJ\nl7K4yo64I0PtDmeqWcLEUI3bC42PIWQQJXMh2bWuYAyq4w02pFfYas8zeLIBP4bXLgnBswBO5PCF\nE7D/DdjwzCzTOy+yZvA6lye24kcMZAZWq+G8vcqUv891RVAu7s81UleWgNuwPAgn+mBQsVgd54eP\nf45rO9dzJL2XTZOXGWCZFfq4wkbmGGNmdJyDh99hw6FrZC5nOR3gYv8mrNJM9t3gzNen2Dl9iZEP\nYKRFxwzeXHRsu3GF3930x5zbvpFN8zfgPTj3IbxEj7lLA0aPwvB74A4r/IMw/C58ZQlO3pbPw10j\nMPYQMAT3nYX5ZRkVjAIHa7Dpi7BpGJiG9jOGo3ft4VUe5oPFvbTO1ERmvuCQnqcR7oehI3WsVcWh\n4C7P2i1Xeci8xlPNH7LzhQuYb3nar8PcEowNQ/aQ565fP0f76Re5VlvPpe3TXN25FY4ouJpBazCc\nN8pg2+E9+HjucX7pgC/nZSNbzVKU1thAB07TBFeWOCVwktGahWoiE38N1pc4V2DLgrxVUFYL2u2c\nJKkgU4CuQbF3qrNf6k3M0tBhPGE02irQ8nchKdmOsbv4VMWJTJigKzHdVbGrUITodeEveWvDYukw\nwSS/M8iAIKkMAI8ngEpIE9DxDuguzlFq6bwkj1hnA2k7ghTdQ6seKWdMawyNUqfR8j1Mr0Ii6F0q\n6L73JdZ7Lt2/j2ufuhejDMaGqamH2s05pr79HMefPCD+Kq2CrFIRmWeY0pjVnC1/+DpX/qsncUlE\n41Rn4wHS0BmdBFmBRzkrTR+KMizoPrx3zgkrwKtEzuM1zmuUL/HOoLTpYcGJQbQPgCUmAJ2BVWG0\nwmkNVrYbzzz9DN/+9re5fuPGz+7D/rceEZxqS6rKokx9F5cHOee3crq6k6mHb1J73/Or34P35+Uz\ntH8c0ifBPqI4rvZx3m+hOVOHGSWTgbI3nQWkyMYG5qO+LfFTWdLNPI6NTkiPiYuWq4Kr021CHN1C\nHiWUcVIUzxmZZk26qTGRcRaBuH/IEZucmIwyCgNV8Tm51zF59yWeqjzPr9n/yKHTRzEvIo2FhrEd\nC+x86iK8BrMvwV/OBiIVcKEFX38DavfC4XOQLsOyh20a7tkAZ+bgA9fV9h+zcO9xGNgPE78jt3bm\n2/BXKwJPAdxcgt9+HWr3O9bfd4PN6y4yPDDL9Q+3cnbhbq58agNvjx5kUt+gphs0fY1b5SRnF7fT\neH0MXgZ+DJzy0J5DaHYL4b5Hk/tPDvg10FclM4aymeOtleAJ70mNJLmaJJP6SDCKN4o0S0mzlFqa\nkiWSAmmURqsEn4iJuwn+XEZ70tRgFGQuFRAlZtUr0BIR2ZFZaG2kyemwZ+msIV0iZvi7c3hdSM2x\nMa1WHmUD2K6CL5dSUmul5IbJfpCMS90Xk3VKgpdhIubF3oVzuB6fEyWb98C8Mokh1YmAdyoYwisN\nTgtIhxMGghbPyCBmx2mPyuTn05fiE5YYg04dthDwyDiHyjVJAZv+/Hmu7d7B/PQG2nmJdZY0S8TX\nzErjYYN3jC0szivahaXwnkZZ0igtbSdNYcUYUmWoVSpUTEqKku8N91abVJrQssR5meB7W2BLL4Eu\nVhoeH4ZCRVGSlwVl6clzTbOhsaWh0VhlcWGJdlnixVNawlGMlRAF77DKgIN2u+zImj4ZR6x7mo7U\nhbEu6H+vJ3m6zf79b/O59FkOuxfZ136fyZlFnIFbI8Mcr+zmxfoTfP/+L3DMPoBdzGBGw4m1MpXv\ngOopvxj5dGyYIqAF3WYP7qx3gZncMfWPxv5x418AK7Di4LzGn9Sc2bOXH294lA3j1zj8jVeorbes\nfV8e6jeAe0SzvKPC8AtNzn0gNgOx3v8ohw0fwtRx2PblD5m0N1l7dQHdhHxc8cPJR1n9dJ2dO8+T\nngMs+D+C2f8MpxbkynZOwsAVx47aJR499COOV/Zwfs8O/HQm3dTCALKmVeg2k71r3TCoIZgG7gb9\nWIuHx37E1/x/4isL36PvBSumx6vAWtjw0C023X+FrJqzvL2fo5/6FPZcChcNrI6BvxHOHXfHke31\ni2n5lxstzl66wc6tU1TrNVFOJBoSQ154hvqqFBTklFy7dpUPPjjFw48/Qrt0zC+v0mg1oNniGy+/\ngULxB//F7+Bcgg1yQxUGAYoQPKIVXouSwnoPzqKcwgUgCeXRSglTl1IGuWFcXuKxcfgch6sKbIRR\nvAx4bRj+dledzkoj8kCvgjTR4pXDGyPsYRWH9JDoaB4v/VLhrPQ73pEoTSL0NbDBpL4QBlfRalMW\nBXp5mS3/9ls4BT/41/+CZrNJURRkWcbAQD9ZllE6y+LSIuVqiTEpKk3J84K82QYUxdg4VGqiRPHd\nHkh7JzYsWuT+OiSy43yPb7Dcg6hakfCrkI5ZWqz1eK8oSxlcYB1JUUKW0t/XT2osWkuYSp63KIuS\nalUCxxwep+OdFR9HH0gASaopC6kTaZqKFQtB+RJGS9Z5bFAbKaNQOmFiuI/k6jxF+XFdH1T3twok\nlZK6ajDol1Az0LgpRKDYBbSA623YdxP0LAywRN00UHWPz6CrPFLdc/+dj2jaHgH6WIfrdGvLbXA1\nuDiNxJwrGrMDvHvgYY7fcw9ja25S1w1ylzE7N05ZJlxeu5G30vtZN3ydflZYzzU+Xb7M7ovnUefl\nxdlpWHy0Sl+jTeU7Hvc9UOcdugoDe1Y58LlTsAuRMdou6AVi6rLagOE52H7pOmfv2cTW37rCyBrP\nwz1MA/ckoBXrlj2/8ZoMwIfGwDwA7lfg1BenGUoWOJrt5yUO83zxDBdOboV3NJz1sNBGyAErdOWq\nIYm+nsAkmKmCTSMX2M8x9l0+i/o+XP0uPN8Q7c66OfjcdZgYcuw+cIq9U8dZN3SFa9Ob8BOpnKdV\nC+fuHZB9fOWOv3TAF0BROiqZLD6R/WSD/5fEtkMampHUGBItyYmlc7SKJoUryEMCSc07mXb3sLy8\nUkE6KdI2H6c5kXUUFiynPEqQEkl/UZGhlciiGydDPi5e4gNDmN50vEgiSywsqt4HrxikAKvYPBGT\nJ1XHGFnTbbQ8BImjAF3e96SvRNAKG8hrqsMQiKQu70CZ6GOgQUmRF49NG8caeOe46y++T31ujve+\n8Wu4SiK5kWEcIsMcj1YGW4LL20z/+fMMXp2hen2W+XoVFV5DtV5lYKwf7S3j3zlKenuZyvkZGjvW\nQljAO0yOcA+FoyU+bEliSFOFtQGriow5fKcJRMXtRNdHQIWoe+sdxiUUhQ+eCS4AqhZfShpN7DHl\nGsLEWMHv/rNv8r/8b/87q42fJ605Mp0iKNSC2X44p1g9McSxzffw4+rDrN13m73fPE02ZbnvXPjW\nHdA+nPD+np38mEc4sbKPxqk+WeXmnUy4aSNMqDqdmPsOGGboAlKRzhybiZgUBl2gahVhjoWksDuA\nr2hMHx8bFz/3kcf0PjbO1v4hU4jYDPXG1ddA9ct0fQuYfQX3DrzLYX7IgyePov4vWH4OZq6ASWBi\nI9QuyqXcbshsPR7ngasLsGU9rPlN+OpRKFchXQ/sA/V/3rklWAXeacGGb8HWpyHZBu2lbvwy4c7N\nzsDGOagUOTWaVFU7DMMc2RwsJ0MkgwWJGma5PcD83ATF5XpgASAoWrPgTplo1PF/cqSOWimG++ok\nSmOdANWJSahoQ+GC/N1r0AlGG6pZhVpSoZpk1JKMzCSo0Lyo8L3Ou1D/HDrIyJNgku69RQVDLeUV\nBtmkOy++OdaDVoYk+pLE6wwsXDEsDgzg8NG2zgrQbwyBOCvNCmHjHCTXsveIFd2hlAmTeoeyMohx\neLwVwN+WlkTJ8CMOSiKjNyaHJYmw2JQO9TSuQaHa+5COpcLrd97jjQSelBGQ00jybZqIh06S4ise\nUxbYoqAschJt0QtLjJw9RzI7x+z01/GlxTpH4XO0UR2pelk4ykLYyaX1lHhy68i9B62pJobN5y4x\nt+cu+qoZg9Wq+NF4j8t98FqTdcsrCYnRGmzpENsc+ayUTppM6yUMwXpHXpbktiAvcopS2GntXAzw\nnYvvc2Ad64A6BiZ0WZa08rwjSfpkHL0b2ijzHoHBTIzN74ep3ed4Jn2eX7ffYve7H5I97+C0KP7X\nbVtg8snXGNm/RFFNmbtnhIsX94jU+6KCpRFk3YieTxF0+VkDYPF19YaWRMlNL5sL7mQkxdoX70Wd\nrmlwBMAKaDbgUj8cgfnpUV4cOIwZLJnfNMyBr7/P2BMLKOtpDVU4MzrNfbeOQAmFv7Nt8IAN86q+\nMyWDzy+IYfwyZOs8D37lbYZaDXgOytNyeUsWnl3oymsu3YAvvQLVewu27LrE5uFLjGy4zdz4BsEx\nOyBX9NmBbkNZA4bkZW4E9sCuTcd5mB/z+MyPqX/LUvwFzJyAVhMGR2H0GOxcvcxTT7/A+WSac7t2\nsbBzQsCxa31QDCJMsgxZuT7Krvv5Hnlh+fDKLdpFQb2vj0qlgjaGNEvIGy1arQYog3cl2mjeO/E+\no2snmJgYo1qvM3v7Bony/K+HDzFc66f0Hu0sqpQBCcaQhEG2NALyvNaL5DH6AVsdpJHGo7T0AN67\nMEPR4uClZLgQKUSyLshwVQU/E6eUkPrDcCWuCxottiFxYOslMMophTEWTNJJLlfOU9jgFZkkoKBi\nElKVkGhDzaTYdk5ztUFjdZWi3cZZ22F0SRI8vPv1r7CSyoAlSRNq9RqDQ4N4FZMUDZmrYFoGkyja\nLqfRdLh2STXJSBIJCsiVSN1rOu2w0ky4t1Hu6APLTQeigLXCkjbBAqV0MmiRlEoEJwz3VinNI8fO\nsP7qDb7/mU+R1gfALctnIG+jNAwOD1KtVFhcXArXoDogGl6UNxoo8hznStJEi/m/Nhgj++/YLzof\n+gptSBMZrA8PVBmoZcwtt/j4Hr6j5raFoUWVlZBiWxmHDecl28Ii1XBNBnoUGIQGfbRcFVqqa/Xb\nGST8XY9elm0Eu2ItHkTWkliXIxNsGW6NipZwLaj1jhHm2OrPsZ2zDOt5/LhihgnO5Dt4vvUZNgxe\n4tf5M55cepGdL1xEPQvFSbA5VLfD6DMt8FD8MZx9A86siizx7vdgcgn0bwMbYHM/rA0+XZFzdXse\nxv4Squug8o0Wx5/czuSO2/TNNvAemiM1rm9eAy3FruGzZA85RheAYSj2a84f2MTz9Sf5K75APysc\nWT7Imfd3wfOppOlehq7FSwNZSzM661wqtygZKhk1c0xyA3UGyhPSW5wPd/pD4Cdt+PwJqJ+xrJu6\nzlhllmy4oD2QQtY7FOtdOz6+xy8l8GWDKWQljYCW/NCZVKQhSUjhzoymUql0wAu8orSedls0/GVp\nKa0lSYJWHO6QJXp6Fx0BikxsTAKYJaiQxhMaB6VA2ZDcKNN5H4AawswGpTD0JCX6TuUGonQymM5D\nGPPT9d8K+3HVk0hobTCdhy7Y5n0nwliYWhFOA4kRimCe7kwwYg1Tis6C4zu/CCmInnywn7SxgosL\nVZjAACFlJUUphylKyvkljh0+SP3GbSbPXuXG3h3UM4NWhqxapTbch8oLrn/5IHMHN1NuX9dlr+me\ncqroAFcEvFBp8afRsam1gfUQp0O+m9rpCY2lTmWK5y3oFK8dnTjlHpANrymVFoPkMEHTgTKutWbv\nnr3s27ePN9588x/9M/63H5HtFeSEzMHcKJw18Lbm/JZd/ODAZzD9JcsP97N1z3lGVuZReGYHxjg9\ntJ0Xs0/zA/8MFz7YCW8bqYwL0aNjEtFYRFBqNTxPlB3GxTxu63ulj4qu1CV+f1y0PropjoBWfD1x\nMt8LbPVO6OPX//80m71sgASoga53/J37Ni+wgzPsXzmJ+iEsPQcvH4dTTr7j7jl4AtCPiwl9hW5b\n148kybAW/JdBX4XsCrL6OJjYBtvfgZPhVbQR6vTUKowdg7F7oNIP/Ysi6wcRpgyNACOQpxlNauQ+\nI7mrxdSuD7l/4Cfs5X3Wc52UgoXaMOc2bOHdyYO8N3kvC/0TcqIihcuT4OP7GP3behl9H++jWklZ\nMzJI4j2FkkZERTPewDhQSpNqQyVNqaQpVZ3Qn9QZqvSTVaqd5EcT6qY2UvPFkxFcWeBNglFa5BdG\nh5mER3sTzE4C2yv6BAbpVPxUxvXCex+GHHSAL+Xl+UsnrGJtZMPsXIn1Dm8dCUrkdM6GaHmB+jtT\n/2Ckn2gt8kPvUCqkEXvE38ta0kTL4ANIs7TDMJbDd/wpbfDN6qbfgnWlMGW1RilPEaQk4DtSGicL\nkLzONEWnHpVb0Jb2mjHO/MvfYy6TtEkHQepekiQiF3Glpyw8thQgyitFiQtWAWKi//i3/hOTFy9z\nvK/O8j37yIzCaJFUSlPpIMTblzHZ08hgzAe/Nuc01kLuhA3gCrnXbVuIl5fLadsmzbxBs92kdEWQ\nK8k+QkqT6azPEqpQ0M4/vtPQn37E+hrBkSqoQal9m0Htc+wfOMJjvMLeY2dJ/o1n/q/h4i35TGyZ\ngMFLsPd3T/PYA69wqrqTy3u34LbUZLlY6pVK9DKvfpZHrOXx+YKEp3Md8e+R8eXospKWw/cPIpV2\nJPweoywj5T+BK8AR8EMJl9PtfOfQEJfGp9jVd5p1fdcwOBYYJqVgW3aB0Y0NpsZhx5WuzcAOBWsn\ngI1gvg0r/xHOnIOVEtbVYPpUAz8OV56H40uyRgwm3czMEmEXL1+FsetQbzQZGl6kalrdl3sH40L3\n/N7jaTkETIDZ3GSLOs++8jgT78+jnoWTr8CrbVnxx+bhcw2YXAs7dl9k99QHTK65wsLGCRkUJQaK\n+MS9rLpf7HHh6m1uzy2yfXoDAwODzMzMkiYphW5T2gKdGdCeNNPkeRvvHXPzC2SVGpVqH43leT4c\nHmasVmcoDABsAGIis8X5kCvuwte0BRt8IGPND8NzjRfcXHdbBmHaCoDmXAgkUeIZ7I3q7EWB7v49\nhnWEQYoPUgwJK5G1A+9xSYJLpb4bbbpriEMGJUqJda1yKASkai2tMPaH/47Tn3k6DAIKSicsVxcC\nZOY2bUAZzYN/9l0++ObXQXlyn5OkKZWaeGGpimIlXxEz+GaBanmqVtOXpGSoTjid10E+GnoPHZPj\nAaViYIysZaW1lEWBczLw8YRQGCfyekLvYUsnaYsmY7VaocgysnofWbUqBv2qpAygXbVWQSkJp4nW\nL9GLOdGaLKmAh7LM8d51EiJRMUFahjdlUYjHl9J45ULqvFgyjA3WPobAVxyaBw++loclRXO2xvVi\nHZeTTazseY/++9s8dhEqtwRy2Qjs2gbcB7enB7nEFLeW1+Ju6xCuHutqHKj+XfbovSyvaDsyhNTh\nCWBcvpYmkAnTnhIxUzwIfBm2PvoBh/te4FF+zF5/nDXNWTxwvb6Wo9kBnvfPAI5DxU/Y+s4V1J/A\n5R/AsRVJUdx7ArbPgN4Et9+Cl1aFIaU9LMzAl34CfYeAh2HtCfgnr8ArC3AauS8vFjB0Cra8B/Vr\nOc9uf4DVbX2s3XYT8NxmDRfYzEhlgQcefpON+29QKxq0kirX+tfxZvIAP+QJXr/4OP6CojHbD2+E\nIJFjwOoSMl6fR4CvHFmbhAnfuYXKY7AkiK7e5tD+yFvQhs7SZ7BoAnMyngMghL99Eobhv5TAF0Be\nlPRVU/BKCqIXz61EK7IkQ3lHJc2omRSdJiK1MCmJSrDW02rlNLMm/a4f64KUMcTAC4CjUdhAFxb2\nkwJpBiRGTIAmpfDaBU8oIR1E9CjSkqWrj2ugAAAgAElEQVRlkA+TJjKSBEySvsZ3BkjCZOqmLOI9\nmOAHFsGZAPLIyaUp8S4Caz5gXr2Al7vj70qDNiYkNhqsEo8AtO4kTDrn0O2Ce//g3/D2v/6XARRK\npJkyCRe+8BTYAlwhZpghnlleuUM7K/4oy4sUS0u40jIxs8zOI2fZeuIif/PNL2FMii0dmUnxqUg2\n86mJDq5InHJpwoYigoXyLNoJ660ErJcNicPhbNgQhHGQdxJ3753I9awuKEuDNiXodmB/abwK4QEh\nUcaoVLwR0gSlTce/Ta7PkKYVDt3/AO8fP87qasxO/FkepdyMGPMb4w/tAnw4Cm8pisEqb+lHWN7X\nz7l0G7vWnGJkzRwaz03Wcsbv4G13kJPvHYTngbcIyYoa1BbuaFZ89PqaC7/mw69YKfPw+Aj/RJCq\n19yyxU+fIvSCWvF31fNvvcfPgpkUGjSlOyEpA8NLjDND/0wDfxbmLgroFZNa3g/yxNEDML0DHp+D\nt60sFwcVrNkH7IX5PTVGzzbxL4B9FVbmYWASvroedl6Db/dcxTLQXpWXN343PDUHb4qlCw9Uof8g\n2Hvg1vgoV9jIghpk676TfLH6fT7rn+Xe5lHGryyhW9BabzgzOs3L5jRD0wu89MQzLC+PwKyCuQFY\nGUXevyW6zK8Ifn28j3qlwnC9yvLSCkU779RCfABjtDB7szSlUsnoq1UZGhpgoK9OrZIxMFDHKBe8\nUSSAxGmHcuCtBecwaYazBUmaYhKPsi0wGarzn5Y6HHa4RumOC0LpXfDykrqvte6kNnovYQ2pSYNf\nCQKmWAGsIhtXJwbrTByP4K1FK4sxBmuLUPvlfM4h16EiABSeW3kqWQLKBSNkOsbIWskGX26bCcbH\nwvayVqQ42piQkJlIU9Hx+xIJflqpCEMuTtsTAYVE2eNJvKJoQb5uHN1uk+YtUEbYVtbTLj2udPhm\nTtsh74UxKKt46s+/y49+5cuoaoVMad775m/R9+/+hJUDd9NXTTHK48qSxBjIgh+aLzoNpcJgbXnH\n8Mo5j3PC9i7KAluWFEVBXga2lxPZY7vd5P945xS/sX0NNk3xyqATjTIOV7rAZjNYk1DYMshHP0mH\n6vk9gF+qT/qMdTAwfZttfMj+5ZOYlz1Lz8Nz5+EEUu3vWoav/gCqdxXs3HaOraPnGdk4y+zajTBA\n95wdIOrncfQyBiKrqYJcUH/4FRlQIHUuJhRXkJ+KUWTYsx7UMAwq6bkG6AYjLiOo04/BNVLmr6zn\n+fu+xGs75hntn0XjWLH9PJ0+x/mBzUw9co3aSfjqX8GZW/Lzt3sS0seBKpQvwFvvw6tIBR7K4Vff\ngPWD8Py8EHUBxq3AcnFnUQPqVTmH1ZqCBOf1/8vy2Ou3Y+QFhR6zOtJkjBnGWvNkFywch2Ptrsy+\nCZy9AROnoHIlZ3LqBqNmtkvG0PGcEeD8eLAE5hZXOXf5Jnt2bGFsdJSbN26wurKCSRW5a1FVGdVK\nSqMoaLUbnDt/jr6+flaWllhdaZCYjLJ0tPKCim7JsNsYYQQp26k1JuzurQpjbR9YSegO41YGzwi4\nYmXfjRJFQa+nlwdheIXfo3LMGQk7kf19F4RSJukk/zoUzlrK0oESKblRJdpqEiVSRnmgZ+O//xbX\nv/Q57PAIeM9KO2cxt6x59jmGfvQau0+f5fVv/BZtV1C4kjIMlmqVCtVqhXv+9C8YOXOOyl+/wNnf\n/DLXb15nuG+Y4fFhirLEG0+1WqWxuEpfqagVBkNKZjK5Dk8YPCUy2A89hw7pifG1q6CWcaWlLHKs\nk7VMBSBSLFcsPti4WGsDc1h8h3+8aZIfTg6xITPUFTilyXNJNu7r6yNNU9rtvGMlI/dShywr6YHa\n7Zy8nYf0Rx0vFWct2hu553mbsijxWoC0siglSdloNowPcObq/C/kZ+CnH7FIRJBqBRbH4LrBna1w\n4d6tvDt8L/u2nuTuX/2AEQOffRuZwq4H/2lof1XxZv0+jvp7mL2xFi4oQYpacUAewa/evf1PO3TP\nrwh6jdCpw6yHQS3u8BMI1mMQ9KYPuN+z/pHzPNP31/yK/w6PXvoJtddzqdEKprfeYM8jZ1m35hov\n8Wk2LV8lfdviX4HnF7v19cIS/No7sCmBmSXpcCI0eBvIZ6FvHvgMqN+BoVekPsaVvwUsr4JfBN12\n5GT8Ab/PiFtA4VlikJt+LWNqlrf1QTYOXaFOgxZVrviNnHS7OXN6H+ULFZmCN4CrXljUS0vI1PwW\nsl8PTQJ072/hoalwDcOSH2BGjePXQWUatr8HH7blGvuB7QmozeDXwRyjLNsBbDMJbUAEuyIR4eN/\n/NICX0XpaLVL+urVIFnzVLSmlhqq1Sw0HwrE3olqVqFarYn/hxND4HZe0Gq3SZMw5fdRBicgUrDy\nkkLbYypsNAFMCX5Z1ocHOpSTKbmKYJbWAgh522VoKejkEvo4xYlm/V3TfrmYmN6iO6GQAB2ZZPQ5\nIRrx+p6HSDqRc4EWHKY/wjcToE8nmQB+nQFtaPB0wt1/9IcMXbzE2PmLzO3cFlhk0mxiHV5GT51G\nw1obGAHyOtccOcHliQF8O6flFMe3bMWsFFy+ZxcV7XHBdLMoSygKXOnxIdmv18xf9WrIvdw05QIH\nyDmR0pTC5rPeSfprNKwkAoJg0eRB4qiRjUN8jHMKr6UJS0yKzlJ0UhHDzUTMlXUwTHVaY3SOShLu\n2rmDrdPTvHf8+D/q5/tvPyxdWWEDISTXYTmDY/2gFLaRceLqfVzds5mJwdvU01W8gka7n9uLEywd\nH4U3gTfo6ih2VbrDboXsfOdTuLUGFkcgH0PKftTkEx7YDifoXegiQBeXCNvzPb2vw/f8WfU8xvX8\n28/q6Dl/eFoBsukwXyLu2vswbRAjzPvgUB/cdUa+1rcDuB+4DaN/2MS9DhdegB8tyoK67iJ8egzW\nDcKGJSERKGBSQf84MAntf56wdbxkywlwWqLseQauP7iG19KHOO73Um8VPDXwN/wT9x0efP9t0meB\no0ADqpssdz/6ISPPLKGGYXbLKK/d/ySc0bKYrqxBdip1ZCFN+CSAXgAbxwfJWyLFNWkJKkNjcKXU\n0TTNqFaqZFlGvV5leHiY4eFB+us1BgdrVCoZiXYUeU5itKwDOiQ52YKIHQm517Pu7aPs+P6LvP1f\nf4Ny/Tqiga4xIqVE+FciL9QyXffeB3KW6gxQYiqYMgkimwSjTBguWDRGvMIoZc0IYJVCkyYag0zl\nXGAky7SZ8BmN0mwxXnZWPCYdpaxBRs6Ed13Wc2qwSjwvNdJ0iEeJrFfWWQEFcTLcIfxceBekjkVY\nd8IbYyQ8xKsSrT1oTy1LKZVFq4QkyQKn0JORUBSO/qMneegPv8UL//w3mVm/Drxn7bVrjF2/wWPf\ne5Y3/+nXSLUnTeDYv/gmVRWYE0oGNq7oBsW4kIymjUZbR+ktZVkGsC8EvZQ5Lm9iS5nQN4oWrbxN\no92k1WzTbBXcf3WOemn5rZkG/37TGrQDXC7TVO3RmZEGV2uazbxL0P7EHYou80t15BL1vgbDLJAt\nFKhLsHwbrobvcEi9WrwCay5DvdFgZHSefr3CbB+CyABddlV8jp8lOBifKzIGBuiyt8aAUQH2kgro\nsAm0JZQt8C1kkp7LY9U6GOuT9JctCMVhPJw2Rwr4ZaSxeifcjPcMqxvHWR0el5c75Tn21AFeSh9j\n4p5Zdn/zLNVpx93nkYVjB/jHgA+gvCWn681DPtOAaqsbeQ/Sk2wK354C91QhOwB2r+L28ATXWM/i\n0khXxd5hc8T2rfcIzU1wapBBaRi8RoVLz6Hi/wIzx2JwcaHsLBm/WGnj33acOHuZpx46QH9/P/39\n/czNziKhTzll2SbJqlSrGflqi7OnTjO+Zi21apUkyeirpDSWl3CVKkVZSv1wksIIwghKg5rDht1l\nDNOQmh9S/jxoHxJ1XZAdeqnZJoBdNliQEOqK18HPNgJfSvzCQPb6LtZdXwaATfbf1ipKH8zrrQwy\nlHdYBxaFwdB/9Tr1U2dZM/ennP2Nr+OcoyxLVOFZOniIfHmVU48/QqssabmSUnnSaoX+gX76ajVS\nk3D1v/t9an/6HRZ//7epN1epNfuwRmGNwiFeuhkVVpYXUW2Ls4okSUmMIQa+EFQTXWacFr/k6JGV\nCCBWBrl5acUfEmJfJvfWOYe1Inm0zuJsGQb8ljJvUqsYtHfYPJeU5p7PqrWOoigE1NRSB70n+D9a\nilaLonAYE5InQ8qrVgadGJQXuXtZFOJvaRIK58nzQgz9rWe4L2OonrHY+Dgwg+Uz1lVjrACLEmd4\noQbH4fK+zbx06HGGKwvYx2Dbusv0XWhgVj3lqGJ+1xDvrN/P99UX+MniIZaPDcEp4KYHu4JMByLj\nq1el8dOOuP5EeXmYvrAZamOwRcNdiO/uFDDiIRWQh7OKyt2r7K8d4bB7mUOn36X2H3KKZ2H+mpT5\nkSkYOrfKI7/+JuentlApW7AAc7My9o1HDqw25elH+2B4VWAmhawm1oeXdRtYgmQDbF7oum2tAdat\nAbUBiqGURYZYtf2ceuU+6Z/CbZ7ZOMXF7dsYqC2R6oKClOXFQVqnB+CoEvLBMeByOzDbFpHV9wbS\n38X0sdhnBYCx6WFWUVxPubI8xanBXVze/RZTT93iwE3oPw5LOYxWYPpu8E/Bh9MbOMluri5toryU\nyWtrWbqMsth7fbz7gl9a4Aug0S7IMomi1YkiTQ1j/UMMDA2iMvF0KXOZlCdGkyRZZ7qglJj+tlot\nqpUKqUkk5QpwzgqgoyCyQhIHBCmGDVMfH0AY+SYVaqsLfbynk7rofdDzB9+uIC3sdlpd7y6Qrwnz\nS3eeyPecg7iIhM2MQiSQyqmwkMq/xeYrAlPx3CiP19ETxQSGk+48L+G5j/+r/5Kh02dZ2L5VqJEg\nEyjnxBxeWbwSqQ4+MCDC3mr3X/4N06+8iX/sPj7ctplGqyBTmrN376KmQRkt0fCFZWVuFYoWeWlJ\nVdIF4KRnC6yJ6PXlO02gx0kSVyunKDyFVTgrzAIXQMGylAXUhw1J7Fg0PnigCUOu9ApUgjdpuB8K\ndIpJKqg0IatUSapVMblMEgHE0oxqkvDQwXs58cEHnYSbn+3hkOIX0akl4Ca4BG5OwZv9krx0wbC4\nbQ2L6yZgILz3y1rq6VmEr3sFqd4PIhv+9UjvoJGCfwMBTE6lcG4cFmp0ds53SA+b4Xp6u0H3t/y5\n9/Af+fPPc9oQ6N7eQtPAMiwuDjMzPM7S2jrj2xYY2wC7luCkl0K7DxjcCX4LFE9p0h2OwQvIOn4Z\n/LvQ+A9CNa5U4NiizGzi+jk+C4+Mw9PDcGYhnHMS+h8EDsH1vWMMHFxl9PgKBmhtNVyZWs9LQ4/y\nAk9x8tL+/5u993qy7LrS/H57n3OuT+8qTWWivEMZFLwrgABBgiA5ze7htJuJnlDIRij0ppDepH9g\nQqEHhcyDFBqNOibU09PNaZJDAxoYwhaAQnlvUDarKisr3TXnnG30sPa5N8F2mggSXVT3ZiSzmMy8\n5tx799rrW5/h4NwHPMGHHLh4kuT/hpXvwoWr0LQw24CZ8zCt7nLotXc5VdvFif37WH1/XF7nS1U+\n75nwYDYuv7ziSLNxbACNQ8cQl2WvVF4SCVUUE5dKVEplyhUx3B0Y6GNgoJ9GvUK9nlAuaeIoolIu\nYzNLFElASBJF3Rhz5xCZm9LYsC9GkQRpmCwARSUvVmJRmMLLI+lO+IEe+N8FsnrSE+9V17Q3CV4i\nSnmMEedCUV96okhLPXKSy0vXe8t2QXuUpFyJJ4pH0BofPB2lzojHY5CJOB8O+gXgL1N062yQgIsm\nR9hbcvsml+TEKHhrKS/sYemIfdgCbBe29gCxyO5LKnjXaC3MCB3hnKc+0o9Silp/lVo9wRnL0uZZ\nPvyDb3N/4wyRtiglacEi1xGzfhUGN15rMZ+3wf+MIHexOdYZvBIvL2MMxorpvzHS7KQmJ807dPI2\nnazJWprS7OR8r1bj2uQE7w/2EbsoQJoOpR1xotA+Fgk/ilZrvRPf/w+WE0mo0ZFIrRIB89fzthKg\nFPJHnFIYYpyPfslysXf2+PUenAtpXZFWWEfArnFgBnTwLhvRop6pIeWpFcNSRabqnQHkoF+BjWVJ\ntXwU2O8p71hhYHCZcpSRu4TllQHaZwbhONKknKWHsQ2E75HiwrldvL7nFaKGY/G5t9i8+zKDzWW8\nUtxvDEHDM3P9Nrremy/58CwGFPQNweC9gGGFZ/XIKDQGBbtrbIHoa3D3+QafVPZxlp20z/VLHV8E\nqcNF6jF8foAUAmNCMHJnucI9RlioDJPORZS3W/ZfhpVcatVGYMsY6K1gpmLuMcISA8IAaYeb7ja6\n8MXW7r95fXZzgRvzC2yamaCv0aBer5NlWQBKMiKfUIk1tlohNZ6skzIyOMTk3EOMDA1w6dxZ1pYW\nKdXKIsMO3oCxDhbzmi6QJeC7wyCpsbprwRGO/yEROEIAE+Xk3OkgGLWHYUaw7CAMKETG7rFhH9Jd\nOaPCWRl0S7CXD+oIj3MGl4vyxVsHzhE7Raw0WV8/nW9+g+boCK7d6Uk4rUdZz9lDz5Npj41iyrUa\no8OD1Bo1SuUyWbtN2mpTLyWs/Nf/BRXt6ESWyuggndzQxAsQZzyx18SIbUpUCoBfXBi/BxuX4Dsi\n5dGLJDQY26MIDGgBE7tKkmA348PfWOcE8AoBXtblWJuRpS2yrE25XA/vBhk8gdiTlEqlbq8VRzFR\nlASliiQDW2vJU4N1inKtErzaNKUk7g5CnXPkmSRbKi/nk47JROKpI7T3xM4zO9rP8asLX/wH4C8t\nR0/GVngDLwOLcH1aBqcbShxrPIbdGXO3NMaBXZ8yu/0aJZuzltQ4r7dymCd4s3WIG4c3w7uR+HYs\n5PTM1zvr7quoHr/M/CoGIwmy8/UhtK5ZqI/Aw5Ek4z7tqTzSZGx8nv7SMrHO6dgaV+/MMjS+yNbo\nAns7xxl4u0X25/DuSTgVtqBHbsITDkbnlnl+9m3SuAJDMmAeuSUdEwQHMQt+BSYehUOH4aO2MMIW\ngcML8PJ3oDQNHID4ELywBtPXoWVhywgMPQk8C59NTHORzdy9MyWEgmvIJrrJE2/oUK208FrRpM7K\nSj/+UkXo1CeQXuxGDvYGAs1lCOBVTDSKgC9Fz995FZoZXK/A2YibBzfyYeMJNtUv85Vv/pyRxjJb\nPw43MQz+MbjzpUHebTzNYfc4N67PwDklPV6zAEMLYNTyoFug/L0Gvox1pJmhVi0RaU2cRNQbVfrr\ndUgiKtUa5VKJKIpotppkWYc4SohiRZ5n4GNcnpOnbVwpwVhIoqIxkP+y1oKWlEhnPSrqHQe70kEA\nZQNjTHUbIRWaIa178pWud5dSYV4UWExhEiK3q3oJi4DILpFuxIuPmC3YTE7+f+tFjqKBPMhQupKP\nLvAVACS6PY4wA4LEUWLvWff4YGn7VmksvLQ1Kvi6dKu7EsqqxCkHpkMn5diT+5j68FOubN9EliSo\n3BN7MY+OyyWiqqYUa7R3rC2sgLLoKsQ6AHwF75sidCCid1Qs2DiOPM1Jmy3y1GIN5FbSWySm3mBM\nGrwKihaV0KgV8hy5/h6P1RoXvM9ASVqYjkmShHZSQiUJ5VIZFccoHQs7LI7ZPNbH3OQYl65/EQmP\nRVPhkAPuCl0Aw1lYnIEPh8W3axoYUlAN77EWsq/OI3vpAaTIPA76YMbA3B1GSot4FCumn4Xr0/ij\nsRz2P1BwrA535pBiFlIlu5OIv4ml9aDQI3pgcVcu6luShjUPrc+GOTe4nROV3Wx+8Sb1S/Cah0dP\nQ5TA6C7gVWg+XeV7s19mbHaBuewqW1+/AX8CJ1+H95ArsxM5BqzntL0N+EV4eS9sfByp/btBfQ0Y\nh7mf3oZVUMPQ3pPw0fQ+vqe+wY/4Klfmt9FKSsxylV3mNPUjHbI34b0zYglggLEUfvcXMLYVNuy/\nzdZtF5mu3eDM1LgM1ZQCX6NnZLmez/bgrtGBOtUkEnBIqXBYlf2qomKiuERclvTG/r4Gg0MD9Pc1\naPQ1aNQTyiVFUoqpVcqUkjIriyuAx1s5VOsgOVFaEcUa5zy39u3m3qMHiJIkAFhBAhhQIfEHhEIa\n0TXGDXu2Dr5ZwvoSgMAHPwbZnEPylpz0JazEqO55UUHXfN46I3L3LgXR45WjoAd47yH2EHwLbaCE\neWtBiVmv9Ubu1vI5Kb33Fq083hpwwkyzDnRS6ibuKhTeGnn7hKGCUhGENF0dGjAc5FaaNhWJmD9G\nieF8YJFZPK3dD/He//zfkWWWcpZjtEK5iPsPTUsz6cX3K46jbpnBh7AAL0wLi0fpRAAqm0udzq00\nQdbivJf0YJuTZZbcenIDaebIjCfLDZ08o2M7LLfbNK3lzUaFREWBIZTjlUXH4Kyn8JBL05zcPDhN\n/n/4KgYMgRnUUrAEy/cHWBgZ5f5EnYmdCwzNwYF78D7yNt8PNLYDO2BlYIC7jLKc9/d8d4Hegbm4\nn1/H6hqbII1TDaEqzwAbIR4SQ62tyDBnAwJSeeRsfxuJcF+uwmJVPouPI+aNr6Ts2naCPZxkRl2n\nzhot6lwfn+b0lt2c3b2bfKQhd/sa8HjG+I4bbFC3KZPSpsqFbBv/Mt/AxfoWtk2cZ9hLPV1Sg+zk\nDONbfkplT8aTF6C1IgP3ncCOWajshC+/Ae+nUkOeKMHGvaB+C8H3tsD9Q2V+nrzAG3yJozcOwgkd\nwmmg92IUCchFo7QuIXllEO6A+6zCZwfmOBXt4sDOE0x+eYGHl2HuY1gO3l7xl0C9DOdnZznLDm7c\n2dgD2WxxoCiapQelxsO9pVXOXbnBppkJ6vU6jXqdVrNJp9Uhz9qUyhVKOsZojYoVMTA6PMJzzz3P\nth07+M7/86/59PACWTB5LycSmuXXyxiLs7kTgKqQjOvgvROFc7EMNtQ6gEpmGE5GFrK36vDDwPgq\nAjhM8DI2xqAyg8sdERrtw/4XhiqzHx9hbWiAO3PTMrSHcEyU/TdGE6HIR0fROpLb9Q4fKVJniSMB\npir3F9l76yaL//z36R8bAgV5mmLvg81SjFLkcYQra4yqgKmi1tqYTgYdS2thmXylRZkIH2thrZcS\nVKIh1ui459EVuZ5/mvUiHcWBUxbB7ALo5W3XqsQ5qXvOOXAaZzTWCBBogyyy1WpickOkE5K4RBwn\ngJA9lVKUyxUZiBgZHktSo0IpI/dpxS+5VKpQKVexJkNrH/zYrNQyZ0jTDlmWo3WJclKibR2RzkLo\nmNT/DQNVzicRnfxBqRfFPtBBgK95aPXD8T6oQmbrHLn/DNceneOD+pOMx3coxRktalxnhgt3dtF+\npw/eUVIYTgOmSAqP6flPFdD9L/sAQ49eui5plg3AOOxQ8BzwCkwcusKTlQ/YrU4yww1KZCwxwNG+\nAwyrRTZzkansJpyES5fhjXWX+K0cZi7AxhMw90+ucHxgH1sPXKb8BLz6OhxuwREEWvpxC/7wTai9\nCkPDsHBDnsEygl/NXIW9Z2Dld0v0/7OMgVE4eBLZ8jaBegHmv9HPO+opjnKA7ExNbngb8DJs2XOC\nnZxhmhtUVIemr3NzwxQnN+/m6sRWaSzWgIUYFkYQzu88UhkKS5siYqC4vi1gFWwHrpXhlKL54SC/\nmHueenWNzlSFp//pu2x97SrJGqT9cH5gM+/wDD9Rr/Du2rNkHzTk9bvqwa9n7K2XOz44e/ovr7/X\nwBdAK02pVGMSJci+kOsVfeU6pVJCUpbNz+GpV0qUk5g0zwUMcZZOmhGXEkqljEqlgvMOvR7c8UVc\nsdyuN+K50gOlghuYt2K4q3RIJAnTC+VQTqF8MFSOoadZLE71oLQwMIpUMFV8Vwq8mPhLImOQnQQK\nOhTJhYSJiPrcYyuaHKUL80gVki+lQPt1LDOhXPeSD33hYRZgOxV8ZYTWHRhgShO3M/b98b/l7txG\nzuzfhWut4ZstfvC7X+Pgmx+xNDzAme1bSVRIR0nK6EoZ5XJMexWcQcfiseOVJDQW0s+igVShoMjL\nIgW/78JNvv6/vc53XnuC+XqZPEul6TEWazrd4q9Dc1kQvuTjXDDH1vmGRYFBokL8Mw7lLR6Dczkq\nj2m3W5JAozRWCZim0Ty2fZabdxboZH+Ttv1XtQrgpvh38T0HWuBG4e4o3K1ARQ4d8ide9rZaAo8A\nL0L8Sofpxy7zSPUI2znHJLfwKBaSUS5t2synU49waWonWaMi75GPG7A4iWyUxSF7/dj/l1lcD9oK\nk29S+XJNuCupmPZkxPFN+3iz/xBjuxfY98/PUNvWYcMFpE5vgbWnqxzetY+3eIEGa/wn7f8DTkHz\niHi2FGbEqwhDbBSpg8U67qBxCh7tg/gPgCcQfvX/CNlHkK1CpR+qz+Y89rtHMfsSbusJrqWbqPa3\n6WOV/lYbPQ/5vAyWinfCEnBxFcZuQmk1Z5AlajR7wVsJkK1vHH8z1sbxIWGAO4dxIqtABR++JAEV\ngK1alb6+On3VKgP1GtVSTCmKqJRiSnFMHEVYY6hWy2StjhyqrenuCwKs2BDOAXlIK42iuLsnouTz\n7pQD7VFeYa3tTrGLJsdaK8zedXuxc+IDo7XG61ji672wDiO0DEhEI4OxBoV4kulY0DBV1KRgxCuS\nJZHXYEIjpQXEsy7vSuuzPISthP2z8MT0YYiilIBm3ks6soridXWhqDPiY6ZDnXFOEiaFFu0w3mCt\nITVy2JW0MdfzTPQmgHwyhFDeoTFobYgi8UOTe5GWUCmI4ginwnXThbQUkZ5bsLnHG4W3Ed7lqMDG\n8CG0ptNpdZu8zOQiR7GWTprT6hg6qSZNYzKjyb0lUxZdskTVCt56YhNLY4YJ186zuvZFJvj+Ktf6\ngUnY/9wa3OuDm5CdH+Ds8E6ORI8w+8I89espz5Zh2yV5y41uhvg1uH+ozpHGXk6zi5ULoz3vXdr0\ngJBf58FZ0UumrCCUqwlgGvoH4Up4nVMAACAASURBVGElkvODnsrDTWrjTSp9q3ggXeujfadGe3dD\nfA+vA9cUPOepf2WRp7e8w4vqDZ4wh9m4eoNq1qKdVLnZP8lH8aP8bMtLvB89x/LUKJPPXOXgyIfs\n5ygbuUadNZrUuVLaxLHSPn7Bs1xjI4nKWaOBQ9Omyr6HT7DtW9eYBr59GNJVaMxA9ByYfwwPDcPc\nOSAHtQP4Ctz8oyHu60FuxZOc4GHeds/zzsJzpL9oSPrXRaRwcI9e+pdCGqUiUbkDLMHqBFzTcFpx\n8fHtvDPzLDMbrvPlf/IWQ1PL9B+H/hVgErLHIz57dpKfqy/xQfYUrVODwha/CeSF70wBev26WX7/\n31duLCfPX+XZAzupV2s06g1Wyyu04pYMr62hWqlgrSEPgIl3FpN1+PDdtzhz9jir7WUq1WFyk5Pn\nGXEwVkcJ00pZ2x1yfG6wjIBe3X1fyQCj2Lu1Krx9Zd8knG27s8vAwM2DhC/PHZ12DqkBEzwpjRXg\n0TmqWcbUhx9hSwnXfu+3wIfEQcS+hWDiHusYrWH4/Dl2vP0OH//e72A2Tsveb6WOHfzud6k3mySR\nxg70iS1AHNHQGqvBxQlN71FGHkvVR/iOo7W4gF1ukS2uYpodtPOgI+kTtCfHoXEo7WXIUvzHFydx\nH4CuAlgUNpexOXmWCpMqisHJ8yc3eONwVgUmr9QuYxxZZrDWkcQJcVwi0hHG5GiVQJSIv2OWg1fE\ncYzWMc6ZwI72ZHmOc5ZSHJNEMULC8zifhyGRhKXkRmOoEOkaqBJJZCmVSsRRTJYarPXUSjH91RKd\n/EFgCBeJgEVS+woCrlRhcRY+qssQ5JZi4eQMC1umUSMZumSxnRhulHpKkQvhTxtAZwKyOrgF5CC7\ngLyZC2fC9eBXcRYKfoNU6JrZzwIHQL1gmPvSeV4t/XtecT9h39IJxlYWKOUZq9UGF0bfY6i1hPae\najuD8FEQoyFZnoDLW1AWbkTT3Nk/xuTLdymfhfkzvQp1Azi+BE8GwGs9y7nrkBjm5W8/9Rg7H7pE\n5WYbbRzpaJlrGzfwiTrACR6mk1bom11i5ZUBqrOrPLn9HV5Qb/KY/ZiZ1i0qpkMrqXG1Ns3h5HF+\nuv9lPi09Rmr6YE3BRwPQmgivTYtA45XXiAo9OX8fXYBxsQ7HExhULFan+dELr3FraIqjyX5mhq9R\nG27TpM5VZjmR7+XonQOsvDUhE/qTwLLh8z5iQQnzgOzlf936ew98WevppBm1coLWsNJsUy/30aiB\nMwYfK5xy1KtlkqhOtRyTdjpYoNluk+eOPJeDsrUWpUU6UTQwBb3WBsAn0gqs7QFUCPgDBPaAYFmy\ngUtR00GmgtLrYuOLj2qg4RayRgLoJRSv8HvyO5IiZuj6eLmiFQgeW046m+5U6nPNbWAiaC3PUcdC\ny9UyyS4YVV02gAqG+gR2AkjSWZg0FUXLWQtphm+n2IV7tJeWUcYQ+xjfGCYqVzn47hH6F1c5/twT\nRJUSOo5RxpMbh7YK4QJ4UOKjgqJ7GCiukLwmyLUKVyBKU5R3JO0VoqRCkudoC5G3RKTgI4TbpXBa\nPA98OHh4HzwUFIGKISuQ7ygOcnHwn/I2lxmd1iirUTom0oGNpjQPjQ8xNzHC2Wu3fwXv6r9tFcwl\nRa+weHrTnPvIaLsOnSqyTXgggWgCZhN4FJKXO+x64ihfKf+IQ7zFnqWz9N9dAwvtkQpnRzbzVvkQ\nP9z/Kp+oZ7CriezFK8Ngxuhtlil/WTq3nir7RXh2/W1rPdhTTL6awKJ4mJ0rw8eaGzObef2Jr+Ir\nmlsPv8POh87Rv7oCWrHUGORU33be4AU+5lFe5OeUXA4daLZ6JvjQm9HsA3627ufLwCc5bLkIo1cR\n1t33YfGP4aMFuO1gSsPBGzCUGB6bOsrR8U/5cPwJLqWbySiRRxE+BFJW1912AvQHzx6baFJKGOJf\nqmFFk/KbsSpJzECtRJ5l5M4LGzaKUUREUSSHzSSmXq/T39fHwEAfjXqVSjmhHGnKcUxJx8QqEnAp\nUlgrUm/jXEh6SsJRXEyCoygmjrXIDSNFHEfClPL0gk207B1aRWBFchHrWJqcwqcrVuuaIgGc8OJH\nWSTqWO/EtN0GTxitihmE7JNapDDeWVxuBTwKAJsw1cJBL3jQOBNYaXi8ziHSYVIuQxlnTM8rJSRQ\nOh+gUxfYxjicN0RF7YIA5hlsALK89SReB4N91Z3ea69w3gaFpxclZC6G+lqLJbRyishHRLjgH25R\nUbi+Tq5pwQwoou2tk6bDo7A2x4UhjTG5BAZgcConM1aALmsxztLJUlJjyGxKZm2QOaYCghlYWcto\nZ57cg0o0caKIYpGKllRJanss4TFpZml3Un4zV7EfF5myTeA+3G/AFYU/oTix9QBvjL7I8KZFnvin\nRxjeucrkhfDnW2DxqTofbHyUtzjE8YVH4VgkUvhF+HwtKA7Pv45VyGgKxkDwh6kNwV4NhyB6JWNq\n/2c8PHSMbeo8Y9xF4bk7OMbR6f1c3bSJlVY/SzdHMJ9WiB/OOPDQJ3xDf5dvtr7H9IcLlD810g8M\nw5aDV9lx8BKNwTXS2TJnR3bztb7v8RV+xNNLH9N3fZWkZcjrCYvTQ3w4+AjXmaGfFW4zwWl2McgS\nDs1Pqy/iXnmbh+auUjnuqDSBDbCyr8rZTZvZ+9+eoXLZinfxQ5rrmyd5K3mGX6jnWGCUS24zly9v\nZ/WDAfi5Fs+xWyn4O/SAL40AgnWkSarR03vehcsTcAw6bw7w3leepzLWYXWqj0e+fpSx5xaIjaFV\nqfHZwEY+KD3Bj+0rnLy4D/t+IiyBuxb8Mj15U5GU+SDUeVkXr93m3uIyM5Nj9Pf1cb9SIUliUpuR\nddpUKjVKsSLOPbiUK5dOYfNlVteWmZ+/iXeeTpZSL8XkxhCbnNjEIeFPBg6EVF45c/uuRE8T40Lg\nlPUiW4/CsFTpKAydZeCglPgTFr7CYtpu8NZgc4vNDLaTkXdyrAmehWku0nRr6MQxb33lRaJGNaQI\nh3N+XBYmdCRDcxV6iaGhASqVMg/t2EpnboYMT7vZpL28yqn/8j9mKo6obH6I/qF+VpaXyNOUWHmS\nrIYz4mml85wotcRNg19cI7u1iFpNido5FRs++eUYIoWLFTZ2IpEOR0QVSX8jyeu9LyE4y8DEWovN\nc6wRv7JEKRIP3ols3RiDM0aYXkbAruLvk6RMkpTEX1PrUFMjnPFYJczsOE5QSgX2V5HEjLC2o0hq\nrheGmMLQbrelVqqENHN0sojcyPDLWoe1TuxPolhG0Ebk/0P1Mgur7W7i49/tKvbkNp9Lw/Ue7k7B\nR0MCap8BxhV+oIxN6OVTFcrER4E9yHZzQ8O1frhZhXQAOfUW78Oi3qz38C1k6kX6bj9USvCQgr0w\n8sgdXkje4Fvmuzx77gPqP+mgjgMtqG5YYfT5I+gL4aangQmYHYUta0J8VQiDdiKoJ+9Go9xmnIXB\nfiYrd0F9HjTpdi1VGJ2CPbfgmJPdbBMwNwrMwf3qEG/qQ7w39RQTU8Lw3cAtYgzbuMAo99hdPs3h\nLY9zePJxNiTz/Jb+C77W/iFzn9yifCpHLQEjsHPvebbtP0+91CTfmfDJvedkgn0NuFz48C6FC+6Q\nfXwAYTaPAZOg61BNZFvvAJ8COSzem+TdfYOcmD1I3+A9yklKJyuztjTCyrUBsiMVYet9DFzNkelP\nAXy16dnXPCgsxb96/b0HvgDS1BCFdMOl1TWciqjV64zV+6hWKtRqZZzSWK8pN2pU6n04b6l02qws\nNyE4WGV5YPdEEbGiKz10znUBEaciEt/bxVQwolJKIm7RxdRfus0oAFpeafmZLQR7cnAXQAwK0MkX\njakvvGJilAryS29RXou3CRqtHNZJI6YDS8F+boNV3dtV3osfigr+VDpCB7lel13WbXIC26sopOG5\ndKkRTpor5Ty2k9I0lje/+iImz/HtFHSMHxnB9TV4+0vPUrl9h5MH90uTWK7iYoU3OT6zxF7hidj+\n44+58/vP4YKZS7B1BiSaXsCw4mnJE13ZPcOp//QlFu8vEWVGPrI6PD6V4LQnCt49ipDQ5SU62rsY\nrUQ248T1X5q+4IHmNF1pkfYeH4q1GCxDpAM4GhrTMgmP7Zjlyvw90vyLZn0VB88iVWWN3sZZxI03\ngK3QKAsN9xHP2CPXean8E36HP+OJY8fRP3WoM3LTfjNMH7rNxDO3cWXN0qODnL+2XxqdKzHcG0Y2\n6GWk2K0HvdZPDYpN9Iu4Jn/dKlIlk/BVJHoFnwM7Ap+NwUeavF7mhH+MhRdGOBvtYOvABYYH7qGA\nO4xxnm18xkOUyFijj5VSAyZgdBo2nhfZPsir8AEiEXoMOUsUBPAcCURVBmFMfADv3RFFqQcuOUiu\niedA37k2c+NX2FCZ5/yHe7nzwjg3ahvYuf0ilT2GZ66BaUrZ2gnMbQZ2Q3Oizi2mWGQ4gJXhjrvm\nxw/ESexvXfVKibKOcb5gpyrwIQ4+jihXStTqVfoaDYaGBqjXqlRKJZJEEyfizVGtlCmXYiqlJHhH\nKUpVhTWGTg4Fa1ahiGLxwuglPsn+p7UKgnMHKkKiPRIJ5AhUABeua4TsVTYMSHQIODEmAFexRmkR\nq3uXy36GTOaV90EeI82VQoAkiaGPcOGQ3m1xFGAdOlIhrTDDBsYXeGnMVAQKokSem+1IzLoOUkYT\nvLQK2Tde4TKL13G3tslAR3zNlLKi2CQwEFSQ2juLchaX5102WRwL6K6Qv/XWB0auCd5S8npY7bHa\nEq0bQoRxiPw7sI8dDldIYSwFXInHYJxIHHPrSI2lYxyZseQmJ7MZnTwjtR0y0yY1Oa00JbUGE6RD\ncRyhtMPRAaVJEvFk88ZhnMHleTe5+DdvFVeyYLsG0L85DOca8JFifnKG1198FVOPuPHQNA/PnmCD\nu4Uj4rae4JTezds8z0/Wvsy998bl8HweaHcQCkCR7FWwgH5de/56qcwIqCmYjYTF/Ipn86HTfFX/\niEPqLQ74T5lq3kVZx/zAKO+qZ7g8tInbgxOcmdzJ0T0H0N7ydPIer/A6m348j/rXYN6FO/MwPAqV\npx1T377NV7/1OtdrM4z33eGbfJeXLr1N3/fbqCNIEzjaYfDxVUa/eZdqK0c7z/J0jTONLYywSImU\nFfo51beDUwd3sHH/NWq0uK+GuKC38ok6yDP73mXi4dvEWG7rCU6qXXzIk/zwyjfx92P8dY0/qaXR\n+RQ4Z8HfRQpJscn3h6/ApmCEXjQa0ud8LL8yX9rIv3/pm3w2Msf7tdNM10RWtEI/nzHHcfZy5swB\n3E8jeE9JIWsWmtE1BGj7u6ztf/VaXmtz5spNJseGKJfLJEkie3GkcVkuAwAPyqcoDFnmuHDhNO12\nB+ckEX5p5T61ckI5jonziFhHkgocx0J07YZVabyTuipMWGS4HZQWOhxeVSTDmijupRg6JYC0Klhh\nzsiXtbjMYDoZptmmudqklctZuNNqEitNKdKUhgbIpiaoVsvUkwhCwnq9f5BSpQ/QGGPI8hwdRXS+\n/ALzv/11koE+yrUyRiv00hIoTbvZIts4TTkwymTQ4FGRJinFtNM2WceSWEu2tMrK/D1a8/dgqU3S\nCTp3pcm0xnhQUYKOY0yscAlB8qhwSkKotA9DmQAcIhUYlACA1joI9RAknb0IBDDGkBuDMRZn5Yyv\ndUSSJIAnjgWkTEoJzuVd1lepFNNqtdbt4zLcyXORlWqtqVQqlMoltHaBoZaHWqlJU0Onk2FEOymq\noU4HY43IMX0AwrzUuZFGhctRRPZAyOMLAKpIWy8aKg+0oDkBF8bgYlXahWHkULkXkS/MARMeIgtr\nEcwrYYAdBY4mcG5Yft49++fha/0QvAC/iv27DwYSmAa9I2PT2HmeUe/y5OL7NP5NCn8CZ87CqofZ\nGCY+hPSM3Fx5K/Ay9B2Cb7fgwh255W2zItM2z8Ap9nCVOW5HG3h4y0UGNsOjl2GpI4PqrcCeMWA3\nVMrw8grsPCuPenoGKq+AeQEu9m3iNDs5zza+zb/lFf86ey+dR5/10PT4CcXyvvfZOnieodp9Gqzy\nKj9g+4+uof4UeB8696A8AbVnM3b+3mWyl37ArWQDVx+fY+HERvH7ulxCQK5SeH0a4X+PI7S4SfGv\nnFXiyTyM4IdKXkL+nSI7UWNhY42FsQkoe0gVLChBBi8iTcoNA/42wnlbJOTLh9frwdvPf3n9A/AF\nGONJM0Wtpmh3UpRe49rtWySxYnCgnyguh8jaiCSphtRHz8gIxNFd8jzHGocibGbeSbqIF1mLD4f/\n4BiMAqKQlKhlZBOYXbq7oeoAGokvo+pK94rElmJyH0xNkI09oDthol9E1xcm92EmtE5+UgBsUiCk\n2RDacA8lIphlhh9FGiKNimN0nHTN7QvTYABvXe/xdSU1wUjSWnAOm+Vk7TWytVWy1VVJFHOw9fRF\npubv8M7XX2Wl1SJaXuGNV1+ioj1xKUHpSIyjfS6tntL0zd9n5MptGv/nzzn/X72GLiSWSsv0X4Xn\nFTBCIbbJNeskGqMsBodVAlLa4HvmVTAHVVoaGAgpOWIiqpWWAtydlAX5p4JYRyF6OYIoSB+1QmmI\no0KCKbLW4vptmRpl+8w4xy/f5ItZBajk6AFPBgF3iqj3mF4Vq8Oggo2gdnn29h/jWd7lqTNHUf8S\nmj+EmxfkZidmoO+CZ7u/yvNP/oKz8Q4u79+C+aghe/C9fmTHjZAxkKLX7Dh6IFwBeml6058vchWE\n5cIIuYZcj3r4XgWWYbUfjlflo7SquXV/M/efGuOz8Vnm9FX+EX/BE+YwddtiJW5wJXqIU+zmYm0z\n2x67QvXlnNfaMHITPnC99u8y8HIswSmXQu+5OYK+GWA7kIFNe1HKhO/3jahJkiZU6VBWKSjPuWw7\nR0oH2PfIGaZ/+zabNGw4AmkTBuZAvQjtryUcHd/FSfZw4/KspJEtAN7yxbAyfnVroFGlFMegIVZW\nzIOdJkpKlEpl4lIsvo4DDfr669TKZeI4IoljymX5qlbLlBJhikaRxmbyWU5KCaU8Fm8VJ4MF65QA\n9F7k3F5MsYi0RiMhKQUypULCrSKwoBAmr/MIu9d7jLUiiwlNjzViPizsAEPcZZwWrCypFc5btFNo\nYoiSEHsfEhxz2wWkRJppcM6Qm4zc5BiseKF4h808EAc8yxNpCYOhqF0hft1iUV4Roamfu8jqtq14\nZ4JnjDCd4ySSvT+k91rvibwiiSJiZ8mVlcGALYSSYT9QHhcMha2xmCzDOmGDucBStsbgfQFseWmO\nVEysHWUtEiBvbdfQGUTmYp3D2EwGVt5hrFxzG4ZV1ksCdJoZOmlGq90mNzmdvEUrbZM5T2odLhIT\naAWYXFgFzmm8U0RRCZM7WnmG+Y0Gvgq5SQcBLRbBLYpB7kcx1DRX2MH3n65xvrGdzaWLjEb3cCju\nMcqlfDNnF3ex8OGUsI0OIwdod0tuq7u3FJP+XzW4XoRyrGd8DUI1kg7mIIw/fYWvRD/m2/mf8fyl\nD9FveZHmGNi8ZZ7xZ7/P6oYad+rjHK/v5s3ai5xkD7s4zdzJO/ADuPYTeHNRoKTxeXjpZ7CxHyZ2\n3WPPgZMMqGUev/MJ/d9pk/0ruHoa5lOYLMPMCRhYaMt9OhjZvsqzj3wqjsltYPw2Dz96icNb9vKz\n8ksYIlIq3GSKs2znqpolimRfXjQjXG/PcPnWZuzbFQG67iD7+TUPt/LA9LqKAFHNcE3G5UtNQHkQ\nBrTgX330gsFWELP+jmL59jjv7v8yJzbvY7C6TKwNqStzb3GEzul+OKJkKvMJcKeNNEuF+XLRKD1Y\n9STLDcfPX+PJhzfLYLJcopQkWGPJI2inmfj1OovJLUml3PXv7Z6zgU6akkYJSZyQG0OUa5I4CoPS\n0A+oniduoY3yXthgqjgfahWAN0kO18FX13uDdSawfEUxor1IKcvNFur2PRYyw/LiEtVmBzM2jtIR\neZ4T64Q0y6iMj9Df3yBKIrI8Za21hitF1IYHKZWr5Lnh/tIiaZ6RJxrbV0NXEupDg8SVstSmNASc\nALnJWVpaFCm/BpcbtBNlh8kNWavD2vwCrbtLxK2cslVETuF9JDCH0lgULtKoKGZs4Q6LW2YgUV15\nv3Li5ysXPFyLMHx2LkLajMCcDtfWONnXTTC2z7OMLM3Ic4P3EuBSqVQolaIQcCLvSected7Be0u5\nkgAqyP2lX8iynGazhckNcRwHCaRC65RAxCNJhOHVbrdod9qo0BtYZ/F5Jt9jAVfFZ1gk/fVKiUYl\nYXHtQflsFDVA/dLPWkAbfBOYg3oNDgKHoPR8i/GtN9jWf45xblMiY5V+bjDNuX07Wd06jBtNoKLg\n+ACsTtFN0fgrkwKLPTxI1ssKRqAy0WFj+SrbOM/gxyn2TXjnLLxjpaqMZ/D4LwSzd8Cuj+AZA+U/\nhPIW2HNZbtZvgfTlmE+37eE9/zSfcoBZdZXHDx5j8LVV9nZg5Bi0DWwYhtoLYF7TZJMx1ZmM2XPh\nksxC9pzm7MFtvBm/wCW28CJv8JXOTzjw1ln89yD7FPIWVDZ4hp9v8urv/xQzF5NSYcuJW/B9uPYD\neHtRdDiTS/DCfRjph9lNN9mz7RQbk2sszMzAuII+Bas1ev4kxX4+B6VJmC4JCPkwsM0RTefEDYNH\nYe7HuGslASM/BDIFuZItegXZshcsrKVIdbtFj7zQobeXP/hD8X8AvpBD8b3lVeq1MgqFsY6l5hqX\nb99ExzFT4xuoVMuosgKtKSVlwX9izeTUFM21NVZWlnnik+McfeoRPBpTvPhRKITe0eWrKoWPFDqY\nFBMaEiFJFWVTkr2Kc7IGAawITQc9DxgxqzdoFdhXTgAhr8Ug2LpcCmiQlBQgl6eISw6xyL53KC9A\nMFUgReH+0TJ5KkzpC8px4WemtABjhTyni8shjYeAXhlZu0XabGJaKRiFistQjRmMNFvPX+LY2bOs\njA1TQhOVq0TlhKhRDaCVsDZQwgJYmhvn7O+9SHvXTAAokeSuABRKgxY8YAIjISgi0UqmPQ4V/G60\n/BvxZbNeC8NLKbwSYqvyAqoZLSiXFNaCEi2PK9YxKtIibSwo0yh0xDp5aAAqw+Svr1Lh4LZZzt+4\n8wV5fcHnle3CHJEDaEEprtBNUFH17vCgNLfGZi6xu3MG3oHmG/DG2V4yypbL8PWfQHl7ztbtl9ky\ndpHRsbvMjzfEjxIdbnuQHmG4aK5Sen4vbXpyiEKW+UUdAooCW/jB9CEXoJiEBzCwlECi5aGHnlDV\nPdsGzvBN/Rd8g++x4/wl+q+sES958mHN8tYjHNt4hjN6Byd37eDAPztFo+2Y+Q4cXu49ghXgxwa+\nXIO9gS04MQv1r4VfOA3RVpg9LKTjNDzayRLEE8AIEpNMHZ9prl7Ywpu7X2Ck/x6vfP3nzGy5RfWk\no9oGpuD+vgbHtu7iJ3yFj1Yfxx+pSCGch883p0Wj8uAWOaVgpK9OFGmMd8RxgtaJWPUmJZJylWqt\nQbXaT6VSoVxOKFdikjiiUq5QShKSRKOUk4ltAKlE2gglW6ac5+TWiEeEEp+QOJJYO2cdNrIo64hU\njNJJkCcGFqkrpIfC+tKRSP+6+zR09xMP3fQqr60wvqzFOxW8BoN8XgcmlSrANKkn1gv/KSoGH9AF\nvIzLBThyDqyke2UmIzMW6xXWpVgrfi0aOfArr0iSmDgSUMsaYQQ/9MZh5v7d65z/w28zv38f1hji\nIP3QWhFrJcm9Smri6CfHWNu7C6qVIP1BwlLD/uycE1aD6onWpWEQWaJ1QSYCIaVLSxMRyfM2SgDI\nyChcGB5ZJ+BY0Qjp4FWZZRZjHVnwcclzQ2bkK80NrXaHTppjvSZLNe3U0M4NxmuUElBF+RJ58IBx\noflyTpi9qbE9P8jfuNUbsMk+3EKAi1vQqcDpcfm1Vbjz2Ubu7Rrn+OSjlKopSkPaLLF2qw97uiwA\nyBHgjIXOAj2jr8IjBLqDJOBX6xey3hy5BgwIoekhiPZ2OFA5ynO8zcELx9D/l6fzA7h+E5yDyWno\nO5bSGEjZsPM+c89dZ2jzEo1ojQ3Mk9zIMOfg5KIQmx2CVx1dho1noHqjw+Teeapxm4lLC/AWHD8K\nb3i5mrUUXj4GM9fhyhLECh7aAINvwtJFaOcwOgLJIcsjv38S/binRpNqJ2e5WudCvJkPeZL3eYqj\nK/tJP+3DXCvB2SBpPI7glU0L6TLSyRSgYytcj3G5GGqDIHGbEIb3DFLyysj2f4/gcQb8QG57ZXqc\nleFxubwthMR3DWEJXADurSFaqHnkvVPU9gcL9CrWlZt3uHV3kcmRPqrVErVapbtPmjxHOUeklPhJ\npSm1vgYjw0MsLt7HWUusI7IsI41TSklCKU5CCmEwtAcZikRRsF60ARCzYVDhZQBC8enzXb8vrQob\nlB7DCSV7q7cWjOHgn/+Y6N4S333mUVSrw7c+PsrayAg//NIL8nirZTrtNdpZylh9nFpfjTTPaXpH\nB4+vJCSNGrVSgqtELCzcI8WThb05y023NYhqZUpZhcwbYm/AhCGldZBmxJkhandYvXuPzv1V8uUW\ntHO0USjRv+NjsApMrMlijY80+z74gC0nT/Lh777G3d1bg5+kgHsOL1YjWqPiSAz9U0Oa5wI4ZpnU\nZh1JvSFIPU0upv8hvMQ5AwrK5QRPHhQeBWvM0EmbpFmTSrWMMXlgIidBImnJc2Golsql4A0mnp5R\nXEapHBPYWjbUFu8cSstAvmCHW2ODDUMCSkAyZz191RIjfTUW1zpf/Afgr132r/h3Er4PwWBFWF6H\noO9rixzY9iHPqXc4wKfMcYWSybkfD3GBrbw//STvDjzP+eoenInFq+rUGJgVel5Vf91zD31oGahC\nVLP0s8ooC3AdVq9KP1KYC9xBrKkK56umg42fwdYb4P4zxXJUxSvFcv8A50e28LPoS/zYv8K1+U0M\nTy4yNXiTl771NuNTi0wdOIdMJAAAIABJREFUR7avDWCfgtN7tnK1Ns2W6csMLS+jvWO13uDq6DQX\n9RaWGGSMuxzkCNvOXMH/G7j7Xfj4Ltx3sKUEe+ehVoXH/ugodwaH0Zcs6Sk4er87B2ERGLgDLx+H\ngZtrTG2+xXB0DzWa4xsluRar61PXBxFp4xRsSuBJ4HkoPbnK9Mx1JvtuMBiLjH4xG+bm8ix3rkyS\nvVOVNK2zwC0PWUe+WEXqxn16TK+iJyiICQ/+GecfgK+wOpnh7v01qvUKLhfflpXVNS5evUq7kzMz\nuYFKo0pSqoCKKCVi/litlRlo9PFH/8P/St/KKqZa4fQje+RAHVArMYSXamGDLwooXJiYe2eJVCRT\nfEAVjAEFCgGRxBPAgxNQogB1Cg8wZYvBvxeGUaAsK6IARAmuJYkmNghrnDRfn1MufR7N76bJyBMR\nP4HCwN670KFEAfT6y9fVORvYXBZvDDbL6LSapGtruE5HYpNLZeJ6A6Xh3OwU+4DXfvoWf/EHv0NU\nKhP191MZGqK1tkLkDcrlAjw5iBQk9TrLEwMoHZEUjz6wLIqnU8hHFb0kTR1YBJ4I55UkwqAx4dBt\nAwsMFK6QfRIMk5UPEznVu2qBxRWpiEhHQl3Wqgt0RUpJ+oxSMg2LpIFU3evr2bRhmLmJYc5eu/Mr\neFf/h6z1dOKEnqdV8aJqUHEX/6kOrDHMIoMrIo5fuQYXbM+S8jxw4ypsvgyNlTVGxu7Rp9eY7yMQ\nvRTYfoQ1VUY2akdPRlNE8RYFsNiqiljeXzcwuF7eWAmPcwRJkNkAahyGYhhV0ivU6BrY8yUYeOY2\nz1Z/wWt8nyfePUb0514YDouQjDlGn13i0G9/gHsE3qk9xYanbjJzeJGN78GBFTjppaQUQcEdD3u+\nIv0Im4C74P8FND+DJIFnHoHqEek1JoF9W0A9CQu7GlxmE7fWJrG3I+yFBh8MPIefVtwbHGXfE8eY\nPniTxGcsRUNciLbyHk/xs86X+OzjrXJSOAssp0jBW6FHaS6YGQ/mKsUxg7WqfP4KFmusiJKEUrlC\nuVajv9GgXqtTrVapVavUqglxDLVKWeLKQ1KjLvZWVJjua4yzJFnSHSakuRNQ3BPYr5Jc6JTDO43X\n0vAQouyLBKci1l6kiWFA4RxxHHd9TGTPCIyobs3o8aJE4e2DrBFU8H2xRiQeUSG7C8MNFySKzucY\nl5HlHbxRuNxhspxOJ6Wd5rQyS5rmRJELRr1JSHaURFoZ1MhENooi1jbNMRXHnJsYwy0tk0SJMO5C\n3Yu0Co/bM3jpMhv/+E9xpTJH/vv/JvjWgNMCzkn9CsOESBodtDSaDqmlJhUfF6+1AI/W4pUMpSKl\nRAqfW3QckQczfZcLSwNXhKxIQ5IbQzvLSTMBunJjMA7SXH4ugxDwPqLZyegYS+alCCklgy1nFM7G\n4T0hr0kUBlBpnn/RH4Ff8SoGIgXzM0FADCXGxsdHxfT9CtjDZZY3lHuJiCvIcLgAQq4DZgFhGxUJ\nVOVwP+1191fs878q8KuoaRFSiEpdm6+h6Xts5Ty7Vs7T+EUbvgdvnISjXh7F3kVJ6CopmH4YBm82\neek/eoulqUExu3DgjeyORUkvKhoGlJGGfZhF4hTsVTjje96Oq8CxDnx6Uy6TBnZfgs1X4AMrc/Vt\nN+Crt6E6lPPY6jH0NQ9r4Edh775z7Nh3jj5WWa4PcDJ/XBJT3kdkKovN8EIsIbe2Qg/0qiD1bVou\nxkMl8eJ5DHjUk2xvMjx6l3KUkgU2V36qTxIuP0GapAh5vaPwpJcQgGzJgV1EQK/b4YeFJ8x6RseD\ntRbur3Dp+jyTo3Uq5YRqtUye5VibhtRvT5zE4CTlvdNuMzA4SKmUYHMByLx3ZMZg8hxTluATYy2J\ncxA8ciOt0U5J22jFQ0oCOYJ8nQDydGV7xbncBwVIqAMuADu5SB1vPrqHvgvXaUyMoyo1FiYnOD0+\ngW+nKJNTH+ijVhmi3WqRO4culylXKtSd2H4Y5clwlMpl+kdHaXtPbg15YJS51ZUwlHFQjtC1hMxk\n+LajWqngswzfydBZjl1awywsk95awKy20bnn5T/9Dm9987fFul5rjFZkkSKLFaYco8oJ559+gqmr\nn3HnoZngfxbktp514CFde5U8y8iNITO5BJKYnFIi10cYvZY8SNqdD8nBiSZJYsoVAb7y3OJCbVTa\nYW2OtTkgRvbFEtKAMKajKHiDxaVuH0BQ3ESReHa1Wi06aSq9hLPC4gv+be0sJc8yiMrBmkWHVx2m\nRga4ML/Y68P+ztd65lWhDKkBQxAPwkYNB6D8QpODWz/gW+rP+Vrnx2w+fZ3otCBRflzx7P6P2TJz\ngUZjjdahCtcWdwgOfyOBexPIeXMZOVgXVix/xeNwvS+LxhJBAnH0eQ9b6PUnhFvMrdxse7DCH2/4\nPTyKBcY4zS4+yh/js0924C5EvPe15ygNZ9yfHOLgNz5h9tVrJD5nSQ9yLtnGYf0Y80zSGFpjw9A8\nU9zkAEfY4c+wzZ1nvz7KSfawpf0ZtdMd3Afwzm2ZRTjgVgZ9x2HXhzD44gr5IKhUghfXfO+KW4Ll\nSRuijif2hkgZVOyk/y8YMkAvsXgKpmNJH/4yDHxrnqfq7/K4/ohdnGaEBRwR86UNnBrbzXvDT3N4\n+DmyuCqXfBFYayPwW9GXNfnLpITPAQkP9PoH4GvdWl5rohMBtTpphyiq0EpbXL8zT8dkzE7NUK/0\nYXOHLyUSZas8SanML/6nf8Hc//K/c/zAHoo5u3G2d4HXxc9bX8juZMeOg/mwDuBIkd6F96jIdU3u\nvQtTHudw2otJs5CZZHrgg9zFCfPKhyRGXXRX3oELFGtn0YX0I8QaFwyqXlqKDqwAkEcrDVuxAbvg\n16W1wutImojueKoXJYx3OGvI223StSZZu41Lc1zusTpBVyq4tI25f4/MwztPP87ahnHicgVdqWKt\no91p4azB5SnKWUrNNYgsfrSOqyQYpdFeEXktPgpCeZAGCttNB/POdWnmWkGlWiZKymBS8QvQkcgy\ncXgVdyWOEIqrVt20s8IrRwdWRtfYP6yoK2f08iIpDZH4sCmviLxIQJUS3zA81Csxz+x5KHh9/V2B\nCkWCyy8vafxFuqowxPiAh0XJ5/8iQQoPZfCRJOn5rvwVQEMyJahNoTEvfJNzC2YZ/CJyUC4jBbBY\nGT3Nxa9zFQaawQuGSWAOaiOwGdiBAF1TwIiDyKP7PRtfuMiL9Z/ynH+bPRcuEP2ZZ+lP4Mg1aROn\nNTx6Hera8eiGkxydPMAn0UH6vvw+A601vvqvoHlGfIAtwjMbqYOaA/ufK6KfetIfwJsnhYyVAAcW\n4LHdEIV0Z/8UtP5RmferT3DEP8KdW9NwScNpWNZjvPWll7gxvZH3KhcZK90lIWfF9/NZPsfF5jbu\nHN4IP1NiNHbZQVZMeNboyZEe7DVQrfy/7L3Zk53Heeb5y8xvOVstqEJVASjs+0aAIAmQBCkuIimJ\nsmiNd7vbHk9HzHRMxNzN1dzOH9A346uJiZiejhm3o90ty25LlixSokhxXwACxELsALEVUPtylm/J\nzLl486sq0rLbLS+iOpQRFVVAVJ3lO+fkm+/zPgu1JDCUlMHr8PlNDM3+BoODAzTrdRqNlHotIYkN\nxiiiSJFEYJQnjg1xFCSKSqN8gtKaCJGvRMbgtAlDjojcg7ey3+HFCF9pAdGN8gQDF4yOMMqI+S4s\ny9wVBEl0AOpVFSiisFgKb4mCL2NkRFZvtHi+OIS9pLUMS6z3GB0YqkUJSmLuvbM4J2ljzhVYl2N9\nKTISLQ2PXupx/E+/x/vbt3F1/QaGsx69vhbEIjcUGYnGOoUNckcV7vv/+R//kKiXE5Xy2GIt4JcJ\nRs1JbMDD/Y2bqD3zFHcffhDXKWjMz3H4//q3fPwHv8vSuhHQMPbxeYYuXeHyN1/E1RJQitJbChX8\nvazHFSVWK3wU41ftr5QWr0q8icidpXShDHrxXildicfRswJyFYWYHBelxM2XKHpZj8V2h26Wiezd\nKxYWOwKMeUkK1VFEpDWuLMgVIblYBaARDI48k4bqF395gtkfshdUQJKDvA3XR+BeCkNGZBe18CcZ\nsoXPWehalv0R6UP29yoSvcPKwTok5/6jgl9VfY5Wfq4DLWjEbYaZZrA7i7oBkxfgnF+B4U55OJNL\nnTt2Co7Xob7HsuM3L3OdbZRjEfVtloOn4c6CQDv9wIEU2AndDQk6Ljk6/SH8GAov859AYkEhLeQ9\nVmbnNz3cs4FwC3zkYWwaHj8H5ppn6SSUS5AOQf1Yyf5/eYXFR3/InXgDEwfHmT65QbQ9czkCMk6w\n0rRUSZqJXADWgh6DTYmkBT/vqD/VYe/uUxzkDJu4SYsllmhye3ycc+MHOLvjEN2RAXys4U0EyfOl\nMH1wLHvBMR2+V8y+Hp9lCXzxlvNw7todjh7cQhTHpGlKoylWIHnexSgBrYRJBFmnw6JSNGopPQV5\nLyPLNLExWCtssaIsibSiDKl/ouwQKrcMRkKwR2AoVefKFZN1sUHRRi2/fZUO1l5OwHytFNoY5vbt\nYH7XdgY6ObGJOXXsYRbaPeh0yDpLdCLFwPAgnaKg3VmiUfSh05RGf78MAHAkHjqZKEaStIbPujLE\nthanVx5nWRYU3lLmGWXWIypKEgduqUs+t8DSvWm6U7OYpZyogB0nTpH2euw6fYrLhx+G2FAE0KuI\nNa6WENVT8jThR//Lv8brElN6TDXgwS37QFINR8JQ2TsnliXLknUJDrBOvjsn8kUJdIFaLaXeSIhj\ng7UZzuegbLABKHC+wBhhCmdFThzFmEiFvkj6nyhKSZJEbA4qob4T70fvHVlW0On2sNYRxQlF6eSz\nrxWlk/vyFvK8oHTS2zkn0vuRgRZ99ZSFzhcxGEUjJ9AGMhGviZXUAc/Y9ls8od/g6/n32f3yTfy3\noXtKwJzaOk/yZMHx3zxBd3+DO9EGJo6MU5xuSVrgdIuVoXi1V1d796qxgi+XVRb5fMKkG+GG3sLB\nfZdpPeh47A64JdmLtwjfgPPhFjYCI0PAZlgajLnGdn7Ue56ZbIj70+vofdQv599JuKc389dfeZGb\nfZs5m+xnd3SR9W6CXd0r7O98wh59ifu1Ec4kB9jurnLs+kn63+nKwCGC8R2z7H3yEtO1EdQ8+DnZ\nCauK1gGmcvl/s2TpUcet09Q2WvaclfyRLlJP9qTAVmivS5iLBlgq+3EL8QoGtSw37APWQrMGOxU8\n4hl4dpLnWq/wkv8OTy6+yfbrt9G3PUTQ26G4sG434/XbpDsyfvLs8xTTNbinYHYA3IBcDBbkgi8D\nXtUA/Iu5j/+09Uvga9VyzpNlOXFscA6KwqG1A91jcnYKrQ0D/QMMVmkgWpGkkn6ilOfjP/gd9MRd\nyiLHxArtPNYL1XYZTAr1yluHVg6vFBaZgktjpANYpfHKBQmMQQWppFZG3l5euEpOISeninWlHN7o\nkCKmhaHkJF9RhQmJcx7vSlSVelVFwa8aKfhAyV4dS1+lauEcRZEvy/XiWKG8Dj774tWFE1aC9x5n\nC/b86bd5/0uPU3YzbFFSdHvkvRxjIszSIqrbI7IFsYm4fWAfca0GkcbrGGMiyqxHkffQzuKzjGMv\nvwGx4vS/+jql0ZjKOtorPFEAWLTsdATT0LBhujAm8soz0Fen2UzJ8nL59KmVAReuczVOIqSjBVBN\nrwK6Pv8FgWGmRBriXZBK6cDwCIddbJCS+iDjURoN7Fy/lj0bRzl97e4/xdv877k+j9w78Dl0arAA\n7alB7m8e5d7AWjbsuc/ANjg8CadCT7RXw/q94HfD/OAA9xhjvuyXgUEbWKcFAVqPsHEjZA9dAO4a\nuD0Ek32Qr/YCC48Dwi9r/mkAGLPqK0XKzVpgE7TWiD7+GPAo1B+cZ2h4hlZ9nsgUeK05Wn+X3/Tf\n4vFP36f/zSX4AD66KcP3ArjuoH4VHj4BtSs9tqy/wSs8R7kv4mu9H9G4lvPkHKy9D0sO9rZg42Hg\nAbAzCnPRc/WW2KZUM7A2sGUa1n0TFn8zZXZ8kJNrD/F9/TXeXXyMxVODYix8Hoghm+jn3L4jXNm2\nm0ZfFxV58l5C514LdyFeMT/+xMPCLELRmOJvSh2/uABYI41wpaU0DrTGKogSQ9JIafXXaTUTmvWY\nNNEB6ILYxNTiGO1VAL0MkdEYUwHeGqMjvLLEcUQ9reGyAhUkh9o6nLIogpG50mhdA2TijLNEgTHr\nlUMZBJwisGgJwIw2iJE+EHyrSlUEbyxpKrXXGCN7nWxp4nMibCiL9lZ8yZQXH0rlsDiZ1jtJSnRe\ndjljdJAfekySEDmodXuMT80wm/bz1Td/wszYOt56+lm08uRljzyz9PKSri3IlRzydRxJgpaWhEMd\nGyId0aw3SeOI2BsSB2mk2XbiBGcePoK1JbrTw9y5L1HzV2+y1OwXP8Rrt9BTc2Qz8/g1gzhnsV5S\nFK3WFM5Tek3pPY4CH1URAh4TGSIlzWLhpJba0oqkvQieXnhKPFZpSpwkopU5tsjpWejlOXlZUgRZ\nZDcr6GQ5mXUUzlM4UEWlzZS6YHSQseMpS0vpHIvdjOILYVD8D10lK3txJ3yvJhbB96s7BLdboBLR\nZgPYEjmIW0gdxEPAkEii8hJchrQCU+ErQoCw1XXoH3uvUctsmUC1Z3WDZQzoVSS96mifAx+XsPsW\nrLsBY+4+Z/VB7u4eYcdXbrFlCr75ESwsQqsFYw+Afx5u715Hkza1tzzZq/DeWbgt5EYixAd6fwMm\nOyv3WSkLV6+eBy7A7Ql4dVJehfXX4YnbMDRg2bf1IgfGz/JO63Gmt4zBqIGWgYUa8tsV+FQNkKoa\nNwL9TdgPfMkz8PwkT256ned5haPFh4zPTJB2euT1hDvDY7wXH+WHWyf4SfQ0c70xmFeCZ04vIABb\nJzz6SrL0eUDziy+NuX5nmpmFNuvW9NNo1JftRbqdHO9k765FGtsTqWGR90JdSLFFQVFk5IUhLwuy\nPEer4BWpdfA2NFgjCcCxjog8FIWX5GBWUn2XDdwDWKJNsGz3AsRZZ2VQohVJEovliJjVktYSGdqG\no6zt5kQmwnXaLGlPrj0LM3P0tfqptRRRHOGKkl63R2rqYJGBkLNkeU6+uIiu19BJIgOZKpCkl9Od\nX0SVliTNsLnFLXZYnJiimF9C9QqSQqO85uqBw2Q64dO9D2CiGBdSHH0ERJooiZaZ1h5hUuvAkK5Y\ny9VaPWwGYcsVeS7+mJW/l7VBdi6AWJ5l5IUAerV6jUYjweMwkdiRVI7IefAB8yhJvcdRlAV4T5GX\nOOcCECYhLNZKH6GD2sRaT1HkdDo9yrKq61oYySbCROKzVpSlkJaKnLIs5dxghE1utGbH+rWcvHL7\nn/rt/jOsivUVwPMmsAHUDs/u/gsi7TtzE/9ncPe78MakADg7LsKjd6Deynlg9DwPjJ3hw7GjXN+y\nTxQURoGtZBSVbK96nR1yku4hpvoOJjT5jRrXDuzkVP9hDuw/z45fvcWeAkbOQp7BwBDk87D7PlgL\no6Ow9hmwX4KPawe5ySYuXd5P+/V+IadW5WgeeAvmh8a498QM9aTHUT7ggbMX6PuwK3r2BLbvu8Wu\nR65R73Rp/XFG9ldw/w5EGtZuhebFgvQ3JyiHFWrEs+6m3E2JXLaxBqgxKPsjPmUzax+YZezLc+yd\ngv5zMN+BoT7YeAj8szCxeZRP2MPtcgPcNjJbaHtW/Lb65GvEwC6Ij2QcGP2Y59UrvDj5A0a/O4t6\nBdw1IIbaPs/Br10kfTajPdDk7s71nD90BM5puKJhZgABOCUA4rPejF/cPfynrV8CX59bvV5OmiSo\nJKIoLF6DiQyqyJianeHe1DRr1gyRpBloh4pTEhWhsCjnSI2WUBVXJVlVRQsqtszq5cKBnGVmkJcX\npaIwKxWYWitgitaVF0y4ES2sIWE4iQRRtPAa5yza6+XJjFtOQJFmytpyGfzyvpJ+eFZ7kajAHBMD\n+6oYV4CeCaCSDdMpjXIIPbjMcdaz70/+Ezt++Brq1l1e+9rzZEsdTFaQeEukemgvEsK4XkNHMUla\nR9Viud1SYixdacGW0qRox91tY9QH+3FGeEYyEZPH6hTBIwFpCkO8faBsLT9/pRT9fXWGBposdgoK\nl1PaFe8FAs28OiArbXCaFflNuCbL1OZq+hQOKDqkXAbraZnoKkLymiSVVa+xEeQR7aFhDE8f2M61\niWkWu5+n9/5zrmpjKxDjyi7M1OAO2Osplzbv5mR8iIPPniO9Bkc1HDovb/HaNohegO5TKWf793CB\nPUx9ukGozA3gOeSAvY0V75AcGXdfQxJKzsVweS0srk56qTbafyrZ0OrmJ2E5MpkxqA8Lovcl4CuW\njceu8VDfB+xT59nAHRJyZlnDJm7ywt2fkP77Ar4LsyekDagecQbcLcFNg1m0NOlwmV20TJudh69w\n4HcuM9ryDH8CvgfRZlB75Zokf+FgTkhxq98ZHSB3QA0WH6jzp/Fv8B7HeDM/zt03t+NfN6KfORC+\n9gFbPW7Is6jrlHMtuKkEGPtOeA3uANkUAnpVJpZVM1O9N76Yy2hFXy2hm+WgDEktJdERzWaDwTV9\ntFp1mo2IRk38PyKtSKKESBliHYcACr3so1L58amwxznvSJIUby1lL8M6hfIW6zIKXwqryhqUTj+T\n5BfHsq9453BaDuaa4O8SGh3ZbwWwr/y+vC8wYfDpnUcjUm+lncAQKszdrEeZSMC50mKDBEuGIwpn\nPbgShVs2nlcKIhPJ/ukd2ivc+AZO/v5vM7HQxc0uMTcwyKe79tJKayLXtx7f61FYj3ICqJXGoNAi\n808SCQuxDu9yrEoZaMXCakDz1T/6P2nNzjHr4equHWjlaa9fz8Tv/S55fz8mF/+xk48+QlIU+ChF\nt3siVcdDt8OeDz7i5NOP44wmtxZbCos3iQS4xHoZMCgV2MeE71L3rHMU3pGXxTKLrSgKnJV/57kY\nIHukwcyCDLJwlm6R08lzrNZQWlxpJdAGT5Kk4H2Qu0BpHUu97BfsaPh3rQrA86v+nbMCckwBNfB1\noRCyDXQ/rFEwmoj6ohX+NDMwl8BUHe71QxF8E0n4m8fT6rD9D1nVZzHUNe+WMbulosUUa5lrDLJl\n+wSDu+Dgx0KY+nxWVUFowzwo5fiUTfyo+TTNX/0O65rzbPgANkwjMsqHYebrdc409rOvOA+3YOk2\nXChWZI4eGAPe6skVXCNXkCPI77wVrvIosCOCroK3p0R8AlJfmvfhy6dh6NYi4+O3GUqnMcMFts9A\nolnxqnRI++lYNshhAPQwrNdwEMxjJQ9vfp+X9F/ya9mfM/RKm+hDJy/tWtj40AR7nr1As9mmtzHl\nh8e/gbsRwfWKHXAbKfYV0FWxA6qfq1r+xV7zS12u355m09gwjUY9hGko6o02vU4J3lFLaiIBdJbC\nlnQ7bVqtPhqNOr12F2cdWZ7x3588z7eOPyysLRMRFR4TgYkELI+01BpjNL1eIf6FzqGcQzvZZ8UO\nJXQTOgSkuOq4GmxPwhDYA2VZiDok1qQN2bvxisRacleSt7vEJoL7S2RMQX8GjYTC5gLkFZqo0QQc\ntsyh3cYqha3VKdNkOaDJOE/cKyhnl+guLuJMQrHYxvRKVDcnthDrmMJl0vMozc29B2WvTmLKNBZw\nzXh0bNBxjIrM8iAHkN4inKRXmF46MJyDH6RzwqzLMmwIhan6mtKGhN6ioJdnOG9Jkxr1Wp16I6Is\nc+JYQ8ct19l2u02308N6SxSLkUqeFZTBEB9EyVPkxfLZoPIZViqMBLKSbi8LfpJRCApTMmxatkJB\njAQpJbilIiMEe8stw4Oc//QevX+WxPe/z9Kf+zmSQUcLGAQ15ljPHbZxFc7B0kl4bVIUCh64U0Lr\nIjx4AoZ+ZYbNYzcYjqe4vtbDgIK6gqXVoFclTV89fgieU/M53KzhzxquHdrOT/Y+ybrWBMk3/5pN\nmyYZOoscW0egfhv6Q1iJ2gb+OfjkyE7e4Ek+XjpM53JTbnY7Kz1J5TqzreDB1gd8mR/x8IdnSP+4\nxL4C09cgiWDwEIy8NAct6Hwb3jgLHzm5mYfuwpdyMFsdaidwHB6fgNYdwat2JrDjIKhH4N6OIV7j\nKdqDTb7yOz+kv5Wx4wS4WVAjoI7C3NdrvD34KB9wlJtXd0khuIPQiFlEqlML4oaIVTZDa+sih5JT\nHOctRl+bRf0xnH8LPskkV+Dwe7Bh1rNr+FOOPv4hJ5MjXN+9k+74gJATZupI/ahek2r94p1sfgl8\nfW6VpaXby5ZZWh5PHkdoZciyHjfv3KSvr4XR62jU68RxDRsot1pBGmtcadD1FkWe4coclAAdrKLm\neu9lQ19OPRSZCqHH11qQflEPrgBRlYylQr+VUqHgVWb08rtag3JhKoQKIIwOfyMF1VfOlH+LeHzZ\ntB6hTqsg99EhhbBKI3TOSpyyjrBeaNC2yCiyjOj2Xd585jj95y7y+gsv4HsFiTJEiZFmSwVGW2Qw\ncYrWkUztjcJnOZQ9XCHmytaVeAO1gSa3X3gcZSKo2BhKiWfWCv6EJ4CKPqRhemGhrRjSizHz0Jo6\nU/NdenlJ5BylVRT4EL6mJcRXXj6iMAtSMtZBBaq6JG6q5b+RIhgiqRFpj/IevezxtnJwrhpcKXSS\nzDM+1GLfxlHev3zr56Ttt/xU362FAbiq8acV53Yf5CdjTzE2dp+nf/9tGjt6tK54KMFtg+6jNd7b\ndYhXeZZTvQfxpyM5OB8D9aSldXiW8fFPWW/ukJLTo8aEW8fNT7fSOTGA32CgruH0MCxVGv9KIvG3\nyV/+MQCxKvUrRSr5GlBrpSl4CNSzlu2Pneerre/zgnuFg+0zrJ+fIMktM4P95M2Y9LWC8rvw3rvw\nQSltRnU1m8D6SPqMfMCwRIOSiPc5Siteovf8y+zbdo3kVgGZR2Ul7k9g5gdwflo27SEEM7yDfKoP\nAOvGgE0wpUa4xC716oViAAAgAElEQVRemfgqs6+NSYz8JeAQqGcdraMz7Bi/wFZzgyFmxNhy/Rqu\n7NrJ9Z27aI8OwI+VdFufrAU3w4p56S9Gw5JEhjRNyEqLKS0xmnpaZ6DVR39fnWYrppbG1GopaVwn\nMSmxScRDxAlTSa/y8BPwy6BULM2GEf+VuBaRNlO6zuPKkigyWFuI11bYM5xzywdwF9ICFR5rCyId\nhdsneA+q5T1fGZmmVwwikY2LDMJbYZB5Z/HGoVWE9ixLQLxTRCbUGbXSFCgl3iLO+SDVFymo0aBC\nArF3jkgb/Jo1NHNFWbP85PiTRHFMsyzw3pMq0JHCxYrCagoFVjt07DA40maENjGFFy+xri+pKUvc\nTFHa8J//t3/N0f/4PS4dPUC33aZZ5jzxg9e4vGsXN/tbuLxgcGaauTWDEmDe6RBrI8xl5XnxT/6M\nervD1c3rmdi4DqcVPlJYr8hLSJNaYEWIJMXjAwt5RepSemn+rHdkeU6Zial9t5PRzSV2vpv3yJ2Y\nIGdFj16vR16UFNZSVg2KVhgt1gbKKnRZoOIYhaJ0Tgyju19Emco/ZAlQu7LfFsj+XEe6jIHwtVlY\nspU0fCewwYs0HGBJw10FVxVcNPDJIMzXwVU+k2IcveL3VQ1B/iFrdXJwKZP9CZi9OcTFdbs537eL\nrcdv0H+ly9MK9lyH3MPJRZkHKOBYDMObgB1wV23gMjs5wwNk/SmPf/Nttj51m3jBUvRpPl2zgXfM\no3zKFnaay5BAlK44mrHqWd0Ml2UWkeLcQXxgImRW8WgEm47D4iR0Vp0LHGHY3wXdg5SMSJXoyGMj\nPtunLN9jZfQf6lyUisXXLhjZf5Nj+j2ezV5j9FuL2P8AC+/D7BQMDkPrIc/QTJfnfutHfFrfzLkD\nB7i9Z1dgCUeQt5AaOoU0YtWgpJLFfPFrCEBeWM5fm+CR/VswUYQxhiRVDA4OMGPnsYUALY00pVcU\nWBfYRElCEiektRTl4X998ySbl7qcuXqLS3t2okqPyUuUFhavVjEm1hglTNnEK/K8wFqHtZ4oqphd\nAuDoSNjHSnv5WUUiHKgOq0Gd4I0AOE57vFHE9Ro+t/jCYnNF3SliDHoxZ8lOszQzj0pjGfAqTWe2\nS9ZXR+HweUmZ5wKrNRrUFpfojo6gopgsL1haWqK9OI/C0X/tMus+OsutF19E1/spOh1sUWJDMJSr\n2pE4wiYRLjboSFOPDSQxPjE4o7Chb1qWfSJ1asVHq1KnWIqipCxLYTeXpdQyiXMROaYtBfjKhVWV\nOs+Qh3qzSRKD8pbYxEQ6wpYFWmm6vR5ZlsuHPkUGTNZJKqaJiIzBWhmmxHFCnMTLNdSWJXmvR5EX\nFLmlKBxRLBYFWks6pyP4uSm9LK0ELbYFgEbhS0sziRhu1bk9u/jT3qY/h6VYYf5W/45WZsaxJaYk\nLXNYkuTCJVYgkgyx/mMJ4m5B4gtiVULkkEZupV+VC1+hUNVXifQk8+A7cCWF04p8vI93R49jhhxT\nrWEeeepDtnzpBonPmNeDbFiYoD5RopwnG0k4M7yLV/kyP7Bf4dqdHUTjJbVHZ1k7co9a1KNr68xO\nDdO5PMjQjjvs5RMemLpA+mpJ+7vw+kU4Fx7d8bfgUATRIbh7B045qYQd4ISFfR/D2k/gxlfGGP+d\nSdbUHU99FJ5KH/AVYDdsnLrHS+u+w8vxC+TrYo79/oeMfnkWs+SwfZrbG9fydvQY3/df4+3Jx3Fv\nRyIPvQ0iJ59HNoJEPGiawFporZlhM5+yc+Ea6kO48TH8oCu1BuC+hd97G5Ljjs0P3WBj8xZ9/Yt0\n1w6IbQExK37Mqxl4v3jrl8DXT1m9nqSwVJMCYxRG1dBxyez8NBcuX8TgGV83SprWsWkOkWaxvUSn\nu4iyntT0U+vrp720SF5mOByxiQQgWu0FFb4753FWwDBnPNp7Yg/GrlCdVfCmEgaBwpgAfIVUKqUk\n6h6k4dLLSVjg3KrYZL+KLbZcFlaKy+olxDMtvP8o+gzTCSqGWADJnMNbT5lnZN0eB777AzaeOM2P\nvvkS3/m930WXlkgZdK1OWmvKbRpFnKbSzHmPL3PxOct6uDDuKG2OyrqM37nDxMFdRH0NXGBgRDpC\nV+bTlUu/EqmLCjIhjQtFsAKcqk1VpvLNesrQQJ2FJdHga+9JfIVJqgBuraghdJUYWckew3XyCONA\nxj0r109X10shTDzU8mWW12uF6VGBZfXEcHjbKGdv3qPd+3mZIlcgRwV8zUBnBK614CPF3OYRfvz0\ns/h+xcSmMQ6PnmV4fhaPYr6/yfl0L2/wBK+2n+fuO1slyWs96F/J2XbkAsdbkvSyjes0adOmyVW9\nnRNbH+LdoeNcGdon/PwucGoUXKUtr2Qan3+sjpV0yIp++7PKYyrwqw6sgaQlSNMhGHr0Hs+0XuXX\n+DMeu3CC1g8zYah1YWzTAu5LwAWYvA4nypUUmRrS922OYf8B0E/Awq4mHZo8w49ZoJ+bbOLf8y/Y\nteMyG3bc4ZH2STb90X1m3obvTUvjpRFrsS8H9YoxsHEEkq/C0qM1zpr9XC23077WD68raUb2Ay/A\nxqev8cTgaxznLQ64s6ztzuK14n59mFPRId7c+QRvDDzLlN6wooq5uw5pXhZZoVF3qd71X8RVS2PK\n4EEYOU9UWpoojImWAefIJCRxnTRJSeMUHWBtYyqQS0D+yqhW6SBztF4SdymJY0Naq1MUDuMsvlTo\nLML5Ukxqwx5ZmdVXxvU6MEfxNmDfKgDcctizVpp8T9iHbOCSOi8SFhfk8ZEY6FcvQwWSaa9WQB6F\nmPXa4CeoBTCTlEUjLAYVJumxIUKCW0g89VpKlmbgnEh3ej20iTBWQLjEaGrKUHiE6VbmRLUIY+SA\nrwpPrBNKa2nPZ2ANjaZISN/6ja9SdLuUBvp0xJpul83Tk1zdt5Oxm5/y4vde5sTDRzhz+CBlluFK\n8dWJY8O3/7tfYfTmLW4Mr4EiD8hdhCoMxoSQABR5USJelTJ4UF78aMqyJPfimZYVwQi5sGS9kqx0\n5NbSKzJK7yis46XLN/m3w31kWZesKCiKItQFg7Miv8QHFobTKC8JmM47lroZpf3iSoJ/9lWyIjev\ngCpPgPaBjTAwCA8i0vCj0Do0w9DQNM3GAhpHO+tjYX4NM5eG4f1IptMnE7g7Dq5iCFWg2j9GVHpV\nJ6pkynmR1F8Dfybl1J7DvN7/NKO7Jjn2hydobc/ZdAWYhtHXYHJG3mrrt0H0Eswc6+M0h7hS7ODK\nzF5uj4zzkT7M5uGbtIaXaNPgFps4x376medJ/QYP7LlMay88eh1sW57hZv5mdplFcgAqjsM9oDkI\nHIHGOdhzAe7nUg2HgD2x3FB3NGaGNSwVfZSLkWzVRVUTq/dhdTaskpsbUuqGgU2wpX6DvZxn/SeT\n+Jfhxo/htQWBsYYm4KnXYecQjOyfY/8j59hmrnF70y5hbzeBvB7eExErTL3KAPkX67Nw8cYEU7ML\njA0NiIxQOQYGB8i6Ob1OJiEncbrs12RdRlkUxJH4QJal439/6ABPTc5ycmSIvjxHKxn8ahX2cSPe\ntMZIjUoSmYLneS7yROclEMlLQq/1jlhpAfeDv6IrQxAK4oElAUpaAH+tcFgBwhopqlREyuBLi7NO\n5HXtjryZwhnXoMnvLZI3NRjQVvyDYx1RvzfB9u//gKtPP82dg4eC7NsRR5q+oQH2da6QoGDNWqa6\nGUUvx3oLIRBFOS+BI2mMjY2k8MYGkyYCvEVSOyUMzC8P2wmBJ6ZKSlfIYwecE9CrSlusxBqeFYmj\nsyIJ9d7z7OsfsLa0nP6f/iWZ08t+mwowUYRG4UrxXtaREaawdzjr5ForCa4xxpAkkgJtjBAkcltS\nFDlFIe+F5YAaBLBLkoQ4SSito+sl9MZaTVl6rBMZvqTHSxhCEhvW9tWZmFuSWvNzXxXKuurfPoey\nIeb17YglWsxFg7AOmmth21UBV0pkm9lRAzZAt7/Oguqna+vQ1bIR2orcsTb8duVJ2Eb27erfM8Bd\nmG/A6Rq0YNGM8MaTz3Jr62beqz/KenWXWBUs0sfm/k8Z6Z9E4ZlmmIvs4kTnYa7e2UOrb54D20/z\nYHSKjdyiQYeuqXNjbAun1z7AfT3KKPdpTHfgAty7Lsf+NnIy/rCE3ZegtZswbFtZJVCGLVh7z/eP\nP8Ph9WcZ/+Ae+gb4t6D4dxC3oPFwziPfPE38eMFfmF/lVPogG7bdoU6XJVrcZBOn7CFO3X2Y+TdG\nxVvxLLDQQ6rEKnBU6eUZfhLn1OmSLniYhvnuZ36TCWByHsZnoG571OgRmeKzWJdbDXb+4q5fAl8/\nZTnn6XR71Gsp3kd0OhnaGHQkZsST01N8ohTKOWpRA2Ni4lrKzNw8vXabgXpMe26axppR0maLcrGg\nm3UgSTGrm6llEEqhjPBinXMUeCIdcJzK9wUvzdgq5pe15bIvjPKSLFUxkFCSGllp3Cu4RwUvktVA\nmjDKqntxIUtElleVdE8tg10yhKnYVOGa2YpinJN1M8pewcVtOxi6dI1OX79Qu+MUZSKiehNTr+GU\nIq43qTebYEuyhTnyvIuzBb7I0U4aE2cUv/Kn36He7fHOhhHu9zeDTl5c1SXBTOqKowhAl0BeBPBL\ngKaKHl0x3eRbHEeMDDaZne9irUUpi7Whn/Repi76M3+C1uACy0+HaqmVFCsIiZxK/rZSoaIqwDHA\naQGoU8Ke/8x50GjFjnVDbF47wPlbU//Qt/TPsKoGYTXTah7cJNxK4cMY14j51O3iz54c4vLaHexM\nLzM6ulJUrrGVs/OHmHpnA+7VSCrES5YdD3/CNxp/yYt8j4cnPqZ5oYtuO1y/prfrTd4ZO8Nw/zTf\neUxxbX6fUI3vKpgYJcREhcdWvRqrdeY50ihpfjZT5NU03lX+J30KNgH7YffQOY7zFkevnKb1Jxnd\nb8HV69B1sKUfRi4AL4jh7Oe5CQ8BW74O5jHwvwG3167ja+2XqbVL2q2ES40dvMujvMuj7OMcT8++\nA3dgdk6EI9WrcgN4Etj/PDAGahdkz0Wc3H2Ad9RjXFjaR/5JXZCyfuAYjD59k2cHX+bX+TO+dOdd\n+k4uEd1yYKDcZjhw+ALja+8Qry155YkXmb07CrcUzLegM8xKGlflf/b5w88XZzUbNTIv+1puPVHh\n6WWWxcUucaKpxw7VNERGPASNMWI27D1xFD7T3mMLOdiiKmBKEGtjZMou9xWLYirLcE4O5a6QRMUo\nsjgrqbBOKQimtUqJl6APB3nvhUFqQ/y6GKTL+1sCRryAUWH/lwGKyCq8qBelhuDRXhMp8SRRKKwr\nA6vY47x8JnSgxiofpJYK1Gr2rPNoY0jihFoqks68m2GcIzZi6u7wxEYTYYidxxQeW0pqZqQM2lpM\nLmmPsRI2WZ51yGa6wS/RYynIi5zptWt57fd/i3acoLOcu0ODZEnMlZ3bcLWULM9ptztoxMNGG8O9\nsVGiUqScUaLwypFokccoX12rwJZWwefFltiyEH8vLw2fs05M7QtLXlq6eUG3yMmdpPz+wcXrPHf7\nPq7T49/0NVjsFWTWUiqNMvIeK63s6tp5KEsBSaMIZRSLnS7/7a7Vx/vKJH0IWB/8EBU8BXw1Z8eD\nlzjS+JC96jyjTGIomWkOc2VoByfGH+LS5v10m/2Agl4Dpjew0uhUANjqocZ/7SpZYanlyBBlGrrr\n4FIEH8LU+EZ+8KUXUHXP1O617N14kdH8PqNX5+g7CH03ETxnP8x+qcWb6x/lDZ7gyv29TP1gPbPb\n13Jm24P0j8xQr3XpZTUW7g+T3a6z7ch5TtcOceSRj9jwjVl2ljD+MbgeJGPQuQxTiyIsHwAOIaG6\n1apmangwT8GD92D4I5h2sKkBYw8DX4JbG9ZxWe3ifm8MfzeSbbtnWXE/rgDECvgKBtUpAlr1wxpm\nWMcE6d0MdxHOLYg1vg+vxrkl8emp3e4x+uAkg9EcDBbQCLdDEi5UYIKQhZ+/mPXi71qzi10ufnqP\n9SNrSJKEsuyRJDHNVgNbOCjE86mWJsELUA6PtrDERmhCzjteHR6gWeQUZYHRhriQ1OC4NMRlRBQZ\nIqeIYkOkg3eSMpIuax0OG2TwEav9vqpaYgiDcycp7xXg5bUhii3eCYPSJgbTrBFpTZnl2F5G4SwG\nCVzCOpEueg2uR9RWuDSk5CpDpB3tqInThvn+UaKuo3/NGqJandrQIPXhJu3DD3HlgxPMd7rYpY6w\nn7URHUWkSbRBx4YyMrhYQaTRSYxKI/H2DcNrgGVrEa2CGkajjcEYE5hSFbAl4FZZlsvhVcAy6FXa\nMnyJfcrd7ePUugW2FuO9JTIxzXqdTntJ2GFFQZGXaK1lQGTlmtvSY62TuX0ckaQpWimRtGY9iqII\n7C0r4FeZByJCRDUmj+OINI1xvR6lLcSI34pVQXhpBbxEZPalLRntb5DEhm7+RWBLfh7WCcPQxUGY\nBn9bcWv/Ri6xk+MPnSR5Ap64B/1X5QS5qwbjR4HH4P7YCNfYxv1iFCaUEJa6GklQH2Mly3AeOfvP\nsuJTuIA0CHW4uRHeTqAN7TuDnH/gMJe37CcaLsB4fNfQN36fgeYCBst8b4DZ2yP0bjcZPDTJcwMv\n8xX1Ax5177D57n30ksO3NDfXj/CWeZxXeF7Se0sPBfSKz3YWJeAKIBbT/K2zwgZLELLz2q3AFpir\nDXJaH+LAwCeoCeD/g/cvwI0CBjQ89Ams7VkeHD3Pxd27+Xf8IX/JSxgsPVdjcnaUzuVBig9TeEeJ\nFv9GDnaCFR/eWniZHFgDGeRFQqdWJ+tXRIMwkEJ9cQX8GgGG+oFB6OoaPWqUNl6xY3Twi7h//7T1\nS+Drb1lFUZDEEVpritKz1O6AUtSSBOcybk/cpt1us9TtsXnjZtYODTE3u8hSt0M96oPeAs4pfJKw\nsLjA3OI8rUaDvmaTNJE0sEr+gmIZeFKI7LHwHqs1Thsi71FOitIye8gHaaMmyOR80MCL5G5FoiNp\nMMIqYkUnv2pqsOz7tYrA4VXwHAugV2V87JcbL6FAOWtp3JtiptUgC5MdmXbD/MgIL//BH6AQs+M4\nqYu0RitqfX0oE+FUhElTXLcUgMlafCnglROaA6ZW49X/+V+w950TTG7fLCiSMahIQC8XfL2cF5qs\no5oMVeEBOhQTaTJdGL54pYXhpaHVjNkw2iTPSxa7Gd5btPfL4JdHB8ZW5TIQ/LpU9f/h52UDex/Y\nXh6lDRXYtUKq88tHT/Ao0b2unGzRtGoJzz+4nUt3Zijdfw1484+1qulsgWyms0AN8gacHwE0vmNY\nujnKWw88xwfbH6N/zRwexdJCi+zmAHysJO78AvA1z/Ch+xxvvMmL7ns8ef4d6t+y2PfAzkE8bEkf\nKXjy197F79NM14aZOzrE7LkxqSBTNSj75TF8xvB+NQX6834i1SH/79soLXO1WTHtbIjGfQTUeJft\nXGN/eY7WqTbFK/DuOVEF5sCmHvzqj2FkHPrHYMv9FUnKNgVbxkE/BUv/KuZMup/H/uqUMOFmYGAE\nNhybYdOjt6m1eswzgA/NSC2VZ135HvcBfSmow5D9bszc9jrvp4/wY57hh8Xz3PwoyE5uAU+BOdzl\nQN9pXvAv89T1d1jznxaxL0P3mlzGdKdlwzemePY3XmdmZIgb6zfz4aEB7KkULhnotMJ1r7x3vrg0\n5zgSACcvSlQEufOYwpFllk47o1aLacQlvXpOs2GpI8msUSR+X8ZApFck3ZRWJBdGU9ic2CREkXgb\nFoUkRRmjqNdT8RIpNUUp+0BReNmLvCcysl9qBAzCSwLXapYqGpnMVxIPX+0ziKTeS9qjBpTxlJWc\nWhnwEo7hS/GC0TLsF+DdORlDOr+yj5VBdu21hKk4qR3OO2kEkohaPaW9sEgtikCX2CynHsVoo3FO\nY6wl1YbCOQplxGurl5G3DWkUUzc1fOGxlJhY9lJrnchytMYoMF7TnVzgXrOO62R0ux0yB//HSy9h\nMKipOfJelyIrUT40drHHRxIo4BzUVEQSpSiliHVgUoRBUVHmsu87h7cOlMa6kqJ0uNzjc0uZhWTH\nsiR3lqzIsc6TOcsfbdzAjvvT/JuBNbSzHkt5iTVKqoC1GG1E7u9AKRPqsQKvyApLp/fz9Gn851iG\nFRlESPcyQxJe8iDoZwv2PHSar9e/xzPuxzzQOcP49CTKe2YGWlxo7WZPcoG/2vsi75dP0ltqwYyC\nD9dANoTUndVs05+VaepXfc9Zrmn+DtzaCB9qaGiumP18+6E+rgzsYGfjCiON+zz80AfsP/QJw4sL\nOAOf9m/gQx7mNZ7mtcXnmHpvA/wE7JsJ7a0J7eE1K87004CD2wPbeWPvk4zW7vHVX/8hYxtnaJ61\nqC7Qgtrb8FtvwuQUDDRAb4Dpj+G8zCbYC/gS5v9vqD8CyUOwfQvsnAfGwT8Bky8O8ubg47xrj3Hn\n7ka4ooQE0C35bCJvg//SPu6rAdB/sUvwn/3+t97kF7dm/F3LOc+pC7d49OBWjBIGm/eOtJaSpBne\newpfok1Mq1nHGE23l4ssMDVhOC1M06zQ1GwNYw3drIfWiiSOKUpLYR2xE39gYxQ6VsTagMrJ8kzA\neWuJnfjzOu8FttRBlWAi2f+dnIGVk+G88oEJ71Q4CQUJoRHAyUQaeoX4Q1qPKR2qkPMzHmJv8MoJ\nk1iJ0b1LG5z47f8BZWKaSYPRoRF63tPp5EzNT+NsTm9hCZ2VqLIM9roaFSnxQowMzmi0LznyF9/l\n6lefo7NlHCKDxa1YksDKECgwamXIvFq7q0JdsZSlDdJDSdv1yMCjLAXwysuC0pUkacK9xx+iNzBA\nHEckaLwRr2KtlDDrnAxGFJXljAtDsghFgUajdYTyWhjEeU5RZqKC8Z4yF8ml8jYQLDVRpIkNRMZj\ntFgPOCcSTY/0atp+dm+z3lGWnoF6Sn89+YIAX9Wqhs5hP+06uKvhkuLS4T28P3qUnZuv8Ohvn6be\nX3LsJHKI3Qg8BtNfGeDt/qN8xGHuXt0oKYgLwF4FabDX6CD+UgsjUCyAv4+cRSsZ9RSgwSq4th7a\nKdxWuLMR2bqIbKguG2gHOhtb3FsTHnrITjHPtDk++AYv+b/kpft/zcAP2nAS/DSoIdj/cJuR52ap\njWV8qjbRXVPDb11gfBw23BLr3BjYqSHdBOyGwR58owf7poNCYxyir0D2sOZqcysb/B3WT06g3oXT\nH8OPw9PEQjEBz70LtS9btu2+xjDTvP7RV8gv1WQLn0Um3xcQ07RrRbgGdxAQcCk8ohxsAQsGpmBp\ndoibfZu52r+Zg0evsuVD+No7cK4HiYIjCdQfBfug5mZtI7f9OEtLTbm/DkjtrVCwLwLr8GdfvwS+\n/pYlTYswqozRlHlJt90F64kjmT7cn55ivr3I5Vs32bhhPUXWw2EZSBMia+l07rOQFcwvLpLlXdI4\nYWhoDcODA/S3GtTSVDZxz7Jn1jL45cFaR+W7ohV47QX80qKT16oyX3cr4Bcr2vdlWWLwuBJd/DJp\n4Kc+Z4lgl4OlMIsFjJGI+FVMMOdw1jL+9gke+pNv8+rv/Tq3tm4RhhMBPjBC4Y50LECa1mglxSTr\nLMpv6gjbmcfnGS7rLT8Xq72EMtYTVKSxUY0zLz4tPlpRjDYxRmsJGFDy/JwCvMZ5kV94CsRuWSAv\nuSo6kNaEsuy9IjIOYzRDg3XmF3OyokQF+nHl7RVeFbkmqODrEkyoKxkjAbJSgTOkq+Ic/i7gL96L\neaYO7LwKSJOXy+G9DowT2LN+mEd2rufdi7d/DluNletFjtCKF5EtI5L97/wQzMdSrD7S5Ov7mBro\nk4vQRg7cN8LXHlA7LOtHbnKEExy9f5L6f7Qs/Ac4fwkmLIzHsO88NFXOkbWnOLduH6f7H2R2+1pY\nZ6AZw3wfYhizWlpTPb6lVV8dVqb7mr+/r4hihfFVTaujZfyrMdChj0UG2m3MLchuiRylam3vATen\nYeQO9D0Hz+Sw+7Yw+sbXgn4essdjcp/w6H88RfmnMHUaljowMADDJ2D7/B1e+MYP+WHyLLeGRxg+\nPM/oXnhiBk4X8swfqMPgMbCHFCe37ee76dc5x35OLxzhysd74EcI4JgCm2B4wzT7zTkOdT5mzU8W\ncd+CEx/AOcGWOXwVDmSwbv0sD33zQ96Lj3F+44MsbkyFfnCvBq5KdFl9fb54qxYb6sqjvEVX7xGl\nQGmMTtHE2FJSmcqiRDVCklPwVTThw6e8J1IapQzeS+OgjSYyIjFROgLvKFxBFIsEL04MRaGCNALZ\nj6zGKYVzOkzNHLa0RMtMMgHB5W/LIItApCE+JEQFMF1rswxeoQWkUkr2omWfwDDIsKXEpFfy6Wof\nNErLz2IURqQNZZAW6ChCxwFc8hYdO+q1iMI5VBFTZGKyXKsluGDgrkuHx+KVfM6c89heSRkpNDnK\ngvclWIXCEePQShMpTeRjrDP02jndxRmcEtAuwWCAvNMTk2JtwMS4UvZsH4YMpXNooymdJ0JRS2qk\niZFrG/ZZIPijyZDHlo68sBTWCku5KCmLgqzI6bqMti3JcZTO0stKsrzkdzdvYrGT0S0dBZL6rE1o\nzJY9PrUkJmu5P1sUdNrSsP63u1azY8MmyTDU66LHfgjWPXiL5+o/4tf4Ng+d/pj6D0sZZBQwsm2J\ntU+fYPTYNK6lmN0zxJlHjolZ79WK5XuPFb3Farbpz7KqOpAhNWIOmJC04rPDctvdiLs3tzF9aJQT\nI3P0Dc7zYethtkdXGFwzh8Vwj3VctLs5P3WQ++9ugleR/XYKGZ33hctREcu2Qnu8n3daT6I3Oab7\n13Lk+RNsPjaBLiypz1l/ZILkmGd8EiHOTcOzCg7elWs1MwN/Pis3d+Bt2PiuyFXWDYhnZNSEyYEh\nznKAk8URsrN94u14C1ZYElm48Vq4plG4nsXKJZmHWdZwjzGy8ZTWri4HT8HUfJA6Agf6QO2B3sYa\nE9E6ZlkDs89ymLwAACAASURBVMK2EM1mxbz2rAyffnE/B7cn57l+e5LNY8PL8joTQdrU5N5hswLr\nIpK0HrzAYhYXO9iyWE59N8GzsdvrSpKvAoUnjROMkfTg2EQYY9EVeJ8kEqoEFGUeAjhKjDGYSGoR\nwb/X+1LOk1rO1Vp5nEYkj1qJMsJqlDFy1gy+vSqJUHEB3QJHIfXFErwe5fY1csa2VP1DsF0pS7pz\n8yzlBTach63PibUiDtJCB8GfXAfQS+SZxBF984s0FubZcO4sV/dtx+FxpQvJ636VSoLl3kLM4/Vy\nf1MN4yvgq7QyqKrO1NbLXu681BYTaVqtJn19LWr1lCiK8c5RYrFaERlNlllsUVAWuXh3RXHwTjZ4\nr0iTFK1FAYTzwVssF9m7K4UtXpbyXAJ7OtJako1jQxRJiEFkKnZfuLA+2BkEO5vqfFDaknoaM9yq\ncW9+Vezrz3VVjP9qiDAP3TZc74Mzitndo7z+5DM0ax26Rxoc2HCBgYl5TG7pDdSY2TjE6/2P8z1e\n5MTko/BuIhvMcSTFoxHuYh6RO1wHrvTBZA3yGisy6kUE8PFAD+6vE+njtUSUGg2WtzjGwu16ZJj9\nNdg2fo2jvMfjc+/S/5/buP8Xbp2DhQ60GjB+EkaW5nnu91/jz5vf4MrYFtY/M0n/dc+LP4GJSYgN\njG+B9Hm48dUNjD04SWNbwQPXkNZEAxsgveh4uvUmZ3bvIV10MCfVbfUresdDdwlqc9CkTUqGSjy8\nC7wTnsc0MGVhoRue+x1gMrwOFVlhCYouTNckUOVGizPrD/J2fJx1T80wsjjHgVHYc00uZbQP7IuK\nK0c28V50jE+yfXQu9gvVd9r//+y9SZAlV3am993B/c0xDxmRGTkhAeQEIAFkJmYUhqxCEcXi1G20\nbooyScaFzKTWQlrItFFrK5k22mjfMiPNZG3dYstIFllVAKowF4ZK5IyckJlAzkPMEW9w93uvFuf6\newGwu1hkqbsAWl2zZzE+f+4e8c655z///x++SdN4/671G+DrF6y8KMQAGCPMr7wghA61JEGlFk+g\nt5qxurbO9VtXqdYbTI2NMZQEbi0ssrTeI3eegMdqRaIMS2vrrK2tsWlyitk05dGz5zj23CGMsmJT\nEnXgJejkCkfQ0Zy+ND+OKIvRyHSt/sZbAqd4yIiUxRP18bECKCeMbUwaZeIoca2v+ngRWU8KL6yA\n+ByXO+ZnpgjW4LdtpTHUkk5TISwHh8KgURiMFtmHKzKsgVDk0oRyXYoAPs+F2ZAoSDRaV9A6ld8J\nDq88YPoSEmOSeH4lO0L1hwW46PWk0KggxpE+wks6SB9z5IPzrGwaozM9BCFgLVTThImxOqvtLutr\norV3YSB5pDTXjLpKrSBEZlcJckWb+8E/kYogYVl7K0OIBa3wwcIG/CACmUFBiNxSBU/vnuP8jQUW\n1n4dkpmN8pC1L3+/tw6fT8LNJpxWg1FUmr4yknlkpzwKdqpgtnKd+7jEyLk24Wdw/DN428nRT+fQ\n+wyeeR8mX15i+6bLTNZukcxk5GM1qHpYHgemZPOUEPNuiOe3ggT/u8gm39I3rehPkvoHbr77oCU4\nDN4YSEClXw6iBqhopKZ4EUY2w0g5ymYn8ALceXSE8ZPLqL+GS6/DT3pyq0YW4LdWYW4ctu69QWv3\nKsf1AbYeucHo3TaP1OCBK6AM1HYA34HFp4b5pHqAH/NtTpw8RPdMjfCRgY+RoucBYASatVVmuMFM\n7xachKufwk+d3B2AhRymzsLMadjx21fYZG6RjnRgaFTkLyZBdtGlyb3lyx4/X59VryQkRiZdKKMJ\nOqArGqwirabUqnUqlRRjbJT8iSxCqYE8oi8Rj+/5kjkV/MBD0QqFiSIXOUSSJpish00MunD9uOF8\nwGcFSVIhWGFxBe/7UnQAg8dnHQG2gCAIe98Mv/xeUF5OJHYwQgSfZFiK6zPIXPD9zrOSA0nsCkhR\nE0pZvEZF8BOtN4QdjVIem1hq9QqmAF2IhLBwOTYkVNOEvPDgc7zW5AEKpcidgkyaBj4U6BBAeXwh\nNVqa6ugvFrAhgNIkKiVVkLksFkpBYHetwKQkScJvv/46//aZ58kJ/NFP3+TPvnsEtMhOTWKxaYKt\nplijMFbisI8eapJLAz53FIWXyVmFwxWOXi8TJle3R89L8eMJdPMOnV6PbuYovCcLgRxFoSRue+f7\nfwppdMR86gArEtN2pyMeav9ol+yPJB4k9KfgjiDS8D2wZ/QUz/Auj549Te3PClb/X7h0XRQjO0Zg\n7ALs9Fd5/qW3OZfs5uLDD9L9YFiKn1sNJABV4vG7/GqAe3wD9JslS/G4RqYHfzIuqeMKZEcb3J1u\ncG/HJm7s2UZlU5tqY42isPRWWvSuVsnPVOBDBPQ6D3Tuwm0TqflDEKyExyWgqVhQ07z+7Ktc3rWD\nn+knmRm6iSVnnAUOj37Ijoc/p5Gv0zUVtt6+TmMPNC5B+1/DuwvCLgjAsXUh9PaA0Xn4rXdh+1aY\nffQOD+w7z+bqde7ZbfRn0/TnUjaQTkYcdd8HFBO5HXeBa/B5dztnqnt54oGP2H3kCnPz8Psfw/I9\nGBqD5mOgvg239o3xKXv43G2TkytrLzEWY9BsKu/7N3MtrXW5dO0e02MtksQKQKQLqg1D5kuJYwFK\nTM61tngvfsEqxmxjZY/Y6bUl/iWWLM/o9LokiSV3lqwQ70VtDNYEqRsSmVxON5DnPfI8J7EWV2ic\nspgw8LtSyKTJgDSCA0RT/NCfIK+UwliNsUq8ck1kGlmDSiyu08Nbhco9OXHqpKHvo2uUmOUnsUMf\n8BSdNbQVkoBVHucVLgjw5hRSrFiNSjQ6sZiK2MO46VHO/7d/wtrUGICY0iO+XioQm+MbbFagbxVT\nyhxLqaMPgYJALwSyWDOpyNpyzpFlGd57arUaraEWlUoaBwtIk95rjbUiOS29IF2eU6tWqVerMtm3\nl5FnuTQ4ot9XoRS+EBll6Z2nQFo3QRhsyhpSbbFaY7SAXQoNIRr1K0VRXkefmS3XHPDRs8wwNzHE\nuZuL4vn2a13lXnrjhMVl8ItwvQbHLMV4hbO1R+g+nXLTzvDQ5pNs3nydNGQsq2EusZOf8xhH7xxm\n/o1pmSj+PLC/oLl1iWqlSwiwvtKie2EYTgDHlXhAnp+BTKS7cg6L8fM2sCBM4d4wLNRBJZGVUMDl\nIbmvY8ALoOd6zFavsdufY8vlW6jX4dz78FqcuJu24bsfwb4p2HRonsnH7nLUPMbkk/fYay8z8SBM\nXEJC6uPABLRG17i4fY7t47do/nkbXofF01D8JUzcByNH1jn4xye4OzTK1OgiM0jWLKu7GQ31ITnm\nGk061Ai5klB6Fbi5JPJFvyTXyjwSeDsMWNfl9N4VmB+Czwz5iSqndz3Mjzd9m+pUl2f/8D22P3oT\nez1AAsUOODe3k9frL/ITXuDcpYfgmIFLxEkEpby0lMt/c+P5b4CvX7C8D+SF63thlQE0+ECBJzG6\nHwDzvEPhPI1ag3ZWZX5xkTvLXazVYBQVa0m1ovCBG0XGyuo6/+Mb79PwgeubZ7i7cxv4gDYKlEGH\nQafDE/rMK7SJjKrQL2q889FwPXbtdex2R7pzWRzpPgPpb5HT++BX3zlJIVTjOJq3P5EsCADngwej\naW/dzF/+7/8LoLBaYZRBeSVG/cHL5Mco+wjBo6yNchOP7XU48r/9H/zkf/jv6DZqMqFGG7wSA2rt\npeAQdlRkeRndn4QmVZw4G/gQIqdLfLZKDxyU/NwQUNGXLLm3wuZ//TabjOHjf/nPJHmrQMVqhptV\nxsdq5FlB1jNoPLkiwmahX6gKOBkHR0dpi1cl8BWBw3iHg5IJWHLvpAsqZZkUfeUH4qAA2U/ECjTA\nzEiD3ZvH+dn56/ynz3dlx/arxUbU9Ptl6I7CrRbcajKQH5admALCFKSgU09ddWixCovQvQNX8wFb\nKgOuBwj3QM9DizXqpoNJHXkKVCzMWfG7HEZifKnguJvC7QZ0JsAPISNO5hnw8MqJYBHB+oXX6zf8\nXi6P9RSWoD3f5O6mSW42J3jg/s9IH3Ac/ALWczmNPQq27oSwF24cniJ/2TB9ax6lYXm6zqnabpKe\nZ+vnH8JZONGTZhbI1uHUPZg+B8nVgond9/gbXqExsc6z/9n7jO9ZoXnZEzT4HZrlQxV+3HqeN/kW\nx+4eoPdGE95G2BL3kMJzBEgCRjtSMqp5B9ZgNf9yl6kDdCI7odbrktYztC02WLUoBqCX+ff8P3w9\nllaKRrUiTFJlsDol6BSVpCS1KtVmjWq9hq0kVGo16rWqSNpN3ABHoMuUzCrv0WkqMhKtSeLQk5Kh\nm6QpSkHe66JUoNtpi6dVaii6Ga4oSGyKtQneO7rdnOGiwI+ORK+vQVPD+0ImvyoN2uACGMSkPkZ2\niM2RvMjjJl1iofeeJEkkN+hBU0MpYtxT6BBlOvF4Wil8LvHSJIYigCu8XHuQBouxCUZbjPWYBFRe\nEFyg222jtMXaCkmQLr1VMiEseI3LZGplrVaLEyOjB6WWwS2pNdLoKAp0OdbdGfBGzHvjoBZlQVvN\n77z+BnM3b/LSxbOMLS2x89YtXvnkGG8+8wTVWpXaUJXEWhIrcpJAICtylBYj4uAV+FgEukAIijyT\nKY7rvR7trEfPF6xnMk6+2+nRXu/SzXLy3JOHjKB74tvicgjiw6h8nOqrlTR3CCglMtgs69Hu/mOb\n5vjVVTJkpdTrG0UNAdNgtq2xnSvszc5Q+yCj8xq8fUFsSTywowO/9xMY2uXZtucGuzZfZHLsNldn\nhqU4QSNlQbLhtX6VVZq6l0zgErgDcNDrwrkJuJaITH9UEbYaujsbdKcbLDcm5alLSJP9c+BygGse\nelET4jZBWhnkqWp8ybNApujcanJ6/yFO7zxAfXoFWymYqd7kWHKAba3PabBGjwqHhj/imbkPmf2z\nuwT/ZWv/jabEt4Hz67D9c6gs9hhjgRZrA2JXCnQNAnTNAOOgx0GnonHZ6BhwCxnMcnqODx89zPbK\nFYb/6QJTI2sMHfIM34MwBv5Rxd1X6rxhX+Rn/klunNkpwN81xPCOZQbS1G9ugVQu7wOfXV/ksT1b\nqTeqaBPIcxku4rzGOWFiqcjuT1PL8EgTlgNFLn5QLsb7PC9Y66xSq9cwaZX1TptqpYq1BUZnqNis\nJrX4kGNt0pfYFUXeB+u10phQoINCpynWVlAuxD1i3HMSmygMdjWyJ5dBKF6nBF2Ih3Hi0XR57vXX\n+PCpp1irVvCFAw3WWqpGpk46ZWSKsAIVAsGJp1bwBq81RQg4pQhWbE3STpteY0gAr2pKUquQVCsk\naQpW0WtOQRB2mGLgi9u3ZpGCp5RECKBVgkLeR2go4FQgJ8hQmyiFLAoBjfJcpjkmScLw0BBDrVY0\no4+EARxKi3WM0bI7d4UMhDFaR78uR9bL6HW7eB+wSRKlqNFHjCDsOKXQXs4zNYXkM2PEHqC0iom2\nNM45XOEFACOSGJCBBz6Id3JAmN3OOzaPN2lWU5bbX4e8UkajjVYot6HTgjMjkCqKPOXivUe4enAb\nH0w8waS+i1GO9dDgltvEjQtbhel1AtQfFEw9dp2Hho6znSsMs4zDcHdsknPbH+TTfQ+zvnkYagqC\ngTMzENpInGkjje8eAz+wCoSaNB/K1asj3mHj0FDYVs6QWWbML1C56eCSqCpKV+UecG4ddl6B2jUY\ne2yBv+G7tKt1lp75Cfsf+ZTWGz14E8L/Ixjb2IcrDL2ygr4K7sdw4m1438lZPrQAz6xDbbpg/HeW\n8IcV+08EOmfhkoMRDQfHoXIIioc0l9nBTT+Du2Pk9nYRFhcXGdCJ28i7e4yBx2YTaXIksOrgUwOb\nFIujm3j9d4/QqdW40trOg4+dZeqxuzgM15nlDPt43z3FB1efJv9pVWxYLgN+FamnOvF1S8bX10l2\n+8uv3wBff8fK84IksQJ4RQCpR5SjVFPxgQIIGld4Op2cXjAoI9OeshCgiBvkVKPzDO8MvV7Of/XE\nfl4qAndGRpm0FZSSDgIq+roQO95hUI674DFefKW8Lgsw1e+8KKWiU7Husxak0y8aeBWnfm0s/0vB\nmCRJeahIW9Z9rQiEQqgBITLSynMrj2R0lOiZgE0khUVXd2GTaYMKMtmSENh0/ixJt8uOY0e5cOR5\nlBKATytFcB6vZVqNVgalZNKa7vtl0Qf6Iuwk56nE9yUEMKWRf7xAHRTaKzqjLc7+l99huVUji+bI\npQzRGsvUUJPummPBdSicix4JkekVr1fpckYk/Y7Nxq8Froysi/JvAPI3YnCc4H1f4hr6fxGhSpeA\na9Uo9m8Z59jlW7R/LXYxG7vkGz/vIVvwu0hxUnbly9/pAvf3mbe+0HSoskYTRiCdEHnj5VxSZwXY\npEBNgB+Fdep0XBWXGXm5XfFxHzLopcaA9vsFkgvOJ2Jy2S1lHKVBf3k+8HdvxMuAvuEaVxrCKP6s\nwme77+O4eYQ9j15g8+/dZY+C6TPQyWF8EuovQvEdxenpB/gJLzK98xYKuMcEd5jij9T/TRBM9m/B\nR+LdFN+HKM6yh1ts4ouxrew7cpqZ3i2cMtxOpzjFft71z/D+wrP0XhuRavIUUug8B+yX228nuhSJ\nZYVhliqjtDbfZXYEtnUEHlTAdgUTY8BmmK+PscIQRbsmea6HuKf3E97G6WBfr5VaQzVNJfZgCSrB\npDV0klKt16nUalRrFVrNOs1mgyRNsUkim/j4vlSxSWCMbMBFnShTGb2PZvewoaEgX2sFtWpKcCJx\nyHWOV47CZaBBe8/2j0/w4F+8zul/8V/QfmBHbKRImLTW4gMULog3YABV+Cjplo188PLLpT9keT5a\na2mOQF8+rZUwnYwR2WXZi9Y2+nm5EJsYIv9zQaSQeGmmhMJjQpSWJx4bFFUfSIpAJ+vhracyUsP4\nKk6t08RQrK3jI7CvfSC4DKMt1shGXhNkiplo+ZFGTRInmhk0lnauKHyBVQ5jFUnF8sbvvsqhnx/j\nzFMHcUbRfv9Djn/raSbTCmnFYpOAVobEaBKtUa7AG/GycVrjCiAEci+d+U63TZ7ndLo9unlGO8/o\n+gKHYn29zfrKGlme4xAmRNaJ5shFTvCFTPpCWMwhMowLV2CDeGO6wtPLPVn2zS/6f/m1gf1VAarQ\nGFpnhEWGVrqoq9C5LYqV8q7cAK7fhqEbUF9tM8wSDb0uTes0Hs79qmDXV5fb8DFDCibPQLKzAOtj\n8rhak/R2D8k5TQaKwTXkZ/NA3paTrW+FLUpy1DakxhqKh19DUKrTiD/LWEJ7ZBwqsPLAFF/s3sHQ\n0AqJzXBVw42RWcarC0xtmaey07P7KixnUuYk8XABudXDER/0iSYjpcAM0p4n3shZMJMwVIfZeG6j\n8T6X/tGLwBlw71uOjh6iuq3Lmm3w5JEPmHv8Jul6TtZIuT66iY/s47zmj/Dx9cP4d43knpsB/F1k\nX9DZcAK/bobKr76u3Vliaa3L6HATa0Vx4H2gXjdkmScEMfDXKpAkCdWqDEtZWVkVmXwQhlLVphS5\nY3l1idrUDK5wrHfWkU22h+D74I5WwhC2icYmhhBS8jyj18u+dEuNMVhr0UbAd0MirdogQ4CdE9at\nUj5amoiUX2uDShKUCagERucXaK2tsefSBT564hAUTuBhYwUwC5IfXEk8pmSWKZRVeANOKbAGlSZM\nn7/AI3/9Q4798R+yuvdB0moFm4o3L4iBuw/SYDI+oJH46aN9CPGDj0VQudfWOmAIuODiTlvkp1mv\nJ1MeVZyImIuUPc9ytFI06w2GWi2qlVRsDawAa64opZGKSmpJrMFoRa1axRqDLxx5lpH1Mlzhov1A\nILhoYh8cTkdAa4OfjNWGqk0JRkWzft+f4Oli3i1rHgWUvp6EWC94L8xnJbneati9ZYwPzt/k1782\n2oeUViN3AAvLO+F4C9Y13ITeqREubB3hwjiQOFgz0RcEqIL6w4zdh07ycuV1nuFd9q6fp9Zu47Vh\noTXM0fQAb88+zxvffpm7aoscdwm4PoWwnkoPyDLurDOQ3w/ICqJDn95AWFM4DIWyhBRUTUL8gF8I\nNQ2mAlQgJ+EmM2g8Kgs03uqh/i+4/g5cn4daAls+hNF7QBPWz8HHTu4KwEng/iuw/Tws5MPwqmci\nW+HQu/D4LVB1UI9B73cMx3fu4WMOcml+F+6ykWTZdkgGWEeSUg9JllPx2qZAD4vVQE0PCL1dJO9Y\nWOzN8vrh73B28x62DF9lWAnAOJ+Pc2N5K7euzJK9W5dpkceBxS7S0Si9Njv8SuqZr8H6DfD1Syzp\n5ACUE6IUeQEqy7FaUCqZrqVQ2hMMJJUUFwLByQSvXAe0S8U/Jojj1L0i8O/ShNmbd5m5bzdbZqe5\nc+0K3dVl+gbqCLClA5HZBEp5NDZ6cUUJTglyKenzuJjYVOzKqMgsEoBM9QMzgI/P7RveKxW7RFG4\n56WIck66K0EplIkTyVSZoDU6dii0FUmiYF79dk18tSBVPXDn8AE+HBtmYedWlJekL4k+gDaEyNAp\n5Z9aG0kQkcWg4kailB6q8vDR88D7QPCDHnHwAyrxyrZp8ffJxZPFe3AUVDHUaynTE016ecHquoxw\npn835JIiphYTlMgw5ZdKAC7073HJIgkRXgz9H8UDhAFLjfLb0AfNAoFdM8PsmB7m9NV/2P/wr7ZK\nIKhE+cvNbNlxSBmYnicbntOS52UBlhXFPcvN3ixXKttZ2VNh6GCPxy8ClyUxzACPbgMOwvyOIa6w\ng3vdafK7Fbm93wMOFozvvs1YdYGK7lEEy2J3lPmr0xTHqqKD/8jCp1PQDQyM7gsGPfP/UCHlN3ws\nk3o0PWlPw+cKzsClvbt5e9ezTI/f5qV/8haz2+4x8SmSXLZA+0nLie37eIOX+Dftf4quiER4dXGU\nvRMnuGvH6WxOqe/KOHAG7nSldpoBHhwFex90Zy13mGSRUT449hxnH9rDTnOJ8co8Ds0CY1wKO/n8\n0i7aPxuCN5Vk1SHgCeDZQPPwElunrjBTvcaIWeIW01yq72D26buMnYTvvQGf3ZNb+8AMDD0L4QlE\nusI2uvNV+cOsAMXGYQHl/Ql83ZJfsyIbHaUMqbXYSoV6rUatVqXRrNFqNag3qgwNtRgaqpMY8fWy\nRovcXIkUQaNjPFR9ttdG70RpOBiJzdpjrCXLMoy1WJtijaNqLd45iuDwPscVsDw+jLOWTr0avau0\njJqPjF4fmaSlv6BGpkXhfWT8KgFGkZ+VUdw5kTkapfvtAB+LKO+BIMUCEeALWuNRUjjEzbYOOprW\nB0LQBAzOe5HdVCzKxhH3HS/FhPe019dI6xWSmrCc6plFZzk5wkwMrpD8aAxpInL+QIEOjlLmEZxD\nqyAFhlXYQuPzgNZgEoMxFpsknH3+GZqJgprl/O99m4nUityUAoXHKBkYoLzH40W6WcTrQVF4R+YL\nsqJHnjt6eU4779DJROKYeU+n3WN1aY2sV0heNMKuc67AFU5YekSJKMTmBv0iM0CcLuZZb2e4X8tQ\nkq/BipftnRa+tVFQEZLRxk1nAlQiVuaNxmHFo7PESv6j4YYl6AWDmFa+aAWhahkBiO6PjzmktqjG\np84jnYPzCi62pBDbhUheHgf2eoa336VRWUeFwFqvycoXY4STiRQUt4GPkJrlrqJzcZhOdVhObW/g\nzCv7OKP28thjxxl9uc2BVZg9LX6QWDjWk5JvK/DAFuBhaG+qc4MZ7jEhdcoasd9joTIJWwzsRZzy\nd0FfZ+Pi9VxBJPJvKVYq47z53Le5uXuGY/ZRtk1+Tm2yTZsG19jCafZx7tI+2m8NwdtKgK+lNoIG\nlgXSxmbJN3uttXtcvnaPTeMt0sRKM1bJFOA0TaMVijROrNWklZSgmoTgWV5ZFS/CosBYidFr7TWW\nlhcZag7T7nZwzgvDKiiUshgsFatwOkdF4ClNU5RWdDueblayfiS+ojVpEn3CtDQCxPtLURSxwWo0\nPsYxQAzaI7ivtWblvq387I/+gKWJcdLCQeEhSNPChYD2Mb56T+FlCMzmU+e4t30bWbOJtnIsU0nR\naYK+fzv82GC2baY21EAnsk/2cRMc4kftAR+byUrhlSaU1lclIAgoW0o6RYmjYk3jos+Wi1N6VZSj\nB+cpsoLgPNVKhaFWi1q1Jj6XSphVqICPjfxySqMxGoKnUklQiPLHe4dzBUopYVr7QJ71pDFuZZ+A\nEhaXCirOS1VYZACLdNajH6dWuEwAORHPWLQJkOcE76RxbyxGm36zXKoHxYNbxjl2+Q69/Ovwnvqq\nFUo5JRZYmoUT43DNCugygexPjZGYtITE1O/D9gMXebXyA37f/TkPn/uU1kddia0JuPth5+HPmZq9\nC2PwwydfZela3I8v1KAzioBACYM9vvhFf3k16Te0swDrimyxykI+wa10E6tbawzt6fDkMViKfoYj\nwP5hSPYBu+AmMygCO7nEjpXPMe/AnZ/CXy/KVln3YM8lOPITaDwLoSd3ZuPd6sattHaBHz/4Ai/8\nyZtsem4ZfQdowNp9KSdm9/Ejc4R3es9x+8wWOKWlub/e5suDXhpIUtoCbIZWHbZo2Iw0NkoRTpcB\nQeAvoHtpmM/ub/H51l3Ymvy/FasJ7koqzOTTSDy/1QV/DUlWy0g95Pimx/TfAF+/xMrzQnxDjATd\nUqLiCodKQXkjQVNpKmmVelolbzYxdoEsLzAaigKMCfhE90GR4AtC5rl+4zqfXb3Bw4efZGx6ihMf\nvUu2sgoKkmjuaLUUHWgtDKbYCRKYS6EogSakSw30qWJKJJbi9SXTSigBK2ISIkRzeGEMEKTI0kGo\n8MJuUGLU671MaCkLwA3gl9ERNNO6X5Spsm0D/Y2BigDi0q4dwjhTgT4CJdSAmJQGIF1ZfA4mS4px\nM0pSA2wU2m2YmuilY6S8GF4XhScrhFpNCOLj5SElkAVPJTW0GgmjQ3Wy3BMyYk9JXkEFAQvRPhbI\nxPPYkNijngAAIABJREFU6J+m+qfeL6AjahZKoDLIfVFKrjnE54b499jotVaxhu8e2PFrAr7KFZBg\n6zd8Xvq7bJSMwMA8dx3aBdxKCJctN+5u5ZPNj7J/4jTP/sFHNAh86wMkKI9DeAp6v6s5tWkPJ8LD\nXF+Zg3ManoPGkWX2z/2cRznGHF8wzApdqlxvbebU5H4+2PkEKxNTkGjIDJyZhrAu58A6g+6P+sq5\nbqywvnp90QcmW4LPRuCoYn3zMO80X0RPB+bHxznwyjHmXrlKSsY8Y5xlD++Hp3gjf4nPT95P8W+r\nwr4agfqry3xq93D4/k+YO3KT+xbhjz6C+TUYb8Lw8xBehi/2TnGW3XyxMsfqJ6OcunKYU9sOw2hX\nKPHzFfhCi0n0cSRJrQGvAkcCky9+wbeG3uQwH7DLX2TELZOR8Il9hG2HrrG1fYPJOZi8JLci3A/+\nO4pT++/n/fAUp1YfpnOxIYlyOTAoYjZq+79eXXwFjDab1GwVncjkwUo1pVFNaNUsI60aYyMtxloN\nmo0a9VpKahUa8VVJbRo9mwT8Ct5Ld5kBo1OVkx6BELu7xgaquh4N1AOhpuhlOdZZbJFT5GIy753m\n3twsb/zLf0ElDkCRzrHvA+lxfy8b3zjAxAUn8VqrCFKF+LmPQJfkCO9clMoTu+K6L5MX9q+DIP5W\nwUcBuNHyPC3xyipNgQMtPi4BkRpqb/B4bGLwjRQdMlzWobO2jHUptqJRFU+tFdBtJRMTFXgtvmQh\nKFSQBo7SIjMkiNRk0BcJWLQomDOHSURKanWKtSmVJEXXDKaZYBuJeKcoMFg0cQKvC7Go0+SZixO9\nHFpZnM/7X/fyjLXOOqudddpZgceQdwuWF1fptDMIBpNYPI7MFXHcfCxIVCxqlDDKgvdg6DNAel5Y\nEp1uvrG/9I90RXoCMGiG5MK4XYS1hRa3hqe5OTrO1gev0doROHQD3s6j9EPB7AMQ9sDqWIs7TLHs\nh2WPvV4ev8vfllQkfLmk+Ieee8Egf6X0NZpqBnYl8ChwOKAOedIH1piYvEPVdMl9wvziJJ1zw/hj\nBj5SIns8GFAvByafvcZDjePs5DPGWUDjuccEF2bv5/ijj7D40xmYj8D1okLt9OjpALUAmcLfVVy4\nuZsPNj3BtqnPefWf/4R0wjF3Eonzq7DnY+gsQm0L8Dy4VxRnt+3gNPv4/M4OYVPMAy5AMgH3KTgE\nPBPQh3Mm9t1gzl6lwToZCQt+jGs3d9A+NgTva3hL07nX4vgjT3J63wGGp+5Rsx06rsby7QmKs1U4\npsRP8hPgSo4USLeRqnZjzvjmvxGywnHhizvs3jrB8FCDJBHrjeAVSZJEOXsgidPgtVJUKikMtUAp\n1trrZJkjFCKHhsDtO7cxxpKYCt3M0XOKLFicE+/FUEmxaFwQxrHRCmsT0tTT6XZodzp95jFKE4LB\npAajZfiGTaAoYr5W0jwu8PigwAlrSm/Yy2tjWZudoRIZXMQmrTRiPDbKGvEeHRRDd++x5+238O8Z\n3vmf/6doYK8xSYKtpOSTIxz9P//Xft4qAbd+U3hjg54SyFKDZrxWODVolisT/RWD79cxwlguKAqx\noVFx4x9i49s7ucah1hDDQ8OSR1T0hjQaJ3RgYXgrg02T6O1MBNU83V5XBsAYTZJojLHk3R65c9S0\nJjEJwSYUSrw7rTYY5XFZjgpRwaNNBMggBEdRZDgv55zYlABkyhOCxDrZh1i8F1m2iY3/4UbK7FiT\ny7eX/9P84//CVTY/vypFib5f2SrcGodbQ2AV1NUAJ9um4CloPrrA482PeSm8zmNnTlD7V47idci/\nAJ1Ashemf3eRb/3x29yemOLizH188tAo/lgKFxPoDCOspzpSc5SrbG4UGx7R23HNwx0NVwzXOnOc\nqezl0JZP2Pfd84wtwh9+AGt3YGQSeAb8b8GnOyS2ZqSMsMTo8pL4Ia7F+SFxXQjw2Dw05iDdClsX\nYSnI2UwB0zMQ5qA7UuGs3s3VsS3c9+QlhlmiR5WrzHGMA7zvnuL4ucfhbZGCcsNBWEbaHe14rZMI\nergVpqvwMLAP2B1QOzx6NEAiZZC/ruGCEj/mvwZ+rinGqhT1eOIlg/k68EWA9Qy5si+QRFL6e5Xe\njd/cmP4b4OuXXM57ksRKhz7SmctCxViBnrxyYAKVRo3xZIyhm7dZXHaRHqRl6oh3UnZrGVmsCORZ\nxrkzpzi260GeffoJtj6wm5+//RYUBY1Kik0sWAtKACPvFcqUQMrABzGUsr8IrvSBrz4II51vpQbX\nFTY8St28YEmR36RNTFauDzqJnl+YAALGRfArROYbRE+yEvSSxBVK/GtAeeoDPX3WllJRni8nqRkA\nQbDhuiK4Jl0jDUruax9A6wNRWsC6mGBxiqxXUGRSjIqmnj7AFgqirAlarQrtbibTbFw0mY7eNyqE\n/vUoraJMs2R2/eKlYpFXavpFg1T+9b70SxQucHNplTPXFjh+5S5Ce/p1rjLRlUWHQYJhORq99FAx\n9GWC3Q5ctXBKMb97kvcmnmayehf1SGDv2HmGX17BLgXyMc3Kjhantj7ID/SrvNN7lvnjU7AFmkcW\neWn2h3yHH/FU+0NmF25S7XXJreX2yBTHhh9mduQ6P37+FW50tsOigQUNNyeQRLHCQFC5kf5cro1j\nmQsGo3vbSOv8LizW4WQFmjDPDG88+wqXZ3bwYPUcU9whIWeZYa747Zxf2sONU1twr1elq/8pcAA+\nf/A+3n/wKeZGr/LK77zB9NQ9ho/B8CIwCflBza2nxnmdl/ggf5KlTzdJ9+UL+TnNqrwH1pEW01Wk\n4FoHXgKehMkXrvLbQ3/J98NfcOjuUWYu3cXckkt/ZucHXJ3bwqff3cHUnkWqiyL/XJ9qcHF2G2/Y\nl3jNH+Hqhe1wVIu+f6mHFDJrDDr4Xz8mSy1NGK6nVFOLT1N0pUJaq1KpWlrNKiOtKs16ytBQk8Qq\nFE5YpABBGhklYFTGBaNNf6oiMNi4K01wLpKwFEpbkkqNPHfo3JGmKc45ajHOFYWnyHNsqnDGkGcF\nNoEEI0bIOuCUSNlLfxJfFCItiUsAdpFI4AOJsVKUeBdBMhOZo1F+F69BzlgYLSH4fh4AAdx0avrX\nVAQRjmjt8coRrI8eJQq8xqce00pJqGLWCujmdNtdbJBOtrGKJHGYIBKboJER7taQ2oRQFIQiYIPF\nOZFZaqMIXtPr9SQuO0WiExKbCNvMJqRpQlKrYBsJpmYI2mGNirHX4IsC4yVH5FG67lyIrF+HU5Bl\nOVkvJ88LulmPbpGRFYWwl51mZWmdtbUueeEkt+aePM/p5nlkc4Q4GTNOGIs5wxjb/xwgeE/PObL8\nm+l/8fdbG5sEG6Thi5VoPlXl/NyDHLWPcv8TV5j8/SUOpDD3KWQOJrZA+jK0jyScGN/DGfZy98qm\nAWjTL1ZKBm4g6h8ZaPT+oVI6YYZLTqghDOUJ0DOwNYHDwBHP0PML7Nt+nP36JNv4nCbrdHWFa+Nz\nnHz6IU5sf5TFqUk4btDPe3Y9dZoXG6/zfHiLPe1zDK+tQICl1jCn63t4p/IsP3/lcSCw3muyuDTF\n9onzbDHXqdGhR4WbzHBpdScf+sOkOmNta5MD//wEEy8uoTNHZSWndbxNbRnCDKztr3H+ke38iFf4\noPsk+dGWyCmvAyGHuVRAr9+Ciedv8tjMhzzOz7mPzxhhiZyEG3qWE5sf5v3Rp7g89SD5D2pi2v+x\nothdY358Tm5TjwHb7QJifnyzh7hVlpKYskjayKL+5q8vbi9x+94itUqKDCqS/yGrDYm1dLo98XVM\nUpwrMNZQr1Wx1qCtIs97cWpvIE0Ma90Od+bvUq+PoFRKkgXyIkronEwirJuKGMoHka0brVHR9qOX\n57Q7XQFVtIC3iVboRKY36gDamH7DRmmNjtL3ch9f7oVkyywDqYwxYkSvjRwbRIHgovk8khuzyVHO\n/ef/jNUd26iMtuKkD2nCq8hQRkVJpC85SwNXQCJrKyBWKQBFkL20E3f7yMAu65fY4PBQqAEBwUXJ\nYT8/+4D3jiLLCS6QVlNazRbVihjuiZXBwGKkBN98AG00aVohtSl57pAhjUYaOErUNKEohJiQJFSM\nxRpL18lwg7SSipw19GJ+iqodY0QNowJZr4srHGliabZa5BkUrhcJBCbWQrGWkraORLrgSG3KlvEm\nV++uUPzaTe5h0AjdCH5Fb1yWETSlAUUdVqIdSjoGYynMBkaHFnmA8+xdO0ftx471vxAfyM+QCP/Y\nPDxiYer+FR753gnuTy9ybuZh1qZTCdm3KxBShJ5b1iEbTfc7yD5+Q37KCmGinYeb57fw3uGnmW3c\nIHkxZ/vk51SOeUYWgFHoPWK5dGCOH+rv8H7+NOuhSZ4mZNWUSiNjWH/ZnH4IqMeUkr4M3+rC9uuQ\neZibgNHnwX9LcXFmGxfZxc8XDjM7cpWGXicn4U5nmusrW7lzejO8o0VyeApYW0NMGJfjdUzJQ22G\nmarE928F0qc6TN5/k+3jl5jkLgk5KwzxRbaV61e3sXJ0HN5Soo45ysARJkeklN0e+BWkwLiD1E9l\nJ2qj6uObu34DfP2Sq8g9KglYHYlJ0O+goAJBizeXTCVRTG3axPTNO2RdJ+wiJHAXrofVVQoXoreT\n0HaXF+7wwbtv06jXmByrs9xeZ/nOPKNDLYaHWzRqVSpGADCjZAqLih5bOiaXPoAkB+2DYGVHPeJv\nRPhLOjAlk0Hc1eWcXIgMJvGRCToCarFoIl6LAGQBHXSUf5R3S37HxKJNGE6hbwRffm/jKrtO5XFF\nuhglnhHsElq0lB3ydbTCVHK+fSCpBMni76kI5uEDWbdL3uuKh5h30rlCfMCK3OOtJgRNUoE00YyO\nVKXjk/koJw24YgMDLJSyUFA69M+1XGUn7auTM/uOO2rw26WxZbnurXZ449RVLtxaZH61S+6+LsHG\n/3s+LzdQgUE3vjQNmYebDThpCJsSLozs588f19xLJnhs51F2bL9CLe/STmpc1tv5mIO83X6OS5/s\nhnOG5Lk2B2fe43v8Jb91+zW2vHMb9QGST5swfmCFLS/dpLFtnfZQgx8dHGL58iRcVDBfh2yIwWzk\nKpKmyi5/2X4qp3z1GCTL0hdsBbgJeRUubQZvoA3LNyY4/tAwF+b2kTZzVOJxbUvnXpXsfF264J8g\njKw4fdm/XePD1jNUZnusTTc5+MpRZp6+RTXv0EnrfDG0hY/Sg7zmj3Ds2uPkH1Qk6Z2Ip1yJt7gX\nT6tXyKnfb+EBqBxa49DQh3yHH/LClXcY+fN11JsQrslzmwdydn3/C86+uIMf3PdtdHRkus0Un7KX\nj4pDnD+zn+y1uniGXQxQrCLJr9TNbJQGfX1Ws5oy2qyASShsgkoSkjShWq8zNj7G8OgwzVaNatVi\nFRjlBPxS+kvvu1KarLXE2RALDnlri9TbGoNC4XInTQijsElCo9kQ0D96oSgvAFbIc2lSlNO1lAav\n8LkA6Nra6HviIvtLkVrTl234UuhgrPgCBlDKiAAiyHE1oc88wgujVKuSJVtEtaSY6QdfTvyVrwvn\nBHRDgQ7ofoMh4MuWtYvFVeJJ61VqQZgL6502vfWMxCiqqcGGAmXFc8xbgzUaq8ESp/PGjr6iiBMm\noZt16fR6BO8xOkHrBI9BaYtKLCq1kGpCIrFaG40xxOJARVNijc/Eiyx4g8PhlcLh6fVy8iyn0+nR\n6bRp99rkrsAr6GU595bWWFhdpetzPIrgc0LQZN7RzgvyAEpbDArtfF9mauL/AZGFV8p3sjyn+NrE\n6/+Yq5Q9f0UavjoOlxWchIu79/DWtm8xNX2X5//wPTbtWhBpuAO2wuqTKUfnHuF1Xubj1YP4T6pS\n9dyGgbwiQwCvGoNdeimzKc/h73u/N06jLOWN09CqiRzwaWi9dI8XtrzBd/SPeKr4GVvu3CZZLnAN\nw62pCT6qPsaPZ27wxnNHuF2bY+qpqxxp/oh/wr/h0NmTND9soy4h79H7r7PrySts3nWdQ+ojUjKW\nKiOcmd7LIT7kfi7SZI02da6wnaOtx3gvPM3frH+X683NfFj/lNmdN0jJmHDz7N9zhqTIWK80+Ky6\ng484yBu9l7lwYh+8h7CB5x20EpE2PgWjL9/ixYkf8So/4MX1dxm9tEyykOFTzfqWOmfmfs5s/QZ/\n9cj3ONV+DD+fwo+QEZKTDDDH0ut42UFvGcJtpEi6G/9mZS79ZktivrqW13tcubHAxHALY5O+tkKh\nou9XRl4UpE6aKiEIA8xYMTfv9rp0Om2cK6hYj6sldHodMgfaVElMxoGrV2nPzrI8PSmydqtIg6ZS\nqcj+PA4nMTbB+kCR9VhfbwMK3ZJ4q5R4RhpjSStVqoVIsvM8j5NyNc4XBF9IDeGFeeyQfSxaYZWc\ns5ZAG++AJWixBzDGoJRi8YnHItg1mC5ZgmrBi5xfIxgYofQCjm3eEGXpBLQV+b28rQe+vWUjykXL\nFh1BQB+EuVx4kZZ7V04/lNdxhSPvZRhtaDWHaTQafcArTVOUkoEyGiIz2uF8hjaKWqVOLW0SfAcX\nQCsB1sqGvqRasQaw2qIKh3IFScViVfT8NBGgNEGaK0ZyRlHklINnEmvQOiH4nDwrcM4PAEo9kA2W\nCpHCB7wLTI82qFYsa51flfX6/8cKlMMUBmB3uaeO+YAq/em57IBkXECr0UCjtsI0t9m0dAc+hc+u\nydazvLKOg7kLMHUONn/vuoA5rVyeXwO0BbeFwfTfck9femEtxcfihvOZh2ub4RT4dyocGzuM3ZWz\nPDTME099wJb9N6nlHTq2xtXmZj40h/gpL3D08iHGq/Pc2DrL7aEpWvuvse0+ePqMzPaoAAdTGNkL\n7IPiBWjNwP5Pkf/rncDzcP6J7bzDsxzLDnD2/Yf5rPkApuYIuSKbrxCuWGmWn0SkhwtrSDfoTjz/\nOv18NdSAR4AXIP3+Gge3fsDTybs8zEm2cJWUnCVG+DTdzYf3PcH7k89wrbZLzmcB+CyLn/h4f1bj\na6zERzs+ugzi+dcBcP2Hr98AX7/k8iGQFQ6bWpF/aB0DmwRSQfY9nU6X9fUe27ZtYW7LFpaW2rR7\nPXJfEIIEaGMFQOkVgdRqbPDkWZcrF87wXqXC7t33UUkrLCwtMn93gfGRUaamhhkZHqFeqZJED62g\nxDyxNMIuV1m4wUZQ5is/VyXxKsAG8EspJUaXPgJUKkR4QKN8LMJ82WFV/deS7g3C/oqW+KX+HoiF\n1GBrWvrleO9jgakHmn2IBpHytYBfLrLNYt4JAbSP0iBPOeWyHHtYYmQhOAgO7XKy9RV67fZAkuQ9\nOhayToNVijzEMcUE0kqgXrMMjzZgtUfuIkvNFEJF98K+K/kTWsvLh694SIVYUG4EJkWuVLL0ypsn\nm4D1XsGxy3f40ckvWFr/Okxv+UWrDIBlmrJ82Rh+GbgD+RCcHoOGoqDCueUDXD84x0ejh5hRN6ml\nHdrUueU38dnyA6y9Ny6b9y2BTdtucEh9zLOr7zP3+m3Cv4LVn8GVVfHm3XwQRhbXefa/fpfLrR18\nunk3K7tHCVstXKhAVk44aSHJookkjo3jrMokuRLPeZVBh2ORvpQz03BhFlYUXFWE4wnrm4ZZH2bg\nOLyAMLSuBOmG91ZgrSJssZZiPt3Ea9/5LjenZ/h55XHmqlep0WaNFp+HrZz2+zn++QHCa3V4BzgV\n4GZZ/KUbzrkCui7JfxLYClNTt3hYHefg0jFGf7BO+FP45BPJnU3gqeMw3nU8tPkiFx++jz/lj7ka\n5pgP49ya30L76Ai8D/wMOB5gLUNcNUtH540TXb4+yU8rxWizgTEJ3tg4idBQr1QYaTaYmZ5kdHSY\naj0lsYpaCfA7j6hO4pTVuCm32ohUIspIXDRw0nE4yICdGaJxsI7MH02lVhCco5pWUOIsDE7R6WUU\n3gv4pRTOQ67F8N1CHOghucYoKPBinh49IVVkGyskVpab5BKgg4i3eU9wEvdiSRGZCdEcLEj8N0qa\nIHiHxlPE6cDSbTYo4yGPxYSXHOKCwxhDWqlI7A2KPPe4riLvZbhOD6shMdKxtsaSWmkpquAwKlAE\nj/MG7wDvyX1OO8twAZRTkICqaJzRYBWFCViryZWww5TVGBMwkSog90dk+cELq1f3HIkTmUuWB/Je\nLlO5spxOt0OvyMiDI/ee1XabpdVVOnmG88I4yAonn+PpeQ82EWaCBx8Kyim/WhthYbsQQT0ZIpMX\n/3iK/V9uBQaej4vQWYVLLTiuWJ6b4K3WSzAKdzZN8tCrJ9n26hcoAneY4lP28F54mp/0XuTW0W0i\nnTuPjMrlDhKHm0hZkf0HHiUi8/ctBEt2cj2+xgTMKtgDPBU4vPUDvs9f8Af5nzP2Vx34EMIdUMMw\n8egi279/mcbwGp3pGj985Hd4uHmMb4U3efLsMWp/2iP8AJbPAR6G90Lrt9u89Cc/46XsZ9CDMAXv\nTj7K49dOUvuk6BvLPPvQUfbfd4oxvcBrzSMsMcJf8T0KBFie1PfY1zxDTbVZCUNcZStn3YPc+HgX\nvIHkzvMBOhoeUPAgmEMdHhv7iO+FH/C9mz9i4ofLhDcR5lYVGgd6jP/uR9QO9FhLm8zvm+L6hR1w\nVsH7XnJZf59ZIHlyIT4WGeTO0n9mIzP8H8/67MYS+7ZvIkk6NJuGEEBrQ62a4Lyn0+nQ7XWpKhUH\noYhMrVYxjI6MoRSsrq6gNdTrFXQCy2s98m7GztDmv/nkFOHYCf77P/htPI4CR72SxiHDAWO0NGu0\nIUlTfPB0u12RvluLUh4VDbKSJCFNK/1cBmKxAgUuz0BJE8YrI5LB4FEYUS8EMbP3XsAqFV8TK3lS\nIlzo1xNaRUuRgEylj9sDQ7Qt0bpvJaA3qCSCjjLIUs2ipYJQyPSfUg1iysY45XPiRMcoRywKkbE7\n50XaHgfH1Op1hodGqFXrXwLdRNoprCph4zm8F9ZWkiakacp6pxP9zIo4dZIoXVTC9PIQuhnZ6hoq\ntVTTCrhA4XKpk7SKti9x8qQDfEGSCmBWFB7vZOKkc7nUKpHUEMmEfSWNKr2LA4w1q4zUK18T4AsG\nrF/LoAnhEAC89P9NEZZSjCEa0AGjc1IyTO4hg174ctToAHkUYFToYXAoG+gP5VUNqMVJwg3kH64N\nrI7INj60kSDXYAAc3YLOEJxuQkvR1kO8d+QFbjy4mU/sAWaHbtJgnTY1roU5zvg9fHZmPxzV3DsM\np8M+Tg7tY9O379K43eO5EXj2MlAB9RCE34Prh8c40XqIAw+eYPLOEtrDykSNk43dvM1z/E34LhfP\n74WPFPnxGvlkvGVLcnoy+SVAvooUFFfjD2HQqBmRISqPAi/mPHnfu/xe+He84n/I3nNXhJHbA6bh\n2Uc+ZNfQZwwNLfOD577PzfntcEPBYiIhnLMM5OltBoqXjT7J33zQC34DfP29VpY7Gor+hKo8l7en\nUopEWxQa76CXBUzaZHbrHDfu3Ka4t4zOk2isTp96lTuHUbEDQqDTXuHyxbPUUxgfqVGpptxauMPq\n2hrLa0tsmuoyOTrO/aurrG3dRKhUIKFvqijWUmU5VkrwBkCLgE0D9pFSA4BGYCz5TMzrI+shlAlT\nvodXsdsdJ5FEGrQq2RERASu74CXDqaQzl6tkQZWgV5kUiTJGXY68K43llUEqJQ1h8OaTcywBs1LG\nQ5T0OFrXbrHaqtIuOhSdDi7P8d5JYvZeTDQjcqeUjmCafENpTVqxNGtiuqz/P/betMmuI73z+2Xm\nOecutVcBKOwAsZPEwiYBNrcm2S2qN22t0TjCnlHYCjk8Lxz2Z3CE50M4/M5yTMRE2COP1S1pNFKr\nu8luLg0SJLiBAIh9r0LtdztLLn7x5Lm30B5pRtKETLM7g2Bt9557zqlb+WT+n/+StakKy8baBqpy\neGsl3WMoRxoBiqMbGobNstoDBkZdrJojFUJgcb3Px7eW+fDmQ24tdf5/Or1YRiaTm1MfG5LE8sEU\n5BoWFd3PtvDhgS18OF9iGhaXp7CQSrf/U2QyPuPY2l7gCJfZu3gHXofbP4U/y4cEal76CE7Pw9bT\nXY69epE9zTtcnj9JOZsIKLTaRJw1t4KZgmZLTrH24a8Q3U3ejxTfh0iBrLtEFlnUR3ZB6MGDeVgb\nE4+BuuCqTZfc8bBRQFgB7oPfCrd3wc8TcNB9OMvPn3mViwefZKq1TqorCt9gbWOa7pUZ+EDDWaT1\ndbeUY7AKjIPaCs0Z2G7E03IeOYetnpnWCnu5zfb1B3AeLn0CPyTa5SCq0++eg7HzsO/kTcbpcuHz\np+l9MCH3/SrSafrcw0ofKbYP4vVvlq98sWRcaZIwO70VlYzhlEKnKSbLMElKq5nRbjZoNVKaaUq7\n0cA4h9jOEpP5gviiwNArUUAgxCReyfzkgyc4BdpLUAmPsjoDmjRLCS2Nt4pgDcE2IGisD1jnqEqP\nMp5EKVSqMDrgg5W3VqSASlebmOIIJgaFDCG3uAkKRsvGJHpl+VB3yWWuls9jqEedoqgS/DDlC5mA\nvCdUFqsUJstwwQ29XVwI4hMUJACk9rvUWqRmlUsJwVKRUeUlZXCUFOxaX2Vl3z5KK4xcizBsi7Ki\nKALKBoIL0sWO15aYBG0UOoWQBirtMYmm8I6GNsI+izYDomeMGy7nBV90nqryWGupqpy8yinLkip3\nFIOSshAmlnWB3FZs9PqsdXpUlcM6T2UdVRDwq3ISUW+SJLIlZCMVlAbtUMajjJNQAKVkYxSbSeUv\nFfBVA071QnkFWICHLXg/hRYshD381de+zdW5Axxufs48iygCq8xw0+7j8soT3D+/C36ciATjhoNq\nGXlz7o2vUzGKru8xinLPGYHy8HfzHzFIIWgCk6BSMQU+DPNP3OQZzvFi/21m/niA/dew/D6srsPE\nGGw5B+Mblq/9/ttcnzzApzuf5CiXON65SOvNAven8NOPpJR54NTH8FwCjSbyzUJUKs/+1x+Q/R9X\nFJSHAAAgAElEQVSQvwF5Fxrj0PwKHP+9K6y/+DMea14DYIF5LnGMd6szfHLnKT5Lj5MYS1426N+b\nxl9OhBn8AfJxZQBZAlsyeAy273rAU/o8Z3rn2PLX6/g/glvvwbWelK9jF2CqDydmL3DmwLucn36K\nxYM7qXY3YVxDdwFB5hwjZnTNEOjFr2u29JcT9AJY6uT0qkCzrOj1BiJ3ayRoJUyioiioygqFIU2a\niCmvsKMmxicIeAaDPtZWaK1JgCRRFJXlutb8z4f38WBinNXlh1SuwgZP2WoBAvCkSUKSJKSp2J8k\nSYrPBHDvdLviWTXWlGaA1iRGkaYJWSMhhIQQDFQaHwzOqagGCcR+8DB9UHuZ73TwBG9i6q7YgXgT\nBIyJ+45hW71WLQQ1NI9PlHxer4e1QhQlNRwUvb9q4CtsaqhvVkPUMsZ6vVyv9X2AyloqWzNAVZz/\nK7I0Y2pykrH2GFqZCCqBwwkYhxOGW4gJ7CFgK0e/GGCtFZ9MkXiQmgQImKBomgRjA75f4LoDGJSk\nQdGsAiFVePyIRa0YnidGY5IGaRrwTrhm1juRORqHNrKG0KYOT5EGudayJzLaoNA005Stk23urnT/\nX+qZ/2+HRVZRm2XO9ffGGSoFbIhTh2aQT7I8NsfS7DQ7Hltj/wwcuC+rTg2cVDC3E9gv5vJrTGO7\nqUwzAfHP3cfIzF0j01DtV3WtDUv7oZhAII+HwAqEu7C4D95tQqmwyy2unDzJ9aOHmNqyTqpLnE/Y\nWJmmvNQWP8O7kCdTvL/rGXZP3GbsaI/Tf/ARU2c2MHfk8OVhzb2T87w+8RL/jm/z08Y1dux5gMGy\nzBaucpAP8q9w5drjFD8cEyuUj3y8XRpyD10LZcWwlg73Ix1GTZoZmEjk2p/0HD74GS/zBr/e/yFH\nf3yD8CdQXACbw9gOmPp6j1e+9xaDAy3uTexk7dQcg08mJZxldQzCRHytLiNJ4+Zwki8H6AW/Ar7+\nTsN5T5EXTIw3I8NpxFpyzmFMIuE46+usdAp27djO9l07yUtNWdoYrSs6dBcsioB1Mbkx9jhWl5e4\nffMmmdrFeLuN9wWF9fQXe6x3u0w1HvCddz9ifftWvv/PfwcQmEnmVB0n8zhlbpY+1o/c9PUjP4/M\np4g7RWJALEB1wRGqmzzOR2lHHd+rlEhk4q6xllJSv0Zt3i5HEnArsr7YJHPEheFjlNJCDw61/5UY\nbHpXX3EE5wioWEBr8/4QHO3FRZ76oz+hOzXOj37zq2BLSc1Bfi66fj+UFlnlCVoRgiYoTdAOlCFJ\nE+b37WLr/qMsXr9GMbiI8h7rRUaD16P7o6STteliozdP/XEz8CjFcK2Xc/bKAz64scjC+uBLIJHZ\nvOkzjBhTAdZ2wfk5uGcEYNkJTGS4LJN18hqC8SwDT0EyYZlIN5hhlfEHJVyHC2VUwSBl4FIJT9yC\niTswxzJTrKHbXupDSvzfIZhtSjd/BzCLrPYhJgMbuDshksyNSQi1HJJ4/nWVrTdf65DPQD4BD5vi\nwolCVoV1x6QGzlbk+SVwfSf0UunmfKZY37ON9blt8lIFsq+4gzAeriGRj9yNPxgD9sBsG45qMbI8\nBjwGbCvRU5Y0KWiS0+5UsAoPwwj0ArgXoNuBsXUYp0ubPirxIov5cXzN5QB5BOxYYBRjvNlr54s1\nJiYm2bJ9NypoyqrAKlCkElXtFWVlh0wureLsEVlJ4IesqYDHa4slbEp3HIl46xAPtWl+lb/taOCO\nSExUo4kvLcqBCgYXNJkLFHlOVXmq4DHaglakJo1BHsi5oEWut2nR7LxDa0hUIhuRENMEdQA0HiRh\nOEQWF0qMgH3AeSvvSwlGF0ZrCHjnHpGGD1llQZoAxijK2JzwOnDg33yfy7/1bSpvaSQpjbGGxMEb\n8ass+xWVNtjCMnfnJi+df5sHN6/zxpnn0KnGR5ZBUeS4wmO8ZIqhE5JmM4JpGpUYfBJw2hMSQ6kU\nmdHCujIm3qYAPqAdWC/S26hcx/sg8kZXMagK8tLSz0s2un2K0lI5RVEqjt96yLvaUw7Tf2OV8WKc\n7LxHJQbZSAljTKQ2MQnNi5w/kjqwwUWZfhg2OL78o37/bPZUWQcWoByDKzsABX1YuzPPB8dnubzr\nBNl4iTKBapAyWGxRfdYaScM/DtAvEIbuNKSxkLoAvpbQL8d/tYylXteUm87nb/sdmF/4PAFagn9t\nBXbB7vQ2R7nEzqsLqB/DrTfgRz151bEcvvYOHJ+B2RMbHP3aJbboJeZYZmJ9A3UZli+Kyr3u0X9o\n4ch1mPpf4bMl8XzZ0Yb9N2D5U3jvGtwOMK/hhSswN+55dvd5nln7CAjk21pc3bOX/dkN/nzPd3n3\nk5co3m1LEmPtuXUVYQl01uU+NXZINNm8Z3psice4zr6l2/A23Hwf/qQnLY0EWLwOr70O7ecshw5c\nYU9yi/e3lFSzTWkgkY5+t0OpacEIdPwP+bF9+UY/r7jzsMPMWJN+f0Cj4UWWFiAxhkajSfAl/d4g\nghxNtKnZWglZ1qDZbNIfiH2GUYp2u4EPit6g4I3xjEQ5THcjeld5qqkpkii7d2lGoxHvbWxKp2mG\nUxWDQY61FYnyJLF5E1JQBJLE4LNMkg+9WBygLApZ72qjIJioAgkiQYySfV1rFb00mg1i0g6g/EgJ\nWTOhJQBEfB8TvXkfIrWr9vtyzg+VHIR6lc8Q1EKxqYkeRg2mKHN0COBn4z/vayBNLAwmJiaYnJoU\nmajRqDSesCH6AdegWhgylAeuT6/fJS9zrLUE78kSIS5URYmvLIXLSQqHKSxZ4Uh9AhVkucMlHmtE\nh1ICQUfgT4NpNDCZQQUJOUgSA/mAsixwtpK6q6WxFOLaAyX3X2nZSCitSdHsnBnnk1tLXyALlHps\ntj+J637S+HVsjpQVrGWwoFjpzHJ57ghXxw6y9eVzbL0C330dVpYgTWDrfmh+Eza+2uQzHueaPUB/\nsSXT0CHEzP1J0I8VNGf7KBMoNxpUN9ti5n4e+DiFz7dBL4nncxtIxL7h3k7ojgnS9hm43W1WZtpS\nC2o/w3vI2rgLjMPdrY/xF89/h2K8wa2Dezm65zJTeQerDItjW/hQn+JnvMiby1+jGUomJtYwytHt\nT7DxcI6Na5OEs+nIZ2thAKHDCDSMCSZDueEGI/sVw9CXckbBbmgc7nOo/Tmn/TkOX7iJ+T/h9p/A\nBxvQC3C4ASfuw8x4l+f+23c4nzzF+Z2nGeyfgG0KbjZhUAcE1JYmNWv3i6fw+IeOXwFff8fRHVRM\nTzRJE0XlxaukZlIprVCpJrclD1c77D2wn52797O+XtDrDvA+UBYleT6grESb7mMnIzMJPgSKsuDe\ngwUm2i2aRopG3xZUXpEPSn6S9XmumfHBU8eg02dyXIyXXZLQSDMBh0wsQBGYexT8qsEXRpLIzeBX\n/XM2dXF03X2Qx4gyyG8+IMMkQ/Rwlzh63Uhfjl/7EI3hNyWkDVkTCLUXJTLN4fl5oQBLwJmK34vn\nEaSwS3F0qGBRtmK1Ybi7fzufPb5HdPWVFblmpEgr74YXqSIV2ysIwUTgT6KEMxwzE5NMTE2x1miQ\nKC1MMbnbInERwvSocP8C+MWjvwJCCOSl5Z0rD3j9wl0ebgz48oz6vVEb3KtN3y9FBnNzHm6Py4K6\nzYgh3Qe6AebYxF6U+4yWx23ObYER41mUXNHbbaTGBaZgrxKg6AlG0fQT8efLCNh0Ebig4cI43DvM\nME976FdWSx9rCWc0GQspuNowPzBiPuSMuifxhKoC7u6GxbYAf1vjeSRya4beKQshfnEXqfBjwD6Y\nHYOvKPga8GJg/OmHHJq+wjwLpJQ4EnKaDCYNYzOObUpubz9eyXaErcAk9Bgjp0koldTUBeD+Bvgl\nRqaWtbdXTYGub+wXa+zdu4sTz5yks97j2o0bbOQVLijGk5SkOUbWaNFsZKSJkTksNSI9B0x41JvE\nh4BOiKmGXmTfw052DLpQiiQxo7kIkU7XEm1jMtKsSbCKshI5pTGGRpJhyxznLJVVYAJBBwG0QOay\nEPAhenHF5oE2EuQhcep6CKx4J3JI7WLylxH2UQixI6/FYwzEJFgpHSXgYv7unMTCG2NiIqR4idQb\nj6zZpPQ5j/3bH7D97bO079zj3L/4A3yoZAHeymjHJKrUaGxqyLsFqzt2s35thjePfQWfFxS5IxiD\nDRZrS4wKmCQl1QaTpnzrzR/x17/+LdBSU0k1pAaTpajEYLJM3nlegdVoHWLUuyQoWhdE6lIpSuso\nbMXAFgyqin5R0MtLSucpbEU/z5lZXOJ/uHAdD7xwYAcS8FsbL0sbyihF5RzeOtkYxd9Pkoi8UftA\nGhJSUoLy0aTfktfJZ780IzKxh9KWNYax9qWDi7thVcF1CO+ndHdMC0M1YTTf3UQ2FjcBq2C8BfNK\nQJtWfJk+Ypq/NA6d7UQtCCKhWeHReek/Nk8NdTLxawWkUlyawJRlWq2xNTyktZjDFbjUG6V3DYAL\nBRy5Btk9y7xfYLe+g8Ghg4dKkrw3t4As4Er46yXZ6wRgMoff/TO4o+CsEBi540EtwW/+DFqU0gQB\nxo8UzL22xtw3l6jSlKWntnDxxtPSsHgLmbLzWh76ANgiSWoN0C1HO+0xQYf2SgV34dZgBMqVwLUA\nG8vQug8zrDJBF9N2o4BmmRTjlSzxqNdjxQhw/HIyverhQ+D6/WUO7ZimkRqqqiDPITQy0iwjy1KC\nV+R5Sa/TRStDq90Sny8EXGk221TWRtBekzU0jcpSFsg61lscikG/y5JzlGVJqCpmpyaYGB/Hh0BV\nWfGrSlOZt7QmNQFXdFlbGxDcNMR9gARhaZI0I82csHirqACBuI7VsrYPiDSy1nbHY6gQ0Hh00CS1\nBUr0PA4+spLiXsEo+SdKv9Hi17kQLVY2gzXx+PXyKShhStUN4rhPqBtWdVPfe4/zTpoUEfRyzlGV\nlkOXrpO12qw9t5NGM0NnoJK6UVQnHRMbWOAqx6A/oNvdoLuxQVmWEL0kEwxFWVIMcnxp0aVFVR5V\nBjIL40HTVAml9fiBRScJYSzF69F1mcSgtCLJUoLRuEoJmEUlKhQnXmPaiAm+Gl5rbaUi+5zgpVnl\ngS3jTRqJ+QICX/Wo54P6F1vPEzmESta4VxVrl7by4c6n+Gn6EvPPL3KI28wdgrmITanHIf+u4dxj\np3iL5/l87Rj2UkMmrW+DeaXP/oNXOKiusi2aua8wy80Te/l08TjVgSlpdKcaPpyBcidSTJbknPwA\n1nbAuS1wScmafIyRcKXus2wAzT6cbUPTcL18guUXtvHJzAkey64zla1TkfCQrXzOEa5de4LqzQw2\n4P7UPrkNHaSffEtJ+MhFYLVCgLh7jICv2iqm3kcM4sdxRr6UCYwpmIL2TJ8d+j77qxs0PrQUb8FP\n1qUPAnCpgObncPw92P/tBfbtu8ns1EMezO0lTChBGAdZPG60dRkGFHz5xq+Ar7/jCAG6g5JtW8ZE\n3x0i/0EbMYFEg9es9/qUNDl87CQbGz1u3b6HrUpMotEJ6CLB9gdUVUnlnaRE4tDKMej2WFpaYev0\nOM3WGCudQVyYKzr9nP9pboKpm7fYUVj27tzJzNw0Y63o/ZNkEA2NVTzfuu48wv3aDDr9bRe8Cawa\nbvJCiNcqozat3wx0xf8emcBrHxoprtJhGUo0Y+dKDB0Vo8kyfqo12JGnjfcQlIvHdFF/L141wZYU\nnQ7d9TXe/uoRgreEqiC4zd5e0TssLk0lzU08zELc3Io9j6e0Bn/9BioE+ssPMDpgtMIbhQ8CdUmy\npkzuI7q4iqBcvbiQYrvaKzl/Y5G3Lt1jcb0/9A778o2aGVRfX93x2QBWwE9Bbwx6GfKuiMAYCqpt\n0DHY5YzlfAv3x3ewsneM2RM9Tr4r3aBatf/8FIydBHcM7rCbh34rbj2RImMRj5MzwMuB1pkes4fu\ns3fiFtOsoQg8DFu4s7af5avbKH/WhmkF7yi4uwd8DXRJpLSgVJOIu9iMfK5ayMpKAFphfOWMvE/W\nkAK2yLCgVVthYRus6hH4VzPQGkgnp9+GYnv8Rio+Bk8qeBmy7ww4cvpjXuRNTnGe/e4mDV+xYcZ5\noLZza2Yvx567ztGP4FufwPUBjGk4sQ3aX4PytOFzDnPL7aFcykZBXD5nFKm2wajofnE1/o0s45UX\nnuHFZ4+ztrKB0Zb3L18lJJqJmXG279rK9vlZ2g1DliYkWiMWX57gJJZ9FK7howxZFvNJBISCr921\nZK4IESRzzkP0XamTFcVPK5A0mgQUia/IVCo4qhawfpCX4AuCdXgTsMrTNAKeJkoTvI8BKHJuGgVB\nR+V3iB5f7hEpO6hh9ofSKqbZahSjLn7wNaNL5uYkkSWAilJDBzjnSJJEZJ1apBvXf+83UP0+F773\nPbAB6zx55bAB0iyj0RbvSd+wGO1JTeDsa9+kbUucDlQYbNCc+vBTVDXgw1MnMEbMoV947ywz66vs\nW7jL3X37ZamVGkJiCMZgTCJsMAOEKC33iiomUKICLsiGpygcRenIq4K8KsltSTfPWe8OyEsJmlnv\n9LhWlfzLHVs4lxrZvqsAiRg2G2vRlRepqNAPhu+1EALWlmRG5LXCfoh+lIjPV+XCF+wv5B9jbJa2\nJYyk4VbmlPvbYKUN1xIYj2i8YiQNX/PQD9DU8LiCA0qMgHcij9XxcQ8EQOMycHM79FoQ6sSPem6q\nGNWTv8sImwhsChcMThlCKuBRk5GTmEK+VimEVGFJ8GiWmGNjYpKdh5bYdhiOXBarLYDDTbCF2K7U\n748NRNXZ+4Wz3UD6D0v/O1xdjM/fDrMLsL/1gOdefJuP9QkuP3kcvzcTJC3PkYncI7UpEZacA18o\nKtcgp0E1qcmmPbMGGnbUmtqioD0OTMOAJjlNfKk22TrWm9cazqsljZvv/Rd1E/6fdzxY3qAzKBhr\njQ/nhHrVl2QZWZbQaGT0+gPs6gqeGSYmJsQ+I2vQbreHzFelFM00QY0pgguURYWrPN4FXKjIc4Zs\no7zfZ2amYHx8jHarRbPZRCtNEhu5WWIovCYvCrxbxTqPD9BoZNLcUAaTNdBOAlI0KrK/6oayNJ61\nQRonQjoWVYr30dzdoIMiTQCBZAgqoIIbRgbp4X4gSveUEnP4yLAaWqDEUK2axQUja5D653UTQZuY\nMO+lOTSSSNYM3ZjiW1nOfPQZWaPBW6+9hEmFzZ0YHSWdDu/EpzEET1XkdDob9LsdqqKQZEtlsAjb\nqygK+r0BNi8wLqBLiy4DzWCY9Altq0idwyQBl0oDPNEJVltSJcxrE9M0CVA6C0qRJgmdjQ6DQR/q\nppVJSNKEgKasqmHCYwiOgEerjCTRBBdopQn7t07yyZ3lf5w3/T9oBGT9mCMT+QosTQoj66zi070n\n+PMjG7iW5tVvvM7hJ2+RrpUEo+hva3Fu8iQ/5uv8aPBr3P9gN1xV8Gpg5luLPLv7TV7mpxz3n7I9\nX8R4x1pjigvpUX4+/xw/++bXuN04iC9SWDdwdQu4Wja4hMxjEd3qTkF3glFTpJ7busAa5A24sE+Y\nYquKjWtbOXvsVT7c9zSNsZwQNL3lMfy1lsjZP2TUt1aMvPUfBliKwSBDZcUSoyZ53UCoWVfEg9T2\nREpQ50j+0srTZEArDKALvW4MRd401itgA1QfWgxIkwrSsIn8/ItwkIqv9+Wb038FfP09Rm9g8S7Q\najUIQZN7hVMGZRIwKWgT/b9STp9+DoIjt++wtLRENciRDoehrCzOWpwrKYKS9A+tKPOc1fUNGpmm\n3WyRKYNzVgyRradyFeVKSbefs76+zu7dO9m5Y56ZyQnEpFm60iBdhlBTkVX9ZxP187XHFggABcMi\nox4BskZm9PLsEZtLKZF81HJBiD5ftbZvyLpRw4InRbEGuEDQIR2ZXvHsVBhu0OTZGvF2kRRH6c5L\n11YRj4knuJKq6FL0Nwi2INhSYqGdLNZ8bVjt616KFFrtAe9RKmBcIEnEx805T7AOu9IhlNfAD0h0\nIKSRfeCUwDtKbSrodfGOVGpk47zSzfn09jLvXVvk2uL6l0DS+LeNzZSrzUkvtS9InfTSYGTYDlIc\nd0JvDh4auKNZ7G3nk/HjfLb1GGe+dZ65Zcc334JOBxoNmHsK+E24fnQXH3OCW53HsHdSqSUN4Gng\nm4Hpry9wZuc7PGvOcoxLbGURUNxTO7kw8wTvnH6Oj2efYT2bi8SuDBa3M/K3CohX2DZgO6TjMN0Q\nLKyuSUOWcpBkM1dLBh8iB20AE6CnYVaJPn8f4tNVM9D68eF3Erg5AwvjYB3sMnAC0q/lPHHyPL/F\n9/l2+e85evMqk7c2MD0oZxLWD0xyd8c2Vl+bYDbvcPINOHYXkiaYU1D9luKTw0c4yxmurR+hupJJ\ns6nr4++njNfcYZTMZfmiylfGx1p8/YVTbJ9pMJ6M0z2yl9uLD+hWJfPbptizewuTY5l4qURmldZy\nVakyJH7UAKg7tCEC1iootE4Ew/ayGdFm9PcdhvNUQOuAszXyZMTPo5HQZmyY4GudpeE1OI0tosGw\nUSSI1Dw1iSQ2xq7vSHpXNysEoLPWDmUfIrM3kuyoIzhmY/JjZKKCJETipbmgdRimjllrxcCeeGMQ\n8KveWJhUzOkv/le/gxtU4hFWBQrnsCbgEoUxCc2xFBqWxGhso6Ic5JRlDA8JgcoqpjQokzDRHCNo\nQ2U9Z1/6GvML93mwfy9BDGBwKvDMW+/w8Xd/Pb6+zCV1Oi8aKmdBOYK3VGVFVVUUVUXflgyKgsEg\npzsY0OkNGFQVeeno9Pqsdjr0y4oftBqUzlJWJcaYGHWvKXpO7nWQzRzeP1rztEenEgIjzAVHI2vg\ng2ZQWsrqyzyv/02jBkPqZEcYzfmRBVbMwINJICPurCX4IVTAOMxkcDw2KZ6B5skOM1uWaaXChh6U\nbVaW5ig+GhdflHMGPp2G1bo7XTLaLPwiSPMfOt9NzbWaqZsTg8AMK8xyX+2gt32MxrENHj8PD5dk\nNp8BTk1C9jiUe1Pu6R1xa5dyeeog+1+4Q/Nyyasajt+VV5g7AmYNZq7I7ArylzndgBkDF/tSOlrA\nfsTb/68Xoqc8cPM+/MbPYPyU5+DxW+yfucHkziXWtu4Un+O5Bpgd8veRBxhUUKnIqjOsDWa53d7D\nvS3b2P+VBxx+F175TI7fBp6fhomnwR2H6xzgfthBuZaNgjVDfX83Nz++XN4v/6mjX1Q8WOkwPzuG\nMTJnyppfoROD1oYsSynLirwoGfT6NBsNksSQJgnt1hhVVeKCIy/l/dpuZOgx6LguDpkDnfV4Zyly\nKIuKXrfD2qDLzNwss9MzTPmASy0NbTDKkySKJMnifOtYXV3F+8DE5ATtVps0SRD7jmiWHyqU8uLx\nGOdYY2KiIyr+TGEU4D2usgTlSIlSeoVYBmgBo0TdVnsJxzkzSOOcIGBaUDFVOEoeZR8SNyjBo6PM\nfpiEHptM/OLeJASC8zjrsVZS3p0LFMHzl7/5a8zv2E6j2RgmMw/3E7H57ZylKksGgx7FYIC3dbND\nglKIjbDgvGADWkNRQmFJnKKpUlpe0XCQlpLgXHhhWnulhPMaL6veowAkSqOMwVWBIi+wRSWyUGNo\nNBtok1Ba8X9WUVnjEU9RHWWjSZqQJBVHt89y8d4K9gstra8ZwfX6fwNYgmoOLgkby46P8Z59nrVD\n01xqHeXQ/FVm5lexGBaZ5wJPcH71Ge6c3wc/S2AW0m90eWH3G3yP/5tvr/01Wz5dpnlNkHy3U3Py\nxKc8tusG7XafPz3z29x/sA/uabEmWZ1BFtmKUQr9OjL512BPXVcsUsMGwA7ojMEn22BJwRVgDxRb\nJinGJmUarNXg14FbATYiuKQUkmiUSweE1XgOy4wCtfqM5KGKUfBKjIUfRrsjfw/xllqb0GWcDTUB\nczC+FfY9iA0UpFW/rQFsg2oaNphgULYIuYrL+hrg++UYvwK+/h6jrBxr6zk7mg2USWinhsprUp1I\nxK+B4CuWVh4SVMazZ57n3sJDiqpirarQzmGGBsEGjxj86iH1NtDtrrOSBuYnx2hmKf1BgRCNZSL2\nIeB7fe5WFf28T1kUVHt2MDs5RTu0aJKRJQqDRN4bE5lbiPYeGG6cNrO/apnM5rEZAFM10qw3fT+a\n4AQlscVDlE2FyIKql0VSBEM0vqw94ZWqIeeRF4CqWWOxUNXHVcYQouyxNr5PIpVbK4enRNmcNAQs\nsRvk/NAYsx5OBXQNzAWE+o0AX7KZVWgXILFkaQNvHb31DpkWZl6iIBglUoIIfo3SLkcfULJBe+Pi\nPd669IC7K13cF7pI/eccdfe93oB4Rr4gPQTwqv1V6pEBk6IJuZ/BJXh4YSdntz3L7uw2U6+s8cTU\nVSaehYlaaXgK7p7exo9aX+ct/wJ3bu8hXNBSfPYCp6VIvrzrJ/y2+j6v+R+y69MV1F2hj7vHNFcP\n7mV3eofmYzlvvfoq/aVJYRdsTEE+S+Q5A3tA7YM5DfsjK2EHsvFIkbq+DNxWcKMJ13dAfxLZzqwD\nOyHZA/uUuHbW8suDwHQpCOxGQ55/EekYfZTAg0TkmScCM08+5MXsZ/yW/wHP/PwC+k+CdPw70Jy3\nNJ9bYez3+nx27CDlv7jD9hfWaTyQUygPJ3yw/XH+Sv86P7Uvc/PSY/CJliK9njNip9UMr80dqC/m\nOHJoH4cf2yO+gzZlemKMhoGgE8aaKeOtFK0taZLJu00Z0qBIfImLTYh6ftB6tFAXv8SazSPzVvCO\nYETS7JwT3xAtHltVCCQaYrQrnoBOEzIlVC/vZSOj49xSOUXuKmxRiLxRGZwPOK9I0xRUTJ0KSOy6\n1iSJjiEpcr7GGJyLMvDaksVHoZnS+OihUnfvgoqbD+9ri8ohi1bsXEad9HqDUZsa+yzgS4+vJDLe\n24CuPJUOeBNQqUbhMVlCCJpGotBlkE57gLJ0XHvpBYJ1NH2gKF18XcXd3XsJSUqBwxk49Q0E5ZQA\nACAASURBVN77nHr3ffbeu88P/8f/TmScAbyTZkXlAaPwzmMri60ctvJUNlBUln5R0u2XdLsVg4Gj\nLDzrnR5rnQ79ImdgK0rnCApcojFpgmlkVKWj3gJa73HWDYHFJAYMkCZ47XF4skS6JiZTjGVtytXq\nl8zYfvOorzsgc0htgl7TupaQObQF3sRGsgJ2QqsBJxS8Auo1x+5nr3Ky8SFH1SVmWAVgOczx+fbD\nnD/0Fe7uOQiT8e/z7CSUu5Ga0kM2KDU79W/6XWxeD2xKIS6QvcgtuJXv47P249w89A7T39xgfh1+\n903oL0B7GswZ0N+Fu1+Z4yqHeIG3eZr3eUxfY3BK0/pDmNgP41dAJcBvQvhf4KUr8qoDxKLm5H5g\nHNIP4LaXHsiTvw33/0L6ETWP7i6wdh8m7kJzI2dqZo3xrMdaG6kN+5Tc3krBuoLFhigeF4Hbiodr\n2/h09jjnJ0+y5durjG8UPPdjOLMAqgnmJPC78Pmx/XzIKa51DlNebwnS1w3xjDf7edW/61+W9cxo\nWOe5u7TB8QPzNDJZv4jczlGVJcakaK1ptZo4HyiKgl6vR5qlGJORGMPY2JhI9WwHWzmChlYjQ421\nyAclVjms0hSVGza+u86yuNRhctBhe6/H/PQscxNTtBsNmqnBBQXKE4JGGY2tLEsrqxSVZXZOicm7\nViiTopMAw2RgQ/Dig1knH2qhgQngohTBiTeuw1IqIBEWrkjoH90nbG5ah/obgSGz2itHcLVvlx42\n1l20MlFaR69ekZj7+v7W4FfcwzhrKQcVZWlFRon4nfkdc9itczS1JkkMSWRb4euESYWrPM5WOCs+\nZ4k2eCwajdEJKhQEHzBGwMpQVHjrSdA0TUIWDCYoUsCkBmMClfJob/FWo4wXpltUyyjk9RMlftH9\nvuzbjBagQxtDagyBgAni0RYIOO+kXqNwrsT7CmPExmC8kbJ1os399c1Orl+0MaTR8qifxx1YSeDc\nGHjIe+N8+sxpLj7xJFt2LzBhOgQUK4M51q9uwX2UwbtKhBT/BRzZf5GXeYPvrv6QHT9YRP0A+AQY\ngDnk2fqNNb79z35Cf3+bu3O7WD61g/LTJnymYH0KfESCqFPf631IHdRSJ9SuMvL5jTUt78ONebjT\nFlRpilH/vrb37QG+tkRxjPxMSkbhLLWXV52iGBUvtBCAayyeX51q3GJoI0A5zJLpr7a573ZyPXmM\nE09/RuPFwG/cg+lleaUjwMHjwDNwbetebrGP9bUtAt5tAKVl1NSox5d3HfMr4OvvOda6OVPTDdpt\ng1IJjTRBJZBoobXiLWvLi9y+/4DTxw/x5LEnWFxcpNftUJWVaMeNxhiwJFRVQRqUaOiVoiwdG50e\n080GjVYD08kpnTCjrPcoF2TxHUpYWyfRgayp0CpQBYcNLZre0zCpgHEqiQSr2NXRNfdLRs3+Ghne\nq9EP60kbGFoAq/rJipCEoaRR6lL9fC1SQlUnNhITVOquTTz2kNY1ehUIUdJSF9QwYpHFtMoUE6Uv\nniR4mhnoVGOsQVWSvhasxldC5XbRU60um7XCUIWA+EbK9bvYXQohoIyi0WySNRIGnV5kdsh1GA3B\nRHQ+hNhBU3gl/m2dQcWVhXW+f+46d1d6v4TLw3rUE2idFKIYMQEUo2lIIbSnWCzujsEFBW9qzm87\nTeNIQT8d47ln3uHIU58z1e8yaGXcSPbxLqf5Ca9y9v7z5D+bhI+RAvkV4LTjqd3neI0f8p31v2Dn\nD1bxfwXVdXk7NZ9wPP7t67S/+QP6Y23uHdzBZ089Q/hMizQnn0Yq21Ywe2G3gaeAZ4ATjtbeAdls\niUodrp9QrjQoLrckBea8gvPjsLoXwhqonbBfwwvAy9B+cZ3d+69zqHmFLSyhCKwzxY3j+7l+8hAb\nB+YI00aArd2gD3oObP2cZzjH6Vufov4v2Phj+PltqV97FZy8DuOtnG1zy/zZtu8y9pUe06xRkXKX\nnXzEKX5ePMeHnz9NeCMTQ+k7nlEcfZdHGV5f7AL42svPkyZtbFViXcHdOwusrfRIxtosPlzjzv0F\n2vu20DQAddS7xKXXyYxJzXillj0yBOnrOU0pE02KPUmaShe8nvcis8p6Fz2iQJGg0XjlMUmg2RxD\neUPf99GVIq9yvArkLgafqEqkfcpQVLFGaEnsFYmGxbsRO63eBAgQJiwl7z1pEk3j4zw7AvW0MMq8\nsFlDcGgliV/WWewQJGPTcaOcMIiHlUkNzlZy7OCprIfKC3mnUGjl0UaAQN1ISZMWwTnw0GhmeEpC\n4qFy2GBxhCE/p7KWIgk4k3Du5eeYKXLO/bPfI0kE8DMqEKyVNDLElyWEEm8tVekpS5GQDgYVnfWc\ntY0+g4Gl1ytY63RZ73fF7N5W5K4SRq8OqCTBVSV5UYKD4AOltUPj5VoOCsRAF0UgERlq3BQpHWg0\nUoovrWz9P3XUc0W16WM913eR3YFGugQtYB+orfCYgqfB/FrF0ZfP8y3+kq/5NzjW+ZyZXICvteYM\nF8eP8HrrZf7dy9/mij+B20hhRcHFafCzyPy1eQOR8LeHcdSSktqUfwD3WnAZ1s7t4J3nnmNPepuJ\n73bYPfOQ5lcrphYhTEF1wrDw4gw/Nl9nngV+ff2H7H33oWy+OsA2KF4x8LvQYYLBVMqu31nicAjs\n+xjKAsZ2g3oN2ApPHoEnHyLyzmkYG4f2ihwKohp+TD5xjYSCBqVP5Qe/ETDbK1QzECqFW0rgppbm\nyafAJei9O8N782fYOX6X1rEBp/+bj5j8aodkwRNa0D/Y4PbRnfxF+zVe969w+8Y++FjBLaBb358+\nI2+vL17IyT/meLDSpV9Y2s2GNAe0xlorhuiSfygyxkaDyjoGg0Fk6kwRPMKSbTTJsxxblFSVpZk1\naDUa4GDgSlQCWqfklSWvKjDSSF1eWaHs5Qw6PXrTPWYmJpiZnKDZyKL/obCmdKIpioK19Q4ehfeK\nLEtkrY9CJ6nUDh82+XLFqK24F9AxcT0kkCapNDcSPVyu+2h+HwLRl3Lk+TtkfUFkUNVrfAGXEhNZ\nVSEMGWf1h6GMf1ND3Fk3XMdX1lGWFVVZUFVy3733jI2NMT01RavZkvutIpCnI8AXPN5WUvtMAlmD\nCkXpwRsJHgtKJPXBS2MlH+TkvT6Z86Q6YUwb2jaQBosyGhekKZ9pg/Xig4wLJEpjY7PJKGFsV9Yx\nyHv0NrrgHKmWporWibxrQmTYGfHtDHEPZLQmzXQ0vhfblsRotk+2Wdjo8cXup9fr/s02IBmEFO7v\ngqoNq4pwRWH3jfFgxwEejCHvhVVGwR23gZcgOdDlmLrI0+59try/jPo3cP1HcLYnRz98F55Zh8as\n5+k//ICz2bO8deAFyj07xcPrRgv8IUhnIMsEX2rEUxwQe7/zUK0ja/8xpHGzjtSLvpyYnYSVKVhp\nMZIhOqJ+n1EwVF0XaxZ07eFV16qcETOuNpmfQMyOp+PHNiTRVgWkwboW4I6iutTmyuNHOTt1hgOP\n3eDUP71I1nJ8/UK8np3gvwEPvzPBO+arfOhOsXZ3Bq4raY6UtQS1tnWpV2VfzvEr4OvvOSobWFnN\nyZIWKvNkSUJqDIlWJCgIlnzQ5c79+zx9/CiHDx3kwqVLPFh4ALqPdaPJMIQgnWsv6dNZohgUjrKw\n9Ac5Y60GJgFfWZRKpZMfPNZZAYcIrG10WVteY7rdJjOKgXe4zGKzJo20gUeRIHG+aFB+lEhGEKpy\nbWis6mTGKOMZolw1qPUIQPXo13UyJAigFFRt+F5r+OW1HjEeG7K82LTxUiPPgQgsKR2jk4NG+SCm\n+x52/uQdOt84RVMUOZiJlES1MEEo3Cp4KBBGBBCTlEeSTDZdXkTvXJRmpjqhzC1Fd0DwDoyYUmoj\nzGetQLCvgA2ynV5aH/DRrWU+uPGQyw/WyasvNnDwjzM2swE0MsHCI5r12rCRDvAQ3BxcnJSOSiPj\n/e5XefjEPB+Nn2SPucXERJeCBvfYyWeDx7l5+xC9H0/D6whTagbYA5OHlznFRzybv8u2H6/j/xV8\n/hZc7sirnrwIu1dh38wDnn31LB80nuLSoVO43ZmYYi63Zaejdwjo9QLwCox9fY19u69wtH2JHdyn\nQU6HSW6zh4tHn+TekT1UW1pyWefasJRJgsozwDdg7lv3+er2N3mJn3GK82y3CxgfWEpnuGCe4Od7\nn+OnU69wKzkidagFaotnJ/d4jOuoj6F4F966B2eRknolQPYZnHoPtr22RGNryR+rf0KPcSwJi24r\n9x7sZfnyPP7NFN5GQMJOF2ntxwTKobHLF3vMTE3y4plnSJMGReFZ26i4em2BvExJWw3WeoF7C+ts\nn5um3ZB50+MJQaTgEGRRrGSRq+pFtxEmZ/CeoLUYqfvaDzB2oxEgRKQbkhCbaGFTieLDRCmHbHIa\njYAK4CuHKhwhdTijsKVIIMuyJGSJMKeUzKXWC2tWxb63D3bEhqU2pxfAy0RJh/dism5i7FbN2lJx\n8T/s8Mfa4b0dykiGGzhnqf2Hra3kfHTANAwmOKpQEvCSGOklIKAsHDoEktQI09c5aez4KLH0DkkL\nC1QErJHrs4ANnsIFbKJRqcE0M37+X36PRiLOyaGy0UdGno82VGVJCBXeOgb9nH6/YKPfpzso6Q0q\n+rmj081Z3+ix1u/SL3MGVUnpLVaHYTNEV0h9iYRdHWpg8NEUsaEtgEcY20qAycQkaBTOOta6X+TO\n+z/W2Oz3ZOLnJTIR1gzfCWSCnoUpI9Sn04FdX7nGN/kr/knxb3n60se03yhFi6dg/uAae168y+yx\nFXxDM3hqnFt3DsE1Lezg1Vmku77OSL7yt8lOa1DfIX3xDXn+gz3ScHkLPp59iuaRnH7a5szz77H/\n+C1aRU6ZZtyd3MHZ5DQax++ufp/d33+I/2NY+UhCKWcmYOIVR/XPFb3jbSaWu/jjCr0vkF2DrA7O\nqvc1j4NvQb4rpflzy9T5wHNn4ZNczvZ4CyZOgDupWJyZ4x67WOvM0H5ujfn5+2wbf0DLDKh8ysPB\nNhaWdrDx0SxhRwIfAT+F21sO8OfP/hbdyQmu7DvE0T2XmS42qIzhZraHjzjFT3mJD659leLH45KI\ndj2Aq5sim/0e+Y/c3y/3WO0OeLg+YOv0OMAmv0Rh48j8GaJBurDEirygLEVaTZS3NZsNqkHJoCoo\nioLUZGRpg+ANZVmJx6RWeER6bZUh9wUbvS5lXtDZ6PI7heP6kYO0pqdoNxu0mhmJFyaVNglVZVnf\n6ILSjI+P08gapGkSZZoxQTiAwtdta1GCyAVJ80QJu0urRPy/lFiByD5Bb/LnjSNs/ijHqlURWmvx\neFQQhnuZkQqFOP/W+w81bKbLuVTR8D/PC2xVopXCWYsxhqmJCVqtlvhuajUEzuSeB7yTCCSjlaT2\nOoND5vPaaiA4P2RMF0VOVZWkxjCOZsprxr1jHC0AVQjYIOta7YQpnjaaDGxOEYKYCUdAMdGaqiwp\n+zmuLAUMq6dIpYaNMoXsLUKQBrvWKY0sIUtTQvAURSW2C14x00hpJgn96osMRNdzbS0bNMhcDVDB\n0nboTsMNIySsKYS9WpOHlxHmamwKTM5usIP77Ogskn3qcO/DGz0RLgCsWJj/HA58BFvvrLPrwB3m\nJpdZm9kpGJYJMD0PuxG27Bzx+0gpeAjczuDWFlibANvedM619+0aI5CqNoWHEbOtZh/3edQkfrN1\nSF1/KkbNoLo2ziHd7jkJe5nW8u1mfKlBPJVbwMdw+9h+fvLVrzPR7lK9mHHo4BVm7nYwBeRbNbd2\n7eLs7Bn+Pd/ig8VnyM+NiVfmoodQs89qtnQ9vpzz+6+Ar3/AWF3PaTZzshbkFsbH22SNJko5vK0o\nBhtcu3mNhZVT7NqyjX27d3P50iXWWaFwFRaPCwEfPBphGlUeGkZJQpZ3dPsFU+OTpInBKBvRm6j7\njot16zyDomJ5eY2t0zOMtVpgEqwGEElGg0AaUlJjePZ/+9e894e/j1ZxMR+lfUP2VQSvAiJpHJKL\nh7VnVNxEP/8LN0aNPnkEI0OPwDY2J0fG7hD+kWMDw/Wz0rH0KYXyTjxwtOPp//5fknY6PJw19J89\nCMFhUk060YjySFDKoZHNWOUCwdYAmPjP1ETcusijY9KLgSQVk1xbVCgCNogxtvEidQyiaRpKn17/\n7D5/+dFtFjYGlPbLOWn8w4bn0ck0YRPvEJn8a1nhLVjaD++NQwnVwzbXrh7j1pFDmPmSpD3AVgl+\noY29lhA+1fAeI0PJvcAczI6tsIdb7FxZIDnr2XgbftyRhwA8WILvnYMtZ+HI6evsHr9Da+ca3S3b\npAbpJrgZmGqJHOclmPzOMi/sfp2X9es8wzn2c5M2PVaZ5XMO8/Ppr/Kj09/go9ZpyqINGxp8Jhu8\np2DqlSVenH+d3+OP+bX115n/cBl9zaMcuB2aM6c/Zt+2WzSncn7wjSaLy3vhFqhmoE2fSTZgBQZr\ncMeN7ugAuBPg1CI0O5Z26LLstvDm1VdxDzL8qibc0JJe8wmSLLncR/LKFhHQsd7YfPG7+k8ePcT8\nti0yL5iUymv6gwpFAqaF1+PkeUJpGyidoXGYkGBIsb5CqUfBPaXE9N6oVMAvDcGLgbpMjTpi4+GR\ndb1SI5m4KOLUcJEfhmmLBmNSCBneWbxR2KLAa8UgH1AUJRaHN4pMN/CeKH8HExkEergtkU64dwFj\nYrNCyWwfvHTpa/P7Wl4iEhJho9lqZIxfS0tigoqwmvSIweuthIi44PA4SEVTaYtAaR3aKKyNmxYX\nSEoJGjFJoCgq6WQrg6kgeENhLYV3DLyjJFApsVYpFGAMaZqQNFIBECuL0QG8QylIjJYACesJVUlp\nS4qiJO9XdPt9Ot0OaxsDurllvVOw1hmw1unRdwVlVWG9k6Wmr31TotkbGpOk2OgTRhjJ/+v7qKjZ\nwdLcSrVI7OtNVac3YJDXgP4v+6hnpF/0g9KMIrMifWlWw2PQPNHlxMSHvOJf5/TnH9D8I4//U7h1\nU561dx+MXS95/g/e5+ETW7gydYiHT+xg8NgEfKphtfZCqTchdV35m1hf9fnU8pNoztKbhgvScMkb\nk7xlX+HeiZ18YJ5i1/Q9JtmgT5u77EIR+H33r9h/8Q76z+Dzfwc/stI+2P8AvtGD+bnAvrfvCVvB\nILqTwwjT9izy4CngDLjf0Hy+fz+Hx27RXig4OQZPfB6v4iiYb0HnGynnGk/xGceYnl3l+bm3OaXP\nc5BrTNBhoFvcm9jJ+fGneGf381zd8oR05z4B/jzhRu8oy89t5fy2p9ijbzHR6mBJechWLvePsHBh\nD+6tBryB1NKNUu4Lq4wYAZsbWb+cw/vAp9fu88S+rSKFTpIRwKINlbLiO+Ut3os83DlHp9Ol9f+w\n92ZBkl3nnd/vLPfezKzMWnvfVzT2nQCIjRSJ4SZpRpY1lqyZmImYebD95LAjHB4/+U1P4wg/Oxxh\nW+EIO8YxDI9FiRIp7iAIEls3utHoBrrRjd6ru6pryfXeexY/fOdWFTjyyBIpCaBwIipQjcrK5Vbm\n+c73//5Lu4UtMpRSdNodfBmoakc1qfB1IM9atIpcWKc+kGcZJrOMJhMmSTECUNY1R1cX+ee37lJe\nuMR//eKzzM/PMt2dolPkZFkmAI+xVM6xutbHBeh1oaMUmTVE1XgaqeQliQyVVfJUFI0iKVhwY/4t\nTC2zxZS+UVNsQGcAKGUwiY3cvF8ak3uVWFA61S8JZfH4dL1AGLikobJO/UmIAec8tfOUdU3tRCkz\nM92j2+1uJiIDxuiNBGYJwVJkmcEoqENIXKSYQEKDn0wox6WAlJOSWHvaeYtuYWmNSzqVpwiQK4NW\nAe9lMOWA6CLBeTJjyKLFBo/KNM57CJGymjAaDMQoH9BWklJDGpYZrfBR43Ey4EnX1hhNZgvyrC1D\nvtFAnq/ydDNFLzcfc+ALNvfbBvxKtHpKYACTBbg5B4uzoMyWtiBCGAs7bH8GFozyZNRkvoYhlOub\nvomQLPQTyViNAy1KCl1KaciAQxmcAB4C7gMOAdMpyWFFy159HmG8ni7gw/2IvrdhbK2zyWBuWMyN\nZU8DaFVbvn5eQvjzvaFFalcHKQa7gMOQzYuE/agSL+C9CBFAIbjaLQT4Ogfuey1Otp+mejjjRms3\nDx88ze4DN8miY133eFfdx+s8wY9Xnqf/8nb4qYKzpP39Dh89+3/c30u/2PoU+PoFVgTurg6ZQWNC\nlFmJLpjN2wTnmYxGLN28ys9Ovc2vf+45Dh7YzcyUZTFN6ieupgo1XpAToo94Ij6ljoU64Jx8iIoi\nYzTxYmIYA0SNQaiwIURqH+iPx6z2+8zPTycgJ5nzugqnJCFm99sX2XvyNN0/+B/4zr/6L9HREFKq\nmWy8kdgUPWRDb4yZN5hbG1egAci2srR0ujbNJtGASg01Wm1hljV06MbMjw2vgC3Y2Qb1OiLplxqF\nxZHHkiv/03/Ljj/8I0bP3IsOlUxKtEJZ6HZztApkBvpqjDaaybim9gI4NlHGQsFGZJNpuqQzRTbV\nwdiMyXgMPjEtAIwcCCIQYmBtXHH5zoA/eutDzl5f+Xvk4fXLWM0Gq9lsQsbIITs1MLf3w2tduK3g\nvMYdyHELOWXRlRq0ilChLwGXIyzVoK3EF7cg1xVtJuRlCSuwKJjRxru2D4zX5CGzoWOqO6JolQxy\n0g5pwc7BfgUPQ/HCkM8ceIV/xL/jy+vf5vCpmzJRX4d9u1a49zMXOXr8Eu1izOT+FmdufQauK3mg\ng6AfqTmy6zxfUN/lpeXvs+f/WSL+EQzfh+ihszcw/cUhL/7Oq/SP9LjSPsD3Ht6Gu9UhjhUjOqwz\nDXPQmoY9Gm4FuZIt4IABtsOkZxipKca+Q/VGC/7cyHO4na7XTQ+jfvrHdYTKPWDT4+vjDdwaY3j8\n0fuYm+sBnsIouu2C3TvmuXV3hehHBNcib82gjEUpQ2Ysuk6x6nhMYmiJglqjjUZnyQi+2c9UxHmX\nAjTYkA5u7F8IYzequMFEBWkMmn3U1z6BWJqiaGMX2qyv96mcI/MBlWpGFRyqrtHW0uoPiFmG702h\nVPL4QP7bsIQlpVGeK8qgTcQpj1Kd1Jykw3MIaK3EU4ZkwKwUWmlcXYtto9iZUXu3Id8U2bcm+Fr8\nEvEEFYjWQMzIbU6oPG5S0Vod8ty/+TpvffElVncsYHwgeBkS6BgINdKoRBiHSKUVtYrUSibvJrfY\nVk5eFJioyNFo78WHRgNImmQz7KnqiklVMhhNGI4q1tb7rA/6Imsclqz0S4YTx6iuGbtKmg+FGOiD\nSG207PetdgeUZq10VC6FnBhDTIEB2hqRA6HIUhKZQlI/Gzbz6nCE+3vr7/UfWk0iLmz6OmZAISnU\n88AemJlf45i6wP3VWVo/CpR/Cn/2npzNFfDge/DSn0Jx1PPQfac5oi/ys20Dxru74vdlc3DFlsdQ\nWx432/J8Ggl3w0JopI5DNrxnFg/C6x2oFH6pxcX3HuLS/ceZ2bFCbitcsMRW5KtT32SHWyK7GImn\n4Q0nvFkQ3+PDS7D9TRhegKXrwuifOwSdx2HyNpw5DbejkBzuPwcdF9i97Q4/2P8MT/2TN+k9MCK/\nJO+p+rDh7uNTfHf+c3w//hp32MFXzZ/w1fCnPLP+Mw5eWZTC1oM7B3s8PH2aHdki33jOcWHwEHHZ\nwOsQVzTrF7dx6p5tnNrzFKY7IXhFXOqInOhdpJ6djnC7Qgpr0xgN2WTS/WpG3f9V1qWbK9xdH7Fz\nYWaTFZoAc2MMqmiifGXvc85R9WvqumJmdhqrc7z3FK0WnarGVQ5X1eCh1epgjSZ4TyRi8wylJDk2\nxIgLjhAjLxeW/2Wux/813YPr11kfDpmfnWG216M71SZPzC6lFL6siGoAQAiedruFUiQmNKgo6Y1K\nNSnuIFULlDaw4f8YN8Yvm9NxlWQUyRez6RuUsM4EOVOJ5SV1qWHVKt1Yhog9SohSkyWpMXkax4gP\nUgOqylHVTgYZ6fp0Ol16vZ6kIsYUPBJjSltuJJVB5Ok6p/Jjond474hRzO6HgwHr6+vivzWeoIOj\n2yrodHrkPkLlUaHGBE0eFNpDWXtMZnHJ71NF8JXDGiWp0NZibYZ3Djdx+KpOtUT6HVsUoBRVVePT\ncxZf0YYdpzBWEpiNyVLwjATtOFdRGM18p+DOqPyYyx3ho/vGVtlfkg4yBaHRHW4FkjRwGKpMrBhd\nwTrTjIoOcRd09sDB85uiwnlgxzyoXVDPWdaZZug7sn0Z4CngxUjr6QF77vmQI/lFZllDEVhjlovl\nUW5cOsj4wDTMKDFme28/+Eae2PhWDtgEeZthS1NXmtfX9DjNbZph/9ahP0iN6iFazINQLEiK+5OI\nT/EDE1p7RhQzA5SCctChXOxQvtuGN2WQ7VzB20uf4fqDB3i19xzz9g5WOwb1NIvlTq5dO0z1k44o\nPX4GXPWIk+RSej1jNmWOv7rg16fA1y+4qtpRlbL5VLVMnbW1IvnTBmtvcfKt15mf7rFjts307AxG\nK4JzKBfQUeQbHik+MUScjxKVbmDiI8rktLKCqCtksmLwIaQYdXkeznlGpWOl32c4HpFPFVhliFEO\nTSqCDpEr9x7ih7/3m1x97CGsqzA6IxqFjkbkPFFSGk1qNBppoFJaqNY/N82JRBqfm8b/qzlSRsQn\nQPwOGo6XLCW/LM2iaiYbW+43NAyLJCeMyVQeR6ZqCuXJVEDHwOo//QdoX7GJuot8yRpFu50L1dxq\nsn6JUYoxTdGExmFfKRJVW+4mb2dMdTtU44q6dOJ3oKXZVBi00qwOSl6/fJs3Li1x7uYqw/JXd6P4\nm1+NgXrjzbKVBVbB2l4424MrhRSiLtLfNCqVNWC9hiodzsMucBpKqGLOiA5VUcA8bOvB3BbG1zzQ\nmZFvyo5lRIfJuLUZEhaDxEceAO6H3cc/5Dl+zJf63+XwH98kfh1WTsJwDHML0H0WGauIRAAAIABJ\nREFUHvq98wyf+zbX7D4ufeY4w5Nz0j/sg87+ESda53mMt9jz+hLx38J734fXhlJqHrgAj6/C7PYB\nj+4+xWtTZzm9+zFu5QeIdzQ3/B4umcM889jrtJ4NPH0LWpfkEhwq4L57gKdgcfcOLqlD3Kl2QGmk\nEzsThZ46Tklr3EK6pWU2Qa+/zBj647HmZqd54L5jGAsqRDIDCzMdHnv4XvqTMVfvLtO2sHPXPAvb\nZ9HG43wgUzlRaKQbDNcmfj3SAFvN5Dp5H4a4yTjd4ptlouyP8ivye3KYh00wX2/8LjGgjHgxtrsd\nIorxaMJwMGKqM0WsBgQfqPtDnvzDrxOKgrf+898lKi2NVHpOTZ+hlDyBSJqoqyS5AJTW6DRZb8D9\nDfBeboAPELUBFTFWbTxf511iwyUvyaDSgVxLmm1MsnmlsR2LzQ29lbvkrmJ66Sa3d8+hU/Myv3gb\nh2J9fp5aySy7Mop73nufU/ffQ23EZywrhNVgABtA4dN1Ew+YoFJkvY9Udc24GjOuSvqDMatrI1bX\nBwxGI1b6I9ZGJf1JSVkFyhCYuFpev1ZYbdFRgMAsMfHwElsfa5+GGpGQuoimgRMvdnmPZEaAw4jI\nWEMI9Ifjv8f8l7/OkuRTWkA30mpN2MYy2+sl+ACuXReSUpVufRK49yYcvQw73G225cvkU+NNb2Jj\nwTXTd5DmqeCj4Soh/Xzr1D2wGbjSSDEtXN8LkynZIt+DsKfFyvbdUncy6H11GXUioqOHRMZvnisk\nLkOAlZ/AtwfCqVUVPHAWXlyGM6vwvSitRguYvA/P/wQWPr/K2t4Z/nDb7/PAF95hx/guAIvtBd7R\nD/Dj+Byn3CM8YN/ha+GbfOnyD5j9Zh9eRvqXadj+aJ8Xv/pT7MOefj7NyiPbWTq3Vzy/fgi8j7AH\nFgy+LebSrLHJILgWJTY53EAao2U+ygj4eNeGv61VO8+5K7dZmJn6iKS8AWsUmiy32MxS1zWTsqSq\nSsYjhzaKTlt+z9qMTqeDrx1jxrjKU07GGJtR5JnIxQnk1tBtFYyqitKVuCAeUP/z3LTgSsMhlfOM\nRmNGsxMW5mbptApahaXVEhOj0XiMDzW1n+BihzzLN1i5EYWPkrHTsJgBUMkOJQRcLSoVo7XYiKAJ\nCpSPRN3UPJOuRQMEbj1nyxA8hCheWkZsWJx31M7hgwz4Q5D93jm/AXzV3lNWFePJhNF4TO08QSny\nPKfbnaLVysmMMMxMqreSHpnYzAAxUpYVo8GAyXiMqx2+clTjktFwxKQq8SqSd1roIsdERZG3UJOK\noBUqgK48OiiyID2HUoYqRklo1jYxvxW5sfgsow6ealxTViVKKQqbSethLFneRqEJfoivJpgIWWL0\nRSVS2TzPyNOwqvI1IQrg53xFkWl2Tne4eHdA9bH/WDYM4AZYac6ZJXL2TJvrR5LeFaLx2wP9NtyB\nwfVZru7dz4XOYY4/8gFTny95YQS7b8LQwdF52PEZ4Hn4cOceLnGY5cWdgt/vAF4Uq5HP7PgJz6lX\neJAz7Ai3USpwW+3kTPEgr977DD+Ze57l9p6Ecym4totNwMshteLnU+mbsJStASAq3c5ueX2WTXCv\nOTnMA7uhPS+g1wugvliz44mb3L/rNMd4n10soojcnZ3n0r7DnDnyMDcOH6D+dlsYulctyyf3snxo\nD3q+QtuAG2Vww8q+/w4yTfqwhrDIpsVJM/D++J/9f9H1KfD1C64QRG+d5RmomgmTTbKvVugYce4C\nPzQZTz/9JNPTM0z3Wty85XB1vUHrFRmFpFbVEbKsYWEpamUxmej1ow6YoFHOUwcnCV2pC6prx/pg\nwmA0YbpyqCKKvjxC8B6jBTS7/PA9qOiTskUKl1CWLToaSTXEiIQGKXZaa5S2UkhUTP2VImiNDnIf\nDSMsbD3+R7XRMKjGr0YlwCvKzzvXrjH/zjmuf+WLGwCdQqQtOtSY6LEqkKlIhsNqSVXU0QtPSInp\nlm/OtCEmcMpLmksOerpDnlmsVSg1Jg480YMOKlGsAQzKQlZYerNTZEYzWU3mYCS6tVaUzvHa5bt8\n/c3LLK6NqZz/tOH5pazGALNkM9I3Iq1BH9wcrM7AWhdUW+jQ0UGsITYeLXeBDsSdUpuWYXUyy7Xp\nfdxeWGDv44vMfga+/Aq8PZF7f6QLc48Bj8Hl7n6us5fy1rTc1RCIY+h2JW7rEBxpfcAjnGTP2UXi\nN+Dyt+C7iUV2+Aa8tAwz03D84CUePHSG/XOXOHdwTmr3NGRzJbu4xUE+hDNw+wz8+XDT8WCxhoVz\n4k+w5x/dYO/UNbqdPsxFwkXN5UeO88auJ7h/71me/p3TLGh48Q3wQ8h2gn4GRl8tOLXtIU7yGNfu\n7IPLSGOzUiGmOf2f+xogrIdGxvLxL3w7t89z7z2HBEjCoKxnairn4P6d3L92mP6pAVOFYftsj9mp\nFqocCFCFxuQZ3oN8rp18/mPEKwGHGsNekVcYgg4bsm2FTJBpPKCcwyiVTGhJrK9m8kdKr5KERvHn\nkqYnzzPUtMZmmXiGjQIdpqidoyprbu/fh5/p4ssxKs9QOscFaUZCEMldDHFDcqK1JIlpMrwTZrA1\nutGViOSlkZQ0gL82BC9gmc0yQl0Ro8Ji5bVr8OkaxahS4IgkU4osUqTyWMPgyH5e/i/+Gf1OG11J\nUmVcH/PcH30DlOL//Jf/FK+EUfzb/8fXmV7vM+q1ef++42LYa0BnCmXk8bTKZDCE1KA61NS1IwZN\n5SoGozH90ZC1/pi1tSGDwZC76336k5p+WTN2gTr9HoisHVRqpAK5sWA0zgfqkZhLeyfA10YDG2Ni\nXIiHTa3Ea0cTMSrivUMVGcErRpPq59+in66/bDUfkzT7iohnXiKT/3vZi82Sk1Gquo2CKjYs88Cm\nbKS5QcNgbYx7KzYfofm53rh3WWNY3gWrC3DRiuVKE671JFQv5qyGWdbtDHEf6ENw/3tCqB0g/dXB\nHlytRDXTnBFeB44uChA2Tv9vgqhruAVmGfaEm/yJ+Rrf159nfkqAr7vM8wFHeP/mvezqXefx3ps8\nX/+Y2T/pw/8KJ0/DdS/K0WfegNak4tGdp3h//1FOzj7K0vGdsNvCu1EerK1ENtN0AUMStlVCaEx1\nltPXCh9lAn+82cB/WyvEyKWbKzx2fC9zRYG1DdtIkviiiuAFtLFW09FiPj+ZlAz6fVzt6HZ7wv+w\nlk5nCq0N4+GIalzKvm0zjFG4IEwfTaSTWSbW4l1Ncq3E2Axfe4aTMvUWgeADM9Ndup1CkoqtBhWQ\ne3GgPJ1WhzxvIxZl8sHTKdUXrZAAdRkEBO8FsEr1UsUA0SfPr6YX0SmBOPuodcmGrYjI6Y3RhChn\n7wi4OlC5esOkPoSA8xHnNw3tK+coq0q+6pqqdmhjmJ6dpdfrkVkLRELwOBfQJk+Dq0BwLrGzHZPx\niLIqBWDzkXJUUQ4nxAhFq8NUK5PQEhfwkwpVBzylJF36iJvUQmxIzJ2Jj9R4QstgkzdaA36FGHHO\nyeM5L6SGVIddlOejMGQ+EFzEKbBGQNQ6kbkLY8iNJdOakFI2y7ok+Jo8y9gz0yE3+hMAfMHm/tGk\nHDb7cgN8NeEnzcqR/XwIy7NwHcL7Oe889QA/1U9z+KFLPP777zK3DR4/C7ECewD4Alz/wjw/Ns9x\nMjzK+L1pmXbfB90vLfP8zu/zW/w7vjL4LvOnVzFXBBx1+y1PPnCKA7NXKHaUfPeFL7Fye6fgQ8tt\nGM8je2I7faVByUYdaRhsjb/XBCl0LWRC09SmRibZ1K0a6IHeBnssPAbqC579L1zkpd63eZEf8Rhv\nsb9/C+0it3uznLYP8crss3z76S9xlkdxowJ+hABgexShWxAaP7C7yGu4BvQrCNeRoUbD5m2M9v8i\nKeav1voU+PolrElZ0SoKMmUIqqa0hrXhkBjB1TWjssS5wFSny8E9O5id7jHVsgwGA2l4QhBQCGE6\neSCEVBhCIHqHySy5tYQYKHUg05qY4tjF/FBKSuUi41KKU0iAlayYYu81RgcpbFqKXEjsKp8O+TqZ\nLMaYmp8URx+axo7kZ6MUU7eWePZf/fe88q//gHJuNjHE4ubEfINyzEYxUEjzpJLL/MN/8K+xk5Ll\n4/uodsyjiGgVMEqJibBRZEmKo0JAm5jYwApFJpNebTG+FuYDQFTo6IjRoWPEmEBeGLrdXPxrlEJP\npJkLSXqpraXoZHR6LRSR8foQX1VoJQH3a5OaS3cG/OC9W5y5cfdTD6+/kVUj21ITHdxM45udewpi\nC2J7y+80qSjDdNvdcvulHK7C6rldnNn+ID8rnmLfs4vsXFnmyE44kmLleRD8V+Dar83xqnqad+v7\n8BcyKRArQDRbQlYmbOcOe+ub5BdrqjPw2npqWoBzEXZfh+fOQufWiN2HbjDP3U2zTgvaeHIqWn4C\nfRhX8sybNQHWnbycvKxoUWJ1DVmENzR37t/Bj+efZz6/i3/K8MDu92ifL9GTSD1vKO8t+MG2p/km\nX+Znk2coX5uRzus6bKCB3NpyXbfG1H/8fb1ApsbHjhxifm6WGDVBEjtAQbvTYmF+jt7UFIrIaH2d\nWC2QK4tVgeiSpCDtoY2fRAxe2FEhEhsPKGWksYgijzZaYzKJRne1HNJ1w6KKAZ3YPzEYfFAYnXy5\nItR1QCtP1PI8tTUUxojkzmYM10as99cZjcdEo7nw+RdARXRV4oX6lEhXegtY4PG+kcSD94ZoM/HF\nipGoNlleWhmiB2sN0ccE+IsnWZYXcntboHGE6DFKfEuMjljVwqkgIBGB2nmUlsGP4A1SGMrtMxjv\nCImdFozm9d/6sjh6TLVQXia+//Zf/qc8/60fcOmBE+gYJLkx02gdiUrArRBIks6aGD0heLwLOA/9\nYZ/1YZ+7q+usro8wgzGT/jqDqmbioKo9vrEC8E4SsWyODxHvZQLrY2SS5EXBC5tXGj29kXDcMOdi\nFPANLbIcF5yAg0pRhZrhpKJyH//Pzd/daqZSzYpADbVPye6KctxiiW0s2p3MH7vMoX3wxLqQVAEe\nVLB/L3AMbtrd3GE7Vb8DAyX9RWh8CdsIomP4KKOgRHbXrftdyeaApUROKavpftLAxS/B+hysp8z6\nGQuHFeW1Ltce2M87xX08eP9Zdr20zGPLMHcO1gLsLmD3EXjn/U2OGaRQ+lyAsaySimeAbQDzEHow\nVFMshwW+s/gSoZTrVq904IpFG8eOry1ymA/Yc3GF+CqcOgd/VCUXHQ/DD+GLL8P880OO7b3AvtY1\n3tk9Yjw3DYWCegnqMaz3kHrbDJgGyACpjxS/xsumMbVvZI6fjvqatbQ6ZHVYMj87TSofhCgqDKuF\n6euTv6A1OUVeQBTm1XA4wGhDlmWoKGBHkeXE3BMqT13XIi00hkSwRRlNO1q6oYNiwnhcE1HUIXlj\nBVE8DKsKPRoQCoMuLFQVWdRkRoKrxnFMCA7vAu2WJ89bWJvJCFvJUEPO74qoZHgupu9qQ9kBDZdL\nb9qcJDmk9x6b2Y2QFa0V0Rq8rwgxbKhIoo+E6Kmdo65r6rpG0tUF+PJeQC8fI2VVMxqXjMuK2gey\nPKc3PU1vepa8yFHJXoCknjHIIMoHqR8b/ZDS1BhKXxNKGagYmzHTbqNaGbrIpNcajmXgQwUxCtsq\nBcqgNM7H9ImQAb/3QWxvnLCvY1RUZUVVlyitmep1yRAmdlXXVOWYelKSOYPyAaskiTMYhYueqDTa\naooso8is7KBBwMYQHEYrWkVOu2XYOzvF+dt/i2/8X3g1jKkGbFFsDiAawNQgYNEQWIHJThlCvAXX\njx7j+0/8Gu1szOjFDo/cc47sWo2qIuOdliv7d/PD/AW+Fb7Mu5cexr+VwSqo33DcP3+GL8Tv8aU7\n32PXN5aIfwaT1A+0Djr2fvU2X/qH32W4c4rrO/by2iOz+LcLeN/CtS7iwTUlXyoHlQlBItZsSlBW\ntvxXI2yuGSTNZBZJq8qkqY41xNTDtHpwBHgU5p5a4qXpP+d34r/lhZuv0P1OLWf5GmaODDn23HV2\n33MLlUXWHpvmwxv3wYfAt4CzQfZ6QyLUBQQZXUcQwEU2lR6NEX9TQ3+116fA1y9hhRAYDEdMJ3qq\nSxN5FQKVm9CqCnzlePOnP2Hp8BGUz9mzbYbVuyuMa/EsCXFLlHyUiYXVhrKsGA5L2oXQgzMj0fPW\nG+qQpjBBYbQAVCbL8aYQH6vgRe64YSooLJq4wctSG5PWEBBBokqT8SgFCW0EQCOZtUQlUw8UKmrm\nT7+Nrh3dC+cYPvqQNI9epjXBCx2XNL1ptOuiX/coRJ702n/zn9FbvMWoZzCTvniwGIkH1tqgo0bi\n4y06yyFvobIWwRRUSsuEpR5ixkuoyQD8iOBrFKK3N8mDJYRA0coS8AV2WIvc0ShsZuh0p5jbvoC1\niqvnL8JkTDuLDMvIqx/c5tWLd/jgTp9++am3xd/sahrIZirfAFsFsmk36Y9NcWx09E3R7AErsDwj\n8r634J2jj/Dne2/Q3j3i87/zY3Y+dpvWzRoiDA8VXDmyh++Zz/Fd/0UuvH8f8aQWaeJ6YqFtKHwj\nFoeOATxE/1F5i0/PlAq0ixgCBi9POfVSbpyzTo9VM8vOPX22zcGhW/B+lN/fCxyYBvbAWmeWNWaY\n1G0YK3gf/A8K3u09jHvIcCvfxaMHT3Lw4GUKKtaZ5gOO8DpP8tO1z3L91cPwCqIZWqnZNLBvUlwc\nmyyITwbTCyCzlvtOHKfbmyeSiRdTkH1tXDnW+iNKJz5et++ssLR9gR0z4pmiLMkpK4AWoD7pBjFR\nEV3EarWR4heCMDq10ZBYQFppmTgk0FwG3ZIGKN2JsF99hLARIyv7q0IkkqIhJ7G/cvSMxViLNX2G\nasikLIXXEltUlaTTWl2TG4vVRgYXbHqUOefRyhKCeIuYFAgirOAkVDca30ge09vaai0MhXQZjNEC\n1gW9wbv0QaFiQEcwmUcnnw4fAj4E6iQl0UEMizHSOKgscv3+IzgXMCiUV3gvteDlr3yeTIm5cmZ1\nskYToFAnWaNIaYIwG4JjPK7Fz2vQZ23YZ219SH99wH918QaTuua/m+1QRpOyyUhsBNLhMjHvtAUV\nCXWV6mdMshOdxPJqA2QMNGmOqnmLpGm8XFujxBNtbTDakEZ+uv5DK/IR41/vpDe4Aat3Znlv7z2c\nzh5k/7O36H4w4QsG7luUj86eHZD/OvSfa3NKPcJ5f4L+7Z5MsdcAVyLThePIpMJueaxmv+unGzey\nbtgEvxqwq/m+kd+sIftmG9gGg8NwzcA5xcXHT/Dqvmc4vPsSL/wnrzC/MOTo2+lhdsrTOPC/w2Pr\nQrq1wKPArvtgagLVeRlB7NTwxE7gKVg91uWK2c/taifl6z34qZFteiBPTf12pKuH9BjAEoRbcHOy\nuXMHpPepb0O+DFNxSIcRxnopoTnIJ//DdG0KNoBIajaHIWM2Pb22Bp786jdGf5U1nFRcX1pn7855\nWsZs+MZqpTaGzcSIrx11WWNshtKaPM+ZTCaMhkOKovURc/w8z3G5S2doJwxHa5KhebIvzQ0xtnFO\n0tO9l/1KaXAKJnhwJWoyZnq6izF2Y/hc1TWqjtRVJZI552gVjlarQ24Tczg0HlwRqzUog7E6DcY3\nl0pekSr1PRsemDqFqSSGEumxfUx2Ao2c0TtcSKCXEzuCmAZNPkRJ/vUCjI3LknFZUtY1eVEwOzfH\n9PQMJrMydFcSOtKAcCjxtYwpHEUr8Q1zdU1V1pSVAx/IW21aeUHWKiC31DoyqUpUVWOyDB0hGGlf\nlIpEo3CIJ3MVwJsMjATjeO+grKlDAJ2DjmhtaLWtpDg6T6Gl9a5chdMOpSO5EruZoKFWgeAVudXk\nrRatohA/Se8hODSRVp7jdGB5XLO4vs76J5Jx3Kg8mj2l8WbcCnxlbEQ7xkW4shve1DCvOK2fZPJw\ni6ut/Ty46wy7dt3C4lhmgfe4hzd4nDOXn2D9+wvia3UCZg6vcG/+Lk/Wb7Drp3fg38B7L8OpYVKA\nvAvH+rBzYYUnf/s13sif4Pz+h1g5sF2wq5tdCEeh24Ku3kyD9KQtcx4G28GlsBQKZOffDuyCbBp6\nhZSohjDWlKihT0a9wIPwwI6TPM/LPHvtp3T/t5rxH8PiZek7tu2C3ll48p+d5u7jc1zsHOXao4fw\nb7Sl9px30F9ls+Y2g401NuvgiM09fqsdwK/2+hT4+iWtqq4py0qOEDESg2ccHb62hKoi1o6yrhgO\nhuyY7bKtN8PhnfOcu7qYGhfRzUfSdMMHrMkIIVKVJbnN8NFjTYbROQ5hInkVkFh6g1IZMWoiGVUA\nFxxZUBidifyy6QViFP/JGNFqk5UlqkeVmh5p0oiCxKuoUV6kleINHIlBce2Fp1k9vI/13dsI5ZDg\nA8F5QmMa6aU5CiGkPk+axiyzZHlO1umgdu2kOrATfXcZnEcbk6RHAVRGKGaw09vJerPo9jQqn0rF\nuwRf45TFWlBxP3btFmrtGmqyQogajErPN6XHGI02GToryFqO0ntmt28jz3OKPEfhmAyG5ChGEU5e\nvcufnLrK+4vrjOtPBijwq7G2yh4bUKtEKsxWg0jYNMt0SDVJecSTeTg/Da9Bf36eH7z0Rca721ye\nPcS9j51j28PLANyyOzmr7ucVPsvr155h9MOeGMpcBCZ9eZyqlUhlBWvMcDebw+00ZHs9J85JsuIE\nmdqf6AIHoJwtWGFWjOjX2ajdk+UWHx4+yDnu5Z6nr9J9Ab62Bmevyys5MQPzzwDPwJXOfi5xmPXB\nDNxSMqD5EZR+irN3H+P6I4f42fan2KVukVEzosM19nL14hEmb3aJLxt4FTH9D3fkurDGJgNiK9X8\nk7M67Rb333tMIuSDABAxgK8jK2trfHD9CmM8U0WP9f6EK9du020doOgWIj9J0g35VqQXTZT6xkE+\nftTnZFO8KAdcrQyYxASiOfDLoW3T5yvtt4T01tWJZSogUpMKqKzCAG1doG3A5qDWI2UZqELAhTRj\n1x6LwqtAaIyEEZkIMchDxIjDSzKXNtIMKUnsikBM/iwWkZoIrCP1ITQXk0Tiis19K3RMzUT05EYY\nUUZpgpZYdx+kqfCN8X6M5MZQxxqjPLUnyUajsHC1pFwqDUZG82wcumLEu1pqo/fUdYWra4aDmrX+\nkNX1AauDISv9NYbjMadVpMoNUVsZeKCJPhCDGJk30lSjhBEcYhrQpERHa8HmGqsUvk41VSsiepNp\nR5S/V4wY9AbTTweoPvV3/CusxlB+CAzgbhcuacqzU5w98SA/7L7IjhO3eeafv0XrWM2hS8jb4giM\nXsh57dgjfF99jnP9Byjf7QiitOyRBuMoFBraGnL5mzOJMGim8c2k+y4yiYdN0KdhMk3YlK2MkCYh\nR7oUwO+Eyz04Df1X5/j+lz9Puzemf7DHY793ij2/eZ1WXdJvd/E3C3avLfHFFkyugs6gcwTsl2HO\nwQsvQ70G2QzYJ6D6h4Z3DxznlHqEDyeH4LKBHyNsXQ08DrFSVOSUFDAFehpmMz4ys9gG2B7Qgwkt\nJrQIQf8F9lyLbDIvfj6NrPm+MTv+1ZfA/HWWD5HLN5a47+AOGbSmdMA8ywXMqSRYQyGsKZfYRdpY\ncptRVRXDekCeSwqjIjG/ioLoPVVVpjF1mlAbhTWaTAdikeOdp6o9E1clVpgwqWrvUVXFer9Pv9tl\nW2+aVpGhVMC5Cu8qqspx74Wr1NsWWD6wV0C7VgfRPapkj6LS90r21iZhPb3+VD3SoEcipo2xEJ14\n36XhQfAe592G56R4VNUJeBP2dO0DLgR8cDJU8WJmX1Y1ZVkyqSpq52m12szOzdGdnsZYmwZIBh3E\nqD6qJl1Tam1jS+CD1JKyLPF1DVFRtKfoFS3aeQuVGbwBhScaSYH0IdkfpL4k6kgwSkL+UFQBglGQ\nWZSVLceiwEd0hDzLUHkhrG0vTDiTWfKQY8uJJD5jsFFDsr1BG4wVD8SilZO3cqxSlL4iekd/NOG9\nW30u3RnSn9SMawEMP5lrY3TIR/eXhvm11fx+EQZdeGcGLJSTNmfvPsoH95/g5X2XmdfLWDzrcYab\nK/tYf3+e+qeFDH9vA8/CVGfIPq5xoLyCPgl33oRvD8UeEeDaGH73NOx7C47+xgfsyW9QzAxgbht0\nFcwWsKDgMDKlTuQtHEIWvqHgchuuFmLNsoFu7YN5C4e1JDTuYpOYPEGewDUjvcIuyI6uc4wLPFyd\npvfjCdUfw2uvwRteduLjy/DSBDoHPPcdfJ8TC+dZ2LfI7d2HRJaPRc77t9nsoRoSQcN8bv7t2Qx9\n+dVfnwJfv8Q1KStJTwkBG6WpqrSXNA/naTuHK0uUW6BdbGP//r0sr/e5PpkQvUzaY/KSCiGKf0vw\nqFgTosJ7kSOiN00jVQxJJy+F1PnAuKxxvkPwHmIm0sMNWlcQX5bmEI+AUTQMhOiT9FGLlDBGCIqg\nohjeR/CNGX2MRB9Y2zGPL0t87QnOiUbfS+qIyIbCxuQ8yzNa7SmKbg+dtzDtHqYzRcdWZB6Gq3dF\nhqgzYpYTu9vIt+0n620jZjllSPHOeS4FzztJQyMQ2jvoTm3DdGbg5jsQ16Rp8RFLoicbAyZguxm9\nokOI0J6awmqNH41YXlrmzu1V3rx0mz9+4xJvXV5m8ing9Xe0aj4KN2wtilu3ruZQbtmc0q9AvA2L\nbXgtA6NYLnfzree+xvuH72GPvc6sWQVg2S1wxR3g6vl74EdKTIJfB25PEA38DKzPSmG6qvnw0YOc\n1yf4zIOnmP/iushb3oW7DvZ3YNdTED8PS0fmeY8TXK/3CCthRZ5qeb7N+eP388rMsxy49yoP/f57\nTM0Hnno3vYxDED4HVz67h1eKz3LSPcrdi9vEdHgxChNtqAi3Mlbe3sHKkR2c2sHmYOwWYmL5LsL0\nuhhgdJdN7ebW5Mam4ftkrZmZHvedOC77l/JoLR4blatZGwwZu5p9hw8yMzcQ4TKEAAAgAElEQVSP\nn4xZWltjbTii120LC0+Dj4qgwkeizxt5eGNiH2OUpKvGw0uTptgixVNao7wwdFVKC0QlLyyS7AI5\nwMcYUUYTfBDp04ZXCgllUmiryDqWXt4haxvW10pW14eS+Os8qEgZPDp6bG4xpkApi4oK5yOqCunw\nrInaE20QdlgThLIRHa8IKKzSMoVWyKRaKGtok7jBxmBVTnCO4B06NRgmSqPjnAOtyExO7WpCNCKX\nD+JrExLbVmlhK4QoCKXSAa1lAm6MxkeXBiROWGZR5Cm+Ei9MV9WMRmMGfcfq2oCV9XWW1lYYVSO8\njvzhwhSklC2N/K1icILhaWnWYmxCCSKZhaAzYim+L1lmmepIczEcjJEASE3ApwAELQw2BLSzWqOJ\n6MSyKD8Fvv5/rMhHzX+TfH1tAd4r4HXFlX338J3nXkLlkTv3beeRe0+xc03OBLdmFnibh/ghn+O7\n1T/g6pvH4A1krxsYmOvAPmAP0ozkCEWjD9wycD2D24egmkb29a01ZMRHmV9NyMpWJnEkdTawdAze\nNjCtWMwP8o1nf5Pr83t5s3OG3Z2bFJSUFHx25idM/4t1OvdWtK8CBsJxWP9sm6AVU8+WFP1AmFZM\njmecPHqCb/IVXnYvcOfMfulbtsllYglYg7CkuTPcwdWp/aweL5h9vOSht2BwFa542K7h+Q7oJ2B8\nj+Gq3s9itZPJcktmHpOtrLuAXKDmb9O8/kby7rf87NP1/7VurwxYXlnHxECWZWRZhk0MLVD42iXG\nqMJo0mDYo7WwvOpamFd1XZPbHGss1loZxiphPMnQIqKVwRYZ4FATj84zxkBwGu9qvJPkwhgD3kUm\n3nF3ZYUdM9N0Wi2KoqAocqpqjF1b4zd+dganFP/j736FqqqpO56pdoeQR/IsS4mIkaAUUWtMVFit\nxdxeNUb1qQ9JIFn0Dh8U3ohNiEpAl/deJJTpd6pagKoQxe/Kp/sJUbwY69pR+cCkrMiW7vJPvv5N\n/vhf/B7F7l202m1hmQmXGZc8vJSRngOjMIlQEJyTYYp3lJMxzjmsthTtgnarzVReiOejUjgd8L7G\nRU/eyvF1jXIBZwWU9Inq67UiaIOLCmcUTkvyojYWZWXAHjItjLEio0aGLar2FEWBRVGOc0IeiHVA\nByWsaK3Icku0GpUZslaBzixrwwmXb6zwxsWbfLC4RuX/PoAUzQC8YSvdgpjDbSupu31FuJYxOp5x\nYd/Dsu+bdNObiJ3tOcTQ/ZD8zFhHiwntOIF1WCllntysEbBWwr416A0rWvkEa2s5X3cQ0/lHgQci\n9p4as92j2oFYKfyyxV22cFrD2xpOteHmflAWDmTwMPAY8KAn2+cwCx5lImGscTcs/qKFkwraMDU3\nYIElFtbW0B/A6AN4x8sWDvBegIcuwZHz0L07ZMfCbWbtGrenSTMalS7GMF2MhpbWAGDN2X/rPv/3\nY30KfP0SlxgY1uSZlbeS9xhj0N5ACBgViL5mdSVijKazfzsH9+2kPxqyuj4h+DSZRhFCkq4Q6RRZ\nKiwiTVQqEJU0q1rJVMPmLYq8g0IzGY2oqjbB5TLV1lu8vqKHoFFK0g+bsY3o9tkEtAhJ6qFQIZki\nx2TWSUSFSAhCxQ61gE/eObxzAtj59AWYzDLVbpN3uuh2F5Xl2E4X25oia0+T5TlYTy8rCPoirq4x\neQtVTKGm5sG2RZ4TI9qYFOcbRR5UtMR7INQiTjAt8oXDGAL+xnnieFWa2uhQyqBjwFiwvWnyVoty\n0KcerFO7mpXlFV45e4Vv/PQiPzl3k7L+1LT+7341h27Npqhwq2NKc5vmwK6QjT4HbkrK1+U94C2s\ng/+wzYV7HuTi3vuwMyVKRaq7BXyYiXb+HQQsulohzVHS55cBrms4D5cfO8qrB57h8J5LvPgfv8rM\n3JBjJ5GeaC/wNNz83Da+23mR13mSpTP7hD12K93dKc21ew7x/cd/jaliyPCz3+fYgQ/o3h2iQmA8\n0+HWvp18p/05vsWXOHf1IXjdwnvAnSjJlae6cMNIOstONgt+mR7jFsISuFNBvZz+sZh+2PinfXKL\n3ROPPsS+vbvRMRJdRcSjDJhcPEV6nRmM7YhZrA9kRmGtRo7JyZcqvW9kgi1BJKLY25RrNEmKDSuM\n1ATEJrVL+WTwrlBRACbvJeJNDvykL0VEbTChRGaepHfoxNoFrSxZFlE60DYFNs8oujl31/qMR5M0\nMXYEFwg4skyGIDoz1N5Ru1okhxpUbvExeTYaI3/pKN5iYh6cTNolpR6dUn1DkM+bVnmSDMpr1lo+\nX9EZogoyQ9BWaoASQNB7jwOyYBN4FVBZQUAkKz6CQRKLlTZEF7AuorzHR4fztQxqgjRtrnaUowmj\n4YjxcMhwWDEajBkN+vhqhKZCGy/hJk6jkJATqxXRhhSsIn4sAUn6DYDNNHUdMUYl4EvT6bRQITAZ\nV/L3TK87RE8MSlLCkIsYgsdoQ45mbVxS1Z8CA3/5aiwXmsN3H2k55uHabnhDQRfOx4cZPtLlwtwx\njukLLMwuE1EssY0L4RhnVx7k2ltH4TvAa8hedwx4ALgfOBZRuzymWxGcJizlcFmn/V3B+QW425go\nh5/7ampMU1MaCYhFWqLkj1JPw/s7wBrwmqU7+/nBo/Oc2f0oU50+xtREZ7k6t58b9+3mgUPn6K6N\niUqxstDjTfsYFTlH919kigFDunzIQU7zEO9xnNFwit2Hr7D2j6cZnZuGn2kB+daADzW3b+3h1JFH\n+OnUUzz/tZ/RLUte+hEMFsUiJnsC6v/I8M7B+3hTPc6Ho8OE9wu5VuuezYTGrV9NDW3+Vs33n7zB\nyN/2WhtMWFodsm26I8bqNVTVRDyzlEjza+dI8b+JSZTqh1JYY3HeU00qgg0UWZE8bg0ZIj30MeJi\nQGMwKqOdWQg1oxCoHLRy2XNHZb3pkpRq2aA/4O7KGt1WmyzrUBQ51mp8nvF///rnWI6Oqqrwfj2F\nfDimOqLFymwmHohaEZTCaE3QRiTfScYHjcI/1UgSE1opqlSTXAiSjh7FM9Ens3rvPAGxZnFeEhir\nqqKqhSk3qWpqF3jsyg3adc09k5q73S5RCZvLIOAbiaEtpv1SxyeTCc45vJO6UlUlztVYY5iamqJo\ndyhabaxSmAgRLzVSSQ3NjSZkwr4aphqqlQIdqQkErfFG4zUEC3mnILQMpdXUsRZJYwRljITYOIfz\nkXa7zcSFZMbfolY1NNYYmQGrGXjH6rji9o0Vri8PuHJnlcWVwSeY2fVXXc15vpGdD9gEcwKs7IOT\nPbiWybl9HgkfMWwSxG4Bt4OA/bsNlFBXOX16rOseCzuG7JiBA8mnNyKCxO09YBcs96YY0KUuk+Jj\nBngY9Bcqdp+4zrGFc+zT15hiyIQWN9nNhYeOc+PEQcpdHfHYeq0toNnTwK/B1HNr7DlymeOd99nJ\nIgUTVpnjyr0HuPjwCe4c3Um4kKdtN4W9JBuKf++03sxa008ifNQi7SNrnc19vZGtN33UJ7MP+Ouu\nT4GvX+KKMVLXtfjIKLXhlRVSKmBmNDpKcscSkeAqjuyd5/6jBzn3wRVW1iaAEK9COlzn1tCd6rDU\nX5f0xyiTZpUSupRWZEWb6bntWG0IrqQsR5Rll9pbaufFzDg2en0lVOAoyTOgNox8ZXoiUpmIJLmo\nmIzsE+gVgJj8XIJ34n9TOWF7BTESFvaExrbbZL1ZutOzdKZ6eKXxymKKDq3eNK2iBcaQZRZLROc5\nczoyWr8r/o06E9PLeoIylqzIsXlGFjNiBGMzsiyXBss7gpckG5/l6G3HMHUFi+fF4DgqfGKu6TyT\nhqYc4scD1lYG/OSdK/zJzy7w+oVbrKZ0l0/Xx2ltLfY//8dp/q3Y1LKLW4/IFCNc2gkrLZkA7VPE\neUs9JRR5+shk/QbCqhoMIV5HpiR9IBOw6fIMvA2Do/O8PP052rMjRkemeHjH2+z72nXysmbYneLD\n6QO82nqKP+PLnLz6JLyaAKpbSB+1ANVch7eypxk+3OFSdpgHDp1h16FFNIFl5rnAcV7jM5z+4HFG\nfz4jDd57QDUArsG4C1dn4VYXciO+ACbd/wSoHbh1iEvpxS2xmczVSBz/omv5yVj/+Le+Kv5V0RCw\nwmS1kSK37N6+wOJSnzfPvs/IVUzPTnHi2D568zPozEAyrqdJOSQBWSHJHLX+SCx9c4kamaDWJgVr\npKAOJYMMnbxLZG9FWK9BTH0BlFFpbydJv6UpaZIWIYipvNYUeUHtS0yhUFmGzWcY9gsGa0MmYzFo\nVwZCXaNMJMsKdKaJpZckrGDQUdIuffRIai9YHQm1k8O7UsSgcMkQWF63PFef2LoKSwzNYd/gXUVU\noE2KYw/SeOC9+DLalOwbA94HdIxk2iDeeAJ8RW03U8JQybg+SAPkQxqeeJzzuMozGo7prw+Ik7vE\nScQGT8dGKDR1BJXVOBxOZ9QRotfUtRfbADTBa7wLGCuJW95IExZjRJsm6VJqV2asePPEkJh9gBdJ\nqDFyLZXNiFoYYZm2rA5W/7bf/p/w5ZBNaoDsSddgWMCZBYgQ+4arV45y+969vLJnQjG9DijKwTTl\n9YLy3Ra8qYSV+wHih/I08Bxkz/U5sOsK24rbzJg1ylBwt97G9dE+7v6/7L3Zk53nfef3eZb3PVvv\naOwbAQIgQBAkxU2URFGLqWVsy8k4zoXjStXcpSoX+RNSlapcJVVTNRfJhWeqxnEmVWO7xh5bm7XR\nJEWJFMQFBEgQBECA2PdudPfpc97lWXLxe95zGhy6xqMRKcvqn6rVC/tsbx88z/P7/r7Lm1tFNjgB\nvDEBd7Yz9rJaK+9rmqsPV2PEchtoyc3e3gRLBi5DdbzHtZ092BAhi6hNsPLkJO/OHmJf5ywznbtE\nFDfZyHvhIAO6bNdX6DCgosUcC8xzi2f5MV+cfpGF6TnObNnP23uPcHbXITHV/zFwGpZOzHF066fZ\n0r1OdqTmiU3HmPpMweSCvD53GI7vfIDvt5/jp3yWa6d2CwP4IjB0jP1dGmCv8clcW7+ee8OvolyI\nnL26wIP3bcQYGRJXZUldVRJeYqz4ZJHCpBC1hgwUxJNRAWVdUlcBFRV5Jl6EyigJTfHJVzSKibpG\n0eu0QMWRIbxSubB5ZbMSEAdFXVUs3F1kfnqKTrtFnsvZObOGxb07cVVJa2WVqqwZrK5SV46yKKkn\nHRO9HlaLZ2RUmqAiQYu0fRSWpY2EkyhhCjeteHCOOo49dsdMatl3qkqkjs3e6oMkXg7LIskfPdpo\nZmdnuP67XyN+9tPc3bEVFUICoeSaqiYJNorfmU1WLlVVMxisUqeUYa0VvV6XiV6PVquFthZlLYaI\n8iEFcknmpSGCljRkYyDTijpGMvGEocLhjSK2DSbPaGUZtpNTIQMboyBDi00AGmVzyiBm+Hkrp1od\nQAhk2hC0JxhPZjNuDireuXCTs7eWWFgt6Zc1Ze1+Q3uSZljSMHCbj3TOL+bhygzcmILkswakebkH\ntwqhD0yJRPIO9FcnuMguzrf2sOvJ68w8Dd9YhrcSlerIJMw/BTwJZ+wBLrGT4VIPbis4DNnvDnjw\noeN8IX+BpzjKfk4zzTKr9LjALl6feoKXHv0CR6c+SxkmZA7fBb4QmfrqIk/veonPmx/zKMfYxUXa\nDLnNRt4zD3B081O8+MwXONM+TH9lksWJWZame4Td0N0Fh2/CapSVej+waSdiATDT5Q4bWIrT0rIM\n114/v+brtam8v7khJevA1y+5nPMjQ0uFgEcaZJqdezKriKHCLTvqssAaw8HdG3k405w8c5k7d1fx\nHmx0WO3ZNNdjYqLN1QUxqfNKEZTFRwHWjDVMzG1gan4LoRhSDEpqV1NUjsoFqsphrcWYRqsP0mA5\ntLIJBGsm22Oj5gDJ5ytFG6dmLvoU04ykTUZXi5eKb1gRBpu3aE/O0t6whbw3KaaMSoOytNtdWt0J\nWq02mVFgDVopTIhoMrSBjtIM+31pGpWS6YtSkFLX8qyNWtOcKm3F10CJ7KmuAmQtsk17CcUyobpA\nMFDFiFIW7yPGlawO+rx97gb/5tuvcfTUZYbV+tT+16P+vsW6mdA38sg1U/vQh4UtsDAF7xmYVOPE\n5ApYjkh2dJN42LCjGv+TG3CrAydy4qzmUmcf33nmG1yb2MbhyXfYMXmZFiUrTHKePbzlH+HEzUdZ\neX5e/AXejbA8gGjg7Rbkirps886Nx7nw2B5emf4MM3oJTWAlTnK12MbC8S3wSvLoej3CrRphbl2R\n1xinoZqQj34rvZiGtdCYVzZGlslPZ9TgNVOfX886dfosGzfMsmfnLtpZhrEKaxXRezbMdnho305W\n+iuc+uACMXimZ6bJux2SkWGSd9eEKExRqwONn2FM8rwGwIJ4j1luSIfukbQR8W5p3ndaN6wxef+F\nIIb4ApKNHVF8YpWRfKNslomc3Xs5fGtJ9c0zQ6YMHWvoWsPiwoDBoKBOkfUmc5L+pA1eB2pXo2qI\nKhLJybDoWGO1gSgNlFaaiMJbRbRp2BF0kkRKMxNQqBRVH5VKYFHizCXfRgNYDAqRaqCiHPKVFlYX\nihhr0DL4cRF81AQPDk/UkaIS2U/txasmxIirPFVRsNqXZizGkkzXmFzTMpa2zskoKWuFD5HaaGor\n1gC5gtrL8EXZDFcjKWUqkOWa0LbSSBSe6IRBHaKnKAYEmwtglsyQxePNoI1JUqUUE2MsMQSc99wd\nFJ/Qu/6fQjXSlSYGZAlh51pYUvDGDNzR8L6m3Nul3NaFzpxc9D4ynLiAhJZcQaIRnwC+Ftj05Ss8\nOfcqj/M6++L7zIZFapNxMdvBie4Rfvalz3By7ggha0Gl4I1pWNnKOLWw4F4PybXV7C2r6XeuAgGq\nGt7fBjeMMMpmFEwpsIr4AFy7dh/XDt3Hj+9bZHKyT4ia5cUp3JlJ6MOxvYEDB4/zNf23fDG+yJHq\nbTZXN1BEbuXznMwO8XLv8/zt41/jhHqc0Je4+vhTw5n5h/n2pz1L2TRnduzn/h1nmWGJVbpcZDdv\n8il+4p/h56eeIb5o4ARwITLSTI4Av7DmNa7XL1qnL93m5q0NzE5P0el06HTalGVFUQzRiJm9UWL2\nTmLZAiN2sU4ML+cczpfEhoWnFCBJsxaTRBnCKLYqY6LbxtUVcVAksL5FWXuqKnkkKklpXFlZ4c7i\nIr1el1bLir+iAqU03W4PhWJoCopCnnNdVfjEUut1e2ITokTyGPS9rGhjDM6LTE88zhrnSCnnxqmK\nkUjKvEq+xooQPLWrqZL/1mAwpKoq8jxnZm6G2dk58nab/tQkOoQRHNJYFMQ14JqEVyXrgrSPttod\nup02E90OeZ5JT9LcVqXALx2EpRa9KERiSi9SAa0gzzOWheyFJ1JY0G1Np5PTzdsoD8OlPk4DVry5\nulnOAEl+NtpA3qJkQO09WhvqSs6rg8rxwZ0lXr1wi9M37+LWg1LWVJP03kjRm7CNVeAuxCmoJ6Bu\nAk1A1rRmuOKAA7DQgwuKlTOznNx1mKPtJ9n12BX2/tFF5ufht86mu98L4SuK85/eyit8huPFw6yc\nm4KboP6gZt+hd/lG/td8w3+Lh8+/S/t1LzZa0/DYw6c4dPgUc9kd4gH4ybO/RbxmoAPZsxVP73mJ\nf85f8bXi++w5dl0G4qtwYNsVPvXUce7f/j7dzoDVR3tc/MEB3v/ne3k7O8yBz1yg+27BM4Wk0VcB\ntm6B7lehetZweuMeTnOAmxe3jpUleMaWJo2Mvbl+v9m1Dnx9DFXVbuQTA+PFua4q8lwRCXgPVVVx\n5coVrFE8cN9mHn0w59LV69xa7FNWNZOdnPt3bqbynsGwJjaJWEqgKa0ha08yu2ELvclZihgphwZX\ne4aFo3YB3TUiq1H6nk0CgizoWjYg8bARExs3MmmWpK/GIyw2Oc0hiPdYmo4oZciTlLE1OUXWmUC1\neth2V5JqjEXbjCzvkHe65HlLvGJUTN4rEZsZoqsJrSnyaWFK1HVJGrlDqMHnkCRGhmbyFdFGGlNl\nclSogZKqHBJ0hp7eQez38YMFTGaoVWRYVhw7fp7vvfoO3371Pcp1mco/kWomG83CPkAW+maTXASm\noZyEso0gXwrZUIeMY9zvMp6Ik37vBtSTcGYzWDEJvn7zPn746EaOb/kUk91lrK4pXYe7qzPc+mAz\nvJbBzxBmwpUa4nWggNv3iT/BsoJLmv6b87y3c15o1Co97GVEHvku8F6E6yWEy4yNmV16PR2E7mUZ\ny4gaRkWKR6ZMXzd+Nb8+6Y1/X/0f/+pf88d/8mfcv2cXjzx0kMeOHOTBB/awfdM8HQubZtoc2ruN\nG3euM/S1TI+9mNKaxHA1Jk8ehG5EI49IKlYgpj5QjQcGCbQKo2/VSC0eg8SvGzOeQBujRwBRjJFQ\nuSQ5lwFDw7SV74XhK6VHa61O1vNBB6KO9LodrGrTb/VZXF6kdF7WQN+kFwI6UtZlMnEXNmyeZaAt\nVWwSJQ1KW6KPIv/WQFAoMjmgKzHLF1ZvSD5niYmskneX2HURU+PcDE8UkuIl+4oVaQwVioBRRuLr\nnRgbF76mcDXOS6pX5aH2nqIoGPb7FMMhKkTaFtA5eQYt08FEcEMLIWNQWYKNxEyCTCyRttWYaHAB\ndKaxVsyV8zwXE2KlUbGmCBXBCzvBxRpfeby4EKO0Ec/OaCSUQCX2XkoC1VpzZ3WIX29S/guqka43\nb9aU+EEEPBRb4fQGuNGCkxpmkeUNZIleAhYCLDmYyeEQ8BnY+PmrPDf3PX6Xb/HpO6+z9cp12rcd\noa24s2Oax7e9wXZ7lfxwxfHVJ3A3WnBDwZk58LPIWtqEpyQgTv4xMWZENRPzxgw4pOd/F/rzcHYS\nskwi95SCi5n4Me6GcvMsZWdWXsdKerhHYeOzl3hO/5Dfr/+aT5/7OZ3nvaz7Dib3XGfLMwtsfvgW\nZDA4NMXZxw4RPzDwpjzF9/qPsPDoPG/OPsbO1kW6rFLS5obfzAeL93Pj9HbiS8kg/yRQriB7SLO/\nrU1rXK//morAqUsLPJJZqqqkncswSiP+iVWFyNCNSXI6kj4wpmFKQIkdKcFX+FqYU7oJAaFJ4E2P\nFwK+qsg6LXrdFs7XhKKStcoqqlKG1FpbtNJ457i7tMTGuVlamcUYTSu3aC1MqFa7jTWW3Basrq7g\n6oLhQAzaXVXTarXI8zwlBpvk8aVw3icGsbxYY4ww2BKbukm1lPO6AGA+CPglTK+I846iKCjKgrqq\nUFoxu2EDs3OztDtdbCZJmDJw0pjGdyyE5BEWJNlZg7EGraU36XZ7TE9NYa0gjaO048RWlrlWICjp\nh6JKZ6PYAGBy33XwaGug08L1a5SDlhE2l6o83hXUg5KqrLF5Tt5pEXHkNRQaqD2ZMqjMMMgyFlcG\nXL+xwLsXbnLp7irn7ixzc2UoHs7r9RHVnI0aSXazFjfn+g6ybq+lfDVr9QRwBxam4ZyFNxRn9h/i\n+we+Qnuq4Le++iI7Dlyle1v6heGGLpd2b+eF3jP8MD7H+xcOEV/PYD9MH1rk6c4rfJUf8NjP38b+\nexi+BP1laPdg4lHY/weXeO7Lf8fN3mbOP7iXK4f2wQTcd+gUn+fHPLf0PHu+fZ3wN7DyNpRDmNoM\nnS8EPvdHr7H6UI8rk9u5/shOTi0+xMtzz7Dl/ms89UdvMbVnwM6T6eXdB8PPZJx6Yi8v8CWODT4F\nJ1qyf9yEscJjraxx/f0F68DXx1LOeZwRieGYZdVMPSIiiRe5yurqCu9fuIBXcGTfDh6Z28DS4m0B\nyUxGiJELF64wGNYiL2k8uCKApTUxxeTMPO1Oh2Kg8DFSB9HFV3XAxUBGg1c1hxtNIHmORYkrDkm4\nQ9K4Nw1ZCEG8ukT7iA5AlIlPK8vpdLt0p+fpTM+hu5OYrIU2GTbLsJkY0BubYW2OtVlinxnZWFSQ\nhjN5duksR5GjjKITamL/LtHLBhZdQagsyhg8mmBkYiWsCAGuYoTgaqIr8eUQHwPWdLAzW6XxrVd5\n+c2TfOvHb/H62+9z626fsL7R/BOrtZr1tfzFZvpzB+mkMsbRyQ0LqgGIBkiX1XiLLSObaguGBk5u\nGrEP6uM9ruzaCxsC5BEGGm4qSRo7ixhrXnfgGqZWKW/UO9vgjVm4oOA4ksLSSw+XPJ9HAWSrjVPn\nVUS2uJyeb4Y0MJYxfa1pLBvmV8n4kNBci19v0AtgMCwYDAuuXr/Jj195jcmJHju2bubgvvt4+lOH\nObz/fvoDR3TiXbJ4e5HFxUXaGybBaHCNlM2gFBgiEY2P4m2oGhRJqTQRdukgL01LJA0MYiPs4J5B\nRxNLb5InYQOANZHvI8lHEBetGMUjUtazKCa3UQsIF0UOaTToTIA7ZSKmpVhYXqJf1FRloFU7rDFY\nk1HHkOQv4hvmlazt2niUtmnooYSp6z2BmNJ/PSGZ6KsoABWjBkO6tSYcBR/QRo0M8WOKco8qhak0\nchcgBCM+MaHGuUDtPIWrKaKjDGJgXztHUQeGZUlVFjgCVUzXB4NROUY5gopURHy0RDVB7SIuOryW\n8AAdIrkCa4L4igVNiBayDJvnI6mljxGrYzJY9tQ+CHMthceInD9gkWZTGyXNj0m+I0axuM72+gWq\nWYPKNT9r1qg+xAW4OwdLE3C5DTodU4MDP4Q4BDaKt+EDwFOOT21+ja/zXb5+8Xlmv70iASVXwHQj\nmx65y8zvvEX7mYLl9hTXHt3GtTN7xBT/YhsGU4gWRSGLcJfxHtE8tyHj6PfV9P1dxmEqN4FJGY7U\nXaAFZ9pwNYeZngB4ebq7AngWzJEhD0++xTO8zGNn36L9p57yW3DxErgIOzfAxNmKR/7Fu9x6/CXO\nTO7n0qE9FLt7sq/8EOJtzc3TO7i9fwsnNz6KzjzBaeqlHPd+DifT/nISuDlAnGxuIehbydjg+Nd/\nT/jHUJduDzi0Q/YdV5aAIsssRlsZjngPTvaSiEoyRgVGwjNM1IAmRgLRMCAAACAASURBVE1MLOJm\nwBJjAK2FGaYFjK98SahK2rkh9tpUVYGvPbnNaeWWupI9IbfiVVkMh6ys9OlN9PAu4E2SuaPJjZWB\nT9CEYKiMIdRRwCjvyIYZeZ7TabfJsmy0v+kk1VcqSR+9p1IQ0wCkMcfXWgBhn8KvXIhiaRIjVVVR\nlAU+elqdFjMzs0zNTIu5f5KINoOi8TApKU9iREVhZVlrZcgTZWifZTYlZZIYZw3gnhQwSQ4aElDW\nJAvrGDHKEHSO14HKD7Fahl7GGrpRE2KkLGpcdBhtMS7QDQrjFbGOlLHGDh2mHXCVAxe4tLDEq++e\n4/0rt7lye4mFlVWKdS/hf0CtHZg0w9vAWKq+zHi9bmqtj+0CuA1wZgO8BsXcJEf15yn2dTjf2cOD\nh06yKd4EIrfVRk7yIEd5imMfPMXghSmRiH8Jtmy9zMOc4NEbJ7Hfgtt/Az/9AC5GySB59jxss5G9\nuy/w8JHj7MnPcWXPbpiEffosj3CMHW9fJ/5HOP8d+MmqPPMDF+DpuzA1Aw9vOcnh+Xf4ya4rXD26\nl+cfeQ494blzcJ7DO99lw+AOJnoW27Ocnbyfl/Xn+F75Nc4fPyCD9tPAcoX0Os3gu2H2rq/zsA58\nfWxVOz+a/oPo+r2POBdoaTta8OuqovaOixcvs2nzTnZt2YwZDMmyDnVZcv7Gda7cWML5ZNgbkz9m\nNCKjNBbVahO1STHAabpUl1TOUQdPi4hLCSAqxbMrHwnUEskuIyZGaHmAGD0+edQQEkMhgCHDtjp0\nZ2eYmd/AxNxmWhNzZHmekrsseZ6hjcbaDKM1xtgRA06SvfxIYtno+22WJYNoiLSxE7N0gqfor0ri\nWPCEeijmlS5ClhGsE0p1SowJTlIltZYNzDTAR3eWDxZO87//X3/Kj19/55N9I6zXr6DWMr8aSV/D\n6lo70W+q0bvXjGnUzfcmfSwxklAWQzi9BW6kxmITMKnH5LFmqH47wnCVsbH8LcZT9lUoN8DVzXC1\nC7mCTI2ffhGRDukWsoHdSs+hMaevGMtyxuvMuJqklrWSxn+6zMaV/irvnjnHu2fO8VfffZ6Jbpfd\nO3aQt7ps2LoF3ekxMdVlurubrNcms5L4pCwSuR7GB+KGjTIeWohJfTMMsCaThKvk3ahiMrGH0QFf\nrZlINyAYjIcPsQHMGiNgDd4FkkIDE9Ih34sc0Eefbpf8pyx0ei1mzQxqZUB/tcCFRuabAkZiwNdR\npBchkBsrs1JBcfBlACWTe0IAK2EqIQSMMWkooNGIh00MMUkhxS8rogi1pGXFNdfIB5Erai1JWyAm\nxHUtnpAuBoa1o6wDhfPUiNcLZUHpJNpeGfFZaU/mRAfaGVwdGBZDVtwAFTW+laT6eQvnFESNC54Q\naoyJZCqS24CPsi9meRuT50SdE2sxa9Z5hvIlPhRoLQxi75u9UPZpZTO0SXtJBLwwBFyAolqXDfxi\n1UjIG/lKk/bYNDG3IHYknOQeUH+ATAm2CvC1FzY/eIlHOMbn+keZ+d4K7v+Fcz+HU04yP468CTPL\nniMzZ3jqoaO8MfUY1/bfB9uUxNMPJhBkalP6PAOqcUkGGQY2QNcSMpVYZLwnaCSXfl7uQ/VIaLos\n4VeASxHiEtCChzqwCaa33eV+dY4H++8x9cqQ+C144W14I12Vw8vw1e/C9G7PI4+8xX57hu72RYpt\nPSE4nIgyZDmlCNsyhrOZ4HV1emrXEJzrYoRigExjrqbnv8q97In1+mXUYr/g9tKAzdMt6rrGaIX3\nhhgiedYlyzKi0rKepnEzCDvYWlmfdWLFire3IgYB9pVSmKhR2qC0Fs8wa/HBoVVgdnoC52sWlvpE\nIjOTE5SVIwYwWpMZS1EULC2vsHHjPKDE+xAjPYFSKEQyL+d5hTPgazlf1K4WA/rgyG1OF/jtv/gm\n3/of/wCvxQDe2jE41XhlAnjnselr5xy6qvnD//P/5k/+l/+JUis8AZsZ5qZnmZoSqai14zNaE84l\noFdzrpHr13gON0wwrYQVFiMpXKBJ81UjMK5hvqgEzAU8QcnfQkWDjgZDIGpH0I5oNINiKCxnFdGV\n7HvaOSJgbMQGSbw0KhKMJHGGYY3zgaMfXOEHZ37CqWu3qN060PWLV3PGac61hnHqruJexlcTSlIg\na951WJyEYzlYWB1O88rnvsiZIwfY0bnIrBIPxqUwzcXBbu6c3AKvWngRWVfnYD67xQ4u0zlT4t+E\nU5fgrSiPdBvIVuC/OwYTZ0q2PXCNTflN2vND1LRnMzfYsXqD9imHPwavropFJUDfw+Yz8PAxmLq0\nyrb5q2zI7nC5f4Azrxyh/0yP86297J88w8bJm1g8d5jjXNzLW9WnOPfWAXg+Ey/gcxGqpldogK91\nOfvaWge+Pqby3uO8JrNWPL9MMrNEC1jl6rQ5KKIPDJaWOf76Uc50W5TFskSmG81qUVDVNRHxsPLI\npNrHSIjg65roazwBVdXgBVRyRYGrHTF5xjidmhwly7+kRErqigpGfhYdKirBwGLTnEnzY0xG3p1g\nYnYDU/Obmdi4mXZvirzVlXRFLZt3ZrKk8RdjYNlY7JgBEJsNR6PUuEkcNZkxEsmIeoq8V+Hrmrqq\nhZUWHL4u08QLmR6l16C1JJspI5N6yFm+e4cTx97khz96nu/96AVu3ln41bwZ1utXUM20Zy2o1cgB\nFfdOh5pNsmnA1t6ukbOs/b0BsAJLG2BpEj6w0JLDIyFCkaS5LCLb4R1k411hDMY1up1bwCRUbfmA\n9BwGCK1sBWkE1zINmijimo8GvT7qdf1mSVn6gwHvnD6NUor2+6c5fuItTry5izNPPMpTjz7I7i0b\n2DTTE85flEOxLEHiOUhUSXYgByzxq0qegkoEiKM08SbpdnQgGweJNABY832z3gm4gnio0MgEA14M\nv6iT71d6ZmPz3rT26czgfaRnOhibk7eGrPZXKYqSLSfe5crhg6j0/IeDmjy38pZPZrqZtsL8ihFl\nMlQE5ytZR7XBVTUQkxuaAh9kGC7ad2JwSdaYEhiTF4rSatRHO1+jtMb7emRi7FxFFT1l7SjKQOkC\nRV1hl5f5b188ypltG/jZI/cDkWDFWwyn0JUmqhxXtyhLCVMxmQB2phKWngtQR4VHPMCUAUKJVZHc\naqyBzCiUNbhMU9dA1LTzjLIucV7Auhgl9VgrGZ0EjXjCBGm0xIxaszwsqN06aPCLVwN+NeBhw/oa\nIuveWskhyDrWAbbKe3ka2Aib1E12c4Hpi8uon8Plt+A7TmAqA/Svw5ePQv6M4/6D59luL6O21sTZ\nHCaBmz1gM5h56PbkfmfTQxlgaOHuJCxMwOpG8I0PZJae4zZQW6AzA3MatiDYXLOcrwKLCq7NyDbQ\nASagY4fMscBUsQQXYPG8KNsbHtw54MYdmL4A0zdKNmy/w9TkMguNut0BF/oygJnIoKuS8VG6hKsO\nBmUC3K4z3osaT7O13i/r9cuoovbcWh4y01F4X+OVRjth2YZYUwdFlou3lgxrnZzBtcbaJjiF5Fsb\nCQmIDyEKuwpA6fQvQnqEVt7CqZpWbtg4N03wgZVBRZYZsiyDMB5CWyNs12JQUrdqbLtFNBrnJe08\namGf6SiAkSEABqPT8LrZvwg89pPX6C4tM/feGS7s2TU+yycpYQNWRZ/O6EkWGb3n4ePvAnDo1Cne\nfepTdDodJiYm6HQ65Hk+2jNRAtrJnpPYWA3JODY/S2uybXx/QcBEMxoshaSUafbSGFXqbeQ6EiF6\nhfIGFRVaSXhAE7rSUNpc7dDBE30kc+O9OfMK7YUhvFwHbg4LTpernLlylRNLy1xcWl7/V/ZLq+ac\nntIdR19/VAVkAc6AaxBzuLIT6hbcVXDRcPv1ndzesQNm0l9oWQvD6yySFnkReEoeIqfG4qAGXwpg\ntfbvWsBoac1jTUaFyQIq81hqrHdQyBxlLVc8IMt1LEBVkYyajFp+6Shcu7aXmw9t5c2tT9DLhQwy\nrNosLM5RnEzhVz8HjkW4uyKvlVuMga+mr1kvWAe+PtZyLqTEE50otApfO2KrhdEGp3xKEYnUvmRp\ncYHVFYOrK5SCVi4CnOAZ2UT6ZKjrvCNGQ4gioTRWE7UklsUQ8ZXDlRWhdvhK47URWU6T5pVMnoVB\n4EaqMIVOpvKZ+A8YS6fbY2p2nrnN2+jNbqI3PUOrIw1XphPd2aSplRJPGtl0/OjMGpuNKmrxrdHj\nRIm1EiHvnMgZfYCsRz5R4ZcXJWWMQAgVwYm/jApRqN/WjprKaDWu9hx99af86Z/+P5w8eZLr16+v\nSxp/Y+vDsexNE9VMiZrfWXMIGn2/9j0zYOyf1UQr3wE64HqJmaDTY5TIhtMAVv30uWAMWhWM5TIt\n7pUrNptUuea+GrryWr+Zf8h7+jf7fR9jZDgYMBwMuH3zBsdef4s/n51h26YNHDl4P8997gk+/cgh\ntBKwI7MxeVNpgquSlMITURhjIaSUXqXFKwwBr7TWBCRFUaTXnrEf/lju3hjWjxhgSQbZDAS89+J7\nqCLoKE2DF7mfyUx6Lg6lIiYlEoYQmep1aWUZ0z/6KYf//bc498QlXvudr5BpmW4XZYWPhtpqMqNp\nq0AmXsWEGoyWw6QxlkDA1XUaMGjpMnzEaoNWMr0PKhATE1cndllQAR9F6hiCJwSXXruAf652lLVj\n6EsGRSWyRucZlAUtX+KsxvXa4gvpwRhFiB7fEvaM0QpLG+cjta8YugqPx2rx3hKoW5KAA9lIQqqQ\n6220QgWPio5WpsmtwnuHMRGLSXuq/O2tEW8yHQNaBxm86IhWmswYohIJbVj39/qvrGata5qZtcbF\nwrob+2y1ESliAngyoAVdNWSKFVqDEm7AxYGMFEi3ugrUC9BaiEwVq0xMrGK6Ja6dpxOwhdZ22GXh\nfuA+BLyaSXfSRwi7FxWcbcPFrbDSS8+tDWo3bGzBA0qkl/cD2xASWECW+OuI+f17fPQMQo1dz9b8\nqPE1XyPcVx+64WUxESomGGspm1fe7EGL6fNyejEFYwn8uu/LL7MicHN5yN5NnZQCC1GJ/Dwqgw8B\n05i8B2HHyl4jZvQSCmKxRmNtjldNaIr4dbkoSeshJbprhaTmRkVwJZm1zExPEBlQuUBmLCazTExM\nYI2l7LYpBgXD4ZCi08XmGSoEkYgrLWymLMMqSXh3oZaeAgHnTGYxaW08+pVnuXRwH1e2b6GVUil9\nYkFrpfAheYyhxStRKVqZJW+1uPLVZ3lj/15uHz7I9nwsnbx3UJRCZcRIUpjViOQzBj9KkFcw2qu0\nHrO5QN3DsDZai2dwAsbE1zMN92PqsXSUf3RR/DwzbYlZi9j2tCanWbU5WpcYE+kETe29DOADnBkM\neKe/yntVwfmq5GZd0ffrYMPHV821VXw0qNMMuUtk7bOAAR/h+lZYmRRQ6y1gTkEv7SuN7WTjTpIx\nssvtM8FdZoibFXYH7OrBu33Zb3rAXoCd4DbD3WyKlThJ2c9BW1a2TrHcmcBvBb0T9l4WgXwJzAE7\nZkDtgHpDxl2mWaUnz+Uk8A74Nzvc2LpL9hXS87yO+Ei+j0xKlpYRg+Cr3OvjuL7Wr6114OtjLJnU\nGIxRNBknoyQuY7DWyvchYLSwBYqiTos0xJilBBeJD1aNvr2WtBalLUoJ6NNu96gnpilWVyjrgipG\nytpRFjWZTUlirQyfJvgq+ZaEKIlWYETirjRogzEt8naX6bkNzG/exsyWHbQmJmm327TyHC1GZWRa\nXodJm3AzARFJY0QxnshIwlezGDXgVzJ7TtHOEQHuojZE20PlFVk+xA8LZCwT8HVF8KCNQ2U5aIVR\nAhqcPXuWf/3Hf8x//Ku/HLEq1us3vZrFvmEWWP7T7uPv2xSag2e15r5qRqbG5Gs+GsZP9aGPVcZx\n8X7NfRSMDTk/7E9Qr7mvtV83LdBvFoPrl1HBBwpfcPXada5eu85rb73Dv/2zv2FqssfvPfcMX3v2\nafbs2M7czDTtVksm142USSU+V0ggUZJqqwYcIq1biRHWyCIbT6+m4ocA+EYGqZIco65rOYQbM07S\njSp5fqkULGLQVkJOjNbkJgqrybQYfu1Z6h+8xFv/zdeJVUUdPJm1QKSqPM6BswZtAtEH8YqJSvYp\nTWL8SgoVxOTLFVA+ivGvknmITelcdRDzfLQ0JHVV4aMfSULq2slwxQWqSlIbh3XNoKjplxVLxSqF\nL+n1Ovz57z1LpjWZd2ilaFmDcxUDAuRgTSQ3WqbrpZgux6BYVTWGgDU5QWksmfhRWovXUZgXad+L\nwaO8o2U1rUxR1g4dFQZDnmfUtU9sZI2OkUyDNYo6OvE9s0aMo51nUKzLHH85FZG1LemORzJuGK+L\nBgG+1uzpaQ4xjC1KWriWhZmSjYhL1yqyIk8CpgdxEorcUtLC12ZMdspzeBB4HHgywkOQ7+0zMb+E\n1oHlxSmqi1PwjoLXFbyu4cSMMAbowNZcbvtp4DOR9pEVts5fZFYtEtAsMcOFa7sJx3rwqoKjwAoM\naomgX+jMcd++a8wehIdfF5uWAjgIbN0I3A9LW9rcYZ7l5alxXH1ohiAX5Xncs4c0ASeNN1njRdYA\ni420dL1+2bW4WlESmWpnxDqmM3oKLElML2EixZF6OkYZanvvQDmyTJIHtVYYm6G1kSGJc9RelB25\nMbRyAfgzbSmqIT6WtPIOUxMdVvoi39YGMq3odNp0e136dpXZuQ1keU5RlaAj2uboKP5VJrGbDBHl\ngwxgiMTk72isMMmMNiwcuJ9Ja8iyfJRKaayc6Z1zI4a0TT5brVZOllmUgv6WzUwpDdGMgF/pFRiH\naUWfLAHk2sbgJKkyJbzL/Yu3l7B1BSRrvMdijKPrbU3a0xKTrGF8rd2SJQgsna1iI0M1kOXkExPi\nZxYiLjhUyKhc4KerK3zn7l3OFQUrYV3G+MnX33fFmyF2c3ZfQNa/EmIf+pvh7JwMM9rI/BlkWVxF\nfo9L0N0na/11uLy8g/NTe7j54BTbnlnkwXPQeQUuOhHK7z8E8VlY2D/D++Z+rlXbcVe7sAKXD+zg\ndLaPhx46xfSzqzx9A+bPCcb2QBe2PgV8Dm7sm+ED9nBlabsMXG4Cb0c4rmQYM5me50g0EmExIIze\nawga1ihMmmH7mGiyXuvA18dezvukVW8aooD3FUa3ZAFPdF1tbPIBC2iTouZ9JEaPwhOizAMlKl4A\nMRVS6KHSjUcjnV6P1f4yAY9zisoFyiqgdEDVAWWSdCCKxMdHiNGAMqAzVNamOzHF3MZNzG7cQm9m\nlu7ENJ1Ol7zVSob9OtGapQHSuvEHGMcXN5p6lBpvWvKgEFUyyxcQbK1hpcj1ZeOsvUOrFll7EldV\nBOdHjWOMNVFbtFIMy4LX3niTH/7ghzz/d89z5fLl/6TBXK/1Gtd/6YF/rZdAw0ooGLO0GpN8s+a+\nm98Tydh46gLj9LAG1Gp8YtbWWGZ3LwttHcz9Zdfyyir/7q++x198+3nu27GVg/fv5tC++ziwdwe7\ntm1ifm6ayW4PpQx5Zkd/giYqXirJuFVihBFH6ZEqeYcA93iASddj75FBhhjxIQpIAyNZi/cejUbr\nXEC3AFBLU5NbXOVQBJRVnPyX/ytbhyUrgyErq32RiqOT51Ygeo/WDmdq8izHaIOPNTpqFCUKjQoK\noww6CuAWEG8wBUQf8bUbGe9LPL2kNPrgxdsk/c85h/OB2gWquqY/GLBSlNwdFNzpr7BSDTEdzdTc\nDFmeo0NEBUkb1spgTE4WU/iJ0cTcEjvgOxVEhQ3QydvkvoDMYpTBOQHnJCnNoKwCY1DaEAJ4VxOM\nkesVa5nuR8hMhta5mD57Mfg3xhBGUhqDshplZcJfrKcB/5KruZ6NhKWZ5CvG5lWJCVsih/6bcLve\nyAf2PhZ2zDD9+Cp7TsDn34EzFUwp+PRG6DwB1WHL2XwvV9lGvNodBzk+BDwL6rmauaducWTjMfZz\nmk3cRBNZ2DDHuQ17eWffEa7u3I2bbsly/eaULP+PAb8Fna+scODBt3mC1zjIKTZyi4DiBls4tfUg\nr80+wZnND1J1u3BdsXRxjjPb9nGyd5C9T3/AzO+t8jkNez8Qc/vtm6H921B8yfKaeYJ340GGV2bG\ncfWuAbUGSKOz9jjfNHz1mo+1Bsfr+8jHVauFZ+ANm7sd/MpQACs99h5yLoxYTd6HhmBE0rITfKSK\nYk9iNBht0jlbo20GwY+AMgGXIMsytDLUzqF0oJu3iW0oay8gmpXHV0rR7rRodVu4uqYsCmxuZG0P\nkrpL8vky2pKZDHwt0sBktWKEB43RCmPFbyzEgDEWm2Xi/xgDttVBGWEJGyM2K1qpEcClVGIcx7GJ\nv0J+pkisZxh7R3ovnpf3WAeAVloSMpOKRR5L9teY/DfFbrnx+Wp240b5Mq7AWlZZhBBE3qkNzkfK\noLi9WnH77gqnlkqO9vtcd+sDkH+c1ewhH/77NFYjdxFdexeKLhRrFReN3N5I7OLVLpyDhXNb+PmR\nJ9lnzvK7v/19pu0Kew7Cnlvprh6F5a93eG3nI/yMp3h/8YCwfHtw6vHDvDr1NHsOnOfTf/gmnQ01\nR46nh9kF4fOw8Nw0L/BFXvNP0H93XphcN4CVvqTAKyNvZgX4kAy/m5jgO+k13WUMeq1l9q5XU+vA\n18dcznm89WnjUUkGEqhdLca/UeQTEUVdJ9lLSlnMjGwxnkYqKNN/bVtQSdOlrYHo6a8ssjpYkSm4\nUsSgcBEK7zAuQ9XpCNkkitFQ6y0oi7YtWhOTzG/axvzW7cxs3EirM0HWapNnGVnyCBAsS7YNrdLm\ntYajH9ewGxqzzBgbwEoRxTk/mS83IFbD+JLX14BgWimwLVATtF1B3V9BJdmPAnxdceb8Bf6/P/sL\nXv3Zz7h548Y6y2u9PqZqNg9hz4yBrsaRpQG/Gl+wtbeBMQDWVEi3+c8BtI0EaB3I/birrGreO3eR\n0+cv8sOXf87UZI9tm+fZu2sbh/fv4YmHH+SBPXvIdCYHYqUSq1VJyEZkxFxVamxkv1bqCIwM4NFK\nUhIRn8cG/HIxjFgA4rEVUVqGE3JOl1TciMd7AW7QFqU8WnkMCq1zdKbJ2hnFoKS/MqD2QZowRCoe\nc5l8m+RfpZHX0EzftTaoKKmQKlqM0sTkDSmNQRiBfS7UVK5OjAXwQSLqa+dw3lPWNcNhwfJgmcV+\nxe2VktsrK5RUTNouAS1olZLWIwSIVmOsphV1kvwnP7ROBhNdylhQa4jRY70jWPGTNEqD0UQdqUJF\nQrWweUZdO8qyHjHatNbE2mGUQVmLiZoyOCLy94lKnpcKAasM1oiP5N1igKvX95qPp9ZKWCCZ0zEG\nc5Ls/KaFC3Djwk6OH3yYN2ePsPV3btAZOp54ER68DlkbOg8DvwfvH97NGzzOe/0HJNHxKiIbeQzU\nl2vue+Y0X55+nmd5iUfLt5hfXEIRWZrp8W77AV6a/Dw/euorvGMeIwys+HZ1gSeg++Vlnnjgp/w2\n3+FL1YvsuXaJ9q2CaBTDjR3O7NjNnvZ5vvPQb3PUfwG+DeFEzluHH+Wl6c+z6b5bfPZfvMrk3ord\np9NLvQ/6n21z7IEHeZEvcGL5UcqTHZG23InCWhhN9Jc/4ho2e8dav8uPkvGv1y+zah+4cnvA4fvm\nqUpHWcq6pVKIiPNeBhl6PPhtzr7CLgbvIkEh8nEdcMnM3ioBwsTiVhLcXe0JWqHSGT24QN7S9Hpd\n1LAU8EkLSGQzi7WWyalJymLIwt07tLttWm2xNvE+jJIPG0+waCQcywdptF0ImCjgl2+GMEoRosKF\nlBSslMQCJel483ZrXIMVUWJ5EhjWOGQid5XALiW9QuPllfZVENm7Sr2ISsMhhcKoRu4YIHr5WRrS\ny3VWo68/qmIMo8GVsAMUq4OKi5eucebcJY6d/ID3r9/m1rBiENZZ9//468NKjrV7yAABjFqMFRtN\nFciZfSP4FbjehpOa4vUur297kpmNd/FbNU/+/hts/+JVustDqnbOzQ0beWvDQ3yfr/LSyrMsvzoP\nbwMdWHh1My9+7ot0ewMGD3d5cNt7bFy8RVY4lmcmubxhG0e7T/Jd/hknrjxKeM3IPnUrQryLeJS1\nwDWwTcOObjwbl9PnxhqlGRStn1M+XOvA1ydQtXO0Wi1QSjaSxNDyaTG3xlA7j/OBPJmzRxXT2Lph\nFkDwCtvOaWUZRTEArcnyFjpEhkWf1ZUBuVYyRYpQe0VVK7IclIu0lYYo3GerwWBQJse0esxs3MzW\nnXvYuHUn3akJ8rw9jitupDz3/l8y4Ryb08c4BsFUYpUlC7PR10HJFCX6DzeFKvnCjH+utBgMB6Mw\n3RnazjEcDtARTr9/jv/wze/yN9/9HqurA9ZrvT6ZalgJjZ/XP+T3P+qQ1TQla6uBdNcPVL/KihFW\nhwWrw4JrN+/wxon3+A/6BbTW7N25nT/8va/zjS89w/zMNNaYe8yH5WuPtU0Eu6xvjY/X6ENBJGCN\nTR4qaXJtFCq6McPJOYiyLoqcQ6dEYJD3ik1rZhSgKkkONZGONhjbpt1u0+5OsLK8Sn9ZGGB19JR1\noJ0HrNG0W5lI7pN8UymIJDlJajKCb4YWqTmKEaPEh6uoKqq6TMRFJT5czlNWnqKsKKuSohyyNCxZ\nHJbcGZTcdUCWYVwkBoU1GUp5MpPhhkOc8+hcmkOlhe8cdMRhsJNTZKpFC83yjRu4qsKl7S0mnxyl\nFSYqal9j85xWr00YFISqwnkxlZbwmYDNWiiTMyxr8iwjKItzpcDYQaO8wgRN5jW51sQq4Pz6v9OP\nt+Kazw1rtvFruQvX5uEM+Dda/Gzbp9k2dZXu3oLP/M8/Y+bpIVPXgRb4B+HUnr18J/s6L/Es19/b\nJS7yHwAbgccic0/e4UtTf8d/H/+Cz1/7KZ0feTgDysOWXbc48MwFth2+iukElj47ycUrh+T2LVCP\nO/YceI+vmu/z+9Vfse/Fy/A8qDOAhakDAzY+t8DMs3ep8pxbhy5jtgAAIABJREFUj2/i/PkH4Rgs\nvrKNH/zWV9FZ5PbOOY78D2+zzV/FKM9NtYkT+ggvq8/x/frrfHB8HxzVcApYLBGWV58xs6vk3lo7\nhGlAr/X6JOq9iwv87uceoNfzxFCIR60cmFHKjSxMlNJpyJGkfSI0BCQJXphgwhpuEtCxBmXE07A5\nj2vvaGUtGWIkZUSeSzNfefFc9M6jTUAbw+zcHIPBKtduXKMsC9rtDGs0Mv7QyQzFiOeViRA8dQPS\nBWHEGqMlnsLIbUL6796LDF+piE4gUyP3VyoBXokJBunUIzSr8QVMk59mCC4SxpiIAglMu6dECTPy\nL1aN91dM/wIUH661p7J7H1q+WRoUvPjGO7zwxknOXbnBnaX+ulfwr2Wt3acb25BmvWy8eT/KaqQJ\nV7kFC9Nwsg2bNTcnd/LNr32DW9MbeWfqIfZOnWMi9hnQ5bLawTsc5pWVz3D9p7vh74ATcldxTvNe\n6wjFU22udrZxeOM7bJu/SouSRTXDWfbzJp/i2M3H6f/dHPxUibn+cuMnfI1xIAyMhxprbVUawKth\n966z0j+q1oGvT6Cc89Te0WrnZMZAiHiVmoik/gvOQ9Qoo1EmAUlKNr+QECWlLe1Oj0AkEDBGvLZq\n56iKIb4e4oxM6QOaygfqALVDzOeTJNFqhVYZpt1jcnaejdt2smn7Tqam52h3OpIAk3xnIAFvMN6o\nktTRGvnceNyItEToAklGn16jULilrZdJVgOONakrPrEcGhCtab4CHoJCZR2CyXjv7Hn+8lt/ywsv\nv8K1G7dGQNl6rdcnW2ubig9LFX9RPf36JP4fY0WEyRqC5/T5i/xv/+qP+Zf/5t/xyMH9PP3oQzyw\nZze7tm9l44Y5JrptkUOuOWw1h3cYT5pVOqDXdS0pUiMpe6BlxGAfBUErQtQoJRJ5okZYAakBcQ6t\nbfIIk+mm0mNZZW4VrUxhdcDqDrnVDJZLXO2p64r+0KOVo6glxcom2YgVoxXyPMMHjw81Vokxv6vd\nKMik9J6Ap3ICJkUv+1VVO5wLVLWnrGrKyjEMUERLv65YGJSURFqtDHRGwGJMhiakpDMZlDglUiBj\nBBR0PhKjxSmNbncZrNaslJoidKhCwLYsOreozBA1tLKctlaY4PGIVMjYDFdWOOfQEXptCWrxGGKE\nsk4plUaL3FMbaTyDAJw6ZiwsrQ9bPrlyyPqaI5P4PnAT+lPwbg4/hdsbtvO9z3ydlclJTk0+wIEv\nnGaWBUraXGYHx3iUV/3THD/zBPULHXgD6Q/2gToUOLjlOM/wMl+49jLtfxspvg1LZ0U9NbUNOu9F\nHv6j97j56Eu8b+7n6qO7cW90oQ2tfUOOtE7wWX7C/lcuE/4E7j4PZ69DZmD3Vpi7Frm/dZmnn3iV\nt81DXDp0H+7VLvxQcTHs56+f6HJmfj8H9Gk26NsYPHeY55zfy7v9w1w4dgB+qOA14EKEcJd7ExrX\nyurX1rq3y6+iqtpz/OwNDu/eQF1HikFNiAL4eC8S3hAYmb6rtP43zK9x4JMnADbZpNRpbSSZvmsl\n/sEueEztyVrZyFSfGMmyjKhEZm5NlmTymtu3b6OI5JkleEddVbQyQ1SWSMRoI5J3bYk6EpMneETW\nQe3BeyXDmsRaVlFSDbUCZRoJSEyMMEbs5hRQDKhRT0GST8bEpI5JphiaKc+awZFOw/gYRRkjqpUs\ngYrj+xMmmBjtr7VcYfwrzQgf7wODouD23WU+uHKDl14/yUtvnGSpv77O/9Oo5rzeqDQaq5GSsQk+\n6XOzXrYRQOwWMAXnt0HHglP0lzbxwpNf492dh5lrL9AxA+qQc7ec5drtrRQ/n4ZXEcPGMx6MAquh\nNly4fZCbj23htbmnmM7vkqmaVTfB7WKeG+/vhJ9pud3PgesFY6OvZYSl1vQajfVJE7rVgGBrf75e\nH1XrwNcnVK52wuWIEXySCCaNeVnXolbREAhkKsOYJCtJJGCtLabVotObZmVlAQJYk2O1oSqGlIMB\nBARUwqS0L0WIloglREONkvvOenRnptm0Yzebtu1mem4D3W53ZFg52lSCNB06AVE6AV7GyIdO0pwm\niQVI7IBx49VseiMic5rcRKEUyNfN7qdBhTFDQqUNq6pq3nv/LN/8yz/nm9/8FpeuXP0k/3TrtV7/\nmVr33vpNq5XVAS+//hYvv/4W87MzbNm4gb27tnPo/j0c3LuLffftYNumDZi49iCVajTFT7KMhJE1\n661RGkUgBIfW0hwFL3LE4BuZYY33tTiuxGbNlMeRkBGDVmE0odYEWlnAt0BPdyAq6srTX+5T1RV3\nl4cijTSGdpZjQsAoKMsKl5oH1UgvY8A5TxVJSWOeytf4IGmTarDKjlPneOf+nUS0GP5bTcBQR8PQ\nQx01pmXI2zkTnRa9dkaeKRnk4EUyk/YCm0lEfUzy0BA0Xokx/dB5nMqpI1Re9tF2z9Jqd8BCNIlo\n4SK1j7gQCVi09hgV0BZarY4MilwQLx6r8SjxCkMS1tCRGGtcdPTryNKgYL0+yfow4+sW1JPwwVY4\naglZxoXV/dz91Dwnth9he36FSVaoybgRN3FhcR+3z26ieqkLLyNJWVPAJjB7CvZzlkf8W7RfiBTf\nhZ+9Bick0O7/Z+/Nniw5zzO/37dk5jmn9qW7ekGvQBMAQYoQxaFWasLSjBRjhycmHOFx2BNhhyMc\nMRG+8I3Dvpkbh2/8B3iRJ2akkeXQPiIlQRwSXEESIimSIHY0Gr2h96X2qrNk5rf54ss853STI40s\nAN1ofr+IwilUn8yqc7o6v/ze932ehzNb8A8r6ByveerkeT6y8g4HD93m5pHToGHm8A6nucRT+xfh\n27D1bfjCnWg5Lx185Dr8k69B99ma00+9y8mFd1k8sMXGgR58EUJfc+f6CbY/cYBXD3yKohcNx+th\nwWB9lvKtHrws4CXi9EB/m5jctc1k4qvt7Kd16GHhh+du8fihBbIsw2ZgjWuKWjGdt210SSFjUUgI\njGsmwYKIDYwg8c7GNEc83jtC3QScqGiHIojG+cZYdKbJixzp47VfaUneWKnoLE4MIwXOOfJMIxHU\n1YhSCmaKIlqrCNCZHN9/S6WQIU6VeVyzb4nXY0GIaYsivhbRTKeJpnPhRfTIkq0HsBDRZStMZI9R\nDTIpbDXuls1aGP/PN49SxZ/fE6/rhHZKfuKlKSYjZGNZJVMTYm3wjPeevcGQm+sbvH35Oq9fuMLb\nl29w9fY6o7Im8Sjiph7vD7maVly0vy+KOFmbR0/qd9ZgmME62HMFN04+zo2Dp6HroJKwKeOF/x3i\nVPElD6MNIIPXlqMK8TqMXl/k0mOLsOziROVQwR0RZexnm4/bNdhbxGjJbWLRa8S9U1xts7y9nkzL\n2RP/PlLh6wPCGIOp6pggJNpOD42JbkxLka3NSVNs8s1EGCGaSPYWF8mKnHq9RAhF0emSFV2899TW\nkxdd8AKZ2dhJUZogFV5mBJUjs4Lu/BIHjxznsZOPs3LwMEW3Q64zMj2RNMYui2+SUPR4AquNhFdy\nUvBqi1zt5+05xkgmG7NmcYNmcY9HxoUzhFi4m5rgklJw6eJ5fue3f4sv/MWfs7W5mTy8EonEQ8XG\n9g4b2zu8ef4SX3jh28zOdDmwvMTHP/I4v/6Zn+OXP/0sRa6aiSyiHIN7e4zQpnz58bU2PlU0khiF\ncyBl3BxYA0IBTo43Ee2NWyyAaWiyDAk+Ti0h6PYUeRE3LsY48s48zgV29/bZGwwZlSWls/z6c8/z\n9X/8jwgimtcXeYGWzWamMRiWQuK8jV5e3uCCw1rDP/+Xf4Qylt2ZnBvHDkczfGcZlSVVbWJIQJ6j\nexkLs12OHJjjwMp8nDjAIdBY56LXl7ME2Q44xA2hkhonPCFYrDMU3YzcB8qhpTKGzOVRwkj000EJ\nSutQXuKcJASNlAHdVWSZAi/wxuFt9LDJdUZtHC7EIl9QIk5MC0UIlmt3d5Lk5QOlvbFvu/RDYoJV\nB4ZdeHUFakHY0OxcOMDuEyu8ufYziJnmnmJLEi5LeEvEwtHrRI+swwLmYWZljzXusLa7Bedh5xK8\nYeJ3AHg9wBPn4cxZWNjZ5cDKOnNqP5oZC5iZHbDIDr3NCq7B5hbcChNL5UvAnatw5DrMjfrMLezR\n1WX0ByuBrwBXoP5hj63DPZhvfrf6IhrZXwUuNI/D7eaTdgJgwEROn2QtDxObu0PevbnBkZV5oPXx\nipL0GOAUEVKiEOP7ZNN4TMnGX9B6gbEGvEc1k1Qx/qSxIGntRPAE396Dt76Rca+h/ERO6KzFWkuv\n243ri3WYssRUFVpKlI7hWV4AStGOSikCsv1m3uGdxTuLk03gFSImREoRfbtab67Wvb8p6NF6bIWo\n9CC0JbB2/mqyJtL2hdrJuKmpLTGW5bfeXu07E1/nJDO+bbyH8f5iY2eHb7z0Ot959RzvXLnB+vYu\n1k32J4lHncCPmt5Pyx2bEBUUMUWl+cWra7h8FG4X0bR+DVgUkOt4uj1inewGsBvA3yBexDXsV/Da\nQbiuou/XKjCv4i9pSfSkv918lIPmJLeI1/pps/ofd51PUva/Danw9QHhfWB/OGK+kRBKSZMeRePr\nEp+ntUTpJh/RxZQRlCDLOnR6MwyrEaYuQSny3gxSKcphBUKjsg7WO6Qv4jk6BVIXaN2h251n8cAq\nxx9/kiOPnWBhaYkiz8eL1PSUlhRxMdZajyWPceJLxEVU3lvwao/78cTJLuc9zruJ+b2I/xFCRumm\nm3gHGFOzvn6b5/70s/ze7/w2d+/eTQtSIpF4qAkhYKxle3ef7d193rl8lT95/usszM3yq7/wKX7t\nFz/FyccOs7w0z8xMhyIvaBTv8ba8mQKYlnuP03GR45h3IYgm+FY36YVh/JzQFmuASWktyhalUihh\nETJO4iql0JnAGofIFujOz1CWNb/ym7/L0rUbrF24yJUnjsWprsohiMbKwfn4s4qYyBXwcd1RApVr\nfv+//6c89cpZ1p94DCWg3y/pW8vecMT23pBh5ci04MDyHKdOHObwYoe5XKOCw3oJQZPrgPU1UjbT\nBkLGjKYg6SkNosQq6HYkuujidcAJw85un9HQU9b75EVGVuSITkYQAuMsWko6eYZEkBcKh6csDbWP\naZxSKKw1OGuJ6cPxL0doiVQSZwK3dwYf/C/XTzxtYaek9baLGwIFtYU3VmBDwwVBOCwJKxK6xL3A\nHlEtcg247qA/AtlrRgFjY87fI3e5z/8HJmp2EaKbkWj+0RpwTlGrHJ8LmIVOHu2SW5HULDDbA3pg\nVIZD4byKL8cDFz3cDnBWxhjKmWYavk2u3HawY4g7o+vNi9kmboZab5dk+fCwUVvPldvbLHRiQqJz\nAikzpMoARwiu8S4EppLSCTH5MTYsosQ7OI93jaxdN1NeRCP94JvGMwJnfQzdEGG8figV/UgFgW63\nA0KxtLTYpAgT02qJzXmd5yitcT76T2qlogReEaWMIUr+o5dXbDyIRr0hQlwfWv+WNuW9DaqKikU3\n9v2iKdaNG0DNwE37b6/1+g9M9h9jpr6HkmIqxdFFjy/8uAAWcNTGsrGzy/krN3jhB6/xl6+8xaCs\nsDYVCxIt04Ww9oJfE5sLML4oh30YHoQLi3BZQUc1w2MBqhDXI/rE1sld4rVaxfP4PdhYhY1ZyCV0\nmguACVA68K55/h1iBW2LSYOjTYZPKaJ/V1Lh6wOkrg1lWVEUGY0dS9yM6CinaK/rQghk23ERoFTG\nzOwsRZEx2N/FO1A6J8s71HVNWZZxwZFR96+LDnmu6XTm6PUWWD6wytqx4xw9cYqDB9eYnZ0ly/TY\nm6uNBhaCuNC10clTU11CNAuMbFNTfpR7JI5Tk13OhWZSq/E0E43fl4qLt286LXVdc/atN3jha1/i\nq19+nrfPno0do0QikfiQsrvf57PPv8BzX32RI2urPHH8KE8/cZJnPnKak0cOsbayxPzsbPRfabxN\nrG0M7qUk+Knp36ZZEKXwUd6h1L3XXNBY6xBCNHH3CqVELOxIiZShMQyOk1RaKQoPxin8TIeX/8d/\nzsFX36J68hTLto83PqaM+Xit9s43008OITU60zGSXkqEd4jgeevnf4pgDKaRGO6WjjsDw/r+iCAE\n83NdlmY7HFjoMdORKEKcSpASoRReBYRyzdoRJwuCiDKYECBTgUJYajvAOcdiN8eHnNFIYuwQLQXe\nGWxd4X2GVDmZLCi0JMsycpnhg2VQGpx1GBv9MK21GBHlPnFHCTgDmaSTdxiOauqU5vgAmPZTNMSN\nhSBuBEYxeevGKmzMwdt6EtQFsQJVhthFd03UezgFZQf6MNqZZ2tuifW5BY6evMPiMfjoOrxsG6kj\n8Ngx4BT05+bYYJV9Oxf3IxXsbSxz68ghbq+usvTMPgfPwKd34KyNN9jPFjD/0+A+Butzq9ziMPvD\nuVjHGhBPMtiCQQ9kBrq5LfcWrI0/L7tM4uq342tmyGQzlH4nH0Y29yoGo4pe0YRkCAVokDpulNs0\nW2JDoyjyJsCkago40W/RaYVtTNu999gQGl/IWDqSQhC0xhiLrCU6i/Yo3nuCjF5exhrKcsSx4yf5\n5E8/y7VrN7jg38H5gMMxLEfITCOVItM67k9oEotFABS4OI0Wi1mAjwU5LyQhKJwzCAJKxfOAbKZ1\nffTjEgIvGMsdhWitAEQT6NUMh8HYq3Kc3DgO0YrTYWG8njVpwD4QmgKfD4H+YMj61i7vXL3Ba+ff\n5a3LV3n35l2qOhUOEn8T0/LBlrbx0icWpObBdWHQIRa2PPF63CYs7jcfQ+Ja1X79LrAAdQfqNk2y\nNdsfNuffbT7fb77eBpik6/x7QSp8fcCMRiV5rvAhahq1UqhMxaj4EBDBR2kIrTYeiu4M3dkFJJq6\nrAhCURQ9QDIcjXDBozONI6B0RpF1KIqcxZVFjpw4weOnH+fA4SPML8zTa6SN095cYxmjUk0BbjLR\n1U6EyWbK4McVvaansdoNmPexE+V9mJIvCqSaFMjajpR3jps3rvOvf+P/5Ktf/iLrd+9gTFqcEonE\no4Oxlis3bnPlxm2++f1XyPOcIwdWePLx43ziqTP8zDMf4cyJo3Q7ccc+3TzwzjcTSdF3JUrFBVJO\n/BVbb8YQAlrH5GAp28mx6KtYm2h+KoSbXP/xBOfIfYyV90HR//THWBZgyXDWxolkH31qnPMIH5O6\nRNO9t95grMWaOLUbu/uC2jgGQ8vubsn6xi6lUGTdHC8k3jpk7ck6GZmI3jFIhQyNxF7bxhNSYKxt\nNjoBLyxSeDI8qirJaoMqPHNKs51JjG3XIYutK4LJCcqTdQRCZSA8xlvqssZ7ETeeSlGZKpr1K4EN\nUT6mpUAoRetgMyiTnOzB0aZUtdNZ7RRY25XfhGoRqhli1StO1sTnDJgUkHIIh2CvA7fBXiu4eOxx\n3sie4dnPvEPnHHymhDNvxu+ycgI6/xCqX9acXznFec5w++5alKSMoLwyw9tHnual/Kc5+evv0r0b\n+Hs9ePYiCA35GeDXYPtnF3ml+Djv8CT77y5HJcsWxI3N5fi6fAG1nnq9JZOI+v2pz6cnvdJm6GFl\nZ2jYHVRkUhG9dwMiExA0ohn39SHG+kop0VqhtQICpjb44BFSUMi86Ws3KYeE5nxNU6TxJrLSk9kA\nmYyTuDYGchTdHlVdsbe3y872Nndu36UajegWBWUwOFNTG0NdVmPrk+AdIcjxfX+mFQKPDR6pYnXK\n2nifrrXGexsVLDQ+lXIiNAxh/CnQSA9Fk3osoow91gEbC5Sp6a7potf0VKaScZIuFsg8QsQ18tb6\nJn/1xjl+ePYCZy9dZ2NnL/ooJ9VI4m+FJa4h05NWNfGavE9sRORMkiHbBkT7nBGT67QgXuf7xOJX\n4/uFbo41TNay6r7jLRM5e7rWvxekwtcHjA8xBr0oWg8XiRAypho6D0ogfNS8e4gyxU4PqXMGwyGV\nrZCZZmZmBq1k7PDIWLTKM01edJibmWft8CFOnz7NiRPHWV5eZnZ2hizL0EqhlR57cbVTBVK2Hl5y\nXJhqub/o1RbLfhxtnHFoNkZt0asd2W6lPATBcDjk+tUrvPDlL/Hbv/kvuXH9+vvzpicSicRDhLEO\nY0ecv3Kd81eu86VvfY+FuVmOH1njFz75cX7pkx/j8IEVVpcWyXTWJH9FhUc7PUub9jsdLtJ83oaD\ntKlhcYMsyHXWbJT0pGgWDEE012080gdQAddIKJVSjY9YNIMPkugV4zzeg3XNZIptosJ9wBpHbQKj\nkaOuA5XxBKkROoNM45SgdBakIFM5wpZxikyB8FHaKLMcKQRl6cZrnaursVk9xtBr7kdHztI3NWJU\n44ynNI7aCZQIaGnpdHK8M9Qu4FQgOIMNHiE1PkhMiHLHoCQiBHQrGXUeL6AKjuA9u/0kc3ywTHuz\ntNH07Uaj7ab3iJsKOfX81hvMAcvALuwswBVJeEvy1pmP8ZcHfpEjJ2/xc//sZbrHK4693Tz9JFS/\noDn7c6f4Fp/hlfpZ3Ouz0bxrCObNgtdPf4KvHfwVFtd2+Pl/9j0Wnh7QvRIIGuxJxe7PzPC11V/i\nG/x9Xt/6BLwi4QrRa4xtYjFrp/mZ1dRrrad+/vsfU1z9w05Ze3aGhuXZOLUU2oayUkhynDV41yQZ\nBgjBo7Wm2+2glKSqYoiG0ApEbEJ4XLyfbprlNFJD76KnoXNh7HktEHEaF0+vm+FdydbmJufeOken\nU6CUjJ6G1uKso6pLcqPRmQQ0wkCWZVGhISRaRe/I9j7fB4d3Am9Na21PkLFwJ0ScGGNsaj9Jaw80\nta3WV5gmMVdFU/9JjUpyb72qtUoRY8P6qqrZ2Nnh7KUrvPCDV3nl7Uvs9gfUJv3bSPxdMUwM75vu\n33iqSxOv1e01200d0zZc2oJW+/XpY9vyS9vEcc3524Ref9+5Eu8VqfD1ARNClDzOdDtRk+8svpG1\naK0RInZxnPd4qRFZD9WdxVjDoD9AoejOztCdnYtdFa2ReU6nU9DrdVlaWeXEydOcPn2a1QOrzM7M\n0O0WseildWMCOSluCREXmmlp4zRtwaudHLjHnH7qud7HSQPnffScCZPjp179+OH1V1/h+c8/x9e/\n+iXeOfc2dVW9b+95IpFIPMzUxrK+tcP61g4vvXGO//v3PsfTj5/kE08+zjNPnOaZM6c4fGCVIs/Q\nWjaTXzSSxXsnbttmQ/t5OwkGsbNOaCLevWgkKLFTHs/XSEhEbNJI76PIrJk0E0JG35XGEys0N2xB\nOBAeXJz4qmvLYGioavAo8m5B3i2wIaY0Zt2M2YU5dKEJIsSGCyFulISLxS2hUDrecIYAudZ4a6iN\nxfuAMxasJ4wMtaupKoMbVhhrqZXAeMi0JNMBaQxIidIKJwK1C3gCpqoYjgyliVbIAU9w0XxJhHij\nG0xAKEG/qtkfpHj7B8u0BEURNxHtRmFALHi18pH23qPt1rvm6wWwC8MhXJ6FlwSbJw7zwi/9Kqrr\n2Xx6hWcee5vF7R1EgMHcDOeXY9Hr+erXufzqk/ADYnLXEPgrwfraYb7ymX9AvZhz9chxnll7k5XB\nLkHC3d4Kr8uP8yK/yLc3fpn+V1fgZeA8YIfEyYG28HX/VEpb3HJTr6OddEs2EA871ge2+pZTB6Gt\nRkXTdxGl4UIihG+8dO+doOp2o1ev966Z8ooN4+gRrBChndiNHo54cC56fDmryTsSice6CuscWhcI\n4QjOYuoSKSHLNN4pslwTaoezBlPXuCxv9vkBJZsJXAkgUCFOg4loBhylhd7ifZsm72KQS1CNAX+I\nk7tTE2DA2OwfGKtOJpNd02saTNukAAzLms2dXc6/e43X3rnIq+9c5MrNuzHMJJF4T5kuSrVrSPt7\nJpkUvtrrcrjv8/aYtmimmDQ32sJZe37/Y45Nk4rvNanw9QCoK0NZmfGGRDSpjkpFPX0Mnwdkh7w3\nT1Z0qcoRpqro5DPMzy6hswIXPEVRkBcderOzHDp8mKeefIqTp06xuLQYk7O0RusYUy+5N41xYpQc\nv68UPzo90Ba84F5JY2v8G2iLXdHAfhJJ3HZ7GH8f5wIb6+v85m/8H3zu3/4huzs71HUqeCUSicQ0\nxjpeO3eR19+5RKfIWZid4YkTj/GpZ57i42dOcerYIY6uLccnh4mRcTvBO52Oe39SbpQhBryzjN2E\ng4ruxE0pSwiBJvpOemL6Vrup8CF+BCFxzuJ8aM7pcdZS1YFhLekb6A8rdqsRQ2NQuWA2y5lf6LGy\n1OP4kTXmZ3poEdBCIVyU+ePj5HPc8UiyXEPlopGzkBgHg7LG1BY7rKj7QwY+sFd7SuMxLmBp4pFF\ngZSK2kukhwKFN56qDBjrGJYVxnpA4Z3DeBcPCwFJiLe1zeaurh0m+Xs9JEwXfVopSLuhEFOPbZe+\nfX5rO78FbhGuduBljVvIeUd+jK2fX+Ri73GenH+bg/N3EQS2WeYSp3ml/CTvvnoG99UMvk+c+NoH\nOhC6GdfqJ/izn1/j3JEnOaneZXl+i4BgnVUuhdNcuPokoxcX4VsCfgjcqYl6x9bsq50GuJ/7N0DJ\nBuLDxO2dIbUxZDpOOwmibyFBoqWKkj2lxvfOzlmECGR5RkflWGuw1iCExkqBtXF6SgoZDbF8nAL2\nIeCcwXmN97EALKQH76hrQyAwMzNDVXqMqZifnyPefgekkmO7FWssVVVREFASvHMIreJ1UEpEkDSO\nXaAF3se1xzkbSwJCYMVEISJCI8kXiiAmacXAfXsNGae9xL1Fr3GQpHfcXN/kzYvv8srbF3jzwmU2\nd/YYVdV9U2GJxHtNW8yK9wr3FqPEfc+b5n7DfM1kkuuvO7YthCXeD1Lh6wHgQ2AwHDE3OzOWoiit\nkErhkVjrcWi6WZe5mTkEIkoas5ze/Dy9uTmCFHSyjJmZWRYXFzl27DinTp3m8JFDzM3NxfFkIaJx\nvpTRFaONGG4KU4EYdSwQyPEY8uQfopQCJRj7uIx/ftcACWGjAAAgAElEQVR0rQQ4Hz1fXBNxPz5W\nNJsm76nqipvXr/GtF77GH/7u73D+3Nmkt08kEom/gRACo7JiVFbc3tjixZdeY2F2huNH1nj68eM8\n+/QZPvbESQ6tLtHJM7SS98jY75dAttfktsMegsf7GEXvnEMw8ZsM2EZRGSe7hJRxyivQpEeC87GA\nFGXtEuME1gmsUOyWlutbW+xUliAhK3KW5jqcOXmUtZV5VnpdOhJ0sM36FCcUogwofl9jDShBUFBX\nlro2jAYl/f0h5bAmBNjxge2yZlg7SgS2mYZDKAgKj0KoHC9gZAzOWKpRTWUt1oNpXrtzodnQRS8d\niSdXCqkl3U7GTr+KMqLEQ0Jb0FJMpr7+ulvaNiF1QDTXmoFyDt5YAiHwQ83dGyf58k8d4QcnPs1c\nvocg0PezrN9cI7zegZeI016vBthpUhXPLoOXsKfoX1nkBx/9ZV46/rN0Fgd4J6l3ZgnvangLeAV4\nFbjooN4gGoVtc69Rfbvhmf5dS/4uH1ZGtefm5oDjB5p0XSmwzhEcZKr19IrBGtDaoQSkE2PPLyEC\nUnmEk03ARwyIIgiiNZZA6JiMHoJBih7eg84yhCio6gF1OaIzPwu5wtQlnU5OWWaUVWyWdDodrK2x\ntsbUglxL8HG6Kxa1JkWr6D8cCEGOt+7eO5yQSO8wtm6uwSBDnIhpGzLT69N0eNYk6REg+lKWVc3W\n7h5nL13hO6++xbnLV1nf3qVKHsCJB8Z0mEg78dXy10kSp2X6MGnQTJ833V98EKTC1wOirg11XdPt\nFuhMozKNbCKPQ5BkeU6v10XlGlNbhND0egW9Xg+dZ+TdHotLS6wdOsSxY8c5evQoiwsLzMz0Gsnk\nJAI4TizHtoknxNjhpsMim+dMF7xaHX6rxW/bKWEcZxya7pLHOtt4zrT//EWTyhIlMpfOn+fzz32O\nr3/leS5dOE85+nEdzUQikUj8h7DbH/D6O5d488Jl/t03/oqlhTmeOH6Up04f59mnHufZp55gYbY7\n1ejw4+lciIoTIWLRygcfTRxDbGjEZnv0E/NiqtAFY7mNbSSUseDl8QGMcRhjo8G9h7J2bO3ss7k3\nopQZQsd0ssX5LkeX51goNF0hyATIdnoMHxPtjEV4B8EhhMfhCCKQaYVpvGzqkWEwGNEfVuxUjj3j\nqQVY7xBAJjWZEkgZ4gbNe5wHbzzChKZmEvDG4kLAAkKqZpMWzZujF2aTahZgWJq4jiYeMtpNSCsn\n+fehiMbB0b8I1uPjAHh9HnY1XAX3cs7G4cfYWGoO6xPrU+8S5YmXaYpeV4AdqJ6At1dhJ4tTYC9B\nWCsYzRbxR+sTrceuNcfercCuN19o4+orJpLG9jWkjv+jwvk7fY4s93DeNR63AeMMUrThUtMG7gHv\nHdYGpMyjtF1ppPcIFwNOQojG9daYmKBIQEgRrRadjddl71AhQ6scp2qMramqAXk2R11X7O3soJVE\nSTFlmA/WGGqgyHOyTOOcRdq4T1BSIqSK64MPIMGNZYhyIrUXDmtt9IeEcdFrWlECk4Z6+2iNo7KW\njZ1dzr17jdfOXeTVcxe5sb6Bc+nfQ+JhY3qa+G9LK2lMfNCkwtcDZDiq6HQLMi1RSuFQuBCQWU7R\n6ZHpgqqucXg6sz06vVmKboeZuVkOHTrCiZOnOPrYYywtLTMzM0OniAvVtK9WW9BqXF/i1xo/L60V\nWqkf6+0VzSgZS/Kjf1fAOod3Huc9xpiJeb2IxpZCgLOO2zdv8Py/e47P/tHvce3qFUxdv+/vZyKR\nSPyk4H2gPxzRH464dusu3/j+K8zPzLCyNM8nnz7DL/70M3z08RMszM3Q6+bNpEDc3sQpLppre7zM\nSymjXN0HZNPkcCGM/xwvUDZOG1TNRscFsM5jg8O4ChccTirINbWDEkXQCl1osk5Bp9shU5JuplFN\nSmU0ffZYAohAJuMEQ+0cMnhkcMgQMMYQfECgqK2nPzLsjmoGNdQBjASnBFpGQ2ThDVI4hM/wJrRz\nzUgX/c2kFwjvyYgbOo9HKKLnJdF7R2tBrhR15emPkiz/4aaVo/x1fy6IXfc+EzmkhcFheGcNruVw\nEFgC5ppDSqIacR3YM2B3gOvEathmPE89gGsH4M5CnOyaI6oqIda0doChA7ML4S6xErbJxNi+IpkY\nP7rsl5adQU2n48bXXtuk5YoQ6PU6ZFkGNJNT3jdTqBatc7IsIxcC6zy1MuhmWre/14cg8ET9eQwi\nCVhnEEaSZxlKZCipQXusrZGipMjnGAz26HZ7KCnItMbbGAhC8FhroozdObTWcZLMR6l5Y1cf/Yil\njEn0redviE32dgfSFrTaote0vUv750LEidsb65u8ffkqP3z7PG9evMLW7j7Dsvzg/7ISicQjTSp8\nPUCcdxgbQGqCUBgbEDojywuyokPQGqRifmaOTrdD3ptjdeUAJ04e58TxE6yuHmBubo5OUZDl+kdS\nGe+XuuimIKZkLLSpcdFrUiCbnvYScXQL5z3We5x14wmvtuA1ParsrOPunVt86fPP8aef/SPOvfXm\nA3hXE4lE4icP7wM7+3129vtcvHqTP/nyNzm8uswnnnyCn3rqcZ489Rgnjx6kk8cEYCkVNpqnjCeZ\nfAjR2N55XPBIJWPxy8epmmDjmL/C4b1FORc9vpouf1AOrTOUV8giI+/1cMKT5Zqikzfm/LrZOMWi\nWpTUKzLvCT5Of0EgFwIR4ySpncOUNbZ2DEc1g5GhcmBRWFzcJPqAzHQzoKxwIUr1pbQUOospaF4i\nRfQzExJ0LhFa4oWgDhbjbZNiHCcopBAoJDuDIVWV5DUfblqPlrYJt8skfn4Ebgf6y9BfIFatppuB\nnli92iJWwLaJk1r7wE2gD2EbqiWoZmFzhmiyH5rzD5rvt9ecYycew4B7U7wSjyI+wN39irUlTwgu\nDtmGgLEWERxaK/I8H0vQlZZ4H4ugznqUFLEZngV0XsV798bU3taO0IR9tDYkbWhVlETGQr4PghAs\n3tWo3NPf38VZg1SADigd/RTrWuG9xxqD1Rolo7+XFI2yQ6nGlF8ghEfK2EiBGLQ4fg1qsg9pC1/t\no7WW2hh2+0POXr7K9944x/lr17m5vomxSdKbSCTeP1Lh60ESoKwqun4G4TxIhc5y8mKWmblFOrMz\nFL0O87PzdOdmOXjgEE88/jiHDx9mfn6ebrdLlmmUkig58XZpTY4nxSwQIiDuM9ILjYxFNLHA06PW\nrawx+NBMd9lxB6otqLXfz1rL7RvX+fqXn+e5P/23XDj3NnWa8EokEokHhveBG3c3uXF3k69894es\nLi1w5OAKTxw/zFOnjvH4iSMcPbRKt1M0czJh7AfuWlk7TAJMrCV4CzIWxoK1CGvQ1qGdwvgch2O/\nqtnuG0xwdAuByAvm52dZW51nbWWBIpOxuEQ0PY5+Xk2RSWksAe/q6EEpFNaBqx3BecrSsD8oGRnP\n0DiGxlE7RyA002M0Jsmq2YV5hASl42RFk42GFBKdZUiZIaTACRBeIgwQYqKjbLwwCY6t/UFy33gk\naDfV7f1JM/HFiFiUWgd6QIeYENkeUxJ9uAbN4/7U18TU19rjs+YjTB3fPn/YfL+y+TnaxMm04X+U\n2RkYSmPpeh/9DIWIKooQrU/iPTUURUGRZ0Cc3vI+4KwjeI/SGpkXsfAlJM50scohiMUk70KTuBuQ\nWeMdZhyEiQrEO0NdD/EeskyxsDjP7u4WxtRomdEpCqqyGhe+tFb4xitRhlbWCDRhWdA22e8NxLo/\nndE5j/M1G7v7vP3uVd648C5vXWo8u+o6XV8TicQHQip8PWCqsmQ0rOjOzJHlHfKiR2dmlrnlJWYX\n5uh1e6yurHH46FFOnTzJ6urKVMFL0SoUxx4s0ykpYpJrhIjj0BMryrjRaLlfdx9Nj31cdJ0bF75i\nx4bxePKtG9f52vNf4Etf+AvOvvk6dZXkIIlEIvEwURvDzbsb3Ly7wStnL5DnmoXZGdZWl/jkR8/w\nqz/3CU4cXRv7qLjg8QSCEBgbpTdCCFSe4b1FhqiRDAKsUJgg2BsGbm7tcmt7m73aMAqabq/H2sEV\nVlcXeezgAnMqkImAEtFbRgpQxPOEoNFCARYnwQuBswFnYLhXs79Xs7XbZ31rl/2RZWg8ppkmiGuf\nIChJwCObxo6UEqUkzsaNJiogNVBLcqVRCASekXcoNFrEVLXgLUEKpBI4b9naHz7Qv7/Ee0XrqyKY\nmMkbJlNZHeKklmZye9xOhXmiJHHYfK1iksTYPubEglcbUz/9Pavmo506mzazT0WvR5390jKsLEvQ\nFPnjtUpI1TSfY2vaOYezoDOF0nGCVQqJ9w5cPDbvZNGDkGgtYk301PI+YK3DGBPv0b2LckqhUEIT\ngsOaGsGIbjEfGxBj1UZMhZRSoKPeHI/DeYf38d4/TKVPjn2EZevt1bZPwtjEPgSorWV9e5dLN27z\n2vnLnLtync3dPUZVao4nEokPnlT4esAEHxjs7TO7uEqWd8m7PeaWFllYWmZ2fp6l1VWePvMUhw8f\nZnFxIXbnQ/Sy8K1RZkMrYWzOjJAC0Ra02g5MiKPKsVNzr86+XdAmscqtz0Dc+EwX1vr7ezz/+ef4\ng9/5Lc6fe/uDe8MSiUQi8f8b6xx25BiOKm6tb/HK2Yv8mz/5Io8fP8Lf/3s/xc88fYalhRnmZ7tI\nJbDeNZsvos+Wi8bzPniCEPgsZ1haLt7Y4OrdbSokVRCIrmZxZYmnnjjGYk9TEJhRkE01ZXxjRg9R\nYum8IWDjJJhQEAR17en3R2xu7nB7a4+90jGoLF5qXJMwlkmJDQEbolxSSY+WOT5IrBUYESgKiS4U\nWa6QHYVGMVN0KQclo/4ArEU4YnJayKIjmHLsD0c4n+YRHi0Mk1StthCVE4tfGT8+rauVLbZx9K2x\n8bA5Tz117HRaF/c93zCZBEueXj8pVNaxM6w57KNvllIK70Nzjy7QMiPLYjHMuRiwURRR/hg8TQPa\noLQkzxSZUnS7XZSUmNpR1zXGWKq6JitylMqwxqG9RAgd/RuDJcgot1QaqnJEf1+glcIIiXFR6i1U\nG2YV7/+ttUipx/YokQDI8ZTtODU1BKq6ZnN3n4s37vLaxSucv3qD25vbOJ/kvIlE4sGSCl8PAaau\nKAdD5hYO0JubY2FxmeXlFY48downnniCQ2trdDodMh3/uiZTXfF4JSVaqXvGiycRwdG8WLTzyWPH\n+vZGXtxzzrbo5RtzzRhT3xpUOm5ev84rL32fP/3jP+Cl733ng3mDEolEIvG+EYALV29y4epN/rD7\nAscOH+DkkYOcPLrGscOrrC7PszI/Ry4EkoAjSmmclwSbMTKGrX1Lv9b0llYIwZDlntmiYLbbZVZD\n4QwdoWJ6opBRTqgU3sbNv5SCIOJ6E3zAWU9wgkG/Ymtrj+3dPmVt8UEgpMY15vvRlMxHc3oUCPBY\nPDr6VAqJJ2Ccw5voWaakoA6GUV1hK0dZeWpjY4EPQS6yaH4fPDv7yWD50aT1/DLEYpVjUsASTApf\n7WZ9OnGxLV4FJsWz9lztsW1Tsi1ytedy/M0JlIlHDesCm3slxjqEsDhrwfsYs9ugVIZUgRDi75r3\nfnzLHgI4Y3FGsB8ctjZoHeW4WmfMz88RgqCsa7yP1zOdeZSTBGMQwiGkRweJd4LgLIhAXQ/JO3k0\nqlcCHPc01GOCpEVKi75nD9LuNZrUxhC4vbHDhRt3eOfqLS7fuMPWfp9hmSa7EonEw0MqfD0k9He3\nOHDiFLMLCyytLHP85CmeOPMRjhw6RNHJCS66rYxTFGVcbGRjJDk9sQVtUSxObQkRzYO9iyaZYyuX\n+6LZ23HlONkVZY7tNNjm3bs897k/5ptf/RJvv/UGg37/A31/EolEIvH+0x+VnL10jXPvXqeT58z2\nOhxcWeDowRWeOXWEj516jKWFWYTKIDic9ZS1wwZBUJqhrSkKwXwvZ2m2R1drciWQPqCkjqbxksZL\nC6SSsZhmLaKZ/CLEaZy68mxv9dna2mc0sihdILzD+bi5Cy5OPUc/MImSCi9i4phUAq0kSoPKIM+a\nZpCTGCuoG3lQtFfSOALeGzpK0clyNGC9YVQmU/tHF3/fo+ZeU/tp2gLW/emR00Wt9hxtcYup57up\n/0/8JLLRr6hqi1YZzpp4nZNy7KXrvbsndCo4hw+hCQOJsm1rLbYKVAFKSkxtEFJijGF+foEs01jn\nyYRAB3DGR0m3c1FWHhRexFATRMCa+Ci1mtinTBnSR5P8KAG31o6N64UQVLVhpz/g3VvrvHbhCpdu\n3OHu9l4yqE8kEg8tqfD1kFCNBriqZHn1IKeeOMOTTz/DgZVlOt0CIcD5EGPfQ0DriRm9bFIcW5+T\n9uv3My6INTdjvjXuZXraK37dOTcuotV1zTe++iX+t//lX3D39q33+V1IJBKJxMOA94FhWTEsK+5u\n7fLG+as8/5cvo5XkY4+f4B98+pOcfOwxfAiUZY2QUPQksuvp6MCBpQXWVhbIJagAIiish1zLqTXK\nxcQw5wgIjBcgc5QWUFaUI8NwaKhrTxAaqTKCaAoMATQCJeS4lCC9wCmFEIoi13Q7GUWh6RQa5Uvq\nekhZQe0U3md4n8XGUCEpZIavazQeqQWFVgyHUKZN3E8A7W/Q36XI+V6cI/Eo0y8t2/2KhZkeRojx\nfXgIHmtqjAQpMvJcopVGKdFIHOtoUyI1+JhIG4JHCkmeZYzKEet37rCzuwdCEBDoLCMvCnKVE6ix\nviT45norAs7FDrj3FhsCWnRQmY4N9cYsv91fxOdFFUhV1wzLAe/e2eTNS9d56/I11rf3Ujk3kUh8\nKEiFr4eEEAK7G3c5fvw4T3/0GVaWFynyvDG99EgVE14EYipVJR5nG6lIu5mYTnRs9fgC7klbmX5O\nm8jimy6PMYbbN2/ww+9/ly8+92d89y+/SZVM6xOJROInHus8r7xzmVfeuczi3BxH1w7SKQp0J2Nh\ndZEDq/McP7jK2oFlVhZmKAQo51G6kSEGov8kEq0kzlq8sEgtkQ5qG6fHfAAvFV4pVFEQqpqyqrDO\nIpSM0kgnEQgyKQABQqAyjc4yCiWRAbyxmOCojCEIiRdRkqZ0IFM5Os/odnpkOkciccMR2kWD/N0d\nQ+1S4SuRSLw3nL2+zalDy+R5hqndeMpKSdlMrUqkkGRao7REELAGjLMEY2PBX3fxzmN9lB9mOsMY\nS11VWBstSoqiy4zuokJgVA1xrsRZi5axuGWNQakMoWRsnFuL1gqpJSJM7yMCxlq29/vc2trn3dub\nXL2zyeZekjEmEokPH6nw9RCxefsG/c27rK6skOc5SitiFmOblhKTVxAyPjLt9yXGhazptJVoaO+R\nQozTW+KCxo8UvwgB7xx//Lv/D1/8/J9z/u2z7O5sP4B3IpFIJBIPOzv7++zs7yOEoCgyZmdnOHZn\nDX/6BNoYZsUB5hbmYoKjEvgg48aKgEA2vpOtXNHHopTwKAVKQ6/TYWa2iy5yXF1jQ8ALgZcAAiGB\nRrWjpEBmGUErlJIQBN56hI/TzMGFRqimyDJJpqEzo+jOFczNL4LXaHKqvQGDnT2MtWwNRuNJ6kQi\nkfi7cndvxM6wYqnbwVkfOwEyTn+F4FFSEcv4AiUlQTXXMzR1bTDGUuQ5mcpACJyNQSNSNYUzotl9\nhkRLGY30TUYINSbEqS0lYsPAO0cmZZR5O4d3Hql8DC5BMKosF2/e5u0rd7i5ucvm3gDnw4/YpCQS\nicSHhVT4eoiwpuZbX/48/9l/9d/EdMZG4hh8GI8RKxU190KqmK4lGPt8MX7O5HPRjFJPIotF4w12\nr5F9WVZ898Vv8L/+i/+ZG9eufrAvPJFIJBIfWkIjdyzLmo2NbV599Ry9Xoel+Vk+9cxH+I8+/Sxn\nTj5GEIFA9OSKEv64wQKJw+NEIAiPkAGdSTpFzurCPLtbO1SlIfhYKAvBYj0IlUVPMB83jOQKoRRK\na7RQyOCReHJpcQhk8PTyHK0UvU7G/EIPUSg6WWCm20PLLlvW09/dZ1AZdofDJOFJJBLvKVfX9zlw\negYpBMYYhBBkWmMEOGujV2FTYJJSoFQzCYYgOI+1Bimj51cQxFAPBASBUAKRi2iJIqI1SqZzrB21\nQYwIKVBa4m0gNF5e+IA1hkFpuLGxy7mr67xx+Rb9UVJ7JBKJR4dU+HrIePfCeb783Of4T//z/xKZ\nZTgf8CHEwhU0pr+TSS+lVFwQ5cT3q/3z1pxS3SdtbI3tQwjcuX2b7774Lb70hef47ovfYH9v74N+\nyYlEIpF4hPAh0B+M6A9GXLu1zue+8pccO7TKzz77NB978jSHVpc5sLRAJ8/IpCSgCUKglIge4dIg\nigwxC0XZYWFlgZExZEPNXlWRq5zaggsKh0BIT5YpbGPSXBRdCp2TaY3GEcwOygsyDb08pxCKXCly\nE9BBUCjJbKFxtWO500GsLLPbH1CaJOVJJBLvLXe3BwwrQ6bVOLFRAM55qqpCyBypwLsYZKWEwDqL\nkoJet0sIoJRGKkFt6nh/j0SIuBeQUiGkwFqDy6JkknHzm2ibEgTBO0rr2S0N6/slVzZ2ubU9YHNv\nQFnbB/02JRKJxHtOKnw9ZFTliM/93r/hM7/6a6weWJukqzSyxRCi6bCUoFT0AfhxZvYxmbGVNEav\nr/GEV/BUZcXzf/FnfPaPfo83X3uV/b3dNL6cSCQSifeFa7c3uPbFb/H5F77HwZVFHju0ypnjRzlz\n/BCHVpdYWp6jKDQgAUnAI3NBPpczuzrHsvDk+yPU/oiR9TiRUdmAbabEkIE8gMw0eacgLzoszM4j\nQomtDM4O6CpYyDWFl7jKg3EokaPqwM7tTYbDmqLTgwDb+/vUJhmVJxKJ95adYcneoOTw4ixKaryb\nyAettdhakOuY9kij6PDWIYUCLaNQXGsCYezzK4VCqUnolZTRuN65WLxXMqY2ymbidlgZzl3f5MKd\nHdb3R+wOa6zz+LQPSCQSjzCp8PUQcuXieb7055/ln/7X/x2imeRqI43jQhcdAJRU40kv56OPVzvp\n5b2H4JvR5yh9FEIwGPR56bvf4Td/43/n5R98L6bFJBKJRCLxATAqK67cuMOVG3f4zg/fIs80R9dW\nOHX8EB//yHE+evoYB+dn0N5ThIDTGUtzURY0OztHnu+zv19ROlAqUAaLzMALhUAiFWR5Rl7kdOZ6\ndGcWGfYLqr3bSLuLCBW5zLEErHcI4fHBsr23y6g0iP0+Vmhurm+Q9oCJROK9pjKOzf0Rh5fm0Fpi\ng8O7gGy9t3zAukDuAQTCxcRaRIjS7kbm6Ak/4u0bgsf70HzucM42oSKeQWm4uzPknRvbnL2+RVkb\nfLrGJRKJnyBS4eshJITA177wZ/zsL/8Kx049Prn5ljFWOPrQCxCx8xOCx1mLmyp8xdHnEDs8UrK3\nu8MPvvttPvdHv88P/uo77O3uPNDXmEgkEomfbHwIlLXh4rXbXLx2mxd/8CbzM11OHDrA06eO8pHj\na6zMzTDf6TCjCsquh1Kyt30X7wI618wVHWSuUFk3nhOLkJ6im7NycJFDjx1EuNOce/k17lwuKd0+\nckEwKwqUc1COqKsKaSuKTNLNcnaGjvW93Qf87iQSiUcR4zx394ZY68mUJIQYoNFkdWBCQDlPbRyo\ngCQA0e/XC9GY08dil1Y6Sh+biS5rbRPIYTHOsdUfcXu7z+Vbm9zY2GV9d4hxqdqVSCR+MkmFr4eU\nK5cu8p1vfo3Dx06gp+SMIQSCj9lUIUhCiFHExlpaXePYz0sIdnd3eO2l7/MXn/sTXnzhqwwG/Qf7\nwhKJRCKR+DGUlaGsDHe39vj+WxeZ7RYcP7TCicMHOH1ojUNzywQT6GYFFgtFQTZTUPQ6dDozcfJZ\nBoQOSB1YWuiyPF8gQ87htSOsX77J7m4fX444NKNYkJqOC0gtWJjp4bMMpXpcvnsNm9IcE4nE+8Tm\n/ojKOgodw6YQIaa4e0EIAh9iY8B5jxAhqj+8x3sHLhbIfJP/qJUmz3OklDjn2BuWXL6zy/XNfTb2\nRuwOK6raJhljIpH4iScVvh5SqnLEi1/5Ir/yH/9jVg+sNQtjnPSy3iKDJ/cKHRTOeazzIASy+ajK\nku9/+1t87g/+X1774Uv09/eSh1cikUgkPjT0RxVvXb7J2XdvopVipuhwZH6RQwvLzM7OMTc3Q2+2\nR5ZpOpkgz3oUnQIlBUIFFjszdNE4E1jszLEyd4Rqw1L1R1RkiG5GLxPMCIHqSJzW9EvL1fX1B/3S\nE4nEI8z2oGJ7WLLQzZrCVjPJJSVBKqSSSKWQIjayJQoXPME5jHcI5wjEhHepNbWD9a19vn/uKuev\nb1BZh0s6xkQikbiHVPh6iDn35qv81Ytf5x/9k/8CGQQ4j/MBYx1KgnM5QQWsdRjnECFQjoZcvXSB\nP/jtf813v/UCwzThlUgkEokPMSGAsY4dO2BnMOCtWzeYKToszM+zenCVE0ePcPzoERbnF1hZWAIf\nMLVBDzWq0GggDAwL2Rx72SqDeoehhc19Qz6X470hx9ItFMOR4+7+4EG/5EQi8Yjz5rV1ji9F/0Ih\nJbqxJkFrdKbRWjcyR4sgprQLPCFAVTsGlWO9X3Fre8j1jX1ubu6lqa5EIpH4a0iFr4cYZy2//6/+\nL37mZz/D2uEjEAK1czhrCVLirMcoh3GWrY113nz5Jb7zja/y3W99ne3NzQf94ycSiUQi8b4wqEoG\n6yW3Nzc4d/4C83NzHF5b5eSRI3zk+EmOLR2kv1Ozc32DTiGQxtNTsDI3g/Ulo2BwwWP7Nb3M0LWB\nZdflwsYu28PRg355iUTiEef65j47w5LFbgHExHWJRInWrD6GdeAc3nl8cOyMai6v73Njc8Dt3RH7\nI0OZZIyJRCLxH0QqfD3k3L5+lc/97m/x3/4P/xMEMNbinMNrTW1qvHN879vf4A9/+19x/uwb7O/t\nNsaWiUQikUg82njvqeqa9c1N1jc3eePt83Ty7/MXa64AAALsSURBVDDT6fLRI8c5vbrGoaVFVhbm\nmNGBsnD42S5DIzEWtmvDSEjmsozR0PLG3Q0q5x70y0okEo84zgfO397hU6cO4J0jeBXljiGA98QM\nK0ll4PrdPb5//iZX1vejjNEFUqkrkUgk/nakwteHgJe+8yKf+bX/hCPHT8Wil/fs7+1y8a2bPP+n\nf8zXv/gcxtQP+sdMJBKJROKB4r1nWP5/7d3BSlRhGMfhv6PjmDBoJhVEtIiWdROtu8pW3UCbNgVF\nUIFFEUWLqFATdSa1mTlnznhs0TZoU4lfz3MF77f98fJ+VcZVlUffhnnS6eRifyXX1i/l6tqF9OcX\ns9zppXfcpq3adE4W0z1ZyHyWUs+m2Tw8PO0nAP+JL/tHuXn1fLqduZykzayd5bg+ST1tcrB3kJ3h\nKB82d7M9ODrtUQHOPOHrDPi6+TnPHz/K7TvrqSbjvHu9kVfPnubtyxfZ29l2tB4AfmHWttk6GGbr\nYJiNz90sdxez0juXtV4/qwvLWV/qp99dyrnpQvbqSQ7r+rRHBv4To7rJ/qjO5X4vg1GV/e9N9o6q\n7B5VOaymmdSNzS6AP0T4OgOqySRPHz7Iles3cv/e3Xx8/zaT8fjnt8YAwG9VTZOqaTIYj/Jpbj/z\nc5305rtZ7S3n1oUrGTVVqpntaeDfqJrjvPkyyEYzy3A0zfS4zaz9ecAegD9rzrYQAAAAACXqnPYA\nAAAAAPA3CF8AAAAAFEn4AgAAAKBIwhcAAAAARRK+AAAAACiS8AUAAABAkYQvAAAAAIokfAEAAABQ\nJOELAAAAgCIJXwAAAAAUSfgCAAAAoEjCFwAAAABFEr4AAAAAKJLwBQAAAECRhC8AAAAAiiR8AQAA\nAFAk4QsAAACAIglfAAAAABRJ+AIAAACgSMIXAAAAAEUSvgAAAAAokvAFAAAAQJGELwAAAACKJHwB\nAAAAUCThCwAAAIAiCV8AAAAAFEn4AgAAAKBIwhcAAAAARRK+AAAAACjSD6B5VLhyWHC6AAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# check create_img_with_landmarks, merge_images_with_landmarks functions\n", + "\n", + "scale='1'\n", + "images, maps, maps_small,landmarks = load_data(training_img_menpo_list,batch_inds,save_landmarks=True,scale=scale)\n", + "\n", + "ind = 0\n", + "img = images[ind,:,:,:]\n", + "img_maps = maps[ind,:,:,:]\n", + "img_maps_small = maps_small[ind,:,:,:]\n", + "\n", + "img_landmarks = landmarks[ind,:,:]\n", + "landmarks_from_maps = heat_maps_to_landmarks(img_maps)\n", + "heatmap_image = heat_maps_to_image(img_maps,img_landmarks)\n", + "heatmap_image_small = heat_maps_to_image(img_maps_small,image_size=64)\n", + "\n", + "out_img = create_img_with_landmarks(img,landmarks_from_maps,scale=scale)\n", + "out_map = create_img_with_landmarks(img,landmarks_from_maps)\n", + "\n", + "plt.subplot(1,3,1)\n", + "plt.imshow(out_img.astype('uint8'))\n", + "plt.axis('off')\n", + "plt.subplot(1,3,2)\n", + "plt.imshow(heatmap_image)\n", + "plt.axis('off')\n", + "plt.subplot(1,3,3)\n", + "plt.imshow(heatmap_image_small)\n", + "plt.axis('off')\n", + "\n", + "plt.figure(figsize=[15,10])\n", + "merged=merge_images_landmarks_maps(images, maps, num_samples=9,scale=scale)\n", + "plt.imshow(merged.astype('uint8'))\n", + "plt.axis('off')" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.299226999283 1523364824.83 0.400183916092\n" + ] + } + ], + "source": [ + "t=time()\n", + "a= zoom(img_maps,(0.25,0.25,1))\n", + "t1=time()-t\n", + "# print a.shape\n", + "b= resize(img_maps/255,(64,64))\n", + "t2=time()-t1\n", + "\n", + "# print b.shape\n", + "c= rescale(img_maps/255,(0.25,0.25))\n", + "# print c.shape\n", + "t3=time()-t2\n", + "\n", + "# image_rescaled = rescale(image, 1.0 / 4.0, anti_aliasing=False)\n", + "# image_resized = resize(image, (image.shape[0] / 4, image.shape[1] / 4),\n", + "# anti_aliasing=True)\n", + "\n", + "print t1,t2,t3" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "rescale?" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [], + "source": [ + "a_img = heat_maps_to_image(a,image_size=64)\n", + "b_img = heat_maps_to_image(b,image_size=64)\n", + "c_img = heat_maps_to_image(c,image_size=64)\n", + "d_img = heat_maps_to_image(hm,image_size=64)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(-0.5, 63.5, 63.5, -0.5)" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABL4AAAEqCAYAAAAbLZn+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvWlzJEeWnvt47FtuQCaWqkItJJtkN7uHPaMZ6ZpMZvfD\n/WP6addMNiNpRqMrqae7yWZzqb2w577E5veDh1c6ooBicW2y2h8zt0gAmYnIRMbB8dffc1xIKbFY\nLBaLxWKxWCwWi8VisVjeNpy/9AlYLBaLxWKxWCwWi8VisVgsPwRW+LJYLBaLxWKxWCwWi8VisbyV\nWOHLYrFYLBaLxWKxWCwWi8XyVmKFL4vFYrFYLBaLxWKxWCwWy1uJFb4sFovFYrFYLBaLxWKxWCxv\nJVb4slgsFovFYrFYLBaLxWKxvJVY4ctisVgsFovFYrFYLBaLxfJWYoUvi8VisVgsFovFYrFYLBbL\nW4kVviwWi8VisVgsFovFYrFYLG8lVviyWCwWi8VisVgsFovFYrG8lVjhy2KxWCwWi8VisVgsFovF\n8lZihS+LxWKxWCwWi8VisVgsFstbiRW+LBaLxWKxWCwWi8VisVgsbyVW+LJYLBaLxWKxWCwWi8Vi\nsbyVWOHLYrFYLBaLxWKxWCwWi8XyVuL9pU/gTRHiP8u/9DlYLJYfFyn/s/hLn8N3xcYui+Wvj7ch\ndoGNXxbLXxs2dlkslp8rXxe/rOPLYrFYLBaLxWKxWCwWi8XyVvKzcXxZLBaLxWKxWCw/Db6pMcYa\nUCwWi8Vi+UthhS+LxWKxWCwWi+WNEcbx6wQwecNti8VisVgsPxZW+HqrcHl99WqJTbosFovFYrFY\nviuCNxO+wOZeFovFYrH8ZbHC188aByV2tb93nfhVc/XPbUUwi8Xyl0K8we028oajxWKx/NC0HV6O\ncXSuuV/b5VUbQ/JqHHvTOHjdc1ssFsub0o4vXxd7boo3NvZYfn5Y4etniSl4mUnX1zm+KraJ1zcR\nwa57XiucWSyWb4r4mkHrtjk51KNufW3GIdtzx2Kx3MS33azOjFE653KN4fBqHGvHrMoYNVdjWft3\nvO5c23HvOhHNYrFYTNpx5evyMM11OdhN+dd3wcYuy4+DFb5+duiEy2ndbh/b6GTruqPHVSHr6wQ0\nePWjY4Uwi8XyOq5zSrzu2E64dLwSXJ04wqvil3VMWCyW63jT0sQ27TzLM4YpfuncyYxRNSpHKpqj\nzr90LIOrse86AcycZJri/3Ux0GKxWNq0Bfzrjjc5vtpifdu5+m2xuZjlx8UKX38xritT1Oik6Kb7\nO4DfDJ106UTM52bhSyddBdtETH/d/ii4XA2AnvF1W+TS4tl1P7NYLBa46pZ4k9FeVdSiV9U8n544\nXueY+LqJrX6cjVUWy18H3yQ+XPdYtzUCVL4VoPIfM3bB1dJGnWeZk0sdx3QMase/m4Qv2fzcLJs0\nsTHNYrGYtGPf1+VebeprhjBuf9dz+67PYbG8OVb4+tG4Sei6zlbqGvfVyVHb5RU2wwcirk/CMJ6j\nBHJg3RyL5rb+/Wbg0SKXKXbp71fN79HPK5vnNlct9fdsAmaxvB3cVH7zdf0gTNoTR49XXRPmaLsa\nCraxq2Ab1/RCQXvSeNM5m64Jc+if2bIhi+Xny+tKetqiUpubxHDBNsdq8iyhRwjCA+GA46ijEFDX\nIOvmWILcgMzVkZytGFY0v0PHwLaIZuZo15VN6vzLdPLbGGaxvB18l9zrJlH9utzLzMHMx+tFR22U\naN+uuMqb7HZ7nZv/uv6HFsv3jxW+fnBu6scleFUMMwOAaWHXj/WNEQIJELeOoXEfraTr5GoNLIFV\nc9S3N2yTL+300gHxJgeZTrZMJ5leBSixDjCL5W3gTfpx6ePrms9Ltg5VY/L4UrQPjZ/pBMxMhipU\nnFo3Q08etRhWcjVxMyeNN5VOVrzad6edfNkkzGL5+fBNXA3XCeJtIVzjomJVvD06oRpuCK4PngOe\nUEMIKGsoJRQSqgLqNVQbdZQ6hukBry5emosApuBl5nR6lK1xXQ8xi8Xy8+G75l7maItbIdu8K+Bq\n7PFbj61ROdZNo7zmfNr5l0m7XPK6PMzmXpYfDit8/WBcJ3i1J2Vt4astepmTMS18hWxFrgzoAV0g\nVcNJQEQgjOeVTdIll8AMWDTHSfOcWgCDq4mXKbRpMcy07msXmSms6WB3U/8wi8Xy8+BNekGY4zqx\nyLytY4sepmCfcDXx0rHGTIgWbAX7JVsBTJ+rKZyZrgkt5rd75Jg9d8zVSzPugo1dFsvPgbbg1W4+\nf1Mzek37+jdx2eZcGYgEnAi8CLwYfB8C0RjxhXraDbCR4ErICyhXIFdQr1D5ll6A1BPDCPUEEVdb\nWXhcdV1UqLzLFM70AoB+Pfp1mJNii8Xy8+C75l7tHlwuV+dzcWtEbONPyNV5aI2KVWtj6K8dVPxp\nn0871ppct+ioczGNzb0sPxxW+PpBuK7ZvCkkmd8zVx51QDBX9MwkTIteHZTgNQB2QPTBzSD0Xupf\nBGz1p00AiwAWXch3oJoBl83zXRq/X7ANhKFxWz+ZLnU0Lfqme8znaimlnlRa8cti+XliJjLXOSa+\nLvkyhxa29OQuQ8UyfdQ/065Vc6JXAHNgytaFqgUtHR9N4UzHWbN0qL3SmDc/M2OVmXzBq33ELBbL\nT5O2y+vryqnbDgrTMdUu3/FQwpfOvTrgxODG4McQBlfnkQ4qNXrZKrUAlmrxsVqAXPBqS4q2c9+M\nZbp9hB7m5NPjatuK6xYdLBbLz4vvknu12zjo+aeOKykq79JHcwEyaj22RM3vFsbRzKlk61zapZTt\nFj/tWFZc8xrA5l6WHworfH3v3CR2mSWKemIX8KrjSyvg7ZU8msd1UILXCNgHtwdZoL4cATuovCxq\nTqFCxaoJcAacBHC+C6sUau2yMAOsdpE1K5vEIHzVw0Jb7nW/ipfJ17QZi2ZoMUxjxS+L5adP20Lf\ntsdf56gyJ5vX7RhrOiia5Eo0CVaQQphBkEGQIjwP4fkIzwPXQ9YOsvaQVQ1VYLjrHchdqH2oXTXk\npum1o0eg+u24Ljiu6rsj5XbUNdQ51IU6yuscFFp4sxNIi+Wni45XOufSscos5wmVC97xmnhgCF8v\n51wV1KUaslX6LFxwU/AyNYIUJwtwMg8nE7hphRtVeHGJG1UgJNXao1y5VGuPaimo5x71LKSeC1i7\nULlQ+VD6qjTSb9xjXgxeoMonXR/cJk2vyu35lQEUIRRrKCLlJJNLtn1Zc16dFJvvFdwc02yss1h+\nfMz8y1y0u07Abwth7R5/bTe7LtNucjA/UXHMT8BPVezx48bB2ji+pNz2KCyEyrsKV+VelQOVhKqC\nWr56fq6nYq3b9D68gmxiWaWOUlcL6aHLJ83+he22GRbLt8cKX98rbdFLl/SYLqqk9bVvPF47vcxe\nNlpEqprHaNHrAII+jDy4C9xDHfeBnRqR1QgPZC6QUwfOBTwFHgOPgEcRjIdQmpPcAOir4fRU2aTr\nbl2wOn7lzWkVQLWEeoISvi642hPMil8Wy0+f66zzurTa7P0QtkZ7JdJMtrSLynR/piA6ILrgdKAT\nQb8ZvQCRCNykxkkKnKigLhyq3KHOBfXGg3EIYwljF6YBFAEUPuS+6p3jxI0LI1J9dwKnGS64oknU\nZKPF1ar8qCjUsdqwFe5dVIDTvSveJF7ZZtIWy4+PGbN0DqMXGROUo6ER2l0XPBd8V90WTe4jhLps\niwrKCopaTejMHlpCQNiBJIU4QXQivJHE3yvxRwVhryIKVsTNEEKyyuNmJGxmHsWJpDh1KE9C6okL\nKx9WMdRpU0kZqEXMNIDYh8iFyIPQVZPQwoe8Ob9FCLMc5gnMCigXvOyTKE2XCFx1r10nfLWP1/UM\n+inQXpi5iZ/iuVssr6Nd2nidYcLsydV2r7YbzptC0gY1d+zy0l0fxir/yiLIYsg86Ljqx0llaP6O\nmiNOA5hImDow82AtYV3BuoRccqX/oQhVnA1dlX/5LeGrlrCpVSzLKygLtrmXNk7oVU7B1cVH7S57\nHfb6t7weK3x9b7RFL7MXl+4Noct6uup7jrEbEEI5qeqiaXy6RJX2zFCi0hqVxA2BA4j6cNuD92mG\nxP1FiX8rJxgsiToLPK9kk4dsphnFaUT+OED+2YFPhDqlzwM43VUNWPHU84sheCn0XOUeGzSnqyse\ndUydA+fAeQKTBDYZyJirvSlgK35pe+ubfuSsQGax/PC0xS5z6ObzuvdD0hrtPg46WdGN582+EBsQ\nKYgeOANw+irZ2vPh0INDD6df4Q5KvH6J26kolz6sPOTKh7kLzyJ45qoVySqGdTPJrXyo1ur5vUTF\nLz+CWEDiqGOAUdEoVbK2akS6slSPf+nA1SXnsF1F/SaxyMYti+WHpx23zHIe7Y7vNqOjxK6gmZD5\nTvNww/G1rlVPrkoLX8YCpFNDlEEnhV6KGAZ4d3PCuxuieznpcEnXndL1pnTdKQ4106rLpOoxKXvM\nxynOQx8eBlSer4T4aaRyvrxs0i8Pdlw1ei5kznZICSsJq1odLys4q5QzbVVBHUGtRS9zcqjdH+1y\npNf1YvwpThzNktSvm/ia/JReg8XyOswSbTOOafOEaZownfc+ry40LlCTNN0KQpdpD1RrnCiAXgC7\nPgwDGAoYOohdYFAjK6EEr0rAxlGVQi8cOA7g1IdZI7SVOeR189zN/FYkKr5GTf4Vta7XSsKyKccs\nZXPO0+Z1tvuywvU9y94Ue/1bXsUKX98L14lepuDV52UNouiryVnovmr6yoNmrtiDolSreHLcPM+s\nufMu+F048OAD4GMQf1cRfLRi7+5z7qZfccALekzwKNnEIRe9HZ4d3eLR/Xe4vLVL2Q8gchqTRgDn\nO1AH4GSQhHAolHvsNo2DjG0LHt3W6wI4AZ6gXGRPOzAL1CT05QvSjollc1uvRL4ucdFJmrkrJPzl\nA1jbhvw6bGNsy8+FtvBlilm6F1dbvNejverYbnxqOqgESljvghiAuwuZgD0B9wW8I3D21rh7En+v\nwNvJYQZy5lDNBVw2K5JeoHZJW1Rq0aBqrPciUvHLbUqRwkStE3SAjlAv5aUmJ9WKJY3VPi+hWLEt\nGdDJo062rmt2fd37+HX3sVgs3x9tsV47vrRY32Gbe/XBdZTbK3QgdrdPYRqcatl0ljA301iAU6qy\n7CyDnQRx6OK9UxB+WJJ8sKBzOGFXnLPLGUNxjkPFmRzikSOlpD4DOhmVFyLySJU3ykaAn8tG+BJq\nofFAqInoABg0xwo1j51LdUykOueVVC7YIgRHqPOX5o7bJVc3AHmTfoxtfko5jCmAvY6f0jlbLF+H\n2W5GC186lsW82pOrvROjXmzUR93CRlcRGcIXu8pJ2nNh34XbLtyu4bZUx/0aUTjIUkDhwMqBhw6k\nPngSqhBEI3qt1s3v0PPcgXL1+6gFx07zq010G9UStdBAzlb0Ml1degFSxzJ4sxzL5mKW12OFr++M\naStvi166Af0IxAi8jpq8jVDGLd1KK2ieas12s8UzD856MI+hTFANujw1cRwE8AD4CMQ/VHT+/oL3\nDj/lI+/f+IA/ccRjBvUlQV2wdkJOnD2+4h6f7HzI/0k+5nHygI1IVc32ElhHsAzV+dwV8AuUi+xd\niXu3wN8t8NIS4UtkLaiWLsXYp3zswxcO/AkV8z4L4XzUxCg9eTQb9cP2I2cKSDqo6QbY17m9/lIC\nmPkP6XXfg22g1ok4XN2p02L5KXGd6GWUN4pE9bVxUiUqBSmEqerJFSbguAhHgOMgHAdZSihBFg6U\nHmxcyD1VipiHEPaUayKKIQmIbq2Ibq+J76yIjlZE3RVRZ0nkLwnkhsIPKbKQwg/Jw5DFOmVRpCzq\nlJUXwkUIFyVcSlj4iG6M0/Fxug5OpyLICvw0J8gK3LCiyh2q3KXOXaqVQzF2KMcOxTigngnIN5Dn\nSgirJNu4LlvvF7w6+Wo3lL1uMvljxgBxze03mTRe5/qwscvyU0THLd3zJmI7McxUvAk7KmZFEV5W\n43Vq3E6Bl2xASFXtKKQyH8x9irlPOfepFn5TzkOzeVkJWYQYeYgjQXCvpHc4ZbRzwjA9YeieMdhc\nsLO+ZLC5wJE1/XDKIBqzG55zngw52xlxdrBHuQqV6ytxkJEAT+CGFcGdDcHtnOBoQ7Bb4HfUCLqF\nyru6LuXKoVq5bOKQtRez9iLWboScRrBMYFnAsmqcX2YOYsYzc4KpR6un2Sv9Gn+sGNaOVde5ka+L\nYWacau+O/roY9rp4+FMXAS0/f/Tnr73rYqIc7E5z9FMIkmak295/rqduV07TM9BTonpeG/1QfXD7\n4HXBTSCI8EclwWGOf1Ti3ysJh2uC3TVBtiEIN+A5yNqB2qWOXFariFURsxIRm8Cnego1PtUqRS59\niDoQpxDFiCTA7+UEvRy/l+Olau72MoIUDvkkoJj4FOOAaubAOlEO/HXdTBX1IqTutXqdS9V8/9p5\n1uvysB+Lm3Kw9n3a5yWvuW3jzveJFb6+M6YIoieNMSr52gEOwBlBksEBykl1pL7NHtCXEDQf6qWA\nsVBOqqeoXlyPAzjbhXWzQphEcAi8C3wkST+e8OHh7/kP3n/n7/kf/GrzB24vn9OfTfHzinXic57t\n8Cg54rb3jE4055/erXm4eZ98FsOFUJpaJFSfsI+A34D7cUH07py9W884CJ8zYExAToHPlC4n9R7H\nx0fM73UoR4FybwjgU69xkK3ZWm/XKOFK16bDtgmreeFrwUv3CWrv6qETtB8jCLTFLdN+K7j50jFL\no/T5m80n2+f+prZ9G/gsPwTmpMJnW9YYKfdUkEHQAT+Dnu7HFULfQwSofS/8CsevqJc1cuHAwkcu\nHdWLa+zDJFaCUpzCIIGBj9iVdB7MGN49ZXj7lN29M1LmpPmC9GxBfL6k9PyXY5NGPB3d4ml9m6fh\nLVb9ETxz4HnQrDcEuAcO3qHEO9gQjlZ0ohmdaEY3mhH6a/IyYFOG5GXIehmyOEtYnMUszxI25z5M\nIpikMK3VKueVnYvMRv7XCUjmhLE9ifwxE7C2OGdOHM3bbW5yf7Qnjtclnd/EgWHjmOW70HZem02V\nE1RZY0+NNIVBCjsBDByC/oa4vyLpr4i6G4SoEUgcUSNrwWKasZhlLGcZ1SSEMxfOQpUfVSVOz0Mc\nCpx3K6J7K0Y7pzwIvuLB+gsOT5+TXcxfDlFJ5rvnzHY6zHczjtnnK/8+zq5kQcomDZA9h7rrIDMX\nP8jpHk3o3ZnQuzum05vSCeZ0ggWdcI5EsEpC1lXIugwZpwPO4hHn2ZCi51OeuHAawWkFGwGlKRJp\nB0V7lzXz2i5vGDoX07EAfphr+HVCl+lENhcVzfyxHW/bcbgde9u/z+Qm0d90ooCNZZbvhvn5027V\nprzRycDpgttRoxOq/KsXQjds+v85yr0aSnXNrzxYC7VxxgSYeDCOoMogzhpxKoLEIbq1oXt3TufB\njM79Gb1wQjec0CsmdC5nyj0qHKTjUOFxko04ORhxmgw5HwzIg5K8cMnHGeVEqjg7imDk4ezWJL0l\nne6UTm9KnGx7PUsEZekxH3eZTbrMxh2qywBOQzhN4axxmQHb3WtzXjUZmP8H2rlKOxa0hfAfg3Z8\nuS7emHGnHXPaw3yd3PAcN2HjVRsrfH0ndPKlj1r0SlFOr6FyenUyJXhpJ9UvarwHBcF+jtfJcYIC\npKBaBZQTn/w4pPrSg09F46Ry4FlXVRB1HCV8PQDvww139h/yd97/5D/yT/z75b9w50/HBL+rlXC2\ngaxbkN0/Zvg3F3SPJjhBzSqKmd8fcPziNvVjT903R5VO/h14/7Bh/zdPeD/7hPf5lLs8ZsgZESsK\nAsb0eeLc4c+H7/GHnV/xrHuftZ+oVYcCWIUwH7ItFVg175cWB/UkG7YN7+FKM9mXQ1th9c91I8cf\n8iLWiZZ5W5+z6e6DqysOsO2p0d5hRTvBzDLI61xjN2HLJy3fN+2JRsux6nYg6ELchbgDo+BlPy4O\nPYhrnLjCiWqcqEKMBfWFQ33pIi+FEqWcSDUwnZQQh7AbwqEPtyXZ3RmHR8+4d+tL7u1/RXc6ozud\n0ZnOyBYLqp5D3XOpui6rNOb39S9xwpJZP+F0bxeZCVX6WHoIt8a9UxK8VxC8uyY5WrPrnTLyThn5\np3TcOcsqYVGnLOuE2arD5fMBPN8hfxGxyUI4joFG9FrpuK4nhXB9/wmNWVpkHtsTMPjhrt/rJo83\nTSLb3JQ48jXn/SYuMvN3WCzfletcqrqZve5js6uaxI8CuBMgbjsEuwXZcEFvOKYzUH241KiQtcPl\ndBcxgXwawHkEX3nNPhcurCpEV+IcgPtOSfRgydA95b77Fb9Z/567q0eETzaEjzcEj3NEKdkchWpU\nIc87h7h+zWKYctzbZ7aTUXc9ZAYycfCDgu7dCXtHzzm4+5y97IShvGAozxlxQS0EMydVw8141r9N\n0NlQ9H0udweUj1y1I9tGwLnOU/R1qXMP01ECV6957dDPW0M/hxkLfkjhqy10Xbe7nSni6xjdjrkl\n2w1X2uJY+3e1uWkSakUvy/dF+3+0WaYdg+iA2wWvD34Puj7se9vREcpskAKZhLkDMwEzF2YSnrvg\nh1CmsCggagSzTojoO0S3c3pHY0b3Txi9c8p+fsxBfsJ+fsJweQa+gECAD7kf8EX2gM+TB7h7Ofmh\nw7L0YexTPY0o/QAGPhwF8MDFOaqJu0sG3XNG3RN66RhQohfApgg5G+8hJ7AeR6xPIvgqUJfU3Fev\n4aXoNWc752ov4LWF75t2FTdj2HUOq++b6/Kvdrxpi2DXLTZ+nWvV5l7fFit8fWfMlUfdkDBjm3xl\nyuH1EfAxuB+XJB9OGB684E78hCFnJKyogTkZp4x4ujji7N4B6/0E2fNUPBQOvEDldSPgDvTvXPBe\n+hm/5t/47fp/c+d3xwT/b438n1A+gnrTuFvfhfS44L3/5ysW91Ne+Ps83jlierfP4k5PPZ8H/Arc\nvyu49Zuv+NvsX/l7/pXfyN9xf/WInc0FflVQCZdJ2OVJfIc/uL9kJ7zgn3+V80X9IfkyhqlQ/b++\nyqDooZoWRmwTLt0lX9d3mjs96m1tN1zd2QO2AUMnMj9U83tzYquTLN1IUjvW9GsxhSuzXEAnkHrF\n1LTt6t/RXrmGV4OYKabp+5muNxvMLN+VtuNLC19N4hX0IOlB1oM9B+4JeCDgHYHoFIhU4mQVblrA\niYd84cGxDy88cKS6lCcShFQ9HwYO3BaIdyWd2zMO7jznvdt/4lf7v6dfTBmcTeifT+idzKgPBdKH\nuidYpjFOWDDtZzwub8GiRngOsvBU0icl7p0l/gc54d9sSN+dsStOuS0ecySeMBCXTGWXCV2mssfl\nagBD2PRjZp0+hB4QwUrAhb7etei1aW63m/mbtLcQd5vb1wlkPxRv4pjQ4ybHWtsxAddb8V/nmPg6\nbNyyfBuuE3b1/2O96Kj72AxVY+WRgHsOvCcJ9gvS/TmDgwsGu2e4VC9HXSmXRD4OmU06cAw4Hixd\nOJGIskb0CtyDAvdBSfTukuHilAeLr/j14ve8d/Y5zkOJ+KRGfCoROdRTgawc6ljwxDtjESe86O4T\nxwucZYlMwUkEMpL4fkHn3pS9e8fcu/cld8PH3Nk84/b6OXc2z6gdh4uox0XU5yLqkS7m5L2Ay50d\n3FEFQajcHue+2tn2pVNVxyW9MKubZcPVSZW5k7gWmUzhTN//h3armv3azObd5m3TzSbYvkbTpaZF\nL33+Ztxtx8fr8q72hPOm125jmeXboj+/ev6oha8ERAZuD/wB+DvQdVQ/1HsC7gsY1KpaqN8cLwVc\nOGpcCiV6VVL1BDyTyh3WEbArYAjxrQ39ozH7919w9M5D7p8/5v75I+4tHnNn/GzbS1/A2g/pZZc4\ncckyjrisujDuUj2JyNNMlWEOBBwJ+KWD8/6GpLtk0L3gsPOUYXoCCCQCCayKBMaC9ThmMh7AM6Fe\n+9SH57pxv+770+4ja4pgZu7RFr0r4+c35TE/JO3FmXa8MQWxtuhlCvTmgoO+r829vitW+PpO6A+d\n2VhVlzkOwO+oksYPgd+C+x8KRr9+zvvD3/Mhn/AOX7LPMRkzQDChxzMO+SJ9hz/84iP+3P+AcTyi\nrr1ttWAP1R/ssKaXjrnDEx7wBftPzgn+pUb+I6z+P3hxrNo9DBIYHUNQQbpTcLf/lHdGX3Kbp/xp\n5yMWo64KWl3gfcngwxM+Sn/H/8V/5z8V/8gvJ5/S/3SO+xAlvodw+9Y5R798xt7eCbG/onA8pu90\neXF6j/qZD8+AYwFlD9Wcf968N8bW4kTNe6eFL719+NIY0+Yo2IpGOpD9EGWPZpAyBS6dMEZsRbuI\nbbkmbINWwTaJ1MKdvo1xX51YtgOjSduiqxM4c5XTNnG0fFtMUcSMXynQhThD7Eaw5yH2BMnRkuxo\nTnq4JBvNccMSxy9w3RKnLsn9iE03YiMjNmHEuojYbGLW64jNOlRO1UMJhyAOKsL+mk4wZVieczB7\nQXQxJzqew5MZm6dL/A0EG/ByCNdrBuElg0iNXjCm3A0p9gPKcYjwBJ39BcOdE3a7p4ziYw4WLzhc\nPGN/8YLeZkI3yOj7HRZ+xqXcwXdq6o7H5iCilC7VUlJdQhkHSE+idtht+uWINTiO2hnOcVUpwBVj\nQA11uR1SN5rVQr4WxNpNWr+v+GX+LdsTRzOWmY4Pk7Zbre28bU8C25PHNu0JY1tY0/exWL4p7Qlj\n8z/abYYXgO8T7OT4o5zgMCe8veEwe8aB/5yD/Bmj8QmOrHBljVtXVLVLVi5JvRVxb0VHzFmfRaxP\nY1YnEWXg4QzA61f43ZwoXhEvl6SbOZ3JnPRsTnEGeTMowD+D4BziM+gkMzJnQZIuieIVob+mXAeU\nTTgInRW93oQ974Q7+RNubZ4wmBwTT08QkwscxyHJCmSWE6Qr5rLLSXXATnJO150gLivKrqCKBKUj\nmhgVqB6NrlRxy/PVe+MFIJvrUjajzKGIoMih2IBcgVyqIy5bR5h24X+d8+mbTMjMv2V7Z85GqHM9\ncHwlRjrNXSjeAAAgAElEQVRN7iSaz4Gs1S6cdak2K5E6B9ONvnWfIJ1D6UXN6xYx9GTzpl5n7fJJ\n27/V8m0wc3+zWigDuqossZtAN4KuT3S0Jrm3JDlaEt9Z4qYlblIqx71bUiUeVe1T+R5V5rEqE1Zl\nzKqKWdfJy77z9EEMKqL+mkFnzK34OQ+8h+znz+iNjwmfnsHzMW4MbgRuDF4S0N87Z2fvhL30BRdx\nD69bUfd81oMOYtclGq6IRmui/TWd4ZQj5xFH5UOOxo8YThvhS6jXvZQJXlXj+BIxkIT1ms1JxGYY\nstmNKGcBlBEUKZRdqB0Qrrr+hdsM4/pHQl1DXakhS151rmoHqI4F8P0K+W0jg+lS1cK9b3zPzJ3a\nudFNZeemk7XtJjPPQb82fWw7+duO1r8+rPD1rdEfcHOyocWdHogudHzVN+t9cH5bMvr1c347/Bf+\ngX/ht9X/5r3NFwyXZyTFEoRgFmScJHt8Fr7L0D0nOljzbx9/zOV8Dzl2Ydz8ig54/TWdaMyIEw6r\nY9LTJXwOxWfw+TH8vlCFhsMl/O0juL0D7hfQ//sx+8NjdsU5UTpD9HaRXR9ugfdezlH2iI/E7/l3\n8l/5+MUf6fzTEv4V+ByqmapcEkfQebjhl//3n8jve1z6A15kh4zvj1je78LnQrU3WyRQJaitIZut\nbp0E/ERNHB1xdVGxKqFcQr2k2boIJX55KAEMtrvH1cYDX3fxvkkCJnl10qjFLr19sBbtUrautYit\ngGU6vUzxboEKeCtUIqZFq3bZ5E0TyLaF30zihHH7rzOAWb4N7dUoc7Khk68eIgkR+z7iHYHzbsFg\neM7t4TNu7zzjdvIMry4QmwpnWeGUFXOZMRcZ827GopNxvhlyUexyUe2ykSEcSbVz0IFEjCr8ICeu\nVnQmcwbzCeWTNevHa+ZfVdRPoLOAzhQ6l+CcQjjMyUYLBqMxo/SMZTdjuZuxvK36XQyGY+6lj3ng\nfM7R8iG9F5f0nqkRT5Z0swl5JybvxEyiC1wpqVyP9W5E4bpsLn3Wxz4y8Sn9CKpaJV1VCKJo7P9N\nXw1XXNWCqhqKSu3GW1QgzV0tFzQdstkK+HD95PHbrOLBVbHLdHfcNNq/o13mpCeOWrhrC1/tvjtt\nbnKQ6XhmS4Ys3wYzyTcXqELwA7VbWeRADNHums7ehO7+lO7+hDvlE24vn3J7+oT98hinqnHKGqeq\nqXAZZBN2sjE72Tkng33Oh0PO90ac3RqySDPcYYWf5UTBmog1QZHjLirEZU11DosxzBYwWysNprOE\nzgS6FyAyies3j2dDFK4pOjVOJcGVhNWKbjBlmJ9z5/Q5o8UL/JMJ+cmK05Max5GI3gavO6ffqxmm\nF+zG52r0TnF6OavEY+17VPhIt4LAU42wgwBiB2KvGW4zD5LNZS1hUaqSqEUJ8wLqBdQh1AHULttY\nYJYWtQXs9gTs6+KYfpyZc+m4lfIy53Ii8Dy1I2fgqd05HbGd/NYSNhVsmsmv1BUDOgczFx30xNFc\nBGg7SK6bfBbG0SxfN+OXjWWWN6Wdg5nCV0/15BrGcODBIWS35uzffsH+4Qv2D48JxIZA5vh5TpAX\nbGTIxg9Z9yI2vZDTao9T9jj19lhHyXbq0uz9EWcrdoJLbokX3C8eEk8ucJ9PWHy5of4CwgBCXx1F\nKnHfWdOpJ4zSY2ZRhggFeTdmNuzhzis6oxk7u2fs9s4ZJifcnjxVY/qU4eIMKQQ4IIVg5ceEWUHU\nyYmzFZ3BlMudHcajHS73BpQLX222tsxg2Qjyuom/6ysRX4jtHFJKKOrtkDnb61/vML7haplhWwR6\n3d+oTTt3aTu42ouM2jShj20Xm5kfadFuYwy94JBz9TNjVieZo73o2C79vM7Nar6etx8rfH0nzFVv\ns5QvgyBSJYRHwC9qOh9c8sHw9/x7/pn/VP4jH5//gdHnl4g/A+fqKfp7Kw4+OGPv3WOSzgrpCBa7\nKasPU1bPuqoXV+NE98KS0NsQsyZdr/EnNYxhOoEXhXLqz1Ef89Ml7I4hnUKwKoirFbG3IvByRCCR\nPeAAurfOOYoe8gs+44Pln0h+t4T/AsV/hcUjWCwgDKF7CP4UwkDyXu8hj4af8anzAZ/c+oD1QUo9\n9JQz7akHVVN+4PUh8KEr1MpDiooB2pG/AmYeXHZh3oXNWjVl5Fy9YCat916XIcGr4pcZrNq9uNrP\noYNAe2dO7fXVfUOahrl01c+8ZnXZaYKdbJKuKodqzdaxNmnGDDUB1i/Y2D3vpQjWnkTqBExPRtsu\nDL16aa5EWiyvo10qZK5OGWWO9CB1EfsC9z1wPi4YZOc8iL/gV/Ef+Sj5I96iRKxrxLyGuWSc9rjM\nBlz2+lxmfZ4Ud3HLinUVcSl3VJ/D2xJxUCvhK89JihXd6Zz+esL4acnsccH4YcXiEYymIC8hPIXk\nRBI+yMncOYP+JcPwlEmngqFDUUTUqdsIX4/4jfgDv1h9SvBiif/JiuCTFe6LHIY+cughhz6z3T5V\nz2PVj5n2MhZZxOI4RfYzyiSkDHzVZLUMoM5AVEr4igUkQl2y5uJ/KWFdKYdYWaICWsi2PFm7pODV\nRqvtBOrbCF+mgKk3KUjYxrG4NdpilVnqpOPXkqvCvpkotfvutGmXHehJo3691jFh+bZcVyIUKkdT\n7Ko+qF2Ihiv6o0v29k8Y7b/g3ulj7k4ec/fsEbfOnyMKqUYuqRyPnTuX7N65YLd/ym52xqPhPdgX\nzMcZiyTF3a3wOwVhsFHCV57jzUucC0l1BssJXMzhdK3W8IYLcCaQnDfCV1oS5AUha6JghdOpwZXI\nGKL1iu56wmhzxu3pM3qnx6wfrVk9XjN+VOE7gmxnQzaoyXZydvcv2T24YDc8Y7d7St0tcZKIOgjZ\niAjpOCrfSgIVrzoO9BxVMtV1tvOhSqrjZQ2XTUDLK+W4KH2QZg9b2OYk7VgmWn8b0fpem7aI3ir1\norsdIgHPbRp6e6r3kCOa1Fuo2OtIlYMVErWx0pxtqdSGqyKWw7bkM+CqA0MvJpqTTT0R1a59/dp0\nL1f9eiyWb8J1bvsM6EMcwzCEex68J8j25xyOnvHe3me8N/oTyWpJvNgQL9fEizWLOGGepiyShHmS\n8iXv4LoVqzDhLN27MtUQoSTO1gzCsRK+8ocU0yX5ixXLLzZMfw+pB6mrRpBI3GpFlo0ZHRyzGUbk\nYcSs0yfYzXHWNZ3RlIPd5xz1H3EnecTh6TGHxy84fPiCnZNLpGFwWiUx0dGG6GhFPFiQJHOe7d5B\nDgWLvZTlPIRxCDKDjVQuVEc7eQMlgr/UjRrhe62dqxJ1rc7YXv/mta2v069zfb1pLmaK9+bfU8cX\no2fuS/OEbpmj8zUdb3R8MkW7JVsBTJ//TT0Pzddo5ldt0b/tXDVfx18HVvj6zmjbdKs5Yegr4esW\nuA9yhnsv+JBP+Lj+P/zm7I/s/fMl/FeoP4HqFIQD7iH4v5bc+k9nVH/3O8a9Hs+DQ14c3ObpgxT+\n7MJzoIa6cqikS4lH6brUgcANJL6v5mZxk8+EQOgqjYYAas+hFKqzRS0dZIW6FgfQ8WeMOOUWz+k9\nW+J+CvwBTj6FTxZqc6NkBb9ewp0Y/CPY+fWcW/0X7AfH7MSXnA6OqLueusYdUBloAjsO3EKZv/ZR\n1tsEdd2XqBh1CZyiepk9j+DiADah8f6awo6eRJXGUQcpswQRXl+OU7MNGKbopbdF76NqS3fA6UIQ\nqze42/xYt/qqHNUUe+HDPIV1D4quCt7o12Ceh7kCoOvatQCm0ZPFNduVCz1MIaw0HmPFL8vraAtf\nplPoqt1epODsFzjvlLgfFwy8C+7zBb+V/4v/yH/DW5bq//EYOJOc7g856Qw56Q45ORziFDWrMua8\nHqpffVvCrRoOahhW+Jc58XpFZzKjfz5l/lSyfiw5eyQ5/bIRvc6g14NsJAndnGywYFBcMgzPoOuS\n5xELUVJ1YdAdczd9zK+dP/A3q/9F+UJS/qmm/Jca+aXEuy3w7wj824LFUZf1vYjJToez3QFjpwuP\noeiHrGIH/AhkqJKpqplY+ahrP2veKnPhfyMb0asGp4JqwXY1L+dqiaPpeGpfr9/F8aVt9WbJataM\n1Di+DM4GpkNiyTYWtVdH9Wj332ljuiTM2GwKfjZWWb4JbVHF/MyHqOTHg46D2IFouKY/GrO/94yj\nvUc8mHzFO8uHPHj6kDtfPYUNiGZOUbouO5yz2z9j6O0y6J/DLsz3OhxPDxCJxN2p8LNi6/jKcyX+\nX9bU57CYwMUCnm2U9i0WkExhcAGiK/F2lNgfsSYK1ggXZAJ1JYimK7qnU0azM26fviB+eMzJZ5Lx\nnyVnn9WEAoJRjTfK6Y8Ey9UFu9EFO/vn7HTP2PQkVZKy8ROEkKpGKQwgCaETwa4Du6geP7ts1w31\nCJt4tJFKM6IRvWpzsmguxMHVa/m6v8/rJo/tsmnTZa+FrwGwAyID31GJbOpCKK4aJvLmaQpUnGbN\nNucSqNhmOrZcVN6lh5mb6d5gWujSCwI6RzQnimapkvm6LJavw8y/tOPLWHSMAxi6Svj6JaS7cw53\nnvGL/qf87eB/0L2Yk+VLNcZLJm6HSa/LuNdlPOrguBXLMOUk2VOXkokDcbZmJxhz2Di+zic1Zy8k\n4y9rxn9Us55KF+QkEjddkx1OGC0CpPCYhT1OO/v4uwVOVZGNZuzvvOBB/8+8l3zG/uaM/ZNT9j89\npf/F5Mq6/rofEYkV0c6SxJ8T9pfIHcFimHK2N4JZV70fmxTmLoga3FD1LQtCCFwleOkUpKIRvZq3\nszKvf/P9Nt1PGF+/7m90Uy52nUtfv0gzB4uav6k5tCim76fjkhbZF819tBtV52H6fNstLJzWaLvt\ndexrl3q2X8d1X7+dWOHrWyNat/WHMALhq89tHxhBPFpxK3nGA77kF6vPGX1+Af8Niv8C009hMlHX\n8WAI6aVyco4GF7z30ed84n/FbueEk4MDit1EqU9rKGYBi03G1O9yHvVYD33SWznZLbg/hnqm+hoO\nXbizC+Ed4BDmnZSxO2BKl/U6QS5cdT0kELobUhZ0mOFNKzgBeQwvcvgS5b1KgSyH0Rn4p8AFdMo5\nabAgYo0Tym3McYEkU+We94F3muNRjTcscNMS4UpkLSgmPvWpD08FfAF8BXwOPBmo7XlfZjbSuA1X\nGwGagpe+rb9/E1r9hq1w2fQ4YgDsgRhB0IGeq3q27aG0sMb8hWhOZ4Eyd50Czz0468I8gkoHOVOh\n1+p/UwL60h2if26WTq7YOsYWqMzU3C2zzTcJXn8dgc5yE0byJVyjh5WHF+dEyYYoWxJmS3bycwaz\nS3qzCd3ZlPqsUj1tziE/BVl4RB7sJBV+P+ecEc/CGWFvo8TuHmrSUgtYOUq8dx2q2KXsuYhOTdSR\ndNKaMpV0OhD3wNsBdqDuuhSxryz9ImbjBpSBRx0LqMH1K0KZk+RLks2S1QLKORQzKKeqeiBoerFG\n3TXRak1UrYmcNWGwxvcKXKfGEYDnXNGjnagi6G4IOjlBZ4MbVshaUFcOshZUa4di6lJOPYqZR72I\nYZ3CuoB1DZWHunbNyVO76aqZvHyTiaNkmzg3Di8vAb95sUEKYYwIQ0ToIULxUvd6KUcVLnITIDcS\nuXEgF5C7kHuQ+7wSJxy3KT9ojm2qUvXdqZqeZ1dE+xXbGbf5Ppi8ScL5uu9Z3j6uW503JpCOo1yZ\njWnIjwviaEk3nLLjndMtx8TzGf7ZAufpmnqjDNp1DkXg4oznxCuXQS0pPI9nwZgkXuKlBbIUVJ5L\nWQZsFjFrmbCsU+ZRxmw3I9mkVKLCcys6QUlVQXDoUt3yWNxyme52mMUZyzplPU/IRUQuAkoRUAkP\nKRyEI3HdisArCJ2SqIYkh2SpqqujXBJWUqVWTo1wapU/eQLpO8jIRSY+dHwcz8Ed1bijAnckCQc5\nUX/9ckgpkFUTvyqHVSdm2Y1Z9RNWOzFMQpjEajfeafM+SzMnMcXsiquO9euaObcxHQc6H2pEeqfp\ncRRlEMWI1MPvVvi9DX6vxI1rhCNxXHWscpd8GpDPQvJpQD0PYBnDsoRlDWXIFZXPc9Uk2g/U0XXV\nyrNwVAlVVanHFIXqfVat1dfVqsnlNq3R7vmlP5fXfX7bt//6yows8OriowvCa0aAEwncrMLtq+u3\nG0/o12N2pxeMVueEJwu84xX18Zrl8Zp6VhOsS3plTiRXPF+d03PGZN05obekXrvUa4d640CujBOF\n9NgQsHIjSq/C8UuioKQTViSOqhgPXPBSEIlDFXjkbsBahORuQBV4yEggYkkQ5STBgp4/YSAuSMsJ\nwWIOlyuq0xyc7SVGAf50SbKe0ZUxPa9L6i8Iwhw3qiEVsPGU216AyGvczMHt1LjZBjcCx5UIr8Zx\na2TpUCz8ZgTUyxBWibr+V7Vy7tdNebc0r892yfZ1f5d2/Go/TlcLmUJUDCLdjiCFKIUwVSYQz0d4\nLsLzwBNQu8hSIisBpdeEFaHmvRt/W3IufZDN7xCNk0WE6v+eI5qjo/qdybopZW9KP/V4Gb/N43ep\nGPp5xi0rfH0rTOu3aH2vmTxqZ2MXwiRnlzMOeMHObIz7Z5B/hOln8PszeNI88sEL+NBVpYTpr3P2\n752xPzhhJzwn6q4pOon6bI5BngVMlwOeZbd4zF0eHD4m+u0Z7pnkUELnMaxz6GYQvQvit1B85PCi\nu89jjnjBAetxBufudsUMEO0Pv7xaNSyM729viiv3f/l2RCiX169Qu1r+siZ6f0l6MGXQPyML5nii\npMRjvOwxHY9YniSs/5iq3Zj0YtyXHdjsczXp0idtNvuDV3di1I4W82+lT1Q/Xl/42vGVolTLPRCH\namfOQ5Ro9wBVsnUgYafG7ZQIR1JvHOqJB6eOKkl9CHwp4GEI50MVfF+en4cS1brNamasyjT0KoZ2\n21coB0mxaRwkU/XHf7kaoFcCbuJNbLpmmejPM4hZvi0t94TbTBwbscdPCtJoQdcf03HH7KwuyE7m\nBM828EyyuYDpJczG6kidI7wlcSRIspKd1ZhMLAnSQgnFsQAhkGsHOXappEfuB6z6EcssRkxK0nHJ\n3mVJZ1UxGEF3D8IRcCAobvmsBjHTsMul7DMXGWs3ovQ8XK/57DaL9XKlLptVAbMacqkqkZ0cgiWI\nJTibGq+o8GWBLws8SlxZIWqpLq0BjUsC3EFFmi3odiZ0sglhuKGqXSrpUtUO+SpkcZmwuEipL1Pq\nCw8uY7iooXKbCZMp4F+XZLxu8qgx3RfmMMtUO0rwymLIEujEiJ6PM3Bx+jXOIEc0/76EUM9Xz2rq\niaAa+8iJC1NH7bI0C6CIm19rfF68xoERNtlxO9TonjubCvIaJdZr0V73DNK7ZbYni9cdzRjVnkC2\nf255uzE/A/oz0iT/nlClcBF4QUnkrUnFnC4Tos0SZ7ahPK9YPlft+MqyacsXScp5AZsVceXQExGp\nuyD0N2oythaU0me9jpFjmOU9JnWfcafHxZ0+SecS2d+Q7mxwhxJZScKDAPYjZvsh5zt9xnGfCT1m\nky6LTYfC9yh9n9L3KEufWnjIwEGmarIZRapNbOWo9lZZCGECTgdkKqgil8L3yQko3JAyjKjTCHoJ\nbgbh3YrwKCe8W9PvjtlJL9hJz9lJL5FSUNYeVe1S1h5ngxEnoz1OD0esLiN46sKTSDkp5l4zYSxR\n/bN0ry9zkmjuvGj2GtTDROdbZumhLm3sgdc09t6JYcfH3YF4sCbdXZDuLAmTDa5T4YoK16nIi4Dp\nrMds3mM675JfOHAcwEkKx476J2D2uYkcyDzIfHX0mwmjK9RnaFPDqmwmzhWs17BewWalyiil7t2q\n21a0G96bn8vrYlN70eKvs9zorw/zM2H+b28WHR2nWXR0cIOKMMkJOxvCfk6vHNOdT+ksZ3SWC6qT\nNavjgs1xxeYF+Jcl/nSDNxfEi4qeN6XrzUijGXE6p5wElJVPsfRh4ZB3fRZVwlj0OPN3qeI1bmdF\nd7AiG1XEPi+HmwnYD8h7CbOwxyUD5k6Te/keIgDXqwjdnESsSOQCr1xTrQtWyxo5VYKXI9SxdCXV\nosLZ5ITVioQlobPBdwscr1aLo11HLaglAkFBsFsS7uaEuwVBWuK5JZ6jRlW6LBYd5ouMeuFQjx04\nba7/EwELV9nXqiYJlOZ1WBl/k7aTWA/Ruk+7d6l27Ola0hTcjhLwnQ50YhiE0I9gECJSgRMLRFzh\nxDWykNRrqNcOcuWoBYdLBy59uIxUj7MqVDlk5SuxS0TgxOroCRXDPKHy97KpUihrdbveqLhVb9R4\nWT2k80rdMsfcybudg2nejtzLCl/firbY1fqZcK6U+rp+RcyKlAXhZq1K+s5gNlMayWN91xoO59A9\nB8YQbHJSFsSs8bxSCUElynr1FMYXfb7ceYc/er/k1ugZ8b9b0ZcL3KGk9wh6G9Q86B0o/s7h+KMd\nPs3e41M+4KvNfVbHiSqdXKmxqULmdJjSoex5MAKxBwfP4MEUMqlSkzsBBENgBNUQ5l7GgpQVMfVG\nbCvxbqF2tPxbEH9f0Pvognf2P+OB8yW3eMYOF/gU5ARcJgOeJrf5/Na7fDV8n8nuQDWSdlDug4d9\ntTzLkq0LqmjeOX0BmgmY2T+rbRk1FW4toukVzARlTdlVLz7LlND1IUrA+6DGf3dNerAg7s5I4gWu\nq5Kv+azL+jJj9TSh+jRQk+YE+LMPL3ZU/4mXKwI7KotNvZe7rbw0fonmdJaoCehlDNMIlh2oUrbC\nl758r0uo2k0PTcyESxjfq+CViaXl7cb4R+846h9opCaOQVyQhnMG/iW77slL4Sv8PEd8ApsJTGZw\nOlWj4xT0oiXdrKQ7WLFTjsnEQglfgTFBXUtYu1SpT54ErNKQpR8hJjnpJSTjGlYV8SHEhxDeAnko\nKPa2wteYAUuRsXFCKs/F9Rr3UAU0c5Nio+Yvs1r9SqdUu0SmK2AhcdY1blnh1wUBBZ6scGSNkIbw\ndQ94AO5hSZrN2cnO2EuPScIFhfQopUchfZbLFO90QH3qsj6NKV4E8CSB0lXXLto1VbB1PGnMch+z\nf4PZf828r752zR5aWrBvnKp+AlkEuyEMI8SBwLklcQ9rvFs5wpcgmiULIanOHMrnDvI4oH7uwKkP\nTqiSrmnOK3Z611EJaiogvaaMfFGDaBKwvEZZYbWrtfkcvIw5BVfj1HVuNzMutcukfn6Jl+Xb0hYN\n4OXnxBVGL2GphC93TeYs6MopUb5QwtdZyfJFo8vWypBZJBJ/UeBvVsRlhSQg08JXWCFDQYkPa6jG\nHtN8w9TrMe72udzp093v4e0sSEeS3n6BqCTFKKAYJcyGGRdxn8uix7ToMZv0WMw71JFyu9axQ1X7\n1MKlDhxIBW4GcQS1ry41z4U0UJ0WRAdkJqgjh9LzyIUSvqowpM5iZC/GHRWE93OS91ek7y85SJ9z\nJ3jMUfCEO8ETahzyOiCXAbn0eTh/gDMrWc0iTmdDyFyQIcxceBGBLJU1jiXIgKvXp8O2X5YeZhl0\ne5qhnWN6IdNBJarN1nNeBzoB7If/P3vv1SXLkWzpfeGhVWpR8miIbgC3gdu3h5xL/nSSL+Qaiulu\ntEADDXFU6cqq1JmhI5wPHlGVpwBwhnwChsfX8hUHhayszAh3c7Nt27bBkYl+UOAME1rDJd3hjCBQ\nCVNTyzG1gjh3Mbc5VSTYbj31eX+omRBbSzG4dku1fQ26QpV/9nR13hl10lHXIJKwrO7nJgUthipW\n2rN3/mSTOG2Sp7vVB7vz4ZrdZYzs2q73eof/7Y+H+6aeWgO+KvDLsAscN8ULN/idLe35gtZ2Sety\nQ3gVsbrOSK5KptcVs2voLEu6m5RuVNKNU9q9FWF/jd/d4Ha3ZFUJW0lV6JRbQZYq4GteA1+Ou8YN\nwevmOMMU01FqD4YDMtSQY5O07bG2WszpsRYhieFQmjpYEsMosESKq0V4RAr4SnOibUW2vseUBYp8\nVUQFWpZhVzGeFmOLFEMv0IxK7UddV9qEHR1hg3mQ4e7HBPsRbifG0lJsLcPSMvLCZL7NqbaCdOuS\nTwx4Xe//yFKsda3eX1UjO9H4HvpPP493wPuHDPzG92rmbmMOS5EZRBv0ttK2DmwYGXCgptaVaK0S\nvVWht0uqWMBawFqn3Ai41OG8rh6LCwVu5TXjqzQAF4QHwldXS1O+mK2psy9HZXozqUq/iwSKWGWD\niXlXUqexxfBuTPhzwFfzul+37/Ue+Pp/NZoFsbtZfmbsnLPqIqgQVEKBYtJQ4P6ue2Ci7F6z36Sm\nUSHul1SzVxfAW9i+bPG6/5S/9n9HIDZwJPnAfk3n8QpnkiNSSRFqJCOHyaMeX4W/4Y/8ga/KT7k4\nf0T20oaT+uvMYZ20mFRDLsUBy1FA8MEW/VPJ/gaME9gkKsk/3APrE+BjWB56XBpjrhkzT7pUc11V\n5eWooPFT4A8F/S+u+LzzJV+IL/mIb3lSvqGXLDGrnEw3mbkd3mhP+Jrf8uXRnL84v2dRjiDR7rXh\nb9oo52iD2uFNTfRD42OigsDmv5vAszFqu6BX0/o6rn9Wd+VkAE4LjlCA1xcg/rWg9fGMvb1Tntqv\n2eeKFisMChLL4dYfcD4+5OToCZPRIXHbU0CChkLqrzsKudddpbsxRr3/Pqp8so0CyrT6I22AGUrz\n7EKDcxumfVV6JBtxsV2B1V20/ucYI83ifDgb4G83g/l+/Lc9Hhz4d6VCWl0qlOHbER1zzli/vmd8\nvczgr5CuYbWFSQRnW9i3c/ywwOtGjEcaXWuJb0aYXq62XwTEGkQaMtUpTIO8bZG0baK2g7sAf1bh\nzgucLYgD0I7VTA4hD02i0GNth8xlh1yzyXWHUjfAKO6XcfVj4CsCrBL8TFWsNIwvPS8wqwKTHEMW\n6LJ6l/H1GPgM9Kclnr+l799y4J/RspakWGT1XG3aVFeC5NJjddUBz1RMr7UN1xXqBjSg1xq1weFd\nJ/PT/dQAACAASURBVKIBuR62v25ooLuB065YacGPtHFMDwIL+hbsW2hPS8TzDONZifE8Q7MrNE2q\njuBItHMT+dqmemMqHQ1RQlbAugCtRKnT7gByhvZuVfjDo7BJIKbNd9xlvDV2qkk6PAwUd9flbvD4\nUGfsp0D6X5cD9n78fxkPn3u9Ru4YXypW0C3VAMgXDeOrBr5mJfG1wjfu+v5lknCTYyYlbpliauYO\n46sGvqRJGRuklcTMcpb9Nouww7zfoWe06Awk/iynM4sRZcW8ZzHve2x6LWZ0WUw7LG/brFcttmWo\nEl1lvSP0e8YXgO4pxpduKnMsdFWZZ9WMr6phfBkmmWaR7TK+Oi76SGI/LvE/jmj/bsHYueCZ9pIP\n+ZYPte8o0UlUf0kSbIwkJ4odbuJhLRStw8pQmVmBYgpoEcjGl3q4T5tusY1u1sPmPbuj4t1SwV3g\nq6fYEi0BewKeCcSTAncvpb2/ZLg3od2aY99Z3oxNHlLGOlHsYcQDOKmBuK2pfKe4WTP18ICupvyv\nfZQN22E6s5JKUqRpvqSlqklTFoOWqHtzl8RoPv8u6+u/BHw1gXMTRMN7f+v/D+NnQK874KuWmTAE\nul1heyl+sKXdntNaLWht1oSXG4Jvt2yuSuJryfQaTq+gXBd4UYmRpHRSjVa1JggV48sbbdC2kmqq\nU5QWxdYkzxrGV4tbs0/fAT/MCTsxvQGwU6mXtYCRSdZy2dgt5nRZa+E948sEw1SML7dmfFU14yvf\nVrB+wP00JcUd4yvBJcLWUky9QJiyllmu/VEhEa0K64nEe5IQPl4S9tc4xLjEuCSkuU0VCeKty2rb\nhjMXhKVA74lUTdMoocoVgC0bBmij9wfvxkuNTteuhtbuc2sczcYHayqF6qnV5dpGF8yeYpYOgcca\nvABGBaJfovdL9EGGtjGQcws5FzCzlD1CKgLJTNaljkYNeun1gwnUQaAH75T346JM0p0smEQlKyKo\nturf7zC9Huo1/pQf9nD8+n2v98DXf9X4KcBrt5vC7qhra3fwlCIz2OKzokXseLC3RBxApwfPE3AK\n9c7HFrT6wD6UI9j6LkvabKuAPDPvGYozlOjWSGfa2+Pv9r+gBZKt8LkcfsPj4RsG6QIrL4htiytz\nyEue8w8+5cvyc76ZfsL2ny34p1AleQFwDeubNme9Y36wn/Nd6xX+77Z04w3ClYxewWiF2mDHwBcQ\n/d7i+/ZzvhMf8JZHzC8GVFe60rhyUKWBv4XWpzN+1/kL/y7+E/+R/8SHi5fsT65xLkq0DPBge2Tw\nvPuWcesaR0uoBoI/fv7vRLchXGtwq8HchqKNosytdp5B42Dtdi9rcV9v2ggN7jKkdtvGNgYhqX+n\nA3oLeho8Bz4B/fc5gy+u+c3wb3zG3/mIbzmWJ3TLJUZVEuk2E33Ma+0JX4ef8LcPf8dL+yMi2VL1\n2huUId5aSuj/Ceq9nwPPJOIwx+plGE5dOpkLspVFfm3Bqa50z34AXhpw0YFI3JcfvNNBrWF7PaTq\n7q7TXaZF87u7Br2JWt9nIH/9Y/fZN/Zq94BvfibVIVlJRY8uoCx08soglTYRHollk/smZUfAUDXZ\n8SwlfRcDLV9gBwIZCtJAJ9MMCvRauwBYaQq0X4Jca2yykEttnx/sDzDsgsCI8DtbgqMIz4gpxzrl\nSKfs6US+yz+rDzlfHrFYdskqhyKxKBODKtGQuUZkucysLufWPmFrSryXkD5LMIsUf5hjtAzylsGm\nrVMMOswGXeZ2j1nWZ1H12FQhie1QdnV0rcAbbvEGEV5/SzeYcVSdcrQ85XB+RksuyYRJrpvkwmRZ\ndPCyFMsp0IeSed4lW5pktxZZy6RKDQV+N1Puavo1mcedttea+WMNLcnOcyqVdlaVq6vwVYZRD0B3\n0bs65rjAPM4xn2zw9iPC9orAXBNkK/SqRKv3toZUekVeyGYYsiUk1UyywiBLdLJ13ULc0lXmwxJY\n7QyrnWK3U6x2UgNo9yNd2qRLh2xpky0t2DoQ+bAt60C0YUw0Nuf/SR/oYWC5y9h9+PPdYPK97fp1\njp9LKD4IFh9m5DOpmIaLEmkVZGOdTeQyy7tca2P6AeijDP/JGmutTB11UjzzNLRDh7jrkjseWzlg\nmvfYJj75xoCF+kyyXui5a7HcdLlMDvCrDYnn0E43tLQ1bWeNJiVLEbJMQ5arkMtsn/PLI+ZXPbJL\nG1mI+ybRLUhdm5nV5cw65Fv3A+aDEPEoQ0Q5mszQTA0ODeShAUcGb7uPudD3mW4HrC9bxDOfLHco\nbRM5EDiDlF53zn5wzr5zznH+hr31CZ3VNfZ6AQgsYVMKi0JYzMxrptYFc7PHqt0ibrukbY+k7ZK2\nnVrzD8Vaz5t91vhdmiq7EQ0TwVGd10xTSTgYdXB5Rw6QqlNbnikdrVJTgaLugbARbYHVy7BGOdZ+\nRmu05NA946A443B+Rnczxyzzu7nVAhwjxzMTAn/LrNdnO/DZjgOiPZ/CNd7JI1idFG+8xR9FeKMt\nhlegGxXCqBBGSba1SNoucc8hGTrkN1BcVxQTnUJzlYZImdRMioQfg1a7pVKNX/Uwybjb+OPhbG7W\nr5NN8X7sjl3fa/c809/9mdSU9qkAKo2qEopNjkmi2eSGSemoMmjRltgbib+Ejgmxrq6BK3EC0NsS\nzQdpCgrNIi1s8tiiXOhUNwIuYOv53IRDTjpP0MOSIVMWrVuWR7csxBzpancz9W1edZ7yVnvC+eqI\nSbHHYtJle+uTz02qlUa0dZmnXa7KfQJ9gdNe4BzNsT8usUWmvnH99cqOIH/qshp0WDpDruUB07zP\nJla2VoskRivHaOWYrQK/s2bUvmakXzNMrunMFthFil0kOEVKWtl0xJquWNIPZsz7PaKhz3YvYDv1\nyaWhJBs2NpSe8pnu4p/mmeyKze9qaFmg6aBpagpNxV1VWc9Go3CnusgOIPSgZUNo4Bxn+I83+Edb\n/ION0op1UyxSzCilLA1y0yJv2eSmxTbz2WYBmypgS4BcmbB2YFPBBjTPRgtNRABaUGA6BaaTYzoF\nhpNTZAZlZlCkBkWmU64rqrWgWjtUGw3yUtnwop5kKAOZ8WP/qwHJds/kn/PFforF+su0Xe+Br//i\n2C2R210UJu866w1YkCtB3wSV2J9BurKZlCPO9QOuwyHjF7c4n+W0FvCxAXtLtZ9affA+Az6B7WOX\nS3/MJftM0wHJ3FVB4xaVjarJSbntcs4T0g9sbtsD3phPOOCCjr3AsAsSHKb0OeOIl8kL3tw+Y/mP\nPtWfTfgnCvjqASeQf+9xNn7MV8PP6Ik5zqOED4zXdPeWmGcV2hqwoTiC7VOfV8fH/Nn6V/7OZ/yw\n/Yj8tQdvNbhGlfk9AvFhxrPeD/xO/JX/jv+D30//Sv+PK8SX6m8Sq+/hPyl4+q/neF9sqTqCtRZy\nsz/km48+h9e6+pynwLwRg3dQYFXj/Nrct1psobKHHcCtHTCrFjGFu05tZabES6sIhUyt6ufZBseG\nQ+AZaJ+WtD+b8unwS/4j/zv/ofzPfLz9nsH8hmAVITLIfJ1lp82L9itG7g2uE8Mj+C75hHTuq/LU\nqVAf80P1jPkUjE9SgicrOsNb+v4tvrZBpyTFZp51mc1HLC+7JIcedPQ6CyngNIBoyI9FCuHdUsgm\nuH5ouPIHv9tcG0dtl9L7Phv56xw/k118J3BsDrYaUGnwYAFlppPkDpsqxCJh7bSIuy7FgQkbcGbQ\nmkM1B8sBdyBw+hZV32TdN4lSlyw2KZIaGbtFgeI3IGcaq6LNmThGsyQru03ImrC9IWSN143IWhZp\nyyYLLbamz5vVE96sHzNf9Sg2NmWpU5U6shSUmmDTDbjuDnnjPMZoxZiP51jGHKczx1yU6J5F6Tms\nPJdt2OemM2Tijpkke9xUYzZlSOx6FAMD08vpjuaMeleMwmvG5jV70yv2ppfsTa8Ikg2lqVhrpamz\nsDp4VoJlZRidAqeKWN+GrPstqm6LLBWQ6kq0NbWgbMq0G0ehYanWU1iKLWrVOlqapiJ1Sf2cyndF\ninQH7FAJqNo2Zr/E20/wH8X4L2L6rRkjZ8IwnzC6ucHQcpCosk4Ji7zDrTZg2h1w6w9YyZB1GrDe\nBuQLG+np0BZ3Mjx2O6HdXtBqL2m3Fzx0cFbLDstlh9WyrYCvawOuPXU2xLsl582Ce6gR9NABewjw\nPwwed4EweB80/lrHrs16+Ax3AYWfKEXJpKJ3agXkGcmewWLT4iobY2kpsg3uoxjiOZ4HRgV2CW4F\nmSWInntsx30it8dMHnCV7bHYtskWtrJb+f0sLJPFqsPZ9pgy1bltD/FkgidjXC1BaJJt6hLlLtHK\nZb7pcnW+z/y8R3ZmqffpoMCvDqRdm9ten9e9JzjtiNFwgJdtcO0N3mCD1AVZ3yHtuWR9lzPzmFP5\niMlqxGrVIV74pIlDYRsw1PAGEcPghif2az7gWwarKzonE9yTOcVpgoGGZRQII0UYBqPhDYejC7aj\ngKxlMvf6zMM+83aftOvU9LhKlTzmOfeBXo0oCV+xTA1PaZZ6OniGutri3cdYSKWftS0UEJ5p6ndN\nDwwD0a1w+xGt4Zpwb8Wgd8txfsKj5QmPbk7o5TP0rMTICvS0JHI8wsGG7mDOcDDhOtjjurvP1WiP\n/Mii6Boqn+lJ8CROO2LYmzDqXjPuXePZEaaeY+gFpp6zTkKm/R6zbZ/ptkd04RAHFolpUpY2cuNC\nnCjtrzKtv9cumPGQtbtbkt7QYJuka/PvZjZ28adKH9/bsl/XeMjw2j3THpxxUquPLw0kVIUgK0zi\nwoWyJDI8Mt+m7BkQg11AOwG5BWsJnTa0e+AMgX2oujq5Y5HiEMcB+comn1pUVwJ5qrF1AybhHloL\ntoHPUN4wbN0weHRLrzejsnRKS1BZOqllc6YfclYdczY75Ppmn/VFi+1lQDExqTaC7Tpgkox4WzxG\nMwoG/XOGz8CvYoLxRul7odyY1NfJngfMDoZc+o84q55wle2x3LbJFxZiXWG3Etwwwtvf0u3NONZP\nOc5POZ6c0q+mmHGBGecYUU5mWIy6t+z3rph2+0xaI676+1ztHZCvTHIMuDVUsjFyFeBOjgrSG8ZX\nw5j3UA3qbDWFo1h4Ovf1mpW8B41kpZ7drq9iu9BzYM+APQ3vcMv4+Iq9o0v2xpf4+haninE2Cc4q\noRAmqW6RWTaZZ3Fd7HFRHXJpHBC5PnKqw9SqY0gdMRToewJ9XKLvxfhWhGdG+OYWz4pICoc4d4kL\nhyR3ySeQTTTya5PqxlB2fCuVTS9A2SCzvh8PZTYeapztVhvsst52rz/Hzv/ljPfA18+OXWaXxrtA\nwu6hv/uzhsKdKbr4XIMJJJceF4+P+KHzgm+cN/SezXj0P1xiWSXeIXjT+i1GwCeQ/MHi5OCIb7Tf\n8Ipn3C7GFKc2TFDg10wqnMZU1iRPXS7nj1m96HLae0LHneGbG3StJK1sNlmLRdxldjkg+6cLXwv4\nCvgGuJTqvD3R4FuY7g35yv4Uq5VSCIPpQZ8X/Ve0f7PBSAqkIVh3HN46x3ytfcIf+Te+jP+Vq++P\nKb8xFDNphWI0HUB4NOOp/orf8DWfxV/T+9Ma8T8Bf4TVCWSpCprDJ6AtYKwv+PTfv+LUOOKl9pxX\nTz8gPWwpqmgLpXf1TttIwT2zq25/TRe0jmrj5mjKuQy5F8uvtLrkylFI+jqApA1lC0hA99XvHABP\nwf4g4cn4B77gS/774v/kD9MvGf1jru7hpXrcbrvEfTaj/dkG90WM9DU2rs/yUYfTj54hTwy4QIl8\nfwr8m8T+Imb/xSkftP7JM16xxyVtluhUxLjcWgNOx8d82/2It4NnrMI+pWGqZZYZcN6CLEGhoTH3\nAXRtvH8EgDUGqGnXvdtlLeHeEWs0d5rab3gPfv1axy67S+fHweMdJ/qe7VXHKUVmkBQO6ypAI2ft\nhIoRcWAgK7An0FY4Cy0d5EBHDkyqvsOq7xAtHNLUosx0Va58i9ovFyCvNZaiDfYxa7/FeXhEiyWt\nlpo+GyLTu5tbAuZJj9mkz/y8Tz6xkJpA1h1tKluw0X0mrSFvnEfQzRkYFwzbkvAoIowSMtsitXy2\nVsjM7DNhwIQR1+keN/GIrLTJHJtyYOAUMZ3hnOPuCc9aLzk2ThhspgzPbhm8nOLPt1SOoHIFlSNY\ntNvY4wx9XKJ1K3Qrx5yMKPs6UceHbV3KUBl1l0Sbd50Bh3sKSFsBX5amGgJ44j4eqmS9/8u6BLEG\nv4SpDKnngm9jDCL8/YTO4wXdFwsOjXOeJCc8Sk94vD7BKrM730Sr4NoZceYdcN45xPU23JQjxKYi\nX9qspzp0BIw1GKkSIQV8zRm1rxi3r+5E8ptxvdxDW0rSpQ2LNrw01XfYGnDj8G6pUILKtO62+d51\nvAT3INcuYN/MBhjb1U1rso/wS3O63o+fGw+B+oeZ44dlKA+ArxRYlZDlsM1Jnhgs1iF2NgYN3HZM\n/3iOZth4IxU8lvVMhSA99olGfa68I87lozoY65AuLAV8NXWRWyh0g+W2Q5XqrIo23jDCtHNMW2Xf\nNQ3y1CBLTPLUJJ66rE9D1m9b5CeWWrbd+5ns2dyKAa9bT8gdwcgf0rWndAczek+mVEKw8VpsvJC1\n2+IqOeBk/ojJYsxq0SGKfcrUUJ3WRhpuP2YY3vDUesOn2lf4yxnG2w363zaUf09URaiV4VgCxxKs\nX9yyKQOy0ELacO7FaAEkbY9Ft6tocVWp7A4FP2LZ6wEYwX3nsrambEZbQKC9G//kEhYS5nXgqAG2\nCY4FtonezfEGMd3RjMHehIPeBU8mb3m6fMPTyRt6ixkiqhBxhYglcejQfTFnZE04GJ1z6h9jd1Oy\nkcls3SfOXWhLNTsSpxUzCCc8DV/xPPyBtrnA0VJskWJrKbdFn9PsmLPsGJHlLDodNCOkrAySyEaK\nHDRXsb6SptTR2lmXjR1r5kOgPn4wmwC8CSx3Afz3NuzXOX4q6fhQt3PHdsl61vmbstDJS4u4rChL\niHWX1Lco+zpIsFPobMBeQstXqixuH5wRcAClp5O7FikucRxQrnSqW4PqUkeeamyCADpjtl2fm+6Q\ngXbDsDVh0L6hJ6YUukGhmxS6QarZTNYjbtZjJssR0+WA9Mohu7bJJxYkks3K5yYeYpYppa5R9SGo\nYvTWlPD5/e3QgMrWyQY+88GQU+8Rb8onXGdjlpFKkol1hS1TgmBF+2DBuHfFo81bPli/5MX6JaP1\nDWJVoi8rxKokcywWT9ssrDaLQZvz8BC3H5PvmcziHtumG2Js1/Fj43fsljE6KNJEWJcSNgxWVzFW\nDVS8baBIE2mTKH6YnJHKjvWUPiHPNLyDLXt7l3yw9x0fjL+lnSzxVjHeJsZbxhSeQdK2STybpG3z\nUrxANwoiz+OyfQBXOvi26nAiTbSjEv15ifmswHxeEhhLuvqCjr6gI+asqxbrKmRVhayLFslbC97Y\nVK5JoVmwqB2/XKo4mJh3Y4OfktnYJU48JE00tq3xwx6ywJrxy7Fh74Gvnxw/hc43YNdOOco7mlLG\nzu8Vyvm6teAcqpcm06Mx33i/pW9N8dsR8nONvf4N3qcJ+kz9ajEQbB65nO4f8Cf/C77kC76LP2J5\n1lUdAi9RZY5JqtbqSxvyuozuRmf7usv2sMvZKMMIMoQuKXNBubSR14ZiWL1GgVMvgYtSieBMDXij\nQwcq3+bCeEz5wmDVaXOhH/CNfUJvOMMhpsRgRo8zjviB5/xz8ylv3zwh/9KGrzX1/hYqmzmEgX/L\nvrjkESeMLhbof5PwJ5j+Fb6fKxyvA3w0V3RdbQxHH19xPDpljyu6/VuuBq2azNVsvt3a60ZopodC\nDodgtpQ46iFKx2FU/xGf+wRchArGp8CVgAsX5pa6t7qlHNIRaMclrYMFL8T3/Jav+ST6mtFf5/C/\nQPUXyM4Uacxsg/0huLOMZ9op8W9cLs193gRPmTwekxy21ecxgE/B/teIxx/+wO/9P/I5f+Hj6huO\n0kuCeIuQFZlpc+t2eWk+5cC64E+HS77W/4VZPqbaGrXumQmzAKoQtQgs3unshse7QSS8m3Xc7tyI\npuvaLiUb3hU+/OUYrvfjv2bslmjvOlsPQYUd4KuUijlRQpEq4EuUARXUwJdDXppgadiekoNqGWpl\nbAY6m77Fpu+w6ftEmUO2NCkzocDwKcqGnQBnsLLbbIKQy84h+qCk1ZrTbs9pt+YEwYp10WJVhKzL\nFpsooExMyolJ+dKkfG3em2AbqlCwafnclEMMO6HsS2RH0iq2uOWUTqWx0C22wmct2tyWPW4WQyaL\nEZPFmNvVWFUOuxpyoGGKgs5ozlHvlI/Dr3nGS7rbJb2zJd2vlrhXcS3sDvgw3+tgWCWMJWUHykCj\nHOpEfZ95p4KVrlRdcwPixghpO/d/F7jv1YwvTVVoB9xX+zVTL0GWCvSirMXmDcWyaBkY/QhvL6Hz\naMno+RWPszd8dP0dH22+5ze332Gn6TsarafDQzr+DK+7RdvP0QpJvrTYTNtoVwI51pXe2SM1nY5i\nfI3bVzxuv74rm7xbeStJunRYLjvKyGum6g537XIvqJpwjyY4O3M3sbELfDWOVgPQ72Yjd0djq5pA\n8v349YzdQPHhmdP4YrvNa3aBL6kaKWwKpJGTTBXji0wj12wG7TmxcYnWs3Aj7paUzCGRgpuOx7Yz\n4NI94nX1hOuahZAta+BryV2pdoHBIu2wKtpoVYWWS7QOaB2p9qxAdZddasgFyEsN+UYgX2lUr4Va\nyr37mRYOt+0++YFg7oQMO0P2+5fsy0vyylR+l9ZjJnrMtB4312Mmyz0mqzGrkw55ZSGd2l60uQO+\nnthv+JR/oK02JCcV8d9K4v+1QtMUTu470HIgym9IWxbVIw3h5OBBEnrM2gNllqr63kYNiNOUB3mg\n1d3LzFCxTj1P+VsDVHfuDu8CX03MKaX6d4USsnbVVe+meP2IznDG3viS4+AtT25f83z5ihdvXzG4\nmKlqinqmA4uhHbAahSy1gFawIOtazEZ9zKT2X4bAQMJQ4oQxA2fCE+cVn7p/Y6hP8IhxifCIueCA\nQK4RsiDBovIFRWGRbAO0qa3E8stUMb60FKW32tit3WszHwaKja+1u37h3iA/bHzyU/9+P37546Gs\nxK4P9hPC6TsYQVnoZIVFWUJe6sSGS+ZbFJUOJjhbsBeqEZr0QWuD1gNthGJ8CZ1CWKTSJY595Eqr\nYx0NTmHbDoh6PreDCn1Q0u9OGHav6XcndNtTcixyTXWMTQub5WmX5bLHctZlfd6CGw15oyFvNfS8\nYLMOuEmG5IVOapj4vYi98Bb9yCYoalJUje2lQpCZAXNzwJlxzOvlU9ZZh9W2RbY0EasSWyYEwZrO\n/pTx4IpHpye8mP7ApzffsH95VbOfgKkkD0zWps966LPWfXr+LUXPZBoNeJtnUGgQGSq+0xvga8u7\nMXsTR3ZQ4FctHq8rFuo7OHZOTXyStYuxK3ZfKDmIngGHBnyo4e1HjPtXPB98zxf9P9GfzQhWEeEm\nIrjakvVMYt8mtm3ivo3tJmzdgKvWAdqgUhphhgK9SEAcJhgfxlifZVj/EhOKFT3thhE3DJkwp4tN\nHyELKqlBL6B0LHJpQuSpD5/Vt+Cdyo9mvT4o+/yRXmHDVjW5J0rsxowNaA+/VPv1Hvj60dgtadwt\no2tmU47SsIxcfpSl1mrnfg2cAd9BNPL5PvwI6yCjMgXzsMMHH3/PwZNr3ChHorHxXc7cPb7lI/7C\n5/w5/TdOT56R/sNXQNU5sCyhrNXjFy3Van6tqxKSt8AQZMci96z7eKERSZ+gxD4vUUYjrVTwFOnq\nc9ayM2XlcLF5TPQ85LT7iHFwRUtf4pBQYrCUbW6iMbfrEdM3I8q/mfB3Db5GlSM+4S5g87UtHZb0\nmSGuKjgDeQLfL9XLG+DLnsHvTkA7A/tS0h/N6LAgFGuudqW7NGpHo9msAXcoG/vgtBUz4QlKP+sx\ncChhVKG3c3SzQlZQbEzkxFT34g0KsHutq05sFXca0cYwp9e55pgznhRv2bu6gT9D8X/B/G9wOVfM\n0Z4FB3OFzbnjlOO9Sx6P3nBgXvCq/SFJv61AuA4Yn2bsPz/j9/4f+R/53/i35M88u31N53SNcc1d\nGUR0aHF4eE4vnGOIgnxo8dVvXNaTnnqO18DGU2y1O9HCLhAqg205921ud32rAgXMZilUsXo98/pp\nmPWCeYjwN5H3+/HLHrvZGfPB3AXrbX5U+mi064y9pcAkWyfPLFVmfQK3cshJ9pjQ3mIMSkyRI6wK\nPSgRnZL1cciqHbISIatNwMvFC64me2zOA3gr4bKAmwKWqlW8nBqUZ6pUsMhNotBFhAUyhNS32eY+\n28InKjzixEOe6chLHbkWainGUjFrtQq5KUk8k4UdYuhjtEQDXZDpLmu9S1fMWcsWS1qsZchNOuTs\n9pjZbZ/41qNa6u/EHJpTYVkZnhHREkta5QI73yDjmGSdIeclegJGDPoWDDPDWiW4aUTAhsDY4BgJ\npqnuEaa+41/U7BVtR0/C9sELVCTqG+iBxA4TrDDDClOEXiErjaoUyEqjiAT5Widf6eRrA6nrShDW\nFeBqmH6O723p2TP2zEv60YRgOce8XFO8StCSTLH061mlWxxnQad3w4Fuk1oua7fDbZCitcHuJLjd\nGLcX4Q5ijsQJj+K3al69/RHwpU5CiWmWmP2ceOCSDFzigUcyqLtFZoEqOygEWFat3l1fdZ2mtTtC\nKICvzNW1yKFIlb5Onqog9I692jBXxf3DfK9V+CsYu+VAD4PDh9d6Gk1pXX21bYXEWza4BvmeQ+JJ\n1qUOS5Oz9JggSxCVYCW66m0s9WezyuJtfszb5TEn0TFX2SHTkx7bC4/8WsAsg3UJmxIiVc4h54LS\n1dT6jIQSZA8NdTXEPT7bdLk2UH7FHupIbdxIHapEkEwcdDtUjcdaGtLQyUyHyAwo0VlWbVZVfZYk\n9gAAIABJREFUi2XVZnHTZnXik5zqVKc50tRUp0JNgCPQhETTJEKrEFqJLiuMssLIJWYilVsglHyg\nKEGXFUJWCEp0rUSIpvlFHdxpQmndNOeIcFB6XgGYIVrfQfQFYlCi95St8DoRbjfGDlIkWl1Nr1Fm\nOlHHIxp4RGOPdG3f/T8AzZIYZo5jJPjGhkBb46Vb7HWCcZPBVUG+hSKCYqsanlWbGCvWaOclHXNF\nICJsM0M4FYae4/gxThBhhzHH+gkH2wvGs2uG2S2dco5RJRhVClWC5c3phZcchxaiJfGtGDOoyHsO\ni3FfiUznNkSBsuW2oc7MZprNNFTyotRraQ2gFHUrUQ0SHRILKqsWr9ZRTUR25ScaBlizR97bsV/2\naHyv3XLsBqhv/K460BJGrR+lAx2FYGHV2IJGtdDhwoTvNZZWhwsO+V58QNjZYO1lmFmOIQoMr6B4\nYpA/MskHJrlv8m30IefrfVZRiNwIOMthWsBGSSPIpYG8Mqk8g1KaRB2PZacN3YqsZVFIg7rlD3lh\nsZ2ERNc+2cSmmugwq2BewrJCZgX5BKJTB63VRq9KTsQaR8+RusmtPlaYd31rNjLg2+JD3pTPmRR7\nrOYdovOAdGlTFTrCqDCNHNeMCY0NobbCTzd4ywj7KkU/z8nmkC0gm0OeS4qlwFhLwqigY67wZb3/\n/UoFZY6mfDDRPAuPu8Zouq7IEmYLrADNdRC+ge5XiCBD2Bm6UaKbJcKsqHJBHlvkkUkeW8hIQKTd\nTc0HvVUheilimOL7G0K5pr1a0k0WeDcrOEuIzhLSsxTmBSQlZpJjZhltbUWrXBGaS8LuiiRxKHOD\nEp3SMAgOtwx6N/TdCQN5Q287o7ed0Y3m9KIZK2fK0r1h5bRY2m0mxphJZ8zN8ZgMC+lIZGUgN46y\nyxi1lpkLIlW6jGaj0bgrk1Nf87z223LF+pAJVAnI5rDbBfrhXf3VX4b9eg98/WjsIvS7xsrjHmSp\nFUkJQHPUIrlz0jUVfDRSVAKVLfy7ztrs8Y/qX4j2fS6dA74VHzP2rvG9LRWCNSFXjHnNU36IPuLk\n5Bnbv7Tgryhh80uUtgALYK0KvDc9SAOFZp9r9zJXNmqdFai1uOF+TZb118CEyrxfp6f1LUiBqcHi\nZMTiUY/zg0fYXoohciopyFKb6CagOjHhlQbf15/vB2oU+f4W6lqJQYFFhpbJO3Z3UldrNjylCFS3\n1RpAtsgwKBCU95hi4xuXzX9o9ZftAyOw23CgwceoToyfSPQPVTcgv7PCd9ZYRkYlBZskZLPqsLkJ\nSb4LFCgVqlvCpL5/Aeh+QdtY0mNGL5njnJXwGpLX8GqqqkUjYC8DcQnPX4H2FuxZwmA0pcsc14zU\ne/eAx5Lg8ZIXrW/5nL/wb8mf+O3rHwj+cwx/Q5VD5kAXvBcZj/9wgfl5Ttq1mRtdbvb2iF8EFK8s\nBXRemZB49T3wlMC1a6sygy6qeqrR92+qizbAwoSpCWsXYg+qBsRtEP7dsSta+L7k8Zc7HtLrG7Cr\nmd6DubuPNDBq8CWwIdSoHEGRWXAL1SvBjTvitR1T2Torv4VtpZh+htXLMfcyVq0Wy3abpWyzXLS5\nuDni8vKQzUmoWKbTAmYxrOu28DMHTBsyBzmzKDydxHXAg8yxSQubtHDICxuZ68qB29RlyjqKgZCW\nkFVUWkFimKxkiEwF2dwmdjxm7oBz55jA3BIVLnHpEpceq6jF9WTM9HpAeu2oPeFyV7mjmRLDyLFF\ngqdFuHKLViSkaU4RVRgbcHJVcuBEIF2J2BSYaYpbxri6atGt6wWaKWsbJkHs0L81S9Hqha9YEmMP\nxhaMBWY3ww83tMIlYbhC1wsqqVNVgrLSSTY227nPdu5Rzj3KQijWV90z3PRyAmtDT5+yr13ST25w\nZkuq04TNdxV6DGXdh6WqIJYZorMh3JuyJ3XWepsbe4ztJ9Cqy8Rat/Tbah6uzjien3K0OONofvYj\n4MvslNjdHLeT4LW3TLsDpv0B0+GAZOzUjT5CdV6Ujgoeg3r6hgLsTQGWUNoaSamedVJCUkCUQZyD\nrIWm706Tpia0sWEPWUO/DMfr/WjGrlO9W2bRsGhc3s167bzedMF11d5xXWiZaoYmtA2Kx5C0dCgt\nqpnNWfmYqjBZll3elE/vjzQNCs3gJupzuxxwk/WZrnusXwVsz1yKaw1mOcSpEjbPUlVmvKqbT2QG\nzA1wTXAtdW1Ii82s6q8wQtmYpiFrnWOtcp18YhFvPapTgfR0Cs9i64XM/T4VQiUAco+ocNnOXLZX\nDum1RnWVQlipe2Yr4E1KDYnqCl6iIxBoSAw0JYCgKRKBqLEsqWtIoVFp6vWVrN9DNmWKok441mwm\n3QXTV+WNToA+FuiPNYzHOfZhSt+/ZVDPtru8+zxSCtLC5mY8ZLIacrMakq/qZMZKINdC2V69xNZT\nPC3CKyOsJEWscqqpJLtRbnAzq0CixwV6muBlFYEV4cgUUxRolsQ0MlrOko4zo+tMeZK+5XB6zvj6\nhu5kiR9tKIucqsiJiwJtsKV1fMPxEXSsCEcUlK7NqttF7FeQ6UomYynVDXR16Br309fV9AC/Ugzq\nTCh9x0yoHONcVz77woXchKJeCIXGPYDf6OnAe7/r1zB2/a/Gju2WBO9MzeSui6NuKNBLBkqHSmrI\nFKqpgBMDPI1lt8Np+xirnZK1Tby9CNeIcVsx7l5MNHSJxj7R0CPyPH7YfMDp8pjVdVslyE8KuI0g\nihVIsXbh0oHKRa5t8tBkGwbQ0kh9h0rqlPUsKoN07ZJuHMqNrtj7ixIWBSxzBXxdSWLfQgoNNoIT\nryD3bWbegJ4zA+5P3qR0uNgccLHd52azx2beIjt3yOc2VSXQ7RLTzHFEQqBtCMsNbhRjznPEVUV5\nDvEa1vUsNIm1LrA2GfZaAdVOmWHoBZor1S23a6Rfa+J6D7WnhLLhXgv8EAIf0TUxh2AMcsxhjuUW\nWEaGqWdYek6eWWzjgG3sU0QGciZgosGNDhMN4RcYYYHZKTB7Bb61wU82BOstYRIhrhLis4zkrCQ+\nk9g9ib8t8DbgryV+KybwN4T+inZrjlEEpNIhtRxK3yAcrjlqn/FMvOR5/JLgZk0w2RDcbAgmW6Ku\nS9TziHse267Hq/IZdphRHJksghYVFeVWUE0cJCYIW5V0ajnoudJl9HV1dXTuOhc1OrNRqZi/UQlJ\nDmUE2lZdpcF9tmfX9/pl+V3vga93xi4DojFcDbOrQS766mp6yslpKssc7uUneigCUpv7ajMN5FuD\nVdHnny88Jvv7fBPc0nFmeHqkGF+lzyLuMV0PWZ72yf7hKjDkK1TgOMugXKDoWw3XO4K8p0TflxZY\nphJE1jW1UHfj3+YrhKi93wBjW2rtMBQTLEGBP6fAnkHcbxOH3DtwW9ThfYUCas7q6yxVf78Qd2W/\nuTRJUV3hpKcpFmkb+leKeX53u4RizDeAoWq1bZNhv6thLOEeiDFRSF8P9K7Sn/kI+By0P1T4v1uw\nPz7lhfc9h5zTY45DQo7Jwupw0drnzfgZJ4NnLAZdpG2qZWBxl1QWusQkV62zy1x99y3ksbpl8/p2\nWCit1uaR6HmFTaoAPL1ULwhA7Bd0e1Oe8YqP5T95dvtWgV7/MyR/hfW10hzxQvDfKEbJ2J/x0Wff\n88Z9wvfhB0wO9ljt9RWw5QCaDbIPtgc9U2mTHaEyy4N6HTaSQgmqZOOmfn7nOlz4MDOVA/YO6NUA\nXY1oYfOzX5YRez92xy5w32z8JnAMUfuluTblrw3wVQdubQt6GpWjGF/VraDQTG4GI6qhYBm0OOvt\n44Yxbi/GyRKcNGFJhwVdlrLLYtFhddNmfdlifdJS9muTwzaCzRqyDcx9xfqZCzgzKCydxHYoLBPd\nqigLg6I0KAoDWelIQ1PsRaMGvnKpxJFXBTIvSKWBzELSrcdm2mHWGnAeRnitCMvJyTODPFWtvNON\nzfYyZHMRkFzaCpAfoQBwG4QlMY2iDr62uHJLXmRkaU4WS8QGglTlDXQTpC/R1wVWkuFWMa4RY4va\n+TIkGLIGvmpRLU1TwJfwQXRq4MuE5yY8FxijgiBc0w9uGYQTTCOnkDolBoU0WC9DxE1FcWMQ3QRK\nMD7XVOCUK+DLtzf0jBn72iW9ZKKAr7OEzbcSIiVP0RARCidH7G9obXU8WbDQ+5xbK2wvRWtJ3FbE\noH3DUfuE4/ZbDleXHMwvOHx9ycGrCyWSvzPspxnOswSvvcFvrzjrPkYbSOKRx/y2p4I+AqV3FocK\n4AqF6njbEypD20xTqzsaSdW1b12BWR8KWQ5pQ7vXuG/cAfeB43udnF/2+LmA0eed1od351E9TVdp\n2rVdaDsw1GEg7q5lRydpWRSlQzovqaTJki7nPMJvMnT1n62kIIo8tguP7dwjvnVITwzSU4P8WlO+\nVx7XNKO6TnJlKbrR2lRsM7NStsmswZBauJ429xieh/INm07y9axSQXZtU6XK5qa2w7YdMuuozqlS\n0+5sV56a5EuNbAb5TCJnKQwqdctammIkyQb0EpSajq7paJrEQCqXUKtx8vp2S0Oj0jUqIahoZu0L\nNMAXBkhLfRlRM+3sAIIAMS4wnxeYv83wXiQMzWseWSc8tt4yNq7v3lNKwbbyeBM/gbhkG7msVz7V\nhdJAlReaAuiMAltkeER4VQN8FcjbimwCUQ6rAtY5yKgijHOCROJlBWGxxZUppp4jLIll5rTsJWPn\nigP7nMfRGw6nF4xe3tD7doGx2BBnFXFWkmQlPN7SjiUdc4s2vEFogqXb47xzhNiTEJmwsFVJk3CU\nDmNPwEE9u6q8U+sAnRISDRnV5VYxcKHDhaWodlmhmp4kQgmbv9PYoel22zyEXw5j4v14OB4mHRuA\nZbdSqLFjYX3264pRY+hqX1VWfVXAF1Od6kRDVoLlcZfTR0ekbZPbVo+2tSJsrWiN17SiFUu/xSLo\nsAzaLN0ON6WScFiet+pqobwGvlZQrWHdUlTvjQHXFplngueT+xamG1JVCqSumg6TlUlZGZSlofyu\nZQnLHJYpMsvJrwToJkVmk8198p7DvD/gpPcEL4wVoxNAKu3Y9TRkNQ1ZT0OiuU+xNihXBlWlI5wU\nw8xx9YRA2xKUa9wowZpnd8BXFMM8hmkEpS7prEs66xRnU+C7MXapgG/hSFVGbWs18LUb19dlfYYB\nng+dAHoB2j4YjzPs4xzncYrjJ7hCNS1xRUycuYiopIx14sijutDhlVC+XaQh/BKzVWB3Epx+gp+v\n8VdbgtstwWRLdhGTnFXcnpXcnkG7UzHcgLOWOKsSbz/GP9jQ8le0woV6X1NSBjppx6blrTkKzvlE\n/4Yvoi+xbxKs19ndLA5M8iOT/NAklRaOyMgDk3mrg3WwTxEJuNaRXi0XpJU17bcCo1Sasm2tbmZU\nr+tmeVcojbBlVWuc5aBtoLCUMywbRnbjezVi983Z/cuwX++Br3fGboljU6fvcS9YMFJBSugp/GuM\ncmJ69cuaPdVF6TkNSvR2jjAUPbJcm7DRSb/1uTz1uO7uY/diTDtHSuXYZFOH6txSpXcv6/kKmOSK\n28ktCl2JUQupKXHLofIgsRV9GhssQ32WfRQQsl9/5gYwqXUoWKFArwtUOeWsfttF/ZoN7wInGxRA\n1oAn80pZIhlD3oFUKDRoDauqxZQ+14xJj77DeFaifQiPFmDNYF2oOPuwB9qHwFPY7NlMGDGjyypt\n3XezvOsc3XQw9ICWKm5v6fAU+C1ov69o/4dbPjr4is/5K7/lHzyVbxgVNzh5TqHr3Npd3vKYf5of\n87eDCX93f8dEHkJSOyeR+hOy0igwyLD4v9l7z+dIjizb8+ehIzJSK2igBFlksdlkj+p5Y+9vX9u1\nt2/nTfdMC5JNzZJQqVVo5fvBIwGQ3fO560O5mVsCVQAyM8LT/d5zzz2n0I27ANZwFHzQ5r6DwdO5\n636tTI0MkxyTstJVDGOC1U/oNWYccsNxdk37agdfQvpnuPwOXiTqbR4s4YMUuk2wH5UMTxYcuVeM\nmeA2YrZ97mW8dAsMGw4N1d75tJ4XJcZRht1KMQzV9lNkBsnaoby24LWmWHo/AT9acNut2an75OKh\nmPS+t/t98PXujv3ptD98HgJf+8DrgaLyL7d/ExUktIA+Srw90yjmJgRQVgZbv8mVcYjdS/C0EF8G\nNAhpyID1tsd602e17bPe9KnmQmnbvBFqD8tzKGLIt1CslVDyukbmNYdC1yl0E3QNoWvIEpUM7DHX\nwYPpS+WqE5SwzFWrY2aSRi67tYmYGdAD0ZeIvlRvv96iiAVsQV4K5FuBvBL35lqO+vvCrDCMAkdL\naNSMr6IoybKKXVQhA3XG67oqJspGhRaUWGmKW0Z4IsbSUgV8PWR8if1nS6+rvg3QOyqBHwl4DHwG\n5mGO3wzoNeccNS+xzJRcqv0kx8Ra9ShuTeKbBtqNgI2u9sia+GS6Ob4d0jOWHHCLn8zQljsFfH0v\nKcP60y3rramT4TwJ8KICR4bM9ENa9hbHSxFNiduK6bXmnLbe8Kz1DUdywuFqwsGLCYd/mCKqn+8J\njkxwOxH+xQ6/vUF0Iep7zIdDBTBiQWZB0FBLdl+YGaDOqDtFAaH+byPVObAGrDqoympXOJL6Wffa\nhXujj7qi+1dg/vvx7owHjNOfMb5qyvVd7NXnvhe5PpOM2syh7cDAgWOh4pwT4EgBu4WEtJKIJWz1\nDkKXCF3+XHZnv0RilG7NpUBeq9ZseVPAtFBFPWKQ+4Jjptrddo5i/VPWlXEDkOqlH6HiQMFd4Wuv\nn0yFKkBt1WMVaFQTi3xiwa1UxIShRAzVI0LcseVlLCDMkLsYgppBm5cqSRnpKm6BmvGlUwoDKbSa\n9aU2U7POA7UHHVlS0+4ZX/yC8YVWV/Nr4GvP+HJ8aPho4xjjcYn9aY77q4CBmHLGSz4S33DOa6r6\nb5bo7GQLioog97gthmibPviCSgrEVkckEkMvsLUUV8Q18JWgb4s7xldU517LCrRQYsQFzbTAy8Av\nIxweML6snJa9ZWxPOHdecl4qxtfoxYzuHzZUk5gigbBmkNkfB7SskPZgTvupIBcul+4pre4OTdZ6\njRO9jqFrTbeeuHMBZ1zCqIJRCcMKAk3JkQQ6bDUVswlU28OmbnsvRY3X75PEvdvtXgTtlyz89+Pd\nGw+Br4f72F6os82djuce+NL3wJdQplv7YysVyKUCn9jBhg5Zx2Que7xsndHrLOlJNftywUIMmIkh\ns/oxK13SjUN25cJ3wCqHVQTRBuQKdlKtR+GA1iC3TXLbQtg1SPSgvoAEaYsH8psStpVCnXcJpDmF\n7lLkFmwdxNxmddhHhBKxDzAeavzFIK9U3CWvBXLFA1YRCFsVHR09ofG3GF/XEGewzmGaQWVJjF1B\nawd2AA0/xikyzD3jy6UGvvZtpXV/+x4A0w3FGO54MHLRzgqMZzn2sxz3WUSjFSj5inqGWZMyMogj\nDy2SKrYVdSfCTIV0RrPE7qR4vQBvE+BnAf48pPkyYv02Ib2ExSW8uYRhR+IEJb1tibMFr4zx/RD/\nYEurtaJ0NcqGTtaxYQRNueOEaz7mW/41+h36rFRyPV9JxFcgn6Bei4TK1ci7FstWl7e9Y0w/halN\n9cJEeDUoKx6ch3tMsM09tvHwiC65O+LIUAx8bNWqLfaA/R70epg7vlt72Hvg627so5+9ftTDiuMA\nOAC9B31LCfxeUOtHAWMJLam8sTUwGzmtoy2+v8Vzd5haTl6ZRIlPsGuzu22RvXap/mIRJxbxfl0k\nqEBo7352iXJdXOeQr1Gc1RVqIbVRm2mrfp12jWbXwIQtVYLxEAh5XGGdJjjtGMPKEUJSFgZpaJNO\nPKpXhgJCZtwv/D1baM/AXtf/vzeCkCjagKxLmKVUcWHNCFvs+lzaJ7zUHnE1/o4nv7nC2FS0DfBf\nQh4qPVTxCPgtFP8EP7XPeCEec8UJm0lPsc9WqM36LrkpuVNy1T3FbjoHPpY4n+/48Ohr/o3/j9/K\n3/F5/AWD6ZLmfIcZQGULgqHDk/4rjrtXNPUtogv/+YnNenWgrv9LFCsi0tmWLdZ6h7XdJjvSsM4q\nnFN4tAIzgLiCvgnjEYjHIE8h7dgs6bOhRZw76ppUYDgFDT2kzYZmFGFOJNzAbgavEnX5ExTBobuC\n1jXoN+CGCR02+OwwrQxcqTZzC/BMtUQ/Bj4FPpU4H4W0jxcMOlO61gpPRACENFjEfRbrEeu3PfKx\nU2uSoALb23Zt9/vQbnsPNO53x/esr3dv/A3GhHBB+CCaoLXAbULDU62MDR3TKLC0FEtXjlZ6u0Dv\nVei9Er1XolklulGhmSW6WVGMNfKOTu7qFJpOFevEgUsZGCSBS7BpEax9ko1NsdHgRaEMNNaFAinK\nuDZ9qR0MdR8MFwyrzsLqdj1dQxoC3SnQnRLdUToWVifD7qRYnQyjkVOs1LZYrKGIBGXboWzblC2H\nqm2it0u0VoXeLsGBIjLJQ5MiMimFofaUPVN3f5AHwBqKlcGu5TNNR7wuz5FmBv0QLgKcT0OMXoar\nC3RDIA1BeuCwfdJkNhxyZR9zVR2xyPqEsU+502EnalaWqdoZDE21RHlKm8s6yGmMArx+SKMbMrBn\nHCWXHEXXHN1cYpMpYFAzKHSDRTbAj2NcO8EcFQRmk1Taai9PHIrEIM5ctqUqPFRWjteWeKMU71wo\nZ7qa8VUA1dikanuETpOdaLGiSyh9sspCVgK9KrHIcYhpiBC7jNCSFBkWZOtS4XkPhgwK9DTFLiMa\nIsTRY0w9QzdLtW/tCTy2gJ7EPYxxjyKcwxh3HGM6OaabYzkZulWS7mySwCENbNKNTXprkDZNMs8g\nn1mQ2ZC6kHn1/rUHv/ZVx/c6Oe/e+CVLYp8o1uJXZkOxmG0bbBPTKbGcDMuNsJwI2bapOjFV20G2\nHbxBRGMQ0eiGeF78s2RLSkFoNAjqGWkexU6nXOkUO4Nqo8GsUiDXtFJfL2tNr6wAWSgWvWErANso\n7zXpLEsVn4SF0ksR6H6OexTjHse4xxF2L8Fycywvw3IzkIK0aZOGFlloUQwM5EAgDwVyIRCaROtW\naJ0SvVORC5MkdUhSmyR1KFcSOYVqaiBLGzQTUlMB4LcQ2x6zxpBX3QtackWrucI92eF+EuDkAakO\nsaehNzQMV+Pq0SGXvWPeaue83p1zux2z3vgka2AVwi6DpFItecJWzH7fgI6G1ge/G9Dz5/ScGUNt\nwsXmBYebK7rrGX64rjXC1LSNjMPGLdtGi6jhYtoFgdUitFoEZpuy0Il0j5XocisOsI0EvV/QeBzS\n2xhYfeXI6demtuXIQF44rAcuietwJU6Y5QN2kU+50u+WlMxqIE+Iu5ZwoUv0OvyxK3BzMEuV2wuh\n8jlZ1Z2e+2VrCRUXHwCRwDmK8M4jGmch3mmI2UyxnAyzSrGCjKrQqEydytepHJ1d2mJbtdgaLYKG\nDzNDOd1OixrDl9ybeOxTtBogex97vYPjYey1R5L3DPsa7babqp3O9cAz0VyB4RUYbobhypoNJZCV\nWqOWl2E3U2xfTc4r5ECCL5FCksUWu6hFFeokYYN10WZddNgWHeKyQfGDTv4DlJcZLAsIMnUk5jWy\nIRzQavBNqz8TUiCL+rOx11X2QHgVtpNguymWm2KaKTLKqaIMGWVUmST3JJmrk7s2ZVOgjSu0YYE+\nKBEdSVXqlIVOWerISr83C9ync3C3rCtHI0kdNnmLWTWkYYa0egHD0wX5cx3HBzuBVqJM7fOujnFq\nEY9sZi2bqT1mVXQIE0+1Zq5RCVVaoAQUy/qWmSBMhKeh9wX6cY72SNI6CRh0Zgy0KcNwRjPb4mYx\nbhbjpTGh8BgbMxbGDQvvLdtOh+2wye6oxW7bojrQKNommWGj5SVZ5ZLbFlVbV47YKTRjGAQqfu22\noN0DdwjiAKq+Rt4wSQyHsPBJpE2pa2h2ia3F2EmCFadYSY4Z5+QLSbqCdAvpTjl92iuw52C2KiyR\nYTtKgsMzQhJDIg2NSjcpTGoHXgkdiehIvF6E143wehFOO7l37BZQVRrx0CVaecQrl2RlItcarGzk\nqlHnuaLeNHO1Qd/d3IeSOX/f8R74uhv70t8e9nS47w0cKtBraKlWuo/U1J4VeBc7Gq0Qx4swjYQK\nDUdPeOS95Khur7PIyLBYuV2uuse8HD3mcnjO7i8d5JeGQmtnKNArrB9XKBHoJIFqg0JjNvVr7XGn\nNWY06sBQv8fsBGrjugB+BfwanF8pIGTUu2VgTfEJ0ahIsVmWPSYXRyyfDAiPW1QzAwYl9kmM00ww\n9ELpYOQGydYhu3GRL3SF0vSAH3W4bEJcJxlbA2ZCuYe87PCy84ivreeMjCnO84Ij4xbjUKK/VcLQ\nNNRrTT/TuPpwzJ/E53zNc35Mn1C88BQTbYHawO4soAtU9aSl3usIOAPtacnhyVs+5Uv+Rf6ef9v9\njqNvJuh/QDGbdqA7kvZpjP/ZJc3PA7RhRag3WPb7fPlRm/yNW+swQDk3WW6HXHWPeW2e8Pj4Bce/\nWWCuVHG1damILG4T7GfAP0H6scV1d8wbzrjJj9huatZavj8i60YCKe8K2GV5Lwd4ZxK7Nz/LQSsr\ndMq6AUHen7UCVQz/EPgM+G1B61drLo5+4kPnWx7xihFTfAIkQunIuQe8dB/xbfsj3nYuiJw2kpqV\nllqw6Na6OXvXx4fOHXs3ur//5vV+wF9r5OzbhGwQngKX9LZiFXU8GLtwYMKBwHQymuaWpqGENO1G\niuVn99PIMfX9zNh1m6x7LdZumw0tqkCjuLEobm3CG41k45BsHIqNrqjwkwwmCWwSJUZeyfrcq3Uu\nDAdcpxYFrgMwXdzFjsawwB4kWENFGW96O5oNNV07Ig4tNSOLOLXJPI/Uc8ncnMKzsLwcs57CkMSB\nRxQ2iANBqRvqM1nXDNi7vIXAEoqGwbbb4jY+4EX5mMKRtAczWk+mtGWOd55hmhqmqSFCAC1BAAAg\nAElEQVQNjaTrsLnoMBmPeOOc8SY+Y5YNCSKfYmPAVigTkcyEqga+GiZ0dOgK7KOU3nDBuHfLqDVh\nrN9ysJ4wXk4YL2+xy4zS1CgNncrUmdlLPDvBtlOMYcFS9NkEbba074RXw7TBqugxkQfgFOidnOZx\nSPOJQMRK26uSagbHJru+z87rsxMD5nLAtmqSljayUPuPURbYMsMlxigzyHLyqCSuQf2HI49KSAuM\nQv28LVQFVjP2LVmoI7YLopB4hyG9wzm9wwW98ZKGFdIwQxpWgK2nbJIO66TNJumo99lpsvWbbJ0m\nuWXDzoatA9sG5Ptg6yFDaP/9+/HujL/VGrRnpzZVG13LhbayjrW6kmY3we9uaXbXlA2bwnMoGw6F\nZzP2Zoy8GWNvytCa/6zAXAmNW3PMjTHm1hwzY0iytEmnFvKNTXVlwjZXMdd230cnIZKQV6oqbmrK\nMMa2VAvuQ006x1AMTqGAL9PPaR1t6B0t6B/P6XTW+EaAbwY0zZBKCrZ5k23WYps1SSObaqfdTU2r\nMBsFhpdjNgoi4bLOu6yLDqu8Q3prUr6UoOmUiavYDJkJax1MQeR5TLojfkqeIKVk0JzQP5vRK2f0\n2nM0TSBtA2wDaRlc9o95Mzjnpf6Il9vHLDdN1mufZAUsQ6VvFldKxgIFROLr0BOIsaTZDTho3HJq\nvuK0fMPB4pqDV1d0Xi1wJzs0TUPTBJomsN2cw+NbkhOX8ljHtjJmxgFToyIzHHJDue8utD4mKZpd\n4Ixiuh+sKAwT/ULpK5KBlUHSNkket1iPeySNHm+5YJKP2AVNioWBcEqqlkaZaBSVQaEZlLqGtFQr\ntWarzmlbU12LuhAYmobUNQpDkJc6pVAMOErUEbsHvgR4hxHDiynDsynDkykNrWZBpyGNNKI0dWXg\n4umUpsHb8pRL84S3/ilB34OXmgITQ2BpUAdiqDjX5K9afO/G+xjs7zt+GXvtBf32tJl9T0gXHA96\nLgxcGJoY7QKnpcAtp5WAEFRSu5u+vaPtbmg5W9rOhnRkEY1dIt8lEi5VpBNNGqRTl82kIkoahIlH\nmDTIEofquqK6KZHXudLjSlIFqhY1i0HfFxwNFXNp4l7yVaLwujHK2X4ocdyYlreh5W5pWDuKTFKm\nFWVakec6kdAIhU0kSipLog9zrFGGOUzRmiV5bpNnFjKzKaV+p+8P/NytuoDS0olij1XexagyLCul\n219z+PiWXDMQB+BG0AlBjyBp6FSPGsQHLcJOixvniHnQUxpcKx0WUhmTJLkCvkSlQC9dB81Ea4DZ\nrzBPMqwPEvrDOWfeG87ka85Xr2nnG6xdhrXLsIOM2HHY9Dts+m3WvTa37UMuh6dcBSdEqUfZ1Sna\nJqnhUiUaceWROzZlzwABVgntBKpQgVSNPnTG4B6BOINypJM2bSLDY5s3iYVLIXQ0s8AxIqw0wchy\ntE0Ja0gWsF3DJoBtAq0Q2rXjp+mDZpeYzQwnT/CIQGiUmkmuV7XWkIRTCacV2nFJs7lh0JoxbM3p\nNZb1MpcIAUWlswgGzOuZr1rIt4LqjaWA08RQgWWZQ1lbJr+D7Pv3wBdwf0P2iP2+xbGm2mtdZdv3\nAQpc+LzC+nXM+NEtp52XHGtX9FngElOiY1DwmBec85pBOcfJM1LdYmH2eMUFXzvP+fPJZ3xjfcJS\njJGBoYTKXwPzCuJCuVVVEfce2nv71RqIM2oR866ugI/ahfWOxQmKmfZPEv/zDednP/HM/YYn/MQR\nN7TYoFMS4TLTR7zsPOL71of82H5GEnr4/ppx54aBMccjBiDCY5H3mV4csrgYkhz5yI5WC6cLuGwp\noG4n4Uao9/ONweXBI/58ssbRE6q2xq8//Yrh4QJvG6PnBYVpEHUa3I77/Fn7Nf8h/pU/8Tk3r8/g\ne+ANigEXgUIFk/pNuorVsmenHUnMs5gL6xUf8Q2/yv/CyfcTxP8F8t8h+QGSWBVq/TPQZ5J+teGT\nf/uWm+Yhr8xHvD06Y3Z8qgT7Z1C9Ndhc9/mx/ZSvtecc+FOc33xJz9iiH0DjGoVUtYAnkP7G5M2T\nQ76wP+E7nnEZnhG/9RVuaSqb4kQ6hMIjtSyqDmh9aLTgYA7bUv25MaqDQ+sBXcgckxCPBJeiMCCt\nqfH71tpnwG8qWp8teX70Jf9k/hef8SeeFT8wDBc4aQoCEsfhxhvzrf4hI2/K7y8ivhfPCfOOouRv\ngNCFsF2vvRAVgGW81/p6V8dD5sSerWqrz4bmg9ECo6sSyBMTnhrwVGA1M3x7R9+eMXQmeFaIZ8W4\n9XS0BEekOFqCrSVMnBHX7hG6e0QqLJLAJbsxSX9wyH5wyTc6xUan2OqqDyVMIYggDJT9lnRAumri\nKlMQdy9qrt0HX5pQzl6nOfajBO9RgH+6o2/OGVhzBuaclr5ViWPus818dqVPbGZEZk5kluSmjW0k\nOKaaGpJt0EHuNLKGpS7XnHvgS0Mt7wgFeHs6u7ECvqwyobAEp0MTT2Z4rQ2dSCBNgbR0Kksn8Rw2\nnTbTzpg3zhlvw1O2WYdd1KTYGrCVivG1B770Gvjq6TAW2IcJ/dGcs95rnrR+4DC9YbibM3y7YPjT\nHCvNqGyBdATS1uj3l9gHivkmBhWWTNFmJQUmQdSiiEzCrMGq6HLLGMtOaHZDtKMVfigwEu5dHUuo\nTiw2vQaB1+NWHDCXfXZVi7S0oRAK+KpyLJnikmCWKWQFeVT9N8BXBVmOUaa4xFhCtX1qRnVfV6ox\nD2FKvIOQwdGM44NLjseXdPQVXX1FV1vR0EImxZjb4oBJMWYSHWD5Q6QjSAyPSDNgZkHlKsH7O4bX\nnjWxZ0rsPyfv9613Z/yyNXtvK98Eqwa+hhaMDKzDCv84pX+0pX+0oLAsctMhM21y0+FMvOIxL3nC\nKy7E65/haoXQ+dF6yg/WEzSrIK0M9NyDqUfxnSD/Tijh+jStZ16TnoXaF4SmkkTHUgxrX7/Xo+tp\n6ntR9w4KDcMvaB1tOTi84eToDQetG3qs6IslfbGkkhozOWAmB0zlkLDwKFOdMjMoUx1dlNhWim2m\n2FbGhhY35SGiKkgqk+q1h9AMZGpQLQ1kqSvh9LUOOURNj+l4jExgKxscty45OX9D0TKwzguk0Cl0\ni9ywKHSLS/2Y1/oZr/RHvNg9JdoIkrUgWQLLQLEo818wvprqGmijCr+746BxyxPzJ56W39OeL2n/\nuKD9pyXOj4EytTUEpg55OyX5xKUydPRBjuMlWEZJbjisjR6J7hLqDeaiTykEwirpjtYcGTcUAxN9\nJ3ATiRVDI4GdYxAftliNx0wax7yJz7nNR2yDJsVSx3QqqoFGlSqh7lLoVIZOZWlIW2k7G4mqHauG\nHIGuqV7Q3NDJUcBXxS+AL6GWqncYMTybcnH2gvPTl/TiNZ3dhk6gZtHSyU2d3DPIWwZ/MX8FfsWm\n3+T68ECtmdCGyV5iJUUdRHuHhD3gtS86wvs97F0ZD2OvPXi/B/CbqOB8AI4DfQPOTDg30Ac5di/F\n7wc0ejvQhHLtkzolOn19zsicMjKmjI0Jm0abhd9j0ehTCo0sdIgmLvkLm/yFTbYzyQOLLFCPcptQ\nbXPkLoFtWvd9o7SYsJRGn1HL4Zj1e3i4pHyUNM4TEBcS10voeGsG3oSusyQvdPJSIy900sJinVrI\nxCNLSzIpMfoFVi/B6UcYjYIkqZCxoEhMyoL7pQ1/pXeogC+Xdd6hrASGmXPYnxCIBnnHQFuDswVt\nB94OQstgfdJgddhn3R1yySFzegRxg3JpwFIqXdA940ugxA11AwwbzZOY/QTnJMP9IKHXnnOavuGj\n7Duer76hs1ljLEr0eYm+KEm7FsEjj9BrEFgeL1uPMYc5ceZxK4/IPZO8bVEZOnlqkkiPzLEpezqy\nIbALBU5ZW2gvwOyDOwLnuAa+OjpZ0yIyG2zzFoVuoGkSzSyxNdWlYaQ52raECaRz2GxgGsA0gWEA\nbMBeQNMFvVli9XOcLKFBSCVMcs0h1ct74Ou8QnxcoX2Y43sbDrwbzt1XHLvXqKZ5tThyafImPUMk\nBXFqsdt4VL5ASgu5s2BpKedtmSkThTt9on3r47uxf70HvoC/ZnvtHdDaQE8JD5+imF6fVdj/HPLo\n8Y/82vszz/max7xgxISGjO5EPA+iCaPJgsYqwogrSlsj7Ls8Gb7isHmDbwYwgi8/sdish/d6WTco\nx7P7/j7UjuCiNtEx2B3VW7cXMT9CMZ669Y/p9a/0wP9sw7OLv/CP9u/5DX/kefk1B8EML0wQlSR3\nTObtDj+aTzjSrvCHAdHQ44zXPOaF0oephWADfG7NA170H/Ft62Ne9p6ycQZUlVEHiTpcG+rcvpXw\nUkAPwlaHb7VPqY50tnqTS+eE85NXDFhgkpHiMGPAKy74nmf8ufqMH68+oviDC38RihE3kVDtmV77\nbNVSVdb6VomhxD9Yc8g1Z/It57srxBdQ/Q6C/4CXC9W90NTgfAnDEox+xeB0w/nz1xyJK3rOktnw\nVD3FG+AlpC8cXo6f8sfBEs+IKQ90PvJ+oPNog7uO0XJJ7hkE/QY3wwO+8D7h9/wzX6W/ZnJ1DN8b\n6t52Id1aLJMeU3fMxBlwfvyW5ocJ3mt4nEB7qdhfTRc6FyCeQfUUNp0WEw6Y0ydJnHt2oIdamx+A\n+zzg6cH3/Iv5O/4n/5vPNl9yfHWL+zpDW6HOtgEcn98wOp3guwFYkJw5vNg+J73x1Ou8FZD4UPrc\nN/bve1t13hW66vsBf1sjp9Zh2TO+jBZYHeiYar/4CPgczG6G723puzMOvUva2uZOx6BJgEdEg/Du\n8aW4QKcgwWJJlyxwyG8toh99dn9sw1oq5HZbqUkGMuRezGYvhuiB6P68I6DDA28RAY7EOCuwn8c0\nfrWj9WzFkAnHXHHENX0WLOizpMeCHg45OwoMSgSSlPz+9YsIvaiQW0Hm2YSer5bw3vF0D3ztGV9A\n4Rhsd01ukwPKUlBYOt4g47C5xju5piMhtTQyWyO1DBLDYUObqRjxhjPeVqdkmUMeOTXwVaikMf8F\n46urw6HAOkzpDxec9V7xcesvnCwv6e/W9N6s6X2xxoryn5lCdc7W6I0CcVJSDiSyhMy1CGQLLarI\nI4MobbAqOrhyTNMOGHeX6Ec2fiWw993idUwSHprIvs/O6zERhyzkgN0d40sBX2alGF8OMUapwIEi\n/m+Ar7hCpgVmDXzZWoahFWh6da8iUHe0iaYCvvpHc04PXvNk9AMjJoyZMBJT2mx4LS94xTkNduhp\njnQEsd5gI8tazNuCxFVMwzvQK6k/D3vg670z2rs1/pYmzr7o2FJtjnvg68TAelzRfJLQf7Lj6Mmc\nTLPuTHBSbM7i1zyPv+bT+Ct+FX+rWhJ1Abok101a1gZhF4S2zbJoQVFSzATJdyb81z5o2gsBptzH\nhUq4GcMCu3aRbNuq2HZQz5/tX2D4Oc3DDePDGx4d/sS5/5LDYsJhcctReUuJzlv9mEtDzY1oUWBQ\nYFJgYFDgEt/NBX0EJSkmK1pkTRMZ6yqxe+OootW+NrUVRF2X6XbELmlwU43ZtZqULQP7tKBDQIFO\ngnM3L3fHvN2d8nr7iBfbp8hNCOtQtTkuQ+7PfF21pFu/YHx1AsbehCfmC56XX2MtQqyfIqz/CrH+\nlGAb6ldsA+QgrkGvAveDCMdI7kAv20gpDZ1Q96g0iHDBrjgc3hD0fcrKwMhAiwR6KNEjEMLkttli\n7Y953bjgVXLOJB+xDRXjy3AL5E5TwGJlUAqDSteQptItErbydbH1ur1RAJqG1HVyw6DYA19SIPee\nSnvjqgG4BxGDkxnnp694fvwV4/mMYbJglC4YLhfkhk7WMsg8g7RvgC9Z95u8SU8glBDqcGtAY79P\nRdwL6xqojfqhGN1+vI/B/r7jYez1S2OOXwJfpiIonADPQD+S2OOMxiigM14hDerPv5o95hxxySlv\nOOMNU0aY4pQCnR0+SegRTRvsXrTZfdFBrkXdJYTiSZQ5VKXq3KgC7t0l67xJs++BL7sGdB/qqfqo\nfe0DEJ9IHC+m3VgxbtwydCdkWLX5mEVUeMiNR7rOCNYlJBK9U2B1UtxOhOlmyFBQWAaZaaut9ZeM\nr/1xHSt95DjxKHNBVDnoVs5y0CVse+SnBloM7hq8NYgNbNEJBx7xoMtt55Cr5JCF7BHEnmJ8LR8w\nvsq6EKY5ivFlOAivxKiBr8bTgJ4753T6lo+m3/EPqz/Ru1mpvPxazfxQJ/EskkOTxLJoGlvCtMGt\nPEQ3C8UUbWgUhgkJJGYNfDUM0MHKwdqoXI8Jal2MUEDjKZSuTmooxtcub4IAx0gxzATbSrFEzfja\nVjCFdAmbNUwCeBuDDMBZQ8tWt1zvVZjhPeMrFw6J5t0XIXsgziR8UqH9psA3t4ytax5ZP/HU/JHa\njxcBpFhoZUFc2izKLvp2AJWJ3JrIKxNp1ZohVaxcHom4Rzbfnf3rPfB1Nx4GYHu706aya+5R60eB\n9WnK+eMX/Nb7P/yW/8Pn2Recra7xVzusJENqGqWl4cwzzD9KxXqKQXcrrPMQ/9cx7q8iZF8QmA3W\n4x7RM5/8lauAlltNrRW5V52PUMFgBxgp0OvQVNpdH6Ba3B6XWMcJbjvGNDOEBkVhkBkmp4OX/IP9\nn/xP/l/+MfgTp1eXNF6kaDeo9diBg8cTjs4n9DorDKOkwOBDvuPj7DsGuyV2rFDyzLWZtPp8b3zA\n2JziHYV8xedskgEy1NWmm9uqPSBBAVa1q+VGDvjm158yGw946T/mWLuizQaDnAybNW2uOObt5oLp\n7QHxH1rwBwFfo/S29l2edOtr8SCJqX0IhC/x3YAua3rlCn+ewGsoX8LVDL6SiuTRqpQ5ZvslWG/A\nmBYMns/psqKhB8oa3KtFHV5ANTBYtUZ88elvqHoaW73FVfeYk85buuUKoyyJDYepPuIFj/kLn/Dn\n9HN+uPyI+MsmfIvSayuhvLVYrQa8cc/40XjK8dENj//5LVZc0m5C8wrV2tit7+2/wuYjn5fNc17w\nmKvklHDuK6B0Xb/3I+BRyfDgluf21/wDf+Q3my84++Ia63clfIN64wLEGJqfxDz5H28QzyH0POb2\ngMXZmNkjG/lTzSBc2FC69dozuQ+83o93Z/wy8PoFcG850LSgZUBTwzuK8Idbmp0dTX/LSE4Zr24Y\nT285yG5oEOCJOtkSMVaZYBYJZv3Yas04bDvIdoXXibgxj7ltHHPT09gddEAvVbAV15o4SO5VnfXa\nLtpVrUE+ON0Yp5vg9GKcjtISEFqFEBLdLOmeLum2l3TFku52SS+Y09/N6QVzmvEWy41pulv67pLA\naRIJT03NI5cmTp4ox8ksQRSwFD1Wos9S77Nud9kNmgSHTXbrFonu3sethmqNSgOH4KaJ7pWY6xJX\n5FTCItDadLU1maESo9zQmckB36fPuE5O2KVtshuH4tKkDHXVUuMLSIRihVS13o2uqWqrDbpVYZoZ\nrh7TFDu8KkBkMWmcs91VWDuJnqjWcMMB2SjRdzl2qqp4nhZh6ym6UYApySuTIPBZTftorySGrBCp\nTuJ6rA87WEUOlay19iUTf8xbccLbzTGXr0+YXI9ZX3dIpi4sIGk5LKMeV/kxPht6rQnd8ymdX0vc\nMvorcfv01z6r8wHr9oglYy6zY5ZBj3jlwESij5Xlt9HOsUcpfXfBKJ1yOJ1wvLmhka0wsy15GrMr\ncmRjR9Obc+QZGIakykwCu8V8MISsUoYqG0OteUoUUF9rLt2JuAnej3dt/BL8qkF7XIRtIToC7ahE\nPE5ojjYM7SlnyVseT16QJDpxbBFHJnFs0U9f4qRTqiRkl1W1pJQS7q2MEn0Y0hrOORxeEXout84Y\n0YZk5BIc+SpmSaViBuRFrTeoK/0u10IfK7dVfRxhjUIavXr2Q6xGiqy1cqQmaJpbzo1XnEevOLt5\ny4gpXrSmikI2UU4lSmQjwG8sOPA1Ovr2TgOnLHW0osQuMqw8xSpSXDdGtCucdkyrvWHmjVgOhywu\nBiyjIfnWfODqKqksnXxtof1QITNYegOu7RjNgsT2qDLIMoM0NclSg6v0gHnWJUxdZCpgVd+LXqli\nTVn3RMtaZmHsQctSaNG9BAw8SJI0KdEkaHWnqCbVoyKLywc/Dz9LgnJBtTLI3lhQSra3Ha7sU761\nArA0XovH6KlEy0ArJduqxdv1CW93x7yZnjCdj1m/ahNf2pQTSd4QBAuP+WKAsSzQC4nhVRhHJWaW\n445DqqCk2lVUQUVy4RA/8Yn7DWLD5/voI66CYzbzNtVV7d7mVghPgiuxWwm+FtAJ14ymCxo3a6rL\nkM1lSnZZoS9An4M+lThDScMJ6dgbBvacsXtL5jp3M3dNhbyVQp0T1d8CvN6Pv/942Ob4y6Jj7X5l\n12iqraQMvMMQ7zDCHUd0G0t6xYLeYkEvnIMOpabfzV66YJhMGCYTeskUrZFjNHOazR3D1oIbjrny\nTmBosD3vqqct69bsQtY6BigHHoz6tVh1m7aF0QajlWG0M4ymQK8KjKpELwsMvcR4mmM+LjBHObab\ncJhfczi75vD6mkE5IzdMcl3NRHdYljMW5TVLe0Bg+SqW3IU0ogBTy4nxSPCI8Qg9X7UJnnTYlG2i\nhgdrofKZDUhLUGU6xcREfCcJojbX5gnfms/RLHhbnSNKELpqaogqj9t8xGQ94jYZcbs7YPZ6RPC2\nSXFpwFQo98rKAadShVXDrosZGrqZY+1jL21Hs9jhBhHWIkO/KilvJMkE0pkCmSq7QlsUiBnYM4lj\nZFhZga6XiEalig8xqohawc7zuWod8ZfWx9itmGZzh3GQY6Y5plFQ9nWKE4N8YFB4Jn8pn/N6e84q\n6VElJjiSwpMID/B0oshnqzdZd9vMqy6JnmOYOV23QPoFvaGGPdYpRzrbkcn2sMm20WZTdtisuwRZ\nk8RwKHwDMZI0egGN9o5GY0vLXPNB9CPn8zccRzeM4rlieykROjLNYte8JvFdZFPDMRN2Xodtq8O2\n3yEaOgrIDwzl8ljYqAuyj8MeMr7+fuz798DXHey8//oh46uh+uL2+lEfFPSeTvnU+4J/5vf8j+Q/\nePryNf4XtSr5BiV62gUCkP8J6UtIIlUodC/AnFUcsOCTf/yWG/+Ql+5jbg6OWZy46nlawNKEfK+6\nbHEnsG91lD7PRyjtrs/A+SSgdzJl2J4wsGY0CdCoSHBYyw6H3PApX/AP4Z948u0b7H/P4UuUe2MO\n9MD5sODot3P0f/mSsO9haykfrX7g6PUE+0WBWNSXZwDjxxMOLya0mjvQID7w+Oq5TzrxYCnUS93U\n1YcIdV1q4f5g3iV45rM4HvO9H2JZCbpeUlQmWWIRBD7B2zZ8q8G3QrmR/FC/zr4Aw7u/VYX8ufSU\nBhiyrpnmWDJD1HJgVd19uUXNCqV1WERgRSCyCqv2YDREAUalGBkpCrByobAsJtUJ+ccW896AF9Zj\nxmJCy9hgGCUpNgv6XFYnvIwec/32nPCrFvwRBXxNUJ/z1xrbxx2+733IoXNDr7nE+DTn2J3iXuQK\nkCyADpSPYfPM59vRh/xR/5xv+Jib5THZK1fdv129NEZgncSM/Rue8BPP8285ejHB+t8l/C/YfgvB\nRj1/pwvuBJyq4Lx1xUePvucn8wnfdT9kfdQnG3kKVzQFJHc2LtwzJ96Pd2v8d4mjB6arkpOhDkPw\njkIORrccdS45blwxiGYMlnP6swWD6RynSrC0DFtkWCKDLIM0RyY5pBmtYwN5IWmch4yac5pmhGhq\nBIM2tycSiYS0VBo5yh4UtZ/6gKtArwMXxiZiLHG7Md3ekk53RbuzQhcVmijRRIWp5wzacwbNOQM5\np79e4N7s8G52eDdb7GWM39uS9T3ynkvWdkk1i1S3yXSbQupYYY4Z5JhBBoVg3enUs82iM+B6cMz1\nwTFFaJKY7s9kVO6BrxZVqVPNDErXYut2ufGO8a2QQmiUQqcQGtusyfX2iJvNEcGmRTG3KG8MqlAF\nvjRRAVclINPvBZZNoYirVoVp5LiacjJyqhDylDTOyQOJuQE7qmNXE6pOhbbLsZKERhXiighLyzAM\n5WRWSJMw8NGmFbltUromseGxdLpc+weY5Ar0khIhJcuqx6waMd0Mma1GrG86bK86xBMHORfEfZdF\n1OMyP0FQcNyxkecSV8bo7aXSK3ww0osmq4shV50zLjnnMj1hEfSIFx5MFCPGEQlOM6YxDuhlc0bx\njIP1LUfpLewC2IUku5Q4KZHDEH+4wB4W+O2MMGsys0c4g1jZcG8FTEy13JCoqPMhYP8QJH4/3o3x\n3zEmlBOacHT0rkA/LNCfFLScDSNzyln0lg9vfiBeaoRzg3ChEy4MBvkUp5hS5CGb4oGGuQbSkIin\nEc2nCw6dS6qGhuZK0o7L6qAPC13FLZtKgfZFrmhAlgJTRcvGPKiwHuVYj1L8o5iRP2XsTxg3pzTt\nHZUQSKGcEV0ZcZDfcrC75WB5SzNaIFYB+TpmtSqRmqTqhzT6Ok6vpDJtqlS56FaphpZU6HGBHufo\nSYHfDXDOEzpna8behEvnlFfDR1SJxkZvk691iASEGkSCytAo1iYikVRvNdZ+H60JSctj1RxQhSXF\nFjV3sGTMgg6xcNSt2eogLGWaY9Y9gOVeo1FC11Zni6Wr7/e50R3sBQihrn89BXca2nedVfcw2T38\nJQtBuTQQuQ0rwbbV4ap9Bm2dbbtL29ooMK2UiBLiwmWR9llkPeZpj/W0xe6lT3xpU00qipZgN/fQ\nFgOKpYm0NAxXAV9GI8cPt4ikQEsKtDhnN2qxuBiwGvRZGAPeZBdc7k7ugS9fIswK4VWIUYVlqj27\nG2wYxgt4u6N4FbF6lTN7Df5U4vcr/D44fWiMYtqjLYPRnHHjlsBuEbhtpKeTezWAmWvqsdqf7e/3\nrnd37PevBy6OlgO+qdzmW+Acx/QOF/QPZgwOZgzEnGE8Z7CdM0hmaJqkMjUqQw94Ed0AACAASURB\nVE13u8NfbWisNvjrNfYopnkSMDqeE+nX/EAEDZ1g1EaUtTh+XMGqugeopVCuDJgqaGhbiqnatjCG\nGe4oxRlmOIMMu0qxZYpdZdhagnsQ4x1EuMOYhhsymk0ZzWYM51O66xWlrVPaBqWtkzkWm0abdaPN\nptEmtly8KMLbRnhhjFlkZA1bTd9i67V51T/ndXFBbulEbVc1OE1RsVKugK9yYoIuCJYtrtqnaC3B\nrt2ma6+hULVDYaNaLbM267jNpmyxXnZYveoRvK6Br4UGian2L0dT5hSapdodNYFmVVh6hqdFNMUW\nPw9wgwRzniMuJfkNBAvYLGCzUhrRjUVFY17SmEisRo5RFmiihIZUyeVOqPNkDUHH5/LwGENPiVo2\nLX+LN47wzBi3E5E3LaKeS9JziT2X1+szXq4vWM17Sm/bh7wlkG2NqmUSlj47o8Wq22He7FHaEaYb\n023G+J0CZ6jjjCzKocV26LDxm6z9Npuyy2bVI0ldUt2lbN0DX+PmhJF7w9i44Xz3hovrNxxd3zCa\nzGtzGEBKctMkPXGozjRMPaPRDLhxj7lpl2QDh2jkwEpTriBJLblCxn3++G5ITbwHvu5uxj5A3vfZ\n2yAcxVjtA0dgnSSctF/zMd/wafYVT1+/xv9/Evh3KL6FbKWKg/ahOq82X8CbuTI1axtwtlZyENao\nZHS84OLpK465oultWQzG0NZU+4dpKObU3WLpKnHqnqWqb78C/qWi+fmaRyc/8sz9mie84Ihr2rV2\nV0iDqRghgGd8x8n1Lfbvcvi/YfclbOaqKOC7SqDdyGHQWfP085/o5FsO/rzA/PdSMa6mqLU6Au+T\nnNN/u4V/rNg2fKbakKvTE6ZPTqmEoRjaq/p3rlAU0beof58Br012x312vT40pUpaCk0lLgsUnfRV\nPWNUznyGwiH3ujAVEIp7E4A6WZWFIKssUs0m0yykB8IHvak6irrlvW5jWwOrNsSsXI0EhwybojJU\n0LHXRJ6iGFNAGZvMVwfsHre4HFzQ8ANcO8DQCrLCJoybBNsWu6sWxXeOunZfo8C/bX07f4L02ONt\n/4I/nm6xjIyk5fDR8+85OJ7hhDFapZLVTbvJK/+MP2uf8R/8lm82n7D5qQ/fa4odmHInQ9dohwyt\nGYdcM97OcH/K4EvYfgXfX8NVoS7dozU8luANoPEs5eBgypF5w9CY8bqTk3Xrv2mh2kjlL5PH/dB5\nLxb99x5/K3G8Z0woxpepgK9TgXcccjC84YPu9/8/e2/2JDmSpPn9DIYbfrtHeJwZkUdlVnX1MdOc\ng7sjwgeK8P8mV2SHsr2cnunprq4r77gj/HbHDZjxweARUTU1S/KpayhpIibIIwIOBwxqqp9++imf\nR39mtJ7Smy7pvlnR+36JU1VIq76fZVpTxIoirik2Ne1f1IR1zLg1oT4KkA5sWh2uh4fmXc2VKenz\nttpKW+BeGtHnlg1jB57b8AyCQUJ/MGOvf8Fe/xpJhS0qJBWuKNjjlrG4ZaxuGS2miLMc67sC8V2O\nuKwQhzbiyIFDc97alvdTaQtrXiNnCjmvUZXF8kmbldNmNWxz29olGCVUG5t50QdnYL7Dlm6vDPCl\nKot87pO0I1b9Hlf9Q6JBghsUKCVM+Yu2yGOX9W2b9W2bzW2bcuGhcwuVWqYVeIcG9LIgsUwEKEXz\nyASWp3DtEl+mtESMr2KKoiDLKooG+AqlIQAICWrYAF95RqgSQpHiyRzbqREulMolXrcobxziqkU8\nbDMb9bls79MdLpB2hdWAXgLNZtlmNeuxXHRZzXpk1wHZpUd+7aOngnQZMEuGWGVNql10F8LTlGFv\njjy17zUgtiPvtpj1djnrPeF7XjItdpmth6TTAK7B2avwRULUWdPdWzC8mbKzvGX/5oaDmyviaUk8\nKYinBdmmJjjZEJ1WBCcbdg9jpvYOH91jvDBFtBTcCnTHNoE4onkHtoyvx8Hjp/HzGv8DxpcPsl/h\nHJTYzyo65ZLd+JaT+IxX8Wvic1ifCdZnFutzi6iO8VRMVScsVFPlKJqzuxpRJLT9GftjC19U5H7A\nvDfEG5emG6IrTNCYViDKxhWUEPiIro+9n+I9zwm/TOmfzDlyP/DMeccz9y0je4ISFqopi3PTkv5k\nQX+zoD9ZIG9jNjeFmbc1WIroMCE6qGgdxNiujU7E/WTT6NKsasRakR149MoF4/Ca+LBFN1ijRpKV\n7HLePUTMPfTcMuXmc4FaGeBLrSyqlcO8a5GNQuajIZejFD0vUZMKdVehJhWp2yXxe6S+33S6laa0\ncyhh1230gWjYJEAgjT6jK0FXTWBkumdu96R7LswW+PoB9izuX8cfq4XqUlDPJHpudI8ILS7GktW4\nx/neMX47vz+XsKDMbNJFQLIISBcB2Y1L8VGSn9vUNxqdw2YSUU49NrMudd/BDitkq8Q+zOmoBW5V\n4FSGXTeNhlx0j7joHXEhj7gt97hbjxvgSyJ2NWKosIIasVvh1hlREtPbLNhJp2zOUubvSxavS2Zv\nYNTV0FMEfY3b00SfpfRYMupO2HOvmfkVBJI88E0Zbdbcn/oT6PXzHo8X9GPSRACOB63m/RkJ/IOM\nwcGUo/0znozfs7e5Yby6Y/fulvH1HZZVo11hpiew7gqsyxzrKsO6yuk+W6LiCdryUD0PC1hHXS53\nD837mmmYKdOaVNWNeCfcM9H8BvjadWHs4RwV+Ec57eMNrYM1kU4ImxmJmE5rRbe1pNNa0bGXDPM5\ng5s5g9dzumdrVCTQoYWKLKq2JN6P2OyHbPohedsljHOCVUZwneFuSqqxpNq1qSPJLOoTDdeUrs1d\nb8hkOGr0qQ0arpcG+NLXoFaSzVWXyz3BZq/DRXWM383A0ohGjrsuZNNYyXR8zm58sg8B6UffAF8r\nYdhdlmXug2ielzC+guUoXNsAXx3WtKsNwSY1wNeFpryE9RImC7hZgudrdqYKd6JxbgVuv8JxK6Sj\nEL6CVBvSxzXwUbDZbXFmHxJ3fC7FmG5rQdde0e0v6R4uSd2Ald9h7bdZ+R1msyGz5YjZ+QD1zoYO\n6KGFGjpUQ0UctliFHebtHpNwQBBJ/Da0+xXeMKMeSeodl2oUkI0ilqrDsu6yqPosFgOqwqayHaq2\nAb5agw3jzg2n4Tue2m/Z31xxeHbN/lfX7Lyemti6Ab9KT6J+aWHbJdFgQ6e/xg1qyo7PYjiA3b4B\nWzMb1lvgK+OnE5CfSh3/wmO7wTzW+nJBeg+NOYYab5Cxb11ywgeebM5o/SmD/wbpf4OLjzDLTHOy\ng1uIXDi/gz/WhgjWrUBPIHwL/hn4i5SRntAXc0Jvg2hX6MBtap8fO4GWuYDAvxcb5JeNdteTr/gb\n77/zW37PF9XX7K9vCeIMoTWl5zDt9rnyxpzm54RnKXwFyR/h3Xt4VxpcZ38Jv6igNwL5AvZf3NC6\nzAzo9b/D/BsjnCc09NrQujXSGfvDO16+fM1r9zO+aZ9R/9qh/MylKFzS2wh9bsNbAW+5F4pnigHB\nRphAMBTG+GypoSsM0LTV8T9s5i6GhRQ2/15g2E4TDJPqxvy+XgnWcZt5u8/EGrIYRfRPYuRTOLgB\ndQOzwlQxHg/Bfg48g2psc8cOc/ps6jasLAPUbRsbvsdc4xr0rSR73SY7aMFIIVslQipUIVELB24s\nwxL7iOki+RHTprqswfXM/ehbbKIeX1tfUuy7zNwB7/1TDv0Leizumw7cMuY9p3zNF3yz/JKrb44p\n/8U3DLIPGNxpm2Cyc1ps6LLC3+SIW+AKpnN4X5nLkJhk9u4EgmsQtxDlMW1WtIiRXmWA3m28KGRD\nlf6poNHiE/D1cxlbm7UFmhrG17bUcWTDkRHhHY+ueNH9jr8O/y+G9ZzWLCF6l9L65xSr0A+nkZCs\nIV7CZgX1EoI8JuhAcCwIFCROm8v2Ea3h2gRDKw23dQN8bXUJt3oXwYNuxHOwflUT9BMGgykH/QtO\neu8M45IShxJf5RysrzlYXXOwvmFnMSE/h/wbyH8P5RvwXoC/NO2h3ZIHGQunyVDdPMyqstjYEZtR\nyFqGXHf3qIY282zAuXqCcJUx1EtzO3VsUcQexdIzhtJvrn0f811bPDQNrDA0/XOMfTvHOD7N1xaB\nNkazBJ0B9hb0emB8WY7Gtks8KyckxlUpRVWRZTXrRONsDG5mNb+u5horrnDynEAn+MKw9aQ0pY5V\naVNtbJIqghVMqyFuK8V1M9zdFOkpBAoLjYWiwCebhWSLkOxDaOzYNgs7gWxpSh2z3GGuuvjtjGF7\nxtGTKwQu1o/0szLdYcYOFzzhe/UZSd4mXrdIZ4EpdYxLfCuj1d7QHc8ZLKfspHfs3dyw//0Nt5eQ\nXUB+ZfQrvGlCK0vYFeD6Sz72ntDrL/B7KQgFH4UBed0tkNJomfwg0/gpgPx5jR8D9z8MHi2vQvYq\n7P0a91lGe7Zip7zl+O6Mz67fsHmrWH4Li29h9f3DWSse8kzbAiTpghWmtPdmhK8KuiJl5o+46D7B\nG1ewkaa8LFGmC5qowNZGlCr0ED0fez/Hf1YS/TKm/2zCER95pf/Mr/gTB1wacepmWgtNOMsINxnh\nRU7xvqI6g8UZLD6aPEDwLCFaJoxziDyMT7M2F68WUM9BzaCeQfVcUrVsqgObqnRwOwXLUZeLzgHO\nfo41C9C3Eu5ABwJyQb2yqd/YlK8h64cs9jGyCAfAbQ4XGVykcJlB24NuAD2/aRZkIXaEEeQecd9d\n2rSbNo9Mi8fv0oMSjKIp5bYEwhKmJMlq4kwJSFMOqhp23NYKGdAMIxGzkaiNhI1D4QasT3rGHxPN\n5zd2HheTY5ljAs1L4LqGqxKuS7itUJXFZhKymTowdSgDF3tQYg8KnEFG34l+oKd2yx4feMobnvOa\nF6zyHtk6JJ+EhvHlKESpEEGNtVvhrnOiNKYXL9m5m6IuKibvYfEGzr8F0Yawoxl0NG5HEcqUTm/F\n8GTG2LtB+5LcD1kHXbNnaGHWovVINO6T7fqZjp9KPAbgNIyvgYQD8A4z+vszjsZnvBx/y6G6ZK+4\nYf/ulr3Xt9iiNj5GM4sLyN+aiqH8HThz0zjW64H3BBLR5iI6pu1vYKhhruFcm5aBquahlMwyCWzf\nMRqvYxfxxMV5BuHznM6zFb3TKR29MqAPK7qsGDBjKKZGQTWb0c02dG/WdL/d0PomMXFxhwaUEaTS\nJeu7pLZLFUl8VeAvC4LzAmdmgHEdgt6BiT+ktG3uOiPeVM8QuzW4lln3uWWa7eQWbCzqHMrAI960\nuaoP76UotnEPDsYfy4EZhmhx/mheNpVB2w68gXj4nQZxt7Zse5nREhuicoO/ybBnFeJKU1zBZgPT\nDVyuIQrAmyt6U3Am4IoKu1tjeQrCpqY7FsYefQ+bJCLpuFzt7WLpkl60YNSZMpRTRvaEjW4x0wNm\nasBc9Skqn2rpUl+4qG9t6BmSR50ABcR7Eat2h1m/x2RvwKgNUVfRHeQMdyzWQ4fVyCcbRiwGbZbz\nDst5r5mDh95wbbDrklY/Zrd9y9PgHV/IP7OzmTE6n7Lzpxn93y8NhtpUz1ahhW1XhDsJvedzuvaS\nIvCZd4acDzPjP2cWrGyTOLl3yn/sh/1lxyfgC/jhg3jkgFnOoyZDCreV0GfOSE/opQv4CNVbmJzB\nn1ITYwUVJFN4IhudZx7kqdYVlAn4CchC4egSR5RIURon6wdlsIJ7sVcrMJTZQ+A5eF8mnBy/5bfe\nP/EP/Ff+p/U/c/zxkvBtjnWDcQy6MH46Yf/ZDS2ZYs8U3MFqBuelwXIKjE3YW0DrGpw76M43yPca\nvoLVn+G7Kzhr8I2TNfwCCHfB/VwzPrll373iFd9xcHBFicNatZkc7TB5scv86Qi160AkTHnlO8xN\n8nnEKuK+FJK8+b8x8AKjYfYcxFFOuJvgOCWWpagrmyzxyC9bJuB5g3F87gTJbdd0aBSnvG8f0/7t\nN9h3xh49fw0HG/M+BqfA30D1VxY3h0PeccqZOmaaDn/YVyCtjNjtuxDm0lz/O2AkoCupQ/kgjL3B\nGN9bDNA3a86TYb7krIQ3DnighMOi2OHrXwRMD3f5vv0Zu/KWNmskNSkBUwZcpYdcTw5YvR1Q/asH\n/4IpAb3iobNQk03dup73TTRqk8DedgqmOepHJV3CuJzm97avwXYf/8vbp0/j/9P4URAppCnZdYUx\nI67CERV+lROlGU6SUcYl640i3jSim3ajd2ob0gO1wRV+nMfX4kef++O0PfxAMwsX/EFKMEjxBylh\nP+Yp7ziZv+d0/pEn4tzoS6gKqSrcumSg57R0jKtKyKDKTdO+WBlTEdUgCrBTzLu3vQWYLsrZBPKp\n6XpTKFCzCjUrcGcWvXDJUX1O7Lexhpqxc03W98hinzz2yTY+WRw0R5+qdsxJ7moTHLuYzNZ2VsKU\n+40UoqVxKAm8FN9PCbwUWeWoVY5aFahlTik9si7kgUO+CSlmDstuj6t8nzfqOaPAR4zXWC/XdDZr\n3EVFIMG1BJaE8qnH6kWX250x5/YTLupDpvmQOI5QS8tkHR0FjjnqokJlUC1suPGxAmVYMM2sJi7V\nrWuCzUo8GI3GTtQrSXnpkn8XgAN3/ph33gssD1Iv+jeMrzf5C97mz7kt9kiyNtm3AeWli1qZsimt\nTPv22vD8qC2JshvB6a3YdOOnVkBgmXVpbZOIdmP0tGWYEbV41HND89ML8tP4jzYaa2P2KK2MLWr2\nN12b6pWtNrLj/3DKCqzKSA9aFqQtSeV75HbIRrdJdEBRu9SlbAAdAbUEbZtg0TPaiPQFclTT6a4Y\nh9fs2ZcclGcczM/oLKZY84QqMcZSIJFY2LlGLkqseY3QGssDxzGJ0ahZur5tlDSsrYwmGKcshjqG\nPIW8MNXjutZYlcIqa5xC0M+WnKRnxFkbmWqWWY9SehQdl0J6JHVEXLeIdYuNaKGlAq8y/sxVaZqP\nlMoEnD0fe0dg7xXY4wp7HBP1EqJeTNiLCbsJqpLUlUTVFlUl2eg2G91mrVpG96UfcR3t8dp5DlLR\nH07pP5/SX0/pdJdIW2BJgbQFRcfn8uU+ZzsHnDsHnGXHnG8Omc975LcOXCtIhUmGpiYxwIQHfzHG\n+OQtHhIQdvNvI0wArSyTtNMYe1FapkHSNzXFzGY1bHMzGCOHNVN3jWfluKLAEzmz2mgZTqsdkrJF\n8c6j+l5SX2n0qkKsNXoDem2h1jaqsqkdSd2RVJbAnkP7DnaaTus7PegOwB8AA6hHNkXHJ3ZDVrRJ\nVEheu9SVfNQ8+76+iE/27Oc6fuwwP0pAWtK8W4GASOAEFaGb0JVLdtQd7XyOtYlJZwWTa42jDDgv\nXROfZBNI56YLfWok5dAlyNxIHuDAvXCefBQ7Wluwy258eAukjWxb2KMK+yjBeZYwHlyzb12wv75k\n7+ySME+I8sQcy4R2e0WnvaTTXtO2Nth5SpkWrOKadN24FhU4OchKI1oKGVZ4rsBa11QfKlYfaxbn\nGjEDzwJPg1+Cs6zoBQuO/HNeBd9gRyX1yKbKHWrLpuy7pHFImgSkidFrRTbgXqVM7ONi/FoXkxGM\nMWBTJbBaCvugxGkV2EcltqqMvxMoZKCoLUle++SVR177VGNJuheyaHWxyWk5a8aDW5JTnyq3kLsQ\nLWG4NAlge0fin7oUhw6TscO03Wct2+SZhy4tmGiYljBvGj3ZGv2maa+zsSmigNhuIx2NdiSpDFhb\nHTIrorQ86g8O6kqiF43czqpZYjmwgGQdcZvsEmXPEKWmm63pJiu6rOmGa2IRkKQB8TwgzgK+v3vF\n9d0+m7u2saNbzfmUJnbUCLFty9e0+lYapaCumspZ1QBf1ZZQqBBaITEJVIH+EaP35z0+AV8/OR4Z\nsgbIF65G2hUeBb7O8IrCOCgbWCcG35hiQOiZMsSAXlNe13C26LngtYEIUxstXApcytpFF9ZDNu3e\neZdAyzCFehhA6AS6hzNeBN/xG/7Abzd/4Omfz/Efa3cVwBC8zyvGfz+Dzxt2Jw9r8vE2er+dCnA2\n2nyRO5gtDOj1gUZKXsPxDIJbEBNoVWtGTPhf+C84lFTYLKweF+1DXrdf8G33C866JxReZAKTDMNW\nutZg501GqymZqx2j43WIKeX8FYjf5AxPJow6N4yiCR1WSGpy7TGv+9wd7TN5OWJzNIA/AVNB9cHj\n7eEzvvE/58C+pPN8xfH/dok7BPs9tLfNcg6h+pXF1ZdD/hD9kq/4knfFM5bnQ8PauAWWGlQJzCDJ\nTafDtQdn4ocd4R6TC7Y3NuSBeLCWxijnGq6aTEwFJJJk0uXjs5C7gzF+O8P1CrCgLiV56pFMIsp3\nHry24DvMfI9BU8PmWWdQVg4pATERVeiYhgwj6EdwmECtzJ0+BIIuiCHQh9TxiYlICVCFfNBNqzCW\n7t/t4PiJ7fXzG4+ZE7ZxvmzL6CYEAukoXCqCsqCVpthxThGXxHFNvtGElUlSthxwXaAwxIfHwJfJ\n9JtsvxaPdrmf8s0d7llPRBAMjaZXfzBj0J9yMn/P0/l7TucfOF5+RJYKqzTBna0q2mFMO4pxogIt\nocxNY551wyanNmbE2wJfj1gJKoN0YTQZVgvIhMaf1gSzAn+u6bclx/UFlg8de8WT9gcWeZdl3jPH\nuMdi2mcx7VPPJNXaNhFoXMJ14w1I514nAg9EWyFGNVa7xgsTeu6cvjNj4M5xVUqZKqpEU6WKJGux\nLGyWRUi5VhSey2LU5TLbp6NeEAcu/fENvZfQthKCtMK2BbYtsGxBMfZYnXS53dnjg3N6D3wlcYha\nWKZbmKjNtCr0SlPPgSsb/V4iWhrRAhFpRKSpEpt64RhgquJB76wBv9TaAF9IqFPJbWcPqyOI221u\n2/vGCX80blZ73KzH3KzHxKsW5RuX8sKjXklQAq0Ftbao9I+AL1cgvEYywDbsXIQBvhzb/PsD8GWh\nlYWu5A/1h356d/s0/oONbSLHanhEoinN3a7LrTNe64YE5BsZ1LBv9jgrAys3EwVl20YFHpkMWdMi\nVSFF5aLKLeBgmVpi5Zj3xrNN58KhQO7UtLtr9oJrnsm3PCnesXN3SefdBPk2pp6UCCGwsAzwJbTp\nYipqhKURDfAVSNPnQljmz44LIuAh0dR0llUbA3zFBcQViFrjV8oEjgUM0iUn8UfsjWIQL1iqLrGM\niDshcTdiYu1wq/e4scYkdkgdV1BkkGawyKCUUNnmpeq72Psl/mlBcFrgn5TsRHfshGaOwgmlcihr\nl1I55LXLdb3PVbWPqvfJ9YD1oMVVa4x0cjLpsj+85OB5gLYF1hFgWQgpEJZFGoRc7O/zfveUt84p\nZ/kxd+tdZvMexU0DfBXiYW5JA1u2V4zxbwbNQtlKkDY9VEwT18Zx1+IBGb0FNjXFtWQ5bGMN9yiG\nPr6f4VgltqxwZMUmbzFL+8zTAUnSorhyqc4s1CWwKtEbAWtQa4FYOyhbohxJ3bGoWxb2TNC6AXqa\noAOdPnR2wNsBdqHakWQdj8SLWNMhUSFF7VFt12HZoLnqE+D18x8/LnfcAl+WYXP7AlpgByWhk9C1\nFuzoO6JihrWOSWYF+ZXGqYy52SYd0xUkC4hTo1dfK5ClYbeTYmygAzga4Wi0TVNPbJnLsmiacyiw\nFXanwtsp8Y8qgmcFY3nFqfWep6t3nK7f460K3FWOt8rxkpzgIDVzP8XvpFR5QZmWpIlCryGsIMwh\nTMw1CV9he7Vhdy4Fm/eK9UfF5kxTzqGnoFeCTMFZVfRHC452z4n9gFa0Jh96FJZP3vKIdyPmqyGz\n9ZBqZVPGTdJxruCmyebb4tG0miPgCKyoxmtnBMcJgYjx7BzbrXDcEtutKLXLquyyLrpUpUPdtUn2\nAxbtHkpA21mxGHZJyoDSk/gTiGaGfevMQA1s5GlAcRQy3YuYygGrrEWW+ahMwp02JIdFAcvCxPba\nRm0cxJVNEfrErkY5NoUbULgOqRuQuQGV61HfyAb4EiYeq7gHvXAhiSNuszEUgli1CEVKSEpARhik\n5MIlz1zy3CEXHtdX+1xdHrC5aj1oTW+nDdzvswpJjdAKrTR1ralqs8c+Br7qWpvGSFphYTR5hdDG\nB/wPAn59Ar5+cmw3G9U4QqBrQV0ZJ70QLqVtE3gFMoCWB+3c7McBxrHpdAzoYN3CojQaX4c74D4H\nTiHpB9yJHWYMSIuWERNNMAu8VpidWgC+sYQ9YATWfsGgfcdT3vGSbzm8vsL/7yX8H7D+V1hMDSje\nCaFzBU6JAUg8YMdkno5XUJRmj90H+j2QuzRCpvzkPmttj9tF3azxXxV/JFhX2EWFloJN2+eDf8xX\n4pcMW1N+97zgtXpFHQem1nqBYWgV25bNTcfKrrkv/BL4W3D/fsPR8Xu+CP/MZ+I1B1zSY4FDSSoC\nbu1dPvaf8F33Jd+3v+AmOoDfS9R3kpvDQ/7w6jdEIoYAfv3FH9nfuaW9XOGkNbVjEXcibvo7fN15\nye/4e/6l+mve3T2j+to3jK4rjNAtRXPzNKjcqOTHLiTS3K8h98/mvhxTNo8v4Z6JxrWEW20Aqwse\nkPwbUK8d4v0e8aD5ffHo/ycY+v4ZTddPDcvMAIm5b27hEpJNwLQacm2Puev1GT6b4X1R0b2DXwg4\nXJln121D+Ar4HPIXkrtwyA1jpmpIsXLMZ8bN5+utx7ilf/xAieP/4R36NP4y4xH4tQW+XAEBWM4j\nxleSopOMeKNYbRSLDXRq0K4BvfR26VcY1tdjdFw0c8vz+fewBhtjEDtA1zC++oMZ+4MLDvrnnMw/\ncjr/yMnbDzz5cI7INSLTiFxj1Qp3XOKOC9xxie5AmRnCwro2y15W4BdQb4GvmPtsloohXcNiBbdr\nSGzNYFZjzzTtWUXQqxGepuOvOPDOmck+N/X4fl7He9iXJbUrSXREWvgQ18ahmRVGU8PR5t46EjEQ\niJbCGtXIZyX+KKVrz9i3LzhwLgl0QlFJ8tKmqCTLWYk8D6jOu2ymitJy/KWdAwAAIABJREFUWax7\nXOUH2KqgCCRiD7oypdOfElZFk+E04FDZ8ll1e9x0xnywT7ip91nm/QfG17LR+lAlqAJ9Z1FfS1Qk\nTVvtHog+0AfR1yhlRLV1Ie+f+WPGl1pJygsXlUjKW5e7kUUyanMz2ufNKDaOz6MRTyI2kxbxJCK5\ni1B3kvpW/g8ZX7oBvvAbXXEj74PFDxlfumnTrUUDVFTS7JlqW275CfT6/8/YFs81AJjS9zTme2fc\nVBET+uD0INyDzi6IBERspi4FcdtG+x6ZHbGmTaq2jC/LACyV9cD4sh4xvgYCu2F87YXXPLff8LT8\nnuB2QfjtHOufE6oPJbYQWEKY+CsAOVJYIwVDheUbkMvfAl8/ZnxtRwN8bRlfcW40Yu1KI0qFV2ic\nXNEXS+RGM1wteLr6wMLtsmh3WbQ6LNpdPronCKFJnJCJu0t9XcNNDvON6Xtv++CFxti3fOz9Gv9p\nSevzDe1XGw7dj5w6HzhxPvDE/kimfXLtkWmfRIVE5QZVCFZFm2k9YN1ucR3tkTsuS9klGYZoW+CN\nCry4bET/JVpYbGSbi/CA98EJ37kvOdsck2wi4nlIfmsb4KsWDZNTGwABmmShuT/3vVM8TAJyC3xF\nmJ/X1jZDY0rwcw03CnJFGUpWow7FyGc5HGAHNZatsGxzLBOXdBWQrX2ylU81F6iZRs8bDcuNhd5I\nc1xL6pZN7UuqlkXlCZyJoD3UBD3ot8Htgz8y2r/sQ71jk7c9Yi9iRYdER+SV94h5yINA+eOarE/j\nZzTEj+bjslRpNPKcLeML7NAwvnpyyY6+Q+YL0k1JOi1IrzVebva6oFn2aQHrDDaZkftDgVtBlJsC\nFETD9BIa7TRAkKTxy5pS422dt6ux2wn+TkV0FNN+tmZvfc3p+gNfrL/l1eo75G2NvKuRtzX2qsJ+\nVWFXJU5QIfyKdVaTJjXruCbbQCc3+QHpgpOAcBW2DbZQiIWg/KBYfdTcnGuSOZSFAb2iNQTrin65\n4Dg4wxrVDMMJiRWStEKSnYjFpo8zL6nmNutFG+5CuGxK0C8rQ0jYdi2xLBMzDS1ThTPUWAOF18+J\n+ms6/SVhEOPKAk/meDInqwOsTFFlNnHWovIkST9EtSAVLh17yXLYJfF9qh0LORdEdxp3Ap07SNuS\n+DggOeoQ7/WZFn3WZcP4mlhwpxrGVwrLFFY2ehPAtY2ObArPQvs2uRcQeyV1IKlCmyqwqUIbtbTQ\nM+uHwNejRGScRlCOiesWN4xxogonNNMOK+rcos4kVSapM8nmrMXmY5v4rGViz9aj2aFpAqPMRN0D\nX6puGF7qYdY1KKXRWjXAl9mbxWPQ6z/A+AR8Af92U2lWmKogl01rUosyDVjSZSYGrMIuneM75AmM\nLuFX57BTGnLFcRvan4Hcg2cfIU/ADcE/Af4W8l/b3Ozt8I6nXHDIKunCxDKg0AaDSpE319IEryHQ\nAXeQ0QvmjLnhIL0lOkvha9h8BW/PjHZXDhys4UsF/T6IF5jSwS/Av4KnCoZTs5DDCNrPwfoF6JdQ\njUGOwNqFUQ9OUpP8BDgGoiGIHUyXuGnB8+/OsM80Yg24UO/D3smU3ScTQieh8m3i5xGXk2eoG9sA\nSrcCFm7zZV2wbdgX8Az4JVh/k/Hs2Xf8nfM7fit+z5f6K55k54TLHEspKs9m2u/wxnrOkXVOZ7jm\nn371N9xUJ/AvgvyfI177X6CPBbEVceXu8/TgHTv7d3hVTm1JpnLIR57wDZ/zx+rX/Onul6z/NICv\nMDpc10AujEilHWCoLqrR1RKGffe0macYKtVIQ6tC2ApdWbC0zXe9wNDm3okH/R+/+fpvMf/fbqbH\nQ+Y3wayJKQYAW1RmMaklEJmuGQvLaPBcR1wf7fOu84zvvBeMPrtj7x9mSGAwgt6kwSvG5h7r/wTX\nxyPeuM95zynXq0PKW898zrL5fHJ+gH78QMfnkyP28xpbTYdHwJewTNZvqyNla2xq3KrCzwvytKLM\nNJtMM80NduAJQ3LQj3BOITHnsAVKWtSWRSksKiRKS7QSDxnqLTWUBhgKgLYBV/x+Sq8/Z69/yUn3\nHSec82R+xpP35xz966Wxs1sKdoXRMywAByoXytIAXxttfB+/hnYJdQY65r4dNgtQK1MmsEphksLG\nBXdR05vXuDPoDnOi3obd8Iq6bbGOIs6sY87EE1rWCicuUFIS1y1m2cgET2UN0wo+FOYCAstEr4H5\nvtbzCntUYL8qCA/XDKwJ+9YFT8VbIhGT4ZMLnwyfyaWipk0yS5mlFRU2q7jDdbZHWRkPuDNMOWgv\n8A89Qquk9Cwqz6LyLVIRsaDPjR7zkSdMix3yLCBPAtTGgmUNVQ1lBWWJtiTakWDb1LYHA2FEmpuJ\nQ+Mva6RVm0cvjBaPlgKVWaiJRbV04ALSvYjJ/vZZPWL9bY+X2gD2V5jjY3q90gb4qi1qJamUQyVs\nKtt0iaoDC+Eb0+s72mAQrkB6gC+oPJta2iaQri3TMGAruq22weK/x1T9NH7+4wFJF7phnDaMPt00\nk6i1RS00tYTa1tRN81h7KPAPoHUk0CsBS6P9WacSWh6FHxLLNivVJa4j8tKjvmc6i0eljsogr5Ep\ndbSGNa3OhrF/y6n8wPPyDWqSod9k6N9n1N9U99W3tjAAnP28IWH0TeWkLU3JT9j8nCdNWZPwm0QD\nppyJBKrYlDnGtckXeoBfa3SpcTIIqzWd9RoWoOew7LSZtAdMowGT3QG2WxGLFhNnx2jP6BoWuWkx\nfrOCSMHAa0o5fey9hPAkp/NyxeDXEw71GS/0t3yuv+Gl/o6EkJSQhJANLVRuscrbXBV7iFKReAGl\nt8PC6nCnR+gOeJ2CzpMNEWmjfWZTIVmpDufFAe+LE94Uz/mYPjH6qQtMZ/CZoqFtmVnpB0nRDChB\nOBoRKURfG8bcYzkZn3u9MI2FFsqAXnMFtxWVLdjMItazrtG/DMQDa8wGNsL4XLNmJpXxyXMFeaMH\nt7bQK+Pj1a5DGToULYes7xLsQDBS2AOF7ClTybAL7EN1JMhHHlkrILYj1nWbpAooqqbktmi+70+W\nOn4aP7/xU+DXlvFlmTUZgu3V+E5Gy1rT13Oqck2WaLKlZj4BP33ANyya7VKYEGFlm1NFWlBUUGcC\n5TRJIjDljvfySc21WOLB9/MEsp3ijUqiw4TO6YLd8xuebD7y2eo1X559DRegG10sPWsSnRGIXaj7\nhihaprCOYbkxVcSONKxVlYD0NJZTY9mgV1BfwPoK7q5hNTcyGu0cqgTsoqYbLlEjTVit2XWvWLst\n1p02G9HiLt+lnkniaYvJdAchFNwq9LKCd5XxLR7bhx7w1FR3MrCw2xX+fkL7yYrBkyntzgpfP2j4\nxWWbOpVkqc8q61HpgNz1KBwboUN6cs6822Xdb5FKj/bKwbnR+Dcg+5pl6JPttUj3+tyNdpgsh6ym\nbbLER02kKXWcl7DKIY4h92DqmK7nSErPofS9B/3XFoj2o2MuEAmG6qeAVJuGJw3on6qI1IoeJH2H\nzVLc9vNJtUkOLJr5AXinTaXQRwW7jT1qdL5gu69uNRrNrIVx7ZQwleMKqISgEoIaYboYN8nvf0O0\nN2f9f/Hnv8z4BHwBPxBFulcszk22PPYMC2YqKOYBV4f7fOQJ5+19Rr+a4V/UBDmctmC8NpUv4T7Y\nfwWcgjdrarJD4AkUv5Zcfr7DH8Nf8Ge+4EPylPVFzwAidxhdqarC7PA1xohxv6E7fkkoEyJigjTH\nnmq4hc0CLh5pd5UY7a72rRHgY8g9m8fKjCFyMEJ99g5wAPmxNHW7hQlYW3vwSsFhbBZ2qwP+L0B8\nAQwg/ENhNKe2GlseyCPo/WbDq394S/2ZZOF0uQl3mT7fJX3bhTfCvIirEJQHdKEjjODqM+AXcPj0\nI791fs9/Fv/If+a/8uTNDe33MdaV+XK6A+PTGw6e3DEYz7BFRdF1yX4ZsrzdgdcWG9Hlu/RL5kd9\n3rdOOeKcvpjjOTkKiwU9LvUBH4pTLi9OWP25C/8kTRfGc4xRObZMU4EtGLWlnLrAK+BL4AuN8zKl\ntz+jE6zwnRTLqqiVTVK0WK67rK96psvjCGNwSn4IcKXNeS8wO13aPMRtl7m8KVOoNxhLlpplm7Zg\n6sIl6HcOtyd7fB1+zti+oTNYIv7uz+z0FjifK6xZ83k7ULwU3Dzd4Q/Rr/gDv+Fb9YrFxRD1QRrA\nb4apK7u/sIJ/C3x9Gj+fsd1xtrarqX+tbMNMXNpwB7nwWFhdroIx7/wT5GBOdpzirVJ2y5SW0ISB\nQAaCMhAUtaQsJEVpUZaS+IuQ8llENYgoRcR35Uuu1vusJ22zdicKVqWJ2Ei5F1a1vMYX1EirwhEV\nLgWOKpFlhcgUJAbAqnKoCwPCCSkQoYUYWKixILtRZJEidzQF+gcEDexmg66hzqEoTDayFcCuDZ0I\nhruGnevkoO+gWEBqQ+poYrdCRTFRNGU/MuUKWRGx8AfcjhNk1ULHGj210LYp+SN0TD17V+DuF/SH\nM/qtCX13xm55zeH6kqPlBUerc4IqpbBdStulcFw68QYrA9EF9dIic3y8KKXa2CxfD7gIKlxLUVgB\nC2tIIBOq1KK2BbVjcV4e8H32iuvskCRrU5x7poubI+FAQG+rcWMb4+1IE8i7AlxF0M1oDTb3U9qm\nJAuhEZYmXYds9lvEy4jNIkJblulzIU1mWbctdEegO5a5/6l4ALeSZi3c1SbY3KgHM1JiNMMSRTGT\nWBcBckcxXY+44IBBb4YrMrRXoroleq9ELSvWL3z0Cw+975O0u7zNTrlbj0iy0HSyu65hWTRJo8Ss\n/3vQ/jFr4i/vdH0a2/H4mWx9sG1jjAyVa6olpvztQ8iq6DKpdzhvH7BzdEolU7Ioh1FG9CRHjD2S\nsYsae6x2PNKZaQ+feSHJOmTiD5ioIZN4wN10xOXkiMVdn+zWf9D1jJtL4EeXVWH0rdS2/YaLtGps\nuzQlyK4JTp0m1rQdU2VkbYwshAKyJaxTI/0ibJN4lDX4lUkuFgUUuZm5hHIHnBC6EXh7EA3AzUC8\nNRh8OodsYUq6815NHmc46YZBKehXC9rVmiBIsXdzqlmNboP2JBqvYXrZps34HkTDmN3WLcfOB47r\nDxwsPjKYX2MvVmSLCmXl2BZEUuFYNTvhHQfBJfOwT+G5lLlDsXIoC4esDJlZO5zJFEvCwhqgtKTG\nQmlJrEI+ZqdMsx2yNIKFRK8xDIQXQB8sqQwLS2rTXNoXZnoCt5vT3V3RGS/pjlf4rQzL0lhCIyxF\nJRziUUjiBiTtkHJHog41aq5Rc1C2pOq61B2XquuhtETl0oD7mXxoWLLNP5fKJBFUBbqAzIG5BVcS\nWrDO2pxXR3zlfIlo1bSCmHA3J/gsIxA51UhS7djNdPiz+zkf0hMmV7skty2yjx7lnUBtKqhSsxGq\n3HzWD5KOn2zXz2/82H41NqyqIKuN5MACirbLqtfhrtrlozjGDeaUgxTvKGX0WYpXaNMo1TJTSBNL\n2tLk1twnPuUzn8lJwGYUcGHtM6v6JIsA5sJUk6xqI8dA1Wh8OYZU4EikrXCsEl9kRDrGKzKcjdEg\n5BayKeRLyGLDrPcS8NfgrUAueagCaUJSIUG4hoFttUAPBPWeoD4WVH2Bg6Zba/ZLRc+H3TF09sAd\ng9jVWG6JPclw/mDhv1MIp8BzUjrOGl+WFHVIpkKyMMAaVuR9m7xrk7dt6tZWKN2gfVZb4w5z3L0S\n96ikO16y512xl16yf3VF926JW+Z4ZYFb5iQiouet2PGm7Lk3zEWPTdViU0SsVxGx6HDpHPO1vUI6\nml62RKKQocIaamI7YkaP+abP7KrH5eKQm+s91ncd1FQaX8h2oR/AiYbSNbGuMk6qbNXYvdI0bumV\neFGBG+R4YY4XFFSlpMxdysyhyB3KjUu5dinWLuXGNTHkASamj5qlt+ZB4H/esOMWymw218qw0NaN\nrmPqwNoBxzZVWrsRd8ku78tTLFGx279h/PSaemMhAm2E7TVopSl9m9mvdpge7zBrjbjRB5zlx8w2\nQ7KZ3xAnlEkWVFsV8W3V0M/Hhn0CvqgxUcw2S7wViskMlJ20TPbnArJzn49PTvi285Ij94z+0zlP\n/9cL3I7CewHegvtuhOqXUL0w5Rx2UlN7Fqt+i6v+Hl9Hr/gdf8cfyr/i7OoJ1TeeQayugc2Wz71t\nAcpP1s3q7V+2iQb+7Y8K0ZR8W5gyud/D/Cv4cG1iEh84vYHxJbgTsBYaOddY/wp8B/Nr2CRglzCK\nwD0FfgP8z5gX7R+B/xPu3kOcmNhqd2w6kIRuwavhW852jnhtfca348+53GujB9KUPomtAJYLfQyD\n6hT8l0teBd/wG/EH/o7f8dk3H/D/Sw1/wABSKYgBeM8Uu383w/lPfyYb+0ytIVf9fZZPR6ab5D9a\npIs25589Y364yze9XxIEaxy7QGmLNGmTrFrEdy3K7wPD9Pq6uU8t4AhjWDoY1oqF8cc3mHf3FVh/\nW9L9xZSj4UeeBm854JIuSxxKClzm9DnvHfF+9JTz0SnrXh+OxD2IicTYhSXGYFw1n5/SsFdqU7PF\nuvngLc9fmftWdmHmGM2x72Gz3+V19xXRMEFYmvWww4vfvGX4bIafZ2ghyPyAu86Ab92X/LP4a37H\n3/L2+iX5NwF8L0xJ5Zymhciah0hg6w1+0vb6+YwfZ4QVPwS+HLPJLRTcaXLXZRF2uRZj3gandIYB\n3tEcr5rTcTJ8G/zIQkYWZWhRaIeicihrc1weDlmcjFgMRsytEe+KF1w+Br7ulOngkTegqXAadWnV\nAF8KW9Q4lHjk2HWJLGusTKNjs0/mTeBXAJa0kKHEGkjUniQ7q8ijmtypyYWmbIAv1XT4qoXxN6vm\nHHYP2j1zrHtGa6XlgZOBuoMi18QZrHJNIiv0aENrJAl3StxIs6p73Phj/N0EW1SoqUa1pMm2SgGh\nDX0JY4F7UDAcTnnSfs8T9wP75QW7dxN2Pk7Y/XCHn+ZUvk3lS6rApiPXplFAV1B1LRb0KbVDtbZZ\nrPqUrkcZBsyjEefhCa5dUFsmy6YEzJIBV4t9rhf7xIs2xdKnXhq9GX2AKfGx7EZypNF587dHTdDe\nsNO5Ydy5Ydy5xpElltCNXoNimg25jXe5TXYpE0ktpKkcsoy2m7YkypJGQ9qSD11cps1cKFhWsCxh\nUxo2TUWTQoQ6VhRTCRc+dCVTOeJSHhL1Y+gr3H6CuxfjLhNkUpCMOyR7XZJxh2V7xNvsKbebHZJJ\nYOzmdWU0NfIUY7O22YPHdQI/D6fr03g8HjP0HqMNGTqXVEvg2kF9sFl5Pe7kDhftQ7q9BW57ibOz\nwnmypDXX1N2IuNtm1WtTtdvMowFzb8hcDljYfdZei7VqsY5brKZtZpMh87sh+Y3/0E064UFn9dFl\n6dowFCttU2iHUrhIq8SREt8RuK6pbpINQd9yG1H9GJgYID9bGgbqtG4UgRrWqqqMiHBaGk2vTQ61\nDWIEzhG4x+C1jLlxU7DeQJrAegGLBcznIIYVbprhFYJIVfS9BW1rjR8k2FGBvAPVBuU5aOEb3diW\nbUqE9g3wNY5ueWa/5Yv6K9qzKa13E5z3K9IPJbYDjq3w7ZLILdk9mLA4uCQ+iKjbkuWqx2LSYzHp\nky4jps4OwhGkbsSVfXRf2qy1IK897pIdpvEOWRKiU8u4u5GAFyCeKaSrkF6F7VUIV6NtC+UIlG0R\nBhvGvUuOu+cc9c7ouUtkrbBVjVSK1A6YuEMm3SGT3QFJGlDHgjq2qGKLwnIpQp88CPi/2XuvJzmW\nLL3z5x5apM4sgUIVgIsrcbtnhmxyyaHZvuzfvWZ8II1cow1nWt6+GqJ0pRahI9z3wSOrCpie2Zfp\n6TFbuJlbFoCqykSIE+d85/u+U4Q1deJRz23qmYPKpYlRe/y1wLCwmsacJFpJxcoyzBMLtqrDufMU\nEddsxh16gQHkenJLt7eh6HjkXZ+i65N3fN6kz3mTPmM6n5AmHapz0QJflXkIqsfA17+9ovHjgn+c\nez1uPNbmeimUoacvoey7bLIud/UB5+KMXugRjFb4p9Bb57iNxnXa4UKOkUA7HvgexC4UBx7FYZ/t\n4ZByMuAyecJiOyTbhmYK/bR61HQsMUaZ2jSqHAvLbnAtA3yFpPhljpNUWAuFvoNiAes1bHbGV6yb\nQG8HYgPBh8AXLa7mmrlrMgY1FKgji+ZUUk0ErlL0K4VdaGpP0zuB7lNwT4C+RmYV1jTDeavwmwov\nytChC6FLHBcUnYCsF5B1fNRIsx102PZimk5ME7eGf9pUula3wh/mRIcJ8WnCZDLlTL3lWfaWZ8k7\nBuUSO63vdxb4TA7mzA9umB9ccCMPuSqfcJU8IU1CEjpcuqdIT7D1+kR6hyUUMmiQdkOhfXY6Zrfr\nsNvFLOZD5jcTtnddmpk0wJfjGg/CuLViqF3TiG7AGta4hwX+YYZ3lBH7O7relo67peNuKBqPpIpI\nq5C0Ckk2Eek6hnVMtXKNLVBrU0GICREbHmLWSsGyNqyzZWXysFUN26rtmASwMea7Wrskq5jb5ABZ\nVRTCIRmEqE8kjl3hHRWgdWtpoikdh/nZhMvTUy47T7nUp1wWp8y3LfA11eb9sxrq/bP8MYD/b6MB\n+RH4QnEPMN13HPN2Z6aDfOfAO1A/2syfHvKHL39B317jBDX5V7/jZHxNb7bFWRtQNx85zA6G3PQO\nSEWA15SU0mFuj3jDc77lS35T/RXfXb8i+X3PsIxeY5KvPMegHjkGcWnldXsT89whrUN2dkwS+tRj\ngX2g6Y3g2dqwJQpa764eWIcY8GYK+h3cLeDbxmBsIQZX6V6CewHujTLAy29h/kf448zUsi7weWN+\nv1tj8Kpvgd/B7bfwzQrm2mA5XybwzDUJW+dVxsngiiP3hpE356b/nKZrmTd2gMYzuoCOMGyoY5gM\nb3jBa77kWz67fYP3Pxr0f4Xm7+F6ZpQ7XR/Gr0EU0I+3vBp+w8/OC761vuSns8/Jx11zTP+7QL1x\n2Z4O2U4GiE6N9BS6BrVzjLz0CvN/focJHmOMfPEpBlXf+27tga+NuSyss4rxv7/m1eB3/FL+jld8\nwzPeMtJzHF2RS58pE17LF3wTveK3Zyu+DV6x+zwmjhNcq0AITaUc0l1IfhOhXzvwA2Zq4w+0/hTS\nXFT36NseLcuBLax9eGfAQ911mPtH/OaX/45sGHBrHfJD+JrD8IYOOzSwoccVx/zES/6oXvHT7ees\nfj1G/do273mBMRbRawzYtkfsW6rGPevr8T3zcf1l159ifBVQeZBWBkCdQhF5rEY9rjkk9p9zNLQ5\nrARdL+egb1gLdCQitqg6FiUupfIotU+lfNbxAZe9Uy67p1zIM+7KI263x2xmHfSleMT42gNfHogK\npGqHTCos2eCI0jC+mgqrbO4ZX3Wbt2UlZBbYlsSKLKyhA4cW+VCQR5A7ypCHHimTtGMYX1VjQK+q\nMN7znSF0To102xVGauQUoHcm2dvNNcs55KomOkuIzyqi3ZbOUcNddEg/XhFEKZZfwaWFji3ThrWl\nMeUYSjgyjK/RaM7z+A2v3N9zVr6jN93Q+2FL/7cb3HWJiiU6lqiOpDfcoY8kzaGgOrJwqpLl9Yjl\nzZDV9ZCVNWI5GnM+TAlHGZbbtGOlBVpBtgrY3UQktzHJTUytHJQrUZ40jC8Po6VyRTsesZWdhkCo\nCMKEcXjLs/BnXoY/4ckCSxhBkhSKi/opbpVTVRarqkuNjdZ7tyVBk9noFEQqDViwT75uMOB52phr\nLyvMYBAl2qa40Xk1qQ1zi+bSow4CZuMx0XiH1S+p+pJOsaaTr+kUa4IqYxZNmEcHzKIJU+uQq+lT\n7nYTsusA3uwZXwWUe+DrMePrceH4sXj8t7Meo0t7xsQebchRhQcrG31rU7+x2Ux6TIcTLvpP8IYp\nw8kd/dxhUCjiPGftxaTekLU3YuOOuPKecm2dcK1PuOWI0ncplUORuJTKJZ8GZNPggfH1aDjG/aCa\nRyIApVrGl3aphIsnS2zLwnckgdsWg9ZDUSia1mOsxU3eA760mdTWbW34qCEvYVPCogDRgXgC0ecQ\n/5XxyHbuwL0DcQflwgztuFvBzQqCScOoyolVzVBkDEcrOr0tQTfF6RWUIxs6Au1aJi67LnQeAV9D\nw/h6af/ML9XvYJGif87Qv87If1sTegrPqwhdiRsUHLyaklgR5cgFV3NZPKWZ2mxe98mvQhb+hMyL\nmfmHeG4BGrQSaGW8ctOdYeHlu8AE8X0h99SwYGVY4YQVTlgi3QYlJI2wUEISOVuO/Cs+87/llf8N\nh+IWt2hwyhqnaNh4Xc7lU86tE97Jp6xVh6pyqCqbqrLJhE9qR6SOsaUophocD5VLxMxB7/HXx8CX\nVgahpDShZdlS+krNxupyEZ+yHcecVyeMgjnjoznj/ozx2ZzEje73zo2ZXh8wmx8wuzkguYpR72rU\ntGoZXyXoHHTR6l4/Mr7+ba8/xfhqkey8MWznlabY7IGvCe/EKceB5GAEvac543KFK1qw3DO7CcAP\noW73rOOz6/SZxUdMO0+4UE+YL4dkqxCu9oyvGvJ97qWN3NG2wQHLbnBkiS8yIhIDfO0q5FIZxtfS\nAF/TBFaZsWCWW/A3EOwteP4U4ysA2QE1lDSHkurUpj6WOHVNL4dOphCexjsD7xk4z0BECvljjf1W\n4/xUoecZTs/C7Vs4PYveOCV/5pP5AdmRTx1Y2MOapm+TdmOK2DYfQgNaIDsV/qige7Rh8HTBcf+S\nZ4s3fD7/kc8WPzJcLZFrhdwo5FqR9zzW1Q2rsMfqSZd31hl2U5HtQm5nx+x0l6vglG3Q5zx4husW\nSLvGChukXVMXNsUmoNj5lFufbBaQ3YRkt4GROgJ4DkQW+K7JeUrLDBQpBdZRg/csJzzbET3bMvQW\njK0ZI2vO2JqRqIi16rFWPVaqh7MawEJQLVxY6HZYFabg9jFwwZYPMZmPAAAgAElEQVSW7YVheS0r\nWBZmF4V5uBSl8QtJa3P8agdde+zWZkpkXrqsZJdmYOHYFdF4R3e3aS9zQ7UppMuiN+Gy+5SfOp/y\nRr1gVY5Y7hlfUwyz7J7x9afA+8eeGH+Z9RH4ul/7E7NHKVvGS72D2cAAI98JilHIz+HnyLOG3PaY\n+hNePv2Jg8M7gqqkkZKN0+GdfcprXrCkj2NVVDisGHDFE95kL7g+PyX9Q4z+37YBad5gTJNVa1JD\nTosOGXpiImEN5SJgmY247Rxy5R1xcnLD4NWOoPXuGs+M3CeIIPoUxNcY5tINUJomxL6xSfva7Gvl\ntjvJDdxt4LUyP+ZhJnccTcG9xdxgd8At3OxM3TGlvRcLeDIF58b8ro7aErMjJEGGimavQ7YxX7Te\nHHsUe2zPORS3nHBJ9KZAfAP6t/Dza/i2MkdlvIGvMzjsgXihOfh6ycnxFRMxpdtbkg+65kP/AXPe\nDoCuQMcOjd2e6gzDUJhigkXL1OMr4CuN9XlN52RBx9/i2QWWUFSNTVpFbPMYxy75evhb/ov4H/xH\n/hdfp98yuljhLwtkqah9i3z4hs8OX3MU3xC5Cf5hRjKJGLszYnYIFDnGlP72yRG3Z8dsngygb5uA\nJiWch0ZuWyvTNtb7sUYtA6zawl0fvrfAhRqPafGE7LMOV8enHIWXjMWMgAwNJMRMmXC1ecriakL2\nbYz6jW2mYv4IzBpMm30fTfd6yz3A9Yhe+CfvoY/rX3f9c4wvD1Lf0J49TdFzWSddrutDbKtAxxBS\nMQlTotESEWjKrkXZsSk7bYGgQzIdkOqQOUdc8pwf+ZQfqk/ZJV2SVYd0Fpnu97YxXaU98EUAYu+O\nvyesmgeo0Pr+Y2stUEpQayiFJpOQWALLt7A6LtbAR08c0l5OEUHtKJRsUJYBvPaTVVU73K9qG+e+\nA34P/CNwn/CeFC9fQXUO2Tlsz6EoG6J1SlSmHErouYqJO6PrbfDGOVZQo4cSFUmEbRuWUyBM3DoA\n97Bk0F9yGl3wlfMtz9PXBPOc4HVB8JscZ9Yg+kAPRB/C5xlF3yHvOKSfeJSZTbaKaHYW2zc9Uh09\nmDgLwNUPNVANzFq/wHaLUCOONVZPIY9r46sWaAN0BUCk0ZFGta+xu2Xi3PHMecOXzjcEZFjUWK0b\njy9SSmmxkRF3ckylHFO4NmbXS5d67lIvXOrGNWyOTKKWEn0jTLFY1cbVtiq479C2XVqVStTShSuP\nynZYiiFur0AFmuzAZSQWjJgzIiRmxw0nXOoTrvQJ1/kxq3LAejUku/bhrYZZbVCDIud9qeOHQzke\n0aY/rn8D60PQfp9/ZehC0Kwtmlsb/IAtXWbRmMBNEOOaQjoIBBE1lsio9IA1B9xyyI064m35CW+y\nT3i7e8FFctY2r7Tx59ticpg7TA4wf8wK1GDr97A4XQrqyqZoXFIdkooIz6rRXoET2rixNLlMO1nM\nsC3ae3anUZXBZLMatm3hmEpjI1ojkBpypdm1JEnHhmAA7jPo/gK83FhUiHMQF1DfmKlvq6UBv3pJ\nQ9dpcLyCfgQ9d0scJ3h+jjWskH2JCgXCbWVCtgOhZSTRBxD0M8bhjFP7nC/Vd+xWmt05bP8Au//H\nOD44AYQBRLFkFCxIDwPKyka5UBY+68UQ6y0UPwUUQcAqAEJt8j2Fuff3Kfbu0bZBBgrZUchPFPZT\nwwDxYrOlazwQG21Ra5suK4655KX+gb/i15xWF7iiwlU1blmxtIb04jl+tEPEFXN7SKkN2Flol5SI\nrcjxRIktatKwJk8Vei6pHRctxYNnksR4KGllkEzdeiduldH/JJBEEenI5+boAJHUHPh3HHVuOBre\ncOTcsqHDhq7Zukty3SHZdUiuOuQ/RHCTGe/IpDYyx/dGa39oMSE++PojGPaXWx/mXo9Yq3up47Zl\nfK1dNkmXu/wAv0mRDoT9msmTlFCucKzqAcgIQEbgxGDHoGOY2x0Sa8yd9YTX1nOuZscs8wHZIkBf\nCMNQWFft8y9pHcvtFkkz3p2GbV/jqgq7qpF5g0g0amOArqQwRKGZNkPRwlLQTQVNIlC5bpmP2gxO\ntVoHi5bxRU+ghpL6wKI5krhrhbtQuAsz7EMcgngKPIfGBfG2xlrU2H8EXhvv6GhsXvPTjF0YszmO\n2fgRietT9RySThcrBiLnPezE6mj8fkFnsmF4POMwuuZ0e86L9DVfXP/A6HqBnhvvMhZQjB12cUhy\nHJKIkNBO2NVdbtITrJUmq2KyMOY2ODYpbNQg4xrp1sigQjcSVdmojWN8q2cC5hqxBrHTWIFGBAIx\nlIhRC9AVoAsFhcJ7mhO93NF7uaL76ZJD+5YjfcORuuZY37ARHeZixEKM8EWKs6phLmjmNsUiQGn5\nnrRLrwUqF+ilRF0KWDToRQXLEpYtiE5uAHVKo6PXHpQhuhKky5Bqa7NOO8zKIW5QEkc7BscrBmLN\ng5MXlHhMOeRSn/Jav+Sn3UuKnU+xDigXrnmO5rXZ91LHx2yvx+svF78+Al/APYz9HviVYpxRI9iF\n8M6DLujAYmf1+a76Beunfc6jM87EW0bunMDNaLDZ0OWGI97Uz5hXIyyhqJVNmsZk6w7pdUT1vQd/\nFEZe9y1GqlHttSJ7wa4H5FDWsHZhBurKZvHZmNedF3wnvuDo5A7/P70mUBXhGMIrTL4/BD7HyBIH\nwLnppHUdODANOAIMJuRFGFaYxX3TotYPqajdHhH1eNIXmKL10V/t88THjEbxGOH9R5LNdgxtW7gS\nQUBKzI4eawOwTaG5Nab9rzHl9AYY7eDw1nQ/nZUiPt4Six2BlT4y+WuPbQcDru3lhfvG8t5s+RDj\nL/Y3IP99TeeXC56MLjkL33DEDV3W2DRk+CwYcalOqBuLvxK/4f9Q/4v/uPzfjH67xvmNNmyHDNxI\nET6viP86xX+Vo4cC385xqHjCFV3WSDQpIbf2gTmfwZd81/mKaXhMjW8+oyuhkA+eX4mGXQBFt5VB\nFpCmcB4Z+WgFauOwuRqSvoi4OTjBiwvDGNHQlDbF1iO/DlA/2/CjgO8xbK8rDfmuvQb3bZ69ZEjz\noKtvTz7Noz8/Ts4+AmD/+mt/Pvat6qwFvgIzVlbUVKHFNoqZuROEpWlsl7TpMGsOuVBnUCnqxKKq\nLerMoihcisyjyD2KzONaH3OpT5hySEKX/AeP6mdBc1PBdmeuwyI3tFP2tGoFW422Bek6YJ6MOC+e\nIlRN1fEQp+BuSwI3pWgUda0Qjca2IPurPtlpn6w7ICdCWwu0s6DnLxiGJZMudAbgjDETb7dgL8wg\nESszyZu1AXHL+00maSap2Y+mrLkYo1a3tSTDE2jbMJzqxqKuLJpGo1WNRpl7TVpGRmhbCMuYwjtU\neKrAaQp0U5HXDVWlsSvDNHMycBwQiUYWCruucVWJqyssXWPtB2jk2iSzZevVYLUBuWlfK2m6iD0J\ngUXQyehOVvQma3qTNW5QYtkNtt1g2Q2l55J6Hqnnk3o+J8Ulx8trDnZTxskCr8kRqkEohVCKYW/K\nyahDNXSwhgpdCqxMYaUKK1OUhUvZeJSBRznx2KQ91kWfteqxsXrm81WOadpUAnLREqmFqfZxIDEs\nQa1risZmV0Q42zF6KkmtDms5YGYdEsiMWTFmVo6ZFSPWyYDkTUzx1qU5F4ZCs2kg28uR1MOJNmOt\neIhVH3YeP+xA/uW7kf//WR+yJe4fcoBjunRrATc2aI+iMWPo7/JDdAKZE7O0R9zYTxjZc5b1gEUz\nNK/VkNvLY9aXffIL34xx90rTwfNLw0R9I0yjL9sn4I8mMKjamBJvaphrmsBm3e9xdXBCkKcUscvB\nYMrhiylpNqV7tEXb4t4HT8oGXxf4ujCy7qwhXsJ4Cc0SdCzoPrGwn1jkT2xkoRGLhnDeMLprsH1N\npwZ/Cda5Ic2SY3KYQ3NFd2yYaNMLizpmkFEwNkWm6gszKEI5NDuXJnVQRYWqH137mvt4smdzNlJS\nSxukQgqNiyZA45kwh3QAF7RjBp0oaSazKmRrkNyeyrQ23qSb2nx4ZRtqrrJN7HSBroaJxu2UDE6X\nDI4WDPtLOu4Gty5x1gXupkDYmsJ3DGPPc+k3S56t33GwnhKvU6xtTZ03VJlil8E2qBCHG/qHtzw7\ntBhbC6rEpkoc6sQmly2bxA9J/YB5PubWPeJufMjtC5uy5yLWbSG71uikQWcCnTnoLDDaetGyThKF\nvtXG5xYBW5siCNh6PRxXoTybTIckOiIhJFUR+XlAde6hLmyTaq0xTub1Pr+yzfVvRhrwELMeJ+Af\n7n8qnn1cf/71T+VeoZGZCUXZcdj2ukyjQ0SgqfFJ8g5zZ8zl+ATLasAR6P22QNcCvRPoAu7UATfN\nIdfqiBt1xPTdAevXPfI3LlwomLVm6nupf2NB6YI0TccycdmmXZyshEIz8lasDqZsP4vIbA82inCt\nGG8UbqaJX/qoFx6rE49i4pD1C+qowHdybFkR20aGaYWAj8ll7hT6+5p6KtGvG4rXiuLCDD5zhuDs\nTA6EZXDkWkO17+dpU1/qVikqGo1UGonCEsqAL6I1+NmXHHu3H0dj2xW+zIlEQtQk+GmOs6wQN5r6\nCoqN8TAr1lD7GrWr0bsCPxFEKsNTJY5VI3xtPthGGRCnVGhbowOFCgDfRldmqqveCdgJrKrGiSrc\noMQ5LgnCjLCTEHZTom6K1lBXNk1lU1cWncGWfmfBgCWDzYJ+vmCwXdDfLBhsFkT+ljjaMYoWHEV3\nbIor1uWAtdNn0+vf2xzty+jtJGZjddhGHTajDvVMU00V9VRSz0KobGN7UnsGkNWRAb60hKJBz6F5\nLRGhQ1n6LL0RF/4zLE+zc7vtexnwq9Iub8szrspTVuWAcuNTfWvRXDSoZQ65Mh2eOm8Zq/vYJHgY\nM/r4uf+XiVsfgS/g4QQ8TsBSDMQSQhPCfAzfWSBB1xbpusvbLz9l/vSIb/pf043XeE5BoyzSPGK9\n7pNOuxQLD6E0qpaonQVTy/jhnGOQnNfAbQPFFpOFLTGAw15TmBjX04VrvEzeCFafjPih9wWT6I5O\nsEF+0fCic0H0aWEoWjXQh/Kl5O5sRNRk9K52yE/hcArijaGzehYcjsB/iQF+xhjAbAxDF54WrYcz\nhgzl9jHssf3rARz8DGfVA7HgTIDd/g4GsJPx/UQgnYn3mY/wAPp+4GEmUPenRTw6M+rxt+3vjxZz\nkfsv9r+vwRjt7VJT5UqnfT9tunXCMp/zFPglyP9UMf7VDV/1/8DX8vd8zvec8o4RC2wqUkJuOOK1\n/IS5HPKKP/LV7lsmv15h/d+g/w6qN+bZ43XB/RTcZc0Teccv//obwijluL7haDPF35SgoA4tFv0+\n3/ufcGzfEA5T/uHLX3GTPUWXjpFbakzSu8F0F+5smNrG2L5MQWfGS+BNZMzMF8AF1N971BOPpIfJ\nn/a/Z4UpBC55uBanDWQ70Hc8GOgrHhKxP8WUeGyGUrff+xEA+9ddf4rxVQC2efgkbfe4qildi60b\ng4RC+eziHjP3kHNvzcBdQalpakmTShpLUq9tqqVDvTKvK9VnqQcsGLDTXcorQXUOzXXVMr3SdghD\n2+WpayN5k6bISjch82QEeUPeOOiOwD0tie0tvYMVSjU0qkGoGlsK8tM+s7MnTLvHrBkysM4ZuJKB\nnzGINnR70B2COwFxANYKnCmICNQG7BrsDchbTNzZB6kQMzXQNcaxkTSKwMfAl/YxEyyFRVPbNLWF\nqjVKVSZ+3Bv3O2DJPwl81XVDWTc0tcYqIcwhsI0PkEg1VtHg1DWuNnbZtq6RygB/pNo0PJa1MVmk\njVn7yZmhZboYfQe6kmCQcji85WRwztPhObGV4OkST1V4umTrxcy9Pguvz9wb8HR7wZPbGw4v7phc\nLLCLAl0rVKPRtWJ05lO+dLBoiPopdtngbUq8VYW3Ksltj9zzyQOfvOdzWT3lQp2hLcHG65kirnJa\nvxwLVqL1LRQmjglpij2lYKcoc5vtNkbNJflVyMrJCJyMwM1wZcl21zF7G7PbxBQzj2LqUs8ELGpT\naGe1YWO8x07dF5EW73V23uvS/6kk7PH99XH9+dZ9u4x7pio7QLT+lzbgQa4oSo911kMnkG8Clv6I\nG/8Jsbcl9nckRURSxCRFxC6PWV/1WV/3Ka58IwVyCrATU4GJFKYCpu11iOZB29Z2BvPKAKq2onYc\n1pMel9sT6lyy6XR42r8keR5R+Q6D9QolzRRUJSUuFd16Q6/eYtcN9q4hnkIzM0yOJpT4Jw7WE4f8\niYvIgXlJMC1xBwrH1oSPgC9hmUMjPODAkMq6mELRy02+0R2APwGOQHUFyrVoGps6cWkSG1UodNNe\n+/pRLGkwHlyYeFdbFloKLNHgtsWmJw0L7R74sgW6jY81Fo2WhvWphCkc69q4ZNdFW2y1QVW3evMj\nDRMFxxrnMGcyuuHF+DWf9F9z4N7iZK0nT1ahhSDr+2bbPmGV8Hz2loO3M+K3Kfa8JssVWaHJc03R\nr5AvNwyURRQW1CKgmVk0U4tmZlFZDmXPpey7lD2Xi/opP7gZzdhi4Q2ojyQy04hcITKNXivUwjBU\n9dI2Ux0T21w3iTK5lBbonbHOKMKArd9H+Q65H1Joj0K5lNqjUB7VzKWcuTQzqwW+BGTSNAjui8P9\nmEqffywH/nA/zo7/qTj2cf3Lr38u9yqMZ4OoodKUgcsm6oKvKVyfXdhj5oy5cJ8yjBYIS6OEREuJ\nkgKURFcCnQtoBJuiyyrvtbvP5rLD9rxDfu7CuTL517YwORg7UC5UAebmhiL12KZddCooc5dDb8ry\noM/WjsmHHmJdE64a5LomThXq1EOddlmddFgMQqzeBhlu8B2FLSpipwW+AhAByEJj3TVQaYQnKK8U\n5aWivNSoEoJDCHcgS9N0VK2ApaYFv5SRg+saRKURjUYohdQKidliXwzeMzHN19JVOI+Br3qHn+Q4\nyxpxo2iuIU3MRMrNDnSo8Lc13k4QJJpI5PhNgS1b4CvRJu7PGsMkrzETNF2JciQIidbSAEca7LDB\n76WE3ZSwu2MQLhkHMyN5DmZoBEXtUTRmd9wNo2DBiAWjzZxwtsO/2hG0u+p5DMcLyklAOQ7InJBU\nRqROSOqHoIWpxtrDcW0fcRUfczU+4jo9JrtxyG5c8oFD3XXMMI7cb5lYDeQeFC7kEgqFnoF6LamV\nA0tYdsbYHU0Wh9xFR2ZQKBohoFY2s92I2W7CKhlSrHyatw3NeYNelkZS2aSmBlD7Qv8x8OXwj2PU\nhwD+4/vrz7M+Al/vrT1qv7+zHiXNpQ23faOnSYG5pLnwWZ96bA773PZqpKta416LZuHApXzwjmgw\nP7fC4Fu3mH9bly3Ta8aD7m7Xfp6WtqpS2PpwacNPUB15vO2/wHueIj1NFoXcPf+e48NbojxBakXu\n+MyjAW/dU542l/zyq2/pzHIC4MkIDjaGCes8Bfk3wK8g/dzBSRucrxSTGfhv4JPEFIfdEXhfAV/A\n7hOXIKuwXmnGc/jVO4MteQ70JuD8wnzf9oXLtX3EHYcsqiFqJd/3S8c8FChaNkAKGQE7YjZ0YXRj\nmBwHcDZ/ELBMgCcBcAh6BHooSIjZEZPpwOSve5ULCpp1W4w77XGVQA/i+H6apPi6ofOLBb8Y/oa/\n5X/yH/g7viq+ZXy9wluWyFpRBzbJQcDF+Dt+ki8Z1kuOp3dYv4bm72D1D/BmBbsG+ndwuoGhAPeg\n5snJLXGzY/LjEv+nEnHTfr4BjJ6vGH6xoHu0BQnZICD/NGJpHzzEjQSTJF1jgKq3wGsbLmOjmdA7\nSCq47Bh24BUGnBxg2G4u95RbkvYym2KK0C0PLAxCTEq9hxj398JjZHL/oR6Zed5f5B8CYB/Brz//\n2j9A9vGrACRUvvFXqipIakphs5EdchWwKQfMhiXeoMDvF3j9Ahp9L2VTtUDdSdS1RN2Y16LxyLVP\njk+ufdSypFmUqEVpuo1NO5rxQ8aX0lBCtjbAV1Z4rJoebreiY28ZjuccfHqH0BWSGqkrLCDv9ph2\nj3nTecmtOOKlJek6GT1/xmkEbhfcAXgT4ADkFJye6ULq1ldfboxChRRzP7STcIRvmFd7xlctzDQl\n1zHqADzuGV9NY1FXEpraML503d4W2pjH2jbC1ljifeCrajRFrUhrjawM49ySppQRicbKFXZV42rj\neXYPfCnMccsb48tQlG1W2BasGjiy4TMM4+tTm3Cccti94dPuD3zV/QNDtSIsM8IiJyxy5u6QC++Y\ny3YfFbcc315z+N2U8e8XWLuSutLthuZrgaQh7ieMX8wJypJomxHOMqLbjKzvkQ4D0l5AOvLp6Fco\nS7L2eibeVJY5qLVlALBbzLZo/eaVKRq3Cq0VxdZGzWPym5BNX2H79f227IZy4VLOXaqFS7lyaFJB\nnQmaTDwAXnXTTkT+MNnaa63+FHPicTvlMQi2v68+rj/fepz4wsOI4xaIyi0DlmQVLDVFauRC+SZg\ntRjixiVOXOFGJW5UUiUOZepSpQ5V4lDceBQ3HuWNZ0x3ZQnWDjPieGOem1m7gfeeZ0qaJH5bg9I0\n0mb9pEe9lazyLjMxZDeIKH0HjjVZ5bWDJyRKSIKmoCksnLwhKlL8FXR64MbGo7TyBfWJTX3ikz3x\nkanGvYNwrHAHFU6LdzsrsN6BCDGXsgeExgS704JevS1YXXAG4I4xwJdnvLSaxqbeuTSphS4adC0e\nYsijXu/efN4AXzZa1lhS4wqN3TK+nD3jywMcgbKEaQyYmWfovZS50QaI3hWQJAYA0PsmmmMmkY01\n9DTiRYP7ImcS3vJZ9B3/LvwHXvAWa6uw1gprpmiUxa4O2Tkhu26IXdUcTKcc/Dgl/k2GdVVTl5qk\n0KxKUIcVgdowCEqCgxUWNvpGoN5J9FtjkN8cWmZXFj/6c2rXZjnu82ZyRqEdZKOQymw1lXAl0dcu\nXEu4bfOgBBPDKsPM4UZCKCiCEB065GHIJuzTKIumsR5eUwuVmP1AMvynGF8V/7g4rN+/Vu9zrrq9\njh+zLD7GsD/v+idyrzqAtDSM7URROg4bv0vu+IbJfDAhGCWEUUowTkBCoyyUlihltQMfBCQSnUjK\nrWuUGhuPYutRXjuU1zbltQPXTTv5vYBqz/gKQMfmmVhBmXhsU0Ge+SR5zNS7YnkwYDuKyZ57yJUk\nXJXEqwa9E6wOPFaHXVYHY3ZBl27foRMquk5OR5ia0PfAbpuJstTYdwprqpENlDNNMdXsZtpUBgsz\n4dYtDAlNqdaWQreiXm3+7kPGl7UHvoRCCN16l/HQx7IM48uxa3wrJxI74pbxZS8r5LWivjJp8DKH\nWQEy1gx2Ne5OESQVkZ3hNyW21RjgS7TA13kFP5WQCnTb4NTSBl+iQwGhgBCs4xo/yug8XdN7vuI4\nvOLUPuepfcGpc47WgkQbtmeiQ3r1hkk1N3s7w7oqEN9ViB9KxHcVHFiIMxvObChs6p5D2XWofJuq\n47RWIe1W8EP8ku/VZ1i6JFMu1riDHgjqjg9haGLUThlyxE4Z32gtDPCVt8CXslBrUBc2y+GIfBQy\nH07w+/n7sspGkC0DskVItgwoFg56nqPmFXqZGdaHSkHtGV8f5mKP75nHZKN9bfmvk3t9BL7u175A\nr3gwEE956MBYJrjc9iH17ic9MhHogU0d2w/59T07p915+/cFBtPaYIqaMms9veYYms7eVynH3N37\n7ucasgiuWwPyjiDzO3yvviZ/FjANx/zkvOSJc0W3a0avpoTcccCSPp/bPxA8K/hcvCYa5ThfgbPG\nPFePQb+C68/HTPtDnn19RW+9w7Vg+AP0Vi1R6gTE34D+Wzg/OOHEuqazyXFtGP0I/Y1hSoinwN9A\n81/gzeiMH+WnvOUZi+kh6tYyx2OLKYapH4CYDbCEuR5xywFXnPDlpz8SfKHgHF5kxr8sq6ATQe8Z\n8Ar054Lb0YBrjpmqMet1/317qnvUaNqeBAuYgDUy/jzHwCfgfl7yYvITf8Ov+Vv1P/kPq79n8Pst\n7u+VAZEKoFcSv0zp/XJL/+WWje4Q3FbwzngFvV7CH1QrxaxAzqDzBpxziN+mhO8y3P/ewO8wAFYN\njMD5omGyWPHqP39HchwxtSZsjvssh3McUaER5LXHNuuyve5Tf+8/SDhdCW9DE9D00jDAll0jz722\njSuuz0MTcf81mALVwxyHTBo/qO0Emg4G/Jq1PxS2x/Hx9NP9Bb13A3789T4p+/De+rj+Zdf+gbL/\n+rHHl4AmM4BvbrT9NR618EjryOj8D1sJmuKhEZM/2pfAO22A1nf6geC333kLbOWFYQveT9Nrr4W6\nMplM1UChyDYuxabHehvjJAO69prRYM7kYMrEvsOlwqHEaT//Wh9wxwlv9Qsus6d0dcqpO8frXDIY\nuuihQI+hmgiqA4G4VcihRgw0cqXBMskUqUmydNw6FXiCxgMVa6xY40VGWmlHAh0KylCS+z6l5VEp\nh7qwUZkFRevdoYv2AEiMs74yHX9tzJu1FigtqIQmtyFxBdLVuDb4lmgHG0rU/me0AGU6u/cYcqLb\naTwFrDNzDIG2/Qa2QnwiET2JfG4RTXYc+Lc8D37ma//3TIopESlRlRGplFs1oaOfE4ottiyYFHOO\n5rdM3s4Y/H6FWNdmmmY7GEDS4I9L+s82HOVTwl1GvEyIbxPi8x157ZOGAakISKOAZmixpcvUPSSK\nE1Ngt2FA16BCiXKMJErVEr2tzSCErYZUUe1sqqVv2Kydtjjeb0+b8H0HTDViodG0fju6aY9/C7De\n3xJtd1F/GLf2QNfjovFDIAzeZ65+LB7/POtx8qt5GCwE0Jgx8FUIuxioqHKLKg2NSdZKmkfU/lHV\nESax3w9A3mJYXlMM6DXfg2pbTIKwwFwXj6gDj4Obtg3Tfmcke42E7TxitwwQ6xHzbIhyJDJSOE5J\nYXk099wEi6DOULnEzhv8vECsgEDjeeA5mtJ12RxFpAcR22vYF2wAACAASURBVHGMTBTdkYM7lvgT\nhZvUJrQUUC1MXNC99v/ZB1ywS41daKIU1BDUSKDGgmwsyHRAsfOoMo9m66C2woArFeZ4a2VoFpU2\nA8xraQz/CdjJGMsukV6FCEqcqEZG5lirjqDqSsrApXA8CuGRNz5l7VLXNqpq3yOpYZ3DMoHdPp91\nTMehj2FzdGrEaY3/acpY3PGCn/ml+C1fpN8j2kafuISqttlZEbswZjuIIBN0ZwmdtwnhNxn12wZV\nmvC8K0Euazr9mt5RwmQDvgZ1C/ot6O/aj5GaxogQ4Awr5t0Rl51jut01OAppKSypkFZDc+tQ9XzK\nyKNyHZQAXWj0QqMrZQDUlWGAaC2pYpsq9h8sNvSewWL2PnTRgGwadGPii5Ytuqgdw5AjaOPXY3lq\nG7vuje8fT2TY5wKPi8iPsevPs/6/cq898900AWvHpfYDEjsCBLJusJwKq1djuZWRDNeW2doy9iY7\naZjSS9malusHA/Np024Fdw++iPdScRWBapn3lTJS350DG9itO8zCCfPOiEUwYOX3CdYFwarAXRfY\nO8W61yftjZn2jpjbA45igRuXWHFCGG+xOwLRhaYvKLuYIR6JYUuJHTQbKDeQbgW5DbIU2JXEUUaX\nU1qaylXUgaYJNY0PjSeoXUFt29SWbUB1baEaiVItm1SLh0u67ckLqZGywRa1ySFVidV6mJEYR5ii\nMryAdQ1WrQkqjaoUVqGxSzMNVgptmLVKG6njdQU/lLA2zwjjbiagIw37YixgDPZRRRSn9I+WjD+9\n4yQ457n6iU/UT7xsfkIh2QlDzEhEh16yZbKec5DNmWxmqBtF8RrKP0DxD+CcgJeCq8BzTaxQFujA\nvAoM4CWUIc57XkLjaxLfZeF3saMaGQjwXRovRG8Eem2jNgK9FmhLoxuNzjV6p9BbaZiFU4nyJZvD\nHpvDvvFBGouHR+Q+jZo+2vPGFOWpMsOMmhx02eZljwGv/euHTPt97vW4XvzzNx8/Al/3a3+gBeYk\nCAzwtT9hLaJflbDsG/32tWVAgw5GQrOXr+6N4veD8WrMP6jGsCHqvQHvhgfKzZ4KtR+R1XLbSYAV\nqBAWNvzsGbBCSLK8y+vNl8yeHfD98AsO3Dtidlg0ZAQsGCLQrBhAALsXMaeTc4a/WuDlJcqR7KKY\nu84Bf/Q/ZykHbA6/4+v/84/0xgnWa7DXGOzjEMqvBe/OnvIP7l+zOBzwxf/1PYPjBOu1xtq23/cE\nsleS10+e83f2r/gNf8331efkP0fwVpiu/wLQrWm64oHNdAW38yPeTZ7xvfic54M3vPrb14gCgi4E\n5yaWW33gJej/DLv/4PCN+wU/8pJLdUpxHj+8R7KnOO0T3hxD+XDBMpMQOQTxtKFzOudT+we+5g+8\nSv/I5O/XyP8K/D2oC3PK3AHIzyGYl5zIG7pnG2R7KuusBdPb025jcuYmAScF+1oZI+r/Brvfw+3S\nFOPDEIY3YDWacX/Np/Frfuz8ROF72H5NSEqDxYYut+qQi+EZ7w6fsT4YoiOnjSUSXkemw8TUsL/K\nLpQDyHzDChlxL2Olh8Gy9pf1/vDMJNy65jpb+9C4GESk5CH67YPV/qG+nzC5N8Hf7w+lkR/Brz/P\nevxgeCw5FdxP/txLVSsfEgeWrpHpFRZsLZhL08lWmEKoxBiZzhq4a8zDLWla9Kh9T61bLX9imF73\nfMz9ddDKlnQKamv8BVYCfSHQXUmDyyYcchGe4YU1RRBiixpb1FjCPATflWe8K55xVx6zTvvMphOu\n3GMGz5dYw4bymUtx5lGOXJrYIjjKCLOU0MrwDvN7k2ItBdqTVCObeuRQjWwaV4BdouMSDkp0odAv\nPPQLH449ZvEhb+sz5psxxTwwsqj95KTKsOPInJYSryljh5Xf47J3wvf6c3ahg3iyQ361w212OMsK\n6VpUrkXiWqwOe9w9m3DZO+Gtes55dsosGbPbxtRrywwKSDMzvEJt2seQ35rV+jihwAtL/DDHixSH\nXDNezRjcrukUCU6SUycVm13NbqfZ9krkwZr+wR3PDwT9bMNILwm9DNnTaG2SV6lBVuAUCpYl1qWF\n+wMwK8jPS/LLmvk5iFQhygpRSKJCc1zf8Vn5IwKLbrwznWtEq6iSrKwe67DPathjfdxFX4O60qhr\niS6F8cxR0niD5RjAy8fEqi7IuEEeKGTaIFKFqg2TXlXCSMIT3wTgREDmtmhbWyDqtsWs28JRfxi/\n9vr7/d77hD0Gwj4WkH/+tT/e+yJ+nyO1GXflGCn/qh3lmgjYtIVhICDTBohPtfl61bSMnH1ivcQ8\nnfdTP8UHm0evDqjMDDfCMx/lTsJPEm1LqrnLJhhwEzzBDjRLZ9yyNQxzyhcFM/uQS+eUsTMn8hLs\nfoOla2yvobJstv2YrYzZJjF2XjMIVvSP1wzqFW5ZonyJ9gTKlwY4ji2aSNJEFlbQYNs1TqfCHtfU\nY5v8zCPve+S2x/fJF7xePWdxN0DdSThvjIF6WpjcqxSwdcwk3gh2XsxNfMQPo09xyYj6G6LnW6LN\nltDZIkOJjCxEKNGxw/mzE971znirX/B29Yzb1RHrZZ9i5ZkCfdcYaU3T3mOyBKsGqRG+wvMKPC/D\nczNGYk5vtyHcZTi7Br2E7BrydldKo0UNosCXAqcW+KsCJ6+QUmO5pr/XlaZ/IG3oNOBnINct8XjR\n7qWZGRTaJmUPaoiShJPhFa/KPxqrEjd8YJmgyJKIjdVlN+yykV0y4ZPXPlnhkWc+Om9linvQL8YU\nxhNgDI5V4lkFrixwrRKlJE1bzCslqTdQbzX1VtJs/db8aC8VD95n+mplmi9NayWg9oDu/tn72Bh/\nX0zqD14/rn+Z9c/lXhmm+HPNn0sftjZMzQQMXQjURpta5dwxTNFGohsJjWy9fOuWpaPNMIWtMo2i\nnYJVDbvK2CFQYeLaBhPbikfvH5jPsLPhxoEfbbQtWfd7XPTPCHspZdfDyyvcrMJTFZbdMC+HzFYj\nZsmQHRFF6dGMJOJrbeqIgY0e2jC0IZY4RYWT19h5hcxqsrSmToxc2bUg/zKifB4xG0aIjo0+SdBf\nJSBTnOclTWiTRDZNaJMO+9ycHHIVPuGiOuW6eMpiMybZxtQb+yGlbXfTMfZCi2qIrxI8LyeepIxf\nLqhyC/8JBDn0C9A5NBMb+SJgexhQdwMu3CfMsiFJEtKsLZhrk38VNaj9dKFHy2n9MYYWPJH4k4JR\nPOeZfc7z6meO8ksmyyvC5YJ6mSEQuI6mazcEdkncpMRVgluViMrUjllpegU7IGggKg04725N6lKt\nob4w4eBDwpQ6yIgPFxwfXpD7HonXIenFpGVEKmLyJCBLffLEJ9/55Lc+2Y1H3vUoIrc19K5bpa42\nz9itBNcyvhwhZrcyd3T72sEAY1sbNsYnjp2AwjZSysJvBxs9vlf2z/jHjcfy0X5MnNg3I//l49dH\n4Ou9tb+aHqOP+4t+fyIy0FvIu1BEsA3A9ozkZb9Uy9usc8O6oHj0ex8j8+kHe5+E71HQPeOr1fvX\nNtwOTdFaAltBOQ2YPz9i82TIu/6n2H6DEJqmklSJg+wqNic9kjDkxj3ixfA1B/07Qp1SC5ul6HMh\nnvLD/8vee305siRnnj93DwkEdCJlqSv73u7bJLtnSO7DzP++D3u4M1yKJlteWTJ1JjRCu/s+eEQC\nld3cPdt9OS9bfo6fqEpkAoEID3Ozzz77jM/JCbnxDlke9vkoec3oZ3PCusBIyTZIuEyO+L3/Bf8i\nfskr+ZzZdMiLzlvGX84IdUktFOuoz0VyxG/lT/lX8Uv+hV9w8cNz9B88p2d2iTNcdo/dNo8dffw1\nFN/1+PbgU07EJSM1R30OH3dfEnwEnDvfiR7YFzD7WcIfJp/xr/yS35qveLV4Ad97jqFyh9P3+iOB\n9ob6JKRzUMagpjWT/g1PecvH1UtOz++Q/wz6f8DyV/B24zT7xudwdufkdaKjkqBfuQAtgcAlMhnj\n3PQxMPDB77vXyYGvYfMNfHMB3zsGMqepayR5NAXvC8Pw0xWf9r7lkBum3NJhi8ZjwZB38gnfxp/x\nm5Ov+F3nK268U3QdNnucgoseVO06ilzd1oGAJ8CzZp7iwK9es6zq5hLNaBg+wBsJbwO4Grus+wPc\nv/8stM7WlvfT7H7ze+WfeL4+gF8//njsfLWBI7h71Jr4ugG+IiCEMnSBz73nuuR0vebPTaPRYp1j\ntSwdM2dbNvQpu8tC17nbtU1rzx5tYDZ36TZXG4NdBPA2wBDAxmcxGHE+fEY1iLjrH6KkRkqNEi4J\ncbeZcL854H4zYZs6JuR5cEb3xRYdSjYHiZuThLIbMD6ZMVYzxoMZvRdrB3gJN7WvyJOIPInIkhjt\nScLelvBwQ/hig6w16bRPNu2TTvvchUe8mj3jfjWhmEWuZfi1ccBX2QBfeSN+fWepkub7FGd07Zpt\nN2B4es3AXDPsl8Rbi/R8auWz9QLm/QE30ynng1Ne2Y+4yE5ZbkZsVwl6oXYdCssV2HsnpO8PwQ8h\nCPE6mm5nS7/r5rFtga8F/esN/jIn21TkG02+AX1YIp6vGJYw8HKSLGNol3TCFDF0LATRgF4yA7/Q\nqHlFcA5mUJPe1WzfVWzPNZtz6G41SVGT5JDkmuPwGkLJINxw1rtAS4mWojkq3naf8HbylLerp2Sr\nAP2NQisJuULPpYtGTRNAtr5Sy0Y9BCkMHhWeKJFGU+eKOvMgU+itgtsIbkQTWHRcaahpAK+2rkI3\nxwfdgba7SWvLmu6TwPuA1wf21/+a0d6btrxryy7ZUjXAlw/4UPpOpDSQu2NpXGlRe0xrl4WuWue6\nTTBu2DHL2s99JB5jjSvZ0KFj4KRgbwLn62Uh9XnIqjdE9SxlEtMJU1cm3nQ+9YKK3mhDMt7QG62J\nw5RwWBKEBeGwpLaKTdhjLXusNwlBXXIQ3XFwcs9B7w7fusSk9hXal9SBTxX6VJFPHfp4g4q4lxNN\nM6InOXkvZD3tsR71WKke58UT3iw+Yn4xQr9W8K5qgK/SAV+FgnXokhsebJKEy8kxQZFR4HMwuuHg\nxS0H6obJ1MeEHiZ0xzoMedt/ypvec16ZF7xevGC5GLJcDCnnUdOU3DTAVwEiB1WCpx2bKjKEUUES\nbEiCJQfyjsF2Recqx7+osVeQ3sL8xs1KWLqiJhE5XWVcKD+vCIoaIQ0yhKiR3PGkw9A7pumEuXTE\nvfUM5s30rct5jmoIckjSlLPiHGsEA7Wi8EOEdewsaQxzO+JWTbkdHXA7nDJnxKIcYrMh+SZ2QWIm\nnDmxNKWcPPhdQVTSCTck4YZuuKa2npvGzfw2oLjzsbcB+t5z75X7LmmZVzsmq7HOfpVtUK6bwLxt\nj6n21vAjBuN7NuzD+HHG/5vvteZBbLiMHThA5PyGpYe98TB9BX2FFQ40t6ZBbwvdSB3Uuy55WfOz\nXLvnOC3d4n6wbS3rvo0xG9/LerCJ4DIGP8YWitV0yNvDZ9SHHveTAzw0nnVTKsOmdID8pu5Slj51\nqRATix9XqM8MVRJSdUOqJMREHlGVEZc5cZ0RlDm2KKDM8YoCJKxPRmxOp6zHB9SdiOTsjp64Ixne\nES63mDByzXeCiGVnwmX/mIvuGefVUy42Z6yXfbarhHrt/xHwVW88tlmHWTVG2JowLBgfztkUXapQ\n0ZlBvHU5WD+FfOBTvuixOR5yPxjxzp5ypydstl2nuzdrgK+80af4I+DLQOI5MsGJIJ7mHPTuee69\n4WfV7xnNr4lezwlfz6lfZ3hWEMaaTlSgoi2RX9L1M0KvRPiWOoWscDnUOZAYECUEGXTXoNduCytq\nh3OaZuk94OGfZiTFPcdRgHdoKKOAahBSyoAqDlmUrvHQohiyzAcszocs+wNsd0gRxa6cf6XdMdMu\nOR76rvGcbMoT24ZxPbek6O8ts5mCWdQwE323r6xix/6qWiyl3V9bZvd+rPCYNLHPXm2fsx/Xfn0A\nvv7kaLO9rRFrQas2u7IBFrga6shNmjbRf1Tv3TIh9N577omovsea2a+JlezqANuC5iardDlyG+MK\nlzH4TlEdxlSj2C1Q2bztBji2vPqrz1l/OuDt4Bmn8pyxnBGTNUyiAVcc8Sr9CAI4955wJY95nrzi\nMLlpGEcec4ZccMa3fMbv+CmH3PCOJ7zovuage0tMTt0ANG95ynd8yu/Nl7z57hPyf+7CrwV8h2M9\n1W0mt+mcuYjgXMAr4LeKd5NP+OfPM5TQZFHM7fMJJwfXdPMNPjW5CpnHI152n/MbvuJ/2r/j1/nP\nWf9uAl/j9K9ureso9lDz2Gp8NT3HPVwypAsq0QzVkgPumVQzwvMaXkH+Cr6dw9fWnelRDfIGPvkO\n5EuQn1tnBI4h/AhezMG/g5WFkQdPp6A+xoFNCriD7QIutLsMJc6POd3A4S2Iewiyki/01/TmKd3r\nAplqrBTUI5+7wyHPk9cMvQVqpPnnnwTcr47hXjna6SKAZVP7ESZwpOATAV/g0LXPIHyxoT+a0wky\nPFmjjSSrOyyXA4o3CfZbtSuj9H1XNtl2YRJNWVxlIO86I2lrdw9Z4Mz2gl3G6zHrCz6AX/8Zo3Vu\nGyfr4Wetdk0DuFdx0xE0doC9HzqF9/bYMmJasKAqGvClmba1Yc00havlNy1osF82ph3wRQradxzt\neRcrBGwCzJXPcjqmmkbMpgfEkwwhLUJZhHQOZT6PyGYx+SxGp5K7Z4ckzzYEzwqy05BZPGIWj5nH\nY3I/4lRdcDq44PTJOZPiHotwDiWCWvpsgoSNn7D2E2rpMTiaM8jnDIo5nqm5jw+YxQfMOgfclEdc\nzp5wtzogfxfDmz3gq2pAwLyEpYbQUnV9FtMh74ozLIa0E/Ls1CfsVwRPF8R1TS0CahmRyYi5GnDj\nTzn3z3hlX3CdHlNsI8p15LKOK92Uqq4d8KVCF3SHfYhC/E5Bt1sw7iw46N5yvL7kYHHL6PWC3tdb\n9F3GemNYrw2ztSV4WtCvlgy8jH5/QZTVhLYgDEvEwGIrEBWIzGFQqjCIWYl4VyP8kvLWkJ1r7i4M\nV+cw3RpEUdHLNd284uTgmsFkw5PwgjTpUgWK2pfUvqLyFL+b/BRVVqRlyE02oVYBZD7m1mvaXDbl\nnpXYmY2W8XVskV2N1y3xuwVeWCE2IawlZu3B3HNsYs939I5cN1nMZtZNgGJtk0Cs2AH1rRfdBo2t\nk7VfxvKBMfG/ZrTBY3sPWiSh6bJdhU5mogxgE4JqOkUoz9F8TMOEMdodqwLqssk6tw72PtC5V0L2\nUMrfrgXjAH3ru/0vBa672FTBdUg1CFkNRxTDmMVojB/VjT6NwNYgu4bgWYEvCvx+SdTLiaOUzjAl\nJsPWknXRZ1P22Gz6RDbnKL7isH/FkXdF4BXUUlFLj1p6lCqgUBGFCim8kKAu6E03JMWGpFyz9RLu\nown30Zh7b8KiHLOcj1hejjDfS7gyTqj5gfHlO0Fs34HBm3HC1ekJZeFxz4inwzc8VW/QBx7+Z4ZS\nBVQqdOchY97oJ7zWz3htPuLV4iPKRUgxDynnoXMDtAFd8dDSXlbg1xBYRGQJw4Ik3DAO5hzIewd8\nXWb432rMa0jvYTaDi3uolOFQ1ETSEHk1PQ/kQqMKg5QWETp9Rl+6o/AcxuZloJZO9mg9h7s5XM4g\nbNyWMIfBBrrFljN7wUCteBa/QfsKUQO1RdRwHU9523/C2+QJnd6GgAIyyNcxYimwvnTurN1jfLVN\nkz4Dv1fSTbYMkxnDZEZpA0oCdzQB8l0Xe55QvZNwEbmE1Nq44HtrmseisV21dQ1jjHalqnXb/X2/\njGi/1NHwx/bsw/jxxn/ke7Vl1A27uOzAquP85kUHG0QOkwo8bOBjG1/NtqV8umX1FU2VUCMdoRu5\nhTrfNY94YPvtJ3BSnNPexKXrBK4EFD52FrE8G1CvPWb5hJf1x8jAIkODDCzCs5SpT7kMqFa+Y3f3\nLcGkIv4oI+hVpH6HzHeC67UXkJg1Pb0hMRu6ZkOkt4RaEWmQQpB3x9x0z7joPmPrdTk9fcvpQNJ9\nluOXmlx1H+admHJljrgwDeNr+YRyFVCugj/N+No6xpeoakqjCMKCk+kVm7BDdegh1xCvwV9DsoZV\n5HF7krA5PuBmcMLb7JQ7M2abdtH3e4yvvGV8PRqedcKwYwmnEE1zDpJ7Xqg3fFX9nnh2T/kyp/p1\nQfnvhVMZTQo6XUk3Ufh9jd+v8fo1om8fGF/L2n201hCU0E2BtcsdVwsoFpAu3sfBLWCzjG50j3ek\nGbPBRq7JCh2BGUlu9CHX+ogbfcR1dYTfL7EdSRZ2nejsTcP42hSuJjQ1DvQSe6CXaZZTv7kGDxwI\n4eQpbhoabeAqEtCVAw4zzY440eIj7Zpt123TxO8BsG/jln3Q/se1Xx+Ar/dGe8H3HaC2I9R+ENk6\nTSkP2gXvdb5rga/2d0ve1xfZL6toA8WSXYlFey77JWatMJxxBvB+3KD4YlfG1oqYy723PhWUi5jr\nqzMWTw/4ZvJTwmSL75dYKymyLsUiJr+MwYe7p0e8PXrKaXDBiDkxGTUeaxJuOeTt4hnLtwe87Fe8\nPPmYk+CCMTMCSjSKDQnXHHF+95T16xHlv8fwbwJ+C/yAQ5XtPc47yoEl1AO4iuF7p19Rdjp8y88o\nP/eYiTGvveecDd4xHCzw0OSE3HLIa57ze/sFv11/xf3vTrD/5Dng6xXuYWaB80iy5oLE7uIIb4dT\nKpC+JaAkpMDX1YMOW711huieHXdmXbGLl1oNt+/AXLiqiK51HTHHZxD8FfC3wCfN11XOh97PLStA\nttW0HvTzLck3Kf6va+S3zVfwgJOc7k9Tkr/a4B9W5DJicTAk/6TL9s3QMbXOhWP0WAUTBZ8J+Dnw\nCwh/ueHwyRVPum849c4ZisXDPVsy4HJ0wrujp5yfPqMYJxA2td1L5Qxfi+3WOFHElXQB5zJwpXO6\nTQXsB5Hts7A/PgBf/3ljf5MQvJ850W5H1QZyy/ug5H4B/x5w9R4rdfvotdZm7ZeL2UezcGk2lAsK\n1kDpYechNoTtccx23mmqvcXOzLamrtXnuQO1rZhFA6KzQ8SwYv2sw62dcsuUOzslrWMW4YBN1KEY\n+6QixuLE6S2SCp+l7bNiwNL2qfE46N1xQI9cdPCpuLbHXHHMlT3mtpiySMcs7weU5wG8MU5TY105\nZ9NoyJtsmdLUXcVq3kOtjylTn6rv4Sc1/V7G0emCUPhkNiYjJqPDdXXIVXbMZXbKxeaM+8VBU60g\nmpxAq3fUCCCKGNSo0TwOUFFNFNUk8ZZRNGO4mTHYLkluNnR/yMhvSuzKtfFeraBfOUdrcLDleAOq\nwTGNcnkbE4Jp/GQpQVUGtTZ4N843mt9CdQHLS7i+AM9YBp4GXxOFEKuCUTjHJm4ZVVZSNx3iysCj\njiUrr8uNmpBwRr7oIC66mEFAHXrvExWURUUalWjkSONNa8JRRjTKCEcpflJSrGOKVUyxjilnEVop\naq3QWYAppNPUqZ22DrV1HbKaSaXBNGCsbphmiF0p0cMe3T5PHxhf/zljv7xwv9ywve4tQ75JPOrK\nlXaVrSfeRD7WxwHt+6Wqj0vAWj9sv6Riv5zVsvPjGrfYZm4vRexcuqUHKkRHAdtxxHYcuQ42Hd6v\nlO013yO2MLL4cUE33NINtiThBlsKtmWfbdpjM+8Rq4zFqM+i32M16hKEBRU+NR4VPoUNyYhdYxFi\nQj9nEC8ZiBV9lqxNn5v60AU56SHlPELfeugLH/Pawky78sOsEZjS2pW1bKxrqLONmeVjMh0wY4jp\nSVTPEFOQ2NTZLRuT2Q5b0+Xt7Annsyecz59wdXsKd9YxJRYNU3h/bxAN8KW00yb0LZ5fE/k5XX9L\nIjbERUawLPGunSRENYftHBZzR/Tr9zVmoAlGFVHYbCtV82QqUMbFo3G7tdUOxGfl5CbSBSyWcL2C\nuIKucYwvk0MscsIg5yC4c40nvd0SsRWMDo6Julu8bo44qbCloJjHLO/HiDuxc+qaZSqHGjXVyDON\n+sjQ760Y9+6ZJtcc9G4ocNpohQjJbYjfmWAjRel3yHwfsVTIpUEuLWJtQItGE0y4yu21xXoWI6w7\nUSOaZFUrHrZ3Mu/5Wx98r/+88ZiV0pbINXtJXTegZevsK2zTbMu+l3Rp36tlqbayOK3Nao/7ti17\n9Nr+3zXOVAoYDzYB3EVss5ht1QE9db5ZU7nyIDGw5MH/8tcl8UdbuocbuqdrvLOajU3Y2IS1TSht\nSF86WzSQS/piRY81PRFjibDAwh5xaZ/yg/2Yle2jE0XQ0/RFRigUa9tj7f6K6/KYi8UJV8sTrlfH\n3N1OnW1ZNvZqWztgxhfgCXSqyPIYXQiyMiKWGbf9A2bJmMXxgE6eIleu0ZG3BKFGZIMp9/0T3vpP\nebc54z6bsFl2qG+lK/9eaQcCmZZ+vrdHecIh7AMFEwhGJcPOkhPvio/rl3jrJYtLWHwL+a/c7QwG\nkAxgOATVSs4cuOVRb5wM77Z24Z4yrlS7qsGWYBagL5z/VZw3BWVNntAKkMOc5MmCwTxH5Uuk1QhR\nI32N8AwjeUZPLujKDUFT4l8Qs2TULDfrpEzuaigrXGOiGmofoTVKalSgUV2NGpgdf8R3383EThvM\nhBLj+1ilMDbAVk5LzAFoyh0dUucMr80ax7PxxdpOmQ9Yy2Pf68ezXx+Ar4exH3W1dzVkpwge4YCT\n9mdtSVeLYjab0APTq0U025r7Nrv4OLg0f+LYjtbbasVBze79TQrZEIoE5qHjeIfNabWJBg+4Au7B\nvPHJznyyaRf6Y0RonK+4VTAXLhsQwPq5T/5RwvnkI7xejfQrrFHozKNa+hTnEfYHRT6E7FmHy+lz\nvF6F9AzWOCNULQOKtyF8Lx2Y9Q1u3lnQLVqU4rzDpnhY44ztK3f+ednl5eZLrp+d8P30E6bc0meF\nQlMQMrcjLvUp1++esP22i/13H36FYyud26a7yT07/HMEWAAAIABJREFU7bQ9UNGa3e1ofIUaj5KA\nSvjuOsaOZNHH7QWyOdtQNcsgbm7tb6H8N7j8Br4r3CeNa/exJ23SZdzciyPoTeCTuTudCkcGm/RA\nnLrX/bV24vf/A/gazL17D3kG/jvNtFzwxd9/y+3EsUXeHT5j+6zn2F1D4K7RgHsmHMvrv0Lv72d8\n9PRbfhr8li/EH3jBK6bcEpJTETBjzBvvGV/3fsJvPv45v49/ylYNXUc2i3vfhJ0mWIoD8i5xJWDn\nvtO72542XmO7VmGniN5SXts3+TB+nLEfPLaAfTtbm7U3xd7RNnbMtq3T23u1b48eC+juC4LvO1st\nUADv28OcByDU4rLUorFhK+XsllZOIFjiUOB231saWBhYGmxRk1/WLAcRnndAvu6w1EOWekCquxQ2\nYhGMCIMSfMXKGzmNKZx4vLYeW9Nla1x3HW0Vueqw9obcqykeNXM9YlaPmddjlqsB6auY4qVCn1dw\nV8IqgzxzjFVjHHNum4GI0bcexTvJthMjxQj/tsYPNFUYsgxHdGRKYVw7+9KGXGdHvFm9YL6eUK1C\n1zzgdQ2zRrvFtVrlIcC3e0BNDaYW1NqjME1ArCLKOED3FXbiOsIluKoYW0IngH7oxFJF0OwqBeRL\nyG9AzcHfgF+6qjEJyL3qDVE7h8w3DbwdgxgJ9Jmg+lSgpaXOLPVLS/3KVeOLwCJ8gww18XjL+GDG\n6eSCRX/IwpuwiCbME0kx6Lil2lSCiI6h/9GS4dM5w+M5g/GS2EuJsoy4yvDvC0obUtqIMgjJRjGz\n0wn39ZiZmrCZ9PCbTpmBLZFWU5U+ZRVQVT513upSRI5ZsZVQN7PCeZQPZY/tnr0PKn8Av/6y0dos\nuTdb27XvVYcgGt9LRE6XUwWO2acC9zy8NyuXoTdl40C3Nkr+0Rm8D9Dv/6x1tlvQTe1esw24QOXK\nxjPpgGornbaJFi4DroVLDoXK2baVxIw9aj+k8A0icMygYh1SrRV2bag9QTqIWQyHyKHBCyq09ahx\nAs+l3TGEShtSiggtfQrZYSt7pHWHRTUkrRLqKkS/E5gfNPa8dn5VWrjOzTp20VLQgV4MUyeHoKaa\nYFDSCTMS1vhUD4nMeyas6j7rys1VMeDi6oz55Zj8InLNf16WcFs46gIZLoTb8pD0NU0JvQRbCKrK\nJ9MxK9tjqQZsky7FQYh+IlEauglMItAeVB5MjgTxqcA+ERSeoE4N+tZSFxY2DlOT2klhqBBkDioD\n2RZclI7lZW0TX3nNttdxj3u9gvrcBaFa7EiDpob0SYn0VwwHNzwxksKLWYYjrpNjVyYOux5APeie\nbhgcL+kfLBkMlkzsLQfLOw5mt0z0HZXvU/k+pe9TeiFvl894Y59R9ULWpz3iUUony4izlCjP0Vo5\nXTDjulAWi4BiHlAsAqplU8a2SRw7LJe4zAnsYowGCXzPln0YP8547H+1sxVE2o8d29nWjbVkiX0A\nvvWv2lLFdu4D+q1t2q8c2tdM2rdfjT9uZPOj5rW5cq1htYJt2wRLOK1En/d9r7xki8eNHhGUz0kX\nCVkZNzOi0j7dKKUbbelEW7pBSqxSOjIllhkAF+UpF8UpF+UpqemgAksVhCz9EX1vRao7ZCYmNR3m\n+Zjz2VPmsxHlLIRLA68r16CkrJwmg/BbJ8M1EyqUK4O8t6zjAefqCb9XW4ySTMwMgUBKEIFgoxOu\n0ynX5ZTrxSE394fcv56wfdvFXEjXMGBVQdZKFcFujwrcf/e3ivZxEi5PIhrlBq+5lJ5wycMW/3ng\nzMzd7bS3YFYun1pZp2ikI7A9YAyycP6Z5zef3rr3TZ5GKoNMa9RNifwB6txQZ4Yy09SZhWRNL7nD\nJhB3Skzqs/UTZgcTfFFico2dS2wYYKVEDDzkE4F8UqPONKPpnNHhnOHhgv541aAeFoHFGsm212VD\nh23cZTuKyach+XFAfhdSrnyEFE0lhwZrsTnYTGGzsCkRl5B6rrlaGeOYJ/vQVLuufzz79QH4At4H\nvQJ2CFIHB3s0OxpJM1tjtsfCekDhU3ZlFPsssf0gch/kagGCfVCsHS11q329/fuWyroE04Oi44Tk\nUt89XQLnpIkYlj7cC+ecTICBgERhfbWTEWs6KhIDP0iqryOqgwj6dtepMqUByHDvlUB9ElJPGnQo\nsO79tsK91w1Oa+stTjtqXkN9j3uDRXNNj4BDGHrwXMDHuPkCmEIpYspUkd3GfF9+iac1KIstJdXa\no7oPqF+H8D07cO2lda19HhTu183Jt9e7eYja27UFvVGs6LFkwCroYU9BPIP4CfxkBt7G/epUwfNx\nc36nze25guwGXhfu4zfAxEB3CQcX4Lfktj1JM187LMkHnibQf4ErR5ziwKT/C7b/AFfvYFY5bODs\nEg5SUD3L0dkdn/Re8iR4x2Rwy+3RMdWk48qCEukELD4GvoT4vyz5+PnX/L3/P/mv/BN/w694dn9J\nfJcjM4P1nej328kJT/y39IIV4tTwm/IXZKIHXYE4LIiGGdIz1KWiXMfYG9+Vf32Hu/5dCW8jmJ80\ngeP+em//3RqsD8DXjzf22RL7oH3ribdpvMZuib1pvQaobMSigd29eQx87TMl9tmq+0DY45Kwkvds\nZBtN0JTbrH2Xhcx8WHiu3E3CQ+fCVENWQ1pj65r8UrP0InThs7qxZFWHtJm18Vh2xtBRZJ2E22i7\n65gIaKModEhZBxR1iLGSlT/kPkjp+BlSGrZF182yS7qKKK4UxZXEXDVOV5ZBljpnyBgn7p/GoDOM\niihihRQddBGgr33KJGLRm3CRPCXwSmrtUdUetfZZbfrc3B8xm00o7wNXivSuhFnmShjeA76a+/oA\nfAmMltTGp7QBGR1yL6aKfXRfwYHAb1gNVE4rIoygG7gW5C3wtclhuYTlDURr6BWQVI7sKcB1DWoS\nz9IR2/CbLcGLBGIsMWeC6lNJeWfJrwzFjaG4tgTKEviGwLN4PnQ+2TL+5J5TdUHWj7nySogUWbfL\nash7HfrkwDJ4suDp0zc8PX7D6fgdnTSjk2bEaUpYllSJT5n4lF2fbTfhZf0xP3gfUyYB29MOgcrp\nyi0dleJRkVUxadnBVh30JsBeKbiMXFMH6bnuprlo0qmwS2jVfADrf8yxHyi2Plc7G+TzYXZAtDN2\nosJBO9tnYW/qwkUNNK89BH/7wNdjViqPXmvtnmDH2mjsnG1T8LmjSabSRTqlBE+54LKdGw/qEFYB\nXIXYrqLyAvAExvewGqrMo84UNrNoT5D2Y0R/RNUPUb7GWIm2EmMV2ihqvdOF8mRNoWK2qiT0Csoq\nIC07bIsudRFg7g3mpsTeVLCsnOZWKaDuALEzCP3IAV9nOFZlv6ATpvT2gK8tXe44YFZNmGcTZtmE\neTpmcTVi8XJM/jKG1xauS7jdQNrqTbUBe8lDx9Wm5NiWwp2v7qBMxVJt2Ha7lNMQkyuUhG4EB57b\nybSCzqEgPlHYJ5JcQHknKDxDWRjYWnztQHnfgB+5MkdSB3zZR43GrGxIgk2CU+OkFIuNY1RU1pFC\na+OOZV2i+isGx4LYlmxVj5vomLibIQbWLd02RMige7bl6OiSs4N3nI7OmczvmSxnjO/vmcxn1JGH\njhU6VpRRQGRLKgLm/TEkh8R6y0jPGNVz+npJbX0q61MZj7IKWd/1WN/10HeK6i6C2xBukqYxyP4+\n3u7Zj9f9/nr/MP788diW7RMn2jhyH/Tat20B78ePj8Gsfe3ctkPavpTEYyBs/7U9gkSbqDG4BW1r\nsAUsGor3NoD7wNUJ+9JlvZR4z/cydcWm9rgpx9RZwP3dEeU2oNz6VJsAXSnCfkEwKAgHJWFSEHgl\ngSoJPLf+5tshi+2IxWZIUYeU3ZhlZ8Rl94w4yCnr4GFu0y6z2wPmt2PKu9BV79yUcJ9Ckbnv1+4L\n0iVMdK5g5WPvBKtoyHn4FBMp5tGQxG4RCIQSCF+Qm4hl2mdV9FiWfVY3fVav+qRvu+gLCfelawGZ\nNwQTJA/a0PD+o7SHw9i9ZSAbYliAI6Yp+XCqu3i6qR6yMzBL0Hmj0OCBicH2gQmIFFSnAb6aCkQV\ngWynMoisRtyA+F6TLSzVwlLODenSIqYbkkPoHhZMp2tSkzDzD7iYrPH6hWOUXUpM5GOljxyAegLq\ny5rws4pp/5rn/dc867/hpHOBqiyytqjKomvFXX/CbeeAu8mEu2LMcjFgOR+g5x7lNkL4FuEZpG8R\nxmAWFrNQsJTYuQf3vtMIqypXEtwwId8H7nn/Yj/ciD9vfAC+HlD3FvTaN1Rtr+xRMwcOZQ6UW4F+\nc0MMjaCqabL1LZw7Y9fjr+0k1Bq5R3o5wB/f1P0g9LHRK3AGccmDgbX+jpqPBjqwHULRd6K/HeG+\nUlu2Zni/AUiEo19Omq/dETvgq9XZn+MosDGOydSnIW2JHZC2/3tzoEjBzHBMr/vmfKfAEYxCp0P1\nU9z8Gfhfrjic3DD0l3TUFik0lQlZ24Q7Dpi/PYF3An6HY3i9wpX6XVjXCc3eNJ81w6F6bcnX3rXT\nPEi11fceN6sjzvtnvPaf8cnZK47/aoa6d407uucuXvf7EH4K/AIHLDWJFmPehwRaCEC0PnTDZKtf\nwt0tfGMdLBfjgtLBDDrL5nSvwX4P95fwm8zhYCGQziF4A8MfIDyvGb1YMAnuGPgLgk5J1e24Nxy4\ny8oz4HPN4fEVP/d/zd/xj/z37P/k6ffnhL+pkK9x+2oMPIXulxnJl2tUosn9iNWzAXfTA4ZqySS4\no+8t8UVFYQLWus/skwMuvzgmezrEHiqHrQQCvg1gMXXe5oNuXbtB01yQD4HkjzP2Qa92c249+pAd\n8NXH2a6GViMCkKGLAIzc27Etu/v0p4Cv1jFr536m8k+Vg+3T/WvHyLClA47qLehGs2cROI0xRAN6\nNXa1bjRi6gprNbkXo8uYbNFBvY6oc4+68KgLH6Mly4Ei63eZDQ7wu7XT4LfuOlkt0JVElwpdKqwV\neFH9MIW0VJlPnfpUqUe9kehFTb2o0YsKNg3Tq87c+dsG+NIZFDFGK0qh0EWHbKnYHvRZjCdcjHPC\ncY4KNKaSmEpiK0m5DEivOmTXMdVV6JheyxJWKVQtS7XdL7wdSNlkbq2WVMZzJVA2JvfeZ3z5hesM\nFGTQW7vb3Uq5yaY3yqaA+yXcXkMvd9cqsA3+KJrEasv4qh60qRvGl0CMBeZMUX0myUrD9gdL+oNg\n+++WrrR0JUhlCXzobLaMvRnZ5AIjHFCQRQnzZOKyAO2+cwDywDA4XvLk6C1fHv+Gz4df060yullK\n9yYjWhZUx4rK96jGitWwT+Sl5EnAzcEUkU0J/IJOsGHgLwhVwbLsYyooSg+WHuI7hY2kW4Nl6L6w\nodGFbBdOW27SZtFbB+zD+MvGvs1qQS8Pt7K6uykSEM1Rdh24FDZlJrFwenDl/nHvGaFl7e1LUDxm\npO7/bP/nrb8F7zFbW9CLFGwjGl02jAnpNYiKclM1Xa6uJIQhNvColcRIj0qFYG3TldRiKkPtC9Je\nTJUEbJI+wgOMA+6tERgtsFpitAO9pbQoX6N8jfQ1ppRUuU+dedSZj8lySDU2zSHdQu2DiRyVgMiB\nhz0FUw+egDp0jK94D/iq8diQUONxUx9zkx9xsznmbnlIcRlRvAop/hDCdxa2BWw3kLY+7/4+IVyJ\nPRaMxRbygfFlraWjtjvGFwrlu34rvnAlP1oIxJFEnErsU0WhIXsNqbJkBdgNRBbCduaNsH0G3l7P\nqH3GF567hcTOf6tWkG0gXTtpn9K6StDCgueVhMcrhpuCwKxYqAlvwgVxkiOGzbLdyw11zzYcHV3x\nyeRbfjL8A+P5nPFywejNgtHLBbYnMD2J7QmqxKfqBcySMa/7zxBdTay2DOU9J+qCA3lHaQNXHmlD\nsqqDuqrR14r8qkt2qRzSV0knO0HADvRK2bWa36eoPF73H8afPx7bsn06TuuHxThfbB8Aaysj9soh\n3ytdXONil3Y+jhcfVwk9/nfLdG3iSNPEprp0+mA6hm0M9zEExqEyD1O873tRsSk86mzMcn1AMBKY\nhWtKYxYSk0nUoSvvVVONGmuUb5CBRgUGLBSL0M15iC4ly8GYq6EDy7y4RpcKU0p05Zhb+bXrPlhc\nB3BvnJD/NnXaDZjGOVEgwwfGl11J9J3HOhSYRDHvjXgtn+NLdy2EEhBIdOlRpgHF3KecBZSXAeUb\nn+qt74CvpXbfv2qBrxYb2EvePyaCt0uhYXypBj9si+eVcCywh9Cn5CGct03jbp03jC/fAV+mYXyJ\nJciOk0I1OElLLwS/C14CQhlIa8SNBimpryxcQXFl2V5D58Wa3ouc7vMVQX3PrDfhon9K0lvjhyX1\nlYd9qbChI86Ifo16UuF9WRP+TcrUv+KT4Bu+Cn7DZ+o7VGbwUoOXWWrr8SZ+wpvAzUCc4a1r9Noj\nXfWgUIigRoYWFTTB8rWCa4W+Vq7SzNPO71obV0EBvA8E01zk/Uqiv8x+fQC+/iTo1cV54yOcNz5x\nkOvQc4ypFuwJmz+vcLT3DY5htQwhbdlibXnkvu7R46zjn7qJ+0/V/g3fzw406ncPpZf7xlQ032fl\nNLTqHuSROzfZlmnSZONK0KkTjF3E8Fb9MamtBcgKnEGQvuv+1/7efoL8gZlbgF6zozwtm8/tAYfQ\nDeGFgJ8BvwT+Do6+fMPH3W/5WH3PibhigNP1yoi5Y8Jb+5Tvn33O6/4LtuV4V3KncS2AWeMQpNYB\naz0fn/c2F9NkPe7AvlOsz8d81/+U34mfcji4wf/f/p2Jt0EdQ+cc9/wNgE+g/C+K/BOf/nc5jCDq\nwYlo5C1wMdw4BDVplpDvvn49h3nqTveqWRkDDWdr6LQY3Qb0xjXRa79FiCtxz3IYrkFswas0ISWh\nKFHK7KToujhM8Qy6L5Y8673kS37HL+t/4em374j+9xrxjziWVtvt+AWEFxXP9DXZz3/LTfeQd+FT\nnoWv+YiXPOEdY2b4VBQyZOENeRs+5bv4U74d/oTLwTO0F7ilmdF0Ixqx66iZNxehZU/AB+Drxxj7\nTK8209g6WrELGFUfl8IZgAoRnofwPFC+A7wMD0erBZimpXYrIvAgJgA7ML4FBPZt1J+yYfvB4x5j\nghx04MqFHmrcWmPa2i94D2wTmspKqqxLOo8hHDSPsn3oHVING82dIdATf5yZK+xuLzU0vqhwl0vh\n7NbGNmQFDZlxMy1c6bQoHQVKWFAWqWqEKpFehhQClQfIuY+qHZU7yzpkZcd99Uhg6iZwrSVmrjA3\nEnMu0W+VY2WUddMxstVVa0+0KacyNOVCBlNCXXjkecg277LRTrh/00vYTBOncWOsA6u0hZGFAZiu\nIwfnniHFsNWWdWFQ2uldG8+ZdtkF0Ur27a2uSEBXQBgKZE9hDjyKM4/iVe20TG8s+dcuaI2kY0Mo\nTxMdFPSerxlnM0pCFvKAG7XF9ysXrfaAqUWcgTqt6Q1XHI0u+Tj5gZ/6vyWuMuJlRnyZE94UGCHR\nHYkZC9ayzybpch9OuByesjADxt6MkT9j5M2IVE6kU0Jd4OmKYFlSEVKVIfU2ROeBq+PU2gnjPwQR\nJbs9Ve7uxYeg8S8Yj8H6fZZq3GTyeyD64CfN7CL8BNGxyK5FdAyyY5xmW9HMUmDzAJtZbN7YBJOD\nDcD4DaO13vvsPzX2bVk7W+BLuaNtxMR14FLzD0FuG/Tug3j24ftZBFqClqJJ/TcMWFOD0RhfUHQV\nRSd0HXaleB+reCDX2mYbFTu3L2BPu986ceJ9Zq1Nd6w5EYLXQ3QsamiQU408q+iONwyiJWM7Y7q9\nxUOj0EhrqfEptiFp2mWd9VnmI/RaoWdN8HJOowlTgG40CR+StLW7Hq2umNHY0lAXkjwL0VvBKuuz\nEn2WSZ+lHLD2+65I3VgibTEIqhOP8khRHnqUlSUfFhRJSR5ZCDRC7HZCL3ZkFtMoNYjmcvlN9WkY\ngBeB6gJ9l6PTS6jXUF5DUbqtIscd49OaeJMTFxU9m9OXK2IvxQ8qRGx32FKzdDqHKQfjO5713/CT\n+PcMzIr+ckX/fE3/6zVi4LZkMQAzUFydHvEmfsKkc8fgcMFE3nGsLnmi3nIsr8hFSCEichGx1Qkq\nNJjYI+90yaMYUwrMKsBeB1ilmnu+bZA9f+/k9tf+Bxv2l419G7bPtm+YXqKRk5AdB97LuJmRy0KJ\nRyxUo5vZ6EqZwi1MkzdJ5Db5sg9uPaYdPbZbe9rStrUJjf9Vdtml6VtWeWu7JPvsM6s0ue6Slwmk\nXeh1HH9hZt0xBU6AY+HCvKnYEd4akhT3OMHkmft4xjhtxDHO/9rPq66Bq4YdcGVdQrBtpGQzkNY9\nwFENsUV0LJ6nUVbj5TVyq10zDm/Iyu+BL7BWYZXEBAqjFLrynA27U9gb4cob74yT40n3ySV5c03a\nBFgLItrG5lpMKSnrgIyYteyhg5oi1pieQY6M69szFFRDQTEAVVtkapClRWbGSSDqxkb5js0lEmAg\n0BOBnVlnvn2nBufLhvQcQhCDENb5LQt367dvgTeg30D+DpK8pmMzxgEM+oqXoSMyxIMUNawwE4ns\n++jYh8DDG2iCo5rwRUb/syWH9TXP6td8Xv+Br8rfomrjGoukhqr0iYIlfidFDktER+OlBrYSnQaI\nSqCCChVWqKACban6IXUvoOqG1IGP0R46lZilwm6D5l63NizfW8+PNQs/ML7+zOE9mgEOOWgBr0OQ\nU0h8OJauvO2keWmAe7Al7gHY4khGN8LpHV3GrrVn2aL7sDNYrRHbh4v3GRPt2Gd9taN9KB+wZN53\nutrRlg60pZcdtxHW+wLk+1nt0nkLZeLqbLcRCG9XdmQasRjbCi6H7veyJtvZFi9b58i9z0hrnSHb\nXLyRO59jXNngV8Dfw7OvvuGvO//K34hf8SW/5zmvGeJE2Nck3HDE9+JjfhOd86+Hv+C3/+3nrPV0\nxwqeC9eFkDt2QOP+NW+NWeaCy1noUKiXguK7Dt9Ov2BycEesUsxU8sV//4aTL27wr5vLk0B6EvDq\n4BmLoM/PT3/P4POM8BV8vIXhlWNR9DsweQ7iC+BTt4zwQAYQehBUu1A/BNQ+7tpxGGvkQ1I6vk5I\noy/WVt9GYDz5IHxrrNjtXwEu8D+CYX/BU/WWj3nJ6c0t0a9qxD/A+h/g8tbpN3YkPD+HbgH+QPPs\n6Vs+ib/nS/k7xsz4Gb/jY37gcDsnKGuySHEfjvlBfsxv1M8Y9Jb8y88159XH6NR3xnch4GLkELyH\nUtM2+9gyij6MP3+0zmvL8mpny1JtZtSFpAtJB5IA2RF4HY0X13idHCscm8CxCiQ6rTFbi954mE1n\nTz9VQtYiQ/uM0nb+R+B9a98eb1Z7JceU/LFmYvv99ssqjat5KYWjUtaFS8uXdmdOC+FayyPdv+2j\nj6xsA8g31P9SOI2BtpFDbhsgrXEkitJlPW3pQC9fuRSbH6JiSzj0CIeWaLilE2/oqYKeLOmpgiDS\nbitR7mtW2ieNYtIgJg1j0l6H1CSurDLtOohwu/e1dyftrpEtXCmXcFOngmKmSC87iFdwGxzytnxK\np5OhzjS97hpvXOMd13izGjk1iBcWeWwQiaUYFNRHOZ2nGcfznB6WfghxQ59v5DMQDYnAL6G7gVHg\nCDWRVPgyoBYha0K0LFFBQTeGKNF0FHSartgqAAaKuhuQ+xGp7ZCXIdXWxywk3IMcGaTQiK4mGOdE\nKiPOczq3GR2TYV4VbF7XrF4b7A2E1hLV1rE7lhWH4S2fhd9RhwFH3jW97ZpevqaXrwh0ySZKWEc9\nNlHCUg646x1ye3TIbXHI2kvgvHl+UutM1UNjmsfJpA/jzx/7pUH7wWIDfquOA7q8BPweYhAiRgo5\nsohRQRiXRFHuZlhQ1R5V5TvdttqjmkM9t9QLRb2IIO84+k5u3Lb/wP5q/Z7W5/pTzvR+Zrn92WPZ\niX2gq/XD9iUz2kTbll2ZTJNswDaJgDbt3zDWCs89fC0D0dqdG9h29nuoaBKNGRXOthXW2TZrebAZ\nttGY9bRjdgQWAogOCjrTLZ3DLZ3jLSfBJSf5BSdXF5zcXiCNQRqNMgZhLANvw9BbMfIXTIb3rCd9\nVtMBq+M+22UH0ob5loaORblPaUA359HUH9YBZmnQF8C3HqlJuPaP+db7DN+vuR5O8asKT9b4nQoh\nDPVTST1W6FCCLAmnC4JPFnQ2C4JTTSAd4TyQTr7MGzsRaTF23dx6BUxTsCsIAphMoHME6gwo3M/i\npnAiKFzxRtUUcYgDH9mLycKIQsTMzYhtlVAUAXbbrOkW8/DACzWRKEiqLaN0hbfZUq0KFvOa9T1E\nBYRbCFfgLSyJt+K0f84X5ndIv+JkfcXJ+pKT9RUH6R2VH1D6AaXvk6ouSZURmRKvrwlsQT4Pye4i\n8lFItVKNOLXnugIYn91++8F+/eVj3/faL29sGfbN9DoQtrPrNtZO5DbFjmroP3sj892zk+GepVxC\noaDwoQjZ6UW3s/XB/iMSxWPfax/w3Jd9aQkU+7arZXM00xooS9e0QpVOiX1lHdGgNO7tUgmLhu6U\nS5f58sUOd10bx4BdGWertHTSAmvp/K+Hj2t8sLlxnRVL45IDtqnasV2H/Aw7cBDCRBIcF4yezhk+\nnTM6ndEZbvG8Gs/WqE2F9eTDM1RFAdu6yzIZutkbUHV9CA14xiFQf1Q6ankvdqwVbJQr0buATMbc\nqCnfJx/RUwsGwzu851u8dIvnbamEoOgp1j0PL/GIipJ4nROvM+JNTrC09FcwXYJYQTKWdCcScaDI\nDiT21lB3DNrXGGEwptk2WrCwVU8SgNcQ4cSOcaZwy020y7XZfm2jgevE+oE+iLEl6mUM4wUDb8aB\nueVofs3wfknnPkfNDfXWkKeWeguFsdRnKd3Te07xCGXFQbngVF8zs69Z2z6yqJGlRooaowXbOmEb\nJWwPEzYqcf+v3CykgFxBFrjmUdU+8LXPYvzecqn1AAAgAElEQVTLkpD/Pwa+9inwErdrtYFjgxyo\nQ5h4Tij8E1x520c48OvAQKdGKIPNfdf97hJXcvcD8IOAHzy4GjSCk48NTs37meT/p6Ef/bs1aPvG\n6pEhReEcyrb2sHUwvb3ff4yktlBM0+brIRiFHXDUGmDlrpf1Gz0N79G5tXpnrcOjm2vbBcbQVy5D\n8AnwFRx99ZpfdP6Z/yb+D/6Wf+SvZ18TvirwZhpRGnSi+Oz4LZ99/i1TcUckc/RI8i+/+Fv0bddl\nEm5wHQbp46hgETua2j6duAEDix5cePAD2KlkPjjgn/76b9EDxUr1Oe+f8rT7juHZEmkNuYq48ya8\nUc8wCIYHS5K//x6VQdSB4zeOrqoGoD4G/h42P4/Jw4CD0yX+GUzfwWc3boXFwEcd6B/jQMATnKzJ\nczh6C18VMK0brfoE+mfAMyieSBbdhBljVnWfKvWdb501t6WpbusEKWNmHHJN5zZD/AD2Gwd6/Tp3\n8GAPqK/hs+8g/gGSi5LDyT1/Hf0bn/A9X1y+pPf9Bu9SI1K330xPl7z47JLp5I5AVdQdj+znHe7u\nT7CXnqOz3XmQtSDMih3jrs28t8cP4//b2A8e98sbW1S0zwNbNYxdKfE0hMMQNdIEw4pgWBL+3+y9\nWZMkx3X9+XP32CP3zNq7q9GNxiaBokCONLJZHsbmc888jM1ikg21/EkRBEmgt+raK/fYF58Hj6iK\nKjRASIBksmG7mVtUVUZFRmZ43Lj33HPPHRZoBbVW1FpSa0kxl5RXAq5s6isHltJMbUHasiZaMPmh\ndsi7bFg3eOwC/d3yyS5w182iQofmYIK5SjSOUAFFbDQryk6wlza2rVQQqfs+oNYmcKy0KbvRGLts\nNVNyF+20s6xMa526Mq/bCrweeBZyrPEe5QweZ/QfbZn0tuylc/aTG/bSOb06vpPxKCGpfebeiPlo\nzHw8Yj6ccpPPEMmMbOOaCnmaj5tgzrPLrtNNFrg0wWwV2WRzC84CypcuV6OMwEmQQU0xtujPNnjb\nFDfKcKMUq18hZxVqViP7NfZog727IjzWjJIMX2nC0NgxGRpSW5e0YSdGt1A7puJMSwXCpSJgQ4Ct\nEmxH4/olds8Ekq5rspKWD4wUZWCT2T4RIWnhkcc21UrBNYijCiUKVFjgTBLcRtMrjBOCTcLmZcn2\npQG+sksYFTBKa6xI4K0K9ibXlLM/Ek5intnf4G9TvOsE/yrFSkqyqUc6dUlnHgt3zB97H/GH/ZLY\nMoAYwjZ6bVft2msDgi7j633g+OPHQ8ZXy1INDAXHCQ2F2usjDhTysUQ9rlGPc0J3w8BZM7DX9O01\nWeWRVH4zPdIzh+zMQZ/ZlOeuKVlZN4FZ1r5n6we0ScKWE6Qf/Az3neuunXuX79VuuyVPLei1Mb/r\nDniqu/5g1YBYtgl0a8tEKS3opRv7VoPpYa9NQrISpsQtF8ZelI3dqmsTrN52KK0N8OXXpu10CO5O\nymh3wWTvmsn+DY/itxxtTni0ecvR5i2yrJFlfdsZdbyzYjJbMNmZMxtecTY95Gz3kPLGItoEsJAm\nAVo4prLg9hnRGpGGrUGELm3qlUX1VqFDi6QIOZ/uY01LkpnPq/ARvkrxwhR/lmBRUk0F9URQOwJP\nROzMTpl9qBnLiN4qQymTQFTSlAFZLdnGB3sO/ciAXu6NqQwczCDcA3kEojB/wzfYa5kackxZmm06\ns0gHAbE3IBVD5vWEbdEjTx3TXbJ9BDeympZb4omMfhkxitfkm5R0lbNZVmQ35lz6nplhoOn1Vxzt\nv6GoFSN7yTS6YXY6Z/bmhtHlitI3mmClb5EEAX6YYYclDDQiqFjdDJEXQ6qRRTG3zHMwbUCv2u6s\n1/f268eNdwH37WzLtBt5HCuAwIeeb5pIjByY2DCxjH6KenAtVnajjqNgbpvmKxvbkBXyAHSr9SW5\n8wveBc6346Hv1f25lR9paaKNzMS9BE8nLtS1SQJuc1MqGaWmO2xSm+45pTbi5MI2tPG1uqv1az9n\nWhrNsKQy/leizH6eMkBWC+xXmGNGpdHZytv65FaPNjR6DUMPDh14InEepUz3rjnef8nx3ism/g1u\nnpuZ5NRKEvd8Yjsg9nxumPG29wjZr4mjgCK0wKuN+LJ4qJvWxuktypSaBMXWhpsKAk3s+Fz0dvh6\n9gxkzWx0zvDJNSP7muHsGikEtedSeS6159KPIkbLFSw13jLDnWsGcxAe+DbYM4E7sxAzi2THRp+V\n6LCkdjSaGqvhl7TFEw+BLynNVKJTZika4EsBUqAbQovWwny1vjDA11jj9xNG3oI965zD6oT9+SXj\nF0uCb1LUm5o01USJJko1sayptxGBvsYNCmbBhqg4Z1v12eo+qfaQRY3Ia0RRU1aKuZow98cswjE3\nvSnXxS5XxQ557pBp13ROXrpGR7MIOmvWuluTP3L8GQNfzSq5dbwaug1DDNNr1xiqjzDaU58Dn1d4\nH27YnV4wteb4MkaK2ojlVSOuoxnLV1P0b52GwinM0/htH9I97osXdtWg4L4he9doHYhuqVgXPHs4\nGmr+bVD8MCvZjtYBu6Pl39U4Wp19b2kV3IlWd4/dBci6gW0L5bdNARrK0hQ4Ap6C+jTiuf97vhD/\nxN/x//DF6y8J/iFF/AYjjl+ANSxxPip5fJXi/83/SeFYLOSIy8M9Xn36WQM4CqP9FfUwsFL3c7fn\nkWGAmDmUPlzMDFAZCGrH5ko/4u8/C7na3eVr8ZwD65SxtURREWOM5g0TpswZuSvsTwo+CN7gPtao\nE5MQoQc8ge1f+rw4OMIqNNO/XCFewzCCv/oayq0pKXIOwfoC+Bmkn1rUW0FwUuAn8GEfjtdmP3sf\nrJ8DX8DicMQr6wknPOJms0t+6ZuHZrfq1a1QqsAjIyBBZSWsIVsZne5L8w2QYez3kw34S5BbcKuc\nz/kNz745YfD3EfKfMDpqsWFtOx9U2L+I+MX/8K8UBw4ra8h5f5/V0x3yrw2QyCsMsFgHnWvRpYW/\nL3X89493lQq1JY59DKNyxyAPYwVHCj5QyP0Ue7fC30nxdyOwBKVWVE1hizx14JVD/dox9SC2ZYKw\n1DElMrp1iFr9kO8Dvei81m5b0OthoNjNNHZnt86HBrAqDPgj3CYIbAI9tAkaS9tkT5V6hy/YCQi1\nvq9rgeiUGzR09lboXOvmJuwb4KvXR83Af7pg8FnG9LOIw8EFz65f8+zmFU9vXjOJlncfvYB13efU\n2+dsss/p0T5vo0NErMk2Lsv52LDq2oYbsv3uuvpClmF81Yb5VUWSbG5RnjmkgUIeauReTTG22e4G\n9NWasIgIi4igjLHtAssrUX6F5VWMRjdM9zTDJGNarXFdsAbmI8oBiDZfsgWxBWcLoW98zkBBIhWx\ndEiET0KfngLXKQn9jF7P0PVV0FR3hMBIUoYOme0RE5AW3n3GV1KjRIkd5jjTFK9M8OcxwVVMcJaw\nflmzeVlz8VKzuoQ81VgRDNbgLXN2n1wRqpjD/ikZHlZUYp1VWC9K1EpTHSuz1gPF3J/i9ksiq8fp\n8Ah6wjSGuZJm3SOb9d2yo7sBwfvg8acZ7XOgS3UOwe1B0INeD7EP6qMS9VmF9VlO4GwZqTkzecVM\nXRPpkE1tHOyN7qG+6aFfSAqvad5hNfdw0tqX1v60TD74tv3qouXdQLdri9rMcxcQffhz1z9qEHAt\nzBQNmKY7pUtaQNmUZeZ2E6W07K0H2xb4EvJuth0nWzqAbs+hmS3wNdAwBHeWMtxdsL93xuH+G56c\nveH46oTjszccv3mDyLWZhQmyxh8tmdg3THevmI12cSYZ5Y7NajEyHS2FNAyjbVvj1CZG2udFIzGh\nIygd9NKjOvWohU2c2lw8OyDxfC72dxiM1/R6W3qzLb1ii0uG9rSRsXVgJJeoHc1IRQSjK0aNlJto\n8idS3jEehDSgVn8F3hxGQ8NotafgtIyvypQMqcDgrnVsHjO6gDqH1cwiHwQk7ogbMWNRjW+BLyJx\np47iAL2G8SUzemXMOF6x2JZs1jXLRcV8bnLptQWWBZ4H4f6aw+0Jfh1zZL9lEG8Yvt0w+O2G3tfx\nPU2wZOxjHxXgacqBoPIE6rKkmlnEox70HfM8qy3Iu92a3wP3P83o+l5dkLsFvhpNaCuEwIWRBxMP\n9hUcSjiQZms/uBZXAk4VnDpGSNNy70CvbRecakDke5qT7wK+Hvpe3USa4n7SsQuKttsOaK4x3RTr\nHNLcPNRvkeHG5kSNVua26bwrO/YJDGBWFmZb141QlW22Ut2B/LU2dqxoknxlbpICesCtxpDdyA4d\nWfCxxH2SMZ1c83T6DX85+TVH4i3+MiVIU4IopZKKtdNn1eux9vqcqEeIsCbuBVz294xj42ljI0UX\n8OqyvlobZjd2zjWBk9Qkvs/lbBed16xVwMFoyiP7DeWOg/u8QiNIrYBUmTlZLeFG491k6Js1Tg8G\nvgG9RgKqqaSaWlQzh2TmwEgayUvb+MF1SxZuw9kW+MJcStEmAESnq+Q94ItbxhfvYHz5/ZSxv+BA\nnXFcv2ZvccH4xYrgX1LUb2vKXBspnhy2Tk1fx/SDkt7OBm96SVnZFJVNoR0qrSDTiMgwBLPK5Xy0\ny/loj/PhHqf1IVZekucO62xkwC6lTAIlamtg2w/annx37f/7xp8x8NWOlu3VYUuIMfQsU4b3F8Df\ngv3LlL1PXvOh80eeWS844JQhKxQ1EQFX7PLKO+brwYe83n3Gtj+9zfaTSTjvQTnljjHVvbn+LRex\nC4DJzu8PR9dJa0GHdzHD2mPW3DlrcWd/0dmnpXy2D9L2uPBtI9xFzj3upcSkMBo8O8Bj2Nm/4Ln4\nI5/xJX+9akCv/w34FSSvIctgNAXxR7DWmh1vzc9++RveiGNeOM94ffwB+sA34lpDAVHYec+W7Nla\niPYhsgR8SFz4pt/oNAjq2GJ5M+PXz3t8ffgxk8kVoYyQ1OTaYZmNSFOPD0YvcERO4dnMn37J0eFb\nRukKuyhIXZe5O+Gl+wEvrWPG1orhxysO42tUCP5T7khQj4Gfw+ZvPF4dHuEUOU//lzfYfXA+AmeJ\nObcD4HNYfNHjq+lz/lX8JX/gOcv5BP1WGiRrg1nCFVBKdK0osSix0FKakiXXlDcGlfkmWlU71Wlm\nqoXg0fyCwT/HyP8D+HuYvzT6tX0X+k9BbcH3Mj7+X3/Pq95jvpKf8PuDT8gPHdiR5jyuW8fL6VyH\n98HjjxvdALx1uhrgSzQog+yDHCL7CjWrkEcV6mlGeBDR31ndTmwohUUpDPgVByGR6hNLAIdaKurC\npY4k2rKNo6NbceeWw17x/dez65S1D6wfOh/Q9+uG9k7GXdeNdmKCxqJTc/Kt8+gEmmjuJwNap7JL\nb+8Et1IYqpPnQzhEjsDb3zJ4WjD7bM1B/5LHr094xtd8HP2BWTw38WdTKbmyBgR6iedvsCcxhJrk\nOmB5NcYaV4byH3OfZHsvQ9voC2kTQOrElHOV5xZYHpIa6ZQUQ8VW+vTdDT1nS6i39NjiyBxLlliq\nwqpLEstHDhT+nmBMReGXFANB0viXYqsRyxq5MltSjY5qZKLxYk067JF5I1ZqzKKckCsPGVh4Y5D7\nFTqAMhDoAHQo2U4HbPwBKzFimY7Zxj3SyKPcKFjXiLRG1BXSqlBeiSUrrKrESQucbYHYaKoNpGvY\nro1OWekCjsZ2K0ajNcPt2sjbuFAvQJ9D/RK4abKevmHjzsMpl2qXF/2nhMMI5ZToU4Hu22inXXfd\nlvPvGV8/3egGjq28hAeEJlj0Axj5MPKxDjOC4xz/eYT/WcSuuGS3umCvMtut7LOWA1ZqwFoOWOgp\nsoa6cskqiRY2OvfQG7jL2qfcUTFrvv+66gfbH2K/HoJf3WRjs49+V3ApobLNvPWr3lXG1NoE+WB2\nayAr7neVc0Fpo6XXyNe6o4z+aM1sfMXR+ITDqxOOkjccXb7h6I8nRh6ssV26BBWmOHsRARvC3pp4\nEHIz3sGbpkbNIpWGwWG1z/vWpra+YMsuiaG00VvQlxaUmjp3WNhDNn2fi9kML0zoizUDuWbgrfFE\nipDa6BbGMK3nhHbGeBwR9Tb4Wt71/rCab7kCWWlEDbLWiHmNXNa4S20KFQ4kyb4g3hfmq3NB+BoR\nYkqtGvUPkUO+N2bbn3Fj7XFa7HOV7LKOhqRrD71s/j9ovvbmMkutkZXpfkalKWtNpk0ldVgbInGl\nQQtNUEZYdcWADYVw8OIU7yrFe5nifZnfaoLJIWQ7Lonvsd0L2Hgh23FIPnLZDgZY/cp01y6VKZOT\nXWDj4Tpvr8378cPHw/u89b8aGyYbXVUxRPgeYmgjd2zkvkIdadSjHHVUYj2q7hrXNYet+5LSsahs\nRakUtWU3ou02eu01i6X1ASLuA/HfdR27vlfX/3loO94VE3btjWjY9W282savbXxXG0mfvLU3Tue4\nqjlG2+iirb6xuR+fdd+vlcppp9UcV5iEhh0g+iB3NeK4wn+SMAluOApPeO7+geP8JX6W4q0T/KuE\nSlis5YCNN2A9GGCTs7JHXAQHOIMMOajQQYV2apAPE7Wd7GV7LqUNsQeLHOqKbGAx3xuSLySrdY+4\n51O5FsITuLOKGklESKRDs3V7aFuiXI0TFNhugXA1wtG4NiT7DvmuTzxxiYc+aphgj2PsqcCa1RSq\nwRZdkK5A9wS6L9B9Sd0XpIOacqRhUqOiGj2WFENJ2lNozyZWPlntUmaW8e2LhgHmCEQItlcQ2AkD\ntWasFwziDcE8wTkpUF9raPoeZAVknqa/n+Etc0aJYFSCyI39FI1QYr2GegV6DYl2CdWCYLgmCI24\nfrZyWa4nONvcSI/kDdvR8jprpgvQ/pAque8ff6bAV/ux2+CxDZYafS+7B0fCsL3+Cpy/Sfjg09/z\nC/dX/Ixf8ym/45jXjFgiqYjoccoBX8vn/Nr9Gf98tOF38nOW5a4JZtbCIOKLMQad2HB302fNubTG\n54de0HcBXl1g61YIorPfdwFfrXEU3GUzH+7fdrRoDZN8sN9DgKwbFLevNQbMFXdSajsws685EGcc\n84rgRQb/AvwKXv03eJkbZ2G2gc9XplReHWmePT/h0fCEPXHOcH/Jcuwbsovf3hhdJlr7t9ZYxxhv\nzTHeUqTg94HxiTcCfSnIX/rk+x6b2RgZapAaXQjqtULXgt//LKR46nAjpry0P+Cx/YZxuMDWBanw\nuBYzXnPMJbscyDOsccHP/+6/cXB8ifOS2yWgD2F53OPL8Uf8xvpLXJWR/IXH0/0TBueJOU0FxR5c\n7k34XfAp/6/1S/6JL/jm5lO2fxwapttpc8y2ujMSJKXPmgFzJmRjl/BxhvwAHp9DujDQXx94PoTg\nCHgE2b6g76wIvk6Rv9XwL/DiD/CHCFYaRjF8GsGBC9Yj2P2LJY+evuXAOmMyuSaaTKgG0hxYCowA\n8EOw5v34941uVu5h8OiaLKFvGfq4D+5BRu9gQ+9gQ/9ww7C/YFLPGc0XjLdzhNLUlqRSispSLDZj\nbqwdrmczrtWMVDpkpSJLFNnSNVoTpWuYCWULPLV2pgt8f9d412sts+LhZ3sH8HUbQMGdnak7+3SZ\npg/XWTdo7KTH7gH8XWBMcI/RKixTEulI8AXKL/HclIG1YSpumBQ3BOsV4iIle1GzuTRJ0aow/mK8\nU1GOE7z9JbPKJhY9ruxdfC9BhhUEjlGOt5uU3bcYcG3WMQJWphxgU8C1se1lWZPGNptlD31hMoyb\neoBfJXhViu2VyLBChRUqqLkpd7nK9jjxbtjZu0baGu0JtCvRQmK7uWlR7mQ4vQzby7EGOdZ+jvWk\n4OrpDheH+1w6e1xs9tlR1+xOr9h5fsWuc0XtyttZeYpX02NeeU94lRzz5uyYm/mU9bZHVhj6el1o\nqkRRrG3ypU9eueSBQ75rUyqFXWkGhWY/0/SkZucQhoeGMcs+pruaBprW4MkJxOcQX0E5h3AAQWj6\nqYhKY/UKvF5C0NvS8zaUjk1h25TKNk0B27I03QW93gNfP250nwFdtldTIuSFMPbg0IJDweBow/74\nlAPnlP3ylHG0YLxcMFouGS2XJL5PHAZEQUgcBrxNH/HWf4S1X5PbNqWsqVJNtbCplADtGVRUt4mY\nLoj0Q+zXu17v2q8umNAFo75rDXXtV3uPd5OhDwPXB8HoPZDtYbDW+kANgC8bCkDzlSunwrUyQhkx\nYI2fR8htRjmviC5MNXlVNMSOCpJtiU5T3HLLCItQbfGsFOVWTXtqYUqWZPtMegi2tMHs1txTeQ2R\nCTS19IwYfQnV0iKfeiSiRFBTCbCVi3AkuALhSnLbx1KazAqYqx0Gag3SHFZLEEojVW2mVWP3C9yD\nDKfKcb0M7QjyQ4f8wCEfOaBBWjXKr5CDGpk1JZ6FRpSam8GEi3CXi3KXi6s9zi4OuTrbIT4L0afC\nmOT67qvOtMPK7nOpZrwJjsgnMfogpv9BghOlDB0YOOA3Ivv6eY3YKZC2wE5rdJKTJSVpXCNicGXT\ntbJs3uKgwkly/DImFBGuTLFVgbRqc40tGsbNd4GzP2Sdvx/3x0P/pAt6uYbibLfTxdqRuEc57pME\n90lFb7plONowCNYM6jWqrO+Zgq0bspoOWMkB6/6AtGeROYpcK7LENZmewjUNgQqv+a/2nu/GZn8K\nBHtYHtnaiof7dvcRmHu33a+tVmrtVRfcbhuJPQTVHui13pO4eAjy151jN/ZT6MacCKStsb0COyxw\n+jlDb84wX9GPN/TKGHeTUl7krC4qFheaWtXodY7exvRiGPlrBuWGUG3xJzHOJqAeaCoPKtmVDmnP\nrcv6kiamyRyIDG5QX0DRg0S5kA247hdYjqZwPDb2iFpIUu3dziu9ZKFnXFgHnEwvcewcKyyxxiXW\nXkmy7xLv+8R9n0h49IdLBk/mDLc3DK0baikobEFiSSxbUIwd8olDMbbJJw6Vn1GNU+rDDPFhRvzI\nJ3nkc/3Ip97t8Uo+4TLdZXs5oKwd6rcW9bVCbwUUmrJUZJVDrAO29Ehcj7xnU08UYtd0zO0nUKdG\nsi4MFJavKDxFZEvUskJdVqirCm5q0ojbmaiapEpx7CXTnqQaONywS8+NsAalwQSWEjwL1MNqtZ8O\nvP8zBb4EdzfdA30c2YOBNGV4z8H6ecbBZ6/4wvlH/kf+L/778h/45PprvBcFcl5DqdHDa54+PuH5\no2+Yude4KqPYt/ntX7sk10PTneKqAb/yPnedHpPmvbso848ZD8GwblkkfDflufPUfifoBXdAVtcY\ntuNhqWO7GFudsXaf5rtuqZU+0Nf02TBmwZQbONeIN1C8gD9m8CXmW9qtoD+HT18Dp+BeF0yGc4Zi\nRWhFLLtf623Q2t4w7WiD5u71b053u2OYX2vM9XolYCaoBo7pAC65kwjzIFoP+GrzORcf7PHN4Bl7\nXDAUKyxRkuKyZMxpdchWh3xgvSJTLtfhjA+ffcPO42u8OqUQFitryIl1xJfyM77iEyxRcuNMebr7\ngt3JFUEdUwnFSg04UUf8XnzCv/Bz/nn1Cy6/2kf/WsEfgRPMuYfN9ho2aZ9TDnjNMTePvqT/sw32\nW80og5+/gnprklTOY5C/AH4OF7MdpKqwliVcQnYGpwl8rQ1QNsGI7k+vwToHa14THsf0rC2BShCe\nvq9Vfo9V8378+NF1wB6wJmzH9IEfSBgK3MOU0eGc3cNLdg4v2BFX7ERX7Cyu2YmvkKpGO5LaEdSO\n5Jx93qhHhJNHyEnJWvfZxiF6EZD3fLR0zQNft8DXw3LrhwyJ7xoP9xPfsX14rFYIq2WnPgwMu2WU\n7wIpHjqHXeesBb5aO9yu18a2tfxxVzTJ3RrPSelbawN8ldcEmw3iIiF7WbE5haJqZMMqKIqS6iDG\ni1ZMS0hUn6G9xvNSVFg3XYKlAdeEenBecBc4Ng0G2vbPGkgVVQTp0kZf9ijeuESij13kOGWBXeSo\nQY2c1oiJRk5ret6WvmMYFYPBGiExDD+pqIVF4ESE9pawvyHUW/xRhL8X468T/HXE2eiIk+lj3rqP\nOdk+Zk9dcDM7Y2GP2Oz0TObaUlS2RWlZnKhHvFGPOYkf8zY+YnsTst0G5LkpQ69LqBKJ3jjkq/oO\n+HJsir6FXdQM0wo70RRA/wj6x+A+BvbuLpu4AZ1A8hbm5zC/gnQJ0xCmnumaJLTG2i1xrYRwsCH0\n12SuD7ZPrSS1bFg59cOs+Hvw68eN1ma1dquVVQiAvhGBHrtwYMEz6B9teTR+y6ful3xSfkV/sSY4\niQnexIQnMfnIJpu65FOHfOLSryKUV5PuuyxnA/JUkS8U+tSiUrYBvupul8d3Affw/cFj19l++Ht3\nfbTgeXfddO3bQ1vUBb6Kzr4PbWX33N4FZrSz1R2CO8aqNABVB/gKZMSQFX4RIaOUclESXxhGUl41\ncoca9LaENMErBRbQk1tcO8Vyy4ZU1hxfPmS5tZ+/ZYrIhgBSG3HsCigqdGlTrWz0qYXumWCzEpoM\ngbI9RM8y3S57iqg3JO8HLHozTvpP8J3k3rcj7RrplyivQrklXj+lt78l9Lb0pltqSxGNAuJRQDQK\nQYPtlVj9EistUGWNrGpEZbZLOeJK7XJd7HB1vcPifMLyfEx01qM+FU0zDG7xkMx2WPUGXMoZr4Mj\nvPEC52BJf1szrVJ838g/+U15JY8q5Exg2VAlJUlSESclSVJTxNDX0C9BZqC0Rq1K7DjDLxMCIjyR\nYavSAF82HVGf7wK+umvuPQD2w8f3+F7KA9cDzwXfxZpV+EcZvacxvY8jdntXHNrnHFgXHNTn2G2j\njOaQl86M0/EBZ719TvcPWLshUR2ik4B86aAj13RL1w34dRuPtT7Pu8q1efC31ia1dqvLYH3X6B7n\nYelymyBsp8UdM6eNB7vxZAtitfFh1048tIcPz98Cqe/I97bG8XL8IMYfxAy9BYP5isF8S28e4Vyn\nbC7KZmqwaoIoJ0ygl1WMJmsG/oaev+MkXYcAACAASURBVMXvR7jbHkXfJIxraaO/JQ3UPieaLpmV\nMn4wNpQOlWNRKAG5S7V0YKAoA5dNMOIy2AchyGubopn93obLwR7jwYLxcIHXT3BHGW6c48QZ6dAl\nngVEfZ9YBOwMzjk4fou2JP4spxSAUohG2DAJA+IwIA5MIsgdb3H2N7ibDc56SzwZkYxHxJMh0XDC\nq+1jrja7bDYDqrVD/VZS3xjgSxRQVYqsdom1z1aEJI5P0XOoJtIAX1ujU2htIVMC6StU4FD4Nltb\n4UQ59lmB84caTiBOYd3MxK2x7AS7L5nNSizH4pRH9NwIe1DCWBjJCU99D/D14/2wP1Pgqx1d4+Vz\n21JvjOng+EzjHSd87HzFL/kVf5f/Az97+Tucvy+N/tQ5xkeZVFgfVzz55TnOX/2KtO+xUGNudnd5\n+XxgGDmvgCu7Ab4C7tM84T/Goe4CYd3SyB+y/7uEx7/rIVl+xz4PGWHNfEDEsihQVNiUiCZpUGTG\nn2g12xNMl24yEDmIDGwKbEosUd5dytuv8V03R5ey+tBhLCCdwtnICLO/xmiEh9x172yZvSMgkhQ3\nPtfPjlge7WHt5NhhhFIVZeFQrH3KCwddShbPd1keDDkRRxxbr5lZN/gklFgsGXHGAV/zIV+nH6J0\nxYn/iMfyDRPnBp+UGsmaPufs85KnvLj5iPlvd6n/UcFvMMDXJXdautfAGazeTng9/oCvgo955Jww\n/jximi9NmdaLZl8feAL8Ndz8sseXg085EifAjanAqLhtJtWFPrsYgdA1ghqBNpmZ9uu/dx3eB4w/\n3ejcPN2so+0a4GuijMTXQcb4YMHB4QkfHL7gcHvG/uaCg/kFB6fnWLJC+4An0L7g5eCY3miLGpXk\nQwtVluiFNBpy/aaERTeMr3vNCt4Fpn9f8Njdvsv5/r4gtKsT9nCfd2W2v+u9u/u15991utqHbXPz\nC2VKHR3RML4qPCdloNZMpWF8+esV4jwlfVlRvDLNITNttugK54MEL9IMq4zM7jO0VneMr1C8I3js\nfq+N8WsBv6I2DM9UwsqmmjukFzZF3yPpSWStkVmNzGtkViGmGnEE4shs7Z0MbyfBHSS4swStFXVp\nUZU2dWnRd1aMnPntHJRrBvmKQbFmUKx5rZ/wQn/ISz7kxfZDDtRbFtMR650+kfIohU0hzcyFzdn6\niLP1IWfrI86XBxRzQbmVFLkAXaILSZUo6o0iXwkyzyX3HXLfphAWdlYyjDXDSIPWOI/AfgL2U0zX\n3LkBvZiDvoT4BBZncHoF2xVUrgG9+gKkrrFVgTtICeSWnrdGOJraVhTKaeKINnBsaCTvbdhPNFpg\nuqsn2jK+fBg32i3PBf3phsfDt3zu/Ja/Lf8Bb5lgvS6xvjSz3pfUR4rqUFLnCjWoyPoOi/6Qs2AX\nufDRpz5laJnakLoJHIWDKdXuSkb8UBDgu0Cv7vg+IL/7+8NjPQRZH77nu8bDDHg72oQqfIvx5YJy\ny3uMLy/fIrcZxaIkuoCsbpphatMXwNsU+KnAK2ssanoqwrOz+4yvb9mudwH3jRZZVhvHItWwralX\nAfqtonZNuZfZW6BQCLeGsW1ayo4drCnMd3ZwdzM8naGC6r4/4lZYskC5BZZVELobxt6C8WzBOF9Q\nSouVO2TlmAngVDlOmeNWOUqXqLpC6gqla9bxkPlmxnwz42YxIz33yc8cslMXfSqN39Uuaxuyvsu6\nuGN87Uwsdg5qemXCzAardzdVD1SvRvcKtFNRpYI01WRJzTLRbGPDGBYZuDF4tUauWsZXQkiMJ1Os\nlvHVhhTy4bPt+wCw9+OHj+/wvVTTySX0oO9izRL8o5zBszWTz+YcW694nn3N8+wbPkq/wa2ze4+U\nV+4xv+9/iOfGFI5Aqik6keQrn+iyeQ/dsr087oPk3Wqh77um35Vw/KGj63u1QFrrMz1MEnXZqO3/\ndksHHzLCHoJerf9lgahNXKEAJRC2xvZygjCi318x8heG8XW9of8ixn2bsrioWV1ozi81wq7ZS3LC\ntKKXZ4yzFf29DWF/iz+OcZMUBh7aU5TS6gBfXX3oFugroJIdPVmHuvbJM4dy4ZKdOmSDkM1wxMUg\nxxnmIAR1JalrSV1J/P2I3vGG3mRNb7ohEDF+GROUZps6HrEXELkBsQg5Hg6oLYm7kzN5vgIhqYR1\nO9d2n7U1ZG0NWFsDRsWcUTFnmNs4BcTulGt3j2tnlyt7jzfFEy6vdtle9infOugbATfCdKgtKsrS\nIq8bxpfokTj+LeNL7hrpYGWZ4qoSyANF7tvkvkdqKapYoE814ncl4quKuIBlAdcFJL2acS9hMisZ\nH0UEA8FULwi9CGtYmFLHfpfx5XSuw08XS/4ZA19NeuZbyL00wNcuqKOC2cEZz/iGT/Xv+Gj5R9y/\nL+F/h/qfIH9rMmPBBNQLsKKaWXDF51/8mjfiMV/3PuTig32Sg6ERcw8ErFqQzeV+zep/9PguLbB3\nje8qiYT7jC7400uoS4ltkKNaQyVuQfQMjwSfmADdE4iBxhvCdGOS+QlmOxWY3gM90D1I8czU7p3m\n/p/8iK3xTpvfW6ZIUwJZraDqQ96DG98EPw99ywGGVXUp0C8til2LYuyS9HsmM1EKU956LUDD+mzK\nv372Ba+Pn7A3PGfMEoecCsWGPlfpDvOzHbJXPYTQXDw5YrB3w8hf4ZChkcR1wGI9ZXsypPyji/5S\nwW8xlLhXQLQFXcM2gEsL3kD9B5uTR8f8i//X9ESEGtX87H/6NQfPrnHfVLfAlz6E88Mpvw7/gt/J\nT/BIeNo7hUmJuwN7l7DIjGb/CNiXYDeNAxlBogIiQhJ8dCrvSvN1u17a6/9+/DSj63x1xFWVDb4y\njK+ZwJnlDKYr9iYXPBm/5LB4y15+wd78kr1XF9iUt52vhA/6sCIOXTZewHKvTzm3yCY+0WCI6Fno\nwjYdbbJ3Ncx4GMz90PFd2cl3jW4Z4k8BQnwfUFZjHMz6we7iLvMoa5SosCiwdYGsDEWiTjU6Nc2O\nciDXIHKNXVaIusTSBTYFSpZIWRv9mntx4rvOqdVrbDrkVhgHLDVroN741EuXwlXg2cYGNU2IyDTs\nCNNyPBVQSNNemhLllKheSV0rqsymziyq1GboLxmH14y5YWLfMLKXDO0lI7FiJJa82TzhzeYJr5uZ\n9wwzq+hZ5H2LoklL5BiR06vlHpfbPa6u9pifTeEyh3VhukVRoDMHvZFwIynOHZJpyMoZce3OuAj3\ncGcFzn6Buy2xVUlxKMj3JXpHwASsrMReFVhVQZWVFIUmrTSp1iSY+DovBUUhsHJFXYKoapSuUMJM\nQYUQ78o6vwe9fprxEGzuanwFphVo39gucVTjhzFT54ZHvOXj+A+oRUHV6LZVX4HcgiqMfJWUcCVn\nnA4OGA2WhDtbmErKgUvuS6M9VdoG8Kq7dutdoOYPtWF/Ctz/t47ud/Pv/d92drUK+XZcqU0re42k\nRlILSa0EtRJU1l2z3BzTNFLZAtsSVFIikNRaoFutsnu3y3fdNy1jovEHbt3R5p/XujkfwwSsuqCd\nK0yjqakLE9d0wIv7TTdLYXDTjqqH8CrD3MpKrLKg562ZyjkTdcMknFMKi6UesSxGLIoxaHBFhkuO\nS4ZFiZQVCjOjus8yGrO6GbO6HFO/lXBew1UN89QA4440pZ6WJBu4LKdDzpM93CKmtGyjp7gPQ1ub\nRmW+MPlv3zDUlF0hVWU0g0RF7lTkQUXe1+SNrFBlYcrHHSNPUEpFiaLSRn5Da9HBIr6LPfN+/Ljx\n0H41+qrSNY1RAhsGNtYkJtxJmOwv2D8646h8w/H1C55u/sCH89/jtcBXc0g1Ssg8SAYWm4kHGygv\nHJLpADGy0OUd0GIaDXUlHVog6ocAmvo7fv5To21u1gW+uvO7wNXuObVgGX/idcmdNnBznu1zWQiE\nBGXVKKfE9nIjx0CGm2a46xznpkDeQHUN2SUIR6N7Fdagwh9DkCR4VYYtc5RfIoMa4dJh2z+UmuiC\nfI0eY9k8T7DQlabKoFpbcC3JBpbpOjnCaE5L7uLdSuDkAzx3hDtI8HYSAjsiYEuotgQqIsMjzgOS\nIiSOQpAC18oJRjn9SUKNpMSmaPSbV/WQZTViVY9Y1UOmzoDYD8llQC19rvQ+Z/UBZ3qf8+qAq2iP\n+XxMfBpQv5R36ksbjS40ZWKRJD6buM8yHbMUI5bhiNVsyCpZIfoa0dOIHkgtKKc+8SAg8n1yy6JX\nbdExqEWBuiyoSoOTZBXkhUZvSqykxi9yVB3hixRHFUhH3+pMGzX+bjLop/XB/oyBL7gPfjXBnCOM\nPtEQ7HHBjn3BI044Ss7o/yGFf4bsV/DmS3hVmZjiYAMfRjDogfdBycHRDY92T9iVl4RhRDIZmmO6\nwnhodVd8+b+iU/1vAcneBWi01KuS+92TGgCkDcjWwFKw1kPmTLhkl0+OX8GHID+GX2xhsLwDvg4/\nAD4B/QyWhx5X7DDXE6K4ZzqQRTSSaS2Y1W192tUEamjGpJ19i+YAa6DpRlh73C+XbDIV12NTtnqN\n6XbYGrigMXJt07tWx+taUpz4LB4fsNrdRQ6NkCEV1LGknkvqEwWvDciWHA1I93pcD2uEq0FDHQn0\nXBlNiVcCXmC6J74BNjHoK3OKsYJzy7y+I9hMJ3zpfY6aVGTS5cLb5YMnr5ge3eDojFLYLNSYV+qY\nL8VnxPjsc052+BXhZyniJTyLYfwStin0XBg9AesvzLW4PuhxZu1yzYzlamS6tG0xF+0W+Oo+YH/o\nuno/3j0eBo+dB7VStxpU9MAKC0I3YqwW7OkLhtk1ar0huUq5eqtxKkMSs5umB3VZ4vgx/cmSmb4i\nlQFbe4Dt5nflLKk0yYF30o+/jwXxU4z/iON2nbZ2tJ+htYNNa7OiYSrEmipSxKnPshxxqXfxnIjZ\nqMI/SnA/XuL2wK3B16aqpzy0qPZD4sGQjTXgrN5nkU+I44Bqo2CrTXvwomoE/Fvb1c3Slp2fW4eg\nOc/aNbSmonEYa9HIaTQOY26ZgNExwb/egr6B+q2AmYWulRE5LYC8pvAVSeBjhUN0KElVwFYOWKqI\nUEZcbfa4Wc2I1wF6Lch6Huv+ELtfUPUVpbYotUWFRVFbrK6HRNchxbWCqxLOcrhJIUlA56aDzxXw\nSlFLi8XhmFf5B7giY0MfX6X4owT/OMUdFhQjmyJ0KCoHtjAWcyaDOWMxx/dXCLek75TsuyWjdc3k\nUOE17KDswCOaBWzdHptswDbvk259itSmLrRhpOjm2nc7770PIn/icd+WCSkQdo3wQIQlyi6QZYXI\naqggu4F4aXI8cQLBBoIFBIGJN5VX4QxyvDwhJKKSNrnySFomDIAWhg1T/1f0u9rRgvv/lvHQjj1I\nOFaViTwiDUvIti6rdMR5uUePJ+wOLHaPaoLPYsLSNJZza9MIMtdQfOST7I9Yh0NSJpwWhyziMenS\nM+2hNzUkpencdttIqLVhXV0h2dkK7vyxjEaclDs2cdPRqxZG42jTdOusHWPPtgpulNFGvCWUaHA0\nda9G9ARl3yJzA7Z2ibAEpeVQodhWPaKqR1YF5hsXNiUFufCQokZSGUhQ1KRrn2TpUywUelHDaQ6X\nmen2o3PTPXHT6DvVHqnrs3AnOE5OZVmsizFXxT4n7mNmsxt0JdG5QCcSKkEwivCHMYEd4/kR1c6W\n+oMtQbIlCBL6jsBzBcIV5AOLzSc9ro+mnIZHvNbHXBY7rNMBxcaBtTaiuHnDrLun9fseDPtpRyfx\nqCxwlekQPASnnzPw1+zalxyL1+zGp4SXc+qXMeuXNWkbgjTxfX6Y4T5ZMbPOeTJ2EZag8Dw24RhG\nDe0ylabT9h2tj/88G9YFpvSDv3X36dqgdyUUvi+h1H29yw7T5r4WGGmhUlBUNlnlEtchkQjJPI9i\naKN3BSqFsIJZBjoG6cB0DOEMrD3QU0kVWhTKJct9ssSnzG3qUqL1w8/Zzm5pZ2urmgRFnUOZQtY0\n70CZpGQuIZI0OhLGjtWSuqooC41YWXAWmIbdWpOjiTUUyiNT4e28cXfw3JzKtdl4Q7QWVDRdqrUi\nSkOitGe2ScjKH3Pj73DmmZLOeTFmXkxYFGPm+YTV6yHRm4D8tYS3hTnlRJimu5UmW9hsLnvIsxn0\nBH5SYLsV7EsiP0BFFTKqUJGR2og+9NnuB0RBQCklu+EVTCXeoxwvSgkyGGUgUkhDQTi2EQOHuGez\n9QZs04C0dKgTafzgVJs6+7pN9pbfXg8/cvyZA19wTxNGqHuVj9Kr6QmjgdDP18hT4A0kF/B1CV9h\nLsmmMk7Y4A2It+Auc4a7K/pijWcnJiPlN8eVEuou0+w/g+31nz26gFf7ewsuJWZhrzGiUZdwnu3x\nWh3zjXjGsw9e8PiXV4i1KZn/5MTEnGoA6mPgb6H+QvCV9THf8Iy39RHR6cSU+q0wjt0tM6IVU+yC\nLW0AqblPYW3Rqlb43ucuo9PVp7KNNY0n8LoHZ5bJ3LXtrOHONjZ6YNwAJwK9r6jGiirkrhIhvfse\nuGj+f0+gx4oqVHfHTJrTumr2O2t+zmLQl80BFGgX5g68sKEP2lPcsM8/fmGzmI15pZ5wpN4yUTd4\nZOQ4LBnxliO+5kPGLNjliqezl3z+898TrDPsAGaPYRqDCEE8BfHfQfl38E3vKV+L57zhmPhsjD6T\nsMCAX3XafMCUOwP23un6caN1FLpU8Qb4kspknRvgyw4KQidiLA3wFWQ36E1Ecp0Rv61xc6OF71um\nlXJtFdjTmN6jFbP6mq0cMrdmOE6O8LUBvuymnEUo0A9LWv4jQa/u+Kneoz3Ouxy19kHbBI91o/Kc\n1hAZwDpJfVbFkKt6F9+L8EYJk6MlbmTRH5vdy8oIRMc7Fsu9kGgwYWXtcF7ts8jHxElAtVV3D/yi\nMgbvXtDYdb66W7hlUmi3YbQ0Gka16NQoaxOcrT3QPiQe+sZC9xR1z0L3LLQW6EqYt64qSl+SBD46\nkOShR2QPWFkZbjPX6wGr1YhkGcAKsp7Luj+i6ivifkCtJbVWVLXZxguPZOGRLxUsKljmsEwgiUCn\nJli7VmA51IXNMh/zSnxA6nqce/uEKiIcbwm9CDfLSKVPogLSKoBIcMwrjvsvOe4rdicFws3o2QLX\nranXGu+RxD2yqI9s4l2P2AmJnB7bvE+0HlBEFkVmGcyxbr77b4Fe74PGn350AHwF0tFIv0L2alRd\nIrMSEdWwNcDXagXzDSxiGG1gsjBVjIEENaiwZzl+A3zlwiORBcqqGp33BiCpHrIN/quMH7u22sAT\n7gNfpTFCaW3sjAPZxmWVDLko9rDJEP2K8Chmp5gT+OBWpsSurExDt/mHAZu9CTe9A645aICvEena\nM/7NugW+2u5t3YClGzi2bLSHoFer09AmGzvnXkvIGlpy5UPqwtaBm0bT0pZ3LCet0UqgPUnlCbRn\nk7uCrQOl65A4IbWWZIV7OzWCQlRYLfNT1EihEdQIoSlii2zrUGyVcfaXKSwi2G5BbyEPYTMw6yt1\nSR2PpTuhthWR6nHl7fLW3dD31vQHa/RSUccKvZSwloyKOWN7zmg4ZxQs6O1c0U+u6IuScJrg+ALH\nEwhfUvRstgchN/tT3oaHvNHHzMsZm2RAvrWNXx3rppS0a7+6gWO7Vt7bsn//6CYeLZN0dKUxRENx\nC3zt2Jc8Fq+ZxacElwv0NwmbX2tU2hBaMNtineHaKybjC2RtwI+1O+aylyCGQCRg08gt3CvD+8+0\nXw/Z9u9ij4nv2Hb30d/z+juAr+a+Np0toa4kZWWR1R6irohlQOq5lCObek9i5UaHWMfgrA1Brj+G\ncApqD+qpMMCXdMgynyz1qHKLqlLN2z9ks3V9wdZ2xXev1RmUCeA1CUgbcgVxA4bS+MpaglbUsaRc\nS/SFTf3CpZSQa41Va2ytqWyf0g4pnJDSDrnp7VD3LLb9IZf9A9PtU8vbma8dspVLtjbTHzRJwkGC\nN0yIkrABx0KiOCQ5d4nPPYpzCZeFYc7mAgrjv2cLm811n+rcouh52KIGDwrfZr3Xw84K7KzAyguk\n1kS7gZlhYFQhAok/zRkfrbFyCCIgMqXamStgbCOGHnHos/QGRDIgq1yquCVNvCsBXPFT2qz3wBfw\nLQeosWlCaRQlkhpLV7fJ/7q8H84nGMmV2xbIZY1FgUWF0T369lu8833/fznaBdsCXylQw0rChYBX\nsHqxx9efPec36nMm1hz/f/6/mXlbxCOwT5t/HQLPoP6F4LdPnvHPfMGXfMar+gn6awVvMQysteaO\ncpRy/4bpnkvX+LYgWJtltLkVkb59uNHs73DLDKv/P/be7EmS5Djz/Jn5GeFx5p1194km2MCQHA6H\nszsrsvuyf/bK7sPKHEsSBEGAQJ91ZlZekXH7bbYP5pZh6ZVVALqr2V2HiphEVaaHR6S7uZnqp59+\n2oe8Z1r5ziI2m5HCUCcqEKEpbz3GlAb2Mb6dBb5yDDNshgHANFflnFdScPY4i8nNML1kVaNizwSD\nNjWIbdGF5wPD/tGgC4/5bId//dmYR/c/ZGtwxsib4lNR4TOnz9lsj9XzEbduPWGrP2HHOyf6NOfT\n7kM69wrkYzZA3l0ofgm/2/8Z/+D9R/6Vz/nD8lPybyN4Ioz23SUN8JWyKXGwaa73rK/vZm2ApuV8\nSYfx1Qe/WzmMr+d4+ZT5vGJxXrF4polTk6CsGtxKJRXBnTX91YwdHTOVWyT+kjAqNtXZvjBO3jVx\n0pt0RH5o1tfrOr/7Xdvf31L7KwNGVdcZX2neYVqOiNUenWDNeDSjvtMlEh79fVClWQZ0BdOBz/yg\nx3qwxUlwi+PykMtyzCq1jC82G75uZ7ns3+syca0j1iwMqtFdU01JhBMIgjaBo0pgXcJEQRCj/Ajh\n02SRBVqpq/dUDeOr6MasuhoZ1XihwgtrZFhTzkLKy5BiGsAl5L34CvS67G+b0yhxNeqFoFqYVxYV\nFAUUKRQr0CuTGT2LIK/Rc8klY7I45mRwQHe0ph/M6I9m9HfnxHLNcjlguRqyXA6gEPxl7zcUfY+o\ntyaRU6JI0A81YVTiL2qqOx713YDqTsh6q8Mq67LM+yyzActZH73SqAxUpQ3byzK+bgwa39vrMXcN\n2zC+vE6N1yvxUlM+LBYaziGfwHwKp0s4TiFfbEAvFHg7NeGyoFNk9FiSiYSVV2y0j2peIfr9U7Hv\ns765a5kDHNG0ls0b4EtqsmXMLBsSVAdUWtLtp+zenkAnpntg3mLXL1UJFvsd0r1tTpLbPNQfNMDX\nFtkshgvdAF/1DYyv9hpmv6cFvTI2XdWtdqTHtedOeWb9qrqQ5uB3TDtEO6THtdI+4aH8AOEHaC8g\nDwOqTkga9fDi2sTQuYfKPepcghaIpuRcCI2QOH67RhdQZ1DnoDMFeQ7FAopLUFMohibRkEUw1aR+\nhzrwWHp9zuQe4W5GtJMRDjLCnQyV+ujCR134cCTZD47ZHx5xoI/Z7xxxZ9cnliXd/oK9e6AT0F2J\nTjyKxGfR6XHe2eZZ9zaP03usyx7rtNcwvjBlKFeMr3YC5bvOrfd23drAl8P4Gr3I+Oqnp3gnM9TX\na+a/VogVVyoqAqiqnGg8Y/uOZqhS1v6A0/iQTm+NGGlYCNPtzrfaiG7S8d/DbgK52v9+md/3Kn/w\nJhANrpUWojaYmwZdCaraJ6sjlNKsRELWiSmHProW+BUkKUQLGDZhUTCGYMcAX3pHUvs+pTSMryLr\noApM4u9G4Mv1vUqur7FN0rEMoQ6hiIwUyCow0iMyAOE3SWIftI++iKiOI+rYp4xjJAKpQCqN0Bod\ndtBxgop6qDihGscst4acbOWEW0WDBRrWslaC+kKizjzqc/Pq7dZ4exX+bo23U1MtfcqlT7XyqRY+\n9QSqC6gnwGXVJEmb83mCYuJTn/ZIxwnL7hC9JSm3fNZbHS4HQ0KVE9U5kcpNKXicsIq7rOMuQmni\nbsHW9ozqdoivDSkomkN/DoUvWI8DVoMOq16faTxg6XXJq5A6tZUP2gAq14Cv9j7y/UCw98CXa3Z+\nN76CLgUFESkdMr9jAIkRBD3YnRj8oQR2gUHAleaR6nhkdMiJqJV/TdoA5TrSbub+bTa7YGQYlGcJ\nF0N4JuAh6N96/H7/MwY7MwJRUoY+n//db7n3+RO6pwpRmc3/dH/AV/7H/Iv3C/4nf8dv6s85++1d\nQ717SiPwrjG7v4UlrQPWFuC3rDSX/WVb8lo2nuA620uw6ca54kqkQccYsVy3JLIBeXQX1kNIB/A8\n3DAKrW9nk6O6NikKrWGeGEbNC8kQDTo3WUbmzbW8bF5ttnRiPmAZwMOuQfLXwLmkfiyZ3tllvruN\nGGhD2lGglwJ1JqEQPP3lff7l0yVRnFP6AZO7Y+7desxOfk5UlORxwHmwy0P/Pr8Vn/MP4m/4J/6a\nyy8P0V94pvTyFON8McN8+NUf2bre7+272UsCtWuxnDBOvDAqLh6mAQFaobQ2Gi6q2c6V2ft0paHZ\nfBvlFyTafFpzzqs05U8uYPyu1l5/b8pAKvN8VrZcqKZeeGTziPm8jz/bIQ4yxnLO9mDODnPk2N8s\nKSXM4xGT4SEn3m2epXc5nt9iMttiPetST6UJHNc1FJWJOF9gTLRZR3b/sIGmj9EucrsqOcfX2Yb1\ncRV0VugrIM3NbCqjJdPxKDsedD0IfbP0hRg5gLmGmYZpDbM1VSKoepAlIfTCF/xW1lUzakhLDNJn\nxwqyRuspj9HrmLQXkPYiSLaQkaaXzOj3zIijlGU+ZDEfspgM0akgUindeEkvmBF1U3rba/rFih5r\nwlVBehCz3otIt2LOkl1Oi12m6xGrSZ/iOIZJCcsSyhJ0xouslffA1+uxdtDkThKB0Bpqhag1ujYB\nTqECUhWTCUEWKPJYUfQURQJlR1BFgsoXVLJRZVISVXmoWqKVvOG2tVkvb8t9bbMu7M8atkShjX8k\noVwELBZ9xKKmXHhsVTN2w0v2xywr4gAAIABJREFURlMu4imi1lc+q6oFF8kdTqK7PCvv83j6gLPL\nPeaXfYqLwADpiwrSomF8WcFVt1y7fa1tUkGy6QZndSNbGkLaa+hnNnnmlEFeNVhxz++BiNAiRAuF\nCjyqGIil0cBUbDqP5LV5ywt63GKz59W1SUhUTbk7C4z/NQMum000NOAcXaquR9UJjIaA6CPyGqkq\npFcj4xo19VHnPurYh2eCeS9hMeqw2u2wXkcIJGECPalIRpKy61F2JVXiMYv6HNeHnNQHnC73Ob/c\noZwEVLOQaqFh3dyDukEuXwgc37Y5/2ObZUlIo0vkCwiMblvgFXSkAeE71RqdFuh5TX2OAb5wUplT\nhb8q8AtTQtcRa0IvN2zVEAhE063TnaQ/hv/1qnnzst/9ue95CfCkK9AluqoNwWrpo6Yx617CvBpw\nGW1xNt4lrjPEWiMzhcxN0iM/kKR7HvWW5Ky3w2UxYpX3yOcx1YVvmJyZBYuvBexcj9fbRIoSdGHi\nP9XIJZUWyA+cYf2yAC0qtNRNEsY3QZhNOiqMnxUDsTZMq62A1XYI0x7MmnvulnafAacazrSJvaYY\njemFuAq3rYYXS4y26ryERePzuAufL6nmAdV5QN4LyAKBX5VoX1P0AhYyIZI5cZARkeOJilR0Wasu\nadrBq2qGYsW4N2frYEbXz2GuETONmGsqGbDcGXLZGzEJRhypQ87zbZbLHuWl35TN15BVUN/EHn49\nftg7DnzZANxupMWGwrWEculzwRbn7HAZjdD3QHwCvcfwixWML8y7dmI4uA98CupDWO52eM4B5+yw\nKjpmf1zSNLWxn9lGMd9Gs0GVBZhsDfQEsoFhaX0FjCHrj/jH//IfqUceUzHiSXCX24MjdnoXeNSs\nRZcTuce3fMDv+Yxfqb/mmy9/jv5HD36P0do6UWyU+izjywW99A3/tt+tzfxwNdgsoCW5WY+i3aHT\nLpISs4LNDABWd6COG3Fwu9jYuWfPp0F1ueoWc9Wq2D78ORtBs7VzTXOud7urYX0ID/uGTXGOAaX2\nJGooDaPMVhSkmHKFBFQe8oX8S4qPI6bxiIfefe57j9kKJkRkFISci12ecocv+ITf8Eue/u5Dyl9F\n8G/C6I49BSpLTbPf0c759w7X97ebAJCq0XFRptx3pimGIfO0z1m9yxPu0O3EqO0V0Z0VO5+siHNF\n1zOxQMeD5Sch+WGP6WCLY3mL83qXeTkgyyIz5a5KKNraIW2H+k29xzcx6pqhhclCZQYcV7OA/NRn\n+TiBHnhzjY+m0DGXnTHDeIaoQSiNqDUL2eO5d8DzxT7H2QFnF7tMnoxZH3WoT2mAl8KwCVTGhjVx\nU+Do3ne4nrFxhVlvysxalljUGu55tWFZVB7kzfkKYXRGfGGc8LUyDLWquf+1gFwaZ043YIPSG8A+\nb0C92q7Hbs/eDNTSNE4QwjQIOQuMWHAVoiceVdcn63SQHUUZRqwXCfkyMmy5SjCdj3iS3sMvK+bj\nId0spROkdMcpQa8iT0IyHZEtIqarEd88/5iTkwPS5x14puFJCZdpo9NhEwk2edIud3xv381cwMkF\nbgsgg8JHLTVcSDgKyGSHhe4z6Y05CXcp6yVS54z8jKCTMxxJulsebHmsx5LFnR7TrREX3i6nqwPm\n6xGrdUKZhuZWFg3a/wIT5m0BBFzmrdMVjYZxUEtTzlIIqqVPfhGzOuqjx5Jn+g5BpcjKhLNq3zTc\naEgl2hM8Sw85Sg95dn6Lk/qA2dcDVk86FCcCJgWsCshyo3WDBY5d4P6m/aG15lwDw3COs+uZ/X3B\nxj+yTaLcczasGG31Dr1Nsw8tGrdfG/X+Nu7v0nDsdqAavRlbAs2S6079qvkejc+YBzANTBvZyoe5\nQJ+BeiJgK0A9F+hjjED+OWRJwDwe4HsVdeFTiQ5zMeZE3mJbXFBnkqqW1JlkLTt8vf6IJ6sHzFZj\nyouQ+kuoj0v0smxArxWo1CRJr8l9vO3xxr+3OfNXqaYbhIbMMArzMmZZJ0wZof2COFFEo4J4H+TK\nnMFOs3zLJ+3HZFGfVIyYqwFp1aUsArNF5trM2brNQH6T16u22QfOZbHZB9MSJ1ZQSvQM6iMBX/qs\nsx4n4QFfRh8TdEqOdg4I65woMl0VtS/I70RkBzF5P+KpuMNXq484nexSXITwSMHzEuZ5A7bYiiHb\nLa19zdu+l+ODXwHxOdcbQLlJyTXoFahGs5ACdNok3FLj/5WNKJbOYN4sxFYzDK77VjNlEpDrxh9b\nS7g0ZZVk0jCoroYyrP/cJinsetsM5cE6hvMOeB10GVBMfVbnCfK4ptwKCGRJIEoCWeLJmjyIyMOI\nIojwvJrHRYonaopRyGlnF29dI9dGE6zCY7K3xaQzZpKPOZ3s8/j0PhfHO+RPY3iq4byGRQGlrRhy\nfeHXA369w8CXDRYsAGJFQDF+7xmUJyHPLw95PL7HV8GH3LnzjHv/6QSRQa8HnzZleGIM8mfA38Pi\ns4Qvko/4lgc8Xd9mdjwyiOwUcw+vwAsXwXzbSr8859U+/GCudYZhKQ3gZBu+ko2clmBVbfPf/8N/\n5fjeIV+JjzgQJwy8OR41GREX7PBM3+Jh9SEX/3Ib9WsPfoUBvh7rhs1wwYYNZTd9e6/bZkFI6yha\nUOxVlN2Aa3plV40RvNaxlpvbab6LddLcxVA557KAmmajc+Ge011Y89bInN9x/T3VLjwfwyQwQKNb\nRumxiYOXwB5QC5QK+Xb5GZc/3+bb/gccimOGYoZPRUHInAHHHPJocp/1F2PUr334F2G6TH4LFCVN\n2oFNcOuyWN7bd7OXgR927Wpap6wUzKBchiyyAWfVDk/EHbZjn97WBb3bit58TVQbrXM7xP2A7LDH\ntL/NsTjkTO0wLwbkaYReCrNxFs3mqm/SoHob7KYyKNE8qg2AowrUTJKfeoh+QhlGVOuQYhAxHYx4\n2r9FEq0wPdM0QiuyssPlesx0OeZyPWb+vM/qacL6uAG+LivIGodE2ee6zfpq33t3DrQpC242WLAB\nKi3IHrQG18+vPANEaR9q32SbbcbZE0Z8NG/KP6kMSFY0Ohalt3HKaBy0shG+vqKvW1ZI83cq39Tc\nakwQcd4kCuYCfeRRRT55FKMiie/XFHlImUfUmQdCMEtHPK3ukhHzXB0QkRMFGdE4xxdm3Sp0RLEM\nWacJp8/2OHuyT/qkC88UnFjgy6ZHbwK+3geN39/ac9gCGRm6jFBLCRMPfeyR9Tssoj6T/piTaIdI\n+njeglGs2OrlhGNJuO3DdsB622fR6zHtj7jwdjhb7ZOuu2RphzINGtUDC3y52fva+S72+72J5paN\nWvDb6V5pga9KQAF1A3zpI0mZhBxJTa67XOg9HvKBwzowp7lcjZiuhkyXI6bLAem3EenTkPJEwGUD\n2Oc5VHbtugn4cgMW6x8pNsk9u465CQic39t1o7123QB8aVtiFEDtQSk3JT0aMxdqtQkg24zma6S5\nBvi62vNssnGNmVjWzxXmO2YdmEYmybmK0ec+JB4kPirx0TPQM42emSRVHofM/QG1NkH8PBlzkhzy\nsDun11mhUoHKBDWSog44m+xydrHHbLJFeRqiHpWo5wV6URqtId0AXy8w79zr/6bO85+S2TltmPRU\nygBUKdSZR1ZGLOseUz0iCFLCbkE0WjPYE/jrzVkEMN/ySHsd0qjPlLEBvsoOZR6g7a28Wrvc8bbY\nTUlHN1m3Ab50KdGzAHUUQuKzLnqc7B4Q7hZkw4id3hlJuCYZrkgOVigpWIz7LEZ9lr0+p+keT1f3\nODvZoXgcwmMFJwUsMqjWXAe+XgXe2zXLBlI28dhqOtVej3XTCdSWd+vKgNS6eV5VtEkg1KnxwUof\nVh5MG3arpnnVRlvRMuqrymiL4ZsGIAvfJGyLZpSqkZkoTO025fXvrH1Y9Uz5einRC4/8PGD5PKEa\n+6TDBE/WeF6NL2uEr6g6PlUnoOr4eN0ar1tTdQMWoz5H4SF+URLkFX5RUSvJJNrmItpmkm8zyba5\nONtmcrxD9jQ2SchZbZho1VVbcm72hb+7vcPAF2xALwsmLM2EO48NZfCxZPVszBfjTzkUx4wHl4T/\nOeegN0U8AO+4efsY+BiWv4j5/e0P+bX4Jb/nM06Wt+Hb0AAOZ5iJScp1FPNtWrysWSApwHhOHQza\nstWMPfPaaZyQM+DXwEpSX8R8+/HPeXTvI3o7U3rdBb6oyXXEdDKiOBmivhbwpYR/w4BeXwPn9kQT\nbmZ82Xt9k1kAzP3uNx0rnGPdUkhXB8w1S+O3YFebGQbXAS37Pe1xbubDBUldEMldEAQmYLPnbRBz\nPYN8DCcDOAlM4Gr9NPvxGnPpKiAV6DOPyyd7zO7t8m+7JeFohfRqqiKgWiSoUw/9WBrG3lfC3Idv\ngEsN6gRDMZuxAb3sh8CLAN17+/PMcbhcEeO62jC+plAsAhZZn7Nql6fiLroD4ZYiup2yWwnTa6Pp\nxO1FIPZCsoM+l/1tjkXD+LoCvmiAL91ifLXBr7fBoW4DXw0gUykD3BQlSvpkJ75hH2nJMhtyeWeL\np53bxN01wbBASoUnFVIqqkVAmiWkiy7ZcUL+NKB6IqiOJfUZMGuo3UZIhk3QctP1da+zfe7hZufR\nDpdZ6gTEVw6Ztea8qnG26saBEvL6UJVTTlOa4DJv3iOtc+YEWaoRO7tWfuPMH1uSVivjvNW1oesf\nBxBGVL6PCiSFHyE8UEqaoU0DkGk5IqXDqb9P5Gf4/YKgX+D3C7yoplqGVKuAahFSTELypzHZNzH5\nN42ztSxh2QhHXQH2L2OuvLfvZ/Y62s2nAb4KgV5G6AuJOA7IVJfFbsP42t1lO4JRrBj2c0ZjqLYk\n1Y5PtROw3olY1D2masRFvcPp6oB67VOnntEOyaARnnsF4+tNtpeBXi7jSxjGl4Bq6aMvDOiV+l3S\nIOHM2yPyciKvMFqkcOWuFFlAeR5SnAYUpwH1U039TFGdaMP4Us3apdqMr5cxVl1kyfrA14q/uLb+\nXoFe1t9y1zBbGmmt+b1u/nbVAF+VNK9W+1A3gIV7DYX7vZzvpys2un+2/MaW4tjvWZm/PU+gTmBV\nwbkCP0b7EdoXCN9HlzYAraFW5F5ApQesij7+ShHulAQ7FcFOiR9UTa8T03FXpZLsKCI/ismOGoHq\niwp9UaGXa6iXBvjS1v9tlzu+6fP8p2ItAOSK8UXD+PLJy5iV6jFlTOKvGHTXhKOA4Z4gyK6frdj2\noReThX0uhQG+1lWXMg9Mx72sYXwpF0B+2/ajNtUSNr5uc2FZQSVRsy7iyEfhsy4STvQB2TDiNN5h\nNJoyHE4ZljNG5ZQaj0m4xSTYYhJuM8tGLFZDFidDiq9DeKLgrID5GipbG2iraNqVDe56YX2vFmvK\n0a18MUbcaH1twHkb0zXxnIqMD1inIDpQOJphXsC1e6914zcWJrFYF7AKDet0HoIfOoxVO5rkam19\nTDdBEhjmWClhFqJPI4qeT93vkfYSvASErxGeNq+BRvUFui9RfYE3rikPAxZJn9PxDoOtGaEqCFVO\nqAp0KbnIdrjIdrlId5hdjChOI/LnEcWTCJ7VkNUmAfxSxtf3n/vvMPBlN2QLIjRZnHoNkxiOgG8E\n2Z2EL7Y+p3drSSRy8n7Ez//ud9z95TP6Z4YhVvQlJ9sjvpA/45/E3/D/8Z/43fKXnH95CF8KU2J2\nhqEYsuTFDcnNOL7ptqllNq8xBvQaYBDCW8AO7Eq4J+ABZhwCB8BAoHNB/YeY2T8dMAv2DdxUAlMB\n58IIxX+LKW98inEurtoiWs0rC7i8jO31MnNBMNdcQOxlZZE3vccuehbIaoNkFrxwF9WXiVaqG453\nwVP3d67+zxKYgu4BEVQxVCGbjGtpvt/zYdP9DXMpH0vUHrArSZPI/AkFJia8EOaYp5j5/RAjTKjs\nfZhwvczxPdvr9dhNGafGCa9Lk/1Z1BApiknA/NI0LgjnGbqSyMgj3JYkGgJZQgQ6FBDBSXKbk/iQ\n0/KAs8t9Li/HrGZdioUPq9qcu2iYZTc61G+yE+Y6K/YZtZm5GGTHaLYEnvlxXyFj8KXGVxJfKZQQ\n5EFI1RGIXhclJcozo6oCSh1TLiPK0wh1jHG2LktY5JDaZ8UFvV4VOFp71TV32V822JcvGS3TjXN2\npRvWPt4CFs2zbZlhtT2+/X2r1nDnMFyVR6IM6FXqBsM3TrDyJEo6rDOhGoZGCbEgiyVZlBgBTg3e\nVoW3VSPrChEr1NSnboY+k4Yh/FQZttfzHMq1EdqvrO6YWz7+toAjPwVrr102oFmbUo6Zhz4N0F2P\nVHeYBiNO+gf0mZPFXYphD6V7+GFCNgpJRxHpOCIdRRwvDjmb7zFdjFnN+kbzZKaaktzWfH2rQC+4\nDnxZ/8vStjrgR9ANIJHQ1XiDmrBTEHglYV2YQEZqKuFTS4/K8ymDgCr0KaPAgMypRE2k6dx8lsMk\nb9YuC3a5LPRXsVXhj69hL2HeXgPD3ODStRYwZjuqIQ3r7VriqAW66ZcAX1frZzvpUzuf38znqjTz\nLbPHb+acvpasUiBqqouAyvPJVWCSB2sBWQNSZmKDr+XaLEvP9GaclLDOYZVCtgRl2aouY8XdR97b\n97O2/9VcX9Ww7dcK5ppyHrBa9Jgst3m+OsRXNUFH09mu6d8tCYrrMcZ8b5dJb59TecBxepvz1S6L\nxYB8EaFtt/rMrmOvl/3y07D2c90qD5SekVGQGkINnjY4tdIoJclEhPR7VJEg7wWsiVnRZUlCVfuc\nFztmrHdZXSZU5wHViU9l9/95BusGOL6W9Lppn7hpDXN9rTZ43/adnKSjtpU/znqiyybgbdbSyhIh\nrG5Yez0trg8VQmmbhYS8uF65Oowt4IvAMPbL5voLSb30qWeeaf8ee9fzKiHQlzAQ0JfImUJrRRYG\nLLoJnXibkIKInFAUUAsuV9tcTre5nG2xet6DI9WUfddw2QB+KjWvLyRR3jO+voc1gT4Vm2jeaixN\nIR/AY9/gNEPBIhnwj+HfUuyEnIsdvvU+4Fb3iNH9GZKaNV1OxD4PecDv+Dm/Wf2Sx198CL8W8AUG\nGJip5vyXzatFk1sb4Rtt7nTy2LQv7GKYXvvADhxI+JmAz9iMDzT9O6eM4imhyFH4LHSPyek26lFi\nmEVfY4TsH2IIRc+bzYAjTInjKQa1SXkxyPq+oIsFxG5ihNmfv4z15bHJDN50DLyYTbgpIG0DX3Dd\noWlnIyw9eI25B5dsSi5dB6/G3KsMJnumVfipgMfADmZR67KJny0b+AJzH84wFHvOMffgAsP2mjcH\nWwAS3rO9Xpe5jlezkVW5ERiemex0kQTMBwNOk31ULMmChHk55jQ64PHeXTyp0J5AeQLtS47UIY9m\n93h8eY+J2mb5VUL2LKC6UOh1o39UZmw0qP6YgPGbYG45jetwhZhJPwBG4PdgFMPYDH8HBrspg701\n/b013f2UYK8g2Mrx44La81jKHgvZYyl6pCpB5RX1KjBVwFMFq9yALarpEsuCTTOIl2kQ/bnWDjbt\nvHGdtJtAdhvoWQ+nfbz9vRsMuhpj7c90j3Hni7XcOd7+3Q2DgkUDjImGGSYbZkbDPiukKQE4bgRm\n5x66r1F9DX2JCCVqKdErDcvKiPKflKaV96KEIoN6BmqOoTZa0Mtle71NQcaPZe2g0dXLXBo9kqkH\nRyFUkBZdzstdwjqnVD7HasawXDAUCwa9OaUXkJcBxSygyAO+vviYZxd3WJwPzBb0bQmnhRH8vmqf\nbJ8vt8zxTb6n7vrlrl0xkIDoA0PoJXAQw74PB5DsLNnamTDenrC1PcEPSnyvxvcqPK9m3h0wS4bM\nugPmnSF5FFHIiLyOKfPQiLzXRbMX2JK/9p7wfUuE2/fFMsVs4tHOozZYZRN6dt1qMzHc97oJTPfV\ntbbfVbd+5uqSuUlIO7+dsiZCrj0HWptk4yI0LUqrEFLPPAenngkqSwybqMQwui9qOK9gUjXaakso\nl6AsaH9VG8f1YPG9vR5rJx1zA3amlYnzNOT9iOn2mHA7R21L0jJhFQ6Y7w2ZBUP8qro6E8DpcI+j\n3iFH5S2enR1yenLAxek26UlifPGpMntXUbBhhL9MA/RNNftsW0TFJh0TCHsQ9SDsw7iLdztA3tfI\nuwXxvYre7QX98YxBOKPDGp8KjWRFQl5ErKZ9sssuxTSmeuJTP9To48KwVRcppM0zdLX/v0zf81XX\n1/7eXaPaa1W7rNsF4t24zvXvXXF8N6loj3Orf1zNcpsAcUH+unWsXSPsWml9PszPdeaw/puycZfA\n5gsoA0h9WATohaTKNPnMR5x0qccBvigJRIUvSqgFy0WfbBFTzz3TGOVpbpLAa6tPOHuFH/Z65vc7\nCnxZczPROSb46ELdg/M9A7R0ASlZ5jv80y//CycP9vmST9gRZwyY46FY0zH6U9zmyew+03/dh38G\nftWUgD0D1lZB3IqSuxvT22RuSV+A4cz3MSjivmF6/UzA58DfAn8Fe58/5CPva25xxA7ndMWaGo8p\nQ04ODni0/4A/3P8UvZVsAOw5hhXAhOugl2V7uYLqr9PajDALhL0KXHsV4OWafbD/2LHt7J37N9q/\n2S5uFti1bcMte8Nd6DRmojcAcLFt2F/P/Y0emNuJ0uq5pjSlSzPMPZhg7oEdhfM93rO9Xo+5m6vd\nGBuAs8rN5qFN9rGIfeZJHxVL1mHCbDjmrLPPsDtlOJqB1Jh+j5Iaj9lixMV8m8nMZGSyhx7FM0E5\nUbDOoEi56ut+Lavfdr7eFLspM2edixBTot2sXcEARj7cCeBugH+Y099Zs7dzyv7uGcPxjGiQmdHJ\nyLyIU7HHqdxHCY9Sh9R5gFgpxFQbMdJVZkrrlAWJ7drVDh5fxpT4Y+YeawNEd+64f3vb7Bphg7o2\n46IdALYp/m1GRztwvOlvsaCXdcqa0gYiA3ZdgV4SxDXvC2Yx6BhWEZxF6FiiYomOPIQv0LlG5Rqd\n15DWME9hlpnyxnJtgsZ60Thcr6LXv7fvZy5YYf2uNdCUyl6GUHdgqUnLDhf1DrX2mTOkG6d0gsyM\nJKPSkrrwqHKfauZxdrzH2fNdFsd9wwo/ruA0g5VtpPAy0eI39b66z67LUm3YXqIL9EGMoBfDQQCf\n+PCRJtlasD885u7wMXcHj4m9nFDmhLIglAXPw0OOwwOOo0M8v2QV9VnJHrXyHOCrbIJwy1Z194Sb\nmJJ/7trlMutvAqhuAr3stXCDy/baZc/XfqZvOpc9VrWGC5xZ38Zd4+zctnqKbuDa+qw8hmUMdQzr\nCGaBae7RCSD2odbNqbUpkVwVsMxNM5Q0g3JlhrKxRRsYeb9+vR57me+VQ1UYKRutINcUvYjpzgi1\nLVlvJyzjPotwwGxvwHRniE9J0y8bjeBc7PBcHnJSHfD87IDZyYjFyYD1aRd9KgzjK22ArysWTBv4\nepOtzfayMjndDfDV7UG3j9iOkbc1/gfgfVIS3U5JxnNGoynjcEJITklAhc+KhHWRsLrskR51KZ9G\nVE989MMSdVyiJwUs1lAsoGjKhK/ic/f6/rF94iZfxv5d7Qohlx3mAl/txJCbeHSHe343qehKB7jv\nawP9bfZqm8lvGQ5NoFc3nSqt1tg1V09CGkMYQxhBHFLNQJwGqEc+RV/jCWV0wWRtHo9VTL6KqNbS\nVKdc5nC5hvXK+GF63ry295Tvupe8aO8w8GU3LMGG8RVigvgOFBE8Ghh6ZSFgDfl5l28++pyH9z6l\nszel210j0BRlyOpyQPmsv2ElfdG8fouh73HBpgzP7bbyNoJfYKZWpxkDYA+6TXnjZxjQ67+W/MUH\n/8IvvN/wl/yWB/ohBzyno9coPKaMeCLu8nvxM/YOTvjn/+OvmAf7UAuz9i8lHG2xAVpmXAem7KL1\nQ4IubSCsbRb0Uq2fue9v25+SIX1ZJtVlTMAmkLSiXrZDktUos9/FArEZJkBonOZlF5Yd5/32WAsu\n2i6alt1ls+rtEscf+j68C9bOILkbnWiArxLyEjxF4fss4gFp0OPSU5zcyogPUqJxSry3RgtJVXvU\ntU9deRTziGIeUzyNyR9HqKMKdVygLkpIU8Pq0xnXNajcAOdNNNcRcfVxXMbXGIIhjCXcFfCZJLhf\nMthas799xoPtb9nrnRAHppNgx09ZegkxGUp4LOixUglVUSOXymwDswb4KpagLGBsNQ1exvj6LuY6\nCu6687Igz1qbJXHTe1xHrQ0iup8N14PFm+aKW/pmRU2dBIp2QK9rZRCeofZPE1gljaYOaC9ES4nw\nPAOSqQqtmjLdujBgV9Vkeasmu6ibbkvXmoW83kzju21tlo4FB5q9KLOgVw2nhvFVaZ+5GBLIW3jj\nGm/UjKRGp8KMtUCtJfnTiPxRRP4oNiz7edWUsNj9yQWW3yYmjH1WXZmJJmgUFvjy4VDAJwL+WpMM\nluwnx3zU/ZKfd39HV6zoiJRYZHRI+UZ+SF9+hCdLCuHjRQolJUUdk+baAF9V6TC+XDF1K7/wfa/x\nTUHOTeyutrWDy5exuf6U72VBjnZw2n5/G7S387otcXGDDlDRgboLa9NJDT8CLwZPmXGlSaZB1WYf\nrpv9uErNuqXWTaBo5/dNJb3v7bvbTewdR2bCAl+5Mhh+EqG2x6y2e5xv7zLdHTMbDLkcjrgYjvFk\nhUaYswnBZLHN2eyAs/keZ7MD8pOI6jSgPPEN8JUrs3cpC3y5xInXAwb8eOaC0jcBX70G+OrDsIfY\nDZG3S7wPC8LPCuLba3rBgmF4yXZ4jk/FnAFzBqxIWJQDltMe2dMuxRcx1WPgedEwvlawatiSdlwB\ni3/uPnETSN9+X3stugncv0mWwgUG3WPhRd/qJt/N/Yw2kH8Tm98mpAIDfKnQlFwKv/X1PZDNPZJd\ntKep4gAVhxRxgIz8qzJ64WnQUGfSNOtIpWmQVOTGDy5nJvmIZd69Cvj6fvYOA1+WQmgD8hJzo+1m\n5Zlr/vXAiAvOgefAV6BWKQeQAAAgAElEQVT2Q1Zbe6xs+VeBwVzOMOyuRxjH64mGWY5hIz3H1Li4\nN9QCXm/DxmSBFLjezbGDYXslsCfhAQb4+ivNXzz4DX/n/U/+nv/OX+tf8bP6DwyfFIgpJsm/B99u\n73OXJ4zEFC+u+G9/+7+QTbdM8HiOaX2eW/DLOra2jNUyFn5MuwnwcRew13nv3YUMNhRWG2RY4Euy\nod1HbADKTvMzS+sqMICtPYf9e+yGbwN1d9iN+T3o9cOYu4G5WUdhghCVYjvTqFlMfuaTRwFID1nF\neKqHLyo8v0JJSV35VKVHXXlwLIxm22PgoYDzEi4qw4opLCjgZsNccOZNtrbT1ewBMgIZg+ggOjH+\nqMLbq/Dv5ozuztnpXHDYPeaeeMx+cUycZUQqJVYpC69HGXuUsU8RB/iiZiq3EZ6k8DvUnm50KmoQ\nbe2YdvbvdTm07UDtVdZ2iF7HZ/+xv8cFc+28dgAuV7BaaFPuKOQmNrVT8io+EWgLmF35hu0SO5cJ\n5GpK2O/xtoAjPxVrZ7QLrrLYdWSAr2wFxE23KI806Jr7vABWYqN7ZG/dQpvXJ9p06Hqq4VkK+cp0\n6SxscsbtMPw2lIG1GV8W/ApAhqZjiReBH+P1NcF2gX9Y4N8t2AlPOeCYuzzhwfpbOnpFpDNCnRLp\nlCyS5LFHGXnUgeQkLNCRJIu70Bk0cjPaaO68EEzdBBK9LnsZs6JtLiPs+65ff2ztclkh9nPt/HbL\nvxvfS/jNEGZIcV2qrMKUNtrmIO2t4Zp+q+t7WbaXK/PxprKxf4r2Mt9LNr6X7Qq4pp5G1OcSjjrQ\n7VHnknpPkBOwjmKkXzdnEmgEs+WIyWSby7NtLs+2UM+AEwWXCpaN9jSult5NbPs32do+mGXc9wyo\n0u3CuAN7Md4tQe9gQX93Rn97yrh3yU5xzs76nJ3pORJF4q+Jg5wwKPEzBYVHVUestTL+gEPWo3CB\nTDfh9X2lJm46/k85R9v3ehV4757XTUK+at27CQRrs/kd8F6HZii36Zr9fj4mhmzmoQC98qh93wjr\n+4GD3zVrWlE3o8B0r7zayNkQKF7WnOP12DsMfMGrA/Lmd2UFT7YawW9hNI+2MRUwEeaGWv3wOY3m\nkTaveYYBvGy3QVff621ke7lUe5fx1Tdsr33gDvAR7P38EZ/7v+E/8z/43/X/w6d/eIz8lTadAafm\n7eIQPvzFCdv/9f8mCnIKETEdjvjV5/8rPGmC9GcCjgYYdkaH67Tyn6qe1A8NdNrzu0wzzfXukjFm\nEjfMLvpAwnUAzC6cNRutsCUbvRRbzuiyVMrW63vQ64cxt2bfznPLwGsCyaID8whOQ6hD9FqiJ1A/\nE+idEC0EqpboWhoW5bmC0wpOajipTDnYqhH9vsbme1tFv63j1QQmgQeBhEDgDWu6wxXJeEkyXrLX\nPeFu/oS7i2fcyY/YzU+QRYFXFMiiQHRyDg4C5GFF72DJjnfB0+59nm5p1oc9isIDEUARw7LHiwzN\nmtcDOH0fe5339U8Jvl72e8FGrLsZthWpFxmGhB9D0Lx6kdGlqHyopRMH6lZnLBdkcwPF94DXD2f2\n2sPmWlt9tzUmg9iUWmQRXPoQBCbbfN5oHvU9GEjT6SxVzdBG9+ishGkFWQnlAqo5RvDbTTi+LaWO\nrtmkVuOD+T5EEmIJEcSjjH5/Rr87o9+ZcT99xK3LI3an54wvZ3hVBnVBXRes64pgf8bW/jF6H/q7\na772c1TPZ7EzNP2JtITMh5lNnoVsAOp2oPZjXt/X8dl/6trVNnsdLIO4GVegZKPrFUUQNa9hCLrR\nKtQBKL+Z55jXvEnYazcZ2Q7a2wmU9/Z6zQU2LQBgfa8GGMg7cBGZe1pHVOeSdNxhPh6ityTSU82M\nMvdwNU9YTxKKywB9qZoy7dzogOqcjYyIy+hz96m3Adx0wfuIq9jEH8CgY0q170ui+xm7u+fc6Tzm\nTv2EvekJg+mcwWTOYDpHKs1ykLAa9FgOEs6qXZ6E93iyW5ITUoVdtBaoVYA6Tdgk+te82CzjxyoT\nbicp/1Tg6085vs0wc8Gym45zmWduVYT1yZqYUXRAxMavFU0ncDD+lmq+n1ZQNh0llQXuZ5hnx9VX\ncxtzvP517B0HvmwNrcuGsa9gLnZhaMSXOzCLDOAyAGJh9jFJ0xRSb+5bWbGhgE0wSI7bIv0mRPlt\nNNvVsQ+JMIDhbeBjxQfet/wF/8Zf6X/m46+eIP8vDf8N1BeYSxaCuAscwSAv+Q//5695Lg94LO7x\n6KMPmDy4bfTTtoEj0XyOq6Hw3jYm2YBdDhh5pb22DQxAJOB5m2ZQljhWAFm/qWDIMPN50pxnwYZR\nBpvA3f7/Pej1eq1NcXYBElumivl50YVFDKpjyiguQ9SRj+756CRAC4FWZqAwnRvnhenUNc8hWxv2\nRbFy2F4uW/VtyTZaczZ22QBfHQGxwBvUdEcrxqMLtsYX3EqecWfxhNsnT7l9csTW5By1rppR4w/X\nyM8qemLJ/vicLX+GTATrcZ+Tg1uQBaZN9bIRb73WceembN+PcY3bDtLrOt/LfueySu2xFox0Sh/o\nGiZe0IEgNiP2IQogboL+UkLhGZkCWz2JbvRyXNDYBenfsyR+WGuvXTZwtLZik3EuTPA4bbSPls09\nvhqBKbcra6N7VNRG92iRwzKDLId6aYZyO3XdpH30NliLseo1Hbh6AhKIhhmj3iV73efsxifcmz7m\n1skxew/PGT+cU+UFeVlTFBV5WeF/OmfrU0E/SDkcX6B8n3ky4vn2bdN1MJUw8w1QQ8ym41h77fqx\n7M9ht77Oz7tp7bJ+cON7yQ74nc361fMh8c1r1wPljMqDuW4qkLRZ03RmSoy0W3rnllm6ZUyvew1/\nl829hlYbyTZussBXs35lPZj0TMC/8KkGHutBB9WX5IMOQuprZyxWIdk8olwE6LkylUKzFSxt2ZeV\nc7HNOW5iwrzJ97jN+LKASh/8PvQD2A/hgSS8X7AzPuejzjf8ZfVbbmfPiJ+ldJ5mxE9TRA35fkh+\nEJEfRBzHh4RBRb4TcTHYYh2G1EsBpyHaDzGdVpuyvmv7UdsH+Pe8vm1Qyl1TXnbs9z1etH4unZ+3\n9dfcNa3bgF4W+GrkJURzPkUDfilQVQN6rUBbIoVle9kYw5aZ3tS84fXYe5TgquRRYRwj2Gwkig2F\neAaqD6uB0RJ54dLZ99uSO8uIsU6X2yK1cN7zNoJersB9B5AG+BoBO5DsTziUxzzgIZ9WX+D9SsH/\nAPX/wrcP4VSbR+rjh9Bbg+jDwf0ZH/3FV9wVTzj0jpns3Dbsux5mjcw7bLpIuvfGZtzeVQDGBo1u\nSeMQA3ZtAbsgBtDzNj8aYeJLjw3Za4XBcs9juDyAso8Bv87YbFozNiwveHev+Q9t9vra4N3+262V\nyKFIYJ4Y3a+JQvsK7XcQXoDyjWabBq70Q2oFZWHo+tUK02FlxabFsxW1b3dZeZMdLmt2Dts2zj74\nnmFM9ATesKI7XLE1uuBw6xl3k0fcLZ5w5+QZd35/xOjJhHyhyGaafKEJdz16LNgfn6E/iBj1Fqy7\nfU7Hh4QHhXGMFwGcd8BzQa+UF7OOP6b9ezt77fnksiacTnVeF/wuhF2IY7O/dJt9JmzK4a6Gchj8\nbqDYZnu5wBe8HfP6p2b2+jesrqvA0fpBDehFClkXqh4sEzhThh0jw6ZiTIKujSOtKtBVs245QzfO\ntTblR5tuV25i5m25xy7I0oC/FvgaCaJhzqh/yWFyxL34IffzR9w6OWL3D+eM/3nGal1TZ5o0NyNe\nzuj7a+Kdc6IHIUt/yHHvNt3ttbltcwlnPgSvYnz92GvYj8XSaK9f1v/qclW65fcgTCBODItxZO4T\nA2HY16p5LUXjh+mGdF+b82nbpAiul90Vznd4W+b2T8lc38v6uhY4ccrEssLcs4UHz2PK2EN1O+Td\nmGWX6/gKRqGiTgVqDay18cPKJZRT0FYix65jblfatwW8d4EvV2O1Ab4GEvYlfCAJHxTs+ud87H/D\n39T/zAezb5HPFN4XNd7va6hAfSBRmaQWHk92zyi6ERejMY+6d/HjPpwG6IeBKcVDcY2t9wIA9GNd\n35etJy877qb/f5fj7d9s55bL9LKJdoeVJ5pkJHEDfAlnsIktqkanTmfN3myxElvq2CYG/XC+2Hvg\nC9g4QQIT2FnqqmaTIUwxQNaEDbvIMsPsIujW3Fs004JdNmAsmvPazMzbZp7zaimRmGckAYYwSOZs\niwu2uWDwrEQ8BL6CR4/gH7RRlYoxzTb+t6+AT4EnsPcXZ+Y9YgZDbYKcCMO+y634utUaC/hhujq+\nKebSUV1aqgW99oBD6MZwIEz5wm1MOeoO0NMbPHgNTIWRqjvGlJg+TUwZnXJLIu3itGbzTNn78N5e\nv7kblHW6HBaLqqBQjYYB5hgh0dLbZIx1Qz++2lfaTrQFu9xOQpXz2W+q03VTcOaAX8IDT5h2zSGI\nSBPEJZ04pR8vGPoz+vWcwWpB73xJ8nyFmIKeQT0FWQj8i4JgtcKvPDLRYxjM6HRSZE+ZtSuWEDRt\noq+eU7eE5ccOHP+9zf27nSCeyIg+yy54Cfg9ZD9EDgJEX+L1NF5S4XcrvG6NDGtU7lFnnhFSXUvq\neU09q6jnoFeeKYOsmhI6Zdcoq3/4Y5dnvQt209ph17JmHasbQN4S8kXzfFqnui0pdU03zPW32gwJ\nVxD6TbWb1gYneBTCrF+B8ZH8sCIKc7r+moE3o68WJNma7jQlPs2plppsDV4KIoXwXkF3VtLPoYtH\n31vQCVOCuDR+XCRMGbh3k2j7u7ZuueayI5r1S0SG5SV6IAeIfgcx6CCGMWIQEoxKglFOMCwJBhW6\nbpjYNehSUiQhZTeg7IRUXc+whbMQshjKDmauW+DRsjSsvenz/Kdqbd/L1SsURhC87hjmKSU6EFSR\nD5Fnhmidp6hNGWvevF6RJSzby9WffNtkJtx9v733m2SHiDVioBA7FdFWRr9YsF1OOFg+5+DiOdUZ\nlEdQPQEqUznsdyBIoAhCtoILhsGc7nBFtMoRfYHuBNS+jxbNs6Pd/f+n6oP9uff7uxzfZoC5sWTc\nyEl0TPIx6CLCCBF6iFAgQoXwFMLXSE+D0KhcNJWNAl2IhoUvoJBQNddat2PIHza+eA98XYEknvNv\nOyzq7Ga12gGmGyRaKr0FvnJn3ERDfofMPjseBJSEFMRkpkS0Iceda1NEd4YBvnaAdA7d5vcdUkIK\nQgpzO1zd46v/WNbGu2x2AbfmlJwyxFzZQ+h34D7wMfAJ8KFG3FPIA7PJEFagJHrpoScS9USaLqVf\nCVPu+40P53tQ2UDCFbS3wNd70OuHM9dRcGnItlbVoSKTmPIwLzDlrFb+rcZklmsXCLopeHlTga6X\nOS6vChydYbNWwvDjhNAIlPm31qA0wl5H3TC6sS6pCdwlGmnfg3ZOb8//PmB8cS47pdmiazzYOIEo\ngW4Hfx+CvYpgvybaVnTjNd1oRTdaE/olWRmRFzFZGZGtI7Izn/wsIDv3KScxrDqwKmFVQe46e678\nwNvEaPwpmZ3nrWYSV6WsCVdt7L0u+M2rDEwJsvQN46v0jeNcSig9oARdsPHnXDDmTbE/9bv+EVaV\nG5cr0EqgtEQhqfGopYf2BDoUEIMsICgMFl8BoRBIKVCepPTN8QqJ0sIhmjTA5Bu7N7xOc++HZaw0\n+7DXMXPYTyDoIfd9vFsC71aJf6AYJDOGvRnDZE6vs0Apj1pLlPIoS5/Z/ojZxZjpxYjqogvnIZx1\njZbwzAJdFnhxlfAtQALv9r35Ie0mn8k+eI6CuhJGY1KA6U7sMmoUVE1nSGWBercZx8vE7N+mZ+6m\n62hehdB4XoUXVHhRTRSkBFmOt6oQC011BssJrOawXAEVJDPoXUCvDyJSBFFF1MvoqjVdsUZIifIC\nSl+bx1U14Ityv0PbL3tbrvUfMxtD273ZslYSEAlEPegm0O1B0kGOPLyRxhsWeP0S36vwZI3vVaA0\nRRqSr0KKdUi19OAyNk0bLiWsmoZFCpOAvwKS3SQYvGd8vVazm5TtIuFSLG0reyv6PQB6JnuDbxgB\nYOj2ZJhWwlYAeoGZLEte4LReAQEuvf8dMLs3a6jxKLVPJXyIQTexTU9Cr95IrCdAbCsYO1DiUzXD\nOLzOea8hxW9DRvf72k0ljj0M2+sAejF8AHwO/ALELxTez1J27z7nMDpmiwsiCip8liScscezk3uk\nXw9Q+x50RcMIEwb8UpYV6Yrc25vznvX1w1k7S+Y63fa+W12k0JTABJ5hAtSYUgpoiJGv2vDfxOep\nnUl81THu/28Ava5OYfswGeBLXAWWzbgCvjZBodDKHNtcw2vg19Vnytbnv4tmr4ML4DY7QZgYZ6uX\nIEYd/HsF8YOc+H5BcitjFFwy9i8Z+VO63ppF3WdZ9VjUPZbrPotnPRbPEspeSBn7MOlidPBUA3zZ\nfaPddOZdZQz/UOYGFjcJ5TblYPSvayGFnQaw9wzLyPdMGWsuTaa+Ugb0ErYMzJ77TXqeXjPTwAG/\ntBZoLai1pMZHSYnyJbrZKrzAkE+jpgFqIASelGjPo/R8KmlAM63EdWxY2w96l629b9r1q9E/kx1T\nkh31IOoj9xX+h4rgk4rwo4yt8JyD6DkH4XN2wzMq7TcjIKsijqe3kVNFdhmzOk/g28A4zEvP6Kxd\nYzmWzmjv2+/6fXqd9rJEoYs42/2kMGBXDSCh9hrgywEpVQ512mjoZrwIfL2N8hJtuxn8EgKkVxME\nJX6cE4UpgSrw1hVioqnPYT2BizlcNMDX9hzEBDoJyI7G71dEW3kDfKUoGVDKCOHpzTZxLfnb1ip0\nk2Nvu7X9MJuQ6oMcQNyFQRdGXcRWjHdYE9xSBIcFwU5FIEpCWRCKAlFrVosEsehRLwKqSQBPI/Al\nFKFhriowz0AJ2saJFjh298HXd+3fYeDLgl5u0BhhnK4EI3S0BWyDGDVOmNhoStm3lgGkMaxGhvmi\nlpjujY1C+7XSFWtvWpljm0HUNlfLyYJOLhtOm+AiFbCERdHnMtzikjHpjk//Tg33jaZXdgHbyoQ7\nn3ggHoC+C/o2nLPLhDEL3Tf7gt0jKu181jU0jLd3k/hTzQpF9jDg7dh0mrklTAnpL0H+fc32Xx/x\nyeAPfMKXPOAhO5zTYU2NzyVjnnKbb/Y/4nc7P+do/IAi7ADCXP/Uh+UIo6ViS33d8qH3Wl8/nLks\nmZbD3WZ8Cd+Uv4TCTAn7qNQNwKNvcjysvalZxj/CjHjl8S4Aphq2lxmyAbOMfgFQO8CX3rinQhuA\n7IrxJVzQ62XO87torsPpgvZdED0ImizjMEHsdvDv1USfVSSfrRh+MGNPnrAvzBiIORO9xUSPudRj\nJustxLai6oWkoTTMR1FDrmDhgl6Wte3q5Lwt5SQ/JXPvtQW+7Jplga9B43PFEEYQxQasD4TxwwKa\nMjs2TApy0G5X5zeR8QWv9rX+DLvG+AKlJAqPCo9aeAb4CgQ6MjmRwDeMLwFIIRAN8FX5PrX0qDHg\n2TXG1wulKe+qtRNQDvPas4zVHiR95F6G/2FO+MuM+BcpW/KcO/IxH8hvuCufUOiwqYkIWdddvHlN\nPo+4nG/BmTAo5cpoR2028v+fvTf9juNIsj1/7rFHRq7IxA7u2lWqrZc3886cOfOXz4fpfaq7qrpK\nVZKKEhcQOxK5xx7h88EjiEAKqj7Tj5REkcbjJ5MgiER4hJubX7t2re5Kl3BT++strC75Xu22vXud\n8ZVCKSvwqwa91qqGVMy1HuGqMWrga73xCvw019st8ZBQGEaBaac4ToxjxVhFDXyV5OewnMB4Bscr\nUFVvOdeHngPCLzEHGU6cvGR8ZdIhNnJEzfjKK7aXEPo+fSeo+TZYDd43mdgV+Uf09F7c8WDowa6F\nfJBgPoqxH6Q4ezGuiHGJcIkRuUJMFcXEIp76cGrqEvnUqVhfLnqDqn1YyvXaqTXFXr3/eouBrxq5\nam5SVaaRjWpsgdmFtoARukKsi34G6pmrhb8nwNiAiy6EPpQtrhEyg+92Vj/GjPJtQNdtAF7thNcf\noyb4VYF8dTPAC5if9Dh/uMlz4w5P2nf4+NOvMU9KrAh++RVEY12jLe6A+DWoX8LifZsn3OdY7XFe\nbOl6yAmaVJeA3iCaorU03v8Y5/h1WRMEaTYZcNEPbwc2LM32+hjE35Zs/fI5v+j8B7/m3/lU/ZEH\n+RO2ijO8MiITJhNjwAtzjy/Eh2wYY/7fj2K+KT4kXXowE/q+ftPVYpwvu5dG1efXCP471tertfXN\nyQbhah0k0dICunZLb1KODbaBdBWmq+nihlugckGRGJSJpEgMVKJQiUSlJsSO7qZWZlCkUDrV5zaD\nth9LQCDW3td/rwOY5uF3PUCtf/e19vCq1BpDmQbty0iSRg5h3GIe95jIAX1rxqzTZb7dRuQp8UqR\nrEqKlSIfSfJth1XHQVoOp+U2k7RHGPoUC0MD91Gpu9KVNWC/Llb7Q8/r92m3MSYqxpdogefpKHbb\nQuxJ/J2Y4WjCaOOMUeeMUXzOKDlnMz4nyBcE9pyONaVnT+m6c9xuhto0iDOfWLlaR2dlUY59eKnl\nWQP2JtfP+ZsGmvyYrQlsroGbeFq/zapLwlrIlokMJEZQIlsJ0lZIs0SaJcIsKUKTfFWN0ERFtf6R\nC3FD9L6sSyDhZgnFj2V9rYO+3+Wv1q3pJ2TjfaE7aGUVmzGEPLSIQp952GUcjuiwousv6Y7m9O7O\nKXsF+UJRzEvyhSI7cEmHHpnvkUiP03yLWdwlWTg6p7soISogr2U+mh3m3jb/tX7/1hJQlgO+DV0b\nehbuaEl3c0Z3a0Jv64o74VMOomfsL5+zFx+SSZtc2mTSIhItEuUR+gELp0PseGTnFumGTdaxKHwX\nCud6KJtrQOVtLdX6PmydsVoD9xXL3vDBdnXzB8vQDBdDVMfB8rpMuHZFdbl2ZugS7rIxlFV9ZnNP\n+rEykNZjse/6N7j+3Zs+r+mf64xiAXmJSkDFgjKWZIVFLB0ixyMKXLJOiRoUGMtSJ0I2JEVfknYF\nScshtW0NKCc2eWxRpAYqF9f34QaT7m0G8dcTUpVGoXA1y9TykW0LOZQY+yXmnYTO/pTO5ozOYEq7\nvcApYtwixikShFJM/AFTMWfiLphbXZKlSzJzSCYueexC7F2PPObaf6WN3+fV7tdvKfBVL8DaYa2X\ngm0Bm+C1teD3AbAPbANDpfEDr3JaodCH/3PgGHgOHFpw3tcO7CXAVoNBTQSzrs//sWRkmoBX8yBY\nX8NtQVhT6Hr96xkVJQjmFkwEnAJPHZ7ducsX8kP2xQsGv7piO51gBiXiffBm1ccfgPoE0r+3+K3/\nC/7MR3zDfU4Pd7XA+gUwVbpjBGH1WYprKsvbaOsBWK3vVWXRPUsDuHeADxWdTy75qP05/4N/4X+W\n/8gv5v9J/+sV8gn6cG7D7u6U+x8/Y3twhmvGlEKyfBRwMr5PcWHpZ/8CmASgqkMMHtcBcZOB987+\n16yZhWpSkV2tiWMFYLXB6kLXh4ELGxI2SixPi7N7ToznROSFSZI5JLlNkjkUk5JyLCnHDuXYqCQL\n1fW4IZ673k3yh1hvzcNhEzhpvn7XYbJZklA2vr+6NpVrUCrSvrmYmaxmLcazIWomQApsL8fbTWjJ\nkHRXUMT5y5F0bcL3e6x2eoRuj6PiLs/DO1xN+6SnNpyVMM0hShvlDevlDG+bfQfjS7Z0E46hBQcG\nxr2S3uacfe+IB/nXHEye0b6c0bmY0r6c4qxiWt0lg+6EsHvO1BngJhmlZxDutAgtlyIuya8kOA6l\nUEAIyuFaH6oJ7L6zV2PNoLqWl2iUNtptaAcQ+BA4GAOFM0hxNgrsjRzbzLCMHMvIsIyMVeyzilqs\nohZh7KMuQF3YqEsfLo3rECQvKx3K2gc0RPl+0ENO05c35+U2sfj1Z3Fd2b+O16qucnmmhbJXJZSK\nZOowm/YwJzn5xEKWYHQU5t0Cy8uRYao7BkY5hAXz93vM7vWZ9frMVJ/HyXucznZYnrfghYKLAhYZ\npDVgXJfZNef1bbL1fbkBhjg2tE0YStiE9nDBTvuEffs5e+qQrckJW8cnjI5P6ZxNKG0TZZmUlknq\neITtgKTtkbVNjHbBvNth3u8yH3QJBzbEUpf8xmbjzLHeXfPHCpS8adZMqjUBzqoUrPZljgcdFzoO\ndF3wTfBM3Xm4PjtmUktNZFIn8GcC5qZuGpXaugFLZkAuuS5vgevz4g8Ze61b00d9F5N9Pf6C6+ey\nCdzfbNKkypwihnxuwIVLZLdY5gEzv8PVTg/LmaGchMBLkUGCKBTBpomxZRFtmsw3AmaDDjOzxyzs\nM591CZc+aWxpSbWi0GdIVdH2b9X4/Kn7tOa9WQO+pAWGA9JFeA5Wv8TeSbHvx/j3E7Y7p+xYJ2yv\nThieXmLFKVaSYccpqhBMrD5Te8DE7TPZGDDeGnI5GzJeDVniwtSAqQ2lB3nCNfu+3gfr5/zVPetv\nKfDVZHvVjIm6vHEIbEKrDQ/Q5WDvAe8p5N0cc6vA6KVIJ0GVkjKyKSY2xbFJ+VTCXwT0gb+Y8KKr\ndShuZMOaAgk/ppLHpjC8XHsVjX9ftyawoRpfq6POCFjAMoAzAS8EPIbDB3f5w72f0TVmSFHyN//j\nNxzsnGMeF4h5Cbag3JCsHpn83v+Mf+Xv+a36JV/GH8GfHS2yfoTOPlKX2NWlKnXt/NtoTcdwi1aO\nb2n24gGIhwX77UN+Jv7Ar9Vv+PXlH+j98wr+DdTXoOYgbP29/uOCT/7Pr8jvm8ysLqfuFpO7W6wO\nOjASeunMO5D7XLMm3h0cX72tl1Q0SoRq4MvtgNuFoQ13TbhjIO4orCDBd5Z07DldZ0aqHJZFi1XR\nQhWK7FhSPJOo51WJxhyQVe1eWlalkPVar7vT/tDBwG0g120+7DYB+aYQMFxvrIVmi2SVr84VhW+w\nmgUwg3jmUfgmnu2ezLMAACAASURBVBvT2lnR7s8p0xKZJcg8xcgSEs9nvLnD+eYOZ+4ux6t9DqMD\nJpMB2ZkF5wqmBYQZFHVTlNt0PH4Mc/x92DoA0BS3b0HL1sDXvkQ+yOkEM/a8Yz7Mv+L96RdYhxHW\nEz3McUax7VDsOBTbNrONPqVlsPJajDsbTNod0isTjgxKxwEhQbna2b3Uh3rXcODV23pQXbO9qqYr\nTqC1QzY8GDqY2wnubkZrJ6S1E+KaVRmF1GOa9rhKBpSJIk4tyido/SNpoCK3AutLvZZvSB80NSh/\nSPHv9WfebIzbALCmNRgRFFw39KkODUUFfJUKUkgnDvNJj2JispwGSBRWt8D2UqydBDtLMNIUM00x\ns5SzzR1Ot7Y56+5wyg7HyT6n8y1W54GOuy5LWOT/BfD1NvitdVvXKHTAbgBfuxBsLNlpn/Ce/Rfe\nU1/QnUzofDOl86cJ7cdzpCcRrkR6BnlgEx94ZAcWRVsgOwXn3W1ETxEPPA18LQSIiimU1cz6+rmB\nV31ofHvtNnCzBr48tB/roeVEXOiZsGXClgV9AV09RFdBLlCJrPAsAy4knJlw5mh/FVkazCyrbhM3\nyldv02/7Mdh3JSBvA8HWWaFNxtda47gip4iAmUl5aRJ5LZZWwLzV4arbw+9Okd6KVgDtboZUJXJk\nIkYO8abDIgiYGx3mRpfpSgNf2coijUxUpip9yFKzZL8FeL1NScjbEjCmroM3HM1cdR3MXoy7neHf\ni+g+nLOvDnmovuHB6hv2ZkcYywJzWWAsC4pCMh32mIx6TNo9Llojns3vwxJWScBSebrGvrBhVUsd\npNzsUguv+h68hcBXvfDqoKJG6ztoTa9N8CvQ6xPgM4X4rMT7ZMXm3gv2rCMGXOETUiJZ0eL83oij\nDw64fLJLvmmj2lL7QyQctiAZcl2DH3OtRVV9zw/K+rrtkFgDFxY3RbPXyx9rJ9UU1KwDzJzr8pE5\n0IeLFjwFNkBteHzR+hhjVJAYDpdiyMO7X7N19wyfFQUGV2xwyAFf8gG/Vz/nd8kvufzdAfwReAyc\nKk25Z8616FeTgdYE4942W2d9Ofp9C01q3ITu/pg7/lMe8Rc+yr4g+HwF/wDFP0H6NSxn4Fjg7YE5\nAdOCB/2nvBh+xWPxiC+3PyTa8SlHlt7vXwj0YbXuflp/9rsSx1dj6yUVa0L2smJ7uR1odWFkwH2F\n+EjBJyVWO6FlL+jZY4b2JbHwMFQPVEmGAY8dCGxKLIpFdQ9LBWnzIFODXjW78ocsB7ttPoy/MtaD\nr7wxSr7F+EoLTZuPFYVrsJq1iGcu01mfpO/ieyHBYEHHmyLMHFdFOGWEqyJio83Y2uGp/ZBv7Iec\nzHeZhEMm074Gvs7UNeOruI3x9TYFXHA7CNBkfBkwNOFAYjwo6THnQB3xUf4ln81/T/G8pPi8oPxD\nSXlcYt6XGA8kZihZ5F3Ckc+4u8GL4S5uMYJjj7JnIR2HQlQgm7K5Znz9V7qW7+y/Z+vAQOPAaPua\nJbHpwp6LeS/FvZsR3FvSvTchMFa0xIoWeth5RJlBlNvMsjZ0DEppo0IJlxJECWUBeb3G63gl5WYm\n+YcGvdalCeqgf913NW29q3j986qDcZFDXDVvCCGZuuRTi+U0wJgUyA6YnQyrlWC1YjwV4qoYp4xx\nVcyZvcNT+z5P7Ac84x7zuMti1mN13tJs+1kB8wySJvC13nUO3g4ftn6wX0tKOTZ0TBgK2K0YX8EJ\n79lf8Uv1W6yrGOtJhP0fMdZ/JFgBmIHACgSqb5HlFmVbwEGJbOfITkncc5kOBjBoa+A+N7TW6o3n\n5h3g9erttgRNE8AfAEMNdvYEbEu4J2BbwahEjEoYlZrptZLX41CBU5XdrSp2vZJaeyqp718NejXP\njD+WxMy6P7uNbb/O7GqOJiB2szGAKjPK2KKcm+QXJmHQYjloM+t2mAy6dOjQbSta3YzuIMJQimhk\nEo4copHP3AiYrzpMlz2mqwGLWZdyCSpWWmWiqMopXyYRbgPAfsp2m/9qMr5sMG2wXYTnYvUT3J2U\n4P6SwaMx+9ND3p98xc+mn/Nw8g1iAkwUYqLIS4Np2WXS6TJxu5x0t5ErxSoOOCu2QA2gNGBlw9jj\nukos5DoGaz4fr8beQuBrXdDe4rqFdk+XCG0Dj4CfK8TfFfQ/u+CT4X/yEX/mLs/Y5pRALSkwmIsO\nx+zwxH/Anz74mL/0P2DhbKBKQ8dXoQUnXbRoYQ3O1CBR7ch+KHbSd4FdTYFsu/E1i5sPYEO88eXB\nrX5wa4eXozWfljD34NjQpaIBREaf//z7nzMb9Ti0DzgQh2yIMT4hBQZTupyyw9fZI56k9zXo9W/A\n58DXCk5Az+m4eq11vpoA3NvG/Gren+Yzbmkx4PqcMYDAXjDigl2O6Z+sMP+s4A8w/gP8eQFnQCuG\nD76EOxbYO9D/KGS3fcK2e8KGO+a8f4e0a+mfK+Fa1+4d4+v12HexJipNr7YHAwcGNs5+Smt3QWtn\nSWtrQc+ZsFFcMSjHbMRXRKbL3O4wt7rM7A7zjR6z7R7zeY955FC6Jko6kPowU1VwUK9vg2uw6PsG\n7ZtZ13WdDev6VVTdd2XdhbexuSulwS1VaQGt+wlhgqw6yBkCZQtKy0CZktw0iCyPpR8wDTqM2wNM\nM8XMcqw0x8oy5lmHZ+k9XszvclTsc3kyYvWiRXRqU1zmMM1gFUMS31LquH54fFsOL026ffO+WlrU\n3BOItkJ2c+wkphUv6cYzBosJ0QyiK4jOoTit5O064HXB6EKns6DFCteNsEVC4VtktkKYEt2ys/o8\n9V+VmL2z/741AWpTM+yES60fIls2ciAwdnKMexG93RmbG+eMWqdsyjNa5YpWvsLPQ/w8pGWtaNkh\nLX9J256zvOywqkZ4FcBEl2eQ+RDVMUHKNTgA338JWDPxWj/fddmnez2EBVJqHySN6hlt/JqqYqXW\nYx1skpbufGlIfYZ2BaUjwDJQpiBxLaKWx7LbYt5pEwn3Zc9sg4LD+A5H8QEny11Oox2SI4f41CG9\nAK5iCGOIo0qTpWas3qZTuL5+fsp+rL7WNTBTSi3o7ApogeVm+HZIz5gx5BLSDBY5YpwhTnOMAGzd\nABKR5bRmIUG8pK3mdKwZvr3CcRKkW+jt3xJaP0rcBjS881+vxv4KsIlfaXr5LzvQmtsKZzfBOUiw\n7yZYwwyzl2J2U8yWFrtXjkQFBio1iIVLiE8kPELhoy4duPL0Og8rQOwlaB9Vv1O95n+IM05zr64r\ngoy11+ZogmJwU8dr/f0aaFZKVCYhNFALk3ThMG91OSu3eWreI7dMeu05vWxOjzmGKll1PFauz1J6\nHGX7OvE4HhBd+mSHFlzoNUeWVmfz+lx+m1bh22Rr4Jeo9h/LANtAeBLLL/CDiE57Tj+4YjC9YmM1\nZnh2ycbxmHwK2QTyKZQYuJ2M3ijGiVeIruLM2iVoLbH6uS7xHRtagseok/g1FtEsdax/t3eljv8L\nVgM9FtddzzoguhAIrX/0PojPSgafnfM3w3/hb/kNvyh/x6P0azazc/x8BUhmVocTe4cv7ffYMMe4\n2zF/+JufM4+GMJO6FG9pw7yLRhyWfFv4+4fYnNZBr6YIus9LwdmX75sAWFO8vkZnIzTAFXKdNa8b\nBWyB6ENQAS8FGrT6C6Rml788+hkn93YYOed0yiUWKSUGq7LFNO9xdrQNXzoa8Poc+AqtpRYlaIGp\nCddsumZ2922z5say/nVDd8Oq2Pd4YJspAUu6LDBnuZ7KEzhOdCXpqf42bAVbF2CfApfQylcEVdZd\nuqV+ZGq8Cxpv3lL38tpsnSFQB15VxxU7gL4LuxYcCII7S/Y2j9hrv2DPeEEvmtKeLWhPF7RnC1LP\nJuz5hF09jtUuh+0DDvcPWJkeygWUiVp6FXBUszhX3NRB+r78V/OzmkzUZrlBPVwwzMZosiYq4Csv\nNDOCXDNDXgY9hT54Og44pj6wDBSyX+jRLTA6GYUriWyPmezqcsiFRT43KeYWi2Wbs3iT83iLSTRk\nddEi/sYiOyxR4xiWMUQhZCGoZqnQf3V4fJv8WuN5FyBkqfEAK0cmWvCWWKFWkMa6anReVvBhASRg\nhyBWIKMSIyuwygzbyMjIMapOnTe0U2/EVt9VnvHO/v9Zc802AB9h6Q51pgOGg9EWOMMMZy/CeVCw\nFZxwx3zOncVzDrLneFGEGyY41djYmLA1PGd/9IIrr8dx64DjjX1OdvcJwwBcA3Ag8mBeg14JN7UK\nv0/QvlkCVPvvpu9qXQ9pabDErkATKW4+fnnVGCMrtIi9qn1X9WpVuni+Cb7A2CqwRinWRorZT3Hb\nEaaXoUxIsYlxybDIMMmxOF1uc3a5zfRyQHThk/1FkD8vKS8r35WsIA2hrOOuOum5rlEouQHI3Vhg\nP+X11NhrRDWk0K5MKqQokRQYFBSU1R+l2xSUYBRgZWCk6M5ohe4kLCmRXHcXvnZRt5WTvbNXa83Y\nq3lWCsDxtZ5Xx4QOuPsx/XtX9O9e0b9zReAv8c0QLw/xpyuEAYVhULqS0je4KEeciB1O3W3i3g7F\noYBntk46XslKe6pOOlrcLMVbX2Ovy9bBrqY/a/qyejiN983zJtxk29fkiXo04zoLlKUZjamESJCF\nFpOwz4t4nzKGMUNaKqJlRrTcCFmUxIVDvLSJU4dxuMHz03tcnQ5JT2w4KvQhZxZBXlckrbg+PzY7\nZ76N+/8ae88QGlx3QbgKy07xzZCOnNMvJwSrBe5ljPk8Rz2DaA7LhR6xoZCjDHkV406h589pZRGO\nTDG8QjcO9KUG1oxG0vpbFRrvGF+vwOoMbxP86mh9nG008PWBIvhwzifD3/N3/Bv/R/GPfDb9I1tf\nTuEbNNYioTu6YPuDK7bePyNwV5RSsNwI+NMnPtlxoAXvTyUsPFA9YIYGv5o39vsOwm4DveqOJC1e\nam7Q0e+FB7Lu7FABK6oqByoTUCs042pejWX187vACMQudE14KLRm2vvAA4V5P8Ua5hidBBkXXKw2\nOVveJZcGWWmhrgw4Eppa/zV63r9RcAjMUvTkXlWfveDbwZfgepN4W8TVb3PO6ttvBcjmZtnU+735\n9sZ7/UYhqmdVfddHfufv8s7++7bOdGoGX21wWtBzYc+ERxDsrDjYPOLj4HM+Nf5Idz7DOU9wXsS4\nLxKKjkG6Y5Nu22RY/EW9h9nOCU2Pk8EWJSbl0oIzAyUc9PpacY1y/hBaes05qLOuNQBYd+UN0J0t\nTbAsrSFgrpULlYCsyhlfgl7J9ZBSlyu0TAgkYqAQ/QKjl2H0MmQ7I7ckkeUxlV2S1GG5aLM877A6\nb7O4arOcBywWbRbzNvGVSX5akJ+VlOMIFiHkIWRRxfhqanzdWHHcDLzeJvZXDXpJDXoZdVe/HEGh\nD4QV8JXFsMpgVkJUuXsrAT8ElgoZlxhpjlVqcXRT5EhZIKTSB1JYq2oQa7/H23BYfx3210ooLF1C\nYdlgO5idHHeY0doLad1fsa1OuBc/5b3lY967+AvOLMGa5JhTPZb3fBaPWiz9FsutFn8O5hgbsNzr\ncFrs6s+KbM2coORm585mqeP3ARSsz0FDA+pl8qKOuTq6vMQWGnT3JC8bg9ePX6ogrrRpcoXuWlkD\ne6kGvlqO1hnqgdzKsUYJ7kaIO4hwvRDDzlCWIMNiRYsF7WoETJcDpicDpk/7xE9bFC8yisOM8iKF\nZQr5UvuvIuJ2xlfzmpv+620Dv6rRuP1CaODLECUGBWUFfWUoCsBUYBWgMiBTiFwhy/Il8CVqwP5b\nj27zC+8AsFdrt8Vedal2xbbvOpWml8A9iNm4N2bvziF7B4dsiCu60YxePKO3mIGnKAKDwpfkgeSJ\n/QDX/ZC0b3K+PaR0JSq1YCJBONwkGVhcs6Rq8Am+n7W07sfq16Yvq8+SNXmijhdr3w/XZ7XaZ4XV\nqH92o/JIWVrgP5UQQxZaTKM+KoJFHPBCrrBVjmNm2F6GSCEvDLKlSV6YrCYtJi8GTA77ZC+qxkKX\nKUxDyOpzaw181ZVYzUyY4O2KveDab1WsYUuAIxCewnIyfDOkK2f0ywnt1RL3IsY4LCgf63zuJIRx\nCKGt6GzltMcRrWkObZ9WFlbAV6nDdU+Cbep44Ftsr9djbxnwdRs9s9l2WOgS7X0wH6RsHrzgI77g\nl+Xv+GzyR7b+ZQr/AOWXUF6hSTQ7YH9asL84h1/9jqnf48zZ4nJnk6P7rWux+wtTZx5flg/WqHZT\ne+L7nId10KvuSNJDT8IGyJ4OTF2p/6nWLRdAampNgaULcVczF8oZGoiaVdc10qNTgV4/Az4D41cZ\nzsMlB7vP2JMv6DPBISHDYr7V4YIhz5d3mC22yJYOPBfwZzTg9QxY1ZSxc66Br5py3wS4mhu/xU37\nKYJhdcBpNL5WA6pls2weYkgLmxCPBQF529S3axOGz2E/05IDPhpHsTeAoS7JDk2fFQEhHioT13tY\nWX9eEzJ7Z6/WmuVC9dqtwGrHg76lGV8PBcFoyV77iE+DP/E/jX+iE8+RFyXyG4Xx5xK1ISjjKnfs\nSzwvYtn2ORlsYVopWWwizkwIDJQw0OvL42YGrxl4vW5by0S9nIM64ArQh8ce0NFML9MC2wLbuPmj\nStAi9kVFD8q4Dr5CkApsRwNfPQl9kP0So5djdVOMdk4hBKF0mYku87zLeDni8nKTy8NNVsdt8iuD\nYmxQXBmU0wK1CFHzCLWINGNCVWwvVR8e1zW+bst2vWWBV3WvhdDAlzALxEvgq2J8hTcZX0sFdg5+\nAkUIcgUiVpgV48sixRQV46sGvm6VkWjO/9sy76/D1tdtg/Fl2hpgdhyMdoEzzAh2l3TvT9ian3D3\n5BkfLL/iZyefY51niDOlx7kiSSwS3yLZtkgMC9ESLAddjvID/RGRAVc2uPXNDbkpmvt9+q56HtZL\nsxsVB7UwNgOdaKxzsoHQ396UxImrZFVWf6EG9Sr2velq4KtvwqbA2CywhwneRojfX+BaEabMUUIz\nvha0OWfERTXiZYvotEX0uEX8uQ+XK9Q4RY0TWK50slOt1nzXetJxPbHbHPDTXlM3kK6K8UU1lAa/\nKDDIySq2V4VzYZXgVJWspCByXjK+jJrxJVQD/KpZZc3PfWev3tb810uZiZYuc+w6sGXAPYF7J2Zw\nd8z+nee8f/AFO9EZo8tLRssxm9NLKEtyX5I7krwn6bSnxD2L82iIjHMoXbgy4LBiChbflXS8rfvw\n61hXtyUwmr6sBgHrCqGgGq3q73WsVpc91mB5zHUFFFyfGRpVSMqCojpnVIyvadRjGbU4jbcwzAKh\nqqpwt5qBpUCtBGohKM4M8qcm+VOT7IkF41hrq8Yh5DVZo1nueBt4Dz9tf9W0tf26LtV2AE9h2xme\nGTUYX0vN+DosKL/WhVjTBM5SWHoKLjNaVzneJMHpe7QKDXxJr9B7my91fH4r8PV6/NlbBnzVi67J\ntqqiC+nrddoHRmAPU/asIx7wDQ/jJ2x9NYV/guIfYPEFTK7ANGG4Be4VmIZi2Jnywadf8ZV8jz97\nn3C8c4Aa2Tqe8UyIXG7S+H4IW9NOweGa4dUHhiCGYLY1S2sbXa04qL7NQf/qCZrYNQUugHMfpj7E\nQfWFpf5Ppg8HAj4AfgHG/56y/dlzPrY/5yOhNdOGXOIRkWMwpc8RuzwO3uOPv/iUx+1PSGz/urT9\nBFjVmmLLatQtUJs14vV1wk2ASzW+VrPB1hkWPxWrD/QVoyUvr6dtCou4zXm5xbHcZbEZ0Hm0xPhI\nsX8F9lOYxjrhvLUFzofARxDesTi3RpyxyVW2QTE1Ne4YUk1zXa7VDG5/inP7Q9pt2UcbTAvhCUS3\nRIwy3G5MIJf00inD6Rj/ckF2DukpJMdgplqSwnJ13NbvT+l255qW3w1RbYPMs8ltg1KaIKoN6aUO\n0uvbmG6/5vVSA4eXpUEiALujhZ2cABwPswVGAGYrQ7rZy58CClUI8pWkCCV5aFJGlu7AmwjdHt4o\nIXBhZCB2FPadhO5oQrc1pSsmdOMZnXROJ9WvaiGxrkqsuMQ2cmZ+j1XcYhW1COMWRVwlCoQBhdSB\nHHANcsF1prM+KDYTNQ0A+zu7Pr7J66x5Lc125imoFJWViFDBFNREkkQOSxVw5fS56G6w2MzIVxlG\nnuL2CsTIJNs0WY5MymGXud9mSUAY+iSxR7q0yWNJmSv+ehtzeLPn9Ye2dd/Q8B2iCqpNA2yJ4Sgc\nN8PzI9qtBZ3VnE46pzud0T2Zw1lOdg75GVprakfiXEncmQFLST+b4Rshlp/pUKYtdbmj2dT/Wwe9\nvq84rBmTrJVJ0QarA24b3Ba4HjKQWJ0Mq51hdjKkqbvqquqxLCKTbG6SLyzyhYWKpPZfsfZfwjUR\nPQOxUyLvpgS7C4bdC4bmORvxJb1wSjed0UlndNMZplNguCWWV+C4GZNyg6mE3HYIPQMcQ5eLKwOK\ndeH0Guiq4+v67815Xl9fTU2fN32drcc6dUxZ+a/c0o0Gltp/JR2XWdzlLN/ikDsQRLAVw4MIsYwp\nbElqCyJbkAY2050O486AC2OTs2yLSdJnFbXIVlZFVCl1uWtxm0D3mzqnPzZbZwA3z0++7njXsmBg\nwI7CGiUEwYKhecl+fsRwdUZnfIV3MkG8mGC2S5xQIiKBiCUj55KhOWZgj+n7V6x6bbK2Q+47ZE4F\n1pfVULVMTtOHfV9sr/WkYzUHsnU9jAoItFvXumeG1ooS0gBRVWbnUpcwZpUediIgNXRDJTPQgalp\nInsKayPFHuph9VPdjVakWEmKYRTX4K8pyByLKPMJc48o98lsS8PFqUAthV6HWa3vVQNwNQGlyWRb\nj7HW4y5uef0p2No1qxIKVVWlCopCV2RFyiUUHontkLdMyp5EbICRgB2Dm0DhCIy2QembxK5Jbnok\npUNWmlq3LVGavVyotRjs9Z4b3zLgC26yvRpDGg3SgMLsZAwYs8UZw+gSvgL1Ocy/gN+PdfWdlcGj\nE/hYgrcN3scxO49O2PQv6LtXeBsrwo6tz2Zm02HW4/VR+W63Joq6JoxNH9gEsQ2+B7sS7gIHwB6w\nC3RLhF9qxxUJmEq4EHoyntejDSsD1ATo6a4md4GPQPw6Z+fnz/g7+1/5Nb/hF+r33Aufs5GOcfOI\nUhpaM83b5XPzKX1xhfUw43N+RbZwNTB/JbRIfjHgGqkPG9dXdxRsml29NlleovF3c+3f3mRbZ4dU\nYjdEQK47xowFnMLstMeLwQHfeA/5sv2A4NMlveUS6Sg2H8PmFD11+8AvIf1bg8fD+3xpvM9T7jE+\nG1EcG7q3wJyqHfB684Z3rK/Xa9eBiDAEhq2QXobRLrHsBDPOkHGJiCA9gcU5LK5gMdNEznag9fBN\nG4yswJYpvh/SNhYoUxKbgGmQG04VC1T+s3597XZbwFkfHmumRBdkBwIf+j70XGTPwO4leN0Et5di\nt9LK82ttlCI3iBYu0dwjWnikU1OzQ67QYpuyRHRtxI4Bj0rcuzGbm2fccZ9zkB4yujrHn0X40xB/\nFqJiwYIOc7oshh0u20OOevscDfY4mu6TnbtwZEBpwcKFpCmyXV/bbb6rtpIbGmTfOkTeBoS9adYE\nvTJeZoRVCJFETSTlqSTv2axkm0u5wVFnh6A1RRkLCBa0Rwva8wSz55D3fKY9j7A75CIYMTY2mC4H\nLOIu0cQhXZqUSQlF2RAJXz80vi2dnb5vqw4qRsVmsgTSLLGMDE9EtFjhZRH2MsW4KhCniuQClleV\nfsgK3KXCmym8SYk7VphJgZFrZiA+4AjN4pdNdsI66PW6/VjTfzWSFDVTV3SBrga9hj4MHRgKrH5O\nq7Mk6C4IOksMK0cpzUxUCOKVx2rWYjULWM0M1FjC2ISxC6lEuGAOJMZ+jvFByGAw5iB4zt38GXfH\nzwiWS1qzFf5M+6+twSXzUZvFsMN82OaZcY9n3fuUuyazsq81WDJbUypfZj7rzluicV3rc1q/NjUU\n61fJtT970w+Q66BXk1pvwdKBcQk+LIOAs/42X2cPMUVK0L+i/WBMUFwRbEwpTYPENChMg9J1Ob8z\n4sXmHt/Y93kS3+ci3GK66JFMHZgoWCgNrBW1jt16g5R3/uvV2DrrqX7mHa1T6Ju6k+OmPj+2jBW9\naMbmxSWt8wk8WzF/lrJ4pnA9hX+m8DegNSzxNhI6gwUbgyu2N06ZOikrt03oQe7bKCF0J8hcaMDo\newfu19leNXhfNScx2loqyAp04rHrQM/Rr20TYQOWQtgFQmiWtgoNVGjDUsJMwNSCmacfYb+t47mW\niTEsCO4s6Nyd0bk/o7M5p20v6FgL2ukCh0T7+WosnYBTtjixtzhtbbPI2xRnJoVnUhgC9S1wul4r\n64lH+Dbo9V2xwU9pnTXiMFXo+CjVGhIqFCSxwyJrMy43cI2IQXfKardFttT32VtBr5L7Dg2Bve9Q\nbvnMBx6LYMh03iUMPfKFqYkzywLivGI11iXzTa3IVz+nbyHwtQ42NQ5UdWLQUUg3oUVImwV+HsIY\n8kuYzrSy1HH1P+0CNmdwMAZjCm6Y0/JX+DLEsrObzPrvFB//Pq0Jvlm8FMZmAGJLn4LvSPgQPd4v\nse6n2NspdneF7UQIqUhjl3TeIrlwyZ7Z8GddDoQHfO3rakdLwiYaPPsI2h9d8jPzPyvNtH/gk+nn\ndH6XIp6iF4AN/b2Iex+fMbp3geMkZMJi+SDg8cUn+uB4jGZ9jWsqrcv1AbLVuK6m1YunFlJUXJeZ\nrgNgbzr41XTqtWPP0MBXBCsPLk04gvIbl6O9fT53PmFDXuLfCfnA+Jru5hLzeYmYAw4U25A8cnj2\nYIffOT/nD/yMx8kHJE/b8FzqezKh0vuoR+28fiqbwY/RbgYjQkoMO8P0M8x2jiUSjEWGnBUwVqQn\nMD+HizFcTKGtIK9Ar0CCIQtsP8XrRwTGkty0UIZJYdgIQ6EMoBR6qPUDzuu+zvUyg7oOqE1VhwiB\nDSMbdh3EM5JvvgAAIABJREFUjsAe5rSGIe3hnFY3fAl6CRR5ZjKfdGEiSKcOnBtwaGtGw9LS2aeu\nROwKxKMS917IpnvGe+5jPsk+Z395hHWaYZ+kWCcZ5BCPXD2GLsfmLn8afEKxMLicD1m2Pd22eWnB\nmeK6e00T+FovB7iNAVWv52Z2P+dmIPYm2npwWWuu6VJQFVkwteHUpAhsVr2AcX+Do+4urrekE1zS\nGQk6dxLcKCVuOcStNku/y5WzyXk+YpwPmS4GzK+65BNJtpSUqYIi0ynod8yv12xNMERcl39V5yjD\nLLCMFFfGGvhKI+yVBr44heQK5jMYz+EqhO5CMZiV2FcK+1JgihIDpXEuH01XtmTV2OK7gK/Xfb31\nZzTXdwV8iQDdVKkPbgBDC+7ZcF9ijmKC7pJBd8xG9wLLSq+9l5Islh3MyQbF1CCa+JQvDF3SnUmY\nmEg3x9gosA5y7A8KBs6YA3XIh8WXfHz1Z/zzEPskxT7NsE5TkgOH5L5DrFySwKFthJRdi0m5od1s\nZsDchtMawFtV11HHs+usuqbVwtz1MKrXZgnRm+6/4Fa2FzGkDixzuCrBguUg4HRrCyuNSYXFzuCQ\nnQcOVrugey+ilBaxYaGkRWK2OOuMeNHZ44l9n6+ThyzDDst5pwK+0IyvONd+7K92pnuT5/bHYk22\nff3MuzqIahkV8FVitVL8MtTA1+oSeTRh8Sxh8XXC4rGi7cBGX2H1FEZf4N5JaN9fsuFesb11iumU\nSBdyz2bltysCuAAl14Cv7/O6689sNlaqSj3Njmbcu20IWlrrbMeEbQtGErwS6SmEq3U1y6mAqYGa\nmTC24KSK5+JAP7atCjgbmJg7GcGdJcN7F2zdP2VzcM4ovWSUXTBKxwTZSvsoQ+8nY2uDL633MFVC\nqFySzCLr2igPSsOogK9mgq1OztfAV10p1Nz3b2OqNoWR33Tf1bQ1P5YXmpVlKNRKEMcO86yNUaZY\nRspO54xwzyfHQnbAq6pH3QVESJJ9h2Q7YDboctkeMgk7hLlHtjQ1cL8sIckq4KsumW/6r3fA1yuw\n2yaxOmTcYPjpIKOsN/aq0kfIm+GTidZ+Q2qf9LKYRun//+Mpt19nezXp9j1gE7wK9PoE+AXIX2V4\nH87Z2z7kwD5kk3PaLACIAo+L4YjnD+5wdOcei1GXsmdq1F0BX/r6R28AByAeFDzoPOET+Tm/5t/5\n+eUf8P/vHPHPoB7r1qfSBnkA4ik8+r9eUHxqMDV7HLPL4XsHJF/1tcj9htCZzZd6QzWA53FNv11n\nPtXBQM1IqhdYTRuGnxb4VTuN+ppXwAzCQB/ynwv4Esbbm3zufordSSilwdVen/e2HrMxn2OtCpQp\nWPQdnjp3+ZP4mN/yS/4j/TWHTx6Qf2HphgMnwEyBWlSfU2cdm/p132f3rLfJrktopCGQdonp5Vjt\nGDNNMHMNfIkTzfiaX2jg63AG/fIa9FIKDK/AHqT4WUTbWJAZDrnpkBhe5T7EdQD2LdbE67B1VkYT\n+Kr1cSrQXg4gMHSQdVci7hfY2wWtnRW9nQmdwRSJqjpilWSpDZeQXjqsLttwVIHnSwXnCvIS0SkQ\nOwXyUYFzL2QzPedR+phfp7/lweQp4kghvikR3ygQUCApRpJiKHneu0OxMrhcjXi8eg88AQsDzqyK\n/Xsb8FUHky7X4tv1qA9SdYlDDYDB9Rr7PsseXoetB6RVfbsKIfZQExN1Ksg9m6UMGPcHHHV2sDcj\n9kaCII0Jkhm9QnJpOSztgKk14LTc5GI85Opyg+m0z+K8i5oUqFWOSorqwPhfsene2auxxnoWaJ9S\na92bJbbMcEUFfGUx9jLFrICvdAaLFVyu4DjU+ur2TNGZKKxLML0S6ZYIR1WdhivgSyp+GLZXbesl\n2o0ujqICvhwfhgLuSfhEYO5ltHpLBt1LtntHuFaM0tLmKCRXiw2KsUF05TMdKy0QnFowMXUVqZtg\nDiLs/Rzn/Zh+fsX+5AUfTr/k19Pf4hwmiCcK+UQhnijKmUAJSRkIym1JaVhMOkOeeg90DDczNOjl\nNZMOTf/VbJDk8u0Sobp5R/3aBL3WNQ3fxPV2G+OrYqymnga+rBIULLdbnK22yFKDqWiT9G2soGBw\nsMDIJ6Q4pMIhxWFJm7NyxFG5x5PiPl8vHlKuLIqFSTG1YFJqCYui+CvA15s4nz9GW49FGuWOpn19\nlBopTDPDX6zoLWaMFmPS4xnz54r51yXHXyr6JlgdRbsDRkfhRQkdb8HG1hXb5hnKMchch9ALEL5C\n5VXC8SXo9UOCXzVAVLNW22B0wO6C19FlBJsC7gp4IGBfIYIcEeTIoNAadxcGnJuIcxN1UjGsIqWB\nkBQdL/UlbAmM/YjWwZLh3Qv27z/nTuc5B5MjDq6OOFge0Stm2g1VYdORvYthJqwsl2Nzk1naRnWh\n9AxyWa+FZjJxnfG1vl5uK9Gu/x/8NGKv2po+u7zJ+AKUrRlfy6xNWYCUBdNOn1Xpk/kmcgTeFJwJ\ndCaQFILLfYdoK2C20ec8GDIddwkzj2JhaOB+WVaM1e8CvuBVz+tbCHyVjddGdlnlkFlVkkZQxA4r\nWszpsLQCeqMYcxuGI3hwqpleErhrQq8P7EC5IQhbLjO6rMoWWWxr8kuMrmH9wWmRTbZXXebYBga6\nLnvTgIfAz8D4+4yNX5zwUfePfCo/5yFfs8sR3WKOQLGULU7EDt/wkM93PuH3/s+5dHYpChtSoa9b\noIOmTXB25uwaR9znGz5Mv8L7TYH4R8j/H1g+hfECPBv6X4M7A+HBw61nvLfzmC/EE3b6Jzzd7cMQ\nLUdmAVkdZHlUQmrcBMNqU1yLhKW8FIB9KYhfB2KC6+fjTQa/6ue6BvbqUsc5MICJA08MPY8tixfW\nPcr3DVbdgCNjjz+Zz9gcnOMOYkokVww4Yo/HPOKL+CMev3if5Lcu/FFo4OsUKGI0ba8uP025Bhzh\nXcnjq7T1IFtvxKowUBmUkaBcGOTKIlYuoeOz6LTIBgVqXmCtCoKowG8LzC1JuSWINyVR1yV2q6x/\n6JHGDnlqUuZSM2FU5TPVbTTv123rNHsbjCrgNGxEy8IaZNhbMfZuhr8Xstk5ZdM+ZSs9pTefIFWJ\nUAqpFGnh0CmWtNwQbxgzEQOS2CHJ9aGjyCXm/QJzN8XaSGm1VrSzBZ1Iaw61T2ekp5CdQnKqkx7W\nSG/41gL6Xoe2WOB5KywnwVjlqLZCuQIlK/8r64NvBrIAw9Wi1oajr7We87IqxSsyKJuZsVocttao\nqAOy5jPypthawPWydXsIpQ2RgKkJpzalNIiEz5U5wLViEJAoj5iAkB5d5ozzAeNiwDje4Czd4uRs\nl6vTAeFJi+LIgJMMphkktejhbeK2b9L8vQm2HlQrHVRnQKIoUpM4c1nlAbOix9xsE3Z84i2H7J6B\nminMlcJdKtpLsHZMiqHFqmMx9kzmRpuo8Mhis9J5LyGpS8DqsQ4IvM57vM74aghBG3U3Sz3METib\nEe5WjLsdszG4YM98wW72gt3JCzwZaZ0aoYGvVhKRZw5L2cXwS7KBQuwpZKpLPe1HGc6dBG8zxg1W\ntBZL7b/mC7pnc8RZRnoO6Tlk52BtgHUJ3hisK2ibC3xzhetFmK0U1REoD5QpUVi6vEkGIHsglPZd\nhle9OvreltVeoUrIU+2/8hTKOharha1rIL/2X3UM9qasv3VW6FqpYx5DFGvxG5WSnkmWL3zoDsgc\nC9+Msc0CaQoSs0Wq7JdjVbZ4Ht7jNNxhGvaJrlpwWMKFgmUCaQJlCGUMqgYVb2NMvClz+WO35n1e\nO5S/dG16zQsDpFMiiwLTLXEshW8o2ug0vSt1w2lpA7ZAmZLSkBTSoBBVGwMl1m7jbZ//um2dcd/Q\nNiPQMhOtFgxdGFoYW9C6s6R1d0Vrb4W7FWHYOdLOkZZOhme+QzpwSU2H1HSIU484dklCl8y3YQtd\nLbSJLnXsrhh6Y/bMY/aL5wyXZwQXZ5jHl4h4iRVo0pkVQNR1GHbHDHsXbHbPiRyPpdth6eqkWelU\nrLXS0uXbOpvbuE5ukpNVo+zvBpuz2dCj6b/e5PW2zlrNtb/Odayp4oR8XhJfWPDCZxr0OS22eVrc\np21HpH0XYerkk2iVZIXJZX/IhbnBZbzBSbbN6XiH2XmP5NiGEwVXhdbtzutzatOHvR685C0EvuAa\ntW2UgpUZhJ4+t08E+czinE2O2eXU32LrwyusxyWtK/hUwPZM67L2B+D/AtTHsLrn8czb5ZRtruIN\nogtPYwErNFXwRpnKDxVYNzMVdYqip4Xs94H3gM8KBj8/5Ve93/B34l/5G/XvPAyfsBWe0p5FgCIM\nXC5am3zT+poteYbfDfnnT/43LqIDypmpHUaOBr660O1OGcpLdjlmdD5DPlbwOVx9Cb+NNWkoiOHD\nQ/jYAXEXzM9gd+eYIZf0xYSnfTTBo9bvyEw08DXSH6LrG0A4ejd5WS2koEy4CQCtGq/NNroJ18vi\nTQS/6sxp03ll6OucApcQOnDs624aJihlcxQ+YPV+m8PeXTadU/rmFY5IKRHMiy4X2Ran0TaXT3co\nfm/D74E/ooGvaQblGF3fWge06yL37+zV2HomvaDehFVuUawUYmKiziWR47MSLWbdNhOni2kpTDOh\n7yY4bonbkQRbJmLLJNw2WfZbLLodZvSYzfssF23i0CVPDFReQll1QVQ/lHhu7btsvcZtC1wTXAPR\nBX8Yaf2HnTn9zSt2ixN2lsfszo7ZKMaIUr0ciXAYuBMG7pS+P+XCHjFVPaZuj+mgR5w72I9SnN0I\nJ4gIWOImMdY0Q54pimNYncH8EhZTDXwFY2ifQ/tEa4kZToHp5lheghmklJ6gtCSllChh64OjgQbv\nzAIcu+pAWTFWiwoYKJQWY01zSKu9StUd3FbVvNTBQm1v2qFn/ZluAF/K1B36JjrLrDKLsHSZ5ANI\nIJ65zKwBZ9Yuz6wJ/x97b/okR5Jcef7M/HaPO/IGUACqq6v6ZDfJJWdnOBSZFcrK/tErOx+Gwx0u\nl0Ny+0adOPLOyLj9djfbD+aOdEShuDvSVSiAVSpiEpk4MiPMzdVVnz59GloJm7rPuu6xqfqs0hHX\nF4cszifkF54Jtq5LM3O72GKmc2z5MvD1Pfj19VvnGqumhUJq0FDEDtu0xyyfUpWCYbDi8PCabRFS\nhDZypQnXiula4a411iMXHvdY34uI9yJusj3WaZ8ids1tsVAQV1B0mUavu75vAvzaBe1dMzG2J6EP\n7nHB+GDBZHrLZHzLoXPJ8fbc+K/tOX6VoaVpD9VC4FMSiwEzDpAoZKSR9yusXoW8X+GdpPgfJAST\nmMhq9NK6baM3sF7AZgObDHox9FfQn4NzA6KnsKIKu5fjhhm1b6Eci9qy0EgDcNlDw161A+O72uXa\nTXjdgF+VhrQy7XhZez3a+65l4nX9V5s8wrt1/+0yvjJAQOVD5oNIQHnUFzV5YCMIUVubi/A+KnDY\nBEPO/QdUyqbUDpWyySuPs/U9blZHpOue0Wf9vIbLArYFqBT0xrBidVcf53vG19dvu0l4FxyooJBm\nME5s2JO1Lal6FmVkIdcW0aVib6RwBtp08u1BsAdiCurQohi5JH7IWvSJVURee1SVjS6EGfdZY+6n\n14Fu34h10Z9dmYm2W6hvgK+hD/cceCSwH+RMD6+5d3jGycE5e/0Zsq6xihorrVGVINERsRuRTCLW\nzoB5PuU23+O22KNcuy9BL/bBGtdEQcJUzrlXXHCSneNeLamexcw/q0jWEIUGe4tCsPdqwgcxkwdz\njoILculx69Qo3yGNIsqo6Xqqm+KjaogSovlsQu6QgWtDjFGNHMLLPLI70bb1X99GUfiPtd33uION\n6MIA61WCzl3UXFOeCuh7WPWQ8+A+TqhIgh7P3YfIXoXlVlj9mrqWLO0hy3rMcjHkNp9y/eKIxfMJ\nxXMfXmhYVLApoNzd028uDvuOAV+KO0HN9vsmcdS5CZbmwBUUlx5nP3zAp8EHfOx/zsEPbzj+6xmO\nowjuGU0vLOAI9M+g/J9tLt874Ak/4gv1mJvNIZy5ZsDhEvPAJ+HV6vyberh32xy7wFej5i9dQyu9\nB7wP/o+3fND/mD8X/53/qP6OXy5/xeRXG6wnZm/Q4E4zRh8+Z//nM4KDhMqy2Q57/F8fjdjMhnBP\nml9VAgPwRE5IQkSMWGuYATdwVsALDGkoMu+GH81AzEDMoceGiJiQ9K47qPXB+BgKmDB0Wzs0QVfb\nSdBq1pdA2jNBdllCtcEEXS1Ys3sbNAHLy7HB74Lz6tpuApljNm6L2XgPlgfwmW8mzGXAQrB8ccDy\n4T5Pj98nGMS4dkGtLbLMJ7vpo57Z8LmAjzHrc+CqhHrB3V62Z7yrQ/R9m+PXb7vAZo6uBCqRVEuL\n+sohG4dsvR7rwYD5/oh+WGN7glGgmIYFciARRzYceSRHLhsnYi37rMWQ5XpCsg4oE5uqsBoARnWY\nX28qcexax3cJzzAmQpM8yqkm3E8YH95ycHzF4cElD2anPFid8uD2lP3VDFGZ4FHUmtzxmBwtGB8v\nGE4WDMIlF/4xjGvSex6lsnAOcvyDlLAf0yMmyFKcVYm8VFRnBvi6bfTSlAX7tyCvIRyCtDRyUmN7\nJU6Q4/QKKt+0gitpmfdvYT6DE4GvIbAMGB1app201M3CUMGT0gRfZQV1C9y3QqzdSG2X1fyuWBf8\nav1WYlDFtGGZ5CVq65NWPotiQpYErJYTrsKUIEwIwxTXLckzlyz3yHOPbBuwOe+zPeuTn3umlXVb\nwiaFfIPxW1vuqo27gtvf29djXUZf00JRNme0giJ22aR96lyQlD5T/5b7hyO2YUh+7CBXNdEC3KVm\nuNTExx7xvR6rkwnJ3oTr2ZR13CffeCbumjfAV9lOgd4Vzn1T98du3OU2rVEOjC2YCtyjnNHBnHt7\nL7g/fs6JOuc4ueTo7Irj00v8tAG+JGgpEL7kpnfI8yhGRjUibICq+wW2KPBGCcFeQjiNieT2blDA\nojLA18wAXzcbmKUw2YJagTs34L1UNZZb4lgFbphS+S6V66BkE0fKwMhauJ6ZpBvZRuMosowfq/Td\no6nQsGn2u2wLNR7GAbZnouu7ut0Y78o9uAuItC3pQJVA7kPtQ+5TXQpybOrUoZhF1EOHzXDI1eCE\nqB9T1xJVS5SyqAqb1e2Q1e2A5DYywNdNBdcZxDGoLXcSEy1w/zqNr3dlH98F2/FjVAbEL0UzNV2i\nXQvlW5S+TeHbBGuLcArOGAaDGjeEcB+CQxBHUB9a5EOPxA/ZiAGxjshrn6q0O/MKGgblG427uqDX\nLvAVAX2whjCUcM9CfCiwf5izN7zm/cEn/GT4ex56z7A2CiupsTaKurBYRUNW0YBlOGQ23ONF8RBd\nSLZln3jdN4SJZtnjmiiImYoF9/ILjpNzsquU7GnK/EmFPYOxB9IH3wfruCIsE8bBguOjS3LpoWyb\n1I9YRhMTM9YOFD6I0Oyj8AHPvArr1Y54XZtio2i0QF8WHFvx7m7bdhdbeJfuue577bZzlg1pJDXM\n0tylXthwaqMsH516nB3cJznocXlwwiBaYzsFTs88h6hhm/bYpn3iRZ/tvMf2tM/m+YD8mQenGtIa\nkhb46jLvuwL3X699x4CvdpIMvNpO0Wx4XZnJOGdQf+Fw/eCE3/3wx+zZM8J+zC//3a85mC7w/iTH\nusVMdt4XpA99Lt475O+DP+df+CUf5x+xOJsaYOCcpm+5Zd20aObrJkh909YVefV42SYYWEaY/hh4\nrDjaP+cj5wk/59f8yeo3TP9ug/xbUL+F8sq8dWcf5E9gtEj46X/6A+v9ARfymGcnDxF/8QChtRHE\nVpIysZFSNbsuX/GjrStt5ZwtTBJpNVidbryPap1Lu02hgLoHVWS2LxLGUe5jWGERd+3aBS+ZfNy6\ncDsxIop1q6fTihm2v6Db7tgFSt8V22V9tee8rTg3u73YM+rmiTSA7wvgSFDs9Sj6PQMgKowvWmDQ\nyXPM9M4z4LaEeg5cczfasXVc3ZaFd23/3mbrggOt9lMDfJU2dexSL23EtUtmhcT7PVbDAYv9Ic4g\nZ+jXDKOCYR+qoSQ5skmPXJKjgG0esdn2WW+GrNZj8q2DTjQ6b5hHqn0gfhugF7zK+GrYUaENQ4mc\naIL9lMnBnOOjM97bf8aj9XMex895dPqcw7Prl89SUUIaeozEksF0ST9YEhxtYVyTnHjM8xGJ9nD8\nHN9PifyYXtwwvlYl8kq9ZHzdzuB8CbUNcg7hNUx6ID2N5SqscYkTmECAQKAdGyEstHAM68OOwNV3\nOv19YfwX3HUz5oCt7kCvrOYO9GqfYzut+6+AYe9CANb1u2A+vHX3V5kHeQSrCu1q0iIgTwOWmzFy\nAXKokUOFHCpEoFGxQG8lOhaolUCdWdRnEnVmwaw09P06AdUCX237+7cBjHyXbIfxVSoDkkgoE8P4\nSnMPWQ44DK5YBCO2RyGFtAkWFuEc7LnCnsPlxCXe77PZ2+Ni75BZPGVT98g3rinQLVvgq20JftNt\nYLtaYh19QqsB7UdGx6ZlfJ1Mz/jh+AkPNi84im84PL/m6Lc3+Ov8FX3+Yuzz7OAxvYMtlqsQA4U1\nrrDHBe44w/NSfCshtBPD+OoMChBX+iXj63oLpxmUMbgN44sbEJ7CGlbYVoEbZeCDciTS0tQvGV8u\neH0IFAwEDIUh3vfEHQmiALJmf0uMjs/Le7utSrbM+tZ3tdfnXfJf8GXgq5HOqHwz+EeYCXiV8KlT\nFzH3EGcem70h13sKuVcjxwoqYfLrWqBzqC8t1JVFfWXBrEkU0wzSDag1d63aX8X4+t6+HtuNvTrg\nQN0MlkgtiCW6L6l7FlXPohjbhGuLcKqxxxp72HQJ7xnQS9yH+kBSDDuMLx2R1R51ZXfclm4ekW8i\n7vrX9FW7rY6NvtdAIU4UfKiwf5Yz9W74gfcpf+r9Iz9Rv8dOFVahsVeKKnWYORNuxlNm0wln9gm6\nkGzKPlfVkXkcjzA56Risfk3kJUzEnJPiguP1BddXiu0zxfyJQp+DcMB3oO+A9bAmDGLGh3OO8ksy\n4ZM6PZb+BCusIXKhsMHxQETN54vM1yIyzK9ud6fuMJ8ouAO9Wmmc7rl4F2Ov1nZZ9w1zRReNlE0C\nONSLEGW7lLlHvvZI0x7X1hHWqMZ2Klwvw/EyXC9D6pr8KiDfhuSLgOLMQ51a1C8k6pkFF4WJa1XR\n6WJo2dndAuTXe+a/Y8BXa102THuQ11ANYTYyif3HkB8EfDz6Ef5BTm1ZrMIRH/7sY45/eEWQVCgB\n29DnhX+PP/Bj/oVf8k/ln/P8/DHlb0IjxH4GrFRzUTeY4DrnyyK63/QNsivq2jox3wBfQ2AP5FHJ\nnn/DQ57yYf0Jw08S5P8N9f8Jq9/D5dIQPg4GMFmCZcP0aMvjwVMeBs94X37O/fdP6bHFoaTEYcmI\nNQNiIjYMKMcWzmGFOIajL+Dh2jC9POChC86ReSCwB0vGrBmQEtxJRw2Bn2O+Xwtz+d4DTpq1j0ki\n/WZrUwywc91cjzMBLzy43TeCsC9tl8oMdwHMu+TAWtsNwizMGWwrFDVs9uBpYPRzTgVMMA+dkDvG\nXNsdusTgW/MGoddLTIZx2/xle77bNsfv2V5fr70O9Gr1UmKjrbcCLi10IEiLkHk15VQ8IHRjbot9\nhtaGQW/NcH9DGdokgU8qfJLc57P1B1zMTljNRlQzB/VcGJAgLkzF6yuB+zfRKrSrM2GbXnNHgi8Q\nIbh+QeTHjLwVU/uWQbkg2KxxrmPkafqSra4q0P0a+3hNL/OYYFPaFnVlYYmaSKes6wGhigl1QkjM\nvnXDfnhDOEpQB1DkDsLS+Lai7yhqKXCPLNSBRTq12PQjEiegqDyqrYPOJDJQOCcF9k9r9LFEu6Bd\nYfLgoMaNCrN6BQKoS4u6kNSFRbWxKBYW5cKiXDjoJIA8N9Nw8gozZbNlf72LrUKvu86d4FE15702\nGkFqLVFOgwQU0gzX6FtmVKmvzbMh0SbRXivDkpg3zJMsx9wobYtjC9a35/p70Ovrs6+qJFt3LRQi\nAR2jYhs9g/qFhXhisRyNOY/u8Vn4Q8IwIxA5jlvjRBW2qrnx97iq97ne7nOt9ji/vMfiYkJ26psi\nznUNqwLylFcZfW/Cd3XbhHZ9lwXSAtv4LiKwwhrfz+h7aybOnDG3hPkSZ71F3aTUy8KI1jfL02vG\nwyvuWc/54eAJeeTiOSm+TvHylICE0E0JZEJIwpF3Qb+/xtqvyO671J7AChVhpBj1NMEDC05ssgOL\n5cRmG/RIRUCRNYUUoXHHBfb7NX6WoT1h9Ao9ifbB6+d4/QK3n+OEJaq0qEtpfFhmUcw88luPYuZR\nLTzIQkj7kJVNh2M3kWzPSXtm3gV7nf9qr7fgpdYZNaQ1WirzbS6oS0HZtMix1AYIbnO+QsOsNkXG\nmTayEuXarKrrv7os++9919dvXxV7NYBAKc3jZCbhVJPqgBn7PPUeMRzNmQRLgmlG+CAjSDKIBOpA\nUh+amOGz/vuc6nvMVvtsqgHpRUAxt6m2Cl3mRv+oLkG/bhDLmwLBOmdatstG+BInLHB6Oc4gY9K/\nZVLcMtnMGd8uGcZL6itNfaUprzVlbiNLQU8ohFdABInVIx/41Mc2/dEa+gLdFAL3ghsOnEv6zhrL\nrg0A72g8W9CTAixN4BgcS3pQB6BcSW3blMKmtG3qyEJNJPpEgBKGbRv44CuoBdJzkb5Eegph1yA0\nQmqE0OhKU+egcps6sxppVQWZgNxqWiVb9lcL2O+CNu+Kddlr7VnvsO+VDRnolTkTWkFhN4SKykes\nwPF8bK/A8XOkrqmuHcprl/LGob6w4FwZfxbXUGSY5LJ9Pu/mF99Mceo7CHy1B7PLlkiANegVbCN4\n7sAYdM9i4+7x6z/9JdtJnwv/iCfyI/aDG8IgQQMbBlxwzOfqfT7JP+T5+WO2/ziBXwGfAOcakoxm\nfAGq1eE+AAAgAElEQVSv6h99G+0UXYH7pm/QES/Be3+cMLYX7HPDQXKD+6KET2HzCfxmAZ83RYcH\na/ifPoXhEcjPYe+XMw6DK/6cf2TCgjELHAoKPG6Z8oIHrJq9utof8/DHV1hPNQcbsD6GTQ6uhOMj\nEL8AfgrxY48XPOBCHzGrpmb7xsB/4o7FdYPBXX4AfKCx3i/w9nKcqMTyanQtqHOLYuWSX/roz2z4\nFAOefWbB6cj8rJfVx+5knPaMvGusr25ra7cFquKO+dU65wzyMVz1Ye7CuW2CcU/s/DfViAVXoBMa\nBAzztG+F7F4HirxL+/Yu2G51qXkg4ZovF9IwoSpNmgbc5AfYZUmhPPrWmrBKCe2EcJhQ2xa5dili\nl7z0uJidcHr+gNXlEHUu4bSEqwy2zWQ9Nny5XftNBl47SYUljcaMIxCuxnFKfCulJzYM9Ao/SxDr\nnGJWE19iBl+1Q2pKTbEpkVlCVK840BI3qxhvVjxYn5NVAc7A0LUdt6BvbzgaXBEeb6mloOj72NOK\nwbRCTkAJQfDARTzw2D7wWE6GbNw+cRWR3/rUiY0V1jiPSiy/RqSgbIm2BdoWeG7OwF+b5a0RQhuh\n/colrzySVcD2JmI7i6hvIuqFC8sAlnXTVtTe720rUZcB9q5Yt6Vid3U+m86gsMyUTCzIpSkuBQoC\nbaan5RpyZRLHVMGqNJPVyvaeWfFqwNUVqn0TbKDvkrV72AU1mqKjbkEpH2Ifrmz0p2Yy83p/zOn4\nIfZEs50McKsSq1BYKGxfsaoHrDYDlpsBKwbMnh4wfzolfRrAM4x2yCrvAF9dgOBNMFZ3wa+O/xIS\nLGH8l2tEsB2nIJApfTYEdYzMM4q4ZL3SOAuD80thXuknjNQVj/xPKCc2KpCEKiVYJgTzBDcqcAYF\nTr/AsQumwZzRwQJZV8S+Tz2T+LOK6azCn1W4xzbOg4Dsvs/svs/cHbGWA5JtjyILsFWJe1Dg/KzC\nPqioHYvaNeCzdmAUrBg2K/JiisqlqB2K2iXPAlazIeubEavZkGrmN8z7yIA5ZXuPd2Ow9ry8C0XH\nryjMvIyxuy1RjWRA3gDAdWlaqbIaNjWENagmyK61WevK/F3caDzWW7P0FhN3dQHdb4uN/V2w3dir\nLTpuTdFxKeDSBgfiOuJcnuAEGdnYZWIvGEzXDN7fMAg2KN+iGLoUI4dy6PJcvccXxftcxUdsz4ek\nTz2KK0m9rqHMDONG5Q3r6HUTiLvv75uyzhl/GXuBCDVekNPz10TemgN5zWS7oHcT489K5EyT3Gri\nGWxnkFcaUeRIHdOXGmsqKUsfGUBwlHKiT9G+RAcCHQgG3poT65TQ2lJYFkkWQr8kGpRYwwKZawYh\nhKEh0OfHknLqkkYBG7vP1umT9gPKfRcdC5Nozh0YGqaqlAp7JLGGNfYow3I1UiikUAihqDNJubEp\nthZqY6OXvkl95g6UPqi2bRvufFfXh3Wvz9tqu8+q1nbyDC3NhMekZW1XgAupC7cuetxoQTq2qU1T\nU60k9UqjV5UB7m+KpiDVaqW1Q9Fi7theu3HY12vfQeCrpfC1gEbrvJoEvgrgagofW2CDUjbL5IDf\n/KjP9b0j/hD8lJE7J7BStBbEVcS8mDLbHHB7ukf928CAXr8GPtOwKEG3dJk3XXX8/7LmkHfkJxyv\nxLcyAlK8VCHXwAqWiZFGuWnetQes1tBfglxBUKdM9Yy/0accbW8YZGtsVVJaLqtwyNPgAb+SP+eG\nfX4rf8rwpwnj7RoZwPQhTJeY1rr7wC8g/fcOT/Yf80R8xDP9kGUxJtxbY/1vNcLS1IVFuXUoLjw4\nk/BY0f9ozfTkgpPwnDFzQswkpC0R1+qQi+UJq/f2SY8j01LkYPpVT4dNQtTqgLTXp+QuIHsXAjC4\nA726SaNLM9+du4mXGvNZN5grGkMZmkmZ60Zc+246AHeg2bZZLWOi7Xdvz3XO3Zn+HvT6eq0beAnu\nrkkDYOcSlq5p4d1osjTgptonVx5zsYfXz3C8AtfLcaICpSzq0qba2tSVzfp8wOr5mNXzEeqZgNsa\n5jlst40Pa1tZdxmrb6pVqKNTKKTJAJvEUXgax6kIrIy+2DBQa7w8NsDXrQG+StVIZimoKoXaFFhp\nQq+WBKpinK8oN+dUc5e6tM1nczVECtstiYambajuC4qpjz0pGE5gMFbUSOp7LtW9kO1JxCIcssl6\nJGlEvgmoSwcnrPAe5fjvpUhRo6SFkpJaSnp2zIF9zb59zYF9g0QRq5BEhSQqYrkYYV1OqS9sklGP\n+sI1otIlsG7b91vQK+1cn3eFct9NHO2d1QaVDWCiM1NpxTIA2FYasMuuzatVQ9UkmJVq2kNzyIpO\n21vM3WCTf00b53v746z77GxBr/ZMNoGv3mKyxQp9GZpW4K3F5njE6fFD4uMB59UDLLtGNpV46Wmy\nxCOLfdLYJ0s84qc9kmcR2bPQsPbTGpIc8i5o317rNwUQvI4F1EkeHQGuQLoK1y4JGuA+UFtkkVEk\nFdVaYS0NTmZhXpmmDPUVDwOLaJpgCU20SohWCb1VjBw0CL+tEH2NF2YE+xmWVxFPfcStxL/J8WeK\nyQzKA4fiOCA/7rM56rPIRmzSPuk2osh8HFXj7hdE0y2BNpqulbSpLAdtwb5zyZFzxaFzycSak6qA\nVIekKmCT97meHcE1pDcByWUIL1zQEWxt2LbxSMld1b+NH8Rr9vRttG47WLclrMsGAdDGJ1EbaZVC\nGtbupgS3BLfilYmYSkNemJWVzRTHphClu0zVthj1Pej1zdjrYq+26OiY59HKgQsPKk0sIs6DE9KR\ny1W6z9S5ZTKdMw3mTA9vqRyb1A9J/YA0CLheHnB1c8zlzRGbmyHlM0F1XRvgqyoN8KVb4Ovb0HF7\nDWjvmgK5CBV+kDHw14y9GYfyksl2Qf88xvu8QDzX5EtYLjSzBSQohqpgKKHnFAx1ifQ1fpgyGs9Z\nuUMzBMgxw4B8K2dP3hDKDaWwSLII2csIB5reqMIpFd4A/AFYfVAnknLiGODL6rOxe6T9gOLAQSkJ\ngYSBbdqz+zbCq7AOK9yjCvcwxw4qLFGbRU25dUjnAeo2oJzb6AsbbNuAXqsIqtZ/tfF493pU3D3/\n3vY4bBf06uZ+OS99WNkAX1UD2CeB4UFEFgQ2yjIaRkpaCBQqq9GZQmelGXISJ2YVTacKreZ2Vybn\ne+DrG7CuE2sTx1bZvhlxeto3YlON8Hd5FnL26DEXxw/wpjGOX6KUpIhditsAzmz4AtPe+AkG9Lqu\noVzRCE5wh2h22V5vQZDdYTWqWlBri0rY1I5AO03/tG1kaNruwQAzwEc0WEqNxYf5ZxxdXxE9KZBn\nmL2L4MHDa44/uGByOOe/Wf+e3/AzvP2cP/kPv2d4ssZ/XiJWgAflkSB+GPL00X3+Qfwl/w+/YMY+\nJ+45e39yQ0SCRU1CyFxPuLw9Jr4ZEu5v+Mneb/gRf+ARTzngih4xFRYb+pzJ+3w+eZ/fD37Cp8Mf\ns3WGhvKaA4kF1yPD+HulXa8FwNoWorcdyOmCXg53gVeAofR1V9Ash7vEssKAG3B3Ltu+9tb5dceQ\nZ53V/ruuTsf39vVb13e1FOQGnM0dWASwqcA2jK9ce8zFFMtRiIMaMVEQ1YhhDZlEFxJiC72WqDOJ\nempRf2ahP5WmwpxnkMfNvdFlTbxpkOA1CaRsGRMC4WlspySwU/pye8f42hSUDeMrxxCADDSrcTcl\nXpYSVApPJXh5ibct8eaGWVI6FmXPoqwsqkhSDy1U37Qn5FuPYKwJxjXBSFBryerIZXkcsj0asJRD\n1td9kk1IPvepsZH7Cm8/J9rfYAclJqyyqIXNkCUH4oIH4gXv8RyJYs3ALD3AnefUL2zSYQ/ZE03g\nFRjWk9UVM0y5A4ve5cRxd4E5a4UpVuSW0ekQVtP/1TAoRG2Wbr7XzUQmnZql2slBrXha67taUKZb\nof3evh7rMr66Z7JNHG1zTWPgykInPlxZrOcj4qTPeX0Py6qNHEv72PJBbwV6I9A3AnUj0M8k6rlE\nPZNmWpSuG+2QhDu2fRcg+BbZqruML1fh2A3jS2wJ6y1FnlPEJcVKI5Z33CEb0FvD+Ir8hJPJNUFR\n0l/E9Fcx/dMYPYHKkZQ9SaUtqtAIbVcTm0T5BHNBeKMIZxXBDJYTm9uDgM1+n/n+hMX1iE0+IIlD\nihufaD/B3S/o7W8YTpcUOJS4FMJBI9gXVzwQT3kknnLEJVt6bOiz1T0W5cSAXvsBi5up0QLTngG8\nrgJMQa4FvbzmEyruwKK33XavcRf4aq9a68N0o5dZmym9QsA2B1GAyEE0oKzuPOd11lm5WV8q0nZZ\nQN+zVb8Zex3bPsUUYBxYeVCFsNUkdkQ2drk63MPKKib9GUfTKw4OLzmyryiky1b22Io+G9Fjkw/Z\nFEM2N0O2nwxQDdteb4qG8dU+s/414OubtB0f1oL2PshA4/k5fW/DnnvLYcP46p9v8f5QIp5o8jUs\nN3C5htjSSFkw9Er6IfS9BP8gYzhacHhwQTwIUFjUQqKERACOKHApKZEkaUi/rwkHFb1hgVeBGIOc\ngBiBPpYUE5c0DNjafTZ2w/hSDsoRRoOw7xjwq+chogL7UYL7MMd/lBphdqqXK1/5qAuL8spHXNom\nGS49kypZGnN/t+ch7lyXlmTzJoDJP8ZeV1xurQW+iubbRpezNC3biNrAJtI2YIAEhblu5icrtG6G\nB6rK+DAVG21C3W3V7up7dffvm9mz7yjw1aKwrWXcPZwsQ+dLNDzvQ2qbC3sGfCxQew7pYETa1Y9a\nYahQl8ApcNb24reg14JXJ959m5Xl3T51ZVplMmFkgmKPTd1naY9YRhGT4yXOfcX0CH6QgZuZ/3nP\ngfEJWA+AE6hti0fPznD+q4J/Br5o5Dv6IB7B9C+2/Px/+T35kcf/Lv9X/pa/5nYy5YPJpxx9MMfO\nKpQtWA1DnssH/Fb8jH/mT7ngiIfiGY+dLzjmgj4bJDUJEVfigC/23ufzvffZ55q/4B/5hf4VP8w+\nY7Rd4hVmElLihVz3Dvi9+xET+xb3fsFv9J+SJAODR84FrG1IJ9yxWppKzisi7W+zdWn2bcDVjhyO\nMIrZw+a1Z/7c9oxIm2x1KJqArMoNrZotd8lJC3S1Z7h9CLfnuR3l+z3o9c1at32tbRnKMdcvhsoD\n5UBpozcu9cyi9iWlkEbHbQSMtHnNgY1opI4EnCkzZnWmjBZSvoJqDXU7NeqrtETelA/rskYaVk+h\nIDVi5nnmsS77zOopQ3nIsC8QhwXB+1u8EoRuUhINaqBxpzWeXeDG4FyVcF5QvSipTwtkqhBbC7m1\n8NcW1cRlE/bZhD02YZ8ydLH7NU6msKuaqnJYe31WdZ/1ts9tPaVY+kzWS368+QOlcIi8DZG7JbQ3\n2GVF7TbtQq5Fr9xwuL3gcHvJ4fYCqTV9d8XY7ZG4Eb0sRQqoBw7pSci2CKjWUN1C7bno0gPtmmuv\nOyrYLwOZtzHo6gZcLUjfVFJECDI00+Nk2EyP88yr4xm2n2h0RpBGY6WUJiCravNayqa3tf1dXXmD\n3eThe6bEm7Fu+3tHOwQJlTBxCAJKjfJso+OmJGSueZT54m4tFNwqo902V3BRGZbqtgnMX+pO7mq4\nvSlxe3g16en4LlVBUZs23K2m2tgkacSiHHOpjqi9Cnu8wrov8D4ssPcUtmiwMoBHNXqYoRTo2wq5\nrbBPU8rnKetnKdYSZGFhFxI3t9j2e+RBwCoYsAoG2KHG6de4ZYVT16yCAUuGLNIBy/mQ5WKCuyx4\nb3VKuM4ZOEsG1pKBXNLTayrPofQcKs9G24Kj7RnH2zMOt+dM0hmBvaFvr0mdkKHYoDKbwvJJRyFV\nbVHe2pSXDmXfpg4cIw6uHDMlRLfTtFv/9bbGE20O0Y25HAwyGxkfRgheAK4PXrMsxyzbNlOcKse0\nNFaYlvVcNxUabc7ISyYv3Gnkta9f5cO+92Nfv31V7GVB7ULeDN1RDurGRT0XVJ4RgrcHFY5fgwe1\n71DhEOuG0a0j0rOA9KlP/kyiTiv0dQ6rBNLEAAWvdFW8SX2v3c+vX/1SNWmDllTapsAllx6l61CH\nFvQFctgQ52sYFYYoFgUCO5KogUUVSkRR492k9FYKx07QQqCFyUuUK1E9iepLqp5N4kXUY5f0XsQ6\nLrEPa9RAvlyr6YDFdITqSfrWmmNxQV8m7FlzHjjnpEFAOXYoHYcysnG8gt5oQ8/Z0Cs2uHGOpYyO\npKUq0jRkKcesemOWR2OSPCLb+OTrgGzpo1a2IcsUnmGB6e792WVRva33ZBfw6oL2nUEG7dRL6YPl\ngd28Wr6JO7ENbqLFnVuqzNm4K2q0rdnxztdtPrnry745+44CX3C3sW27Y9L5u+aOLkq4GMDGhUtp\n9KWGmADM5a7IvqUBULTRGklawbYW9GrZXl1h+2+L7dUGX50EoNAm8V1CfhMyu7fPuX2PZ+5DDh/f\nMvxFgrOEH9hwcGOKUcMJ2D8FfgnZjxx6SYr1Twr+FtJ/gO2F6SwJAhg/BZlBv5fzo7/5hKfRI/4P\n8Te84AG/4yfsD67xBzk1kgUTLjjmEz4gIeQjnvBL/oWP9BOONzeERdKQWzxmvQlP7A/5PT+mx5b/\nqP4rP7v9A0efzw3rbom5Hw+XPPjwir0HM4JBirIt4pOQJz/9E6pzzwCW1xac9TGq+Gu+TFF/m1uG\numh9d9xwiAG6xpiRlxOQfRN8hZbBw0JMrimByoLMMuc97kPeh7KPaXO75dWEpZs8doGQtzVI/bdg\nr2sb6oxN103grSRIDalndNuEA5ljxL8jCaE0r6U2E7dSAx6xKI2Y/bIwvq/aQL3GTL7b1XB7U4yJ\nbiDf8V26hKoy732jUWtJEofM8ynn6h6OnXMyEfiPMmSxJBqDp++637QP9r0a2xM4G9ClIH1ekz6t\nSZ9p1EYTzRXRDKIrjTxwyQ4C5gdTrqwD1s6AynWoI4e6dMhzj1QEJHFIkgeo3MJe1Rwur7gfn+Pq\nHI8Mv0jx1hmyb4I13ZeovsBLUvpnSwbnC/pnC6TSlH2fqu9T9n16ToYWFqXnEh+FWMWQbOaRXrhk\ngYsuXJM81jZUrd/a1fpr9/NtsN1gq23HbiYNWz2z7AicCAbO3erZjcZIU3lGGOp93KxEGbZi0qy6\nfcZ3WyZflyi+LXvzb9W69zHciUM3Z1NhqsmiBlXCokkkMweWjtFmcdv2QGk02zZ189roh6xK0xZG\ngSk2rjC+q8tc/jYB++Z5qUqj87RVMIdy5LCKB1zmR3yhHpP7kvHhFeMPFL0qxt9UyIYkJgUwVuhJ\nia4E+kxTzGuyZwXrZzXZU/CH0IsVvQ30FlAfOKz3h1zuH3LpH1FaLsp1UIGN6tnEhMRpSJyHxPMQ\nd1kRLVLGy4/52fa3hMQERUy4iQluUqqRRT20qEcWOhQMrm8Zns4ZnM2JZmuCMKYON1SBRxJuqHyX\nwvfJQp/KksTTHvE4Ih70qCNhWv5Ky4BedVtw7IL3b9v9+bqYy2tWD8Sgqfr2IXRh6MLQgYELvgWe\nZV5dy4C9mWXOeVabQR0rbY5u2eQKumWU7EpQqJ31tu3TvxXbjb1aFkxTNFa2ATBzyyT/twE8c6Fw\nYeFR9TwSv4/0oQpcam2T1x658shrj2JmUVxZ1Fc1+iqFdQKbLeSttMgu2/7b8GHtqzItuJVuhv4J\nqtIhUz5b3WMt+yRhSD72qE8kMjf6WxPX1KsyBOHUxtl3KA9t4rFNuZTo6xp7mSGSHCEkUgqEFNQ9\nm/y+T3bfo7hvAKvtWKLek2hbohKbKrSpAvOa912ykYeONHv2LQM2VLjU2qXWDpkdsO2FxEHIdhzh\nyIKRu2RULhnNlvg6Q1bKrLImFj1urSm3zpTbvT3m5YT5ZspiM6XYOChPNi3brpFK0i3y08bm7bV6\n2/PHrjRO68v8uyKkCMEKwGtGaPqO0RPWPijXAF+NbPTLjk+lMWd2i8FC1ny5Y+jN66t+h4GvtqLU\ntgx1TfMSpVRjWI9h48ONbR5YjrybeFc31Zm0EZ4k5Q7sWnIXeHWTxu4FflPWBdpaZk4j7J/2TJB5\nDbywufnBIZ8GH/A7+WOO71/i/odnBE6JcwyTq+bH7QEfQvYXNotHEXu/3SB/B/rXcPoZPClMrXWS\nwC9T2O+DeB8OfjHnOLigb214wofERFxyhE1Fhs+cCeeckBDyV/wdf83f8hfpP3H/+gW9jyuDv1Sg\nJ/D4/accn1yxP7hBKckvF79m7+838N9A/wH0HDOZ9gScn9U8+qtz+DPBKhhy6R5y/eiIm0cPjNj9\nCANu1hF3N3038Gqp928bsLOrH9JM6nwJek2BQ2AP/B4MbfPtIWaC4wBToJSY49D6pxvg0oNbD7aB\nqca+nLzUWjs9rj3Hb9ve/Fu0dr8Fr1aVNIat2jBbVAFpAPMAMh+WvnlIuQ64tkkeVcOMqBrR7zSH\nODPAfd5QknVXRLdNHncHc3xTfux1QF8LfFXmvWeGMaFXkiQJmecTnDpDWDXeOGf6aIHlu0T3zMdV\ntVkIjfQV0quQG0V5K9g8V6w+V9x+rilXsDfTyGtFNNXIY8jTgLk15XR4nyvvkNjrsY16xLpHloSU\nmUuRuJSpyyDd8Ch+yoP4nMfxF4zVArsosTcVllsiBxq9L0ziagvkqsR6nmL/3ixZg9izEXs27NmE\nk4xi4pKMA5aTAbrUrM/71AOLPLAhNSw/dNP+p7u+q5s4vi3BV9dvdYGvhqEqB+AMwOlD0IexhAML\n9iVMLXN+2yWAhTZrqQ0TyGmes0UJueBlS8qXksXdAOtt2Jt/q9aNQdrnaUfPSTW6IbqCqjABdRbA\nwocL37BjLHn3WpR3+kdFCWkKaeO72km3X0oYu9Oi4Ju93l8B2lMafaesAb4WmmLhsN4OuSoO8XSK\nCkAeKIZ1TC+cEeWNrKEwrwgFokRXCs5KVpea1bOK26c1t880/R4crMFdKuxbTf3QYVMPuPKP+GL6\nmI01IHF6pH6PpOpRpC5F5lKkDkXq8nj7Be9vv+D9zRc8ip/iFAXOpsRxChyvRB0J1JFEWxJtgXWV\nYH+SYv0uwX6aI4c2cmRhDW2ySY/iyCU98oknAfnAYTGdoEeCvO+TR01GjGVA+7qr7fc63Zlv23Zb\nV7vJYgCiB2IIcmR6r0IbJhYcNqsnTOGpJyEUpl19q8xaK1MvFxjG17Y9M3nDhOsWMHbbs78H8L9Z\n2429WmBDm+dtaRn5lErDbQVlBHMLXgjK0CMOoAxckqCHVpKqsqgqu9FZVdTrRtNrXUCWGNAr32Ba\nwt4mxpc2gEaNKZ4WgrKyyeoW+BqQBCHFxKU+tpA1hJ4JSwINuRLmfth3KQ48irEF1xWcVthPcpxL\nhWUJbEtgSainLuutILddqqlNPI1IJgGpHZKMQrIyoHBcCscjd1wsTxEFW6Jgy9Sa4dc5rq5wqXF0\nTW57zIMRC2fE3Bnh1BV76Yy95Ja91S1+niFyjcg1stCsgj7XkwOuJvtcT/c55x72uqLcOKy2Qyop\nTedM5UEcmKLGK0Wdt5k00Vq3RbvxY60sjugZAF/2wIqMRlrPMiuwDOirLLPaHBIabkQjT/EysVxw\nJyPUBbzebBfcdxj4gq+m07VgWDvxcQm6D2mE6XHsPoBa9L+l8nVX2x7UOqxuxfHr6l/91zRc2p+v\neDVRbj9b07qW1yZpOBfwGcwf7fGk/xHT6JbQTSk/snkwuKD/oxh3USE0FCOL5DDk7MEBobtFLzdw\nA/UVnFfwFIPtroFxAuMbcG/AWkDv/pYxc/6Mf2bEkpCEGsmSMRLFigH3ecEv+Rf+svwHPnryAv4W\n+B0mKKhB7IH3kebxvzvD//OMtddj73cb+DtQ/wUWnxpNbtuC/gQGt2Dbivt7V3z00RM+Fh/yxP8x\nNyf3YE8a4CuUsGl1r7pshFYv52203apjm0D2McjWIYgDiCI4tuAx8BB4ABwDkxoZ1aY3u5CwsuBa\nmJbd5xjdumchLJqgFHi16tWCX60W2rvQFvouWzdhqzpft/uuDBtKp5BFkEewjJpEyTf9fqI916qp\nThXN/0kaoKul13d771Ne4TC/sev8OvCrZXw1wJfUKL9hfBUT6hqULZhMlmTeBda+S9RoZr5koRdA\nrBCxgi0kN1A9h/UXcPkpZHOQY01vrBFjEAvIrJD5aMLZvft8IR9y6+5xG06ZW1Ni2YNcomMLPZO8\ntznlfnHOYXHFnxX/xIPqBWgQaAxltnkfloAI6pWmeKEpfqMp/l4jK3DvgXdP4N6D4FFJHEQsjwfc\nHE0oKod6apMPQoRvN5U3Zydp7LY6vq2Mry61vgW+egb4skfgDSEYGNLqEfBAGL/ldRbCTF65xjwf\n7KZwlZeNcLbAPI9b9m43SfyeJfFmrbvXbcGxSSJV0wJYNS30aQTLqvFdGOYqlvkeu/FZjd6RzkDH\nzWpjr66OWzt05U0njF2gdZfxVZmWcgvKpcM6HnCVH6IUyEgxOtiiwxm9Q4uBagCvNhxZKbhWJmG8\nhvg55E8182fw/ClMA/CWmtFcY99AXTls/CFXe0d8oR8zkwfM3T0WwZSFnqJyiU4F+lbAXDDOVkTZ\nb/lh9gl/lf0dKBCN4LqAl2QXHRl8Mr/WFJ9o8n/UlL/V+Pvg7wu8PahPAjLhE09CNmFEMvTQU0E+\n8tkMhhAJAxzUFuRf5b/avXxbbLfY2DK+fAzjawhiAnJqwK0JcCJM7DXC+P+RMGHakga4x8iqCMxx\nXWLYj7qjhfeliWtd0Ovb6CD5Ltlu7NVei9oAXqpp8xLKMOkXVqN7JCh9jyp0ScIeItRGgrIQLxlT\nlDm6SKFsNL1eFh03GPLErqbbt3G9G9+tm1V3GF+VQ1b7SB0RygFJGFKMPVRlIRs9eV+BLqCqBPHU\nIt5ziQ99isjGKROc0wL7nzLcTwocq6nP2lAd++S2i9zrUb1vEzsh8/GE+XDMQk9Y6z6ZCEgxfnRn\n0FQAACAASURBVCYSCe+JZ0Riy1TcclDfMGTLQG8Y6i255XHZ2+dqcMBl/wA7Kzm+vOZwdc3x7Jpg\nnd11x6eaxWTEuX/E9PCQ0d4Rjl1QblxW2yHWRkEtTG4Uu0aagZwvT3N9m60L4tvc6UJHQL8B8Qdg\nDcHuGZmBHiYm64kGhxWvdmS3HCB2GV9t51C3Q+ib1/Tate848NWyvlrB1bYlopsotG2QW8yDrT3Q\nrXVpjV0KX9vW+Dqm1x9zgXdvovbAdv+uC3ipnT9rqqsvhRmbasLKhTMLPgO173E2esR/f1xQexZL\ne8SHD55w/94ZwzzGUoqVH3FhHXHJEX/JP4CYmd8ovlwP0+1be/mRBR/yCQ/VM6bxEq8qUFKw8SNO\n3Xv8XvyYBWN+xB94fGFAL/2fIf01rFegFUR9GJyCLDXHgxnRB1v4BNTvYfU7+NUKLjBX6v0Efg54\n98D+ScW9D844sK4Z2XPEpEQPPHMjexI27TXu7uvr9v1tsO5Ot1XHFqkfAPtm9SJ4aMGHwE+AH2vc\nH6RE+1uC/hY/SJBCkZceWdIjWfZIn0eoj23j3ELgYw9uxqZS/SXEfpd2/71987Z7l+2CCC7oZr1E\nCNxO8tiwX7Q065XzvasjUsMfVWUU/z9f4csgxG7FrD1/uZl0VGQgU/TWoZxpklMPORngUPOCh0SN\nBsctB3dbJMCmoqc29OWGvrOBOsEZQm+gmUSaIoNhH8IR2FMQw5qe3LK/ueXB+SkyVuwlC5bpDat0\nRJKHqMqirm1U3+JQXnJ4+4JecoO43VCmmdnuZvvkpJFK6JmfXzUfpcogS8EqwWoIK/YGnLjAzQtc\nVeBaBY5dYtkV0tLmUkphAE3RPRdiZx/flqRoN9Dqgl59kEPoRzD1YGoj9xS94y294y3RcUy0nyAt\nZZat0RoyfDLXJ+v5ZCOXomdRuJJSWlTSMdXYstHgqP3mPbTg/du0N98Fa89l9wx0/VbT7qp9kziK\npuXxpQZrA4ro5v/rXWC3G1C/Tuz7f+Rav85Xidf8eftzu7+nCzq3cVfju1RmJvQlBcic+hbSC4f1\npI/oK/xhQaBK0Ba5jujJ7StYUOAmDMI1g+GavlrjxDXRCkZzgxeOIuiPwJuA3AffzxkXS05uLkk+\nDRkXa9bJjFU8Yp2MqCsLpRo9nX3Je7PPmcTneKs55W32UstHNzVUOzK4tL1vbteq+UhlBnkKVgJu\nbPJAsa1wshK3KvDIjf+SpRlYYGnjuyQd37W7x2+bfVXc1Qd6hqEaBRC5EFkEDxLC9xLC92LC9xLs\noMIOavPq1pQ9MyGzDGzKgUMqQxIZklghue9C4kDiQxIaMB+4yzLb798mNu93xb6C0alLg/CoNv9L\nQdsGL6pEM0tFd0ZMa/PgrxMjYl938rKXeeQu0/6PicP+ta93/33Xr7Y+rDIdBXUOIkMXGdW6Jr+x\nEc8D1v6Qq/yQp/VDetGW7NBDihrLU1j9GlEpqoeSal9ShxJtKWwtETVYpcbOtZG/U2bpqsatK1xV\n4OuMqI5RucTOaoI8Z6RXZL5P5nlkvk+oE06Scw6Ta/bSOYPNCmcRUy8T4mVCaZfIqUtvT3IwVThZ\nzfBsTni6QZ6mqFVhLkduVpEn2KMVg0MLpTSJ1ePGOyKIMuRQGbJAIA1KJ7oDLbr+/23zZ93nV3cQ\nhwciMOwuOQC7D4MQMfAQA4kc1HiDHH+Q4Q1y3LBAK4FSEl0L6sIiX3jkc5984VEtBSQeJD1IJg0w\nlndW0XlP7fn65u07Dnx1D2abNLrNais43e9bGKcbUHVBgGxndftWXxeA/Y9Y9+bpJjW7fw53TvEl\n7MSrjqt9z+2Y71tzOM/+X/be7DuS7Djz/F3ft9gXrLlUVtZGlkhRJbVmOTNzZp7mz55+6D4909pI\nilKRVZV7AkgAsUf47vfOw3UHHFEoUS2xqCRZds49gUwgAA/36+Zmn332WQgdAwJInC7P5MfEpwEX\n4SG/MT/i0Lgg8ncYSLZEXDNmyIyP+Ipq+AamFc4hnM5gk2i21wg4CcCcAgeQjwSukfG/r/8rB5cX\nBC9LxEaf3uoAHp+85vjwjL8XP+MRL7G/BP4J5C/g+TPdlVgBp3P4cQrhAMSH0DlI4RrUFVyt4DVw\nVl85V8LjGbgzMBaSTrEhMrcEIsHycwrfbQ03bAMJ77vdl0DWGhP0gRH4IZyaGvD6czC/yOl8vOL4\n6BWP3OccckGXzc2kzFl/yOvjB7w+fMLVwZS862tAUKETx8WofqA3AwDaky/hB9bX78Pua7Voi4Pv\nT/Gs/y1sDXiJeqCBqpEYWWur3Gkt2WfD/Ht91r9mtcHT+/5e47/qyX5VqkciqwRl2ZRXkvSlBXYE\nscErv6AKHBbBiK/d+Z2P4quEE/cNp+5rTjpv6Lo5zkLSv5YYQ5Ao+lOIDsE+BMYFfXfFye4M63XJ\n+GxOvA3YbUPibUgqPIqeTd63KYY2XX/J6eYbguSK7CJjteRmQr0CrFTnR94QjFjHkUWhB+Vs0cOC\njBLsDFQMIgEjV5hlhaVKTEpMJIYhWy6rDXy978FWm77SAF/1EA7Rh64LJw48FhgPC/rDOcejM45G\nZ0x7V9iqxFK6dUFVgrnZZx4NWIwHLA56bIOQjRWyJaTE1s+3nQfKh6otFN08o5v990Py+P3aPmjQ\nCrhv/Fakl/DB8DR6YtRClDdglwGq1L6LRhB9n934uzrWfX/bjsHaf6/N7FJ737sP+ErB0JP6qmuL\n9K2N4UVIYSFGBpXnsPb6nHuneFZ6B/iaqEse+q94IF7hBjF2VdGJodqAs4SwC4NDCI5BHEMQxUyr\nK6pLA3+TsIsj4tp3JduQomdRDEzKoUU5MHlYfMX4+g3Ges3qjfZbspb2wQBvAP4B+DtwMqgKrcMe\nSx35GhKcUocKRgZGITEqiakqLEpMUSGEQgj1/rmp32rt/du0BjX7tg9BBGMPphZMIDzZMT15x+Tk\nHZOTS3yR4ouUQKS4KidxPWLHJ+767MqAK2vKtT3lypuQRS5c23DtgYx0++OdqYIZt8/NH+w/1lrA\n0I3wfYrWXbWgqDe6EprdWtWrrEDWE4dVM3V4v1uoAb2a4mP7b/5r7L6Y4F9747Vjs9qHqVz7sDKB\n3KFaKYpzA555bESPC+8I30+pfJPLaIzj5bi9HOcgx6kynKMMd5zieClumYIQCAGm0O2NpqFDVMME\n01RYRoknMgIRo0qBv0kZLFcUS4dcOmQDh6zvkJs2jswZLeaMr2eMrhe4sy3FPGM7L1jOFdKp4CjB\nOTIZ7zTw5b/cYbxMyV9KsrXGl/OaNF6qkmq6I9gaOHnFRg3omWs8L0V0pNYc9Qyw69i6PSjvd/5M\n+l3Y/l5o544+mIGubJgd8HqIqY1xYiFOFNZhRjdY0g8X9IMlHW9LJU0qZVJKkzx3WC/6rGZ9Vos+\n5cyFSx+u+nBpQO6jMYdmoiPc7Vz59+Qb/3r7Ewa+2oF3m97XrGYSXlR/3bQ4NslhE+Q0I0zbqwEB\n2s6iDUL9j9h9gFdzQ8Hdm6ttjRNunGRbC6ARZmyAr7ravnThG1u330hI4i7Pf/QR80cTvul9TN+f\n4dkphpAkpU9mu3xh/C1vOebT069xP8sxXsODBNwLSAsIbZg8BPPHwKdwNenzYHPG9OcLjP9PaSRr\nBdhgHsP0J0vC/22LOhX01VKDWeewO4NvgGeto59eQ3gB4hLMnJug0BBgqLvhidHCZWTzDwEIdQ9R\n6X1yUr/N9imqNdWegaaTTCz4EPgzMP86Z/KTMz4b/Io/M3/Jx/yGU97Ql0tMVbEzQi7FlGc84Z+G\nn/Fz/6e8dJ+SqghSo+4e8WHXRwveN1MfU+7uyR+CsO/P9v1B47/22y0Cvg1+WSCaqELUfflSP6xV\no7mzX+H7rvU/erz7SeN9X3+XZkljrcALQwNfJFDFKGyKSxPl2JSlR74OKEcuy/GQV6NHBL3k9nCA\njrnmR+6vqFwI3TVhuMC9FpiXEA4rBOBNwT8G6wREv6RfrjB3Fb3VmiTxKdYO+cqmWDlknkP61CXt\nuWRDBzNP6b59R5hck13kLC9r4Av96hQgR2AcgpNoLCa/1erHqmWqvEzHwiJRiFxiVhWmKrGoMITU\niWPDlhD1BxT7LJj3ye7bu82+ran1Rg+6JpwYiE8F5qcF/WjGw85zPol+zRP/OW5R4BY5Tl5AafA2\nOuKNOOatOOYsPWJmjVDKICsCksKBZc0kyoNa/LzZR22w9wfQ6/u1+wD75rnV9lsRGgB1NeBlumA6\nt8xU1SSPdTwmGxbYd8VCv6vjbceM+/6rXRBtij/tvdQGvgRIWzO+ZAZ5hrQEmW8hRUiWh6TTkPWw\nz/nwlGi4xXLLO8DXY/GMNHBww5gD8RanyujWoFdvBk4P/EPwTkE8gKBKmCTX+O9SJsmMfO1QrG2K\ntUOxccie2OSOTXZik506dGbv6Ip3N8BXpbTfkuhT3ZkCS7BjsHNNBM8rPSMlVmBX4Bca0DcyEIXC\nqCosWWJRYlBhIBGou7ff++iyvmX7Pszhhq3KAHwPJh48suAxRIdbDg4v+ODoGx4fPKObbfVKN0R5\nzMrtsnI7LN0OS7PPC/sD8GAbRiw6A/AtkJ5+MKwEt6BXU61t8ow/iJP3R2rtol0DfjVkiEb/yABp\n6Om1qh7goeq2Z5XcLprVFv++Txv638L4ug+0v2/f3BfnNblji9GmYlTuUC0t8nOLynNRlcP54THV\nkclq2OF17xi/lxCkMX6aEKktg86CfnfBwJ/jbDIQAqMBvYTO10wTDAuUqbCNEtfICLAwqwpjqzAu\nFeYFSCnIC4vCtMgj/f3Ockf0NqbzYkd1kbG8rthelyxnEuFBd5nQ2VV0igQnVfA8h+c5+XNJttIA\nflwD+YZV4j+I8bcVXh6zZkTXWuN7KUZH6lZtz9C6OneAr/cR9Grsu0gTHhihzh2dLgRdxAGIpwLj\nU4X9QUHHXTJ1Lzh2zhjaM0psCqVXUvi8mx+hZoJkHhC/8/WEOylg7cM6QvdzN512DWO13bbd2PcX\ni/2JAl83cAh3p7GE3LJl+ug+rw7YXt1wbN7FtKqaqpqnNT216WNdcvtQumda5L86wN5PDM17Vvuz\ntK1dHWgcVtX6PdT/t+OGLVI5cD3Q/86Fpmyd26weTVgdjzFHKVZQIAwoUwvnNGc8nvG1+REfjF/g\nf/FrwjTHjuDkJdp3h8BT4AtY/TQgt10e/PIS4z8r+C+w/o3WcTQt6E/BuIKQks/+769QfXXzMYry\n7vzA5vXmYwpgAmIK4wE8nt9ClQ9N6NSC7tXIYOV0WdNhJyOq2NXH2RT+7+hWvc+2X7lp9nIDfHUh\nsuEEff4/lwx+dMXng5/zP5v/jb/iv/Px+hvG8xnBJsaQktx3WPV7PB18w4H9jsBPUB8YPI8/oVj4\ncI1eaRfKHhqxjOu/2ySRP4Be36/dB3ztJ5D7jK8a+BLm3fxNKP2FqjVz7viRfaDr36KFdF+ia+yt\n9v81zMH9FqV2u3arTbxq/G4MpUN5FVBWHmLjs5t5LB+MEIVuh7uZXFq70qExo3IEne6S4+5rDrsW\nzmVJeK6whxILhZgCRyAeAkFJ72pNd7VBXQrUtYAFqLl+LfoWu67P7olHPPTIKpBOTJXEZO8ykld3\nYT1fgXkI7kozumR2y/jaKD3+2y/rFqIYSBVGricNWarCFBVGw5q4+VzvM+PrPuZMG7RtDeQw+tCt\nECcSPpGYPyvpO3Meui/43Pklf2b+Ej/J8GO9KAy+8p/Q8z/ECRJUKVFKkOYBq3gIOxuUC5mnB3Xc\nVNAzfrdAyQ/22+2+69/WpqyHG9CpgS9bBweWXQNetNxQm6n6fSUa+wmCyV1f2WaHNxGK4G5b+D7b\nXmrQLq9ZXyKjUjaV4ZAVLmwdlisDcaIQSiF89a3T9rk7wvdjDoIzisAirDTo1Z3pQqAYgjgEcQI8\ngmAe428SxpfXqLcC5gK1ApYClpCYLsmxS+K7JA9ciucJJSnlOtXAF62xABZwAvYKgnrmScP4SqWO\nKD2pY7YqBytTiEJhli3GF7IG7n/Hl+v3Zu1nb7vVsaenOI4teGjBpxBOt0ynF3ww+ZrPJ79kuFww\nWi0ZySX9bM21O+S6N+SqN+QynKA8wTbo8C461Bo60tYPhXfN32sY983k8San+IM8kX8ktt/y2H6+\noO93aejJ6Rit79d6hiR7K99b/14dpPtA/H8N8NWOvZqva21FVRcec5dqFVCdu6A88tyiMgw2w4hz\nf0o43dBhS0dtiNSWIQuOxVukAb6I6WzWCARCCExRD2s2NfglTDBMhW1qxlclBF6Z4G8y/KuM4FWG\nWVUUpkERGZRjEyqFvZTYbyucryq2LxWLK8XuCi4vwQwr3DhhVKSMhWbVpy8heaZIv4LdRqe+G6Vf\nfb/EmZf424RJLljb1/SsNZ6fYXSUvkcbxhf7wNdvO8//EXZfDtEqPhnBHvBVYnxYYP60wP48o2Ou\nmJrnPDSfc2yck+GQ45Dhsi06qLlBMgtYzEYwMkD6sPbgXHF7T5TcHf/YTuThB8bX79y+C/RqAK8B\nMAYxAifUlKUeNxgYLvralEAi9ESWRQjrQPexlgG3WmBNNXm/haedSH6X3RcgtlsDHL4diDV/qx1k\ntasPTUuH0/o91D+30t8rpdZyyhxYGrpf8BtgLKi6PpXn32Bn5V/5PPvLJ/yi+xMGYoHzJOeR85be\n6Q7zTOk9HkD5CFaPu7w+PuLD7XPMf5LwD7D+e/j1FVzVeenHMzhVwBT6H8e8/mJMf5DCCKIJnJzr\nR0IFnALjWr9dDSDtWfiflBifQ3cBP/oSHqSa2DLog/0TUD+G/LHNG0654IhFOUBeO9q77YBccv9o\nVX7LtfqPsHblph381wCu4UHPhGPgCXgfb/lg8DV/Yf49/wv/lZ9e/5LJL1ZYv5JaDK0Et5fR+eiS\n/k9XBI9jpGuw9SPWHw65PD9GvrR0D+mVDWWETlLammiNNRXvH+x3a83DqvFfeyxVKwKnWSHC8zB8\nA+FXGF6GYYEwFIYpEYZC5ooqE1rPILX04I4k1CX7xEDrgzWPiMaPNM7vu0CwNhjbDgTaOgKN/9kH\n8IvWau6/ts/cZ7f10E65VljOHdhZKEP7QmUApaDaoYXPLUETWcV+wNV0yrPiQwJjx8bsEIQp/mGK\nH6e4mxzzsMI8qjAnFbZZ4C5y3CLDXWcYs5JyBcUaig2UjqRKwc4lYVnimVB1csqDguqJovJbTwEF\nxqFFfuozm/isej6VL0kfpZRZim8l2DnQsUi6FsuuxexoxPVwzLU55no7YbEastt0yGMHmQCZ1EWY\nqtLV5G9psr2v/qu+pqapl2WAD14nwwtj3DCh6y05TC4Yr2b0kyVRusWIC2SckyQFZSkQkzXd8SUn\nYxtcUJZFHHaYDacwFbravrXBagK8RjPqfQxM/xitud7tmKWli0QEbke3ifkB+A6GL7D8EtMrMP0E\nECilF0AVV8hYUsUmMva0WHwmIRWQN0XHHbdAVKMf8l3x130JwZ7+2B3pi3bhUXE3UW37r4ZN2/Z/\nIdADUU+RrkxIFGql36uUoafExQasDD14xxbah1mCVa/Hm9Ep/zz6DM9N6LtLnFGB+7DAkSVWt8Q6\nLrEOSqxBibPLcVSBE+e4s5xyqdsiiw2UcU2ezSVuUWHJgtIrKEY55YOK4pM65W7I8Sbw0GdzEJAM\nfMzIJT9MyD5KMMqEaJhjhSZlaLELTHaDkOuTEZfdKRfqiHfbYxa7IbttRLG1YKe0GHghdQvYnYLt\n+2bfwQAUVs32sDVJMSowhznmAXT9FYNywWg+Z7K7xptvELMN8SymWmYkoxhjbNEdAT24SGb0WdLp\nrPEPt8hLqCKFdA2kqPeeui+5/sG+X2s/I5oW18Yf+BowEIF+tT1wXb0ct0ZyRM22rwGwwtSTmAu7\nXo6WE8k9bgGwhk26H3f9ttxxf+3niv8SaQK+reva3meNH2tAvUq396xzsAyksChsRaosVBJSnVuU\nwiUTPrGISO2AsmORdTy2UcTcGjIYzRk+mTFYz/BHKbnlUdg+ueWhBib2QY5tZNjXOeY6o3qZs3tV\nsHtZaiYpBpYUWEWFaYA1k5i5ntxtRRBsoWdDZuhL0HXA9xVWVHf2TcFJdQ242uhXQ2rmvXlkIYYO\nceRyZTtcMWZddklTF7kV2n9lUk8Z/9aEwvc1h2w/51rPN+GB50DXhq6BMYbOeEOvv6AbLRnYMx5s\nX/Nw94oH2zdM00sK075ZOxEhSgNKAxUaWJOCbOyRDV2ygUexNPQggNLWS9rczS3ax/cD4+t3aG3Q\nq60t0gPGwBR9tQM4QDNmDtA64YP6Rw1uJ3TOgQvgXMCZBzNLj5a/ObXtOn8TcDWB0ndd2PtoiG3d\nMY9bwKF5bRxRm27bVBTammOi9f6247bq9yx18rToQBLAlQUvhT49IbdY2RHgC96NT/jFJz/FdnNS\ny+Xzx7/i8egN4TbGKCWlY7HteTxzP8AXCZ9dPUOcA6/hbAZfKY27eOgCwvQNOG9AvIMC3aYnPgPn\nLXwiYbTViWMvhN5T4EcgPxSc9SZ0PsmYbucYFgxPYDivT/UJ8GMo/9rkzYNDfs2nPJcfcLmdwluh\nk+IFulx5h1p8X+vV+2T7AXqzHwI95a2H3runMJ5e8ZH7FZ/zj/xo+SWTv1li/T8K/gHSt7oy6w3A\n/ASiRcbT/+sl60ddzp0jXgwesTwdkR5b+hYJgDQA5fPtJAB+YH59X7bP8mrYXRGamRrq6Z0dvcTA\nxBwKrGGJNaowbYlpaH0Vy6goYot04yC2NnLjoGYeXCu4tiD1auCr8SmN74C71b/m383x7Qdb7UTR\nR9/pzWsbFGsq2W3Ry33NHLu1aoBX1EkzgX6QJrZuiSrRIP6uglkFHaUrco4JtqDs2MzSMc/Uh5Su\nzUXniI6/JTrUYvdhFuP0M5xBjtvPCfKEnrWmV6wwNxJrWZFuIN5CnECZKuy8wspz3FwhApDdAnlS\nIbcKOeFG30sqyMcOuw96LI+G7AYjUBVOOcf1F0STCqtUCN8j9T1y3+OyM+ayP+HSOuByc8R8MWa7\njki3LioWWvulqKBqs3v3gcP3CQDbK+xYBrgCXIGIFH6Y0guW9Nw5Y/OSo+0F44s53Yst3mVGnlQk\nSUWeSDIlKB7vCB9fc2xI/GFFKiLm/gR3kNUKBAbMrRr4avbjvq7dD/a7t+8Cwm1u28Nqhr0fwNDT\n+kgjB6tX4nZz3E6B081BCKSqG+SUQbEwyBcGzE3kwoal0iARdp081sW8e/3Xfhtic4xt/7oPdjVF\nhqbgU1MSbuK5hgXR+K/9xLEduzVj4kMQvu4fzErYFrpvsDA0U3Fhw4Wtx8a7Rr1MttOQt+UJtpUR\nd3z6zpJwFBOomDCK8YMEb5DiD1O8bkrkbumoLd10i7MsKNeKeAdJqvX1rVxiFxV2kePkksorqcYV\n1QcSWdRtjg3wZQh2T0PWp2N2oxFpp4t3MsdjjteZEXxQYboupeeycV2yoMfleMJ594gz+YC3m1PW\nmz7bTYdi49SKCQ3wtR8vvy/W3sd74JcwQRhgmCBMTK/CiQqcfo47KegWS/rJkuFyyShdUF6l5Fcp\n8WVJOQdrWmAexPhTcMeKobOgby/phCtCb0MxsMgjm8KxkEYL9GqGPPzgv34Ptn/d27lY3R5mRmBE\n+jVyoWvVAIKt71tL3ILXqYS4rIcWlLDLYZvDLtOTHdUWLUPTgPbt6/td7WDtPboPztp7az/22rem\n+NiQJ9pxXfP76vcpVU+ozTRiVFpUFeRbA/XOoxrYlKZDZvjEZoc46JAe+6xPu1wfjxm5VxxNzjl+\nGlDZJsGTmKU5ZGkMWZoDlGsw7VwxFZdMri6xs4z4RUn8omL3SiEK6JSKTg6dWGJ5YG4URqUgAmsI\nYQzlWnfNGx50Awg6YA70bWtJULZ2ycYW7AK8EsICygcW5SRi2+2ydLtcZAcsij5x7CNXBqyV1qgo\nSt0CenPu/r263t+X7fuy5rnsauDLdTRpYmJgHEq6kzUn3bcce6854Q0Hy3ccvr3k4M07htcLKsei\nck1KxyT2QkRHIDpApLBGOathn9VogBwaFAtby+Ykpj7h0ua20+P358P+xICvdmLeIPZN4jgAJmBM\nYODDY7Q20ofAByBOKpxJghUW2hWVBsXGoXznwktDi089A55Z8KoLcXMR2wK67UCo2XT3VR33QS+v\ntZpWgEa3p0kimwp2w/ZqAK+29lhW/4zf+j11xRGHu4Fhrp1zasLKBte+bfUUQv+6CIow4IX1lOyh\nwyIc8sp4xGnnDYPOHIeCBI8lAzZ0+D/4z4iW7mOq7pIdU3TLT8P+tSi5eDTm6K+vEQX0B9C/qD/e\nBPgM1P8Ei087fCk+RfUEf/HFLxmMF/gvSt1xaoA8gO0HPucnh/y/7hf8nJ/yVfERy5djeIlG3hZK\n9xqxqY+kXbFtT1J5n6wd8DQP47plxDW1RF0fxLRg4M855Q0f8JzhixXW3yrUf4PZP8HZHLIKRgEc\nL8GzIJxkPJq84pHzgiPO+fUoJR0H0BN6yyxtqNpsr3YV6X07T38stg90NslYBPS0IGUUwNCHUYBx\nrLBOC+zTEudBge0U2KLAFiW2KEjXHsxD5Nwim1vwxgDDgtSHWbt19WY2MXfp/P8Sa6LxX+2pklFr\nNSh6s0xup+E2+hbN32nuvzZbp/Hdvk4ccXUFVZmQG1psZic16OWVuvfGramlrkExsLlWY0rXYtYb\n0/ee0A/m9I8W9EdzuqwJvJjAT/C9mN56TW7ZGEVFsEkwFrpFexPDKoUqU3SyiihXuHmFE4LqSuSJ\nRKFgy80UcBSs+jbL0x7XR0ecD04xzJKJ5zCZSMInW0wpySyfxO6Q2RGXjLlUUy7VAe82hyyWQ/K1\nTb6tGV9pnTTey/h6H1lfeyCDVSf2IYiuwosSBsGCA++CY/MNR9sLRm9mdL/c4j3LyBNF7fCDKgAA\nIABJREFUmkhWqSI2wE12hKZk2NkxClPmYsLr4BHuMINMwNyEwNQtc3emM+8zvr7fSuOfpt3XVrGn\ni8QIPBdGNjyw4IGFOSlxRgXBaEc43CENDXxVulGO9MKDMxd5blOce7rdRNiQNmLjDeiV823/1W7h\naR9nG/RqA1WNn22Wf/uzNxNyExCNTk/G3cm47bir8Vt1omF4OmHMck29ShLYCph7+py4Cnxb719f\ngK/Y7ULeWifsIp+300P6zpLecEUvWtE7WtF1NnT8DZG/peNvGblzlBI4SUG03FFsFHEG6xTWBQSF\npJOXuLkkyCukK1FjiXwiUR43c1CUgkoIkgchm5MJZ6MHXHenTHnDQVcQniR0dztyyyG3AhIzZGUN\nuLQmXJiHvFWnnO0ekG48so1HubFhKzWdrGwzvtpJ4/ti7X28By40StyGhemWuFGOP4jxJzHd6xX9\n5ZLh5YLR5ZLlRUFyXrK4qFhfQf+4oD+DzrLAXxcMJwt64yWd/prQ25IMPFQoqBxbP5+VVdPuTG6G\nPfwAfv0ebB9IavxCXYAzemB3wOrpTqGRARMTpgYEuqijQxehY5OlgpWEpYRFCaKAsoC40KDADejV\nDDBofFcTY38X477tx9qxYjt22mfft61hr7anSbZ/d5Nr1EUjJTXwpRRkBWpnITc2xaVD1bEpApPc\nqoitCtMscfo560+7XJsjwv6WYTQjHodUloE1LQjjHWfGCWfilDNxApXg4/grnF3O9PIKZ5axeilZ\nvJRcvVRQwDRXWAl01gqr12DQCtEBq4JgDWYIYT0o2A3B7WrgS3g6LBA1SObEWlu1rKc6bqc2i2nE\nqjti4Uy4yA9ZlAOSONDA10ZpQbCinuh5J99/H2Mv+PYzud7PwgPP1qDtxMA4kfTGK066b/nE+zUf\n8huGqyXDF0sGv1rSfbFF+gIVGMjAIOn6iAfAQ2CkMPyKd6MMOTRIBgFx34aNoVt/G5bjHa3V34/9\niQFfbWpwAygF6IpjDXr1ffgIPQXvczA+L+l8uKQ/mDOMrgjtLSaSXDqs8h6L9ZjVR0Pi30Qw1m0a\nCBNedHTydad1rrkp2vT4/cDrPtCrAalq7SZ69TEHWgPDssGyuFFwryooS71Uiu7lW6Kp/xY3WgSE\nYHp6DKtlaUALNGugLOvKQ6VH7ZZNy4CoPYStHbiArIh49ZMP2Twc8GzwIZPgkr6xxKYgw2VNl6d8\nxZYI2RGoAYghTFyYJvoMuMAUcIb1R+vClpBfB5/yn/7875n0LnGeAFeA1O2N6ilcPR3yy8kn/B1/\nwcbosBp0+aj3DeNHS+wkRwlBGnq87R7wz3zG3/Mz/rb8gldvPkT+0oWv0O2cS4lG87Z8eyLnH4K1\n94ylK0t1rG73MjrOiiEzpvk13rscnsPuGXw1g19L/Yg7iMF5BUeHYL6Efrxk0rtmKBa4nR2bbh9C\nsy52W7o941tI/Q/A1/dr+4FXkzz2asaXp1kTRz7igwLz4wrnoxL34wTXz/Q4efRYeXMWUb2zyC99\nxDsLZRk6P7zRnhTcAugb7gJR+4G24u7DtL0f21Oveq3VBF0N47RpTWomhu4DON7dJWwQjl7Yt+5V\noYMw0dLbMKs63zTAV5Rji5k7Zt4bIaYKd5gy9i8ZDS8Z+5cMnBkdsaHDho7YMpYzTKsiLHeMNgvs\nBWQZbFKYZyAzhZlVhHmFU2i9UzpotmmHu7GrgiK0KcY9rseHfDN4gu3lmJOSgdoScoVJRY5PSocF\nA652Yy4XEy4XB1wuDlkvu7rSuFW6NTVrg/TvO+gFd/aKqBlfnoBQILoKP0roB0sO3XMeWK843F4w\nerOg+6st3i9yVolmqyxTWNuKA3NH0NtxcCQQky1vxEP6/gp3kOtT8c6AYJ/x9QNj4vu3NqC4z2Bv\nWh37wFgH3EPgAfAJmMcJ7mFBcLije7hEGoIKEz3awYQXUD23yTsmuDWDNPVg2RaCbob42NwF7fev\nt+J+v9UwVJuugGaF3EzIFU2BIAbV+K92DNEE9g3gH9Wgl6Wfo4alK36VgjQD2WZ6KM0m8oTWkokk\nRCa7KiLu+rydHCLyip6/ZBxdM3b0GhhzBiwYsGQgFlSOwFY5UbpDLaHYQVLAutQ1DlkD9kZR4Rf1\nRx/Xr6PWqZNQIriYhGwmY16PHvGy+4CqI4hIsNScDiZrHBICNnSZVUMutxMutkecbU8525yiNqI1\n3Ks9mfB9bXXcB8dbIIiolx5Bh+kqnCjH7+/oTNZ0N0t66YrBuyWjrxckbyF/C4u3cPEOxLygsyoI\ntjBKUobGgn5/SSdYE4w3qD5UkUPuCB3vy7qt8gfQ6/do+4BS24cFIDpg9jTo5Qz0pL8RWmrkIdrN\ntWenrdCdJtdoFyNq4GTXAOUGt6DXjtv7weTbbWHt2Os+QKMhebTjJ7e1nL3P2tAQmpXtfd/glmgh\nbhlfWT2dT5hUVkhlumB5et3UOBXGWOq2xWGG9ShjYM+pJgb2pKDDlhSf1zzgaz7ia57CWuA8zzl4\ndom4EtgvMorXsHoFZ69A5mDG0NkoWIA1QZ/7EYi+bm0M5xAGoOqPLNpk444GxcwBukOmlo1tarDG\nwGY5jdh2h5w7x1xQM74S/xb4umF8NUHofRqP71MMdh+Dr9Xq2KuBr2NJd7zmuPuWT9wv+Vz9gmgZ\nE71IiH4e4/9jptld9UonLligJqBciRxK5NAgHoQshiPoRaCELlInbfbhfe2235/9iQFfcJf22SRk\nfRAjCAJ4hAa9vlBYf5Vx9PQNHw5+wxOeccxbeqywKUkNjytvwhvvlG8GT3k2eMqiM0aZdp1rmfA6\ngmzEbSCUcfemaFeY/yXQq4MGvIbc3M1OqKe9hOK2ANnEdnlNk98Ccai1x6o+txMnQw15h7YOphqn\nbDXvNyE2Ye3q/uU4q4GveoqfkjDrw1emHtEbg7x2mX1wxOLRkNeTx3hOimFKqsqkGBv0oyWXxpTF\nMOLg8QLxiWJ6AT85g1UCngmjLhifgvgIyifwjkP+hr8k7Xl8+mdfMj5e4cUpQikyz2E96PKl/5R/\n4M/5G/WXXKoJF8YhXxovmQ4uCQYxEsGaHmcc8Uw94dfZZ7x+84T4b3rwS/RUyXMFaYrud2yPEN7X\n+XrfrRUAGeKGyWw6JY6R45HhpznmVsEatjuYSZihd6aDvhaTNZhbcLIcV2a4ZoZt5whLoiyzZjj/\nfh3VD7bfhmNp4Mdw0KIiHmbXwppUWKcJ1pOU7tGGYTRjIOcMFjO8VYZdFdhlgV0VbLIOy2zA0h2y\nmA7YbSLiVUi8CYg3IWprQGZD5uppnjfJSRN47Qfbje9qVi1S3bAk/FBr+AQBBA6GbWA4EsPJMewC\nmZfIXFDlDioXGoCXdfueVGA6rWVjuAamW2E4KYadI6WBlAaVNFCFQK2lrqiu1S3Z1QVCpQ8rQLMZ\nbChNg0S4bIgwZEFZmWyJWNEjICEWIU6/IHq0Y7BbIoYJZBIvl/QySTEwkR/7LA4DtmGAcFxyz6Eo\nHfLKRjpmS+pBsTAHvEwe8OrdA97MH2DaJdK2ia0uc3uCgWQjO2xlh43scLY+4fzqhNV1j/LahlcS\nznJY5VDm6Eh6y13f9W8Vwv19W02Fu8l7BVKalNIiwyUVPrntUAYmsmsg+pqAHJn6aeqYELkGtmtQ\neQalZ2uBXWWgSlGfDqWBBdVm/PwhnJs/ZLuvpaKVMNoeOA64FjgG7nGGfxzjH8UERzH9aMFAzhgu\n5gzSGcoUSMOgMkykYTDfjZhbY+ajEXNjRF5a5JlFvjUpVi0dkcqp2cltxkT7+OBehqpRtyIakdZP\nDMIb34VnYtoK0yow7BwhJFVWIjODKnNRhQllpdsWq3rSo+3r5TgI28B0JKaTYTopioKqqpCVSVUG\nun1548HagXUN0NpCM77qJEPVpDFlCkrDJlYBK9lDlZAbDokI2IguS6OPjCyc45Lo0x3Dco6MC6xC\nERYSWSiszz3iRwHnA59rOyB3bYrAIZcOBfZN3iaUosLgBY94sXrEy/gR5+eHWLaksB02dp/X5iN2\nMmQnI3YyZFEMeLl8zPViQrz0Ue+AFwVcl5CW3E4Xv893vS/36H5rbJuBo26/RCClQSktChxSXArL\nofJMVCS071pB14exrTHNkQMdH5wOiL5ChYLSsShMm0y6FMqhkqbWfbvJpdU9x/WDfT+2H3s1Pqwp\n5vXB62im/dCBocCfJkRHGy2dcLTB9gstNWFXWHZFZjoklk8aeSRDj6xnk4U2mWuTmRYkjm7XznzI\nQ259VcPAb75uX/92e2N7Uq4Lhg9mszywHS2H4thg7zG+lNJ6qbkHea4JEM1pAL1pHed2WfYeDmdA\n5dX+1wBZf7MEKoHaQjWz4K1CPRckhMyMKa/NBMMA30x4Y59wbh2ztIc4eU5q+eQ9h+LIREiBVykG\nGWSJ7i4cHUJ0BNYRFBObbT9kO4jYDkKq3MSixApK7GGB9Azyjx3yE4e8Z1MFFsoSKFsgPQNSELnS\nK1MsvR7n9iEXyQHnF4ecXx4zeztmdxYiL0y4LmBT6kqobLoV/pDyxz32qjC0Fm69zU2rwjEKPFIC\nFWNVGVWZk+QVZaaw6rqlBRiuwopL7Fznjr6R4hg5pllimKr+IcH9Q5h+f4z7PyHgy9j7ugG+ahaV\nFWq09ynwY7D+MufBZ8/4Ivob/px/4DP+mYfla3rbHYasyG2bq2DIN+aH/Mp+Q/dwxS+sn3JdHmvQ\naANsLLjsguqi/6MtSL/P+mpXRPfbMPtoCHuquZiRo9llR9xqj0XcAl8pOg+aA5cGXNRTFdKu/n5o\nwYHQ7x+j8bSoPjyJThI3aHbVpYBzD2YOxC6oDTeMItD39wp4q7+W1y6x7xK3Y8u/Kjj70TEvjMf8\n2v+Qzk9+TnidY0t4+DUUi7oQfwLiz4G/hrOTCV/zlC/5hDNxzFfWU44PzuixxkCyJeKCQ57zAV/K\nT/nn+Z+xnUe8G50y7l4wtOf4JEgEW9XhKpkwWx2wPB+Q/zKEXwC/Ap4pTTNmUZ+wJgBrWhUk71/1\n8busFShKpRk7EmRlUCqLApvctpCefv65LnQEdOuW0w56a5l1VaqyLHKhJ3aUlaXHMN+Q4P4Qzscf\ng7WTxzYwbtVsTwdsXVkzuwbeNMd7kOM/LZj2Lzl133JcvOX06i1emWBlFWZaYWYla7vLzBsx94bM\noyFX8ZTr9ZSr7ZRkF6DmBqxtWDmQB3ULXZuWvA98tYNCm1uGah/oQehq/Z6xB2MHI6ywowo7yjGD\ninIrKDbA1qHcOvXE3Fr7pVR6sq5j61fXwIoq7E6JHZWYvqKQFmVlQ2VRxSa8lvBKoiql/VQjM9YQ\nXiMFvgRHoUxFLmx2MkSViky59ZwazY6LRUDYjxk8XjB1LvEebRBZgZ+XmLkiC23ixz3mx2N2nRGx\n02fnRWyrkJ2KKIp2cKnY5SFX8Zjr6zHXyQRDVOyCLlf+Aa+CxxhCkhQ+aemTFB6L5ZDLdwesL/uU\n70x4V8JFCqsYrd6/4tZ37Q8HeF+t5a8Utc8CSqgqk1w6pMonJiBzXIrQRg4MxKT2XTVJORTg+AZ2\nYFH5FonnkcUOBRayMFpxqKo1hPYrsT/Y92/t+KaObWwXOjZ0DOiCd5IwPJ4xOrpmeHjNhGvG+RWT\n7TXj/BpMhbIMpGUgLcGFPOLMOOJseIzTT9mmEdtdyHYRUcxcSC09pCd1a+Dru0R02+07LZaXEYHZ\nBasLXgRj98Z3iYGB5RfYfoHjFwgkxUaQbwRq41E1LMxMah0BYUDoaNAstLX+dZBjBwVOUKBERVEo\n8sJGlibq2oQ3FryxtR6KWbdKhaJ2pwoRKoSrEFZFJQxS5SFKRSFtUsNnY3YIjR0BMWYoCU+3DOWc\npOuiUnCKiigHN6/YPQqIH4/YjUbEzlj7rSpiKyN2IkTU94lAoZTgMp5qBmo8ZZkOKAOXdTDgIjih\n561IS4+sdElLj10acnl9yPX1hPTah0sFbwq4SnRbJ42eUczdFtH3LWlsg01t0Etp31V/qwG+culg\nKI/ccih9C9k1dUfvUmvU4ukO1p4H3QjcHqghyI5J6VlkwiGrPPLKppQWso7nboAv9YMf+37tPuB+\nPz+rgwk/hIkHD214KPCnMQfjC47GZxyNzgjtGJccRxS45GzciHk4YD4aMM8GrLpd1m6HtdUhx0Wt\nbNi4sPGhCOvL2xQdayDqJm/cZ9s37eStqd5mAE5QA++BrhpFln4NzbtbWwK7UoM5u3q1T4UpdA7Z\nsfRrYN79fmXAztHki139/G2InKUmxcq5gTizKDuQ5iFza6xVNuwAx8mZ+yNm/pC1PyASGzLTI+/Z\nlJYuAAQVDOv2RnLon0D0AKxTyCYOs+6Qi84h590DssrBDxL8cYJ/mlA5JtvDDtujiG0vInMcKttE\nOiaVb0KhMCqpVynZqYgZI2Y7vebnQxZvh+zOIqpzQ7MHtgWkeavNvSG4/KHcn638wqiBL0uApTDN\nCtso8MjwZIKqCsqypCglItekFc9AD4n3FEYisfMSV+a45NiiwDIqhCHvIdn/S+DX9weC/QkBX+02\nxyZB89C08w4Eth4V+ATMHxVMPznjZ9Hf8b/yX/hPxd/w9Oo5vbMV7rnUAE8ED0/fcHJ8znhwjWtl\nFCObf/jMZ3M91oL3F0InjWkPDaw0tNKcuy1h+7TDZrR3w5gYA4eaQjtyNHX2cb0eoHsE+yXCrUAK\n1M6CmaGP4TXwCg1gzet2oAPgg3qdAgcK+iWmW6KUQMa2fv+50O9/Bjw34G2kK5C+BSeGfu9DdDvP\nlFvmWAO+NQSEFzYvTj/gnwY/4sB4R+/Bmif/5yu64wTxHOxlfTkOofwc3n004e+cn/GP4nN+w8es\nlkNO+q+ZcEXIDpOKmIBrNebt9oTZ9SGr34zga0H8qMe7owO8ToZlFigERe6QLHyqtx48R7O8vkZP\nq7yUUC7RnOMmeWzQ+j+kVkfFnTanSumpozsoNh7bosPCGnDtDTiaXhI8yOmcwtMd2BuNLxzYMDkC\n8zHwAJZRj5kxYkWPfBeimodYBsjvCk7fdwf/h2j7QU2L8WU5emqQ62H2KtxpSfRwR/ejDUf2GR+m\n3/A0+ZqP1l8TxAliJzF2CmMrWQ56XB2OuI5GXE3GvM4fYmwkSexznYzBNnRLRV4HYKoZwW21jqd9\nf7SBr1p8/mYk7ki3mk1MPeb9oYk5kNijEneQ4fRyspkDcwc5s2Hu1CKA9cqp2xT1EiGYwwp7WOAN\nU+xuQVa6ZKWLLF3kWkFUoUql8ezGxwTcYnEdBb5COPIG+FIyIC9ttlWESYVFeeNvBv0lB84F64OI\nXuJi5AIvV4R5RexYbEc9ZqMjzqIHXNmHLKoBCzlkwZC09OrIABCKYu2wuw6JL0Li8xBDKa67B3jd\nBL+XIISizGzKzKLILdKZz+48JD6PqM4tWGawTWGzgWqFbmf/LsbX+3hP7iWRN4wvhboDfHnEIiBz\nPMrQRvYNxFhLGArAlVBIgQxMlG9RBg6x75JZNqUykYWo49CG8fWHVMj4Y7D7Wioa4MuDyIaRCRPw\nTlIGxzNOjl5zeviKw80Fh7tLDq8uObi6RJgS5WgASDmCF52HdLprnF6G6krm2zEsIbvy4F2j52ZD\n6WgGw03b4X57fhuUq2MvEdRMrx44fc1UHVvwyIKHFuJIYXUkbifH68QYSNK5i7p2KWcurCyt4xMr\nzZo3BPTNmyV6JVa3wuum+N0EZSiS3EFmDkVuw2sLHKGFgN/VyYhbs/v7uh1YhHpqmbAkUhhk0qWU\nFokK2JoRrpXpJTLcKGNwMuewc07y0MHJKuwcnFxi5FAMfa7GI85GDzl3HjCXA+ZyyEIMWZgDhFAI\nIRFCs5t2uw7bRcTurENyFbDq9bnoH+P3Ytwwo8wtqtyizE2K2GF7EbF7F5Fe1MDXKtegfbpB+67v\nAr7eF2v70D3wvBFurA9XVTXwpRxQsgV8aSkBd6Y7flwP+pZ+9SK9zRgKqsigdC1ywyWVHoV0qCoT\nKWvGV8Mw+1ZS/T76+T90u6e19Qb4ajG+fA8mFnxgwY8NgknMtPeOD3tf8UnvS/qsCMqEoEwJypRr\nRrwVR/U65jKaIkxJjsumNFC2remceQCbglumVzt3NLi95vvxYVv/te7lswMN0PkBDI16CejXLIVm\nK1XAXN6uZmM3p8Ki9X4Desbd75dCa2rOTd1nqLjFgnJACdTMoHorkLZBEgvmzoTUCZk7E0y/Iun6\nenV8LL8iM12Knk3ZNxGhwM/BqtsbRQ7eCXgPwXoM8cRhHg55GTzgN+FTYny6ozWdZEM32VCYFvNo\nyDwaMesMiY2AsrAoPYuytECCSYWpKkwqsthjs+rerPh1SPrGJ3nrIc8NWEvIS82Ok0176H2Mr/f1\n/tzb40LcdAwJGwxTYosClwxPpmRVpVepqAqNcwrArrRcpZFIrLzEqXTR2KbAFBXCVPWfqH//ve25\nvx/m158Q8AV3Qa9WK6ER3k7Ae6hwn8R82PsNP+Xn/GX+t3z+5ku6/z2GfwDeAJnWMQyf5jz6i3Pc\nn+WUY5OF3edqOuU3TzvIZy68AN7VYtF3Jpk1TrSx+6i0NSjXML2cARw4mpH2GfAjMD7JCR5s6fQ3\nhN4Gx06R0iDNA3Zxh9V1j/wbH16Y8A4NhG3RTK/PQHxWED1c0+2vCbwNnpWgECR5yG7XYb3okXwT\noQ5MnSj6wBtHs8w+uV3mBynhdIfvJVhWgRCQFw5x4rN73UOtDebPp/xj8GcE3g5hKJaPf8Gj7hs6\nn29x0hxlCuIwYDbu8Svnx/yt+IK/5Quen3/M7hddZg+n+F6M7ZS6ulrYpInH9qIDL2yt1fUNMBXk\n04i8E90y4DI07niF1vN6A5wprQWSr9AnZ4EOvjLuBl3NtYHbRPK72vx+30lm++81bJxalDKTWkRw\nCfLSZp6Meeuf8FI84tGjN3g/y7GWGuzqvIOq0FNOnE9AfAHJ5xavwxNe84ALDslnPswNHaMm1CBI\no1/X9CjB+xWs/jHY/sOhCbzsmvFVj8v2PMxuijct6Zzu6D+dc1S85cnFN3y+/hU/vfolwSLR2O4a\nWMH8QU9PC7THvBuPsaqCZBcwS8YYqaJSBuR15RGf24bY9hCDJvhSrWNrgq6QmxZtMdEthhPgEYhP\nFOZhhn1Y4h2keOMYziPkuU15YcNFoPOgLbdzOVra0qJbYR6Ce1jgHyQ4wxRRaKCrKgTVHFQlkTMJ\nz5WWQ2nLCvUUIpLgVwinAlNRYJFL69tbWEBi+EwHl5xOR6ycDmPhE+bgFZIwLzFwqOwec+eIZ/aH\nvFCPuJSHvOOAS3FIXAUa+BLo10RAbMC5Ab82dMt4rUvBqPkZbtcVmlXbrKQClYLagmp8V1tb6H3U\nydm3JnGUt2PjSqAUukVe2iTKJxYhqeORRw7VwESMNSbg1AVwWQriwGQXOGS+S+x5ZNY+40v9/+y9\n55cc2ZHl+XOtwkNHpEQmRGkWOWQ3m8M5Z8+c/cf3y+zsNltSFYtVKBRUahHatXr74bkjPYNg9ewS\n6O0ZwnDecajIiHBhz+zatWu1ePZ/ZN2z/1XtbawqR/qtBvjaV7D3Y4Z7cw72Tvh491sOyzP2s0sO\nbi/Zf3aFqld3EjUOdA/XGL2MagjxoQELhfTGZnPekxol6FI8N2mA+G0R3bf51aboWANfRlciEp4v\nfdcR8DmoD3P0QYk1SHAHshjHpUJ5YZFdmBS3tvSzzVKRr58AU9BGBcawwB4keMONbLVJVIrEIU08\nypEuNWKvBBh19dtWpTRFX0BPoHoVqlWi6iVCgbSyqEqNqlRRtRKdEl0p0NQC39uw51+wOuwSqTZa\nVmJm4KQVdlZya7hE1phz8wHfGJ9wWe1yJXa5Une41nZQ1ApFq1BUgVIJxJmGWOiIlxriuS5rsxPk\nsaGQNyvgzm+dIlscyxzKCMpGf7bRRmsnjNtFtX+fNpgfNvH21bCwEJJhX+kolSUn+OoWhWNI4KsA\n6xrMDvjNTKp6T1L6kA4VKl8jtwwyxSQpLMrSpKx0RKVstThurw/2bm07KW8zvrYGCzl1XvQI+DG4\nk4gd55In7nf81P1XJvktfhLiJyHdOOTM2OOZ85iOvUJzMnAEmbAIyj5KqoEwIK8LjkqjHZUiH6hG\nU3D72Wh3BFj3P5/mgVXLTXQ82eWzW68p92+jAonp6bxd2cJExijN60dbpyqvX9/IkSX1vg5v+ARi\noUq9LaFRrg1S22Xe+PYO8vPVqZhLTOrbZL5J7muIvooTCzqbCn0FaiYk+eJInv90ajGzhry0jviD\n9TkbvcMQqXk4ZE6GySW7XLLLBXtsKp+8NGRbd2kCAl0r3qxyZpCGjlznLtWJWueQyJw6bjPxtiWN\n/qODXvAn+2DT6qgrYAi0GvgyRYpVJWSVIC8hLAVpIXEyo5IzpMxAMr60vMCoMsya8aWpJYoqthhf\n27kNreP7tb8y4KvtHFrMBM2QwNcY1MOS7t6cxzznc/FHPl4/o/vPEfwfkP8LLC+khl3Hg+5z0DcV\nO9acL37+lNfuMc/sjznfP2S9N5EOwVUkbCps7gR13zbBoF0RbYKv2gNoPdk7/hj4CfC3YP+ngOnR\nGcedFzzQTxlzi0tEicaaLpfDXV5NjrnYPWDzWZ/kyqV6ZcgH9RCcn66ZPjjnof+cB9oJk/r1FQob\nx+eqt8ur6TEn04fcjPYpPFOeNke+np8CPysYfDRjZ3zOnnPOSL3FIwIgoMM1U86nD7ia7xKe9Tl9\n8ZDqWCF0Pc6VPR4NXzAdXuMRUaCzpM8ZB3zLJ/yeH/PdxY8I/7kPv1KI+j2iXk86VJDJ4BpJ1DpH\nMtNOuesM9bjTLMt5k+wzQ+r+RAmIJRLwCrirBNv1GzRUy/Zkpubvfwj4qlq/f9/Ornm/JsktkI43\ngjSHpS4xvVOF29mYZ/5HfG18we7oEusXX9PTI/Q96F4gv34f+BjSn2u8frzH1+aM+0L0AAAgAElE\nQVQXfMsnvN4ck51Z8jzP5I+naifZjZNvHH3JB3sfthWIKarcnEwFbAXdKrGNBF/bMGROL13hLkL0\ns4zquSBdQhZAFkIeQGwVFNMYe7NmkijclCs8NcK0ctkG6Cpy0p5Wizjfa9Pe3qwE9wMuF+xaKNPW\nwBF4RyHeYYC7F+LtBPj2hk66xr9Z425C0tAmKRxSxyHdsckSkzw1yBKDIjdQnJqh5YDmlPjmGj9e\n41+usRcRmWqRqiapYhFHDouyy1zvsXB7hH0Xc6fAfJBiHldYhzneKMCzA7wswFql905zoWqEhktk\nuISGi6WmFKnBVbzH1+WXzMopdpVilxl2mRFVLq+qB7wSR5xVD5gxZa30SFSXUtVBA9WQbUmKUYGj\nIHyNaqAjJgqE9blcU+v61y1SSSGPawVCDYQOTi2mXDhQ+BLQEe1pTRr3Was5P2zbwdl2ctX+u/+v\nts0KbfxW/RmrQlZN1RwRFmRLjfDWQz8foPkl/XCDZ8QYk4JUM9GmFeqqQluVVKXC6kmX1dhnZXS5\njid8t/6Yq9sdonMHTgXclLIdIW8mh76tHeGDvXtr+4i2Bk0tBm6oUrfKA8PJ8cyQgbJgp7qim8xR\n1wHRTcb1mUBXpbyfbsljqeQYnRB/smTCDbHmsTb6GHYu44REkZIMapO0tt//bUltC7DXfDkhd2BC\nX0ObFnSP1nT31/jjNb6/xhMB3irACwP0qiCOXGLhEnddEt0h7VqkkVyVqmD0C/R+gd7PcdyYTrGh\ns9jQ2WxAE8SKS6K4xIrDWu2ytHos/R6LUR9hKFgHMfZRhvUox52GuJ1AfoZlgKILhFCphIoQColp\nkSg2sWYTKzYUMM9GPMs/ocoNnCLBKgvMMscsCk7FAa/EA15VD7gS+yzUAaHqk6k2qAqKoUg5SbVC\nNSoqR6HsVYiRJjErAxkOXFOLhpZS7DopZWK40OWEcE2T1zs3IK/b5yuF+7GxwV1c8Tbm6tue1T/H\nfnpfiWfjwxr/2viVEBFDNasoXqvwjclSDDgtD/hW/wR7lGA8yDGqDMPO0Xdz8ocm+UODbN8k6rk8\n5SMuNvus1z3KxKA6BTHPEUnjzxtm3LaI9gd7v9byFWrNZtIkM8bo5FidBMtLsNyUveqMyeKa4dWC\nbhZgJjFllBHEBUksCP0UfbRkOLrk0UhFpDqx7jP3Jyg7QjI9NzpYteD4m71923e9DbhvNL1qUofm\noU5MtKlAnWbo0wpvGOINA3kcRDVmq0jiYqkS+B2CoUe42yFauW8Kdgqg6iWdYUhnFNAZBDi9uHbz\nsrBXFRqB6xH0OwQ7HeK5Q7XRKDca1VpDqQTuToS7G+FMI+xhjG4WbxaOQuzbxF2HxHfwvIDEtDjh\nAb/O/parchfLybF2MqwsQy0ExZ5OPtApLJ3bfMyz8CNepI+4yaZEuBS6RWx4bIwehaozr0YsxJBQ\n+CSZS5HobxYVCEWjUnVKpaRaaxTXBuWVirgWcFnBrGbyVu2if1NdbZMB2qhhOz9s7qfGtp/f7Xjp\nXds20tkQGRKp8R2YMK+orhU2ZodLf5cX5WNsI0QZhyhPAtQwpOPHmLoKukamq2Rdh/lnfS53d3nl\nHPGqOOYy3WUV9sjWpszBwzq2LX/Ix79f+ysDvuAOtGiBX6ryplVbGxWMvFv2uOAgP2d0toLfQ/Zb\nOP8jPIvl9jaZwUcxjF0wjkrGDxccHJ2yq13S9dashxMJprnIUe35tr5X+/M0YEoTgDU02nqCo2tJ\nRPtT4Kfg/XzFo4dP+bHzO77kK57wPTtc4ZUBpaKzVPuccshT6xO+333C5XiXmwe73DyZsnnVx57G\nPH74lJ/Yv+FLvuIx37PHJZ1cjgxfqn1OlUO+0z/md5Of8DvrZ5ypxxS5JXGhj0D9ZcrOp2d8MfgD\nn2tf84iX7HCFzwaAFT3O2Od57wm/97/kmfsZs5e7nHz9mPBBn5PxMQfaKSNlhk1MgfFGt+v15oib\nmz3C3/XhnxX4Cvm+E+60yAR3+mIx8tkRyMDrhPvdDBWy4p+VkFWSm/kmUW9KE03Q24jb69yh901P\nfRvQ2Qa/2qyXxsG9TxCseQ+VuwS3Ab42cg7v2pKMkhcQPfN5PvyIfx3OcbSYcl/jsfOS8cdznHmO\nmkPWU9iMfU53dvid9RP+iZ/zVf5jbl/uUj7T5Xm9RoJqfzKwof19/yOzTP5XsFYvfgN8OaDZBY4R\n42sbRsqcfrrEWYTo5xnVM0GyhDCRK4iBToG6iHECBTcpGJZLfDXEsjM5qcWrgS+9PR2oDXy1qfaC\n+6B9DXz1DRioMADvKGB6eMXk4IrpzjW9fEk/W9ELlnTzNZlukummFFX2TcLCq5dLXDqopmxLVEyB\nrhf00xW9aEl/ucIrAgrbILd1CtsgyD1elMe80B6SezbxwMeapnQeRHSeRPQON0yMGybmDZP0hm65\nvpejJ7rFjTvmRpMrVS3y2OAy3CMKPV6mMYZSIKWfC9LC4jYecROPuY1HLJU+oeeReC6Vp6O4Cqoq\nUM0SzZDBXdkFhirVRkM0gPKqPqaVpM5nqVypKocMCEu2e6o6pLY870UDOLavUdt3bbdENPZD7IHG\nv2z7rncBgDW+ogHLcxkE5XUQpErgK7hxERcKZUfHrVJ0o6CaqgQjFyMqMKIcI84RJdzujrmZjLg1\nRlwnU87WD7i82SU69+BEwG0pW0bypmresFW3dTg+JJDv3t7WLlQnj6ZaTyysgS8jZKgu2K2ucGrg\nK7xNSc7BFLW8ny6PpZNhTiL8eMmUa9Zqn5kRYVg18BUigS/tzwFe25+pVXBUfeg4MDFhX0U/KBgc\nzTncO+VgcsK0c40XhXjrEC8K0fOczLBIDYvMN4m6Luusyzrvssq6lKqG48U4boLtxXgipBMF+JuA\nThSgKhWZZ5K5Fplrcq1OeWE/4mX3mHDkUzkKnYOQ3vGa7uMVw+6csT5jVM0YrW7R1QKhKAhFRaCw\ncPvSd5ljbpQRFArzcEQV6NwGOxiVnI1pIJlhs3h4z38FrkfodchcC1wVxa1QNIFqVmh6Aa6K6AnE\nWMjB4U3YtEAy1bKi9l2Z/H1qyXZTTf48EhOEK3VIy7qoItratzVz/U3rI/z5Z7Ptr7Z1r94leN9+\nv8Z/qUg/ktJMJRaxTnWrwmsN4ess/QGnnUOcTkLR13CrEM8JccchzqOYcOoRTjzCSYd1r8uz9Uec\nr/bYrLqUcwNxWlDNm0EAzcluM3s/gF/v37Z8hapK32WqYIHhZ3Q6G7reip67ZL88Yzq/ZnizoHsd\nYGxi8igjiUryCLJJin60YpQo+GpKljnM9Aln3RhlV0Cgwq0up7jQUAMbcHjbf1XcbyOvRXwNVy6z\ngzYVGI8ExsMU62HMtHPFTueKaeeaiXeDEPLnCaFQVBpX410u93a4CnYpIwUFUQNfAkPL2elcsdO5\nZLdzxdCZ1XJNEvjKS4OrwQ6Xu7tcBrvM10PylUmxNMlXCmpR0ZluGE9vGE1v6fcX2Hoil5YgTIWF\nM2DuDFk4AypTJVZsTnhAnLm8KJ7guhHuTohrRaiiIuk6xD2bxLJZ5gMuZ7tc3O5xc7tDVlgkjsfa\n7eG4MaWmEZQdgrJDWHXIYotyrVFuVMq1hpKDoKJSKkoqqkilXOtUK03GZ8sKFpWcwFm2ga9mD2k/\nlw2oo3C/i6g5NoDY/whg/y6f77bPbLqFUhCJHGi1KWBWITyDoNPharTD98UTFL2gN76m99E1Pb2i\ns5+gaxpoBpmmk7kus8MhF3u7vHKOeVE+4ibdYRn1yTYWrMQW8NWOw/79NAv/CoGvxlooeYM12aBa\nFZ4a4rOhmwXoV8A5pJfwMpYddTHy3veWMDoD5RyMZU7/aIXPBktPZeDV+CtV4a7F8W1Mr+1Wx0aY\nsAu6C0NNTpv8DOyfhDx8+IxfOP/Af+ZX/E36Wx7MzvFmIUaYI1SFpGez3HnKsf+Kz7RvuNJ3eNU9\n5qn/Mc96n9G3F/yd/Q/8F/6ev01/w/7NJZ1ZgBnkCBU5RXHne457r+npK7RuSfGFzuXmAaVuwI9K\ndj4/42/7/8wv1H/kb/gXPg5e0p1vMJNMJo6uzWza5Rv9U4bqDGcn4dfqz1n9esLN+T7r4y6v+4+x\nrQTNKBCVSpaZRKFLeO4hnhnwrSI1uUwk6HWApMB2678rkWStubxGnAGv6uONgLShe9Xjei3JjJHX\nw5YsvLwHWV5TiTdI2v26vl7B1vVqB87brL12e2TjTLady/twXM3vS+6otqH8LhsXzkzZAjrSue3t\n8dsvf0rlq6y1Lp+Mn3I0eE0/36BVFZFpcaVNeaZ8xNd8wa/zn/H85GOyrxx5LV4hGXZvJnw2lcfm\nu39ger1f+yHGFy3G15qhMqNXA1/aWUb1nSBdwTqHZQ6LHOx+QXcR090UdJOYYbmko4aYVobitxhf\nepvt1Qa+aB0bIHkL+BoYsKuh7Am8Ywl8Pdx/zsPd54xuFgw3c0a3C/qLJcVQoxxqFL5G3pcM0IXo\ns6TPBh9Vq+RSKwxRMLxeMFwuGF4v6K43VF2VqqdSdVXWShevjMl0h2t3j9uBjr1T0H0QMHgyZ3p4\nzXHymofxa46T10zC23unODA9XmlHvLSPsLSEG2VCkZlcrvY4vT2mijQ0XX4eTasoM41o6RAtXaKl\nQ6LY5BODbGxSTnQUXSaNulKimznCUcBXEQONKhJ3hfw1cAEElZzWmMf186aDLmrGhCmPcgKFrAiL\ndmGl2W/aY6LbwJfCfd+xnTg2AYjCnwL47df+v7X267YYX031r8wRoiBbaYgbl+zcJnY89G6J6EHa\nNVl6PlaRYuUpdp5ABef2Hhf2PufGHtfJDptVj81tj+jclUzgdQ18ZW3GV1uD40PS+O7tbcyEVvKo\nqX/C+OoYAUNlzm51iUg2ROuM6CYnOhPYpcRMXFViv+UoxzgK8eMlFQa32hTPCO8YX3bD+Gret33c\nZqC1e6E9CXx5tgS+jjX0RynD3TnHey/4fPwHjp1XeGGEu4rwLmPMNCcfaxRjjaKrEXget2LCdTXh\nRkzIVR3fCPCNjVwN6LUI8S9CNKWkHGtUI43S0HipHmPYBZHf4XR8ROUrdA4CRse3TJ5ccWCccxid\ncRidc7g6wxQpaApCU0CDM3Wf5+ZDXlTHFKpKmtvMwxG3sx3KmY6qCFRN1D5VEC9tooVLtHCIFw7Z\nyCQbmeTjmmWiKaimQFPkZDrhloiuRjUWMsS6QIZO18i27LyQIHMeyWdbq+RepdWMVWFI0Cs3QbF4\ns6+I5rrE3Pc1P9QK08Q/bfZ781xvF+HexXO+Dd43IJ0U6heRTXVrIV4bVJrF8mDA2cEhZV9lNerQ\nd5b0x0v60RI/WbN0ByzcPgtvwMIccrHZ53Kzx+asR3miw2lRM75i5CbRBr7+Z5kc9z+7tX2Gfp+t\n6krGV8fbMPaumbhX7K3OmC6uGb5Y0H26oVrEJGFJEFasAoFxlOIkS3w1weksCelzph/hdSMUS8BS\nhYuG8QUyQW3v7z/E+LIl48twwPLA8dAmGcbDFPvLFPeLmB3jksfm9zwyX3BsvEJCWhL4yoXJ9/kT\njCwhy3Q2uSs1/ur/ZSsJU/OCJ+b3PDG/51A/kWdIkftoImy+z5rXa8SRhbqoYK5QzHW0rMSfbJhO\nrngwecVO94KOGuCrAR01QGgq5/oeZ/o+58Y+S2VAktucFEe8zh9ilhm+s6ZrrfDHK1SlItA7bHSf\nQO8QrHyCmU/wwmfzvEuZ6ujdAqOXo3cLKkOR07brVW40qpnUHRMzRU51FEIuBCJXqBIFkSqIVEBS\nSSZrUkDV7gZqA18NEUHbun+2Qa828LWd022DXn9J7NW27fdoyeSIRGr6BoVkfNkqm5HPZbSLUabk\nhsaDsYOmVQxGGzrBkkrVqDSDTDXZGC6zzoCLzi6v7GOeZ48JU58g7N4xvpJaE61qmGbbetHvi6V7\nZ3/FwBe8SQpaJDBFFVLYjhKV8s09URX3yIAy3W9YRwUopUClQqUWAL2HcbVv+LdZG/hqjfvGu+sd\nPwQ+Khk+uOJz5w/8nH/mvwT/yEffv8b5XSrF2hfy5fZ+iP9FSO9xwOf9Zyz6XZ5bDzlQTun2N3gE\n/Jx/4r9E/8iTZ6+xfpOhPK1fr4G5F9P9Isb7TyHqQUVi2Cx6A5ZPBoSih//pgs97X/ML9R/5r/w3\nPj//jtG3K7TvhPwZCrCzYfz5LZOPl9i9lErVWE+6/PaBT/HUIRc6hakhTIGiCRRRolGglCXCUu70\nsXtITbOPBfrDCH8Q4Fix7L2uZEAXBh7xqy48U+AbJDBmIIOxUql1gRTwNTmBpNHmzpETONcWbARE\nHuTd+kQ0iWT7GrWZec31gvvAVktg/h6rQeE+GPaurAnA2j3mgfwOeQeuNXimgQe5aXNRHRN/7HI9\nnPKd8TF72gVdbV0LeDvMGHPCA54HT7g4PST+rY/4tQZPkUMSghTZItpQU7arjh/Ar/drrQBMVWXy\nWMc6mlVi6ykdNaTPCj9bY69itKuc8pUEvoK6WHVdQX+nxFuVWGHKMIVeucFVY0yzThwdRVY0tba2\nRfv+365gtYEvD2xLMr52VTgG70HI5OCKh7vP+WL8FZP1jHE6Y3I9Z3S6oKqg8qAyoRiq3GhjbrUJ\nN9qEhTaQPlmp0CgxspzxYs44mjO+nNO/WMMYlHqC0MrqkRQul9oBT90MFQ17p8A/3DB+dMvB4Skf\nXT/j86tv+Wz5lIPVxb1YZOl06VlLjE5KoapkisFNvstsM+H6ZpfNpntXhDWRG8IVcA3iWiafpAJF\nAcUFzS0xqhxTyTC0BGEp5B1QBgrkKmUE4kqBAMSFIisrVQ5ljFIGYOtyBKtvQMeSrUKYiNKqi2am\nvCYCZN9CA1LCnc/5oWCrncg1x2122LtKsNrFgDr4qepFBmVOvjTIb+TUv8BS4AHkA51g6DLb7eMQ\n4xLhEKMIwev0iNfpMa/TI67DHZk43KhwrsBZ3S6aZv8DjK8P9u7tzzG+VAlMWQq4Crpd4BoxPWXF\nuLolTmOSjSBewOwKnPzuigGURwX6MqaTrNHQ6KobHD3GsAoZPplIsEX9IcbXduxV+y6tI6eeTQw4\nUjEeFwxGc47Gr/jR8Cs+5RvcMsFdxbinCWacU6lQ9aFyIRh5nGkHnOkHnGkHpKrJgAUDlgxY0KvW\ndPIIbx7ReRVhUsg4UgM6MGbGxuxx6h9hjEqqgYK/HzJ6cMvBw1MeFy94cvWcJ5sXPFm8wCkTMECp\n5WufqY8x7YSiVFkqXa7KPZZRn9lywvxqTKlpd77LRLYnXtY+6ArYB6UQsi7sVhh2iV4WGGToaoZq\nQ95VIFOhVBFLBZErMnF8LaAsoEihiFBIZUeFr8kxhqaMrURl1LiNjTx5SsvFNEF5e49RWn/ftrYv\nUfnTWKQN3L8LextbomFiWYgYxEyX915qslL6VD3YKB6X3QmT7g1jbphww1CZcy2m3DDlmgk3+YSg\n6rFZ9QhOu1Tf6XIYwCKHNOb+EIBtLccP/uv9WsuH3WOrKm+Ar6E7Y889Z3d5wXh5y+DVku7vQ6Kb\nlCqAcAOzALrrDN/MGPbW7OzB3NlhqC1w/BilJ+BalRMXLbN+3z/H+Hpb7miDZtdi9i54HtqkwjqO\ncT+P8X+2YioueCS+50fiKz7jGwSSKVqhkmKhk5Kis1S63DJEUcSb3NYhZkdc8Eg840fid3zMM8kI\nq4GxEBdDSckU+fpF3kOZCapbjeLWxEhz/OGK6eiS49ELjv2X9MQSWeJcUqHSVR5jEYFSUZUKt9EO\nt8WU23yHvNIZuDO5nBmKVrLM+iyzAcu8T1y4iKUGpxriG03KSIxAGQoYCRSz5jnkinyEljLmEleK\nzBkj5X441DzryvZzXz/7alU/enpdgGx34DQ55Nv2nbfFYn+Osfqun+/2z258Zx0bpY5kfOkVla4Q\n7Ha4DqfkmUqoOKj9in4vQFQ32MIgUS0y1SZRbNaKz6wcclHu8qo84uXmmCo2KEODcm3AupDSHEWr\n2PnWKb4fGF/v0ZoJeLyJv0WmkmAT45BojgRRBmB1Yf+yZjgidfAHBigj+e+lqxHhEuOQl8bdvlRQ\nJyL/1o37tgDMlvo4I2AP7KOI/d4pn/ItP8l/z+PXr3H+ewr/N+TfQDqvh7wdgHYKg4cBg0nA9PiW\n3cc3DMYrdEMG+j/mK45fn2L/nxn8X5D/EeKFzHHtPdBOoJ+GfP6/f8NsPOKVeszz/cckpcPe8IzP\ntG/4Kb/hi4unjP5+jfr3Av4I4kZ+BWUfzOeC3f8642e//A1Lt8e5ss/J0QPKgcVO95x954ypco2D\nFNUP8bhmwunoiJujXZZ7E3iloPwsZefoip3eKQfWOQPmOCRkmKyFz1W1x/nOAy6Pd0mHvgx6NQU5\nncKUYv4T7thiVn3KG4xoBlwpcGnCjQ4bU1Yk3wRZzcYDd5WVpsoC9wGvdkLVdoBtuuu7Yn+1E9YG\nPU+Rd+gKcCEy4MSV1akK8tjmZrZH8KjHq/FH+P4CzwlQEKSFSRD1CVZdNqddym9N+IMCXwPfArMc\nymV9whoxorYYLa3jB3v3trURVhXklRQPDSGPdMLMZVEOuBQ7WE5CZxqSP56jLhXsNXRrfEHNwTw2\nYddi3bcpHYvLaMqy6BFHtsQ2N0KKqOdvoyRvX+e2/6pBMl1vCTKDYed4xPTTNZP1DHu+priOWVzk\nRK+Qz2M9a0K8FCRWjmqHdG0d0ypQ7QrVqlBtgVYVmLMN2XXC7LwgPAMrAHsF9gzpPufIIrwBarfC\ncWMG5pId7Yq94pzueoZ6GRC/yFnetL6GAkGnhCTC1RZMu5dUrsrIXHLgXRD0eySqc3cpCigrjaxj\nkGomWd9EmArmJMOYZJijHMPJMMoMY5VhhBlloZEkDolukwwcorTDOu4SZF3WlY8IKwyjwNAzTD1B\nswSam6O6EZqzIM9tktAhDWySwKYKVDlxd+PJ61aYUDk1kphwB3y1KzJtsKcJQrLW79ur7b/eRSK5\nHXTVLdrocr+MHZg7YDmIyiALNcKVi34zoJpoclKdkmKpKQjBTTxlE/fIEwuWCnxXwGkpAcQshXwN\nZQiiYUu0J19+YH29X9tOGBqWXylbesMK1oKsZ7JOfW6qCafqIYq7Ih+lOAcJ048SrPKO7eWokD4y\nSacdlt6IOTvMyiFB5pPFptzXE2ppg3Yxqu2/thkTrcEhio5iKqheidoXmP0YS0+wowSnTLCShOIk\nY3VSsjqtIAAlBWUNyhVkw5LSi3C9BVNXQ1gGHSXAVzb4SoA5S8jPMlZnBaszgVFJYM+JwQ7rj7eo\nP64Hhp/TcWR79qFywiS9wJ4vyE9jFs8rokx2P6uaJFXlexlmtqFv3HIwOMPXQmLrksjrEPU9RKne\nXZoUMsMkHZoktkU6NjHHGeY4xxhnmP0cQ8/Q0wxjlqEvC9LUJq1sUtcmmTqsgy6btMu67BLZDoZW\noWslhpqj6wmaW6G5KbqzBkPqniWhRRrZ5KGCWKuyALnuyKEfpSX9V+nVWWqbsbdt7bgr4099WLv4\n+K6e9fZe3PivukMgqyAQkomNSuGUpIpGmDiIhbxGhWaSqB5LbcSy7LMs+yyqPkHWJX5hk79QKU9y\nuIlhGUFUC3PeY9r/uSEAH+z9Wn3dWwNZqkJ5M8kzwSLVTApLp/JURA/0BNwKerncjl1DEkp1F6oO\nlKZCVYAouVMoKAR3w1i279sfAr8MMAzwNDlxcQBuL2Ls3jAxrpiKS46WLxnNr3AXa1ilKPUvFQWU\nkrF5zSPrBYqlMLBXlK5G6aoUroZu5BwuThgtbnAXG9RN+uazKYCmq/iDBTuDCx4NOuh2ycrss/b6\nrMs+aiTYFZfsLS7ZW1+ywxV2HmDnISKLqFSVjn/LbtdE80u6VshFsaajRFhmRq4YjM1rxto1Y/Ua\nTSmZqwMWupSwDzs++Y5F9sQix0JLKpxuhNuNcbsRql5SlRplIVeytgkHHtGkQzj1KELjfiikirpA\nIOqJOkChQqnVeJGQ03tjTeZbRc1mreoCwD3wC/6Ufdy+xtt71bbvetcgfhu8rxlfRQJxIm9a3SA/\nh6hro5k9tLTilRGj6AqR4XOiH5NjkimmzMcrn+/ij7mIDgjiLtVMp3wmqC4zxCaTxZAygCqW7/X/\nUxz2VwZ8tanP7QAMmSBtoNhoLNIB19aEa3PM5tDG/yTBfAXHAXi3kuXYdWDwAPgMyo8gmDpcscOM\nEVHm3g2qSYCi8Wb/1phmhXtTQ1RdJnC18H6nv2HPvOCI1xyuLnC/SeFfIPgnODuBeSqLEHtXMJ6B\nOQb6YD4pmfxiif7Lr4l3bQLd48HqHOfb+vX/COdncJXKAuzBNeykYHZh+HDDA/+EQ+eUHeeK1W6f\nPfOch7zgk+wp/W82qL8S8N/g/DksQ0lCmTyD/lLiTrs7Mz767Dl/1F+x750z8W74jG94wjP2ucAj\nRKCwpssFuzzrfMwfO5/ztftj5kdDHh59z4/d3/Mp33LMKybc4BCTYzBXhpxqhzztf8zvOz/he/cT\nAmN0d6n7yEkrh8CugKFAcXM5ISfW5MjdSySb6QXwQoXXDixGLfKShnQMzfVpC7E291Vb5LQ5NhoV\njQeFO1rsuwC/3pZQZNz1TBlQ6bCawve2FMxcA1c68fMu8Z7P7XiC3ilAFVSJSrE0ZbXpRJFTSZ/X\n5+U2h2zB/QmY2yLRH+z9WwvsrCrIhbwMGhSRQZh6zIsBFjGeEzKazske26ilir0GPwEtATuB/KFB\nseOz7veY210ukymLGvhiqcBaQFTKtpW3ig3Dfep2G/gypDZYC/gynRxPiRikK8brGcU8Jr+Oic8K\n8tegrkC9ArVXLz9D64R0fUG/k6D0BEpXyIqoXpLPYtLrmOCigBPoLqE3k11KONw9EjqoToXjRvSt\nJbvaJXvlGd31DO0iIH5WsDi5/1XSfoXQIrzegsmejdNJKUyTwjMpehaVosaHa6MAACAASURBVN09\n3glklcGm02HT7xDoHsJRcLshnW6I54dYaoKeFBhBgZ7kFEInMj0poD90maljzvMDLqp9YtWhzAW2\nV+J5Oa6XYNk5hhlhWAqGqRLnHqtwwDLqkUU61Y0K5/UAilKXwFGZyXbJqhHubzNfmnupOTZMqHYr\nYPPn5vqWrf//l1Lvt0H7BvgSIDKIfJh1oRKIyCVbqgQ3LtWZStJ3MLQCXc0xNCnuuA57rKMeWWjL\nQQCXBVymsEwhjaDcyIBLNN+t7bc+sL7ej72tat3WdSuk7mYkYAXZwGSTdt8AX55rY41WOAfQW6SY\nCMxa38vUYfXYJN3xWXgjLthjVo7YZB2yqAa+YiELA2/aUbaTiXZhawu0V3TZmuxVaIMccxBjpzFO\nHOMtY6xlQvC6IDwpCE4E2Qr0JeiXoL8AZVgihhHucIEzLNE8FVtLsNUER0uoZhnhWU54VhKdCYwC\nBgn0AzBWyBCjqZl5YHRzfHfD2LjlgXLKKDnHmc8pTiLm31SYMdQaw+gqFJsMU98w6N9yUNnsaDcI\nW4OOhsi0u7CkXhujw3rUYT3x2agdXD/C64Z0/BC3E2IkOUaaY6xz9LQkMh1iwyXyHMJOh7PsgPPq\nkFLViH0HwxHYToHj5Nh2gmUlmGZNYNF01nGXVdJDJIJibcO5Bmc24lyVrIncgTwDkdbAZZsxuN09\nUSB9VrK1Gh/WxG7bMde7ir+aeK9OTnNRDyvRINUpqUgTHRYu5blFaZjERoe10ccxEsLcJcw8otwl\nSl2yS5XsUqW6LOC6gDCUwFfRAF9va9V+F9/ng/2wtXyZEPfCblGqsvglDBJhk2oWuWVQehr0FPRY\nAtt9iSVgmuDWpKzKl2RHkSh3IXwuWsDXnys2NtY8G01uYoKhS+BroMBE4PVDJt4Nx8YrHorn7MzP\nGL+4wnmxQnnVAF+goKCpBSP/BroKXT/gsHdOMrJIxnJ4UKXCweyE0Ytr3Odr1PMG+AKBQLPBf7Rg\n5/E5laHiujFzc8ysM2GmhghDYXdzyd7igv3NJbvBNaIWnxVRgtAUvP0Z2kFJf3/DeLDCV0NsNUWz\nClLNYle/YEe/YFe5QKdgpo6Y6SMGypCV1yPa8YgUj6jTwcxzRs5MLneGoWb1BEc5yXEd9Lie7HAz\nm5LMLIrAuD9R20AOe2qWADIFUk2ulQozFeYGzG2ZV+ZCxs1Vyn0G/vaQlYah2h6i1gbtM95P7LXN\n+GpIE5ocABQnIBJEZUrgy7TktNq1CR2NyPO59nbpOyuKSqcQOoXQiHOHy9Uul8s9glWP8kanepkj\nLjI5XKiMoQrqAmSbHfRB4+s92xbCSSoDo40GcygvdRa3E14fHPFMe8Lx9BWf/N1LtAg8B9zXMp/Q\n+qB+BPxniL90eNE74gWPOEsPWN0OpM7BgnoCXgN8bY843batAExT3zDv6YBlpvRZMeYWbxWhnAAv\nZBvAHxOJ3xglhCvYfAv6S/BN6L8GM4OeH/C484JZf0BnEaOdCngFN/Xrz5AyMnEAvTMwX9fMsU9X\nDJ05PVZ0vRUjdcYO10zWS/SXFXwLN9/D1ws4E/KmehzBz74F6xD05zD96IqJfsMnPOVLvuJn/Jov\noqf4tyF6kKOokLom66nL19bnTJRrzGHKi85jfmn+il/wD/xE/I5HyzOchUwiK10h7jlc7ox4oPyY\nnrFCPyj4+u9+Qhz0pNP6BJTPKtzHKwa9BZ4VYOkRAoWkcIjiDsv1gPD7PnytSJDRViRQdD2qnZbZ\nuj4ad+JtbeCr0XmIWitAop/bwdq7BL8aa7c7Nptg7WRLAasxpC6sa6DvOTBWqHommVtP7Ex50yXJ\nNZL2ewWsUyiW9R9mtBS4uS9u/wH8ev/WSiLLSg5t0AQoNeMr9VgUQxRR0XXWHEwvySsb1VUw16CF\n4ITQDWG5ZzLf9VkPxsydKZfrHZZFjyRyEAulZnzVtGTRgLfbwfbbqo61/9I1yVjtqHeMLyWin62Y\nrGcs5gXRVcHiPGf1Suoe6/UyHIE/yPAHAn+Q0hnqMAVlKiCDyqmYzwrCq4L5eUl8AtN6kJHryvZC\nXKTv9GrGlxczMBfsqJfsleeYqwXqRUDyLKd41vo6QDkuEd0Ib3+BlimM1RWGVWJ6JUZZoimVxGnq\nUxIrNjNvyGw4YDYcUHUU+uaSgbmgby5xkxg9LNFXJfptRaYabEYewbjDZuBx6hyilwWJanNj7ICi\n4gwL/GFGb5jg2RGWVmBrBZZWsMm6qHFJFutsYh9ODNkWX2qwsiWokBeS3qcU3GnntIGvtklh5vur\n+X/t57oNYvwlAVgbCAHprGs/WsUQFfKfIw0xM8muNUTXJe06BB2BqldvFkAWmKQbmywwYaNI4dkg\ngTCAdANi0wq42q2Obbbqh8Tx/Vj7nmn2qTbjS8AasrBmfJUTTtRDdlyN0RB6BymjZI2uCjSTN0t9\nYJJOfZYt4Ose4ysW0j+WzXu2E8i2D9tqwURHUXRUK0PrlBj9DKufYM8SnGWMO4uxLlJWrytWryuu\nTgXhHKxLMG2wLHD6Jd5+RGe/pLMXYfcVdL1A0wp0vSSelyzPSpZnFddnAiOTuKyxhO4M2RrY8l+G\nn9F1NkzMGx6oJ3SSK4pZRH4SEX9boW8kwchS5DEvM8zBhv7hLVqlYOgVjpViexlOlaEE4g7vzuDW\nH3LbH3LTG3HbH9I3V/TNBQNzSd9cYtyWGOsCY1agL0uCoUcw8gg8l5Xfw60iSlVjafVRhiOMXoXb\nL/F7OZ1OiqOluFqGo6UoioqZThCZIElN4oUJTzWErkrR+7iS+jkil3sPFX+aLLYtQ/qrqHVs2vK3\nn+ltAOEvTR6beyvmDfMsQ95HmQ6BQZnoZAud8sIi7WrEtsfKLuRUR7MgTw3yRK4i1ilXxZvFJpM6\naXnQYny9bajQB9/172P1eRY126sECkFVSsZXXpmkWGSaSd5ifBkRuAnoETi6JAToNuieIoGvsmZ8\nVdwB0mX9Hm9lfMHbY6+aNGHqUtalr6JMwe1HTNwbHhqv+Ex8g7+Y4T+f4fx6Bb9L68xGkZmKpjIe\nX9MdhxyMr0inHkHistE8go5HahkMZteMnl3j/HqD+k36BvYC0HyBHy7YNTWcSUZ/Z8OVtcJTQywr\nodB1dtcX7C0u2T+5ZPfiinhZEC8LkmWJMMD7tKSfBhjGDaE5x7ZTNLukMuXE2gP1jAP1lH3lDFPJ\nuNXGDJQFt+qYeWfIWu2x8nusdxPsKuFQP+XQOOWBfoKlpCTCfrOuox20RUm6tJgvR6Rr5GPWLAvZ\nKjmQxAkEiEiVLZGRAlcanBnygma1r1Jq0CuPuN+q2uSNbV/W1rpqAKiUu9hqm6H/l8Ze7Xu5DXyp\nIFQJfIkYchuRmWSGSlXZZJFLPO8SDX2uB7u4wwjLTxGlQlWqVJVKkegENx3Ca4/w2qO80RG3Kdxm\niE0N3ou6ACkaH/bvLznxVwZ8tduxmhsslijkvCPz+tcq0YnPs8nH/N48Z2TNsD7POHAusR5UKGeg\nZkAXxCMIPrN5evCYf1X/hj/wI06CY7LnTi2wjmRMvKk8bdP6GtsGRlo0yBaDVdUqDDJMUrS8hFDe\nQ1EmoYha4osr4CaVciZT4IscJgPQHsPoizlZX0NNqzf5TVzK16+QN8QKee832IZe5Zhk6BRYWopN\ngkeIHlUoS2AOsxAuhcRUdCQ09MkczBkoK/CqCI+In/Ibfsmv+PL0W0ZPlyhPQbmtv+MIxp/O6X8e\n4E5CCsWga274Jb/ifxP/nUffneF/HUuR9bV8E3GwYfjlnPGTFaaXkag2wZ7Ptz/6MZQq2t8mHByf\nctx9zrEm2WIdAioUQjpcdae8Hh/zcviE650d8o4nv0ClSJG/xQSJhrXoILoOplaL5iI3p7wNEARI\nyt8S6TVrsfl79i7ArzZdtnGCDe0/bH3mUibA0RAufFmZOFFl26dXf8TG/8b1uV0j7900RPa9zbkD\nvZqqY8Z9iu6HNsd3b39u4ytllJRXoEj2VxHphLGLkpbkmcrQXLAaDIiMDvnAxgpKjDUYG2AD8dAj\nnwyYd6a81g+5EDss0j5xYEvga1VJ55Bttzo213o7AdkG7jWZhbmAD4ZW4CgJfhbSz9aEK0G5EGxu\n4OoSDCHZ5IaQmvrWNEef5vgTGO0ACZKpqUuiyGYF2UKwmsHqCkwLfAtyC0wP6fx0oAdqR2DZKb65\nYazNGJfXVGFEeROTnhTE3299k6BCPUqwV2vcrMJSVLp6QNcM6ToBVpZJDKWUjO1Qd7myJ1yOp1wd\nTal6ChNxw6S6ZVzd4OURWlqhLgTaqSA1TNaWz2bUYe138DoBYdnhWptK8XtTx5nm9HYSJtOQrrWW\nulZC6lot8iFlphFnDqusR9VTEZlKtTIQ53XFUSvlvaGULeBLhrfizfVqbq0QxFqyLYQuAyCoI/Gc\n+/dgc+3/0oSrfT9nrWMKiQ5JPd1YKcgdk9wxwDal3pmBvFGM+qOthXSxayRo9ob5uqGeoV2vNkt1\nm734wd69tdkobWZyPckzKWWr4xKyjck67nKTT3DFA1QL3EGBuh/hs0TTKxlYWHIVI49w1GNuj7ko\n9pinIzZJhywy7kD7rKzbTbZZX9vgfbsir4OioRoKmlOh+zmGn2IuU6w0xZ6nmJcp5SWEV3B7Bcsb\ncIT8eI6AXrfCeZjgbBLGGXRC3uQ9woBiAeU1BNdwfQ1GAm4sGV/lCilvsYNkrrqgewWuHTLQF+xw\nhZXdsFqVpJcF6xcV2lK+d6bIY+XnmI9CuqGOKyq6ashAXzOwVgzyFUoi5NOXAyFc9qZc+Dtc7O9w\ncbjLWNwyETeMxS1jcSunP4Yl+m2JdlGxUTps/A4b02MxGJCVJnN1yKl9hDoWmOMCb5TSH8f0ewEd\nEdAhwBcBihCoZUFRaISlQzK3KFWDMjYobw3ESgO19l2irLeZfwP4EhsZDFf1ZFuh1Je3/XyLt/z5\nXVjzM+vYqzCgqKdl4VCuVcprDSwHLFvuhy7g1jfMm1qpkGBtGkNa1JqE7YJEU0h9WxHq3ydh/Ouy\nt8VeLeChEhKcKqDKVYpCJy1N4tIhVhxS0yLtmBQDAz3OMRMwYnADQeUqlJ5K5SmkHYU0NShCjbJU\n69kFQu7hZdtfvW2/fRvwZcgcxVWhq8AQnG7EyJlzoJ/yhGcYqxD9dYj+VYjy99m95jtdA28vxtyb\nYe6BulZZal0Wfo/FpEvouziLFe6rFc7vArR/zRDi7sxo/ZKOu8LcK+l+GjJQ19hmgmZKdnaqWEzE\nNdPlNbuvr5k8u2V5A9UtxLcyBPHKmL4L/QlkwzlogtJWyXSdyLB5IE54UL3msDzFJMVX1vis8ZUN\nXWvN3B7ijCJMJcUVEUfiJU+q73lSPcMlIsIlwiNSXDppQDqyWQYDrCAlWTuwEigrYA2KU6FMC5Rp\niTItoVIQgQaBigg0RE+l0nREoUjJCVEBicQVUkf6IsW+W28DvprCssjk9Wvirz+5B99l7NXkjA14\nX3+eIpWLFKKUApsiNUjWNtxazKcjuTeFSEZhIe621oi7QXPnwHUuc4g4gSSEskEVt3UKt/fk92t/\nhcBXi2rf9OVXIWw6kuHyEvKnJmfTY/718d9gqSlZx+RHn37NdPeWThSgVSWZYbLyepz4B/xW/wn/\nxN/xh/DHzL7fhaeqbJ27AsJmWmADFGxXHuHtF7t2ss1+WkJVqWQ19FWa2psN1NElNNPEVhkSpmgm\nTE820L8GbQZuFEGpUFraGyZZp359VL++D+iO/DccyNS6ioFZy/erlGj3OjMN5Q7TbiSu9UZsVYdS\n0ahQ+ZKv+PH1Nwz/YYX698DvkZMCFeD/Ye/NnyQ3rjzPjztuBBBXRl6VdZFVPMSmNK2RZsbGbHdt\n//M1G7PdttlWt7pbbIliFVlVWZmVZ2ScuAH3/cGBTFSKUrN3RtSYqdzMDUlmVEQk4Hh4/n3f9/3u\ng/U3sLtd8ov/7TcshlNsUfNz/Ws++fYNwf9Vwd9jXApb4Es8Bv+k5uH/ecYvfvkPXMpdzu1D3n3y\ngDSI+PjZC34R/ANf8hXPeckh7xjqDWhYyyEnHPHC+pSvpmf8s/8feG09p6oHLWFLmkDl+HfFQ4Gp\nxkbtH6t7SynxYBvANoQywpzgG+4U/++P/xFHni5Z77O7elRn7PZ98/YzWu2vamRE77MQbjzzgOwA\nPN1Wx6vK9HmT0vr3cgd49an2/RbHD6DXn2906+PexlEVhh1TZyAS1FpQXUD+yoVhzFW0z7fiufHI\nEhG+lyFijXAUItTceBMu9B4Xqz0umj3Ojw+5OdkhPQ3R7wTMVeuEV3LXIlbyh9WZe4BcF19r2zi4\nbLXZ2IYOySBk6Q259qbkUwNsTR6UWIsaKwfZtmLatdF29V2jg0EEZexSDh3KoUM+silmJd5Bxc5R\nRVTWzEKIQnC7jYXZd5gcNRUUucemirhRU8ZyFy9c4E0V4WGOfc/AVe1K8l2PIo7InQl2ZSEWEvei\nYXCe0VxDvrybmd+QWTlOsGY6tJAKRumaQZbhZjV6rklPoDiB8hRqV6NEhRI5oSWI/S2DPMW3c5xp\ngSMKZvqKx8tjnuZG/NWrCrzSuBmunRviYMs0vGE/uOBmsMNqOma1P2H1cEwztXpYvTCmALJByhJL\narSWNFqilEWjJWSgtw4kQbu3ElBJI15dSe7ah/oAe7cmf0j8ul+d7mJVd/S4czTp+vuH5kIKB5Rl\nxGiFNpvhqgarNgtF1AbkKFSP3bPpzS5m3Re1/xCzfpzRjw89i6DKh7SCRQNCU0Qeq3jM+eAQAiiq\nkE0z5jra5fTBEdLWaFugHdCO4I31hO+SpxyXT7m+2mf1ekT2zqOaY0xY0sLouzUdG/tWdPV7vt89\nnRXdoEqoUwux9ijXPoXyKEKPfN+l1g5upRjlmgepYgjYBVglWIUxxPUtI7UjfdADQRNImlDShBZV\nAM62YbxVPNwo7EKzM4XBFKwpd4wvx3z1JrPJyoB1PWTODpFd04QZ3jhnuqewA4UrTZ3BkVDsWyRj\nl8oPSESEtdWEFzn1uYU+h3INxRryDeRrSMoSLbdEgcuDIYzyFaNswyDLcdKG6p0iPdVUp5rqEnTT\noJoCW0mGpUNUJAyaBD/M8N2EHfeah+UJD6+POVieExQZQZkRFDkozSjaMBvMOYzece3tshjusNid\ncfNwh1REUIt2StAaKRVSNkjLSLcqLdBammPZQCLRqWsMijJh4lZpWg1RXSactdf7PYuEH7iG+/Gr\nn2/1c67uOMTErzaBVh40ThtHMWtQtTEsq03cKpQBgYvGVJ2blnXROkXe6ab8MU2cD6DXn2f0c69e\n/qVa4L6sQFQ0W8huPDYXQ8SJJtYJIzaE4xz3aUU4SrD2G6xFjbxpKJ64pB8FZDsBqR3w9fYLjteP\nWV2OUScCzpUxNMgL/n/rUvbSMa0EjZamJQ0HW9pYtsR1BJ5nHpt1uwyVhqCAYGNAKMeGcldSbm3K\nyqXAxbUchGPj+AIv4Bb40hoaT6AcSWnZNMKhwqHGpsHsAUGghbglGBlTOXNf3zYzizZ9EWCrmmGx\nYZ9LqtIm0y6T7RXh9ga13dI0Na6/YuyB49fEfsI0WLAfXrEOhjh1zsHilMniHGexxqpyAtvopw6s\nlNr2WNkTNvaQxIvYjOdYToMVNFhxg2uVuGGOpwq8dQ4CtLJQnkTZFts6ZlGPWdoTluGY+sKCiwAu\nh4ZxjDCJrNdOSxrDFSHMsW5jQVmZY5VD7WMcve+3cHdtj/fJBv/e+7+LZX1ty252OV4LyFXCAPJW\nm9crYR6nG2EMlxoMANxg9M6uFVw3sFaQl1BujNSE6udifW3oH7CW/yePvyLgq8Fc4A706gFfLKGM\n4V1oQJWRJBmM+Mb+guahxUKOOXYfc7R7wpQFNjUZAZfs8YYn/I7P+V36N5y++Ijq175xFnwN3DTQ\ndODBfSHwPvDVpyz2g2tz1z23hrzwWTJmzg7ZKIAnK8THsHcGXxzDbmEu6Jx7UItuQej2s9YMGexk\nTJ4YFtjuKXz5Cg4K89g+HEH4GHgC+iEsPfOZK0Y4VHgUKCRVLND7II5gfwbPzmDQFuieWRAemt9x\nAEs5xqbmOS8Zf7NB/nfgv8HZC7jJjX7gznewuwDhwXR/wye/eEFKyGfpS4JfV/D/gPo7eHNu8ETP\ngv3vYJgaRsfDowueH73ka/k5e8Nz9DPJfwn+O/+Vv+OXza94evmO8DLB2VQIDeXI5ZP913y0/5qJ\nuMEOa+qPHF6tP4Vr2+yZ9mjF8ttLJLkTye8MV7oWwSVGH+vCg0sHNh40HcJ/f3Sbxw5R+/fc9F3y\n1VV53N707s0OBHPaz1sBG2hcaAIoWje429Hp7fQrjf0Wgr5mWbeWP7Q4/vlGf130ga9O/6S9Vjqh\n2ThU5xoRuzSWw+XOAVYMSRxzMTzE9Qqk0yDCBtk0bJvYCOsuxyznY5bHY5ZvJ6QnIeqsZXxtayg6\nq/b77dqKu9h1n9FRGwZkD/iqpEMShiy8EVfDHdQ0xdlLmRxpRpvauOsszduIGmLbGEPaAehYUMQO\nSRySjAakYxc1S3H3U3YWGqFq4iHEMThDIxHT1zvWiaQoPLZVzFxNGVozJqHCmxYEDzZEnZRCGzSL\nqaTe9djEMWtngq4cnEXD4Dij+daiOYN0A8sNrLZQRg2Wn2MP10ynDW4N4SIlvElxFzXNlSY506zO\nNctz0L4ilBWhFIS2YjjaEtopvpPj+AVOU7FbXvFkecxPiq+ZZAuctMZOKpy0ZjscsPPghsPDc67j\nt7yLjng7ecLJviZZxzS1ZfqeWoaMtBW2XePaRher0RZ141ApG9046Bvg0jHmJFe2Af3TNg2t+oYe\nbUL0vevzT41+VVryfnzyuKW2GDtRYABiwK09n7rbBNM0IAtukVIKY49dNtxZZPdbzvuaZd+XcH0Y\nf77R35h3saEAbHOTJm08KTWF77EajCHQ5F7Ayh9zZe1xEh0xHd2A1GgpUZZESclVustFus9lus91\nukv62id751JdA5vCxK2ygOa+ptv9Vrc/BO61VqgSmtSClaBcBRSNTzHwKFyXynNwioZx2uAkmqLR\nqLabVjVt26FlzIakZ4CvemhRjhzKoU0VgbutmWwq/LXCrmG0C4NdsPcwt0RXQyigziyyImDdDLnW\nO2inwh2s8CcKbz/Hjlt9r3auDyzSsUsZBGxFhJMoiouE+qWNfikoN5p1AqsU1ikIXWL5W+IhjHYK\nwmVq4tcix1k0pOea9blidQ6baxg0DYOmJFTgVZLI3xJ6KUGYEtgJO9U1j/NjPl1/w5PiDe6mxN1U\nuJsSrWD3wTUPjt6xdEdceru8GX7M672afBOS+pEpxkkBQiIsheU02E6NZTcIqWmUhVJGV0klGn0t\n4dpDX1uwso10ydaGym1ZYF0O1gc++6yHPzXut4l3pd1WSPy2wtIaUt1WRiMgBG0bFpiW7RJrwa28\nMGhpVUPdbXors16b3BS2bjUXuw3w9zEkPsSwP8/Q937u5TaqzW9aR+J6I8hvPMTFkOrExQ9LQnLs\ncY0eaqKDLV5S4CYF3rZgM4tYPJyw2JlwY495Wz7l7foRy8sx6lgajcplBVkHfPXzrx9w3e+FNK3a\nIhcWFQ6esJCWxHMEgWuaO+q6zfCVIfzotakzoaA6kpSJTVG5FPiEloNwLGxP4rXFRa074AsqxwgO\nNtIQNSqcW+BLY1At3aFb4n3Qqw9+AdjaAF8H5QVuUpKlNs7lGudijb5IqKsGbwjusGI0SqnGC7JJ\nQDo1zDuRVwxObhi8XuC8XmGlFY5fIL0U6Tnokc1md0QyG5DNAtJBiBsUuHGJW5SETUqktkQqIVpv\nkbaicS0az8xze5839lPeRE/YTEPqY2nIEtUIFq5xdx1aMLTNdKQxX+tmrswF6GZWQNbe83XOHdtT\n8J5UwPeu0R8y7seze8Yut3vSlsFaaQPQ68q0keUSNhLmwmj4diYPCoOebiozt7X5W+q2xVF1+8mu\nVfs+Y/XHG39FwJfCXNwu4e0qjymwBBXD0oPvLPBA2xabesLXX/6Uq6N9Xow/4ZBzYjbY1BR43DDl\nXfWA0/lD1q92qP4pgH8CfgecaEgKDOOnc8DLeb+94v7F7r5bmxw29V3r2TUkywHnDw554zzleHjE\n5LMV0S8zwhKeDOFgCTKB04XZE6fADNgdgrtv/iMNAy7lHvXAZuezFfF/yggKeBTD/tI4zniHYP0M\n+CVcPpnw2n3MCQ+5zmc8cN7xyHrLY47xz0vDassgcuEjDx5ZIAOIZ2D/DPgSks9sTp0HRGw5TK6x\nXin4Bha/h39dw1vMrfakgP/0NYQPQbyCg1+ccc4B46sEXoL+Bk7ewD+VBtgLgZ9k8B++BvEMvNc1\nB0cXzLhmV16zG1zxS37Ff63+jk9fvmbw68K4E16bs+3u5YSf5wx+ucV5VlIIn2U4ZvlsyuLNgblH\nW1YcDnf7/F1Mr3egzZOhkLAQ5lycYFoxX0l4ExgAre7TVvtofR9A+PcErb7AftdY6tPj0HMnEHLr\n686dkGIHWnX22EXve3VtQh3Ald/7ue7NDy2OP864vzFrW890ASo3iVHjozYB1YVLY7mUhYt64JI8\niDkTD3gxTLD9CktWSKtGyppy45EtBmSrkOwmJD/2Kd76FKeeYXxlLfuvLHqMr/usie9jfbUJYe2a\nh/qmZXwFDokOWbbA12DHZrCnCVclYWJe3ijDEFcpBC3jywpBR4IydtkOByyHI7bjgHDHYnCgGGwK\nAgnuBLwJuGNDJmGOudfnfcZXzI2aMpQzvLBgMt0QPrAZd6e6TcTSkWSz61HGEStnSl05DBYZ47dr\nmt9ZNG8gyWCRwkUG9VgxiXOmOzWTg4xBBfZZjXNWYb9rSC8V6SVcX8H5JYhQsS8rfKthYJfEBwmD\ncYo3znAmJWGesHvVAl9Xv2dncYNcKuRKIZeK7MBn3VywjiNWVsx3W1jThAAAIABJREFU0TPkVJMc\nxLzLj4yIyAjT6jAUSF/hOCWeU+C7ObWyKWoPXXs0tUCdCnhtQ2ijdWDaVLEM6CWstjTbgV5F71r/\n0HG/unjXCmRmxPsbxhYQE27L+OJO8LdsgS+RmEliqu9NaY638eu+uUgfsP/AlPjxxvcxvqRJ6pPK\nXM8tFJ55/uZ+wNKZcrW7x2C6IRpvGEw3aCFQWDTaQmnJtozZJjHb85jkPKZ6A/U7TT3XBvhqevM9\npt/92EXv+/UYX5VAJzZqJSjWPqXXMr48l3ro4GbgJJrRRtEU2mgdN6ZTTfYYX8IHFQrqsUWx45Dv\neDRDcDcF/kYxXdc4jcY7bHOvw/YrdfoTy47x5bOqh1zrGY5dMB00+JOCyb7AzUEaM0qkDeWBRIxd\nqiBgI2LctCY/96hfWvBrKLbmFF0XcFnA0C6ZDCGelYwPN9iXFc47E7+s84b6SrO6hPMrzfUC9lSN\npTRDXRMrTbSbEM4S/ElKGCfM5tc8Wr/l8/k3fDb/BjlXWPMGOVfoBtI0IHEDkt2Ay9Ee3qgm3wu5\nLA9N3PIwmypPIzyN9BS2V+N4BVIq6sambmxobFhK1LEFby2074HjmhNRu5B6hnkM3KKIt/nWDy3a\n3W8n65hdHWjfCrHRsfw78L49qnaDqWT7+G6LSTIBmYJqDUia9qh7x/suBO/pqX4Avv7844+w2XVl\nwMoWAGs2DtmNR3Xpkp7E2LsKZ1Shx1CNbIasCMuUsDLzJphyFh9wFh1wbh8yr3a52cxYXo7QxxIu\nGsP4yvIe8NVnfP0A4Ou9cNZnfNloaWPZFm4LfBWVebSmbbqmc7O1MSxWQXljUWwN8FUKj0a64FjY\nLeOr/3mVJ0gdCZb1B4wvjWi/ubi9pUTbZ/ke44uW9SXA1g3DcoNTV4yrNflCULwqyb8rKF6V6EwT\n7FYEuynBro08cKge2FTSphrYNNsGfZqjf1ug/inHWin8gbyd1gNBUkdkA4/Cd8kjj6DOCJqMoEkZ\nphummwXTzZLpeon0GmrbovYtqpHFd4OPsQY122nIyeEDijCAMoClC25kwsRIwkzCrjAFSUe0uLkw\nheGVgpU2086BoO3kyA1wfgt6Vfcuctf2+O8Z/XjWb5HtZi/X0xVUjWHclwWklikqOJYB8Gx5h3hq\nDUqZ15UFlLlBUFVqpr7Puv/LFSD/ioAveJ/e3DFbEszD68aIw1xMzd2mQScW2VXMu+cBNw/2eDHK\nsf0KIRpU7VBlDtk8oHjjw0vLML2+wbjgLUpQc94HvrqL3RfU7ca9NqZugWQKriWcQ3Eccnb0kG9m\nn/LQOSF+uuH5//GacFTifQLeDXAKj7+G6ZnBzbwQoqdgfQl8DjfDKafiiAuxT/wo4bP//RXBsMD9\nFNwbzD2wB3wJ85/GfDX5nK/kl7zgE2rbZldc8pTXfLR+S/BVhfhHyP8FTi/gpjS5yqEC+3HL9voU\njneO+L38lEPO8ZLqNqG7SU136Rl3vKXVCsK2t3pQJQycBLk2r9cLuCjN6xeYFGOqoJibv11sYMCW\nkIyQlE94wd80v+Wzd68J/+8C/huo30JybgC+wT7IY4iKnGfuMVePvuKt9Yg3w49YfLoPE408KAnG\nKbZTtVUTSTTYMvTWuFYBAsrGJSkiFqsp6asYvrba5E2YbPRyapDw9zZf95kzPySB6bc39plebS8Y\nw3aOea9NyJGGXiswyHytuXMaTbhlgZFxx/Lq1ml1b/ZR+g+g1487uhjRPbhaIfCWOaO3UF9ZUFuw\n8cmyiBt2jFnDFKRTY9kVllshvQqdWK2uik1z4pj27BOMWN9lcw9E6Avqft/m8V5FlLaCnTZGf+kG\nyqHLpoqYiynnwT67QwdvJvC2DeOiopKKutbUuaYuNM5AIGNQQ0ExstnGA5bRiKtwxjqM2B3bBLvg\npQ0jr0FPgR1BNYXUMxobdWmjlgJdCOraJm98EhWREFO5ASJy8aaSQdXS7bskbCiwJw5N6JPaEUXt\nkq5DqnOX5ltJ862RYNlUJtQ3uWLwoMBalsRbwVCBuNFwrhHHoM9NnNrM4foa7EgzjGuIwR/CIEgJ\no5TAzfBHKbG1YefimqPVO569fcXsfI6+Bj03s1w5ZGOP7JFPLj28sGQ7HnKV7TOoE5QnEDvKBMid\nBj/ICd20nQmVcslqn6wOsJuAauLSuA4NLnXutHR+AblhXRiTj04XM+UuYenA9H9r9DeNXWtj2LK6\nBiCHIIbtMW5bASSiawnQCq16yVVdtcBvihFL7bvodtXEftzqazx9iFk/zugYNd3PfcYXd1oimXmu\nVJ5DFURs3QgsgaMLHD/HneW4sWGZN41FoyxzrByapU1z6qC+c+AsN06eNwUkfWe//pr4vut/Hwgx\nG1td2Oitg1rYlDc+2U5IEg/YTCK2OsZfl/irEn9dIoqaVGpSpbFKjXY01kAYplcoqGOHZBiQTAKS\nWQihZrDI8Vc2g7XE1jUcCfQDKI4EWeVTWi5NYYGGppJUtUtWB2yamLEYoJwtTmgTjwVeaZjyok0J\ntjsSGds0nkshfMrMpb62UW8s9O+gTo0U3rqGeQP2tGZyVBOuBLMUo916pREnwDE015DNYTmHyxUE\nnmLqKWwfBoEmClMGOwlhkBCON0xX1xzl73h2/R2fvX2BPud2KiWoAotq36YuLC6tPdJBxNXOPq/1\nx3g7uQkLoUYMNFZY4/mZmUGOkA1V41A1tmGtXjvUA4/GdalxUdpGK4nObVi7pm1bd7HL5S4edFvs\nH8r46omH94F7EbcxKzYxrLsQtxekdwugMa3avfiFcVB7f2PYn/f16fpgzIfx44x7rY66uiu2UNAk\nFs3CoTh3YOAihUYGDY0nyWcOI29lNO7YELHlil2Oecyxfsxx+YhsO6C88SkvfNQJpv17U0LedV/0\nAYM/BRS0a0PruxppCU1lUdYumQrY6gjPqgm9Aj3IkaMcVWjqQpEXmrTUuBL8lphYSygzi6JySZuA\nRITETkAdeOjYRU6s95qYZGSjQ5fKDchkSKIGFMJDYSHQ2DTIVqNWa9Mlp3t/TtfiqAVoCyQNgzph\nkCaQQnEJizdw8zvIf2uIRM4RDI9gsgG/Bu0aLoueGVPn5AK2LyH5Nci5ybniIURDkJnFajxi/TBi\n7UZUkc1Qr4nZEOs10+WC3XTOrJizu7jG8mtqz6JWFrVrEQQpy3DIyfQQr84o8BALCRcWIhYGA58B\nh2aKEHB0G6s1em2h5zYqlGhXoG0HjYuuPAN8KkzM0B35oL8mu/1A//r/W+N+POvHNM8UDUS7XxTt\n87Ix2mYmlloGjNOWmShMS1lXGO0Yqh1g22/V7OJZF9P+Mu3af2XAV8f66sR6C+6q0K1Kbg6cjU2l\newVcCNRrh3TfIZ3GBm2R2ugPrIVhFJxyx/Q51bAuob7CWOMtMKBC1ybWVZv7G4du9Cvq7cJJS7j0\n4QT0S5urowO+Cn9KFG6QoSL7xOfJ/lsmv1jjXTTwNQQH4J+YtxFD4Bnwn2H+xZAX0XNe8Ak5Ho1v\nkX0U8GR2zPTnS7x1g7IhHXtcTWa8jD7mV9Yv+Ef+I9/Mv8CPE6b2ghnXRFcZ8o2Gb+H8DH6TGsJT\nAGxL+PklWMv2VGtBRmBQ/1uk+46n5HHnleh1+yIbaumYnvCW4CTs97RtTeohjAtcR2pSWCgENjUP\nOeFxdUz4uwL+AapfwZvXcJqZfdXRHJ6kYEUQHWV8fPgtD+237LqXvP14zuyTa3b8K8buEk/mKG1R\na5upvGGPSyK2SBQpIZfs8nbymDezj7g4fEARtUg/AioHrkegu3bB+yDCDxEr7INeHeOrY0wMgQlG\nEXdmkrDAMSJJkTC4WF/AvsN7Ew82AyjH7TptqXC3laUu8eoYYX222odK419m9BOw7kHYOvA1rU7I\npn2ouG3lO7NgYaNDjXJEW60BtQR1pdDXFVxVbZWxBat0jVkTHWj/fVWa+9Wm+v3vlNuGRes1aASJ\niLi09wjcjMaRTLMFU3fBdHfBxFriDDOc3Qz7UYazLNAHDurAQe871Ps+V6NdLtnlcjNjXQ+Z5Eum\n/oLp3oI42qAGFk0sUQOLtRXz1fALTmZHJFWElSkGk5SZN+dhfcrj5Jjp8gr3ckN5WrE5ax0lXUMY\nkJbCy0uiKmGsFpS4RGqD2+SIpkFoY6I48aER0OxLopkNU4ftyEZF4GQ1bl3hiBo7UEQh7HrQWCAH\nMD6QuA8E9UOJOgR3mjMaLDmwzxnqDZN8SbhJseaKeg7FysglFCmoVKGzBrISL4WpveCx+5ZkFIE2\nLpOWZ1parVWDuy3wRIEvcjxZUEuL0vIoLJfS8ljJMYvRhMWjKQt7Sh0rGkfTlA5qOYC61XnTrTr3\ne8+wPrjRH6J3vJdcyQis2ARfK4JoAIPQUIcHEstRWE5tjpamqSV1JWkqiSot2HpGS3GLqUKqzMgK\nNLL3NTpA7kOs+suN/nnvF/ckd4zjNgMoPNOmdmGScZUq1ALqMxteCTTitsVNKYk6E+h3DbxTcFYY\nzYRNBmWXeK+5a63oFxy/j+XVB3W3RpMp8eFKwxtBLW1u0h1e1x/hy4yFPyV0MsKdnPBphhtmiKMM\nscgQywwsRfbI4+aRh3jkUU5D1kHMWseskxhdCCI3IZolRHWCRUO9Y9NMbeqBzXH1mBeTj7lSO5S2\nRRCUDIKEqVpysLxkejXHvdpQXRbcnGv8xhh6uK3GoV3W+HVGrDZMWDDUxhzDpgJtdHtiB3baPdBw\nauGObeqRxWpoY09rnKzBrmps0RD4MLHNGXIE7O/AcB/cB6Afgj0rGQy3TNwbdnXMuFgRblLseY2+\ngHze6iFuodIaa6uxVwp7AcEoZ1bNeWK/YTmaMAzW2FaNI2ucssZuSpy0xLELHKtEWIpGWCafFBZp\nGbLyJqx2xyz1mMzzqOy2czBx0Mo3/VeNB8ptN5D3i0jfFx+6+NXPuRzuGKrt9MM2doUw8BCehfRB\n+hXCU6Zg2rqe6UZCYpvcK2mMK1zlGAfISrbdAX12bf8eus+u/jB+3NGtGcldO/0GcAxlahUYbScp\nqDJJsglY3EzgSrN1h4QyI5AZgUhZNmMu6z1W9YSiDqle2zQvNOpdAauqdSNOzDPtPX3VfgzrAx49\nlIscSh+SGhYKHNhOIy7W+4TJM1QpmA3m7D6YM/tiztS9ocpS6jwhyFLcIjNbB9u0a8tQUH4RsDya\ncB4fMpczyrFP/dihyWyKyH2vfl/6LmfPDzibHXBm7zMvpmgp0JZgIhf4OmNUXGNttuTzitUVpGtI\n01atQEBpSwpfkoUSBgJLK2StsEoFUht2mOhJL98jMXVePronX/EHbZQto6zGZqsi5s0Op9URItc4\nZc20WjKtVgyvFnCyZXtSUJ1oHAecS40zUzi74MdFq7e6YC+8IJ5scZ/UOHmN49RIVxlXyCmwo7G8\nBttpsOwa267JkoBkZ0C6HpCsB5QXgvIcqkBQWj7kgWkxLAtzfK8VsfcH/tGYIO7Ne9I4IgQZ3h09\n5266Tntexd1JK1r9xFIa/a+6Niybumm3A72uj/eYqn1Dob8M4NWNvzLgC+60vrpkJ+MuMQfQJohd\njGHrG+zqDQaxjYTBGizBrYPBEuPeeI3R9CpSUDfc9tiw4o6m2r/w/Sp5vxrasb1abbBmBAsP3giY\nQTkNeBU8RzxV5EHAtT/jmf8t+9Mr9h9d8vDRGfHzDPGufasYmidw9XTCb6ef8w/W3/IVX7JkxJwd\nLr09Pva+42B8QVQnKClZ2kNO5ENe8pyv+JJ/Xvyc+bs9Hn/0LZ5b4FEgcn1LFlpVd11FAQaCaVoH\neZGCpwscaiSKMrQI90E8gNkD+OytMbexgSfA8CFwBBzCjTXlRkwo98A9AB7Bk3ewXpjPC4FnLljt\n69We4IYJG4aEpOwwZ9LcwDtQx6ZK0JlCCgXrBKIT2HsN9jvFdLtlMl4ysy/52fif+MR6wROME6RH\nQS0sKuEyZskRJ4xYI1FsiDnjkG/tZ3w1+pLf+D/jlf0JaTNq9dkEZD5sp9w5WnRIeFd1/Le0vrrX\n9DeQAYZatoPpv9wFP4KpBXvCMPdm7UtC7jDfLQbTuJJGk+zShpVjWgNubdIWvbXaJYYfWhv/suP7\nWh67NdSy+PL2mtU1KB8yz5gYvBPGUcwSKMsCS6LTBrVp0JvGlP7XJayKVlei4M7eM+EPHVi+r+Lc\nAV8Z0LryLUNTDcogsQZcugcoz2LtDRk1K0buktHuiuF0xWhvwXC9ZLhZEKVrilFIPgopxgFZHHHJ\nHpdij8v1Hqv1mKFeMfLWDPdWDEipHJvKcahdh0QPeDt8zEl1xJYBsuiArxseNe94sj3GXxidiOKk\nZP0O/IGZcgDSVXhZQVRtmagllbaJ9AZX3QFfvg9jH5wAqn2JteuipwHbkU8ZQ9jkaJlheQonVMQ+\nKMfcYQwE4YHEe2BRP7Ro9gVenDMeLDhwzojVlnGxJNhkyJuGeg7ZBjYb2KQgM42fNvgZ+JlmGi54\n7B3DWBP5G+raxqlr7LrGySvzc1Ph1BVOU9F4FnVgU4c2dWDzTjzgzfgxx85jyh2b3HOoKgErB/Wu\n3SyqFJTXAl/dc/SPVRz7iZbkrj2obcm2WjE2ZwjuEGYu7Hmw58JMYvk1blDiBiW2W1PmLiJ30bmL\nSmy49Eyl5dI2YFzlmCSs0wC7vT/6982HDeOPP+4DXzV366UDvtp8rAhg2Za2Mh99I2jeCfTIRg0d\n0yajJUqZo17WqEWNXtaGIZEksE2h7LTd+gXHvr7XfeCrp5vYiYkrG7YKrgS4DnXjcFPt8Eo+o/B9\n3k0eEjlbBjtbIm9LtLcmShYM0gVRssCSNfnOkHwnJt+J2YZjFnLMQk1YbCfoWhI7G+LZxhQxpaII\nvXb6XNa7HKvHXNo7VKGNbZUMwoRps+BwecH4+hpxmVBe5NycKwPFtHVVR4BVNPhVTtRsmWiHmC0B\nKbau0Frj2hC3pKTABWtq4UxcqrHHaujhFwV+XRAIje02+I7hkYsGYgXDmQG+nCPQDzXOuGAQJ0zc\nBYkKGRUrwnWKfV2jziFbwGoJq42RiIk2mnjVEC004aRgxpwnzhsqx2ZfnRNUOX5ZEBQ5bl1i6xpL\n11i6MhpfjhGWVo5kpYecekec7h5xGj9gEY7Jao8sdWnmHk3ZGCCgcqHswKs+ANtfD93og/Z94Ktl\nqt4K2I8h8GDHg10XZi5ypLGGGmtUYw1LmsqmqRyobZpKwpUF155ZW3MHUtuA97oDvvoF8P599CGG\n/eXG/dyrixUbQBqNyWVbBMps6rUkvQkRF1C98/C8woikWyWuXZKUA9b5kHUxpMhDqgtN865Bv6tg\n3ZiHfZkYauZ7jK8uJ4f3QY9+DMuNIdG2BkuhtWC7F3G+OqBJBOsyYi+8Yu/okj3nit29KwbJNYP0\nmkGiGOSZ0WF3jBY7oaR4ErA6mnAeHXJqHRmG+BOLxpWUh84tyQwNhePxdvcRx7PHvLUfsSjGTOwb\npvqGqXPDVF0xyq+xNxuyeQXXZtucZ+Y0aiEoHYvcs7FDU7x3GwOCS0ubHsxea6Ruj6K/leqDXu1r\nb38l7nZdCKhw2KqI62bGaXWEm5VM0wV22jBNl4RnS8o3GZvXBfNXCk9qhjua4VThTyHYKxgebpke\n3LAfX1BPHMInGaGbMZilSFshIn07HbvCswpcq8CzSpbFmOtsxnU24yrbJTkJSEKf1PIpa98w/9KW\ntVyV9673nwLu+6PP8nK50yQMQER3hUh7YAgTsWVEdiN5d8I6E7REGg3YRLRGSCUUwjDxVXeP3JfM\n6YNf97ucfvyY9lcIfHWsr34CBneLp71gdQbrsXGJuXDvpEjc3ks7UfNCmQVZrzGAwQ0G8OpXHP+Y\nm1RXMRe8D351qFpsKo8ngSkw+YJcRnxb/oTtxyNO4iMe85Y9+5KPold87v+eB3tnxPkWW9cUtsci\nGPPKe8Jv5E/5Fb/gt/OfsVxPeTd9yEn8iEfyLbv2Fb6doxGsiblknzfqCW/PP2L19Q6NsmkeW1TY\nlLhoR9xqEPvSqLN0rpARRtCVAPCgEg4hCR/xHcF3JeKNOTWeB89H8NA1gSmYgP0liJ9B/Tkc88gI\nIvrAEMQexPvw01Y3LxxA9Bj4OaifwvJZyFsec8E+NjWOrvCaElrNoDS928qL9tIlrcybyMAuFC4F\nU3HD59bv+Sn/wifNS/bTOU7e0NiCMrDwsoroNMNZmeppHdkkBy95tvctO3KO7+c0jy2+/dvPqOah\nAU/nFmQBNHF7XbsErN+z/8dYX71ofktN7bQlxhjQaw8GERxZ8BEGRXyModfuthfFapfhCvOdTjHt\nba8EvHbhYmI2j/dFym+D1f1N7ofx448+4NQBX23camoDfHVuUWllwHgP8C20tEAKtJCmAldpKCt0\nWZp+/DIzVcYyxehKdLOzUL9fraH3XfrJeut6lQcGMEkbWMDWiWg8i00w5Dw4ZBBviOINUbwmHqzZ\nL885KM/YL8+Z1dds3CFrb8jGG7K2x1yuD7hY73O5OWCZTRjEGwbxlije4IU5hfaM85r2yKuAzXDE\nhiFbN8ItSwZxwsyd86g55Ul2TLUoqS4LitOK8gTUCOQY3ApkqPByA3yVyqYS1i3wRa1uGV/OEOIR\nlAeCfOaSTUO24wg5BG1JLK/BHxYmn7Bbz6/aaP5wKOHIonnooGbgujkjZ8mBfUakEsb5gmCdIlvG\nV5rCKoF5Ak6qmWQ1Xqrws5odb4FwIfLXHExOEYnAW5W4eYW3qrDSBpkrrFwhM4WOBGosUGOJGkte\nuM/xRjnVjs21PQE9gKWHeudSOV6rkxQYkOk2BnXV7/7mkd7P9+NWT8ReRmAPwRtDMIKZBY8teGoh\nHgusSOFGJUGU4gYFMglhK2gSh3plwSvP0FYqH9Lgrh2zadr2k4r3W5k+bBb/cqM7/12OAyZuZNyx\nRksoBrAaQD6AG432HBrXQbkOjWcKMrrdzWgNumigaNB5AUUO1dZsFqvOBa8vCv19eiL3ga+Oae8a\nTZOthCsH6oY695jLHQrf43K4RxxsiJ0Vw50Vw90VE+bsVefsVWfsVzaOKFkEOyz8GQt/xlzMmOe7\nzPNdrpNdlJYM3RXxYMXQXoGlSeSAVIYkcsC2jljZI9aDIeXEwqkrBs2WSbPgcHlJcHVNclmRXNRs\nzzVhi0HbAkIX7KLGr3NitaEBQjIC3TK+MKTfODB1stEAyqlFOXEpRgHpMKRpJAKN49Z4oblrZQ1h\nblJdZwecfXAegHqocYKSQWAYX4VyGReGrep0wFdrBHK5MTjPbKOwV4LoRhNOc2aDa+rQwh3kJDIk\nXifEdUJUpPhJjqwUotTISoHQaF+gAzOv/R1+73+KN8ypXImKBGIb09w4FKcOTaoAz4D2omOs1piE\nqA8ewPtxovvd/RbHEJPxtix73zHFxocmhom9Cmu3xNmtsGcVdelCAaqQ5nF9bMOxMMiC9o2eopam\njQh6a/F+N8iH9sa/3OjHCrgDvtp8uWxgJQzLfeFRzSXJZUg59tiOR1heg+UopNNgOQ1V7lBuXcrE\npUg81LpAr2v0qoB1bsTAm5bx9Z4jcV8mp19c6go9bf7VAV9KQQnbwwi1OmCdxpxVBxyE5xwcnTPf\nPWf5fMSDrcfRRjHbJuymYPkgfXMsQ0ExDliOp5xFh7yWT6nHNsqR6B2oMuvuFAGZCHjlPOE79xnf\n2c9YFSM+0d8wEUsm1oIH6hS3WLSMr5Ly6n1/ByEEpS2xPRsrdGAg0YVAZBrLUu87QIo7xpcQLfjV\nm7r9/R/TEKNlfG1UxHU946R8SCS3PFm/xVk3TFdL3NMF169rNi9r5i80gQY91vhjjTXWBE8LYr1h\nJ7ph37qAiWbsrhnN1ow+XmGLGuFqhKORjsKXOYFICWVKKDLOm32O68eE9WOoFfZwgpaCqvYRWw8t\nA+5Ar/Letb7P5vpT+8euu60rQPZkJqyRycfc2BB8phJmAsbCPFS6fwpGz3ohWgc93SpftPITNbzP\n+Orra3b7yfsM1h9//BUCX3BXra7u/X/NHT0vA72FKoJqYEQyLae9s9qh6lYHp+tn7dRIt5hKQNfS\n1u9t7ZKv+5/bAQu9z2cLzA1F+3oGLzzz8lJSrAecXj1h/nCPr3f+htnokmfut3xrP+MoPmUcL2/d\nJ6+ZccxjXvAJ38y/4PpfD6nfOOQ7ActHu/x+9hOieI3nF6AhyQakqyHZ5YDy2wD9tYTnkDQD1oxY\nMqbcsdBHIJ7Ao7dQnsFOu8f+NAT3CYhHwCEsrDH7XPJ88Rb/1zXi76H4Rzi+MrE5KOChA96nID4H\n/gu8OHjKb/mCn/EbnLfAW9Cv4PoU3hZGM3uSwMfXYG9BFODpGo2gxgg4FngU0oOwwopgHMN0Y66M\nwKQtIw+IzD6v9gQCeMob/rP6f/np6l8Zv0xwjytka+2rJuaz5G8xjIMGmNWEn+REf5sQPC+oPZuV\nP2L5aMr5p0+Mev8JcONC0lpc3zZ43obhP7Fe+4GrD3r12F5xBE8s+Bz4AvgMrE9zhg+WjMMlgZUh\nRUOtHbbVgMV6QvpmiP7aMScixCjxnk7MQ/w2UPVZip215Y8vRvhhwPuJb//8txVIVUPZE1vYdKB6\n97AT6HbN6Vvwvwf238axzna4b2zQj133H1jd53Tv024oyoGhZ1OBqMkHLvnAYxFOIIDgICHwEgLH\n6MI8FiNSEVIJo9Wy0GMWemKO9ZSr9T6X2QFX1/ssV1P8/RTfT/HdFCeuyEufvPDJy4Cydk2s9k2q\n4zcFrl8xsFNGas24XLHNFXWmKBNNnUikB3YlcJTA1hYShUdOzIYGQahTnKaEpkFrcC0IfLCGkI8s\n5iOPTTxgFY0hBik0nlXSeCmuqgiS1iJ8CXUIxVhQTCXlrkRNwKYmIGPImoEy4qpOXUMFTS0olDZX\nxwJPQqAFtQJdCXyVM3OuGLoLHng2Vt3gNSVuUuFdl4i1hi159p4yAAAgAElEQVRGC34LYmR+lqXJ\nXZxJxXYScj2Z8nryELWyUG8c6qEFbgB1y8RRfeCrY0x8X8LVZ3t1UgId8BWBHYEfwyCGYWys3h83\nWJ9U2M9rwmjDINowiDf4fkaSxCRJhZ0o7IWmkRZNZdFsXdTGb622a9OSWXUMny4x/DD+1xj92KW5\n0ytp9Sar0ux8tiaeaII2TgnumMj963mfHdN3I95yp+3V1yW8D9Cq3nt1MdACJSF1QHuQVTS5x9qP\nWUdDGAlsv2IULxhGS0bxgpl/RSJCGuFgC/AouNB7XOh9ztU+l/k+19UeV9sDrlb7KGERj5YMgxXD\n8RJlCbZ1zLaK2FQRlXLNxtIW6FAgiwY3qQjTjDjd4iQpWaapcsW2MC3sXiMIEFRCoCU4oiIkRaPw\nKPHIkLqiURrpGLwmDAwGvYptFpFPEUUsBkNULbGUwqcEAc4K7AWEEegQdAyMQE+hmoG0GhyrILAy\nBnWCX+fYZY0oFCqHsrqTe9wCQSMYlpImE8hUM3Q3IDShu6GRFjEbhsWGeL3BXxaIrns1aze4A0NU\nEAO4GO+hdiGPXRa7Q3LPR51blG8HJLFt6ozKhdoxwBcOtwYL3yszcZ+teo9pL1rgXoxAThBDgdxt\nsB4q5PMG96DAO8jw9s2sCo+y8Clzn7LwUYFFY1s02qapXMPKURqybn12WmTd2u+v1w/jLzf68aJb\nP238qYDKhq15zjULj2Zuk8du2zMojNVr12GWClOB37SzKA1jvyqg6kD7PnB/v/B4/7nWZ9lY5n3S\n0mjJZQ3Z3CO7ceFmjFg0bPyIbRSx9QakbohIINqW7G4T7GyDDqAJTJ6S+T5rOeVa7nIuDznNj8zt\nMAI9hgL3vW+SqYA32RNe5R/xXf6MbRoxDW94OnhNYGVM9A2qSdBlTpU3qFbGSokWkw4ElW+TBx46\n9Gl8EwcttMmH2lOhlal1abhNM3Qrk3OLGbeXrHvt/ScQQKMtCu2xVRGLZoyuJHVu4yQ1w/UWa7Fh\ncWX2uMu3Rut9tNQ0Q7BGGt8uGO5umRY3HFhn2GHNjn/DdHzDtLnB0RVSKKTQCBQBKQOdEOotA7aM\n5UMcK0dYisqykFrRpA75JkbcuGjtmfwrLUGU3OkVdqL3/1aO08WwPoDfOWfHBvDyR+CNIIyROw3W\ngULuK+RMga0RXcqnQUUCFUiUK1G2Rjs2CAvdWKZdW7dnWPfJE938IXqwf/7xVwp8dQ86mz90Sej3\npibcghQ6MA/O7urfgmQd66ITBu+CVL/K2G9lE73P6m7D+6yvbmFvuWUG1bYR3m8c81FLaE5dkiOX\nZC9idTTj/OkDXsw+Yc+9fM99csmYd8khi7M90pdD1G9s+A7UwCF96JDuRyzHu0ivAS1oEole2HAu\nDGizAWJYXY85iw84dh5xPHpA9Pm3eCc1YQrPv4XHK6PlHu6D/I/A38Ll0xFv7CcccE54niO+A76B\n4zPjzrjEQDhlDl9egdiaU5DbLokYsMcF1gno70C9hG82xkMgB/Yb8C7g41fACXjzmnG0ZEDCCUdc\nix2unRm7T7aIjyB+A3/7EnYyc6YfhjB8CjyD6pHFZTQlx+en6jf8fPHPTP9ui/x74KU538IFa89c\nJvUvUJ8ZoNubgfwCwk3JY+eUn336L5zKI16PnjJ/skt1EMIUY/OUdMpm/Qjdr+zdH/3kq9tAdmh9\ny/YKYlNt/Ik55/yyYfyTax7NXvPEe8OhPGPIuudGOuFk9JDj2VNO9p+Sj1vansA8vM93zAbydl13\n67yvcfC/RgD76xx9tlWfhdfFjT7nu++kp2gb7Xr/v1tP/fel/fctc+s9NmwnFNdn9XT/tk+3F9wZ\nh9jm16kN1w74Niib5lJTTS3ExIcx3LgzbFdTey4re8KmDNiWAZvSZ5MPWC1c0htBtaghKVAXivpE\nUk48mtihrFzqykXVlmkZ6bjuGhrHYj0Zcjo95MXgGWpYo49SSFKwUsTHJUXssBo6ZPH/x957/kiS\nZNm9PzNz7R46MlJVlmox3TM9isNdcj8QBIH3hz/wPTw+cnexI7Z3u6enu1RWVqrQwrUZP5h7ZVRO\n9XCWALcH2DLA4Kki3cPd4tq95557roM8cCnPFOVAoX0beBpTUxtDoUGU4GbABqQDdVeRbkIWeZ/r\neoKpBGpjiKYZ/dsV+g1U51C+gfIadAJmpmFZ464F0hVkJmJmxrw2D4mrHZ3ujsHjJds6xJ2XOGlN\nkmp0qjHHHvVHMbPDiHUS46LxlgVunuPmBWZakl7XbK401XUDejUfZ5GBv4BwBcEcwltwj0vCMqXr\nrhj3p1YE0ZVUvs8ubHwYhPVOq/cxJe6P+3ardbYSEF2IYyt4duAgDg39xwuGp1MG4xmDzozQ7Ig2\nO8L1Ft/k7GRMKiJSFbHtJcwmQ2bbEfNqyMpNLDPnOoA6sVmRt1IGGXeAfbv/fgggf7ixn+RrfZ12\nHe0nglr/al/TprVH7d+1JbT+vf+5r0F43z7t+1zc+11rPxvR3rrRXRIC1hVcu7bNbOVibgVl5JFG\nETLSyNCgPE3l+2y8Lq7ImWcdO/Mu813AauuQbTV6m6OFQ5kI0sRHJF2MkqRVSFEG6Mq15ehtsOxL\nCsdnIfu8Ucd8239C8iCmrHYYf0dnuMVzJKbnsel51D0PTiX1oaDuCDxZNoBXTVYbqhq8Aty0kXs0\nkG081lmH22rMFWPq3MNZGKKrDK6gfA3FlW3QUS7AXVgwzF2CWAoKN2DlDrh2jnldn9ILt4xPpux2\nIVXs4G4MnbXmYG1IhCT8JKA8C5geBqy7HhqBXkrCdY7JNVynbK5KttcaubAAvcxt3Odgy8u9psy8\nHte4WUpHLpj0rklFSO24pEGCjLR1lWoBuQLRrp/7Scf9dQLv2q/9Mu0Y/NDS6iIFEYSPdnQerkke\nrOmcrInjNbHekCw3xMWaythETmlcKuMxjwfMD/vM6bNMetQvSmpHoHMfvYa7bs0etqPbvq7n+xJf\nH8a/znhfuSO8a2uan9dN+X3aIAa5sh3w3OaYiwbXEk1eMbUML/2+ZCPcrc/vYyjuVwtJMCnorQVM\nhAszCc+lPXcqyBOPddLBSSpM7IBWpCZhqie84InVUs8tYJSnHt8Un/As/4hpPmFXdpjLEY7UVNJj\nIYfv3KWi9nizPWWxHZJvA7R2yI5CFsd9ro4OidSKqDMlOjKET3M8k9u72gBTeiQpT0LSfp+V18Ot\nFIP1Eq4WeC9K5POK8hKypa3Y0dKWZMYxmB6WjOlYH02uwCwtEXiT2+aJqnmETgVRCU5dEZstIznl\nxH1DJ1jT6yzxRIZ2wdkpwhvDcGDQXcv4GowgGoIcgntY0umvOQhv2coQZ1vSmy7pTRf0p0tcY0s0\npTJIx6DqDKfKoErJqxLVXdMfXHM2cAiGBYnIkKEkGyTcnkzsG8wdWLc2KMPapNaO7eMK+6P92Xs0\nCkVsb5TqQz+yUhNjiRhXdEYrus3sDDZIpZFSI5XGAJtBwnrSYbNM2C1Cqsua6tJQXbpoEdnYscqh\nykC3scD+/rvP+Pphxr9R4AvuArl98Gv/4bTlhu2m16qD73dB2F9sLnaHbX/ncCf03C7QFvWEP3bA\n9h3CdrG052sCjcrAzcBq58ywLKIJMFYUD0KKpx6bBwNe9T/CiWqENOhSUm0dihuP+qUD30r4Bit0\n5TavH0p0ItGue5eIbchmXGMNyQSq5yGvT8742v2MB845yY+2PK7e4HZrwm8gbCv4ToCfwupvfP65\n+ykvxEPOeInYGot0zWBa3Un/J8C1AdP2AdjYjKlDhU/+ttFgvbNve7Z3VxeVfY3YgdgavOZ1Cwa8\n5BHP3MecfvGG7nmOzOGwC72pvbveGJyfgvkr2P3I54XzEIBP0z8w+N0G+V+h/v9g/XtYZuA5MDqw\nj/nya7jI7SM5vIbTFUQBxA8yHh694UH3nEPvimejDYtRZCUh/BZMaA1Q63z9qXGf7dUCFQkwsMLQ\nIwWPsUyvv66Y/OyCL4a/5afO7/gRX/OQlwyYNcBXwDUTnqknfJn8mN8+XfK1+xO29Kz4xhqbtVr2\nLOPxLfOnFQhuDe0H4OuHGfcZC/sC3ntsK+CPga/2te0zbJ169l63n+neT521zt2f0k26r6u04Y4f\nXVvQ9zaEOoB1gI4NZexgYoGOHWaxoYp9NkmX62BDthV3c6PYbT12W0G1rTB5Rh1DGStMbMWE2xb3\num6u2xNvg8eqo1jS5SI+JlEfkyWK5MGUjjMlGU7x1zvyICQLA3QYQsdBjirUqEJ5NSqvwWhqrSm1\nQTTNa2SD6dVdxW4Tscj7XOlDTCUINzn9mxX1uUK/huI1pBeQXYHJDO5c4y5qvLVlYGQ6ZmbGnGsL\nfA16CyaPr9n2QpJtirOTJGmFnxrSgcfuUY/Z0YhtZ0yUFwxWMwY3C+LrHcVNSXpTs77RrG5ApyBL\nGziKEjoR9OeWBRt0wckqIjel11syNrfU0qVyfHZeAqGxJdBa7Ikv/6+Yqu9jqbbdZ3sQhxb4eqyQ\njzT9kzmPTp7x+OAZDzsvCNYZwTInWGW4aUne9cl6AVnXZx11eD55yrPqKYXyWIUdC6bWge3F/pZ9\n2IqV7wNfH+zWDzf2Afv2Ge0DDvvlGu/rwNiydeDdRFBry/S92f7v/YRNC9rvg6Dtdd1LHGjZ6MYB\norLC1VUES4l5pSgCDxFE6EBShw5l4rNJetwmExQF27Vit3LYLh22u4A0d8hyTZ3lGKkpAoEIferQ\nBSkpKo+i8qgrF+Mry6joCugK8l7AotfnonvMt72njHyfMJgRjqd0HhUIqdBRzDaMWUcxzqDGHRW4\nSYErLUug1jVVrTEV+DWEjWlXNeQbn1XW4aYa85pTZCaIFjmDyxW8gOKi6Yx2C7sFxEuIFyCXoFaC\n3AtZegOuvCPO5UNG0YyTkzds/ZDqSOGsNJ0lOEtNXkuqRwHlox7Tox50fcJNSrjMrKbhPGN3VbC+\nKthdaqoFqOpuekBkm+cRuVAfV3hqR6e74OD0ilRGpG7CMhii4hoiaQWZHbkHfO3bMPbWAnvf7++D\nLVu1Ab76ni1vHAqixzvGZzccPrhkcnJJXy/olwv6iyW9mwXac6h9hfYcKs/hRfSQF5OHvEgekk9c\nSkdYpZSFh752oc4sHbe+D3ztg8IfAPx/3fE+29V+34LzDXOVnRXzbPXkKgcc1zoLygXVAOpFA3oV\nAnRuwa+3Qvb3QX94d02+zw/cs6cmhXpjKVBGwtSzFR2pi7l2Kfouq0GHuu+Q9xPSsMM0nPAqfEQv\nWNneRg34VRmHy8Uhl8sjbhcTdpuEuWOoHJ+N0yNS23fuVFW5zFcD5qsB+SpEI0k/jViIPlfdQ8Lu\nhoMOBEc54Udruv4ee8tA3lPMTyLSfp+5N7GJhrXCvyrpPNviPoPyEtIVbEpL5ox9W2Cgm4b2oq1m\nbhj2xdY2XZs3wJejIaxBl+BUJYnZMBQzTtwLonBHVyzwvJw6AnaS6EpjBhD0DJ6AzhjCA5AT8N4C\nXzfUEtSyIjlfk3y7Ifl2jatrlGeQnkH5UJcldV5S5QV5VqKO1wweXxE+zjkMFjgY0jDhdjixWtqF\nhLUDtx6IwALif0Sc2CfS7K8V+CO2lwgaymy3Ab48OPPgiUQ+qul2l5z0LjjpXjDpXOFI2+BESVtR\ndZVOuN4dcpVOmC5H5N855J7C1B66cKGVHjAt8LW/PveZ1x+Arx9o3Ae/2q/bn7dGpw3e9jY/Au5A\nKbgDy9p67JZy3x5bJL9djK3hbF97v/yxNXDtBtcY2HoHyyHsEivs28FWu50AzxXlRFEOgj8WM58C\nl1iw7ByLOhlsHNJt3lb7Vlqy26p5OyfAIfB7yZuzR3z50U/oeUvcuCL/4rc8fPCK5FWBbAhq1QFc\nHY74pv8R/0P+NXMGlHjvEEwapRd23DUdfIsxKijxqHAp8N7+sQqhu2wwpOayO4K7ykEXCnxyfDbE\n/J5PeSDPGY5mfPF//TNJp0Q9gbhtXngI5nPY/sLny9GPeMZTDs0VR7tL1Neg/xHm/wRfLuDW2NN8\nnMIohK938G3zFM8y8K7h0QtQ54Z4sWPUndKVKwIvs2+wvUYhGz7u+5yv7xv7QeQec4KutfgnwMfA\nT2H0+Q0/G/2av1H/jb/ib/li/RWjywXutETUBh1JigOPVwd/YOJfE3op5kzwVfpz0mli18Utdn0V\nXexaX3FXHvChdOiHH+/bNPZZo2bv+3bDc/a+3w8e27W4//p2re2DXvvMsvvsifugQnv+FkxrwPxd\nYj2NtYZrSe1IjKuoXZfSk1R9n02/y+3ABmzVIqee5/a4qqhKj7IUVGUFdU7tOhjXpXZdhHLQRtjO\nWUbYBiQdYY1EF+qxYhl1eX1wDE7Nthdw5JxzPHTwH1cEhSB3ElLVYed00J4iDnZE4ZbY3yLXLfBl\nKBt8T2bNblFB3VHsGsbXVX2IqaC/WZHe3ljgqykHTy9hfQWiNMQzjbM0uKuG8aUj5vqAc/2ImC2H\n3SvmvVdsnkYExQZ3VxLsNGoH88hjPeoxGx5zkTygk20xS4hfpXjf1lSXJenUML01XN7aJJzUzaxh\n1GjM+xH0IltmGfV3dE9WjPUtuQzZOR2WfokIrQNMJawT9r8FfLV2q2NLhCIXDlx45CA+M/RHcx6N\nn/Pz8a/5Sfd3eOsSb13iX5Q405ri1CV3XYqBy6rXIap25MrjJjqA5NgyoVfAZRvYtt1O25Kh/fX9\nYfxwYz/bW9/7ep9N0TKM9wGx1t60jkprv9rjPitmvyR7n122z9rYv572943NM9qyhDS2BKmqoNKw\nlHDhoQOX0vXQnqTwfNIoZj3ocTso8AYFQhRUtyXlbUF5U1BtBFWtqGpDXecgDKXnULsBuWf9yLpW\n6EpS1wqTCJuUPLDH4iRg4fa5GB4R9LekI8XhSBE8LOhkK2rhsnFitk6fjdMnCDI6wZpOUOGJgsqU\nlLqiqDVFZRN2Agt6+TnkG49V1uW2Ab7CrGCwXJJf+vDCslS3V7CYwmoBVQN6BQtwloLcD1kGA66C\nY869hxxHb5j7fbaHIVXu4C5qnBl05oaiFMwPQ2ZHPWaHEwo/YLye4a1KwvMc5/WG7WXN5o3m+kKz\nXdpA1bVVN0RATzYYvIJ6UeP2dnRPFkzKkEzGLNwhYZAiY22ZWTsBrgT5fYyv7wO99ssc94CvngdH\nCk4hfJwyenTDwwfPeXLyLQfLW8bTKePljPF0ikkEpisxHYl2JL+LfoKb5KTS51YPkKUPCw/92reM\nINEwdXQb4Lbgyn0G44fxrzv2bde+j9UmBNtEy8ruR0VTXquaElvZaMwJ34LqtWhsjABTNBSr/fLs\nfT2vdtxnJ+5fy171kk5tnKGV/dUstJqr1wa+VeQHLvrAITtIWB0YbkcT/FFOMM7xguKdvIPOBdvL\niN2bmN1lRDb1qVzLbJ16BY5TvXOFupLkc598HpDPfZSsSUXEojfg6sEh/iDF7+YMj5aEuUO/w9ty\nRAxsY8nqOCTtDbj1jigrD39V0b3cUD1zUN9CuYasBb4C6PpWkUg3jC/RML5Mw/jKt5YdNmtsSKgb\nrdUS3GqP8eVc4IcZPXeJF2XoCsROEY4hGGoGvYa4N7YN1+QxuIcFnf6aOgRH5qhNRXi+I/xyR/j3\nO5xK44SgQoOKIMs1262m2tXkW436ZM2gKPCCBd7kDRUBt+EhL4ZPEJhGa9KxbGNq3ga77wBf+4ke\ncW/ukyYaO/YW+OpBX8KZgM8l4scVnWjJcXTOJ9HveRI+wxUlrijwKNFInlWPCasdujLkaxfpR+g6\nptx4sFS2pMBkULZYSLu3qr1rba/zh7Fj/8aBL3jXmO079G3b4v0OLl1seVls/041AVabSKxax6tt\npb3AUmiC5tgCYO24b9j2F0S7WHbcOXKV/d5sLShRxrCJbYeYS2lZXAMsJtICWWVz2jWWKnWLbaNc\n7cCUVrtsGoDa21SNsdpldW7R5VvPdpWcQDEO+Cr4MeKBIXc9bqMxT4NvORjOCOuUWihWbodz55Sv\nxWf8hp9xxCVzBuiJhAfAGXx8Ydtb3xp7uZ/6IB9ixdiPYS4GLOgzZQwn54gzkI/gizU426bUUcDZ\nBHgM5iHsDh2mjFiZLotywJf6J3SDJY4qyY4CPvovzzn45Q3B3Fglhb7icjTmu/gpf69+ySXHfFL/\ngWTZ0Puv4WoBz43Fg0LAze0etW6ecNUc06q5zymoosYnx6NEyfpdGyXgnXYj76zB+6PdVNvRAl8N\ne0L40JVwBDyC4EdrHh18x8/Vb/iP/Dd+efWPHPzjHOdLbcHO3C7h6ElO+LMM/7MCkwh2Xszs6Yjz\nq6fULz0ren+poGg7OoTNOty/llbj58P44cZ+ANfajNYGVSBqy1SQVXOsbaTTIiBCIt4uSgWm0RrR\n4s5h0sbW8+r7Ged675z3r6X9/b4GTwF5ZRuBNOva4FHjUaNAOOQjD0bCzi6w2MBsY4/LnU3jCYXt\n6lNhjENtFLVxbZDQXoLGLs/x3awdxWaXcF1NKKVkF/qUvoPqQ6grhPFZmh4r3WVpetQo+s6CvnIx\nCoyocZwaJ6yokwLTqVGusAlcaXUuNjphVg25KieYXHCQzVjtOqTrAGfjkWaGXWnYGYMwIGuJqiRu\nKcmyiHXZY1aOuC6OCIMtV71DrnsTbnpjlKkJ0oIwzQnTnFKNWAVHXAUPeMYThvmcZLVlMr3FudDI\nNzX1FNJbWN7a2F2Ku+ln0MttDxezBbnQOJuSoMiJSAlEhisLlKob3FTsxV337df3jf3gsWWqNk5X\nJBFDASfgPKnoJUtO4td8HP6en4rfoFKNmtWo1zXyQlMrRd1R1AeSteqySnpciFOScIMMNWYm4Lxh\nyiC5yzS0yal2vX4Avn74sc+e2P9Z67A0z1AUlqYoS2vDZL03TbOPOmAaRp+uQNfWVtW6iQlNQydo\n7Vd7rvuZ5322fWNEdAO21ZUVdknh7R4sFLUjqJUCx4HIh3HHCgKPhb3m683d3JY2GkM0drmmkh5I\nD2Ro7e2+pGafO5lYA0XkszzocSWOkFFNHQlkHyJTMjIphfFY6xFTM2RmhsRyS6kcUAZP5NTKUHiG\nPNIUHYGsrUah70ClBKkIWJout/UBb8pTevmGg3TKbhdRbFzyzJBWmi2GjWNwhcLXkqCS6DxkYzos\n6wHT8oBr/5CbcMJtd8w0HDFTQ7xFhTevcecVKnPI+2MW/SPexMdk+KhK09uscacV4WWKuoDqNWzO\nYbm05F23mbo5+qLxQDyNWpT4u5SkXpM4G0KV4jol0tNNAYaw5dt/BNp/n024nwTa87s8H7oeTBSc\nQXCaMjyccTo+5+P+N0x214zzBvx6cYvsg2wZt0DRdVjGHS67ByTRCfKyg3nuUHYc8IOG1eFbxtdb\nP2sfqLv/Ofow/vXGfry4b7/2xbybTsNVK+jlW19dNLZLGN62IBRNHGlKm0HbF64ysrFt+/I6rR27\nD9y3fl/7s9SyBY2w9nDVdIvEnrucuJSHHsxd29F923yYpGiKlcSe3LSwMUGrVXwNefvWPGyt9NtL\nMfZ1M2HjzTkIpyA9CFme9fFXKe5BQcfbMRqsyfUS3cvv8hQaaj8hPRqy6B1w7R5SZi69Ys1ke0u9\ndGBp8UFd22p0HUAVC6quoOoLqp54J9dRF4ZSGwppbaAOoGp6XRgf28Hby4m9HT13ifIqpFdTGJcF\nPfRA4o8qvIOS8LBCSNATSXEgyA4k5UAhE03ibfFEhkorvJsM91mO97sMpzQ4MbixbZqoMgvcpWuo\n1uDVFZ3hjt4Z9Eu4FkcM/TlhJ7WP+kpArGwzn7es59av+ZcmIF0LwKoQVAx+guxXyOMS9bQg+HzH\nUN5yol7zRH3HZ/IrXApcU+CRU6OQTknlCDLHJc19nO0QPXMprhLym0bKpw4ga2V99rV/2z34h2Xe\nfwC+3o6WFdECXo16J32sQNPQIqShY8GGUFhMrK14fKtxb2DtwyYB08dSrWb8aSG6fQBsn11x37i2\nmiUZsAITQd2xs+jAPABP3lVaSu7Yt/tNFYS0zhY+1LKh9LdvoO3g1grCJrCawCvPBqORIFU9/qn4\nJasnPc492xVyFEwJ2aGRLOnzhmOe8YRn6yf8Vfy3vJJnvJ6MefyTN6gLQ5TDT59bA6B8CE+BXwI/\nhcuHPV5xxmtOecYTPvnoWw5+uUbMYeDAL64apL4DwcfAr6D+QvI8echLHvJGn7C4mLCaa/775/+R\nIvCZyjHPen/guPOGzvEGg2TrRLxWJ/yeT/mOpwyZ2dvc3PZ9QcS3RE1jqbKDZmXUzTF27K0ihspX\npIQUuNRa3mVP3pJk9hkz+0j9/bHvfO2vz0ZrwmueyQQ4g8HBjKfut3zOP/Hj2TdMfj1H/d8a/h7q\nl3azkF2QH4M/LXnsvGb92T9xERzzXfiU2+NjtqeeBQsSYBtiub77GYYPgNdf1thnZ+11zSNsBMQT\n8JtjHCBip2mrbDdwKQxCaIQw6KxG7ww6ddC7wNqyrYSdZ9cCbelr63jdL1Vqj3sM1Xc0fPaBsIw7\nz6mZpW/PpXxbHlA5tvXrSENfgaMaURrVlAt4UDaCmq0udavPD3bJNnkL0xMUkcvOjVCmi8xrVKop\nUp9lOiDJNmyLmF0esy0ijJR0+0u6Azt7/pzu4ZTup1O65RTxaAeOpFKSzBHMhgNmZ0OmwYjpZkJd\nSK7EnNFgzuDpgn7fpVyWFIsSsyypO4rFxzGLhxEMIl66T3m9O2ax7FEtHDIn5Hp9yB82nyC3mqGc\n41UlXlXhlyUL3eNidcSFOebCHFEvPI63N2ReiD6WeNJ2oz5obndlbKWFcEG6VtahH0PYCERXTxzS\nw4hl0uNGjJnXA7ZVTJF7TTd1A6WxBvB7mxzsj/2gcj/YtGtVKY0KNCrRhN2MUO/wNzneusQpaorv\nNJsXmuKVobwE3zd4jraWKKvxVWG7Izlbos6aOlLUvgVHavEAACAASURBVKRSCi2UDRreG+R+GD/8\n2LcHzt5sS2GbjdSPIIogjqwKe+giQokIDSIsMUZYLRrdoCFbx5ZTt3arUHbmjtXbeVv2ug/ewztR\n11vfqw1i4d113jhUJrJ+k1DWhyoc2Hq2pMl4ll1Uurb7xcRAXVuqgJLWjuHYwLhSjf4UVtw8NXtk\nXdFImAkq12FLwqwaQWqoK4e0jJmVYy7KB5SFyzrvss47rPIuSbxm2Jsx6E8Z9maE3QX+wwXezxYE\ncomrseWVSrKTkvVHHRaTAbdyzNX8iKFeMu7OGZ/N6LszslVJvS7wVwXdtEI8jlk/jkgfRNT9Pq+L\nE2Z5n2ztU9eKeTLkefyEIMlYen2ctMYtNY6sqV3FtBhyuxhxuxtiavBXNQNWFN0rkontHjlcQxXb\nYFC54DS3N3AhUda+hQ4UZ4r60GfX7TB3hsz1gE2VkJc+OpON/2saMPR+OeyfY8P2y2pdexGhgo6E\nIbhxSSx3DPIlh4sbopsF+mLH8mVB9p2VYA17EDYa0t5JTnKyZqRmHEWXzFWJ8ARl6JNFgQUfjLTr\nqrrPTvsw/nLGPsOmBSXa2VCqiUCEFiz1G41Av8mW7WeiygqKvVnldtaZ1Up6G/ftAwfvk8tp/a7W\nIWp/vg/MZZaNtvHth0r7lsm9UXCrrK9ViWb9CQuCzbFhbLr379qjxH62tLb+QdmwlDIBWqKNINsF\nrKY95Ksa4QhkKSh0yCIZMA5md2CfhswLuOxPuAwnXDkHKFez68XkJz71xxLlQbS1zc30FqquJD5y\nMROX9cilGKh3kqCZruG4JFmWHK1K3J1m2IWoYxsT1WeK9CRk2ety64ypjCLVITM94lw/oKvWxIMd\nyaOUWO/QWpLHIVkckBHi1RmJXhObFQkrJBXa1BRGU2nwavAry0BTjT69U1kGq48F9VWzlehGOsPs\nb1H7pupftDbvx48N48t1rN50IBCJIeptSZIVSbii58x5vH7OyfqCyfqW/naJqCuELhG6wkhBMrrl\n6CBCjwWBl3ERnOF0DcU4ZDuJLKu2ci2pBr9Zi/t6wT+8L/YB+Hp7C/ZZXk19DCMavrkNwA4cW/I3\nwWJhHZryNeyzXWPbfF4puJYwdWHTZorU3jn3g4eWGQF3Bqx+z9+2hqsFqHzujGsCugNFBEUjZiha\n5KtBwUJhrzkGAmGjIM2dfdw6sI4shP62I1IEDOwHRWCN31dAJcnWMc9vPuXy4Sm9gym9YEkgMjSS\njU6Yzsekl11yHfD8Rzd85X3GQ/clnX+/YVyukB2Injf3zAfOgF/A9j8pvgx+zFfiM77hEx7yksPw\nir/+z39HVxXII4gvmsvrAx9B/e8EL390xG/lz/iGT3hVnVF/51F/Da+zJ6w/7XAxOuEr8RkTdU2o\ndghgS8w1E17WD5nlQ/5T9P+wVRG7rk93lOMN4SiBs83dVnbqwoMudHOIN/apHPlweAo8hfoBbAcB\nU0bM6ZOWob2drUb8e3Vm/pRFaw3XfSMW2HRt1z4iDip60Ywz8YqnPGP4Zo76tYb/H65+B+dLG7v2\nFDyeW8fRO6w4PbngUfCSE3HBl8Mt23HHArsRNkKu91HUfersB/Drhx/3szltt88E6NgUUxxbQadu\njBg5yIlEjEFOSqRrkLJGCSteWS8F1VxQzRz0zIWZY7UhTAi72AZ0b8GrfUDrfhlZa8daYGzf3rXg\nfVuG1thH04g0bBPrcOVNcBH40BMQerYBQyjt0ZOQKiuYn0pbyjI3lmTbmso9c276gjL22LkRxhiq\nXFGsfJaLPpeLU/xlTrHxyZspHEPyaEXnkXUIBv6U48PXHJcublLjLQWVVGRKIaRi5veZdkZMgzG3\nmwmVUlyKBf3hgm5nSXqqUGmK3KWoXUoZemwmIzaHI9bDEa/zR5xXpxb4euNQobjaHCG2sNl2ib0t\nDjWOqHGo2RUh812fRdpjkfZxcsOyPCcNIvSJwGtMg6ggaBKqIrRkAhFap6/Ts4GY7EH10GV3GLHs\n9LgVByx0n22ZUGQuZifsI2uDx3cCxz9njd4HwBTKqfGCEjcuiLpbwuWOYJXhr0qcuWb7QrN8bli+\ngu019JShj8apwcsq/H5B2E+JelvizoYi8ih8H+1IdNvT/B1m7Yeg8S9j7AeL90swWnZ9307fh74P\nQw+GHmIgkAOBHBhEv8TUEl1JdKUwlbCNM6YGbhvfa+vAxgHtWpD8rePd+lPwLvCx72vdZ1K0WcO2\nnCmwjArt2JIi4cE2toBY4YCvrKZOYOx+6mprs3xhj1pZ4evUsYyKLTajpo1lxQphgS9PQgCl67Kl\nAyUUO5+t7DDbjXmdruilS+qNIt0EZOuQbBOSjFYMzmYMxIxBZ8q4+4bxozeMlaE32uJqAVJRSgct\nFKt+h3l/wFQecD07ZqiXjLozRs6U/sEUke2Q6Q4/2+EXGbtxwno8YncwYt074Hx2wmw1IJsF1BvF\nrDvkeecpeTfgdfQApTWqNo1AsmRdJmx2MesiISgz+sWaY64oeh5KW99Kz+0WlhegIpurlRG4gd0W\n2qmPFfVh8Bb4muVDNnWHrGiArz8J2pt7a6Bdm/ft1l7Jdgt8dQWMBG5cvQW+JotbzM2a4k3K4mVJ\n8e1dkkHGTR5qV9BRG4a9KUcHlwglqDyfbdCx2zfC1nEW7Tk/gF5/mWN/jbSswJbl0nTMo2OPrmu7\nO3YVdB1LWVRYJqIStiHLtoZtc8xzyFOrlVS1/lKrVdn6VfsMr/bYru1WlmQfCMuxTLCdjRPXgaVL\nZQGsXWs/E9fKEGjVsP3VHRG2ne0l7MslVsayYssaSm1tYGFBfe1I8l3I6rZH9dKhEAFZFLIIB7yO\nT+j6K0tEa95H5Tis44R1FLN2EuJ6y7YXU5z46FyhEqsxqFfgLaGIJeLYw0wi1uOQ9ch95yNuKGGx\nI9mkRLsaL9d0BhAPQA2gOlKkpyGrfpdbd8zGxEzrEedVRlindNWK/mDJgAX9zpIqd1nWfVa6x6ru\nM6hnnOnnnJkXJGaFNBXaaLQ2tliiKbxQDelJlrbwwtN2pXjiTn7QOPa2G2GxwHf04P/FBM/9tdkC\n943WW6SsFEjfEPd3jDu3TKJLDt03PN4+5/T1BQcvbxi8WVJVNXVVU5Wa2hF0Pp5y/Ikg8lP64zWu\nr8k7EbPR2OIjtbR++aL9PLQdKP9y7NgH4OstWt8i9hF29xkBh7aIt+vCqYDHwBMsSDPBAg4h9nlm\nWGDoGksHfS7gmYDzEGYHDWUV7gxRS7Xf17bYH61Ra9kV7cpvSwHabkZtHeOSt2CY6YAZYzWglGXw\nTLDHQfMWW03YtipzJi1Yd+vA3LdcUHzoB/a9n2LnEXBgb1f1xmdz67ELOlxHNcK3qL1OJdWtA+cS\njgXfDT9ifHTLQM1xkoov/uZLHjy6Qb009vwecGKZXv/c+Yz/zn/g1/yCrzY/YhDPCUWK6cFn//kb\njj+/wbm0t9B0YH3m8rzzmH8MfsLf8lf8rv4ZFy+ewFcCfg312mN+dcRvn/T5/dHndHoLgiDDGEGW\nBazmfYp5jNfJuX045o045jo+oPvpOfJzGMzhV9/CYm0JVqMTCB6DW0HnyiYQ3QG4PwZ+BdtPIp5H\nZ7zkjMvshPVN15L+ljQJ5HYT+nOh/H1D0TpgzVTi7ZJ1ezkdf82AGQfFDeFNBs9h8x08n8NX2q6U\ncQ3eG3j8DLyX0FsuGY2m9NWCMN4iOjUmks263ne8vu+aPowfbrwP+IqwiHzf8qqjCAYhjEN4AOKR\nRj7UqEcVyq9RqsKRNUrWVDcOvPHQb1y48GxUYQJIa5hVdld+a4N2vMvu2i8dgnfTgq3Na5lebXOH\nNinQbJBFZVkUuW/twoFjxVzGDow1JMJu1omw4P1awEra48LYW1BjF3rFO7G06UuKyEU7IaVR7PKA\n5WqAe13jXtWoG009V9QzhZ4rpFcTlWvicE082TDuXlNOXNy4one6ISoqauFSC4dauEzrAdNsyDQ9\n4HZ9QClc+smS7nBJEq8pHUlUrYirNVGpqJyQeXjEZXTKm/CUN7MHvC5PWCx7lBcOde1wvT1ive3y\neneKG1YI1yBdjXQN1dYhn3nkM5985hE7KctOn6wbYsYS17UaFkEO/W1DgOqAaAg1zgDcIXgjEEMo\nDxx2k4hF0uNGji1ronwP40v/uYyvdn3ur9O7KR2N6xcESUrU2RCudgTrHO+ixD2vKV4ZVq/gzSvD\n7BZOMDgaumVNmFX4ZwWBlxKNNsThGhnFaF9SKq8pI7kPfu1fz4fxw477SZwWAG+Br5GdvmszNUcK\nThTiqEYca+RRjTyq0aWDKRxEoTClhFeNzxE2Ar5OA3q9rcuBO/C97ci273vtM7/2E5Pt37egV2Oz\ntGeTAaJJDhhtu7dtAksBHzbVASMPuqZRDRB21gJWjf1aNqB93YBesgG+HGnLiHxB5bpssCymddpj\nWh/grQq8tZ16LqhnimrmUE8VydmKgZzR78wY6BmPuhHyoaE/3BB+dI0wglq4lMIlw2Ndd1hUA26r\nA65mxwz8BaPulOH4lr53S1wviStJXNeEdUkaJqyDMZfhAy7VA85Xp8zyAdk0oL5WzPsj8n7AdXpI\n0E2t5o5rkK7BSEG5dSkXLsXCoZ8vOQquWYbPKbse0rPC+e6tzdnUuS22aKdMLBDmRPaYTSTVYcCu\n0zC+sgHrKiEvggb4Aoo/h/H1Plv2PuDLaYAvCSPw/JbxteCwuGF9k5FeVCxfVky/hcIHGdjmRwTg\nqYKkt2Z0OuWIS0rls3M7zMPirgNlIWxi54/0yD6Mv4yxb8PaGLKNyfZ8MNFMz4VEwlDYUuhA3BVR\nuAI2xvowS2PLuGUGJrVaBKS8C3rta0Ub7pKR9+PI1tY1LC/8u5k31RxZCMsCXN8iyq5uUAFjL87I\nO05IO9uijzaMLQ0UGvIaitICX28/ShKDJNsFVLcO6auYNT3mhwMujk+Ikw1+PwNh7B0VBiNBuxLj\nCrQSjJwZ215iGV+ORPUhmoE7g84cMl+yO/bYTiLWoy7F0H/nI+3JjGgtSNKaOM/wK9vYzB2DGkM9\nckhHIatej1tnzK0ZYWrRhGqCjlwxGd5w0L1h8uCGfB1wszjkdjHhZjHhQX1OoRWJWfGQ50gqKizj\nqzAW/FIVeKWFAWT5PYyvZrsy+h7wdb8Z4p+9Nu/vs47dq1zHNvzoScTIEPW3jDu3nEUveeQ+4+H2\nnAfnF0y+vGXw1ZKsMKSFwRQG4Qo6uylRkHFwOOdwMqcIQmbdA16NU9gI2ClbQuu26+379MjapPi/\n/vg3Dnzt0+zbErIIW+I4BjmBngtPBHyG7Zr3Y1AfF3SPp/T8Jb7MkWgyE7DMuqyuB1R/iOBrLMMq\nkvAHH24H2FYZrRPVWo5Wf+Q+6wvugkm4E3ttN+EWft/vuNflrttfF0auFa17iAXrTrEAWBfrBxos\nG2mGFb5/CbwU8MKBy64NMh8L+BQ7nwCPwD3a4PdSHKemKhW7dUI59+FC2v9xzl2F5+eQ9Xr8NvgZ\nalCzkxFXySFPnz5j8GBOoDMq4bJ0uzx3H/Kl+Am/4Rf8Q/FLlr8+5O/+3b/HRIKV6PI6ecBZeE73\ndI1jSjIZcu2N+VZ8xJf8hN/UP+efzr+g/AffMtN+D1wLuFDk30bkk5D1cIAMjDUuqUAvFWwl5leC\nlw/P+JaP+CZ6xujncwbLLcqF/il0ltZmqDPgY0u9Dy+bezgAPoHtL33+8OgRv5G/4Gt+xPX6CP3c\nhzfN/UjbwL/t3HK/a8v/auwHcM1sMFDhahxR4lESlBXOzsAGsgwWujl9s8rXldUd9FJwC02gczxV\nWE0Mx9A2xUO0RhPusuUfxl/OeI9TLkKLboguIogQPQ9x4CFPFe6jEu9J9na6QYlqOrY4siLvB6RR\nTBrGpL6kRqJzj3ot0L60As+6aZNtPO6Ch/slj+3cB/Ul7wpcKu6yo0HzNyGY0lLmNSjfoPoadVSj\nHtTIjkF0tD0GBr2S6JXArCR6Lqmloi4VdarQQqK6FU6/Ro1q1LBCxSVSVaiqRO40eqtINz67taJe\nOlQzl+rWobx1EY4mmGwJb7eEsx2bOMZTJXEvpTfYgnApjUuJnVe7I66vJ0y3IxbLISUuN94BncGK\ncLCjiBx6LOmZJT2WbE3MlT7jlXnIC/2Iq/SI+WrI+jahfiMoSodi12Wx7Vob3fZTaYm+G9E0orDH\nafeWmT9iFgyYTQZoTyBKgywNQWGs3EdXYDrCdoobCooh5I2m2jQeMo2GzBgx24xYb7pk24BypzBZ\nDUVty7Xq/W57/xLwq/3aTilBOhrHqXC9AkWJKmvUViMWGr2CfA27DWy2Vg+jXBnMEmTHoEY1TlXh\nigrHK1FOhZTaYl7v1e/5YLt++PF9LJrG9xKRRTVkB2Qf2ZHIUY061sjHFe5JgXuc455kuMc5unKp\ni2aWDrXvULkOlVRUxsU4gd3nM2mZX63/Zdo9eL+0sR37AeR94KsFv1qwLrSJARPYAFGWNrXfBHEq\nNKhhjTqpUWONiDQyMohIQyWo55J6oWxHbV/YszUmVkagohKVGFTXICODdAxCa0QKZelR7HzMVmC2\ngmqlqGcO1Y1Dde0Qe2uW4x69SZ/ZcoAIDFGU0082TOQSg6AwHjkeBS7Xswm30zGz5YjFdMh0NOZ6\nOKEfzUiGKwYipk8IwkcSsjJH3JgHnOtHvCwfcpkdsVj0yK88zGvBZh2zWcc2J9szd9IgIdavWGD1\nZm8hzadcHxxyG42ZdQccdLqIuUEuNP7cIHyD6UlMX9jZEegYigSIBZtBn+VgyNwfcVseMNuN2Ow6\n5DsPvRM2cVNoK3Rovq+72PeBXu1xD0yX0oKSvoDQ2jGvLgnrjERvyXcFYmMoFobNDDquBb/qJg5U\n8xpvWxAVKQkbQpHiqgLp6L0YUez5Xx8Yq395Y9+OSd6NHxMbfzk9cPvgDJBDgTqorS9zVCPCGuEa\nq3XvGuqVRHcUdayoA4VZSsxSYYSDqTwLipsKK4Kf8S6Tvl0b+/txG1u0ifZ98N6FqrT+XLaHqoiG\ndiRcC7g7xh49jUw00teoUCNCjSkFpmimBFNXGCp01TC+PAWesTMC7Utqo2zDy7WkHCq2MmIW95D9\nGo1CY31OAbi6wNMlblbgFJq56jPvDZi5Q+Jkh+iZBgg3CMcnnwxY9vrMwj47L3znSUVxynAQog49\nkkIhTUF5ICjGwFgwTYbMvBFTNWS2G3KtJxSZT577FJlPR66Z+5cs/D4rv0sqI66yY6445io7ZuPG\n9IspJ/U5GxK0yin9gjKBsq9RmaH0BKUnqDzrRhlfIELLAtN9RZ5I6kCROZJ1kZDWAVXh3Es6tvvR\nfcYqfL8Pdn+/bSRDfAmRQHTAj3O6wYoD75YTdcFhds1wOqP/ckXy9Q6R2YrbMrdxrz+ucZ6kOOmS\nvtjx2j2jG63wuoUlayfCllKqdm/f1yNrr+mHHf/Gga/2AbRBWNsrcAiMrD7DYwE/BX4B8lcl/R/f\n8KjzjEfuCybimoQNAFsibuMDznsPeHH4hKvjE0zHa3QJhRV7mw2509FqgY/9Tfh9pSOtA6a4M3It\ngttee8v26AAHoPowceHjBrT6HPgU5OOM7tGCTrDCEyU1ip0OWM4H5C8S+FZZwKiL/WAMgS+AnwM/\nNww+veIoecPYvaIrV7iipDIui2Gfm9MJbx6esO6NMCjLcJphAcBQspSH/I+f/wfmkwHn8gEPnFcM\nnTk+GSUeC/q85pTveMJXi89Zf3mA+VvFtDrl//1pyPVownfiKYfOFX1ngaIiI+SWMec84Jv6Ey7+\n8JT8twH8XXPe75rbdYHtjjQS6I5E+9yxgZu2ksXA59XpR3x58pqxvCU52PDFf/mKwdEW8QycNfYz\nfAT1x1B1BP7UQA1lT3J72OVZ+IR/cH/B3/Mrvtp8we23x/AHYYHAW2BXYOl1GXdlq3/q2X/fWoA7\nHq/NTJhSUhmHAo/cdWyHkcQu4Z6EfuNTdYCOAje0S74MJYXybABfuehKvEvgeYe182H8ZYzWbt0D\nvaRnNRuUD06AGki8oxLvUYH31NA9WDHozhiYOYPFDFcVKKNRpkaZmk3aYan7LDs9lmd9tlXMNo/Z\nZhHbbWwzOVnDoMhasKrmXd2c/SzO/Szk/QxPU7JLbMG6OIaODx2F6BmSB2s6D1Z0H6xIjlcEfoHv\nF/hejutUZNInCwOynk86CFl7HdZel3XQoVj7dJ+s6D5e0T1bkhyvCfwMn5RgneLKkrpy0LGiPlJk\ncch0MGY6HjOdj9nVIXXkUCx9xFewuuxzGZzg+jWFH9J1VtRGURmHyjgs0gGvZg+ZzYYUc49KOKxN\nlyt9hKw0q7BHXG+J9I5Yb8kqn+vikOtywnVxyPK6z/bbkOKlQF+V1tHZGWtHk+Y2uQ3D0xVW12wn\n7TMpJDsR8cY94uvwU7xeRs9b4JrSlhP2S2qlqCLn7axjhzqR1Il1tJ9Xj/j97BMub47Z1Qn5Nx7V\nG9Cr0jZt0bvG4W6d6Naxfl/ZUDvu//yOaVFXgjJzybYhal2TmYis41Mcu1SOwvUNPWUohSEKYHwm\nSB4K5JmgOFPkBx5pFLKrY3brhGwXUhUuuoI7MfP3Xd+H8cOO/WBxn7ke2gxx0JY4C/zTjPhsS/Rw\nQ/xoS9Jbk/hrOvma5GZtgyXjoLU9LoI+83GPheiz6PQoE0OlDGXhUG9C64PVjWi4boH7Num4D9yz\n9/X9tdv+vg12G3aH24FebEsz+xJ3XNI5WtE9XtI9XhIPtnhegdfYsLpWbJOY7TBiu03Y3YTskoA0\nCki9EDcp6Z2t6J6t6Z6tCfsZvlfgqQK/KDBGUHqKqu9Qxg7roMs8GLCI7Ky7DnkVsH3TwWjBm+gU\nx9cUQcDMHwOC0jhUxqU0Ds+uP+Li6gHrqy5cwW4ccXMwwT/IqMYOidqQqA0dtSaUKVfFIdfFhKvy\nkOt0wvzZgM3zmPKlhMvSslemQGKatt3ibkphyztTCamgkg4zPeCF+4heNGflJ/hnOb7I8eICudGU\niUsVO/YYOZhAoAOJDiTzYMBz5xHP1494U5wyvRmxfp2Q3bjUi9q2c8sK29rW3Be8/VPg/X1GcwOa\n1bVlt2yt0HYdS3LXYxuELN2EapjhjSoG4wo1qRgG0G0k64ihOnFIhyGrsMOcAWvdIStD6lzt5URN\nQ/n43xL4+TD+j433+V57fkxbqh12mhpXFwaCYJzRmazoHKzoTFa4fonjVDhOhXJq0l3IZp28neW1\noLwylJeSUoW29LHIoMgtAvFOo47WR/9TvlebnGyvv8Dar+azoHTzdpoS7b6EAYi+RvYNYbwjjFLC\nKMUPcqrKuZu5olgoyoWiWEiq1INYQgIi0TjdmmS4Jhlu/id77/nkyJJdef7cQwcQ0KkzS7x6oiWb\n7O4hd8gVZvtp/+3l2PTYkOyZJls9WSK1ggZCu/t+8EAlKrse+83uzPTj9rtmbqhEZqIiA4gb9x4/\n51yS/pJolCH3akRPIQOFEpK1arOq26xVm7IKMKmDTj3q1GdWVZw7J0SyoHQ8XidPcYSyioWOphQe\n006XGT1miy5ZGb5zGqI8p6sX9Npzuoe2b9WJg2o7aNflutzjs9VHXFbHrMouZR5Rrz106mJSSSV9\n1mHCNKghlJR5wGLWI59F6Jkkr0Im3SGn+RO6ekq/fU1wPCf80YxQzJGlRrkW1DKepFKSohaUlaCo\nJcUHEcWHLYpRi9Jr82n9CRerIxb3HcyFgFsN88qyGEh5SBIbMsw32YDcOiFv/dRM8+sCYwQaiRYO\nWkqMIzCusCSxjb2u2NwtRQNPyreApTGioanxb6Lc+jMGvra9vTb67GZcMR3wEyvx+wj4Ebh/U3Dw\nl2/4cfAv/FD+lo/5nEMu6TJHYFiScCUO+Mr7gN/0f8S/fP8nnPofUOvY4hwrAXkM6YgH06ecd6dO\n/WuxufE+bjI3oFcbKxHoQ9+HF8KCVn8F8mc5u8+veNI65dC9YCjHBM2EhhVtrloHnO8ec/r0Kflu\n1yYtByuN/Bk4/z7j5Plrvh//lo/klxxzTp8pPiWF8JnKAWfeCZ8Fn/Bp5/tcJs9R0rPX5uf2ME3p\nsF4M+N0nP+X10XN2+zd05RyfkgqPJQl3qxHL0x3KVwHm1xJ+K9Arl9V4xG8+Svjy6EOGwzEt1jgo\nChOwKLpMr3cpTwPU5z78Drs+A66M3eG7bQxvkubt3VZsaSyT7XPJcr/LvyQ/IU4yjCOYDvt88Nev\n2PnLu4aZ5jJzu9z4+8xll87+AoFhLVtcu3t8RcM8S/+S1y9foH7lWSDxDJjVYNZY4GsDfG5P4fsm\nnjmbG1kDlirz1h+kWoQsih4Tf8CdN+LJ7hXJ04zoA3gxA29hU+YQONgH7wPgKSzaHWtmTY98nWBW\n7sN8g3d2R78rvr4d8XgXest0V/q2efRD8COcnibcz2k9zYg/ydlv3XDsnHNsLjienePrEllrpNKI\n2jB1+ty5O9x1RtwNdhirEff5CJNK0mUbM5ewcC3bKw958L7Z+Ek8Bra2dyTN1jFvfmZTMLZBdC3w\ntRPCnovY17SOVuwdXrN/dMXu3jUJaxKzImFNSM4iSliQsDAJ07LHbbjPTbhPFXmopUvyZMH+s0sO\nnlyys3NLUi3tWq0IVU7tOKjYpU4cFjsdXi5f8HL+IekiZp3GqNqlmgeYsYNw4DoxlEnEtD0iCjK0\ndlBGorUkzVvcL0dMF0PKhY92HJa6i1SGogq58/fw64KgWVXhsUg7b1c6DskvXIpLib4p7bCRuWkY\nXqbxBGnkT46wMmTR3MOEYE3MpbePFxekXZ9usiAKM6J+RnSQUUuX3A8p/IA8CKk8j8r17KPnc7e0\nptbX033SaZvypaS+VKh5aYEvlYLJ7I7zW8D+mxhQvI9Bo1C1pMx9zEoiFpASU7RDCs+j7jn4rqYr\nDK7R9H1D66kgfiZwnkuqY5ci9MnDiLRusc4SenoQawAAIABJREFUqtSlLly0Ek3e2oBf/waqsD+r\n2Aa+NsypZtqnF1iPma71TwqOcrrHU0ZP7xk8v2MkxgzNmFE+ZpiOwRVox8G4EuNITqNjznaOOe2c\noA4MueOTlx5m4aHufagiS70xgdWUvM1fj2Vk78thm39vvid4R57pdqAXwXEARw7uQUFvd8rB3iUH\nu5cMkjEtZ03bWdNyV1Ta474cMS6H3JcjJqMB07iPCHqUTkgQVwyOpxycXHFwckkvnpHUa1p1Srtc\nox1JHgTk7YDcDbhu73MaP4WWYJF0UMqhqCPMlaC68ZAtQdGJmCQjTpNnAHYirnZQWnJ3ucvtxT7L\n8w5cQLrX4m5vFzVxmc96hF5O6OcEXoHvlizWTe5ad1isOqzPI9YXEeWFhLsKAtOsRs/jSmv4vzH4\nl7L5GEiqtsvYDHjlPoVWzV13QFuuabVXtHdXuIUiC0LyICILQko/QPkOynOoPYel7nCd7XOz2uf6\nbp/5VYf0MiC/89DzBviqSgsY6IJ3hzdt1zWPQYPHwGcDlqnaDkxYawt8OQ6557MKIxadBDGQ+MOc\nwY6hu1PTakO7C0FjHVwdeWT9iEXYYcKApUrI6pC6cB9kmfWG4fFdDvv2xOPaa5vRsgG+usAAotjW\nMsc+nAjCnYzBaMze8Ir90RWRlxE4Bb4sCJySadHjLt/lLt/hLt8hPQvJEh/j+FSVD6sY0makfLUZ\nurHNtv8mtdc2uL8BvZrl6GZTzbETI/ZBnIA40chDTRSu6UdTeuGMtr+k0AGFalYZkt5ErG8j1E1E\nvfLsLLiBQAw0bq+kk8zYTW7ZTW7pdmbQMYiugdBQEHCndjGVQ1YkVOsANfGoJwo51ohacNZ7Qtn3\nGfcGdJM5XlDiJxVeVVErl4XTYUGHxbxDsQjfuWwCCtosSdp2SUdTuz6V61F7PrOsx/Vkn+vJHstJ\nh3JufQr10oGlQy180qgNkaSMQmrlsc5b5HmEziU5IfejIafFE1xTstdOGJ1csSMlrUGOrDW146Id\nl0J6VEZSKodSWRBstttnejhiujNi6o04rZ9zsTpift/BnG8DXwWYlCZJ8Iebj38stvLI1jABY7DA\nl5EN+CUxm+meXuNJJpuJulsMMkPz88YCX+bfUIr6Mwa+NqDRJnltjQCTXTux5RB4Ac5PSnZ/fMFP\no1/y7/lP/Jx/4nvZ5/TP18i5QhhQHclyv8Vn3eeM5JiwVWCeSV4tP4KJB3dYWUoaYhGYORZhyHjX\n/wS+HgDZLtAkD0XjJuEOIYmsvPET4GcQ/N2Sp09f8sPg1/xA/o7nvGKPW2JSalxm9Dh3jvk8+phf\nH/2Y30Y/YuGMMLULuyD+uuCDD77g5/E/8jPxS37Eb3jOS3bmC9xCUwWCu3afr5wXHMoLutGcX/6o\n5rT6CJV69s+8wV6jE0l5GlKe7LLaGSJb2tLYlaW/qrGDuXSsP9pXWKbWDLiTlK9CysOA9WiIiO3l\nZ2qBnkv0rQMXAl7xsK40qKl9AZVY4+xJYJvF7fy/AcE6oBOX2+CYX/zwb5knXc7lMU/D1+yFt4Tk\nb8/XJYdMGJA4S8A2bfeMOOWEN8sX3H16SP3PHvwLFvi7wBZfzHgAPbeljpuDeV88ZnltdPsZFLUd\nnjADbiXztMd5csQr8YwXJ69p/TRDzmDgQefM1nxOAu6HIH4O6idw0TngjXjCFYfks8gy06bNYapN\ngbjZId3En3YU7XfxNXIh6YPbOP5GIW6/INyvaD9b0/t4xpE84+PVF3yy/oKPZ18QFjmiAFEaKAy3\nvV3OhwdcdA5JhnMClaPXkmzVQizAOE7jmRNgR65v6POPp7U83nncPG6zVx+B9qILrRB2A3jmIJ8b\n2gdLdg+ueX7wFc9HLxkUU4bFlEE5o12n3PkD7oMhd/6QG7OLF5aUkc886pEtIzrHCw5OLnlx/AVP\ne68ZTGYMplMGyxmtYk3Vd6g7DlXP4T4c4a9L0nXM9XofM9lBnbnoU0l95lOnPuUgYjoccT4ocKMa\nowVGCYwW1KVLnobkWUiZ+hhXsKg75GXINO/jeTWyVFbOV2r0WlIuPKqFTzn3qGcCNa5RE4WZlJbx\n5WwtKawUQUr7GLnNHAO7s5oSc+UfkMYBV90RHX9B0l+SlBbsK4XPWrZInRZr2SI34dviNdch+SQm\nnbTITmPSNy30ZYm50uhZZc11dVNwmcdM5a8Dvr6ueXxgfJncQ609zMIl8xvG19CjFg6eFHSNoqME\nxjOIJyA+kIgXkvzYpagCsioirdqsFwkmtfnNMr7+PznCfhf/w+Kx1HHbFyeygH3bg4Fj5wkdFfRO\npuw/ueTo2RlH60sO51ccza84nF0hQiAUmObxt9H3iTsrak+wcFrIsoWZt6lvIkt9Fo0sUW1Gwte8\na7r7dZ/h90mJNvVXY43hdaHnwpELn0i8pxXd4YzD0Tkfjj7nKL6gZ2b0LC+BwgScm2POOObcnODf\n5wjfULoBS3oEUcngZMLJySkfnnzOvnNDfzmjv5wzSOfUvmTVilknMatOzFe9D9FtyTLp4HSPKcc+\n+b2gGnvk9zFZp8VkOCIYFQRDK5Uy6iF/ZacR2Wu7eAPrgxb1xGUx7xIsD3GCGidUOKFCeppqbvNW\nOfepZh71jaC6hfpGwLSyPmWOaZgkxtIGZLM8p5m/IiAx1K7HRPcR3lMWrZiz4QH99oz+7pRBMcVV\nFSun3ayETIZU0qOSHrXjsl61mF/1Wax6zK/6ZKcB9YVB3Rn0XNvaSxegN4yvTdP4TTb0HjO+Kvv5\nKRSsDSwMdexQdHzWYcy816Y10IRDQzCqCXet2s0b2MUAqmOXbBCziBrgq2F81YXblIZmS9q0vb6L\nP328r/ba9GFtHoCvEHYceO7A9wXhbs5gcM9J/5Tn/S/puAtikRGJlFhkXOt93qineHVBpSSy18U4\nCVUZIhYRRtT2s1ttJNfbMsZvUnttG+FrHjxWtxhfnrCDg9oeYl8jPtSI72vkRxWxv6Lvj9nzrxl4\nU1ITv13rooU866HOHMpOTDFrfr9Z7qgkCWfshZc8C9+wG9yifYHxBdoTrEUboyTrMmGc2U18cWMQ\nlwZxYahqn/KJz9gb8HrwlChJCUROSEEgckwpWa0SVqsO63lCWQTvlBteUBJ118SdNXF3BS6UdUip\nQoo6Ii9D0nFMehaRvYmp7lzMXFi56UxQC591LCmjiFXcRUtBjUeNh0FS+CHj5RCnKMm1x6odoU8s\n6OV8MEEaRS18CuFTC5/auFTGoWoex+E+560TLuJjLtwT7us97le7LMYd9LmAW2WBr2Iz5GC7f/ym\ntc77QS+7PygeQCwcjLAbSaaZKiydZhix2M5GliGmNmDZxk/13whG/2cMfG1iQ1nfMrZ3WlbmdwS8\ngOhFxiet3/Mzfsnfql/wk9tf0/plhfOZsT4rGhhA+HFJ9FcZrQ9SlHBYJB0WL7qMz4+s99WZsJMO\n8hbvmr5t9K8b47c/drzbYN1GV56AE8JAwlPg++D+NOXpky/5m/A/89fiH/kr/isfzV/Tvk+RqfV9\nUQOHi8EuJ94pXXeGO6r5Lz/8d6yWfRhKjp6d85fxf+Xfi1/wd/yCD1+fEn+R41xoRA6mBZ2jlJPv\n3TLanRC6BVXgs/xhwvj+0AJZuzyY4g+B2KFOGznknAYUxAIu91hPrIH9G9hv/t0WUAjUG2mv+42f\n/4qHoQJXWK+yhQZ11zw5s+daR3bh8Y5Ze9WF044l+wUCZXzuVif850/6vDl6yqG8pM/0LfC1JOHW\n7DI1fXxZIDEUdcBi0WN91aN+46E/dy3r7PfAl8C4ADPGcv9XPCD2G1Dpj73nWyyvt1r9zI47mvnN\nQAXB9L7Py/4Lfuv/iL32HfFfFQzlHGcPnM0kzAT4APgrePPiiN8EP+Izvser1XOyiwguhZWoLrEs\nD1L+cJTLd0XYny4eN49bE1ukZ2nqgQ+xh9spiQYl3d0Fw8M79vMrjrNTnq1f8tH1ZwTrAtNgGSaH\nsFrgtDNcL8cdFqi1w3qcMB6PECPsyOvMtROACHjwu9kGvt4Xjwuxzd+xAb6sL5mIXRg4iCOD90FJ\nMlyyM7zjpHvKi+gLBmrCIJswyMe08jVJskMnHNEJdoj9FXkeMVMDruUB3rpNsrdgZ3TLk+4bPgy/\noGemDFYTendT2usVCgcdOuiew124y8Qdct46oV0vCVs5cqlwLjQy1ciJRkiDcl0yz8EoQa0dlHJR\n2rES4QJEbfApkcYy6WSlMYWkrH10KdGFtI9Lh3rqoKYuauJgpgrmOcwLW+RUCoSxRrdi03w3RQvG\nsnL72jZHUpNnPpO0xzKNuF0PaZsVHbGg6y/oBAtKfFambRdtsioiL0KKMiQvQ8xY2vz5Rlh59ri0\nDew6A7Vu2KqPpY7/rY3jxmOpxJQOauWiJi7cOKz7CbN+j/t4xE1rD39V46c1XlHjeorq2KU8cCn3\nXObDDuPZgEXWZT1vUd6GllGb1nYs/HuP8Tsg7NsR7/PGaRpH1+YtehJ2BcFuQXdnzt7ommfDVxyp\nc47GlxzOLji6uERGBhnzduUDl2UcMR70uO0MkVcGPfIpukDcGNKrJk++ZTx8Xe31mD3xOHdJ64Wz\n8SbzY2TXIPcM8llF/GzNoD3hILniWfs1T9zX9OoJvXpKr56QixDPT3H9HCeoEdJQpQHLooNTavyg\nprOzYK97zfP4JYfqgn49pbea0htP0aFjQeyoRSpbqNBh0hly5RwSRhnGgLNSSKVxFgqMoAgCyshn\nFScoJEq51MqyvvRSYqYSfS/hWqBdhzr0oAUqcTC1RGuB1hLtS9TSDgFRYwc9lnBXW6bXpIZpI70S\nGoRqUtfWfcsT0BfW6LuGOhIsl22qlWC+bnFXDBkyZhhOmEZjfCqWJmFhOixNQkpMhUeJR6U8iiIk\nm8fkNzHZaYw6E3BTwKSEVTMdjxx7v3os1f4mzeIjr7fKh9SDuYY7KCOfZdJmbIZceIcMWjHd/hJn\nL8CZe+g+5ENBNhSYgWAyGDKJBkzVgOmyz2qVkK8D6lS+60emvymr9rv4nxOPAaZtj8JmgoGI39Yy\nzlAhj2qcFwWd4Yzd+Jaj+JwPWi/pihmRXhOblMikhMESPIXxDLUn8csKsZBUs5jVvW9ZqiqELAJR\nPtp03GbRP47N89teYJuvm+8JYVGNSFoflL7E2y/xn+T4H2bEn6zZ44pDc8Ehl4wYs5att2tZJ/hU\nCCGonZCqF+AelriHFe5BSTKcs2euOeKcZ+YV+1yjlUTnEpVLFrpLWUasyi6zakhaJ6jCQa0d1NKh\nVhFV6bImxvEr3LgkcAsCryBwC0wuWauEdJmQpm2qtY/cQDPC4DolgZMRtDKCQYZxJdk6Jktb5EWM\nSl2YGLjQ8NLYHnKGZdzPQCPt1OgosH2iT+OBBniaou0yHyeYsSabhphEEHoV7UFOf/SgTirxKQio\ntWuXclDa5ZIjznjGm/Ipb6qnLMcd0vsW6W2IudG2DlsVFvj6A8bXN0GaHm086oZRWhrIQZUueRmQ\nVi0WdYels2AdxWS9iHwnoI6hXhl0C4wQlL2YMo4o3JgZfVaqTVGF1G+l2qaxx3if3cS3I/7Mga9N\n8to0YU0Ccxt/qwNwnpaMji/5WHzOj/k135t/TvIfS8TfYxk9l81L7YD8gSFZZHzAGZMPfs25POZN\n5ymTZzuYA9+CPheulTxapKX5P52t4/kmxwwPRaPXvFYPosCCTE+Bj2Hn+JYfR7/hb8Q/8L/rv+eD\nl2dEvyqRr7CgkQ/mAF58/4z2X6zwOyWV9JkfdPn0o79A7lY8b3/Fj8Wv+Wv+kY8/fU3rP+aIXwGv\ngdRa87jPNO5FwU/+j9+THYbcuyOu2nssnu5QPmuAr2fgHy9IenMCpwQDqYotqv0mthMwv8BiQy+2\n1jGwV+G2c6Sj0LVLPWvBtbBg4issUDPDAmgzBeYaSzObNedpM8Gp2jqPGxOryo5e/Sq2X2YCPXFZ\nX3Z5/aTF2ehDnF6FE+Zo5aKWoZ38NncQwtjBYSWYqYO5kvbz8KY5rjfApAB9j0WnFjwwvja7NvD1\nO3qb5zY3tg0A1owlprLTYK4EvIbi921OR8/51d6Ullyjh5Lv/6+/5+iTW8K72v5aGxYHIa87J/yz\n9xf8g/h3/DM/4f7sAP2FZ8/pNZZN9taIf7tY3CSvbQbYd/E/J7ap9u8Bv6Rj5SShgJbAjSpa/pq+\nM2Vf3DDI74nvl4jTguILQ7W2irq6UdatdInoLOns3oOGlexw5+8RxrmdSjYX1vvP2cgrH4P22+yI\nrzv+7aa3KRyFB8LDCbCG9MOKaLek487pZ1NGN2N2bsZ40yXVNGU6q1msDcWgQAxXdAYOJnG4K/bp\nijmt3opV0qIVr+jqOcP5lMF0gnO2InuTU72pmS0gmBqCsca/BX9YEccp3dacUeuOdRITH6TEZUrs\nZ4TLHDdReEmN166pA4cljdSShFL7iEoja4OsNL5T0orXtFpr4jhFOIa8CijqkLwKWS9bLJMOq3bC\nMupQ+dKyUUvdgM6qSe/GLiFAb3bVGtmQltYHzNSYCztqWmQujENbH0uBlh6FjKiNR6ZCMh2Rq4ii\n9qlrH1W5mFrCjYZLZdd9Dcs1ZCuo1tictcKC4NsS7fc1jtuf0e2Cq2GpsgICWAdwF8JrK1eb7fd5\nkz4nVAVr3SKgJEgKwsMSL6nIRwFF7FPUActZwmc33+Pi5ojVTQKXBs4qu8GQb3ZFNzujjyUB38W3\nJ7Yljx64jb9XYuuvoF3Q9RfsccvT4pzu/Bb3Zk76OufqK0Pggx9A0CznaUHr6ZKhf8dh5xLXMajA\nI43bdsPHCKilnbz4B7nrfXKhTbwn1wrH5kHHSvdkrAnbBUG3IOzl7LZu2K1v2L27Zff6nn45xctX\n1FnOPNdUboXsL+n17xB9gagdUtpM2kOc/QpHVkRuRme9ZHgxJUnnmKs1y5uS9MogQ40YVTDKae1A\nN1zQc2f03Cn9ZEx3TxKLlChKifsZXlzhdBVur8bp1qxps9TJ21XkAeUqoJwHlJOAZHfB4GjM4NmY\n/rMphR88LDdg7bdZuy3Wok1mYsgFrBzL7oIttqpubg2yWc00ao0FeeYKpEYFhkq7iFWEeC2QDijH\nJ3NauNRkKiJVMWkdU+jA+iti/RWrpUt17VLfaMx1YRkSkxzSzLoyv627Nt6q3xSw3yzFwyCpFEoH\n5i7cBODAWrS4cQ/4Msyo2y59PaWXzOkdz+l5c3RbojoOdcdFJQ5fihd8lb3gKj9kftknfROR37rU\nC22b2zq3oyz1Ntv+60ytv4s/TTxifTmuZTJ6ViLmd0vi7pq4tybqpZw4ZxwuLzi8v+KgvCWqFjhV\ngVvliKqg1ZuwN/JxRjXdnSWnzjNex4pyEDI+GmGMhMqDVbNR+LYH2DBW/9jn4n0bDpvXakEUWWnI\nyEHuG3oHM3YGN4xat+w4t+zM7tiZ37Mzu6e3npGHoV1RyNJNuFjNib0MZ0fh9QtagxXt/pJWvKTP\nlCfzU55OTzmeXrCzvsdIgZYSLSVdd0UdB+iWg4wN7c6S1V6blWizjlvU2iE6TAlHKVGc4rnlO4NO\na+Q7+LRE4QclflBYSWS7wO2WeFGJ5xTUyqMuPMqVQsyBiYJJBdPSrjm2Jywd0K5l2NdA0ZzDyoD7\nwGjVdxXlG8ea6hvBTecQL9QUYcQ0GOIITaW9huHlofJmAFPmoDLJmBE3Ypc7scdSdMneBJRfStRF\nBdNmuk++hvqxv9djj8LtDebHLPtm49FUdnMwVSANRgjSScxkNsKb16i1i/J92JU4Hxtoa3Su0blB\n55paCOY/GDA7GTBP+tybPV7mH3A73yG7jay90ETDuoLqcf/47QHA/kyBr+0/exv0asZgh8IWSkPw\nRyX73hUnnPEsPWX46Qrxj1D/R7j7FE4L+zbuX8DJFBwfukdrPtx7w9PWGw6iK073nrMcjSwLNhQ8\nJJ1tmr3km8e2NHLDVPMtK2oHOITggyXHvVO+Jz7lJ/wzT7+8JP6/S8R/wsrvps2fewzuqWa/nPDj\nn/+O+84O5+4xZ0cnxEnKU+c1H/M5L25Paf2XHPEfgH+AmzNYltB1of8BuCkEUcXH/9cXvGk/4Uvx\nIZ8e/IDyf/FJPhrzpPWGffeSkRwTizUaycok3LV2uDo85PVHz6hGCcTCTkn8C2j/8I7D1iVD5462\nWBGIksL4zA/73Hy8x8XtMfVv23aSxMb7P5ewGmK7R8lb/xACHoDOzXTNJomYe1iM4LPY9nYT4EKg\n9j3U0IV2CH7bvn4qLAAw46HP33jWT7Dg203zuM7B3DVfjHnQEG4S13Yy+GOxAb0244lXwBwWEVyG\nFmgbSibdfX79s79EDyQz2eM0POHJ4Sm9/RmuURQi4M4Z8Uo+5/d8n1/xl3z5+vtk/9yGTxu56DVQ\nNq/Pmj8EvfiGx/xd/PePxz4TW8XXBvgKBMTgbQFfe9wwyMZE4wXiNCf/1KBXdqhPriCvQfkl7C1J\nUkPbFEydIef+nDAuEB2g1QBf7kYi/njU+vb6umN/1ESKB5mmE5T4SU0wLGntrumuZ/RXU0arCaPl\nmOIup7jLWN3V1EuDv1/g76/o7CnCHbgMJnTDOXFvRegltNWKbj1nMJ/SX03Izgqy1zn5S4WeQG9s\n6N5p/BEEuxWt/ZTO4ZxhfE+ZePT3p/S9Cf3+lE62JPRLQr8g8Eoqz+da7r5da1o4SuEojaMULbFm\nEIwZ+hOG/hgpNQvVYaETliphshxy09pHxIY0iKlEaBvypW/ljI6xE5FCINoAX8KOutfN+VVY4Cuv\nrVy8ENT3LubMhcBBux6lE7F2E7RyKGs7wKKs/bdsD61cUBKWyhZ9s8KufGVXtQKzAb22gaTtqWiP\n39/t2BRfm8ZxBcaFdRvuBHgupnaZZT3eqGcUTsCNt09oMqIkJfIz/LokCyKywIJ2q3nC9d0+12eH\nrM/acGrgsoZJZgtElnx9o/td3vr2xCPWhOvaaVCJNVYOktICX+aeJ8U5zmKGulmxflOw/KzxT/ag\n1WDnsiho+QuGw3uOaKMcj3XQZhoPbT1XCyg2wP3j3LU5nsfg1+OGcbvZbQBoTyBjQ9AuSDoLkv6C\n3dYNO+Nbdsb37Izv6U2nVKucalmQrhQqFIijJd0j6BzlEHqMzYiL1jGuV+GoipAG+FpPaU9mpBcF\ni4uS7NzgB5r2TkV7BO0dRXe4pDec0x9O6Cf3uH5NP5rS78/oH04J/Rw/KvHjAj8quWfErdnjxuxy\nq/dYrRPW8zZ6LCnvLPB1eHjB06evePLhG1aulRmu3DYr2ebe2WEsRtTaI6tjWAqYbu4NTf7yjC1P\nHWNBL92A92DZTJllNplSo7ShXLnoOxfd9VCeR+G3WHpdpNCUpf921bWLNg/+iioX1DODmhvMrIBF\naZvFdWrZqqx4AMIfs0C/Lh4DX5u6K4XCg3kIroIK1k6bm3Af1XaY9Xv09ZR+e2pByOGUKvSoQo8y\n8qhCn8vFIVeLQ64XByzmfYpTh/JGohab6bmFtZkw27n28TF/l8f+tPEI+JIO+M2mYwhep6TdXdDv\nThj0xhwVZxwtLjm4vWb/5hZ3vUZlFSqrUVlFfCLYfaHomBVH3TtCWVO0IiaDEfLQoAtpJ9OOmx7V\nNAzWtz3kY0bX1x3zJuduetAYRMtKM3s+HEjkE01vf86T/hkfxF/wVL6it1rQO5/TPV3Qvl1TdTyq\njkfd8ewmo5vheJp65CICxbA1Zti+ZxDfs8M9B7NrDl5fc/D6hv7t9K15unEE61YLfejCEbitiri7\n4l6OuItG6L6hNAHt3pKkP6cTz/G9kkL6lMKyqGq8dzAeicYPCuLOirizxm8XOHGNDBWOrClrTVWE\nOGuFmBnL9poWMEntWmAHOJU+GN+C9ZV4yGFSN0uBo1C3hiKQGB1RpyH0HaokYJYMuEyOEcJYL8Ut\ndq2eC8xMoueSlWmzkB0WosNKduxgg0uNuqphVkGxhiJ9D/D1dgLZvxKPGfe1VROkGpTBKEE6bTGe\njagWHmnaAk/g7Gr8sMQ5LBGValZNLSTXhwdcHx1ynRxwrY+4yE+4m++Q3cW2d5woWFVQFzwwbbeP\n908P3v+ZAl+PE8QmiXm2Edsa1uO0FF0xZ8CEXjFDnhl4Casz+E1qBwca4DgF9wqOX4E4NbR+mDJq\n3dOTU6IgY7kxVvfgYZfzmzSLXxeb5NX4VUhpR0Z3gV1IeguO3HOe84pn4wvav84Q/wnK/wAXF3Bf\n2v74+TkkKTgtw5PDaz6MXvJb74zd4Q2+qNgVNxxxQXyZIz4Dfg1fvobfZbaU6Jfww0/hoA3uU9j9\nixmHH1yy697SHczodBb8wPstn/AZL8RX7HFNizUCmIsuF84RXzkf8Jv9H/P7//MHTKMDOIBnH37K\nJ/7vecFLTsQZXWb4lGTE3DtDztwTPj/+hC9Gn3DTfmpPn8JeZy99KPea89S25zYQDbFOWJpnTUPF\nbEAkcwdpH152LE51imXo9SyIgCPsG11g+6olD5PQFbYvXDSrqEEtsbrNCRbw2ugyt+VCf8y/YVuC\n8Rj0Cu1rmzbc+/CFhAi073BnDvnlT0LuRju8dJ5z6FzRdeZ255SICQMuOORl9YKrl0/If9WCX0kr\nzXwNZAUW2VvwbsP72Ovru/jTxDdhfIEX1Rb4cqfsNYyvaGwZX/nvDeXKEgZX2tqVhJ2S1tMlyTqn\nrRfcygO6/oIwzhGJscBXKO2IF+FaAOMPGBN/LLabx0eMr7DCTyrCYUZ7d0nncs7gvmF8Xdxzf6VY\nXSqmV4rl3DA6KRlOFN1lhpPXDHfHdKIG+EpSWrMlvemc4XzC4HbK7Zli+kpx+6WiuAN1a/AH0O0r\ngoOKVpXSa80Y7t9jEs2Bf83B4Ir9J1cMqwltk9LSGS2TkYuQl+4zXnrP8N2MmezimhpX17impifm\nHMoLjsQFR/ICR2juGTI2Q+4Zcrk4ggjmJyNIAAAgAElEQVSyMGbsjSygtXRgLO3usTIPexrt5pTV\n2J+rsSPDqwa1rBRmKazsKHRRoUPt+5RehPQ00lPWD7GUb5fREm3EwzSeSkNZQZlZ0LtegVqB3oBI\nG5nQ1zG+Ht/LNgDCtkyo2aE20m4g3LlQhuiFZFr3KZyA22iPKEmJ/RWtZE08WhG4OWnVIi3brMs2\n6apFdhOTnUVkX8Tw2tgCcZ5bsO7tAJFN3nosGfouvh2xyV+PGV/CMr42wBe3PC3OSOcp0+ua2euK\n6afQNZbAJST4AhyvJB4uGT69p8IndROmwRA/Li3wlQtYb4Cv7dy1yV/vYy++L9e6D4wvT0IocWJD\n2M5JOguG/XvL+Lq+tYyvr+7pXkyZzRTZVDGfamhVJB8vSbKcRM5wRh7n3jHt9hLHr3CKmmiWk8yX\nDGdT/Ks56RvF8lRx+0YT+wKxW9HeUbR2CrpPF3SdGf3+lEEyJu6u2e9fs1/Z1ZJrIjcjcjIiN+Oc\nY17xHN9kKARypTATQXkbwACS3SVHR+d879nv+MGHv2Eq+0zFgKnoM2GAK2qUcVnVib3Epo1UyhXN\nucECXxtRgxbNJShsblM2b7GuMEtFvXLRty71a48yFuRhi2VgPcWEMFYWlUl0JtGVbUCNsf5kplLo\nosQ0izK1gH29bOqwTQ3zTYHwx8yJbcaXaz0u56U9/oVh7bdQyQGzfp+z0RP68YR+MmYwGtMPJhSO\nT+6EFE5I7oTM8x7zrM/8qsfirIt6U6NvaztBt6ga74HyEePrv8XE+rv4Hx+PQCTHBd+BWELbMr6S\n7oKd3i37vUuO7085Wp5zeHrF/qc3mGlBttRkK0221MTfL+nqJV5yi3fiYxyXcTzibPgMYYzNW2PX\nUlstXZIH4Guz6/+vgV+PAfxtm4kG+Bp4cOggn2l6BzOeDN7wo9Zv+KH8NfEyp3WeE/82I3xZonck\nemTXeifG3VFUOy7rUYTuGw69Sw7dCw7dSw7Sa4bzKcPXE0a/mpK8WoEHxgNcQTqIEJXBbVeExxlR\nd00Qpeg+pGUIRtMOFnYjMbjHd0uWImFJghLyDxTJUij8IKfVWdHZmeG3c4Rj7B6rYxAKiqLCWWnb\nmk20VeZMVzBd2FZNh6Ai2yMK195otLTTtIUGUb9dyjiUxqNeB+Rjj2zYZjoYEAxL/GFh9yyVwNSN\np+JEwI3A3AK3drpuJX1Kx6OSPnpZouc5ep7DLLfgvUobn9XtXuwxkLQd28898iisavt3FQZTCLJJ\nTD1zWS46TNZDpKfxdkvCgxRP5ri6eruUkFxHR7xqPed1/Jwz9YRF3mc+75PdNYyvhXrE+Nr2I/t2\nbD7+mQJf8MD0+pqnm7pIuAaPipAcX5Wwtr1AnjbXTPNrLSzIyRLECpxCEVDgUeNI9U6fZ7GMTQLa\nxB/7MDz++e3nXSvP3PjcJxD5GT0xY5dbWuMU+Rr4Ai6u4VeZFd5FQDqGH76C5CU455rB8YRd746e\nnCEwtEjpsMCZ1XAPxR1cFRYXmmHJWZ0aRmNwJ+DMDS2dEbMmkUs+8r/gr/kH/or/yvf4lL3bGc5S\ngwDVk5z29viN/BEDZ0IUZ/zT3/w79qIbfur8Ez8T/4Uf8DuemVfslnc4SlMEPpfOIV+KFxw6V/Ti\nGb/8ueKq/sD2OnNh+56rbjOgU1owsIW9T4DNGTmwkpayPous8SkzWzBNezCPLQjUxt4fHN4qI9/W\nUdthdGOemmEz54wHsGuztkEveEhI/9r7vQ0UGB4AsM2EyDvIfbhKbPVvwOQOi8mQ33/Y49XJCzqD\nKYm3wkFR4jPPOqyuB5SnEfpzB34r7PTJz4B7A/WMd4Gvx3ry78Cvb0dsg03CsoKEePuREdLgSIUr\nanxKXF3hVDXkGp0aVNpgwMbK/b3cICqFowS+MfiixJE1QuqmvhKNyfr7APvHj9/kuN+VDglXIAOD\n01K4SUngFUQ6o5WlJLM1q3uQ16DOoZyAcWr8sKbVLgh6gvYgJZQ5XlQhE4WXV/hOQaRzojLFy0Cs\nDPUcyunmE20QBtxIEaYFcb2mI2fowLAnrjh2TnninbFb3hKXKVFp5Y+ZiFBhhYo0KjZ0vD6eqXFN\nhadrumrKUX3OYXXGUXWGg6btjOg4O3ScGW6kyDotZnWfiIy8CjFrgVlL9EoiS4PTUThJjZPY+4ep\nH4onnRr0SjfLQCkwmcBoW6ApR1L5umFdOPZN3mBXpcYawG/CYK/zTZ5aYvPL5utt1ucfY3s9Bja3\nb3qb/6u2gB0KCou6ZkFEFkYQgPAMcbKyO7bJmiDOSbMW6bJNumyTTyM4N3Cm4czAeSNxzJuG9x1Z\n5jeVNn0Xf5rY+twIYXOMJ8AHx1N4TkUoclpmjS4LnEyjl5pyahUn9RYJUiwUXloR1DmxsAbInqyQ\nbpO/XNN45r3Pd+S/ha0qLNomxFvXX+EZ3KAmiHLieE07WNA2S5J0RXK/onWZkt4D91DdgegY3FZO\nu58zOoC806fjLwnDHNlWyEzjrSsiXdDOUpxFhju1+3PlNXiBBWRcFKED8SAjKVd0xJxeOKHjLjio\nLjmpzjmpzmjpJaHJCFVKUKc4Xo72NdoD5Uva/ZT2ICUe5cSjnKPOGcfRa544L3mqP6fLkK4zpCsH\ndMQCHbpkScxs0GdSl5iFQC+sGbTJBTLWyNggI40MNKZhqxoFpjboTGEyhckVpjQWuF85IF1wHcpQ\n22m2oQZhbL21WaVp+nwDxlj2mC5BZ3axzfpc8tB8PTa137yvG+r+Jh7nsO3aW9tNglTbPLrWlB2f\nsuez6HShDfN+h1m3w9Tp0ov7FCIgUyG5ishNSD6LyG9CivOI4mVgZeYTBeuiYXU89vHZNK3f5a9v\nV2zV59KxoK8vIBQ4UU0Y5bSjJf14zEBO6OUzupM53fMl9V2JmUM9h3wOflSSHEN7CUkNV+KIXjAn\nbOX2I5AIuyngbcz0txn335Q8sX2P3rL2EZH1hW27MJCIPU3cWzOKxjxxzvio/hJnWePe1jhvatwv\nFHIBzgpkCkUdMQ163I2GXLd2SEcBI+44wCqlDtMrOuslnbslnTdLWp9nlmPSrGA3J9/xKZ+59sqM\nDCoUliVlJJmKGKk7dup7Rqs7PFMxd7rM3R6xk7OoSkJdEcga11c4WjHw7hk49wzEPaHOMRpMZf/+\n9bqFl2lECVo75BqUylB1gaoqm6scBb62kkZhHtbGZ1U1HlZKY0qHeuZYhtgiJJ9KGBlYGFiah03L\nzaV8b+DawI2xDClt3i2XCgV5aeuZ7DFjdVvm+HVA0uPNmk009z2lQG38CkvKmaS8j1hft1gOOyTJ\nglZnSRSnyHaNt3FUFBXaSC7ME870M94sn3O2OqG8DSjvAoo7CeMKshKyRrL9Ts/77WHe/xkDX5sG\n3v/DpzeswOZ+o3Ao8amkb/NE3AwgWkMH+1Z2gdjBokkhaE9a801ctJHvvqaGP2T6fNOG8X3PNTfn\nLQar59QEFAQUOLmCOZi5ZYFvxHcRMDRQLoEFiCX4dUlAQUhBjYuwraFlBWiL72yITu/wPDafZUHz\nO5KP+IKf80/8b/w9P73+HeGvC+RXBnFvf9nsw0cfn7P30xva0QojJKt2m6e84e/EL/hbfsEPL77C\n+ULhnGurSuzmjI5XfPiD1+x07glFThl5pD9vMb/Zs4nkrrkBHQJ7WOZW154XJG+tGhgLeyIuHLgN\nYTrCnqgrUC6oth1/vtnhxViNtNkgZ1XzgptE1JjOsyle1jw0YJsEsD2R5X2g1/sAr21p2UbPX9g3\nbePztnTgVcu+/Aq4lqgvJeujPumwx01sEE5z+EuBuZV2EuZrrLzxFLg1FlF4y1R7LMv8DvD6dsU2\nY7C2DUClITewhipzWZcxs7rHLTu4YU4wzOieLAg/kXgrhaMgUBDXIA49GLRYxdYw+Vbtsii7FGmI\nWQhLC8sV1Ju7+PvMw+HdIuwb3OAMYARKS2rtUSqfXIeUjk8duphEIPoQzKAbgwqsB/YggHbLDlSj\nByqS1K5LqXyKKiB3AopWQK6tCbI7NnTuNepOU9aG0QjaO+DvgDk0yB2Nl9T4XklY5kSTnNZ9Rnuc\nEi9SKAryoqYoDIVfI3YX9PauebYHe/EdbqVwaju5MUxXJPN75HzJal4htcbEKXE0w4kNlRMxVSPu\n5S7dwYRaSDuprOVRDT08VdFqNR5h7TVSGmrlvjXUL5ce+dSjmHgUUw+9lI21lYK1Bl1b8zaaSWbK\n2LVpFt95bwwPSTHbenxfofW42Nq8z5tctXncTM7zm9VqVts+6hhq3/pmCGVTTgDUAjMzqFhSxgEi\nNtSBS5GFVKmHyoSVZV5WcNH4cuQFlHOoF6A3oNf/25Hf38X/vHi0Va/1Q/5KocpdsiRiIRPugwGq\ntUJ2Sjr9EndU0paQeNDywHeBA5eyH7IKE6am/55pecrKL/TGa26bAfSvHSP8gUmvaWq3ZkKW0QJt\nBNo41MahFi7acdC+xES2t/R8q+RsN+kxdKyfvwix9YrbfEM1lZUv7OVSg7+GZAw7bftaYQj9DkQD\nkDvgDBR+UhIHKR2xoLee05/M6Y9nDMYz/DJF1AWmLijqCncwZ7BzjdkRJKOMpeywijusBgmrww7H\n7lec3H9Ju7qhPsvw4jmd2BDEBZ0opawi1qrNPOkx9zpU2qd0farYR+05BK2CsJ0RtnK8sLSSRO2g\ntESVDtVcUM4l1dxBLSXkjn078kbuZ0or96sqy6xoJg/bS9o0b0MDgJlm4p3ZyGq2a7CvaxY38XWs\nPm9rRVjqbTP8yoSgHZtPqazJ/aWwqotMUndc8nbMMlGYtmWDlNqnND6l9qkuHepL0JcVXCmYpbBM\nodzUi9vA/fZAoe/y1/8vYoOds7XMN+fM//c7iK0e461UE4hAOga3VnjrGi+rqeaKfKmpmw3TeAGR\nb0meOAa3V+OvS+I6o8WamJSQnIAClxJ0jVKKojKI8kEt6KjGhq/USKVwTU1sMvbVDZEq2FN3qNyh\nM1vQnc3pzuY4dU2atFi3W6yTFgvZZar6TKMBs2EfoTQ74pad+R07q1tikWKEPeFGCFYq4aba49bb\n43ZnwbyMWE9gfQfrJEG5LrQDaPn20Wu8HGVzjVcaMmkHPeUKVNOjGWklFKa2NXLaeBgK05TJzeNC\nwVTZIWyFsnlsu+WrcqjSreFiG8/Sx3nsfZs38P7+cRvE30ijllbGufDhwgfft4MCem3uenu4vZqs\nE+EIhStrXFGjjeS62Oe6PGBe9CmXIdXnAvVGYcaZ9W0sVhbA1xuW7WPg608Pfv2ZAl+bMdbb0QBh\nWtnPVyPnr9cuM7rM6DEPOnByjXgG7S/gR3No1/Y3jzw42gGe/j/sveeTJEeW7fdzDx2RkTpLV3dD\nY6AGO2qHfCTN+IFG4z9N0uyt7Vs5GsAADdGyZOrM0ML5wSOqsguNmeUuyenltJu5ZYmsqqhMj+v3\nHj/nXFCnkPZdZoxZ0Scu/BcPoF/K9PmPLgLxAqOxVrrdaIlJ3bLBHG3R05YgPvrLRisXt0FJ/TM5\nFjkOEQErelQ9A8Ylzj6cTGGdaf//AXDf0sUjE1BD2BgdYnze4hs+5Tf8zdUX+H+XIv4O3e1wjj7g\nPQTjg5r+JuOn/8u/MjcHPBMn/IjP+Vv+gU8ePsT4uwrxa+ApkILogHi3JjxP+e/+x1+TjR1mjLj0\nD/nt+/vwTfPcB828jwbARs0/DA01H93F7Bka+PlWwCMTLvoNG68x6lKNibe6y7hqb+Y2kOz62BQ7\nH7eLadfT64eYXrsBqzUPN3c+bgvJ3aYIEXClL227B990tNdGa7I/lqguKK95eksWW3HbCfMc2JZQ\nL5v/e8ot46sx0X+B7fU6AfvLDXVn7t70DfCV6cKxTEzizGdZ9bhSEzw3ojdcoU4d3EggtuDk4Be6\nS3Z8aBMNQjb+gEgOua7HrLMuaeI06jGlGTplpTf3H5SQtUnVXYDlB/6d5tC9VpKyNsnrXeDLoA4l\nYgDuDLo+SBvCxnovCMDqQtmH2m+Ar1oDX5m0SQObzLIppIU1rQivwB4qVKHo7EHnEKwDyI/AmFSY\nLfBVpPizhOBRTPgowruMSdOSLClI05o8KOGtDf1CEjopKAeZ1shUIZNaU9TPt6jzDdvzAlkqzH6M\n31d0+xl11+G6u8cwnNHvL8hCm8R3YexSHQsslRJ6K4bejJGnPcJ04eSQ1Tbx0mdzFcJlQH7pwlTC\ntDmZiGudTZYRqMbnpq504lX/kBlqK2NsH2/oYbw8adkdd2RgmOidpdl0blq9B7ezcrRZr0KDdFOh\nQ8tKwBmUjkTYFrUjyS2HMjMpc1MTc9NK+5AtElgmkMS3sqa6LR7bhOu1KfSrPXb2w934FUGZmSSV\ny0qGzJwBji8xuhHhQNGb5LiWBoBcV5vcc2iR9z0iN2TRdJtKy7bblGqAr4YZdMNk/lNdlXeC0wvx\ntllPN23hG/BL6fbuFQalNKlMSW1pBohsmla6plZDiQb4siwQDg2rvLmPWjWALTRKJsHaQqen8x/X\nBcuHTgj+DfBV43QyDXzJNb14Rf9ixeDRiuGjJUQpeVZSZCVZXmDe3zB4S9Ih5bA7JxMeme+RDlyy\nQ5cgvSKYXdF5fkWZxVgDhTPIEYMtqr8mCkKWQZ9pOGY6HpCYAcLzqXsG9bHE7mR0wg3dcIXnxdqE\nXpn6YCOzSK5dxJVDfeVSTa1b+URWQV5ClejiKW/ep1LpTmHlDnjfgl+qAcpu4lUbv3b9ZX6IOXWX\nqdrmXm1S3BqAN6AXPrrDntkAb4UuYM8a4G4GpW+S+B61L8h9h6q+PbAoa4NqUVMuaupFDssa4i1E\n2wb4ehm74zVj9T/9uEsYpSHo8/814LV7QTusRkNqpq0rNPAlFUZZY0UVdlWQrRXRtmYTKdJY24H1\nDU2IMgUY+xV2nOMVLwJfNjmWKhCqpKxq0lJR583PVdo1o0oUKleIssKoSzxi3Dpjr5yiSgMjqvEu\nE7xnMd6zBJnVZHsO+cQhm9iswy7XYsK1O+HKmyAKxcHmgoPVJQebC4IiugG9ELByegyDOb1ghd+L\nuKqHzK9CGHRIux0q14WxCSNTP7YSbqs5nEiUBrtXtb5/IwGxoe0bolob5saF7s49zTXDeJehmjTf\nj1ppMy+GoSqFsm3M0YJH7fxzudhLrER+EPja6mta+3AWQCGp5w7RqMP1cI9iZLPoDzFkjRQVUtYo\nBKttj1XUZ73tka1cqvOS6qxEzUqIM513fg/4+iGw7i8z/kqBL3Xn4xaUaDbN1qx8BvnC4rI44Kl1\nylP/mNP3nzH4mxhrDSceHF0BFYgxyA+Bn8H2XY9vOqc85ZTLdJ/ouqM39bX+9beeAbun0W3ytUOp\nfmHc/X47GipZWd/eGxvIcpc1XRYMyHoOHG8R9+HwMXyQahzIBd73IDwC7gFHsHZClvTZ0CXC54J9\nzjkkO/kS/4MM8QzeSKD/nW5A0w3AfwPkR8D7cDHpcyYPmTLmF/wT7/El7h8yxD8A/xUuPoOrUv8X\nDwIIZvrEc3QQ8faPv+EN+S3v8yUfrr/E+McK8X+A+hdYfKvrnX4H/CfAFmw/58P/9TMei/t8Jd/l\n4em7xIdDOAA+AN5XyPdKxvfOGMg5ARESRYrDohxwPdsn/7qrva36aGN904BnYeOv0IBKNxy39n3Y\nBbF2ga/dm7stHNuv/3tArzYBaw3629lmyrs+JSlwDuUArvuwsDUA2OdW5tleaksWW6LjarXhNvOc\ncWtq3xYGr9ler8a4W4jtrqedwjFVYCkNfDWML1ft0XU37I+mcOrgKoEdNeqQDOoUpoc20bDDxhtz\nKQ64rvZY5V2yaIfx1QJff/LkCb6fyv0Z8Etp2nlRm6jawapdcsOics1b4KsLRqCb11YmWC5YLfDV\nExr4MkyKFvgyHDLbJg1tCtfCvBZ0LxXGqMYowdwH8wisEygaxpcZFg3wZeLNEoJHCZ3fRfiPYrJY\nkSQ1y6Sm7JWE2ZqBk9IZzXFNAyKF2CrEFrKLivU3JetvCtZfF4gS+nsx/l5Of3+LOLK5OD1g1JvS\nH86JbBdGFXUsyCMLm4zQWTJxLjl2nmPIigSPRHkkeKymfdQzQTFw2HYkOIYGvZJKMyTqBNQGqhW6\ndVGhv69eduLWAtq7LL7yztxdbzXfZ0rsJlo7xrk38w7wVUttGFsJzfAogbXQ3XotQWVIlGFTGAIp\nNV5XV0orNMsK8kwXivkWig2oCNR2B/ja9SR8XTS+mqNdgy21vm5arDeM1cwkrl3WDfDV9xXdsCYc\n5IRjMD2QgY4JRkDD+PI04wvN+EoKl6plfOWVRvhv5HC7wP2fusbda92ZSt2yjmrtN1Wjuw1WwqAy\nDJQtUa64ZXyZeskjwDG1rZl0adRLQlfDldTsAUdoMMzTwFfYA68DfVerDqwumEMQe2CMKuxOju9E\nN4yv/vmSwVdLhr9bUqxyNrEiT2qyWGF/vKajEtzeHO/UopYGlW9QDQ1qZZA9TsmnKfnjlPxpRnCQ\nExxsCQ4MnAOb5UmPqTviItyjtzdG+jV1T5JPHMqtidPN6HTXDLtTwmClQXscMmWTpi7iWZfqmUn2\n1NDUEaPSoNeigjwHEWkJgmwO31QjLWpjmLqzflSbY919vFsotrHgZSyvXbZqC3i5vBjHfFC2Znwp\npVlpK1MXwzPAFpSOSe1KcschduvG30dqiXopUFmGSlNUVjRdHHf9yNqu3y1o95qx+v+rcRfpEo1y\nRvylwK+2UceOP6wPUmnGl12UWGlJtVJEG5hGik2sQ5RZQ5CDhcJclDhxhtcwvjySG8aXRY6oS8qq\noi4URQ52pUkYSI3vqKxGlhWGKvFVTFjHhGVEmEd42xTjosL4usT4skLEivqeQXVfUtcGaxVy3jng\neXhAv3OISOFoe8bx6pyTp2d0NtuGraX/3rzXp3eyIuhH2JMUy0jh7Ih02GEZhqB8OJRwIuBEaplp\nS1y3hZYvXqMVMldK8wRqpdleUQ1VCUamp5mi49POnlHlmnlc5lBl+mtC3b4lKtcJuWrB++LObGPB\nD+Vidw8h7yqGWuBL6b+1qaEwYGajfI9o0qGY2CzHA6xhjjDQHmlSoRQUS5t8aVEsbIqlRG0S1DpD\nrRMtzaybA1e1KzF/tQD8v1Lgqx1t0rXL5En1qdJCwBVUz2yuL4/56uQd7oknTEbXfPI/f4brKsQp\nyOvmRyfAe5D+zOTRW0f8TnzMQ97hanNA/cjRrJoZGu39HgW7TbzaQAS3puY/lJS1gEqpf09d6rXc\ndBdcxyHn9SHP5AkXh0N6H69wn5d0E/jkIdQLEDbIUxCfAh/D5WmfR/Yp5xwyXY9Z1H0edx7wpfke\nD8aP+eRnf8RLc4wOjB7ptS06wBsgfgbZL+Er/x2+Fm/jEbPHFYezOcZ3NXwB08/ht5nGY2xguYZf\nPgTzHshHsP/xJRM55ZSnuN9UiM+B38I3X8KXtf7Xxkv49FcwCUC8Afs/WnF074x9cckgnBPvD+Fn\nIH5WMf7kOe9YD3lDfsseV3RZI1CkuFwZE54e3uOb0dt8d/QmqufpiyoFZCZc9rmlzE+5NfVqgYZ2\nzdxdS3cBsLtJ178V9NoFvDpoUW3bIaGVDLVoluC2WE1AXUBhw6ILSxfEXbAUnSiq1pG/Bb5awGtX\n7rTr7/Wa7fWXH3cLsbZ4K3QMKEp94iQryq0k2XisVj2MZUG33jKyloyGa0ZijZukkIBIFaSwGu8x\nC464EEc8jY+53BywXPVJly6qBe5joe+R73lF2Ly4xu9uzvCi/LH9XhPDVEFdVFSxgJVJNneI04CV\n6DELhlyNxohJjVzUiHWNNGqKQ4N8T1KPDDb9kLUTkjs2QtY4KsOiQIpK+/qYAssFJwRnCEYtKPZM\nyn2L9MBkNemyCnpsRUicBGSRQzU3EddgXVY45wVmBDLSajo1rLGOM4JNzqCAoAZRAJlCJBBvoJpB\n/Bzq7/T3ZFbj1gWhAVmwxR8lOGWOISpsNyewt1jdHK+O6NdLjtUzTnnGiXqKKUoS6RNLj0T6zFSE\nWdQoTFLTJ8WmTiuqZUVtqYaV13gO1lte7hfzMibLD82XMabaNSC4jVnNlAEYnR1kwgfT14+G/+Lv\nU4ob0/4Gj1C1oFJCA2SKJl41kxwds9rY1fr47O6r7X7+2hvn1Rp311ybw+S6EEgczaCZQd61WQ97\nXGZ7PCnvkVgeZegh9xzceyalr1AdgQq0JHA2mTDzJkyrCdP1hPWmS7JxKLZCn7CnpT4YqOBF/5Ob\no3Zu9+fdBP1uzG3uCVVrsK6qUYWizAzyxCKNPCK3w5YOazdkNehiRYnuJtaCNx1BPjFQA4OsY7Dw\n+qTSQQiFJxICGeHIDFOWCFNhdMDoo08sD6DoGBQHNvGeRb5nMe0OWVk94jwgX7pUUwN5CfZ5gf8s\nJV0UpFuQW40Rm/2K4F5KP4JupZVON4rkApYSlhEsLyB5CEZS4JY6CwlMg/5gRbdeE7gRfj8GQyId\nhRWWlLHFnnfJnnvBnntJz1mQC5tMOuTSJs4D5uUIW1UIYYCU1KX2LKymCiVrvZfVjeSHiBdj1914\n1O45u8+p/sTzd1CH3eL/JvfyQPpaUyramOVppNXwtO2FaIpLsfPnGzy1lpLakJSGaJqIN+ukrLW/\nTt3Ibeu4ycFaL7LWn7Blrf05A+vX4y87dt6XutbS11JBDnVmUOQ2SeaxTUO2dUhkd4jCgGjso4RB\n7tVUgUJ1FOWeQdw3KT2TxDBZqD5REZCndqN8VdpTrmrX+W58amuH3f149xr/3PXXDYCvbrbNCkmh\nbFJcktojNSpyp6LsVJS9miqAKhBUPpSepHRMCsPUblCVTSpcIgI2IsSSGZZrYHYV5rjEOiwRQuhb\nSEI1tkh7DpHnszU6lMqiX2zopSsO4yvC5YbqGqrnUH4HRLpRrGFqFm1kBVhmjhHmmH5BDRyWF+yv\nzhk/u6Azj3Z8b8Hci0m7BvmhJKy3O9oAACAASURBVA8kubKIJx1WB2OsE5NKSOzTHPskxz7NkWF9\n0/cOC+qNpHRNSs+g9E0qW1LVgjIVVEtx23ioboCtmxq/jUe7aqD0Je9RfmfejWd348Fd1upO0zts\nXeiLBrmTdhO/mtglq+bAtNbxa4XunptYEAWwUvrFls2jUrBQulxcKFiVzSFk3Egc73qsvpo+hX/l\nwBfcFvQ5+s3a6M32OtBysW8E8UnAF+MPGLoLHJmRH9n86H/7itFHWw1mAfRhe+Tyx/6b/Er+hF/z\nEz6PP+TyySF8IzTac41OwIi4RXJr9O7o7Xz+MsBkFwDbfU4DfFHo4HitpSLR4wHPxvf5svcep/Ip\n43cXHOZTZAjG2yBX6Jv5CPgINv+TxcPRm/xR/IiveZv15ZhU+DxyH/AH8yOGco75VskHwdd4D3LE\nExApOlG6B9sfG/wh/JBfiZ/wGR/SZ0lAhBHXiCWwgOtKW3Cdo29PD5jNYLLU1xOyISDSANUlcAHq\nOTyq4Sv0fbkGBhVMLkBcgpzXdO+tCcUGX8QQgvx5yb2/ecjfyH/lY/F73uePHPOcPisMSrZ0uBCH\nPBRv85nzjPDBmi/sD8mLbpN7CEgsWA/0hd/43bQJ2MsAr933Zjd5/lOAF/ww6NUCXF29uOijxaUh\nSOuGkox9dwmHevMlAqZN8WtzC6jCbUBt6K43XmQvOMhye3L6GvR69cbuRtpkK3VTPGY6cS6XiuTC\nxngaoroCxyuRNaSmz3w8xCkyRKGQeY3IFTN3yJW5x+V2j6tnes7PRsTnPlwKLaHdmrrVs/L4PmB/\n97R9t/BoWZO7BW+7BiPNTooE6lpSPRaUgcPCHvLUOqVrr6nGEifPcMwUp59iLkqyU5f01CU7cFl3\nuzy1Tkgth4614ch4zqS4ZpCu6BQxzrbAiisMWSN6iso0WO91WY27LIc9puGYJ9Upj9f3eLK4R72W\njOZLtuUFpWci+7qhZag09lLZEDgS05VUriD3QBYKo6iRRY10tYzJNXQzTCE026P19KlNSV46JOuA\nzVWPIrHp2lsCOyKwNwyLOfuLKz2Xl5iqInMcctcmcxyu6n2CLMHyStSRYF0EZCuLdGqRBhaqtjQt\nrjIaoHL3dd89bLlbQN79+G7RuJts7VLq284qjSTI9sH1wWseOw4EjjZkChoZbMvaqGm89IWeEVru\nllW6Q25eof172tnG4jZutdLGl50uvh6vzngZ6NX6ZcaQW7B24UqfkMd2wJW3h9NJKbumNjcOp4xP\nZoydGbUjqF1J7RnUruSRe5/H6j5PFve43B6yfh4QXdkU8xI2G0gKyA2ofbRJw25Cvstu3N33dhlC\ncAt6VfpkvyxBlNRJRb42iaYB4lzh1hkXxRG9YI1/HLMOPMQkh5McZjm1Z1C84VPcDyiHPpedI+ai\njxAVE3HJuJwxyOb4ZYTMa/3ne2hmvglJ4DE7HjI/GjLbG3Jh7XOeHXKeHHB+cUD5xGY4W3OUXqJM\n0XrGY8lGxCe0ugkD6saeRjY44K6H842ikNuv7YYBgUJS0TVX9N0lUml/2XF6zWR2zTi9pleuKCyT\nwrIobYtI+Fykh5xbR3h7KY4xIk1t0o1NOrMpYgsKU7MQCtncxrt7xm4BtQva7+43fwqwh5dLG5vD\nRulrKrHZTK+NXbaepnHr92NISCUkhvb9SYXuulDQdMpVuvits9vHOrkTz+Kd+TJ542vQ69Ubd2JY\nXWpgKtY3Sb622Sy7WMs91FJilTVuJ8M9TfHNGHMTU8UFVVxSxiXJPZ/87S75XofC7vLl5l3OokPW\nsxD1TMBVrUGGtPWwa7srw21Xx7v79MvAXvh+7Zjp/XYDzAzUpSD1XRZ+jwt/j2fBCflRBFFMt47p\nhCm9UOB2JCqUpAObzYOA2XjIuX3As+KYWPpsZMhS9hmZU3qTa/rvXNOvBPahQklBKQRKCLJuwPz9\nEedHRzzzTyhqG1IDf50xWi6priCaQbTSquA6gmAFwRQCH6Rd41gZnc6WQbmgrMCKt5SLjPVlTX7N\nTd8nISGuK9R+ihNvGFQztm7IfDIieGuLIxJsUsaTKeOxnq6TNt72Cgkklsum32Frddh0O0S+T2T5\nxNInqnzqtWzKKKUBJdWqyX5o7t7fba21uxe9LJ6x857u5mGSFxVCLkhH+xkZDpiOboRnSR3HTAON\nYno6X2xjbVrDonmU+iAdWep9b1s3reBrnZ+10ka1m5O9TJb56oy/cuCrRC+elkLYnC6pFWwCbfg9\nhmpkcdm9xz/+uCQ3LJaiz+PgPkfvndFjhaBmS8i5OOCheJc/8BG/yT7l2ydvo35t6455T9GaYFpj\n1az52z564219x9rF3jK+Cl4+2sC1UwgkAVw3ErevBOf3D/l952O6xhoZ1Pz0F7/i9PQC90mJaH3R\n92B2v8Nnnff5R/G3/IZP+WLxI7K+4L3eH/jE+h0/4nO6rJnJIf96+BGTgysm5RS7zMkshytjj+/E\nG/yWT/i1+Am/4cf8Lf9EjoUyxA3TsuUwudxyRVxHg89IqDCokIi2KGpyz/a2eSFE7NhOiZ2kQFgV\nBz95zE/lP/Pf8/f8gn/mg/wL+g9TrVqsFXQF2elXvHnwDRMxxTJLqgOTP/zkE5g6GsycCVh76AR5\ng7761u/qhwxxX3aD/ynQqx0vA71awGsIjIGRfrEGwFjoJDhsnt6+Vq131wyYdSAOQK3R//iCW8Cu\nlaq1+uu7j3eT/9eg16sz1J2P2/fS0MBXkYHKoMwol5LkykY9CckdDzUyyboe83DIs+6R7tpYalNR\no6pZF10WxZBFNGC+HLJ51mVz1iU591GXQndBTcym4UO7llrQy+JFjyjJ96Vyu8Xj7slXBMpFRTb1\n1EI8sSksm8V4yNPxCTIo2XZ9OuaGsLuhc7jFjVM2gy7rYZfNMGTd7bIyuqSmTcfY0FEbJuk1/e2K\nYJPgrAuMuMYwNPBVdAzWk5Dz8QFnwwPOOkc8Xx7zfHXC89UxxrzmaH5BVIQUnqWBrwb0sjKobIHp\nCExHF965B2ZRQQEiVwhHYd4Fvgwtd9LAl0FR2MQbn81VjzK1CLsRJ90nnHhP2CuvGU4XDB4vGX63\nxKgryo5JGeo58FeYfonyBdnIxiiHbKYd1HmH3PeocksXjqo55lTt694mu3eTLXa+9jKg6+79f5dS\n3wJfXT1tDzoedD3ouTCytGfGyIRhIxMCbqRiU6GJtVN0/NqW2sS+Khsgdwtqt8vkbuG4C3jdlTe+\njluv1mgLRngR/G7iyqYBNlKIHZ9pZ4+qb7Ia9hnX14yDa8bHU8aTayrLoLTMm3mRHXKeHnKxOOQq\nOSB5LkmuBMWigE3Dhi2aRP+mKc3ummkLkRYQucsYaq+/kdbVDfClCurEIV8biKlPdW5hSsW5scYP\nIuxexnbfw4ki7CjG2UaUtsV6PGQ9HrIaDFl6Axaij0ADX3vZFYNyjqdijLzSl9PXLxMDDXxdjSc8\nHt3j0fg+l+k+14sJ0/mY6WKCdVlzPL0gTn1qUyAtrWayhb5TLRrgS0JlCqShbmRXu7fNC5Fg55Pb\nRmcKKWq65obQ3dCVW3pyzSiaMZrNGV3O6C43VJ6hpy+J3IC+s8Z1UuSkQgQV602ImIUUfZtiZWqz\newzNBK3bK2nfo92ceBdI3WXjvww0ehlDot27diSNRgBmB5yOpgj3m9g1bOKX3Xj+mA2jayth1U6h\nJU/bhp2T1w2za9tQhSO9P6tczxs/st0GSHfZbbvX/nq8GqNdY00dVrUHNDWUUKxsNquQeilIFx6m\nWeGHCb4Z0xlv8LINMs+QeYaRZ2yHQ+b7eywme8ydPR7Xb9wCX88FXNfaMyptO8e3AHDLtn7Zvr17\nD9xl27d5Y65B2AzdIGtWoy4lydhl6fa4cPcYhMe4h3O8ckHPKnHHKXZXYncN6ErSns160GE2HHJh\nHfA0P2VrdlgZPaZizNi65mjsod4Bv5MQvpVSC6khcyGJvID5wYizg0O+898grxz8NGO8npPPLKor\niOcwX8G8Ab6GS1ABOA4YToXTyegMtxSVQV6BlWwplxnrq4r4fEfpKCCXFepeihtvGFQ2kd+lN1nh\niy12mGCTc9J5whudb3mr8y0hW2Sububa6nLVG3PdHXOlJsz8IXNGqEqSZD611cQBhbYGqdo6/a6K\nZjdX4c77dhfE/3MA/q600eOFRkLSbXxBGjNMp5G0Oo2PZOHovTc39SWJ5tCxKLURv8hB5vpRFbcH\nkml568dYtdLGFpTd9VitfuDa/3Ljrxj4KtAbnmo+TtD0mbWeRQDPe027RkFhODyp3mbzQYeL4JA/\nivfZF5d02AKKmIAr9njKKQ/jdzj/5hT+xYLfCHiINlHfZmgfpQS9MD1eQN1fMBW+ccLnxY2+LV7a\nxC1DFwMLyLowa4Cvh5Ds9fgy/AC5V5MJh6kY89bRNxwcXuATU2KyFH2ecI8vxI/4LT/mX9OfssiH\nvNX7ml9a/8AvxT/wKb/h3eQh3asUGYEwFfkEnnaP+J38hG/EWzziAV/yHp9XH7DNOmzckKUcsB2Z\nuIcgT+DBCBaX4Ct99W8CnSO0+fwRLMSQJQM2hBrv2QMmcDy/FbWMgUPRfG8IaiDYEJLgkhgu5mnK\n+/ILfsqv+C/V3/Pzs98j/htaNnmBvgeHCvftnPd+/hj304xCWKztLvN7I87efVN3Onws4MqAqMNt\nqtjqpHdR+JeNfwvYBbdBq/249ZUI0FnuGDgEcwBDCccCTprXa9w8xWt+tPXtmgHnQq+358BlD7K2\n5fF184SEFz0w7jJ12o3xNej1ao72/dg9uWsYX0XD+pIZ5dIlubTJbQ+JQZyGzI0h3vAYf7zFsgoM\ndCcdQ1UkC5/oust2ERJdh+TPLMrnFsW5hboActGwiFpZ427hYHPLFtxd07tsI3Y+3i16Y1A2KgpQ\n1xJhS4rKZlENMIKSyHa5mowZ9uYMj+YM8zlBtWVmj5naY2b2iLXVxRI5tijoiC3dcs2knNLfruhM\nE9xFgah0Z1PRV1SWwXov5Hy8zzfDN/nOfsDl4pCL9SGXzw5xrnLeSB+zLTuUDfDlNKBXEOuXoHIk\nlWtQeaYmkRQgcwW50LIf69bTp2V8WTZID931t2V85T1kVhGKDffdJ3wif8NBeUE4i+l8HdH5TYxR\nVqihpB4K1FDS29+gjgX5yGJ77Gt/5zNB3ncRgQlpE68qQ3tpAS8ku9+LXXcB1R/6XjvuSoRaA/se\nMATL0d0Hhi6MHThu4texhCPxYh5XoePVM5p4pjStvqp2Ev0N2pSwbbpx1/dil7nzMpna6/FqjLvJ\nfRsDJGQerAtt5rmCxPO57pssR32eT04YhdeMwyvG3hVj/4pSWuRSN67Ihc3iYsQ8GbFYjFheDCmf\np1RXKdUihU0GdQXKhDpAr9fdhg45t56Zuyfpgu8Dqc211xr0oiqo45p8ZVJObZJzgbINvFGM1cth\nXLF1PcJyTbdc0a1WZMLhwjls5hGJ4WFQYYiKCZcciHP6yRy/jpG7wNdQX1bie1yGe3wdvsnvww+5\nvDpgdTFgdTVg9d2AziJhvnlEkvgoU94wvmyp/5tbxpegNvWjEEqXyJq08gLb66Zs+d4nIKnpmiuO\n5DmH9jmH5gWDs6XuKPnNivD5FhWKmxn1ffz9BNmpKCcGOQZiUVNc2sQDYNboimoJefsetIfAbV58\nN179ObDr7rgr1W+BrxBkCFaoTSX9EAamTjqPmtjloY2uWzXRXGilxTX6cdpIG6NKF4aq0SqoBbDg\nT/uR7Xp67cax1+PVGzv5V92AnKWCFPKVRb3qkix9loshclDjd2L88ZaOu6aLi1vHuHWCV8ds7BHn\n7ilP3Xs8sR9wVe1zHe2zmYXUz1rgq4SsZXy1oAK8nPFVc3vfvGyvb3OBphtqLmFjaeArNEgdl+Ww\nx4W7T2e4Yr8y8KySXhgxPIa6L6j6krpnkoY2G6PDTA65kAc8LU5Z0mcqxoRqw9gcUU8EfidlcrpA\n5GtqHe2oMYiMDjNvyJl7xHfuG2SFyyhdcro+I5/aN4yv+RLOthpjqVca9Ooa4Lk1zjCjk2yhqklL\nKOOYYpmRXNTwXFslttkqdoVaaODLqgSxE9KdLAl6W5yThK7acGI+5kPzD3xq/JphvsCMFIZSGLli\nao147J/yxDvB90+xggxVS9LCR8YNqK7QLDrRxq2W8LLhxXzlZbYTP3T42L53dz29dvOw3VysC/TA\ncLVM2/HA9XaI+QI80XSobJmr6HWcNuBW0ezPYueQsSqgLprHBjh9oavuXdXHa8bXKzjahdcWBBEw\nB+XB1oGv3CauCOrIYnZ5yj++e8Dnxx8wDqb4xACkuCyzPvOLCdVXnmZ5fS7gM7ROb9r6kpho9AL0\nYmgD2a6cbts8r03K4Pub/e7pfftza1i48J2t170j2MgRv//5p6wPujw3jjkVTxmLKQ4ZFQZLelxy\nwHe8wRfrH7F8vMfh6VM+cX7Hz8U/8T/wX3nny6fYvysR36IZRTbYR/DWR2eEn0aYfsk5h8wYMfvs\nmDwwuL63x7k85LF9n/77X2J/WiLX8JPP4EfThm253/iLfQr8CB7L+zzniDMO+ckbXyDeV4jH8EEE\no2e63BmZMHwX+AjUOzC/73HJPldqn00ZcnjyhLd5yIfqMz7afIb8O+B/B34N6ky/ZGIPxPtgbStO\njSs+/vj3PBH3+Np9i7MHx3Ds6ATTlxC1Bqct8MWd9+DfAnD9qdGyvXZbZ3fR1K5DsAewZ2iU8F3g\nbXS3yhNgr0AEBUiFyiydMD4Xmqn4DfC1gK+Bxx2ID5q/1waku+1xW5BrF+h6DXq92mP3ZKhoTpEb\nIKlyUZGinLuUlgHKIlcGkeFg2l1Mv8RwSkxK3a5YlOQLl/TaIzv3SS88ncRv0MugpQhIs/EMACqJ\nbutuQeU0aJClZ21xy8hpwa/dU8dd1mGkC9JUwMJAGTZ1bRE7LjN/QBparDshK9FjLbqsjS4dK2Iq\nR0wZMy3HRHXA2Lxmz7yibyw4EBcMs2u85RrOUvLr+sbaAAOyQJDVBqm0iG2HxHXJLYtKakmwFDXC\n1kAZLggHDEMgbIH0BHXHJh35bDsBW8NHIeiYMR0nIvQjZDdHDBXWROEdKW1ufGCS7lkUY5N5d8CK\nLls6JJmHn8R4WcaonHNaP+MgO8Ne5VhXOfaTHCOrMTZgbMGIIDdsrocjhnJMP1yw7QXEYYDlVwhH\nNBVuo1+6YXztrpn/SCLSJls7oKdwNaInA5AhsmtgjAzkERhHJdZhgXVU6MeD8nYZNEshx6IQNrlh\nUZgmtV1Qq4IqqzWDXlU62VJZU0i2caudd09HX49Xb9wFI9q9qGGIVgmkCeQJiITi2qS4cKDnQSDJ\nhxbpwCYeeGysgFJY5NjkyqLAZrvssr3usj3vEj0PYSa11ISi6ehs8oKzdJXfzrr1w7N0LFIGt+wv\nuGVXtPfPbrxNILep1jbV1IFnDlupWFQDHCtBBBWJ7dEzVvTMFT2xIpc2Z/JIz/oIgLGcMhIzRnLG\nkTqjl84wlhHZZU1c6YN72dxmuZBkpkVsu2z8gMj1SS2HXFpUyqA2JMoXKFPoXhKeRAWSOpTUPYNk\n3yIOba29zm2cqsCVOa6d4/g5ea+mmig4qjFiRXVgkhxYLCcm8cBlHgxYGz3iKiBPHUxR0RVrDsU5\nD8QjgmxLZ7EhONvgf5doi40QZBc6I5+lE7IYdZm7PVZuh7zrEoVdjEDpvKuUkO3oL19Aycudr+1+\n79/KKrgr07bRQT4AQs3y6gWIgYsYOFiHFfZxhnOUYR/nSLfWfj+mQphQBtqbqfBNisCichSVUHpp\nRWgAvyoaqePLzKp/yMPn1SoWX49dxuBLcq8qo+3EV28d8plBfmHBE8k8G3M52CcwNrhhQtfs44sY\nnxhfxJzXhzytH/A4us+j9QPWl302Vz3iK0+zoVcCssbz0jKgthtkWuhYdSOnax935dtt7Pohq4lY\nMyzXNkxrlA2J57HoDjgfHmL2cgrpoAIbQzmIMCAPTfKuSR6arPyQy3qfVd0nqVyq2kBlEpFpk3xD\nKWStp6i5URaLZmIa5MpjW/eYVWOS1GdeDFnVXSICEsMhd2oKv6YOa2pTUXUEZSAoXIHhmFpKbViU\nwqQUUBkGtSlQjczoJioIUI6gtiSVIamEARZYVoFPRI8lw2LOQXrOSfqUB9EjhtEMNgqxUbBRmN6K\nQpaooIBOBQNBNvRYTQbIpdIgYiphLXf8lXfr9V1A6GXA17913GWtNp1oZcNaNXTQFaGNDG1kaCFD\nieFXGEGlH72KKjWoE0mVGNSxoFrX1Ouael1Rl2gwt6o0u7luD4takOtlZJ0/5a/4aoy/cuCrZX0V\n6EWU8EIHBGXCch8+M3TL0oWAC6i/tlkdHbIaHDYJVfOjSzSr6DnwbTMfAdMWQJjwotYauHHFbDlN\na/QvXXPb4WX3etWdzzM0hXIBOFB7uqvfHxvzukKQLPv88Uc/4em7Dxj1ruiJJR4pFZINXabpmNWz\nCdWXDsY7ESf+Ez4Un/FT9Sve/OIM5/8s4b+Betj8jx5wCuI57KcrPv7lZ1z7E55xwqN7D8i/2Ofs\n8IivrHd5Q3zH/ieXHMczDFs3BPCv0bnGBPgA1H+BLw4f8EfxHo94g695h8/2HvHRL7/RzX06cPAE\nDjI0oPcuqJ9D9XODz8UHfMNbPKtOiZ6Oee/tLznmjHvFU4LPa/gVlP8AZ3/QGFAJHM3gg6WWPjsn\nBW8+eMxp+JRD64Lu/or1aK9hU7WBxdLr4YZW3LK+/iPj5vyB25PH1l22r18cs6tBrw+Aj4GPFHxU\n0XtnxnHvKROum06VNRkOs/sjzj48YvbskOL3LvSFjoVCwKMQ4pwXPbxaCu4u+LXL9no9Xu2xm8QI\nbmOBpT8vctg2prx1iaokdQzlVKKe2tSmSSX0uVshKsqNRbm0qZcGLBuvJQNtqOzReJqYzS0gNJMw\nsSB1IC20MXXiQpLqeePDtOVFUKL9uAW+GqZFLnSclVIrBsyKrDQQGx91pv0IctNla3bxzJS13WVl\nd1nbXUrHRHSmBJ2YSeeaI54TbmfIqy3R44LZU335Unspk4U1SiV4/orx+IoisPE6KcFeTFetcbo5\nB9k53WyJneWoTFAMDcrMpEgNNn7I5f19Lrr7XFQH1LHgoLrkwLzkILggGG9Q90tEVeF4JUVlkRx2\nSQ66JIddHrkPuMj3WBchZWEiLIVJhV2WeEmGFeeUSUmWVFSJwkrBXYNn6LdC9GrMbYmTZ3hKd1Cy\nZY5hVogbcmqrXdo9HZS8UPz/3060dk8ZW6afC6YL9i2d3t4rcE9T3AcF7hsF/XBFv7uib63oZesX\nV7ESzL0Bi0mfhdNn2e+R+QaZlGS5QRG7ULhQupqWX9k71/4anP/PN3YL+11rhwQtCbM0Qh25cGFr\nX5LMpuiZxN0Ao1tRdTVjoFTmzUxnPtnMpZqZDbHe0MzDiYKg2WvFzol82sg1kkK3lS8S7VVSOBqE\nu+muB3q/bAvH9npbY3JLFwdbX3f5QlKlgnjls1gM4RriXofAiAiMGN+MKC2LmT1k3kzfjrGciqGz\n5L7zlEl0RnA1pXq8ZfZNRZyBbYFt68l+gXdvw/DelOPwOZ6bsh122Z522RhdDuIz+sUcN4+h0B1+\n08QhSlw2icP2pM/mcMDWHLJd9ulXK4ZywbAzZ2AvKIqC3C4Q/QLvtCQfdEkGXS4HXfJ+n4eDd3ji\n3uMyO2A1G5AbHtIU+GZKN1sjtinZOidfVqxm4CbgbsFdQhUpZLfA2UsIizV9b8XG6GObGYZd3TKp\njIYq+0LM2i3gd9fSvxXwgu9Jg4QNogHtRRcReogjC3kK8jSnt7dmPJreTMssMKiRKAxqNr0Oa6PL\nqhOynnSJA5fYdoiFS1I5kNjNHulC6vEig62+M1+9IvH1uDt2ZbVtHdD65TaH5KkP1w5850DlkF64\nLMYjno8yqrGBb8e4MsORGY6RMc8HXGX7XGZ7rNIB0dMO6Xce5aWF2jS5lnLBrqEjoSxuZ1U0rJvd\nToC7bNZs59p3425DmlCWbui1csCoULUgNn1mxggpKvLcZlmPuaiPeaQW9OSaspSUkUFRGiSxy7l5\nyNbq4FsJx8Zz9jbXTNbX7G2m7EWX7GfPmaTnONkaJXOMPYlsZhamWEWJKARVYZOmPlHdYRV0mR/0\n8aw+lZkT2Bn7foZKa3oTA3Niko8N8gOP5UmPZb/H0upR2jVef45/AuF7Gdag1FLHZmbHJsuTgPVg\nzMraY8oeOTYeCYecM45njC7ndK4i7MsStVJkkSKLdSPpaFAg763olzaGo6hLi7XZ56pziBzXEElY\nG7ptr2yD2V02cfte/HtBr5d5FPqAB3YH3KDxWPUwJ2DvldiTAnuyxXMTPCfGdxNcOyXNHdLMJcsd\n0tQlm5qk1xbZ1CKf2RCVENuawZruqoLaNdQyplsg/25Me/XGXznwBbdvoODW4F5ws1iVgtUI/ug2\n7daBfXQx2OW2sV5GYw6Ifs4F2lppC9impkuH3JKHWtOq2IB1B7Yd7c/DEp212dzeLLujXVjtqVeT\nMGI2P2vrIHbW1U9LhMbEnkH0xyHR/lCrUZzm12ybaz4HJjAYLDm2n3OfR7y9fIr/eQb/COrv4bsn\nGsNzgbcfg7cF4cOD++e8ef8Rx+Zz9vuXbKsRl4t9vnTeY2Jc45Hws1/+C/f2r3SHxwU67xiDelvw\nh723+Cf5C37F3/AZHzJkTp8l9kc57zjPEPcVnIHIQHWAN6H6xOBfJx/wa37C79XHfMsbCBQhG8ZM\nGVRzeA7qCRRn8AUa+CqAeQ3eDN56qsE7d1ExDOf0xBLfilkH3IDnt6BUC3j9PznaddYWkK1HzhAY\nQN/WDK+PgZ8r3F9seHD6NR+Yn/Mm33LIGV211pCt8Jgy5jvnAX98632+DD9mFYwajE7ovfB57w5V\nugUddkG816DXf67RApVwkM11aAAAIABJREFUC3w1/oBFAVGuJTlphdpqDy311EJ1LSpDIYVCNEl8\nnWtgp8oM/atay7kRcIhmEdlGI/OQsLW0B8C61o+rHFaeZlAkObfBsU3ydxmFu4yvhpGUS+2XUhqQ\nCapSkG8N6iuTYuiR2y6RE7K0UyynIPU9Et8l9T1kp0KMIahjJvaUQ+MMZ7tAXG2IHxeUX+s6ymzs\nWap+jfJTvMmKUXaNNARBJyJUG/rOAmtYsh+f041WWHGOygWlNMmkTSotlk6XZ91jvu6+zTfV21SJ\nwVvyawrLwnZSpCgw6xzTzTFHFbWyiAddrgf7XA/3eSzucxnvs466lJGJMBvgqyhw0xwzzsnimiip\niVKFFUPP0HWgU4Mc1phRiZ3leHWCKzIsWWAYFVjq1n9G3C0Y20Ly33O6uFuEttT65kjVdLX2wHPA\nd7AmBcFJQvjWlu67G47kOcdCz8P84oVfWWHwzD3mqX3M0+Ex8uCQrfCRmU+1tigWFmSuLh5rXUi8\nCPi+Lhb/84yXsdabNXUjaW3iwTaAq0AD4guTomOSBD51IMkCl1pJzW5SkloZFJFNHtuUsam3OMPQ\nnia+BMNq7gX0o+LF2LUpIY0h22Gu3hx23U3k22R+53orpdvCCwmpRbU2iRcezAbklw6r7gDbynHs\nHNvOqF2DyA9uphFcY3UqhsGK++Ipg+gcdb2hehQx/7zC2YJvgG/qR/WgwFVbBuGU4+OAwI3ZDkO2\nRkjUCTnIzuiXC9wiRhU1ZWmSlT5R2WFdhlz6R1x0Tji3TrhYnnBonXNiPeUkeEbZl0g7RfRT5FGC\nu8pY+H0WwQELf5+5d8BTeY8nxj2u8n3WswGZ7SFt8O2MXrkh3hYk65x4WVPMIdxCaIOyQcYKuVfg\nrGPCfEOXle5iaWbIFvgymyr1pfHr7nr6c7JG7vzsLturyb2kq4GvliFxKDDeURgf5PSGc046j3kj\n+I43Ot/hqxSzrG7m1BxzHuxzUe1zUe+xcAYYsk9VmiRZB1Y2rB2oWuCr3Q/vrq1dltfrWPbqjbux\nq2VSwQ1zHQutRS5g2tE+ByubbOIynwyp9gy2kxDbyTHNEtMsMM2SOA5Yb0M22y6bbUh27VBc2pRX\nlg4xVeOjaUvtl5BX2mtJVA0bum2OkKA7hSa8PH61a2yHNKGk3lvXBZQVKhEk0mcuxxTKZpP1uPRi\nAjei48Z4TkJVSepYUiWCypAUgUneMfGshI7ccBKfcXr1jJOzM/avLvC3C/ztAne7Rhk5xtsC6x2B\nZUsyO8VOK0QiqFKLrPCI6LD2u8yDPmGnj7AjfBeCTomRK4yJiTmxyScW2ajDvD/geqCtLygrJgPw\nT1I68YpgT4dlIXU4WU9M6pMO6/6Ic/OYJYMb4OuACybJNaOLOeHDCOurEjVXpCmsU8UmheogR9Zr\n+o5iMIgpKp9L84hOEGnga2PA1ADH4qab4k39eDeG/Xvylru53K5UuwNWB4IAuj50Pcx7Ge69DO80\nxT9N6ZsretaSvrkkNDdsy5BN2WFThWyyDtuzDuJ5h+q5Re5aMLdhXkFR6QPum/xxV3q+K9W+Kzu/\ne+/85cdr4OtGx9O+kfCiYWADhmV78KinAa0hEAq91hz0OmjJNBulgZ1t8/17wAEaLBugsY0W+Gp9\nmeZokOzcgcUeFJ3mF/8Q0LILfkluAYwVN0BZdgRPuxp9njbytwN0Edteg9L/2g3J7AgCa8uQOXtc\nY1/lWjL3EL45h9+W2nvYAaIF/Phb8L8F8R2MDmeMzBld1vR/cck71kN+In7FO3xFR22ZqjGb+x38\n+wkdsaVG3vqL8SN+x8f8ip+S4HLGEX/gI2ok07c/5623vmW0XmPmkASCi2CPh7zLb/iUf1Y/57fl\np8x/e4w1yhrleIVNoeXrMcTJbdP7snmbopqbA12R11jkmFRIUf+/g3H94Nj1mXDQlLY+BJ6WM74D\nfKzwf7Hi3fuf8wv5T/yN+jXv8yWn9RMG9RJJxUaGXIgDHop3OBQXdPc2/PrHv2BW7O/Y45iQh6C6\nzZvu8n2p4+vxn2fc3WBa4L5JbIpCm4QnFawUalpTmRJh2dSmBULeNIYQ6E47SkqUFDoETrgF+ffR\nBaQrtMu7+3+x9+Y/kiTHvefHPe7I+6q7q4/p6TlIakiREinsPgGLh/2rdxcL7D49LQ/pcXjMPX1W\n1513Ztzhvj94RFd0TY9EUfMADtEGOLK6uiorIsPDwuxrX/uaDTNdiZFruNZgFab6GNcAVw161c4R\nbgL7OviqH6KlofIX0jA1VhbF2kNdemQtHxm6REGJDBSWXyJCTdk1bTtl1yIYxAglaLkRk+41B95L\nsk1EfhmzfZqx+rxKcUTFhxsp9DgmvLtEppLQyul0VvT9BetBBzsp2V2d0VstcVcZqhAULYuk7RC1\nfOZ2jxfFEZ8VH/C74scUkU0WunhewiC8ptVaEwTgjBTecU6KQxx2uQr3eBze51lxl/P5Diu7Q6Ft\nwx4QJW6RE8QpdpxRxJpNDNcxeFtzSTxlOv7kWGNvG4wvkeDcZnzVJc5vJI5vCr7+FGsGWzVDtWJ8\nWR74vpne2PFwdta0jhL67ywYf3DF/egxj7Zf8e72ax5Gj1/D0App81nwiFa4gqAkkS4yV5Qrh+RK\nwnlgWilVxfjC5YYpVB//X1Zg9db+LauvVcmNVqnGsOzrttzS+K5MwMwBJ6DwHaLAIvV9NoFGKwNg\naSXQSqC0RGuJUlUMNLRhJGHowKDyO0Lc5IK135LaJI/CMy1EeTVVELjxU3njOOv2obrIoCvGl4TE\nhVlI2XKIrgOyC4/1oI/VUUj/Zum2oOjalF2LomvT6W9xipIhC+46L+hsz1hcFSyeFiw+KbFn0BUm\nj5YSWGcEnTXDg2tUYdNtbdiM2my7bTZ7bfbyU/rFDL+IodAUwiYVAZHosRIDztJjvoze46v4fb5a\nPOJB52tWXoeyLXG7MWF/Q5BvCHKBn0Nm9bm29nlu3+e5vMfleo+LzR6Xmz22cYfUDxCBIPQTeuWK\nfKNYrDTzhWIzMzUNXXVpuVuNPM7w1zHtfEVf3ABflqvAE7cYX29iff1n24MaBU3hmf5RqwV2BzoW\ncj/HelRg/21Orzfnjv2MD+0/8JHzMZ1sixsXuIlZL+wjHrv3aLv3sNwUyy4oS4s4aZspyNI1YH1S\nT1urE8b6HmgCEm/92F+21denKXOiuQG+Kn8Ql3AlYeHCS00y8in3Rmx2u1zs7iEDhXQqOQVHU64t\nirlNPnco5jZqI1FridrKSiHHNpP4HBccZTQwazG+eoq7qgfA1EBLfZx1+1mzo6PRYo4wDLUig41C\nLwWRCMm0y6roYacF9rDAHpZYdoEVKjOXIRPoDCxd0lMz+s6cXnvGxLrkQfSEhxdPeOerJ+w9OaWY\n5xTzjGKeo+0SGZuaRDAR5L0ENyoRG0G5cUnLkG2nxarTZdYZ0Nd9OiF02wXdfoxTCNKJRbbjkE4C\nlt02U2fAhbvDmbOPXZQE/ZTJ4YqOsOlXbroeopZ3bcq9NqvBiFPnkC0tfBJCIgbM2Y0vGZ9PaX++\nxf11gbrUJJmZLXCdgXMvY+Ct6PcjBodTMqfDU/s+rU5k8selhHYNfNXxSl1IabK+/tyCXdMn1n6s\nZny1DeOr1YJBCOMQ+26B9yin/WhL9+GSHXnFjrhgR1wylDPmasBMD5npIV4+RD4pKTsOidc2vktW\noNe24KaYXT8Hm0yv5j5r3it/efYW+AK+mfRH3ABh9YpADyDuwssW5oHJTTtJoUFVD2RLGTGqY+A+\ncBc41LALoqfN3tFVgXMubsTInwBPhXn/zW7jeJotAWXj3/X/VVOvXjufEtQErofG+Z5igLeOMPdH\nTSRLMPfjTzGFe1ngkRIQI6PS4CMLmBeVdqf5MXYwIoOsgC14yjgOl4wP3U/4Gb/hH/Q/82P1W+6d\nn2OfKuPAA2Afnh9OeGLf55fi53zMR3zKB0QE/B2/5hf80oA76lMOFtc4M9N1mgzhpX/IJ/oDfiN+\nathe6m94/skj+KOAn0sKbBI8YhFAe4FsQ6sL4/hmruEY6NtAzzDIlCeJCUm1R6ms1ycFv3bzflc3\ncl1xbNJVm8L2vrlOR8BDsH6QcrT3lJ/JX/O/6v/GL8r/j+PnZ3ifKXNBSuj3pty5P+X4nVP63QVS\nKOKdgN+977K+GJg9dglEAST1YIVvYxW+te+H1cFy/SCtq8j1/a9Aacjrap9J2DQKI2NcP4yrBCAU\nhpVaDYNx+yneJMU9SPHuJFi+Qnga6ZqphUVodE2Ktk3ecSg8QSEFRelSJh4Uyc3El9KvjrHpu+oA\nrHr4K9tohuVmP+osoNwq03bpCgO6BdL0+4UCBhVDLLKwi5KyY6NGFroQRkNCVyGCvvn61SenBWXp\nkJY+UdEmKQIsrejKFW17g2enDPQVdrom2eTIzCRvuVcdrSXJlUMkQ1aiS6FsoiQkK1x0bFo1VQpF\nqslyyG1NIUE5GuErRGE+Q+EYnZhSSTLpvno/ZW+Jw4J8kMNuDh2NDgRFIMhDQdpzSAOPyA7YqhZx\nEZAVHmVuG7mPAnPt1XeVUL2JNdbQlrBdE+i1HehbeIOCznDNZHTFwfiEg4sX7C2eszt/zuTyuZG+\nqCqwhWWx2PGZeyHLsMW63UKMNPnAI+r1oGObB0BRi/Z/W+vAW/t+WZOtqjEP3rriVFah182eU46F\ncgWFK40/wMLo21QrBNHSEGpkS+HupHg7Ge5OhjPOXmEoQhjQLOs45B2XrOOSdy303EXNSiObU4qK\nSVHwagrfa8fbbNUWBtXJbMjM3tSJosgsisSCjQUtuyoaGN9EV8JQGC2YQpJLF+1Kc9w6w1UZdqaw\nkhK50Yj1DWMBCToSlKlFkTtkygSULbklsGNGcspYX9HOZ4g8Ioo1iQ2FC7gax9VobZMVAeu8y1SO\nGKlr4iQklw5C6WphXrXxU9LVCF8jHY3OBWVkkxceSRyQSp/E8Um0TyJ8Mqeg9At0SyM62hx7HfJ0\nQAVmImcuXVJcCm0bbaBSGPZcCa8U9r8TRudt/1UzvmyQDth1H6mH3SkJBjnBeIu/t2XiXbKXnnGU\nnnB39Zww3mDHBVZUYMUFaacgHkDWAt3TiIEgGwWsxkPYlYatk1SsLwJudHlvJ8Fv7ftjt9l5dXGv\nBsKFYa5Xe6zMbcpSkGTVM8zHMOfrIQlbaTqK1uZVKI2QCtlRyHaB9BTSK7E8hfQUKpEUsUUZW5SJ\nBbFCJxqdVD5Fier5r4wPe1Ukamp81oVHUcVolSxF6lFMBYUjDWOp8E16GQmjw7oRpiBRgV+OyEAo\nWv4Gt5/TdVYMsgXj9TW700t2zy/ZTo1A/XZm6gr6DsgF2DG4RU5YxnT0hj4LMlza5RYvT7GTEqk0\nbgEhmo4DtiNQHYe47xONQradkAwXpaUhPegcT5T4UhHYmsDF+NxqWR2LohOw9bpM5ZgYnx5LHHIc\ncrwyw8ly7KhArjR6wc1gwxTkQOFEBV5WEuqMQMS4VoZlFwhHV+FJXXS8LS1R75c3ff0fsdsxWGM4\nhxeaSdo7LhxJgoOU4d6SyeSCncE5k+yKSXbJJL1kkM/oOEs6zoquu6TrrfCGGSKySPOASLeNG44l\nau5WDMPbbOimf/7LbG28bW+BL8BkCTZvZrw0mRQrbqYx+mYDFBW1tX4PqwcjzwiRfwB8oOGRxnqQ\nER4u6XUX+KSUSKK8xXo+IHneQX0lzeSYgXlrnrRgtcs3K46N1oDXkki4Ab9Kbh6uSygGMO0Z8XNZ\nOVpL3ICzD8XNcBJtkWOTY6Pr2de+yTdb1adQ32LSvfkoSln9DoIP+JSf80v+Mf9/Gf9qjfxX4Fn1\n8QXAERx/dEX3H/8Jyy+JRMAJRzzgMT/nV/wX/f/wd7Pf4vwLiC+AqTnbYBcefnjC3k/PCcMIJSRz\nMeBF+x669FAbwZwB10y4tCbcu3eGfAfcJ/CjFXQT8wlOHDi+AzwA9QCWux7XjFjoPpu4YwC6LWYq\nxysAtDnZ6T8raA83wVezldIDWuBX4vp7wD3N8HDKB8Gn/ITf8vfpr7j/x5fY/wT8AfTL6tCGIN6H\n3Z/P+cnPfk88CpiJIWf7e0QPQsovfaM599KugK8QsxGazvmtfX/tTboT9TVtTk/bcoNAB7wa4U5o\nwKQdTFvjPrR2N0x2rxjvXjHevcS1chxRYMsSRxRsui1WTod1t816p8OmFbLxQrZWiy0hRA5EngFb\n47BxnHUgJhrHfCtwJAftG80dfNCeSW6VNMBYZhmRPmlAFxUIkthnmXW5VmP6cg8vXOAOF7QOc9wo\ne9XqaAnI+zbznT4X4R1O9X020YBhPmdQzBjmczrrOd7pgvzllulpwSrW2L0Cq5/h9qHT3dJrLRm2\npmbCHDaj9ZT+aklnvcHfxug0J05KtqkmCXLkwZLB/jlyX2NZkGUhi3KErQty6bK0e5y5e3wd3Gc0\ncOHOCitZMZQrvKwkCGxEaJEGFuu9NtM7Q847ezwv73CWHDCPhkSbALWSsNGQaCiUSeC/c+H3JvOr\nGhkXSGgL6IPfTuj7C/bsc+7pp4w253hnS/LHCfPHJomvO5m0rVEPEkK1YByeE3d8tC1J/BaLdtWa\nX0ojdm3VQG2zaNBkgby174+9CbivNbVuM0NjA4qX0oBhWhqWjqiXhegp5H6J3FPI3YJBf8awP2PU\nn9HvLhB1W7fQKC1YDAbMdwfM1wNW8w75iaI4ERTSoyxEpaGTVQB+1jjepnBvrXNS3wvCfE9tDWss\nqkDa1Gq0ihuwHu0Y0MV1KNuSpPBY6xZzqwfuFh1mBO0U2c9wUIQ2BNWk2PWuz7o74NQ95Il6iJ0U\nDJMFg3TJIJnTXszwZ3OyWcz1TKHcAhVGhC0Lt6WYOVdcOVeMnUvGwx3G6RXj5RWTi2t2kikyj5FZ\ngs4TkiLD21kw3jnF2lH0R1uCPKMsXVYMWMo+se0zd/qceXsMrCOK0RYON3SXW3p2QtsxrY6BC/Ql\n+bsBq70+l8EuZ+qAaTFim7TJt7YJY5OqYKP+LaHkPxcMu5U0Sttcl9AUhd1ORjdYMXCnDOSUw+1L\nJhdTupdrvIsMsS1Ik5Ii0eQJxHsJ3tGc3SMH38vR2mHrdbnq7yF2QScSVrahuJBzwwCp/dj3J2F8\na7XdTvTrmKYe5lMDA1VskzuwtUwAoiofYNdLGHC0rAZrhA4yLLHbOXa7wG7neE6K56S41Wua+8RZ\nQJwGxFmAmpaoa4m69lBTaXKXTN2s14YM3QbvBSYurNg8uoDEhmXlnzIblpZhsHUtozGmq2evlqbI\n6GBAukxh+QqpFUJVbLRq6GWhINdmlRh8WyuwKeg4K3bDc+45j+llM+5njzm6OmE3u2QYL2ivt3ir\nFLlWKFeS+w5xL2BTdkgIcFTOSM9oqwg/SdhdXtK9WmG/KExoWQ04xAKlJZl2iAnY0GZLiEAjUUgU\nW3tNGvoUfQd2BLY2k7yLCEQMVksShDa0LKLQJrJ9ssShKK3GYENtTvCN+n3w5/sueHOrY8346hi5\niZEDRwLxsKQzWbEfnPKgeMz9+RM6swWd6ZLObEFrsSboRfR6S3Z6V6xafcI4RXiCeDdg7bYpM0W5\nFBQXjuH2CA+0a/YqdnVuzVisPr+/XHsLfL2yN4FfNejRnLi4xGyy+sFVryGIA+h78B7wEfBjjfxx\nxvDdCx52v+KQl4y5IiRCYbFx2pzv7PFs5y4v7t1nNR6hfXnTIfQ4hO2IV73br/ppmwyON4FfTSpr\nPUK1Er5TnnFq9aWXbaNrUU1bjYqQte4yEyOygYc+jBF34fi50X+9VqZo+dAG7xA4ArUHS7vLnAEH\nvOQDPuVv1McMf7lF/l+gfwnlY9Br07FiHQPX0NcpP/jf/sipu88T8YBDTvgRv+Nn849x/g8Q/w30\nJ6Dm1aHugPga2uuCn/3vv2HmDjmVhzw7vsfLw4eoC8l5ucdz65inzj0evPeEyd+tkRGMWjA6qz6q\nCfAB6J9D/L7PV+5DnnGPs+yA7XnXtG8tqo+cEvPQqD/r7wL0alr9kKydV2CYEwNgB8RBxrB7yQMe\n80h/zt7zKfY/gf6/ofwYVqeQF9AZgX9qqhL7vSnvh1/xOHzAp8H7XO4esdn1zXuGwMY1LR2v9MWa\njK/6HvjLdlxvrbbmdap9QZPl02QmRJjgpqZf19NDLSAwe2MHM0H0XWiNN+wNT7k/+JoHw68JVYxX\nZPhlhlfkXLtDLrsTLvWYSz1h6o2w5IhSO2yLDswdA0wVNfDVBL3SxjHXwViTQp0aX0X1kFUelJZJ\nJu2qamq1wNbgWOiWIEl8VnmX63JCV84ZhILhKKd1sKWb3wjbSwu2bZts0ucqvMOX+gOW8YiHyZf0\n4jX9ZMV4fk76LCZ9ErF5UiDWmk6vpNvPCfuK9mRL/2DF8GDGuHdJic1wM6P3YkXn+RZ/mhDFJVFS\nECeavFcg1ysGCgatCDsQLPIRp+URti7ILIel3eXc2+VxcI94IOkdXdC3FP3uFrfUyNBCBA5J4LDq\ntpn2B1x0djlRd7hKdtlEHaJtaICvbZU4Fm9KHL8La7ImHHNNvDcDX3d5Rmt9jXe+IPsqZf77qguT\nCvxyQKmEoLVkvHsB2MR2i4U/wm1nZpumwlTFLavxd2+3P70Fv75/Vt/7TQCs2Z7TnPxq2FFoaQBw\nq2sKjZYF0jfA11GJ9SjHfpgzCKfcCZ5zHL7gIHiJRGEJk9woLTlJDjlJjrCSnGIlSNs2qbBRsUe5\ncSDNIE2Mfk7pcvP8t7hJXJqxV53opqYtN6v0o4qKUWRbZjiIZRnBcyswzLWWTZlYpIXHRofMrR6O\nt8EOtgQdTaeX40gzO8L1zNI7HuvugHPvkC/Vu/TTJa1NQmtzxvH6Jfb5gvJkQ/4yZnqicfwCrx8T\n9hReL2E+vuZifM14cs1oeMX44orx8prJ2TWTsyl5lJElBXmckyYF7rsLxg8VfbnlsD2lzF2Wasip\nPkILQWwFzN0+Z/4OXfeQcDSjdSjopTlhmOAFphPaCyDrSbIjn9VOn8twlzO9zywfsklbFFunmulU\nJeyqnk73XYL3TeDLNtfEs0wrfxfctgG+Js4l+/Ilh9tTxqfXdL/Y4H+RUW5K0kyxTRXbFNSDBK+Y\nseMV7AzXRLrDlbdH2IuMRMBKwrVdTSWo9VGarU+q8frWvj/WbHus277q79d+rSo45g5sHcNqT5zK\nZ1k3r64LnjZtvqGD3FE4exnuXoK3l9BytrSsLW1rS8vasC47rIoesuxSFILyuaB4aqF9y7Drtxqi\n6v7JmhNpa+JEfXz1sdZtmiXoxLTlLj0zVGbrmf3rOxDYBnl3rCp9ENDGsDrHGpkb/yqVQpQaUQ+9\nLKGsgS+qBillgC9Ll3TsFbvOOff5mnHS4d7FUw6vT9m5uGK4WOAlGV6SYSUledsh6znEUcC6aBNr\nH1fntNQct8wJ04jeak33aoVzUgFfu5jbLTTAV477Cvja0DLPhkomJ7JD0tCj6NvoHYGrIVwb8ptn\ngWpJZMsAlHHoEgmfVDqUpdGmJdGQaXPC+k3A13cRozRbHW8xvgILhhYcCsQ7JZ1gxb5/xrvFV/xw\n/kecFxHusxjneYxzmtDbX1HueRR7HvFOG2ELYi9g3hpwNRyRLy2ycxsVOChpm4J0Dd7rOhZrTg69\nfX/85dlb4Os1a4JfTaZPo93xFeBVP7h84BDoQxiY9sZ3gY803i+2HD/6mo+c3/IDPuGBfsyeviBU\nhq20El1eyCO+4F3+MP4hf/jpT7iwj9CFrIgZArIQ8j4GvKomCL0as10H+k3wq/nvWux6g7kpbreJ\n9EEFEGszLncKq3WX88E+L6w7nB0Maf9gjXtW0k3hp19AsjA+Wt4FfgL6I7h60OOpe5eXHDHmmrs8\n4/jsCvv3Cv4Ftr+ELxYw14Y19oMr003FCI4fXXPv3jMOxCn3ecoj/SXuxxrxK1D/HeZ/hJPMnOm9\nFnTWpsDb3cl49+++4FM+YE+e83LvHfQvJVdPj/jywbsci+dMvCt+/o+/JvRL5LGGC/Ox6CHwEOIf\nu3z14A4f82M+0+/xMr4DX9umLXQKbMrqs2uOBf6u7XavtjQvIdCFYBQzbl2xywV3onO6zyP4BOLf\nwdfP4Gtldub+pSEYDocgHsLg3py98JwJ13idlM1A37S5WhaoavLfK3sLeH1/rb5mdSDTZCVk3IjW\n1YB37QMybnxYdXPuAu8AH0F7sGG/fcqj9md81PkfdNMNrTghjGNaccKJe8Az/w7PvTsE/hbbzim0\nw7boGnBdOkbbJPIxb35bW6IZIDbZlak5RuUYVoSqmLXCMTRT4ZhJb7aqAjAP3XZIY59V3uNKjWnL\nFW6rYDjc0j60GUnMCHrLtNyo0CbbGXAZ3uFL9SHX0ZjuZsOD7TP62yV7l+dcPSvZfFEy/bykmGl0\nvyTsK9yeoHO0paeXDHszJvYlhbAYbqb0Xyzp/G6L9yJhG2viWDONNezk9PSKfhjR373GFZLT7A7d\nYm2AL+GwsLucebu4YUThgWVphr2I4cE1rijJAos0cEhDj5XVZsqQc3Z5Xh4zT4aUkUO5cVFradyW\nrqPL/1nAVyN5tC0TcL2J8cVT9GaDOt+QfZmQ/rb6LVGlfo5GhQnB7oLJA0EgShb2gAv/AK+dmkpt\nJAywZt8Gvt6yVb+/Vt/zzevXTCIboBeOYUrUoFchwSkAq2J+gewprDsF9g9ynJ+kDKwpd+xnvG99\nyiPri1eJjaREYdFV72GVOalyWG9ChGyhYod86sKVDaSmBSj3q+Oo/Vcd6NfAVxOcSc3xKhcyz/QX\nJp7JmoRzsxK/SnIt6HqoRJIULhtazKweobumG2qCdk63L/HcEhGCrJbe8Vh1h5y6R3yp3uUwO+PO\n5pTWLOJ4fkL5bMX8i5L5VyXzLzSdVo47VrTGKcORZPHONRPPMHlHwwnj6ysmy2smT67Z+eM167Vi\nvdFka00aKcJ1SUupE85GAAAgAElEQVRsCftXOPs+y3zAaXlEqOMK+PKZOz3O/D3CYM3+yKKV5nTF\nhvHQ1Fdl29Qqyo4k6wWs+n0ugl1OkwNWRb/B+KrYqnl5y3d9l8ljHW85BvhyLWgJ6IpXjK9d55K7\n4jmHm1MmL6d0P1nj/SojWhekOaxyzTSHdpTQ8wp6ozX9Y5u5HvPMu0/Yi83WnkrT6urU4GmzcF77\nsLeg1/fPmvtQYHxWHXvVPqxiFBSuAZASF1aVL8A2QYmwoRvAUJpJgIFG7pQ472T4D2OCd7d07SV9\nsXi1ZnqIpXMKLYi1R/6Ji/YdVOkappZogl5NX1XnjvA6gaIB2uvIaH7loRkwYgVguaaIabmm2Bhi\n7peWRIyAsUYcamSmkLpENBhfumJ8lcoAXq8BXyVYuqDjrth1z8hci3jrc/jylKPrU3a/umJ4tkCW\nCqk0UimygSCfVMBX2aHApqVjhuWMUTmjk25xVgXuZW4YX7XLDoBhg/GlA9Z0WNN+Dfja2i2SGvja\nNYyv0DXhR1dD1hIkLZuk5RGHPlHpkQq3YnyJW4yvN2n4fVdt203gq8H4CjUMNeJII94t6eQrDrIz\nHuVf8pPNx6jnJeUnJeqTEvW1wrovsd6xsCJJoXySkc9sNOB0vE/gRYgLH/XUpgwcA9Jq3zzfdO3D\nysaxNOP6v1x7C3x9w5rgV5O2V3+/poa63AjidMEOTXvaMfCexvko4c7Dx/yD88/8XP+Sn6j/wbvb\nx4yu14gVICGdWJyNRtyznzKUM5xBzr/8UHC5OYS5NKL3Sw/m3epvrTFAVs38onF8NShTO93mqNGa\n+dV82Ho35xlj/tY5xM/7nIyP+bz9HnfEC4Y/XLJTzrA6GvEu+Mvq1I9A/QjSX9h8Fj7iUz7gKXf5\nGb9hyAx5VcJL4DF8vYI/aiNH1QX0Bn72HJwT4AwGx3OGcsaEKw63p6Yl7zNYfQK/zkyXpANMt/Bf\nPgf7DsiPNPs/O2ckrhmIGXRTKH3KT2y+2HuPQTjHkTnZwOXD//opez+cI680aI3qCDZ7Pp+13+Vf\n+Vt+qX/OH+O/4frLAyPm/xIjfJsUmP7MNSbwvS3i95+126BXlZnXWIQHjpUTEtNmgxeniClwCYsl\nPFHmo8qrq7y7gO4ZONcQpBFdVrTZYNv5q+FrRtm7BkGarMWMt/Z9t9sP1yYA1tQDqHyZSEHkIBVI\nsMICu19gTQrsg4KhP2VHXHCQn3E8f0G43eBtE9xtgrdNGHZLkoGm9EqEX6A6FtGgw2wyMToQRdXq\ns6iHKFSA1ivQognUNVub6gDNNg/XV5Rqt2JeuFAWpo1ynYFdonyXeO6zmPW5mO3hBAVSSeyWwNkV\nKD98JQmEBXNvyFnniAt/n0u1yyLus81bKCVxRU4oIvwS3ATsNbAEx9LYjsbxQKcFTllgk2PZBjC2\nVYGd5jibAmdZ4mzBrhaWwlvnBGlBSwtCtng6wVY5otDkOGyiDlfWBKkLtBTIwkI6Fk7PwZEZseeS\neB6x5/Esv8dpdMhVtMNy2yd6GRoHu1SQJFDUDOGM754x8W9YQ0dJirp9oERro2umc20EcWmwvgBZ\naBPY6qpiLDTilUgbt7Atcev19tdv7ftl3wbcN31B9azS9o0/cAqwSzNsIwC3lxEO17QmG1p7Kw7i\nlxwkLznavuAoeYGkNEkZJaWwWAUhmzAgagVkocN8MmI+hmIUkA4ck+QpzwBYeI1jqduY4HW/pV8/\nXpVWzOrmqti2tjYJatuDliJvO6wHXS43uzxP7lHiMA6n5JM23PVx0xwdCnQIOhBc7OxxNdhh6k2Y\nqgm9fEOROzhFQSffkMcR0Qqsa9BnhpFhU+Bapt3QTxL8MsGzUlw/xRUpXpbgrxOC64RsCckK5BLY\ngHucEa4yeikEaktPrwh0jE2BRhAVAfNkyOnmAKsoyJRP4fuosU8W9kzdIxTQgrXf4YV1j7PskKvZ\nDvPlgPgqJJnbqLUywuBZZlpNVXMa8J8Lft32Dbf9RoN+aoOwNLYscESOJxI8leKkGXZUYK8U1lJj\nZZiVgr0s8WJNkBeEQuDLxGj+OPWESiot4KasxJu0f97a99ea3SBNH1YxvlQ1kbioA/Hap1T7IBQI\nTyEGJRwVtA62DHZmDMZThv0pPb2gny3p5Ut6+YK+u6Drruh5K/regtWsb9aiz3oVmgnLBJA275ta\n7sJqfK++n1JeY6mVuYmxXhE/av9VsfhbviloRgKtBcXCIVkHbLYdllmfleyxanVZjzuEhyuSnqIY\nKPRaoV1BeuCwGjpkgQu2T+z42G5O35vTSQX9fEq4XGGfbeF59lqEmGoo1qASAy5ZqsTLUlpJRC9d\n0ZpvKWaQTyG+NiGu0wK7BU630R3fNlqGqpSGbVt00LmkFSdcWQsGvRW9wxVdf41YKORAI5aaaN9n\nNW6zanVYyjYv0jtcx2O2yxbqWsJcGdJElmO0IZs5YzP++i7BrzqfcxB2iQgLRFdhD3P8dUynWDPI\nFkxW18QzSK4gPoP8xDCJ/TYEHRBdl364pMOa0N/idRPKlkXhe2SONG3hymoINt5m3DeP7y8X/HoL\nfL3RatDL4ob1VX9d0deR1WuFsrqBaaG7AzzS9O/N+JH3e37Gb/hfyn/ivRdf4/9KGWBlDtjg7Zbc\n+/CS3o9inN2cRAbMhwO277fZvhjACwwIs/agaHHTolQnr82AoGnNQLI+5lp/ok4iu5hK6gpWAVw4\nZvLj5/Dy7iG/D35E114hW4qf/fw37B9OcZ8XiK1G2wK1I1k8CvjE/4Bf83d8zEck+DgUOOSIhFcd\nomttGkRrBbItGGH/qoPTIcclo8UWP8IAgwu4Ss0Qzevq99rAxQIOqymFQRbT8iICYmwvp7B89O8t\nZt19fv33f0/muczlgKf2PQ4PX9I9XGFRsKXFOft8yUM+0R/yh/hvePzVQ/hXAZ9jPoe5qo54ww3o\n1QS7NN8N+NW8Xo2v60K4NA5EoEGLV5dai9chA4X5eVEVc0zOWL2XVGYKDOIv2Re9te/U6vaJepfA\nTaWv8m1SVloTJuB3Whmt1oYw3NIKN+xlZ4yXU/rLJe1lhNymZJuceKsoNhDtpdiHC0YHFr4oSPI2\nM3dC0I/hAIikmST6qsXj28Y661vHqW99ry46NJIeLUxgsS1BKJSE+CJgPhgiOtpQ2dMWS7vH1WTC\noD+vhsaZBGRldfjCfpdze5eoCEFVf80XlJ6ZEucNoN/ViJbR6B90oTUEewLpRFD0bLLAI7YCSm2T\nei5Fy0b3BdYAfMt4WUrQniD0JZZvkQeS1HPJY5tSS3QuKGKbbdJmPh+hHUFhe8R2h2trhxf2XWyr\nIIscMsshkzbn0R7PFveZLcaUcxeeaTjJYZFXekTV1JFXvqsJfulb68+xpvcpTPk2V4apEUGeOER5\nyLLsMWWM79r4HYU/TvH3q5ZTYfJBXFBjh6gTsvG6zPSQVdkhzgOK1K66/PVNmfgbehlv7a/Hmn6g\nbp+orQ60qwq340LoGKH4LoS9iEnrmrF7wYQL7i2esn9+xuB8Rutyi9bqZklJ52DG3sFLygMLr51x\n4h0jO4J41Ga9E5pNmlc6hXjcsGebbPs37cPbvivjBvSqChGFBdvcjImXkDoe0/aI5727qJFkJkZM\nWldMDq7Zsa9wihzlyWpZPOnc4+XgkIU/IFcuStloYaEdCYEZsuo6hlDWwXTxeQ7YPogQ8EG5ktKy\nKLAphYWSEm2ZZ4G0wJI32tt2da+Kqn6iGx+BVoI4ajHLR8i1IrM9FuWQC7XPM+8uPXdl9GIdI+oX\nZyFPk2OeJne5TnaJpm3SJzb5hUatU+PXixjKBPSbwPs/9d5vAuTf1oKjK2YshqGRgy4keemQapdY\nhySWTx64qK4FI4FjGc0fFZvPxPUlnm+hfZvYt0hLl1zYlIW8qVGXmptBI9+m+fPWvr/2bfFLTUS4\nfc3r6rYDtBCBgxxZyGOF9V5KfzLjTvcFd/RzjhfPaW/XtJZbWsuI1mrLpt9mNTxjNeyyGnU4sY55\n0T3m5ECwLnrg2oZtv6lbyAtu5C7quJBbx9jsIILXZTIanU7ahaILaReEjVp7xKuAxWqAWGn0VhA6\nKe2dLR21xhomFHFOEWfIOMd2BNH9Lst7PfJhl8JroRyBsgSWKPB0ip0llNuMeKlMvszNHZy6mmKT\nY6UJYblFlIIgSnBXOdZaUZ7D9gq2c9isDPDVnkEnMLN3hFQ4bobfTmiXG5LCQ28stts28aaFiCRu\nmUMH8mOb7miFtS0N8L0t2fRbTA+HzFpDpsWQk/Udnk/vMj8fUjy34EzBPIcoNW3yxNz4sO8qdvk2\nwMmcn2WVWHaO7ebYokCWJSJRsIY8hm0Ga2UixE41v8WOwN2AjBV2VuCUOS4pufDIRGkmVtZb53uu\nLPEW+PpWq6t3NQBWB2H1E79GWKvpeC4wAvbBvxNxNHnK+3zG36jf8c7JM/z/U6H/O6jPoZwZwNTa\nB/kcBvGaH/zDF1ztjHkpDzkd3GV73IM9CX3g3K2Ar3oSX53ANts8asda/59ufF33ddcrwDizGFhA\n0YepDc8FfAHxuM8XwftY45JEelxZY965+5i9u2eERBTYzBjxnGM+4z0+1j/mt/mPadsbEumR4KN9\n0/tNB/rWzTTxHjAQIDuYrLADqfBJ8MlxUJYw3UwVtdRX5vEAVRdzo/CghJnimGObRDgHPgHtWFxl\nR/zzj0Mu+nt8bj1iR17RZYVEEeNzpSe8KO/wPHrA5edHBvT6GPgCONHGMzDHsL2a+mr/M9od671W\nOcb6eZNCkVvEOmQrWqS+ixqCnECvA8czI4ORA0cChh2wx8AQYs9nQ5uYAJW4BoRIMP5X14BoXZX6\nnnqvt/YGa15Ldev79cS0KnuRlciqJ8ADt5XRDtcMwhmDcMpudM5oek3/+ZL2s4h0nRFtCjabks0G\nrPsJdrJgJAp2WxujWeXcIegl5k/MJVzUwFfJ62Odm6BX81jrwKvWpKjZanUbbg18yQr4KqBQaCWI\nzgNEd0jW8tjIDqugz3Uw5rS7T8dbo4UwSwpiHXKS3eE83yXOzERH7YlXwBdS4PWh1wWvpSGGoAvh\nwABfugK+0sAltgIKZZO6HkXLRvUkVt8QUSjByUB5AulZyMAiD2xSzyG3KuArgyJy2BYtdCFISp+N\n02PanvCivaHbXiMtRaEkpbIolMVq0WV6OWJ+OaK4dOBcw1kGy8i0Z72a0FHf9G9iff1n7vtbjMKy\nNMBXWgFfaQV8qR7XjBi6Cq+TEoy29CvgS1RLu4Jo4lB2ArZujxlD1qpLnPsG+EowmhmvgK//aAL8\n1r4f9m2+q7Zaj9IGfHA8CG3oSRhB2I8Yh9ccO8855ilHyxP2n50x/GxO+NWWUmlKpSm0QtmSzocz\ndksLt5PT6UQID+JOi+vhLuyICpyyTVs1PiYGaAL3twF7eP2+qOMuC3MPNvZt4RjfJUvINZnjMe+P\nUCPJeqfLVXuH3dYFO4cXTEdDHJFR2jaFbVPaNqfOPi/dQxbOgKL00MpCywqpCsDyDdAVSjMLIJRG\noseuOmK0L9COpJRvBr5EVRexRWNImTTrNfdNDXwFzMoRWemy0j0uwj1a4YZ2uMH34lc3uxaSPHeZ\nLobMpkOm0yHReYvimaK4UKh1BmkMKoGynqbZBO7/VLComRC+iSF6C/xXuiK3aFQhKUqbTHnEBCS2\nRx44lB0LPTIfcWgb4N5XgCcRno3yHaLAIckM8KVKedP29A3f9RbA/+uypi9oft1sZW3uW5+bzqEW\nIpBYY411rLA/SOkFc46sE95Xn/Ph4hPCqxj3PMM7T3EvMtIDj+TYJ1E+cejziVwjepJV0a/IqZYh\nTFzWuWrVgv3Kh96Ot5rasM2pj02WfrW0a5TqUwvKAG37xKsQsdJkS5d869J2I7qTFb3OAu94i5XH\nWHmMncdoKViOhszGe8yGe6R+i7a1NktuaKktdhZTRjnRUpHPXr+DC09RbgusNCFQW6xSEMQJzjLH\nulaUF7C9hukcrtcgMpgERnkjECAdhdPJCcYxLbVhnbdJtwHp1Ky89BGupujaxGOfjlrhZjluluGm\nGSuvy0Vnj4vWLhf5HtebMbP5mMXFgPLEhovUFCDjNwFf/9mC4237JgAmhcaySmynwHUzbFFglSUy\n0eiNAb6iDJYlLLVJB50Ugi24a5CRwsrKCvjKyESOJUqE1N+spX9P7S3w9e9ajYg3GVM1AFZpZtmu\nKasNgDH4/YQDTjnmOXcWp7R/l8GvIftnOH8M57lxd4cvYBwZ7YP+8YJ3xo85ki8YtC85290nH7TM\n+7pWNR2o2Zr2bRTpJgDWBMHqn68rlg43wvdLmLnwxDF92z4sxS6//3uH5aTPC+eYY/GcIVMCEgos\nVvQ45YCnxX2+jN5l/ukeez94zqI14FqMyQ4cvHsZ4h14eAlMYVEamal3umA9AO5BcSC5FmNmDM1E\nxlGLvf0V3IE7u/D+JXRKc/QPbBjcAfZB7wmu3AlzBqx1l2Lt3ZzOb4CNZDsb8/sHQ746fsigsyCU\nWwSaVHsssz7LkwF85cKXwCcYtteXGqYZhmdWA1/N5PHPBb/qiLFptx+UVRKZadMqtoRkHjCNh5yH\ne5x2dti/d073g5j2ObxXwPjKxFTjDnQeAR9C+Ugw7Y445YBLvUOy9Q3lLqpOpWwORagfdDlvg7C/\nFntTAlknarXvqkSWHWmmVYSG8dVprRmFV+yFp+yWZ4yvr+l/taT9u5himZNtNMuN5nIDg23CSBaM\nWhvGE4sLdcjXztwAX23gQkKnBr40N+3Vt9s8mvu/6dfKxs82BaW5Ab6KAuISlQriTkjW8lh5PRwr\n53pvQruzojVe4Q+NFo1pvhPkhct62WO97BPFAe18i/ah9AVlT6BdiT9Q+F3otUBGRktbDsGagB43\nGF92QFHYZJ73ivElV5hWyQzaselwyHxJ7ttkgUviOWSWRaktw/ja2ETrNsk6wNr0sbwSe1xijQts\nXSIsjc4EOhUGKLuyyU9cshOH4sSBeQKbDLYRFEteB75utwt9V/d5o1qsyn+b8eVlDDob/JHN8IBX\n7lBI0706G7uUnZCN2zXAV9kheY3xhQm21e2k8a39ddm37U3FTbJYifk6rkEg+hLGEPa2jMMr7jrP\neI/PGC+umDy9ZvDbGa1/3ZIpTVaCVlA6gk4xw2tnDO8sGYsFsRcy7ezgj+JKVULCoorv8DEbsU4c\nxa1jaya7NXDfTNecxv9hNv02NzpWG01qeUxHI1aTHmeLnIE346p1xu5oyDTo49gZuXDJhUMuHGbl\niIt8j0XeJy+8ivEl0Y6J35qML40RZa4ZXzXwpZw3ML5etfsZNpMtXu/WE836aXV6WgmibYt067Ha\n9rHyAms3x7Yz7EGO7BdQWEa7trBQmUU+d8hPHLLnDsWJQF/G6MsEvUohizAtATXj602M1T/V5L/x\nf9X10towsmpXlguK0ibVHhEBiW0YX2XXghE4+gb0UoXx66lvk/ouie+RRBXjqwa+Mv4doeu3cddf\nhzVjrWYsU/+7ea1rUkUNfCnkKMc+znA+yBiUc442L/hg8xl/P/8X3NMM+VghnyrEE416KFFKogKJ\nmkgsC1bdPi+8O4aAsbEN6BXU+k/VdOxv+K/mfmwWGmthrDfpaboGWCsDkDlKSJJ1QL50Wa+6RNs2\nnWBNrzun708J3DUtvaGlLFwNNoLYHXLhHPHMvc/G7nDISw6FoicWhGqDyBLKbU601IjZ69CODjTl\nNsfKUkK1xSkFQRzjLnKsS016DlEFfJ2sQKYgHBPm9kuQnsYZ5/iRYXz5OiXetNhO2yxejlg7XfJd\nm6gTsNjt0PFW+CrBVwmBSlioASflMS/LI06KO2zXbfKpS37uUL6wYKogKiBObvzYNxhf8Off87eZ\nrLcZXxXwZRc4ToYtcqxCIRINt4Cva8AuIEihGwFrjYz1K8aXR0ZCBXwJfYOZfvPPfq/sLfD1H7Zm\nu2AFREnrRkOpo3HCjD4LxlzTidbwHPRXMH0JH+dwVv32ag0/egLDJxC8KBjfXzLuTxl4C7xuSt5q\nmfe04ZtCvv/errvNAKut1tapKaxL4AqUD5d9+LLqQclguxry6YddTt85YBxc07XW2CJHa8FGtZmV\nI6Yne5RfOLAQzPaHnAYHPLHu82znM9776CnOVYkv4IdfY7pvAszUuL8F9VN4ur/LY3mfEw4ZMuUZ\ndxl/8An24xKxhh//Ae5eGg3r9iHwI9AfQfaezTOOOdP7TNUYrhyDU03N6bDCiNl/KYn3h8S9odGZ\nkNVprzB9lCfAU4yQ2ImGaY55o8vqdcNN5tXs4f9TwK83gV1NQLK+Ts0BCpkRpJzbcAnlic/swS5P\ngnt8IR5xdHBO+IsX2FoRDiE8rQ5lALwH6heCy/f7fNl+wNe8w8v0iPg6MKczAyINqhbdbDrj2t4y\nwP56rAa6mg/a5rUVr30ppEbIEssqsO0cR+TYusAuCpy0wIkU7gacFbgrcDcKP83xVU5gCTyZ4JQ5\nUpQ3WJU07S1vfki/aZ/dBu2a59D0gZbpNVH18A6HcmFRXlng2STY5JkgLhzWZYgTZ2gkpmlYUuYW\n6SogXfkUK4dSWazpcOlPeCruYgc53iDH28/x7udY/RK1b6H2JeW+5Go84dzbZZqPWM17lIXFvOhz\nHY45391FCoXoKmRfI4aKfOiw2QvZ9ALWTsgzdZfLZIf1uk05tdDXUCyEGTKylIbuGrmwFWZJjAtK\ntXmdajjVcFbCWQHbLWQbyNag60EotR7kn6LxdTtRv73q4LcxyfFV+a8CIBNl+todSOcey3mPq8UO\n3jJBlzYitJA7FjK3b95KQmlbnI2OOPWOOEuPOJsdMp2P2Cza5AsHVtpMqErLCrSviw9vmV9/3dZk\nfsLrwH1FF7TEq85H2ynx7IxQRnRY08ojgijGX2S418XNlikAT2AtMuwopswFCo9Qxrh2huUqw4J1\nRKXNdBvteZMPazJVNd+Mz2rGbfU+yoM8AhVAvkUtNNmFRdb3oB1SRhZ0FWVXkHcdbCcn1w45Zm2K\nLotsQJS3KHOLDJeV1eVKTnjROiIYLin2c8p5QbktyPoCfWiRHlqs9y2uumNm9pBV0mM767BJO6yc\nLsthj9lxn6ynSIeKfKlQa0V81yWbOKzaLtoOuFA7LJMu6cqFGZRLSbmyyZbSDDaJPYi1kbxYAblA\n5xJyaYp6L9TNOsthmcI6gnQLasO3s1W/7T6/7bvegNC9enV5jbamlKkeVmzVYmsTb0JWqx7+ckI3\n29BzN3RGGzrHG7xOilhp5EojVprNcch63GLVarMWLU7yQ6bRiGgZmFh0oUxLflYzaP4cBttb+/7Y\nm66n+uYSwiDMwka6BU5Y4nUyvH5Ea7uht1oy3M4ZX00R5znFOeSnRpfJboE3AmcC9hxG9oyutSJs\nRTjdDNUX6JZAOxb6tobwN4B73TjGJnjfLDw2fV8BOoL/n733fI4kObJ9f5E6sxRQkC2nR5AcLsnl\nyrv3fXj//rN3xe5d7nIphqNaQAOlK3VEvA+RgQpUo3tmuPvMODMIs7AsFEpkZmV4uh8/flyvQa2h\nzpBzH3nlwasYIrjZ3eN85xG93RXaF/TEir63oi/WKASvmg94VX7AK/kBucjwYkWYNCRJge9XRBnE\nuw3RcYGfd98sOgjx2KMdR5S9jNIf4gtTly1CgRdrZObTDCTsKMI9id9o/LFA7wnasaAeBtRJROXF\nVG1K2aSUk4zyPKV4ldIEIWFTg9TUIqCXrUkoiUVFIkoW1Q5nxWPO80dcFYfUX0fwRsGFhElp7Fid\nG4RJW7bBdyl1FN/weNuuOZITnS+mS41eCdTMpyljcp2yiAZMhzus91raVYNXtySBxDv0kUc+xaGP\nGKessh656FHWKdUypslDZOWjW7htxYnd3gfg/+X7Yw/A13/VuMXDNF5gKIIJBXFTwxLaFSxKgz3c\ndC8dY5J+4y5G8VtJRE1Aa+ppLclLwIbi76Lv78tm2eFkGW9LNu0N2IJ3U7OtAnjdB+lBKczOvg6Y\nPz9mfnRsyi5jbT5uIcxN/QSjibUL5bMdvtr7iD9kn3Iszhj9as6RmBIdSsTXmFgsBZ5A8yuPyT/2\n+I3/N/yen/O5/AmpV/Bb8UsOf37Fs9UVQSYRz2D3pjsHR6B/CfU/BXz2wXN+xy/4nE84zZ8YPbSr\n7uR+3n3XmXkPo25aLcmm+/8UA45darjWpiabm+5Jy/hyNb6+bWdHF/Byf6f7bjrWsbdg1Nq0UJ/2\nzf5/DdOfjPls92ccxxcMBwv8X0me9C8IPmzxLk3LYLUD8oXPzadDfrv7V/wf/pbfy59zcfaE9ovE\nAHzXGDbZW4b4Aez6cY3uxqS7Eo9O28SUeIRU2pZ4JKbEY+TDvgkX+piqtqCCXirIeh7+QFCPPJrK\nRxZGs2pTHWxLPN5X3mEdq+3ntx1HV4vCwwRHkflbNUaL56bT4ykD5EzRnPnwdUI7iDrQy4ixKuXT\nVhGyDtGVRxOFXOt9vog/xhu1XCX79HfXDD5YMxArwnVLsxtRjSPq3YibbI8/6U84WT5huhijpeCy\nOuJV+pzekzWL8YBg1d7Osh8xebHDdG+Xib/DSfWErxYfcnO1R30awYUyQv3LCha1Mc0rD258OPc7\nu6U3/cCXEiYtTNtODHrdKb5aXcJth+tdgeO2M+VO/x3T7RKqzQ/ddGWnQoGE4jJlujfG35XUo4ii\nGLCMh0yPd7nsH240gjyB9DxOs8eciCecLh5xun7M9HTM4mJEdRXBREEuTbOR1jZruS+D+jB++GPL\nubb6TMowj5T2kAS0BChhyv9EKPBCCDzQXezm+VD5Aun5KNGxnvBR2kNrjF3UzvzWDv27QAw3weUZ\nJoBeYboreyYFf5VAFEOT0J4E5IMes8EYPfDwAonUPlIHSO1TkJHTpxYxGo+8l3E5OuDL4Qt6vSWD\n4xuiek2UrNpJDeMAACAASURBVIn2V+heiN6LUXsxapzwZfIhb7wnXC2OmFW73Cz3uYoPOXtyzHhw\nA+salTfodYMuWhafDCk/GlHuDVkHu/yp+Zjz5RHry57pgj2XMG9g3tmjmQcXPnrHR/Q9EzS1mHtN\nqeC6gasGrmuYVpDnUK5BrtloqxbcFYXeXuvvAuq3bdc2aGl1ejsfTWrjF+WGUdrMAlY3ffzLPeSZ\nT6AVQajhQCBjj2RdEuQSP2/xc8nsyYibp2Nu+mNu2l2+Xn/Em+kTlhdD45deSlg0xq+7A+g9APc/\n/PGOa1SIO7daP5CEXkMiSjLWpHVBtKrxbyScaapLWE2MZtUyh94SBlPoX0H/HLy+Iug3hP2KuJfT\nJgEy9JF+0AFf3tv7cGfcZ6/sdbldLdB1f2QNzEH6sEjgJAY/Qa19lntDzvcewx4sRiMSv7ydWguu\nykMuqwOuykNqERLut4gDjdz3yMOYvb1z9j5SDKo1vaPC7G0HfJXjgNVPBkwPD7hOHqODkL3ehHw8\noRIxobdEi5K+X/E4qvClYrTvEe37tPse+UHC8qjPLN3lptlnuthjdT2gOklQX/lIpSknKYuLEerE\nI08GhKIm9BoiryGvekzXY/I8Q619A3i9ruGyMna8XpiAX61Bl3z7JkPvSzy6c7vc3o3pS1SpkDNh\nZEZep6yaARPGnI8OeZM+po3W6MGawf6a7IOCaBzCOGW1m7AcD7ga7nETj5kWYxbNLsU0pVpFyFKY\nBKeSZupt2Ynvjy/2AHz9p8aWk3PrgHk0hNTENH4ISYmfQi+GYbvprzgUkERACjoG6Zv3Se2jlbin\nqs5F4/+cm6XLVLKMr63SyeoRvB5sqLInGN2rXUzUGwnzEQW3ZDEugY+BY3j97Dm/ef5r0iCHCP72\n7/6V508viM5qQ7WMBfLA5/WjA/7N+2v+J/+Nf1F/xxcXn+AfSsb+lFSUNP/4v3m2d0X4iwZvrkCA\nHHvULyK+ePKU/8F/41/03/H76q9Y/P4QvsLs66QLtE8lXPlw6pluQhnG14GNzuNad2yCFhMoXmPQ\nvgkw6w6yZFMmZAGi94FfDpXhra3rkG0Pu1MrYywXmdn3L6A+7vFq+DH//EGOCDTrXo+f//L3PPvk\nDaNVjic1ZT/kLD3gD97P+Dd+zT+rv+c/Jr9k8dnIlHK+6n6n2tX/+a8WXHwYf/ljO2jUt/GYaj0a\n1ZV46JQyjGmyEDXy0fsQSei3pptVlkOQCoKewBv4NCOPdukjaw8lO+DrXl2m7Wvtm5hg2+BX67zP\nCrVKUBXkGUx6UGXoeYI892j6PqoX0CRdQKtNywetPZTwkSJACcOquIn38EcfsTrKeNN7wnh3yp6Y\nMN6ZEjcVRZaSZxl5ljFVu5zMnnI6fcJsNkZIuOwf0e+vCA4apv6IuKqJqoq4qsijlIvdIy52Dzn3\nD7mqjrhaHnFzvUdzEsK5MrqCq8KUK6JhEhhhniQwjrJUnUiyMiDQujaOVlF37JG1YcBpG1xtA1/3\nAY7vChYdMdvbe8Q24OVkhuvG2FGpoIRyL2U6HtPsRixHQ5b+iGm8w3Vvn7MnV+gufauFQOFxWR1x\nWR1ytTjian1AfpqRX2TU1xFMtWHB1la439X9cdlAD/brhz22mKtab352hQG0tYfUBshSnUK7CAR+\nxC1m7gnwA1CeoBHeBvjSngG+lNiKTbad+nddZ26QuD2sDbTdk33QASjPHEfRwuUAagHTCDkIKPo9\ndN+j6id4vjKlTd0+Nn5EHcXUUYQOBcVhypV3wFfDF+ieYs+/YhTfMNqfMHoxoYliyl6fotenyHq8\nrF5wUjzhcnHIvBgzCfa4jA84e3LMzosJYV0S3M6K6cERN/tHXI+PuA6Oedm+MMDXVWbAnVkHfM0q\nk83NItM+MvXRsWfuMwpum2CsKliXsCoN6FWvzZRrbrse3WkqdB/o5YL2LivF2ijXZt3ng3Xl86oD\nvpRJLDSzkNVNH3npU5z3oCcQAch9j+YoIG1zwk7zJ6wbrob7nO8cc9Y/5lwecZ0fcjM9ZHExRL8W\ncK1gXnfAl5uQuM8mP4wfzngPeCE6Nml3GXqBIvRrEq+gx5q06YCvSYs4h/oKFhO4XsB1DrtLkDMI\nbqB/AUJK/Kgl9GriXoFIYkQUoX0PdaeZ0Daz2x2ufbOvs49t9ZBmQz/vEo9SwLxvGOhlgLyJWB4M\nEYea4jDjcveIMGgJw4YgbEALlss+q9WA1bKP9gXeC40SHnU/ospCxJ5i8OGaKLph+HxzygB036d5\n0md2eMib5Dm1n5BnGTURMhEMYw/P9+mHMEobfKUJD33Cg4D2ICAfpizTAbN0h5vmgOlij/oq7oAv\nD6qA8jJF7XjUOzFB3OB7ksCX+L6krmLyVUax6qHWngH7pxXMcsjXhnWvlp3WqgW+XH/lXcnfbX/s\nXdttGSPFbbUQBbrykXMffRmgX0WssgGTbMzF6JA3yWOywYTensfgcUO6KKkHEdUwYzUYsO7vcq32\nmOg9ZsWYeblLM/NpVgGywmS9lcToRL9Pr/Av26Y9AF/fedgLzREAVNJcczmw8GjWCXOMSO8q6zF+\nvsT7EHbfwM9ew1ga/OhZCuNHwHOoH3nM+n0mjFk0I6o8cSrsXFTXOvp/DrpqqfiwQe23jZ+Edh+u\ndmERGZ2eoTCgV8qmuVrVHe+SjS83hmY04A/JL9CHkAc9zsRjXhx+xf7hNSklNRFTdnnJB/yBT/lN\n+2t+t/gF9T8P+Oxvf0Z41NIEARMx5uOPPufZR2/oswRgxg6vec5n/JTf6F/zL/Xf8+VXnxhR+j9i\nWE0zjWFqTaEZwlWfW9qcby1n5+Qg7Y/Ght215G5HNAt62d/+XaDXfUCXGzxusyXs61zGVbn5/jyD\nkxR2BIxg2Rvze/9XlI8TrsIDvhAf8zg5ZZTM8VDkZFxyyFe84LP2U34//TmT/ziCfw02nSoX0hhk\nI2DC/bT7h/HDH7eR4qb8x2V8qZiCzDC+shA59GBfEDUd6FV09/VU0PY85MCnHvk0rY9ceWgLfFXa\nBDnKAUjuBJH3Ze/dfXQfu2vPzUR2waQqIB+a9t0zDb5A+jEqiBB+jPDD21jZ+m46EZAKdCpoDkKu\nh/ssjzPelI8ZenOOd8853jnnWJ+TUrD0hiz9AQtvwHy1w2yxx2S5x+zVHp6UXH5wRHDQ0Dz1uB7t\nkqrCTF2wpsdr8YzX3lNeiWfMyl2qRUZ9nVKfRKbcJ++YD8XC2Hwv2kwhTIbNTlVhBKBLs1VdC907\nmhL3AUTucB2t7WAxcmbsPG9tmm2NXpnZ1MYpKhR4mmI3pd6JWIxGBAPJdH/M9cE+5/s37OxN0F36\nViNQymN6scf0fI/pfMz8bBd1KpDnnmkPPukcLdVixK7dRiMPoP2Pa7yb8aWUQGqPFn/D+OqALy/c\nkCwUEATQ+B7CM4HhLeNLOcCXQcjf/s5v3L/7hgvad7ZLe93LpWE01gKmIQQZbRKSZz3KXoqXyVtX\nwe6bTjxUT6B6HrrnUciUy+E+SisW/YzjnTMe7Z9x3Kb4jSD3Mmb+LnNvh5m/w+nFM07OnnK1OGR2\nNmZysMfVo0N2jif0j2f09JpMr+mpFYkumIZHvA5f8DJ8wSvxAZNmn8li3zC+XmkDfM1qmBVGa9DT\npkTUj0xJqr3foEG3BsCWuQG65MqA9apjSdzKMFj5h/etczdQtNPaKdtMxQW/bJLX+RypjU1tNJSa\nZhogb/oUVxnemaY9DpH7HtVeSL4f0/PWJKok1hWxqjgTj3jFc16J57xqn1GuM+pZQn2RGFBwKWHV\n3AN8/f8hdv0w/nLGNwBfNgQIO8aXbxhfPdakdd4BXxLOoLqE+QQu5/BmbUhF4RT618AAvFARDBtC\nryLOCkjomlcE79kPeLffpbf+7znPuYwvz/h3CwN6cZUiez7L4yHFccb15AB/XyIijYg1XqRAC9qp\nj5z4yKlPEDRI7VH1I9bHGc1OwGA/51F0Q7wfMrRhajfrMKDtD5gODnidPGft96h6ETLxEDsSBopR\nrOmnDTsDjwBJc+TRHPk0RyF5lLCs+8yaXW7qA6bzPfSVhzrxUF956KWg6KVUvZh1b4CIFMIHAo0I\nNLr0kEsPtfJRSx+qCtoK2rXRV1Wd1IS2tuzbxFnboNf7pvv7Wb+4ZcP4itFzH3kRIgchq0cDptmY\ni9ERw6MZx/seWdEyyNfslzBJQ+q0xyrZ4Sra53q2x810zHQ6Zn61g55q9FKhSwVt8w7Q610str/M\n8QB8fethb04uXbG7Mat2g59MoJwnnMtjXvrPOR0+4vjn18RvWvo5/LwHP7kBEUL4GPg1qL+D6Qc7\nfB2+4ITHXK/3zU1zQgcsaTaBjL3oXMNkb+p2v77pOFzwpsHsvP1fi1msS6h2TRbyMjAqp123M+gy\nZLWNJDuR7J6AGHJ2+e3f/5r50ZiX6Qc89k7YFTNiKhoC5ow4UU94Uz3ny6uPqf9lAP8iqNcj/u2f\n/pr8UcZ5/IgX4mcccklGjkawos+pfsxL/QFfFD/hy5cfw/+I4d+BLzAZh7pmU644waB1MRCCDJ3f\n0TLeis3x3mYZ7XRFoV3QcXu4YJcbHFrHywrAhc50WV/OtURp9ltnMIvhS/+2RHNZj/n9r37F1ZND\nvsg+YRzc0PdWeChKnTCVY86bR5yfP6X4XR9+I8y5+SNwqszdkhvMhWqzqva47HXx/TBcD+Pbjm3G\nlANC6dbYrrYB0SBzTbUIyScZweWIyXqPS3HI6fAxu09mRFGDlym8gcLbURQvYvLDhLyfkPsJr+Qz\nrvM98klm9PMm2pS/1fa6to6+ZRRZm+Vx/w102wnbZl5YxL0LKiVdkqCzYyJBE6NFDCK6G2N4mFZn\nqQepQCGoTgX1KGOdJBR5YhzHMKCJYhKvZKX7LHWfle6zXvRZveqzfplSvfLwlGYZZFzHY3SiWFV9\nElGSiJJUlOQy47R5xFn9mKv6kNVpH/1SoM4EalLBvIRyBdUCynkHFrrgk8262ukCT9tbq+vl3qu2\nx7YzZQGuborIKGR7dgaGJuN1mpa6BhWDLg0IJ+Pu/FfQLFALH3Xl0/R8CCLEaogsNFUZsK6y7hc0\npadKClZnQ5ZnA1bnfYrTCE5bU8q5aqGpuKtZti12va018TB+OGMbAHdKnlsJlTLM7TlUq4TFesRV\neUi/WaGjAG8M0TNJtGrQUt+W3MnAY/psl8neLpNklwtlGIeLfEi9iAzhe6WMrlxr7812Hdn7vBs8\nboPy79t3MOvXMjFUt3Y8qMxn6jw2uNBKdK3IuHupxwJ6PvQ86Hk0Eax6KSIdUycBbRrS+DGVl1J6\nPQqdMtcj5mrEXI+4Oj9kcrLL6nWP5k3Aqupx7e3Ri58Q9FsysSYTOT0vJ6Hgdf2M1+oZb+RzzurH\nxvadpNTnAq47fa7FClYrw+S6tUMVxqa4tqvFBM3utP7IfSz795XHW9/LBeatzxWDiI2z7XddjD2/\nw730Zqqss2UeSIXONXLiIU99iD2WZZ9JuYdXS6QSpGFBLCpiamJRcVEfclo/4aI65qY+QH7poV8L\n9KUyLJAih7KA1h7fu4D7B9v1wxrbv+c9oL0GlOkkKuuApoyo8oRSGqmJsp9Q7sW0UiC0IhSKzNOE\nRx5qz6fa8VkOfdZxRikSmjo0gEwh0LVGS2tz7iuxc4GWbVu1/dhNPgo20iwdeN8ERvC+9KBUtJ5H\nqwW0Hqx9w/SwrowGZqKbEASa1U6GtzNCjQS+lAzVmp6qSGLFKtq9gwtNxC5fqU94s3jB+fIJay9D\n+x6tH1L5KYtmh11/zs5gzq6cE4iWaiekyiLKIOSNfMbJ6imT+R75vEfzMjRaqTcNLJQBeWqNyvWt\nZukGNxcmubrG6CWv6ViqC2d+F6kJeNsXc5n1903729nR706sZ76rDNEzDWcCGQTkssdE7HEaPsZP\nGnLZJ1dD8mCHRXbITbDDhF1umh2u2n1Opk+5Od9nddGnPYvgtOokNeouser6Yd/P5OMD8PWthl3w\nll7oAhVVV2ajYSLgHMqTlNcfPOdP45/y2+g1o+cLPv6/XxINWrxPIJpgzvwxyL8SLP4h5YtHH/Bb\nfsnn8idMp/vwxt8IkpfWyGxn710KpOLbAWD3PW9fL9mAQWuM99cHeqb9dmsdC4sw2/K8XbjYMc4F\nAkpoZgO+/OSvOP34Cbs7E3rBGp8WjcdK9pmtRuRf7cJn3qaj4hJk3uePv/gbLn56zGfxpwz8BYko\nACh1xqzZ4WJ1xPqPe/AfwL9h3v+FNovz9qQtuvNlASdrTFyAx+6/G0S6AJR93XcFvazjlW3NtNuf\n2z5JvHUt3RrMK6hDc16Fb3Z1Cc15xtmHH3L27Cnxfk7cKxEC6iqkmvVQJxF8JQwQ+CdMmepLBcUa\nU8o5465+xvcLqX8Yf86wv60TNOKDckrHdIVcacqbEO+0j/wq4MJbMpBrgqFEZh7Jbkl41BDNG8JF\nw+Jpn9nTEfPBkFk75Mv1J7yePGN+PjTNIs6laetc2kx30+1HgFkL8h1zmx1mj8H+baPAdut/NpPf\nYNhPUQd4devtTkwqjE2rOmdiHqDfBCAC1Cqg/TphHQ+ZJBoZR0R+TaE6h1QlFMuY8jyiOROo8xq0\nomh9FnkfPfXIR4NOE6Im8mqqNmZSjlkWI5oyQV156Fct+qQy+jjlGpo5yDnoeXf8LmPUPU57jLWz\nrbee206Q2OE6u27JT4Lp/pGZrR8bvaGw20Y+RF639Q0Y0DZGc6tpzHmsBFQ5VDXkidFb82OoYtpL\nQXkSI3YHyJ3Q7JU2zptSgnKSUN1EtBNtuupel6Z8oLT3I2u3tvUWH2zXD3+4a9/arxqa1jClZgo0\n5JMeV/ND/JWkLBKKtEfzKEa3Ar2jEVIbprdUSN/n/KNjzh4fc9Y75kw+4lX5IdfzfYqrFM61YRqu\nG0dXztobm9RquQ02bu/lLjh/37T2rNP6gq3Xd76HiqAVUHf+nRB3P6INTCKvDiGPaP2WyvPxqgw1\n96HnU0cJy2jEdXhIrSLWbY+8zchlxvxixOJ8QHUWos8lRREzKXcJ8pZqGZP4FbFXEfsVkVdzXe1z\nVe5zXR2wKEaUX4VUX3nI88awvYqlAe1bm1RzQHRC3v4NbXLRAl0WuHcDxfeBXq4Nc4Aum2QUGYjU\nTD/sbFc3BV3JuO4upwja1NwPtIJSmqRNKKA1DLDVVQ9/b4zcD4jDisBrCL2WUDTMqh0m+Zi86KOK\nAP1aol816MsW8saUPrUrTCOW95U+PYwf3nB9L+f61+rWFoFGVj5lkeCtBsiFz0ztMh+MWDwZsEwy\n5IFHfNCwd9USHbYkxwHR04Tqacz104RpOmIRDMjzHuV5SjsJkCsPVdskmXvPtH6Bu4ZcGyV4e825\nvpetPqq5tWHalg1Lw0LPfZj5oAJYewYwCjBbRNe0x4O1hw409SnkvQQ88GYQJYomTpkkB+wGszsk\np5Xs86Z8zJvyCRflMZWOkXFInvSZJvsMxYJeu6bPmn5vjedJGi+gqUKaacB1ecDXlx9xfXVAfRXB\nawkntSnTbiqTEG4ViM7+NNoQPuypajAJl0ab3xGr3Wf1CV2b9j6m17t8MZdp7z62f7uML5zXdJ2D\nC2Xsl6ehhqLKuKn28EpJlSfc+Mec+DN2/TlDf8lS9VnqHkvdZ94MOD97xPXZAcVpBmcazlu4KaC0\njaTsMbpEnG8i3PxljQfg6zsPC5x0zhfdxVDvwGUEb0B/HjB7esDv+r9kGM3x+y3tLwNeHL8hPG3w\nFgp8kOOA2dM+n+1+xP/iH/k/6m/50+ynLL7YMZpVp5iyndYFRGxQIzAXu8vWsTdR4Tx3HxL7rovU\nBbQqDAsq4W4bXOvguZmEEhofTgcG9V8LQyx6CeV/jDg7GsGADWZmiUenmBK8r7vtrJsnMPvjMbPH\nx7CjIemYHWUE18Joeb0EvsQAPF9puGjZtA6wZYs5d9klcNeoWwPeOtP92z2n9w3LtnNBLwt4pZiD\ntsr6A/O8l4KXmDIAuy9admVL9ndedOf/yjQZOB1C7ZuOb6cY8f6jkGo0okpH5uvr7ue6xojivzbn\nkVNpMo5cswG+ltwF+Vyg4WH8sIbryLhrtgHdAV+6BlXRrjzKmxB16lMNMi52KsJBixz65P2ErM5J\nyrKbBTfDPa529rnq73MpD7jOD7meHrE4H5k1fX0f8KUx6yTj7rqz681uXRbFdvDjBgrucVkwzH5f\nANqAWWh/6/L2oO2cCRmDStCksErgLKQZxqzTATILKdIefiBp2pCmDWnbgCb3aWeKZqpRsxqNpsgD\n9GxAedEj6hs9CN+X+IFENj75OiNfZ9SrBD0HPZXoaWm6npRLA3qpOUY8UXLXGXJ/T/ce5NrsbXaq\nG2jD23R6V8srxSQ5hmb6ndB2amenlZgKw5SrpWHD2O2qBq802c+qgqIP133jIE592r6g7MfIfkjV\ny7qEd8duUdCuPJqVh1xpI/K/zk2nytI6k7ZT5bvYIPBgv36IYxs0std3B7iupWFO1JBPMq7nB1Sr\nmGm5S5NE6Ecefr/Ff17jaY1QCqEVUvi82XvCy/EHvOw957V8xqQ44GZ+QHmVGsbqXBngq3FZlHC3\nq6l0ttYOuexMewzw9pq0r3PXcRdE6dCwJbRnfCoLfNmPayKoE8hTCBOk9KkqHzXLqM8zqn7GMhtx\nnR6SZgWy9anriLqKqOuIchJTXkVU1yFcS8p1xGS9S72Mmc3GBGFLEJjpB5L1qsd61WO17pMvM5oL\nRXuhDPA1bw240yxAWoDaJgAtS2HbXt8H2rvzfcxfeJvtlbBJMPZAODMMIXHsl+hOdas7N96Dyjf3\niFYZRsfUMx0o55rm0mc97iF3AvLdPkHU4nnq1r4XeUq+6pGvMtQqMHZ9UsOkgKIwYKBccb/mz31M\nwYfxwxjbIJLDetTKgF5agVK0lU+ZJ6iVTzVPmftj5v0Ri7TP8qhHcA3JoSC+1OxetbSHIfJRSvWo\nx/pRn2mzw7Iess77VLMMOQG10ujatZn33TOtb7EN2rvH4G6t7bIxYvcebZ+rTclfHhrwvgxhFnZL\n1VYMCRPPVD7UPiryaM4EuZ/Q1DHNNKXeTZnu7vNq9wVpr9jsjoCqjJhPR8ymI2aTEa0MWPcHTPt7\nnPcLkqwkiiviqCLqVXieQqoAWfrI3Gc96zM52WPyZo/mJIIzZYTpZ2uz76o2Iu66BdkaAEl0+25B\n81YZxrG2tsytFrJi9m4S8pt8MZfRZWPu9J6ZcZdp7F5fnV9Yqk4XFZhDXmVMyn2qIma23iVNS9K0\nIMtKkrikrGOqKqKqY8oiZnEyZPlmRPEmNcDXooFFYZIbLNhUR9l74vcPvH8Avr7T2LrAsLS/BTRL\nuB7DSwF7UO71+TL9Kf6HLWWUch3t88njzzl6fEGfNQqPKbu85hl/4if8u/oVv1n9DVdfPoZ/Dwxb\n5wRT6sESA1jkmAvNOhVw1+FyQYxOyfUOKOaO7b9doMw6YPcJHNthvyPZvL85hpMRFBHcCANm7WO6\nQfbYAF9dMxAmmIrEC+C6haVv6K9nGHBnD+gLSGLzFYU51Vx37znVxkGd1hiw66z7pxVvL7t9syUF\n9rELCNrjsMctuXvO3odku0bLgl49DMg17A5gDGIXggxi/5ZAR2x3RUAdwLoPqz6UI2iHoC1AdWFK\nxc5GsOw0177uzumgO/3WkVt15/UG0wltIaFdsml3aZlwOW+LXj+MH+5wnRfHNugGZGMYq1TIVYK6\nCalPQ0Qc4j3TqMwjHyRMnw3pixU9vaKn1vTVmnOOeSMecyqecCIfU61T6klKfZYaYHqpOm0TC+ja\ntRTAbXtV65T5bBgUDXeHuwa3AyHr2LmA/Vbrbm3BafdjfJApyMywA6qeiTfPQ3Qg0HHEuhdS9PvM\newpCja6FmY1AVwpdluiiQpcVCE05i6kvMsQgxkt9CDWim7oWqIWPXHiouYcuauM4NaUJGNUCg4ZZ\n4MueC/H2vt85dne+jyUB73a2Qowh6WNA+vFd4GsQGzs8BAbC2J1Sd9VJ2kwxNSBqWQA3hulQadPd\nzY9pYx8ZxVSxj4j8t4gwum7RdYuqu9JGmYNcdEDggrtlUO597vvlcD2MP2e492rr5zQd40tBrWBt\nGF/VImG6GhOUDSSCoN8SP81JgjUeCk9LfBQtPif+Y770P+RP/k/4unhBVaRUi4zqOoELbboTFm2X\neKzY3CttVt6uUQt8WZ/LlZJwE5Hvsl0WAOqa2xAZpoT2DbNLuP5LN0QCog/CBB5ynVLNY+qLGDFI\nWA60KUnvpm4EuhTowkOVAjXTqJlGTzXMJMUypl7FzBdj/BnGbkXdDEHOPOTMR8085MxDLwr0okQv\nKljloFfGdqkpZr26oP22/XJ/y3dNNwh/H1PCaqnahOMAxLDbDsAbQBBtCK0DsanUarrg0FMm+dhK\nw/KotAHFFubjm76PHPYohj28ofl5hK8RXRd3tfJQ8862Lzyj5dU0ppFQ3QWKes1Gf3Fbu+xh/HCH\nCxhtAV9aGdBeamQVoPKEepUgFjAb7bIYjFhmA5a9jOFEkl4qsoOW9BIW+wHTw4T14YDZ4S6zyQ6L\n6wH5vEd1naInLawadLOd3HevOde3EM7z2/6W+9hOm8R0EnC6K4XTiemwXSawiI1G6a06ffedOuhs\nXICOQmovomlivGXEeuIzebxPUBtg2fPurhG9FrSXPvIkoD3x0bXA2zXyG96uwhtLvF2JGEu8ngRf\no1c+FB567aHOA5qXAe1XAe2XoSnVXtfGjrULcwyySwqL7jiFCzZ1ZAUt2bSr3QbvXZ/0m3wxV3/Q\ntWW9bvbZBI597up8Cd5izxbayBDNNfiG8VUXMbNiB38t8UZqMwcavRbGhq0FauEhX/nI1z7yVWCI\nFrIxLD5pcQhXh9G1198fP+wB+PpOw13o9gK3+lBzKPvwOr6tGFn7I/4gf8XygwEnyRN+57/mgCsy\nchSCr2u7qQAAIABJREFUBSPO9TGv2g/4avYRV58/Qv3vyJTvfYFpcV/ZksMCc5EPuCv44DiCd6YN\nJG2WEt4NftnjcksB7YJ0uz66zpe9yGvuBp8lTPY6kCboiE7COB6WLGbX6EqZMp9WAhO43oVVaLox\n9oWJwfpsEoaWDT/HMOHm0ogq37aWnLIRbnc757wreHSzbXJru43Qbw+3FtsKqWaY6HAXg/jtQ7Bj\n2nkeAMdsgMCUDQZngcAbjJ7a1QiWKbQZBsg7N47lcgyrDC59w8CIhaHjW1+70obmWnQMslvRfgt4\nvaub4wP49eMYbgBpvf8CtOlSoUuJnqUGXPVCChkzVwNQikaHZP6azMvJhJlXzQEX9TGXzRGTeh/5\nJx/9ykddeKb8pcIEbl4McQ+E3kxUR4vvdMakdR5skOk6EhbZfVfwuJ1VtaVHLnC0vf59bkU6b7XO\nNllP7VfIQiBzYZZ14OxOo03Q3ZTQFGbrgSJBta3JuMXh3SReg2FFrXSn21iC7jJo2m044Zb7uM7N\nu37LbUbMu8B613Gztsuh0Ps9CHsQ9CDI8HcCgrHAHzcEY0nYbzaz1yArn7YMzCwCmpuC5lrS9Hza\nJIU6MkyKGihbdCXRgS15cMq2rM6JrI2D1Vog1tory/RyWTf3sUEexg9vbAddLlDUNXdoClNC1q6R\nUx955sFXMSJNuOntcd57RNrLDdlaKAN+IZH4vGxecNY84bo5ZL7YRX7lI08D5ARYSWi6cmgyA468\nFbx2Po92S3+2Rdmt/3Uf+8s9Ljvt53TAFx0T6S0b4IK/EooGpVOoW+MDrD1YCuNH9bzONdOGnVlp\nc3zLxiRW8xa1CFBBaALSOjSaPGE3A4x49UIadtdSGxa5ne2au/ar4u1uZNtj+3xun4dtW2/HdrIx\nMuWMXgZeH7whRH3oZYheDL2QoAdhvybsN0SDBoRGNd7tlGtBu4B2IWiXHhTCNBqojT+llUZK3RHy\n9aaAwLp/azZ2faUxIv0LUEvQtlHSu/QJH8aPY9jr260WKjvfa4UuYvQ0gLMQvghYHg64HB/xcvyC\nfrRkIFZkSUlvWJDpkvlgwCwaMlMjpvmQ17NnXF8esD7to858U+kx1Qa4p+6+P8QEHkPurjPp7Jd7\nbbrsVXsM28fiPt/ZZ92A7iSAbkudt4Geu4109CpF+woltWGztp4hBBQCRlv2Y42Jjc8UXHR+5lLA\n3INZYEKeXbrQRxtzsRaw6kosLzW8VkbX66qGeQHVctONkcKAeDTdVm/t/3aicZt17z7/Ll9sG7hP\nuC3T9ntmBt0MexBnEGUQpQaEc3en6ZI/jTI2qwlMBVYjoDIJDhVh3td6MPRNwzrbtG6N0clca2O/\nzjRc1jArjUbvrS+2YgN6WV/s+wd6wQPw9R2GGzC6DpjtxDcxOgGTA/gyuK0FLhd9vvz0U84/esSf\nRj+jHyyJvQq0oJAps2aH2dUe1Wd9+D1Gr+p3wFcKloX53Fvq+D4btoS78GxQYC/IbefDZVC8C/xy\nA0NL37f6FXZYAMwFSrbR7Q4IbIYwG3U0V9/QXK39qq3hrLtjW2DAvTmUYzgfmO9KOnDHdmOU2jht\npXUQl9x2cLxT3mjLqiq+eWwDP98EeMHGeNuti9IPMb/TMcQ7sO/DB5j5HHgM7Cu8oTQdQlqBWvlw\n7d0t/XwZmc6alaCjxJnzpPsGYC0z7t5Q7HHYenNrqNygejvj6GYkHsYPf7hAkWRD0V4CngmaFiZD\nRiNoS02xjBDXA+RpwDoYEDvaL/NqxKzcoSj7qDJEvxHo1xinJFegBBBD2IcwMICXR0cd1+ZmXXfl\ncqpj0Gp7ndpAwe08e19g5A77vLWPbuDlAkj2+N1142buctCxcRKq7jM8Ooq7ydAiOyaIqjonD2gT\nqBKT8WzCLpEnNoSQUpnSP6nMe1h3x2udie1mE9+0Ll2b5TIk3jVcZyvgjg5haIJFshR6CcFRS/ao\nJD2uSR/V9LI1g2RJP1nRT5aUTUJRZ+RNSlFnrC4Eq3NYXaS0g9R0BF5EsPAMSGhBTgsU6G4/bwWm\nW1DWLlkJAVf02rVZ309n62H8Z4YbNHZguC5MQkhFBhyaJSbx6EWwishHfa6Gh3hDxXrQxxMKITSe\nUCjtcZEfcZkfssqHyEWI/ArUa42eNsY2KQE67ZZLylsA8+0123YBUuFMW5J7X7LwvnXrHuc2eH8f\n8OUm6hpQRWd/YmN/lG9K9UoPVh3w1ejNLBszrXB/HcK6O3dt1IE6YgPu5GozCwV1YabtJnuvbui7\ngPttsP6+x/cBXtuBs6PnFfSNDQsGMMrwjiPEoYc4bomHDYNsySBd0k9XeELRSFO23siQchFT3Jip\nbhLUTBi2xAKTDJGNYd2LThbAx9H8Ecaul939TGlQa0xHNzstI8MmYh9A+x/f2Aa+XFmTEIoMrlPj\n+2uf9aTP2fEjgnVDWSeksiRuamK/Jh7U5H7KuspYTzLWi4yzk8dcvj5m/aZvutufK7iRDvDV+WKM\n2JTeuKCNC9zXzvNuRQxbWxcQE85z2yzW7c6SW6V9KjKJwLwCUpCxSZiuA7gJIHOlHujkExqYtWbb\nasgDWPhwY/QN6XubKTDr067TRQvXjZnr2uiSNkvDaNJL7sZI1p65fuQ2SG+P2QW73ueLuefA564e\ntEk8kvbMTDIYJTCKYRgaENAH4WnwNcLTXd7URy9jUzW1DGEZGJPcSGO7lo1hrzVdGXfqG8mKxDPn\n0/qmhTJa2YvWlHzTdNfonI3UxLZG4bts9l/ueAC+vtOwP66L2ucYQzIx29qH8zHIwPxrCvokYP3Z\nHuvjPaNZFXUfkQvD8rGaTF9itL1eK4O26hnmQhtikHoriu6KO9uyRFd4zs0w2XK/94Ff7nP24rUO\nhvs+1wGzDDH33Fjgq8AslCsgAZUaWuud77LZQSukb7dLbvWxysS0yL0t62yc77CgjvvYFUh1yza/\nzZDf/JLbse2ARZt9ZgwcGNDr2IefAp8CP9f4nzTET0qSvZysvyAIWpo2pMx7lJM+5UmC/CyEA2E+\n6o8BnO10P6HEgHsLNmKG9ubhllrYc+AKx9rHlknyAHj9OMd2oGWDtW4dV8pk9hsBq4BmAcV1hDwJ\nqXZ7ne6LxO+0X8oiochTijxF5iF6qmCm0DMJa2WYPWFsQK+wZwA1j8220B1Aps0NWq9ALM32dm25\nAtBy6zjY2loH7L6gS/C282Xtg8s0K+h6gUPrYzR2PBPoKBvYdGw1VZtJ3X1UF3S2SdcBUXDbttwe\nY2tBvhq0qwnhMt22WVvvWqfvOgf3DRcEdMuDOm2vsGeAr90EdmLC55L0RcXogwXDF0v24hv2g2v2\nwhv2gmtWasCsHTGXZk5OB3g7Q5rBkHU6MARcD5PkWEoDUqjCHLMqut3s9ldr0J2mhrY2frtLpeuI\nu07lgw37YQ/397U+T7emdWHYNTow62zWN6D62kefC9a7PS53jyjGGdc7hyA0QnTBghas5gOWiz6r\neZ92HqKvpJlTaWyh8ExJoReD7/pHGqPR0wVG0iZAV9x1qS1bwGU03XdMLmPVslu9rbkNHtm10AWX\nKoYmNkFkG5usf+FDEEDoG/sjtQHdlTKleE3dMeZr8951bGxXHnfAjtjo2jSyC6KkCZ7a0pS/KNe/\nsMDXN/lS99mrd9l0O1y77SYbLfDVg3gA8RAxThDPwftY4H0iScY5o2jKfnTNfnyFJxSVSii7uZr2\nmZ+PUOc+5bkP5x6Ena1eKmPj69wwC5v1RvPH6v60qjs/CqTc2PXb0sZtvZ8HttePb7jAF5h72ppb\nrcBCmty2DmCdsJ73OV8/pqxSrvQhYdQS+Mb/CuKWug6py+hWt2/xasji5ZDVy76RmbAMzdxlzScY\n+9TjbuLb2i8LUnnOe+B++3UfUG3tc8Cma62d7wK+/A746u7zdQVFCqsIbiIjtRBuwRSthKKCojRb\npY2OXxRBFHYzgDiAuPMfrSZXo0yzuHVhus+uC7O25aoDrC273AW+NG/7jdvH7bLAvgkIcu2Ym4Ds\nJHLCDNIMht08CuEogOMAjj0IFAQa4StEoOAa9FVgKqWuI7jyjIZ0Iwyzt2qMjmxdwqoy5ybs7gth\nAG1rzk3b2fi8Mh0ca+sXb3fedcHRb0q2/mWOB+DrOw+X9WWRdCt02hmNWsPFLhSh0bp6AxxhMJGB\nuFu6N2ejWXUBXEmzGFl037VnaNxB2gVT3MWepOyYBxb46phTt/RE12H6tuAXbBa4HYK33+M6KNaA\nWgcoZeOcWGaS+z7rCLhdFS2IZcX9LOhlATbpvKflrsNlqZd2Udp9+i6A1rcZ97G9IszNZAfYh3AE\nh74BvP4GxN9K4l+uOfjgjBf9r3nMCbvMiKip44hZb4ezg0e8fPohF48eU4576KQ7ZhnA2dDo3lBi\nkNIZd643YGN4babFPRc2kHSDagvgfv+M1sP4zwzXebHAV7dWag2tAb3wItqrGJVFVFmEyEJEBCLU\n0Gm/qJWHXnmopYdaiS4gUt1sTaYuisyNNvPvdmn2MQGEjd2EAuYGcHqrEYVbMrTNkLDPuVv7Xrb+\n3na+LKvC7lTBrX6iBb5aI8B6h+J+WyLpspAwAWcbg4jN5wkXbFL3gDtuWdR2xnDbufqvWKfvYny5\nwFcKRzHh85zsk4rRzxbs/fSSx+EpTzjhsTjliThhwi5X+oBrfcAV+3i7j2n6Gas0gfAQvMp0d1x0\nDq0uOo2IhQE33ePS7m/8ruk6mA8268c17O9tfS/7XGECRd35KjNMN7GLGCJY7/cpD1Im+3v4e8rB\nkTRogbz2UDc+8sZDTYUJiMrWsCQaaboBBjH4Udex2hlKYTRtGgOM6K6Zxi2b1Noodc/fLtDlHp9r\n11w7dR9ryt7bS4wmWAi6Y2uJyCQMRafNKrquirrbF233vWOrUkGTmIqFouuESAfs2O92bZduN+/T\nLmBvfY/77Nc3/bbfZtgf0PW7UvDSDvjqQzaAcYR43uL9VYv/Nw3xQc7In3IYnPHUP8EXkjU91mTk\nukd4PUa+Dih3M7y+jww8wyJZSnNfkrUJips5iDl3AmEh2Oj9dPM2keIGiO50QYOH8eMYLvBlg7+c\n2zirAK4D01znUrNa9SnrhCt9iB+0iJFGDLRxLfoaPRfoSqBnHnoqjC7TV2byFQbgaaTxw25BKKs3\nY4Etd81a++VqfsFdQMfaLXs8rt2yds/rPs+1W/c9dpxBHRrAq+k0tbymSzh0bFux5e/p1thblXeM\nU2V8LpF0W9VVF3hmi3BsX2vAerU2U64w7My8A6qt/rHrl20DX+5v6p6Lb8vkvA/At8DXyNiyLIVR\nBnspPPHgQwEvgBfi1g8XoUKELZz48DqANx469c3x18qUpKOMH9aUsFqDl5v7gfkQTOMny8TvbLsq\nunO0Ldhvt65f9v0E8B+Arz9rWFAFzAWcO//rwIe2hskOLBND13wpNmzGcPMyQ3LSZuYNSAv+BOAf\nGoHhvuhAMzZ4kMJchwsfZhksMyiHIHtsujDeR7NvnL/ft0C3L+j7so72/RbltywwN3tgjanLFmuc\n91kAywXOXMDLsr1w3msBMEfv4072wn72nwt6bR/n9v9ctpcraj8CsWPEoF8AvwDxD5LBP0z56Oln\n/Dr4DZ/yB57zin15Q6Iqai/i2h/zkg/4Y+9n/NtPfsXn2acsvDG6DjpcL4LrUZeNcFvmuobYBo9u\nff528OgG1Q+O149v3OeoWPAejOC7B7JzcFSMkrEpn8mjTvOFrteFgMIzdPTch7UPke4wYAGRRzBU\nBCNJMKwJhyZD5QUKz1d4nqZeRVTLiHoV0SwDwzRYZ4YtVgDK68yUBZtcZ+zbsgrcv13gaztjt037\nt9o6HevrjrbDfUBNFwBZB+KtLKcLxN8H7GxT578pcNxms923dV/rske2map9oyExiuDIlGYnxyXj\nnQlP4hOe65ccrC/YL87ZLy8ZFBcQlvhxRRrlDKMlgYI2TVgfDJmKBlUrI3Nz5aNEZ8t1dw60DY7d\nsoDt4HDblv1XAoAP4/s57mNNOMFaK8y/Kw2+QnkCpYV5vhB3CY8aA5RN9abRsS8g8iExIL2Xgp8q\nvLTBi2S3qsz1p6VGlRpZesgiRpfCsMQqoPIw2mBr58u0s9/vuo711mPBXbt132ude73ugljtNiOy\nc5uZsKVJZm2sckpJ79iTbXu1rWm2bce+yXZtP77PdrnPuUGzbS7QdXL0M+glsBvBbkD0WDI8mjPY\nnzEcz9hPr3hUnvFofs6j4hwfSRGmFEFKHqZct4ckcY2/q5A6oGgS2jW0U0GbdjZTacPUlW4wbH8H\n105Z39T1T7+LXX8YP9zh+t02bun8BBlAFYA0iTZ17VMnvgFvZNzpMXVzIAyja6ZNSe5MwakHl55p\nDpYDgQdJYJhQQQxe0BEnfLNtG5BRx/ZpjDRDE0OdGDbnLbvH77au37Lte7m2yNorGz9uJxztOrYg\nWadFbf08WgM0k7AhNmzHgG5lUdl9V8xtEoCYTVVM5LzH7ruVg3FlJlyAp9l6vWuDre+8ffzuen5f\n/Ki564OFBqzzLNDXwxtG+IcC/0mL/6QgeVSSPSpIxwVZr0AEEuFJhC8RQlKlKeVuSiVTyjCl9gIa\nFVDXAU0edIfSMd5qa6MtOGkTwPZY7XX5rg6VNv7+fsePD8DXdx42gLHi8e/6fyfQ2+zAzQAmIQQ+\nhF4n7qs7vYWOHn1LKVQgBhAOYBwYTahHwCFGsK/HBvjKMRWWV5juhicRTPZNiaCOeFu3yy5O69h8\nlwv3PmTXOnVuFtZmE2xJgl3g7rCG054/VwjWocAC9wNfOK+373UDS9fJ/LbDdbLu09Swwz1nrjBh\np+8Vp0bE/gXwqSb91ZJPnv6B/yv4f/gn/T/5Rf07Hi/O2FksiXNJk3rMRn3e9J/wOD1hECzxnih+\nX/81q+UuTIX5fVcJFAM2Ja9LNsw2uGuI3Lr8bbDrgeX1MLavE2sLXICn6cpmOudBR4Y6HYiNdlUd\nQRkbtoCOzTIYATs+jDzCvZJsryAbl2R7JaHXEHjt7Vysh8zzEYt8SLPqG1H987hjvvomYJW6Kx+x\ntsINMLYZE9/2uO1w14XnPLZ/u9O+332NC9AI53/2/uDaFHf93Qf0vCsw2t7n+5zI+5zLdwFjdrql\njj1IEtgJ4VjAh4psb81BesWL5iWf3vyBwWxCej0ju57hXS/J+opg1DAYrjkcTUH6lGQsdoZc9/ep\nlx7NlUeT+Sgv4JYRo22Zvlu62PL2udkG6B9s1sOw14N9bJkM1mZpbhk3sjT6VssOwC69LRxamNK+\ndQRFDDI0TXgGPgwixLAlGEmiUUM0Kgl6CoFGWOCrEVSLgHoRUM0D5DyGqTJdTKeRKRmk62Z2ez3f\nl3T8puv6fa9zfTp3TVng3WWzbgNf2wC8a7ucZMjtdtte2e/ZTqq5+7Q93gfUfxu7ZR/bhGPnd4UZ\n9GPYD+CxR/J0zeHBJU+Gr3gavuKwvmD/csL4fMLe+QRfK+osourF1FnEuTcjUTV+pmiTgHk1oJgm\nFJcxsh+jdaeX1goDgN05B67ttnM7wbGdZHkYP77h/v4WSLbgA6C6pCMYG7aI4CI0APoqNIz5pNNm\nSryugYU0M5cwCcwsuvgpMXaMgYa+bwD9yDPb0DOM0DKEUpoyy1UMy9p04W7d5jLWd9m2Xdt26T7Q\n3gXucZ6z68Tn7bjFAi8FdyVd3GHjZbeKJWKTlb3NzrKJH13bZZmy7wJ33Dhy+7i2j9Ud94H27rDn\nwi31DI2uYhibqq4wwx9D/EQSf9wQfyzZH91wOLjiML3iUF7htYa1K7o5a3aYpTumu+fODksxYCkH\nLOo+TRGbBHXeAaKtvQ/dl1y023pr3mfnH4CvH+mwNzAX/LI3Rbt4bbu+HujUBIhNxGbBW+NXdu9L\nQewbuvYjDz4GPgI+BJ4q/MOGoNfihQqtBO06QF6G6FPfiCJ+AXwp4M0AVn63i+5N2n6nBXf+swGF\nPQc2aLSML/u9bmB233ABMLsvNmiEjZPjDjfbZs+1few+/22HNcZuoOoGu9vD7qd1KC1zogeiZ25Q\nx8CH4P+05ujJCb8O/pX/rv9f/nv+P3n++RnRvyojYp9DlCkOny0Y/fWa4c8W+D1JHqTMH+3x5U/7\ntK8i89rLwAhgYhl9ERuj7Roh18F1/9Z8343Vw/ivGC6TwNoDFyi2N8bSMAfaroxGho7mS8eekD1o\ne6YsRHdCmWPP2K5HHtHRmv5Rzuhoxs7hnFhUZnoVIQ2X5SGibKnLgNU6g899dNwJw89jU5LUSMNk\nUPY6d8E6ezzf9fjd82A/Zxsc3gaU3PdvB5t2rdl9s+UEdoh73nffdD//vmPbBrzum+8Cw7Y/02V8\n9SCODGD5yEN8JMmSFQfeFS+aV/xi8nuCNyvUywL9skR/XZDtVQyOVvhHMf5RTD1ImfdHXO3s0+sv\n8a9ixOsYlca0Xgecqs7G3iltdHU0vokZ8WC7ftzDXT9uAq+zWba7oq5A5IZBoTsmxTLYwlME1D2o\nM6i6e3nsmeTisYc48ggOSuLDmvSgJN6pboEvD42sfPxrI0jdXkXIyxBOfZMAWPVMyeBtgGtZBGzt\n/zdd1++73u1nuOyJlg2bwNt6vP299zEubeLR6sK6dm/bVm0DYdu/zfb+vwvkss+9z3Ztjy3GV5AZ\nlv1BAM8EybOSw4NLPhl8zl9Fv+XR+uz/Y+9NnyQ3jm3PX2BH7ktl7b2wWxIp8kq6993l2bP512fm\n29ib0btPuyiKl2RvtVflnokdiPkQQFUUmN0kpWZTJPOYhaGWBBKJRDjcTxx3p321pv3ZmvYnK4y8\nIO9bZD2TvGfS6y0wOgVZxyDoeogkw7jqUPRM4maTPLVAlOrjTCNXb0fdXm0i8N9EFGzx40B1H+jE\nF0ChiPgcdW/lierqnntqwfvGU7WYLAtsqbZppur0JWnZydVRNVPD0u/wTaWAHBkwcsAX5TDAE7Aq\nVP26pVTbmxxErmr4rVPuyvfoMaNuN6rPU/98+s+vI4KqeV4tMOpKyYr0qkgrXQRRofJRdfWlrm41\na6PaRyemdQWTfiyd9NJJat1v3oTXkfR136uy2Vq6dkV8OR54PtYgwT1MaD4JafxTwKF1wlPxjCfi\nGU+zZxhZjsikEs5kkktnj3N/j4vuPufuHtf5LiIuSAKH1apUAQrU68NqwUgn/erPhU2LGq9boP1+\nYkt8/c3QJ0ZdjVDVoQpQD2e9MH01MfUHpEClyfWh2YYHBvwc+BD4KMf9aUTrYE53MKHrzXBISbFY\nJm3msyHLyx7RZz5yx1LtSW3geQMWI27l71+SXv8tqq/XoU6AvY7oetP+1bXTC+pb3C+yWJ2rTja+\nLcKrngr0pqAXbV8D9d02wPLumjoeSVrHK562PucjPuYX8Z95+Ok5zv9ZIH8N6QtIA7B9sB+De5nz\nIL8g+sWfuPJ2edV6wM3xLpOjPaX2awNTF/KqdpqtnWdllPRz1M91S3htoUOfL5UdqhyQynbZUFiK\n9BK2IqMoSa/beZGgUmTKQMSzoW+omgRPLJyjguZRQP9oyujokgYhPiE+AS4xIsmIE5tF0oJ1XwWe\niQUTA86kcsSKpJTeh9r51cn0v4f8qlAF0K+rqVO3lXUiq7qebyL7N+3/TZ0I/frrzt2b7FflZOqj\nqvHloYgvC3oSsS+V4itfM1pf82j9gg/nn5C+jFn9RbL+WLL6c4F/KGg/ErQeCVqhYHnc5qo14rR7\nSPPBAk7a5H2b1DeVjL9wUPUk6qTrprpAW1XEFq9D/d6oBTKyrJ0jXYgciLV6JvdgKAJWGoqUdVzV\nQXpgwRHw2MQ6jnCPUxrHa/zhGgOJgVJ+5ZGFPBNkZw7RmQnNsrD8SiqFNj7302oi7mytHkh+HWx6\nnW7D63N9089fRSTrCpTX2a66zfum9ks/r/rvmwh8/bX6e28gvirF17HAPY4Y7VzxtP05/+L8lqPJ\nGe51gvtZivu/U8xUIveAXYHcFbSO16SeRdDwmB20SROT/MQi7jcRTRMiU5H2WXUdK+KrSpGqf/76\n9dliC7g/7/SYMVO2KM8hT0FEsGgqAt3IQMjShslyWhioOlfJ3bglVEo755nKFzuw4YFU8UNLqPiw\nieqTNZVqO0YdO0GlUN7alII7kqT6ux6P6Z9p0+9vIomquLea61nt97pfU38PnYiRG16vE+lw305t\nUt3rv3/ThYjXkfp121uhlupouip29Dzwfcx+gXuY03wa0PloxmFyws/Wn/Cr9Z/41eqPmHF+T7D2\nfPiAZ91HdHbm2MMQI5Ykgcty2YVZeU1SoR5DFNyJcpbldpPtqit4v/8qLx1b4uvvwibyC+6cm8po\nVN07Nk1kFxgCA3BaqmvDB8C/gPlvKa0Ppzzce8ZP3M845oQBY1wSUmxmTo/T3UM+Hz7lxegps96I\nzHdKdhdIGxAMuHO8dOliZVzeJnNbJ8DqeJOzV5FemfZa/XjV8Ted7zdNa9SDQ90IGRu2+nelG80q\nSK6KrHqqGG4LVeN+VNDoLTnkjMfyOYfjC5zfFMj/F4L/hPNz1Ym3Y8PRJbQycHs5+6Mb3nv8nCPO\n+Et7wWRvpB5gLdSqT16pvSztM2xyQH84RmqLbwvVfVPdQyWZdRtMlsSz1Ah7WdkwE4xca+1uYnVy\nrJ0Me19iP5DsdS84tE84jE45vDnBy2K8LMLLIpw8wXYzPDem6a7p9heshm3Wow7r/TbBuFG2ZS47\nJaY+dza1mpuVfXgbBL4+b74ucb+JYP6mAe3Xtb91BYcu6dcXVfS6irrzVVdotFHp2WUhfsNQHYIc\niXAlRlpgiQw3T/CTCBGnmGVJjHwJrECswQrADcFNE2yZYJkZppNj2AVG1b3ztfUhdSfrm1yLLbaA\nzeoDLUCTZZOK23lSmz9WXiooQDQkzjDB2UtwjlP845B+b0LfHtNPxrQXSwQFQkoMKUlTh4kcMGmX\ngyiqAAAgAElEQVTuMN0dsig6xKFHvHSJ5y55Vi4WZFW3Rff+ud2zM2/DdlX2u9rqwWWd+Nr0nvV9\nXvcem8ZXYRO5VVdl1BUb9QUEPRCrikGXvpBhqw5lngEtgekXuGZKMw/pBEuayyUscrJZTjbNMROp\nMr5QZSn9RkhzZ00rW9OyVzSdNSung2VnpejEUKn9YpM/qKt1N12rLbbYBH3xpyKtynlaNUkoKn8n\n4ctpfNUxAEyVadI0FKnVBP9BiH8c3G4tL8fyMywvx3RzEssm9WyStkPSs4ldj8jyiA2PxLRVXdfY\ng7ihCqODdr56Lb+/xffSX18/hu6v6ATWpmunxzj119eFC5uIe/0Y34TYqR+/7pvV1avV56zeu1pw\nLNMzDUuloPomtA2cVkq7uWLQGLPrX7IbXdKf39C8mGKfLyEuKGLIy2FFU9qWz27HQtoFme+ybHa5\n6caKWogFrAxlI7+kAN6Uwrrp+vyw7NmW+Pq7USe/dPmmyd0qmh6MVA92H1UUpwtGB3oOPAZ+Dsa/\npgz+9ZIPR3/kn/ktH/Ex72XPGcZT7DwlM0xmXpcX1kM+MT/gd/s3/NH+Fy7FEVnsKDJ3YULSgqyH\nKoi+5k5Cqt/0bxuvW+Uy3vA/uE9gVaTcpuN9U6Krfg7V5NcdLT2I1IvD1lc39CKA8v4xTONWQGF2\nUlrNOUNu2Muv6E5X8AzSz+HkHH6fqsWWbgrZJfz0M3CeQXO8ZvTwmoExoeEtMTophV/WT7J0R1E/\nr+q+0tOuttji60J3Hqrf6ykw+hwpSXzDUPUibBNsG7sb0RyGNPZDGg8ijopXPE5f8OjqBY8uXmCH\nCXaUYocpVpLR3A3p783Y3bviqH/KeeuIs+ERFwdHBMumasssSids7XPXLUtPJXyb9/vf48D9Lcf4\nOs6E7lzpwWGleKhGvaBraROEHjiWXXvIuFv6ddGDOSFACJXSJaS8jdVlAYVUmT6VdriQ6u/VrSIK\nQJb7amf/1Z//h+VUbfGuoPte9WBKr3Wlz5ny+S7MuynkC0QX/L2Q9sGCztGC3sGMXXHJXnLJ3tUl\nPaYIqeaEKCDB5coYcSV2uervMTZ3mK17zBc9Zos+eS5Uw4/AVqRX4XJfsQpvh7DfdE30nzepM96k\naHjTjNX3/7oBYrWtk126r1Vtqw7gFUlZ7Vf5XdV3anOv5IMofS/HAFc9MgxZYMY5zjJHLDKiZUEU\nFISRxI6gtYCmWT5JugXWKsONYxpFgCciHCPBNHNE5R7epvkb3DU7edO13dq0Ld4E3XbB/QyceuZQ\nlfqn2zJXGx40bdVJfteAPWgerBgdXLFzcMXo4BrPiPDNGN+IcI2Eldlk2WixHLRYRi2m7oCZ02fq\nDEi8tlIKzVyYN1S3xVvSviLiqs/wt9qw19kpnaivYuk3XT+dMNMV+/qxqtfLDfvKDcd6HTaRXfU4\n8tZgaKP+HpXNK+2daYFrqhqTHXBaCW1vwci65pgTdlaXNM7niM9iok8hSyDWs1yzCNubMewLGnnM\nyuhw7e3itSOVur8UKsXVquxudX76takreH+YhFeFLfH1VqAbsWryVdt62kk1OapgpSyK7vmwR0l8\nFbQ/mvL+8M/8D/4n/6P4n3y4+guHl9f4FwlipXYP922e7D3noHNB01rDEJIPbG5mB8hLE66AhQeL\nNvdrQ8V8u87X6/BNgtS/h9x6Heqkl+5wVd9HlZZaDT2/vJL+Vl0vUu4ZESFuv17DkdhmikeMnyfY\n6wKWEK1gnMINivjKgEkCwRycBdhhhp+FeI5yvoRd3J2mqUt3t9jibUB3XqqHXUXc11foq/lbzglT\nqGDDs8CzcLo5zZ2A3v6M3vGM4/EJj8fP+Mn4c34y/gJjmWMuc8xFjhFI+u/PGMkrjjpdxvt9Pm0v\nYWiwOuhyFe6pgCa2YFHNS73+g7Hh/N/W9fhbX/s2iDMddUerWrSwua3NRVX3z+c+EWZq/l8pAb5N\ne0+0/asC3NpGgEDe88FlDkUBuSypf6kRX1rGwV0o+FUO06YA8YfnYG3xbaIeUOgqCk2Zerv1uVMY\nOErt1QQ6AmMI/m5I/0ClZe8dXnA8P+XB/JTj+Qk76zGikCXBKwltn/P+Pmf9A7qDGc32End5QDE3\nWM9bRImjAg1p3zUA+VI64bdBetVTazapJb5q3696j686lv6+dUVEFSTqhL1XGw5fDhwrv6u6fi3U\n92nfEV+2KAWsEqOQWFGBnWUY85x4JZmvJbMI7BByS51NIwdjILGXKW4S05ABPhGOkWKaOViyjGV1\nxddXpYN+1bXZYos6yaD/rSJ4q661FVmh27IOSjRRxilNG/YseM+A96C5u2Jv94JHu1/wePSMTrai\nna/o5CtaecBNc8CNMeRGDLiWQ87dI4QjCR2fhdOBi5Jcixqw1IvCV7WFqZ3733oN9J9fp/x6nQ2r\n27n669+0X33/r/JXNvliOolfL6qvE/11BZVW2J6y26ZrKMVeB5xmQsddMrJuFPG1vqJxMYdPI8Lf\nSKIUgkL1NAgKsJ0IezBjcBRj53NujF1O3Ed4rZL4mgqlhrU2qWqpnd8mBbW+/WFgS3y9NVSMuC5t\nrCucqhQVfcXeV6NhKeLrIVg/iTkYnfBL44/8u/w1/zb9DXt/mGD+BniGUnP54D9MefirSxr/HMGe\nYGm1uRrusnrSIfyiowrenwillsgr4quecvm20x3/UVEnvapguiIfmyhnSg8kKzVEZZBz7oLvdTm0\nzopSQiGgAJkJstwitW1SwyR3BJYrsRy10tjK1eOtjfrdKePW3DFIDZsMi6ywkLnQsit/DN/TFu8e\n9Ydb9fDTV7YN7W+l1N4QZYqJCQ0bu1vQHAb09qbsHl1yFJ/w+OI5P736nA8+/xQmEjEBJhKWgrX0\nWHd91g995k4b0TJYDPqchQ/K0k8GzG1Vf4eUO1WTXifx66Yl/i3X47vaX4e+YKIrJUppKe1ylDkO\nNMph3t/9lvCKUXWQKsJf2bhKpSWEBCFvd6UM9ivFVy5LxZdURNh94kveU3x99Tfzw11R3OJdoe5f\nbWpMoRMopf0S8rY0J10QOxJ/N6K3P2X/6JyHBy94kj7nyfVz3rt+wcHV5b1yMIHvMzTHdIZzGv0V\ntpUgF4r0Gk9HELiqLlRsl8S9y10gWz+/t4m/h4x/2/OwvuBbEV+V2qHxmlH5XfqCi96FDe5Isor4\nMkviSyBsMIsCKy5wwhyxyEmWMA/gMgI3UGfhlyUkjZGu+ArxRIgjEkwjR1hSkV5VU5d7aonXpVFt\nscXXwSYVUp20f136XI6aRx3AVamOI1MRX/8EreGK3cEFT4af81H/DwzCOcNwyiCc04sWnPr7nPoH\natiHCAdCu8HEGZasgKW63c6qMgRV2Z6A+77X32u/vi6R/l2j/jypK4ldbVtXgFWxo14iR4tHTVOl\nOjYEtBXx1faW7FjXHIkTeqsrmhcLxGcR4W9hnZU9N6WiAvq9mJ3jhMFqzjAXnBiP6LmzO+KrJZSP\n/pWKL71W9A8bW+LrrWMTAQb3lTp6AOOr4nZNVFH0Q2jvLXnsP+d9/srPg08ZfTzF/L8g//8gfA5x\nCLYDjQdgTWDHmPP+f/+U08EBX9hPOBk9IjxuqY4eHWBcFUWv14b6qtTDHwo2kV6Vk9VCXaReOdpg\neOA4iiE3xZ2KtpCqm0oWQx6izM6M2/THQqp86hDylUUQtph7XcZWn1Xfo/cgxHsID8aQjdUzpWvC\nwwE0HgIPIRg0GFsDZnQJ4ybF0lbPmpCyFa1e0LHCP/IDY4vvL/T7qi4rL4MBU4AlwBGYdoFjp/h2\nSNNe0SjW+GGIN49wrhKyGaTlyFaQLQVGIGlEGUZa0JJrPDPCdLIy/hEqldLQa/DpztYmSfvrzv/7\nhrpSoorSfbW1mqomZDmE6yE8C8MDw80QZq5EqEiEkBRpQRFL8sSiiMVdO/PYgEggEwlLA24knEIk\nfKZpjwtnn2f9RxRHa8IkITUTnFZCsWOx3rcp9iyCPZuL3i5jY8hi3SM4bxGNXdKlSREXqAK8epvw\nenegLbZ4G9DLTOhBoh5cln+vVEKugIZAtCROI6btLRk6Y0bGFZ14gjtbIM7WJCex6uNRpv3GbTA6\nS5p7E4bSIXQ8Zm6fhh9gtTIVbCwMzX7pQazgy4HUD80P22S/qsDQA7N5N+wGuN7dsB2lrjIMRTZJ\nCYlQCyGpBYmExCmHAblQnOJKwAxyz2RtN5jaXS68XbrdlHA/wXwU0wkS3KjAawqMhkHaEATveSz2\n2kyafa7kLpN0yDJuE0cuMjBUJ7SkgLxApYrrNQm32OJtoK78qmxCVTJHFymUam5RqhANE7NRYHUy\nrH6BuVvQdyYM0zGj8TV7i2v85RJ7tSRbLlmtA2Rvgd9z2OkJjLZkmXUZeyP8YYBZZMi1RI5NpOOW\n56HXFn6T6vGHiLpy2OZOreqCUQ6zGiURb5RbWa4S5tXqIapRRl4O2YDCgcyEVFCkBmluExUeAU18\n26fh2xgdE2eo+h/kZWkJswC/YSJci9SyWRoWAQ3iwiXPzLuGwnl5Dm+s3fXjsWdb4utbQ0WAwZed\nAK3AKmWr2iZlR8CCZnvJPhc84BU71xPsP0rkb2H+e/hiDJNCrfG/N4EdA6wdGDye8rD7kkPzjE5n\nys1wl6LrKl7HstTK44/SaMFm0qu64D1gAOyA2YGGqy5uH3XtyqwhpTwWquD23FZdV6I2ZE1grl6Q\nZbByYA7yxmI973DWP+SFeMRPhl/Q/NVL7EtJv4DGMwjW4DWg8Rj4N0h/aXAzGvCSR5xzyGrdgbGp\nDr9CHf+2OYEePG4DyC3eFTSySYh7i1+GmWMbKZ6IaRDgpTF2kGIsChhDsoRgCesAwgjsuMCOMuwY\nGrGFmyXY5Jhmmd5rlcSa8aYUk6+jnPg+zo36ymJlt9pAB+wmtBrQ9qHdQPQsrL7A7OdY/QjDkhii\nQAjViS4LDNKFQbowSZYOTE2YWjA1lHMUC5gZyAvgmSBoNxn7O7zyjul1p3jGFKuxwBot8R4tkB2f\nVa/JsttA9pqc2EdcmntMlgNWUYf40iaZmeRhAUWpMpNV23C9e9L38bvZ4h8Xb0r30+eUVhfKE4iG\nxPViWvaKvjFlWNzQCOYwCQnPMubPy5iljF3SbkG6G2GvFvRSi0j4XFgH+G6I2cjL2utCFUYXdeJL\nV6Dp5NcPaT7oPm+liiiJe9FQ9sstifuGD10HurbaNq27BRVTqKBthSLmV5Zab1yZsDSVqi4XEArl\nJ11D6lisui2u3R1etY6IZIFYL3CKJTtuhptJGk0Ts2WQNk1Wuz7T4y5XnV1O5DEX8T6zqEe49imW\nAgIJcQFZVe9SJ7+22OJtoSK/RO1vkvu1o0wQ1h3BYhpYfobfCvG6Md4gYhCMGa7GDNdThuspxTwi\nm0fMZhnFUlLsxRh7S3q74I9ybrJdzow5jd4a00mQNwVF26BwnPIur+rvVeehd5P9oeJ1Cq9KbV/G\nkYanshKcsjuwY6rURaccOZAWkEo1Yln6XLIM3zzVACW2IIQstohSj2XRZiL7uG5Aq7vE2LPxH4MV\ngZOBn0ErBfo2tBsEXoPA9JnJLkHaII3ssq+dVO9fVIrC+sLjD+m58/WwJb7eGepGQptUVVF0H2jm\nuG5AlxlDOaaxCOAUsldwPoO/FKo+VBsw5tB8Be0TaI5jBsmMnj+j6a2xWhlJoyyKblQS7XrHrx8D\nKqVdlVNdtsCmg2K3dkHsgteGgVCtzA/Un+lxW0aCFKW8mqJqp10IOPdgXNbwkGvIIlg6qj3wGawv\nmzw7eI9P3A84bJ/S+sWK3XyC3Zd4L8ALylN5COk/G1z9YsAn3Z/yF37Os/gJi6senKK+8BWQpSjp\nV8JWPbHFd4fSdgld9QWmWWAbKa6IaBDgphF2mGIucphAsoZVAPM1zBNoxwWdOMONCtzYwMsTbJmp\nboAV8WUYWm2VTSTXVxFf3+c5oTtcVeBY2i2rCS0Phh6MPIx9iXmY4hxmOIcZpptjkGOIApOCZGYj\nrj2KGwtx7SDPy8A/MVTAGAvkHLgwoGUQ7je52RvyqnuMsxsyaF/RG13Re2TQXCWEbpuV32ft9Vh5\nPU6CI65Wu0yXA1brDtkV5HOpEV9lquVtcf3KZm2xxdvEproxFfS0O0ulfjgG+AKjKXG85B7x5QUL\nxCQkPMvJniv+JadM8x0W8CDCXi3pZZJceHStOb4bYPqZSltxS+LrnmK1nj6+KV37+2yzKtSu9W1p\niRaIFlgt8FrQaEG3AXsm7Bmwb0KvrNfliDvfa2zA2IKxo1SpYxThFXBHfC1QxJdvs3Rb3PSHvGod\nkXs5/dyi5+b0uiscCoy2gWhZpG2TdavBtNXjsjXihCNukl2CsEUY+MilAWup1PZZXpL3W59ri7eN\nuipV1n6uag0LylVGRXpZBtgmtp/jtyJa3QXtwZJBPGawnDA8mzA8m7GYpCwmKctxxnIOrQcxzYcL\n2usYJ404axzRbczwewHWICE/NaBtIB0LeTt/q5rHOnn/Q4XuV1Y2TK+vWmUKtcHwFeHlu0o44Zdp\ni75SE5PKMktbqhFIJdfKC0WoF47q/ptYEAqy2CJMfZZ5mwkD2u6StDfB2LfxH4EXgh+rIvdZDMHA\nZt1usPa6rM0uM3qssyZJ5NwRX0kBeT1e3BJfW7xzVI6P9qsAYUhMI0dVeUox8wJi1VE2yO6y3kzU\nz1lZA9FIwCoKLDJMI0NUreRvOa5qEm+6wTcFjj+UoKQuUXVRbH0XGIHYh3YLDoGn5XgMHBeYuwlW\nM8OwCorMIFva5JcOnApVP+0L4AsTTjtqJVJmsC7g3ICXkHzuc7r/kD88+CUtY4XZL/jw3z5h52CK\nfxNhRgW5bxANPK4PBvyl9zN+zX/wh/yXnFw+Iv60AS+AS2CdgwxQ33pV5FXPx/7xGa8t3jXq6Tkl\n8VUu6htmgWWkuKXiy81i7DC7VXylMawjmEYwzoGowIsLzFg9yN0sxSbDMAuteWRJsG1UfH1VqmOF\n7+O82KT4qlSq/VLx5cDQgUMH8TjF+kmO/TTHfRpi+SkmOSY5FjnmtU9xYpGegjh1kJapTMi8fKsY\nmAu4AGlBYDYZ94a4bkg+khwbHkhBS6Z4csmaNisx4FrsciX2OD075DLcU8TXaQd5lcI8hihXxNet\nUrVO2H8fv5st/rGhB5H6/aXZkdtOgKIUIUlcN6Fpr2+JLxmskJOQ6CwjeHF392YAkaQ5jmiuChpp\nhBCuIr6cEKtSfFWp2hsVX3XyC35Yc6Fuv8qyHjRBdMBuqcXGVht6Puyj/K7HQi066k3rYuDcgjOg\nKVXB+aJQlZ2tvCS+UPbrBrK2xXLQ5NoY0m4dYdopnpMx6q7Z2TNxrIy4YxC3TeKOzcrwmeZdrvJd\nTvJjZsmAIrIo1hbFylCBalFopP1W8bXFt4FN5Fe11RsPmdzVtVP1oSwvx2uFtLsL+oMxg6sxw+WE\n4cmU4SdTkmuYXElm13A1hYNpTDtM6OUr+uaS3b0buq05fm+N1U5hZCPbFsKpmt9U9aG/7RqF/0io\nK76q+LEivrpAH0wfbE8RXy0X2kKlulflVxMUARWUWyOHPIMkB5FDYUBmQWxCdKf4WhVtpvQZehOy\nrq8UX2tVHoQAZAiEcD2wCVpNAq/HtbnDTPYIsgZprCu+Srnyre/14ybvt8TXO0PdCdOMWSFvn6cy\nMUgzlwiPSPiknoXXybF70PNgN1RTsAXs2Mp3oAtZWxDZDhEeSeZSJMZdrCH196ufS7mC8KVz1fF9\nJcF0tZfJXbpQFxiC2FOk12PgA+AjEP+U4/1sTXdnRqc7oe0usY2UtLBZhh1mix2WVx3C/2qqPNMm\natXlmQ/rGOIELj1FjI0MVoMeH/v/BEMITZ+L9j6PPnjOKBvjZjGJZXNj7fCcx3zMh/w+/xUfj/+J\n2ScD+FioZgYXQBhTavxRywcV8fXjNFxbfBfQi2BmUORqJSmUYEISOCzDDjfxCDuNaXgR3d0lg6cT\nwtghjyV2XNCMC4pMYr7vExx5XPZ8ru02Z3KfadQjWrhqRX9eQJiV7H51v2sp4l/qliNro17TAL5s\nh78uXrdo8Ldgk7NY/5u+yuiA0GtIuJg9A3s3xT5OsJ9I2vtLuq0pPTmju5jiBAlmkWPIArPIWa3b\nzOkxb/eZHfYIkwZR4BGvPKK5h3SFeg4tJZwVJLbBymwyljuQQ+Y4hGaThdnnxtpjnneZFH2m+YBJ\n0efi7JDZaZ/w1EeeCjjLYBJDWJH1a+7sVqX42pL1W7wL6AFlaQtkrlbAEwmhRK4N4shhlbaYFH1u\njB28pok3LPCOI6z1/Y6m+dBAjDyidovYbjGWI2ZpjyBukK3N+ykmUrc/ehBV/V3v/KVvNxF4/wjz\n5auC3SpY1Io/C08pI0QLvCbG0MXYNxD7Gc7+itb+ivbBitbuCq8XKa6wvFS5ZRK1XaJdl8jxiH2H\n2LZJhEOc2+SJqRZIAuAKUstiZbe5tnaxrJS06bBOOkzTEVfGIbaRkuQWSWSRCIvn6SNerJ8wDkbE\na5/8vwzkWY6c52rFuVirKFNWBXP0dKF/hO9jix82NsSOUt43Z1JQYJILk8ywyC2DwhHgSQxf4pRN\ntbqoiikdoGFJHFdiNnKEK8EUFNIkzyyK3EIWBlLq6jPdp6rOp7Jnm8550/b7gPoCbxU7lo3ozBY4\nTdWRzPEwuxbWMMceBljDAKeV4TQSNZoJeWqShjZZZJGGNsnUIh2bJGOLZFwaOrv0vxY56cRkdd1k\ncjHEOClwVxmWkBQ9k/SxgxHliBhELBGR5Ppwh6vWiKt8h6vJiFc3j7i5GhGeN8qMoQKWGSRVg4JN\nPtiPyxfbEl/vFLrxqOoFpCqAjC314J6bREGTcXfIFbusui3aT2Lsn8L+FIxzWCXgW3AwAv8p8ASW\nI58re4cxQ5VqMrfvYo1cfz/9gf26lMeqSGx9MnzfCLBNBQmrdKEdcNtK6fUB8K9g/mtG/6MrHu18\nzlPrcw45pc8Ml5jYcJg2B5w0j/l8+JTnw6fMewMKx1GXJTHhuaOMyzSDZ6puW+46jNnn9x85THcG\nPPcfc8QpfWuCayUk2EwZcMohz+KnvLx6j9lfBxT/24G/oFRl4xTyJUqeEXBHAmyVE1u8S+i2q6xp\nF+cgVK2CaOUxC3qIKCNOLBqNkN7hnJG8Juh5yDjHiTI6cYaXFkTvNQgeDZgMB6zcEa/kMeNwQDj1\nlcpxWqgWNmnVyr6qf1Gl/dUf3Hrzh9etbukE2NdBfVXz751n+vHqWx21DmhmVUPCAdfB6gsaexGN\nByHNJyE73RsOnAv24wv2L89xixgjLzAyiZEVzESXG2OHG3+Hm+YO03TAdDVgtuoTL1wlZiCHleqR\nnWKwyhuISJIuHUK/xcwdcOEc0nXnBFmDVdJilaoxu+gxO+8RnXtwIWGcKWlfuOKOsK/StLd2a4vv\nApWNKP2uNFeKxDUUS0EUeMzjLlfFLi1zzqBtYO+nuE9XtM27+sCFhKRrsDpqsO4NWDlDLoojxumQ\nddgkW9qwKFNakkL5d7cKoWqhsU7W66RXseH3fwTy6032qv66GnFveGA2wGwh/BbGjsB6JLF+ktB8\nEHPYPeOoHH1vCoUSQ4gcYukwa/SYWl2m3R7zdpe50WEhO+Rph3xuqLcLgUSSZSZLo43JLllhsep2\nubH2eGXN6VtzTDKywCSLDbKVyfV6xKvJA8bTXdKJh3wB8iRDzhK16CKX3DnTm4ivH1/guMV3gdp9\nVnZcJoeiMMgKk0SW4gfLIfcsZMuAHjgraPmQO0ok1nXU706ZsSc9g8I0yXObLHIoEpMiNxRnf8+3\nqtuyNxFfm+bF92WO6FkGWiM6Wkpt32yoC9jyMHcl/mGMfxDTOIxpNVe03RUtd6XSFHObddIgSBoE\nSZPVTZPVRZPVZZO03UIG4q7m1zInmVisrlqIU0nSdcAwyHAIek1mnR5mmmOkxe24ae1w3Rxxne5w\nczPi6mqXm/MR67MmnACLAhapEmXcI75+vKrVLfH1TlE3IGVAl2awcsv6UYLVrMXJ7hFfmE/4yeAZ\nvV8s8ScJbQOaX0C+UItn5iPgXyH+byanOwd8Lp7yigcs5n3kha2Ot6Qsiq6vVlWrjHWDVU0CPYDM\n+LLa4R+NAHtTrrleYNXlVqJqdlRNr8fAR4r0Gv3zGb8c/oZf8Ts+5C88Lp4zjOZYaUZqWYy9Hs/M\n9/jY+ZDfHkz5k/MLrotDZGiXxVctuJQQx3Am1BNGQJHazGYjgp+1udg/otOY0fSW5cqjTZC0WQQ9\n5pd9ld74sYA/o4ivsxziJarQV0V8RWxm7LfY4ttEjbTPc1WjIJeQQLT0mAVd4shinrTpNebsHl4x\n67YJHnkYcYITgxcVkBZc7DQYj3a4HB5x7jzgpTziJhwQzjxVR2+mE18RdwVVHTYrInRyX98K7qcF\nf92Wza+T8/+tc03w5WO+Ll2gHjg6qtuZ70DDweqn+HsRvQdzek+nHNunvBc8V2PyHD+JEImSuItE\nMm4POB/sczHY43ywz3l+iLEsSBYus1lf1cdZF7DKYJ2RJIJV1CBduKzGXabNHbxmhNuI8JoRaeyQ\nRA5JqLbhlUd05RFdenAlIUhVB4NozV13jipNux40brHFu4BmI2SmajZFBawkcmEo4itRKW++oVJ+\nuvtLvMCi21DCrWqEDZPosEHQ73PlHHAmDxmnQ1ZBi2xpqfl0j/jSFV8WXybg6+pU3QfTiXt9n+8C\nXye9SW/kZIPQiC+7CX4TcyfDfpxhf5TQejLnyD7h584nfOB8wqE4Q0QoVUMKgWxw7u9z1tnn3Nnj\nor+PJffIM4t11FYpq2upzEsgSQOLpWiTFjarrM3Nzh5eO8Jvx3idCIOCIhEUuaDIDdaTJvPzDvOL\nLumFi7zMkBcpzELIA5AL7myX3pzjH+U72eLHg/KZqSu+SuIrlxYpNjEuqWWTeSZFRXzNVWKMBqwA\nACAASURBVC8cq1R++Q74PthlxpD0BIVhKeIrd5CJQGYCeS9bSI9ddcXXJv9I30f/+/cFr1N8lfUJ\nmw3o+zB0sY4T/McJnccLuu8tGDQmDK0xQ3PMjjUmKjxmeZd53mOWd5lcDjH6BVnbYe0ZyBsBYwlh\nAYuCZGyyvGySdBxWzQ5Jz2XdaTDt9rjsjLBkhpnnmEWOmeeM8yE32YhxNuJmvMP6qsX6okVw2lDE\nV1xApCu+Kjv2440ft8TXO0OlVqhutor4iqBIYNmAKwGnEJy2eHnwmI97H7LnXeI/CXlPvKKxG2O8\nAGOFmoPHEP3c5vT9Xf7U+og/8yFfBD9hddZREscryoaDMfcJExOVo1c3WpWh0uuwVA/6OgH2XZNf\nOtmlF37UIblTe+n1vVrgukrt9QTEhzndj274xfC3/B/8P/x7/r/4aP5Xdi4m+JcJIoSiAeG+zaPd\nE/YGl/hmiBwIfvuhx2yyp671JaqF+bqAYAUvW5CWaQ/XBsmLBlfHDa52DjC7CYZdkKcGxcqGK0t9\nZ89RKq9nwGmuWj8yBiaU0Sn3Ux1/XAZri+8SNcVEnikJRFKAgGjlEgcW86iNSHJGjWuOOifM7Q6B\n7dGIoBEX+LGBGwsmXoPAH3LmPeBT86ecyyMm0ZsUX3qqY53sltwR+ylq3lc2q67Y+qZpi9+G4msT\nCaZDJ77KdtmOqzzWloPVz2jsxXSP54yeXPEge8lPz/6Ln0//yodXf6WxCu58nAguD0bsNG/o+VMa\nB0uMIieee8znPYypVKLgIFeS+KuUdGWSLhusxzZc2tBRpXnoSLUNQK5FuQVuQF5LVXj6RqKKQEcg\nV6iHUMg2RXuL7xZ68JYq4isuYC2V4iv0mCcdrvMRrhnRbS/J98e42PT6Kjuy2n3lGlwfNAi7fa6d\nA86KkvgKW6TLsvNguIn4qtRQdu3c6orViuSvk/Rfl7R/2/gqe1V/7QbFl9UAu4Xwmxg7AdajDPfD\nhPbPFhzmJ7yff8x/5L/mafyFCjlTpfha0OGZ/4jPe4/x+0uMICPPTIKoxWRdqAYdcRk4XkmyqcWy\naLNK25AIxArYAyGkEgpLlDkqTZI8B14I5EuBfCFglsE6hXUI2YI70v51iq8ttnhX0IivQqpFRwEy\nF7eKrxj3VvFVtAzoqgaqlg8NB3ITTEeVpjJbkHdAGpXiyyJPHZUCnpXvsVFBX+F1ooPiNT9/H+aL\nTnrpoomyRqHVgkZJfO15mA9SvJ8kdN5fMnj/mn3/gkNxxiHnHHLGmibXjLhhh4YcYZwVpC2Htd9G\nWIaqYRvk91Id00uHddME12Ql28w6Xa66I7qPDrBEikV2O6aTHcbjHSbjEePxDvJKwIVAnglFfFGo\nhR5ep/j6Pnwnbxdb4uudoDIeVS2HilCqWgWuIGzChQMvIP/U4Wr3iD+6v8L3A4q2wfqDJke75zTm\na+wkI7dNgo7PxWCXP3sf8L/4D36X/AsnJ49I/lrWmLqgLIq+RhEmCeor73BXf6F+nlXgWBUIi7W/\nVQRYhTeRX1+n48c3Jc/qZJeumtjUZURXtmmpjkZLXYKyoKr9NOHh7hf8it/z7/l/8m/Xv2f0uxn8\nBngJrMFoQ/NRysN/Psf7bxH5yGBltZgMd1j9rEv2zFOF6M8NWAslj18Vivxa23BdHmsE9Ezypk9u\noS5p1S3yGvWdXaDSG6MVSul1Bcz4cp0cXfW1xRZvG/X7Snd+MlTNk9J+MYelgTw34L8E0rNYtPqc\nth7Qbq4RTQM3S/CyBDdLcPKMF+EDXkwf8JJjzrNDJp8NWL1okJ4Ldf/PgdCCzFfnYhaqmLFZqHEv\n80aqQDYrlRx5xh3zU42ys+Bt8FJHXYll1P6mpyRtkvLXr5e+b7VyqG/1nzfV+HJRNlqCIVVR59L/\nMv0M3wnp2nNG5jX9cExjvsA8D0k/TwmXOUUCeQJ5CqGIEIMlrWjMHiZLq8O1u4frx4i2VNfaycHM\nQCaQCghSpGmCNCESiuiaC2iW0vxIquA+kqoe2ypXqa9FgTJoc+5slq6W+PGuNG7xXUEn7RNlu7IE\nwhTMFOk4RFc2y9M2dn+EISV2WFBkDutmmxP7QRn/SYSEwPB55R7zMjrm1eUx5+Ehk5Mh64sG2bWh\nSPuVgNiG3FXvLcp0GVEFHTqKklnLyyCl8sEq0r963ldk2KZ581WpiJtSjt6UPrnJv9rUYbf+fgLl\nazkoxVfZQdMtO2i2JI1GRNed0rWnHMhTdmbXdKYL3EmEmOdkAaRryAJYWzEcLuik1xzZFrIwia0m\ns+YO1iBTdQnXBczK3MhEKhXfRJ2qjAUsBUwMuDTumnkkUhFm4wIuCrjKlR1bryFeKNLrXppjnbTf\n2q4tvi28yfcq40eZQBFDHpIHOenEID5zEV/AZD3kND9i0JrQOAowRIbppxj9DOM4I/upQ/bEIdtz\nCJtNPgufcrnaZR021fr6RQqzWEuPC8vz8FHt7uuK9XradlYb+vm/SSX5deqfbtr368zFTSUmxIb/\nV36ZHjtqqY6OD10HsS/gcU7jMGCnfcNDXvFw+YKd+SWD4IZ+MKa5HmNZawwvoeGv6Xlz/GWCMARJ\nz2XxqEOcOhRLyG+gMEyIBcxBXhQgJGkE4dLFGLcoLgWWkanGRUI1L1rOuqynLeKZQzEV8CyDq0yp\n92XKfcV9vcnQ61JSf9jYEl/vFHo6TrkizhqYQdKGGxueC9iBsNPic/t9iseCld/m3Dng0f4LdvZv\n8AlJsRkz4CWP+IT3+WP8Sz47f5/1nzrwZwGfowiUOERZsqoXZI+7Dh0O98kiLf1S9V/VRhU4ivLc\nK+jkVT3Qe9Pq4CbD/iZUxqjOxlfnX19B1d+nUom4gKdWH8v69hwU+AdL3jOe8T5/5YPwE0Z/mMH/\nDfmvYf1c2X7Xh/ZDsKYFI3PGh//9U87aR3zuPuXV/kMmBwfqeC0B12a5ynul0h4v27Dw4My87YCL\nW36cAnV5l9XIIUxUPis3KKXXjDu1V71Gzpb42uLbRj0FugrA4pJUL+3J0oUzF+k4iMRm0e9xMniI\n7Jss+n1sMmyZqY61Muc6HnIT7XAdDRkHA1bPm6xe+CTnBtwkZeqKo8yNsEvipxyOvDMxBmoFNCrU\niAsoykWF206o1Yq9UftMFXSiq76tbNib6vDUCbBNdsqqDVPb1kl7fV8JolCf31GqBcvPaDghXXPO\njrihF0/wZkvkeUz4uSRZQJKpLPokg9hNkQdrmqGFVRTMjCEdZ4nnx4iWhIYEp1DEF4la7Y3Kz5MB\ngQFLQwWvrqG6BKWl2i+RZcvh8g3JUPaq3oyjIr5+XE7WFt8VdIdet13lAmAaq2etTJCGR3xps+i2\nkQ2DNHdJbZeF3eWisUevM0NIEOXxksLlOhtxHYy4WoyYTAcsXnVYnzfJrk2YSjVnIgsKD9VJUpbT\netO9nyubJatgJeZOlmSU51zZo03z5+sosnT79LqAp/q5fjyzNupEWP1cHG6JL0zVAMhVpLnRLvD9\ngL4zZc844zg9YWd8Q+v5EutZSnYJQXQ3okZGFq1piRucZo7hmcyMIeeNY+x+SXxNc/AyMMpuaety\ncSTLYWXA2IJWOQTKdmWlDVtlMEvVWKUqPTtdQb7iy2ov3e5vbdgW3zZ030vLyJGpyhQqSaliLUlv\nDDhxyXs2Y3vEiXWM1wyV4qsR4g1D3KMIdx6xPmixOmiz3muxbHb5a/ATzpf7rK5bqlzLWQKzdVmq\nYM194msTAa7HJJWN1QUUdeJ+E/lVX3jUt6+7Lpts1ybotux1xH3d3uk1vjTFl+sjuiZiXyCe5Pg7\na0bNax7lL/n59BN6yxvcqyXe1RLveoHjOXj9kF5/Ttq/wTEKEumy7LS5ae0gwgbpjQVNi8K0lD81\nV6QXUUE+L4ivLcRJg3xoYxgFhlDDFAXh0idY+KRLExY5XMVwFUFQqeyr+FFP1/5xNxjaEl/vDJXz\nJbgzDBXxtQDmsPLhpavk2LZgLTt8Fv+cxcMuLzqPOLDO6TPFJSbFYkGX8+KAk+UjLk4PCT5uwW9N\n+BiVLjdNIJ+XxxfADrepfrfkl+60FKiJURm7lbYNy5+r1+vkV4W6E7QpoNPf6+sU0K/2r45VtdPV\nf68CyE3vUWivLwNOw7xt7mgMc7r9MXtccJyfsH9zA3+A7D9h/Dt4Nld8ec+AJwsYOWAf5IweTnnQ\nfsW+cU7XnzMZHigyrYmq7RUbqD2XkPdg1YG1DxMb7HIFtPJhs0JFp1mC6lFb3g9U3131fVTkY52p\n32KLbwv1uVml4FTL5gHIkkBftlTL+dhCjk0Wez3kvsFir8/J3iNMs8CwCrU1CtbzBsGsQTD3CWY+\nyalBcmaSngm4SUtRrK1aPdO4E202+bL/hVrlR5Ty/yRDES8LkJb2wmrxoW5nKodId3h0J6n6/PUa\nPNX10J2I6vW6wktL+7lNvba1v29Sq2qpT0YBdqFIPx8sL8N3ArrmnBHXiviaruAsJvq8oJirzJ+o\nUFujnWG/t6YRFnRlxI25R9te4voRoqmOiZuDVS7KZKkq/J1lqj6EZaphlrYrL1O48kLVektTlZKa\n6krmgLsUx7pCdWu3tnhXqO63SmlvKsVXmpTqxhSZ58RXNrLRIrZ9VnmHxbDL5WiPVm9JoxMghESI\nAoEkSy1W4w7LZYfluMP6okn8yiY+d8iuDEV8pULZr9xVxL0wle9hWCq95d4plouORaXyClH2q8oS\n0FWnm+yXbq82+Vx10qtO4uuvqaDbP81/ukfYb6oVK7TXlp/bMsEzoAlGK6fhB/SdCQfGOcfpCcPx\nNc0vlli/y8hfKD5yXnJRaTfHFyuazYzRaI1jGFwYR7T9pVJ8rYGrArxc5UdmqUqRz1S9QhzjrjGI\n46hrn+fKfhWFqn0TRRDFapsFkK9R3RyrYFEn7vVrtsUW3xbqvlflDxh3qWtFBDIgX9swNslPXFLP\nYjzawd8JoScJhy7twZJ2tKAVLmlGaybtAZPWkEl7yNgbcn51xPlyn/V5E55LOE9guoZohopDKp+v\nwV2ZHF2trqu7KlFHzH1/qvpMOplX/e1NRNTrrk2139chv+oLmnUfT3+/+uvupzoKx0X0JMY+iPcy\nGq0VO8UNj/KXfDj9hOb5lOJZTPEsoXgWY7RNrMM55qGNeeggeoJFu81Nd0izs6BYgTjxKZomqWkq\n4n4uIUphmpFfCeKWTd5yiJsCYUr1LDLUNgtM0sAkDSxF+K9jWK/UuF18XPJl4uvHuwi5Jb7eKSoS\nRl95DFDkxhgyF24G8F+OuhcjQTRtcfKz97h5sMvn3TWuG2GaGUVhEscuwapJcNoi/9SBv6LGp8Bl\nCukMpRiSKDlSH2iC7YLrgCXUMMpTS6WadHEpoWWBYosrxliU51tBJ7/qK4Ogbq/XGS69nkV1Xep5\n4Xo6UHW8KnisnC+XuwAS7oxYrZ6HHoAK7lKGWgUtd02POf1sjn+dwSkkJ/ByrjjEOdAvwJ5D/yVY\nZ2BPEwZM6DLHs0JoSfCFOjVLQGyW712lKM5ANiHxIKnO+Zb54k5OXKWOVYGjLrPfpjhu8V1BV01U\nczrilrSRUpmI2IIbH54bLB70WMx6nFZCRVcbNqqOlz5uknKkME25RxAZlppXvlCqypa4H3dVPlCO\nerYbGUgPsEDWVa1VAKNDt106UVZXfOk1eKr/V8fSyejKcaoCxGrVsBoOX1JF3EPVkKQcRnEv1dHy\ncnwnpGMtlOIrmeDOllApvmb3ly+aOym9aUEjjOjLBVfGmLazxPUqxRd3qY4igSxSeZK351B9hsoG\n1xsI6K9NNoy6Sm6LLd4FdMJHVyMIyMp0R1JknBE3bGLLB2lDZmDKFLObYnoJ5jBDGBLDKBCGhECQ\nzl2ytUN67lI8M+FloZrRXBdKgXSrFgAMoer0meUQtfkuM8hjRciJGFUbr1K46wFK9Rk2pRfWSfv6\nddikgKtQr8OzSe1Vzf1N2zo00l9YpeLLgIbAaCnF18CecmCec5SViq8vVpi/S8k/gTCHeQ43OeS7\nOfvNNa3dNfuPwG8aPDOuaTdWWGSqsH2nUIovM1XXMUjUuPX9PO0zVoF6Zbsi7vwtnbCv/LF6w5Qt\neb/Fu4RO3FdzO1W2QlaKLyhubPCUg3DDDnQlYdNlctShz5QBk9uY5ZyD23GR7rOWHVbLDqvzpsoW\nGpeKr3iKKlvQRDkJfjl04rvKAtLL41R2QfehNhHtmxRfm8am6/E6tWodr1Ny1e2lTnzp+9UUX46F\n6GaI/RTjvZyGvWY0vebR9AUfzj7BfbVg9Qms/wSrP4HTh9ZTaM2hmUD+0OamtcNp94DWwwXp1CYf\nWqRNF2GayLDKWsigiMkth9x2SWxXxe51sW1SqBITcbm9Fa/Myu8u1EZVK/fHHUNuia93ik2qr5A7\nMseCRMBlHzJHRSzXULy0CQ57BDs9aEv1reWoWlJjVErji3K8BK5TVaOASfnCkvRyW0rq3RO3HNit\nciIDAgELC6YWLHxYNSBvc2fodFTGqyK/6s6R5vTdc8QqZ0t3JgruZOQ6AaarJeqSU3fD0N+nOn61\n+oB2TDR7J8sigSlWkd3GbkV6p3Fbl0ePi5IPjEFk1X45hihqNrQysIL7eYwOd3V7KlKweqDp9Tyq\nUaWZ6umN1fX68RqtLb4r6A4Y3Dk55c0vTciFItDJVaOHq/J/sQG2KHksoW7/aaHGpNxWGdkZSiHR\nsFQLooaBaIHbi3B7MW4vwekkCKPAKINRKQXhwida+IQLj2RhqS6rC1/JvwNACpClQwF8WdFQzc/S\nFgtxN4B7bd3uEVPV3NXnqMF9YqtMsTZ8NUwHHEupP20bjJpKI8sgSe+G8JUtjl0VdIcW67jJNOtz\nIffASxkOc/wHId7PBe4CrALcAnwJ4qGDHDVYNhuEosllvsc87hIFPnIhVD3CqFDve1tjqCLjqxRR\nXelRJwF1x1cf25peW3xXqAdFVeBYzc8Q5WTZiriPXJiXTSSEjcwK5FpS3JgwFAghKcpVdmLIzwXF\neaHUERelL7YSZf8gAb6p+BZfIHyJ2ZCYjQSzkSGs+8GcTAvyQJKHkAc2MmwoqWYoILIh98pz1evE\n6sFanYyqB3M1Bem9RiB6M6PqNfrxLNQH0YZZqj9NU417H0ao50BuqIENRUsp3zITmUKW2USFx0o2\nWRktIs8n6zowMrBm0EigWwry8pag0TIQDZPIN1m7PmHskhYWMhEqJTsplHJe6j5fFewJ7myxW56k\n/lkrP7xe2kOvrbZNcdziu4Tuewnu7tk1YCnCYyFVnWAMMgOCzMVad2AiSQyP0GixMHu0jDXjfMA4\nHzLNh6zjNuHnNslnOfnpGiYxLGOITOVzmBa4Hnie2rpOOe8NtTVKZWv6/7P3pk+SY8eV7+9iRwCx\nZ2RkZlXW2t3sZpMiqSFNI9n738feB72ZJ73hInHrrbrW3GMP7MC978MFMpHR1ZRkphG7yXCz24jK\njEQsjetwP378uKPZloUHmQe5r6VeyqazqSnkJ9xnzCu+CUTtsrKa76A57vqz9nEXuG9yxxYL9Z6v\n3G3fhvt7vUtdGbx9L0LouNM0K0yjQiiJaEi7hQ6jMqk/sVSaTF/VKb8oFKJSGFJiUmGICgOp7ysC\n9Ima7yzScbV0NCaArb/vduhaVLql+3aIypo7qYmG5bU7kfav24/tga//ctul3TfobGuD5xKuBxC7\nMDP0ZIYxWp6rI+6Ar6Yrbk7NmADWOZQN06sADsAYQejBsaEnGR4D0+Z89UsX6H2yQGupvxVw5mrd\nscTWm+/WdquFTeDVZl81j9sOrV31bxKjJllqGFJt4emGMdEAgx63qPst5bY5NuBcuxWz2fBNBa95\n79zGfKoQ5OhJKKnpoUIQPT3md2LBpNSfZAgMLbD6QA9kxyDFI8WjlPbOsJ/m/2/zeRq6advR7lYx\nmgBrtyd+dwLHHvTa25/LmuuveZxzx1RSNRmhBoVkDuvaF2Q2rOqqv9mwTIVuQ9nW7SjbCmJbr8LW\nwFdowKEJEwMxAW+U0hut6I3WdPsbTKPCFCWmUaGkYLEdMd+OkNsR+SqEMwveeRq4KkzdAilrfQyl\n+KaAaVPNrIMcQc3UoM4dpd7bUupzsKsf1uzdJuBqQHoPRAfMelkBeA50TA3sBab+TtpxXSb1d7Ot\n9IASYYMMNPAVGZSRTZQFzMsRF+oYy8vxDhKGj5f4kYGx0cFWXum4KHlsk0y6rMMRiTHiopqyzAYk\nkYdcCd0mmkodQN36ziZ5jPhmtbTti5r7wa6g7W5lce+z9vbnsN1EqdmfTVEK7RdSH1Y+KB9SD7Ux\nkdcG6rWJ6log6hYTARSKaimRiwq1KHVxfWXC1oTC0L4uFDAyYGgihhJrUOIMc5xhiendb5WrEoN8\naZEvLeTCRi0MmAuYO1D4GjS6Bb2aBKbNXNhllLaTOZNv7s3dIlv7d7tAkYOWxwjulmmAY9ZthDug\nvRK6gJuJuthggvSh9KCwUHlFWVqklUekQjZGl8T3Kfs2TA3sLXQSUAnYMZRdgR1aGIFD2nHYuh1S\nUwNfMhO161W6ffEeaN/wXSvuJ7ptILCJRd/HUt3VJdyNvfb+bG//VdYmTbTB2jqFz2rGPQZkFkUB\nydaFWY/izCWyu6ysBN9O8ayUTR6yzbv6mIbkZxXFWYU8i/Swh1Rq4Ev2wOxCYEO/Xj273vdCH02h\nKZrNiivYFLAuaxQoRffNmK3P0S4QNrFYu4268Vtm6zntFsldxnmzdhn3TQ7Z9mWNj/S4y1N32wfa\n5+7US/uOBvQyTIlpVfqxkohK3XarF2UtM1G/Hb/SmKCqXYpRSkwpMVWFidbrEtTAFyWIFO27lrpj\noapBO2V9kwxXVXXrdvO9NCBjs3aHOrVb3f86bQ98/Zdb47zgTiy+Yf7AbWBTprAaQNLR4FNH6yPc\nEpskLUxHQVJCnoBaodErCYzBGsPAgycCPgSeAU+A0wp7kuIEmjkhS5Ns7VJduvDagC/RlNcXBrwN\ntUCobG78bcp346CaqReNM2lYWW3wq+2w2tNCstbR5E4Tpg16NQBXiEbs+vUxAKNhTxiaOaHQ77Wo\nWRMqR98Vtvq8klsWu9yaLOMBs84B19YB62mH/vMY+0N4tAL7UvvwngeHUzA+BPUU0qnHBVNmjImL\nDixFqyuxcZxtNlsjTvttumftCshu9XU3efzrdVh7+3Na+4bZ0NtbrEVZ+wZVt8qt3DsWhevWIFK9\nR4XQ2ipFro95CWUARUdXthrgayrgsUA8lngHKYODJZODK0aDG2xR3C4pDdw4pYoFUdKBeQifW4AP\nWwdWjq6klYWmbardZMhF+5Z6Ca/erqLVhShrwEyi93OtIXZ7noYt0PhFl1u/JUIwQ7Dr1XG0cOBA\n6OWI+1t7q7TYPEoLMAsTKhtyByKDIr5jfHnqCN+LGY0XqMceHgZupGPOqoSqgPmJQ3zYZR0ccGWc\ncFkd1cCXj2oDX0WTPDb+uanSwv1oq/1mG6C/XXndfbxPFvf257D29bZbsGuKYZVuG0pCnbWkFawk\n6tpFei7CN1FOHSoLECiUlKi0QKU5Ki006yi1IXOgrNv6usDEhBMwjgvsaYl3lOFPE6ywpG3FxkZc\n+shLk+LShnNHs0KLUieQONyBXg0ttp0oNkXBZtmt31ncxVx56xxNK19T+WziUcWdoGJz3n5rdTXw\n5Qrdeu7tFPEk2tcrNPOrFCBtnbwVJiqXFEXD+ArZGl1Sv0MxcODQwEqgswF7Ax0biq6gDCzKwCXt\neGy9DonhUkgbmRk1mUFpvUHVBgXqacO3hdW2DEc7lnofaN9eu/5r78P29l9t7aIj3F3jNRCWoRn2\nmQVrh2IL8cwjP/eIB2C5BbZbYjl65YlDnjhkiUMR21TLmGoRUS1jWCdQ+lD5mmlqehAYMDZhasCB\nWdcH6/1vodlmawUbCUsFdh0PphUkTV7X+K8GgGnYt4pvMrHaeoIN8NV8D81+bc7VZoU1e7WdazWk\nibaP7LRWUyhoXrOJ75rV5J9ay7bR1zIbxhcVBprFJRrGV3XH+EJC0DC+sjbjS/+t/vs246tuvxY1\nE0UB0tQAmDDvPuotEa5me8kmb8x4f1Fjl+311+vH9sDXn8Wa4KudPDbWRrS2etpjHsDGq8WFG7ZQ\nXeEqyxb7oKE3CmACxhiGHnwg4FPgxyA+zek9XTEa3jDsaJ0XU5QUymGV9VlsD7j58ID0YRc1NjXW\nZAp42YHtRAeI95haDTDVsK6a5LEBqZrWvvZnbwcmuyL6Wf28xqG1Qa8hmvo2QY8q8aBr61/16qc1\ncU1hQmTC2tVTf7YdqGpwTRawsWEO8spkcznkzdNTvjKe8mz4gk9+/gX2SndaPX0JRQxWCNYz4OeQ\n/cTmzcExL3jO2/Ihi9VQs+QW9UeoGufTdjbtVs73AV/t5LFN2d2zvPb2XbL2DbPg7vos9A24qjVW\nSDTVfdMEGk2g017tdt7GDzr61I6tE8dDEE/B+FjiTxIGkwXTyTlHwzNcMpyar1lJE5lBnPkssiHG\nXKIwUBsLLgy48IAcVApVjN5fTRtiDdqLOrETfd2O2I6/hEJPAas/v8xA1b7tVkOsSRqbz+qhnVIX\njC5YPXB64HUhdBBDBRMQE6Wf2opH1EozzVQp7vLcJh4DytgmSgPmxQghK7rOlpPRFZXqYHcsOolx\nrwszGXlUB31WwSFvechFOWWZDkgjH7UyauCrvp/c+vc24+s+Q+Xbr4tvW3vb25/TdtmqCn1t1/GI\nSiArao2U5noVKCzULaO9bc09vbnXN39Xs6+CmvE1EYhHAvOJxDmt8E9TwkcbnF5272zZ0oM3BtVb\nl7xvIm3nrl5nUf+nAaw2d69zmyg2AHsTdzlaW+v2ObUm0G0yFIFqt0Rm3E8em2Sxib36IEbACIyh\nni7rtV6ybbJ2iU3NrxL3vjKVl5SlRVJ6bKuQtegSex2Kvos8tDBygdep5YosyEOTYRbVOAAAIABJ\nREFUTddhHXhEnZCNE5AYPnllIVOhC7/vbXVsBkc1n61Zu7Ybe+2C9nvb23fB2oXHOhBoNlluQm7r\nvAaXcu5RdhzouHq1MfGma3qr6tRLaV3nrIIsgnwDhqkLdUYXnL6uBY4VnIB4oO7VCLHRDUYLUHOh\nXQY61NLS0Ll+z6rxXxn32xgV39Q8bRUlhVEXHNtAdQNKtbt8JHcEi7b0zq4vC0B06zffBeHef71b\n3b9GQ83QX5xqWh01O8swJKYhMZRCKKVrv4VAlYJCKjIBSd0RmlOTskpdCNDAl8JUNVusvsvoyb+7\njC+pmbPf6r/aZIldPcJ2m/benzW2B77+bNZQ7ptN3AY5Ghp6zC06rXzdQ100G71hXjXPbSp4JhoY\nqtsbHwn4BPhv4P5dxOHTd3zQ/YLn5lc84B0DlliUpMJj5o15453yef9DXo6fM+9NqSynju0EvAwh\nH3EXVDRIfoM89dAsrKFmTLi2TmBNWhVApdkdWaWrq/cE9C30Zoe7Dd7hjuU1AY7BGMDAgUN062b9\ncemifVwTi67QuhuXAs49mDm6d13msLB1P/xrQfY64MujDzj1f8jUvcT/QcypdYF3VGG+ATOp38Yj\nyH5k8/LpQ37t/A1/4BNeJU+IXvV0O+o1GmRTzdCCdptiE5A1FNy2tW9oaufftH62t719l6y5Thv2\nQjsYazM7G//Upp8L7t+gJViVFqaquw69YYo3TvAmKcF4yyPjNY/WrziNX3Hy9gyrKrDrVSkTwxc4\nnZLAjxn7M7a9HptRn81Rj2Rt6zakra0BK1nqSqblgeWC40PgQ2hDIBB+hWWXWFaBZZd6ek5uUWYW\nZW4hUxMiF7ZBHTgaUJl1bFHpQMXwwQh08BgEGBMHcQDioMAdpQT9iGAQEQ4iLKdEKVHHd4J067I9\nCNkehUSzkHJr1y5eA2HV2iS98tm+7mH0JGd+glfklJXNOujjuwmUSsdQpeLaO+CdPOZsccxZfsLl\n6ynLdwOSCxd1I2FZQlRAnmkQ4N70n11217ddC3Dfh+391t6+S7Z7f90ViW+Kig1i08RfPreA/K01\nf1+zDgxR6/VVYIM5lnhHKe5JhvcwpXu4YeTOGCYzRucz/Hlyb2vEacA8HbNwRywOR2zzLmnsk0Ye\nydpH2kInt4VdD8dxalaqW8daHvg++J5elg1Wo8Fl1W9V1ZMmTUgMzVBLXEgD7o/CkNwVMbtAD8Ie\nhL4uNIYKt5vh9jKcXoYTtkEzkJVBvnbI1i752qXYOnWLuIJKIdeKdO6wuepin02wqPDTAtuTqGOD\nmT/C3EqMrcSIJLlrszgdsOgNWMgB77YPeLl4yuzygPydC2cKZhVENdP4tu28nfTB+5PG5rpoFxf3\nRca9fdds93ps5xSgfVWTzkuQLhSuZqDi1k8VkArtypK6Dy+ROhcrslonytOsom4IXQ96FmKgCB9s\nCB9sCR9s6EwjbLfEdkpst8A0Janhkfouad8lGXqknQ6J55O4PnkgILEg9SAJNKv8HqMS7ccMt9ZB\ndcA260nSlvatEg1+yZrZWRaaDVtqAfj7GmIV9xhcwqtBvEAfnQA6vvaXnbpbyNTMNWFWIBUqMyC3\ntK9NDf3+EwNigSoM5NakvHbgDcRuwCIbceEd8Wr6CIcZiZNhDFJ6RylOx6SauKwmDuWBw/nBlCt3\nwjwds74YEF2HZCuHMkF/rqrQ8alqd/78qfir3S20+7jt1/Y+rbE98PVntSZhbN9sG2fWgCftKWDt\n/uf2c5sExeRWyN4OYGLAU+BTcH4Rc/qDF/yk8yt+xq/4lN/zOH9NP95iVpLSsbj2h3xpPeeh/ZZf\nHi75l5/+LTf5MVVsaxBpYcFsADJC/yCt39ugft1DXf4LPegZdx2JDaBeorUfNjasbM1iW3tQNOKB\nDdLfNh8NqNWglz2EA1t/rmY9BI4VDEsMtwQpkFs93pdz4A3wNfC1Aa88PSM7VlqQ9iWUn1tcHD/k\n1x/8DN9IKTs2n378O04mV4TbDVZVUZoWm26Xi8GUf3E/5Z/4Bf+S/YTzN49Rn9l6qMAFui/yVtOr\nYbK0HU8DeLatcUh7sGtv3yfbZVHA3Y13lzXUaKvsii43e8EEW4KnwFOIrsIfJfQPFvQnS0bjGY+3\nr3iyesnj7SseRGeYWYWZl5h5RSVM3OOC4CRmeLxg4l9x3nvA2fgh5dQm2TpaLxFL62TlEmwf3A54\nvk7qDh2Y2nAIxqDEcVI8O8WzEwwUaeqTpB4yNZBrE65cuFRawH9t6cCylFDUALfpaz0vs4vo+Rgn\nJsZTMJ8WhAcRh8EVk84Vh50rPCvVwBcCqQxWSZ/L1ZTL9RHpyqG8NuFcaH+2FVQbi+zKZ/NKUdoW\nYgilb7PyB5yFx7giR0iJUAohFeuqx6wcM1+Omd2MWL3qs37bJzn3UNdKt1PFuQ6Ab4WeG8H+3cDp\nfX5p93d737W376K1Yy2x8zO4Kzwm3NfM+lOhsgLD1qLPHaklsA4rOkcRg5Ml/dMlBwczpvKCo+SS\naXRBqKJ7W2VjdLk0p1y6h1wGWkJhGY1YbobkSwdpGBBZEDlaK0sJMIN6daDrwtCGoaOPvgmuqVsu\nXUMnvJGA2ILYgaUNi5oFkRVoiYyGLVFwB3wN9Ap9OPLh2EJMwe2ndPtrev01QVd3GTQfp6pMNsse\nm2UPuTQoFo5uf1roNii1lqQzh/VVD3lmUpkWZqVQvkF27HI1mWClBVZaYmUluelwc3DAdW/CtZpw\ntZlyPj9hdjUhf+vCOwWzUgNf1fuAr38LiN8zVff2fbF2nNXWa4q5KyYWUDmaKIGrH+c16GUZWk80\nL+tVi4CWpm5FVi4YYb3fPTg2MY4l3aM1R0cXTKfnTA6u8I2UjkjoGCk2JUu/z7LfY1X2WUR9Fv6Y\nuTuickxyz9dEg6UHVVhjdS1CgKBm2NfLdsAz6uEg9futVP0nNeu+0ROTFciGWtbEmAX36PrCB7MH\nTleLN3d9GLkwdvQKTE36chXClfr8W4HaWlriZ2nA3IK5qcnBpUCuTcorUK8FUT9kbo049474OnxE\nP/CwBkvskxX95yU4DlUvZN3rsuqGnDlHXFuHzLMxq8sB0XVAtrQpY1BloTuSVKnX7f/nP9X1swty\nvQ/E3/uytu2Brz+7NYBVQ19t9y/b6Jt4s4nbbULtqmWjV9OMagyha2kR+2fApxWHT8/4if9r/i/+\nkb8v/hdPr14xeL3Fvqz09OwAjh9e8PDRGZP+NY6ZkY8cfvWpz3o+hktDC+ivPcjabY1dNCg1Bb8L\nQwNOhH7t49Zbcuu3GaNbAq/RSdyZA1cNRbdNW6X+fE3wNdUU+0MbPkaz2D5V8Imi/2RGP1wSeGtc\nM0MpQVwEbJMeq9WA+LOBFvPvoifKvdBtjpxR44QGaT/kS/cT5AODldXnrf2Ax0evOeAGm4IMhzlj\nXvGYP/Ixv83+hq9e/YDk1yH8Hg2sXak6cVxzJ6jfnvb2b7Us7h3U3r5P1ga92vp/jaZKxn0dml1x\nghatXbia8eVJzT4fKrxRwmC8YDq54OjgjCfJS56tX/LkzSsenr1DJAojlohEURkG4ScRA3vB5OCS\nyegKv5dSjh2WR0OI+/p9pDasa+F6OwA/gE4AIw9ODXhmwFOBmFbYTorvbuk6WwwlMeIKGRsUsUd5\nY8LXrmZUZJ5uMxBS0/nLuo2pEbJ3uoiei/FAYv2gwvqbgmC65tA+54n9kqf214Rii8Sol+Aqm2JF\nOWnscBMNyV67mjO/Bd4KyrVJeuVR2hZp5ZMd+6ymA87cE4Jgg+2WtW6EFk5N1z7RLCReaAZZ+tol\ne2uTXdga+EpKrbdWpjuMr11NiD+VPP6pf+9tb39ua4OygvuJY3N/zrkrwLXXbqjctD/Wy/Br6YUK\n+mBOJMFRzOjBjOnpBSfdd5zO3/Jo/pbT+Vv6yfredloEA96OHzAYnxAcbPCsGHMjKVY2m3mPohKa\niVHaeugRthadtupJPKGeiMiJqYcY9QytwdOsrdLi+0sFKwkXrv68aQXLpjWoiUETdGtQiG5xHNfx\npAXPLXgG7jCjN1xxMLhm2J81jTooBGVpYc8L1Nwgnfsk18ArpbUKZxK5VWRzB3lpkg4CEjtA9kyy\nnsumFzDy5jhljlNluGVOplwu7GMurGMu5Anz7QHbRcj2MiR768A7CZsKtn+K8dVOBP/UdfG+4972\n9l2w9vXYyOU013a7eygBWQNfDQDWaKs2OqtVAVUtSFWVIHug+iB1oY6uA0c2PLcwnkm6kzVHkzOe\nH3zB4+FL+uWGXrmhX21wq4IL85BLY8KFcchFPsXxcirHJLJCsDqaDVt5EIUQGdzPiUQrVqp7nEOh\nV1fonK1UdxyPVIEhNfsrl/Web9q2G6mgVuui0WnJTPShrwE9HtZrCHQkoqMQnVovbW7A3NStm5ei\n7lc0YCVQBciNhbo2kK9N4qOQ+WjE+fiIcLTicGIxOjEZJiX9NCI3XdZOl607Yu2MOU+PuNpOmEdj\n1tshybVNtYIqUTXbqwG+dnWeq9b/97Z9G9C192ffZnvg6zth7Yu5faE3rULt9qC22F+zMZopii5a\n7N3WDuMYeAzBsxVPe1/xE/Eb/q76f/nk1eeE/5Ri/AZ4B8QgetB5nuP9/Brn5xnZ2GVpDLmaTkme\nhhRf+fASeGtA3gFVN3JzABxBEMIDA55zx8R6DEwLnH6G5ZdUhUm+tVHXrp4a+TV6fSHgdQfmhzvf\nSYZme42BEYxt+Aj4CfAzhfPzLQ9P3vKk9yWPeM0hV/ikKAQrv8dF75jXB4/5evABlwdHKN+ph0cK\n/bWugRfU7dsmGzXgsx9/yuzBAS/6TznhjAFLHApyHJYMOKtOeLN5zM3rI5J/7cIv0cDXS/RETT3e\nSX+p90c98m8DX3vb2/fN2olEk0w2TK7d8dTsPLctPGHqNkdPQaAQffAGKf3RksPxBafD1zx695pH\n69c8ef2Kh5+d1ToVoLZQmQahu2Y4nXFYhoz9a/Kuy2x0gHf4GGKhKetLS7c2CkMzvvwAel04cDFO\nK8RHJcYPS5zTlMDe0nOWDJwVpqowYomMTIrYpTo3UaaJyizksmZjiFzrCBaxDspMX4Nrbojo25gn\nCc6HBc5PE3pHS6bynCfqBZ/I39NnidTzfagw6FdL0txhXgzwihPSwEetTdQ7UzP+tybZjUmmgESx\nynsY1gQxqBB2heFXmKbEMPWxSk2q3KGcOZSvbHitdMJ4Wek2obJh6LUZX++bArQH5/f2fbZdRnWT\nNDYC721R5LZOzK7/MrknmCxMcEsIJAzBmlQEhxGjoxknJ2954r3k6fYVz+KXPDt/yWCxuredZuMh\nYWeN50RYBxm4inzhsp71MK6l9l1lzdYyPFCOFh51e+AOYWBiTCXiVCGeKq0fGAJdBaGCNagbATMD\nNbNQBqhMoNaiZlRIUDmoiDvNw1rCwhjoYsRUIp6D+WlBZxgxGCw4HF5w2LuogS/N+ioqBzGHYuaw\nnXeJzktUIVHzCoVERYps6ZBdm9C12Lo9CtMmHvmsRl36owUuKZ7Qc7Pz0uVdfMpZfMq7+BHrZb+W\nsECzvS5iPcQofx/j633aXXvb2/fZdlmr7SFadbFR2hr8utUwbfu1Rl+1ud83mqS1JrMx0A+nAvFU\nYP4wozdYczQ849ngSz4Jf88oWTJKF4ySJV6R8cZ/yGv/IX3/AR4x0jCJRMjMONCDjCobIg9mSr+/\nZl8KqUElOwAvBK+DCFzoK8QAxECBqzRjLdcuikhoyatKaNnCsm4bV3Xh8Z5elw2io9lefh+CAYwc\njBOp/eQHEmMiEd0SI6wQYYlKBOrKQl5ZyCsT5RqoQqC2AnWD7iiKBFwb4EMsQhb+kHPrCHuUUHkC\nC0lPZHhsKAnIGDJXEy454vz6iOt0wiIasTnvU1wBy1wz7st6LORt0bGNBbTjsd3rYR+b/UdsD3x9\nZ6y5QbfZXBX3W4PaABj18xoB+MbBeeBad92BD2E0mvPU+pqP+SNPr18T/jLF+B+Q/zOsLjXTvetB\n+DWYWxj7a37w8y94HZ7yufMhb6fPKaYejIVmTa19KJspF1PwQ3hsaCbWj/Ryf7hhdDCjH8zpOytc\nSwtQb4ouq2TIbH3A9rMh/M64G5jxpVeDX40D33DLKOs4Gkj7CPiZwv+HNR8+/D0/c37ND/k9H/AF\nD9QZQRlRmSYro88bTvmj+TG/ObjiN+5PeWM+QxXObcLMSwXXEj7T2jwqM0lmPd592GH+4JAv+jGO\nn2CaBVVpkyUdkoVP8i5AfmHDZ8AfgC+A6wLKhsrWML7aOjm7LWF729tfmu1e298GljT+TLX+XU96\nvM03FYZZYYkShxyXFLvIMdMSsZXIFZRxvRItfZMWElkV2CrDJ8U1MmyzxGh0w0yhK56iTvZ66OLA\nicR+mDF6OGc0mDG05wzyJUG8JSy2BGWEISUbs8fa6rOxeqz7fZaTAcsHQ5bpkNQRurX6xtZTKUvA\ns6BnQlfgjHOGvQUj74aRccNJ8o7H85dMF+f05gvCfKPBOEOghEHu+TwMzoiCkDxwuPEP2XZ7RP0u\n0bhLFRt6SmVSwk0FQqEqAVsdkElfgCFRhoEyJHIhkBcKdZnDRQlXpQ62kqIOFpdof5twP+j697QK\n7W1v31drtw61f/an4jBav2t8l6nbiFydDBm+xHNT+taaA+OGUXmNv10hbxI2byvkDfe21DYrUYME\nf7rkoPLZGl3m9gGel2IEEjqmnqJo1a/lmjAydEw2gs5JRO/hit6DNf2TFbZfYNkVpllhFRWFYZOF\nDpnhkAcOkQiIREhkBpqVsTV0G2TiQOyB4+g40jXAg2AaERxuCcYRwXDDCe84WZ5xvHrHIZdAnYwi\nyLHpyphQRoRuxOXBknji6XXokZWu9r+xgvMSWUrytUU072BeDin6No4ocIQeXlJUDotoTBSHlJEF\nVxK+KrUf2xZQRFButATHLVu1SR73Bce9/SXa7rXcllBps38a0KSdP7YZV7Wvu522bYALdqfA6RbY\ng4KgHzHmhvFyxni1YKiW2NstRZSx2FaYuSIdJjjDJeOhReWbbNIB184h7ijFyEvUWqGuTd3GKAxd\n5DSVPvoCc2xhjCXGOMMeZPhhgh8k+GGCbZdUpUlZmlSFSRE7pDOPZOaTzn3KZaO3GkJUaeZ6u9PA\n8WDoaxmLKXgnMcOHCwYPlwwOlnhhgmFUmFmJUVRUhUmmPLLAI5t6xDIgKkO2MmSrulTS1PlqDLxT\n5JXFpuxxkx1iJJKs47O2hlxZR7yxHpMoj0U5YlENWVRDLq5OuDmbEJ0HqDMB70q4ySCKQdVD7W7z\nxzbTq61XuHst7GOz/4jtga/vlLVZXO3Aq7F24NUwKlzuskU90QPbumWpMy7oeUuOuOAhb+idRRj/\nCtWv4exLeBHpdGci4AcpDDtgPobpR5c87LzjyLjEH6zZjruo0NQgldGAbH0tFHhk3DGx/g6GP77k\nycGXfGh/wUPxljE3eGSUhsXK6nHmP+CrwXNe9D/kbHRajwoXNd7lQTRBb/4SnZ2GGsR7BPxAIf6m\n5OmjL/g765/4B/4f/lb+ipO3VwRXMdamQJkG+cDhg6NXPDx8S89YYXYlxUcO5+tncIPGp+box+cV\nZKb+Iq4E8pVNdDwgmvR1BddSeiT32rxr0XwNvELrh80KyBfo0Y5z7ut77VYc97a3v3RrJ5MNwNU8\nhjs/1k5GakDK0EuYYBgS29AJkKdS7DLHTErERiKXuqs4TfXKpEIVFarKsaVBhwRX5FgN8HXbLV6/\njimgL+BEwYcK53HG4fiSZ8MXPHW+5rg4x11leKsUd5WBVMTDgGjYIRoGzPoHvJ485lX6lBSP1O6A\nbejhIytHfyzfhr5OTp1Jzqi34NR/y6n5kpPkLcdnZ0y/PqP3Yk6wjTFMcbvUyCJ6GFI8sCGEM3/L\ndXjE1UCRjjtUJrpVIc50i0+itRPVlQ2vbLAF0lAoIZFCoSKJXFWopYRVBesMVikkKXpy0aZe38ZU\n3QdVe/tLs4Yx0fZX7Z81cdj7tAmb56N/Z9Tju1zdWmh2Knw3oWevmIhrxuU1Xg18bd9W5BfoQRbo\nYy4r5FGMH60YVyZbo8eFvWkBX9Z94Msz4cDQw4seQec45ujwggfTtzw4fENgxLhVgVPluGVBbPhs\nwoBtGLJRATf2IVfmIVhTYjtA3Rgws/QAoNjTemVdC7oG9KEzjTiYXDE5uGIyvOJkcc7x8pzj5RmH\n62sQ1IPHBIVp0+tFdPtbwt6W0Fszm4y5ORxTTS2yrAO20kNBcolcVmQzk+gyQL4xSboBligxjRJL\nlFSVxSbqEUU18LVQcJnDZQrbBPItyBr4og18tX3YPjHc21+itX1XU2CvWv82uesa2tVWbREqDEP7\nL0sgPIHTKeh0IzqDmMFgyXh1w8FyxsF6znC1pFil5OuMeFVR5hJ1nOIcLzk4rnBHillxyDt7jTtO\nEEap86zQRNkuCFvnVJ5mc4k+mKcK65HEPs3wDzOG3oKRO2fozfHNlLxyyKVDXjlEUcDyZsjyZkR5\nY1NeW3DlwVUFhaFF72/ZuqYesjZy4ZENzwX+Scz08JzHk1c8nrykb68wsworqzDTilw5bM2QbRiw\n7YXM7AOu5BGXTEmFT7UxdetlDKwURWyzzrqIWJFtXVbhkCvvmJ63puetySubKA+JsoAoD1heDZmf\njYjOA+SZoRn38wyiCFQThzV+7N8Th+392n/U9sDXd9LaAFhju+1Cu/9ugDBLV9NcwAOzU9CxtvRY\nMShW2IsCLiA6h9cxfI6eg7FU0F1AcAHeJXRXKf3Jmp6xxu9EiE6FcmukWwj0C3Shb+q2xh8AP4Px\nT8/50cGv+Zn5S37Mb3nGV0yzKzpZSWEJ5v6AV+IRvzd+yMHwhl/+sOB19QEqqYGnBboPnCG3rY62\noSc4ngIfwOT5OT+yfssv+Gf+ofpHHv3uEu+fS/gSTYG3JM5xSueTFP+/xZhPSxLDZ9kdsP5kSPRi\nqFsT3wmYKz3C98qFxNN//wbdXdkXOsBsNF+b6dg3aJr9jdKJ5y3T6xrd5tgAX43j2rO99vbXYmrn\n8S7Y1V7q/u+EuHNjJpiGxBIlLjkeKU7N+GKrkCvd2RIXWtM4Beyi0lMeFfgixjUyLKPEsBvGV70a\n4KuHHorxgcR5njHxrvjI+5y/dX7N0/xrzGWFdVZinleoCtLHLqnrkk5czoNj3MOURPlcOlOtY1GY\nemiH7egt79eMrwk4BznD3pyH3hs+Nv/IyfYNg/MZg9/P6f9yjjfPsCyBZYFlC8xTyEsHESodDPop\nZleRDnxmBxPdrr0uYJvCOoKZhbrytb/yDJRp1OOxQQiFygtUVqKyHLIMshjyWB9VeyJSw/jaJ417\n+2uwb/NXzT17J0G8d2z+1qwZXyY4QjO+OhLPTehbaybGDePsGnO7uWV8ibetpksFyijhcYIfrfCr\nisgY0LPX+A3wFaDZV7fAl6GBr8cCfqiBqenogg+Gn/PJ8PcMihWdKMWPUjppytrtMvOHzPwh886Q\nV+4WZUFsB1y7E30+rFo/rGZ8dS39GgeK4ChicnjN44OXPBq85Hh5odfXlxy+vW7l1YLcteg+3hI6\nG4LJhqC/xZ2kVIcm25s+RCbEFcQSogpVVeQ9C9k1SXsdLF9imBJhKAxDoipBvnXJI4dqa0EktdOP\nI4i2UGx0wnjL+Hpfq+Pu/+u97e37bu3ruc3yavS+2gyv3TisaQWsj6L2LU7N+Ao08NXvLxn3rzlY\n3TBezRm/mjN8u2S5qEjmJct5SZwpek8TuuuKbh4zqErO/If0/BVeL8HoVKh3AhmaYNsoITTw7QEB\niFGFcVpgf5zjfpwTPlgzsS45Mc84ts7oii2J8vWSPqt4gHVdUl7ZbK9COHPBdrUG17LWLmy3djoG\njA04NeET8B7GHPXO+aj3R37S+w2T8hqrqLDTCmtRkpg+i/6ARdhn0RvwrnOKqSpSw2NmTvQQs2tg\npeBakS9tNnGPfOOxWg1w+xlOmOMG+liVBkXsUCQ2RWyTXXmkZx7puY86F5qllmSQxughI23GV8V9\ndt4e+PrPsD3w9Z229gXdvoG/TzOneb66T6IwtLixicSsKoxKQaU19DJ1nxReSq2pRwVGBYZSCHTw\nIe4x/Wt9HseBQwFPgI8h/OmMTw5+y9+b/5O/53/y09XvGL5Z4l8kmBtQNjyYXvL09C3HhxeERoQK\nIP2hz9Xyoa46XqF7p6M+GkQKdLfjCJiCeCJ5FLzkIz7jU/k7nnx5jvM/JPwjyD/AZqbjwt4DMN5B\nv4j4pPMVV9Mpr83HvBo+4evToRa7H6DxuySHagGrASQduHQ0sy3gLmGW6HgqRlP0s1JXGlmh0bJl\nvdpOq93muGd77e2vydTOEb6ZRLYp2u3A7O4cAolAYiiJkNp3qRJkISikIlV6WFligi8UQkjsW4l4\niRCq9bJCB3jUQV4XxFTBE4nzLGEir3lWfc1Pqn/h4+Qz1BzUGagXUFWCwrUoxyaFspj4D9kOQs7F\nAzw/1edfGnBu6SCsQFcauyYMBfawoN9dceye89z4ipPsDf7VFu/LLf4vtziXJY4DTo2bWRtFObQw\nHlXYRgaewbbT46Z3iDmodGvSptB0t0WsR29jADaq/s7Vve9cUSvDov3TtrU2aH/Vvhvs2V57+2uy\n9/mrXdvV/2qDY4YG021ddDRciWPndMyInljRrdYUaUyxycluJNXVfe9n9SXeJsPNBJ6s6JlrOmaM\n7RQYntRsL9vQ4JqwwLMQIwGnIH5QERxEHAaXPA1e8KPgXxhvZwRpTFjFBHHMwhxwaU+46k24Gk9Q\nAiK6XJuHGK6ikkIDUjd114DjQGDB0EBMwZ/EjMc3PBy+5oP+5xypK45WVxy9vuLgD7PbkFQIKDoW\nrpPiTBJcJ8EeZuRjm/V4wOVBqf1kUUEi4apEbSSFb1H4lmbJOkZdpBC1Jis613kbAAAgAElEQVRa\nnD9Cu6u88WNNJXJdP24zvpoWryZh3Nve/lLtfYDIbpFx93ce93RYjdp/WQLhCGyvxA8Swt6aQW/B\nQCwYbJYMzlf0v9wQX0N5DdtrWKfg5RmOyBj5YAYFI3NO2NvgDDIMWSEHFqJjomxLJ2g24Asdg41L\n7Acl/vOczo82DB/NmMpzTuVLHsuXDNRKt2YTEomAWXpA1TeJ+wHL4YjEC1CZhVpYKNdv5ah10uoq\nxEAiHkj4UNJ5GHHoXPDc/pKfOL/iZHuGVVZYW4l1UxG5HW46Y2b2iJvhGMfPicqAGyaYZqkrFWul\nRfYv9FTtMrGJogDWQueV/bqw2keHVFtq/6V0jntRr3Opmfuk9ZN2B6Ptmff/J2wPfH2v7N8KzmrE\nX9ateTlUmZ76FRGwtUOK0MIclQRjmC5hkettNgWmHXCGwADins3W6hDTIctdVC7upmooBQQQ1kys\nh8BHFQ8mb/iR+a/8gn/mF7NfcfirOeb/VlpAfgHCA/9Bgf/TJd5//wPqVLAxQm56E2YfjSlfdOBr\nodsIo2ZypKMBqC4wUTjTLVMueKTe8Kz4GudfJer/g+qf4fMzzYC3gUdLeFToQZC9JxFPp1/zgHcc\nWDd8fVjB2NTn9Ayta8ElqC1koZ5auXXBtHULgzD0Z65K7aRUM/loVa/dwCvnm1OF9g5rb3u7b23B\n4UInQ2kFG4VyBMm2wzwZ8654gEGJGhjYjwvCaEsQbKgqiVVJ/EpiuILi0y6LB32uwh4recTb7JTF\ndkg2d+FGwMaCVFcEhWVh2Qa2U2A5FX1rTWcd4WwyzE1FdQPJa0jeQXIJZQX2UGL3BXZY4SQlTlVg\nyxy7k2H3CmQgUI6DNAJuiwPKRitJA0rUUJ6BqrNEYQgdc5p3EhsNNqcEKCFu4T8FKCXqc6n7392t\nr2m0EXfZwBk6uErRPirhLsBqGBLt8+x1I/a2tz9trT2oKj21MNUATRWZxGmHRTHkQh5h2glOb4l7\ntCB8lmH6pWZ61WeqHlmU04Co22dl9bmUU5bFgCTxkRsTYkMLGQofXLB8hdOpcIItTphwYFwz3Mzp\nL9d0ywhrmZLPcxaLiuUc0kFJOY3xj1ZMY7hJp/TkGj+IsY5zWJSoC4ly0b7J0EkwjgAPLKfEtVIC\nI6Kn1jhFhIwz4nXJclHXFOpcs0oV+abESFO8MqLLho6R4Fg5hlOBo/QEX7MAIwVKzWAt6pNU4q62\nawqo6gptoXRse+vjtq3j7iTa3Y6Jve3tr8ned9/eBcB2nt4Kx6Q0KKVFoWwyHArLovIMVCgQPXBi\nCNcwsDQe37fA9zTxXYUCXIESJrIykbmFLASqknpioVFqzcKhAVMD+0HJaDznKDhjap5xlJ0znV8w\nnZ9zuLgkTLYEzpbcWZG5Hl0RQ2lSSZuyZ2Md5mRXLtnAJes6VLFVB0/6c5leheunOF6K66VMuGaw\nWhGmEW5SwFKSXCqKK0lxpcj9ijxLscoNQwQjsaBbbPDcBHNcIFYSdUGNHQodHCallpCg1K5obUBg\nQCB0SJVISGqwbCFhXUEqQUl0DrngTmrifVNp97HYf6btga/vre2CKc0GKTV1KzZgA2rpsM16XPsT\nzs1jnh6/w/twg/MJPEuhf6ELaL0ARo/A/AHwAcx6Qy6MI244IF71kXPzLr6QBWDpyZFj4Bj8x2tO\n7Td8xGf8uPxXJr9bYP7fCv4Rtl/CNtJ6rP1TMBbQNRM+7f+Rs/4JL8Rzvjj5kMuTx3AgNEqORS0o\nptsrO0AInf6WPitGzBmv1/AG1Cu4eAe/K+CMmsS1hcEL6L0E47xiUlwztOcExgajnyE7HX1eq6H9\nVmjnswQ8kF49FaURSWySzCZxbI5Nm1DT2tjWl9iDXnvb27db09JdgiqgLHWAYCiUKYg3HWbJGHJJ\noUzsfkn4ZMvImTM8niFlhVmV+FWJaRvMH3VZPJwyC4+5VKe8zR4y34xIZ54GvtYWZA4ogbAKHDvH\nswt8t6BnrgiyGHeeY1xKqjOI3sH8DBYXUChFv6/ohxLbVzhFieMXOH6OE2RY/QLZgcpxUIapk0dc\nmjHbDWilEEhl6CloQmAYAtMUmC1t2aZIq4RAiRr0UqIFelH3R8m7748S7YO+rcrbTG1sVrazSr7J\nktj7rb3t7f22kymqSsddqdauqrb3gS/bThn2Be5RRvh8g9fLbreXApIji+U0YNsbsbQOuciOWOQD\n4tin2hiajVU6+g8cE8vP8IOcIEgIujljdc1os6A/W9GdRxizlHheEM8rkrnCOCiwVjGdGHp5zqU1\npydWdMIYq5uhrkpkVyIdUNQovC1u5yVZTolnZRr4YoVbRqgkI1lXyPmdPKMAVAD5ukQkGX61pSs2\ndIwYx8oxnap2ixWYOYhMawxWEnIJUmr9nIaha9RfcSH1Ugrtv+LWamKvb0sY97a3v1Z7HxPsW55W\nh2OqAikFlTIplE0uHArLpvLMW+DLXUPgQmVq4lbProGvAIoQlGOgDANZWsjc0lNdK4lSUqdTvgVD\nC44E1knBaDzncfCSD83POE1f0b1c0XuxpPdiibvKkIGNDB1kYNMPt8iuSRHa5D0boSTrcY/NoEfZ\ns6giAbJeCky/wvcTQn9F11szUdcMVkuCyxj3soDrimSmWN8o1jeguhVumeIoQceoGHUWdOUGz0sw\nnQKxrqAnUG7t9HKpJzKSQpFq/Mo171altO/K6+JIVEJU6K4hVXLH9Gpre7XlJvax2H+27YGv77U1\nAoZN8lOPos9KzW6YAWcGi3jEq8FjvuQDHh+/xv/bBC8uCTvgvdZxhzkA4wPgF7D+qcfX4RNe8Iw3\nnJLedHT7YdPJJzPA0FPLQmAEve6KqXHBKW+ZXs0x/yDh13DzG/hqqYcndoCnW3hkgnkIgw8jTn/0\nhmPznLE342r0CDVAn9MBclt/zBYj17QqbEoclWNnClIt67Ap7mp/DQk+qwkOIgdbFrjk2KLAMCWy\nmVIu4K7tqgGyvPoNNE9oWoWaoKthRzTMr6L1s932xr3D2tve3m9N8lgDLkVdBZMKhSDediAZk+QO\nWzqEg5ixM+dock6aeJgyx5IKR0osYXLV7zLvH/EqfMYr+Yyz7CHzzZhs7sG10MMpMg1GCTvHtis6\nTkzobOmbKzpZhLPIMN9WVK8guoDZBZxdarJBGShsv6LvChxV4hwW2G6mGV/9gjIwUa6NNH2dPCoD\nlNlQt2q8SoNeSjSML60pa5o1ubT2c6oGwOpm8xpI08DZPcaXaoNeje8p+KbfaQNku+Ox3zc5aB9s\n7W1vf9p2GV+1/9qiga+kBr7UMY6T4vRyxscbwsSkN+IO+FKwGlssjwKi7ohL85jLasoyH5IkHeTW\naDG+DHAcTB/8TkIv3DIMlxxsNeNr8G5N90VEdpWQzyXLmeR6DuFRwSiO6RU5IxVxNpzT66/x+zFW\nP0e+K6CnGV+3rU+WZm60GV+hsaXPGooYmWTEm4pkXhO0auBLZIpiXSKSO8aXXwNfhiPBVTXwVYBI\nQcVae0Pl+phXNX0MfVSArKCqNDB2O/V7tz27WftkcW97+6bMxL9hu4wvZVGgga/Stqg8ExkamvEV\nQOiCaWk9ed8C320BX5bQBcDKQmZaDF5VUhc4DQUdBSMBx+Yt4+tJ8IofW7/lWfYF1kWG/ccM61cp\n1mWFMTQwhibG0GBwuKE8tck7DknPpXIMjHFFObSIuyH52rj3WUy/wvdi+t6KkXfNAVcMV0vCNxHu\n5zmcS5KFYr5QXC3AHFQcqJSOUTJ0EtbjJd3OFi9IMTslYlXpoR+eiTJETTTJ9HTZeFu3aVu6Y8i0\ndIFSVrpjSNZTJ4tMH1UD4jcM/Jj7Mdo+Fvs/YXvg63tpjYBhA9g0SUwGxFAWsPZ0L/EbWL8a83X/\nOb8NfsTIm2F9UvLEP8M7LbDO0DlTF3gKy086fH7yjF9bP+F3/JDXs2dkLz14ixb0i6jpql7dpw10\noGPG9MSaAUvsRYU4A17D2Rr+KPVbCQASePAOzDMwrmAgl/TMNSFbRBeUxx1RIq/bdZqcrIAsdcgC\nl1R4pIHA6ylEVw/tGGU6BLLRPrUX6s+lOoLE9knxKJRDVZj3C4NU9ffaBr8azZx2y1DzXbfBxpz7\nTqo9WWVve9vbt1uzT+rNXdVVsKJCKUm6cSg2PTbbDps45MCaMR1dcHx4wKF5jSszXJXhygypTCJx\nwLU44TVP+Cp6zmI7YrHqk81smCmIDD29VYIwDEwzwTYlnpnhGwlumWFFJSwU1Q2kC9isYLHRuzxc\nK/KlQM0UZigxwgpTVZhOgelXSMdCWDYIF5R1rxNRFYKytMiko0VahY9j51RehuxaqEQia61ZZUHh\n2+SuQ2p6pMojky5FZVOVJqoUmhVRSZ1wq0bzJmmtXf/Tbo2U37L27Y1729u/z1oUCUqQLeB+q6g2\nBnHUYREP8dIEx87odhImB2uQc+1nWltNdbsk4xEL/5BzeaIZX/GAeOtTrQzYCshq52CD6Wa4niTw\nU3rBil6yoptsCK4jgpcJ1UVOdQPxDBYzMJKKkVXh+/D/t3em3ZUcx5l+aq+7Y0evbJISJVmyPLbH\n9g+Y+fk+9sxYshaKZLNXoIGLi7vXnjkfshJIVKO5SOLSUDzn5AH68u7dFYx8842I/SHsJAuGkw1J\nPyfYr/EmCq/XDgHBu+m4CsDzNYHXEFITUVLrmrppaGpNU99so+2XoGqFVg2+romoCL2m7RWr2zsp\n8Crj+CIDlYOyTvqKt4eguE2e3yXcS08vQXib21xf7v/ndesg18ad1GhU5VFXAWUZk5epmVydpOTD\nlGIvQS00wUTTG2liBeHIg5FPOfLYDnoUKqVSMU0eotchZE1bqtw2kE59GCs40ITHNZPJgge913zi\n/Ymf5b+nnkL9pab+DXgvID6E5ND8HOUZm+GA5cMhi8GIbb9HuZOwHo3whw30vRvhwE8a4qSgn2yY\nxAsmasFgu6Y3zYmf1fBSUc1hu4DLOSQbxWRUEu6UjA9gnC7pp1viuMAf1+Z999sG/R5GkG9KMySN\nRfudRhjzRERrWeU6VrltJ6xL1RXxuzma8NdGhK/3Fhu07GbGuo/a0rtlzzRafgr172Oe7z/hPz/8\nZ8K4phwmXH7yB+49PGWcrwhVTRHEzHsTng0+4L/CX/Pv/Bv/b/uPXH62j/7UN323ToGiNK/p9qgO\nMM3zMYmR5wjW9lIuMf/YapwbagipCWgIaN7ufQ3msxWhEcKXkC1GXA52uWCf6WCPR48v8H4Ke6/h\nn7+Ek8I49J+MIP4E+BiahwFn/hEX7LNUE/QquW7JVVoxy3U8bNvvN6DbbPumm6srdLmbS0EQbvKO\n0mwqIDDWU7UFVlBF6JmHeg6MPOo6Ydbf51n/I6K+Yp1OiKiuVqN9npdPeFY94XX5mPlyj/WnA4rn\nAc15DcsM8gByH0ofnUBVRGRZH3+rWORbVvGI7UGP8uMIlQYkp5rdsaYeairlsfNhQPgkoHgSsnow\nYDvsk6se5SKlnsU0qwCVaXRTm140uQcLH1KfchhzebjLy+1jkipjlQw5Oj7j8OdnHNURvUWOF3hX\na3Z/j+cfPObF+BHPm8e83D7mzeoeq/mY5iKAeQ3rprXLd8sY2xh9A3fqk1um5d4mG0ZB+Gpccdg5\ncFS5GTO7MT1smqlPdpoy390hGDd4e6DzkCwYcLm3x3i8vLHvnEc7vPQf8Gr1kJfVA87Ojpm/3CE7\nTVFT4LKBwoPSLFX7VE1EoRIy3ScLU8peTDMJ0IcQlzCq4CAHvYZJHyZjSHeAA9AjDxUFNCqkzmJU\nXrZ9eNpcsqrNZnWpYQbZfo9Zvser+iFj75LeeEbv8Yz+LxUj8iuNzAdUz2P18z7re/ss+4dM9UNO\nq2MW2wnlMjYjxNcKinbK0o2Nn90IdoeduJtBV+TqTp8VBOFtbsu97PVj3Zbt9VcV1GtNMQ3xX/UJ\nJw1n22Ne8JjRzhodgB9X+JMS/14Fa0X9SUL1cY/qMGGR7vPZ6mPeLI/YrvrXzdwXmBhmJ3i3g2QJ\n2m1fA36rhTeVpmxM5bjW0G+MoB6253teZYa1hbom9GqCK2Ed87w2JFSgS5+qjsmblDVD1uGQfJhS\n7UWoBz6xMu61/dCkbeEEdvYgPfRQ9zzq/YCm56N0gNqG6I1vwlTtll5bx9aqfWE7MTPk7ZjVzdVc\np6pM0v4+EOHrvabTHPpqMsQl5EM4DeEzYAeywZjfe7+i+iBmnuzwLHnC4+SFcWhRkZNyziHPeMIf\n+AW/Wf2ak88+oP6/CfzOg6eY0sl6bV7PMWpQQqljMkwTfTXwYBfYNdOw72FiUR/TRN9vG+gzgo03\nIKNHQfL2UDEwn2kzvBqe2JwmnD64x1PvIz4Lf8rR/7ggfgNhDQ92Yf8SvAjSY/D+EdT/9Jj9fMjn\nbdnmeX0IJ775LBtMT6GrHhFuYGr7mN36nbtWelfwkuRLEL6eq5bOXAcRvxW+NkACdYC+jFHPY/Bi\nymXKbOeQZ7uKfGfA6egBgd8YF4Jfo5TPdH3AdH3AxXqfy/kO+bOQ/EVIfV7DIjOlQlVoRLUKqjIi\nyweoTUC/yFknY7LDPnkao3d80olmd6iI+1A3HsmTkOijmOJJzPpgwNbvk2sjfFXTmGZp9r9mCEYD\nWWhaN/ge5SBm9mCPePuYsgpYxGNWx0PKJsYfagbZBu2bEiPt+5yPD3l++JgvRh/ztPmY0809Lpf7\nrC7HNNMQLivYKCi/qfClv8Fy/24EQXgbe624eVcBuoCygI0p11NRQnaSshjuUPciim2PbTrkMt3j\n9d59+sH2xlOu6yEXxQHT1T4X0wPmryesXw7IThLUuTaNkxvfrPpa+MpVwpY+edij7BvhiwOPOIdR\nmw4mCfR6MBpBugveIeiRj4rbBtHbmKZoUBVoW0pYW+FLGeFr2WOWGeEr8TKOJilHjxSTcsPOaHE9\nNBeoE5/lxwNW9/c5GTzipX7CaXnPEb4wsest4cu6Vsv2i3EPHbuCvesWlvJsQfhmdA0TrUNBXV+H\nusppVopyGqFf+tAPOI+PeRGtiHYqir2IdCcjvbclWWwJ84rVvQmr4wnrwwkX6QGfX/6EN4tDtic9\nUy10Cixa4d42BLRTW1vhy28gKDVeoVGVCQ9bbcQov4aogiQHL9f4pSaoG0JVEQZW+NJ4gb4uhGrD\ns6p8yjoiUz1Wesg6HJANelT7EfqBR6RhGJqHxBX4OzDY90gOPfQ9n3ri02hjz9DbwAhfhUa/JXzZ\nKbOKqw9G4LwZG6u6blVXxJc49n0gwtd7iy13dEvuMozwNQc9glkET2NTjhj6ZPWET9e/4uKjQ/40\n/oR7/iljFkTUFCTM2ONE3efk7APmn+3S/DaG//TgD8CXwHYDzDAX8851M605LIsRs8Eeb7xjFg97\npD8p8H8OD6YQPYN5bqZjHx5B8DPgEyg/hDP/iHMOuGQXvfJuTqS2Sth62PYr89DPAr746CP+uPsz\nHniv2XtwwS/+92fEEwh/AuElRmy/D+rv4PJf+vz38O/4Db/ms/qnvDl9YNxrb8z7plLth+hONbPB\nyS0ptZtJd5MogpcgfHO6J481193c24DStA3hLwfg+TTrBH2SMDs+ID/qc358TG8/w/M1fqDxAoVW\nHvksJZv1yGc98mlEc9ZQv6lbx1dtSgMVoHxUFVIVESoLKLcJaVGybh1fxVGEuheQjhRxX7OTaJrK\no/owpP4wofiwx2rUZ7Ppk617FMuU6iJGLxt03hjXRIOJY74Hdev4mu9RbUJm1ZjFcEx1FOGNNL3H\nGUWdoLyAxgtQns9pcJ/n4Qd8Ef6ET5ufM9vsky9TinlqHF+X2vTCKWtQbs/Bdwlf7nd/m8gl8UsQ\nvhrNzTIhK3x5RvEuyqty7cZLyIYJdS9iE41YVrvMjvd43b/PcG9FNChvPG25Tli/GbFZjVifjcif\nx1QvA6rTgGaqYWNPAo0YpCqfugkpdMqWPlnYcxxfHvEWRitI5zBJzLS1eATRLngHoBPPxBsVGuEr\nr9AVbzu+7ITdVY9Ztk9ab9Gexpsoxo83ROkFO/fbd9XqVGXkw0Gf1cE+J4OHfKk/5E11j0U2oVwm\n146vvDaHBO8Uvrrfvf3ZFcBkoygIX0839+o4vlQ7aKLKqdch+jykeplSxz3Ojo6IjkqaHZ/1bp9R\nsWRcLBiVS+Km4Lx/xLR/xHn/kHN9zFlzzNniiOxVz5gmTr1r4cuWUrviF+A3Gr8Ev7hu9bdtqy/D\nBtKyPVjMwS+VEb50baqGvBrfV1e9oIEbwlfVCl+Bdhxf+xGq8Alp20rX7WHBjoe/5+Ef+aj7HnXP\np9kGqI11fAUmdlVtq4mr2LXBOL5qbhZ/d+OVK9zf9rvEs+8aEb7ea1z13go1Gebiu4Amhje74Ifm\nulr7FNMBp68fMbt3xKe7JeEgx/MbdB1TrWPKaUL1MkH/yYdPgT9iXGPLHPTUPC9j85pbDZcenMHq\nzT6vxo/4MvqQz3sfsfsPvyWdVSQ+3LsHh6u2198T48TiX+DZ4SM+837KSx5xenEPfeIZXW1J6/jK\nzMdrauNeewF8CuuH+/z2337NyFsThRWbDwY82XnJ3r/OSC81KobNfszp8JhPRz/hP/gX/lP9M5+u\nfkH53334AjP+8VI535fr+rKbRven+127m0oJUILw7XFdE/ZkPwcdAYG5DJegyxAuE5pTj9XlgNVy\naPKLtXftJLeHamfAmTY/p41xeS0qWBRmko7b/6WGOguo1yFc+qwWBcvRhPl4h/loh8X+LpFXE3kN\nid+gSp/q0YDs/oDV4YBpfMA8n7DJh5TTlOZNaOLJtu330GgotHm5AqqRz/JyyGaeEiz2yHs9orgm\n6RcMj7esvWVb8G3WSfmQF9ljXmw/4PniQ1YXI5hps+YaVu0praocx1d3uIYgCH9dujlXu8vSBdQ5\n1KZkT+mEYhBSxAl4Ib7WzIIJ0agkosCPbrZDaHRItU2opjHV8wT9HHhdw3lt3J150zZM1hCYy74q\nQ4o8Icj6bPSATTRgMxqwOeibcqCtJtlq0rVG73moPY9qz6fY89joAXnRoyoSmiIyDfRzoG6Fr7pq\nHV8NeIpsnnC5nOCva6osYBhm7O+uyHoz1PHljUGypZ+yTvaZJce85hEvto+Zr3dZLYeU8xAWygh5\nRW1i5VsTZotv8PcgG0RB+PNwcy+fK+OELkBnUGeodQ91EUEvpg5CZt4+/rCh9EJWgwE7w0t2uWTX\nuySl4ETf5zX3OdEPOFsfsVkN2UxH5K9ieNGY3GipzATEoM2LVGvnakA1AVUTUzQJuUopAkWRNBRD\nhRprqoFH1fOoY6jDgNoPaLyQRocoFaBUgFZeuz3TrcFKQ6VRJVRFSJ4neNmQVTpiFY1YjYesmyE9\nMjyliRpNXEOz51EehhT7AdVewCIYs8n7lGWCmgdGwNu0B4/axi+3Ob0t1Xana3dbSnyd8174LhHh\n673GdUw4ze2vlGYPKg9e75gSnxVwDuppRH4cke8PYNCq5JVnygnPPWNLfYFxRr0EVjmoC4zotWqf\newvrGC4CeA3N5xHPn3zA76JfcsQZg8c5v/xffyI+qgmfQrjCOLEeAL+Cp5/c5z/if+K33t/zGZ+Q\nfzY2r2mdWFenfwWwA+f75r186qH3Ql4MfoL/K0XuJZyFh3y8+5TjyRmDB1uU7zMPx7z2HvApP+M3\n+tf8dvNrZr85ht/68DnwCpPUseB6JLbdNLoljLc1iRYE4S+ne3pvY1jbW095piGqV5sGD/N2/GHt\nw8o3p4Vtj0E0MFfXa1HDJoNiC02Gua5TjP01hSaFZQwnMYxiqiZienDAFwc/IT4oOEuOiamIhjXR\n/Rpde2xGfTa6z2bZ57w54stXH3Px6oDiVQovNJxWsMih2mKyuRjqCIhgFaJfe6hPPfADsqMBF+kh\nL9IC0oB+uEVpnwYfRcAs2+d0dZ/lekK9Ck3y+KyCWQVlBWphmvdod/y1TDMThO+WrtvbCvfWcb8E\nQmNZ2MRwmUAQo5sAtVU0lx68NuXNLmrp0bzx0KcNvMnhrIFZYaaFqRJTCp6YmEKCzhT1DIrXEXw2\n4LK3z6vqIZNoRXRYMfTWRElFtFMR3auoHkTkH6cUhwl5L+V3q1/yYvmIxWyCnnnwUsGshqwEciPi\n5TkERoiqzjyy5ymLwRgNPPML8AM2/phX/uMbn6Uk5unmCU/VE06aR8w3u2w+H5C/CmlmDaxzyEwv\nITMh3O1vIe55QfjucV2rnYohHRqhfa4h8tA6oax9NlmfYLGLOg3YBgNW/g6z4JDYK7mo95jV+1zW\n+2zWQ/IvEqovoDkpTX/CVXXtiPW02W4tfDiLqAchy70Rp9ExXwQfoSY1+tEavVkTB2uCi4owDal7\nIes0ZH2ww/njQ05G93nZPOZ1/oiL9QHr1ZB6GcJKm/ef11A36LymvlSUr0L4rMfiYI9X+hFjvSYY\nK/a9C8LA5HrhfkU9Ctk87LEd9dioHs/yD/li9hOmrw+oXkfwQsG0Mvllk2P2j9Y00XWmdr/v21pL\niOj1fSPC13uPK85Yx5fH9VRCzOnd2Z4Rqs7afl17GONW3zd3qzDX7wKYYiY4zjGTKvS0vfGivVME\nrGA7htMAngF/9Jg+eMhv/v4fSJOcJvZZPR7xwf5z9v/tgjirqOOAZTridf8hv0t+wb97/8r/4Z/4\n8tnP0X8I4QsPToBLMCWbdkLZBVQD+DI1jcISj9Lr8WXxM+Y/3eHF+DEfeC/YDy7oBVs0HksmnHHE\ns+YJT998TPb7HdR/RPBfGOHrVEHT9kNjTXvcyc0eXvV38PclCMI13X45+fVtjTKil2497n4EdQib\nCKZhq+9714dqmxq2tXFdZSUUmVk3hK/c/Kz7sOzDaw1+SJVHTB8c8nn+CVvd59nkI9M4f1gSp6Up\npfR7ZiLjssdiNeHs5THTZ4cUzxJ41SZDywyqtXFhNa3opSP0KkafxHHwNbkAABj3SURBVCgvRm8S\nsv0B0+ERahSyHo5JogKlfTQeSvtstkNml/ss5xOaeQhnCk4LmG6hzIzwxZrrE0a3ybMgCH993FJH\ndzgHmGtwy1XdTlPAtgezHlQpbGLULKB+5aN3IrzEu/HMKteohUItavRCwbKE5bbdXGWgA9A9UH3Q\nDWrrU10AL2Oaccxsf5+Xg0eE/ZpyJ2Q8XNLb3dK7n9FbZmx3+qyOxiyPxizTMc8XT3i+fMz8ZIx+\ngRG+LjrCV5G3TraS6g1s+ykq8CmLHgxN3HozvM/uYH799QC1Cpmu9jlfH3C+OmBxuUP+NKR4FdJM\na1PmWOZmNa7w5fa4+bq/B/enIAjfDhvDPK4nDbbxS3um9/HcgyZAb33KbcB60ac5D8j3+yzDHdIo\nJw1zAr9hUwxYF0PW+ZDtpkd1CuUpqNPSuL3yyqymMnlb5sMigjNF3QtYhmNORsd8Fn5MlWrGj84Y\nBeeM9yrSdYMXxVRxQh0nzPq7nO8ecjK+z0v1Aa/Wj1itxmyWQ+pFaAZyVDVUJVQlOm9oZh7lyxA1\nipivd3k1foQ/VmzHKbvDOekwIz3ISR/mlHHMfH/CYjRmriacrY95ffGY6esD6i8ieNnAtIRNDmqN\nKUFwha/bhC2+wU/h+0KEr/ceG7zsKAvrmlhznZgVRple70DWNr3ve0ZEip2H2jLlAqhyUEtM7eEc\no4gtMBdpZm5TYzifwLMA9qGexHwZ/YzmFwGbeMBJeJ8Px884Gp2RqoLG95mxxyvvIX/k5/yWv+eP\nL35N9p8D+K1nShBfYpIuZhh3Wda+yT4s78GfwjZWe1SLlOnpQ1aP9/nD0a8YT+bEUYnWHpvtgO18\nl+I0ofw8gT/68DtM+eaXCvItRsy7dF7HLYeSYCQI3y1ukmAdX3B1CqlqI9o3BdQZ1DFsEpglEEZt\nN+V2aW3uW5tkx5QbZteLCuP2ys3PpjIJ0kkIeUq1ipnmh2S6x2l8nzTYEqcl0aggSgs8oFinFKuU\nYpFSnPXYvuyTfdmn+DyBE2Umum0yqFatWBeZ09MmglUP9XqAtw7hNCDbGXCxG7LeHXO2ex8/NocX\nWnugPapVRH6RUkxT6mkIywLWBWw2UC5BL0HbuOU6vkT4EoTvDrfU0XWDW+ELoDYxa9M3sWhVo6d9\nVJygkwQVx8a56tLU6KJEl42ZDlluoVwbEb1ZAyGooRl95mlUllDPItSrmCqOmOX7hA8ryp2IxdGI\nCab/zqhcMS6WLJIJ0/4B094h094+s+aAy9U+i5MJfOaZg8CLGraO8KULkwfmBdUbHx0kFFWPzcpj\nfTzmzdF9Ul2QxMWNPZyuPLJZSnbWIztLKd7ENCcNzeua5qJpKwhy4/ZStrTRjV8SwwThu8XmXBbr\n+PJAKzORujGHjPoyplz4qPM+xU6f1QTCuCFIaoK4wQ801Tai2kRUm5B6E9AsS9SiRC1LM/CjbkWv\npjZnA1kEiwTONE0ashyNODm6RxTklBOPR2FEtFtz8OGCYVmQBzFF0KMIBsz8Hc68Q055wEv1Aa83\njyjXMdUqboUvZXJHVYDKUDnUsxj1KqEOYua5h/+BZjvqcTbZZ5IuGB6sGZRrhtWanB7T8IDz4ICp\nOmS5mbC5GLF5PaJ6GsJJacrP11kbm7uOr24lg/ud3/b3IHzfiPB1J7jZ+NRgRS/b+ysHvYB6ZNwO\nRR8WMXgBeL5p0qdtzwVbq7xs1xojDm25bqqzBC4hG8BLHwYexFDqHs/zT5h/MuHp5EMe+a/Y8y6I\ng4oGnwU7vOGY5/kHTJ8+JP+vPvw/z4hST2nLHKcY4cuOhw2B2JQ+XRzD70Kzf5166JOQ/P6A/H6f\n1WgPLzH14yrz0bMAXnumrPEpxpn2XEG2xdRznrWfw5Y6WtdXt7xREITvBrf3gf1zK+BrO/WrbR5a\nJhjXVtIut4+C5rpJstt3wZZM2zjYrqaBdWBEqXVCs4lYegOW4RASD89TRDsFkVcQpSWep6iKhGqZ\nUJ3HqFcBvNSmPPuFhnMrzm2h3pjX1WHbsyyErILaQy9CiFLKUUK514f9Pux75uO4OdMKONet+7Y2\nZUdqC2oFao6JyXYSiHVLiGgvCN8Pt20cPa4EfFVB0Y4ma+ObRqHxMY55r/N8dpq0jVc257IrNM+j\nTX6jc01z6dOkHhCzZAQ9Rb4bM9djJumcSbpgwoKJN2eud3mjj3nDMWfbY/J5j+I8pXidop83ZiO3\nKKFohah200hletc0s4TGS0wMXscstyPTHgPvun+zXSVwqk3e9VLDSQOzHGal6beYb7l289t4bXNV\nEb0E4fvBjWFtObW9rQzN2kTgRdTriHoewyCGQWTyFZuKBZhwZdemgUIZAb/YtEYGZ4Kh8iFPYJFC\n2NAkPqu9AWfLA3SmqJSP39f0ByW7bIm9iDVDVgxZM+Skus/p+h6n62PO1sdcnB+Y3qcLbdykmRtH\nN1B4qIWHOo1BhSg1oEk81pMeZ+Uew/6acbJklK4YsySre5wVx5wVR7xZHVO86Znt4mvPGDPOK9jm\nkGWt4+s24cttYi/82BDh687gljy60yEc4YsVxrWVGNt8Y+1e3i333TrLTq2w/XeC9rmmpu/ExTF8\nGpmXzKCaJcxe3mf1wQGfHf6KZLwiDCuUCijWI6p5TPkqRn0Rwu8848L6FJMoNTNMSaUVpDaYf6bt\ne1TAfB/+OzXlmCfAoQe7Hmrgm5zSmtJWGP3srL3fXEHZNjrjrP0ullxPEur2+BIE4bujK9C4ZcbW\nyWp/d6d/JdzcPNr7VZ3lNku2jVzb+2pAhVD55qZ1BechRCFUEUw91EDTDAO8QQSeplkEqIU2/cOm\nNZzUcFFBVhvBq1m0Lixrm7WHBIEpfVTKnHh6pUn81r5xq9U+RN5N7W+rYdHAVkGtjOilV8bpdVXi\nmCP9cQThh6RbMtQVtGwuUWLi1hqzY+ym3rbcyK5204YViWwsaZ+zUrBRJr/Bo/EbyiZgu+6buUZp\nROH32AQjFsEu62bEZb3Dqtkhr/uUzwLqLzT6VdG6F7ZGXK9tPLH2/7B9vR5sUwhSUKkpvcwDmIdw\n4t/U2yvgojExctqYvoSrDHLrvrUHmlb4EtFeEL5f3OvMnfBoc6QN10JYafaKRQxeZJzshQeZB3Er\nfGf6ehU2H9qCtnmKIwipCIoE1in4BSqKKQYhq3iIT4N3CV7skyUDLuJDhsGaTPWu1kV+wPP5E2aX\n+xTzBF4reFaaXKy0OaKzf218U7q50MbQ5vvUnqLMQpj18EY+2g8p/ZTMH1DWMct8h6wYoPIQ3mj4\nsobXjcn9srVx49Y2D7vNdS+x7MeMCF93Bpt8wU07vuv6sieJrYOKiOvZr/CWK+LqBNImQ6p9rFWV\nWjdDE8L0oLXGAhegX4aUD0PKvZTNeIiXanTjmc3eBfCmVc+fY9xY50A1w3S3n2FEKXsq6CaTNegM\n8l14NTGb1RFm2XzS7oHt21xpk9CpBdfNy+z4SOsKcdV66e0lCN8fbryyP33ndyt6Rc5y/9dlhS+b\nvLkNW20sU537aZMQlRpUuzE9S6FMYZ6iRyE6gSb10UmMh9mzqUyjtzWsG5jncJmb079m07qxVm2y\nZ09Q7SqMC4TSxC8vNp+hCiALIPBv5kllY/qVZTXUtSkN0nYj3DrKbrglXMFQEITvnm7csre5p/02\nDm0xOZddnVLHt3Ive9hol3P4h2qFr7bnWOHTFD7FOkBPe9QvE4q0zyYaEYclSVRQVAmbcsC26FOU\nfepzRfOmRr2p4LKGfGP6IVZ2A5c777GGsgebHqie+T2PTY+eN60LxI1djTIHCasS1qUp0c63Rviq\n3QNV6U8oCD8sbgyrnNvsxKDK5Ct1DGVsHOx1ZPKVwIOwbTVRtRMbK2X6azXtUCFtjRNWUPPMgI4i\ngVUP6gKlAvIowmdInUcU0z7b4Yjp4Ijnww9J45yyiqnqiLKOWa+HTKeHzKYHlNME3ihTfnixNcOM\ncB2lGTSBEeQAKg9dxjSZR3kRol5ENP2EMkzZBgPWQUndhGzyAXneR2WRmUI7rWCam+FF2RqqpSlz\n1NZ1LwOG3idE+LpTNO0KuOn6sr2/3E2jHYfmdx7fFcvsptFVsgOu+nwB4Bknw+wAlglMW1FrD9j1\noBeg4/YprBh1gTFdnWM2eM0FRvS6aJ/XBi/bdZ/Oe9qawJMNoUhN3x8vdLQ/3dZ556Bt2cCyfW7r\nyuhOc7RBSxCE7wfX5uQ5f/a4eQoZOMsZ3PHWuGi7Gm4KYa4FvTF9LJpW9GpqI4yXA5g3kHgQeajA\nRwcBqu3Ho+saXTfopjYbxGJjVrk25Y16g4krG0xMccZZ68iUD+kc1MYkf1Vkel0EEfgd4Uu178ku\nXZh1Q/CysdAtEZL4JQjfDzameLwVX65yKHt4GHLt2nLjl8XmXe5jXSHMbkTbXK5WsPagCGAZ0Sxj\nimlIPUrIhyFBqggSZXrwJA1NEVBnIXUWUWchap2j1xV6U7S9ajZtP0TrwMq4PgTMoeqD7ptSyHUB\n8x5EPYi02fze+FqU6Q1WZWYQR906veqteZ2rw0brbrPxSxyrgvD9cUOtdm6z16EVwNfXjq8qMkOG\nPN/kLF7rWlfKtI9QjTng063opWw1TXi9dApFz/SdzktUkVDokCYfsV2OWJ4pLvaOiHcLkt2SIK1R\nZYAqfJrSp1pE5Kc98tOU4iSBC2UE9lXb//RqWFkbZ6zwVQFbH7VS1BcJqp9Q9RKKxCOIGvxIEUQN\nqvHbWBkax1dWmMb8RQb5Gur2gFNZ4atrDpE49mNHhK87iVumZ90TdnSj6/LqCl+u68mKZfZ3d2Pl\nbOhcp4UqoNyBkwmcBTD0TD/pHuZfmn3KDUZ7qjXUVoyygteCaxu8Fb7AiFROInYlZPWNdVb12s/m\nnFJeiWZWRHNPGt1gZRNNKXEUhB+O7kmZ3UTaeOOK9d2SIvfxXRGs68ho45lq79fUUFVmBLbjOtOE\n6KuDAo/reGE3s24PHpsA2U1dxU1CU+6o21LNpk0iibieMOJiS5+sdd++rit2Nc4SBOGHoRt3bFm1\nFb6sYO86QG8ribxNuHcPM+FKIGvMxDUK89x63aeep9RxCEkIiX+zHaKt/tloU0Zd11AXRrBv3H6B\n1oHlumNLEyObbim5G4Nc2p4XN/KtjJtODPd5XLeqbBgF4fvFdYq7McxxfqrY7LOuzBM2jgXcPKR0\nH+f2V3Ueq/V1P1R66CKkIqYqY9jEpnx634MDYOVdzyQqgEKbbeKpNu1rTpRx3jdbU3pY22nXjmNW\nhVD6ZuGb4SAB5kDTjyEKIPKvi6Aa9+1XxjzBtn1e+/xuuwm3XFti2PuACF93FjdhcsUrm6R0RS+c\n++nO72Au7IDrfhVd7CnhEpoJND24HMA8Bd9uHAHdtC4sO3nS9tmyPb3cRMkmYd3XsZvBDSZSWdHL\n4/qftBXtrPhlax+7yZubeEmJoyD8eOgmEG5M+jrhy132v7nxzwppHjc3mlbUSrjp0PC4KZJ3+ki8\n5cTqbga776PmxinoW7HYJpDdjaZdkmQJwo+P7nXu/m7jTfdatyjnvu5yY4aNexnXYlhjHBZNAlWr\ndCnfiGMlph9Pqc2msdDmwLHJjPNU2/hlXRI1b29+tfOe7ftw+5DFt3wHdufoulTt765oJv1wBOGH\nxxXu3dvcah+3hYQr4Nscys2j7GGde7uNXQEm5rR7Nl2ZoRnbBPyk7QHmw8aDS9/0Eat0m1rptreh\nMj1Q88Y4x5p20vXV0J/SWU37evZ9Fq0brQekULd7Ru1df9RKm4oA4Mr1xoZrwcvtT+jGaYlj7wMi\nfN15uieGdkP2LpGne+HWzm12s+aKXzYYug30L4Ee6B7oxCjuN96P3Rzedipob3dFL/enfS37XiJM\nQLKil+tEc5sN3raBdJtpi+glCD9O3D4UbjnkV933q8Qvl25pt23qbN2jrsOse6rpNqO+zY3l4m4c\n7ePd8s2ukOcmmu5Pu9wNsSAIPzxu2WNX9PJuWd3H3rZccdstR3I3nJXZyDVt/zAdGzdY5bV9eHxT\nGlm3PXhqZQ4fVW5Kr6+GGVlRqntI4Mbfr+u3aO9vHapuXLzNKeY6cmXTKAg/HG5+5Qrw7uGgmw+5\nyxV+3D2hK5rZmGdNC21OpQrTW3WTQpOaksp1OzijF5hS6roVohplJkZuKtNHMK+gbvufqjWmrY0r\nrlfcPOCsTMxTW8yQtwR0AMozBwU2/NVtKwyteXtCuK0WEqfX+4oIX38zdC3ptzm+4KbQdRtd8csG\nO1uCaJ0Q3cTIcx7vBqWSm04sm1hZIapbMqS5KXy5Li+PmwKf+95q53cRvATh/cAVrdzN4m2OL/f+\n3d/hpljk9jO0Ipadnua6sLrOMPcE041lXZHqtte2rg+bjLnrts/RdX50XSC3fUZBEH443OvR3ez9\nubHLFe7d3MXGgTZ/Um3jadU2n/aCm314tO2/05h+PLoVpbTrjHBdGva1u7GyW7r5VZUDbjzsOkfc\n+CYxTBB+WLqxx/7ZClu216qbr9wm3tuft13rrjvK5lMlqMz0/KpTyHsQJBC2vU+DsO1/qtu41bam\nqAuzqqIV8DOzrgZmuIeEjuhFjim3tKWbMaigna7dNurX2ryOUq3wZfepXUe/674Xt9f7hAhff7P8\nJb1hXPHL/tltxtptoN8NkK4I5QpelXM73BS97PPa/6ad/x59xXt172cDsv1dRC9BeH/4KlHr2zxH\nN0HrJnU2Zrmil/vYd5Uk3SZMudiEz33Ob+sAkQRLEH78/LWFaddR4cYfK9pHoNsJ21cl2m5MsxtP\nd+iHK9y7mzhueZ2uaP917rVuPLS3v8vNJgjCD8+74tZXXe/veh73+lad2wpuxK+mxAzWKDFtJmzv\nU9tPzI0l7tTbbil1t8TSFdlc4T40BwWEoLsHnN345cbH7nNLmeP7iAhfwp9JV/xynVh2FHa3/BDn\nvm4z+a7gBW87vdzbos59bf+xd73P215bEIS/bdwNWPfP7qmmK3x173fbz69LgNzSp66Trfv+3NeT\nxEoQ/rZxN5JdkcoKWq7oZTd0rlP1q8qo31V22I2R8NWb4K5Q132sxDJBeH/4ttfrbffvxq7b2jvY\n/oFd533XrV92ljv8p9sK4rbJ364LrSvkd/O722Lkt835hB8TInwJfwFWQOoKYJ5z+20Cln2sa+G3\nvOv+Lu59Ir5ezBKxSxCE27AxyLXEuxs69+e7hKhv6sbq/jcbK9/1mHeVPgmC8LfHbTHA7b1zm+jV\ndau6m7/uRu42B1Y3xrkx0vJNBo3c9v4llgnC+8U3uWZvu77dXKcr2ncFLetYdfufduOXWyVUd5bi\n3fHHjXVddz+d13If0y3d/Kr4JvzYEeFL+CtwmwBmb7+t1NGdFmn5JoLXbfy5jxME4W8bdzNn6caq\nd/WxuO3Pf05S+HVlA5JMCYJgcV0Trkh/Ww8euBlfbnOs3laKeNv9XYH+m5Q6uY//utsEQfjx85cK\nPF3B3t7mliF2e592W03YxzaddVtp9W3v2cbLhrcPB26Llfb1um6x2+4nvC+I8CX8FXFdVbbE8av6\niIloJQjCD80PmchI4iQIwrfltk1odyP3dY//NiXUstkTBOGvgVsi6Ir3X7Vue/xtPba+zj3vime2\nDPybvN9vEyuFHzsifAnfEVJaKAiCIAiC8N3zbTZlspETBOGH5F2tH7qDf26j22Prz6Vbtn0bEifv\nGiJ8CYIgCIIgCMJ7i/SaEQThfaBbPt0to76t/LD7+L+kx9af42CVuHpXEOFLEARBEARBEN5rZHMm\nCML7wG2i17eNX39JvJNY+beKCF+CIAiCIAiCIAiCIHzPiBAlfD98k85ugiAIgiAIgiAIgiAIgvDe\n4WktKqsgCIIgCIIgCIIgCIJw9xDHlyAIgiAIgiAIgiAIgnAnEeFLEARBEARBEARBEARBuJOI8CUI\ngiAIgiAIgiAIgiDcSUT4EgRBEARBEARBEARBEO4kInwJgiAIgiAIgiAIgiAIdxIRvgRBEARBEARB\nEARBEIQ7iQhfgiAIgiAIgiAIgiAIwp1EhC9BEARBEARBEARBEAThTiLClyAIgiAIgiAIgiAIgnAn\nEeFLEARBEARBEARBEARBuJOI8CUIgiAIgiAIgiAIgiDcSUT4EgRBEARBEARBEARBEO4kInwJgiAI\ngiAIgiAIgiAIdxIRvgRBEARBEARBEARBEIQ7iQhfgiAIgiAIgiAIgiAIwp1EhC9BEARBEARBEARB\nEAThTiLClyAIgiAIgiAIgiAIgnAnEeFLEARBEARBEARBEARBuJOI8CUIgiAIgiAIgiAIgiDcSUT4\nEgRBEARBEARBEARBEO4kInwJgiAIgiAIgiAIgiAIdxIRvgRBEARBEARBEARBEIQ7iQhfgiAIgiAI\ngiAIgiAIwp1EhC9BEARBEARBEARBEAThTiLClyAIgiAIgiAIgiAIgnAnEeFLEARBEARBEARBEARB\nuJOI8CUIgiAIgiAIgiAIgiDcSUT4EgRBEARBEARBEARBEO4kInwJgiAIgiAIgiAIgiAId5L/D+Ie\nLENC/tqCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=[15,5])\n", + "plt.subplot(1,4,1)\n", + "plt.imshow(heatmap_image)\n", + "plt.axis('off')\n", + "plt.subplot(1,4,2)\n", + "plt.imshow(a_img)\n", + "plt.axis('off')\n", + "plt.subplot(1,4,3)\n", + "plt.imshow(b_img)\n", + "plt.axis('off')\n", + "plt.subplot(1,4,4)\n", + "plt.imshow(d_img)\n", + "plt.axis('off')" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "hm=create_heat_maps(lms_small, num_landmarks=68, image_size=64, sigma=1.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "def create_heat_maps(landmarks, num_landmarks=68, image_size=256, sigma=6):\n", + "\n", + " x, y = np.mgrid[0:image_size, 0:image_size]\n", + "\n", + " maps = np.zeros((image_size, image_size, num_landmarks))\n", + "\n", + " for i in range(num_landmarks):\n", + " out = gaussian(x, y, landmarks[i,0], landmarks[i,1], sigma=sigma)\n", + " maps[:, :, i] = (8./3)*sigma*out # copied from ECT\n", + "\n", + " return maps\n" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "lms_small=(img_landmarks/4)" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWEAAAFdCAYAAADSR9wBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXvUZcdVH/jbVXXu9/VLLan1aL0tYRPbEHuwzMM8l3EY\nlsMQMpkVWAooE5hMGAbJg8ljQh5rGIckE2bATGZgAllkkWCirLAWA1nMABMYwGAwZlkGDJZsbOtt\nWY9Wq1v9uvecqj1/7L2rdp17v9YDfcjuuSWdPuc79zzqnFP1q1/99q5dxMzYpm3apm3aplcmhVc6\nA9u0Tdu0Tf9/TlsQ3qZt2qZtegXTFoS3aZu2aZtewbQF4W3apm3aplcwbUF4m7Zpm7bpFUxbEN6m\nbdqmbXoF0xaEt2mbtmmbXsGUXukMENExAF8L4EEAF17Z3GzTNm3TNr0saRfAqwD8EjOfuNiBrzgI\nQwD4p17pTGzTNm3TNu1D+mYA//ZiB3wmgPCDAPCe97wHr3vd617yRd75znfi3e9+98uVp31P2/zu\nb9rmd3/TNr8XT/fddx++5Vu+BVB8u1j6TADhCwDwute9Dm9605te8kWOHj36Jzr/Tztt87u/aZvf\n/U3b/L7g9LwS69Ywt03btE3b9AqmLQhv0zZt0za9gmkLwtu0Tdu0Ta9gumRA+I477nils/Ci0ja/\n+5u2+d3ftM3vy5folY4nTERvAvDBD37wg59VQv82bdM2bdNe6d5778Xtt98OALcz870XO/aSYcLb\ntE3btE2fjWkLwtu0Tdu0Ta9g2oLwNm3TNm3TK5j2DYSJ6DuJ6AEiOk9E7yeiL9yve23TNm3TNn22\npn0BYSL6JgA/AOB/APAFAH4fwC8R0VX7cb9t2qZt2qbP1rRfw5bfCeBHmfnfAAAR/TcAvg7AtwH4\n/pfrJm9961vx8MMPgyjg4MGDOHDwEA4eOIgDBw/i+HU34Jabb8VNN78KN91yK6666mqEGBFCAIWA\nEAJyzhinFfI0YZwmnD17Bs+ceNotJ3D61CmcPv0snjv1LE6fOoXVagXmDGYGl4xSim4zmAtQGClF\nDMMCQ0oYhoQhJoRACBQQQwBRAJeMXDJKlnUAkIaIIUWkFGQdCCkAMRJiAAIBBIBQQGDZJgJRAJFs\nxyDPGGOQ+0W5Z90XbImgQLKWkwHImgEUZnkulu3CDOg+/xszwJB1Ke13MGQbemyBnsMojLq/XhNo\n14S77iwvPN/W84DZeS7vYIDhz/HX8vvaAju/yG+F+/zC3UPu3e+X40q9fmErJ6U/z+XdJ/vbrlXv\nJxvdc/uT166zyftpds/5MZvOWdvzQo65RNLNN9+MX/3VX92367/sIExEA4DbAfwT28fMTES/DOAt\nL+e9Hn74YXzyk58EUcChw4dx6FBbQAmHDh3FZZcfw7FzF7BcTQiRBYBiRAiMScF3GkeM04hz5y/g\nuTNn8eyp0zjxzEk89dTTePbkM3j25DM4pevlcingy6WBcLHKJdtDSlgsFlgMAxbDgCElAUFdAgWU\nkpHzhJxlHQgYhoTFEDEoGA9RQDhFQoqkIMxrIBwoKBgTYoxyH79WII5R/jYQtnfRQDh0IGzAU7cd\nyHqQM5wo3e/ojy3+erPfOhBmvX8D1PX79SBaOhDmNRDeDLjreVhfUBvZ+XFw+d1rmw14mdt1Slk7\n1vLukwfp7rr6454g/EIAdQvCn1FpP5jwVQAigCdm+58A8Gf24X4bE/kNQSv9m3Q3zY9s1MuW7ggB\nKtJrEQNsVyGACfZPnw+y82pG9sgwtSx22SUFWmrAq/clguwn1GO6Jcy2Q+jWxowrCFMD4eDAlwoj\nMINJ/g4O4IIBMDMCbQI+BbDQA3RhrixzDRzhrgFU0PYAzmvsFv0+zIC3gm5jrT6PfpkDrjUurZFQ\nJjvfrn/PFm2gSzEQLoph3NbzsmjPIxevz+ZZfTsfji23wsxWpjE7Fu199b/5czZs9wVW86IHzQ64\nGCBvbnb0ms9z1ou5z2dL+kyIovayJA9xBlytq05rIEVBf4eAaa24cOyDBfRCCEgxYJESkBNKKSiF\nkHNGIYBLAQEoKGAI20wxYkgDBmXCBM0DDEQlbyEwwBExQM9JGFLEQpnwoCx4UCYciEFgBLADYQFV\nIkLSe6cYJR9Jl5h0LftjSsqShREbAJMBMfdMeCOoVRCUF7cGiN1xG4DT/rbjAcgeUrCEuxZUFnDH\nMmbn9mvm9TVcntfysgbGqGx2jQm7hgOz3wRwW0+plFJlp5Jlu4M11oJrDT1Qv8GcwTcQbqzY9tlD\n2rfy200CmedVnrH4vNeGg2fnzt6x3aNrINwxdn9gLS/WmPaVuNKdVqup/z6A+3vWKK03kOv5+kxM\n+wHCTwPIAK6d7b8WwKf3Oumd73wnjh492u274447Xtxww8o6ZbsCLQUF3rAGzD0TnhX6IiAcFdyG\nlMB5QCkTcharZiagGDMFULgoaCeVF0QbtgJb0UMBFESgGBCD3SNiobLEQsHXlhAEhAMBAbrWZ7LG\nJaWIISYkBfOqS7t1TPK7LSEEQLVqe0c96LnCb+8JBmrUQLju6wFPn7j+7SuxbFPbR+2arPs7MK5r\nd47v1ZD93c6Ve7m/7Xz/HB4kSisHxUsKrnHu3kU9xiQH0fob8GbkaZIlT8hTdjmrhRcUqDaE5EDY\nNwBdPg1gatnawMJ5L0moNHmpFMlnKZJ3azhqA1K00aD6/gB0YN209x741iSoUmovKFu+qz3C9VC1\nHJC/RpkRg9KuXeq7n78zLVNzwN/4BTani/FzALjnnntwzz33dPtOnTr1PGe19LKDMDOPRPRBAG8D\n8B8AgATt3gbgn+913rvf/e6XPmy568bT2hLCDIBDY3zW+lp58NSLWQQHAdUoTLjkBsCQYpnhPhQD\nMUTEFJEcE+Zi7Ei6pcaMKQQwAymGCsJDStgZGhNeJFnHAESCMmKosa5n+Qa2CwVc0aVT1acXi9Ty\nNSSkYUCMERSivCMF4w4wK1iiq4QGoDAwdr/5oruJhbR9VCucATAAMDXxpQNjBVCTTez3TvLRNdu3\n7UC5bXcNR93egyWW3jjZMS42e4Csc84o2YOu2B2maUTWdWO/8gykpCG4xtBAa5MU0rHwMgfg0sCo\nNGYrIOYBlivwmn1iqnaKfukxTBrJeh2fT/deTc4y8CzMyLkgl1LXtQy5HkDd1rLR8snI3XM0MLe8\nZJI1MVBKy8emcrgnuM4YOdGeRwLYTBbdsOXnTfslR/wggJ9QMP4AxFviIICf2I+b1Y9n21gH4o2L\nU4YBtMLtWAdBgC6FgEFBeAJUVqgQgGwVMjBiVCasIDikQSokshyHUgGDKAhwOwBeJAHRRUQF4YWB\ncHBgrCDsl8WQsFgI4O7o9s5igZ1B14sBw2LAYrHAMMg6xgiKsRrrKIjn4jrg2gv3vQf/Fv2a+u9C\ns/OcRk8GxM5Lg62R7EC4bXeGRANgCpVFgkIF5wbIPbD7Z2Tp987KgAPhDQsc6FXDLBfkacQ0TbIe\nR+RphXE1YlqtMI0rjKuVewXKAEk8VUJs3jsdq6sg5/IGQZqaHw+IbluYrjDaul20sSgFOU+YNM91\nnSf9O2OaJu0NUfeusrtudl4f1rAVO6aybcaUM6ZcZD0pw9Zv2ewn/XvJhbUxaOCdDZBzy8eUsxwP\ngEoBggCxEOHWX1orz13Rfj7e+/KnfQFhZv736hP8LogM8XsAvpaZn9qP+9XkjGB+wQwkWkVr3S1j\nLSU3jwdwqSAcVRfmGACWhQOBObhutSTTWmUR7dVYiWRAMUfBjiggpXZsqt4M5p42A2DdDuRBuOUz\nBkJSw1uKAUMM4nExRGXJwo4HBeuYBIApmutaqPnc+I7bHzMAdgwGzdC4VrEc+63g7BdYL0Waujkr\n3utY39tpRkbqr1VZdCsXbEzeSSibQNfvhwfEUsCc6zorAFcwHkdM40oAWbdRX4cH4QByDaG5Pa41\nAjMW3jcGzfjXGGS/NOBUEFbwHafRgfHUQHmcnNuhFg1jtQaOJbf3qA9XwBUsbV0BOBeMxrBnvZh5\nWZlyxjhlTFPGOGZMOSswK7AXA3X5bQoBU84IyoxzLl25ZTCo9kQ2EIN+r8iG+5j2zTDHzD8C4Ef2\n6/rzZBCwCXzbO3QVyApilpZ+Go21TOAsFUqYMCMA4k0QAkoQ8C1BPQ6KUlJ3fwNTb/hqedJWOVj3\n02SEIBptFDbUPBsai6Q9Cg13C7cXYofY+XrPqmeQW9dl9lI3/WEA2vod7ierPG7PjCj7v8ndu7nK\nQRmund+AVEDUSUkU5J4zTbsd0xj1Gjt2DUgDYn2LprWiZ8YGeKhAWHoQLhk5BuQYUFIUME4ReUjI\n06gyxQ5MjyD3HpqBtckRa0vVW1tZnoOxB2HPiKs8oXKA6b85O8D1QDw6ENbzTYM2Jp0VUHPO9iBV\n6mNAwJIbEAsINzBuvRrU8tf3T4FxyliuJqxWI1arSQC5AjAjZ8Y4TVhFcTkdpwmjAvGUc+3z1Aak\nK86NEHRl2Jd82t/oDpeMdwSA+gE3M+HGdFAKCpFoYbXbOCGPot+VnMElOzlCjXOBFISDnE8BkYqC\nMIGIhdU674RooJpDLWzWBaPquxvUi8H8e6MO6phjo2eO8shM5uFhOqF7HWSA7M4zIFZt3ANVNS92\nckN7t7ZR2S75v1qD59nxGonocRbdLTuGa+ALl8fQsdwKwtSAq2raG4E4iCzhy8SGXhLQA7BpFgbC\nBoKVgZbsgDij5IiSIsoUkVNEyVamFmqwm/zrqDgwNxx7/bcxb8tLzag0BFUfdhqy93EuxRm4nAHO\niEhuzL0C8WhatuW/9R65lMo8jciQMnmTUxgqJVQgVhBWRpyzDOZxBWc9MbBaTbiwXMlyYcRynDBl\nu54A8WocMYwRSzVyx4mwIvnCkme5vtSRGdMgK7vkb9uOCJsy9vKlSwiETVtseq/tB+w9W8WSX2p3\nqna7RgfCjgnTTJIowogLNeMPBRLfWgJSSpUNB+vi01TBpzAjgtRXNwoDHoKCsI1sM28IwyFu4OX+\ntaciRrUC2392WANgNAu8AnG7iQfA7rVueI8NeEl3tkbCb2/8TO2cioUNcC2vlSHZ91Q3urp2AGu/\nk2PDlZE59ztAtWbHhn0rwK7mde5T1XoHB8hN/BQQ1oXNM0KYcCkRnJMw1dIMeFiHgvasulTm3eWH\nu23PzCsgVxA2o6GXMRobNmNdNR56INaeodULeSY7R55RQHiqa9G0bUkASMEXwlhVwphKWzNz/QSd\n+uUIxYULK5w/n3AuJZwLSyyXI8bCmAoqCC9jRIorxBUhkriCetZego5epNqO1ndeG3x/e/d1wsbW\n4eVLlw4IO0blB0g4VQIAaoFlplqYvPW6sZai5lUpCjLgIVRvBE+oCCIdWHmywRBkXWW0PFRiSZDu\np/nyxij6b7QRcIaNDXy7C80Sz9br76ZppeRAt/YWZgx0oxzs9IT2Wnsg7kDZZdxvXQx8yeWhseAG\nxAK0EdaTsOeqLLJjw9bA6DY8O94AwiB0SAzMwBcOkFvXnAsBhcCFwEV7SpHAOaCUoA26laXSne+r\nu9eHof2bhrcGSi0/DAe+aNc21y048PXbvKYVZ9WwB/GOUOBtcoTVi1Jd70rOzng3YZoEfGMcENQN\nEkTIRSSJibmy4sl04o4Jy0PVBsdJQIsQEAEEBogZkUjBV8B9zNJTNcJiDZV4ZAjRCkR1QJUBcS2D\nRt6wof6wXHs/0yUDwlp1sS5FaHHmWeFl1K5hzhOK6XV5QimTADT3Fl85Xd1zWApXKfo1DccUlJhZ\n2cIkcSqmrMeae5rTfStwoIHSvEhY5SfLA4sUUZv09vwtF7YO/TupXgQGTqEHP9ePqG+3a0to428N\nTdEBsGW/kujuHrS+UL+/92hxI/zcc9Z7VsZrWZj/7vZ1QDx7LJ9p9jt07UCRrN9RG31j4TKohusp\nBeAAAUtAh1321zZMrb856HUNROWJFYBbo2B/tx5R3zviDb/Z+2jatMYbCREci76l7D+f2EpYhscy\nqDLgqD1BEIGJwcSIxe5VEMH6LQoCu6chY+poboHaUABCRsSfPkh2C4OKFOHCEZkjcknNBS5GTDmr\nvJfBTDDGzWjlo4udMvvSABDS/sLkJQPCXeW1ygB0YNC3sOwA2Pw5RxSTI3LzpTSt1furVofzUuAH\nf/gRZ7lkTNOIQKG6AzGjO9b0s6BabQVinyr4Wp3TQqzdq156WWd4Hfg6lljd9MiA2rTtvQwRjs/S\n+j7o+5lLQf3pDgAr5voK4H93jQhcXmfsfVMlkrz4xsRd3yPJ/DlIUXcOwB0oOibrgFEOl7wEInAI\nDepYL1FKu1e9R7t2hdxNlMy2OrbemPDFQLY1H21/d1XXkAcSe0cI4g0UOXbv1XoN0V4BSOW1KCw4\n9iAMKgrGRVglMYjFTbP58GpemcGcYcZGs88QiywYIyGlACrKjHVdOFXPj1wick6YSkbKAsCRohp6\nUSXEBsBW56h7J7aOYa/68PKkSweEXd3qmZP+CADsRgqV4pjwqADc5IhSjS0+6pWGz2HpXRoQhyAu\nL559i2N6xqT7zEdTWnTZJ94PLrKZI5IeT6wqCeJyZeNNCEZ3Ys+CbfFGH+9B0AC5Mjh/c+re4OYX\nb/k0QCXj+/7nGVvtgHDGSH3+Z4DbgLn/jfx1undHNU/dfX2+9n649gW8DjsDMg+QzdVKPWZCA2Eu\ngHVdGpPF+nXmkkifE/Qg7fPSg+9eDNg/xTzvbYBTAAdxrRQMtufKQG6EJCgAg6hqwh0TVvcwCdFE\nAIqCsJTlgKZpMzQ2SckaZa/UeggwKEDtMqw2GAHgzKQALEy4qD/xmBNSyEghYgzmveGfBbUMGSte\n/6Licrqf6dIBYcC90J5pWTI9jP0QzWnSZdRRQ5MAsQ9T6esLoHKEjd6R/hDp/UOQbVYPjGmaQCCY\nD6ddq3NJ0shqQqJNA+Z6L2NkbKBrzJgb429Q2S+eQXoA7rYVNGpkizVWucfrRl9YexCFaxiw9ndt\nKDr5os93//c6G55XJrtOBV7Nyp69hT2kkzUW3P0wWypTbs9NIPFCYQJzlE5LMZgR7Xge7Mnru+YB\nsfbuZvu5gwy/zNnwHIDnUsQciIMEYwoMxgyATO6BuJdFtG9R5Qj1j2ciRBSIBJEFiEnKLzGDgpAi\nb0ymUpD1exhRYhYQDiQ2E0ZU9islNjL1MkROmHLGMEWMFk1wbguoONEaH/92/VuJccuEX1CSethe\nbvOQ0JdbNSY1xuVcQ1iO4wrjuMS0WoqBInsA1uKhri2FLdRjW6p7OqF+WECGdYqHhcsnwYGusbia\nzT2TMWEjvhUoPFDNAVaNWBSiA11d6pi/AD/+r6HW84PwnDUQvG/vnA17sJwxXMd6KzCbfOJY+tzn\nt2Pus+16vD1fx/wbU7X3zhtRdw64DiQrBrf97QdLBBNouN5MgdphaoVGr+euGQj7d90Dsme+6IgD\n9O9ue3btyo1dO2Vs2N5MrVdKLvqGvJU3GXXZBvx4lkkGwO5N1DLD7SvY56tD8nXgUpV6AiMzkIue\nV1gGL1nMbPVIstCt5oHUlY3Kin1jpm2v1kkD5rD1E36BybrNHRuWnwxEm6N675ZmQ0lHG9VkHhJ1\ntBJg37sCMNp4+FC/YWORDcBRG4TqWVH1X69Zzh7H/1Hps7Fjmh0wY4wkIB9IYwaTVg5qYIwOiDcs\n3N7pC01Ng6X63La2b+QbyDmjbQzc8uYbivZb9XSYjazrgNpJLXKPORhvejaq79oPhOgss/qkjUWu\nvYS1S7aGxR7Du8M18JT7tn2Wj4a36/dj+P0G4IAB+XzASbsU98+oWZMmg8BByyxi/W6ZCKRDg8UL\nJdc4LJUAhAbK1XZRgRgViDe8ec1b33sLgRC52SpCYExRwqsii6zIsMFU1OJ2VyC2qILFAbANJmEX\nBKjUIm+Nzp49pZc5XTogjAZ2zTWsojDqMGUNor4GwKslxtVKgqxMk2pR3IGp5xus1yzuN2ihAVCD\nqhTm2poTxebq5uP41rShUvt9dqPKonyr7mQFak7zcyYcFHzXuvRrC9x67zTnfZItahywlWrHUNuy\nJjvMf6+SiebbNTa+QnUBmbrtGSB7MNcn8EA2w0D30XkGXP3+Bsqy1EfuZIf1d+s4aj2/uVG2csaN\nMm/4NNxtNxDWPRuY8KaS5rNIEEBl1W8tPocMctIgOfX75G4Ifv3W+qW6uogeiBv4zrJgLJgCOAhL\npygacCgMmgpABTwBzEX96lvdMlYcY5BgWrnMyoUMC8/I2mPVb2l1qfastkz4Baf6ydfkiPZ+bSx9\nnhoTHkeVI1ZLkSSMCXdGOa0M8FKEc6WxAkXK/rQSWcSqmhMLO+mGMRsOXqRaaGJ0woaXJmAAGNqa\nFPRDbKxY9zU5woGSB/SLgjDPtsj93Soe12dTjXYNXBvzXddrNzDhrtHoAbitPSsOG5YZQM+fzBnf\nqsxQdYcZK3bSwxpJ3cSGPROGbhtIzu/lwLg29FxmmaV6aeshbXqWizHhi4FxlfbsnBBApYBKQagg\nrABMAYFya35qXSkvpB3f+K4MgCnY4AsL3iQDQEAZTLn1Rp2XUQNgY8EJU2JUY7SWj0Kl9pKNqFnv\nVBoh7Q1sR8y90EQVBDvDXK1DrIF63OCM1YhptVQWvMS0WtXx/VxykzF0sfHvNUQf94Y7n8Qazhq2\nksEhwvo73aAPB1ybYK2r4cQiRbA7qIJnP4KsH+IbagEW/BAPj8Atf4JJRaZe0muTBw24fHRb7Wd5\nAivCsmcTAHdgW6/vGJMDSlqTJHwvx64xO2cDAPOcLSO4p3i+BnCPVMH4Ipch9IDpALg1WhfLQS8x\n2EVtSHpXPPQ7rOnJLyKRvxAUjN01jQ27wgEjPzJTirUnrM9NG4F4QxMo+9lwWEAwhiB2GL2fDaiJ\nhRFKUUJT1LOonz2mTe9VkCL35U+fK5SAjKzP2NpC0iwxNtfvlzNdOiBcGYYDN7aBFVzHyBsAiwas\nEoTKEdMohrni4kZIBfAxV+eeEww/VFRPcVqeY7BVLnHdbNsHg6HWnbVip7nAmosaN0OYnG26Z3Bn\nUzUgZgZyZoAKoAFXmAkcWEcUBTAVdA1Z5zc3f+cGHw1MGmbPgHXPBf1xnu3Oj3PO9mTf2h9rDVCY\nyxGy8Np9MKtgDuRme3rU0Gc28LN+jH8driLb9+zrspAGln/kWdjaaapyKiOoT+1aJtpfs7y13hi6\n7bXkmG7fSPrLsTucGltUkCQOOt0VSbFbA2KeP3h9g2t/KejBAaqRl65WsJUAl1ffAybTjyNCKEix\nICff5JpU5h/Teh4iTRRH4mv0w31Klw4IwwHazPBijLQbojwa+1UmvGxMWFiwFXyLSDVVEM7GlA18\nZ12aeRfQV0Ap52FWYKzxsAIIoQQdAHNjVR0GOFBxXXxhfwJOFYh1cImYldXNiIGiLjyBikoX1MCs\nkAYw2cBoHD6S/90QqWO9PSCbEY+N2dIcIGeLl0vY7a/gsSl62oz5UmNUs8y6B9J95Pf42to2vNy7\nDrIuzZDc3hWzwogCsdlbzfXQPrkYUcvmrLqbkF5zDsTPm+rNrPygge8MlKvHgEZ5s8Y7BAClIFM7\nd90Bbu2F1D+V79f3U70zIkDMlUjUBniPx5BPr9KEeUckRmKazVvou5P2yKzgW7QBlfyUkp/3Ff5J\n0iUCwu6zzLr51bChEaMsSpRnwB6MLYAPuPnr7smENSaAN6TURr0acmA1q8+fA505X4Rbd2CsZLiT\nD/2ZGwxQ82HWuTBkxL7s5yiGDqaCCGHCTGKUQWA1uLiuO80B1xgdaleyxl9l4GLAymtPLu+FvcY7\nezMCUDMgrtfZpP3O3NZqXlp58Wy132fJVdh2ONyQi/rN5Jn2Br8G1lQbn/ZMxoQDuLJfA+OATdpv\nvWjNOj8vEDfg57W1uWfZU9cM1OuT29YYJ4HrM5CdaWW/M1oCmL2zep/ZTtOEpegpwSkaB3jT+3Uk\nxE9sG2NELBAQrgHmmyuc1c2OPBX5x6KnSbiB/UuXCAhb6pklDGjMIOeZsPeIWCoQj6uqB8OYMBsI\nF536ZVI/4saEUT+g86awVpf7akouj944J3lm1yNUlHXMq4I5WeNiiKAAZKBrC3k5ooUSjCrTcJAC\nGTXsIFNAhAy3pcBA5FbvO/A11mT7JQUFxsIGxA2OOvyYs1FqAGwabwvi3vhjG5wyB+65I/4cgM0l\nad4YuHdrexpK9mDtc8LszuD2ElhAsB+Iwd2qNjS1cTYRiurtuH7TeTbmDHAzx/RA/IKSAnCn/xqg\nGkBvSDI0WyWJ6pGWW86qJGd5u5j5WYFW7xeCPUsUiaOUVi+6z081r33dCoiBESOQipAQEOmGRbLz\nt29jAqSCtYZYYiXvX7p0QNjIDtAVJna+weaWNq6WWC1Nglg2/+CpMd06b5cB64z11opLdh/VnUOu\nhYlhoNry0+b4IgXR4PQzexhfVBuTqJNVFtYywsgEGZePgoKAMBWEWEAxA6uMghETAyMDQ2YMuejs\nGy1ASyJCgsQCSBBrNFIEUgJHWRsraNIJXOQy1bhZpr0P2vULyhWDe5wacza60JOkrM3G6FcA13sV\nAgWW41zbVIF9Dlpa4bhey353i2PA66Ds3j2jVcj6jRpXdNxvVh5pLV/1ONs/O8nhdP8889/9CTT7\nZWMZ2niXxoIBmE+3bQMNEPe8jAE19btty3PgvYq349jugXi2z91EL9Rg1z2La8xrOZ2RnvWX7iQT\nnt+/HbOf6dIBYV+50Frx6htcg7eLX/BqeQGrOkBj7h8sOrB1q2TMqe7jNgrOQF9uJcFDQjZLa6uw\ntaAomOecEQNJmMMK6tSdx2RFGF3ptQJdqnW8/UcooFyAKQMhgGlCBjAVIBWZTiblLOPvNXB8CgEJ\nhMTAwEIUEhF4SOBhkHVhB7bOKEPcAg8FRuCgIGzGGstsAVl4xRjBKYFiBKUIhCjgGoKCJ6OTEDjo\ntbkPldFeSVvX+e5mwOtZMmY/m45SBdlNZWuGGj1atu/X4Uh3E5jrVr0Eu0u5y8zdigmqFdfoMx7m\n0B9sLPE0QoVbAAAgAElEQVTFYMbseMk69U/nWHK9d3NjANV37H7Xp5b/nRjhnpu792gGbC/oyMvs\n5Z15g+ltQbNt/SZGhLon6HhOI1Y8e53t9/1LlwwIt55JMy4wjAnrAI1xqj7Bq+qatnJTG411UsJW\nWpQRK5i0uLA9WxW/4YycW/eo9pw8E66zGoQmZ7jrWL7bn60IG6ixmtELWxhFGclPzIK4oQCUUSgg\nMzAWRioFacqIKQvwhljXAwODamVcGAWEh049h0dOP4cbrr8WN954HWADTEIzmoRQxAgSBXSDGmoi\nM2zuPUwZyBmUM1AYNCT5exgASPwAhABi8cQXaUE/psoPxNLlNSOne1Xr265EtOrrqvGaHLEH+6ml\nyh02P4TXj2wg6hHZyiPNik5j0ezy04DZwJAqRMHpvF2uNwLFpkxveEbXNjU6sIGPrmnD6+A7v2vX\n4HQA3OpEn8tNTNia1v5ZmjzWs945A25EqEk+lrlZNYe4gc6fZwvCLyJRAz0CYKCXJVBPrnKEMOFR\nteDRmHCe1P8XnezQ3NAMNG1mBLNIm25MmJB1UIQYCLzQZ8fknFF0hg5vzOuT+/TcFwSLV9Fpx1ai\ngjDhAon+OhVGzAVxyogpIE0NgAddZ4bMmpAZp8+ew/f93P+L33nggXq/N7/+tfiHf/2bcNmRQ84p\nvugYfQXfSOK7qVbzqKyfxgk0TbLOGZwXoEWpBZ0SWk2AYaSCsVayiIBCypOeD4gNwdhV0FkvqS8y\nhGaYWv8Ga9euC80Pdte0343heZDtL9Pyx+28GjbTAaRryNeaD97AgHuExoaH25Bv6k7r7qNGu+4h\n6p/UgzKMuDQK0cDOhmw7XX1NBmh37t/y+jFd30d7DvMBW93AqK6xc/VmxoS7orVlwi88kXWPrBzv\nIUdMo3pGOC24xhGeNeEENEdwkvmrOESJMJUYlFUPBVWmiwDVQ1t0Nbnc3HBnTbGjCJ711gbA/cbF\nFWJGCRGcIUa2ILMWTAVImYUBT0XANwbESUYSDbEghYgpFKQYMTF09lvGu372l/F7D50C8B4AXwng\nvbj3/rvwvT92D971Hd+i7j/OKT6aOxAhVZ1Zp4IqjDhNSOOENE2IOeOTjz2Bh0+ewqtuvA633nIj\nKGVQkuhbVAooRIi7mUWnY3DUcIkVTHP7iwikRlSJWqY9Ai8xWNmon5a6+txDD1AreNc+9r+TRdMn\ngwqDFAK4SKEphOZZ0oyNmwtvPazmew5AJgsYK62Srm507dAG3GjHu52M7prdgU6WmMMkSPXwjTJE\nhTRXvJXcWPlee3h7rwZ68/c0B2jbdo2rNXx9K9dfyeS+WbtUc0AtH7b3s3a25T/1RG1V1R9mcG6u\nZZNNQ65AnGcAXHLpWItdq59fTqIxmfRRQukKfTEN1AJ6KyP3/R4fk6IvDc6jwkq8NQbqJCnTLqmR\njgtysCUgU0FMBWkqGFJEmkqdPLROJJoipsBIkTHFiFQIIwOrUvDUiZO498GHIAD8zZqnb0YpjA/d\nfyfuf/BRXHf1MZUjaAbGAsIxhvquIjPSJDr02VNn8A//zc/itz76x/WTfdkbPg//83d9K664/Cji\nUBBSQoiMPhoc1d6J9T8CNKA3dCZsY5FklZiqcY7qS/SGp/VK3iuG7PZ7xtqXtXamXt8shQzJrPrO\nVkS1ntEmY6HXpD0F7W+loKllVCjqBsbrG/L1J+memBq7rkzXG+T2Ms7Nn4Ns4BDr47uRpR6MWf19\na5Ugd0ntGUr0e283lPfbAfGmZZ3ogGdkx94Tt5puddl6rkbm7LuFbVD3F5rmlaS5lhWdNaPNnSUu\natPYz6TBpXRR9+1fYcAyi7IYqVBBwmIKW1yKIpG7q88sOKpvry8YpZZEHxCmSSAVe1uFZkjUqMxA\nBp45cwHPnl/i0MGDOHTwIMYQMFIRzTcp6E5uO0WkIWLIBVNkpAhMiZBKllkRCuOhE6f02b9y9m6/\nCgDwiUcfx4Hd3dq1a0AsBVjG6evs0TEgAUi5YCgZf/8nfgYf/PgJeIb92394N777B/8VfvjvfQdS\nLkgLhsQCpw6IxcWoMcmoryM4qmOYYL0WmfqpoHbvoTDsGE5Xyzcwx8qqOsrkkJLccTDjFQOskxoV\nzVAJkHl40Ja5C5nJIaRwsxGM/b0t3/11rMxU34TZczUDm3ezaydzfUbsDcB2zFqj0sptzzscGNsx\nsIZkPR9W8/qsr3FxlwLAub+vB2BPiz0YO6ZMsHLXG6ABIG1B+IUlY63dQA0L4J51IsNRwdiYsHpE\ndF4RtVCpI7pjwjFEcIJKEDJuPejU38Ck84IWMAL6kXRtEfeyngXLthV8q/cz2qDjji+cH/EL9z2M\nh089W5/9+suuwBe95lZgsUCcorDhmCV6VIoYhoRhKEg6RXhKwJAIUyGkpLHJmHHgyBG94nvRmDAA\n/DoAYHdnB88+dxaATqoYZG1AnGLAoECcUkQCMHDBk089g9/9409gE8N+/x/eiY8+9Chuu+lGLCBe\nGi3iGyk7qpylMhR5u7HWoKDshQMBLO5ynu1UCnmxVOuqt843rtsOog67GrAbTTUaDBXwNwBWPceY\nMLdr+lClFXsMMRTwuTHPXjZp561LmR7Eeqjr9V5/rz2SyRB13a5m5b6xYeURvL70L9K1i7VR4tYW\nulcyj0pcv/KcCVuF8qymbtubUGNzLdPO7ZK2Qd1fWNpUVhgA2/TcU9WE8zh23hA1WI/Nrlyt81L6\n7TMbELMroBQCkLNqwQHQqE5AQWCqhbEbuKFA7Eti6zI3Y4EvN9UzrjB+4f6H8cgphmeUj5/+Trzv\nY5/E7a95NUJkpFxkpNBUMAxFdWLGoCOWUyFkBeCkI52YGQcOH8FtN96MBx67S5/zqwD8Oojuxi3X\n3YghLXDqzHkI69MZqBWEiSAAnKJIITFgIMIAxgOPP6UfZTPD/uQjj+O6a65BoYCBm/eF6fBFQdj8\nhhmMyBGxq80iTbAy4drDZ9Nk2/fsC8mGvxhqU3D7PRv1nSVjv55hAyBi16CjrnsA8eZWxz7nGTK2\n6DLi87qGMexP3cQcjbm3Jsrfd9MZoPnouwZ8DQhbfgocIBooW48P7r4dw3UNFNPsN5e3Dlupfaf6\n/H2982TH7ETe3VQfr0oSPggQsJ1t+cUl1zgDOjAilwbAWUHXRsWpy1mAvGhWXctYQf1oNhDDdGPf\nivrKZQUA1BW+ufa7RqLQKqsvmgUtdObEwMmzF/Dws89izigZjKeeuxPPnb+AI4cOSltC4v6ViwxL\nLoWRMyMEicMKFBRMMoDI8suMP/8VX4yf//XfxoOfurPm8abj1+NrvvR2XFiuat6kYULVhwWEC5Ky\n8CHZIBDGoYMH9EqbGfYVlx3B+QtLZCYMU+liwgYKSKUgc8HAIvekkpCCTC3PIYhPdBK/ZuQElIyQ\nBsfo9DtxqUy6Gsw20TPfYLoK7z9Q9cDxLLhumkeAXWO+lNlvtfBs6CE15mbE0a/XprdnXst7Swbg\nXqPVY31Z3ZDm+7m7cA+Sez83uwfwL9SMfAxw037tWraUKv31S30H8mGarGAGS3+uzaozTZhsBh0t\n0RLwR2NOaPkDgBC3sy0/b9pIhJk7H2GbSdnmkOM8ATqLK0Fncg0SusMkWLAVcht1V5CLxU1tlUHv\nWP+dM4BN3hCVR1gvFQ4f9KJCmKlSi6fPLfVemxnl2QsXcOjAQXHnCgwqcODLoFAQcgCjgDlrUB/o\nvbgOyvi6r3wLTp4+jWefO4PLDh3EZYcPgRk4vxwBrcAE13UjD8JZtWEZkJIAHDxwEK+58UZ8fMaw\nA92N1992Gy6/7AjOnV8hF8KUSw1DaJ4Xg85wYuFDS8kotdGUHokA8AQaBhAvdMQeQ8Vrcd2D71bW\nB18HYE8n2fVOHKn1jHsTY1tnX61B78uDgpb212sZUV91X2YYShCUKDBBjbS94au1LWso7LLWyija\no7bn3yP1QO3KvPu7sVFHTKxRmDNeWP9E93ttxZ1bv7/OqFxnQlc7DKvhWupR03Nrnov58SsAj5Nc\nR6Om2Tk2ilSAWOSu7USfLyK1zpGyUx85LcbqCcE5g3MGuICMCQNVh2rFREpRUSZcrOWco2Zlw1rY\nSD88rVe4eaWoslrX5ZFrWINgsR8Wuzv6+x6a7bAjz2x2IJJ4EUED91BmBGrBezLLbwBmhZqxu7OL\naxcLlMK4sBxdo9JYUXCMI1DAKhbRg6N6ZRAhEhCJ8fVf/mb83Ht/F59wDPtzb74F/+V/9tU4d0EA\nODNkWLXNiKDzhFllqUvMLoSnuhDlBahkCfsIncVXAZhiVISxGX9Dw8wNLLgBqAFyz4QtYH0/geic\nKa6zOA/EHmArE7b9Jo3pPq6TYQIctPEJ8gzM0F51zz59O7KWXFE0YLSyaw3H2gi5GUuuILvpmd31\n5mBc31gn39h+tlfsALuBKHsD+AyIa4OCBqj16ux6xY4JF3+O1mObIy/q1EigLRN+8clZdmv0s2lC\njqFqwKIDNyYcYCH5UAGq6leVURsT1uhKNklnj53wlbdjw2gFEkALXg0zDBimUy2bBSJDZJb1sLuL\nqy+7HE+f/k4tPMIogbtwxeHLsbvYFTtQkTgLINk2AJYYDYzARZmyMObWXWseHm3urb4hqTOJMOBD\ncgZyXhExiyathrsYBCj/wld9MZ47fx7PnT2Hq6+8HMePXQlQaCBcgIX6NUfztEhRmDDMwl7AWf0j\nuAkLyCIvEcvgEYYCVYzgkmVEXmXCyoo96M5A2LO9nvf5DnT7Vv4XY4UGPPUdKqCusWCfj8x1Btka\nr0S7LBJqRGUYLgLIFdTnTPj5pAUHumgn1ty7czcBsvtjw/X7BqhzydTX1Mawyb8+VJMj1O46pTLh\n9YXrc3s5wqx88zo8TRPGaZLGZm0UaNBZow2ESRjxPqZLD4RnH7ANE5bwlAGMFIBFDMglKAMLiEyY\nMmFUvT4wY+o+XsaUs4CwCMcgnRxQIqpJKWi+GcYKihrLRYO0Ke1tsk+vfxpItqRR0KCzPBPwBZ97\nC+792EN4+nRjlMcuuxJfcNttWAwL9QkW8Gr+walzVWsFT4LoeM0sOzC2rl5jH1z/tgrVqpJQslIg\nMWXBYBYQ5mKhiQlHDh3EsaNHMKSk7zQieoYSfMhGAYX6vggAMShmELd5oiNIYlHkiJIjShFdGCUj\nlCweMiVLRXeeLxX8ygwU5eN13fI2QK6XHRh2HUO/AjbbQdF1/buIK6TZFTwgFzkO1kvL6q2jrJgd\nCJcYdMAQ1eu0hoMra255qgVSWaYNy29OY2zPSNB33rQXsrLMnpnOp//yQKvv0v/H6wy7I8Nr9dcx\n+8IOgLPOcJNreTVylEtGzo3xiu47afhaH/2wMeZQZa9Y4w/bBKEUdYLRLQi/8NQxFjbWIR8OpSCg\nVABGisgcMCEgIyBzQFA1uLDEYoB2f3MpmErBOGVkzhrVi1q8Ua0wVshJ7y+rAg5a8LUbbCF/QyT9\n8DMQ1qhovRuO8IWdxQJf8nmfizPnljh74QKOHDiEo4cP16lcGuDqepj9nZL6QrZZKDwTzq7RKaqB\nFyvkOcNrcr2+qaPWwABncNHQ2FaxGUAglGKLMu4qMzTGWAqDqNTeQS4ZYbLeAiMUcV+L0IEbanT7\nxKOP4dGnT+I1r7oFn/vqW6VLX1rsCiIbCNK+T/WdKv6bNSCur19ZljUunRdraaAKHaHJOaNMWQcB\nyd9csgPhUt+buVLylMEql5VpakCsfuyFAI5RQDgGlKCueI7JugpQs0cqc1S3vc47QAcbBZJyGjQ8\nJVAB2Mcl9utSZuDrXlvNgl9q5rwmPHuXXf11va9qVGvrbI13cds5Y5pKBd5xnHQeyRHT1GbEEfVB\nWG+KETElYcAh1HgoFGTEa4jzluLlTZcECG/qdNXWt7bYwoQiAYtICENERsSEiMwZE+tkggxMRd3G\nmCuLMiY8lSzeAEXZGTwIe8i0rqgAB8M+PLqg0wbEIQaYqxpBfI2bhqmihRYcAuHyI4dwxWXCKIeU\nkNKg66R+wQPSYL8ZGMu2xd8lnUhRerute5cdk6g9gKm9AyvsFaxLRtGJ6Yh0ehiILt1EbwAgxCLR\n4yoAG5iXBsjknRiIQRkVgAkFFEOdASQQ4fTZc/jb3/8v8N7f+3D9/m/7ki/Cv/pn/wDHrr5KGHHO\nwrADwyK11Xj5NmVDBV/9x5HI6ormBn8YRlcmazGmZwDcg7Cui9eJ1d4wTuBpRBkn2bbzcsYnH3sc\nDz19AjcdvwY33XCdgHAMtcE3q4Rnl7UsahQ7sgBUszUTwJHAMdS1ge9ciqj1y0kETQ6ZM2FbGhue\nSzg9L3Y9IOuV2H1m3g0NhK2XKv7606T1tILw2EC4FOTM+t1c0PeUkIYBUQkKqo+w5m7LhF9Eci1w\n06VK9QMmMJLGO0gpYOKIxAETExIHEGvAG1LLumfCOWPMGblkkIYGCEEKlBkGAPGy8BVaGgL7mx0T\n9tH/gwZWVzaF0NZmxYdpXQZAUoAWwwKLxYAdXQ+DLH67MWEBYagMYUDM3BhwyYxcmgV5nFp3Tgr5\nVN17pmlEDsA0MbLv2tbuuQwW8yBcSkAuGbEElOKZsMkeyoILYIF8soEwpIdAJbZ3RwHf/cPvwfv/\n6FPwvtO/9oG78W1/9x/j//yx/6UyYtHDUedEreSRxZOEHYNs2x6EGgB3gXZMLigmPawv7OUI15Ow\nHkGZcgXfspIh9TxlnDz9HP7Ov/y3+K2P3Fdz8SWvfz3e9R3fjCOXHUEXkcI6HpXB6t+51JmSKZtr\nZq4NB4jAQ0BJAZwimP38h00T3uRx0A/Bt3pnckKrB66Kmgu+E+7W63EFcpMjnFy2CYQrC865llNh\nvw2IVWqXy1MD4ZQGDMMCMaVKGuwYAJ95cgQRfQWAvw3gdgDXAfiLzPwfZse8C8BfB3A5gPcB+A5m\n/vifPLsvJDk9rIKwFDqLMZBUjogsMkQsEVORqGarXBBrt7oxhmphLUVnFEAdwozCVaPsndA9k+o1\nqBjNH5FaTF6W86Xckj9RCg1Rm0E2CLDuLgbsLHaws7PAzmKBxWKBxTBgsLUyYg/ENhuxGC8E/Dvd\ntxRXgJVRTGMHyvJ7lHUMGFVyMaNe0XjMQixMKzem7zgSc/+tuEDCYOpatdCSJR4BEUu4UURkAJ98\n8im878N/hLnvdC6MX/ntO/HHDz6M17z6Ng3FiTYwUd2EqbqG6br7aPYHtXUlyy2qm3WVjemW0sA3\neyZsmqT2IjodfsrICr55tUJZiRH5b/3oT+EDH3sCvoH5wP134+//yE/in77j2xzYcgNgBbi6P0uc\n6VCyxJtWvVzKdhYpYoooQwSnAB7imudLI7DNGM1mEFMgzsXLSsaAHTAzzAGpAvGm+lurr9OSq/zh\nvXjq+3Oua7nXia3nNk3a2KDVJTPCGRNOKUmbipZ3AFV23K/0UpjwIQC/B+DHAfzM/Eci+u8B3AXg\nrwJ4EMD3AfglInodM69eelYvkmZ6RNWYnAYmgzK4DU1MEYEjpqKzPJSAnAmJJDZBYGEOgVkHc0iw\ncwoB1TkiiCZZgjICEDi0FtzqrcWdkNFkqbJT04KVULvPzrWLafKFgLWcn2Kq19ldLLCzs8DuYkdB\n2LPhRZUnUi1oEUSxGuUkZCQ6PbZwQZ6cHGHAW9mxdfFWbj2ofpzrWnTw9k1IG8AUA1KQGTxCBWlx\nFyTO6jkSqtdKIOfh6xUDIjzy1DP6wx7xLh56BK++7RZwluHPJXCbMU+/kwFxd+36HSq9dGXKjGXa\nW9KeVlFm2cDAtm3ofFbvnFy1zGKa5jTJaM6VjOrM44iHHn8C77//fmwa7v27992J+x54BDdcfcy9\nFBeQxtYsMkRQFhyqFCHufI8+dQKfevY0rr/2Slx//BgwRPDQelsSFyQ0cKemF5v8JvcmjHnCOKk0\nUFhm9+bmYmmAbKy9M9R5GYNbA91YNmP2ZbrEalUUEtNG73XHUutNggJilLrUeomDxOjmFusCJqHs\nY3rRIMzMvwjgFwGANgtG/x2Af8TMP6/H/FUATwD4iwD+/UvP6gtL1lvUsWYaxCVLQSRGDDIWPHJE\nKFGs6jECWWaZiESIEDmCOCsIi5acTKg3ENaCGQpLaMsibA1ADbwO6P1irB/cQFFAuA128FqKGUAC\nbFCCgNeQEhbDgMUwYGch7HdXWfDuYoHBgfAwDBiSacND1YWlITEjhHS1pIJInmU+urzmVzna/HzK\nhFejBMdfrRLGMSloT3XtfWOtW5p0SLM0Kqi9Dvte4rtNlTlXQNFvSxUshdHcePxq/fKbfadfdeNx\nlQpyDWxWq7OTI/qdbSWtoyvmXMBTBrIYzqCNTZUVrMuszDCrsdNilGRt2IydNZ3dZgGfanjVj3/6\nSb3pHg3MY4/j0IEDrbwwVwJi64AGwqGU6kt99tx5/PP/+734/Ycerld942234B3f+NU4fOSgm/7K\niIKxYjciDW0bROL+lbNor6yTatbF4mCj+s/biLYeUvseUvM77j9L9/nsb/a/U/20dqw0TKFOsRVT\n1PgqDYizBdcyzxQD7X1ML6smTES3AjgO4FdsHzOfJqLfAfAW/CmAcP0sVvHVxYdUjohEGAIhJQXh\nHMQVJUZMISAZ8zIGwQUR4gYVrSCqu1RlsIGkixQYVEQrZGVQDDjtSSKZGSNNMdZrVRHDlTLPhDkQ\nYpS4DDuLQdnvDIR3FhjSZhBOqRnqzCG9WoNrZxbKUHpDXSnO2myB8ccRy9WA1WrAapWwXCaZxXoc\ndS6/2ILkO0+KOhAjGhPWBg/yjcxPiiAMzNzQjOf4CRiZAm654Ti+9I2fj9/58N3IhWG+0zG8A1/5\nRV+I2266Xr1jqAPgAlLDnAEw9zXcFyf/Z87AOMoyTeBxbFIVix9zKSKZiH+3gLBp7JM1ZG7obNfT\ncMcdOXxY77q5gTm0ewCnzpxrgxVKqYWoSj8sfuFBy3IoQkz+t194L+5/7Cy8zPHhB+7CD/67/4jv\nuuNtbQosHTRj3XcfX4EoNG+CEKoMMFWJoJ+qnlmm5arBh7wkwbN6O2PBfjBGR0zZfUL3vfTpPSK0\nxsNkiBgRYxJGnAakNIB0kl+GNvjotfD9SC+3Ye445HmfmO1/Qn/bl+TMBW7FyoKtcosckbRLvCD1\nA0zCghEDxhBkhBcgI+nc6CthwoRi0dVImBxBcD7ozMUhCKN0WFFH30TnvRBTahNuEuD10sZqWsGx\n+eCGIWGxSNjdWeDAzk4F410HwsZ8RQ9WrwnVvFIaqqYcdC3T2hujkTfaXJCkggtQjBWIx9UKy+WA\n5SphuYxYLqLMWDImjKuIVVohT6FqcyVLcCMLjmJMWHoU5j5lkkQBWVh8k8RhTNi+r/zAIeB/+u5v\nw/f80L/G+z7UfKe/4gvfjP/jXX+zGWYz1craDWBmVJSYVzXTfH3RwjQB4wheLoHVCjyO2tUu1bVR\no41KsHxA3BuV4ZrLlIHu6MBXtrP8nTMOHzmM1916Kz764F0aGEoaGKK78Tk33oLFsMCzz53r9FEp\nN6UCGUGANxoYc8GJ06fxkUcfw5rMwYw/evBOfOKRx3HdscvFdSuoC5djxG1YeXQ+thHMqOy/aCPk\nWXBt6zwAd42c57vN9dF7XMyP9iy47fPafQvwA1BtMHqXzrYgExhSVotFO/xMkyM+k1PVwcgkA6ns\nKRCGSBg4YAhB1hxBJUnLlwegZAwp1whg1mWWcwOGFLHIUUafkQ3ZFZC0ETusha4LSq6s+8COgOTu\nYoHdlLAIAQMBCy4YsoF5cUN0WR9ELNYg8RE+sLuLA7s7OLC7KwxYPSEWQ9IoZi2cZAzUjIzqIcCZ\nxHhGGSEHFHNahr682o0z9qoV3EWhK+OIMq50Wepa4nFQnhBKRiqlNl4cCAURzKzueC5QivppWizi\nFKmy5EhN+vEhM6MzaAYCjh4+hB/7H9+Bx548gceefBqfc/ONePWrbkKIyemKRbTCokKHWYg8jdLa\nKm24q/Hc9rEatZoRUcFXu98ZOrsJM0bWdRZD57gSEF6txjqIQDRUB77ThDHLdi6Mv/L2t+Inf/5X\n8LGHWwNz2w034xve+mVYjlP11bXeRscmUVQTVmlNWfBjz57RK22WOR56/BnsDosKvjHERhgCIVL7\ndsIoZbs1aKzGOmnwiqMYUIM260hNbelQgbcah+27oa431HYpr12nl7XhZ6jXaJUgKvtNCTGJS1rU\nfXXAlPYmSL93k8r2L73cIPxpSP6vRc+GrwXwoYud+M53vhNHjx7t9t1xxx244447nv+ulcCp/VbB\nMQYgBTgQpgrAAwAqESgRKAlUBkwpY4gJgxqOUoAAsC1JwyeiATAAZb9t6bo6GtpxZ0jYHRJ2hoid\nFDEQMIAwMGPIGYB0W4NpiWCZ8idGhBRBKXUgvLuzg92dBRYpYWG+wSpxJG08IpF25aVXwFmZiTUQ\nxn59JYHVIed2VQrKNArrG1coNimqxWPOss3TBExS2VNtSPQDqcN7UA0+pMaiYgzdrBzClFHzHysA\nhzUAbv7DwK03XIvX3HIDkk4iahqziPWqrdscZ9pzryErFYzngxIEgN22jsCDA+GsIPyxRz+FT37q\n07jx+DW48dprMBbGWGSW69VKQFhm+B4VfAWAc84Cwg6Mx0kMdjEE3Pl1fw5PnjyJp589jcsPH8bR\ny46gFMZynGAukOaRUB/OgK1UdBKAKRk7OxePQZJCwLOnz1Xg9fqwgXIIoQ4vNxCOAGKR+QWDBoMq\nIcoovxDFDxmxj6Nk73cmQdSl04Md8KIvt0aAsoFw1tCZ5g2hvdEQBYBNopNBGqFKLU0a5PYO11uA\nLt1zzz245557un2nTp3a4+j19LKCMDM/QESfBvA2AH8AAER0GYAvBvDDFzv33e9+N970pjf9ie5f\nu++gnglH0YEHBAxgLBhYAKCSaswBlIxhSlWr9Uw4pYBFiWpwMBD2XXdjSrIt+qvXZSN2UsAiBuxE\nwoJhv7cAACAASURBVCIGDChIkFmQBwhTm7TLSCpFxAQp6IsF4s4COzs7OLAjAHxgV7whBg2kbkt0\nYJYMqJiFvUHAojXsrdtWu4u2bcYsi7U8juBxBaxGYFzJjCQlqwdAri5alCeELIZQMXBSN1MB6cgk\n0obF5qSz2TmiDmCpAePJB9an7vlssIZ899aMNPdC8be2YP1UmnNc7WIqcJn00JiXgoK9KsPhktui\nXeWnT5/Gt/+zH8GvfajxjC974xvxT+/+Vhw4cACracJqtcJqKSC8Wq0UgMWDYlKD1jiTJMyoN+WC\nwwcO4MDOLgozlqux11u7pcJSA7XCMiOL+ikPi13ccOxqfOpEH4OEcBeuu/JKMAMnnzsnjFeZrwdg\ne/9RPXxajA+pW7YOFMBDAqcBPEAaQXAX2MqYcKf9ri0eBxWIzZdX/y6QapyLTFyQS6nniXatw5Gr\nIU6BuGPCzUhe7QUvAIQ3kcV7770Xt99++0XPs/RS/IQPAXg1mlByGxG9EcAzzPwIgB8C8A+I6OMQ\nF7V/BOBRAD/3Yu/1ovOmi1Vez4RTJGGeCBgAx4QTzGWnsclQ2WSKhKEETDFgkSKyAa6J9cquWjee\nsFgIYC4WO7JOEQsChsCyJkYqkKmFmJG0QgcuGE3LIyCRBkpfDBh2d7Gz60B4Zwc7i6GCbVLNuLIU\n1V0lm1rAbQ49Blokr5lup3+zA1YuYoyi1Qo0rkDqwyrWbwmukxXoxZhpGjwqwEYdIkopVQCmIblw\nmE1yMBlH3FO5fstYpYhQpQmTn+zbd91x9TUmkyJUqLc56FgP91adeajJVv+UIc+lCBR8+/f/CH7j\n9x+EN3K9/8N34+/8rz+OH/ibfwOrccJqucJyucJytcJquapxSGyZjA1PE1aOCRsIZw3EJIZOrq5f\nrM8jjSe1vDoAKRpPoQ4c4Ywveu2r8Vsf+RieONlkjquOXo433HYdnn3uvDR6ZoQjapJEjNpr0Rgl\nOvApxYAdAAcY2GVp+FOI4N0dYAdg0mBKHoChjYY1HmyDV+YAzK7xtLrXGLGVaYl26JhwaUy4yRGp\n8wu2GCuNCVMrR520s3/ppTDhNwP4VbSi+wO6/18D+DZm/n4iOgjgRyGDNX4DwNv3zUd4j1Q/k/aE\nrUBFBPV2AFgZL4eg27KI9CDLVIJofLrdBkxpASACoR/8sBgEhG1ZxCjMlwsGzhjAiG4x1mINyMlz\n53Hy/BJXHyMcP3JYfH+rN8SgS8JiSKqdKmsnAa4ACABlZbamNbuRWnWosOnZ1IIFMaBhOzO4iF+r\ngPASYbUCrVYoecISwIoISwJWUGOmeaKoe4/ID4SQ1OBZtfIABPMOEd9dA1PxG95jqTqdurIxQYIq\nlNkioEszFmy2IL/trTubWFgFYH2vRUcHMgF//Ojj+LV7P4RNg0Xe/+E78eBjj+OaK6+oPtd+yPf6\n0noV5j885dKti4JN1nXzi/XqJWs5bb7fppGK7Y5AacCX/tnX4fTZszhz/hwODAMO7oiv92osVeIR\n0QqIoWjjlysrTublkkTLH5kwgcUgycCQEp567hyeWY24+upjuPbaq2G9yEAyO7iRhCY/COh2hjy0\n7VKlB9R3URd2g46sF6NSBIiq/tt0YB3CX2W4no1LI269i/1LL8VP+NfRqzqbjvleAN/70rL00hLV\ntbVgzaJuAru97qDAVUjdoIxZkbHfiEUU7dYYyFQIYySR28iMDeK/K4Ymc/1KGBYDFsMCw2Kh3giE\nmLlaqClPOHHmOZw6dw7HDuzg6oO7KDHg7GqFn/2Dj+OBEyfqc33O9dfhm7/2y3FoENBdDAmLZI1F\nFJZYGYs+Omf1WYaOfmsDLKZx0m4pA9l8IQUQKUQgyrDmrMHwDRiwWgHLJbBagpZLlDzhkTPn8PjZ\n87j86BEcPXpEXaCUDZeMFAIWw4CSrOMYQJF7Lwc2390mJ7BmyczoxEVd/8yCyUDWCVSzdm+zNiQa\nJMh8VxlyjhniKgt2vr+eFbP7rxYitvxplknLABEeeNJMH5uNXA9/+kkcO3pZjV1LEJdF+0sawObu\nOPeZlmBILZKaB53snsMPUqhT2Ot7rSCijLAR5YAjh4/g8MFDsEiDgSIK5eqPbQMWZJSzzMySSRrK\nMRTECIRRel0jpDFeAiirCf/X/Q/iE8+0svxnbroJf+3tX4GjRw7VgU5AI5proAsfXtYGYpQOfKsf\n9syobXEqAgWIDB3UHS3W3mJwPUUz3JZiQX6KMmn+zAPhz/jkupZgx5zYvCa8XhyQOz1SurvCgiMW\nSXTgqQQMJWCwqGmqOxeIi1Qya2sckNJCZY1B1wmJgMgFoQDLC0v8zL1/gAdOPFWzfNtVV+Eb/pPX\n4Gc//Ak8+MwE36395ON34d/9yvvxjr/yF2QYsgbsMdnENNMIndiX1cKshWgaR1xYLrFcLnHhwhKr\n5VImmstZ1lMBhYgwDAjDQqYFilG0SgtcVDJ4tQQvLwDLCzjz3Bn85O9+BB996un2DMeP4y99yefj\nYIqIGkIyxVCDuwSKeOL0KTx19hyOX3UM1x+/SvAUqF3nwMIuKTQ5oelzui4ss06TraMAcBDPh7oo\nra4smLLiqdcSARtM3SCZZwvcGnJfQo02dvMN1+kvm41cx6+6QnoUrO5j6mdeJ4MNen8Nwu8NqeZi\nWYMDZRdvQg1PPRPW57HuusneDoRt7DapXg6WGQDa5KoFoNgZZbkUDSWlwZSQm598aPLfCsCSxN7y\nH+9/EI/N5kL82KN34Sd+4Tfwnf/FfyreFWC0sFVQ0EdtTCoQ63bR3831rQKwxpAouXfVEyWCpO9L\npKNUY2eIE5uOvFPA+8cb+G5B+EUmV2nce5N6Y92r5uNrjDhTi+ub1BNikSJ2BgXhXDCq+xQTkCEg\nDBImHFPCMCwwLHYwDDJUWEbHqcQBRiwTIoCf/dCH8eCJEb5wPnDiLvz0B+/HoydPYm3+OGZ87OE7\ncfL0Gdxy/SFxRVOPi0GjXfkBDeKvKi5lU85YLZe4cO4czp47j3PnzuH8uXOgqQCTxBGgKYvFeGcX\naWcHcWcXYRgwKviORefiWi3BF86DlxfwE+//MD75TOmf4Ym78NPv+3385S9+vYBwzlikCGLCudWE\nn3r/B/CRxz5Vv8kbbrsVd33j23HZoV2tZMr+7DMq6HrGrIgtO4sy4CJ/cxZQ5Bzq7BPyfbKTI6hK\nEM0rxLrEVZzAHIQ9C4bKEBLbF7j15hvwlbd/Ad73oX6wSAjvwO2vfT2uO3YlxnGqldzih1QAZslr\nHYXphQU2/cC0eTGsmRuWyBFwZ7Ry6Ud62TEtgpm+QwugURhEWSZVpYJABRmiHZtzBapB19Z6R2ow\nmdSOcX65wqOnNsyFyIyPPnInHn/mJG689iqYZNu9ccbaM7EZ3tCGQHcMOPc9hGb0E+MtgvQAqhSh\n+nZ9P9wi2uXc9H5WOaJsQXjvRO4/AF0d6vXDBsA2tXUNJTlnwgrEiyRAPGZxMRqy+AuzFufJrqwj\n2dKQJGjOzq66ibkpekpGIMKzZ87ggaefxKbC+Wg1kGzu1j5z+jm8+pYbOgBOFnIQEh2MAJRsRrUJ\neZwEhM+fx/mzZ3D2uTM4e/YsaMq6FIQpI6YBw+6IdGDCkAvCYgdjUX/VIkteXkC5cB5PP3MSn3hm\nc2Px0FN34omTp3Dl7gKxZCAnpJDwng/chz9+cgkP2n/4wF3433/6l/A9f+0baqUWxtHiTXgBl8wH\nVvV3ZAWSLGP8gzLhUgJCkcYRCsBMqgur9woxSZA61SfBaFO+GyWrUoQyX2NF9p/KERwIP/T3/lu8\n4x//MH7z3mbkevPrPw/f861/uXbzq9cCqRzBpbFY7v2hyWniwcoxc8eMLXZFHeloa5ImmSwCn/ms\nQy7e3BANwKUhI47gInJZKQWgCeBJexiTYDA3w6Vp7xIfRGOzqDT2zNlzFy3LT5w8heuuPiYBmbi9\nct/WzvsjzQ1tpgdn1hCVs7nnrL4Hkp5eDdjeRvnVT+50YJMjuumoXAyU/Uif1SA8T36WVRtSGcha\nvqgWdqi1vskKZnwgSCFKQdy+FimKQSSnOuMEUcGoJaUUOAOXhczM2nXSLmW0KGwZJ85e3Ele0l7d\n2iurpdoKewxU3dkAtEqrUgyz+B8HImH4i4SdaYGYxI8zZl2nhLSzi6eXI5556mlce+WVOHbZYXGf\nKxILoIQApoDHyrMXfYYLGTh04CBinrCIEWfGjI8+YVHA+tFZf/CJO3Hi5GnccMURhKmA8qjvLAMx\ngIsEMKcYUFiAhRHAFOElYhBQMqGoi1FRDwthQRrNDazD12XwQnCGVJtlBIQqTbDXVVVKsIh8zcAp\nHgeXHTyAf/m934VPPPwYHnj0cRw/dgWOX3kFVqOMLAzKGIupBGqBrf+RnyOkgMKAGIAhxxYn18I2\nFq5xcXNx3i66Jgoyr57KCzKji8bu1DjSfjivPJ+5srVogVmHTtu6TC2udtGA/6WIzcCMuHbVA4uL\n+yFffviw5L2wxC/WjDS61JqgruGz/dw8erIZ49jFKbHyj2acJ0I1shXWkJ7UN2DGiBsA408lXTIg\n7ANQ1/Ht1ehmPo7kgBgtMEnVB7UqkIys24kROZnon0SoJ9FRi/rzsjgnthkTsulnBaTuUYAA9OFD\nu5rbzYXzxmPH8Ngz6zMSv/bWW3HD1VeqJ4SPPta8QABU3bvvyipDiRGLIYF3FohMSAwkXZ+fCv7F\n+z6EP/rUYzVHn3/zLfivv+YrcHB3F7lwnVr+5mNXXvQZbrjqShw6sIM4TRhixKdOmNP6ZtB++uRp\n3HrFZdIlHicJjJOi+BZyASPKUHEOsoa6OZEMKyVjw0TIynBKtiAt0u03I1PzqCgCfsaIOCpOBZUa\nZnqqq7ylNrbzdcbN116F649dLoMyxqlNOqrgDsVBA4dCrqzCNNmEEIAUqYJum77HvBy4bhtYFO1J\nSGMSa4Q8ChF1Kpe6OPBx4GRGPC7cAXDWYdYW0yLr8PVJAxLZNEI2u8yBnR1ccfAITp77TsjTSlkm\nuhuvOn49Lj9yqIa9pIp0xuRNSgoiM5EHZQVgoAGxaeTmHcGtUWo6v12fK9CaXszc7i0TA5seDHSa\n5j6mSwaELXkmTCRBvyOZRVTA13xOc+2qNf0xVg+JoIa5VvDFEJIlMEvR7mHHhAtsLjNigs0ywZBh\no5cdPoSbr74ajzzdAy3R3bjlmmvx9W95A37+/R/GA5/2MxLfjL/xn39NMygGt8xBGAbAQtWNwUml\nFk8FMIuvNAUMFDEg4Id/8Tdw3+N9MJePPHIXfvyXfxN/6y/9eYkNrCPdLrs24c8evw5/9MR6PIPX\n3HATbr72WoRxhTCOGELAjVeZDXwzaN9y7VUYiKTBGCfwuBIGzBEiNBRAJzISkGSIY5/8p1xQejWB\nUIIMxQ5B5mET3cG5txX91oVBwaLoQbvrXAGKVGpibt4KHnirzKBufLUXlG0W7wxz+As1apjmWmOO\nkM7B17x0pLeWImHKQUEGtew1P2EHQGzT/yjDU+ClYEAcpbBQrOAMc8symgiqxicD5MkBb7bZKVYr\nGfk3rnQI9gqrMVRvjELqWVCA1153DT766afwzNlWlm+46hq8/S1vlOhxCsJhhnNNODSppXe/Kyrh\nmDYsky6491BlLY8Jrd3xRjhrgOQHeQfZGlbPhPcZiy8NEK7dPCdHmNbrR/p0LBg1ZqpxYeklqhyh\nvsM5uWloIFrUlBkrGBPm5kJkMygwo7C6vxgIF2HEX/2m1+OX7/0IHn2qFc6br7kWX/eWN2B3dxff\n+LYvxrNnzuH02fO44ZqrcPP11+LQwd1eu65Le/z6GjQ2r3WfgVLlCAwJgYBFSHV5+vRz+INHH8VG\nueChO3Hq3Hkcv+JyGVwRE0Ia8Hf/3Jfj+/6f9+K+J9szvPZVt+K/evtbcSgSwiohxBVSIBy9/HK8\n9obr8dHHvh2MxwF8E8xw9ebXvg63Hb8GfOYMODPKOOGRJ07g0fMXcPyqo7jumstRqECme4o9+JLO\nuGwdVXW/KmESIC5BY+dKo0TgOsUPZUbIIhXJdyeIh4AZylANe5U0dnJEG8RSJ5Etk1sMiEUeMg3Z\n9E0A1UWLWe0KTMglIkZSv+5Y2Z6XG+ooZGPA3OSRGrckeCCOCsRJWbEBsbnxOT/Z+qhcQ2raerVa\nYbkU75rlMmGZllguVfJQfXYCgXmSIfch4fNuuh6FrkcuGVcevQzXHDuKGIKG7nS+vHpjM5bKHIvV\n2gGm6puBzkhnDdRcw4Uzpdo1neQABW47pGrSjO5af1rpsxuEPQ3sdpvW5kLXUXAsuB991dYRqaRq\nGSWSlteWDMKqMOLECCEryEqtsMpYcq73N90v6LQbxIQDB3bw9V/6Bjx39jxOnzuPK44cxrGjh5Wp\nS6Nx9eWX4bqrrsTBAwfaUN2ZFGGtOwG172WNiMVYSDGCUxLgjgHTlFBKxiIkDFFA+MST5se5h0Hw\n3DnceuMNCHlCmDLOPHcG7/7NX8N9T7bQIP8fe28addl1lgc+797n3Pt9VZJKpVLNk0oleZAnjOc2\nbjM0nWACnRUCLCcIAw6mG0ukGU28SALYxIShcYMDxh06MU2WwUkI0B26OwbFxm5sjLHj2VjzWJpn\nVdV37zn77R/vsN997q2yhV2sSEundHSH79wz7OHZz372Ozzj6CX4n6/8NpzfZWHB6ll38vQWfv4P\n34vPuVXEjwJ4A4CCFz7jmXjT9/099Dmh9B0eGkb81B+8Hx+++VY/7wsuPYwf/ZZXYMf5XWNaKGZH\nld3UZJeRraonpC2IheYig1VY0G2GYYTvERYNAwCPgyx8jiPGQVISjYO+17/xqNkrLIOFyyKsi4O2\nqMX1PvUzh4t7ck4FjWy5EJXFFqg1CLIuUGa3W8/ZgLgDpc6BOKa2amOHwMHIMqlUEJYgUVt9Rt/L\n4rAnJtCkmMNyieWQkIYBS62n7fMe83mPjflMAXPi6ce11OuQila7DotxdQGtst/R9mAvbKQpk5wz\ngwGzH081ZkpLYeC/a+zCcW63JzYIh63pOFpsBsTJmLGapuVsNsFds3edLGSBWI7PMrUdKWGEWET0\nY0GXR3HH1Wt5B9Xg3Mkjk2kuuETaCc3jjrFrx/nYfeEFnrmgZs+g4Kev9xn+ZgBc+QuMPMhbBdyu\nkwhiKRmzUjtKZvQpS6CilHHJgb16kvVywaWHD2Lbeds1KDjjn7z7D/DRm806Qu0/b70a7/h3/xE/\n8/rvAVSKoOUC//xf/TY+flN7bKKr8JzjF+NtP/w6UE7grdMosxl++vf/Mz5yyyPNsR+78Sr8/O9+\nAD/73X/TYxbEjLg1Wh3VwchmJxYCMSxcymwpiR0yWBawUsa1t53ADSfuxmVHD+OySw5VO1urX/cw\nFAAex6EGL7Ipu2qoAsR18YqL2mP7SnvYTaNEyGgS9d5Sc9KJzBGkNmhs3ywgjCQ26548ILRr5A6U\newHj3AW5roKRA5wUIYZlh2Vv8Y17LPoOfZ8w6xNmfcZMwbhTMO5ywmLRYbFcYrFYukOKhcMktU4R\n2Y+AsBvc1RKPdsJhvsMxSLyWlwNxzAU5iMWJ/i1p+7cZctNuJuUQ8YNbfD5n25MGhFe2iUThqVp0\n7zKh5IzR9k5YoszQCGmUQDIjCQMeIbFhu2FE7obqa27sxpnwIFNl9caRuAdiHB+1Zwtq48zOpBMi\nB98uk4OxAXBlg2F9JaxtWAB5m06lnOrCi5rudMmirWVcdv75eOkzn44P/+XV6iEkGm9KP4AXP+MK\nXH7JUbFjBeHWO+/Ghz//l1iXbucvPnMlHlksceTii0HDEjffdjs+cu21q8cy4+PXXYk77nsAR/fv\nBfc9bnzwEfzZtdevPfYvrr8SJx54BEf37nJZSabbdSpN0A5t3dVdl40hs7NfkJU98MCjJ/GaN70N\n7/nwR7zZfP3LXoLf/Nkfx84dF9Sy1dmO2OhqHQ8DxuXCs2D4vhSGbGsEGM06pi56VQCWBTVndBqA\nRiwgGDwO4GEED/JKgDDdEJBGikCi7VGfPet2nyWgf+4UgA2Icz+xIqI6FdepeSmMoZfErhZec9Fn\nzPqErT5jNpOY1hGALYVXzsnbJxcWtpwSElJdnWTA9BlmksVVEKo9Q5BGQhWwlVWZgrEGOlIHo2Ec\nUYokEChckFSaMhttnx2nBCKLcZ3qtHIKuk+B8BfeIgtuF6kMrEwjTlWGyOpL3ll0fcnflkqIWVuE\nAY9MGAAsGej7EV1eagUCK0yYBuQEsJpUGbN1AIat/9R7A4LO6yx4DRs20PbnY39Ym0oKg8/oAFBK\n6EqoYkXtGglLWMrPvf7v48ff/tv4009Vjfelz3oO/vnV343N87ZBjN4z7r3hJv3reuniwcdO43lP\nvxg8DHjg+rMfe+K+B3DZ4QMo3OHEgw+f9dg7H3gUxw/s0cSoNVN0HIms/0SwcxnAy0vKB8rIXvOm\nt+Gajxj4C/u+5s+uxnf++M/i/3z7P5PzqkxQg8OPIbayJuYcqtWAMOFqwuaZuOscHOZ6W8EFPlU3\nAB4Kg5eDALBm8hCLjizMNhWkTuMzE0BdRtLUVrNOs29rtojUKfh2FYQ9TZH2GLe7NX3XU1oJqC1m\nHRaLjNkiY7HoMJtlD9zjbdXSdWldjOOof8/VCskAWBfYRJOVqRwpEK+yYANgrICvyREOxKOBcEHh\nah2VxtGBN6k8yRpKlSBrANHduzYqPAXCZ9tqfquzHtU2OquEXNmEAVLJWVESoEKgAnRjQR6LMGMz\nafPpb9uxoB0VrFkhEO15Tcus9qHynzLmFIKWJ6qSSfhO/g6XJMhX/kyPkIEGUG04eGnB7zu526bt\nF2/bxL/8idfj5jvvxa133YsjB/bhkgP7ISvqssJOOeP4sUu0TNdLF1c87TKcd8EF4HHAMy6/7KzH\nXnroALquQyHGJQf3nfXYS/btQqdhL1NO/jxVO5zo49FOydiwHmvM+dpbTygDXg28854PXonrbroN\nx48e9AGWNaKcab7F4ykvBHgHkSpYTbWcCeviYE1BZG2F/BYrK0QYSDRAzzCgLJbgxULkr9wBqeCu\nR0/hvsdOY9/ui3Bg/8VIZQRzBnQxMDGjA6OHOYioSV6Xq725tmcAjVYrICyRA/tuxHIc0WWZmXVd\nQtdL5LR1U3ozE2UGhmFs2rC3+wkYWxtmChDIAYCnerAPZCLlMNhjOnuG5aIpnVLNBlLNVbMk5IXI\nUzZrVJm9tqfKcc7p9oQG4XWbV2OYilrlNYwIAUztl+FYi73g2YY1LY0FwbFElqVYGiQ5b8Nag4Tg\n1+Va2fYK6xSEFdC184lVhC28VW0YAcytAxNJgxZdTv9mz6psuw5ENQvI8UP7cPzwAVg2WjP6B4nD\nxGVHDuGVL3whPvDR1Xxur3jxy3Dp4UOyEEWEy44ewle/8EV4/5pjX/68r8DlRw9JRxoJl19yGF/1\n3Gfjg5+auv5ejZc843IcP3IgDKLyzDadtzqP2rDXqaKceXtZWTERrr/j7IF3rr35Vhw7tFfiJg9V\nBy62+FaC5MDBzSBIRQSz3y2osyWLbSBsPCsjJBu2laEhE4ahYMBSY4BIYKRTyy381oc+jc/dWRdG\nrzh8EN/zjV+F7Rdsx7zrsJE7bHQdNrIkhE2zDaTZHDTbQJpt+KKtBWOXgbvG1GAQwMWfKRNQklgN\ncc4Ad+DCmI8aCKqEPhX+LYdBOE1o6zG5rWHxFwK5Rg8OliAta446scRp5iSxS5hSVexIbG2861Bd\nyE45i44M9cLUK6TurPHKvuTtSQfCQF1g8P8ZY7VmFtks1SZglWmpfQqbb/ookcgWNZGlpC+vNoVm\nlN+wV1tQo8oBAANibjpsBeB6DvutOZmYiVqyxkOx+aoOpyzK4rbWvyk8EQIjIF/kqqvlAXzja5LO\n87af+GFc9TP/C9735zGf20vx9jf940YeQSL82j/9YfxPP/0LeG849que/5V42xu+H13fSVmXBO4S\nfvlH/wH+4S/+Bt7/X+qxL3vWM/Bz3/8tmG+ak0tVCqfhJp2NWSk7QofZCrF0LSIcO3z2wDvHDuyt\nrFeZr8kQxRmvWj5oy7EZjS82aeAL80azmL5siUfZFqvUzTorCKcOSBklDQAnlBEYliKFvPODn8Z1\n97SxRz5721X49T94H77rVS/DPGdsprrP+xloYxNpYxNpYxvSxqYHlup7zXeYs9d9MjtiM7EjMa/L\niSQzBmcAnRSpArC2MDjV0LbWLZcIoyCAqr8STaB38rH2xUqO3ClDQbgYTaZ6vOT4EyCWCQdpvbO0\ncQ4OIr4ekxyIvS+jgnyXngLhx7cFRZ9tThOVHh0CfYquX8phVU/09OWeDXeJxXKBhRqxj+PgIGzm\nR7Zo5iZlAURR6vRGVLDW1GzqjtycIwJwMgCOkoQ9RXyOacFMQNgbHwVLg+DyasAcQToRLtpxPt71\nCz+NG247gZvuOIFjhw/h+NEj3nFB4hyCQrhoxw78zi/8JK6/5TbceOttOHZgL44dOgCtGXnlDOaM\n3bOL8W/e8iO44dY7cOPtd+DI3l24ZN9F4ghhLqklBFN3JxntqD4drjOOOsWX+SwnuA3wZUcP4b97\n6Yvwnz+8ytS/5sUvwvFDe0UKGCoDNgCuTNiio2kUZq1H9lmKNcSJpjwOSEXAN3FCDrbJnDOQe6Dr\nMaQtAJLDcBhG3PXgI7j27nuwLm7HtXdcietvuQP7L9iOLSRsUcKCEuZ9j7sXI+5ZDNi/dx8OHjqI\nmWbnns17lNkMXd/BEr/CrE+UKCRrOsISAGRfSDOzOYCQVLoyECYiLBbZZwz2mnMN2B+7rBMiDr3V\nx9EwQ3UgtgXOKlvU4D6S8TkRV8sjBojE/T7pgECA+xNYrsOiUg6jqCOQsPdzuT1JQNjYj/4vvDoQ\nu+4TFuso9pbKWqI7pIDw6Flyl5oxV7x+RvEm0wAfrZkZebtN7RwZ4FaiSLRGE57uVCO/tUyYN/HK\n/AAAIABJREFUXFqJdKIFYWpep8GLXHKw9wGIKwiHBbEEHD96EJddcljLzxo1G867jTRKwuVHD+Fp\nRw4IGAXGI+9VI9XXp19+DE87fhgogwDwWB0ixvCeNHQhk5iCWXBuX/yxQghMqqnplPCv3/zD+K6f\n+EX80Ycq+/6aF78Iv/FTP+iMtYwVgOvCm9wXc2DC8bkl4LS3Jx9AyijxFoZBGHBJyKWg44TbHnoU\nt5zawp49u7F7/z5wN0PKHYCEcRQ54u6Hzh575NY778F8sYUtELZAeGg54nc+eys+d//9fuQVl1yC\nq//Oq7Br5w6M4xwoI0rRyH+lE6bYZe8rbo+dCBJ1zaSWpI9tZpjZZ3s2GOacNQfhgHGQWL1pIkc0\nBCk2Va9CduseM+PzOBE2mJPIUyWw4LGUyoLV05I4IbE5/qAO3OYrkDOSgi8zISnN754C4bNtLfA0\nGwerBTcfk+AuRb2SfOXaeVlrumNTpqJi/2IpKWiK6q45d+g5Sb6qkLk1u9xB3oAMfD3jAeqA4E9C\nNcWPgbK3VQqBenzsCPcKBdCmbNa/N5O4lWdtPsOfnxxkQ6jJ5txR7jHAqzJNvXx9XoYTH9iquE9p\nqQZyibdetVaa/N5rrz5trdY6pS2snVE+X3jeefi9//Uncd0tt+OG207g2KH9OH5wnwClznRKBF2T\nEpxJte3ErmcST9LMvubIYQt4YzcgF0IuhJMnF/jZ//in+PPgpPL8yy/DD3zH35GA+PMZeGMDtFjg\nwE5LhLteQtmxfUNjYUg7e9dnbsZ1DzCidPG5m6/C2373D/GGV/9tSdh6+nSIUS3yRJc7ZQ9ZmXmC\nuApzmPWxr0+YZUTXaTTBccRYegDAmIBhKdP7cSjobHHb21VLEdZpxCZLRCcNB2esbuz/qg2yCya2\nppLNoammZ+q7pO3Ofi/u07OnNOHHs1UWzAx3KfYcW6mgZDWAz3GKG7RM1IqiIpUyMrAcCxbLAcNY\nNA6qROrvCeg1X5UZppvmJQRctCvz6mKDF/b/NbqwL+YFO2MHYsTYty2jj95PDkUUHio07RSBFlUL\nJv2NDQgVfJu5PUAGxtZlarQrj+AWf4e2fO0a9uuqGFXWGjte4Dy+EertIJQncZAk7J516kpcRIMm\nqXdBccLxQ/tx/NABXSgM9t7qFedecGV0aweCtBGglju0PAt3SLpCb7OpMhoQC7CnQkiF8E9+9/34\ni4mTysevuwq//K7fxz/6e98MzOdI2zbRlQGXzHo8fe9efP7uaeyRq3B41y5cvOMCdKUgF+D+x07h\n8w+sxvQtzPj0TZJ26dCuC7FI5BED+67zV+pnoFkP6nvQrAcoeWQ5Wbir6yDJrHkUiPu+kxkiGIO6\n0VtAK1/f0PZVgTi2U2vtsWdP1gFWWkRtknUWaC3MOlHQfzX7smWokfCwGW0AaznRLJ9bmHySgTDg\nQKy14UL+OAoDHgklp9bfPFRoA2op+MWPBVtqN1kYIFIzHZAy4V7tjcPCA+l0qkgjsmheskgUJ8cR\nUBGsI4zxBrSxRutIGdhrSt6YVwDZtwi++hnhmUGT38YuYeBrbMH89ozHKsPneq8GxhyYvN8JtbIJ\nu3wUwNglhRZ07fwCxizlMKVRoR2g6L1QAYosu0ynw1JX0QxNd0t4qgG/48JOyrlpMyCNCVEKctAx\nDXzF1XkEFeC2ux7En19/M9YB5cc+dyXue/hR7N42RzcO6Llg2S/xvV/3EvzqH30IN4S4HZfs2YNv\neMHTkDKJSWVhPHR6qX9dL13cfvc92Nl3SDyiJ5IkBl2HZSfR9tLGBvLGBtLmBhLPQblrrWVQCYLM\n2pLkmisZpXSVNUNDupYCKmOw9okgLG3IZxShDmMVtkCMtvE4nNff+XvH4boQly2jehcTOSSbqoKo\nNrZ5n3EutycFCK8KElZR0Z14RBkTOJv/P1UWXKlYADY16IZMw4axqBxRUNSUyFPLOxPuGiasd+Ih\n+xyI/S8tRArzNSki2gPL8fG4VjrQ6S8RYhDvdgWaJu9sSqjPG6bWU/ClprGbgQ9Jg+UYA1b+rwvW\n/oQrALxaYfCBJgCwSwhOb+r0lZvfQf5OBI9gF8BbTss14BIVTe/D8QzeVkyGGKN1hFs1mO213Emy\nwS8EzvGn0fOX0AbHcUQZRqAAdz16p175DGE+H3oYR3YewqwUDAQ8UB7DOz/wMdxw991+5NE9e/Ct\nr3g+UgJOD0t0NCKPjIvP265H/AmAFwG4HpIk/c8AABf0PU4+8giwXKIDY95lDF3GrSdP4v6Tp3Fw\n3x4cPrgPHY/CXPsijg25U3KQKhOmmhqs6zIsA7e0WQFflAQUyQwuv6lRjakW6BnbxYrLd1iUA62R\nJRjN+gMAd9hKQQPuNGu0JfaVrsVOngFg1j0Fwmfc4rpaU94mSYQIS2YeNI7GhskXhEDQ6PtFF/gZ\nFsmpwFxJ1QicJa6EpP4WX3xJo92mzrb7KHovluXDvm8aTQBbCgt0zU6koWDXaLim77rN70QjdmCN\nQEz26BNAr0AO/4xm11l8AEPTuGu92DUMmiujbx4bsZOtALCnmOEwWCJQo7D7+WnChuP5dEApsozT\nCNR2XouIFxw04nf1WrowagN2zg7CUZ6op9XIYRpBDAW45NDZnVSOHdyPzW3bULqMMpvhzf/hj/Hp\nW1vp4tZ7rsLvfejTuPK/fym65RLdOGI+jLhwYxNP23UxPn/fayGpN22b4/j+A9h1/vkoW6fFK49H\nnDo54t987LP4bAD45x05jB/8lq/HhZnQlbnkUeQinncpy4BH1RlEXO2ThCEVPRBUMjBUE0dLgZQg\nsR3IR+xJvXk9yytN6x8xwKWvJtS25bM9Zb+hfVfrILnnPgkT7nMK0mAlDrOnFua++K3p5zZaGrsp\nAyyw1ah7UV0w5Yzc9+AElEGqdWTGwKRJBas3EUFMVnLfI3eSGNPBz1yZTXKQdth4AtF0zLZFCm8g\n7WJHjPTmHmMRbNPkNejDbjfbMOMAx07+lRMr4FbzvQr27S7Tbs+ESwSedIT6GmSUEN/B6ghaR+AI\ndOZtVqWEWpileW9B1qEOBz6NJKDR97wjx/e1Dux27Fax8l5lFX/SCvg+6ARZCLHsQEickbKQgq6I\nRPW0Sw7j5c+5Ah/69Gp+uhc/+zm4/NhRdVsecPPtJ/DR62/AOuni87ddiZLn2H3hTqRhQD8U9MOI\nbjYDsAHgN2CgDbweOWVs267g3mVgHPCv3/8RfP6eBSLAf/LWq/CLv/tHeON3/i30ZUDfz9HPZiJF\ndKxmlxq0nsSWuDp1CPMVczS1FILuDHSsmceLtpBs8yjowqKYilngqMRxV9d/q+awGzNnmE29yR9J\nolIHThE9WvtEmGWJJeH9URtAd0aW/uXZnlQgHDfpaxZrVaeBiZQJSwIHZo2wn7MYow+EgQEUsRIc\nGBgdiJVJEWmWih79fI6un4laatOjgLEMW8HVkbuZNoWK1VYR3UktRKCt5LY5slrWiwaIIwCfwbW0\nsRPTW6hI0rDjBkxSZcdMFXyZKhIp7Mt7Ba8qJXAAuhrlzABVTL7MAkFDPRpA264xIaLdcOHi8Tgq\nMLYhweX3qTLnUhmtASqBanJRKxu7dyunRraqp1iRiCb21qzAAVsjYABMeOsPfQ9+6K3vxPs/HpxU\nnvs8/NwPfR+2bdv0gem+G27Rv66XLrYK4eKL94CGAXkYcedd9+IzJ+7AFLQBxudvvxIPby2xe/s2\njF3Gifvuw+fOkILqkzfLIt7h/XvApYCIkTO5U4q2EPcMzWp9xDAQTu64NEIZMAxgGaBaL6bt2yBJ\nekwLwOqWbedifSWLLKiaPCGEfxUiIxlMyFcyBIRRkzhk8vbvgTRJkjycy+1JCsJ1iitArKvTubLg\n0WpCmTAogxOBCmuKosGZcGXD0khyTuj7Hpsbc/SzueT/KpoHTDVDG9HNftE8cABMwBhwAJhIEA0b\njqm6zcwnOFmsmphZnAs7vronrygDXO/D3wVWTIgAXMXqCMI8AWFni1FikOFKPtuFDZHKGibsckRx\n4KQAzu4AUUZh5SylXPtMZcH1WiR5hcyywZ7bsNie33VouJREXoOhpBoAhpdR0mhv9ioWBfZL0tsi\n7J5v4v948w/jxjvuwk0nNG7HoYMARR2S8PSnXa7v10sXz7z8cuy+6ELwMADDgGvvMFlhPWg/tLWF\nw7t3YewyHrzj7Nr0rXfejT07zgNBANjiCBvsJc1hl5MGxbcszlkiEVpG86JPf9cDD+PeRx/Fnl0X\nYu+unTALovq0AYDLBIj9qmtiRDvAkg4MVJ01wnvyOq0g3CfS7OXWR8nf95lwLrcnNAhT+Aeg6UQu\nRageLIsisj4grywpexKBNJgPp4Q0FGA5SBxh1kiEDRNOnq9tYz7DbD7HYhiwXBIYg4IwR/IE5cQC\nzBSI4YQNy0x/Cr6tLNFmi12jB6cJAFONGmWJT8NteVlNyw+o02t5X73mzGwjArA8Tq0Nr5NS4BYS\nLLndjCBXvTZKDOMEiNnZ74ocETzopOMXmLkcmn5TgZiKUtIiemZlw/rMIQWGddbQqIK8ggq8oFaD\n1JmKBFjvZJA3UzYzBYTO4fV6T7/0Ujz9+GWAx+3IHu+YUsazL7oIX/3Sl+L9azz8Xvr8F+J5z3o2\nBo3qVoYBT7v87KB9dP9+bG7fhqHPOLj34rMee8G8w+nTJ5Ezoe8yyqwHF83Soe0ig8BJgs5LVDSJ\nN1JSQkkS9+ThxQJv/6M/x6duu82v8OyjR/C6b/wabG7f1DFPOk4jSbgE0coRzqNs99kkPPxqUiac\nSDxQV5mwMN0+k1hHcF0wtJW9fI7liHOrOP91bdMyCgSIS0FN0KjeNvoqta0dppNIYaBqDbFcVlDN\nKWHWdZ5uPieb8tapdJNvTOMLYByAIS7uNOjsnTZpp7VFPnP+SNHawlkunKXKOeq5poVCYcrsjC8c\n7wsVZ9jt782Cn58iMEwIS22lA03zo89eU7ZX4F3J02fxd330iwtlusA6jB7sHBpwXSq7HZYlp1wB\nxhGkDBHLJbBYAFtb4MVCmOM41GhnVXeAFyDi+8i76qH2ycsmDHDTGB5VqqCww6R21UPEtlYGlhHE\nBW9/04/jFS9+GoArARwBcCVe/sLL8dZ//CPoZx36WS8uyRszXHbJEbzsuc9FSldDZIZbAfwWUvoB\nvPCZV+D4kQPYtn0T27dvw/FDB/Cco0eR6Kr2WLoazzy4D4d27xT5revErIsqG9X81yCavFrbS0kS\nt/Y93v4nH8Fnbn9Ur3ELgN/CZ255GL/+h+8DssXg1jZnei4IMoTpNTnMTMxdXANo2THu+q/OGLmr\nwef7XqTE2azHXPeNvsfmbI4NDf+ZU67xj7ntr+die0Iz4S+0NYG0S0EphFKSuj4KJyMCKGekrpMR\nKSXNI1fEJljlhUwJfSdTy87seHV6TSwrfuJmO/j1TXYgfcNq3eBkTYHUWKpFt+q6zvdsq+40BUID\n2YCq8k3F24rW8q2Br94coTI5W2dat61YSPiV4FN2hoFgZI5wOYJsJhEA2EzQyLTfBoBtDwAdshuX\ncQSPrEFk2EmwZJwmXbgRECaMei82IRaYoNwBpQN3HaCsvjWF89GqfXiqQ1GjgVMsHvYOzAU1rAJk\nULNYum1DkXKUj6W9BwYuPH8bfvutb8b1t96OG2+7A0cOHsQlBw+IR944IiWxgecxo3Qjfv5HXo8f\n+8VfxZ8GvflFz3oO/unrvgPb+g7jMmPsM/ou4ce+/RvxC//2D/HxG+uxzzx0EK/7Gy+WGd+sR9er\nBRCRBPax2Z3P9ASAC4lHXfH5fsaJRx/Dp24TcF/nPHLngw9jz66d3t4MiKGvDzzyKE488JASoc7l\nIgq7a8M647A4x11wIjGvwHnfCQj3PTZmM9n7HsMoIQkGN42ERSU4Z9uTFoRNg2xkiUK6kEMorCBq\nU8ecZeGEzCytYDlIuEpiWXCYdTJFdDZALABsu8U1YG2azkJruMI4W/bpq7JN9+LRhmZu0CkC8ET7\n9amwa7JoQWIKmuHvrvfqHylAyMrmdNo48ETVNsD1CkADwhWIa8Aj0XjZGS+vAWAUVlE+5ngbAzBz\nDd/AFRZ9ka2YswC71HDd7ffgprvuwaUH9+P4kUM6j00SycwBuJZJHMBWGbCChtWnfecKSJBCgkRE\nRFWqZsNhU9LDlBjqJk0MUu31+JGDOH70EBgS3IcseUBOAsLqWLJ7tgv/+8+8ETfcdhtuvv1OHNx7\nMQ7v3aMR4ZYYlx3K0GHZZ/R9wj977bfixjvuxG1334M9F56PfTvPhyxRFwewzmaBVj4WoUwlJ2PG\nRbX5okz4rkfPHvfi7gcfxt7duwBI0B1roycXW/hX13wInz9xwn+x/8KdePFlR5TcyIwh2fVV/5Wg\ndDUwj5AbAeJZ3wkTVgCeGwjPeiwWBBSgUHHwZcY53Z60IAyYHME14haTg3EpQcdMSZgwA6DAhJcj\nxlFqIKfAhDNpQ9TpIo8qRxgTrgZbDNGnKCpYVB0FhBmpJJDNlbITBxC3hoggjAaQncnaNp09T0DE\nSW08R/hRfN9knA1yBgNNRDjjwtGqgFmfPk7p3DTMJIS4KFeB1sF3wo7NdjdmrTAZIfYUL2mVO0id\nSh545DF876+8C9d88jN+7Nc97zn4jTd8H3ZedJE8W2DCsTwDvMJlhTAo+SdCnVWEAUhurw64ltan\nuVxTpgrEnrVbNWyoGaR55xGhUNZZX0YpuZk5lDLi6ceP4fJjR2owpCGhjFk9AjsMCkyLWYenzw/j\n0oN7JehOkb2UQTPPiJdZy4TZgZhJWLBM9oQJUyaAM/bs3qXPtl533rPrItHAdURKutbwm+/9MK69\n8xSi6dydD74eH7r2Zrzk8qOwRTx3HAE8dKyxYHenNhCeyfO6HBGYMApjHAsIQ5A0cU63J7YmPJ2J\nA02HdxOmYn78HCIw6SmoWiI42EEAoHi2XKmNqoPJq+wlvBd2nBhq3ziiG0fkYUQeR8lzpfqlMSdf\nwY1abLSCiItwkweejtDOjIWiwDq9M7oqHq8B83qs0ee4MBevOy1yN+eBsVEzC0MzZazmYVUbjlko\nqsYbWK7JSRyZr+nKEJBiguTwI8T/13KQl+9927vwvk+fQNQk3/vJ2/Dan//f4IlB7b5DeU61YB+J\n7BNT+IsBtJaTnjIISKFeqpcdpQzSoApW3/X2A2W20Jm2Q0I2yuksLGOM5ZCQO/JANb3vucYUnnWY\nzXvM53NsbGyEfY6N+Rzz+Ryz2UxipORczb0o2N1Sy4RNFrD1jv17d+NZx4+v1Z2vOH4c+3bv8hmC\nnDThzocewWduux3Mb4MA92EAfx+Mt+Guhx7EY1uLlb4TF7W7KEfkhL4TGWJj1mPbxgybGzNszmXf\nNptjYzYT7Vuf0d34V1r8l3d7kjLh6tpomYbHMmIsCYUlQJ3bt1qnMXdKH1kLkoUqVK8pLrq6X4LZ\nFOvITxaMPYFQkEcgF0YuRQyhYkqNIqzRRu11i2GNlw9QAdKeUJkRG1OKmx0an89ljLDIt9LAVhsb\nN+/IX9pfkB8jrI0cPKppljxzCfXi2m5pAbZ9zwGwJ55zYWBJJMkkHYbDsxIRrjtxN675xGewLp3R\nH3/sSlx3+x249LAE8WGPJNsWKvlwEwamkJJ3dZiMsAuXoXShQCQJSNurha3aeSxoP6E9u94fm216\nHCh1gAMDgSCAiu4K2BS83UwOy0mcN7gT07JCGEtGGcWKqFOvUJPIzETRiGJCtf5jIqTEyEUcODIT\nvv/bXoVfe/cf4lPXB9350uN43be+qh3sSSwq7n7k7BLGY4slLtqYIwMuOQw5i7MIo0ZJ89gQGRuz\nTkB3Y47tG3Ns39jA9o05NjdmmHedxw9fLPUZU9FATedue9KAsBST6cCApSgaS3UVFSkCtpCOCFBx\nZBcgrkFHfIV+1NWfYCYlnT5Gk0qe3yuXIgyYgXtPLXH/1gI7d2zHzh0XOLD6olxwwphqwFPN0TYD\n4oqMVSeGg7f+z86Tqh5sBUeB2VkphovULycRcmTmXf8PIj8kyhXN/5uF0tK8tgy4lnETyMeBmPwa\njdYa2bBKTUiEG++xmLrrO/T1d9yJY4f21es004yG59ZasGcN9dIy3vrrBoC9uuS+QVnTBNp1o0WF\nAW/8DgCPAKZx7mjSNsVKPXkmNtVvteBszSIla7sZFnc5lQTmpGFgxRU75RqHus4OxFxM5Ah9TxLH\n112DWUDxgu3b8KPf/Xdx4t77cdd9D2DPRTuxd9dF3jpgz5AInBIu+gKhO8/btqlJbQmDS3kJgz5H\np587ZcOzPmM+67E577F9c47tmxvYtjnHtrnssy4rAC9VChSb56dA+PFu1mBRY0dUJpw1OaBWtk/5\n2qmVePSI1YNN+5wNE6oWWZu+BzGReKkFHRgdFyxOL/DvP38TrnvwQb/FS3fvxre+/HnY2Ji7Rliz\nwNLEBXmi/1r/Z3YgFRktdHoD1gi+vqcKJ1EPrmS2nmTtigTX3us/m1w7YjXbbwxfgrRggdkbIFYA\ndh3fQJsDGMOn+AZ7zoPDwhelBOQEyoRjh/bqDZ0hTsOB3WDV+G2hqT6h7cmfyZUbjmy33lHdAmyH\n05KdL2XZieCxLYzJOiiXgMXsDLhWV2TClQHbe3+VlUpnwUlnZ6xtEFlsyBMRuFgMCPVk9O5CXhxW\nFcXKBMqCAfdY40QQ02ypI2Lg4O5dOHDxLv8dx0dgsdXjlHDxxRfhaUeO4NpbJ6E7cRX27LwI55+3\nDWNh8YgbRmfCOUvC0wjAnTHhvsPmxkxBWNjwNpUlZjljsVhi5mFpkyx80rlVbR/X2YnoHxHRh4no\nYSK6i4j+AxE9bc1xP01EdxDRSSJ6DxFdtu58X+q2MqG2Dm+MS11ax2IpsDnowe1U3TSspI3Tta2g\n98puelc1h/F0RCFAdEeEDsC//8ubcP2DjKhD3njvEv/ug59UFnJmOaLRFqPmYOTUF3y84P0ubXBp\nwNeliFSPJZr8jtprrWgdVvbt+7iHfhqOU4ZXIhPW7BUTAI6AG4PvNIw4tgB/tipH+Gd1Lrns8D58\n7Vc+B3liN5vTD+BrX/BcXHpwL9w7z2A4zgKmT8r16YjtXiIQQweHNeUTBzrLZJIsAFACZdWIg3RU\nod3ad7XHrl6FZqljkoTG8UVpNFs3zdRbSISqIZuJpNrSyj7HrJ+h73oNVBVmbkZeCM2rRwOM/SPV\nvIYxKJUnGLAnJEIhwkiEb/+GV+LYwfMQbaP3XNThxVdcpuWWajKFiRbc6MEKwvNZh81Zj23zGbbN\nhRVvzGSfz8wWWuKCuy33GfrAl2t7vEz4FQB+BcBH9LdvAfCfiOiZzHwKAIjoDQCuAvCdAG4C8GYA\n/68es/hy3fh088mWmaRxmwbFVb4GnOqvoTqcRIIyj7heV4h1VZlHUE6YbWxgvrmB2eYcue+xHEbk\npfjsL7N4yBMI9zx2Ctc9tBpYm5lx/V1X4t5HTuLQeZth8c0M1WPngwOCDR6W48sOaeyHlQG2qYmy\nzTkRDFbRQKmRKMCotVxjjTbJa35iv2OjNlzrQlgv+2o986h1I/orHPiqrVkM5t4wJbsjqnA3nS3U\n17aN/Ms3vAb/4OfeiWv+omqSr3z+c/CON7wWK9N+l0FK+Nu6zUB59fvIT2ssIW73oqmZUml/KSO0\nNk2dXsTBaCpPIIxNQdZAHLgaOaO+t0E6pfrZQpSaJ6KbfEa3c646vzlRwO2f5b0QIW1+XowMEfLY\n11cJNvQBFvNlHAtmXca3/42vwu133Yu773sAXU7Y6HolVKG0laXbQjsAz5Yx6zLmfcasS+izuCh3\nSUyYs5Iu0tkGoc5wz1LpX9btcYEwM78qfiai7wJwN4AXAPiAfv0PAbyJmf8vPeY7AdwF4G8DePeX\neL/rNwMHrgFdpINHBlWnbnXhxrqxzW9Zwu11CbNZh/lsVlm0g3DGfGMD840NzDY20M16LJYDch6Q\nlwNSHjDqGe9fmuPGeh3yvkcfw+G0260gLN9ba5UAuI6a5F7F5I3hxlgRhJxJWwDu7DnijHU1hVbn\ngdPirJ8CfXNI1o7YAPEa1uqmZe5sUYGYUYGYdbrc/rM7M4GAXMv359YcZ1XTJzdRmj7Lhedvx799\n8/fj+tvvxo133I1LDuzF8YP7mqdombcCTtMXzzQzoApAHGcEk3uZWomQrTGkmlTTfkMGanVQKMXK\nRmiFhUqV/+zck+tMdoubELi8yAhJyAOHONFsYAorD9J6E7vrwmKOyXYzdm0QuEh25cxFLp0YJeTf\nk+QI5IO3kQ1PbT+OEj52GHHB9k30KeHkqdNYLJawdZ+IkxQYOEDoMrkWPOt0zwbEQJck25xGDdcZ\nTQDhFZZxbrYvVRO+EHKb9wMAER0DsA/AH9sBzPwwEf0ZgJfhHIGwjco2UhsQS3DpAp9gNrPuGjtU\nylx0tExWccKEC1cWzCgKwnNlwpvoZjPkvETSnZYZSxAGADt3nK93uF6HvPjCCxBjO8TpTzM9gw0w\nlrDQmCoCqa2/c7CNjJgiE44/tAJc0+IIYYEtMBwATs7A+qqn8s7BDrwuN5iNr0+hRwfgCMTO4gIY\nVzZszz1h/ytsODJhDv8nHD+4B8cP7gE3z1xpfkwIEAOIr27roB4+UrXShBeOArAM+qTAZp5+kdlb\nOZidsyyaqaxWhIEmMjap9XAW8DVmvPIM3pRIQkqyDniWQcWBl7Te7DPUAUeDW8EGjDioASWRxnog\nj17HNpPjWDe2lqNMuGhKqFGSuXps8An42r0TwSUQImPCwoDnfYdZl5QNA13SuMbESChIXLQLMLDC\nhs8tEv+VQZikxbwVwAeY2azf90Hu+K7J4Xfp387Z5l2WWTq3d/TaiXxCT+RWAvHXBGXCKkfMZ7Oa\nJFTPR12H+aYw4fnmJrpesuKSxnmgJIrLyMBFuy7EsT17cNM905xgV+PS/ftx8c4dTeCG97OiAAAg\nAElEQVQdZ3EOpnWAMZZQqahsDsD6iqj/uhwRADgEercnJ298cVMACTjFqPbAQpCEDXHocKt2vbro\nNtbU50WD9NQ6shgJxvBaNlwZMRovRBgIn2EhMxYUr7ybMlrr2Mo6m4VAA6+VOUL9LvbX0Kyirl/L\nrqAG7yGx6woDSlJJBQrEPvNQ1kmliEswFWWiBoarwMvNq12f/c6tfmXWFG89gDAsOlqpdexjCTsY\nE8FjP0tvkhCjmUmjVeoFEqR8KQz9Xn6sjF9csYeYkWSMljITeNQyMzkiKZlyLVjZsMkRfQJy4hU5\nQsIQnHvgjduXwoR/FcAVAF7+ZbqXx78ZqwUAB+AapMc7OQIgT0c4Y9DaMCVMZYf5fI6ybQRlAnVZ\ngoD0Arb9xgZmG5voZ3Okvp+M3hmDLhBQTvimlzwHv/+hT+Dme0JOsL378G1f/cIaHc2ycuSwGDMB\nEBlg6kACaAcyxrwGhDzyWQBlWCjLsK1rbg4wDiph2llRedLpY/Ae82ZT6xIFWFImz6Q2rGT2zm29\nxOmpQ3O4VHb7tNV7t187WE8ftpF62ueZaq7OgnVQlCIP6wlaV24m5nIAUF16azl5Ngl7LQwiCW7u\nsS84+2M5UVC0tIUvX1IvBLF8AKBBUy2QhiivshxncAromMyMkuAhVmMp6ZXASPDId+rqL4MG6zPX\n33kxGqiHM62ro1r+q4OGLd56WqjAjI0RQ9l6vbY8m5nFeYzg3ghVh3kvwbe6bKao0PUVGfhtICtQ\nSYTVuQvlTHf/Zdn+SiBMRG8D8CoAr2DmE+FPd0KKfC9aNrwXwMfOds4f/MEfxI4dO5rvXv3qV+PV\nr371F3dTTSUWYVs8AWLr4M1IGhgPgJQSZn0P3phLUJBO0pZ3GsQdlJBnM5EhZjNQyj5qd6MCcPAo\n2pz3+Lsv/wo8dPIUHjx5GrsuOA+7dpyP7ZsbsqLbqZtycFH2Hh7vEQAoAHEzNQ/MaTIXj987EANY\nCbQT3zez9MD0pnAdQSswX45gjDDLIM23R+ZRx4Y6zc7hqZ0XM/y9Vze4Zi0JrrNn3iZQE/DRn2Vq\nmRF/RobC8T35e1MZPHi7vlq6LLmgBREKbFiBtAJXqQ4ccZYDcUopCUgeE9kWlOQSXLyEDHIVROor\niMCJ/bvVJKwMc0IhNkYcxJWk0kgJ47DXGMLVpw3LyjswdPt9BGCONuTcSBFi9y+gWJPl2mKt7GKp\nROoVmMVLru8w6+Vzzfgc2iFLlAzPS+mSZhvreN32rne9C+9617ua7x566KGz/yhsjxuEFYD/BwCv\nZOZb4t+Y+UYiuhPA1wH4hB5/AYCXAPgXZzvvL/3SL+Erv/IrH+/tNJuDgRVkYyVR2bA3lwjcOtXL\nOaOf9QAkclruezHXWS6xtVjIoljXiQTRdWAiCeg+DG6X2OaGk4Zx0QXn4eILL6hpity9UgKLmOlP\nNIlxvmGNvJkmUTMFm2qkFYj1b8lCJ1rciobDTAoy/Hn6ORJWL0NzI27Npsx7Szy2lP1RNfkzfZtC\n1wUqENu/MmGmYFk8inAT31UebbAWZxYTuJkAcARPDmeGqQOVDlcg9idSmFXGG6WAxm2biwYTCppw\nkXOS/02tJhh1ZiQiqrgHiVeE1DeLIRoKgVMJzwNnqyYdWd0buxOpwQbK2h7s+zhBUdJYx2kvUn1O\nsnKLtRnabwPTgcEaKbLyciY8zRFpqcrU1snLxSpSbZyVBfddqix41osc0VUmXNsia3tNsIVBWwQ1\nRny2bR1Z/OhHP4oXvOAFZ/2dbY8LhInoVwG8GsA3A3iMiMwC/iFmPq3v3wrgJ4joOoiJ2psA3Abg\n9x/PtR7v5uypTKSIdfu0SVhHIbGVpL5HpoTSdeiWS/SzGZbDEvPlIMqlZpdgDfYzjiOGrsMwDG6f\n6HaQOnU1jzrxkCO1tcxul5lzJ7GDPei3Phdr549TY9+clrVaKKEBYwf2xvSNKxNcQdnV60fstwbf\nTB+DjlpzwhnAmulZnbiTAbKyX3u1+/F/+swGxLKuo9+T3jsxMKlV+2R2JJVlAk1SSev8JZRx3O0g\nBd6Kv7V8KyOri2V2LzHMY80tEYC46CCRACrGNrWMkhW+SksAkOq0uYIvoJKuAq+Wg2qvoAq0bCCu\n7YYpxMyIrStq1rqTsm9iApcW/FoAnrZTrm0m1FFTZxNC1Mys3ELJTNfGZsZn6xIEKYfMGisjZ9WD\nO2zMlAlnDUVLNdBTJWWR/QYrjfJflxzxP0Jq6r2T778bwG8CADP/HBFtA/DrEOuJ9wP4hnNlI+zN\nP05pzgC+Kw0N+hsbCTUCP2UxLkeRrAi5G9ANPbp+cI87C7k9lIJusMwXlf3aCm3dyfWqNtBINTSP\nmZpZmaYvkqM2WX/2eH4rDGqZcMOUlQlP7UsJ01KpZVrBanoEt++NTTGH+zQgrFTKA3KblYd3Q7M/\nLd4ZG10uMBTAWFgtD7+m1r+bdpXK8pw9kd9uw8KmUkScMjeNbVK+UWP2U/o50LBgNvDVTg9A5Qi9\nAEXgY28DcEaMMCqymmMJ6yUCik50TJYQxsxqdqb3lDz8st8rJnUmTLAO8gDcms4Gojoi1QE9toyV\nluBlGptMKH+772YvLSM2UJwOgmySlwwUlQlndVeWyGl9p/kbY7+xJuzl0VpiTPvLl3t7vHbCX5SH\nHTP/JICf/Cvcz19xC7XqcoRmumBzDuCGBVMo/VYDtL9JDdWMFwxGxlgmNpZ2jFeqc4ywy7FNfIm0\nurv8ytL4QAYckcm14NqALFa/X39cW3J25rZIeQWdHe7sewqdMcFzNk6szAIgohLBKeNsOpoF+Amv\nTR2FqbLdmdY9CoFGLS0VaCnJAEs6e9GKqNPkcO5imuSkTazthlYd4DADscK0hy9hKApuyQSwB8FX\n+1suwjC95aC2xQTU+b9eXstSAs0osLKcVxguVeD1wUnqIenxUidWYZXxsYXM9JE46exFNeJAMqBB\nq2K7iVzXZzRGeNaVZQDkCOPQ0vBBzKLtKfgSqNYB1NIhWcqihD5rtLiu0+hoGiHNzDa9AdcBSaKo\nasgDZs8bea62J1HsCG3cBsBBG24X5hAYo/7SQEDDUAI63UyExOwAzIB0anlxL7ycLJHgFHwr86uu\nnKvp7KudMPn9lCLRm6QL1A5O+nkFWM+4TzJyBL3ZiiJ+nhapA5CBp/0tkrdEHj6LlMVxWHSq5T5h\nv+ZcE/X7M4BxjB9R7zcAMQM1b5wa3ieW9EZE1WMwAzJi2O8nU+CJeVojSWB19lFnIPW9aOBWzrb4\no1otCSALc7POTTCzNdaBxMYriYxevA3YTUh11PoENP6DD3AUnskGOtGCixpQGBCbtQo0QadZVSjC\n+lOIZQ2HtgQffKWdFb9Hnpatg3FgxFqszsT9FcGhpH7P3r9LndHofSZYuAGomamYp5nHnEgROYTi\nbMPDSnnZWC6D/qihb7+QJvylbk8eEOZa8dGfPnrQae3WETyw4cJiJiRyofxLCsIJjAzpQFTMhKUS\nRZEh4I3GwZcDEyYBdk+/bbuZs7ndMjeNgS2qkKMw+bkagF0Lyusycmjn1ee25ZjGPdnf144CrBAx\nBKyxvuq76Z2Wf9OBHG0HjYwz2hWvgLAyJSHCyorCzXlnLWplQCwapj9/8TRGpvHUc55lb0aeyVYn\nJv65tisrDL2GLiTWAD1WFlQLyGSJREpK9WTOgoN5oc1oyOovqeQwnWVUMC76LKmgAWLRl6G/t0rT\nciYCOElmEiIHPdPVvW3bPRLcQqWZDEUpwp49fqwHIo6stTiNCRsYW4HDy0iVCHRJMiR3nTlrZA3K\nYwvnlrcxMmFyHlc4LAoa6J/D7ckBwjaFCQCMdYtzoWO4CVAzOqtS5iCn+q0dSQAl9lE6sbCG7I4W\nq0wYNk1CDRnobNjBWBuF3480Akp1hLbe1zBhtECLBoDJ2TziMcZgUKE2vq99hGtDr1w2FrgCut2X\nnr/RM/X+oUHnCKiLaOuAd6r9VRCORMmGjKBHKAAz3GTLwMkeNlUXbxRjxC0zm8oj04VQim8CAFlZ\n1Om7HWdgVCouW9E4lw26cCoVny04r8OQ2BOz12O9GcMRUpmgkVF0ViVmZnL+klogrvdsSrGZslVL\nmnY2ZURUeWSSa5N6AdYzhnqGeTUzJljsAFwHPO03HP/ItU9PQdHbtfWtwIRzkuSeXedRDtuA7dIu\nDP+LMeGgCZcvZKP2JW5PbBC2UZPET53HIm6OS8mfNS47/Sz+5+ZxAxjI+omcGXlsgtqrvOEYyPuo\nDCjzYo9E1XU1n1XW9wxqpQdbgDMwZHVJ1qtR6O2RRa/qv6t/i7JD7MJA7M4I39TyMOYREd9gyFn6\n9Hd+Lu0cwVnD4kSIWdGgsQAGjONSXstQvaHCCvgUCK2qG9Cd0tPI/tXW2pji9SfuwU333o9jB/bi\n2OF9zsxqh3e48HcGYH5ExD3WEiC5pwiK0fvR6sejhEXAbnki3G7Y9FlbaYsWCmYhwdXeV26Na32x\nfV3vKaWk8lZCIUIqymiLmHOZJ1wsD3l+Yd/ynb22A0Mlr5OBenIPzPDj120c6oGgmZYzeRQ0S66b\nSYXB5vxcnTPUNXnedZJVue/Rdz36vvNZqJxHrJOaxXCvf6/mVjo5R9sTG4RtU0ZVxhFlGFEWS4x9\n1wBxGS2LgzXYyTQksmljeBTNj9hHYXbWLZ3FVmUtD52l1+7UGUNAWDziHIRNljSmwMWlkIaiGuNY\nq/c6L4azFcBfo+bSaIp2aiesTs/0guz34KCsnSwy5xZEDLhsFmIAPKj/f9iLvRoAF/eKmkoULhuE\n60ZGSnFPyvwV9B547BS+71+8G9d88rP++6/9imfhHT/yGuzYcX7b3QLhckIWnrPegyymGQBbIblu\nH8C3gjE19+lMD9FOurJ4R1M2ZmmDv/xN52GgtpK0TieVrFtKqdovI1hHlGkNqmMHy/lFv459pQJz\nxWyuIB7xagKUsajjQV7WoWuaFVGnmTIsr6NFPvN2que3hTiTHmazHrPO9g591yNRBeCkr0QtCMd/\nFZbP7XZuoxWf6831I64BYoYB43LAuFgqI9bPmjm5ZcKxAVd2awBcqaoxpyB1KNNzEE7QPF6aldb2\n3CkARyZc03nbc6wsYlRyEzp326FXpAdUYHYmiKaPrn6OYG/nnoK+/x3eF8nSNcUuHBw1LE7EOA4Y\nxiWWwwLL5QLLYYnlcolhGDAMSwdji89RXc6tPGo9GyiD1zxHQGTSRbjv+9V3432fvhMxlvP7PnEH\nXveLv+kA0kiQtSU013NgdsY30YwhYKlV0gBw0vUCd4SkUF7gyU0EFsy1PN3hheNubbn4A9QmFdcN\nTJY6g0WOh1CtO2DAZDbr66IiGyCvZ7nk/0K5TqlyGDAqD65tMacanzsnQkekIAxlxPpKAYSzprPv\nJZuyMeGu01jBXS8esF3vtvk+cE3q3GD4zPz9y7M9SZgwwGxMeMC4TBiXGeOyFyAeeozDqGEVWads\nE2Y4YVwAnAUb87V8Z9x0lBFYx4RzZcQFqEAc7IHJrmud2i4c76thV/U1AnADxtYB9cfOZFcIEgE6\n9fOQiWDtGKvUk5SBRVmi/iw0V2YN0CPAOoyDAO5yKaCr31fgrYBWohYbAGd1NjjlUi3YUEq4/s57\ncc0nPot1OeWu+diVuOH2u3DJ/j3hXPGV134y3hUnDXKPuX6mYCOe4DolViEp7GrNYSZrvkAmjLhd\nzFsDhnFqgArE8r5qxHIJqiw43InJrNI3GOy2hhFwCa0sEcqp0mJUlrq6TUt73d9c282ErmQJSZkq\nE07aTqMVSpcIvfa/mYKwAbC8du4oZaFPbUwkHehjPQPnXoaw7YkNwrFxFa4gTIShyxgWSwx9J6+L\nAcMQcs2xmqM106M6AhatmAoSFghowlxg+eWgyRE1II8lRewyOoZLEY0WrP/qwgmF3HdwMI0AbF+2\nrBQtOMM6PeCdURsbkXWhtsn5qzU8nxK0YOGzAS2TdnZg2u7oLHgcBoxDZb7VFG108x+vQ+sI3FQK\nzHU7fmOT2FgOMo8VSeLmL5BT7sYT9+CS/btDOwKiI0FLkcP9KciqjSJEsjJN1QawOly1shG8wmKG\nZv96BZrWsOZmWxlZ0UoA068F1BNJ5gpoOFeb2VjSWE8cyvEO170nJ+9O6lfvaM225r5hbVQWsbNo\nEqCcMFi6el1oG7tpTGygSyFiWtdhpsy399gsBsJ1RgrmMKudzEabmem53Z7wIGwdxTThYSmxfIdF\nxrC1wKLvsNhaYrG1wHKxxLAcMI4F46iG3W4bbA3LAmcXNdouGM1WMLY2Bcia1rumKaoxIUSSKEwa\n6lIdBewsBu5qpM9Zg+sE2aFO2c7UEeO9r+VJtakauCB+oa8N8ISBJgKuar3yfnSHGDjzHTSp6qBa\n8FLliNFf3VwqYlxk5WgHCfLP7dPCi0YHJQVfS2d0zAD2TDnl9l/sg3gs21YFZC2KyvIBsSogJo1m\nRm77K/GQyU3F6mCqIBxfPe6DTPUJFvEuPqOVhxQWObuMbWI9oMVNTMvCr7R9qeJrw5n8LTZzWB2t\nA2KE7yZj9lo0pslrPR+xWBpZfXQwNpyQuoyh6zDvMpZ9h+Wsk7bn9SKv/YpzRrULNjv86p2qC+aF\nUYYBBUO7IMzRbZnrOtI52p7QIFxJi4W9A0YAAzOWOUmlbS2w6ASIl4sBy+UojLgU5JLg8WwAAGqw\nDda0M2aqYmCpLdSiLwESFjACscoNzoa7Dhmyam8LRhbzgGEVPaIw6WCQK7g7EK9//kgAowaI+Go/\nd3ClCcCF3jbRHBvt0QC4FAfddlfgHeti3BAW5IZRJIhq7TBZ9OD2uc4EwParCMT+rKnKEZcf3oev\ne/6z8d6PX42xMCyWc04/gFc+79m4dP8eFB9gViUQY+McjikqCSS1h5Vg5d4SNMuwORJEwJwsplJy\npxY362uAuNZd294ZPgvwtsHOftdCsrLfCMTSBslfm18FRmsAHEG6bXkrN7hSl/V4u5fwXWgAxoIz\ns99jzgmFMkYF4GHWYVj0gC3iWpAfLg7AM3POsIVx9ZATcpTRdb2TIx5HDICavK1xbglgfC63JzQI\nu2YIZcIARmYMpWDICct+iWXXYZEXWMyXwoSHAcMg+atKruymqp3waSmDq8eda0a1QlwuCPa/Vtku\nRXQdNHKutLu4GMFyfjcIT9bB4Lk4Xb2YamwtHURlWusZcAvG4Q/2OgHgqnsbCBnrLSvg62mLHICX\nLkU4EKs5WnNlQtspYQF3KkOj5k6D8b6WjX3RAHEWMP6NH3sNXvvz78QffzTklPuKZ+MdP/IaVLY2\nYf4O8vV796Ir4vBTbGGVDXhVkrD3qWrmBijVfE4HZAPhYHlA4YHsGSNDd85pemgEQqolVH8bwM+/\nIrXICACsh7kaw6vyT235a+Ykk8mDn2sddhHgC3p+63KwRZ5LgJrOiQnRqGx4UCZsAX1Gi6xWqhzR\nZwveblJEtcPPWcC373v0/QxlGATI04BRn9tilTgLdkevc7c9oUHY6p6gIMyMsRAGGgWEF0ssug7L\n3GGxtcBiMWC5rNrwODJyCo0vMGF3cp5OWb3zS+NNHENTZmTm6pKcO3Rdwajnt6r00IywDm7OJCZH\nWMcNQAOEXm2f4W98Ght+UN8FXmkmpv5t1GHXAXBr/7sOgEsZwSZB2N6YpVVTtPqACAAU/faMtVW2\nO2V4zcKjL8i1TBg5YecF5+H3fuYqXH/HPbjhxN24ZN9uHNu/W83hpuBb2s8cQE8B2EDYwBekdraj\nDbIsTNii6BhsBRbcONc0zhhxBoMwuNYBSJhzaPUU/16bRFNeAYCtTKNO3YrqtQjaa7etqX62A8Jv\nYb/XwcORtg4uLTazL4xZkHt7fvNoG7sOS11sG2Y9uGj/pREjAePAkjHD5AgHYCVDHv8la5+coe9n\nGClJm11aCLowK1KNuJSnnDW+qM2apUQ3E/+koTCGsWAYRiyGAYvlgMViicViwNZiia3FAMszZ0F1\niNg7l1kaeNuTTIjCCRL5yjeDgWGQfTkAOWMoQDcWdMsRJgNbGppqAlNZPIDapwhNp7WG27y3H0zK\nAHp+cvdVhCO56Zx1WS6CkXmn2eJbBeAGfE2OGOt37u02Fh3glKmYy3EAmshc5Y+BivlWuyvFwgF0\ngcUiz2UkCwOaNFX8JF38ZYf24bJD+90eGSCtgwoarjFOZJLIuklZnIOzNjpjwWWU4wsVEBWMkFfC\nqGsC3OSSs8zXZBmwV0CxBb62BqctIPzWb3pN+wj75AT1IV0iWa0OLy+E8vOdvA49dogSmylDjjsM\nfIusO9RZoAysZvEwzCXxLghCptISy6UQsBgCoN3DInlYp+n6HgRgSGamNkmmwDWwPJ5iwl/cxmwg\nDIxglSVGLIcRywjAWwLAp7eWbqoicX2LZp2ojAUpaSCYuogikp5Ne9XLbbkE8hJIGcgJ/VjQLQfk\nvJTAPg3btM6krCrygoYx2WBgndb6VgWyaS8TANb3TbAcY0ek+NN2HZtyVyZcGg24iUpXpu/rLlND\n8Uwc3RLFLEwUdAIAm5eeM6eGJlWWLLetZUB1AVQAWDoX5U72lEGaYZom5efnbBBpuhqOlcEg/jN7\nYJ0mSVmaHAFo6JvR67AoMGaoI7s7GERb3ArC1WNz9XZ9AI1YHMqmOWjaPib8c2VbQ3Kbi09/z5OD\nPR+dArCBtKK9gHL9nZd1TAZgIEyEu+5/GPc8/Aj279qBi87fxKzvNZi7uPPntMCWnqeM44pHqlhB\n5DZcbNepjbDsKEVMR5OZrFG4N1tAfiqAz1m3CGE6+UEBYWRgVCa8HEdlwcaAlwLEW0sfLbtuxFgy\nUmFQthFYDdkBkHYU0rQzNuqmnMTLLWdgmYG0BFLCcjmi6xYet1S88avO2Br6wzuSzsLWgHFgxwj8\nyN+080cB4EBmHN9qaVW+1zoGVOYbQNjZ7joAru9NpxvHgsGYMHMgEv6UlQnDgjxCb7jUG0b7O39+\nj7eRkVKnu34mY8JhYdNOFhbL6sxhyoJbk6SGk9og4benA1wpzhBlNk0gEiAe48yKkpvZOgCTgjCZ\nHXZs04EFB+AN1Qol51UiQ3wNB55ti9JEo3+Fc63BYN8DQ4bWpn0XZ2Tg+rc6/kuhkTLhx06ewq+9\n5//DJ2+pSXuee+wIXvcNL8N8PpNQqdoORC4YMQ5q/5upYcDJATh5CIEuADGXEkxHU/PYHnPDZahz\ntz2xPebCZizYgq6PXOWI5TBgsVxOwHjAYjGqtUTRsHUBFImkgnJXrRz6Hl0/QzefoZ/PNeHnBvqN\nDfTzOWbzOWbzGfqZeuekhEyi43mndcCLrROhl1fwaBww4sM2naX2tGpnax3A53suf1TWGxfdJgDM\nBsBqdlYG0X31td1jxgOTI2yRrpUjWsuN4KHlnlrT59LyQACyEPDImPCqHJFAlIV5G9Ct1T4NLNZZ\nR0yrhmAhX0jLlpTJefDxsYAtBc9YUIaalodHOz/qc5lGrPdLcTU2PL/NZSbzl8k2BeA17HjN4Suv\nTVucbtOlaTTPI4y3vUkD4vqeajeIspyy4F/7Tx/Ap299GNHL8VM3PYx3/N8fxHw+w+bGBjY255jP\nZ5j1Hbouo2aqsdRi0VS0XSi3xfKsVhLGhC2KoYF7kyLtqShqZ96mDYJZ1jpGVjmCGcuxoBtEltha\nLHF6scDprQVOnTpdo+/POgcLOV9yN09JwUOemTVlBedOAACJkJnRKYh3XNCljEwkbpVc0Kl9bNH7\nAjNiSE334AlsN261X9Fq53ANzj5W6WO1y6gs4FKIKOiV+Zr9rzJcdapomC9HCaKdxseFDNubu1D2\nBxtYKOm9lgo07ME/EcHKbD2Tp4SaIXczfVUX1JxBOYNS51HyKhNmuPUYATG1EkwqCAzZpxKyaKAB\n4uGphXwwndSWL+qo2zYNcsSoz1F0UEj2eO5NV+vJ2HB9rcBsM4J2oPriNh+YwxZbW5yFcbyB1bOs\nJdc8ec/hywrGAXg5DkzAiQcewidvvRVTL8fCjE/ceCXue/Qkdu04D0zAMAxYLpfIixwCJEU38QDG\nSRJ/uuyQqB2rQp8zOSpGUnsqgM8XuYXJtTJhlSRKwXIsWAwiS5zeWuLU6S08duo0ui6j7ztszG21\nnER2SJVxWWclA81EIj8k6fAgAqWMlAtyyShFVmM7AF2RASAPg2rV6nKJwK7i6E21cdSmbmBC/rtw\ngLzVFs6si38eb7eyYOtY0twq+AKrskPVgMPrxKbWbyKSx6BslGIDQgBgtqmkWQnY3BxyzabXB+BR\nlpvV7lMWVmbNLtNKGRgpab3EjsYQ0zWQ26SKb4UBcTUbqTXE8EA5mlhTGHCp4MGWVYO0UrXMSwGP\n1SJGlOIKm5wKUhKzLBnhuf6VIjjGwcgcO8gHMv981s7Bq4AYnrFZBA4zsOpBt9LkQrtb/bBy3Jpr\n++wD0PU7wl2PPKp/Xe/leM/DJ7H/4ovAzFh0vbYHa0/Q7DYKxvo5phSr/StITyszn9rGY665c7k9\nqUBY5IjKhgdWEC4Fi2HA1lKY8MlTW3js5GnM+h4bGzP15NIT6RRRcs2lhjURtCMbAKesRCmD0iiL\nRCWjI3IQ7scBd9/7IG5/+FHsvPA87Nx5gfUzbTg13RE5PbKGcYbOFTHQGbCCXsgtFJlwBWjAF9+g\ndr8h1sOK5mvs2C8CP59ds+p74T4KhxjCemFjpY0EYeAbf289n/w4AeEOfZaV7QrAc3T9rA6aqV2U\nawrNiiNJQ6HE6v5mnm6KwCSG+wJ0rLfOgQWTjjJAzPLgV9LQkD4QceX2IwRvU1bwzZKYUqdaelTV\nJ5MNRi7XtAt5dZVg0kRscLAW4AM1vByIYhNr1yFsXPlC+NPw4gBoa1QdP6aRIWwmR4RdO3foQeu9\nHA/tvRj9rAeD0fdb7g1n/Sjed2u7L2EwqwGEooWxBi0QMlKBmuTzr0MTflKAMJoTik0AACAASURB\nVE/20fbCGIiRdYFuazmIFHF6CydPnsLmxgyLxQaGYdSpszGRNGHCxpgUhHM1hZL0LgWpZORSAPXQ\n6Rg4+dgp/JN3X4O/uPk2v9crjhzAd/zNF2Fzc96O0hPgcAsGoZE+TbQOV+HVGCc3v6v2v8X7KENn\n2VzBFwgAPA6t/BC1YkzY2boOZ2y4oLp72sBi7M6ZsAELAguM40ucJqs2n3sF4F5tPecOxFZnbe4w\n1PIE1/gZmndOgpBLOBtWVl7z5xl9jjxTgbj4RyuNFcBnFh2YFMmMBfuTMQPZuaieSG2cfQZkdZ5g\nCGKLeJ5KIoIo1mwBBSugRi68Zg3CBsszAfz0E0//NoHedRTaBmujCkTYvWsnrjh6FJ+75Spln68E\n8D4kuhrPu/w4juzf7W2x0XMj+AYGbPJETSFGXgfVAatGoasDVf37XwcTftIszAE6vpE06pHFVG3g\ngmUZsRhGbC2XOLW1wMnTp/HYyVM4eeo0Tm8tsFgOGII5lQFfY1w/CftnBsDkTK2aTUm+OcJP/c57\n8LFbHkVcZPjcrSfxm//Pn4dGEhaabIoZiIV9aLsCtaOOHtYyDGtEJYzocUFNF9w0yLp4uemrvi/q\ngFHG6hXn07dQ5vGDXFMOqdZH3EgVMk5Q+E17fDHSas4cRMH3v1PX01614KAJpw6ywGVmahmgDKQO\nlDp9jQNocubcUChfIKuMvWXaWWZJtqCT6iAZB1GL7DcOGlhqGFCWmnRgGCRugQa8r96IlaFZ+Mog\nSGjtU/PdeqhsB+cvvIUBFu2zTP+2cp21n2MbqVN/b7ZBD7bmwJTwPd/0tbji2E4AVwI4AuBKfMXT\nd+MNV34TclbLBssVl1PNaEPwELGe8bz5HJ7H+0dlwrYSEWd1T8kRX8QWm4SbLznjQrWSKLJAd3qx\nxKmtLTx28hT6nLExn2HbxhzbNzdwatsWZn0PJumYqRNmm4x0FIJJmIL2woyZwhRVAYNTxg33PIAP\nXXsj1i0yfO6WK3H3A4/i2PbtvorrcgTpdKgUJFsgYca0HTRKYKSisNE9FI5NQ2EAPYJ5cMeL0ni+\njcEzrAKBFnJVF9Z1+4apW+JELScUYCSkbHobkNQt1D3qzKtOGWvDtMMMpUoOqbkmiqWTV4kgi+dc\nnZ8WIBVhwc0u55TrGhsOBW6EkwikMwvJRzjKQMz2xPp7m9b6bEbTVY0FI6rrthWZe8Gx3gtnkUqQ\nPb+cEHa9EZVKHOcckck/1pu2+2hbTwzcv7LHVhbObe8dzMKxPqufbCtfNdOmCsR2qvM35/jRV/8t\n3P/oo7j/4Udw9MAeHNy9Exagy6KeocisxFhvtt0ycOQkYS/JHiuEBA02yXXAq+PwX/f2xAZhn6JD\nG4cCk/VJMEYNWLMoyoRPb0nqawCbG3Ns37aBU6dO4/TpLcznM8BiPgy9sEdteZxYwg86CAPuRuw4\nJZ2dKeGWex/UuzzDIsODj+D4kf1uVF5T3hs7WGO3Gqa/K5uDcFzgMlZvZmh6zjJozN/Bzc4iU7b5\ndtsvbQW/TtGtDxtX58kv2J7D0xQxitpjp8LgnIWpjyHEaCluzuvY5AVAznDNBM1M3FCK25qiMK69\n4wRuuOseHD96CJcdOyoJUy26egrSRcoVmE2/Zbm46aoOwPZqbsusoMxVTwTE5tUGQqtDUicELxgt\npZH0WlCJRAHYbDV8qppIASPVQqFYC7FdUNNIVNnWxbaI3Bx/EbB8+vvp+9Dv/K918EFz5tXNx1eu\nAz3rfSYIqB7cvQvHD+3DxrwHuKiWHqKaaT2RFk3Ufj2FkTFiD7gli6ooBUwaC6XU7CaV0MV7PdM8\n48u3PaFB2IYuJwGmDckfwRBJAoVB44jTyyW606fFdrcwtm1u4Lxtmzi5fTtOndrCxnyO1HXo+g79\nbEQZGdBA0nAAJmXB2hiI6hK4jbkp4dC+s4dS3LdrRwPAKWWQddzYgcPiRfPokQs7GmpnDgkfoWAO\nD9VXXIrgxgY4OF8w+zTPNFwBijoh1vnGmqloa+41NfURJpz9uQqLx9NYhBFzKf5kXo+ser3KQino\nv+76q7OT+x94EK95y9vwno9+1O/p61/6ErzzLW/Ejm0ba1hwZcIWSMZmH07RXMe2h6Q684mB12F1\nULRNqOmdZuiWhVBlY8a6nAkXEHdIqfWktOcGK8tnnyY4ELcQQQGDbVYyAeDVEbT+Nr5zehiBqbXb\n8Hr/IsDX/x7apT2OXY9UyqvMNsnYg1HzuDJ4NMseTaBLaI5vbYaDXgy7roSOdVYMjo+qD2ew/IWe\n6EvfntAgHGZKVcOialZTFMgKAxgLtpbiRkzM4GHA9m0beOzkdpw8dQqnTm9hc2uJ3C/Rz2ai4ykg\nsC8gmXkTapZasjZlQVyECR8+tA8vfObl+OjnVhcZnnH0EA7s3tmE2MspBdCFNBT9Tq+kDbgdmY21\ngbl6yoHh1gjMrX0vF4n3W1TzVRCGH6OsWXXSlJKEPTQNN3RIji03LK4BlZiXwurEIUHcExsTzipH\nsAbUGT3PnCXVMfvsqoasyhE1BoXU8Wve8iu45r/cBJGB/lsAf4JrPnw1XvPGt+D3f/nN4FSANDZM\n2MGYc7xxwSnXeo39sdcBsXBVA28HWBgDBizlvEx9peNzkfOYeRylAqDz88hZpTyZCCgJRPZ7sinG\nlAhbEw29w76LDPiL3VYX+mpwITt/IAFrXlcH6PA3fQafFeiMNcEyl9eM5MziCUvWloMcQYCuwcDZ\nrycFNSYMnaexlmFRqUzlCOI663A5sy3Cc7o9sUE4LIakqAcp0Iq9GgBlXGMpGMYRy+USWwBOnTqN\nxx57DA8/vInN+RyJIDFvoRYROXk0pr7LgjMZEkOCZVUdBPeagi5AGUl543d/M37qHb+Lj19XQyk+\n85LDeO03/Tew/F4115c2DgAuG7gmGufkrY2jBRA39mXiBYXzGNP1V2494KQxRpO2wGYtXKOCuhWr\nnr4OGlIhPt1PXZbQhIWRICZbNDCIRyCxanwJhcXFebCkn6bPBTYsC5hmIdEBScwAmRKQs9jtEuPa\nO+7Aez76MaxLafSeD16Jv7zxJlx6YK8mfB090ajvvvBYZyEixSqvdLoGmThbOiLXGgWg2QZGCqZN\nEbwcu2Q0Z046QElcaSqABX0HoA7zqPbNyPW8iUAl+fuW4lYm3LQhZ6LwOp8IX80nDnvcDFSbv3N9\ntWsFrNV7sePqGUnLVMZ+S/9F2r2kvYyWTV3zRRILAHchclqvOR77yQKe2RPLhW2GEk3UKMz6pJ4Y\nNVTpudye4CAMnzLb1MPSY4NZXEVRp73iyjxiCWnGp06fxqOPncTG7GH0WVjQWIpMHTVA+2zWY953\nAPeizzEkvgQnzXVlOqsCsFkCFMZ5G5t445Wvwg2334m7HngYe3aejz0XXQAAwfW2hjbkSadp4xlE\naYJDRxJjXANJA2lpaOzga8BTgbg6ZXh5AtL5G6ZDACe3oS0AqLCNPQ7ABsLmzEKm+47KDE2v5Rp7\nFwQZGMuI5ThiWSzcZQBgVkCm6oyBlKSsUgKVDAuPc/2JO/VJ1uvw1958K47svQg8LlE01vEQw21G\nEFY0ScrE3FnGV6psSgQFYGO5xnDN9hghKI8xyQjEOuthQikEwiizGQ0zIbchAf8FhHOdeLAAl6SD\ns/CZLRCzXcUHy9iOStO+pmDs30SiH+rcATg0Sft81lfUzzbIElptNzUFBHUDHzAsZbd2JXkdLZOG\nAXF28iR4IIwaGoBf6rg6JgFVjqga0aQPnMPtCQ7CgQmnGrzj/2fv3cMtu6o60d+Yc619TlVSSVWl\n3o/UK5W3PAIdEFG6sa929/3u93nR2zZXi0ZF5ZEEUQRRRF4ijXJBbbABtUXoRm2vgq3dchuFCJIH\nSAwKhJBXJZWkKkmlkkqqztlrrTnH/WOMMedY++wkBC0/45dV3661z36svdZcc/7mb/7Gq4lBtEgW\nsDFjf84ZA4CeGSFnAeGHTxRDHbgCcGwimrZRi+wEBEJDodySUigxkBoKACsiOmuA3bT2DGxad+bI\n0hxGbm22tBZArAyzGjvKACqDCHWJyeKaJ4zTSw8sjE/9f8XdLMF8I6uLji01K//UYVEY8awMYoMz\n23PoR0KQtI2sHh5BPGSZASTRSxnA7UeP4dCxB7Fl7RpsOvN0cSNUIAQqvskfekwNF6cQwSEATQTl\nBoETiIBdO7boF+br8Lu2bkAaquvdUB5SkNSydI0oIEFlBwaXzGcVOOR+kcoXBAoW4GKgqxOru/fj\n8HO7pxrZonheNGa7FwrCFnHp70dheKR9ougU43tVbAR+ki+Ttuel9m12DNbdZ31hzHDn7d33PXAz\nr/ieDzseSUCQ8WU5SQyEc0rqHUHjkkaOCc/mFBb3R+2Debb/A17SrKsIjNrlVGxPbBBGbbxAVtVC\nQZgkYo6zLqPBSCyJenrOoERYWl4WACYAqlkaALdtg8mkVbcnIFLAJEZYIpd6DqFa/21FyqzeL1wA\nmVRwshyplguh+BkTIZfZf4YJ1/Wb29nrgKFFZoKFIGfL/aBMLzvGB3BxqwK4/D5CXQZWBhAKCHN5\nVZ7VycA6qh4jMggRIZULVxDOeODkEn7uY3+Oa289WNrw6bt24pXf+SxM2og+JwfAcmByPsJRc3ZQ\nDAhtRMwNMrcAgH27tuHbL30GPvX5lSWNvu0Zl2D31g1SbNSBcJphwnIVjvmo5FCJUdWrTT8s+S44\ny2qIqsGwMmCqS7fqN6WgbyBsf0ONdXLsoGgXVB4htj6o52kT6IgJo9wph37190bgO8uD9a95THeG\n8ZZeNMN25zJjB+I2MVA5f8eCixxhw0HliCFh6HukvlfjnDBhOOCdGBDHWOQIY8IZGkDDFg2nnkAG\nxDOrlVr66Ukm/IjbKL2j8w9smlis8Tln8enUZDKJxT+1BzDteizFqVR2zRlE0FyjsQz2oeuRB7Xa\nMzCZtDWrWiPp8iQgwph3RirZs1TeYDMOkACei5Kzjmf3H7COu5KtlAEyYskVEIngtN9UZAjzwbW9\ntF1txwAuLldcZBHNHWDnbW1uRMsGFLvBWpbdQXAoZpEmNK8Dh4g3/tEn8fnbHoQ3nF1/+2V4159e\njdf8H9+iKwldTug+dVInMDY1SQ/suLFBaJqiI77vZ1+BH3nLe/Dn11Yd/lsveTre+7qXou86aYOh\nVv+w8kuD6ox6lYVjRtX6S7pFC9AgghUFKPfJqjHYRGz30hp81sin7VXnHL2fZEljnEskC+O2pKoG\nEHIcdg/9PBHGYDojac3KXB6ky096aB5vIybLM69VvjAGYq6fGY9jFLtIsFzdBoD6ZSE5XCJ5SA13\nhIgAdjqwA+BSX07bzI41yonC9SQc6Nr5Zzjnp1O0PaFB2LZimIuqCTcBMsmp8SdkpEBlds7QgqA5\noxt6TLuACBX42xYUCBmMYRiwdNpqLC+dhulpp6GfdlhYXJBUlZNWAbkZ1aViZnSdVPLoh+r/SiHq\nuZKTH6q/pZv3RyA7y4gzZ2RklR7qABZcJBcVp2kVs56XiSgahg3/PSq2YWXTjrwZ6JK6voGrVuAG\nG1jlF/sbJEnumwaYTAAG7rj/AVxzy22YF8By/e0HcN9Sj41nnAYMA3gYAB7ACaAhg/sB/fK0aOdW\nt49J9GozdJ42meC//vxP4JZDd+OWOw9j15aN2L1tM3LO6KZTpF5q4A2DL8OUCgiXwa8sN6r3ShMC\ncjGiukg7NYaNIhXVgp9tie+YcPXKcEtfsoGvS2ADBj0fCa5BrQquTDuQRX2RasIorT/2qnFA+gir\nrNrfxqus+Sy23H533jZxy+cKXhbc5GonB/TeVfZJmg9YCuU6GccmI7hinTGKk0MgWJXySduibeQR\nS2pTXbMyxvfFBQbZ+doqjikga/9K/CQIP+ZW+7ZL1BEJbROQCMg5IEWRHjRXTOkgxJJvuOsHqW+c\nLUtaEABOA6bTKZbXrMF0eYpu2qHve6xevQoLiwtYWFzAkASQDXyzdt5p36MfTGsUCYSypMEEGRuu\nOXS9c/wKFvwIbFiVLRQk1C+XHKjJZAnPVENJ1wDAwz6AIMzXAFj6fl2decoz+l7d56L1KVMjBmID\ntHL8Qw+f1E/ON5zdd3KK7ZvOAk87uZYhg/OAMCTkrkdPAYmBgVHKUNU8H5ZfWJaeOzeehR1nrUNm\nRj/tkLMsZctj6AsAS3FSlaOosjBjW5EImWRf0mUaGw/WoA6mLCBA3Ujq8UI5XyqrH6c/cj0SGFom\nqbpcmgskkuQfZsrgkEGsxsMR8M6elTFdOMY7Iz/MvOYZsEkS2pEqcMkFojJIi5SshCfb6sCO7rps\nnZioFEqgErhUf1fkRmG33DTq5xvAHMA5YdJO0LYtmihsOFpif2XT7PI+czFUmzYM9YIIxRsis2Zi\n5OoNdKq2JzYIowKJ+AmGwoSJgJQ0j2gUy7P0bHWhZ6DPCWGARDgNdXliALy0tCQA3E3R91JBuOs7\nrOpXYVVKSMyYZKuqYMAIdF2P3phwFhCOtuqBMeFqVBxtjol48M0K8sH+1kI61d8SRTvzidbN37Vm\nMYul7epQqIPKaoN58DV98pFA2J7boCuxRyGCGgjrjw12bN+qn55vONu5dTMmi6tkUKQMJqmGe+fR\nB3H30jI2r1+LzRvXoWcubNBKGZXE3TEiR7nGUcL5nDB0Hfq+032vWnmVaizhUEkuRISGJC90hrg+\nhhBATQNqGqBpNJ2p75AGhurHyqhswRciJSp2grLqLvcfBVSJshwTXEGYIiiLr7NEdWYJc+bZ++MA\nuPTRcf9CkZPmTPazrNg9ag+qQFyBnwoDtonZM2Odp4uHTE3WHwoTLhnguE5klj+EcyOukMgKxLKC\nbbVihqU8DRQKCBcZwio0W+L9MgSkP1Um7FLi/mMCYSJ6KYCXAditL30JwJuZ+U/dZ94M4CUA1gL4\nSwAvY+ab/l7OdsUJoRpIChNWEAYwNISQTGcCrLwKoHJEygiZAUrIRKVC8LSTLGsnTiygm3ZiDBjE\nw6AfBvQpIWVbds3yCNGaO63qPMxKAs4YN7YCuy5ugMozA6Iw7owA2QNwAwqjahc2qVTBQ5Z9I/g0\n9lWAXJuWodIFzbBgG5ArAbloybqcL5lVIoDM2LX7bDz74gtx7Zcv1/zNzwNwJUK4Apecey5279yG\n3HXgISN3A44vd3jHn30e1xXXM+DiHdtw2b96DjaqJGDlaSyxi+0BB8Kan6Lvpui7ruzN39SAmJlL\nSLMxtMwySGwfQgDaFtS2QJNkbwqG7oO/fGjEpWPtlmpznr2nAiRgXixUfHFMh04IOcr9DaaXZs15\nPCsf1Pvlea6XvOCB1/Hfuh+z63quo9kHNpmvAODy2kpJwyan4JmwW43YB00aytGCWgwmJdLU5Iim\nqUy4gnBlwSLTWY4ULpJeCbRClbskCdg/PjniDgCvBfA1SKu/GMDHiOhpzPwVInotgMsAvAjAbQDe\nCuDjRHQBM3d/b2c9s1kXMMNz1BtbQhhjQM4RGv9Yot18h7BOMgwJIQyw6Ki2lZkVJD6t006zsC0v\n47TlJSwsLlQWoH1mebqMk0tLOLm0hGnXIWUB+0Y7oc++VR3T4fQVrBig3lBrGm0RvJyUIUVJxduB\nc3Cd2D7AdTnKbsCxfxj4Sq5d06ttmeyHYwHc8ncFZGlX1Qn1At7ysgN4/a99CNf8bTWcPfP88/Ez\nL34BQmyAlsGLCyDO+KW/uA7XH16GN+J9+c7L8N7/dS1+7vv+d5EaND1pMySkGBHjgGQgDJeYO1eD\nKWeAmBBVYuCgA5ABRCnWiiCBIDFnhMSIOSPmDCreIo6xljZQf+/6ZyEIVgG6eE6Q/5C/01zvaZkg\nTUbIIM4gDTRBDvKwJX1Oalh1fZs8kOrrlsbRVm/ub2/Q9vtqk6h7JxjPnP6YTNT+5iZ5GLt1Gc+C\nRL0FKLFSbYxIADo2EcyNpM+wXqaWy3ZhAc2CpDaNbSvGWp1MmVFZL9uYszS1ImuACBwh8pm5QFJA\nNYqcuu1xgTAz/8nMS68nopcBeDaArwB4JYC3MPMfAwARvQjAEQDfBeD3/u6nO94KLpHPoK/eBuyS\necSAnBgcoMu3lQAsrp6iE9MwSOfMGbERbSlzxjAMWO6mWL28jFXLyzixdBILi4v1JEjApx96TLsO\nXd9h2vUASYL3zFw+W9iwgTFQwG50gfP+tMFtRMHeYFQ9jaG5XhzV1YvNyiQYfjC6tjAc0FBZ4+l2\nLPYjyZ8kFS9WLSVGRcvU/o81p5+Gd7/6R3H73Udwx5F7sG3jemzfsL6w1kAAMuOO+47hrw5K+s8V\npW4OHsDdDzyEXVsW0Q8DaDpFChFDDGh0T0S1iBPJOWeTHBjq5hVkIAapnkFE4BiBJso+NqCUEAbR\npYml3Prt9x3DoQcewrbNG7Bj6ybV0CsVJgORUPcSSRjLktcbAOsgV6Op3gDxnqoSAbJ42yAIEFMO\nIPVHpmy5iF2/JrtlM6u1AqbiF1986h8DgEdAnMcrtSoa+37EpT9V1l03y/tgQBwdKNdmYUmAFwPA\nEZKzJZj6rE0oINxOJmgmUvYqNLGSB5ZsiiUPNAICMTiIIZpIAjkQGQgNWFOg8j9GEPYbiVXp3wJY\nDeCzRLQHwBYAf2afYebjRHQNgG/GqQBhTxxt5UsCvoCvvBqQo/ju5sBjtsDWWTWqLknYslnMQVAZ\nosd0OsXJ5SWsWlrCqqWTWLW0qjBhe1Ag1YFFh0w5I8SA1lnLyX9eARkwIwyNb/rs/Z9dAc6+hurk\nXt4wP2YdNKSx93UpVpeO1ZFeJrLyQ7MAzPX36l5Ua2FxBCvvPkp7qde6c9tm7NAk3RLUETS7lfze\n4YeX9AvzjXiHH3wIOzdvwDAkcMolz0BSx3wowzVDCwNASiC1tAQAAUFILwiH7rsfdx57EDs2bcTO\nbZvE+NM0oL4XOYB7HH/oJF7/+x/H1TfdXM7m0vPPxRt/4AU44/TVtc11JWb9wVY81X9Y2fTM/SaS\ntjd2x+CSeClrMIeBb6Igs0sWgA9qpAJGwlaBxfr3PFAdM2GfcOmxHmVJoH3C9zP/3L9HpbPKKqIA\ncaByP0Lpz6xMmECQenLM2Q85EFAAWJL8t4gh1vNQMVr6uE2SEeYyCstWEgDWvNMcpH4ksyX8P3Xb\n4wZhIroYwFUAFgE8BOD/ZOavEtE3Q27HkZmvHIGA86nbSr+vSxogIIaMRgdmjiw6frKuKNssExaQ\nShgIhQELAHc4ubCExaUFLC6twqqlRSyeXBQQtkGmhpcyuNTw0ratgDKrLjxHjlhZKWF8ff46q/7C\nKEkFyvvqfVHKqZOLnhNdrCxJyQEwnH8rK8KWTGFwKoSBtJ2TAT675Zsug21dXmiNALUuSUBqjZYl\nIUuIsMoAO3c8uhFvy4b1ojumAUPOIi2EgEHTGJIey47HRAg5I6QsaYVZDG0nlpbxht/9H7jqa9Vs\n8ZwLz8fbf+SFWHP6KmGumjnvZ3//47j25qPw8sjnb7wMb/ytP8A7LztQgNXkhpE/sXnDeCasE0RN\nC6m+3sryiJO64tVIL2i5KfGSMBkiIGcJ4a4rMoz7uGPDXlKYBd9HBFyzMThbQ52wxwyXy6Aag7I/\nIdK+U5lwzQdcuox1a80nIek8Q+1qZg8ioG0nAsRti9hORI5Lqv+yyFC1UZQJk3ldR5R0iYUJK/iS\nnsAp3L4RJnwDgKcCOBPA9wD4bSKapSv/IFudCd2NQzVj1OWNZQPjEk0KeLZgrFD+lSTdBPS9dWpl\nDJBjZGQMnNGlXv1FdWCp/GHVmKOG2mYbBA6USBkTqQ/zyF0JK7p2eaWyAAV6x1TLoEd1gQMghhti\nX9BCx4kBsB+Y8mYNV0YFXkd+iuxRJg55s8gq5XXHEO1dklwHMhioDGpEyUq2++zteNZFF+JzX5k1\n4l2Op+3fj93btsgAGwYgpXGNMWXyMnAlSCTEgJAZMTIiS16Lhghv+O2P4tqb74MH1mtuuBw/9eu/\nh1973ctLYqbbDt+Lq266GSvkkcy49isHcOi+Y9i1dWP1I7bzKRFyNRDGWskmuqqrk7vrakTWFKKw\n1ZsCJjDIJ92KCmSub1Teq/fbSRJlxTOHFc+C7QrQtccYiGfZ8YrXjAVr0hzSLGhSCozREEqwVdDV\nXLD+rF1rxjFutAiLTYsQG1BsVF7SlRhV3/hRyxIAK/JHEYwIjgDPaMKs/fNUbo8bhJl5AHCL/nkd\nEV0K0YLfAWmTzRiz4c0Arnus477qVa/CmWeeOXrthS98IV74whd+XedlQGyRaXVPZXmT3ecq3Ol1\njZ7z6Jn1IUsClHJCnwaEoS/ClreoR5ZcFI3+ze5foQEeiO0m13FZTs5+312oG+ChEktW9lkTQQIg\nd+66z9VYxRrhl2cMNUVxYAMJYITeqO8bEK9g8J4BOwYvg0OAsuYcItfmKP6ub738AH72PR/G1X9T\njXjPOP8C/MwPfg8WFyca1JEEhO3eM3DnvUdx1wPHsW3zBuzcullkhRgRWIed7g8duRdXffVGzMu6\n9tm/PYBbD9+HszesB1rGHQ8+pO/Pl0fuPvoA9uzYVkvpKFMzlGD1w5b7IX6oplrUlEVG/WxlId+t\nCZ6gGq5IW8ReZtDpz/VFe7Aeq3xuJEVwyaPgX/MseZ6EwTPvS9dYCdLWAS2BkyR2ygicEXLGhCJa\nDmgJaIPkgbAy9YGqu1rNpWF9z8keYK2yrTIUNJhHIxqtOgnYWDqUPAQwIjJFMDXIUeQIDlHfMzkL\nj7p95CMfwUc+8pHRaw8++OCjf8ltfx9+wgHAAjPfSkSHAXw7gC8CABGdAeBZAN7zWAd517vehUsu\nueRx/TCteIg7VdBGDtqPTfWxgaqpUlZsZWVFlZPwzL+cNZHIkBCGHhx4xEAQAhq0aEWgBnGozuoe\nYN2j5mmtgDzLhD1IgSB+lURqfNMh7Km2yxhVGFQZZFkBmEcGluwHleXBEqqcUQAAIABJREFULXkR\npGGMZdp5MGMlELvGLeBr14fatuWvMPN5vZfr152J97z+FTh41xHcfvgebN+0ATs2i47MQxIQTgkY\nJJnLQw+fwM/99h/imhtuLMd71oUX4M0v/36ccfrpiDYhkzg23XXzQf3UfGC9456j2Ll5E5iBbdse\nPTnQzq1bEJtGGJyRX7tY9ySzoK4tYjwxkOuvbV3lDelXVO6TZr5LM6kyIV4ExC4gBKGy33LPPPgC\nJY90zpgF4/mGuTzTV2wPAPV1b/i1HA3EGTEn8TZJGW0AWm6kOnkIEm7cVJ/vRvO1lFUgjEx4f3hG\nCFL9XNJYqaaMujoghEJCytyAIKBLjQCxMmEmkyPm0bWV2zyy+IUvfAHPeMYzHvV7tj1eP+G3Afif\nkKqVayC98XkAvkM/8m6Ix8RNEBe1twA4BOBjj+d3vtGtpD0srJjc0qa+PsYKhrnCs3u9zu6eCasb\nW86gNACDRDXB9CrV+hgQdpzEf5WxEkRHlgWVIyoC1Zs++92Rb3EIsFJhFu02Zq/ynoWNFpaTx0y4\nLDdHTIYqEBd6Xk/KSw4FiGfvh78cZYeV7Nk110nIZ7Ei1FXCvt07sXf3TvlpY1UOgHkYQJnx6v/0\nEXzuxnvhpYXP3XA53vj+38F/fMMrxdmfNIMdBezZvUvPdD6w7ti2RQx0RNh59k48++KL5/o4X3rR\nRdi9Y2sxLukapOylyVwwgz5ZuTKzkAxdKqD2D8q04h5Cwdj1DkmaH8VQR5BSSSO2zMaEgTHYztgN\n5rBdC8+vn8GKz8w13lmSnJy1MnlGkxKalNAmQotcmXATxNe3bUrwhUwmQFkvsKSkTZoWYEipJMMS\naQuw+ixEeh+CjF37voyNWECYQwOOJCy4yBE+l8qp2x4vE94E4IMAtgJ4EMJ4v4OZ/xwAmPkdRLQa\nwPsgwRqfBvCv+RT5CNPonyOXbLKEMmGvAJRv2jFmtxkwNpCzAZCFDQ85AYNKAAakZnCJhJCiJu9R\nNyCDef/DI/bLIyZcT04HscdwBWGxFFvH1CGveW9KRjc9d5tAshssY2Y8O3gMhBUYiqtaGLeZZ8AO\njD0DriBbW5z0w/b+qGKx09cNiMkflLmAL1ICDwm3HbobV335K5in2V71xQMiF+zchkA1j/M5+/fh\nuc94Bq66bmXWtUuf8jTs3L5N2iKI3vOmV74Eb/jV38A1X6zyyKUXX4yfv+zFCE0jIFxurYKPbyq9\nRxnu9muL2kTmVwmFvWrjiYyhnjdDUuCr7S9eVg0ii4tdIPEAKQBMXo5wAGohveyZcB4/ZljySA+2\nXsY8GivzNOGgIBxzRssZR47ej3vvXsaeHVuw74ztaJoGbdtIBNykLblcypglYbNhGDCEBBoSGCoB\n1RoaZZwAzk5g4yFrciVSEA4NOLTIgZBn5YgyAk/d9nj9hF/ydXzmjQDe+A2ez99hsxulYOG1H66z\nn57lYxxnhrXqk8rU6nsFg7iynlIpuP64/mztuCNUtYOtAOaVSyGbboqfcf1V+QlC0QrH16rnQ35w\n5BUAbE749bQVkMuvj897xFHKabMyEHuNR21npZIIkGgpcp4ENpmVJDfO28T2jOr1kDOQMu56DM32\nrnvvw/69u2DeKIEk38K7f+aV+LG3/TI+8/kKrM966tPx9p94qSZ0l8oXzIx1Z67Br/zMK3HH3Ydx\n6O4j2LllI87esqlKD2424rL2t7WW5aBW0AUXF1SmXG47yKXNZAdsDKTMSIkxDCKJ5WyrOCqTbBMz\nctMgckZkBkdzhwPMULeCwRoAe20459I/LOpQKnNXO8LsMCIbCKNub+NOPxxkfJ5Y7vC2P/kkrjt4\nsHz/my8+H+981b/HhtWr0bQtmqZFbFqnrctRAmUEBiJXQ6d0bSo/w+yZr7xueUcsFHkA6SMiUVT3\n1YhcDKh1FXEqtyd07gjbZmUG2+oSzC+X8HW2qjMWzQDvaD97MAfAZkwoBSRR3yvfcsezJfgorwTN\nfkiASfIRSzYpY6BFFlDgs2ipwodLkIr755lw0YfdHFGeyw9RPdlyakXS1i/YOoMcGJP7nF2rfIZg\n+ZULCy7Gpfq8WP+NasdY/D85M/bu2qknPF9a2LtrJ5qmre0MkVrWrT0D//ntr8etd9yJ2+68Czu2\nbMbZWzdrOPPKJTfA2L19K3Zv31JzROg9LhBs3WYGf8ybMBMXtYFZJ6jarAWMPYtkQFKjJqnZ12v+\nA+tuskrLyE1GwxnMLZiByGMjHXTy8WwVBXS5SAesoOuNt3mGHcu12n20zlL7W6XylRHJKQS8+39+\nCl+8fZzS9NovX47X/up/wQff8ko0bYPYNkVnZ+1bDJmAo04+0dYTxfedS+IkBlVCxISBgZ6BAQrG\nREgQn+sUBIRzCGDVlb9+rPi7bU9oEC5CRAEqQrV82dpjhn2uYKCP/gueXVsQhJuY62YDT4tuEtff\nl/frYKoDy9ipx9rRSCxgNbpmBeKRJoz6+xV85cQYvMKNrBpN5htirB2NRRhD4xEbdjKQAn+VGCq4\nlL9HbafvKciG4K7JJboZPRSk4QaIjfFzz92H5/2zZ+Izf7VSWnjuM5+J/Xt3jQeU6t1SWJSxZ+d2\n7N6xrfrL2mTC1SBWltUKMOQoXzGouf41wh/XSYr04PqMv/W2N9Jg4J+y5DsZUsYwWDkmFIks6sQ0\n6u+5mfFjnyUl4z5Qn3sATiNGbK6ahQHUkVj7xsw1C1GQ6zx8/wP461tvwzyvlE//9QHccc9R7N+9\nA7FpEdsGtTWsibNOMPWXLQcIUnZki0uoMjMLADPQM6FnIDFJUlgKyBQlCrww4RGfOqXbExqEbZvH\ngv2ypAAgP8Z3Hut3Zplp+ZttB4Dgq++SH5jlPLgOUKw83orIOc++DYDVuFRJKpdzJJuE4Dn3DAdm\nl1dhjs/niNQIZRNYogJP5br9dOHZsJyu+AJ7x/oKxpX5hnmgG1xqwxAKSIOc9meGE2b82i/8FF7+\n+nfgU1e7hO6XXor3vvU1aNpWsZPLvjIm2UveZznzoPZ19vdsHgCDZ9KD1Zb3O2vPQhEYIGS53wWM\nbU/1twsQKxPW0HpJk5rAoebGiJqEyK7R+qS0H5ecw5ZydRaE5R7XydmqT5TMfDOM2MzddasXW8kG\najtpV7rn+HH93CN4pRw5igvO2aNMuC1tYcfMHBCUJBAlEBHSkAR03T1l7YmsU6ox4U73CeaCJsY4\nAeGg6bGo3NJTjMFPbBAeZVvyncHdewOWyvJWHMV/bQUwF8PRCpmA6pegkMAaDuuMD0FzCZuT+tia\nPL7B8+UIqqBRvmCMPIzO0w/aoIMsOP9ItXUhUz3nMjEU44yxB98KmrhmFFZb22602h21F2oQBTT/\nuQdgY8qgsSF1zvGCSRWxhv5CB5F9c8P69fi9974dt9x+CLfecSf27NyGvWfv0Hte2VFp/+LEb7b0\nIPcqjG0LMwS4LLTqXgd+mfsqAI8nWx49t/dKexa/a0Y9lMIJ1ynPksoHYMWkZVw0Z9ZSVoSgZMD2\n43/GLK1Pjg1z82QI+4xpKmSdwKbgArx1DrebSTFgy4aztA0eQTraubUEXFQ6MX62clxCJ2T5lExM\noqNnFm++LhN6JgHhrP6/tnKmgKxRdBbmXvHj1MLwExqEV24zEDoXgP1AeCQubAtv7WLzgLj+iPom\nswQDMKMZEmLKBYyDOqlDHdbHFuPaqeCO73Oq6qV4MoHi+Uz1KkRyMFYTyiA2LwdzVDY/1mRd1rG9\nnHnWqK/HFhf4al4i1DzDBp7u/P1zYCxNWJvq38FAGQ6I3WeDtX8Qg5rkkjUQdlGBkC+du2cX9u/Z\nVYBAmqFeo01qkhIUzlshFyA20HBEVh4eeK0rkRraSNupdLHyLf1KXVL7IxdgR9WKPeiUSYQUdCF1\nESlHzbcQEC2wIUifYGiyHwxgDggcwcyooUMY7w2IsZIN15BmF4Dhrs2v2Ebt5cZZ6QsxYsfWjbjk\n3P3465suG7n7xXAFvvWSp2Pvjm0rj+FmwbGRnVx7yf2xJJc9M4bMGJI8eg4KwrJHYIRsJCBIWlCq\nhk5GXS2eyu2fGAjLVmYxWAerN9N3jNnvjF6piOEYqhbE9FIBZHBZifeYGTEKCB9/6CROPngCm9av\nkzwEjnHUIVB/cDy71xSX4wFjyzCZvcmdbwHjwkK4AG8F4XJZ8mCbHJQJp5WrBWOLbGwYZpMWfdhr\nvQa4Fi7utfRQp7XR666pxyBsAAwH6s5jAggOhMndkpUAVtrFTYCZDIBNPhlPBWMmXFcixscKGS6A\nbLOk/o6yWoYBc6XGBaTd+ZVz9+zYbZZ3RGIwgkSdadBOidTTjpBZ6B+zhGkLAGuYrgK6TSpVmjA9\n1ckRfm9MGbPnZuOBSruMlvLGgkOQyMWmxete/AL84oc/hmu/XKWjb3naU/He17+8HktdOdjfOyMN\n7hzsmv3UkFj8+fvE6IaMbmD0MCAGegRQEF250Qx4TGFGD165Wj0V2z8NEHboOTsT+yXF41lW1OE4\ny07rMqmwQGaVHxhNyuinPT5x63244/hD5Xj7t23Bi//Nc3Da6auLBlsGoOG6/VYpf+PAftT3KkjA\nlmIOhass4TtzHXUCaGPDEnMF4py5yDxE6otMoYYiglErUNaWsHaKqKw40Cy0Qc7Z/T1+qDvXCNT9\n8WokmGUlk1L0riOU2cj2tvR32iez+z1Njcijuy4gnG0CdIOTZiaq0QX496rk4AHY0bvaJx0blr/J\n39JKCCw5kx5bwLcmwfGTTMpS5BaxTvzEwvYKaJFdn8kRDHYShOWSyJ4pu4t3VMSBl2exOiHaPY8R\noW2wds1peNerfxj3HHsAdx89hnPO3o7z9uzEpG1RxSk3iTL7Zis/QNq17WSMsGRlwV1KmA4Z0yGj\n54ge0AchREabrZ8HlPSrs0B8ilH4CQ7ClU2tAGLXERzZKx0EGPsBenwbsUtjpyUjFlCMZpWmovhW\n5oxP3nU/7jrRwrvf3HT3Zfjtj1+NH/u+73T623gArtC5Cqp6YwoquGpsvI84Y2aEwIAWAgWTpuST\nzGHIQCDRByWrWEIeEpBYarpp0nNfww1EslTLrEs2BTH9uzQww6on6aCrWdUsw6WOR7+Q0NILCTai\nxlxUgIcCu6Abm3zIN5z+rH1bPixLfWNRAeb6BWYtH0T1flpEn1vtSOUKZcRZGWRJAcpFnvD5Pkrl\n4zLJVuCtxj2U3icfY3eA2inKpMXWcHDnbJOTB+FcyvgwcimxRKw5nLRfGxD73xsz4TnBPHq+ozm/\ntP2oAdw4k79JAS7EKIEtbYs4mWD32Ttw7r7dWGhbt8IRNLUK6XDnZOdn4ce2l5wu4sLXp4xuyJj2\nA5a6hOUuYalPSNRgIMZADQYENJKeWHyOFXy9rjz2iDl12xMchMebn4mtqoL3AhAdUAFZvzPbfSwp\nmQfbUgjBUzT7QZISKNIRgPunPe48cRKz7jfMjK/ecQCHjz6I3aevUu21MhR/FsaI7SeyG8f1QWXW\nENJkM3o1UhQMZSC4MK2QGXFIyN2AvNwhTyVpeRoSci8RWSV0MwbJQmY1wPR5dAlOClw2jSREb6QM\nvSVVMfbKajiq50eKz+ZrqxHcTYOsWei4iTJBZIBbBfaorLxUF6mAQPUPBXxBSEsWZAyY7TelBZUJ\n1/scChbUyToHcgOyTqA8i0P2EUvraQDswrY8AJf3Zwa7C2Kuk4ybdKpOXosZsEsTSASAs+TJ1QZm\nU8DL+daJvpIWXvkw6lLSO+q9MNZKpRVHFZXluqXdLCVlCA1iaBCj7ENoUPItsxkWhSxIHuXxufhq\nKbbv+oSuGzDteky7HsvTHienA07qfqlL4DjRB8BRoiCt2o2NnbLNXP+p3J7YILxyAgYwZrZW7dWs\n/tmA+BEOATcAlWwW9gGrlOBAz0hg0s57f6fJVR7B/ebIsQexa+dmzKYCtIHrNWGjE7aUzSoV1Otz\nA7OAMBwAUwEWqzaCQIgsPpWx68FLHfK0Q+oGoE/gbkBKGVnBNEfZi7tYLEDcUPXVtTBxbluw1l/j\nNiPHpuQIphA12ZGb3JThMYsXSWCtmtc0CG2DrMU0w8TYZ9DkKioOEIDAIyyp4odBHMnnR5na6lrI\nHmawKrVB9KBeikB5zqX/MCQgxegm28QwYsK69wCuskVld7WnOFgYyyz6VF73/tTkgloymNTkqhMC\nkR21Tj1lyV8mjXpu80AYgFsN2sAIkAxSLuOYAbGuHuosSTqeonh2xKY+QoQkWbdjSrtk0onIMWB7\nJK0yklV26XphvMvTQQB4ucOJ5R4nljucWO5wshsQ2owwAagNCNSAcq0CPWpgG1+zK9ZTtD2xQdht\nfnhZp+YR+Co7BuaAcI12KtKGMuDKOBw7LmuxylQTixtMbGw9Pt/95qwz16jONrPEGg20Oi0YALN1\nGBvLpV9UJiqEo0omtg+kBRh0AmFm5EEAl5c7xKUp7jhyFLfd+wA2rF7ExtNWI7cNUtsitw1y24qW\nV4BYHNqRxwZJmkxw2/H7cOfxh3H21s3YvXUzcvkel6QoYxDOgDrZW0pKbkUiCW0GN1kBOIJDBscM\nK7uEaJIC1xzC1nyQay/4oqBYiarXhM29UPqHyxczAt3gno/m/cKaZxhxkSX8QLb7XZ8xo7zmAZHL\nnbWJptoBbJljvtNWKBNEyMa4STs+oCzYfkV8QszP17vWzWXBzAX8ZVxoshxWTb7kGHFLebgUnWXi\nIBBFXU1FxNgKEyap+VY8XmxGMsJRxomVXeJieDMw7vqEaTdgadpjaSrg+/DSFA8vdXhoaYqT0x7N\nAqHNAQ0aNFH6bMmfTfVcbZA9yYQfz1ZYi2fB7HRgW8LAAbL7qjuOEUYuAIwxGM98wWSInsUlhmLA\n+tWrcezkK7TDPw/AlSC6HHu3b8NZa0+v1ZdHLLisYUuHtXtvn8sjIDaDmZ8UDNjqeZKmugzqFyme\nOSyO/V2PB449hB//w7/AVbffWZrzaZs34ornPgWrTj8NaaGVqtQx1kcQKzKljDAwYso4dmIJP/eJ\nq3G1zwVw3rn4hX//PVh7+ungyFK3zYNwAELKmhd4ANThHm2LMMm46dARHLz/GPadvQP79+ySRCsN\ng4MxYVsio+xtSnJ3SPoGY9SmM1x5xIi1SFMB1ipgoDjpATKpl/MgD8DGit3fsHvM9Z6WY9aBvtLo\nxfXe6rlUTdz5CEfJnsaUJFE+JDxaJoFsHclN9yYr1NOrUtd46S8hyiYlmXE0QhIKUXnPWjGzSRKV\nIBQJxTHhGJrSnywAqchsTo+t55OLFGEAPOQsBrg+YbkfsNwNyoIFfB86sYzjJ5dxYtpjMQcsUIOF\nOAFaA/C6LrLbVYmcR5RTtz2hQXiFAQtwLERrVsWApolIzMikjyACftRBJ447LNVNgpRYaQIhRkJo\nJGrLBWq5rTKWusAFLtx6Jm645yHc91B1v9m1ZTO+59svcX6XaeSDGSi6Jal1WhusVCtzoKbUzCpX\nBGUhBjKWpGVE1wIkwUkgUBMRJi3iwgQ/+cefxbV3nIA3In7xnsvwjk9fjxdccgE2bViHTWvOBMVQ\nNF4KQQMFMjhIRq+f/cRV+Pztx0fHuebGy/BTH/x9/MeXvwghU5VxbGmaCUELacYhIQ8DIjMePLmE\nH/uvH8VffOWG0n7//KlPxftf+wqsP2s9Qps0wi6WSLvgluehJDVHNTACYE7ip50TmCX7Gg8DOPWy\nz1lclIh0rxO4Y4iF1WrbF5sbcwlvLu/Z4CW7ITbfcuk0/vPGlsfMi0csFaphzvFgq79l0pm1dcna\n4/pFWcxVzXsuE3YTlRyutnvOcuxxnzQMJSXhrj0ImE47SdgOAFlK1TdR8wjHiEaTJhV2wuPCo1nr\nN/Ypo88Jg+bROLG0jJPLU9kvTXFieYqHTYpY7rDcJYRWXEdbBkr+lTIBeLkK5X48yYS/3s2zEPtb\nl2cGwpmFGaTAyCkjKJsKbEUfWZJ9K/jGADQxILZBigxGGuXHLP1rxbkQ2hhw6b4tGChgAGHT+jOw\nffNZWJg0pRPlpHtNSp2DY8YAqHAyY/gSSjDq7HUsjxvC5f4dJZGXkragJoImLW47/jA+c/NBjI2I\n/xqZd+OGe/4ab/vTTwMAnrZ3D1713f8b1iws1jBjQNIIpoyDx47i2keojHz1Vw/gliP3YtfmTSOp\nwNoqpIQ4DMiD7hm44kN/gKtuGucF/vTfXI4f/g/vwUfe9BqEPqk3QCj+sR6MORC02CBgdeYCATlp\nGG4CsoA+9z1y3yH3vXgVxIgcI3IM4BirdFAAiUcAYeBryWMsMrLcHLs/VQdBfdV/YB4QK011IEw8\nvvEr8IGg9gttbAVKZMfzFFHNWKlHLyx4XjL3sho0A22MZUKR9Klc7C3l9GZYNTMj0lR+LSWkvsek\nbdHGKCksmwZN1HVGAT8Hvkn2Q0rohoRuGNClhH4YcEKB9+TSMk4sT7G03GGpH7DUCTvukgRRTTTz\nHEVZPXidm5yLy1iDxindntggPJIGxn+bMcpAmJmQQ0ZIjBSC+MJyiRKXJTpBADgqG46E2ESExtIq\nrvxN62z23J/MmtULWL16NVavXnTLO2HBybFgeS3ocUbrWkBZ8EhKcUyYuIJ0GejKAEedR4VO4gBq\nhQnf8cAJfdMbEQ9AcvY7ZnzrZfjlj/453vxD31MGN4FBMQFDxp0PzzsOYMbIg/cexfaNG1yz1RMz\nF7msQHz7vUfxmRvnlxy68voDuPGW27FvxzatKqU+spCoMTECihcG+dL1TSPA7ACYUwL3HbjrkLsO\nPJ3KfWhbcNuA2xa5VQAmO2tbjWiVCANOA2ObGbMtaGu3XNk/4DqPsVyMvmf2gPLXLEOd6Xhl7rVV\nj4TYaY4MYQ5szhHkvuNYubha+rzTdbowmUxWhlGi3UjrLhZiwMU7IqMmF7IHsZCg1PfophGTpsVE\n8wdP2hZtYyvCeu0pS/L2pPkyhiFh2veY9gOmw4Bp3xf2a4x4uevRqatalxgDA5NBxp2QtMqESwY/\ncmtqvTdPMuGvd/PLK3uuSWFiZDRZ3khJ/U1zRkrqpM+5aIEehE2OiNGYMEoRs+J6U/5DBdDxWq98\ngME1EUoal2bJ6m9b2a2Mkmq7X2n0sLFuxvgKxDPg6ycNS47dRNBCiz1nb9Y3zIh4I4D/gXmM9gtf\nO4B7j5/Ats1nFZkEIYHDgE2bN8wcx7YrAQBb169Fn3MBLU/hKggLEN923/363fmAftPth7Bz3Tqr\nj4tALDFgOphiCPja4Xtw631HsXfnNpyz62xwm8TVLhkAD7KfTutjeRk3Hb4Htzx4HLt2bMXuXTuL\nJFFWPu6esrsbNV1iLuk1Rx83TdoveAvSVgA20DMgHpPnGWbG4+OMYML0VwNi6zvOTbG41QEz/Wr8\nOyMQUh06FBkoA4kcCNc+bN4RiVkBVLxuOCUMfY9+SmhCwKRpMJm0WJhMMGknaNumnJRdkwffYRjQ\nDwOWu14efY/lrlMpYooTyyJHTIdBcwdL4h6mgMUhIamxLwSTGR0Akx+37tqfBOFH3lbMXr4xIdKC\n+APKkjUFcW3JOSBFdWRH0H1GIKDxABxIANgqIhdAm0U5Oxdo/D7NubGVvZS0gDMPdgPSfqyM78KG\nrTyRxfJTOZ0a3VaNXzoj1QFNLMuwpsG+3dvxvKdegM/8jaV/NHPlfAA8fOw4du3cJsEfuqTkIWPX\n2TvwjPP247obL9M4++fBKiM/89zzcPaOLah+oDx6lJwSeqE7zlqnvzkf0LevX4+hH8C6egkGGCHg\nwaUlvPwDH8Inv/S35VvPf9rT8P7XXo61Z55ZwNeAmLsOWO5w//0P4GW//hF86oavlu9921Muxrt/\n4odx5prTR4EYForsgZgHYdZIUvdOPkclAisTNBIxV5ZpxtmRl4z2E+sCwVzJgOJrQF729V47Bqpe\nk9P+YEYBmzQ06rN+sQJw9anXibZoSOYl5LPZMcwgnt11mP1CUqXkCqD9gAFmh5FHGyMm7QSTSTsG\nYUd0kqbuHIYBw5AKCE97A+IOS8sdTk6nuu/Qp1zDkEkSP4nCox4aVgndfOApIJepb6WMciq3JzQI\n162CsfWZACjzE8eiQIRoWcKypMMDm9LKAAfVhFUXNkmxVHzFWPoomwBJCIQICX2UGVbDnKuNSD5d\nbqwD4JSQiaoWBxsuTqfL9p0K4ilncdAvmRbUYo4IIjH2ZUBcL4s7CEvZoBiBCLznVd+Hl7/zw/gL\nV9H4kQDw7C2b0LQThCYKEOfK/t70sgN48wd+B9d+yZX+ufBCvPVl34dVp5+uEoYzuui1hmFA6AeE\nbkDoe5yzfSuevns3rr/tpci4G8D3wpK7PPv8i7Bzy2YkBbWYa0n2HAJe+v7fxmduuAteSrnyi5fj\nJW//VfyXN7y6SBFmnEM3AN2Al/767+AzXz0y+t5f/u3luOKdv44PvO4VYwDWew7mIktgGEYPBpBj\nkAThUYHAge/ofjogLoy7TPKaghJaeRg86qMhah+LVNx2az/TcQHIJFwCNioo+/Bg+1XWiV7+GfjO\n5nR2Xjlw/dkAuLDzmnqz6wf0XV/vQUrgPCCGgFb14LZtEWMJuSz7KkXUIrtdP2A69Oj6Ad0wYNoN\nBZT7XlgwBQCxKew9Rg0QaRqp2hHb4nI5InRldVuln1O5PaFBmGYfVAGYtHimDn1E7xyvg0DmcGEI\nPmdBCFwyjflsYLNacJk4Tf5AEEkjiEGwlOueYdBlIlAviZQyQhiXGZqxbswH75yROZROL4xX/T9J\nijySueCYhwAxEKLIKxFYv/YMfPinX4Kv3nwnbr79MN738c/i+ttnGe0VeOZ552P31i0ITYuw0IKa\niIpOwOKaM/DeN74Kh+4+jEOH78HZWzdi97YtKImGSNmYz9+QM6gfQF2P0PR48NgUP/nB/4brbrtN\nL+gnAbwWQMazzr8Ib3/JizTBimmXGSFJ6PXBe+/BlV/+EuZpyZ9eQw1RAAAgAElEQVS6/gBuuOUg\ndm/eKKFYGtpLfY9b7zyMK2+4Ye73PvPFA7jp4F3YtXVTWZwIK6oTCXEG+h409EA/4OBdh3H7/Q9g\nx+YN2LltE3LTIAcqLLOA8Oh5rn3JdW4jtuZVIv2RxeYYFYR1pWaTvoDi2ElPuniQ1B/WGVkBmKlI\nbLbiKpIH1RPxZadgDwsKGaW8NABX//nMwl77hGnXI/U90tAhDT1S34EIaFxl5RhNE66sR9JyVoO2\nJLUf0Csg9ymh1303ZPRDEvbbiFdToIAYrIJzgyZKAdGmEVAu7N55gD/JhB/vVpQCV11ZZ+xA0Ph/\nKJhhRudx2h4AS2xTqrSScUwoU3FiFQGWAzaANEFVLABc2LBfzrK53OSqEeekhrkK0nXB62QMZ+RI\nOSHnBOYIOyEDOipLzogQJK+q4B+jhLcFgBoAmUANY9+Ordi5bj0u3rYNP/nhj+Gqmyqjfeb+8/Cm\nH/heGShti7iwiDDRWP9StSEgIOO8M9fg/PPPkUTuwAiAiWhURoczA10Pmnag2OE1v/KbuOrGe+AZ\naaDL8NR9G/GeH3sZQIREpK5gkIxvg7ia3XLkHj3bR9aSt55xBnzlX6SEm+9+9O/deudhbF2/HqbT\nCguu5duRM6jvcPzB4/iZD38Un/3azeUIzz5vP97ygy/A6WtOh0VIjhPo58KIhTHUflaCbbI8D8gV\ngAMQogAxqb2C3JyoAlldfmvfIJfowvzMUXo+qoRQ+p8CcGHDY6kNNiGiymNFypDhhpRzYcLTrkc3\nnaLvltFNl9F3y7IaoiDM3twLR0sPWSHmZH1fgjMMlMu+BHAI+6bYIIaoqSqVCVuodKP162JTJAky\nt0bbngThr28j66z6h3ORlGQmJqc53dSDb136OUBmD8pzGt8YAtcXDGSDrifLMrGEOVdmMguottSS\nzjfzU0U6rYN2lg0ba6lauIJwCAiZkRHFaw2m78mDIsRtqSGElsWHss1Yf+YZ+E8/9O9w69H7cdvR\nY9i2YQO2bdqAuGoRkQJi06KdTBAXFkRb1keIEURWnSvrHo8IwgWMpx3QNLj1yL349Je+jHlGwetu\nOoCDR4/i7C1iSBRpRcu967F2rHt0LXnr2nXop73KCMpiU8LWtY/xvXXrMXRDmRQBc0NTIM4Joevx\nug99FNfefBSjmmk3XobX/+Yf4J2v+L9nANjtc63XRkUugEpp0rcCm3igvu1UXSkR4cKWFTiZwLmI\nESOpLmj7mQlgBRXRvmkaWg2sCUXXr/YG2XweB++5wZBjDepGNu0GLC9Psby8hOnySSwvLSHn5MYI\nOV2bCgjLnGnjxhOZOo5KuLQatAMTKDK4BYhCAVxjwrFpEZumGhlLWlgZw9YWrDr+qdz+CYCwYw2O\nEZMt/4s+Vf8vzHH2tUdqax4/t1leBnRNAF00tcwrH2zBFbOSRCog7I2K9mOzy6JHNOjlqsUVEUZW\nmtIujBK+bBTfFAKiJJFMMUggR5Owa9MGbN+4AQOAlCSijYceueuQGol8C01TqjvU9kRd8pbBGzWA\nIhSGUfaxAZoWh44/rF9+hJwbJ0/ivHVr5ZpSBnUdyFh012P/GWvwrRdehM/esLLG3Ddf+BTs378P\nNVhDy/MMCefs3onnnn8Brvrq5Uh8F4DNAO5BDG/DpRdejH27dyiA2gSai6QhNzvh4L334eqbbsa8\nCeSarx7AbUeOYvvGdVq9RFY+SOomNwxi1OO8oup0aBtw0wJtI4wbED0/y0Q3qmiNES5q6Ke0t7kM\n17Amlamo9hueAVJYXywMNZY+av23aNu2Qkt5lJgqZ0ZOSXXcAX3fY0hD8Xaw1ZwHX9LVpWcM0r9r\n9KsspFayVD9MxU4j4Ns0jVRv9g+VImL012Wt48ZcGdmnbntCg3CldeRmUhoZwmTzbBfADBjXZ7Of\nW/m1ksaQWZd0DnzBIxAeWb7zTIc345pjwrPuMvMA2CfZHvuN2rlKO7CmULcBGkhd2nz/ttyQBsAa\n+koxykDXhyR775H7CGoiUleXbiQC5QiAC6MjPWZQphw0obhv/pSByQT79u/VF+cz0v3n78fi+rXy\nuymBlqfCopenQNeBQHjPFT+KH/p/3ovP3egShT/l6fjlV1+GyZo1JVCDkw7+YUAYBrz5wP+F737b\nu3HsxGvK99asPhNv+OHvR7NqccS8jL2WBP054c6SN3r+BHL7fUex+ay1miZUAly4l0ARdB3Q95o2\nLBR9FyGAJy0wSUBuRfrQaEfiRnNmjOa7wnjZJmHkkRxhFeEyM4jMmxcr+xlrIiONKpMwY5UjlHHC\nALFIZDPGRm0rkQyS826Qh9d4bfKo60UHiCaZuBgYzGrXzGo0pXKcCsIRjfohN22LtmlVD5Z98CA8\nUiOelCO+rq0CVmUCvlMaMvFIWhjvvbzrN2b3Ko+/xUUWVNC116CMaQ4THssK2nk1cGNQEGZmp4uV\nMxktYWed30syoIyi7RkTtsYILAzYlraeaEgOlqAeE1b5IIEGuzDRTnkIyEMPdBEWwy1RiRHgvKL9\nTReycOegS79K1+SOkAqR5118AZ7/Lc/BlVdfjpQck41X4Fuf9Rxc+E0X1R9ICby8DCxNwQvLwPIU\nxx56GFe877fwuRtrqPOlF12M977hNVi79kzxUhgGcBqQ9RH6AWHo8abf/SiOL0V4KeGhk5fj53/r\nd/GBn/vx6hJY2ttr+hHbt2/RX5w/gWzZsF7C5rPm+R0kbwemU2C5A6ZTUBJfZlL3h1D8mtuyeqIY\nQG0Dygnm1SNVrbn2ed+bKRQ4s+T6gUjZvOhqRTYYTfQyqQedSGMUw1agUH+D3Qpv1CfrEt4AWpjv\ngH7oBYSVHRsT9vBb+kYZf1UeGKmFZYyirEg9hhsIhxiLN0TTtGhaY8XiJRFjRHHZw/i4IyP5Kdye\n0CAMeDliBpDBcIH97gGYugd48C2oLRor1LV+DnbzioeFa6ovb+mAqmEVIK6zqnV4Y8LJlvTKgOcx\n4VpskUcAXDJBsTaI6sJwOvBKOQJa6JKVgQnbCU1AGJQJWybwlMBDD+7F7cpcR0IMyG0DzhPXQOUG\nFFc4kTik0zsNRFla3f/WB34RP/jy1+ETn6pM9p8/99vwG7/6HwoLJgqyhF9aAi8sg09K+szL3vpO\nfPr6W+GB9K++cjkuf8cv43ff80sKwv3oQX2P2269B1d+8YuY6x1x3QHcef8xnL11c7lXlBO8Jh9y\nxq5dO/Gsiy/C5758OXzNtBCuwNPPPRebN6zHMAxyrwYBYXSDAPDJZWBpCXcdO44jJ5ewY+3p2Lnu\nDIn0SxkHjz6AIyeXsWfrWVIAMyWVIwyAUVc8jg1adxYADoUJByLkALm3ttiex4Ttu8omreq1Ghhq\n39e+nZLTZ11/NRBOIxY8CAArGx6NLxtjjg3XkEWXFa+8O0ufqIyjwoRVjmiLFFENc2OZxaUsfZIJ\nf32bT+BD7oaRzp4wcNIwnjH3xcxfFXDZGLSbBFnfNgasLrLOGlzDNpOWJs9JQzRNivBpBZhRI+gE\nhH0u4dHn2LPqOZpwrkzZTyqkAwYQbwmwi7uzTF9Bl7mSvUidUAmUZlzrWKKd0PeSxhKWTSsUhkQq\ncdg+xIimMEdt7CC+r8Xdiap3xboN6/HR//YB3HTzQdx8y0Hs3bMb5+zZXVg31BsDqQEDxRH/a3fe\nhU9+/nOYB6SfvPoADt57H/bu3e0AuEMaGoShxR0PPKifny8lHLrvKPbt3YWcpXq26J6pBtykjJAG\n/MJP/DB++l2/gau/WCeQZ1xwAX76Jf8W7cIEOfTIGABLbBMaUGjwUDfglz71V7ju7rvL9565fRte\n+S1Pxa9+4lpce/uh8vpzzt+Hd/7oC3DW6atRSIU2bI2nrHYFA5Yi0xWkzlVSc9JZ0YPZmHXNE2G+\ntMaeZ/uiVPOQMHb0CdSLbo+uk/wcg7qnpQGWvIrhx6UfjC6dJUivUWcVnxfF3a0qgUk/DiEgNE1h\nvpOFCZrJpLDgpmkkJUHxjKhHXbFqfVITfuRtBn41TBMWXCRWdK8lua0A8uzrs8A7w3iZFXgLAPtw\nY3k/pYw0GMsV9pOTdHRklPJsYrgQphBDRKasHb+yZTZmzeOln2ltJfdEmbGpkFFrIZBEBVaZQqzJ\nIx9eTe6DSEBDQJLnZnWXds3CQrXpBhsXKSMPA8Y6M8sgmPRoJxM0k4Q8UQNgqFqx7MWlKED0kn17\nd2Pf3j0wSl3KuVPd54kYnJgCDh599FDng0eO4NyLzkcaImiIoBRBQwtKw2Nq0eecsweT1asK0JTg\nmuJaKH9vXFzA+37+Nbj10J24/c7D2LZpA7Zv2iAT7DAgTTuk0GEIEQkBmDCQGO+88q9w/eEleAb/\nhbsuwyv+6Eo8PJ1gNivdT/76x/Cbr/9B7aA+Dlk6YWHDTvw3ELZRY8t9c/caGeTsU2YcLPkVCOZl\nxBjrwEVySxnoB1A3IEwHhOVlUDcFuily3yMNPXISTbxED+kqDYDLa4xyvmyrO7YPw634ytlW+ctW\ndbryatoW7cIEE320DoiLFEG+DbVz2wTxJBN+9G3UzayScClqyUCullUujbsCd0dLnHkgnN0xLMLJ\nANGDr7ELAWBlxArAuTBhPYeRZpaRYgLloGG4M7/NwAombPknRsUYa+xcXeoHZcheplAgNvrqHfCj\nY8Ml4k+lmZTKyiInPcGkTL4fAK0/J1ozIzYN2oUF5IVBluEpq/GvEdBtpKIGNyj+3TDdscgVMqhg\nEVshCsAzJFlPbLDnvP16Jx8BSM/bj7hqETQ0yKlBGlrQ0INyxrkXXYBvf+634FNXrdSin/fs5+C8\n8/ZXjZPFsJbUsFfBuHqonH/uOTh3315ZgtujHzDEZQxaPYIyAQk4dM8D+MId87PPHV8+AODNWCGR\nfOkADh4+ir17tlfWWthwHRhmEygM2EBMAXjkbZNstVKNpoU9B9GDQc4gnceJeVgBGSlJu057hOVO\nQHg6VTbcIQ+9aPI5Oa21AqvNH1zYbl3NcQFiOAAubEOutfQR1YLbBs1EXCrbhQXZT0SWMBc1u9aK\nBdXgV9sXp3R7goOw/+cAWBP2eAAuwOq+Xyc4Ln9XAPb+ieYLiboUc2DsvRMYKDKEMGBlw8mWeqgT\nbXHtSUgpIgRz3ndA7NMEjoA4YZST2M7DlqJAYRAGwAAjMKkHbwDUeo5ZJmwP5+sMCyrILN8PSQbf\nkBD6ATTpxOVJk5nnwIhtg9RLdjROIr+EpkVokgJwi9jqnSTJbBesBBKg8oMBsFs6QgZljhFoE877\npovwL5//fHzyyitmgPSVeP6/+Hacf/GFwvxTD0oNaBiQUqPVNID//P5fxA++/KdmtOhvxW/88lsx\nWbVqFGAi98s0zeQAxU2cSer1Jd0PXY+eIgJHgIO4OCfgyImT+mvzGTywce7rB+85ir17t6Mu+Qjm\njjbS2UM1OJUVo3kbuJVYMaiZZlSW9houraHE3uNnlIbVjHEpAf2A0HXAdBlheRn3H70Pt9//ABA0\n2XseinfJzGB2LFheqIoECVv2AD0LxCWk2gzBcYYJKwi3E+eiFvW+OdnBMTCvl5/K7YkNwgyNKAJK\nBc8kD0btMFKXTW66Nadx4hFDdhNf9UesAFzZ7xiIuRxHvhtTxjBYeGXNg5q1YKXdeIkEkvdjyshx\n1rDBhWHJZCLM16fBLMfWh9f+6gxveoIyTR28pUhn0dIqANekRbJnmYmUFQIgksgkkyL6HllBOBMj\nQ0CYNeewSBYJsW2l0m4zILQD8jBBnshgbrRtKbIAbpFS/E3X9U+UASdVGxkf/OB78eIfeAX+1ycq\nkD7/+f8SH/7Q+xAmE/lqIiAp408WWQictXUL/ugPfws333wLbrrpNuzdvRP7dp1dl83aEZgZISUk\n1cxTkL2emPYBQk4JISaEISGEBEKQStZNQo4DcmiAJmPnRgPZ+QweuHemx8vru7dtHK/GteeVlaGz\nLdSJuHb+QipcDhIJJLErMRZsUZ8WGp8UvHUllmaA2Dw/hh4PP/Qw3vcX1+CGew6XM9xw+pn4pp2b\na3/y7B0oVLich10km1RBFaBLX0Bl/HEOAE8mmEwWsLC4MJYjFIRLYiVvHTLgfVKO+Do2y1zlNC9m\n0ShBVg4oIxWW6ECY3NJDXjFb3lgOGBninCsPOxbs7hEzEGJCHBJinxCbJAlFhraUZMlsGaa4xNen\nrDWv9BFmE46hGlFMRy7L4lkQDsbkazRfWd4b4BLK3h6jzG/ebS1EkOV8oHqdlFkCDuw5GAm5/OM+\nAlrLLi1P0U+WBISb1u0niBMxmsSJ/D16v2m1cnMrVZxjU+QRP1jWnXEGPvYHH8LNN9+KW269Ffv2\n7cX+/fvkupOWctdadlYS3tApk4S37929C3t27ixMVq7N0lPasltSbqakRqZkhV1NVxQQzsMgbLgf\nkLoeeTpF7tSneeiBYcCus9bi0n3n4PO3jHN1RLoca1atwUPLb0XKm+EDT57zTRdi784tck8oIlAs\nz0lrtVnCGp+5ztoLo1VVRmIxMrK2hYT6uzSP5jlgshhbakrLiV3HkBJ8DCC8/y8/h6/euwyvaR99\n+BW4/o7DeNrZW/DIGzuDssI06SqXKmwXHVf7dohBXM6aBrER+WGyuIDJwgIWFhexsLhY2HDTtsU9\nLUGDRbRkuk0Opb3+AbYnNAjTkOVhL7Cy4Easv5k1nhwKmE4aM9Wi+Ek+AghbgIVP7+eBmN1Pl/PS\nkj1hiAi9OIv3Q6puPAruOUNTazqt1wH8vAoHXBiwOMBXIFbAKEUXxx3I5AlWkGWiauOAsR8UBlQr\n+QoQjxpH410NnBAYnAIyJ2QknfgSUiDkrkdaniK2LWLbOGBVXW7iQHjBwHgBzWQBzWSCPFmQz7UJ\nnFqgyVWSYDd96nWds3c39u/bI4M0ZdUytS00ny3MOKTfA7G47jEXw1HWPMfVJ1jll5Qk+UzqkQbx\nN66Lffk/D1ne6wfxCFAQ5q4D+g7U96A0gHLGm7773+CNv/8nuOaWyuCftX8/3vC934m3/r//Hz7z\nZRd48k0X4lde/f1FU7d6bTQDxIFiqQNHIGTN4lRsF0ZOPAsuIBw0iZVJUdZfoPfcGYWTsWCZ9BMT\negB3PvAgvnK3ZbOrmjaDcf/DB3Biuh6LrQvwmTu4a9+0J2bZUMYwelhqyqaVCXwymVQAXrWIxVWr\nsLC4qJKEhSyHEdNVBICpMjben2TCj7YlCT0tdywxEDO4zzozCwAPzEhQ9qvsT0CYS/q9uSCc/WvV\nBc06s6X8g+9ODFAcJE59EDBuh0GkieSZcGUkyT2i8y3mGSAuMfpZNGRv/LHXJXlRcLOCAASTGi+p\nGmzYuy05tlwYswIxYhDZx3w6RZwTUCPSNA4JmcXokrJopkxAjlMMLr+EWK0NhBsF4QU0C7ZfQLu4\niHZxEXlxEe2QwJOJrHjaDMqSD9lvNrGUKq3BsSS9vrJCUmkEZQlaVwPMpuVrm2rdOTaXKmPBQ49h\nUGv/oCBM1TqRh4TcD+IR0A/IXYe8PAV3UwHhoUNIEo24btUCfuX7vguHjj2Au44/iN2bN2Dvto2I\nk4jf/LEX4fb7j+H2+49hz87NwoBjlAjFECXSsTDgMALgQPaeraQEiH0qVAHilUy4LO09E1Z2aCux\nYfAgruMBwADg8GNEEJ7sOiy2q6wnrdhqz7Un5EaZ04RHIKxMuG3UECcgPFEWbEx4UpiwTlAaBm4/\nzDrgKyCzG0unZvs7gTAR/RSAtwF4NzP/uHv9zQBeAmAtgL8E8DJmvunv8ltzt5QBY8KZIRb/AA6S\nYi/DlkcGwlSAOBsIg5HggNgBMGb1YdR9ZdHlquuzISBGZcN9QN8nZcIqjeTKhMeO7jM+m85IZ8xz\nnAJzGAFwzlI7b1YiEZxRAEYu4CvgPKsjYsSCEc0jAZojVPXk2lB1mZsHNVrpUl0NfzbxQWP5DYBD\nbAV8F5T5LkzQLC4irV6N3EtOBRK9RibYLFUsQtMAsyCruRJkKUtVO64WHZEXPBAbE9a+Ac5V6hlU\nklADHFtwQZIUjKnvMQwd8jBUDdVKyKeE3PUCwl0vfrLTKXgqfrPU92oU5JIjeM/GdThn+0bESSMB\nM01EaCP27dyC/ft2IEwk6AUKvpZKzTxGiMaShAUhmH6akSuZcEzYJImaqEeNW+ZlYNqyEY+c3eSf\nq21EFqEYmHDGmjXa8eZr3YttA1O25sGbB2ZPJcpr2k8RZphwE8c68II8FheVCRc5QpL4AHo91gcM\neL3U9Q+wfcMgTET/DMCPALh+5vXXArgMwIsA3AbgrQA+TkQXMHP3jZ/qyq1hRsOiEjVZyxNRRsOS\nSDsRSkFIY8JJATSzPE8sOmZi3/hu5c1jNlzkhwLIKK9oAyDacm0YwCFIjoBhUKNFdss4YcaRpfS2\nseEhJzH8zARiyEDImn84jZiwPaQcfSj5iW05J/3JcYwZrbiyX3PzqWwohAC2JS3nmpRb2wS6mtB1\nqbiPgUAcyu8xSKorgxE5ISbJ2xwzI2bFdm1QZoLlkO2HBJ50yO0UWeWJEJtiDUep9ODYu12TXSvk\nPFMaVM8V313RH+vHxL0wKRMWTTePQFilCGPCfYeUBkgm6QrEsMQ8wwD0uu96yRGREkLOJdNfJIli\ni01AaCWAwLRNahrJFWHZ6gyAQ4DlrzT2W/yv9TW7waXfzgBv1YQFnAv4mnErxtKOBbhd+sjBQDiZ\n0VoIxZAz1p6xBnu2bMNtRy7Tfvs8CABfhnWnrcFpk0kFuEfRJGbWmKhJ5qn0UfMdb5oGTTHCLWJh\n1SosLMpjsrgKk4VFTCYL4h3RtJq3mDWc237AMV8vR8ydKv7+tm8IhInodIjg8xIAPzvz9isBvIWZ\n/1g/+yIARwB8F4Df+8ZPdeUWdfkeSErWNwAaEKKqR1HLmySd0bOCbEIWdswQqYIZyQc8FAYMjDQi\neB3SIG1WjmC0qh1iCAANoF4SfkvlBTUODeYNMQbgpN4SgcY+qIANJs03MRBC0BBQTYhSrNY+QTzR\n6GzLac7oal4H9g76tmdFc84ZSHIdfjVgE5akKxb2VCo5uN+JAGIGYpYiq4GBwAGBNf2guhnmnJGG\nBOo68GSC1E4QW9mHpimgVMDJL6ULs3HXmx0I66MaGtl9JpXMX34vLN/Cb/sCximpBKTXHECyvE1Z\nQoxVg6Yhlb9JB79UcNHw2lat+m2DoA9qzKfaMWDnsjfLhC2C0WcEg0luJrUUg5p5RHDV1F2uBUm4\nFIRFjwKEFIAtGClXP/ikq7o+ZfyrZz0d//2zn8ehe6umvf60Nbhw20aA69nNYjC7vYkgNlN6ecIC\nSWzyiU2Dtp1gsrAo4LtqdQXiBXm0kwUJXdZwZS7eRPqLCsD2z+SIf6ya8HsA/Hdm/nMiKiBMRHsA\nbAHwZ/YaMx8nomsAfDP+vkGYgYZlxdkQIxKhIUZDhByBRIRkGaBsRueMlIGes4BwVs3YtC0DXcDt\n7cnMwJ4zQxLM2JbAg3abLgoI96mwYY6eRehEkGvCaiK1so9YsGbAyiK0pBSKP6oBRtTOVcCb55yl\nH6OjZV3AyCDngLiAeU4FhP2A4dGha00n7ypFkFWCTJ4SBkwZyphVIGGIcXUQrwJuWyQ1tqRmgqBe\nE2SeEgoYsCWqSR+oJ2WMRqo6GAj3K4wyrJOY5TWoIGx+wcKOBzXKDZoIiKAeBRBWGxjCdjMjsO5z\nlqKy+giIAsQxaEXvKEy4bcQbxCYam2wK842q6zsAdj7U4yx89dprMQDvluaMywTVVRWEKRYvhcqE\nuUSDDqXcEFc7RwaGLPXgYoj4jkuegnvuP4ajxx9ES4TI83qL653kX5n5TJlYFYDJMffgZIjFBSys\nWqWGuNWVDS8sYjJZRNNOJJ9wkNJf40lbwddWwP9Y5Qgi+ncAngbg/2fv3aMlu+7ywO+39z6nqu69\n3a2W1C91S+qWLMAO2GCbh52AJ2FmMqxMWMMkwFISgYcJrLAsA4YAgZBAQlYGzAz2rDUkgMOAMxDN\nMCsDCZlJIJAFNjaPNZgAjm2wrffTkrpbstT3Vp1z9p4/fo/9O6fqtrrbaqGepdOr+lTVrTp1zj57\nf/vb3+/1xg1/Pg6+hCcm7z8hf3tRt1iAWNjhPoGQUGw/FEIUNhxC4qVLzuyRQFwCuytAX4B+4GVU\nNbRJFxghbvG78aa6IxSEM/JAokTDmPAzn34eZ3f3cDIDx44clkHPTDgYG87CruAitUr9/ZyNgfY9\n1YxUytjigJxjZcKmRXghRZ6tyRDjfQicsMeYcCmW0AdDJ0EfPHKyqHYky2vCGBC48gYh5h4xiwtf\nP4AGlh9QraXMsruAEiNyiqDEQEwpSbBHY2Csz63xUUG4BsdwW/RdL2V1xLNh4pOdi/d9VQ1YwFeA\n2BLQDJwNLA89M1AHxBE8sGIBErgadD2tUt2xA1XgaxJIAVj2lNQIp/qvSBHmFRGqZ8Qk32/ttvUa\ntW+pR0T2fd4x4ZS4lrXWoFOpoTLh6v9evXtgK7leZKSu77E1axEPHMRyucRyuQTDqOuPGykxjycb\nau4zNs+GWl07JE7S07SOCTsAHjHh1LK3TWD/cg1nIadB1j6BdfvKVdguC4SJ6BSAdwP4z0sp3dU5\npUvfuLNzI0YKSCEgUUQTuAJEaRPQcJatEgIPnL4Dhh6lrzW12K2Ky3MDOiPKVjYA8nSTDygMK7Pu\nwUbB3VXAHzz4BJ7cfd6+cvuJ4/jqL/8SHGwakMgq3MkDhpDFb7FmTdPzyuK3SoUZqoKBN5bEmEcd\naXQx+szYsJMlQgXkEEgAmItVlhCgdSELCh46dx4PPvtpHD90CMevO8QHpeqoZWCsVntwOHJEYOmo\nBESprXb/0+fw0IULOHX0Rtx67KiAfWBPl74HEnsbUEwoqUNJck9TAzQt0PTumpw7lQ0qnryGrrNH\n33UGvOaF4l0FM/sFa8pFNYKOnstrZcAFumJgVs65LQRMTERsSyUAACAASURBVO5xpbciMQP2wOuY\nMIePc65n89ueyBDqD2yGVOuzfO3VAyc7EB4qAJdi3iRWzj5GCfnn0kIwY1yePIpJEWOQ5tSV2i+1\n9NG0Us1kvpA37b/19006C2O/4KgArHrwFjPhhbLgmbmmaZBGCAE503jSGhuD8HKVI94AjqX8ENWz\njwC+jIjuBvA54OY6hjEbPgbg9y924He84x04dOjQ6L0777wTd955577fCeKsHkBIMaGJDdrUYB4T\nsvqdzmZoZi2aGCyZyNAt0a+WKF0wV7UiRqXa/BMwxliv8ltd/fKzoRSsChvcKBd8/NN7eLafwzuu\n3/v43fj5//C7+Pqv/PMImeWICsQk1W3y+NdscAGFysgg13uQMDkioxSNliv+MPU5VUCmCRCrcY7T\nUXLVjWe7Dt/zC7+C377vfjvGG2+5Fd/9X70FBxdzOz6VquvVMSXL58g/+Myqw9/597+GDz5Yj/Xm\n2+/AO7/mK3FwZ7ta7IUhk/i7UNElPzMYyuLxEcRLggK3kwuzLcOA0nWSSL0DdSv2gLGVAirT12Nm\nKV+klieRvtQPIhAXdiWVIURSicQDi99DrTUokYiQCiZmeGsiIA9S0JV2532ojFhTSiob9oZUotpv\nxWthEGMZAyMXw1SvBpYhdMUi6S6JGXABXHAQ0Hfil24RoFUHVqmCV3XVw0SzzRXfj2kSJWdLhDLB\nXp3OYVIZQmX+MTbiE8wuZ62y38UWFltbmC+2MJstJsY4SeKuXkDVIjdaOZrR/RLB95577sE999wz\neu+ZZ57Z59Pr2+WC8K8C+LzJez8D4KMAfqiUci8RPQ7gywH8IQAQ0UEAXwzWkffd3vWud+H1r3/9\nZZ1MoIhI3Kgpclz4rJlh1s5Q5nOk+QzNYo5+PkcTCWVvF3nvAvq9iBVQo+ZyRqHIeQ+KD3AmTkhT\nYDmBNt0Wfs/JEWCpg0rBqh/wbN8B+CmMHNdLwb2P3oXHzz2Dk/MjAsCslQ4ZCMO48KhKYyOZATQB\n4gHRnOgzLBeDneEYiOsrZ6Ajz7pqsEaIESVFfO//9Sv43fvPY5T166G78UO//Bv4x1/1F+FzE/Dv\nqH+y+iRX96q/82v/Dr/z0PhYv3Pv3fju//OX8J5v+Gv1O4UsHSnyID7LYJ/hnEFD5koUyhgluKRk\njY5TEF6xl8JqxeWRShmpksoeSYBbAT64BCSqXmcKlp9Zwddy9sKl3wBq2aIQeDITEEaKoCYx+Kb6\nQHJgrAxXg2b8ffEPTfNZah9mWwNr3ArEXd+jz4NEkQKmxUueCALvBylCOvQSgm8APHanzIO6WNZQ\n5tonNVkPgzBRbek1wmuugga9tf8YOeDrV+NhTC1LDO1MjHELzBdbmC+2GYhdlFzTJK7mrO532rfc\nvfeuaWM54uJgvIksfuhDH8Ib3vCGi35Pt8sC4VLK8wA+4t8joucBPF1K+ai89W4A30dEnwC7qP0g\ngIcB/KvL+a1L2SIFB8IN2maOVvQf2lpg2Fqg31pg2F4gxYDhwnPoY8SKCKkMvLzXKCjqEcH+w4AS\nH/ayUMDK+7BJ320K2GGdSmF/YPvkZsf1J889i+PHbnRLRmZ4kjddypSzjuiXmEUczPveJYsxljOM\n9M4xy1ANECbDjmQJt2wmrfCQA0oKeODsefzWxzfXUvu9B+7CI+efxanrDhm5rD8pPyTaMAA8eO4c\nPvjgfWvHGkrBBz5xFx46ex5njtzI2jhrIMxS5eaosSuIFwJkkkCMKCXyVYo/MEfA9VwOSUAYq9X4\nJP0NtGUpuKwQCkJhT45cGGgzAjLB+VwbnIm3DgSM2RMimPtXsFUFKfiKHswAXFcevtqJMmDvqlYB\nuN47UXgsEGnIuQLwMKAb+loLDtVwGlzAB0FCnTOnZe37wZiwGeMGOClCDXTr8o1FcloO1w0ysNxe\nJcX6qRqaTFVyEcmEc0O0SO0MzUzG/XyB+dwxYZUiJJF7TJOactr3bUE0Bl4PyldzezEi5kZnWEp5\nJxFtAfgJcLDG+wF8xYvtIwwA0ZhwECY8RzvbwmyxjbC1jbyzhbzD+yYGBmAAe2VAM3TIOSP1A3Lo\nEUNAGSxxLncMXf4rCyWX2ckuneyZboMw5gF+6bXZcX17Z4vLdBcGliEXTuajHYSA6HQrb+kugEkR\nWsMrpakcwcBFMJI6YfXypmhu5Du8gsDAg/+Rc+flLDZPKI8++yxOHb6uJinS37If0CUl4aFPX7yw\n58NPn8MdR48yuIivNES3BXFFCxoyKA6gQdhjTihNsR/n4AzxRul7Lim04tp0yoTNm2KkDfoJpIzu\nMPcQEnIexs0nL5j96oMkDDisSTuUorFgKAPWR4wOhGvQjN0T1Ye98ZMIkCx2BcKCLTy56rR1guYz\n9+AbBJBRBvPV7iXYqPc5sqdSxMiP2JUvcnKEb2KaPCPXN3VKq3LWuF+yH7PUjFMQFjmCmbCCMPsG\nt23LfsRSIWRUCR3YyICVSbzsI+YAoJTyFza89wMAfuAzPfYLbWE2Q5zPEUNEu72D2c5BLHYOYmvn\nIML2FvLWAsP2HMPWAhQIcyqYI2NWMmY5sx4mC8xSAArRlm9sFBtsWTrSDvU67X+/sNGJtTBrIiCF\nhD6/Tf7yFgC/AcLdOHHkKLYXC3RdjxSCi6Lipa6y0lwATVpjq3LpHFZIcejR9T2SlpFpGIzJ+UIa\nUCg66rsUWPaQlHQ0elQguPn4xbN+3XzkesQmMX0fpNwkOdaBOqhuPnz9RY9169FjQGrMtZCMmQqk\n67IyBtz35FO479xZ3HL8OG49eQIMg05+IZauQAFFJu1CARkFD509hwfOn8fJG67HqRuuN5ctXtKL\nJOVXQEXKs+UiuZ/l/jtfVl+CPogBjiQCjprA+1aNcGMpQmWIqfQwch/UxDxO2NQzVLezQcOTFRhF\nnhqyJdeWmn9hVGetOF/1wRhwL3lKJBNgkYkoQ1ixZg0ch9FbQVRbS1bjdW0trDNhBWI1cmqh2ChR\nli2HI7dzlh5mW9uYb+1gvrUtRrktzCw4Q8sYie+79uu1UexZ70vDgHW7pnNHcKjrAjFGtDs7mB06\nhPmh67B18DDC9haG+QzDYoZhMQcZAA+Y54z5UHNOsD2msF6ZeyD3UpFXHO9ZYISk/NlwJsV1L72h\nhCx68jwFrPIeVr1zXL/uML7otZ+F1apD1w1o4sDRZFQwEBe2gFRMHvl8wlX0kKVgP0hJ8b5D6hPS\nkEYRdJaWUE6w9q265PMVeg2AQwCFLNJExJlTx/Hm13w2fudjd4/Kygd6O954++04ffwISs9MVbV0\nNVqRCjvCOm+98Ua8+fbPwu/c+3bxSuFjxfAtePMdr8GZEyeqPKJjGDoh8vU8s3sBb/+Zn8NvfPTD\n1q5f9rmvxbvu/iYc3NqSyUXnm4ISqo/tub0l/vYv/hI+cG+Npn/T7XfgB7/qL2NnPoeoQAbAlhSp\nAEH8YpWZK4szP2U1wsU6gYUmgJrIe5EggjfOKUt2j1opQlcQFXg1zSho7HOgE/QoQU8eP9c+RSCR\n0HliggBr1sowPUsQnAXQGfRKnYw0naqXxXLOYxY8YcJrCpDO0eQ0YNkXIql9mCzkPakr2mKB2dYW\nFts7WGxvY761jfnWlkXJNbOaJyIaAw4jEC5OfipubzKeeUpcvS288EdevluczZDmc6TFAs32DmYH\nD2Jx+HpsHTmCrRtvxOKGG7A4fBjzQ4cwP3gQswMHMd85gPn2DmbbO5htbaNdbKNdbKGZbyHN5kjN\nDCG1Uh04VRcgE/LX5Qe4d/Se1uRALE8cWLQ4fv1hnDxyA159+hZ87qtuRSnAatWj65jFMpi6SCTv\nRgRhHwbEGGl+Xd+j67p6HPFrHSQHcZkcC6ga5pj5OgZsGnHVMd/5tq/FF7/6GIC7ANwC4C580Wcd\nwT/8638ZqZVMaU3k/AcxMAsUa/RIeybCO//qX8GX3D4+1ps/6ya8+61fB8QGSA2QWlBqQU2L0LSg\nZib7Fm9/77/Ab/7xI2BdmStUfOAjD+Hbfuw9UD9XS0xO0WwIkQK+6xf/DX77vqdG3/3de5/E3/uF\nX0KiwD7m8ghFvBwKEEqR8nxswCM14KnoopcXuGgqNRGhTfXRNLKvOnAF3graPhBjkyEOWurJ90DR\nMX1WPpUi/GuVIbgQpkTHUTBdVI1rKnF16hlhuSIg7mswyaK6SmbHhAcDMwb+mlrV+oOpQQq8GPXD\noBpwjIjJSxBsjJsvlAXvVBnCSRHsGVELegbXF3Ukj+QIKBg7bfjlLkf8aW6xnSPNF4gpVSZ8+Hps\n3XgEYTFH3yZ0bULfJCAPmOcB86HHrB8w73rzSFIrcC5ACQG5Y2eokKV2gdIi5IufkC1fYSg9CHvr\nhgExRcxiQs4Fe8sVlssVVvOOmUaKtcRb4IThQVIs5qAA7JbKMvCrHMGW78Yq2rImF/MAde8JGZLo\nxmlyxFqtJnonqbgxTmeZJZ1lxKHrDuKffPc34P5HnsCDjz2FUzccxs3XH+aVQzcgUEYGIZcBIPZn\nlpqiVXoVl6ODW9v4if/u6/HgubN4+Nx5nD52FLcdP1GBRr0doBOGHIeAex9/HL/xkT/CpuKe7/+j\nu/DA45/C6aNH7Rp5cDMTvu/ps3j/vR9f/24p+K1P3oWHnz6Lmw8fhvJgR5YqcxIXMMrsmUGFGKXV\nE0KYbWiihCCLDNGILKEGuakUMcoVQXLvyCQIiz4c+1hZ3+CJNtsEnTcx4SDudOppEKKuuaxIgRYb\nUCDuu2yh9RpcU1yofd+PpQh1T7METyMLRE1K6eUUNcJWfZuvdVS6vmksPLmds/1nsb0jLHi7+gjP\n5jVjWmQmPCIZ9qsYsd8aZVowGshXcbumQbjZ2kKzvc1x4zs7aA8exOy6Q5gfvg60mEkIZkSfWGbY\nGnp0OaMv7FrUNOzW1rbs6tLuXsBqtcRquYflag+r5RKh5yTcpVvJoBtkqVr2uT3F/c9PjLEOA1Zd\nDyLCctVhb9XJfoUUAwgSTaU5BYgY1DKhlj1Sw4HKKMpahAk3HTphJX0eEHNGkUpGEN3Za9u1aoW3\nMKmxpLoHoQRQrNUbbj15HLcePyrVFASIEFAkSXYg4ppyI3cylzmMpxVQAc7ceBS3Hz8BSgnmQeHy\nApDICsGx9gfPX9xI+OBTT+P2m07xj2cuoAo5h4eeffai33343Hnccv0NCKW4aVdlCRj7DepTjGKz\nQw3CIMuGRpIXgppgGnBIEk4fJ0zXB15QBd/63HkN6JlJn9BUpyPjmCXaybUqiqga6uscSGS5zHlV\nSoaAr7qlDQLAKnW4UHsNzpDP+5JP1aglbNi62EgRrrmt3SoMmpQ+RMSmQWqY/TYzCcIQ1rsQ8FVv\niNlsLm5rki0tRdG8yenB3oLjRuwUiF9hwi+8pZ0FmoPbSLFBc3CnPg7tIMznYhQJiJEzW/XidUAx\nIrUtdreex97z29i9sIO9Cxf4sXsBe3sXsLe7y8+XewjLXU5/qQ7u6nLzAjMl82KYftsPGYEEhDsB\n4OUKu3srxFBBmJmw5G3IJBqkdgw9Oom+K7pw3yOEwHKE5DXQQYhSQBFi2CKZQBg8lNmp5/Ha5djy\nEFVbluxodn2yvtSBFAKxz24vqUb7zMBFAsAlS06FzCy7ZJYO7Pdgg9Eiw7zHRiCcOXWznOBmw96r\nbr4FqZ1r5nyrwFJAOH38pot+9+YbbnTrZVi7e/1QjXJBKh7zgqJqwTEGYcECuCmIccnl6dUlsuV+\nUAMZ5w1l45R7jgCUAKuzlqs2q+zX8juoYU1A2MLfUSdSnV8VcPJQjXld15mkpekqc/EyWIH3uugG\n/3nNW7LWldzzqkuw0VknfC/DcP6M1MzRzuZo5ltsjNvawWJrW3RgAeKFAnCLRlzRogvl9qlaR2fj\nxtWaJPESGeiuaRButrfRHthhOcIA+ACaQwcQ2hlC4OilntjAZgDctJjNF9jd3cbeNgPu7u4F7F54\nHrvPPY8Lzz+H5vnnEJsZ6MJzAHFaya7rEEquwRz7suG66bgdCvu0dsRMWpnw7nKFtl2x+wwRYgho\nUkQTM4MwMSvOWUx+Rf075fjCsmkYQF3Hg0eT1IgkAVRDTKYs0oCj06hGPz1nb3m37wsAq2cW6bJU\nWGAhAkLm9J0xg8IAooF/K3NSG0KWiLcMKgOoBHmvmHkQAj7mwxpqUnhdqt9x5jb8+S/4QrzvD94+\nMhLG8C340s//Itxx+jYDYMshzNMcbr/lVrzlcz4Xv/knk+/St+CLb/8c3HrjESlbVMCCUm1rJb0o\nGsTB1PKhc+fwyKc/jVNHbsTpm44IC5aHGOPYwBRrLTRJPmP+r5ILwrx2TCqqz3nm1Qm4AoeulCxi\nzZhsLYHlE1GJAmsyD3tODAbcnfeIKFMQHtsj9PM+vzUsGlHhzqZr16fcBG5GxwAKqVbkFm+IZsYu\naO1iy6SH+dY2g/HWNuZz1YGn4cljLZhUd7aOrmP0pWfAul3bILyzhebADifvOFCZcDp4gCs2gKPX\nYuFINIoBqWnRLuZYLJfY29tjxru3i93dPew+/xyeW3wazWzOtc5CA4ABeNV1CGGvgkoJ4gHwwjdK\njSU9DSg9L/tWxoQ7A+EYCE0MmDURQ0oYQkEMNdH7mFrIQIRIEn0PlCLuRC5uf+DUOoMyAY1GEear\n8oRqYGtE2PQ5ZaYZwey5RZaQRbRLjjQpsXAqxyCQmgWQURhwQRwEkWXvDFvyoxjlNo7qRaBZ0xIo\nBrzn+/4evul/+Mf4D/9v9Tp5y+u/BD/xd78PaTY38EWWApREyBSRQ8T/8o1/C2/7Zz+J9320fvdL\nXvUa/PDXfLUs/5nh6qPeZmeMKwXPXtjF3/+19+O3Xej1m+64Az/01v8Wh7ZnlQ2rRhwn9duiY8I+\nWMJi8+rz9fMpUoe0WL5g1XLVTtC7NKeqDGgPEPIuYM5BSyxrsTGu1pHL40IEhUPzFbj73KP3TNi8\nIsZ9ltx/OtmSvC4quwRtp5qgKTpfYA/AFYQ5bWU7m6FtZkiJ01XGKAl+vA5MfhqwWzoxyqntBS8J\nGF/TIMxeEVuIqUGzs41mZwfNgW00B7YRmxa5SLmgUpByRmwaNG2Heb9A1/fYW+5hb4/BeLHcw4Xn\ntpCaGWJsAIoomUTHXWG5t8uDv+94GU8bEGufTfU6DNl03GXXmx7c7DVIMaKJAW2KWHUJbRpEGmUm\nPETtsPKjjgkry8mlGBP2xjmVFLL6A0MX5nqCEADesH4cyQMwYA3g/Ayk1rIgQnvgaCvKhZfnmSsU\nU08siYCPd9/Zp/Hg+Wdw65GjOHP8RMUXI0TOS0OBWMojkaR5vP6GG/Av3/Vu3PvoI7j3oYdw5uRJ\n3H7yZh40OaOEDATJ34yAQaVbANcdPox//m3fgU88+jDue/wxnDp8GLccvp5DbYeeraEh856KLZkV\nOJRZff+vvg+/+/Az8KHXv/uJu/E9P/uL+Il3vNW8Sgx4zRWtFuOsuvf4MWqQmj1ptGKpJa/GWrC5\njPWalL7IZDe6tXYktS10fY9Vp8E/Umsv1+oZ7BFBFYCdUbi3MlDakwgjrxE/kag2q/pvYB9uipwX\ngityzxCbFk27QCN5IeaLbcy3BXwXW5hLdNxcvSHayoKjtrl6+vjrpvFk5qUHk51ekSNeeGN3n1Zq\nS3HO2ZhaFvJTGtVx0zpS5KytAIBS3bRyn9HNV1jtrTCbLbGcLdE0F7gmWkg1tLO8kJfEhq3AItUy\nOBx01ffYW3WIcYkYJQtcDGhiRIoavcdsJUZSRwET9HRS1yrLpRQz0ikL6q0GWkYI2fTc8QxS6v8j\nwiWDRXx1mSAGcFAHA2XJhaXKDDEmyUilAioclGAXkSKe2V3hHT//i3j/xz9uv/5ln/1q/M/f8Ddw\naHvhEtYA5heGgZc0UnATfQRSssdtJ47jzPFjbAQdOmYyOXPO416qgPQDyooNrKWrVS7O3Hgjbjl8\nWLRMLk+v1So4PI7lk5zlvpcIyhGhZDz49NP4rYcewCYviw9+9C48+PQ5nL7lBLNgF+mmEVte8inW\n3npvqb4WuFTd3jO0IWupq2ypNvuuN0Nt71J2AjCNlAE1i16caw1EF9yhqVQ5P0fhAJwBfH+7AaXj\najEG1BmsV2uKTcrC5FVq0k5EJrFYCLYWLk1shIvtDKnhslfzrW0stg9gsbODre0D/NzpwDORIJrG\ng++6Dlzl4LFpTvX+aajyK3LEJWycBLvmlI1JgZgf3oqtkWOagzQOtVS5Mq7cF3TzFZazFWbtEm27\nh6aZIaUWMaY6o5qFdcPSZp+tCAozJwP6IWPVDYjLjn1YA4NwE1kTTkk8AgIDcOoJUbJwcaIYOa5p\nurw3i7jKEv0gumrggeI8HCq34zMU2c5pwjxpcYYyXqHz5QcVRmsTBNgsQxaoIQ8FoKbBO372F/DB\nT6p/LjPHD3z87fjW996D937H28QwIyAlK/FSOES5DD2oJyBETlFaGkByEvi4f5TCUoSUlIKAhWVR\n032ugQTM5vm+ch5l/hkqAbkwAFv4raRlfPThXbn4zV4WD509j9tuO2UsWB+jhDtV4rX+aMuPaR+T\n1YpG8+XiMunlwSbgru8YiAWMq5bitFeIDgwG0L5XVpslTzJLG6o/0CCJkvrChtZukPbVXBRapaP+\nDld75n6i/Q0jVzuVHlj71XzRTTtHM5sjzeZo2jnm2zvY2t7BYucA77d3BISVAbdoGxeaHIJ5fdgq\nTlvAyxF+KWhIrKN1bKy7mtu1DcKpQWiUCbcGwEnLqpdiyatDKeKcHjHkjDQMpr8p88lDxmqXGfBy\npiDcIsVmXLkAo1FzyZveS85bzkyYVsoICClFNso1CU1KYpQDUiT0kQBiX2IqsJST45h3pwk7LwlN\nHhNLXO9QpJ4S+hojRmbWa0fcggBHAQQkybm+kQBwkeQJ4u/bRNz36Kfw/o/9CTb59r7vI3fh/rNP\nSaRccOdQhAFLdrOcGR3LAI1g5Ox34Oc6lgYGCXQ9M7auc3thwijud+q1EyJC4Xy6RUCXgS+PmuiW\nUyfkGvYJvT55zMoE1QAMjYAb+/rqKkSxd21VgmpA0oi4EQgPjgV3GrjDyestOo5kQpRleJacHLV4\np68dpxnohMBkrmxOfQa6XNtVmLCvuswSSgSFmnejyhI6AYkUE6X6tpCp2LRoZxLxNt9CO1+w9CAs\neGtnpxrjpHhnO5uhSQ2aJNFxYcKEtWs7SWKkDbvJrRrotD+9AsIX3Srz9XJEBeIsFmztbMwGM5Lo\naJZwPEQEShiGguV8ib35Eu1sT8qhzLiTxCShnbqcIiWOl7QxPqnxi9APwibQsf8xEdoU0aaIWZPQ\npmQA3CTWikNQhqHaZAVhHQhmkJHH0A/ow4AwRAwxc45jjDGONW5Un2GCVd1gdihL8Y0EjVuhYMIy\nAB6EMYByBJWCB1+gFPoDTz2F2245iakfLPpsJZXQDwARioJwEDkEupyUth4GlL4DegZfjEBYXhPq\nJBF0haMsn5/b4LTlNExKOHP6Zrz5Na/B73xs3UPjTZ/3uThzy03QWmgWMjuKeuPjaDVqAweb+MaN\nbSxY00xq8VEnPY0eHXsshMDABGXiUD2Zo5G8r69WxoAAsFnj1M2vG/DEk0/jsafPY2vOrmPF8gsL\n3KqWT6mCr+4t8VCUqEImUklqCKa2RTvnoItWot8WwoS3doQRb29jPp+bX/BMJMkUk9SPUy0YBsQj\n0DUwdhOgY72vyBGXsamrj9XhChL6KXtlM0QZuchSPgde3uaA5DNB5cL+hZL8OYoV3pgMUWUncEzl\nBe8TjZ5zft1qUOt79l9dxR7L5QrLFLEbA9pASBjQoGAWCoYARCTWWSV9ZyaY5l3zSXgrd8chmzFg\nGKIZcEgAl0izU2BkyR6dsckRZMTRWTc2fsd/F4WBq5SCW246Jn/ZhzmeOg5EDuMgKAjJT2Sx+0mW\nsHsfewz3nzuLM7fcgttO31qNVbokdky5huwVdbvFJ88+hfuefho3HzuKW48fE0OZ3lfxoda9MmwD\nYY12IPzI274e3/Xj/xs+8EfVy+JNr/08/E/f/laRHqr+6xMZbWw06WOkkyCqsdSMcGUckNG7e+33\nNXpNEjPpjxGNK3jnUmWInK1enPogF237UvDshT385P/9q/jIgw/YKZ85fhJ/4Q2vR2wa6Ses78bY\nSJ6K4i/P+QBXEE5ty2SnkaApDT1WEHY+wVw7bi4141pJ0BPZuyjWmohVC3bsV/uk9hW1SKOyXy9r\nmbx1yVTryrZrG4Q1tV2oja9ZuwIFZMpQp1Z2rieAMgNzYKNGlHJAMebqu2mGlLoGL9MBhMu9NTT6\nX5eDAxVAkqSslh32YkBLhBYFTRkwQ0EfCnLgfBQc0EHIIXM2MIukQz2mZcDq0SVhQjGZy1FQhiDs\n3PQ6OFhV9lB0yR6AIAl0FNRQk6IX/exaC+ngB06fPIYvfd3n4oN/tM4c/+xrX4fTJ48jj/R2+d1S\nJHY74+lP7+JtP/nT+PUP/5H9yn/2+jfin373t+G6AztW2kjKPuvKWL4fcPb5Pdz9z356lPTnS1/z\nufjRb3wrDhzYFgCUa6MKgRYhKW2ngv117UG853vehvuf+BQe/NSTuOWmo7jt5DEDAb/f2G+oHtMA\neNKCysh8TgjPgDvxD++8n/jgo9bGt0ZdJgc7joQd62Tuflcn96EAP/n//Bo+9tDYE+T+J+7Gv/+9\n38d/+eY/ixAHDKm3qLmcx8nbCRDClIw8cT6IVoCYQZhZsFbKWNTIOBcVt+4P7DR3B8C+7acrNWBi\nlDPAdeBs0+DV265pEB4ZOny2MK3lhSDMiOrMH8iAK8aMmLjqL4OxBgSobifL1OodZI9L22jDXhiO\nACbAbmtd12MVCcsA7BUF4IwVsTNAjsx8iYAcAijzuekg0aFjDFvchlLXIcYouYaZnRRSFysanZU5\nX4jMYUvj6YcK781NemOjVACuwAi86x1vxTve/V68gggwogAAIABJREFU/z9W5vjm170W7/6Ob+Q6\ndsQ/UpwFnZP3ElAC3vaen8b7P/IwPBC8/z++Hd/8w+/Cz/2jv2vNTDpRBJEPIh/37f/rz7ikP/z9\nD37s7fj2n3ovfuq73i5GMnFB9EnIHQibYdbAGDhz6gTO3HJC5iuq85a3xBvA1gmsnrD7O7HvtUqT\nKrFYZjSXt1elh67rsFqtRu6J48T+CsSceKd+XzVlrTiuvwWpzsEs+LGnz+IjD9yPqZ5fSsGDj9+F\nC6sVDmzvQAukmkfGCIVJiE60VWZMEowxAmGpDbfQRO1cPdlYsLqiqT0oRpesverBCsLap/fd1Cti\npAsLU776RPjaBmFfFdhbnZUhj2BTLPexFJTAzu1DzAjuMfItVJ3QXIkgg0TuyEXu6b7na/9PDSMF\nHYAVActS0OQBKfdYUEEXgD4RcgrIMsHkxG5SHMI6ZcK5ekd0PbrYIybRh7MyYZKlOZ+LBiFLWgE5\nWRrtRzKE5qKw69HlO9Y6rL0Upnfg4A5+6vvvxv2PPYkHHn8Sp08cw+mTJ0CgyoL1x4yNM4v95COP\n4df/aHPSnl//0F345COP4LaTJ/iMqLAmHQBEPu4nH/8Ufv0/7ZP058N34YGnnsLpm45VAHb10Byn\nrw0xbZsA/s6IAevf15mw7pn9KmjIxGVCiIYlez14nBtiEwu2yDWM2TTk+SAeEZ0Ec1jZ+gJOwATO\n/qeRco+f05ppm/X85/f2cMMNR6BltZj0YNyPiBCiMFeR+7RUfZKMZ40W65wL4Mp+Ppvz+5aYJ3FQ\nxhoTrgY5/tnNA7W+XwxsR1KEk6CuNhe+xkF4DMBj38Bx4/NquSYIL1Qsr0QMoYKvt157AIYHlCu5\nLZuWQtWq3wPoCFghY68MSHnAXgzYSwHLJuLRvSWeH3ocPXIYx4/dADQJJWapOgHHdhwT7nrE2CM1\nvYWjNkN2RigYnoTJdVX2JgZIjzumEhC7L0FBilCNj+MDMSmqqHT61HGcvvkmOwE1QmkOgWpM4Ymw\nhID7n3xSDroZCO579FGcOXlczkXOwBh7wP1PXfz7Dz71JE7fcsJYdHG3LIw+P1nh2ARVhMUaYXZ/\nG7Wq+950kgeUOGSoJKDAWVNTDhODnIJwzWLGTFR1eWXTGuKcNeS4z8aANz2GwqXsr9eK2vvo+UeO\nHMNssWUeEta3xzMR21pSlNzANSta0+pjJmXrZ6b9qgdE287QzjjpVkxRouJcgp5JnohRU+8DxlM5\n4pXcEZe5BXL+l9b4sNVd3Tyfqa8t2bj7rh8T/MmpQqe7y70xwsbF8q4GK/urDLJuAFYAdgFcWHXA\n84T3f+IRPPbMefvs7SdP4K//pTfj4KEdPsfilv4yaIY+ow+cp7jppNKGLD1LCSiBc+UWCrXichEG\nCX96FSCUlBJgTFglW3LNYYDrWsnHahWRHJQlVVXac0RBJNXjA+HUTcfl75uB4NTx4+izTAdFT1s9\nSjJuPn5xw+AtJ47ZZDMuAWqnDt8zyL9vgKq7Ut+3dqzovJaSUpOqS/shK/MtIg9MS8oPI+mhFtbM\nIuNXUILIS0POKD1GteI4As5nR9M8EpIlrXCczI3XX4/PPn0bPv7A3Rz9qRVi6O247dY7cNPJm6t8\nYgxysqIhEvCNxoaT1IpTeaFpGwHb+mBwbtgIl5IkaY8TDXgz+F50s3E89YqAMeOXYru2QViW51bN\nVm+EMzLxYKmesLz0U95GazfQgy+NQKHYTbsiDLbjuMHt/MJK4SKf3cAZuggFF1YdPvLEWZzfTfAa\n5r2P3o2f+7e/hb/5V78cgk+W5tEb5/p+QOx6dM2AxpUr505GoCLGNgFSxb16ltqWZNIsAZUWyodJ\njqcTzTikm4RRTgDXMV/XtOMpj+o9BAXcevMpfOkXfAE+uCFpz5tf93rcfNMJ9FmOWiSXsf4yBdx6\n6iS+7HWfjw9sMAy++bWvw603HbfVgGfBfmCTuxZ+ViepulIQ/w5PmEcATBWINXCDqDYhixB2LxWI\na1iyJujpjQ0Pg0ZHyll5EAZJNJuCeEY/VK8aD77Z/abuhwIUIvyNr/wK/Owv/Tv88X1Vz7/jzGfj\nzr/yNZhv7cAmEUjxgRGr4etVTThKMqMkbDhpwnaRJ9oZM+PWouEaliAa+W7cLD9M79fFNpMcisgn\nuea8GHtLvMKE993MI2KapAMV6mwQ+zfl+UYG7Ng0f24MxNV2fIXbyFhRRqSvz9mSg5dSUC4scW73\neWwyhnzyobvw+FPncfT6QxZ5FYld8hSEAfaMaCRyTv2GESWkGOwBkLN8312prSZ85/ZasAuas3hs\niNyD+hp2jAq63h/DCkaV2rp6DrZ+EaZYQsH/+J134zt+5Mfwm7/vEu+87vV4599+mwArqjKgZNSk\nl4B3v+Ob8a3v/qdjw+BrX4cf/fZvWmPBBW5AUwVcP8RtUiJ3mcqSyVpzDYBNEpLnmpuCmWRlv1xZ\nez1XsC/uqgA8DAMfOujynABUu4FmWqvhyZojuCbmMRZsTJij8woFLLa28I13fi2eOv8snj7/LG48\nchRHj54AxcSVUCb31hi+26sHEjNhruzB+q6y4iRA3Djw5UCMlNKoYrKlN71SJiw9bbN/cGXEV1kS\nvrZBmF3RKhuehONjejuMIxMA0csMeOEAGTpmxgvlF1egL6OnbAgRVpyJc7oWDa3erGF+6uwzuP7Q\nAQDiTofKhHsMKAUIobdijYM442tb+EmnEEsNBjweBYHaqGLvJN9BXUclBWSq65BNIKxsqYKvN4SM\nf7qAkAN/fufQIfz4D34v7n/kUTz46OO4+fgx3HLTcVABej0v+b7mIVMgBgp2Dh7AT/3978QDjz6G\n+x9/HLeeOMoM2P3y2n1WRN3Ut9zlrfkB65UoMI9YoQKxY8IyJ2dphzVGOio75AM0qhxRk//Anmse\nCCtLn7Vistd+q7+8ltWSdBEYuFNw/uPU4MjxEzh26jQHMaVWAqRayYSm93kMvpohTV1Ao+0jJ15P\nnIB9BMbJAbTov0k9ISTaVV1SrwyAlQDsD8QvxXZNg7BqwvUGyE2Y6AWVXe3fqJvu38jAoEsSPz1e\n6TLFgdTobXkoGNdkO5s1zK3ZHMtVj5KYwwbRFYrogqUAQZJue2t6FQUgQR8ECjBGDCqS7Bs2I5Fr\n07okryBjoCxv1xXI2OOBm5JQp4JSayOTY+Hk9qieceo1cObkCZy+6YQNGLIWrEx4Q8PrL+H0yWM4\nffKYnawV3HHXJtjj1AQnMaBWihgBsO+C/ldtUcAXZQEpkAx7IJecvbqGqbdBLmUMvt3EFQ3qlcG/\n6JfZOSvrrQy4lqzXFBrSb+SBDARpG5LkSyFxjTyu9yc5VZoWsZkhprYCLia6P+lkQzWVp8gJqu9q\nBYxoQKyGt4QUOEF7DI4B28p3szfEJQOyGS2LpOD0LmqvyBEvuNmNCGrkwBq4lcmLsj48Nm7jmdAD\n8EW/dsWb/potz8HAMIszLIe3ybtvAfAbINyNE0eOYD5rsVx2jCMUkEI950I8MDW5ixb/7IceQLS2\nCwPr6VmQlIhQgiRCo6lXgAdgVMBV6UHBeCQLOSB2EkTQVYmjjhWEx6zR/XrdTRLZkUg7ut+vlX0y\n+5F84NkuxpOkEVxPdN17dk6yopCfkl2xVigeIAh1clfmW8rYSJZrmXquzMKG1q7nvBBc/WLgen5u\nZae/yy5qNKq20UstRdN/DewFiAfJVAd2XSQCF2sVDZdBmLOcRclylhp+eBDmC/UgzA/NY2L5TFQf\nFoYbY2C26/x/o37OVcowINb2dPtL3iZAW4NbSv3jS7D9/wOEJ0x4Ap3r28YPODBQIBM2MWXWV2tT\ngNKr6HLGVtugrPawGqqGef2h6/CFf+Z27O6tBIAJKUYpZlCkDLsUK7UquJUNVwYM8c2VdINEyJIX\nOEhzeN9hr48KqkANdwrA448oH65ALJkvvYKhB5PgE7hB6/9amTI/Z/kgQ6L4rAUV6tc3sl+d5NWV\n/8i9YQY3/d6m58o6FfjIrgRm4CvQmUmOr5OR62/Sxyr4ihYrzFWBuFY/rgl6tGqG3R9D4SrxWLWN\noZhHRBn9HgOwVUjOAzSfcRAWG6Jjwm3LqSZbznLGwRZzN2m6ZYy85p1U3w5hBMaq8SrY6nsGzsF7\nQWn+i8qER33zMrYiq1kDYI0+1fv2ihzxwptVA96gCU2bb+SsPvnrGCxG37LP1+Xd1bsxoxV9AVa5\nIFPGom2whYS2STh86ACOXn8d+j5jd3eFQMwc+kac5AFoaXEqwBDDKKnP0PcGwgzEuQJSIK52EYqx\nVWsFUtpbAcqzwrEO7LnvGI6DAkDmIysIBt/2E+ppgOVZphgJNYOmtV5xx3UP38LVhk/uPCuIGSiT\n/149rj+oyucqOWiPsa9Q/ZsHJ7NPOMas+m+VC3x0XJ7kCuYHe1FIik23bPHMLqsRblDvGBIfZNGf\nswQOWfa0QSRcAb0oMkJKCE1CaFsESTPZzOTRLsaTwGh14ZkwOb/+CRj79zxjJpeWwHl8VEP85QPw\nqEeUmpnupdaDgWsdhA181R/S3Y79wLJsfCoH9H+ztcrap4sfZFd25i94Xuy9VtCLa1EktiyXAuwu\nV2iamjs1xsBpMJuEGGhsC5n4lXZ9z4NBBkTMkm0qS9H7wN4SlswGHk8EFJXxaXsre3XX5weHN5bV\nj1cxgsl3Xf6aa5MM4DEL1hVK9anl+0FC20WWcL/pgdj2I2xYt65XQFm/0TQ9qP3BEFWkB+0nei3+\nHvM5e5NvNYw5AB7Up3dApzl/rYDnUFceBAF2MhbHerDIGkORcGKXH6IAuZC4ZTGQB3Ep4SykXDk6\nBmXC0dJNxpaj25p2hrado5nNJErVtbKtLuprTWo0BmKqDHcCttO9X/WO+tgVMGG+EcqGM8ayRF0J\nv6IJX2TTZOXmK2gjY79GmzLgfV4YqdJB5SWJzxSAL3ETXDHDAYBhKOj6ActVh929JZJYmZM8mqRL\nOOJ9IQyRXZJ6SRLUpY6BD8x0hiBZ1QKBJOscX3L1rraS5P78hGkbxpT1JnQXMXm/vvL5K0AK9DKD\nyL7IOYxBGJJHuFg72cyQhenaOXn5oTK0CsBS9t1+Xz67ybo3lWTWb5scR0B2RAwwqUsoYo8Ujy0O\nhDm4woFu36PXsGQtIaQTjWOfKLV9DNCHauDzCZ84NwR/OKDUfMOB3dwMKNWTISVEKaSQmtZ8epuW\n9yPjuLTVOggLadKUAx6Yabw37TeMwffFA2AHtLmMQNitb676do2D8JQJ08aB8QJHcf/7rRgQj5aY\nbvl41bdSbPGsJZG6vsdq1WEvBMTALKWCsLr5BK6rl6ItQy3JiwvxjMOAHAOniEQwd98aNCAArEAn\nG/+Z/AtblvtmoVE70WhCGcEysQZdJktXrcKgS/qxH20QEM7sGlWE/ioYg6pW7CYIQu0ma4E6+/Ud\nY8SO+nvJpPYQA19AVzNYB2LtWwRhoLwKMSas7mIuKKPrqjtaHgYL4KinXH+EJYgqbZgWrInXXZAG\ne5Zw2wUC9ylEy/urYfzVc4HzdicNM27qY99QYVtdoAIwjaVEY7phek8mjwkAf2ZbXYV4IOZVRBl9\n5mpu1zgI1yJ+PlDjytpsncdV1juF3JdmhvTL7QI2sHTdgGXoDExSZNDVihxtTsglokECEWEYimRU\nG5D6HrHrWIYIrCXnHFHEIEY5WPVdZcDMNMkwaHT1HoAd1m5sIgHgtfcN/CYeERZJFqrhawTCBUVS\nlSojriDs2KbMKuoUplg1BWFlwnWSdXfBg602vL9W1OYprp3IPdfveCnLpJQJCGtghfr+6gQ6WIhy\nlgx8eqgKTDU3RKnuaINj2LkmhVe3rACe62IgpEBIAZJ4XRKwS19JkX12o+Z7aCoLbtpmnQn7eyzt\nZYx2AsJrkhDpqsVJRG4V82Jso760pgnX1r3a2zUNwl7kh5spN2+bG3bfe7rmqmIhBS/CmV9iJ3Lk\nW531+37AUkY7AQy+KaJJ7Nyu1l3t5FGStPRREvqIASTFiCElzqmcudUCASUHWfoXYXGa1pLPu3LC\ni7XE+pTFBFKeKQhRhY8adcYADGFFCsojXlJ0coCBb5HKHxUN/aPYuY+kCNSUnt7zQ699/Xbxl2xV\n4FcHcq9I7k1RvcZ9aKwDa4/i1+Y25phwlSNEihi0crKXI8gmTBIQViliGKpRzqQIXXZLiK7e2wCu\n6t1EQhNlBSJADBLPhRQttDgp+KossYEJT9uvGj6rTDECZQ+47lhX7AN8idumQA2fUe1qb9c0CFcW\n4x24UZmK/yxU45RF8mTZbAGXTg9SF5apFHGJZ7fPe5fTgWTQC2goGFtuiGFgaWK5Yn04AMMwY5ck\nXeaHgBAGefS2tEx9Qup7NH3CIIOCXdbUtiXuZALECma5jK/CwMftFXBt5S7v87YBmEh9BXRJXaq8\n4ZvL68fudQly8sqYzejnGKtbu1c5wt0SR4QJVJm7p8fT83FXZAa2ov2mrmAUbOGOVOeHIm1dmeug\n1Y/7ntlvLzXcLD+wO5kibo2DFP8cMnI/IPdcDqoMuU5EuUoYKejFjMG3icyGObFTfSBE1onFVW3s\nx1v9d9c2N3nbc2n8qRH0YmD7YgOvbuoXPJIjXtGEL30bW1fHmtHmWzYG4pF7kvwVKLVoZckViEes\n+LLOcrK/su/5UF/OqMURVKuux3JvxQVAIbqfAluInCtZAJgHSi/LSk7q0w8De1SQMOFQWebo0j27\n1NYToKoA7IxF8qQax3Tv6SpAFmBCG5tqBLheBsjgE9ZsbqQJcIqbhOW5f8tTXH/zw+T3RgZFcjJC\n/b6+9ACsE3wxQPZgXL+n4KvPNUta7zwiakhyjYzDlAGL0VgNbArAXF26FydgPR/+9eAMYixNkYEv\n7wMyAgYEZAoo0EozUfIBc/miqLmBtYbdxZjqZDXh9WKa7KfHuFoAbH25qHeEPIARSbva2zUNwgHB\nseBJKOME9HQJDVRSNHpQZUiGNgrEjt0Yi77oTZp2Gpo8v9RONUGl4rJdUUY/ELpVjz0CAHG0LwXm\nXN8kxD65hPdcebdJPfrUo09S8kgGZSYOXVaNWI1lhj0CcvWpS3tZ6iDXXjx2E9NBVgG3rk4mN0M/\n5y/fxqzL/4EAkKFwvZGl/gaz6grEdn+nLHjDbSEBYptoJqR4CsA6eCsAF8sDoU3obIUGjBk0StTO\nydYHq5Y9uHJBsGapJ5st3JhBuHQDSi/VkIdhvKKQa40UkSJX+K5aMD9iIAxaGwoMyJC6cCFonoda\nh9Eq0ryAHFFvor50V/JSgq9t6xKEsuKXigUDlwnCRPT9AL5/8vbHSimvcZ/5hwD+JoDrAHwAwDeX\nUj7xmZ7opm2URU1dW8zQ40/csTW4gbXhMQLgyb6qoJd6gy4Gxpe61VSQxpoyMPDQwIoAEgDOfcdX\nqLla2xYpDaNY+0CEphnQWla1jCEMiJI7go8v9euKsgQYgdX0lp75kk1MFYBLqS5iZHKDtL/eD9LX\nbsE+AsPKkm2gBmIcl2CNomyY5DjGmIs/kPSJMiLcBsDBPZ82v7iM+MWAMUv9iM3PZQTANrihgKt9\nz/s4w9o85+oNYRnSzCc4WySktgdRQM4DB1tIaHLpM8sQXQ+seiAPa2wjREIklh7axD7mkcQzglgn\n5+xrDMBUtFpNLU00KisUw5ococ/3Gyn7pQrd9PpqbXU0qxSRHRC/dGz4SpjwhwF8OWp/1SSmIKLv\nBnA3gK8DcD+AfwTgl4no1aWU1Wd2qutbrS1XmbA7l9FnVYYoHgw2HZM/DLjBVO/GWEu+vHs0YcOX\n8mWybL7u9+qIKpCMacPAr3JGalZIS07/l5rGkvpAjhMooF31WKUebcf7YHIEYQg8uSFnENUafZUO\n6/nr5FSlCO28GhdrE52xUFN+YZEZypM1kxhnRpay6XVf8xK4rPIEkLDhmru21GCSUtwdd5PqxP+X\n82SU8fnZpoZOJzPo5cMB7OSfVUYeMeQK1jVijY/bi/uhPbqepYmsteKyuwV8lhYNp8mZ+gHU90Df\ng/oBNAygkq3uYg6EEgNa8aZpU0Cr+XnBK59IdkdACNK+vpp5rQ9XK5H7JFq172pvHbcmxu9PVx8v\nEQDrVkE3j3yFba1ir6/ediUg3JdSntznb98K4AdLKf8GAIjo6wA8AeC/AfDzV3aK+2+kUkSoHWA/\nNxm/kpw+r2xNN12aZMeAixsAfv+CZ/kCr/ffRoBAcm0EG1QcQw9ehmJAXzK6VYfVcoXUcAUCzoZW\nrPhwpIBV6tGseixTjyZ1FYQlQirkDFAAZQYs1XcrTPmTrJIECp/LmEZUVjpK0i5gW32BtTSyK/ap\nIABxMPO6cBEposDAetx2FR6pKNPW10CtMi3/svadcYVgM9CNZASMgZlUVqh/GyXHcYxXj2GJejRD\nmpSj6kTn7/peIt3yCMiVCJCAwzCI4U7zCfc9wtCD8oBQBlApeOz8c/jUc8/h2JHDOHH0BqQmotFH\nYn9znixrgqPaBnJfnBzBK88IreWo/XLyxY2bH3svj60C7TSL2ku1XQkI30FEjwDYA/BbAL6nlPIQ\nEZ0BcBzAr+kHSynPEtHvAHgTrgoIU42w8dbVi30Hm2ZjWu87F9OJLvsO7e8498KgvL5UU0f3IKDB\ng7GgDMWq7sY9yTolLJZhLSBSRJd6dKnHSoCYpRzxE42EIYY6OxWSwekBdKRP1DZx7SWZeKASgUm8\na+yXwVYBmEgqLZuPsLofOs0AemiSRQUZe1bqPWIzyDJZKMBonUHiYqC6vLcWL/siRT2qrE5IWW7R\nXxLQ9GzYSw+818xog4QUa3VsBeCu600OUhA2wBAaXdSXWMsc9T3CMAgL7nHhwgX82K98AH/40EN2\n/p9/x234zr/2l7CzPedQ9xQkZ0g9yWJZpHiSJESQZ8P2cEFSoPqda2Uz2WGiDfMfX7LTmGYqfKHt\ntwG8FcBfBPC3AJwB8D4i2gYDcAEzX789IX970bcgg3O0JLrcTuAYcH1WNT1jQsCGm7Pfjdrv/Ykk\ncRkAXOTlKMJIUp2VXJA1N8Sqw2rZYblcYW9vD3u7e1jurbDa67Badcy2VgzAq47fWwkD68Qqr/pk\ndqxAmVwZddzpe9OHAyB76HUz+BY4JqxsGA6Y5bPWXvI5ZdEj535ybQW5i87qnd0+2xJUX+tjcPvB\nvZbv6z9yz+097TnCciHVKXLGoOXqXdn63oxw/RoAd2qUE4Ob9kM97zxkZAXgocfQd+j7DrnvUAbW\ngn/sV34TH3740+DKLA8C+Fn84SfO4kf/j3+LWRsxayKaRtzSotZcrC1IJv+MwbdKEXHChK8hALat\nVFloFLp8BVzrCrfLYsKllF92Lz9MRL8L4AEAXwPgYy/miV3Kpi5qPhTSEaXR5rjb6O+2n7DoTd3J\nPiEH8hrzpk+ufW+fv+//3vQjwvy1SrQaoGwdrAOzQ78MWBGrepECEgU0IaAPEV2M6FLEKkak2EkK\nwYDUB/Qpoh8y/1YuyIEZZCj8+2syg5+hpguF4tpcBum6zrvpQcKCq1a8nqvW3akSQCNdGDXKrkxl\nCdhdM06eRUemetI1UwW5iVpWHu6vANg/F4DXgU1qyBM2LOfQqxHOVcvwANz1PTN0W+GRsF/JdCaP\nYRiQh569JySQg5DxxLln8IcPPYxpaaxcCn7vY3fhibPP4PSJGxEiJxbNYDY8jK5MV12bmHDN2bJv\n193n/YtJEpv01zX7zouEjrYymcgRpq05qeJqbp+Ri1op5Rki+hMArwLw6+D2PYYxGz4G4Pdf6Fjv\neMc7cOjQodF7d955J+688859v1MzLNXOejlMeJNzOCm7tuRA/sF6mOTKlptzMUAl95j+7fI2Akwy\naFJE2yQ0MYByAHIP5ADkwD7AAGgYUJYrdn8Ch8UO4FI1PQGduCLFpAm1JTQ1DUgpCuCzLkziryYi\ngoADMDJxjxsWgFZ6cNGMpOw1isaoqxjRFylKuLIDaKW4VOuX+XYsOikSF71jeYEXeCUXBnMbSAqi\n8qy4xD5FMb5Ade6aFa0mGhqpLwLIQx6Dr9Zo4xJBCsRwjAviB+zLFdV8z1k8IYqJHnKWuTJgBmHx\nHS4ZgYAmERokNAScXS7lTDeXxnrs6fO47dSR6khitg/BIGlzIzqxjoNRrpbRvSjAJYzAy4W04tr/\nxd3qBL0pi9qlbvfccw/uueee0XvPPPPMJX//MwJhItoBA/B7Syn3EdHjYM+JP5S/HwTwxQB+7IWO\n9a53vQuvf/3rL/cExp3CdKkXPO+12U0Nc+rGNS4iqgDMDxQgExfJHB9mE8+ePi7j8nx3JV4uRsmW\n1rYJsxQNfCkPQB6E+RLCkFFyJ8tizZjF/r99IHSaHSuxpTslTYcZkXoxzIXMEXaFvTBCcO3rAbi4\nq/ZLWh3INrGR5SIgz3xDfej7Y4+IOuC1COfamsVAnhjMBVCLhQ67VUuZrIyKVNnQvbLhUurh3aXy\noJ0GWmzeW37gIrKRtGXfSzi5+QMPNS+EPGrbqlarANxzUEbOCNIigQBKAW0IaGPEzSdulDPeXBrr\n1uM3SCFQzyzHuqhJfdLvaW3V6e+Lh+IXHzD9eNXxu99+00ayEhsfFFVyNBc1CdC6jKliE1n80Ic+\nhDe84Q2X9P3L9RP+EQC/BJYgTgL4BwA6AP+7fOTdAL6PiD4BdlH7QQAPA/hXl/M7l7r5qJ8rYcLA\nZKlj2iIJE65MwANyCby01eTpqithP4C4oq3YEczeRJDcwQFtkzBrkgBwAOUIKgMgy1TkQZJ0Dwa+\n53eX+NS5ghsPH8bRGEEpAqmR0uOcAKjpM9KQQSGz7CFL6hBqVYzRpTkALhTgME/O2QXRhDqolRFX\n98Jgg97LElq00t2kyVynuoOCtiY3V/abJReGfk7P2xtgiuBu4e9PAdn1KluoCpBbJYxcRO+tzNd7\nP+QMV9PNpRe1unEckDGIJm86cKn7otKDsOYQduewAAAgAElEQVSSByRNhh553zQJbdPgzC0n8IWf\ncwd+70/ulmQ/bwHwGwjhW/DFf+ZzcObUkXVDlLF7vakyDmJcA+K6YlGvF8/b91shvjibeZnss9/8\nHUBXZ9Nzs3bQXMtXwIY/k+1ymfApAP8CwA0AngTwmwC+pJTyNACUUt5JRFsAfgIcrPF+AF9xNXyE\ngbF8wB4SuFQyvM9x5HmoeU+rDKGdMCIUYVjT6pb1iBv2V8aG/RaCkyPahFnbVADOA6hE5FUnFvcB\nw6pDBmE5ZHzo8afwqd3n7Vi33HgE//WfeyMONA1ik9A0PVadBHH0GSFkxKFgiEXT8yIU1g4D0UYp\ngqzx66pizIKpAm+YMGAZ4AgR1XVN9rJtHhTq2cKfI0nqjlLAfmcBbCJzm9OsdXDapCduHFpp2+OJ\nAg2Dr7DhAqlgXCzvg5UNKpX55gxJJ1kwDEDfF3Q9Z8XT4AwzElqynWzGQ/YJZgDOPWdUK3ngqMiQ\nOAgnEdo2oZ01mM1m+Iff/LX4B+/5l/jtD9fSWG/6vFfjh97+NYgxWI5hGAwX1yY6FmqVizqJOp3a\n3ZuxYdRKp76sNj7Per0+ZDm7SU8+/ZKc0+Ua5vYXaOtnfgDAD1zh+VzWpp0ijGrdk1mpL/5l1O/I\nIwSu9No2LWbzOba2trC12OL91jYWW9sAwAUWuxXQdXVJA6CyL/4BGv3YphO47CseDQw2qBEiCiIa\nRBT0MaIPAR2L1kAB/uD8czi3bMFGmi8D8D489NTb8K8/8CF81X/x5wDVhFNiNpx6aIWDGDknsTFC\nqU/E7NwbrOr5ARsA2Jaxjk2Z9OCerwFwDZs2kBi1nvNsFWs+AUAooBJ5xVKi3KcMS3OpIF0Ajg7L\nqEfmvWmRqmIQjRiwen8Mov3qw5iw22tOX83vy2WKOMCi7wZjtuqZYpWPpeqFLpepZNbymwhCQNs0\naNsGrTDgWdti1jaYzRocPNDgx7/3v8eDj38KDz3xNG696QacvumIGPGytM0YcDwLVk0Y3hPC7l0d\nN2YjuBa34rwjTBces+uXtWHuT3vTOml+dr5YZ9g0v1UsZq+DpmnQzmZYLBbY2t7G1vYOti48j60L\nz2Nn+wAAIC6XWFKwAQbhR/vHnH+G8oQ7pEougTgncBMIbSQ0gR+rFLGSpWJBwXPLDmeXuwDeA28l\nLyh4+Mm78OiTT+Om6OSIhlNiara1fshosurfBUHqDDHc+cuq7Khqs3pfqqHTBraTIMYeEd4LQmUE\ngQZNA1mqVFp/nsRvOBhwEhVbueRSpHKIShT+IFrO1DNmAWJ33/Qr1cg2ZbtlLEdkAeUBrtqxZMDr\n1L+XgXgYevNuUE8HmLWewZiroZCkI+WJk4GXgXjWNmgS1yJsU0KTOD/EbSeP4vZTR1H7KVzCe52U\nUPd6yQ6EKxMmNtLqyrH2zCvo2H/Km122eEeoi5oTql6K7ZoGYdjM7JdHE71n8moy30MNOsz8OF/q\nTEB4e3sbu9s72L3wPHYvPI+9nQs8mMEeEkM/YAjCWHQwX9VZk69PJx/WACNmiX0+5ylgL0pidjAA\nLJedfHezlfzJs+dx3aGDNSm8DOgonhJN4qU2iL16obqpSA8EMi9eY6MbwNczqLHb2YYHqifECHzh\nlHIDEceMiTToecyEKfJhNQKyEEjDgA2MM9YNSgW+oN5YinBRcblgEEZcgXj8WsvND73uBwNiBmHR\ne5URD72ca7bzpkiIIVn+6LZJmM0atMp+25aB16qtRASdKRVciit06sDXsz3zclC5KHK4MkXV8JX9\n6v2+gq78p7ipdFLlCPfwocsvEQpf0yA8MvYYEPO23n4VeCsA64OMCaeU0M5mmM8X2N7qsLu9jd0L\nCsQXMPQDRyr1HCJM1EtKxcwDlV58IDZyUhxzFzmiSQmzWcLWrMFW2yAEhso+F6xywWIxl29vtpKH\nEHFhd2nL2vmyxazteaD3ySK7GMTqQzliIAUnjVirRhtzP1PZSPNDeM+HjSDMN0fXGICStOIAuZrK\ndALQsGMGEJgUoSHbxcLbMmzRUrKdPycm5uvK1k4iR5A7jykLLtUINzgDXNWJi4Fv3w0CwhpuPCBL\n2HH19+054ELAFwLEEQmhiWhiwHzWYDZrMW9bzOT5rG2RIkdSRmLWzDbGmgRe/aWpuIvxpHgiR0D1\n4BhHY22k/W9A4Zc6B8QVbaVe83q1ZfnAS7Bd0yA83SxyaYOOU40OurStllDdiEgYIAPxbD7HbD7H\nfLHAYrGNxWIb3arj+P5Vj7hcIcSOvRBoQKE8cmuyX167l5d+c/3h6tJYDV8sGTQNs6H5vLEOxfok\ncF0IOLy9g3PPv02O8BYwAN+N6w4cQgwBF3b3jAHP2hUaY8I92q5B33LwhgkvVLj4BSwbgytBpI3p\nXc3ILOperrCaco71EtzqWB+mz2FNitD3A8HOj4gBl1kb+w4XFEFWlR58o6r04Nj2elE9+62pDDE4\nAPZ+wrW+m7iidT2z35WArkS4DWJwK5mNbcgDSuGkTEGbEsH8w2ezFvN5i8V8Lgy4smHOA1GcXJSV\nH5iOvS5BlNq4rg2JHdPHAGwrnHUmfE0Ar2x17lEGPPUT1j73iiZ80c0PVB0Ymhg76oeoQth0ycHs\nZRKiK52Pq8xGxMSVZVM7QztfoNlboll2SM0KMS0R4wpZ4ow0Imt8hn5/+de3qVvz2GEjkQKcVsNt\n2oK55G2IIaJpG7zxVbfg9z75EM4+V63kB7cO4FUnb8LecokYI9q2QdNonlgOSolJAL7n6JRQCDEq\nR5QEOhSAwH+nQqwdQydE46UVYCcXV0q9Nxy5VhzwCsjrZ6wpFY3dEloGVWWwEkjoJoGKq9lA1iYW\ng646OKc/p2chudVHwRgj/2CRHzg0WeSHVYd+1WNY9ehXDL656zjvb99JykkuOV/ALDZZEA1LC23b\nYD6fYT5vMZ/PMJu1puE3KSFG9hAiW6kU11QefD3w+s3JeTqJ+lDlqVHumt8mEoQZQkud7F+C7ZoG\nYcCBMBhQ2V1oqOjl+ooWOTQQttlP3IJsKRYqCGt579kMzWyBZrZE066Q2iVS0yKmho8tN1FoGEYA\nPKk1Zif+gle24V3tIEUYi2h3UZJtt/I5ZshJWG3Cm159Bk+e/zTOffp5zNsZ5vMZSilY7q0QxL80\npcQDP3Ge2CY1mLU95h2zx1jLWPD5BYBIADjUyLTiJqMKxIDpvKazji6s3km5Nn+c8aAoo920xbKt\nehwnrCFxDptq+PFkZT46XrHzG0sPo/DkghEQKwB3woCHVYdhucKw5H3uO5SuQ5E9kEExAIlk+c++\n4LZCaRLaWcuyw6xFO2vRtg37CQtQa1Y9UDa5oU6FXuucPiZtOfHrDjGCYnUrNH983V9rorBspcD1\n2TySIwrKWv+6Wts1DcJ1AI2Z7ZCFmZrVXj4n+qa5AJWxfKHsSxPkMBNODMLtHO18gXa2RJotkZo9\nxNQixsYAnQJxbPDaGQKTXj7ut2XtyebrdctyZcPqZRAEPENgSaVtBsxnM7TtilkggOuHjCZG9MLc\n+tKjzwxOSaslSEJ4BuAO8xUn9yGx8PDgy3L6QeMjkEtGKLyAVvboWfDU6FWmDaBIqLItygQUp0k0\nJ2yYIEZTadrivkcOiEuVQfirzuDmhB+7a8XtFYBH4Muyj88RMeSCPqsEMQXhJYa9JQNvt+J9z270\nYZZAlBBiAwrs87sQ2WExnwnwcmXjtm2QmiRGWsiDwPqxK8ckbelnmpH6UPxF1olSPSM4ZNkHajgZ\nArhW8Vc2HU/ql10JxP6eTi/+dm2DsEkIZMI6yxEDIqpGpfvsM4QJCMuR+O/KvMjLEQmxadG0M7Sz\nBZrZHpp2jtTMkJoWIbUIJSMMAwbv11rP0j2nDe9hn448OYoDAwNg+bKda0ygBDRO72vbBqVwQEHX\n9ViuOpR+sAxey44nrJT4+yHwftbyknexGrDqOYIO2jZE4syVlYsDIGQKHMii/Isxr5LeQhuawLmf\niQ+vZ6b8CVGfiexYI/PcRAYSLIf9sgPhIozY2LZ8PqOGvE5lCQ9arAPD/IPNNc3JEj5LWtf3AsIr\n5NUSw94e8u4eSrcCCRB/6ux5PLW7i2M3HMKJY9cjICJGwqyJWMxn2N5eYGd7C+2MKxtzwn5etTBy\n5tEJlixsX2cjZXxrYLw/EzY5Iq4b5kzr37/zvuy2jXBqTHicYW/kKfKKJnzxTcuBEwXE1DGIxJUA\nUq0AG4TF+QQpwzBgems4cqmTPcfzs0wBDsklV+hQZYqmRSns1xmGzi153bErKsi2n9K7eTOwgR9D\nNVm4/zbnvgjmRVFKwXzWYqubsU9qzkirHjH1CKseFHqEyAr60PeiEQc29mggQNug7wdZHicGniYi\nZkKOATkQYlQWNvDojwOijPFcOAubRipVYxzcgM5Va3RYYdeswKheCpP2Mk8zqtklKlOuoDOWTMoI\nf/xemZAH4KoH13wQgybjGWpWtK7jdKKrFT/65Qp5uUReiQyRB4QA7JYB//w3fx8fefQxu47PO30z\nvvWrvxyHrjuIxWKOxXyB+WLOANw2SJG1X0tlWrQ/FWs3bZ216yzuodfqJjp+qkxY/bgTQkiwLGrm\nxz3ZXuZYPFW/ALg2cmx4g6R2tbdrG4T7Hl3XIYSArtMqsNEi33zOBwBWAqaXagQARp1ncOVlevPf\nzLZsZcaZEFKDZAa7FjlzPlfupF7zLDaYfZXI/W0am247rf11k6ynf1QQjkEnH8J8zpIC5yUoiKlD\nWHZACNVdDAX90GNvbw8ABHyTGOwaZnazBtlNLjkEnqRi4GuOg5zvwOcTBYBz5HwboXoUKxATZWPX\nKgUVuVjbO9blJ6RRQ9YmdzOWNowDYXAQs8lQ9twRQk8QrX2LTShDhrigiRtaXzC4PBBa3WS1t8Ry\nuUK3WlX5oe9Qco8mEN77vg/hjx/bhY9k/E8P3I1/8q/fjx/+tjsxa2dVA27bKhdJnohAk+AVW17X\nE/dym7+u+h3f63SCCyBobo8ICg6INapx0jfHN+blt20G1DpllTJNZYkxkbqK2zUNwlpRgH18XdXX\nEJFztkKEUZieMVx5ANJvZDAPUmLGCi0OvXlOMAhHhCBgn1pjwkPfIaYE6tRyDKDsL0tsvLe038tS\n33GgPtKyUQEkkBpq2Gk/EKHvZwzA8tkQowFwKYS+sBpq6RRztjDYpmnRpMaqQKBoUh1CigWlqEEu\n8ERTGIAp8nWGUFAC/52yY1EOdP1jLAWM29GzYRodQ8GXKhBP19gTQMplHXz9KmO0UncAlh0A15wQ\n1Qe463pmwXtLLPeWWO7toVuugKGvj9zj7HN7+OjDj2BTvt8P/fFdeObCCrfdeAN7PkgkYwyx5jTR\nXCnQ1QMZpKz1jwkDXgfiaW9TyUE8Iyg5FjzJ62wd9mWMwHghJryBBb9EAAxc4yDcOSYcuw6rUJdM\nY+8HzgGg4Nt1HbqOI8l8kAfndu2s1Dgv34sMai9HMBNuxHUt9St0XRK9TDwA5BzLFAzMVHWpW11+\nb2LC8sd6bJFfUozithRrZq4ii00FYBCGAlDX1yTjOYNWHZqmqfpjamywBjECBiLXcYONbM1rRIDI\nEcXuhTJzHbDVh1jO2xt8yhQYqoGP5zgXJakAXko97rjFKhP27BdATVw4nsyY9VZANhAu64EZ/VBG\nINwtO6z2Vljt7mG5u4duueQMd0UKb+YBT336OTm3zZGMZ5/bxesO7kiIsqQdFZnJJi+w/mvFSkZ9\nYgIoOlk7kue7j7Zt7XNcUSOIHBFCspXeRspbyssaiDeOODfJjoD4JRMieLumQVg3ZS+w2Z9Bh4hs\nr8+HoSZJAcbGu+y9J9yADuL+ldoGTcvuau1qhrabY9Z1GPoVum6FGBuEkGqnzzzMx9R3n1tcxl27\nyG8Xgx291g0sxw8n0nPmsGYiiJN/Y2A8jDRNTlO56nqs9P2c0Xcd9pZLXLiwiygrC02xWApQhiyh\nzhxEUFJEiUBJMDtRDsVJQuLypCBMPB15FpzdhMibZ8XVm0Fdo0YgPrmXGEErwEELYnixTGc1MY7l\nDdBsWvL+FIzVB7h3fsCs/67QLZcsQyyX6JdLDOKChjJwQv4YESkihhYnj+vQ2xzJeMeZk5jNWmG9\nZLl/R/1k1JHGE059XvucZ8L6jfW+SO6B0fP94+MwuW8v162sPasro0k5r1eY8KVtUSz5LEdEy/fr\nI3r2i4LRbf15qcxMAhZSk9DMGszU7ajvuITQoMlXOKta17RYJY5aK1lYVv7/2nv3YF2ys7zv966+\nfftyzoxuSAJdLJAQsqUIi4uCMRADFYJSODHlIsgpVMFFXIgoxqqUjamEMoVN4iRlcBxDylXElQqO\nRVGVxE6IK9gYitgimJAhsjGyIyQBEZIGaUYzOvvS3euWP9a1+/v2mTPjmbP3xv2e6tO9++vL6tuz\nnvWsd72vOkBZDz9gTw3EBYALENdfT6l0Fl8W5ZNJQJcirrVtQ981aNsG5uuDPqqaKmedSJAdCB1M\nFxcXAbhjIklrXA5AM/QhpvHQt/iuxbUx9U4bmGLqQCoB8pfMtwZTqcA0C7yrK8r56VYAniSJfRAu\nLZHwTOpecFsA2PsMzIUVpb8p8oULXiYmhvtMcYCncWKeRuZxCgA8h4rZW40SR99I7tTso7TwecdH\n/P43vp4PfGgZ77dRf5KvfNtbef3veVWuWPK1ecg9kKv3OlXGhdWWK1++YftvYM3+F69TAqOFjnHF\nu+tfqOwXz5cdAOB0h/I9XGrCDwuGbzcIR703DTdWUTNTK0ZVg+9VNdziN6EKFxlAuI/M0cQcbinF\nuDMGoyf0NDF1I6rpaHwYQyc+JBZKrlfxTPe9pvpVyWM8vJDTq+/V1vWn5vcOn5r5TQzq4tqWoS/6\nMBJT3ce09wDaWPA+dCg5xzTPWG2yZ4mzDqstZuixQ4e3PViP6zzOxgqoBuHmQPB9dQCIWTOq5XJm\n0fGvGozLMlWz2Fd3Jn1k6ySfBwC4ZkXJ/zd5RRibYwBrbUPS1HFkGi+ZLkemccxxH8TbEGa0VRzt\nOna7XfR4CPMfePc7+cH/9n/kF/9JGcn4lW97Kz/y/d8V3uv8DCtRqqqHl0v1sy8MGOr3ZH1PKsBO\nmUJyxb6au6rCP8SfbzQAQ9Jr6q+w1CuJDW9yxLM2VYNw5QmRBhbAElxrAK5Z8mJbKpaVhu66LjRJ\ns6SR8oEFeWOeJ6ZpzCPovLf5Y8aFkIQsQic+6ENe5ivY+5BWmt/6A0nsqWbC3jmsD9eTpAupADh/\noN4HV6tZ4z3B19WG9OzOgjMeq0P2DnHBBc07j7fFd7Zt4zOxgmrCeVSKsLbOhiIZZlkz4dIMLtvl\n66MCZCmAnJ9pVUmt84il3vAsU+yxy2WyzuAJYZm1Rs8mTprpcmS8uGS6DJN4S9sIjYK2gb5tORr6\n4O97esrJ6WkYfjz0/PUffC8f//ST/Pbjn+Z1r3kFX/Cazw36r0oib+lhKBgbYh/X+na62kNSxPr/\n/Pse3HjycO6KbRcATvR4/029TUy4rCr3b5ltObUAHk7JbjUItzHYTmDCxTuiJCRMPe7LG7oXcS2+\nuIWllaDprW9xPmYIVk3UBG0e+GGtZRpH+vGSrg8DOEowEItTitBxBSGI+KF+2sPm8TFGblWBxJek\nzA/vWzshiEpMuMG3ji59uEJMTpbOV84z6zDIQGvLrIOXiPgYH8IB1uONRaxDrEc5wfYO2zk628YU\nPoUJNyoBcaUPH9JzM9DmKwnLiTEnQE7Xt36mlSyxbCP4fH2JGSbtP2ezWAX1TgCdIslZF2SYeQ5+\nwHoKrmjT5SXTODKPI/N4SSPQ9KFl1jUNu77l6Gjg9OSYu3fvcOfu3eh21tH1Hb/vxY/yr7zpDeTU\nSpHwl8q1etB+KTkkOneV7FCz41WbqbozKza8kGVCSyFEAaqB2FetkttgtUQF5dbVlXJFah6i3WoQ\nDgGtLSISOsz64DLW9R0pN1l+0dKdz+xPlZo+mrUugoSt0hlZRNngH9xYvCfkbUsgbCzzdMQ8HQdd\ncBpD834WdP6QAG8rsvpgbFj2oWj/w8EvXiSqdfWHQgbl6OEQe91bpejbBk8Ig9m2LYM2jJNmmjXT\npGmU0DcK5R1unphFGK2j0TNqnpBxhMuBtu9ohz7M+46ma2L2D0XTqjLIYJG5t2ieWU7IwLtkvRUf\nXv0W98kAvKxYkLqZXZYT+yksuMQVSRWptSUtfXJhDJ1vM3rS6HnGGg3W0CpQQ0fXKo52KdJZx9HR\njpPTU05P73B8fMxut4ueJw1t02Y9XvJz8vmR5fJnsL3izUkVBz5j5UJ4qJBnBeOlgiKBkoSYxsZg\nzYzoGelmlOloYuD5fEyBVU7om2l7wOrz6qIHu/wNPTQazC0H4aHvMDZ4P7QVALddD3udcg6RBnGC\nUwqVstlSgLFpPMo0KLFhUm0EZItqbAXCLo81d9ZF8C2dM7lFXH3MaShpaNrVr+tzfdj7Tctc2fj9\nLcgdWQoRF3XiGBi+DUNSu9YxDD3aWPpu5nKcQmhEgQaF8hanZ7R1jLNGTRMy9jAM+L6nGdI0hHnf\n0sYkok3M5qyaOMQ6xalVpVxKatbL3rLaA950XXGpBnKpHAETICcQq9huBuAquBNVbreQjLP4lqeB\nGHqagkfEPAfPBzxtA6pp2Q09J8dHHB/vODnecXx8xO74mKPjY46OAgiHIEmpYgouf4EkVNVskbbj\nTFg/3KXKWT/0ArwJkDMQ5+o7rfeZ3HpPzu5hrUGMxuoJpXtcN+CcJUcay/0VNxyAYanmVa0K6go5\nTwcw+wW0Ww3Cfd9jHBGEo19rH8bXe8gDLYJ7FcHP3CmU83i1f5dDVmGbp8a4AsDW0rQBuAuwepy1\nkQUHx/xpmio2UrnExeMjDk8aWfbs2HCySIr2Xpr8d82EFwcL7dySpVrRNg5RLS3hI/cE74i2bTIA\n4z1Yj7IOb2a0m/A0SN9B1/Ok0VzMmpe+6FFe+tKXoHYDarej6Tu6LnqXdAGQVQafJB1VAJwAmRXz\nlQTCfg+cM8OPbfgibcSdqo32WGIG34r9riYTfcq11gGA55l5nqI72oTRmr5rUH1LGzNgH5/suHN6\nzOnpCaenJ5ycHNMPO4ZhyPNUAaVO0bWOnW77/pNfvwgVeGa268umvuxXK8i1KJEZc/0uxeDyVmt8\nO6O0zsHmcyaZqqF1M9N6VnbgU1vKEYUJr5XyF9puPQiHDiaJAJyGEne5KRmCqSSNLcQVDy9Z+Zgh\nLBcQdjTKYlQIzKNcmDcuDHUOLBiIAD9PUxyiGvxEvXO5A6+JXgXh43C4BQCvqE5lh6SItdWNygQw\nucnpl2dYeCEohXKOJurVjUiOlKWaBkf0bIjszDuHGYPPq4vxcK2FWYSf+eTjfOLsqVym17zk5bzj\ny76Uo0ceoRl6uj64ZnVdR9cH3T6Fykxxi+sYH1meoMwT+CohxWjLEkQNwkXKqLThShwvTHhdiVUg\nbB3e2Tyf47DjAL4aPU9ZdpqnEWM06njH0Oxoh5bdruPkeMed0xPuPnKHu3fvcnJ6Uoa5x8EvC9VE\nijSQnpr3/sDb8UwVt1/gb0ZxXy1Xb06uiKhbB7GFYG0Y3Wc0Xs9YE2SXPSZ8s6G32MFbV7cgyyjK\norE/HDC+1SCc0tFTNT8dDustzju0DyPfdBx+LCjEq/jBqlB7S+jVDTEUyotoHVgVM1TgsD5OyuGa\n4AvrG6AD6RXN0NDtOvqjAeM01tmc1RbvsUYwQjyHw+dBHLFGOGALl6zkRRBt8Xrk9yUBcKFIpQVa\nsWMfOoBS+MOU1LNtW5quDffSBRBolNC1DXqYsaPGjDN2bMFY/sFHP8bjZ55FFucn3sNP/V+/zDu+\n4l9F6ZmubYP2GYOPq1Zl18LSiVo6Q0WFPHFKkn6dsklDIz5GxyOM+JOUWfuAl0V2fyO3AIqXTA3C\nyUPCx/HIEXysxVsbmHAcZWl0yIKBNbQC0rX0nXByvOP09IjT02NOT465c+eEkzsnQf89Csw3DHVv\n8zUX7TdVlQWCa2VhCQP+0Mr9FUl+SBebV9dcOL9k1bnT+xPd94zBNxo3T6huzq6ZLrbuQraUVCmW\n+7s89n1XPJA9LzC/kiJy/0B6D1LH7MIV7+HYrQbhqr2JB6wP7MVaj3GW2czMVqNNAMVGWhraMGpJ\n2tI7HyenPFZ5jFi0smhlMM6isRgMxltmNBqDFo1RBtc46DwyKJpdS3fc07sB602oDFxwT9NzAHl8\n0NvEV+nMYfGxyOL/0iw/dM0Ly4yn1ObC4QEr6UhpNFbbBG24bVtUEzo120YxxJ59Pc7occaMGj3O\nPPn0PT559hTr2Acez8ee+DYef+JTPHLnbgTc4OoXAs9EXTgFC1dpoEg1sCOWKSU07YAOTydhnkbX\nWaXivPY1Ls+T6tnm+5WlCMpHV2nAYgzKGsQYxMaQn9by+FNP8TufvceLT4952aN3kD4Etmlaxenp\ncZQfjrP8EHTgEP0sgW/OVryHKn6BEesKttb587OrMTbT+/wSrMB60fVWrakV5bKEB+diZaRnoEH1\nE0bPOFOSkcYE1XG4/vqabr7llkBuCfn9iuQh2O0G4aq56XwCOA9WmJ1mMhOjmRjNjHWWXno61dOp\nji75rEZWrFSID2vEoZVDi42TQQcIRmOY0cyiMWIwjcU2Ft9GNrxr6XWPdQbnYxhMF5kCBMCNHR7e\nBVkifzexyb0gKUnWrNy3smtdbM8WErxkvhmLqxetZsMp0URII1ZAuO/a3Gk0dC3GDiGnXvQImMcw\n/c75/WMffPozT9HKSmpYM14pnhILEFYhClwTOw97YMAzxLlSglYKoxRGNZgq28O6Yq19kWvJpoBw\nlB8iC1bWoIyhMRplDPemiZ/45V/l1z/1O/kK3/DKV/BtX/tlPHLnlGE3cHrnJIDwnRPunJ5k9jsM\nO7o+gnDK0SYVCPvFrAIAvwLeClhr80wAeugAACAASURBVOtW9j745ndiveNBq87vXNB/ZQ6S1RyG\nYVurw/vtQixplcNp3nwcrhuMZcWKoGSi8vDA+HaDMIocrBtCEyouT3bi0oxc6JFLPWKdZWgsuyb8\nLtKg8ChiinilgkO+chGILbOYAMJiAv/1htkHLqyVwSgTQLjzSC+0Q0tn+yhFxASL2b2y9DgrrUMW\nB1eF00ySRPpGfc1516pwZHaH3vrcQ5PmZV2q7dPvQW8NYNdlEA556QbfZY3Mec88a8ZxZhpnpmnm\nc2MApKtiH7R4zs/OqD/NBTtNCSNVTOeTQDiGaWyUhNQ9ojgSzw4whGHWT15c8Pg4cefOHU4fuYuO\ngWWSfFFr3zkwUISrAsJ+CcLWItbSGJ2nVmve908+xEc+Y6kll1//5Ht4388/xp9+5zdwfOckgO+d\nE07vnHLn9IR+GIIG3La0XYdq2tJxKNVDE/IHn6WSXMYkD6yA1fsV8Kb1q5WLzjm/fC/yDvmM+e+k\nDaesz84rnBXUPGPMXMkRFkVokShUyK8o6/f0Ztq6XZBbQ64G4odXnlsNwnWHlPWxE847rFhGO3Gh\nL+MUQNh6D5H5BjkixplwYZ31jslpJqcZnWZ2Gm3jZDTaGmYbvANmN6H9zMyMVgbbeHxXGHFre/rc\ngQd4G+IOxzgTYgUXcdjntmXmxsUFq269Vj6/63RBaf+aCheNrzS10kdWjknxGU5A3LZlWHFkrfOs\nGYaZaTczTpp+6PmCV30eH/nt90QA+Rrg5xHew8vuvojT3RBjMfvogRABp9ZpiWDclEy+xX9Zsh9z\nurBJz/zEP/swH37qyXzJr37Jy/hDb3sLu64vIFxNSgpLzp9fAuLMggMTFmvorKE1BqzmyXvnfPgz\nT7InuXjPBz/2bZxNM6981cs5iV4Qp3dOOT09CcCrGoqveZXdOVWgV7Gttcxw4LdD0sSSNF+x4UqS\nWP9e+hIiocFgXXhPrZ6wOnbOGR067iITLiNN03xRuursNfW/Gq7XvzwnPDyoR/vFpS+9i0r/wMNW\nJG41CGtnmZ3F49EusFWNQXvNaCcuTWDDl2bE+ZCsUmhQURP2njAMV8JknGXSmknPTEaH4alVx0ya\n5nlC65lZT+hZx2aaCTqwBECWTmiGliF6YXhvQs9yTG9ujcZahUWXmjcGi5DMVCs7oCPumZRfAs7U\nPd8VEFftx7oJnzTYZUdZ9OeN2zUqJADtu44//s1fz3/3t36WD/1WiX3w6s95OV/7xb8XhYTMJDaO\nOrMlmWomd/GLTYGDiOy4UeSyNLFjTvD8b//0I/zmU0tW+rEn38PP/sqv8o4v/+L4jUloIkQvi5RP\nrjTcSwtBoiYvPgQsUsrTKRVi+PqGs4vzeFWHJZfPzpo7d0MGjN3RUZAe6hGbV+i/z9hwz492H46S\nrCJVJ+PyutK1JUljxYCvAvd8iEqq8RZPJAsxO7TVc57CiQRRzeLKQkuzHNwfvJYHuPxntdeDH9un\nHHyUbyMNT8/fx0NE4tsNwt4ye4PHM7mZyU1MbmZ0M5OdGPM0E1x+QnzUVnW0SmO8w3iD9jZIDc4w\nac28BmGt4xBejTYzs46TmUNcYu2DO4V3eHEhkG6naH1HS0uDwjtTAbDBKEXAXx/dfiLwJpr6AN/q\n2nL3U/z4kptTquVdDvFZdsiuYJk9qjyiTqUsDk0Ts3U0dG0YQbbThqNhx5/+9m/mY5/4FJ/41JM8\ncnrMI8cn8Z6FIc825rML0ddsSYiZBkdA9EwhN2eT1K9i2RrveersnN948gkOsdKPffrbePr8jEdP\njiumE9sUlS9YqtxKe9+hIsAjnkZCZ2SvGnolvJIXxYMdlly+8PNfw527d2L244G+68PIylVSzFqB\nSKApUmuPhYGWmnQfBOrXIlWymX0Wgl8AOB5z3deQ70GNzdX2AYhsjAQYM5nHkK3OzHmeNH4fn2Np\nXfnqTDUTPmBXc4mr9zlkz+iJ4Vk4/aVbsGDE1fSg530e7FaDsPEG7QwOz2hmLu3IhQ3Md3QTs9UB\nnO2MFwIDVl3omGu6/PtoNZOdmUwA1gDAM7MJDvoJgI02ef1sw7bGGJQVGgvKl4hlTScxdqyilQbn\nCgBbE/TU4I/pEDFIirQm6/jDLN+nA8C8vyp8XcUla987YgHEdfNdlVjEaVBF07a0jc8BzX3K1hzT\nud+9c8oXfv5rmHUYUaZThaVNDnRudMpW4nIiTOtszJNXa3SJN5V70HjHZ+cp/nUFKz0/49HjIV5v\nfXOKTrmo6Ei+xz4Df9sIXRc6J4eu5TWPnvLmV38ev/ax98TsKl8D/DxK/Une/pbfx1u+6PUMR7uc\nqbptoxtayptXgXAqk8iDNnclg2QSUtbdcBmUfZlXHK+gcgTrtcYRBaFcuCUguSwhOedwZsZVLNia\nGVSDNC0qH1cWiV0zKbhCqLgK6Z4TAPrSgX3YJFc8vro1dcdcjiP+MBGYWw7Cs3fM0Sd4tDPneuJc\nX3CuLxjdzOw0sw/arojQRhbcq47e9oxm4tyMQTc2I6OeglvbHghHIJ6DNjzZCMI2xBTufEPnmjCX\nhr7paKUL52o7vIqjj0yQLsysc2dAYMVN8FElBfgJ/stXm1/ND2yRyVWtdVUuOCKZadYAvIilrJqY\nWLLSiGPzPnTelCD4zvkIwAWEw+AGwxyjjc2zyVmeUybinD6ekkqeVZnFK170yGm8ssOs9JHjIbRE\nqD6idSfWCozStSsVvERa1dC1in7oGHYDu13Pe//o1/EjP/UPeexDRXL5A299C3/1+97NI48+Qt8P\nxesjdwYSn2EppeROuHrZLwA6P9L1Y/UUGYJVsz8+4+qBL1mur4+xnJa/+wJIaRRhSnDgJMgRRuN0\nAWNpWrzrwrPKDY6lPvxgALx3Vc9hTpa3YO9se7cjM37PQoq4jiA+txqEz+Yz7k1B770woQPuwoxc\nmAnrbUj6Ky1DHJnVNl3ugJutZjIzkwna8YUema3G+xBXoe96OtWipcOo4BNsxDCqCUxI+a69hei0\nrlRDQ5AfOtfTu47B9wyuB+XwxuKMxekwDx9BGJlkjYkxJWx0klh1ntVfUsaYUp375etVavjc1lyy\n4XpocBnCHL0V8t+Vt0J0I6PyPADJL2yKQNY2iq5rYpyFFqP7HInNmMCIUyr4HBQnHYMCxjU78XjE\nOV72kkd5/as+jw+vOwLlP+R1r3wlX/Daz6sAyOcUS2vQSVnsBJ9Zf/JJ7jrFMIQQkynB5vHJMT/0\n3nfxqXvnfOrpM17/2lfxhte9OsQoabvg/5s6/6ph11drwUsmfPBbXxLe5Xbr7SvAvxI26n0XaFTY\nYXpHwt9Jh5C4XqKUNmPNhNEjZh6RpgmhW52tqH51wlWZyrUeatr9i82Xt/sqRrx/h4o3hMueQw9X\njLjlIHxvPuOp6QLvPZdmYrRjnE+B6TUqRKlqAqPrJTQVnXNRdkh+xKEDLwzoCNsO0tD0CtMaTKMx\njcE0hrZpYRYsntkbjHexo6+jpaOTjp6B3vUMfuDID9C4AMARhL2Jo7RsCA7eaB0ZR8zGEYMLHarz\nfQ1SJJea5X3JsJyamenDr7bLoJFiN1Q+ukWWiO5iMadcnbEkMZzcm+w9baOwrcLZdhFvOWXjyJMr\n8wC8oYzL5JtVJ4kLAfK/61u/kR/7n36GX/tIYaVf9NrX8q5/86s5HvoFCO8xv3gTy+CXGMw+hdlU\nMfPI0DH0Xcw23THsdgxHO17y8s/hrbtdyHrctRGAo/57YGBI/TTK7AE+7gMAvHe0g7/nqoarQSju\n66W6V6yWAyBlcp0aaE7jrMbpCTuPmPkS1Xa4XkcQjsFZ4n0+QOZfUDvAte+/ffXelve4kiM2Jvxg\ndm864+nxDI9nSrpunLdty9AMtE1H3w30TYfyobPHeY82QQOedALhEHjnKGYqPmoHdk2PaWwA4DZM\nSjURgC2NnREXoq01qqVRHa0a6Bjo/cCOHTs/II2P4JuYsMsMWGuNbrvge0l8EWJzP2mB4olubPsd\nCMEWfCPOlh1zCZqDm5jKoLFkwRUTlsKGU8D8OtrZGi3CsRXetTkaWZIpfMxKnKQL66tg6bFcLh+j\nBmAqEA4M7S/8qXfx8cc/zcc/9SSvePGjvPwlL6r8O10OQC6R6WUArqWXuBxiRkv2TW7bJmQ27lOG\n4yooVB8Tu8bkqSWrS/FRTiC/fBalYV4ez4PqwvUT3a9s92xB+w8cJGkGa7nCpSndx6pyT4DkDN4E\nGcLMlzTTQNMNOLPDO1MdbF0g2MugfUURnx97Bl14ce8LWblVHXMi8rnAfw58I3AMfAj4du/9Y9U2\nPwB8B/Ao8H7g3d77X39eSlzZvfmMp6fP4iG4qNng4aCdZRCh74RGdRx1R/RtH5tUNg6asExmZjRz\nZMMjiDA0fQDhbsdpfxxHxRUQRoTZWy7tHLRSq2OGj4627emanp6BgR0Bho9QjY9M2OUpAfDczTTN\niGoMPmbiTWLiHhOuSRVUjHhptZtN/ZLVX36SI5YsuNKFEwtWMeykKmxYxWHC6YMPLWKfASb8X0DD\nR+blKUkzg/4b8SANtmEFxOlIecMwvexlL+EtybneVc1I5yogSS3jBIvrUXRFaikxj5sq9GaIedE0\nTRxqHfIZ1lJNuhdF/y068FKbru/Lc7B4PYtjHrAF/u5hUXyTavCtpvx+uDScvmKE3uOdwVkd5Ih5\npJkvafUOZysm7PPLUIqe50uW/myZ64PYs2fDFQCnoevrJuNDsGcFwiKSQPXvA98AfBp4A/CZapvv\nAd4DvAv4DeAvAD8tIm/y3s/PT7GDnelLPjsHX86UPdfGz1cpRde0DG3PUbdjaHs0M9rOOG9CjFhr\n0FZHbweDUiowTxHapmFoexpvMGFcHY1vGFpDF0dDNU2LalqaNuiDXdvTtwO9DBGAd+xkF4ZEaxNY\ncJyMDiERu2mk7TqM0eBN6ASx5Rozl0oMqkDV/V+VJSZSL9Z6cJ0WKiVJLb7CRZZQcZjxUpYgT1Tf\nX5nvqbKLlm/yjABKC7m6yroSqUG4DrxO1KNxvgLjcEzxGX5ZgnBoCeR4vlV4zQTGaZ4qqeS6J3Wc\nikqakQX61R2C1V1fP5C1HdKC63n+72om7dcLC7AV8jDL+kH42FpIALS63+I9OIvPckSHnXusPo7u\nanEYfgbgcH9zJZyLcqid8ELZFbLQqkR1/0PJuL0kLC+0PVsm/GeB3/Lef0e17jdX23w38Oe99z8F\nICLvAh4H/m3gJ59rQQ/ZuR4505eEMezhI2lE0TWKXdtz1A4ctzuOux1D0zNajxODdkQ5wOY08M4F\nHTbHIPYroMvOqykzRWBJbdPSNi1d2zF0PUM7sFM7dgwMsmMnA0qB0xqnTZiMYZ5HhmlkivGPjW7x\nvkFZVemKz/QiLH+X/BGsft6r3AvbreWGRUSzNPqMCkbLLQiKRjxdauaX21Q3zSsgjDJL+t7LWDi/\nxIa4lJe9X7Bhr3wAXaUCEKf0UZUenK43AzBJMlh6gIQg8/EeNFWg9RhsqATCV1k/L8cqZ1h+9Ffp\nAc/BcvOngvT0X5akVv0De6eq36daD5YCwFUxk+KvcmUfkpYmScLpCTONWD2GkXQxzKXyHlFNeDdi\nR+66KElmuy5bY+uij+UapAh49iD8TcD/LiI/Seie/m3gR733PwYgIq8DXkFgygB47z8rIv8I+Aqe\nZxC+MBGEo4wwtD2dUgxNAOCjLkzH7Y6+6XDaoJkQT+44SgBsXXh764yrlSoZTGrwaoIWHAG4a3v6\nbmDXDexUFCNkKCA8m8CGYwfdNF3SjwNdn2LMNjjX4FQNwoctkxYOf9pL6Ky2S6xH9plwI2u2WzO+\nuA8c/JvVbwXoUmkKVQ44UT7OPJdqueKQ+SNRLBNOqrjsVL4ZGUy8r6BR8v+pXHuVUFMqoBThLadi\nyvp55ftLmS8fVQV2B4HQV3NWy1fb4r5UD7663NVhVmBcMWGJoCtI1NnLNvk377PPseCDL7W3YDXe\nzjjdYOcWO4ehzE7PuOj7LoRKGr90s1xkk3nYKHfA9ocs1x1zz9jOfF7t2YLw5wPvBv4S8IPAlwN/\nRUQm7/2PEwDYE5hvbY/H355XOzcTZ3oMHUUidD5odn3bs+uGwIS7HSfdjk51GDUz0oCjdI5Zh41D\naxEpLDhNCxoIpCa7Clph04Se8r7tGNqeIYLwoCoQbgSnw0CNBMK7ccc4DPSRCeuuxdoUEezw9eaP\nLSJqxY2yLXatEW6xzTK7RqOaBRPOLDiCdf6XwDf61aZmeNKHF5qrYgFW4cSVJBFL4qtCp+VM9NIV\nJsanfA6mnycVNq6gdrVcsfGsm6zYcPYQkeV9iGyOyH6R5fU84+CA5dPjuQBwvAEVA6bolhUTBr8A\nlnxOX90Fn8Aw6rdewhOo2HCpviMAB+fBBRO2IkjTYuclEyZW4D5WcHWZy/XfNEutiAO+9A/Jni0I\nK+CXvPffF//+gIi8GfhO4Mef15I9gI1m4sKMKAnA64FGNVmKCCx44Kjd0amWselopUF8GWjgMxsO\nQ0nzsNqoMYcp+rGmE+cOqiYOaAg9533Xs+sjACcQVhGEjcGamCDUOobLEGs2gXATe91zx9geVyx/\nHWa/BXjq3Qpmr4BYZOEBkT0i6vCTK91XamCWil2yBuBDeqlkEM7Fq5urCYgPqSl1r30aWZgvrqQ8\nqj0fFgw4yQfxnLnyqFzuate8AshCeOUl71euoRR0j+Mu0eeKp3Xg9/vtUnW2pm1rJrzfzIalxlOJ\nJksBvrSQah0YXwGxJzAXjTPhntqmweoRN5fAPqRKS6nMqheXVf39QsPxYSA98C1FJrwnQT5EHH62\nIPwJ4IOrdR8Evjkuf5Jwf1/Okg2/HPiV+x34ve99L4888shi3Tvf+U7e+c53XrnPiey4I0c0SnG3\nOeJOe8zd7oS7/Qmn/RFHbdCCexUCuXeqZWg6dm1gydobJtfR2ZnGhbaynTWTGjn3DWJS8Bmfsytf\n6InZTFinARfCQCpF3zQMbcuu69mpMA2qo5cOpUDrLuTE0xozxMzQfUeb4/c2lXdCusL6TYjcUZIE\noIg5KCrdsmr6pz2W9Dkeo0gNddCeJntEqH2ZYo8hw4IJQ0WjKv01FXoFwnVZ8hXKokFfPlRJsCVI\nlCGkXGAAECmwu4TH6nhrOSJWGKparisa6utaHm5hy+py3T4Jhfd5PG9VvfrVfE9GqBg/y/W1lrm0\nwmXD/Y6hXmMA6aXUU7HqOIVMMxF4fULSCMLegbfgNFiNMzNGT+h5pBkvaeMurShU4xCag/fruvhw\n7tyu7+OB6dnKEe973/t43/vet1j39NNPP/D+zxaE3w+8cbXujcTOOe/9R0Xkk8DXAf8YQETuAm8H\nfuR+B/7hH/5h3va2tz2rwpyqHXdVAOE7zTF322PudMfc6U846Y45jiDcqRCApldhSPEuekxMTtOb\nmc43tE7FMJiG0U8oC3Y2eTRY8mudbAgWb6wG73Lc2wDCHUddx5HqGOLUqw5lQHcdZugwpkcbEwG4\no+mSK1SMVpY7fA4w4QR88f8MvpGtCSqCM/v7svg8F2Cz9gte+gcXnTixdJXBrIDogg3HFUsGvJQk\nMthK+esQAHt8kQLiL5KDJSw/aNk70uoWZGyq5IgD7L2uGA4Q34Xtc6urfk8B+OXwlrU+e9XfVACx\n+pksNaSzxbGBi9aHzw4SgQyXDr3aSTDFMSlg7GK5bahEHEEbNhNWj+jpEjVexEBMCtW0eNcHHf9G\n2lKyKbqwWwDwg8LwIbL42GOP8SVf8iUPtP+zBeEfBt4vIt9L6GR7O8Ef+N+vtvnLwH8iIr9OcFH7\n88DHgL/9LM/1jHYiO+6oA0x4OOE4gvCu6ehUCKrdqZZBteyanrkdGM1ELx0tDY2VEJTGGyY74o1l\nVlPVYxqaKyaGz7TRQb0VoVVCl5hw27NrenYpRoXqEAW9jgCsDb2xdENXMeGQJqfok3CQBee/k0qr\nqvk+Ey77Hn6dFAmAK++SFRNej6RbSg0VI2YpWxS6vGLBKzZcYfB+uX1cF/E3HNcvKfOBPeuGhBci\ngFXsPFU+B8B3z/WuKqTIfm//Xlt7r1QLoYIExnkv75fb5jZyuoBad6jn5bclXq/vuaxq3+Vh6g5o\nIgtOUeUUQZJTEjwkFsPqXROGMUdPCRkvQTWopsXantal9+7A834BLQ3Lv/r3vLTfMVf5mD9MWfhZ\ngbD3/pdF5I8AfxH4PuCjwHd773+i2ua/EJFj4K8RBmv8A+Abn28fYYBTNTCqHY1quNMcRSZ8wp3u\nhKP+KHSUNT2dNBBBuG+66Ds8cKmDVNH5hsYpxHisNUxi0WoOnQy51kzOOiH2sI0vbqOahRxx1HXs\nmsKEB9WCEkwfGHCve4yx0SuijQMDYtLLJoFCvpt711ya3IX91ow4wXPZv/qg0zH2QCcxYakYcN1J\np/YAK3zbkr/xeOA4Vc35GghWbPgqS2zWR8ytVlKfcHHeQ6Jo1o/LDkUDPgy8i9qE+jqW57wfA14y\nqfgOiSw2W4BmBAL8Kllmrj/TdVQuaXudSEIB+BqIFYirDucXLLjooCsmHM8ZADi8+QF/fXDwthpv\nZsw8wTzip0uk7Wi6gbY3pKHPywf1cOwQEF/V2Vbfx2XwnnVT44WzZz1iznv/d4C/8wzbfD/w/c+t\nSA9u9nzE3LvEi2K2DaNWdBra2WG6S8a2CyPY2g6Ai/GSi+mCy/GCy/GS8fKM+eIcc3mBu7wMPb2k\nd8bH7yN9UHFeN+dEkLbF+hHjR7S7ZPI9qnGgDF4ZnNKIhYvLkfHyknEcmaZL9Dxi9Iy1Ghdzznl/\neNTO2oc2dxw6j3EOYxzaGCYdMiE0KRylDXsZ63L8BuccSsdkm02D0ibOyzpRijYNK27DueQAE87K\nCQnEfPW7z2CWwHohS5AWZflnZVdxywWo5g3XCBcrz72PL5RLavBaNxzSsSSmnq8JbQLN+vmsPli/\n9z8LxhpGEO5LCgtSfYUumYn9FVZkiLw1qSIoh66dL2MzPA4cD5pwuk8pXnHolFYFisEbvJ3xZsTO\nF/gxZJS2XY/tB6wxqMbG9yD6WyfH8Idg9+uYW0rsiQWXb+9huqfBLY8dcfHEZzh74glEKey9S/Tu\njMujpznfndB3XfBaaFraJoDwpCemecrzz07nnI1nXI7nzNM5xsxkd6CKHSz+TywpZYNoWsZRcXEJ\n/aWjvbDMzcCl6ulVx6B6cMI4jozjFKZp4uze01xc3GMcL5jnEZ3ydyUwPnC9ibk477HOYWwCX83l\n1HLRTbRN6mQj9u77AL427OOcx0nMluADoFviMmEosXEuDEJJQ3gjS88jxnIcicjKM5NU1MOeF2w4\nM+fChtcqhBwA6KtIVPF2SFvVoBb5YNXuFoi99ymXX3AFVMrF9FbVhFDVIZlMl97+GoDZA5YVPIel\nDMArEC0kt7DdvYOvTiDlmvy6FZBPWOsP9RudgGjF+qrzJP9ekVIWRercS5WOA2twesJPlzjpMG2L\n6Xtsvwu+w02LqDaAbyPLQSHXYH59P+uOuEXHHHu3/IW0Ww3CZ08+xb1PPYGIoPsdl/3Arg+Zbrum\nyyPa0sgnbXQYqhznF/Ml5/PIqCMzNZraZzDHtpUCxMkzgZRVoGmZRrg8cnQXDnVkmJqY0VlaOtWB\nh2mamWbNPM1M88z52dNcXpwxjRdoPWHMjLE6ZJ/IH8ZKPyS2Bl0B4VlbxlkzTg0XrdDkqGARcwDr\nkndHCpqT47UEAE7L3oeM087RNGYJwnXMhFojjk38PJw5eRuoanDDXvO+BtGqI481sKbdVrpiAugF\neK+g0Ze9pMA0XgKf8xIqKe9SB51aaMGh3gixjBOxXHHbgwC8XlVA2BcQzg9zuXFZv0ZqciXgVwCc\n0xxV2y3mq1N5n8DYLabMfKWSIyoJJty70D3nJO7jNN5M+OkC7xWm6zH9DjuMWD3TdH0QzFI5q8zM\n1201U17Gj6g7Kh+O3WoQPk8gjHDZdiE3WIzjkIAjDUQQkez7613w/51SJDUzo80ccqJVaYASI605\ncUhImYaxKnzbMl16LncWtTOwmxlVF/yHVUsrLXhCsJ6cIslwfrZkwibmqVsy4UjBonlPxYRDJ2Fg\nwg2X00zbEJkwmQ1DFbQ6Ba6mAG8+Xg3C1oVgNk2YUsr2PMw3xZmo3LuSF0WSI9QKhLOOHNmxRHki\n4Gnp2CvSxgqsOQDSGSyrSGXVxyXpWBUIR0ocYjw7lRs0XtxektAQJyLmJkxsmBWOeK74YLOolec1\nEC+R2l8BTvW1lLMcYsBJpvE+XO3h1njlDVGBzX7nXDx1JUcUIA7nct6G4D16ChmZHZh+wA5HYRBH\nHMDRIKHiU1dd48OxBLqLRkO+D5UUsXg4D6fAtxqELz7zFGdPPAmkkU5NAd2atUVwSJaWjLMYZ9DW\nYqyJGZnj4A0fMjfXcoSH+HGmczS4pqUZLDJo3DBjhzEEgpE4qQY8kYGnrBKGi/NzLs7PGC/Pmacx\nsmEdUv6kNCtLMTLwF+8iCw5B0qdW6CZoxCM4mibGya2YcMiSQARh6K1DW8dsLFP01hi0YdCaYdbB\nayOGakxMuPaWkOTTLKXzrmSWKOv3QFgV+SIB6XJ5Cb7Z93fVyZIYeA3YRZf1+RnXgzeyJ0jtjpcq\nkBp0MyuuKw8pZV0JyH61ZlFpVn8nEM7rvSf43samfWriV8lHU7Pfp20qtoavo8ilKfztbCQacdk6\nm9+ZEMs55v1zNiZjDZEF0z61RpxYeQJgX3V0eqtxXmEtWG0x3Q49HKN3l3TTJart8V5oUCAtosKX\nVMsSV1ZfB1pAz8WW786hZsvSQ6KWKB6W3WoQPj8/5+zePXIPf2Zoy9FPC9/P6pmElzO+mAmAUyzc\ntBy3XYJwYcKNarD9hO4umLqBy36gkWYxAg1PfvlTbrXx8pJpHBnHS8bxknmaMHrCGo33lvwBVIzH\nOYcxhlnm+LsFr7GmZdYT49Rm51G27gAAC65JREFUFhz0zlT4+kUjtBi62HLoSuzcPsfQbZcBbfKw\nZsmV2yEmXDwPVkku12y40pEPMd+13nxInkj7ZL/kZNVjTiCssmRSwLcG4XWZ9xjxKpj9qk4orLwU\nMK9bAkktL6UIGiXlklTAJwmg03uQAbHENwigXAGy93uA7F0Mop9jpLiQGTxOru6HiCEpfVUZ5Moi\nlT9enxeFFcEqsBL866U7Q/odtAO+6dEW2mGmHY5oe0fryujG/ETl/sv1My+r95fTu7O2Qx105Xb6\nIs9kRrwWnV54u9UgfHlxzvnZGcBh0K0YzIHnU8JfVvJDye6QmmvB8tLex6nQbcvUdiGQT5MSPar8\n4eOJEkcKdO7Qemae5zxPcoS1McvGonkdX3xnsVbQEMpqDc42aN0wzorztskAnKZY+PIyehYMt22q\nGLpVZ9yhgO7FV3gFYHtM8hAAA6zWx+e2Buay/AxAXS2HHwrkLcoBGXgLGK9Yb12h1M83r19W5ouy\nHLyOZVmXBRSE4oUQgKkMEyYv54dX4NvXbHLF3CIIswBkn+W1PHc2xk0xmQFn0KUG35IUtRQ/XIMX\nhcVnAHaioR0CAKsep1q09XRa01tH58D5Q8+tPONDraP1vP4tSTKHWkoHrWoplVXlHt6W2BE3yi7O\nzzk/uxf+qB9S9WDrB1ybwDJi2gJ0lwBMWseS4aQXaVLL4Of5Q6xYU93k8d5HVpwmg7WpORjkiL0u\ndAm5QA2hxrbWYBqF1iE7RKsUbVM6kaRuOXsWC2uAzcvNct1C660rH1VfX2TddcWXwHQPjLgv+NYg\nXYB2tY7qt8U5CoCTmW8C1cKE0/oF811VHvvAXMla9bkXlcWyPGs2XRMCUiVJdLKh/J3AueTCg+yt\nkIG5bLsQmdPyiiW7yPJKxhOLT7JXZMESpY9FJeDLect7Vd5/i8OJxWKwKLzq8E2HUy2GBm2D9GUd\nWC84mureVPeS9N5w8H5dtT69a4vvWpJb4f2B2Ff3a08jX2v2L7DdbhC+OOcsgvAVt7yyQ1v4A0uH\nf7/fsfaaSIcQ/8Ch04tQuw3FhYPbOx+BWkLU9yUgXMEA9uufFYikv1dAuwC+5d8s9lseZw2k9fkO\nM1r29lmC22HQVVduEz7OJaslf/iH5ZNy/fvDs+soa3VgI1kw/6KHV+c5VIEttqOqICpQFkom7ATK\nGaSr552nSn3OIEwG56wh++gVkTqdXZEeFOlchYXXx1887wzCFucFi+C84KTFSochhAHQLnQgO6/w\n0oLqqnujDt4bVq2sq6fY8RuDLCXwTe/VfS3XWX6PHC1d9h6O3WoQTpoXPFwNZ79J8xxs/aI8YBOo\ndECl3fziUM/0Aqafa9AOL7VbvuTp92p5uX29nuX6ZwTf9bllb//6HLW8cWgbdWD/NdjuSw0r8L1i\nO3VAjikgvOrcq4McKbWcr8usZAnAKyDOAfVrAK7mav0s0/Ndg3AG4jIIyMd4KBmEM/sN+yspuuga\njOtwEOUUwX8iHG/ZosvyRz6/C0fxB9zARJC9Fmh5t5YWS1eRmGd69+/7ha1wd9OEH9Be85rXXHcR\nnrs9RxCGwIbCIQqolcM+GAgv9mcf4PLvCQwqaaUGSA6BcFW+fL6rQJgD55PlORLrZVHGq863ZMB7\noFydY9EsziAcypS2yyAMOb7wWg/P69T+bzUI15VRAmEkDkCvQDiXLd8rkgIQ70fZLq4uz/SQNJHZ\ncAJht2DEEOJEZLCVteyxXxmARDdHIXQjC2o4pT26Q3N0l2Z3h+74LsPRKcPxCf3RjmHXxetVFROu\nn/tK7qnu29ovPexT4jwfqqTX5pzgXXCn8x6Odj1375zw4hc/yvkrPgfvZh45u8PZ2SOcnd3j/Owe\n3vsXHGduNQj/3M/93HUXYbPNNrul9sbXvQje/qbrLgY3NtjcZpttttm/DLaB8GabbbbZNdoGwptt\nttlm12gbCG+22WabXaNtILzZZpttdo22gfBmm2222TXaBsKbbbbZZtdov2tAeJ1y+qbbVt4X1rby\nvrC2lff5sw2Er8m28r6wtpX3hbWtvM+f/a4B4c0222yz22gbCG+22WabXaNtILzZZpttdo12EwL4\n7AA++MEP/gsd5Omnn+axxx57Xgr0MGwr7wtrW3lfWNvKe3+r8Gz3TNvKw07lsVcAkT8G/A/XWojN\nNttssxfG/l3v/d+83wY3AYRfAnwD8BvAeK2F2WyzzTZ7fmwH/B7gp733T9xvw2sH4c0222yzf5lt\n65jbbLPNNrtG20B4s8022+wabQPhzTbbbLNrtA2EN9tss82u0TYQ3myzzTa7Rrv1ICwi/4GIfFRE\nLkXkF0Xky667TAAi8lUi8r+IyG+LiBORP3xgmx8QkY+LyIWI/D0Ref11lDWW5XtF5JdE5LMi8riI\n/M8i8oUHtrsRZRaR7xSRD4jI03H6BRH5N25iWQ+ZiPzZ+F780Gr9jSiziPy5WL56+rWbWNaqPJ8r\nIj8uIp+OZfqAiLxttc2NKjPcchAWkX8H+EvAnwN+P/AB4KdF5KXXWrBgJ8D/A3wXsOcHKCLfA7wH\n+BPAlwPnhLL3D7OQlX0V8F8Dbwe+HuiAvysiR2mDG1bm/w/4HuBtwJcAPwv8bRF50w0s68IiUfgT\nhPe1Xn/TyvyrwMuBV8TpD6YfblpZReRR4P3ARBh38CbgPwI+U21zo8qczXt/ayfgF4H/qvpbgI8B\nf+a6y7YqpwP+8Grdx4H3Vn/fBS6Bb7nu8sbyvDSW+w/eojI/AXz7TS4rcAr8c+BrgZ8Dfugm3l8C\nsXnsPr/fmLLG8/9F4OefYZsbVeY03VomLCIdgQH9/bTOhzv7M8BXXFe5HsRE5HUEZlGX/bPAP+Lm\nlP1RAoN/Em52mUVEici3AsfAL9zksgI/Avyv3vufrVfe0DK/IcppHxaRvyEir4YbW9ZvAn5ZRH4y\nymmPich3pB9vaJmB2y1HvBRogMdX6x8n3OybbK8gANyNLLuICPCXgX/ovU864I0rs4i8WUTuEZqg\nPwr8Ee/9P+cGlhUgVhRfDHzvgZ9vWpl/Efj3CE377wReB/wfInLCzSsrwOcD7ya0Mv514L8B/oqI\nfFv8/SaWGbgZUdQ2u3n2o8DvBb7yugvyDPbPgLcCjwB/FPjvReSrr7dIh01EXkWo2L7ee6+vuzzP\nZN77n67+/FUR+SXgN4FvIdz3m2YK+CXv/ffFvz8gIm8mVCA/fn3Fema7zUz404AldBzU9nLgkw+/\nOM/KPknQr29c2UXkrwLvAP417/0nqp9uXJm998Z7/xHv/a947/9jQkfXd3MDy0qQzl4GPCYiWkQ0\n8DXAd4vITGBkN63M2bz3TwP/L/B6bub9/QSwjof7QeA1cfkmlhm4xSAc2cT/DXxdWheb0V8H/MJ1\nletBzHv/UcKDr8t+l+CZcG1ljwD8bwF/yHv/W/VvN7XMK1PAcEPL+jPAWwhyxFvj9MvA3wDe6r3/\nCDevzNlE5JQAwB+/off3/cAbV+veSGDvN/v9vc5eweehR/RbgAvgXcAXAX+N0EP+shtQthPCh/bF\nBC+DPxX/fnX8/c/Esn4T4eP8W8CHgP6ayvujBHeeryKwgzTtqm1uTJmB/zSW9bXAm4H/DDDA1960\nst7nGtbeETemzMB/CXx1vL9/APh7BLb+kptW1lieLyX0DXwv8AXAHwPuAd96E+/vouzX/SI+Dzf/\nuwixiC+B/xP40usuUyzX10Twtavpr1fbfD/BbeYC+Gng9ddY3kNltcC7VtvdiDIDPwZ8JD73TwJ/\nNwHwTSvrfa7hZ2sQvkllBt5HcPe8BH4L+JvA625iWavyvAP4x7E8/xT44we2uVFl9t5v8YQ322yz\nza7Tbq0mvNlmm232u8E2EN5ss802u0bbQHizzTbb7BptA+HNNttss2u0DYQ322yzza7RNhDebLPN\nNrtG20B4s8022+wabQPhzTbbbLNrtA2EN9tss82u0TYQ3myzzTa7RttAeLPNNtvsGu3/B4FOP+ye\naTG9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(imresize(out_img,0.25).astype('uint8'))\n", + "plt.scatter(lms_small[:,1],lms_small[:,0])" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAFjCAYAAAAkW1AKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvVmsZteZnvd8a9jT/5+pZlYVWVVkkWJJpKiWelLLcdtW\n2w2jAydXNoIgRsaLwAGMXAUBArRjB7lwkCAIEAO5COAgSCPoAIEbceRWultUd0siRYkUZ5EUKQ6i\nVCxWsYZz/mFPa61crLX3OaTUbQ0slYq1X+LgnPNPZ9d/Dt/97fd7v/eTEAITJkyYMOH2g7rVBzBh\nwoQJE346TAQ+YcKECbcpJgKfMGHChNsUE4FPmDBhwm2KicAnTJgw4TbFROATJkyYcJtiIvAJEyZM\nuE0xEfiECRMm3KaYCHzChAkTblNMBD5hwoQJtyluKYGLyD8QkddFZC0ij4vIr9zK45kwYcKE2wm3\njMBF5O8B/z3wu8AvAc8AXxSRI7fqmCZMmDDhdoLcqjArEXkc+HoI4R+m7wX4HvA/hRD+6S05qAkT\nJky4jWBuxQ8VEQt8Bvhvh9tCCEFE/hj47I94/GHgt4E3gPrndJgTJkyYcDNRAGeBL4YQ3vtpXuCW\nEDhwBNDApQ/cfgn42I94/G8D/8fNPqgJEyZMuAX4d4Hf+2meeKsI/CfFG7f6ACb8ZFBKsb2xSW4z\n2qZhb7nAe48nEIAphX7ChBFv/LRPvFUEfgVwwPEP3H4ceOdHPH6STW4zzMqSQ9vbSIBrXYvWGhFB\niSBACB7nPT6Eicwn3On4qfntlrhQQggd8CTw+eG21MT8PPC1W3FMEz5cbMw3mM/mGGsBwVqLtZay\nKCnLktxmGBEUILf6YCdMuE1xKyWU/wH45yLyJPAE8J8DFfDPb+ExTfgQoJRiPpuhlMI5hxLBaoMp\nLFVV4r1jtVzi+g4RIRBSNQ7+Vh/8hAm3EW4ZgYcQfj95vv8xUTp5GvjtEMLlW3VME352KBGqLEcQ\nmqahbVtCCLH6LktwntD3KBHyLMcFR+8cENAInfcoEXo/CSsTJvzrcEubmCGEfwb8s1t5DBM+XGil\nKfIcAdq2pes6tNbkWYYK8TZCINcZutDUbYP3HpRCBAKCCmCU4IDeTxr5hAl/EW4XF8qE2wBKBKM1\neZYjIvR9j/ceITYuu7bB9z1GW0RpxHkkCFppJMkoRgQlkBmD0hqP0DlP0/d0fT+R+YQJBzAR+IQP\nDUoURmu01tEymD6C97RNILgeLQqtNSiBXtCiQDQ9nhA8IorcWmZlQW4NRlv6EFg1LYu6Zt22tH3P\nrZognjDhFwkTgU/4UGC0JjcZVhucc9R1Tdd19H1P33V0IZAbi8otxhhEa0QUWoS6rgGFNRZrDbOy\nYGM+w2hNkeVkxuJ8YHe14upijys3dlm3DW7SySfc4ZgIfMKHgtxmzIoSEaFtW5qmIYRA33W4rkMp\njdGaLMsoqgprLV3XsescWisKW6C1kBnNfFZyaGeboijJtEUCuK5jM884d+wI37t8iTfevcLVxXJq\ndk64ozER+ISfGZmxFHmONoa2aej7HqUUIQS8c2hRlEVONZuR5QWZtSit6boOIWC1wihBEdACuTVs\npCq8yAu6tmexu0ffdJhMcWxecmh2imXveOfGgrcvX6VpWyYun3CnYSLwCT8TRIQ8yzBa452j67ro\n/VYKQkCAzBqqsiLPC7Qx0fudNGyjNTiFEDBaUeQZRZZhtMJo0NqhsgAzi1EFeIcOPVuzkvuPHEay\nnO+8fZE3Ll7m7ctXWaxrJnl8wp2CicAn/EwobEZhLVoUnYvk7ZzDe48CrNJkNtsnb6VAJDY4XU/w\njswarFaURcbGrGRzPiPPLEp5JLRYqylswUZlWS+XrBcOLZ4jWxV3nTzB8SMb3H18h1ffvsTrFy/z\n7tVdlnV7q9+aCRNuOiYCn/BTw2jNRlmSWwtAD0AghEDwHq3UqHsbawlEqyFA8B7f94jAfDZjXhVU\nZcGszJlVOWVuEelQCjKrKPMCozVLK+xevwzB4X2PNYq7j+9wZKvinuM7vPzWNi++8QPevPgeN5Zr\neucnx8qEjywmAp/wU0ErRVWUbM5mhFR1a2JGsAeCRIIv8pw8L1Ba45xDjInk7R3GGuazku2NOfOq\nILeazGqK3GKtEIJglJBZS1nkFJmFvqXILVoECZ7ge5RYitxy7NAGO5szzt99F8+9+jZff+FVru0t\nqdsO5/zkIZ/wkcNE4BN+Kmit2Z7PMUrRdS0Eh8ajCfQEtAhFnlNWFVmREwBRCmMMWsemZmYUVimC\n7+n7lszkaG1REgBHZuIJoMhzMmvIjKHMMsrMRudKZqOGTkAkoJSQWcPxQ1tsPFRy7/HDfPuti7zy\nvYt8/8o1FutJVpnw0cJE4BN+YmilmZcVR3YOEZyD4FFdBz5glKLHobUhzwuKosQaS9f3iMRqOs8s\nOrlOfNfifQ9BY7TCaoXWEJzDZDlFnlEWObm145CQHlwrShACguBTaJZog0VjlaWwlp2tOfeePMJ3\nv/8uL711kVe/f3mqxCd8ZDAR+ISfGEWes7O9w8Z8g75r6bsGfNSasyyjd2B0hrUZWZahtWa9XkPS\nv41WKAHf9zjXp0rbklmD1qAViCisMWTGYo3BaINWgggUWY42grUGpfcTkbU2aGUAjVZgjaYqM3bm\nJSe2NzhzbIcHTl/lhTcvcunaLnXbTo6VCbc1JgKf8BNBK01ZlMyrOSLJ650Cp5RSUQJRDkRQKpKw\nVgq8xwWP6zu8M7F6DtE6OJ/P2KgKrFUo8bFxqS3ZUHUrRTKvoEWYzSqs1eRFzFwJElBKo1R8LAjB\nQ1CC0YZMV2wUGacOb/KJs6c4fXSHb791kTffeY8rN/ZYt93kIZ9wW2Ii8Ak/EfK8oCwqRBTrpma9\nXNG23Zh50ruY6036XilFlmVk1tA0Da6p6Y1CZxZrNNZYtjY3KDJN8B0Ej1aaPM/Jk8YdG5ZA8Bit\n2NiYk+WWPM8JISBKUFojQSCAEAjBQwgxn8Vo0AJWszWvOHV0h4fO3cU3v/1dnnnte7x95To3Vi2d\nm9LIJ9xemAh8wo8NrTVlWVEUJYFA20XiNtbSNJ667em6HqM1IXi88wiQZ9FFgutwXUvfKHKjyIqM\nWVWSZ5YQOrzrMCZKNEWRY03UygkBQiRXYzQbm3O00WirCRIrf+XiMQoyrm6DgFGCMRpFvArQCrQW\nHjh5mC0bOLOd89wb7/DUm5e5eG1B27tb9v5OmPCTYiLwCT82rM3JswJjLCIKATa3tvGu59rVayyX\nMZQKiUTqXI/rOrQSNjfmGInNSSVE+UQpMqNxXYf3DVYHyrygyAussXF3ZtLWAwrRgrGGgEdphUoZ\n4nEpW0CUQiSF14oAsdGpUxUfq/s4ru+9w0jg+GbB0YfP8Xf+ymf48vOv8+gz3+HtK9fxkzg+4TbA\nROATfkwImS0o8pKiKKK8oRSzsmS52IuELoIP0eMtAbq2Zb1e0dQlVZFjNzdpmjXBOYQAIeB6l7Ru\nS54piiInsxadSB4fCEogCEoUogQPiIqV9qB3CyoSd4C4FiKO+SulojtFBKV0lG2U0KTNP5nR5NZy\nfGfObz1ynpOHNnj2u9/npe9f5uLVXVZNd0vf9QkT/jJMBD7hx4LWhizLyYuSqppRlZHEJQSWiwUQ\nK93gPV3vCcHhvKNpapq6ZmNWRRklOLq2TY1JQWtFZi3WWDIrZDbmoCji1KYixM8KtFZxDXcIscIe\nCTwcyFcJEGLcuFIKrTRKFFoNyybiEFDXtihj0drgg2e9WnJ4XvLL509xYmfO2ROHePUH7/Hapatc\nfO8G66abqvIJv3CYCHzCvxZKFLnJyUwMmqqqio35DKs1u9ev45xHJDo+InEKTb0meEfbtrRNHatd\na2m0BmuwmSXLMvI8I8sMRkfbn9EGLWokbg1Jt9YorQgSwA/VNwQfCTuoSOKDLzA6YGKErVFxiURm\nLZnNCMEBCmMsylq6pmZ3uWDbGLbmMzbnFfccP8xD5xa8cvE9nn71e7z0vUtcvr5HPzU6J/wCYSLw\nCX8pBMEow8wWlMaSG0OZ55RFSds0LBZLXO/GalopkyrcGuccbVPTNPFrEcgyi9GKPMvIMou1GpXs\ngUZrrI4WQ52mORWJwFX0ex/MNYlGkziBOTQuZXiOjg4XkwZ/rIknDWMMfecIBEQblMkIXYdDyIqS\n2cYGWinmG4ETx47yyIPn+PTH7uELjz/P17/9OpevL6jbjm5qdk74BcBE4BP+UmjRlCYnt4bNWcm8\nLClshkJo6hrX99GyB0QBep9QBytf13Zcv36VeVVQFmVsJmqFNbHSjt9brFFxiCdp2EoErWJFj4DH\nM6w4DmnP5qBz60HrJqosWlSSXqKMMvjJIQZtAWijmc1mzGYVxlhmW1tom8XGKTHfxYXAqSM7/Ie/\n8zn++mcu8NXnX+drz73Kmxcv0/b9z/33MWHCQUwEPuEvhFaaMivYmm2wtbnJ1tYWs7JECLR1Tde1\n0QLo+kimAEjK8lb44McK2LuofefzGQSF4Ane4b0gDOQbyVyhx1F5JfvNywiPSEgEnpqUSo2LkwdS\nHySWg8cVfMCHHh882sSBpCptB9JaY63FuZ6+9zjnQUAbS5ll5EXO4SPHuffMGT77yMd54oXX+Prz\nr/DGxXdZruuf969mwgRgIvAJfwkykzEvK6qyYjabM5/NyPMMJRLTB5WQFzld1xAIOOciKQvgA1br\nOAZvYoZJCNH5ofSw7MEjIU5eDuQd3SZDAzMGYA32wLFpGQ64TEbpZP+45QO3Ddp48C7W8CGglCLP\nc2xmKYoCYwwhBNphvD5V73lekBfxwxjDfL7B4e0dzpy8i08/eJ7Hn3+Jx597hde//w7OT/r4hJ8v\nJgKf8CNhtKEqSmbljCyzlGVBXuSoYeN88HHCkRjT6pyj67sx41sIZFlOWRTk1iIE+r6n6zqK3EZZ\nhJjpHYIleDfaAYchHJI1MFoUFSH5y0e3CQLJvjggEvu+zXAg8nhM6TEq+slFhDzPKYoCrTV9CtwS\nEfq+R2sdLZPFvvfdCGxvZhza2uK+0yc5d/oE506d4PFnX+blN9/myvVd6qadHCsTfi6YCHzCj8Ss\nrNiabzIrq2j1S6FU3nv6votNQBFCgL7v6PqOLm2gt0pis7MomM0qijzDO0e9XpMZjZYCawTB0fse\n12mCTuSdpBBCQNQBv3ciVu8H8oZBIAkhPUfCflVOlF6UOuAFT1q6ETMStTFmlGGU2j8ZaK2jkyXl\nsSglaSGFipkr2pDlGb/88fs5f/dJfulj9/HoN5/lWy+9xhsX3x2JfMKEm4mJwCf8EIw2HD10lEMb\nW5EilaCNxjkfNWIXlxbH22JV3TsXFzkASmmyJD2UVUmRZaxXC7qupWtranE4ExuURgt9pyGPaYOx\nz+gPSCfxM2lJ8kFVOwDOQyBgRGJmiuwTt9axgamVig4ZEVCxeamSq2UgbJWyykMIY2NUxpNGvMoQ\nrVE65q4MzVEEDm1t8LlPfYLPfOIBvvH8yzz6jWf582+9wCtvfj/GDUzV+ISbhInAJ/wQjuwc5vDW\nDmWe03UdWmvatsO5xb48oaLLpKlrgg+URYkAy71FDIUSRVnM2JhtYYzgXR9H5zOLtSpOWuIJztP3\nLcHn4H2cvBQPB8hbBgsh+7r2YCcMxA1APTG4ikT2cXgnErdOY/dax3H8oboecLD67pOzRGs93t87\nB8OOT60RFX3nQQYvTHTKlHnGZz95gYfOn+Vv/cZn+KPHnuIPvvwYb1+6MmWQT7gpmAh8wggRITMZ\nR7YPUxZFbCIm8bhpmrTb0mCtwRozbqC31o4b6PumZW+xF5ucxmLzAqs1fdGjxWOMitt1bBywERy5\n1RilR716JFQ1yB4Daw9HmoZ2JBw8eEL6QAmiFWpYAKE02qhYPX9AKhmq7RDCeFI4qKmHEOLovgiS\nnps0npjJonRMYglRsS/yjCLPmVcVJ48e5pEH7+OLjz3Fky+8wjtXrlI37UTmEz40TAQ+YYRWms35\nBlVZ4p2j9w7vY1xr37totctjvndITcmB0AJx2KbIcxaLvXFRglIGm2WUoQLfIBJSzKuQZwarbUwM\nTBKHOkCUIjHbO+Kg0ySk/+LX8QtJjznwGkMWihoamfta+kECB/AHHCQjgYswGBa1NnEdXNLMY8BW\nwONj5S/7NkalFBvzkll1iqOHdzh91wkefuA+nn7pVV549Q3e+sEl6nbSxyf87JgIfAIQ3R3WGHa2\nttFKR+3W9bHC9Iq+77GZiQFU3hFcwLk+kpcPBBeJrChKiixHBPre0XVdJGprwDu0cgzCh1ZgrcZI\n9I2PE5VKIUof8H6nIxyGg2Ak0CGMUCQghP0MlQNVPKmKH+yHSut9a2H6kA8QO0QLYwCCCMroUfse\nclfiMgsfAxgHl0xaMCFEu+T21ia/9sgWZ07dxcMfu5dvPv8yTzz7bV587Q3euXLtfSeOCRN+UkwE\nPgGIpFZWFRsbG4gSXOfwifCc8/Sujw4U5whtwDtH8PtTjUoEZQxiDLOyIoRYodd1jdFQ2NiwzLMM\nIyHuvpS4xd4oiXq1Ummzjkoku1+FD44X2K+/QwgQ+5JICKi02FgrNeafjA3QpMSMWrgI3vmRiA82\nLSFJK1pHWQbeR9zD/QdJXClA6UTew/XBcJUg3HXsMMeO7PDw/ffyq5+8wBe+/BiPPvE07169xmpd\nT6P5E34qTAQ+AYC8yNk+vA02VZBa0CFWql3XRsIi0PcdfR9DpIa87hjjGqURYyxlUdJ13YHpSod3\nHmUUhc2wBjIF1sTAKS2SyDs1HLU5oDeP85WjhOJ93LgT2Hel7I/ex0wVo02y+2lEJ11cBEmkLiJI\nSjEE3udKGa8CjAaSrj64UUKIr/mBan3A0DMYvx/bnGCU4sjOFn/1M5/kVx96kN966ll+/189ytef\ne4lLV67SdtNo/oSfDBOBT6CqKk6cOMaJE8fo27hRR7Smb3rquqFparTVtK1Ewk5zNtbEPx/vYm5I\nQNDKj1JFSJVpnluscoBHKcEqhVZ+nI4UrZChek6j90qn4Z0AsJ817ryL4/A+Vrqi9kfxtVKJvFPz\n0miUSQSetHFE4UNaAXFAbx907ZHIVTpxHNDNDzY/D34N7298Dmr4vj+dce5okG2sNXz2U5/g9PFj\nPPPya3zt6ed57OkXeOPti1Pi4YQfGxOB3+EwxnDfvWc5e/Ye2ral0z0ahWsdPT3e9YS+p/cuLSdO\nca0SNfPgo4QQY1t11MidGyt2JKB1cpaE2Oi01mAVaAkpKjbmdesh/0SRpjGHWCtGqaJ3B8Kz5GDw\nVaxw9wlcoUw6ESTJZCTdQe9WanTPDE3IEWMDdV8bP/jxFzlWQgiEA81WCHFXZ4oXgDRfKsLmfM4D\n5wqOHdnhwXvv4VceusDXvvUcf/TVb3B1d/G+5MUJE34UJgK/w3Hk8A733nM3p04c5+I7l3DKIkGo\nfUMDiI+NweA9vu9puh4IGGuxfY8EyLMsNTIddfKFR793HM6BSHRaxQXDxmiMAo1PxH1A+5aoZxP8\nSN4Q5Qvn+pQUuD8ar5RglMIm4rajWyROT3KgMTpKHxwg3sFPPpCl7P/MoSn5wY/3Pf4D2G+KDi/l\n958nav9nSGxyaq05nmVsb2xw+vhR7jt9gtNHD/HE8y/zyptvc+XabvShT5jwIzAR+B0MozVnT97F\n8Z0tMiBTGjJF8IqGFu8c3rtR33ZtnLgcSK4WITOGzFr6tmPdtjRNkyQCS1Fk2MwkL3dApSEarRQi\nPm2QHxwjemxUxg07+yQeABd8mogMB6puSRW9jcsaTPSnG2uidPIBXfuDMkh0srDvQmFfvg6jveWH\nSXx87gEHy8HPMMg1qVofkhNHe6OKujqCx+NDwGjFke1Ntj/xAA/cfRcPnT/Ll7/5LE+/9BpvX7rM\n9cWSfmp0TvgAJgK/QyEC2xszzh4/yobRrBYLlPeI0vQhUNc16/Wart0n8tBFFUBpRSfQtx2UJaF3\n1Ks1q9Uq2uJCQBtFlmdkeYY2Gu8aBJ0mIzUSQmxGQnJ6xF2XPgQkgBGFD7Hy9oRxTB9h1L8NGqvj\nTssiy2K6oLXRq60VBzWRH9VwPDi8A8QpzuHxMFbvB59/UEL5YBW+T+odIi7G4IpClEMHA9qgQpwc\nTStB42uMq+Cie+XwoS1+5zc/y0P338tjz7zIn3z9Wzzz8mtcvnaDdd1MqYcTRkwEfodCKcWD95zi\n/KnjaBEWew1WKXpgvV6zXq3o+y6uMSN6vgGc93Suo+3iIIpzDiNC33Z0XUcIfhz4yctE3t7hewc2\nSRhKiJmzw3ClinV1kETSgmgTnSZxrzEecEESqTu0gEoVd57ZKNkYG61/BHxIAzb8MFGPY/gHCXhf\n8xhDsT5I2h/8/oOvMXi642dPrJdjmqKSPslEerzaGLUgDlwdpK1BzgTuPnmcjXnFx+87w4uvvskX\nvvoNnnrxFd69en3SxycAE4HfsSgyy19/5AL3nTjCjVXNsm7oFjV958jSuLw2GteD67vItwG6vqft\n2lEyaLsOay3iw0iss3nF9vYOs2qGNRqFI8tzijwO+PiUCx6nGnXMPdE6De8YEE3XO/o++s5dCDjA\n+ZCqzxRUZQzWWqwxY7CUJ0kzPsoV0fgR/kISP4hIzD9M2B/EwcEfpQbHSRrmCcni6ONJJDZcPV4E\ncf2o9YsohP3ALqNjbrrS2SgV2Sxjc3OTM8Yyn1U8/NAFnnnldb7w5a/xZ088RdO20yDQHY6JwO9A\n7MxKPnfhPj517jTlfI4PgTK36GWNcx31usEYTVVVrNdrVvU6pg16T+t6uvS1iNB7R+993F8pQp4X\nzDfnFGUeI1i9R7RQ5gV5bkcNWolCS0oKNCZOOSYSD7BP3AFcCPQ+0PtoI1QK0Bad5+g8GycmfVoI\nQQij0+ODmrdzbrQMDni/Rj6Q8v6wTsTBCNuDkFE/90H281nEjw7wg46V/XNCQFRIw0VpGilp5UPz\n1hiL0hat4/h+lpecOH6Cc2fu4TOPPMQ3nn6OF7/zXS6/d5W26z6Uv40JtxcmAr/DkBnF6Z0N/tqD\nZzm2WeGsjRW30YgEurZluVigTEZRFHQpnc8FT9u19K7HDbspQ6B3AUfAGsusKJhtzpltzGN+iutR\nCMZaijyLAVapialVXGQcPd82Vd961KFDkk28gPOCC9F9orTBWo0tclSW4ZWiDQEJfj+aUEhpie+X\nSuLE5PtllZG8xxampMp4/z076Co5SMAjmYfhufvphIzzPCk2II3hq9TEjLZFNZ4sIJ6AgotXGojE\nMDClUdrgQ3z1E0e2OHniLi6cP88n7j/Pk8+9yFPPf5tXvvs6l9+7Ov6+JtwZmAj8DoIAh6qS+48d\n4vRmiWsbvNKj46NrG5aLJU3dUs6y5KCITUYXPJ3rccnG5yWMlj7vIMszylnF1vYWRVnEnBQEZXPy\nPEvb6FOUa8o9URJTA+NONTWOrQcELwd+ro8nCpHoW7eZRRuLI7DuWpwSCIYQTJRn0sYgeL/ccTDf\ne5iqjLfFCj79Y0fXCMSMldR2TN8f/BxJPKTu6r7kEgldJZdJtC0OiyAODACF/bqeEPDOg4TUKI7y\nkrEWZSwBoet6CJAZzZmTJzh25BC/8kuP8M1nX+TLjz3B1596mtfeeJPFavXh//FM+IXEROB3EIzR\nnDl6iEfuOUXT9Fy6/B7lIWi7lnW95vr1G1y5cgXROZn3OOeiE6VrcS5moygdJxl970Y3hBiFzTJm\n8xlVVUapwvfkxlLmGbOyJLcmtipHqSKNtKvoj45WwXhS8EHwAVyApuupmyauawsxjrbrMvo+w1hB\nSSDXmj7LKEwMxlI6rkzLsmxcWHxw2jLu5xwyUOIJTBTgkyMmGUOGAco4enNQchk+71ftQ7My3u5j\nQzYI+GF+5/2a+hiERYgXHbJ/5RFtiCkHJklTNsvxxJOccw6VIgvOnt7k3Jlz/OZvfJY/+rM/53/9\nvd/nW8+/QNO0MbdmanZ+pDER+B2E41tbXLj7Hs6dPgOu4/qyZan22Ot61uuG9bqhrTvKeYnreuq2\noW3bGErV1JFMUmNQvBqHYMqqZGtrk41ZbFqKcwgeazVZZjBGHYh/TTsulR7H5UUBKm3YIerdzkPv\nAqumZblas16vaduavusQPHlhKHJLnhtmWUGVWQqjya0hyyxFkVPNqrjv0miGmFmt9YE1ajoGT6Vq\nf5RXEumKhH3JW6K4EpuV739fgwzXDUnnRqdKOv7DRFy86pD9purggRelEdFJVhlcOmpMTAzJqaK0\nwWTRuSIqLZs4oO0f2tri3/z83+CTDz7In3zlMf7w0S/z/Muv8N616+OSigkfPUwEfgfhwumTfPr+\n8xw9dJQbiwWr5YL1umNZ16yWNatVjQ9gtYmbctoO1/W4PoZRoYTQR692HOiJdsSqqtje2mJrc4NM\nK7p1hxbBGo1JOSfjOjRhJKgoE0i6v8c5T0ARRNE5z3JZc/X6DW7s7rFcrWiaNX3bYq1iVuXMZgVl\nntNnnkZrtAQyq5lVBfN5RRDBEytulRqUxlisczHsSge8Au8Eb9LJRGLdPTRpY55WklVGwhzcf2kc\nf6zCk/giAkGhQkhVuR6bo9GhMuSs61FakeGKRKIjR6Vm7pirruMCjJiMqGPQluj9WACj2ZjPOX/u\nLFubmzx84QG++cxzfPUb3+Sp517g0uUrP/e/twk3HxOB3yE4ffgQv3z/fVy4526ssaw6zwyhcT2s\nGpqmo237ONWYZbS9i1Gxaax9yDgJXkZiUUpRFDnbW5sc2tlmYzbDtQ216zDWYEZHR0iNQdnfdZnk\nk1iFe5yLurf30PWO3b0Vl969wqXL73Hjxh5NU+P6DhGoyizp2IG29qxN9KJL6DBamM1ytpuWtndU\nbZvG+jXWGDLnCd7TS48xOcYIQStC6CMFWzMeMwRCkAPkG6tmREYijb7zIWt87FwiASSkCjqkq45h\nupOQiHc/Mnc/A33fWhgOjN6LUmjZtytG2Sk1bxlOinEj0Km7jrOzvcU9p07yyCcu8OSzz/Olr3yN\nJ597nvXs3SKXAAAgAElEQVRqPe3o/AhhIvA7AJkxfO7CA/zSfec4NN9gd91grWG72KJxPdfrJq5C\nEEVZxu3z9P04JehdQIbs60Q+SimsMWzO5mxvbjIvS4wITdvQNjVlNktTlymHRMWlDWNG9zBqjqDQ\nsWkZeuquZ3dvxbuX3+MHF9/lynvXWK+bNNQT0CO3Cn0XMMajpSU68Xq0ChQLzd6q5sZiSVFmVGVO\nVRVUZUlV5BRZjlGGPIM81xA0ITjG5mPaDiQytC+TCyWkEfhEopGANSI/7Csf9wWFEE92IRCCSq9v\n4uKJD1bgw6KJcReoJgxXBYP8ciBEd5jcjIFZkcTRgrhAVRTcd+YM9509y6c+/nHuO3OGU196lOdf\nepkfvHOJ3b3F5Fj5CGAi8I84jFacPLTD3/zUw5w9eoSu73B9hzWKaj6jAYrFEpPlZHmOyYqUz+HH\n+FbnekQUKR2bIBJ94kXBoe1tNsoKvGe1XLBc7NE2DXprTp4ZcmNT0JRKUbFpkAVJnm3NkPzXti3X\nr+/yzuX3eOfSFa5d32NddyCaLCsgeNqmZl13uD5Q1wFj4jJjrQWjQYljbx24sVxTXL+B0VBVOZvz\nis3NOZsbc2ZlSZWVzAqP64U8j+FbQ6NRh0AYLX/DZGWshtU44KNSoxIYPCuSLlgG8h7/Y8xPV1qj\nxKQrj0TYqepWKr4XIencYsz4PUTpyjlHLMD3twoBaXqUfa2ewWOuOHXXCf7u3/kdfvXTj/D//vGX\n+PPHn+CFl1/hB5feZbGcHCu3MyYC/4hjluf89qc/yfmTd5EZw956TQieIo+NPh/AFgV5VVJVJdpY\nlutmDHpyyW5njUWF5DzRirKsOHroEHcdO8a8LPFdx2qxx3q5wFphY1Yyr0ryzI7xrjolAo7DPCiU\nGCQo2rrjxvU1l9+9zruXr7K3WNN1Hudj9opWFhGhXjfRL52mMo3zcdWbUvuRIq5n2TToVU2eKZZ1\ny2LdsLtcMd9bsFGWVFnFvFywOd9kc2OT2WxGVQ3DO9FJAtHhaIzBWElNzahrBy/gIj0PqYcDmb5v\nOlKiVD18DcNAjxo/71fc8WvC/uIJH6DzbpRufAiEvicA1thxXVxsfpKujgRSWBgSm7TGGM6fPcs/\n+A/+PT7/b3yWR7/6OF/4ky/z6Fcfi/bECbclJgL/CKPMLOeOH+OvPnSBjaoYs7TLwlJtzJE8o3Ye\nbQ1WK0zSqAMhuUKiHTAEj1aaEOJwSZbnbG1vc+L4cY4dOQJ9z+LGmq5tsJnh2JEdNjfm2OT2OEje\ng/UujpJL1LHblhu7C65f32Wxu6ZvPBIGecIRPLR99JWLMtgkPXS9Y10vmW8oRGUQGEfVvQjL5R5h\n2TGfFWx4aHvPct1SzzrmeU9ddNR11P7bztG2HfP5nKIoonMmMMpAIcRjjePxGtH78ztRXhmmfPYH\nfIYdn8DoOglDiFdwKJNqdz941lNOTKqsvfM456PUIYI1cSpzmNR0zqHQoPanUAWfpC4/TqcqfBwa\nQlBauO/cGY4dPcRf+bVP8/Unn+Z//7/+Bc+//J2pGr8N8aETuIj8LvC7H7j5pRDCxw885h8D/zGw\nDXwV+E9DCK9+2Mdyp2NnPudXHzzPx+4+RWY0a9dgjCLPLUVh6YzGux7ve4SQligMG3Yicaekjyi7\nWENe5BRVxUZVsjGrkOBp6jVdW6MVlEXJoa0tqrIkszZKJwe23uxPPkb0Xc9iseTGjV0WeyuapiPE\n5T1oFJm2oFQcK0+KuVGk8L4QCS5NiPbOYayhKHKUMvRY6rrBhZYghj4olquWxW7DRlkzr0o21y1t\nH+i8sKwbVk3L1uYGs6oc7YbDsI5zccLT2GFbUPz5EfEqg6EiT++njG7LpF0P/nAE70YjCYQokcSJ\n+n23y/sGfUJI6+cGrZxBDB9dMqI1eIcKanyuDyFOW4kCCeSZJd/ZYXM+49jhHe45eZxHv/p1Hnvy\naV757ptcu7E7ZazcJrhZFfjzwOfZd9GO12gi8l8A/xnw94E3gP8G+KKIXAghtDfpeO445NZwz7Ej\nfO4TH2NeFbRtCxIwRqGNEHB0LtA0a9pmjevaODcYHF3X0LVpK73ETTkheKwScq0oraHKLVYp1ssF\nzXpFCI6iyNiYV3GFmo3hTAfJW+uoJUgaVInhWB3L9YrVaj021YbMbJPsf6I01mZkWR4bd8FBiING\nTRuzWdre0XYdvXd4IdoETY4YR+c9rdcUkhFQNOuGpl2yt2rZXdbxY1VTFiVVWXBoZ83hna1RAnLp\nxBDXtBmUNmgzSBf78/ujm4RBakn/WhnIO3m9x9PigdH9MXpWp6ug/SzzYfBowJDxEn+yH2878IDx\nJDlEHsSGpx+b0QLkmeXk8WMc3trg9IljfPz8Ob7xzPM88+LLfPu119lbrCYi/wXHzSLwPoRw+S+4\n7x8C/ySE8C8BROTvA5eAfxv4/Zt0PHccThza4TMPnOPjZ07TuZ7WdTjfI+LpXKBvAksf2NvbZbF7\ng6ZeEly8VHd9R9c0uK5DiMsGBEVuDFYJmYJMCaFrWNY1Ck9mNVWZM59VGJ22wo+WOBkbmHGnZpJP\nXKDre5qmGclbW4txniI5VMZkPmMpZxVFkUNwQ3w2bd+zWtUs1zWruqbzkdL64JlVM5TN6LsGVIaY\niixXNKxpmjXNumPVdOwtW24sG+azCmsN791YcGOx4tD2ZhwQyjPKIicvcvK8IO8DeZHFkf4kLXkf\nq3GR2OolQFADsQ5bgDTC+62BiN4fakre+LECR5AQK/ngQ3Ki7MsyQ5M5SFxsocMQb5AGkA7+bB2l\nmsEaGkbPuqLIMx5+8Dz3nDzGIx+/nyeffYEvffUJnv32d3jr4iVW6/rn+8c74cfGzSLw+0Xk+0AN\nPAb8lyGE74nIOeAE8CfDA0MIuyLydeCzTAT+ocBqzafuPcNvffqTzIqMddPQtGu6rgE84jS+0yy6\nnqvvXeX61Susl0uUhEgqPtC1DV3TEpwjM4ayKCiLHK2FzGqUeNbLPbquZT6bMStLZlU+2vSsMShR\naYAmJg4OkBS52ntP0zYxFhWPMppM4g5LLZosy5AwZJF7bG7Z2JqRW4uIQYhLH1brmr3lilXTsG5b\n1k1L5xzVbI5zjuVyGScjJcOWFaJzGm3xXQsEeoG9uqcLNd57ru6uub635ujhNUWuqTITXSzzObPZ\njLJq2NiYM2OGyhWKKLN47/FOjfJGCIz3xWvRmHsuSpKH3KQTXLJWKgUqeX2GcC6Sdj68jzoOBcUM\nGkfXdaMlUyUJJz5p0NLjj1aQGr3xvcf7qOFrGKZIt+ZzHnnwfh44c5rf/JVP8Qd/9Kf8i//vT/n2\na2+wruNJdhrN/8XCzSDwx4F/H3gZuAv4R8CfichDRPIOxIr7IC6l+yZ8CDh/6gSfvfAAHzt1krZr\naduW9XqFc23UZ72iaTxX9xZcu3qVrm0oi4ygDKs+4F2P6+P+SS1CluccPnSIsizIMoPNYvb2Yncv\n6uJpdD3PMow2FHmOGQKrDjYvg8e7nr73OB+om47rN65Tt3V0VWQ2rnUjNuyqsiDPsyThOBw9eaUp\nihKFQasMY6LevVituL63YN20NF3PqmnonadpWlCxQs7yCpOV1E1Pj6Gcz9iYlViTLIIE1qs1neu5\ntqyp3VUyrSgyxbHDO3hl8KJZNw1d1+GcZzaryPMsDi5pg/c+SR6xNxkbmckhI0mGVgqVpBgSwYch\nT+CAvDJOrxLNJvtLmSNRx8rdj7kufvDJA6Rp1xAC9D4OY6Xbh8iw4B28b01blH3yzHD6ruP8J3/v\n3+Jzn/kkf/hnj/OHf/o1XnrtLZbr9U3+653wk+BDJ/AQwhcPfPu8iDwBvAn8XeClD/vnTXg/ZkXO\nZ+67l3uPHaVdN6y7lqZro5PExGm9tu+4fn2XvcUKAaqypHXCslnRNjVt2+CdwxhNURRUsxk7O9sU\nRY6xCh88bdOQZRmzqqIsCvIsI8+y/eyRJJ8MtsFB81ASJy67rmOxWrJYxV2PSscGaV5UWGsxSpFZ\nm17Xoo0i6B4xgTzLUWLiuLpYsrxka2ebreWKZV1Ttx3L9ZrdxZLrN3ZpGkvb9Wmrvcc5QAwmK9FZ\nFXkzxKuPfG4JwUcJSCtQQifw7u6KxgtHdhwbZU7TtvTO0/c9VVWlxMUMY8zoXglEpwjEAaghjTCI\njB8kT/lYMSd6jTkqycs9+roH3R1IvnyGONpBVkkJkUriSWHIFw9J1hmJfHidoaIOAYKLpJ5+T1lm\neeDc3WzOSj55/zmeePZFvvLkM7z03beiPj5V47ccN91GGEK4ISKvAOeBLxNLiuO8vwo/DnzrZh/L\nnYAzR4/w0D2nOLIxZ1XXtH1PIFAUM7QNdH1DvVywXC5wDvIsp8eg1x1d19LWKTBKoCwLtja32NiY\ns721BRJou4a6XtO2LXmWMZvNIsnmGWVVUpSRwIFRrxVJix1CTN/zwcdccefQWpOXFm0yiqKkKEuK\nPMcaizWazFiyPMNmGmXAhbgBSCkdvdhBxxNHOWNWVVFGaRpWTUNZlWitcL1jsVgSgsd1PRAwxoII\nbR8JViRJQybHDlcPgKRmZOs79tYtJqsRZeJuyjAM13j6vsA5R1mWqVKOr+kDID7mmYf9Bm0YynGV\nbCjjeHyqvIVo/RsnT/3ovAkpjEW0ImY87k9oDpQ6OFgGnTsuaXbjA0LSy/EuWtjHJ6XKPDUvyzzn\n9IljbM8rztx1lIfvP8NTL36HP/vms7z83bdYN5Pv4FbiphO4iMyJ5P2/hRBeF5F3iA6VZ9P9m8Cv\nAf/zzT6Wjzqs1nz6/FnOHT9KrnWMFA0ukmtZ4OlYrJcsk+PD2gJsTu1beh+r6qaJa7qM1hR5wWxe\nMZvNsJmlbWvqes1isUCAna1NyrKIyX9lyayq0tq0QHAuZp8cSMwjBPq+p2nbuEFGhGo2Q5sMbTOs\njYuJc5ulJRMxEjZmmRi0FZzvU1UfNfDgBaMNVZZR5jllUVB3LXXXsTGfMStKrCjeVcJqVQOePDNx\nEMj1rNdxytSkZcghCMEFVBBsCuISraKMI0LdOVZtj5aArDuUXgGC847e9TA2GW1y30RvOmNzMU5e\nBojTniZq4Afz0IcloBIk+stDjNhNLBwr3yHLXMWMFT9o25CSDBXCkFpIJHxUTE4Mfp/hiaP+MmTe\nDC5z2f9stGJrPmOjyrn7riNcuO8ezp06zleefI7nvvM6b128TNt2U0V+C3AzfOD/HfD/EGWTU8B/\nDXTA/5ke8j8C/5WIvEq0Ef4T4G3gDz7sY7mTYI3m5KFD/MaFBzi+vYkPiVBUzAEXJazXDTf2Fizr\nGmMseVnSi8WvWrquo+vdWBWjdLLOxbHvvu9o26inexdPCvPZjCLLmM8q5rOKMuV++2TlUyrlV4eU\niZ107/W6oel6RClmVUleVBibxaRArcfJzainRxklbpsXguTJ1WIwysZGpo8kY4ylyCyVy2jTqret\n2Zwis+TWcPnyFeqmxQdiX6BpcM6jdfSrE6DtOrquR4liVmbkVmO0RE+4QO9jxG1uDapzqHVLkLRa\nrncx2SVp/kZrhDj0ow44coj8HNfQaR0XOKfJzGjZDogElJe4a3QsreOUZkjvZZDUg0RSpG3KWtca\nJOrrwe9vHkJUbCAnySaeaHRy9QyJkXGIS0Iq/dOQafx9CvOq5MFzd3Pu5DE+feE+/vixp3j0iad5\n6weXee/GLuu6nYj854ibUYGfBn4POAxcBr4C/HoI4T2AEMI/FZEK+F+Igzx/DvztyQP+s2Grqvhb\nn36Yh8/eQ2kNy/Ua0YK1BlHCsl5x9cY1dvf2CAG2d3ZQNmdv3dJ3bXQYIJgsJ887HEMDDkLw1M0a\n52NaodWasiyoqip9LmMT08bUP+fS//BpUUPvAp2LxNS4QO8BohMjy3Kq2WzUj7VKzhWRGNCUBmOs\nMSg9JANqtDZk1qK1TcSZFh1rRYml947WOarMkltFaTVVZrn83nus1jXiO/rWA310aDgFzuK6ntVq\nhXMO15VUhcH1saGqrMUHR92s6VqhM4a+7+ldT9c7QhCMzSm6Pi5aJo6++yR3SJC4qNl36MxiQojE\nPcTHDv9mSRW4C/gQbYIH42aRuBFpUFf2v4gnCtRA3kNHMyrhw5CopEb2MNHJoMmHoZJP1X2I9/mk\nscQCPVb6uTX80oX7+NjZU3z+Vx/mX33lmzz6xLN8562L7C5W47KPCTcXN6OJ+e/8GI/5R0R3yoQP\nAVWe8eA9p/iP/vbfoNSGuqkRJVhlEAms1ktuLHe5sXcD5z1lVTGbz+mcp+9b6vWSrq0xVqF9ikgN\ncanusNGmabo0iBMv37Msw5pYIWudhnV09BwrEZQxiAhdcpyEoGNuiMnIyzieqK1lvjFPWrVBpzVr\nSgSj4ug3ISBJPzfKAJKSByOjKOJCZkhj7yqmAzovZD4uh9AqQ6tDVGXGoZ1NLl26xJXLV1C+o23j\nDsq+W9ENVWzoCX1LW3vEa/rWgHfIrEKJxQsQPLWLTb/o2nEgQpYXlE2HFoXTXRxGSoNMMDQV08/0\nAT0wcMpDSZwZ1xH55BBRMsolMfuERLrEajrsKyI+gBqqdRiblVFd2ffPD/dF5WTwhx94Hn60IZLa\noD65iOJjPQoorOIT589w15Ed/uavf4ovPf4MX/jqkzz/6pv0biLxm40pC+U2hwCnjxzmrz18gUOz\nir3lit47lBZ8qpyX65p114BSVLMZG5ublFXF+voNFosFN3avs14tYta3d0n3tOR5TlFE62Cc2Iyx\nrpnNyKzFuY4QinFac5gdMWniMiBoo7ES0B6cSxY2EycsjTEUeUaRxabkoL/GzTkKk5wWcRx/MIs4\nJATEE8OkBERZlNZoAaNAacEGjfOePhDXq+VxQ8/W1gZb85LNKuedixe5dvUai9Wapq7p6zXKZIj3\n6OARHwjO4CXQ1GsIjj7PyJNLJk/HLRI18LptubFYYNLAUpFZjHagFLkojNKk5T3s56J4VBhsfTH7\nREt8nCfJ3moY+pEDnnAhKKKTJZ4aUxtTEVJu5OAyGUb5h+rZu9ikFE8aLJI0bu/TVU9qqqZF0oO8\nMhxvcC7dF39fRglHtjfYLAuObm3w8P1nePQbz/F//8lj7K3WsZE+qSo3BROB3+bYrCoePH0Xn77v\nbNSxuxbn+uT06GjaDi+gtaXQhqoqmc/n9K6naXt2F0sWiyV1U9OLpXd9rN4zi80ylNZ471mv1/Rd\nR57HIR2t1ViJDdLFELWq08CI23esJQLW4DUSoj6c53GPZW6GbJHoaVZK0AJaop3PGonEjItLgr2P\nZaZXeBdwOAQLGIJ4kBhfa7Wh83HQRlkweUZRWKpcMysNVab4gREuX74CrqXtO/Bx+UQnHtd2iDeo\nkNETK+LgeshznFZI8ORGI2LjVGjbslyuyHRswBptIsm1PSZP1bbfH2k/SIyStOrgA0ENt6dhm7Qb\nE0gnLEkRtKmpKYFUjhM1bZWq6/TaB0NV0sh+SBV2lG4GVwoMJ9HI/cNCivRU4knUD3NJ44khnnTL\nPOPMiaMc2pxz15EdTh8/zDOvvMG3X3+bty9dYW+5ZuLxDxcTgd/GEIHTRw7x8Nm7OXVom1Vd03Qt\nbdfQu+gKUNYwzzeo21g9l2WB1obFak3b9dR1Ez3SgUT6cX+jzTO0NXjnqdua3Ru7MQO8LDBGM/yf\nrVTMLNFDUBWkZlwijYFAAG0UEjTex6ZrkVkKa8hU1H19urwXBUYFVPBxOjRVnvjkkg4CeEQMKoDr\nHBI8Ylw8QXiDDzGLRYlGhVhnGgUqN2SmosyEMoMyV5S5prxi2Ntb0LqAR9N5T920ONfhu8SPAr6H\nXoSgIoEXuaUIOSLRrtjSsFgsYj/AxAasJBnJ+wDDejmXFm8mx8mwE3TwekeaT+/HwM0DcQ5Ol6SH\nD7FVPnnKo6ySfk7qgMpYAifyR8WrAYhNVm8JSqJUFK0w8c7RlxgFoHEQKP1u4ybodOJJj52XBQ/f\ndw/3nT7B0y+/zjdfeJUnX3otEvm779G03U34v+HOxETgtzFya/nY6RM8dM8prJYoldQr1vWKQCCv\nZmxtH6ba2ODa9Wt0bZuIxhM8uBRXqrXBZjldF0OZBu1biaJpO/Z2F6xWK7a3NrEm6urB94gw7r0c\nNtjIWPklx1wKfBKJbhiPxbkoi2RWk9u4y1JwqdoURIWYOOjj/si+c/g+jr2rtPxBiYCxMevEOXyv\n8SYGTjltcNribEbQBpcGYZCAEo/WgXxuyc0ORaaoSsvGvOTq1WvsLtZ0XnAIddOyWC7xLmrtRglW\nawQfJ1WNxM8hTl/2XU/btojzGIl+783NTZTWtG0fdX4Ta1zvYqZ5cIHgfNproVOFPbB5uuIIaf0a\n+37tocE7TG7GpuNQI3PAEz7YAYl5KsEnyT1eCQXvEJ9OkAyj+H58gRD4QBU+yCvx/YxcHjiYTzOc\nZqo849cfeoAHz57iVz5xnj//1ot86RvP8er3LrK3quNe1Qk/EyYCv41xaFbxyTOn+dip4zRtw2K1\nx95iF+c6imrGfHObI8dPooxmuV7j+rg42CNUVUX3ziWcD2hjsV74/9l7kyZLsuvO73cnd39TTDln\n1ggWUCigQJAECIBoskk2aSbR2MZFt3bdn0LfRQuttNFGX0DSQiZ2W7dRJhKkYBJIEEYSIKaqysrK\nzIh4g7vfUYtz3V9Ut2QamgSqyLhAVkZGxnv5Jj/33P/5DyZ54Vgbi1WGFBJ+9Bz2B6y2LBYLmsZO\nGQK0jagPhTbH3H2rCaOdOs7KZnFaoVpHigCZkgNGNzirJUQYmdFZLQOypBIhJnyIwvYIoYpkNDlm\ndPVLMcaCgrbtcE2LdQ3OdeiQwbrK4FAolTEmoZWwT5pGc3Zng+0si82Ki5cXvLy8Zn/wjD4yjJ6u\ntfSHnpQKrdN0rRV/lUNP1zgomeA9g5JhYBxGonNopURRWuEmrcWLe2EWGGum/pqcMjkJ3j7ND0u5\nkeSD3O9sITutMp1EyqzgnIyz5P+KTMWuShY6Y4Vlpi6fJKEYhIjKda4wHTVKPTHULv4m9l3R+fk0\nMG8MeSroMKlLlYLzzYqvv/tZfulzb/AHv/mr/Ff/3X/Pv/2zv+Dpi8vbQed/4rot4J/S1VjD73/1\nS3zlzScQPYfdju12S8qR9eaEi/sPObv7kKZbijx+9GKLaoXXvT/07PZ7fBXuUNkICuEnh3FkOPSM\n48g49KyWCxZtQ1O51l3XsFws6iBvKtr6WGSmYkGZfTzEtdCiXCvDUiQizahWIBgKuiRMKVgFKXri\nMNIPI4f9gcura3bbHbvtnsN+IIaE0kInbLuWdrnAdfLLNh1Nt6TtFiwWCzarBSerjkVnaBuFcyKi\nsdqyXK1RTcvyZMPm7JTd9sDhMDIMnvV6yW63ZeiHyszRFKsoQbjlXeNorMEoxWK9pi+F6IUzH6Oo\nTXNOhOgZR2GkNCVjnJOczBxIUYM1QjU05vgmV4xaTZPPMiXe19c355kCiD5unkrLULLOMJlohMJy\nMRUCKZVNAxXZrvc5vXccqS0Vu08pU3Ks7yd145BiLsrSMp++IE6APRPP0RrNK/cv+C//9R/wW199\nl3/zp3/On373r/nx0+cchlsW8f+fdVvAP4XLaM0XX33M1996nQfrBf1ux363I8bE5vSUew8fcvfh\nE5abc3IpklM5jMQq0im51I421Q6wkJOk0FutIEVGP+B9JJdC21g268VcrBpr6VzDspOB5mwdW2l/\nU3dmajExVQRCEVzbOYvRhpwTKQSCH1FO7kerMmO65EQKHn84cH15yYdPP+TZh8+4utzS954UhH1h\njGW5WtCuluiuBdugjAPjKkavWXcN5+sFZycLTtcd682S5WZNu1phF0t009I0HXpTaK1is3SEkDnd\nLLi66tjtdgzjKPRHY3EaGmdpnRHpvVIs2xaTC7u8JaWE9zcGyjEQghFcXsvrUpJHISeEEqPgy2qi\nGabaLdduOtevtZ4HiCVXCMUegzKO5oc1sb7UgWkt2pPistSOWpgo1Ppd7Wgn3OQGbKKmUOWb36vv\n9GynMguKjsyX6b2cPMgba3l874Jl1/Dqgwu+8s4b/Nlf/oA//s5f84P3nt3CKv8f120B/5QtrRSn\ni47f+PxneOX0hOw9u/2BGBPdasXZvQfcefCE04t72KajP4ioQmuDzqkm2ASi91CKCHNCwqeM04Jt\n7g89h4NYq7Zdy3q5ZLlsaBuLteIZsuxaukqnM3q6uKWL0xVC0cjvRk+eHrJBWCUYOFryHsV7Q9Jr\nqjcf1NtSMsPQc3X5ksvnzxn7npySMKqNkUGmNuQEIWZ0Qjpr26CsYwwjz54/w++3ODKrxnKyXrBe\nL9mcn3ByccHJ+T025xesFgsanaU4d5rSKJbNgkVr2K9a9vue4APaaBadI6csBdxWD/BcWHQdfhzF\nWjbnGsGWKUVgoqkjL9mQYpR4uJLRNeey5EzRwvwpVQyji9x3VlkKZxXWKGqTWyGR+fBTi7eaC3Ge\nh5oqVyvZlCgVulGlCo7S0S+83tFRyUkN4VAVDlKAKmKZUoen0r6rGXsHJjrLPAeZGC4XJ2tOVh2v\nPLzg7Tce8Ytvvcq/+/Zf8u3v/ZCnL64I8baQ/79ZtwX8U7Y6Z3n93gW/8voTOqPY73tGHzFty+bO\nXU7v3GN1ek7TLQEoVSbdto3gtWFkGAeGQQp0Yx2LVvDWnAvp0DMe9gyHHuscXbPkdLNk1bW0jcUZ\nQ9uIMrGxBqc1pkq2cxH7WWNrAo+S08IUq6YQSNYohF0CYEUKr5V05yBsGKEVyuWeYyKGiNGai/ML\nTjZF5OZYrGlAGfoQwDnMckl3csL6/ILFasXV9Ut+GEd218+5vr7k2ehxVmT3y82Sk3Mp4KuTM+7d\nucPFpuV0aVl1mq4xWG3YLB1tu2a5aCRUORdS6vDBY0yDsY1Q7nLGti3OOVKKddaXyTnVuDWAiifX\nRPc0Mp0AACAASURBVCGTMyYniFEKa0wUY+c5oUDQxwi66ZtTqs8crXaTLlK7X0HB87yxHlkvGZUK\nOiMb5zS3zMImUUo6dfE3z/Nsw2gjG+yUvZwTN8iFMxYP3GDMyOMSCxj59yf43lrNvbMN987W/NJn\nX+ftNx7zP/7Rt/nWX/yAHz99zuXucMtY+X9YtwX8U7S0grPVgl9+4xUulgtKyviUKEbTrVacnF+w\nWK4xzlEqUyKGkZyjBP3myDgO9H3Pdrtl7HsomcYaSmlIMbILnuw9pES37DjdrLh7cYZ1gnULBt7Q\nNY04Bhqh8oUkcWymqSZOamKhIFxuZ3GmduXVUCnnBEWDEehElXIjj1NYMhTFYrHg/r17nJ2eY4wl\nBuHdWdNgtMX7zNX+QEBRmpbu5JSLe/c5vTjFvK/YXpyR/Y6+U/j+QPCeEDIhw2FM7D58yeVf/ZhV\n1/DgfM398xX37my4f+eU5XqB7RbYtqNbWIyBMEaMNqTcCQdPWUqZxDMiUJpmAlPXPfmjTNYE0/dj\niIh/ymRMlTG5gDEUrSuV8Bi+9jFceuIBVvGV3Lmae2A1jUKrSIeUPzZsnAyzmJr0udue7nYqvko4\n/Kbi5vK34mGuJ8FPHX4iz2Eu3zNbpUJrigqzHE9sE/f/a1/8Bd565QHf+ou/4Q//9Lt867vf52/f\ne8Ywhltp/v/Nui3gn6LlrOXh2Sm/9rnPsOpaUe4BpmlYnZ5ydnHBYrXENUL1S9ET/EhOgRhHoRj2\nA36UoaAfR1IdTsVRBoYleFROrDrL3fMTHj24y92LMwoiVGmcFe9rJ+ENSuk63Mpz8zVThJk6r2Pn\nbWphF1pcTZcpWbDiFEVBnguh+neXUlit1qxWG2GfpAIV99bakLMipMLFGBlCxhct9EIUu+sth+01\nyXuMVrSLFuc0o4/YmHny2hu89vpbZBr+5E/+lOvnH5GHAy8/Uvz4R4bzszWPnjzg4u4dzu+cs1h2\nGFNQLmG1BtWQsyUWA0iAAojXeUxhxrtTSjXY4hjsPAUiG5Nq4hDoIrFzqih0UZQ8eYFLP62q4KcS\n4o9e4ExFue6Y/wFbReVEiaK+nPDtnDIlZsxEO8yp5l8KNiMglnDwxd4AKLY28tJ5T37m4qNyoxOf\n6YiTVvMmqHLzv2oWEU2P9XSz5De/8gXefetVvvM3P+F//tZf8Id/8h0+eH4Lq/xfrdsC/ilaj85O\n+dW33uS1u3dorGYYBzCadrlgc7phtVpiGocqEok2jj0xeUpJxBRIOZFKZPQj19tr4RunSBgH+t2e\nfr/HHw5Ynbi4uODJo3vcv3fByckaHwKlJPHebtrZI4UycazBWMl2lBIjcMrkbTK5ViulP+Z5IrRF\nRc4iGso50bYJ78UVMIQohUxrQIQ51jqsdajaoSYsZ2i8z+yHwG7wHIaBw9Uev9ujU8RpjbKOpA0h\ne1IONKsN64sLYhRaZX9tWSw7OmeAxGEsfHTZE9gSleE8Z5atwamERopy1hayIpWj97kYiJVaqPNx\nwMixWOWc0Vqeb0p67s6FWKKOm1yFJfKEHheR+BRl0DUkeYJQRCB0Y+dMiRw8JSRxNUyT6yDkmORn\nJwuDOmjOuVILq1S+urPcKMO10VbI95WwZIoq1e1Wz902VAvdoo5FmmNpn0B8VWcvuUy+7Jb756d8\n/d2Oz772kF//8uf4H/7o2/wv//tf8cHzq7+nq+vTuW4L+KdkrbqWd157wjffeZvT5ZKSxE/bOgn7\nXSyXaGNIKYp6cIZPUvW93hNToFAkXEAVlFbEJCwQP/aMwwFK5u7FKa+8+phHTx5yen6KsY7gR5wx\n1Z+7xRiL0qbWFLkItdG1e6vlRmuMNaLAVFPTqI5p8xSUEj63NkZgg2JxDpwTAU+o9q45FbS29d8W\nfrW2tkINjqIto4/oXS+KQgqNUXQms24UV9eO7X5L70cilj4d+OjlJfF738OPgd3+JdpktFU0XUvb\ntiwWS07vnIMqbHcByo6ybli1gvPDKNgwBaXsBC/L4LaeLlQtrmryLCmFlBLqY41yhZOYCrwUO2Om\n0llFOpPSssIeufAxdkgpuXrZyO1S8MRhIMeErUwWgJJqUlAuFOMwZnps9SRUhOJZUsIahTbCJ/l4\nt81E/EccEg2oXPnt054iHfmRl3Rjc6q2CeVIHBeaYy301hpO10tOVgvO1ivunW945/VH/PF3/prv\n/u37PH15fcsh57aAfyqWVoq3Hj/ka29/lndefUKrMuOQhG3RNqyqo19OUSTzU/J4ZXiEMHI47Ek5\nC31NgbaWFEfJzAwjKQW0KpydrXn19Vd55bXXOD0/R1vLWOEMkYa3WGuZ0mMAuYir4dLERhH2iYhX\n1OSgR6lc4XpR36SqqWMHq7XGOY3RoqxUeAIJax1N04qdrDVo5zBNA1YGmcZFMXqyhtV6iVaK5M/Z\nXW94ebnmxeVLLnd7mmHEtHtSUXz07BmH3TXJjzQWrIWma9icnHJ+5x4PHj1mu73GD3tiSIxDwhWw\njQUT6vMuGCPdaipgrcIiBlvWugqbyPMsMxas6olFiuexgFeYo/a8cvKYum8lr9+NvljnhBT1XKmg\nkjBEKcRxJAwDJcmAMSVhI0msnFjwaq0hK3KKeD8SY0CpXJkyiYKd3z8NpJzJFcKRBnrGxCrnG6ai\nfcTUKjulPq3JcgHkueYbr8ncp88/Uzhdd3zl7dd5fL7hzQdn/PGff5//4/s/5W8/eM6L60NNVfrH\nuW4L+KdgnSyX/Orbn+VX336L0/WSEj3DuEcbRbdcsFqvcE3D6Ic6mCyV9ZDJ0TMOPeM4SIejxLUu\n5lR9UzwxRbRRnJ5tePToMb/w1luc37lAGUvvPcMoTICmbWla6b5vMM0kZd0wF29FRisrYo/a2WE0\nuSDdf0oyeCulZkiWWWGplBa2QpGUdYsiO6AWcMG+pdvXRqGtRrt6O9NgnWO92TCN/aL3bDYrTk5O\nOL/Y8nK75fowsPcjISUOhy2Xzx2H60tKTiwWjq5zrE7W3HtwnyevvsbV5Ut2Vy/Jfo/BC6ebhLIK\nYxTaiERf25aktPDPTYO2FmOtnBZmsVMNerZagjaUyOqnApcrH1tVbHjCzCcopegpZUcoliUd8euc\nYh0My2scx5EUAlRXxpQyylq8j6ScaWxDKolxDPhxJIwDhYyzhhiDnKR09bBBRD4pRtlHakWfiC1l\npp1MHXod2FYcvJSjxYLA9Hr+GdkwbnbT9blSjvOUUrh3uuLXvvAZ3rh3xhdeu88f/fkP+M4P3uMn\nz67Y9uPf6zX4SV23BfxTsD7z+CFfePUVHp+dYbUikPBxpKiCdVLQovfC7a4eJdTjdIoe7yVFXRtD\nQTMMI9fbHSFGQopgFJvVCQ8fPuTtz32OB/cfkIB+HFFBMjW1NrTtgqbpMNbVY3PtEo2SYl0ypaQb\nuHctMoWZp5w5Ou2RM4ZJ5q5q8daiPqwe2lmLDNwYoRYaUwd9VqGsAi20N+pr0S5ajG0pShOCSPGb\n5ZL16QV3wsjj4Lna7gmlkMkcdpc8++AnPH3/x2yvr9Da0HUN6/WShw/v8+SVx5xuVrzoHNuXz4jD\nFpMzOQZCTuAKk/VUyUmi3lRGG4XRVtg3zs7ceGMNzkni0FSkp9OJ0oiveC7ECMaIj/oU4jDL09HS\ng+csAQw1zi2lMAuyNJCCp0Tx744xoYwhjJGheuIYa/DBc319zTgMpBQxVaA08bZzEVgkZyg1Wmmi\nLspAU4ax8vhroaZmoFaMuzAFNTNPt28OdIW1Iq/BvGbCTX11K1vFaMXdkxW/+vbrvPnwgm//9QP+\n8Nt/xR//5Y8YQ/pHlwZ0W8A/wUspxbLr+Oo7X+TNx09orCFG6ZprySCVVFV7CWcUZE3KkZIqjdB7\nxuFADJ7sFWOMXF5dctjvKAgefXZ6wqPHj3jt9de4e/cu1hjC6MVPOyW8jzjXHgu4sUzSaXEFhKnX\nogjrRLqsm5xkVd0BJ0ZKU78WqEQrYXIoaurMjS5OoIRcO9RMyhFbcXNpSPOxuyumUvqES900DbZp\nKMt1Pa5nFie9FHwDOfRc37vD03sXPP/omXjGYFivV2ijSGGgazWrZUN/DcPYo/AYnfGhCmLags2W\nqKLg86qgNdiscFicbeZYO25uYMhJ6didVkiBjCqpfl8dC6GWjWp+vYsYYYnK05NikOKtJ2gkkWMk\nhYiPkURhiJIeZK0jpcThcOCw76ngl2R/UsTL3AnLKEYZfptcMDVliVw349llUXwQc8X4pYCrI3JW\n/3ezS59Muqbh6eyASL3R9JVSZFWIJRNyJuREypmusfziZx5z/2zNu68/5N9/5/v88MOXbHtPyv84\nCvltAf8EL2ctn3v9M7zzC29zsjkjZOFchBTIJQnG6hpJhXeWFCNhjOTgxX8jBPb7Xe2uEoMPXO92\nvHz5gr7vaZpG2CavvsKrr77C3ft3sdYyjqNEkoWI94FSoGk7nGvQ0/CyTB4Y5XihIt2wqYM1pZSE\nKThJ7mmcqyG/crFPKfXz/ZQbxa1MPiAGrUuFFqooRSaklZ4oRSHlAiWRS0QVUzte2UmsFsohuiYN\nLdYAWJVRoWflLJ1RXGxO2Q8DfYhkNONhzwc//SHkSPYDye9J/gDF0y07ihLsuqSIskb8QrLY9qra\nLeIMJllcYyWooXabshml+eujUdX0Gqg6EKz4txYOptiP5HkzEoOySIqBFAOUjHWOHIN8HoJnHEax\nGk6RkLMweJRiHwIvXrxge72lazvW6zXdYikwmZUEpdEHcgqUFHAKuqbDGDmBHecYUoCnkUauyk41\nqXIBUPVzM21AM5VFCrxSgJk/R4Vc76+QSiHWwh1ykvzR+tpZazhfd3zuyQWNzvzg6Snf/+AlP/7o\nmsv9wD/0hvy2gH+C16Jb8Lu/8Zu8/soruBZiOUCO+DgQc6RZLFgsOtq2wRpNCjVwIEfBQP2IHwdy\nFlhjHHquLq/YbbeQC5vVmiePH/PmG6/z4OFD2q7lMEiCig+BMXhCTChtaFrpvKV7qkVWycBsMlhS\npWCUdNpNNbzqWkfTWFwNfZigk6r9FBWmPir5JnxUodFKkucTtbvWGmMVyhSMneiIVIjnxqC0JJSS\ncGQm3NmKyyJKcHWUwBA6NrRGY5VivdxwGEf6+st7j99tSWGgxJE8HijJ40PPaMBoQ6k8doVgxSGK\nf0uYullnITpUEn63SOJlYBBjQGlxGpTNSqO1WPyWWshRpSofFVlVXDhHYaHkRIxRho1Jflclk5Mi\nhsA49Az7A4e+ZwgeXzKubVFGMQbP1eU1H7z/FD967ty5w4kxWNeCMvSDZxx7UvSUHNAl0jpLXEQa\n12J03cgnvLpQvVlgGrjmUo5zzcqnmaC0uYjXyebEppF3cDq5JYlxyxK2HW8U7zR9ncQwrDGKxxdr\nlq3jYr3g4dmaHz274scfXbMf/+GqOW8L+Cd0rZYrPv+5t/mnv/ZN1tlj/BaVhaInSsWMtRbXNDKw\nLBlKkq7PaEquF3aOqMpyGPqeoT9AKWxWKx4+fMBrr77Ko4ePWJ+s8TV5fvSecfR4H4gpo22DqcwT\n6ayOlqJmoiGTKwfa1Cg2Sb8R4yop+jFGco7i/VHhE1W54DLANBhlMNoiyTJGjuoVFgBVB5fid3Kk\nLdYOTtdYsSKQkmbCcksdrCaMEXbMHGpgqxGVUjjb0YwD3TCwGOW1Gg8ZnwYCmawLrTMModAfDpJO\n5BylyL/jnLwYIUhHHIMmhoYcPSk6VKyeMHX7ikphbDnazWpNKUcqnZrCLKZmteTa6VYxTj5mVOYU\npYhTCD4RvGe/24uT4jCSFGAlRDrlzMuXV3z49BnX11u6doE2llwU/ei53o7srq/p+z2UiNWFxim6\ntiHmRNdGnHVoY+vmY/mYqVWZThgZXfTRrwVmCEV+cMK4KxXx+M2KnYuoK9eouZwSKcdavAMxi07A\nB2FTAZwsG1p7yr2TBQ/PV2yWDT96dsXVfsTH/A8OI78t4J/AZYzhtVdf45//3u/z+PFD+qc/waSC\n02IoZK0cy4VPe3SYM0rRdQ0xVqP+KlmOMdIf9gx9jwI2yxUXd+7xyuPHPHz4gNOTE9CKcdgxDGI9\n671gpRloaued6nBMqYLWpcIheu5AnTMsu47FsqNxchxOwZPmy1Q6L6MK2lqcEy9vaw1TNqNSZg5t\nyKlIkk2pBlBFBCMaSa8XHrqqkm6BSFItHDEGCfi1mUnuo9FoZVBF+OaoiuVbi24W2KxolWwmVms6\nrQimMFrwXjM4RWMVRsNhv8eHiHDx5bHNgzkQ3DgGQhiJscHEBp2Et26qM6OqGPhUwJWmnlLKzFip\nhxtKSaTq3z3J3afTTE6RHCcGSiHlRBg9wyB2wDEljBMKpgJePH/Be+99wHa7Z70+4fzsHOsa9oee\nFy9ecnV1xdXllRRvo2gbw6JzLFpHiJHVMsmpb2LZGHcDVhF/8JRE7alUHYrc3Iw0VD6hfOBnZdCR\n2vQfFe/qy5KjnDqmXyF6vPeEGIhJMHit4WTVsl42PDhf8t0fPeN7P33J823Pfgz4mOdN8tO+bgv4\nJ3CdnJzyxS9+id/+rd9B5xGlMs5oGixaOYJr8CljjZ2xZGcsylpMFo/pQpZOJQb6vp99v521dIs1\ndy4uODs9Zb1a4qxh8B4/euke03TRgGbKq0Q6PcSESChwQIlAwVnDom1ZLDq0guC9eLAowfJdde1r\nnUMhhd9ZO6fPHGdOuUY66inygIwclUPwqAiZhqLAZGSQaZXQC60jAzFlfMzEKCwMpTWN1SijiBFQ\nhqIsaAfaAlq43M6Qs8VECzWlqNOZhYUxWtrQ0i1busWC/W7H4bAXNkoI+OBZqaUwTrSufuAJ70eG\nsUG3nQwB60BPazWLoiY8WVGwzsweKiDFWPjYHB0DywRbCQMlxyjsk8n5MCZSEtjA2Qbn1Ez9/OkP\nf8xP3/+AQz+wWp9wfn6ONQ19L/YK19fX7Hc7vPc4azBG0Q9imuacYdf3nJ1G1psVi0WLKwkVA9Y2\nNE6eS07CeikpCbdbF8rE89egsjQpE7VSivfHRTnSwcuAdDLZmobqIURizISQGL1AfWMIxCSfG103\nBqVgtWj4wmv3eHznlB99tOX7H1zy04+u2Y//MPzHbwv4J2wZY3jrs2/ztW98k9PTE8YP34OU6lBs\nYmlYjBG/j5ISJUayMcTRsztsCdEzjOJ54oMXPrERV8BcLG3TsOg6urbFScYXKQnOOOGXpTrVUbMT\nS4aiBeM2RrrknCMlFxqn6dqGtnGCy4aAUpJW3jaOthWYx1SqYMniJpiU5KdnQCuhDx6pZTK8LDrP\nw9omdaToEYKFJPoQEypmTAaHkp9rHMZmwaOzYMU5eGKslD2lyBWyUXP3WDt/q1CdI2sEt06W1Fna\n0tLFEe+XrE88Z95L6EV/YBwGKAUfI4vFQoa9WjOMo2wmIdBUOt+0pMMWuEhXWqZSoI2imFQ7+ERO\nqSou66i32swWZK4pf45MZL1c4S1J8dE41xBiYrfbs9vvePr0Q4ZDz6JbcHpyikLT9wPDMNL3Iz4k\nRHVpyMrIZj56Sk6y0YeEj4ohJNbrJW0nlgrORbqaHFRShctCImqF1Xq2HZ6KtjzfchxbMEEvZUZY\njh264OspZoIXA7AYM8HHelLM9XQiWqJyYxwC4jx5unF8pum4OD3hyb0tf/Pec957/ulPBLot4J+w\ndXp2ztuf/wJvv/2OHIdDmI33ZWmMdjgj1LycjgVzHEeGw8DoR8ZxYBy8RI/NF43Bak3rmtr9NTXg\nQY6mU0ZjtcKoTBCN1sePycQ4KTmTYsJocFYu4smgSVFoGoez0nXPQ040k52dDOzsPBj9WPGuQ0Z5\nukWk3kq8UCh5hlRyFt5vQUnBQJEzGOfgRsHIKUOSbjUJ9jDfTivxM5HH4oTuqAvFiSBHFUm1NzS4\n3NFGT4pxhi2C9/NsIYYgEXVGVWy8UHwkpjin85CzwGBaUuuNsWhzg1evQGmDNpE66ZTMzFxphtVP\nvL6ISGBDPgLPN34m5cLgA30/sN/v2R92pJRYdB2rzQmLtiNniYTzY0Ch6dqlZHf6kaJgGAYOg9AU\nrdYchsC+D1ztehaLlq5zNK3YC69WC9qmwWqDyqLyyQmSzqQbtsIzNJRNnW3ATEOtX08pbVPQRIyJ\n4EP1yEkV+5biHWImZjFwMFUReuSOI6ybokglsSmSSuRcy9lmw08+fM71of/UBkncFvBP2PqFt97m\nS1/6ZR7ef0T2IynG2UN5KnTWNjQgnWTM+OqZnKqiL8dMGAOh9yQfpfinIgNCq2UAVY/guX5wYwjS\n2YTa+eXJeMoJ46AOouRmmVSmoGKLNQZV2SlGq4prC04NHKXhk1hHibe03O9kw6oRI6QpzmFuw6Sw\naysURo7uhakW8VQysWKkQUUZitUNRWnp/MXQo/KwOUrFMwmlEgovHXHFwKc2rmgEbhE5EcZauV1V\nk+acWa3XjMPAfruV90spjDM0WlNUwFenxZITimqva+3sqCh0R+HBC3VOFJCqlMpKqTBKSTfk8lRf\nkspFz5V2V1KlFSaBG2JknIbR2rBeb3CuoVssMEacGUFOaEqpmdMdisxA9kPPYeiJPsrrMyYOY+Tl\n9iBWwVbRLRpON0tOTlaslkuWiyWLZoHTVobHqZC0Jhctm1YRh0ajj4KmaT5SBzvCPkkytE212x6H\nOlwPCe8TMRViqgU8FbEm0AalBX4Rgqp8hgqqnsYK1houTje4piNGcZbc9QNjjJ8629rbAv4JWuvN\nCV/5ytd59wtfZtUt8Ff7atNaHfSVDNCaRs7UMcX5wy0wg6NpW8ZxJMWMHzzZRwgJYsZpi3YNztrq\nuy1HdV0ghIQfj0W8ZKTgGztjijODIksgg7WmprQjCr1qmWqNmgttkQoohUrZCr9MohZdw2LkNKH0\n0QujVP8MpWthR9VNBSZOsSriEyP+IDJwneAgVeQCNlkGhco46qMn54QiAmk+suecSSGSK5SiVbUd\nUIh/tapiFCXZlUZpKAZLQbUtXbdAa8N+vyPHODstKqUpIxWvrnRDbaSQKT2faGRrmfg800B32sRE\n4Zqno1EV/KQajSZwUppFNCHK+5qTYBPWGLq2pW1dfZ1lriF4slgDlJRrYQz0Y89+3DMGz6Ef8GMk\np6MtcCzUSD5PLglrNSebJacne05O1pxuTjjdFFaLJVaDygmNsHS6BqwR7xWtNNaYykaS2q21qoaG\nwjrJMctnPESCj7X7lueYagpTiJlcZNg+DYEnYVcpilwyIRViStUHpoAyNK7hbL0kx4RRiv0wMoRI\nzJ8eRedtAf+ELKUUX/zil/n6136dV5+8Sgm95CSiUMZKl2jKTL0rQEiJEDMmJTqlaRcLilLs9nvh\nyEa5AHQGg6ZzFtt2OOuIUTyoK6AhQ6OUiSFJYEKuRXeKSocqeZe9xGgtQ66JUVFpgRpNSYWiC8rq\nY7HSlXJWO1wp8KqKWKqXSd2kJgraBPuomsg+XZg3DZ4mRz6jVTUSmQqtSPmtUlhlJH5Na4qq0m8d\nKXZyziszDW+epqqC0iKlySVXQ6gqVKpnBHm8spkqxCBMGSuJN6oe5wvEOsybGkyt1cwiKTnPG4Qo\nW6fAC1E6KiWh0BOTh7qhSHGLs3Q+5yTK25SIsZCyvD5GaxpnadwEcSV8CPg44n3ksN+z3fcMFZrw\nQYaySWdCDKQcySpTqk3w5P6I0eSkCH7kMHjGsOcwBHZ7z24X2R8SpyeB9aIViCdHnNGsl4mubcgx\nSAdvKl+/bl+S5lRPeilV+mA+5n8WTUqFmAoh5tqJZ7QWVlMh1di66dQqtjsxyPVQ6slSaUMpsSY7\nwcI67MKwcJl98PgYiCl+4gv5bQH/RCyFcw3/4l/+Kz772c+jmUIBEoLslqMAQiuBNSiYKLzYojTa\nOtrFErSmWSwwTYNyBhU0xjpWyzUZg206tLPC0VVGuN112p+zIsVCjqWq43TtThOmpswIDVAJ9Q2g\nlFqk63G49tBHjFdXb5Sadlml9WXG1yfIxQnkooQ+WEqoXuH2YwX8yBtXc0GSe6yqvXzk+moUrkI2\n80Vb3QOVcRV1lVtaUcZATqi5U9aV1RKFljg5/SkJV0g5k3MUxaP39H0/O/5ZLR7oRYldgdIf90GX\nU0uuEFYNhJ5xhIxWR6Wr8Py1vDdZmCg5CBZfUpxfB2HDCBujKFdnHlT2TWYcBw6HA/v9Du8Fr598\n16fBYIoC1bS6AQ1RZ7KWMJ9U6aIoRdaGTCZkTUgafGHwe653PZfbnqttz8l6y9mJRNFZrXBG1Q2x\nWi1QCCljdJi9U1xjaazFajXPZAQalOF9QQt0EsXKIKaC1oLDl1K77DAV3mPCaqyUVLTFmYakLMUn\nwctrMlFnW9Zdw5PVkn0Y+Ojqkqvt9ScaH78t4J+Atdls+MY3/ylfePcXWa3XklvpB0bf42Ogqf7M\nSimoXtpGgSsZop75zwkoWmOalm69ZuG9yJqVYWVarG1p2iUYwxBGZghDMXcs07Fb17BgpTVFT4EK\nZabAWa1mHrNz9kgrRLoqXWlis6iuLinCwjgxRnBwWx37lDZy0WoJWFa1oN+0mZ1+n742xhyd7ITX\nWLnjkl5j1XGjQCuyFjMopSGrqaBMBR/BbEvGlIJR8nhNko0p+CTFs2RSCpQsBlIhBBlg1hxMXZCB\naUrVnCrX55bnzlk1s+6cTKpUnFSfHxQioiid6rqilESMnhg8KXopVFXUlWvhSqFCJ7qgjBUoiCLq\n3BAoMWAAVwVNTje0bcMwenb9KNTTVOj7nn4cGb0n5kJSElrhU8Y5sbQNRWLpfCz03pOjxxrwPuJD\nYrvfsz8cONmsWC06usYRs8AeXeMknYlU4byAMoVF17JoWxprUaUQfaW2xlzTo2rnHTKjDxQUrhF/\n+BBGQhT6pnwe5D+pyHuttEUrS9YWIVwZTLWHKAhskqtA7tV7r3Dv7j3ee/oBP336PmP4ZKo5fELH\nNQAAIABJREFUbwv4z3k51/Dw0RN+63f+M+7ev4+yhmGM9CHQh0AJAZcCRWXEm7lisFphkQuLKrNO\npTBG8bsoxghcEmI19iksujXL9QZlHG4cMLYhwcdx00zFeetwTR11FsLfVsImMAaN8MqtlYKoEEm7\nrcfg2qwKTq2PHaaqxfvIPKmRZEpcBk2h4uFHZsKEB9+0V52K+fT3Ez3NMsU/lhqsfANb1YpY5OdT\nhXIo9TlqkdebnDA5oio0UZIMClM1jRKWR5Tik9M8oNQV7lBJIAMJ15hgHeaueyrkSk9e3gg5OusZ\noirEmdetBFOaH0MMI370pLpppJTmmUaKVa2pogxGq7hGlYzR0DqDUQ0pmVkUFFOhpEivmTeJ/f6A\n91G63Swsj6I0toOkDGgnoSBGY5wjB6FthihD5ZCSmKKFhI8JHxLLRYePQouMqWCNghxlU4oj2oJP\nkTEEWmuxSlPq6SaEON//NMQMMaMqBJNzIkRf4ZNjrFtRhVQUKIO2howhF1VDTQzGNmjrKKrqJLSi\naRvWqxXOOdaLJet2IdTInGan80/Kui3gP+e1OTnh7Xfe5atf+ybdcknKGZ8zh5jofcSEwCJFSiVR\nFK3ByBDQFElyl+8bQi70Xgq/T5msNdY1GCsfatM4XNtiXANWhp6Zwhg9Bz9IWk3JUAssWjpUbgyY\nJqjEVFXoBJFMXaKp3XEFt6t4Q98ouNKdT0wPMakSlWHjNE0r1EalZfiUy8dZATfjyaY/T0Vcm8lT\nxKCL4ONGycBVTdHrNaV9Qiuykh0qQa2c+cjOqWZQsWaLhtETwlhVrlIQFbVT16ByQZdSsdVIjqli\n+aaybir2n2RgiqozhlIfjMqVQSFDS7EFOIp1UoykEPCDxOUFPxXwKFTJMv18IaPJN6xcCxpdCo0V\nCmNKamZcCIvD0kXLGC2jH8k5gBKrYFIheUmAwgh3XuYOuqYtObSBGAcJi46JUvwMXRUlZmPisdNR\n0KQsm4lC6IGjH9FGzLMOdpDwbCuD3lwH677+mjYFcdO0oIqwqGKFuKaZToFcC3hRBtQxQzVmZlbU\nTOHUim65ZL1e45zDh4A1htY1DHpAKYTtVD45Zfy2gP8cl9aaR4+e8LVv/BNeff1NQgiM3jOESO8j\n+yHQ+kgshWw1WSvSdFEDGI3KtrLvND6I1/MYAlGyvbBtg0uFTKDU22sNpjFop8mqMMbAYezZ+4Fc\n6lBJG7ISy1pdL1ZnDc6IKEMYCaYyVARaMUq686nAKph9vadCridnQMTsiJyJIQgbZKFqZJoR571c\n09Ard3saYqpKWTgyiOXvdd0g0BZbU2ugIiuIVwwlYRDu9DQ7LHUYSiq1y/Xgx6qyHAUDD54cg4iq\nVK4bg7TLiskSFoEqci3gon5CG2Hz2AnSyKUaWUlRkdmlvhEnKVz3UjebnERRG/2IHwbG/kA/9JUF\nIhz+6fXWCMxQ6gYWswhcuLF56nokMPOQuYg3jHUY6+Q9RIplyopDP1bjrET2oxRxBVrc3NFW42wD\nrPCjEdpjkQHwECL6MJIL+CgsklQkjnO97DAKxpDoR49WhbEalFmj6ZqWRdPKrCAmxiBMmZAETpHZ\nyGTqFebB90QbzMhJLKRMMZZYwEdR6WbMx9SeMoeybE5O2JycCJsr+OqhL82IUTK+nqx0tVKzT/nP\na90W8J/jWq7WfO6dL/LN3/jt6vmQ8N5XVdzAcOjJg2doDN5YgjYY5OIHQCuMk2FcTIkxBsYgPGjX\nNizaBlXAuZHCnpxh8CORjHEabZcUVYglEXMWOMYKRhjVkQVxxLmtXPQVPzVa1c5WmCG6DuuYvTym\nAeKx09HmGNQLwtAY/IDGkNopJ7EWI1PhEV2tSyv8IN88wihMf1cmSmIFXyqjpDDl80iJU0qjy5Fb\nXSo/WBSiERUFK85JOtySYoUgxNVwZpToynQoCl0kbqxU3DvVYiL4bFOj1SYe+0Rxo1rDQlEZlQpZ\nCc1OlTLnmaYQqi3sQN8fGIYePwyknCrsX2aEKmfpaEHPhl1SaKo1bYWWqMpeazTGWly7pFtkNqs1\n56cnnJ9u2O4PDGNge+hpGks/jKIvGPYoP1C02BG4boVtGtrmlBRXEtPnBc4wRpOKCIqmYpmm91hr\nGqcZQ+IwBJzVZKOrr3mibQJ+kYSymTNjiAwxETJkZA5TSiYmYYxMw/GcJ2G+UFBjdb8cU2KMhVwU\nyugaIyczjFIKzjm6rpvpuI0fUYg52ZzfWWHCxjqapmH0YgD3H54Uf1brtoD/HNeXf+mr/Pbv/Ofc\nf/BIFHEhMI4jY98zHvYMuy3J94ymwyuD19I9leDFuH+ixlEq7ii0KFsNhrrG4ozFryNKO7bbPT56\nUkgsmg50qR1eoWAwpiFlS9aaVAuz1Rpbh0S2yqJN7cCnDlhT7arNccA4J87ryWlQ1eCGemRloouJ\nbay1lq7r0E6oflOXXbEboP57VZwz/139ntAPc6WJSf9VaocvtMvJZ1xY1qVCNxP9ThLbFSpLF16m\neLIsLCCjBaMvqv5zFChZinYVBZEyKaSZGaO1pXEN1rY414hi1QqlUtfuUZwFJ95xwWix3RJCe6bE\naUAZiBX3zlGGnXailJYJA48zE0U2SunwixI4JSV5LXLdPUJUKB/QdilWvUqzajtOVkvunJ5wGAb2\n48h233O927Pvh6rq7BkHX/nXGZOTFBKjaZsFXekYhoG+76vhVJoNqSaRFepATAlnNSl5DvsDq2VH\n1zpK0dW0SuwPXLVuSDGJ4jJP1FPIORJTONpAMA3NNRlFzIVYN8tJramNw7qGw2FkHCWtSmlNU90l\nJ0OyXDcaXU3KUk7i4eMalsslq9WKcfS8vLxkGIefSxG/LeA/p/Xw0RN+7dd/k1/+ytfRWsuF56XL\nGvoDw2HPeDiglajDQkqMAVCREgbICZsdxrm5oGltcI0MCZ1VLLuWZbciJdC6Aa253l5LKG1Nd4nV\nuIqi0Fiy0pKAUrJg13P6vFx4E/5dKRTA5O98HCo6c5TFz1mQyszMk+mwP9vItrpmR5pjcZ7WDQFM\nuVG8p2IuR1opDikK7KCzUPnKdNsZazkKXsqEr+cEKaGjCEsUc0Aausjv8mxr4ARl9tqQmLGqjqwU\nPBkiSvGWzruR4u1anG0xthHJvhYHxumVVHVgOcWOTWrRnCIxBHzf48eBFEQk1Fpbn9LROIooAiZn\nDNZZUgYfPGNIxCLsG5SuJmdR3vusQY/kVNBIys3mZMVqveRsueRkteTi5IT96Nn1A9v9gf2+px9G\nxjGRksY2wmzaH3pCjHIi0NXmoeoNSqV95oJsYsYKjFMHp0NIjFc7uhpOYpQWSGU/zl4qJSdCFJbR\ndCJLOYkPfoWJCsyD2yT6NYED0cQiuLl8BjV+lDxYU0VwbdvO85SYojBx+p6cslhFUGjaVnyEuo5F\n16GVZVh4rGvIOTP6kRB+dvmctwX857Csc/zil3+Fd7/0S1zcuTtzeMdxZBh6Dvs9++01h/0OLISl\nI0TDqCNFRWyJWC1GetZpjHHVC7sexXXCOcEQ23aBKkZUaymAzvjoabsGkONhCNK5T3zkUid8wtGW\nwkuFP6jd7JTIoyamyRTWW6GUI3RyAz6p3bgU/YlKKF25xKOJY+A01wM4Yg11Sdsqz3XCxSer0Swb\nyvzTE4ukwiqUqQuXx5+z0MZUKdhKlKEIjDGxb3Sh0vDy3MFPY8GZURKliEj3XWRoaRzWutlq1Wjx\nPLG6QRvp8iaHvkKRYSpKHtfk8V055tGPwsQYR1F5arBGePk5JXQS7ntSGptiVWgWCeUYRsaYQdnq\nvFgd/SqcMGZFTCPJe/LYU8JIY+H8/Izz8zNOz885WS3ZrNf4LCynwUe8T3ifCRFyMYSU2O527PYH\nBj8yeKErDj4c+dlROOfDMMqcpfrCC1QE3nv6g6dtGrrGobUi+hGN2A/IKCNRUhGsvxxdM6nQFPV0\nl4uu1FqFMo56QJo9VmKOeO9RiG+NqeHas/4ip7mAUwpd11UfmZauETWz1RqahvV6TS7quDkmSUc6\n7HeM48DHA5v/btdtAf8ZL601d+/e56tf+yavvv4mwMcLeN9z2G3ZXl2xv7omtYqzVYNfGBoFWkVc\nIwOXrmsk0ME2Va2pScWjdMY5TWNbSaHJiqZrWG9WFJVk4m8NMWexkB3jzP9m8qWeWAY3wgaU0rVr\nlSJm6yBvgk3MVMBvcLandJ152s+xU9fVSpYJEdETYwXm4/DHJpUcmRZIB5Ynxki5sZlQ6sAyH6GQ\nUuYufnLrm8MREEYJVRlJxYjnn58cAG9EwDFJvUMkeZF5pzh1eNJ9O9tgavCBqrmfShuMEg+YCaFH\nieFYyarixHGGRGIIJB9IlWueU8JpU5PuNUkpuYitROp5P3LoDxz6oSbxBJIy2LamIU2ir26J0S2q\nSHGL/Z7dC8/L51fsXj5n0Tru3LnDw4ePuPvwAWd37nByckKzXJCKImVNTBACjF4yN4fRsz8c2B8O\nHIaBwQcOgxTzQ9+z3++r2CkxDAM5yUY/WeeOYyL4EWtGCcswmuC9UDur9sAohVWFpmahzp/b+nlQ\nxlCtf0iF6hVv5XSUqlujks97rL412higbiB9z3qzIecsNswhgNa0bYsqhc5ZWid2EUaBbR1FLUFb\njGuxTSPd+aJjt7vmw6fv89GHT9nttn8v9eS2gP+Ml7GWL37py7z75V/h7t37R3mz93MHvt/vuL6+\nYnt1hW/gzqbDrxzJaLIuYmbVOpq2wTbCHNBWjuUhFpTJOOdwpoGiZcCjC03nWJUF1ilSLoy7njAE\nYkjMs8FaRFFyDNaT+ZQR9kQq4s/t6kDPWCkmxnwc/pgog1LAp84boKBr6o5WpmLAzFRFYascIZQp\naKtM0EKurom1+86Vy2yYNgHmblsKt5hOzVd5LhX7nm4rm5HMO2vKzY37p2LnZbqvWsCF2peIldY2\nvYbWWaxra5BxgzWudtxH46rjZjYNbevGoASiSSkJxztGUnU/TDFSogi6NNVHxWhKqSrPIuEZ3o8M\nh57t9Zb9oScWME2LNg1ZKbQzrNYnrM7vYFZneLsQM6cXz3nfwPbqBWOMXF9d8uzZC37y4/d5+PgR\nr735Bq+88Tr33EOWy5V0tUUR00TLkwGifJYDvR/xIXC53bHre7a7PVfXW66vt6IEHUeGGOprLjOP\nECL9QTpW5wbapiHFIIN4KxTWxmg6p4UjPsNO8l6lIiKsVLLoAJBTR1Gmdsa5GlqJ8dvNz5CEgES6\nxYJSSnX0HMUnhlJnDkJ9XLiqOrYa7ZywWbSlWSxYnZxy9/4DPv/5d1gsOn78wx/w7f/tW3zvu9/h\n6vKSlOLfaT25LeA/49W2Hf/sd3+PN978DE3bypEtRsZxwI8Dw37PbnstqShXl4xOcXW65GLdsm6W\nmMYKFu0E/zbWCjPCiiJTqUYofnVgRpIOVRslToSNJWdLHEbi1DWmUv2+BZRUNQJtEu5orcR5T8lo\nyGiFsZa262icxRrpxFWFM9BHb5OJl60mDxQlCks1m/lz/FpNjJHjJiBLHeeVCGY6UbcmqObo2FJq\nJ13kuD0V3jLfuiYYpbnjLsjfK6VmhoZ04JWSViX21du0Dn4l7T1NplEV029cS9vI0NLYButqAZ8g\nIvVxjD9Pzoi1iJeSRawTw1zEc4zkGMQASlfqn7UkDThh1zhjcdERY2K5Ep8Tgc0y2rZ0rkM1Lc1y\nxd0Hjzh/+IT27C7BtoTg+ev9NWPJqK7l7P49ht2C6xdXfPDsOR8+f8lP33/KWx+95O0vvMPrb77B\ncr1Go3Fas+gWlXculMyCOAjGlLg4HNj2Pft+YHfoud7uuLq85MMPP2S7veZw6BkGwYxzyuwPA4f9\nnlJgsViglWSsts7SWEOwGpWNnC6rQjnnajGMbNrCqGpEM1Epq5M6t1RLAO/9vPlPJ2Cla55r23C9\nvaYfhtkbpteazaKldZZFV4MrlDCxdIXlWtdwenLK2dk5Dx4+4rXX3+Abv/6b/O7v/XP+/b/9Q/7b\n/+a/5sXzj/5Oi/htAf8Zrs3mhK987Zt845/8Fmfndz7WfcsAs+ew37LfXrPbXbPf7wgqcXm94nBx\nQtwsKMhgUddBWJXtiY93ScIrNsKFzkqjaiCCKwayIUXBkIOXBPsUxLO5IFbdM9MDjlTBUkgxoq2u\nlEJD45zggMYII6VK1W8Wpynncirixpj5z1OQLzBp2IXHW297U2F55NnWzQRdnWGl0E6eLFKwP+6d\nXSo/mMoQEBF45aiL04n8rKpDvlpE5eJWNYexCENlxqiPoQI5KRQWXX3Lp67bWFdplwKhaKXn55Kz\nWNhmXWGSHAVbV8yzhZlCWNPmcxJuSmMtrnFoZ4UpVOQFLMbgGsdZ17I5O+P0Ysv2ekc/BFIBZR3K\nNqAtYYxsr7ZE5eg2J+xevuT65Uv2fY/PmaA1Xmty6zB5QQyJD55f8vxb3+anTz/i7Z++x5ufeYN7\nDx6w2pxiNXUGo+dhZdAJFRXr1QrjLI1ztE3DetFxvllyslrw4bOPePbRR7zMV+wPByiqzg5axnFg\nt9ujlWG9XgpbJSspzhhCmrJVpQtPpRwtIZRFaYfSllK0yPdDohQllrNKSAOoKYdUunBnGxaLJTFG\nDv2BYRyISSihRisJCjFWQkCsxWpRdVrjME3H6eaEOxd3uHNxh4uLO6zWa5bLFavVmt//g3/JF955\nl3/3b/4n/uxb/ys//OH32W6v/5Nrym0B/xkt1zS88ZnP8i/+i3/N3bsPMNoS6lDH1/T44bBjV4t3\n3x/o+54xey4vr9juz/FnG4o2UryNGPuI73EdzKHRxmHmGLTq+KeE9yqpPHKML6nI0C3m6hXBUe4O\nR9OlCltQu425eNfosFlpafRcu6WJrczrOWnnJqXwiIWrSeI+MwKPx9qpiE/fn2GQmWIouPcRu54o\nfbUrq6HOE6bNNMhU0/PM869SlHRwdVON1RM9pVi788ojL4JTx1TET4O6gSGqRaF23ni+N+wIck4C\nFZEqhbOmqmdRXWpFZbokSomk7CuVLkDJWGPqpmmFWlmfv5pOTtbRWIteKdxixfJkYOh9Fb+IWZmv\nENHuesuuH2leXvLy+ortixdE78lKEYAhF/RqzWuv30crw7Onz3j63vv8zQ/+lqurl3z04hlvffYt\nXnv9Te49sGKSZixG2XoCE/hLULVWOmmj8U6zbCTiztWUKGcdl5fXHA6DwFDWzQEOWRWGMQKB5KRZ\nCU7jI1hdQEsmqnThcgKgirkKhpQVY0h4HymI+Ayq/qDvOfR9LebQNMLt3m63bLdbvJfYNf1/svdm\nsZal133fb33D3vsM91ZVd1VXs0lK4iyKoigOYpMyRcqS7cQBnAhI4uQhMBAjL5kQ5CHISx6MOE8B\nYgQB8pAHP+QhQODETmLEgBw7kQSBkkVrIikOLVESxSbZ3ezumu6955y99zfkYa1vn1NFSiSbTQ1A\nbeKyq+qee+45++y9vvX9138wX54QIi4E3emal3spEPueYbNlu92yWW84Oztns9maKC0QQ2R1c8X1\ns2s89dQbeM97f5zPfPo3+bVf+WW+9KUvfk915XEB/1M6bt58ivd/4Fl+4iMfo4udFQpVIU7jxHzY\ns7+84OriPleXFxwOB72w0sT9i0vu3X/AxY1zrp2tSFVIRXDFZoC14LwgBZwrlpNZj7Qq5wC96LyP\neN8BjpSsEAHFktpVhNOgiUVhbDeaOcUFvwwrHzKXQrt7xSLBo1zlJp1vYQ6yAN4sBfxUHg/HQt6O\n00n+IqqoBamJRjVsRbxRDaSxTwxfphxxz0WdaZ7gjezS6Igamqvdl0JB+tprEXIRw1jdAv2IiZeO\ni5ZbsHx9fhUNwdGgqoqFNZtXjf5/2y1oVFrKI7PhsMHrzAHXbHixzh7tfJ2A7c6GOBBWG4bRwg+S\n0g3HOTGVyiEXpoPG7o27HXWe7TPzlOoYc2VYrXjzO95FCB0Tz/HqvXvk/QXfePklSpkYp5Gr3YH9\nmHjy5m3Wm43GyfmAgBmeOSSCk47ghTkKc3R0wRPNN6fvOlb9wN17F9y7f0FOlWlUv3bwlKwGWbUK\nUiH4Sgw9rjff9qr7qlIrVTxOIkigVMecCvuDBh4PQ0/XdUzzzOFw4PLqisPhAChcs95siF3kwasP\nOIwjpVY1XLPAkhCVLFCNplhtDjH0kfNr19mcndF1Pev1hq7rcRYEglEX15st73jXu3nq9tO85a3v\nYLPZPi7gfxGOrut529vfxbMf/Tg3bjwJsHR50zwvN9He4JPd1RWjKe2old3+wJ17D7h774Ib52ds\nN5kYVJTRAeJVCehKxZWClIyUNv5ryK9GSeEUQ6+IeirXSkKn9UsJNfzXLcXb03eRLjQHwaNn8yJd\ntkGkVkYDKU7FOBy/35SMx+8feeSnvt9NNn/alS8v0QocZTa4pGqoRNGutImLdGtvg09jp9TmHyOt\nA292uoah5qKdcU463HQg9ehcmKtmaja9TWPFNB9yHQTreyu14eaYZNvmCoJ20O112vO0x4P+WVWG\nkxI8zZ9G18mClLZ40DYX5GoWByEQoiBdJeQK1WlowzhxmNQs7TDNTFlTgg7n58s8ZJ4SV90enFPq\n4Jw4lEIcOgbXk8Y9u8MVX3n+ebWPvTzwtrcduH37Nmfbc/q+JxhU4UX0+hSP95XoYfZCbIpe7+hC\nYOg6utjhnafkyjTOTFMyBatZwqbMgYLzhdUq0pmwqlSjCCKIBMR34CLZGDKHcVSNhGWVztPEbrdb\nGDEhBPqhZ7vdUoHDeFA+O1hUoPYF7gS6VNa8MnpWmy1n59fZbLbETmEYTZtyugtpl75d8zduPMHZ\n2Tl37rzyPdeWxwX8T+G49dTTvPd9H+RH3/eBpSDlnI3bO2mu4mHPfrdjd7Vjv9up21zKeLT7eHBx\nxb0Hl1zuRq7PmSkVYjB/6wqutZA5azeGgN3wLUQ4ZfVfTlkjyOaSSFVNr6pr4phinV21IihLtqU7\n8bNu3XcrUlJO6IQ+6HDVezMyysvWtXmKL9majwwtT+Xxbcj0LY+KWrFmK+zL4NE8SqptfWtpIIkF\nM2iMGq51vMuTGfadF7qgOFVmNnYLbWHBtu6U49CThymVS2cunLBl2qBSMRVn8BOY/NsyM0sbXGal\nE5acDCqIqFWj7SxKNT8WU5CaJXB1nhKCmlkJSBD1Z8fRdRNxnOjmxCqrLD2VwrBas9mesb17l+32\njNVqxat37/Kbv/7rjEnFTl4K0cGw3RBiz5Th6y+9zMV+5jAmdrsDTz/9NDeuX2ezXlngh0FoDV5D\ng7GLVyjubLNSFa9TRanY56ACLB2MFjT0IhcN8E5ZIb/q1IEzl0KqVU3YXMSHnlQ90zyxH1XSPwyR\neZ64upp48OABu92OOc2aChQDq9WKYRi4vLzk4vLSGChqRqauzcpgCd1AF6Mu9oA4TzcM9MOKrl+x\nGtashpU+r9FqT/eW7c+lZF7+xkvfW2HhcQH/vh/OOd7xznfz3vd9kJs3bwGcTL7T0oEf9iOXFzt2\nVwfmUYNsW9rKXkYeXO64e/+S+w+uePLGddbDipTqYjil8uKj/LdWwRW105wtqaU0j+pSyHVmLpMN\nLgVHsTqkxWjx/faKXQaTEzt/VFeC7iQqx62m937x93bGaFEMuFK0Z8F0hnp+lv7k5DCxzukAsw2b\nqg0tRRzVBx1e2dDSfhioltnZIAy0O68FsYCMZpHb9iePbhh0WKrv05snSzUoRptvfR/azZsXTNDz\n8/DziuHB6rWu3jIsi6G+Rx62jJ1n9RyZ0km6jC4uurC0z1p/hasOqYLkNqttg16hOD3LxYQu3jv6\nTlkxPleicaXjsGK9PePJm09xOBy4uLzkhRdf4Ktf+xp37t5lGneEDly2dKPQEaunLzp4fPnVuxwO\nM/fv3ecH3/wm3nD7Kc62G6pZD+NUWSkcm5fxcOAwjmTzET9bd5S0Qih0wbMeeu5d7NhNk1pAlEJB\nB5Z5mWU4am76BEfolDo4HRK7/YE0J4L3TNPI1dUVu6srdibQqbUSusjZ2TnbszMQ4d69e1xeXTFN\nEymZ9F9kIQ/Erke8Zz4cAN35eheJMbJer7h2/ZztdgNSTUlbFHo7uR4BXnrpBb7w+c98T7UFHhfw\n7/ux3Z7xgQ99hPf+2AcIQXMZm3FVMaOiaVTfiKurPYfdnjxO2vFUAE1TubjY8Y2XX+Vss2a7WdN3\nHVEGQnVI0G7EtW6cYkMwLZTzrOo85UY3GKD9jEaENR8RQAee1hWFE8gkLFmQ1h1bd7nQAeXh0IWH\nOmrrSAsFRFN9qg0N3SMX9wKvcGShLHCKqS3VBdGj3GndUTQoI4Paa4tQq7EjFHDHBUsZMotZ7YYd\nIg0XbwsG+rO2AdAu2miIIkvR1gdXvDj1RdcPmFILrp7uKMTweIW+9PXrOV9SdnJezLCK8b5rbrRG\ndBECS15vC4osO46aq32xDPeW/Uut1KzKxxACLggBtVlNFboK6636hUyTYsTXr9/g5pM3ufvqKzy4\nc4fLe3fY7y6YcyJVwYeO8/U5T968RZoTF/fu85WvPM/h6pJxv+OH3vxGhpWaQ2FQhMbWtfepQqV5\nmsgWsdZ3ju26o5ZELTPVFdzBsTvAOCZ1g3Qt2DovEAriERepeMZxZn+lxlvNZuHB5QWXl5eMi8mW\n59r5NbZnZ5xfO6frOg77PZdX2n0Xczv0LtD1Pefn5+alH8yGIC9D6q7vWK1XnJ+dceP6dYa+W6IG\nl1zYk2O/3/HFz3+Oz332099jdXlcwL+vh3OOj37sL/P+Dz7LkzdvoanfZSngKc3M04HR4JPDbkea\ntHi7UpFiEEOBaZy4c/c+fRdZDwND7PD5HFn3SB8gmrWnDdaKYJiqcl/Vl7laMVNzowVRrgVL8DJT\no1a8za3O8O5m8qOKvlaEWDrvBTqw49EknaPNbGt/T4d8NrRs+DgPDzZbJy6IFkajrSw8PAHgAAAg\nAElEQVQoo6kYXXudC4xh1gDWiYoTnGSEI5dcOyllaRx/37FoH4U9Rwz+oYAJVCH4EHRSFTcX29WI\nFMPilc5my8QCbylUUiipUJOKhEpSWz2pWvylCh5dRKs4Ei3iDcN4pKFB+nPtXNaqiTc5m1ZAh8rB\nBfCBIJ7q9c+5ihbwaWS92XDt/BqXT97i/quv8MqLL/LSiy+wP+yZSsb1A+c3bvHMm96MVPjaV57n\npRe+xh99+Y/YXT5gvLrgjW96I2fXzoldByIkW6gchegdOWiGqAphC/M84V3FSca5hPeF4Ctdp3TN\nmgsh6k6nVoPGEO2OQw8SGA+qCk1zopSi7p5XO3NpRIfxnRlSnW0JIdhQ85KryyvmaTI2iyDBM6xW\n3Lhxg9V6g/NqlyuiUGHzRFmvBjabFetVb82PsoTaNXb635defIEvfO7TPP+VL39HdeRPOh4X8O/T\n4X3g9tPP8Ff/lX+dt7/z3XgflsKdm3NcmpimA+N+z/7qinG/J8+zYpvWKSu7QWGC/W7PK6/cYdX1\nrGLE14KUc4Q14sx0qgpSHa62bb9yt3FYQAJUCczl6A2hkK4VYyeLzWj0in03AyvhOEh0opi2Yt5+\n6UZPL9RTJslSzM0wavlf61JtiEepVMVIsCc6duAVK976rdbXOtNrOitu3h0tX6vTCLdaPZVElcb9\nbd18tS5bO+I2hKyto69lWXSr7WDasewwaGwQt7xHd/L+lqpaiw1RNUHJAc20uravZF9NC27D2YUy\naF9N4l8QCJj1rnbcKtwy2bzBUZSsGHLlyNtvnuheKXISO6p4dU/sB/Jqw2a15mxYs+17eh+RinqR\n52wJPQMBYbVace3sjLsvR1559WUu79/l4s4d9rsr3vSDb+b6jRvErreGQmGw6D01BjTJyZk7YVAE\nzax+S52hzgRXkeggRGIUM8NquzRvDoMDKQnjuOew19SiVAq73Y6Uku0idT5TSiFYNmyT+F9dXXHY\n73X3Y4No51RdO6xXanYlNlMqheCDGVv1DH1HF4MW7nb5nuze2n9LKfzuc5/js5/9LR48uPe9lBjg\ncQH/vhwiwna75SM/+Qne/8EP88QTN5cPb+m+s3k8TyOHUX2ex/Gg4QY5W1esuC1KWqLUyu5yx0sv\nvUzvHaFWJBctYS5qSg9KKfOOpaCozF0VaKU6kANj0qFMLlhXqkXHW9HugqfrPDF6Yww4g2Asb9Dp\nbiJY2DGYEMcK5DFVXk7+zFK4gWPzqLVGdwGuaq0zOONoWGWLWfuZhUrYYAUHpqTz5m2hqtDWhau5\nUbFiUYujikahwRFjXixmczlZcIvZz8rSmS87iqWLrwtubxfBssDYd9uoVr9fNPVezP1RqtJAtZDX\nhVWjfy6It0Le/o1KSW1gje04PKVWUp4JWWcQ3gWzHPYPSc6lZFtckoI74lXuHwKx64huIM+J5B0+\nZ+o0kW+oGjRNKiw6HA5c7nZcfOMbzJsNZZ5Y9SrwuvPyHV556SUO455pnnjLW9/CjRtPqDrYzlPb\n6TlAStGwbDHLYjNR088+qeGYV5ZJjB4foo1K1DXThw7nAinP7PfqKTSOM8nCHnTAHPBRC/80TewP\nB672e7WwGA/Mk7oTtuvKSdGdU012rXs1EatKW3Um7uk61UU02ORIJz0Z9qPXzZ07r/Kbv/Epnvvi\n5xanxu/l+K4LuIj8FPBfAB8E3gD8XK31Hz/ymP8a+A+A68Angf+w1vqlk+/3wN8D/h2gB/4p8B/V\nWr/xGt/Hn6sjxo43vPEH+Bs/9ze58cRN4NiRNtlvzjMpTTbA3HPY75nHgwbWmgGT2JZ9CcYqhTRW\n7t+9xx/NM+lwYBon7aq83XzF0QlI0W60pcGIhQSkImRUnZZtKy8GqyyZks6pcs6Me7qoYcPJMh6N\nWfcQZHJavE/f6yk1sBW7RUW5ILRWwBCkKL4M9cgcKcW6b3cs3tW62qwy96ZBUjaOqS7NI1qHqfab\nKkf+NpgZlp7vZLYGmkJ/alEry47jIYojLIsQUhdOMhXt0qQYg0XPq7hos81yhFhsetpSgR7Csctx\nZ9KoggqzaOFm6cSr0QybPW2GmvAu2vBZyKJzj5SSQVWF9qQ1Z+Y6Qi6EWIh9T3A9ph7QxT14hvWK\n6zduLK6IQxeRUrhz9y73Ly7IpdCJsF2vuYyRV77xMs8993tUykIZPD+/pn7kDZ83lWwpJ8EZ3uki\n0nW22NpMwRhOMfQE36HMoayQEIFchMNh4nA4ME3zko/pne4ic1HP/Tln5jSzN6XlnPWceBFCCDpi\nr1nnImSmccd+f4k8cYMYPSV5EyZ5+qj02mA6AaxBaO6dxwATvVh+9ZO/yG/+xq+9LgwUeG0d+Ab4\nbeDvA//o0W+KyH8J/CfA3wK+DPw3wD8VkXfXWid72H8P/HXg3wQeAP8j8A+Bn3oNr+fP3XH9xhP8\n+Pt/gre944cZhtU3fV9TRFSBOY4HDoc942Fv1EHtcprjX+Mpt2Kn1pyFB5eXlJyZjMmSTYm23Qzk\nUuliJcZgF5LgqhaXORf248w0F0A7c60BxbZ/FR89XRfou0AfPTHAeBj15hencM3JgPJhufs3HwuU\nsrShdYFGimg4hBrlHRmzbcEqOetr47gtbc6AtVH+bLETzIulNtTAqGigi6E7+p/kormUyc53K+Lz\nPDEnY3/Y/MDZdn0hPp4UcF1MANt11FI1gFpU2akKy5MhlijMpQiITiTaR2z2LIvtii4O5sTngyps\n26xCBG/MEoVcCj4oFlxqG5Y2jN4Z9qKLby4JiqhgsVFkaiUnFZfNKdHFWT3K02wNhVoybM+2zF2k\npJnV0Bl04Lm6vFJdQxeJtVDGPYfdBReXF7z80gt81dgZwXli35kfus4evEB0jhICue81Bg5PdoGr\nUR0C50OilrrAY8VAKmfzlyqiA9FZ1c3qIS8LjW/KM1NSb31ETeUOuyvmlHCmBhWU3hfwTKkwT4mS\n98ZySpgtPiIV56EfOmJndhI20hFTacoppGbXxp07r/IP/7f/hee++Lk/8X75bo7vuoDXWn8e+HkA\neVQ+p8d/BvzdWuv/bY/5W8BLwM8B/0BEzoG/Dfy7tdZfssf8+8AXROTDtdZPvaZ38ufkCDHyxjf9\nAB/7+M9y48YThOCPTAaqpWRrqnnKmrg9TSPzPJHzvGCv9mjkpHgDS7c2l8rFfk95+RXtLNLM/nDg\nqZtPcO1sy2azYjUM2mGWChZtdbk7cHG1Z5xmNftZSA5aXb3xc7sYDDoBTSofVVjkI8E6Gn+Sf3k6\nqHwU9354GKn4SEU70CIWlOAwPxLjhRdwBZzGy1uXCy3RvTYzKhPmcAKpLDCFYdulJKrkkwJWSOaD\nnmaFUXRTUMlTUQOpupRfTSxqr3tZjE4GoAZBnR4tvMBVlenrYLMNbu2x1Zg4jcNd6lLEjWBiKkBj\njphkvGYL2xCH2N8pFVc1IkJhK1sQPCptR5knHqEwLSwoVysSinqHoItKLpkpzwptmC4gdgGRgtRA\n8EKaHTkoRky9xtBHdWacJobeAzPjeIGgIRO7yyvu373H2XbLmbumQ0lxBhWWZZAZnCPGqKyYCpv1\nivsxsru6ItdqUIXmiDrvVW/gzIa3DZkXtEkdBqeUmNKscXUx4oJnPx6Y00yuFe80XCKXjFBZrXr8\n7JmTxRPGyGoYCN5R8kytM1309F1QH5h2DSLmfmihIyf3w4P79/hnP/+Pef6P/pDR1J+vx/G6YuAi\n8hbgaeD/bf9Wa30gIr8GfBT4B8CH7PeePuY5EfmKPeYvdAF/6qnbvO/HP8j73vcB+q6z4tUoalBq\nXjL8cpqZLfE8zfNRRNKA3mUKcizhOszTLnMqmbLbUaqGNFzsrnjDnZvcvvkET16/zvnZlvVqIHYR\nCZ6pFh7sdty/uGSei2YDYsUFFa7EqJ13jJ4QlE5YcmLOGpTsmgeHB8QMtCoL++XRoxW7WsrSmS7v\nqVYNTBAMEnDtG4u8TnLB5QQ1a2ZnrccCbhyEkmfr21t3bPi/9cy5TOQyGyijRWqeTSqf1BvaO7PL\nnfPC4FggHNHt9HFhsAUKWeYH3vuFctm474jBRXLExmVhoGCvxXD2lJct/7GAi1E4LUzDncAm9WSe\nYJBNg1LaL6/GanFek4yCa0ZnHuZJxUIlIwnEV8RFDe6tRQVh9lZFVDTmJYIZSDkpJMm6MLCm6wPF\nFsV+8FSZOYyXS/cenJDmicN+z3q1pnhlCjW9Q8ktyccyOoGuVFZ9p4I1m0sIyiLxBk8E36yKs/Lr\nvdJEc06M06SBJTkbTq7nsDU7U0qaDmTDxzpmozL2dF3PNCfb1W45354RvFOWWPOl8aIB2SWbF70q\nncE91MiM44Hnv/JlfukX/hkPHtz/HqrLNx+v9xDzafS6fBTgecm+B3AbmGqtj1pxnT7mL+ThfeDd\nP/JefuoTP8vtp5829dmxe65UcknmMpcUb51nxb2TDS8NVBWTb2tneXyaWis0O0oroHmXGdPExe6S\nV+++yjdeucHtJ57giWvnbFYrur5Duo7k4JAyh8Nk2YJt0ILZdjodyHRxYZ+Iq+S5MOVMqhVfzbqz\nJkp1OFMVNnzjURYKNiAURCEPUcx9Ge5VbHrpbSugRVaZGZk6z5Q0UrJ6R7fCuphQFZ0nKBNEO3z9\ntbLQHtM8MqeJbHFq2mVqGEBOKrMvzlkcmg1prdtPpVAkm0FV2xZbibQh1WLx6q2wNFdGB8dIOTnZ\n6dh/KwudNKWkgQO2iFeKDjlbmMbitd4GqSxFvu1YGlYevJo4UaBaFyniER/pfDBv8kDys0FImgHq\na1WTpkZJtM9HasG5uiwWul1yULWfD74jRkcxbx8fITNxGG8xzROH/YGhj3jBIugSJYdFPdwsG6qo\nW+AQI84WkL7vFhw/4E6M1LzOFtDhuHeO4toutzCXmXEeyblqkQ6B6mCcZ3aHPbvDQZ9/GDg7O8M7\nx+gclMTQ9bgQGEoBHNvzM7abzUJ1lFqU7UTBU1S17BxiMvvT2VCtlXt37/Dp3/51vvCFz3I47F+X\nWtOOxyyU1/G4despPvzsx/joT358YUI04Fe36CY+MBggzzN51qDanBPNE1qsgDu0Ky1Z3QC1+ypL\nYWzb/kqhjJk5TVzuLnnlzh1e2L7IjbMtGwtqlaEnrlb06w39MJiVaysIFZzePL3RoUL0BO+oNTFl\nNUES79UwPyeSMQjEYJajk+wRXmjcaV2HNExXmSYYLnvSxaI7i4pAsaisnEjTgTTtKWmiUvHBW4dr\nBlG2IDpRdWVzIqxFqX3Y4G6eJ10wiykbYWGU1KxFP6ey2L6WWpjzzFwyBfU/J0TFQRe4qHmeuyX4\ndkkacizxcO6E295+J4aXq2mW7sh0wF0p0iAf/Vz0/Tpj09hkpOoO6jgz0HXQccwfzbZoqgI06muU\nQIhOP8sc8TkxjfvlGvRVU23ENYtIu9aawRZlwYB91NAOqpA8lJTBFWINrNZrnnjyCcZp5P79+8QY\nCV6DGZTwaLsLjirbKWcIka7rGQBEGIYO70XVo86zXvVEi/YrxopyJtQqtXCYDkxp0lizWnAhsN5u\nGKeJw3jg6rBnNx4otbLebrjxxA1u3bxJEOHq/j3SOCrDxTr8ruvZbLf0Xac7hZS00XKCpxKcLpje\n6+vz4nWnYwv7PM88//yX+T//0f/Kq6+8/LrXnNe7gL+IXlG3ebgLvw381sljOhE5f6QLv23f+wt5\nhBj5xM/8NX7iwz9J3/UAtMsfrDMwTLbalrcao6B5YGhXd/qDBm+0m0nUCiMXZVdo+oyAmdoninom\n58RhPHDn4gHrGHXY03Vcf/JJnrp9mxB7xVb9MhXEOUcwr+l+6BWjdJU0V8Z5Zi6F7oQyKBhFChWp\naLfbEuGPX8tjHQZDaHEtorJ678PRL8IKflMlljSR0khKo22xVdXmg+VyYrzqksg16Vlein+F4si5\n6i4np0X2X04wep2VlsVTpdogNZdiKS7JlmCVoTvcsmNp3fXDWL8uqE7cwiNux+KJsiziirfnNpSt\nGXVqmcliwzbM9Y6TIl6NvLFAVlbERTnx0UcqThdCu84qieodEqNS4Zy5FzqnRUC8pv+UTE15ceBb\ndhyicFKuWRWSJSm+7excJk1qajsI7x2bzYYnn3ySvtf81c1mrb46UeiiwkIVSLmYdYFXS1rvoVhw\niKirYR+VZdXFgJMW/qwLYipqiTzOM5dXO42SmyamOVFRCOVqd0UGCzaGblB15Y0nnuDWzZtEgQeC\nxqhNM+I96/XGfGHW9DGyn6clxLqYA5kTh48dLkQ17DqhQIrz3LvzKl/4/O/w9a9/9XsvMt/ieF0L\neK31D0XkReBngc8A2NDyWZRpAvAbQLLH/B/2mHcBPwD86uv5ev40j7e85W188EPP8uYf+CHFvzgp\n3jaB0y2ob0HoumVXX1Kk1qUoLKG6RSGShftsz+Wcds2t662IMTP076XCXAukTK6OmoVYMmfV40Jv\n8WvKW62G3zWPjGFQzNEHh5NCniqHcbKtbhP5eELQHUZOSV9bQDsPbBFq6RDFCs+CSLeBIDRHFCVB\nKI1Ow4mV2pangzoOmnpFE8hnUsbObktkSbB4omtnmxOkGaYxMc+zDqjkiJEudq+Notek9HYSnXf6\n0ks+DtfsvUszrHLHAaajDTitqy/K0a/1BD4pzTBLB4+Kv2fDgTXBJuVkoQVGU7RO37tjms+SEwq0\ngWgr6m0gimjMnKIrbWFMOi8w1Eu7c/N6j1GdA/NMzUmhF1Fc14lSO6UpqGhwoEJOsiBoNvCMETFK\nHsAw9ECl73tWq16Hf16ZHaXqEMSHQDR/m0JlnkZ2V5dcXWr8WilZmVQ5UUtcoKtSNXVoSllTfyy6\nbXe1J5kcPiSDzhrEZ/eQCx6oGpwsx/jAeVIYyImjix1djJCbRbJ+vm14nKuZjLloi0+DqCIigU//\n1m/wz/+ff8LlxZ+TTEwR2QBvZ5no8FYReR9wp9b6PEoR/K9E5EsojfDvAl8F/i+gDTX/PvD3ROQu\ncAH8D8An/yIyUESEvh/4iQ//Jd71w+/h/PzaH/NAGsaAqgDV/lKLllLlhObFrXWvWNd+3IAfn2yB\nK07wWMyQqlZlWlQSqThqCXSbgdhviN2ASGDhHdeKl4o3/Luz4u2tQBcqc8OFa+u8m8NcE7OwgLJC\n4zgXxfCL0+GhiIp0To5ieL4YY6OYrFy9vTNzOlCy0vyWdJqcOHqKaPevhRnFjCsLAyCnzDhOzEkN\n+0NQtWqDO7w3Z0jJVCz7EFG7XacdLAZ/NA90b+d6wcGXj9UGqO2zcMspM8ph65D11ecF6jFaY85W\nwHXWUMEKp1MjKG/QEWImTq07bl25UgBz1jgzH8yy1hbNQqGkmXnWCLAqYsW+LENSe3YqlVTN/Y+i\nrwGl2FHMT8U5Gv+zWQwEH/AuUAwaEhGGYVish/u+ZxgG+l753SlpXqkW+w4Xe5XyG41zGkeuLi9I\n84RQT2ZKRQeGOgRAvCeIJ6RKiN1yLkAXke1myzRPXB32J4pMj9TK/uqKeynTe09Jif1+z+5yx3q7\n5agXrkyjEg0oSml1bR4h0Qp4MLtZb5GBni996Tk+9Wuf5Hef+/xxtvI6H6+lA/8Q8As0cAz+O/v3\n/xn427XW/1ZE1sD/hAp5fhn46ycccID/HG2f/ndUyPPzwH/8mt7Bn/ERQuTpp5/hwx/5GM8882Zi\njN/8oGW717rPunRMuZizWiuAgg5nmhWonGoX68Ol/OQvIkezpVJNEFPVtMmJoxvWDOstIQ5giehq\ncKUMgRg8XRdNyajbwGx86dpEOlYYWwJ9CzlwrmH8Ch9od51RAFiHdWrf2rYSusrofZ/N91y0ACWL\nRasz07g7DtlKCz/Iy/v1Tgu3c2KURiv+1qLmPDPPmVy1ALtwtLltFMgWiitZNNVGjMfrnELQIRhO\n27xOtMipaViLZ7NhLdV2SO7ksU1qb+XeqXcH7XxZoUzZQiSK+TQuRVqOiTsL2VhP7SIQkoYB6/W0\nsHDM/qCxgIrtYBSdUzdFEXWcdHbNIEJ1KvxSeCkvxadRXMXed3AOqRorJtVRo8JR86zCGC3anRmD\nVUIIplqMy/svNrR2Xot8LlkzQefZYgYPxgyxiLrlPVmSFA4XOsWonXqTBB9tBuXoQmS72bA/OKZ5\nolRP7COr9QA1c/ngPmN9QLTuu7k/xhA0/cgJNWV2uysz4dJ5i2/qz9Ajhn+7Ez+g3W7Hv/y1T/LZ\nT/8Gl69DdNofd7wWHvgvsfQXf+xj/g7wd/6E74/Af2pff6GPzWbDh579Sd7zoz/G+fk5cIRO9Dje\nrMX8LvTvRyFKUxWKFBvGWSFoNzGntbqePu1CT1RY91HGiixbxWEY9OKO0SaOupg4qZaKEun7SAhu\nSX5ZpMXVQgIWy9gW6NBwcL3Za67oyK8Yvm5duBMk2+BOTngYxc6LdfEpadakBilMTAc1IKpFMWXv\nRAsrmLLPvFu8WDddzDb1uHPI1YyHYiTEDhf8cRCKvuaCLNi3OLUjxQZsqkTUBWNh1pSqylaDDpbv\nW2foTHW4KDNbkMPJJ6k+4sa7tgSgOWeahqd50xzbfIV/qhUvRGcUirGLsVQ86r5oA1bvdVEpGY+Z\ndRWlCOLqwpaJzqn1sF0/1bpaEVnmB3qtyEkjgs1YbX7hbAdV7L3MahzV9x0heA0NlmW+jRjjRKEc\nzNs7k+fEdDgsvvg5ZTqj4zpjeGgDlCkFkuhriDHSoZ4uCnt06ihoW1JVFwdi5xnWA93Qs9vv2V3t\nKXPG44jBM3Q9280Zm82W9bAieE+aZ3aXF3qe0EG6d15nSXEgxI4Yo4mMNObwq8//Ib/567/C88//\n4XdTTr7r4zEL5Xs4nPPcfvoN/Ft/89/jmWfeRIzd8r1WxFvn3GCBhSpn3WQz7cGKqWuG9gY7SEt9\nWcqe8BAnuQ0KxW5iGufcZv1mc6pxUnGhuenuV1VwXecZhkDfaXELUQtcKYrLtuds8mHv/AKbqGeW\nFq82nJUKvvqFTSNZ5erq1GcLlBXD2kyicjGP9Ik5jdSqFMs8Z5xz9NETYmedc+uIq3pMN525taYV\n49vXRJGqu4oYtWMyBoY4G15WR3UOCQFnlqRNd9+gKVnO8xEu0HPuTMKvv7uhCk60gHu7mXM5JgKp\nPN8UoDbALvnEp11OP1f7zJeOQLvfY5KQddrSsFdNWspVFyW3MGV0YBlMkk5tcxeHR5Q+aLBNBhoV\nNAYbMM9iBbmalSvqmNgGv1RdfO19AMSoplQhBHPvE4XBcmKaRGcsxvRwApnjEHgcRx48eMC9ew/I\nudB13dHfpt0LtnLWqonzLunsI4bIalgxHWYNZZhnrh5c0PWRdd8Toqdb9aSS2F1dcXl1IGVVeK4Y\nGNaR9XbL+dkZ6/UKB+pZPs16b5gvkPMRF7qHFowQIuI08ec3PvVJ/vBLv8vV5eV3VEte6/G4gH8P\nxzNvfBN/+Wf+VX78/R8ihm8BnYB1Lw1P1Bug0Z/KkqKufZc5YkBVXFhHJg3vPr2R21GPX9aJHAvZ\nMQleE0cGK+DarTYedfDQdY6udws7wAfFrec0mXChLlCOdo2aN6k3n6ftEZZCZzd4Rv2ctWsrhmMe\nfcBTzUzTxDzPNrzMpKwFPEblVYc+En2k73r6rtOusSldajGHPX0vKms3KKEWUsngIHSBYEnuPgZt\nmQ3uqBj2W9VjQ0RvibawVOOOGxKhhxw5NgvGXYuaJYkQBGIbsgnGOMpLBupsHtjVDLNS0USZZIua\nc8uqvezOFhtCw4J1LqzeNDH4BaJRuwNZhD8++KWIa+JDszRW1SEikE5Ug87ZQjovcFl7o6U0OEaf\nx4mnUEk5M06TzlMs0AMqKelzdJ124dM0MY4jALk4xOmOY5oL+ymRES73I3fu3ufO3XtcXF6COF24\nnTPOvy4Qam8QSamSc4UA62HNU7duM4+ZnMyqIWXbSSks0vU9IQQuDzOYG2eDYaRf0W3OuPnUbZ58\n8gmid4z7PU5g6DooieCcQjQhavfdafcdjJ8O8ODiPp/6F7/MSy99/fuGfbfjcQF/jcd6veY97/kx\n/spf+9ce6rzb0YhusgyLTrtOLdw0fBnbzhpE3G7gJVDAcPMGf8KxS7Jf9siYU1hS4Z2w2azZbFZL\nV4QtFCKF6D195xn6QN8HvAUezHNSO86UaCG9CAuHuW2xvakQNcGeBuxTUmYa8/KztVZyUo+KlBNz\nVnnzYTyoz4ZBJM4rxzjGQN+viLEnuGAQjgVKgN7MaSLnNvBzx0ILS/CseI94E8EIukvxzoruEdNX\nSmOneHJlCVeoBjXpLkOgisEfZcGpceBrW8bqkq6D1dwgkKruQpKpLbHdikrAWz9tn22DMk4XaPtq\nWLzzNl6r6uDn0YzQXCDNldkwf+UzaxqOvnal0Ylde6UkiheT2xu04f2iEF3sg09MyiooVbMWxDui\n73QoaouPsm6yNSk24AxhwYez7cacwVY+OHyupNR88tX2VjFmTYsHSKkqO8YUxKlCqYIPkdVqzdCv\ncBK4vLji8uKSaTyoSVfJOKIGciPUOUHSxUgMHuxiz2az5cmbN3nyyRsMnSMdDuRxh6+F8+2GnBQG\nciHiY0eMnak2O0LU2crFxQN+8Rd+nt/7vc9zdfX97b7hcQF/TYeI4wd+8K28/4PP8ra3v+tbcESO\n/z2lfDUe8LGj0cLclHztpxr3tlZB7SwrSDO3so5PTm/s9qNHGAFUvRdjYLNd0w+9mh0tPG2VDcfg\nzLQqEGxQVkVIJRsboCwFTtGSIzjURCxLQr0VRUTIDqY5kdK0QDFpTuSiTnBzSqpKtRlAFzu9KfpI\njJ6h77WABy2qrcOvrdMXjLp17O6PpQ+cq9CKjmh6uARlCohtx7M5R1VXcKIQSlswxfxtSwOgzbej\n2PmvpZFqZFHfeXH4tiMplWqhEbpm2oKQs7Z9tivJJZvNbz35JE/oiLU+VMjFKPIruUIAACAASURB\nVI66aDooDt8+G6cddTaITuENbFCi8JUKxOy3WFORc152WfpwWQou6HW6NAzeU2sAmahJKZ4hBEKM\npiZtQ2btxNUytRqUpzqCeZ7MYkAXIDGjLJoDpBlOBTOpUp/7suyuSlWmzT5NpCqs4kCMapC12W45\nOztjvVmz313pNVMSXRcZ+p5aK/txz3g4UFKxJKXIuh+4ttlwvl7jayLv9+TdJX6eGbqeflgxp8h+\nSlQfkNDho6mWjVs/jgf+6Mt/wP/3z/8Jd++88n3vvuFxAX9Nx7Ba8e4feS/ve/+H2J6dPzpJRMsM\nNPhDnNhdc1raZWEKtGgmXFPaGQbbEj2kOROZA54Ng463vN3kraAYHu69BrYOw0DXhYWpoaZEyuLo\notfiHcz20rDF5kqXi8aFqbfIMaC18XCPIhaW4ZKBJMxpYn9o4bDKwxXndFAnlep00Lff7ylVaWZ9\nv2YYOmPExEXp17pVhRC8DfF0B6AwRz7uVEpdgp1LMZW580bzUkEIooVDzMtFxJmFa2mlEsSYLebW\nV12FaipLG6r5oP7X0buFftlsRavNOwBdKGo2GwIT7ZSi1qbmfNh+pqUNKUMGShErxrLg/95r3Jdk\nj1R/lPSLmpbpgjGrZN275Xzo+zK5P2WBinLOD32epyEdOdtC1D5zp9fVOI2kPOOCepIgstj/Nq9s\nqMsCoAuDB4k0s6+SbQZSK1OaNPLMtAUhqIe5LLeWQW8pk1PhMBfwbfer4qv1aqBbDWpH23d6r2Rl\nWMWgr1ndPw84YOh6umHDte2W6+sVgxTGB3ehTIQ6MwTPZuXpV4Hd5EhVSD7gg8Im+qXsplde+Qb/\n8lOf5Itf+CzTdEq6+/4djwv4azje8IZneO+PvZ+3v/1di1gBrH6ebOMV2jjZpjvlT7cCq0Mc6wjF\n2ZenWX8qpHLaaTe15tFXo229W3dqI03rUsVupKNHh5NqHO2M90ofDKExPDBqmqhPcsrm1qaqsubH\nsbyfhVqIYaOJnBXPHqeZq/2BOamPiO+jeif3vXJ8k4prUpq5f3nBbncg+o7r5zfo4lq7L3RbrWE2\nLbhZCEGOiw1GA2kbm6rip1QqucBcCiErTqppREoVRDBl5dEtUil8pX2ExuSAWpThop+HM+qdI4ZA\n36nQIzR2jhdbyJovLDaobhBaMUOzzJzSEjidSxtKHnc4bcirUISjFp1ttBSk6FSQpcnFDebSRTbn\nQp4nu8acds4n14aIQ7wtctY1tyJ72ok3TD5Yio1rplAS8dEzTqPuJJ3DR0+oQQuwoOZXoDMOex8s\nH5tTqClrh5/mmf3+wG63W4pfCIGUW0OgkEfJ6umdSqVkJRI0WM4ZZOaDzU6GjhAdNSXt8AVSmhnH\niVoKq24g9Cs2mzOunZ9xbdUR0sh4eUHshO12xbWzDetVb2ozYZ8C4hU+6QxGCSGS5ok/+P3f5Vd/\n5Rc5vI5ug9/ueFzAv8tDRPjgT3yU93/wWW49dduKdV2+14qIHoabNlqX0YzEjHiaIMMQaZbw3eWr\n2CKwVBRasjdNZ1KtiAuI8xaTph2YFO3C1fwH9bMoUFEBhY9BY9NMvixOL35ETOatnbN4WYqDs6BX\n75SN0vjOGqI8M+WJw35kfxiZU6Hv15ydn9MP6+W5U8lM86RGR4cDVRz7w8hud2AcM2fFk5PZvuZk\nBUZhJvX50HPdVsnGTG5QTcmaNlQQ5lRxU8LH2fjdYYE8GjzRwpk18VyhB6F5mGgYhO6KLP3HoKnO\nBzrrwIP3SGhMCeULt+si16wB01V3Ibkm5jKrw6MxN7QDF4W5XNvnnPqdWLSbdfROPF5U9VeWc9Dg\nFmEJ/p1nVSP2NsPgOGfRsYsuOGVZQI4LdIP8WjfeHgNq5TqEFSEGdrvd8jjpO2ZheU/OBwIYHXFW\nLxEbgOdqjzO4RxkqE9M0WW4mBMPWqWVZzNI8m6xenRPLPNpiFai1stluuHb9OtlCIsb9npJMqOWE\nPururl9vGVZrNus1Z+sVm87TlYkqmbM4cPPaObduPknsIpeXB6acubb2TH7Adx1d1xO7Hh8iX/3q\n83z2M7/J88//0etZbr7t8biAfxeHc543/8AP8omf/qu89a3v+OMfqO3wCUJtGKqz0abhIAqbWPeN\nBxTXLEa3Ow1FPaIbC36CW25X9Gd9Rynz8V+8o+87hqE3wclxO0/NRN/RhUAMUT1JTEWmYoyZnMwv\n2lzf1DZV+dQhRku6EUqdKSUx5YnduGN3OOB8x3Z7xnpzxrBa43xUhV7OOj8SrwKMwXHr1m3Wcc2q\nG/DWdZW5BS+07bt1YFKBvCwc6tFhnVnKlqCDhtx2Aw8udqRyQFPLA0igVCEY5u9soDlbmEOj/Cms\nIgv7xhv2HMzCNIRAEFtUnFm0iu4aSjUozAk1JzVWsoW1FN0NZINUhIyzoiymEPQm8a4WytCCAQyZ\nUfpeKpRQCVFfQ7Ydh1JQ3QIDVWzonLMqTGtdnud4Ker1clqgHw3pWIabtZBKQua8CFdijBwOe3Ju\nGL0G/+aalx2ac4Irel5KTmQ7T6U2WCQtnP82p1lGuTmRZs2PTWkiBMd6u6VY8IITNO3eBqfeK9d7\nPW+oJRNXkcPFJeTEmgEnoj/nA52DlRdWUuhyQuY9XS0MXogiRO85354zDOdwcYCp4CXiVwP9ekW/\nXpNq4Ut/8BxffO5zr7vb4Lc7Hhfw7+Lo+56/8W/827znR3+M7dmWY3lunJN2yIJJn/pjLG5ztbKI\nLZzHOS2gwStHWW1PRf0wxKTprm192689+X1VoDokOQLBwhGUybFerxmG3ry9BdccD8GCG6JSzfxR\nkt0c8pqApvl8gBYTbxig94LUYjf1zGEe2U8T0kW2Z9dYrbfEOCDWJRYREylpIS4UxHmun99gFQbd\nAjthnOalC27nE3ioSzRklIp2/lQt4KXoczpxxH6g6wd2+wP3L6+YcmE9JYa+p+s1tKJho0EcxWtH\nl824qSSFDGKIGlcXghp+WTaiR+X1qijyVO+005asvhg1kOcRUgJR9kQ1+TpZ2SqaSGM+OMFp7mKM\nhpXbot1k+UZHTdOMq57OD9YdB51fZk1rqtU1d9llEXQ5q9dJ+99x5V867oZV15OO/PQ4dvhKj3Wl\nGDe6DSfnZTHQOa4Km8SJCruy4fom+CnVZhS5WpLOvNAbvc031OhNmw+9HoXeUuKvDjPp6kDKhWma\n8KFnHkfzTtHXP5eEC6q+zGNGYmDtA3HSMI9IwecJmdT4anBw68Y1zrYbuhDIk/rFx27FahOYY0Ek\nIJsN3WpNHNa8+I0X+fwXPsfzz3/5YXbYn8LxuIB/h8dqteZdP/wePvHTf4Wnbr/hKGaBR4r3I0cD\nVI02aAYkKHarBVsHUqKhqCLHOC4bzLXC3ZRwPLJYCB6qR4qYMVQF2ypu1mv6rlOKnsHFUI0+2AYw\n1nlbOooKaJIqDkUeejsPDdGCgzKTSyWVRKoFFwPr7Tnbs2v42EN1y1uvRvtqN23JGujQxw6/FmWp\n1EpNM7Wqek4aaLrcGIYHV6gUcpkpNRm/vGHcylwIsWe9PSeh0ubDvftcXO7oYmDoI6u+Y71asVop\nxbJUc0EsjZ+d9Zw6R+e0iIcQCEG34MFpVy8+QDjxT8lpEWlRKj6oWEck2UDWGCB2LShcYwKg5mBo\nPusN5tf3WilT0azN4ij9MXPT4TS53WA0pXRqo3BK/3Ow7Crac3txiFOF5inj5LQLrwb/nAZzZ1Tb\n4L1i5NM0LsPQ9lXM4KpdxAoXVgtLEHLVgIVpmvS6Sy3YgWWJbtetF0Fi5OzsnM1myzhfUGplTgnx\nMz7O1KsrrvZ7Dlc7xv2Bw7Sni8EWAMX6+75j6DrSNBGBwRU6CtvoePJsy5ufeQOb9UbZL96rHW9E\nKZnRE3yPG1b4bqA6z+/8zmf40u89x+X3WbTzrY7HBfw7OJxz3Lz1FB/7+M/wlre903Iul1Z4KXLf\nevW1gl2142q9o8rQnQWuqvgjiDkR0pR29rNtGPrQszaeiw6wFslmbUUj0HdRE3lCUJ/ohhaL0EWv\n7IkYjMOqgEy1At7Cb50Bp1pkGm1Q3QhDcGgYrRUH7xm6gbNr14hdT6kOi/dctv65DRRbeG8tZs2p\nN2vO2eAa7dh1vWlCIkODTfjU7E2h4oLNFko1uMrjgmO12VKdo1Th4uKCq/2Bq13GU+hDYNV3DKuV\n2QyEI1YlsnSouRgbwjVeeTDP6KjOjrFDYkf1TmXq80yZR8o8Ib4QunZek3ak9aHLwg6FzZrPh/65\nqW5PdnCpaOdPUGVj0cR6XeCVISIGp7QCfvQvP34toQNLw9zYNyfn+5HrunXg7e8NaqvVLwW7WfYq\ng6TYQFKNpZzXRKCaxIy7NGh5nGameVp2fcv+qiq3napxazEGfOw4Pz+n73uQSwsqzlSZCHFimmYu\nLy7Z7a447Pfs91eUTui9NgbOqc99FyK+j8Sa6clsguOJszVvvHWLNz7zDKvVhoIwzjP7OS2eRcV5\nJEZ8NyA+8MILX+e3f/vXeeGFr/2pd9/wuIB/R8dqveaH3vI2fuoTP8PZ2dlDSjlOOtRHu9XjVP/o\nj714SYvYIMop1uaEqQ0sjW3inaAOGq2YyyJ5VpaJFu+KxoEVZh2gScW7yNB1rPqB6MJiOOXQbiZY\n19Q68KVbgqUTqgZHNF5wCH6BEUIIxCjMySiG3hOt6w2xUzVkbrisbp9zrpTUHAerFphSFBMvRw5w\nS1jPjTMP9vpPrFmldeGWVoMD1GsFcYqxewjiWImA88R+xWG/47C74nB5wbTfc/FA04JC8PTDoPDK\n0NP1PbHr8FGl4KkkU9Ny3CWJgxDx/YD0KyRq5JhMI2nnbAFEk2hSIvhR8XJpxdPp61XAfVmiF2BO\n6nJ91YrJ8NUhMKXZQipmY5qI4vxWnJt4U/M4nXnTtOddsBNw7fd59VY5oQsu17E9wnHEc1oh1yJe\nHmJa6S5NsfFpmkjmL+5DJNTKNE/kWphzImXtoOe5cciLCWWrhm/kZIEbha6LbLZnnJ2dkas7zhNy\nokwjceqgwtXVJbvdjvlwIB/2zPuJfgh0jb0jlehg03X0Uli7yrVVz1M3rnP71i2uX7tOP2wooOEP\nux2XqajNgHO4qBzww3jgVz75C/zB7z/Hbven333D4wL+HR23bt3m/R/4MO973wfpup4mKfl2x+kW\ndNnqGlQSvDt+OVEesT8p9qL8a1PPHKGY42SU1nnr9li3hwWVOYcQWa/WrIc1MXSEIHiXNb+PqjL1\n4K1z1U7MWVr6NE62lWXxvlYnOTPtWfxU3GKIpMVDDZeKDdIaWlQzahqVoCTtvJX/m3HojSqI2YLK\nst2fWxq6OEIb8Nr5dNYNO7MVzcYrVrJOK+oNI6jEbmAbdLA67a+YtlvSeGCaRg77HZeXF9y7d49a\nK9uzLU888SRn52d0DCSE2Y9MJlgJEsjLmFAHsj52+GHQcxI7m4uAmw4wVQuuCHgxSZTziCvLsK5Z\nkIqFAai3zMNjakrDwRUznuaJOSV81Pg1w01QqqG+91ob93u5KB/aYbRLqcBCwVOKuCmFW1fZBpF4\n9bIvBnBYytSRP26ff60qcAmOlKpREBvnWxfaXFSRO6ds9NO87DpKqZSUoGRNqyqVvh9YbzbEGLl/\n94Jx1AVsnibEFXKvId673SX73R5KJtZMzBNxSqxWK4KvuJroJHA2RFYe1l64vh4422zo+t4WZ8A5\nYtfR18z+MOtnVR3VecZp5sWvvcC/+JVf5MH9u99NOXldj8cF/NscIQTe9cM/wsd/+mfp+uGbH7Bc\n4PLN3+NheEVhiKMdq/cm/Ii6DccCWh8yULJp0/LstS0MFv1lajrMmS7nU/aJStGdeJzhl1I0/DX2\nmlKuLDITkKBdcbGcyAZfUKsZWZmk3R1vXu2GjdeOqeYsyqw5D1bh6HueCyXp4LEWNZtaqkg91hlV\n25ktabDZAM3nWRc3vXjFGBg24PTGtzFFaMq6xc65MT2c7hK2Htme4apS0+Zxz8XFBXfv3uVwOHDn\n1VfJOXF2fg6rlS28Nq+wmUFF7fBK6ohZFzznNHvSxw5iBzlRFmWsRm/5GHCzM/m6QWrGSNKhn06h\n1bSqLmMPxbMNusiNQ670PGzYTFtUnVsW5GKWATijKNqfq03EC83Yq5roTGX4JSXblTXe/XIBLp//\n6eCzBY1kM0BTbDwiMtn5T0sjI06oFDUvm2Zynmndt4qXtPtuzobivXmqRHa7Pfvd3uAWpx4z04F+\nGMgpMR1G0jTia6YjcdYHtkPH0Hm6IPSdMKwcN84H1l3HEByr2NF1HblUrsaJuWpzlcqs4p85MSYh\nOYUjLy8v+fznPsOdV181temfzfG4gH+b4x3v/GE+8tGP8853/oiZRbWjlZo2yawPFfFHxRCnf29C\njBAUS3Wxh9hTfQ8hwuwX17flnjmClcvvrnZnt+6rSsF5pch13UDfrwhejYVUiJKpZMQ7QjTcUiu4\npf60G9CSYlq3a3h9o881umEVFEaQYDis4CzYtRZBaAMse3213ZQTqUwoTe7oLVJLXX5X6+KW0Ahh\ncfaDqkO8opOu5luOoPonqZpo793Ra6ToQuLFIY1V4nT3o+vROdvza6zWa+7evcvu6pL79+6rivS6\n7gJiiKRpJnWzQgzO1J/GIBEvUAZqTkhKSFsETz53tbPVcwRHYUsTUNlfdCdmXqvVLoRqUNViwmTv\nOxcN2q214KlomLKyikoV4/674/XZhgk0DYHuFlLO1FzVjCtGqtEGKTYspWHhxydp82X9nNsiq12z\nP8kJTSlRilmxGv2wop+d4t+TMVParOQ4TC6lMAwruk4tYneH/TIs9U5hxZLUhjanREkzUjKrznFj\nveXW+ZpN3xGkEqga0dZ5zr2wXfWsh4G+H1SrEAdcHMymuKrXi/Q6zBZHF1ckcbz66os898XfYRwP\nfybYdzseF/A/4Tg7v8azH/04P/HsX7KknZMPSvfOHAv5ybdOijU8zK9t/95cAmPXEboBifpVvaZ7\nqJtgXmTVWre1G1ePFOuapVEOdCvuvFeRQj8wDCu8V6Vadco5FjHHOB/UVc0od213kEqxjigvBbQN\nvBqUEmLER9vem++0xncJ3gfUR0T/Lpp8oNtik9fPaVLpu+i/t6BnZWQ4nDMhjTNvFlg67FMMt5jJ\nVFluIGM5VHTXYOHFiGggAk4HjYY9V6ceKd45vIN+WKnCrut55eWXuXPnVe7fv4/3Xi1D+14zLOdE\ncer2J6VotuRBqGRm31FyQVLGp4TPRyOytnA7g0kaPWPxBbECLoYzSy2mxC+6w7HFTlzzONFLUj1N\nyjJkXEIgnDfDLkzFebLZMWSmtuvUie2UFL6oAN5BDRTJyxDeYQtWY5mcPG8r8E11Oc+zdeDNAfEY\nSt2gNx1CJqZ5NvGP/lvLuWzNT4y66B0dDbXD902QVDKHvfrHlzTTe7i+GXjT7Sd4+skn2PQRKYky\nHSjTCKUQSqGr0LnA0A2s11viaouLHYFMcJXiBSnCpd9zmITQnfHSnQf84Zd/n69//Xly/rPrvuFx\nAf8TDuHtb38Xz37kY7z1be/85m/Xhx76zT/9yAT/UYmyc55oCdxdr1++6xHfgYvgZvXpAJpOswUb\nL8/bJPecKPDEEePAer1hNayMetisQ1uupRnStyLe5Na1kkwNV0s9Qj22LZdW8MyWtZQEySFmo4rI\nkmguFgBQrQAXrzsFFf2YtS5aMOpSNIxkVpUD7Bocgg47W6hES45vSkptWk2UI0fnwUoFpwIcnA42\nFd/Uc5ZFSE1d6nVAut56U/QJ0zxz986rXF5csl5tWK0yecqULpN9XgbDMk/UwxUlz2RaQo1WRzHY\nipNFRou2s1iz1hifdt8q+z5moep7k6ouj5U2jG7DdPMpb0X8BNYTMVEAdVkgjmNJux6dIOIJDWbz\nht87hwtCzWLGa8XsCBRqcd4hRXG75TM0oVBjqDinlsiK3Sd89strA33/KWcdYhYV96RsaTtiTKSg\nbJ+UixmkZTDTMDub1JLYX42MhwmphWEVuHG25o23n+INt26x6jzkmWl3xf7yAePVHimFMqtojCx4\niQz9oAZVLuO8kLxnLkKXHNFBIfDCi1/nC5//LPv97ttWke/38biAf6tDhC72PPuRj/G2t7+TYfgW\n2Pcf+6MPF+4lxYVjEV+6WR8XS8q+H+i7njF2ZB/BB53+5SP1ENq6YWKc0+7bWjLBsxo2bDfnrIYV\nTcHnXdvtW3EU7QKdd2bypOKMQxo14V1YErYb9r0UBFGcuxgxUZxXKOaEvSAcu6wF2gjC7NXOtTRp\neVGKGQvub11XcIubIEWLjPeNv2yWrw27dyaA6TowQUqLqfNB4Z1cIBkmjGj3nhSXsEJp9rjRs3Ke\nG+huZLffs9uPXF3tWa8nutgzT7MZWVluqKiPdm14MUDV85MLuJyoWV0Yp3lmmlv4QVFsuArBofi3\n2d+KCM0jQWxgXOZkhlsK2agDZCPZWxCIdb+ueqiNB37s7I8eMu2C1WLrvCpjFZVrGkgQb17iOaO0\ndruuzbunzWxUDt/8XqBW7axD0IXOeWHOxfJJT/zU7RpoXjX5xF63IGTnCT5S8BymxDjOVDzVmc2C\nWTOXlNhf/f/svUmzZdl13/fb7Tm3e+9lV1mFKoAAe1IgiYaESAkSRbUhm0ExbNn0xOFm6Lm/hsMT\nDx3+BPbAE8tD2xFWWI6gFSGHKYXBYqGpLjNff5tzzu48WHufezNRAAu0ABRQ2BU3KvPlfe/d5ty1\n1/6vf7MjxcjSOzpjWXrL+WbNxfmGzipMzozWYEvGpCInWX00asspE8cRVaJc4s4wpMxdKGyHSMTx\n7PI5f/Zv/ow/f/sbH7sm/DDXzwr4RyzvPL/8K7/K137367z+xptH2tXHXKeY2KvFW9cLRlffETma\nC9zRinjyHvIkHOscmWV1tFNzmQv3fBRQCooUZu97Fv1SfMpLwZqqFa3FsMo55oGWatzCUgglEEnS\npWpqQo+TQqgkvYZaQGMS4Y0YKNVCXQuYqbQ/OTUUTBYVptVJjuT12aT6VMz8oW5tp8ism/hCz9i/\nnqEk6hBN1W5b6N91kJpb1qKRrjFmVJRxYta6sjMkCSaUGUuYWTd+ueLs4iGPXzvw/NkzhimwPwz0\nnaS9KDTOO8i1E1QRh8TXKSATSVE6ZhMzcRzY7fZsd3t2+z2Hw8AUA7lkjDNoRBCkaqp5fTmZI+uq\nN02q7n2q4R8VLlI5Q47kulnGrDFKwitUCyxu8MwJA6WBb0Joal7eMhRWzf+mgu4FMd0qqdRQHzUP\nJHMUdWXrwJUyc75kw/dzlgLufFc3YRlAyx7eBq5NqSlsm4JG245YNDFmQgaQAfcwjNWvXrrwnCIp\njLjOsOocvbMipbeGzmpUCmSj8M5SFktA0fUrlqsNi9Ua7ztyTOzGPcpqsrFsMzwfJm4nxag6/vT/\n+lP+zb/+sx+oHvww188K+EesxXLJ7//BP+Tnf/GXWS5X/KW0wXL6x2Pn3f4/szzmAaYciY01OO/o\n+p7FYslyuWLcLQjjgRyG2uUecXY1d94NbjjVgErArNYOZ311aSvCD4YZg9TNKOmEZSc3ofON00jI\nQQq4AWUk1aWJMLSWwN+MdEpSzCskUqdZpShqTy7PPSVUChgipgRUCTMPHqo1S0GkJEWKSckiaaeU\nWUX6MkSgmlhR5Nc5oVPE6mZRUE8E1kqoAtXAuzB3/vOQWIvFbSzCtGlOi3axZHV2zna3J6fEFBJj\nCOjRzMwQaKcuNYueSsX1wzSRDiNlHJmGkd1uz+6wZxhGxjCJV4jRGGy1J7D1xCDUSDVTR4vg7ikJ\nJ7q5l9Gsh5t1Q4Nr4hF+U0rk/u2Uo8WTZy7gtWi2zrtWX5rFcR1F8xLrZI4DPLKQ5NvlFKCUUA5j\nlFQe60yFt8S8yhRmaEfYivX9rMU85SyWsaWgjUdrS0yFKWZSluc6HEbCJArczjkGa8VvPQRUjnit\n8dagS8aUzKLrKRHSaLDaUnzB+wWL5aYW8A2u60hpYgyZgOYQC7eHiZvdyGh63nn/W3zj7be5ur76\nS2vIj2r9rIC/srqu5/Of/3n+0T/+I1577alk8Z1S3b7PerV4v7RqoWzYodyEkeB9R98vWCxXHBYr\nwrAnTwMlTOQQBEqZi8VRFFSbRgriCV0wONfPQQhat8T45itSh5HGVntNxcn+IE5vMc2sh9le1hzZ\nE9qKm19B/D40Yo9KC8XNot5sYbU5JkqIqDihUkCXhC6xHutL9SWvWHeSPMeSkDZSN8plLeC1iFeA\nVo72NV9Mmda9JdGaqAY9SJU3RqF0Rd5LmSEcmcPquZAXbVFOmBLdKrMOge1+z/buniklhinQgmub\ntSyFSo8UwUquQptpGBl3O8bdjmkcGYZBIuRSqlgyIs93XgKXTc3lrNz2dvAruTosxiwD0jrHkPup\nuRAfd5V2HTYgosyDSvSR9z9fs43TfQLxqTYlrTRSGhT4UhHPzB7sUCGUfNK8ZPELN8dOPQwR61KF\nSwRmCTHNVNCU2/OUzcRZR0ExTYEp1lCHXCTH0kjcnsr1BBcTpIhTsFx0rJdLrNGEaYDcibeJ80zW\nUbKiXyxZrlasN2cs1xucd8Q04WLHIcF+NzLlRMiGUOAbb7/Nh88+ZJzGv7wY/IjWzwr4ydJa85k3\n3+Lv/N1/xK/9+hdxzr2EUry8fgBYRR0hlGo6iLbS2RonrA7fdfh+Qb9cEoYVaZrkpgNZJ6HFnYye\njkxxhYjkJZG8bQbeuzqhl65bjqy6slRsZUHUx1en/ZLdWJPkq+1t85NuboWtM5OhZT1WN+vU+uEt\nMsWSojNFyjjBJNzccS8daCqgjKWgsFa6LG2ki80FVK6ddMPsNbMKsxVneRy6UhqPg8uijlJwgTdm\nhEg2JaWlGa/ElqaKVCBYtjJoa/DLFSsKZ8OBKUrI8hgj2lqBjrQIi+wUWGPekAAAIABJREFUZQha\n7QhSEu7yOIgnx2G7JUyDKFyTxIVpa7BefMQFopIw5Vzq/IAKeyGcfOE6R0oG60wNu2jD3PaaiRag\nmWahxJcFFMq4eu0cmTlzvW87RUOSGrxWWjNSjjtEaTOX+n7nFvT8ahHP9e+5mpbJZhxTYpok6WkK\nkXGaCHUwmVI5gYmQoGZjmUJkmgKx4tY5Swzaol+g5tOJ2NGWkrHWsFmtOD9b463hsNuyd5Z1L+Zf\nXd9jbGGxXNP1S3y/oOs6nLfYojEsiGOijJB1oOjC1e0df/Gtb3J7f/vxP/c/gvWzAn6y1pszfuM3\nv8If/fF/gDGnL83LI8T5S9+jK/8uK85aRNAVg9aiWDROqITWOazv8F3PYrkm1jTtoyeJdDm5HLvv\n9ojkcNDOwwpnvVyM1tIS21uxFi5r7coVs5mS1F7BNXM9omtVWSrVuMkYW50JKy/caLQu5BxJWgya\naB/qAiXJBysOE3E/kA4HDvs99/f3bHc7YimVQunp+yWu6+vvMqhSLQLUMUBiLtpQxSrCiGk+5bMK\nU5d6cjhasAoNvVRa3jHwt9S2XqvmxCivaapQgrKWfrXi7OED9sPA9u6OIUV0CMRavMdxwmo9F/AY\nRPgxjgOH4cCwF1OlOI6UFIW5UwreOxbLFdZY8mIhr3u9pLRp4h1RraaYCJMwNYzWcwp6k+UXqCcC\nJCDBlGpElphzlNpzBChivSApPQ1HOjmKIdfSfOU3tk+9tttpKNfPxEv+97VDh1yhPip8KMPynMX7\npBSYpsA4BqYQSTWcONfuu4meSimMgxT5XHF3UCz6JeebDSlEdtutSPLFsxfrHJvNmouzDV7DNBzY\n3t1BCBKQ7TqWy57laoNxHda6unlloZtqTxgHhgxBWQKRf/3n3+CDZx/MocyflPWzAn6yPv/5n+d3\nf+/rfOHnf+mVwWUdmv0lXfdpTX9JyFMDZaVQNsWgMAlaEXedp18uSWE6JpdXf4hQivi+xdrhfsRv\nbt1l1/s5vFi6oFqsOcE7Gy5/yk8vClIhjFE6RKXRumGzTrDvSkGrukKoSZl1tHjysySkIIWJ6XBg\nuN8x3O/ZbXdst1vu7u4ZpgFtDYvlkvX5OcvVmn6xwPtONg4tOHOmdZgK06LATk40jbEhj6x27S2A\nohZuXSCrMjsxNkc+2RQqJ5uGxcrrlrLAVc4ZVmdnnB0GhnHk/vaW/X4vLo/OYVAVq5bbcDiw3e24\n392z3W8ZDgdyjOLLEaYqD89Yo9is1zx4+JAnh9d58PgR/XKJ73tSjUUrMZJjJIZEmILYn/Z9TYGR\nAv5SiEjrmBMYldElgRVeveBSGrIik2Tz0m2DPOL4xyuZI2xycgyV4i2vXam2u6dpQ6XGxRUQW+QM\nqg7CG6UwxFiH4JWJEysLJYmIh9ICJzTjILzvXOp7pWTDXfYd69WSaZzw3qOtI1QKpu8WbNZrztYr\nDJmxBltsY8JZz2p1xtlqw9nFA4z1KKMpCEsoG8shJG73I9sxMqTC9W7L//bP/1du724/Gh79Ma6f\nFfC6Lh485Le+/Nt8+at//Qh3fBzg+y9ZSrUOqLryKRksCiwhg0zbeVzf09dQWPHjlpv4ISdUyVLE\nk5Zj64l7nHRtglGvzlf43skgUJWjYjI17FIKm9VGosC0uOOlGBkH6fzJCmp3a0654vVDVYGJOfhA\nV0MtCV6uVLAUyGESVSKyIXjbsVkadLbcbe/Z7ne82F7z4vKG1dkZDx8/4uLBBYvFom4iBqXdzNgx\n1qCtIgZhbzSYoTFH6iteceksnSYSUOyMJgvVvRo/SVcqJwk500gdl64015zNhMV6z9mDC6YYmGLg\n9vqGu+fPWfU93jlKTIwnJ4y7+3sO0yBxYKWwqjRUXeXaRskGuB8ntt/+Ds+ePefJa0946+c+x8Mn\nT8ipq4pCMXJKNW7Mao21UryNqcPkDFpV/JpSrWYbdCKD7VMYJKdYh44GEVlVB8MZMqESnI4QSaPq\nNcxbtauumpFJgLIId2I8ZkHmgvjcTJGcFSFITN9hmObTS8tLrb9OVJhFuuFcArvDnpRqyHShSuod\nZ+sVm/WSbckYozBOYDbvHZv1mkcXFzw8OyONB2wST+9UO/0YMyhN1y/pFwtoviwUpqLZ3u65utuz\nHQLvv7jkf/8X/5yb25s5sPmTtH5WwOv6/Bd+gb/2xd/iM29+9th9v1S/Wxf+/Zaacerjl2SIpurN\nYCgajEl1MGiwnaOLnXhQV++HPkRCk7NXIY7Smhyn6hQYZ8wZJXhy1/cslku0txQrEEFWufJcj09I\nCmoVmyT50LffG0ILEqiCEvSRaXDCIRY3QQVJ1U2lOgKWpvNOKJXxTmN6j8kKpxzJFTrb4+0Ca+64\nvLnmgw+f8f4Hlzy+3fLW5yIPLs5ZdD2d77GA1Rpdysu+XnV/lYAJM6sXy7y96KpibVCKnvnjc/Gu\nxYsq624ugZlCrO6JwjOXEIGHjx6hjcwZ7u7uSNPEbhjE4yVGQs5krXGrJf5sTd91LPqeZS/yekP1\ntaaSgEpmOhzqsVxxfXVDVha/6GXjTknokDXvsd+IOKslsM++KaqdsorcPyeBn3QdMjaYIyfBx1XN\no8wcu+8mPCrH66SUlseZZ2+SVshLDfKYvcFrNFqqzoEoCcZOuYBKZESgk0thGCZSzgzDVI2s5FrK\nsYgnfKMsMhBirO9PopQJaxzr5YIHFxsWneOwKygVUSXIANMYlt6z9J7OGsKkCMgwHmNRyuJ8dZq0\nzQu/oItw9scxcr09cD9MXN3v+fNvvsO/+n/+1SeyeMPPCjggSTtf/srX+OJvfIn1ej1P1WV9j078\nB2rO21jKNPNXjBI1pLEW6x0udeIyFyNdFJe2lNPsIW60ZrSOOA6oMJFiIOWIatxbbfBdj+s6lDUt\npEeYHq32MnMWKPVnt2aqZEhRcPAKIosQpUAsGVeOeGauxbSJNo6/rAUEV1N/V6GJIrXEZE2iYIqF\npSFnTUyaF5d33N7ecNvtWK7Ff2TZdZxvzsWru4CpMBHWipufEuOo9jrKMViei3jmGWarg8bvnjF1\nPRfwBiPI2yTYeKp+3PLWy/+t9yy1Fu6+71ifbdhvtwz7g0TPKYFShmEk5oR1jsVC7GmN0uQYa5i0\ndLAGietSORGmkeFwYAyR/TSxC+Kwp0vBaU1nDWfrDcvVmq5fCKRVmUQCIbULUmYlRdJ+aQwUTm5H\naLD+vcgbpE6uZ3kd87FYp1SDLuqGUl6+tQLfnAabOOv0I1IKld8NMUbGScKFY0gCm2TJYY0hVSVm\nlgYGZgqiQnQJvTeslh1GFazOGCIqTegY6b1n1UlUoFEarHjXByGQ43xX4bqVeO7kKJu20oRSuN0P\nXN7vuDuMfOfDD/jGO58s2uCr61NfwJUSyfzXfvdv8vkv/KIoDl9aH6NStw/6d33xWBsa0JDRqCI3\no0xVY+bZ27iLFT+uPLPmgGeNxVjPaHeE4YCOEzoFYgxQjX26fjEPX8uMINfCrQTTpXZpKR29rVVL\nzCygqtua5Ds2d/L682ba3suvjNZyTJekHAVkrOmk6yFIh2ULRTcZuMJpR++XXGwsjx7uQXsW6yVa\nddze7bhXW0LMbKZArsn0LnqUy2grLBFTdD3Z1NdUy2PUpbJTZgMnNRduVdOE4KQLV3qGEhJUFo7g\nsKczB107fWMtq82aaRg47A/EEDCV2heqxStK8i0VECfxV1cVJ1AlCxyiNd5arJKithsGduPEYTiQ\nCaAVxnuWqyVn5xcsl6tq5yuMIGOMPG4FSuWTAtqUmI0d0szMVL1/ez1qc5KPQ8h26ZaTAp5Lowvm\n+Wpo17tA/61Tr6rIEz55S0dqnu0pFWJMjNPEFGu3XcS/vLFPcrWoTTFWf3cjcKPReKfwTmGUPB6j\nE05ndAqYXFh1nvVySdd1GOfRFLqciflASRnrOlarDavVGhSEGFAYooL7Q+D5zT1X93uutnveefc7\nfOs73/rE4d6n61NdwJVS9IsF/+4f/VO++MUv1TdVfc837HsCKK907EchMpWBcnQkVByhFKsc3gr/\nteRC6iRVvct5hjHm+C4rFqWm8ljDNJDihJ7Gahpk2GzOMVXAQ851wFhkuo4wUpoIqKWbHx/zURbf\nAnzVzBvWtXA1B0VbbVjE8c+UtumJ+KJgMaZHZUXRoHVGqyiPpYiyVAPeeJIzPLx4jeX6grPHD3BL\nxwcv3mO7vUbd3xNCIkY5ivddL5i8dzjvBQIoioRCWSOD4YazUJWZunXcx0Iu73191oo6i3AoYwhF\nMGRtJDJPXqsq9662oUopur6HzYZpnAjjKP+WZYAXY5rf0xACJaYTy10j26ISWVYEtJFj/dlyxbIU\nxsOBcRzQChZ9x3rRs/AdTtc5hDEnHbhCqerqWIAkw8GcItkYKeY5SVA2Cq1aSMeJrP6EjVQvaBRp\nhkragHaOrZvvL9/QYJT5ec9ziKMNgNgMC30wpESI8ueMprmix3o9WWXJlGqHK0rirrMYrbEaSIE0\nHaAqe53KqBhwWrFaLticndOvNphuAc6xsJYhFEwOdN2CxWItlgh5lEFrUuxj5vJuy7OrO+4PEx+8\nuOTb773L5dXlx6gkP771qS7gfb/g1//ab/KHf/Tv8eZbn3uFefJvd51K6aUDrIwBhGuusiK5Qu6q\nTLloKBJYoFUtnl5k90O/YDxsSWFkGoVf3HnH2dmFdOBZgpB1ZWVIT1wHRSf/pSrc0VS8MlYqFhmL\nbCCtYKjqYaKdFPCSC6RIk2erUsTUKDfMVUO2R6e8LIb4OU7EUCjJYpSdY+XWqzMeP37K5sk566cX\nXN+8YNztuLu6YffiBYdx4nxzRu87fPCEMWCcE+OhzqGdQXuLdZJj2AwRC8zc7/krRcJ2X7b1rZS8\nIvTIo7pQXqcQArlh8d7XQ1ft+LUMVuM0klMW8ywFCfmzdZYyo/NA/ZmiCq+qVS2wl8qZ8wcX8nsU\nc1aqUZIapGAWxej5ecpZSTI9IymmuQsulWaoc0bbMp8s1BzDxwnCcgq3yCZ7dEiU/Mrj/Y6nusYD\nl0IuBbzx+VFKYudSqa6Dcbb4TQVShilnOaXkhHciZmrwn/eWrnN03iJ2xIkw7RkO9zhrydMktNsp\nYFGsV2vOHz1m9eAx/mwFacKMHr+fUEgBN9oyTROpBLCamOB2d+CDFzdc3m1J2vH2t97h2+99mykc\nh7KfxPWpLeDWWt74zJv8kz/+E84vHswhBaeIyUtc7saZbX8/7ceFsyff8wrkciqph+Ox/HTlXOis\nHFdVk+jVaPlTupwxFldFP9NhQZoGhsOOOE30nWO93tRBUwQsLf3nVNCi6mMsRfwkUorim11axFX1\ncW5CE+8qb1oed0xpfr653kr7mUgHSk6zQlJwcUPBknINoMgZrWU46IvEtCnv0d5hlj3nZ084e/qI\nu8srpvQXTLs9SRv2U+AwTPRdT+cczkoB72OP8RbbcjZdoZhMMQWjM8UYdDFoXZAu1NTOW9VsT5lF\npKLkVFEa7KRkM0iCzyaVKne6XQPIaQTp9LWCGBUqinJS6ZqSlBM5m/k6ohRINc3UGLCWpLRgzLWx\nVTM0It+jja4+J/l4umoHiyLy+RaCLR46zXJWz9a1wkipQ06a6ZiRYXRhfhdP8XHdrl+lUDNt8HR4\nGY80Qtr1IAylVE8yUrDFMjZX2+AYpWFIUdKZMhnjLK5z5CysFXHV7Om8o+8tKQYOhz1hGthvt2xW\nK+Iwsb8/cNiNdL7j4aPHXDx6wvLiAX7VkcM4v4/ea7yzQCKEAeMNWRlutgfee3bJ+5dX3A2B96+f\n8Rff/iY3tzd/eSH5Ma9PbQFfb8745V/+db72u1+n78XY5vvh3a8W89rb8WrR/17fe/r9L+UNloLN\nmWItvopgyKByHX3WDk8bPav2vPfERU8YDlhrCWGk9x5jHSlOnCrjSoUNtNGYXKlj7ThcB2paSVea\nYpDHV/MynZPUem0rO0OJyEXVD2FRqhb2OqFvCMXLczLZiDByE/MSChGFwRpD3zuytwSVGSn0yzWr\nVY/1HSFnwmGkM5Zxu+fmxSVTzCx8T+cyPmZyBjc59JiqMEpjnMZ3bvZdt9airJOhHy2rUjpbrTUY\ngy4KXfnxpTALhfQ85KQGE9TBXStyWiAcaCZUop7VNdG+VCuE1oWDohhxLjRaknhQStg2SmGsrhtI\nDStuMBBlpobKe9ZOPHGGyRreHVOioDDGkW0EbdA5QTagMkUlSA1C0fMbVpo855TfzcsDy1RjzlIK\n9fVI82Yu6EqqXHoZ1tq6KaUkDUCIiRikgDfRj3OGzllQ8rW+s5ydbVgul1ASfW8l9CGO7MaRw+5A\nbzp293u2t1tyzGw257z2+hs8fPyExXqD9eL7Hg97mTl4hbOKkidyEXrsbpz48PKa959fcX1/YJ/g\n//jT/5P3PniPEML3/2B/AtansoArrXnjjTf57a/9Hp/93M/hrP2urricYHzHb2zTu3bEbjj3x/id\nJ9j6aWisMeZECFEqnFLkVhDWihIqXbDCgc2dI04d404EOzF0eCtqy4YqHsES6gcecjoxnpoZKrUQ\nROFtU323bcVY56DamTtNZQQowV+LwCfKKHRWYKpONJdqTiTDM6PE/zwaR0JUpiUWlHH0VhM6SzGa\nrDSuW9Av10J3U0aGtKVwc3nF9nCQUGRrwBpJNR8jMRZsKCSbiVZjnCJNEecsxVvovLgeFgtWCS1m\npsSVGnwgIpGiarxYY9sgxRUn9gTHJJwWutvk+3Zm+qTYsOlEdiJjz7mxQOq1kI/QjlLHvNSKs8wd\neDm5hlQTM9E2k4iiZmK2IpqLKHjRmBSxKaFMmk2/aNoEXa2B5yYkzx24XI/ChZ9pg+mYAJRyJEYZ\nos/pOXWgmTIzpl3QuFbAcz7a6Ta/kyLXtvOSFj+OA9Zozs82PHnyWJgiKbLoHSGMTIeBw/3Afnug\nTIXr55fs7nZ0xvH44UNef/qUs4tzfN9hdCZFRU4TlIhRBkUil4hShiEmnl/f8d6zS57f3HM/Rt69\nvuHP3/lztrsfT0jxD7o+lQV8vVrzS7/ya/z13/s6i8USYB4ytj9/5Do5TnJSjF8eYb7cyReOxftV\njP0UE59/p/CtquqHGQcNxhCdIXWOPDniaNH1wxanUf6cAxLT9dJBGOE3t8dTuc0nw9WSEilW2X4N\ncmgqv5mCZ8xsCzonvmRQph3GE2QlUWdF+OCzXzfS1SvnSN6TzEgeJslBNAHrPMVWnxbj6P0Cazu6\nDuwDR4WUcX3PEALxMNE7T6cdJUTCMDKFREqKnMCmQo6KPGaKT3KLkpKD9+hOXp9UTxAqOim2+pgr\nqapDHm0TQrpJpQ1Uu1fpREeyEIFQicqBrxsxiBOirZt0S7qBWcquMTM1s0n+xcekBVXI9Wha8T6Z\nO+bKvxZyUAtSaJeQvK86BkyUTEltjGw4RVVYqQiU1eDBUk4KeCLl9BGdd+V75zjf2nVe8jFYuiCs\nkqq/IRfZVMIUZNgZZWPQqqCNCK1inCBH1mcbXn/6Go8fP2J3v0NrzWq5YBz27O/33LDl9uqey/EF\nu5s70jDxYLPmrddf443XX2OzXtJ5Q8mJmALjYU8cDzjryNmTSge5cH+3471nL/jw8obb/cTNMPFn\n/++/4TD8eGPSfpD1qSzgn//8L/A7v/N7/OIv/eqxy36VffL93sDv8T3tg3Bappsl0av+KO3+p1Fl\nQPXsOLJXTKWbBWNI3pKCI1pD0IqSI7mI+16OgRLGeuxWs5dzw6dTpYPNsVc0tzspULGKLkqpAnlV\nedNUDnujndXiLZuRDPVyOeGaV5peK1aNX9yYE9YIJcwajUqSXyhswwEdA06BN1aYKkpjux7fSbq5\n7zvGFCkhsXA9Xhum/YGb55fcXt0wTeIP3TkvuLpGnP+mTJ4SpUt0fULFhF60oa4RuEOnGffWyoCR\ngnYcPMqtWZELtVORVCIWib4T8WeNbStmDiUgWzAiTTnODIR+qZWtRbF28kUOCI1JXVIWWMeYOj8s\nleooBVPOaO1nihGXsRYVpENWozpa1WbZqETFe4RFtG5vVJPDV2/vOtOYKYJzMZcNX4KIZZZRYpn7\nd2j7WG0eUEINbF16kuDsdnqQLntiHPasV0uevvaYN15/ynq9JsdU05CW7LTFmUviGLh+ccn+fotO\niVXf8+TpE77wc5/ljaePOdss6ZwhjIU4Hdjf3RCGPd1iJRtJzgyHkfcvb3n32SXXu4HtlHh2dcWf\nf/NtCZ34CVmfugLuu46//Qf/gL//D/8Q7/xH3+lHtPueJvQ0i1BMAXe8j7AkDDZa8UjRbRhZyDlI\nJl+OxBLJsVqq1rCCUrvEmBSmye5a5mCMM3ss1uNurMfjUqg8gnprbVSD/Wu1LnXad1oM2if4mP5S\nWROVhtxYENoYiikVxogwHbDxQJ8DriSBcygSPuwcvndYZ9hcnJNjYtUvWXY9JUa6RceUIvfXt4xV\nZh+jJSpN5xzFaEqIlDFTpoSKYIvGYbAGzElgRjtxGMV8emiMk1yyBOhSxTI5QJboO4X8myELxKQU\nWVeTLS2iqBYQLCpGZtvdNjhowihhp0jXr2thjSmdzCzEr1t0AiIhV7UoizZJwg/yNJKSuCgmXwfW\n2kgKH9V/nfQSfj7DJzRjqnLE/LPg4SlOTNNICJNcCsbW3y3XZsyZJlzUStgoMSZiiOSYiJPYRKQY\nRIYfCykFFoueJ48e8fTJE843G5QS467lYoFWkEIghQmVBjQDXmdWiyWPHjzgzbfe4Oc+9wavPb5g\ntfBYq4iHyLQ/MA2HOltwKOsJWXF9v+O9Z5dc3+8JaO4OO95591vc3N3waobtJ3l9qgq4Uoq//rtf\n58tf+R0ePXr0MqTxVynaJx96+evLf693evkxcIRVKGXGwptnSjNGaj+rCTaccwRrhTGhDaMSUyDj\nRoE3RFJHygmjj2+rUkpYJaWeEJrvcu24Yz1uT1E8ltvjyZXHLINUfay+82igzEWtyfpVw1VBhmuN\n6oaCmGs6jNARqW6C4qSYMaVgc4LpwHh/S3Iet+ix2sm+kzMo8N5SnMEvOvxyiQZiDmy2F9K6poJX\nFp0gjxJATKjBwzFRYpFuMSRUAl3aRqVmrrZqHuMVzmrzEHkt6h6GwAhN7i4KS/Gs0W0YWPI8LMXa\nqniU17z2t3NGqTKlwlhJ9Da1eGslDH1KrvetHXV5eVYstgrNTrVmaKoi3eTYLGgtSTuBTWgWu83U\n7GTQXq8lKdpxxrgbgyXWAh5jFH+aCtm1AbbALWUW7TCNHA4D+/2B4TAyjROp+uSkLPoAaxQPzjc8\nfHCGd4ZpGCgFeu/pvSfFiFGFzmgWneNivUQtlqyXKx4/fsKbb73Om2+8xnrVY42ipEgcR6bhQE6Z\nRb/E9kuS0twdBj68vuHF3ZYhFaLSXN3f8s13v/0TVbzhU1TAtdY8evyEv/E3/w6/8Iu/Iv7L/7bW\nafH/CFhF7nLytfZtSgq21lr8s4Xb9tL35pyx1pJznou5UmJlauyA0pXGVpLY1NafPrvLKfmNjcKb\na8FOpanehIub2jCv4eIN46dN0dQsxhP8ttSEmDR3i6rFqKFJHPFzMWMsx+xIrSXsuA7u6jMgDiNX\nz55zeXfH6tFjHr7xunSCrUurXHLrLL7zOC+J5265YPXwDLvweO3orYeQGe52bK9umXaDUCYRvnup\nJGSdCmmK2CGglgvseoVbrmqgcpnfN4EqXp4bqFKx8Zwq9bAl6OQ6gBbog1p0VVE1mNTMG3wuzJg2\nRQJ8U92oUEdMOlcjM61E3WmLBisWrSUdA6HFbCrNw1itNCUnwjQQRoNzFpSjGFfT5eVU1uL2SrUQ\nUHWXTklgmBZCnavToHxd2DjmpIQUmLt1OfnJplymwHAYGPYHxsNICCM5RSgJjZhRLRcdDx+c0zlH\nHEeGVOi6ns16w7LvGYcDvhbv880aV8AqzWZzxtOnT3nrs5/h4aMHdJ1DlUycRqbDgWkMaOPol2uM\n7zmEzNXdlg8vb7g/TCTd8cHlJe98R7rvn7T1qSng3nf8tS9+id/80ld58tpT4OXe+OMwST7Wqh/a\n41+/N64un1tVcdXa6Z74surKeGjBr40RUkqpid+V9VASpkSsAauRD2f9Xa1zao+llEKqTIWG0cYq\n6GkfvlO2TPsZppi5+24FraQ6bK3dvYDZBkizAKRUr/CC/N6kIGuhJOa6o2ilMUVxuN9z9eKS+xT5\nuV/9FTYPH+B6j9JUN7uRkhNWd1gt8W4A2jn6sw2LzZpFJ6pFYmG836Oc4fqD5wx3kxTsLOpEkiQF\njcOI3g3oZY8fA4sMvVIYZ6uRVJq7Mt242UjhJmdRo2RRDZoWmjx3s4IbtUR3RZFkICWqwpZvSZkJ\nPlAZIY1TTeV2y/fX+aiSlChrqB7xAp8IGqNrN1wHz0qGg8OwF0tX41HKUpQWdaZqw/UKoczDZ0kV\nCiHQYtIKzbCq+e+I5bD45tQotCxhw9K1y0UeU2QYpQsfx4GcIoqENQqtLd5Zzs/WrBc9CqGzeutY\n9j0XZ2dYYylxpPOWs/UaHj8mrc+xxrDebHj89AmPnz5huVlijIYcmIaBYT8Qplifr2FKmbvdwPPr\nOy5vtwzFsE+Bd979Nt9891vEqrT9SVqfigKujWFzds7f/Ft/wOc+/wW6vp/h3B/KeqUj/66vnSxV\n76PQZJXnlJXWfbfi3Qo4UBN1Kp85B2yeQCWsLuy1YJWkSMmJVI/CLQpzFvFUxkAuwhYI1Y3wVcbM\nSxRH+QG1gFMFIOqY4KOa2OMY4VWUFJmUE6lEoqpFHMgxkcZIMRbQhDByc3nFh9t7Lp68xrg/YJwV\nrFVDTBOmJbYXTUn1d2rPYrnGOkPXeTrnUCi6zYopR3bDniFOpCmK4nUK4h44gT1olBvRh5EuFuFk\no3DeiaVrNWmSDFMr8ARFwhliqglGbYQomR21BlPqTCFXYU8resYJZL+8AAAgAElEQVTqGomGqCZr\nEIGunuXNT+TUZ3z2bldCGWzyecVRCam1xuqj4Expi4QLF4bDgHMe5zr53Voah5IcpT6W2kPPfipp\n3rwaxCLXVKmnRqXFk+YYQlwl9VVWLyfAwhQj+8PA4TASgsBtzhoZTDtD33c8ODvDVsVp7zvONmse\nXpxztl4RpglnNau+x1w84HyxRBeFtZZu2bM+P2N5tsJ6i1KSAjXu9xz2e8IUSamw3Q+EPPL8bsfz\nmzvuh0DuOt59/gHffv9dbu8+WUk7H3d9Kgp45zvefOuz/N7Xf5+Hjx6fWI/OlNsfXkF/pSN/dR39\nwl8u2o2dUkqpVLHj8X0u3iWg44DNA9ZkFs4yOcV+CKg4QerQVp5rM8LP1VI1l0JICZPEv+J0kzjd\nNJpV6Et89SoyMpjqM66rErHUY7ng3VSYJKtCLJnYPM0rrJNzIYyBYqSL99bxYHPOWCDsB+J+YLSG\nwzQwTAO+91w8vKBoC8aDsjU9yLNYGGxXpfRaSpjuHP7hmuX+nOI1OhR0KNxf3bK7vUMPkc5Y+qzo\nTIFDZLzZkkNCG0OMEzGMQvXsHL7v8b3HKEWKQWAABJtWrT3OmVx93JuTnypHaKOQ5/SixuBp3bwq\nBQvEdsLhmIKjjK2sGT1viCo1+EWKuGlzjtKk9VQmkmRK6t0B6/oqThJEBwop6drVy0D6tGhrrSo1\nsCo4i8SjmZqNilLE1MRNNfotSkQaWnMYBna7wHY7cBgCKRes1iwXnr53LDpJx1mvllhjWa9WXFw8\n5Pz8Aev1GmMMMRSckZi0Td9jEThIa3EbNN7h+l6873OWNJ3tlnG7I42BGBLb/cjdMPHsdsfl7Z4h\nSyrRN775F7y4/mT7nXy/9ako4E9f/wz/9E/+Y9787OfEBOl0/SgIJx9zQHoq8GmF/BSXbjJkozWq\nJMq0g2mLThPegLcKXRIlTuRgKGkBtkNpK9BMdd4rIN7MSbq6I7b+Mn6fTwr7aUHHGKxS4q9YNBqB\nGzK160JYEkVnsk61iCNeKtZijCOpEZTGOE/RGmUcxjk2SnOIidsXV/zff/ovKU4zxBHbOT73hc9x\nfn7OlDK6iBLSak1RFmUkPUhbK9oUVcOWe0f38Iz+bM3CdqikWTy/4ua9ZwxXN8TDRIgZX4u7OgSm\nMRJykEDenGXmag2p74nLBcYZQpLuXGuFNc1bXNAOlcXfRCighqREiZlqUUwpiViocrVzqtL7iusq\n3Wh8dQbR8JWKiceKSQtmDc0lMOZCTApra4gzCmM9zstQcZwi4xiwLqFNQqmphliIoKeOS2fuZ6PF\nlpIoObykFSh1lpJrIHGpG3Lrwqcgjoy5WPb7gf1hYIqBTKFfLjg7X7PsHH3nxLBruWLRC+Z9dn7B\nerXBOkdKEY0UcNV1OKXx1tN5L8CRVuDE9kFrTZgmsfndbskx4nyH9gu2t7fcHSautnu2YySYng+f\nf8iL60uGcfj/+wn/sa2f+gL+8NETvvzVr/H1v/33WC5Xldt8XHMwwI/n4c1452kEG5xYmZ7CF1RK\nHgWdJ8q4Rdfu25mCVQVrRDsoXTUY5cjFSKEoxzTNVoxPce9T/PvVr8dYjasQfnapL2MbluaEwClK\nY5StPIwkFMTKPlFW5OrFRZS1wszw1WhXKeIknWunLbv9lm9/422mErELz6OnTyBkiJKbGGMAMxG0\nQVmFVZqsLJoa/abl+SdtsKsl3lhWizVaO9z5BYvzC3YfPmd4fk282zOEAPsDPgkLJCQRGlmFJN4r\nRToE4n7CeEcocTarMhUOaGZT0CTwx5AJZwwG8UNXja5ZBVvNJ1wQDBlsq9kNoV6cNYiyqEphRMIZ\n2hBSK9mjM5BK5dUogzYK6womJqZpYpgCbooYI4k9DjOfiKj0xzpTlcde1aa5WheHGrjQcPIjK4kT\nCEWuF5Qh5ch+PzAOI6Vklsuex48fcb5ZYlXGGc16teTB+Tmd71guluKhrhU5RcI0iUdQESGV0eKd\nY6w0HNpqlBORUgyB3d09d1fXDIcBrS3OekLM3IfEi92e22FkwhK15u3vvMPt/d0nNqzh46yf6gJu\nrOWXfvlX+f0/+Ae8/pk3X/IgOV0/tuINFa9U86fgtJA3SAWOw1A5lk+kYUsZd5gcsKrgVMFQsFX+\nXuaYM0PM0o2VLPmS0j3lmkmYXirep/DJ97oJpc/MHOYZHi+NtdJA7jagU3PyDRqUtWjvwUcp+uga\np5VQGTrrOV+soGSmEsVlMBXuX1xxs3nAIhTsfsQuF/jlgn6xBOMxWlG0kTQapMhnNK5f0i0W2MUK\npT3L5Qa/XrM+O2N/dsn2g2fsXlyzP4yMKQqOnxIlR4oBjGwwZSqoMQkriEzWRUglthVxU+Xwevav\nFpZkqq6Cupr2Uv1gCvpE/jIzQardblNolvb+V8hD+P3HIjt7pegjFNe83NEGbSU0O6RMiJkQEy5l\ntCnokhHukkwca6NfWUZ5LuAt4u8opa+WxxpAiUCm4t+Noqo0hGHicBgIQXDsRw8vePr6Y5wuEAOd\ns5xvVpyfrVCIwKukxDgOxCg5lbpaS4hKtl6jFLEQtgalDSkldnf3XL+4ZNzuURis65kw3G/veH53\nz9Vuxz4XooKr2yu+8967HIbDD+2z/aNYP9UF/NGjJ/zml3+br/zO72JP6HmnqykFf9xFvNkcUSGT\nj1JuStccCeOeYXtNGneoWsCtAqPAV7vXMPss18Dj2RlQy1E3lu/quhvr5bsK9skpoDLlaiYYc1JK\nqcOEkguZXBkqbQhXn2ep6kdjUN6hOidEjSzDTl0keafD0Hee87M1gcQQJw7jwAfvvEsaYf3oIW61\npD8/48Ebr9E9dRRrSWSMqsrArAixULD43uEWK3TXU5RFO+icp+t6uuUC13fgLJfvvs8UU3Xgq5zn\nXJiSgmr3qmPBjVGogbqQdSGZIvCQkY3KGcForW32A3Xw3KAQJVRKKeIyK1AzMygfr8V693aaEmLP\n8Zoo7epRpkJkVSFb/zzDWUbhvCIlCTCYYsTFhDYZZbL4tQvHRTb9OiMpNR5NbIcbs0ROdyEKxGMQ\nfF5w+aovqEVcl8LhMDAMeyCxXq94/fUnPHp4zrC7B51Z9p7lwuM0YsmbMymIyCwmYb84bbCoWRzW\n+gNdn29MkcN+z/XlFfc3txhl6PolxVh2+4EPry/58OqKu2Egasd2OvCNb77N9d0nM+fyB1k/tQXc\nGMuv/fpv8Ftf+ioPHz3+6Dv9KPDvj72OMmT1ynYyDzdzIoWRcX/P4V7kwb5ErFM4KwyEru8xdmCM\nIiN3KUE95pdiIOoajyWdL6j5uG+MmWGVV+GV2fe7sVMqL1jqkVTyhFinSgL6MZ2ystOENpcEt1XO\nojsvkEiQIq+1wpYqhjFGzPtjFp+Tw8R+u+e97cTm6ha3XLJ5/JCFddiLRziXIAaSFdGR0CVBmw7r\nFli7RCknz1kXlJPq6NUZa62IqnA7HVAxY4AcAtNuzzgcSDUUV6uCJeMLdFq6xYzYzEbdDK0U1li8\nczhnMVbjnZP5QBHit9YKW6mARVeuXUFgqVxa3a3OjVJWU8no42y4imYE/1OqVXeq3W1j5xg53QBO\nWwqKsL1jHANaj6Cke7VWHArljS1CfSxHxtKcf1kLewyREGP1yHESGZelY48xzTco1e54wDvLowfn\nPH3tMb03THu5boxW5BjZ7+7Joc1QZKiqrWPRLeidx9VUqubdXoycXXKUwOe7mxvub28pKdOv11jf\nczcGnl1f850PP+Tq7paxaIJWPLu84hvvvP0TX7zhp7iArzdrfuNLX+FXf+2LdF33kfdRr/z/k7Bq\n73c0NTr9t5JJYWLcbZn2O1RJOKPprMJXq9k+K5z3pDCSxwHn+5khUuIxZzNn+TAy09BOLGhPMfdX\nGDRFqZnzS6WtaczMN885CUygqidKSVVhKgWpqOpi6CqMMiZSiNIwasHDmxdMyglCxKF5tDnntQdP\nAI1fLkhaoQ4Th2dXxCf39NaJ0nHO85Rzje+EOqe1QyPQB5WdgTWU3kHsURcrVm89ZdUvWPiOEgL7\nu3vur6+5vblht92RhoAJkTElDgWcNWgDxRSyFlalUkoGezESg3CcTZHnn424Niotr4HVthbIKEPN\nCnwUUT5RKCQylQxaTa4avDa/Q/VWB59KzUlKxnmhp+ZMVpluoRmnSVz9QqDrcx001hSdkmeIDTKp\nSOiBuHUzW8GO08gUM8539MagKkMpZfGUn0JgmsTbZRoOKDLr9YKHjy5YrRbE6SDc/pSZ5uxPaSeo\n6l9rPX3v2axXLPslVgt3XhlD0YqQE1MK7A8Hdtsth90OBZydX+D7JfuQubq/5b3nz/jg6pLtNKH8\nksubW/7iW9/iMPzkDi5P109tAf+N3/oqX/7q13jjzTe/q6MF5u77k1K8W8lsKj+UemWDkeFVnAaG\n3T0xTjiFcGd19Qq3Fu8lho0ySsJ3DGSrUbalr1SnuTqUilGKkDYFYxVMeS4STThkKq5+GgwhpT/P\ntLZcmkudMCSsqUf5CuGcioOUBmWliBUFqSRioioYK4VSHiqdtTK0cp7leoP3HSElDtPIdrfnw7ff\nIQ0jr//853n0ubdY+h6VxB6XGNB+ISrUKiwySpJJc/Uwz1qRvCEtPJvPvM7Z2Rmd7ygxsBwGzvcD\n5ze3bK9u2V/dcLi5Yby9Z78/UMZRbFxt3Q+sEw8VVQVYKVeuuKhHtdFoK2EZ2kkcWt1DZx7rrHhE\nvNdjKTPOJ4+7SfqrJ04TgJVUY/gUYKvIpiXXF3TOWGeIKbLd5roRq+b+DW1jm6nnkZgnYhbsO4TI\nGGSIGYLwF621WOfnyLkYE2EKTDUDNAbxDO97x6MH5zy42GAslKQ5PztHl4I3mt5ZnDGQxLskhoDW\nYkHgnMd2C6w2M10y5sQQRvb7A7vdjvFwQKM4W29wvmcIkefXt3znww95/8Uz7vY7ivHsh4Fnl5e8\nuL7+4X2Qf8Trp66Aay3y2r/zd/8hv/TLv0bn+4+8X+tbPgnrVSSncdLnj22R7ipMI4fdPfvdHSVO\nWJWptthoc6Tvee+wRlfzoEBJNWatsiOa21zKNYGn8n+NAaWbxPoE0lGq0g+Pkvz24s2mRyXPRRwK\nqXqJ5Fa4awyYfJN0kkVDVoWQYhXZiDe0NSI+UQqcsUJBVIo0TYQihl0mF3yB3TDw4Te/xTiMDPuB\ns9ceYxeeoqHbrDAXnbA+YkBZsbVtz0meh8j7Td+z2Hi6lXCPc0741RJ/nujOzzh78JDDw1vun7/g\n5tkztje3hCgF3FgFJYtpVIgUpUlkpsr9HkPA21rAa9qR8RbjJDqsUOXweX7BpSBWDL4xCWWjrOpP\nhCqolQYlEXGq4sSy4cquorSpgRQZ7yz9YsE4jaQsXX9RmVR3EXFUlPczlUDKosScgoi8pHhHMgXn\nPF3fY51jGAamGJlq8RaPcJHhQ2a9WnDx4Iz1ZoV3jt57lp2TWYE2OKUgZ8IwULOKBQPPiP0B8nrk\nGIlxYowS/DxOE2EKGKXpOo+3jlAUd4c9z26u+PDqBVf3d0w5oa3m5v6WF9fXPzXdN/wUFvC+X/C1\n3/s6v/21v8Gjx6/NxfCl9YnCvo/ru0IlajvUhpfTsGe/vWXc36NKxGo5erYuHK2xVrPse3q3Y5wO\npDhSkqVky0wibEfw+rNVKlUuLd1eqXJqaQ/lON4UlbrUI77QS2aMtORUi7iAF6qKVQplNrXSRuAA\nMjXTUTrSooqYGmXQxVT4I1fL1hqiQCGFQJgmUpZgXmc0m8WCMQT2L654lhI3H3yI7TsW5xve/KWf\nx64LyiQKoXbi9iXPFpAi2PmefrHEWC/yf62ELeMyvXN0vqdzHmMUWYNZ9RSS0AcN5BTZ3dyyu74h\njkHw4CTvYRc0Tsn7pI2pHbitRdyiTY2eLmn2NZlfy1I3XSorqaoyS/2aAZQSOqM+6brlZKTmPFWl\nCsYZfO5wnYcgT1+s23NtGERolLIU75SkgIdpYgrhJYGO73q6rq9zk0yYokAr01hFTokQRpyznD84\n48GDc9arJd57Fn3HarHAW4dVCpXF076kjLbC5U9J6JBTKqhQX88wkoK4IA7TCFAHxrIRFBS7w8Dl\n3S3Pri+5vLthP44UNGNIPL++4fru7ifOsOr7rR+4gCul/hbwXwJfBd4A/riU8j+e/Pt/B/wnr3zb\nPyul/Dsn9+mA/wr4E6AD/mfgvyilPPuBn8HJstbx9PXP8If/5D/krc9+AecE+26Ktvn388nrvr/L\nV7zxsesHNk0Tw27H/u6WNB7oSXgNTjNT1NAapw2LvmPROba7HXkaKJ2nJHcyhFS1Yz9hhhROKIal\ndmJS8nMRH5OScz2yN3JJ7cpPio2gqZlUEByfMgdCaFv5zwj/zFiL8w7jNNlqabmoBYpcbV1rHmR9\nLaYgJxGlNP1iwWq1QmvD7nAgbnfc3d5RrOXBa0/gzbfQU5JczNIGZJArnbHUWYAqIg5xxqOVPYYS\nqEIx1Q/dF3TvsasFq0cXdOcruoXHe4NRkKeR2xcveK4V2+s7pkMgUCmBJRHGUVg2xs70N+Mc1luR\ngNdM1oJAWAKVMFsgUF9Hiq7FvdSBp5ICrsus6E1FzZJ+w3GzRKmaO+llqKoUdThRT1xF7A7SNHfR\n0oEfu+8QIv1iSdf1OOdIWcKKwzgxjiMxhKMKtSQ2m3MeP37Eg4cPWK1XOOdYVa631dWpsqo4M6C0\nwbiObBTFOMYQiWUkx0BOAZVj9cNROOuwxmLQ5JTZTSPX93d8ePWCZ9dX3O52TCmhnOfq+o4XV9fs\nDz893Tf81TrwFfAvgf8W+B++x33+J+A/5Vgnx1f+/b8G/jHw7wN3wH8D/PfA3/orPJ55XTx4wJe+\n8jV++2tfZ7laA0ducuPMqiqO+MjO/BOyXgpCLuK7EcaBw/0tw90NNge8ynjNnKNYGo6JwlvNorN0\nBqYwUqKE3Eq2pa4dSO2es7gENrtYrUz9swZ0NZHKwvFTNai2seFmRKSNDMvMXFCVoTJTFI1B1UDk\nVN8TXYMGfNehYiYTUfEYt+u0dFa6CmCKVpjOoyhMIZJCoKTEYrHAeyep5zESS0GNE7sX1yw355ii\n0c5AdSIsVmh8sVLkyAX5LQZVTB2oKrJqARjyGmWtUJ1n+egC33n61QKjCqRAHgahtE0RZTvMMJJT\nwZRMOey5vzwwjaMcaoxg+tpOmLF24pVDrjUYW+cfqrEBZdBojMFgEQ+xWKEX4aPnLINU6iaschEx\nU2kQCUcWjBHL3Ny8wE3dhHOpsMlECJIS/2rxnmJk4z1d36G1ZpxGxlFuYZwkaadCZF3nefzaI15/\n4ykXF+f0fU/XdXjfo41I8ZXSlJhAT+Kw6Ts626MyjKEwTAE1BVQpeAOdNZiaD2qsl+s5FfZx5Ha3\n54PLF7z/4jkvbm7YDgMJi9OGb73/ATd39z9V3Tf8FQp4KeWfAf8MQL1KUTiusZTy/KP+QSl1Bvzn\nwH9USvlf6tf+M+DPlFJfK6X8ix/0MYF032+99Xm+/rf/HmdnFxKO0K5b9ckt1m29yvtuPs2lZKFK\nbW853F+Tpx2OiCsZpzW1sZKb1nhtKZ1is+jYdo4wyQcyxiBZirUyiMdKi/KSgm2MR6lASoUU5YMv\nOLGpN/ngSKBvY120J1A7VnI1gBLWyRw4p2oRN1ogmyyFXhsrLKEpEUMBhLXilMVhUKGQVZKfrUX2\n31ezqikGbq+vOOz3OO8ldaYOXPMUeP/tt9nvdly8/jqbRw/oVitM36E7T6k0RaUUxVoJSABxGKy0\nyFJVjrlym7MW61pjNbaz1flOciMDYtLlVksuup5zNE5reg1pt+PFd3qevf8BNzd3HIaBrBTGufnx\nSpC0FjjAioe7UOacOCOWItj3S1o0RRPu0IRSxtSsS3k/EhmVowQYG00uce7yVRuqVmdEcqIl8DRH\nQeF151nI03U9i9UK7z2gBToZxirWiTP76P9j702CZU3PO6/fO3xDZp4859x7q26VqizZlmTZstSy\n5qHttoUbHKYJ6A7CEUAE0StWECzYE7AkWMCCHQsWEMGGIIKARTdj03TQ2G48dlu2ZUmlmu50xhy/\n8R1YPO/7Zd5bt2RJbaGoKn1S1r0nM2+ezC8zn/d5/89/IEaqesYrH3qFO3fuUM9m2EIERabIdE5p\nFkIYccOI1gZbGoG5giJoWTyM1pRWUxtNkcIrUNKtOxdpRsdt03KxWvHw8pKLa+m+xyC+64+eXHBx\nc0s3DD/Cb/CP5/hRYeBfV0o9AW6BfwD8hzHGm3TbF9Lv/T/ynWOM31RKvQl8DfihCvi9ey/wqb/2\nWX7pc1/GFgVPlezIMx133q7y1DU/7uNZ7/BIhCDYX9dsGJoNynUUeCorw0uTeMUZ0tU6Yk2kLgx1\nKZ7nw+AoR48x/qiIC/4bo4hewGCSe13wiFw6+YY774gDEhCsACO/M1sAqNydpgGp90nkkUMg8utS\nSrIZbd4xRGwJ1DVx8MTB410gulSoHHiS74cGbVORswVlUTJ6x5jUf2PXEYqCqq4pSvFX6buO20eP\n2G+3LC7PODk/5+T8jPm9u0RjcAooLMV8hjIqkeWESgfisqgihMR7joCpSspK0u1BYsHEQjUQtaE+\nO+WkqiU6LniMd/hFRdvuqJqGMk3nIop9s2O7XYu9qhJOdGEV86qgLCvpVqsaWxaSnhNLtNHTJ1en\nQm+skUtRYIsyWcamHNTEEY/KEHWEAMZoytT1G5P8T3JaUJLJey/Bwz45C3ofQGnm8wXz2RxrizS0\nHKagBsm5JHHhDS/ce5H7L9znZH5CURQYW8hCmfjnKJNyPeUzpiYvm0JcI5UlxhadQjKmT01MqUMB\nmtGxaloubjc8fHLFxcU1q/WWfhgZMTRDx+tvP35fFm/40RTwv4/AId8FPgb8J8DfU0p9LUplehkY\nYoybZ/7dk3TbD3X87Mc+wZe+8iu89PKHDoq3p47DFUe6x6NrfjxF/MA2ed4RicEx9I0Id9oNNo6U\nOlCYFBRgcjhCRCkp0MZEytLKNteYtA0eJc0nDbRCUAQfCT4p2jAoVSQMWM7GxHBLX2iduraAlmKQ\nNjnqUKMPR3Y/nahxaWFSRrBcI49uokJVEGqPHxxhcHik+9PJqjZC8lKxGGWxxqKMoowFznsGNzKm\nRUPFiLWWoqooiXTjSL/dMLQtzXrN5vqE5WqFKUV9WZ0uKbL/h/aS3JM6cBLW78ZB4siQXQRGgxH/\nF5fEKz5GdFlSnpxQJpiHoSf2gTAoQllQnZ9zd74UZ8EQePLkIR6P61tCfh1jIIwjMWwhgi1K5icL\n5os5McywpcVY8QART/TUrRcWWxYURYk2hcBaCS4U/Dx/4CK2tGgr1r8xBavJIPpgWCZiHKEMSvxe\nxNqC+WIhkJfSjMNI27a0TUffDxOTRmvFrJ7zofsf4nx5h9JWGExKhddJq5TUpz5Mj48tMLpAmRIV\nFEVQuL7HDz0hanyUz7p8NRSD82yansubDW89fMIbbzzg8cMnbPZ7nNYMynK967heb2QBeh8ef+UF\nPMb43x39+A2l1D8DvgN8Hfg//6p/H8C9F+7z2c9/mV/6/JcoK6ENPltPpoKdKmbucdXRlT+ujvzp\npSR34gl7DSNds6HbrwQ+UV58TwwpNktNbAKto0ijlaKsLdVsRlFUtH3HMAwURTGJQNyYOiwnIQOk\n7EulRHzjkyc1kOx3j9gPKtPNsnBQTmjmJ2sUwoNQRwtlPr/yfJM7i7zMAmxVUlQVfnBEL5mKmpis\nT7Xg5bpAqQJS2ozRYHUQ2mEM+AAYoS8aIz7TdQx0wyDYeNeyHXrc0AsGW5Ys2juUxlCFwCER4yDX\nVhFc30EI6JQuPzonXtqpyDknkFFR15TzOahAdANRBVz04q8yq1m+VGFMhdGWvm8Z8NTzEtyAc462\nHfGjR40Dt5cXbFaSz3hycsLy7JTTO6csTmbMFjPKoqIwRhLdbUFRFAJRJJtV7+MB71VMEnylkM4b\nTcRPnL2YYCKXFvtMG8zdt9aG2XzBfLHA2gLnHF3Xs983dF2Hd14WvRgxpuBsec6HXnqFWTXDYtBR\nY4JOdPOIJzGs3JjcGSViT5kSrQvQYJ1YFoiAyIl1rLYiKoqBphu4ut3w4METXv/uG7z53Te5vrmm\nH0YoSho0F9tGfn6fHj9yGmGM8btKqSvg40gBfwyUSqnTZ7rwl9JtP9BhbcHnvvAVvvzVv8Err374\nXQvv0TCf3F0efo5TC5k2+9PtP46uPMMLYsjU0exuGdstOgxYJawKo3JocHIAtAZjtVipajClpZ7V\nzGY126ZLoh2XbGMhupjwTenCBf4Q6MAnoyvnpTPSiZccgnSoKoUZh+R1Ig55meqmsVon86HDcaDt\nHWTfWReuDbL9n1WUXpSicfCAUOK0TlaxRQGmIKTfY7SENWcMGaUYfGBwgb7r0IVlsVyyWCpGn4Uo\nI4W1DKOnazeEYcSiWPQ9ti4wVYGykiwflbAb+raVYGlVEXVkdOI2pUIgpAUHNKasUEbjxyGxJhyD\ndzitWdy9hzYVSstcYljB6Qv3uP/SHUmh95F+AO8U+5trvINmL7z//W5P0zaMYw/xLlVpMaqmtIai\nLLBViakqTCFslswSAjUFDedPFgpRNKZZiNgEePwkwhE2yTiMuIR/ozRVPeP07Iz5fC7zh35kv2/Y\nbvd03TDNPEAzq2ru3XuBe3fuYZVFoyV71KcoOpOop1GETqSdGTrBJ9qivRchjzEMEdzopLu3Gudh\n3/esN3sePnzC66+9wevfeZ3Hjx7RNI3MLIzlNipu+vcndJKPH3kBV0r9FHAPeJSu+n3AAX8T+B/S\nfX4e+Ajw2z/go/PCi/f5+q//Jp/81GcAnttFv9usVahwqTOJR3DGVMx/fIVchoEjfbuj3d7g+x0m\nDhTKS5OYzKRI8mJtxJtD6HEKa6UDXZ7MWK83DG7EjSNlUTiGwboAACAASURBVAr3WB87E0ZSk50w\nSpWS3VOiufcyzAtBTJtUIUpApAv3IdHGZLKEpPMkUyaljs6hmphrQmOJshhojS4tRahQSIGJgweP\nwCjopCgUYYqylmjED0NrsdEtTCrqzkGScu82W5Q1LE6XLGYLZjEQfGS+OMH7wPXVNav1mgerFXZW\nMVvOWd47Y3F+RnlygioK+v2em6tL6rrm/N4d6pMFPobJTiA6J4tVYpZE72Sw6aUYDs6hq5Jqdgqm\nFIgkgKpK7tx/kXlhiOPIOATmwULUmKB48eU9pS3pdmu6Zk/T7nDDgBt6VBQIrbSGqqooZjN0WUrQ\nBTrBVloWRiM4t04Lr0qwiyzYwsBx48g4jHR9T9f39L0U7zQppChLlqennJ2fU9c1XdvTNA2bzfao\ngMtnqbAFZ6fnvPziSxRFKQHMyCxBB/mGmeCS70kUZlKAkFhPJsFZSkk6j9UaYmQYRlARXWjawXFz\nu+bJk0veevNt3nr9TZ48fMRusxWLBxTbceAmRLpn7Cjeb8cPwwNfIN10rmkfVUr9EnCTLv8xgoE/\nTvf7T4G/QLjexBg3Sqn/CvjPlVK3wBb4L4B//IMyULTWfPmrf4NP/MIvsjw9+0FfylNH7nkV//8X\n63c+l4CPjnFs2W+v6XcrGNo0vNRYLV2syKWly5rqOZqI+FMsasOd0wWbdc3Nass4tPTGgKqx1kwS\n9xAOCUDGGowXf2WlDwMua20WUMq2O+bfmLrw1KELzxuiyDvJZlakeyulZbFI9QGjk1+KCI20BmuN\ndLZjGmj6CEEJJ9sYdBp2aSsdZ1TglYiMlFJY2anTjgPXVzfs2pb5yYLFYs6snokYKXgWZYkrSzab\nNfvVDeu3Oi7rEnsyp1ouqRYL+mHk8uqS5fKE8eWXuPPCParlAqUNY9/T9QPGFixOl7hhIIaeOEoa\n+tB1hKgoZzXKlvioGbxn9AFlLLPZDBM84xDwo8f1Hf2+ZXN9gx9GKltQLJaczGpcOMEYxcnpnFld\nUlpLXRQUdYkpLTFZ107FL+Vh5qCOPKfQJou4BD7Dgx8cQz/QdR1t3zN6PxmU2cJycrLk/Pyck5MT\ngo90Xc9mu2O92dG0Hc4HtNJ451kuTnjh3gvcvXuXqijRExqYNAJBPuEqRrGJzVh9hlacqICV9wTn\niN7jXKR3ER89vu9Z7xoeP7zgW9/8Fm+99RbXN9e0bY+P4HxkVJHbCJv3J+z91PHDdOBfRKCQXPP+\ns3T9fw38u8BngL8LnAMPkcL9H8UYj4Go/wDwwH+PCHn+Z+Df+0GeRFGIaOdrv/x1XnnlwxT2GeZJ\nOp5XjPNg7nCP+NRt5G588iP50eLjx48dsxIyjIz9nv36GtftMIwUSTZvjnxKlNaTe6hREraglCUo\nQywDi3nN2XLBbr+jHzoGo2UIpquJJmZMEo9MIptEY8w89Jhl+LI3D96LmZRCYtRkK5M8xuVLJ9z0\ntLAk8ZDADuns5UAIAJvCj43CWAOlJ4ye0Dv84AnCB0Mrg9IyJDPJh0Nbm3ZNMoSLSaxkvKLUGq8C\nwQXafYMbRtqyZVZXaCQWzRKpARUcoxtxu4F2u2Xz+AJVlpSzGWOz5/L6mvXjR5yennJ255xyPmff\nNDhgefcehdboQkMcCWNH1+4ZhhFbzlJikZg3hVGSbVSUYIq+7xmbjnE/MLY9+9sV/WoFXU8J6KoQ\nQZqeU89L5osZs5Oa2bymrCtsVUCRPdDlPGttji5ZvBUn+1VIft4+4oaRvu9p25Z9K3hxQGG0nNd5\nPeP09IyT5RKtDV3bsNvv2Wx2bPcN/ejFUyUpNOcnJ5yf32E+S+EpMUyUUWJmLUWUj4fvGYroxa0S\nIx41youPz+gcowv0I3Sjo+k6rq5veeONt3n9jTd5cnHBvm0kczVEXIRVhJ2sTe/744fhgf9fPMNG\nfeb4ze/jMXrg30+XH+qYz0/43Be+wqc/8znOzu9M3cc7jiNTqHd5Nkf/faacT1ceCnn+7195l56H\n6yT4xPUM+zXd5haGhgL/lOpSpWDaZDwn200lMWdKCX4brWJWlZyeLrhdVQzDFjd2eFcQCzvhkFPy\nD3HyJIxHXbXwuq10zohxv8j8gzBhspw+HnxRYgo6Rud0GEV2Tg1HJ1vqjmD30Sgx3XIGbT1BG5R2\neO2JyXI2xIgBdDZTKkvhE1sNKkpxHHqUG0S1h2D0IYrPdDeM+K6XBcZLR2e8Yw5QlHgFnXO048jY\n9hg086jYdwO79Ybtk0suy5JyVjOOAxSG8/v3MWHk5M4ZxiraZsd6dUs/Os7OX2AxPyeEET94XNMQ\n+g5NoB86+vWGYbPDtQOhGxm2W3TXMYtRFqlSU9YWO7MsTufU84qistjSYOoCKiuLVjqZSskIWaAT\nm6T1Oaha3j/vA34MuGGg73r2jRTltu1wMWJsQUhGUidnp5ycnVJUFW50NG3LZrtjs2touwHnE4w2\nOqqqZD4/YTafg8rc8mQHkAr4xBDzSXykZKAZQ5aBiZUtzuMGR9sO7JqB9bZlte9YrXdcPLngrQcP\nuLq5Zdu0DM6JZkFBB2zjO5WD79fjPemFYozlxZde5tf/pX+FV179cBIVwLOl9XnY98SsSj89i5Dl\nR4jPXikPKH/8FWLjh9+TaXuCNY9dS7tZMWxXKNdL/FTyPcmdd2Z9SPEWc31gUhKWSlFXBcuTBafL\nBfumESzcD8Q4I2b3pEkJpCaz6Wx4FdKQC6JEqcVI8GmgFK1wwtMryWIivE9Mn0TP1BlKyV9RkelP\nA+U8gNAKoj4YXyU8HZyYqo5hcr4jypDUGosqK+x8hrIG7wb6vmUce7Trk6zbi0jFS3hwGJyoMIeB\nOAxoN2JixKSU9dqWzIvAGAMOBdYyX1j22rDZbtlvbtilpxd1pNusGHcrPvKxj1EtZlzdXPPWg4eM\nLvDRjxvunN4jxpFm19Dsd3jnKK1maBt2Vzd06x2hH1BOfD+qEGRAWVmKmaVYlMzO5syWNbYu0IVG\nWwWlIhgJ7iDqBE8ZtJLuW0RCJhV1Wfy8c3gXcMPI0Pa0TcN+v6fpOoFOskJSGxbLE07Pz6jncyLQ\nDQP7pmGz27NrOrpRzLZiCPTjSFVVaCO+430/isI1zUpUPPLhiYhTYwg4Ik5J5xxR6ByMPDi6fcdq\ntePJ5S2Pr1dc3Ky5vrnl5uKS66sLdm3LGAIj4KI0H7soRfyD0H3De7SAn52f8+m/9jn+5r/4tyir\n6nt22cfXx+nPyPOK97P3e94Necsn/3/nY7wbZPP9PLeIdKd+9Az7lv3tirHZMYueQkuAb4ZO8u/X\nuSMlDQdTDo/RMiOoS8vJYsad81PW2w39ess4dMT5ycG0CpJPCuigp47NJ/VdLphylrPvtygPs2Ix\nPaXkyWISM+MIk03wi9DN0mvOwQHJFU8lhoS8nybREOW/LipCcEguwmFnEKLEyNl6jq1KMcWqKuzY\nQ98y9i1+6CFKWlGpNa4f8OPAqAJBORmuRp2k9h4NFMhrUyFgSsvpfM7ZbMFJWXOjLd3QgYF+bFk/\nfszVw7eh7Vien/Pmo0d85/U30WXF/bv3CS/1dPuW1eUV+90WoyK+Khn3Dd3tmrHpwEmqvFWKWps0\noCypFjXF6YzZ+ZxiUaIKLfx7G4kJ+hJcWXZfRgtr51C45TqlNCo5HPrRM/YjXdux2+3Zty0+BGxR\niDzdGOrZjLPzcxYnJyhj6PtBuu/dnvVuz77rGJxnTC6BbT9QVyP7tmG92VGVNb6uqay8jxLwJw1C\nSAIhH/MiKda5Cp148SPNds9qteLxkwu+89YD3nh0wcXVDev1hna7pu87Bu8ZYmCMEQeMEXYIQ+KD\ncrznCrgk7XyGv/Ov/1uU9ex7FO6nb/nnnUXHoz9/dIPOVCJHR79raW63GOcpjRKMVeWMG/ntuXBr\nBEIBwcB1Ku55KFgVhpOTGYu6YnW7ot3vqaqZmBF5j0vp5kExsSsUUihJAg/S36XrlymkmPjHFAmW\niYJK4Bt9gGHQwpKJIWAUEyc56IjzUQILQpCBJIjJkU07DQNRW7R2aCNeKdJeRXFoHAfGsUSNg6hB\njaaYLSgXc8wwp212DF2Dco4CsJn6FxWlNlCUYrQVw7TbcM5BGqINw0DYd7R2D1rj3YhxERtlgcRa\nVAisLq744/U/Ybk843q1ph0891/9KWzn6a9vWd/csL26om/2WA1OG8LoiOOIDRGjNYUy1MYwq0qx\nR11UFMsae1JhZhWqtkSjCMonheqB6UMMKVrNHDpxbdN7JQulT11v9AE39Oz3O9abNeM4UlY1pigk\nCMIWnJ6dcXZ2h6IoGUdH00jxvt1sWO937IeeIUWsDYOTecDosLZEK8MwDNw7P+dkNqewBqMUJi3H\nwXnxGSfiAZcMsdww4gZHs9mzulnz5OKCb7/2Xb779gMuVhu2bcs4DBCk+HtgJDJGuXQIdPIBmF1O\nx3uugP/UR36aL375l/nUpz87QSTPx77fpRueZOrfz5FUgM/cOw3VmWhxR7e8Gz7+vJSb40Uh9fXg\nBobtiubmitDsKTEUOmJ0SNJooctpk8Jz1cHwaEJBANKX22ioCsvJfMbp8oTr21u69Za+a1gsFjg3\nYJyRrk6RuN9h2hFkKMU5l5J9ZA8iyj1xNdSpe4/Jxs/oFAIcggT5JrhHmC7SiYPg2NpYdLT0fsA7\nN0n1DSYxbUBZhYmFGG25QOi9FCYNLo6Efk/YRsxQU85mVPM5RVExqypMWTL0M3AjKnh82+LbXoZu\nIU7DahClYYwB4zzGObRzaG3p+h43eiICx1ilwZQEArOi5oXzexTK4saRuqyp7lUYW7K8cxe977l+\n8yF916CahqLvUTElyidM2Bor9gDGMitLZlVFOSsp5iV6XkJdEEuDtzKU9cEToihD1WQNKRiwUin1\nJ0pHrrUFFM6NDP1I33W0+x3r9YrVakU39BRVja0qQCips4UMIsuywDlP23TsdjtW6zU3q5UUay/z\nhdF5ScVpWjo6vHO0+z231zfcf/FFzpdLZlVFVcjrM0ofuu8QGL0YZvXdwH635+byhtX1LatbgUse\nX15ys93SOs8QU8AFKeyCQwEfgJYPVvGG91gBr6qaT33qs3zms1/k5PTse3fBkUPgLiT89XnHOxDv\n5z3Uu0Mjz9yo3uX+x2nz8nTioair9Py8o9/csL96Qre6Qo0tpYpYlRLNMwMj4eC50xYHQNlEZ2Wm\nSitYhiTmdc352ZLTkwXb7ZahaxiHTgyVnJXhoU6CnaRq9LnTSeZGxqWJKSGvYIfinbvtmApzMlfS\nCac/dOcHiT5KC4Yd1RTx5r3kxKikMtVao2yCyLVBmYhXDh3lqUQd8GGg7wI6jARJhUBbS1HWlFpj\nixKChFsM2mBdwFlL7Afi0BPGnuDHFAWnwaoJvCnTcNA52SUURMqyJOrA4EVtKZj5TDrZspLO11hs\nURG6gV07yCt2HuMCKkjQQwBMIXayZVlSlyV1LTatpixQdQGzEmaWWFmCUbgovfckjIo6ve9WWDrZ\neEyMZAWiCpFx9AzDSLvfs1ndslqtaNoGZQxFVUEafFf1jLOzM+bzBTFC3/U0zZ7tdsvtasV6u5NB\nsI84F+j6nv2+ZRgdmoDfOIauY7/bc3tzy8l8LqlKxlBoCXYexpGoFS4E+mGk73qGfmC/3XNzfcNm\nJYlHbd+zbVs65xhQjGg8YlDl0oLlYmQEBj44uPfx8Z4q4Hfu3OPTn/k8H/+5X5ACMR1P9bCH69KQ\nDPW9SvTzbnlH+X3HfZ+i/qXfnDHxCSc/fgSlpuKdw4LzvSSjcqTfrlk/ecjm4iHD9gYTBqwNGC1Q\niJpSx0VKfjD3UVNkWLrjNJTMg86itJycLDhdnnB5ZYR1sN9hihJbVRhfoNEiqw4RF32icI04X+C8\nE6FQklxIGU7jy5A78iADKq2nzjvL6fPrz3+PEdlJKNnyBy1hD2McJ5p5zIPNDA8ZjSnER5zgp51R\njIExDHgXGXvxCdFGsGKlhTeeoYWilvM1FiWu73FtS2g1vgflxolPL/4yGozFKo3SXiTfMVAoS1QB\nrSUdKOpIqQt85UW4YgqJLAtKmCfOC0yjTFIaqgRvKWxdYiu5mLrG1JXMEKqCWJeouoTaEgqDV4EY\n9FSodQoS1cqidYnR4iWidSELkTJCrRscXdvTNQ27zYrV6pb9fkdAAlCMsfgoC9PJcsnJyRJjDF0n\n9MLdbs9qveF2s2HXtgJ7eej7UQpt1wlTiRTs4R3jMLLf7VNUWiCOoliNIdIPTixsgdF5xmEgjJ6h\nE2OsfhhwXrDtMXj6GBmiZlQZ6xYjXBWl43bp8s8Lk74Xj/dUAf+Zj36cT37qM7zwwv2JEvX08c7e\nN06F/Ojn6UgmRn/JW6+e+Vt8x39JE8RnyzbkhPSnrpq678TI8ANDs+X28QNuHrxJe/ME1e0olcOo\ngEn+zRlCSaj3xPKQ4q2n4q2OCnh+lcYYZrMZy+UJs7ri5uaW7XaDrWYU9YyiKOX+iVUQYpD08eQB\nXQWPCx4xvUoPnbpuT5R/F9OgKjEOpIDraZGainiSwSstXWNEYZTBavEaUYAKKb7NJM1P2k0YU6AK\nA96jgsiwVRResVceFQf82DJ0Cu9HTFFhrHjAECJaG6qqxqIYjaFPO4IQBVGOwaOiJyiFV0zeL0Ep\nfOLAS/iBeH+oqGVWEEB5UbCqKN4eIU5LNMkqUnYWGIgeWxqKZG+rKynWoSxQxoikf54KeGmIhkQF\nTMrKdB5BS+E2ctHKIhYEOhlxjbRdz26/o9muWa1u2O22jN5TzmrKqiIglMyTk6VkglYVznm6rhPW\nyXbLarNhu9szjI4QNOPo6dqONmVYRqQDFw8ZTT8GhkH82oe2o9s2dE2Ld4HBhyl8WeXJfUpwyn/1\niAOuU5oxBgZIw8qIS76RSTyM54MHneTjPVXAP//Fr/ILn/w0RbJJPT7eiVJ/P2PGZ0v384ESebSn\n++unfpPOvzEmfDf3hge4JCesHEMpmgh+ZGg2bC4ecfnWd2luLlH9jooRawK2EJpz5ktrJZ2ctJcR\ndJwKtgyvUqGYqqxcjFbUs5rzO2fcu3eXR4+f0DYN87ZjNuvxNp1TL5mLMYZJ6BN8xIWIjRF9CG48\nBBfCwYpAHXZGKqZ1hcOANSYPABXTdp8ISok03opEP2QKYhD1XQKH0AZc6lyNSt29ksXBhCjwjNZg\nAtF39K7HuBqtCymkEQqlsW5AB4+NEIzF2wJflPKa3Ej0ozg1kkJ/lcITxbp2HCEGUTRCskIdk3+2\neM14E5AYupRJqc1EOfSaZA4GZV1h6hJdFei6RM8KKApUUaCrUop4WSRVq3ScgmsrYZsk8zFrC4y2\nCe82qUFQBO/ph5Gma9k1OzabNevdDuc9tiypqjoxqhSz+YLl2Smz2ZwYEZvYfcN2s2W12rDe7Nh3\nvewqXKTvBtqmpe86QhhBBaLy02IokGAgDJ6hTzL9bmD0Ml8JiPW6gjTcnMioOCKjkgLugVGpVKQT\njZS8oCuBUj6o1Zv3WAH/uU/8Iufnd/+Sez3LF/mrOuIzf6a/TYrCaeyXLvro2kPRn6CUKNvKdnvL\nzeO3ePT6d+nXt9DtKWOPtYHCgrWaLLJTmf+dO9kJWpHfMuVRpo48Hi0kSmuKomC5XPLiiy9y/8Ur\nHj6+om/3jMMJfqzTQpDVnNIVK2lBiVGJMCNGgj4KOwiJCaNUoqsdijUweaTo/JxtQUwGWjENEVQS\nKAWjidGg04KXc37yziMS6b3DKGGQKKPQSuTYVunk8WIIaGE2uEB0LWPo8AGij/gIph8wOY89RLRz\nmAghwQ4hSncdgviiqzQN1tZOPitKRaw1eD/SdR2jG9BG44InjgplLLYoptetRW2VqEMCA0m4hCTy\n2MomOKWmLEtxFSzEEiGgkh+2TsItnQr2M4IdtFi6RvDe0fcDbdvSNHt2+z2rzYbBRcp6TllXKCu7\nn9l8ztn5ObPZAhl4OlFm7hvWmw23mzXbZo9Pop1xcLRNR9e2ODegVGDyvklfjHj0dRHbYonlE8d1\nuT6h96k5krG7h6nb9uEAjwhjJRLS0L4sNMZo3ChMmA/q8Z4q4KK4zF0lfD/DR/h+xpTH/+L5Rf95\nYM1Tn9hcLjMpgLQzDMI0yIM8gOA9YezZ3T7h6sHrXL79Orvba8rgKMJAYSNVobA2FecJesijNTFx\n0jr5PCcWRQghBf7GqeBnPrC0qp6yLFkul9y9c4fLi2u6Zk+33zOrZ1hrUw6lEX/xNCSLURODwrlI\nNGk6nBSYQUUKbSbM22hJlVeJhZKzDm2WdU/nMk7F3WrB87US1kxIXq5CY0z3JTC4EYImJBw5kqXa\noE2gVJHCyBfcpiohPPYILqJ8ILog2HcWG6X3SDkv8WdBqJIxKnSUbnOMjsz0UEqn0AOhUTovc4LR\nOfGh8YAWY7GoI1FHlIlgEQFOodBWYQtDWZeC6ZeWosiWsOLrbYxNC71CBVkcgWmXJYU7hXAklk8I\n4ts+phT5pmnZN3v2+x273ZbBjZhSbHuVEaZQPatZLs+oqxlK5eLdsdvs2Kw33N6u2Wx29P1IDOKB\n3rY9TdMyDL3YLKhstQA50i232eJy6BhGLwySpDFQpME8Op3atMsBBiIDcRLn+HRBQVEoytIyqwr2\nvUvGYj8p4O+J43d/+x9xslzykY98lDt3700Y73F5fWf5/UHf3GOP8GNU+zmPI+Au5OzEeHiE3GmE\nzKQgoqJYpXbNjs3NBVcPXufq7dfZ3Vxi/YgpFKWJlBaMkQ47pu5TOm89dd6pWTwMNo8GhVK8s/GT\nDLQioCOUZcnpcsnLL77Ik4ePWW/3NLst8/kcW5QoU6RilTrQNLAK2QVWyYARVEqJURO2K8noUlhk\nMJtS7yPJAlZNBXm6ZPYKaTOjdRon+BSkHMlczcRsh6hSXJa8Bz79DqccJZJUrgGtZQCMlkVNBsdC\nBwwh2cAmXnT0kUSFEcWmG2F0MDqCHxF3yCD2q9kK1UtGKErOtcyAo7wvVqELMQfT1mJKQ1EVmNIc\nkoWqAlMYYaJYKwVNJTsE+VglaqDGYGXRVMn/JkFpWplD8XaOYRQXxK7r2O93bLdbtrsNXdeitTgL\n5llJUVWcnp5zcrJEG4NP3izbzZbb21tuVitW262oNF0gRE3bDqxXa7abLcGP0mQ81X2nHZtXRBcZ\n+5GhHxidlyxUld60o2Yk49gO6An0RImoS9+hiHzWi9JQ1wXzusQYw6odce+zjMsf9HhPFfD/7X/5\nn9hu1vzS577EJz/1GV79qZ9mvjg5YqQ8A288t3gfOCLvVtrzv312ePnU7Soj4uFov3i4PeYkmczP\njgEVRnzfsbl8xOO3XuPywes0t1eosZcsRKUpDVijUDocFe+0Dc+PpWO6HOHcSqUCenxRKYJLpwGY\norDCCX/pxXvcf+Ge8HebPbvtlqqeo0sJPY5Ko7y4u0m0FilGbdpriFe40RO0Q/5THfYyE+6vjiYO\nCoE/kO11TozP9MNMSZQ5tfiqiLw7QRyI77cKspB5BO8dY2TIMnStE5FOzpUxAvNEpfAhYVLZLiA4\noktS+9SlB+eIyZqWMBKix4cU3oBPCtYE/5SS8SjvlwQ/2Do5BVqJXzNFQTErsYWImozVkq5TGIFT\nrElzEZVC4g+L8uSVnQbUcp7yDEE+myFI5933fYo527Pb7dhuNzTNnhglqUjuG4RxsliyXJ5OAQ3D\nOLDfN6xWK25uV6zWa5quw4VIiIphcKxXG26ubxj6jrLUFNaisj9wLt5B5iNhcIxdzzBIofXx6DMh\n78zUYUvxjtNlYpUoaWbKyjCfl5wsauqi5GbT0o8pxOMDfLynCvhr3/4LLh4/5g9//3f5/Be/yq/9\n+m/y85/8NHfu3KMsS9m2PwcBeWd5PT7Uu9727HLwztuOi3f6EOcOg+xrHNAhgB8Y2x27m0su3/g2\nV2+9TrO6RvmBmTXUVqXinWCTZDGociLN9HjioS2oyGFYeSjaZurSMnMlQe4THlsXBWfLEz708n0u\nr665Xm3YbTfMT5bUWrwsokle4V7Cj30AHaSLDzE+9WVMTywVZinUCinSEqPFhK9DgnZQYMQ+NCRB\njUm7jJBYOiGIcCYPxXL37oMTbFpL8G/URnIpQxKHhEBpNKXSk4RbWUmdF+c+iEbgoNgn6mPIPHZP\nDC4VcwfRo1Ug4IjKyaBOBZSJkw97VBGvpAO3GrQ1lLXkWZrklqgLI1h3kUKMrUYX4r2SL8aYKZhZ\nKTMNZZW2clFH3Pi0ExH4N6T4s4FhkHgzKeBbmmaPc+OUxuScoyxLZrMZJycnFEWJc25yJNxsNqxW\nUry3+wbnAihDjIF233F9dcN6tcaYKC6JSk8D7FzACRBcYOx74XgnsynSgDp9IqYdXFZUDgR6ArLf\nSXkfVlHNLMuTiuWiZlZXBKe4WDf07oPI/H76eE8VcIDdbsOf/ek/5S+++af8r3//f+Tf/Lf/HX7j\nX/7b/MzPfoyiKJmQZvXOHvvZ2p6HJ+92+/Nwb3nUAwQgGODxfRPLQiWyX4yY6Oj2ay4fvsmD177F\n9VtvENo9NjoKo6kM1Anz1jZ5Nuv8pzoU4jzqyZ33cYeu0zArdcRH5RVIxdFKJxWjoq5rXnjhRc7v\nPOJqtWazWVOfLDHlDF2UqTioJOhJrIYYcD5OuwHgKTGSSoPGnGafA5cnC1kQqCXz2COgPMqHNKBL\nfJWAxKQZkxJbhDYWQ2B0Pc4HGexZmzp2UNogiEgkuBTMq4KYfGmwRmNtIQEBRouniLfYusB3htD1\nkl05KOKA0BfHOPlUR6LALGNE2QjKYJN5U1DiMaKtSoNKyaiUgi3sFqUVxsqg1VhhpZBscU0p6fO2\nKLFFKVRJZQhKE5QEEts8IFYHKE2ySkexFBiGxPToaVsp3rvdFudGmW0oRd/3KKWYzWacnp5S1zXe\nC11QuvUtt7crbm/XItgZnVArI/TdwGq15vLikrZpX1tUCAAAIABJREFUWJ7UiAX5YWCvUvcdfcQP\njr7t6Ifx4BF/9L2DzB4MqQOXAj6k4m00FKWmnhWcns44O1twUpcEF3i82dEN7tmN7wfyeM8V8Hx4\n77i5ueK//W/+S/7g936Hr/71X+VLX/0Vfu7nPsliefrcUeQ7h5rxHUX8Lzue7cql8zgANjKMk4+o\nUZE4tDSra548eJ23v/ttbh6+jeo6THDoHEKQnlFhDcaCsglH1Ykvnf+nhFJ43OWTttMmdd8TZYUM\n5WTcMUWfGcGRVTQs75zy8ode5uL6lkcXV1xeXmGrOYuTs8SAAJTGRxjcKHisFj6EQI8BjcZ5CVPO\nDuBaIeb9ibOu02vIsT/ZcxwlohsUyYhLKGFCF0sOiIkvrrQlIEk/gnunNJ+UDKGiwtiCzMdPrtIy\n/owIpU25xJL0YBBxTaHRpcZXhtiPxGGEwREHhx99gk80KhbYWElcV/BEpTBFIX7kCkL0BBUJSUel\nEztEFlUrkIm1EoFWGNnKIFmgpigSjFKiiwKtD46AOnXiGWLJ+gHZoYSUXTkwDD1d1ybce81utyUE\nj9YCifV9T4yRu3fvcnZ2RlmWiSbqaduW9XrNzc0NN7e3rNZbut7hgsJH6NqB29s1F08u2W1bqkpT\nVgZtDt+kPPCWdA2PH0W6P3o/4djAxDrJI6OMf/v0udAIZFLVBYuTipNlzemyZj4r0AFWbc/F7X4y\nYfugH+/ZAg7gvefm+oo//sN/wpPHD/nGn/wxn/3cl/jCl/86H//EJ5nPF7w7/PHOI5fz7/XRiCD2\npzBZZD67WEgmTiAOLdvLRzx58zWePHiDzdUFod1RxEg2mxJWQRRPEaPRRqiB4jGSQ4IPA8SDRkdN\nmOgEmSRhR/5iqFTBdZK9izc2kt4SDeWs5u6L9zi/e4fH17dst1sWmy1FvcBqS1QebT3Ge4ZxQBsj\npkgpGkvFIMkqLi8nZvJ7VmmnoJTws6U7D8TE+I3o5Geu5YwnIUfMg+GkS9J5wUnsGGMtahhFUEIg\nRi+7CgBlUSkbM5KDiUXo46Ng22MIuODQCgprkse5AgxRBUiMEQqFchqDxnqdBDrpOUahsyktKelC\neAlEgrhAGvE30doK3c9IXqmxRjrzQienXJ2Kd2KdWItK8InYuiZf92c+gSGERBX0eO9wbqTvW/Z7\n6bqbtsF7h1LCUx/HkRgjy+WS5XJJVVUAjGngud/vj6CTDfumwwVDiAo3erbbPdeXt9zcrAnBU5U1\nRWEO5moxfwuSktcLNJZx78yll3vkb0veTyZpfPreGQVlaVmezDg7XzBflMxqQ2kUTd+z2nbsmuEn\n3Xc63tMFPB+73ZbXvvNNLp484vXXvsU3/uQP+crXfo3PfuHL/NSHf5rZbP49/vVTLG3+UiBFHTBv\n9ZzbVQziadLt2V494skb3+LiwRs0qxvi0FNEPw3XxEUwb+/FoCpT6QR+SDggTMENUryPhoZHOHhm\n5WSix/RKZIqKQqVBpKwERYDzu3f40Ksvc3lzy1sPL1hvNtTLM2plKNAoN1J4iw8CqYSohXkR82uI\nOCduiMEIfi0LW0jPLR6dxnx+Q8JNC8FzY3J0CUhnGjlASEHL9VGGukYbCqvwQSUaohhDBRBbVSXc\naZmpyTnJ8FOMUlTEmEveS0mpCcLPLtI51BosxCD4sxkNOoQJ680YfVRM6eo5wEKgEoM1VnjxCDvH\nmMxIEfxbEtily1ZGcj61EZw7+8W887NI2lFICLFzUryHsWff7NntNuybHeM4JHhFOu8QwgSbzGYz\njDEytBwGmkaGluv1ms1WItJGH+VD6BVd14ux1PUt7b6jLLTw1I1NBVxPl7QVEbdB53BBKH5x2nA9\n3X0fF2+XyIDWaBZ1ydmi5mxeU5Yaq8HEwL4ZuN60DO4DPrk8Ot4XBRxksr7ZrNhsVvz5n/0z/vzP\n/oQ333iNr3ztV/mZj36cu3dfoK5nk+/1U0DKVINj6h5zIXwOhq6e+gcJQsn/PODHnn63ZnP1kKs3\nv83V26/RbVcon1zsYi78QRR1xmCN5DhqJT7eVqvkMpgSd+JxAU9FSWcD/6Pu+6iQP00tlCeqk7gH\nVEYzWJ4uefXVV7i+XXFxfcN2s2JxdoZKElDtLT46Imn4R0rUiRGrZBkL2SgsbfFd8CKwSa9hKniJ\nCRNVUm9qhVLFdK4lTi7KYpOsYXOGYkzn1yUuWmGl8AckMlOqhGDpKoYEJTEJn1CgghIjKQQrd95j\nokq8eeFsk2AjZdX0fmuriYn1QgQVhEbIVLxTRdLIYNOK0MZkVWr2sUmJQ8rK8JOsTNU5YUlPIpfJ\nIiBBZxk2iSHg3Ug/DAzDgHMj+/2e7XbDdrej7zuI4JxnGHqcc1RVxdnZGculeJx47+n7/gj3vmWz\n3dJ2nVAyU6hDPwxsN1turldsN3uIkaosKWyJ1cVB3xBNuiBJ9qNjGJ3AJ4cRSerU5adcwA8iHXnZ\nRWGYz0pOZhVzazEElA+0w8Bq07Hev79T5n/Q431TwJ89vvXNP+XRg7f5g9/7HX7lV3+dr3zt1/jI\nz3yU09MzirKcKOTPbsWyOhB4pgFSTxWkrFbI6HcMgTD07G6vuX74Opdvfpvu5iF+f0sZRulQgnkK\nhzdaScqOUbL1VgfRj8kQAjFdHw80suPifQSl5OKtlRHDq8REQTEtXPn1xoj4n6C5c/ecl1+6z92z\nN/nu62+zW99Q1zPKsiQEhwsjISapfe7445S3Q/afVrlYJ2501HE6nyFFaxHldcbckVuhX+fcRLlL\nws+NQUWdhmVKTKucBwVFbSmUxgcZmvqQUZiMe3sJQtZMviRSfWWQoFIie+CwoPqkZNW5M0+3KJto\nnYnXHnyUYV2C3HSU8yK1WIRMeQ4SSZ2nyRfpvvN2Kg+kEyqV7k+yg007psSpjwSBSwZRWPZ9R993\nwvXebunaDu8Fymn2AqPUdS05nmdnFEVBjHEaWm42mwk6aZoGlxJ5jC5wPtC2DberWzbrNW4cKYuC\nup5R2Er8V5TsOGXRVMKpdyIiGpxQB2P+GsWn96uiuszdd2KdGEVVFcyqktoWFID28jm7vG65WImR\n1k+Ow/G+LeAgjJU//P3f4dvf+jP+73/0D/jaL3+d3/jNf42f/tmPU9XVD/BIubPN8MRRZY8SMdY2\ne1YXj7l+9CarR6/TXT+gGnfMGcW1LsS0pSRBGdJpS/edOu184QA2JGTxiHSiDpJ6ffz3rOnXSfCR\nu/D09HUqRopJbh2jFJz5bM5LL77Ih199lQdvP2Rz/YTFfMZsVhNLi/NGPKhzkU2lLTWkKbpLT9vj\n1O5P3bmKIXWq8nRCjOAjKhlCOZfCMuFQ5LUR+KJIHPY0jTVFFs4kuCYErAA2KW4t+ZO4FJ82BrzO\njy1CHBVl95O3+4l4jXPC9TZKYY2e7ADyOYxKlKfikqinj4VFwjBIOyar8nt62C0Zm6CS3G2b9C5r\nQ8g0JiVmVQf/FPn9orB1aWg5TIW7bRuappHi3XXCwImw27f0fc+sqjg9PePOnTtYaye64H6/n7rv\n7XZL0zSMo5MdlzaEIPj4brNjt93i/cisttRVRV2VFFak+yTLAw1if+D8ZH42ej8V78NSeLRZJcMn\nByWlMZq6stRlQWEUJi2um3bgYt2yaX7SfT97vK8LOMigZ7Ne8ad/8kc8ePsNfv///X/41X/hN/jV\nr/8GH/u5nye3pc8LXAA4GjemD2qQbhhJGe/bHavbK66fPOb60du0qyeoZkUdGmZqoFABH1KxSd7e\npA7TaoECrNGSNH9AE5MSL1H2cjBwVMhuP/NSjoq3TMWmwq0OFf+p66QOpjFn6urLouLOnXt8+MMf\n4TvfeY3HTy5pt1vGk46iPCGMIil3o8PZZF9qxFDKWFERamMmfxTBcpPc3IcUaJsXoWR9GwXCcMkn\n4/i8xwgaQ5EokdEHidyKcfIJZ5LfTz2ecM6VJvgo4pFBhndxMudyeD+ilMixtdET31x2BuqwAwvi\nODixHeKBPKqMUCD10XlOqWYy1FXZOTFDI6K21NZO3G+MSpEb6ug9PBTv7LMu6k/P6IQuOI6SIt91\nHU3Ks+y6jmEYGEYnFq9tw8nJCffu3eHs7AxjDOM44pybCv5ut5MszKbBOZfcAbUIdsaR3W5H0+zR\nChaLGgKUtqQojAymgyhliSH9jKTIjz39OEzUQaVAp91Ehk6E9x2mzjsAaKhKQ12WVIWl0DI/iT7w\n9s2edTMcwrB/ckzH+76Ag3wJmmZP0+xZ3d5wfXXBa9/+C770lV/m07/0BV566UPUdT3BAIfEHPnE\nyNY86Q+jQ0fH2Iu38u31BVePH7C5fkK3ucGMe6rYUauBSo3SYaau1GQMOwrrpLA6Gd3rpyKnpu47\nxkOaDYeirTkoM/URL3hyJZx2DOp483AYeCbsNhenqBVVVXP37l1eeeVVbm5W7Lc7tvMNRX2KsQVu\nCPhKfEdkB5EVgelLGUT3HVTyazLpPObcyyyXTxaiIXXlOuHeKkExct7lqx6SzVwOlZA1RwqjTiuC\nNuIREsNhpqCMnMsRwYJzhmdUGUuXxUCUqwVEK0PS6BlBLGXTE1EZ3+ewwCiljvBpOcEmv2nBk9iT\nIlgyOoU7lMKgsWbyIQEZtOo8zCR9/hLv/5CGNE6MkWHokkf3jv1+R9u2tG1L1/XCufaBup5x5/yO\nwIVFKUpaN9L1Hbvtlu1uR9M0tG0rkXGyFOJDLt4Nq9Wapmkx2jCfzdKClT3IAyEZm8mcQIJAXBgZ\nvGMM7lDAY/48pwKeYLYMnXhkVmKtZl5XzOuKurBYLUPqdTtwvevofiLaee7xgSjgx0fbNnzzz7/B\n48cP+c63v8kXv/XnfPIXP8PHP/FJXv7Qq5ycLDnwbZECmAqeCiOu39O1W9Y3F1xfPOL26jHb20ti\nt8OGjhkjtRoo6TE4xmiIMSvoZIsdIhRGU1pLaSxWa+lmtXoGPskmWKlwH8El+og6eIyBT0PO9CAq\ndeET6J+LvxZ70ogUVWsLlstTXn31Vd584y1uVlu2mw2zkz1FWeIGTwxHi0NqfIXtIHBF1DnHMq8a\nuSCL5DnGiElf+pgGdWbCmvNic9huj26QQV/yVM+de/7lx2lA2Q3RmrTARYNWBUYpiYlTEaNMCmKO\nCb464NUxRoIfwYnXST6HB4qiPKeM0x+dzqPdTjxSv2ZCeHqfjARLKH3gICmVaaRJeZmnxGlxDYkx\nIwV8oG2byV0wS+VzJ973AxFZiM/P73B6ekpZVMQou5G+62i7feqsG7pcvGVLkTpvT9P0bLc7tust\n4zCmc2rJ7a9KjUxM7G6V2uyo0gKpnzGgIkMoskBHBG4SemGcPn91aVnMauZVSWFEqzk4z5N1w65z\n+J9g3889PnAFPB/r1S1/9Ae/y3e+/ed89GOf4Ctf+1U+/8Wv8fO/8CleevkVgAk8IXj82DN0O7bX\nj1lfPuDm4iGbm0v6ZgOuo9aemQlUDBRBhDqgk1dDjkTTaYudire1E9ZqUheuVBpcQoJVjrvrVLyz\nvF4dG3LmDlYdigtPV5qYsfuYu0np9oxRFEXBYrHg/v37vPjiPTabHe1+S7tfc7JcEFxy5EMlDrK4\n9pkAPrsTKp1MpITt4pObYE6fF98TKba5Kuq0OMWjCZ7SKsW4jUiAgcAPIiqKE/VOcHaBmYxWWGOE\n+RGiDIaVld3AKDDN5BdOnDy1D5mdMPpBcNc0M1DJAfCYRTMhttP6ngu2DC9yVz4NK5WewgYOp192\nJoeBcOLuh5DyjnxaGNNAcDyYU+33+4NFbC7GXY9Smvl8zvn5GefnMqiXUI6RtpUczLZtJg/vcZRu\nXWlDjIbRebpuZLvds15taZoeFRFhWV5cSTYOmUOS9QU51LoQewBlNX4Qq3hPxKZyr9Ii7A/rFDKr\n1tRlyWJWUxUyHPXes+8GHq0aOuf5Sfl+/vGBLeAgH5LV7Q1/8Hu/w59+45/y2//4H/K3/tXf4rf+\njb9LVRRUhUZHT9/t2a9uWF085NHr32R9+QDXbNBxoDKR0kBtFJX22OjQwaNUwEedoITUhaEIPmKN\nmABJ95fgE5VT5w8FPDMhFEed3PHlCPPWCcOU452eMBnbzVAKueDLRI6iUFRVxfnZkpdevMfjhw/Z\n7vb0+zXR3SOMPS5t0YMPoGQhIpsukZLQU3qQT/j3QaWaoZQE108G/sm3PE1Vs6ujxJfF5MqoMIWk\nrOM8NqXWxIzBZrw5d+jp32lrCEahCIzRJ4aJvN68KclcfK0kSMAaRUAn8RGCSROTAjNIocq7GngK\n8sDk90JmA9rI7mvCeUPaPeRtVgo0mBIJlAI8wTHh3uPYT5S/3RH0sd/vWK1WtG2LMZbl8pTz83PO\nzs4pyzLZ6AaGrqPZ72j2O7rEXHHDQPA+FWZL8DD0nu22ERn9aoMfPUYbyb7RgutnDUTecAjLKBJU\nymctNLo06MIQtaJPXbPIywIGodG6GHHTGiY7oVlVMisLbLIp7saRy23L9b7/SfH+HscHuoAfH33X\n8o0/+SMevPUG//B//3v87b/zW3zu05/kpLLs1jdcXzxiffWYYXOFGvfMGKgMVIWmMAodAwaPxgvj\nIynZRAoOSiVXPSPxVbl464Rqm3RJpS5tr3OBeNplcGIyqEPBEEN/6YQnc0+VC6WaxBSHoaaoMUmY\nuNaiTDxbLnjl/j0enp/QNy1Du6dv9lSzOa4f8YMnFFaGl6aQ0GSfvGZT0nouvhnb1kqKKcpOUIdO\nnHiZF0acF271RIdEvtyTein9LD4iaurUtRITKGKye3ViRKVA2BJK7AdMymDMkW06DVxV2iUopSiL\ngqBI6ToeH/2Rne3h/ZDTmEIaMt6lowh08vnVQuXMu56Qd0IRKeRaHi8GxBzryDJhTJmSw9AntomY\nTO12G/b7/cQi6boOYwxniSa4WMzRStF1Hc5JpmnfdTRtQ58Gnd4L40ejCWiCN4xDYLdtublesbpZ\n0/cjGkV0Dl0oCX5IojI1vQih94XE6Y+knYZWwnU3mjB6HEkNywEay6IqiFilKQvLrCoprcEkSGzV\nDLx+vf1J8f5Ljp8U8HTEGBmHgevrS5o/2rO6ueJ3Pv4xfvpD93lhWbOwARt6ytBTqIFSeSqjKI0h\nm9lnW035MEdIviBKy9ZTYAJRXWbIRLBvk4qaAjW1ZRBV8tmWbk4be1DvqaPO/ljEQ/57/rIJdCJl\nOt+UuC5TJy7hENZqFrOK+y/c4YV7d7m8uqVp9qxvV8yX50SPeIN7JPl9SoEJuBCRZBadVwo5rxnv\nRUsh1WZavIjgncOPTvYGiTqXF6kcWpCxY6WzSOf/Y+/NYmU7z/S85//XUHPVnvcZSJEaSFGiBmpq\nSa2We3In3e7AjpELOwFixEYuMiIIEMAIkAsjDhAgF0Yjg5Fc5MYXuTCSzoA2kna6O91yS92aB5qS\nKA6HPDw8Z481D2v4h1x8/1pV+1CUeA5JddtdH7Bx6tSuXbuqdtW7vvV+7/e+FXhWXbKqLFHwWtRB\nzojiRJanHDoK0rXSys+reA3GFQ0Ta5SKa1D2NrxmQRKptF8v84THKeZdwuZGkZhT1QdNCI9VDpS1\nJ4gXlYuqhqoVha602OKWRrxNVlmgPcScajweM5/L4NKUJUkc0+/16PW6NNIU5yQlvjQ2DD1l8FkW\nJWUpih8fzri80jijyArPbLpieD5hdDlhucwBOahGSmG1q+cw1fhDQW08WD1PAXNQkficN9uOkpLM\nOAoLZeC8AyFDBMRKNi+bqWi/Ey0U3GSVczpdMs/Nu/JZ/5eptgB+XznnWCzmPP/8Dzi5d4eD3QHH\nu33eczjg6Uf3udZLaUaWNPI0Ik2sq25XAMXZsF4d+OV687MC5WAFW23n6SiAuY5CE7vZc6g17x1F\n9ZeqUnYqGqXeNlRX1scrEJVz1er/4QO3EdBQccgqiojShN3dXY4OD7n92j2G40vGwxEHxzexxmFL\niyk9cVJJwBTieuUC161k41GFMIZq4KXXXWklrfPO45BtPTF8Eqe+ahlGBZCWgW143l6hglxQDk5B\nYeKEdqrcGyEoOGqyZr09KWct1WMDvzGorDZA1+dDBBAO/u5WhouV1M+HnMbKnkBHQcrogt5daYhk\n49JXXD/UtEnN/Xvw3gRzqpIsRJotFwuWiwXTyZjxZEy2yvDekzZSuu0O/V6XNE0BRDppC0wwrypL\nE4agRpLkPcE2V9KVlrllMiu4vBhxeTFiPl3inCWOIox1EiMXAFzyTNXGW6p6U69VW8pDlEQ0fQN0\nTJQYFnnJMrdkxlGK3XpobeS1TpKIZiOh1Ugk49IahvOMy3m2Nax6C7UF8Dcp66wkkkwm3LmX8Ppu\nn9X8Gk/f3OWxgzatbkO2KHXwUNMVlysddyX1E15ahyDWwGNE0in6YD2qrqTOyzS/CnHYTHLXOnTj\nWlYcak+UGonr2RqbH6y6Fw8fukoBImAW+GAdVrx9Qq8/4Oj4mJ2dXe7cHTKfzVkuVvTykrIwxA2D\nMZHw4Trw/Igftg9+Kcq7esOy2iLVvvJTUcH/JJx6K00aJ8GpL65zHqsNRJSqz0I8rj6AVcNE8Sx3\n6CoZidCVV5SOq5Aj8LkBiMRLxQf9swCprwa/Wge4VbUkUO7Y4S3B3ySiSgiy2Ct6fK+Dt4uicuWq\nl6eqqQBA7S7oJP4ty7J62abSay/nAuCrbIVW0Gw26XbadNttGmmKB0ojsWWldZRWEuFt4O2t9dgN\ne2BjHFnmmE4zzi4mXJxdMBlPMaVBa/HpdlaWlqx1RAqcBm/DQTMMjwkzm+p9pUEskXVMkirShiPN\nDWlWsswNq8KSlxZnXbitppHGNJopcSz+NdOs4HKRMc/Kd+FT/S9fbQH8p5TznmVW8PK9C+6cD7n1\n6CFf/NANnnpkl+OdDj2t0XHFCAa3NS1LLVV0lQ/I6pCOWzY9FD7WuFjhYhWis/waTENHrMLpt8wK\nq8Hl2hu6VjIoFRLh63Y/1EaHVNE8vjqVXoM4gRP3KqbR6rB/eMTx8TVeefWE89GcyWjEYG+fZrdD\nWRqiUlPaYJNKBYqBOnKBSnI6dL2EsWxQsPg1ZaCjWLxe4pgoSSQIOFAsNkSYKcTdT8IRJL1H6bX8\nz5Ql1npKZ4XZVQ5ZlIpk4cQ6nDOSXh8oLZQjuIyL45939ZygSkKiOrPR65X2+mAYDryyZKXRPqoP\noK6SAYazHseawqp3CmraRDZjqwWdCrwrg6nZdBqUJsJ3N1step0OnVaLNJaDqPWewrgrAG6sw4bN\nTIfCBPAujSfLLNNZzsXFhHsnZ4xHI0xREEcReIU3Mnx2LoQRa08UPNgra3dfHc/C7KNW7qCIIk3s\nI+JYkSSONLU0C8syL1llOWUhd9BMY5qtBmka4zUY77hYrBgtM8q/4FFpb7W2AP4AVRjHt2+d8vLp\nmI8+ts/nnrzBM+895nivI50h69RwEAAQH47wJq+BR2gTHTpwFylsoI6rRHhZANlYva655ap3WwNz\n1XXXIXCBFtlcSqq6JPk5AsUSZGBK1fSHRUEU0R/scHR8xGCnx+v3zri4OGX/+Ij2oEtcRhijMDah\nML6mR5SSrTvrba1Tl9xG6aDlcYR1JVUl0CTEzqF1sFZNEhlKArY0OG+DjjpBxwnOZmFYG7Y0na0d\n76p08oq2st5JgLSzIWleAFg7I0EJ8oDWr08FwM6FsyBdUyu1Q2AAqhApEQag8jeTxxEeC+sDgZN2\nv9bCS3RadQMB77WeO2c6nTIajbi8vGQ+n2OtpdFo0O50aLfbpI0mOtAcxkg6UWEdxoaZg5IgCOst\nxkmikgnZplnpmC0Lzi4nvH5yyvnZOWWeo5Ui9b4OpI6UbP3K6yonMFp5lPX1VqWcYdYvYXVtOAj6\noMCSv3Mj8bTSlLyZUpYpIDOXViuh0UpQsWKeFZzPVyzybff9VmsL4A9Rs1XBd26d8+r5jD/90T0+\n++R1Pv2BG+z3WuiqCw1vcK/lFFvmVsGoqg4A1lRYX92+uk5HGh229tar1tWqt3xoqoGYC+nuMozU\nb/aw1xXAWz54cp7vEZDScQzW0Wyn7O712dsboCPHZHzJaHhOu98hbcV4Epx3lIUJCzYxikT6Y48k\nrEdhzT7orMVHZWMjkpBIgxz0hANPiCI5a1FO4ZSRU+6yxCkliUBaqBHvXM0zSwwZYq6kKq8Xgdlq\nLoB3oo12lYVwpfWWgR2EuLj6fCqcoziR0dVnOuFlrP8NHjf1kDJ4oDsvBwPJnNE1p7v2TCekwK9q\nmeB8Pmc0GnFxccFisQCg1WrR6XRotVpixKYjSgemMFhjKI2VlCIVoeIEh8Z6S2Gl6TBW7GeLvGQ8\nWXBycsm9kwsuLoesFktwQpMYK/x3rDWx1ngfUx3wK9sAHanKOgY2+Pt1iU40GPwShwOejmWYmyYK\nSBErX4hj8QOy3nHnfMp0kWO2O/NvubYA/hDlvGeelawKw3iRcW+04PnXR3zuyRs8cX2PnXaLJAkd\nONKNVN4ZskCi6wTyoPIORlbrYN9KiVGpLapJaHUS76sDRDW4DHXFxOq+66525PI9721NH4B8qLwX\n2V2v1+LoaJfdnR73TkeMLi8Y7O3RHfSwpaXMC3wIonDWY1S1e+drFUk9GAwDx/pgQYjOqrc1VQiL\n8NWpiJgrxbGAj3GgbaA7ZJHIR6Ktj+NYDhxWiUTG27C9WXH+gXeXR0Gd0kOlufeE5fnw96oWD33d\nmW9MfMOX3vhbrLntanPTKV8Dug8R8/LUQofuhfPOs6yWBY7HY0ajEePxmDzPieOYVqtFq9Wi2WyS\nJhL8gIfSWLFsLddDSqccWDBOySDT2KBIsWR5znA05vT0gpOTC4ajCcvFEmdNlZ+B8Z7YORKtJc6O\nzYOSzHNc6L91OJMQW4KN95p8QhCtvaNKZapmOi4K6/jhKKCUxzrHbJ5zMp6zKrbKkwepLYC/jbLO\nM1uVzFZjLqYrzidLPvKeQ568ccDjx7vs9zseckSRAAAgAElEQVSyjRfOvZWuwLlaA1e1+2BEBbSB\n467c/agSWSr70o3TVyraREDlfpCGNwd0+Zd6GYaKlw4dVxRrur02R4f7HB7scffuBdPxmOl4zM7e\nHs1OW5ZnUok6szZs6YVPs3XS+SkjWStR2GrcBEClI7yKZJjoPdpLlJrxwtV7AB2jdOBxHWsuOnR+\ncRTUIiKornXXNaZUOY0BzF01j6g7SHGJrDB6cyAMyDAzHFTlr4BwCjVdEvh+1moWG2iH6mAQ/GZx\nMtVFeY8LA8tqWDmZTGrwLopCKJN2uw5giONYpJcuLPmUJUVhQ/ctOnqLx5VQWjkgFcaSFwXLVcZ4\nMuXuvRNOTi8ZT6Zkqxxnba200VQuleI6Wdn0uvo5ikGXtdW+AbJWLxi+PvxVR7Rq1R4VfGuiWo4p\nL7YPjYMjLwynozmLrNgqTx6wtgD+DtVkmfO1F+5x62zCUzfHfOzxYz706BHHu12RSIVg2TroV62t\nY9fhDaoeYNayRF+dbm+AcwDvzUlYrZ/+MQC++e/m9evrqvNg6YyU1sRJQrvTYf9gj+OjI5rpq2SL\nFdPhhNnelFanI6vrBC175AOFsz4wGCve3d47fOyJozjgY5gFxClKx5In6SzWO3FbdL6WqTkvQ8Z6\n0Bp03dVBreYiVAUOCrx0f2u6o7ovLRazAbhDgHpwf7y60anCz26+rn6NVLKVWSlWWA+QJXShci6s\nbAc8KHmO3spXkecsl8srwD2bzSjLkkajQbfbpd1ui9KlWniS1GZMFZhgTD2stA5K5zHOCG2CYpXl\nzBZLRpMJp2cX3Ds9YzSeURSldM7htakIo+pMwnkZjNqwHOVCGlEctoZJQnZrePdovX6V19ZflVu6\n/H10daaowsDfO1AycJ2vCs4mSzn72tYD1RbA38HywNlkyXB2h++/dsGTN0/4wofewwcfOeBwt0cz\nSja67rAuT/A82eygdQXUugZvvekRvdEp+gBqm13iZv24bnzzS4dtwSpwof69xCTNNoPdPa7fuM7B\n/h5nFzOmwwmjszHtbhWMsfZq8QQfbR1AC3fld0fBv6QycKpMnES3HThq5JTcWhsc7cStL64WeqrH\njkCEDS6DLnjOVFazIFFsQpGLUsQYAb+KtBGAdkIHRFqSdghaeyXAVrnq6cAt1coMazeorYrmkjVx\nH864KkWKtWXoLD3eGsoiZxVsXYfDIcPhkNlshrWWZrPJYDCg2WzWw9wKvCVr0lIUhtyEAaUnBDWL\n90hpHKVxLPOC0XTGxXDI2cUlpxeXTGZzytIGD28Vum9fPfQaxCXZLkgJg2woMhBZH9KIYhQRLtbh\nIEY4WIY7qWP0KpIpNCDhAKuDp7pTiiJ3jBY5y6xk23w/eG0B/F0o4xyXsyVf/dGKb798wqeeuMGv\nfPz9fOKJ97DXatX8dwXiVdNyf/eNDiRKGHiig5wwKBoUStLV9U8H7/tLjIQCcFK5+tkaxJWKiJOU\ndr/P8Y1rHF8/YjReMZvMOTu9oNnrETVTOuHx1z6KiQy65L6AergqYBiF5ynyP1NvSErnCmt3Relm\nbRh8ai28daRUeNU2hozBFUk2NQl2tSrI6EIn6JFkeis3qGgblEI5V2vxBcKhCsAQPHJoL1SYC1uO\npTFhThERlkrxSv4uVVdeWQS4IPUDUdYslyum0wmXlxeMRyNm8xnOOdrtNru7uzQajfXZFKIxz/MC\nZT1lYchLS2EdNqiGnGAshXGssoLFKmM8mXN2ccHZxSWXkzHT5Yp1lGTQeoNYGKtqPrGmUyoglwUp\ni5YBhXTkPsETA7H4n1Tvn9DNQ31uRH2n4R5VBehaKJvZquBystx6fT9kbQH8XSqPcOSrouQ7L9/j\nYrrkudsXfOapx/nQe29yvDuo1+elgQlUQPXBrTYKQ5dcdeU1YFEpA9Y68J/GfVfXEwZ71rJWV4Tr\nvPf1KbGOIprNJnsHu1x/9Ig7d084P5syGp+TnDRQzQivDqj4eRd45gRZJ3euuk8liUTGi0bbW2TZ\npaz9TxSVSkUOBJFSEMdEqHoT1VWn/RWoU5l2BfP/AJq4AJpGDkh1mEDYpHHe1a9hxYOrqmt2ohyp\nvMldAPkoaANFlhjALrSskoQjgclQLW8prJMIOGts6MQ92XLJeDzk4vKcyXhEXmRoHdFut+l2ZatS\na12fETkXlD6lx5TSfRfGUThZzjFeho+FFfCeTGdcDscMR2NGoynTxYJlnovXTE05eSoJo914P1Xv\n26pv1oglrEE6cm8NJneUWEofY11C08c4FxPHFSdYvRepX1fp0tdWC0qD15rFsmA4W22Xdt5GbQH8\nZ1DzVcHL94aMZitePRvx9GtnfPLJx/noe9/Dtf0dGU5tDs/0mtOuyfL7wFkHPXl1tarW/NigYDZq\nDeih4677o3p0idYCUNbaejiVNlJ29/e4+egNXn3lNvPZjOVqwugsImnEJHFIX1ehyw0UQpLEgSqp\nBpseQg6lN5449kTaod2aGlJCmOOdrYeD+r6N1Gog7GvmVtcJOa7a/gxn8lqv49g21RSb3Hk9WN5Y\n3a8i40QK6MCJ82IVylu9/hXHLhy0LM+oEFjhqaLdqnV2R57ljMdjLs7PGY0uxasllmWWVrtF2pCY\nP2OCmZaVNB5TWnwJWVYKv+2hdIrCOUrnWRUFi2XGeDrl4nLI5XDEcrlileXClbtqZlBRG+u/vXi5\nbHLYawCvYN0gVIvBo62jKAXEjbdYn9JOAR+op5BsoWI5UHhbHzbWb2OtKa3ncpZxOc223PfbqC2A\n/4yqMJbT8ZyL6YI7FxNeORly+3TMpz74Xj7wyDV2ep11F1111PX69kaXTaXHjWouGE/tSFpx5j+u\n5PaVEcsajFTomLR4KeKMD8HEBKvSLjdvXufRR68zGY4wd4cUkxHjJKaVpsSBB3EtXw/Vmo1Kix3j\nHESRw0UOqzQ+DjFnsUNb0bpHURKeU9BOO+motY/Wxy4dggN8YLBVWC5R4krog4yxom50HINTMjys\nDlTBk6Q2INOVJl/VgCxNuapRzDsX4uLk0CfafqEYXFCFmMAXi1JSINCGQIaiLMjzgsl4wuX5BcPh\nkCLPaLWatNpNWu0WSZqglCQIGSv6bmOt8O3GYwrPIi8wVmFQFNazLEqWecl0vmA0mXA5HDEaj1ku\nVyFHM2xjsgmQm5evvk88bwTwwNzX8xoFRNZixMVGvucV2iviWKMd4UAns4jawqt+TwtFOFmuuJiu\nWGy777dVWwD/GZd1npPhlJPhlOdeuctzr97l1z/7MT7y/kfZH/TpdFricFihlr5KkWyu0q876lAe\nxJCk2iAMWojwc+uP4P1fUHW7UC0dVVSBI44Tjo6OePyxRxmdXJCPF0xnK7LRJcMkQaNwxtLZGdBo\nNSlNKcsjztN04FxEpMFFikRH1A2590SRQzmNs65eo6/oDu8qWsXjVaBDdBS2HJVssSqPcxUHy5Wz\nAK0ke1LkbsJXV4O7SvKmgs+J2KZshPQGh8PKj8Vh5TX01Ac/7wnBE+I34rx04gTFhbOOvCxYrsLA\n8vKC0WhElmc0G03a3Q7NRpMkiUEpSmulWy8LyR+1VnxMDOSFY5GXFAYK61nkJZP5ktlyyXgyYzge\nM53NyIs8PPewSLShC7nvjcIaqtWV6zeBvErX2dg3I/IEcywJ+YhchLaaRkwwRVNEaYxKw/s4ksG7\nD5vJxsHJaMlksZUNvt3aAvifYV1M5vzeN57jey+9xi987IP8ymc+wkc+8B6O9ndoJvHGBia146BS\nEeL+V1VFB9RoVI1GAb+GZ1VpyAXg123t+gDgfTAiShTWGowvxZXOKwb9Ae+5+QjjR8+ZXYxYLZfk\n+ZL55QXeeoqsYCfL6e3u0mg1MMG0SMC0QRIpvPUQ+3roqqucTC+BCc7Z2s2vUnf4kFVZAb4PAK6i\nCFSC8krSgpTQP975oGf29QJRZfqlozh4dMtGpsjZAoVQceMEGLPSLXobjKbCgWQ9XA0BFdWyEC74\niAeXRucojAQMj6cTLs7PmU9n2LIkbSR0e12azRZaC3Db0lFaS2mFcrFGqBMJKjasMsNsWbDMDPNV\nwXi+ZDydM19lLFcrsiyjNKaG5mqt/6dXdZv7gFytQVzuj/pdZZUMTb0F5Rza5qjSY3UkA+BIETdS\nGu0GaRoR12ojjVWKy/mSi+mKbLu087ZrC+B/xmWs5XQ44Z985dt87+XbPPPE4/zyZz7K5z/+FIf7\nO7UaQmrNha+pFmqwI7gi1ioWtW4YK5ZT+XUXvv7IboK4DNsk5lLuVyuI05Rrx0fM3/cY4+El09mU\n0XgOJmc1HW3kNxra/T6twgRQDl1xGhNpX3PsqbXYRFzoojC0q9wbtZIMyWhjG7X2fXFGQoJVRKwq\nUAldcrVaD4F/DzJJCIs+fq3ltqVkZUqbKtRNeB084qOCFb23szasv2twIuWzAbytJ6zM++BNYjHW\nkhc58+WSyWzK5XDIYj5DeWi127RbLZK0gVcqSP8shTEU1tYdfV5YlquC+XzFfDZnOlswna+YLQvm\nWcEyK1nlpfw+Jxrz+j1Sg/eDdLcbQL6B5fV5mn/jrS1Qes+qMERGg/ISSachMg5nHL6ZopwiVjE6\nSiic53S0Ypmbbff9DtQWwP8clHWORZZz6/UzLsdznr99j6//4CV+/Quf5PPPPLXWA1cs7AZPvnYk\n1LX6gaAKgfUwszpZ3hxaVvdZ913hA1V9ruphHQrvSlrtFsc3jnnv+9/LfL7Av/Iai0WOMRn5Un6n\ntY7FPKOz06c0NuimDa7dJE0ijFZEJoQWxCVpmpDEceiWqQeKkfcQaSIilPaS/IOcjSRJRBxHEhAd\nFB7yNKWjr4a4USQHHxd5tI2wyuIDTCsdS7cegC7SEVFUvVbuSg5mddB0XvzQ81zCgL2KqDxOSmMl\nNb6UDcvZfM54OmM8mzJfzEmiiGarGfxMGnivZCBpHEVZUhiDcZa8KFmsMiaLnMvxkuFwwnQyoSwy\nllnBqrAUtT2srg+QYZdS/tIVkf9QJT+vKtNMX7cGa94/vI28lwFniab0isIrEqQrd65AGYsuDFHp\niK3CW8XSWc6GM4py232/E7UF8D9HlZeG8/GU0WzB6XDC6+cjXnjtHk+//zEeu3nM/mBAo7Hmw1E6\nbLdtqlg2uvKKI1cb4F1fXrMo1ef96kir4s19HVig05T+3h6PvvcxVnlBaS13754ym+dYW2DyBYup\nYrUqKMpSOtWyxORtTJ7TaKakqShX4lhTxrJNmKZJiJnTROGUQasg6VMO5yQPU04uIlkE8YayEL9q\n531wNoxqRU9tORVsAqqDmq1DJoLVanitqoAG6ebBObEA0MGYSc5MrCTEWyPdtxN/E+M8ZWnI8jyA\n94LRZMpkNicvC5SKSBst0rSBjhKco6ZHitKQFSV5UbLKM6bzOaPJjMvJiuE0YzZfslotwbuweekl\ns1NXiUI1sUGNqjxo9321FBA5iLUiRhFXv0X5kDYfwiGQg5hOGugoDYtGhsg5cS10DmUsGDmjW64K\n7tqcRZZvu+93qLYA/uewjLXcPR9yNpzww1t3+OxHn+RTTz/B0x94nPc9cp29nUFY7NmIRtsA8c20\nFGqd+SZxAmqjJ18jeEXPrIeCwqZqcbqLIO302L92nfeasCqvI+7ePWWxLPDO4IuM0lgWSvw+ylVG\n1uuw7DRpdZq02y2arQaNRkKSJBgrlEOSxKRJQhJXFEgl4XM4L8k3kY6IY4+1ClcWsiTjPApxztNK\nQTUADivtFRdcdY7W+5oDrxNztBI9dAD3OsAY8YRxTonrXymUReUVUpSy9SieI2IJO5vNmUynTOYL\n8tIQJwmtdpMkSUBFlMbjbEmeG5arjCwvWWYFs/mC8XTKaDxhNJszWeQsc0tpXJgDhOcRDkbrRntj\nllF33m8PHBUihYycJlGKBBW8enxNm5R4nNYkaZN2p0craaCzHLVaoIuSxDkaHprWk7oc6zxDDXdM\nFvTy23onagvgf47LWMut1085uRjxze+/xKeefoJf/rmP85mPPsW1o30aqWzs+XpwufFhrlQrvJE0\nWZe/crZdr9eHu9iEAq9j8BqVKFq9AUc3VQiciFEq4uT0nNWqBCxWKWy2YF4WZMsFi1mLVqdNp9uh\n2+/Q7XVod9u0Wo40TcKCSkmZGhppgk1T0prHdUSRwhhLEkc4l6C1BDh4qNfxvQNjVd01V+k7KBfU\nFCFkwVVDxvAkI1kssdZShDBkHw4cWoHTWtJu8jKk3IjTYVEYssKQF5asNKyyguVyyXgyZjZfUFpH\nkqa0Wm2SJEUpT2lkTpDnJfP5itl8yXJVMJsvGY7HXI7GTOcLVqVYwbrqbwnrrdGglmEDBDes4lnv\nUz5MrTt6GfDKzEQrLbawXiEybydsVqNBpz9gf/+AVpTAbI7RHpyhUVg6QAtP7B0XRc65csz9ljp5\nJ2sL4P8C1CoveOH2XV5+/YQ//Maz/MInP8J/9nf+Bo8/cp1GlFAPNzc771CaNVVCuHz17FX+U7kk\nrnl2UYdAZUIUYR04FaNiaPV2uBY3idMWcdKk1b7F6ck5s+mCwpQoPIUpyfOMxXxOMk7p9nusVgPy\nvCQvDEWvTafTIomla86LkiyJaTUNqUklvQiJZEtKQ5rG62GnEm8VHWge6wyulFXvSEdii+tAtIAu\neKavfb5VpOtBn3VeFCBlGcKSJMzAeU+el2RZLuHApak78LywrPKSZVayyIS3ns2XzBdLnPekjSbN\nAN7WGgpjyPM8rNHPGQ4nzOaixBhPpfte5bn4fHuotf+sZxObh+D1apIiUiE0WeJ+HvJdJp6YSlUy\nTivdNirovMUnXHlQypKmMe2dHQ6vX+Pg4JgmGtMYsSxLytWKRlHQwdMBLI4JnhO/7bzf6doC+L9A\nZa3jYjjh977yLW7dOeFXPvdJvviZZ3jq/Y+zM+iLhlrd130r3tB7q80LgUmp1j0qiyMlTCtaSW9v\nA6h45XFKg46JGy129o947wc87XaPvb27nNw75fJyyGyVU+YWZyzWG4wtKU1Rhxf0+j16Oz16/S7d\nbifw4wlKCzBaFEmaUnl3OW+x3mOMkyCASIsPuA36bJBOPLb4KFie1ipoLz/vDE6Jqln422qLUvTW\nOorFGRIP1lGWJgwnjVAlhZPLpXTfi0XGdLFitpABY2nl7CNKG6gkoXSOYjYnX61YLpfM53Mmkynj\nyYzxZIZXEdZHLFc5WWExDhlOQs1lC5v/RlBej6Z9sKn1dUTcg5dC65RG2qHZatNoNOTvXBT4ooDS\nUBhLacNST9Kk3e+zf+0a1x55hMP9I1olZC5hMlmymsyIdUHPWZo47uIZ4dmu7Lzz9UAArpT6z4G/\nDjwFrICvAH/Xe/+j+273XwL/LrADfBn49733L258vwH8A+BvAA3gd4H/wHt/9vBP5S9GGWsZz+Y8\n+6OXGU5mfP+lV/nE0x/k0x/9EB/70JN0Oh1CPmztswLUSxgbeyhyfSUXq9Uqvr5eax9W1GXjkWCT\n6uobRJKfeXyNOG3Sanfp9AYMzs+5GI25GM+YzBYsswJjS7JcBnXz5YLZfE53Pqe/06c/6NHr9eh2\n28IX+4jSG2ITEltiTRqHVXfnUYGDdh4iJ6npAkIWvMPbtZugPBmJjzBONhwruWAVIOGCxWwcvNtl\nYCk+JqtcBoxFYYImuyTPCmbLJdPZgvkiEzmf80Rpik4idKzJy5LpYspqNmc5mzObzSWkeLFklRWU\n1hElTayTIWZpHdZXaU6hPBIGwdoWoHrpfXUDgkzzavzCA5VWMZ1mn52dQ3b3D2j3u+hEU5YFxWpJ\nvliSzRZkiyVFWZK0m/QOjjm4/ihH1x/lsL9DK/NkGSTDGbPRBLXMafsC5y3nlIzCI9zWO1sP2oF/\nEfjvgG+En/2vgX+qlPqQ934FoJT6u8B/BPwt4BXgvwJ+N9ymCPfzW8BvAP8GMAX+B+B/C/e/rbdQ\nRWm4deceF6MJL792j+deeIWPfegFvvDpT/DE448y6HaucOCbTfjmR/zH8eK1eMVJ/xdR+YkI0Dm1\nNopVWtNotRkoTRwnNNsdBrs77IxG9M4vOL0YMhxPmM9XYWi3IstXrIqMVb5ivlwync3pD+YMBgP6\n/R6tbocoSUmSmCSJaKQxvhGS6UMAMUJvA5KeLnL5sJSjndwO5BGrqgOXTUcXHBc9WpQoYUmn9gkP\neu68tKxyw3JVkBdC++RZwXyxZDyZsliuyAuD9fLY4ijCOks2XzCbTBlfDplPpqzmS7JVLt4kVoy8\noiTFociNobR2nd7zxj/HfbsAb/y7bbh5v/U3UF2aNG7T7x5wfPgIRzeu09sfkLRSnIKiyMiWSxaT\nCdPRmNl0Tpwm7F075uDGo+wf3WC31aW5shQrC70hutHDRXNaFu6QcwrMHuKRbeun1wMBuPf+r2z+\nXyn17wBnwKeAPw5X/yfA3/fe/064zd8CToF/HfjHSqk+8HeAv+m9/6Nwm78N/EAp9XPe+689/NP5\ni1ezxZIfvvwqL91+nT/62rd59fVTfuXzn+ajH3w/Nw72aaaSMfnjoPrNat25Vtco8C7QKY4o+HZX\nYcJKaZK0QbevSNKETq9Fd6dHd9Cjt9Pn/EIMls4vRrjxRLrafElpS5ZZxnwxZzIVWqG/s0NvMKDd\n7dJqNWikKc1mKjatOqLyFowUQQro60i6SPsQXyYbm5ZAj/gq2NhhndjcRmG9WwaaAuhCpVhMoE2y\n0jBbZMwXK1Z5IWcQy5zpdMZ0NqMsTQjc0OgY7HLFfDlnOhkxuhwyGY7IFitsYcQzxQNRRJymJEmD\nwnqK4Otd66vvr0BzXaVRNvX6/m0AuEKrhFZjh93BEYeHNzg6uk7/cJdmr03USvDKY8qC1WLJfDxh\nNBxinWOws8PhtWN29w/pJy3iOKexzLG9HXyrSxE1iTC8yoqLLX3yrtXb5cB3kHfNEEAp9V7gGvD7\n1Q2891Ol1FeBzwP/GPh0+L2bt3leKXU73GYL4A9Y3nuKsmQ4nvCPfvt3+Pr3nuNf++Uv8Otf/ByP\nXDtib9AnTeL1AhBX4fx+61kfpHYVQS5yYwk00F444ghRIhgEALWGKDjrJYkiSTWNZkp/0OPw6ICL\nyxGDk1PuvH6Py9GExTKjMCVZZiiKjMVywWQ2ozWe0u8PGOzu0O/36HY7tNstGSBaR9FIibR4bkSR\naJUrh/A00qRxgo8iJO0lpNY4I5JERdj0rMIHXLCChTiJxdukdGR5wWKVM1/lTOdLZvMVi2XOYinJ\n8cvFirwoAt0is4nClGRlzng8ZDaZsJovKDNJvtGIBUKkY1SUEidNvI4oiiyEMvh69viTPNyv/s1h\nQyPEQ3XfKiKKO3R6++zuH7Ozd0h/d4/BYIf2bp+00yBOY3FfsJYiy5lPZxRlQZLEdNsd+u0uLRWD\nVyT9Hr3BANvuM42aTFjwEobpljx51+qhAVzJO+23gD/23n8/XH0NeSed3nfz0/A9gGOg8N5Pf8Jt\ntvWQ5Zznhy++wusnZ/zel7/OL3/2k/wrX/wsH3ni/fS77bdwD+uswk3OFYTzJg4rMd6hnCfWiHGT\nlrg4ZzROR0CK0oq0mdLpddjZ2+Xg6IDja0e8fu+Ee6fnXA7HTOdL4VqzgmVYgplOZwyHYwb9PoOd\nAYOdPr1BjywratVKFFwD4kiRaJG3FTqikTjSJJaDmikxlZWqEuWJrg5dxuOdSNrEIMtTlrIhmmUF\nk9mCy/GU8WTOfJmzXAYKJC8oTUGW5ZRFKeqUvCDLxZNkuZjjrUE5i+TdE15DhYpidJLiiMgywzK3\n2A3724erairxoPeg0VGTRmeX3uE1do6PGRzs09/ZpTcY0Ol3SVpN0mZKnMhMwZWGbGeFNQatFXEU\nkUQRqRXFpi4tqr9D0RlwnjT4/5gzxm7h+12st9OB/0Pgw8AX3qHHsq13qKxzTGYLfvDiK5xdjvjK\nt5/lL336GX7tFz7LR558H912q77tmwU/VOU3ukP5AfEp0d7jsUHWJ5aiskQUUYbtSY9Hx5q00aDd\ncXS6bQa7Aw6vHXHj/IK79055/d4pFxdDJrMFi2WOyXKyPGMxXzCbThiPRvT7ffo7fXZ2Bwx2BnQ7\nLdJGKpubGmINjTimEYOziqIUWsE6KyZKkWxhegvOBNWGqga9smlZOkNRlixXmTgHjsdcXo4Yjies\nsgJjZBMyz/Jg5JXJpqmxmKIgzzPKIseUJRGeKJzseAVeaaIkQScJLookfKEoKV2QadZr8Gwg/pv/\nfdfUCTzs4BIdEze7dPaO2b12nZ2jI3b29xns7tDr92m0mzRaTdJGQpLEoolPHa04lRCOEN6gFMTO\nEycRqdIkuzsMOy3uxpbbPqN4G4embf30eigAV0r998BfAb7ovb+38a0T5K13zNUu/Bj49sZtUqVU\n/74u/Dh8b1vvQHnvWWYZ2UnO+eWI04sRz9+6zS98+uN84ZMf472P3qDTbl1Zq796Gq82vFH8Rjeu\nwvaiBls5+lFbsCoVifAtOPsp5xAoj4nTmFa7xWDQZ39/j6OjQ46OD3nt9XvcO73g7HzEZDInzwtW\nRUGerVgtlswmU0aXbYa9Lrv7e+zsDej2urQ7LRqNhEYcYWMwMZSRR2tbOwsmicIbSeqxuLD+7kX3\nrhR4sW1d5QWrPBeN9mjM5XDEcDRhMp2I9tsKgJd5TpHnWOvAi0zSlAWmKMBZYiCJNIlWYtSVJERp\nExWnlGgWRfBMsaUcVORVJTiNU4Pxm06a7+fCH25wGSdN2r1ddg+Phcs+3Ke/v0NvZ0Cn26HRSmtp\nZxxFQsVrJxu5CrxWWCWD7QiIIkViHHmnySyFW27GEruF73e5HhjAA3j/NeAXvfe3N7/nvb+llDoB\nfhX4Xrh9H/gsojQB+CZCnf4q8L+H23wQeA/wJw/3NLb1ZuW8JysKXrp9h9dPz3jp9uu8/NpdPvvx\nD/P0E+/jxtEB3U6bOKpO+H0N5vcvkq60W60AACAASURBVGxeVsGHxXmuUC1Ky2JJQiIfXmvqYGCl\nI+JE02w1aHdb9Ac9dvd22D884Pj0nLv3zjg5Oef8/JLpeE6WlawWhaggpjOmozHT0YRR6MT7O326\n/Q6tRoM0ScMqfhKeC4AiTq1042F1vtJ/a63wzos2PctYLJfMZnOG44lEko2nzOcrFou5HIxscPxz\ngfj2HpzF2xJnLZHyJI2YdprQCF9JmpI0GsTNNoVTjBZLpsWcwoq8DhVt4O/9Lbd/40W1vuLtKE+U\njmm0ugx2D7h27ZiDw312dgf0Bn06vS7tdotGIxajsSQWV0gfZD9aNKpWgVEOqxyRFi95XRhWseee\nW/BqPt6C98+gHlQH/g+BfxP4q8BCKXUcvjXx3mfh8m8B/4VS6kVERvj3gTvA/wn1UPN/Bv6BUmqE\nKIz+W+DLWwXKu1tZXvDs8y9y685dvvbd5/jFz36Szz3zET70/se4drhHq9FAqeClvUGrVB7Y1eXN\n8j6cxIerPRBpTRTHJPIDAcQrS1aF10qi2OKYRrNBb9Dn8PiImzdvcnJ6zp3X7vLa7dc5P71gMp5R\n5Dl5WVBmWZDoTRh3u/QGfbqDHs1Wk0ajQZo2aDSaNNKUOI7FACuS3MwKuP0GCBZlzjJo0ueLOePx\nhNF4wng6Z7nKKUtLlmVCh3hHHGkaSYKONKYsUN6K4VOSkMYRvU6DQbdDu9Wi0WySNFJUnGJ1zHC+\n4nKxlOdhS0QCcz/5/RNAPPzXX/new7DLiihp0u7ucnhwzPXjI/Z2+vT7XXq9Dp1Om2YzDdRJJI6O\nIKEYWoGTAbDE5Gm0Bh2LE2ZcGM6KOS8O7zJczR/isW3rQetBO/B/D3nn/OF91/9t4B8BeO//G6VU\nG/ifEJXKPwN+Y0MDDvCfIvZp/yuyyPP/AP/hgz74bT14eUR6+PVnf8BzL97i97/ydX79L32O3/jF\nz/ORJx6v/bk3S2xl9RUqBagTbHxY+XR1LNk6iDgKcsN6QUVXiyjyc3ES0Y5apK0mu7s73Lxxjccf\nfYRb11/lpRdv8eqt21xejMhWBbYsKQtJrMkWK6ajCVHaIG01SNKEOG3QarVpt9s0my2azWZ4bD4k\nzkNe5BSmREeKosiYTieMJxOWqyWLxYLVSnIkRVoonWeaJDTjlDSOiLQKQzxoNRv02k267SadVoN+\nv0u/16HZaKDjGKciCgezrCAbjllkS7IiE/qFKHBW96uCNlevrnbZa83J29B9q4i02aW/c8DB4TEH\n+/vs9Hv0um06nSatdoNGIyVtpESJhEXjRQOpvVrngiLae7GMF/dIlRS8dO81vvfyDynMVjj4s6gH\n1YHrn34r8N7/PeDv/YTv58B/HL629WdUqyznuRducevOXf7gT77Bb/7S5/mrv/oL3Dg6oNlIr3Te\nFXhXXxWX7BGDKL3JjQM++LNoVckO5Wd0CGnwwfLVhRZeOyWe2WlCu9Vkp9/j6OCAm9eu8dqrr3Hv\n3hnj0ZTlIqMoDMbkWFuii4Iiz0JepiKKU+JGgzRt0my2wjDTBBrFssoyltkSHYExBXm+Ii/LWv/t\nvRysWmlKu9Wi02rRTGO0d3hrwFti3WRvZ0C7ldLttOl2WrSaKY00Jo0lHs16WJWOxWLFcDzlYjhi\nMl9QGOGF7w9IePOqVrHulww+XPet4zbd/j4Hh9c4Oj5md0Ou2Wq1aDYbNJqp2BjECq8kKck7J8EX\nRGgU2qmw1OVFoKQ0X/nW1/jqt77K2cX5Qzy2bT1Mbb1Q/gJXpR8vypJnn3+J0WTGd37wIl/81Mf4\nxNNP8r5HbzDoderbV/RJ5b2h6pjxNb1ypVMP+nEdxeJxV6W2R1rS4BF7V2UlINd5MZKKGgnxoEsa\n3WCn1+H68SGnJ+ec3Dvj4vyS4WjCfL4kL0KnjJUm0TlMkZNnCxZRgtZJcCF0YenHkhUZeZHLhqa3\neG+DK4Cm1Uhpt9t0O126nQ6dVos0jvBlgSlzYgWdVpNBr8fezkC61TQmTjSRCmHMVhZzSuPIjWEy\nW3BydsHFSBaYnFMbzXPVzf44ycm6O19f9vf14g9YKqHR7rOzf8zh8TUODvYZDPr0ej3abfFAke3X\nmDSRsGmHw0VaXkMPeI3yAuDV1MR5x/D8Hn/0pd/nh89/H1unA23r3a4tgG8LgGWW8+LtO5xcDHnl\n9Xt89/kX+dTTH+STTz/JE48/SiNN6o68DlnWmiiOwF71VFFKYW24MtxOE6OUrZdpqtQc5YMzifci\nTfQQodBpTNRr00wTdvo9rh0d8ujNG5ydXnB6ds7lcMR0Nme5XJHnZYgzE7+SwhiMKSi8wtWxZwLk\nhSlwrgQl2ZxJ6PjbnTadTpdBf0Cv06HZSIkVojpZWdJ2h363y+7OgJ3BgG67TRyDVzLctFYscY21\nlNaRlYbpYsX5cMzZ5Yj5MsOYKt8dfjJ4r78voL0J5A87GoyI0jb9nUOOjq9zfHzM7u4uvV6PTqdD\nq9UUxUkSC40WjNGqTFEdzpa8VygXKJOgVCqzgm987St8/7nvMhpdPuTj29bD1BbAt1WXc57pfMG3\nv/8Ct167x3Mv3OKHt27zi595ho88+T72d2SjEwg6arF09VxVqlztwisABzY9PYK3tVK6JglcpfAI\nnKpWkEQR7WaDnV6Xw/09rh0fcjE8ZjQaMZ5MmUxmTKdzWbIpSrI8Y7VascozCmNDYo7COoVxDusS\nUJY0qCxarSb9fo/BYECrJQPIWGucKSmyFXZV0mlEHOzucLC3R7/fp9XukMYR1hUUJhNHQ+8prCMr\nPXnpmS0LLkczTi9GjGdLCuND960fgD7ZLHFreTjdt0JFKc32DgeH1zg+vs7BwQGDwYBut0u73SZN\nxXumAu/qbCtAuChPwhmAVkq2S9GUpuTy4pwvf+n3OT25J2dn2/qZ1RbAt/WG8t4zms74+rM/5LkX\nX+HL3/wef/M3/zKfe+Zpbhzt02k3SZI4gLBGOXdlwFl5dYvLn2jB9X2DUV9zp0GCpkTWVzWZTmms\n0rjIiQtiomi3mvT7Hfb2eyyWhyyXK+aLFdPZgtlszmqVkWU5q2zFarUgLzKMtVivME4ChI3zRNrT\n6TRptpo0m006nS6tdhscWGMosoxlscRmCyJKDvd2uX50wM5ghyRtEEUxhIBmE5Lk89KSFY5lAavC\nM5xmnFxMOB/NWRXiNOgrOQw/qfO+8iptUCYV7/0QAK4i4qRFf+eA4+s3OTo6Ymdnh263Q6fTCdRJ\nQhSHrNH7/lY62FhqVBgKh8fvFcvFku//8+/wg+9/j8V8a1n1s64tgG/rJ9ZylfHdH77Icy++ws9/\n4iP82hc+zRc/83GeeO+jRHEkfKiu/LhVCFRYA8Dmpuf9YRIKFYaflWugrUFcA5GOcE6AvYq2FIBJ\nabY0g52OcM15yWqVk4fUnNIYSlNgXSHxac4JxWJDlqMX7+9Nnbv3MJ8vKE2OyZeU2QLlSvb6Xa4d\nHbC705fBro7xQGlyClOE3yWxaoWB0mlmS8vp5YKTiynTeSbO6m+H/QAeGrwBHSU0OgP2j65z7foN\nDg4P6Pf7decdJ9EGeEf138x7v+7AN1aOfNhidd4xvDzlD/7p73D3zqsURf52nuC2HqK2AL6tn1re\nQ1kavvHsD7lzcsYff/NZPvvxD/Ov/tLnePyRa8SxJOVU/Ljb6MThqpc1+Po0WwylBCAipXHK47Dh\nfqrtTi3kQZCzWe+IY+HRo0g2ACPlSZII5yTwwRiDsQbnJYW+AnFrDaa0GCtZlgLqDhOS5L0pcEWG\nKXIiBa1Bn6P9Pfr9HmnaIIoSUBrj5P6tEysBSZb3FBZWuWU4mXM+HDOezSmdDf7j1ddb7b7rVz9Q\nJ5aHU57ExGmHwe4RN24+wtHREbu7O/R63TC4TEmSSvMd8YblLbX+Z3OfSAHj4RnPfvdrfP1Pv0Se\nb8H7z6K2AL6tt1yLVcard0+5HE+5dece3/vRS/zqz3+aX/zsMxzt7wLU6e1XO+/15SoSzQcHJ3Ey\nDFSMEhWi85YgRAwr3BKyu6YgwkaODuqMWKO0x3tNEnusizAmDi6ENhxcHN5qbCSGVbFylMpS4vHG\n402JK3PKIsc7S7PVZHcwYDAY0EibQpsgagxjC4yRgGPpvh154cgLmM5WnF+OGE2mZEWxTl+/iocb\n9WZgvmkg+7CyQQ06pdEecHR8nevXb3BwsE+/P6DT6dBsSthyHF3tvOtHVl++Lzs1XPfC89/nd//J\nb3N5eSZbqtv6mdcWwLf1QGWMZTydM5kteO3uKa+fXPDavTOe+fATPH7zGkf7O7WGvJIVboJCRbe4\nDd7c1Ry5aMkl5tJdcQoJS/4oCXqrk2qUcC1hg1RjldzSRx5URMhPkIMFkfDpWuO1dPXGObwxWFNi\nSlkWirSm3WqLqVOzRRQnQCTg7UrKsqJOJGqsKBxZ4ZgvSs6HYy6GI+arJcbZKzCsrjybH3f5/tpc\n2Nm87VspBSqi0eqyu3fI9Rs3uXbtmN2dqvtuCX0SR+hI8lB1MKda//pNKePVh3Xv9df45te/wre/\n9VWs2QYV/1nVFsC39VAlZlk5X/vu93np9ut87Kn387lnnuaZD3+ADzz2CPu7AxppUt9+sxuv6n4Q\nh3B6rrSgrnfiwVF7jyhAUtLRst6tPejYhWxLwMvgNFIKpcVrRPsqxN3hNvJCvfNYY2ozqjIv8c6R\nNpq0Wm0ajSZRnIrvC+CcpTQFpSnDl6UsHXnpWK5KhuMppxcXjOczsrIIsjsBwfWzfjPwfhOwDD/t\ng+HVW+/EFVHcoDfY4/r1mzxy4wYH+3v0+8HrZIP7jiJNFOkr3He1tl8H023E8+V5xne/83W+9Y0/\nYTIevcXHs613o7YAvq23XZejCV/62nd49vmXeOp9j/GXv/Bpfulzn+CR60d0Wk2RGgZ+fLMrr4ae\nV9bzN+5XgBwBcieqFQGYMDyVW+G9xxgDOLxWdaixdU42CcPgcm28reRiWLxxxmCKElMUKDRp2qDZ\naBLHKZGW+3LO1sHMRVlKir1xFAaRDS4yTs6HXIxGLLMMa20Ixdh8Qn7DjKXiI9SbNNZrwFyfeTgI\nodM/tRsP3ff+vnjMXL92xO6gR7fTphl4b6FOdOi8N8B7o+rDysb1Zyd3+fY3v8oLP/rBT34M23rX\nawvg23pHylrH5WjKV7/zHN/5wQv8zh98hX/7r/86v/qFT13hx+8H8s3rq8tV1Zeqhc+AXVprgqU3\noLDeSeJNfRvRKcdRRBxp8tJhjMdZj7MOGzIvq6+iMBRFiTWORiOh3WjSbDRIwoHAe4d1JaWV7rsw\nMgwtDeSFY77IuRxNuHtyynS+oDAlNmx/wltwn7gP09e1ufRTq+W53yPljT+o0FGDbm+Xa9dv8Mgj\nN9nb26XX7dBqNkiTmCTWwU9dBxDfeJxvcmzw3oPzfO873+DZ736T87P7c1u29bOuLYBv6x0r773Q\nCmbFcy/c4n/8X/4Pvv697/OFT32MT3/sKY4P9uqNTri6el/9/OYXBMDfSAfyiAeLC14s+HXXKNSK\n0BFO6eDV4VBG+F1PWLcvDWUpaTp5npOHpB2AJGnQSBukcSLw6S3OGqwpMGVBWZYYYyiNLOwsViXD\n8YyzixGzxTKA97r7vkqdKFBVQMbaFIrqltWGT/h+5cu+XruvqBRX/6zS1evmNn5HRLPd4+j4Bjdu\n3uTw8JCdnR0ZXDYapHEcDm4V/63Xj8b/GPQOVznrGA8v+eqf/jNeu/3KG88wtvUzry2Ab+tdqVWW\n88Kt21yOJrx8+y7f++FLPPP0EzzzoSe4cXxAq9kAuHLafj+Ae7epfa64ci+r686FzU2gWvdWOihT\n1osvyrGhclF4hwBwKbFoWZaTFwXWOqIoFie+NA1B0B7vLM4W2DKnLAJ9YhyF8awyx2S25GI44XI0\nJiuLjc5bqrqs3gCOgWH2Kliz8kYKo9pkRYf7WXfiiupMBvAbskw0Sqf0d/a5dv0G165dZ39/n16v\nR6tVDS4DgOsKvPXGY7qPxtr4T5at+Mof/wHPfvdbjMfDh3hXbOudri2Ab+tdK2MdZ5cjRpMZL4fV\n/B+88Ao/98yH+egH38/x4Z54amx05FcAnGpwGSLRQqfpwpff7F4DZ1x1vKJKqbI9w5WeoAdf0yZF\nXmCMyB7TNCVNxdBJayVmV7bEloWAd1FQFobSKvISFquC4WTO5WjMdLEImm9XK2S4AuQ/viS96Ir0\ng0pCuZ4k6rD5CEKrbAxAg75PqRBioSOSRpe9/SOuXb9Rb11ekQ3GMVHFfwcrg6t+K2+sIs+5e+c2\n//fv/DZ3bt+iLIofe7tt/WxrC+DbeterNIaT80vOLoaBI3+R3/zln+cLn/oo1w73aDZTkji+stG5\npkwAr3Bu3alWiz5y46pztzgVhpOBYrFh4cYYc4XzLksjKfelXO+dJ45jCYNopGLkhA8DzqA4KQsJ\nMS49hY1YFZ7JPONiNGE4nYrqBL+BrZsgfrV73rzer8mLAOR+rfwI31G1AqX6/3qgq5VHx3FwhtRE\ncZN2f4/jYFh1f/ddA3f1VXuesEHt+Csw7p1jPLzgG1/9Ml/90y+xXCze3htiW+9YbQF8Wz+zct6T\nFyV/+Kff4p//6GU++/EP82/9tV/jqQ88xtHeLs1mo3a5q3e2deWAKIsiWnuiyF+RIEKwjHUe52Q5\nqHR2g+cuyPOSPBPOuyjCIo6tlnwgjhMajYYk+SgvEWq2xJSiD5cNTjBekzvFvDCcTxZcjKfMVyus\n31xz/3Fd7CaQv/F7fkPt7oPuBDZ7bRUE7TLQjSIdbF8Tmq0GSZqGcIsu/Z193vPYYxwfH7Ozs1Ov\nzGutawD/cWHWqvY6UFdgvCwLXn3lJf7f3/2/yLPtxuWfp9oC+Lb+TGo4nvKlr32H51++zSc/8iS/\n9PlP8nMf/zDvuX5MEseB/xW6QG3I72pdtVqvyDtnA2VSDQUdOIc1EjpsjRO9tzFYawOPLooU50TV\nEseJGDqFoaq1BmfK9cal8xivyK1ilpWcDafcPb9gNJ9RWPMAKzZvDuKbyhJfd95V963xSqN1RJom\ntFsNup02vV6XwaBPu9ul2en9/+2da4xd13Xff2uf97nvOzMcSjT1tqRIskU9LNmyZcuxW6NJmjYJ\nmjRtkSb9UARJPzRfEgQomqJfirZokDZNin5oDBRtArR5IUAjP2LLlqyHqTdFUZT4fopDznDu+97z\n3P1wzp0Z0hRFUqSGM9w/4GI495wZ7nU3ue66a6+1/gTVBo1mi+3bt7NlyxZqtRq+75+TNpl+vfAa\nVmPw6SoXTp3kzddf5r29b5uOy+sM48AN60Ke5/SHI8ZRRKc/YN/h4+x8Yw9fevwhvviZh2jXa6sx\nqYZiZoqFVcylRaSo9JhG5lAOxNJl0qH8qsTCUtlKrnelmmOlpBEsyypzw6Xiep6VpYPFvJM012S5\nkORClOb0R1GZ2+8xiaJC5X761rEmDfHBXKiB55yjQwodo1XnjSiU7eJ6HmEYUqtXaTUazM60aDYL\np11rtKg1mjSaTdrtNu12e0WowS5TVNPI+0IROLAycGz6CSBOIg7sf5fXXnmJbnf5wlUqhnXDOHDD\nupKmGYtnO3S6fU4uLHLw6Eneee8wT35mB3dt30a7UStG15bObDovBQSdZ2XZ4PQQMytKDnOQsmPT\nKh+qrEJhJUeuyXXRLKSUVUalZeypNehCRiwrpxjGOUSpZjBJWe6PWFruMhqPybJ89eAUtabNZjqE\n6mKc77SnX9dE3SgQC8t28fyQSq1KrV6n0WzQbrWYnZuh1WzSardptts0Gk0ajWLWydR5W9bqoKq1\now3Od8arohyrzy2cep+33niVPbvfKJulDNcTxoEbrgvSLGNh8Synl5Z5690D7D9ygiceeoBP3XMn\nt9y0hUatiuvYpYpPGU2XqXIlgFUWHOagShFjQYrZJ+UjzzRZmpEmKVmaraRjpgd65WRbZFpnXjrw\nJNOF845SOoPCefcGA9IsOydTvZr2gNVUyKW3vq8qPk//bCNioywHP6hQrTdoNJvUGw0arQbtdovm\nTJtWu0V7pk2r1aJeb1CrVota9rJkcOq0z59LczG0hjiOeevNV3jt1Zc4ffrUJdph+DgxDtxwXaG1\nZrnb5y++/X1ee3svj++4n88//Gl23HsXt9w0Txj4rKZBYKowMFVoLLTny+u5LiLosnEnjROSqDjU\nTJMUna/pChXKqoyyWSjPyoadnEmSM4pzesOi6mTxbIfJJCr+vjLnsJru0NM6EVaj6YulHcp3H7FX\nDimLrwqlHCzbw/ND6s02jWaberMQIa43ajRaLWrNJrVWk3qrRa3RoFKt4vsBju3gOkVe/0Kpk7XR\n94869WLNp94/zrPPfIs9b7/5EXfVcK0wDtxwXaK15vCJU5xYWOT5V3bxyKfu5ee+9hRffvwhHMte\niY5XOhC1Rmf5SuScl40+06mBWVo45CiKiaOYJEnJs7x03oJlFa3lSkFWzhQvhIk1k1QzijOW+0NO\nLy7T6fVI02S60DX12eVTa+xYdebnX5miKP4b2qDL2S8oLMvFC0LCSp1KvUG90aLRbBX6lWGAH1bw\n/HBl8FYYhgRhWBxYOg624yBryjI/KPK+WET+/We+xVtvvU6v2/nwDTOsC8aBG65rkjTl1NJZvvfS\na+zZd4jvvPAKX/vCY/zYHbfQqFaK+eF5DrpUhE8Lx57nq92cuqxISZLSmWc5eVaUIdqWjeu4+K6H\nbSl0lqyUGKb5qvNe6g44fbZDtz8gjmOyPCubPqfR91pHOG1MKjsoV4LwaTPO2rZ3F3ApovDi55Tt\nENbqNBpt6s0WlVqdaq1OWKnilGkRlFWMBcjSomKmnLNuOw7u2nJMVT5KgekPYu2lKJpw9PBBnvv+\nt1k4dfKq7aXh6mMcuOG6J00zuoMh/dGI3nDE4ePv8/B9d7Pj3rv45G3b2DrTXDlwLCLzMt+d52Tl\nfJYojonioutyWkooIji2Q+D5BJ6PSE6crea9J2nOOM7oDSecOdtjabnHYDQiTdOVMbeFX/5R5w2s\nXCtK2hUrWmRl8l6Jg1geIoXSj4igLAs/DGm1Z2nPzFBrNKlUaoTVKq7nrZSJTGeYTOXrpp86zmmA\nEopZ6UqtdKOK/Ojh5VryLKfX6fDSC9/n0IF9jEamaed6xjhww4YhzzULi2dZ7vY4+v4Cew8d4dN3\n38FDP3Ynd267icB3oTyALGTVirRJHCerqZMyAodp+aBddCgqq+i8LGXW4jRnHOcMo4Sl7oDFsx26\nvQFxnBTli6zJnpQBuD4/Ci+1NpkOpRKFKAtlOSjlYFsBtuOjphUilsJxHOrNFjNzczRbbar1GmGl\nQhCGWLZNnmnSLEGJJgg9wkqA63qICNmKvUWb+/QAMyvfYKxyzrouW/TVBSLyOI55//3jfP+Zb7G0\ndMaINVznGAdu2HDEScqh4+9z8vQiu987yFvvHeCpRx/k3ju2M9uoY1sWcdmFGUcJ0XRoVZIUc7pL\nGTfHKRy4pUDnhSpPVsqkTdKMYZzQHUWcWe5xttsv5nznWRF9A9NpLOfUl0+nmKy008ua6NrBcT0c\nJ8C2Qxy3iucFuI6NsoqhW34Q0J6dpdmeodYonXclwPN8lLKKuvQ0QXRGGLpUKxXCMMBxHLTWZZdp\nkVJxXZc0TVda6C3XRZ8zpkCvfkIol7u8vMSuN1/ljdd3MjbR93WPceCGDUsUJxw7dYbjp87wyu73\n+OpnH+ILDz3AbTdvwVJCmiTFxMEoIk6Kjso802Wu2ML1HFxPISojzdJi5klepFHGScYgTlgeDFns\ndBmMxyRZCmX0neu8mH0yPbycHmSKrDbNlzXmylZYtlMIRQQVfL+G49Xw3CpBGBAEDo4tWErwwwrt\nmTkq9RpBJcQLfXzfw7KdMlOj0XmKzhIsJdi2vTKgSkSKN604JssyHMfB932CIFjpxhSlyqZWTQao\nNZ8a0jRh/769fPOv/9IcXG4QjAM3bHg0cGa5y5/9zQ94efd7PHj37Tx49+3cNj9LEsdMomKO97T2\n27YtPN/BDxxsp5Apy7JiRG2aC3GmGCfQH6ecXu7THY6I0xStS3etc/KVckVW8suFhy0OIy3bxrYd\nbNfFdopBWWFYIaxU8f0atlfF8XyCwCEIHELfxfc8wqBCpdrEC0O8MMD1PSzXItdF7t5WNp7tY0kx\nbAtWhaJFhCRJGI1GKznxYn26tNteFdKQcyvWBTh+7Ag/fPFZXn35xY9p5wwfFePADZsCXQ7KOvL+\nabr9AXsPHWX7llk+uW0Ls40atsiKQrztWDieje0UZYO6PLjMckWSwSQRBqOMpeUhZ5Y6jMYxabba\n/r5a4112SpYPUTaW5WDZxVhaLwiKKYCei+8HZTqkihtUEMdDLMH1FUHoUqkE1MIqFb9GJWjg+RW8\nIMDxXLAgySKiaIJojW0rfNcBrUvptuIrFDnsyWRSzHUpOzBhdYxulmUrpYO5LqvXlWIwGPDDl57j\nheefWS2RNFz3GAdu2FTEScKZTo/uYMjJM2c5fHKBW+dnuGXLDHONOr7nYLs2jmth2VI6wZwsgyQV\nokQYTTSdXsTpxS7d3pAkSUBP+yx1GXuvFRq2UMrFdgIc18fzfIIwJKxUCcMQPyjSGEG1iheGiOuS\nKk2Uj0nshNgVMt9DqhZOxcf1A8KgSuBXcF0XUYUDHyuLJJpAOYjLmqrplA65mHNepE9c112Jyqdp\nlulB59pa+ekc9EOH9rPrjVc4evjgem6f4TIxDtyw6dBaEyUpUTJguTfg9HKX08s97rx5nptmW8x7\nNoG4gJTt9Zq0FGkYRZreKOFsd8TSco/JJCqnHZbpk1yXMfjqzBJRNo7r4wcVgrBKEFapVqtUqlWC\nSkgQBISVEC8MsXyP1NIM0iGT8Zg4GzNOHfI8xxIP16nheRoCCytwcF0f27YI8wBfuUzUgDSNQPKV\nyYJT5zwtI3TKDsxpumTqwJVS+iDSSgAAFFFJREFUJEmyMmY3z3McxyGKJux6bSf73n2bwaC/nltn\nuEyMAzdsajSw1BvQG405udThzm3z3Jtu4xY9Q7sa4IhVRN+ZMElgGGk6g4il7oDecEyWZ0Be6ODo\n6azu6e8upNps1yUIK1RrDWq1JtVag2qtRqVaKSLvMCSoBFiBj3YUIz0hG/fpj/r04i6WWIzdmMQX\nMt9Bex6W+NiWh+u4eK5HoDwqVkjiVIiTIYmO0EqfoyuaZRmWZeH7Pr7vr6RQprNe8jxnMpkwHA6Z\nTCaICL7v011e5LWXX+TYkUMreXXDxsA4cMMNQZJmnDrb4Uynx/4Tp7j/zm089Mlb+cRMG7RNnApR\nLoxTTW8c0xtOiOIYjUZJXiZOprIL07x3cVjp+yG1ZpNWa456vUW93qS6JvoOKiFuECCuTWSlTMrZ\n5EMZ02OIzjSTKGMygIlALJDaObmTgwe2ZRPaAaEVovyQLKuS6ohMEnIKxz0ajZhMJgD4vk8Yhucc\nWk5rxPv9Pv1+nyRJyjQLvPzSD3jn7bfodpbXcYcMV4Jx4IYbiizPWez0eXHXfvYcOMEnt9/EQ3d/\nknptlnGuGCQ5/ShlnGXkShVjVoSy83L19+RoUArH96k2GrRmZpiZmaPebFOvNaiERfTtBz5eEGD7\nPrmr0HqEHneYWBGRm5EqIbdgqBLSqEeU54zTmFEyYpyOiPMIrXKswML2FBXLwxMLxC3mn6NJkqLZ\nZlpCGMfxyiRCy7LQWjMej+n1evR6PSaTyUpqZTIe842/+lNOnjiyUrVi2DgYB2644cjynHEUE8UJ\nkzhlsTviprmt1Jtb6UVCpAXlhyjXI4tjtM4QvVZ8oWjOcTyPar1Be2aWuS1baLVnqTfbVKt1wiDA\n9zw8rziUFN8lsjLyZMQkShhKROpqxHHQokk05FlMlvbJ00LOLcsikjwiJiHRGamVop06VcfDUQob\nVcw+F0WlUkVrXZQQZhlJHK+UDsJqdcr0kFPrnIVTJ3h95wscP3aYODJSaRsR48ANNyy51nQGQ0aT\nmDOdPo3mMuJUwK3iV+sEScxgOSr0MbVGJEfK0kGxHYJKjWZ7lpktW5iZnaPZnqXWaBXRtx/geUX+\n2nY9Mtci0SOSPGOkJ4x1ROYIIi5Ka3Siy9nlGYmeMBx2WZScVFImpEQ6JVMpyslQToOKeFiUY2KV\nwvd9lAiu7RDHhUqQ1po0TVdEnl3XpVarEUUR/V6Xwwf28YPvfZPhcGCUdjYoxoEbbnjiNGGxs0xn\n0MfxKlQaczhhA9t1EctHZ2mpsKPKCX8WjhdSb7WZ2bKF2S3ztGZnabRmqNUaBEGI73n4rovnOoht\nE6mcXqqZjCKG2ZiJTtG2hSUWKhOUJXhiEYiFJxa2gjSN6Yy6RFZOLCnK1viuwrdtHKXwcCADnQEi\nuJ6HbVtkiUdOXsxALwd3aV0IIWsNw+GQ06dOsH/vbo4dPmjmnWxgjAM3GErSNCVNu4yHXSw3xAlb\nIBZgg5TzQ0ShbJuw1qA1N8/s/Fbac7M02m0ajdaKoELgefiOg+MU9YdpHpFlMeNszDCLSEUjyka0\n4IhDzQ9o+zXaQRVfCVE6oZ+OGZLQjwek3ZzAc6n7IQ2vQsX2sVBkcUYSpyC6GA/gWASeizU9uMw0\nWVa0/FuFoChZlnB2cYH9775tmnY2OMaBGwwXIItHZPGYotrEAeWA7aBsFz8IaM3exNz8zczMzdNs\nzxaiwrX6SvQd+B6BY2OrnIQESTPiPGKcRiRZjhYbWxQqU9TskJurs9wxt41b5rYQ2Bb9SZ9j/dMc\n65+hkwzJJKM37rM86NANmtStCkoJo8GI5V6HOI/xAod6rUKjEhKqQsjYxgZtQa5Wpif2OsscPbSf\nk8ePrvOrbPioGAduMHwgGijqwCkPMl2/SmtuKzdvv435mz5Bqz1HvVHoVFYqNTzPK2aaeA6+JSDF\ngKwoixhmQ0bpmBSN7fjoPMcXmxm3ySdq89zZ3s4dMzcT+i7LSQ/V9RnbOYOzE8ZJxGAypD8aMBgN\nmXgTXNtmmIxY6J+hM+6AB62kzlZmmAtb1N0avmVhTRV5dFEIuXf3G+x6bSej0WC9X2DDR8Q4cIPh\nQ9GgU3Q2Jp9Y5PGAarVKqz1Lqz1TRN/1OmFYxXUcPNclcBSO5CR5SkrOKBvRj/uM8zG5lRX69Sn4\nyqMZ1Nhan+UT9S3cXJnBcW0s12E5G1EZLqIsiyRJGScThuMhg9GAoTfEDiwmOqab9jkxXiCexCxT\nI1UxFgpXuXjKx1IWogUtmnf27OLVnc9z5NB+Uza4CTAO3GC4JDTkCemkT3/xBEf37aIauNSrFdy5\nLVQrVYIgLMWEbVxLEBJ0bpEB4zRilBR13Vg5SoHSgm+51CsVmtUa9bBK4PqIAktbIIocTW6BtoRU\np4yiMcPRkFE4xnd9EitjqCaczXoM0gFDNcSzLepOjYbboGoXZYaiYTIe8sy3n+atN16l3++t9wtq\nuAoYB24wXAZ5njLonWXP688zHnRIJgMUKb5jEfoenhviOG4hEoGgs5Q8U0yShCiOyLIEUTk2oFyF\n79r4gYsTOOAIkUrIdEovGdCd9OnHIxLJEEeRJTlxEhHFEUmWkElGamVEKmHIhG46IB3HdJwaw3BE\nFKbkbtH8n8QR+/e9y7Pf+w7Hjx1Z75fRcJUwDtxguEIO7XubxYUTHN7/No8+/kUef+IpbrvrXhzX\nRSurFHxwycUmSTKiSUwax2iVFfJptsJyFDiaRCX09RDSlEk+5uRwiZODBZajHrGkaNHkeVa09OtS\nFFkJaZYR6YyEjDhPsSOYxAlJkpOnGp0KmdYsn+3wjf/3V5w4dmRFcs2w8TEO3GD4CAz6Xfbseo0j\nB4ummL/1kz/Lk1/5KbbdegfKthFtI7mFpAoiyAYJCRPEs1GOQ6zGDKIeZ4ZnwMpwJhb9pM/73SWO\nds9wdtIllZw8y5FM4VoWvnJxLRfbcrBwsEuNTSU2gg1aIdhYuIi2GI3GHDywjxdfeJZer7veL5nh\nKmIcuMHwEdBakyQx3e4y49GQP/+TP2LP7jf47Be+wo7PPMHM1nl8y6PlN5nxmvSlQzYpZc+shHGU\ns5RAFiecGSxjOYpBOmF50qcTj5hkhY6nSjReblO1QmpulYoT4tk+Tp7iWD5W6cAtsbFxUNoChBw4\nvbjAcz/4DocO7WMSTdb7JTNcRYwDNxiuAjrPiaIJJ48fod/vsnDyOPv2vsUDOx5l2x13MFNpcNeW\n23ARTnVPszxaZpJMyNOEQdxlMo5QXgfxbWLJGeUxic7IshwdZ9hRTui6NOwqjaBOLajhWwGOxFiW\nA8pCa0FyhWSC5MXArd64x74De3jxhWcYDnpoU3myqTAO3GC4yvS7HfbseoUTRw9ycN8e7rnv09x1\n3wO057dwz/zt3NSY5XRngaXeWbrjHsN4wigeElsjcs8msYWEDESjcrDjHD93aAVV2kGDVqVJNaih\nbBcRhbYUWhV13qRApsl1TqwTTh05yosvfpcD7+0xZYObEOPADYZrgNaazvISr+98nr273+D2O+/m\n8c9/ift3PMytW+bZ1pxlsbvIQucMp7pLnB52WI5HjJOIWOXEeYYS8MWmIh5zQY2bqnPMN+Zo1hp4\nvk8mAqLRKkcASwtWDpJrkjxmqb/Iyzuf47nvfIPRaLjeL4nhGmAcuMFwDcnznOGgz+43X+Xgvr08\n8OmH+Mrf/ikee+JJZre1uHlmntO9JY4vn+b42QWWRgN6yZg4T7BEUXV95ioNbmlt5c6tt7BtZiuN\nSh3btkmyBEun+GmOl2jsBFQOaZ7Si3sc27WPV156lhNHDq/3y2C4RlyWAxeR3wZ+BrgXGAMvAL+l\ntX5vzT1fB/7peT/6Da31T6y5xwN+F/gFwAO+Cfya1vr0lRhhMGwExuMRu954lRPHj/LDF5/lkc98\nlvt3PMgd85/gptl5bu9vZ7HfpTcZEacJShQV16MV1rmpOcf8zDyNWhPXC0EUtoCLEKSCn4DKNREp\nnbRPdibl4M7XOLb/wHqbbbiGXG4E/iTw+8Ar5c/+O+BbIvJjWuvxmvueBn4ZVuQDz58W/3vA3wF+\nDugBfwD8Wfn7DYZNidaayWTMqfdPMBj0OXHsMG/vfp0HH3mUBx58iPtvuZtRNGEYT0izrFCMt2wC\nx6cR1qmEFWzXQ1sWadEmhAJsESylSG0YExNZA04eOsqxvXvpnVlab7MN15DLcuBro2gAEfll4DTw\nCPCDNZcirfWZC/0OEakD/wz4h1rr75fP/Qrwjog8prXeeTlrMhg2GlmW0e0sM+j3WFg4xfGjRzh6\n8BCPPvY57n9gB+3mVmzHQUkhRqxE4dguYltopYrcd54huS71gRQoRao0fR2znE4YvfMu3ROniCdG\naWcz81Fz4E2Ks++z5z3/lIgsAMvAd4F/pbWe3vNI+fd+Z3qz1vpdETkKfA4wDtxwQ5BlGZ3ls3SW\nz3Lk0EEO7nuPr3z1NPfc9ym2b7+NVmsWz/MRJeQiZBT6nACqGDOOElU48FwghzRJ6Z5dZPDuMdLO\nAIzSzqbmih24iAhFKuQHWus9ay49TZEOOQTcSZFm+WsR+ZwudJu2ArHW+vxpOgvlNYPhhqPb7bDz\nh8/z7rt7ePjhx3niCz/OgzseZfutt1NrNIpSQQBVOu4ccmXjiIOtLexU4cSC00tIXz1KdrKDjozS\nzmbno0TgfwjcB3x+7ZNa6/+z5tu3ReQt4ADwFPDMR/j7DIZNTZZlnF1a5LvfeZpdu17j/gd28OWv\n/gRf+6mfpdpsFFrKRbwNKGyx8CyXihXgZzayHBEfXGD00gHykZl3ciNwRQ5cRP4r8BPAk1rr9y92\nr9b6kIgsAndROPBTgCsi9fOi8PnymsFwQ5PnOUtLZ3h55/Mc2L+XZ777NH//H/wTHn7sCZqtNiIW\naI3KBU8cWn6NuaBJONCM954gG0cmdXKDcNkOvHTefw/4ktb6QzWZROQTwAwwdfSvUvSLfQX4i/Ke\ne4BbgBcvdz0Gw2YkS1MG/R7DQZ+lpUV63S6733yNHQ8/zt1338fc3BYc18UVh3bYZMat4Q1TJgtn\nITfO+0bhcuvA/xD4ReCngaGIzJeXulrriYhUgN+hyIGfooi6/z3wHkWtN1rrnoj8D+B3RWQZ6AP/\nBXjeVKAYDOeitWY46PP6Ky9y8vhRDrz3Dp/69CPcd/+D3H3v/bRabWp+FRnFDBYWmfT6671kw8fI\n5Ubgv0pRdfK9857/FeB/UggIfhr4JYoKlZMUjvtfa63Xyl//Rnnvn1I08nwD+PXLXIvBcMOQ5znv\nnzzG0tJp9u7Zxd333M/nPv9lHnn0c7TabU4eOcKR/fuII1M2eCMhegPkykTkCeD59V6HwXA9Yds2\nn3n8ST77uS+y84fP8fxz313vJRmujM9rrV+4kh/cKA78HwH/e73XYTAYDNeAf6y1/uMr+cGN4sBn\ngK8BhwEzkd5gMGwGfOA24Jta6yuaebAhHLjBYDAYfhS13gswGAwGw5VhHLjBYDBsUIwDNxgMhg2K\nceAGg8GwQTEO3GAwGDYoG8KBi8ivi8ghERmLyEsi8pn1XtPVQkR+R0Ty8x57zrvn34rISREZici3\nReSu9Vrv5SIiT4rIX4nIidK2n77APRe1T0Q8EfkDEVkUkb6I/KmIbPn4rLg8PsxmEfn6Bfb8r8+7\nZ8PYLCK/LSI7RaQnIgsi8hcicvcF7tsU+3wp9n5ce3zdO3AR+QXgP1HMWHkIeBP4pojMruvCri67\nKaYxbi0fX5heEJHfAv4F8M+Bx4Ahhf3uOqzzSqgAbwC/RjGG4Rwu0b7fA36SQoLvi8DNFPN2rlcu\nanPJ05y757943vWNZPNUavFx4KuAQyG1GExv2GT7/KH2llz7PdZaX9cP4CXgP6/5XoDjwG+u99qu\nkn2/A7x2kesngd9Y832dQlD659d77Vdgaw789OXYV34fAT+z5p57yt/12HrbdIU2fx3484v8zEa3\nebZc6xduhH3+AHs/lj2+riNwEXEoJNjWyq9p4G8o5Nc2C58sP24fEJH/JSLbAUTkdop37rX294Af\nsgnsv0T7HuUCEnzAUTb2a/BU+fF7r4j8oYi011y7oOwgG8fmc6QWb4B9vqi05LXc4+vagVO8s1kU\ncmtr2Uzyay8Bv0wxKuBXgduBZ8vRvFsp/mFsVvsvxb55Np8E39MUEzt/HPhN4EsUsoOl4uXGlR0s\nbThfanHT7vMH2Asf0x5/VFFjw0dEa/3NNd/uFpGdwBHg54G967Mqw7VEb27ZwQtKLW5i1lVa8nqP\nwBcp5obPn/f8ppVf01p3KQQw7qKwUdi89l+KfSsSfBe5Z0OjtT5E8W99WpWxIW2WVanFp/S5Uoub\ncp8vYu+PcK32+Lp24LoQgXiVQn4NWPnI8hXgiubnXu+ISJVik0+Wm36Kc+2vU5x+b3j7L9G+tRJ8\n03s2lQSfXFx2cHrPdW2zrEotflmfJ7W4Gff5YvZ+wP3XZo/X+wT3Ek54fx4YUeST7gX+O7AEzK33\n2q6Sff+RooToVuAJ4NsUebCZ8vpvlvb+XeBTwF8C+wB3vdd+ifZVgAeBHRQn7P+y/H77pdpH8TH1\nEMXHz0coxD2eW2/brsTm8tp/oHBet5b/gV8B3gGcjWhzudZlivK6+TUPf809m2afP8zej3OP1/3F\nuMQX7NcoZoGPKd6dHl3vNV1F2/6EoixyTHEC/cfA7efd828oyrBGFBJ1d633ui/Dvi+VTiw77/FH\nl2ofheze71N8BO0D/xfYst62XYnNFDOgv0ERkU6Ag8B/47yAZCPZ/AG2ZsAvXc6/441i84fZ+3Hu\nsZkHbjAYDBuU6zoHbjAYDIYPxjhwg8Fg2KAYB24wGAwbFOPADQaDYYNiHLjBYDBsUIwDNxgMhg2K\nceAGg8GwQTEO3GAwGDYoxoEbDAbDBsU4cIPBYNigGAduMBgMG5T/D6TbNJk9O001AAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(np.rollaxis(training_img_menpo_list[batch_inds[0]].pixels,0,3))" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imsave('d_im.png',d_img)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "a_lan=heat_maps_to_landmarks(a,image_size=64)\n", + "d_lan=heat_maps_to_landmarks(hm,image_size=64)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLUAAAEkCAYAAADZxwN5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvcvPJUmWJ/Q7ZuZ+7/eIiMyszHpM9YuWAFV1a1p0CyGa\nTYmRev4ChErTG1ggpBaLQuyhB4kF0lASi5FgNaBmSpolEotpgVSrZjRQLRgQjWCk6aHrmZmRkRHf\n4153N7PD4pxjZu73i6jIrMjI+CrthDzuvf75w9zc7Ge/87BjxMzo0qVLly5dunTp0qVLly5dunTp\n0uU+ifu8C9ClS5cuXbp06dKlS5cuXbp06dKlyyeVbtTq0qVLly5dunTp0qVLly5dunTpcu+kG7W6\ndOnSpUuXLl26dOnSpUuXLl263DvpRq0uXbp06dKlS5cuXbp06dKlS5cu9066UatLly5dunTp0qVL\nly5dunTp0qXLvZNu1OrSpUuXLl26dOnSpUuXLl26dOly76Qbtbp06dKlS5cuXbp06dKlS5cuXbrc\nO+lGrS5dunTp0qVLly5dunTp0qVLly73TsLnXQAi+hKAvwngLwEcP9/SdOnS5TXIHsBvAPiHzPz4\ncy7LLyQdv7p0+UJJx64uXbrcV/mlwK+OXV26fOHkpbDrczdqQYDpv/u8C9GlS5fXLn8LwN//vAvx\nC0rHry5dvnjSsatLly73Ve47fnXs6tLliykvxK43waj1lwDwJ3/yJ/jGN77xiU78zne+g+9+97uf\nRZk+sbxJZQF6eX6e9PK8WD7L8vzFX/wF/vAP/xDQvn/P5S+BT45fX6T3/Wmkl+f58iaVBfhiladj\n1xfrfX8a6eV5sfTyPF8+67L8EuHXXwKfDLvepPf8stLL/Hqkl/mzl1+0vC+LXW+CUesIAN/4xjfw\nu7/7u5/oxEePHn3icz4reZPKAvTy/Dzp5XmxvKby/DKEjX8q/PqCvu+Xll6e58ubVBbgC1uejl1v\niPTyvFh6eV4sb1J5XmNZ7jt+fWLsepPe88tKL/PrkV7mz15eYXlfiF09UXyXLl26dOnSpUuXLl26\ndOnSpUuXeyfdqNWlS5cuXbp06dKlS5cuXbp06dLl3kk3anXp0qVLly5dunTp0qVLly5dunS5d3Kv\njVrf/va3P+8iFHmTygL08vw86eV5sbxp5fllkzetfnt5XixvUnnepLIAvTxfNHnT6reX58XSy/Ni\neZPK8yaV5fMQIvojIvpnRHQgon9ERP/qq7r2fazbXubXI73Mn728rvISM382Fyb6IwD/EYCvAvjf\nAfwHzPy/3HHc7wL4wQ9+8IN7lfSsS5cun07+/M//HL/3e78HAL/HzH/+eZdnKy+LXXpsx68uXb4g\n0rGrS5cu91XeZPwion8bwH8D4N8D8I8BfAfAvwXgX2LmDzfHduzq0uULJC+LXZ9JpJaC098B8B8D\n+Fcg5OofEtG7n8X9unTp0uVVSMeuLl263Efp2NWlS5d7LN8B8F8x83/LzP83gH8fwC2Af/fzLVaX\nLl3ui3xW0w87OHXp0uU+SseuLl263Efp2NWlS5d7J0Q0APg9AP+T7WOZRvQ/AvjXP69ydenS5X5J\neNUXbMDpP7N9zMxE9ErA6c/+7M/wp3/6pyAijOMOu90Ou90eDx+9hfe+/BW8995X8N6XvwLnHIgc\nnHNgMHJKSCkh5YSbmxtcXT3D9bNnuLp6hsPtDW5vbnB7e4NlnsHMYM76yYB+EgDvPUIICN7DOQdH\nBEcEIkLOuWxEDO8dgnfw3sETwTmCd4AjgKRmQGAQZAfpdRw5OCef5JrfjkDNPiICiFCvBikzgGzl\ntn1c/w75Exi6X6eg1uPq/nIO2t84uZ+d2x4HvadcUc9bXaOWa13WdXnkuFo23PFZ7lL2cbnW9jms\noNuJt3UmbvMszfXrcc+fsrv928mRzd8/m4m/n5/8wR/8AX7/93//8y7Gp5bPGrsA4Pvf/z6+//3v\ng4iw2+0w7vbYjTs8euttvPflr+DLX/4q3n3vy4pd0t8ZLNil283NFa4Uu66vrnB7cyMYdnuDuCwN\nduUGvwRfgveyhaBYI1giz5qRc0LOWbHKFQxzDvAk+EUEkLZeAgtuKYYJFgruCoaRYPEGzwzrWvzK\nwGl/XeFR/b7ev8EG5lMMkwcs2LPGteZam+MMu3DXOSe4+GLcap/nbsxqsKutiwYTn4dd9U8Vu9qy\n12NejDrt379I2PWtb30L3/rWtz7vYnxqeR3Y1blX516de72Zct+5F4B3AXgAP9vs/xmAf/kXvbhh\n11bGcYdv/Zt/gH/hN/9F5JwQY0SKETFF+Z4SlrhgWRbM0xHzPOP25hqPH3+IJx99hOl4RNJjrX0R\nrbmC8KNNm7N+2qXLF1xeNXa9cqMWXgM4/fEf/zGcc3jw4BEePHyIhw8f4Vd/7Tfwzd/66/jmb/0O\nvvlbA0IIcD7ABw8GY5lnzPOMeZnwwfvv48c//iF+8qMf4ic//iEef/ABPvzgfTz+4H3c3FyDc1Ll\nLiGnDFay5IiwG0fsd0LoBu/hnRelj5yC24IYIxwxxjFgp9vgCUNwGD0heFUGkUFgOFBDoJyQN93s\nuw+u/HZ6X+e9EivRNDMgxI4ZKQsxzMzImfU7wFk+677m71l/r86RjVefUPKGui/b31GPackSsC4H\n3/Wdpa4bQlTLtt5/l8JXf+d6jm72244D1oPMKcE8JXqFwG3JU0uWNtd+4bHbxn3PSdfl5WUnVj9H\nvv/97yt+eTx8+BAPHj7CgweP8Ou/8Zv45m/9dfzWb/8OvvHNQfq49nVmxrxMgl/zjPd/9hP8+Ec/\nxI9/9EP89Cc/wofvv4/HH76PDz94H8fDATlHxa4EzoZfDO9cwa/9blewyzsPAgp+pRThPWE3hIJh\ngyeMnjAENWwpdhG4GMbIETw5eFU8BbsUt4LgWItdzjmAXFEOU8GeXHEnt3iE53xv8ac5v90HwyU7\nF833DbY1+7eKY3sONxjZfm5xq+JsVdZPMavdTvHrRdgl+zfX0p1rhfLFeFTK84K/le/bhv3zFMp7\nIPfZqIXXgF2de3Xu1bnXmym/BNzrMxXDrq08ePAQF4++iofv/AqY187DlBJiikjMmKaI6+tbHG6u\n8aO/+v/w5z/4X/F//pN/giePP8TxcCPYlRKGIcA5QowRMSU4IozDgOAH5BwxhAEX5xe4vDjHMIxq\nJLvBNB3ByPDeAxCn4m4cMA4B3hGYE1KMpY/mnNVcTdqPWx4jbThlOS5mRkoZMWeklLGkfNI3unT5\nvORVY9dnYdR6rULqKROPGTV/IOEcq2NM2EbSMoKReuscEbJ67Uj3M9UrV4+eHkN276ZEZPevm3j/\n7B5WWrlH8ThqZIN3m80TgjPPYyVXznvxGLbEip0osIVctMpeQ3oKicKawHCjSN6lsMEI1ZpAtdcq\nSh/WHsatYrhWBIHceGjvKs+WdMm1Tz2DVXnMyMnIVVIPautVrG3F9t+pGDbnwPZZM6psa7WPV/vW\nyuX2s2mV7X9YfWvL2/zlZGzaNvX15U6vwXft7/I6hegEve466u7dbOcbJplnsEZCSTwCK56tccmu\nW7BSv9j5rsU7i7yiBrv0nDYqyyuGhTbaq8EvM9iRRnRIoR18UaDcqVGqMWRxbghc3mDUXcoh1opc\nNXDVzzUOGT4ZJsjnqcFrjZ0nBq4TpTDXKI6tEWqlFIoR0hT6pNFzp9ERtQGtlMwWy4ByP9j3cvIG\nxxo82xrGnvtZm2G5/um+zW+7x3rn8zvAnfjVsevzls69Ovfq3GvV/E6lc6+XlQ8BJABf2ez/CoCf\nPu+k73znO3j06NFq37e//e2XX2mNCMO4g3PiZBuG9Z9jzqDgsMxHXFxd4NnTj/HB+x+AyMOHAeNu\nj2We4cgh7AIePrgEADy7eqYR7xJRSsxwTHh4foGvffVrePdLX0LwHk+ffIwPGbhmxjB6XF6cgzgj\nBODth5d4eLnHfgwIlMFpBlIEc9RjPIIPcM7D+yDYRMA4Djjbn4mBjQjeewwW5ToE+GEE+YDIQEwJ\nS0yYl4R5WTDNC+YYsSyyv2wpYYkZyxIx6745RsSYMC9RthixLLH8bdF985KwRDkmqXG7S5cXyfe+\n9z1873vfW+17+vTpS537WRi1Xh84KZdaKWqOQAYkGkHApvmh4VONUuGIEJzHOASkcUBKhJSAREBO\nCRlCWgiEEAKGYcBu3ME71xAkmYbjHQHs4R0whoDdELAbB+wCYfQOQyAMHnBgOAIc2WcNex+GgCHo\nNgSM+jkMASGIJ9Q2qGJIzoFBd0YNtKTGuOS6DloCVIlES5Bgf9OJR6IYUqPs2b56fQCqSuu+8ndq\njuOT76XsK49m9fitSY8qglmJlJKolBJykvDhpCHFuQFU1vcFm0qA2h7aumv3Q+tpReSwVqxPlNvc\nELtcFdbVc2gFyaWbaI5VPbZEdO2lrVfRqRQoGoWcm0/Pa9v/KVnFumy/gPwi4PQ5yKfCLuDTkqtT\n3LKtTOEhh4zc8OWmb2gbciAE7zAOA3IckJNDIsGwTBKTkAA47zGEgHEYsRt3gpGw9iI4yE6iEoYg\nODQOAftxwOgJY5AtOMWtgmE12sG7NX6NilvyvWKXHwYxbJErGFYVtBaD7sAvw5sGO1oFqI1AKLiD\nNX7Jbyr4ZhhWMcqUjS1+0UpRLJjX3rPtVy9SClv80mOSRtjlrLiVIlKU700L0GlTVDDs5Fqb+gPf\nrYTWcudT41zOyLyOFmujL7ZKX4vZVbncYHuDl1Yf1hdW2KW7mHFaro5dd8nrxa7OvTr3Mrzp3Aud\ne/1iwswLEf0AwN8A8N8DAEnj+BsA/svnnffd7373F1r9kIgwDiOMi63KBJT2HaNMTby6usIHH3yA\nq+srOI18n4eAcTfifLfHxcUF5mXWsUsaVooJiSVKi8jh7OwM+7MzTIcDjtMRy7wgpwRkh5wTggPO\ndnuc7XeCYcFjPwR4BCDP4LRg8IT9qFGxVKdlD8Hh4uwMDx5c4GwcEYLHbhhwthtxtt9h3O+wOzvH\nsNuBnC/YnJmRUy5RpqWd2lxKiNGec8UKNH03WV9Q/CrjvjoemGRsSAwskTHFiGmOOM4LpjliWsQ4\nNsUF0yTGtSUlNYpFTHbcPGNa5Pus3+dpkf3zgmmaMc2T/p4xTRIlHFNquEaXN13u4h/N6ocvlFdu\n1Hqd4FRIDVmUgIaRU6sgSqe0wYbbwVEZAQFVKRwGRCIkAiKEJSa9nyNC8KYUjpIzIueiYDoiIToA\nvKeiyO2HAbtBiNUYCKNHye/gnU3fqVEO4zhgHCT0dDcO2A0jxnGQcNRxxDAMGMYBIQxwzoO8E4AC\nFUK0Ih/l3QBQpaw4iuy3HQOuxwL1XAMwWPSHEiQLf7W6VQCzY0s0CLlyDppz14qikResB/vMoly1\nSlNLqjirgp+VSC1KpmQufFwWxGWWgaMZuGqeHyGneaXY5YZgKrHKrQLKxbuZcyVLq03LE1uCV8Ka\nU0P0pI2WqVd6vZbgtJErmSWcOOWMmKReTMktxKrxYucsUyIk6sOukzf7rcxG4F62E744vugXAafX\nLZ8Wu4BPgV/WLYphyzU5rmqEATkCcZ2it1UKwVxyZY0hgIcByREiCb6klJC0c3rnEAyTdjt5Zp2e\nyJlB5OAdg+DL9XaD4M5OjVo7UwzJMIw1Z41Tr6DDbjD8MszSaxTsGjEOA3wIICcRWzbNslXqWvwS\nPKKCS3fj1xrr6n5SclXxSePWKnahwSHFN4JFkdGduFXeB2ilCG2VQuba51rsQlEUTeGqSmCKi0yn\nmgW74rKs+jTZGGe5i7jFI17h1koZNAxrMKAarrYYJjhVjGuKW4ZhpSGvsMumRmBVJ/b3xII5hl8p\n17xGIFphF5FOoUiGT0Ke23ulnMrf2qmmtaG8qA927AI69+rcq3Ovzr3eCPkvAPw9xbF/DFn44hzA\n3/usbkggDOMI4PmVHpdU3pPkBLxCzozdbgeOESktCMHjYr9DCA5LXDQCXc5nxbmz/R6jGqLAjJub\nG9zeHsDKzWKMuL6+xsOLc420GqSdpIjsPUIgEHmAGOPgMe5GEFNjrBH8EcriioPBKb/yQSK62pyH\n8l35i28YEzU8gwiAF7zi+nc7d3tsMQ6SkFDnJCWFTNn2gltook6h13duFZ5L3sP5IE4DcsqzqoFM\n6kKde5DrmiNO6sHyLTLmZcY0TSUa7Xg44DAfJDJtOuJ4OOJ41O1wwPXVFR4/foyPHn+E6+srxJiw\nLAlzSuKYIyfTUucFx+MRh2JQm9VQp4a5GLsx7TXLZzX98PWA09ZLqHldSrQD6fQWcFEKAcC8PjZA\nukYpzMMAR0AkBnHRPfUSlSztdjsQqHrSc1ZvoQMTMPga6bAbB+wHwi449RpCw9shUQ+OajJTktwR\nu92A/ThitxtxtrM8OBJhMe5GySsxCrFyPtQcD1zJkYmRGRvAKyVFrRPzNLUDZQtOthmxIgcUciQg\nZaTLLPOw+i+fRrrs0xXlsiiurZJoCpopbCuvXC5kJ7PmDuIkiuBiiuCMZZpkmyeklJRvyLNayLHT\niJFCrCyqolUMs93vjugFU9CSeSrzak5+XOaSbDLGBctSk1CWSBCWZLdCmOQarZIsyqAqhDmXkOAY\nE1LmJmqjkll7lzFlVUaFiBWFMjGiKq4uJUQAlBkJWV6jgvGdkEynE0teTLHujbwW7Cq4QmsysIrU\nUgwD8loxzBW7wBW/dsMA5Ii4oPQqYkimHXBJtGyRWsy5eBETNFILDs4DQxA8HMdQFMNdMWpJtJa3\nrcGu4H0xYO13A/aj4NZ+Z/lwRoz6GcJQpvI4HxqFj1c11RqnzDp1MvWpQNXPwS99RsOwogzafcgV\njGqjyGB41Ri5KnYZ7qqSyGvlb4th679rFIHmETLcisuMZW7xa17hs7URyU3my/Vzo/yVSKgGv3ir\n/GXDgnQHfsUGt2b9jAW/Wuxi5nKNlFONfFMlzXArqjK4RMGdmPIau9BgGEEwKzb4VTCSdR/JJ8R4\na9NUW7kLv7Ze+Y5dn1A69+rcq3Ovzr1eoTDzPyCidwH8bUiE6f8G4G8y8wef1T2JgHEYT8aDYogg\nArPEijoA8zwjpSTT+RzBEWM3BJyNFxh9QIxLyf8Xl7kYir33OD8/x5e+9C4uLi4QY8ThcMDxcNCx\nVKYAe/I4OzvD2fkZiADJjyr9PXgv6R7YYRhk/Eeu5c3WiamZoq3OBe+cTlOUqNSXaTArI5Xym5Nx\nc2PI2v7mdl8x/IvLENzgoI0jNnY4Jwa4EECKEWVpD+fhwiDGLjW0EckxBMlt2DoUACDGHfLFBZzm\nSSRAsAsZxAmkhkfmhDgd8fSjj/DhT3+Kpx8/QZ4XjMEXI+D5w0s8evstXFxcAgQsGglmBu22zlKS\naZ1xmRHnBYdpwuEo23GacZwmHKYZt8cjbg8TDpPsn5cZh8Mtnl09w7Ora8GRzLi6vsHTZ9eYYsK4\n2wHkJZJNo9mO84zDvCCmLPVBa0xfOTrrW7yzPbSHrM4hOqnfN0k+E6PW6wKnO5VC2GcpTRkYW4+N\nJVEGZzgAnhwG75GDB3EGcgb7DLCXnukBIldCz4cw2LMikyCLlMHrcb6GsQeP4Gm1eQ/NOSMkyxFK\nxMMQHMbgMQ4SdrofB5ztBuz3ohyOmix1HMcmoXQoxOrOStIfNuGoJVYtINnxMjY3A7Ra3aGECkqY\n2qgHbvLj2Kd5DMyq3h7DaD5hXgD7tM7XTj9pc9I0hEdJlUQ6VFIV5xnLPJXPrNEF9pxOgb4lVq0X\nsIaEb4iV3jM1n0m9f5UYKbGKC5ZlbjYhWMu8IKWkxEneTjKilBpipXVjEQ4xC7i1891T3iiGhQDL\ndedZ57frPHlTDGNiLDHWjUhyCCQgcq6e4jqiNe1qTctLvd5zea3EqsUtUsWw6Y/VUKJRLnfil0yh\nCc5hCB45BsEuzkB2gFeig4DgAwYveRWGYZD2lxmpGEoIDtIXhkGPU/wavERoBS9GLVEKBcc81Qiz\n4KUc4+BVqQzY7wac7Uec7UddMW2HcbfDMKyNWvbM2zrSL/q/YVdVlKtBRHcV4wiaflGjrgy7TMFj\nVEMWqBq8LIqg5v5yRWEUZVCPha0eKQUoEWetYeuOSAdwLgYtZpmyszVqxXnCMsnvUh1kkXz+xKi1\nwq9VpMPzjFqpKFq5UQiTrgR1J3ZpBIbhllw+yxQNPd+MhYDwbjFCCX4tqWLX3Uat+g7nxbArluNj\nkmstqcGu6AQ/QQASLBCDzbDbseuVSudenXt17tW516sWZv67AP7u67ofkaxCvTLEaKMwo6lFak3H\nCbfX1xicw+AIeZ7Ay4TLUYznx9trzNMBI4BdCJhcQM4Z5IDdOOLhw4f42te+irP9GW5ubpByLgYP\ncoRhCHjw4AEePHqIYRjAcULmLGkdPCEELwtbsEQ9SpQzapkt+pWoNBeBDnOAVSPy81oL6/nPjy6y\n/Q3KN8eu6rD5nlPSPqVRo4VDNe+C1/xOnCVkvyqmlXyGq4LX6ygHk2hMNQ6boStljfQiwZNlgnMo\nkb/LdMDN1TNcPf0YMS64OD/D/q2H2A2DlMw5nF1cYH9xjhDk/WbvV89vUWzMsgrvOAQEOoPDmn+Z\n46Aa48XgLjibkOKE66cf4cmTx2AGxnHE1bMr/OTHP8HxOOHrX/8VfOlL78IRIcWM4zTh8eMP8ZOf\n/gQxJ7z73ldxdvkQkQkfP7vGzz78EB8+eYanV9e4PhyxxCzRcGFAGEeQPocYC4GYGTFmzDHj8UdP\n8NHTZ5I2JIxYYsJxmnCcjpjmBTEb51u3klYIjZHTjnluO/v08pklin894GREShu7EQC0yiCXaR1x\nWWR+7TzLShIpCQhAIg6Cd0jei9c8SdJSeFFYrKGWnDDB65Sd2nFdkxh5HBwGWwWsLG+PAjiF+jVK\nm5V584iy6VQkNHl31lEEzfHbH9SQqKIIbn9TOYXsAPvuquJoCkf5XgiVbhpCWryEriFWRsxWSqUr\nD9l6NVvFEBslsSVWYEbOURTDnJCiRwoOafCIQ0DaDUjLghT34JzKA8pj1IgYcnQyZaiSO7tnLlEP\nmfNGQazh66YU5pQLsbJIh2Wu5CrqaiZ236Tz9mOK1dKuK8QxFGSUWMWYsGjEg3gL9T2viLRgxnGa\ncTjOOB5nzEsSQpWFWM3LonPUF8zeYY5RVHSu+TrkPYl3ZRVafNIdO7H6JFKG76IYYtV/q0KYC34t\nsygNOUqbB4tJRXLTOCTvwFm27AieLfdMxa6gSUUr8RDlwciT5MXyBb9EATGCdKqEmdlMVZDyi6Dt\nUgoIZQ8Fw7Ba/bCplPWXO/CrIW2b37UPNGUsdUvABsdW2HWXQmgY6+44rhjDnA7ipiBatNBduIU1\nhilu5RzBKSAGhxQ80hAQxwFpGZHOFqS4rLDbvLCGX2CsI8EMuwBA94PXhq27cmaVSCudphO3SqHi\nV1yWJpcOK9ZFLEmSx5qRFs6DoUYtw65k0Q4SxWDvpIw7jRynBcfjjMM0i4KoBq2YGNMSFb9mzE6S\n0hJFIErEgzz7y2FXVwo/qXTu1blX516de91zIUkUD9T+bwYRWXXVgeCQlgnPnl3h+ukzpHlBXhYg\nRowEXO5GOGLMacHOaY5TkmitFBOcI7z18BG+/vWv4+2330aKSYzhzulUNsL+7AyPHj7Eo0eXODvb\nI4QAogTkBEcMUgObowwmDdDSpgd1aBEyiDycA4AMpgxQAHmAveRLZcUuLpi9MUSQpV6oWF6+NYb7\nAvcshbDoK1uptu0PFg2OlGSqtkZpwjX8zVJtGBduv9v1HJU8YAWruZbVykJabjbPFlDyO5aosyzO\nE0vgzylhmSbcXF/h+uoKOSVcXJxj1Jxk4xiUE2X4IMYfM0ytplze1cS0oHcbClnHN4JOqVBjKkBh\nwPnlJeZlweH2Fs57PHrrLRARPv7oYxBnzIcbDGGAdx6jJ3hi7MaAR2cP8NX33sH+4gEyAxf7ATvP\neHi+x+H4Fo7LgpwZYZDFDsb9KAuhqEPI3kvOhOvbCf/PP/1n+OkHe7z1zns4u7jEzeGIp8+u8OFH\nH+GDjx7j6vaABJaNGUngWvCMSPQUJ1M2wzCKQVAdXe4VY9f9Xv2wEJWNpxeQARDq3VHCHZuBTZJX\nJmnY4JVSmJMkPM5OFBYjbxK6GHSliYBMEvbOkAS4njxc8JrQ1CMMshy0907yONTUOJWg6IMUVZAb\nxZB0c4oglqdCNyKqf2tI5baSWhJVCFZRIhpQKL+tbnWXkSza3EsVQCmXL8qgKYBlXveJErtWDkUt\ntxtWxRAwYtVYdRuyVRVDIck5R+TkkaNHipJ4lpO8Z05JiFGpbWs7GsaLJjSWW4VQ3weLUmgEqyqH\n9bflcsirUHiJdojLLCRrnssWYyxe65yyhsvLlJ+UcolgcV7miwux4qoYKsgWYiUPhRIYypIP4vb2\niJvbCTfhiOMchVjpdpxnDaV28DPByQil+W8st4WOF20fs8Fh3R27fCKx+qy5CQqZUKOIDHBKuGc1\nas2LKoYZlCWJvEz9q/iVSabTkJOk8URYKYU+BMkHQhV7yBG8RWYNHiF4XfHLlaTKAlsNuW4wx9oJ\nrx+vkpSiHN6BW8/BLjT3a9C91NUJmaCao8kMWWSKaasU2gGGTeSLEnNi1HJu9TdhjU3kVsEvKWXh\nW41hq1YMV0wzo1aK4BwEv6IYtFIMyGkEZ8MIjXQo5jMjfnWa10oZNQMjQ3FvbdRqDVIr/FpFPuiY\nGedq3LI2uCya0F7aZ0qpYFeMUaYI2NQs59SoxRJllTOWmEvkVnnVDcG2Lze3E25uj7i9PeIwLQW3\nYmIc5wXHWaaBeHvP+nzFoEgNdll/uxO7Onp9Iuncq3Ovzr0697rnQkQYNaeWjdvrSGZGWmbc3tzi\n48ePcXtzg5wkHjh4j2F/ht0YcLi9LjlEP766RQgBl5cDjocjlnlGCAH7/V6TzkdM04RpmpBzRhgG\n7M/OcHF5gf3ZGXzwkk+VHZBJURBATmDfcCAnq61mziDOms9QunqGRFCSZ1Bw4OCQvQMHD/aV6+ik\nO2lnRNWV8clgAAAgAElEQVQgJXcoYzIBMkXPsAiSTxVoMIEAsAM7aafMxk1QjstZrgNycND+bwY2\nJ9PlCBVjYA5Sm49u4zoYzMqdHSlWZC2z4obygcKT5IWXPoacpc/lJE6Xww3iPME7EoPWMACcy+yD\nlCJYc5tmTTzvnKyKC6DkGd1y0hbbWqfANsKt5EbNNVJ0GPe4uHyIGAXPvHN4cPkAHoSUEpZlRk4R\nYxikXR1vwZyx2+3E+cMJKcl9x92IR87h4oFEheYMwMkCLC7INFsZL4OCi8OyZDx7+jGurp5hP+4w\nhgHzNON4e8SyLCCCLvgk9eq9RFtLZG+tC4Y4xC3fqU33tBker1LutVHLAH6lEDadzhqOhL5Lw10m\n8RZm9RYSs4bAq1LoHLJzSI5kWo6DDr6yepgohrokPUQRNIWCnC6fOgwYRlmJIngnIe4OoFYxVMJD\nRGXZ6kLCUQesyl/W3sLWM/ciYtV6A2n1G02dUXN8/VIJq9Zp6zW0i9g8aO9PyFVLqqghXyuCBSoE\nS+7uVoO1vkj5W2OdrwCRwSkouQrIKeoWwCnClDkjRfUCxm3dCoRWhM6ObckVcgWm3HxfLYndeA1V\nMYxxluSplienUQxTisgx6nQf9SSmBD9IQlo/DGCIlVuIFZRYiccvcaMYAo0yK2V5No64CrfYOYfD\nURTDOTGWBIxBSJWthCeAnxB9AhIXpbDmGWoI8Ka5vWpw+qUX62POvOstflUDRYtf86TtZhOpVaMd\nDL/0nXoCMSE7YLDVuzRSK6W0wkrSAXoYRgyjJCat+EVwjhuosf6KSnyMbGyesSiRG/yilaaJl8av\nOmXHlMBCwSoBsyaqP+on1QOKsc1rSLuvK5oRyb5WMSR/h3JIFcdMKdw+RGvpa7ALgCp+oRq2FLty\nGgB9vwW/ygXsEWj1Hu7ErvI7b5TDOq2nEiwuUQ6GXzHOSJZTa15vOUXkqNMmDbv004cAr9hFzhfc\nSpkFt1Q5LKsm3YFdzIzr/QHPhoAr53Dr54JbS2KMYRaFsIEizqKgSkLZl8euX5ZIrdclnXt17tW5\nV+de910IhGEcUB1QTaoHdSYej7e4vb3G9fUVckwIajwfdyMcJ5AjBD/AOydGBq4cKKux6fz8HLvd\nDjHKqn3H4xFHNWqN44j9fo/92R7DEAo+eF2Nxyn/avuKRWqXKGxwk/QdgGXaK/hlEVqaaL3woEpP\nmOsiKyWqlaFYIRhasdO4l0ZRQgGUshpcqUz7d4oxmWUqb2YG5QSoMcQpPtkiF4TGX6D3BZSvKMMr\nEfIO4qCDcb/KSd2gxiz1TzDL7AGGjAXQCFF7JzFlDOOI/X6HoAa2FJdCXQlq7CExMzroYhckvKNM\ndtyCaNm5Nmi1hq3Cae09C5kGuYBxt8duf4bb2xvEmDAEj8sHD5BTxHQ44HB7i4lvsSwLjscDQvDY\n78VQG+OCJYrBfzeOCOMOGbIKZUqMXAyGwsWCl3GT4JET8OzpFX72059iPh5xfvkWDre3iFnK6p2l\nKhkw7gbEg7RnSYkhz+yoRv6Sc/CQHKjGPb2zvMGvTu61UQtoCIJ1Qt1fvD5gXV540ZVZ5rJCS/E0\nM9eODVlRxlYnYVuJQe9hRG1ZFmRVAMyTUleakHwBpYEWdQsVPAGUJHfAmtGgjdqQqADzbLXbNpz8\nxNtcQIJO9lUlbC2CQ9T8faUdNr8t1F0V8obklv123gnpa+69+nuzjzfIsCFFRX0u1nwDeoJjqTOG\nF9BXPmRAX0GG5O+VkZR3s/q+IVWFrGkZqn+XN3vaRyRtI7YSSUA775xAyCB4lrTgcKkohSEEMJzk\nGiG7uiWEZTh2TQlQPJaWywScJe+SehzgWPTzJMkSZQWxujLQEhOCi7WqVFFv323bXuxRXzU4/bJL\nq1yVyKPWQPEi/EotfplXV1aHEfxSL7ISYKf4mJkRkw7iUTCMuXpMnE7hcc4Silb8Km287XZsbcOe\nyTXKmj5RiRzwBbcEMzZ4tqmdyt3v8hy2uCRSetxW2TzBs8YIZQYsuHX7bg1VpAlKqb2+/fm0HC3e\nFytbKWCpuEpomjIXkseae4Jzcwqvr6FErdy7IdPFaLbCyAalON+JXihn2Whoj2dtQowKHIJEAOqz\nexs3Id447weNChSjlmaLFxIMJW1EoFzva+VKST19imGOAO9lSuwKu6A5dPJQ83XFiOB9o4O/JHa5\n07Gwy4ulc6/OvTr36tzrPgsRYRjq9MOTiOUUEZcJOc7gFOEIxYg0DCM4zYhpgQsBKTKWKG161lXw\nlmXB5fkFHj16BOecJIc/HnE4HDQvpRijxmHAEIbShoiknTqXEVw71dpMJ2IMyCRGIgfAOVlN2vAN\nyr2c87oybcWq1iEmn7nUwcrBU4zeXOzb9W+VXxoHZKBg9imuipMBUEeijRsNdgHKRdWYV6iN1Axs\nRWoCwNVLseJn5qCTCF8xanHKQNZVT7WwRAA7oSYghzCOmptWor+SGr4JXAxvRA4ppjLGiWOGEJwH\neVkZVfbXJwdZ21LOZVY2XRBF+rEiC0HGrkzlOb0L2O12WJYZxxSRUoZ3hPOLCwDAk4+f4PbmRjAk\nJ1w+eIjLywcYhgGRAXJccj8mBiIDjoEwkK7ompDzDCKZtu+cAyfG7eEWP/zhX+GDD94H+RFEwHw8\ngvyIs/NLkHM4zEecxR2WnHA4qmHQcTHCeiepArJj7Pd7kA+4bqIdvebUfZVyj41apvTQulOUzl89\nOrJKjhKrZRZylWz6hIYg22AFedGJuVlBoK4mYSuGzfMMW8a4WraF+HvdnNt2bqCAA5tSIs9iA1dV\nbOtWSFUb5WAbdNt4vUodoeU0a4LF+rkmXij3fL5SqOUq9zYi5V5wnqpI1Nxte1zVjFHI6ApItcLa\nrQz96nUlBziGg4A7zFHoGMiGvsaiuQBKoxLXN7Uid7kAj32e/ruLXDWkT9+h90Gn/8j+VBRDOToT\nAc6JpzAMQsKgS5inDEZuVjjKSLy+e4p695yQYwRYVtTxnjAMHpQBlwEXZABdkaqUEHxEKMuU13dX\nFZg6kFXyBWmbXV5emr5mA3wdAO/Cr7nBr9jgl9H4NX7JqmCKX2qg4lzxy5LiFgLg1psRjiJr20hp\n4dT08bsUsq1C2ObhqQYtt9a9agU9F7/W92xvv1Hy7lISC37a9+bYVTuvRjteKa/t9eq7rMyukVb7\naPpprUx7HA1BB4PhxVOfjURTvUZT//K75o5o79kaqUwxfFnUah+itk+J5OPcKoW1jjwEuxhUIrVC\nCJJXK0mOD/kUJRFZjFrt/WVWmiqFmveGwLJAQfBQeIfPjVHL8n+liMUHBBc1x/jLY5fr2PUJpHOv\nzr069+rc65dASBJwt5yrGrTEqJWWGZQTPEnEzjwdy2rEzBrxolP6E8tKv8dpwu3xiOA8zs/PcHFx\ngXme8fTpUxwOB9ze3oKIyorU+71EaaUsK7ryGOC8g4eHc8LRJPF5BhHDe+t7MgVRcgoGOPIoIacg\nSI4tLwYvavCi4FjFQYCLIWnV3uxBkQuOWOVRwQuq2OHst3E741XGK2uOvxbDKpeqOQ6Zs0YtEkAy\npRxkUalyDYk844pvzJJzEWjyapkxkGH5v0yc9wgEOASZTADpfUmvAzDYSdQRmAs/Yedk/PEB3hHI\nBxDLVGsbZ9op7QQxaDFnZI0+sxeQWcfB1uCl1eE0Ctn7AOcCYopImRAGIJPDnIHraUHwHpeP3sZb\nb72NiwdvwXmPPM2gHDHudB2BJQJRVqJ12v5yZkQQcpZ7OQDTsuCD99/Hj374QzhivPPOWxj359jt\nM8iP2J9fYk7ncIODHzwSgJvbA6bDUXK/ac64MIzFyHd5cYlhv0fOGfN0BDNrPrAeqVVkq4CsFTDW\nefcKTjGqp1C8hTlGpBxX3kIjOIzqLXROPDhwdc5rTBG0SKfLSSiZrDCh3iBNhFd4QzNoF6usegrB\n0BD4llzYpjklYGTKVyWQKqFaeQy33AonO7QcRnC2ZAaF7Ky9Q6dkrx7XELtC8NbW9wp6dZBeg2FT\nhm2Ri1J4x2aVSACxkl+nOWYIzfvMWhZWL0Z7flUAT2qL7a/1nut/uZy7VVzLVZW8Wttgx/BBDQLl\nmesS3ayDkSmFXj04SBmSik/r3TEoE5wRPfvMdRBMKYIbbyEz4FjadNClrGMaSp6IJUbM3ouFvW2T\nG0UfmycFerTDp5G1Qet5+BUVv5YX4pdFpZRoh5ThvBB2658tftnqd+BaDltmvU0Ov55Q16gLhTyp\nrCK7TGFTXHJ1qeZ1pEODFZ8Av6CKlCGnnVj/b/Flq7y1xqs2QutUMVyRNkAI1Pa6bZ+wQ1uMkWqD\nhb6vFMSqllT8dGuTl/RpIWLbqYVF2dvUFq//Azek7s7IrZN/+qZ1bKI7sKvFb99gF0BwPhTFUIwB\nSZXCpMTNSG5eYVdkJX8NdolS6DAMhneAZzWAJM3NlRKWGBB8hHdevK8b7KpjWa2jbtT6dNK5V+de\nnXt17nXfhUhyajnnVom/LSp0Ph4QpwkpzjIuccLhcIPjNCEuEWBJtj0dI+ACMgi3xwmLRmENw4Cz\n/RmGYcA8z/joyRMcDwekJMnibTXo84tzjLsdjseEHNWo5iAJ4iHGU5nalyA+oRqNnDMDNg2ZnHSt\nDACkkdWhTBUjFuwyfKv8iXWc9WZnUan8pTr1qEwV1Fos+EE6ZRyo2GSzB+Q2BHIEbvC0YqryK81f\nWJLCN9jI7UwAKgQV1IwfRBLpRc6BUxbjsuaetWsDkJQPzGI89KSONjNKZZ3FIBiTk4wV0kYyMidw\njMjZgVmmpEokKOR5LdqcxRBZ6EXBC8nXBsOOxoif1WHDKcETKQeS3FfjOCIlmX7PzoP8gPMHj5Ak\nOxjOzs5xdnaJcTwTfrUkkOWfzK37CLBpneY0grYKsERkPf7gA8Rlxte++lV87eu/AiaHm2nGvERk\nLIBzeHRxhmk64ime4mwYEaMsoDEMA2zq5+X5JeKyIM0Lzi8vcXF+XlbqvLi4wG6//4X68FbutVFL\n2nZDrKD6hCoM2bwgcanL+85TSRxpIfDFSg/puJllmk4qc5XrfRiSJG5htQTbuG4Eo0mILGMQW6l0\nFGJVxmxAhzGrogQWL2BDWtwGBGoOnuphrMTy+QNc4fpAIXGF2JXT16TpVPE00lct8SsCtlFYizW9\n/G2jFKKCU32xvFLKSum5kputQrdSWJ0DMSNrGK5jp+HjBGqs51tQaXNstPc9UTOLZ6c9olEIt8pm\nMRoQ2DvYShepAWcu9e5ATlbZ8Jr/KFuNs0Qq1HtgBZSiAxhpljpqp++Qc4i5XmeIsnz5Em21u7pC\nHqhZrlqWKlk1L9Y2U4hVD4H/RLLCLrf29mfDrygJbGUFp4pfSfHL5qbnBr+YJXdRylk9uPU+RtZq\n4kq5X1EKydVBzpTCUixe2UPKJYpSVnGoRjA0m9v8VnKFVaTWi8k5l0OqYtjil5CaBhsLRro1Ptj9\nDT+bqC2bcrTGJirnl5wUWO9/ftEbzIJhjShldxq2YIYth4ysoCRTS0nBSfp9xpYQMTW3bL6sFcO7\nI7ZKm1hhXX1Mwy6GR8C6/a7yi5GDU9zyQbyqhjcuM7wrDFeCMIpSKIaMFrsIgHcSpQUS3EqZEBmI\nOWOIHkP0BbPss0amWJlKFevVO3b9QtK5V+denXt17nXPhUAYx10xmpsIT4qYjgekZcI8HRAXwa/p\nKJFa87zAeeDs4gIgh8PNDa4PR9wcjsgMfZ9iHH3w4AGePHmCJx99hBgj9rudLmoxYBxlNTgCIeck\ngU7MiEuCI5uyn3VhH/lbSqlMUwQbd6sRfswoGOHIDP3Kt2DcS/or6zgsUbGWdoF1lVGooQ96bNPP\ntQZXmNbiovOAxkDmpM/gxQHmyEv5WienSmYGaUK5NQ8zY6/e174TgbwaxTR6l4EyBTAzA1mmCorD\nRfiyTIETwyOBywI5xHqsPZOOZ4Y/zst9ky6CktKCGC0iTns/Cy45V3EKhLo6NStm8Bqn5FzNCxoj\nMtWalhUxqXwHgGEYABLD7PF4xDiM2O32CGFABstUfIoFs2y8dKVeGYmT/HYejgjH4xEfPX6Mq2fP\n8M477+BXf+XrePTO2zhMRyQkpDxLnsw54+bmgNvrayzTjP2wg3MBVzcHBD+WoXfwAYgJx+mIvEQE\n1TGc93jw4AH23ahVpShQrioh1kRKsr9lQZyFUC3TpKGjE6LmpSnLm7MaD1HTf0hYJ68IHFSBtHnM\nZC/I2RzgltQ0Dbb9rZpg0R+2SiEcyFkn8ZojQnNFKMEycAJXT6EpPz9XGNXSTgZstVNV5aT1Dhmp\napW+CpCnCqoShI2y8/xtW2Pt70YBL5p0JVerbdtCDChoc1VuyQ8DtgR8tmSJd1RaoyByeXktSLWK\n4el5UrUaAYO1UuCcA8WoiQcTnE/63uXdC0Dn1eulZlsVlypwSY4kwkgCcD4znK6+wynDezvGayi0\nl1VdQgDlXIkwUbPsttSVNAtat5suLylSV3cZtJhRpgnKymGanHs6Yj4eCn5lJTYnSiGqYujL2FyN\nWmYMM/yUdqLtbNtP7pCqMqwJRvEAkkV6NRhGhl0eq5xWLW6VRvXy9WcGJobhlym1jcHFCFyDQ9WQ\n1WDpHdi2Ntb452BX8+7K/4pRraFoi1UvwBhTNFcKb3PEVtETHKrE5XnXbQ1r22Slq+s/B0stounE\nIGuReBQLUbX3zvo8ZMp0S+Q2pbRrO1VCgxrFyDOcJmcu2OWoTDfbYtd6DHNK0DfYpW3F7tnl5aVz\nr869Ovfq3Ou+yzjuStVtpx/Kipli0DrcXmM63GCejjItniV/4+gGhHGH47zgwycf4/FHT5AzY7fb\nQfJl1SjTq2fPcH1zjSEMkts0RonSOj+H915XGY4420m+qZwzMGjqiJxAThJrM2puKOe8TDt0A5gJ\nOTMIEh0VozjEyAU4P8Crkc35OhURIMkT5ixCTSIts07RzdruSJ+jYor2Lq0861MFr3Tcdc4haqLy\nzDVCiFgxCg6SkVMMZhl1miWck7gsEkM0NX2y7RvQhPoFm9SwleOi0Ve58IycM+ISdZEkiLNMkaia\nj5RNk3ALSQGR1LhnKxwCtuqirUJYsMRSeJCNS2LAWjlxFKfaMasYVnVcsLHOjrCpqnac/QZk5UXn\nHIYwYNzt4EMAdJ9zsvp01vuaAwgkKygiAy5IWZkZ0zThyZOPQQC++tWv4kvvvgvyHoepcYpnec+2\nsvG8LABkoZZxiAjDgEGn9ZahNwvu2VRpi1Ts0w9NSt+xwckUJWyASVY1mWchVdPxgHk6Ii7zSim0\nwLysBMuUwuJUJlI+ztXaSjJolUasBO+Fw4uY0DeUqwJB8XSTg6NQkv85ss2AgNbnspGTFw9uRXHQ\n84rCYQBBVH4XctTcZ0WoCnFqiF5Lulqlb0uk3F3EqhJPbkhUjSrh+hBrvlK/NiBQSVWrUG2UQrWY\nbwmS3KtlMWuyJEU5VQpL8e4iegqEnnTZW42kEdDJOggkkItwyVeFnEiX07X3gELyTUls4bgYK1Th\nA2kemkBwKQMxgSmJcuBs2XP9LKtMJcl305BsWxGmEFwyL7UrfbHLy0tRDG27E78kymGeJszThMkU\nw6VRDLW/VMWQC4ZpFHrFLx3coO8+aMj6OjH8tpxN9yw5UVA7XWXZxVBE5IVMaT6HathaewzXBi5g\n1efukNKj7H52/Aa/jFTVPmPHu6rwoeJPjdRY49sJfp3gVjVqVUxpqubEkNVUXotvrZmQDG6o7GAl\nklDcKYqlKYVGyI24rLCrrTku5dp6prc4u/Yiyn82xjnnxItYxj4P58Sg5WJqyK0DGCDK2Lat7Zsu\nb9QMFeSgNi14JvjMoJjAS5Jk9JoY3Ps1dg0hrd4bkZO+hAgkVOyijl2fSjr3Wp/buVc5t3Ovzr3u\nk4y7miS+xa24yGqZaZkxHW5xvLnBdDxgOh6wLAsAwAePMAxgEKZ5wdOra9weZ8n9qG1gt9thv99j\nmiZ89OQJUkw425+VPj6OI8ZxxLJExDipIUyNDhl39oWy4CZRNfSANI+UtaMBQxjh/VCiooyHEWjT\nPbYOAaC2dTFyFVxpnBgitXwSmFkdXCVBvSM4jQQLw1AWj6GG+zGcGuAAF3xxlJkzkVyQnFW6P1Pr\nqCSZZphtmmHDdbO8V8sfZQ6KdhGHlLLUefAIxOAYYdNQndfE+8hISWY/QFe09I5A5BHVECezIzRa\nszhaBMN5k4i/dTLbllJaVb+6PMq7NgO4GApjMW4RydTEs/2Z5KjyaqizZ3BOp0HKdXUYrNhJYmDK\nsa4Y6xzhnXe+hHff/RJ244jDssgoreX2wWHnAs7Pz3FxMSM8vcLhdoIjBx8ChnHEgwcPwMw43N7q\nEGKzR6iM2YDkoHuVcm+NWmT/N8oLmQLAmi8mpib0fS7kapknpGUpiWgtlFnT8GmkA4qCwKjef9Zp\nPVnnRDtNPOO9K+UQ4sSbslaRQXdL8NVLWAiLP/EYWpK9NZlpCRZQYri398QaHG3OvpUX5FCXet3U\n64b8nd6/EqitF3FFrFZkyq8JV6N0rdSvVhG8QylsvXYrutoQjzbaoSVV6zD4XAa2SpasTdVL2+8T\nMnVCypryo1Z9DftEmcefnYPLAqwuWpRDgrVl4TEVrMuz3SH2ptrV7IicvG9yQqwoIkOmqHlPjXIo\nnkJTDJ3O1S/eaECTYSq5aghcWzddXlK2xhcjzoVgydTDZV6wLBPm+Yh5OmCZJsRoiiFXwxawwq6U\nm3Zs+AXLdZNlmpauFLbFr5XWAvvN1bBVlFjUchuGkYW8twqhRj1QGx1VWiteHOnAqKpDqbxmyshd\niqErCUvXimE1ZrXJnlEMYGtj151KYYtd5Tl4VVpwgxGNkli3+qdSkW2fbsezRlmvyLU2bLF6Qg2/\noE/eFu0u7LozUusupRCoyraK4Vb2Hi4lUNRIB5dWjyne4/oW7Fp33qO5j2GX03HHZwC0aDSP5otz\nQjy9M+xS7yXlhoQLPmXOSJwKqdtGnnV5Oencq3Ovzr1OpXOv+ye78XTlwxhldehlmrBMBxxvr3E8\niFHrcLjFPB1BRLi4uEAYJCcaAxh3e4ThgJwT5nnBOA7Y7Xa4uLxEzhmHw6EYIoL32O33GMdR/3aL\nlBaMQ0DwXqmLDN5mnLDvgiCKBQwQXHEIOOcRwg773RnOz88wjDuQLTzAujp2tvHPcrGVUVnrgmD5\nlvQGsLs6kK5B2Jxj+E81claicRwYTnLKBfluyc6haTGsTCVyiwh+CCAv/SZncdAaMxMO69ZlJskX\nlW3hEOXQKUYs0wzOwnVp0OmVyqdSZsQs49AQAoYxgOB1AZPKEUCWa08qgnMGW5QlHJgdmH0xhmVm\nIGXkrCNlw5u2n9b2bMVNQMZPAnTlxjU/aw1bZoS1qC27LjMjxVSuJ4bFaphnW1nYGRbKZ9aVp51z\nePDgIYZhhweXDwrGBC/TZUMIiFmi+sZxh4vLC7z96BFS/BgRjLOzM4Rxh7OzM+ScMR2PRae5ubmG\nG4byLMyMqEbiVyX31qgF6LiMhgywTq/JkkRUwkcNnI5YjnX6ToqLeInIGpVYKderiuU6UNpgaeDH\nDGfKg5INC4Ev/0hVsRYgmMtvS1jKXBPsligC3Rg10V7KgMsZlDJAMvCKV5HhXd6QopZEGaniMvqt\nCAOdKn8r0tb+vfEMUnscE8Ctx3CtGNKKVFmeh/U9eLWKl+bNUCCRQqPVAk93rWS7l8qjiP3b7OCV\nfBGj7GvJWKHxK4/h8++8OqIhq3d5ktsExcwsiUx1hdNsq9rlhgLyXc9W97FqbEJ4PLyXp5HQXoLj\n2kblmURpEOCTZJPBe4QhgDKXdllA3foLsyi0ZfB9Ltfr8hwpvar0BRTvUopJcmnNE5bZsEvxa5mQ\nNQTeko9L0lkJq055k6+msTBYtEPOWValAlByxzT4JX2CT8hyNdjY+66YcTLdRRWrDOiqQAxKDIna\nEeOCJ1lFhhvDHrVtqvlfwVS/1nKuymAYZQaqLbY9Tyll3Vw1eFVlcWvUIi2vPS9tcEmwoeIL1grv\nnX2YUHPZrP8sj22YhfLcNUeN1lvBr7aqrL7WSuddiuHq7+UpKrHbSutxlMgEBryNjxDc4lZ9Xd1x\nc7X67OIFdchecmgYfjmunsKCp66d6uMlj8kgS4ydYFfzrJwZmTJsXDidbtnlRdK5V+denXutn7dz\nr/sn426nhvhNhKkatg6HW9xcX+H2+hpHjTTNKWEIA/ZnZ3DeY1pmuDBg3O8RhhFxmYDGueS9RNbk\nLDhxPB4RvJck2ZpbK2nS8hACvA8AUjFkAdqeddyyiBlA80Up/hITvA8yBW3cYRh3CC7ApiNyltxW\npNO6ATLbsxwDTTpvXh/Wfqodh2Eragv/MeOV8RPnXWnLhBoNRhQQHGTVY5JyFF6lK0pIr28jTTVa\nUlcSrO27YqFhtxTPFV5jDj/pHtL/nUGKOYFzKguZSJ/KKNns7Tyn9yqRcZV76aWqA1ExZhuJtRUz\nNLXHbp2MADTpP8kqqknaUotXzjksy4KcM7z3GMcRMUZdKJZVD2hydnEdXexdoqnT6gyVhQ8ePXoI\n70e44JsFFNRZnhJSJogNUQxq7773HubIePz0YwzDgN1+X57New/nJVrs+uYGu7OzUmZmmYb7KuVe\nG7UAOmlAnDWnQxNCOk+qEE4HLNMBcZ6Q0gIUpVAaeUyx5HuwVQ6qYoiqFLb7pBTFK9OWx0jVujHZ\ndbBh+kJS1uHj0mnFswNd5rquwsKsCgCpUqjhjrIuae0AgJICIymNAkQkg60cs1YQq3/dlc5cEi5v\nji1PyM1vaiIgtoohXFkaGQW8t2TF6rCpPLIKpLLAmHw0iu9WIWx+GUGgoiQ6AU44gHQZ8dNmdiIy\nT/rlyJWJc+6EfbQg6MiBnbUtJ0YL1nXLuDaWO+/Im5ojB+cZnkPxfq+mNJVX1iiHlt8hBAyJZeUV\nbRGZZ4UAACAASURBVKtZ24vdhJVUUW708FccRvpLLUpITSmzvmkEK6VU8et4lCiH6YD5eFT8qsuF\ny3z92OBXqiu3NFhVP1GMDVIU0nwia+wi7Wu0UQxXyZZLs1QlqyhO8ky5KIWMqAphWaUxZ2Ry8OTg\nSTCLDLs2hIC2bRbqaDI8O8Gi061NvHzXJkaiFr8MT/W53Aab22uRVYaBknyWPrPBsBpN1VQf2zm1\nfrd1UBQ1tjI7EGUQO7Dil9ueW0CUC1a2pMrkxLDVKIXb97HCLScre5GTBKvOCWAkSwTfGiaaatiK\nGQDtmiEEaTt2uo1hq0er2OVcxS4zmtqU3DI8Galt6x6VbHZ5Wencq3Ovzr1sZ+de91PGcSejItvi\nd5LLNC2ST+twe4Ob62e4uX6G6XBAihHeO+z2O+zP9kg5Ix0T5nnCcToiZcljVIwtile2GmJmiUw5\nhgBmLkniU45wzmMcB4k8TVG7OpUuymjGaIIY3LOMZDb+hSC5s8htp0kDOTEiIrhMC7Ra8DBjf0p1\nmpqZi8RmTtoe5Tjvre3WPFAgyUcIV3MWyrRHiSxiIqQkfcpx5WwWqcXKa7JNB3QO5IOY350HyMux\nK+zS4joHx65MZRMnx6D9hssCSNVBIrViEU6OnDpS9HyvUXDMSDrlMmd7n1IpBoc512h0r1Fx1fm2\nxsg2ItV+b8dRInHqmREpI9fp9Y0RjIhKPj4zJIoBzBaKEsOWTI20hQYkstny7srKtFzaKbPUydnZ\nGYi8rjAsknRsz8pziUhypaUMHwIuLy/x5OoKcYm4fDiUqEeZUi2mppgihpzLiqPTPGOJPVKriIwL\nBJtGYp2ei1IYxVOoSqFFOsR5Qm6WC7flO1NcEJMRq6Qv+TS5G/QecLVxGakqyiG0n4Ox8hZiGzkB\nHaCNrKxDyyXXBKlSyIARK1V+g5Iq1ntD5w3rAi8VnNpbACCmohSacraeJEKlDEaSSBVDbvfbph19\nRaq04cNZgmU63Va0UwrcxBqgRi9Qo5goWGwUc9ankIPubjG0eU65lAMgiiHIPu+4QCGACopUyfXp\nofJ8K8WwLVYDZkANxSSWkFNJQbMxJnC9wmaigBJ2DVWGJpdkBwrSdqTNntaHNVRru955hMAIyuYF\nFEURNBQv/SHL6m22UkiPdvjkUpUwVaJ0oEkxCrHSSIdZI7WWgl8a7QDBqJTrSmNZFUPNcGkgA8ZG\nKWwGJ1PKnJaFStOoxpfaFrFSDmukQ6NAQbx5livHjFqMDNYpYNlxwS5RDB3gnepd1v8Nv1iVNABO\n0CerYgm2KXoVl9ZY1kRcabla7GKN0rLjV3m3bCvRDi1OtxhWFUNa/a4f9r166IBqaLpDGsUdpWyG\nW1Rwi7katkDPUW5o/fUuL+HJKSdYXXGmJWCAkEjxBptymLVNW9trMWv7nNVwYdd0Sg5LtJclh7OP\nQvgt0kHImkzhkXaVs3hf22Srtf3L32y86Nj1yaRzr869Ovfq3Ou+S9jtsCSZxm79OseI5XjEdHuN\n6eYZ5tsrzIdrLNMtwAkhOAyjRxg8jtcHPHnyIZ4+fYrj8QY5L3DMyDEBupolQRJqF4MGNJ/pIEm9\nc85YloTdKFFWxh80RtkG7DKOSlPQ8ibtURrp50MAyMnKfClpCgo1vHACpwQHaWvOe83pxnUKWhNJ\nBJIoaCatF4UL12CWGXrIyZREi+7kzHBoIrfIlTbcYpVEW0n+RKf80QzuNm1SHrpimJjxKnaJkw7S\nl6T0ck+GTHXLlcNySvX5NErSxguuFYWGjBRDEODBnMRxV/ikuj6YQBZdhrYscm2xqfMJ7zpxJDZc\nxTDC8Mk+LeIPqNGmTqcxW90n2Bini0voQjnlnWp7MqNWeX7IFFYQgbMYsgy6LBJVjLDy7lPKmJcF\nS5pwdnaGt99+G8+ublbjtneau7fpdzFGHI9HMHqk1lqKAqYDl77EpNb2qMtIz5Mog7NGOkgIfCVW\nQBMCHyNSTqp4mULYkKtcB9NW3ZNvVD4tdNSUw5UWSEryud2sgzvNLUEyZYeBmGTlJxdTURBDkrD3\nTISgnjdyHhQy4D3AvhCq0uHJlRk5TlRcHYCFJnHmuhAZCVA1MCqdTp/QPsvYfwc5q/kf1MK8CYFv\npwfJ5aQjFiUWQJ22o+Vg6/xW9y0o6PEtuVophqgrDdl9ub5HaQuiIK7JXnsxKiDKWhZgQyqaIljE\nQwty5YqNcijHynQGVq9hzvLsXOwIa7XwRTTGoh0gZgRNPNoyq6atoibuc97BZ4/gAUbS4+rKJaa8\n2DK5pSKAmoywy88V7SEoykdDBsxbuCyai8YUw+moS0vPyE2kFkwx1Ck8Fb/qwJJZ2oCFZ5+01xa9\nqOwy6oGmowAwzGoiv4ygsEZnKeFJzAW/KCb4bPiV4V1ChkMgwT14Dwoe8CzGrWI4gZKc6s1nxxLl\nwIpl2fq2GnkcyVLVzvp1xayiTLLhiT1Uq+gZPt2xofZpwNydtdNT8/+d717xyybbVLhb96e7Wg3p\nvYn1eRRXxIMJLc/2/PqbyUgl7jiueYqmHEVJbJ7KFLnWuCXTwCTSIVsijEYRkyZk0wPq3auqWO8n\nwXoeEskjU1abkaJ+o+oxtik/IQh2RSI5v03ACtyNXT3S4ZNJ516de3Xudad07nV/ZBz2yEwgjbbJ\nKcmKrccj5ttbxOMt0nzEMkmEPDjBe8AHh5wjPn76EX76kx9hXiYQIohnxCWBWEy43vkyTSyEUAz1\nIQTs93vs93vM0yyvkTzAMuVMjCYMzotGwEY1ZauDjj046etXAxCFAewCEhEiA3NmuBiRlxmBLV8T\nw5NO0/ce//ynH+KH73+I3/hrX8Fvfv1r2rEAM36YMSoBgHPwoeZG5SwtHCyUzRyRGYLTjiTfpUzl\nFnuR4RGtMMD6YR3LbZVDVs7QIEXBb8sHZuOFGH9tKY8WCBTSuPJfUgw0ODIELX0sa7J45WTSn8Vc\nkinKm3AybTtnIASLfFf+VbCtGYcoF8NV66h5oWNR66SderjKm6rXs0hPZCCps1svLs+thjqy/xtA\nZMMTVuMYHHJiLDmWyLqs9/JOjFMpZWSW6NeUEpaYcHl5gXfeeQcybV8NuLogh61y7MnDpkcej0eN\noH1RD/3kcr+NWtAGWYi9KYRREpROohBOxwOmaZKlpZdZQuh05bBKnOpmbpVKumSuteiP5pFBvaf+\nPXuChC7zqk2t35oqgpmRmyiISNLZEmW4JYF8AruIRA5LZsw5Y45ZPNHeIziH4DwGBgYAAxP++YdP\n8FdPnuJXv/4V/Pqv/rVCICzvCOn0HlEAWC30DOcyfGnYLNOAvAf7AAqa3Nk5ZFKgASthYgliYFdX\nKrLHbbeiwhNqzbWaM62Ow0rxKtVWlT22wVyiFVjJquzL9TqmNFa1vFy37eKlHNamDED4rtiCFatu\nH/L5oiC+VQq3qiWtELYCT42wkUe01yRFNChGU7eb29tdbKpDM7C0kULF241c9rWFrF7uWoDVk79i\ncPqlF3vdBb90Kk6MohROE2ZdcUemHwp+STRWVfzYMCzLii5k+ESGT0mnK3rYUtCtQpCTKP6CXxnM\nGmpgBjAYqTeDmOIgzAkmR2QwuOBXBJxHBGHOwJgyhpgQnEfwgl2BHAYGfvyzx/jJBx/h1772Zfz6\nr3wNPAxA8LAE0dRgV10yucEvQPBLtxa7nPOSDNg8f8SQ6S4ASAxjjk2he85rKlP9DJ+2CiGh0Ui3\nr7iqQ9Y/VvjVdBtyOvbQajuB0/XFFTpN+UXFuBVZ+nkq2UoLXSuGeuET7HJOcofY34vCWqtmXXZr\nSxWzts96WqZN9EhRBdf4JVE6avSkXPrU+nJNpM5zaqHLy0vnXsCPf/YhfvrBE/zaV94T7BoDMAyd\ne3XuhfpknXu9qTKOu2IoFGO8rNY6TQccj7eFe83zEfM86SIVAUOQXFpXTz/G1bOPkdUQlWIEWKaz\nmeJ+e3uLs7MzPHz4EIfbWxwOB2SWxPHH41GdQX7FBjwBYtCMyElw0tInEByQHWJkJJZVGF0YQCFg\nAeGYMjgAack4plu46YigKzIiMwY/YonAf/Jf/wP8z//H/1Xq4t/4nd/G3/kP/x08vDgv+yyiCeTh\ngkzxE6eVtecauUUatVW2wYGJwWSrcQtXIAqAGsdlShxQcgEC4MRgz6Uei3Fao2cN1i1qlJnBSSKR\nJEOEOh6zTI2DGqcoq3Gn8F/FKa5ONDEA1UhhO9f6vCMHOK9jD/RcB6IRRsaMIxdHijDlYoD6udIe\nYmOsbm1UU1k9UJ12rhjkq8G+GNBwF55WsYWmvJNFnnKOOn1RHNPZnJbe6SIuGbvxDMsZwV3fIs8L\ncmbsdjtcPniAeYmYpqncf4kRZkyMMcJ7WYHSpiG+SrnXRi3SQbl4XEyB05wO8zyXZVhNKYxFKbT5\ns5XomlJotJuajpeSNibtUdXS3BCr7HRuuw2bRuWbwVEvYm2emaXRQObOEjLIZ2CJYHJITJhTxpAy\nhiUieI/BewxOyNUuA0+ub/G3//7/gH/0//7TUjf/2m9/E//pH/0tvPXgEu0Sms4LqXJegNwzw2UC\nYgKSbuRAwwAaM8ABtmysTL2upAokVl1SUlg8hyfvyf4vWnxVCqk56DmKYZHqNkM9sdHByFqFvZuG\nRDWncnMi6zss526UwhLebfd/jjROs5Odcsm1Altukzflb5VlA/DmvNWztA+yVo+bumk1X/vdfF8R\nrEYhbDieAXW5v0Ekr+ulh8B/MmkJLgBVDJMqhkqujkdMFqU1T4izKIYp5QZrbAA2TLtbMeSm0biC\nmRrllQ2/rIe0fbBVJrgYJXJu8U2wKxMDSwK7BKYFCwNDyphiwhCj4Jbi1+H2iP/8/2fvzcNtuc7y\nzt+aqvY+0x0kWdOVdDV4wGAmM1gmthmfNIQm6T+SJ+m0IHM6WGImA5BAgIAJDjxgiAmJgYAb6H7S\ndGNoIKNtiI1HhCxblmTN92q8uuMZ9t5Va+g/vrVW1T7naMIXkMhZekrn3H32ULtqrXe93/R+7/xN\nPnzvgFuv+4xX8v1//6+xfmSj6ggsYZeJ9d9R51boKYGPEALKB3CO5CyqcSTrQGuiNrlpYy5vUSWq\nFlHK1NVT7DNdwaJcpxFmLRmHYwAbrV2xuvOVUywt4F3Xt2JBWn6fNH76aGnVSFsqN1neT+CmYFha\nAqW0/L+RIfoshuFoX63ZWmlUypefI7A1ug5qOH95XpmjI87L8HM4q90IWd5lMKTreWWsLE0OqjE4\njgIPliljw/AAuz798T8695rNF/zoL+3Crle9gu//e3+V9aOHRw74A+51wL3G/x79fsC9/tSHaxvh\nQEHkG7puwXw+Y7azw872FltbW2zv7LCzM2M+XxCVonUOrTW+93SdaGX1XY/MaIW1Fp0zUra2t5lO\npzRNw+rKCqsrq1Ie5gMXLlwQJ8DaWg1AksSxAPm+p4SPEZ0iURfBc2li4UPJ59NEbfFo5n2gD5G5\nDzWTSBtF46xodSVFYzp+8Offxe33nALeCbwR+F0+cOdtfNuP/Tz/+rv+gehLVV6h0DbRGEMiu65T\nwijRFNRK8eCJJ3j48Se56dhV3HjsyjrXfQrEFHLzI3F6W2dGQvoaqzVau+pU0gpUSCQdUUbLoQw1\n/yhjVeFrslbLOhQBeZCs2uqFTmQ1Dvk950gSU8h+fTXS7opEFar0gcgYDLw6JSWZSnEoZawVBIV7\njXl52efYq6e1/xg/rmoTlPJZKGpZZ8l6qu9VHOLlnUaX4JloXgETuYKq7iVj3cKS2Vodj0m0tyZt\ni7NWnLgxoJNhZTIFtWCxWIBSezo7xhRrCaVt3Ig7XpzxknZqyb6s6kZQjcLgl9LfB2/7gr7rCF68\nitXIy57HmsKYJ8huo5BEjagw/swYCEERoiYmM2x49efYIkkVrBKS2iebbyRk4Ux0EFKFp08JGwzW\n51puPRCrRmuCj3zfL72LP3jwLGOA+vBdt/HdP/VO3vptf3tIbTYaE/PvSYzCqKX8R3U9qu/RXc+n\nnnyah8+e5/prr+bG66/N5UDZmNEJ0Rso2Q45M2T3Aq3rWg2/17k7NgjHRCLt+vfuNxyMw4odo3eU\nf+psdhfDSu1DRFg2+JYMxL1GYUlDrdHFfcAhpfGX3vU5o/NT5T3lk0g5LV2Vz6OA5AiYxv+lESln\n+F7LJGv3dVu+QpV8jqKElVRR0o7HxiG7PmwA5AMq9WmMapiPDcO4C79GhmFXMrVCbXkv90M23VR1\ntIoew2D4eR8wuuBXiRAX/IpZy8ZUYlV3wTKx0ihLiyFyFfMOGPMECarglyeisDFhrcF6j+0zbmX8\nessvvos77j/DGLc+dPetfPfP/Ao/8q1/KxuB49IMjY4aYxImG4ZVXyTjV+w8qm0gNnKJE1ISZIrt\nlJ1ZFX5Sxi+qhMzgJhobhWMDaB/sKhkOaoQRSo0aGo4X7F58G7CgGISDcViik8tOoFxemUldIWbD\nVEpLujfVeBx/wec5htKncg0H51ba7cwql6B+7MiZxegoWQ71O41PjtEJ7j7Zgux7M7aGea0Go7C+\nWxp+jq7L0vU5GM9//A/OvX7kl36Dj+3Grntu5bt/9ld5y7fsg13Pk3tFrVFtiwjpc8C9DrjXAff6\nYxxt00CMhNATRtnxs9k2s61ttre2mG1vM5/NCL1Hu0bEwFOi6zpSDEzaFms0xYlatPliFL2hza0t\nnHPS2dAa2raVLK7ZjO38NwqPQTrfEYZ5JfNOyqNPb864sOM5unGIQ2urBBSxj8RZR0jgOhGyVzPB\nY6WgmTha57J+luXchXN89JP3Itj11/OV+OuEmHj/Hbfw8fse4viVV1QMU0ZhY0BHj0k6a1HK/Duz\nuc1tP/wzvPcjt9dr+hVf9Fre8X3fzOEjG7kcLtF1PX3vsaZBaU9KYE1TReQViBNJpVzeqMSHVPo7\nqCHzEyM6jqIrljJcaDBOYKro0JEzXTPmi6aYrECtdc3WLWs/jnibVoaQsqZdSEOwt3TPVUEcXwlE\nDJ/B8RTznhbzLlOwHMHvcs4UTNm9aY3gomKRynxJK1QS/TStxbmWKLpZAz9DUTl5yUQc868xta+4\nW/bUNHRbNArJeKv7cs76jSnrxJHndJN1UAUru66j73spuY1R9m3EyVn4r7WSnRjTxUWyl7ZTi2Jf\n5ClTsg76fkSs5Oi7Bb7vJf3dh0xoyJNSYMgo6TqQjCZFAa5C2qSOPeYyllQ3XyFkuXPCkmc4v3kl\n0LuZvSwylSQVPulENHL4CH1IEiXsLdZqrDNYK6SqMRZnIr3SPHzqDB954EF2A1SMiQ9/4hY++cAJ\nrr7iUkkrLOQqHzYLuBkFrvdsnTnPP/7ZX+X37rqnXt83ft5n85P/8O9x5MhhtI0oYyl6DUrp/HUL\nUZIa5azkkDUj5FD5u4vtN0qPhLqIVSU7w6pW5dLtZ9yUhZj/JuAVIWZvcuk6NCJwifL8/O7VGB1T\nkhIFSEOUL5XnMpw3y6RmcE6UdSsEb2nJZgI1JloJipJg9cSPpmf+jJLCWza5/QiVGn5d+tDBYFwq\nQRgbzrs4Ybnu9SzGT1CSkTwY0QN5PBgvbCjKRpE3j+AJfSe6Dl0n2LWY03fdgF+lI0meBIrciUsL\nfkVj6hzRZYNLEaJEAVPWZZCXpxpJqd1fyhock6o9xDpyZmvG+e0FG+urHFpfJ5qE8iljV6IJEdub\nil3WikOr05Yz585w+30PsAe3UuLDd9/CXQ+e4Njll+41DPfgl8bGhOt7Tpx4jMcef4rjV1/J9dde\nDSGimoC2VrDLWUTMU9ejtIWmGstZxFlujDxWcYylJVZugcDIsuECDHrHqQLCcN/zukkjQWIpK2BQ\nwa/YlTGrrLUKkWq8UOsqrGKk5WlkI66yZHgG+3D4LiMMerYxLk9cwlo1wi9yNswe/CqlBCM8Xj4V\ndl/T4SQHvFv2w6blZ1fn7/AuY+JXopoXO1r4P8J4KXOv01tbnN/u2Fhd5fD62gviXqfPneEPnwW7\nPvngCY5dfhnaSKbW8+FeJx8R7Lr+8kszdgVUiChr0c4dcK8D7lX/eMC9Lt5omwZSIMXBIV+c8dUh\nv+hIPmC0xlmLNVb29hBpnOPQxgYpSsfp+XzBYtHndW/x3rMz20FrResaFIrpZCIi2dkx5rsOrU2d\n71ZrQmDkvFQsfOQ3b7+fR06dqed+zaWX8eWf+yom7QTTBWaLnqZ1NI3DOQtKtLssloWH1Aec1Zx8\n+lx+hzfuuhpvAuDehx/nsqOX0rQNNu+QAU9UkUDAVC3AxDf+4E/z+3ecZOzcf89HbuMb/um/4pd/\n9B/h2ikJRbfo6b0Hp9G6R3oCOUx2bKTohQ9ojaGUHOZrEKMgTOZkpZkRlM6gQNbEk99T1tKLEgQo\nJe1JdhuBJMnIKp6gEmAjP4dc9k0q2fyKkrmUdKoBlpKBlYi5ARHSKCdKplmqzWiGNVwCNmNn/Mh3\nJdxcQ3HaVa6mFMootBL+L7qPuUMritKncKyj6xMEBQFFYHACCp5lLVsK6sq1LB01TdY00wgeE+S1\n4nSUQHlAY43F2YiPgUXXMet6zp87RwiBtmmIiOOr7C6SvaxomxZrzBhIL8p4STu1lqhwGhmFvpNU\n924hx2JB6IpBGEaisLLtaYV0HjEWZ0Pei3OJS0p1YwsxSuetBFT9BvEKp6IvkvIiKl5k5ORSAkrN\ncUzShSEoTm9tcXbWsbq6yur6Gl4HnMtHH3DOC5A6g3MGZy29BWeg0/DgcwDU3Q+fpG1b6Q6lVSZX\nKutD6FwKpHA+8I9+5pf5yK6U1P9+x21841t+hn/3vd+CaRqMTaIPkSNM1iSiK9kEok+TjFxTwrBI\nq2FY4SjfgcF23tekqaMSrtGf1XAPZVmOLLWUoERfC1lR4xfub0gNJ6OG91G7/pb/scv3vXRuMifH\n2jG73reQyLExtWQUDgZbrKRql3FINgzr185RiZImq2CwrPcS0yWjMA2psYPuTAbUlJYui+CtnOM4\nqlg6qByMFzKGDTqlgl99xS/pftgRuo7YZy2tmEavlbteOozE3D2n6FDVTJmYS2yibCoVu8q9jvvc\n9/ofleGrCPNFz2/f8RAPnzlbv8Wxo5fwpte8kmYywVbsCoJZzuKyYdhbh7PwyKny2v1x61MPP8Z0\nMhHyoMsh2FW73BmNM4ad7W3e8o7/mw/ffW99l5tf/Sp+6B/8NY4cPYxpWmwTsLGpIqcqa2zFBLZk\nQ6WSa2BkI89Gu47DHN9TyLILkqrmzJKRUihDtcAoRt34/eoqiwlxssUBEwp2jcuEsnE/YBXD+6eU\nsbUYq8NIo1/28om932l4/i68qt8FdmNXQcWYyVXBr2Igjn0M1TArmmLF3quYn8nkEnZn3YyCT3vm\n7/hDMnGEvC72ZkTo3d/rYDzreKlyr/l8f+z60te8AtNOnhf3OvEc2HXvI48xmUxr2cizca/ZbMaP\nvOM/8OFPjrDrM17JD/3vf5VDRw5jmwbbtAfc64B7HXCvP4bRNG3GrkDMvEs414K+XxC9J3jJyLFW\nuhOKIa5orOPw+iGcNiwWMyldjHMpw1LSkTemRN/37OzMCC6wMp3imoa+67IjXnSfjNKQS+G0VgRG\nfEBp/tPtD3Hy6cDYNjv59Jv5jx+9iy/7nFejjcZZQ9MHVqawqmx2GBm6oGqpnLaWyy65LH/732Vw\nygO8F4CN9XXO7yxofJRSSBVBeYxJOOdwVrDr8adO899vv5P9Mr7e+9FbuOPuT/HqV74C55q6DfsQ\niIsOYyLGOlxKJBWJPq8ia0S3K4u+10z1FFGMmm0oVeogxcFbOC+g9JBZyRif5IXyPJN1nEYNHIbn\nI9qH1gJ578mcLBUtRiUi+CmX0pVsqdqNMJd6Jp2QZC2/B6rGDxSnvNYQke9W/lqzpACVO+yGvJeG\nlMSZJt1GSEQC0rUw5L+HJEL/XqZb5kuF+wmPynQUKM79SK1DVLmzZYrEpLC2pWkMs3mg8x0ppey8\nnTNfdGzPJZg1na7QOMei6wil6ydStto6y7RtMtbuuTCf1nhJO7VgDOxjYiWppCViKJHCbBR6ESlN\npQQlDUahM4ZkrXRtyC1SvQ/SotpLVx6dxMOpy4ZTjkqqRpsSefutPFsmuAqJnVnPb3/iYR45d65+\nmysPH+ULXvVyVqct1mZS5SzOBZrG4oLFWeidwmXH1srqWn71/gDlrOPpcxdQOZOjECxr5fs6a3BG\nc+qpp/nQ3Z9iv4yv999xC3c9+DA3Hb8WFxNFvFQrTbTVXCAphSFhoAbfxaMdakRRpSxyWkBmuJW1\nPrpeuxFnUdmAYel1lcHkX4sxTgahNDIKR6QljV6bSulO/qxRRFCespxNIOA8WGS7jcK9EcO9lGZp\nZEKeX1yPlD+ylEnsNg6XDcPdlrVsRFJ+NBiFy0/K9yyTv/E8XnJ2LB1Uw7CI3wpxl7V0YBi+sFHL\npPIcTjESs0h8ydby3XKmQ/JZxHKMX6rglyXZVB1aOgzYFclRI63QY8Mvp3wXgkU1DHWeB3KuBbuI\nid++4yEeORMZE6xHz7yZ/3rH3bzhNa8Wp5YN2IxfTRNwjaVx2SHvYHV1NV+F/XGraRpOn9vM5J3B\nMMw/nTX1+NGf/zXuvO/00vl88JO38g9/+v/grd/6N2jaQBMSTVJoI4KrQjpjntZlzRX8GhEXFUhR\niYBzcY6obOSVn/X/w53du97La8ZPG1lsqlCvkbGWdjm2agZVwVKG8r+CXaOPImc4KPbi1MhdOczG\ngqWjU1562X7re7dTa/SUgk8Vuxhwa0iq2fWeVSw/f081XJHyWFrCLvbHrTFAp5HiRsapqndUsOvA\nKHyB46XJvZ4Zu+7h9Z/1GTgXnpN7ra48O3a1Tcvp85sM+kjPzL3e+u//Hz6+G7vuvpXvfPsv86Pf\n9PW4dkITIk1KB9yLA+51wL0u7mhcQwqB4Dv6bk6fu7Qu5jO6+Uy0ABcLYpQMlZIpjwJrNI1zlm3i\ntgAAIABJREFUzJTCGQtWmkm0bQva0PUeHzw2l9Ol7OAyWmOMJSHOshQCGCOZqEnKrUXjVGbQme0F\nJ06VUufBNksknjh7C0+evcDqZIK1hmmEhMZHSERM5kiJxHQyYbJiuOyyy3n1jS/n7gduzQ6TNwHv\nRanbePm1x0lJc+LxpzDGYIxk5UCP0SIl0TjLdNJw1/0n87ns79z/5AOPcO3Vx1hdM2htSUS2d+ak\nBM41KGUwRsoyvRenm1UNyodMYeS6qaSFFuiBYlR6kz9RQW2QlIGC8qs8Qda20pnLGdECq+BTg2kF\nXBQKXRt8xMLFCvfKfKn63kbdR5f0r5I4u2LFrHH5IUt7aJkjKaUaE0gjx35lm3n9K/b2ug5xyFCN\nDBlbYwwbXlD0GUvATz6lIpdSQ1fuMpLK98wQ0w6LRUc/F+3fbj4XW8N7VqcTDh06hDaG7e1tFosO\nlRRWKRqjWWkcVkEflztTX4zxEndqjYeko8ecQupLCc8iRwyLUVhE1RRCoJENoaSDJ2tlwkSDNrKY\nYxZ7i1HkRGvaYd2MUtY3KQbh8mZUN+NIyRnktz/xMCfOJcZk5olzb+b377qX133GK7E2SMq7C9ko\ni2KYNdAHhXMKaxWTtXVuPHYtDzx6a/Y0DwB1/KpjaGV4+uyFHDGUNH+tqQZh4yzOaD514vF8HfcH\nqPseeYyrr7iCkFSNpGqlCSOjkLIoAZsf0jFv3jF379DicVeZNAx5KvU2ZkI1PL4MTyO2kg/RR6Aa\nb5VQpOG8KhomRgRrRNLKnFhKdR/9Xl47shvLGQ3kqn7Akv06Bh0pDcqvGRuE5WdF7SHul5aihKk+\nNhiFFe7yzwF8R8y0mOqUyG710idyHfpAsHYbhYXlVmKVSVUpDyuPHYwXPlS9B2EpU6vvs1HYLQj9\nkO1Q7Y8sTin4JQLsKUk0XxuDDoGu7wkxkbwnJun2l9Jo80yljCdWLCMtOzzGOltnN+c5y2EfgnXu\nFp48e55Da6sVv5om0PhIEyJ9SDinaKJiZXWdG6+5lgdO7o9bShtOn98qZ5CN3cG51VjJADt3YZM7\nPnX/nvMZlwLdcO0xJiiCEjJZsEvrkGe5pJtXnMlLyWhIMUcJsyNQDMPRkl1ae+VsR2t/jA1pwIbx\nch00q4oOVl5v1aE1PJeCayOnWikrGsr4Uv27ysZT+fjBYKKSrPFM3DUxd42UIXP0h2IYjnCrOAgl\nerlsDBbnlkynvdglSfRjDBwB/dKJFQyXLXdZY25kKJKG+ctgFJpd2GUOsOvTGC8N7nX2wuwZsevx\nc7fw1NkLS9j1TNxrurL2nNh1ZoRdz8S9zm1u8bFnwK6P3H0Ldz34CDdcc4xJgoA+4F4H3OuAe13k\n4ZwjRV+DiX23oOvm+MWcfjHHd33lPv18gQ8JYxuU1nSLjtnOjG6+oG0dzhqMtSRrmS06Tp8+Q4iS\n7dS0DY119IuODoWzVuZEFJF5rRStM9XxFYMn5m5+m7Mun+3+ttnZrZloRWlFHxKLXnS1tAbXOCaT\nlqZxaBO5sDVntoj8xa94A4vuv3L/iVvqu1135TG+6nWv5eQTTwnn0QajFEpFtJJurZAwWjFtW/q+\nz6/c37k/cY4nnnqaS6Pm0KFDKOsIswW994QEej7HuoYG0RhTSqGTRvwcBq2cdIw1gg9KjxY2okFX\nYSLKik2Q11SsHRErFigAWTMYgzTDlvLClCIE0dxKJFKQ75pIEjjUULiXIjcbAgkyVFgs3GwZFagy\nC7uWdH6GUoyeLVhdBOb3G7vX+5jTxSqnL5hSRNmrjuUIy8fNfVQB8LJvpjRg1ogyVlulnG2IWVsu\n0k4mmBBp2gmT1VWcazh3/gIXNjfpuh5nDLa1tI3DOSecbaSjebHGS9upVe0D2amG7jtFf6YnhZ4U\nAiqFmvoGJUlYRorSQSD4IOmRw6yrcy3jWo2oSI1vtRSWaLla2iDJn6foEZ/Wua15ztDaS66evnAL\nF3ZmHFpbRcWEjokQ5PAhovpISiLC7PNm+DVv+GJ+472/z0OPDQB1zeVX8RWv+3y254tKGsQwFFI/\nZDoEGquZttP8yv0B6sj6Ols7MxovKZZGG0l5DSGnOUq6o9UaZzRJC0k1zkHToBonKRo0y2SnXOR6\ngeOexUVekEv8JRuDA2EoxGggssNRNIOWyXD5ndo5bvSZDDZiUpl4FAIyem9iGvGu/Lq06zlj44ph\nag0kZgCmCiaV24zIez7HUvM8QIF8uoDUiMzn9435NTHEmrZadZRSAeccxchrKcXcoj14vPf0va8d\n9Er5gzEGrQ3GlGyHA2L1QkfZmMmGmw8+i8H3RF+yG6QzmAaMFidGwa8yNwp+lU4oQuAHar80F/YY\nhNTlUzILxsZOUpIOHxOc2pnnR/cnWJuzOWsrgl2qYlfEe2lfD4GEIiTF177pZt717vfx4KMDbl17\nxdV81c1fwGzeZeeOnH8tQ1RkbQvBrkeePP2s5/PAo0/ysksvwyeNj7kzUcYvYwwhJjlSpAmW0I/w\nq3EY10AQ7NIui8/rbMipYpww4NZI12epxJO0JB01CIDmu1OX7oBZS87GigG73jfj11IZaX1fqi5F\nfW3mPGUvGwhKyehaxq5xJkGdDyPMGh4f5lF5vz04HMvcyxhYDNkRdpWddDd2iyC47DEFy0T/bXBU\n5bOQ14RYW7QLdnlZE6gl3DLGZMJ8gF0vaLwEudfTz4FdW7M5aysrFbuejXt97Ze+nnf9t+fALnhW\n7nXiiWfHrgcfOyXYhcYndcC9DrjXAfe6yKNxThpcZIeWZJyIlpbvuoxfidB7uhixSjK2Y4gsZnO2\nNzdzqVXLpG04fOQIZjLl6XPnuLApju0YZX5Ya+kXHT54GmsxRszvvu/QKsG0zVlckIKsUaUthzae\nvRpHRdjemRNTYHtnB2vFiba2tsKaNkj1nKL3kc2tHWBOTImvfuPNPH3mVZy7cIH11RXWV1a4sLVN\n33fiUCtdGGPEWYO1lhg95H+vrky44eqrefCxZee+VrfxquPXYZLi5KNP0nuFsQ3TlRWUsXSzObP5\ngt4HjDWsaimXk71ZkQiYaDFKOJM2Go0ZcdIxZ5W1qcbOkYpbmXdVZ3zeF0TQC2UyDibJkIPCvxQh\n5HVb8IPyFkX2YLR+syB9PrOKGzHjqTjXyCWFRUNveM8RiAl9rDA8oIx8tuIZh1q6OvX1MfPb4tjK\nT6bA1ZBNPHotA3aCBEVCpPK3wsHkOshjTdMwXV2VjpwpoY3l/OYWZ86eZWtrC+8DbWNZW52I3lvZ\nSEy46NzrJe3UUrt+SSESvKfv+5zZIB7vFD0qDkahsCpVu9+k0aYTsgjzYLTk9x4ZhEuGYSpMfuhC\nM+ZV5fwCA184NVvkPzwTuZqxvrIiE3JEqrQXozAmJZ5uLSmqCcXXvOFmzlw4z7kLm2ysrrK+tkKM\nsDNb1MVR0pWFWGmJRmYB1HYy4carj/HAPgD16htuZGNtla3tea6zNlXXxi8Rq0CjdK35x1poW4ge\nFVu07MoyiYsIn4rUFhd7jEJGZGNkGFZSNTgEMrzVe1UIcCFUuw1DMniQO8dVTY5xy1Ut5DmVKGgh\nV/W1BUcHgCqkaG+mwBgah7FErhi/yTI52nP+ZWKNowSU1NOyIIbXCbgVozAMhmH+TkP3MPnM0nXK\n+0Dfy5oqXTEKsdJaIlPGmOwQOSBWL2iM9qg0Ngw7KT8shiHBo1JEk7DZwQT55wi//Ai/xkZdef8l\n5wK5I0k1DBPjl1XR3PweIjKpaCeT/I77E6xp0xJjqkeICR8TOkR8iKSCXxEUmq/90i/hzPkLnL1w\ngY2VVTbWVokpsjNf5LUj5140kHQuGSuGYeue/XzWV9fYms3xSeETuDxfyxFSrEcMhqbiioa+QbWC\nXSpKDExrhTImq/WW9af2YNeAYWXtD+u7KtEslbwN2LDnXsUxbo2MwloyOuocFzPmKDXgV1o2Cgdc\nYCCCjMnQgDu7jcLdY8A5ltCtkjsGg3D4WWYash/UV6jhXQqGZkIm2BWIQeZ6xXXK7dJDun8sXfGK\nUThgF0rmT50D1grPPcCuFzReityrnT47Vkx2Y9ezci/BrrPnz3P2wibrqytsrK6SUmJnsVjiLrA/\n92qa9lnPZ21lha2dhWBXVAfc64B7HXCvizyccwTf0/eLPQLxfb+gdCSUbF5D4xzGGKIXrtZ3Pb7v\nIUYa61hZWYG2xe00uKZBG433nkXX0VhX720wFuMaTC4jSzHlZSu6e0FnoXIFG6urXH3ZJTx26s15\nHottBrdyaLqBThqfg5nF+WmMBBJDgK7zlOxJ6zQxRbquZ9F1aK05vLEBwOb2LHep7SW4oKjz1NmG\ntp1gjIjlEw2zReLLv+Bz+c8f/AMefmJw7t9w9TH+ylf+ObZ2erZ2enqfsE3LlVdcSRci5y5cYD6f\ns3HoENPVCdqKRpS1liZoHnjwUR55/Eluuv46brrxepxWaCf6VgN4FHJasKs4tWT9lT09kblAvo+1\n62Eue1NG5X1JVewsWZllpfsQJNuVHFRWqmpTlSyrkl1VMCLGAQel5i+znIx/4zLAwmEKN3o+yUsD\ntoy1+Mofd/09Rkp3xOrQKgEghj2zYtsuzPMh0IeIDyp3OA7VQSac3ODalo31DeaLjvNbW5y/cJan\nT59la3OzXneQzp4xyX64vn6ICQlr3bN/2Rc4XtJOLRmZFOcbOEQLu5zpIEYhI6MQlTdIBuNAXis3\nTHK3VRaVK0tp2CT3RoNGZ1NtwWHTS4invBpWbZOf/UxpmxMx+kbZDjokvBZjNESPzvo4cRS9blzD\nZUePEmNiNu+WMjLk3IY6fJuFBa0xOCutO//8zZ/Pb73vIzz0+ABQN11zLf/bX/gyIVdR0fqIyUKB\n1hqaGMQgRDbs0ZaPsg4VAyrmCGxOm0zWoqKhRuqLLbNbcGVk1BbyUk2fMcEqV7neilSJcAWYODIG\ns4HH+AjZMMwgIEahJpn8c19yttfYq3MqDedRHxtNlFI/XV+Xxuc/fNsKTmMyH1M1pmW+DaRq2Sgs\neD9EB8WAiFW0dylaWIhRvW7FMOwl1VgxIlVSymWMxVoDHKTAv9BR/CH741fO1AqSqaVSwKhE1KqS\n4Zhvcrm3wYsWQ2nfp3bjVyX7ESlBlO5hxYsxdmiNs7USg9BkO225/PBhnjq3l2AdXTvMxE2IMdf2\nR8Gtgl3KS8fXEEFnkhFipHUNlx05KgbhfLFMCvK8H4i/YJjL+ONcy7VXXMWJJ/eWAt107FpWptOK\nXT6KU6t0YrR2cGpFItHrii8aUH4i+JUiColcJmNIztVOOrXcZAm7BocQKQ3Xv9z0sWE4ZjbVeTQm\nRpKRFJf0VjKvi0lSf8e4VZ5nNFFrwS4Go7DiwpKBNowlvCp4tA92lefW14wwunyfgt1xhJnFETWQ\nq7oSlvIfljF8hF1xyHYYY9dYU6ZmaoVQnVp7sUuMQmslaijtqA/GCxsvLe7VTifPgV1txq7nz72a\npuWyo2KszhZdXbPPh3s5O3kW7LqGlekKm7PBqXXAvQ641wH3urjDOUsM4pjqFh2LxbwewUsZ33Qy\nwTrwKeEmE5y1wkkAkpQP7mzvYI0laEWcz5nPJStUKU2IPbPZjJV2QuMc865nPpvjjM1i41JmaK3J\n5aTDvECBD5HXfeZx3nv7fTx9frDNDq8e5qYrjmWt84Sxlra1NI2r82I2m+O9p/WB4CPa9PgQWfQy\nr1LOuCnZgklpktIy94LH+4BWRkpwVaBxGusaccg1Bk3iq1//RZzf3GRzZ5tLD21w7MqX4ZoJCy9r\n+vzmNo8/8RRkiYytnRlbm5uYxrLwh1HzWXb89fzNH3k77/ngh+t3/IovuZlf/Kkf4mWTBh1ysDE7\nkSooFT2rvO4r50qSgV+qF5TRIkRvTMVMk7vJFgdU8LLmYi+B5JQi3nuZC0qRjFlyQCmluP/Eozxw\n4jGuu/Jyrr3yZcQYB8dR6byIyo7+NFr75T7LPBFcYsDN7JCD5UzM8vqxQ6sEDetFGT0W0+BAL+cy\nxBQLjskeUcurZWoTYsD7XgI8UeG9x/ce7+W9nXOsr63hJhOU1uzs7HD69GnOnrvA5vY2PiTJtNPy\n3breC/dSGte2aC5+lumfAaeWDCE9QnqD70nRQwwinpntD6nPlR05FQdqIWQh0OfoiNJZJA4lHslC\nnsYkPkaiUhL1YlTvroaa93FaX8yZFUKuplx26DBPn99Lri7ZOMqR9fXaRto6mwVL5dDZg6+1qOYF\nJSxMKSGEMSY0UWROskBd2ZCVioQo8aQSjfQm4oM4tbRW/IU3fCFbOzO2ZzNedvQwV1x6FKMN867L\nix9sMAQr1zqRagtl0Z6RDmIG0CHwwGOP88jpc7zihuO88hU3kYIVbQ0TUCqRlK7afGNSlcq/yzVX\ng8lUWt+W+04aWkqnMYmIpa46k75aspKNxRDAh1xLLQdRHk9KEY0YsdHkGueaJr87XX7MiBJSo52f\nV89ZQGo/UcA9R3lNGhmMIyInnzkyCot3pNLOMTGTcwklQlSOnPlQjMSx8SzlIL4K9ZZDG5NFfDOp\nskO0sEaBD8YfYeR7FrMuTcWviCFis+iu0vkAyMYXZTPOBryPEWXKvdiNX4PTIsbcNSx7s4YEpaFM\nJvMHQAzDAPRJ8XmvvI6P3P3wEsG6ZP0In338BhrnMm4Vp9OAXdbZil0qO1sEu+TLlJRmIQVFxD07\n8FLKakspR8rKnI686bWfw7s/cjsnnxzO5/iVV/O/fPnrWPQ9ShvIXQ8l68fUQ4A7rzmj0Snx8GNP\n8sQTp7jp+DW88obrpZONMSjrBpyQO1bT0eUkqcbbmFjJLR6bnCzJX6ndJCQbPilnJqUwcmoVIhMF\nt/D5fPLz73vkMR58/EmOX30Fx6+9mmR0Po8Bv5aNwgG7VHGq1dT6kjmTxqcuvyq1D6li+B7VETGa\nd/VviiK2X8p2anxVgH7AvpKlVXFo+fdBLyKNsCtUQr6MXdKxqDi0TDYq1AF2fVrjpcS9Pu9V1/HR\nTz7MqRF2HV0/wuccv34Pdv1JcK83vvZzeM+Hb+fkU2Psuoqv+9IvZp6xSzI2Xjj3Ugruf/RxTjx9\nhpffeAOveNXLX9Tc6/4Tj/Lgo09w/KrLOX7NVQfc64B7/bEPaxt8FNkH3/e1a2voO3SKrE0ntI1j\nZ96xtTPHqKKHJRiQSHR9x9OnTzObzWi2ptA2zHvPbD4jxIACCa50PWvTFaLz9F0novFKi0Zo42ga\nh1I5OwrkvipFSDJ3P++mY5w6e4jtRWBlssaKW0ElCF4yiaSDbIPNgbsUPX0fUSqhtTgkJHNesuZB\nHAplXjdNg3MNJjfp6LoO5xLOtVg7oTpPrUE5i7IWCMToc/mlY9I60AbXTiBGQu+JCTa3dpicPceh\nQxsYa/ExsLOzw2KxwBhF1y341h/4aT54xyOMdabf84Hb+IZv+h5+61d+Jic8abQyWeNcMKtiGEAs\nwuxFu7OsjYQ2BozJTX9AKcm+SiGSyv1fdPRdR+w7VBQ8ISVszogs3Xu1Upw7v8Xf/d5/xX8bOeG+\n9Atfy0//09s4vL6Wm9CoWnUhoziycrlidmAN2VIQQnGmB2IMNcgMLHEu77OkQt73MCprgVExZ8iC\nFlRSypBU1qjNjrSCmYV/1j22ZpfKZ3Ue+r6n956+T8SomEwmoiOH4vyFTZ46dYrz58/TdX2VFEge\nrHXCtbTBuoaYYN719FEqTC7qmr6o7/anNFL+n0SqRWxZpYTT0FqNagweI7oqSefuVqL1UjbdEAK9\n93S+F/ISVY7G+Zx6mNA13VEIS9Iqb5YgdpNCG4WxOneNEDIjZ5hTvbPA3ee/8nr+4J6HlsjV5Ucu\n5fWf+ZmsrkwzkXK4ZkysXCVWxWgdl2X4sLwRFuLv8+Qee3eVSiiEXUbi0EYhwcbqhEsPr9M6t4eo\nyDFEM33QaN+j8/sZpTAoNre3+Y6ffie/e8ed9ft95c1fzC/82D/n0qaBUK5PgpGuDyMiO/ZmyyiR\nxdFjCbkfUYhPDJ6YOzCUIwWfDcNQsxlSSvK3vhcR7b7PxOoxHn78Sa654mVcd+xKkhViNbLOhnPK\n56Ey6VFR5sZQDhSFUOlcCmRUJeCwD7mK2WgdRSYZXZpq5DO2L0tsenydqNcvpVSN5BDE2BONI4nc\n+Eyg+l5Exfu+p+s6FnnTDVmYXOXsBuukW4nJ2kTKGJTRS9/rYDy/ker/WNpIYgwVvybWoJ3FJ5+1\nVTTay3bt81wOeWPofMDHgI6DA2zAr+y0SolExq8c2RH8ytiVdYa00WgVs/MhIQAh+NU4x82f+XI2\ntxdszRasr6xweG1d5oexI8xyS0ahy06t0sErwaCTVOfnXuwqWiTDuhDhUln3CWc1/9PNr2VrZ5sL\n29tceuQQVxw9QuvsPtiVjcsgQT/ve4R7JLbOz/n+f/1Ofv9jH6/36Etf+3n83Pd9O5e2LcQgBnvw\n+XoWHNWDUZgdjYOxlYaVuU9mVjHsyYbegFtBHFshELPjasDv7HjvM255z9mz57ntx/8t7x3h7Rs+\n97N563f8XQ6tr2VcSvt+/m78Sinm9PxUcStpKsmWrzJqNsAoI2GXg2twcg34lS9GPc9l1CjOsMFR\nNWRdDXPE57nhfd63c5mOYNdiwK6UBuzKOkPGih6NRBBNdeYejBc+Xmrcq7WO133my9ncEexam0yX\nsWvEtf4kuJczmj//+teytb3N5s42lxxa52VHj9Ba+0fmXkbB+e0Z3/KDb+M9t/9hvVdf+SWv55d+\n6oe55LLLXlTc68yZs9z2Y/+W9/7hx+pbv+FzXsOPffvfZf3Q+gH3OuBef2zDuJY+lP5dAd/NoZuz\nbhR6pWXVIdlJMbHYmhE6j2GFdtJimoZeabZ9YD6fsTWfM51Pmayv4lNiMZ8RvcdoKTve3NqkdY52\n0hJ8z2IxwxrFyuoGq+urNI2rTtAYIaFJqDx3EkkpDm1scFg1aN2gkxZczGugnTRMJm11zBduJ52n\nRXQ9JKSULDcOAnFUlMyypmmYtC1Ka/q+F8eJ0qSkxWmvFcYqQgosvFQQQEAZESnvY8f2fBvXWtan\nq7TNhCI63/vAoutzMEmztbPN9s4Wk6njwZOP8f7b72C3znQIif/ye7dwz7338YqX34gyjmT0sOYU\nOVu9+LQLD8lyETkzK4EEQdQgpq61yXgRCL2XsvleMIwRnshVLs5uWdeBxN/5Z2/ldz9SGn2IE+73\nPnobb/6Bt/HOt/wTAsK7RZ+L7BRLWd+TnJWXv2r2aJVzTymAEqzUuuAxu/YRtfTvon9YM++yp2yM\nYXKhdA0AQaGGex38IQzVH4tFx/a8w/tIUhLwMVhSgq2tLR5/8ilOnz7L5tYWs66j86Kd65yrnN85\nx8bGEaYrE2bzORFYdH0tDb1Y4wU7tZRSbwC+E3gtcCXwl1JK79r1nO8H/g5wGHgf8A9SSvd9+qe7\nPNLolyUSHAOKiNWKSY64+eTpM7FSRHyK6JAge0N9GMixztkKQqwkAk6SrHhFkkgjpVVykv1eLxuF\nxhiqJKpKGaAk1wClmLYNX/LZr2J7tmC26DiyvsGlRw7TOEfTNNlz3+wiV5lYqayLkLMaQi7L8D7U\n9MDe9/XfvRdtESFa8nOIakmpkCjyQUoixhyNJiYzAET1gItonAoQFGjl8WqI1ukM4N/6tl/kA594\njPGCf/cHb+NvfMc/59d/4SezU0uMipoNOTYKi0GYT02uI8MvqRCMTEZqZsNgFNaOS8UwHJeuxEjo\ne2LXEbueM2fP8a1v+3n++52DQfv6z/pM3nLrN7B6aJ1BLWHox0VOP1cxLh0pBjEKYyRpSFaTrCZa\nXcFmTEQqYMXlsitK5LDM73JpUmnLPTqXXSujGoYF5MMoi8GPjUJPnw3Dvvd0XUfXd1Jb3wfpnJfE\nsy/p7g7XNBhbIsgjkdMXua7Diwm7gCX/wkCuAyl4NBGnFcpqjDP4lI8okTUfpaQnVfzy9DllXI0y\nrYrxKIahfJroawdS0tUwVJocBdbZMMxp3pJ4TunalPKGqY3m8MYqRzbWaWzGLOdonGCXqxjmKnZZ\nZ6tDS2W9g+LUCploFSI14Fao/x7wq2iAiTESMnatTVs2Vie0zomxHAf8StnhEmLM2JVQAXzJUCPy\nz37qF/noXY+zRFJuv42//f0/zq/95A/Img4BlZ1aEjEs2Ectp0nL3sohZWR020vXxDF2FZyKOd09\nhhF+VSdAPrwX7Op7Qtfx5n/1s7z/E48unfv7P3Yb3/Iv/w0//U/eDPXu7cKulDJuBVQpA0qhOrVi\nxq5kZc8puLVvCWIs2RhlPg9QPsYvKNd8t4E4WJHL2FWaIHi8L0bh4NDyfagGoWBXl8WVS5aMZGhZ\nV7DL7sGuF7smzYsNu17K3MsYzeH1VcmIN3bgXH+K3GttRbDLWUOM4dPiXkZrbvuJd/D+O5fx4N0f\nuI1bvum7+M13vv1Fxb3e/Naf5f0fP7l0ru+/8za++Ud/lrd915sPuNefAe71Yh3aWAKJLgS6bgEx\nMHWalYlD9z2t7nE6kGxkS/fMYyT5Bck1JGtZoFkkzTxC13V4lbDTBussVqsaCkwx0kfPhQvnaVyD\n0gltpRvc2sYK6xuruEYykLSy6OiIUdd5p5ShcQ3WalAGZxsm1jFtGpqcXeUacZi1TYNrbC37clYe\nb9oWtGHR9cwXC7q+x/eenZ0dNjcvsJgvMM7SNg1KKawxNbNQsDlhjJKs0+DxnWTlSqaZpbEGrSDE\nBTs7m0xdy9rGOlppvO+Yz+dYq/N3UMx2dtja2uLQ4Q1OPnEq35H9dabvue8Bbjh+LRYtUYwSHos5\n7Td3MqrZRvnvIQiPUVqqkcbBK5WArAUZup7QCX4RJeu1dFWUxgCh6lLFBPc9coJ3f+gj7HHCxcR7\nPnwLn7zvIa678nLBiZRyRb3OWU8S8CjdS1HyOQ8++jgPP/4Uxy6/hOuuvEQCD1oyokIM9sSUAAAg\nAElEQVQINasOBg6ms/Mxhpgz1lLl56UzasGpwsPyG9Rs+4KlFQvz82KKeC+lslvbO8w7D8rkoKDG\nx8R83rG9LRl3Ifg8V3oiikk7wTZtzm7TrK6ucuToUWzj8EnKan0OJFzM8UfJ1FoF/hB4B/Bru/+o\nlPpHwK3A1wMPAT8I/Eel1GeklLrdz/+0xjiSAtl4ydFCIlaL8F7IRqFLhj4qYlR0gWwUxkqsurzB\nlC5bxUMqbUHHFmgujYlDpoNwHTUYhmYAJJaE7eQoXWyOHlqndQ3TScuknTCZtLRNS9s2tG2bjUKH\ny8ahymU0YiipahDGGGVj7Dv6rqfrcuQnR4Dk6Oj7RJ+ja6mkHcYIueY1KYVWiRC0RCHT2DBMlHrh\noIDAEO0jQjIYrXn0qTO8785PsN+C/y/vu4V773+QV7zipuwpzxwReYuiSVOIVb3muyPpOWool7cY\nfr4Sq1CzHcaG4UCsQgwCZIuesFjwLT/xc3zgk8tOuA/cdRvf+ZM/z1u//e9JRLjcPUUV9lRKoWNE\nhYDyARWEVD30xJOcfOppjr3sKNde/TJiY4nJVMHrsWFYCVbV0BkZhGkERJVwFsN49xgbhsvZDlIa\nMsqEqQSr6M74Ok+6TvQFfIg51qCWooVN29SU01wtJJ/+4s92ePFgVx5lmhf8EiHZUPHLOIMLku1Q\nDMMQA11AMhGSGP2CX2JAiWGYtcyznkmtfst4FPOGLQuQakzqahhm4cu6FgfsUuQOXNpgtGHStgN+\ntQN2tW2TccvVrC1UNgzVkKlVOtt1fZ+xq1vCrYJlfd/RE1EpZy3ljVcpsb5S1iQIRhOizsbhKHIX\noxCEEXYV/Hr0ySf58MfvYj/MeveHb+FTj5zg5TfdKCV/IUiEVIEuhl9KA34xGEJL97lYY2PykA2x\ncZZW8GE5U6v8HGWGRC+kMiwW3P/wSX7vzo/ve+6//7FbuOfBE1x7xWXkZKsBt1R2aoWAHmEXwQ9O\nrcYQG0tKkravnwm7arbDyCisGRblItTJtAvAhgy2+v80GIYllX5ckiOG4eD87L1fwq7eS5w05XOU\nTC2Ha1qsy9jFyGh/8ZfvvLiw688A99La/JnjXkYbTp46ze/dsQ8elKyH+x7gFTde/6LgXvc/9Ai/\n97E7955rTLz/zl3YxfPjXgXDklEkZw6418F4xqGVOAUWizldt0ArWJlOaCxMU8PURUie1lm2t7fp\nNnfY2bpADGroSsmIvyUJCrW2ZeIsnVYYZViZrhBG2cRt65hMxPnkWstk4nC2OOQTwVjxM8cknecQ\nZ7zOWqjORCYNbKw5NtbXaFvZ19q2ZWW6wmQ6qWWIzrla/pWUJiRVHfF91zGfzdne3ub8hQtSEth1\nhCCZn14pfLcgdXNZe86iVX59txCnkdWEFDDZqdY4h4qJ2WyH6WTKynRF9MLKmkOcfb7r2d7aol8s\nOHb5pfmO7K8zfe1Vl9N3HUVTrvJmH0k+okLmgGVFZHmDmJIEIknoNDiFUoiQs0WjF021PjdoIgSM\nErdZ9J6YuyeDYLQPkXsffCSf3/5OuDvvuZeV7EhvnGHSNjibM/HCWC81cW5zm+/8iZ/n/aMKgZtf\n82r+xTf+ZTbWphXrihNrfCyVDeaMNdkXBTcqLythiFTwa+TcUwyPZPyKSbJMS3AmZF4aUiT1kZgW\ndD7RdaIXF3Lgput7lFK0TvZQZQwhKJp2wuraGqtr62hn2JkviIusn7vElD/98YKdWiml3wF+B0Dt\nn/P6zcAPpJR+Mz/n64Engb8E/F9/9FN9xjPKNyMJgYlSOqGTpEoqq0nO0keDjgYVJA3SAJoc4Ukp\nt5wGk8l+1irNm0dCq0TSiRK5IVH1OayzuCanBptB02GIOo/MQSWMzdkcAbSOSSNG4XQyYdqKR71t\nG9qmlYhhY6thqLPGglKiBRJS0WiQVMHe98ubZF6sJQJUjhI1LHX9NYqvEK+/0RJpUEJAVQZrkhEv\nNmTli1y+UgwaBSdPPXur6vsfeoSX33hcbpkuHCobe4VYMSIUCmFyJbyfF3FJERVCJdHAMCIOJTpa\njcVd5QG+6/CLjgdOnOR9n9jrhIsx8cG7buETDzzM1Zdekk9luE4qe7h1DKJhESJbW1v84K/+Jh/+\n1P31W3/hK27ku7/ha1k7sorOoFzSP2vUUCmJDIwih533+BAJKbdlTVlbKA0l5UvsKhuN4/KdpTrp\nsbGYSmB2+HfK710cBqmeWxYnLXPWCbFa6kZVb9SLd7z4sKtcMbkvKqc7Ez2ajF9mhF/BoIPGaY1V\nAVOybJAsLKNUNoxG+KXE4IvkNVocMAnpomWNiKdnPRnBr7LRlVNLFKUbrUQbx9qMSdYybTN2TYpT\nS6KFbdvucWoVw1BlYe6iiRRTypjlR4ZgPyrLWIyOjhgH/KKIcWZ4EOwSrQqNYDsVv9QIu1QtX3ns\nqefArBOPceON1+eMJi/QrmVNRWUyBlKdWnLt8rqouJUvas5oUimNDL6Qy1RGOFXKePLvS9jlPWGx\nwC867jn52LOe+90PnWBtOl3GLjJRShEdAo8+cYonTp3m6iMbHDt6CBU9qCQOrcaSGoMyRvbHoluU\nM19Uwa6Rp6PzuWNOlBbPBbeKznIxyMbzv7x4CbOKdZmfV/4ZK1bxnNhltBaCn+ehdW4PdqkD7Pqj\nnNUB93qRca+k4MSpM/n+PAOWPfgQLz9+7YuCe9194tmx656HTrI+neZTeXbupbND68RTT/P46TNc\ndekhrr7yMsGv1hxwr4OxZygS89kOvltAzpBvrGa9mbLuVphamM+38H0vJcEhsNjZxgdD6ER3SbKx\nBPNWmoapa2iNY2IbfNPSNBOOHD4qjqPz5+m6OSkFGmdIrFe9UasHsfDMTkipZPnFqrWllcJqaKyi\ndYpJo1lZcbRty2QyYXV1hdXVVSbtBNe47CiTKRqiIqrBKSLUSAKKm5ubbF7YZGt7m/lCsp23trZJ\n3YwQelLsiV7js7NWNLqilMF6iwqBqXVYp+U95zM2L5zDGsX62ipGK2zuNui0RsXIfGub+dY211/x\nMr7os17NR+66Dems9ybgvRj9Tbzxi7+I6668HN8tls87JVLIpcdxWAHFAa5V3QayAK1IzIijK5dH\n+17WnO+JfU/0Xta30oTes5jN8X1H8F70FI1l0fccXV/Ln/YMzd6M5fTZ8xitiKHHaGk40Lat6OGp\nXAoZAt/+Y+/gQ59crhD44Cdu4x+/7Vf48W/7X4eYnwKb9fQGPSyq44oo12N3qaIESKDov+7nkFcF\nWOv75ZLxFDHWMJ1OUSYw7zyLPjBbdGxvz5kvOsm2Yni9s47JZIq2Bh8i1lqm0ynWWLSxTKZTVtd7\notKwuTnidxdnXFRNLaXU9cAVwH8tj6WULiilPgjczB8DuaqkeLz5x4AmYjNJwBWDUIj5QmusQshX\nFjS1CqyWjlGmRgul01jMxkuqRqHceOkcKJuNRPUM1mhJla+Bm2ywIotM3tvQOEvbNkyatmY6FGLV\nNg1N2+ZUeEmDL1FDEYw0WQtEZ/tUNsaqSZOFcvtOIoRdNgprZ49unst8+uqFLZsvSJcvZ4VYGQVa\niQCqStJNR3T6CuliFElNoBRXX35Zvjv7L/jrj11JDGGEODAEHQdiNX7P8Q1PIaC8J3kPxSDMi9Dn\nyL6vJU2SYiudmfoaHfNBohR913PvcxCrex9+lIlrKynJdDuT5YSOMR+BH/4/f5M7HzrPGKA++qlb\n+d6f+3/5nr/9P0skWUtUtRCsobObGkWCkdT0ELJhSDYOsw0xmoeqot6IyWdCFVPRFRld0vJIeWrJ\nWiirqdyCnN4u+g02R35kHhpj8THWjkWVIL5Ex58GduVPkc8vjpdMzA0Jo8FYA9Ggg0UFg/IGp70Y\nhknKxkyKWMApcYIJaRfyk8iGly7RGgb8sqIz5EqZYDEMlRhMNdOGIbvHZIdG2zhxXDVNdmi1rGSn\nVpMfb1qJ2o0dWwW7pPRl1O0FZI2GIpTrh8ytbBQKfs1YdAtZy6VTTQxLhoR0FtOS6aZBq4hG9gaV\nVBYJzTiN7ANXXXI034/9Mev4sSvqRq9CQIBInqFVXoe7nVogjquyLpQYTCoIdiXvl7Cr4lb+6b0n\n9H70Xf2AX/na+K5jfW31Wc99Oplw+vxmdRCNyxC3d3Z4+6/9Dh974MH6qs85fi3f+jV/jrVpA9mh\nRSOi6pINUnSLxrhVSnuEbPXeZ+wqhuFgFCpYFncdr4WKXeMygiHrbellaYRVaRd2wYBdOs9z63BO\nhHTLNT7Ark/jc+WTOOBeLx7uhdJcfcWz86/jx64iBv+i4F6HnsM4FOzael7ca2d7m5/4jXdzx0MP\n13f53Buu45v/8pezdmj1gHsdjD1Da8N8Z4e+m0Py6BRwKjFxFo2nmy/YPHeerc1N+vlcpCG0QXmP\nSZHWGpxSdCQaY1ibTlltJlhlaI2B6QrWSIOZ0HspJVVKnMDegxLZhxRj6aMM2UFmtJYMz0VHv1iI\nQ0trmsmESduwujJlOp0wmeRs04lkZ5GSCJM3Dc4amkbKE0ULUPSxigREyZ5KKXHJoUPMFwt2dnaY\nzefM5gs2L2yy2mpOn1HMdralG2cIeJ+IKqFyRq5SCd91zHdmNEYaBCki89k25wkoAkcObeB0dmoZ\nQ+scxMR8e8bqZMoPftPX8z0/+e/50McHnek3ftEX8vbv/3bJ+NRanOTGF5d+LT8sfEJV/M/OQSXr\nK8ZI7BMpY2cigu+kYUV2aqWYHVpJOlou5gtmswXBS+A0pkBIHfPFgvW1VT7/Va/iD+9ddsJpdRuf\ncf0NTKYrnDq3hQ+e+WybFAKrKyusr63Stk0NBj126hQf+MTeCoEYEx+66xbueegk11xxKeRAkbUW\n623luiULXSvRdU2hOMtZagqQEJuglCuPXy/XY8CwmmWanU3GWJpGEwnSMCopVCeZ1Skl2rZFa8P2\nzqwGLJWS/VsrzWQyoWkaCawrRdtOmU49866XT7y4Pq2LLhR/BXJlntz1+JP5bxd/lMlcQ7aS6WBI\nWA3OanSyaCdGId7IwlJgkpAFnSIGcFqRslFXugHGTKiiTlmlIdWNx+ZIYdFisLkbic611FnFoXpO\ntZIWxQponGXajg3CUbQwE6oxsXJZ86F0bDLa1i48clbFqz/oroi2SJfTaxfMFzss5g3zuZOoYd/V\nLhxhpF+ilMJajTEqG4WDbkM1DNFCuFQxUgZCdM1VL+Pmz/4sPvTx20QzYpfX/fprrsyCsstGSkpk\nwc997nF5AkDfk7oOuk7ERoveRIqykFOiTwkf05D1UUqYcplK/dn3rD6HUdg2LafPb0rKaMzZNOQo\naSZWJgWePnOOOx58mD0AlRJ33H8Ln3zwBFdfdkTmjTYVjMoGJlEIETBWSg/aC8UwTFW2B1XI1fgC\njdjSuAQopdFzxssmMQKVZVJVDUOlZb5Zm7tBiWGojZUypRCyHV8I3kt2/MljVx0DGVbZsaWzLk1j\nNaQBu7AGOzYMU6xdxmzu8mJGTq2iiCUYJp9V7rExQxZC0zisy4R/KTC/bBiiZRNtnGU6EfxayRi2\nB79ckx1mTf2cMX7VDRYANegn5XKzvuojiajqfN4wXzjm89koA8JIFtNIb8oYjTVqT7aDiiPsokRY\n5Xte/bJL+IJXv4o/uHtvpPDPvfbzOX7sSjFSYkTlVPRqzmgGg3C3UwvGi0wMka6DRUfqFlnrK2NX\nEuzyBbsKRtXyS9HrGWNX1/Wsra3xmhtv5BMP3JqJyECwXnHd9Tjb8PS5zSqEXJ0QJP7du/4Lnzp5\ngbET/s6Hb+Vf/vq7+aavfh3KWWgsNKKlYI3FGpONQzXKfBiE17XWuXlBztTK2VohT3PUQLzqBSrX\nZ+ScHDK1ykWsT1nCqZRGYqjlOUplbDVoazHWVfyy1uWuaznj7mKzqj/58aeDXQfcK5/Vi4d7Ja24\n7tiVfMnnvoYPfGwv/3rT617HDddcKUYif/rca21tlc++6SY+fv/+2NW45nlxLx0jb/+t93DPo9uM\nsexjD97Kj/7qf+ab/+qXyZw54F4HYzQa5/Ddgn4+I3SL7JBP6BQgSpOD0ItweHHE20wcGqNZbVu2\nnMMbQ2s0DoVOUtLv0Cjr8D5x7swZKc1CtKrayZRLLjnKxsYGSil836Ns7kaaMwmTVkTv2dnZpu97\nJpOW1emEw0eOsLG2ymrrWJtMWJ1OWV9dZTKdYo0RZ0VKtfxXJeGE1lqMtqDMUpY1KufvTFpWphNW\npxMWWXOrO3KIS4+u8fTpQ5w5+zTb29s1C3U+XxBDRBtN8J7FYkGMHT4saBpD21icMagUmG1dYKW1\nrE5bGmdZWZni+w1CCMznHfN5x+G1dX7yH/99Hj99llPnNnnljdfx8uuP5+BnzE6bSPQh65lm50xu\nQqFRWTdWeKUEGxXZw5MxVK7vpx5+iE899BDHr7qC41dfQdf1VVOv73r6rpSKenESxshsNmNrNmPe\nLZjN5/zNr/sq3v4f/j/uemBwwr3y+A3c8nVfzanNORcuXGA+n2VNwYizF1iZtNmpKVpkjzz57Fpi\nH7//YdomZxdb2e+cscQQ6fseBTjnmLQt2toqixi0JhqLTwqfMUb2DZMdTjE7/RKYLEMxwq2ifShz\nQ7jofNGxyFp/MYF1DZMVh9aW02fO0HUeay1dCMznc7R1tNMpbc5QCwlc3quVUoSQ8L3Pzv+LN17S\n3Q/V8rYskZskUXmjEk4rWmXQSOo7Vg5nDFYpDGBSwgI2p0QmY3L6u2jMJCUe6RiR1uajiEjTNFI7\n2jS0ztFYIW0WyaIgyUYsKfY5cqyE9E9a8a6vrmRiVXVp2krUnBMyZUsXsUbakBstBM7kbIei8ZCg\nGkkpJnpn6DtD3xs6q2hNZKYTVic6C90COi1Hbf+Z224bo2tk3mqF1QmTMx5KSU8xCuuRctqs0vzQ\nN/8NvuenfpH33T4s+Dd84Rfwb37gO0TUTuXeEAVQYTAKU7m/5damEQFIpL6HxYK0mJO6npAi95x8\nlAcee5xjV17BNVddQZ+gT1Lz23Ud3WLQ6elKaUAWp11fXeXV19/A3Q8tEyulbuPGY9fiXMO5zZ0l\nodNK4skR5xR54DnEDh84+RQrTurcB+NQL2U/6ELOjRlKs2IihsS4VEulJHo++XLVtVDIFGnUiSxV\nTipkbBRjzxGNWs5TczhkXtUyjxwpLId0FCntaONeMnwwnsco7pxSWhGlHCxFjBJDr1EGlaR9srLZ\nMDTi1DKkahRarXA5U2GMX7HglypOhAG/2sZJN57GCeaYbHRSIl+R85tbnNvaYX1lwvrKlJiFRyfZ\nKFxdmYpR2MoxaUcZDruytKxz4gwxdogu1VqSnJmRsUucWgafMWxuoNEJl4/OKDoDnUr0Rg34FUWA\ns+CXNZL9YVTKGVsZu1TKmRA5Wwv4rr/1V3jLL/yHpUjh6z/vc3nbP701rydxjKWg890ahopyfYuB\nWa5yyeSAjF/ek7qOe++7jwceeoTjV17O8asuF4cWxShEDu8Ft0Y6YxXDciZb18vPr//ar+Qdv/6f\nuPuh4dxvOHYdf/HLvmQZu0KktAo6c/4895x4hP2c8Hc9egv3Pvoklx7dQDUWnMm49czYVVrMG2tr\nWdajT53h8dPnufTw/8/em4dbcl7lvb9vqKo9nHnobvWg1mjJNniQPGBiYwMxk8FMIURJmhgwF4jb\ngAmDCblhsJNACDjXIXnCGMglCLgXkhiTYBzbsk3wLA/YsiRLaqln9XTGPVTVN9w/1le19+lutywj\nY5nbn56t3eecffapXcNb71rrXe+aY3VxnhBiSjA0+2ZiAn1xQqs1bm5vCJNztw0M00NUFJMrSUQr\nWqT+dkrpYDPZPkitX6l19WpQ+LjWVe715OVeaM3P/8gree0v/SZ/fve06uF5/Oq//HFpwXmScK8J\ndr2FTx6ZbOuNBw7yzV/xQta3h2l64pW519rGJp883hjjX4Rljxzi/kdOcc3S/FXudXXtWN1Oh8xo\nXDnGVSP6KtLLLLmSSamdXo/CmqRSclzY3KJ2NToL5Bp6RcZsr0N0HVSQljYTFZm1OO1xtcc1U/V8\nkPtPnrOwsMDe/ftZWl7AqpgKAbodtqKn2tN8XaOJ9Hs9VlaW2bVrl6hKNRTW0O0UFJmlmBpooZUS\nvpWUOFZr4Y0Ju5q7Lkq3idwYZRprbjXdwlJXNSF2WVrosboyy/rGEhsbG4xGI8bjMeW4bFuuR8Mh\nozITP6XCkllFL7fM9LqAwjlHOdhmmFm0gm6nQDEnUxeVoqwqsa7Ic266di9ffEuXLM/xXtr+jJgs\npnZnS9QehUmDKhwqpLKHalrQVbq+QutfFULk/PoG3/na1/G//uIv2nPgy5//XN74kz/IbK+XihCV\nHDfnKEvBrXFZMhgOGZZjqjQIBOC7Xv5STp69wLn1TZYWF1hdWqLyQZRuZU3EoLMCnyZMXtgcUI5G\nRF+TZ4aqdmkrLi+oqMshDz58lCyz9Dpdet0uvU4HFaWzIYaANaI8zntddJbhldwhxj4wcoGxSwUQ\nrZOvmBR95H4C+EDEIzIvmfDdmL43KtC2jTHIsBKUpdsryLIcHzzGFti8QCU/xbp25FpUgv2ZPp1u\nD+cjRum2Jb0ej6nKMvljPnHriU5qnUZQeTc7q4a7gQ9f6Rdf85rXMD8/v+N7d9xxB3fccccVfquR\nD4sfg1FgjSI3ihxNHg15iGhlwWdtdSPPanJrReZtFJmVC7nIDCp5MjSS5BhJF4X8veZGY4yhyDO6\nnZxekdO1llwrihjJvcgY3VRLiTIGjEUlw8d+r0u/26XX69ItcjqJnBXWSPuM3umrQPCEGvCBoBw+\n9dTGaVI1lWENweOrilBV+KrE15UY+9XydahrkdB6Tx6D2CoYRdSSRZVRqFYmdJhERq2WIDGpIMQH\ng7ba1UxN01oxP9vjV37q1Zw8e4ETZ89z48H93HzdtWibpQsnGTsrJgB7UQmrJVNxqv0kRqmgROn3\nPb+5wXf/3C/z9rvvbs+KFz37Wfz8D/0fdHtdyrKiKkt5ruqJqXAaIS7EyvEPvvYl/Pab38b9R6eC\nwn0H+IYXv4BxWbdBVgOQNJntNJpbhUCRd9JvXh6gtFKcXd8WpU26udgmIEwBmE1mkdYYdEgEKgh1\nCkpaNGKaHBeJiewzqQ6mQHHatHkSfkyCPlE3KBkcEiLeRZxLNwBU2x4mVUIh+TaTfm5jmqkazXH7\n9MTqzjvv5M4779zxvY2NjStc05+39VljF3x2+NXswUYFZZUiM4rcKvKoyYMhj3LzwVsIGQRPXtVS\nuTGaLOFXYQ1VJm0JOsl/L8EvpVvSboyhW2SiWChyutZQKEUeA7mLjKuKP737Ho6ePdtu7/7VXXzV\n876YmX5P8CthWCfP6eQZRW4FV42e+MIABE/0SXmhNEHXOCV1tcn1r2jGvotqwSXsuhi/SnxSCSjn\nMClwjUqBkermNHY115JNAbWx4utgp+8bejLN8Zd+9JU8en6N0+fXuOHafdx83X7yLJsEUjEk7FEJ\nw3wq0scd08Mmyazma/nZ+bU1vuu1r+N/ve/97X798tuezX/4se9npt+n9oEqRKrkcyH4VVGW5UXY\nNQkKq9qhlOI7X/5STp9f4+zaOvOzsyzMzuJ8YDxVhQxNDw2BM+tbaQsun4R/5MI2uujAuAYj+8jq\nJlFodgSG1k6UXMYaRsMxv/bmd/OJh4+17/r0667lu7/hJcz2eoJbAmtT2DXx0Wof7Az24hR+hVSA\ndT5chF2iv2uDwZRktbZRk01aT9us2GUA7Cp2XeVeX4jcSylYmOnxm6//YY6fOcfxR4V/3XT9QTEZ\nD/5Jxb2M1nzXy7+a0xfWOHthnfnZGRZmZ/EhfMbc6+TalbHsyMlzgl1XudcVrun//61OIQkhoyL4\nGqVqMm3pFzm9vKCT5czN9BlsbbK9vUkvz9neGuH1iOgUhsBsrwOuy2BrA0KQ6YNZTlmKAbn3XpLl\nhShWtNUsLS+za/cuZmf6uHIE9Rij5Xpc29xmczCi381RBPLMUBQ5y0uLrK4ssTg/h9WartXthNlM\na0wUDilWEhkIJUoqfoVVmkyLOiemBK14JhiUjik/H9FWYZVBR0cMoHRGr5hjtl+wujjPaDhkPBqn\n9uqKclwxKscy/dHJlGlNpLCWbioGOKepnWdr/QLR1ywsLdHtdDDaJCGBDN5QWor+OnUVtOf3FP8K\n3hG0prHIiGlISbpSCUG19Y8Qpoc/BF7x4z/DXe+7j2k157s+8Gpe9bO/xK/+9I9QlmU7nXA0Khls\nDxgMBgxHQ1yIoBVl4l5yX9IszM7Q63RRxjAal0nVGcmyghAj3gNWYZSmDgqv5XdLLwNGds3NcXbz\nVal492LgnSgOs295gXJccuzUOCWvNN1Ol4XZWTHjB1RUWKPlmHc72E5B3u3S689yem2TBx8+Sb/I\nWZmfRysZcKRjmo5oDMYoXF0So2vvXSE0U6y9qKmcJFmLvCCqgK8DXVtgsx5ozfr6OtuDEVuDEVXt\nGDuHUprCGIpul26/l2JjQa26LGXgkqsJdcUTrZR/QpNaMcYjSqnTwFcCHwNQSs0Bzwf+/ZV+9w1v\neAO33Xbb4/uDjfw6Vdyl4jdFrJCg0Gh7UVCYKntGk+kmkJSWGqWT5E41RBpC25+rJ1W8PKPILB2r\n6WSGjtVkBHIimU+KiyDjqwlRSEdmMEVBliSj/W6HXgoKc2vIrQSFNikMGvKiYhC7ihgIuHa7QE3F\nUkqqhMnnIHov7S1VRSxLMbvzDuclCxu9g0SsdAg00xI0Soz/rJFJF8lnxyS/C6kiqqR+aEwLp8Zp\n68nkNaXg+n27ecp1+8nybBIUhkDUCYgUhCa4bxjAVFAjBTA56WMTIHrXSk6/++d+mXd+5Ag7xkF/\n9NX8k1/8j7zhx/4x43FJOS5FTlvV1D55Oji/Q+2glOLQ130Fj15Y5+z6BvMzfRy2pIMAACAASURB\nVOZmZvEhSu9vU00LTdWy+YdIYqP35EWX/Su7OHH+cNrmCUDtXV4i+MC5tS1MY17ckKu075rg22Zy\nbuYhkkfIQuTM1pAzwzGry4us7lpOpLSpDqr0nEA/hEmlMMSLQGMqQIyTwEHk9iHJ2eVcaL1oGsWN\nzcTsTzfjsROln5ZMXLQuFxzdfffd3H777Y/vWv8cr78KdsFfAb8UbSDXGGnmJiW1jKaIBqUEu1Rw\nKO8nyoSEX7mZBIYm6CnTxybgkuOstUktgdIW2LGGTmboWk1hFRmRPEYy7/nvH/oEx87XTF9XJ84d\n5u1338M/+LoX0+t2WwzL0/YU1pI1ap4GL2jwSyo/zQdXabsa15EQxWeiwa7gHFSlYFhZ4V09hV81\n0Tm099g0pa+pRCmUtDtZaXvSaZKjaYK/FPgZhahFNG2lvlF1Xbd3F0+5bh9Zlk0pUpqEVsIv5dkx\ngWoqIGwwaweGpdd850+8nrs+8Kkd+/VdH3k13/fz/4Hf+uc/TO29jBd3nnElrUvluGQ8LqUdxntq\n71qlQ5kSW8312+926OS7RS5fViIVD+zAr0ZV0O1eue1am4y1YUnjbNUG0Fq3AaGdxq+EXdYafvt/\n/AWfOjHc8Tk/+chhfv1Nd/FDf/drBL/0zlYdYqOImMKvNiqcdgJrgsM0HSp9dp9aP5WS+5C0HEr7\nmASFtvUCmwSFO0B9x7qKXVdYV7nXk557KSI37NvDLdcfkJa1Jyn3qpzD+8BMp0Nnzy4JKBN2+SYZ\n/xjcK3uMgiIhftbcS2tDzDJ55NlV7vU3aHXynBgdRW5RnQxblkRXknUtRZ5hbY5VAe8Ker0eM70e\nFwYjmZZYR+pxhUnv44ucXreDsSlRkxKThZbRGJ1ul7n5eeYW5phbmKWsKs4fu0AvM8x3LJWreOv7\nP8HRRyd1iT2Li9x+816WFhfZvbrC8tISnW4HHSNdo+kkJak1BmOlmFgYi9aCUypEQu1wqhTLAWdo\nz0NtErOpUyFIpqFqrYi+5sjRhzl66jQ3HNjLdXt3o7TBZAWdvsLlOc6JPUSYkUmdLgTG44raySTU\nZuARKLzJRJlU1dR1STUe0evP0u10iIgVhrFGEtYqcQ3VDP1IF3/wss3BE4ITFqDEXQsVoUnUMeFf\nYYpzPvDIUd72nvdyuUmr7/rgIR545Bh7lhdlEncl6rOtrS3W19cZj8dErTB5jsmkSFZVdTtQIsjF\nnJLeCqUM2kL0oqjyaEzWodBWihdRVOKjwRa333wD77/vQc5vTwQVSzN9nnZgF+c3htJx4QRfrBlx\n/kISRmjxlez3eszM9GEwxhMIxvCH7/go9zz4cPt+t153kFd8/UvI+gYfxbqkudf6IEMIminkjVeg\n1pboHSEgn1lHSjdOBXIlU4vHJZubW6ytrbM52MRoS5F35LzvdOh2uzKZM7W+2jRVXStFlvwNJ7Lg\nJ2Y97qSWUqoP3MRkU25QSj0TuBBjPAb8W+CfKaUeQEZLvw44Dvz3J2SLp7eFqaAwmQJbI1MhhFhF\nCixaxxQUelHUZJVU5JL3igSFhiK1rtBUsFQi0qmyorWh02nM+boURlOoSKEjuYpk3mGDI/NSzdIx\nsjYYcH44Znlxnt39PlmnQ9HvSVDYEWJVpMkXQvR0W5FpTFObZJBvldeTG+Z0r38zQSum8cqqLNFl\niapKjp45y9G1TRYWZphfmCMGMR7VQXqu7VTAoq1FZRkql+eJ8TTJeFe1E9KMoiVcthmpraaqnFPS\n7EnmfZJZj0qJ9FFNXqbipJIwIQYNWJFIledTx46lKuHlR9k/8MgxVuZF4joelSn4Sz4JXohVOaV2\ncCHQ6xTsW11JVcKq9YMR4tpU2djxmYIPBCfv+byn3sJffOKTnL4wAajVhQW++Pq9nF3bTqRKpSSG\nbqXwWUOqrCZLxKoXQY0rfv/99/DJM2fa93vawWt55Td8OfMzvcRnJoFhWyFM5Cq0VYomKBTfpVYd\nk6qFzosniE/VQqVNat2ZDgyzdG7KzbA1J72C2uHJtJ5M2AVTFDddX0azIzAsMOQotI6oYMHnEAK5\nLZMZupqoHbyhCBETYsItLsEvY2QKSaeT8EsjDxXJCQm7POtbmxw5d46Lr6sYIw+fOsS4rtm9siz+\nC51uK2vPtGCAnUokqYb8ezFCncau5PFJM4k4pIAveE90tWBXerjgW98pn9oAdZCgUJJTk6q7yrIW\nv3Tjs5NUDSoZ3avkV9MotVrs0ipN9pvogtprvSUuIQU2PhUSIzuhrqkeJpIlGS0eeOQ4b3vv+y7Z\nrz5E3vnhQ3zq+AmuWV2WZJVzlKWM2x6l4LDBLklsyfjki5NatfdtMCiPSWteE4A3n6fT7bN39RpO\nnbs0Cb9rcYlgLBcGZZKdOxRM4ZduPWom2CUG/ZvjcZrIePlWoNPn19m3urQTt9I+C5f7N1yS0NqJ\nXTuVDkprmdSYgsI8S22Hlw0KL5/QerKtJyV2Pcm5l0rH1pKJOuzzxL18XQtuEXAxXuVen4Z7uTY5\nLfv78XAvU3TYs7TKoxcuVTyszC9QVp6zF7YfF/fqh0g3QpZZYqdL7ALGSOCqG151lXs91lJK/RTw\nUxd9+94Y49OmXvOzwCuBBeB/A98fY3zgc71teZFTjcdYFenN9JmbK+j5EhN8Uh6Jv1ZdO/I8Y2a2\nR38woBo5rBcLA6UUvW5Bp1ikKDooo6mqGrQi73YgyvTKxSVRZy0sLvDmd7ydR44/0m7H/tVVIpGT\n53YWEh9dexV3P3CSQ7c8hd27V1lZWcZoQz0ekwVp9dZRWhdzazFaE1Ohj5QsV8HjG6VpSl6BJihF\n7aMk21MxiejZ2Nrkn//yf+IDn7in3b7bbnkKP/L3XkY3NzLIKKnATpy9wOn1LQ5cs4cDe1bp2Ixu\nXqQkVEUMYigeQkRpjesUhKjE4N07bN6Z2AQk3DJIMbTxE5S0WINhopJ3dZQilTbCMYkEpOjYWB80\nSa2ma+HBY8fTp7m8mvPhE6fYtTiPc47hYMD6+gYbGxtsbW0RYsQWuUzsTa3Iw+GQjc1tau9R2ohn\nY2rtrOoa5wLKZKAznAelvFhj5EWy4In05jNs0ePLerOcvXCecVXS6+T0uznawPa4ohyPcHWFVpo8\ny7G6JksJ+TzLGFZQek2WG1ys+KN3fYxjZ92O8+j+Rw7z22++ix/8ey8DBLdc2gafuJZP2CsTVeXc\nsSYjyw0ExWA8oqxqnIPajxmXQ7YGA86dO8dwNMTqjP5Mn7mFBWmRjpGiIwktnVprvQ8YIxxbp4LC\nE70+G6XWc4B3MKHxv5i+/9vAd8UY/7VSqgf8CgJQ7wa+NsZYPQHb265pD4xJcDjxGBB5tpaAB0Mw\nzUMIgFTnDIXVuCCkqg4aVEwV+MabI42fV1I56RRNUNih0JAHRxY9WfSsb22zOdhmpVPQzRT/718+\nwEPnL7TbeeM11/D3v+aFYqpc5HQKadvJbfJPSJU3BRI8EZEhMzJRxzvf+qJEn26iSqcAS8uNNFUD\ng3eo8ZjBxga//D/eyUePH2+345b9+zj0Fc9lJjPJkyCCtWgLp7e3ODsYcc3qMnv3rKC0aU1JG5DR\nNM8hTeYRPw2VzF+lBCgthgQNQRODnmo5bAwKVVsxbCQPkpjfGehITNjSmQa+eOhUU9G4PEgdPXWa\nhX5PPCsaT4amWhkbjwYho6EdNy1Bo/eTwNAlstGQk9iwwLTEc0ECSJ3lfOkzvoitwYDt4UBavPKM\nEERh4dr9J1PZjI4Y7ZPyQac2A/FHqoE3ffCTHDm/E6DuPXqYX/vjd/Cab//adjR1bHdRGvWcvp4K\ny6UqE2lHkfsEMr4lkvKZtNYYDNZIddAmT5omIGyPTWq3kJ7oy1cLn2TrSYFdsqbxa2LE3lxrBmnr\nsWg0mmAM3mqCEwLe4ldmcCFQe0Mdgng7TeOXNsgIei3Gjgm7up0OOYE8eLa31tna3malW7CrW7A+\nHKctu/x1tTUcJezKKfKMLAVTom4QWThBRieHFMQ0+BVDU10Xo0oJEKStw6eElveOWFeocszp02d4\n9Nx5Vmb7LCzMMVaKSpESWj4ZtyqwGWfWt7iwPWLP6hJ7d6+I0e40frVXbxAJdvNvJtilEnYR0vU+\njV8NdmklYgE1OZGA9iKUOCPsVCHBY5Kqh049ysrSoiStakddi7IhNPg1hV2xkYk32OWm8SvsxK6o\nCFP4NY1df+vZz+Tdd3+Y0+emkvCLK9x+603UMXkpeEUIokhQyYdBETA6YLVPLWHJnN9qTl1Yv+Ln\nPHV+nd3LC6igCZoW35sgsUnCNcmsBttim0BI2OwThjXYnu7XpmndskmdZW3yDZGD1PydHfeYq9j1\nGa8nE/fa3tpge3uLlW7BareY3kjWBmPOjUbsWtZcs7ggmPXXyL1On36UR8+eZ1e/y+KiYNc4Jcoa\n7Gq415ntTc4PRuxdmWDXVe71+LjX857+VN778Xs4szbBspX5RZ55435qz+PmXnWEKkayPOfC1pAL\nzrNr9yp7V5cmkwlpYZ+r3OuK6+OIkrQBj8ZMCKXUjwOHge9AEvKvB96ilHrq54Z7TZarRQUeg6Pf\nLbhmYZF+KCk3NhiWnlFZEdwIX47wvqbILf1eh1I7fA4xy3ERQpRkrzaWOkRMUdDvdKUF0QV6vT43\n3nwjy8vL/N6b3sTREzsnpB8/+/3AFpcUEomcunCIsnbM9LrM9nqYzDICTF2Bd6JMVbFVl0bvcF6m\nKqpo8EFRl6XgWO1wtWdUO0bjkmFZMa5qXHDUVclwsM1v/Mk7eOjkTpX1h+97Fa/9d7/FNz3rRlQM\nVLXjLZ88xkPn19p9+bRr9/ND3/o17Nm9i05hsabBGbkOdGbIsJC4aJ4ZrE0+gIkzqqgkcZUsKwDB\nwZSUj15an8XsHkwmqmtp/W3a52Lr/6RTq3iInoN7d6Utvbya85qVJapKTOuHoxHD4ZDxeEyWZfT6\nfXRmGFcV43LMeFwyGI6oypLae6LSuOCpfQC0FB2rmoAhqozKR7Iso9/vY7RO9xMvE8eLHior6c0s\nsFQU5EWG97UkjUZjtjbHBOfodjookyEaL4OPmtJHRtWIwdjT62YM6hFHz1xakA4x8smHD/Ho2ib7\nV5dQiEes8+luEn2bYJ8uLCitsdoyHlaUZU2IYvZejz21q9ne3mZjawNtDcuzi3S7XTCavJB7cdaa\nwntc7dDaUhQdYgi4uqYtCD+B63EntWKM7wT0Y7zmp4Gf/uw26XGuqbuGtLhLL3xbyVIKQ1OBFz8N\nazRZCgg7uZVJLd6Te5HGBSVBQFAaYzKMlYe1OUWRU+SFTAuLMnmlGo35b3d/lCPnJv4z3azDuC6Y\nBoaHTh/mD972Pn7wH35jMme25FnyelFNS4xI2UPba++k/aQcU5Yl0XmiC+A8RNA2Q1lRJgRoZe7O\nOxiP+Hdvfgf3ntoJUPefOMxvvfW9vOLFt0lQGAMOxe/8xce558TJ9jM888br+YFv/1rmegW0+1XO\nQJmeAcSACi5JLaIQPpUeGqKRgCgGTfQTYtV4Oih5MyahvRzL2DQmqbiDVJEy91HDwX3NYKfLg9Tu\npcXWhK5pnYlIZSPGCVFMR7udPEcybpWATgjINKkSceZk41vyp3QyKFbMzswy0+8nkJWWBK0MpCw/\nIeCRSp0mUKuI1r5tIbAazozGPHT+PJcFqEcOcfLcGvt3r8i2xAm5Cg2ZSlXv0FQFo/R6T496bbPz\nYVp2Ku1FEhSmSUFaPptUP3yqhngmPevxSc+rnkzYtUNxOxW1q5imGqpkmKxAR8GtRiUj+KWlBSez\nSaETqBMJEPySSpwE9TnGyOSkIs8pioIsy3CjIX/63vfxyNnT7abcsLLCS27en766/HW1b9eKeNAk\n/LJKtfglgVHAO1EqVXXdtqCUqZde8CtV0GwuigSb4YJvsWtra4vf/J93cc/xE+1fv2XPbr7thc/C\ndjoSEHqPDg7nPL/7vnv45MnJ53jG9dfxA9/21czN2QQcEgC2+12nQC4oCAo8ElTrKfzyyBjpdN9o\ncSuRtKZNqjntVfvvyU0pJgyLEa7ff2W82r97JU0NlP0QgpdrUqkU7Mh1pqPamaSbbutu2jdTW15o\n2g8TDrRzstK2Z8by5c+5nY2tLTYH26k1q5uCT09Eo5WHYNogyif8CgG8iijnMdonjAXd7uXLf86F\n2RlqH9AmYiZ7qU1aRVJbF6q5rQhWRlqfJJcC4QanQzq2ombRyY/Ith5McqwmFVyfWsWm8evJvJ5M\n2DX5g5PHXzf3cuWIP33v+zl65lS7OTesrPItz7yZGCN/9LH7OXLufPuzm/bt5Tte9uVtIv5zyb02\nBtv85pvfwT3ThcTdu/n2Fz4T0+1KEOolqVWVJb/3/nu599Q0dh3kB771pcxmebujr3Kvx+ZeRd7h\nRc9+FluDbbaGA3qdgl6Rt9f64+FeJTACzteeP3vgkxy5MClO33rttbzyG17CwtzMVe71mS8XYzz7\naX72g8DrYoxvBlBKfQfiDfhNwB98rjZIKcVoOCRUY1xVQmbIjKJfFPTiLGbsYegZD8eCC1EmK3c6\nBT1lcTbitaWOMBwNcMGj84y8U5AVXazJGA5HOBdYXd3FgYMHOXX6NA8+8iAXc3r4CPBv+HRJ4s3h\niKxRtYSQ7BSUDK5QUlQkBlRMOOo9rorUrmKwPWBjY4ONjU02NzYZjSseXd/i3NaQ+blZlubnEbP2\nMUdPHOeBE5eqrCORoxcO8fEHH2HWwntObnN2lLPDXuDYYX7h9/8HP/gtX8PS4gz9jqLI5A7fsKOm\neGsVkpiPLqn5ARdxClwp9w+ymBRbKiW0HEEFiAZtIAZF8KIokv7pkJIzzTUF6IjSgI/ceO0+vvIF\nz+Ou9106Ffb5z3gme1eXGQ5HjEYjyvEY5xxFUTAzM0PR6TAcjwhhnLh6kAnc1ViKGzFQVWVqRWwm\n90pRZFAO8UHRm+kTQ5cQSUouSSRprSldJGCwnT5ZkVMNNtkeOkoHJuthsojJckzek4RQiFIMDpFx\n6RmVI7aHI9aGm+mYXf48evTCBgd2rSQPtQQaWu4JgSnle4hIO4MM/SnrGh8ixuZEZanrkq2tbQaD\nAbnNmZmZoTc7Q+lqBsMhRadDlstQHqUUdV0R3M7pwFXV+Gk9seD1BT79EHYwqxQUqthUDRupsZw4\nDRA0QWGeGTqZTQGhoXKOEBUejVciF7aZJcsLsrwzmeplrfS4+xrj4U13/yUP75CN/j6j+keBX+fi\n9p37jh5ifWvAwuyMBIVW+kyl6zpxFddU3oVUbQ/ErG6wPRCT0dqD8+gAptPBFl1Mp0NUito7quCo\nvePMo2e45+RlACpGHjh1iKNnzrHSLbBEfu+D9/PAmYppkPrLhw7zf/3BW/jJf/RykaWTTE1TdU/2\ntZ9EIT7QHICGWAWvUmAovlXTFcPmxt8Yrqr09SXHdVJGTIQhEpXi+uv28eLn3Maf370TpLT+AW67\n9ansWV6QKRVNYGg0htBKwqcDQ5IxnsjrZZRv8JNq2oRUIUeqrXjq9ppUShGNSdUGnf6uEdmpEtIW\nnCdGT0jGfKJ+SOeuSv3kSFLjwtaVzU9PXVhn767lyV6Kk+CwVWeoyeFpKoW+8aFx4tEzXUlF6XbU\ndVMlnBAr1Up6d1Rfk9IhPtEp97/hKwlHmv+lS2cSGGqSiXmcYFdDejNjKJInVu0NlfdkThMJF+FX\nRj6NX1YCusxm/Ok7P8ixc2Omr/kj5w8TOc71qys8fHFbmno1t153Hdfu2SWm8JkVpYNSrUpDxSjn\nlJPEzHg4avFrOBhA7VHOQ+1lEmKni+10sJ0utffUCbt+9U/ewacuTsY/+ir+yzvv5lte9GxM8Bgv\nvlq//4F7efDcTjXjxx8+zBv/8M/4p6/4ZpqgMBJSMgpUwi8xzEk7v4k+mmmRCbuiUTuDwpCwoDGJ\nbw9m4xU2aZtTTK6LGw/u4yu+5Lm88/2XkqovecYz2bdnV+ud5Z3D+wa7wJgmKAzoyJR6owkK0/Sa\npHYLU/gliaJppYNu1Roo8XaZ7c8w059JSqkIDXlUPgWbgYAnRoePElipREgmDYENhsHq7Bznti5q\nBVKv5oZr9jI306P2ARvliMS4E+3D1LbuDAwnCi3nJLnVEtgQILVFonVK5pqLsIsp7PJT+PXEE6u/\n6evzzb3e8u53c+zsiIux6w8/ej8oePi83/GzB08e5nf/7M/50Vf8nUlC/nPEvX71T97Bp04Odvz9\n+8+8iv/7XR/mW1/0bFQME+x6/z08dG7ntn784cO88Y/exk9857ek/XqVez0e7jU7O8fMzGx7nX82\n3CtLj//9wHFOb7Hj+Nx37DC//ua7+OE7XnaVe33m62al1AlgDLwH+IkY4zGl1PXAHuBtzQtjjJtK\nqfcBL+BzmNSyRgpe49GIejRipDTjQYbrivF6v9dBZZFMO0bR411Jr9djLoCzFcPNkagliTIEwtUU\ntoftdEQhbw39uVn63RkOXnsdxhpOPtok4S/m9F+PJLUunyQ+sGcXRZGLmlSJ7YT2isLa9DmkrTko\ncM4xGo0YDIecP3eO4ydOcPLEKdYubLA1LPnwuW3ODIftX7hp3wH+3ld9GVlVMD7aDHa5fMzRW92N\nG29zZnQW+DUujis/dfIQD5w6w8HomO3AXF+mymY2SxTLp4ROReYyfJYmeiZBQEDhNXin26KheHzp\nZPugBauNhhjwrkaZNHSovT5kMmHjnxpjTAM0NL/+L36U7/qJn+cd75uoOb/kmc/i9Yf/EVVVUSf/\nw9rVKKXo9/v0ej2qqqIcj9FEcqspY8DXYwieosiISlPXlSSsa/E89TFKq6VXdPIOvdyio8fVJa4s\nqZ3HO5kGHojYLMfYjBCh9hCVodubxRpLWY4pR2MGwyqp84N0W2QZLohyblzKJEpZlz+Plhfm8A2H\n1CCFgZa9TbiXEk9SlKUqR+IrrTUozWhUsrG5xebmJt578ZqbmcHFiHeeokjHvMilpV4bmuLveDwi\nRs94XMpAAa2fcOT6gkxqXTJ+u733xjTCOU6RKlE6NAaROj23QWFuRSroxJjZx+b95ZZrrCUvcopO\nh6LotD4iVstNemNrmyPnHmVn4ujp6fnywLC2ucUt1+1vg8JG9t4EtD4Goq9xVU05HjHc3mJzfYON\nzU1CWaFrj6odJkDen2HdRzZ8ZHl+jvmZLpV3lN5x/Mz5K27HqbUNesyyNRhx/6NnuJwi6GMPJEXQ\n8ly68camLNskx6f+YSakSgXJ67SBoZapFG1wqFtPhwhyhcVG/XDRgW0qhKRgUUVR1kfFv/s/X82r\nfvaNvPtDE5B6zlOfxo+94u/gUy+3vL3CRC2EKip0aAJD0vkyJeEPIUn4fWtEujMoFICM2kxMuVVq\nfVEQo2mDNRWlB1snIuKoCaFOI+XdVDtRJEZP43sBUqmUdXmAWpybwcdG7ZD2WEwkikm42QSF4uEw\nrXYIrQw+JK8Q6faQyRjTpKqZKDZROYSLWgue/GqHJ8uaHqPeJLYuThA0Si2ZcJWwS0+UWvmU2qFK\n+FUakRILEkpLn7WWvCgoul3yvGgTYlvb2xx99NIR6DFGjpw7xKEXPYd43yM8fGZyXT3lwLV877d+\nDUWeiVl9Jm1E7V+MEENsyUZdVYxHQwZbm2ysb7C5tYWuHKr26NpJv36/T96fIa89VRST9JNr69z/\naZLxR84e4sT5NZY7OcY7Nre2eeDs5eXWH3vwECfOr7N/aY5Gnk5KvDT4pabxS4WJ0iEltYLWRC9q\nLeUTZgUtuDUdCDYJonZv7QwImyv0V173T/ief/ZvuGuKVL3gWc/i537ou5OHjIxOdo3pdAoKjdYp\ngBES4hufMDWFTA12JNWDBId+KqklZx/KpCqckEFI3hsp8dMk5kKMrYeENiIfD1ETVZ2MmyctMLHF\nLcGwm1eX8P4cF4aTz7lvZZWve8GzKZ3HZuKPFpo9Ey9SOoDs6zjtW5R8dqZbd/y00iG1m5qU1DIT\n/LoYu8LU7zXPV9djrycD99ra2uLo6U+PXbIu/dm9Dx9ibXOLhX17njDulfUEv4LWVMFxcm2N+098\nmm07e4jj59ZY6hUtdj149vJK7I89dIiT59fZN41dV7kXf13cyyioXM2praZN7KJz6ZFDnDq/xv49\nK1e512Ov9wKvAO4DrkHUpO9SSn0RktCK7JzaSvp6D5/DleU5RadgvAm+dNQKhtsjtmpNRkRnYJQl\nU4YKTWEyZrpdfIhUPrCJYxQqgo9kwcv15zzDwZCoLf3+DPNz86ysrDLT77Oxsc78zEz66xdz+mNI\nKeDiQtBhrr/mGg7u3dP67mV5hgkeFQO5lsnDMSUUfF0zHA7Z3NjkwoXzHDt2nIcfeZjz5y5QVYGP\nbXrOlxd1EJ16NX/8F3fzj172lew9cwa49zLbJzHH33rJl/H+970P6RK9fFxZ5QXBWsbVEIOcp51C\nzlNjNApp4268UXF1O+wCLQPFWsW5qvEuXfuNqbhubDYCkYCLGp2SvkoJ3mid/OeiXCs6eanOzXT5\n3V/8Se576BgPPnKCfbtWuWZlicFgyGAwSD5qDq0N/X5PPNKUKELzzGJ0ZDQeEVMrap5nKG0oK4eK\nXpKbtcM7sY5Q2pCbjEx7QjVkXI8BJarR2hG8FHaLLEvH0DFyFd57Zvoz8v5KsbG2wXg4YjQeU5el\ncLsQcZkME4oxYrXwvdm8y1b1Kri4oLhvP6uLC7JdSRUaUoEyJDWs0gZlQsJWTR0Cw3HJsCzRWUFE\nM04TuYP3KCDPRVG8vb2NsYb+zGzrdyaoFFsf08FgIMk/V6fhQvYJx64vyKTW9GpM4KRVRyaaGC2j\nKk1qhzCRHea/GvFPyI2hYw11auHxIYDylEFaT1zyLGkeEiAko2KtwdecH1xOTXNjev40vburS+Kb\n02yfbrkKkEw+U+adKFLTLLd0ilwMcH3EJtnhf/7wvXzy0Yl0/an7D3DoLL3h+gAAIABJREFUJc9n\nrii4dmX5ituxb3mZ2U7Oua0re+hcWNvkhsVZdF2L74w1YA3BGjAGHTXRGCKBkCpeXkUZ0e3SCHWf\ngiadJlwQUB5UiGjlk4dE46HRVA5pZZFMTR4LKViL3jPb6/AbP/saPvXwcR46dpLdSwvsXlxoJ+6g\nRH4qxFVIs5BujcKgkpmttYrcWZwL1M63vcUNAYlxQlpoLn6tUU2AOPVoSQ6JDIaY/HAirpYxv3VV\nS3+7EwAUZcbEkyMET2YsS71ZLgwvBajr9+5lYXYmyfMb+fmE+InmNkhyIz0HQhscNr4OoTGFbSqN\nTKrWQBv0ee/bDxXhosCQq+uzWc2hakl5M2rcYDVY07Rzkc5XuSim8auwlm42OV+VCygv0mfnU8Kh\nwS/nCEbjY+DCetNOcflrfuA8f+dFz2Zte8TGaMT+3bu47sBe5vpdUWbpScuhnnwUomqbxsQQmYjR\nMnK41ylEQh2imKwai+30OF/WXDhzlqW5WRZn+4zOnJvatvuBBxGPbNk2F6W9d319gyMXtq/4OdY2\ntrhxeZ5Tp89z+uw59i7Ps3/3EtEaQjQybSzZkwY/wS5UQCfs8l4MmpXS6KjbBJLyoH26YSfsUq3Z\ndUrKkMLCKD4o8zNd7vzFfyp4dfQk+3etsG91WSbpVHXylQjJxB6RiZNiV6T1RquEYtGiVMRoyDND\n7TOc8wm/YmplbAyIaTFMaSMJLS1eazux6yKtRmt4H4SoVRLw1/UUbk1hV4NfRMszD+xlVJVUPrC6\nNM/eXdIqXVWOPLPtpJ0WL9t2zhR4E9rn0ASMcZLY2jFprN1yJNBNQfjlsCu2nhtP+mDwSb0+X9xr\nbb3xcbn8NX+ln51dW+fG/Xv+ytzLRI3tdjlfOY6dPcfKwjxLczMMHz079fcvg12IksjUNec2Blfc\n1rWNbW5cXUTV7ir3+mvmXipGhtWVefHpC+vs2718lXs9xooxvmXqy48rpd4PPAL8XSSD8nlZeV6k\nyZeWTFusAgKMxzV1cGgd0CanHI4YDYaU4zGxqlGuIvcVM8rjlEMHh1eeoasZbmwwihmd/hyqEJzI\ntGGwvUU5GrA402P/7r2cOHOpCn7v0iLGGo4+OkkS719Z5Vtf/FzBWCIqOAyCscpqmWIXxRcOg/CI\n8YjRcJutzU22NzdwpZiP5/2Cc2dPcnEHUQiRj953iPNf+hxW5+c4sLLMsXPfh7REfgNwFMVhrtt/\ngLn5WWbmmsTc7yMCjpuAm2niytue+xy6saS+cIpTp09z4ehp9q0ucWB1UTxYM5s+T4BQA54YNSFq\ngo54b/A+WQYo8I2lQNNmGCUJrWNSm6dKnFJgrTg5NpYNMkBGfLhCUNR1jfee6/fvYd+uFerKMRqN\n8d63cZT3HmttKqRYvHdkWYaxiqoM1BX0u+LNWDnPaDzGEejkFqUKnM9a9bn3QbxR3YhytAXa0O30\nKLIMnUmirsiMKH2dDOSJriYzil6/R7fTRWspYndySzkaMdjapq4qtIrUVYWrK4w2aGsJwXJgfpYT\n2wM2RpPzaHl2nq9+/jNxPmCNJiBDOIgxDV+SRDxKo4xFK43zkar2lMn0Ps8EY5uJtE1BoSgKlFIM\nRyOWlpbImgRdCCjv0z53onYrq/aQ5XmOtU98CuoLN6nVBIOoieeI1mlMr01TYZgQqxQUqtj09Oo2\nKHTZpL89ooiVGL5FKa20N/LgZQKXSpXyGBz9fjdt0HTi6CnAs4CdyQitXs1Tb7iB/buW27HMJlWs\nmqBQik9SfWuqR0Yr8szS7RSYABmKDM1/etv7uO/Mzvah+04c5r+86wP8wDf8beau2cPTrrmGe08f\nJsSTwG7gDEr9C27au4/r9uzG1BUHlvxlPgM0IHVwdZlcGoHB15AZYrCENKdCngNaTQJDRcSnrLn3\nGu0SMCVjS6mMhmRymrxQjEUZZMJMg1JKoVVAOnFSVT241mRUCK/j2t3LXLM4l4LDKsnIY3oLkZQH\nQyLhsh0aMWK1BjKrU+Uspgk90xPELiYgDbEyIq1MZra0QWKbrUjgNjFfrasJsXKpr7hOj6qu03Ml\nJnox8LR9e/jEidOsTSke9q/u5uu/9La2Jzu0zKapwsaWTIkWIgWKsfGomXyu5rM1ptaT6ysFt1H8\nG/BTP44NMfOpGhunxShX12ey2mRWOh9bJZZpx7MbDcakYFCJMqfFL61TYGhxKanlQwTlCHjq1DLG\nVFAYtZfkhFbMdq88An1xbgZlLMuL86yuLDE3M9NWjlvsaloiiTTt+RHZXgmEZAqPNZoit8TQIYsy\nHS1DMXKB//juD/KXU94zX3TtQV7+vGelr16OEKtmyfdXFhf5w/d8jE+dPDn1s5cDbwcWd3yO1fk5\nXvfbb+JDDzzYvvK266/lx7/txczO9ZM5vEGnql+YUj55rdEuVbS0RmtPjLYNDHWIqESulDEigDKA\n1qLiSl4F0TfYMbmPXLd3F9fuWqKuHVUlRrUE14561ogqoukSbCaeaaXQIbWpKIMxkFm1Y4LWtFG8\nD7HFruY6b7CreTT4pZJMPN2EEmZMsMs7l3Crpm6wagd+VdRVTVWrVsHVyQv6RtPJcsrakVUVWW4p\nnMWFNMa+DQpTYqsxjm2DwqR6iFMtPMnba4LL6exTLXS1+xt1EXbFmBJqk4D5CyE4fNKszzP3muld\nGbuu9LO9K0tPCPcqK8ev/O8PX4Jd3/j8K2PX/j27mZvpYaqKAytLV9zW6/buptAGrnKvzwv36hTF\nFY/P0vzcVe71WawY44ZS6n4kG3IXcuntZqdaazfw4cd6r9e85jXMz8/v+N4dd9zBHXfc8ZjbkWUZ\nIQQUiiLPmenn9Psd8lASy1ISr8kXydWO8WjMeDygGg1RrqKXGXyREbyjIjCqK2mbMwYdwddOzqnx\nGF+VVOMxwZW86FlP464PfoRT56dUzMsrfPVzn8783Cxb44q1zS16ec5cT4ZaxBDJTFLGB4/CIyny\niEZUiwpPDDWuHjMebjPc3oToWVyYp9MpOFdG4CSfLkl7/txZVmd60sLPNtIO+W8AzfLcDLfdvI+7\nP/Ahtjc2yG1B5X506j2ehVJH+NLnPZ8XPO92jj/0AD/xa7/L3ffe377iGdcf4Ae/+YWsLMySW50m\nuyowBpVZYjBUVUlswBhAabSR+FTrKW4QZZr00dNnuOngfm6+/kDLpxt1lg8yCTcEh/eSEve+GWBE\nmxgGaYNrzoeYuFKjWFco4eVETJFjdJ8Z36V2nu3BEKUCmTXMzPSIUYlxPKLKHA6GDDY38UpTKfle\nphy5yehkOcpm2MwSUTgrutXZmR55UdDpdmT6qTH4pQVGwyHDrW0G29sMtkRV5uuaqpLtFmzI6BSG\nL1pcpo4yydzEyOrSnHjbViWdoo/3rk2GNkp+muEkUZS4Ptb4CNpYbJaD1ngvrY5VXbdKLaVEVS2J\nQJl26JOFBoq2yDEcDJFWR0nMZ+l3LrfuvPNO7rzzzh3f29jYeMxrGr6Qk1ppNSeySoGhBIRGJjGl\noNCEmIIA2aFSLRRi5a2dEOQok5ech3EdZApOaKqFQabaRIUMOFDE6JntdzmwuovjF/nPwEN08ppx\nNQGuWw4e5B9/29ektiLVBoVGJRM9BYSpVpKQpNCJWNEpsErT0ZbzGwM+fpkWnRAjnzh6iO2yZl9/\nlu97yZfwk3/0FrbKH2u3o1f0+fsvfSGznQJTlizmHb54/34+fvz7iVPZea1/gNtvvZUbd68StjaI\ntePYmXMcH4zYs2uBPXuWaDxdtArtmNLghRiiVVI7mNTGY8A2hs0RHURVokMQopJUKCidAkIJDENs\nbvLN1K9mIphU1qJ3iWx9+sAwalovmqAVJug2aZBZnQIsUbg0oOd3PE95GSDyVmVsIlY2BYfpWTWe\nNU1jljCOCNRVnYhUTV1WjMdjyvFYRl+Px4xT9NpUDIyFp+/fS+0dQcPKwjx7VhbRWiZs+BQYqpbU\nTKqFUcVUvUyVQoQc+cuoHcKUYmISGIq6xENL3mIyighRjncTGF5dj281bTwKmabXtOaIUstim6BQ\nk5Q7KTBs1A4pMPSZwYcskWNSP35kHJv2jUllPWjXeknN9jrs37WHE2cvrRheu2s3i/OzQs5Skk2n\nKWHi66V2BIaToDC2SaGmBU4RsUaJjBroaEuRHr/8prfziRPbTCfl7zl2GGM+xkynz/b4yI6fwavo\nd/rc9dH7ePAivy0pIHwF8CaaAsLtt97C7/zpn/PhB8/veO1HHj7Mz/8/d/Ez3/HSSUIr+Wgp3zhv\nCdHxWqO9QXtNNBZich0IoIJHe2m7VDFrb/A0LT4owS+RO4jSIaRq3EX4hRfsInjxzWq0BiqitYRH\nOiox/9eKoA1GI2PovU6BH5c8+5Cu1Ra/Yntc1Q7csulZTfBLEBTZesQroklqVZdilxlLYBlSm4yL\nLiWekOk/zlNWNUVdU7u8HR+9E7vkb05UWlMzK2PTijgVFLb4E9t3SFbSbbUwuJ3YFWNM94+rSq2/\nyvp8ca/Z7pWwaxcKxSMXKSG0ejVPu+EG9u1a/itzr0Jb/tWb3vFZYdcNBw6gXI0uSxaynKfv3csn\nTx1O99fJtt52yy3ctH8vcWtT7s21I1YlPtiUfLdXudfnmHt1ig4LvVnWL6OUv2HfPpbnZ69yr89i\nKaVmkITWb8cYjyilTiOTET+Wfj4HPB/494/1Xm94wxu47bbbPqvtyLMcH6TwlmU5/V6fubk+RayI\nVQnBUFeOqhQz9hikxU8RKfICkxdkyRMUbRlWNcqLV1d0HldV4D3j0QhFZDwe4usxmVF845c9l/XN\nTc6eO8dMt2DP8hKdTgdjDEuzMyz0+zjnBH9yGXYQQ8AoRWbkPAs+4Wnyjgo+ynUYPRAwRrGwMEen\n02V+fo4DTvE77/lLPl2S9pZ9+/itP7uLYzv8od+FUoclzt21goqRt37qJLXvAr/BNL7N9iK/9JM/\nRF8rXv/G3+Aj95/lEq/A//pufuoffgXaSmGirj0hGIyV68b7mlglpamShHsIhhhlv2utWNsa8L0/\n9Ube/t4Ptp/gpS98Ab/zhn/O0vysmOSnQUXN1e99nRSPUnZVUWFUJKiAURGrAl4FMqNQRSaTC2Py\nBITExzXYjNxGKufJvKHILYvM432yY1WCZ1VVMy5LRt2CcdemqY1KXmMsRacnwwTyNNFQCbO3WSZW\nIUUHtJKBbzESfRCMGo7wdc1ga8houM14NGZ7e5utrW22hyN0kPbNRqFWaIs2kkzb3N5iazhgZqaD\nTpMkre1AUviiNS2gKSkqKg3G5mjrUMqkdsXAuCypaofNLMPhkKWlJXatrqISD6jrWhRyShJYznnK\nsqTTkYm4VVVRFAVTyLdjXS4xfffdd3P77bc/5nX9hZnUUikobIsyU4oHldQOqVpotfiONP3IRiWj\nZWsIwRLJUwVFKil1EFJlEslp2neCdwSn0UYClcSCQMPffs7T+V8f/DjHzk4SWNft2cM3vlD8Qza2\nh+zfvcr1+/cw2+9OEaqJt4Ca+mxNBtsYhTUG8gytFZk1ZNpSmIyHzl95ysHmuOSpe3bzC3/8VgZV\nDvwqDbiMysP80bs/xE/83a9HlyXD7S1RF7DFdHb+WTffxOu/9x+Qh5r10vEz//Uu3v/IsfYv3Xbj\nAV77bS9mYbaX/DRoy94xxuSNEKaI0GQE8cQUW/qjNZEHjp7godPnuOngtdx4/f626qaaUnszstU7\naaVyDu9q+XddE1zdkiwVXDJSbcpYQvZ0ao1SjamqniIiMXlSBJLPewqooojJZVyzgKL4tVi0sSiT\nSaVTZ21gqJRuK4eNFBUaYiXkqqwqxqOc0ShLxtsGayfGoHVdo2oJ6HpZRrdb0OsUyUh6UuWLOxhR\n0/aUyGgKBpuERzOFJ8Swo2IoD49MglOgfFtBVCGZYKAmqor0Hs3f/gLkVp+/pab+mYK9HcFh6v83\n0mEizXGptUcrjTWGzFpizIgEfJS6nQeqEBnVXvArxmS+m1oPtZ4ELyhe+rxn8Nb3f5TjU75ZB3bt\n4mUv+OJW7m2MwVjxsjGmwdCp1sOppJZ8juQFlkztM2tQ5Bij8VlGYTM6JuPs+jYfPnqUyyXlP3rk\n8r44EBmMD3Hvw4PL/gwOAdcC8Jxbb+V7vumr+J5/9cbL/o27j4hnzcHdS00tXXzNEs7EqCb7Lhlz\nim9U02Qir3/g6AkePvEoN117gJuvv3YqwGGiGohyLKaxy09jl6vbf0ffBIcueWTJNqUmvIRfgl3S\ncSCJoKAaz5v0K1pz6vw6Z9Y2WVmcZ9fiXMIwdmBXg1/ohGNNK1IbGNLil0tKrQa/RqOc8ShjNIVd\n4pkh032UEv+tBiRCoyKb8pG5BLsa3GqVYlOeWq1K4WLsEqUiKoAWDGtaPndgl7yxpMziJKF1Fbse\nx3qScK9Ph11f9yXPwBjNn7znYxw5NfnZrdddx+Fv/9onhHud+ytgVxVgz+Iyuhyjy5If+fqv5I1v\n/XM+fGSyrbffcis/88pvp8gyQmZ5eG2L4ydOck2v4JpdC4AokNqhIk8A91Ix8qlHTnDk9FluOLiP\nG68/wFXupXjq/n3cd+IUFwbT59kevvnFz7vKvT7DpZT6BeCPkZbDfcDPADXwe+kl/xb4Z0qpBxCz\nptcBx4H//rncrizPpeAXglzjWUa306GnM1RRoKJhMBgxGmZkqVUqyyw2EzN4kxeUAWbHY2yxxta4\nYqMe4oKnLMcUnQJrDHVVUqUHvqbfyZjp9+l3cnpGFNDW6OTZlK6FKEmpbqeg3+uR55a6KtkeQL/I\n6OSGolMgdgRyn/bek2W2ndgHoLVhZmaG2ZlZ+r0Znn/rLXzg/lcnld9UEv0pt7K4MM9HH7p0MmOM\nkSOnDnH99TcRgaN/8CeXvAYim4ND3PeJe3jIWt79wQ9d8poGH0+dvcBTr9uLNoaywXfv0UbSEd55\n6rJMWGwwWSbcKyXqvu+n38g7P9Bsp8S0b3/Pq/mHP/x6/uQ3fwmlNVmmicYRvCiKXF2nRLJrL0hV\ne2JZEcclsapQdY3xHkJEm5gKYE7a6DQYFUHVEB3GBBlkUvSwyQSflHCPKMa1o6xq4StO1HoxSstr\nXnTIOj1s3gEtJvM+KkIIaG0oOl3QhtpJi3Sd+GJMdg0+TeXd3Nhgc2Od9bUNer0u/cGYwbhmNB6L\nan4sreWZlWLjaFSytbnN8sIc/U4m/qPaoIzgsYrJV5aJcgs14W2agDYGY207oVsbzWAwYHFpkf7M\nDBubG2TOUVaVFCej3KtkGreXOMB7qrrCGCPDRJ7g9YWZ1IIJuZp82ZIsrRtJvMJYJbJxm+GsTFoI\nIaR7qUxlCUrjlKYGch+xlZObm+j5CEGm4Wgvvjdt4Kk0KkayXsE3v+jZbAyGbA7GLM/1WV6YwxjD\nvLFcs7zITL+L1VKltIlUiYSfJB0lJZFlm6y15Hkule8wMYa0yXju+scYqXzTwQNccJ4PHXmIy4HL\nXz54iFJnHLhmidf+6tv4xLFNpkFCq8PkWcbywjxhe4uf/W9v44NHt3a85iMPHeZf/+G7+YVXvmwy\nOj2Rgua/pIlM02ZSQBZTZTR50axtbvOd//I/8NYP3N1+ipe+4Pn85597LQsLcxOy5tNYV+fwrhJ/\nl7qirmtc5fB1LQalTiq8pCx3A2IxESMZzzuRgbt00TZV4ZgutIYcaSXmw2hFNNK7nKVzKbNZIlby\n0MamwFDIFdASmxihzuvUcpRTVSVFZihyw7gw5LncNDNryDJDWVaMyxJdVSggS73OKk4FaGkkUhOe\npT3eAlNLKWPTgpRGlidi5GLABU/tHc55TIyYGDDBtImN9phqnfbJVJCoJJCeXIRX12e0VJPQmlBS\n1WBCg11GptwoYjsNKbPpBp+SGkorvJKJYQ5F7iLWOPFdikkd5BN+OYXJpG3FGE2/U/BNL3oOG1ub\nbGxvszQ7w/L8TApOxZxctiEZ1DfYpVVqh1MtdrW6M6UwRpNllhByrDWT9qIQyE1GbiznH73yEIvP\n9mev/PqX8lXPu42De3fznk/ce8XXnt0YctPeXclXw6Avwi9IhydOGaEnpcP61oDv+el/z9umMev5\nz+F3Xv9jLCwuNOX29B4pQA8+4VeNT20uTUuMr2p8knQ3+CW/M2mfiTFMgqI4PR4+7lDkbQ9G/Nr/\nfA+fmCpAfNH1B/neb/5K+jM9soRb1maYafyyeZugaBVnKSCTpJaXoLCuqaqcPGFXUVj+P/bePMqS\n6yrz/Z0h4t6bU1XWPGRljVJJJVmDLcnCBmNo3luLHoEeeVBgujH42SV5AIwNWMZ2e8QDBg/YBtw0\njdtAg9s0DU0DNrSwLcuyZVujJdU8D6o5M++NiHPO+2OfExE3K1W2RNGvtcjQusqsvJFxI2P44tt7\nf/vbnY4lywW7rDH0iwGDQYEZaLwXjwqjTQyS1TfBrhZukeA7RE+l9NVH7BYPsbKq8Ah2ae/rdt46\nyL0Eu1JFMh6gRez61pf/A7hX1uvyfS+6hXPnBbsmx0dZPjEu2GQMP/g9t3NuZo5zF+eYWrOCLevX\nMD46ckW412N/C+zqu8DK1WtQxQBdDLhw/gI2y4bWNEaTdzrMDgp+/qO/xz2PNLZDt26Z5uf++Xcy\nYi3apkTyM+deCjh9cZaXvPVD/Pm9LeXDtz2f33rX65kYG/n7zb2M5tartlAFT+FKlk+Ms2HtSnp5\nZ5F7fevLFPAJYDlwEvgb4PYQwpMAIYR3KaVGgI8AS4G7ge8NIRR/lzuVxeDceYfx7Um4gk9WZRhT\nkGUZ3W6HXq8LyqG0ojPSozM6Shk0nbk+FZZT5y5yatYxN1ehlEx4hcDc7Az9vqi1OplMVRwbHaHo\nz4jCSqXiY1RSalFYGq3p5Dkj3Q6jva6o3YOjqqSdl8xEf01ohjIY8jxnYmKcsbExecYb+Vm32+Wd\n/+8P8fqPfpIvPNQkaZ+/4zre+rKX8NXaomFh7NKdkdbPFl5nz979rUtx4XX2HjzOlpWTjI2P0ctz\nKueg8gTt0MbECY4lDDTGZnScr31l9xw8yl9+4T7mx7TOBf787p08sf8wV21cjwEcPorfW4rSShJo\noRS+VfVlEqErijrBSWxJVUpaFFVUtQbj8aoiAMZagoHSDXBVn9yK+jg3GfuPn+Xwk+eZWreG6Q3r\nwYjCSQdPpo14udkOXmdUwYiuNRBxU0ztg9dULsMHmfTsnCNNQD1/4TxWA6GHUiXGerojlt75ObKz\ns8JXXYUzBqOziGsWhaEYVBQDx8ToKFYrvBf1m6hB0wTJ2H6pFEoZgKh8KwnoemqrKOEd1lhmZ+dg\nMGDQ7+O8ZzAYoI3YWchEyWT5IMqtVMxPkyqv5PLsTWrFpY3lAv6qfiBoo2uz5SYoFPm20qCNwlgJ\nCEsUZYCs8hhTSv8uoZFdR6VD0PLATdL15CejgFVLJ1g9uST630gQmKaVSYDYjLbWWrUqhWHojzFa\ngkIgTragrgoZY8iM4erJJXzbjmv44qPzsu76Tm7bcT3bt23hnq8/FI/MwuBysfJcDJr7Hn+MhRJf\n9zy4kyOnTuPmZvniY08suM59j+/k6OkLbFqzXKZXRFJBIo1RpRBqctUY+iot5OvH3vYhPvPlvQxl\n3r94Bz/yunfwR7/2Nlk5NKbXTVA4iEZ50hLjogmgjwRJqpUxIGwFh21vg8oHynjD+bIkxJdGYbSV\nzLS2KJWhsgyVZ9g8I89yOllOnuUYm0tAaDO0yRrVjZIzG/9sfAhCqspKAsNSqoSdjgSGWWbJsoao\ntiuHwQdRy6SkVuslfcoCQiFWM9s10qRMSN4ULhHLkMykXV0VcN5jvDxcUmBYv1rtaCkSCPNvwsXl\naS91cJVUD1pUCSmppFWT1JL+e4/SkjzSVoLCKuFX4bCmqPErTZJxUcoejGqSVlGztXLpOKuWjglB\nUmlyWUxoaVFXpMRWbQKtmrHsQ3+LVnLtZhmgYssINVkUU1bDlg3r4m88fV+cy733T170QjauXQUK\nNq9be9l1p1dO1lOmbAwKSQFRxK82doXGAIqXvumD/NV8zPrSHex8w7v54w++rYn04zbwvm6jkqCw\noCwGVGVBVVaS2CpLUYQ5B941apWIX0lpVSd4fKBygdLH9qSIXR/947/h0cPD7ZkP79vFxz79WV73\n776fTgu7bJajE36ZrMabFBzX5sYhSFIrl3HXRVkOJbTyXPDKRtyyc0LKFYqqqsiMnYddtLBLrv92\nq9AQdqVgOLYbuoRdIWKXqyiqMia0HMYPY5eKbb06JS7b+cpF7HrGy/8J3Gvl0glWLR2tE7Ft7rVq\n6QTrVixjdKR3RbnXlulnjl3XX3stq1avgqKAsuANv/V+vvLEcJvOlx65g7s++glQcO83jg+99+W9\nu3j7f72bd7zke+UYmiap9Uy4l0Lxkrd+kM/ct2focz5z7x386M++nU998C2L3MsHxjIjEzMzu8i9\nnuYSQvimBlchhF9EpiL+b1uyLI9KUF/fI945Ku9QrsIpYhuVl4S31mTWkuUZ3ZERbKeD8oouitHR\nUtoHtYYQyGMiYdCfZW5uDuecXG95VxJOIyOcK+ak/dkYrIkDaIi4pARDjVYoHeo26I7V5EYwrCxL\nqiCeT96H2pBba02v18OYjKyVMDdWMznS46Ov/0n2HzvJ/mOn2LBqFRvXrUHpjG3ldFxzYex6zo7r\n8LWyZuF1rt2yUXwsL7POsm7G7IUZOlnOyOgIucnEDzakZLa0ywlXcrVflFaKfYeT7dpTJNX2H2T7\nxikgFsSck6mQUYHlnacqClzRp+oPKAZ9+v2B+FM5MZSXu1gNFcB89OescJQeKhxOOarKUQ0GMuXR\neT7wqc/zlcf31Xt1+43X87bXvZTJJeN0jMLGraMNThkMFlRMxgePdqUk973BB433NIMzYtueaFgd\nna7BZGPkPYWygcGgT6YdJlQoX8qwKSxGGTJlsMqAU4QKVMgwSlPKADS1AAAgAElEQVT5Eo9MonSI\nYbwLgs0eajsKHzxF4QhE2xsFJb4ukpy7eIHKO1FqezGHz6zFKEU5KKLazeBchbGiMkQrquAvf5M+\ng+VZn9SSJST177ygTNpnLKoVFGagggRs3mCdiQGhogyBvKzkwdYKarxzOF2inSLE6VeiXGiSWpp2\n9a/xnbFGN6/4O+2gUKlQZy2JFXFtNBYrGdsQhKQk0pZagozh3a/8EV77wU/wua+3xsM/50be/eqf\nZGxigquvuvwUxhufcz17DxyIP1sYJI6cfBJflpdd59iZC2xbv1qks7HCXweFhFounWTsqaqllOKJ\nQ0ejQmte5t0H/vwLO9m9/xCbptYIMUqeDpVUBqtCsuxVKe07VVI6JP8FicbqwFCCwUh2QvQ2cIHK\niwohlCVhICaRGoWyGScv9Dk9M8faNStYv341Jrdk3Q69PKebd+jlHUzWkcAw66Bt1pDrSHCSr4z3\ngSLKSYVg5XQ6lu7A0u9mdWBYt2vEoDB4uQatEXWgiAwisfLxax0UDpMqT1JaNFXS2pMmpAlDEhiW\nVZz44jXGuZpQSUCosSGAlYoJmktJ1bOAYP2fvqSgLN3n1mq0pw4KKyskxViN9RpdmTooLEIgK+Sh\noaNXTCJqSpc4pyBIw5qNPl4a8TtR+KbKr6iVWabGLj2s1EpB4SXnXNXE22ipltdJItUEYdsnl/DC\nG67jngfvEEITk/JG38ntN9yEUoovfO3S9779lttRSnH3ly597wU33sy127aQJnVdvXGKF97wnEs+\nQ+s7uGXbFjatWSHJupbSIah0L1Hjf4hJKYJUUncfOMJf3rswZv3Pe3by+MHDbIvEihRYpgDdRVVD\nOaAq+lSFjDd2ZUlVVUPY1eBX/P02dgUidkliy0fsOn7yNA8fWthr8eu7d3L6wkW2rl9LL+/QzTtk\nWQed5eisg7K53POo+lmWsMulpFZVUVRCWjp5wi5LJ7cxqaXrIo6OB7IopJUr4ZlK2aT0UkGCQ9Xg\nVuvQ1UGhq79Kcqvy8hLsKnHeoV3TNltjl9ZgYwU+qh4CYRG7rsjy9497bV+6hBc+5zrueWgh7LoR\nUNzz9YWx65abbgYnE65279vHFx58gIVw5PMPLNzG6EPg3sd3cuzsRaZXTzZJrWfAvZRWPHHoGH9+\n76WtQs4F/vzzO3li/yGmVy///4V7GZOhbcBkRs7pIvda5F5XcMmyLA4oqACwmSXv5OTKEQoITtUG\n4snUWusuvZEendERVJbhS0foF8zNxuRVVdaTi11VMlOKYrnbzcmMptfJGe126XQyTGxr1pmR961M\nNUQpAj5Ca0xEB48Koha1RnibqEgbGxLvZaJ0luUxiSyT6YwxtUIWAzbTXL1pPVdt2oDziDm4ybhm\n6ya+/eabL+Vd5pW8+PYXccN11xMqx3d/2wv56y9eim/fduNN3Hj1Ngieb7/xBr7wwDzepe7gpk0b\n2LF5msxGxW1UXTovwy2UjUot55AbK/KfWFTcvG51PHsLx7RbN6wjDfkgqa7iK6nki8Ecxewsxdwc\nZdFnMCgEg0gKLTkHUtBzdWG2Quw9+lVgthgwVzjKsmJuZoZi9gK/e/fD7DvlaBcH7n3gDl771o/w\n/l/4CUw3x+YZWgn/0Kq5j7UWn1xrM5QJ+KBxXvxYy0oM2b2TwQDdPAftyZymcgalPZWr8FXAqIw8\nzzl/vsvM3Bxz/QEhBKyxWG3Bg6sCvoKgo+efq5qiQ0gefzKUI6nhXfQpw2SozEJmKQk4VzFwFczN\n1knfjsvxcdCL8qBCwCoxkw94Op0uOjfM9vuUvrri9/WzLqmVqsjUj+24RCVAq8m9vkAV81pKSIS5\nechUTh529ahyJw9xMWiWCzD5yDRGo/KAq0faq/SZNGbKiWCldp5EqjSRXMlLEsKpai0Bp0xmIJKU\nqKJIZN0Yli3J+Y1feDn7j53iwPFTbFy7ls1T60nTYK7aNM2LnncLn7v/UgD6jltvZ9umaeLQZp4S\nJKbX4+qk1sLrbFm/mqzbqatjoa4i6YZsJg14YjVBSMCeI5fPvD++/yDTa1bgq7KuErqqxLsytuhE\nAAv1QGVqo+owXIEJPsj5CulKiDe11gRrREbvAq6omJkr+J0vPsyjR5uBLDump/iJ738xSybGGcky\nRmxOmWWYvIvu9NCdHqbTjYmAqP5QzahnFRSGIFzICEn33oDPgKTkCOCpq6jpuq2qSq6r9Kp9b1QT\ngKNom/okX5m2pDSZMzfEq9XK4xw6BHTw+KAxwWCJVaOIvjpWkLTR0efCR6+LmNVfXC67zMcvaM6T\nfB/Xo1Fv1e1gLQSrb6cg1ScX8auKbSA1fgUr+EULv1JiimaEePN58im6hVuS+BlWaQ21IEKS2pCm\nxSitCDqpIJrA0MSqszGa977yR/mpX/lt/uZrTVL+BTfexPt+5uUobXj1L32I//Xl5r3vuOV2PvyW\nN6C04mW/8Gb+6ovNe99+8y386s++gjzPxG/Ee0IwvP+nX8qr3vOxoc94/jVX87Z/+4/p9XK0VtGo\nv7mXkhdA2uekeEh/375Dl8esJw4cFnKlosrIlfioxBI1VstkOSTzZiLJSSfWtzxxktJCceTUeY6d\nucDqyQmWL5vEK0OwMrq6CgXHz1y47L49vvcgyzo5e87NcObsBTatXc301FSDX9bGREBMBkVaLc85\nIetWA0bjM0MIEbt8NC/20Iwvkpe1tsEtRZ1ATEHgEGrEJEN9badElg+1sXJ6jIQWdpXeYRB/IB3x\nzUDz3Fc06kZjUCnQjHecXsSub7oscq+Ge73nlT/CT//qAtj10y8HrXn1L32Yu7/Sxq7n86E3/zxG\nK6JLIoeOn4jvPv02xhMzA64eGYn4pZ8R9wpKsfvIsct+zhP7DjK1fOKKca+jp85z7OwFVk4uEfxa\ngHvhA0dnznN6ZsDqpUtYs2oZqixQgz42zy/hXofPXuTI2QtsnJpi09TaRe61uHxLi7UZVSUWAMH6\nOsnSsRZlDcHp2DLvcMWAsuihVIfeSA+dZ5RB1FHnzp/n1KlTXLx4sVYrFoM+czNWinvWMNLtMjbS\no5tLMksRMErRjZ59efSjtNbEhIp4EXYyQycThaiJk0Ql4erF2Ds0PDFhc/IqKoqCEAJZJsle56tY\nbBCFPyg0Gm1yjMlAZ3zg517FHe/4Fe5u8a4XP//b+fh730WedUBX/NZ738mP/fTr+IvPtfDtubfw\nwdftYmKkh9KK33jja/jJt/4Kf9Xazguuu4Z3vvT7mOhl+KpEaR3bvGVioCeAljnUOg6cScVZaYF2\nbJ1aw/fcfgufvXd+4u1Ovvv2F7B1ap34+8UEfNsXtSwG9OdmmZ25SH/mIlW/L9gUAkaD1rYucjjn\nKEuZkOq9R1nL4TOzHD4zy+SSJYyOjFJU4DEEVXHg+BH2njzNJUUIH7jvwZ38yZ9+huds28CKpUs4\nO1ty8vwcG6en2Ti1EaUDyohfWBax3MXz6mLBz3uFtwatO+S5JS8sc8Uc/QH43LNkXNHRI4z3CibG\nZzh37gJnzp3j7LkLFMWgVg6CeKNWVUUmPYxDhcSEa6DwwVNWjqIsY8shsq9KoYzG4SnKMg5YAaM0\nZVHgKkcny/F4Cj8QhXNMDHe7XbI8k+dtJUMvrvh9fcW3+L97aZ0RaXFpAsT6Zh+izY0kOrU0VFWU\nJBcFxWAgMs7Ye6u1iSesTZAao+S05aZiGMlzK3hMQaGdR7Zit4sQ6kBdYdNKAkIfdOvncrHVfl6m\naa3YOrWWbdNTKGUg/oxY6fnAL7yGO972Pv76Sy0Auu3b+LU3/RxaiffWi2+9lbu/vEBl8eabuXrz\nNN6VvOjmG/jcAsqJ26/bzrbNU/VxD60HOZE0KlSrfNVaT8Gm9ZdvEdq8dhW+EjKVgsLaoDSObBXz\nUTmOIYDy6XpoGaVWQqy0l6TW0ScvcPD8LCtWLGP5yhUEo3BqIJnxwvEfP/cAT5yqaGfdHzm4iw/+\nl7/kx//RCxjVllFjGDWWE7MFJ+YK1q9bx4bpDeR5RifPyLMMY6MPlpZxqcTJZkYh04WMIWRWrsuO\nXJeEVvAQQaYsyppAiomkmIlfqpQZvjfq4NCnEdLN1J0UVHoCVWgFhkGh4/ui3JBzlXxQrDUtYqVq\nIq0vuzOLy1MuMd5ImapmIpuqyUoK2OpwPmKX846qqmSc+kBk1EmG7p2XiVfESlDCo5SUQgKNtNka\nv1Qcd39JYNjGrhQUNqk2lQIrHdBex6SWqolCI6mXr8uWjPEf7trFvmOn2H/sFJvWS1Jexcl8v/32\nX2D/0RPsO3aczVMb2LpxGhUTIp9839vZs38/ew4eYvPaVWxet6aZwhWi2SqBFcuX8dtv+Sl2HzzE\n/sNH2bBqKdOrluF9Kaah9eNcjn0zfCG0WnTSKgF8YOO6VfEHT5Hkn1oruBO9uBJm1UFhJYmtOigk\nxKBJ4RWoZPoeordW5Th7cZZf/m/3cv/eQ/Wn3bh5I6/4/n9APj6CLypCUCztdi+7b+XcHG/+9T/k\n0UNH6ndu3rqFn/mh72PJ8pXkeU6eZ+S5kJDk76FqlYLHEAgabAxICZlUU51gV6P0kq92YJpE3QLY\nFR9xMbkw79YI7Ws9TTsMLSVEiN40PnpqybRI4rM/1GrBpCCSwQcSXCp8wq643uLyNJa/x9xr2ZIx\nPn7XLvYfPcX+46fYtK7BLrThP73959l39AT7jx1n84aIXdqIGW+83zdNPfM2xqs3rac7NtachGfA\nvQKKzd+kDXzz2hVXhHudn+nzvj/6IvfvG8av//cHvoes16u517mLfT5xz0M8fvJUvd5Va1bzgy+6\nic5YD2tNzb1C6fiVP7+Hr+7dX697y44dvPnlP8rypUsWudfictklyzJcVYl/k2nUmDZaP2Cl1bQ/\np0lDYgKBoixwZcFsUXJ2ZpZzZ89y4eIFiqLxyQxAmVk63S6jvS7jYyOMRLVWiJ5HBBcT9tRTSY1u\nHoGZ1bHlNYvKpgbTFDHDGhJH1EPXmzFBTMvj/Z7nOTYY0mQ77ytQqcU2XV+K5ZNL+MS7fpG9R45z\n8NgJtm7cyLYt21BZTjGYA+8Z63X5Lx94N7v37mX3/v1sWbeaLetWE1ycfqoU3ZVd/uD9b+KxffvY\nfeAQW9auYMva5fUAnKoqavP2sqrEpD2A0hqXCnlBhhoJP42KLef5jTe/in931y/zF/c0Me13Pf92\n/sM7Xo+vChrLjci1qoqqjAmtixeYm52hKgYoAlkWzdKlMksIXorDVUFZDvDec7Ff8P4//hxf23u4\n/rzrt27lx//5P2JsdJQL587x0J7kX7pwceDuz9/H/m98g8/tPsXek0/W7952/fW8/dWvYNXK5ZjM\nUGkpynmlaj9RFcDqgMo0lVdUDnzI8MGBl2RsbjtkFOgwVyfQq4g7/b6pLUTq1n4fWy2HJhtR3wMq\nTtQtioLBoIgm9ha0rq0fSie2Jqk4FLxHK0VGqCewJEV8SuaPj41hc4PxJYUrY5Hnyi7P/qRWXNK0\nkPTgiYxkiFzXJLpNlJ2XaQtlxWBQ1EFhFScyBOtjtXC44pcMR9OiQgpM0oURK4J1UKgbpYNuqoRJ\nLt0mT8RqtCFe1PGGg5YRq2mZ3+r5LxPJlWb50nH+87vfxN7Dx9h7+BhbpqfYsnFaqmtB/C0+8qbX\n8rJffBefvbedeX8eH/6FO8k7OcEbPvyGXbz8rR/ir1uZ9xfeeB2//Kr/h06vg483iXdyXJWLvcmt\nimHNv8QYhmBg28b1fM/zb+GzC7QTfddtt7Bl3WqqaoAvC1xVxMCwiEoHuanl2ItxdvASGKbAP7X8\n+KoCF7g4W/CeP7mPrxxoAOrGrVt42b/4XrS2BA9Hz5yPpOrSKSCPH97JY7v3s2F8lNOF45P3fYOH\nT5yst3XD1m38zA//ACuWLaXX65Jlmfj2WIs1vibgIRLvzGjAys/i8VGIQWpz3SqKrIhVIFF5pPaa\nWtnAPMVDaNQMbaPSoWqhaqsdxEsgxGvdBMnIa68xdaDSan+1eigwhMXA8Jksdf6qrXYIntQm2Mih\n49vQkgmLgWTpJDAcFEVNrMSLwEXlVGj5YbU9aWpARKkmsdKoHWIbYvy9JjAcVjrUKrIUDIQQJ1gN\nJ7WkiqhrDKuT8htiUl6bFn7F9zauZ9vmjZJUUaGu2ikV2Do9xdYN6yAkDyqDqPZDPFaBgCV4yzVX\nbWb71mmCl4k4wafEko/HydWmoCFh2JDagRq/tq1fw3ff9lz++r6FMOs2tmyISa168mRMaKVXmhQW\nZfIyqhohqD6d5aR0kHv+fX90D1/fP+yT9cC+XXzw05/ltT/2LynNgBAUkyM9ti5fxp7Tr4jHX/ZN\nqV1Mr1jOH3/+AQ7OS9Z/bc8u3vZbf8DrfvRf0e116XU7dLsdOp1OxC6DNbYV+Ev7aojY1ST9GuyS\nyYnyPDPG1BOOXAu7muti3j2Rzt2Q0iEFhaJ+Cyq1MkVvLe/QQRKpTVAYGiVDHbBIUivEoHBRqfW3\nX/4+c6+tG9aybeN87BLutW3jepmIqsVsN6UxUlLrqk1TfNdtt/G/FsCR73ju80CxYLHxhTdezzVX\nbW5aAp8h9wpKsW3jFN9z+62XKh/0nbz41lvYvHYlg/7c35p7vffTX+DrBy7Frw//18/yUzu/nzJy\nr9+55yF2nyqH1nvi+Cv4j5+9j++/fQdGw5zS9NH85ucf5NGTw+t+5ZFdvOEDH+c9r/mJRe61uFx2\nsTaLyZNQY5jwASCq5pxz9Pt9Zi5e5OLMDOBAw6CqGDjPID6birJkdnaG2dlZnJfJilpBJ7OMjYww\n0uvQySzaKPAOX6nY9uUQsuSjV1LTyGo0ZNbQsYYs+mtpJRgihcqUkBFPLecao3tjDN2uxjkfcUuh\ntUzLllfzLJf8g1xNovAMbNuwjqs3biAow2AwSygGEQXlfjcEptesZOOqZajgZAJrTLKhwGsZ5Llp\n0wY2b1yHVV4movoKXEmoNM4oQlFGtY6JCV3wVVKnh7qNmVDn41g+Psof/cpdPHHwGLsPnWDz9Poo\n6lAE51DBS4HTxe6eOH1wMDtLORigQqCT5dKFYDXGSGK7KArm5kqKos9g0K8n873/v32JB+Zxr4f3\n3sF/+tPP8uZXvowDVcXyJRPxqvpd4DpgG3AVqTiQ6cCf3L+XM4Pe0Hbue2gXd77t3bzjVS9n5eQS\nxnsdMpGYR3eG1gRoT90OrQlkxqDyDraylKrC51Bkjjwv6XY7jFZSWM1zK8kngkzvtEauQ1UzLSAW\noVo5hRCQKbH9OXwIdDo5wVgpYCCWFKV3UmQypo4dgkL8tYwhtxk2z8XTTCk63Q5ZbtCVoqryWj12\nRe/rK77F/y1L60FNIlU02dwWSMnacb3278jq4s3hXJyKUlAUjbeJQjLFaUR9bTYaT55qV5ZVqNUU\ndZtFqjC2CFVdJUyVQtU8PJNUn6H9bQJCoBUQqjoovDSxJS01aUeUgq3T69i6cUqCjRhIJXI1uWSc\n33vvm9iz/yB7Dx1m89RaaZ+JHxuCYcWK5fze+36e3QcOs+fAYTatXcamtcvFIyY+8J2rQDmopB9Z\npaCWCEhN+YpkvhqAj7/lp/ixu947lHl/8W238OtvfFVTJawWqhS2VA4oMAbiOdVBR7WIeE2EeLLe\n86f38dWDMwyRqz27+PAf/hl3/NPvRivD6Yv9uBcLZ90Pn3iSJVXFp7++jz1nwtC2Htyzi3f99n/h\njf/2X+PLgk4nJ8tEtUUm41uDZA3iRA8JELGW3AfIm4CgfYyM0WLKWimqMtRZ94ZWDd0ZdVifjnUT\nFCZiNax2SNl3PLWvkPbDgJcIvbUyISrgo09GfJAuBobf4tLKUKWvoQn40tf2ea2XEJM2rcq8c1Lt\navDLNfhVqxZ0PbgiGSWnCljao/Sz+fh1qTqrwblakVEHUC38SgASP6EJOFXdNrNwUr6FX0qUS3VW\naWiKV9r3hHPiNwINbAYVIBhCNLWUpJYlOEvwYm7sYrCCdlC5iLuhTuLEklPdxhOC59ff8HJe+pYP\n85etQsB33XYrH3/rT0uQ6RzeV9FDKypNY+UwRENSYjCOVqggKUYfREWUJvgFpThy5jxf3bewT9bX\ndu/k1LmLTNgMoy2nLsxx8/oVFO44B882+zY1OclN0yv49Je/EbdzK/AgcBs+/CoP7t/J7n0H2bhu\nNa7ocuDIUZ68IO2Jm9evI2SZKIBVeqkGu0ysCOeRfNbYlVRQKmJXKdgVq86q/RBv3xetHydPIDeE\nXWmV0LTwhKi58pqgQOtE8GPSIipsjDW1YbkPWq4LGv+3xeWbLYvc6+lyLyE/vt5wm3t95E0/w0++\ncbig+J233MJH3vhqUPATv/i+ecXGm/jQz/04eS+/ItwrKCX86w3vGeZft97Cr9+164pwr0NnLvLV\n/U+NXyfPXWTCWE6dn+WJupjY4FMIH2DfyZ0cPH6KyZEcHxSnZgaxmHjpNr/86E4e272XLVNrOXb6\nLCfOnGXTurVsWLtmkXstLvWSZTKNVYotohqtXEVJQDmPVp6qLBkMBvQHRfTekmSL807a52yGtpbB\nYMD58zP05/rY3gi9bodeLAxluZV2fqViwkXsIlxMDqdm+YRrOgRQcWiFaU04VUomWrsKF8BrjQEI\nqr6+QJJd1or5eFlWkeO4iKG2TjyIct6ilEGZyJ1U5FUqmb1L25+P+Jr4YVDEyaoOFSoCPmKO7LvT\nlkppglaYGPOomLByLqqrgUqBNwpJLitUlZLhLibe4n/pGZOeLT6wdf0atqxfT9BGhlOomDAOHu9K\nGWYxmKPsz1EN5giuJNOKbk8sYhL/DYhf6KAoYmJyjqIY4JznyJkLfG0h7uUD9z2wk3Mz59HaMzrS\noZN1GJQ/07rCbkKpvVy9cSNZz3B6UAC/yXy8emj3Tv7r//gzbty+lem1a1i1bCkjI92hVlQfVO2l\nStxvcYEwBA1eB/IspzciSUuUtAgaq7h4UTM3M0PwrlbhW2tiDaeFX6lomZ5vSlEWBTOzs4BM0FRZ\njpmZqZPyQUlyS5Ka4AgMol1RFu8xpTV4H9sOZb+tgpE8p2OHJ/9eieVZmtRqLzW7aiq6VYU3Gmc0\n3kmPbpr+kuRwTYBlCMiEgUFZMagcPkh/bd7pkOV5U/HRqU8/ke0YXKWnX+u5opRw/yaIiz9LhKZe\naTgo1HWFu97S0Ne6wqjT77SmVanmM+qqYNqvmlXG7GxUcMhXOTZbptexdcOa1h8x/G0IsGX9Gjat\nWS5ZcFdeQmATgVKRFCgVW5zSPkRACj4SPeVZOjbCp953F08cPMKeQ0fZMrWWLetW413ZCgYbHxpJ\nysVjYUyzhwq09WhnsU4mU7gqGTNXHDpxhq/sP8yCJsqP7+Tc7AtYOjrCxtUr4nsLZ92XjY9xvnDs\nPnN2wW09sGcnT+w9wPTKZeTW0okS4k5mUXmOyjLIcwkGAR9S1SQ0SQijsZkhyy0dnwNBeurxaG+E\nrCv5nTTBSaXrRjXXT7pWk+KhDkKeYqnfqq9f8aCx1si4a2vI4yjxGJHXxMqaxcDwW12GKWhqy5Fq\nu6sqvFG4SuONromQGBeHWlWQ7v8QAmXl6Rdi4u1RGGPJc0WW5VibY42tq3pE7EpJmtqzICiSebK0\n5qRrsWnXUapRdZFwR6dEVxKLp+tvGLtS9Tslx+TfLTVUvXbaJ78AdnmIo4eJRCqQKpyhVoQoSEXD\n+teT+qcO7ObdD2mKbaj/3SS26kA+4teSsVH+4N2vY8+RE+w9coItU+vYNr1ezqZzgl1RpZBeISrD\nEv431fXmalDWYZzD5TL5pypLzuxPStCFk+ynzpxndNkSfu1/3M2D+w/U725ctpxbN69j+fgooyMZ\njx1P2/lN4Idb2/luAI6ePsNYr8PHP/nXPLhvX/3u867axl0/9H0sWTJR45fKsloen8I5uWZa2FVZ\nOp2MEHzEKo8KpkmuqnSMW9g1lBQN9SFPz9th/FLNuY3nKh3OdF1KIGhr3EqvgIokWM5Btohdz2BZ\n5F5/W+61dHyU33vPL7L74CH2HTrM5vWxoBg/+nff/fPsOXiIPYeOsmndSjatXXFFuVdQnqVjo0P8\nS9q5V+KctO38bbnXN8Ov0+fOs3rtSmbKZBq8MD7NVp5VWY71cKKcuew2H3j0cT70+/+dr+7ZU79z\n2zXbeeOP/xvGly5d5F6LC9aKgqUoCgql6rZnFzzKB0yWif8jci8ZY9HagxbvI2xG3wX6/ROcPnOO\nCzOz+KDodrtMTEzIBMJMlMzBS6uXw+OqkjIEXFmIUqt+fqraV1OpOOAiDi/QEUedCzLYJwKO96H2\neUsKQp2GoyBqGxcLB1ppsizxr4hftKcuyrUbVOJZEU+UjmuE+meinvKQlF8xwUXw4lsHhCxreCqB\ngKvbDSWBGBN6Wsu9FxTBhXoCtNYyMVlHAJP2Q4dXSpoZiM99HWqltfOpmCiKq/7MDIPZWVxZYpQi\ny3NsJrgl6rYq+kZVOB9QJsNkFdp7Kldw/OxsvFoWxpnHdu9hsqP59N/cT1F2gd8gCRzgFXTyghfc\nsJmHHnm0tZ3HgN1IXCnbeXTvXorZC+zft5TpdavR1jJblGydnmLLhnXRg7TpTQ1RvaaRDoqKZGrv\nUFoJZmSS3EyqrBA8PlTyXIh+uKlwhFKSnFKJv0syrShL+nN9TCYDB7SV+Y1FbB3V2tQehlop8YwN\nnizP6XY69HojjPR6KKVYOrk0FpxiDBEHuFzp5dmb1ErHopXBDXHspqsczjohVU7jVeuhEolzIjM6\n9iInYlWUDh9SUGgisRKZXCM7JvoWJAIR6uAK2hXDpoUnBYXzOVNNihLQaF1np4eUAvXvJM+SlFkd\nVkm0A0NhNr4mVQEJaIPyEaLa+908oNNG2jFGaPkxtFUi1K95+0kiWM0f3BguzwssYyVz6/o1bF0v\nSTVJZlU4N1wlrGXvRB8HTENMta4JRPLscGUcl1xVPPlNyDH4fLIAACAASURBVNXZizNMrV3J2hXL\nGO30mBkMZ91hD9MrV7BycoJjx063tnUpSO07fIQJArlWdDPL6YszPHlxhqm1q5nesA490kN3OqIu\nSV5oxCpyJFaZNbhofA0ejUh4lW/GpScSW5P0oaCw+dq0fcRKYaAJAmk9IFQKDuX6qyuERmSrKSjM\nsuizQ0q0IA/6xeVbW+p7IjQYFquGvnISFMbAUNFI5NNtplTTvucTfsWkVkBhbEZHWfK8U5s0GtMe\ndS7NVwm/5Mw108ASvmjT4Jdqkfi0Tp3YSmqYeO0MG9s3qKRUk9y69JWCQuZhFzVGgfge1DXqMC+h\n1QpwY/6OtIVhpYJvBYULBBvthFaI+0QrKIy4tXX9Wq7aMCV7F0dZey8Bna9Kwa86KR/bJCN50LXS\nI6rMlMKkFrsgrVmuqtg8dXnfwek1K/ng7/4xDx84T1s1evDMLjqdU/zQizbSrwpWLl2ClGPvH1oP\n7gA0S8dG+dh//wyPHb4w9P79T+ziFz/++/z7H/5nmJEeZmQE3etKW5XSQ8qHOqlltcjefR6vLxlD\nrXw1FBQSJw6RrpYIPXUKoPWsCT5dBWHodC34vVI1wbe2CQzzTF6XYNdiUPitL4vc64pzr60b1rJt\nas2C3GvL1Fo2r18dFaDl3wn3Amr+lQqJV4p7bd7wTfBr7SpGujkb16zkcvi0YumEBKUusHJ05LLb\n/JN77mfvicHQdu77xi7u+sgneMcdP7LIvRYXUTOFAN5TDiqKwUAS8Jooo9MEr2Tqb1kCTStf1u1g\neqPMnb3AydNnOPbkWS4OHN2REUZHRpkYHSfrdHBevHy9F2WSxlNWMim0rEpgWP2plbSdaaXIYjFG\nK3BVRelBeYXObJ3o1/X009j+rOTh6ZwUz6y1NV4oAOcJXqNkCoEkoxCTb5Wk+iHiFWnicioeteK/\niHEqcjEVn/3SvqvwStcJdR2Q678scYMCV0QsCQF88s2Kd0+0f8CDsq0pyi4mtLQBxDYniFws8j/B\nH8GtAl9VlIM+xaBPWfQJrpT2O2swxuK8JPR1ltPLO4yMjsnvOzHY7/f79Pt95lQOfJmnwpmxTHHs\n1An2HjvOfIEDBPqDnXxj9246WSoA/FPgq63t3ATA1s2b8XMX2X1gP5/87Bc4fOZsvcZtO67hHXe8\nhPGxUSrvoW5nNwTvqIqSoj+Q6YgKrFXkuaXyGVlu65bDwonaUPzCCkIwKCOtg+lvJ/LwekhR9L0M\nyspEyrKKkyLlGShJRIXJcxRQAnkc0tHpdplcNklmLGVZIFNBPZnSKANOKf4uUOvZm9QChuhsHRRK\nH7SvHN4mYkUTxEBdUUmS8RBUKyis8AhYdIzBRsNva7N6ogoQzR6jp0AIl+xZTa5qpUMTtDUZby4N\nCnUiSZe28ySGUoeLMbhtvCHSe+kzZGJWqI+VgEBaQ4U6TJQ1olShTaiGj3YMKeqgsDHtHT4XNGSr\nDlRjxJke8hFUgpIsf6rCyqkMtRdDW6kVUpsQKeiObTDRPFob0/z1cb9cTGhVlWPL9OVNUTetXc3Y\naJd3/v6XmCs6wMdoZ917nZJ/9oLnkSlYMT4af3dhkBpFce7kKcqi4D/f/wiPHG+mKN68eRM/u/P7\nWLpiGdpYjM3QKk6pU7FVwmqsN2TBRt+EgA4O5S24EhsfgJLo9tTwMO+akdMQYpG2FSAOndd556++\ntuSaTObK2VBgqOvqtI5tYIvVwqe71Fc87TYFaSnR9Usrea/BLwnEVJCkiA9QOsegrCgrT0Bk5R2r\nG7VDi/gAtVJLiHlKFLTwRTUkv24XVM1+1wHcEHbNUzBwefyqA6L0fbruauwSdhkifgQ8Icg9H1r7\nLdsMdUJkXhza5KzmJbSa4HD+KYnbDBG7UnasxjU/jF+0Un2BevJOMqF1yRg+KrVUPG60fHi0MbEi\nmq4HqbC6yrF9S5fbd1zFvY/ukoA+jcjWd/C87deQWcP9jz/OQqrRx47u5GLpGBvpkc3NyXHlV5lP\nvmAnJ86c59FDBxfczv37d/LE7j1Mb1iPDZ5MgzYWbTM0FoWqlQ7exEqht/E5GdA4VLBQyUjyNH2z\nfjakhMfw6WvujeAbpRaXrNQ8VZuYMGKX4FejdNB0WtilYlC4iF1Pd1nkXovc61vjXldv6T0Fft3J\n8665hi3r1lDNzjLa63E5fMpjktMqx+qJca5ZvozHTu+K14NsU6k7mF6+kt3HLw0yfQh8+fGd7D1w\nkOnpqUXu9fd8yW1eJ3tdJZOjg/dojCToqShjgqNyMi1O1C+Gbq+HtxnnL8xy9ORpnpwpKE3G0tFx\nxsaWMDa+BGszZvqzhKDwQYm6SSuqgCgZ0egsA2Nrj8gQQkxMaPJci1d9KCkrL/dY1qn5gklticbW\nWJSuOR+v5zzLyfNcWhODtDZqpTFxCAwqPTtFtaS8qvdFeFY0LIfmMk28Kz3bFa2p1oIHLiicp/YI\nDVVJ1S+oBlGdFgLKJw4q7A7n8ZWDQG2XIQbkDTfW3oOO95wSJpoSkz56+NUt08mbMRrPpwE8hCDk\nFoWxltHRUXq9LgGoYiK+LEsGgz7LV67i+Tse4EsLcK+brt7Otql1nDp9Jh6YhcUSSuWsXzFOx55i\nUO1lOGH/CsZGxrnxuus5tG8vn7n/UY7Os7S575FdvPrdH+Hdd/4o3dER8QBreVhpFbAmFhm0QjuN\n0g655AI+OFRw9E30QiVQVSUKh8JisoVbAJWK6r+oyC2KApzcK8o3fNg76SgACM6jcsEvawyZzWov\nQqsDuQ10DCwdHceHQG6vPG49K5NaqiYQ8RHSelinKrmzGlcpnFGx3T/Iw9dmkoivpG/eIeMzXUgj\nd0Fbg7UZ2uYiOY0S0JroRJJNrECnJX2X6I+KwaAx0RPCJKNkjTaNskHVHg2tn7U9aloPy/qhGeLf\nr5vgMJE0Wr+XDlZtOldvjxYRE9LTfG3/NbGKFHzsofYCSr75d5oM07yEdKU4E2Xaj/pmvSSDjz3A\nzZGT90L7M33aZkOOJTAkTu4Q08QEVslc29kM7xzWea7a3OMF11/DFx8eNkXV+k5u3XEd2zdvYv+h\nw9y/dz8LZd3nBjvp9EZZNtqjMzHJaOchZgaXgtRIZ4Q1k0vx/Tl+58sP8/ipYmidr+3bxdt/59O8\n6aX/Ept3yLwnyxtwT8GhNRpvNSEYcKae/KaVwirICJjoYSHHtCHRYkMkZpc6PTxSEgNIgmIJRlPV\nWdUkXV669b34mWRGkxtNxxrqCk08uYu+Dt/a0uBXa6kDw4RfCufklZJJymhMluEVSCeI9No7D84H\nqmgUaqzBZnnEL1M/mFJQKBzAR+xKlKa9g9TXQT1BLPna1FNXm777pg1HX/qzIfxqqRkCraAyVQmb\n32sOklxggUi2VIrX0nFRKUysr+2nxK7gYT52JZxpYVfyiggaomPMcFDcxjrv0940n5pUrfFz6lcc\ndd/gdDzOUVGk9DCGm2gK6pznl+78N/zsB36fzz/Y+N7cdu0O3vyyH+KBvZefvFNow7IVKzlw5sJl\n1zty5vLkbP+JJ1mxfCmZ1ZQ6kOWd+oXSgjcq1NeMsxofDMEbVGU4ef4Cx0+cZOXScdatWBanfYUG\nu9IknohdyreI79CL1jkh4lkjpddRBdQeZiD+JJdiV9qGVYvY9a0si9yLRe71DLjXu+74N7zug/Pw\na8cO3vSyH2akN4LXhrNFaj9cGH+czli2fAWd0nHu9Dm+8+qNlE8cYvfJZptXr5vi1o3r2H/q5FNu\nZ9/ho6xasfRvxb3OnD3L2ZlZVq9Yxurlk4vc61m4ZPH6dFVF5aUzRK51mcCHL+j3ZymKAVmnI75J\nefS4sh1OX5jl8JFjHDnxJP2qYnR8CcuWr2DlilUsW7oMFwKV95SulISIRtSpSNInRJUz8Wc+BJyv\nIlZZtA5ARfAaDJgsJ+90yLOsbk3VVga4+ODBt4cJWFH4ZRkhBMpCpjI652XCovN1a18q/KV9THYS\nJP9fdJzKnFq0ib+Qklrxc3UzREMUYRXBeUKocEVBVQzitDy5R5IBfIjG93X7nApNIRUgNJ50kvRT\nrX2JRc4h/hYT91FZGlxsjVTE4RqGYAxBKbxSaGOxeQelFMY6Mu/JvadbjVBWFb/y2h/lNe/9BJ/7\neoMzz99xPW+54yWMj45y8zXJf2xhscQN12ynmL3IoBog7YnDceXF2Z2cO3eBflFx5Mxpnsp78PP3\n3sfNN+xgdHyMvNPB2JwQNFp5MivXk3cBE5+MORkuFkGUd5y9cJ6zZ85DZphcMkZ72EW9RIz3UbkV\nQsAaQ1DCg01myWJbrlaJ6sqUREUzgCphmKsq+nNz4Epyu5Sxbs7kaJeplcsZFAX270Bh+qxMasmi\nWt/JzeXrIKCSgLACZ8DFSoq2hkzl+LoH1cuIzCBBoY9Z8swasm6HvNOrs9UNnwkiyYzSbdFFtPYm\n8gN54Ch0JFPWNJNLjNUiHZ1nMKpbweEl/yaSp/RZkkpvArtEqFrkSlpD5N9B61Zg2JC0ms6EVsBW\nV/WSKXMiNV7aZyLJSV4ZiWSp+H6ILwIEAymrngLoGnyClzEZsWyZ/hbJvlN7QzdeEelcx6MQgTb9\nuah2S488LLSR68LGFoj3veYl/NT7/xN/87UGoG5/zg2845U/zli3w5nd++NPFyZE3nZZs2Y9J0+c\nZGYwh6i5hkFqdrCTGR9wAb5x8gRPBVK7Dxxk0/q1EDzGxIdcSEa3klX3RuO9gTjKWWsBjifPnuf0\nzCyrVyxl7YplkTSnYxtJlY+vIKPuTZB+fB0SuaK+duV7VT/ojNZxdHq8RkKI+4QQKyNTUuSwyzlp\nT6RaXL7Z0kprtQPDhF8xKHSG2BMP2lqsEtkuQSTmZZDAUDri5IGfZbbGL7mFVB1EiVop5WJS2yFD\nDzc5p0mhJQGhTIkZfg2bIzcmyam1aH7CqwkOaeFX2rc2fuk6maUihqWgMOFXe1ty+YV5GOaHiU6N\nTQ121cFaK+HUvBeNStOUmIXwy4u/V4og26ja/EqA1v4NBa0tvBa4HjaeNgG8FexamXf5zbtezr4j\nJ9h/9BQbVq1mev0avDLM+XTmFiZV127fzrKJMbYHDXzmKde7ZvNG/se9Ty21n+jlzPbnsFaRKU+n\nJx47WoM2WR1IS2Ao6oHgNReLgl/7g//Ow3v31lu8dmoDL/3e7yAfH5WjmgLrFnYZ7zE+YReSBKPB\nqzqZpVTTcqY0VsW2BRXVYCFgEDzN7VNg12JQ+DSWRe61yL2eHvda1enxm3e9nL2HT3Lg6Ek2rFnD\n9Lq1eK3xaEK3y9Vbt8TtL4w/27dtY8RaPvapP+OBFpZcvX6Kf/Dc5zC1ejUrRrocOXbsstuZ6GbM\nXrxQ49fT4V79ouC3/uJzPHLoUL3VHZs28uPf9w8YGRlZ5F7PoiXLMlxUmVReVNVVLCgGV+KCoxjM\n4gmMTkwwvmRMFHEBiqLkxJNnOHDwMKdPn8MYzbJl46xcsYyVK5YzsWSCi7MzGK0oSk9ZllE1KpP2\nRLEX2UBKfhOiT5FubsAgLY9ZbsnyjCzPyPNOXYr0waNiQjUpsLIsq/FKckexOVvLZE8de7F9LCYp\nRFlde66mRJdSeGOolMFFbBPsbJ7TSqmGf/kQk7SpzbqiqgYyMbUqCXiMVVKYcD4ms5IS3uO9JBc9\nVVQZOXyo8GTiw6QRPqYbbqjQECSpp9Bo2sXbiHU0CWWFRymP0rbe76KqyMoKm2UQJ0pqwOYd8gC9\nkTF+952vYc++Y+w5eJKpNavZsG49wWQobVi2Y5LvuPlmPv+1S8USN117PS+67fl88f7UzbNwXPnk\nmXMMBuVl17nv6w+xZCRjzbo1jC9ZSm9kFG0sLlHRVjOf+GpZOnng/IWK3/pvf8FjB/bX7+/YvJGf\n/IH/SzBLDlatpg6BOtkbQpD2RC2KwF6vR6/XEwW1NjikEBG8jy2zHay2WG3QKMpBQX9mFms82peM\n5obVkxOsmZzg7LnztdL0Si7P4qRWWtKJSH3rTVBYGUXlwCoTg0LJsldKgfMiLw0IsUpBIXIx9Dod\neqMj+CAKiMq5CALps2T9ZOwXVL0rQHzga1Vnr5PPiEmmakamMdWBTCJTkQglgpC8HnRUQTRjvdrU\nsv7QoapPMpNQcQpFCgx9ez3idpLvBTG4ax3XpjLoWq8WuUpBYfpZSEEh4utQj4pN52tYGaG8vA/U\nwWoKcBoyJt+rEGisIhrwRbUC6qRM0TYeqritoOh2x/ntt7yGvYePs+/YSabXrWPT1Hr5/ADXXH1V\n/PyFCdH127ezZnIph05eXtVwvoweOpdZZ//hY6xdNiEtO5lFGRvJrihjfAoMQ0A5IVVzg4KP/s+7\nefjw4Xpr122c5qX/5LsZGZUkRvJ60CFgnMd4L1XDVmCYCFU7MDT1S8sr9rOn9Y1SZFqRW0XH6nRk\na7Kr52f9F5dvcYmBYZDx3tL3rqgMVAZMDEyMNShr5DES8atK+BXvX6UVWZbR63bpjYwIdnlXq7gC\nDX6FIMGhgqiAUs29pIhG20np0HgTGWtidX6BxFZKyig1jF0qKpFC8ycviF/txJaW4FDpJiD00bQ0\nJd5SUqutthLjUqJfWStJlQK+aGhaJ6YSBnkJDH1IFUNFCDFATTteB4URu2KFlFphVp/O5kWq1Kc/\nvIVy6SZM1UdjGuVDIqYhruRh+9YtbN+yFYKSqT/KcN1VS/iO5z6Xz391mFQZfSe33XgzN914I8Vg\nwOTylTx3xw6++ugdw1J6dQc3bLuab7vhBj5z39d5cM9wS49Wd7BtxUrGuhkzgz5WeTIv48i1giyT\nqp2QSklIei2T50IwfOwP/4RH952hrVb9xuFd/Maf3c1rfuD/lvMar0la2KW9j1/jv0MKAFuBoUpf\nh3ErqbRqjIuBam4Wxi6ziF3PYFnkXq0PXeRe34R7ERTXbB3jmi1b4hRoCZYS93rOkskFcUzrO3ne\njudw8/XP4fXv+zUe2p8G9AiWPHFkFyMju3ndbbfiBnNsyS3XTU/zyMFLcezqtWsYzxUzFy8A/mlx\nL6MUH/rre/nGkeHp2Y/u38Wvf/oz3PmD/3iRez2LFmtt7RskLVRiGl+agHIlOE9RzGJzw9jkUkYm\nxgGNqxxzc6c5duo0x04+yaA/YGLJKCuXTrB8cgmTk0vIOx1m5i4ixTUxeA9B1HYpd50KjIInzT0X\ngpxPa2RYQd7J6HQ65B1RryotChjvHcZQt2frmHDyaRhN5FHWWrIsl+dhUPg46TElMaRwaePExNZ1\npMBri7LR7D6Ajh5vJip3mg6D2GsYnwWuKvBuQPAlIZqT20wTfKAqZN8JIWKuTB+s3ICqGlC5MnI8\nLfw0Fna1SS2W0o5Ye3kGjQmp+ODx2hJUhUsJYmPwXoMXVzOloqJcpVa8gkFhCAqMyWpT9oTlJlMo\np7h22zjbN19N5aAMiqCldc9Yy0ff8vO8/C2/xGe/2IglXvi85/Pvf+pOelYJHv7nT/FUceWWdWup\nBpPxZwuvE/oXOHz4IMYkBIa8I96mqnYmkwtKBnkoQmb4+Kf+lMcPnmMIs/bt4qOf+gte+UP/ZIEW\n/qZNWhtD3ulQuiCeWpGDZcaSWYsrStLDV6PIjaWb53SyjEwbfFlRDgZkPYPCMdK1rJqcYOlIh9nz\nsZvhCi/PuqSWqmtccamDpLbSwQ1XC3WQHtQYjBmAosIrTeWRTGd8ziulyKyh28kZG+lRVI5BWUpv\navQUkJuKYVLVygWnoDBJKG1L3WBNMvdr2niGXw3R0jWhaqZa1H97HWOFoX+3jZcbpUOjdvA01UQ9\ndCyjsqFWmccD0iJNpICw/r7V1tP6WYgPCoCgQypsQjKabikdBMzF+E9S8UH+/lD/SgT95J/R8mBR\n6ZqgIYrxOGlj0SarjyVJKRLJ1bXbtnLNVVeRjEJRIjG/fnIZL779du6+99IA8fabb+G5N9xIVRRc\nuz1J5RcGoM1T6yj7/cuus6RrKPpz5HlGcHlMJJhakh50I1hXlVw/v/E//xePziNVjxzYxcf++LO8\n8l/9w/paUCkorKuFkVSlwDC0q4RtxYOK/ewmEixVKx6MEkPSjtFCrOrKskQVi4HhN18uwa+4JOPe\nuv3QKJxDXtqiotRcG4P2AYoKpzSlj0Fh3IbWhsxaup2c0ZEeg7JkUJR4X8rY8CCYlZRaKaHVDgqB\nOrgzOk7gmafSMikwTGqGpGyI0vWEYwm7jDZoFc0yW4mtUAdN1ISqUTzEtsQok/bx56EOCuOxjBXH\n1I6THpOCZ2EePrlGpdXGtraSK8rgZYJQiPtEq3oa5mFXxKNEhmrsknWbYlTCMJUeEy3Fg2ow35hI\nrkwMSCOGBRVPtJLwKAWEyvCRt/wsL3/ze/irFqn69ltv51ff9HOM9HqUgwHlYMB7fvZVvP69H+Se\nllL1eddex+te8oP0ul1e9yP/mnf99u/x1SdaLT1r1vAvbtrGwFVUBRgcVajE9yOz+ConGNkP6SI1\ngl1Bc+TJUzzwFH5fDx3YyYnTZ1m1YhnJjjYdN1FqRbVWUjoQk1sM45dRCkMrKNR6SO2gkfbCTCs6\nxiyIXYtCrW++LHKvRe51JbgXqfVqHvfCWD72jjfysrvezl/d0w4Ob+Odr30lJ0+e5CuPPMJCWPLV\nx3dyvt9n1fg4VWZ59Q/8Q375D/+UBw8029m6ciX/+vnXMDc3iw+OzOqnxb0Onzsfi4mXfv7De3dy\n/PRZVoyPLXKvZ8mS2axuaQtBfIYGgwGlCeiyoBrMUZZzdHodRibG6YxP4NEwqJg5dorjp05z9twF\ntIJVk+OsWbGUFZMTLF0yivOQpgHamITwriJ4Q10U85ELtB8+Soy7syyj08npdrp0u1163R7dTheF\noijELypN9s3zHK013slkQUUatpHXg4KMMZASWoUogrz3Nc8LIVCWZcS6Fv5ZjbZiSO6cR4Xo4RRF\nQb7y8ndVrk7CO19SVQPhUEoSI0ErgneUzsmEPFfJ1DwdlbdVSTkYUBSDqFazwhszg81kyBEEvK94\n/OBR9h09xVXTU2yf3lgnBVWdJq7T7qJ41wqnpPYoyb4AShI/tVtrVeF0hVLCU2POMZ4eKcqaTMf9\nkPJd0EZa6m3GyvEJ/uBjH2Tf4SM8ceAQ01NTrF+3nmrQx5cFSyeX8cLn3sI9CyTsb7zqWnZs3YTV\n8Nzt1/DVx+b5BLKL9RNjLBvt0J+dYdCfxZcDXNEHq8lsN8KAtPALRms8cPjYkzz8xBMsyL/27OTY\nk+dYt3J5q+Ata5w8e57Dx5/EGEWe55Szcm76c3MUgwFGQW4tzooiK6m7ko9bN++S5zlVUcRznTHW\n7TA5PkrXaqq5WWbOn2UwGFzx+/pZl9RacKljjRAJkGSOffR5CCEGXMagswwV3fsr5ynKSvxllCK3\nkunOjEZ8Fx2ECnxF8GKYqVuBSP1kil9VnLSrY8U9gVN6SZ906mMefrWZgqr/R6yExa/x54lYpOx+\nCgzbQWH63Xo/keOjVPwaq45J9YAPqOAJ9demopdUDCGOWg3OEc0wanLlYxXRVy5OrxCvBlU/wOP3\n3qOck8kYeJ44coJ9x06xZf06tk1PgbFg0t8UmuMxHAW2gCuRySGuVV8PqZqotYBdSKY8IW0vTvKI\nJq4qOD7y5tfyk3e9c5hY3XIb7/2519Dp5Fij2L5lEy+48SbueWCe6kHfyXO3X8tVmzZQDfrctHUL\nX19A+XDN+rVMr15Onlkyo6OiNtD+T6kYyCEVjSPnzvPAgQMsCFD7dnL83AUJEGNwh9J4pTh7YYbD\nT56VEcHGRo8HX08uqX0klMJqQxZVOXlmyXNLN8/odjKpoHc6jHS7dDMbAxgnE16a07W4PJ2lneAJ\nbcN4mSrivSQH0FFhkFlUYfAQp/JUeJ9MQS3oNJ0poEhJnIhfLjYDtfArNMy6vpfqUeLGYCN22TiB\nrAn82soE6hdQ35+NGqEVAdHCqaBqVcIl+BXv21pKDnFaWDpY9YfVOJXGTKsUJYfkJ9DGrxhJx1do\nJ7IitoU6S0iLMCH+KE5k9UKMHI8fPsS+Y0+yZWod2zZOoUyDx0N/Syvopj4mDRVrQ3y6FohqlIZ4\nxm35GHjFyDMoz+T4KJ98z5vYc+Qoew8fY9P69WyaniIg05vINIqMlSuW89E3v569Bw5x4NBh1q9c\nwbpVK6icqAQ7dhnv3PVj7D98mINHjzHZzVnayZibuYjHiR+R0ehMk2eZTGfSEbsiWQwqoPFoFThx\nuj0ltr18JwDHL86xck1GSMqWICTy+LkLnHjyNL0sI4+V4mawgeC1TsqHFAxGRU5mLbm15FlGJ8/o\ndnK6nZyRToeRTodenl2CXfOTuovLt7gscq9F7nUFudfkxAif/OV/zxMHDrP30BE2Tq1nw5o1VGXJ\nA48+Gj9gYSw5c+E8W9aupMo13dzw5pf8c/YeOsyBY8eZyAyrl42jjCgYsk72tLhXsOb/Y+/dg+3b\nrrrOz3ystfbjnN/7fW/uO4aAhJDYUQrTsdSuNqiNXYBlqowgYhRJpCgtaShbaMGiQUvwgd3aig1i\npUTpLpHCbpWXYHe1QHiICZDc5L5yX7mv3+ucvddac47+Y4w519rn97s3BBLyu+ase/fvnLPPPvsx\n15rf+R1jfsd38MzNm6/4+s+9eI3zJ/Z3uFfAcfX6TZ588SWa2BCb5ph73SFHCIGpcYvaOYzDQBo9\nedhy88Y1tn3P+sQ+3XpFXK5IEtiOh7x0/YBnn3+Rw82GvWXD3ZfPcfn8GU6f3GO5aLlx84C+P2To\nbWPbOeUXkmedSGFn8XGqmmqaSNd1LBYLuq6j6xa0XYtzzozMkya8Fh1tuyCEUK8HEWjaRv+m7YhR\nQ/xxHJVvGVaVbrLFA3XeiGjigF695Jyqo7P5VbmkvE2ykIaBsVSlCIZHVtYLlOY3xYh/3PSMfa+4\n5ANeHGNKjNueYdOThqT2EqFsqk6eii9eu8Gf/fZ/YXvx+wAAIABJREFUzE/83C/Wc/j73/I7+N5v\n+ouc2dsHjENnxVLKVseMRxZ1nAN7XjNCFxsjH3Eu6kaEnZoRbXQjTsuAvZXXuaiG7dpm1+ECPPjA\nvTz40AMK0Skj0SNjxzh0/L1v/Sbe/U3fwk/9zMxX8HPfyF/56i/nzP4+MQS+4+vexTf+7X/If3z/\n9JjXXbnMH/n8+9gcXFclbkpWITDgZaRxiey0GYEYnuAyKcPHPvYxe5bbY9azL17l8vmzunbnzI3D\nDd/3wz/Orz76WH3kpTNnef09l1j4QL89YNweEiSzCIEcA5J1PddNqYaubdUCJQb6bcI5WHUNJ5ZL\nGjwvvfASN/otH/vYC2w2/Sc6bT/u8V9GUouCDzPD0uytY5LegqMaLbt+IOMYUjpCrCJeMjFoxzFn\nbXzV8M5uZW44pwGh9l/d8UooYBFN0nlLUFjqgd0U0uwGhdwSFBbgrZPUfv+KZNwIh46PqTJEZpSE\n6e8tEHQ2hq4qGCxYzBlSqkGhVLJlkviUyFlbtcqYkaSlUIgGr9453aHKGmy/dPUG7/qu7+fHfuGX\n69v9fZ//eXzPN76bU2dOTav0/IOzO0gzrcbOOGHJAUxar2Pl6y7kThDjbBDcJIM8tb/kn33XX+Xh\nx5/kw088xX2vuZt7r1y2bmRZOzvFyN/8hq/lL3z73+Y//PwMpH77G/if/swfZ91EUhf5K1/+pXzL\n9/0gPz9TPnz2PXfz1V/0u1h0HW3bmBE3uEqpsl5WhVQ5JYjPXL1mz/AyAPXSdS5cOFcNAG9se/73\nf/sf+JUnn6yPvHzqNG968DU6WjIFhsExCwxV7dM0kbadAsNl17JadKy6BV0MbPte5cTHgeFv7hD9\npya00mSMmXMmk4klWGsaXOgRmQJDyWr62cao5YfBKd7NA8OymzYLzEzuoMgwK0HxpXQn3opfkxH8\n7QPDKaizf45EPHOF1Y7U/ejhjv5eamKrvsAsIagBoHBrWaHhVw0IZ4FfnhJb2p0w1cSXZE1slbeu\ngaHgzK/mxevXedd3/RN+7Bdn+PWmN/I9f/nPc3J/XZN1ro5DGZQjQWG5xxXs0s8iWerfFsXb7ua8\nsyHQdaoM8IN3X+LBe64ochSJWHA4gpU0eHIKvO7B+3jtfXeTx2Qlr3ZrPKkPfNb99/LglYtsDm+y\nOTig6xpSHg2bNOjr2kZVfKYmqAEh2YLCzOWzp2x0bq9WPXfuLBKURDrvOLh5yD/6P/8t73/00frI\n+89f4Pd89gMzo/ip813xwCmNDKIFhY0FhV0NCtudoLAfBvosjJLqxvnx8Rs7jrnXbY5j7vUb4l6I\nqsUeuvcKD957F+K03Mu5wIP3vsYedHsseejeu1nvLUl9IHWRvgn8tvvv4Z6LZ9kcHFinWt0ECDF8\nQtyLGLhw/uwrvv75s6cr9xLn2PY9//Qnf4YPPfN0feSFk6f47ffdpcn7Y+71aT28D4yjVVyIqLLK\n5moaRw4Ob9KLcLJraLqO0LQggSHd5IWr13jp6nXyOHLu/AmuXDjHmZP7rBYNkns2B9fZHNxgc3gT\n51VtNPGNadOsJCQFnUPBe9qupVuoQmuxWNCY2ftmuyGlzKJbslotzTvLMY6jdfdzpvBSdRZox7pS\n4hV8rB2w/cygu5T0le9rCbZ3FGWnt1jBiWhH1GFAUq4bgao6s3FFNLGLbiqOgyat+s2GNPTqEec9\nTlQhNWx6+s22dj50Tr2xPF43ACwJ9dXf/j381M+X7sxapfLjP/sevvyb/wY/9De+SVWrFJuN3c9T\nFaKWXNeNsECIjSagBfKYGOgRPLHptEOkJeXEcDehnVAh4VLCM6JplIAwkFLUrqohEJ0nB0iAk8C5\ns6f5p9/1P/PwI4/y2JNPcv9dV7j74jn6zSEiGQ8susj/9pe/locffZRHnniKM+sl+63j2vWrvPji\nc1y/cZ3Oupl3TaSNXv30JBHwqgZG7CtcOXfGzsrL8K/Tp4Fy/h3/5Ed+kg8+dm1njJ954Wvo+8d5\n0+vuwzmhP7hB7rf4rGMwpqwNCGJktbem7Vor7weRxKJrOHviBCeXS/J25PqNgc7BkD1j/uQD16s3\nqXU0HqoqB9HJNlM6ZDHi7QOh0VKe3d1CMZOzQBBPE50tdAntllWUDiPgVELvjFAFkzmYt1+tw/Ve\nu5BZPfNuUHg0MGQWGNqHOxoUlt/M/s5XE9CXH6NKoypwWnBIrrusdcfA0HWXVJnSwSZ1mdw7agcD\nt5xU+l6DwrKLiZEe23l0Gd71nd/HT/6np5hPnp/4xffwld/23fwf3/GNs53CeQh464mfCJXb/Y1M\ndcEav6s/hggTuZoeXIln3UVxwkP3XOahe+820BOCj+Qg5ByRnLjYneOf/PVv4sOPP85HHn+S11w8\nxz2XLmhL2aEnDw2LNvK3vvYrePixj/LIU09z8dQ+F0+vSXnEOWibaEReT7WY0kGY1A4eLae4dP6V\nAerCuTOUDmreOb7vR/9ffu2pg50xfvqlr+FnPvgYb3roNVX5oIHh1OkuBk9sNDDsmrijdlh2Heuu\nowlBd2rGVCsajgPDT+A4Mm91DEtgOLuJLdIOXE1qhRoYDkNS/PKOrtHkQAxOybhksMAwJ1Vq6ZJn\nKh/vIWpCS7zM8Gvyn2maWWDow8xAeTehNc8/TUmr3fCnBkDO/LZeEbz0wSVgLThiIula0lfm86TW\ngsnrSiqWFcyqSq2sdZtFATHHr3lNlJOpVMjZ8zmEd33n9/KTv3wEv37hPXzlX/s7/Itv+0vMI7cy\nDkcTW7vjVG7FZ2My7pw6ss2CwtlcE8k2kgVzRTsnOaCaDwczPo6KX9buOufy2e3nMZCGSB4axr6h\na4PO/0XLOA6kPJLSQJZE2zZVWeNnuAWTyuHui2d54+teyy/92m3Uqvc/wIUL5ymWYQD/6Id+lF95\nbNf/4ZHn3s2/+08f5G2vf3AnsTUFhY7otQW4BoUFuxq6bgoKlwtVanVNhAyjS5CH4iV7fPx6j2Pu\ndcy9+NRyL4+g8jvBR0fwkc966H7e9pa38NM/e6s1xBe88fN5/UP3GvdS/BraSNdFxYBFp9iVh98Q\n93LBc/nyBT7ngfv5wEdug2UPPMCl82eRvld/K+f4/n//szz87GZnnD929Wv4pY88wefce9cx9/o0\nHyEEw62kaqFxJNkmz5jVi5QQrMNvi4uRPMLh4SFXX3qJg5uHIMKZU6c4feIEXRNxJA5uXOXq1RcY\n+w2SRyCTRz1Bz790ladeeImTq5aTy9aSLXoSRRwhNCy6BavVkuVqSbfoEBG2my05ZdqmZblcEmOj\njYKGLSL6WZqoWFdKCRVW1Fsrxjgro56OWkJdycXs/oy+dxEkpdqpOOdMHhWLVCzrbJ5T+aGqdxJp\nGBm3W4ZtTx4GECH6QAwel4Vh6NkeHDJstqQxWeziKf8pdsGHn3iGH/+5X+JolUrKwr/7mXfyq48+\nxkN3X9LElptzJj8ls5jl62XqkqyJq1KCOiKuJ8aGNgZi0+k2XUokK/scx0Qetlaybh6oMYAPOGed\nJ2ODi5oElazM1ftMdsID91zhoXuuEDykNOKIdaPCu0CUltfdczcPXLrAZnPIwcFNlquO/f0VN25c\np2ki6/WK5XJF22ryUj1Js74XFxBT495z+TxveO1D/PKHbsWs193/AJfPn9WeJt7z/LXr/MpHHrll\njAXhhRvv5ObBTbxHSwrHgZwGkq09wUdWyyXr9cpKFiMxOto2cGp9ktfcdZkr5y8ScQx+y6ppWW10\n4+OTfbz6klpz/mFH5QVZzKw0kbMnW1cdsb9zwVeDY0ADSGvj6tC6dOe0U5KnSITtJsXTw0wfs5rm\n1dbgOdjEnsp3gg/VYDkElVFOSoeX+XjzHcJCombfFwVDkdHvDMxRUJqRjUKqKF+FXYM4CxawcSyl\nPJP/TNkp3PWk0UA8VZWDEjJAXA0I9VYgCj785LP82C++n9sB1I++75186PEnuO/y+Zptp+yqlgCa\niUxNP08ctHhBlJ1K6vhZYIi+PyhS1Mo67Y9NIjzjtN5QW3cxtA48+4AEx2vvu0fVESU49ELyQg6u\nBnyvve9u7r18jjQOjElvIFPCwHkL4vWtZCM8RRrvPVy5eI7Pfegh/vPDtyNVD3Lp/Fn90N7z9EvX\neP/jZVdjF6CevfZODrcX8TGah4N5JwVdbJqoMvi2UUK4XLSslx17ywXrhd6C96SUGPoRR1+n5vHx\ncY5b8GvKzqjZcraFwpHFT51rDFdCDGYKW3xsRkviqDQaV6oJM5Am/CqJhpy5duOQ6weHnN5fc/bk\nns4bM9ospVy+dAwLYTcoNPzamRz2wXZUSfPH1Mm5mwx7RfxiF7/KfTt/UbY4bQEoHlbFn6wGgrMA\ncMdPK+edx+h9UnHDyRSyFRxzwMNPPcuP/dLL4NfPvZMPPfEk9186d8tJVz1TZjYoO99VTJvjV/lt\nWfwdTJKVKXjVobZEnDMMLufE6XtXNRT4rH4QEhw5OSSoJY8k9UDKHrKnKhi81+5I49BX7Mpp1G5M\nTaydBhX2S/nhpKL6C+/8Yv7G9/1LfvHXJrXq6x94kD/9JV+k8n3zdnv6ued5/4c/csu4igiPv/BO\nrm3uommimYDP2oiXhFYINIZfil2RZafYtV4u2DPsamMkj9qRauM8c6Xb8fEKxx3Ava7eOOT6zUPO\n7K05c3J9zL0+w7jX//Kt38Cf+x+/bcc78Avf9Gb+1jd8DW0bbsu9FL/8b4p7ueBxEvkzX/oH+fs/\n+K/5zw9Pr/9ZDzzIu7707XpNeI94zzPXrvOB2/hvCcJz197JZjh/zL0+zUcMlhAw1SOga0sMpOCR\nEImLBd2iU9+qJpLHgc2NG9y8eo3Ub2m959T+PqvFCrJwePMmL167ytWrL5JzTwwwppGb24Gf/sBH\nePKlF+vr33v+PH/4v/psmhjIWax8UGjblvVqzaJbgEDfb5EsLNslq9WaGCPjOND3PeOYNAHTqC9c\nUZ4FUwtNCnDjRZInLgEVE3etL0w56dSDK0km20ZieS4s6RvchC1OXPVUHbMmwsZByw6LCis6veZd\nFtI4Mmx7hu2WsR9VnR4iLswaJhjWPPrUc/aOb1+l8sHHn+CBK+f1fXmQ4PDjDLsEJKtXnnZ8BCjd\nv3WzRLxTLzQroScXBWVDjpnee9g6MoKkkZTU3sMncIMChg8BGQMSG3xoyL4juwZBeUYMZd91VOuQ\nNCh+i6mTSWiJgMN5X5V3zgtNE+gWHUg2U3/Ipugv3B0g5cxgfpSH25E/8yX/Ld/9Az/C+z88x6yH\n+NNf9of0eSQjIfDi9Vcurx7FsbfeIyepAuJtP+K9p12s2NvfVysK71h0DR7YX6+469IFHrz3Pu4+\nf4Zx03N4cMi67XjxcHOE0X9yjldfUsuO3bhQSUA2M7sxJVIKJBHz1Z3IiE4WKklyOeHyWMtTxIJF\nTMpYSH0IHkmOmNS8No4ZJ57nD3pe7HvOnNzj8uI0HlcJlQ9zIjUnStMnEFvcRZjIlhGoyhb8nBhM\nBOuWkTiSbZ/YwnzUpFISHJOJcfnTGhiWMqiyk5+riqSSKpnqlwso6ssamXKlK4PRKpP+P/LcK/us\nfOijT3HvpbNT0FbfYjEAKh+vBIFT4Lkb9M54eP2cxby0BI8lMCwkbjZ2OU++NVL6SphUs6hByOAy\nnkx2uSoWiv+Ht0WySRFySwqekAJNDghSSbcP6sNQdhSAiVh5R8iabHjPO/4Qf/u9/4pf/tBugPiu\nL/uD9dpIzvPsteuvOMaH48jJxYIYEzGOWnsvzMiVp2sCq65lb9lxYr1kf71kf7VgvVwQnNb3b2NP\n8F4XvZeLFo6PW46j+FUIRUqJMY2k7LXVPVjL54kwHMWvaoCesjHzyZPFI3UXeLvZ8iO/8Gs8+vzz\n9aXvP3eOL37T61mFUP2JSlBYzEJvV25Y5pTuBE4gUhZYha4juOVtlu4EhbdeM9PuoTBrtzV75Ay/\ndsbQvi+Kt6JEMvPkudqhJr3y1EmsKHb0PYJ3YdoxnH2GR5575c6nH/7oU9x36Qwz0Nm51f9K4klu\nQTawn82myqDcklveVCJV4XEEuypuqj9YwS1qwkwVfKp20vJWb2WFky+WeVWZGa1kJYsheWIO5DxW\n7Ioh4HxJnZb24tPt5HrFX/nTf5RHn36Ojz77POfPnOLC2TO17KKsS8+/9Mrl1de2W852HT5AAGLM\nhl2BnLMmtCyx1TWBZTvDrtWSvdWCveWCJgTGYWDba0IO4Ri7PoHj08G9Dg9H/s1R7Dp7ji9+82ex\nXC81qXXMvf6L514n95f807/5zTz86OM88sST3HvlAvddvqC+Yil9SrlX9sLJvRV/8cu/hKeff4Fn\nnn+J82dOcfGsYr1zkJwne88zHydA7MfEuuuOuden8WiaiHbqG82bTD0BRXQ70MeWbrWmWy5p2xYX\nA5u8YTi4Qe4PaYFl29A1CxyBw5uHXD24xtXr1xmHRBs9kgNpTPzU+z/M01eFuWrvsefezQ//zAf4\nY297o0JeUEXVarWk61pSzvR9j8vZ1FsrNd+2hFbOWUutYyTEAGiznKmccPLOcliBrRTPuN3rZV6C\nOMeT7LQkd/ZIVRaGYGqnaa5r81br4D2OpGE05WSyxhRo10QRxmFg6HuSlTEqBqghe3SR4BqCi4os\nWbjv4iuX/t578QwpDwbfUwdbNX6PmraSpIktXZiqt6H69HuiL5uAXg3vx1GTcaEhhIboAhICjC3e\nKh/KxnLOCZetgNk60OIGRjeQXKMKOeesxNzKxfNQ/cfKhqTIoNwMHS9v65kb1fy/a1tS0nLTzWZL\n2ybFDx/JKbEdtvRjJomgDSkzp/bXfOOf+qM89fxVnnzuBU6fPMGFM2e19NphawNcOvfKY7zqWrq2\n4+RJj3eRlITDzZZxTDRRTf/H7Ya97gRt8OQ0cOb0SR667x7uvnyBk4uOgyzIMLDsOmKIJs745B6f\nUFLLOfcNwH8PfBZwCPw/wNeLyK8dedxfBb4KOAX8B+CrReRDn5R3PL2KfrGFcW6wrEFhMD8aW+GM\nlPgSGBZiJcVM2XbBKB1lrMzBFsloXbialIk5Mx5u+cEPPsrDL75Q39FDly7yx3//W1iulztdJEo3\nHeePBnQY95Ejn+s2O4bFD2IWFFYaITtfZgSHncBwTuhM7FH5WwW0MrlsF7BI28tu4VzlUHxryu6i\n5GmHUolssNusS1rw3HfXRXunt588918+r4EmeYdWTeFy+WzOgtDdcJH51yM7h2pIHLSzWAWSUqol\nO/fp6yR7uUrRamCoO/yqiCmJLXH5toGhNBEQYvZkCVoCRLYuTVa/DmQx3UDZnUbVDmLqhJN7K/6H\nP/llPPXcCzz1/ItcMFIl9Y0B3nP2zCu3h91brYgxalIrRJowgogFhbPAsGvYWy0sMNSgcG+5wAls\ntj2NlaWpj86dS6zuLOyCEuTo/0eSWmMiZZN9i4VCJTD0ZmyL4CThZNTEViq7jVMXQD0neg1G7/g3\nv/RBHnt+ZLe062v4ofd9gHe89fM1OCntxMMuZhV1QukOVaIVqcmkWYRWAsJbkmEzLxsHt+DXLYFh\n+eUURE6xpxkul+SOjWcJDgtOTebvR4LCGhhKDQwRqbihJSm+StQ9hsHBc/9dF+xd3H5u3Xf5XCWP\nu+fbWXDIhMkyS3O5GUIbXu1eMjPscm4neVmDw/K6YglODXmmhDw6Ps7w1ZFmuDUltrwD8Sh2xYCj\nISVHzoEsWn7tzQfLT/U7qnSQSekQ7Hmyd9x98SwXz55RU1JLiNY1C8eFs6+MWavVEoLHYd0MY2aI\nkSZEcsjEGIhRS3jaqNi1rkHhgn3DruA9223PQdwSvJrE+jsYu+BOw6/feu51W+x6/mv4off9Cn/s\nC9+oneWc3+Fdx9zrv1zu9eBrLvHA3Rfs2km/JdwrB/Xe8cCV8+e4fO5s+XjT4VUFe/rMyVcc5/31\nCo/7jOBed+oRQiRnVez6NNBvN9y4fp3WmYefb+gWK5qmq933GLbI9pAmJ9ZtZNx6NocbXnzhGtu0\n4cbmGuJhf2+JEPEHW56/dpOnrr7E7RTIj3zsnbxw/SbnTqkCa//EPqvVWtU2B1u8E9arJav1yhRa\nI9ttj0jC+2Bqw9JVWnYwzlnyKQTr3Cq7uHY0iVVUWnX+UR4fZrgyJbAdpVeH8rYsI+OYVdE9bhkG\nK0/LRYmkr5VyKfU0dZbTzQiXPcFFoou1A6hHN50euHKe3/umz+Unf+HW0uO3ft4buPfSWVIa6xpj\nb94+a8EcZ/u/Atk2cA3LvT1Oy8rV/y+buX0MEdcGiC0+tsQ44qwqRxt0DIxDj7NkoW7OCFkSI5Cc\nKsEV76XavjgywfDKOduILX6k3hMC5KwY6J0ntp62jeZbOVIqO3I2X1XjvsFDExrwkSRCP2bGUbjr\nwjnOnznNmLJBuAJ4CIqBVy6c5XMeeogPHKkEcu49nFrt43KiH3rapmO1EtrrNwhBPQ/zODBsNzTL\nBYs24vLIsolcvnCOuy9f5NTemlYyW7QLrKVgSWmeMP3kHJ+oUuutwN8Bftb+9tuAf+Oce72IHAI4\n574eeDfwJ4BHgG8F/m97zCff6h5sLdQMaQkKxyNBIXW3cFI6OEn4PE5qB9stJGuXCijZZUewrk/N\nAE3O/PNf/QgfPpJ5f/iZd/Pen/g53vOlv3enu4T3E5BM3XeYBbTlg8x+V4LCOblyU+nPzr6Ym8bh\nZQdoh1ZRQao+S3lDlNjIJkz1XSlBoRGouQS+kCspxMrans5qoz2m+vCB195z+WUB6m2f/wbuv3Ke\neQegOXVSGJ3TnJnygV21w/yvpvFVYoXtjmHG0iLeiGLaCRQnwlmCwnLihLKbbILUHU+G0uBHd5qD\nGoM6p2Ml0/Wlz11eq1zMdtYsKASn5UDBStIC3HXhnHWtmJNie2/ecf78WV5337382qPvtt8bQPFu\nzp8+w4m9NSkLTUwMUcs0RMS6h3maoMbjy7YEhitTOyzZWy6QLBxstkasTMR7ZxOrOxO7SmKrlB7m\nzJhGxtRo8H8kMJzjV1VqpRIcqmwZUx9hvkPBw9WDQx792HPcrhziw8+9kxev3+Su1cICAVNqhVlw\nWG4YVMwSJOxgmP7uaMmOc7POY7fDryPBYf2hJK1mWFXnfQkWHWaKXhJbU0KrKB3ykcCwBoizwFBf\nvLw7NSutRTzmC0MIPHTvlVfAr8/jgSsXVMK/MygFnWaLeH293eBwjtUaGLqq6lK5VDSTf5mC2+LF\ng1TTVsWYOXYxJcMMt3CZKgdzaoxsL1mDQiROAWJ5LXO6LWkpses4G3n1ltgSu16z90SBHMS8yVSB\nkWf4euX8WT7nwQf5wIdvJVWXz55nbZjlnSfmrEotKzFLKUxBYZyCwvVSg8IThl3r5YKA47Dd0hp2\nFd+RO/y4M/Hrt4B7XT04+LjYdaVilz/mXsfc61PKvUQ08ZVllhiYca8cPGfPneWhe+7h4cdvw79O\nneHk3h6bzfYzhXvdkUcTI3l7wDgONDkxjCMHhwdERmLUxhZNuyCEiEPUR2h7COOWLjj2lguuX7vG\n88+9QOyWNMtA7DzrE2tWe3v0vW4sbVIBh9ur9l64ccC502sWiwV76zXOObabLc5l9s07KYbIMAzq\n55RlZgkRjAZo4mRK7IeKhSWpJcVaYZb4miezStlhVTp5X4XyAhU/54msotISUwaNQ6LvR8axVw/O\ncdxJkhVFpXZLFJunXsfYBYKLeBfta6gbil6Ef/CXvpx3/fXv5cd+bqpS+a/f+Ll891/8CtsQgZzN\nHyvnCUoMnXQ7RSjlz07A20acg6pmlaLazEIeE2M/4kODhIB4j7gAbsT5oGXyPuqtpLhtgweBJkSi\nC8pnpBjhl/HTDotSs/+Kh3kcScnw3Pxt27YlNl75mAORREolsaVY5J2oJ59zhNggPtAPmdGed4oH\nCi+f47iO1bu+7O38r//sh/nArFTx0plz3HvutMYmY2K5iLSt0DYNbdtaqab6P57YX7NoI5IGTp7a\n4+LZU5zaX7FsI11KbIInFg9W0UYXn+zjE0pqicgXzX92zn0F8CzwZuCn7e6vBb5FRH7YHvMngGeA\nPwL8wG/y/errzpiESCZLIttilUWznWUhnMpeypF19y96ujay6Fqrsx9V1oewWC7pVksWy6V26elH\nwjAy+hEHPHfjkA++TOb9V594J89dvcF9++uZ/H0SZ8+lne6IecAUBM6CSK9kBB80oDGSKLNRmAhV\nmQi7i7OO2fwRMO3o23sqLaNz1ixw2SG0cZWqStJbCWfqzc3GmxLEesucz8sA9A38w6//cr7q27+X\nH3vfNHne9vlv4B98/Z+idqKxsSqqinkQOF0Ls2NGLF0BD4vXdIvNAj8v1dNCeYs6zRZeg3OTrH9G\nruyKm4jXzm1OBGekzqm6RluOF2LlgWTPn+u5kLJIiL2/bNdGtrEWjwT9+1TGI4vRO7HnmRaqP/b2\nt/H9P/zjPPz4NMYXTp/hd7z+wXq9FfKnBNCpn0MMLNrIogl0TaALnjZA4yFa4JuZlEBH2Osdedwp\n2AWzK7jMPUlmCF/wq8yqiYDoEOvC5x22m6ueQeM4kMwrxIXAYrmoGLYdRkI/ctC/ctnJCwcb7vIe\nNw8IdxJR7FxfhQqoPYO7FbvcLnY526Wf8G4aA8qPcqQ7GLfHrxJ81IBi5otVS3ZyWRMSwhTIyC3/\nTdhlA16TWAW76o7eUfz6jl2CVfCroGLFr6pC2P1su0mskriakoYlqeVK8sqLEcmMtn8ra4ZHitu6\nlJ/ztAM7w8XJRNputWPk5Ek2i+tVhWVmyjk7HUO7VsWux/I65b16geTE7MP0OtFOeI4opRuQ+kFQ\nsAt9K1/1pX+Av/8DP8KvfGQa17svXOR3/fbXTmUKJYDfwS5PjJ42ehbFZDl6uuhogyMGiF4Ibtol\nvU3kfccedwp+fTq418EzpeTwZbDrsGDXUZXYhedtAAAgAElEQVTWMfc65l6fHu6VUuJLfv8X8M/+\nr5/ikSencT5/+gy/43UPfEZxrzv1CAG2qSeRGEhkpyWHIbRoCZir3TGpyZie4LKp6Dq6NnJ48wbX\nrl3l3OoMZ8+d48TJfVwIXL9+yHIJF06/smrv5ErVw4vFAuccN2/epGsDJ07ssbe3R9M05qE2WPKz\nJcZAUVuVWzDT8hgCwbq/1jK8kk2xo2DCOI5VnVUSXZpk0k3NROF74OYYA4joJqyYP9bYjwxjMgsN\nS8TrqwHT3JCy6YFNee/MwD7gfSR4TWgFU2sVP8Sz+2t+8Fv/HA8/+QwPP/ks910+x31XLiESKWLx\ngo8lSZdyNjWQx3tVbDrnNLk0S6Ar/5r8qQR9TPEF83HEBdHOuzgoTZNEwAUkRMO1DElxPBt24B3R\n6esXpZaWvQ6U/VREPSgx7Eij2DkMONchRNugsURgaAFrcjAmUhZSFsIwkjS/qeemdKcU7UKc3cSb\nNSFqm5N232rR8a4v+4M8+tGneOLpj7FoW72+r9+wJi8CThOc3aJjvVoy9FvSmOnayOkTeyyawDBu\nWC8iJ1YtnReiy0SvcUv0Tn3PEMb0aU5q3eY4hV4RLwA45+4HLgE/Wh4gItecc/8f8AV8EgNDe25b\nkEpAKBSqrRcvsx06vU+zw5rR7NqGZe2KonWu2TkWqyXL1ZrFekU/jsQ4EPqB3vck4IXSBvZlSNZz\nV2/ywD1TYOhKSlSmie19qFnwsgBXVUMNCoMirw+2+IcZME3PyRw6HEw+NDJ7iFRSJTaJKsnL2Xwb\nbFdwFhROgWGe3W4TGM6C1Z1SI+erF9CEqcKp/TX//Fv/HA8/+SwfefJZ7rtykQfvukTZDSzqg3lw\nNtGbI9TK2rXqU99GDVKJiiipMvl+JXrlsb48l0ecZsCnTLh9yjJmM0JVd0prUFjOh35u8ZMJt3py\nFdBUkiRMn3MiVljkh5E+qYFhtiGa/I1lEpqgRDSlRBsj7/gDb+Xxp57l6edeIHpPZ+2Bp0DXdl+8\nlqg10dM2gUUTWbSBLnraCI0Fhd5lK3srwbGpQ+rtVXN8WrELsLlTOhyWxJZd65ZZqIFhjYzU2yhG\nb0aynS2giSQJFwLL9YrFekW3WhH7nhgHLn+czpmn9/e0tMuCuR11VmXPzOZi8dKa1A27c17xy80T\nWiUw1AGforydIMcdCRTLty+DXzOvrKLGynkKCnNNwGh5ym5ia3oFMRyY5OhF3TCpNebvpeLXR5/l\nw09+jPuvXODBuy4DJSibeXVJUQLYp9zllzvTp9y/E6vUBJQFhk4VeZ7pGkHsj8VpsCXOSJXOzyxT\nEH1LIDjHL2av71wdA3Ee701ZwWxMpRDrbDufhi1ZyU9JomUpjQ+M6FpezuWZSgJhtej4s3/07Tz+\n1LM8+exzLNqWJnhu3DxkM5ZgdHqXZX2P3qnCodFW1yUobINT7HIyMyAvr/eqxS74DOJelz+O18ep\n/T0kFNzaTcofc69j7vXp4F7jmGhC4I/8nrfw0Wee45nnX2TRqHK0Cus+c7nXHXF4J4xpQ2KkTwNJ\nhHa5Yr1e0R/eICDa3dcBSUsSkUTTBJbLlvW64/TpPW70W5qY2VsvuXjhMidOneTmwQGbTeJE03Gv\nCHefPcNHXzii2nPv4d5zFzhzYk1sNAm12WzJaWS1PFkVWuOY1HsqiyWpCg8D73VOeK9d93yI+BgI\nQX2cNAkPBbOMsSne2d0C+rduUh5WdCyX2nyuonwjZ+0WOG57LTUcVX1Vuxl7+wtxRaREUfUK1MYM\nhUOqUivUhJZ+newwcJAlc9/ls9x76ZRRDCFExToqLOgEFRErfzQVm2+oCk/jSQWX6h+XT17gK4Nk\nHX/CVhM6pRxdXJ2Lrijnq62DY5SRYVTvLVXLWZMUyZBT5SLBNiad6NqYY9QSfMOHEFtL2gljGigK\n/Hl5KThSEvowMqZEFtSsv1H1PC7jRZCS0K+Qq4BWMDBn9TtbL1qunD3NwWbDS9ue5XJJiNE6bqpJ\nvrcGFzklnBP2VkuWbUMbHN2ypfVCkBHSFhm0I2OJXWLQ6zjlT3/5YT2csvzvAn5aRN5vd19Cr9Nn\njjz8GfvdJ/koJyPZomMnpizCbspI6zzTi73uFjaR1bIlyziRCOdYrFYWGO7RDAMh9viwxXlPDx+3\nXv7CmZMTqSo7hkeCwroQF812fa8TqZoCQzW8U4PgnXCHGgmJ1PvLLlmlIiITsav36f3Ve8YUDrWD\nXw0MbaewkCs3J1NSQUnxryg2iofGTOkx3y2sbwAevOsCD951YUYBd4MvzeoflcNPn3UiVLu3wmWn\nlzMJZs5119Ad2clUUlQA2+PIWtHjdOLlrIRHjgaFOzd7fcqpsnMfRP0WdgLCcnM1tiw7hT6XcyuQ\nnQUO6umQfZ5UEGWhstfMdv2rce/IMAzsr5b4c2c4ONjQD8Oci2vW3ymwuqDS9y4GujZoYBi9Boam\ncghM5tLuSAnSq+W4U7BrB7+snr5oHSq1KIEhil9lR62JQQPDZTsFhpJwMdbAsFuvCLEhxJ57LgV+\n29138cGP3kqs7jt/gdOn9qui6qgnjbPuUDDhl7jdc16Cw7nC4Ra1g/OVHOlnYwebYCJa5SJ15TUL\nphnx2Elo5ZLQmqm0ZomtonQo+FVQcDex5eqknZtCTyqtGdGZ/fvgXRd44K4L1IBQZ6EFrrYmTVHM\nNFi3wy/KGMyCwyNBnDP8clnHunh/4SwYs6DQZTfhVyGRt2BWvuW+4vdQ34kz7BIQPJPizcZcXMUw\nZ0Rbdy8tKLQRzoEaGJaPKlmm8obKKzXIP7W/po2BmweH3DzYTH5os7Eq2FWUDsVLqyodDLtaUzkE\nJ3iSnYqZj8+r7LhT8Ou3invdc/njYNfJfazt0oRfx9zrmHvdAdxrHBN7ywX+zGnlXuV98pnJve6k\nwyFsraMvaWQk40Ok7RYwbnEM1Rsy58Qw9KScaNqG9d6KvRNrzqSert+yf3qP06dPcmL/FKdOniFn\nx3KxZbFckHPmv/m8B/jR//Qoj31sUu295twFvuh3voHQRNq2BbR74Wq1ZLlc4p1nux0Yxx5yJoao\n+4JkUhJV/jg1EPch4EPU7oE+qHG4V3+oiXvYZkOwhL2Ua9CUWXjjLeVG5S51YzVPRujZuhf22y1D\n34NANFW3VcWSmZLRkkqpsENfyiHZWSHwlJD3FcdtQ9fUvlrSngBdczBM8wY4ZaMll/Jt2zDIKVM6\nM875WZ06lgTDTU1jdhS7OOWV/UbL95qGEIPltNW+oWCdmC8fBVMsgT5ZYYxVOeUM2z2miBe1Vmia\nFs/kNxWCq+cdBzmPtpFtnrlmoVDWV2+LUMRBE22cEn1K1RYgGffRvy0Qqn5n275ns9mw3W7pB+1Q\njFVwaAmidm4choG+V6P/5bJjb7XASWLZLljvL2iDI/Ub0vaATdbxFck0TaRpI+K445Rafw/4bOAL\nP0nv5dd/6NVE2SksJqWVYM3DQiMs9W8k40tQ2LWslkt9rF3v4nxVOSwsO4kvpAhSypw9c4r7Llzg\n0Y/dSrJe95q7uXL+TJVvlgmiC6DUi2dGSaYApizwrkzmXVKlZnfU6EoXVKmBXiFUzjLfBaAq76Is\n/Lsqh0qi5mSqBoPaYlSMlDIjV9OyurtjWHZpC5GaB4TlkJ3vZr8sACxT9ljy0cXbXqe8WCVZt79U\njgaGulOYcK74LRQgMHLldMGrz1wMl10J+uy+EsTNP8XOZ5+pWOqn3d0xLPwsm89MtuAwo0alkp0a\nN3uHz1IXjFzBt4CzjVEJDHMmjUlvtltRTAXLlVeGq+wWOnRetI36OSyshKcNjugm+fvkhTEvhXhV\nkatPH3bBkQSRnRdJM1m2VEyq0EUZYys/jEHLd2b45Tya1DL86par2nVFgK/4A1/IP/7XP80HPzoR\nq3vPX+APf8Hn4YqHVigdocJOYARuwq4sFQP08xwNngqGmUGnkQOctzlSB2BmDi+GWWVeC5gKqNy/\nEyjOuxemI/iVreRwp2RnhlY7weF0K+F3xeT6WahjUM7EFNGU+T+bhxVfpfrTTAFowYIS+U3PWxNC\nFk8x/7yl5LDil8OL3fz0HM66hSmZmqJLMRK4W85TAvDyGezzOw04s5sMiOtnLG8H44C5VDDmer50\nKFwdYzXxNqPw7Kpvl+5nzvAeHbOpYYLuCE74Za9/BLtCaeISTaXV6q1il5eq1FJCC0XlMF+/XkXH\nZxz3+sq3/27+0b/+KT74xBHs+l1vqA0cCnYdc69j7nXMvY6PVzpCCKRxpO83pHHAl40wVLXUNA3J\nPKGy+QUlSwosF0vOnj3DZnOIj4H1sOXk2TOcP3uW1WpFExtijJw4scdqb83h5pBV1/LFb/lsejwf\nffYFVl3HuVOnWHSRpg00bUPOmRg71us9um5BTmpiL5KqsgXUPyuEuFMm6JyubpoO1oxSUZuLn9Zw\nb9gmzsr/JeAbw7bCfcq8l1z5iBdTYWctx0tjTx5UheTzSOuNt7iMyIDkDSn1aImiqoMw1btPniTK\nLxKWU3LQOKd7n0HV6HPtryqBc02AKa+d4XJp+FP4wlg6yKr6yKGbgAoauXKIGR2i7MUVHAm2rmgy\nTMjjFk0sZfP80mRSTUrhyE6Vm6PoV4+q3MsGQdmcKx6CkkZFJaccKg0jkgPeNcRYujiCMJJSNlP3\niIyqmJqrttR/S9e7IekKUZJePmR81gR6DuphmEWvGPv0CKps6/uezeGGYRzq/Tdv3mQFtF1HDIHN\nZsPh4SHj0NN1DavFQr2yJHNyf82pdUceNozbmwyHB2zGkYxHXCTGhhDUZ2y8A4ziAXDO/V3gi4C3\nishTs189jc6di+zuGF4Efv6VnvPrvu7rOHny5M5973jHO3jHO97x8n9UM8oztUPxIZDiBSA7X0u3\nhaZpWa6WIEJoIrFtabuOBDSLBU23IHatnejIGEc13rMa+D/8ls/hX/3H/8wjz04k66G77uIr/9Bb\nq5Q0mBTe3qp+nQc9dUC5JTBkvovlJwVEeXgdAo784OZPKrsPKuTiqFmymQ07i6ac0w4MOtmm+5gZ\n2onJO6swvgQlwixo3P2vvK/p/d/KtmpQNDu39QMY4dwhyyXgZqpN9oVQUoB5ktU7cWpOW8Z6Hsq6\n8v408LL6Hr0v6/2JZOaCucTiyjNw4IvyQQM8h0O8zD6pBpz1hgZ2GBmWXB7DbBP0NgH4jEhJJcrl\nqypDirlssl3gEhymbB3ypswKzkGwxa5tVOmw7BoWXUPbaKvW4O1aqPMt7+yIlG59R4/3vve9vPe9\n79257+rVq7c87rfq+FRgF/wG8atiQUlopYpjskNcLYyx+eq9p2l38atpW9pFp8H9YkHsFsS2URKS\ntGvOifWSr3r77+axp5/jqedf5PTeirMnT5ihqBKkGANNo7X8wU+doQp1FhGyQ3f1KEEhU/RUMczP\nfjYVhdvFr1u6Hc6jk52kDhW7ZDY2zG7OcMKX7leGXRN+ScWvOqIitWxKdxQtKVQ/7+5/EzWcJ7hs\n7hcsqMmsOc7PgnyctQyaJQsp2IURyBIkmX+WJaicZMi661YZrsPuKyimpMaXdQNn2J0qhpUdUnBK\neMvP9viMZqvmCa2KSzPvLp8he6diCu+spbWNww5uFayarRH1N0xrtI1Z9d1IFkjcgl36rkrSwHuH\ns9Kd7gh2NUHNyV059+Wcl+Azi3pPvAqwCz5zudf+esm7vuitPPb0czz53AucWq84e3Jfyw2Drw0D\njrnXMfc65l563In4daccMQT6zSFj31dldxpVMeqDJ8bAdjNy8+Am/TDQmTKniQ37+3tcunRJfbCW\nS25uN6xPneDM2TPsrVfg1Iz7xIl91nt7vPjiizRNYBgGzp4+y6ptOdwMlmSCpmlomgaAxXLJ/t4e\nTYykpKVkDiDoepesw7UmBspmoTPvc107cRm8MjQXSnK+dM9WzjUMA2M/4ETHQmrme+J7YEkoyThL\nEKU0kIaeNA6QNX2m7wO7HgfGvEVkCwwTVwOcj2DNYbKDJDCKVQCClieHBN6TZGAURyAgLtj8c2Dd\nCX1waLdC9eKq2J6EPOhcSzJqAsupwtuXpLdVDmQXLQGoOONLQ6CCGIZnSoF1brs04kbjWJZYq5u2\nIgQczgvivSYpfUCyNU9Juj46nK1RDdkSp8nUT9vtFsmOJmSaprGkJdqxcBT7HPr3zsEw9OqLljLB\ne2KrfmspCyOJXHtvGK9CG0dJhpQFYcJjyVI3E7d9zzgMZDzDOHLt2jXaruP06dPk7BiGq2w2G3Cw\nf+IEqzaSxpHlouXsqROs2kB/MDJuD0njhuTgYEx43xCW+4hTk/g7QqllpOqLgbeJyGPz34nIR5xz\nTwO/D/gle/wJ4HcC3/1Kz/ud3/mdvOlNb/rE3oyBfC03KYaleUauCnmW6ea9o20aWC6JFiC2Xcdi\nuSSJ4GKDjxHXaPZ8HEeaEFRaabLIZdfyZb/7jVw92HD1YMO50ye478oF9vdWNNFM+kKY7VRSF8Is\nGV8W+7KY7wSE089USfxErMqzcWQdm6hLWXzd7mNLUJi1plcJQPmq5rmFXGlgmHcCQ5gCRv1tngLD\nQmacGgVPAeREDgqpkkpnYKo/USWIKkOnwLA8b/04xXjWT+NVzPsKsXKzc+3EPkfxfrCby8l2BW28\nxVjpbOx9DfQ8jjSNZtZgULLt+NlCUQiTM1KVTRlRu2JQ/GfsvWanRtv21bBTx1jE2lNP53Y3JC+n\ndRYY5t1b6fyW5sSquAjaZ9Tg3ySuuN3AsI1KrILT4TYqCEVmb12vZDJ+PHrcLjh63/vex5vf/Obb\nPPpTe3yqsAt+Y/i1o9Sy7oVzHJsHYLv45WnbBpeXRB928CvjcE3ExwYXoxqMjiNDDAQr0zp/ao9V\nowqE0tZ8SmrpTkoMBb8Mc+xa08tTdpMAtwkK5/eVhJYLYZbEuhW/do+J+JcvpfREMSzVr0V1o+bf\nhkEFq44GhbMdwHlQmMV2523eKd4cDQznQeHsPULFr4pd5fyV+WnYhTCpCHyZgzazsr73OXZZlGk3\nwzFLbGlcqSaw84DTod4vvszzXJJThr8z0VfRRIi3O0wR4nCqXGA6X1O5jt4yrqpTpHho1YTVhFc7\n13x5Lsr53F2bZZbQKp3f5vhVsctezIF189HSQ22e0Gi3ncbWbFc/pV4/ogQ8leBwnnicHXcSdsEx\n9/Lec/7UPssm6nO5qUlAwa5j7sUx9zrmXsCdh1930hFCoO83yh9sRqWsDStwQmwCKY3cvHmTzeaQ\ndtERglo+xPWa1geapqFdLrmxOSAuFuzt77O3XnOw2WgCLETlXN6xXHT0m+tIto69frSS+aCYZR3u\nVssVi8UC77WptSajFLfGsWCeqZRKqd5sTter3TYTVaUTNWuUJ6459D1DP1Qj9pIYc+VJ6vPo9zln\nxmFgHAdyGi2hJVVl6MwgS9U/yRJdgWTC6PKc07U7Xxewq3taMwoGlgQuKNZgGw04pySG4mEKpDlf\nthPt0YRgwXsHuID4SCYy5lnDHSkdT4Gsqjyn+XK880TnAY/XPULFK5WW6c178+fKiGwR8QRJ+BBo\nQzBD91E9qETfXNNEmkbXhr7f4nzDOIyGs4L4jPOe6AO4yDj2COCDdXb1kSyJ7bbncEx0ORGadloX\njJOV7rk60uY1KeqJFqOmgUSk+juWYRiTXiuHh4emEGwYxoFh0M/RNA37+2sWMdB6OHXyBHvrFQ2J\n7B3khEdoouew7+mHTLtYIahJ/Pjp9tRyzv094B3AfwfcdM5dtF9dFZGNff9dwF92zn0IbSv9LcAT\nwL/8pLzj8l4oRKXIuOcGwebxYJNk2iHWSeKdp2kbghlnt91ANyxY9oNmVE2yKc5rUDgMBkSm1CpA\n4xznTmrbytJiNYbZbmGYQAeM8LtpEpdPMidVhUzhpsWvtBrdIVZl4c27IwJlCZ8eZ9/Mgohcx620\ntS81+jjbbbPAUNykeHC15EjquO6C00QI6n/1+1JsMlc82Ncy14xU6QbmnFRJfajGM0fGCyNliCrc\nbVerECw3Cwhdrshmt6JIKABlYw2IV0NBHYPyFzZSNvQ1MLSyH8SbSDbV59+hRVmDRW+11862BV12\nzH0adokU0z31dNpvCmE+EhhONeXFgHYiWPPEAxYc4LXVahPLbmGrxCp6I1Z6PZQd2KImKvLel1M7\n3CnHnYRd9ZgH8Ue6iE1dr6akxtHAMHpPa0FhNwwsh55k6hkxOfo4DvSDBoXzpHzxSKjdl7zuTk5K\nLW0XXtQ6JVaa8LQO7G2DwlquV1QPs90s/UyO2bPsglb5XqReo8qYbGEuCod8q1KrBIYlyCuqhylY\nNDSqipJcc0YZsdK43RBmCmXm4eEsMKScIrEYVXaUWiWAnmNXDWxsfHW3shi6z4NDCwqxoDDP9Q2q\nwnLOcK2cL2uDrfg1BYU1qcWsBKcmqsRIYqoYN5VAGgIVDwwjsA5TURix1fNlRGp2budYRrl2arLS\nxigzBYRWgliMs1PKpFG7GM3XyBIUeu8I+F2lQ9vQRg0Kg1NT4LIGzpMBr6R0uJOOOwm/7hTuVRNa\nVoZzzL2Oudcx9zo+fj1H8J6x31JKOUExLOURyETzIireQrmU/PuAb1vaEK3sObDaHpJDoFutWS4W\njEl9kobtRpVfwLLruCrXyONoBujGuYJ1Vw6B5WrJYtHhvVM+mJJ1vANE1ykXSkJr+iy1mc0RT0Hl\ndqq4V+qg1yegpdpRaMxgvnQknRDLvtr9uvmjHBUE8xfXTQL0/eEEHxyRiCOrUTmiJbs12Sva6Tan\nuu4K7M4h2E0oFx4IFXfE+GNOqU7zglllvipceUIMlM3gnY1Xyt/YRpeo11+MVrJn5b6SR02EoeuJ\nljlmsjP+GRR7nErjcDEQXcDFAbKWj0rOpKBVE2m0br85I8ETY6Pqq3ZB25Vugr2NsyAuK+f3EXGJ\nYezVqN05XHC0i4ZERvqBEdHEowpWrTyzFLNnkmH1mDNjUnViGxodB/N1lJQq988pMQ5J/Q0J9MPI\n4WbDmEZ8cLTRs2x0A3HVBU7tr+miJyL0HtXROU/bdQx9YkhDXV+GlD4luPWJKrX+LHrF/MSR+/8k\n8H0AIvIdzrkV8PfRDj0/BbxdRPrf3Fudjjlp0ODhCKGqrZDt4rYAqQQbukC7SXZZduW8J+TJhjEz\ntaAMfp4kNjIt7OwWxjCRqxAUWECzpKWMp0zYQi6OBoKlY81t7yvEyjKwTpOuJp2ej0v959aBq0Ge\nfT/7+7qUl4BSlO3UzghF+lxkz3W8JxLkZ1SgBKL1Ro0tbbIaQHk/kYhaupOPAF0BO2e8ah4cUm/F\nCJpCpEswaCSn7OZpy2YHOVlgOQ/77HcyP0eCn8nZc5G4Ozd7n87GYDbexROigK0Xq01XhYz6E82T\nAqq6KLXdsEvG50mFKWCYnb48EegpGTIFH5Ls82qtVTWGLu1WW/N16NpI10SaqAFF7SSFq09ddwvL\nc9/ZxOqOwa6Jj5TrZlId1Y5XO6Uf0+Kes3ZM8V4TF6EoqQwfkkz4lYQpIHR6ZXvEBNdSTdBDVWp5\nw67Jkwb0PJvIaB4O3TaRNTdZryaffsI0zX3o9edKMAWTz/osoXWUYGHYKyWe8uBMdVQCMyxxooHO\nhF27pvJT2YbYNaxKrZJoK0GLkhpyhpSqp4szkiXetvidhfnZklo1oTXNi6NzYw5fu/mxCbtqIgt7\nH/PkliWYxGUzXlVck5m6qpwj73QH0WavXUumDakJrfKahQ7aebKguILMDL/qOba3WjqYTXA6G025\nzfezEzyN91Hskjo3Juwq10827HIEN3nSdE1D1xp2hbkvnL2csJvQuvOxC+4g/EJf7Jh7HXOvY+51\nzL1elYf3njyO5HEgjz3ZKfcaBu3kt+gauq5jHLZst31VtNQNHKcbi+vVCt9GknOErrP1JxI8XLt+\nE7fROdPGgHOZNPY43+Acim0hgFMl0Hq1pm1b5SNpZBxHLU3FVIdi2BmjXQd6MWiyTTu/UvxQg69+\nqmWeKmfyBKe/a5qIE+WAORXFKNN8rnPfNgydJgPxhn+5/I0lnkXfRyaAeLK4ml7WuQApjVW1WNRD\nZQ7nMn9mTLN40dW5WT6PqGeVpIwkfXydD8meFx2vEDSptctRMbP6ojbOiEybvj40llAUKxsWhKCe\nZePICARAgrlJoIbrahTozZ+2heyQrOWFMK19OTckS+pokn4qzfce0ljKrKWurSDEqIqtYdDyZocj\nRk2IutjQ96OWKnplgckS33oW1TdQsI3DlCHrWuoy1Zs2m5JWz4mOjTYliPT9SD8M2mndC23jiD4j\n45bV3j7rLrBeRAKB/rBh7LdkcbTdEkmRMd1EsmMYEv12+JTM7U8oqSUi/uM/CkTkm4Fv/g28n0/w\nULKvPiuTDD4fJVWzSaqZZVs+LbvtQyCIEBE1BMSKMATb8ZsCQoftmkjJ3FMz7sWkNJjJcg3OjKyV\nLg2VVt0uKCxmeq60lT+qfpjFfTYKTvWp+v2MVBUSJ/YHrgRgJQAqpMMZuRL1Fqj+I+XirztPtuuU\ndde8/DwB04yPlTcggkum11S3QUhOVQUhICFQ3IongnIkEN3JwJcPfZvA0FEDuhohG7kqXW7cjGgV\nCXt2qTgEzZ7IyE4ZbyPf3tuQSSFVnuqlIKp8yMzs93Q7UYNxKb/RDDxZds9tBdysm3n6hilLSwV/\nu00neVrgarS4EzFO5Epytssv2+vp9eydozVi1VkZT9s0NNGu59IFr4TGFhgmk9qnuiDdmcediV0z\n/CplOznfgl/Okh06H/PUDdHwK4RAFCsNzLkGhU7E1A3U81yK3UqCJngmTy0/wy/bTa6JNIde7yV6\nc0Up9DIYVhQOR343T4ztBpnTuNTLqAR4Tpjjlze/FakAZ54oJUh0UgOMuf9IKruDaQoOizJonmip\nV7HYHC1mll4gqV+FDRz4AH5WeiglSWW5zNQAACAASURBVJan553Ni+l8MsMsC9Z3RmYKDMWUUTVA\nLH5YzikJoQxRIdzzc2RjhkfKkuScSet38av4ZRWUqiVF6AtkEUpPe+ftOsrz84t1C8oK6TWRNQWE\nO+qSOZ7P7kemvzo6RyrYW0lpQBOubdRdw85KeNpGS9FCMfzGGfF0NcGiHiG6lkm+c7EL7lT8OuZe\nx9xrOsfH3Itj7vUqOYL3pNSTs3Zf1Q2YZJ2kR7xvWSwW9GjZ3TAMmtARdDNsVONu7z1t0zB6T7Rz\n1jSBJnjS2JOGjDcTI+8cQ7/FuYTzDcE7ondEH2ibhtVySbdYMI6JcehtA9PmQ87m51w41QxDS5lh\nUWqFUL0GC34C6OaBYmdwqnaVNCVFdb7ZNWt/Irb+OifGEUE964p/Qa7JWbGSPUyVKZTEiN7G2jjB\nkkgVX8rUKWvHhLEiwgefeJrHPvYCD959idfec9l4Karcn3GKwvHGpB5TWSf/Dn6XsdOKS8OpHQX/\nSM4ekYDYjqs+v46lWDMBSbVgHND1opQsO4wHeR1zZjy5nD+gYntpiFPXTMrjfE0sKe7r8zeNJty2\n2w3jOIKDEBs66zBOPzKM2ToVJsZUkuCaPGP+vu2arhubtqbodZOtU6N+pu12S3OoDRSQVGOLnLak\n4RAvK7pWFfPRQfCBPqsZvHMNbRMJvieNiX4zsO3vgKTWnXboebDdwRm5Uomk7U7Z5Ifpwq8k1y60\nIEIOakbnsl6q5QIItlOovhx5FhDqxVHM9zQg9FX2Xi5eESZw8t4CB3YmWyFSL7dDWH6mTkyL9fQn\nQCwKgR1SVQK0yg4oqktb7C1AMuPMIg6gBNGzBbnuEBZClVMNBopCoS7qlIBFcFnAZdzoNBAq5TK+\nZLbLuEzEt5K5HRIxizZrsDbdnAXu+k3JS2PkUVUOqmLI+pmLQbLtHOoZSupDY+dqig0tIPcOpARG\nedopzE6lqFnJGp5KrvSlnS0MCi7WE0PVE1LKC6YdZVd+n6fAT2Ayhd0JDOfzYSJX88SFPleuWfgp\nk6CBgfeY/F0Dw7Jb2DaRxpIdarprGp/iH2SlCulVUsJzpx1SEhfVID7V76XUtsySIHP82lkoQyAg\nRAcue7tOsKSWEpGdhFYJEB0TfpnCoai2fLn+62u6uuCWf51zlXAfDQydBYVT2/Zpt9mokz5TVVnN\nQsXZdVSESvaCJnu391AkW6b2KnGLy1NS6HaBYemul5Ps4NekkqC+D1dVDjPscg6Janoqjd+Zj7kG\nhLMAEeGWqVEwi3lgKPWm+DXHrvK5S5ZAcavMcL1Nc7sqk9x03pwltlQxIRW/sim+cnY1IMyYPYRJ\n87GEQvaa2NLdWR2TaS3D/Gm8qUMcRSmxk9CapbPm+auKXWK70nadlsAw51w/E5iCp2BX8FNg2BTs\nKkFh8YabB4XUayMVMn58/LqPY+4Fx9yLY+5V58Mx93o1HZrUGsh51OsD0LOcEEtsdl1HlwfGlDSg\nD1amJ6KB+TAw5IR41N4hBkJwdE3DerWkayMHm0PSoJwueC3nyg4aF3BOE/fdomW9XrNYLvHOcdj3\njENvsBIois1QlFdIxbl5d2qgrv07v3OFE9hcr8mkKYkEmrxxdR2eLcwu60aic4A337rJFqGwkDQK\neRgY0zg1SbBE1jhagmXMjDMelq3sWblgqLzSOcfVmwf8+e/+5/zEL76/vsff++Y38D3f+JXs762Y\nQEgqT02z1xSHJhQr8E7HPCmfs/raOcPeLEmTnZnp+e1r5STYJhtqdu9yxoWINfvWx9c1UsfYe7+T\nfC6NTMr9c3V/WSPK5k3hkCkptgYfaJpWk2LDqL0BYkvXLYCefjxkHEZVs2VqEhFrJISNc/CB+Skv\nnSqnrrV27kXY3LxJ9MoVkVzVpaVDZmvJ+BgibQwEHwBPP46MY8IREMHM4Qf64TipNR1GjEumWE2D\nR0pb5Jwnud48KARTOqALa92VQ3d8Va2shL8s6MGX4Mw4ACZ/B11/3ax8x0/+DjUoREw+6fGzC7oE\nM6Xt6m13Dm8JFB2vdEghVyU2dHMyUq9lXcCF2epvm41O7G9yDbh3/AHyJNXckY/OrAtu2TESI1dk\nk484PvT0czzy3Ivcf9dFHrjnCgSppGxnt3D2dX642T+VUFF+LmAMEx1RKaeTWWFO9XfYfebaDSKD\nzLLqgKlXynuckfVCUM3Rwdu45vKeJM84YaF7tiDMFp7CCyvu2P06NPOAcDcwZPaRd8iV8ceKWLNS\nhEq47fqLwdGEYEFhUL+TJpqXibY2n+8YamA4lfC8GtQOd8wh0/WO5Cr7LcS3mi0zUzswuwZELMGj\nFDyIGIKB8xN2Ock7PjQFt4riwc/xqySzimzdT9e3SrktKpOiBrpNIOiO3O+PYJeb7b4fHZOisioR\n4wy6KnYZvun3bsKcOqxS14Zcd/DnLdVnCS27bmtlncynkQY7Ch8lsZKnhcTpGIj3mBlWnWNzzCrz\nY/fDuh0s3g0MYWcyl8QWpRRxFvnmsrrozZf3lbMqxyjPV3Cm/DwnUFbW4Bx5jl9lPGuiz34oAZ+p\nyoqCYkpsTeuasx/K+9MlYlI9UHhzub9y6ILQViY7RXC3YJdz2vsoeq8Eqwm1/KOLjQYaNclRrvwy\n7Y5g13FQ+Os7jrnX7YflVcK9AKZ6Tn/MvY6512fkEbyv3kbVU2mnlFOITUMcGu0Gt92y7BbqpRUj\neRz1+ktJKYCpsZyDto2sVkvWyyV9v2Xb90Sn5fHjaNzMZkbwnkW3YG9/T8sdx4HtZoPk0brYaXIm\nOEcI6tvsnN9RpdaNAywpZUdNCFuyeYfjaFYb7/V3UjCirsU2VzzaWEMMR+x3DlcTt/qEGSEzjD19\nv2XIaio/jiPDqL5M45g08ZV3b+UplE5MjTne83d/gJ/+5aeB7wf+a+Df85M//x6+8tu+h3/x196D\nD65ibraxLzhYks4p5wl7ywOMSBbOGqO3dWLiYLpJM+e2GF+mJq0VqBySFCeLP54ujQWYdTOmJLBu\nZ0exm9QCyd42Lib+732of5/SiPdC8JEYW4bxkHHb04gnNi2x0etEu0+WcU5MDXFsbbaS1bKpgV3P\n5TpugnVfRXB5pD+8Sd94fOPxZJpG/f8ahKb1nD51iq5piTGyWHQ0bUuIkWFIbDYb2tBReIA2sPrk\ndz78/9l702jZkqs88NsRcc7JvPeNVe/VG2oeBG0hkEA02LhBtFgYsM3C3V7djZYoIcAYASozGdOm\nWc1srcZukKAZjBGNjHupkY2R7W4jW03hYrCE0ACSkASlmqdX46t6796bmeeciN0/9t4RcfLeVyVh\nldCDjFpZ977MvJlniPji+/YIXK5GLUAmb0pI44jYDxhXPca2wdgNiMOANFpdmsqSbZu3SRdjN/p5\n5lGpxSNBhGHQfPdG0xpCEwBQqeFg4EJADjemarECyFb0CVkq4LPvof8ZAbAlmQdNn8m1AOx7UX6v\ndl7kOgOZlEakOCKOg+Q8jwPGOGCIAkx1BxcDorKBZ2UyGfmoFQnIOTy9u8BrfvYtuP0DH8nve/lL\nXoR/+j2vxpHtbfDkMzgD1ES4kmzozoBUozXkmur1NdLszAtrV9BIjQj+0pGnkPTcFiyfU0XAiqYt\n/0CxuJugV44F9U0W0azpBaygyLZRQNhUjs5ZA736u+VlnlzvnJ2EMt+cIwTv0AR5BE8IDogVCQUB\njSMNefeYty1mbYuukUfbNPBO6jpIbQfzFNUCdf+934yPYTCDY0QcRsS+x7hqMLYB4yDdT5IVUVTx\nbuwhG250DvKEeE9TRmSj5Uvil/cePliYelUUnmVdTW+tGmPWDFUHYhZVmAsohhX8IsqcCmVi2wau\nx0BcvVL9z1JJKlGd4ij7QIVdo2LXmGs4xAlpLbhS40sttCzyiErUBgh3nXsC9z3+JG48cwo3XndG\nrxeXa1U0YsbGA3FNBY91lyxh8ev4hXzvFRBRjFyEbHnK7QzNEmXREeX21edVj4xf+jaTsXIKxTcp\n07EiRhV2wXbV+loAefPL97Im1vkbCymX45E6SU3jEYJDo9jlD8CuuuOhYVfbtGi0kYIJQ+9CPs86\nWmwDXX+KseFelx33IiLcde5x3PfYU7j5zEnceO2ZYrQBDsaoDfeafLe8vOFefx6Gcw5D32McdI0R\nMMYRYxwQkxisvJfO0nHs0fc9hnFA1zRo2hZgyN9xwhAH9KsVmAhNaEAA2hAwn8+wWHYYhgFd12Le\ndVjSiHEoUafeEdq2Rde1AIC+l/pdFh2TNE3Wt8rVsuG+SrW2FaZLCKinrOIUW6RhiXYWQ42uQ0pA\nTkWMeVp5q0mZohr+RjWmR9jCksj0EavlAou9PSz7BRJJYXmr+RZjFF6rTkRLh6vvh0WicUq46+HH\ncMf7PwwxaL1S3/VKxMS4/d234qMPnsPNZ09nXK8dqzk6Tfly0gYNdq2IpH4WkCRN0wU1rll9Mvk2\nZjV8wRzAer62P+WCWg4EJ++RiYFReWYI4igmL0YpqpwUEk3M+diYixNGnI8VFur5eR9AhFxsHww0\noUHiAX3fa9p+QNd16IcRw2IlkXGszmmtSZmx27kcAW+GcgKjDQE0J/R9D6QRY78Cx4hxFtD5GQKA\nznvMmhatY2zPAk5ccSXm3Uw6sjct2naGruuRmLG3twc3l7lrBvhokfef4HH5GbWqDZ1jElG46hGb\ngNg1GPsiCs0KrObVTLprEWMtic07llcdy0+xpovVsglKrLTDDoMy0Eg+s4nCYinmakMUHrc/emGy\nMDOZmv5dvbezfo6J3iwb7RxrETERFPX2W6c9jWpV73Pb1lgBfIylIGXpGlYsyyYOy3GznSws3J28\nw2t+7l/ijj96FBPL+/tvw9/9sV/C//0D34Ii2uw2FXJl1zHzOGWOzEoondZI0GhTKyKbLzFVoaMa\ndTElVyYQNazW9gIlVsVraL9z/l0K6bks6OyOZHGo+eWJ9Dpxyp9b5V/JfDRrfUVYsmexsOT12VEN\nufaFWEl+f+OkSUcAF0JOpZbDrGkw61p0rTzapkEb2uIBd1KYnLTtSV1r4wD/5WZcalT4lSphGFc9\nYtfI78OIOJr31XABRRhWWsbWnERUmVGrCCcTho12Nazxy3lpJe2dy2sFMOOYywSJzcBTGaz2p+xU\nz09m7NSokQcBFgaUZSMZXnIWw5zfWi8K8SzWonCCX9GMWaPWyFjHr2r+VjiTL3LGDDKVgqf3VnjN\nz/wKbn//h/MpvPwln4Gf/+5X48iRQ9MFW4kiE0hZZBteKoCxnSuZAU3wy9fCeyKbNJ0KBwlDKj9B\nAItYIyoK3wiNnZ+lBVqkF1O5UwyCBXrIPbEoiRq76rwp3fMqwW3zIE/Y+qe9oTo7KNGusSs4QjgA\nu4IatWZtyIJwlvFril0+YxeyIFyPwNiM5xgb7nVZcq+nF0t888+8ZR92/bPvehWOHD1sN2fDvTbc\n6y/MIGYMywVi3yPFAQmUI4vM4BCagJmbIS4ZQ99jsbcnEcBNh6ZrBQecw7C3g+VqAWbOKe8ExmzW\nYWs+w3K1xPbWFpbLHqAlljyAzaikaYvMwGolnRYBaASVLDLSFGunkXou19ZCXucy8SreIme5ftIo\nKCavZ4cp+fwX2ejL+plaMB1aTJ45App2Dk6I44h+tcTe7g52d3fQxx7k5e8EzjUtMKUM7ynZRkCl\nJpgv0Uj3nHtCj/GL1u7cywAAdz14DtefOiHBUmt8IkeoGUYafpOlBlrkEsGTz3jFwBqvlWsm20QC\nUtR1RrAmOBKFFWDZD4SkuFjqhVns+3omQ23QIpLUVCZNCSTBKXKkxquyp4oRLmlNOIb3DRo4jKsV\nVqsVQiPPdV2H5XLQVEpNNdW5kQ1pgKYvW32yCOcJs7aTOblcgOOIcbkEhwY8Dgjcgh2hdU54GRG2\nZnMcO3IU826mqa8eIbToui0QMxaLBeZth6aRFNOUCJGfH6PW/mTTy2WwRDqIKOwx9j3GfhDPYT8g\njlFEoVlws/gz0g0UMm5kyEiD1bYZQZCwwuwtDA1CUI9hqIuTTkWhEZAiQuvClPuLkD7bA9gHT7An\nJzTMRFAlyux3fTmrKjvXpLnPYxwwDBI62vcr9MMKgxZINIEobbun9WJQi8OKDSjeZmJ196NP4vb3\nfxgx/RTE8n4txPL+k/jN930Qdz38mHHeLASNsBkh5n0PCXktp2+pVgTnSQsrarTDRBgW4ly8hEmI\nFtLkufJgVJgwFfKW3+6qIo0a2mm/k9UeymSq1EkoBKsSlBVJmxBloLpO01mRpzVKVyjrACbCkOHz\nAwhUvIWztpl4CyXaQR6haRBCo14Ck9hKgE3IHjQ/N+NZhuLXUOOXYNg4DBqpVbxqNvEKmS3P5zvB\nDHBU1iAGHxGGhCaU4tkhP/wBYewFC/Patlk1wZWDHuupPHr41VlX8gRmPDJxWRuTrARSxr8M1WX9\nGn7FOGIYB/RDj1W/lPD3oc+djMZRhXb2KibJ+amwy+7J5HgtysE5vOZn3oI7cij8/QD+Be54/8P4\nxn/ypiKieW1dmEjM19Q87NbKWvcINRg5KpFaJWLLbv1UGNIadl3qObtOwPp9nBoinYknxTCr5WL1\nqOqH5IqaGHWTn9nuUU/1yjIwfU1uqv1bonOEDHvvJ0Ytr5FaBbu4itSqsEsNWm0VsdWEBk6xK8/v\nSghusOvjHBvudVlxr0ti14//cmFEG+5VTe8N9/rzPngcsXz6GYwXd5F2l+DVAIzScCAyIZGDDwHz\nrsOsa0HMWC2XWOwt0Q8RTB7NbIb51hxtE0Apol/uYbF7EavlHjiNmHUtZvMZmhCwNZ9L3ayu0zqP\nMo+DGutTjFgsFuiHHrXThUijpbyHYYeegWLbdB3kLq2TYe8p6yHXmZpglStr2D4PpAaakv6ca1fF\nAX2/wmK5i4s7z+DixWewt7eLfrXCOIyTMg95b6+M1MmMyDCepzOZCNefukKP/bfWzuUOAMANp08i\nN/lZa8hjqyLVzrUK/yUiqpT6ADGcJ4kMbwJCUzIYZM0ljaYd17pgJzX0WeRdccYYslhNxGx5U0y2\n62tcXLImAkLQ9a5rPvgA7wMAp6noUCx0kP6LwrvkszyYE1bLBYah17pbTTGg5WuvpnpySAwt4K81\nwpJEaR3emuPQfCb1ST3BIcExo0FC6x3mTUAbCJQiKCUc2drG1nwL3WwGZsJisYQPAUePHsN8vpWv\ndc4KcfS81QG8/CK1UDadlMRbODqHcdVjWPXoVw2GVS+LaozSIUZJbG3SZVRdE4xQJRNztpGK0PCe\ntBCgTPimkRB4CfXzB3gKVTz5YhXN3viJkJt6DW3S1V7DdS1nm2wxQNcTg6ufShpQzomVGJngjXGU\nxWqpOqOQq1FJVLQuFVgjNOByPBOJUgtQ8xTK497Hn9J3HWx5v+fhx3DDqSv1Hilhs3uWxaCJeStJ\noTKPTGDJ35IRTpdhdEJCtUmFHnN1feUGlgdSAf/8BmM5a4SXCK4imYktR5sriKu/cb3Isz6sKPSf\nYuSQZjCCc9KdLQR0wefOOhx9fj/DCixLCk/XNBJerUKwCU3uiueck9pPUWtAsXV5szW08RV+LCMb\nOBIk2mEcMK4IY+MxKHb1yx5DL9FapYNeWW42PS1HXsKGzdBjxCepKISIDPUIhhyt1QBOQ6OzKIRu\n+Jp+yARoPYHJmq4MUDWmyVtq1Coe7rzJVxhV6j+YkKqFj64/PRfBMBW8aRTvU8auUbFLHrEiLGWO\nopBFOw4lJ/W8taVNFX7d/diTuP39H8JBofC/+b5bcffDj+GGUyfycU/2moxd+v2ktVagBiCQVGQ3\n7LKrlvcBlL1B8WFyrDCzEFfXT9BRrp0rJ1Wf4OR8KU8qghxOcqgKKetcsDlxEG7l60hTDVvd3umY\nHoPhsoN4/uAdKAStMePRBYcYptjVeqch8AFdq9gVAhpfEUVNa+AkuIXcRjtl3LL5sRnPPTbc6/Li\nXnc/+gR+81JpPIZdp09igh8b7vVxjw33urxGWq1w8ZFHkGIPUAId3sLqyHH0fUIfgRESIdV4j60Y\n4DghMmHZ93ChB4cGwREiGOARLolxfzGuMLQtQteKIzE4eE/wIWD70CEs+gjeWyFFgEIQo2UTkDhi\nWK0Q44C2CWA1XHjvhbd5W1Myty26mghSW9U7EAWpvZZXGxSsBLEcAHZOqs9ppFSucwidw4QSBaZp\nhjEN4GgRuIJbUvJhwNCvsLe3i92LF7FYLJDSCOcdElOuY8CWQumlO1+KjBhtD46CqZXhyxHhlrNX\n4Ytf/EL89gduQ0wM0Yl3wLu/h5d99mfhlutOI40JCRb9VRm2Mv/QdjuJtKQgAVDnJkdpCutKuQPv\n9RhB5bOgXJ0Z4Djhw/KqGrJs70rynlzyVfk0paT3S/cbl8Pq5LxjBMUoBqwgBqgYx/xdEq3lIBFb\nADPBOzHfJO06bN3LV6slhrhEN5shNA188EA/ZPiUDsWA1ch13sNSTokgWNRKNNi8FX7VeqBrHba7\nBke2pF5WIGlyMW8bXHXiJA5tbaENDVaJ0Q8R29uHcejQYexeeAYXnnoC/TAgNJ3O34Rxk36oo7K+\nSncFwkBA7x36tkHfNFg2K6yWPfphVCukLdayvUmDAfFuS+FN8ZzbVN3nOfcOPhTLatM0iAyZnEaq\nlMRIqHiEZ7GmUpm/dhJrjyIuMqmy/VvfIk2xlHxnNViRgKx0c9KyCsDyQBrBaQRbak4ckMZRwt41\nosFq0OQ0HdR8tByX0YJ6GCja++qaDjeevUrf9Vso5Aowy/uNZ05kYjQlwkqsqk2cCHBMUndTQ7ON\nYDHRJAxXgMwVsc36O7t8vfPxlrsoc6CmsMZ78vPlTpooLFElU4JsQm9yqyZXDdPPs2teA3T1/oyo\nBFjRVGIIsUuMoMfgvYNrAvomoG8bDF0DQqnLwYmrVtJSYLkJkpJmufshiFD0wUtqHAaMVshcvSS5\ns8ZGGT73yEJBazIMhAFAv/To2x6rZoVV06Jf9ej7ocIv1vq+MscSMzhKq+WYYhaHMm+5GGacdTes\nCFIjZApEIK91DAiYRBAk0iK19XwGLmGhUPFSHvtMHmKF06VUIgCmjxq7igBkjlpMv8KvcZBCr5a6\nMw5aj8ZCrVNVt1nXyOSY5LkiUDG5blCySM7hvsc+doM8r5+T4ZdFWACCT1yukzTtIjAx2OkR1xiS\nccQJbhltrQV5xirDyIJbRYDbmVa/U4VmRLkrYsYZXCL6arID1MLwAMiq/0oFbr4v+sGUGN7uvxJr\nHwL6psGqbdC3bRF0il/WfacNIRu0grcInhKV2IQG49AjMnJRePucurX4ZjzH2HCvy4573ff4eX3H\nJbDrkcdww+kN98qfZ9d8w70+pkFEXwjguwG8FMAZAH+Lmf/t2nt+CMDfAXAMwO8C+GZm/mj1egfg\nxwH8TwA6AP8BwLcw82PP13GPfY+dp84Lx3AMxIidIxexu7PAcjVgiIJIgQhtCHAg9AkYEmPRD6Bm\nRIjAcm8Xy71d8NiD0oAx9ohxhcQztLMZnINElYaEQ4cPY2c5gM9fRCQAoQEFDxCQ0oAxriCz3KlB\nyyFoXUnnZde0CPb6bhNRjrImJ5HVDgRKAKxLoYNoMSa4JOuXtcOnTGfSuoYVF4PUykpxBR4tWlSi\nS63kQ9+vsFgssLdcYBx7SEQYQSKiCOY8IpJ0ccAhcoRz0i1R4LKkvxXeRfjZb3sFvvWnfgW3v+/W\nfK7/7ee8GL/wv3wDHGnNPCs2z4BF58pFAcwgn5illlWyLo4JRKnam2S9Ahb1S2t4oRwlSmMTMyZC\ncc94MafSHRvk4ABEc0aklEs7GFbZxkhs+5CiXgLQQK+hcB5HHqTOuaTY5JwHgxGHKIY/kueICMMw\ngDRatQkNHPWIeh9Y00CdYrb3QYxmkAYKUgswwBFwaGuO7XmDWeP04TFvpV5ccITGORw/ehjHjx1F\nE7w4u8YIIofDh4/h6NGjIGbsPPMUlssFgm/Q+BYMxjCOn8AVXcblZ9QC8oafYkQEMHLC4Bz65Qqr\npsGqCeiXA4ZeOy9Ey7uXTSlP1KTdWdI0ZD0LAV1gssm4XFg5NAGhbYDIsNY8IgotaiJKLr9GQJTi\npBCxsa74CLrJ26ZcJvhEFKolW6z4XG2+BYhKbYo0IVVGqOxnUhEYh+IptJzyqBPcAE+Gkoy1wy/y\nKEOjaiHzFko9rRdcexpf8tkvwn/6w/2W9y968Ytw05mTpQtVBlWN5tBzMtJKRABLmCwza5dogrR0\ndhnYpilRLhMr6eBWEass/JDP27p8FdK1fqZ2WShfHbtOub11uXuFoGbmRNVfFfKV35z/Zqomiabf\nZW8k5iwMHVtdGo8AFsHRNhi6FjDiH6VrjhGrVr2FbfBaZ0mFYdOg1TD4gQGO5lkpnvZJAdvNeM4x\nwS9S/PIO/bLBSoVhv+wxDCPGUcK3HTuFJhUR2q5dlkfVtYdTns8OyKLQact7C3Fu2iiONN2AVdLo\n/YywSC0iLmlwsGltSg/lScOujAGV/Mjznq0Jj/z9AQYtq9OAdexKMeNXikMprlxjVxwxjiO4Qq7p\njDRM3S8KURm9oMcPxe0bz57UZ5/dID9JCaqVVIVdVqvC6f7AgArCJPiVvJa3qPDT8KtK8xP8Uq9s\nBQpm0GI1DgiO0QRi1rELk/N28ndUP3uQKFzDrvpir51++RJ9LzEmEWfM0p1OO01aTS12HkMlCllr\nDAl2xX2isNUoLeecYF9o0Go6IgFATIjDoPeiiPUNdn3sY8O9Li/udeOZ58Cu0yczZm24V3nPhnt9\nzGMbwB8AeCOAf73+IhF9D4DXAngVgHsB/AiA/0BEf4mZe33b6wF8BYC/DeACgJ8G8KsAvvD5OmiO\nEatBUkGRGKvFCjsXdrBzYQerZS8G+cSQDngOoZGudkMfMYwjFqsliBOWO7tYLZcgZokSdg5jStoB\nMGJIktrWtg1Ct4X57gKhaTAiMT4lpgAAIABJREFUZqdZHEesEmMcB3gvdTAl2M8haLqWORyds5Wf\nL/BkrTlLrwakEzLLe6xcgPFFq70qa13WmUWSSlQQAzyC0woce8Q4SKQzizM1jSPi0KNfLbFc7mEc\nRzHQeC9F0XVtyrQsHWyRUt7vg+IokaTvMZLUTtW6fMcPb+NXf+A1uPfxp3DPuSfxgmtP4+ZrTyPG\niH4cczp2zb2Mx8mlIVCy7sbCi6XeHYE8wCx7WHQOyWskLThfSxgG22WEYFfeV7xT7qw1/VgK0BOz\nGM+cU8MhsmELUw9L3lcsio61YD0ztL5bzjcUI1aKcl8Y2SkAKBbr8TdtiyGu0Pc9mrYrEc2cptyM\nAJAYTB999Gnc99CDONx5XHf6Csw6abRz/MhhHDm0jVkTchfENAygLsKRgyeHrVkHT4TVaoUUGf1q\nQNvNMJvN0bQzNG0H5xz2ljuCa4caMDP6jVFrOphZNgdmjBHoicSrG1ZY+oDVqsfQD1kUCvAXWVOn\nHYgnzay8VscGanWW9B2X1lN4GsCJqCw+RvMWRqTkYF6naW0UYF1q2Viv5ZCPVsmMRTqUj+CyY6+R\nqkKs1gVh5S00MjUUUmWRDpnsTQ65xDcQir+9uiv5PLN+se5h3uGN3/NqfMOPvQm/8d5ieX/ZS16E\nn/uuV6FebZngrnkLOcq1JSINbxCvXxaFRGBX7nMmVc5pS2inFUNpKgzzQQPVndTz4cn5TchVzcay\nFR5AKlEUkz/NHLgSi1MpXX6vSBgryOUjsWMtT6i3UOYIQ1N4nEdyQN8EDF2DoW8AjohjxEgC6E1w\n0oFnzVto0Q4hNGi7Dk3TAjEiDgMGmIhQUmWeXGzGxzwUv0ZmDCOhJ4e+WWEVGnmsRBhatEPwdn2F\ngCdU+BWr+iN2F3T6WbSDGLT8BL8icxXNhLwxGn7ZK+a9OsASVA2q1r6hLCl2sXqjyqTNxq19Bq1Y\nIh24wq80IuUweDNo9VWkQ8Ev+YJ1wVSA07BruppxCexyuOVZDPIvqwzy4hm0OlY1dsm55Y6WKvCR\nSCO0BL+yKFTCYrhlhq1cvyqp7J7sFXYyXIRh9Vwtg/dhl568QH4dAWbzongu5Ykq0mrt+h6orXj9\nbZXY1DkCBrzOZ8MugCaRDpx0PQwjRmikg7f0RDFqTUVhi7bt0HUzcBKDFkgJZjZobbDr4x0b7qX/\nuwy41y3XXIWXf/aLcMdB2PWSF+GmsyezGNpwrw33+ngHM78NwNsAgGjfrgIA3wbgh5n5/9H3vArA\nowD+FoC3ENERAF8P4KuZ+Q59z9cB+DARfR4zv+v5OO4EoI8JgaSI/zhELBdLLHb3sFos0fcj+iFq\nZA5Dug1KbcchJiyXyxwxDkgKVzefoe1mGFLEzt4e9pYLLPoeY4zo5nPMtrYxv7CLpgnoY5JIeACr\nfgXwKDyJGoCtgHgpCB81OorUATlZ6JMJuTYT7J/JJrVE+EENWGCNICKIQUvTDAXHRnAakOIAjoPy\nTEjXbi33sFqt0PdyDXzbiAODzG3IkEhNwyzkaC/HivXWWIKgJaIsOpcQPOAd49OuPolPv+aUGJFS\nqRkLlhIbZXHLXkJIYqzUCgwURwzDAAYjOA/fBjgEPWeAPIESyZ+PDGool+UAF1wT8qAfTBIVVxzC\nUNyStGlHUOzjzIlyQx67f8xAjOVeKm+MMWG16rFzcReMhLZtAO0Gbvd/kmqp+1aMck29F+P4SssA\ngOR8EBMSyj6WEmN3scDPvuWt+MCdf5KnzAtvuA7f/tV/DUe2t+CYceWxo9iatej7XvaycQDSCLgA\nB0bwHmkcMawGNL5FCA3m8zlmsy00yr/atsWFOGC5XGB7vo2U0iZSy0a13yCBERkYQRgTYxgj+mHE\nqh+wXPVYrgYslz2Wy0FsrM4hBJ2sedMl2ZEcdENM+hxJ6PrQAH4AfEAih2ZMCH6EJ0IkbUtqs7Z2\nB5FxE9r/yPTO3lgEgU1W81Axl7Out+P8ky38eK12A0uYaE2sUho1Nz9q+oCECo5jRIoaxilsKBPL\nvPgATU3RY86yJp+oXmNrNxvgvRbo9QHkPK44chhv/dHbcNcjj+Huhx/HDaeuxPVnTmrRwWlXskka\nD4wooVw7ZrWgJ3AkJIogyM9EDlELIjrnBUi8CUFL37E4+bpg6AH6C+VlLnes/C/v41x+7CNc1fvq\n13j6S+HKVB5Wx4YBTH5HRdT0l5SAmOCQcO6ZZ/D4hQs4dfwwDnUNZl2HMY4gR+j7AW7Vo2dG0Aie\nYN5w76U4YSUggrYxHvsVnJfwZpsCOeUjqtdkM5518OQh+BEB8e6NEf0wYLXqsVL8WuhPADkCRfLx\ntRYWAFCQD/TiqTZDMghAGIAQAD8ggtAMCcEP8A7gWHmRyMw8xcBjGCA4WRl9UK97FC2QYYnzvCSw\n1l3RzlO0dhUqj2GuOVOLQq3jIOmHUlfEInXimDAafuUW0ZQ3ecMl84ZBz3OCXflkkQsMex/grbi4\nl7DvN37P1+Eb/vEv4TfeUxvkPxM///dflcWtpZXU2FVfImcGpcwrNCxd8SuSiUEt+MoAPOD1ecNm\nqa2RK+nnm7V/9U3PMyfv5JuLcvMmRrByHcv76uen31A/bB5c6iEYZpEuBbvOPfEkHn38SZw+eghn\nrjyqpN6ja6Uz2BjnAAF9P6DX+yWGjpJW6/VRGiFImm3TtBjDSgv0unLcqTI2Pk/1Hf48jQ33AqpZ\nftlwr188wJn4xS/5TPz8P/jafee+4V4b7vWJGkR0I4DTAH7DnmPmC0T0ewD+CoC3APhciA6t3/PH\nRHS/vud5MWoBwKCXzGn9tzhE9HsrLHaXWCxWWM47OHgEEh9LgsvTZhwjCAmhaUA0A/GAbr6FrcOH\nAefQzPfAT5/HcnwGzjPaWYdu1iGEoEucc9RVvxKjVtMEPR6ZF05rJBGVqB1L5SvNLgDDqsw/XJmk\nU+eWriHzIsnVztzFamXFOCoPUwzTQuJIDCQW3BoG9MsV+lUvaX3eowktQFQM4yg8zIFyZFWOWIcV\nL7dsaeE9zpeuts65jA6cSmYCEleNcWxBFi5p0WBOcTkNvaQh+qDfGgpHjgSMhFF2NbQU5BgoSG3G\nxGLABwT3iMDkEDX9OAHKK1M2XIXMm33ZlozHGQdNhj2s2CO/MyeMcUQ/9BK5S4AP6mRWTLMi+Jyv\ns8uGLQbk+MekzlYHIg/mUW1gYmhMkfEzv/Jr+NBdj0NqLn4RgN/CR+57LX76V2/Hj3zT/4DOe5w4\ncQWOHNnChadH7cqt0ahOuqoH56XhyTjCeY9Dsy0cOXoc24cOo5vNkIYVtra2QEToeykVkhJhGON/\n+SI+YFx2Ri2g7F0MsbhHZowpYYhKrFY9VqsBi2WPxVIIluWptzHAa4ijdbYSXHAgjiDinK5D3oHC\nAPgeCB4JhOVqRAgreAe4CKncwlxNSAOLAwiVgZCJLV3wdMAJGvGveptVJ590IXBexJIPbUBUcp+t\n5X0OhbeOFCoMTRTmdqsZ+KYeryx4NVw1PyqR61SIeB/gfIALAc7Jg1zIRPYF15zFLdecEXCMMYvC\nct5T71j5NrIO4XotlFxRAo8kBfNIOpck5xCJVOg7sKtJroc+gXyF8+96/pXwskH1fatFvYlpVEkD\ntdOKJh8wZW/Vqdjtzd9b7zugSggWYWgbGalBYGdvDz/3tt/CB+6/P3/2i66/Bq96+UuxvTWXlA6S\niJAYo6Z2GKlyWRwWUSjkqmkaDKGBd17XDOX5bh1RNik8H9uwW5v0EcEiDBW/pqKwx3LVS9h08Gia\nBE9OjUyKX55yappzBPLmaXJA3wOhB7zHyECzGqRuB4TcUDbCUJl4SoAIpKk7a6KQapEzRS9W8UWG\nT2RRWiYcGND0OMGvmA1b05Qdw6rauDUVhaPiV67Lw8iCeWLYWsPlgl3Fg4iMXR5OO85kHHMBVxzt\n8NYf/Tbc9fBjuPvhx3DjmZO44fQJwdAYi3Gwwi9MvpEyJJBdB1ZhCEICgSCiMBEhObvWTp2DZthy\nIgq1ADybaDsYVjI8ZU47OYh9O8/BH6DXJ/8tr72WnzygALNp41xoHhNBeHFnDz/3L/8dPnj33fmT\nPuv663DbV30xjm7P0DYB81knV4kI3i0BZqQJdk3xKxh+WeHltsGwaqTeRI56q0ThBrs+5rHhXpcf\n9zp+ZC7Y9Yhg101XX4UbT53AGCNitFSjDffacK9P+DgNuZKPrj3/qL4GAKcA9Mx84Vne8wkfCcAI\nmR6eCWMCFose589fwPmnnsaFq07g0PYWWu/E6B4HjMyIcHC+gQsOwbUI1IJGjziu0My20G1tw7cN\nmvkc1DagpsWF3V34pgN5h6hNbqxuYEoRw5DgXYnOEu7hc+kIaLQroJ0Qc0dPWwRlLnLOAK4NW2Xk\npUGA1Qcki3C1CHjFLDHOm0NRMS8Jdg0V1jMD3mmXPkeIlZPIkXJTm69cgq3ERiNGbkc+Fzon5zUK\nSh5mCOL6PBNr9Oga59JjNGMzwcqJCb8lZm3QFCWqzBHSkDDQCBqjGKUMR53xNg8KAXBeHcHCkS1K\nEupcTnIjJGUwWQSaA5zPRsj6BhRcr++WUCXvPZq2AY9c9jaDPgd1KjAiS/o+QHAUMPIwMWSNo6X3\ni90dJAYvcMTDjz+BD370Tqw3EUnM+MM7b8Wj55/B9adP4viVV+DKE1eg73vZlzWaziKnpTEA57pc\ns/kMW9vbaDuJlE/zLcy3DqFpOiwXS8RhBMjnVPtP9LgsjVpA2YASGJEIsRKFK2/ewvLw3qFpPMbY\ngLyXQnrOwQX9HQzSQnE+yPM+eFA/SCcT7xEZaJcrEYUEOJhgS7qgirfXNIMZcg72FlaisBJfIgSh\nhI31nWWXZTZKycjpOkas0ljEn3oKjWBZCDmniDRKKLQ9EpdIhxISLhOYtdaJFKK2tCTKh11awboD\nRaGBVBbD5oEkO48iciY1AtY2ape/kfMEsCuU1ItWoh2oAKZay9WfqSCpXS7W5pQdyzrbnYjD+gbn\nFw8gFeu7Sf0hFXHMpLw+Bpi3sCJbwMRbWJMrKLn62V+/Ax968CJqy/uH7n8t3nT7e/DNf/MLNKSW\nkdKIcZiSquwtrIVhaLRDSwsfzINRxC0n1q4oVqh8Mz6WYfc0ghFBUptmTBP8Wqx6LJYDlksxRDVN\nQIwJ5FhMGxP8ciAE6XQYvNyn4CRKa+UB5zEmRrNYiWeY5LuTiiVmgrVoL9i1H7+KyqHysxIVXM/L\nLDpYCYwKNGU0jCIILaSclVClHOFQG7eSGrWSGrb0oeQmCxwjfEo2hISsKZV8puXcJNJhv0FLorUC\nCMALrjmLT7v2bDZmlZuJ6txtRZch5ErxJiskQArak+ITkIgKhkFTd1x9rEJWoF5jKl8P1J/Pa3BD\nlflxPXJhDbomJWfyRMAB+FVEfw3XNrfZRGB1ytl4qq//3L/6f/Ghe55CjVcfvP+1+D/+3R34/lf+\ndbRNI+k1Fn0IEYTj0B9s0PI+C0JriGDYVSK1KpKdrIbcp6Qo/JQcG+51eXKvF1xzBp927Vkws2LX\nhnttuNflPb7jO74DR48enTz3ile8Aq94xSue9e8igAGyJw8M8BhBiyWefPIpPPnkU9jZWWDZj5i3\nDSI00pII1HZiaOw6KeCeRnDP8IHQbm0hzLfhmwDfRlDTAKFB8h5jTIicMI69REJBipVzkvigoEYs\nrzzPWekBlHIBzsmcEOdMmeAVnYCl1sN6GlrdqsmmbCnfUS1MXPBLa/6lNIK54BeYpStyZIxjwjiM\nuZERspFNHBUZy0DZmJRikoaLVlsx1wOVyCzvA4JvJMJUgyBAAUweyeqFaUtBydDW9Zesg27pZBzV\nmAV1mvimQcNSkN7S/1IckZIci9QHjFojCxg1fc/reiOHfEyJ5PoyWIPEUikRqvjCCdLdUYqESE20\nmn/psA6xJTIWmWeFJmC+NYcfPDJK1SBYfdgkWosJVjoLIPW5TPkxKRt99Mlnb4B07vwzuPm6szh6\n/BhOnjqNZy7sYIxSC84Fh6ZrMN+aoZs1cIEQ2oCm8WjagLZrxCCrtcVCN0c728ZydwkeBrggKbWX\nGm9+85vx5je/efLcM888c8n31+OyM2rZ5mOW0QTJVR2ZMcSEfhyx6p2k7ix77C1W2FusEIKkMiT1\nioGEWHnvVTxohzGtPeMaCQNOzqmTmTDGKOF2RAjMGFmAiiohYy3QjUzZBjyp1WCGnSweaE0UQTph\nZSVQe+hUDLKcPddeQvMO1pEN1hpareesEzwmzgUro+baiiCShW6AI8dZkyo5Fls0EuHgMqnyvkEI\nDXzTwgfdjNVrOK3LY9fK5c81n0It0gAlpyruhH+aMLaPqkJTY0RyJgzNUxjB3ksRQrvsrpAqAaVa\npJfvnv5ce886Sq0NKpaByhBAeo0P+Hue/NCNqu7EUY5l4i3UN5x76jw++MADOMjy/kf33YoLyx5H\n5nOM44ih73N4r9fInlokhjqlR4lXDgeuvch1tMO6Ot6MfeMg/JJoh0oYOjVqGX4tVwiN4Zde5Sqy\nSLrdKH4FKQbvg4cLXrznkCnXDwOa4HHuyfO4896HcMXhLVxx7LCkBeZILVtvJkyyOaUYubIcpP0n\nV4AMOf0wb8aGXSZGtaZDqiMcpmIwZcFY0sQEvwS3RsUvESYinGrDFkHD4SlVRpey+Ay7JD1KSKPP\n+NUUw5bz1RImSSFMjIJd+tnl9KEXc4JfsDQ3E+JMeg2EXybnQFUqonMeySU4X2rMVA7afMmL0NWI\nB0LGU4OtbKDKH4L8ehZq9Rq2aBYqc6IYKg8eXB2L8bRcoNb2Och3PfL4k/jgXR/FgZ7Ce27FY89c\nxImjh+Q7g4bXjyP63gxaVPDLlWLihlmlPo2fYBflacpag+lTNtLhU2p8KnCvc08Idh0/NMcVRw9t\nuNeGex04NtzrU2Kcg1zpU5hGa50C8L7qPS0RHVmL1jqlrz3r+Imf+Al8zud8zsd9YAli1PJEWtjb\nIbKkty+WAxarEas+YrHq4eIK5BjdfI6u7dDOZmhmM3iSPTumBiE4hG4G13Wg4EEponGEeYzYWq2w\nWK3w0Y/ej/f+8d3od3dwbHsL4IRhGNC2TqMqLZU+5LRD627pvZdi8yGocYc16jPmLni2yzLbFDFO\npJFNxrc0MgvJalCxPldqaMVspE/6Hs0+1O8ch1L2IXjBFzGeERx5wLvMEpPWCjTuKrxG1qgjqupf\nztC1czStYVcD8o3MIHVqeWZwIqQIOJfAlBCTddG1iLaCjV7rXlnnQGIGj6PUl9Lot4Ek6tcjwI0O\nsXcYvZOOkmC4QCCKkFqAup84dTqMozgIEtRhoymUToz3zKQ1C5GNbJkTAhPeYTW8wIK7TdOCHEkE\nnTl6uWBUTVmyzRI1PaNcN5RY8FjuoeDWiWPH9H0HNxG5+tSVaGcdjh07hhMnT+DcuUexs7srxj8A\nbdfh8NEjaLsWKUY0TUA7a9G0jegQL9x7TBFMHk07QyAPDAMSS0rtpcZBhun3vve9eOlLX3rJv7Fx\n2Rm1bGTKwZoSy4whsRT/GyOWfY+95Qo7uwts7y5KGoNZKy3n33nd7xjOaT0aq6XiA1xKcD7C+6gd\nTQhNSnj80Sdx/xNP4fixwzh27BAsCslpK1bvXAk5rOjgPjHIqDxF07DmnBvNrJZeoZMMBScUMpWj\nG6poh7zpaheMLLaSEnp9ycDGxHIRhfJgssgKC00nGMsRIJYCl8EHNG2XOx6E0GrUiF5PMqIEmNIl\nqasHcpIKlWMrya6aSmonAlDCt7W4Ye6YRAXE1StAJMWEKf8HIMg9hhOvQ67pINwx/7vkPlftqC8l\n5Kv5aNe4HrUgrNMg6oKl5TO4RiT9TMbaMwUI1UtoKV/nntnR9x1seT+/s8TJo4ewXDbZC+H0+LSU\niXiLrGOe0wKOuumBi/gzMVGKlqZ9574Zlx61ZIqQZl6j4lczRiz7AXuLFXZ297C9NUfbBGyt4Rdp\n3QVyrPeRJTxYsYu8z9jlfcTu7hLf+fr/C+/8o1IU8jOuuxqv/vLPw2x7piksUvTUVwSa8xEfICh0\nN61JPkM8Zi4xEqVCeAARhRAvYU7XqURgKbCclIiVWnt20UxXyUOxEsg1ZywigLR+kkCFzVdTNE4x\n37yEQqwKfs2yB1FqArqsj+R/4hUT/DLsYrClC+Y7zJo6yOJFM/zSgtAlMkP+JqUEirFouPxgsGsU\nv+Q7jbwZQvHEmGek0tUIWG4bcxH7ev/y/USFdmvYta4I1/6sfN5kivD0ed3zHn3q2T2FjzxzEVed\nPI7GExA9mBnLZaPROpRxS7y4a/jl6j0hwvaGGkPNyLAxan1848+Ce+3sLfHtP/4v8I4P/nE+js+4\n7mp83Zd/Hpp5t+FeG+614V6fYoOZ7yGicwC+BMD7AYCkMPznQzocAsB7IJmAXwLg1/Q9nw7gOgDv\neL6OLQFYAdJ1F0AAZdwZYsJiOWBvOSIQw/OAQ1sdZt0cs60thNkMvmkg92aECxI57dpOjDBmtHUJ\nrmmwGEZ864/+An7nvR/M33/zmavwyi/9XLStBzet7mEOTdNo6pt0ux7HUYpxh0Zfk7UshgnpgieR\nmUbFBGSYKdtvGQI2rHkB4FLGIcVRuuKBc2fWlAakcSzGmAyFLBFIlrFsBiTDJDMmZayR40yQaN7E\nWtWzqgfrvURTt+0Ms9k2utkcoe3gggf5Bs77wivlTxFY6o1GZgwpIQ7SaVewxxwadkzSbCSQE84V\no6YNpty8iHkER0YixghtDEDyExzBY4L3diEkPd6RODoTM8ZRyk94chJtFgLIS4sBMzcbx7C1D1R8\nOTtmUK1rIcxOy1EAgg8S3FQWe+Hc0+cBQU37LDauySVl+dQVx/DCG2/CR+59rXyfNhFxdBs+6wU3\n4dpTJ9C2LYLzOH78OI4cPox+1YOT1PxqmwaHtrbEcBUHcbx3YtQSo57MvVzA3nkE55DiiH6MWPU9\nno9x2Rq1gINEodZ2ICqicE+I1XzW4dAQhWPopJeidEEEh1PvlXNiaTcykCSVJ/iA4Bz2dvbwD3/h\nrXjXnffk43jhdWdx61d8Pra3ZrljhbOCzgAm5lVbb3oCtiGX90yFIXHKk1Ht3mpxF1GYrE10XbvB\nUnrss2GbthG3IgpTYqSISquYUCrhpKTErkgC5D8gKp1azNpu5MqHVoir5UlT+VPiJKTKA5RYiBMl\nFYVaw8BIKVHOyyYGmKULj2CxFXYVBGeNeoijiJZMi5hlsnhAGl+I0ISm+TBVIfZGqqx2jQnEOroB\nlTBcU4Rc3etC1AqpWheF+/iIzYfq82rSbU9aqLGB2pXHLQz7YMv7tadPoNXwacldh9Z5kMZr8tC8\nfhMG+btKLRFUx2AAGTfC8OMe+4VhwhATVuOI5WrA3nIp+LW3wHzeYRijXvpKGNp91GgHMWoFQFsr\nO41eCSngu37il/H7H34MdXrEhx94Lf7Pt/0evvlvvwxEgHcqCq37C6DGCJMVRWjYOchPzqRK5ol6\n/5ly6LW8HgElViVFR8L7UWEX14TKjsGmnv6emM3ZWGEXJvglmGDkxT7O1jLlkP4mNLI21KDVtDNQ\nvr5Wy6T6CozqnVNB6BgCaLUhUDErt3p0IMeCzaKR5V0VtHCKQoSUdE3wywPwAAUCwasQdMWwtSaK\nrbp/uV8HiMJ8TSrDVj5uw/gS7VIwbDqP13/Lz9R7Tj1TGDj5HJ7Cs6dOinjw4vlmZrRNI6lpilsZ\nv6jglhg2arFt6TkVfinZ22DXn258srnXd/6TN+FdH9qPXb/4tt/DN/13XyiyasO9Ntxrw70+qYOI\ntgHcgnJhbyKiFwN4ipkfAPB6AN9HRB8FcC+AHwbwIIB/AwAshePfCODHieg8gIsAfhLA7/Lz1PkQ\nKDW1BmY4IkQSI8lqGPDMxR089cwFXLF7BRo3w3ZLaNoud6L0TQPyAYmjOKy8zwZ5OC9rgRLYSeTp\nt73ujXjHHzyEGrvuPvdavPn29+Kbvuqvylx2TjlIixDEkBNZui9K/UHkPXhSQ8owS+ds5ISKtoEU\nqcWYNSJzrxgRFbugEVlpHLNDEbp+DZPMeZiN8EzZKJ80Yt1pWQQzuMuFjtn+nSxlAAyCXJu2bTHr\n5pjPtzGbi1HLdR2S5PyBnVwL4aAKnMQg18C7BOdGEHkkHmHxrGLUkqgkIlSOANbSCiTXEy5fU4Az\njls0G1IU414b0TZiaIbzYPLgpBjMwplBDsE1CK6R60BWzN0uYeFQZixcN2SBuXK+poxDgnWuMl5N\nB6MYzSZvyN+n7gnbRyxqjhlf/1Vfhjf+2q/jw/eVJiIvvOkGfMcrvgxEhMYHkG9w5NBhbG9t4Ql+\nAv1qCZ7P4L1DihF9v0TTSEOMrmkRvETFxai14xwQvM+4CSbJSBk23Q8nw7YdSd8p3kIfEzw00sG8\nhVsLHD60dYAoVAKUiRWk6LKSKliNlSCEpfEe//PP/2u8+6PnMekW8MBr8aZf/z1899f8NQmRrL2F\nqIReHpXIqGqOTOuxJCDJ4sxpPEAmVGDLeR4yOBmxgubYZwEqK3siCAVkClDBlfe6qjsNkUeuR6MF\n51hdAEVYS96/iEIThnP40MhnSG/uzNsAIUCUCqkix4BLACnLm0SIyFMZrBOBKeZjWp8ZKSVQSllM\nW/0NOw0CgaEh9c7mQzn/HJafO1XsJ1Xrc7Fwjpp6rovBmlwd8BkHPMmXeIN8Z2XpB3DyyuN44fXX\n4yP3r1ne3W148S0344azp7G3Jy2Fg3eVt7AcnycThrRPGFraBa1996d4sdJPyVHjV2JgZI3UShF+\nJCzW8Wu7xi8VPCYMTRQStMiyV4IlBi7nI+596EH81vs+iIPSIz50/614/PwFHNqea10Hwy+X8asW\nhusnkTWAYQsYSIzkOM+VvJp5VAwrbe7TBL8siosn+LWOXRNhmFTgZOLnyjpWccaWIsh2JE6FsHQK\na9YMWkGNWha6DhMZBge/mhETAAAgAElEQVQgwa6UBL+oYBdn/OJ8wbLhSjtA2r1frywj0Q7KAFVM\nWycf260dlRRDqzNlgi0bs1A/DsauItIOwB8qx/xc2FVPh+k/+OBXFSdPX3kcn3HTTfjwPQd4Cm+5\nGVefOQkww6WEoCSvafZHah0oChW7LLXCSKLtvCVSa4NdH+/4ZHOvO+99AHe89wN4LuzacK8N9yp3\necO9PknjcwH8Jgos/O/6/JsAfD0z/xgRbQH4pwCOAfhtAF/BzHWYxndA7OP/CkAH4G0AvvX5PGgz\nyI+QbXVgho9S7P/RJ57AoXOP4ujRI5iHK3F4toWmVSOxziGp1qDOPudBwSM5KffgdP3COdx5/yP4\nT+/6A6xjFzPjzgdvxWNPXcD1V3fw3qPrOnRdB0cOY+yR4oCgTsYaoxJbZH6JRmeNFAcSktp6Zf8z\nY8cASbjU7tJq1OI4YBwGxLEXAxczvKPclIBZvjtZSrZ2AY2RtdFFQghUHUvhpjlNm4GYpM4UOEnn\nvBDEoDWbYz7bwny+jbabI3RzUNcC5PDh+x/GPQ+fw83XXo1brj0LThE0jsqfxCrvfAPfRPiUgFEX\nt9NOhSTA5UBgB6SkSM4R0qxCooecdwBLrc6UIoZejtNaV3hyYDeA4WUtQusRkgNY+YZvcpkDAslX\nCODBovCoAp+DorSQjWAVHjpzLiqXzOt8/3qvP6Z6tjKAyhaQGMqzgcOzOb75v/9yPPToOZzfuYjr\nT5/Ajddcha15h+C8GLUAzGczzLoOAGPoV0hR0lR3dy8ixRFHDx/G1nwuHY7BkmK9t4BvGziCpOqO\ng8wv7xF7idZ6PsZla9SSTZryP5hIuohxQp9EFO4uFriws4t51+HQ9gxHDm1hsVxJG1Yf4JuEoHeb\njCyACjxz+TYih7seehy/+8GP4CBy9ZH7b8VjT1/ELUcOa8HOMoktpF3irqfnIKJFn9AJTlWNFjNz\nq21XLN8mCO2RLe6xKExOWdxY8HZ15fK3584uScIvkYDkpC0pa7eqFFPpMhaTYidnMiGLtuq844Ju\nABpSngDECGlb5OQnnMXfizBMCbnrhRNAAUNqMdjRVvc780XNCYeezURcs+R/l7SZ6s8JIPbycAm2\nFGReiVUfzHleGNhM79+zKDxQvrF1xEM+DprQa9TRLzoVqnEAYcnnKMdpIP71f/Pl+KV//5v44D3F\n8v6SF9yCf/DKv5G/wUEjG/Qh0TmE4C11BzmdLaeKRVIgtDKq06PbSMKPb+zHLyncPiSGg6Tw7O4t\ncOHijuLXHEf2trFY9lJrIAh+sQkG1J7oKYYRCPc+/Jh+88HpEU88s4ObrzuT6zoYgTNSzRryvX6j\n8zzI6jDl1WiRSBm/OGXskp9xYtTKLj0VS2aUMnxkmIGqEqP208hBFJitBWCMgl1xlJRG0j8kaBSZ\n87l7T8GvkM/ro/c+gLsfOoebr7sat1x/rVpQTBDWD68C0sgT18tdIwtcvkXOoh1QYRd0XaunNFI0\neQwDPbIDc16iLlwocGP3SQ06+R+Tm1XNP8aa6De4m6LTQfiVQWwNDZjrn5cYer++8au+DD//1rfh\nQxVeveimm/Cdr/gb8Orxs3QtgqbpACoA7eEyhnkq7yE1XHG0wriFqNrS27fVb8Zzjk8297r34cf1\n90th1y5uvk7nwIZ7TbjXR+97SLDr2rOCXRvuteFen8DBzHfAAu0u/Z4fAPADz/L6CsBt+vikDJtW\nGjcuNU0pYdH3eOKp82geeBCHt+Y4Om9w4thWTpVOKQFReEzkCAarUcNnI78ZERKAex58RL/xUth1\nETdeexpN02SjVoojhmFAiiNcE2CL3QyYLjHgkY0ogKShOo08sv23GDRkHoHFjMfJorQGxHHEarlA\nHHoQ1KBFIX92TB4pAY5Y8UDIakpSMD5Fq8fnwJBC9+Q1Wi1CnmeIAWwYQCA0QRyJXTfHfL6F2WxL\nokubFq7pcH5vhVd+34/h7e94Z75aX/pXvwC//LrvxfFZJ+cXI+A9HBqEFBE0XJ+NczE05c5LmQ4Q\nHHup+YeECMFS1wQE58s903IEQz+AGAjkwSEijoOucwfmIAY2H0Dk4ciXmNKc2swZJ2ujek4hpmnk\nVjY8kUQOwjvZt6rFbZGhNoNzDUnlhLUPIBk+1bqAjOvpnEjmcGCcOnYU1566Aoe25xIx2LTo1IHI\nMSE4j67t0HiPZUpS23S1whLAbNbh8KFtzLtWOnpaE6eUMMcWiBnjsEIce8G7EBCxxPAsheL/S8Zl\nZ9SyDTZvjpX3JUHAiVjAaXdvgTYEdE3Aoe05jh7axt7uUoiVtfxuE1ztMbJUliSbOueQScJ9556d\nXD1+fheffqMQDJ9DvjWnNT8ucWLmwuOUJzfIPIQlHFFSdkbJe85FSUckbc1sm57l42fdoVs320Vc\nF4apHCc5AU4XGD55xCjF8KLmWeuh5cMGRBhS7rZjbjgCRVk8d97/EO5+9HHcfP01uOWm67XQnj/4\n4UtL1mJiLsSXNKVJBKmklZC9r67FkwCKjISIKoZC5w7L8XKAYyNner2SRjdYXY1yk/J1rC5sFrGZ\nSFMB1gmPtVFZ4stEXnuPfTPvf648uJBxvZGH5zP8/Vd8JZ7e28X5izu44exJnLniKOI4ImqBRJsn\nniCEyhGCd9IVz4QhoGkDWhAXWlSSeXLIckzPRjA3ox4H4ZddvgRg5ASKwKLvsbO3QBMCZm2Dw9tz\n7Bzaxt7eMhcADm2DoEKHvJCNXMDcSAgDYMINV5/RIzg4PeLUFUdyUW2r6UAkG2NKDHZq2CpnkcWA\nzvpiWOKkbymdyRhqYFDsysIwluLKRerJdWGbWdr1phhQyoNBWrampIMYdrkkESCGXXX7emKpV8Aq\nmCin6qiXkQhPPX0Br/6hN+Dt7353vlpf+vmfh3/+j/4hjm7PgCQpUvse9mZbm4Zb5nFL9p0uYxzZ\nWs4EpxSCtc/Kc0jDHjLmQus/6L0hMuOAGbgKEFH5ENRPENeRZRXo0PTt9g8CVedVnqsNc5h+Uv63\nxc5wYmzNOnz7//iVOPfkk3j8qfM4e+I4brz6FOZzqeWQmBEBqV+jewmB1fsnorDGLmf1y8y4kCI4\nuX3Ytf+kNuO5xp8V97rx6tN6BJfGLmuaseFewr2eurCDV//Q6/H236+w6/P+a/zzH/keHDt2ZMO9\nNtzrL/RovQMl6cg36JRxOjfScolHH3sUh2Ytrjp2CFefukJqSXEx0CTSznaQIvMe2tEzSeFyK8p+\n4zXPzruuPLKNEDyapkHbtWiaBstxQN8PQBrRhNIptMYygHLzAEANaRr7TbrfSyQyYCnThBHMYiwb\nh14fA/rlQjKRgkYcuXIt5POl2HlpLEG5i3CMElkeY4KPDN/Y+5XDQOZoTNJIxDHl4u0+NGjaGdqu\nQ2hauKYFmhZf890/gtvf9Seos6Fuf+ffw6u+93X49z/9OtknEks1BgJ8SgiJlQtWqbqAGurLdXLe\nQTpO61rS9GykBPIMl4BxHLRGF4vBynswABcH6UDqG8A3gmlaC1Ii4LzWJ3MZL1EZtIpjoJjkmWX+\npJREMieSeo4MQU7lj9YcqTaK2b7pnZPo0Fhy2ZPisLzu1T8Tc3RwUi4ljQDkGIKTWrqN95i1LWZt\nh8Y5LHuJ5vNE6JoGSy8F9JEivCPMuxZdG+AdyR6apL4ZJwZ3HQiMYbUApxFNI40QmAlDXI/0/cSM\ny8+oZeGdmBIrJtJOPHLzlv2AncUCngit9zh6aBsXdw5jd2+ZF1HbjeL9gnZ1Srp5C4LALOSyuTlc\n/xzk6uzJY/CudFwyTx+nhOSoEoX5bPYJQ3FJG7lKegi6uWmHCgl7H1Qc2iSKGZhdJh0oDKgiAvJN\nRRRah4aYpMMYEWVRyEFbqMdRwzNT9j8SkzoNCaiLv1raDgNPPX0BX/ujb8Db3/Pe/N1f+pc/H296\n3ffi6LydCEOXf7eIDRUmwBQYWAW8k+4KVJEwOZ+YNwFKCREmtvVaOEgRRyQ4Fk8hQS3tJMWcie17\n9O8MpAqbygSLSVKlMuBgv5irdRStPVGLBcC+0o63xFFMPjNPT9bok8LNHBGuOXElPu3aM5jPWgxD\nL9NZSRIlztEOgSRlI3inoc5aLFyFIZkwZAZ0o9YEgixmbT5dSjNsRhmXxC9ItAMSwBBh2Ch+dSHg\nyKFt7Owcxt7uEk3bFvxqBb+s6GwWhpbvIRCCW66/Gi976YvxO++7DTEx6lSv/+r6a3D6ymO5W0zQ\nQvGGf+JJspz+6V02/VZUmiXVMXJnP8OvlBC1u05KQ9XhUH7WHmwq7bbW1tPUoGUQneuLxAgfimGL\niDJ2xSw+da2RFbC3kHkPSfkRYfjqH34Dbn/vXZiQq9+/Da/6vv8N/+YNPwxyUaKlqod0IoLivom1\naeqLeOwEu7IoNBHDcv+ZoWksVfSaaTEnzxMHIdVKHiUlT6MwqMIuXku7yVhTnsz3laqH/aDJn67h\nl/yviKyJ/W0yGGtvMlEIxunjx3Dm2FE0jVexJ3g0Rsrh8hwl2qqO1Ar2XsMvsrCBpAQrSXrYOnbZ\nodB67MNmXGr8WXGvW667Bl/8uS/Bb7/3Uth1VNMON9zLuNerf+j1uP09a9j17tvwqv/1H+Pf/vTr\nJLJsw7023Osv6Di81aJfrrAaGD0sGhMACC2Axe4OHnnwQTx4/ChuOHsGVx6/ArM5QK1DilJo3BHg\nvUMDgksADwnAKOteU+9ecM3VePlffinueNcUu4huwy1nT+H0FUfQ+ICuadG1rUQnM4sRFGYkru+u\nrj+IYcnBSjOk3EWUSXGVLc05AjyA0COlAePQo18t0fcrjL2kHQYn3ME7ytFfAEAkZSg4LxxZrc4H\nAIRhGLFcrkCaegnv4ThIFJtFlEIcj+OYtAaVRp4m+UznAihIQ54/eeBh/Mf//A6sZ0PFyPiPv3Mr\n7nzwHG4+dQIuRcEQJGmEFKQTI0i+l3SRFGOSlCRIxNIRVlN5rbSE6VWKstbiOCIiwpHXexLhG4/Q\ntAiafkhIIE7w0OWpNQnlu90UZ6gYuOxKTtKlKycjw9KaFfuoOBCddUgEISW5V4a1MixFVfYxys7T\nVF5T4xiBwVEwTKoYysOTQ+MD2tCAGOiXS+xe3ME4DAjahbPxHsE7bG3NMJ91GhUvEW0uQJ3iUhZF\nooIjHIDQtmhbSS8dU1l1n8hx2Rm1gDIBZC6qd1Y3mRHSMnk5DAhLgksJjXO4cOQwLl7cxc7OHrqu\nRWgbtLMW3TgC7OBkaurGmlUa1NQMBuGma6/GF7z4M/DOD7xWi+NV5OqGa3D25HFpz+skdFMASS3s\nqQpZXj8fJfnZ2s7Iu3Op/SH1ZqLmsk6JlW6YRBoBJZ0XcmrSPs5eKRclYYkl1D1qnqtLDB9UiMaI\nMUWM2ppaAFUWQIxV5xVduLmmDBO+9h/9JG5/3z2YkKt33YZXfe/r8NbX/yBy7YTc8UaPP094lz+b\nanBQQkjgUn+Gk2xOiYswzGGpmnriABq1E0+26AtRSPrZjjyIUiZw8tmU70uhQAZQuerGc0zcSz1F\na28on3UgqUIFfJWKNFLlqarP4Bwi5BxSNGGoueKauhMcofFO2kj7IgxL9Ih2D1NvoZGqcjoyhw48\nwc3YN4xEO1cKXAsPYkQWr/2yHxBoAZcSuuBx4eJhXNwR/BKjVoNu1iJ2IwgeCQ4+Fy7hjGFCLGQe\n/9T3vgbf9IM/hXe8v6RH/KUbrsXf+cq/onOliELBr1GLXWq0VgWL1dnIDxM2tm7t6cSo29un2CMq\nfpXCymr40joU5AjsSATTmtGkqBLDLolRSokl5HkcZZMODK85a6MatMYUARYB5YTniNeKkbHLHnfe\n/7BGOayRq8R4+ztuxZ0PPoSbzlyV8Rb1wy4UFVGISU0FI6aVwUoYSBb0cuiGbRBBox9Po3y244IO\nJqbZcDTpueRIAjL72vS+XXLoPDrgVk9UYv6x//M4/29q0Co2LTUkwNYEw5OQdU+CXUnPgaOlEVqd\nCyrGL+/Q+FKLpqQfWvoO9kc6VHhlkSeb8dzjz4p7/fT3fQu+8fvfgP/8h+vY9QU5YmHDvYR73fng\ns2DXO2/FnQ8odm24V/XChnv9RRqHt+bYSSOGOGKQ2ggYGHDMcJzgkXDxwjN46MEH8eADZ3Hs6DHM\ntw7BdZ3wBkqy/8AhaIklhtSkIidzMune+ws/+O34xu9/A37jnQW7brn6NL76iz8T3oecethWRi2G\nzKekBgpoxJBzXjAOPjsCDC/NCOLMgcYMROsy3SPFFcaxx2q5Qt+vlCslcWKGoAXOHawIvLOUbVIs\nVI5CXmu5+oB+jOh39zCkhCceexJP7i1xw5mTuPaqKwCocYPFSSk22oSBRvT9gGEYxLilnCwR4aMP\nPKRX6OBsqD++70HccNWJCd6Sl/qL5CSlmhUnpqnP6mwgDwpS54nA0MJ+YoDJTTNcNgjGmDDGKMYu\nN2pkliJOiiCvBkTDdCa4YNwLmvouRvfiGJgiVk5jrvciu97VeTglrZycYGQ+M2SOvl5jT74zbxIy\nL/V1V3F3olLWofEebWjgQFitVti5uIPdnYtYrZYgJHRNQNsEBEeYtS0Obc3RhQBOI8aB0YDQdHM4\nH8AaFcijGE5njdRRc6FB3Bi1dFABde9dDt91DCW+srgjJwzjiBURFsslLlzcwfnz5zFvG8QkRMHC\nlrs2ILUN0DYAB0lN8fJ10vUBslkn4HWv/Rp814//It794Sm5+rtf9d+IKFRS5cghIRUvs3PTycqo\n/p2Q2MHpgkzZS6mvxREpiTAr9Rxi3vBkhRTPI1uIOBOSEQIVSmqvtQsIFwJ8FDAACIgabp8Y9z76\nNB4+/wxOHzuMU8cOY4iSJ1tomYQ5Zi+hD2hBaEi6GN354CN4+7vfg4PI1f/3jlvxx/fcixtPn0Aa\nBwzRHiPGcZxcKyu0x0auACB3rhCgzeI9mZhU71W2kKPK/NfrmsSzIlsCwdm10ntDXnOOtZ0rmY/f\nQb5LwUJu5xSMrGNN/qkwxuuP/Le12KPspMzcDzZfqp/2nN4P51wOhyYrPquEKg4jRg0j5ZTEix4E\nnLqmQds08u/g0YSg0ToWcZPEuJFUZZgoVLDdCMKPfVCFXy7X0/j/2XvzsNuuus7zs4a9z3mHO8/z\nzQQEg5EQGWyH6qqu6uou2y5tn1bsikI5AJqgoBSgIAHibIuAFlarDZZSPA84tlhK49C21ULCTIAA\nmW5ubnLn8Z3OOXuvtfqP32+tvc973wRDg1w6786z73lz3vPus4e1vuv7/Y0Wm1LBrhSi4FeQtrfL\nKyMWFhY4d+48w6qijS1tavMayrCuGNQVJlY4L8PSJsApfgXBrk1zc7z1330/H7/n89xz3xG2b5pj\n59aNQqCctipWgSieeHmuXc5/z4O0avFNRK29kCOMsjGsw6+Sapjxq3R4gSLy0GS6PnbFVePeIEYv\nxS+rUTwpoUUtAoTIg+dO88jZC+zakvFLWmBrYjTO5WL70iEyGfXfOcd9jzw+ubr3yEMc3L6Z2E4I\nbUNb9pag3vWM81h9viZHumTsEg9aUtySltVW8EuhDTUe5ErNcvc1ciQFCVenjxkGm3J6T4ddMvZs\nEYqFz9CRqsueac+K2Rd4faxi1f/3dy57P01jXrlEwWebC4j3PJopithvJw3NpCEFiVapvGPgK2ol\nWBm/Ku8Kdsm5xWKcIFPP3iRcj9J6AttXkHttmpvj11/1Q3z8M5/jM/cfYev8kJ1bNxUus869Ou51\n37HHx67PP3iEgzsEu9a51zr3ejJuG2bnaJsxK40UBk/I3A8p0aZARaJJkVOnTvP5e+9jdnaWemZA\n8oZ6psI6I10KQyRhdYwnpKinVZxMmGTZMr+R3/+V1/Le9/81/9cH72Lz7IDtm+cB6ZxXeTFseV+J\nYV8KIqlPKqpRS3iAzEGLSVbw1opBRgZqzEE8YCSKNKnzsG3HTEbLjCdjxqMJMUa88wwqNaZZ6eAY\nk6VpJcLGuYj3MofaMBGnoDMYHKauqOdmMQuXeOTkaX7j/7yLux86Vu7v1193NT/13f+czfNzGCA0\nLTYlwf9JYmQMo7qmmZ2TLnkxQGw5sHeHHmHtbKiDe7bThgabhCPrrBD4MVrCPUaCMdiAGMqtxTiD\ncx6MRHdlCOlmT1Tbvhi1Ypn7ufkIQCDGhtBCsgljKwyGoI04UpK4U6MYEGOiNch5IAYj8vnG2L2W\ndWl6beo2MWjF2MNTmMY8KLgaY9SECau00ShU5+i9XiMmvQcW6VBY+4rhYMiwHhBjYGlhkYvnz7O0\nuMRoeYUYIjMDic6qvGM4qJifm2VmWFM5p4YqMXy5qmYyaVm6dJGV5UUsicGgZmZmlnowpI39a/zS\nbV91Rq3sqTJGc9K9o3LS+jgAMUnr6BC1xTSwMhqxsLjAubrCGSOheSSMk7aiYTiQvFIlJ1YHl0Vz\ndJVcpQAbZmb4mRd9F3d//j6OnTrLzq0b2bVtk4QNa4RDXti0OvL0YruGcEi6aCVjtMtEP+RdiimH\nVjrtdJ2cel12igiQnGcRheLltnk9pFuQpVSF6azclSe1gURDiokLi8vc/od/yV33Hyn3/aarDvJj\n3/oNDKtqyreVkhQsdF5IWjIGvMNGz32PPn6RxHsfeoj92zcSe4KwVZKVVVRKSfK31fougK02ZpPU\nSywTScLihVh1obhkN1pPyCh51LGS9WOf3NiEeMZcvlIdfSZ1OlxBr4j8/rNeRaqyNCz/9Z9FWvX9\nq3ZW/a4AeerOJYeolrbm+R6p4AhtoBlPaCcNKLGqfCZVvuyV9xpa6kQcqGEi5ToBlwlDJVeZyK5v\nj7s9Pn6JoSJEijCcpMTKSArGD/r4ZdD8fkuc6fALuprIFkNuxVyMWwH2bN2KvzoQtJ+8WS0KrSyG\nMjZXG6/64jBjmgRjWxVvJfIqxdI6OrSNpoF1v4Ncu4GeV0077qgBJkZKjQERhipRrBWPYaXC0LYy\n2UPk4uLoMvx65lUHeel//zzmBnURhnKtWodH23EnazGV59DenfqXj0Gudm2nbSeEpiG0DU3b0LTi\n+Y1aB6sQkz522SxJM2mV2h5aOUoNWjnalZ4wzHNNn4H+TVKcyviQSZFNYFzWkl6/P0fCmE6tyYn2\nnmtc+1nTey8LwSL01sCux3g/9oVkZxMgd/+SsHUZySYh9TralqYnCq2BynfGrIxhgl1eorasLXUl\nJPJe03dMh5VTkcXr2xfcvtLcK4XE3m1bqVJg3EzkjIxZ516ruNfB3dv1U2tj16Hd27Vwb7POvda5\n15Nym50ZsDKpqScTJm1Lzj8s48UaIrC4vMyDDz4oho2BBw+btm5mZmaATRIN7qzXOkGCUSbFMt6N\nMZhkaENgx6YNXLd7uzi9YjYYO7wXw6b3YhyRdOSAwZK7O+d6Wpn/SBSYOsR0TOd0uLZ0lw40TUPT\njBiNlqUgfCuG5MpLumNdD3HOkxtLJDT4UiPsMS2gJRySGNGjBeMdsxs3sGnS8Nrf+3M+fXSRfjbO\nR+67lVf/5h/yom+8Hu+9dM+bGTIYDKkqSf9bXnIsDmp87amdwTm4Zv8O/ulzb74sXdPZl/LNX38z\nB3duIsQRMUba2NCGhja0NG3DpBkzmUwEtzSKK6c1YzXCTA2OPlU6sSUCXKLQ6OGUGBF9LfUfnY9g\nZB62LRgL3hstpN4oV5VoM6t1vPom9RINbnSu9lLsC27FpA5cORejXEk25Syx+3w2YMUMREki4WII\nGSmKIVRYn2BpjqDtGLfw/6qqGA6HzAzlGbVNw/nz5zlz5oykH04mWAOzs0Pm52eZmRkwMxgwOzNg\nODNgZmZI0wSMFSzzlWc8GrG0cInR8iKGxKCuGAwHVIOBPt8v/fZVaNSiEFPp1CWhu7lYY1QLaEiR\nNiQmMbACXFpYxBsjKQwkrLNUg4rBoBZSZQyVdThjy4KZreY5rzkTrBgTOzdvYvPcLNbJ51wJfe97\nC9UymySENKbpRbYstVqHJqrltEvXEVLVtiKcQtsoeHWDIQszUyaMhnqiopDiN1NQ1MuzBpzFJi+e\nVtuSIwZe//t/yYePXKAPUh8/ciu//Md/x49/6/PUSdat9M47nK9wVSUGrbbCx/oLC8Od22ibCSET\nqkKu2vKsxRuFFuOjCLx+jRqihsSrdZo+eGRRaLMwlHPPYrxkbEVITm+OppTnrnI2A4Qx5AL4Xb2M\nfDxVaVNEeopK9T5NNwaKlb0jV6wWi2vuqTtOkudpcvcc2yPbOic6YdiSgox38Q5K7vTAd+LQe8mX\nNsaQtA1vJvqk1BOGfVGY9/XtcTfTwy+tp1FVrixWMci4DTHSpISNkeUVw6WFBZwB2gAmYb2lqivq\nusLEhEMKPLrcoAGhwJ1RC8UuJSxBlzmdG7njYcYvU46SCbwURl09pstibBJRDVS5eHLuspMjmYIK\npoxHogWFwIshIxMriXIoo0pBK/aNN0YjtRJYHyQNMQFt4vW//34+fOQiffz6xJFb+ZX/4+/4iX/1\nDQoBsgY4J0X3nXaUNJXHhZar9+/in379TfztRy4nV99y87M4tHub1EtpG8WvVghW2yhp6O5fiXbI\n5w1yvcYIMc33WX+fCk7RiULbCUXx3hpylk4/vRDb1Vi2ZGNjJ4KssYI7oky7Z7jaAEBUA8Qqcbga\nf/LzoMDflAhk6m96Bi26n6VWUxaFOZpNrqcfqdVqpJajh109UVj7jF1Oa0/0wvFjWfl6BtR17Hoi\n25XCvQTDzDr3egzuddW+L4xdwruade7FOvd6Mm5V5ZgdDlgeTRiPA606QHIqbr6dIcGZ8xeI9z/A\nYHbAYHbAAQOYzWLGdlGi462F0NUHNEaMKMaKATs2Dc24kQLdOl+st3jvqbXOkPeVdCWM0j3OVXRG\ndo3oiTFJR2QbtKkCcq4pN1yIwreCOBHH4xFLi4uMVpaIsVUDk3QdrKsaYyxN02KMxbtKa0xBIhC1\nyyGkMudLxKkx+Fgt4Y0AACAASURBVHrAxUng7iNHWZ2NE1PinhO3cOTETuZcYtI0eO/YumUrO3Zs\nZ9OmzWBWMPYieM/GyjOsPdZb3vH6H+Xfvu7N/GUvXfObb76J3/ipF5GaFVpjSDHSTMY0msY4nkyY\njMe0Qa7FeY3WNmikbaPrhcNYL2X9jYEYaGmkZmGKlP9MpPKOalBhvYXc3RopR5hiSwgWYxzJGZwa\n/dtGIuRcDOCkE62LBhszFwSYNs73ncRRnSnyq6hrl1j/YxJdEEKiDVGN3qnjxUmfjz4jgW0B1KTP\nLCFrqElolGcCI8a5QV0zMzNkUA8gGZaWljl75hwXz1+gbVucdQyqmtmZIfNzc8zNzlJXFc456qpm\nOBhS+UQyFucFw2IMjMcjUgxSeL6qSh249e6HeSugTkndqSpbBkcIBmP15wRNTExMKx5DazExycJR\ne5yXLjnj+XnayTypDczMDKnqCl9V+NoXb0lIkaYJNG2gbaPmAku+vy2FOm0h5oWXp9UdePKirqIh\nRRGDKZW1OhOqGNRTqDVhQi+FAijhhLKbImAilHoOwiWSWpm7BbzUkVGPofEOW1UcuXCKOx88wlog\n9cmHb+HkxSV2bZiVTi4x0I4nTEZjVvwKxkkKT04LOrh7O//1zc/k//7o5eTqm575dezbsYXxaKSi\nV9rYZq9hkYRZiEVX6qoUb77NLWx7oJ9i7nhdLOPGKiHSrmZ5cpMyuQkKNqIa5R5lMSjfhTGkqN5I\nvYnCu7JIy0QqR6JMC0UuGwOryFQ5HwpRyRS6LCRpWtiXvytCQwi+7dfvSb1d76qzFuMrnEEW1Kqi\nqsTb5FVclPSC1BXDleiQVBb+cn50Hsz17fE3EYZGdY0pwpAYidESXUSankjUUxsDk7ZheTTCZ/yq\nxAvivCyykw1jiWIJgWY40M5i4mEKGpKc8ast+CWY4FQE9vEr1zcCPQ/1Bq2OcMhCMdLrypUyfkmq\nYe46GLQjCj17jdV2z0lxTGMfuv8KhsWpMV9ERcEvKTRqq4qHLp3mzgcfYi38uvvhWzh5cZFdG2Y5\nce4Spy8tcWj3Dq6pKonUchZch19ve/WLefHPvo2/+XBHrr7ppmfya698EZPxSK4tY1YjkVpt0xA1\nikMeuME7Ty50nnLKY65fkwR/JKotddiVPXPZ+JUjUAo2ZFzJHkTT2xVDjJV7rMXjjbES9QYF+4q8\n12fZx6ki/Kc/OQUpU+KObnXK78VC2vLPvedY7hGaBiqGXpPXz1VfYhBDgvceaxBPs6+odPeuwy4p\nOC73PGrtkJTXvJ4gXMeuJ7Ctc68rgnudOHeRkxcWOLBjG9fU9Zrcay3s+uabnsmvv+pFNOOxGOs0\nynSde1GOuc69nhybNYm5mQErzZjl8USNSYmARJ0GDG1KeMSwdfHSRR544AiDmSFNaDkYDsDWLTCo\nsRHpkmdcGZdGo92NNTjriXHMpJFocqPGFue8RGnVVamnFfqY40zhXiVqL2l9P1qwUqYhG7rFmSgR\npW0bWFleZnl5ifFoBAkqP6AeDKgHM1TVEGMdISaaNhajszPqOdMhnDOjjZUuy90ckLl//NxFvaNr\nZ+Ns2neQa7bOc/rUaU6dOc3J02c4eu4S0Q+49sBerr/qINXyCn52hBsMqLxn68Z5/vh//Uk+f/QR\n7n/4UQ7t2cGhPTtl7rYSMdZMJoxGIyaTCW2jzocgxeKNibTGYKpKI4YqvPfSQKTnLcyGcmOs1mY1\nGgEmjuNqUFMNaqVcwk8Avb8R6YJr8B6pG2bE4dKaCb4OVINZXO1xSdJFi+NRDlJeDOqAS3Ls3PVQ\nnnuQXo0pEVKgCZLBIY5kJ5aroMuJr3A+kdqoRfkT1huCsYRkJLU2RtqUcMbSIjgdSAQTsd5QKRce\nj8ZcOHuB5aUVLI7aeWrnsVTM1DVzgwEz1QCnBkaSIOegHkiZDZAMhvGYdjLGkKhqj7GWSYxMgqzn\nX47tq86oVWh9byGpvJOFKxpCkI5JuQZvTNDEyLhpWR6NsQl85SVtJybGkwlbNm1gZXkj49GI+fk5\nBsMBg5khw+FAF7ZISInxZCwF7tpWLKUxFW9hWeyLN6nznKwV8p7931EXdugcUEKoNPw9KlEwYhXW\nIxYikIwlJrH8FzzKmKQHLGtsWbjzhOnEj/EVDBKPLI30O9YGqXOjhoPbBqTxBNqAbQJhNGFkVkpP\niKRgUbeBN//493PbL/0mf/vRjlx944038qaXvYDx8gpNM6GdTEr4e4566HeLsMYSrCVYR9AaOMZL\nHQnUI08mMepplRDOfDNyMcGeF02ZbxFjJRJFwuJdMoDF2ECMDmtyKkSvY1N+tuW1I1P0ydVl//UF\nZXmi+vO05y2L1EyuopKrTvxSyKN1FuulNlKpSZPUf6wdLag80RlSlIKDg7qmrmoRhTlqBrow16AG\nip4wTDrukpFCqCFBm0oE9/r2BbY+fnlvqStLitoFK+QOJ0IoAtCEpPg1wiZZHAS/IuPxmOVNGxkp\nfs3NzTIYDhjODKmHg1JoNKbEaDxR/Aq0IYoRAWTBVjKeI4im5lTPiNWFwWs0jxq0gFIwWgxaimEp\ne6UsWF9MHuLIlvpZUY0xPXsDubhl0TvFaNI3kKhgcg5T1TCEYyuPj1+PXlzmnf/lbj5RCpLCMw8f\n4FXf+c/ZQU77k06IQ+/4j7f/KEdOnOah4yc5uHsHh/fslPu+MqJtJjQTaYvdtm0RiGIQ6vCrj13O\nORGyimFyUSpYNF2z1FvIUQ7WdcYe28MuKKAejRJeFWzk9cJIRzMTo4RwSQX6nt5Kl2FXWvXc83s5\n9SFjVxGXqwRhZ3jr1uA8DrInsYiwbLC7DLtMCat3xuKdI/oKb43il2NQDzrs0vSzUog1RS3OLNgl\ndSTkviTjiBrNU7BrXRV+wW2de8FXknsV7Dra1a555sH9vPI7/hlbmOZeg8GA33ndSzly4hRHT5zh\n0J4edo1GtJPJOvfqnug693oSbTK6IrOzA2bbIcPlEZNxIEThSm0yTKxEQjdI3au2iZw+fRbu+SxL\noxVWRitMDh9k+5YtpLkNGGOpba3WBTFUJKsPxhliEENTSmhkujponKQfijHBkjs458i8YogvaYjC\nucTsJuNBanclmqZhMhmXCNPl5RUm4xZrPYNBTV1XhX+EmCNJnZQkSIagzlSQaW2t4C9W0tMwkt6W\n53fCcGDX49fAevp117B9wyzzW7bi5jfw63/+99x76qx+5iM84+B+Xv+Cb8MNhzhfYY2lHsg5HNq5\njQPbt4gTo5EI0jZB27aMxiPGKytMJsLBcnfYoFFt3nuGMzPY2VlqX+GNJbtqY9Ko2aBOk7b723Er\n6Yy+rhgMh1jvSMTOwA5asD3RtoEQJkSJ78CYFrBScB+D8wNsn1ikbMjvMBM6Q3kBRKMYZSLJ9DiZ\nvh+j4Jc4Rk2Z/JKGHzHGlZq18gwVJ0IiBHUeG0sbAWMINhFtBA/WS4mApaURy0tj5uo5ZjbWXLxw\njrG1zPgBs35AhcMliUAL48DChQVIhs2bt1JXNU0IjJaXWbx0gdCIUcsYQ7SO5RaWmnRlRGoZY14M\nvAQ4rG99GnhDSukvep95A/ADwGbg/wFeklK670tytuU7FJiswXtTvIUhBCE6OuhSgIBYJ8dNK2kZ\nbZDJGaMUYV5eZmVpE6PRSKy/4zFzc3PMtq1454x2oCAxmUwYTxqNeBBZ55Qoi7dwVWh2BqVeHmwh\nVVPCUFRGygIl9kShurcTplRQNb17UTxLagWOpmSq6D+x99nuVRZqJUHWgK8Ay/4De/VTj5EyuHsn\ng2pAagIpwiNnLnBidJLdO7awd/dOErmDmSOEyNA73v5TP8LRk2d48NETHNi1nUO7dtCGltHKCs1Y\nO3E0jYJES2yDhHQbC5qOUuVF3BhNE9J0Ief0OkWs5TwrU4SlRkaocOqxzk7Y6X03KSgx7d3v4DA2\nkKy2RS1uvo4YTZGm1CfSq+rTXEau6AFafmC6m1xsVp9V7IrN9osj5sFmNGfcacFvo61fsyfAWUnL\nwVeQpO4HRRhWeCcWekk9U2EYpdBpbFUYhtQJQ+1MFlFLf8bqK3S7orBL9xLt4J14aIKlbaWoJSFp\n7V3Fr0kj9WZaafseYmQ8GbO0vMzK8jJj9VptHG1gdn6W2TYwG6NijdSiGo3Hil8iDJ2xuJSFoZv2\nMpPxYi1RGKfwqxg2FKtCjtTK5AwVhprGYsrRc9qPvp+m749ssXcu3Vwp+IUB66EGjGP//n36ybXx\n632fvI/PPbLMVGriQ7fys+95P2+85Vu1A6PDWFe8e/u3bubA9i3EGJmMxtLBp5FwdwmBH5fOi1J7\nJ1G6HRpLZQS3gpF5aCovQrbynVc+Y1iStu/kO5WjIqxTLVjMgpkbKcmMGBOIKWGj3Atsi4muiKgU\no3TuWRO7soErdmRrCtdWYVz+myzOp/ZcmLuHXz1BOI1fCMY7TSNz3TjJ2CXk35MKdjlIQWuCZFHo\np0RhJGmUg0bdaKRDMkYKh2PFI59kv9JF4RWFX6xzL/jH517v++R9fO7YElPY9fCt/Nwf/hWv/e5/\neRn3ct6xf+sWDu3YTkwddrWhFdxa517r3OtJuEmKe6KqLDPDipmZmpWVRtbwJKPTakkHD5plklhe\nHnH8+CmWx2OWV5ZZXFjk0P597N+9m7htK8M4IxH0lZdaTi20ErrD0soKo9FY6lJpCYCUwOTIYysG\nkxAkmj47dKyuhZJGH2ReO6krmYgasSNjpgkSFTsarRBCxBrDcGYW7xxVJWMwR5g2IWr5zjzWNSUy\n5WEt6d9NajEmUXlDiNC0QY0rEjF4aN8evuFrb+CDn7pNUxW/BfhbrH0pNz/1qezeuZ0QWmY3buJ3\n3v1+7j8d6OPXpx6+ldf9zp/yph/5HiyylswMg+AFOg9y3agkP0+aCaOVEaPxCqOVFUajldJJMUed\nGmA4HDK/YQPz8/OcvLjAo2cvcmjPTq7av1c4VYKUAqGZSAr2ZMJoNIEE87NzDGdmEI4KJopRSDiy\nwzoxELUhEsKE1icqX+FcRXYalpT3jIuZ+cYgXc57WFQYlSlvFCdA5uQ5Yt86p1F78pxyqnNa9Xch\nJanppwbREMWYlyM9Y0qSMeId1cAxGA7wlZeOoE3LcDDDhuE8k/EKk5UV4twclYOZusZjMUmK71e+\nJiUITSjOh2Y0YnlhgZXFRWwSI6OraqL1LDWwFMyVYdQCHgZeCdyL3P4XAH9ijPm6lNI9xphXArcC\n3wscAe4A3meMuT6lNPmSnTW5LEEnCsVyanGthAmK8VkeYhsT46aBthWvU2iZTCYsLS+xsLAgk2Ii\ntZ2atmXStrQpasg0ZeBNmobxpGHStLQhlN9l4l3qpJiSfDJNqFIv0iF1wtAk0xGwvJgVUZipUy7Y\n2d8S6OLbDfCOXKXYTRn6P5lOjKTs2awqjPMcuuoQz73ha7jrM6tB6jZuuu46rt6/l3hpkYsXFvjF\n99/Fx46fKMe/4cA+XvEd/40SGUeMicp7gvfs27qZPVs2EkPUlEPJ956MRkzGI9pGw0d1Rwv9YS0O\nQwCqJJErpqowdQ11jfFePCMmT+ZUWrrbrI6zKNQigeWZpunnQ8p0S77TWGkV22/dLZEOWWj3xGB+\nvUwQ5vo0PUKVv488tvqVOkzxgvRDzFMRhX1haLr2tbnAt582TohTpROGNiXAyVFTZFDXVCXaIQtD\nU8ApewtDG4p3ORkLxhVh2OpzucJ51RWDXdAX6yIMUzS0PgtDlBQLYSVFbNNI6LXi13gyZmlpiYWF\nRTWuCClrmpaJFvVEOyhlIj4aqzBstZNWyfO3vV3r2QBcJhQ6A0ffsIUatDKGxRiKYQso+GXM5fch\nqXDI63k/Sks/0ftX3+nhl1gHpRW18YnDVx/iuTc8fU38uv7QIT79GKmJn3joFu49epzrDrlSPN57\nLXippDOnUIYYaCZjMSSOR0zGY50jWksMCnYZawkJKsR44qztsKuuVUCiGKYVeQwl/SYfo4ukoywC\n/XQaIU0AUToiqWEu2oCJTorXpiTiMD9bprGrO2a8/Jmzegw8znwvhrfu+Xa1Hrq/zc/P5ALLXiNB\nlODL+iWRDlkUSmyhgxSpS6SWFPp3xqkohBTjlChMUTyWQsZdTxR+VWAXXEH4tc694B+bez390GE+\n9RipiZ84egv3PXyc6w7aNbmX914iPBS71rnXOvd6Mm/SnEbQfzDwzM4OWFwcMR4FYqCsCTnzJCLr\ncYiJ5ZUx49NnWRmPuXD+IqcePcGla6/h0OGDbNqyibn5eYazs1SVpFphIKTE+YuXWFxZoY0R3xtb\nuSZgNjblKPdu01U9SQSXdCOMGAcp5TRsiaAaNRNGkwltSFS+Zjgc4J0nl5NIyqtiTLTq6MnxWjl1\nMmmUGUlT32KLIUlkVxIjTo5Gi1GcRL/w0hfwije/gw/e3WXj3Py0p/FTL/gOgrFE6zh2YYGP3fcA\nq/ErpcTdD93Cx++5l5uufypgaZsgRhCNDgu9yNmgHcFHKyssLS3wuYeOcuT4KbZvmGXXpnlJH2xb\nYoxYaxkde5Tf+quP8sleZ8ZnX/8U7njRd7Nt0wa5tqahbcY0zZjYtszMDBgMZ3G+IoYWI/0SiSFh\nk3acdTXOSzfcNkRi02CMxbpKovCzcydJBKpJHfjlRgDZydZ7zAXNYBVW6c99I5c8Pzo+pZ81uh4K\nFw3KvXLHWYkQFBItaaeV98zNDpmdHeK8pVmekGJkbm4ObyyxHVPVFRv8BpxJOGdwldRxrIdDZufm\nsdZQV5XUP22WWFxaYnlxidi2DKqamcGAemaOiXGMk6G1FeFKMGqllP5s1VuvMca8BHgucA/wo8Ab\nU0rvBTDGfC9wEvjXwLv/v59ut4AWMmwMTlvoei287DXygaT1aXSoRIRstCEwmTRFZFWViJaYxIO4\nuLzMwvIyC8tLQq6QMdCGwNKyPLCVSYP3Fh+Tem2yRz3vcrI5V1l5T8eMDJRCNMYowslunICMsbYb\nsd1D6LzpfZGQhY0CWChtXnWipN5309U20GlA1MKmGHjjD9/Ca//97/LBT3Ug9aynPpWf/L5vx3qH\nmQ388t98iE+cGNG3un/m2K286U//lp994XcwHk9IQOty8UsvNEPJQYgSjitF64xEjdis7hx4B86T\nnBMZEyIuBFyIHD1zgWMXF9i3ZycH9uwUwFDG1IXO61ixDmOckoFpb6ExHaHK9zkWJRYxMWBCC9bh\n1UpuYivHI5Oiy8lVTvlKdGQ5xViApRDt/HOpSTFN8qA7t0y8UTJIHjp0daSdNfhSbFnHF+JJ9JWD\nVBO9Fcqm1bfr4ZB6MMTXtYT/WofklmuYazIYhCinJOkWGENyFcl5MF5Iljgnr9jtSsAu2bqIglwc\n21khyLm+VuWdjKaY6yV1HuKYEm0bmUyaMs5rjfiJMbAyGbO4Ivg1v7RYFs1kRBguLS+zuLzMaNIw\nMFClVIwwOb1NQpq7xfNxLqXDFKlKLvilYkjCsHv4pRhVDCSxwy5J4cnFcDWNqLegTylK04kOmR6G\nXCY1GcMbX3ILr3nb73LnKvz6b5/zDDVqrZ3ec2pphWuNoWlbVpZX8N7Taot1WR9UJqVE24jXlEi5\n1uPnL/Do2Qvs27aZ/Tu3kbwD53Ah8ujJMxw/c56DWzezf8/OIupInRA32chjxLBpnBYitY5kXHne\nXYRAvnm9+0gixSDYVfDLYoLF2BYTLX1D5zR+ZYNVLBiWMauPW2XP9T5iVKxQ01h5bp3YTFMYllcd\nuRZrTJkHznbN0sjzo3KQpI16H7sGA6kR4usBvqrVGCbiI48to+kA0Rqpa2EMuACuAutKKs+V3gHx\nSsCvde71leNe//K5X6tGrbWx6+zKmOuc1Mj5YrnXw2cuCn7t3Mr+ndvX5F5geOjUOY5dWmD/rh3S\naXGde61zr6+iTaI6E8RAXYmgn5kZsbzcilEbaMnGwm6u5ppS7aShvXCR5eVlLpw9x6WLFzl7/hw7\n9+5m+/ZtbNqyhcFQDATGOiZtw8lTp7i0sEgbE60aJwpu9QzyZfJAWVvLmMu464ykpmXjBzBpJ4wm\nY5IxzG3YwMxwBmedFqZX3IoSARZSkg7bMcpcMw5nLWTI69VEjbGVUwpJnZ1y3hC1bERibm6OX3vV\nj/Dgo8d5+Pgp9u7Yyu4tG2mDRCThLCcvLOrdXxu/Pn3/Q+zbthVjPW0bBbeqCme7OmNRHaYrKys8\nevIUP/Ou9/LJhx4uR7rx8AFe/u3/hC1bZzDGkmLg9nf+BZ9a1Znxw5+9lX/31t/lZ37wO6m8VQOy\nGO+Gg5rBYIh1npSN68bI9cZICChncThvickSkfObNA3WenXMuSl8IUatgZbUQNcq5itmAhimcKrP\nu8o40C0b76Y6rervnc31WqWmbSyYEnT8OwhiEHMG6qpiZjjDoK5JKTIej2hDS+0q2tBIp2GbGNQD\nfOXwlRSVn5+fZ+Pmzcxt2Cgp0zEwHo1pGonCbsZjHJaZQc3c7DxmMMvyBKJ3mLou0Yhf6u2Lrqll\nRHn8z8As8PfGmKuA3cBf5c+klC4ZY+4EnseXUBjmtVGbyAixKqLQ4ltX8lyjCf11k6iW30nTkJA8\nWmtlcjaNFGSeW15ifnmJuaU5tbbLwMth8JNGHnRtKuokIFgIlcltrztSNXXuvWvIjjr6uzVadM5Q\nNGHqFlSpWwCkoAIrv6/Am1QQomIHCsHqQiU09B3b1Sco3inDxvl53vSKF3H00ZM8fPIke3dsZd/2\nrZKv3DY8fPosH3mMiIePP3ALD585x6FdOyTUXVsUeyeLbzTZS5FIbdQWuAaPw9rEsbOXOH7uAvt2\nbePAnl0kL0PUThouXbzE6971n/ng/Q+U+/nspz2F2//td7B5w5ws+MVDqEVjtb0qhVz1nktCFrcs\nDEuqQuwJw1YFoYFoMVEKQOaaf6sJVswLSErTwrAnDqdEYk8Y5u/vk6ppIUnvM0mfmnYOM9J9Z0oY\n6pO1zkLyGAMpOozJXXQS9WBApS1WXVUXgAwxkUInDJ31xGQxWEgWXAPWi+C2tkRVfDVsX3Hs6oZo\nEfOkaWEYc+Fwk4uCd4atNkRM05ZxY6wlaFj20miFheUl5pcXmV2cm/rCkOQzgl8N1lsJUTbZmCUE\nyxpLLLmAaxDmgltJ09noCUOD0TQkQx6mqdQJidEghdFTTxQmFTQikIsKfCz8MjniZpp0JsW1DRvm\n+dWfeBFHj5/k6MmT7N0u+HXk+Em9gLXTe/bu3E4yVgpYroyonCv4Za0lGjGaRWNIbUtSo9bi0pg7\n3v0+7rrv/nLE5zzlWm7/vn9NMobXv+NPuPNz93a/u+4abr/l25j3VQfJ2C4dKRu1rKRCZuwyim/F\n2GhygWslTyqGoBOF0pVJ16YowvCxsKsvfEs0S7wct3I3wdgjbZ0g7AxarDZoZQwrVyyPuTRN0L1L\n4ZK6SS45DLUWF1fsIlEPaqrhkGownMKuGLMIFQJurccodplkSS6QrCdZr4at2Fsbr/ztK45frHOv\nf2zudeT4Kf37x8Cu3TvAe60/NnlC3Gt5ecIb3/0X3HVfx6ue89TruP0F387G2RnspME0DQuLC7z2\nnX/GB3s49+zrn8Ibvv872bRhdp17rXOvr4rNGamphTE4b6iHNTNzA4ZLY0I7IYR+pJY86Wy0tUBK\nQTNOJpwdX6CZTLi4sMCes2fYsWsHW7ZuZTAzg/MO68SodfbcOc5evIh1EmFnTZdKlvHKOYlIdtaS\nu/eKMUcilpxzsgY6wKZSw7RtWpq2wRjD3Pw8GzZsxFvPZNKQ0EYMKRBaMWwkUhkuESAGMaa2BmOi\n+CNioG0nxNCWWk3WSkR8rqVXuum1UoJi/+5d7N+1kxiDdiE0CGAa9u1+/NpbM7XjxKnTGOeZNA2D\nwYCqkjU/9eZs0zQsLS5yx7v+jE8fXaBvrLr76K287X0f4m0vfyHWWh549ASfOPIwa+rU+2/hs0ce\n5tDObdKowRqGwwGz83PUwxmJ44tIhLgxGNWnAvRGDVeQa22tjEaMJ5OSVji0DpcCNgVMyM9T8cp0\nJR7yIpQy39WItMy9gkYM939OOi5CCEQTcdaRnYdAcZpL0Xs5x5Q0nV7xKgVdww3U3jGoPc4amsmY\n0WiFyaSlpSE2LZN2gq899cBRDwcMhgPmZmfZtHEjW7ZuYzgYMBmNWbq0wGQ0omkbQtNisQzqIcPB\ngKqeZUJFE1vscBYzHH4pp/TU9oSNWsaYG4APAENgAfj2lNLnjDHPQ57ZyVV/chIhXF+SrXCQVaLQ\nGlQUOryX/FFs0jSD1CNXiaDF7trQMmkaYhQr6/LKMgvLi8wtzTG7uMjcwqzk9qrY05TfspAaZ2UB\nUmaec16zt7DrVrX6HvYuxiJHzD9HirA0RsIEZTFV0YJ8PiUj5DF7nnTh7QRhnkSpTCZTvjwLXQrZ\nAAopSQDGcmDfLvbv3VFAxaZIspaTi8t6AWtb3Y+dOc/uzZtoaeSZWIe3luSkHkByQv5MCNiYsAmW\nVsa8/t1/zgfv7QjT865/Kj/7Q89n4+wMMOb2d7+Hux44x5TV/fO3cvvb/4g33XYLORZ+OupEgVhW\ngmmrgkHqPyi5SknCNUNK2CQhoiYEjBFxaJwjpqCEx/TI1bTHMBfm7qIY1iBUPVLVF4bdCKP8LJlD\nq6Id+nMBASpnOmHYH3lWvc/JS2pIcZoaI8Kw1mgHX0nIqhZYzmRJxmOOvNH76GqSq0rqVy8Z/4rd\nvtLYVc4j771nBhSDlg9JajPZTNW7URGTEI40kS4oTdsQU2AymQh+LS0xt7TI3OIcs3Ozmv5hLkvn\nSSR8XSl+UTCu4BexE4fQ1T/KL/3B1/9/i3qPpPCtiIGu0G8yYgwqRhS61I7yJar2iqBU9Cr4Vc7J\nUlzmxYuYTwIO7N3F/j07Sk2Gw/v38vVPfxof+eyq9B5zGzdec41GUCVJz2xaWmsLflnFraivJkZs\nK/Wr7nj3kInr9gAAIABJREFU+/jw/WeZwqX7buUN73wvGMuH7j0z9bsP3Xcrt//ee/nFlzxfblk2\n5mXhZ/vriGKX6WOXLdiVjJr1kiGhnXJi0uLwATRSy0YpHpq78KgNsYdbGr1VcKbX8TKmy/CrH9kQ\nsxjtGayyQaszDHQGTFLqOsQlnQM6D6wV4ZBFYY50SCoObR+76opqMFD8qqTTYcGvThRm7DIZu7y0\n286RWuWgV/j2lcavde4ln/9KcK9D+3c/NnZdew0H9+7BJK2bMp48Ie51x3vex4fvX8Wr7r2NN/zu\nn/JrP/oCYAwRfvoP3s9dD6zCuc/dxuv+9z/gTT/6fevca517fVVsJZoOICW8s8wMh8zMjBmPNJ0M\nNHkV5DmosQAr7+rYbWNgcWkJc9bQ2sTCyjJzZ87iKq8DRFLXVlZWiNawadMmKSkBGCcpdrkeoLMO\np3U8XeZrmjac06ytvp+bZEzGYuSPKTEzO8v83EZmhjO0TYuxQaIEScQAyWqaMUkAPBoS0ojDhBYb\nJdESIIZEG7LzSrqR2mRybnVH1cQ8qPdVaueJy9FJUxedd/v27ORZT38aH1sDv64/fIhrrzpEOx5z\n9sIFkrVcHI05c2mR/Tu3c2DHdowxtG3L8vIy9z/8CHc/dJTLjFUx8cHP3MLZlYZDu3dyeuGI/m5t\nnbowCcxv2kxdOWrvGdY1M8MaY404jjE4r+mbpjNMGYOkGJIk+gqDbVrCeEwzasGArwdUsRXDIDJW\nvJfmGoaE1pxXtOlzrmmDVh+7VqfrZUwy+nN3HMl2kJTWLnVTPtvxZ0vCGXFOeX2uzUTqLE4mrTh4\nUqIe1nhf47182A0GVDMzDObmqYZDMHK/xhNpTkCCykmHdmstla+JVIyayCRZqvkN2MGFL2Lm/sO2\nLyZS67PAjcAm4DuB/2iMWT1qvnxbtybKREcWFCFYFqdCRIopxuwU6ha+JMUVY4gQEm0LIMWNm7Zh\n0jaM24aVZsLKZKT5sVajD8RS7ry0pK6iAIIYb5Vc5T2zv6zRVq85vfVdTelakAEdkNIilmRIRrrC\nkNvsYEoaTOot4kmVStIv7TxPFAtzpyZsmVj5fPJJFQu7sZ1l2lohIS6xf9/jFzTdt2O7nGOS+/zQ\n6fOcPH+RvTu3sm/Xzlx0oXR8cdbz+vf8MR+6b5ow3fW52/ip334P//4nfoiHjp/mA5+/l7WA7K57\nbuHh0+c4tHdXj9yanpjvp5jkV40JMb3RYWIJ5Y5JhGFrWmmQZC20ctxUkK1Prjpx2KVW6fNZHeGw\nljC8LOKB7MScioIonsKYtBV5whtktwbvDD57rfNinBSAe9wnj72qqkv4u3FeOGaEUgAck4cLGA9o\n5IhXb6HxmsKTuvzwK3f7ymIXnSgswtBoG2Wyp1cwLFmLNZFgTEfcFWskQEjwKwSjYjEwaSeCX6Fh\n1ExYHo/AdcYR6yzOe6xi2DBFXXCzKOztJaX3ca4li0cVdIkc6SDYZY2GYGO0MHNSIkXBLxEfOcJI\nBEsGzKn0lCII9cvtdDWUaYNPVOON3HFrZXFOyfL6l/wv3P4b7+KuT3fpPTc97am84t98G3VdkZpW\norCaVutYwCOnznH84kX27tjOvt07SBip3+QMx86e1witaVwKMfGBz+TvuNxTeOfnb+HYmfMc2LNT\nsMU6NSr2o+ZMMWgJeZQ5naTiVqmRgZKmLq1JohTaGEghY7ot61PK69Ia4rCL1OqJwh7RWp26My0M\nYw+jKAatvqEsg5pJkZOnz3HmwnkO7t7B1ft24HXttuoRN8ZgkpDybLvsr5tVVeGrGltVGOtJURJG\n8pjLYkTWVAd4knEkF0m2Iqno/mpIP9RtnXs9ibnX63/433D7b/wn7vrUNHa98nv/R+q6hins+odx\nr0fOXuTOex8bv46dv8ShTRs5cvw0H7j/8s/FmLjzM7dw7PR5Du/Zsc691rnXFb+5bERC0ppdcszU\nNTPDAYtuhJRB6IyW9NbVYvbU9wwajWct46blwsIii+MRpVA3SSLpU2LDxo0ka7UYPdIxUyOBrLU4\n7/Bal81q6m/ueChf2WFbNo7mWlvOe2bnpHtsNi77qibFJCloSdOO1VACMn9CysdPhBQ7wEw93oAM\n+5CdUWjqIqlgJtZindc5GsQwhzjS2lZC317zQ9/Fz/7We/hQD79u/pqn86oXfic+Bi6cO8fJ02f4\n9Xf+KZ852qUVft211/AT3/2vmBlUTNqGU0sr+pu1jVUPnTrHwX17ObB3j76/tk69/tqr2bptm3IO\nccxYkOYyMWGtGO1y86DscIQO0jGAS9IcoK6k6HxsmTRjrK+pksGbhHMagZkkYyJz+WTMNLdiNWeS\nXRoItMXJnGv1ZUxDjeApaa0tI82fDLmOYixXH6PwMEuHW1ado8ZI1HVVe7yrGNY1g6HHWWjChHHT\nELVxSDLiWJo0DUtLKzRNS0yGyjrqaiARh8pdxwFWmkishgznN5YMrC/H9oSPnFJqgRyn/DFjzLOR\neg6/iDziXUx7DHcBH/tCx33Zy17Gpk2bpt57/vOfz/Of//w1P296u0WcFRbQJINuUenOHFQGiYe7\nO1a/Xk2e+E3bMGosNjglTAI0norKAil7IcVbLpykJ6yElZeVrFhkMzTq53PKT17QUyKfffmLPND7\nYkOERA6vzoO/E4WiM7PglDvWdaVZ+2Z2JE9ejc5cIWoopMM1B/fy3Gd8DXd9+vKOFzc99alce/gA\ntC0Li0u88T+9lw99vku9efbTnsrrfuC72DA3h8PgEhw7eZoPrmGwCjHx95+6hSOnz/HwhUv6/tpA\n9uj5i1x9cF9ZsPK1JHKnB6FSJtf9MZpX37vP+dkZLUYaUiSGVrzLWUIbcDGVMSEgruPHrHpOKddG\n6IqdFjI8JQw7UVieZSZoKZJSXzRKHryNERcjLkQqa6iTozaGSjudOOtUaKgoLNOg711OWN9FLEjG\njhBu64R0pky0EkqiPNF4omuIzov311hJ4VlDGL7rXe/iXe9619R7Fy9evOxz/xjblwu74InjF3Ti\nMCfd2aSxJFnUc/kdXY1feZwIRqD1UiQKwjRSS6kUG3eOCiHixkmNqD4eFVGluCTCoTMddRiWoa0z\ngGUbWMavjLVTBqyYOryaGvd6Dn386i6wvGb9OXVTegtBTm0xSthMxkGcjHtg65ZNvOXVL+Lh46c4\ndvIMe7dvZe/ObbQhkNpQRGFqW5aWVnj9avy6/mm87ge/m9n5ORxw+qFH9Tdr49Lj/e7RCwscPrhf\nyK2mHFjbeYWTYm8Um5Vedv4334Tu2WUSmqym4mRPnxp5ypqXDWb5GWeyblZHJnRC8DKD1qrnWGpq\npZ7ETNPPmJggRpYXl/itP/4LPvXgg+WO3PSUa7n9B/4n5mY2lBQMpzWV+mt4Fqwxpa52BVKTSNJo\nXVdzZA3sSsZL+qHT9B1ji5Fv9XYlYResc68nO/fasnkjb3nVi3n4+EkeOXmGvTu2sXfnNk1FiQW7\nngj3OvkF8OvomfMc2LGdowuPXxPn0bPnuebAnnXutc69rvjNYjHR4IMlhkRFojaWgUY1etB2JGp8\nTWJklHTEWAyNYv80WOfxlTR9aWIgtrEXWWpIUZFSnSiBhDUJnJHIJo2+yrzLen2P/njsaip5LxHq\nMcpc8lVF5Wt8VZFQY5qRxgxtDBrRmtTA1KjBxul6HpRrpZ4HQJmpMRjni0GPhKy/JhIxYhx3To1Z\n2llRDbJCL2yBNGsNO7Zt4S0/+RKOnTzDIyfPsH/3Tg7t3YnBENrA7IZ5fvk97+OzD0+nFX7y/lv5\nhXf9Ka95wXcwu3EjX3P9U/RJrm2s2rN7N+Nk2LtnN8+78RncefflOvXrn/41XHVgH4OqkhpURKxy\nppA0+gntfKnOtczUrZVsCUkldlgH9WAoxiokem9ptEzCwYw8zxgDsRHDvXAVOW5KytVi5xyRGliX\nl38IIRSjFnRrXtBMiOKcRhezrA1CZxgFOHXmHGfOnmP/5k1ctWsbtbV4a3DOMBzUmE0bsHhmZ2aZ\nm52jqgyTyQqLS0uwMiJExAjvHG2ClfGYlfEYjGVmZpbKeWrncVZwbdwmVkJigsfPbsTPzDOJiS/X\n9qUwl1lgkFJ60BhzAvhnwCcBjDEbgecAv/6FDvKmN72Jm2666R/0hab3ahFRZdU7Yk0mVxR60hdl\nxdLeMY6pxTDERBMCtmlggkxW9TpZ76gtEv3g/RSpKuRkLW9h7/v711AK/+U0HaPEiE7YdSkeXeHA\nLsS6W3SnvIX6mo9T5E8mS/2bmP83C8J8HUkJWLLdtZE/Y/j5l72QV7/5d/jAJzqr+7NvuIE3vOR7\nmFOv4U/99u/zkfumU28+/PnbeOM7/oC3vPpHNGzbcvKBo3qExyJW59i3N2dRrA1kh/bslmKbplfT\nQP9JKYPHtCTMo8OYTD26NIZCcEKrz6YT97ES74xJDqu1cJKOo/KaRV7sAKtENfQ9ifqZUmw59khV\nBqU0fSxSwsaIDwEfAnUy1NFTG6idpaoq6dpWebzz+nx1DMRUSHAIQaz56knVIGdQ73s0KFgqubIV\nyVRSj8Y3PWG4lvlFtrXE0Uc/+lGe9axnrfn5f+TtS4Jd8MTxy2TcSpo90BOEDql/0r+r2S8IffxK\nhfCngl+RJrTYdgITeuk7Bld5kuKXTb4Lr59SqTL+U4pT7/cNWtnCJDVsbFmck5nGHvEa9bArG7ay\nmMhjvpC2nkErq5hSZ4tClgqI9xaCoglziDgI88yzNgtf5PWaQwe45vABJQ46x0KAbNRqWl7z9j+4\nHL8+dxtvfPvv89ZX/zDOWK666pCexNq49Hi/O7hvD7auNYVLjVqKR3lLil+ZwGaynEueZQHc7yRo\nonr/UkuM4FYJaqM1wgyuCMNc36zDGjqjVOztRexN49d0x0RW4VZnCCBFfvOP/4J7jpyfuq8fv/dW\n7njHH/Nrr3ihYpdgGPm56hjPuBVa6W6E4k9MPexyEr0QcyHxCNF6oqmItiL6sAZ2XY5fVzh2wTr3\nelJyr2sO7efawwem0h9jTAW7ngj3uvqqw3oWa2PU/r27iXXN3i8QnX9o726s8+vca517XfGbNbJ+\n2gROuZfTVFyTskGLqTT4KC9Eq11Ao3AygziScrdhTBLDF/LH0nHX67iWaCennoBkokShOkuyptQH\nxDkd12JI6kdNG13fFIDxtRiUnKskbS4FtfAa6STbttBzTglAxeK8wgQMhpSm8uHIM7T7P6s8QVIU\nrUZmeeex3pOM0bHd0K97KU46hzHShdU5x3WH93PtoX1ImpzcP+crLpw6yyfX6JAYU+Lu+29hBctV\nBw/wlLl5vunmZ/H3H71NjE5qrHL2pTznxq9j1+6djEIkhMjrfuQFvO6t7+DOfmfG65/O637oe+RW\nGK2PlSwpStfwnGqYgCYE0Ph4MFgrxkSpZZvw3klUmpNshDY0LC+PaZoWktTzdF5TTDVKPjm9nymV\nqZuIvbWmi97qOxSB8jqVVh3kueaoOkzHlbq/jyyujHj7H72Pex7oSvzceM3V/OQt/wOV20DlHM5X\nzA5nGdQzzM7MMzMzBBNYWrY0MTCJCdMmnKtIWNo20kykw+LMYAZvHZVzcsdiJAYYp8TYQqqH1HOb\noB4ybr48nQ/hCRq1jDE/C/w5cBTYgIy8bwH+hX7kV5GuPPchbaXfCBwD/uRLdL7dueT/Us9bmKbJ\nVRGPU3+pwiwrA/0xE3rxFraYFtIkTdWkcdErwfL4VBJqVH9la4ruBREzuepkYf/z1khaUCFFGAEc\nbaGaoJCqEKfrBaz2NImY6EiZtBHVGgr56hXQC3j1yZQ10wQrTb/fvVq2btvC/3bHy3no0RMcffQ0\nB/fu5NDe3SUE/sGjj3DnPZ9lzbznT93CiUsLXLV/H846rr72av39Y6Qz7t3LgV07eO7XPoO7PnW5\n1f3ZN9zAVQf29SJctBdayqLfEGN3XSk7c4vWy0uXQVIDEkQpBlm8oL2zqkjY5HEugXYly1w2Qhe1\nUIpjT4vCPiHuPL7TIfCdt7B3jL63MARcCNRty5mLFzn76ITDh/Zw3eYDDCpPNaiptWV0EckGYog0\nTUvTBGhaSWQyktpE0ighazX9IotCHedWRaGriG5SUnhSjipZm1tdEduVhF2wyo6kI3Aq0qG8rhaG\n0x6OPJWnOluFgGkaok1TUTk+RTFoVR6VhZq6kE+kj18ZBKYNWv3vN0rAMbaIF5LiVlRDFz3hGrux\nvlZaW0pm6jhS3HvafpUwU0YfuZemw7Bs6Mknnr1XloJd+bX8kVwMhFAiHR48+ih33vM51sSvu2/h\nxKVFrt6/j6ds2sw3PusmPvCxywnWs7/2Rkis6Sl89tfcwCHFLDFqaYH0lDrsUqEdezIQNW4Zk9e2\nYsGj1FchTWFXiNOefJscznkNObcFu8qzyobI1VEpBccypqWpSK4s7i/DLn0lJk6cPsenH3zw8vua\nEnd95hZOnD3PtQf3USt+dUXxReQJdrU0Vms+lNTMDrtMsfoxhV2y10QfiG4Vdq2eoFfYdiXh1zr3\n+spyrxzR0R1EP/9FcK+nbN7MN950Ex/4+Nr4tX//fmKM7D98iOc84xl8aI3o/OfccANX7d/3pORe\nA2sYpERloPJunXt9FWwur/1JorYihqRGkGw0gMzPUu9fyr+R6THcNadIBZnkP+nsKolgqCEnH6Fz\nHIqDMQk/845kkfpqMdAGTfdLSTDLSO2qhKSNSfajF+wJ2XAqNbFCDFKjrW1JMUpUUqLglykVsXS+\nas1NEmpo1TlqxOBmdMzm+l6SlZevV2LZLEnrhKKf0dIXJT2xu8GCaWJCPHNpQX+xdnDDckxs2bYN\nX3ne8rqX8dI3/Cp/96HOWPWcG5/Jz7z8xYRkCAlCMszOzfNLr7yVYydO8sjJ0+zfuY0D27cKzzKa\nHq3nItgBVuucJU2dNDhFMq0XmSIphfKsq8pJyl7lqWqPHVvGTcPKygpoDbYQZ6nqSlLqyxqVo3oL\niy/OlOL87Rm1MhfK7zVNQwxSZ1BSEVOJmr+80U/i7X/0F3zuwenaiXc/cCu/9K4/422vfCG1t1TV\nAO9rqnrIsB7gBxUpgascrvZUzUCjaY3UbdN109cD6uEMlbFYLMRIE1smMbCSDI2vcbPz+Ll5jBsw\nuVKMWsBO4HeAPcBFxCv4L1JKfw2QUvpFY8ws8B+AzcDfAf9dSmnypTrhQqigTLi+76djOql7pS+K\n+vR+6sAUggBlATQq0AxIIcepRVHJegGwNHWs0unF9H5edS025532oxwMxQs5DZCJRE8Y9kKpoyrI\n1Nu7JKDuDpTLNPl3SS3rutvU3c98HTktpicI837toQNcd/igEBKD5Mq2gZMXHx+gjp85x1OuuRpr\nLNddfZhvuvnmNS3vz77x6zi8fw8xJe74sR/kNW/+LT44FR32DH7uthd0gEsipy4lhHB3kk59giGK\n57Tw4FSeefb4xShd5tpWgK10KNJx4WMkejEOoMQC6OVIZw9hnBozMckYysX75DV04fHlPLvnXgZ1\nfrDIwrg8HvFL7/1rPvbQQ+V+fMMzrudXXv4CdmyYp1Ji1R930UUkLaBFB5jqC/Wo6nARQm9oE7ID\nE2NprSNkgmVdprBXvCjkCsAu6DAr/18Wh10EkmJKmsatJ/IFXfRDxERI1shrzr1Xj3PqgUUnMSkw\nWFIR80Tpf03BAUfGuizsTOyOltb6L6UpMVEKjcdOFNI7H9PHLnKxy97cNdnjl3Gtd45FGOZaL71i\n+Pp+ucaYSF5I4MlLj59uc/zM+YJfb37ty/ixO36Vv/twh0vPvfGZ/NyPv5gQAz/5K/+BD3y8h1nP\neAZ33PZCrPddplTv+aGGIRS7LGJkMnJ7sCZ2Yhi5B50QE+wKIdKqiLJWa2jovXbB46uIT5UU40br\n05guOqWLTuiLQiFz3foTentn0Oo/u/4Yg8TpC+cf974+evYiT7/uKsGuup4adzHmVCRNy4qXY1dC\n1r2YDC2UvTGW1npa5zVqyxE1SuKrALvgCsCvde51ZXGv7tq+eO5lreVXX/syXvYz0/j1nBufyc+9\n/EVYZ4nWYKPhjh/7AV77lt+e4l/PueEZ/PxLX6BRAk8e7nXiwgXOn7vAoe2buXb7RqqqksYVtRq0\n1rnXFbvZXhMJo7XrgqZ3pRgvS/VfvV12v035p/v/ntG+/wdTWAWUunw6ZjFSa0tqciEpZ6lLPcvG\nIevFkRiKUcoUzIpJHFkxaj2l0JBCAzGVDqEhtbqeCioLbzBisI5yTxxWu8mWw2t0dMbTiEmhGPQq\nbQph1KBlrNUoJof1uROqcrecVl6wzHHt1Yf0WtYObnjKNYexlScC83Oz/PbPv4Yjx45z5Nij7N+9\nk/27d5WugGVeaNT6wX17OLRvr5xvaOVa1DAYC89Ro1aOnlSMtyFhjMy2jCd6p8VomKIYrKzDVwPq\nQUPbJsajCU0rDZ3mY2A2zeHrSro5S50RQGs0xv44EAN4XMW9KM+q634YQuitK6bj8z2DfIyRE2fO\ncs8Da0fBffhzt3Dy/EW2bt/IcFDjqwHWVRhNc8VINGE1qBgGS2PESNY00njIOi81GjUNlSSOoDZG\nRiEywtFUNcOZWdxglmS9RLJ9mbYnZNRKKf3AP+AztwO3f5Hn8w/f+l52KOsOxUujb/JY0HT5by4T\nF/nAyHHNGnt/ABUu16mNngW/o4IkJVValNRYJwROx6SAmynfXRZXBa3LvEwlpFpEpQhD21ukjQg/\nMhFdTbDK6U4JwywmrQpA2xeEvQLUWTBiLLhIqhJXf4G0nGsOH6SqKnIO8Ft++mW89A1vmhaGX/dM\nfv4nXqLhoZEtmzbya699GUcfPc7DJ05ycNcODu7ZqYtQJkd6YakThfn3qVxbTwTnodQT3ClBq56O\npg00bZvtDcQYqTTk06v3xBSgt2SjQrd3EQ25XbUAWO9VhaKQ9GkBP8WnyniUrmBv/c9/w91HL9K3\nvN/56dt4xVt+j3f+3MulEGlVTY0iQsRVhWIWMCePIQVNkng6moTuhhZLaxzBeoJVUZjTN65wdnVF\nYRfdPOxjgoiCVYaAx72nPdmUsYbehEaOSamZsGrX91J+zcOvgEF33N4vytlLmLYYtZSPyXzLwrAI\nTRUJpjNodV70vPj2xnr+E1I3D4pYFSFkVBH0MasfrJHRq6QZTRmzxHNotJBxMW4BeJmrV191UO/f\n2vh19aH9+MpjsGzdvIl3/OJP88DRYxw5dpz9e3ZycPcuJZSBX3/dj/PQI8c5evwEB3bv5ODunQgh\n1FmYJ3d59vSee5LUOqPF0rUocMEtfdz96AIRhalgl1FvZCZNvkTGgYtu6uaJvbNnOChRCqkzaKkY\n7OPXFHYpnvbHV17DdmzOtZvWvq/XHtxTBKGv6insMlFEc8auGMRIm3rYZVLSNA9DE5E9QYslGKvY\n5YkaIfEPmmZXwHZF4dc69/r/Fffaunkjb/+F1wp+PXKc/bt3cmD3zi7lKYkhasumjfzaa36Uo8dP\ncOz4SQ7s3sGh3bsoV/sk4F5LKyu89U/ez929eoDPfsq1/MJLvpuN9UA7Gtbr3OsK3qztuJfkdqgT\nqA094+bl2JV6/5Yfy2Tu3jb9T6UONzo860Xk9AwPkDQCKpcHkLW4DVrcG1MM0dZ6+aYUdHwzFd0j\n5SOSEqnsQBQ+EkMjxhj9u6SRNTFaxbCkzjZbOjN2F5jneiwGWWsSzmt9wtaQQlAjh9RztZo+Xgha\nj3+ViHnjuPbqw3zLc76e//Khy4Mb/qubb+aqQwdLxGXG98P793Jw7+6Cw31csbYzcmcMcNaKwSZJ\nHFpS40sMAaK8F7QmR/p/2XvzKEuSu773ExGZ91ZVV1d3dU/v1fv09MxI1gLSAHrwkA3P7xjbx2zP\nYPMaI9CuaQkDQmBtCAkkgZABSUgICYGQxGI9DH742T4gMYt2j0YzWmbvfd+7upa7ZEbE++P3i8i8\n1T09Gh9rAVf0uae6uvPmzZsZ8Y3vb/v+KOTeBQmqGINmqSqf1awowbOAcxZnOpRunKII9KkZ9HsM\nqyExRqxxjAO4iC0iRpsE5OzfdG+V1xBTNp8s8hC88riU1yeONXn4mhWnfLdxaMl9OXcxdRu8dqDj\n7JUFnjk2RqfbpSi6GFuK81S1d13pJHM+QmkjVVVpdqPHaWCo9l7mQ5QGDP26pld7+s7hXUFZlEQt\nWxxW1dUL83/S+NpJ0H8Nxwg5QIiEIkA2CmMK236VZxwlQfKv0i69MTivMgrbhmEyDpvT6d9bxubI\nRyajUF5tzEte4WwYpEh82vgJDRi2N+8sUooAZ4qeJXKFGoQtwzBlOmS8aROrZDwlUqWCxqkrkQCT\nGzEW0/fYe9ONfPdtz+IT91wNUN/57Gdz0+4dbc7K9OpV/OHb1DA8dpKZTRvYtkk870GzOMQoDuzc\nupmdM5sg6n1Kz7pFphM46yfkzzEtgtkmlg0hkp/eR6kXrj3Dqs7g6LMHPWZDvrkHEWwr20HrpBtS\nlTz9YhT6EXIV9HyNpdqQq6XsKnLq4iXuP3SYa4nr3/2FfRw9c5G9u7biilJJoc5PI6nQ4iAwhNrj\na41YJseGEvQ6RoYRhtEw1DIob5xECVO2A6NZEsvjiUYLvZZkPyWnRmOkL33nE5z5cU5rUIdIMgZb\n3qPGqNeNOn2SSWskYePVH5ZS4cFko9AGZKNttuiWU6MheCNlHylKmbO0BEesSciVtCtiQ0MzRjWZ\nDtbEZNvo8YJhdokjy+auag1+WavfQ4na3r17ro9fu3a0nhlgAru2z7Bz65bcijl1J0yYtWNmkxCv\nqPkLLeOcTJZMcuHIse3nR6O3lbA5PaLGkBPilbGr9hiErKeSnk4ihjESi2IJfqdobsKqFn4lw1CN\nwTZ+tbEr3fsG4NMrsnHNap66cycPHL5dnnnrvj7naU9lz46t2hWsxJWl3j+lbyHi8kowBKNR2UTy\nHg9nzxReAAAgAElEQVS7AoRo8TgRWlbsSgLzoQ2ty+O6Y5l7/f3jXqLdFNi9fYadM1vwIXVI00fc\n4l4Gw86ZzezcsvF/Se71e3/51zy0RA/wnsdu59Xv/3/44JteQdkRZ3zRKZe51zfpcC0njWS3JIeQ\nYtfIGPVWXXWfHw9j8ogNv9L53WQ1o86KkOeAMUZ1mgpCURNqRwwpaBT1elrBRGew0RO8zG8JpDUO\nsqIAoiN48LV0mpUOiLpvBgjBIypire9hEvY0zqym27LJL4PkHqa+ptEKj3NOvgfqdLYqdmycYJhN\nup7qEPHK+97xxley/3Vv487PNMkN33nbbbzzja+kKAq898KbjFTmiE6daZxdXq5V+k24jAE+aOmw\nUV6pTqwmECjPvl1Sam3TSEcy5RrcSdhONPg6UpsA0VHXsLgwZPbKAv1hnxg9ppLn7ozFxEi306UI\nBcZFrXSA1IwgEiDNhRj0aUdtBhHw2pkx4ommJlBjggd1QmEMVc1Ve+UNq1fq3bx2oGPvzm10uxPS\nxbHoYGyBtVouGiLBOIwr6Y45OgVUQ8dwMKQeDhlWkgzuXEFHcbSqPb3a0wuBQSGYVdoCLylqVMtO\nrWYYRjMHRggWbXLfRPCWjpjf2SJCtIzC5nRAE0230WLCaKRwhFS1Nva0cY1EC1uWYfoeYhg6mdCt\njifG+FHDQP+esh0aEd/Y6AioYZiMwlSokTIlGpOjuZwmyyHmUhhrmusbMQpHyJUah9qBKpEssnin\n4Xff+mpe/O/ewh2fbgDqu77t23j3r7yKstPJxjshErSEaPe2reyc2awExhOxUjqVv7eRG0QU3Yqo\nHm6N3LUfQSY+yL0gku9pNgizAdaaO4D3Uj/tg3jyqQ0x1nlzUdNNdBBcbIzlaNWT3iJXGTwbUhXy\nz5B/piu1WRSkcQSQN0a59nOz1+8GeezMeW69aReuKHQjTW6GpguGQVLcBbRSFCDp6UiWwyAYBgGG\nEWJM7W2TYdiU72RStjyuO5KjZTQib1pGYetePs4NHcWvxijMPzOg6dEJCzTqPju3yJnLC8xEWD01\n2cKwdHZGzjty7gxHltFMLZ1dVtalCRK9yurIJtGAZHCE7MxKEa+sgk6AaNUQSEQufeslpYZLDMJ2\n4zMhJiZjl82OrIRdycHltLW2UjP9eX38KrNBGGPEeMGDkPu5NfdSorKaVaREyKQU9hByjU5Mz7tl\nU+dnHtWhpc9S5lJjgCVsSJlaGbt80K2szv+f9x41iuQeROm6lQz3hF/tkq82boUGv2L0ekUqE97O\ndEn7Umsfe9kP/B+85y//mvsPtLJyn3Ir73jV83OGgytKxS75biFGrEmOK/nSXs8f9N+XYtcwGgYR\nBlEQOxoHVrIdgk2ZWrG578vjuuObgXvNzi9yZnaBLTGyetXkMvf6n8i9BCmEc8mqW+Zebe51+vxF\nHriWHmCQLt3Hz13kpl3bl+DXMvf6ZhvWJN0oo3Olyeghz9s2vulYcpMNSQctE46RkbfxGJnvDZiv\nL2E6JevHpvL/5oz12OzpSeuvLEtMCNTDYXM+5YgiQi6ZUDgpQ5SsoYSlRrrPBYjB4lUdP2GXV6d1\ncoraFneU7Tuiavi6GmS9odqkaEMOS8RED1635YT7AYiGIjuGAsY46U5vpYOgUxzDOALipL1hejUf\necebOHD4GIePn2TXthlu2rUdjGlKC4MK5mMJPmCpCUbKBeUGWansS2svZZzhcEbwqDYQtQIuNfHw\niT8hGmdG11fwXn7P+5PJP0Gy/DDSRXJxsc/Zc+c5c/4srrSsWj1FWRT0BwMuXrpEDIGVk1N0fQfj\nAlaDigABzXrH5/mWM65U7sH7isrX4pwMNd5X2BCwxlK0ZBYTfhljsXg2rZnm1p07eGhJMNHal/Od\nz3g6u7dvxZSd3JEV44jKkXy0RDrYwlEYB0XQAIUneqiGUmZZlF0oOkQsvWCYC4756FikxNoOY0WX\nUHYAs5yp9URDNtNEShqiMTrMtX81bQKkpKHtyQ8RGyMuRooIhfc4Ly19bdKoifGq7IpsvLb1EGgZ\nrekijKaQmxZouWQANkYGEXCG4FVQmNbnatppoxapSixRidiIcZiMP5OBTFLxk8hrQzYaUtKUUdvW\n+9PvVu+dLM4kvicA9dF3v4UDR05w6NgJdm7dzO5tM/LMYlSQjUQrWQTBJMFE6Tbh9edImUgij1HI\nVk4RMel3mRExbRrNBGk+l4ZooYBGc7Sez2Ccw8WSUjeIwkmbeasCnT5KvbSLUQVn5WdKDM3kKjbE\naqRrRUsEMCayR9KIyHSQxj5Q54K1bFy3Vp/1tT3vO7dsyhMqGxj5JraMB9PsQT5G6hCpfKT2kWEw\nDIJlGC1DLDYg3a6wYhSalOnQzPvl8eRGmprN42mEtROENSZkMgqbkQlYax3nLJ4okScXBcN8Hfmb\nR89w4nLT1nvvthle8iPfy8qpFXmeZANTCVuDibqyWvMxOzESXqjxkzEsRnCKXxZCIgZpLoZA9FEj\npMm4sCQDQAxOMdSkM6Bp8Me0MSz9PRHSJoLaYFaDZU12hGkikiocKuvOKn69lQNHjl8Tv6S9ta5r\nFLuMybjl0xqOUbIdUjNGkwxE+T4i1h81EtgyploGlaHBLlpYkddyek/Uu2gdtigo9bDCJuwSIhxi\npFbtCRsDziVx4iaxPUcxk+5Hxq9WpDeV7qSJmSenaeZ1+l2f1eTkCl73vB/m8uwVLsxe4cbtM9x8\n43YmJlfoM8iWrpxD50rbOZZMjvQvHsGu2kcqn4xCq44tiy1kC7TGEm0TW44j17g8nuz4enEvX3k+\n/tgZTly+kk9z07YtvPj/+h6mppJzK592mXstc6//6dzrbN43rx1IPHL6PHt37ySTqmXu9U05Wj1w\nEN9Og19pLuT9NY9mXqXjjTHS6bIose4ajq0Ig6rm3kPnubiwKP92/0Ps2LyR7/+ep2fsSGVi6Dmt\nc+JAck5KWH2d9VDlOqXEGRzWJp5oWmtUSnatUVmIlMHe9tcqXjnnKJwjNejJgUbUwUqheGozTzLO\nZHy1ltwXkYh28gZyF0arDambQKRFslOdBVdYXNHBuI4IvHtpEnHzjTu5Zc8urOpyGWNEI0yz4BO3\nlRJnSzBBMrb0vDEIRhCSkLpR/ACCx1lDLKRcj+jwxmBixOO1YlMdSV6yo4yJIrJvyBobUt6onB1p\nJtIfDhgMKyLQGR9nxdQUpXX05hcZVBWz8/PEaFixYoJudwwX0dJMiL6mDrU+r6aEUJxYcj21rxlW\nA+ra42Mg+IqOsThn23GbnH1uAGcdEHnB938v7/vLv+ErB5tAx3c87am889UvIijHjtZhjGTYia6Y\n6PtFXH7uxIAtDIV3FKXFDg3RB6rg5SeW+Rpmq8i8t9RlwbjtEstxTLcrDTPqZafWVSPz3ta/5UhH\nIlm62K8iVe3zkIhEUz+cDCcQI82GiAvq1Ko9c1cWODu7wKYAq6Ymm0445A+Vs+ZoWxMxTEZhiupJ\nxoMb+U75i8UIzsixTqPqLc5vtO42hiiGYVTyZCyGkDtaYUwmMsk8tGrQNS8lV5lUjd6LTKpokat0\njlY2hEQLWwhqDHt3befmXdtHSE7bUBFQaDZpNbWyYWhagJ1S4eVWa6mO3iKUcEZlsFGfX77neba0\nVnw0o/c9HWEMxjpcaaBwOCPGvWs9SzEMJYLooiW6iETUdAs0DTFujMMkMttOOw/yHBkFpti61GzK\n6Wdv2bCOZ960h/sfG+1G5OzL+a5vfSa7t0oL7piCg7G553nuK4FL88THyDAEhnVgUAUlVZEhUGFw\nJRTRUCQ9h0z84jK5etKjwaX8nBMRD63HlDHsGoa3QQ3DtgOqnU3R4FcRAnccvcCp+YJ26cSjx27n\nvX/+t7zuJT90ldMgGZu5MxcNN8/XlQxD/TXGiHPpC4WMX9FJaWEy0CSiFxrD0LfnpRqGRowu0RVI\nSN0Yfu5a2MUoZjVE6moMu8q4tIpdtPELbh7Br8ZAiyZhmNG+PxJjE3IkhM4gmBXsqGEouJVwmWzg\njBiFaRLE9G95opCEgLKB1BoRwFocJan7pVXj0FnFU1CRU8EuYiQ6xVLFrkBLxD/jl1dyKQ6tkK8t\nnZX8rJbYciSHvC0KXNlh28xmbrlxJ+MT49gydQay+WbEQLOnjpxoZPnkEsIqRAa14peHYXQMsQyi\nofCj2JWNQhon8vL46sY3gnt94uila2LX+/7jHbz6xT+4zL2WudfXnHttWDOt//s4gcSZzTmQAsvc\n65t1pPUm3mwjmYFa2pq218Yxq7iR9uUY8zMzxuAKR1EWWOv0uccMeZHIfYcvc3GhpI1bR07dzl9+\n/H5e9EPfpU4abWCgmk+Fai2JQ8JSY3L3VWPEoZUy5UE1wkwKCEpGUerkaDE4J9mgiViK0wkwBqdl\nZqk0EWRO6fKUO6COf2uNZFclTpEz4J1wxPxezeoyEFXg3kkdJCYGrDEUVl7WGFziBVhBHm1skzNU\n9bkFK/cnKPewkYZvKccjWkwMBBM0c0tL+IzLAYkQpdGOsYkvIs2UrOhBxSBOKnykrmti9MKtNViR\nRPtdKm9MHMh7jLVMr5lmcnqK7uQY3fExXIyMj41TDYYMen3mF+Z1ZhmKMmC8cE8fPXWoQO+zYJjy\nrOBVoqNxhHpfS6Zax+E04ytqt1jp2CuvEGXfWTE+zit+5Pu4MDtLb1jx9Ft287S9u+l2u9Il20eK\nALZoguKS9u81G1eCH0bnIVZ1vJwjGk/lA/3BkGEIzPVrLi0OWfCWcsww5kqMljXGUOeSxa/F+Dvr\n1BoxChvuT46gL+G/1zyD7mJpwZrULnWJUehCwPmAr2r+y9FLHM+tR2HvzGZe8MPPZTJlOqQrS8aU\nGV2YpGvUIxM4mfQm9P9dRKLJIiqoba/wujDbWizRR62pTvaEgEKUHMxMqprvTWPoGNtkOdD8zPeG\nJjJo8u+jRmGbXAmhklIeFHTTudJ3SztHE+WXlE9JvIz5+3llTJlYBUO0kaRfEY0ajPlxNaSq2Zpa\nBhEtIwkxCjHtiWKa52QkYmKM04iozBGbjtHoSvCe6AIRJ914os1EL21+IaZynhZALYkUNtHC1kNK\nxCXNbYOQZgu2KHjV836Yt3/oL/jcV1r159/yTN7zuv16rxkhr9lb0jbg0jXqq/KRfu3pVV6IFY5h\nNFTG0tGUYmusCC2btibNsmH4ZMZSTErPuDEMmwjcqPnYPoeuS2Oy2HnCkrTkbIxYH1joDTg5v8C1\nup88cGAfJ85eZOXKyeaTTHPedqZW42BR7LoKv5r5Fp3gV14MFryF1PGKJJLrJVvAqCGWHHViWJgl\nBmvC1VH8arCrbSyb5h4hqyljl2leOUsk4ZfW/aeb2M5So7WmUjp/VOdSUOxKxqCJBq+mrFliGKbI\nqFb6qAGcCHFaSy2D8Fq/t70LLbzGtDNfipH7ldPyVXDZmkAqN0qEvI1dbcMwdeLJGiCtZ51m6WgG\nlRmFm2SoO4ftdHDjYxTjY7ixLrbsiD5Oy6mV3pxJYyv8mEovJYtP1kwVAgMv2NX3MERKdyoEu5Ii\nW0gd79L3W8atJzm+vtxroTe8JnbFGHng4D5Onb3I1MrJ5sqWudcy9/oacK+NN6zlKbt38eDBa+gB\nPuPp7Nq6Jd/3Ze71zTusNYlMAzJH6tpTqyMo84e89hoO1sY1wS6rZcwm40jaV+Z7Q87PL3It3Dp0\nYh9nLs6yeeN6mRItrpH0pryX3yMRX9f4WkrcrDqiiqIEUvmiR/DG5bkQguaKF47gHLVNe5/Fq55W\nNFJeF4M4wDDqvE94lIMDVh3L2tHQupzFnzIojWkE7Z2T7KOQbOIYRQBfcd7q5DfKAVFnjImNPIIB\nnIqkBi/C9BajDkSHjQEfxVHmfAooWupoqLT00eqzkLLHlNmoQvqKg8F76qqSjFXvlzzzmB+4YF6k\nTs4/tGw7SNa7c46yUzI2sRacJTjAyH3tTBTYGFm4coW52Sv0+j2MgbHumHSHTE4sEyDIXpPwIe0X\nKYAoHKnO+G1diXMlGKt4YAjBUNWhmdOpCiDAlg3r2bxpPVs2rKcoRLg9BqiGlTzLxMOV8+FrbMJN\nkvNQ2F4whmAslY/0ak8MnsU6cGVxyHxvyNB1KVv6lcaKrMiyU6s9EqHVv6fNBxLPiPmVjERoClry\nQ4HGW5siYuqtbTZY2dC9Lrq7Tl7h1GKHttf9kRO38/6/vJtffOH3j2yU6QNytkPa2BM3T3tcGzqT\nMRdtNpZiNCMWmCNK+WNV4wdDQhWg9oRKJpzkg0r6oLWeYB3WqnCp9dnYic4Ri6J5mSgphzbSqC3L\nvRAhUf1K1kLhoCigSN/Tgqa4yvdID6cB+rRI8mJBLDr1iZNDkmkxWzKZNKhYnTXZKGx0lfVzY9qn\nWkDUJleJzLXIVjZS9XrV/NTnr5+dQT1lOyhZ9Vr7nM4ZpUuGMYkimXwFZFLV1M8vnSumTeiNJXX5\napfIoJuOQcQWpyYnePvPv5jzs7OcPn+JG7dt4ZadW8XLH/We5SyLRLBCjvqEEKnqwLDyDKqa3qBi\nYVCx0K9Z6FcMo6O2HbwF75xk/KAp+ula8/dfJlVf3UjR5mbLTCQoPaOU9ZAIr6HBrYxfpllWuQyv\nNV/TQgpRosCXB6mF7rVLJ06fu8TeXVsTKJEiWAm/MgG/ip/bxhBTp5aIL4/iV7TigLAxcOzYGQ4d\nO82mVZNsnF7F0ZMXOHbuEpvWTrNl/RrJLlKiFGyQ89kAdc3Rcxc5dWGWHZvWs2vLRmIRidbpZ8Qm\nnSKvJcAYDp48wdEz59m1ZQM3bp+RyFMhGGSMdiKM6fmQz5EdbUBDcJq1RGgyFjCm4crGqMNKDFyj\nDq2QDUNFvnSZbYdW+nvbGMxrLDl5yA4eMDl6ljojkkpRVfvC2cYAjqnldWwcUyEGscezMKxprie2\njMLYYFmDXYmEtu69MaPzO20gVlpA26IQQeVuF1d2mnbQapXGiEZk9fqImhEt2OlDaLBrWNMfCmYl\n/BoEg7cdxS+HCREXydjVXnfLRuFXOb5B3OtyP5UqXBu7Tp2/xJ6dM1837nX82BkOnzjLxtVTbJye\n+h/mXgfPX+T4+cvs3LienVs2ftXc68Dpcxw5c57d27ewZ9eOZe71deReL/6h7+N9f/HfuP+Rlh7g\n05/Ob/3CS7NDfpl7fXMPlzBMtRlDCFRVchopn0IdzlhsntaNXqY4zU0u6bcqiN40h4ksPAHnunBp\nTva40KTmG5OE4h2hbvaqupbsljpfo+gBylT3qqdlGzw1CUoixhk6hTQZOHTmEgePn2Hd1Eo2r52m\nroakjq+Fa9wBxjnNWJJ0Q2sch09f4NT5i+zevJEbt25uuu0hGU4mSiAvqsPeqOM1xsjBo6c5dvY8\ne7bPsGfnDImzJAd9OxiWHXwRdGGLTIXqgCU8sFHuedB7ZA2UzmJNgTUGbyXDLabOglFWtTXiNArB\nS7MG7/G+FvH42OIzRjKmguJUjFFK/oI64PT7p3VujUg+2KLAozqgTjWz1Bm4cpV0f16Ym6M/HOCc\no1MWOCe4n64NkGuHfE0AqbNljOJIs4ArC1xREGKD6c1eLFPLGgnpusIyMbGCVVOrGZ+YyIGCpHHr\na4+n0n+LwhFDxKZqtKBa/ER8hDrAMETp0BoNwypwab7P+cuL9GooV3ZVdN61bBPR4fpajb97Tq00\nEi6lbVOJbzLiQpSbnjKAvb7F63uTs94YMmlpG4lCAKAGfIT5Qc3JxR7weyz1uj94aB8nz0i0sKmh\nT9fZPEhxlMqG1qTpp+282YwzIbOIVp+sCbCij1PUNaE/IMz38MMahjVhWFNjiEVBKIQ0ORVAdtZR\nG0tHb5yJcOTyFU7MzrN903p2btmUowM5lTRdtzGS7REjNirAlKU4tcoC0+kK2cESjbwXa6QbDTGT\nBZOMpJj3EiJRg3UNAZK7EaROW407YwzBGkwiVxISVCKp4KedhRpypsZh62G0MwsSoYltgpYM+fQc\nEtnNRnbKWhHtnBQRNHodQviC3jfbEPTE61rkJmc4mBaBQyOtSIqx1DSLgGvIOf56TzRa41zJrpkZ\nbtm5k05ZAErKYopKNEZrIlhejUKpARdC1esPWewNmesNmFsccqU3xJsCUwboGGynpA7JUGnNaTU2\n40jN3PJ4MqMxsMmEV/ArtqRlMzoIfqV/SGIsCb9sc2SMUCseFi6Zk9cunVi/ZqoR1c1XNJo5kPBL\nUpqbxJlkSKRIX2Oogk2WrDVcnl9g/5s+wN33P5Q/fWp8BVd6C/n3Z+7cxs/+0PcwuXICa4XcWevo\nLfZ5yx//Fz736IF87HNu2cuvveBHmF41JVFAp8L1LVIyu7DAT//2H3DXF7+c3/fcZ/wD3vvKF7Fm\nzWqMTxjsMEVEGGxjW2bfju4HJPsw3SXFNINgZLp/VtdpVH0HUKdbSA4tNfYVq7Kdkm0WzXxQMpZm\nSWiQq/lnxdkEfcmx1WgVGRVTFjIYFbsklTw0eIlXDEoX0czOxjhr9LXa5M+ksk1RzBAtHhS7sucu\n3Vun7aJLnOtI5Nk4jGJXECY8gtdJ16uNXYOhZzFj14C53pC5RcGwKjroBExpMJ2CUucsNASx7bBr\nNuzl8YTj68y9ysLpma6NXetWTzWOya8h95q7ssBP/9qH+MSXH8lX8Oxd23jl930H42NjXzX3mq1q\nXv2Rv+JTDzXn+c6nPoV/f/uPs3rlisflXpcWFrn9XR/ijvu/lN/3Pbd9K7//pleydu3aZe71deBe\nK1as4DUv/L+ZW1jg8vwCe7bPcNP2mWXu9XdoNI55zfL1gbqus3i6zEmdYOk9yeHSPo9tRN1z4K95\nC+Od6+PWmlWTeF9Tp452Oi+ddRSFww9NohwSxBnWVLXH1yH1ZqD1cc1erGV0ab3bCBfnFrj9zR/k\nEy3u9Yzd2/mZH/huVnTHcEVBp9vJ3K0oCoIr8a5gsV/xhj/4j3zmgea93/W0p/KOV/wE05MrhVPY\nJGkga9AHg3GWS/MLvPRtv8cd996X3/s9tz2LD7zx37J2ehUWyd4CKUOMLSmLzGO9fFkpvU4aW2CC\n130kQiqiNlKyGZ0wLGOE1XgvzMnYiLW6Z/kAJii+G3ziJ+mcBs0os3jvqdU5Fo1pYRkqdi8ZdjFK\nyWIN4LSSQTlpNAY3NsaKKKWDvYUF6lBh7BiFA4w2MiIF7lIgLzT7bJDrrr3H1zWu26Usu9iiJNRR\ns/AMPogWVsocTQ6zslOwYuUqJleuotMdz8Hc4GvBEQ919JiYcKWxQAxpf5e55YOh8tCvIgNvWKwC\nF+ZmOXV+lsvzA0w5xuqJVeBamVp6776WmVr2iQ/5JhzNHj3ySqU7IaCkKqVWk3/6ZBikDVjTEpuo\ntmkhhcFHKWG4OHyCTIfzl0a8qC2TsIngQO5MlTXmQYmCfOiIloJRIT4j0QVnjJRCVjVFb0ix0Of4\nkdN85kuPcvTIKerZOaq5eYbzPfqLffo9ffX7DPp9hos9Lpy9wP73/hk/8Nb3cPt7PsQ/f/3beeFv\nvJ+LFy5TDyrqYUU9rEdevj/EL/YJ8z3C3CJhvsdjB47wN5+6h0cPHiUOa2Ll9aanl/Ki2EqX1w05\n/X00tV5M4yTh25QJGf3+yUO/tHQo0rTKTmAUlWi1GW4c+dOOKovOQuPZzhoFSpBSl7eUYWBdIU5A\n7aCmLTXAiKpOIoqZ6NEQnARMOf3fpIiPdDJqSqBStLA1T/L1ODX4Je20cCXWFphUNhVMBj9fB/G+\n1/r3ylNXnqryOcthsV8x3xtyZbHP5fkeF+cWuDg7x6W5BeZ6ffrDmko7Eo1GBeMoYVw2DJ945Akv\ncyZvVi3sykZhTGUhtHCswa+YjC81ChtdmuaDfIRBAFs6bhgfx/AyJNP0GPAhjNnPzTu3sn7NlMz7\n5KlKl2uuxq+Q53BatYn0Nz9Ny8mW1uor3vpHfOpLZ/TzjwLP4EqvaP3+Ie4/fIVf/w9/Q3+xz0Dx\na9Dv86YP/2fueezCyLGfeegMr3zvn1D1h9SDoeJXjU/YVdW84jc/wCe/fGLkfXd/8TgvfOvvEhcH\nhEEl+FUHIU8KzGmzT2ahTfcCmrR82m6chGGj2OUUw7P+lxrJssxjJk9yi2PGM9qvNnKpIdqIuTYO\nn6BO0KiR14xfamALfpUSPdSUd+kGKUZhbGZXfvbJ2ZrXeBu7EJJp1fEo5C3pvZhs4CXHZ1TsMtZl\nh3zhSlwbuzBZY63BLp//XteeqgoMq8YoXOgNmVscMDvf49LcAhdm57k0t8D8Yp/esBLx5Wz3NQ67\nke+1DF1f3fgGcC9XONY+HnbtmBHs+jpwr595+x/z6QfO0saSzx+6wlv+4q6vintVcwuEK/P84h/+\nBZ95ePQ8n37gJD/9jj+8Lvd62W/+AXd/6fjI++645yA/+Zq3LXOvrzP32rZ5M9/5Lc9g99aZZe71\nd2xY2wR2IlAHT+0l2ylhVR0jwxip0k+C4peMxLeyjqlNTIG8963oFKwe78I1cGvXlo2sXT1JXdVU\nVU0InrquCUEy04uiIGVeWXUE1HWNr1MXUKP7qMsBoZTV2HQYNHndvuLXP8ynR7jXh/jiwVl+6YP/\nmf/2qXu590sPcOrYcS6dP8/c7Cxzs1eYm19gcbHHa9//UT730OmR937qyyd42dt/n/5in2FvSNWv\nqAc19aBm2K8Y9IcMe0Ne8tbf5e77jjCKWQf4ide+nVC3sEr/KA0SLbBWFpwzlsIWlK7I/55wx+o6\nBiQYlnW0FMczfonTPmXcWQvOGQpnKApLUTpcYcRxjkdKOmUnS0HmqPwhAj6KcL1XLIlIt1Yp+QP1\ntgMW47SroDWUY106E2PgDJUfUvmBODZNyLplKQss0mhoycSTNe81235sbIyx8XGsK8EWGFtI0wmf\nsnBTyZ8hGkdRdhmbmKA7Nk5RdCmLLq5Q+xFpGDCKXZ5QSxYXASlr9JF+HehVgcUqsDgMzPcrzght\nmJMAACAASURBVFy8zKGjJzly4hTnLl1mcVgTMn67RsYkxuVMrfZoR7GyUUhDUEc3TEjNxlPKnEHT\n4NWwbEhVMjQgb/URfDQMI9jcL/NxooXTU0u6/8R0wfl6g+pNmNCkBcYl0YC0vCX1G+l4ouU7Rj3M\nsaq5dPEKP/PHf80nj5zI77957Rr+8a3b2bppHes23CCRQpe6YBls7XnDR/+ae4/N0S6h/MxDt/PK\n9/0p737pv8EWMafSpuuOdY2rKqgqLi8s8vKP/CV3Pth47f/RtzyT33/9z7B2fQeBIyU7MWpKarIj\nNN6hoKB/bTzeSj4kLTVmgmus1AhD1L+npImY/QOZSLVs65jP0TyTZLolZ0JDFCImWv3cJkJi1Cg0\n1qoh6PL5g5E286meoXnuS6Kjrc9qMg8SETHZMJTSB81609kaWi+THAaYVqaWGIcCGNrWWy1JMUIb\nodSokcLKByoF396gZnHQEKvZ+R6X5he5PLeIKccYo2TcjWG6rcyhdgScRBYDo6RreVxryJxq1nwk\nlebELNabHUc0JTyS7aC6AbqRk7ArGYU2zf3GaK/VMKwC7Fm/Ei4ucn6uKZ3YtWUT+/7pdwg2hVRe\n1rpOPX/bAdBq+ppfGbuygZMihhLFO3DiLHfe82UafYlHgPtYqjcRYuT+I/s4fOosW9ZOY53jzJV5\n7j1w6JrHfvqhfRw8doodGzfgipBbvBtjOHz2HHd/+StXvc+HyB1f3Mdjh46xZ9cOgi0xhSfaIjum\npLRG8StjF6NrmlZSSEwOLVnXo1V8UnaogcT8LLNvMxuCcnw0zTWI8dVEBbNDS9dadi4RSKVWNuFX\nK9PBOJcdWVE/L6T2QRqRC4TGeWckIplm6Qhu5c9P5Fm0sEIYde+NYJdp4ZdxGKfYVSTsUvegWpKS\nDt8qP1Tjt27hV3+JUTi70OPS3CKX5ntEWzIeC8bcGHTCSNZj48ZYxq4nM75R3KuKkT03rOCxS33O\nz7ewa/Mm/vU/+XZ5fl9j7nXwxBnuuu9BroVB9x7fx7Fjp1m3bg31WI333WtyL1cHDp2/zGcOHLzq\nPD5EPvmVfRw8eortm9Zfxb0OnjjFnQ9c/fk+RD72uX08evgYe3ZsX+Zey9xreTzBMM4SnKF2hmFV\nM6hqcWohwUSPEXF2BMNKIk4zGHPQKjlKCs2MNFGdoDKnDAXBw01rx/nyqXkWfYNbOzZt5F/8w2eI\nPpPX8jfVuBSnlhO9LA0QYQsilioEqtpT1zF3S4yZm6UvJ3PfWuFoJsLB42e48/NLedA/IcQdHDx7\nH+89ewGA3TdM8/znPoO101OYosB1xriwMOSehx/l8fDqgceOcOPmjRSFOJt8EA07rOXI2XPcef8X\nr/nej39uHw88ephbb9oNtsQScopNChealHGZ0mbTlwyKJLWWDIYgGedZCD+K+Lxy0IA05/BRygeT\nQ8sggbZoNOsci69lvcpniBMrBH2fno9ohK97cYEaYymilexzLSE30eZyzCSnIM5xMIWjHOtSjpXU\nwz79aoArLAVWMvxJnLPZW5uy5YAPMmeKomBifIJutwvR6fGG2ovuV4pxyH+ALYzIPhSluA9Voy8i\n3SMNyeGfKKFcN5oB642lijCoA4NhTW8wYHZ+kctXFjh7cZbDJ05x/PQFFoaBzsRKxlcbik6JK4qR\nBgMA1bKm1jVGy2hAgihYZymLgk4Z8FY6WthaNhdHxIH8TB5aKx5aV1pskcJP0G7BnPjReFmyenyc\n2d7LdEP8buBOjNnPnq1buGH1JL4lQplIlFyjzZuoLEeTJ1wigPJVWtHK2BhMJLezM5jSYce6/Nx/\nvIvPHE3iqU8DfpyHLtzHQ3dfBODpO7fz8n/xjxgfHxeCBZw4c4F7jh7j8YzDA2fOsmPjBtGgCCYb\nyK6qJDusqrn9g3/Opw6cp+0Uu/O+/Tzvl97Of/i114pXtuVhT7+bFPa0hmgFvWKoicFD8ISq0teQ\nWNcEa6R1sbXqV0+kRM3/BGD6SoQshhRjI3uFW48xM/HY2gkyIYhCumzW1FhKvshlEyIjpp4FvV8k\nA9/QpMbTIv3ZadAYqajhabWtrvdG6pajRgb0nKIFEvIXWez1pTlT8AwHA5n3haMsCuWSiVyFrEET\ngnSoGNY1w9ozrD1ziz3mFnryc7HHXG/IfG/AQn9AEQtKL2CesjESMLXLRJbeo+XxxCNHkvWVIjRF\n6ej4QrqR1BFrZYN1SqYSfhUpwuQUv5xJiS55LH0kZWG5bddGQlHgjWXT+tXs2LyesU7ZEKsUFbK6\noSnxjyqDHuJS7FKZ8bSEklGarkFOwZFT5/RfUqbrgSW/p/HdAFxarNg1swLrLBdOnb/usYfPnWdm\nwzpCMGLoqA7DwVNnrvu+R46fZtvmzTjVzXDD+pr49djxExw8eYrd27ayZ8dWcfbEQAxeMMx7QjXk\nkYNHOHDsODs2bWDn1s2KX2bEkIot8iXGnApPh4gJCdNkgly9pkY9iclgyyNEsG0Djvyz8b6RyVky\n1LTVoZLktKxN67R6/dlIS842ciaFMVpy6GnKU2nKVGnpQ/T6A2mPHQL1cKjYVVAWIj47gl0+5HlZ\ne6+4VTPwnoXF/ih+aQniQm+ALaHwgTEk0ycJ+ppMrJbi+zJ+fdXj68y9InLss3auJxSb8cayed0a\ntm+5oYVdX1vudfj042HQVgAenl1gZttWirEufnxM93SbuRe16LccWew9znkEkw6eOcumdWuv4l4H\nz1wfAx9+9BDb195wFXYdOH5SsWtGsOs63OuRQ4c5eOwU22c2NvjFMvda5l5/v4Zx2o3YQB0DdQwa\nWEyOLKMvqAkURAoCBWIwdyzC07oFrmPASmaP9xAtkgkNmt1i2dyBfm1Zu2k9N9+0k5lN6yiKlDUq\nc6Ouasm+iQbnCoqiK9hlHKboEG1FHS0DHxh6EbWvg+BqctaEIB0Mg3b/S9mSR84s5V4A+0iZU8mO\nO3jhdj746Yd4xT/73+j3+vjFPo+dvHiN90LCnUePnWDjyklcUUrZH4iDzxgeOXL8uu99+OBRds/M\nEKPFFAEUt4qi4MDR4xw6eYobd2xnz45t8raE794TQkWoh8RQE7zn0cNHOXD0JNu3bGD3zObsYHcp\noCY1h2TNRJM6papqWNQMPitcKOQmFil/PWA0ZCm8JrTWXgDjiEi5uLFRtNgCI9ikR1JYQ2e8S3di\njLruU4UKTwfXaiiSaV6Lk1desvnquoYI3W6XsfFxnCvF0RklQ6uuvWSmo9mIuqUapCxxWNX0B0NK\nY4iqo+Z9+zPlhQrOxxAkK41AFQ392rPYG3J5bp4z5y9y5vwljp8+x7FTZ7i80Md1xpkaX4ErHGWn\nQ1EUI7waljO1rh7tKLgSkSTqVhSOTlnibdCXAIfTGIyNahQWNhuGrtRSjGQUpkhTbKJaADevm+Sx\ni72RaOHOzRv50f/ztuw99ZmEJ/JvsudZbAeZ3SkLIxkMIrAnX6ptUDSp+kq8OgWHL13h7ofb0b5/\nylKA+tLh23nnX93FG573A1LTGiOnFq5PqA6fO8/m9euysGq6GlfXQqxOneHuR6/ttf/bL+zjwYcP\ncuOWTVpyo919nMVZx4GTpzh45iy7t82we8c2MZq9GIX4mlANCYMBYTDg0SPHOXjhIttnNrNj+wzB\npfwHJViKErJxSPRVumgkjz0pDkfM4EQ2JBvSoeSm9RMCIYhYRCJs6S1XGYZOGVaMQsaDIEjU+RiV\nSKfPWpoNk4iVdBBxhGhkoyNpfzQCuyFC8E0qqgGi99TDIf1Oh05Z0u2UdMpSU3GTMSvRoNqLEOaw\nrulXNYNhRb+qmFvsM7e4yNxCj/negF5V0x96elXNmO0w5sWZ4Zy7yttOeh4tI3p5PMFI6zn/wgh+\nlYXDlxFvI7UNWC/zOmGXJWbcKt2oYZhkjWLLMFzqbMLAyokuk5OTTE1OEKJGfpbgF9is4ZHEUxrV\nlVali85To5+RjAoMjeC5NeyYWaffOWW67l7yexp3ArB98ya6Eysw1jCzacN1j924dpoqSDzdal4I\nwIbp1dd935bVqxn0hrgA1kdcUTUlg8ZwZWGR57/tXXzs85/P7/ze227jD974C6xeuQJ8TQw1Fy5e\n4qfe+Ft87N4v5OOe+4yn8TuvejErp1fp/W/9yQ4tMUqM4oLRTJNmezNy30c8hDQMKWFL/lT5PSRH\nWT5uydCMGKtRytTCLEkmpucoH6VYFeLVRiFCFp1zGp3UbIzYZOtEWvNEo9EisB/wlbS4bmOXS0a3\n3iNfe8UvT1Un3KrpVxXz2am1yFyvT2/o6Vc1vaGnHHeMBcGunDXTNgrTU1nGric3vkHcK31mwq6V\nK8evilx/LbnXzq3r9V8TllxEDMP/D4B3ffp+Pn3yEq/8ge9lfGKyEb5X7mVqT6hqNqy7Ycl50hBM\n2rBmmmFdk64mca9Nq1Ze931bVq1mcGU+c68r84u84G3v4mP33puP/N7bns0fvOFVTK+eGuFe5y9c\n5Kd+5R18/AuN7s1zn/l03vWqlzC1euUy91rmXn+vhjVGnBQR0TkqHGVHgip1DJjoCJDnoE8NFZAe\nWWXHMT7RZXxijM5YiXEQotcMUMlEljIuI51RNQlpesUYqyYnEJCLBO+p6orhcEi/32c4nKDbDZSl\nZNOEKPpIxhXgSmoMVYA6BN1bTdP4xBh8DJKhE2owHucixgR2blvKvR5BcOvqrowPntgHU+tYU0Tm\nrlxieuXikvemIbizZqLL3OICOHFclM5JQwcTWTc1ed33bp5axeDKAnV/KM52a7nSH/DSN/8WH/vM\nZ/PR//i7vpOP/MYvM71yBfggvKse4usB5y9d5vmv//d87LP35OP/4bO/hfe8bj+rJleQ9nii4Km1\nBnDqRBcNMJTfxCjZ8uJ4MSTxdEiwJfPAB5/88zovZB9BHYs2RqAQTFri2FJfEUWnoDPeZXHR4qMn\nmKASELJvZad4coyrhpavvWqBaenh2BjWFcS6xkeoghfdNS8c3jmreCb/trCwyPkLFxmzDiZXMtbp\nYpzJshKQgpdAiNQh4itP5WuG0TDwsDgYcGV+nrMXLnH81BlOnTnHmYuXuHhlgTpaxjvgXEHZKSnL\nEqeND0QLTfb15e6H1xipxCXbam1iFcH7QO2lnb1MtJQ+GiRK6AxFYSiddASwhdFO7jETmxwtkk+k\ncJZn7dqg0ULDphum2bppLWMdl0lVIu5NtDCHllpGYdOVLJXyiP8yhaLIQphSYJzYlcGUBUcvXdG7\n8L/zeAAVYuQLj+3j3EKPLetvIBLYvHEpuKWhxuGaaSrpIztCQora46qaQ5qm+rhe+0NH2DY1haPR\nophb7PGid72fj91/fz76e571LN7/up9lemKM6Gt5DfpcPHeBF/727/PxLz/QnPmZT+Mdr3oxU5Mr\nmvvSYjo5Uhg0UhjS09JbH7Oks5xQyUY7LzM/4/QgkHNFG1n61jyspJaa1BUo/X8yDPVRJpKXQHGk\nfCenyIpmRAyAEV2IJLibNkofJQW1zsAmpGrQs3SLgrFuRzz33Y6mlOo1R6nFr6rGKOwNB/QGQxYH\nQ+YXm0jhQn9IFSJVgCpEKMdZEQRAbeGyIGZqvW5IU2Q52+FJjxHsEiPAOolSdYIRh5bT2vgQ1KEl\nXfqcYlfSAnCFZGqZlO0AZGJNIvBLP79xsAQvm6bglvy0JDFMJU05SkWS5MyikTlbK398S1RVv+Pu\nHZt47rf9A+7+7/ulmyzfDTwD0ZtIv9+JNfv5lhtvZNfWrUkQhp1bJ/jWvXv4wiOjrdSt2c+33ngj\nm25YQxUDJpiE3BBh45pV3Lb3Ju5Z8j5n9vPte/ayadVqBr0BzkdcFcQBj8gFOwM/+evv5K4vp8xW\nCRb87T37+TeveTN//tbXEH0Ndc1P/vJvcuf9R0aOu/uL+3nJW97NB9/0c42TT+9721IzWgslPwOt\nYJ3CsKFZV42jKumoyK+t/1fthWi0k206fsncSxogEg1u/jfjFg30LS0tGzEKtXxHygUkppmixjI3\ndK8LGkFUXRA/rBj0LT3nFLe6dDsdCudGrrWqJDJZ1TXDYcXicEhvIK+5Xl8cWos9FnoD6cKj2DXh\nOllXIju0UrZWKxNoGbue/PhGcK+RaEDSmYuCV18P7rV7x0ae+6yncve9Cb8+AHyB9pq/7+jt/MZf\n3cmvvOjHpIOg1PIKag5rgnVs2Lyeb71xN184sATL7H6etWcvG9cmp9Yo99q8ahXP2b2bzx68XTRc\nEpbZl/OcW57KlqkphnMLmXv91K+9k7u+cg3seu1b+PNff70Yhvr6qV/5be68fzQoevf9+3npW3+H\nD77xZ/P+scy9lrnX34dhrdVugR5roNvtiH2BozOoqYPJmckmeIgeEwKFiYwVlomJDitWjDE23qVw\n0oEwObVARMXF6aTPT6vnNP1FNJOMcK7hYEiv16Pf71NVFd57ylIcRCDBoIgFZxW72kElSJqZLhYE\nW2N8s+a8Cn7v2raef/RtT+POzL1SIf617bi6O8nuvdtZmD3D2nXT3HLPIzx87Gru9bRt21i3aoJ+\nEAF7jGW8LBgrJIiwcc0qnr1nD/c8+hIi9wH/HDiKsy/n22+6la3jq+hdmMvlm6YoeMHbfodPfmkU\niz72qf38q1e8mv/3HW+WfSQETD2EasjzX/sb3PH5QyPH3/X5/bzwDb/Fh3/152ht9VL6bGPOdDx8\n4hQHj55ky7o1zKybludtVKqBQPQJzyI2Gg2ieO3CGHWtRz1/2rcki8uahnuJ414z79WZZi0U3RLX\nKaQ6Ke03tK5XS+olM005ujrmrXN0Ol0tU22aU9S1lqgGyUYTzbVI8JHBYMDlxXlmL19kMDvHwpo1\nrJqaYnx8XC4oNvt6DFDXnmE1ZDgY0K+G9GrPXG/A5bl5Ll66zLmLlzh74RIXZq+w2B9SB8A5jC3E\njumUFKWjcNL4IIvFY6iGFV+r8XfSqZXKB+QX2cBsznQQA7G2Aeeikh2hMzYmYgVlO9PBJqMwnTaR\nqwiYHN1N4sdTE2NMTq5gcnI8T+IQfEOwNKKTvL8pApj2c0NjIPjU3SCmguJEriyp5lf0XWQBmcKx\nY+smvRN3AWv079cGqLOzC+zcvpVIZMeOrTzr5pu49+FrEKqb9rJ1ywbVBiB7ilOkC2/ZsnZaz/2n\nwFOAG4E9ZM/79BqG/QEuRlwMBGN4/m//Hnc/mISaBXTuuHc/P/lLv86fvuGVDbnqD3jBb/0+dz14\nauTYT9y/n5e95T184PWvWBLJTVHDQKw9sRYDU6J1LSFIjdDFFMFNzyXXTEMqpZHvbVHljxy3zY+k\nxa1Nelb5oiyZWKQW0cY0joMULdQNKafS5xR4q8/E5MhiNiIRW7X2QUVGhwxjpI+UpRXWiFHY7Yrn\n3Sb9N8HVqhYxykysBkN6gwGLgyELvT7z+uoPK4JxBGMJxjIWdP5bh2uJtObSJV0pTUeh6y7b5QE0\neDI6p4wRp3ksgGhwLuB9pHBqGCKRcEOkWJrt4Kx2voJUvpPIvH5inmdtMeRsGCbjMDTGoTem9Tyz\nq0jmYhzFLxtty4gkGwwkLQQVAHvPL/8UL371+7jjnibTdfWKSS4vNL8/a/eNvObHfpBOpyueJX29\n9gU/ypve/2fc82Bz7LfcdBOv+/Hvx3bKLPJrUvRe190v/fgP8YY//CifbbVgv+3GPbz5R39QDG8b\nCJVEuZxR4hIDj50+w99+8dp6EB/77/t46NFD7Nq4jgPHjmuGw9XH3Xn/Ph49fJydWza2stf0Tian\nlK+Jdc3BY6c4euos2zauY+um9SnxIGNX9E0r+KYlfVp/kES8RJsq5+WNzLVR7ErPS9ZyTKZ92gTV\nOsxOrdZ+lqZFxi7r1CnQZEX4FvkOQO0jVe0ZDiuGITBQN2lhyLjV7XZwrk1JTINdVc2wqlhU7OoN\nhsz3+ywsCnYtDoaKW45oLHXQTB3rRLeraLAree2WMx2e/PhGc6+szUZjQHy9uNe7X/8TvOT1H+CO\nexOWXB1IvOexfZy5PMfMxnUZuyKRUEoznVB7/t2P/wBv/vB/4p6HW7i3dy+/9LwfwZTFNblXtIZf\n/aHv4xf//L/y6cea93373lv5tef9GMNBhYsBFyNHTp/mb7/0ONh1zz4eekywC1/z2LHjfPwL91/z\n2Du/sI9HD59gx5YN1+VeB4+d5OjJM2xdv5Ztm9Yvc6/0dZa51zflcFZ2PGmKY+iUJSsnC4qiw4ph\njQ9Jg0/Kc9GfJno6Dsa7JZ3xElfavJ+HOiBzUYM+GuErCkOn68CiIuRZL5xYB2pfU1UVtQrAp/mX\nMvLqus4doHMZbWjKrR0pA7kgUBJiha8dMXrJEotSOPe7b3o+L3rN+/n4Z/e17sS1kxv27NjODevX\ns/aGSabXruE1LxzjbX/0n/lCC6+etmM7r/uxf8b09DTeFswuDuj3hlgvDvlo4Eqvz9BXROaAt+nL\n8qydN/LWH/mXDBYHmN4AZyOFjRy6cIG77r8GFvnIX396H/fd90Vu3bqFwhhC8Dx89Agf++/3Xn18\niNx5zz4ePniEXVs3SXZQSwZidn6Bf/vW93HX55tEi+c8/Sm8ef+PsWb1lOw+PuK1DM9EQxFN7lpq\nYiRpQeaC65avMMQgQvOdgOhaQOpmbTTAEqJkjRVliSckVXtyuYUJ6qyKrYoIzQhDulOWnY7sTa15\nIwElxVuSDSBoOqgqzl+4yOKVK5wbO8np6WnWr1vH6tWr6Y6NSZmzKTDWUvvAYDCg1+/T6/XpD4dc\n6fe5MDvHxcuXuTQ7x9ziIov9Ib1hRR0hWouzgudFWdApS8pCHFyiP+jyvF7W1LrGSBteEra1VnQa\nTCFdAwpnFQAa8UaJ00XhGhYK1XdwKXKd9sk8S1XENBpcIYajK1KLdBovcMvYyKmC6lXNkZRkxOik\nbPQfmuNAjJIUkYnWSfTLqpPfADZw4/bNPPeZT+Hu+/fjwy/qHXmcMp5NG+iOjcsXDpFf3v8T/NK7\nP8Tnvtwy8m69lV992T5WrJzURYWK9QpxsYMKOxiyoV7D6omVXF58ZetznoE1h/iOW57K1g3rJTXT\nB6L3HDh7jju+0haHhiwUeO8+HnzsMDs2CLk6ePQ4f/uVB6557N337eORg8fZvnm9Pp9ktKp+jorY\nHz5+iqPnLzKzcR1bN68nOKee7SQkm6K4SnyXTChjHcZErHE4k7pjiAPBOiMvS5PlkFqCGyOdeAyk\n/t+GxjhMXnrfIh8igiphnCTmjA0tp4HUxrcdCbX3DKqaQb8i+EqFEisMUQCkLOmURWOYIpur1GFr\nCY8KYw6qStLghxW9YUV/OKSqAxQGo6mihSspCnmVRYfCaaty00qDX44W/g+P5HSQDkxGNrbCYjGE\nuBS/BLtMVF0aK6nwzhrVC2rjl2BXcpZJBlKkcKrzsqTT2FL8qr3HGNPokNBkTuToUUh6Rx4XGt0a\nY1JZm8OaQLCRGAwYz+pVK/njX9/PgQMnOHT4NDOrVrFpYgUPHzzBgWNn2LLuBjZv2kDodImoNkWn\nwHYK1o1P8Ju/8FKOnTrL8dPn2LbhBrZvWtd0vkkOLZO0E8QorAFbjG5zxlpMtySWJcFJ2nvUtOio\nmHzg9PX1uB4+dJTNUyt5+Al0Iw4cPcnmtWvUIEwj5PUye+kyP/87H+GTX3kw/+9znnIzv/riH2Fy\nxcTj41fbijEAVoXtRUfCWsnoc87gCvlpHVK2E1vYhWIQZEPRpBS5oEadOgQkPpkcDW3cajnAEOzK\nmRHqdKt9UC0H1U70lWS6Bd/CrjKn/qcvVmvHw7rWbAfFrUFV0x8KoeoNKoa1x7gCU4igdOEKXFFQ\n6LlHsCt9b83gWMauJzf+V+Veq1dN8ZE3v4wP/6c7eeW7/pTHW/Onzl1g++YN2LLAdsrMvaI6dVau\nhXf84ks4fvocJ86eZ9vGdWzfvPG63MsNhgxCHHGaAFJ2ZLXoOkaiDxw8dVb/9/G0bI6weeVKYvA8\nkhsNPR5+nWDzmummFLPFvWavzPHz7/wQn2xl1j/n1pt584v+JZNTk8vca5l7fVOOlDESfE0MURzr\nHYc1XbplR+eJZiFmsUmvzztQOIMtRFy77Zg1JB4hz8I5Q7fbIRIY+ppOp8A6mddGz0wKGGXHhGBY\nuk6vXMxamzOdq7qirod4X1PEpFvsiBSEUOJCJXZYcvgDk1Mr+LN3/CyHHjvBo48c5+0f/q984bHR\nrE9r9nPbrU9lyw1rARhfsZLO+AQ7XZd3/vItXLyywMGDR1hVGrbfsJr1N6xh1fQaPJYzl2a5cP4S\n9cI8RI8rLG/7yF/xpUOXaScpWHO73JvCsTgcYp2hY6Xs7/DJ63OuL3/5ITYVJR0nGPiVhw5d9/iH\nHjvK+smVInqvgd8YIq/41ffy6S+mLrJyXZ/90n7+3Ts+wntf+1LJWNL+sDGq7IeRZ2aMVCroowMj\nz9EgvBedD8YCRcR2wJYINxOVBoyVjK/ae1xZCJ/PjuuCEEXKQQkb0XjRbNNywICh6HTpjIl2Iz6C\nCfhYU/khIdZaykjGvRBgMKi5PLvApXMXuWQCFy9c4OTZs0yumGRsbJyyI50QjbEMK0+v32dxcZF+\nf8CgrukNh+KEX+zRGwypQ8BH0Z/THRRjLIUr6HbE0V8Wilupi6VmIC5rarVGjhPmSSZbmNPNzRox\n+iRSZ0dA32iUyZiobYq1hhaTjcJIzJFcOZasDyX6IVbr25tsBzk0jpAqEf1rRYdoNqDscW8JnKao\nohiFjmiCdFIAQjBpHwfrMAX8zi88j5e++QPccd/PI/RySRmPfTnPvvkWds1swY2NSTaDMYxPreI9\nv/ILHDt1iuOnzrBj0zp2btnISKcJyAQsxoDtDzC9Ibe/+4+40nO0wQBextQEvPmFP06t0TnrJXPq\n4BMZhkeOs3FyJTEGHj1x+rrHHjh2ik3T0+S7qWp2xnuuXLrML37go3zq4Ufzu779lpt4oWUEQAAA\nIABJREFU4wv+JZMTXdWDCY2mgpKtNKEMSpZMxMRC50MjausK6XJinWg5tKaHJMZY6XSRdWVyWoZE\nELNhmLznegKTRfRTFo2cMBO/drQwSmrpsJJoXzXoUw37VIM+wdcUiQwVTiN58opRykHSS4QEayov\ntddVrQKmPuAjFDh1lDTdfcqio7XRpXYgUuIWtUQtEfblcOETjubJNNiVSnUTfoUnwC9ronbfiblt\nsSHhl34AUTZnK/hWGKe17Wok2PY8jlmQUmr3fW4jnZ7paFZLEsCVUowYJIooviWLwWG1z5UJgPX6\nfgcusnv7FnZt2EC9OGBwpc/uzRuZWbmK2hV4TecnStmY63Rx49JNDGPYu3o1N9+yV+4BUds0kx1a\nxlh1dst1vuLt72u1o1YC8+h+XvWhj/Ku/S8Ea/G6BmXNBWzt2bJ6lT6xxynVXrWK3kKfjVPX1+3a\nND3NsFfl9uFt7CIGfu5dH77q+j7z4O38wrv/hN98+T691238CjnTAZqEBYvDmIRdtnF8Km6llyZy\nNdiFiqgag4lJS0LWdsi2U6OnlR1o6Vkno1D9qHlvU0dCKk/1LafWsN+jGg6oBn3qakBRuIxfti2u\nhFmCXV67P9WKW56hD1R1oI4R13HqKHE4WzRGYdmhSNhlm2ih+A2WseurHcvcS7jXtz/9Zr0j117z\nM2vWUFiHKzsj3Cs5WhJ23bJmNU95yp6vinuZcsCr3v8nfPaxs4xg2UP7+fn3/xHv/rcvydxryxNo\nCW6amqK30IMQ2LDq+sduXD3NoC+lIku518/99h9djV0P3c6r3vMn/NZP/5vGobXMvZa51zfRsDYF\n3tS1FAPWWEprcEVySQoJabLaHcFbYqwx2qk47YsgHYfbWazRSHCp0+3gSkfHV3S7ndwV2VrEGQv4\nlgB426nlUlA+BA321NR1RVUNqaqKqq4ofMqAsXnOuNABgjpgdP+1Dothx8xGtk1N87SNG3nxb/4R\nn3iolfm+60be8LwfJQwGxO4Ytpyg6JRM1qKvunHbTm7ZexNXLpwlDnusvGGa1WvXgiuxU1O4iQkG\ns7M4PKcvX+Hz1+iaGGLkswf28eCZ08xsWIeNhjGgIrJ+ZdINvHYl0PruBHMXZimLAqzhhonrH79x\ncpreXIUxtWCHNRw/e45P3Pelq67Lh8gn79/HkSMn2bZxnWgFerEvBaP0Obd4kWRCBcoc2BP3lus6\nirEO5ViHouO0iZM4ukTTq8m4s8bgypKy06EsuxhTEusmm8vrHJMS6EjlPcZZxiZW0O2OiVMtCtf2\noaYOFSEGjM7xgCXUkdpDfxCYX6xYGHgGtqbvay4sLAhf1E7U4nSywteGkkVYecn68zFQ1yFruoE4\nWwsMwVjAUdiCTqfL2NgE3e44RSmOssJJx1gQx+Jw2al19UheUzEKDc4ihDhXn8Qm6heTCZApjoBZ\nap1OYweSjkuE30h020XtQpJIVSJWbSK/JFrYHm1SJb9LKmOOKmYjRbU/cKJTkABUSZaySNZMr+KP\nf/l2Hnr0KPc/eIgP/s1nuPdwK519z17e+FP/mrLsUI6NU4yP5bbuxjluXTvNU596M1Zb1TZp21Z5\nixh4MQRY7HPo7GE+cY2W0hC5vLCPC4uLTE5OimfbB0Ll2Tz1BIbh5BS9xT7EyIapqesfu0pEneWR\nqihp8BjvedX7P8rnHjtHm1x97qHbec3v/Rm/8ZJ/pSUGLYNQiUuT1i4kQb6++Oidku+k/2GcyZ52\nUpY8KdtB5mDa0kJgROuhiQDqU07lFC2j0GjhfTrWp+uNDTGrFGj6gyG9xR69xQV6i/NUw0HeqJv0\n9MTEVQA112e3O/IEQpQuLyEaIe2uo7ocku1QFCVFWVKUHW3bO2oYtuf2crDwyQ2ZeuYJ8Ws0Evs4\n+HUN7AKyYWiQTIdsFNpkP8r5RkWXa9189YwZu5ZinRqGOQqeyKK0OLdKBELQC0yZ1c5gSoPrRFwn\nUHQ9fhD+f/bePMyyrCrz/u29z3DvjYiMnOc5cqwJBMFiHkr66+Zpn7ax1aY1oUFFaSlnQP38/FAU\nULEYupGWeVBx9nNq1AYEZCgRiskCpCrnoXIeIjMj7j1nD98fa+9zzo3MyioEn6pq89Rz62ZE3Ig7\nnH3e/a613vWu9GKbd5lpQ16U5IMJdJ432KWNibglt3QNyyht3Vzfew8e4eOfu3obzie+vIeDZ8+x\ncdVKqejHvUQCQ8/6xUt48o5dfPKe26/wsLl15w2snpxiODdk9aJpnrhrN3//Twsep36Ex+/cxZrp\nJVTDmhbhQ/Tp8Bw6cZJPfukrV7w+7wN3fmkP+48eZ/2KpU2yrRtwBULbQpPi5YhdmiD4ZYhBoW5I\nXUpqJXP4JpiPX4nATck5ayZetpPiQtx0m4lCEcfEIzrgidXhRqklT2e9p6qdYNf8MGLXZUbDuUY5\nqJvAvsUu38GuZlpUMgQPRG+3uG9pj8kFu4zJyGJQmOWFEDaTyTXWYFe4jl3/jONfO/favnk9T/+m\nm6NSvlNIVLfzuO072Lh8KUbp++VektTyD5p7qWzIvpOn+diXr8QK5wOfuHsP+0+cYvOSxYJdS5by\npO07ufPeq2DXjhtYNbmI4eUhIXjWTE3zxJ27+PuvXg2/dgt+zdc0afTIvQ4dP8Enr8IHvQ/c+eU9\n7D8Sses69/o/mnsppZ4CvBR4LLAG+PYQwp91fv5O4PkLfu2vQgjP7jymBO4Avhsogb8G/lsI4ST/\nAoeJaiodk/HJ+00gbAEuxX0WAj6D0LS6tngSEXE84Rq/n+cZJhh8nX4n6p3T/on4rlVVxWg0oqqq\nmMBqk1rWWoqiIISAcxbnrCh9rI0YlkW1vhRzjM4Bj/KaEBQWL/KwoEnq7BWLpvmd21/AP95zkK8c\nvY/lU4tYvWoFubXMXTiPKpbgwyTojKzXl/uJCXI9gc6hmpslm+gTigxTlizq9aBXcnmihwmee8d8\nn7vH0wA4Pppn3aCkcuKxaa2nKHtM96e4MH9lJ9Ct23ezenIRly/PSxLPGEqTMz1YxIUFnUNK7edb\nduxm7fRyXAUQE+kqsPfgsWu+rr0Hj7J60WSj4o2oQBrY0+VeBEmUG51LAsl7tFKU+YCyX5L3SzA6\nsiJpN9RGQ4hFFy/7Zp5nlEWPIu/hg4nn1zcqT+fargjnHP1ej8nJSbKikMnbvmMoby0+uGYvI2i8\nClgXmBtWDIc1tRM8tL4WrHMhrlnd4HGIvnJpbYMmxCI2pAZx4doKTZbJZHSjDHnWoyj7FOWAPO9h\nTCEqNBUTZj5QVaNrX6Rfx/HIS2op1RD5LqlXSjVT+9qYLoJOt6oX/5f60pujEzM2vCyR8iCEPS3E\nLklqfEZC6mmVKQU29o+mW1flEAJjRGx8DHVTFpRF0JC3SAJSYKghmMDW9WvYML2Yf3Pjbu49dpL9\nZ86yZtlS1ixfRt4rCDa2e+SZVFSzLPZog8KjVTRx1abxR5Eqk2/enzIZRy9ejh/Q1cHgxNw8O5cu\nRo1GqOEIPazYPujz2K3b+Oz+H8KH+5A9K5KrG25hZuumhrzNbNrIk3bt5s6v3o7zx4BVwEmMfhWP\n330TWzasaysj3iN97ppDp89w51UmMvoQ+PsvC9lbt2yxkNeoIEu3JuBXAjahyFF5jipipjvL4meU\nCFgkVko1LTfK64bgK0UcNb3Ak6FTISb5GsWpYc2I+SZh0AZuC9eIixPAqkomplRVRVXXVHXVVM5l\nYx0nViJcCbENgEb9EUKITSG6MflWSqNNJi07uVQJ87wgz4sokU2kqvXbaUjr9cjwgY8Gs1IgzwPg\nV8OQ2p9dDb86D2jxqo0vPQHdYFVMXvhxDEsKButcQ6xa/KJJrISmNbITGDZJL2lfkwSTaXBaq5hH\naRJbsVqeGXSWYfJMfAZCnEgTvfZ8XeOrugk+tNbyO6hG5SHy/HgtRe8JfODY6XPxQ7kfzJqfY8fS\nJWnhg7Wo4YiDBw9x+OhxfuLbn83r/vyv+buOj9cTbriZ1774+8gGA0IQ09Bfe9Hzedlb38PHv9z1\nutnNa35gD6ZXCgnqBtYixePouQvXfH2HTp5h9dJpmRjoBbsOHz/FsVNnWbtkEetXLOHY2QscOz/L\nplVL2bxmJRS5eD5kpjHo1iqp6OR8Blr8IphGLSh16xAn/nRIXFwbQuZadYPWSTnQrjdJPnUNu1sV\njbXiizWqakZVxaiWWwoI2kp3B7vi3xzDsEatFpvalG6uK2Niy2FRyDjpIim1svh6F2JXuI5dD/a4\nzr0a7vXml7+QH3r12/jI59tr/lu27+AVz/0P4Gyc0PWN4V7kJcfmh/FZ7idInJ9j59ZNDfd6ww88\njx9/5++MY9fum/n1F7+QbHISYntS8J7X/sDzeOnb3svHO6qNW3fdwKtf9DyyXtlRXbbc6+j5a2PX\nwVNnWLVssQRCD5J7HT53kfsuXGTz+tVs27T+Ovd6ZHCvCeBzwNuBP76fx7wf+K+0TGZhRPt64N8B\n3wHMAm8C/gh4yjf4tQLxc4bmVEFUu6FAedqUaDpCTII16W+SurM5d6ksFH8t4ZYOqll/dW0bz1KV\nZVJMC3Ft1XWcgFg1CazEweq6JssylFJRzeWa30uqVGLiQVR+OQlMZe/3oHTc92WwizKGPM/ZuW41\naxctYnZ+yHxdMZy9QB0sFJpyehKtM1xQZJnERnlh0GYRJgsoo7Bxqk4+McFUXhC8WArs3LUtfnZX\nFyk89vGPZc2qFYxGQ/xwCMMRP33Hm7k4vLITaKof+MXv/k6qELA+mu0rxc/+zh9wcV5f9fE/95+/\nk/nRqOWtgFKBpRPXnsi4dNDjwoULsTASFVDBSetiCNi6luc3sobuO3eBkxfm2Lx2OVvWrKAsSvql\npigNJjcEIyo3F1Sj1PJelokMrknXeEmWZdRWMMzF9kQXE5fOJQWfYjAYMDk5hdGGOq4Hl2wanKPx\nZNNaSLcSZdSlS5cYjkYxaSYKtoCK2NTuj4l3SbFB9iWjuArGCK+VZaXRmbQd9nt9ev0BRa9HVpRt\nQj5mfYMP16cfdo/uZjhGsED+F5LNaBeY2pOhGIer6PTXPCyM3WL7RCL4tN4AMuK3bcsYJ++OLHPN\nCN4ETmnjpPk7Hf8H3wahKQ+a3m/axwnNXhnJlZeNOTPoPGPz6hWsW7ksyptrfF3hRhkqyxovBmUM\n5Hn82+0fFwVE1oxnbz61AKoo2bZze/yQrg4GO2/cxWDlcpgfoubnOX/yND/yG2/nM/vujY97KfBy\nwPOkRz2GN7zsdop+XwJXZ1F1zStf+Fy+4xdey7nLL2v++tRgmp9/0fdSTPSbjHRjnuwdRy9cjI+8\n/8Bw5eJFYiZf14TRCEYVYSQVNmL2PGSGw5fmOHFxjk1rVzCzca0kuIJrKrZN4KWIFQ9N0B1vkUjX\nQ/CgotGrT4GY3DQRzLpj5mlNDJOpqoBYl8B7nLMxMKyobU3trIyLdr5ZK80qbxaKapMYnSA1pIhB\npSuiJZhZlpEVBUUMDPMiJy+ShPTKSmEibYSFoHf9WHgkD5rY8UVqHRzHr666oXv/teFXUlB5Io7p\nqHZxHRzrYFg3+aAjbiXsgjZ4VOpK0h+awFBepcLEKjqNMa9OLzdV3JN6ITPo3KCtk6DJeYL1+KrC\n5xl2aJqkBZlBkbVV/pRkifilO0bjM9u2xH/dD2bdsIvBymUNyJ4/c5Yffc3r+chnPtM88mm3PIo/\nf+XPc+bSZTatW8vmDesJmZHrNCbeMhw6M2PnWWeGYrJHOTmIVbRkah0VGN6xYV134MeVr2/lsiXU\nThKNs7OXeM3vvp+79u5vHrWoN2B2ONd8/S3btvDLe57N0qXTqDxD+RwVW1XpYBhxxQWl44C3FrsI\nqZrsOoFeGySmBKJpJnLFoLCronKhY9gta0PWVS1y9miMm8gaLMCuBUmtceySe0KIS1/F31fSrpqZ\niFdFExDmRY5JvhrJt4h0jXRNxa8f1zqucy8a7rVkeor3/tyL+erew+w7eB9rpqdZu2zJvwj3oufY\ntntH/KDuj3/tpr98GWp+HuaG5Ap0Pk7vdZ5RLpmmt2hK2sYj98q8vQK/lDHkk33hXang0eFeD4Rd\nq5YtlTYV5x+Qe12oLa/+i4/xqb0Hmr/ypJt38bqfej7L++V17vUw5l4hhL8C/gpAdV/c+DEKIZy6\n2g+UUouAFwL/OYTwkfi9FwBfVko9PoTwqW/0axZsABUQ76F0sUV1cuuaJIeUT9KZSvsPEvQ3uXs5\n73JqVXO+66RadpKoSMq94EUpRkzUJ7VWmoCoU+K1SWT5xmOrVWi5WIBKpCqglEGrHK/kfaACGkca\nHaN1RtAWrxRkWtrkqprc1tS1Z1RX1JcD1aUB1eU5jM4ImBZLjcbkOTrPcDiClnY8rRV5v6ScnCA4\ny/ZVK3nWM5/Khz7yIzgX6KpFn3rrE3nC056MV1C5GleNuOef7uHOL1/pqQyBC3N7mC8zlqxcjvWO\noAJHT5/hU/dcqVyFwOzcHoYmMCgM83NzOOdkkEmes2Htar55x07uuucq0xy3bsHgue/kKVDR98qm\nJJbhwH0nOXjfKVYvnmTF4ine9oHP8sVDSfkFt+6e4Q0/9lwWL56OyXjxBtQYVHCRw8b1EgtwRiFJ\na50RgmoT6g0edX0iA0WRMzk5Sdkrm8JHSphWVYWzTqBFJysJ+RvD4TyXLl2krivxPPUWpSRJlvZe\n71ssSon+4F2z/0Jg4QXe3eWNMRRlSW/Qp9/vU5QlWZFHo/i20BRCuO6pNX50SdU4wYq7RedG5/4q\nRxo5HFoSMRYQesaIlQRzHVLlF1YLfcywWqyVjdMYIQvXrBbGyVatjFhAKrWFpH2yKa5rQAcxM02S\n9sygnUNVEhiGSKxUZbAmejYYDXneTG9oos7Y361z6auVXu+4MccFvuvRN3LbU57Ehz+xAKTMj/LU\nJzyZmx77KHmfl+cIl+f40V/8NT529yEWmgR+800b+d03/oqAoa1xtsLXNaqu+IVf+6MrPLsuzt3O\nL7/793jrK36yaTtJ1T/vPes3PEBguHQJ1nq8dYSqhvkRzM3D3DxHZi9xfG6eJYMe7/nMV/j04aPN\nbz9x1zZ+/SXfHUlV24qQgumkXlFBiJFWUTUSFF5bcG0A1pBC70XurKSdwkT1ACqZVLdKB+e7CYNu\ntTAFhkKybFTWXG1td4mVrG3VLvR0uZDIlWoCQ5ms0VE75G0LTxPIxmurqaKH61qHB3PI8rlKYPg1\n4Vdo7sLC+84GJTjWSWq5KxNaXVxqPbUsrmNIbIxZ8Dh1hVLLd4heUzVUcVJ7/JZPcJKSLLqDXbkR\nXPIOvBUhZl3hRoYQvU+0MaKmjJ9kI+wxktg30Xsk/WDXDTt45lOfxEc+fiVmPe0JT+LGb7olSpSk\nje4FL3sFH/vsPsamr/7j7ajsL/mdX/45CUjzDPJcxizbCmdrXvrq1/OJu8eNRz/xpdt56f98D2//\npZ+O3mO+k+iRz2zzlg3cetONfOpLt0dCEQmWvp1v2rGD1cuXUteWYB2v/t338/l958aeY3b4w8Cj\ngT8DPso/7H0JP/fev+TNL/5PqDJHeRfbMzvYpZF2i6DToEypxsXAMAQn2IW6Ym0onTBCN9jV9adq\n2gRdm+hM6odExutuUBjx68rlfT/YlZ6ouUsZlZRs09EcPgWFeYtf6fXqVifUxa7r4PVgjuvcayH3\n2rpuNRsXL6EaVVRV/S/CvVSAXd90y/3zrycK/0rcK/Tm+NFffSMf+8dx/vXxL9zOj73hN/nt1/3y\nGPf6qVe/gU98aXxC9Se/dDsv+4138bZXvgzfwa+EXVu2bOTWm2/iU3dfiV2P2bGD1SsTdl2dewUF\nQSad8Mvv/wR3Hbk89vx33n07P3nHe3nPr/zYde71yOdeT1dKnQDOAR8Cfi6EcDb+7LFIHPrB9OAQ\nwj8ppQ4BTwC+oUktBfI5aklIqSCFjRTEy8JKyrcFIfxYEj6Sm/RvJV6UjX9bCPgg03tR8med9Tgb\npxL6lgempFa34FMURYNhiWNpLe1e6TGikI/P36w5g1IOpTKU8rGQKEpmg1CdoDReg9cKXeaYMier\nM3I8ztZ4Z/Hzc1SzF8nQ+Ey8ATNAp0QqkvTxyBL2BEyWk/d6OGsJxvCut/4aL/jBn+ZvPtAqQJ/y\nhCfxrjf9Kv0l01Bk9IAQHKfv/kp8xNXFCRd7BWtv3o2NDYH3fPLOaz5+LlNsW78Sf/IUVVUxGPSZ\nmJikyAt+9Sd/kJe/4W38w5fa1/Wobdu4/Tu+lXOXL+KDp9/vUVcVc5fnqGzgXR/4B758pE1gDYoe\n81XBQsubn3jj7/Pbv/BDkNWizI3DTUJIw5RkzSgtycFcC29FGykGRoV7Q/FDaPwfA4H+YMDExIT8\nzMfmSE9MilrZG2I7u0f2Omst88N55ubm8M6mP0xqpUz7XlqPkSQ2uJKeRy+8HOSdRFgTZWFRFPT6\nfcpeTzAstlAvTMhfT2p1jkbdEElH4ged+gUhpL7oBWAfv0gcLDQLp70X0rMgKGwqPSpWoUNsCWmr\nQQKKsVJtLTYqBhLZHpPNdzZa8aVZqHaQSlQqA6RqoVchvtlAUEGUWjEoVJlBWR0LfaIECHWNN0Z8\nUJS00/k8lwqdEnPMVGlo5LhGKodKtJJIu4l8/a6338ELfvBlfOBvWzB4xlOezjvecgf9pUsA8EXB\nV4/dx4c//Wmu1hL4qS/u4fDsBWa2bMbVI1xd4eoR+/fu5yOfu/po6Y/dtYej586zcc0qTKzup57n\nrVs3ceujbuZTX1xIrn6Eb9q5g7Url+OrWs6n9VA5Ll64zB0f+ns+e+IE7VECv4mooD/K33/1Jbz0\nzX/Au17xgyhSUiuuK9WSFlSIAaFMTVKRgDdKh4ZMt2oApVWzYaVpXKki2HgvuE6V03k5Z9bi6pq6\nquIElKh28G5sfTcBX6N6oLMhd5EpKYSSp4VUMbM8l6CwLBpylediVDrWctQEIq0HxfXjAY4UCNK9\nX4hfzXyVB8AvFR/fYpgPLUFP2JUCRafTuloQHKYg0kdDW2vH2g8XYlc3Ada2a4TmuUjas7SuQsIX\nwS20EZ8aLaaXKosY5hzKyhsIzhPqGhcnE6aERSgKQm6R4XxBDDy9wqTP1kh/kPikaN7xP1/D9/23\n/5sPfriDWU99Gu9482vpTU+LRFtr7t13gL/9+Me5Gv58+K49HJqdZdvMFklsFQXe1biq4sDevXz0\nrquPlf7oZ/dw9Lzglu9IyBu/Bud41U/8AD/7+rdx5xc6hq27dvHyFzyHoDVeKQ6fOsdn9+6/4jlk\nQewBhiR8vfPePRw6foptE31U8FdiV7MGkcQWrZeVigbwqNYoufHGCgGRo0ellskaNUwItKqIbrLA\neU6cPM2RE6fItUEFqKsaW9eSOPWx2txZ21fFru59eyE1XzV8wBgxhi8K8WIrytjCky9o32F8L77e\nfvigjuvci4eMeylteNc7XscLXvTScf711Kfzzre+nv7iaXxR4IuCe+47zofv+gxXxbJP7eHIhVk2\nr1uFqyvu2buXj372s1d97N99VnjXprWrRO2wgHu95qdexE/f8Vbu/Pw4dv3MC/8TQYvhvkeNca+j\nJ85y/OQZ1k9NsGHpFEfm5mMx8SrP//k9HDh6nK2b1j7k3Ov0mbMcOX6c4AK5Ude514M/3o+0Eu4H\nZoBXA/9LKfWEIC96NVCFEGYX/N6J+LNv6KG1iopd1ewFKuIWqe0ev+C3FjRMp4RWU2iJCYQALnic\nD7iIY6OqxmQGj3iypcRDICrGIv50fbXqum6ULVmWRSVOTa/XQ2uF89LGn9TfwtdEeUhIKnmPVhlB\nRzzDY+JG643GZxqbRYuIXoapMzJvMQ5wDjc3x/yZMzA/JJQ9ekUJgwEBLcW8qgLEYymD9rqMA3uC\n0ixeuoS/+PN3c+/eA9zzlb1sWL2GzevXU/b7qH4PclHzBxWYuenawzdueeI3s3TbZnwc6PMoX13z\n8Y9+3M0smRxg84CzjiWLF7No0WKMNiyZX8VbX/UzfPrzX+DAkSPMbFzPzplNXL50mfvuO4rJDIun\nFzE/N0f/4hx3vO+v+Kejc3QTWHPVDwNbWBjffvzuPXxl/xF2bN8iijYv/rKJe6VEkDGZTKo2GVlW\noJWK7YVt0smHTpLdyTCDicGAsiw7SU1JhNW1a1R+tA6psrbqiuH8PFU1jGtb/OMa3hZkhSclu1C9\n1E5Nww1hfGptCKqTT5U9ruiVktTq9ynKYkyp1e36uN5+uOBo2nVSGS1NqImKS/HbaI/mq843201h\n/Nbtf2968+P3dVAx255uoSFgxAXiXZIL2tg/2wad3VaOVubcCXLiz+IaIREscUHxzcJKZauQpi4Y\nDZmSm9WNkaoKnmAtxN+2SrwvvHMy2l0LUVNGkZcyIjQve7FimFRgGdp4tMmYXjTFn/zeW7h330H2\n7T/E1i2b2T4zIwTMRAF4r8fBk6fjp3x/LYGn2XnTDag6Q9U5qs44/AD+MsfOnGfH9q3N59u2Dzhe\n+zMv4WW/8ht84rMdo/wbb+LnX/xf6GmDMyOsyvBeoSy87mMf4vMnR4z3Yt8O/CnwIppk2t17OHD8\nFNumBlKijSdaxSqO8AtN00CWqn7xXHdlow2pUnE6mYmeNLGaF9yCKqHzUNeokcUMa/TcPGo4TxhJ\nItBbS/BOXo+K6y/eN74Lab2rdvNNV1CzSzcjrU1UOeTkZUHR61H2ehRlGSuGeTRDbRU8MZoYI43X\nj2sfsS4r/0XcSONUWvzimvi1MBBciF+tkqFVaYVYgbS2vaWKIQvxyzqcEQm89yKh7uJXoA0Mhdj7\nKIWP5LpZXrEnn4Bv8KvFsDRWHaMImUZZiSAb9YeLwSEKGzE/+ICr64hdAXTA5Bl52aMoa/JeNGXW\n0tIzNejzh+99I/sPHmX/oSNs3bqZbVu3tmci+tkcOHQkftr3g1nnzrFr6mbIclT11/xrAAAgAElE\nQVSeCb4XOUfOXNu368jps2zftrVJYjW4FQOilf2St/zyy9l3+CgHj97H2hXLWLdymRiEVhV2OOLM\nxQPXfA64F5n6I18fvXCJHZnsA/HEkqaBJeyS9x4Tl+gWM2jXge9iV2iN6bWJrRExaPONv0cbEF68\ncJHf+L2/5O59+5pXu37FKh67bat4OiQvkJj0HMcuxrErdO7HsEs12KU72FX2Ssp+SVG2QWGadtZU\nFuOThOv49TUd17nXQ8O9NIrF09P8ye+9teFfM1u2sG37zBj3UgEOnr02Jh06eZJtO7ai6pzDD+A7\neOzMWeFdSa3VwbCV/ZK3vurl7D98lINH7mPtyuUtdjmLnR813OvC5SG/9hcf4a4DB5pn+Ob163j2\n7s3XfP4Dx06wdeOah4x7Dc9f5J1//jd89cih5pUtX7SEGzes5jr3euAjhPD7nS/vVkp9EdgLPB34\n26/37//4j/8409PTY9977nOfy3Of+9yrPr7b1gedhGQEiqBa/GqH8HT3jHTrJCxDwMYEk/MB61Ji\nK1DXDqU1LgRGw4rRqI5Ky5jYTl5NMamVbkkdn2UZIYgnUp7nGBNbEOsqXpOigDYmoxmyQvIzjdYD\nPqB8en8KMkPIM1xpgYDLNOQKXSkMgeAsYW6OYfDY2VnoDZgaTOAn+1hnuDx3gbn5i/TKAl9bvA1o\nG/Amcos4WVJumh07d7B9ZhvV3BBbWXRUvHtjYgoxsG3XTp71b57Fhz54pRL1tmfcxq5vulmGKSiF\nDp4dj76Rb33GU/jbj95+5eOf+lR23LiN2fMXWOSXoJVh6ZIlDCYmcdbjLxr6oeJRj7mZxz7uUUxO\nTqK1ZnZ2lmxyQK9XMjEx4PLFSxw8cB+fu3cv919QvAfhXpAw697D97F1yzqUz/FeQ0zuh6TKjJ+R\ncKkMk8mACKdDTCoFURzH4l9q/S6KksFggMnES4uIXdY66tpR1Za6do3dx4kzZzh24jRFljM3f1l4\nVzOoIBWs43XRJHmjX1zkWmI3kAYwEZNi8XFxn0w+bXlZUA769AZ9McovS7F+GEtoSSzyQEqt973v\nfbzvfe8b+96FCxfu59HjxyMuqdXWQERurHwMDr1qAkLfSbSPE6z2G2NkqlsZ9GHsFmiJlQlKAsLa\nY22UCqbAEJpKdRsUGowOVzxXysAKOfBNkJM8C4jkW0fGn0iVDgHfcSsVLxkJCsmk3zlNudJaDOBC\nbaXa5KPPgHW4qpZAUseqo1EU/T6utrjakRUFOsvRWYbOvMgj44QprTTbtm5m28xMW0nsjkovYeYB\n/Le2795JNjGQpJbN0XXOzK5r/86OnTOUk5ONl41MAZHPbXW/x7te9wr2HzrC/kPHWLdqOetXrRRJ\n79w8tc7QaJxTHDl5jrsOH+aBQUoA6uDx08xs2yDTFlExOJR/NqO4I8FXUvNpiVVXxt4lVtEUVqab\ntG0UbZUwEJyH2qJGI8z8iLMnjrP35ClAxtx7WzfnNBGl1E6U1ndjvBxoRlk3D0hfR2Kuo2l3VuTk\nZUnZb4lVEYmV6vz+mPS9u8CvHw94jOFXCgxhAX7JZ3k1/FqY1EqqrGRKuxC/ukmtscDQeYILxNnE\nrfeRcxjn0dpjTIt/CR8VbUvZ1QPDVoUmb1jwS0wl20peSmhJYCg3wS9QDmnlifgVnxxvHXY0EqWX\nCgQNpsgoejW+b/HWofM84pdDZzkmgy2b1jMzswWlkwG0HsOvmW3XNjbdfsMuskVTcUqVQTuLszkz\nOx/g93Zso5icaDDYx+mSKbGT8GH37h3s3LEtTgKyOOuohyNqPc/GtWuv+Rwyyrr9evPaFajMxGl0\nKeiRxJacg0hgIrFK+JWwoqkQdtoII3qNYVdo1l2LdWlC4Zt//y/58v6zdAsHR0+9hLr6Jx4zs1ES\n8glTr8AudSV2pcQWC+51nIaZGUyRU3Sxq9fBrkbhwZXJrOu49aCO69zroedeSim2zWxl+7ZtV+Ve\nQWm2PoD/VsO/bP6AXqnbd2yjnJygacVbwL289+zalbDLNdhlraU2Lfd67Z98gM8dPE8XD+46+hKq\nsP+az79pzfIWJx4C7vXOP/8b7jk6O/a6z8z+MF88eJSbNqzkOvf62o4Qwn6l1Glk0/pb4DhQKKUW\nLVBrrYo/u+bxute9jsc85jEP+vm11iiTy1JSDh/9pkLyw1Iq0jH5TFOKKBXUJLBvHw/gg8Ja12CL\ndYkfhTFVvHOOemQJXmEwaOXl74y150fvtqqOqrIMUIxGI8qyBJWh6lq8kbxvuF1aAq2aVhJbWgUI\njuCS0lHLJOnSoryj9g6XIV6luZHnJGKXv0wwGXiwFy/i5+YYXrYcPXqQYTXH6rWr6PcH6KwGVZEV\nWoZbxBY25zzYmjh4MLaTg9fC/4KSkoGJH+Rv/fZb2fM9P8Df/E0rTnjmM2/jt377f0YvwpQY0UDB\n29/xWp7//B/nwx9tH3/b05/Ob731V8DkmLLHYGoxRZ7Tn5oiK3LccITTHlUYlq5axuTkFEVeMBqN\nCFlGf3KKoiwlQRkMpy/ujX/5gQqKkDBr3fIlWGfJvPgWBiWK3RDAS09BU2BTUWWa+JWP7aVpEIWN\nRWOlFP1+n16vJ08V0toL2DoOSKllT7tc1bzjj/+ML917T/NqVy5ZzrY1K6NCP31X9qpuu3Tzh5WK\nBZ4O5ogUFq0MASnSBERdnJU5Za9Hf2JAbxD9tPKcLJMhFyDrtOsRd63jaonpu+66i8c+9rHX/D14\nBCa1UqYzEatxpYNMGwkxKExJ9fYYJzlyU7EyuJBURQ8BUpEoEBZUC72N8vckgY/VQuscWQwMfdYN\nCsd7/F30gejK4KUqGZpNUf7fqh00Skz+0q2pFsaKYRrdriAED9bjg4La4SOpUqOKYCCoILJ6o7BV\nja9Fbi2BocPkBaZIu3WcLKZjUKQloEhBnortKGjNzptv4ltvu42//fCVWfdnPuM2dt9yo8QoNkfZ\nGm8Ldt1yE7c942l8+KNX/s7Tn/wUbrhhF2nUdUOsYgtLCvRvuHE3u3btwCbPg8pSqQwdNDiFtoqT\nl649RagFqXFSFaLaQaXNLgWESiYWScVOxcfG8+1i4iCEBkgUqpm+k3rkPaly7OnK36lrLl+Y5S3v\n/zB3HzvSvNIVU4u5acNqlFpQpWswqZt1R85XvG+s/jqBYTNsYEztEIPCMnrT5LmQ2pBaPkJT4XqE\n+Do8LI4WveQrUTvIvxN2dZVaD4xfbctOwjDXeGb5zmmSpFZSaSX8ukLt4KWFx0Xj4kbt4NPPJdBr\nK9ut4XJqg1CJ6Ku0YaYBwFKxSvihroZdye9CBTGpdPF6sh5vLbaqUUUu2KUFv7Iixw0s3kqSzhQF\nJnfoosDEz1ZpjTJZ87mnSYnKGLTO2Ll7J8961rP40IeugllPfya7Hn1zrKpLMsw7h7IVu26+kWc+\n42l85Cq49YwnP4XdN+yMCUM5sd61SS3nbNv2lJJJtW3wq8qGGAwzmzbxuF27+Mw/jZubwksQT60e\n8FsYfTu37tzOlvWrpCVKyrQ0Sq3g5VwIW5HPQMJ3kuoqoNr9rzPZElqybCJ+OeL+EtUNCb+OnjjD\nP+5N3mRt4SAQOHFhDxcvL6PMzQNgF1diV5PYUnFLigpho69QOhRJ6VCKUkuulehX0WSGrye2vrbj\nOvd6uHOvkGXsvOUWvvW2Z94P//pWdt18I87WKFuz65Yb75d3PePJT2H3jbukuPAA3CsERDVyFe51\n+NgpPnM/E6q/cHQPj964gS8efgmug21G/whPvOUGtqxd/pBxrxMnTvKlI4eueN2BwNlLe5gbTVPE\ngO0693pwh1JqPbAMuC9+6zNIz9VtwJ/Ex+wENgKf/EY/v9GaPCsxKqnHAz7YFv6V7C0+iDexnLsQ\n/SbBxTqyT4mtiF21SzwMSWZ1VaE2Dk8JHjvyhFqJH5z36EA0jJdrzFlHXdUYk5PnmUzFywuGoxrr\nAsaAjS2H0momGKEa2T+k4hPB41xch8n6TSOJrehjmlSmqtCYWmNyg/KZ4JXz5NEY1c/NMTx/gdMX\nzvLlL34Bj2VQ5ExPLcaZIc4pXOWYn5tDZ4ZSGzBGlGvGYTDjfBR5HSpIs6RCsXzxcv7iz36PL/7j\nF7l33z527d7Grl07UTEplJIvklvJWbp0Jb/zW2/i4IHDnDh1hl07t7F96xawMjW7KDwqZBRZTp6V\nTRynFJRlzmBiksnJKbwL1NZTFH3yok+mDcPhEGsVSycXxQ/u/gqKdwM3IZh1O7fesIMdW1bH7gYn\nN0+jWlM6QJwObpQU5AKa4By1dU1Cq67qxt/WO0deFkxMTJCnyZhRnVt7eVxdO5yV5Nc7//iv+cre\n03QT8afO/TBVdYSbNq5tPn/5HFXkVolzRaVx5OlpPQnGp6mK7Z6PFj/IvCzoDQYMJifoTwwoB32K\nXkleZGPDWkIIjEYLh59+Y49HXFJL+YBy4hGCdVBpgrJNr61IQFuPjEYlmkgsCwLCblDYAaJmAkHE\niRACJkBVOzJryWpLbZ1UDVOVMiCy07hJNsFlCE1Q2JjnxvYOqcwntYMEEcnHRvbAdpNUUeWg0LHn\nVbWLTKeAMFYMjUY5IvFrq+3By+cWVMApj49qh1A7QmVxo4qsLGNgWJIVBaYsZTRnWbaVxGRemeUQ\n4uhaQ1MuePc7/gfPf+FL+MAHu1n3b+W973mzTAEKIY6x1iLlR/HOt72OF/7AT/CBD7W/8/QnP5W3\n//dXNXLWNGGkbU/wLdh15J3JBFKFgA5g4oncsHxp/Mv3B1ITSID4Izzx5t1s3bA6kqhW1ZC+1kqq\npEBMTHRIdIc0N202cdpPmioncmHfkcsnsp0qyoHf/OuP8JX7LtEFqNMXf5gvHDrGLRvFckB13kXz\nRdw8mkkW8bNLrRUokY8m01STixdN0evR6/XpDQbSG12K4V+WZbKJOo9TjnQ1dauG1wPDB3E0+AWq\ndqBji0rEL5eSQw8Wvxp11kIM81HtAE1AqVTcOKNU2SaPlDYh5l2X5Hc8tzqBofI0+NVOsWuTW9Kv\nnwIOIfOtMkhGS6dNU6UEV0xOdHFMVGSJyFtcABWr6F55HB6vPDbPCLXFVzVuNCLLI34VBaYQzMrK\nHlk5wuQFOivQ0VReZzmIqIn3vOs3eN7zX8z/7hibPvMZt/Ged70JHUdwNwqBEI3utecdb7mD7/vB\nn+SDH+p63TyNd7zpNcgobd9iV9MmI+eo5aExUUCsmYXUYSmB9s/v+S5e+a7f5VP3tM8x3Z/kwvzn\nEP4Pt+7cwR0/9BxMIdOJVBxb33zOyTcrBslayzlqAiTaNSRYNI5dCa/TLQWNLiYTkrfa8dPJA/jq\nhYPLwyGF6ZMq4c0xhl1qAXa1BKzFLo3JjBjUFgVFr6Ts9egN+uPYledxnSNtYYEGt5rA8Gu5hv+V\nHte51yODeymtefc73sTzv+8lfOAD4/zrt977mzGh33Kvt7/1Dr7/RT85xrue8ZSn8fb/8SpJxHyd\n3Ou+U9e2o/iepz6G/+/TX+LjX2mf/4k37+aNL/3eh5R7HT93/pqve76qKbNOCPWvkHsppSYQ1VV6\n91uVUo8Czsbb/4t4ah2Pj/sV4KvAXwOEEGaVUm8H7lBKnQMuAm8EPh7+BSYfGqXIasgsOKsIlQar\nCF7JmnYBr9LHqZrPVmwc0hrTTYLGB4X1nrqyHbzp+FAiXoA24s9oWFONLLb2lEaSbDoljpzH1qLS\nygtPlmmyvKDsDbh4aZ669hSFrKnkoWRthS9ynM9kjZMmVmtATOZD6kcLAawMe5CEmo/KbVBGE4wh\nZKLMQmVgA5qMYAOjC5e4EI5z+tQJTu4/TMBxcdVqqiXL8PMVI6/wQTE7e5H+1CQr1q0lU4siXokA\ntlHnxAQJIfoKRiUXIRCsZ/u2GXbs3EZe5pGjJK2cKJvkoRrvNVoX7Ni5i8c8ZoLMZNEDTxKJhJzM\naDKTg9dYV2PriuBtnIaYQRDPLby8FoX4krk6UI8cy6cW8ZiZHXxu35XTEqd6k1yYfynwUgCedNMu\n3vBj30nZzwgZKB3aGlziLihMlpMZsUQwSoZVWOepqppRFb2Su9N5Q6AsSyYmJsSfLQiDDj5gnaOu\nLaOqxnvPqXOz3H3vvVwtEX/+8h7mRkvpLZh02z0ajOreIoY1zd8hyB6otUzJzTPKfp/+5ASDyUkG\nk5PSgtjrkWU5RncHXEBVDa/63N+o4xGX1MIHVO3a6oyH4AJBgQsBGzwuhPGWZ6K3TLMR0KgPknyz\nDQ7HA7gAzSZlQsBYS1ZZTFZLYJg8ZRpSJTfrAqarmoiGu+3z+Ub+LuOC21Ye6f1P1Zz4v25AlS4S\nGA8Mm+DQNIkjfJB3HohlBpkO43C44HA4+VxGNW44pLp8WchU3t6yXk9IVdkj75VkRfu1SY/NHOR5\ns8lOT03yp3/wbvbu38e+/QfZNrOF7dtnAE2wLgKsIzipUBICiycn+ZPffSt79+3n3nv3s2XjerZs\nWId3jqqqRbnhZUKHrSucrXDOxWBQSI93UhG1VY2ratz8PGE4hNEIVVdsWrqYb5mZ4R/2XU31oEmE\n5Uk338Abf+p70SZrAkCl4r8jodLxJkGSbyszMTlhvcMFH41lVczMJ1IVA/4gCQJrXVwD7To5cuY8\nXzpyZatkIHDm0h4uj5bQi2aLC48QxQyRXbU/6ASGSilMZsYqhL2+BIX9SKyKXikjZzsS0qZdrUOo\nrgeGD+5QEb+ak+YhWCFSCb9sxC9oII6wEL8a7Oq28HSCw+b8xL+DVBdNbTF1jakyIUaxiui9wEOD\nYU0rWacdqDnfNEoeSWq1I6YTfrXi/DahhQrtuo/rM2HZlfgVCVckQsEHcIIbwXlcsIJfwaEyTRhV\n2LkhVXG5xaS8aBNavTImtiKOlT1MWcpj8hzygunBgD/9g3dxz7372LvvADMzm9mxfUZev/MxGImE\nwrnmNj01xR+/7y3s3X+AA/sPsWXzBrZuXI+3QjgSbgXv8NErwdoKl8wyU/tMQDCrFvyy88MGu6Yz\nw6//1+/iyPGTHD15mo3LFrN19XKOzl7g2IULbF67nK3rV2FKgy4zVJ6hslzUaTpDqWwct5TcQEWF\nHZGM+zh6XG6eAFqhMTLJJwXvMWBrJ2a2CdKVcWjI/RUOelE5JavjyuOq2NWywwa7kjF8Fj2JUkA4\nGAzoD/qUPfGkEeyyEoTTJrRCgIc6KHxEHde51yOCewUCi6em+LM/fDd79+1n3/6DzMxsYfu2bXL9\nWDfGvRZPJvw6yP79B9i8cT1bN27Ax4lsCbv+udxr3aJrqx1u3LSOb3vSYzh0/hyHz15g8/qVbN24\nRjDsIeJedYDFD/C6B80k3vHjXxn3+makjTDE26/H778b+G/ALcDzgMXAMSSZ9fMhhLrzN34c0RL9\nITKx6a+AH/6XeLHKBezZS1gCLk7hrZzFRdWeD5K015lBG+EpzVoKAR8UUcQliTAfqH2gcnWHc7Ud\nFFrrpi0xeM9wVDE3N09V95notcNLPNJePapkimo/YqFSijwvUEozGlUURUaeieqprsV/K8uSGXe0\ndEjvVUXFlslQBGmFCw6cJVgbE1sybMErTTAaZzQhTpBOSntXOUZ+Dj+qCBfnWETG5fkhZw8e5ahS\nOCTBa51nOLIsWb6cwlrM6tWUEwNU2aMOiqG1ZGVP/LwqLUk1ZUTNGq8knzyblIagCUFHPJaLKq11\nSViDziJ/01mjnrM+DhSJirSQZdjgqZ0XBVRtpYDqg/CsrkqWQFCBem5IfekyYTjkZ//Tv+c1v/+n\nfHp/m3R//NatvOq7/y1D5Tk2O8vM5pVs37KakCm8BockK+Wmo6eWRqdBNlmBjDdKySnBIWfbaeKy\n3mTqZb8vhTqNwnkPCqp4/kdVLfExitPnL8ZXeI2C4kR/fJJhW8Npvm74VkxoqcRRFYQ4zlxrLZYP\nvZLBxAQTkxNMTE4ymJyg1+s33EtHZaxgL1SjfzmTePg6k1pKqZ8GXgW8PoTwE53v/yLw/QiQfRx4\ncQjh3q/nuZq/7T2qtrIxeeKULIdXSogVgToRKyX90cK/Ak62v0bh0BCshlBBM640kd7OcxtvJCjM\nLLqyVLWVVh4XcPFvdoPCK8ZP+3hRdto7rE2kqg0MtZIKWiCguu0iEXwkaIzBYAoKU+ZU60aSrrwD\n7cGpyCDlNYHDB4fzNc5LcOjNkDrLBMyzPJIq6YnNer3mlvd7FP0BxWBA0bfkZY9QOCg9yrfTEQIK\nNGzbtJntW7aIZN5JeE6shgbnCFamzEDAx/ezddNGNq1bi4s95j4Gj97Lva0rIVb1CGdtVCBEYhVl\n/r6SCR1+OCSMhqhqhLY12jte+Zxn8/N/9Jfcua8FqSffsIOf+I7/wrnhkK0bVgmpyjLpNdcxMFxA\nroyW1iXvpTM/JRhSpdAlrw6EWOkoN23OU6wEpeknYrqdSD4cP39t8/z5qqKX9a8gVlIfShdM+no8\nKETLxiETdzLyQlQOZU/AUwLDwVi1MISAiiOsxwjVIzAwfCiwCwDX4pcktAS/wgPgV8IuT7gCu5KX\nVoNfIVUWx5/aQ0xqWUwlgWEyNW0CQy9Vxcx1g8JUgYyqKdXil2BYF788Wok3jbQidqpUWokPj2qV\nWt1AsdsSqEzU8iuiIkCUASGm+Ly3OG+xvhbimTbPzIwFhaYQ/MojfhX9PkV/gB8MyO2AUFgoSnBB\nglFgZuNGtm7aiFaKYF2jdkoBSlBKEmzWgfViaK8UMxs3sm3Txhj8xRadmNRKGOacxdYjbCUYlkLC\naIAV1WaVBIXDIb6TkNfesXnpYrYunsJohck0W1evYMemNZgyQ5eZ3BeZYJcxLW6lW0xm6YhdEBMM\nuFYl0w0KI+PRmW7ISUpqCbnsBIVxvaxctowbtmzhKwfGCweKl7B0cpp+kdMYll5xgXTQawy74tHB\nLhOxqyiSOXyPXr9PfzBBrz+QFsQOdmnvccSCSieh9UhLyD9U2HWdez2yuJfymm2bN7N965aYmHfX\n5F5bN21gZtOG1tfvG8S9Ni2e4vHbtvPpveN4YJS0S29dtwpTZMxsWMOObRtiQv6h5V4WmF48zbY1\n69h7/CUxSdEWQJdMTNKPicTu8a+Ne4UQPkJrdnS1498+iL8xQiY13f6Nel33ezjH6ORZshBw3jLy\nnhGeWklWLQRxPcrKHFNkeA21t9TeYb1vW6wdhKjGrFWg9lF5KW+oOR8JGxIXujwacXk4FPzyBhOT\nNhqNiNAdVVTTm0yS7HmWkRnDaDRkNDIY3SOEQB29tawtm1bEtnVf1oUxJk6GjoWFzrTOEFrjfG98\ng1+iIFcRK+SxWE/AMmEKNqxcxbnzGRdPneFLZ04xrCtJbAwmQRnq2YtUs5dYsmI5E9PTlJOTDH3A\nZYY1GzbRK0vBeVuL2lQZvM6a4oC0ThIVrl7iQlTkvnLNBlcTgsNoJPlIMud32GCxweKV4LnFEnyN\ntSOqasRwOMIYQ1XUaO1xtRc+Nj8n7aA+UJ87jT13BnXpEsszxeu/699z7PwFjp4/z/pl02xasZi8\nn9Of6rNr+3ryQYHOM8jFnkEFDTpDkRNC69+am4IiK8iyAoIktGpvo8o97g2xsGi9JRAoypzBxIC8\nyGLmWBSF1ahiNJLEVl3XKKVYtezanUi9qJxqT+xVjliwTP9O/Ksp3miFUgZjcoqipN8fMDk1ydTU\nFJOTkwwGA4qyaNq8tWqLCQBV9TBtP1RKPQ4ZFff5Bd9/OSJ7eR5wAPgl4K+VUrtDCF9/iq6pFioJ\nKJQG7fAIf7BADZFQSdZUMCiQbAEb0tRcOAkEIskiKiMWnHNjQiRWMqY1tfBY3yodfAwMm/HTY3L6\n9tYSq3FS5b3Ha98oIuiQKrRG+c7mSIdcjVULpU8/vnF5NyGA880G6F2NtzXWVThvGyIqUtRMZINR\n5p71e2S9Pnm/Rz4Y4CYqQm2lFSjKolWIEzaaapQEgkGLGSpB2o5SSjiEICOT461JdsWHOOtwtXg0\npL5i72xUOlTYaoStRngbSXYy3LMi4/cjIVZhXogVVSVJLWDJoOBNe/4jR2dnOTo7y5Z1K5nZsBrT\nyzBlju6JUStGfCswVwaFRhm0yjDaiGIBaSXyofXskMDQRSIVTUpNvKXPJyCPta5t4QmBEBRLmqku\n9694kDVw/5dL6IaE6R9x6lxTLSxyirKg6Eu1sD8YiOFff1zt4Fx8L/EvBxK54gpy93A+HjLsIgWG\nHfzSmqAeDH75iGEd/PId3ErEPgboKTjsamGapFZlMaamsi1+uY4fRBe7XCcwbCX111Zq+Uji5A0D\nyfhbtVXyCDWdoHABfhkjZvFx7n2IgaEEph7nKpyt5T74BjvQIu82TXBYkPf7ZH1JbNmJSdxkLZjj\nAvQcyol3hjbZWDU9xOs2mNBRCsmbCs422OWdGwtyvXcd804bcUvwy9V1TGrJTYRQkfR4cNWoxa7h\nCD8cQTVCVyOx8EGmURqjYnuCxhQGU2SYIkMXQsYxWYNdROzSKhP80i12hRDwyjdJHu9DQ6qcd6QJ\nlTq27yjTtjekQLLdx4RYhgDP+7Zn8fY/+SvuOdwWDlZOL2XXuhXtOgpXYtf4ih27cuTWwS5JYHYm\nhvX79PuidOhH+XtSOiSvOAk0I3bR7sePlIT8Q4ld17nXde71z+Vev/ic/4tX/NH7uXNviwe37tjO\nHS98DibPIn7l6PLhwb1sgBHwbU9+PH/0kU9y6GT7updMTLF77Yq4Bu7/crnOvR5+h3YePXuRLECI\nBQ6rApVS1EJW0GhMHQiFxenAKFiq4HAuqqci4KlYo7cqUEeFD8j3xs5IvK601lweznNpfp752jKy\nOTrTZNqAMgSl8UFRW8+wqtBGk2UZWZZR5Blzc5ZqNKIs8iYZK6bb7aCeEH0zU6tfk1TTBmUcykcO\nFgclKq3EH9P4xpcyeCsJeCVvRkHTTlzmGcsWL6HMDWfPn+Xs7Dm8q+lNTFm4w70AACAASURBVDLV\n6+OcYjg34sSBQ5w6eh/ZoE9/0RSqKBhML2ZRf8DUxIC8P0BZC5lDmVwKAEqBd1I4MRoTlHhQBXkB\nKgh/JjgxoB/Oy/nKM7CicHdWFKXe1szPz+O9J89zCA47d5n52UtcOHdWirgu0O9N4K1j/uIlzp86\nTRY8fW2ozp4lzJ7FzA/Ja/Fo3Dgo2bhoLaZI/nc9TFGi8x5kZeRcoowTJ0Yjw0U8KK3JyDG6wCj5\nOSBq49o2SXgXHLWrGbmK2teEDMrJHuVEH2UMwXk0mtpZbOWoRzWjqqJ2DlTOmhUruGFmG1+5SifS\n4sEUk2VJpjU+etW2JCx0FutVWJgSnoqOwxZ0qzLtDwZMTS1ianqayalF9AcDiqLERK9H1ZloHgKM\nRg/D9kOl1CTSE/X9wP+z4Mc/CrwyhPAX8bHPA04A3w78Pl/noQNkAXQI5FqRE8h8aCR+TsvYXh8z\n0xawSEuPSORdI0NP2epUqR37N93qrWxOEkxZQm1AVzCqoaqhjgGOcbgsaxUPUVJosjQpJvb4E9pJ\nY7ZuJl7YWN3XSuNjwJEqMnLE15QUDsnPYYHXiY5BiAGJVK1F1Vbedwp2vUcBmdJSse8Ec1opjFeY\nypHZCPJBY1DooAlBJvBVtSXMDXHlXCOHbwhIUxVrg9buhRJ8wDZAVHeCYLl3dft5JGLlusQqVQyt\nlXGkkVjhHNQWrJX7qoK6RjuHCojCQWuMUcysXcmOLeswZS6EKpMKoYomrN1bqhYm2buKPmCJnHeV\nK42JdpDqaWqVESlmJoFvPAeuI3+31mOjl5HzgaWLp5lZv4F9R69WKZxiIs/HVmm7WkNHAxEBSiVv\no0i843vIi4Ky7NEbTDCYmKQ3MUlvMEGvP0HZ65MXJXmWx8poguKO9J3wiCJVDyV2QYtfJuGXh1wF\n0BpHV64cmiSWJWADEcNa/ErFljaxdTX8kvOvAOXE6DfUtXi/jAS7zp2d5eSZC6xesZS1q5c1ai3r\nPMY5TOzxb6Z4EZNa1lGrLn7J+tfKNMGhiqtx/CTEIC7hQyeRpbWL1R35vaMnT3H4xBnWTi9i7eLF\npPYk5cW8NVMGE4MUqYArwSoLx0+f5vjFS2xYvYpN69eggwKkZcU6h6oqfNHDxXYeneVNtRJt4jhj\nFZVa8YXHQ3CpbpJWND+OWBADQmttNFd2+OZ3Kup6JEqtoFr8AkIXu+oaqgplLSqEiF0mqrSkym+K\nHJMnDy1pN0RnV2CXTomtGBx2zdibtp3GG02wyxMwUVEg3lVZNFhOSU3BrjrhV1L9+UBZlDzv2bdx\n6Oh9HDt5mlwrVAhcvHQZ622C+SsORdrlVJvgUjFATIqYiF95Htt2BgMGE5Oi0BpMCnaVQqyyPCcz\nGU5FdWSTUUkKrevY9WCPhyP3OndultPnZ1m9bAlrVy+/zr0eptxrca/Hf9/zHI6eO8fRc+fZsnpF\nbJd+eHIv6wO1dRitefbjHs3RU6c5ee4cynt6eSYFluvc6xF35AQmXM0EMIrJ9mGQ/UVs4w1OKUa1\no3IVNZ5Keaq0V0T/J90YnEvrdX2V1ZBSBZJmAu09ejji5IUL+CMap1awYdUS8cFSEUN9oKoqhsOh\nKGqQeKUocrQSlUtdl3FSYh0T8u01oLXGpN6y0OGAGsTITbX+f8lvMyZ7TZaRF6Jqra2N6u1YlvDg\nrRS2MqWZ6A8wWjE5OYELjqws0CrDOs+p+TmOX7zE6sXTrOwNUPMVedBwaY5T+w5gL8+xaNlS+hNT\n5L0+pjfA5CUEGA3nqUcVRa9HNjkh1wqhIQIK8RithyNGZ8/JYJClHt3vQ1WjnEMHj7t8mXMnT3L5\n0iUmJiaYmOgTbM2ls+c4sv8Ac8MR9dyItWvX4WrLsYOHOLx3H4PMsGrxYhhV6OEQU9dkQWaBBKXQ\nuSEf9Cgm+mSDElOW6OjTislAaXww0RRevgYZBmB0HvmqDNBwPk7zrmspGgRRZ41cReUqLJasKOhN\nDSgGpZy7YMTT1oKrPVVdM6pHWO+l6BgM3/+dz+Etv//HfKXTibRkMMnu1avIyNDJqzYt0ganRBkn\npvEBoj1FephWkng0WpT7Js/E9mFykolFi5lctITB5CLKckBeJD8tI75xqaZCoH6YKrXeBPx5COFD\nSqmGXCmltgCrgQ+m7wUxAvx74Al8I5JaBPIQ0EDmA7lS5GLXgtVaNgBjIHhc8NTBU8c+29p7bPRX\naEhVTKunpGXaJGK8KO8rXlTBSxUr6FrAoKqYnb3E7HCE87Bm1VKZuuID1oPxslGaOMJSZJ2pNzsa\nLSuEYMRRyM45tHEYL5MaQjKmSK9HNS8qVhF1Jyhsq1FGxw8lOHA12HbCh7xX+QxVJyhMFUkTwLhA\nFhzGO3QQOaVC2oeIQRujEb4oMUWJLcTgVGUZ2kSSYkzc06OHQbMoYlBU15EgRd+GBMEhSAXVJq+W\nzsSdjieNrSu8E4mpRgi19kF6xZ2TTcQ5SWh5h0GMGbPMkGUGHauDYqycozPTeNAkMtUSK5G7i8qh\nVZxA6wfSDQybCjGSpU/TbYwxoLqBoRCqFBi6JjAE6zz/4Sm38ocf/LuxSuHSiSluWLPi6oqG5psp\nNFTNulGwoGqZCbGKgWE/Bob9fiRWZZ+iA07pfSeZUNfD4xEUID5k2AXCLRJ+5T6QKQkQQwCnNbaD\nX77BL0ftA9Z7rJdkwxX4la7t0J6FcfxSqJiICrpGKajmh/zvzx7n2PnzzevbuXEDL/iPzyArik5S\nSzd+Sen5ZOqhLKomAIrXrNEOH7L2tTS4GhrDybYVQ48HhkZjjOb8/JCfeecfc+c9bffU4zZt4mf/\n3TMZ9EoIQQK9aBasVDSZV4rLc0Ne/b/+N/9w6GDzu7fObOOXvuc5LFmC4G5Vw/wQ32BXKaamWdbc\nt5jYuY7ihyrJKbk5a9sgg3EjatfcpyRXLbe6wtqU1IotCEE1mKUWYJcOkmAyRvDL5KZJaJk8F9zN\nsgWYlTXYpbRBm5jciqqzJpGQWg5d66WVDJNNVGhleYYxmXzOJIWW7G+2Tomt2A7mwTlPbT2T/QFr\nli3l8twcc5fnIIQmodWtDzZH4uNNaCgm1bLdRbPn6FuUFzlFWdLrR+xqElsDyl6fIh8PClW6FkKI\ne2tHwfM1X8kPyfEQY9fDh3vV8/N88Asnue9Ci107Nq7nBd/+dFE5XedeD0vutXXVCnasWy2t0g9z\n7lVbSR5W1jIoClZMTTE3N3f/iaTr3OthfxTAJIFJAppAhQTBSgUCGqs0Xhnq4Jizjlo5nIoK1Jhb\nUUEU0zK3TuERlWr3DHS5uQcM4tM2O19zdP9B2H8Q/gFmNqzjuc9+EovyQkznnY/G31Xjk6WVIs9l\nGvVwOM9oNIom8XZMKW9tLZiU6cbLyzuHCj6txKYwpLMMZW2LtVqGrhQFeBc4cOwUh+47zerJSdYt\nngbn8A6C19FcPjAo+wx6A7wKVLbmzIVL/Or7/47PHjncvPcn7NjBK77r2xiUJVVlOXfwEOeOHGVi\neoqJRdP0JhfRn1pCf2oRWhvmLl+irmqmphcRpqcbtY/JU8JbTkQ1e4EzBw5z6dJF5lasYHLJEsGx\nuiY4y4XzFzh25Ahnz52l1+uxePE0RWG4ePEcJw4f5cyZc4zOXybMVSgPB796LyeOHGb51BSLvKKv\nDYWPRUSQAmemyXolvYkB5eQAVRaEXAz2MTJIJKSkOcJJsyxr8Eon5VJUy/qEVT5OEY8czDqLdQ60\njl57/egbpsCFZi+0/z977x5vWVbV937nnOux3/s86v2u6octYtCgiChikpt44+OaqBhbUhr0Xk1I\nNYLI5aq04iMXE6NANApRiEYSJCYETZCL3GtAoLtpUaPyauhHdT26uruqzqvq7LP3WmvOef8Yc661\nzqnTVW0SoPBzZn92n1P7nL3P2nuv9Zu/McZv/EZZUcwKivg5evEU63f6fP8Lv5WPfuJjfPyBB6hm\nU7qJqMM0Cm/DqCbVOk9lFKJ0PQBehWEDMZmofDiPwOikVpnmvT790Rz98QKDuQW6vRFZ3iNNuiQm\nJ9EJRke7EcD7m6/9UCn1Hcgc8S/b5sf7kGvkiS33PxF+9j+8tBdCpYFUexI8aUCbRElQaJIUnMW5\nisp6Cg+lg9J5yjjmt70NtILC5g7qSk+8Cy1kyFdC1O5fm3BpOqkfdevBA3zn1z2PuTyvZfBVCAq9\nD2ORpVQpm6oCX/kanKoATsY6nHGtzao5QNkkY1Co62qhBIYtpYMJUyJCtfDRJy9xZu0K++ZGkolW\nYaaEat/keYxzJM5iSktSVjy6vMq5jQ0O7dvL0X178WWFnc5waYJNM8lUZ+Fr8IMwaS5mfHWfEbWy\nJL5+8ZUpqYpC+qR9yyAvEpRgQlxZIZ+VbQWGlVQqjNKh2qFIUCTekwBJeM+0kgBJG9WoHOpWnUCq\n0saHJnrRECfsqFal0CSbSFUMDJ2/tloYDf2ixDdJU6IHhacJDK0VgKonOtmmjSIxCV//3Gfz2JMX\nubyySqqk4uO9l7YD2Ey22by5ekKffQSnQKxM8B9K0zB1p9sTUtXbXC3M0nwzsaqf2G+61S0bN/H6\nXGMXiMohcR6tEOxC/o1SWBU/lxRchXNQ1vjla/xyMUEUn/Rp4ZdgprMWX0o64Y/PPcmljZT2ZM1P\nnT3Fr/32+7jr5DdirMdUFhNa6uIkFkXwUhI3k4Bdtg4MrXMkLuJXOJ72ikGhbjBHki62Tm796G+8\nk/sf3DyW+I/OnOKf/O7v89Pf/LeIvlxRdSQ+T4IBd7/7PfzR2dVNj73/4VPc/W/fwS+++DtwRQnp\nFJcm22CX/NukGZt2/Rq/RBVnQ0KrKqQNsmlxcmGcvK2/2qoUbK8qmcBTlZQhwSXaManUmi3YFcm2\nIswyUsg0n5jQytIaw1QaPLSMES+H7QLC1sTD5rSQ5FXtj2YDyQqBE7XSQYJCFdoOvd+q1Irm2y4E\nhbL3FVX0PwpV37D/NSS7dU6wFbuIQgfa2KWNwZiENE2vCQojdnU6vRAUZgG7GgPw6NEW5Y2fD+2H\nNwd23RzcSwH/7bEJl6ebsevTZ0/xa7/zB9z1om+4qbiXL0tcTMIEcv90uVfoTcSjZKLiDvf6rHEv\n8TcS/LK2USoT9sAd7vX5t1Kgj6KDdAcnCJ4Zk5BkOSQ5JZqqmDKbFhReLsHKhyGbSG6h8hB1LNux\nnK0FZ6dgw2uc7yO1CcGsh8+d4m3vvpfv+/a/Jd6EQGkdpihJ0xKjFanRGKVJk4R1a5lOpxSFDGoo\nipKiKMiyMiTBXCvpqurrw8Sjk6wE2sl5iJb9XRvwiWd5bcIr3/Sb3PeJB+pjf/axY7zyb3wNgyzB\nBhV9YgyJFk7glSLJEl793vfyp+evsIl3ffoufuLt/5k3nHwhmdIkylAUBe7yEleWV7mS5pjOgLw/\nJO125BCVorpyhbUnnpTDTRIZ+BOuYZxjY22NS2fPsLKyyvLZC2Tdrhj/F4VgfeA0aVFyZWmVJx58\nGOsrsk6KryqqqxMe/OjHufLkEuPBkHJjyq7ekPlOn7TyGO2Ej2kTspgak6dkXbE5SDo5PjVYjbR4\nQ53Qct6LOt40PqRaCQ4ppeuke+TNbQ5WlsGywnmSLKXfH9Dt9qRY5KTFuqpkQubGdMZ0VlBVYrgP\nqp5APZvOSLVm3M1Zt4VghQoxo2oKRzWG6eb0qNEtnMQqFEdEJRuulTQly7v0BgMG4zkGwzH9wYhO\nr0+Wd8mynCzJMEbXCTTCtVLcTO2HSqlDwOuB/8Vvnl7xWVsaSFB160mmDZlOUGmKzzN8luHzTE7w\nskBVJb4qQr+9ElPRmqS0lQRP8QdbP1AeSieVnTNFyZrr0b6AH3rsFP/u9+7l+174dWjnMc5hrMNU\nFkUc7RwrYnHqWNMbHdtVjEnqHmmtrz04H4LCUO4LAWI0KtX1xeS1ZnU65Yf/47u573SjWnj2kSP8\nX1/3tYy7HWLjS/R1qYMrPOvTGT/63vdzz/lW5v2WW/mZF34To2EfqgpXVpCU+FmBS1JMlkGaQVZK\nD3A4Tq+USB69yP+9DcSqEI+GGEg1Y73jiPjWlKI6MGxuzlpcOGYdGsVVII3SbaQEuLUKxEhjUiOk\nKk3Q8ZakYkwavRxqGb+QLV17O4Rx0K0qWd3uYCXAi+07kZgrJaTXJAYf3HObqTvR08Fho9IhmNw2\nzymVQjMaMp1OmU1nW4LCluZh624afykQcTkOGSOdpGlDqvp9uoNBbbKcdzoSFKYpSQ3MzTXht7td\n78L9HK+bAbtAzssEhfGKVBtSnZBrI9OrcsEushZ+lQWuCiTcBwVNi0Y1Cq2n+IOxaoS0L1bWUaqK\nNWe5uDHlmsma3vPJ0ye5cHGZw/t2SeJC25AICFWcEBgRkht1YBiqhs4mdQLMq3gM2wWGqvEYCZJ4\nbTRnLl7mnk986ppjc97zkTMnObeywuH5ObmuwnUfW2DOLa9y/6Ont33svQ+d5OzjFzm6dxfeWihL\nXFLhZyUuKdBpis9yzlxe4tzlZY7u38uxgwckKIwvI2CYLUuqWcFDZ89y+sLjHNq1yKHdu2pfF+dc\nUGy5EDBXzdcWhikvVTHBK13DulcK3zLm1CYkdBITPGjSFnYFU+UkeGjFFpeY4DJbJobRXLNNcOea\nUdKBZPkau0Igpk098ck5X088rBVbgVDVKq5KsKusmiECkTLF0+AavdZW/Ip7nYr4bcRnJI0+Wj06\nvX6T1Or2gsohJ92EXU1yd1v8ut5F+zleNw923Rzc64p1XJpuj10PnD7JhUvLHNq363POvR5dWuHR\n809woN9l39zc5idRXJd7nV9Z47HLyxzetciRfXvEqFmHIQfO7nCvzyL3qtr45dnhXp/HK0PTxZDh\nmaHQSrzK8m6ffDSm6naZWMfG6jK2nIrnHdTTqCHUZZRYcrb3s61LIEJ+ar0Pk/3+JVsx66EzJ7lw\naZUDu6UV0XpRvxezmSSj0gStIc9StNISA8xmIblRMJvN6HZ7IWnfFIrktNOSnPZOkhlKxTw5OjFk\nWYY3Dq0sM+d51b96O/c/8ATtuPZPHj3FP/29/8qPfd0LhKsoHR4j7dNKax5fXeP+04+wFZOt99zz\n6ZOcf+IStx/cx1ynA3hps5sVzDz4yqKDMm04HpP3ukwm66wuXaYoChlIEnlsvNQqi5vN6DhPdeUq\nV5ZXKIuCoiwBT6/XZzQakQy7rKKYrawyWV8jGfaZmxvT2W24dHGJam2dyhvmBwPmen0yBboscbZE\nK4/LDDo1qNSQdHOyXgfTFVN4awKUaxkuErmKRofpmc1gitjeKRzKBSwVT9oyfC8KvZKitICik3UY\n9Id08hzthXfJhMySycaUjcmU6bTAO8LQDIW1cu5MJhOuXL1CWc7w3oVdOybaZe+J6imlVeigiPdD\nrCaq+FVTt37rNCXJcjr9Pv3hiPF4zHA8ot/v0+10yNJMuFcSFaa0c2QUs5tLqfVsYDfwx6ouo2GA\nr1FKnQLuQI59L5urhnuBP7neE7/85S9nXBtjy7rzzju58847N92n0BiVYJQiSzLyNKeb5ug8J+l1\na8NFM9vATzew0wnVTGSBdRXKy4cbQrS6Inz9gofCekXhYdU61lzJdgD14LmTXLi8wqH9u4Xwa4vV\njXwvrtqgFmpiJdWiiiQJ49Sdw7uYQg1kHFo3FaqFjddIrGTrxOJTw4+84/e4/9HNqoU/OXuKn3nP\n+3nt3/1fw7GERC4B7ZQBo/iR3/8g9z+2JfP+8Cl+5D+8izd9z52gtIx0th7lLcoRpkeAcmGamAkX\nvNGSQbeh3aWy+GImk71mhfhP1AzXy84RKvvKiZzduJhDFuAwGJyWyzXejFIkSk5KrVRjcJxoVGpQ\nWRh3nyXN92kICBP5PZKW94GM12j5VAh4STdDIMZOJKOlDQDlbDC6VZsIq1YG60MQWXnKoqIs2207\ncSx5UD1UtiHdTnquQUYObz4zgbBZyVkRUaT5KsetgxlkRprnpHmHTlcqhL3+kH5/KFN3Op0QFCY1\nqVKRzLfO3bbB71OpHd72trfxtre9bdN9q6ur1/zeZ2F9xrALnj5+6RZ+pUlOnmZ00hzd6ZB0O6ES\n1EFPN/DTCeV0QjWbNlUg61DBz8MBqJDYkrjlKZdCUQEzL+PuXV133H6y5hOXV9m/ewGjZcIMSJUn\nLu8lyYZjU1Krquwm/FLEVpz6QGqSGAPExiherruzl5eve2wX1q5weGFejoOIXfKk528wMfSxlTVu\n3b+vDjSUJ5gtV6xdXeeVv/52PvDxj9aPev6zvoTX/8A/YjTs1wGhd47lpRV+6I1v5p7W7z739jt4\nzXd+G4NuJ2CX4JcOfmSJD2anAReMMiEI1DV+JSD4pQh+VsEDI9E1XpG18CsmtKJKy5g6iRVNliO5\nQou6xMfEqJeW1tJZCittNlXw6JAANWKXGDQTiJWtnLTtlJaqdDV+uThkoIqJrmaQgHgahaRWC79u\njF0Rc01oI2qwK+/26fb6gl2DoQSFnQ5ZLlVdk9wIu/wOdvH5xb0m3rPunh52fa6419r0Cq/8lX/P\nPZ/8VP03n3P0KD/69V9LJ8ug0flcw73WpiWvedd7uO/RR+rHftXxW/in3/pNjLtdSVjX2LXDvXa4\n1+cFft00K8OQkoWJgA6tc7r9Hr2FRdLdi5S9DiuzCeu+RG9cQU1nouRCrnsXbh4ZjnG9fKa0HaoW\n3sFTYtbSKnt3LZAoXXO5qqwotSIxCF8MiYKNaclsJlP88ryzqeV2q16sbtMFpG21SfqiFDpJcFiU\n9px+/DL3fOyTbFcQ/JOzJzm3usKh0RjlKlwlCYvEpJhEc/ZSbAPf/vWdvXiJWxbmMXlKkmhSZUiz\njAyN73TJhkO6/T690YC82yVLNMo7ZtOZTPebzQS3woAMjaKfpvTStMbmepJpZdFGk4W2487cPN0k\nYWV1mcqVdHTK3Fyfxf4cxbRAeejqhNSLZ6SzDluU0n2XKPH662Yk3Q6m20HlKS7RIaElyUGdJqEF\nUeFN9DfVNdSrqHZPDJWt8JVM1CyqkmkpiclpKUm5KvjSdrs9ep0eiZYpq7aylEXFbFowmUxZ35Ap\nmgrxSZX2Qyn8rE/Wmayv45wTHI4pLWfDoJ9w1uqQeFXy84jxm5JaAYO8lvMlzTrSdjgYMhrNMRyO\n6fX7dLtdmdZqpK1eq0ah1aybr/3w/wW+eMt9vwZ8AvgZ7/3DSqnHgb8B/BmAUmoEfAWSAXrK9brX\nvY6/+lf/6g0PQAcJo9aaNOmQ5z06nR5Jr0fW71ENepSDPn5yherqFWZaMcPX/cVWVch4U2T/JgRY\n3tdgde0KhoBA4WVstaztL+Anl1fZv3dXkEErkcErUCp6KRAmVfhaTljZJiisrCW1TfVMzrdQZYwF\n58iLNknhG9NlbQwPLy1z76cfYjuQ+qMzJzm/vMqhubG8ah+eCzEYPbO8yr1nTl/zWOs9H3rwJOeW\nVjm+e1EOxIXqoXVoB9p6dGUhSfCJgcTgvUxu8KEtx5cVfjaD6QxmU5lq0a58hY1aOQmmdWgZ0Z6g\nzlAYpQONkItWIQathhAUhkkNOjGBWG0mVcR/J0lQOeg6OIxVw/i9jlXCUDKTjSpOCnOUoapX2Aob\n27SUJk7sUcqgMVgvk0Wq0lIUFVWbWLXGkduq3RIUKqOhTUAi8S0VopgJV6qRj8ZNLVaStQky64w0\n75B1ROXQ6Q/oDYb0+kNp3cm7ZGkm0vc6MIwZ/JaPw1Zytc2Vs11w9Md//Mc8+9nP3vZK+wyuzxh2\nwV8Ev4K5udZkaU6e9+h2ephej2zQpxz06PR7+PU1qqspM60ooQ4KnSplihg0+EWjfLgufnlJahFa\niGRtP1lzfjxs4Ze0kQh2BRxyTbtKu4UntvE4G/1rmlYzth5jbCVpB4bGcHT/nuse28H5MUo146a9\nlw0XFAfn5q/72OO7dwdJediwnUJMCjyvfMu/455PP047iX/Pn9/Fy17/S7zlh18u+BWI1Svf+Kt8\n+JOPsVlqf4off+u/5+e+6zsa/PLiM2O8a7ALhUHjVH2V1hgWE1oiYFOCPTEorLErbbAsBIWqpdSq\ng8DW93EKDeF9cz5I2V2jSCgqIVRxamY9lTFWZz2i8ijF96Ms43CAVkLLRixrPHmqmNTiWuxS1MKV\ngF2tszYqYVTELhOCwhZ29Qb0+oM6qZV3uq2gUFoAtmLX1ml4O9j1+cO91NPBrrnR55R7vepf/RYf\n/tRF2tjwkTOn+Ol3v49/8i1fh/cKXHzazdzrx3/3vfzhmeVNj73v9Cle9Z9+l1998YuavxUPZId7\n7XCvmx+/bpolZ0Im7VRG0RsM6O3eQ75/P8muBSa5giuXWV1fI1tKcVODqT/vMLhHiccWCH14KrWp\nXN5b2q2fArPmxqNgVB88I1ULNyu5jtKgrNqYTplOp0ynG3S7ndpfqz0Fsc5biLRQCnJBRe5DYQGN\nJF6sA604d2kpPOYpEm/rEw7NzcnUbQC05MMrx77h6Lqv7wsOHKSTd8A7XCEFLgfSuuc8j1y4wBNX\nrnLHiePcfvxobULf63XxlXiglkWBLUpcUVJMpzx4/jHOXLzE4V2LnNi3D50mVMaw4SYUsym2KOh0\nOqRpSi/LcL0eGxsbJB5SdHg/Nd46SXJWDrRgHEYL78oSVJ6hOzkqT/FZIq7xifh7aaPF/iGRVk7h\nX2mY6GhqtShKpgHHPKjDY52ltBWzsmAym7ExnTErK6x15J08YEGOQuMqR1mEpNasZDYrmBYl1kpS\nTaHlPHSSDN3Y2KAoZrLvGSXqfxcIczvhThv6G1SLifQ64aWVTObNO+T9If3hHIPxPMPxHP3RiF6v\nT5YHD0Ajw4xqdfyWi2J2Mym1vPfrwMfb9yml1oHL3vtPhLteD7xaKfUgMlr6p4BzwG//Dx8tQnGk\nWqhJk5ws79HtDskGQ+xoiB0PsKMBdi1jpjUTb5naSuTUZYVVBcFtj1zM8AAAIABJREFULlQIGwlB\nJFjb1GLqk7Hw3JBUjYZDKufFk0Y7jPAVmUoRiRG+MYeLhKrl7RCnjcXjUao5hjpEbJ9wtQTeoI3D\nJY7zS9dXLZxfXeXg3JwQrNhoG6rj59auXP+xl5e5fc+eWtIuVQAhVcpaHnnsAo+uLHNk/z6OHjoo\nr7iykm2vLK4s8dMpTGeo6ZRHL13i7MoKBxYXOLCwIO95AF9RNzTBsfeyOYlkMlIrwCvBlTow9I0x\nZwwK27esadvZTKxaXyO5Upo4TcgjAGG9b5n7ify9rMK5Ft5LtalaqEXtYL1UYUK1cJP0vV0tbFUM\n49hxj5PEQrtC1IoQa35cn75RCdOYRcfAsG7dCdN3+oNBq1qYBXPKpKkWxrWd0uEmXzcDdkGjdki0\nCYFhn25vSDIc4kYD7HiIHfap0rTGr1lo9bBliQ3tF+AkGRBkSt7fGL8AZh6s8yRa0UlzpuU/Rs6a\nFwDvR6m7OHH4MAtzo6A0Bat83W4j9gGxdS2a7Vabby0DzFpY0sK9IEqo7297yiijOXFoH1/9xV/I\nvR+7C+uaY9PqLp597BgHd81JlBuTWvGlesWR+UWee/wW7j+9eaSxUS/lebd+Abfu3Rs6QgQzvPd4\n63n44pN84IFPcE0S33k+8GcneeTceY4s7sJXFQ+fv8CHPv6xa37Xec+HHzzJ2ccf5+D8gtRovRhs\nx9euvSiwXKh8ydtRi8G3xS6VNBL4mNwiaweFiQSOJgSQEb/aKgfVSmo5FZR2QqwqK+SqiNjVUmpF\nlZZWRoK+0HZYFOW1QaHdrHZoK7VsW6nVPjPVVgxrgkIPm+T7m7GrK0qtOigU74lOwK4YFJobYdd1\n9EE3y7p5sOtzz72ck+EFeZIzq67FruOHDjM/HlF9jrjXo088zgc/ei2OOO/5w9MnOb+2xsHRuMbs\nNvc6s7TMh09fW4S03vOhh05ydnmF47t3SUAe369tuJeqKkkauQTvU27EvfCuDl7qT2SHe+1wr7+E\nK8WQqBylE9JezvyevfSOHqNzYD9u3GdFzZgYS/dinyzt4IwkQUxIpVo8RauMWGPCth+DCgqt9o53\nLWYd2n+A8WgYpgc7nA/Tr70NQ1fCxDlt6HRy1icJZVmysbFBr9cPBSaZxFwlopRvD1KIm2xMZklS\nPijoVcQ1xdEDu8Nxbh/XHtmzQJKloD3aS7txVVm8t+zrD3nO0Vv4yJlteNdtd3D7oUOCxV7UQtZa\nKmdZmkz4oV//Le759Cfrv/Y1z3oWv/CylzA36qOUDsO9ElwpAzeWr17lFW95K/d+qnnMlx+/hVd/\n89fTz1PKMHlaaY2txGsMZGpiN80kKU8oiiKFQ6PE808F/yxMgk4NuptjujkqT3CpxhqCArWloE8E\nr3xQZQrmhaEXKiR3lKqHWYjXaCnt9NZSlCXTQpJUVWUBTZ536Ha6GC1eWra0zKYF042ZtG3OSirr\nICTtnVN4L4VHay3FTDwPgTB50MvnHQoDahNuRfAitHsIzuoWhnpt0ElG0unR6Y8YjOYYjecZjObo\nRZVpntcDDWIRVW25MDzcdEqt7damo/be/zOlVA94EzAHfAD429774n/C30InKUm3S6IN+WhMdzRP\nfzxPNhxhhz3ssI8d9JlqRQ/PxEmvcMxkOuehKlBOLirvbd2OwSZS1XwfCQ348JkrNAa3FaA4xcG9\n+xj0upRlJVUBZUhUPEUkM62hVjHEyS0igRfTvyRJSdNUZIjGhqAvVK5bRHDTfyqSq6ZieOQGIHV4\n9wImMSJhj+Ofw3MfComlp3rs0b17IcmE8LimVLE6nfKyf/1W3v/JhoM//5lfzOtOfR+jTidMC1F1\nw83KZIP/8+3/kQ893Ew5e+4tt/ETf+cbGHQ6KK/qjTtuII1Co9nU43sUAaf+mkkgqDODzlN0W/qe\nJKGSaGoiVfvR6PbXaLoqvcdR6lsrHaIMPoC1HI/GmMYcEE+oAjohVVuVDl6JYMTGceSN+qUZSd6I\nn5WK50A4Q0OiQO6OmXiRvWsjvjvaZGR5h7zTo9sb0B2M6A6G9AZDumGcdF4HhUmdcZdzI1wTNZmK\nE6J8TbS2LVfd3Ouzil2A9KN3u6QmIR+O6I0X6I/nSYeSzLLDPtWgR0/BBo51W1E4wQ/vhdCXVYny\nFgJ+KReCDu9aKYNr8csh25VFnmfU76BNyWTaTNY8uHcf3/TXn0tZVtJkonwgIwplQiCGCh0qweDS\nCfkvyoqiLEnSECA6C+Ga3FqzUYiHVDxHlXJ1K482mp+760X84Bveyoc+1hzbl99ygru/5W+Sphne\nenFrtR7lVQsj4af+t2/kx/7z73Jva6TxV956Bz//nd8uVTQlHgEqMD3lPedW18Jvbp/Ef/Txixxd\n3A1ozl26fN3fvbC8ytGFRZyjbtmsg+G4B/lYOWsk2jpUj8VQGCFVmdxUZkShlaXXqLMiqWradBrc\narCrfQxR5WBr7IqBnPde9rc4Rl41+6aNkw5jUBg9bIL/e2w9bPzVQiuXbbBLqYjiW7Cr/lYR1Vme\naGKbCKHKO2TdLp3eoMatXmvqYd7tkmZ5jV21ymFb7AohyQ52Pe11M3CvCrluBt0MUxZMZi3s2rOP\nb/ja53xOudeZi9fHhieuTjiye1fALjZxr8du0Dp9ZmWFE/v3NwrGLdxLac3py5c5s7TEsX17OXJg\nP5EYREVVm3s9cukyZx5/gkNzYw7tWqxfiyjn/A732uFef+lWQopRoowf7V2ke+IYvaNHSHYtUnRS\nivIK+cZV0qxHkuRolWG8IwG8t2gcXjlcSHA54lu/leHE1STT5RevAg1mzY/m+eovfxZlaUmUQiOq\nbqscqZLp2JVWYQqxKLWyPGeyvi6G8WXRaqEuSauSqkrqpJYUhkJyIkxa9louYhfUUjFFd/zgXr76\nWc/k3j/fpph4ywmO79+LnVXS52yD4rkS/yetE37ym7+R1/yX3+W+LbzrdS/6Dnzw+NNKMFg7i7KO\nV/362/nwQ5s9vD7053fxj/75L/DGl78kECaPsg5XVfjK8oq3vJUPf3rzY/7o9Cl+6p3v4rXf9k2k\nWpF38tqkPb71WhvhnJ4G27QkzaRdGlBOElraiDF8v4Pp56jMSMuhUTjTVua2sAsVJPZN50FdTAwJ\nRRuSWGXgx5ULKtOySVJleUq/2yfLcpQD712NXbH1cFaUgEzCJiS1nIOysmxsTNnY2KCqKknEB+av\nQlJLqQbD4l4r2O7rr4TzxgTlmdcJSd4l6wr36o/nGc0vMhzPi0F8MLPXWksBSTb8+txvXBM8s5vJ\nKH675b3/69vc9xrgNf+jz73d0klK2u2TJAn5eExvcReDxd3koxFVr0vV71D1OkyUp+sdXVsxc06C\nqEisigRlS3wl4z8dMkId34jgNxOsusQnclMEbJyaULnmAl6cX+Arv/QLKYqSMk0wymAUVEF26NBo\nHepePraA+EZCXYoUMaky0jDW07gwNlk3x0CL+Nc3IoFvElvHD+3jq555B/d9/NQ1IPVlJ05wbN9u\nfOnwygez5SYwPLprF195y23c//ApbDvzrl/K825/Bif2H5SLFYIiW96xl73l3/DBT11gUwvPx+/i\n5f/yV3nLK36AeN1LlcDwqt96J/c9snnK2f0Pn+LH3/ku3nDnC4XAxJcdgMF5IBgSBylECIZowCaV\nth0djf6yBB2m7gipMoFUJU1gGIColoyrJjD09THE1oUwRjqQqbq653wAyGbiRWzdqacJBfm7TAWT\nx8TzwVovBstlHDMdPT7anjTt2k/YvGpShVQMwvkQR/WaNMUkwVy516fTH9IbjukNRnT7jdIh73RI\ns6yRvgeT0mbL3upFI/5O3jf25Z8v67ONXQAm4FeaJOTjObq7BL+y4Yiy3xEM6+X0vGPiLT1rQ7tz\nwAzroZrJVC1b4jbhV32WPgV+yRYXNzLrPXvmBmTZAkmSsG/3AkcO7EUrTVFWTeVdKwgTrkRSHM/X\nxhRc8KukKAvSMqvNL1VoydBRylwTwJDIakmca+zSmrnRgF951ffw0NkLnD7/BAfmxxycn8NWFlda\nfOXx2uJLD44avwBG3S6/eOe3c35llfOrKxzdvYcT+/bKtJ8wejn6SykvaoRj+w6E92v7JP6xvXsD\n1sLRPXuv/7sLiyRK45Sv/SsawhA+nIhf8drSBIm3Eo+GRG9KakXsasyVm4SWDtiFafBKKVO/RpRu\nzocQELanfwluCc4oqPcbE4NKFN46bBnM30uZvhODwhhTicFyC7uiysHbJggL7ash9KP+R/jq2Xw+\naBOwK5WgUIyVB/QHY3rDMd3BSLCr1yfP20FhNODeHGxs9dGqg8Qd7Lrhulm4FwF7do0HZPk8xhj2\n7V7g8P69aKUkqfU54l5H999A7bB/N2ku5sxbudeh+fF1H3t0zz5UkjaBEg33Wllf5wd+49/w/k98\nrH7U13zRF/OGl/wfDEajmhtoBSuTq7ziLb/OBx9oCo9fdeI2Xvut30y/15ViBW6He+1wr790KyHF\n5CP6e/bQue0Y3VuPovbswvZ7kGrSicJ0+qi0CybHkkoCJuJOiNfDPNL6fp7y/fc0snSPZLLFI2vU\n63HswG7KoqKYlaRKYXDMcCR4MMK9dDiPEi0YnGUZk40NiqoMxuIFs6KgE83HnUW5kMhXIaGttCR0\ntK59Pb1ym47dO8/Pv+wkP/j6f8MH/7SJa59zx2285ju/gY5KsKbCFZZqWuJK2dONluEtvW6HX/zu\nF3FuZYXzy8sc2bWLW/buJTEGqxTOB76lFEolPLL0JB/41Pbq+Hs+dpIzjz3JwcV5qqJEWYfxinOX\nLgWF1jZDhE6fZG1WcGh+blPC3YfXZr2ntFa2mhbXkCmr4I0HLdiUpAlZNyMd5OhuKq2DiYHgYRo9\nAOOgHqWDKi/wV6INkNZh/xM/3IhbcUqi9S74AZZY59AmodfrMhiMyNIcvBJsK+U2nc5YX99gVpRh\n8EQaVFryN4pZydraGlevXpVBREK1wXvq5mgVprKG4mKbiGkdM/TCvRITOwFy0u6A7mBML7Yezi8w\nHM/R6w/Isk5dSNRKPmfvYzKthWAeiuJ/Wp1t2/U/Q6n1WV0mTUl7Qqw64zkhVvv2k49HlJ2MMs8o\nOxk9PD1n6VUVM+tqUmWtwysD1QynNJJnVigqqar7pjbYrBBU0kzvUUAn0+TZkDRJGA0GHNy7C+89\ns6Ikz9Ja5ZCE/lKthRQo1SJV3tetGlItLMky6ZGuXEXiEsmsO11nnSUg0EL5osRZCXC5uBlqjUsT\n/tldd/LKX3gb93y0BVK338Zr/t43kCRpXW9QKFE8hN9RSvEz3/J3+ZF3/DYfeqh57PNu/yLe8OLv\nlik7QRodVKw88sQTgVRt08Lz5yc5/cSTHNu9Ry4c7Xnk0mU++OAD1/y+8577HjrJY0srHJyfCxcI\n9S2yEF8bnGrJQisJCmO7jhApMfGLgaHKJChsqx3ipIpIqGhVComVwngmBKLn4ujoVkAYDWa1iSaK\n4gOjUCIhrZqgUNQOJVWYtuO9ZNqlcmw3qR2cje0QbaNltSUwbBGsmJkMxNCYhCRJSfK8nrjTGwix\n6g9Hm6uFuRCrRu1QNxgQA4prjZZDQmWHV91w6TQj7fVJ05TO3By9XbsY7N1PNgr41cko85Sec3Rd\nRbeqmFnb4FfloDB4PcOVoepFnMQT7UifGr/a/jVlZZmVlQSpaYrRmumsEAxKNImCSoHVoWlIN2Ji\nFwIc58VsvAqeTGnELysGu9qJMgCtpYPRAz5udBIQaqVxqvmqQsud8gnHDu/n0L5duMriSoeqLN5I\nYsspjcOC9eiAXeHSAKU4sms3J/btl+mAOgGTRLMXmRKotZAs4NbDR3jBM76YD35yc5XS6JfyvC96\nliS9rCThbt13gOff8UzueeCuzQl/dRfPPXE7J3bvkfYm5SLtDcFHCOydtA0p5+qkU11QiEFhG79i\nUivd2nIYgsO6XacVFMbvg59DnVhrkak2bsXAUOuQ0DJJHRSK0iG04wSVVlE0QaGo9pSYLUelVhna\nUEMr6qbWw02BYQwEI3ZRqxxQMnUxSWTaThbadrr9Ib3hiP5gdI3Socau8Dq0atCLLZi1yWR5B7tu\nuG4W7uWB0lpmpbSWdPMUjWDX55p73XJ4P8//kmdyz59tUTvou3jO7bdz4tA+ScoX9hrudXRx4alb\np29/Bsf37d+MXS3u9QNv+lU++MBmj78PfeIufuCX38ybX/WKmItDa8UP/fpbuffTmwuP9z1yih9+\nx+/wy9/1IiyivrTK7XCvHe71l2rpNCXdvcj8bScYf9Ht6IN72OjmlJkkLhJfoPMuOu+i8h4+61D6\nGc6LHNnhqbynRNUFwu1Qa/O69qfKe2xRcWX1KldWrzA36JMnhtQk2MphtPCtyjpK60lC3t+jMGmG\nSVKqsmRjOmUyndKdTelWPXJnsd6SBCcw5X3taK+8RpGglAPlMNrjtQPtcMrilGdu2OPNr/5+Hnrs\nCR46d4H9C2OOLM6jKg+lw+eWalIwA0pf4CsHSlS3zpZQwqHxPEcWd2OMwaNxStpvXUiMx8TzIzdQ\npl5YXuGWAwewJPiqwjh44gaPuXhlndv27KUoCmxVAgoTDNyd88IjnW+Oxwtr1onGGE2aJSR5QpKn\nmE6K6iSQ6lBsTGoeJoVHSWiZxMikau/lulfBoCgUOgCiQb8UCqSwGD0BYwu1tY4sy+j1pEiXmBSc\nx5YVRWg9nKxvMNmYYp0jS3KUMsEvTc6PsixZX5/UvlUxCS9fQ2Ir4FVM+MVkPaimOBy8M2Vqoyi0\nO4ORJLPmFuQ2mqM3GNLp9UhDy3RdUAxTb7dbN9v0w8/50mlCOuiTJCn5eExncZHenj10xmPKzFCk\nCWWWsOEsfWuZWkvlQ3+/MpKBTCfo2RRmG5K9rgpcqaSNJ04TAzaDUUOo4pSxyjrS8NzOOTZmM6bT\ngumsJE9LjBLvmipKsrXCONn8Ij+ogwxrKaqKJExAKFteJGLeTkg6yfHJptrUC5rqdkv66DVzcyN+\n+Yf/dx459wRnLzzJoYV5Di/O4wuLnVUhYy/Tc5TgU10dGnd7vPG7v4uzKyucW13m2L59nNh/IBh5\n6sbvQEl4euZG8vmLl7ll7wHwDmXg3PL1J2acX17myPw8ChUC8UBMQ1uPjkFJrP6HaqGOGfQsbYLC\ntBUYJgnahFH37clhLUNSVbdFBWLVIndCqhpCXLWqhc45fHhfoicCgdR7J0FhJFdSDRSfxqZaGMlX\nWVcLnbOyqYbwOPK8BjIkIPbhK+EcQMtYbJO2gsJgUNrtD4VU9UdCqro9Ot1u40fTzrqrZtv2bAkK\nhWmFysgOs7rRMllKOuiTpZkotRYX6e3dQz4a1dhVpIaerRjYimklE8O0lt550Jip4JeabUCh8WWJ\no5CxzcEIVNa1+OWoLxdKJ4GhDuR7YzpjOiuYzgrSxNRBoeCXRjuZnBg7cZo2nhAYBqVWWZW1UquZ\ntEJQ/YTvQxtjVHLV+NU2XfamvqaVsRhj0aWRpJaqcGgxV60cysHZS0ucX1rl6OIuju/ee02AUZuo\ntw3UY7UO+KWXvIR//MY38b5WAeCrv+hLeP1dL5HR1fXsI80vfO+Leemvvpk/eKCV8D/xBfzs3/s2\nEmWER8oLDaRDplcqL9h1fuky55aWObgwz6Fdi6KiCK9bJ7Fdpx0UGnSaBvwKAeGW1xKnbCnVTmjp\nTX5FzhOwy27GrhAo1hPDjCSUlJcqZ0xcVmUz5r6yYG0T8LqYICirsH/Z4MNlayWOqpVacQeLAWHE\nrnjsJigdUiFMwUdLsGtALwSEonLo19iVpgG7TINdEb+uwa4QEO5g19NbNxv3KqoKUxRorW8q7vWG\nH/oHvPSf/2s++N8abPiKL7yD//t7v5Ukz/DaYtmee/30N38Dd//Ouze3Tt/2DH7+u78rJOWv5V6n\nH3+C93/8z9mumPgHHz3Jo09e5PievSjvePjCY3xgu9/14tt1bnmZQ3PzxDbhp8O9zi4tc2FtjUN7\nFjl+YO8O99rhXjftSkcDRrcdYdczb6d/+zGquUE9UdTZiqya0R+OmNu9hz1X18nynHIyoZptUM6m\nuHKGK2ZYW2C9RewY7F/4ODxQVCVrV66wtLLCeDSgk6fkaYLXsRDWsnmoc5cKkySYJGE6m7E+mdBd\nX6fb7dIrCvKqIKkSkjSplfHetXZbH5LzCowyYBK8dnhjwVgswjePHtjD/j0LlEWJr6yo9hOFShxa\nqaC+trjCBs/QEldGfNAkOiVJErRJ0SbBmyS05mkpyJmEo0ePh3fjKZSpBw+S5F2SJIPSQmU5tu/g\ndR9zZGEXyimovKj4vZMsh1JS+Q0WC2eWljm3ssLe4YjDu3eRpTlJmpH0crKu+HH6RFGp0K2QJCRZ\nGlTjwe8utlAbI+8prk7EN7WywLu9D0N45O83fo7Ry1HUllma0ev1SJO0LiYWs4LJxgbr6+tMJtJW\nqE0mKlYX/QCF1xWzgul0GvxsW0ktImY1sXLcxVBxeqtq7g9tmSZJpOW112cwHjOaW5DbeI7+cBSG\n8zQK+SQJj6up/rWJrdnngafWZ3WZPCefG5MkKdn8mHxhTLYwJh+NJZlhpM90aCsJP4wh73SZDIes\nj64wuTLHZP0qG+tXmUzWmUyusrExQU0nuA1wZUEc3PpUJoxRDCAnqpNWHV2wMSuYTGdMNqakiQxz\nNUqRGI1WDqMVVjuU0pvlkYFYVWXJzBjyEBjGEx5vwl9WwaTeh8rmNkWa1hmsghJBa+mXPrZvt/RA\nV64OJL3R+MSiSoeqHCr0jUtvt0U7zYnFBW7Ztxedpc2fiBU1o2v/leOHD4eD2B5wbj1ylKTTQ1kL\nZcXxg9f//cPBwyYSCnnLmok8KlQLzyyv8NjVqxzavcjR/Xswqca0CVVL0aBDwCNTdcJ0HBlCLe9u\naCcIzthEviCFmpBpty2D7LKUlijbnC91ZlwJAZRNSSbrlJE0R3LmpfW4bXwqps1lbVzbqAma529/\n3M0fi+XYQBx1InLlTo+8OyDv9SUYDAFhfyBjdDthYliSJKHC2YxjVfFcqkc/NWqPa6uG214uO6u1\nTKdDPjcmzTLy+VHAsDmy4TAkEuQ2rMbia5IkdLot/Bpvj18bGxOs93hfEkdrPdXHUeOXa/BrVgT8\n2pix3pnJOYCYMkf80loFJWg4FdVm/CpL8aWR1jQ5fzcltYIsWdFu/2qOqX3hqC34JTO1FR4XlD2S\naHNGs7p6lbvf/l+476GH6r/1vBO38bPf+ndZGI5Q3gVvqwZzlRLcEg8v+brQ6/Gbd7+ah5+4wOnH\nn+Do/v0cO3AAF14j1qHCSOnFhd289aUv45GzZ3jk8QscXlzg8OKu+jqmTrZHJzN5rWuTCT/+rv+H\n+x99pD7W5xw7zmv+zt9m3Bk02JWGhFbaqBnidEgdsEsFk1BFg1lSGRRT5KisqAP4aPQeW3FCO44N\naoS2eio2c/qAU845aauvk1UBu+RtofKOMvpDVEWDXc5F+K6fe/P/aYJXpSQYNDHwTQS7egMxhR+M\n6A1G9AdD+oMQEHa6ZHlGmqRBodWeGBYxqznxr8WsHex6umuHe8kR3Ih7jYc93vJj/4gHz13g9Pkn\nObR7gSO7F58W91rsZLzxzm/j3PIqZ1fXOLZnL8f3778u9zqzfP2pZeeXV7j9yHGwjsdWrl9IPLO0\nyqGFXeGF+fq2Hfdam27wE7/3vk1Y9tzbb+O1L34hc8PODvfa4V433Rrs3c3uv3IHwzuOw9556OWk\nxuArhysKRnj2OYcxCYuLu1hbXWGytsrVtVWurK6wfmWNq1fWWL96hclknbKYhnPP3fBvt5dHzrv1\n6ZRLS0uMRkNGwwG9jiNRGqtAW4UJRbEgcxJVqNakqeDBZDJhfX2dwWDAbDajKAqyLJPER0jq+uCi\nJ6eT8C/to2IniBKUtOuCtOrKj6TAJgpX8dgzWhP9W40GOytl8qpXnLu4zGMrVzm+aw+37j+IQWGU\nJHd9kuK1TApM8g5JnvGMhQW+9ku/nA/86bXq+K/6K1/GbSduJdpcKZFScvtgxAue+SV88ONbHqNe\nynNvfQZHFvZgyxJvNb6Qa19VwasUWJ+V/OS738tHzjSY9aVHj3P33/tGet0+SS/F5ClKB86mPFEx\nbnS8JRiTorVgl6hVQwI6GOjHykmctFsFhVhUvEcLh2JWUJXi3We0ptft0O12AGrz/43plMm6fM7T\n6QylDGkq3rCVjYUZz6youDpZZzJZxznbFPUQKtoksqjVWshdEczkXAkDOpJUWl073S7d4YjhaJ7h\naJ7BeJ7eYEyn2w8epilJ6PRItqjjt4Ol4mb31PpsL9PJyedGJGlKPj8mmx+TLcyRDUeizFZK+ncB\nbRLSTk53MGBydcRkfZ3J+lWurq1xdW2VfG2NZK2DNqs45CSythL8cNffJaRq6GvfGJRiOivYmBas\nb8yEYCtIjSZPEhLtqKzCaBcm18RATj5+5xxlVaGKUC2M1aLKopJYcY4S+Gajrb1aWse2WRYv5EmO\nOcCakoyy1hpvDBiL0hWKEm0FQM5cusjZ1SscW9zN8f37BQx93LvlWCQgDD3FJuG247fw1770y/mD\nbUDq+V/yHG4/fiuxPOZNxW1Hj/OCZzzr2pYf9VK+4pY7OLprN7aqCCOC5DUEsFDOc3Vjwo//3n/l\nw2cerV/7c2+7jdd+97cwN+xiMiP+BC2ZewwIdZhIE0c/RxWMSC8bYkWYUORaBKmZjBNVCyJ/rzee\n8GgdLm1nm98twvhdG7L2QqoU1lObnorSpWxGSbeet/6M4/9VbN2Rz8RHc1KTopMMk2akeY88VAjr\noHAYiFVPiFWe56RJKlWgaNLa+i/sjnWAvEOo/vtWEvArzbImobUwRz4YyAQWBUnEryQh7XTpDwas\nr19lcnUzfmWrqyRZB2VWcN5TlEVIXFBXcZ9qeUJSq7IoFMZk5z+rAAAgAElEQVSUdWDY2ZiSGE2i\nFKkx5InDaIuxCmscmmggrK5Jahlj6uChqio5l6IayrWIVQwMw3/tFTfdSOC8aZQRUlVStT+ETww/\n9pbf5Q8fvky7nebDj5ziVe/4T7z55N8XxVdEv1oRFoIrE02Lk7qN77ZbbuP22+4QdQLNOS/Zm4Bf\nyuDQnDhyjGP7DtRTBLEWqAQLgkl1vHYAXvOu9/CRM8ubjvUjj57iJ3/nPfyLf/DCoDJtJ7a2x66t\n+NVgVmzZ0bUsRZQIjTF2k9BqtdlswS5R30Lpm5acIiiwqqCKaGPXpqAwYlz0ognRaZhn2OBYSDzF\nqUEoDSbBJBk6SdEmJe3IlMNObDkcNomtXjCHzzKZupO0FVo0e2A84Wu8cg1uPVXyZGddu3a411+M\ne504sJej+3ZL0sXKuf90uJf2lhMLc9y6azcqy27IvY4dukEx8egJ0k4PrOXEkWPX/d0ju3eDMiEK\n0jwV99Le8ZPv+X0+cnaVTX6oD57iR37jHbzph753h3vtcK+bbo0P7mPuC28hO7yXot9BZQnGQ1o6\nKaaExEW/3+fAwYNMNiZcvbrG2soKa8vLrC4tsXz5MktPXuTyE4+zvHSRWWH5iye1FGhN4SxLa2uM\nV1ZYXFwgzzMUKXgTBAYaqy02sSTGQCIYkKZSxJlMJkwmE4qiqM/tqACKnpK1CoeY1IpDBkRF7Zxv\nWv/DUkgCSzymFMrK5GbtweTysyxLsUXJ0soVXv2b7+LeVlHxq07czuvuvJOFZEHai53DK02iDJlJ\nyNIMk+f8+k/+BN/zUz/N/3d/o0x9wZc9jzf92KsZDEZoIaohcQauqnjjK17FP/z5n+X9f9485rm3\nP5N/9h0vwqsEGUgjBuqK4EMbkPqn3/1e/vjsZv71p2dO8TPvfA+/9PJ/QJIbdNowFW00aZKQqASD\nQXvpINAkKJKASyokuIzgs0mE7TgVlFSxcCgJels5qqKiKsTKoSolMd/r5Iz6PTppgq0qZrOCYlaw\nPtlgfTKRtkPvSILvnnVQek/lhafNqhnrk3UmGxOsK8U+NryOmv8GMGs1HjYJeUKxNxH8SvMOnV6f\n/nBEfzzHcDzHYDzHYDii1++T55uH8hij63Oo3sOvlbbWrZGfqfX5l9TKM7K5sWQRQ1CYL86RD4Yk\nXqov1nuRync6dAcDhrNpffFPJuusraySLy2RZF2UTkU8WVVMNzYoywLvQCl3ww0jKh28l1GjMSjM\nN6akSSKkKk0oK0tiZCqAM04mFUTVQDi9rHNQVeA9RVGEwLAks1mLKLlQuWkCQymgtUqGLb2h0ir0\nUUstP2ad0Q6MFyl74iAVI0RtLaurG/zQf3oPH3zk4fp1Pv/WL+D1L/oOxnPz9d9QwcBQmQSVZug0\nQ6cpv3L33Xzfa1/L7/9hC6Se/Tx+5e5X18TKVxZvKpzS/NJLX8ZLfuENvL815ey5tz2Df/rt3y7H\nqpqB0nFTj/L317znv/KH5zaTqj988BQ/+m/fyRt/8HtE8m7EZLEmVVvJVSsgbKqEDamKb6t3kVj5\nWqZeleId064WxqS3IozdDmSsLIOp46apYSLpD6rYxrS2qmSqiW0Fhi36fG2mPZBuHYBcJ4FU5SRZ\nh6zTCxPDRnW1sD8Y0RsO6fWvbd2J1cJ2pr+5FJ5K6bCV3u+s7Zbp5GRzY7Is2xQY5v0+SdigrPfo\nJCHrdugNBmxMxy38mrC2vEze7ZOkHbRJcV6q0JONiZhDeo/y7oafhvUyAt7jUYViY1owyWfkGzPS\nxEhCK02oqhRjFElo81Cxig7h+mzwSwLDIgSGlRhNxoSW0k2ARlRsbc69qbZaSwtyaR9SIkoF83MP\nxkFiOP3YE9z7wKfZrp3mgw+d5OylJzm2/wBtqVATGBpUkoZWGUmk1O18iZHA1YXEh3N4G5QW1uIC\ndlgt02GoSigLoJQXpOUxzStVPHp5iQ8/+vA1x+q8576HT/LYyjLHDu8Xc+XUSGLLbB8Yqqh0UJuV\nDg1+BcISMNPZqNSyrTYbIb/OuqCoiom/GgHxQSY/KwpmRUUZlF1idBq8krz4aVXOiTdRVVDaskmW\n0czkVPEziPdE7FJhbLRJAqnKNweFAwkKezEoDNjVDUFhkqaidKinNqrNGFmvLbjFDnY93bXDvT6z\n3EsVASm8k5urwBnaJvrbca/bjt/CX3v2V/AHf3JtMfEFz34ed9x6m3jfWMsXHL+Vv/alz9m28PiV\ntz2To3v2ixeNc9flXueWlkIxcQuWOc+9Hz/J2aVlThzcu8O9drjXTbWGe3bRPbAXPT9C5xmJ0viy\nIPGOVCekSm7dTg+npUXw6vpVxgtXuLq2xuqlJcajSww6Q7RVzDamlOUU56u/2IEocKH4sjErubS8\nwtzlJfIsk6mXhKnO3pEqqJIKk4RkuHNizN7rBWW8tJyV7aStcyjTKj76mIr1wbTB4coSW1VIO2v0\nSXW1Ct8gXlIeCyoUIh0oLZ51pCk2K7n7zb/F/VuKivc9coqX/+Zv8ubv/R48TpRhmYdS443GKbni\nF3pD3vm6N/Dghcd49MIFbj1ylFuOHBEs9YC1uLLCW4tRGl9Z9nnNf3j1T/CpM6d58NxZDs7Nc2hu\njqoocGUhfoRao9OUCo+zFWXlOL1ymfvPPMJ2/Ov+T53k8dU1jg/3SAs0omSTVjoxwk/SJKhLWxjl\nCRgmCbSYrJe9IXIv11JpuaDQijdJXCk8g05Ov5NhlBcOVcxEpbWxwWQ6pahK8bdKEzw+cC7PzEOl\nPKWvmFYTHCVxwqH42KoaGwn7iwwPqjerUMjQ4j2b5JhOl6Q3IBuO6UUPrfE8o9GIwWBIrxNwyxhR\nZ0E96Vv+it/E8dprxyh+y9JpStrrkqQpabcrI6a7XdJuF+0cxsuHrYIfRxyBmqQZaZaT5h0UGlc5\nbGEpZyXT6QZJelWq9kqmcj2dJUlkjzhRiunyxqwgDdXCxGiyRALDuhBtVJj+F6uF8lzOyd8UqWLV\nGtNa1coCrVsbq6/phjwuRCMxKBRSRfCNcQR9BeAlOFQySlo0pBptpUXnlb/zXu49vcSm6YUP3cXL\n3v5b/Nqpf4gKUx9UHF2qfEPALMz3evyHn3ktDz/+OA8/9hjHDxzkloOHBFyrWLl3Qpq8Y67b460v\n+0EePH+Ohx+/wKGFBQ4tzOOqCmcrAWEVXqCTm3aKs5dWue/staTKes89nzjJ2aUljh892MjdkyB9\nj5N1asl4nF7UaoGpiVwIulVrUpiL0vcqtFvJxhA/v3qUrm/afaRS2Hg5RPNRCZS9tORXXl5z8POo\naoNliP4SkeLU37e9J0K7DjrBZEKo0qxD0ukGyfuI/nDMYDii3xfpe7fbu2ZimNn6/siLas75wHC3\nDwx31o1WjV9ZRtLrkfR68u+AX9qJnFiHfvY0y+XWwi98qPaUlmJWMplMSNIco5PNn90NPhLvxSwZ\n64NpfMlkVpBOpiQmJrUEv1Bi8GlCoins6bVSS85VOe42flVJVSuunPbUc/jaZLzGwlYyy0tQqJXD\na1E7CdXwoBw4wcRzy9f38Xt0bZXjRw9D2kyskVHM4fLB8dC5M5y5eIkThw9z69FjYqJAaDtSTZWP\nUN3E2XBzPHzhPI88dp5Di4scXlgMRs46BLQGjQsdVYoL61eue6znr1zhRH6kNlNuElk6GLhr6pHR\nLfyqb23qEqv6imCqbOtbGdQoUd5u7VbsivuarVVajQ+N5fzjF3ns4hKL4zkW5+bBgq8qXFnVXl1R\ndi/VPwPREFv5FnYpFCZ4nSW1SivJuyRZhyTvhETWmMFwzGAUFFqtaWG1l0NMZunN2BUDw3i+77Qf\n/vevHe71meVeynuU9ShlOH15hUeXVjm6bx/HhwfErPg63OtfvfIVfP/P/hy//0ebFQ+/evfd4bh9\nzb3e9PJX8H0/97O8rzXh7Hlf8MX83N//LjCqxq6n4l7aac5PN8Ijt8eysxeXuPXogR3utcO9bqqV\nD4ck4xGq20cnWoYeWI/XFqMgSw2J0lTe4bSicBZjUoxJSVSGsQZdKvyGZX24xnJ+iat6CfcXtNVq\n9lgpBCyvrfPEpWWGg2EYdAHaS0GvVKpOahltcN5jjKHX6zGZiCn4+vo66+vrdDod8jzHOSeemFFJ\nT2QHcs5oL0Uo752opL3DW0E0SYbIeaiVDwXFUPgK2KlR4DyPXrrMPZ/8FE/l0ffI5Sc4vncfWNCV\nxyoP3uLKgrLMMc6B8xzas58Th4+SJCkeUT555+qppK5yoFVtiq5Q3Lp3P0fG88xmU6pyBiEp55QD\ng/BUL8rh0jrOrl2fK569vMSxI3ulaFAPejDCw1NRUhKKq/Xeo5rWw6iglWKi8OHYKhzbpsuyrH2v\nptMpGxtTyqKk380ZDPokiaEqCqqQoJzOZkymG+JDpSQmUEoFnuWp4oAe55gVU4piKlw9etUTVZ/R\nJD7iSFQLCj9TSYbXCV6nmLxH2huQD8d05+bpLSzSn9/FaG6e0XDEoNej283J01S8d7WqeX0sX242\ny28wTCkodjy1Ni+tDSbLxbAtyyU4TOWmnEwY0E6yrDpMQBFpIIFUa6ppybQ7ZdqdkucT0lT6QnWU\nRBNlvzdYYdN1XqEclKVloygwG1OM1qQtYhX3qUSHwFAHY+DWRhwz7JFQiby6JI5Xd8YQLlXa1aMY\nyzTkKl5gItmUDdjJz6PFjZIHxMk15Bmnn7zMBx58kO0A6gOfPMmjq0scP3AgEDIF2uO9xVcOX5Vy\nQWcZ3mUc37uH4wf2gfc4W8gGXFVQVviiEnProsDPZlAUHF+Y5/DcGOsdlXeBvBm08aLy8BrljPg5\neMdjsxuQqsvL3HLL4eDfoFtGyvJBtI3xfLzwVBMUykXv62kVNo7LtTI5J6pRyqIMRsgSwImHkJhC\nV6EqWAWiVEYZqpQGUdbVfhpUDmYFPlQf41SxGBQqndCqmwYiaGrFiU5SUZ0E2Wja6ZF1emTdHv3R\nmMFozGA0F9p3BvS6PdkAs0zktfX71PREt6uSLWoliYU4OiTcdgLDp7e0CfiVZZiAXSbNSNNMjLqd\neIfERFD8XGJFRSlDuVEw606ZdgS/siwnMWmoErUI8dNYsUJnnacoLRvTAmOk/TBNBL+yRJJaRkNi\n5JqRQFECOGgCwxq7QtJENuHgBeVD8AGoevsLqznhGgzTNIktBT5ilw9JLuU5sn93uHP7dppjh/ej\ne1k9ilnGxiswsLS+xl2/8Mu878/+pH7UX//SL+dXfvT/Yn5xcVO7B9bhy4BfZcXlpSVe8ov/gvd9\n9L/Vj33+Hc/kZ0/+fQadvH7N0skjrQRH9u657rEeObQfnWcyKSy0Q8akfD3uvhX4ERM2EbeCUiR+\npj5iV9hTrI1GyYJbRSF+DmGsUtj/Agl2DmuR37eW0jpW1q7yut/4bf70Uw/WR/6M4yd48df/TRRh\nYEFLCeEJariAXdTEqjmXldY1bukw5TBiV9rpMRiO6Y8Dfg3HMi2sxq5c2jBMUif+1DbYtfV83+ST\ns6N0eNprh3t95riXtK0YVq9MePlb38EHHnigfqlf84wv4l98/4sZ9ztPyb3mtObf3/2jPHTxIqcv\nPsnxw4e55eBBwQJbbOJeozTh3/3gK3jwzKOcfuw8hxd3cXjXrqfNvRSOowf2h6N7Ctw9tEeGWexw\nrx3udROttNdD9/rovEOcSPf/s/fuwZZd913nZz32Po97+3a3Xt23b7/lOHZiS7ZDEWKc4CFFJgwz\nTGZSzDBJCRPASWxLTmIbnASGVDGEEENsE+ftxBmTSsJATVEEqoaQoSZGfhQM4MR2bOOX1JLVUner\nJVnd955z9t5rrfnj91tr73P69kOvKbd8l+ro3Hv7PPZee6/v+v5e3591QLKil+lEi68jia6VlufF\nNhBHgW60YF5PGVXy8K4uqPBMR+8mh3nT8sRXLnHhiacYj2q8meKp8BjaTgJFpm2pPDgv+3RVVYxG\nI+bzedHWWltbo21bFQofurEkmGT1Ho75XrLqjEcc7EZLyGzOQsKQLKVjtjSHyA5p+PIT13YUPbL9\nNKdHW8rfIokgzRlCwrbwuS89xgNPPsGp4yf5+tN34qtK+aUnhUhoW7pFQ+w6bDKSDDFfQDMnNAva\nZkHXNYTQkYiCsc5ibMK4hHMVqQMXDMcO36bHtjtmHT10O8kYre6RUmDnLK4SfmGMdLzMjmQDBd9y\n8ANjSndpKXEeaAB23VJm3Xw+l6wlA9PplOl0ChjVdAw0TcvOjji+YgLnK5wTx9oj5y/yyIUn2Ldx\nkP37DtK2LZcvbzObZY23jBrClYeF8qqqBsaphmmN9TX4EbYeU0/Wmezbz779B9l/yy1sHLyV/QcP\nsrF/g/V960ynE0Z1TV05Km+lsZwZhlR1rDi08tjrfrgyjLNiEFaV1JZWI3wt0UAb+xvJWosLoW/t\na2SDstbTKrGajeeMxjvU9Rjv60Ks+qjRtUcq/xNve9MF3KIFM8caS1056sozriusNXhnqL3Fe4nh\nZ494XiT50aoIZtamsdbhXMTFVIiRROnkAMqR5uMeZDoYGzEJrLEkq6KDUs8j77WQhe4eunTtTIIz\nT17kzpPHdC6ROzhJSQ7aups4kr+ZCNHrualx2LbQtKTyaPqHuN/L8WMlSmGSiIQahFTFJF0dThy9\nHqnaHGQ5DCKF1pYOSJLMIgsvrVzzQqqitF7tBsCUCVUmWLo3lFa1IEZ+lxJdFyVSqDoQMUQRYgwR\nEwKmC5w7d5FHLz7JdDSmqkdEJdgxIdpBxg0ixZlYSQkSqq3hKinXcVVNPenFSUfTdSVVmumQo4XT\nKePRqE99914ihTYT834++tavgwyQXR57huH1h3FOHVqKWwPD0EbVKkqKX85pBxmPwWKNdBFrZgvm\nkznj8ZzReJuqGuN8JRssN24YJsWAiER7mq7DLhqJCFlLXXlGlWdUV1h1aFVeO5sYER+16gTJ0XFj\nTIkytV2HV12toJkcQIkY9fcyyw6tXLqTYnFslYwpq2TeCIadPnaE1931jXzsU7uIjb78G7jz1JZ0\nDbOaEWQ008HAvT/3i3z4Uw8yzEr90B/ex1/7yZ/in73r7/XZAilJlLIV3KJpefP7/hH3f+ahpfd+\n9HP38Y7f+A1++Qe/H7RKMlVGszAcp49t8i0v/Xr+w+fvkwy5wbH+iZd/A6dOHMVUVozByq5gl9Pj\nFqMwKYlYNRTLrKbcNlqNwmEGSjYMG9ExyqUuS0ZhEJ0aKckR7HrPb/wLPvn5x5fO+bMP3suv/8vf\n5fu+49tJrWY7KHZdyyg0uVzHuWXsGk+KMHw9XRsYhZLpMF1X7BqPRSC+qvC+Lzm0g/soz0iP60Mj\ncFlXa88ovP7Y4146Dy8A98I7TB34kff/H3z08+cZrrGPfPY+3vqrH+Q3fvSHr8u9Tt92C3ce3QTn\niV1zTe516uABTq5NVSi9u2HuZQyc2nec177sZfz7z+1SxvjKV3D66OZNwb1oArSB1LREFWze414v\n3lFN13Aj4UsmJnXvdCRjSTaClcCiFRcJqI5o62tGvmbha7yrcLYCU5Fwz3LmTf9shH9dujzj0QsX\nGVUVtbOMvNM2CpFR58GBDQ5f9WZ7XddYa1ksFiVrS/QJ5T7G9FIRVqORBsQ5ZMXTnpAMUqMZ5hbp\ntkgOAOVhreyfQNKA5oljh/Qfd7fDvu70MUb7p6rEkLP8LU/tbPPWf/SzfOgTfVDwT33TH+cX/+aP\nsX99HWus6OE1LZ2uTRMFd898+WEefvQsxw4cZOvAQbquJcZOHHfe4qoKNEvexQoXK6oUeektG/yJ\nr38Z/+/nr8Ssb37FKzh59BDWG3zl8c5rKbCWfJLotDQzod2hrUjboBiWLKQk2nxBH0OnVtu2LBaL\n8pAuhYHRaMR0uoZ1XrO5tGpiJlpabRdwvsb5msuzOT/3m7/DJz//+TJvLzl+mj//7a/n8uVtFotG\ndyVHH3zpH5HMF3OpdKVB9rE4tLRUem3/AelyePAWDhw8yMb+g8K/plPRAFRNt6Xs+HxH7+LMGv6+\np6m1MozzuNFIvJZqFLqqxleVphxLSqVzrvzuu0AWpHTW08xbZpMZ4/GU0WhCVWejUAnYjUQKdSSN\nKpkoJTxm0RKSRCbryjGqKsZ1JaRKiVXllVRZJ5iGKTf/UrSwbWnbTozb6KW1cKmNXvGM5l+UVGHV\nKNRMh1gct4ZVBm9SwjjHiWNH9C+7A9SpY5uYutc9SCRMG0ihJTUddIEvPnaWB596ilMnT3D6+HE1\nsNRX3LWktoGmKcSKpuVLjzzCA09c5Ngdd3Bs87BkJWRhVpOLjmTztspiTp86zmu/8Rv595/ZhVTd\n9UpOHz+CdWYpUrgULaQnV8Wg1nlMoHoxudX9MqnKuhtNI4ahNUY0eKyAIGgbXhVZzqSq1c5pqIbN\n5cs7/Pw//10+debBMtOnDh3hT73qLkJMpCSbgHVei3cysRLnSM6CsN5ruY6kvmdh0vHaOpO1fcvE\nan2dyXStZDt4X/UiyznToZ+Kq970VxqFe4bhjQzrFb8Ut1yVnVpXxy/nO91cHdZWLHaaZfyqRtKN\nxQwNwxs7nrw+0UwtaAkRnBVNmlHlGVcV3kLtDW1lJVurZDvY4tAKQXLwh/jlNbrkYyZZajsNrVLo\nHTNWPDbZsWWTprzbYXB6+eTe/SNv4O3v/cfcPyin+ZOveAXvu+8NsDYqkfVSLoLhS2cf5UN/+HGu\nyEqNif/n4/fwhQcf4NTWEcUuVE+rIbUNX3zoYX7/j/5w1/d++LP3cObiBU4cul1WrBHaLBo8kXe9\n8Xt556//Ez766YGG4De+gnfd9wbMZCSYlR9D7FLDEHXIJVDB/GEpYj8nMSVNSw/FKByWHbZNW8iv\nd644hgyIuCmSMp/FmB969LxmaF2pR/Hph+7hwuMX1SGv+hEg823FKDR6txnQc/KgQv1eS3b8aFRE\n4Sdr64wLdm2wvrGftX2SpTWdThmPpSRX7i+npTvmyojh0FjeMwqf09jjXi8c9zIp8cAj57j/jz7D\nbrjy7z55Dw9ePM+pzSNcjXtJOUySho0p3BD3omlkjUga7g1xr5w1+q63vIF3/vJv8pFP9Vj2LXe9\nkve84/uk5PCrmHuVph9tB4tOHH6qL7jHvV68w48nYsTbStYmkWQN0VnRygwBE4WfGAyVMXRdYOQ8\nna+pvTjxja+I1hIwz37nKOrsBkjMm4aLTzzFyDsmo4px5TEjh0mGpuvAgwsdVfTFSVBVFVVVMZvN\n2NnZKRlA8/lcy1q98AQAIhYn4aUke7RIMBispDjJ+iMWvpKHyRur3nNR/3b62Cbf+upX8tFdNPpe\nd9ddvOSlJ7DGgepuxk6O5K3v+Tk+/KkzDJ33H/74fbz5J/8ev/2TPyHz0nWktiG1LakLPPX0Jd7+\ni7/Cvxtkx7/uZa/gp7/3e1mf1KBZVtaZ0i9HMtaDOqkN//D77+GdH/htPjLUcH7lK3nXD78BV3mc\nt/hKncwYdcQbQkrEGApuGWMw3mK9L/MB9FnxMZRmE8PO4LPZjNlsxnw+Z7FYYIwpmZspQdN1zJuW\nyzszLm3vMNcgc1WPMNbzc7/1T/mjL1xYmrcvPnwv//z3/i1/4uUvF4ebrSSQmNJSqXyWv8c6jK0U\nu2qq0YRqNMGPp6L5t3GA9Y0DrB84wMb+g2xsHCgOrVwunfGqx63eCb+bU6vc8mmv/PCKkSeylBtk\nUVhre72EpBGnaDBRLqULkvXQBSFdfXvhFUMBbtAgNCs/a9phiJg20LiWxXzBzDu2DdQpMCIwsYlo\nEiF5LBXRySWIg80pLhkhjWZsBLwPoAmkpe1vyjLEMuT4BSxzGjzqfZeMgyFU5Ui2vPHU0UN8692v\n4KOf3K3F6l2cOLpJ1BKBnMwaU8Imy8WnZ7zllz7A7//RJ8tnv/41f4xffOcPc2B9XY7LJowDvFyb\nJy/Puff9H+BDn/lUec+3fsMr+Idv/MtsrE3AWJJJPbFCSaxGHP7BW97A3/jFf8xHPrlMqt799u9b\njnqVuUnFqM7WT856KK/RSERMsWjRdGE5dTQTqyLIaG0hFQkj4BcjMYuaakp7Nshzh6ef/xf/hk8/\n9BRDgHrw/L2EP/gkf/qbvxlfdQRtL55SXLrjpOV9L6xcaZZXNRJiNZ6uqWG4Ljo062tMplNG49wt\nTDztJcthMF8ZtOVWWp6/PT2a5zYKfg0epuAYil8s4VcEnI+S/eDdQHzXqnC64J3cyzd6MfpIYf4p\niy8bI/f6fDZn5i3bBqrUMSZy7umn2WkaDt12kCOHbyE6W/STMskOIdJpy2LvW5x3+M7jvJThWHVg\n2bLRZhzKuGXUARXVQExi6SxFnfIZJA7sW+PX/tYPcubsec48dp6Thw9xavOQ4pTViHufFWAwPHjh\ngp717lmpXzz7ZU5uHSYZvb+NZGoYZ3jo4rXf+/BTT3Lq+KZei5RjoXKs44pfeccPcub8BR6+cJHj\nm3dwYuuOUlaUSzrLGtT1l3GpXLOB96bv+J6pa+9kzEZhJlX5kQVlsy5L/tyYojqmlIx1gS4mHr34\n1DXP+fHtbY6s7cMnwwiH8zVd1eK7jhjDCnapQehcX3I4GlONRtSTKZPpuhqF60zX9zFdX9fsLO0U\nVmUdGhVWHjq0VgjW8ljBLYbnvjeuN/a41wvHvUhw5sJF/Zfd19iXzl/g5NGtK7jX589e4Myjj3H6\n2FFOnzwBJqLmXH9cK9yL5PjiuUd58Nw5jt9+O8cPHxIjzVnlSdfmXljDwfEGv/Jjb+bM+Qs8dOEC\nJzZv5/TRw1j31c+9Ykx0wNmnvsK5i09JBsJ4QpUsI+P3uNeLdPhRLV0OkXJiY4VfJQfRG1In69Qk\nMMngQJrmVKKrVKkjn8rTeUdrYXlVP9OhwGkcEZgtWi488RSTUcXIGczBdfzaiDZGbOhoW4NzVu8f\nedR1XRxaOVur0U6uVWm2BVgjJXyIvEAi4TBYbTyBSW4LYkAAACAASURBVH3g0Yp2XjTaKbFkiJrs\nKZeMbBI/8/Y38Paf+SD3f3yg0Xf3XfzsO7+fUDtwKrAewMbEg4+c40N/+Afs5rz//f90D18+/wgv\nOXqUaKQfUBsFgd74y7/CRz697Aj72Ofu40d/+7f45bf8gGTHOz1Pb0pGvuCJYMvB9Snv/9F7efDC\neR66cIHjRw5x4sgdYJJW49mVdSdOvjgox7TOlCBjdv0VDdKonVXTlTqmOTsrO7TatmU8HjOZiE5l\nSIm27diezbh0aZvtnRkxga8qsI6zFx7nk5+7silSSokHvnwP33jiFPVoTMqlp9r8p88o1uvo69Kd\ntR6NGY2n1OMx9XRNyqQ39vcZ8trYYjKZlszSnnvJA5Yx61pOLdgrP7xiZL0GayWqVMiVtcQk2QMp\nZSFhQ4piOvkQ6XzEh1haDRvnJEI1LOvgRmK2y6Qqm4UpQjCR1AWapmM+WzAzMEqRMYGpiXQWokXI\nlTVY78BSBPBK1kMXJMW6anFOADWobo21QjUsYMuuNozYqwGXS3dyyQ4JrIgE7rYbJiTr4W3v/SD3\n/8EAoO66i/e+/Y0kp84sFfjU/Hlisrz5V36dD3/mywwB5/4/uI83/fR7+K2/+zfVw90bhnjLfR/4\n3/nwf3lk6T0f/ex9vP3XPsiv/fV7hVQZATSB4pRvAjCGg6MNfvXH7+PBc+d46PwFjh+5g9NbhwSk\nB+Qgk+Z85bK3vWQ5kMEvZ64I6EunsLDkac8bRiZWQzHAPLJAaRhECUOU1M+o9vnZx5/kUw88wG4A\n9dC5e5h3HevTNWLWgtCNJZ+D1bI06yucr8QgHI2FWE2mTNaUXE3XmaytSaewYQvpuiqglEs/rB2S\nqT5quHSDXMUw3Mt2uLGxil9m4NyKSR0+ejP2+AWdOoY6H4tTq9daMkv3OFzvSpgrn1NvGJJgsWiZ\nuwU7BuoUMe2Cf/sfP8XDFx4vn/Kyk8f4q9/9eibjuhfE1BbGbdfRNg2tEq+uCvgQSFYcS7Zfmup6\nGgwVLjWa7m5tpGQdxKucmzGc2DrEiS1xZmXnu8ndtYw4t/Lvx7cO6xt3z0o9ceQQEck8k4CqYCcO\nTh65dsr9yaOHsCMnDjE9v4F5CdZy6viWlBta1ClJyX7L5TSl+1V2WmVnXnYg6CcO7OKCR8Msh5yd\nlfFrqTxBDyvpB8Ugjs2gGVqiRRO5/ZYD1zznWw4cxFSVtuyuxAGrke/yPXo+Rp1ZzkmmQzUaK3aN\nGI2njDNWTdeZKnZNC3bVVHWl5QGrRuHuBmGe+aXMhiuMxN1uqr0xHHvc64XlXseuow94/Mhhouu5\n11OXLnHfu3+BD/3hH5ZXvv5Vr+YX3vlWDuzfX6ZrlXs9Od/hLb/wfn7/U58o7/u2b3gF7/nB72N9\nsk8413W4Vwk+WDh1bJNTJza1cvGrn3vFBE/vzHn/7/wenz7zQHnv6SPH+Y7XvpbRZCr4uMe9XnTD\nVTXJqkNL5zkpXxDfkscGuWlNEoF0FyRb3lcVrq6wtSdW4tDqjDjFn/kwWv4sD7LIeAps78x47Pzj\nVDYxm29zrrIcO3QLW3ccwLasOEFNKUHMmUB5jXRdh3WSxSgnajExYJNk1MIwCJQGay9JZYDrWVlM\n6pTGFOdXDmZuTCf86k+8hS9++VHOPPY4p44e4s5jW1jrpPugnmU0CeMsDz6eOeRVZG4ee5SXnToq\n3ZDxOBP5wkOPaanilY6w+z99D2cvP82prUMYizjijJqnJmFxUkodKdlxp44e4eTxI6rTKqXgQ2dM\nznCVDgDiyC96iRqQScZIRrtmaoXcHMf0e8mw7DBnaOWHMYa1qTS8wVi6rmU2b7h0eYdL2ztSUu8q\nKUuMiS+fu3bQY9Y23HHgVrJWXG7eVFi+Bov7ZhY19WjCaDphNJ4wmqyxvrGf6caGdpdeZ7q2j8l0\nwmg8WunS6opTtXzPDTi0IIno/Qs4bkqnllmNFuZnjC4hI/XSSdqfJpOjhY6ucwOjMKdF27JpPTN4\n0k1Zf5YsBUlTbIC5gZ0UqULHxEQWznB+PufshcQdtx9kc/M2QpTk5jjYoKVtcUfTtvimwVcVbReo\ntLwnIVo28tWDjmIyQfLIGQ5WrUCVpclGYcoMo5hd8t6NjXV+9W/fy5lHz3Pmscc5eeQQJ49sYowt\nhmL5Dj3/Lz1yjg998hPs6nn/z/fwhUce4c6tI+RsB5zhgbPnlVTtUsLzqXt46ImLnDhyRyFXLB1u\nJkMy96ePb3H6xJZEI02+R+j1VYpZmUq0MWWDMc9FfkVCr0UsXXdWDcNhpkPWEcpXINFnvIguh+ra\nJG2ChmiAPPbkk/qO3QFqp2m57bb1QVkHS/PuvMeqHoOvpMtUNg7Hk4mSqqk8TyaMJ1PtuDOiWvG4\nDw1DuQ2uDkqZk19hGPa0d29cayzhVy47WMaviMEO8MuhmVrZMHTZMLRqGFrVJblRw3DpgMgYliIi\ncBkTzaJV/ApUoeUPvvgkj18yDB3QnztzLx/45x/iTX/x29UwTP1mnjO1qhbfdlSqtZTyus0kXg3E\njD/FeLCm4BbZOFRNGrNiyBQsM2awTqwaTkoY6bO1DIaTx7f4tte8ho/8wS5p83e/mpNb2amVHUuC\nQ8bCS45u8vq77ub+XXS8XvuKuzh9YkuytFaxa3XOc/TT5j+lQZbWAGKhrK8cLe31aDTjQYlVYuDU\nUqNsmOmwWCyuxK6BcS6OzUCjHQ+lhBEO3XYrr/i6l/DpL9yrJF7O2Zr7+LqjJ7n1lluZh4S3MPI9\nOc6EZ3hC1jspYfNeuuSNx4pd4tTKuDWeCmZNplMmkwmj8Vi6gGYdmmIYrhqFK3d4iS5fJdvhWaya\nr8Vxs3OvzltiZYnOEL37quNeJ49u8rpXvZKPfWIXXLn7VZw8tjnQnzLc995f4sOfXNb1u/8T9/Gm\nd72P3/zJHyvzkw3RzL3e8ku/yv2ffphV3a4ffv8H+cCP/5DsIwPHFkuHu8y9StPVm4h7hZR4/7/8\nPT770JNLc/DAo/fyrz/2Mf78n/nOwrv2uNeLa1SVdBYs0ueFjhiSdRisPiPOeQKxi3K9hpzLGaJV\nR/qzmH0DkqGPIRT9Kvm3pgs8dekST126zKLtHQB3Ht3ke/7sN3PA9mVfWXu1qioWi6Y4TrJjyzrJ\nlHLOkZLozBlCdqVJY1P98pj3QmNUyiI7ePqgY3bsBEFO2dtVm+zI7bdw+PZbqOsRoV/c6hgOhC5i\nnePI9QTbNw/RBGkAEU0Eb3noOo6wh558nDtPH5FsLc0y7bNDdd1GAwWDBd8CilvWaAKqKTtLSqKj\nJQ5I+gxjKw1u8kiZXtA7t4Yl06sOre3tbbquY//+/ew/cIC6rulCoFk0XNre4dLlbRZNizEOV9UY\n72m7yMEDG9ect9tvO8T+jQNgYNG0sv9mZ6TpK0J8PcLVI+pa8WoyEaf8eCyNLNY0O36t510j1QAc\nZmjtVnp43ZH2NLWuGMaaUnKQxWGXvYO9qLBJiWQMLqGClW7wXk1P1G44JRXaPLtNwpRIkyyCjkRj\nYU7Exw5vEv/xwbOce/rp8p6vO3qEN3zXt7K2NimEG0zfirjpaHxLVXV0tWzkstj6kqNMBYXTS8FN\njogPDUIziOgUo9DI96HzlKl9QgjWqWNbhbWkQjyXowQmWR44f23AeeDso5w8chhjtEW0NTxwnfKf\nMxcucOL4YY0aliubZ3v5eWgUXulz04e5ygPVvGFAbhFyG/v091VNh0x48pAoh8BaF7OeQ6QL2pZW\nIwUhJroIB3Mk9SoAdejQESbrG300csWZ6KreKPRVRa3Rwno0YqRAVR7jCaPRuHjbvV8lVZbdPOxL\nabhLREoiAUM9mnSVCPTeWB624JdTDLIlSqSvkHIVm9eoGGzO2R67XI9fS2Voz8alpRCAbsoZgzrT\n0TSJeQqEZs6FS0+zm57SZ750D49d+Aq3HVwH6NdO1zu1qrrTblRB8ag3jCypZGnAYB6MdLAhxd4o\npE96SL0nS+7D4b2rTq2sn5WdQLC89n/2R+/lrT/1Pv7dIG3+T971Kn72HW+SLmA6MQYjpUZKfoyz\n/MJbf5A3/ewv8aFPDHW87ua9P/xG8FaMwQF2DU3wpd8KPg0cWhSbceWdy8efP1vwQfClCCyHcIXA\ncjYKkzou80gwcISJUdh18gipz274/v/pz/FL/+Rf8ekv9uf8dcdP8T3/9XdAVeMqS42BZAtu5QyM\n4bELbgl2uYJdI3VqZdyaMp4Kbo3HQqzqelSig5lYXS06uBvBGuLXKnbtIdf1x83KvSbeslY5zrYN\nD198ikO3H2TzyO1QBzFSv4q413ve8Vd428/8+nIpz6vu5j1/4weIg/l+4JFH+dDHd9cE/NDH7+Hz\nXz7L6a3NHsOUe33xscf4/U/srgd4/yfvEd515BDZIf9i5F5nH3+CTz/4wBVzkFLiwUfuYdZ2HNh/\nYI97vciGc56Rd/iShai3r5FiRMhzLdfaOIOJ0DmHrwS/pMlNxJqEI2JS4NkFRHrZB0iSETTIoFq0\nAVgHfo3sdP3SI/fyW//6P/DG7/42vI/YEPHGaAniiPl8wc7OjO3tHRYL6WxsqyBNFJyDBCFIt+NK\ns7BSiERJUsNaS1XVet4Ggtxv1lliyJmqPf6n2GcDdSHictJDghTEOY067WNA1y0cu+MOvu2bvomP\nfHwX5/2rX8Mdt93K07M5JMFLh+Xodbqtnji6SXCaIWtzkDQXYQvGFEFzY8hOTVeCj9pU1mQ9NXGA\ny7qTszDaFdE6W/hXXoch9R0lo+rHxijO9WF2Vi4TreuajY0N1tbWAJjP58x2drh0+TI7sxkhGuqR\nZIJiLTEGbjt4Cy+/8yV89kv36tqXeTPmPk4du5MjW8eoqgqMpe06hmpaS1In3mN8zaiuGavTqlaH\n+3iimfJrU8aTqTq0aupRLV2mB9cfGHTZ1Lv6Oo6txF754RVjSZOmbPJDgwFJG2XZULL6MOU576v5\nspcwiL7rRoFqySosB5ISdCGwMNIf46GvPM6lRc0wMvSFR+7lg7/zEd74F/607v3iEc5lQG3b4ZuW\ntm7p2o6uDSJE6pJ2B7NFRyeRyZ2CZbbhBnU9Jil5FBXfPm1ZGKUalz0bSWocJv3cNDi/cvbGcOw6\ngLN1+BBdTJgoUG6N4ejmtct/jm/ekQ9rcALyP9P/0p+nQUgyA1KlJHP5oRkbmt2SsqWcYiFWMaKG\nnZZRtX20UKKEnXy1MWpYyRyFLhKMkOIuSoRQCJV8ZlDyFVLi1oMHednJU3zuzHLmgzH3cefJl3Ls\n+MlixOc7dHj8vWHocZVsapJOmuukhUiJMVhTjyoRQFRQfrZe9hLRSalEAtJwse2Na44ev4x2M1x1\neBTzqDzMwJGcMYyCeYkh2g3/f2NjcPEG6zumSBsMcwOzNuhrd3dAP3bxKxzcvy7ZGiYbhhotbzra\npqMbSbt0KeGzWpqjyKnGk8lMBLnVJYXcUsJrRrJA8g1XHFtJnVYD/ErZGZ9/p4+m5fnet2+dX/87\n7+SBhx/hzCOPcuLwYU4ePQLW0sbhdVFSlPK1sKxv7OMf/8238aVHzvLgY+c4vnmIk1uHidZolla+\nKqnH42XkWsaufE3zdTUr2JUN6ZzZYvtzQrPkYur3jl4cviu4NcQu6KO92ZBMSUSyOy3ZydiVn8ej\nEfd+z3dx9vzjnH/8CW49eAu3HbyNlBxRO4I546mMuyZ2WedWsKumqsXoqxWzyqMeFewSw8JdgV83\ngl3leFKSrMKBDtyz8AV/TY6blXs9tTPnk48+zsXty+Wddx45zPf8t69j377pVxX3unX/Bh/8Oz/M\nl86e48xjFzhx+BAntjbLWsrjzKPn9Ker6G898hjHNjd7BFTu9aVz56/5vgfPnef41qEXNfc698RX\nrjkHs7bh6P4De9zrRTa895JlKTLn5Jt3eMsmRE493+eZe1lj9TYWR4tNEUOU5/TsLkGI0tihXH3F\nMMGGAPw8q07XLz58D48+cYmtwyNMjDikhLWuapytaOYtly/NmO207NuX8K04+50JwhmiYIE2I5Sv\nTZp8Zj3OKoZ3kS51EDNPQJd0zlQVDhKDIYSABSajMWina1l3AUzfAMS7qjQFee877+OH/v7Pcv9/\nHgi23/1qfuptb+LyopXvwuCMobZw7MhRXv+aP8b9u2TWv/auV3Hq+BER/U+BkCIJxRR1XtlkkR7i\nTk7Y5KCwXDlnxMHlyr0g18UaQ1TO4p2uYe9IBjrN4oxJOdJKwGwoEj+fz0u2lve+OLSMMVo2OufS\npW1mswUhJpwXB3jCFExLBr73v/9Ofv2f/Q5ffLift5eceinf/ee+q2RcJSxdED3arAZoTJ8hjZbe\nV1UtODUaq15cJUHE6URKDkcjxbQanzuHXwWrbgjDdCya+Q2/9tmMm9Kp5ay007RZoJTh/nvFHwbk\ndyDyaYaecsjb1zMzCgsK9d+nf5K26LBIia7teHoxA97PKkh9/qF7ePTCUxy6dT9O9SViRNJETYdz\nHXXblS4uAsqqFyMrvxiAS23e85O8XJ6jGo5Gjzkfu/5t1aGVZVAjvUGYa3QzEQQ4fnSL17361Xxs\nlw4Y33L3azh6+DBtTMUDbozl+NEtvu1Vr+Yju6Xa33U3J1SkOZPW3pAfnJte6EFCBsXYL+/Vjcto\nPXTOjtHypARaFqAgGHP5Ts50CHRdbxR2neg5FMeEdcVYEpFAuXbZMMyNdnINesgPEt/z330Hv/mv\n/m/+ywM9QL30zpdzz1/8XqbrG+pI1OswIFVoyrHzrhCrDEpVjhzWdQElKdmp8XWlnXauNAxv7G4f\nRAxzamsmWZlg7Y1rjmX8MgWHroVf4vzS1w6yeVCSBdCz22dqGObXLhuHIUIbRH/BlmPZ3QG9f98a\nISTZLMklIAHTdPiqpW5bulbWUg6JGl3J0ZRvXpojeUZTBGyJ2qkXbGAEG7UNr8QuMEVLJaXchbC3\nwpN2Kjt+7CjHtrbEGDa9A9+oM6t8cjIa2UV1v+DE0S2OH92UNH6DdGnUMyoZaHmvyfjVH0LBtdyt\np1yPgTFobMawYScxddolyVDos7RWsavHrYxjfbTNLTm1sjHZhUhXjEF63ApRHfIHOLBvA1xNshXG\n1jhX4VxF5SqMq9RoHWJXxi9bdJWcc+qsGmBXLeU8S9hVD0oOde08E4eWXuyVTIe4hF17luH1x83I\nvQiRx7ZnbLcjhgHFLz16L7/1f32Mv/I//lc4a77quNdLjm1x57GjJUtylXsdu05Q8MjmITr9fEOf\nfbB1g8HElAHrRci9Dh68dhnPseMnWN9/YI97vciG9x5n3dLfhrOfhn9L+X95f6DgWHEGxUCKzyZT\na+VbB/eAMgf9bXen67knL3HbrQex1uFdwhtLVcmeuX15h8uXtpnNGpomYV3AhkgKico7vNOSxy6q\nLqJyiKhczPRJpskm0QF0FmucBoMilPsPLb+WbNNRVWF8XXhEjHJuOVvbOl+cWgcO7OcDP/m3+MKX\nH+HBs4+xdfgQxzcPk2KiFTKDM5IV3yYDAd7713+I+9713qUs1m+561X8wx95I51mzEl5cSSEjpAC\nmKQi+BCTBGd7PiU/F5guRDz1DjxrsZWTLstaNoy1hAhBMSemVMqa0TkKmqXVNAsWiwWLhTi1Yoys\nr6+zf/9+vPelNHFnZ4ednRltF0SSYVRjnKMLgXnT6fcJ3//u73w9ly7PmAfDbbdvcuvthzHG4isp\ng8Y6uqBBTrXhRTZAtCxz1Ydkmcp3+aqi8p56VDPWgGJVVxJIrKSzrCSk9NhV7uCUbiywqFjVNs0N\nrJFnP24+pxZ9CuTQyMv/ljlDyXYwqDDxStmcvsGYVUPwmbrd8waef0YiKhjaEEjRkNK1Mx3OPfEV\nbj2wgcHgvJGW6iECLdY6yXRoJdOh05PN1MqoISXfPogUZobRVwRQtEXikFSZQqzE4Op7kiWMdH3I\nkVTyUzYuIRlLtPAP3vlDvONd7+MjA8/7N9/9Gv7+299CN8h60ARVjDH8zNvezNve/QtLovTfcvfd\n/Mzbvn/QhjYVAMrntHq9UaLc58in/vwzcchCD6LGLA/ydKRBpDAVo7zrAl2bo4VdIVgxBozxgCsi\nuaIBEYtxGEIqQJQJlTz3Og+j8YS/+r/8BS4+vc0TX7nMHYc22dzcwlUjrK81QpiFJI0KPg4MQ2eV\nXEl3Fp8JlpKsOpMtTXmvctq7cRp5Wl4Tw7ErSCmB7KOEe6nvz3SUjTKXEK7ez6hBkUz5OZedSMaD\nriGTEQ563FKi+4wNQxQk+j9HEm0n2FkZw9iPmHdv0feIA9qY+zi1dYQD+9YJKi6atHUzXSAlqJq2\nrCHJdsg2npGMh1x+ZDP+5MymzK7UHxLzaQ5xqz/mjF2QHfFGM7kopFTKFNGuZXrqxgqBM8vGY0r9\n67IcjdHvkUhlKtdMvjPpVPbzn/oX9CRK/zb4szq0Bn/sT4resZXxyxTRUiEtFMzK+CVC78t6NIJf\ngmHeV30KuTHaxj4SOinfKdg1cGjlVvc5g6tDy8qqGvwYV430UeP8SHBL95KMWRm/Cm7pc8at/FzX\nPYZVvscvn0t2dsGvpWm7GsFaMgJTIeZ748bGzci9mhTZjg3wq+ya9fD4Uxy+9cBNx71Obh3hda/5\nJj62S+bCN9/9GrYOb0q2aVrmXseObPGtr3oNH90lmPgtd2swsczmi5N73XrwIC89eZrPn1ku47H2\nrbzspXdx8vRL97jXi3D4qhJdrLIirj9Wp1f4mxg/pfzuOWwiux1Fz+x2d7pOJxOaNuFMwJuAqUTv\nqapqktlh0SxYzOc0iwbrLFXlsAaStaqTnrmIspcB90sJAlEcdmjJnbM4Y6XpS9fvmzlA4YzHQcnE\nch6cF11OcTJLs5loRI+q8A5rOHH0KFtHtoocgrHgpH8z2d0UQiTGjvF4wq/8r+/kgUce5svnznLy\nyCGOHz5EQnRAy4gQu4QxlqoSLTRnJMvfpAhqWxqs/N0a5c3SRMSAxFGNFe1aL41trHMFE3KH1i7G\nZR4WAkTJ9F0sFswXC3Vszem6hrqu2bdvnclkDMBi0bCzM2dnZ0bTdoIvyqES0HbCn2OC+aJltjPD\nOc/WkU3qyQZ2tI6tx+pMFx6G9YQEbRfVKZ/1L73ilj4qT1V56ko7aVaeuq56/SzvcH6QmV2s92c/\nQuiWr9ULMG4+p5bpy3eMHU5wWnm6EmgyEenf0m8MheA+j5tEQtKee8y4CkiNRyyaDmqvtaqJJNCC\nC92StkAWsiuGbeEPBmsSMfOLJQNqSPxMbloopKOcb/a+yiOmDKxZyDQfcyYq/VxaAwc29vH+v/vj\nPPjwWc6cfZRjm+J5N3nj3WVa96+v8YG//Q4ePHuWM4+d48TmHZzUrmTDLK3CEQffKeeWelI12Kd6\nmpwK8+prqbPtn0oUNKQcIeyNt5z23rRZnLRVHYeBwaoGcAxZYLYnVzlSmIlaCtLRh5RUr9WIY6Py\nbG1ucuzEFFeP8dUYX4/xVV1KqEqUcPBs1SjM5Kpv8ZtJViXP3uOdPJx1y1k/K4Tq+t72nkwt6zpk\nx8EewbreKPiVSzFWjbLy49XmMi/s3ogb3I3P01EmcoZm0Ou7MaoxZsGs7R3Qm7fdzp957d3M5o1E\n6WptDR0TIKnZbaclbZ3gWF6G+cwzdhkUu1KfvbXs+BEDsNjBCkpGsx5Msbis+ugMUeGjOMjVyO7x\ny/TNuDMWFvDoCxeH051/NMM/rGKtIb8LGAgo53OhJ5JL2DXAr5SxWt+kyl5li8p7izizKCn/WSC+\nUbHrphGHVoyhj6jl70kDDZsuO7WycUmPXyEqWROT2xkkyusdtqqw9QhXTwS39DHw1pGwGh3tnVq9\nY0tExHN5TuWzgehVf2ZZmPRqzqzrazmo3kWKS6U7Qyfm3rj2uBm5V9aouWrp9IUnObhv/abkXu/5\n0fv4kZ9+Hx/+T8MSntfw03/9XqVOy9clj3e/7c287d0/v9zh+u5X8Z63/0ARWX6xc697vus7+c1/\n+Xt8dqAP+PKX3c2bfuA+pmvre9zrRTi8dtyVkefrBo304gxSrc6UMwDj9d/7DIbJHCZ5YDmICPdy\ny8Z+nPEsFgGHpXJRgj0YcdgZaNqGnfkO83aG7yzGVFhrCM7J/WcHmJQG3Ej5QVIeYUD2eHVCGy1F\nTKB+alP2Y7DYSvSfiJK5ZYEUAqETpwwh0tmAUzyISUTyJRAikgA5MJu5l7w/kGKiwuOd5dTWJqeP\n3LYcFMmYCohavBcNNXXOkAIptPKc2ZVNiJ9KjiVqeXK+3hQNSQ/GEZPVzFLBq071RyOAZo2GkAht\np6L9c2azHWbzbdpujq8t+zbWmK6NsU5KBBfzlp2dhvm8I0QDxpNMTcRr98RA7Dq6tmWxs4MJgX1r\n64wnEzpjcfWY0XQf4+mUuh5J907nSVjaEIkp7xdW/00dWs7gvBWHe+VL9mldy5xJl0NxaDkNJAoD\nHdTUP4uxWLywpYdwkzq1cgnGblGONPhBolys4P3VQGwYYX/uG4SYdfmYLZ6KLq1kOnAvm7ffzrga\nMV+0WGuonAekFtiSaENXDMO2a0t2R87aMDZHDYVkSA3wQIs5n7JZNgpNWbumpMWbko+AgF2Zhmyo\n0RMUBXk5TzmWlODUsU1ObB0id8WQd+dCxmUinGOSJ48c4tTWoWWSNCTBpj8Fmc+09Pei/2CWbNJ+\nlLlQEzVl8eMc0UtFS0OMwtgTq6Zl0TSE0KkoHmVTiClBjgx2mh0RlKAljRQmilGYQkfO9LDOgHO4\nymPrGjsa40dTqtGYaiQGYn/g+WHLz0VbxvXp8L48C8FySrScc0KqStmIxpp1Qm84Bb4Q0thr0qzO\n9d645ujxy5R7fTh9q/h1PcJa5l8Nw95AfO7HmvErpUQbEwcnY25bn+Arzx237mfr8O10XWRn1kAy\nmtYs5XApie5Elw1DNQ7V1VFwyqSMYdkGGmybLDN0JAAAIABJREFUxRYy9P/Xvyf9PZnBvSw/S8bV\n4J7ORlr+koEhZhk4vRKDDmWKXeXmzs6zfBylMJtSijT4jlXsIp+fOrlQR95Qu6aUK6bVy2cUawe4\nMzQGS2lNLCL9bSPY1TQNrZbtQJL9Q69p7uy1lOVQynbUMAxCLFPoIIlBby1i3C1h14Rq8LiyLslk\nJlwyFTOGCUZlzHIlKyt3OPQD/DLGFqeCzOkNGiW6NlLOaMsZjXvYdcPjZuRePQ7sHlAc1/VNy70O\nbqzzgZ/8cR545CxnHnmMY5uHOb55fe61f32qwcRHOfPYo5xUPcCvJe51YN8ab/2+7+XC0zMef3qb\nI0eOc/T4yT3u9SIela9wTsoPc6LkM5lAU/Z1Uxqy9E7z529IVqcBtoHe6eqM5/Z9t3L+/JNUrsJh\nqatI5ZNoYVmLr7wIxs+2mc13GI1rnLPE6CSzTO83ayCoQ8qaqLilpYgpkqDc473/r29qJDxAMrjy\nvpywhCQLzyQpH3TW4q0jZSROkdh1or2a8vRr5mYMxCAFcxZZczFGonKPGCAZl+ObUgoJwglsHxhw\nxsq1Vi5hDCWoJ/xLHHtWs9CSQYTtkdLFmISXWYxKTqidq//LTXWE12ozHNMHCNumYz6TssP5bMZ8\nvgMmsra2xtr6BOctXdexmAe2d+bMZg1tm7CuBueJeNpgiCHRNR3dfMZi5zImdBxc28d4fUKwBqzH\njyaMphtM1teoqtFgb3aMNHiQ+aNxgwxTZ3rsUlkHqw0R6pIV77Q0X7NLB2T1hnnXyljM95xaVw6T\n09kHdZ1p6WlpXK0YZ6lGfRgpHDKz5zgSaFN48M5BnNHFHqQObuznm15+J9uzhZAq7wm1EG+DLCLX\n2SWj0GkqoLOWGJVUJY0AalqsBAMLC+k30PzF8jKWsiUG/+0W4MuaNSn/PCBAOfiYjBiFWDUOjb6j\nGOapfH3/DT3pWopgGQYbP4P3Jv3uVIhWNgZze2hhgLKgS2tpM+zgmDDqlS8lNTFpxzAV98uZDm3u\nGBZkA1Owg55kFGMyRLquj0LGlKOFA2JlnXQJyYadZjrY0ZhqPKEeT6nH4txicA0zwcrE1uYOerkr\nXmm1avu2q8N/t060aGyfRvrMgSkNDMNYjOs9y/DGRybWPX4tr4brvHlppMH8Z5PwBj/puiN/QlaM\nWMRIajvq5PC1pYtwaWdBVc8xCB7VlafymhEjS7QYhsNsh2DUscHAMEQMxZgNxJyZZfJ9ryxU2agx\nQ/waIhhcATnZaWWzoHyPX8sy+xlL8vEPMSu/ErKJNnx3zkQZaggtObcyIuduO/IxA90teU0anOaS\ng8yYUpZKkvLQEAclgcUxNSg7bBo1ClslqkkzpnqnVox9plbXxWIMZrt4mKll0JJDI3hjvTi13GiM\nH2LXeNrf27thVy6/1eyrIW7ZIX6Vf1esy3OLfcbYlff6mJY1afbGMxg3I/cyFktFTFdmPRy65VYq\nX7Fo2puae50+eoRTR4+UfflGudfJI4c4deT2Jd71tca9jm3dyok791GN1/a414t8OO/lXswOwZV/\n7/dhGVGdh7Ln5OYOvWM3vUDXIH+frLiKjCuVMTz1lW0effQC0/GEyjoqb3HWMaplP67HI+ZNw+XZ\nNpe3L7O2tsa4Hun5RIKRDGwRvHeSjWRiKRXPt2XWfcMY6WIYk8guWMU8Y/pqAw3QxhBJSiAM4Ixl\nVHm8dcIjkyFqYwfJmjQl9lUc8SYWDCYF/V7Ndk9S2pdMkn/T7orGpaL1BKJBm/U35XrHJX5srQi/\nW+cw1tJF6cy9FOxSoDYFC3OWfCrcScoikzSmUKc8MbFoGnZmMxGGXywIITIaV0wmE5xzxBDo2sDl\ny3O2L89oFi1gsXWFrWtCMoKFbaBrW5rZDt18xnQy4paNNUzludxEvPeMRlNG03Um03Xqui57szFG\nS2PltE1uTOXcINNUnVrZ6Z4zs4zFJofD4ozDosFE89yytEC6PL7Q46ZzauVoYRFZNv0md8W4Ckkq\nUasBHi1FCp8PnBpwtITok3jnqNwY7ywH9+/j8K0HaJqOnZ0F3jnqqhKRUpuwUYJDVjf5tmtpV4iV\nM5lUZRDMTEK+1WYwzhwItTT1D0Oj0IB8lvwDVjtk2HwWamQK8OsiHxiGRfKGhIlGjFNL32hEJ6I3\n46Wtbkm0N1kyZkiwslE7vIZiFMp75Hzi8MOLUSj/lsqZ98ardCtJhfRko1BEkkXPIevQ5KihGWr9\n5E1NCUav6SCfI6RKvftxOa3WIuU7zhoVTPY4NQyr8YTRZKLEalKiQnmCChEaGoZ2YBwO/3bFwyxF\nM/IaeCbkatdo4SAFfs9GvIFxBX7Jn4f4dQVspeHbrzQmM0lIaeXFz2UM8CsYIGjr5pgwtmE0axjV\nc+qqwllL5R2jusZXERtTCWx3QVqzt+poyZ3QnLWEgkF6P1pKVCxlZ5TacEu5BoMfilMr9T8X2Elp\nIHKvCFmMwiwo37umjDqLUjIFlwRc0hJ2FQeXKX6ngllL+9KKU6vMaHbSZYNQd59k5HuzY6uHzeE1\nV8Mm45dmV3Wapi9dw9qlDJMsZisYOyRnkRAGmjRdJCTFc13rKUZIEZOkdbMkmGpWXuWxVY0bjcQh\nP5kyGk+pJ2sDXNF5oExUr8uUSVTBLDf4eRm7JBr77LGLwfmUDmKpd67sGYfXHzcr9xIyvkNMfUBx\nY20f33j62B73Yo977XGvr42Rux+mlDKpKJd4OH39dRlmYWWs66/Frrj3HMfqZ/YokUgRduYNj1/8\nCgc2nmJUVThnNDPQ4p3DVyOM22E2n3N5+zIHmgNMJxPV/1IeoE6yaPInS2aq1Xu7BJSclBKGfK7W\n9H0hTc5uF0eQQdZzgUGdW8kcAoc47GPBrl6rTtZqJDhD7IwEnUIkdQFDEmkC50Tj1ECKnZRH5rWs\nHCJfNxHQzw4tQR4RxBcPWnboGCcZZDHE4gAy6FrNa9tp2d2Ad5e1GJN0ZM3bVhIR9NnODtvb21ze\n3qbrOqqqYjyeSHkglq6LzOYt29vi9IoJ1euiz5zvOrq2oW0WtM2CunIc2L/B2mTErJNMuFFVM5lM\nmE6mTKdr1HVd8CYlNJNQrl3hXIpTRn/Pzr+MT8NnZ8U5/4yz4q8x9soPdxn9xF8vWrs74Fz5lj5a\n2McVnwlY3diFlptLvKXOOkyC2byh9jO8kxrXyotxWIwGb3G5vXHTifAfahS6QReoZLDJ9oALpWVy\nLqPBXIney2a0IFG2i5f+TY0SZxCtgcEjG4YlW0u1DGyk977rI3cTyyZqJiqGpJ7/3uufCV5/6Bkp\n9Q89Q1u6AsqnrrjOS5EAo8QqJULoRUS7MCBUjQqThqiEQT64RFBiJk0DQhU0MpiyACqYFLEmYZ1R\nkURXwNI5Jx01qgo/GlGNRtrCfkQ1qsuZDQlVIcQFpMwVJKr8TTsOleh67wJ4lmM5WjhsX7s3bmxc\niV9XXg1jVshNuc9XX5uyR2vw+zM6mht7mcJD3sy7EGnaltl8oR11DN4JdhmLRqwFo7ou0rZBSkmq\nRkiDkdfbKILuxlhsEmMokUqmUnZmlVPK8zA4TbHb0jIG5BnRssNsC+WU9l64vM+/SsiatVFIVbQs\nYRe2F43PMqPFoYUpkbBhlhbktZuPduCpKq9JegZyJMn0GRz5M9LgOqcUy/xkozDGROjUAG+7gmEh\nZANoSEh0X9CuYFK+k4ldzmaiOH6sEkJrXDHOcrTPe4+rK3wt2FUrdo3q0eD883n385G7oC0RrSGO\nmR7D8l7QG4TPbgwzg1KMe9laz2LcrNwLoHIeg3Cr/WtTbj2wQdO0XN6e7XGvPe61x72+BobXzns3\nOjLfAVbWQ+9gzI6c53Psfk1lrYcgduPFJ59mVFd4ZxnXNVXlxWljLL6q2ZnNuLS9w/b2DuN6jNVS\nPglKOZI1xCilenIeAYNRTThXHB+YhE2OSFBOkOUjbH+s6mBKMZA1x/Iei2JmAozzGOvASoaUccLB\noq7/FCypcipIH4lOiE6lunRJiUvopFWjc7bo2WU9xBhTgahybIiOHs4BSbBby1CjznXWCkNxULK4\nXL83pZgTxwgp9dnwXdCOqJ5oEm3bMJvNmG3v0CxaqtoznY6YjMdY44kR4cPzhrZpSTHhrHSFTMnQ\nLBq6GOnajma+QzufUXvLLRtr7N+3Jo660GKtNKYYT8ZMphMmk0lxauUsrezUktNaDiaaVdwaOLSG\nr83Zb8/Tjc1isXj+Pu8q46ZzagEMa2hvzHs43IEHhkUmVdmsyaziBRopSWQrhETTdsznDd7mxWmp\nVSi3qhxV5fB4nEu0XaBpWxaNlCk6J1756ALRWCyWaCImazGIVTzoILg8FaYcz9LRaSQtkWehRNqU\nxGRdF2NN6QYz/I4ExGiwUVPg1RjUXHBIpnz+qsxNL6C5C2EedmYbGotGztHqvPb0MIOa0ohCmiMp\nWZIRsM0GoaSoi3e8bTvRoWlbui4QYizzVJwQaZAlEVJPrPJnZd0WTZ11JuGtwRtXwNJYERytKo+v\na/xICFVuZ1+NRixRRiVU+R5eMvo0gpy1mq7orlP0m8xzo1Upb+ZJ2/sOC0yGzpW9cbWR7/HeOHy2\nnzTAqxVym8t7ns+RsctouVrTdMzmTXFQSbaDkIuMXyBp1G3X0TQtlW9w+vrgpSSj6PFpWnpCnVsm\n302plK4MfUNLvw9+We5oJ2iQjbacpTUULS/lMwhUJcWuGI2mTAyMw2wYJjR7IBuBmTT0zpelMTQM\ns3GkL4tJj1GPYZDM0X9Oyk4ZdeGZrBvTdwwLQbqFFexqO7oQ8mHrp1mBrxiLwHLGr2Xc6stbjEl4\nCz7fs1bwyzrbdy0c1QW78mMVw5f0egaZV2aVUO2GX9mx9Rywi4JdsRdaXrl39sb1x83MvYwxWETQ\nd4977XGvPe71tTV8JULZcP3ZujJjiqXr2mtSZoGG53csrcMlSiPi6pe3dzh3PuFsYjKpqWrPiAqw\nGFeRzIL5fMHl7W0pVfSeVHmSluQZYwjBiBYXGY+i7o8ax9PjsM6KI7oLsr6tVS09I9ntCYgByfiS\nuQshkCJY56Vbs3VUozHW+eIcw9mScQ4B46Q00FnpOBg7S9equHvqJ8OahNfMNBE595qdlAiIdlYM\nQcomE1iXuZk4tTLnSAZMVIH9ZPvSw9IIJRGi4BBGuiZm3tUFmStrhVe2XcvOzozLly+zfXmbpmlx\nzjMejRmNanF6RUMIgcW8YbFoBaNs3021i5G2bVk0LYvFnLDYobaJW9Y3OLixRuUcTeiw1lC7qmSA\nTSYTwa2qKvdNCeAN7mPnemfikpNrwL/yvbf6t+djJGAxnz1vn3e1cdM5tcpkq1F4hQEB/e56LbAR\n64liFC6Rq+d/FIMNiUw1bcfMLsie48qLUVjXnhArOQxr1SgMNG2HXzQ4K6KUlfeEGFWHhuVoYUIN\nwbztDYjl8PyWjMPBP6xMw1L2gTEKUkquWC7hsSaSLCTNeCgROmtVQLD/PjEKhTAMI4XWZG2JQVp1\n/v6BYYi+XxuXkkt3zOB0GRrHCRJRjg0K+SnRQu0y0TQtXdtq+9G4RNAyy0wpFHAbGoepkCt5GCug\nWjlD7WyJVKAkq/Keqq6p6kyspD1rpXXwef6H16wvbRqSp93bRC/9vLJWnjlg9ZkO2TB8oY2RF9u4\nkUyt4QZ+5QcMl+2qYag49gJcjnypI2JELBopJUwxUjnR0xrVXkRJUyWEIeNXG2h8i29sia5VQTrZ\nROMG5WD0slmpN+wig+LDIYatWIiyTpf+VHCr4Jc6UophWOZStTZsbxxqDSNY1doZpGMUOMzPZtgJ\nKF+dlYNawq/s3Bp83sDYpGB4T7Dz/pGiGWjGZH0HLTtsRRw+dIHQSaaWTFXvSUspi8on1dFaMQxz\nBBpp6e2tYJezTuZNI52V99QFu8ZLTq1yuivGYe/Uujp+MXAUPl+p7yVTKxuEabjv740bGXvca497\n7XGvPe51sw7vK9nDbngsz+3QCZAdJ3l//f9jDJges/mCtplhTWQ6GVPXHuPWJNvU1xhTMZs3PP30\nZfZN1xiPRpJlWik2pfwsJXzYrAYo59bFgNU8+OwMt96VKYmAI2fVJ0gRo9pXeakaB9ZrlqTzOG8x\nknIq2GJFbKIL4lwyxghOOXBYopG1HrtATJJJljQrzHunGZhJH0YDC0a5jHQ5lDXoMNbgrMdk3Xs9\nziSdgiRgGNR5NlhbMWSEE2mGmADNUnPWkjA0XWC2M+PprzzNpae/wmx7B1JiMh4zHo/xzkMSbbJm\nEZjPW9o2iMPNOgyWoPtM0zQ0i4ZmLg6tW/dvcNuBdcbe0HUd4tRz4tCaTplOp0zGE8bj8VJW1XJn\n1OW9mwH/2i1ANfw9B4OerzHfKz+8chQP41J73JUXFZwx5NKU5ceg6GRArjLBurGU3qFBurtxujpk\nvWi9qxoUjWmZLxpmswWjSmqBJ+ORRMqNpEH6tsO5VjpJOIkodlVHCF5rodUYNMvkiiSZACb1c0BK\npXNY/juD3wEt7+lJTC8QihIqysaey2Xytp2MRZpSRAyWpOoQxCgd3guxWjUKe+OwtwszE1yxZDNZ\nysCUZ1dPWjCpNyrz3p+NcjFge4970NapXTcQtQ5B9WQgk8cYZY5STMQ2ENtA6jpSGBhMCWySaEJy\nBm+h9pbKW2pnSNaRjDwkFV5b2dc1VSWtVCtNqZU5WrmvMmlcIVdLPw/ed7XnZzNytDCt6Drkv++N\n64+l1N58za54TXbK6NpTYr+MMgPMyvf9DRFcs/Kcf77efZE3uUG0qgs0BuaLhp2dOZUXMe8Qpc2x\nsRbXBpwT/LLW4l1F5Tu6KtA5h4FiHApZzFla0mHIDvBCDJxU/EQF1zKeKLb1xYgJsNkWUlFSU05X\nuEn+RV8eLbaYaipME5HywwGr7I3CZdwqWpqqy5X1ZYbzmFame3CKvfMFlrKJhpiWkhGh5ZAkVT1E\n2q4tYvxdF6RjYV6TA40ZSJLa3wZi24l2RUyiuZq0axG55NBQe0vtxSi01pKMI6px6BS7fC7jqSq8\nr74qsYsBdsVh6U75+x5+XW/sca897rXHvfa413AYY34M+B+AlwEz4KPAO1NKn1t53d8B/hpwAPgI\n8KaU0hcG/z4C3g38z8AI+F3gzSml88/XsXrvRbvoWYziBMhrLg27H77w8z9clsmIhmazWHDx4pNM\npyPpcug9a2sTrJV9eDYT3aadnRlrE83W8qIRNXTQiQPKaUdXCfSFGOikN4PqoNrlc1eMNHkeYsAN\nOFxUTb2IZHvHFOjaBaaTYKK1ImeAMVjvBNZSygAo55wMVVWTXJTvDIFIwtqspSUZWFh9nxkcb3KK\nXokCtPT+KnGqyfdE9LOjIFTWZ80cLJczdxEwouGVrCFF6ZC7WDTM53MWzYLFoiGmyMjX1NUI52qM\n0RLLLtE2HW0TCCGJQ8t60eZqG5rFgsV8Qde11BYObqxx2y0H2JhUpK4hiQiaZI5Zx2g8YTyZMBpL\nlpZzblcuU5odqAO+jxHsjlur7xs6xp7r2Cs/3GUsGYXZMLwiDgJ5M14KlMOAhGWDsNfWyBvw4Gm3\nI7jO79d6nxqGZMMwEoKhaTpJFXUCEiEEyXTQDlPOduSuU957qraiVuNF6pt1gesmF9XoKqtXF3Im\nUoIdeXUr0VyapyGhgSIqumRBCriWDIBsOUYRFBYBwNyGJ/UTn/lauR59JzBs/zH9ZeqPpc9CKVSq\n/K+QKX3OqaQpvw+NrujvKTHoFhZoVaC06zppIR1iP2+Yku6dUiKFSGwCsW1JbafRmh6MnevFRCtn\nJJPFGmpnCMYRjSVgoUQwKn14bWPvS+thmf/dyJUS3Uyq5IW7AtTz42nvDZBCrsqGvmcQ3uhYTvu9\nCn5lq2HowFl6aNYQIuLdW1Nkb9gzOaIbfmVCjSkYaKEYFk3HbL6QiJ92pEpQDAeb8cs6qqqlbitZ\nZ87icESLZkhZdeiZ4nCIha/I70MHFhnHoDcWyzllvNFMApOK6PwVNjHoGjJSHlMiXoJfyQxfiH7I\n8GAGn2t3xy4Ghl4/n9kgGawrxZhsAJbXFWwzpUtPFwS3sh5N13aKX0E/D7LiTizZSZHQdOLQalo1\nHvs9wuZW11pqVWuWQ+UMGEvAgbFEzdayzi85s7LIbD9V18Gu/JoXFLvo51W1eMq+v4ddNzz2uNce\n99rjXpRJ2uNeAHwr8D7gPyL25E8B/8YY8/KU0gzAGPNO4F7gLwEPAn8X+F19TaOf817gzwLfDTwN\n/Dzwf+rnPy/D+0pKUE2/r+Zhdvn5Sqow6PqZxJEj1+GZjsGnphu7P8qVNoZcuh9i4tL2DufPX2Si\n5WfWOsaTMc6PSGmuAccZs7UFdV1TV56cGdtjrymNIqwx2llZXmMwyocUTzLIIa7z7NQiBjCS8RQx\n4lxXB5f4qSyp1eN3XrS9kinlwMZmDitrvFNekh1uJIoelDURleMaOJZlloxBuyYb5Y+xOKty6W5M\nygXTQI4ha1AhmM4Qt6LOkbXkrC/Rlu1oFi2L+VycWosFicSoHjGutRwQQ9cllYZoaZqOros9lwvS\n4XA+n7GYzwlty2hUc/DABrfuX2ffdIQ3kaDgLAFNg8HiqhGVr/Cu1xVbzdBauuvyzWvt0g1/Nbx6\nPjO08lh8tXU/NMb8BPATK3/+bErpGwavuaZH/rkOY7Iqf1/CY8xu1GpADJYefbp03ihylLCE2Ppv\nY/dNYzdydb0bQIE0G4UpScTQZNFlg0mRFDrJcnAOq5tt0TIxlqrqqKuOrg10VafdXKRkRrIdcsQw\n9ZxGCZbwooHxm/++YjjDClCwkiWyugMMNviUGZL0jRUx5qVshWF0NxMuOYBS0WCWP16QRwni8JKk\nYUbDkFyl4mHP5Ap9juU9iA5N1nJoB5HCLhSRw9y+NmW9Bm1vn9qO2HSkppHjGMyDc14IVSUtd701\nVNbgncHg6JIlovoOTjIecqZDJlVXI1blbhyQq+FrXkhQyvfVUITwZslw+GrALv0Oafdtl7Vpdscv\ngN5wNEYD9fnfs2MrE5QhVu16Wcw1nm8Ev/pyl5hEG7Aj0jQtOxZptxyDZBA4h69rrOuWDOG6qmgq\nWWOdD+I8CUacJCYL/A4i/AmRM9Dfs3PrmviV59OYbEYN/i2bWYPzUo2nlBJGsSvpdUlWsacstJX9\nJBuGemFWux4bxa6kBHAAXUvkcujQWvp5cAbFaIS+Y1in2NVKh7bQSXtqg9F5yaWKse/ykx1aTSsp\n94PbwFpPlXXRvKOyUr7jrRGh6mRJZLFXr3uUYlc2Dl1/l14du4AVzHpBCZXeK8sCy9nx99U/vhrw\na4977XGvPe6VJ2aPe8lxpf9m+Lsx5i8D54FvAj6sf/4h4H9LKf0rfc1fAs4B3wX8U2PMBvBXgL+Y\nUvqQvub7gM8YY/54Suk/PB/H6r0v5YdZvHx15Hs+8xyHIZA7kSbpAkyA1JFiB8/JqbWKXde+nql4\nnbNzxdIuWp566hLj0eOMRiO8rzCuQmr/HE0b2N6ZsTObq+6SxzsnZxgNJkn5m+hmoVn2iWgG2lOp\nLxPO3UT7rC0U37RIL2ZGanTWIpWtsNYStOzNeY/1XrW5rDjUrQSbMOLE7oJ0QDR6rZzRjoXeQuqA\n0Ge860OOyaqfX/mcdq/O2CvNdaRhhdN13GdjxcI7if8fe28ebFmWnfX99nDOufdNOVRmzV2TultS\n09DQYhAg1MFgbMsylgMsqBAVwejAqNRYf5gIHJhowja2IZAIhw0SIIfAWE3YNBhjRUsOyyAhIwwW\nhFqtVkuWurpLXVPOme+9e+8Z9t7+Y629z7n3vZeVVVld+Sr67Yyb97477jN9+1trfWst+dKcJi3c\nyGCsPDcMga7tWC5XLFYrlsslbdtiQJyHWrRdSjyIQ2u5XNF1nS6PlojUQW1XS7p2QQo9W03DhQvn\nuHzpAjuzGpcGTIiAHJeQDNE4Kt/g6wY3cdROVVcnnkMguH/M2+7l8/c30ulzaun4LPA7GXfLkF+4\nR4/8fQ0JRB1N3zlyMMrZSV6312FEo9ZraodsMJ386yf//SYedyn+O6F3SbooWK05s6IlhYEw9Bgr\nnVmqpsHX1VoNnrqqaOpMAkKRYUYn9RTk+pOid1nJmYlTiRIC2rOd7Hkv+7HsSwEIrHjxJy+ub/qE\nVOUogtRxMBRpRLlRDERTvkPnk0mVFbJ1hCZnzrtGpqakat0olIKHk2hhkghE5pMxoZHCsWPYVOmQ\nUsIy1j3K0cUwRGI/QDdA10Pbj6TQGowzOOOovaGpxTD0RuWyav2m5AhJatNYJwAvSgcl0hvESvbz\n+h5ZO003dtZJwHT/gDUxuifGYSZc74HxQLFLf4fSAlyvF8Mxi0kaH2xeflOjMB+L6bF5a5a6/u7d\n8Mus/5Gvu1xXput6MQqHgRgHSdupKqrZDKdOLVGlWdpqEPzqB7k2rCFao+cTpGT1OjaKXRMnVErF\nSBTcQh1RG/hu7QSmUlEgTHbguF0T/BqVWoJ9KaURu9ZcYelY41KkG0d3WVLjdnJIyxMFt6bYRSrF\nVEeHViq4VbAojJ0Os9JhCIPUk8EUkoca8SFEQj9AF3j99atcuXqdy3s7XL54XmuNgcNRW0NTSZ0h\nb6VzkLMQscTkCEmM/GwUFrWDGoV20gZadsb9Y9f9j8n+3TAK3yPYBWfc6/i/z7jXVzX3euP2bd64\ns8/lh87x1KOXz7jXgx3nkV10A8AY8yzwKPBj+Q0ppTvGmP8H+M3A/wz8esQWnb7nF4wxL+t73hmn\nlqZo5XHcESkqS3GPEI3RZT0Vx5Z0kglyK06tt3J8p4Rh8/mjIzFe5xGjzWUc4DGpo2t7bt64TV3X\n+FmDm82oZjXJebouctgGDlcDs7anqnpV1HuSM5LShtTgigpWKYFxpvDSsmaGICrKmJtuUHzjTovH\nl5qoxpTaf/LYQpJgp/Fen5f6gAZDSo6zBKJtAAAgAElEQVRoVNWlRdmTQddqg/G542wkDpLOaK0R\nnFDcwoqCrey3qA5vizipJteJUR67tscTpBTJpf8TRn9fXo4CRAxRArmrdsViKQ7DVduSYsI7V5oR\nRK1VKg0wJBgShogxltevX+eNa9fZ3Zpxfl5jUs/OVsNDD13kwvnzUifNgQ1m0sgHQjIkU+GbLerZ\nFr6qSnC8bJvaGGWzJtutIaQjmLZ2Fn6FOFhK0Lans1D8kFK6esJrd/XIv70prg+DUbmi3kaqdJfP\njITBTBbtkotfDETK43xar4/pZWDKfO515ml8CEbzlG0uzinS975LdG3LarmiqiuRQgbxONtkaH1P\nW/Wsqp5KPe7WiOzaWPDGiHrAjgaf1vsrxKTcTwrmikp9JKmj0sGWVtLGKBAZgXgpFjttM20QWYUd\niZOm/STGfZo04pH3ikG2L1mDjWZN7WB0v4+8d/JN+r3FENRbUM97yAt/NgqVzOYOOZ1KQtu+p+tF\n5TDmVatvPAoxlUKmA2GQ1B079LgwYFPgyu193jg44JFLF3jskYeom4qm9tSVwzmrC2I+f1BAEaVD\nLqKYO/OMHdSmO+CdAZmcI/32PkwhUCmOdR3WDJjTPx4odun3jth1UvfDeyapo3H01nntplfm7j8z\neobyR0bnXCY+YRjoOyM1BpYrkV+nJGkxCRyGthrxy1nBCWsMzgmJyfiFKqBSNCpNz3PJlpE8LoVa\n83VixvmajE1YMFIgeIpXRzCMpH+PxCp/dzbcjOKNSZLSCIKd1oKJgmabl29xnuj/RcXP0VtAo6La\nhUg+MSkMr/g1hEDbDdqZrWcIQQsrZ5Vbls1rMWVVQty+s8/f/NSP8NmXXipz/NVPP82f/LbfwfbW\nFlXBLktVCXapaVmOuxjc/gh+Waf7c22JPHpu5UP0bo417CpGIQ9gJvc1zrhX+dYz7vXVzr0WywV/\n9f/4SX725ZfLnD/y/uf4T/7gt7K3Mz/jXu/yMLKBfwX4yZTS5/TpR5FJvrHx9jf0NYBHgC6ldOcu\n77nvkdMPJ/M98b1m837ieCZlJ4N0/Dser95svDl2TkdehWOS7odSr89ijYM4sFgsuXrtOn5WU21v\ncb66QHSOwTgWXeJg2TObawdqKyolayxDQrtRW3UuiULLIZ1dTVLfXb7oI1I8XTmdZB5YcJCSKQ0s\npJapB+OJWA1WGkKAkKSJg3OmdFg01mIx4iS00pHQGql/KOd7IKSEiZEQe1IccMnJhiTpApnVpok0\nqtJTmmBhEtGBdUXllY+cQHQu0xBGp3yhnpIqGGKi7wdWndbRalesVkuGIUg3aC8poPI9Evzoup6+\nGwghsVh1/MD/+qP8/EtfKMf2/U8+wR//d34bD188z6WHzrM135YjHqXzo3SOFUwdkiFaj59tU8/m\n+KrGufVi79mhdfz5nVPCH8w4rTW1PmCMeQVYAT8F/JmU0q/co0f+vkf2QuZo8CjVPuH94wfX/86L\n/Fp778nBfkvHfXMCJ01o4k1VKaOckKhRGOljoG07/GolebKI99oiEsyuGIUdldeuDs7gvZVuEMZI\n1D1pPnTeMi1cPJIrXRhz1NBM5phQcqTGIGIQJuMwxq2Rq2w0mhx5MGBMbj1vCnaLdF2MLFIsncSy\nksKgRqEah6MRlY4ci4QZIwIkccKTueJIqkKcqB30taDFSUNIYhD2kufc9QNZZiu/kYknIocdBoZB\nOvOkfqAaBg4OD/n+T/8En/mVXylz+7UfeI4//Qe/lVk9p6oFmLMBrqFc2V/WYUw2DP2EXOVk8buf\nSw/CMCSTWI3GZkP/PTQeKHbBBL8mUaqj8GGKY8ts3iZR92nUtkT+73pEpoYh3AtObX46z2/E4Vyz\nKTJEMfLaVYuvpEaJ8gmpSWOc4lfHqpLuh9YavDf4aEUOr11sSJOUwahn+5pjKxUpfMpGoRn3kS0G\nn2CXyY4sYzGMGLZeTEYNw5TXFaMpS+P6kFRZMtY1E/xKUeXpasRmg3DzQtVPHDEMUzYMM3alNBF0\nyO+P2JW7smn7574X8qfXZjZEk/bmDlq3oe97/vqnPs3nv3gL+DvANwM/wc+9/CLf94/+Mf/ZH/n3\nqSpPVXuqyuG9pjLFcd8bjHZg23BoaYqWKfvybufXgxgT7Jp0QHzrzuAHOs6418m/csLfR58/417v\nfe5FGPhrP/pP+bkv7zPFsp/95Rf53r/7af7ix58/417v/virwIeA3/qgJ3LcqDSd+K2M7IycOg2K\ncql4e96FoRfqlItYm/kJhCGwf+cQd+UqW3u7bO3u4KsajKPtA3cOFjSVl/qY3tBUnsoLXmUeEvV6\ntUka9BRFc4yYJMo1Y62ULNB0YGMMxknAzTiH81aV7g7UqSXY5QFTMMDZzLc0EKD8LWjKoXNWBbiB\nIQ70Qy9dqQ1E7QJoTCSFhE0Wwcm8rgStCRZLkCAZwTfddbpPJ9ttDSlaAlLEnZikdlZW0yXpCDkM\nA2030HYdbdex6lq6vgdjJDuhanAJUtBASd/Tti1d2xNC5Af+wY/wC1+6yRSzvvDKi/zQj/0Lvuc/\n/g625zWuyinXgRiHcp4FVWphPa6ZUTdzTZFfd9ROz9Oj48FixuoUph/+c+APAb8APAZ8AvgJY8yH\nuTeP/H2PqTGVW6gf74+UkeRDa0Zheb8aDExvb2GpOPrLdyPx66+JWlKLz5GQAsuBNETatisnqxho\nQqoq62irnrrqqCvpxOOskKoqBFxQQzmpBF7nmKstoAQyd8HJ257SpHaDoRC5EhFcUzNMjMO1v80E\nQLKnOOVfpsBxEmKVskGoZE/Vo9radZzkWuOwYiqO99HAmlEIpdBhLliduWPUTmHDEBiC1NPI0cK+\nH6DssYmxqbndQVtOD30PfY8Lge/79E8cIVWf+eUX+Z5Pfpq/9Kf+AJVXGWqI2hp2WtxV69IUlYNf\nS3V48/Pp3R0jH1+PFr6HDMMHjl0w4peZHOsjRzlNr5r1zxZHj74vFcyakty08ckT5nIPz5Sfymin\nb1kzDLVo6hADpIBvvUTarHbaweKto7Je8ctTVT3eO5wzVJWlDkG+M+r+2TipBLdS+aNgV1zfVwaD\nTaqY2lBlZedWUqMxG4ZyTdri88uXX8rFvBSPZF8rfq2hkBo6UfdLMVSz42t61NRJZsTYzcctTu6j\nGoUlBVGNQmlhHxiGSD8MxaHVdf3kGsyERq/RotLqeeWNq3zupS8iePUd+v7vIKbEz3zhBW7uH/D0\n45fx3uErUeHFoHMK2dA1GDPW1FpXO0yNwtODXbCBXWuFlt8z44Hj1xn3OuNep4V7vX79pgYTj2LZ\nT3/+Ba7cuMn7HnnojHu9S8MY898B3wL8tpTSa5OXXkd25iOs49MjwL+evKc2xuxtqLUe0ddOHN/9\n3d/NuXPn1p57/vnnef7554+813l/NLX0Hse0Bipkx9Y7tf/f7FwT3lGYhE14DyRD6iBIHQaGfuD2\nrQOuvnGNnfPneOihyzjnGVYtBwcLZpVj3nhmjaOrPd4bjLFFPWkmuc5RzzVUlSXKVlFTJetIWT2v\nzmrjrGYv53pfwv/QICI5ndgKP5vyBkDLTAQJACgYZrVVDFLWQhSWk8yAIGu4dFGUNMWYAjFJAqH4\nzDQVz4hSLCvi5Ufzc4mAxE6HBIN2JzLKzzCWmCQ1uu06Vm1P23YsVpJ2GFKkquqSvkyAhKjnu66j\n61r6vue1q9f4+S++xLH865de4MbigL3zW5ACKQ2QAiaFSTBOOCO2oq5nuKqRIvoTR9b0/DzOqbVB\nE48/297mSX0vStR7dWp98pOf5JOf/OTac7dv376nz74lp1ZK6Ucnf37WGPMvgC8B3w58/q181+a4\nZ3AyRi8cJRFHooA61+lHykezRWYmz43ezfK92jEmrVXGzN80vXHM/eavHvO0EZB0zlFVHkeCoLOW\nPBNi39MvV3QYOgy9sXJzjtY5IVVe0tt85TTVTS56ayMx2UnGdrHS5DcKsTJHJzaVtFtbCADWjY8z\nqTJqDDLeC5EVz35ST3zpex2R53SBnhZxTqhRaHINnElBWcNISPKnskGYGCXvUbsaxViihVF/Swpb\nR+22o7JQlb73vfxd6lkYA1qUNA6SSx60XlCKAWsSV+/c4WePI1Ux8f9+/gXeuHGLZx67rBFZXZZS\n0lIX4tQQMqXGvxakzfLdvIC92el03NgEpSnY3F/9hc1o4UiQTwLR+wGnd3J8JbEL3gq5EpyZ1qWR\nZydzPeb7p4uWIeNV/pwqpybFm/N1tvnb941fyGXorMV7wS8TAwQhAhZ1pHQ9nVlSYegxXFuseD1e\n5bFHLlH7R/He470Vo7B31LUHG+W6iCIlPzLblJ1bCKFb21/ZiWUm+KWYpSSrGIkF20ajUPahfO+6\ncmt6o6gPRsdjTh/Sr8tdg8Y2jaMBnvErFWQrKTsZr4KmHmanlpBLwY5+CGvF4TN29cOgxqkpvxWH\nIJ3ChkDUrmJXb97UPfbNG0f0YwBcu7PPB599DOespFQBRN3P+dpW7Ld2ahDq/i2pB6zj12nBroxf\nxWH43sAuOONeD5J7XV+seD1d4/HLl6jdI2fc6wFzL+cM1w8Odd8dj2WvXbvJM49dOuNe7wJ+qUPr\n3wM+llJ6efpaSuklY8zrSC3Az+j794DfhHQ4BPhppD7g7wT+gb7na4GnEEXqieN7v/d7+ehHP3pP\n88ypYceNvP/upnKZHssYI0GdxO/KSOI6Nha8h/m8xjeeZRpYLTpCkNM09D3Xr11ntrNNuwr03cC8\nrrmws8XhYsVie8ZW29BUvUBDU2HcgKu8qE/JztOkfCc77tTxlfHaahBQmzqkZET1qA0YMDlw6wq2\nY6VxQ0LTDZ3Dew8pyfUetcMhnhSDBvhiCfIZE0nauS87eVGnOgPSRTsFualTq3QEVCd/Ub8j2Jg5\nWASGlAgpO720ll/UVxP0/cBy1bFYrliuVqxWLX0IyoMcCakVSEiErqddtXRdxzB09N2KV17P/tnj\nMevV6zd47qnL9H1HjIM0JVCADiEpRjuqqqZutvBVTU4Zlbr2Upt2nfe/BfDi/jDqJOybXjddd29O\nreP4x7/6V/+Kb/iGb3jTz76d9MMyUkq3jTG/CLwf+Cfwph75E8e9gtMYLTTj4n4PB27NKNSLMkvp\ny72mUZC0+4M5brG4F1J1l3mgRqEz1JVn1tR4kyA4THQQA95aXIzQdupBNtxcrrh69TqPXH6IJ9zD\nrLzDeod3jqpy1FWFdUFTQyzWUfiOXTM0JnMuLZ1TiVLlRV+MQFno5bmJ4TKp8zCSnfF7UzEI9buS\nw1ohN5jc2pkcOxsjhynPRWZrtHChySxDQTWTqqjGoZCpbBBmmfuodogRrUMjhWH7QdNx1EiMg0Tz\nyjFKiPRTDcI4SEFIkxKVNzg8N5e54N0JAHXtJs8+cZkUlHiQ1hbOfL6NLW3tSPgzD944YtPxVqBn\nc8F+u2OMDmq0ML75LO4HnL6S453ELng7+CWG4XH4lSNR07+n96xhmBhUbg2/mNRSOTKDjRts/v6x\n86b4dSRl0FmayjOb1dgYIDpMcJgU8dZgh0BKK9oQ+Ne/9DJX7twq3/U1TzzJd/y7vwPnXXGM1X1Q\nvIhYm4pjy67NzYwnvq72xuo1ovtD7uW6YoJl2TjMjq2CY8VgU+MuH49kCxba5LTQcSZHUd+fCn6J\nA0hNIgOl3lb2eGWs0/fLvVl3Zk1xrBQGVSdMhL4XhdZQjEGpRZPCWMzUZENyGAp2STexxKMXd3Xn\n/QSjIx7gxwF49smHqSpPPi11lpN/lP1bUg5LjaXR8cfa3jl6dj0Q7CpGYVS11psrHU4rdsEZ93o3\nuNcqBH7mC1/m6v7oCHju8cd5/lt++xn3eoDcq7GWp554WD9xPJa979GHYIpfZ9wLeOfxyxjzV4Hn\ngd8DHBpjHtGXbqeUsgX7V4A/a4z5JaSJxX8OfBn4hwCaKv0DwPcYY24C+8B/C/zf6R3qfAhaU+tN\n0g+PM8ynx84YKR4+9D1hGE7gWF+Jkd0v0nF1Z2eLnbpiURluM7BaLhlipE+RO3f2ufLZX2bRfrZ8\n+vHLj/BvftM3sLM1Y2c+p668rNnWYJ2jqhNeNyUlVP2ZA1VBHTwZYbJaW9PzUizKK2Mdo8pUbFQB\nRAkyOuMwbiweL8pSVaEZSeMGcYw760jOE10gRqkZShqKGDwpQEmQahC8nVJEDT5Onb8xUjAyhShO\nLK1RGoZYFKZgCDExDJGEJcVE1w2sVj3LZctisaTvB4yz0lXTOFII9FE6s/ZtR6f1tlbLBavlgp0m\nn3vHY9bTTzykWeRZwSsziSlqfVRTnFpN00jHSiN7LyehZ35pdH+erpFOZfrh2jDG7CCk6m/do0f+\nvse6BH4jHeeE928+zhHC0oXMSpFbZ0diVRZ7M3qq9Vs2fvHeFqs16mEkbaeuHbOmorIGEwclVwNG\nrjTSMND2PZ/98hWuLg7Kdz3zyKP83n/jmzCVF4Ow8zRNwA0O6yLOaX0Ca4qEvEj/J5shETjKBTBG\nYF0xBItBODUQp8Rqsv0TMxy5OpN+LgFOJKbJkkwsMcKyhqQRhGASMSzkamJ8JokWiiefYgQOMbee\nVVI1vQ+MxEpVDmEIpcByDHE87imJ5HUYCH1PHAZRL1iLd5baOZ567LJO/ASAeuyS2nglNKvnlNHO\nO66oHUZytW5g5/Mm3eM59mbj7XjhTWF6eWEQo7DUdXgTw/C0jgeBXfq9Eym7PRa/7ubQyiTLqjLL\nuqmBKDfxvYixNH7Vcfh1b0bpJo03Bpy31LVnPquxKWLCIIZhCJgYIQRi3/OZ129wc1WxVkPg1Rf5\nn/73f8x/+Py3UtWeuhtomigOLZdwLuESUp9KiQoaOVszZU3GLzPBLnsEu0rEcEOtNV30R2FIxi4t\numwc2IRR/JJixsXyEVJbsEufVNwajVbGSwg1LBNr9WeKMZg2sUuidCGKUqvvAt3EoSXYlci1vsTg\nicRBSHcYeiyirHv80nk+/NwzfO6lF7X21seAH8fa7+I3fuhref9TksWWjSfiBnapV8A4UToY5yap\ntKNDa41UFmp2f+N+sCtHO3MEesSud2BiD2iccS+4+69P3/X2uNfPvX7ArbZmil0vvfYin/z0j/NH\nv/1bzrjXA+Jes7riufOP8xu+7gP89C++qLW4MpZ9nN/4q76Wpx97SBxiZ9zrKz3+BDLBf7Lx/B8G\n/jZASukvGmO2gO9HuiP+U+DfTutdWb8b0Uz+PaABfgT4zndyor66e/rh1AE5fbzJvWKMtF0nNd4S\nck2myfHK6qHxmyeP16/bex1p8r9zhu3tGQ/t7rLbODwDN28kDpcr+j5yJxkGauBvkHHrtWsv8qM/\n+dP8gW/97eysOpqmpqorqmAYQqLvI84FDWaBN4LJxhhisMRB6lQZ0IwAdN2XNdV6j/UVWFeutezo\nSsaSkjjabSXF+rNSWprbiBrLWanJFfuemHqwTuqCIdA09B39EDBIR1PpMmhKoMokbdpRdm9WmQtP\nC0E7GBqpAxtiZFCFWB9FSRo14EgS9WmMRjFMG/O0PV0r3VpTTBKUdV4aLIZA37YMq47QtSwWhxzs\n36FdrXDW8DVPPMKHn3uaz31xHbOc/Ti/6dd8Pc88fokY8j6W86k4sFNC6gFafN2ISusuTqt8vtyv\nM/2dHClBe9qcWsaYvwT8I0T2/gTw54Ee+Lv6lrt65N+JYVhXOkzJ9F3mvfa4GIV6YRRSpYqHlBIm\nTqOFOVw1zmL9/p4nD8gJ652lqjzNrKaxBhMdJgZMcIS2I6wGQtvxuTsrbg8zpsTqS1de5FM/9s/4\ng9/2u6nriqauaPuA90KqvNfIXEpaX2Z9rnp5ZMtwjKBmYrURGSzRw4kCotz0CzMQrIW70HQCq2Qp\nWdGIZpo5Is6EvI6EtpCqCZc15DoNso0xSQ50CJFBo4ZR03WmBmFQ4O77oJ13JEc6dzHJHT0KcRgG\nQt8Rhp7Q9zS1x9eVEKvG8+xTj/IbPvRBfvrz33UUoD78dTz7xGWCaoLTZMtQUr+mdnBTw3Bd/l7A\n6R0iV291pAQ5lSrp4pDz7UfZ+4NnVm82TgN26TyKI6CkH5qj77mb/H1d7TBRaylZl1bGloiQj0Lo\nx2/aeHzv55YxI37VtSi1XIqY4LAxkAbBrdC1HCxW3Fgt2EzRTSnxy19+gS+/fo3n6sdo6pquFxm3\nn0T6bQ67JU253JiIzHwDuzaUDUbTEMeOk1P8yoZa/tJxP5U6W9mhRRLsMrkfoH5IvWEx5s+LKkq+\nfkxRzMXnRQIvxEk6GUWGkMp9TjmUchaCW/nW95GuD9Ieehi03oR2DZvcYgyCXX1PGDpRn9QVzlo+\n/vt/F3/tU/+Yf/2LL5Rd+Zs+/PX8Nx///TSzSjr8hKhG6bhXUsrpO6J0SEWpNVkn9IikrOrQTz9o\n7BrTpaZKLTlO716k/f7GacCvrybudbBYcrNdIobhOnZ94ZUXeOX1a9T1Y2fc6wFwr2beMJvN+Asv\nPs+f+/7/hZ/62RHLvvHDX8dfePH3lXmfca+v9BzTyZb1+vs+gdQBPOn1FvguvX1Fxmb3w3sd03pa\nGc+cczTNjLqe0Q4tiVC4SDKpqKPX8aswlre3AcaQU4QrZ9nZnuHmntolvAWu3WIVlgwhIrGMddx6\n9eoLvPrGNfZ2d5nPB3wnuFUFCZi5PohSyhhRnQdJ9U1YogbNnCq4rFVlUEwkK/XKrPdyDUVVn1rl\nXsZROiNmR30phB6K6tBVgnsh9YSQpCu2quvynuy7jhAGwcasGo2yituoPYUyjuUyqVZTpZXTZFzs\ntTNhSDCoMl4yHIwqwywxGkIfaVWl1bUDcUgYLN5CZR02QeoDfd/RrVb0ywXtasn+/m0WB4fUlePi\nxUs8/ugj/Jff+Tz/1Q/+Q/75BLN+86/5VfzF7/52WS9S1LCE0bRLUY/FhKjbnKNuaqq6ZqyBdtLp\ncnocWnm07SlzagFPAj8EPARcBX4S+MaU0nW4Z4/8fY2pUZgXIuAIOZ0EoeTELtJ3g/eeummYb22x\ns7PL7s4eB7t77O6eI4ag3QpaWUi0zXBOGZlQtMn9PRqG+QvUSLNG2qFWlcMbRwV4k2gXKzpruTkM\n3Bpa4AfYBKgvvvYCL792hWf9YxIxrCu8tlX3gyNUEmVKQLJgTS5IKm1U0xqhGqXvdo1I5eig26hB\nk6MN08iWRrWSGnB5Y5V8WStkyNiEsVGjmGJwZHm5LNxjTnDZXZMDmolVdl6P6TppJFFTo3BQo3EY\nI4V9F6RFdBjEKAxBDcJQiBUp4gz4ymG8pWkqZk1NU9fMGrn9F//Rt/OJv/EpfuozE1L1q7+e//rF\n/0CUMhp5zDdRO4z55NYLqbLTc9ncx6L3FR8TJUgaFQ8wRrlO8Xjg2AUjftmslb4H/JIPAvpZ7z1N\n07C1vcXuzi4Hu7uCXzvnIEnb3K5rtbCk1k85Eb9O+vuEodaBUaWYs5baOnztqQyYEGi9ozOGm23e\ndcen6L7yxlUeuXyRuvI0TaXqDYf3kegUuSWfTi4NTEnnEfXDSDSL8s2O+EUhVWN9rVTq0agDJu/9\nyY4eI/TZsaW73yasTSQXSVIlWRVSBumaGDUiqbsqMcFBoyRsil8jdg0l/ZBSQyKERBhEAj+ESN9p\n2qEqtTJ2CTEMBbdSjFiidCJyNVXlmCluNU3NX/pTz3P11gFXbt7m2ccf5pnHL2Pt6KornR2n2JVP\nkbw2aFFUM20nnZVzp45MZeM9K7UmdWjSewK74BTg11cV91rl1uMnYNeVa1y+dOGMez0g7jXX++//\nT/8oL79xhV954zpPPXqRJx++qI75cMa9zsba8N4X9dHbHdZa5vM5Fy9e5LHHH6dfHXDrRmK1OCQE\nrQ2XMotYr7c1nltvXa2Vg2wmRa0xF/Hesds0zCtLJcDCna6HZc9JuPX6tZs8/ugj1LMG58byD1WQ\nc8oZUVYNqsySuoO2OOeNFeeVs1ZxQ9ZQKcLvwVisF8dXMo4YDcaJIxknmQNFlR7EIZW53RCkXmjf\n9ZAY+YW1VIpRpXMxuW5sdvAnItJIJzvmXfZqSe41QRWmBnluCIFuCCWFOmWMTYk+RFKAGC1tN7Bc\nrmiXK7quJw4Rb7wEZpIh9r10RWxXrA4PWRzcZrU4IISBna0ZD1++xGOPPcqlixfY3prxP3ziT/LK\nleu8/PpVnn7kIk89+hCRnj70qsqSI5ZiUsefpEQmVclXsxlVU4vTcGNMsSAHF0/TOHVOrZTS0ZYS\nR9/zCe7ikb/vMVEprLUQn85B/0/lr6SEXAiE855mNmN7a5vd3T0O9/Y4PDjH4cE+YRiwdgHJiByR\nqMXwdIHM0zjm0T2NTBBMJlYG7x0zb5l5R+MMC1VxDId3r9v02tXrPPzQBVFrNbXIa72jqiJ1iJRy\noBqttgicpmKETGXvY42LaZRwjAxOjELMeD8hSEWyC+RCr6PxiTh6bMK6UeIprvFJgbtMrrJhqO+T\nxWLdKCw3NQqHY+TvwxClW1gfxRic3HIB5agEq3QHihFnEcD3UkBx1jRCqGZCrmrvqSvP3/yzf5wv\nvXaFl1+/ylOPXuSZxy7JgrBGqibOCRDD0En3HePGjh4lTeF04VAZSQ1AicROSdUDntg9jFOBXeRI\n8WgYHkeiyzUlf5UIfDEMqwl+7e1xsH+Ow919Dvf2iSlh7ULl2kEN+XcIv/RyzdsxNQwFvyyOxEId\nHTt9D7f2OSlFt65qDhcrmrqimXWFZA3B46PilvqMMnZFk+vUWK05MzEK19RZua5Dxq6pwiEnJBly\nOk12bE272OfjY7AS9bOR5NTho10QM3aZtWs8ra0+IKlISe3OEbtygWUheOspPBTsGnrtGjZxaoW+\nnxiGA0kYmEb6EpWXej+Vq9QoVPxqGurKceHcDh/+midxVmpa5BNv0xlfSFJ2ZloLzmL8BLvsxEA/\npeCVnVhSnyKuFYp/L4xTgV9fRaML2XkAACAASURBVNxrt+3h5h1Owi7vPIeL1Rn3eoDcq65EQfvc\n4w/z3OOXgMQwrDuzzrjX2chjU6m17ii/+8jnSFVV7O3t8dhjj9EuF7g08HrtuHrlCoeHB4QQ1gJk\nd/v/rQ2DSZZEJAyy5jsLs1nNduOptbHL/qrlleV1Tsatipu3D6jqWjpSNxWzmSqBklGskZQ+YsRG\nKTVhFBtKAwoN1FlrRGnrRUmasjPdCOIlxS9xwFjRses1mb9LcCXRd5JuDJHGV1rfUxw71nmcjzgf\nCIN0ypZmD4YYHEPo1REXRY1b5bp5VoMiJsfcwGi9rOKIhyEq9llJN+yHSAwQhsRy2bFcdvStlHQg\nJbyz4jQLkT70tKsVh4f77N++xeH+TQyJixcu8L4nn+Dxxx7jwvk95rMGZ8EZwweefJgPPHGZIfSk\nGKQofExSciPjVpxwFTRg6BxVU+OqStfgk4OIp82hBe+BmloPYkyjhWwctHTM4ykVMnoRjkqHbXbb\nFYcHexzunuNw94C+G0hKquyqgxSINkIM79gKMjWarLFU3jObVew0FVu1XKgJ2F1taUPbEwDKOjEK\nm5r5rKGuKuoqFC+71FWYLPD5wsjEKBt/dkqqct0ZU16fFlge02/MSNxy61NQ8lNMOVU4qHGYlFSl\nJJLNYhSarBste2hqIAqBMyXSmg3COKlBsxkxLLL4EiUUozDkejS91JsRctUTw1CIFSniKoe3Ur9h\nPmuYzRrmeqvrCm+VFFvLB973MO9/4tKY272mdGA0EOWgq2EoC4EthuGUXJ0uMBo5ohqGa4WW3zuG\n4WkYI34ZvaZgPeouf059CQnK4mWsxVcVs9lM8Gu1x8GaYRhIUTq1tFYWzGgkIv+OHKfs3EAcbNZK\n0eV5U7Ezq3A6z5gSeyFyfn7IreV36gc/hmDXi1y+8BBO8Wum+FWpsTKEHDmb4Jdil2WMqmc8shOH\nlrVOFXCT2jNrBmKWso+VdjKG5cc5pdBiCnEgGVU5qFrLGFVrmRHDEusFfPNlPElDygRuzbGVNtQO\nE6NwxK7AMPSCX73iVxD8iqEvCgeSGIXOWxrvmM1rxa0Z86ZhNqslHdEavBLhlIy2iY8SyZwaheh1\nP3VOOOlwZHNNran67XRBFyrQUBiedpRMnCHXWxtfTdzrXIpcuL7NzeOw6/xFnLVn3OsUcC+Iqr4U\n7D3jXmfjpOFVYTQdR7Hq+CG1+BxN07Czs8Ply5fp2xVpaPFKr1IyLA4PxbHKRDGZ/88LUVl57v3Y\nyaFW/hDE2WGQa2DmPY3fwwBt1/NL1w7Y747i1t72HtZa7hwuqeoDKu+Yz2v67dlY1zMETSNUZ1Aa\nuwFm/hJCBIuq6j3e11onS7sFRm3y45wouKpaHEl6jWYHmjHCI1KSlOOYAGup1KHlvGrEwlBqmUYg\nZdz0HufESR37hElRS3okMJaYDBYtph6lKDzKuTMHCxpYHBWosdQvHTpxyLdtL/iVOxCSQGuBhb5j\nuZTaWbdv3WRxuE/TOB579BGefvopHn34YXZ3d5jVNd4ZrLbqMIgy1cRAioJ/Jim6TxxapZSD0Q6T\nzlE1DbbyYwBkshZPS5ecFqXWVD126pRap2IYJgQ6l+FOWvh2HAX48+MxTKfdHmqa2YytrW22t3fY\n3tlle3dP2nT2A6tVh3Mr+cEQ5MI2YfoLGzzr7gC1FhXIhqEupM5Z6qpiNmvYnteFLFxKiYs7N7lx\ncBSgLuydx2A4WCxHYlVXRQ4fQiIRpRrMtL28EWCwjPtxbKc9UToouZqSqCzPnrakz+tqeTzZFVlq\nXwiFcTIHq9128i1CskBMStSUrEx3q5Iq5G0FiEJkjVwNMYrqIUQtgDiIwqEbGDqp0RD6jth3hJgj\nhaJ0sDpbayRnvakr5vOG7a25kKumYT6rqbzXlAKwSixzHY24oXQ4QsazUsc7uW3UdMiG4WkAo81R\najpskCtg7fHZuMuYXHOYfPrfC35RsE/a0VfM5nO2trcUv3bY3tmjbaVVesYvydAPcn6uyeHfGn4d\n2QzUcDIW7xxNUzGfz6icJSYxbPqY+NVPP8JnXn6D24sxRff8zh5f+8z7OFgsSgR+Pmvwil1NH6mq\nhBM0wJXaMGJyRMDm/WiNGn9j7ZmyNkyUWVNStolfI4alNZYrHNRIdiH6/SlhXII4FiEl5v1pwWhK\nIpNLPzsu9bdyx52YNozCqLiV69BkdZbeQt/x6uuv88bV6zx0bptLezuCX7FH+xBhTMJbS105ZrOa\nna0589lM9rEqHowR3LIIiYsRohFWt45drONXPm+dwxalltPnTTkn5K2nB7+SbkdWLa7VpEln2HXP\n46uIew0p8WuefZSf+eIb3Jpg17ntPT7w9BMcHArvOuNeZ9zr3Rhn3Ov+h68qjLMSuCnHeFwDYBIA\nmdxiSnJFWIOrPLOtOTu7u5w7f4HFwSW65ZLlckXXDoQhEdNS0+DWYzzZsZVSmD7zpmMsiCCrfIqQ\ngqzdiYgxhllTcfHCeYaY+KZu4Cd//ovstyNuNb7h0t5D7B8cSjqfdzS1Y2tesz2vmVeeykl6mzVj\ng6EQIy5CVsRHRHVuk6QUOlfhvQfn1CuU96Vca85XeF+pqjMwqENcgk2mdKNMioPWSdA2F4GHJNil\n3M46j68owRVReyUJsqVKagdKr2r6mHAmYq0V5XuIioFW5oNgR6/KWnGEpVLqoW0jXaudLjVVmhQx\nREKIdP2KxcEdbt24wf6d26Q4cP7CHs8++wxPPPk4lx66yNZ8TuWsdmwcnVaCT5FcgxVV+9vMVaR2\nCDk7AyPztd5TzdSp5XIn4vXz6LTg16ZTLaUzp9aJI5OlmGLpYGDChPQYNPKs0eeYSlHd3LLTKMFy\n3uPrmqqZ0cy2aOZb1KuWql7hq4bRGImkYFiHu7c+76nRNK67VgHA4SuJTqUknu5v/vDX8JOfe4lr\nd0aA2tva5WueeILDxZKmqQqhslosuq5rZrOAT1KM2GPAibQy21fRGGzKtRTGm8mXns6zdAVLYvQk\nE0dilQvw5u3J36KfXc8oz7+Ro5D6ffq5kaiZ8X36qak9XhaZEinMBUpHctWHUKKEQ9sxrHr6tiO0\nQqhi3xG7DmNEdWENGC9AX2mO+ayp2dqaMZ/Pmc9nKnf3Eu1xShmz8VoIYTac9MDGqX0o+7VEBp1T\n+WwuCnv6ooRHhi5YUTvwxJS3+0FP7L0zxmstn7OKX9MI4hS/cg2NUlhXFmyUEFhfKX7Naebb1PMl\n9XJFVa9wVQOmJw1QqmDeB35NN2LNIaTF2Z2XlJD5fA5Iak/TNHzjfM7V2/vcOliyNZuxtb1FGAYO\nD5eSTlJ7Kk0NqLynrhuqShxxLiuzJESmggVDTPZY/Bq3yqw5qpIaPCXqjWBNwZcMW5M/4mR7DVqa\noUwiyX0S1VZucT8picD060QtYMhqodzyvji00sSpNcTRobXqGNqO2zdv89f//qf53Esvle/++qfe\nxx/6t34z87mo3KrKSWpO7ZnP54pfM1kjqrxGWFUzwDpATaL/OTybphszqkfGmjTrSofTqNTKo1xL\nJQIaR6/A2bjn8dXEveq65rdsbXH15j43DhbM6prtrS1iiGfc64x7vbvjjHvd93BVBc6VoJhBHR06\nrDo9hzCQUsJl9VGKo0PUWlzlaeYzmq0Zs61t5rvn2Nm7wPbeIYerjrYPhNiV9UXsernPAa/jx8kH\nswSMkllrIpOLpDvv2KkbaajgK+qq5ue/8DLXD1dU1QxnHYvDJdeu39RGMAPGROaNZ2e7YXveMG8q\nYkhEBnEWYcAEnA1476U2VuZAqpQyzil2oanVVh344qRKKdEPg6T4hagBEMlUABi0pl7ugmoTGDOQ\nosUZPSbqJLPOUzczotdUZXUuxVLk3QAOMMQUSgolxhKQphZJHUnJjFgnm5Sb+Mg8u0G6HbarnqHv\neePKFa7duMHl87tc3tumXx2yf/sWt29eZ7U4oPaOxx99hGeee4b3PfMU58+fo6lrct39rEI1UZRk\ngtvjDIySxxgicQgkLZQv2zQGtV3lcXWl3CunsuvakcFAHUmnAdHWa3zFs/TD48aUBOT8ciFWg1z0\nyhzGfNSoxeViIWNSNJIiYfSVEKt6vkU936ZerKiaGa5qSlFGYkA6zk5mUc4asz7BIzM++lwmETEJ\neFhj1QtdMUNIlUQCG37XR2e8eu0mV2/eKUZfHAYOFwslVeIt95WQrNlsxlafCZApJ7mG5MAK4YrJ\nSrRrY79uTj8pC0wKEGmDkI37IBOrbLbrcSqGJWU+xtiSXpSllRlg4tTY1CjF1EANaUKk0uQ+jUZh\n12uEcNURViuGZUtYtaS+5fWr17h64yYPX9jlkUsXMLXD+Yr5rJY0nVnDbC7RwUbl785Zkb07K5HW\nFGWb80WbyacaS6n8PdmjBnJ3NqvpO8Y5Sn2SQq5OAxytj1Hyvt5p7cwwfOsjOz/EMAyEMJQ0kSP4\nlXPq49j6OCVx7JhsGFY1tTq1mtmSerbC10u8b+S6iZFoAilHhd4mfqXJf3Jqa2oKpnRgrOqK+cSh\nVVVLkYcnqJ0nYAhDoB+EKGaj0PlKaoXVNfP5QFNHMQjR/eKstLdBriFLJCW7Md1R3VCYFnLumqhI\nVIzCE/BrbRHO9txodqaS9jjFrtFoTOR9MiJYMTz12IXEmlNrahQOIdIPA10xCgW7/vrf+2E+//Jt\npl1wf+FXXuRv/cg/47t+3+9g1lQlRWem3cFmM8GvyjuctXgnaTukeIz3TR1a2SjccGjl+hdrRuGG\n0uE0G4Zr+JWmKTwPembvnfHVx71arFuQMFTea827yNC2DCGcca+3wb1S15H6FuOtqA3OuNebjjPu\n9c6MfK0mEkMYigrG6BouwbIkdbEQNVBKotKyzuLwmKEXB3blcXVNNd/Cb23j5tv4+Q5+dohdtBAS\nJgVMCiQCpEBWaG2WnZiOtfIF47Oi8kwDhsQQjXTmS54hWoYk67NvPHvzGu8rhhBp+wH/6hXaIL0Z\nV4uWW7duE2Ok7TpIsLezw0OrSB9giJaQDDY3tDSS6tjTQYrSDAMLuXOtOoRjQuBZscW6RC7zEGIi\nxcAQBRvAaCF5WzoN5vVkCBGjnVCjs+qemuhVjcN7QzRBlVOSLhlyMXVd2zE5bU8DkTEWDBwGzVrQ\ndMgxHVH4eO6I2HYdbddz/dZt/vanfphf/OJL5Wg89/ij/O6PPEvqljgily6c4+n3PcGzzz7LpUcf\npp7N8FUltchA1i8jTY6MzaUqYsnQEEd8JIVICoEUguyVHChU5WyyFtfUuEo7H5rJ+gKnRqF10kgJ\n2jOn1vEjr1mSJxsY4oAJufAycqHFWE56Odnlk2N9EFE6jEbhbGIULvH1Ib6qS4cWY/rJr0/vM6Ew\n45+wvqBuzn9i4GSyYdQo9JUvEb8UI01TkxCPtreGZTvQDoF2CMSuL0DtnKeqambNjO0tMYpgXKyl\n4Xos+ygZQ7KbpEojWiViOEbes9IBE9fsnhGc9SJc22wxo/Mekv9MARLM1GNOyTbOcynkampnpUl3\nsI3bWKBUOu10XU9oW8JyxbBYcnDrFj/4Yz/F5199tczwQ08+xh/7lt/K+W2Rt+/ubLG7s81sPqOu\na22fWpWZmUIyk0YDRzK5Fik8wjxz5EMkviarHYrSwb4HQClpTvxGCs/ZuOcxXmvZqSGGYSl6DoJf\nIWpb4TjiV47ObuJX3RTDsJlvUTULqnqGq2piipgwrC1+40zgXvErbbyUT+8YQdrHy1yqusY7T2xq\nUkx474lQyMJqCPTDoNHMuIZf4tCas90OzGahYNE0tc0Y+c1orYrMp9g1wZrpJuofRUEy2YayXzSa\num4oyEaulZwprRDVKCQXhT7qLCsYNvnarHKIx+DX6NSSfTV0HWHV8uqrr/K5L30JcWiNXXBjSnzu\n5Re4fvsOz+09xvb2jN2dHba3tqibEbuctWv4JXWhJ/cbDq01ozDlvTE6tayz6zVpjF1zapzWUfBr\nkoJ4Nt7a+GrlXm3XsWwHhjPu9ba4V1otSV0HXQtdi2kqrGmw9YzK2zPu9SbjjHvd/8iqIukO3ZX6\nft57UooMQ9Iudi0pJXrvyeo478VUTur0ilEDbMq/6tkWs61tmvkWvj6k63qpuyQfQsJjElQUB7Fj\n44LVSaZjnx4/bzTY5ohU9NExRPEpJZNwznJub5vnnn4fTdVgErx27QZdgKFyHHY9V67f4HDVYqxn\nZ/eAvXOHbO/s4uuAsVDX8nvOGYw3hDCQ4kDyopa0VCREqWtClBIEKY1O48yxYiJp2rVNQEz6XRGc\nqFu9MSTrIDfgSRGnqtZQAhqpNCUiSUpkzB0LE+RaY0G7nkqXaltSG4VD5+YahlCaxQjlMUacXZ3i\n1mrVsliuaBc9f/tTP8z/96WbTIOJL736nfxvi5/j937jB3ny8Uf5mqef5Kknn+Chhy5Sz7eIzoFB\nVKUpEnrZLibdGMsZkZD9EUZHtckO+7Rx5K0Vh1lda53Y041Zx42z9MNjRoyRYRAvez/ISeirjpQo\n7XmttXKCD4EhDMSJxBQEuIZBvMe5AJ1EcCpcVUv0sJpR1TNtDzyM+btZE55X/JPOq2wk3WWskyuK\n0eAsGJwQImPpukGiX33A2hbTDdoCVIhj23YcHC6o6qrUp5nNGma1dL6KdUVK4KMhRkvyeuEQstko\n0bokEYoijyyRPbkgjRlBNZNbGOWb46ZPtnvTypwsxCnvg/yYNJI2xt9YI1cxqdJh0jUsRPpBOoR1\nXUe76mhbuY/LJaFdEbuWH/y/fopffG3BFKA+/8qL/OD/+S/5c3/829jZ3mJne4ut7S3taCQqEl95\n9far7FW3IU4MwrVjmblW3vC8n3LtDOOw1mNtJRL4UvcHTj6h3v2xefYWA3jSPWzc5jOCdS8j45e1\nlq7vqXqJCknXwgl+KXaFYSRQMkb8Chv45XyNqxp81Yijq56RYiAMfYmMrV1M8DbxS56fqgZy1CjX\nOjBIUfcQk2KXzNm2PXT9hEwMLFct1h3SNLUWBZ4J4awrQhTsij7hoxXDxYtFJ+aiGJAphTVH1aiS\nyPil0UEm16huaNqsSbCBXylNntMPCjdJBbeUq2jW3liweYoJQpCzYYgagdI+upAqxa3VStQNYbXi\ntWvXdTLfvHEcPgbAQTewt7fD9vYW29tbzLdmVL7CV6J+s4aCXZlQZUOQY7GrIBdpcoJk0moUu4zN\nxUpPn0PrCHbpdopRONanyc6Ws/Hm44x7nXGvt8u9TBhwJnFtueTGnTs8fvkCT+xexG/PqbfnZ9xr\nY5xxr3d+OGsZhoHDw0MODg6o65pz587RNA0pJbquY7Va0batFGI3ktLlvWc2m5GSdG/Ln18slloU\n3lHVDbP5NvP5NnW9z8otkKzsdPSWT1JO8EtsPFdYRqKk7WUH9VptVnWK1HVFtTcjBri9v08fBg6W\nHa7ypP0Ftw4WrNqOG7du0cwa9nZ3OLe3x6yZU7lKHLwpkJwR7kCQenUkaaThHCEG0iA8rvJGs/wE\nOVMSB1NMA9YFqqqSNMJhIPadOGScI1qta2ckrdEbI5zCQG5kgXHiki6qsJ4hBmIcRAlMKmtDSMI3\nTRIsl/pjqaQ2hhCJSWuDxUA3hOIuH4ZIu+pZrTpWy4521fLqa1dVobUeTEwkXr31ApeeeIKP/toP\n88jlh9jd2aKqKol5Ws1csAYtoEHoczqqHtNyKmgKadAC+5Mgbqmhl9T5Zi1VIymmwrFPD17d20hn\nTq3jRgiyeBpr8W2Lcx7rPDFKDrS1FueckiftFBXXi/Z1XU/f59sgtR4mhe+cr6nqhrqZEULPMHSY\n3o0IlCOOhWCd5DTdXGyMPjsag3GyOOW3W2slXUTbS7ddTz8EYkjSEWIl27/qB6yBvu85XCykPXWt\nbY/rmm7esBVi+f7gLVVMlI43abxJreWIjVHr++ToZ86Tzvm78v5CdnS7kho1EolUVYU+LpteNnKa\nSrVBTJgkSaXNm6bvRLTTDgwhMfSRXg3ndtWxWq5YLVe0yxWp70hdy5Xr1/n8K69ynNrhM194gcUQ\neVzbrs5mDZWvcFonwxpLskmKQxeuNDUIpwTDHDmeJW87L0SFVHkF8ZPlyKdqZBBOY0rJ2oaejTcd\nGb9sKaLZSueYGMfzTcnX0A/0Qz9GBfU7OsWurldcmDq2XCWGoeJXDIPgV4nsmGNI/3H4ddwxNeWV\nfM4fxS+JqOXbVoh0vbRbjjHhqg67asFY6YaTopDIFGnqilkj+GWtZWvWEHTb6+iJPophmBTDcsfB\nBM4mwS8bx+0sTq0Rw/J2rOFXdoIxvQzNKIIg29Nj+uZY02SSylZenWCWfmy6v0KQ+g4hIm3v+xwl\n7GgVu1bLFUMr6TrntmY67+O74H7t+5/i3IVzil0zqeWg51JWaSVG7NIVaLyWN4zCNNmv43FXgmYU\nu1yFVSNxfP30jrLWxkkanK7DZ+Pexhn3OuNeb4d7paGjbVf80I//ND//5VfKEfl173+WP/NHfg8X\nH7pQOhyeca8Txhn3uq+ROyR3Xcf+/j537twpKq3cNKLve5bLJV3XMQwDXd8TQ2Bra4us2Do4OODg\n4ID9/X329/c5WKxEmWk8zWyL+XyHejbHHXgGXRdH3aPcNOEO1tbkcRwnqk/6IL9U0tam79Evc87h\n6xnnzxuefPxRFsslV27cZp4srqolNXEY2N/fx1k4tzNnb2+buq5w3mGMwVm5xjFgbe47CNYEnJVi\n6Sn0pJC026HHpCTOrigqrhiiltWYy3c7MH3Qjs1G1g8qdabr3LXhT3beZsWV1aLoqQ9yLPRfMkgw\nxThclLUIg/BEhHuFYBhaCbRYbRIRY6QP0rYjYQgB2tXA4qClXXYM3cCVN67ozj0+mLh97gJPPP0E\n86bGaykGMKoqMxrrS+KMM/n6jdrcJxCl2r/wwpjTwNOEpielnJqyaCqqao7zDRTedXrHcch0ln54\nzAghFqOwcx7rhVhlj3qWiQ6DGAm9di6QdUsApuu7YhgOwyAyRoxEcbwYhV6J1dB39H61RjaUDjMF\nmSPRErP55whtMCFXU+NHX7PW4r2n9g5nHdtbqtZIYJy0eU7GFPl4P4iBa4yZyLYbBiVV2asrkUJH\nShZpnyEkySDAJQCSRgKlhqFV0F8jXGU7MsmS+RhY+3xRxZscNlQJbjEEM0CpoZX3r+4XTTdeIy8x\nprVoYT9It4qu6+lWrRiGhwtWiwWEAcLAGzdv6YyPB6g7q5Zz5/aoKi81fqwU4rNGyG2KSh7NJqmK\nI9mYHMeyfK2dFhp5MF6ihU6ihZij+/W0jXzOr0cL4+SMPhv3MkanlsP5Tg1DR4wjfnnnJ4Zfxi+j\nfhZD12X8Ggp+URQPXgzDSvFr6LCdPwa/ZGTKfzf8Gt09qSDe+jU6XrcYsM5K4XIvsvReHVog9WrQ\nLjptP4hTq+tYtR11JTUE67rBOl9w2Vqnv6NKrQSkIBG5ZAQf3Ihfo1NKtRCTlu3TDStGoV6nGbeS\n4taYmmgmBsS6QSXlStPkXzaYM4nZxC7FLTUOh6Bt77ueru1ply2rxZLl4YLQdRAHzm01fODxR/nl\n117UQqsfA34ca7+L3/Chr+MjX/9+qrrSYvEV3ruCW8aKBH4s9jwFqQ2jkM3bNKXSFKXDmlLrmNSd\nU5nKk4/XWvoOnBmF9z7OuNcZ93o73Isw8D/+k3/JL726ZKqS/5kvvMj3fPJH+b5P/AkqX51xrxPG\nGfe6/+GcJ6aW1WpVbiEEtre3mc/nVFVVOEJWaLWrFX3fi5PIe0IIBdNCkEDUYtGyagcwlrqZM9/e\nYb61zX5V060W5byUkV1To1Nrcxyt65Y/nZ1K8lrUOcRcX86M624+LyrvuHB+j0cuXWTZtgRTMd/e\nIWJ44+o1ll3L/n7itTdeZ2d3i1lT6/VnaSqHc+LKqrxchyEMxJDEKd8YnHUQJUBnvJZhSGN4MKZI\nGhJdB94rzplEQFT1Q0jqUjLFGR9LN0Dt5ky+zhEc0PM+Y345ZogzI5FVYqmUYRR6bDHeSH1XICRL\nitIFceh7lgdLlgdLVgcLVoct7fIQ12UHzPHBxI98+IPMt2eSZmjluFljBV+UM6YoyYNGsUuCzAMx\nDlAa1hgSXtWnQcudJsAy1q11WLtFVe9h3ZxkvASD7uHcf7fHSaiUkqT+fqXHe86pJbnPA8ZYvO9x\nXY9znb42nuzZIOy6ToiVXvDZIz8Moh4YghpcxqhBuK506LoVrlWpspUFNqsdgBMXFrP5tH5kehpO\nI2Xj10h0zjtHVVVULukc1bOvRldQg6nte+nS0EvdHDEKpVhgVDmjs1Lgr9L0nRStYGRGgaQqB+fE\nC79GjAxRSZWNZsNgyUZPBtNRFTFdIDKpZUKdcuQjxnEfxGwEwvg4ji1gM7kaQpa+J/oh0XeBrpNI\nYbtsaRdL2sWS1WKhresj53fnOufjAepDH3yW3b0dJZemHCeD7iPdH9PDuh7p3FQ7jGfHWEAaDKNh\naIxXQ3GiIikG9GkY6/PIx2AaLVxftM/Gm40x/TAKYfIdrvWghCCPYRjugl9DUUNI3RpAF1NX1VTa\nUaxuZvTdCucrqXtgtFjxxJg/6dhN8Wss7zJew+P1OFE7IPhmreBXXVWYhBp4WqnFSMJg0A+0/cDQ\n97R9T3NYa3H5Wh1ZCYPFOw8JYrCkyo14WRRFgiVSrH6T5JmSGjU6tvK2UPBrxK6sisjFUk3Z/mm0\ndeyiN8WuNMGuHIGbGIRJsGyIE/zqo2JXT6tGYcauNPQYxa9v/+Zfy9//Z5/l518eu+D+xg9/PX/5\nT/9hzl88L0WUjWCX1doTxejPa5YZj/oabpW/R6XDePin+8uCcVhN4TFH0nf091LidDi2xnNcjnNa\nSz08S9t5a+OMe51xr7fDvW7cucMvvvIaR1TyMfHPf/YFbhwsef9TF86419o4417v5LBOVFqSNrhg\nuVyWAOO0vEO5HqKkFw/DtCX7twAAIABJREFUMLle5PrMqi9r3aT7YE0zS8y2ttja3mE222K1OCDE\nHoqjKjuXy69tzNKUORwdiek6m+cWtV5UcWijp7Dyra2m5sL5Ha7dbOiiZXe+g/WeEAfeuHqdtltx\n48YNXn11zmzCvXa3t/De0Q+BWVNReYOJiaHvi9J0VjcYp46mOBTO45wodg3ShbDvI31nNN034pw4\nmkIYSudva6wEDZJd2y1Sl0uc6wFIaRCAt5CCNhJJ6hBTh1eIoXCQEtBwUq4iYug1ZToEw9APHB4c\ncnBnn9ViQbu/4M7Nm9y6eY3V7Ws8srfNlTvfqWjyMeDHcfbjfNOv/3V86IPPKHTEwi3y1LOSUu7H\nioXZGZ9zvceyFlJjLeXv0vNB8NgCFc7P8dUW1s0wp9R1s3nmpsmjRDpzah03hFCJZDRL3q1dX/Cz\nsTEd+SQfI7RGokFO2gjXTU0zROZDT5+jjMMgEvi+pW1XuK4jGkMMkIzm+cu3H5lnfqYYFkiurxQX\n3jQm0mReYwQyExJnpeVxXTlmTSVtk7XFveus1rExOAtD33FweAiIBzr0vXQba3tmTcWs9syailhF\ngvfEKhFDUnlnwDm7Rowwup8yYZpulVipazNeI1STiKE5jlilUGSYY8eksZBvXsCnBmJMuRhpKGk7\nq+VS03aW9G1L6FpMGmi8oa4q6srz8KXzfPi5p/ncS+tqB2c/zm/56Ef4wDNPqow1y0anh3U8XuXo\npunlOn1UrPv1s0I8DxMiLWCXWZjJa9apIVXj0COWIXfsyJd0e0/flE/tyEoAY6ymh7miJILRQbNp\ndE/xK+9wq/jlFb9mIdKv4VdPCD1919KulgxDr6KdRArTTohHxxqFSghuJb2Oi9EwPZc33CAaeTPW\n4l3GL2nX3mtrZ2MNrusUv2UJ79oVd+7cIcWo+DUQh8B83jCrPfNcq8YnQhWJlSe4uIZfrGHQMUbe\nsfiVHWGirDBmxK2skpviV8GuGI/g1yZ2ZeNRVFra7l4xrF0Jbq2WK7rlir5rSUNPZRK28TTazr6p\nK/7cH/sg+6uO24cL3v/0E3zg2Sdp5rUUb7UWYyjKjnJdlmOTyiFKkyt6imVr+JbfkShG4ZSoTYnZ\n6Rxp8v/EWElxwg9OcoucjePGGfc6415vh3td3T/QOR6vkv/y69f54LPvO+Nex4wz7vXODGstq7bl\n1q1bLBaL4sw6PDxkZ2cHY0xJO5yq5KdcLDuSRK01YK1jNp9hXU0YAp33zNuO7Z1d9s6dp2sXHO73\nxCGA9eN5d+JBO7oebYaGZD1Ogo8xFOdVWefVhhGnUiJFx9asYXteE5c9WzNPPbtISJG277l67TqL\nxYLXXn8Do11grfXEZGjqGu8k5Xh7VuOMJcbIKvYYLA4Llcw7mvE6jdESo3CSGAMxQKvBtpQk5Q+Q\nNMWg+GwkAOCrimRt2efCvUZcSGbUlYaodRuLcz6WYK/BSCqlBiGChgdDiLRtT9sGUZiuWlb7C1b7\nBywP9rl14zrXrrzOwf4dmpnn93/zR/ixn/syP/fSGEz8pl//6/i+P/8iXgvCgzRHSUbreaF8I0aS\nOtjuOia8bPw3eU7xy9ncxdqRm3kcd46chnGcc2vQGplf6fGec2pJ3YZMrHwhV29mFObX9BGoAeCc\nxVdeCv1F9YBrNFHkpi3daklVLeh8DUEJvebDTmjzsfMtBEsXTulsMxqCabpAlUVqlHAaI55vUT54\nmhAZonTVMEZbqxbSIpHQw4MD2lWrxCoQhsTQD1KjZtaIh7tOhVTFSomVM5rTrNFBJVWjQXg0Wpjv\nC/hk43CNZDGJFsr2ZWIl9R3iGpnKx6/cq2GYO1702jK66wa6VcdyIXL31WJBHKT9rE0B5wzb84bt\nrTlb21v82T/2+/jLf+eH+ZefGwHqt370I/z3n/iTOO/HeIqhHJNCgo41ABV+JufB+M5N03FiGMak\nHXzS+jl5Csd0VlMjYLzGHtjU3pPDGsGvXH8m1wzYxK/14vCU1+RenS36HVVVUTeRkNBaNv8/e28a\ndFt23vX91rCHM7zDHbv79qQe1JJsybKsMiaJsUIMoeLYQTgQUrHFVKQguIWpVFGBpAKp4KpACqh8\nyAdAUPngIgZDEiBQgBkSBwJUMdiAZNmW5FYPt+88vNPZw5ryYa219z7nfW/3va3GuorOc2vfM7z7\nnLOHtf7r/8wJv6xNBq0VRVNhTI+zAZG7yqwphg9WDqOIia98QyGcKEtrC+0EYwutYst773Eh1UKQ\nYlCK8zzqum7woFqTCuW7QN/NsLMSP+CXxztNcOB0MmopOcGvMwxag1FrPKe8beLWSKTy63Te+V/G\nL+/XDCWnIrgmhi3nQyS//YhfbbMa0nW6th3agGsZqMpiKP6+mM9ZLGY8v4iPdV2hC40u1VgXJJ3S\nqJ+tH+/6GsPa8ylapQC4cRuXpcTLw2jQyn94jGU4s7AepbXFrkeTLffacq/3wr1eLp5Nx3p2lPyL\nz19JSviWe01ly73eP8nNd3I6YV3XeB/rebZtO6ROF0Wx1swnG+SttbRtO9TcCiEWZN/b28O6lMJ2\nUmCNoW126ZoTVqtjmvYkppoNlloX8eshx9wGiib8kxgXuYdM3TvjkJ7Og5DwWlAlY/qq7ZF4lvM5\nzzz9JJ3p6LuGw+NjDg8PIHgKrSl1RUCyt7NDVeqhrtO81GihYgfYzqKlHTAzSGL01MT4l/EqHmM7\njNfcldD7XEsqzkkjBMr0scuhkJMAyhH7ggz4EA16eZ0YMSt2V3TOxXtnYxSZsR4nYtyo6Sxta7Cd\nx7Q9XdOwOjzm8M4dDu7e4t6dG7TNMXs7Cz7wwgu88qEP8cM/9AKHTcvVm7d56bkrvPT8U+lekJwG\n8TpHfJmsg6m+2PpEPeO+iyk6k/hXGLoj+hAQIkV6OYfwPpbUGle4hxpLX2/p+3/zUVrwDWnUEhve\nwlExhHWl8CxiNbUAixRGqouCykMQIgGaiWHnztO3DU09oygrlI6tTL13CC+Tx/DhFsZsWc2h8SEd\nD2cu4KSogUhQlJRorSh9gQtx+AspEEoM3TB88PTGYU2fFMOoQHnrI3kyDrewYD0yEMmV84mwBJSK\nJE2psYOZVGLoZDYlVdmLSXp/8BJmOijGx2nEw0RtAqYKhh/C4acK4lAzwQdcIlXee7re0Lcmdtlp\nOprjE9qTE5rjY0RwFFpQakFZSBazkr29Hfb291gul/y5H/tRrt+5z7U793jx2ad4+fkr6TzFeP0H\n40FIXHdDgZ+Oq4lSl89r7dk6jx7IVcikak05fDxlXcEdU61Gj+FWHlbGSC2xVhj+YRXDQQnbUAyr\nEGJqn3dDWqJ3nq5rqVYn6KJCqTbOKe+I6XUbSsM7SSB1mZksv2HEralBK0rEAyknx5gNWqwbtCCe\ns03Hu1oFTk4anMn4BbZ3eDMDF5BBRExzMfpJO7WGXyJHkGQlMUcsZISaKIdiUykkR2cxMW5NjVpT\nPBjrm6xj13qHPZewLUdpxS5hJiqFJyuakxPa42P6tqHUMuJXIZhXBbvLOXv7++zt78ViyrM6FlMu\nixSpF6/jpmKOmNSaCaeNW2Gyb9i491Nv4XTeZ9xi8jhd0x43WVcKc3HdfK+m12ArDyNb7rXlXu+F\nez33/DP8ym/7Vv7p5z+b6j9+ihwl/z3f+R288sKzW+71ANlyr/dHlNLUs9lat8PVajUYsKy1Q5dD\npRTA0AUxN7/IxqxcIqGaGVatxbrY7EUXGussfdfSNSsO79/nQNfYvp+MVUHMPz7ttIzyoHs68sM4\nN1LEV/LLBSZrc5q3Mv2e1oqqKtBaIIWnVILZ/g726adYrY5xb1lOTlYcHR3y1tWrOBc4PDzmqaeu\ncPH8ORZ1GfnXomZWFkR7ikcJg7MehAcJUiuU1qn+lsfaeL2klMguF1LPhyyTY0SnDoUxoskaM3Dk\nfB8yhwrJGYoEH1zsZpiwK3NI5wJh4IcOYw2dtaA0AUnb9PSNwfWeftVxcnjInRs3ePvN1zg5vIOW\nlicu7PHSyy/x4oc+zLPPvcC58+d5Wkm+5YMvorVAyID3LnLwlGVAuv5BjHjlJwatdzI7hQkPCyma\nePC3kjgcAWt62uYEa1q0LpjUBXl8JR9f+OWppwXfkEYtRVmWxMKcRWxfWsRuKUzSSyLhl6igsvtn\nbREYeUwMS0SoOPADg0LonadrG5pmRbM6oe86RJ++y6eSdiFZ3t91fcmANr4eFtmsGOYDy7uTyFUK\n3VQqEyyPD3okiWlytZ2h7XraLno7+7alUZoCibQeYQyitwhjMVUqaloVFFUR86B12tS048Qk2oE8\ngcV4bPnf5NpvWthHb+GUdoyL9Bq5GpR6P5APl/PbcxvtXL+h7WMxx7bB9h14O3gm5nXBbFayt7sT\nt709FosFZVXwLefP8+0fLdJxgRBRCRx4FSAmyvspgj5V6E+RqjXVN5GxKaHyeOfwzuCtwXubigmm\nASkeI5QKGy8m9ymT3seaET6GolTELykEZVHG2i2F3sCv6ZzPXU4m5D6AHvi4wBMLGAupY3c961Ih\nUU/brGjmC+qTE6zpET0QonI4cqOHvY8Jw7LCkQb2oBSOA52RisfimSpHlelcAH5crIWINS9G7Oqx\nxtO1LY3U6CCQxiL6nju3brFqW5564iLPPvUkRVWgCz1gl1YjbsnUkSYbqKb4NUY1TfFrxDWY4tdI\nHqbK4ab33CfjVq558sa167x9/TZPXjzH5YsXsM7FLmEDdnX0TYPtWrw1SAKllsxmBbO6YGdnmbBr\nl729vbjeVUWq25O6dokwRjeEQKzvsHnPTj8dDVrjG6PSOz3PiUKYvI/e2ohdzuJdjPiYYtdjgWBr\ny2i+X2l9ydi1ha5Hki33+tq4152bt2n6liuXLw3Y9c3Cvf6nP/i7+f1/4s/xD/7ZGCX/Pb/ik3zu\nx35v7Gq25V7rsuVe76sUZcH58+e5dOkSdV0DgaOj2MXQOcdqtRoM9tNaW3kO5oit7IgMAFrT+xXB\nSqRSBAKmW9C1u7Srhvlyl7Ke03UtwXhi3SR4ryukWCchw7geF/w83tN4EbH8lVCKup5RlQ2KgJIw\nqzRXnryEDxa84/U33+Z4FetrNauee3cOOTo4oXvuWRCBrmt57spTPH/lKUotqMvYvEdKEyOSZEAW\nmqqKNQWliMXPXXAEE9vpkPkescthWQQKFY99mp2QI+Ty6xz95XxsaiGUTDQ0dpLOfwvBD0Z/QUyZ\ntsnx6UJMfYucq8d1juP7B9x8+xrX3voq925fZ14LnnnmKT7y4Zd4+ZUPcvHJZ5jvnktrHslhGtcd\npbLDABB+4LLxeBmwh5BraTE2OWKcuUN0XTZmhRHHptzMO4fvWtrjI1zTUJSzlNIq1vYcxsrjhGVJ\n+v7ffOdD+AY0ahU65ggLISmqijJtUsqJogEINRKSjdofMf3Hxk1ZhHJIbZHaAiItfDEku2+bmCLS\nNJjepEKWyVLriB0ZfFxwopy90GwmvkwH98CvwwhK46K87nmLxYDHOjVzEdvS1lVF0xlWTYvWXfSq\nSsD09MfHrHqD6lru3bhJa3qeuHiRJ5+8jK4rdF1SaI0uFLpQKK2GYn9SqSGiYprCM0Y/jJENklH5\nG5THCSmLHgVGz8KEWIYQBqUwh8PnzSVlMOezd22XthbT9YjgUCKg64JZVbJczlguZiyXc5Y7OyyX\nOywWC+pZTaHVUIMmW8KHY57Aw+ZdnCqxhMnfJzr8GrCtkatMqgTeWZw1iL5D9h2qrPEukiuRCjw/\nVuQKyCc83qtJkdn89608lAz4JSVlVaWiyJv4FYZILCklSq/jlzE21ePSqIRhSlmUjoYqbz0hK4bN\nkrZZ0TVNqgORF3yPd6l85UOmYgxRTcNeozox4FaYjPm17xNDdJZSEu0lZaERUlAUBbOZY9V0nDQd\nWkmscajgcV1L6z325Ji/+oUv8vqt68PxfPj5F/jtv+H72d3dQReKIuGXVFP8khPsnEQ8THBMTnAs\nHikDMZrWtwEImVdOznOsPxPnxeHREX/8z/wEP/NzPzcc67d96BV+12/+fgql6drY8r5rozIogqcq\nJbqqJ9g1Y7lcRvzaWTKbzdA64bNSKUokDBiWY7WyrOtEI0hNo/2yUXLNMMn497V578F7F7HLdIi+\nRZUV2k0Vw3jdNk0IX1/JC+1o2Bq2LW49kmy513vjXvdOVvyNf/ALvDHBrg899wF+26//Pnb3d79p\nuNdP/PE/yBvXbvLG9Zu88OxTvPTcU8TwubDlXg+ULfd6P6QoCnZ3d9nZ2UEpOWIVpE6IsWxDjBiP\n3Yi996mbsB5SEKddXXvrQIIuJLmTqVnMWLZL2p2Gnd09FotduqbFBGJ6Lowk4lFkc4GHYd1emxdh\nHC9Ro5EIWVCUMbo7AEp4BI693SVl+SzeGozpefvaLVaNoTk5ianePvDPvvB57hzcHn7ylQ+8zO/4\njz/NpfN7WBtQCgKeIAPKBXobKApHoQuUlqmhTOSbzqYC7sSuir63GOnWImjjlXGAHSP5BSnyPZbY\nyNak7MxzLtX88/FbstE3GuNjMXrrYz3A9qSlOTrh6N4BN66+zY2rV2lPDtlZ1Lz04jN89Fs/yAdf\nfoGLly9TzXcRRZXqjAmECARy45Ns1IrrRObPo7NjwhvD2RHMIw9hWIzGf7lro4hG/sS9uuYE062Y\nsxe7gaf6ZNNMj2HIPGZYto3UeoBorZnNaoQQcaJWFWVVIqRMaR6pS4WMIYhSjgpbvsVKudgpTNr4\nXFmUdSjtEEISnB/y7nMRzEiseoQIQ8gqpEDS4AnkPOmz0If0+2KDYE0GcTi9xa8blUJSd6sh6iHE\nVtpVHRWJuuspdCJCISA9BNPTdz3d4RF/9/U3uXpwZ/j1l558ht/4vZ9iub9HURaUpaYodYp8UGgV\nw0kzQR0Klk4IlSTO2/w4OhMnKT9TYjWNehgWawbvuU8kNSrlLk5mExeTvjcpdadJSmGDs4a61EPe\n+M5yHtMN93bY3d2hns2pZzPq2ZyyLJIXNKXsiCkJgthJ6AEkYcK4Bov61KOYidSaUj+9nxH4IrHq\nIRErbftIrNL5jzj0eAFSlOn55GiHLal6FNFFxi9JUZWDYUtIMeCX83Hh9FIiFWfgl8YYi5QuKYcO\nqR3KxhoHWSkMPtA1o2JojQEifhkTO+sN+DUUMH2HOTDIuud/3Zg1jv1hbIjMQ+QQtaVlLDJaFJqZ\niCSnKhu0UkgBbdOjvMd30QD0f//SV7lx6Jm2hP+FN17lz/zlv8bv+MEfoCh1ihxJ2KXj4xC1JcRQ\nkD9iVTZaReySYjLjcuTDpmGLCX6FVHB/UJpGxfB//NP/K//6F66vHevnf/FV/ucf/z/4zz/966JR\nq23o2oZCSeqyoKo0s7pkf2/J7u4ue3tZGZwNGDamG8rRQ5juxABPYePubSjw+cV02k6VybD5b8Cu\n1EbcGuh76Fp0NfuGwa58LuuRWlvsehTZcq/3xr3+8Ve+ys0N7PrFN1/lz/7vf53f9unv/6biXq+8\n+Bwffvn5wZi15V4PK1vu9bWI1ppZDbOqiGOewGI+QxeKrqswfezI2ncGay1lUTJnzmw2o6ornHVo\nrWlWTYxUdD1aChZVTRAS4aHXFm89pjV0uy27u3vs7u1j+p7ViaJrG7xtCN5AsDyyQXII1Iqf8ySe\nFyTZQTXMAYgOJiHxMRQepVSsz0RABo8Wnr3ljBeefwYpAnVZ8tbVm6xOepy1vHb9Gq0tmeLWl15/\nlc/9xf+N3/Wf/ibms4qyVEglQAaQMZJNa01RWMqioCgLlJTRsGRiJ0kpJUoK8IbgxmL3a1HxCc7l\nUBc1mr6j02zsWLo5J/Ia5KxL9bZcSg+1tE3L8eEhd27e5ObVt7h5/Rp92/Dk5Qt860de4WMf/RAv\nvPAc58/vU1QVqAqUTmn2gqHLYcKb0UEQRmxKd2i8XWKYq+Nn013MXDkMCEYQqSFECNGohWQw1DlL\ntzqma44RwYLQ0cFDagwgxmYYj5tBK4QQnbi/DPKNadSqE7GqqtS+vgQh4sRxFmdBSgiKocnJ1Auv\nlUdJh5FuVAhdJFdCyjFyIRC7U7WRWPV9H7tyWYfJrWBTO9NxIXx4oJoM73WCxXSSTK3CkdhkpVBo\nhdQ65jGnzhsq1crxzuGaHtf29E3PP33rGrcbxRSgfun6q/zET/1f/OCv/fdiB6KqoKpKijJ+py70\nENU0hMRPPIZSCCQpBF8km3EiU2P005RYTUArTcChrEH2GGZiZR3BxTQq28daFVEZ7JJCuKJtVgRv\n0bsL5tWC+axkd2fOuf1dzp8/x7nz59BFGduEFyVSqYFMjSpcatcdwoM58SlSNVESs8dnuF9h7XEg\nWZlAOgfGEPoO2bc4Y1Iq2KRGyGMGSFHG85iGwG9p1aNJsYlfVRkXUIheJeuil0wK1NigaQ2/RsXQ\nxU07lHNo5wAZawykMZmVwrZpR0+kteiuxyYygJe8E35tRjqsqYZhE7sYF/Hh28a5HwmNJKiUajPB\nryJ5REPwCO8jfnUd9w+OuX54j82W8CEEvvLWZ/jy62/x5KWLlAm/Mm7pXONhwC+RIrNGpS/jlhRh\nUAozfm2m9jB4DsfCwxkHshfu6o1b/MsvfvHUsfoQ+OJrn+H1N66yLDVd29C2K5bzilovqIqSnUXN\n3t4O58/vc/78OWbz+YBduijJRGrELiDh16DkJc/gqVuZ35qSskGBnyqGsKZAMWJX8A6sAdNB3+JM\nP0Q6EDwBuYb9j5UMxscxtSorxVt5ONlyr0fnXncPjrnxIOy6GrHriUsXt9xry73eQbbc62uVaGjx\nSBk71AVkTJnTmrKaEVyFN4G+t1jrCWm9j/NQ4Z2jKivm5YKuNPSdxeDxRequZx2d6gjGY+cdZtGy\nv7fL8flzBOcodMmxOqZrJKY3BGeJa/d0TjxIskF+HJtDvbiNcR7/mB/iZ/xQsyo676SAQgsKJVCF\n5NL5c9RVyayuqcuKq2/f4eCooW2Pgc9xFuf6F//q53j26SfY2Vkwm9doLRHJgai1RheWQluU7hGA\n8zECF2LzDSUlCg/eRkdGCKMBf1p7a8IbhYyp6oGxeUV2yOYaptmo5Z3j7Rs3uXH7Dhd2d9mtZxzd\nu8etm9e5fvUtDu7dQgnHs09f5Ns+9q18/Ns+xnPPP8vOzjLWK1VFTO+T0USSo18RIkYIhwmOTbHp\nDEPzyDPCGX8YuVwQaV4PxjLIzmYRAt72tCfHHB/c50LfI6t6fZSI3GHy8USGbaH4dxAhoqXWh4AN\njuAMXgR609NbQ297BAqFio1Hp23aZQQh6z3GO3pvMd5icPTC0tPTC4OVFqsdoQRZK4p5Sd3PcMFg\nU/cFKQXGpLDEkEhWyO2mMylKx8zoLcwkA3I/MTHBtnFynO1BDInUAKmIaVFodFmiVawfU2jJrC4x\nqw6z6rhz94BbzTGniBWBN259hrfefpsL5/YpCj1EOiiVHrVaJ1bJa6hSOo8WUBDQIqABLwVeSLzM\nhFAM1z4Tq1ExnHjVcuh7CEl5sghrwVq8tfTG8PbtO9y4d5/zyznndmeUyxlKSfb2FuztLtnbW7K3\nu8vO7g6zxZyiLFGp4KBYC8WIMtjN1w3s0x0GPTKwsU84Y8fJ83XKkWAthFjHwfb4voWupei7pBw6\nhHQIqRDhDAA8xbUejnx97RQtH/t0TKbijFtv4XsQMeIXAesdwfX4EOhtT2cjhg3YhUIKNS7wUuB8\nwEpPLz1GJgwTFoOlFz1GGqyyOO2gBDVTlIuSysywweCCjYWYO4npQYiAJbwLfo2pL2vEP+HYOn6N\nWLVmOFnDr8iuCq3RZfToEQJKQFlolrMa20T8OjEm/djZLeGvXb9BrSN26UKhM3YphdzEr4RbSsbH\ngsDdu/e4e/8eT5w/x6UL5wcMm9ayEYhEqiJ+rRl7srEkeF577fV3PNY7d+5w7splVF0wq3bY2ZlF\n7NpdpgiHXRaLBVVdo4siKs1KnjGRJ4apKY6FsA5Hax8Jax/d/NuoEK7/StYkYz0tg+87nGwoZh3W\n9DhnUd7H3gMJ69eI1dqxPxoivR8q5voaOqlJs8WuR5Yt93o07nVsUsrRg7Dr5g3qxLu23Gtthy33\n2nKv902UUmgpkSEgiLX+HA7woBzIGN1SqILCpzp/2fmlBARNoUtmZcBWAWugD5ZOWnrbYzqLCArb\nW2zXYfuW7twOpr+YnAFLiuKQA6kIwWKCB28Yi8Zn3BojfEZnohiwB0FsqoFIkZciOg+cBxedgZFZ\n+vj5ZKz2LhpuYxo1FFJSF5F7BQSzumBWFiznC86fu84XfvE1rp0c8iDc+uIv/gKr46NY73N/h+Vy\nga4KtBqjTadNkCJ/YnQMKMm9u3e4ffcOl87v88T588lmFNO8meCDHIxdiiAkLnXKdcnwPhqN4vU6\nOjnhz/3kX+GLX/nycNTPX36Kf/uF5zi+f4ejw7vMZ4qXXnyWb/vYh/nwt3yYZ599jsXOLkJKvNRI\nlQzx2eg+Kewf/YZh4Dg5Uv9sY9K7z9F8/Otm+YxZ4+et6THHhxzcuUW7OmFR7yCFWoOBxy1Cayr9\nNv3wASIEiT3H9A8fCyKb4GhNS2NaWtOhZUEpSgpZoaWO5CpNDpuVQWHphMUIQ4/FBENLnxRDi1WW\nUARkLSkWJZWtsd7GUHsXYspKSzoGGwlBcAQvIBXGG2BpmsqyZnUX47I8JVdZYQlJ2UwFiPPfZAKA\nQkmqIqbeVKWOtR5mJbv9gm7V0jUd91ar9FtnA9SN27coIHXgUSOJesBzJVIYvhRUAmoCFVCKgJEK\nKyVGKUK2sguBQK61qE7xpIN3NOScY+8JziGtQRqDsoaT1Yo//09+li/dGGtSfPDKU/yWX/tdnN/f\nSd0N4+NysWA2n1PPolKYj3uIz5/odfHJxNNBGK//WSRr+PB4f0ZykRXMjY8MPxP38c4RjAE6gmqw\npsNZg3MWoXSqjZHMVx0FAAAgAElEQVQjRR4PGUEzgXf26G69hY8uGb9ErsXkcNZjgqUxXcKwjlKW\nFLKkFCVahqGTn5QSqzzGeXpp6aVJCqHBBJvwy9Anw9ZUMaxMjZvgVyQZiSgPBb/dUDxerB32FL8i\n5QrDNpEN7FqLjkm1l6I9K55LoWNtraosU/FQzXxex5TpVUfXdFgR4Be/zINawkvvObh77x3xS6Tn\nGbe0FJi+56/9P/+Ir1x9a/jGDz3zLL/51/wqivk84daIWTlaI3ZKZcSNdB+D91TDRTv7WM9XBaUI\nFLMKXRXsJoVwP6XszOZz5vM5RVVG/JIqGRJYWyROwVT+24N41aZCODFAThaecRMhlf4YP+xTpFYQ\nHQKNTdEOzpqoGEIK05fvgF3rBod3kvdFKQzjFQs+e3jz+Pyaf+CbS7bci0flXl4AX/wSD8IDFQKH\n9+5vudeWe50pW+71/ohSCqE0Ah2NWsT1rfeWxq7obOxaKpxGh5JC1pS6QOkUYShBpIYRKEEwAekF\neEeQItZzKgSykui5prQFSzOjd7sEKRCyxKNw3uJ9R8DhTIx2RMQUMoKPjCqMZngG01Yqmp6eOVLS\ntYiph8F60A5SBCvBRRj0IRq8vI9p0Qh0MippAaUao6MW9T67OzMuX9xjNiv4uTev8iDcWh0c8pZx\n3JnVzBdzlstFbDxWlpRFgS6jQy5Hy08N9b3p+Ss/9ff4yuuvDd/6oRde5Id/4N9nniKBRboeIcQp\nKVP6JMmoZQeD1lD5MPlaA3/6J/8KX34jR8fGrKQ3bv4Ixwef5zsuLrmwv+SlF5/m49/+ET7ykZe5\nePlSiorXBKFBpAitFPWejckDL8rQQ0j8OePYaew6NUfXCFt6IQJBpC8V67vlRwF4Z+it5/7d2xze\nv89s7zKyKAYO6pyL++bI6MfMwLWtqfVASaQkKYXeW4ILdN5wYlas+hUn/YpKzZhpzywtVFIEpJAE\nKSZKoYuWdmESuTJ0dFEpVFEp9GVAVJJiXlDZOoZR+thmHuJgd9ZgjSEg8F6AsGvcXQQmVGpS3UEI\npqpj2Fysc4RDTpdIZDwTNCmgUIqyiDUNpJTM6wqXvDlN09E0LZ2z8I/hgUqhcxzcv88ADKl+RFTg\nslIohwLMOoXgayWZAXMCCwJHJydcb1t29nZZ7O3hpSTW0ckEK1ntpUxKcSYjYSBU3juCs2jTo41B\n9z0//jNf4JfuOqYg9ZVrr/IXfvqf89/+jk+zt7/L/v4ue3u7zGZ1KooYlcLsWR4muBhJzkAMJgrh\nlD9tjrpT+t/avuMfQgK/tdfpXL13eNvjg8SrEtN3MS3M2dQmViCDHDjg1xuWQvo/g/bQ9ntIE9lS\nq0eTEQnW8Mv1nJiIXSd9w0zPmKl5JFAypppIoQgyYGWIiqGMimEvTIxyGPArRWtpSyhDNGotSipX\njx36BvyKdZKcjakYMSNkHODZriGGI59EO4gpdjEqJBMFcS3aIaVFiqQYKikotKJONVmqqmAxr/A+\nYKyjaVraVcdyZ84LP/8aX73+apq7nwJ+GsGrXNzZB2O4f+9+WhZEUuASdkkRDVoZv3KhZyn5O//s\nZ7h6p2Ot1s3VV/nxv/n3+fSn/p1RKcwYJkcMS1cvYcJYg0Y7xwuXn+Crt04f64sXLnChlJQysJiV\nLPZ22NvfHfArhr7HdJ2irAaD1hS7Rt0vDC8GM9eASWmdGHchd+AZFMIJyI0exjHKYfx/NAAF7/HW\n4EIHQSbs6gfskiLW8BAhRKX6Pc6Q6Zj6Wr5juC7k0wiDgSJsXIOtPIxsudejcq+dnTkv/NxTfPXa\nGdi1u48w9n3hXrWATik6remU2nKvLffaykSk0ggZCD7OCxcsXei43x9xt7nLQXtE0/eIXlD7OfvV\nHud2zrFcLJBK4nFYPD2enkAfHJ3raV0XI7WspQ89rWxodYspDWEOerekdjVz6+mMw9gO71cEOpoT\ngzPZWJJwKmTeNTXAj0iVnYgecDmSJ0xwLeNWyAaY1PHTRm4XO0QrCimRArQQFDoZ1LVkMa/Y313w\nxKV9/snnv8yXXl/HLXiVpa6pgsc0DaZpOb53wN0UlZl5llASpTVlWVLWFSqlU6tC8w9/9l9y4+4G\n7/rqq/zZn/xr/OCv/lXJ4aliSnWIM1FJmWoMRoO9dbHGVHShkQr999y+d48vvf4aZ2Ul3ek+Q713\nmY9//EN89GOv8MEPvsDlyxcoqwqhCoRSeGScdyLPP08I0eEbyJ0Mx4LvU8o1xaWJDX/t+SBTDMvA\nJyaYDMkxAYjRfeyt4eTokHt3b7N3+RlqVYAYu0VO0zXXzN7D039zqPaONrQQtt0P30liIEHqbhAc\n1jka33LcrzjuTzjuVyx0LKIrUSAlwiWPFYLOWRrX07qexvX0to/h86anNx2da+lcSx9aOtHjtCdU\nAjXTFLaisj56BFNNB2v6RO4lOBMjMEhrK5MClNkDNP63/jxLJuCTCZSJeF7HcrHj3ImnSnUYhBRD\nVEcz62iaivl8xivPP8eX3jhNrC7tnmNZlZHQ+NzmeXJciQgN5GqiFGol8QQ60/OXfv7LvHbv7nAK\nz1y8zPd+4qPUZTUhVmKNaGVyQ7KEh6QY4iyFNQRruHN0xFfu3uWsGjVf+OpnaJzjA+f2YurO3i5l\nWaZuFQqp8vBOSuhZrCmMUQ9M/zwhUCJMAWqi9q15DTc+FNa/blDwncMFg3OCIFtsCoF31iB1JIJB\nBkYPxFTE5DvjYvYgGRfBR5DTw3A8j4HnhzPH41YeTjIhCSGmHtrUarhxXcKuE47NCucDoRDRkOUn\nUUJC0DozYFeb8cv29MbQmYhdnU/4JQ2u8FBJ1KygsOWAXzGVweJMLI4qnEnFlwMBfyZ+bTw5Y3xN\nFuZcqySM6S1ZMSRFHGilIn4VGqHkgF3eB5pZRTPvaJqaH/7+7+HP/41/yC+9PbaEv7x/nk88/ww5\nmsKHSbh29riLaNQSMuJXVgibruOt2zc4q9bNazc+w9XrN9hfLteUwqxsymzUmipoKVokeMev/chL\n/JT5eb56bzzWF8+f5z/5+MvUhWIxq9jbXbJ7fp/d/Yhbe7s7LJaLFN2gIzFMUTFT/BqUNNb5ELnQ\nchg/cSapWsO3qWI0vZPrZGggd97hgsX5Du8Ftu+GaAfvbForVFIIw4ZiuIld8CCCNX33oeHlrK9a\nw67R4zoYKrbY9ciy5V6Pxr2a+Yzf+ut/NT/+f/40X3lrxIMn9s/zyRefA5+cDO+RewkC91crTtqW\nxWLJfHdJq/QZRq0t99pyr29ekVJFI7iLQNB5y/3+iGuH17l6fI2bq7scNw20gn2xx7O7T1PqknpW\nIZG0vufYNhy2DcdtS9P29H2HMS29MZg+FiM3fUffnNB1x3TmhC50GGWRM8Vsd47zPSGs8L7Bmhbv\nTIoCHd2Go4j1/5MfMXdhHSNymERikgzwHoKKdQgTv4OQMESl7tnJUK51rHOlY8fVuq5YLOb84c/+\nEP/Dn/pJPv+lEbcu7ezyysXLuN7Tm9gl0lhH10xW+2wQkvE7VTmWUTDec/3O2bzr9euf4Qtf/AX2\nZvOhoZBKhnElReycq3RMv3QOZy0SjwiOvmsxbcvVu1kHPTsr6dJzT/Kd/9Z38MILz3Pu3B5lVW5E\nk0YjYwiB2IpjWvfs9LyLTShEun8yGp+S8T47hMdSHMTHtfThpBHkSK3JKBhqICYgiHUUPaZtOLh7\nl5OjQ1Q1i42mcgYBX78i8cN1OePnA9tIrQeKDZ7OWwKeLvTD1riWE9Owsg0npiEEgRAaJQqCAIvH\n4bHC05me1vS0fU9ruqGzS9y6WBizb+n6FtdbnLP4YHHSEUqBnpXMg0QkYuVdJPXWdAgDNoTBmxhH\ntT99n9feCBtvhQm5IiqfU8UwjvjRKpujCFIBPpks5tHCHa3lv+c/+z7+1F/4m/z8ayNAPf/kk/ya\nT34MiUjdIlLXCJ89Q6kDg8wEK1uBBUrESaYJ/O0v/Dxv3lv35l298yp/72c+z3/4K749EbWUA05+\nzOcZr5EIHhFibrmQnrJUVJXkZHWc9j0bpA5WPcudJVU9Q+sx5F2kDmFTMrX+ejIDQyIpw982vSNE\nZXw43DB1Bq7dw3guG7c2RzqEgE8pEh5AdbE+jWlxfRe9SSKmSk0/PmLU2XTrLHkUvvNO9GyMRmHw\nWOcUnm20w6OLm+KX62kn+LUyq4RhLQQV8UsWMdTc+ohhwifs6gYMy9hlekPXd3Rdm/Crw/URmxwW\nrxyUkmJWIpEQLMGbWCfJO6yRWBPxhtQeeVAO8wls8q4HyUDAx25z3k+8koIBu2SKSlBy9PRBVhw1\nVVlRlRWf/aHv561rt3j7xh2Ws5plVdN1PcbE+grOxnbckTeEQcFNTDBFWsXtoHlnXDlcHbO/nA3K\ny0BehgiPUeMYsCvh12xW8EPf9VGOVw2HqxVPnt/jysVzFHVFvVywPLfLzv4uy/09Fssx3TBilxpw\ndnIxh8c1DDs19TJubR4jAw6JKZkaFMeRZE2gZgLPk/uIxTvwXuL6Dmdi/RBranQyIEqK0aD1dcKu\n/FvD8QdG7EqGLQYleSsPI1vu9d64V1VV/OgP/wBvvn2TazfvsqxrFlVF1xv63r5n7mVNz1/917/A\nG3duD0f/3IVLfO8nPkJRVsO433KvLff6ZhehFA5D7zxaQGM67hwd8Obda7x2/w2urW6z6jvmbo6e\na5z0BBkw3mA6y31zxM3VPW4e3+feyRGrpsF0HbZt6HuLsR7nPdb2cT1sG8yqJTSewpSUeka9rFDs\nIkIcd33XYq3F9g34QECOAfDp1uZIUwhDo5rcYVCp7GjLaca5gY3HB5DZ+WBt4l4kY5gcUg6VjMYt\nraMBihQJpRA8cfkCf+K//t185fW3+fJXr1IrBcZx69Yd7ty5z+HBIScnK5qVx/QujksYDPPBQ28g\nmAaSUX7lbLojZ2PK1evXaGdzhBCUSqdu2HKoq6WSMS8QwDlE8HhncH2bokyz4eTsrKTv/dR38cEP\nv8zu7m6sYShj7bRsrBI5zTNEl0GMbh2NUqNBS0x4mABUNLBN0kSn3EkkniV8IBYFC+AjHxMpEkum\nTSHwKDJD8amGGM6hQ4i1tY7uYZsjNBcRhOg8QsZ1amKEG9A04f8mZOTz2cShs+xip4zoYu1hsuPk\npyaf2Rq1HiBRKYweuZVrWbkmbralcS2N7Whci0ChREEhI8FufR+VSJ9Ilelo+57OdPSdwUyUw9Z0\nMeKh78AEpI0DUiqQhaCoC6QsY0cCF1N3nDH0aeWOqSip+F/UqsY7f+YIGGWdXGWQSN4Zn0MgR6Uw\nF2Ad2k3r9ULJZVHivGc+m/OHf+SHeOPtm1y9fptzOwv2Fot4zp3BGIcxFmNiBzbnEkg7P3ZjyINY\njLrt8dFxIlWnLe9v3f4MB8eH7C8Wo0NNTChLSMG06XGY3BJKragKxZXL59N3ng1SH/ngCyyXS8qq\nQqU6DkPtCMbJeZpQbV71TG7FcI0n1Cu9nrCpNU9hVhDXFU0R0rdNSEkIHo/FhwCmT0phVAxlUURP\nZyjG356wtDAcxVluvbPlXWmYGM98U3KsxXBqmRzmriMPLI64lQeJDS7hlx/w68Q1NAN+tTSuQ6JQ\nsqCQJS6EAbs6P2JXfjR9bB0fFcRuxK+k6EkXF1WpQJaSIpRUqgLv8Namukg2OapiJ584HCYYJs4e\nIWdJTpdYM2wNSuF6+2YhJ/iVQta1jlFKWmuq0mO9Zz6b0feG/b1dXnnhObqEW/G87YBdxtiIXS5+\nLhu2ggiTOQUX/E56dTau7M1rRHBxrk1sQ9GoFV9NDUS5E5kQgUIJyqLg6Z2al4tLzJYL6uWc2XLB\nfLlgvrNksbNkvrOkqivKqqQsS1RWrDaMWuvYtYFh8eQmLGqKZeNOUzOXmE7ote/LmJYdhAlvBvzy\n+BCxyzvwpouGrWTcElIhdTRkRIPWGK01UTsfZghtHP+DJZzFvkhjcHpWaSz6FBnjwxa7HlW23Os9\nci/j6Odz9nZ3eOWF5+n7nq4zXzP3+ls/+wXeumuZOhPfvPsqf+dnv8j3fefHhrPacq8t9/qmFyVx\nSmCCI+A5MS13VwdcP7zD24c3udndxwVBXc2Z7S5Z7i3RlWZlW+6e3Oft41tcPbrJ9cPb3D8+pGlb\nfN/jm4hhnY+1BWOtpx5vOvyqQ3aCPbXHhapkuVxQKYXwHbZr6LsW5xyrELB9S3SKQVyAw7BY5/uc\na77liCzSmJjiEdFWgkxjxVo71FqScozmyd85TVfLEZY5xVEIgS4lH3n5BT74gedp247joxPu3z/k\n3r373Lt7n/v3Dzg4OOLkeBUdjL2hMzFroLcWl41DEpDhXWuOahx9v4oOglAg0HghEC7WAoudE1NE\nWnCE1PxBBIPEsV96LlUlt7sfSXPoU8BPI+Vn+ZUf/yj/7nf/Suq6Hoxk2aAVrwVEFHoUWTO/jzLB\nJAEM9bYmE1qE/H4ybhGQ6dbLMNi9sMFjnMU7hwygvcCcHNEe3UP4KwhKvIipkxaPEqBEQObO2Aln\n/OA8OI04p5DkYXAtDpJTf49wv+4wDGFr1Hqg5EgHHzwr23HYrzgyx6xsk8hTR+t7pNAUsqBSFT7A\niVlxbFYcm4YmkabWRGJlkkJouhgG35qO1va0tqPwksIrSjSFVFRliZYFVVHEgWcNtjfYvieH5Qtj\nQGSASgPr9HJ4tgxEIAwTwU+8d5DCC5PXTqY6LzlcU6vUkUfrwTqb55FznvPn9vjoh17CGDMowl0X\nyVWXlURjMdZhbCJZwcd+GvkYQg7PDxzffefuPgcnx+zNq4TRWR0kTfZMUHwKphBIGfO8y7KgnlWc\nv7DHx55/li+88Wo6/whSSv5evvuTn+DbP/qhoVbOSKrYUArHkNAzZ2tWDNOLMdLhNCCJ6VeskalM\nT9Ljpp44KFWpLoh3IPSoFPYtrqyQukSGgEo/Prliw9GdOvZ3kHelPYMGejYJm16y3I1jLFgaHuIH\ntjKVjF8uOE5My5E54bA/ZuWaNcOVFgWFisYnG1zCr4Zjs0pRWh2d6ej6iWLYGXrT0dqIX53tKL2m\ncIoCRak0VRkNZVVZgHMx9bDvscaQa0NZ0+O8nx51fHgHABOTbTpeppv3PhYSF5E6yEnklBSRsBSD\nF1JN8EvgfTJUpYiGvuujYauPmBWxywyRWxm7rHO4jF2MKWizuuDZJ57grZsbKdniszxz8RJ7yzqS\nzJDDzSdGkjzfs0KYDFpRuYVCF1S1pp7VzGY1O3sxMmtnb4/FzpJ6PmM2n1HP5mOXoKFTULyaU4VQ\npOKkY7TDg+9CVgtF/mwmF1PtiMm8nSiF+d5N7+FgmAwQ3Bi14gjr2GV6pC6Tp5AJpoQNZAzjH79W\n7JoMyNNDc/S+5mXGZ+V2mr6zxa+Hli33+tq4V4ya8O8L97p3eMSbt27yIGfi4ckxe/NZ1ou33GvL\nvb6pRWqFLwVGWbrecfvoLtfv3+LmyV1urQ5oMNTlnJ2dXS5euMhsPmNlGlarlmvHN3n94BpvH9/i\nfnNI07XYroeux616mqbl2Pb0eJwMIFLtNtNRuYJFsYOqC+pihlSO0Pd0y4a2bQcnXK5XGVKkz+AU\nChPjMAGCSFjnscnQEYJKcCOGxTuEgPMOa91Qa0mlOZoNpHm/cYWOmxSSzdp+dSWYzyr2dhc8cfk8\nXd+zOmk4PDzm8OCY46MT2ran7TqatqFpW9q+j5Hz6dgCYL3j6F99mdv3141Ogle5sLPkiQs7EAJK\nSLTUKDk67LQQFAKUcBHTpMN5i5COIvOucs6nnzzP3/+lu3zl1piV9N3f8XE+92O/j9lsRuYG3ucJ\nFrEvl/eYRpW+/3bj8VqHtXcDa817M3Z5PxT6z4Ywgqc5PuLOzWuce/Ip9i7Pk9PWr0eW5rHAQ6+A\nj3AGDOfBGt6n39y4biFA126NWmdK53rud4f44Dk2sQbNkTmh9wYnAkIqKlWjpSYAJkVFnJiG437F\nYX8SwSD42EFGl0gP0guUj6PZeEvwYInFb3XqnqV1Sekral8x8zUaiTcWZyzeWKKnMOYwR+9e1ovG\nkMSxV9gmqEwXz7SchvExbxm8co0dKeVIsHI4aVIMp3V4QAxFor0PWGsxdRnzwE0Mgzd5s5FYWesw\nziVCNZKrgSSEgCoU/L/wIMv7B55+kvM7i7Fga2CgLYPKGkBKUCrnTktms5rZrGI2q/lvfusP8Cf+\n0t/ln35xAlKf/AR/5o/8PoqimoBvLgI7HTFZiQob700k/3miAG2KmOw2On4nOw6fFxNFMROTREZz\nWpfPbXgN3va4vsF0K1RZoooydkRZGydMSNYaj5sc3XsT8Q6vpr+/5i0Mfkgpm0ZEbOXdpbVdwi/H\nUb+KGGZWA37JhF9SaUIA4wzWWU76hmNzwmF/ElsZB4+UkqooE3ZFDAvB03tLEAEbPEoECi2RxK4+\nZVFR+5q5q8AFXMYv6yAphsaYOF5Tnb3puEtJEay/O76TFYFNg9agKJKKmm6EwQ/RDkrGttA6drrJ\nRd8zCfEp6stUBdZUGGMwxkbFeMAvF/HLJc/pRCmMhq04dn/o+z/FX/6pf8SX35zUvrpyhR/8nk9S\nFno09qT5HPErxJo6ZMUwZgjFSLOIX1VVMKtH/FruLlns7MTorMWCsqoo64qyqibpOhMP7ETW68g8\naFRt4tvGywd9bhNDNpRBos4bUyNypJ0XQ5MBb3ucaTFdg+4aZFGgfTIGIkbt8kzsGlH0vcpgfDsN\n+msnN9aiydiVx+IWuR5FttyLx4Z73V816YjPdiYGrbh48dygCG2515Z7fTOLl9CKjkN7RL9quXV4\ni1tHdzjoT+hFQKuKc7NzXN6/zN5yFyQcHB1y4/A2bxxe483jG9ztDjDOooViWc8p9Zwge+6HI7oT\nz8o1GOERmqjoVwpZlNTLJcvdXZZ6B6Edwjhs12GMGYzmwTlaf5LG3yRii4w9ybGEj5Wecve/kNfm\nnLqY8MY5XBCxVnKaVJlrrUdTruOZkrGmJ5NUyMjNVBxtQcKsQIg5/sIufX+BvrNYE0tkGGtjjTFr\nsd7hkpMrSIEPAWMNv+K7Psn/8pf/Fr84KYXz4jNX+I+++9sppMQ7F0OUfIy8dSn6VobY1CxYk5x1\n0UAthKeelSwXc/Z2dzl/4Ry/6TdeoA2Sg9byoQ++yEsvPkd0jka8i9coIFU6f8ZrEA1/fiyX8b7J\n2d8VfQti4FvjmkPqTBvrHWb+DA7Trzi4e4vj+3fZu/AEUpXYMLhR4r1lE8mmGPN+GbnO+p7RSTGe\nJPTdtlD8mdLalrvNveQtbNPW4AkURUGla7QuqKRGCoV1Lra6Ny0rE2s+CKCUBaWuKITCaBO3wrBS\nJUEIelxKAyrQsqAQFaWoqPyMWaiZhxodFK53OOPwJk48Zy2m7yPoQKpDMlUIkwo4eAPzNjnJMA5s\n2CRWY7ioUlOlUA7vKanQauycJeMsJgQ1/LbXEleoWIvGVTjrUhREjohwayk8OVN3IFbpe565colv\nfflFvviVdW+eFJ/lwx94no995KWhMF4kVWJCqtLrQSlMSq2WVFVJVZXUVUk1q/nTf+j3cP3eEdfv\nHvDy80/zygvPUQwt78Wg/OYLKNJ1zizkXS3uZ3GvKd9dC0WZfugMOaUQhgTSPgEVqd2uwdsY/m7a\nFaqsUFVNcHY4ZiFOH9b7KSNRPH0u+ZoN125QDqcdeN7nA/r/uTSn8KthZVqCAF0UVLqkKApKEVPR\nrItt7JsJfikkpSyYFRUahVEjfh2rVWxVHRzCGVSqy1WIikrU0aAVauZhBi7gjcUn/PLO40zEr+B9\nMgCJwZ4Su9qRtYV1Y9Um2z/ToBVlmm64iV8yFS9Vqbj7WrfBvNAHT6klrtQ4Vwz1aKz1qa5WTt+J\nNWp8ov/r0VrxvT/4u57l5u073Lh9j8v7e1w6tzsYzshjfNr5DBFxLDlFhYjlRJWWA34VhaauyxHD\n5jPq2YzZbEZZ1xRFEWvQSL1OMsVpEDqtbr+zZEXulN6Vvv5UEdEpzm0ohfn8QwYtHyaexGTU6lts\nt8J0Naqq8M4QgU8OXz/9qfePTKUxeaZB66ydR8PWttDye5Mt93p8uJcsM3U/25n4LS8/z6Vze1vu\nteVeWwG88Jz4FbdXd2gOj7l+cIMbh7e4Z45xQrJf7fP0/tM8fe5pdsoFrrXcPbrHm3eu8ubqBrfN\nISvXUauC84t9npifZ1/ViN5x8+A+r92+hj+4yYFb4aVHaoFEUhPLDSx3dlnKJUI4pHHYtqPvekxv\n6dqOtuli+nE/dbiMg1kwpskBqbj8uM/ARdI8dN5hHSlSK6cfxmitjF1KKZSO0aWF1hRFQaFLpIjY\nkg35MtXuGo1jIjb1QVJXGrGjkKIgeIH1KSLVR4M8QkBqABQEyWlq+c7v+BhvXr3G29du8tTF8zx5\n6RymN7g+FrX3NhaCt+k1PsUaWYc3Nn2tREgoy4LlzpzlzoLFYs5yOWexWFDPa4qyRChNEJJY6zFi\ntEgRYIMRK+HVGL21jlsPm+o7YN+7yVl458fH6JTJ3U5j98XIQWPTFYnHNMecHNzDdg1FOUMihtjk\nzZ+Yvn7/GFiW6TeGM98P4TFOPxRCXAH+GPAfAHPgS8BvDyH8i8k+/z3wO4F9YhzPfxFC+PL7ccCN\nabnT3COEQOtSrQZnUEpRFBWVrlnU8zgJfIw86F2flMJY0LRSBXVRMS9nLPVsJFbaUsiCHsfK94i+\nQUmNViWFqijljJoZszBnwYwi6DWl0FlL3/foth3SeYKX67c5TMhV/hfG51ny+/HF+t8EOVxcTazv\nG+RqKLC3bplPBwFBk1NxogebVPuGoeaIS8pd6gcxPAay1yASpv/uRz/DH/1Tf5F//oXR8v7xD7/C\n7/9tv4FFXQ3kInoL8zI+FluNobFyaDertKIsNUVZUBbxURclF594kk+UZQLmlLYj1aisrRVxOD2l\nHwaXwvD/O8LvjhwAACAASURBVOx8plNNTDbWlcN8nZNimBVGvEp1aRpMe4Kua7xZxC5EwSeEFEMk\nwsBvJgfx/gPUWXLaiBEm3sJvFHL19cYugJVp1vArY5jWBVqUVEXNol4gXBwr1lk6G/HrJOHXTFfM\nVMWinDPTFUYbrLYYbZBS0QfLyvUIq5CqGPFL1NTMmYUZC+YIGyJ2JeUwKoUdum1w1kKIHqIxiWei\nHA7KX25vPMGusK48ZgUyhJCMK+KUQjhVFpWKtWnGboNyMtCzsunXx2PCrhDApbpJLtdOgkExzPjl\nh/npefrK5aj05Npf6fP5vfjFaXwEMRDIqZdT60wSo1GrLIvhUZcFRRGNlbooBtwaisKTjVpMtZj0\ndJNcPcQgO2OfeP/GOIczcWMwbA03kawJjpFaYShqG1yK1Bqwax7bbIcAwv/yYNeoGZ795zDuljE4\nrMX5f+PI1xu/ttzr8eFeV65c5pMf/Qg/83OfTYrYp4i1Y34vH//QK3ziYx+Oiu+We22511awwnGv\nu8+1+2+zun/MzcNb3F0dcEKHWtQ8sfsEHzj3PFeWT1CjuNccc+foLteObnLXHtBog5CSZb3Dcxef\n5uXzz3K53ENYz7WDu6hyTg/41W1a2eGFQ4lArecslrsslzssxA5COpQNuM6kGqiGpmloVrHwfHAx\nSjOEXNnKkyPC8xzLWTJZ/zrLrxNCiuZKET7ReB0N7tnQLkTiWjrykqIoKFSBFGr4HZmMWkJCrrEp\n5HqasZQKicIHgfaxDrr1MTqV1BGWZNQKQRFqTQg1F84t+Y6PvoIIxJIGNkbdeuejg9Xa+J5z0ZQj\nJMLHhj1SCbSOUbFlWVDVJUVZUBQKXahYl1WKWI9LSARq6PwqxNj5MQx1Q1MEt09YMU79hzNoTSDn\noefkgFFifO5DfJ2N8Sk1Fe8jr0KiUtEt151wdO8mzdE9ysUuWqkUrRVFkOxk4iF54/skD7peff8Y\nGrWEEJko/T3g1wG3gQ8C9yb7/FfAq8BvAb4K/Bjwt4UQHwkh9Jvf+ajSuo677X1CiOk1xkercCXr\nmLpT1OzUO1iTWq76PnXc6SK5ss1g0Z4VFbv1MkY6KItVFhAc25ayX6VONhpdlBQ6kraaOTPmzMUi\nEauoFPoU4dC1LUWxwuiOECzO5WSVccnOi+4YMbAuebEalBrG/WNYaASKQSk8q5tFJlZJWYyeQ4Yt\ne+7jPYOpHy8EkSIaRh6QCy0PpHCiuD5x+QKf+2O/nzeuXueNq9d55vJFnn3y0uBVGpRDMrGapiAl\n67mOQJQfh+eFmiiBcvQOpns4DaMdJBdXzIUXH3pGjxrQO39kXSkcsmzGC8R61EP6wqx1ZyV/CIGP\nimHRzXG2IzhDTuEJA7KORzjV495Fp3tIERuPWc42VGTFPyqHX/OP/7LI44BdkCK1Mn55hwke6x21\nVCihqIsZO9UOpu/i5gxdqpOVo7W0jG3TZ2XFbrnESIuV0ajlCBzbFt2fxKgnrSmKklLXVCophiyY\niw2jVh8NWm3boIsSaw0hWLxLRIqpzWWqFObXUwmTYb6OcVmhku+CX0pN3h/SECf4xfrzWEY1YotP\nv+uZTEERBkfYqMwyRDJkpScXhfZu+jqRxwG7SHiajkvKdcxKZEslcnVKARajsnuW0rtOCjLpeodB\nlZaXIbpk/b93kbQY5Jbi4wUb+gTkazTJ6YpdhyaRWrad4foutigPDhHUmdg1lfcFu8S7YddoVM33\nOTct+EZKQXwc8GvLvR4v7vUn/9CP8Af+6Of4x/9idCZ+17d9jB/7fb+VnXm95V5b7rWVJL033Di8\niZOO7rDlzsl9TvqGsFDs7p7j6fNP88zuFc6X+/SrE9qm4WB1yP32kGPV4rWkFAU79YIndy7zgb2n\no1HLBUox4+7hCW/Xd7jXrzAhIIRBK6jKGfP5gsViyYIlBIuYO/quG+rpNato1Oq7DmsNzvXDPR/L\nPWSDFsP9z7wk40l2GiIEwYdYfiEZyKSMjXd0UQzp0eO6OKYYZuwS2Q0mYpH3mGKtyOtpCJ7cjTUa\njaLTQAoZDU5BjgYVRqM8QhCihQzhYzx3LHAvCVLjlYzOBx+iQ9X55EiQCKERaITUSJ1TvRVSS2Tc\nKdZsVRKvRpBVQsYi+/m3yJGlk2uaDf454lQExtCpddmsGQgxKhgXI6pEWluy8zNISfBxrQgybj4f\nnhfRUepF7IwYGKJqCWLgo2MX33hMGui6E47v3WJ1eI+9y1fQuiKbQpmOmczxvs7yuEZq/QHgjRDC\n75y89/rGPj8K/JEQwl8HEEL8FuAG8GngJ9/rgWbpnOGgO4mWZxEX20oXLIqaRVGzLGbslAsaLwhY\njAsxjDGFdDsX8Nqv1dYIMICBSJNXKo1WmlKnOjRlzUzPmItErUSNcQLX9bg+duDp2oamqSmrEtMX\nBG9wMhfvXZdNJTAfQnzcNLuP+0eLu0z1ZyKJkqkjhBwIx3A6k5D50fI8vp+9bIOqRi7UKUldNBgJ\nVV7fs+9ySOFIAPvSc1d48ZmnBiI1LLxD+k4CjhAPQkyUO5nCYtUAVnLiEcyESq59hgGgpldvcrEG\nQismz9l4vnljwggKE6VnPNe0z6Y+NCiFsd14RMqUqjQAFcQOF7kzhQNv8KbFdQWuW+G6Fmc6nOkR\nKQVL5LazDx5AvzwyUQayp+j0yH5s5euOXTDFLzEoRJUuWZQ1i3LGTjFjp5zTuEDA0vsQCwbblB44\n1AXyo7eOPPwmtRGURukYTl4l/JqrGXORNmZgfMSuVGy57VZUq5qyrHCmI3iFk1MKP3kWxlebJpjp\nAho2nuTzzvVn1IaCGHGd4THWqxoVwnXMGvGNCX5l49sUu6bOsDVjXNIeQ5AJt2QkESqMpDERvwEj\nw8QYJaPymnFrwLCMY0oixDSVct2gNb1qp2Xzyr77XBuIKqfxaprWsIklIkU6iCDJqYabuBXricUt\nklJDsC2uK6Nhq29SJ8QeqTRCKoSSINTExJR+713P5OEkp4Wdfv/0flEpHCMevsHk645fW+71eHGv\nC+f2+Nwf/S/56pvXeOPqDZ598jLPP3Vpy7223GsrG9K4nqsntzgMHeHE0LYdFseyXHJl7zJXdp/k\nwmyfuayx7oSu61i1KxrbYQuHVBolNbOiZrecs6vm7Mo5wQfmYkVNRSkrNBqFBhHQSlFVM+azJYvZ\nkhkLcD0Yg+0W2M5gekPbtLSrhvb/a+/dgyXJ8ru+z++cfFTV7Z7unul57Jt9mF2JxcI7shRaWGlA\nhA1ySIQMARocliUCE0LYIW/Y1qIw8irsMAgcaGUJLUEEtiIQZhzLy5iIlVYgYUAriY3V4AWkRRLa\nl7Q7j52Z7tt965WPc/zHeeTJunVvv2/VnTnfjuyqm5WV+avMPN/8/n7nd35nuaBZzelaRZ/O0xMi\nHSGsYV39QOuHVw+qx8ENVTR+JtXOaSHlOtpC6QMX2HLDAV3B+cJ/lyEgH7LHxfrJIFwwypoeY4cs\nT1AuMOZ5IU6yJy5A3xtXDsL4B7/LFBMXqAnDgq3nxlAYXiyIq6cYJuIQVWApsOLKNijthxHiKEDC\nsEitCUQsG+cnBPIhkXajZhR0mbN1UybEYCBDcCsMBY7BfM9T8YQm+0jDS8MoA4mztSpch6F4/nKF\n4nunuQRf4kewpkdby/rmNa699BwPv+7NzKopItrXAgthxDD77fg5sAvsZaYW8M3AT4nIR3D5zl8E\nPmyt/esAIvJW4AlcbyIA1tobIvIvgK/jfgmrZo4SYVpOmKqauqiYld4prGZcrGbQ9rSyAj9Ffd/1\nflhKMqV3HJQChJ4ZCXVdtHMKS+cUTqsps3LKVNwyU1Nao7yo6ujbluVyzsQ7heuypO81qvWKJmkd\nqcDffCyl1DQSCLGNeDJRikKHOg5J0dLoMAURNjiJriBe8l6NnSsJqstHexVRHzh7JbXdiytjwaro\nALqoshocwUAANlo/vCbOnfKkqbQaMjVCKr/3alNhhSTDdk7FpqBKr8AYgwOeZEYEByg4wSTCK4g4\nT0DpK3aIvEeSs2HqVuOEle2hbzDtim6to2PYNWt6XwxRFUV09lNDA+8/aAy37dBDMyzHngj7jJ1z\nF8Cqbzx/uWyFmZ5QF6Xjr3LKBc9ftuloZIX19aL66Bh6DkuErY2q3TV4URodHMPIX84xdNw1YSZT\n6AzG81fXNCyXUxaTwTHse5eyfQw2np8tAa1ks3jvj1htcAxDVpZSrjdNEueQhBs2ncDEYYwLAyco\nkiZHwluJYxjsixla1oJRMcg1BLLCq9tB5K/EuRMZauy4mQyH+loqqa8jflYhIfk9bGnYo7O16RTe\nGjY5+Wlmx/iapEtweF1AywkqSYifeC6c8PKK27R+CM+Cbj2hWy/pWjcTYnh+uJ7cQZCPo1tnB8tQ\naDsWWj4/3AV7wF9Ze+2n9nrHW97IO978hqHOTtZeWXtljLCg5QvmkJkYqsIidNQo3lRd4bfPnuD1\nsys8VM+oRGFsz2q1ZL5Y0Ha9G6raEwOtIgakB3FBgzBUGHC8RYWyikoVTKsDDuoZs3rKzFaYGmw7\noZ1OaZvWzSK4mLOYH3DzZuX1grM53neeBKJ2STozj0d43fesxQ3f63sgydQqQmmEENhyvpqxSe0m\n7Cg73iaHcZnpGsWgadzxgh7CU6bjdI3jy872GKtiUEvEZ2T5WWGN6aNGczypPX86baiVRrTGUBDm\nnB5mucVpMAm6csytCqctxZ8cF5hKG3XK90GrhIDV7d5hKc+lWmtou8YkS+hgM9bpLlSc2XAzqzTO\nri04bYpFi7sPu27JzWsvc/2VL6OnF6CcDrb7+8WGIF38bbvBvmZqvQ3408BfBv4X4GuAHxGRtbX2\nJ3CiyuJ6B1O84D+7ZwRhpb0AmpYTqqJiVgWncMrFckan1yzQLg2zCw5hP0SNTVI4GDtkOvjZqJQq\nKHTppwn1mQ6VE1QzmTBVUwqrnKjyRe0W8xn1pKaqXf2Uvi1o1fabaBB0G45hYLLAWT7SGtbFDA+t\no1MY0+DjNKwSm6WLfjM4holDFUhJqeCoEb614c/I4JPE9d7u0PPtXyUJaGFDwDzGyUfO5/Cazszh\nRaKWKBjFR/adUzg4lf6Mjc5qGPd9txgeEamg8r83/q6053D4boiuD06hv2ZhIfS+hn899K63EIFu\nfYGucb2FXdugcQ8Rq7RnyKTH8Az1zKCTh57CUU/7WXuod4edcxck/OWdtxkSHcMLVQhqHdDoFQu0\nm6Gw730R4cBfdpSpNfhfoT2HbAeXqVVVE+8YTpipKVPlAlt0Js4g1jYNk/mMyaSmqirWZUHXat/2\nAo47hyMEZwcGokjbZ+Qv8bMcemcqOIUqDWARH+Sb2Q2O17xQUYELhtcheOWOn5oybt/4DC2flaUs\nYzGRcum4ty8eL3EMQzZWyl3OKfSOIYG/TghoHQ8LnnInbUFiuw1fD0RliY6QTc+O56XgNae8NXCX\njYvjL5+W33fYbk23FvRqQt+s6BvPXeHcGB099FjT6z7SxWmO9UiQev46pwEt2AP+ytora6+sve7p\nJ94xXiXaa+doMbzSLLi5Nsy6gitFzaOTK7zj8ut5+8HjXJ1coi5L6Dr6vqVpG5p1Q7fq6QuFaEur\nOhbrBdfX17nWH1IXFcYoDts5N7oFa9uCgkIqtFRMVcmlySUuTS5yUJZcoMRYhTI9fdfS9T3rrmG2\nPGC6mDG7ecCNGyUsPBNE8nF3LzFH2q0SBVYNCtC1aFffSnAZUC4zmahR3BBD19lZVZWr+ak1gvj7\nygd8xbcYC46pBXqLskGrhaHIzkIVMqbYuC9FfCZrMQrMgyDW1RPEGGwSZI8dnl7j6VBXVQ1daiY5\nNxKOoQUtoIWoDdO5XkV05K6Q/SkhAhhMTk/5XSCGj6wl1iI1Q8mD2HaTIcTir2285sEOX0dL4X5T\nkntFrS3KQt813Hj5RV56/jlmlx9j+lAdpnfcYtnuAlqwv7MfKuAT1trv939/SkTeDXwX8BP3Ysj7\n3/9+Ll26NFr39NNP8/TTT28YIGir3AxgUjLVte8hPOBCOWVaTJgUFbWu3Cw7UlCKRluFMoL0YDpD\n27as1isWUjqH0c+ate7W9MZFt7VSlLqgLkqmVcW0njBVYakpjNBNW7q2pW0a6smEqq59cc0izhox\n3EqjJp28C41OJX+Hrxx/aEXHMNZySHoNRdAi0UnczHQYxFVwxhLnzIudcIzoZsmGuPL/O3L1oiqJ\nIgePyg3TIWZdHPvdMZo+jM12QkqiSAzFVgljoOMsO6c4M+EzwUfkhwadOrTH9EDqFCYO4VhgDc7y\nNqKIems4DXFtzHQQixX/oDAt9ArTQd8s6ddL2vWSYr10Z1jcA/VB0lEYwnOyoxd+fELIIbvlFqLq\nmWee4ZlnnhmtOzw8vHej7xwPjLvg9vlLrOOvwioqKZgWA38dlFNmRc1EV0x0RaUKSuUS2jXKtace\nTNe7tPVixdxqP/ufW5re8ZdgXQFnXTApSqaVz9ZSNVNVM1ETbGvc7DJNy3q9pp7UlHXl6y64jCPn\nGKXXeeQGDo5O+Bf/Jgmq4B/e7pPBCUy5a6g7FTK2gjBRauAtJOyDUbZDOiQGBv6C4Axu4a8Q6BGf\n7Zba6ttEZOcRfw1OaOytjJx1nL/S8zR0v2626ERcpetO4JnRdUgCWfFKpevC74yfCWmkbyP2M8oQ\nCH+IuGnFxRovrQ3YDvoG2wmmXdI1jrva9dI/LxSiC/QD9LtuxV3ht6fLuKbWydgj7oKsvbL2IuEu\nyNora69T971n/LVTFKK5IDVFVzLtFA9XF3jTI6/nTY++nqsPPcLFekYpms60KCsUKKSHft1hak1h\nawzC4WrBFw+/zMX6gO5AoFW80LzCdXPEkhWd7n1gSzPRFQf1hIvTCRfqkplV9Aimr2naCU3XMmmm\nTGYTptOaalKiCx/cCAXi4zQ9ilAvScANsyvC0Fh3H2jRFH5yjUprtCxd4Ls3oBSm77F9j1golGJS\nVtRVRaHdJBGl8rWpxGBsF7kx3Ge9FRCNEo0M/XOEDM6oO9KW6jsrApe4oKwhrVUKJJ2CPhNWkrqE\no0BUj8X6deLaNC4bq8AFtRRCISaeRYPC+uHyoa0N7Sdt3eG9Hf2/bcvTIP5bo+BVcj68oIx7dOMS\n/GDzEPkzgz4J9cIEp10UBo3L3lqbjuX8iOuvvMyjiyMmFy/7fY1/053Y/6DQ7Gmm1nPApzfWfRr4\nT/3753Hn7nHGPYaPA//ytB1/6EMf4j3vec8tDail4IqaoZXmSnHAleoil+uLXKovcFBOmeiKUjSV\nKpgUFdNywqyYsOgbqrZA9wrb9KxlxU2jMOvOZT74YT2rrmXVLjGmQwuUWlEXBdOy4qCqmKmKiaqo\nVYXqoWlq2klDvZ5QxRkYCl+fIIgCy/hJHh7NEm9oicNSVOztG+5MmziFQVgloioprhyGvwyFmL1j\nmAgmYXAIQ0rEkOUQmWqgs+BQboX7fYL1rS+YPBTKC003+enDMcKihsyLNANDZLBlmwl2y7tN+6wI\n1iosZvhB4RtJD2BcmVyrUXaDHfYZz5UowM2WMZqAJ5Ca74+OTqF3DLW4T0JtB9uDadd0zZJmtUAt\n51gEUQW6rPyw9V1Q03DPBgcxPpiSOMBJ2OYcPfvsszz55JMPxtyT8cC4C26fv6ZSckXNKFTBleKC\n56+HeMjzV60rSlGev2pm5YRlOWHZr6lsQdELpulZseJGr2jLxqUz9652waprWLcrjOkpBCqtHX9V\nFbMqBLQqal1i2opmUnun0GU5VH4GGV3oyB3bAlpD2w6c5Xls0zHc+B6j9h74y08nH4YiHhvSQ+Sn\nIbiVckfKXYlz6I8sCXmMWpCEbQRRafu2w5Cd6E9u8Fc8vkr4OOGvaHM4jmxtupv8NZxpcQWio2Po\n+YtATzJw1cibs3FdGKoQGqmN3BfOUSj2YwmBvbCrIRvACevgELq0h1CzoQfTYXvBdGEmsQWrxZwK\nAaXQRQV6gzrPFIM03RbQOo2+9oi7IGuvrL2OIWuvrL1Oxp7x105R9MLFVUFFxQEVj00e5g2XX8fV\ni1eZVTNKVaARRGkO6ikXJwcclBNKq1mtDe2qxdYlcxqeO7xGYQtuHixRVvPS/AbXuuusiwbEOu4C\nJkXBwaTkQl1yUBXMrKYToTfQdD1N3zNt1kxnM6azKVVdubpVMgRiHfyQR6uG0loWxApKNFoVLtCE\nawBxFmdr/cyoDoIrmq5DpyFCIa44fKk1pXKaz+3GBYXGGeWGITw88CXiMxp9kCnVXcpHv0J7j9mU\naNdOXcQGpey4w8Af1xBmtXZZZGkBdqV8linJxEOhM8NzqcKHvWJnYspaCdeMPpPR7xzlnm1KYZss\n/jcHCouZWcZdNKUErMKKcryolG/DCnrla2mF/Vl/vsJ5ceuVgNgeMQathFKVrGzP/OiQa6+8zOzS\nI1SzAwJHhqfdmKJ3Ed6yrPe0ptbHgXdurHsnvmCptfazIvI88I3AvwIQkYeArwV+7N5MdZhIyWV1\nQKE0V0rnFF6pH+JS5YTVVFcUoql1yVRXHJQTVuWEabuKTqHte1ZmhW16Vno5SgvsbM/atIOwUjoK\nq+AUTrUTV8pC01a0bU3dNM4prF1PYch0EBUEyjbHUKKoUsnrIHDSbf3t6W9wdUxcBYE1/B0E2JDJ\nEI4Z9FTifIUlFVeQCJqNhjC0f++w2Y2GM3wjdTFDL5x4h5HYS+hfU3EVo/GDDbLZPkdMw5iABnod\nWWK3TlvPWPzaIKqS17DjpAcy9GRaL66IjqGN4iqwnsjgGA4Oau8O21tst3LCajlHqrmrjVRWPjq/\n/dw+SKS9h9YmYvEOegv3CDvnLkj4S/ugVnmRK5MhqBUdQ10y0W5Y4qqYMFdLKqvRvWBMz6pfYdue\npVqM+Ks1HY3psKZDi1BqxaQomZUVB1XNTFcxsGXqnqapaCe1C2p5x7CoysQxhPE1Dh5eCF957grO\noYwFxCbvDY5hEC/DUJ6Uu2KmgHcMQ1Ao8Ebs8QrjE7cEtcLxTuevwC92tD7dWpLvBHYZDz2UE53C\n4BgyvJzKX8MRB96K8tZuzmwTbN5sh0FVeTE4OsTAXdFA8bwpMnIMjZ/+MDqEDPwluF5TE7lrTdes\naNcLZHHkuKsoMXXvs+G2/fgHDTt6e6eZWnuGnfNX1l5Ze2XtlbVXChH5PuBbgXcBS+DngQ9Ya38t\n2ebHgf9i46s/Za39pmSbGvgh4I8BNfAx4LuttS/eDzvV2iJfXlHONI88fIW3PPQ63vjw63l4doWJ\nrl2ACCiLgksHF3js8iM8fvlRnp9f42j5MkfNimI2Qc1mvNRdpzla88r0OoUI827NtfURrTQUpWvD\nZQ/TUjOrKqZlwaTQTKWkUZq1UZRtS9XUVJMJk+mEejqlqkp04dtmePb68OvQnhQYFxwRq9FSUIib\nDdsFMQydaen6lq7vfJYQiBJfq9BzIz47UKAoNGVZuGGIWhIqGgLfw3C98Xm1Fo7P2ByvqmtpsVMt\n2c567vMBLX8PuGCWUqPfbPAZqXb4nuCDzoV2M+WG2l4iGPFBNwWx4yLsyQaeCvYmFfllOMth6KXr\nznOZVhKyR01a087XwALEuo5lSdpm2MzNPOtnfRRX9F5i+WnBz1NEjyuoH8okBO4KjyTtO2mEHhFF\nqaBUsDy6yYvPP8fFRx7nSj1xE/XEc+iXB0QXIdv0VtjXTK0PAR/3RPYRnGD6k8B/mWzzw8CfE5F/\nh5tW+n8Gfgv4B/dsLVBTckUdoLXmcnHBiav6IhfqC0zKic90SHsLaw7KKTfVnApN0QtN37Nu1zSs\n/YPa36z+oWjELU5YKSa6YBaElRdVta4QC21T07YdddP69Hc3fMc5heKHtx5/AIUHsmugSaaDbGY6\n2EgK8bsMzlQoolfosWMYp5MODpYabnFvwEBcKkTe09exLLH+K54HozNoo24ZjrENbprTgTIseFGV\npOrHV5WIv0CkEo0XJDmbW1qq4B1A63sKwxXwPXup0Iq6x268d0s6bMWJq1SkhZLUhhAVt4ljaKyJ\n91YQVUYsSgwWF5U3tvPj3o0vWrqE1QJbzVFlTVG3VDFNV+DW3HFXOImYRj2CwSm0NqlN82DseQDY\nOXcBTKTiig9qXS4ucKXy/FVdoC5qJrp0jqEqmBYVjXcMJ6qiwmU79KZn1fasWZ3MXwoKEarUMazT\nTK2KvutpWs9foR5NVVKUenAMBY63sVCpYDPbYcjWCtul/BWcuG1OYaGH2QPD+mPDCxmCYoNj6INL\nuKyAkMW1yV+k3BWMYbzBSQ9mx3M24QXPnSlfJa+j4ZAxaBatZzwjW/JOBiE09iBDlpafmXA0ZX16\nqm1cP7Y3HC+pERS5CxATA1rBjiHbIeUv4x1I40NenZ9+22B9plazWmCqI1RZUdRTTJjGyYtfkPtO\nYdu4K3BT1NC+x9QmAa10aNM5wM75K2uvrL2y9rr/OOfa633AjwKfxPmTfwH4aRH5CmvtMtnuJ4Hv\nYDiLmx7uDwN/EPjDwA1cIP7v+v3fMy5XF/lt08e5cOEh3vrYW3jXE2/jDZef4OLkAlqVrg6RcUGQ\naTXlsctXedsTb+aoW7F6rqObX6PrG5pGuKHXrLjJvLyGUtDSs6Kn1Ra06+YrpeRCUXN5dsBBPaUq\nSkpVYZWi6KCoSsqqdJnxVeW0V1252QTFcDzDNG07BW4QeImmREkZA/Luid3R2y4GbwPXhI5C7Wf2\nDNlNbpbmwg191BJHGR8PavmSDCFDK8CytW1sdhxtBr7Sfad/x10KnpsNxoY6WpbC1zV0sx+6DDET\ngvWOKBABZVWUXeIJNAa7he2TPURZKBjrh3yKOA7Fgu1dEMpYr8VcUXc3Y61xk0wIQ4cGvq4ZDJPv\nWE0o/o5Ar4QeQ6cMrVhaelrb0dFhxaC1u/7iZ+VGDFrcsEZlWwrbYNY3ufHyC1x/6QUOLj7EZHYx\nasigwgxP5AAAIABJREFUmR+k1rllB6GF9T7W1LLWflJEvhX4QeD7gc8C32Ot/b+Sbf6SiMyAvwZc\nBv458Aettc39MLiZLzh87kW0UnBjSXtwk8WFa8zqmZsCuqioypLFaslitWCxWnBjecT1xSHz+XWa\nxSFt3xGeokPvkh2cCuXTppWwWmqOlorDhUVNG5ZqwkK7mjTtumO+WDBfLJkfzTm6eY3F/Cbr9YK2\nXdN1nZ/Vwe838aOM7zHuekPbdazWLYtVw83FCq2FQom7mS1uSuzOuFdrYzTaxfGFHuitpep6yhB1\nLwqf/j6kwQ/DhRimmPfbRKcuhunx69Kzv/m3W3fsr/DdeGb9j2ZwIoKvbD2BKt/jprwQSjMd3OLT\nb6MQHuvNNEU96QzY1EmjleOGmH5I8D/96RiEnJOGcux9vJuCEItlcMNQHRPFVZoN4ZjVuN9oOmy7\nol8dQVHRlSVdXdM3M1eYURWu90HdaSz69rCdmIbzYm1wDoOoMsdE/75iH7gLYH005/C5Fym0xh4u\naa/dZHFwjWk99dxVURUli9WC+WrBYun463BxncXikHZ+GOvObOOvUHTZ+na9XGnmS+FwYaFesdQT\n5mrCRNWsVmvmc8dfN2/c4OjmIYvFEc16Rdu6WaCM7+mzkDzwHX/1xtIZQ9N1rNYN89WKsgCtxHOY\ne6AH/uqN9b1oJK0Cz19QloXnLhdUG7hLJXzgQ2lq4K40sOW753DmbjgiIcA0wgZ/jbgrnNlwAmzk\nDiXK1YpKBKC1jDIdhkV5lTYI0822NuKveKjBkTnWyhI+2xSPaUjxOD+HAQLHdueOFTnMJNyV9Bbi\nkuOsV0shQZ/IXXOsrmnLiq6a0E9m9GXluasYyvLcZ5xWkyYE54bhAOaU7fcT+8BfWXtl7ZW1V9Ze\nKdJsKwAR+Q7gReBJ4OeSj9bW2i9v24fPKP0TwLdZa/+pX/edwKdF5GustZ+4VzvfePUJvv7dX8vB\nwQGPPvIYj199jIfqi1SqQpTGKDfroTVQqILLFy7xtte9GSkUZVlx6ctf5JXFDVZtQ7dsQaBVDdYY\nGno6DX3hdYgqmMymXK4u8ciFq1ycXaaSKYXU9ErQpaUoS8q6pKwr/+qyTEUnD8ghDh350bVtjagS\nrUtXScpqfx5xk90oA8rg5qgJ2aHiv+u4xgWy3DJ0yiUZrhL0k8SAutMBw1C/AOOHb2+9g0+4R2O9\nvmSbUedl8pm1brIka0ysEah9J2gacFN+OF/gSWMMLgP1hJsiiZGPNFOks/CbFE6lpl+KWwe6ciHE\nEECLXOaJzHeGhnIS4oWjxdKLpRPoxdKLoQ//bAfSobRr62Jdh6Ioi1YWY3o0DSVrSiO0Ry/zygu/\nxeVHrjKdHiC2wFpXn1JQMefvfuJ2dZQFmj0dfoi19qPAR2+xzQ8AP3B3Jp2O9dGCwy+9gBKhmd5g\nPplxOJlRVzWlLil0QVGUtG3DulvTtA3LZsWN1Zz5ak6zPqLruzjTg43/BqFOmPVFCas5zOeW6qjH\nTlbUqqLyvYVt07NarViu1iyWS24eXmMxv8F65YVV39KbnjgEhME5jE5hb2i6nlXTsFgVHJUKrYNj\n6L7jZg9yS2ds4ghaeqx7tZaq6yiLgqIsKAvtHsbp7GKJo6VGDmPiGMpAZFFsMRDF4BimImsQGkQy\nTDnZsUTCIY4EFehwXvz3bOK8Kj/sSBAvqgyxCJ6NeyZ9c1wq2e3CKpgVlVfyRWFzNFLsSR0j+UV2\nEMyDwPKR/OgUeiGlrEs99epSxA/1MS22XdKtjjBS0FYTuskB3XSNLipE+x6A0bEfJEbKdfS7wvTh\nu5dVt49dcxfA6uaR4y+lWE9usPD8VVWV46/CzfzVtI67mrZh0Swdf63ntKsjetOfwl++114pRCtW\nc+HmHMqbPX29cPylXV2a9bpluVqxWq04Oppz88Y1lovgGDaOJ6NjmDoQri5x7x3DdduxXDfMlwVa\n4Rbt+MsaG7nLmiGpvoe4dBZ6aygKF9QqC59WntZJCD1fnsc2ixun3DXmrZS/Bs4aB7zG2VRyTOSM\nw0PC2EnWPpg15jDle+xwQiQGtuJOx21ng28Cu8WZ6UdOYdgmJbNgmw8QBKWVOLmbWw4BtkCBQ/s2\nmHh/xeGHyiLGuhmXDI63xHjN1kG3pl8f0Yumq2q6ekrXXKCopqjCFXMNPatngw3+sv43xeyP88Re\nu+evrL2y9sraKz32g8S51V6Xcca/srH+KRF5AbgG/Czw56y1YZsncb7oz4SNrbW/KiJfAL4OuOeg\n1qXZRd726JuoJ1MuHFxgqmpU54+lLZ3pwPOCWKiLmscvP0qhC6blhNddeoQXrr/MtaPrLFcLF1zs\nO7quZd13rG1H0/W0xlAWNY9WD/O6i49z9cKjHEwuUZgCoUSJpSwNdeWGTrvM+BJdlChdYPEBcxHw\nkz043nIFz6FAqYKyqCmLGhFNzNwGf4+LD8C6TFKXYUXs1BHEBeCrCl0UhOCNCC6wlWScp5wCxCxU\nl+lqscZPdLCltyrtbEszu9LgFYTg05gfw/qwWF8bTNQ4Iz4cJ7xuZn7dHUbq7zg2VyfHU6NjDutD\nUHDbMdJOROM1irFOHds4YYAFN82Aey+C0ppCaSoFpelYL29w/YUvcv3q4zx85SrlpHQdUBKCfWqH\nnXl2PzO19gGroznXv/Q8gjAvK8rS9Q4WRekLdrrFGOOdP0PXdyzbNct2TdOu6EzvGot1rxZi347r\nPXNpjUopVjPD0bRDzRq6yZxCFZSqpFQlfdezbhqapmW1XnPjxjXmQVg1a7qudTNOROk2OIbRKTSG\npu1YNi3z1ZpSg0qElUBSCNrSGTs4gsbS+9fWWOq2c06x7zEMkXetwkxmiaBKZrhxxQEHpzGIpyED\nIhAR/u80kp/IKv8+kGFE4hQOPZbiRJVvr1aBWJ9hIo48h2KEOFHlxdWmM3j88Z6WWAzkyrHvjd8M\nykvi9drcq/s0CsPkWPE4hIwAR1JhIRFWAqDcdgLOMUQwpqVvVxir6Y3QTWZ0s4v0zYq+nKBRrhdG\nn41TmArSIGYHpzAdV55xu1jdPHL8JcK8qDj0HFYUxYi/emMwnr/avo385Ry2HmN7t401gwOBdY6S\nUr7ta5YzS3nUoWZrmmqW8FdB23asm4Z107JcLjm64bMdVkuXqdW3kR+HiIy75Ma6LK2u70f8JWLG\nQS1rMb0rWGqNcwgNzinsrOOzzvNgWRQxsFX49HJX+FOjQ+ZDwmHDVPQyCmxt8tbwfuCfwXmMIS3H\nX8n3IgdE/hp4T/vRL9bi6627oJayrgCoiM98UBJ5C1E+jd3jBO4KZ3vglA0H8NgSSPQEzjoW2JKN\nLdwRI3+xmanl+CtkOgiOr13ACwxutiTTrehXGtNDW0/pphfo1yv6unHHlyK9jR4wxucicNUwvfYw\nPCnj9pC1V9ZeWXtl7XUSxEURfhj4OWvtryQf/SRuKOFngbfjhih+VES+zjov+wmgsdbe2NjlC/6z\ne8Y/+5mf5s//4F8c2qEuqOuayi9FVVFWFXVZU1c+Y75ywxJb29PZnsZ0dKZzhQB0GNrm2nCl3K1R\ni1BPFBdWBeXcsr624Mb6Bm05xdQ+GITEbPQQ8FZaI1r7EIaAn+POnVhANKARXVOVM6YHF6mqCaJ0\n0oqGZ7cJHVvYKAJGPBIWhuCTcQleWHHHT4cahoBNCHgH8WSxPltdtrbbzSysNNCUZlil24Dj3a7r\nXIaWtZFDtRo6OI0xx0o+pJ2Zm8e7Xdy6VW3fQhCfLTa0zTQ4uO17rm27ALwLVpshIG9DmY/huxLi\nl35EglKOyyuxqHbJ4voLvPibn+Hqo4/x+JsOsGg6g7/vdssXe5uptWs0ywWHL37Z3UC+loHSSa++\nd+rirewj1G3f0fYtbd9FYdWbnn7kFIZeKj/0RWvUUQvTNd1kybKaOPHmZ5wwxtC2HV3X0bQt86Ob\nzI9usFzOaZolXdskvYU2CnpHID1d37nprRthvrRoeoxp0QqUdo6TQJxBwRhLVTbUTcukaqhXayar\nNZNJRb2ovcDUUVwpLzSHWSEGYpDEKQwFQtkgh1G0fiSwxqQYo/nx880oeRLJJginYZazQFRDoVI1\nvPp1w8xEJ4xfGWk5ia+xJzhEyq2T0YFIxJrR3yGtOxKMMRBmEwlLbzC9F+W9c+y7vqf3r13XuKnG\nuxbTdxjTYfseY3p/nN4fy90QVvyQrK6lN0u6zmJ7y3p6gXJ6gfX0AuiSwlgKFIUqhvO9/VTEh87x\n9Sd9a2PbLddvePgNxUr3S1btP9bzO+cvY23krrbvHG/5oNdW/tLa97hp9LTFTtZ0kwXzskarws0y\nKNrfqx1t17Ferz1/3WS1mtM2K+cYmqTQt3+1WH+vO95broVCWRQ9bVtEx1BpfFtywxCxULcti6Zl\nsmqoJ2sm9ZrJsmZSLyNvpfwVHUM1dgRV4AyV8IPa5CsZ85F/r0i4DZLXsTPpMNzhyu8zCGOdclfq\nrMpgz1AsesjIGDt1cgJ3jeNW7j8/5MRzlkTx00enZxBI/u+Et0yf8pe/f3oz8Fbf03WtW9rOFZoN\n2Xp+IT0GoYaNYG1Hb9d0HXRtT1kfsJ5coJxdRMpJ5C43tbbe+KUDTuKuYfXtcdfIKfQO81CjJziF\nt9xVRoKsvbL22oqsvca//rWrvT4MfCXwu9OV1tqPJH/+soj8a+A3gKeAf3IWht24cZ3Pf/bfHVsf\nz3VsT0lQeXxjb8e2ay0y1KySYSa/0G6LsqL0nQGiXeaytZb1uuHo5g3MeuGLjydFzPtQ8L0DaZkv\nr/NbLxYs5hUvTzQXp8J0qpjOKopKYwy0y46+6WNb78OMiNbQdj1t27pZp/EzXXcdBkH1LoikdYHG\n+mwfH2yzgrFeW/nfqtxqF2zeCLSelKG1LWMozbjqQxv32VdlUbjni4tNj7KyQnbXZkALH5i/nTYH\nqc4avbl9SDiecfW/LNE2a/rRHu3onXvGuLT8Huv1nIAfOuhSS935B6v8DJlKgbUoWmoNB4XiqJ1z\n7bnP8/znrnL1sSegvEBvQJUFfddzlnnym9jXQvE7x3rdcOPw0DWohDhCbZX05g6wWHrT05ne9SAa\nEwsupjVjwvCdYX+KrlqyLo9YVDVlUaFlOKYN9WJ6Q993LFdLVku3NOsVbePq0oQZKIKyMsY5D2vv\nKFrT0nVr1k3B0bJwY6HFFTodIunutdAuk6Eq3fTVVVVSlq7gYFHooeCy0iOhOTiCG0VBk8j7WDSl\njuB2UaWC6GLYPt1u9EwQJ4nC94IjGItCR4cwiKptAisp5rpNzIX1yUNkuAfCNkOPoIT0dJIZK6Lw\ncu8l9PB7RzGIriCwrDH0oWe6d6+uh6Gl75yocgKtj87nIOhwQtvb3Qv0ytKJwbYGVR8i5QSjK5rO\nUk0byq6nMn4GjfDb0/Nx4uv4oR2u63B5NtrM5kMnuQdjb2g4Zxm3jfVqdW/81feRt2LR2GS7GEDx\n++6Olqwqz1+6TISWz6jwDkHbdZ67FqxWgb8a+lADJ94Pgul72q5FrcW3hYauLVitC+pSoxS+bY+5\nC0vkrbIsqfxSVo7HQp2HmN2gNpboeJ1QnN0RzKkBrdjjmHyeCtlNx3BT6IbeSi2DY6oTnkqDW3KM\nw1Lh5fa+yVuxrY4coDC0cZhk2okeM+Kx4TrZhGfsmLesjbwVAl1pkNRxV+fqqYXZk0wQWt4ZxQfW\ngtAVMOJrQ6ieXjpUdQjVFFvUtEYcd007qqmNM/PcPncd5zBIrtGp3BWEsr8XE4dwL93CPUbWXll7\nZe2Vtdc2iMhfAb4JeJ+19rnTtrVuptaXgHfgglrPA5WIPLSRrfW4/+xEvP/97+fSpUujdU8//TRP\nP/30bdkdz/V+BgkdLO55C5imYdnc5HNHL/K5L9zZbrRSVJ6/6qpgUlXUVcWkLv2rW8L76aRmUk+Y\nTqrR55OqYlLX/u+aelK6paqoy5LaF8Cv65JJVaG19h2jISBFwiFDp0M4/9rzV9CMbhIMQYxF4zWY\ndaUZHJe4axc14obGguNt6qRheNsCW+m2sf3a8XdC5mfyX/y9iPjst5EB/nfbqKuwjq/EB/WVuIxA\nhbiOYbGI1a5vWYEutess7gyieihcMPDo6CWe//yv89jr38SVN7wdVR5gRiX4fOf0KQHI+4nwDF3f\nQVDrmWee4ZlnnhmtOzw8vK3vnrugVrNecePw+sYDfOzIkD4wcM0mFVJDj+2Q6pxe3nSfa124WhHa\nDQ+KjgquJ8qYoQelbdvYS9R1LcanT+J7ifFCCoSua8Fa+r6j7TTrRjFfakodUr7DQ9PGhmZxxOSc\nPzU4gb6HUCcO4DB7WOpgBUG1KaJOE1WMzm38O9nf5vq4JIILGIu6KK4GQTXOdlAjAXhMZG059mDP\n8VnIhvvFJ/dGJxGUn6Le3S82rie8BoEVSShE1p3YMjYZ+2194CHJcIhOpzWRhIO4S89xj6GXno4W\nq1sopxhd0UlB01nqrmdiwKBH50GJSoTxlnax0T62fRZ6PI4jfeDYcdvxZJVx+1hv4S/xqcSn85eJ\nBY4tt+Kv4X5Yee4qdTG0I38vhBoLwTloW8dbbdvSd228j6Nj6PnLGOi6BqxxU0d3mtVaUS01hQ4O\nTGj3A38BcYbD4ABGZzDyVzqs8KTp5hmtGzly8V5n+/pN3mKTtxh9Dsf5LvBY5K/AUSO+GnNZGDrp\nnMPhWo9s2VJknuSeUJ67RNx8iO79wFcx4MXAbaGBBgdxyISwcTZAx18+4GDcNXeFWd1gUUmCWUNA\nzQ5OrICN3NXR02CLCVbX9FLSGGHS9tS9ddylixN4/HTO2twmXJuTuctj5BAOga399WL2E1l7Ze2V\ntVfWXpsQF9D6Q8A3WGtvGWoRkTcCjwAh+PVLQAd8I/D3/TbvBN4M/MJp+/rQhz7Ee97znrs3/jWE\n3hiW64bl+r7Ne3RbKApN7YP/4bVKg18+0FZVIeBWDZ+l25Ylk6pkWtUuQ7aqqauCqiyoKxdkq33Q\nra5KyqIYJuVIOxQhttdN/RXap8vgHIJjCjfDoXt1wfdRh6IdtBHYOIR7GBI9tFvjs+Od1nILtsNa\nnxEf9i3WdZ6CL2PhONxpKEEXBbY3iGnQdFgrTKyhtT3zl5/nC7/+KxxceZTJlQPWfYcS2BVp9H3n\nO8hvD9sC088++yxPPvnkLb97DoNaa24cXgdiPNRD2LJyjK3ReHvsnaQ7SR7Ko8/S44RgPxsPnDQa\n648fXjrrehhFhHXyUAw9cJsIq445Zxs9bNtED6N1Jzl+2z/bdAi37T/d70k2pKIojiOXccZF/D3B\nURyJrCRtf2uPohwflpSIszALhtvWizxxAssneHjy2vI+nn/vPAaHKPQejgoQmzhUx/hewUBvCuv3\nN4yVFm+DKDBW0dPSWYVVa4yunagyirqDmXHbWFW5oVnhvIgMPanJOQ3rU8EZzouIuPTV5L7a3maG\n13hvh4yPjfaTcWu4TK0Hx1/DY9vvLvCW+ADJxuHSXaR1SVIOSzYA3NTFrXVDeBTCKrR9JaOOqmOH\nSp0ytnGXug2HbRsfpQFBxtt5527MgVveq+3rN9dF7ko4yvHSOLthvN0mf6UO5NBGU4dyaMObjrHP\ngvP8FDgs8FT6PvwdroETYUTnMDqJsThpyODy4soaHzwL/BWCaH5f8ZkFho4eRW+FHoXRJb0UNGga\nA11v6a1gVUlRVoQi/1Fwpuf/FC5LHcnAXydyV9o84j0dhgbscc/8niJrr6y9svbK2iuFiHwYeBr4\nFmAuIo/7jw6ttSsROQA+iKup9TwuO+svAr8GfAzAWntDRP534IdE5BpwE/gR4OP2Psx8mLFbdF1P\n1/XMl2dTKDxAa0VVlKOAWVkWfl3hg2th1EBBXbrM2zCSwG1bxNeqLKgKTe0nAykLRaU1ZaEpCkWp\nFaV29dKUuGBUqrOUBazLMiW2Y1df0oaOxa7D9C2271FiKQuFFvG85/hMKUGMoE3gNYu2Fm0NtUCn\nNfNuwUtf+jwv/ubneEN9QDm56BRc6ODxSGuenZS9djs4VYMBbdOcWTzt3AW1XKSzv/WG93KMu/nS\n5kW9xRVMxw+H1MQgTm51mE1RdJLw4dg2J3932Hb8enwfG07eSDjdwjEcOW/HHbpRAdVtwuvYUKTt\nzqBKtt8UG0qloioRV/43bxNWY8eQUdYDgahGRTyH4T1gYnTfEnomB1EVBbMJBZddPRiDrx3hI9wh\neyJkU4A30Li0W1flUY3uLbyt0WEQL/jFhz9uleGw9cZlyLzZl67Cc4QHzV93fUXuhr+soWfgi96c\nzl/ho5M4aBtnMNpu6Fnj2Pe38RXH9jPwlRra/Ak2bBYhHXFX4rAcKwAtYx46xl/H1suIs7YNr3Tr\nQ/DwuGM4OLchE2J4DTwzcgq3BLXAOofQDMVKbciowGLFBcUGh3OYk8zt0mCtz6LxPZF917klcpdb\nlPh8CeV6PTGylb9S0RUybWzCX/GzO8L+OIXnCVl7Ze2VtVfWXhv4LpxF/+/G+u8E/gZubph/H/h2\n3MyIX8IFs/5Ha22bbP9+v+3fAWrgp4A/8yANz3h1o+8Ny37N8oxqOQUocYGt0k8GUPqs3tJn+RZa\nUSjlM36Vm5hEuVclfvZwEQotlNplEGslaCGuU1rQWiiVUGmnDY11HYedVLRU9OXzfOaF67zx7b/G\nxYcfRVQFEuo+lpGXdeGzof3kTGHCF5UMp9e6GH0Wt/G1I2+FpmnOjLPOXVDrve99Lx/84Ad3bcZ9\nhSQ9kLd8zMmwvXsmytbX8T5l2LfI8DBPhFPc/Whf27cL4izsS0TicY7ZkL6KxG2OC7zwvUQEkrzf\nFGpuh8m+TtrO2xmPx/h9fB3OkSTXInyenP5jvb8hm8V6xREcfhtSUhkcwLCv4RoMx3NaxVfKEYWu\npqhqiqpmFPWUsp5R1lOKespQvDURx6Prccp7keEaJe+P330Wawpc4cYS/ZVv54mrB/zOr3w7h4fX\nXA2TlVustbz3ve8l43Q89dRTuzbhviO0Hff+1A2H7dnOX5ucke4/3sNhd8d4KbFIxtuE95t8cCpv\nRZ4ZttnkLZL3J/HWmNdug9+C3Rt/j20bO2cy+s0JjyXnZcxd/r+UswhBLteD6FLqw77smB/T/fpX\nYyUm5qtyiq4dd+kq5a6Zm+lp45zEa3UibwceG67NJoeNETIb3Ku866089siU3/Gut3L9+issl0tW\nqwWrpeOuV2O7vN/I2ut07hrxR7p9fMZn7ZW113HeOs/ay1p7wuwB8fMV8AduYz9r4L/2y33Hq5G7\nMjJSCH42xFjLUbmZ1Uvo1zfQRemCU1KgpESLG9ZfSEGh3GeFdjOQ66KgKCxaQ1EIRWHQhaLQoAuh\nKBRFodHa1cKVTfpKYC3U+iL//ff+d6yWy2Of32/uOpdBrew8Z2ScPV732Dvgd7xj12acazz11FPZ\ngc7IOGM8fvVtwNt2bca5RtZeGRm7QdZe94bMXRkZu8PVy4/wZz/wgTM51qlR9oyMjIyMjIyMjIyM\njIyMjIyMjH1EDmplZGRkZGRkZGRkZGRkZGRkZJw75KBWRkZGRkZGRkZGRkZGRkZGRsa5Qw5qZWRk\nZGRkZGRkZGRkZGRkZGScO5zroNYzzzyzaxMi9skWyPbcCtme07Fv9rzasG/nN9tzOvbJnn2yBbI9\nrzXs2/nN9pyObM/p2Cd79smWVxvO47nNNp8Nss0PHmdlbw5q3Sfsky2Q7bkVsj2nY9/sebVh385v\ntud07JM9+2QLZHtea9i385vtOR3ZntOxT/bsky2vNpzHc5ttPhtkmx88clArIyMjIyMjIyMjIyMj\nIyMjIyPjBOSgVkZGRkZGRkZGRkZGRkZGRkbGuUMOamVkZGRkZGRkZGRkZGRkZGRknDsUuzYAmAB8\n+tOfvuMvHh4e8uyzz953g+4G+2QLZHtuhWzP6XiQ9iRtffJADnC2uCv+ei1d77tBtudk7JMt8Nqy\nJ3PXa+t63w2yPacj23MyHrQtryL+umPu2qfrfLvINp8Nss0PHvdq7+1yl1hr7/og9wMi8seB/3On\nRmRkZOwC/5m19m/t2oh7QeavjIzXJDJ3ZWRknFeca/7K3JWR8ZrFqdy1D0GtR4D/GPgcsNqpMRkZ\nGWeBCfDbgI9Za1/esS33hMxfGRmvKWTuysjIOK94VfBX5q6MjNccbou7dh7UysjIyMjIyMjIyMjI\nyMjIyMjIuFPkQvEZGRkZGRkZGRkZGRkZGRkZGecOOaiVkZGRkZGRkZGRkZGRkZGRkXHukINaGRkZ\nGRkZGRkZGRkZGRkZGRnnDjmolZGRkZGRkZGRkZGRkZGRkZFx7nAug1oi8mdE5LMishSRXxSR//CM\njvs+Efl/ROSLImJE5Fu2bPM/iciXRGQhIv9IRN7xAO35PhH5hIjcEJEXROTvi8hv34VNIvJdIvIp\nETn0y8+LyB84aztOse/P+mv2Q7uwSUQ+6I+fLr+yC1uS471eRH5CRF7yx/yUiLxnlza92pG5Kx5r\nb7jLH2dv+WvX3OWPtVf8lblrN8j8lbnrLuzL2uu4TZm/zgi74qzbwT7em1tsvGfuFZFaRH7M3+83\nReTviMhju7JZRH58y3n/6K5svl/PlH2zeRfn+dwFtUTkjwF/Gfgg8B8AnwI+JiJXz+DwB8D/B3w3\ncGzaSBH5APBfAX8K+Bpg7m2rHpA97wN+FPha4PcDJfDTIjLdgU2/CXwAeA/wJPCzwD8Qka84YzuO\nwT/E/hTuXknXn7VN/wZ4HHjCL79nV7aIyGXg48AaNzXyVwD/LXBtVza92pG5a4R94i7YU/7aI+6C\nPeGvzF27QeaviMxdt4k94q+94C5/vMxfZ4Qdc9btYm/uzRNwP7j3h4H/BPjDwNcDrwf+7q5s9vhJ\nxuf96Y3Pz9Lm+/VM2SubPc72PFtrz9UC/CLwvyV/C/BbwPeesR0G+JaNdV8C3p/8/RCwBP7oGdkG\nQmjZAAAHDElEQVR01dv1e/bBJuBl4Dt3aQdwAfhV4PcB/wT4oV2cG9xD9dlTPj/T8wP8IPBPb7HN\nTu/nV9uSuetUm/aKu/zxdspf+8Jdfv97w1+Zu3azZP460Z7MXdtt2Av+2ifu8vvP/HVGy75w1in2\n7dW9eRv23jH3+r/XwLcm27zT7+trdmTzjwN/75Tv7NrmO36m7KnNZ36ez1WmloiUuJ6onwnrrDsL\n/xj4ul3ZBSAib8VFIVPbbgD/grOz7TIuKv3KLm0SESUi3wbMgJ/f8bn5MeAfWmt/dsPGXdj07/l0\n2N8Qkb8pIm/aoS3fDHxSRD7iU0efFZE/GT7ck/v5VYPMXbfEXnCXP/a+8Nc+cRfsD39l7jpjZP46\nFZm7tmOf+GtfuAsyf50J9pmzNrBP9+Yd4TZt/Gqg2NjmV4EvsNvf8ZRvf/9WRD4sIg8nnz3Jbm2+\nm2fKrs/zyOYEZ3qez1VQCxcJ1MALG+tfwF3wXeIJ3AXdiW0iIrg0vp+z1oYx2Wdqk4i8W0Ru4iKv\nH8ZFX3/1rO1I7Pk24HcB37fl47O26ReB78Clm38X8Fbgn4nIwQ5sAXgb8KdxPan/EfBXgR8Rkf/c\nf77T+/lViMxdJ2AfuMvbsTf8tWfcBfvFX5m7zh6Zv7Ygc9eJ9uwTf+0Td0Hmr7PCPnNWwL7dm3eK\n27HxcaDxQZiTtjlr/CTw7bgs0u8FvgH4qOdzvF07sfkenik7O88n2Aw7OM/F3XwpYy/xYeArgd+9\nQxv+LfBVwCXgjwB/Q0S+fheGiMgbcY3s91tr213YkMJa+7Hkz38jIp8APg/8Udx5O2so4BPW2u/3\nf39KRN6Ne7D+xA7syXjtYh+4C/aEv/aNu2Dv+CtzV8a+IHPXBvaNv/aMuyDzV4bHHt6brwlYaz+S\n/PnLIvKvgd8AnsINld4l9uWZcifYavMuzvN5y9R6CehxEckUjwPPn705IzyPG6995raJyF8Bvgl4\nylr73K5sstZ21trPWGv/pbX2f8AVZfyes7bD40ngUeBZEWlFpMVFib9HRBpcJHgn1wvAWnsI/Brw\nDnZzfp4DPr2x7tPAm/37nd3Pr1Jk7tqCfeEu2Cv+2mvugp3zV+aus0fmrw1k7joRe81fWXu9ZrDP\nnLUVe3Bv3ilux8bngUpEHjplm53CWvtZ3P0SZhPcic33+EzZN5uP4SzO87kKavlen18CvjGs82ls\n3wj8/K7sgnixnmds20O4mQEemG3+hvpDwO+11n5hH2xKoIB6R3b8Y+B34lLgv8ovnwT+JvBV1trP\n7MCmCBG5gGvYX9rR+fk4riBfinfieon24d55VSFz13HsOXfB7vhrr7nLH2+X/JW564yR+WuMzF2n\nYq/5K2uv1wb2mbNOwh7cm3eE27Txl4BuY5t34oK4v3Bmxp4Cn136CC7gDDuw+T48U/bK5hO2f/Dn\n+W6qy+9ywaVlLnDjNN8F/DXcTC+PnsGxD3AP6N+Fq87/3/i/3+Q//15vyzfjHur/N/DrQPWA7Pkw\nbhrg9+Eim2GZJNuciU3An/d2vAV4N/AX/M36+3Zxbk6wcXMGnjOzCfhfcdOVvgV4L/CPcD2Wj+zo\n3vlqXP2N7wPeDvxx4Cbwbbs4P6+FJXPXyJ694S5/rL3mr11ylz/e3vBX5q7dLJm/oi2Zu+7cxqy9\nBnsyf53dfbczzrpN+/bq3jzBxnvmXs+Zn8UNO3sSF9j957uw2X/2l3ABobfgAiqfxGVLlruwmfv0\nTNknm3d1ns+kUTyAk/ndwOdw01n+AvDVZ3Tcb/ANpN9Y/o9kmx/ATb25AD4GvOMB2rPNlh749o3t\nHrhNwF8HPuOvyfPAT+NF1S7OzQk2/iyJsDpLm4BncFMJL3EzO/wt4K27PD+4lNF/5Y/3y8Cf2LLN\nTq/Zq23J3BWPtTfc5Y+z1/y1S+7yx9or/srctZsl81fmrru0MWuv8fEyf53RsivOuk3b9u7e3GLj\nPXMvUAM/iht6dhP428Bju7AZmAA/5bly5bnzr7IR6DxLm0+w9Y6fKftk867Os/idZmRkZGRkZGRk\nZGRkZGRkZGRknBucq5paGRkZGRkZGRkZGRkZGRkZGRkZkINaGRkZGRkZGRkZGRkZGRkZGRnnEDmo\nlZGRkZGRkZGRkZGRkZGRkZFx7pCDWhkZGRkZGRkZGRkZGRkZGRkZ5w45qJWRkZGRkZGRkZGRkZGR\nkZGRce6Qg1oZGRkZGRkZGRkZGRkZGRkZGecOOaiVkZGRkZGRkZGRkZGRkZGRkXHukINaGRkZGRkZ\nGRkZGRkZGRkZGRnnDjmolZGRkZGRkZGRkZGRkZGRkZFx7pCDWhkZGRkZGRkZGRkZGRkZGRkZ5w45\nqJWRkZGRkZGRkZGRkZGRkZGRce6Qg1oZGRkZGRkZGRkZGRkZGRkZGecO/z/vv2Kh/gQz1AAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=[15,5])\n", + "plt.subplot(1,4,1)\n", + "plt.imshow(imresize(out_img,0.25).astype('uint8'))\n", + "plt.scatter(lms_small[:,1],lms_small[:,0])\n", + "plt.subplot(1,4,2)\n", + "plt.imshow(imresize(out_img,0.25).astype('uint8'))\n", + "plt.scatter(a_lan[:,1],a_lan[:,0])\n", + "plt.subplot(1,4,3)\n", + "plt.imshow(imresize(out_img,0.25).astype('uint8'))\n", + "plt.scatter(d_lan[:,1],d_lan[:,0])\n", + "plt.subplot(1,4,4)\n", + "plt.imshow(out_img.astype('uint8'))\n", + "plt.scatter(img_landmarks[:,1],img_landmarks[:,0])" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [], + "source": [ + "orig=landmarks_from_maps/256\n", + "a_1=a_lan/64\n", + "d_1=d_lan/64" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.710938\n", + "0.0078125\n" + ] + } + ], + "source": [ + "print np.sum(orig-a_1)\n", + "print np.sum(orig-d_1)" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 99, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDYAAAGxCAYAAACZXjaLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvc+vJcuWHvStFZG5z6mq+9pNt9wPC2GsxrKHINPGlpig\nlugBEmqJARL8CR5Y/guQGCKZgQcee4IHyBNgZAkGzNxISCAxtyUL6Ha7f7z3qs7ZOzNiLQZrrYjI\nPKfq1r3v3VtVp2KVdu199s4fkZGZ6/vyi7VWkKpi2rRp06ZNmzZt2rRp06ZNmzbtSzT+1A2YNm3a\ntGnTpk2bNm3atGnTpk37vjaFjWnTpk2bNm3atGnTpk2bNm3aF2tT2Jg2bdq0adOmTZs2bdq0adOm\nfbE2hY1p06ZNmzZt2rRp06ZNmzZt2hdrU9iYNm3atGnTpk2bNm3atGnTpn2xNoWNadOmTZs2bdq0\nadOmTZs2bdoXa1PYmDZt2rRp06ZNmzZt2rRp06Z9sTaFjWnTpk2bNm3atGnTpk2bNm3aF2tT2Jg2\nbdq0adOmTZs2bdq0adOmfbE2hY1p06ZNmzZt2rRp06ZNmzZt2hdrn1TYIKK/Q0T/nIgeieifEdHv\nfMr2TJs2bdq0adOmTfvV2OR506ZNmzbtx7JPJmwQ0X8B4O8D+K8B/PsA/i8A/5SIfvNTtWnatGnT\npk2bNm3aL2+T502bNm3atB/TSFU/zY6J/hmAP1DVv+t/E4B/CeAfqOp/+0kaNW3atGnTpk2bNu2X\ntsnzpk2bNm3aj2mfJGKDiBYAfwPA/xrfqSks/wuAv/0p2jRt2rRp06ZNmzbtl7fJ86ZNmzZt2o9t\n+RPt9zcBJAB/dPr+jwD8tfPCRPQbAH4PwL8AcP2hGzdt2rRp0z5buwPw7wD4p6r6J5+4LdOmTXve\nJs+bNm3atGnfx743z/tUwsZ3td8D8N9/6kZMmzZt2rTPxv4rAP/4Uzdi2rRpvxKbPG/atGnTpo32\nnXnepxI2/jWACuC3Tt//FoA/fGb5f2FvBGA5/XTxl9lf+e2/it/5nb+Nf/ev/nX85Nd+HUz0wYYo\nAIGCiKAEQAT7vqGUApGK7XrD27e/wJ/+6Z/gD/+/P8Qf/6s/ws/+7M9w224o+4ay79jLhrIXQAXM\njJQYiRMARakVtVaIKqAKYkYmRsoJTAxAoaLInLCsGZf1DneXO9zdXbAuKxSKWiputytut5vvbwcR\nQASklKxbVAFS5Jyw5IwlJ/zLf/XP8dt/6bdBZAeqUiFSoVBAFKoKVYFgrLNC7V3jXWHrqEIViJ2r\nd6BtRyHxDkDF1hG146u+jbYn/6Dt3X8bar6o/6/a33VYN5Zq7YiffBt6WNiWU+1ftV9UUeufIaW/\nMGxfh+M+7XIagJ8D+MmnbsQXZLO/Pt7Gvrr5azQBUICGC9OmTfsMbfK8yfPsbfK8L9Qmb/luNvvr\n4+2H43mfRNhQ1Z2I/g8AvwvgfwJaUanfBfAPnlnFwxIXAL/xwW2/uv8L+Om/+Vfwb//lv47f+M3f\nBOHDgCcARAXEBj6iFdvthn3bUGvFL37xcyx/8id4vAkud2+xrG+R1x2KDKIVqjdIZQjtYAaWdcFl\nXZFzQqkV19sNqhu0VoBgIEcE0tR9uyjycsH95RW+efMGr1+/wd3dHdYlo5SC2/UG0gzdCUr2Sjlh\nWTLWdTH8UQWRYl0y7i4r7i4r/vjP/1/8W3/xt5CZwaSAVnuJGCIZCgJQMDFSIjAnEBGYGEQMZn+R\nQSGn5KC6IOeElBhMBAL5soTEjMQMTgmJGZQYKWVQSgARBAQRA8MqAhFFrYIq4gTB30Xa91IFVW05\nEUWVvq6ooFT17dj6VQW1qr8LRKRtr8T2hu/+nz9+xF/89Z+iiEJi3xLbra0dsbx8oqK7n489Rz6n\nvd9mf328jX21AHhz+n2HPTPNcPVp0z5Xmzxv8rzJ8750m7zlu9nsr4+3H47nfcpUlP8OwD9y4Pvf\nAfw9AK8A/KNfZqPEZM41FPwP451Ju65oAwqpAhWFiBjY3G549/CAh3cPuN021CpgNmBILEjMqCkh\naUXihHVZsK4rmBmqPkIQ8nGXjlGlAgoDCm8rk7V9WexFzFAR1FpQS2mO35oaarWCQXbcRKbiLxlL\nNiDKzFgyI5Hti5QBSAM9ggFlToycEpgN6AL0ODl4MSMBDrQLLuuCZVmQEyPFcsTI2baTHRhzTuC8\nIOcMzhnEdsmFoC4K628NIOvgJA3Q7HzYaEGsI/auaoeiiipo21FRCAwEx1GG6uc2gDJGGv7H/+1f\n4z/9j/4D37746IOp+baMLSve59Ubb4RJh+XjGPp2JLYj0tokMv42tNXbrd4Xdny9f+x4DPyj3/T0\ne2u/SG+3H7Oq9+vw3RynmDZt2rRpP4BNnjd53uR5k+dNm/aj2ScTNlT1f/C5zP8bWGji/wng91T1\nj3+Z7bKH/9F3mu/Fw9F0dAgGNLfrDdeHR1yvjyhlB6BIKUFzBlQhNUEkm/aUE9Z1xbJYt5bC4y7i\nwC28TzwAkGCjCB72x4kNHDhB1UB333aUUg3sHCpUTXEuREACMhi8LqasM/sIhochikDZgJWYQaIA\nm4hPZECZUgYn9rBJB0fq4yDq7SbfMsVnipcfgn8XIwDk6n4bEUgxSmArxHv0zXOhimGdxES7Yl2C\nxZc+ZTfRvjgmP9v9d///D/7vP8Dv/8d/a1zR3ti2246TCXZxkYGjKIqPJJQq9pKKUmIUQtvIQonR\ngFrtc6moDjwxStFGG4aRjOLL2yiHkaUqglrEPo+jH+29opSKUop9lmrXS/F913IY9VBx4tfvCOdo\negr5tGvhF29/gTdvfu1A5tRjQLVddx3MVfV4Tt8T9jmGjR7OlZ7bhB5yelhz2rRp06Z9DjZ53uR5\nk+dNnne2yfOm/ZD2SYuHquo/BPAPf5XbZDIluTnHj23LoIbGjVRLxbZvlmdZClRhCr6DHVShsoII\nkJxbziMnhrSQRHfUnv/4pL3MWJaMnDNyhPQRGdjtO27bhm3fUUoBoGAwwKbwllptBEIZaVmRU0bO\nS8vHNLFZUIUs3NDbA2ZAFcRAIiAlNsXdgSjAGNFkRdseEFhADfQaEPr6/WUASjCAcKh85hVG/f/T\n+Tv8GfttS3su6Kl/A7ADoG25DnwdOO0zBwiPO22gbOee2I7Lck9tn9n7SBRNhZdw6GrLRf81Jx2O\newDxOBYlQJXaspbDGucjQLufn8NxK7URjiA74oTO/iMHJLTfixQjVMPoSZWKWipKAKPY79XB9J/8\nz/8Y/9l/8vsOzBVSfPlSsO8bbrcNt6vlC1uecvFtxIiFgXy71A79oyfwjpGd2khDhJhGuKk4OdAJ\nfNOmTZv22djkeS+d59GJ54VNnjd53uR50358+1JmRXG7fPsiEaKI7yLlBxoN6jqAqopSiheYElO9\n2ULxlAmJCZIYRAuQFYuH+AHaClVxykiptBECc5Ro+2FmLHnB5bLicrlgWVdT02PfW8G+76ileBil\nrxiOFQrAciCXJVuxKrYwxL/0Gz81NZVgAIcAJANJgoVFMpvCHyr+WRBXKEhxcM5dvQ8QiVGJYcQg\ntuuK/ujUTwjW9vQ8UdHD8k3Hp1DwHZPpmcafTjMdttPtd3/nbx5Uf8S2qK93UPOHNsTVww6AmtrR\nWGsdIMHDCIT3Afv2iI5g2sAvthP9zNzOY++ToU99lMEaoG10pB3/APZoYYoGHOqfg+SMICfqgKg2\nonS9/jn+1t/493x9GyWopaDuO67XK66PVzy8e4vHx0fcrldUv4fiZEXYKJjAOSHnjJQziDw/V6qB\nXak+WjEQUtU2+jCGWkZoaxu9ilGFCEs9LSsR/ukjd8dQ0GOIrLZ9B+DWBsbi96XCiHOJ/FwvJqcA\nav0Gy3LXiQYi3BQ9VFY93ParB+37T92AadOmfTKbPK+t+EXwPON6tn0a+MuwrcMOJ8+bPG/yvMnz\nfjie9+KEDatWndwpvcfO1xOhhVOpooGl1GIXrVTLi6QI/3MAALyAkq2RU6xXrS0EZGYUZggxlPTg\nZAmElKxA0/3dPe5f3ePucgHnBCnVQ9MKSgkl36A0QskCcHKyfMhlWTzvFJCq+Om/8dN+wO5Y2SMp\noACpgXZiuIr9TN+0/tLh1Vxs+9wcsqG4AakXpjJH7s52XPG5Xb0vNHEIkXy/fQjs6L1gR0T43b/5\nH55A5LhQD9ckc9gNU3p7hwGQpriDbBka1mvkAEEauJ3L1gYHPRq2ZeJQF4kIXe1v/YQ+egHyImSe\nX3noWR3OIxEyEZASkHMPL23tlyEUUUAA/svf/8/b+goFRKBSbfTp4QEPDw94ePsWt+sV+3YDVMGw\n+6VXsCfkJWO5W3G5u8PFK8SnlB14HGzFFPrDWFCcj9iWA4kVEavQ2sHZRh8K9uLhnqV4qGZt4aKl\nFuwxElF6eGcJYJNhO/uObb/her3itu3YSwERO7ApbrcN19sNt81ytUGElH8dxAkA2QhGK6Lmoau1\nYq/eLpG43BFEJs71GAIqfvIbsPt92s/zsb8+ZO0W738NYdsfWOf06VdjU9iYNu3rtcnzJs+bPG/y\nvMnzJs/7fvaFCRvfbkzkuYvf5hzhalpX+Go4Br+4t+sNtRQQrFhTYgKJQGuB1AJoxZICCMnWKwVS\nCiC13eCJGZXZRgNi5+S/pYS8LLi/f4VXr17jcndnCitqD5usUYRKmwM138dYlgXr5YL1ckFeHOxc\nlbVwRACI8ESriE1QAzxoc7SWjqkYbxIFXMEfv+8hewfEG8CI0R1pVNIeFf++0vh+/jy2wn9TdcCg\n4Tc6Lfvhc/59TVUhpGAVWGgitz3qaZ/vvf1b84bOc0fUwe70u4MiyMGO6NDX5zY+8Ws6vuvZszUn\nevBqCkNvps5xXNkmSCM2bVciECmoe8F2u+J6vWK7XSG1gAm4rKvn97KH4MaKhLwsWNYV62VFXqz4\nGDEB1cCa4yLW4TponGAkBdZwEiukhqzwIFJEHmgvONaLiYWKflTvY/TCwx8ReaRiocNlQ9lueHh4\ni9vthm3fbSSCM0DA48MV7969w9t371CrIKWEN6/f4P7VPdb1zu9RL1xXxUBu36x43eMDHq9XAIRl\nMSKQlxXEDAFhLxW324bH2w3X2+YhzAXbvhtQ1yAncY/ygSgRna5PIu8fK47W+kIVeynYtoJt2yEQ\n62v2674VcJOWP2zh3V/7KMS0adN+aJs873PkeeyRCONj9+R5ACbPmzxv8rwf0V6csEHMhxDFUcEa\nVddQw/yPwTH4hbgXXB8fsW9bAy+K0KcqIKlIABZm5GSAsktBlQJI8Y4lCDwMMJy/OytmwrKYgv/m\nzRu8+eYNXr16hZyzqXxcWiicwCofNxBJCTlbSOLd5YLL5Q7LuiJx9um+ABFCDDcw6cmFAqNnDD8s\nDoJDh5mvAx2+H7fVHbRtk9wxw3NIwfa5r2WvGIkYNoLutvp/RNTOUyj6AXqq/RiGRg+fh9+134p2\n0zvQgFw1pbZcW2jYZKjVldl3UdtxoIUV9r3qoVuo/dDU+wAy9NDH1j/+dzsSDzuMRb6Nxp2XaO2J\n49DxB8UTH9WIlR9WAKLWtlo7Y6qQUlD2Dfu+YbtdUfbNwI7JCp35aFNOCZwCRO18pJSRV8s9Zh8J\nG0+B9ZMeSEXvTjqdN4JHCFsF+cbLtCn9ESbZclM1/EKECAaw9Qrt8bI2C7TuKGXD48OK6/URt9tm\nedM5IaWE2+2Gx4c7vH17wbYVEIDXb97g9f0r3F3uQMlGSQI0SqnYthvevl3x9l3G9bqCU8Ld/T1e\nvXqD5XIBczbA2wser1e8e3zEu4dHPN42XLcN+16w7QV7rf3iY6tib2HSqYUMK4z8ctyfOlZ0h480\nKB4er3j77h3evnuA+LlaLisI7OHbFXvZsW27jW6UHZuHolo3a3OtB951ujbffxUPIcF+AatXqJ82\nbdrXa5PnfQqe1z9/mOf19KDJ8ybPmzxv8rwfm+e9OGGjVcv2G+G5kLf4Xv1mZyIIWRVpFZsje79t\nuF6v2LfditVUAztIgUoFqSIxsCbfnwqKGhCyVLAXnirRJk6A5+QRAYkT7tY7vH71Cr/2az/BN2/e\nYF3Xtg5xOhTHEgzTfeWM9W51sFtxWZfmMBgCKIESmXqPuKj8ZhV2wPCb3J2/+7ixgwAAFYrkwA0w\nRr8cW7Vjoo5pbAepbGqseZ5eiMkv5d4Zz172dsn71ptvDmB46tafGvnmOxb5Nk+YSIjr5AQU5u0b\nSJhfrP6jAzsZEQIIFFjYjm/YuSvfdDres/I+/h2AGABoxx194u19ct6Gg8cAdv7jWDAswibHFc4g\nog5OEAvLpdggwdRtD0vctg3bdsV2tQJsRKbSZ2YrWpYSMhvgqSrUq3QzJzAnJ0UYgKVfV3Q6in5u\njtbWOX8fvPYZXzDiJZEBpoh9GVP5Rd61qoCUoClhoQX1cvHQxd7pzAmX9QKCAcr18YpSjTCLVNSy\ngzW1UOFEgJJVrCcAiQnLknFZV7x6dY/Xr+8b4IEI216wZsaSgCUR7taMvVxaWGWV6sfC4GQF8JLn\ntrJX0gfZaAenZCMlgUjEUAWqAKVW/Oxnb/Gnf77gzxKBOOFyd4/7V69BnFFFsG0Wivl4fcTDwyPe\nPT7i8XrFViqETPuPafMEBvAj+IUniLM3XofWHG5ADcBGYEhAwqhPT+W0adO+Eps871PwvHjopo/g\nebbA5HnD4R/2ef48ed7keZPnAb8anvfihI02v/n7ci/V550eAA8uW6raVEzbbcPj9RHXxyv2bYMU\ny79UVwETEZASEhNyToAKatlBolh8Tm8Rq/gLoIVdiWTLCxNpTiOm/QrnKqJe/TdyvixUikCgxD7/\n+YIlrza/+LKAc8xLTuDQLsPBYshZUw+14qPDUBg4+iIDIKhfpQag4dQtbCyckr8ILRRKiSFMUP/c\n1HxigNJzSHRQ/EZlm+hjruzng1FtFyPAuON0VdBOuzt6CkW/Lzm6TrtUtJ03qIBI/Zg76lCINwf8\npKEt/fBHUMK5mW17/KSvDqMSh5X8uE5tfwYvhj7qABf5jU+wRLW3ObYsCq3FCkmVDXXfLTQXakQt\nZ5uSjozepERIbJXkoYpKFVqjvzxsEPz0fBPBaJw8C1jP2WEpb/vIctq9f/o89sn57/AVjdBQQl5W\nXKpP31YrFD7iRoScF9zd3QMglH0HEcPCG3ewChInpBQ5ueZfat1bGHPyIluNvFMAtoWhMjPyknEB\nkLJiUc/nDJ/GlvvMPsLAqYcIx/opri21bVuoclTqL7jdrrjdriAAOWWsixW8E6nYN6vkv++7T084\nXoHepxQPEwSGF8Drru+D96yIIsJgU5B+H3VQovdez9OmTXv5NnneD8nzEMEYMKnFwtPtB3oPz0sn\nnjfwlsnz+l4mz5s8b/K8H5znvTxhg1z9CcnxFMbWwM7zhCJMqXq131J8TvPHR9xuV9RS7WJAPxmc\nkt3EXnxHqxeBYUIim+v8ttvND6DNOS6OJtXnkk5kABaA1/PDYjql3ab6cvU1pjjLecGyWhGp7EWA\nQim2mzEup8jFG3P1msc+XnHUldT41xYZfGoPt/ORAa+SZGK9hxMxAWwVxeHAN4Ld0claW0aFr20Q\n487HPw9adjssh8i+XABMyx319nbPhb66V+p2AqREptAfttFXs2sHIBEr1iUCTdxb0EAqQjXHoxlB\nqW+xD6f0AMrxfKnGnk9bIicGSq0nVak5StvuCNZDTw/OnRBOEQMgiC/fC6lFDmItBWWo5G6O3u4N\njjxLW6FVTQ91nLU7xXYW1SF3JAdkYXOko9P/SBtALQht+xvPg93YJwECbXNDT4EIKS9YVsVaKm64\nWQG6qq7SA3lZcKeKklIjywq1onMqgJqSLrWglh217DZKSNZPKRRs2IiJKFrYJHEQZUb2KeMib7Id\nkvd3VKuPa4OA9j2CnKnlR5dqxcFut6uHmxakYVSx54sW83vum8gJLydGqgwlwdAMxFR4lXTkh4a3\nwykYOKL1lSooSItIJzDTpk37am3yvB+a58Xn3n/fj+cFhk2e1w5g8rzJ8ybPax9+CJ734oQNppgG\nbHSLZi2PyoElPlcRr0i9Yw8F63rFvls4IrcLJ7kCx65OWqXsKgnMBQxT7AkKbKXdTMzJwgJFUYhh\neXtdxc/ZTkOo+L2iryul7SawY1vW7Cp+trzPmGqLfN8hNrjzHgt4jnmAYURdvdVRtRTpivOwzNEc\nqtpyiEndbVt2dxmA0LjQ6EgOjTlg0QHUgAGE+i+tOFYc2FPM6w5/AI7ncEd926T9rjTgCOeNNrUT\nYA6GFNAEJHVVHxEKFgWU2oaGLtP2WcMJkJpjj60TzDE6gPUvh2NqRGVYT+GEZCQ59p3r5k0l7dzi\nnMcYYNcBTwGriq0CqX591gJRtWuQcleJfWRJVfw6ouE6MwC0Y6XeFh2c59AepWrXxXNg9z78a8vq\nwaN+DNgF0I2f1UlDm4kPdt+lvCCvBVUFu/TcToIVjaN1RU7JRuR8WjOpxfIuqSIxe97khr3s1pfZ\nwjrb6F6tUBDERxrF25RzRkrwe6bPa2/FnfwOCSJKaIXpjJiT+yonZQCg7KMSBY8P73C9XiFSkfMF\nKSWoKPa621Rr4oQ47o0A6ZTASUDK7doFgui4P4l+9+vhfBrG61B0KMSn3r+/DOJNmzbti7fJ835M\nnqf9FU8rH8XzeoKMbWXyvMnz+n4nz5s8L87hr5rnvThhI/J1xgJGwOlCxwn4JEKE7AYuZUetxSVE\nanOAM7tCmTIIglZfyEFWSdHmP4bnG0FtOjHAwcym80o5Y10vWNfFcs+0q/i12PRE+15sJEFC9bRQ\nQWYrXsOcuiMG3Ne7U1EGqWOPT//FDgajEzZQCBDyGjM+DZFqWwCtWNTYn+26peHFMDpgLyC5k7Y0\nFLtBRmFjQBtY/9n2Y9tx41Jb8mlY3uFM9+/puHwkzxy8ZPP64zZGQD3voxMLU8vDOfY12+cDUg9/\nMLV+79OkRSVsnC7dAaD7HobP0kBQQQj9lJSeHOa4H/LOIUNwmNLtzrphvamzygq/gF1dtcrycU0y\nZ4tCJS9WNMS7qlTL2yU48YK1oR3HSGnoyT/Aco5rHNczvTB+P16XccYJDa4/ysIJR/jk+x2s9WdK\nC3KqkGSjfqKWYazq0+vljIxsU4hhx61W7PvuFe3Jq1JvEBEwE9bFwo9TTu3IbPQEbVTRRkmo504D\nYL9n9UDKrB/AggQrxGahiz5Nn/ekgqBVsG03vHv7Fm9/8Qtcb1cPFbSpDfdi88yDGJSSjWiqgmCj\nlkQ2upkyQ5RRd7GpyhhI7niYFVX7/Wz3QBA69YrelpNaVdvMBf1QtF9f06ZN+ypt8rwzz/PRcvIe\naTzP/vjV8Dx0/tB4Hp14Xn8AimKYrdHfiefRALufA88LrOprTp43ed7keZ8nz3uBwoaFSXUx6KTi\n+UXTwwFDmbSXSoXqEBYIzzJsYYKm4IcqLE19TABXn7JLEEUyRWwKrxrvtSBRwpIz1suKJS8gQgsN\nqtUq0O777ippzzkjIiQKsHPHQn5bKwAly40khmoCK7moHihHhz4hqOcxUVsmiitZVzlcuEoXjtJu\nqrjoHLyIQZT6Cwl2eTnokZOQBprUXt0hKSxHbXROZ0fl5ZAPQEnNobXRAncEBzYQ64zg48vReTka\n10F/d1LB7mx8p2D04zqAnt/oOuzzcLOfsb8tdj7uD9zk1H+nsV2+mdH1jSM6pNrx0hX7Fno5bJfc\n6fsl1vuBjHwRCJyieBo1oJBaDUTjeL1fGQRlz/Vz4OxEJFhKV4rtuidA426Ej1IdwehwCn30YTx6\nAy9t19rBnl5SfbtORKz9fUHrnk6CU659CjHYqIxF67IVcWK7v663q4Uflx0A2RzrxYhwdr+wrmsL\nP+4ZztZnnILMhoLvc52Tq/mxvCosXcyOQ/wYUnJi6gWlVI3k3vYN7969w89//nM8PLxDKQJwdgJg\nxbOk+kgDJ2T3CSIVe81ISZA1o0IdGN2P+qhJu0Lj2vGQ5QRp1bqTAymIQKWiOBEbU3IPRHLatGlf\nnU2ed+Z5+h6eRx/geV0AOvI8fobn+ZN4PKTHCwlWLdWriR54Hg2vQM04xm/jefTs9x/H884f+3If\nx/MM5488L7jL5HmT502e97nzvBcnbDBZbiQxPQG7EeTiPU6GqudD+RVAUCSfMkdVbd7yUPZTglZA\ntUBrRVz8CqCKotSe5aQi2DzcUKrtL10ylnXFZb0g5wxV9HDEWrH7tD41wp0ciAjkRbN6CBj8AleB\n4w6BKQFesMYjmMJDtIvfQq8iLwpwVwhgDHcCAAZTAjexgh3sBsCihJjDnMhHFyh14CMHP0poGm0b\nPaB+M/hIyLGwkIU1NT/bdqsgGgsGDaGN1NyrHSsAAkMjpE+f3j3Nz40y/ADOfVvk4D7CtXVkC/k6\nIt5xm22//UO0oIUUBulogBP9FaA7trGfs2dxWoCY1kqhIBWEB9XWJAc0k4DdUQ5G1JaxnTBAAkoZ\nVv/cqkwH2FnjpXd+bM+dXAixQTZtv+L7Eaj66JRrWAkE5QQigVTLn27WLmh0UArxysszdzh1sItr\n/jnHqWjk9kAUmCyymKMrbGUGkIhREyPVhMIM8rm+o9QSAaZ8M4OrdX4pFdfr1lologAz8mpV8Nf1\ngpStQjapqdqW36ut8Xbf9zbGlPSguBfYi0RZ3iYUbTQnQppjBHHfdzw+PODnP/8Zfvazn+F6vQKc\nsObFCkPFVcaEnLiNQFJim6ZQPXTQnwVqsVGK6gQqKo6D7FqxNrAVqSKA/JQuOSMvC4gZN9rN91YA\n7V63dadNm/b12tfJ8xQqBPjD4pHnhbBx5nniy555HpznxewhI88zkaLzPK8pQfwMz+P2vfElj8yN\naI6BQx15nn4Ez/MHy+b7A4XGhToPazJOrPtenjfwlCc8z/apTcSJ7Tvm+FSahFOxz8nzJs/D5Hmf\nC897ccIGESOnjPFqPlfHNUyLd7/pxHKiIAKGtrBEQCGlYi+bgZbUpjxGNJSGsqDaHI+pY9XyOr04\nFNRCi3IRk2WXAAAgAElEQVRKWNcFy5JBzKi1YNtu2LYN1ec63vfd2uJFskSq5Womq9KbcraLRT0s\nCvCKwlFgit0Neu6S+lzriBs5Qt88RAjqoOV95oeEUP1clGj9qnDgC1DwSA1OIMoObhG1YZ+Jsu/D\n12sO3YUWaL+ww1mQkxACGvhRa2F0PoAo2jNMMWZXxHAt0DPfxTcDqo7L0XPrR1goNQDWEFO879te\nGviOgDxuq+ky6F5paBsPKBY3+mFkhvDew7WmgoTHvbd9BoRHHxLQck/b4mfZ1LdvYcDhVk+9ORLN\n4U/LCxSPg40wYfFXnGP1kEj21KleMI2J/Xgig1SHpmq7IUelno4tiSMeG9uXUp/nuwV6xhLPrRfd\nQy4QkhVV8mrxSlHADgAEhQ3YqwICQiUL7INaXy7rgiUvuNzd4XL3CuvlDpwyFLCw5urkl2M2QbIQ\nPu2kfTyUGH1ICogSIH2EJy6fVmbKSfbbX/TQxJQSLpc73N2/Ql4vECULvZbIN12t3TUjZwZnQrrG\naIUBek4JxadWVAfLIG7Jc9k5MbhS443LulpVbksqbQIsBmBn/mVmOJ82bdqXbl8vz1NIiA7UH8Ub\n7Du+cOBj9MUTnhcPynrieWP6ADrFat/5oBWHuBE8z16EHrFLTeiw9Y88Lx7Z/LcDz9P38Lz+tx6O\nvF0Vp3d+8ttTnhcc6szzqLU5eB0IJ57XtxkPYZPnTZ43ed6n53kvTtiwwiYGBq0YzMksDMsuFgtN\nLF7ptqIVwXHQMyWp2DznpZhC18IZCKAEqBXWoXaDWnGWUqWHLEVhnWSAbAVhLPyn1mpzBV+vBo6u\n6ANWeIrVrgYDO7sxosK2VBnUWvbjsqMkVcvN0n7ccd20sLOBDMQvtlIo+Q5mnNrF2kWNcPJdxWe4\n6k8ZkZYCmNDRU1MG5x3gECo+ekilKfpRmEbb39QckP1t711sOAJBAPh4iEcAJAeZYwjaeHyKVrRp\naHdT2Om4r9hWD5cc4IACXMfXkwsU2pbFcRvvA7vzNg7HiwYasf0GDDq8fPNKEYLr67ZlzJEyR9SL\nttAx8r81hKZRpR8AjwheeEltKrEGWgqoA00lgI28JEO6dvxNE/PrU0mdaPq7X/sgPRKjOHRH4FjO\ngD8gcwyXRPsO7fuoDt3ls4PaD4BTgqhYaHNgOHFvBRE4Z6RlRS4VomrAsSxYF1Pwl2VFyqsVo1Or\nrm/b0VYnR0EgH0Ucz99wxRiHIg8JpU4sD5eLArUK9tuGd+/e4na7AiK4v3+FV29e4/7VG6SUbYRS\nBCJ2PJYDHseWoVjdV1bktDdiv1TFDg9VZJ/Six2y1UJ7OSdrqygipivnjMWnV4M6CfJrKWUGbs9e\n6dOmTfsK7OvkedQwtfM8OM/rfxvPCz9vI+TP8zx8T55n9TV4jMwdonJjMOtp6nHwPAw8L6A9eB6c\n50VFgeB3kfYDdCZzfuCntoxv6Lhv/476H+iP69Tadl63CUF03FcbQHzC83TyvMnzJs/7hDzvxQkb\nRFbgiVu12W5R+Xb824o4WXigFZcSRJVggkK0ehVtV/IdvOCVX1NiVKSDwwAxtlqxl4Jae+5Tn8bL\n8idjmp9aBbebTT2273vP82TLbcsZKCitsva6Lk1JpcoQFLvuRSHst6D48RFArBAlKzoTIgHQnELz\nZ0Set0ntxh+LRR2cOgA8AT1X8Cm7gp0AtRdpRlf2Q+32VBR3quTOK6r7mlRhYxQRkwIYuCPArkWN\nuPNqYGBO5qjqnz+fPh5wxYErlG2okQDfpraF+zbH0MsgPy2nddxj61MM++g7PyyL+G4AZxzxqDf+\nKbkzkPLWDaMSKgKt4lMrPemGAaQ7MIZz53YteCXtUGoRYYldYR4Bpxc61t4GB5LIqWwjbiJgtYJW\nCaaSN8gegUwN3KJ9h+s7lh0Ad+yYqGx90IWfEGTfqpPjVvQMvdpL2xXRUK2/tnxcG4Fgm84qAXm9\n4E4UzAm1VvdZCSkvNkLH2cRBTu5nIiTWzp+2lp3hHO0y6uTQr6cYaWr/x8oWfn27bbg+PKDWgnXN\n+OabV/jmJ9/g/tUbKAGlKvZiPk1EULVAxI4vMbCkhCVCp9WKamVmaM6gAuxSPBfcpjHcS0GEJq95\nBTNhu91QSwVhx7KuSImxLgtUrO/t2AjLgmnTpn3F9vXyPD3xPH2G551w8IM8L/Bh5Hkjr6EP8LyI\nykiAsvO8MYIjanAAT3ke2sjukecpLBdgFGIGwcG/D05z5Hnx3XveDzwvHqAHntaVgBPPi+18DM8b\nyp5OntfbMHne5Hk/Is97ecIGM1JOTclHe5g/mfq0W2KAJtUKPonPc16lekeXNiWXeE5VrdVcajJV\nLsKotFq+5LZb9du9lJaTFKGGTGyhTJyweOGY6/XalfxaQSCkHDUqFHCgZI717Qaw1DKrCtRuCAWk\nWrSGgcZ4yD14Dp6YYuDGEGGr7OuKPFoqi0Vg9LC+UTggA7QWfph9KqgMwgLQArvEVrRQRat6FXel\nb1JdsPfWtRxGeGiSAKiA2nRIKtH+MEGEGOrQvmOQZnf2hxDF5uXPgDHkEQ4Ov42UkJqSKbYuNbWZ\nBucyEAJ0x9ScOobAxVFpb449wLL/1nXYETrgzsCFohEMgKZWt+JZg/I7AqfGwv4e7RQf3QK0kTQj\nSnYRihPEBtSqJ9zoRy8t1MzPK9n5hnDbBjy0r8Kmk1KhXul72OqxPxU0/niyJ3nYp+N/AnRBfIZ1\nWj+otnxEO6YIH2TL+yaCRj+1orsOkl48iomQU7LicV41O+eEnLL5r5hPfBglM/ZyPPZ++XQCNXaS\njaSI79N+j2kBRRS37YbHxwc8PrzDvu8eJnmPb775CV6/eo3lstr5pQJRi5QUDZJkxaNKUdy2Hdvt\n1kALqsgpg8gA20RHS2lLlCBUoQrP2+0Et6rYiGot4+G2e9FGPRKmTZv29drXxfP8oVDdz7+X5xnK\njHzBe8t5HkGEviPP84d7H0CKemrG8xYQMkAZxvOC71nKcRQbbaJC8DknCocBs0jPgADKUPTCrq1Y\nRBzXgecdedaR5w2fD5EQOCzzYZ4H53k6ed7kebbs5HmfPc97YcKGn8zTSQcGJ6MRbqRQrRAPg5Fa\noKWg1B21bKhlRxUHQLHQRQO8ilrF53M24CJiK8yy2Yl/vF2x7TtqtQfu5CE5AcIW5kWtMFRxJe22\nbVARm+9c/KZxMMvZpgVK2WtdKFlhrOou3kMjTViNUCZ3xK6EW5ZFgGh37CJW4EW9DgZQDLBATZ13\nNLH3CN9TKynUxQ0HO1pA7O8pg1IGkhWg8YoyCNwzzCO/J3UAbzt2JViclQQ4iwsc0foAhcArb5+/\nR23rp8A3XCMt/STeHMQcAE299arqUdDIwS6mJOqw5ko+ReuCHPh12JTh2Iy1w8JJR9Ad29k6qn9u\nxxqLOVlh/6KRIY1uBbkI1hx+DNf0mwRRWEqGZUZAUY+oaav0VdtfR33I261BuoLADAvFIbrSb7uN\ntogXye6z8gyXbusLGnY3WsdvPQD6IRTxGbBrQPfMaCBUPST52AdEdk/HOlYNnQ/LhX8iJ3YgQqo2\nvZqBnYUusxMoEqCNpnmROwznxeOqGn+MPmnXmEYkUxCi3lmiNh3Z9fGK6/URUhWXuzu8+eYbvHn9\nGpd7y//cy94fIBD95xV7fDR03/cWxt3mvCcGJRNPC4s9jLDN3a7IUNVWu4e8v1AVQjKQ2oEGcox4\nTGFj2rSv114yz8snnmd87inP69NNwkWQGA03OkMDPDr6N57HzvMSolzgx/M8dp7nL15AtILYuB84\n2wg0p87zgpIBDZOs2cHNAK3+vUSxRPIH4HjEJ29aRKEENwqeN/Kvkzgz8qQn3K8LG53nqfM8dZ7n\n4gaC0U2eh7jOwibPmzzvM+J5L0rYiDm/afBlob6On6O4jYXaVKgUSC2odffcR8+z9PnO1QtCAXah\nWx6lVYKOXCvdget2w7uHRzw+PmLbi6n3OYE8FCumTAXQ3mup2G4btt0KSXEDLQC12g1BjOy5WSln\nB1g/BrUQLmYbIWgOigysRj05tHy74cLxRlgdgxDCRHG8cBBDgmqUo3KnHiMAFRaqpF3YYLrYOyfP\nM0vgzC5sUJsRLBw1kTnJXgTZ1FuTDgEtNtIAZJhyDF+5IqblOoBBFK1qYGNk4Kmyf/zYPwTY+1Wj\nAkWvOKxQQEx8hhiGq3IHc9/oGNbZnd54oBacF1M6ddc9AHIbuRnA+jD6MHj/cJJQKMHyE6mDWovw\nMbYEDE4bcBCI0NZaO+jB9SgMJKDt9VyuajRTZyUcpcYog2/ASyS3azOug+ZX7YorVe1cA4PjRRs9\noUZ0j3tX9HzkwzG+R7Xvre73JzTCmptDORx/3wTZ6Fkb6QjifbzflXtOeKvez3bP52Vp4cvkJBlU\nj9tpXaNOasZL4OD4/FpD6yv2kRAC+TkWbLcNj9crrrcNzIS7+zt88+YN7l+9Qsp5IIyx0RjNiFLE\njr8iPs2hoBYLKSS2mQVSAnJigBI45eanx5Dxsep38LReUK1byqk9QEybNu3rs5fP89aB58nA83jg\neZ76EiO9HqFKMYjl/OPI84y7PeV58i08D87zaOB5GUwriFYwLWBe7EEtMyifeB7DcJoR2QRmng4D\nUctmKRZ7i5oBDINIjecB/gSIgxDwhOc9M5B14EpAR9IomD/yvOpcRezhnwkQAidynndM1+lp2sG2\nx4drewl48jxMnjd53o/D816QsGHz/jL3k9BVpw5yI9iJVGgJNb90sNstFzNCE2utx5uEYAqdOzip\nir0IrrcN19sNt22DiOVZxYUfF1zy3EvmhCq238frI/bNc5EYLaxJ1c43Zys6k3O28B4Praw1irWE\nMJFAVHGYhLo5+XCy4UhbJ/kyUfDJQgpDiQYyVJMJDYlAsLaDEogzmBcwh3Lv4Yhk0Rm0JNBKwOIv\nBzqNwYERf9QcdGumZ5+0qZdc5QMYJBmqtSuLZMDXQS0KYHn+p981lirKg4Ow7ZoO1J0aaW4OHlAQ\nqjtVGEDB1GxmdyQckTFto21bT+5YkB+8i088OsaTMBNheRTfxaZH8IuPUQRM3C+FUzouph1N2ulv\nrWXrG/ULz2q19m20Q9RYwb5kHzGJabeAsQCsiW4R4jiC3tje2AkxwMKQ5Cp+i+Sx0SgrikbePkYo\n4hr3WYNPRQfX7gfanuxA298jgOm4zmm9jjhPrQNxD0vsRdzsd3G/ET7BCuDZiJ/NZ+5ipJ8HGs4R\nu6D55JL6FmujBn5cAba15ZGr5YS/WvD69Wvc3d/baCL5/PM4kQZvEBEhgbFkwrIsWErFslTQbTO/\nWor3H+yaZfPRy7KAyAl0+OLq162DoPp5tmnjGEJ9VPRMbKZNm/a12EvneevA8+Q9PM8EC+jT9OAO\nUM4ZmpIQy0T9C08ZaQXas4kaQkAykYSZB56XneflzvMQURsZtDCQyV6+C02wLJVxnAnO86LZUTqt\nerN2X7YSqDK0Rr222viawX9Ej/BwXHaM2qIpRmHAe6UNNqE/KDepobbvxOeWeZ7nRV/HQYznQPt3\nB543FCCdPG/yvMnzflCe94KEDSD5tDKjWUgRDie5v3p4YgO4bUMpBnxl7+AnYvlEzOyVrpOH9Vk+\nWRWrjl2qoErc2HA11C66qOS9ZJsCDAD2veB2vaHWAsCUwMivhNoxWViPTbGlatMC1VKh3qZwKkxk\naNIOfnTAg7AxKnMAQtg4hBjGsuoqfisgZWCdUkbmBTktSOkCphXAagpkYiARsBBoZRM3MkGzOTQk\nQDPMoXM4GILXwbFcO4FVTS4ODATobq0lsKWnQEAxMbL1HuD5nw00mrqPI/a3brAP4z/oEOcSUqmD\nKZMhcYCcgV5sR3FAcA0g69acj4N0U3xxegUA+3sAiAKHsDmLVjk6M6hgnDZpPNOAQquNAFlVeC96\nNPQTEZBgSqs0B28nJ8LiGh2wC9tWrzBg8nUaEKktE1Xog4y2exMRZosGBKSCykZfqhhQ95C8SKvq\nYZ0tEqkhdQBVL6xkzR0Iz6GDTiGM7esGz239A3DGL9T1bqYghQRUS5tiV+v7dUDuwNkrWRNSijo3\nQdKftpsAr0yORkoOd4C2M4VhZwYaw8iGjUppG2Fc1xXresH9/T0uq40YikTRXvTRJGIwC1Ti4YKQ\nkoH1umTsqwmweymou+/Djw1kviyK4wFooY1je0XE81E7AEYfWD8eyoBNmzbtK7Kvg+fpMzwPnhpD\nLmrEA10QG8WAGDjyvPg7OF6C1cgALCyWTzyPB56XkdOKlFbneT6IRT7bnUfjkg9gafJojeB5/ncr\njOmgqXDOJ87zkvPB3TlfEDaV4RkvIgfYecsYFhKiADXO1l/O8w4PxoQW3aF9Pas3MvI8PMPzhv5t\nPI/a730kH5PnTZ43ed6PzPNelrDhRZsAdJ/vN4mF8/kJFytcIqX69F8FtewoZTOQq7ur+LvPa25F\npwBYegWnVvglfIudGM/FtNwEqAClGJBlsmm7lpyxrDbdj90PBdu+tRNrSrkrVszIbOGJ7ApA9VzQ\n6kothzMOz6sSHhjHp3i4Ok9Nze2RChaeGFEb9tmXRYBdD8kkMkEj5xV5uZiwkVYwL5aOkcheGdCF\noCu1+lIas4JlApJCvUCWRaA5wAgc7GDbocHZkCmZVKjngoD6O2WoDxM0YGEArCZFD6GRvlEXM+Ak\ng81BC5mwAviMLgBIYNOnWeFQju3ZQu79Osg14KbhHAB2rph93U5QzoJxBz86bONoHUzhymgUPgqL\n7L+oyaKeG2cAREhsTo9bRWqCMizqUyOPz0I1RdWIHzFSjinfrEaKTdWERjApTmmcQjLgim5qAO25\nwS38kAACI4kVlmJlCEurAI842oYINJzOhranvgTOQDf+PeaZRpGoth8Z5zvvowVtu3EGB8dsIEOg\nnDvQNRVdeiGqts5QDVx7qOgRJH3visPxdXRGH8QbDp6GS0QRRcI62C3rBczJpv66f4V1XRtZAZyo\ne85kYg/HJQA+okVJkZeMRS64iOKybj4C6tdKYiReIIAR5ZyxLKs1WRSFSgNpVauNX/YdLEYadDgf\nKSUD62nTpn2V9vXxPO0FP+NBSukZnmdcghx41SMj+kMDDTzPZnR4nufRwPPyiectYF4BsshcMJmA\nsRB0oVYvXj0ohDyCQxO1dh1MyaM1yDgaGQ9T7g+rqOwKyQB0xFBXTwhD+C8NPC+hhx9EZCwCn53n\nNa4HROq28Tx1nudF4jl4BdDyKAKuPc2kEZ5gUUzO847cbfK8yfPacpPn/SA878UIGyYoGgiF9RvV\nznTMNR4KfvUK2aUUlH1D2Teb7mvfIWVHdYU/QhSJvKiJq+rkeZJEXsV1XbHsG4p4eI724ijKroB6\nSFtOCapRsTvCcsirdxcQEdaUkHJGTha6BPjIwHDjc0oWIuhziJNXO2oOU5MDoHuiuPgZJoK486Vs\n79oQyZ03EiISgjiByYreJF4N8PLFlHzOIBczkAi6Arj0ly6AZkVKAmYBJzFHS37yss/Q4oCswqgl\nWWhiLMPuNUOwqPAZUoAAZNWhaFWCiywBMv63A1VEajrNANyZkJJHi5CHSTK4LnYuSRz4gJYk1j0e\nwps3nBtGEYjI88l6mFq471C3o34IjWq19oJKHTy742/fa1sTGFx0078DXNSduE/AfcxF9M/SSSI8\nx1db1Wy4hkZNx6Hj2qeb8/yDgz8xQNWOD6da7t6mIIBa2fvivPEPV8ke22Qhf10kw/D9+bP2L3qr\nySOOQkD0BcewunG7LUwR1t9WBK42oEk5g07hzwZINqVaP2cdRKPwbw9btdBPdcUcQwryeJzNZwTo\nuqiZc8bd5QJZF1zWC/KSnz2GHipLxytL1LuCWgXw+/t7v48fURyccs4Q9DBM5kgBs3vTSxrbw0mt\n2PYbWKwt4n4rQtBrefYqmzZt2gu3l83zUitGLooTz3MxpfE8iyg48rwRhUdQbI4WlGz9I8+z0Z6Y\naeTI85YTz1thhUbtgV0jK8X5nmbjehbQIaCsSMkEghiN7nhs+xMhyJ4ad8SuHcTiGbAGkgIWDRAp\nNamLB0TGQRk9JSZ4HgWWeWQEcBzAqgCqcw3pT40UtSpU0dN6IsVn7OkGuM7z8AzPCzrxXXheXOFf\nMs8jP77e6t6Mj+V5x2f852zyvMnzwl6MsAHAQ3zsAVXjYTFARcfwHDHQ8/zFUoqFytw64JXSwS5U\nN5tr3MNrXC0vtSIe0jhZ0RQmthwrGW4eB11TOP3CcSeCUD1VXfmHq/6rhzUOIAsL0YmbhtimWO3i\nhqBP8mpKvBWzMmcHUsMxUih5deVkwgKShVxq4QEoe6hf7Icpg/MC5gsSr0hpAafcUlBCudcV0FWA\nC0BZwVmRuSCzIFNFJgGTOwtKUDAEjApCFStSVZmhoXyHhjqKMy4+aEMZV6GzgSwtcNEGbfQgojYo\nkSuj1l+kZCkwHi2iCZbruZtjNiAEYj5u+6MeOUQz8v4HQnTpCw4jLE3iBqLIUivc1dZ1EhCg56ZP\nduzLkP/WnLcOHtzRiQjk89uHUztY3DzaSaMOc6FrwGh4rXHz6gKOBuxTU/P9FGEMeaXRS48jIU4C\n7P5SWDV3OQFLV/G/Hfm0Ke5HkB+aT9T3G/2n0YbxOBkxr/u4LuEIpt4lbeRE/fcIYYzfjOlQ71v3\nFU8UfT8taEuPbCLONx3Ot21P2rkcGuyhgnau8rIOuevDfgM01Sv0q1XpDxHSkdlAiRPu7u6gINQi\neHd99GO2qQxzzuAUsze5X42QbApSr5C9gNUeJKK/cvJ19ylsTJv2tdrL5XkmJhDHII09nFo6RBp4\nXmBH5xMKHgorensIAPsDZYLxs+B5BGjySAiKAheGx53nLeCcnecZ12Ny1YI9tdiFDF0UuiqwKjgD\nnBRpEaRUsXAFk7r2ELwoUngYVRmFMsQjWdWX0wOMEiDJ+1jaMROzp75Q43eN53nZOEoe3u/nkoh6\nCkw1CodKoAKgdA4Y05weed6ItSNm23k4MqmR5w2rfZU8rz+sd77becW387yBV30Lzft4nqdteXub\nPC+640vneS9G2LBOye2EhQXY9EJSVsAkpvUq1cBu22/Y9g377Ya95V+WDnbthFlF27iQqkpXuBqg\n+kXPFlZIKnGXN5ALcaJWaUqrzZ1eXNlnrIuBKft+bZSCIKW06YES+7RBtADoyl5zpuHgWS1dkQBi\ndXFAe9rIYr9FRAgY4Oo3JTPYp3FltnZYJewVxGtLP6FMXig0RA1AVwVdNuQkWKkgo2KFIKMia0Ei\ndbEmQYghSChKKEjYU8aeFhRaIAFKY3ZNpEcWhlZXqxOArOAFFha5ohcwHUR+YmpFsgAHMxcuUAHd\nCdhhYJcAKsmjOABIAlChESrlozmBJc3xKECREhOdHzgi8HAy7sci3FXxVll9BD8a3ruTb7EO5Hoo\nE1C7KzaCZUtZEE6yAlnEFrDjIwvjnRM+bMRKG3noIy/Nrft0MeZLyQ8poeeAkvWXFwFrha2a8+6O\n3rhDiAtwp6ptnd4ngZH+/QGQxlDGZ5zjyfHH/WufDVShGHJIPeIp+kgVKtXzUrWfkRPQ2VRYARbD\ncl5YikVQiUzN70yig52DS4wCaEzPhgBPHfZLzx5tJyXhC/tvRGRzkPuZD3CJKumtCF97SLARSstF\nj77n4RzZNtfLCgVh2wveXR9RqyBn8Xo8HnnmlbVFgZjeK8i+quWyw4EuhN3s0Wt47pxOmzbtxdvL\n43mEdSkALs7zsg0SgSBFQT4zi/E8EzeeECB4GjIBYAFYoKz2kOiDWI3nrUFzBp7noeBE6cM8z9NP\njDuRpxp3YUMWRbooeKnIVHGhigUFWQsy+dS0Q6puVaAqoWo2rscL9uzpzHFowwnWkqCVYEHs1mZO\nilazfiFgJQxZ1S5yOJfiIbxf4XrFwPMKQJV7tG5VoHjhfH8oJOfN1Aa3Al6HVJtneZ4f93fmebGu\nDjwv+bryGfE88fZXT20Izibv4XnUuI599zE8L/o5HvJ/GZ7n21G19k6e96J43osRNgALYSH20D+l\nftcA7Q62kBoDPSkFsu+o+w1l27BvVwc7m99cq+UgEtm2c07+yqgOTtVHAW7bDbfthn3fIFKbuKna\n7moHj/b0C5G4s2m4yNEutqgMnLyIE+AXo4sazBkpLSD2Qk4azk1aOF4rYN0iFbSDBsGdP0DZozXE\npxFLZOF55NOJMYMXG6mIPE2NJ/monxFigqef0FKQkgkYSy1YqWBBxUIVK1UsXJDEHv6Fkr3AKErY\nNYHVlQmu0GWBytKVQzh++EOwqfsKzQosBFkBvhDoQsCFgKwWtZgqEkmvkREzqZCnwghBKkM36xPa\nYMCY2MCPCVoBsZRau8lVBlHD2+FqswbQNacU6qdHi8DaAHRuEpWfGxjar7bu4bu4sP13QzsH4ACg\ncLS2HiWARaBEFh7qYBm1WvwCPNxXzalGO+NaBgAVr+Pa14tttvnaNfrNHJhI7eAYLXQRqF2YMZ2d\nF/3WOOGjgDH0ee8RD3ckc/4t2Ue1jwCdRgL6qv3a6lvVBoCHcRRPo+ngSwcAbmfHRw8oBMLhN4nf\neQh57E0M6EZkfiqGUZVYAHFunNC0U2HnQ9FFt/g7Ojzam5zAE7zq+SnXdBxRMBBK3gUJItS6TVVa\nTriqWqGpywXiMwjky2qjjyAfWZV2LjglZE7YBnFq7ENrltioqwPjtGnTvj77cnne+DATPE8HnscD\nz8OJ52XneanzPEe4Nqg0zkCS3sPzVo/WCB9fYA/yPPC8NXieEUdL+6CW3qtON5FhQsmikKUiLzsS\nVSxSjN9RwYV2rFyQxYUNzwtR57JFGUVtX4QVoIq6LKiaTREI/Bdq7xA2sSArZAF4dZ63kg2qLcb3\nOAtSVsMcD7FvuK/GHaUwsDjPqwwqbLBeCLp7eLwLKp3nxUM8EClKz/M8DDyPP4LndTajh+/0+N6i\nfKouF5oAACAASURBVPkT87x+HC1tg22Qkdln2hjCbp7yPP4ePO/4iUi+J8+LPh367qN53oHsx64m\nz/uMeN4LEja84BEzqhKSO5XhurDPPoWWKVI7arGcy7pvqA5+1QtLiUZl5Ni+gR4xQT1Hcrtdcbtd\ncbtesW83K0AlFSn1EMTxHohq2NYeaapZv8D78QTYccpIOZvyVQ0MYw5kTjblqhVQUrvwCaAkwKLA\nSiB/qO8FlYBW7DIAarHV1R/YYUEJiBC+EDYsRzPD0kYIwmKvbCGIugJYFbQClDck2pHrhoV2FzYK\nVogJHBCfwpignKHMEGIPMEkOrAWgCiFFyV5DYzivTW0md2g+sIALoBcAdwpaqw0CpIpMOxIJFo7C\nqwnKljMqShBllJqsAGkiICXQZik7VqeDoBuscGkDhyP4WDXf4aGezJk0oYPi/MZIC/flQ80el/Pv\nIwf2iVdtv5IvPuZf+js1GQXKCeQjSc2JE4H8IVxP26ZhG75od/3nE9H2Gceo7f84fqJkYYxUoUPx\n1MbEyMDP2lPHFhyU/NhD/NeyAqmLG+Gw2xIj8B230noSsR9F08bjb/sj+o3R5mh3sBtDHAMgRhUf\nQwggs03rxaoQm0v4MLd7798B6BBqvi/TzsW4nxgF6CAam+2A5+1NBG5F5tCEmPM1EMSdmMF+XJEv\nHvuK6RSNtAJLXnB3uaBWwfV6O2w09gXAq7UrauqUYtx/AL2IYPNR1mnTpn2N9qXyPDn48HGc/SnP\ns/zzI89bvMZGPBQqiMQgOcEiFt7H8xid4y3eR1GXL8Hz9amPMOcEygPPI3vAF1ZIcp4X28qA5IqU\nBEQ7ku7IUrBgx4VsMOtSK7IjPTiEDfPruzISZRBWMBUAgo1tgKrqAqk2kKTFDttOtwkXMWgX9dz0\n4twviw1g5YqcxcqqjWHw3vWiBOEFmjKQkqWhFFhhenY2IX5BSShGvVi9xgIHnmd8ufM8P8dtBpdv\n43nBmM6veHzXYfFPzfOG44O29sQUn0TG4ULI6ssGz6PvwPN6//RutWjv9/O8Z0SNg+n35Hl04nnW\nqMnzPh+e92KEDSLL+yFKEJ86lLQLjAZ2HglRKmoxkCvbhrrfIPsGKZsVmaobpBaoFLsN3RGzgwUx\nIFKwbVe8e3yL6/WK7bah1h2qFUTVFWarys1EniNJyJzalEAiY2XeeEgGIo8z5YyUF+RsoT21Rqil\nGhAig+G1NQKhuAJJDeQWuLgBV/Clq/rhN1zpt6LTav4bCqpkNSfULmwmV7aZ2g2hJBBmAzyOaInY\nZ0GiG7LesMgVGTsyNlPypSK5Ko4WUlhaKkslBXEC0QrAwpgEBMmAYIXo4t3lCmOANAO0cIvSoDuA\nVkFeCzIJkhYkNXFlUXHiYbk6ol3YSJRQ1wskM6LCtlUj9/20EhvU+71Zo1foOYJNL+8O26NF4HVT\nYs1TYOFwgY8njdo+jg/lXmAIevjlEFLYcCsA4dTscZeEFlYYyv0xT3MAu2EEwLRnamDYgIoIUAbY\nSI6I431c9y0sEw6Mo+sVtOJfpzb2fgiA1UBl78mj4NB6T4MsPDnyZzqF8L5OaoThoI8M4sYHrJ2b\nNoxzgpuBrTf1PsBi2HYc+XNtbPg5sn8APOT+jrxFDtvQtgOCFY5S4u4DnNSrC65SBVUVRAl5WXB/\nf4+qilIsR1lELRVubDtRL/DfzlmAsG2zoLQQ832fERvTpn2N9uXyvM4LOs8zEaXzPIvMqHUfeB6B\nkU48D4jqgTaABeNcCywyleVQS6wV01yc50Ehu72TdI535HmWH6+sUNLG8YTVZsUYamvwUkB5R5Ib\nkmzIsIGshXYsqMhVwEJg9QGi5MKBqmUx5wRCAdRC9ZUslaauDNRkwkbSw6y2bXrZlSzVeCUfVKtt\nAGulgkUrMsXjKQ/YaVyvpgpJF9SFoQWgnYENT7lePYsMfi5htVCCt8TDZ9TzMJ6XgCZKfYjnDSLH\nM6LGcb+fA8/TgVsEz4umBs9T53ke8QJqBXljGx/P86JvbM1DV8XH9/K8Zw992KY+8/nYgM7zBqI3\ned5nyfNejLAB+NRZ5A7Zpy8KHInQRK3VikU1JX+H1AIRf9UC9enB4uKzSCtqF7dIxbZteHh8h3dv\n32Lbbqi1wqZfVZtH2E9+P6/9RhRRz+u0J3ILP9xdpasAss0DnHoRq5wXlGoqvarnGCJBkaAemseJ\nDJQTXGRQCxVcAeQKTRU5qxVyYnukS0zIOYEzAGTUzCjJ8wyV7RVzhSdT71UJkgjFZxyx9BYBqDoO\nKNa6QekK4AroIxgbGNUK8RRAd0LdLVSJiG3/ma3oaAI4W75WYSAR2QuE6gW7kAiaCFK1zXRCiUEr\nAxcC3wHLUrAkGz3IUpDhogYsNDL7cIeKpcBUZVQwEhYrkp0YckeQlNsovwIWTVZh05DVEC8CYkKO\ndbGDCH3uM/YH7lB9GS2SI8LgBpVWHSm6G3MvrtTCywYPODgR7fs+PPT7byefeBBQ9OnvHez6CjSu\n6R7VDjscs+Bs5thc+WU7pxgV6BbZ4k6XXDmmCHsbAa41eDhG/+zI3iQSB84j8AUpiTVHijCCHHUk\nwNAB6BEybYQj2hCryDN9MPSpjaTArn8Sizoad/OsvQ/ogF6169g7TWCK9Sj62kitQDtwDSmxEusi\nzp0XtQM8L5P67gjuv6Sdp5hB4F4VtSrYnIynu0kj+4HzMswC0IvM+UiQKIQs/1OlH/+0adO+Jntp\nPC8NPM/EjVLFeV6FupihION5ZA8dnNUi+ZOamBHRsqlCk9UYQ3Kex4KcFDkrUvaog4VRC3WeB+d5\nFDzPIFwSoXi9CpuOtfO8KPqd9QauN0CvIFiUbuIdLBVUTETRaoVCmWGpvf6Ao9m4XloVC2vU80QF\ng5ShvEI4QVj7IBMNPO9CoDsCXUxgybT7wNWOFTsWESwEK+spkRqssAldGaIVlQmVCYUUlRVCCUqW\n+oKMNmsKjcpKw2FFDM4hZmqJKNwDz/Nr9oM87xSB4YJT53FoPCiuNbslPhXPk4GLDCzVH2BVCeL8\n3biWDc417kE08DxynoeB54187LwfW8++UXSeZ39bik5fJ7iWHg563P535XnDKnISKca+njzvk/C8\nlyNsEHzqU1O0dXjYs6IstU0DJrW4ml+siFNxoIu5zmu13Ezx3Et3pontoavUim274fr4gMfHB+z7\nBsALyKgBn0Rl3FGRirZ4eKMqbH7hJWPPjFK4HYu993XN6SRY+GFFU+/Vp2MleBgeWRpmFmAV6AXQ\nVcF5R+JiAMfqWoAgEfk0YxVCC3bKwCVDxeb0tsQQEwCECKKE6imG2sIdBaIFRRRJXKEvV2Q8QvQK\n0UdANygE2BlSE3QjU8YrgVBBC4EXBkehzxVIKjaHNocAYEKLEEN9thRN5JO9UBuVoAuQ1orMBStt\nWGXDojsydqwoWEiweDGrmLpMiLAjWYVu7KisKMwoRCjEKBo1OFyYyWoRJx7JEZEDqv09ioYSNWaA\n/rBM/Tt3PlYgKgBHmmNCv6LNnx+e7ruj11jPHQf59TcEL/iWMIByf7Pqz+iKMcYohOcBoav9dkw6\nhNz2Jam9x/oWkUdtlKxvN1ptQMWeQ6l0DPUdicURrCJkMI5vAMQgFdQxY/x8BLTzdzh95/dc205f\n7n3iPY33s++8qdjKAIvPKKf9tOLY82ft6rl9PDd6EKGH0Xx2QY2ULMe8+aYOdg30EIDXQzDFi4UR\n2AXV1EZhRLWNt+SccVFFue/bBgLcxLfngOfXTu8rB2oclX9938FPmzbtZdsXy/PoxPMaaTjxvHgI\nFhDFKL/zPHWu4MU7KQGaBFgEugKyApQrKFVwJqQkyAlgEiQGlsRIqUIpY9cMStx5HiV/iD7xvOF5\nHSQQdJ7H4hEz9QoR43qgDeACpgIqgN6AsgHYCSQVlK3OFnvURqTIMBS8qBe5jAEO42U1qdUnGNKB\nrb4HeV0NBeeKJW1YdMMqO1ZsuLClPWexc8ZkD4eigW0JwuK1Qi3FZmdgh4feV4JWdWHDXjGDXgyO\n9GgNNi55KHQy8rzk5/bM8/zBvoU6DF/3p2N0NI7C6mpjaAeed4zy/Xied+SZh5vNv6M4FH+aP9SA\nQIgLI1uyT0zsPA/DEv1YCXCe59EBpIdjwHAMIwP4/9l7l19bsuS87xexVuY+VS32i4/i01CTUpNU\nW57SHmhgChpq4oH/TgOGYcCwDcMgTMkEKLIJgoRIieaAZInsbnZ1971nZ661IjyIWJm5z71NWgIo\ns2+dRO065+6zd75zxbe++OKLd3HeJYkk8/ydSazz93fO0Iv3rssV5+X+XsmEY4fmeq/YhfM6veK8\n/+w474MhNoSsU8w+4EkNReAxwzOA2dHTvMXr0vKrj0HPv4/RGTZbDmm0GNOY6FkftLazX5y1IYKX\nZbCcdW0qk6mKusnWGvveDtlhKYXb7YneOr1HWzKRMN7prbNtG7VGS9Wjbk3SRCoHTNEgNWTJEpTq\nEexujt8cve0shETwJn42SsFYXCiuiIWeQVmoWvG6QllAl5TwCWbQzfHmkRUo4Op0ekgaW0cbLLWj\ndkfkLcWfKf5MG0YxQWylNJBdYCOcp4kdKreC9oLeYntBVrfY/lSnpDvvYMG14KrZtjV21xdBqlG1\nsbKx+saNnSVJjZWdZTjVksVXRWpkJhaCwOiy0AJexLUogq+CmQaemS3Cakg5cT2CER6u3efgnQWw\nRzu1/LwlsDn8JrKjyTHuXyflj5P0Y7xkfg4OE1W7/g0eWA3zHFxmt5JY0RxfD7Z3ZsHgGJDO/eBg\nag/ZpYKbHxkNP4ZLLoqIK4Mw13mRJB6D+1nPFwGpXMiH+SGPbQjJ9Nrl7yfRc9bDXpf5mUtEOZb5\nWX3x2ZfLASWYlYrTUfvYj0sQPRU9l72Yo/z8lCZ4mm2FL+f74fOXIP8eCPCeYJfn4nr+cp+OTASz\nfjLWO4Ff3M4XMio/PwOQakwyKoU+oJVZCJ0O2+YRDGvltqw0C9MpN3tnP2ft5kNgy8A6Jd3XfX9d\nXpfX5fO3/OjivPoC59l7cN5CKfWC8wqHWpbCVHdKTZxXHGrgPLuBPhlaW2Af9UzgTJwH1RWxglEo\nVIZUfFmQYkhVivKI80ZMwDWVIQ84TwWtULuBPSM8U/xO14bJiKjcJBJYz0DzkGJolJ5oLWjNchID\nNMqBpG5cPRgcwTReUoJIiS61glTBFyh1UHRntS0SWTRu7DzRWL2zmkfsynsm4pwwpDAwBk6bylgx\nxuoMr5iVbAUbpdkggdtGsD2PLgUTj1+IjTSjD4BegxSZ5MMDzoN3sYsnZnqJ8/yH4LxZbuD/ETjv\nnDw+JnjOR+sR58WkWNLc81oS8TBHv8yszxxOdhhKXHTivPhCYP0LaTP3Mw/S59Z84rrpd/Ly38fe\nH/vw4qgu7+mLz75cXuK8K2lxxVWJcC/k1FzvK877/wfnfTDEBpCmUiUnPjkIWLSUGSlNnO29Wm+0\ntkdf8/zZ9+ht3npn9MGYN2QJ5jGYepLpH8H0ezBSUUd53pjBEJ/+CQBjWAa7LRiumxxMfrwWbOQF\nBlpr3LeNUhZKuUyO5cIIC9nD249Wq7PeUtZOWVoYOXFnZWd1Z5FT4Bg9TqLdaqeiLNmQdcTjUfZw\nxZWF3h3fLSR7Fm2MdMyHJgag2hzXzl6fqTzT/RmzZ1oHaQUzKK1y+84zX/mtP+DtT/4E3/vHX6Nk\ngBO/SqM8B4B0QadiaPhhEOUKLjWMQbVAJVqNlc7CzsrGzTdusnHzzmqDMpzSHOkxXKsa1JB2LuIU\nHSyLUVXYEcwL2QyFXhasSMgihfABKX4qRnwOQukmjCJURJec+OoRLEgWFVfcZ2eWHIjkHNLO4DkH\n8UugYsa7yyDBMZ3Od+ZAPL9zkTL6DFr596Raj0H86rI5x8wMQhGcztBAMu6SA/YMyudYO0PT3N3H\nIOCXS372PufY1rsZhQkqsx1WlmjF9/L3I+ofJ4DZTsxzH85x9Hq+rgFySk958R4gFmHvABWCzFKk\nHCuOa30NiC8G9XOZQXSe3fOQT+LnvA7/qctjXudyl83rHQjiuG7H+dfzukyAJQiaXQS0pLrK5rm2\nqIMHal3ABjIG7VKiM0HDkf3xc91xC6UC6Aos5D/92F+X1+V1+dFefnRx3nK8TpznfwvOO2bAUWo7\nTUArlxIUw29GqZ1VN1ZpYdCeytRKvBZiQn4QGyw4KyLRzUJKAa2MoXgXujnDFSVx3pwNjVAa1x3W\nvVH0TvVnBs+YNLobu1XGXnj69jNf/dd/wNuv/gTf+6WvIUXwCssCVoHuR/Wu00OpkgYn7gWXEl4Y\nEmUsWrMV7EIokZdB1UherbLxlITGEztLC7wXjQBnMI6KGhejVsfWjVE81f2DwaD5AFkZteIlzovU\nnGLO/XU4CSdJnFdzAl/wWS6MBo6ygh+KDbngvFhOnHfFe+ff5AEzpUkncx/m32YMt4yb+b6fn34X\n58kF573Afz8U5/l7cN6pKD6i8yWRdezfxFwHqZH3tsyfL/HWVB/7gS/dp/GJJM6b5+xkZ06cN/99\nnqPzp19+f98ycV6aiF6ShDJBWZaFTAw4Yeq7OG9uN8/5K877O8V5HxyxUTRvbvfoQXyw9zPg9WTv\nG22PYLfvO/ve2FujtR6s+oiJvaQsUVOeY8kujRF1SrOMQPDp5wSqGfBS3ufz2Y+ay31v1GWnlGjv\npdnOtZbKqNlaaH5226l6Z1lulHLDZz2k68mGFtBFYHF8Jdp6LU6pnUU3bty5HZN8ZzGnIBRP7woT\nXAtFCkJjlB71o0h2PlGGVrrB0BioOxIsdof58KnA0gainX08s8oz3e+MvtF2hd1xEz7+9ve5/btP\n+cK/+j3sF36OH9w+Znzy4/APorOLDIv+3A5o9Iv3ohGeRQnlRnh3eonRRNXDyKp2qu4svrFwT3Jj\nZx1G7YZsINvc7/i+pMO2FqfUeMhU4zyHgiOnt1meYlOupULJtlaSgzUUpkszVESybdox8HnYlsRN\nNWe+Z+svmXWIsR8cD/wcFOMV70xJo+ZvWds5l2OQFaKobgaV45LlB0jgdk765QjM50fOlZ41d368\nE9fB53EeAdLPYGf5/RdBJsa5uOfPbmLJNB8B5bIz4mlE5TgjnL8hyYRx7FEQDFyC3SVwPMSTl8Ht\nyuQfIr0XJ06YZNT5dWcqb3yehLyuUXJzhqpDyvliy+/E3svZ92sw8OtfHpd3yPz3rf9x1Rz3nJ9H\nevzlOP0vrsMMQgRwD4l4PBMBYE6ZbKkSLZLtrLmMdcsFBFyAwAQldpJCIseZfV1el9flc7r86OO8\nhVEzrrwX58H0IyBLYPEwbtc0CPWD3ADWwD1LSbzDxg1ndaPirO5UgdIjPpsUhIKVBWcwC+6NwHcD\nGLYAF5xnMDvpRQZXWRZgz/3mjnFneGeYs3fn4299j6c/+pQf+83fg5/9Od6Uj2k/9eP4xyUUnrsh\niwcWm7FQhWxhl3iv4l6xskDJkoZCYL1iaGlU2VnmcfseJIc1yh1kl1TVSuCyOTcVYDWUjlawAkOM\nYkaxgWC4rJjGdktNnCfHxb/EoTCzlUOZq4F/jmz59OCQUBjP9xLbHEksTyXqBV3Nya9jPwTn+QXn\n5f88/SxeTK7fxXkyIcp8sk7MBryL8zJxIxp+Fg84b15DPyHTAw55H86b6OA8Fy/xqxzKhelLkuf/\nAb9O0JKY8L04byKHK8C6vn4YznuhpD727Ziq598CP72L8/L18oS84rxc898NzvugiI2QKE5JuJ8t\nvyxqKvsII6neWzD3rdG3nbbvtBYsfm+N0Ue20AmZvc6HzsNMZfR+GAPWEo29r0aB14FimlxJTmS6\npUxx21FRlsWPC1qqstiSPYI5nGH3Ep9f1xrM+vWBLA61hEJjsWzDZZSlUTVUCysbT9x5YuPJLY2z\nBRmKekGz1lDKQJdGkwjohjEkTWKq0HBMlhjSjdNAaIBY1HP5PljYGOVO587wO/veYS/QFB3OF//N\nH/HJb3yT9rxx+8Ef89XvfMZf/st/zlhuIX/cOr473oIpNQO/KegCUhHpGZwEK3qUi8giqET3lYUg\nNhbbWHpHdsc2kA18E7QHaaNFj24sEyiIQSmNtULXQjMJ3ywcp9IlMkZFgmEWosPKrGXTlN1FGYVG\nsBa/OJWHrBLhkXC/Egku+FG+4jngz0HBzpdfh6fcH5l88LGyk1yYnzs2ON+N+9fNeeiHOgdwuUzy\nX4w4c9jzHBCFNMmyEdudwfTgOeYwKPn9SZZcw2qsTxMUnDK/+QmJC/UQwGbQmzt4lSc+nqd3lwSm\nl0B4fvZlCMh1y4u6TiSC68w+pHQ43PI5z0Wu/2jnNSOgkKDnvFhzq0cAOGHEe65Bfv+9nzj/en7H\nz20D1xrdd49amAmLM/sT4F/MjkCpWsLAmLPd4fy+k87XvWemJckzn5/Q49LYPE53Zld4kTP4vS6v\ny+vy+Vw+fJynjzhvEvRFT5xXOczhdRmsJZI5N9kC56XutrqzGBSLMpQo7ejoInQJvxGnY5LKRwcT\no8sNZ3nEeZCN3JRSC9aMum90uTPkzpCNMYzeFe3Ol377j/jZ//ObjM82nr7zx3zlrz7jz//lP6ev\nN6o5NjqqTl1iYqPBbOBPDWpFpSFeQRasDKQQSaWS+KkaNfFe9SBXVt+prcHm2LOgm2Amh9fAEcQU\n6CR266wfRceXbsY+BmIGZgyRow2uSCS8RAO7qJcgnNIXJeQzuY0rzrsIrK82azDRjHIAgXdwXv50\ngDNp84jzJliYiovjDr1E/PfhvPNz/99xXv5M0sZFLzjvMm+9rP7aDYbLHp+4b+K8S9fA6xbFjhUH\nGTJId9Lj+XvEay9xnj8ezFHqfD3A9ylz57m5lDRLrm8CnvmUHjgvWINo8BD78orz/vPjvA+H2JBw\nZ43ay7yx3MDtDHyXoDeSze+9Xdyzg/GfPcnDqTeC6HHxfBqqOKUoy7JQy/mQWfYst6k4IOSNLueT\n30dnb1tMyC0mxWYhwVuWBelZvwm4xT71nm2svBLdSvI+ifK903RzcaQYVXq220pywxo375TOycAn\nWT8sVASjDmwBWUFqmlKZ4wXGSP8kM5x6yNfmuVIXKmHMNBxaH7SU9ZXuaAfpjnbjO598wvjGL/PF\n3/+3fO+nfpxv/erX2dYbsjXWHVwH9BhcdS34IowlimPS0iLnrpGxN1GQZNl9x+2Oc0fsGR8bfTPk\nDrIJegffhfLpZ3z0W9/Evv4Paf/ka0FuTJmnSYCIAlobSkW9w4hzNZxsMyeI2aGECzZTjralkgHO\nqzEdvZk+oiUHwes4LnkbneM4bjr/FBvFDsBzSMpSljf9KiQ9v+f9miNpMt6zlCTf91yvX3Zi/jwo\n3BeR6rI8DpoZuVNR4VLi+buM3n6J7pMImQEvNKJ+7EJ0izl3JUbgSZAI0Zs4z4OMCFiXI0CyD7DE\n8zKNptw5WOvLgRzHHX/LYz7O1TwHl2D7EAzn58s83QeBcX7iGtTfs3hu169b9KNM1gRmF4BZhPOw\n6y6htHK4lvOcR3Yc4eP28j1Nhy/Lwxa/VtHmOT+CeQD5GfDi/IYxXMnrgMTfpwqn7Tv7dmfftqjZ\nrCWeFQvQr+V6P1xgiXvKH8PoeNjs7/y6vC6vy+dq+SBxXpAzgfM6WoKQmLFujqWHMje9Jaggy6CU\nziJ7GGZmKcbNOsWcYgJ9GmHGZGtolIHI4rAYLC3KE4ZhxbHiDJweJydPh8V83aPxrHDBedLp0uk6\n6AN6d7QZf/3JJ8g/+WW+9Dv/ls9+4sf5D7/6dd6sN2xrkXIYgyrGukaJSVkK+hSd7jzqR5hGm8bI\nrVrEdXUKHR93wsQjXtYafTfsDvIsLH/2GR//5jfp//gf0r/+tTiRk1xYA0yqlsR6PSanwwODDcFY\nUnVrhzJeNT1VPNTLkhfH8VmdctptTBJGeLRZgwucCCUzPstC4t6WQ7F7naD7D8F5iUfELzjvgjR8\nTqSvOG9iQ8nrPFVE14nq3PK8r+d34zuB8+K5OBW6R0FBfnfGdTnPvwGXiayngvlBnevEB10Pw9OZ\nzHNGrj2x38RqeZ8epcoiL3De/IdeMOCJOc/zNXGeH/t5vQYc6p95BV7ivIn13qUOXnHe3z3O+2CI\njbhgGZimzNv97GmevcatjzRvCpfs6GeeMkYLs535wKhOM6nJJJJMZ7j4LrXGQ3SYpPhBQvTRGXmz\nq8b6fPYzT4Ze2DAbFK052RJKKcekdlgMPJE9GHiNif0xKs42STXavHoFL4bUTmFQCX+NaH/Vqd2R\nXfFG9Oy2IBuixY4zSjhr89SibtNGSPQqNFV6EYaDpSeEXs69qIbMkXDTbubsOCuRWBge89YOfOdn\nP+HN+gXsez/gr3/h5/j0G18PW5B9p+FQ4obWKtQO3o1hTge6Ct0k2oKJhfmTdYqMKJEZG8M3zEMt\nMvoOd0fuEmUod6F8+j3K7/8J5X/9Tfy738duK+Nnvoo/lYPY0Frjd+lhbGU9eta7MrxQcnCRS8sr\nkaiBlSQ3QKLspFoamwcokSpRK5tj+BybppTQB0k85QAzgx5cAtAc2HOifgyjc6DLITeJicgKZLCb\nJMTxM28qt8P1+2RM5+Q9WetrzMnAGPWGM1rPYTz6p8cY6UdwFhQ//GGUQws5W7LGSPs4Vgu4XqRp\nBpgG6TYuzLbJEauve0kajc4H6wxojwEhSA15/K6Dz4zB1ejrQTb64qUBeg5pJHC02cp3HDlav82Q\n86BYSaBgPitm5bgKh7PIlJTOvZq4w8/g+uLozn/4VbIZMl13Tbbe3zmFhzSSrClXZd76Yxjmce8V\nVdzjeTWLXucje57ft437vrG3nZveEGpMBjR711/ktSc5FcBxdm+qWt45rtfldXldPh/Lh4fzPLqP\nMFUihlc7cd6MqUJ2JSC7lDhUQ+ugakus11lprN6ow9HmsAs+CtYc75E9nsQGq+M3g5tg1RmLhUJc\ntwAAIABJREFU01UYBUYRuhRCIXvx/9IsZ0EZbvThdJyuzoAjsdUdvvMzn/CsX8C+9QO+/fM/x198\n4+uIg247Yo7boGqkamqHOqIsujsMlyh9loh/ww2zjibh5Gao7Zg9M7hjPGM8M3aDuyHPwvpn36P8\n7p+w/C+/iX/7+7Sy0n/yq9iSyYcuqFZ0ccqS90Ih4VUB6wTFM5CJgzxxngaWEYssm4uE31rxwHlL\n4rysThHh6CJ4kBnz+o4EJCZgenpeeGA9IfDwifNOyuDEefHZY2pwnanOSfoBNCfO8wveER6w3js4\nL/HDgfNmye3EsHZCLGbR1olFj5t4YtMilwn03Hzi5QceIXFevmZS97QgeQEUL4rds+XrhcSZR/JS\nEeBykpJX8OMHgrue0NgB1Qv+D7x2LTGeiPzvDuddyZPrWXjFeR8MsQFQtIREcV7JnExgI+swg9Gf\nKohhI6SFFhdsDgDhoBxMbpkv0ZkXp5Zwf3W3bCWWJlM+pY3J6FsMOHP4mQ+TmdFHmDwMc6patFwt\nlVprrE8FvTy8M1iWOSGbd7kSxtlVsqOUUaSj3pLcGCyM+F7To82qd0E6odoYTnNjqDNWoCt8ZOAD\nq8IYQi+FXpVGxezGgoaZVSoPZrcWc6dZQUwpKKsUnorgq+JSGE0Qg+cvfsyf/LNfYy8FuzcGhmu0\n3ELDlEuk4GIY0Lpyr4XdhWi/7nQfdHewQSlCx8OwSzaq3KO/em9Yj9ITGkiDj/+v3+bj3/gd/M1b\n1n/9u5RvfZvv/vf/gv7jP4Z3wJWyVvQJRm1YWZIhTb8LiUHG3EOeZVNZoJQCusZ1ccnMw1RpzGC3\nCl6TZLgqIsi5cOfonR71p0SdaE7cZ03iQSrDnCof/+YgOZyrzPA01Zz30Qv0NOsX8/ejBvSICweN\ncCwz+E2gGJyFxuisntSw5wCfss2pxlC7dkMjO/pG/MwD9Cv5cZwLgqgfwFAYAbjECtG2pl328EpW\n+Iv3L4H3SgrJ5fOe19EmuTFrOT13YK43wlIAwayJ9ZEZxVAzTUd28n6Z350+Kp79xs0DXMe5l8wQ\nSlJa82o7s8f4vBmOoe/heF5es8u/L5hDJtgKBu349mTio5ZSkVKpDr3H36Jl4pkhgchA9gP8h0v2\nfr/T95B3B3OvaFGGxZZeXpkDTGewW2p0kerXUqnX5XV5XT5Xy4eF8xS9ZCY9a9MPnEf+nDivyKkI\nUEcZF5zXWTAWd2jgm+C7II34d3PaMIY4owI3hWZIE/yjMEXtRelVGFYYZUUpUM7yi5jU11D6dmET\noYqwU+i6YOqhsDXBFN782Mf8u3/2a2xa6PeGuEWG2GPiKYuwJ85zNQZKc2EfsAls4txtcPeONEFt\nhL9HM9A9sB4bXXa6NKQb1hzZ4Yu/8dv82P/xO9j331L/1e+y/odv84P/7l/QvvRjQRR1pWilrjeW\nW5A5rpmQmAaVEgkMy9KCuCyJ8zLH5ImtDpVGYjxZBV8cUY/rpn4kbXzCiMQyZDJL7HxfhnB4rHDF\necCxN9fJob4H52X8P5QKE0txwXl6wXlzYv8SMxw0BocuVggTX9PAcZbnS4BDyaIXLJJeGpPoUU+e\nIs/JPE9yJVLmOUlcaoIPR0ZJ3GfHes8S7fk8XRNP8zM8/P5AcCRvcuK8eDNO3ZyMTcpBziSc2wXn\nBcaLSp8suThUH5fk1iQy/qNxXu5VltPMkexdbPviGn7OcN4HQ2zECSzpaB03W/Q0z1dP5j6NpUZv\n+e+L8VT+HkZA84Jf+K985ksprOsKbmzzLnWDMR2Q56TnvISTzTPm5Mwj489geLBjtYKIpst2THx1\n1rLN1XneihID5myQIkXwAprBrsqg0qk+qG5oA3aFXbANbvfBN/7iO3xWVv7gi1+mD2eoMZoH5W6C\njEF/CsWGlUK3hVEanY67UAaICyW/MrzTbNCKMRxqEZ5qlJK41nS4joHJK4yPb4zhWO80HWfiPs+7\nurObM1pj88Zdd3YJM8+BMDwUJG7Rqmy5OVLuUJ5Reaawo6NTdkWboC3Ijc9+4ae5/+ov8WPf/EPe\n/MJP8/wrX2N3Z9y3HBOF+nSj7gW/9VQLTLIl7oZhA2vOaAY9MjAUoUiALl0EL06WYYZsdHV0EXQZ\nSM1OL3OdoqlCKMQBetSA9iQ4jsCnh/IOOe+zyfPOYHIEPT/vP8mAc96UMbrNuzRqJsngm9mrlPxO\nB+wZVI/ve0Ye1QCPHhP7UPFErHMlTKA0jhGRzF5kdqP4IdukEGVB+ZzModsPgoYzdmVZlYwk6oYf\n58nHPDckSLkQJQ+gcapHLiP/PB9XlmCSGxNIS5Aa04X8ULRMzj29Vzw75EwJ5bzW7hbZLwvp6NHb\n/iVscTnIED/OBkerruN4fAKTycPPdU0wkoc2I9ohWT0u/gX8PH6P4xrEiFi0QI1jsBZBbarKbMTP\n1jp7a1FzPYw2YtwF57au3JaVdVlQURpgNuXhOT7msRSFosJSlFo02yq+DOCvy+vyunwelg8P51n+\nfsq+H3AeMd69xHmUKDkuE+fRWSS6gEgT2BLnvRl848+/w2ey8of/4Mu07nQMqx4tWFsSH2bYDXxV\nzAq2rJjsDFKxMYSCJBTp+HDUOtWNJb3IZsc4d8e6xMS1gn/hRmuOtU7IUbnkUIThQbiUZrAPdq9s\nWtiksAF3N7bR4S7oEEotLDoYo4E8U3Rj0Y1Vd6QROY0dPvv5n6b98i/xhX/zh7z9+Z/m+7/yNd7g\n2LaBwGLCstzwTZGm+FqQalE1LPPadcYo0AicZwU0cZ4oWiPT70JclwqyEuu6GdNP1PPaScmJuCs+\nCrPLjJgc2IWRuKZLSF88OsTMe+FAB3IhNybGOXDe5aHx649Md01A8A7OM/wwRn2J80icR+K8nLcr\nmOkF55FlwqHiPiK2cJJyhSzRic87+VM9vEnmwxiwNtTlLqk0z/PSDW9RZhVAe+7uFee9IDZkEixX\nvfl1mTgvvuZH+bJd1mPn97JjSmCjCT45kpbuqWa3vEbX0uvL3nmSGn87zst/+/tQ0CvOm8sHQ2xA\nmkqJBCuWPc2DtY+ay37UWF7qLUfHegQ7HyN78ubNME2TLpJHgKrKSIfroj06dYhelAacpocaN7Zl\ntmA6yL7TxzeZ/9myMmRAdkwScQ6ZUDxQF8ZQwNUwNSoDZaDeKXSKd3R4DJJNsQ0++kHnk79+wz/9\n02/x6e2JPxsr3yqFbZEsgxjHXM0w+ir0WjFfGf5EKw0bki20HG2ClE5tBVkHpQxcB+sqtKXSK1iJ\nEoTeHZNoseZmeHeGj5SBcQb1LMWwTdlNuGvlLpVdoEtCBY+JMx5dUdbdsHLH9Q7ljsgO5ix7oewa\n3VA2+N5/8bMUXRh/9R1+8Ku/yJtv/CMqjjxvoWKRwrIJthXkqWHaQSdLGyST9XjYuQviGjWxi1Ao\nSCnUNCO16pgOtDi6QlmdUtO0VBXXqV5Q3GsQwAO8R8u1qL8B6QSh0ZP8sZQ2PDhZp7zQ/T2DgswR\nkeRsYXK1sxbzCJQpnUgljucFEU7ChJyMJ/V8kBtM89EpX80/eVKzriUyFzVfU22UqhaZbu/n0xHP\nilyGYOOR9OlENiuBgLcEAmNcgl0yzA//niRQhrYrqZ/PZRApUecq7onLZnSZwezgvIP8maoOIcmN\nLO9Rz772pKLFD2lqBKSZj3lBbsz9no/I9ecVV/9QhtsvvI3Mt7Ls9hr0JF3IH2+bs+4XBE3JNYyU\nfB3dCDKjGWNtjLFmntLwDu7UUnh6+oin241SS/Y7P1s1+lUiLlBEWEqhlsimyilHeV1el9flc7h8\neDiPxHkcofWIPZNyySE4cJ6DGqIXnEenykDNA+ft8PH3O598+w3/1Z9+i0/rE3/xycpfamErKfnv\n48AXMxlgIrgvDG4M2TGpkaMeig5BvFO9RDKihxp4FaEthSGVUQbDB6bhizFSTWPd6X3khJxjkisz\nljeBu+KlcN+UXYS7ChuDzVb2scMzqEXbyZVOaw0vG1p3StlYSsM2QZ8F7vD88z/L99vCVz/9Dt/9\n1V/ku//lP4rzet9QgXUUbI3tshX0VmCtMX/PMGmj07pguyFNqZlgKYSBfE3/DFPHShAZchPqCqyG\nLEF+TMWNFoiufgUfYFZCNe1AjySNTMwHEaRdD2VIAKYA5+Hv8XKSyiU+TpwHHIaNfuCyiX/I+++a\nPHo/zrOD3IiM1bwvs/DVJhEgSWgoR/nJJDUS88nZQObAXdNXxbPEPi5A4o8poJkq5gKeXTlwQr3B\nxHUnqXESjwV56eIq80gnGZTmmOKZCzuAVe6gH78Hzps7OM9+UhZKlM2IJ84T0EiCTaWHz33gWp6c\n++vz9x+G887r+3J5F+fZ5xLnfTjEhoRTq2Ttz3zZCEliBLOOjX7WYI7TTIqZbQZwPyQ3IRsvVMl/\n28hAmIE02ama2rRZ66mlHoY4fRjWWrBdZqgkQ1U1jLDSVGrftzSZil7BU5o+SQ0syIBJPEqyrIMe\nA583nIZ4lKKoNNR6yhLBNvAdfvHTz/iv//2n3PbGz73Z+fW3O//jz3zCX3/hCyypWPBkKc0HYwjj\nqTJoDIlX7+Bdcn/CEbhqgdWp68BX56bCbsruMyAYwwfdUtbZA2Cc2XBCBdhD0jYEdi9sxbgDzwJN\nB12i1mOOtXgoVZa10/TO0Gd6vWPS6QZrX6itoLsiz3DvRnu68a1f/zW4LegPnqMpygLlFiUw/Qb9\npui6Rm/2NQYIF8FEaGMw9oHtjlIYORhKBjyqwEow9GVHZbCocXOPNrvJaKfMBlfFdaHLQl9WbCxY\n0xjEWwyWs0XtUecoSvRNjxP3WNN4Brope5xKhSmZOwfG6wAp82GKTI1qTtT1yArEShMIzs4gTmxE\nSRJAHifas8RFSSLDQ7K5RFkOi5ykRj2D7+P4mwHG4pxQ4ejFe47J5/kZJY93Hrdf1jcfIo44xwsz\n1wlMxTVre/Nzs5jY9HIe52sSHXnO5AxfESziGbaZVjEP5crIHZPB9XpEPJPMAvIAvB+vm1/+f+x9\n/vYyAPrD3+OtFwZS81+X+CIv1yUzCxLyy5FO2KPHGKkSAFo9x7kaGbKPP/qIUmskq0Z0LmitMUaG\n+9T4lnTfX2qYBQppUHXpTPC6vC6vy+do+eBwXsnxHY5uDeaPLWZf4rwEBUILnEd4bJQx0N2xu+Ib\n/NJffMZ/88efcntuVN/5b3+w8z/8zCf81UdfyBAssa1uGX8cX8HYsMR5Te40G4wmkORGtQIVdHWW\nYjwV6FZormwOagbWGKMz2sD2EYagh+t6xrX0OjEiBg5TeluCZ1Bjl8B6u+3so8IddITXyNI729NO\nrxteG9QdrcayK/qsyBsYb4z+dOPTX/81+m3BfvAMRJivIjy1En4iq2BPSn1S9Cn9VDI+92HsrdOb\nob0wNHGeR4vXmJUBCr0MZIW6gj51SgnV8lSAaBwmaGVoZdSFwYJ5xXo9EljHhB8mAMjy25KT3ivg\nkeNDjziPIyv+Lr7zcwOZvDpxnj9Oeg+cNyf3yTCoJjYicV4qVqfHhaRMOWbMSPH34DyOEuSj3Lj4\nicXgVLFcS3Yqgf/mjZSGNFO5cRAB1xP4wKLMEhE5d5lQGquniedREuSXbUyyYILAy1mVSPsZPTFM\n3Cc2a4ssCKRIjI13OIl3cR4/BOedn3+8nj/sU59PnPfBEBuCpPkT8SC6RSurS52ljcncd8x6BsH4\nDGnUKWSwI4yWEKGMoFqN86K2Pfqjjx5OyqUUROG2LpSioAXXUBXc7xs2BnvOxD2pMJHIBqgoRmSX\nbRhaNaw5i2LzGfAYZJFBLQOfzsWSzJ4fT+IxARXmXC1mbu6CDfiL9cbvfulL/Mp3vstflcpvffwx\nf+nK1gZimn29nSGGaacJ7LKw20YbG/fyjLWOjxJKMgnZkhehiOJFMVY2H7zZI6uw0VlGQ3syfx5W\nOTa7ZuQgPI9lmNOb8NwXnkW5s7FJZQcGI3wtkOxOQigilsYmb9nkmbs+s5fGM85TX1nHwtILugn7\n5uzdGMtCGc7y9pmlCNUEpaBlUJ4HZRnIUhA+Ajq2BumhUhENfZzLlJ4anYHSQ6a4CKUaWjriG6sM\nbgyecIoFQ8mI+tWpYTQ6QwatOE2docIo9WHCfTCZI1hVzwnzMWB71Kkc/KzP5yH/ORUVDxPy+OBp\nmJ3Bbga8uaKreWYSX2IWaMMl1AiT0U729ySaTwktC/HKNruyECRQNbQaqtnhJqP0qUjJ+9g0FEBd\nMT2DU8TqCCg+yJazAmSww49D9jzOGe9kSiQn2TGXef6mEjF9aeIlafyleU7n+bw6c+cqExxEK1wI\n927JczpLgK7Bc5KacgSdE/xeA98D83MJSPN8hYLklHbm9mYwO1Z8OScza/AAEK6nw3kMvPkVs8PJ\nuhSl1EqxyGQVM2pdqOvCuj4xbNC3xv1+Z9s22t5CHk7UWUbdewTKWstxL+GvpMbr8rp8XpcPD+fJ\nC5wHfUTavk6DUThxHlMNEtL2jIjHxDnio2AdPl1u/N4Xv8Qvb9/lU63834nz7m2wHorKyKIaHa+C\n3IzdbrRx594quxrNB9YrOpRiBXehoEgV3BY2mziv0XTnre/UtkHvSRydtfnHJEpI/Of4MEZ32r2w\ndYsSFFGaCDuDZp3RKrp5TPDVKb3x9rax6Z227LSl05fBrVXWvaBvhfHG6ZvRliV8Gd48owhFwzPO\n66DXwb502pNx+wjWp4WxxsRcdBqnyhH3zIzuUykTCUhqJGesdJbFqMVYxak4FcJGTALzBZoqGEt0\nkZFB9xujOFYr1gX2VGLkBFsSzxwZ9bMt4AXnBelwKBXmhPwI0ZdkiWR57HtxHn8DzpMXOG8qj3JS\nzsR8uc5JIKhAtQPnRacAjjIdilM0DjZa6qaHg4PXnLdYvKI8J+6BAwcdkCCvk+kF08xjCQwhR52R\nPIg35sN3QCq7vuS065jvzdIgCZLDE88Fzku6ILvQnJ1eJDDptc7G+SE4L95/xFkn9fCK8/7m5YMh\nNoAwKcnCfs8BdQzLusoeNULJ4Fuy+D7rfSAvsh+ta4Y7pdQYJHKwsJH9yfedtm+MPpBaIrCUEnWZ\nIpR1wUXpuf697Yc8KAJUSBfnhcVSpjgnoZIyR80bNLc96OBKNUWSEZ3ToRmyz39kRl85Hixz408/\n/og/+yll2Tb+tC7871/5MmrC2sOMU7rixejaGa2zK2zsbH1jK2951oK3jlilaqFqhaIxgBcBWxgo\nuzV+0Aa9DZ4l3LqX3hAfQQpk+czVkBMCezSDvQlvTHm2zjOdXRrN5HTndQgKKGoXpXY27mz6zCbP\ntLJxF+MLvrDaytorpUc5ju3OcEfF6Qp9DXKm1Ki3lE3heeBlobBRNHquG3HNVEuoMdSyBW6wmSLh\nsL4UQUqjyo76ncUHNx88uVEtOXdRXCoiFaxmsOsUHFVoJcpB7DoYhgNlRErjIDUmyXMGsyvJkAPa\n4aU075jLRPr4+NxW6iaPkieuK4+JeZIa7orbQGQkEZGBbg7ayGGuFaw9sEq0m1tBFkEWQ8qglkaV\nhqY+82hdNo8FpZdC88h6uEYiY7bTjYHXg3BI9UiQG3AYW2VdJ8ph+OVH3ed5LhIjZCYknsFQiVxe\nkzwZQHL2p2rjjB8yDb2QDIBJSom+YOY1aSk7tn0NdIffxgxcl4D06KHyIvAd3XDO5SJOfCc78AAL\nrvvBGQzPNcxMQ4yRisSYWGrKrp3qzrKulFoRCvve2PaN5/udbbvTsud5kaixrLVErWV2KzCLCUjR\ncspUX5fX5XX53C0/OjgvCz5V/gacF2rXZCVCzXfgvJBmz9h34Dy54jxPnHdRbybO+38++og//0ml\nvN3492Xhf/vKl3ETah+oeBJERvfOkI5twGbsY2Orb3kWZdfoCyLuVF/AFfWoh8cKbkLr8EYG1jqb\nNG40br6j1lFGGMBLtrU9kgvRiW92PNk77KPyvCm7dnYaG8rucU1pNUqejejA0Xdu686uz7S605ZG\nvw0+tsJtr5RN4Q5+d9qImCXEfsckSnFX9k3Q58b2dvDR28Lto49QdUYtuAY2ixzFBeepI1YoBGEV\nCgSD2ijaWbVzc2N1owwL31CJjg/FFKeEOjc00IziNFloJZuxCBxgJk3kD2Fuv6hhX05GD1KDC847\nJ748zA1e4jx9gfPmSifOS3XUA85LTwifLWnTKFSyFDgTR5JKDVaJTjwL2WrY0TpALfA1Fv6AadRp\nCObZadELwyJp6kUPL5dJODyeCgmvuiuQE4UswYp94lICkz/z4TrW+/J1SWjJodbNZ1NG4rx6XAfJ\nkgpnlrA/4u6DDHovzjvJhRPDT0w5d5bjvRPn8Q4p8HnEeR8OsZFEgEiC/6zlmcHuqLkc7ehzbumg\nfUmB4un8OtyDXSNvJCQMlsZgtJ6ymnB+9XSNLkWptVJqZXl6wkW4t869NerzhpQCPTLqsdm8XWSW\nVcTkJ4iCSw0ns+dyDCwuk5mNAVMn80oMmlEXWXGpMQgvUftn1eipxHhW53/+ypd546DdDnPIppam\n0OF9MRhsJrzdOs/7xrNUnqnoGFRZWcuK1DDECulVEKpeajzUix1jwk5WGaijNVuoajiWW4Uhkq7Y\nsO9wt8Lb4dzd2XCaGb0P6LNGK2pUSylIAa9CLxIty4gg0WTQtPPknXUEsSFDUQ+gMCTanzXVqFH1\nMBSzEXWq/c2OslHZuelAi4XcT2IK26xnhsVRK/FQ+sDZKDaoslPGM6t0VgZPYlQMHZIseY0gUCqD\nlTIaRRxNlaMs0EQY2d7uYI/7GfSOwfKYxF8DWv48XIimxvFab5jrOCKbRCSV1AnOASYdoI/fGWAD\nYcTArTPI8cA2uxMMeyVJjSA0WIGboEuPlnWys7Cz+E6Es6k8OgdmQ+le2Km0stCk0rQyJMid2WvO\nq2eHm/PUMBUSU/J47Tef8kifp2ViYDhN0h1ojjc/iY3G2b1m3nRxZ11+zjXFis++9PPaXT1RrkBk\nMjUz6CWAeA+pca4uAqVMZ/GLKmTKa8+DiZB1umtfjttnKRqhjsrrOOvHj8zGdcnMpxal1oX1tkY7\nMAcbIwIgsLeN+/2Z57fP3O93eo+xOAbxmDgsSzhjz+MJb97wpdnZ33Pgr8vr8rp88MuPJM7LXX8v\nzovtakoOYwIUx+VykjEqEjLtnCQjgknBqCAFL0skD2pkTrs4DeOtOv/TV77M9w3o0+xKcIyWJQDG\nYNTBGDA24+1+51krz1IYRUALlSi9qHLCEBGnV2EXJdrZGYbRcHY3ihulNGSJtqnoLOdN6t6NJsZu\n8LxVNnc2YFdnx9i907Obi3ajWCiEZyeNvXu2pjVGGfSt80XtfGw7pSk6FJ3dNDyy2YbiDMwLHUFM\nkNHZ22B7u7CsX2BVw5+EpgvdCr0N2tbpW1xTHQUrDre4dksVSu1Uv1O9sYzOTYzVO0WcIlCRIISK\n4FR83BgyWEqQG0VuFJy93mgJ8SJrMzFf4jeT6FpoiQ/iTY5SkFnHcOC6l2UrL3FeDYw3E6D5jB2x\n/cB5ljgvy6YvnUACD8iBCY4J/BVbrQI38AW4OSzGUneKjCQz4mfJF+ShowzX0EJLJLW6hJ/LnKf4\nPAV+wXkQvhvuZ2lLPfdnJrKu5MYDVzRS9fKS1Ji47zD01wvmnngvapYjkXWtKTqtig98l5+Ng8kk\nl89y8SvOe4EZ8xpJElEnzoOj296FxHBmyd1ld/hwcd4HQ2wIEXBE5GC9fXSGhSxxjNMpu/eLTPEq\nkZvrOsiC6NerehoMRlwMwypLE6pqMZlTUYqWkOLUhQHoCPZJa7QTayo5Tswsg2GpVnAHz+4kRSza\nV0rsj0juQe5rSBFD2haqBWN4mFvNgDdkYTAwTWWBGI1B885dBt9bld6hZL2nKGl26cmyO0NiItkp\ndFc60Y2ER5zAMEfV6GmE5KpsUnC54ap0EVLggAyLtl05GkWpZwxgHaENZxvCfRSerbBZYTdltKhh\n9TblmIJKoVanVI2yhqeCLiuLhJN5FaEQ5qRDelgI5fXVuNhB5hZl1EJZBKmxv1tTdjPwRuHOR7rx\ntH7EqmEA1q2zjcbeNhyoVlhwoFNMKdIonsSGdlZzSmYdVAiWvA6kFLw0dGmU26BknBGC/PASpJMN\nharBHM2yjjED35XFvSx+8LzJpJODYozoj8oK5ewzHfz5NK6KsTT+dtyH00yNs+TkbEN1IUPU0iTb\n8OyAIosjN6hLZymNRe4svrP4xspGYXb0Bj1au3jeg4XiC3G3LLgueKmMtUSdZU9So8LBwOtxyIdS\nwwsHocECWkee9ymvnKTCHOzBipyqjZbr6rnemQWxuaHB0dc81RrHM3OMJ9fgpZeH6lRumAueQc/R\nyzpz5Mvgxhyl5D3vp2LD571wXjBmLa7nMXt6+QwPYG7MWnRjtp222aLs3GqMmyqUWlmXhXW5MbId\n2D4Grcck4X7feJPBbvR+jJ0P8XOCE4//RYvEhbosbOP+7n3+urwur8sHv/z9x3l6wXn+Q3Cevwfn\nZWw9cF5gI8ljDswycV7Eg2lQYJL+Z3MCg0V3Ou88++CzRdkb4X1BqE5QD18wcr8UXCSwnivdhVGE\nYYpYxncJdYu6hceaxUSkFQFdkCp0gcWiRauOGomaORHL2YajGMYwoZlyd+Fuhc0rG4UdoZnTumF7\ng67oMKo7Bc26DkV0YS/O4s7dYBlKoeM+WHwENr7iPAnjWauFWgPnSXVcnfsuyPNOLRtPpVEwWIXR\nhb4Ptntjf95wgUpFP1IWqVgpGINqjWLPLOxRdmyxD9X9KH+ZhBy1wDpYxOgaCoVCqIejq4jT6oot\nEtiicvp69QzUx+Q4F5fELRPn+QXn8bfgvHJilgPn5dqdxHmDqQw+5irXiTIC6Y0AqdCdJb4LyJHI\nckrtlNJYZWOhHe2Kq4xseDAODNld6JSYG3iheUFlAR30pdAt8ensCvcAg+XANQfOW3PCA4OIAAAg\nAElEQVR/ppGpkm1nowzm6CIyk1km2fKRx2TWJDc6MKIzy8RoUfocZqFHeY4//owH7orz5ILzphJG\n3oPzznFwXqDZevX4TLaUZV6/SeZO4mleww8Y530wxAbESVOBw/Ry1lv2x2B3Mvuz97DnBFdjELao\nWRQtwczrGXCEnIzMyYUNzEoETrNj0AkHbI76Tcn1S9ZZ2uz/O4xS5mwzshA2BkMKIk5VyZKweVf7\n5XhJYiPlaRZZcyPIjXR8oEsHMZp09vS7aHSGRh2ouqA5YfMqeLHwKSpgqgyJMgnXBWFBbUG9Iq6H\no7NlGzGtyXKqsyfBYguhQjCDbogNZKSDtwW7aGPytUJPYmMbyn1U9rHQmuL3gbURGfOcCBaBsQhl\ngWKKLgt9kejHroVeFnYJoy2XgfpAjTRyCoKgVKWs4Kvi2fJso/I8KvcumA/UN3Y2+sc7X1gWrAd4\n2PrGvd1xdVZf+AficdZNUd9Qu1PGnSJGcUHGEgMhkfGQxdNgVNGnQcGpRZESdYrm0Q/eEGxZczCV\n7ItOvIafdPM7DKscP2O+e/W/kGgD7lHiIcncn+2/ziAmTmwTOQbS04Haj8x/yNSY1HkyWRE8rDhe\nLJIDNZRES9lZZWP1O4vdWXzj5jsFOwiNK6EXxIYis0jTV/COlxvuC72WyAr0PE9z0n61IVE/SY3F\nkRqvUI6Mg1C5OlSHZDkyHFYUq7memfiYSEBiu56lKddAdfhmIDl+zGCXz//B8FsSGPmTWYwTzL5P\nRn+OCH4NdHm15fxFJA2j5PKF4ygfR5UJWEKm/ZLJn0HPjoqoYyxSQbSEYVoGplor3jveQ9V033fu\n943n52e2bWdvPZRXOT66nSSPuzPMs4THqaIsy8rt6Ylle8Pr8rq8Lp/P5e83ztMLzrO/AeelKkSi\nHKRqPTqtnEtM1MIW4IrzYoJqJriWUDES5p3qHfPEeZ44TwwkcV4mckKWHwmH2aY0vNFqkBS6oGXB\nPI0Q8vSZOb2HD8LEeWgNsuKpoFopNpBeUKuUUakWSQqRU34f6Z/B7sI+hLtVNl/YfWE3pXUYd8tJ\nZPiSDSQ4jUUpa4nWtCV8tnop7LLzzA7srLJnCYinwiVIjboAi8Lq6AK+hGJ372DPhrLzVHdW7RQ3\n+h3afbC93bi/veMF1rKw+oppx3UHb8i4o+MNCz2IjWHU5hRL83HRLD9VZBnok1PSW6IIiEyFqkeO\nqgj7otAuiRQ1jnrjB5wnl5/+HpzHBefJifOmF4YXPOOvTIWuXHHevNc7nn5lgfPski3KO9YnzxA+\nY1IkusIsIKshy6DozsrGzTZWaSzSKSQZZR316KxhF2KjoxRXlAXxjrNgZUWWih3kxhXjcJICQpAY\nSWpEWYxFgk09u08OVNOfzg1LQs88sdwkmCb2bkRThokVTS4YbRKPesF5k/RIUoOJwZLAeMB5Scjk\na17byVXF/2Idx7xQ/ILzUgmSXz5R9JlwnMmxDxXnfVjERtGcM4xk2i1afI2rM3ay+3YGO1UNBkqD\noRr5cEqamsy/Tyng8exYKC96a+zJ9jtRBtGSCdsyyB6sW0rh3KP9VS+dxZb00yBkgcMQb/meXgYY\nP7avs66SrPVKyZR7lqMkD9ppKegxBoNGp8mgi4VqHqKWqRKKhzXMHHU1RjVMKq4L6IqWG5WPYDyF\nSqQFsTGa4dYYPqJ2cVhsfzi9K9saAxxEbZqMCpYTfYz4v+JSQm0iEr4eJuyj0nfBN2e8NWyPbIek\nmsUUZHZWEUf2QlmUvhZ6qbRSaRKNzU0bVe5Z6mEhJlDBVsdvitwUW6Ik5O4rd6/cWRi9xPa5Y+0N\nfnPUC3tvGZzDEAfveVyVaqD+jI47pd1hlOh0MhQdYC5oOkWHLM6ijtQHte4wnd/Dl5ORGRQr4WfC\nYzzJQWzO3u3842USe7TGIrZvfp1sK5SSvdbjp2t8cw6Ch//Esd5ktl3iWRjgXY5ONVIiELs4pobp\nCGa8gOqgsFOtsbCxcmf1Z9bRWEe7tDsjB/lQyQSr69QlDGqNG8aNJehCqCteNTquFI6qCy9R0xuK\nEQ/Fy0KAjDqo0lm8Uc0ociE28me0m5e4n7RgQzN4BQhAL+TjDEj5mSup4ZOTO4LXvG4n6H2UKMbD\n7cf3L+qORwYrF3m4/pJ91jne8Xe+9UBw+Ax0lox+Di1m2Mh2XQebD7NL06w5N6vUZYmadaD3zrZt\nvH37lvt9477t3LctZYl+MjAXUO/ujBEKsNleGdKTqNRXj43X5XX5HC8/GjhvTlreh/NKKBaGRQe7\no+XmOek4cF62kT1w3vGSwHmS4n2PEl7NEoHmneaDjoW/tUQZhCoRGzM+ajVGJlakKloXSrlRyxNW\nPkLGDW8VhjC64b0x2qBq4jwpoeIYyrYTfgpCTOaHolZTtaA5dUs8K4IJNIXd4C6VzSr7KPS70Hfw\n3ZChiMXkSmYHMRwaqBWGV7oWRil0qexoRMbaqTZC+TkiAejVkSWTWEvgvl6EJoW7L4xRYHfuzzsL\nG8t2R/fK/tzo22C/N6wafnM+omPSgpAYd/BndLyhSqeaI6Z4CxNXTWwakMlgqUfnv2qN8iQo6V1B\ndsVAsBrm8X5NYmVLVGZXvZywziB+8B2JXSz9Gh4m21oQqUgJc9RIskXs92lAOWHIVc2ZxqEnztMo\nUcmJ9jFRTiWQJInmRdJDYbBMUoM7T2zhu0ej0tFmSB94C6whYlFBUuP7hYIkO+F+C3KlOG1ZMZuE\nX6oM8l5hwqujDMXhJpTFKIsdvh4qHbWjBQtDNMz7PUrkrRTMKrRZI86EcMcz604ktSZOmyfxorp4\nJKEuJ/pQ9F5UG8d3uHznfb+/xHknaXLd5ucJ531QxIbkZN88ulSYz4sTwW9YyBItO3OQLNJSC0Vm\nBtuilecwmCULGfjGMFRP51bHI1uwW25j0HuntIYslSES7aL2Rs+sgR83Hdn7N26epSwx8Jdw5B7m\njG5Y8SiBm0+RCKWWbCE23cE56sHMhFGyp7hUOgs7DdGGVWcshi2OPQVTL9nVwUsEO26CLIpVoavS\ndWHIiukNyg3xBR0lPCpcoHvKQZOJGxwDoQ6DXbAVvI4kKsPkSmTNus143IYLUHBZQDSyEUPABO2O\ndwvFR4IUkUKRGKB1EiY9OmWMIexUFilULRRtUZpjW1gr1D1CglswyqWwlpVRn6j1iSFrZA7Gwu4r\nYyy4KdoHZWyUoSxljSyNaso4U/LaHekVNaX4HWl37Hmn94XSBe1CGUL9y++wfPP3sX/6K9gv/kKQ\nFRZtseSpU5cdt0IVpVApXilUUMVUL7P+vPdfTFdPdvgS7JjkRpBf56Q8XpLyTGrIPUUjzB7tv+Zg\n7kHjHv4MI2uVRxiyHj4c7pDyPleH4kmaObX2CGi+sXBn5c5tNGrr6O7QmQ1esiXwvO6hrqhueOGQ\n0E6QZ7XQUmlkpFqEBEST0MhSGF2iBniRaJe30qgMysF0+0E+mDsDRWePMq20peBSw2X8QmrY8Mu5\nivNtNkmNBKjI/G8OXgls7NjmKYdMED+zdEyzrryiD/Eu6ziP9ybrmddtEkUXwipRS/44358yRTfJ\nABdKs3jBGOd9VkoN42AB0RJjY+/c73fevn3L8/0eHQZatAGc9e3hhBf7rBPYM9/O7FEaSg1LB3/j\ndXldXpfP6fL3F+ftSW5MnJcT1AecV2OKX/gbcF6Mo6WGSWmZHSsuOG/K5C2xXqemTF8CQxaLsuI1\nYWMRZMR4KkUiiVU1jRQNWxQrC6ZPeLlBWaGs4SfhGmU1beC74N0P/twlS1xa4DxbRiQPUIpWCk7J\nEholEgShaglzwKEavmgUrCfmG472wBjiJSe0ifNcw7hxKPSCD2UsSlOlafijYTDcWMpG8YbqCEKr\nlPD0uhV0XZBaaKLcvbL7SvcVGwu6weKd277z/7L3br+2bdlZ36+11vuYa+2zz6lyKF/KJpYRRrIN\nKIjAQ/wUIRQkEgVFIgLliT8vf0BAIJSQgB0pwkSJLEAJJAKCAF8ol+vsvdYco/feWh5aG2OuUy6/\n8FR1ao/SrLXP2ntd5pxjjP71r32X7qlGzvyD3PiNOZjrIMKQcNR31F/R9cKpqFxHgyHov/sO2z/6\nx6xf+SX85//jBCy9LCdtISqIDDpnzpzSK3ViRGOZfWUPLHJii7dDKd7gvPO8g1OJ+/hiBWn52ltL\nH5EKookpEjfEY6992lcrEyU8h0cRNUQKf8CLi2wj1QNNHrWuBmEL0UnjYKMCZovYsLnQtZLhOhxG\nlEwgUtnbkoAz88qeC0I0h30hDCnlkgpYfF8jTJFCW8AN6IH1lfhTUiOunC03D9C5QtJ2D/kvpLGs\n47LhagT6qIU9r8tViuU4cfbjdb9GS9fGXniowSKbXCovJMkZKYx23fUeX5c3wbw7XfsAuX6ZeEOA\nFrR787l487mvL877WhEbudHX2gOdJ0wubleveVWDieeN1lS4VTIr5ALFkfSVl89fhatr95oW1MZg\nVQjVmIM5J20MrDdkSyPXAo5jMudgLi8ZDsXA50ZlzaCXx7N3wf3I8E4nGa3iNMwyhTmDq6zsCnVR\nzfJJqmRHtnWmOAdZ5WUyoN2ZG7iTN9RNkWW5WGhNuTfJoFGVkv1vLH0CewZ9QvyGeStiA3DPhc4r\niElI+ZzmJjdG4APcAlfBtSGmSHOaejHF+VzTjdhQ6fn9XWie7K9J4LrSzkBU7VrDtNVlnS+SuhJL\nGUs4Wi2KZctpBWBMBGlHss0qqHQObtzkmU3fEXpjRoKF5Z01OixlSlaP7Uxkq6rbpshKT6GvPUHK\nbIg3xA+Yg3mfyAAdgQ6Q770g/+f/ze2//5scrxN/fk/8kW+mQmN3Yg/0NrG2o9pQOTA6Kp0llWJ9\nsvdXNRe8kQPUf+eZFtdNrljc6jYVtWToG0lkNE2ZZpO8M6Q59dFVLgX1AmJ55rDEws3x6enRi6pp\nLWncJZ2USHDVobUMzWoxaBz5iANbExsOr+CD7L13h9//Mm/6n3+e52gn68FuC2ykOkg6ncbCWaqM\nquOti+2RqVGSROuL3uYVVtpi58agRU15eACFDNINXBSJDqcNyzaGOCE3OBnnRQK7N15Y9z+ojjn9\n1JDTrQxjM2DWovPILXHyv/30bZ5ezgI6OeHLRfTM1bhkiZw2mAeh+jg3zj+W/PLtYldkTpJVOV28\nvOI1FaF+T63U/5QaJxE15mK/J4P/+vrKfr/XvXI97s8nsSLnZsWuIGQVQ1tDVVlr1WZkMWb66D8d\nn45Px4/n8cOJ8+IPwXlS5Dys6YXzhN71+3Be2k0CKZyXEm+zwmbUelg4LysvjdVyeJUJGwOTHRrM\nDeIpf76YJl5Zte6U7Via4A1EGt6N1W64PYM9gT6BbAgdC33gvCXITLUHU6Da5WIWzmuBN3AztCU+\natJRyY2wO0kkheWQQKu6fRkK9AiMlVN/KZwXOdi5cB6goamCPZS1GQNllxrkiDPFmRo5lfdsmWsm\nsCny1JHbE6KdEY25jBGdwcaKDQ5NwstmDuHWqZA+reKD4QdrKbJ6qqv9QNadGFG5HIH93gvt/0ic\nt/+Xk9XeE9/4JnpTQp14zUGm6EIsaAjdjCkdlYHJxtQMrb0Ih8c8g8f0pOyrb4cWQHmOEueFJL4Q\nK6xvOcC62kHe6DqVa+AY4cR0XFZN+B+b3nPAJW89E8JXzi9aPUdbqA4ssvWux8HGQZsDOQmN3/0S\njiCePn/gzU61qgT0DKnHBGcyQzgiMc+Zs0bNwE68I5DWkY38+m1lphvZ0thIe7oxUT/DM3LQOqIU\nG1juBXQxWzB1Y0X/CtFISwLMpQZTfuIxfWCzUFw8N/JM3oau5ksppUxe1+cSH9VzDN7gvER3D5y3\niswq5cd5s7wYje/Hef61xnlfH2JDBJEGIlkYEQ8iMd+gic8D1sDCuVkGT5oomyVpAMEUWCOYMfIc\nWYb4xHSjtVz0UEvGEBgRjFpM25z5GJ3mjrZk9h6ez1UsVL2hYrjDfkyaOb1XGNVUZgzcYc7cjram\nqG30241+67StYU3KvpI3mJiBa7Lh41SARNB8IgywG/4E3hR5dror4g2taqZQwZuxtOFhhBsiN8ye\nYXsP/g6bG2Jaix11tQWyBIuSdDZFm1ROR95mUxiSE5aIqP1uXr3LPVPEV15AnPVoNLTVoq7B0qxx\nSytKKQ4iJzfnTUw8VRGxC4fm+bCoTvGozE0RDMvUcRRxo62N22xs1tBtw/UJlw2OhrrBLBuRQhx5\noz9r56wZTrDWYAxnjI57IJ5VWb6cuQ/YcxLx7u/+Grff+E1iH7T/8deR73yX/a//Fbi1JAzGSg9f\nVyQWUpt0EX/D2L95vD3O17X+fDL3SYCn3UfEUMuFLQxOG610LpY9KliJ6uJOcrhukCtVGqELZ5X/\nuFKyz1rRYvlFouSTctal0/RhlrJIw1SLCcdi3YHXII64Fo13f+vX4Dh4/W/+Mjy1vLEOwSwXkmYL\ni4FJQ2NWV7gVWXCeJlGPlXWyMWlrZNjX+YiDzkDfKE7Om3K2fClR2R4SHXBEYWyaqpFILzKLAoH1\nUaRYFb/eJD9TzU//5fmGlXwzMUnwFVI+4AwGi/Nz9RqXyLduhaeLuSwpb7M83jD2nB/fLKJ+yknr\n41zOmKumi7UoktPNSx1CKsfWWuzH4OX1lZfXO/fXO/d9vySJ04O5csJKUDWHZ5BZPjdVoTVju93Y\ntg1VYcxZYCAXvbk+STY+HZ+OH8vjhxbnyVeyPR44TwvnReG8Re+3wnnCjPkDcF6nbzd6f6K1ntWq\n9fxYOSwKEUKE0XqGTkqwfKB+QxjELQgV7ObYNGQ1tBq7RHOd9y4sAQ9FdEPbM217j9t7Gs/EekqC\nx3KDSk+5u2kGpKop2pMcCcv1NW0vOeQ4By2iAZJW6FXSd1mCrWxEMOk0zU12ACsWLqn8EK/+06m4\nvMF5IegCBqw9m1m8N4YutthoOF2iwuIHkBlsx7qxz8bNGm27Efp0bVSnb0wadmxJtljaZ3Xl0NGa\nIcCIyTHvjHnmUmStLT6Yh3Psih7B53/n13j+334TeR30v/vr8Fvf5eNf/Ss0a/hw9FjEAfS0wCCa\nJIdksL7gZxgcp8D2gfmk4IRcazqXvZgKpDVUGkgjqs0kFToPNUX0eDMkk2tYQg0cYzlhK23ErKzt\nlcJ5UufjCmTlHuTEecmhSNmsAxPPgNCYmB9YHKjvxD2Iw+GAd3/z1+Djwet/9ZehpRUhvJTghQU1\nFu0mmI5UX4cgbghGtLLsriDUq5iuMmVa0GyyycHmO10Oeuqc0gYTA4uJVJXeRGmchQZaRQzOAA6F\n4ykJj9N2HYs3Ia9SViHLNqYLiCd2KuYoN/msBHtyWpHKglzk1APnVT7FhfPkDc574H0Izua8tMLV\n9wr/PpxXjoGvKc772hAb+XrlFZWLHCUfjysVG18YlOfK0FVJFAom5WzT8wLMGlIJQ6IjeC5S1hAz\nXLKTYUa2eKQvaTLdae5sKnTK3hFxnVT5u+ZiF2j5l4LjKM25GVEWjQxjTNuAWmfbNm5PG9tTp900\nv/eVtVAbmKkEjaXC0YQQGFE3SXHohugq+1mSESHVCy8NsY7IhtLpYaA3VN/h+hk335DR8nUYinay\nY7tqNTVq2tAM64b03Di7wZJsZVnVUOKlNvBwpk/GGkn8rOw4NjO6VRWQnZxkqQNOu0vlOpyvr7og\nC2SQihGB3WGapBxSG10yoKZJq803eaHFxr4afQgtjNY2TJ7p3vPbr1zUfWSStcpM8GORXrAQ3Cdj\nTz+mz5r5e25u51jEEcgBH/+jn4Cf/knkd7+D/9RPsX7uZ3HSSxoTfDgyBcaCLeVxyuJs67jY+/N4\nUL51Q6uPb71+Z0BR5I0qGsgWVcEqj1Cl888tQ01PMkPIi+pcZGJktVv4eQOriUH5Gs+G0fPQvM+D\nBvImJEojSQZZi9gjF7p74Htg/+Z3uP3mP8V+458gc7H19xx/9pdZv/AzXPYWAuJANFUoEZbPVaQ6\ny/OWnFaYhehAYsd8YH7QZWfj4EYqRnQ6ukpKfDLmeCXJQ+8T0UGwUfAtrzEBt46YFoFSP7PiMtLL\n2vIccn+8L9cNTPL1oRYBS2uVmMLwfAGLLLkqf8/fL04C5/SGvyE18gQ575Bffby5J13SxBVXheIc\nkzFXLniei2EChfTqqqat5lwk55wcFRx1v+diN0qePedkxpmyLdlTXsRgvLmLmzVav/H09ETvueAh\nR04VpKSS8R++4H06Ph2fjh/d44cP50FnQ5r9AJwndX87cd7iOKon0hL/ibTvw3kb23bjdntiu220\nnpaNh4RQaqOf5H0MZQjQghFPV1aDdkVkYi0yNDTO9ryc3EszwnKaT+E8sXdY/wzVdyx/4mls+VpU\nRoFUiKUuuZQt1lrivFY4r9r3lqwcZJUF1WMxfTHiqAFfIGrZgmAdOwdVUgMsq4aNgs9lpkych6TD\ndQJHBqCOgDmdYXCo0bWzCTQxVDIQXASOaOyr04exacP6DWnvCb8hGDoElmYYvi7UJhZJhokljlqx\nGMfOPMCnZLMdC4mFj8nclXGH+zd/gvatn+Tp33yH8ZM/xf6zP8vUHAjKADmcOAQ9X9vmaEuSpM4a\npIJfr+nGuY8998px2hfe4rza0IblIAslVB5K3E3y8cYqkuTGufEMrgDJVcNE9VQjiNcsJrGNDL6K\n8+Tx/UIzsyMkpz3ik6QJBrIGMRZ+D9q/+h1u//s/pf2jf4K8LCbv2f/0LzN/7mfQHml3b0GM3MIE\nIy3NRFm+J0sNRbPhtWxeBXURg6apWu+n9TlykGUxMJ/IdMQn4on9moKp4JpYZelg+gLJ12FJsKwT\n3YgpF6khLcNGxQVfJ/6GqwXF7SIqkLSFPeB8/eEcDr7lLC5yI6deSYqcOO8xMPvq8biAzq+/lCDL\nv9Y472tDbAD1phdzH+mzO7tzwyuIRqFZEgciC42s3DLNl1092DT7tRcL9TcT6coiCNNa8LIWa4bi\nkbLHGRlKpW1mzzlJBDw4r2Qi0oqiJTEPjpETb29nJaflRSnph9PW6beN2/ON7bnTNkO7XD3oSPkP\nVxIWro2J4iY1D/Y6WQ9UMjjTRFhG5jiogqS30vQJ0S2ZdLmxeCLi+cGwq6KboqvsJ+k8SCnnaZfp\nG9oNaalymLEyzCpmEhRkf/qci+mDXXeGp8wTsjrVMFrYdeNUk0ui6CvZRsIzVIra1M1cB0IybNKP\nYKRMA21K741uRpetmOl67WjoMHQp3ZTnZrzTTostw6vOajkPRozLQtPqnMCDWDNvEmOxpp4KQfDI\nqto98APGn/mTjG98Qfut32H86p9n/uqfo7WWE4jl+AQ5ILqkHJIJllkXD3vHeRs773xed6wHM3v+\n9ZnWfPotc8PvRCsiYyMtSDfJWq6e4aqqK1Ui1PcrOW7MCrjykpxxJsWXBQUuB8q1AJ/qD3Hwicgo\nUmMga8KRFhx/DeLFWUcg//K3aH/r78OHjzkM+Nv/AP/GNxg/9a3ryS0P4iklbE5OKmK9sdxoknth\nJKGnO+Z3zHeaHHQ96BViKq8BR07ycjEo4iJqAtCD9jygG5vW85YonJkk49L2aGDJiyyv/LJp5auz\nHqoJyfP1shRZ/dslWTE/c/JxAQitxb3IvSsZ7rqvwElqXOeHnMoN+CojlgTH2zXUI9n7NSZjDo4x\nmSuuGrfTe362wMSbxW6Mmd7KmZNNwq8+9Ok5CUiptV52OkRTsVXfv7XGbdt4enqm9Q5klfRc67qv\nX+f2p+PT8en4sTt+eHBeoLW5T5wnb3BeTVUrUymKgDnGImK+wXnnJLMj1hPnbTduTze2rdOaZWMd\n5939zBOrtUQFV+UQQSKK2IhsJ+lpH2gCYoFVjkj+rA10Q7WjsmG6MfUJb+9YvIN1w45S305BhiC3\nHBxpBGa1OWk3tBe5odl0cuE8KZynK5th5mCXNzhPoK0chDWpJHvP185LYXlOlYn1wHlBDrBmbp6d\n3PxGW4wO2oS+NaYpm3ZM12X7NFH2qTSMTRqb3NjsGZNnLBSZjh8Z7j9kIA1CgnZmkTlJ0gxnjGBN\nQ6wCKGOxxkJ2R+/w4U//SeL2BfqvfoeX/+zP8/qrfw63loLW5egAdnKItJHW8MhzVaWw15lRlidA\nbXo5F2seWWryBucBaOY2cKomzp+TOI/bg9iQIjdOG2vihwme4bzIaS9O+/HZzlIQ4Hrfzl/lDIxP\nHi433klqDFQONAaMgb8u/DVo//K32P7m30e/8xEfoL/9DxjvvsHxE9/KFpsWhHkqixNWwLsiq8j6\nV2NlrpolsRBWYfMCqoHKQWOn+Z3GTvedHju2BjIWHBBHXAoL6aA9sJ77jtUMlZn7Csmh6ZAAq7D6\nlZiNlXgtVubSBFwtSlLVu3UTuyw/Z8iqaF5fJdh44O7zLTlxXqmuqaFbnMGGl4r9Dfh/M+A6lb5B\nvMF5aft44Lx8E3/Ucd7XiNg4fUcpuV5em+Y5WSvfeFPFestQ2yVYA8Mw8WSlwzNduXyUyxfhkzUP\n5NhZ2jNDYb3t+D1Pn/zZ+kbOHeE5NFClWcNkMnHOiiQ1Q8KSXXVlTsfnRDR7r3tr2FWpY9iWhEJ7\nMqxnyKda+R3F0uJxnjsDVnRWK6sK5RPULUMz6xZoCF0l68baDWs3ZHtHa880u7FWR2aHVUQDLQM5\no2FViZT3/KquMsNax7RSl62RCeLp9l+x6uGsSCLgkMHgYI+Dwc4sRp97sLR8VudmMcie6bXSsnE4\nlJrilAoCGURTUkJn5Y2xAV2JLqymmFE+r5RWBlrS02DZYumkW08byhBiki0mEun5awHl8ZMIIhZr\nHqzDmaMTZlT6UPoUJ6wltOXcf+7b/N7f+GvYT/8kp0nhnJgzPZUbU4g2QZPtzm907mjrOP1rHsjK\nvz9vdJfs7XyIXDkTUTYhmqCbwJPBzZEe9OaYVMlW1T5R4WxRNgUVOBos17wWmtfQFzcAACAASURB\nVKeRuLyeWjv3qODPlMJlATE+cpEjiQ3mZO1+LXTz42Kfwfr2t/nuf/dX+cbf+XvIHPzeX/oLyM/+\nFPphTwJvOv4U+AwOHeyyOCTr2wLNLJK8NSRJoAvzSYvM9eixs7HT5kL2gJdUisSRqpe42IeysfQ6\n156cdpvpuSSqdjnfv+QZHgtCWnHK1+z5OOWBXPYYqjXoRMByZdZkvx0nB/E4Baw+1ucuEF33wVwU\nzrtT/jwRJa4v4lrk6kR6BEaVHHHNxZopCYzI56WnLLRW4DM5e87sL18rwfSZkL482wrCM/laVekt\nc4LUjPPXzNT+xrbdUp54u9F6x8PROfM3Xqf39BOz8en4dPx4Hj/sOC9tLw+cp4Xzcoj1wHkjaxPV\nEuf1tBe3TR8472ZYtaJoSfyJDOzLARZpRRYjPHC5QXhabbVhpfQcRA6UNejasLZh7YZtz2h7wuzG\n1A3jxowbt3UOtZK0salIz42bxonzJP9Ok5ARbYQISwrnUTiPwnmzcF4Uzos9NzEzYAQr5gPWCDmH\n8yDGIo6VqsVaQ4x2WUwhMt/Lyr7SagPclbgZaxOsxbX2tMjJ/lzKfO34NLjD0zlEGELsuS6G1nps\ncSk/Ie3UcznpeOpIT2utnkGwB6xDGOG8fPvbrL/x1/Cf/slEZfU7K0EbacHwHtghyNNE3craMktp\n4tdae+G8CumP2oQ/1nC9XsAozBeUYkKrdnUz4kYOsG5UhsXCJBUnEg7rtGQsljjTUmE6C8NfoaJ8\nH87zIkA4iY0cN4mmFV58QBwQd+LYGS+T+BjMb32b+3/7V3n/P/w91n3w7/6Lv8D4mZ+CfaffwdSz\nYa+XovcAccW3IhZtw2mpelLFLe3tEYm/tK3Ee76zycEtXunzQI+RWO8A9jwPY+VAS7b4SkWs9kW/\nTVwzv8Uk3/MlsGwru5am0roGVRcEo2aOVHOJkOdUKb3FJAdUxSe9LWAgCudduSEPMklCeYgaHphI\nxOqfnjqnr+iur3vaD8Z58bXAeV8jYuO8z0W+6FeQVKZUnwuetoZptmt2jKZBVwDH4+xAz1TX/RiM\ncNZxsMQIc6aTqbE1If/qEDQuxh6SeVbRkkJlV3nIQjCsbfT+hErDV0qnPJzJxKohpBk1UVfkSdFn\noz0r7TnVGmIgTUuhkBVTp37vHN77tPzdo2WjCZqbLTL0p0lOJZY2TDaaPdH1HarPmN3okXJBiWTf\nujZ66zRpGFbd6MmKigZWsiPRxhlSGXWhuZy34biqhmZfzNtkjclxS5/Wfsqa1mIxiXMo3WpKM1Yp\nNiYRsywYkrI7lcyn8FqYZOHMtKYYsGnadboTzWiqiGUIqQDiQixn6mDXA2tGl46G0rXljbI2kVeQ\nVW1kJWDNxXE4+72xbhvt7I4np+ExZ4Zb3p7Yf/5nufXtkdNZ8MnPhOUleV5IJpyHnNVMkQy5R5EO\ncCk2OBedB0q4bqYlKc2FPxc1boFsgW1Oa9BtscnEGJiPrMDy/LkXseEpbw20qrDSh+uW55ScQZll\nawhfOLlg+hy4DJauvGnGSuZ3n6z7Yr0sxovz6s7sRvzcz7D+k1+BOfneH/02XQT7eEdXZq34zI34\n3W68inOXYLdcH2J3NFqSf80zP4P0Uqa3cqBjwr7wV4iXIO4QR96wt9/+Xd79i3/Nh1/8BY5vfQ7t\n0e8N5JTjtLoA4TnVK7Fs/k8UwVNqd14Ddb2GRpJLZdG56s3zdlQTAEksoAUWzrCqmdOB7Lc/vy4l\nikm2VaZGTTXy7LpGKrxVcJzyROJk9eNaVETyTF/kz16kailCWJ6L5PLFms6YJ5O/vpLTcYabiuY9\nJBe7M4ytAnzPhbB60c+OdA+n9fnw0X/K1/h0fDp+rI8fDpzHD8B5StMonDcL5/XCeVY4L9WmEy+7\njLzBeYLcFH0y2pOmKvesnrXEkWFRk983OG9R9ZTl64+eUU9lwdBwVilTXZWmifPo77D+jPRnjI7F\nRludRqNLp2un9Ya5oVPLzpI2nizUeIvzsh0s+D6cJ4Xz1huct+3ctzc4by5WzEs5iNTma5biIyax\n5rWxC9al2iHe4DyZYMEaJM5zJRZ411S+tIbQcumbwnThONKeaj2fs7rSpaX6JUoFXfhJeeA8nzPz\nNO6WOMUSF+b+3llzMkOR7Yn4+Z9F+vbm9Mm11FfiPFnBWpUNV6HsJ7Fy4j2P9ZhTvPGPPnDeeT5K\nSS8slUeWys8M3zw/BtwcvQViifUaaQnGFxIzB2mlYNJ48xNK5R1bWRXOzK+ZdJZfFpbEpULQWPm9\nYrL8YM478XrHPzrx0Qk1+Jmf4fhTv8I4Jr/3R7+NiyAvd9pamZVinsOzJ2Al5Dlui2OD3YypwVQv\nS9eJdwVRzyrXGGgcaNxR35FjEK9pf97+9e/y7p/9az78/C9wfPF5/v67I91TzdzJRhWH6NlcyDm8\nCsVVktij8iQkh8lxETzFcdbZexXa1Uc5B14VPB/zzfsaRXic5EZ9oVDqENcchsZjqPugYWugeWWs\nfWWL8IfgPL4WOO9rRWykZCZYM2UyySrlxuz02DVTujV6KLeWgVLdBF8zwx91cPRBbzsmwj4XMzw5\n1hZM13zRSytzqsP03Dao0Cw3zFaPcE1ppK70NdLY+jPPz58h0phjch87ax2sWJfiyGzSmsEW6DvF\n3gn2mWGfafWQF4uvuchJWsBS1a5cLRWXAgjlbKKMSE53XTGOnS4bETfUN2x2WnQsLB9iNG1surFJ\n/ltTKyIjUu6lJy+oxdVmpkMyhnbdDKRuOif7fbJ+x8ju432/s4+DYx4ML0mj5MZv+mQcwmIg02Em\naZEb/Ym/zR8o2VhE+j3FqCyLlI7RgtbzgraSjKZaIpiMnA60XBieejKLlGf03L7q+f+SH+eEfV/c\nX3cOE24VgKpW8kqfxEyZK8vQlueDKYgGrmcPuOChzBUMjZSJUZaYClrNR5zmt1JF1Ln+lto4NYMG\n0oJoEMXYs4FuTu+TTRc9FtuatNgz4OkEjOusYMpiMKuAJCd9yN6KPFOuDIiIlAn7rPCpYyI2MuDL\nFksjr625iONg7pNxn4y7s7sz6wn8+z/1S3mz2w+GO6YrWd3llyVpt8WrBq/AXeBwh33k5Gkzegsk\nDjYZmY8iWfEVx8TvTrwE/jGuMKt2P3j+zf+Xb/1Pv878r/8iR/tjzPeNU/onSvpU30hAlytjVVBb\n1HlRN/szDZ7KlwmLqp9NYiNaFNeQBKEUuSXT0zZknp7VU7FRfmdM8uN5zntef3kT+SroOWWhXGcI\nnIqfDJS6luNMwG5KuYuvc2ytWuBWdpCPlRNTX850Z66ShF/ft36+nrLEXNDSB5wniZyZOqcyrVKy\nzTL8bNvW9X0Gq4Dbp+PT8en4sTx+qHFeERuWqOKB8zrzWNz3g+WD5ZPwVM+ZvsF5z4o9C/Zs2K0I\n8jP74BRexkO1QiPXhaiBCEKI4mFph4lUB3h98ZKWlZXyBPJE6BNNn9DY0OipypXGZhubFs6LhnWt\nVvhANUfKUute4jz5Ks7TNzhP/hCcd3+D8+bDohzAXIXzfCDLYczEOkFZhuQx2a6w0jgDR1fhvCic\nN412y4QRozIOPDffPxDnWedkEVTe4DzRtPN4Ntwcu3N/3Rm3jdiibD7ZkDd9ppo5FG1GM0O9pTuV\nQGqt9XqPLITF2YpBKl9qoh7L83kU1isHwqW8fuC8ujioXA3LjXiqDqSGWal8kJ5Khh57KljXke0u\n60FqUBZj88fmW0Qye0YboT1VwCtY6jh5HSYuW7AEWxmivzwzVo4xkLEjrzv+uuDuxCvIAd/707/E\nvuB1P9K2sBbmi05ZyLZ4FN0p7MPZWw6yVltEW6kQl9Kia+1NYiF+ILGXWuSO3xfx4tj3Cuf97V9n\n/KW/yP2P/zHmraVCZFuZ47JxEQvxnMRQlDokanibv5ZVSH++p34Oic4sOKg/F9GhcamT0sqeg7pY\nzuMr6mefio4T50Vlvsz6ZmcLS8ilCqoUEq7slSI08vfyPwTn+dcC532tiA0RIXxlkMkahJ8sb+UT\n4KhkhN/WOl2zNlIIwjNEZY5RzRuPjSKhxEqO3cOrQizZuTcOCQShq7H1jdt249Y3Nm3Zg6zQWrK2\npht9e+Z2e05CTiMTppdk9qIE0+blietPDT4H+YYin2v64xolZ6qNUD0HfFWrg6O+kDlgHle3O3Fe\nG6nUUM/xvUon5oaxoZGEhQWY56a/uaUHkTzftAWmCSBaE8zkmi5wERr50U8WuTqzVXPCr7XRg3rO\nsRjz4FiDsQZjHRwxGDFT0shin4P9fsd+37k/LfaXmZ7ImeyN12Tbg8t/ed5cxASxwE8ZmASTClA9\np92Wv1IsZ63BvW46EgHcaF2rl/30ep6uRsFlq/7xyX1kcOlTD7abYO+0fHdFJdlC+0I2R24Lbimd\njC2IHizLjvXD8zFUs35qUuSLpK905SZYvk+mdloTkr2OSqmODJCqXI3YwNqR9Vvj4KaDLoONSWen\nxUArkM0rKRmyCmu6glcyLA21hkrgq1/Vb9PTajSPUWz+AvXsJPdcrDzApiMxGTFYTCYr19UiLaJS\nm+fMYLSwWfJKoAkxO0OEgXGgvMzByxH4y6BJp2+NTWBuE7EdkTsqdyR2fB/wsvAXhxfwe8CXOz/3\nv/4GX/zzf0Eck2/+L/8QvvNdfvs//zOErrwuswG4WtCNGZYVwT4QJ5PU3Vgn0XiCEZFc3Bq5YLZ8\nhDloZpsYC3zC3GEeuA6WOrM5MTXbilYuajJJhdKUqseFmNTYzGqyWPfAslqVr+QNc8+16EXUPECN\n3uSymE1fzFkhxBUY6zMXu2M/ihTJQ61hXlV9l5opUh5tVpaYByCzczFMb9gl/RZRrDVaXxeTP/3t\njOrT8en4dPy4HT98OO9WOE9YGoXzAtOeOG/7jAjB/cjAbMvNcWgwW6oMxDIXgncg7xV5p7lOw0Nt\nmYIMiIJTSuYdsAg/0LXjPi51wyRJbtecmyONDA24IXJjrSfauGUzHonvmltajCkip0IUm7bCeZnf\nIZUOHmEPnFftemco4oXzkGsTF7zBefMNzluF8yI3wfsonPelc/9YOG+sK6/gtERke4Nf/x2SYe5C\nZIuK5M5xumArN6On2kOkcF4M7oU3ZAX0WxJWppcuV7y2iA4aSWJND+4j2AccTdm0obeJ3Jx1K0yq\nK60Q5jRdGFkcIOdgo0s21LSF01iuHCoMz9DaNQUfOcWXlaQNceK8BBZy/X+t3acXWIv4aqRFp6TB\nposek36MDE+Pg+YH4mkX0TOsPnKQtXvuAxpZqzulMWVjtoQeyxZDFpNxqXNjOUzBRmGbqjFdIx82\nRyp4F5yh9HN39sO5j8xkiTVp4YwGbTs34IZq5rm8jMGH/ZUXUbzCV6011HqG4orSxHEZWLyi/oL4\nR2I/0NeFfnfn5/7n3+CLf/wvkPvkm3//H7J+67v821/9M7S2UC8ixesilLKoE7g03Dou+ZiVj0fh\nMZmlmD2v3VMkezbc2PkeUcRAKpqZi6icwZxHKr5yiMgogsKL4BtxfW+5Mj4s73MS1z3tIjXgIiEi\nSnX+A3He+pHHeV8fYkNSGkdQlVvpA8JXMe6PaB1TpZkka7qcGZN9Pzj2O2MMxjhSHj/Prz099I64\npu1dJG9+IhlQDVlhY8bWGpt1mnZUUqJkGL2qxEQ7pv1xc7aVJ2dPxu1awLrDu0hS43Ow9469mxlq\nY6WQqApQAVpkkEtU0veYg2CwfGRRuqd/yiNrzIyeTL131G906bTZ6NGyGSQajewQN3LBy8XdcZ3E\nddE3RNIvKnom9pZMTUqxcdZAVY/6mfQt8ni+oc6Uzorc3o6YTD+YMViRz2NMY3+FL98tPn4ZvHwI\nxj5YxyLmKmLV66act/zINwAxsAbaymvLyuBHhInR1Op3L5OJL1bZO2XVOaQbLfop3HgkjkdD2BC9\nsRDuS3md6d3sm6BPii0FdywEbZFSwCdHngLfAtlW5n9sMEw5MI4whitjZYCZT6kI8CjvXdT7kM/5\nojzrTvp20nPdUNsZjuQ0PdhiZ/M7mz+qT1ux5erz0VsO12NAklfeCDZEbiDBoYGLFfkxmWsyR9aE\nYcAUDk6c40xf2JyoH/Ve59wmf2bJ4jzwlSFHLrMmVKBoqlpGcF+L1zh4ceF7w3i5K/HRaNq5PXWe\nTJi3RdiOy53JK8NfafeJfAx4CeRV8Hvg94N/3xrSO98M4btb5/cEXj68JnDWQLri5te5M6OxGOkV\nXqCrodeEKa4X7gqKaoKcwa22UFsZ6ivZuNPWrEq0OyELt1VSP8PdoHW8Kwx7qDYmmRwu+eeElJHI\nBucRMnrmtBRwjnPBe8wJVHLyJ5e9iEeNG1xZPlGWMhEpwKaXrU7Gw5Z3nZJvfh5B+p5Ltmgtl6Mz\nEE0tJ12tdTyyQoxj/IeuEJ+OT8en40f9+KHEea1a7gQjcyxaM6TsvbkXT1sGp9I2pAIdgc3hKZLU\n+EyRdwLvglDPzbdQOUxl95WFVe0mMZPciR3xA1YOIpK3TgxmdK6wgNgS860aYpHK3EbDaKnOXYp6\nboZcvcj8UgJINqKkIiNVKdA4w8lDfgDOIxUuF84TZ1I4LyaDfA4jBvP83NzZ78b2Jbx8yMfcB2uk\n0iXl8Uk++coJeUBZLyTD7XugpYR0DqYLMzKoVFRT+RLAWqxZOG/UoKhvid9PnEfivMTFqXAOd44l\n3Edw78LT1ml9Ik8LHbn+IYHcIoc5rZTNtpAmrC0q8y03u0uU4cZwY4oyw4hRg4pVeO8iN4qMw8nf\nri6Ok7GR2jiXFSVaqkTFVlbcr52bHNyonLE4kDWROZB6XYlghV+2HIs8S0Y0jkyiy/dOYZozpXDe\nab/wYM1g7oXn16RXA0ebK5tR3POpnMqAsVK1O1OGmsHvmiSdp3In7sKU4HvL+HJNXgEvXN9vG61l\nfo2IYiw2DlZ8ZMVHPF5Y+0RfHH05+K40VDvfcOE7vfO7Ct97eWWzoPfIPY8/UIy3EiTbwOO0VQ/W\ngjW+SmyIk9eASA7gzureCmuNFtVQOWnrwMdBcIDMgvFp6/BmhBvRreIG0mIlVj9LzwFXUa/rTa7e\nW1b0Um08KIM/iPPia4HzvjbERqre0sjkZ5f4nFdbg3AGZpacTsi6mznwUgEc9ztjDsaeC16shSCY\nktS15Axca7FrltP7drLUUgFSmrYNE0Mjq77OcKk4PYkCozZyk4l3r9BQZelCm2A3o31u9C+gfxG0\nzwbtCZoKTTLl+zR6CIFWY0aEs8JRP1hrEKNuICghV7cUKjcaG7fYeIrObXU2bWw0NjqdRpPK0wit\n7AQIybAZqQpSsaz1QZMFVMnAmOxA11JHPFQbp+yjxB2PBb4bvTeiVfgUkxkdjz0vypl97+MIPvs8\n+PJz+PIjvL4cHPfJPCYeznoz5V9rsdxzM2qU4sIR8vPhOdkYFazaKL9skM93LOYMmPlaq8J2M7Ty\nRSwE9yKJeELaJEzZw3kZwq3DbSM9s2SSsYWiTeEJ4gn85qnc2ITYhNWVqcZgy5btaBl2NRWOyMX3\nzBItRUmikFzoHosc1bjh+d5crzNIW3Qb3OKepEa8couDjZ3ND+yg6HhHw1NiWPoXl0DEWaq4tEzu\nrr+deDo2o1USep4r535aXJmu3AOWO9uctDloa2d6gtS1VoLBiJK4OgtnymTWyOL0HE8RPh7w5Tz4\nMBYf1sGHo3G/G/JiNGvc3nXeNWEci2U7R7zwFB+5r1fs7tirYHewu+EHzBV895f+OB9U+cXvfsn/\n88u/yHd//qe5fe8DEhnsq81AjREwpLFoFERDluAuuRA7X8nlEBG057Wh1Sff20GTg1bJ6soiZNHI\nBG8YRHlsFctJgS5WbKwm0CzfqyMBtORorEpo3vixL1LjoeN4q/GhXu8rk4UiZnh4PuVM/r9kghXK\nZrlgiRnjGIw5v7KAQgJR1qopRd5TM1m/FjxV/PRpilTVoNGaMadez+tT2+un49Px43n88OA8ux4m\n+gbnGU0lcwPoEMYYgymF8+wNzrOF9hPnNdrnhr0X5F0QtxwenT8PJevXbdFlZbBkZU/s68DXzhgH\n+CqVZq5PaAN9QuSGxY2+OlsUzovCefEG57nlxnlJvm46q/Z9IZah8KilHlQMtRzeoQ+1xuOR79gf\nwHnN6K0TlrWwkyQzcv0cOAdrGXMYzx+ED18qTx+M+/3OuB/MMdOmsTI4fI30/i/3HNo0xTZDmyMy\nK58i2wpHCCJFWpxqjBBYizlycdEINGAzQ9XKqpzWalOjSa8N62JE8DrgdcBzM7Q3+ruFzCj7jn5F\nNYE6YZKNdBuwBdHBuzAkSYPhGa0+OQcWcZEbVQP0GGRx4orTfsrDnm7yUAg0R9vCbGeLnad158bO\ncxEbnQOZM8Nay47tZSPBFmrQtF+DzvDB9AHzhovlr3mqaJWcyEe+N74GFoPmgz4HfUzaPmhzx2eS\nGrEyX2QsZ46ZmFECvWm2Gp429H1wzMX9HnzpnQ/rxp18fW1zbrdBbx2zVAtYTLbYOfjA1Dsur6w7\n6GvAEXzvT/xxPu5K+7df8s9/6Rf57T/608iHDzw14akL2zJsVtaKJEm0FJwkNpZMVgzmgrmUODzJ\nhiG5R9AqWVbJ0P5WxEZlnYhO2tzRcUfXKypHNrxw4iAj1Fit42ysUGRpZqyp5n2hLrcU5gZnGcX5\nZpxtiNcd9I0y97J7xIng8z9+1HHe14bYgKyXERU8Fj4zqHDNIxeuiEfBQES+8OG5oFkSEV5M0mor\nPXGSErT0bta9uRal3pKxH00zWVkXKmnbyH1ewCrHYMl+rKTgLsJicqzJ0on3uDxwqNC68vSsvH/X\nef++8fl74/3T5Fngtg5uQJOg6Sm9jMv/mGuJM1gpfTz2ZDkjN+7aK8VannmyZ25y4yk6PYweSnej\nW5Ianc5mW5I0KhWaEymTP3+exKUUOL1cwLUYZ2tLkhtX1sP5YiKV+5DPXW4CW0DPyfXZo41nxVre\n0IX11Pjm042Xd/DhVfnwcuf1vnPfNckMd5ZTvjBnzsHpvTWtzdqK7G2ua17NCE2qUson21pNHQ5g\nlj93HMzD6N3Kc5uERdfOkzxBc1BlcfDqcJvKbRrPbdGfc/ChXufqUz5f3wLtjm9ZK5UFpJ0jGiN6\nkgSh+bLPQGakFcVJJv9i79dDsSEg1TkuVXd7khr0wGzQ406PO7d4YYs7N99pY2a/+p2sGJ2VURLl\noSzh59KFdujbwJvTYqJrELOz1sb0xlgVAnZaJAzicEakQkOOrN1qc6etAWPHK6ney06hOf7JbnLI\noNLyjA6B17H4/WPxvUP4MIyXWNzHE8chxGu2sLSx81GCj+3gAy88xQfexUfe+Z1tKNveuI2G3Vsq\ndFaw1uT1i8/4d//pr/Dl1vDvfcmtg4WWgzWtOOs2uGv6PHc1DtlSLTECm1otMn6l54vm9dA2ZUO5\nidMYdHLxT2NLVr2FDobuhBx4xnditPQiRyVyd5gtr68ggYh7Wdq8QBvUPYgr2DU/98jX+MriJICf\nlWCLUdLQteLEVLl4RRGam9J7RzXB/ZyvCebnujyUae3KoKmJo/bwppu1XDAtrymrcClrdnWoRwRr\nedWBfWI2Ph2fjh/P44cR58UfxHkYHsKKyRGF804raANMsK2xvWs8f77x+Rc3Pn+/8e4d3PqgtTOI\nPS2+SlaANpxea4TKYjFw3zmO1xxghSDakd7RtqH2jpu9Y9MbT2yJ81bhvEhSo8eJ83o+r7LpsjK0\nLedSWjjPiZRd5PONIoKkcJ68wXn5dnHhPCuct+XH6I81oEsQMS/pf7gQq3G/PXF/H3x8gY8vyuvd\n2I+DYwZzwpzC3J15ZDNOThDBepASxhyGRWTlq+qswaJV2GsFyKsU3pEkzPRgNqOrVWu80iSD5J/l\niWGZ1eUsdg9ep/A6hWYdNad/FuhMm7N0AU0LtEoSGzSBTfBbvg6TxHmHN4YYE8VDSqVBKTacNwtw\n/kW91BGS9iChSA1K9Z2vh/SFWSLLLWqQxZ3Nd/qa6PAkNYZnOP/IvIflCzdP23J3wg6WCDob4lva\nV2YntCc2q0siIpI89IPDD1Reaf7Ktg76PGj7Tj9e8B04BC0gXg7aCiaF1QWXYMzJHju77Oy6eG3G\nK8JLdF5iMeVA7k5v98q7SwBkDJ44+Ea7s9qO2GDeFX0FXgN/mby+/4z/78/+Cr+7NV6+/BIxeDZN\ncuOutCfFhqEzr+6gc7hxWGdoZ0jjOIJxKL478erIkYqmFjlcMwxpmsH9W9mTdGIyED1w3VHZEXZK\nn1J4zUAaLokAl1RIqnVCWtny6l9ngEYqjoCzffOhyH2r1qgTx8n64uWMMd/gvPiRxnlfG2JDJGtk\nTA0TYURuTubMnAAjkn2XwKRijiSnplopyE2VtWbONdfixYzhM3cI7ogli2+S2RJbM0ZreJsI7dqz\nn80FUtP/IBfPynepUMuqIm3ZeKGbYltmL2wbfPYZ/MQXjZ/4vPP+XeO5B00Pmnha8yVId2PlaSRB\nm3kPERyxmL5z97QVUKy6dUX7RmvveLZ33PzG5o22Un3QXGqxS8ldq2dmmgtsapNScaJklZleFg4y\nQ6Nk9tbypq7tESYVJwN41peZpM/wBnpLe4TYqqrRifpE1sy8kDWhbDbHTdmfN17fwcfP4ONd+HhX\nxizWt4iLuRZjKuInwMmKsTWdwyq8UgJaAgWThYXRQ9g8A26wwI8CMLGY82AOy3PH8rl2bUh7Ymku\n4JNUbbwu2JYiPR9NayJuBpuxmkITvGWg6NLGTmfExkHPLe/SZGpHqjVieknS4KRfT1VATqxSfpt+\nj3OxezxEJyoD8z1VAbHT446NgR5OvAB3iD29nfp//TPk5QP+y7+Iby3TTtSJp1Qk6C0lsbEGMW/4\nWsy5MZey6rXGz/DRxbIDYiDzoK1J90X3wFaW0y/JWq3ky/L1SjsTKeGzvd0dkwAAIABJREFUtDbt\nLnxw5csBH4bwspS9FC6+Gu4ZdDR8stti1xde4wNP/iWf8ZGX2Hkeym0Y/ei03TLaoqrUgiC+eA++\naK8vjEmGjJXE1sNY+2BXZzcYJhyqyD6xvdPcyoHi5U3M10FN2QZID7Z9QV+oZs97QRosglgDxsGY\nCT7WCoSOiWelmQhTc540e/p+Yz58oaJSIAjOTI1ThXF+uBKtPSpDpYLyJP/9VQFbREd6xfN9QQ1r\neb9tvSPAXCv9rWjKfT04W5iWewaQaSputGoZ29boW8csM0nM2vXzo9K2vQLJ1qju9E/Hp+PT8WN3\n/PDgvPgBOE8fOC8yectxXFaGgrdAN0PLFdJvyrv3xjd+4sY3v3ji/Wcbt55hoiqTJnoFUmokJmos\nNllUokdZdO8cnsMBkYaoYl2xbaNt73jW92zc2KLRZuG8ELo3uhhtGQ2lRSoS9NwcF35QEufoZT85\nlbnZQmeWYfZfwXkns3EqTmozL1sRGxvZTGewVf6Jnrkmq9QIHswn5Zgb+7vg5R58vAsvd2WfwT7h\nGMI40sJwTEeYUJZOPAck05KQR6JsyAvTRRPNGYkbthq0wnmjsljmwbRsptHKDenWkHbDRHEzPCbD\nF/sKXldmkZgFdgtsA0GRpjXQSztSEjyKb4K3DOIcJ7ERxghL7LSkbMckoVHkRrhnNSuVrSbKI8iL\na3gY50eNOqcGLe60uNO50+MVOyZyLPwe6D/+Z8jvf8D/xC/iNHyWqrk5vgVsZDufReWrjcTjKzHf\nIPPVlufwKzNUDo51gO40Bjef9OX0GfSTnIkgqt4+Qh7tcGVfmuIMJjuDncUO7NE5ZGOQOPmYgh/n\n91upcPVJZ/AkA293oh+4DZ7ugr1CJs07M4Lji/fcfbFeX0BgmjCasO+CHYINRadiYkhsjBncm3Fo\nY5hx7MHcFT88VRv3SDKM3EO0rdV+SRDL94LIhj6NOxGveLwQvmfdLlJhmwr0HCYSWTVLMCzwTpKM\nroAnAaaRuTsSF/mYRQQ5ZHzgPB6KjJAfgPP4kcZ5Xxti42Tye0tJSyb6LnwMxBeqTlOhm9DJHNsm\nSjelaePWGuspa8DMlLUWH7Yt07JnBhaKWLH10CR9lrfeCO8oedOReLBcKo2mHZolEyUpvQvJlgNp\nZK5GB3uG1oNmk+dN+MaT8a33yh/5ovH5s7JZpAcuJi2CJlEKDYfIwNDKQk6mMhZHHNzj4GBh8oTa\nE20z2vONdnviWT/LzvJh2AhsgS053ZbYOeUVz8mBnH3qJUXUVnkhrXxXgnYtkkawTdCej/RaPpj8\nKHtKvgaK3MBuk9ZnpjTHgflB14HaRNaBaBoOhWChzIDjufNywOthvNwb92Owj8UYzliWVghfxFqE\nj5QwHsn0HxNmCFMkWyokCMn3sLvSMfoypGWV6TpygrHmYD+ShYdIn60YZsKhlUpuypTFPZw2S7nS\nnadmma9hymqNsMYqeadrZ0bnYGP8/+y9369tWXbf9RljzrXW3vec+6PqVndVqu1ghzhObJIoUWKS\nKIGAH3mACEVCCop4QEhISDwiniIB/0ZeeAAFKRIPCMUIlJAEhbwREie20227u9rd7urqqlv33nP2\nWmvOMQYPY659bjUxSAbL7u67Skd169Y959yz9tpzfud3fH8w0WOhxYRZxbuiFkhzxN4IEBosbURO\nna6RO3LN3B7/LUkqSVDFOHrFlYZGo8SOdMc3T1LjAnHpxOuN8gt/n/Ktb7H/R38Fe/4OXiVJueHB\ndOm4N8yWhwWyB71XWnf6Znh3+taz+aTuwI5iVLdU5XmWtJQKLPle6YwQqSvJrENeqxjCxSp3XVmt\n0qTidQHOaMzUUjHtmfPhjm3ORmO1lZOvNHYaOfmZVqiroqtkQNMIZB6Kytxca+IL2cn7U6CZ0qad\nFWMro71GobbG1GfmqFdvcegg0EoqbrwZsvaUZnYfKqWOyAAtDjL+TNnWJIBwoKePVQPzBJiI4lrS\nljKV9OGW4R8e0tUr+X3cy2tE9lDjhD2w+SKHVvFh8Cbje73xZYpWKDn5KlrwEbalZaLWmVJ7eqHN\nB/06GldGyJyWnABM88w8z0mSeiRRCiPYLUFmuA/FVHtLbLy93l4/stfvRZxXBs5L+buRE88gm6xk\nqFJlAj0Lsgg6B6cTPH4sPH9SeP60cnsuTIVUqcawx8gbGCwaNTozziSGeAZut9jYYsvYbVnQMjPN\nyvRopp5PnMojZlsS5+n34bwoFB+ycxgKkbTcio5i+4H5ipaU1VNQzcDwUpUyfR/Oe6PNIAdZDziP\nocqVGahBKUahMUWjRA6vVBsSPS2ZgIfQzhPr7lz2JDYuu3NpwdqE1UgFhztYQ3zPhok9M8laFyxS\nKU1JGy1qqJYhYC1UL0gbOE9tNEMMnDeGR/NpSutRzQNhF83ATzprGPc98jkreS9KtTFIyntydFFI\nTfzQJ6VrxWKhx0yPeSg2Km5KNBnB4DlgSvVsqjIzDmsYByQGTvGh3DyGhzHIlBiDwsR5lZ0SGyU2\nYg/8dSNeDpz369+i/Qd/BXvyDo5k5fEUeHO8ZamBFSeqEtiI+sgp+2aGtUj1jNkgNno2ANVGUaOF\nc4p8PUwKqkZIywHjUPYS47A8QkJNfVi5MlTf60TIDSGPiDgPlXAqtK03unWsb4R3Zjp72UFXolxo\nsrFcnLqCrqANYgffYROuCu5QsArblPdfOkiXbNWxE3112lToU6VXpe+Or5XYnBjkWIbvKmUqlKkw\nLWlYn6wRfni9O+orYve43YPt2UoTw/ohBaHjOF2DEiN+QIJWwZmH9SRGjIY9kJKH5+R6RkglxRdi\n+ILfAucdppQfTJz3Q0NspM0gZT+HvCyf0QAyOFN0WAdUWco06royuCSminveULPOuqycpomLbmxD\n8phNIskqEZ5ig1KJmgth93bN88kq1EqtM1huoKF2lfFHBV3SjiAn4bQYy5SOlJsZnj2C5zfC8zPc\nnoIajYgdekfcKZI+wKOGkTGYFwdzQ81Y9p0bNrwkO15OMJ2V8kgpp8KkldIruuViXE2oBhrpGa2h\nQwWSl5JvNh2eUxl5HVoUnUBnkDnQE+gi6Jy/pxOZwCQ8JAWPFy0q6NSp1Zi1M0UbFVSNKjuTNKrv\nqGw5wbbB8FbBVehTcNZgq8o2TWxNaL2zt1RuWM8MjHAZvsGs6sqwKGU3HS3eJVOoI9lmIpBQak+W\nNRSsCG45ee99hy0IDKlnpmnOgFgCE0AKVjp7MS5kYCgEoYYJTKIUydBVUhODRaZNNxYap8xQ2Ef9\nRvf0vZqmJPHNxWkwpUcBWzCyEgbzKiH5/I+JfPhQV0Qj6BAdvOfGcvg5e8DXPqL8978AX/0asm2c\n//rf4P7f/PO0P/kz+OgV9x7Y1jFqsrtRRx1bp1mw707bWn7QcmOcDCanTIXKTHOjWmcPS6CxCNSO\nz+TXt6NiL8npLspuEyszKxO7TphMmM9Yn/GmWIMw5ajSDdH028qOmdElVTV7XOgykuR3IzYQI1uB\njnR3H6n4hesGhwnrtrDuxiUaq6zso5637hdmm1nKQp1SkXRIQ3UKKg7slNaotVGnTqkjw0QHyy8V\nMaXsNT8sqOGI9hyWaFyrdUMFF4Ui+FRQH4BUxvPa47q/HbWADzmhwsNOlyoZH2noESlBrkWuICks\n7U3FlSLTALgFILvN9419b6zrxmUd99qy6u3wVTLC5Uop1GlmmibKVNKzPQC1CiMpfKxx4UMufgTL\nvL3eXm+vH7Xr9wbO26/ZVmVIsGvNfdq6E7TEeTJw3qzIonASphuhLqnMvZnlivPePQe3p2zEMmlE\nzxh0PYiNcIo0Ksbkhlq2FUjvnG2ly5ZNG1OhnoL5LNSzoGelToViBdkKtb6B8/zAeTmNHcklA+fJ\nGzgvLbq5PqeCQcrAdotcsd+/EOcJ+epUyfyLJffAMg2bKDvTwHmTbxRd0VjH0MUGIZCH26bGXoV1\nqqzNufTMtthMaIPYEGdgpcB7xXtK6pvJYeDJ6OxIxTSStk81QZoSdeC8NgJnfYd9WFnqmWmeKVKY\nNJUsFoFExXA2jEtE5q3plMpsBS9pa0oVkBAjmyyP3SecE8ZCixxo2V6hC9IccgY08r7HAVWOIZa8\ngflSqfuA85JwuP7jo0Iteg61rCHdYHf46kdMf/MXKP/sa/B64/TX/wb9L/x5tj/6M5ldM6bp3Tq9\nGjYlgQKaw8IObXf2vbNfnH0bbXiWnxcC7oppwbQmzo2ZBU9V9yK4blBs5Lql1ukI2uwV+sgf6VLZ\nmUY6yInVZ5rNhIO64xTkaGSkE6XhKmzRebVBs41lXdHN0RVKV7TJaJXLcE1RYM72Pz1Cb3sQLfD7\nQvfOXqBNitXMxaM1Yi9DBQLSDpJQ0moxK8sKC07UTqmdpTpLDWYaGo5afp7sicNEHNWg1GxK1MkQ\nWZChoiqq9KkkOeZkNkrJpsTAcXkzHuANxS6HciO+D+fVN3Ce/UDjvB8aYgOglEIZ/kCVrCCt5QiC\nTLk1SgZBVb1ujqVkRQ5W6CIsU2WeKvM8M9WK7rkJhmhmDJiPjnPLKqxS8FIJHT74sdkVreNdUpJN\nLXmiz9Rm4KyUU1Afwe0S3EyFU5kHsVF4d4HH6pwtoBveOtEytXjk6YychXE2sWTNsgGlo2bMGLea\nxEM9C/O5oI8KcipQlGjZYFJFqKZMpsngW7KTRwCXSrLx6TWso/IrJ+hy+EanyITv2YlZiIVk56fB\nXMuhJziYZkFLUIozS2OOzmzJKE+R1aNTZDWUtB1fe25akTW4MZQUM3DSoE85NW/HYuhgltJ5Orjl\n4uW94qOuq4WwhbJFZQ+lhV7Vf+4BLZOJQzKrx/ub8vxG72C9UloGVhUUkQmPCmFYOJuk71cGn9kR\nJhGKTClVHARH1oZOtFjwmImoeTjvZA2ZH6wm180rH6g3ZIjX25uL2xDwXO0H4pHVv9YJhoUksrc8\nOkRLYiP2wEPopxNTyaKvvpxoKLYnqRHFs79csl0mpGQehxvWO707e+vse2O7bJl2Lg2fcmKjJ8kw\nIRYmOdQzSs8UN4wkH1yPWqgEJ42JLSY2ZprM7DrTfcK9Er1kPdpBbAypXUGJciKkZ9YHFZeaQVAW\nROv0LT2mGZianSLiKaWVxECoAVaINrH2YBW4OFzC2fuObXoNxlrKRlkUXRQG+CszLNHR3phrw2qG\n2K00zINJKlUX0BOFlIloq1TPaY+WkdkhDa2KlFG1JyXbaMqUntoj8V0Hgz72iPBBfX3BczmmasmU\nHPgJAlQLRbjWIma18CA4NQPqRDQzPyzBzbpuXLaVbd++8D2O9UPHmltrzc2u1qss8ZBgyqiljcHI\nZBjgA8n69np7vb1+NK/ffZzXB84rwxbzBs4ThrLQkhQfOE/Ogt4o50dwXoJTFW5neHpTePccPJuM\nsxhYx6zh3pDI9rbDjFkss8aKDbl7M6R1iqXEXyXbXKezsJyzYl5O6es3Exgkde3K1A+cl21tigyc\nN/76om9YYbI6U46kQgVqQHViEmJUx2e7R6oiYuw9HJWrSlp8psR7U3aJJc5jZ5E2KuYv0DekpyVz\n3IAkmiLoEtzUYFXYKqw1LanNBPPRGOKCGoSletEdmmeFaguhh5AznMwrODKrYldcNXHezlApOB5t\nYMlKMaV4BsaKChoxMkGghbNlWTBy5JEJdFWqHrktGULqUmgxY3HC44THgsVMj4nogrTIZpWHwf44\n8AdXe/GB88ZE87qVj4FnDIn/Mcw6+v8GGM5MjT0y6Hw65aDSG/t8YhNlb2l70WFz7tUw63iM11k6\n7nuqNJqx75XLarTVaHtL/DxCN2NKNalPC9cQ+uMR0bS36NwR9SE2kNE+IpgWuupQM0/sMbH7wuoT\nu01YH0SQOyUUT9MHlAy8ZapplYmN6BM9Lqg31JPQ0nHeoZHWMhmPcdHMSDnGhR7se2UzYZWdVjZ6\nuRC1on1H9gI76C75datSa6H2Qu1CbJ2wHSk7dXJsCpg1j4bNmTZNcmSrQw2WZwaZj+Njqr+ONUE5\nMNiE18BKZFisPKjPjyFnXBvxlIeq5nxPcShLRN/Aef4DjfN+qIiNWnJRCjdU87+jFoRy3RQOv7mO\nSW4peXPLILRKpCdqmqbc8KZKKZnd4L1j+Jj4ZyozHGmxOjY9qGWi1vQ6ZqsDmSlR8wFiFjgJnIX5\n7Dw6G09OhSenwtPTzO0cPJ6Fx9WZu1FWwXYn9pT0a2Tfb2YpSNZKWtAHsZH2izy4aoWbE0yzspwL\n801FzxU/FVoRmgrYyNJokpYKHw+062AN80EtmqRGkZKbnepIXD7kdZ5kw2TIHPikyAyltiRIrgnO\nhw+TDMVyY/Ke6gxyo5sl+ezaHdkcu3S49MyXAGTOr60FSnGqOEEmbJsaPmXrhhfHbLDVko0QIRNj\nP2JXZ0e4WGGjsHsZREewRdCa4JKLgKJEEcwEMx9v5gytqq0Qe00PrRyNExMh0CdhJ1JaOUIfm5Qk\niI5RfhRCCj0KzSfEJsT0+tomR5Fv/hiHTxn3EokvpBfDCBR1Iet/Y2x2yeKLdUI6Ho2QNkiNN+SO\nLegt6O+/z/bv/2Vu/tu/Sfnmt3n9l/8S9vgRtGwm8eZ4sZx8FECNiI73DDptXTP0ad9Y1zUZf+lE\nJSuirNDPhTotRClUKuaV3RX3rDXtbgcnAwFOocuUOSTDsrPLjFnFWsnpyu5Yi6xdHVMmpKQ3tDIC\nmWZCZrxPFFGKRNaQy4avBxs0VLUR13tfXHGb6dtCU2WXwhrCxWDbg7jf0YtSWudeGzoLZaiy9ARz\nD7DOshg25wTF2oV137jsZGCvNqw6s8zJljtUUaLOdO85vcNSsqtKUDF2ukwZXnvkr5SUVIYeLP2V\nFM9gskOx8cZGcyh/iLhuPApoGJgzbOXAUIC4ZW6KGeu25ce6sm0be9vz8wfRq5qebD08m7UyzZVa\nCkVz7iqacsf874dQUzlC9I6MmrfX2+vt9SN5/d7BeXXgvPJweJBhOUFTqbck1iuPhOlWefIInpzh\nyYHzFuHx7NzKzjSCG62tuKUVQzUrZwmhtIAW9Aa+ObbnsIswagnmRVkm4XRWlpuKngt+UnqBrYNR\nqDqa+0q2Pahk60dmZqTKL3HeodYYbSfosFVE4rwieDWkBF4LTJ7BiEelvKQFQ49fk3XmFaO6U71T\n6UzSWaSxyM5sK7qvxH0nmg+5u16zwSKcStbcThqcCpylsHn+jDZy2NSNEp44NhSPmd2D3WE3oSF0\nV7YQ9nB2jE2MVsoomxCipLXT1MlSFaN7p/ZC9DpwhVwHitKFqIWGsWFI2MjSE7oUqsiwiqcl2KJg\npA3Fj0GWzUSrD6Ht3Yl9QFcfe/IBhIZb4CEMMg+z45dvBILHwICZ6ZDkRgPLmuPYg/jS+7R/7y9z\nbn8Tvv5tXvy7f4n720d0TwVUbYnR3dOuGurQSOwYadHurbJvjW1z9tXoW7+Gl4sU1CoSBS8FK8JO\nElGZARbgmrlvU+bHQKpQ+zVZptKl0MdQa5WZ1Sa2XohNUdPE0lKoh2VZnDIbOi+Ika8HRo8cDmvf\n8vvbA847pKwaSWpUSoaRiuDiXHrlvgsrwa7GTsPjgrSN0hTpklkcKNNSmedsITqH07cLst5l3kg1\nlhlanSg+EX2irDA1JWzOAH0bpFRPNUo5qoM1T05KRaRmRkvRxLclX59Ua8RvgfNKfl00FRLj51Oy\n1veHAef9UBEbWvIh9OhDQihILdQy0qDDmEkPJmGYFQhDNNlD3K++nlIK81RZpollmrAYidMOh9BJ\nwkHK+D5T5kyIJrExzSCKeWBhhAZaSvoRF5CzUB4557Pw5CS880h4fqu8dzvzSIPajVgbvnt+bCmT\nxHoeWksukILysx99zDsv7/mHX/mAFyFDBtaIYugC8zxxWyZulon5UUVvKrZMbFLZdGKLmqFbDGuW\nk93VxEMq96gt4iptIpnjkXYtU4y0aycqeDVqcWoYk3WK2PXrHY9rjNO2REdjzwU3GnjDu7F70FYn\n1k6/b9h9y4m6OzIncIhKWnxkKAdIxpHDmzMOpLTDw5fyy6xggrlm3/lcnV2VXYLNnTWCNYJLjWFz\nTL8fPT2ZZj6UEMORZoHvlizqsAdQsvtcRQgXmlekgiNM5EH+eGZEC+FZExq95NTBSUvIseCKM9SG\ng3XVK+b4Iov/cH+vG9yVHfCh+si8FiRbZ8I8v5fFCNB0dnP2CPzP/hxyuWDnJadhQE0bcP7cPUDH\n+8E71mHfO9tWWDdj3XIB7L1nVewsSJScdoTAUmGu7JKLqm0tK9ys4D5GSMLYXAomE11m9lbZu9J3\nI1ok4dIV70Na2EeukjBsPBNRAtOgq7Azwm1FoE4s5Q49XWj3O252HPGBQDRgCvppptWZ3RcuXllN\nuJiz7kbfFFmDclG0O0U6csoWFUEy+V1SRdWipWzPGn1vcNfxS7D3zr3vvI6VohPnLvzxr36D7Z1b\nfu1nfxLmVHyFka1IYkTd6VQmdlwnomTGS+ZKZbZHbnL53vZRD+zwxU0v5CrjTjUPI4bDh9TwUCqN\n32fHPegW7K1xuVy4v79n2/cMkCKTsKd5YlmWETIsWDjTNKdap6SV7ZqmH0m+uTjXOrDRqJQS6SQO\n315vr7fXj+b1u4/z8iCQOG8CyUOaedr0tGbe1lWt8QiWW+XmFp49Up4/Tpx3MxlzNHRf4RL0o5Gi\nD2sofg3KllB+9hsf886Le/7hBx/wuUtmVrVGiKEzzHXiRmYe15nzuaK3FV8mNilcrHCpww5BtmYl\n4ZCHGVWuB4rrtPR60EsroqggNYZCN4dYVmNgPmGqmXFyqHyFQI/cr8iw0zKyM4hO0IEcrljb2bYN\nv9+xu0ZsqZwU1cyN0CQXfBAbViLtsCVD10WFGqC9oWZpJ3XNwV8kdiganDSwAlZyoLWFs2KsYVzE\nWDVVG1GFaSpY9eQDTEZ1cOZjJR4euWUxJtRFYK30KOxzYmMPoZODw8OKknoOxaJCWyAqUFI10COl\nxvkIIG2oHo5TpjyQGgeoS3h33Ofjt3Maf3w3iT4CRxP3iSdmijbOF3vw+ud+jv6zFy7nhT2CfkBK\nIxWjh7VFE1eY7jRrtK2yb5V9K2y7s+9pURYXxMs1909J2XMrlY2HHJEwRVypMlGkUCRlEzFUqN2V\n3ZXmqeBtY/jXWiU2JQY/kYylAGXcIocoeBSiphqkVKFWTWlTvYOtwZYZGpzGEFECXdJiYhWaOt2D\nfRMu4VwINoFdoIcRfUd6odhQuvsgNnQMm3sw7UbRlRIXIu5psXMXTuuFuU/cXoQ/9k+/weXmlq/+\n1E/mGcyHNWbJZyyEoQZqyLzSohBRqKGI1sw9yaMDR7YKaax/UGyIZpOmli88RhncaW/gvBEq/wOK\n836IiI1xwyTlV+Gp169FOdeFk8JJArWGWr6xccfGJJKx+IZ1PFIVUIoyzcm67THyGQQqBYuUlMEx\nnc9AR9FKKROlVIKsxQklg1fqOPifQE7CcjJub+DdG+X5beG9R4X3bipTd8I7a4txoDe8WYYCelwX\nt3Pv/PiL1/zUR5/w7NWFz6zyKzeP+I1a0mpQ06M5eeWkE7fTxHKq6Knip8qF9E6Fl+zdNk92mOAh\nTIori38kYudBeXj6VIYFJcmNw3pS1LK72jqT75nqHdmxHuTrY56HbPGGx455VobK3vKQugWsht13\nuNt456PvsXXnNx/fZAJ3JTvCS0DxPMTFETjjCS4O7+iQmyWvO+Wbb6rIIsi5UM9KWZxpciaVZPzJ\ngK41NXFJVphAKMUjD/ZOMtJFyOrbYVfw/HO5nOggARSbE6SIF7AH3+qVMPJk/8WPU+UR9jOCoYQR\nfpXBO+iAIceGZuOXkpP6GIvcleSw9LfG8GqmHG2QQW9KI46t0o39Kx8gkdXC+AiqGgy3D+mae4ov\nuxm9B20v7Luxbo19y+758Ay1LF6y1aXlz2MO1snphim9FVqvabOLuFZ/IWAoHlmF1nrQVsNWw0dV\nm0YFL3gXvOX7JNtrxuRJK63OD/ycQEzCUkoqkbQQesEtq+Iy+GsoH4rQdGKjcm+Fu6bcN+Fuh74a\nsQtlK9RdKD0DnnR8/zIp0TvaO3s0Nt/ZrbPtDdscuXf8kmoT3wNvwrur8d6rC89/9SP6s8estfLd\nr7zL+nTJDaADU6qVqjhdHMXoYsRRk6vjsRp7hOdLmJ5MT6CfObTJiuUGw7AVAT3JjD7IjWOtDQLr\noyasG+u6jg3vjmZZVzZPE9OcoVHLfKLUfA3Mekq4B4OvMtbRKyAzRLNB6CBdDtWMHETV2+vt9fb6\nEbx+L+C8MnBe/SLOk4Hzyjj4zyCLUh4Jjx4X3n1SeH5beH6jvHdbOdHQPWj3mjjvkjgvPJL0l0AK\nPOqdH3vxmj/09U949vmFz9fKr5wf8Rul5LBAU50w3VROzNyUmZulUJaKnwsXMq/JVQgrGUJ+xXnB\nVaQuaZWQMXw6gslFx1DlaDapQUxk5kjNvKcqhkaSCiVS0SnYGKLktBfv2LBBaHTwnTo+yroT9x1e\nbTz/+vfYduc3b254SPEegzBJFe7xvZkcZh3tC0KxQDuoKSUmlJJW3yrIXNBFqaNudi7GJErFKd5B\nlBDNMPmuRC+ZbzDmbRmaKkhJDKTHUMDTLqy7DE5Bs8REhDZM46aa91ZH8weKR0G8IFHyEOsgNrLU\n+vi1l6HS0O/T5w+7QRw4DQ5J/zHICAGJQ82c2Djx8fDODOIqPDMV9t/3QebSjeyFVIXnc2DmSSq5\n4zb2fpzmwr4b29bZ90rvOcST1E8haP48jOw6d3oxGkFzwUyJQX4UDYr4VdmdWTeVFmk12nvQPLKC\nNgx28E3xLeUFiqBTSXXPyDKx5oQWdFrQ4lRNLAdDkaAbOjnFUxlzeHBlynreDWf3YOvBfc8IjR2h\nFc3wWFPYI20tPup9PXN5Wuv0BrEbU2mUsjLJRsRGbyvr1rjcC+9tw5eIAAAgAElEQVS/MD787oX3\nf/kjLrePeWWVj997l/W0pJYqcr2TqkgNyuRAw2JHoyJeoQhSBRsWPZc0/NjA/V/EeQyFxcMZ4IcN\n5/0QERvjTT02u2TzDVXhtMw8Xio3VWBfsW2jrSs9UmboLiMbID/HesPH59aajP5sIwhoEBUhI+Rk\nvCAx6hRFhzwoNL+uah7mZqFMIJNhUyATLAs8uam89+6ZL90o7y7CY01bQDeYeqVfGnbXUw0wPKUy\nJtjPP7/n5//Jr/Lo0rCAf+2Xv8Hlx97nVz94F2+ORrDMwhSFWWaWOnOeCmUp+JLBn8ZE6wXZLUMR\n1cZqNjxeY7Mrx+EbHh7KEa4oVZGJQWo4pbRMXe4bhZ3CjvqQv3mmj7eeyeTWW/rO/AgzMvbLjt03\nfO3ExYhLY/p85cf//j9mQ/mlP/wT2VNfQab8SLp+HL7HMlo0A8SmUiihFPLwWmXONN9lZrqdmZ8u\nmRoesEjkVEJTDRMoPismWc2FDa+pQ/ggIoYCJH1qQ04lOkgKElBNJFo6Plrku09IA90hvTjIDQaU\nGmP2EL1u7FIUHTYDNF+D41NpOmppY1gv0nfnh9xrNGS4Mr5mrvIulj9zEbSCSlAJehy2lvEnh4AC\nZUjeHAunu9DD2Zuz90wp3zfoe6e1RnhQNKW7tdZc+CLoW8oWTY0WnYazUzCveEhOHTRJI8evdqsY\nmTO2Oe3SR9iXIDGB5+vUe7LBZcn++TKYjB6V5k6XTpfKuZyRMlGWMW0JofeGiKT3OsdZWAgtKmsX\nXu/By63zeg3uLwGrU5oxW4Ge4EYk0+c99Fpn1rqx9cZqO3f7RpXOvEPdBLaUGPe1c78af/Bb3+Pn\nvvkxCsyvLzz/9AV/71//E7yav0wtNXM/IlPsC6MlaQDiQ4p45arkgdQYhTr57zf8jT5UTiIJNLyn\nR9PGZuc+mP4yiDpGM44Ze2u56W0r7kGphXlemOcl5dpFh2z7oTYw/ZsHWsu/lFm2AWh6zBhnmEGe\nDTnSW2Lj7fX2+hG9fq/gvCNLa+A8UaSW0RICUhLnsQjTWXn8eOG9d8+8d1N49wxP5k7djDAFGzjv\ndSea5YBE5Erov/vinp//xV/l8V0jOvwbn3yD7Svv86vvv0vfHS2RTTBemJlZdOGslWlSYsnhifdK\np2BNU4HwBZyX63FRBs4b62zk1DZ3zfz7SAXmxC5RM2tLZUc9P4oPxa11rHe871jf815by4O1p2W1\n7yvSVnTfiHuD143ps5U/8Hf/MS9M+dof/InMzNQh2hTS5lIcqamgjMkpi1InZZpKZmBYoXihxkzV\nmVJnpvPMfLMw3yyUU6WcldPJyXgUGTRMDkz2RbCp5GvTyXaS/lvgvIGfxIF2BFnl1MRD8Ta+VhmD\nsSPEJI7Bl+SePYaFEZrqU3fEFR2iVkbFPHrs5/FAZLxBUPggNlKmQlZuahxzqAyMPEiPQv7Zkckg\nJM47iK6Ssw6ObLgMFTfMM0i04ewm7LvSWtAahFeKTlStVM/sC7PRlNIGzqPTpLOToaAuifGKDrt6\nZI6HR35nC2gebLvTW8O7Iz2gF9iVvjniQimF6TTlALmMA77lvTQRmJbM4hHBLRVSTJVp7kwVqgll\n3E8rTg/jsnXuVuduDe6bsKF0Lfg8kX73CWlQBgEansrXLoE2wzYnVmfynTrtTHVn1kbfO3bX6C+N\nD772Pf7cr3yMdXj06YXzd17wd//Mn+DTD75MrTXtaF0zR8TyfHCNwQ0j7UVpvUFLZpNwJJkcOI/D\nZfN9OE/SkvR/w3n6A43zfoiIDeit0XtLlngkI4tG9u8WZZ5rHpAkf/DNgtah9ZThRGTSdLc+ZDiD\nmS0ZAjNFHmajZD2oWmYRXxnN67o2GDYtVFkopwkdIU6bbPRqsASnM9zennj+7hMez50pdvq6w56h\nRRICPfjyi1f86a9/xD/98H2++fwZGmnr+PR85hf+0E/yx775MU9fX/jff+zL/PPbR1elRRISOj6G\nXO6wgkSMDTSZzkMOdDDkWvJNlAsvV5Ljypwf3n0VfBycCaPsG7HdY3ZPb/es/TXS7pG2Qe+D1LBr\narJ7BnSlciN9hevdfZIblx3dgj/4yR1/6psvePz5K5YQ/uIvfo2/d7PwzXNB5+FprWMRF4Z8NECE\nKskIigsfbM7PfbbyK0+f8o1nT1jOZ5anJ5btzLKfObUTk09wKlA7VZwFyymDTthccSohFffMxcDL\n1doyDC7XpqUDH6QVhrRtmBBdhl1HRrxGspmiDqJ5QFXyCxzTEnUSeQgxZKBRPJ81l9HWAbGTWRme\nn3cw90FaccICC8Fk1KFGYR95KdMU1IPMcsEJps0fNk95+Dt5CWxyrAZ7SXHNfYf73bk0Ye+CtfQv\nVhkd1nVimlIt0bxjexvJ3TbCjsbm7GNqMJhmxkJtMeS+I9AtuuAHyx6ABWaN3hrWAm9BmWqSGrOi\ntWazioMVpZWJVmKkpVeqk5303ukxZ6p+XShlCAA9uNvhdXNed+OulczVaIFaQaOgsqRiKzTvueZG\n5wjmRu/CRnCxI1Nmp+1BGX3psTu2B/vW+SePFj7/8Ev8xU9e0J7c8Ms/8SGfnZbMjLHMwLmGfw4/\ntBxU95vP3yH94yA0jjTs7Jw/QqSSODs2oAEqLK55MqJKqTV/nogEp72z7ykjtt4pWljmDOSblwUt\nBXOn7XvKt2tNmWHJ2sZrPWAEvY/gKtGrAlrkWF8tZdeji/3t9fZ6e/1oXr/7OC8Xp+TJZeC8mTKd\n0LkQFTYS58UCp0eVx49veP7uE57Mxqwr0Xd878Se9e3Sgg8+fcWf+fWP+MWvvM83nj9LSwXBp8uZ\n/+lf/kn++Nc/5tnLC//g93+ZX759dCWsRWTkROloNxHKCI/O9fQhlM9FxmDi+3EeA+cdeV2SAw1J\ncucB5w2lnxmx7dBWdrvj0u+Qdo/aCn3PkEnb8Z4kR5gl1suvgIezrRf6usJlRdbgpz6+40994wXP\nvveKcxf+wuVr/J2bhW/OQxFbRnSCjvDxKYZKOO0FtQrShQ/unZ/7ZOWrt0/5+pMnLPOZ+ebE8vjM\n8uTM6ebEfFuZOsRZKXNal1oElq90hqIXx2shZiWs/r/jPGIMNUa2wYHzJhnK4iOMdeA8fbC6jp05\nPw6ch6emRtOSlOTGdTu/Kmrwge18qJiIYX3P11gO+0tIhuNLZVZDlyDODnvmpRE5IMmQ9BgZGJnZ\nYCVbZKwYTYyNVDJvvbJ7ZoZomTnNJ6rPTDLDDq1nA1E2s1m2dhz6DX8IWA1V+nWuV642iECS4HBS\nHdGBFlhr9K1hW+B7Ds2mOlHKyJ7wcbjXcWCPVGZzEiY33E/sfkJCWdShFpZJUDIgdeud+9a5a8ql\nF1acXYRdznh5BDymxgn1mvc88ozhQ7nPGELaHsTaqX1HpwtSV6RsTNuGbEZbO//ovPDqwy/x537z\nBa9ub/g/fvxDPlsWrGWQ8WIHzsthWVqyecDjxy+//2n6f8R5g7W64jz/ocJ5/78TGyLy14C/9n2/\n/UsR8TNv/Jn/AvgPgWfA/wb8xxHx1f+v39stD8x4vhDiGTsTYUjUlDsVQaZKDdLPpmPS34we+gZL\nNGrDdCTbenrU3QQzqOPxMYRuo2/b/VphI1qpZULKwnSekKUQczJoOjnlETx+Unj69MST20cscYes\nGQglo27Tm/HBZy/5id/8Lj/9nU+wWkGVj5/eEMB9rXzt3afMW+PpoxO/9N67fK6C9k6oU9Sz6qxm\nMm0d9V0c3qUYUsTxzOXmXrJ33UFDRpYDVyIEJC0OoyvZyYOo94b7irRXsH+ObC9hewnrK+L+NeyN\naDb6jmOQQG9S8QCCe3B/95rt7oJdNrTBy88vvHr1mlM3VndevHJe+s6rngdWmZUygkQlsuc7F2kZ\n7LrwlbvO73+18pVPV149XXlxt/P5l5/TFHaCzY09jJMsTK4wT1AbVU+cmBFp9DLhMuFlwryM5pOs\nas3HYXghg9FiIsOSMhh1wBtYDaQ+tMlo8iNoUWQEACHpZWSAipSBGtTRGV9SkSLaU27po66qO7TI\njcTGwnZsUJ4br7tew6saEypTKhZmI3RUzI34jRKBHbJFSYY/nTmGV6MXZxdlNWXtsNmwLe5pLxEX\nJp2Yy8xcZ1QL3bLWy3c/AkOyPczT2mKtZy6NRDb3aG5uNnyefiQb5fDnWrF8zYNoRmsBNqYcnuqG\nGKZR75GbqAo+VXwO+pSin+7G6slgT1qJcqKUggGbd16Z8bp1LpvRhve2RowWkmExIlPkY8juIkD9\nDW+tCy1gxZkiVSflEmgTpIE1Z9s7rxA+eXTinSc3xDtP+bXnz5irsnjKfW3Mi3xIaOPwCH3BmyjH\nopvyTI7JDWOzY2x2DCXY8fdO0tFGfVfIQ4p1BLgbrXW2bcv8lNaA9HkvpxPTMjNNM06uad06E3NO\nZkodfu6RPiJHQveQYaukPcoj630tVV7djIewtLfX2+vt9bt1/WjgvBg4jzdwXuBuI/l/kBplQnRh\nWhZkrsSU66pOjp6FJ09nnj294entmSXuKS19+UdYt2/G7/veS/7At77LT3/rE7pUIpTvPL3BBC5U\nvvbkKcvzxpP5xD99710+U4HeQZ0innW2UnJSLplBMmL5EhMxlBdji9BSUvHaGYftNzHhmwekg4gY\nA4duNO+07YL5a6S9hP0lsr0itpdo21BreTAd67UOpeRVcaA5NLlfX7PfXfDLhm7w8sWF15+/5slu\nrM351JzPbOfzZUope0k1TKkgeyDVoUbm1k1pAfrKq86/9NnKj3135f525cU7O5+995zdUkW67ca+\nG2dbmK85HAUtwSRBP3C9jNa3UnCveM1kNBn354rz/Ptw3rAoewcrgZR/Ac7TN3De1S48VLsqUBLz\niWoGdWoGtZYi4/djKIlyj4zueB/4Zqh1U3LB9TmP0MQeUnKoJUbMo9VmIUPXB6lTxoE5j75GVxt5\nJoGp0bWz42xe2Hq2zYRMFF2YphOTz+gIfqeRpEnPs4MOT0Q+S/2aP0hNnJcxIz7sxofUgGvo+TXX\nbXdsNdoeqWQoAkPFGsOq7+50DFfHDZKMzLpYs4XmZ5SJUKGUKe87RmPjvjXuvHGxyi7QitC1YJ5N\nNtoWwiv0kjkhY3Ckh9ZajnORQ3Mmb1TbM2ejrFjryNZpa+c3ED57dOL85IbL06f8yrvPmFVZzFAz\nzBX3h4FT5lRwVTlwEBXjDX7FeQyYfMV5vIHzGDjPBs7zN3BeBoxGxA8szvudUmz8E+Dnedg++vE/\nROQ/A/4T4K8Cvw78V8AviMgfiYj9t/ftUo1wMD7ed3pvqDV6SflSnxTrpGRbBa2HLwm0Dxk3kdVG\n0TE7qmoKk1dmNKfdBM3typwJuaCZpQLhiNis84TWE6IzdZ6ynnROC8B8hulJ5d3nC+88mzmfCvH6\nBX3f0G4UK3gP9vudP/7rH/FHvvEtOvCvfPPbPLu/8Lf+2E+zVbkyxb/4wXvp6SOQbim3olImZ5oy\n+XuqlVoLWnWEjj7Ik443hwqZS1F1bEa5IaYX39MSoORijGGjzrS1ndbu6O1T+uvv0V9/D7v7hLh/\nQdy/pr9cYQ/wwXVLRcvEPJ+YloU6z1nFVpLNjqGw8iFU+OrNiW99OPFv/fonfNs6/83ThblUqmb6\nsZaC1sI0KdYaY5VHNGu5NIQ//eKOP/npihn89Hdf82SHv/3el9i7EhdjjQu7OE0aJ8vMDVkmdOpM\nMqM6YzKIDWZMlR5Kj4LrjMecsrcoQ1FTYLC4mFyJhcg/Qkyp2JCJIzsq20JmGV5KJ4rmvS65McpU\nKHNQqjGXDOmSMalPCFaILmlzaZ7hUPv49zj8i0NYyQo0OkqlyESVGS/7qEKNEWJ1ECN+VU6kAiQZ\n/F6TINi6slph88JqytaEfYdomT5fa+WkJzTGe2jt9D3tI6Kj8UODvQW+dtracrJTlbqMzVw0paGR\nEzq3Ucd3kBrHh8XoXh8sfilZ9YcgPdcHo2fQrDo2Cd0LDaHgdFvYZSy6ZUamM6pKN+MSO6/bzt2m\ntDUoXaikt9eHhcwtK7khlVveHbHIijhKSosomCm550Um229GaUN100jPag/uRPhbz9/h6eNHPLOO\neqUORcvhnXwYGo1Nb2wix28dig7e+LMRh00lxuRvyAJVcwPsudmZDa/tkdlBsvtXSeIlg2HNPdOv\na+V0OmWonubPf+xROrrSp3kC0tt+bNIhMkJNj4mg56FFSHVXz+nqw8/09np7vb1+l68fUpzn34fz\njuGov4HzysB588B5iWNk1sR5AvNJmJ5MPH9+5p1nJx6dKv76Bbav1NYRK1gL9rudP/G1j/iZX/8W\nLeBnvv5tHr9KnNerXOMQ/tGX3sPeIw/f3TLPg0oVZypDEVlG+8BQ5yaxkQfWI9AzDx0D51XJVohg\n7PNyVb7mMGbgPE+ct7aNe7tj2z+lrZ9id9/D71/A+hLdX1KtUzyyUY+KysRc38B5c0EmpZTMc4sR\nkqkdvno+8e0PJ/7t15/wbTr/9dMFLXV488tQJBamqpgMnGc9cdEIbf/Tn93xpz5eYYc//Po1t3fw\nP7/zJfam+J1x2S/s3WmWOG92YTJFHjmlOLOmDTdGy56ho42jEFpxmbHwVHB4ecB5DHLDc6AUkeqD\nQ5krQ+B7xXlV0p5cndCB83TM3UtBp1TzSg2iWA54hmoFhSKjpcQ8s8oaOXDMeJOH9mEdfAuCSyVk\nxiQP/F0azMAc+JSW42PeiAbSj2r5IEqG81vJ4NatK5spm5EhlszUcmbRBW2F6IFtnb52fM+Gmzrs\n1HsLfBs4TwbOm4ciRTLb5JhUuedB+BBBRAxyYwSf0oMiA+fJwHkjA8R6z8/VMQij4CEwVcxmTB5R\n1dGiTNOSGX3WWGPizlbue2EjoFZCJ0QqsSqxKb6Ceb53oskYasdoBdFxVsqwW7OgRbBZT2t+2bC9\no2vajv0SrLvwPz5/h+XRIx61jpZKNc9hnsV1+JTvZ9LGkevsG8vvw2IV8jBUi6uAV4ZSKPNaPNLS\nbX5kqPzw4LzfKWKjR8R3f4v/958C/2VE/A8AIvJXge8A/w7w3/12vtkhI9RSAPBR2eW9o2a0WmhV\n6WVMhhkhnJp+rElAYkIjA3Fk7CR+SHekQOmwO0Zna50jgyLpxHEKH8TZ0f2dEiDLhXtSVArzMjHf\nTjx6tvDsycJpdnq7J9qG9JYlFd1oW2O92/i777zLN3fjz37nY37pw/f55x98iYsIYSOte9wA0fTj\nlfGKSkTK86YpK4fmiXmaqKUSpeCaW3MpOh68lMYVTa+aDgba3xjx+qgOtd5p2mjR2L2x85q1fcb2\n+mPay+/QXn2C379A7u7RS0NXmKJSZc437DSzyJlzecyj0y2nmzNlrnm4tS3VeC7skTWcuNHmxt95\n74bPW8swxjKPpN3CzZNbnrxzy7N3nnL38iV3Lz/n9eefD4lmZdLK//nlmfvlwh/99qd89YP3+NqP\nf4i8/2VuTydKhU03HNg2J7Qzd6G2xnQyypz2AnTGZcGjYVFS1ufK7hvEgkmnMyOefefSCzqSkulJ\nKuC5gIcJzJ6SV1Okei4+ZUhgURAjCgnKpqDWnUlzsjCFUzgo2CSLQgpeJDkJhU2z05uQax6DRBIt\n4U6PQqHSZaZL0FBEN2Ie0yTjYcM+FBvDo+ni7MDFCvddWV3ZI6u5fFioNJSqlSkmJPKZ7XvHNoMe\nVM8V1wm6O7EZsRm6jxwRUapliGWPJAgwH+nNY/MaErpcifNe4pKVdlqYNBUV0TreyQCsMBzLqUwF\n33Oz0qJYLOz9qOytxLrkgtaVfQt8hborJdJiI5Ls/NY3+rYlax3pHwxJieiR1ZHVx5kuXcxp5uxh\nlN6R3mlbTh9o0LvTWspjsaz4qqM+sDxS5phHkOwIX5Wgi2NHoFgcYHWw9f6FFfNBonUlPTI/41Br\nPLDn/WGNEc22nLazrTv7/rARZehoShjRTMS29hBEtSynkY6dRNch584v/VArnX/fBNE+7uP1e5At\nBm9bUd5eb6/fE9cPKc6zgfPsDZzHGzgv3sB5qWBLoqWhNTMt5tPE9Hjm0dMzz56cB8674H2l9pbl\nb7vR1sR5/+uzd/nm+8a/+p2P+Wcfvs8vf/AlXh2HAPfrwSR0yLfrQbbEqFmcmOrEXCfmMlG1jAOM\n5KGfVDR4epQpZeC8qtdBwWFr8LHPm3UajWaN3RoXv3Bnr3jVXrC//ph29wl2/xlle83U7zlZR6Jk\nOLtUaplZpoHzloHzTpWowR4bRGZQ7ZZh7NKMXhp/+/kNL7aWQaVlBqk4heX2lnee3PL8nafcry+5\nv3zO6/uB87QylcovvjfTuPBHP/qUX/nwPX75xz4k3v8yp/lEAaxtmMN28ay8dzBTJgI5BbUGqkaI\nEZFYpoRSPCtijRnkhDPjzCO8MfGyWO7dcoTHi2Q+Rx3tNkWRkpgjpgzZDFeolsOtcaiUkplsOgel\nZKimSCopijJqeQ0jSYe9gKBYUbyXVI4OdQw6rMSSjXI5mDM6nS0KRcmmtdNQi2ikbWYf2Ww+CA0x\nuvShcE47SxukT5QZlawtFdPMCNzewHmRX9fd6XsQ68B5bSjcSawWBt1HfoY95HkcxJod550YOK8L\nNQbOE6EycF5wVQy5532KlkqvYgWZApNK81OSTjVzboobZspuwiqVvWZdb5EJiZITq61hr3fskvhI\nhko6IoPxpzkP9Dreu2759+jRaWE0GltLG5pe4o3WyyD2YPO0ikfkma5Oc3IyA8OJ5YBUPJXzvKGo\nD/It/IUFU+QNVfyhnEqCKeKLKonjc0RSnfaDjPN+p4iNnxKR3wBW4B8A/3lEfCQiPwl8APwvxx+M\niJci8g+BP8tvc8NT0RFMWKil0OGa9OtumeraOvtoOPAhs6IoSE1CQJRQxYd9oUqGTnqdcoIpgllj\nH9OAOiTahNBHb3akKQGIDE8yxSAtIfOEUpnmmdP5xKNHZ5aloHJhXzeKdYqnf9N2p207ve382qMT\nr955xrO280tfes63nj2lekdHojeSP79qig3FM1MHgjpBnSt1mahzpUx1PNQHkVFQS5YTzWyHtPId\njGOSJ7mXp0fOzGm+s8nOZjubraz9My6XT9hefIf28mP87nvI+hK9N8oKc59RKdyg/Ni2sj85cTnf\n8nh+yuPzU25ub6mnSqNxv9+x73tOsXugYXgXegl+7fbEpWkmX5eKaOr7zre3vPOl9/nKVz7gxSff\n45NSudxviDlBAZ359pPKPp9YevC13/dlvv3hl3nvnXd4fD4zV+XO79l1x9kykCsMcaNEUMwodc7c\njalBmTHJCXzaQCptaBNtZEV4FDQct/R9ZtOJ/F/svcuvbdl13vcbY8651t7nPupWFYvFh4qU6KJe\nli0QguNYUBAhMQwE6alhQEgnf0gaDtJLOukkgDtBAgNBWoGNtAzDgRELgSHEFmwLtKiIMilRrCoW\ni1Ws+zh7rTnHGGmMufa5RdKxYInm6y7g1K2699S55+y91pzf/Mb3YKZ2Ajp7x1MCGJAsap3s/7Ee\nVdCW1bmLOqs4UzOCTitRLoI5DgiEUZRdFI9GRMtaMZfs+p6LRYTSPcNUuzbqbHRBHfORlaIraYcx\nnd5NsBDG7IK/jMIzF24tFRuXoQwruOX+WFSopWat7VDMpwSNuTlrIWJKVseA4ahBO6Yzc9Mzj/Sz\nWj7T+ZEyufRi2jy4p4ROi2aYlKb5I4yUv8lzIapzTOXdwVJuGq1k2K+XbGuJym6KhzM6jK7I3lis\nIgJV2/Ryzo3LlOidMalyy0zq9LquUPa0EGEGZqg5TYIaMe8VO6rmk9EmN7ExOpcNntwKsgm1F1ZW\nbKZ/O8oIYXAVB+Xz6lytSAd7/1Ep4wyEC64bZJDSxT6MfVgSTqIZZAeY+zX899prH3G34ZWs+vLJ\n9kMgRVlm7dcRKCU6y+PjTm9ypx3Ln/nYSM1GTipEZmXYIct8cb24Xlw/wOvHFOfBPgYFp3pOrRPn\n+cR5udMmzktPvk0Jf3VJnNcWTqczN/fvsa6VIhf27UKZVa7unjjvdmdsO394PvHhy4+433e++Nqr\nfO3RSxQfiPtcn4+DQVo6ik0FQARVobY8UNVWKXXugXIX3pfB6YprNhbkIfnAeYJcCY3cT82dPna2\nmFiPC0/sCY/3D3hy+Qb743exp++h24esdkuzjnihSuO+Kz91e2G/f+J2vc+D9hIPTi9xc/8+9Vzp\n2nnWn7L3Ha8DaqDF8qCkwb++d+JJU9RyUhdSiSisD+7z0muv86lPf4IPP3yPb31QuR1bEgGSGQ/f\neFAJTpyeBr//iY/ztU99nEcvv8zN6cyC0p89Y/hOsDG6o5sjxdPeC8hy1zqhNDwTGxiksnOI0XGG\npBLAPVAxPBJziAlimhsxU4kxJwvhfh0Yechz5IMkJlQHVWiONqdWaNUo+AyLDKboA4mscTfJkMYu\nyoiK5QEEkcJdG17yLDpbRkZUOhWssGhW3seZLAIoQQySiOjTGkzmauwebAi3kUOsTiW0Inqi2ilt\nYKGYpXo1I/hyz46wxLnD7nBeTJyHoqYYkY2C+3M4LwLH5lB1KjcQhHKtXf4IzsNmTlsqZw4Ji/u8\nRwTwgpSKkq1xPaeAQGKf0cG8AalsqrIgQ3Az9h6wDeLSGT1VzdYnzqvCIW0uZKaaa8fF6DWoM8fl\n4gPbB2X4FKbEtFn3VE0gVBWWWojTmgPFmWnoksNMQTBmrGvEbLmbCg0n76dJJBwKXrkOsWbbyRXn\njYnz5DmcFz/SOO/7QWz8E+C/BL4EfBL4W8D/JSK/RG52QTL3z1/vzD/7d7pkvtClHq0LhT4Tjg8P\n2ujGTk5sjy4ILY6UbDGxMaZ8yfBhKWUXoZbCMgMuu+akvEXK83yya42Y09M8PfgwRr8wGDgrS1ko\nlgm0tTSWurIsJ6Czj8G+XbgXUESI6Oz7xtYvOAOxwTfOJyBYsVwAACAASURBVP7emz/D2hqLZR+1\nHlWSU1Yos57RyFwE5oJVlkI9VepakJYPg81XQI70YimTIPG5aM4ATskHSFQyG8OT6+3W6bGzy4Xb\n8ozb7THb0w+4PP42cfsY3W9ZfWRwZ2msvnLSM5/c4D//42/wh2/c419+8iH3zo94cPOIB/fv086V\nW7vgGiy3j7m0htY9PaAlsh+9pn9WNRepmNkC7XzDw1de4fVPf5paG70PvvXu+4zLxnAglFoK7710\n5h++/Ai9ueF8OrHeu8fDR4+4dz5x8mc82T/kdn8M8TQDIrYELdpibjYdPVVk3dCyzPTnRiXYcybC\nXkpK1ASCBES4IH5YKcidadoyYoaDuszDewhG7m9UobZBLcbCYMVYwljDWRio5L3spEpBRGeOQyox\nopwA2LQmiz9m97p6BjINYS8FmW076cdzNAalOOXksJacjFkGCfWRGRq3XXjq8GwIt67cWuF2KJdN\niSE0EUqrlOn3zSrkXLCq1GwLmRVSEY7bQAhaK9QlbUlRJP2RMQM19NDWBeCoxnwtZdbjzs56Y3pf\nO+YDs3mYP/x+E0+EJ9mRxFNQCwRpXQqfMtlI1cLogxgx23Vq/gxSQYNBp5LPkVNmWn+qtSgOXRl9\ncNkFo9O9M2wQGLXCSYRSSLA0F/9SDzlx3kfDO0/2gA1KL6yxsugpQ7eiMND5kXkvYcypRzzf7DY3\njnmDxUFsJHI+3v9huaH1MWXXdXqwRYExWfj8Pq+Bw+R2pZpJ7+nN3Cml5BRxadfPO8CWRL634nqV\nMR4gZPSsMVSV4xuf63y9s9m8uF5cL64f1PUTgvPGczjPryq578Z5jQWhrBUVodbGuqwsy4Lg7KMj\nlws3ZEZD2GDfNrb9gvsgbPD2+cT//ubPZH2ijcwM8Zikxqxi1UIhy88k0orailBbySHWkjaGUJ+1\nloJq7lXFKz7rXO9w3h3GE1Je75bDjd473Xd2LtzyjKf9CU+3D7l9+m389jHab1no3CvOjRSWsXLW\nM5/YE+f960/f43c//pCH6yMenh9x/+Y+5aZyGxecYCmPuWhDZZ8D5chDaqto3OE8R7FQ6vmGB6++\nwuuf+jTLTcN08K0P32f4NsvmlFIT5/2ff/ER43xDO3Dew0fcLCfG5RnPbj/ksj0GnkJkE814NmgR\nlDAidrS2rI7XBpoK505lMOs+JYc7vZJZC9dXMrEOVmZmg06ySMAMnxYhhmCZSZ/y/1lDIs3RBWp1\nVjWWGFTJeHMhKB6UaaeCzH4pUrKaWJ1RcnaG3OVomaW921QYWilU8IJHwaImeXITxCSZ6DN0U3OS\nPzB6OJeh3A7NQZan0jfqiSL3gBWxmoffSMtYbXW2hUyc5xPnRdBq2r+k6BzOZKZXhqYdGG/ivPRe\nzNc3ZfGTu5yNMhPnzTYaCcmB43xXYmY6JOmUAfkxIwNiirJGD4ZnG2W4UqTQ5LAxVwgYo1NHpVrB\nRyG64yNSmSKeTXwyQIJuYGXgPtDoNIKqSo/Exzac5iOVCU3RBdjTCrPfBheFcyv4zQq6TtsSeIlU\nfEvBJO3w6cgRzOUjWO9aEyw+cV4qc4/cjY/iPMtw/SvO6z/SOO/PndiIiL//3H/+roj8NvBV4G8C\nv/dn++ofcrA9d9cZkXZlqGEuL6oZ7ERQSx6wQKa1wjmSi8WSkLDRGXtPpcTo2OjTRpL/HmNHLEOq\nFo2s0oxgWHrxfBrARt8Zw9m84rIitYAt044QmX0wMvvgIun1LyY0ZD5lF3YudDa8dNqSU91ShKpG\nTRt8BnwWZjhRpajmLThkNl8onCBugDUYTdm1gSwYNXMFXHDL7u8jfyHjh/Nhz2DRnOSrSpI5YXMR\nGQw6I/L18TGQcEpR1rVxbxXWZWHtK22s/MI7T/iFdz7kwd75mbfeoYXwR3/pl9jPJy5PhG6FLpmi\njab0XqbUSgVqrSzRMEk5n84ucEK47DvffvKYb3zzPT789rd5+uyWzO4s6TEsAlqQqmjNvJFTqZxb\n43zvzM1L96lyou0L62VhXBoc9qDuMATfZ7d178ju6GLoMtBmqPghtsrvSRUrU7qmMhfu7KZP6aMg\nkh5ZJz2dlIIXRwvQBGlGacGinUUGC531OXLjFIb6nEgpV7lZqDAkm0CUmZReCkPWtLzYlKNKzJwN\nhShEFXo4xQ2xlRpCiYJE6g4GmbnQw+k4zwJuES4i7KLsrowuxA5iabs6njsRSbeqKJQMEwsTzAe+\nS8qEWxJ/x1o8Dh8ouZE7wpKJIPnehhAx9VGSYW9h4LtguxEz6TtJmdwMS6lQodasxMqU88jgsaVc\n+7c9HBspQXYLZATF0jaTm13LpheyttapqAurNva6JeAdnd13ok47ERnIGloYkrkmQxZGUVyFqoES\nsOT91qRSoiIuDBsJWhbnojvP5MLJL6g9oHrFWdhpDK8MK+guSE+/bYwjLT03muOfkJvVjEJLKfYM\nkboGSU1Ly9za8rU+Pp6ztiTmEHTKD4kpMxyD2hqllqkUOyYKM7dHUlEiMiczPm1G02KEwPsfvM23\nvv3WdZMVVW4vz/5s28iL68X14vozXT/+OM8nzuM5nOfP4bzOGLB5mThPE0N9BOdlcOBl67gOimU4\npbphfmH3C903XDtLvWtbaWEsfhWaZN3jJHR0rqPLEIYGXjI4Pc7AKVJluYC3gkthTMusuUKkhXKe\nbDIfwJTj3CjksMwOBUyMzBSJnljPOu4dwWlFWNbK/XLiJVm5HyVx3ttP+Itvf8jDS+dzX3uHZRe+\n+ou/xO16yiFcL3SdOG9k44x4pN0yIKSy1MYIzfDOmHYNF7Z95/Hjx7z3/nt8+OTbPN1usQLRSton\nmqSmIRTxRmuVtVTW1rh/c+bh/ftYnDhtC88uC6M3sGeEbxk4vyVBJt1mrezIYVZNjF1LoYuheKpl\n5wtnJYhaCFe8BDqOw+Ocq2u2euhBOMyDecpmAmazi6xBXY2mxoqxxuAkgzbJjSTq5odM64EoK40e\nlZ0gxSKRGD+S3XACD2WYXPfyEcqwSo2F7lAiDxVeBjHrVk2dvRc2X7m1hU3hIsIF4TYKXU6EnlFf\nyWBVxWLivDpxHoJJ50ilaWST4YFBBlmrOiIoEbgLyynJu6RzJkGnU7XAxBDTihwjJsZLkoFI+zmQ\ng6aYOE8DXSbOayVzIZAZjD9xnqUFntCZ2fEdOK9WdBVWa+xsGZ6/dXbZkzwRpvqJ7KhlkilecBFC\n1zw/6UCbUEunLiWHzidhXAY2kuDZdOdWLly4ZS8rS6vUUyFOgtfCiEaPxj4LAMYo+BCy/Vqm3XwS\nPWSDk3CEsGYo/DUY/nviPPmRxnnf97rXiPi2iPw+8Cbwj8jX53U+yua/DvzOv/2rPSSpq49e2cGd\nyav531wTq5sK9QjPLEwf4REwSNJaYh95sccYKZEZlot53/PgbkYhWJQZ+GN3CwdzsmzZImHmRKnp\nj5s3+tVPtRu2O5sMHKOZUOfDpQyG7NAGugaLzx7qsEyDroI0Tf9h1WT76l1PcBgU02SIV+AsjKb0\nUlBdEFnJeX/FRh6+1XJjEfOD5gW/W7iPaT6HbcAN886Inc7cpMKoVVilcbPc8FIJTnbi1M8sY+Vj\nj+GVdkHjlmrO2ge2XdiePoXRKbtgzRmlUwosa8FHw3oSE1WMn7odPAl4+7TCMaVxZ98ufPD+B9Qi\n3D5+wpMnT/L1nxJ6KZVSatoiamVpldNSWU+V083K+cGZtZ5ZeuV0W9mfKtsToQ/wvuf7J1nFyQ6x\nG5xKWlRiQBlTJsaUh6UdhKJIKbl5jZQFuseV8CDsQBTJ4itEFaQ62qAVY9XOws4qnZXO6kbDaeao\nZ7WbXJO0gVCs5D2qR9UvyrNS6Jak1/UZMBgmuOSmV6RSYkE8qGgerMOxufFYRCaiR3ABLiSpMUim\nmJHhteL5dx6sLmU+ZiqoK0dfu5gmKBlBCQidadLA7v1qjRGcosIqufkG4HEnU1PNn2P0YLsE/SL0\ni+Nb+v+yX14ym2UplJr1xykzTXKwHEFqCG6KFq7eVJVKaBIBrdQrsVEouXnXYCmNsazs687oPadd\nY2OIYXXM6dnsqS8rSEr/hnaGCEVJUNUMifR1VlJpE5ZKrq7GVo2nDKoZDGGxSjloL2/YDrEHOsjq\nuatN/Hkp4Fw3NZVE+ft21zoTB0uvuQagU4F0LA1Zu3tUiV0lipK+7Qx/kvnepCe+aFqKgmmPIcCT\n8U9/aFqLxsjNPcIhlJcffpKXH3wiQQywrCtf+ZMv880PvvRv3y5eXC+uF9e/l+vHD+c5i+agIKun\n/k04LzPLijyH87rnx25YN/Y9B1irBVukzF5jYLFDHeiSh2HIP6ty2DgVmXWJpT2XhwaMifOGS2Yk\nnIVYg1gCXxQrDdfEecMLfmR5mX83zouc6uq07xCeasYD51niPPMOV1KjcSNnHi2Nl7TwwBtLX3nt\nA3hFL1S7pXVnvQz2y4X+5Cm2d9qt4M0Z2ikOixRc2wzczrrNT98OHge8dVoZkVN2GU7fLnz4wQe8\ntQiX/oQnlyeYOjKb8bRVlIpGpXpFS+WmzY/zyv2HZ6KeWa1yulT2i7I9FfotuO3IbDmT7oh6VpO2\nkuGk60FwTBVmmlrxaWfwulwx0POWgck+5NMQMkP5fQaBHqQG6Al0MWobLNI5yc6JwSl64r2pQMrg\n25kvL3kOGRIMdXaCnaCTwydCcYEekvEwkYNMV6FS6F4zcj6EEpWgE5JJrl52HGEPZzNhC9hKtrll\nNr1irHgsiFVk6DWE9rAr0DIYVUohtEBvlHa0dmR+3249nxtmRqFmPpppnQ18AWWegTTzv8ydvhl9\nN8aew6tx4DxPVXKRVLwWJs5TZvi+ZjCrCh6KOtOq+xzO4zmcp5USc+jWguXcGLKy685ond72JElt\nNrwUpgI7a5ZDFJmqCZdgiCUZJJGDVxHKmGTPIsTWM/OiDnbduOiFvXbGYrTTgi+FUSpbVLpXtmvL\nS8GHTqUuHEpxmKpcn+wQNrGbT5x3FBCkuugO58WPNM77vhMbInKf3Oz+l4j41yLyNpmk/S/mnz8E\n/irwP/wZ/o7nAlHyAdEpS1tqZV0WlqWyFLJbenQCSx/aEa743ETSLVnAMTpj7BlqMvKUoEArU+4d\nCfJ9ZFK1zDaGmGdMgCqSWQ/D8W74bvhlYJfOJsmw+gAiWMaUmjUo53zAo0BcRrL/NRfaWARpkov5\nojktmMRGyvDTFsECcVPYakVlQVioeiLKmdAT0SvsggzLndJzwxYXNGJKOGCuoCmp84HbYPhOt43O\nBbdBUWhr457c8KAsPCrKjZ052Ym2n/jm+VXGo4/zl3/7n/HVT32K3/3859gB/fBDRlHKjaA3Bb0R\nTmullDOtCNu4YL1Tgb/29fd5r1X+wZtvIGN6Fn0w9o0P33+Py7PH2LYzbjs2LAONaqO2ldaS0GhL\n5XRqnG8q602lnTPQtSyFdS3cLJULzpNu3N4OdkuJq6QqkriSU473Qe0DvRmUZlMiOO/HoqDLPBAn\nueEjdWJhHAqxvOGEDPkqklLAGhQ1Vh2s0jmxs0hnZWMxp/ZAe1a8KklwSWH2nAu1QSzjqtaQmIyt\nGHupqerpCfy8BxYwRKAUpDRUgtR7tElsOCOyiWOQHtNdhU30ummqOc0tD+JO/p1xJC2TYWfHJj9V\nAooiXmmhGLmpZJDoTPvGEa1IyerifFpzwnQE2R6H9eHOpQdPi3GrlpVoTfEu2MgJXpboWAa8FZ0+\nVEBn57YkIegElel7FU1iJl3Kk9RIlUu9+ymwNevL+r7R952+d/rodHa6dEYZmTzeDKuVMlO2nQs9\nchoha1CWQZPIUd20GDEmey7K3maWyqbEJtyMnNjsLAyrGUK1BfTMdUnm/jmlxqE/JjNfRO+Y/aMp\nJdWIBa0+xUA5asqqXZ+HgrToHKFRz89XD8l4myFS6eXW2USQG1vA3XRwWvjM7ja857+ie4LI9Ng/\nV0344npxvbh+KK4fP5wnz+E8wWPk534Xzsv9rGoewLN6M20uvifOczW8HI0VOVmuFpQKZRWqzymn\nDKJ7HnhrmUOOOcBadGKKPHyIT2UkBVlAbpRYYSzCaAWpJ6KshK6YVNwK0gOGT7XGgfMOYvsIZow7\nnOcjSY2x0f2Ca6coqcjVMw9b5eXVeSSN+95o+4n33nyVf/Xg4/zy//3P+MonPsU//wuf4xbgww+5\nqLIuQj1PnNcqZTnTXNguF4Z2qsGvTpz39998gzJy7+8MbEucN7bHmO4M6ZhaWndOjbqsaQn1tN2s\npXGzVu4vldOpsN409FRYpXAzKpcnzhM1bm2w3z6H86b908Xx6ngb1FYoZ6WcBu00MBLvVcmqSqqk\nKqZlqC0SVzfFdbdKcEjRqdQokdiiga7OUiapwYUTO6fYOctgiaDaxHoTQ0nk4ZwarEtnqFPFUTck\nsm7Go6KRGRbuYEPTVlWDronv6kQ2GoZHJY7/l4ozkjBxYVNJCw4ZTm8hWC/QS1pXhk9iaOI8TevC\nYT+WWmmuWNTroXcMy3NNOCKVWgKvOdyjkgSSGIihUykTBnt3bttg3zr7YoQrYyhj1yxqcK7NhDpb\nAylArYn9alJEzgyw98O0wrR6TZw31cw1cgCkKpg6Vge97vT1cof19p6WDkZSXmqMYnh1ohgihknQ\nWXBdkYCqO6MGtQVaIoenBTDBNRiLsZWdrWzsy5nlBENTnXuxwq6FLvnhptd8tjiC1lA4ziQ61RfB\n98B5+Vp9FOcFNpwx0pps5tdb+Ho7/xDjvD93YkNE/jvg/yBliZ8G/mugA//b/JT/HvivROQPyBqw\n/wb4GvD3/gx/Z1oxIu5YIpWUw1elLUu2kRRS31ez0kvIg0z2/I5knWYqLKSUxh2YKdhFSz6oNSg1\ne7RLH4gOQjvmO7tPVlXmwkM+9NaNMsqV0e+XAWIMnYdGd4ZBdeXUFk5FWVbHysgqs60TNavEdE1J\nlbZkquc5i0NPFK64tKwpWk7s5YzGglhjiYZ4JcgEY5kM3xFjQBx7ZwZM5TqaywCRNx7T4ycHu6mF\nZTlxQ/CwnXipOg9VOY8Ta1+ptw1rSmfhy7/yBd4/n6g3Z8J9EkVKq5IBp+eK3st2im1NCdyr777D\nT3/5j3j05Ck3UvhPvvw1vvozn+GDl+6Bd0aN7Amv03umC14NJwNSW2380tvv8hDnS2++QVmmt7E6\nuRrvKAsNJtN8wuuZ0At97zz6w7d49PVv8rWf/yzj5TPFhDC7WnZqyQUi6s4gm1IidJ6LV0qbYVIz\nSMonjjgCjY972FWQAlqdqoMlOieSvV9jp45ZCboJspONK5KKHamS0kad6dwOy9lB9hmEmZt1RCM0\nK9TMyU2pp2RMqucGoJVRSmZYRNZV5cf0IA9n7I7tmeQsF0cuULqA6bWeKg3OiRQkcoe/Ej8Z9IBG\nSTvO3GiOwDeVxlkFLeMamFUjbSmK4K6zAzsnaPsIthbcFHjWhO2smFXMBLPZiT7vh1Jb5rVoQ6Ug\nUu/Ar0+VQ8/NLNUnBZX0piaxMpUvEVcJr9tMke9K31t6uC3o0TNZXna8Zl1a145rI2tfC7tN2aoo\nRfpsN5G0pmCMEjl5kwqy0H1hWIFdsF0YY9qJds207Q7eleol39frRhZXj2OuTFz/ef1d4Ro4l6Ag\n//vYgFItA3aw7pPYSJbf2baNdV1pS+OGm/RK6lyfj5pa87tNy2R+X3FtuDE3as2JrUd6QXOaE9dN\n+cX14npx/eCun2yct02cx3fgvFSClJEqRO9O3waUPOSMyEmpmdNMONdKuxFaC0xH2i9ve1Z7VlI6\n3/IgduC85Gdi4ofMjNJVKPcadmrs2jJLIyrMmHGnQRTUcm/LxMHcc/PnPWwNWQt7xXk8h/Mk7aJr\nXTmX4GFbebQMXj4ZD71x0xv1toEq49WFP/jCF/jmekJvzpQZPK6qNBFWSfWsnifOqyu3Y+GVd9/h\ns1/+I155/JQbLfz1L3+NP/iZz/Dew3uM3hEPtEBbhagFqwvejHJW6lJorfGLf/wu9585v/fpxHml\ngRRHpIPslLqgBbQpxAnfzsSzC+NJ5+Uvv8Wrf/xN/vhnP8vl4RktMqtWIZY5ExChlI6XhHSdiUdE\nkaWC1RxATuXphMsfuYd95hVIcaI5UqEVZ9GRSg3ZObFxotM2p5imnSISe3BYDDTVsBi0JZAyJoLK\nPAsjc8gVuZ47YqS1FhVEK0N1WqnzABCMJNikzZa/bL/bEHaDMYdipUPs4DsJLofnXm5T7alTEXrg\nPJ+2EL87OIuBsrBom7W4QbRAqlFKhrIKYxI5IOGMEYwRbDXYFqF3TZuNK8ML5opbAWvU2c6jmuqd\ntO2XXBuYxyWTzJ8jczV0ZpDoDIONEdloON9HH4Ytnb4ofVdstMTEm9G70b3jsyK5S6eX/BjT3tPV\ncWa7CEqJgUen6MDryGycSOv/WJ1t6TzTQQ0DK4QudBobyu6JCSMaDLnWJ2eeHzCDh78b55H33xXn\nlT8lzosfGZz3/VBs/BTwvwKvAu8CvwX8hxHxHkBE/LcicgP8beAR8I+B/+zfvdv8kD4dfSRTMsNk\n8+fBdmmVtWpuQp4vvkQymWMYPgpFC6UkM3f3tfPr11qv4RYuwvCgmlOHIZcOutEtZpL1zOYjwNNv\nrz1JDYwMubrtWXNTMxxnzACYNSptUdBGE0f0QuhgSD70LMBJYCnQUgZpJW/IAEZkmOSQAmVFlntI\nvceuJ4iGWUUlpVVlD7STk12fGpMZJKkS1w7sOFQF85cyX+8qlUUqtZw4V3hQGy8tzqMWvKTC2hfa\nZcmMh00Y7cz7D+6zm3EzktApCK0K7b5S7hfKvUp5UHFxTqeFNiqv3HvM68syzaaVz57vsz16hfWV\nhxAjmdHDirFnq4xvg30E9bLzyodP+Ll33uMl27m8co/H9xekQTAYY2O/3IKPXLhsUBwqhaUrL339\nA179f9/i5T96m8fLiQ/f+Bjj1Zsp45yv10kpiyOrsdugREd9Z0Q76ONrR3nInDZ5st74zDgg1QHZ\nSuNUBoU+Z/GdJQZlJKHBJkluuMDekT95C166Dz/1SaQcG19QKyCG1bQ7GIKJZu2XzoXMDLbcmFwj\na8dU8JpKBUgpmo+5IA1jdMF6EJsjmyO7U3ZHespxjRn8pZNsKXJljjOC5MhPSa9qekDT6qISqXKq\nlVqEtUANp0ZlCaeIoVKAwA3MMvBpH8JmwuWkXIZwO4QelWEVixmWKzrrAhulNEpZEG1MuQvhJW0f\nA2LPdPMSJW0hc/oRDjEJHs/akZzCxZREjnolgMKVEZ0eg87GoLPLYJdt1qVVfORGHGNBZcOjk/Mg\nIyn4bIA1BNOG6IKy0kfL/vQLxElYkXyWu6TH2+f9ETIJmAw4RkiiY/778S/ZcX485HkvxvH7d6th\n3jOSrP+wMb2T+TlmRu+dZVlotaGl5IY4d6jDd2lm18rG48u7c5WJ5/d7d+gYZnPqILOJ6gW18eJ6\ncf2Ar59wnNe/A+c5g4GOOm0wuU+MS7YiSDOGzH1h5kOty4KKZ6wSl8QyPqX3DeREtnVMm6QUCJ1y\n7mmTRCtyKnA+MZYze1mRyLwltayAN8/AQjUS5008p6SsXEp8b5yn00+vE+etJ9qpcn9ZeGkxXl6N\nV1bjnhVOl8w3CRFMzrz35n0uwziNWas7VS03RVnPhXau6HnivDZx3vkxr9clW/5q4rynj16hPXqI\njZHBkprhmtTAmudhcAlWmzjv3fe4/2Tn9nSPx68tyIOJ82xj77fQBwK4DErJvK01lPb2B3z899/i\ntT98m8d64v2f+hiXl29I2whpsy1KaYGeJhHFxuaCSkPrQhSfOFTzffJUFV1DLQ+cRw4NsqYnkOZU\nGSzaWaVzlsGJwWJG3YUyBL3t6Fffgpv7xOuf/IhiI8v1nLIEq6YtOkRnm0lWugp5TzIDLzO3YtoU\ndI6VXOczU7LR0cpsxgj2kQGbnnNAtAelO5pd81clLno0EYGWSGilgU6oZIcIIwSNQis1M+VWgepo\nNUrpGZgq2S4iFmDZemIjbcf9VNmHsI/M0BmRiHlIw30hYkFi1tCWdkdsqE4rzKzbHXIdXhVN+69G\nSQw4pqWsB0ftiIfhozKWglnLJjuHMZy+O71nFs3ug52NnZ1NNjbtDFVCSyqJZ6vMhZ0BFOxqXRep\nUJS+FC5VeMzMwxlJ0HhZ2OfpwKyhVoghU4UVc+iWqp6rSjcOeuN74Tz+FDjPf6Rw3vcjPPQ3/xSf\n87fIFO0/l+s4sKQ3xJ97QeSaM1BrpdUyLQBlvvopo4c9J9RlVqDODvCUJcW1EqvUitSc7hrCPpx1\nGLXuSGnsw7mMQHuGiWZNTk/mr2UmQj6oYNvIG6YNWLIjO6SArpw1/Vbecqwvsufb38jfXwvSGlEW\nRDM1OoNwZnuJCCEVrWdKu4fWe4xyD2RldKXsQbVOs0LtQrHs6pa52IpGfkXRGSqYDGLRedCLmiyr\nOtKEZVHObeXBYjxcjAfNeVCcZW/UtSJV8QvYNqVNwxnuOOkjbYugDypyA9wIcU9x8VRwjMKzn/8c\nv/fqp3jjH/wW24NHfPWv/zqnVvmUAjqw5kTJ5N/ojl2M/Vnn2e3OK3/8Fn/lX36Jh32jluA/+udf\n5F/dX/naZ17HrXP79CnRR1YUkcqCYoZtg/XxLT/9279L+/o3MHN++p/+Hl9/9gZ/9IU3KTY361ZQ\nyxou1aBFKgsEm2nMczzy3IJyBOjglkTAXOhFckNUDI1OjU5h0MJoTgYRjanIGJm94O8+pv7Pfxd+\n8fPEf/EbhE65ogjRQCsskmnZFoKrEp6/miTACnNsB8SJPTfbUGbbUjKvScplgngMI7rB7tANGfk5\negQmHQqiaauh5DQIYQbeBiKeEzAsgY/PaZEIpSpLEZYinFRYAxaCNWaQbho5cReGKWMEabHUq0zv\nmWnWz0YhpFBK2k1KqZRaKbVBaYQuuBSMho3pU+yCnDAIpgAAIABJREFUb4H0rMit0RAviGkmxk9r\nmU071FFjm9khp5lMnb7N4Rm+tvnObhubb2xR2aKwUemtEX5G/EKMjRg7bh2LTowNZ5999UpoS6kR\nC2oLvhe4COVxgojVM8NEnPnr3DY0Nzjxg8e4s50cH0zAdcR6pc1uhj5FgrojOOrI8zmmj6XW6bfM\n3zufT7TZGnR7eZYbmR+e9JwA1LnRHQcUnzJJn6ozPaagcxNUkTwoWE6lXlwvrhfXD+56gfO+B87T\nVIh8BOftI6e1rSNL1jKCIrqkQnMJSk2sYL7nZPhqTxDKopSaWRtHlYkLme0wM6dsOcNyQ2n3GeUG\nkRPdCvSZ22ZB2YMyJs6bXnpRmbkNNkMF5+zoaJ+hskgjxFMRejba2Xlwch5OrHd/GdwzYW3TJlTA\nilOrU4fT3DmRLRlNhXtLpc7sN24S541WKV549rOf40uvforP/KPfYnvpEV85cB4QNhIzFEeaEs2v\n6sfOzsfefou/8i++xPnJhuwT531h5WuvvY6PifNkUHtFlyRzihvWE+d95p/8LutXvoFtzmf/n99D\nnrzBl3/5Tao4rQpCQU8ZIl5cWAh2cQqD4R28I2Wkcvc5ZY17SkBlno2zdlOzHUVTZVEUihhNBota\ntqEMpxnIUGQX5J3HlP/p7+I/+3nib/5GKg0UaMfhVRBx2pLYiJKPyEDYIrG7kt9D4pTEY8llJQrI\nx2qeI0wZHtgIrDvRnTl9zTwYyyFWkmGRJA0T5ylInR/FoUwtridWlCCfDymUVtFTvrZNB02Nlj8W\nTeYQ1TWVwENxL7grhtINNotUEEfFJZsAXVeinLIVUE6Itsy6OwL2yYy2sFkKMFINU5k4byjeM58t\n9qxljpFNQTHfz8R5kRg/IltVurHtg71vbH1js8pGoUWhSWcvK0MHoWviPbulxwUbM4tOCjqLIrzM\n7DuveK/4VvBdWeqClhOjVGwsYBXpU3nvEC7zffH5zsZU8UyF23XFnAOtqSD3qe44XqfvjfPKjwzO\n+75nbPz7uFRz4WQC8bzhDq3/R1mfZP1Tqi9aESJDmWqhzLTXWgtWa9ZwRd4cqkJZGqU1tCxYQPOg\n9gGl4ii3W2fdncvYGSNljxGKaE1VPoqMPOD7MEbt+DJSL9YqWk+00vDWsIWULxZjr4Ot5a5TJIMC\nCyvKAlRcdJIbipdcNNH8erXeIPUBRe8RcYbesj2iG2agpujQqRyYJB5HJq7fvWbCtKcku9m0IVWo\np0Y7L5zWwVI6pQ6kdihOaUptuTHHCWwP6mypSClp/llZFLmvcBbsxMwRACmD1Re0QT3Bs1//NUa7\n4cFrr7GoUCrQHGuRLTVCKjY2oz/r3D5L6eFbbUG/+EXO2y3v/MovMn7609xbbjJYqHe2YeyaWQlK\noB7E3mFpvPOXf56HtbL+ydv8yZtv8N7rr2K9Y5EbErVSdoGRlVBFlRqFGlMWFxNcuIPpXa5GQJgx\nTCbBoYgX2lRbHMnXs8BkRiMcHuEZDvs7X0T+8W/jX/ka+uQpaoH/jV+Hz3yca8tNBAcmUq7iiVzy\nQma4WlLpU5CavsfJ1mZgbC5UPiapMbJj3M2uIW2JiuIuT6NFMvHFkDKADFMSnFIyIVkkFy8PMmtm\nAjXRkoAiBovvrLJzjp1TbFTPAC6RGYYVZKxWLVgtjKVxoXHxxsULFoVAqZrBa63qJDlqhpZJwaj0\nqFikNWRYYWyaDS876CjIKFnRNmsF3YMYadHJQN1cqAWIWbE2Rp8SyQS5qn4Nb8tIFKVLZfjK8DOm\nt7hsDDbCdkIrpg0jZlhxI6Qh0dCxUG/bDPIa+JIKmeJ5H6pPWeKUIh7qK+IQFMqc0kneS/M5nyhp\nsu65niJ+BcMx11efG2JwkDi5ORVVhjmld9Dc3ABklxnWl9ViIgqz991menaQ0wCdUwTi7mtfSUE/\nslVeXC+uF9dP0vXDi/OMiJE4T7JIMkmNBOujJc4TE6Q2SgmWUvBW8SVrIcdqjPOOec0Q7VpgqXjL\nwHPKUW8vGLMi8ztwnrYHSEuFLrIStsAm6HBkSOK8kQefnDPIczgv92edypUis/KyNqQIdW3IDbRz\ncDoNWu1o7Ugb6OLUmtgnKtgSlN1pPThZYJ6S91qVtipyEnyNbG+RQFejaoNVKGd48h//GuN0w81r\nr6VqBHL4oTHzR0jFhhqdzmCnlYWv/7WF13/niyzfvuWdX/hFxic/zb02cd7e2Z4auym6CNqypS4u\nHamNt//Sz/OSV9avvM1X33yDb7z+Kn3veAyiglApq2TOhiWJtqhkPphIzn3c58FX7+bfAhET55H7\nnkRJm6kcYYw5rClEqnUllczHcKL80y+i//C3kT/8GvLeU+RZMP7TX0c++fHEc4OpIFbEE1tUzZ8v\ndbrZFARMPBc8H6x7N5TJIY0fHxPj+bD8fyzuAmf9eM7mz6gwo1QTaNZsEZQ60DIgHIlsSnFRYn5P\nWnZqCZoai47MlaOzqLOIUcQoaojatMtkixy10GfG23Cwa07bMkmNlagrIQshNdVNcwAsyLRZKMMU\nMyWGolbvcF6PmaeXdmvrkbh3qnBkEkFmlg1JaowykizUDJ8V8xmjUmjS2DB2Bl1K4s6Sal2ZyhlY\nUI0M4FTJDyngZ2QssFfO60KzE7Dks7xntobsMm0oiekyizWf65iZF0cmXeK8Y8j6vXBe/P/gPCbO\nKxPnjR9KnPdjQWxAbnrzWIYzX8DDqxPHC5ryFve4hnvKcyvQkfZa5iGo1oLH9JkXpbaFujRKyw2v\neB6+Q5RhcDptLJdO3TKMM9wIGah4MuGkZ8svnS4dK4PokanPkbkGXgVfVmyBLp29dDYdXDSSSaNR\nWSmxUqKRPsqa9gIUvyYSFEqsEGdanAk7IXLKJo1BRkuMmJ3bhxTxECQZMQM3jslzxMHxpYyulUZp\nhaVBOQXLyWi1I3IhdMdqhujoknWenATtQbXjcDRf8+kf5abgp0nT0ghAa7aC1CX74e3+xxAaL5XK\numSSMCtYm4yxRPr+NmecBzfnje3eA97/xCd4iGO3T/jWr3yBuFm5P71uPjMawDK8MiYbPQyWyvuf\n/yzWBzcK77z5Bs/uLYhdCEaqG6pRdkV6RUZONkopNArDch6CefoJInLhOBYKBywJJnFNL+rVOjBn\n6AIacs12EOZBNIAnT4m338X3gXz4FHnrHWTrc2Od7+X1a8kdScJzz4Tf/XolKGKCNY+8h83SetEN\nG1kBZ2YEs+h4AstQkmA6kr5bUEqnaEdjZLMPjswwKGF+jQnWTBohybyLD4gduFBko0SnDaN69nGL\nlEm/FZCKLCUzZdbK3hY2WdiizedBqLkX0nRaLCUI8ZkgnknihmZPvQv7XvFd8Q10A/ap5DDSshIZ\nEpbySL/Kj0HBnN7HlezhUGORAFslKDkDYqOwRcVTjMgIoXsGkYUrzoJJgiU8fdMSjULBvGJDsqL1\nBmiCap3s/XcA/0lYHPMZDsXGdfApU1QkEwPd+VA9spUJkWsVrM9N7jhS3G1KWU/LnoG1o490wyAJ\nAua9U0qG38b0VvoEDDGzWZ7f1I7QQKZE8QWv8eJ6cf1kXj+8OE/nIEK+G+fVkdkGDnKqtKpEiyvO\n22Wnt5192dn7SGKhVrwtWE0pvZS0lRxDrJiZUFEqpZzwcoPWe4jeR+QGoiFWYFfoZFaAxawAJ22K\n7sQM3bg7/JADCPkOnLfObLdTsJ6NohfQHa+dKANpSWpTQZegzr8zOmmDKdngx7nACr5EDqQIyqhQ\nBF0Keq6Mlz9GaONBrbRSploY4rCwliAKuDojBiM2+vkB33rlE9w8dtb3n/CtX/4CXlbuzeaFxC/p\ngwjmQW5Wu0qtvPf5zzKeDW4M3nrzDT68WfD9QthIGwpGOSl1V6oVFE21MVmnqzB19nnvZV7BczgP\nw2TivJgKBokrmVQkKBqJUybJIZ72Ifn2U/Tr7xK3g4inxNffwS49Ay0PkmESVriiEVx13OHp3zh0\nGTG/x6m+iFmZGpaqoWtrkD+H8yKuh1L82PfjblKmec+EBKKp0FANtA1K6ahmm87RUOIy7+XZIajR\nURu06CxunHRwkmyCaZEEjTpIlCSGSoGWxKCpkg6rJEtCGl4KoUmAuNzlneSKkWG5QdrMMk9X6JP0\niy5ET9wXSyF6nieikw17doCeTONMnJfrSn7dCmR4vdrROKNsKGIDMbKqNjxD8n2GEYsipc/Mm2zt\nG6pUUSLOiJ2QfUH2BVhosqI7MImXDA6VaUNmfi8ZqpNqmanSmdM3mTaUg/C6w3mJF78b58VzOC/v\n7WEG+/5DifN+LIiNDEGZssOD6Zmo+wiacjdsgLghYdeWhKv30lNWePf1pidfJovfCrVVSquUotem\niUbaP9aTs64LrVW05E0uOCJOrUItyTzb3rHu7L7j1ZEBJVKWJWvDdcXbijXYY+NWOhcGF8lu3yJt\nqjUaZR5yXCpOw6UQXiEK6krzSvGFiApWUvlAoVgumMUlAygtWWWbHjLN3jJgMnYGZsehLqf5JWb1\nWs2qzFodXTZA0+umSdy4ZOATV48n10kxTi6MTbOubGlZhcmScvowlnahVWZda0O8IdpY7lX0pMQq\nWAk8e5vSrtOcWJy1nuhLphU/+7VfZcO4uVlAc4mzyAXc5wE7iQDDGSnf10xGf/wXPsM3P/UahtH6\nRphm/amlJaNeFLZC3U+EOFqUVrOlAtHrpJy7dQU4Nr2Y4WU+mz50MtNHZ3m6MlO1MZssQhgI/le/\ngH/qk8jf/jvwcz+H/+ZvoA/vMeMruAaMzewKvZIaz21QM9CM5winI0PieWVGKnwGo89Nzw0XwzXw\nAtT8nkOAAqU4VXcag+adykBioBhiSWqIZI/2mPcMuuLSCG9gHfdbzJ7iccHN2DclInvFM5yqZBmQ\nSkoItaCtUFdY1mCVI1tDqGRNropTCdCCS2GPRsdnYGcwEHoIW1P6qvSlQgviQoLEKfdzn3XDFpjl\na5agMeWbMr3SjHxdRIJWavp6XSiRz0NWlXVkTzvQ2JW9C8NK1qnJnDFEhlwVz8DVQsl1ZshBvid5\nWOt1shJ+rGiHHHFKEufed2xm6dmGueNN6+UhVZzBepPkzzYUv7L4DjMYViiSz0x+TtaKQYbG5Tri\nuQ7P+13nhMvHAaC4AuqItMLJcQg5/LG8IDZeXC+un8TrRwPnzZasfWTVa+x4y7aNgqQ39FzxpRLr\ngjXoccutbGx09hncUaUyWCjUifNS258Hwimr1zqDwBcqZ4QzzENQi5Y4bzyH82bwo1mGXStOyoUt\nM6JmZpXbMcVPVWGpE+c1RRuUZojk62IqWJFrvaUUMgNjcCU1MJJZqqnWYFV0VXSZ4vhBtr+0Qtkq\nMRpIQ2qjtUqtSi2CSUxLq0+rhxPqDDthI/Hms//gV7ndjZuyYHtgkuRNlIE3m+GUQDE8BkfGlErh\n25/7DN947TU6hm4bEZr7uxt9M+ozZbsRyqZUy9rQpVZ6FHrMGuKPHNTy15jq1+dx3t0B88B5c+Ah\nPlXDGbQpLvArX8Bf/iTxP/4dxud/jv6bv8G4dy+VLA7N8nMZqWbJl8ezGSR0zjWEOA71Pgmu7nlo\n3ybOmyoNszH373Gn4IhpDJDncF6d4aDKXbtLHagMinQKneI7JUbiCISB4lpzgEUBH6h3xDZCs2pW\naqp6FxWKFdRKknQ+z0kjK32RgiySeTRViCoT4wxM5nhWLc9HMX/+qx0lQ0d7TBtzmyRHF2yreY7Y\nBe9C1Mjnpj+H86ZNR2LiPL9TFLWlUhrUaVtSA+/OsI7sBn0QZpgHIwTXBalK0QWRxEs5+CqpzuKE\n2A1lP3F6tlyzNhgBuxOTeKFHZoP4DJANS/I3/DmcF9ebU0SvTShXm4gYIfJvwHnk2U+YOG98D5zX\nn8N59gPDeT8WxIZKMsLHG8SUuxzMVFGZ/vrJUHmybTHTeTk2ugnsj5Pn9f8thVobtWV9KJpWAGXK\nvaaE+3o49ZkyLDM/UVOG7j7wDYZneq4sUDJNEa1K3RuLnSh2AhO6Vy524ZnvWY0qNYMMWdBoKZ2y\nI/hQCcvwH44hbSErX0fAybPvfCoAikt6QR1k+t9gXFnbeYJLuZVPT9rM4ahHGvP0C2Y9Epk4PNUi\npnv6H9UoNTMi8sAtE4hMubvmgmTLgpUV0xPOmguxJxsqYvN7LRSv1P+PvbfrlSy5zvSetSJiZ+b5\nqGo2my2J1AdpSJCsyxEsY+yxAcsXBubK/oW+8JU9F2MD/geGAcMeCNbMyIYHxMxIsiiSTTa7u6pO\n5t4RsZYv1tr7nG5RsgHDbomsTSSru6sqzzmZOyPeeNf7URfquaJ3FU4aGRuSB/SUKXoxqg9GqWzb\nQC6nA4AcIUA+mFpwmSmPiN+bo4CM/DPhp9OinPoWG2pzhgijduIHi59lpCVBilC0UEuLsCC1XFDj\n4SIRIorloTTZXt8fcVgM8VweHI2cBuTrB8zTCf/OrzL/i3+Mf/MjyuNjfC8WJEYyF9l77gdhIrnI\n7XKzNNllsrXHhtejztZzMbLRmWM8H1p94mpZYZrsfb72tUwanWZRU7uwUhmoRxWZEL86kZ5sFNwr\n5hvdG52Kj406n5j9C8Zt5d3NqNcg65rkPVAXSjtT24l6p5RRqBJ5E00MWTbQShFhkUm1Gf7QlOm5\nGFWdUWbIgZkMjC4LrcAqsIkwiSA5SuST4MI++LDpSDesa7QfSb6ehUhf95jg7YhjehCczF36OZiz\nZrBd2Fy8LyFb9l1VlO//jLVr7xKXElLVnXTwFxLDlGXAsbHlRC7XzP0pff/n3LR2Zt5e3HLTQt2S\nCXtxUlDFVQ5JeMmwtInnRhdAaJ+OVmpOgmaCgvGcFp9fTHLNhbBISQ2vp+jhAo4ph9v/+03j/fX+\nen/9vbr+fuE8Z3jivFMQBGioFrQ3ql2AcxzWUW5cubLRxSlamaUyS6No2CZ3UsM91CVOCWurVOqM\nYUCl0oaEdUIcNc0hllAG2ZrgYKEyMd8r8UZO5cPe6R4H1lrqM87TGGQVjWwILbnvaGGIMkoQC7Xu\n7WiST51h3CKxBZ4LnBRfKlYLuCAzD/NE/aySTWXLwtIqtVVqU6YmzjvW/8BQjcGkMn3gd6ccGBoZ\nTAY2IpSxTSLAwaAasxSYA9smXiZ2PuOu1B75thbMDniPMPTwv0bzzTQUoZZC80rzUG7IbgUvkeFw\nKIniRoNshrAXe3EesykeDzUPMigfVk/4r/4q9p//Y8aHHzEeH5kSLXLq0GY2neSfFws7tdoE3+3P\nGeJ4YD3HV8Ouht0G3hPnzZHExmDk4dTdQvlwqDSI93IP31WQ4qhm4L13inUKG8U3hMhSmy5pHy6Y\nx6HdRpAa0m9MVqZHE8sqykKleaP6QuFM9VNY20+FOoh7+gxlcSJ+LBUjOjAJTBea3LCQ7Qrf3c49\npdCl0WXStdIt8N7QyWwVaxrkRiGyOKpFzscw5sj1xCL2TMka31GhGNMkB7qZwyZxjw6fgZlm2FrE\niEB/K1iuJSYS1uMaIbpmCz4r7poWaAl7xwS6wuZJaljm/cTrHYRlkhtkwH0OofIE8BWcZ/E5TfLn\nyziPr+A8DkLjb8Z59rXhvF8IYkOy8ot8o6bvSczBCmkph78yNreRap3wGO6TgJLyJU3PUzBIkZRd\nl0ZdFmT3OpqjbjBg2qD3Tu8bc/QgCTwnrRJTYrfBnDd692TCjCoVLcT3tihtFJZeqT0aQIZB7yf6\nPDMcSqoVpi14Zgeoa24i6bHK5hWwCG7Mbmlm/l7Jzd33LKrYnH3f4I4baveOSqQlE6GQZWf5Eju4\nC9VLMMPSYkEXZVLoWtl0o5QRE2vJjIi0W+QnAi+VqSdGuTDljMk5Do8ezTHOFpI7osJyKZVyacil\nwqVQGrgkIbMHVlaPUMhSqGXgPkLyhR2e2pB0zpiiFD/sLDYHVkb0z2s/gslmVfwcK3unMUtUeMoZ\nvNVDYidaKKVRNVprPFtRPMPJnCB0TCVtHNlLvn+s/VlOe6g99sXhS//u+N0F/w//EKTk4pVS2J3Y\neCkdZJ9wxUNe/pndkrRNbJuhLNo2bGzMrLGz2Y9OazPDlni9qGlj0Fj8q3QWWVl85WQ3Fg8rSRAb\nqazJhS9++vCdTitsVlmtwOj08cRcP+f6xYp8MeCNo0Ojq74u/IpULu3M569f0x7uOL0+s/QTy4jQ\nWe4KpRVaKSwYZZIWrCSSBEqF0ozZjKbGVKdLCAqrCqUpw5WhBauanwfA5FAzSVfGNvE1F23z8FZa\nDdCroNOOYDnNyVMTSysPiCpVS0zItNJtY7MAF+OQi3oSJQEyj1T/GmSb1ZDoHsFQOLt39rh9DkAV\nAPblJGe/vczHPhTNh3P4oiTC9qTWkHsigOEmqEyYTj8WZihSjimBJakRNp7JTOaelIzvNcD7jyUq\nIRNHmdPo+XrM46d5f72/3l+/LNffH5y30rsFzsOoWgJiVKUMpY3AeDrPEW/lsNodq3eGCkUbTSue\nGVBRR1nSmliwKbjHECsGY5U6Kj7DLinRJB5DIZPY9yyJDduJjZ42lAw5dw/Snj1MNeyee0CXI1TC\ngqFS4tBWAkMNFTZNVXI1ShMUCTGIEU0aqdigKX5q+FJBTkGi2ETYUoEQP1ORgrbKskQAvS7R7nHg\nPH/GMzZCfRnhjoNZjG6GlwEZPlnqpLQKJ49HS5znIxSp1sMyahFQO4tCK3hvuG2R8XAi1Cslhwuq\n2aSRD49AcvZDmqaex5OII/Gv5H7KjsP2X+34VUwO3O7m2PnC/A/+kEmJcMZATaGrTuVonk4R+8pz\npQpYMkfmwHnrZN4G89qxbUubcZAbY45DWWl7OKgGOYXn/YUkqWGoBpHR5kZlo3lH6RTviPcMy08n\nxxSmRTaGj4mNG7I90fuVW++87ZMylTorjYVf2SoXznx695pyumO5P3O+P7Hc1xhonYTlLJSlUFtK\nCmoMRk1DWXxonyXDczVsXVONLkYXZxNoRdnqpA+lV8GLBrFRQVZNLAayBXkYpX9BAOoALZFRF5Z/\nx9xoNQPnC2F1qyUU71S6b2yeA8P9c4jjpcCI5ktGzTNYwnXzqB+e8RnzIUGgzMMwkpgvMd3+nC/W\n0rgv/QXOS/J3V+AcOK/8HJznMOf/Dc6zrxXn/UIQGxCLjOP4jIVKzGJDkxeeyhIedw5pmDxLvTGE\nBmbM2jCb1JJ5CS02vKgMUiaCj0kf4bG63Vaent5xu17Z1i2rb+JQYTYYY0NEMZsZNhV6/WLRuLB4\nZbFKHQXtiq4auQomyK1Q1gWfqQLwkGaVjJJUIuwmpGUesj6LoNKyaFQmFUFLpiiXYDX3kJigc/vB\nquapDbOwokAcxiVfY9WKasNLHM7MDJka35OVSKyulWHK8/96HOwLmbQbd7R7kA8mjalnhpwZcmJy\nwgH1yvDBCaFID4BgIVWSu4JeSpAbJ2Ki4TPyHVagGqYRplpqnqVtxoF0t8McoxZCnlhJqcuCnSZ2\nG4zzYLkObB24nZhsmJ4ZugX50QxfJn1p3Nodo12QekHqiTIWXDWUDeX5a+3LjOyHzzyIhu915x0i\nnTr2A4/sCpU0/IKKUi0CG1UEZVJUg0XPTTU2I8f2cCvALIKT2K0qB10bfsvZJ6MPxnZjjJWx3bA+\nog3EZthU3DHXIKj2BOwGughLmyzaWXxj8St1PqHjiTKjh14srDm+W5sAUUN1xsY3C9soiA203+C6\nsf3sSv/0xvbTG+PJsAFSKt/96Vu+JYU/+Z3voa8euX994e6jCw/fPHP5cOH0qnK+a+jSmFSwvEd7\n3oMSAEebI4vD0pkVSt03LKGqsp0LWyv0mWGlM6rCMIJs6FCKJHkFLkrd14quzF6YfSRBFKigeQMF\nbUqThVOZ9DpY28a6baxjY+0bt7GxsdHnwLCD1CiiodqAYOLTQ7nfD3FPFTzKd4m7bgf8x7KZlz2r\nNcwjGX1XpGRA6zMoC4+rlhpVXjoYMxPmPQkyyIMEmM7slp85JI012aaBg0oW4Gl2qteC1hqgscQE\nTFNW6u6MXcb7/np/vb9+ya6/yzhvMkZkjJnZl3Gev8B5M3Hepuga9kK3ytzOcdCWhkhhSsWtUg6F\nXn0m1fe8Do8w1VKUYmEFVDJrQf04zJIqWcxSKTkgSY3AeZNnnKdfxnkCJnFAi0yHEtXnKVEZLgyB\nDaEiaPWo+ZRomBNzyoAMD2C2E6YLUxc6CxC4rN45KrG/1RpNElWVei7oqSBLTXyWOO+QHKZacs9a\nkKjOLC4Uica5ohKBoZeY8HMmcKIvWJ1YGYwyaGVwLoNtnrCxoeOMsWGMsL20idyB3ClyuuD1jLYF\n4YT4CbUlMq60xFRcg3QQ7BhgHUOsxF2e+6tbiq19VzrmtFr2vDTLjLWJpvpAXZ7rhvecsxhv7abT\nGBCSWCWJD89B1dgG47Yx1h3n9Z+D8wjc2fZJO0d7EJVsI9xQv6HbFfUbhU6VQdFBtYHYYE5BLO6j\nnlkVNmL6773j65Xt7RPj3ZXt3Q27GnTQUfntH7zlo1H4k+9+j/HwyN39hdePFx4+OHP3auF0Vznf\nNy53lXaKTJjSChTNIM+BU6LGNc88ok5rip+MpVjew8rqk8ZgVSgFRoNRIxRXC5Q9h6OCD6WOaCWZ\nqzK3cljQZgfwSAv0OI8dOK8P1pkYb2ysc+NmG1vf6COqVQ+cN8PaJh2sGlajAdKyQvdL88pcI58T\n+vJxZGlIqjWSLLNQ48b7vOM8DkVb4LxYD9FQav91nMffgvP42nDeLwSxsYeO7CE3cxolZf2SMsXo\nOg/mWyQZVI/D9tCglt0Nq5NSK80qZtFzXWullBqhJoDNSR+dddu43W5cr1dutxu990O6FdPo8GMF\nsZH+LxNE4/mWoixaoiPcKmVIyIq2uEt9GHIDWdOGsd8U+z2aN0+oMYK5k2TJi2p4+S0rWtPrFd3l\npKfUjwU0bvZ4PTw3TCA9WNmtTM3XT4PFzYNWwqY0AAAgAElEQVSdb4YXiXRGbYc8Eamx6JUI5hzK\n0a4ST0547XQJxYacyExkcKGUznCPUNXlhjQNL6ECF8fPxKNmxZYpJT160hSpIedqpxqHaBcwi3wE\nB8fCfpLEhlRBSh4WN8PWwbgN/DZCrmcz6kHrwMvEq2HNGEW4SsM5Q3nA9B7hLj60QuZS5/etKfXf\nP/g7tZEkQyhJCsOhO2xuVIGiFh3qRkg3bSewJIiqPFRLISrAGtCcWTRrUJXNMkV6KmNI2h4s+7oH\nYx2MdWNsndFv9H5jbmt65lJBQnjzSlFkEVgEOQtydnSZVJ1UOsVv6HhC+1MQFJvhM1UpUYGCz1D/\naOR+sohFBW0TilRETki/Y6qx+WCa0Kfz4VPnH7z9gu++vXHnwr/n/4Y/+eAV3399x91PT9x948T9\nhwv3HzTuHk7cX07c6ZlzPhY5U8oS3fOLwEKGbyllmRTZdhUelUwr10mlxAawT2J2906FrUq0wLRI\nXbdNaR3Gqox10PcUuwzhikadlD8Xp5VJrzP93Y0yK7oVpJfcCDpjG+G9TGJD0KyA9gxjs8iXkUxl\nN+K1prJ7iY8PXsL8Y4JkCYg8Ph82BZt6TAoOhYcLR58d2frzIrAv6cL4Gx6gVTXWs5oVYiKxVtsM\nP6doBudmvZiq0FqllKhkdHGshjpNjtXq/fX+en/9Ml1/93HemjjPv4zzEuMtfAXnrcThdjpkhpNa\niyHUyKl/euGRzFmyGArs7WpFlNqyxaSXaNNwyQYZyVU67DSBPTxytL6E8zxxXqo0DpwXagPcv4zz\nmkeAYzljRel5CNtKQzQOXUWMQmDMPQ/LtTDriSELU04Mlhj+62S4ULVTm1FvNTJBBMj2FDnl8Ek5\nBkAxElZkKGyKtIp18EUoi1F6EkEYuhick9i4aOAWwM8TPw3GMrDzwC6D85i4RVCIy0Qyy8PbxE7G\nvBPm6cJW70HvcT/h8wSzoTwfIp0ghaKFI9Wp/vzY87qmwXSJBjUKXRWRSalprbbYrdWNZoJ6iJJV\ngtiQ4pErXj0sNgLdUmnqEjkOQ7DuWN8Jjc5YO2Nb6dvK3G6pXNlxXnzfRTSqfotEnkUVvDnewNvE\naw9SYz5R7InqK006TSe1R4Cmd0k1DDQK0ybkZ1e0YqUEJPRJn525CX1zPnrT+YNPv+C7P7txXoV/\nsP0b/tmrV/yrhzte3Z14eDzx8Hrh/lXj7vHEw/2Jy+XM+e7M+XxmOZ8pbUHLkq0o5NleA+8v8T2U\nUxYcJCkQ6poIuB+lMBalqzIr9BnKp2gZKth8gfNug34lPsthFKJQQzWkhSpOk0kvkzoqpTbKqEfr\nnrqi0hlzUMpO0j4r5B3HxMOSpRFYHMe0xENzJzH3AdZLqiOH2GbJqf1NOC8iB76M8+RvwXmSOM9+\nDs6Trw3n/cIQG0UkWahQSagZqZc6pC/hpYwTS8i/9GCebE6K9vhzxKaAaG4qxGY4heHGGIN1DQb/\ndruxrjfWbWWMnh6nDKYMixtlbsycrooWihZaE1oLW0WlRIDojA0vwnxCXiSrRytDLmS7/SmSq/Nn\nsyTgB+GvCx1HsN8Ilee6z6PwSPL5JG5615DmJ0OQfyMmJBJHO/ab3D0SmwUNbdkWHzgrRilZudRC\nHtilITqZGgdEdhVeqg5cKy4LxsLkxGRhzCX/UGWoMLQwNbrLPRltPwGLQ4Oumoe5kH0VMYoaaASX\nWouw0/2zbua411CoqIayoSjSJO4NCd+nbBVdQ63BFpJNcoOjxNe2CjevTKv0uTAkwrvo55QBhhcz\nht6xye8b3OR5g5NJSsuEaeHX7C5s5tRCVKSSssXUemjoEEMFohIqGhWkCbLE99ZFuHlh8yA2NhN6\nJ4KQDlLDUqXRGdtG35LUGDfm7DEdyUVONRUzTZCTwDl+lWWii9G8U+dKmTfKvKJ9RW4DNrIZJj+n\nx3iloEuhqXIuk1KFpYbNQkpjdmG2QW+D0gZ1UR5vxve2yevpyBh8+MnP2NaNv7peuLyrnD9vXH5W\nuDxW7u4XHs5n7ssdD+2O++WBS3vgtSkPCLePP8QfL8i5orNSc8LSmqPFKDpDDUOlSsEQLAGfa4Sn\ndQ0Vg9SKVmU2xZoEM7W39ZAgeBaqA6rZbBL2F9UZqdkhFYlNqhCTgeKwgbYEqxJKLJX8syfws+Mn\nx065iXmuCWha0+TgNQTNwKZgwsQjUM/NUoaqERZ8VME+d8BHuK6kg2n3zL6QBpNk2y6DhJiO5jR1\n/x6ctFkRth2TktkvsUa2ZaHWAPeG4RItMLEnHlKT99f76/31S3J9vTjv+v8A5/WwjiBfxnmlsmiE\nXhcTJIkNvyXOm4bcQvmHxVTziORKzBAKiBTUTp5VuSVCBqtEwGbROFqrPi/ZqiBiifNSPXAQ3YHp\nfj7OI7OeCIK8e4SFV6PUetgRYw8sqIb0f2CoR6pBEUNrvB7ReHZiyompCyMVG4VJQVnqiiwrspQI\nOjXHFkOWEVlxNQ9yKbkNBajDcLSCDShdwwLTCUXArGE3XjRUmSfBzgVfSrw2J8PbQFsQG1yizh43\n0JktH565bZPRjK0JV4mMFOOCzSVD+2sKJ+S5Zt2d6fPIwooBlkRz2Qz15zSlm9FF2aRQrVDU0WZB\nIgGIZQSchKXcQjWhhQg3b6E+9eIMUbapbFPYTBmmzAHWPUiNtTPWjX7b6NvG7BtzDg4JLWnTkiQI\naw6wWgRp0mBWi7BP2VC7UexGtRsLK4t3FjO0C74p3gtYQaWwFMVtUnFMCMsXk61Upg56Kj1MlXs3\nfus6edwcXwcf/Phn3K4bf/n2whdL5f6+cf9YuDwkzrs/c393x8PdHfcPD9zdP/DalQcXbt/4EDtd\nopJZI7PFz5pZdh3BDl7ACPuO7morLdRFGTUGxd2EMhIjDQ0s2zQrmfeQ9sgdRJUyC1Mjf0x9IjIy\ndFXYs36cUJchceDXEnlCpeYaVRMPlniPrSbOM57D4yU/pw5YOSLRdgGv7NjNIjx4TGFOvoLzSuK8\naJDxA+OFdeWlN/7LOC+GY1OccrQL5zD/a8B5vxDEhiYbBCSLni/0for+0rBSnoOgRI8wFYjNcuzB\nOXNGCJSHxAaJqsNuxjYm65jc1pCL994Z6U+bGb4zR8eydtNmxVMOVVVpRTg35dSE1qAWDWIj9FBw\n8zjQdMNvyez78yGJY7OLJOWIp06pGZ7S/uhTLuoUtZBkyUwiI5lekWDU4zYjacFk7YnnEn0xqeUI\nbhI0+IBkg0WBNVQPqoJ4w6vSZcF8UHzvoX45KxbEK8YSATkep3GfQS6MWujnKKO4iVDaDZgUdWYR\nhhRsVEa2X+CSFVGTVpxaJ4VQcLAfvpxk1R0osVFr9GCbFkxLgp6BLiCnBByjoBgUw2oQCJOSwT8h\nG7XZmNaYW8Vvurt6wluWq4+U+cx8zrwpk5RieBAbozBMU7EhNIQqgtaRvr6YyjM8Q2KTBdVc+Cpw\nEkYpbJK5FV6CxTdhdrB1ZkjoDKtJH0lqrGzblTmu4Tt1Q6SkzaUFsVE0VA5ngTOZNG5UGajlRjev\ntHGj9IFsgmxB2vgIwDFnBiwtQs2gsFYUOyl+LohCLxvXK6zLjX7qzLtJKSc+axf+u7t7/ugvP+Hy\n9sp/9eqBT9qSS21hbpPrZ513X6xogUUKl3Lmvpy5Oz1wd3rk9//iE379k8/4t//ZP2L97q9R78+0\n+4XWW7QJLZO6DKRu4DeUSpGK7ZMYBPOo3qteItS3NlZt9FLpIkwPYMIEnUodBZmCSaGmXHSasfWB\nWwTSigpSMhVbKlUnTSdePSYFSWioJrlVwlOdOCtsWbnhMYiQ2p1FS1nzEQSKZt96IaxoUX02pzCS\nyYf6vL7mxs++0eFMd8bunQT2tPxjt44FJf9+TiCVAGb7Jp55IeZ7cw+0tm94McmRzDQpZV+b3l/v\nr/fXL9P19eC88QLnbX8LzgObA9eOo1/BeUqrmaFkgnRJu6xHsOYw/BrkNfwcnKee01B5thR4rp8m\nGVyolKro2HFV7g81AtNV7cBfsTYnmZOvn2R721/DeZLBiB7TXRnARuzpRRBpeBM2rTid4ZONaD3b\nKZLIcis4DfMFy0HWkGiBiH4MoUrka2jplBkBi9Y4Du22HwQ1DmnqTrGcRKshxaKdbcThW6fmQaxA\nM/wEswmjNIY0UKG0TpFos9AGnAs6E7jlc4r4M+4TMCrTTnRvbPNEt8ZEYYZ9fEe4ljkDPLu68/Dp\nB+bzodjI76kQhJpURokCeD0R94EQg5EsB8BiEGkVZAFZHK/OyGHWZsrmQrfY020k1ttCldvXLexU\n24bNHedFAKZo5KjE/aFxqM4Bi5XAyxGIH2qNYiuNlbN2LjKoY6KrY6swbzC3wCu1VuS00ESxqjFM\nVKGPDVmVVW/00pnLpPqJn72+8N/qPX/0bz/h3K/8l48P/KAtTNFQhc/J9W3n3bsVrbDUwuV05v58\n5v7hgcf7R37///yE3/zRZ/zrP/pH3L79a9R2ptWFdmq0uwozzjD4QEvYVqJlKHROBWF6oaFMV3pi\n/l4LoyhbFbbxbC9SDzwoIlgp1GpYD5XFZgPv0YRytNwhOTR7gfOcJK0kSUGPX9Pyzf7IARYzcd7g\nyD4UBB8aNwixhsgMK5NjDDNmtFVjU/gyzhNMgq0NnBdW9mG8wHmaOG8nSUmcJ38ncN4vBLERUp84\nlMfinBKWg1zy9LPtSbB7tWc2BVhUd/be6VuwmL1vKaMm2aQI/RxmWdPjL0I2o2Zs//vbtjEzyEVU\ngy2X6JUuCrUJrQm1Qi1JPAiIjwwBrTFt7RNuUecTC6Nlb7QH26ceMrkYNYDPF5LMkPiVYmiJDIOi\ngood3nz2vyf75paTgecXliNyxkdKlHbpIikZqjHtnbHZ7RVQYpr0Z1o/pKbvM77sUTUk+1i6xtgj\nbTUoeBO6NtYlMplUhElUhg5rDA9SYxLBM4oTNElhEacxqRqgQ/KQJfvPHOJMXOOQGs0XJRdNEBoq\nFZVOqTEZ2pnPqSkdzCTsTZSVykalz8ocEv3Xg7RfxHIQpBIBMCzkqk4sSFJKBL128E2YJ6HT6Chb\n8OZ5L0VNqiqRi+GCq4eSRCXJDcGKskll85aPyjYLfRSse6Qob1njuoXlZvQeCg3vaVXieZPThkr6\nj6siZ7BzTFRmHQgD5g3GDZ03ZNyQbeA3g5vgN48FvkMfwuMnb/jor77gk9//beblkUu5D9XEXdTh\nDR9c+xOb37K/XNBasOmsFd5U4X9+uFCWhS8eH3l4fM2rV/c8Pi5Mu/K0fs7nbzdu727chnHzG2+8\n8dq/4LtD+eDTN/DmiW/+j3/MD370m/zFd3+Nuw/uuXxwx93rM+e7RrsU5FRp5TkRPuzKEZpG3jfF\nKxKeEJwlMmNqZTSBGX5onYKPgsywJrlrBt8JRS2yYLxgYlSZeKlBgCWo0xmWIs8QFtnrCYugraB3\nQRLJKde8mQA518djs5tJNOx2lfys4SWDpAZjOGM40yJFXLOGCwnMGKz+s0wxeJSdxQ8g7PtAAsmk\n7ZAzhu86vy2NSZ5mGNuc8RuqSs2QrZAex5cxM5ZSqOW9YuP99f76pbv+TuC88TfgvJIq2r8F50mg\nFJkG3fDV8Z5+xmvYQg+cpy9xXhxMdtIB81SFEIf7EtPQvR6+yPwKzsvXJjvgj0nu8wsb+wryFZyX\nBywXRF7gvC6wJgkvGtjNNDz2e4abWNaXcqhioMUAyypOxb2Grbk44QDSHIopUyZSPELWiTyuaIOR\nHME5xZM80dyJsm5TarSfyR6mJqH2mEWiJU8XujRchCKFUgNflSKUU+SwKRoDI9lL0o2psHlhtcoq\njXVWNml0K8y5Ew4Siow9v2x4ts/tIeElQ0E9HgN8Rp7LwIiEB2eIUUtaaIjXYc/IODJT4jwaapYm\nzCqBF72wWWFYoU+lD2H0yUxr9cgcCKaluieCIiMbPMNhNWxJIiXIjGJMnbg4k86QgfqGzhvV17Cg\nsKFjg3Uyrs68Cq9/8IZv/dkX/PB3f5vt40dO3FOWirYKNXHeeGKdt7BfzQgINnE24I0I/9PdBZGF\nT189cv/4mseHez64LOi4st0S5z3duJlx0xvvSuPD8gX/7lC+9dM31DdPfPN/+GP+/Ld+kz//9q9x\nudzz8HDHw8OZ8weN04xSAj9PSh2UVFTEWFoPvDc9VLbDCyVV0OIFlwKtHAoH9+jBm/n3xQ3mC5yn\nUTVbTdOKH6QU4qgr3TWGT5r1yUWCtGwlsmJaDLOCTX2B85Q4P+1HnCRPxBVmOYg1dznyHn8+zhOG\n98R5zwoucpgF+1oT2O4Z5/FzcJ5/LTjvF4LYkPQwwb7Z5Sb0ovFhr+eaPo8qzWDZjTlndPKO3PB6\np/dOdOwCEs8Vm51hsi+wexcvzDHZemfbNratM00O9ULZHyUetUh2c5OKilAzSLJfPkd8mMbE+4Qe\nKbOoHhL1OFsI1JQY4kSwUHrvZCcxYqMrWvJQ/GVSI877GWSp6WvM3/d8Hfdqy/21BQ9vpoR8ae4T\n4g6s6XmdIDMsCz40D985xE27BxrRomH4lEP2KMNTjg9WKmsJthKgS0Hd6F4ZVIZHcni8m1Hz2aXR\n2YnNaGvwlGJKbnT7ZS8XrhRFhllnIhIe2VImlVC7QPgWpwndJfMrhJXY8HpPRcScQVKljePZ4pev\nYS527h71r8Xj1NhBuuOjMnzfqPQgkZAOddB0BgGUm94xTVdhijK00mms1oJwsUofhbFKqDXWaD+x\ndWBbZ24dHxtYkBpSQMjNTqKNR2lILWHZWQRpE68T14HZis4bPq/4vMHYsHUiN4cn8JszV2NuRn27\n8cG//hHf+f4P6K8+4PrqAy7fONOWC3pZkLvCdbsytAdA2O9XJQCGDfrs/MvLgt9VlrtHPv6Vj/n4\n44/4xusLb99+yk8+had3X9C7028jwztXbIPyZkO2yerQ//fv89n1yp/b4P6bjzy+eeTh7T0Pjxfu\nH0+c7xbaOTrrpYa8OfBlqDWKpPHLl7BUWXiHZ1nQ1jI0KyZdZQg2C7hh0w8ZYdEADzUBlHnNuyQ2\nkahvi3R7s541fQGeW3WWBepFqKcMQjUJBZC8mGa+WCsP0JUhYDITeKb/clgk+s9IDqPIEhueCsU9\nAtIka6bT3Eauqfb8VgXhmmuT7cTg9JjUJLmiu4c0Vu/4XpP11z2kzDNDpiit1pwkvb/eX++vX6br\n7zbOi7rXZ5zHC5znL3BetpHNgvcZU/c+Y3i12TPOCzlsHNbVA/MRKhXxyEbTGsMl9SQ0CAvuXyMu\nvoTzPAY3z0CP3RboZonznn/nr+E8J3DeFvZlAcRKhIJbwWp+34khZr5vMgO0mleYFTGNv6OKtahW\nRwObukJjULDEZMq0itk+L85gb9FAbCIU9bAPqEUj2YtwRVEYWhha2IjQ0k5lkg0sSUItVYmQDk+l\no+W0OjLGNhfWWblK5UZlzcecGtPyfUZoEhYZI2wzPaM8Jff0rHOVGSpMZqg/pzlDnIHT3SniaI3X\nAbXMiIMjOHUnNk5BagxNUmPGwG01ZUxhbGC3id06c+34NmDMIKz2Q+du49IgdURf5K2UGQH4TIYP\nuneGd5rFKyC+UlgRu+HXwbhO7K1x/nTjo3/1I37rT3/Aev6AN+cPaPdnTu1COS1oLVz7lUEPNeok\ncyLAZ1jB+tb5F6eFfqqU+0c++pWP+da3PuKj+wvbm0/5/FN4Wr+gb87oA5uDm63UDu2zjbpOukP/\n0+/z08+vfH8d3D888sHDIx++vufxduGhnziPhfJKkXNBtT03zrEnVESYf6HGGcRKDNw8WwdKC+X5\nOc4yZiXwlMd77Rq5h1aUWqOu2TzvCY33U0qoydWF6QPTeN+1CmUR6lkpJ6WcQc9J2hrPQ6zBngOc\n+Co/LUnASJITUQMrjOmMGTXPzzivhn3GBdXtBc4rifPkoEH/Os4Lm7+IvcB5fC047xeH2BA5Fg3P\nlGo3Zfoe8hSyb3VDbLJL+aJ9MtoEQh4f//z85PF/QUZpyIMku6oNVHukuI7BtnXWrTP6hGTmWqv5\naLRao+qnxJv5LCXIr5cSAveB4djccOuYjZw67KEwOReV/Z8jO2PvQY6NOOSHodZ4Jj2ODc2P2zO9\nXXnASSnSPgHZ03afN7sMHy3+XNdjGSI4nHkLVjmCrjTIiqwMe9YxPbd3xOKQCo89wTt9pBhR21qU\nW1mgOkMqiockjMKgMD1YRiHTfdE43JPBVqkFdLfMqPD8uePP2r5wSVhRzFNlwwxZmgxa8q++P7c7\nw7NC2oRtFrZVmZvhm2FbqjV26SCgOrLvKgPMfFd0BDiS7H6nR/jk3CJISlUzPX1GywolGPOaJUwS\n/83lmaQZnmoNKptXbqPSN8FuA7sO5q0zbxtz7VjPOlzsYO3DfrKHiu2Kmkz7lpCqjhlJ8F02dK74\nvCEj8zX6iq8DuYWdyq8wVkefOr/7L/6cD3/8OfTBr/+zf847c9781q9zqkuEPbXCHFs0EycBIHn7\n2EwZsY1YoxW0KKfLifvHex5fPzBspX6xoNKoZQmANYzpxo/V+W8eGv/xk/Dvr5P//tUdP8QoP/gR\nl6cvuPvijvufXXj9wQOvXj3w+vU9d/dnzueonTsSnDU+ByYglfQOnxmZqj3dmNXxWrBRkBipHYni\nkp/FqDAMRUjLD9mhnNoP/+5UM+aMAFEfK2TA1LIYp5NyuTSWc6EtBZsV67LH5Lz43BH/bZ8seRAm\nlvJoUfBuTJl0BhMPrVAplHJCitLNEV2PScbxBYT4fH1p4ZQkNZwRgR/59SXCU3d5+P6XNH2lGtul\nWwBkPKYDrRSWWikvQPn76/31/vrluL4+nOdfwXlb4rwBpbzAeS1xXnmB8/K5d5naTg74wD0ONzYG\n3mcoKT1tpSUZhpq8glkeJMLC+IzzCIl3mZHTRB5M03bzjPM8cZ5/Bef534DzOGpdNdfbA+fNxHn2\nAufZC/ySWO9oz1DJya9E1pm9wHkKzFBSxJ+Prx3KXGckZTN5VkkCFI//WsUSCZZEchVlhGqlzGNY\n2KmhYCBUFkMb5qEOqChVCkMqJ61BJEi8JsMS67jRTVi9cPXKjcJqhd4rNvyoZsUEPUiNCF21vYZz\n39N36f7erDYIO4oWNjWKpYo7h3C1DkrZc0X0uVVF4v7oJcItuzVWK9yscDVlHcK6OeMpguFti/wQ\nmY5aHjprBNOL7ood2K0F++dr+GRop+tgmxvdN0xX0FBqTL8x/MqYV+bV4J1TP+/87h//OR/+xefY\nNvj2//LP+aw7n/7Gr1PKwlIWWivMvlEmMdSLlx11sJG5bzMqmyMYX1l2nPfqgXe28vbNgrSsaCbx\ny2b8xJ1/ct/4j0T4g3XyT17d8WdizB/+iMvlCx4vd3zj/sI33z7wwfWB1+s9d/3M6XGhXGq2zumR\nleI5a9USWSHqNY0qC0LDfUbOYFsYo+BDkSEx4K0SYaNZRd32c5rulrFQVmhaVDSz9SbOVNDF0RPU\nC7QHqBejnkLdZfsQq5B2dvbjYa47wh6qbCMHxyV0F9ONni0ne7VrqQuilW6CaA9lVSY2Jru6i6CO\nzyI5VjfjBc6TrxXn/eIQG/kimU3miNDGaZaNDnGQxCUm6R6sedHnQ8R+efoy9+fcf8vIF0uAUmOh\n3UZ65Du3dWVdO32Er06lUGtjaSdOpzO1LkfqthwKA3mxiMQ/RopsHLWfN999t4lD+XOhz55MGwun\nikflmcrR6hCk2J6j4TkREMyCEfb9Z0LSZ5lVsPu0WOKDh+wHmOfE7S8RahZsnY/smEdgpgqjBmtO\niecJCeNObBw/1pcY7+NbWEGK4KXQfcFaeB6nl5A+eiT6BsXj9LRhTA2mv3iNWcPLgMPcxS1fzRRo\nMr0G01pTVqoxL6gYnYnmBzjWj8gW6ANGh7HC3MBXsI1kT3Na76QdiYPIchuZ2B1exj08VLsgHWQT\nfFV6CTmgq6UPuNAp2SlvyZUmqeHlWX1ihY2woKyzMjYYN2M+zdjo3nXmUw/FRp+IR/p3UbKSKd9y\nkSDbDuY63mebEyszJzwSmR8ZRumS30/e4ge7WwQ5NT79zkdUg2/88FM++87HvPvWa+Z2QzahrhOt\nlW1d2baVsW34GCHBHI5P45vXwe/9+A3/8nzizy7K0+0dP/vsU2oTZn/i3bvPeXe9MizCYevSUDOm\nxHv2BuV/a87TcP7i/kI/Ne6Lc7ONcTWuduXp9sSbL97w5md3PD7c8XB/4e7uzLI02qlRWw2PcRFk\ngbo4S3EmxsCpRMd819MR7kpWLmvayaIydtdmZD9O4Vj4q4AyqXMwx8bkxixX3G64dcIA0zmrcynK\nqQq1wNTJUKWXeA/25cZVgiiCI1UfJxQe6QSzzZm3ydCBlVCTyFLQVmKyMxoQ07NpMWniCMyL9VL3\naYEQMtx9qkqQZqWUmGzWSq0tyCKBasb5fGJZWjhc07qlODsPXHaw/P56f72/fqmurwfn8RWctyXO\nm4nz9AXOO73AeeXF18vTUZILLpIhpTNx3gyc52lFyZ9hV5iKG7uF1plfwXk5wEobzJ6j4RZE+pdx\nnhM4j6/gPP85OG9v4Ps5OG8mzgOmyLP9osZBOf0nsTfuAyxJrJuP2H8S5xlQw+a56QkpEoOb+Glf\nEBvPvvuS/3UnOIpHyHdkb1RUZgQ1enyfwwsj+tro3hg0XEo8jxQqlSmNSc/ZdATiD5x5EBuwmUYY\n+yj0rvgm0CWbMkJ1IGnBZregJIEWmSR5H2fAaLqDIoSyerSiuKMW+s2Jher4GDoBKFridGki8TNZ\nDLA2U26mXIdyuwnbkzPfxTDL1ol0T0d7BI/uIaH7Cf44KXjiPAulhiXRw/5+7qpr5IivM3cKuVG3\nxk+//RF6hVfXT/n0Ox/z+bdes95uQU76xP0rOK8nzptBmn1rHfzuJ2/4X9uJ75+VeXvHp599Sq0C\n6xP93ec8rVemT2hK1QY5yB3qvHHlT1MJ7sQAACAASURBVJvzeeK8p1Njwdm2jbfTsNuVbk+8297w\n5nrH49Md9x9cuHs8cyqNVhq11CAf8nNQ2szBVke0IjIQlhhkuTMEZj0hTdAReMtH4D3yfOeHT1cz\nCD4I1Okl79mwmOEd9U6rzqlWztW5VOeunjiXGDuZC5sqsxC5aEPxjRfkIkl0SODAEsp825xZjVFG\nZvgX5FTQpSJSUR+gccLYz1lIRdBQkYk/ny0l7/Mv4bzyteK8XxhiI6Qs+4dxMm0ypxzkgB2UNHmY\n2F80OT6gz0g/fWcZ2kMuRlUka64q2zTWPrPffOPpunHbOmNE5kUpldYWTqcz5+VMqS38dSntebnI\nG5psLNG5nnrAo2bTSEWC7DOFZ/b3xd4JHGnYuwUmbpQ47u5svFnkJ+yEebyGuxpEjl9jEY2FT5D4\nM7I3KnB8YUmPo2Y3svue+xGhozKjQSIbxeJ590Pz/r17vNZK/PMRuFSI6YUIwwNoSB4Ko6ZIjj9r\nIlgNWd6sMJBdyMgxsdif35MO2sl1i43TMvMjZGEh7xxi6Y+ND+60CL/s3eirY6uHvWMzbPUIButy\n9M0D7NQAe0VcLgSgucElCRRB0yH1LERQERpez5RTdmpqVZLYEA2fn0Q7jFkEHm2m9FlSqeHYbTKv\ng/HUGdd4zHXgYyA+KRJgKIJCnxlW29U0ohz2pPx3kUIpC0VOtHqhlkEbHZVB6Q7LRJdg7SJ0VPjk\ndx5hOXEexg9//7e5/sbH3N3eMt4NaumoVK7XJ7b1xhxJbPSJdOPxNvjumxv/yU/fMl4Znwr8dEx+\n+tNP2LYrb7+4Z8wbt9tbxrQ4SDdFDU51n1oV/vJO+SsKj3Xh/uHC5dUJO4HJ5KmvrNvK9c073rTG\nq7t7Hu8uPN7fc39/PirF6tKop4KcC5UBpyh+aS5E6khsXGlkDQtWSaYnJy6eSqK9X53qMUWpnkBt\nw/uNaTemXJk84dyAleJOs4WTDy4IJ6AyGdLoreK1xXqTkj8rBNlGvH+SoATLsGJ1fDPmMpltMiXY\nfU5ErgoFtCRxFnaskAeXQ4WiEoGmuXRErdhOKCapUWuhlkJtjeW8ZD1jfCzPp9zw8jASe5vHRmd8\n2Tf+/np/vb9+aa6vB+fNxHkzcd76Audp4rzG6XTivJy+gvPkeQLunjjPkKz8tuigz5rNeagy9qHV\nPunZDw/wPJwJnGdpgQlrSsb8HTadZ5znL3De8U8cwysVnnHe3hDzt+E8okDjJc4zSdsx6F7L+uJQ\nlU8Rz0Oc8w64mSSMizCkwgKjhDI3QrrLkUu1j/hUwkhS9l/dUBmh1MGS4EilChEO370kwdGYaSFQ\ncUppQWwwGRK4ykl1jxvDJnNOtimhzrXd0isp2XWkE+GhaTFhx3i2vx/7gOsZt8vOIKRiYQ6JQEot\nIEnIQA7V7EtDg/gY5MF2Kt1rZmso6xTWLtyuxvZuMp4682ng60SGUzK0vhQJm5OEf+GYoUpapPe3\nTBQpNSpRS2Q8zJNSGdS5UbShVinSArcsit4LP/ydRwYnytX4we//Nm9+/WNOT2/xOZi903vlur7A\neXPAnOg0Xq+B8/7Tn7xlfTR+JPDDOfnJTz+hr1dun92jdmOsbxkYUhPnlcizac0pFjjvzyjUuvBw\nutCWU3yE5uS2rszPVm7jHW9ujVfXex7fXHh8vOf+dOayxNmtaqOWUDTo4uhiaAMpQW4gMcyKzFoJ\n1XfLzLwSN7tL4rz9PX9xTpPE25qfC3Wn+KDMDZ1XmhhnChfZuMjkTgYn4kM2da9aLqgXxqzMKKGJ\n+MIcvrnGPeY9cV435jaZ62Q6UbBwJip9cyhtdY+Dic8g1CA1SCtcyRppccx3izSQpEatNXFeZTmf\nEuf5/y847xeD2EBiskge4h3cJjaEOXqElbyUHcKzCGL/Wx6SsTkzzwJ7XoBy09NS0VqR2pg+mPPG\n9bby9nrj3W3l1ifDyf7hRmsLSzuxLGe0tDxPC7hiFgFN5nvOhMe/W3ifxI05LBs0svJH980mN+mX\n0syXr8XB5kfrCTjmsWDMPLxK1lV6Mrb7ormz63pMYJPRRZLhlxcvX9zIu0Q0bfjPyotB/FwSm6dn\np/mR5aF50PR8bgl/aXQux0a2f0l3BxO8x/Ps0lIsCITjJcjKq15gFIlp8h6UuLOJ+x/2Fw+DPfrQ\nS3g/vcQUexZDS0xPbGaLyDaZWywQvllUe27A6kfdmCRjuxNLhwnOJ05Wa8lEKNE9P9MS0AW/EQFC\nBEnhszAbjGbUmlMJLF5nDbUGWlJREQfPsQpzg7kZrJN5m9jTiMdtMLcZeS6eGjbxg8mXBD52EGmx\nEgcDS7ShXBzOhl2cqo0mlWVUlllpa6W0J7ykV3DdX48gpG7f+zbf/9WPWR/vYQ62fmOuhrzriBfW\nbaWvN3za4Vc1E/7gx1/wez/8DDXnH7658noa//Rbr7luN+yzwe36BmTGzyQeoZ8ItDjEL0Iwz6XS\nysIHlzseX99z9+EFP8FqK7frE9u7K7fryvb2xvrZlXet8eZ05v7+jofHOx4eH7h/vOf8cOH8cGIP\nhq3thXhPlSoRWkZt0VijmaNBSDyNiekMgKFEAGgTpEzUOjI2mCtWbkxdmbricgW5IjjVN5ZpnGdh\nmU7VQdGGeAM5sy4NpGHUCGMbX1k8HXwa1IxIOzmcYWYzUwRbGbNGYvXMusD4rNQE8DG9RCwJE013\nirNryw4fZf57bY3z+czd5S4l5KlOk/3zGTXJhfSvS2zS5cVa9/56f72/fnmurwfn9cR5t5+D8zRx\nXmNpS+K8+hWcR04yY7ixD3uimWUmzhthqSHx06EwSUJDgjD2HagEIqRIkhpK4rwZjQNTEud54rw9\nP03+BpwnL3CefgXnxfNCkCJfwnmEUoNO4LyZOK9Evobv1pKfh/MkQxU1SJH4YkG4j1mYrcTfm5pY\nLwZYx3BO85soipSZE2RNAiCGULpbcMihlStzVmyWIElUcxAGszZmGYw0v7jNqGIfgzGMOSajh2Vk\ndsdXjrB32SSz0WIwFffgjvNSiZO4XffXfB8sTPBhMGLa3ktBdvWkCMM1rDXuz9aFFwdE82xAsedq\n122DcTXGu8B78xqZar5ZYmVJW8Xe8RZ60eePSU7ac4/3SrTSnBxrxlwGtmxUqSxTWCachnCaBVUP\n/Bg3J+++923+j29+zNvHe2wMut/AjDk6pRfW/gLnebarufCHP/qC3/vLz9Dh/MMvrlyG8V9/6zXv\nthuffT6YT29oMillQHVKLdQ880gBGyBWaVqhLJzOd1wu91wuFzAY20q/PtG5cltXts9urP3KuzeN\nN3dn7pc7Hk53PFweuD/fcz5fOF9OcFI4Ze1thbJMllMQG3sXkJXOcGWoPuO8xHqS5y8tAlXwWijF\ns7hgUsXRObAt2/jsicrk5MJpLpyncZobZ224hsq8SKNKiWxBmXQtbEWwImSqcJyhukExXCPIn404\nwzhYdXwxZpuIS9T5Vsf3BpYuYCUHgxN3fYHz5k5XHiHM+xcNnHf6OThP/j/Feb8YxMbO5L+4jq7z\nMfGZrOkLwt73Ub2njHFOxowqrwOOv9jwSlFKrZTW8FLxdbD2wbvrytN142kzNkuSoC7UtrDUE0s7\ns7QLUgpmZCJsLqweiy3JeouH9MfSPzrMszbnmdB49giQv8bCtEvciu4dyLIPaoG5Z1VSciPxIs88\n/k6U6HOVJLmJHSQKz4+wZc48xDgikagrSkzyPcYOsbnsckpNP2ZOMXbvVbL4GVgSBINAZI0IrCU3\nNYkE6SKHfPEIU5opkxPig5x9z+RhMWUgyH4LJJET22x+P5YbDamg0fg6nvIt0wBNNsJq4lssDj6c\n6NR6ydz7c/K1x0YbO9hMpUb6JSW+2i4hlQyV8s1fsLyAefg4W4FFsVbQo1oiX0x5DjiznKjMF0oS\n3yZ+mxEitRq2Wfh6bRB+30lilZza7OAsbyLJtOxWqEtB7wpyAb9z7GTUWmlSOM3CMpV2DguIl46V\niV+DLY6KM2GehfGoLCJIK1BDDulMfMY9U7Vwt5woJ0PvFGzl848/4scGdz/4KT/5xit+8uEr7h7v\nQqTqnq9xSGtLbVSJRROLuJMIFiv85tPK97Ybn/47H1A/fM39tx7hArdx4+2bypMJ6/bEeFq5riur\nrbzRK5fTW37Dhd8dkx//1nd4+2vf5OEb95y2E/qqwkNFS5AaYRgqGQ5aoYQK53lcZaCeQBNKK5Q2\nkDapDMrsKB3xHqGhFr5uc2OOeKOLDZaycRpPnAZoGag1RE8ctYEtQmht83gBcFTStWwTmQMvM6Zg\n3ZHNkTXZfXFm+7/Ye7dnWY4rve+3VmZWde99APACktCAMxxKM5Io+RaOscKWn/TgF/+xjvCrI6xH\nSVbYYUuaq8ecITUmhyQGIoGDs3d3VeZaflgrq/uAoDi+gCODpxAb+3K69+6uysr88lvf+r5IVcJh\nSMhSp5RSsvdyAlfXGLOSc6zPYTpVX/EdpRRabdRaGb0zJmDPeyJ6XAkDtVJYWijKnoqi/6+4/DfH\nm+PN8f/H4z9snBcfr+M8ZSaM2PRVyBaEUImGhLubJc67w1sHtzCrRLFZnmRHyQ1k7O/TsI+OmzAk\netv/+jiPX4Dz/PgInFc/A+fl77LAU9F6G54bRyl2wtQ5b6c6caoBvBNFq/So8B285jkYFj5kmSJy\neIBMnFf9RgRNs0L0Tio/22AUXJGu6Ahsaa6xuSyOVaHXiGIXH1hG+loPw1gbYD0LAxtIJsuR35N+\nCpFaMlKpMRL/hQXtJI/mCHbzw4cjfDYcVNmpeCkMHVQZiNeDFBNJjw1PsYdHytzeYXQY3elbeKDY\ns2MXC9yXxTfvqRyWeU3tBsGFA/drqVRd0BJtFb6CLYY3w9rATjtNCotB68I6lKUXVAPTzJbaLsJ2\nUioSPijpGRaEZOK8UnhYV4obTZStXHn11Xf5qyusf/EhH375bT5MnCeQOHlEoVSEsjRqvSnU50iz\nUfitV1fe3y784FtfQt55hxePbyHAdr3w/KrydBWu+xO9X7m+ujIuV64fPfMkn7Duwm89D374/vt8\n9O5XefHikfOLlfpQkZPAGh6CBWepSi+FJVuadi2MxHyoQQklK7O9txiyCDSDGq3mokIzx0dEQ06X\nwOIbi8KJwdmd81hYpQaxoZWuK1UWqhg1k5coAkthyEyly/sl/Tgk91MygpD04ozF0DLAYNSBVTui\nZaVKhiEAponzJHEedzhPPoXzKi3b817Hefa54rwvDLFRpCQTSjC/eLKuI3sv/TahENV+ywpjuGUP\n+hgMDxZTNZxc5+RYa0hqtEZmde+Dy+XKJ08XPrnuXPqgI9GX1VbacmZZzyz5WSj0kWZXsQMPRQIl\n4nHEDwXFbL0f+EFkyLFITCmhHpNbnINcRzR6Suuh1kiWTAHPjXxNFYPeLabKsdhNpUY4YgNz838T\np93OpMTfUYU6OXLLf0uzzqn1AGVaDh4XguDUHQfvx7mYtAjW8KGh8d/J/k2YSV6HrP8gNrgREjdt\nV7wcuJE9OqsHkjWKrKQkWTKNKSUzzqN6YKnQGKl2GFHt7rnAzQiv4TH5TjDiSWykNBGfdqUcUWWz\nzywbQu/Ijdlfm+PaFR8aG+WUb0qaWUy/ErdUklwtCJjZJrPF92yWrlgjvD4OYiPPu+f4Em5lLGJc\n1BoeE+3U0LPAGcZqyZgrqyvrUNZeaEuFsjGK4cvANsd3x7dg1Mce48+a4ifFF2VUxSuIVMpJWF8U\n9rGwcELqlb98fGR765GvXAd/+q2/xZ+/9y5f9jAH7X3nuj0z+gYMas3WiKz02HAWMx63wT/86Uv+\ni48v/Ovf+AafLJX2pbfQR2Hdl1A2XAY8hbJm2648Xzo2nnEzTi+f+PZPfsZPP77w4asLz+99icft\nkXM/s8iKnIWyFNQaRSqFMCsjzeQ8k7e0EGO8JOHQDG3hnr/4iIpE9g0zoqe8E0k8fa9YH+iARQfr\nutPqM7UMVFuw6Hn9XBVbStwmIyS7QrQfYTu9GGgsOu3UKWejXInr4BZVmtTuWBlYsXS+D8Iibrao\n6rkRxAccBN6BZ/P/c24pacLaPWTZ7lFpO9IFxKlFWWvhvC4AvHz1dJjZvTneHG+OX5/jbwbn9V+C\n804s64llOSXO00/hPEkSIMgNkVizXeJ7S8gwwZtMgHI/x3kmYkziVxzVMJis6rGZZNzhvNwU1Izs\n/KU4T27r/P8tnDfJmiwaWaaoIGlOKbc2FO5wXrZZSHp+uGgSGxI4b+Uwvk64lO0avI7zoms4VB9H\n20ssripRFQ9z7jCoVxNK/h2bxp2zVaaSZEIU7qw7tgtjTw+Jg1whCY0sZKWXGsOD2PCJq3ZITHXg\nvDsSaZ43H354cUgvodRQpYuH9wIFzfU0npZtweQewQhSYzPsGvjUEvdxMbhaJBVOdfHIQluZJFES\nZ8dlSpzXGq0utHZGV4UFRrOs6ht+HjRVVg+1xjKEpRdEOqiFOjVPjYrQXLD0bZHowch0x0opwloK\n+7KwLSf27cpPlkf28yNvPw3+j2/9Lf7svXf5ksNjN2zb4fKMykapg3oGzchjIchMNePFZfAPfvqS\n//SjC//T17/By1JZ33qLosK2LdTq+MsgEbgOxn5lu3S2/Zl6NV789Inf+cHP+Mnfu/DT37zw8itf\n4p0vP/L4zpn1rZXyWFEPMqeIsKjSpbKzUKlsNUzjtYFXhRbXGjekFlgMVgnyoBpNQHoWltxQT3Jj\ndJoYC8ZpwLIPFqt4ASuFUgelhM9O3JlZdCqFjfC8MyGSDnvMHTqc0qEMopCoA2+DoeHxYXvHmkFz\nJES/cf9ZjBFPsTypHGLOYQetoXc4L+KDf5U47wtDbMx4Hs/ECR+GicTnw89gHhELJiN+PiPAbIQs\nsZRKrUqrJefK+FmpDUS5XDuvni98/PITPnn1zOW60c0RrbTlxOn8yMP5BefzCx7OL1jWh5Du9BEx\nPsleh8miHHndVIUWWcE25XeuxOSjqZSYbg1ZnXdPBYIl0xqTx7FL9h6pB7l4iRZEFa01Gc6bIiQW\ngrtWF5+TX9wswXGknHG6+WbfvGZPZrhm5zk3z0xjcFXUFJt/a5YkprGpR08ox+KXTWguSFg/M5Ue\nLrzGWs8FWaYZ6VR06P2kHddfczM21SjBIM/3K8GBDE8AMqWg+bosVA7j2rE0tJTZI3m4YkP4mUzG\nJQ29cgzmqzgAhUiLjajE2JpVfW8e0WnVkeY5+c0PuZlyAZkjdpAfr5lWHeoRw3t8xEVKiWQqSSbl\n6m63cxeymtuvTiBSpFI1qjchFhlodfQgqJ3SICweNpa6Y6sH0bL7oXaxPd6D1QKrYmvBF8FXDTfx\nxaCEI/d52VifNq7m1C99le9+8zdZTit/uzbMnH3fuWxXnp5fcd2e2fcrSEdshARPHR3G6XnnH//w\nJ/z2x088mPF7f/jH/PCx8P1vfyNyvCkhLV4W+rLgLTf+DHo3/tFPP+Y//uSZAfzun/+A5dUr/uXz\ne7x1fYd3xtu8Vd8JkkwraIMSjtmT6IuqS1TbigRzP4LfhAVqMRYZrNZpdKoPSo/+7G6N3SLGTgdY\n72GMXgu6KSUdznXZcz4soaiQiKbV4gwxsI3w74ieqe6D4h13Y5MLl3LhulzZSpKLNVuehqD7jL5N\nFl+SAcx2OjzMqHzey9nnfZurJ1cb88vIZJ3ed2bDWy2VpRZaUU6t8nheeHE+4+58+NHHd1Fsb443\nx5vj1+X4Dw/nPfBwfkyc98iyPibO6wzfE+cVnEbaKuaeVEEqkWOXG/uMsUVv8ZIxg2b7jE8iOYmJ\nI1kvCyiv4Tw+A+dlIevncB53OC/W/F+M8/RTOC83KhZpdNH2oqhFulzgvCRMhE/hPLvDeQX2dkv7\nuMd5swXFiJ3UxHmDwEITq0x17tG6Q7z/o+VGUcsi0AiFyYHz9Fa8Yhoh9sHYEuf5Hc6bkZp77IdD\nZeLJDxjMQtFRmeY4Z1pyzUzfOFdCLZKvX8r8sMP4f37k4OBWEktolxX3IxFjT5w3VcSz4NaTBUlc\n+jrOm3dLNI96FjOnT4LWml2nAy+OZptCLU5Tow1jGc4ylKob1IFnS7hVZy1BJJkUpCheSiplwrPN\n3KAP+rbT941+3ei7o+98le++/5vU08q3a+PZnOu2s1+u+KtXDH9m6BXWjjACj5coBr617fzXP/wJ\n7//sidMwfu/3/5gfSOEvvvYNqhZGKkaXttDHgtvOnr4TdjX+yx9/zHd+9sze4e/82Q+wj17xz7/1\nHl/5+B2+9u7bvPP1dzjbiUUjLU6qxL1Gp8iOyhJJRU0otSCLMSYJ5uDN0EVhNVhAq1MsjE8jXNWP\nuqx3Qa3QSOVLj1tGC5TmVK50iaLZrf03FfJTTd8EUcN1YLKx9AvLeuG8X+kDRJ1y3iilYl5QCnoV\nZAVZs6g825j3uCcD52W7VwrujyKokCTW3wzO++IQG1JS+hymm24DM8VSmu650Z7yRDfDtTOGM8aO\npTSxlMqyFFqLaNZjIdHYIOzDw1fjk1d8/PEnfPL0zGXrOEJbFk6nMw/nFzw8vODh/Dbn01vUdsrU\nyo2SkgaXYJutRT+iVg7Zj5N7zVwJp7Dn3nAUOeyl8shBlJJvuO1zyY2EFI3NW9XsDy1H1VXnc+di\nR64xScfde3vo4QIaC2U5HJKJyTMXLUvDUgHULTZXXo7FbT5FkngIQyS/kR3T6XuSE0FnR9wos0Nr\ntsPkzQyHwiGcwf04SQIHCyh588lxI0bfopmnCaoRngHZHoHhYzB6j0UjY0jnQiyTSMjygtz/Y7Ka\ns/3IkzCISkGFFoy4rx7VipPD2ZHVKCeozahtoLW81mbk6VkwvVrCeBbGyOllEK0y6jlspoHRTWLK\n8dmYyCuu2STUjpF0jLZodQmjrHBEL2ALjoQng+YZqEorF+qywWnEonuoNhzvUbHyWvCm+FrwJZQb\n3kFWg/R3OC+dh7Vni6jSSuGxaPShmnG5Xnm+Xvjk6cz18sT1+hztG/uO7wO/Gn04dRm8eg8u8iHv\nvPyEf/ful/norUfG6JMlQ4vQamVpDZaFXgdWG94HP26Nr9fOV/vgz/eNP3n1kh//RHlVL1zahf20\ns4gjFPalsdWFITujd+gF74L3aDOSkqRZ4Fy0hklto9O0szBYsgXEhsKooRLqBe8FGzG2dVd0IxdR\nQk1RBrAFsYGGMZuG147IhnhH0wxm944mILv6zpkLV71SKJgqpQ2KOnhluFOfK2UtYRJ2nX3Fmve9\nxOuSSb9mPPSUKN7Jcc08e5d3eu9UFUKeCK0Ip6XyuC689XDmxenEGIP6mkX/m+PN8eb4dTn+ZnHe\nE5dtT5w3+8YfE+e99TrO8z2iDM0OcsIkNuRagCqJ89L/ArgRCvN/+aEzpWJiCUucV+5wnt/hvDCo\nDpxX7nDeLORMnMdn4DxSEfLvw3nxF0NmMnGeH5ghcF7E7eIFsxs2lCwQ6V1Ki2D5evwgz+n5vkVm\ngTtIG5/YLnFeFqeP0kvUXY5riROG7EchbLbJJM4buamW9I2SxHkWbSi+20Fa5KlHeqosepyDwwA0\nH+Azdngaq8YbD6VxAarjs1C1OKyJ89bAJq0qJTtziwYtditca2Tzucy6fJyP2Xqd5zWwnd3uh8R3\nN5xn+X0OtySebke8H0t6JjpnBUnsPj0Btax4G2COWGy+S71EO+2S5Mbi+CKMAR49uoH3qoaKwYnX\nNIyxj0gg2nv6qgRefhflLReeuvF8ubJfLvTHM7s9sckzVnfMd7yPUKkszkkHL9+DJ/+Q9aNP+PAr\nX+ajh0fGHmk7jLjjmlYWbVAWZAz20jAd/Kg1vlQ7Lxh8d9/4/U9e8pc/VvbrBdsvDNl5y9/iXB5o\nZYHFGVWxcsIYqYIOg8/pM0NyeHgQXNIcaUJZoBSjDKdi1GYUC7N8hjBGpCaWLoS4Vm4+JjaJzD2L\nndyIDUAJj7migpohsqOyMeSJLk+YPkeCZRnUulBaw0r4sT3tSrkU9FkjrXEqpszznvQ5AoM4zLQm\nmfupA+fZZ+A8/1xx3heD2CAnYc9+S4sWAdNklX3cNnJz4TPLSTMMgoaFx0BbFtppYVkysoucQCRM\nPXu/8urpwscvX/HRy094errQ+0BUWZeF0/nMw8Mjj49v8fj4FueHt1CtbH2wDUPaSGLDsAWkhUml\nLIov4O2OhC/Bdh1zzpTPzUXbBcsbdCo5jgXx2IemKkGVqsHeaYnY2Uls3M9r0RKSzO1htjkXpmAf\nVUMnOHsyD2Wd3RMas+kqnz831nfO3rfbInvjkmQ5nnf3+yUf7RLvUyQ8wJH7SkaUvuNp8W/HYpev\n/0b5kCv6QW3kpB0eD1NSaNkraZ4O1yOZYSdY/KxMm3tW5gf3hMb9KA1z2JjZQk0iqVAAPxl+Dokf\nZ5ATlJOxrM5SnVY124ugynQjFjxT3IfXcP1GYI90lOlpMvvpjuFx/9qOhfnuvGDzhEUlwW/LnHk4\nhI8+YBfKPhfWiN/tLaLEioTpaa0NXZ/RdSB9RI9nkhtkupepHuSGtfisBrKBVIc2YoE8jZCQamFZ\nGtTCKMpmg6frlefLM+enE5fnV2zXZ/q+YduGbeEIPjrsQ/jeV77Gupx4/Msf80ff+bu8ev/rLKMn\nmWgRtboU1rUh6wLLCHmgOX/0Trhe/9bo/MtT4Q/UaS8/Zvvpxn660h92zqpUb/AYqo+hK7ZvsFXY\nBds5yKYZeSdqRLxwp3j01i4MGoabMqxmzG5hdEH2aM9q3nmxbXgpSGuxYBaNyk/dk6AK0m7HMY++\nzfjouO3UsQWxMQabbWzs7BLmYEML0jZ0fQiFmUN7atRToayKXATZCKnuYWgzCT5Pt++smElkwJd0\n33dzxr7T9yB+tCl4SCpr0VjwTitvnU48nla2fYs44n/PWvDmeHO8Ob6Yx68e5z1/Bs6Tz8B5Lzg/\nvEC1se3GlmJTsnJvWY334oH3FbGS9wAAIABJREFUJs6DUCPUT+E8YsPiflNvmMea/zrO01uh68B5\n8tfEeSQXcPOt+H+G825VI8lCiB++DcG2pMMEwB3Ou236b18G8cBIRXJukqY/iaSngh6pLfPNZJFp\nds9ya1WKnRVMb5NQhTjq9jrOy+KVkf4YaUQrLoHzEpPbLBYNv8NN9tqHux8etp7tOF6C0PAaPhW+\nGr4qnAw9O20x1gqtwqJCUaeKH8RGUP5RwIrclkj927Oo6CahgE01ye0q35E+P9e77YmTiTaoiftx\njCB3hu0whDKi9VmO4ipAw8tD+Lhk0Y5lQZcr9bQjq0ex7hT+Hy6KJbFBVajlOH0yHPbAh76P/DuF\nSmP3wtWU5z3a/6/XZ/btxNVfsckzXTfMEuc9DbiCnYXvvvga1BOqP+YP/97f5dXXv8556+kLYRSi\nQGa1ob5E64c5++r8/jvCkxW+9tz5Z6fCvxKnffQxOjbwK9Z29rLzdt05Lw/IalhVRt0Yuodiy0oU\nMn2SlNzAS7YfS4NSnKpGc2MpFgk/GvPXuEakcLt0HvcNfyjI2iI6uMb97xLEiGiPou9MoyQIh4pQ\n3FHrqHd0XBn+hPEE8hwiElmpLJS24MtCqfC0CfVZKJ8ochVkJ1uncggNOe7xSEyahaxQ8P88zut3\nOG98rjjvi0FsaCx4QSZlRKpbVJZzkhojNmRidmxAwyF7YGPHMbQqdamspxNtWZDMTJ+eEaNvXPbB\ny6cnXn7yiqdXF7atg8NSK+f1xMPpxOl04nx64HQ6s66nnHOT/U23FROLvqUl1Bq2gi8SFXsnNqLl\ntvl0T4Z6xGdJkgONn91Yf527/Ogf1VRplIKWiAYqoinTi5UgpI65EbFjectF565lo7yu6AC4Vf8n\nh5yRPeQGa74e5k1wPPO1z6JhsqhlrnJRAfDjMbloCBFtevAfMRELsQlXmX2e87aQO0LjeNFHVScq\nIPMkT8OnHTKCzUY/TL6mjO8WxUb0E9rAD43irNH4PB3HmuIWk45JyvSaIatjJ5AHQR4G8uCsy85p\ncdYKp2KsGgR/kdimzlpNnJ/MZfeFjUr3wqaFfVE2L1FJH4bvilcJEm0qeMhxgBxj/EYA5YBLp/Eo\nNwSYHKPTN43KU+VgilFh1yXaFERDDktFaJS6UyySeaQPdDjao61iiNBVMCpeKqYlDIWaRTtLI9px\nTg6eY7BV0OiJVR/I3ijXSjs39u3E2Df6vjG2Dbvs2KVjm9M7XF15Or3gj779bcZXz7RambF6WpR1\nXdDzoD06bSM+KKy14aedj9bGf3+u/KRvLLLhYlz2C7wC/8g5LQuLLJSxYOcF6or0RrkYshV8SPZH\nJvBJAqm4USWMQ6MNxaldsCSmbBf6BnaFLRUov/HBT/lH3/se/+b3vsOHy9dpJa5bqLCMZdmTXLCM\nsUtDKtuREWoW3XZk3/HR6b7TdWfoTpVBF8W4ImWHxRhD0bOiJ02z0/BFsTFJPs1xFOOqSKRE1ZIq\nsaz+QQDk7qHaGNZpXtODZlAUTq3xcFp5OC2cWsVHP2aEN8eb483x63X8anFe5+XT8y/AeSsPp3Pi\nvDOn0wPreo6Eu7HHfJ4VdMOQbCHVCrYkzjsRwGB6NuTh3Apb4Vshd/An/Tp+DucFCfE6zsu5VjVV\nKLGZ+8U4j78GziPPaRwlW2GlSL6ebC/2+3dj8+rlNYzXpuWugBWUDbPlGSlJ6iRTkRVen7gqTSIP\nRcnkVozbaxY4WmwSgMnd10F+jcR5kUpjnmMmCQDx28YNCyIkCI/AirHOTaVrFH7cgxixbB9ywMpA\nqmOVaAlYLDb8Z6Otg1P1xHkeke0SyWo1ENGkhDCvDC90CsPDWrKIIBRcS+whuvw8zhPJe4c7nDcJ\nE8sHTovZAK1mxrBOH1v0GPT0fznaXgS3xrDCqNBFqCjdG1oape2UuqNLEBtlpCeIRruSJ7EhSCQC\nWmAc2T096jSNaCvLKCxdqNfBWhr7Wtm80cuJUTa6boyxYdcde9XDqP4C+7PycnnB7//2t+mnM1Wj\nOISFf4nWBbFIItlq8Cy9lEzI2fl30vjvpPLjfaONDdy4XC+8fAl6clgMWwbj1KltQCn05cwoO6a5\nfzBCTT17ikqMPzKOVWqkHC5kIcs7VYLgGRenXwx/dt77P3/Kf/6n3+Pf/Eff4cP3vk6rDtVSKZvF\nMTGa7oeKPQRCwoBsbemobVTfEJ5QfaLohSHEfpRKkQUpDXHloe2clk49Q7mG34wNyVb2vM2GoF6i\nmFmEWqKFqWQaJYCb030SyxPn2eeK874YxMaU2MFBRR8ye/PMOg/TKLXou5+uRJaspAiUWmnriXY6\nUZfG3BzH7zA6O5dt55NXz7x6FVGvvQ+KKsvSOJ9iwXtIUuO0nlnXlc1Tw2MWsY6T2V48zXigrLHJ\nLSv5uju6pct3mk+R0v+ZuOEZdeoSLGr0TZZUZ0Qv5b0csdaQJ2q5G3RO+mFElvUED7OfNdjx2/n1\n7Jc6uHGBwzPiLuYnNsjp4Hz/d2aW893AndncU33B8Rtmp+m8i3pUjZWcjHMpnOoQUtKoJc04J6GS\nbRXJvM/2mmPV8ykZ7bh1zLbD5PPor0zZ5WyROWSHuSjG+bN8FfN9hGQQi6SbkTJNU8Oq4SvwEAtc\neeisZ+O0Og9t8FCNczHOZjRAh1B6tBnprKKkCdNaKpt0Kgs7lSIV1RoL3BIxYro5vikWFsQhV9Wo\npoz0fThicOdiOt+nKDE9KnjHrWC7MjY5XJ5nM+jQwi4LSKhGXApGpZVB0YGWbKvp2fLjznDJqCzF\nJBbpwDTxWKmKLoLugAUZQylYjhvHYK/IXmmnxugnvEdW+rgGsTGS2Bgb7CaMt2MsrrUzToYtgjZF\nmiKtsnRhWGG3yu6NvW30S2eMnX078bOHSnl+xcNQNtnDC8R3nrdnxtMT+/pErReQDWk7te+wge4B\nVoNsUCylv0gklUQ9ZlAZVDdKyhB9pJt7F/YBfRjv/+ADvvWXP+IrP/4Z3/6Tv2A158PffT+nLU8j\nbAPfUTWqGWYd6QPZO+yDcTXKdaB9UH2w9M6pdyzrQpsIuz+BnXFf0dKQakgTdBXKomiVwwNHDpUX\nBGkYzH1N4rKUGl/n/DN6zM3Y7EcOCe5SlPPajsVuKcKGcaQKvTneHG+OX6vjV4vz+i/BeackNxLn\nLSe2bqA9VI4VpmLAm+MtcJ4sRKV+9aOl5udKk3d+EiH7lhve8ynxDjKjaviqlVp/Cc7z/w9xnt5+\nnj+bBuaebcav47zAcoHz/CgiMAtSjBvJwu3yzkJ34Dy/w3mZNCIlQ1fm8/RWPLM5Noje2cR78aOe\nLUzXUOD6VOFOXBcFs2OMWbQh27jHeZY4L363ERtms34Y2ZplGUy5taAsIKugq9PWztKMUxmcxTiJ\n0cRo7lHUcA/bD6IY4LIztCVCKOwomsGYQ2NT7jXNwqcH28R5Gmk5N5xnecaF2dMTYYb5b5Og6TtD\nIta9lBJtQkWC2NiBUqKYVcjXWBFZQLcohpRBWQw1P5QLLoKVMImY7U3FPBJrevifMBQxBStYT7VA\nNWqvdK8s0rB6wltnlJ3Rg9gYp44/OfYEYxWeH41LN9rWKRbvU1Wj0CKFpQrdCnuv7L2Fynfv9GXn\nUk78TCv66hUPV6XvO0WCIL1cnnh6arSnSn1WlmtFtytDdjqBn/Bx3C+mnia+OboL0EJpUXWwYqwM\nmoZhfO+BVfXZ+M0//4Bvf/9HvPvDn/Gb7S+Qi/NXv/V+tKV4pv8UCZ+MVPrgTjHP1jinmlHGThkb\nZewwNugdGZ3dPFMfC2U0ZBSGFVYurLqxLoNtFfoq0DWJJ254b2SrmkDVLJ6Xcofz/A7nWeI8/1xx\n3heD2OAmUTz+88ky2yGdH4cRUMjM3DPSaewgUGqhrQt1XSOqkpk57kgfdH/meet88nzh6XLhunXc\nnNoq52Xl8XTKBe90kBttafQRETreDWosdpoyJKoh1ZHFKatR12TU+8C15wQdzKUcbJmEB0H3Sbhn\nvrWk/DDIjFo0XL6rUqtSanyv6Zdhniy+RfVDNbwBwlhLj4XvaODIdgv32YcZjHkpwZ5P99vD+XiS\nGtkPawPG/YJzXMA5mXoaYOWSJ7P6m+qHg2UmCKL8mdltkp6BrSIla8ZC5C6TfY+Wq2aaV/ntb7ul\n6dfYk723JGgs38qNEPFMFDHf4+t8rE5woPPhMX6CAR8M6VixyIdeQE5CeTDaw+ChGQ/VedTOowxO\nPjiZoZsiHuy2zNgyiT5aqQprp5VgfK+yHPWPUSVaF1JZwXQJ12zp0Yg8UxGmwfmtwqLHIieHNGhK\nLTs2KrJbeDmUqBpNyWonjKIMSYfvyiKDIpYKPENbTMqzEjQs/oprkDWm4Bq6Sm1K6Yrus1IVj7lh\nXINR0d7o1xYmIz36NW3b6c87du3YNVpgepeIc2NwKVe2ttNXw9eKLoWKUKXistBlYdOFsYbqo1sk\nrywXpbxSylZo/kxfd0Zzdjc8CZVl25E6KD6Qvkef4g5KDSIyBhcUw0r4a1SMRiSiVDwXeUGHIqne\n6C4Mh2/++APe+8mH9AG/8b0fwdr44Nvvo9vrELH6oNROzV5Hv3o4p1+Bi8fnHi+lGpzGVGClaag9\n4+OJYSdg4KUjFcoSio1SlYieCeHj5AsPj42cG+rxURMceyYLxT0eC6PQtLAulXWpnFqlllANHR43\nb4iNN8eb49fu+NXjvOdP4bzCeVnucN45yI31TGsL3bbYW8/IS6LYLWkCTnV8IX0VcmM/PLBMvqdQ\nB8BUc/iU6SvISJxXSlTFfw7nlV+A8/xzxHn1jgDgiNQdR8fxHdC7xbal90bSHq/hvPw6/TdE9cCH\n01w+M+wS51nivFxPnJuvhE0yI/7mUcSyzvDt53Felq7upB3p2dIxmzgvkk40N2foLJjN9qjOGMYY\nFi0BqWaVqkiTxHxQTrC2wbl0TrJzprP6oLkFqWGOjmgjVjLFsClWBkMqI6PkE/3QJdpSLL08bjgv\nIn8tE1ns7r3F4Xnu7DiH8+fOCE+uMRC5w3mH+kCwAlupUXstoSB2rZgvIDvt1GHtqQoHs/AJMQ1l\nrqtksXegXSkjQgZkaKgRuoa3ww40o1ileqOWBsuANhgl7u1x2bGlY0t4e4xVWK6D1gfXy5W+h3Fw\nVaVVpVVBpWGEgeg2Fkbfg9g47VzaMyrKKIo+FfbtmeI7WgLL731j2y7s+wndd7QPRu2YRgvaHCcR\nGidQHUv/O63gxcMsXsNXbWHQJJS1NsJLo17hb3//A37jBx/SN/j6937Esza+/833aTsswKocCh1X\nj7YUBmahAnZ3yhjQd9h2JFuzw+suvDeG7Hh9ovYKo1C70sbGiY21Da6Lsa0CWxAZmm1LuCCWGjKV\nz8B5ofS+4TwOAuTzxHlfDGIjJXcwq/E3YD8n9JESenA0mfzRd/Z9Z4weMr7WYsFbFrQ1fPYHDsd8\nZx/Gq8vGq1fPPF82eu/Zc1l58XjmxcMDjw+PnM8PnE9nltMSJnu7xALbDNTCQKoVSuuodpSNkzhn\nV040cGfQqb4DHq7ZpeJ1wWkwKpIsZthKxGRQtFJLoZSWC1zJRU8P9++SrR43Vj0ndpkbkDDTKpPt\nT0mdjRhkwb/fWlTisdHLeSx22YqS60hWpYmqtAaAmBfolp8O5iNabYTcwKakXmeLRMovS7AbKhMQ\njFw/p8qjxMKXRqoHqeGRZT+NlfKPMomNYTvmHbMERsSf82ls5WmV5SlfTLDkI8kokXQjj/c1ZW8x\n3EKaNtTCXyNliboYdYmWk3MxHsvgoXRONliGwyVVOWNwEwt6mKhlYooY1KVHrBTZ2uHCjrALUEqY\nSx3O4dy18tyO++Xu/rujVScrFJqMPl2jxaWEZ0goUYMO6S5YXehNWYqy58Y1UtoSGECCCPAyVT4C\nqgw1ug52aUhz1B16PHvGhalGpURx6lCkF+qWBpv7JDYW6tqxbRxxt95DPTTo1FK5li3IjWWBVsOl\nedmRZWcsLXwynjbGc2eMjetWaddCeaW0rXAZlb1dubbBc1F2D5NQMaGaoOlWzj6QEa9bs5rXuc1X\nRaavnIQDtk5lztFpHY9TxdeFf/MPfpfL4wO/9yff5Q///u/wo995P/uR041+SKg9dm62Fxv4JT9f\ngQtwzcfMy0zIC6vsNNkZXBnjGdufY3H0gatl6EsAaWkJ5LOndALMOco0F7r7+cWn/DfbwYoqS62c\nTo3TslJVsdHZnjt9dJ5efcLz8yX8Xd4cb443x6/V8avFedfPwHmNF48PifMeOJ/PnE8PLMtKaS3a\nUNJDASLZIrwEktSojp469eTUUxAvY3Qoe07OaV46araQhtRbMpGSoagnzqv1Due9Tm6EAeWvEueF\nmsSOFLkgdALnye3a5cUyNxjjRqa8hvNufiAz8jVwniXOuylADgeS2cvv872msexUxKSaYi6Cw/od\nzhsH7rjhPO5w3vgUzou1albfRQJLYEHoWB/YsDTLJP2zkmxoEQPfFliXwVo6CzurbCxsLMMomyEz\nknYIOkq8LnXoZPpcp1QDmc2lMcSKA1puOE9v5/DWVnTzbbkdebXl9r1I3BXTg8RtBNZTDQPMVGy4\nAoT3li2EmbsUomxUaTJoDMLYVBiT/JCCaY1kGLUgTpbwMdNUaohpjPkRKXq6OdVClV5LxdvAaniT\nmQ3KukPpoYZOdcxyNdZrZ1sq275FKodI7ImaBsEgjeGNbgujb4y9M5421qXSst32YSlcLxWTK6Y7\nvQ28WrSc6IjCoEu2xTmeRpoTUE+cV3Jse5JdS4nsgEb6YLgjw1CDgmJt4V9953f56emBf/DH3+Vf\n//3f4d9+6302BERjp2NBLhw12ryi3rnhvk7gvMR+PANXQa8F6TmubSB6CcJ0CGV0qnVOApcGbQXZ\nBCySJA8Sccxdg97hvFSOFcXNfuU47wtDbOg0nfQpo0/2mVz0Rkw4KtlCMDp939j3nT56tGy0QmmV\n0ipSG9NddhCme9e98/R84en5ynXbMYNWlIfTytuPj7x4fOTx/MB5PbGsjbaEOYJZsIqj7FjpSDNa\nG5TSqWwUu3ACzihnj0sy6Gy+x6IhCjSsGEMsNpKlRk65Rn9a8ZBWFanU2ig1GLByqDUk/Stisg+p\nYWzIy+x/n4vdZGVJMjof73AYkUa1IBbY6PGUYwMcj5+XQ47WD5H4hTPGZ14nkXhMGEXdvDrmZZwE\nw1xIkDTf9OxhTWJCZr9l/gpP9UF0lNhRTcCyOuIAdnt/ngtd9pHKJGR8ThZhHurW8ZHERt9xz0kM\nPZy7JU+eD8dGyDrDLTnVHyoREVWcqs4iI7OqByt7MPYbyFUzuksPFhhCbeFVMig85Wg6qLVTvVBQ\nykzU0Vi0752ZZ/xvnt1P3VF+/Gw+ZF6H+DoIDjfDdotqfVZ2ZLZOGYyl4CZ4VTYlc7ZD1VKE42uZ\nbspZCJASpBY6OHLRMbySsXWxwLqEymPMTbQZsvaoMPSB7R3fOnaq+GbYPmID37OCxUiTtBY53rLg\npUZksu+0ZYP1ylgq46kyLhujV1ov1K2gT0K7Fp5H5UlOuA8uw+l6wsiM8y6IOXQLuauFMVQsekbJ\nc5U8R2qMZl9sGEvFwh/y21pgLUpvjecvf4kfmfGnwA9/6z1efvktWpIhs/6CS1q/eBhzbUTG/UaQ\nG5vgGzy82nj/rz7gh48L//ad083nSjqqGzY2GBfoNU64RH9kqUJthVFirGv6yBxLnQhV9VBpzAqh\nSjQ3ucWYriq0UlhaZSmVIoL1zsWM3QYyOk+vnrhcrjlvvTneHG+OX6fjV4/zLly3DTO/w3kPvHh8\n4PF8Dpy3LLRWsnptDO0M3TGJVAhZQNpcy3ZagVWVs4Zh6aCzj2suAIJoxcsS78hKrO9DkC7Rjkri\nvPIfCs7z2/N9Xqd4+TecJ3c4L8h583nVbs8JnOdpEuogll3En8Z5Eru29KzzrNbMFJDAeanWmS/u\neL3TR23ivFSH5CZ0Wmf6sF+A8/Id+Vypk3TJVpXRDetB9LjkNc3W30jCAG1Q1Viks8jO4vFRuqE7\nmZwmMDT8uCYwWnI8GYiPjFv1o3WlQJBDUf8JrzOdJ3ZemE9jvXw/+e83smn6rgShZKMHAO+aLe+e\nYG3CPWX3htVC10GXwS411KeMKLRIKIVNwmDCSqVIxt1Kx3Qqqj195CSIpi6ULrAlftSIijXNpAUB\nSYKw6A6thyJ6derVWLbBvhf2vbKPLRQMiVukCqhhNPqojFEZ+8Y4V9qpUM8FXYX1oXC5VHYWNq5c\nuVLOijVnFGGXQpneJxatQOKTKEucl0af85xNlWqkNvvRCiU40W2t2NL45Ctf4oe7UQx++P57fPz2\nW+hrCZlwywS+qaDd/OaJsgtc4fHjjd/4wQf8sC382+WEXkH2IGPEByw71Eu0MfdOc2NFWYtybQpV\nsExmtGmAL6RpcaWWdqfqKnc4b/xKcd4Xg9iAuwnajx/mPvpuAo4dqpnfFry+M8yoEiZ3pVYks5st\ndIW4dbo5l+vO09OF58uFvncEZ2mNx4czb7145MXjCx5O4avR1oo2GDX61Lru7LphJVQaTTuNneob\n1S88mPHghQdvMbXaoLFzs0xqDB8MHYziQeqPFky3aRq4KFUqVZPNL6HQKEUpGouGjzRKGtGKUdLs\npbXZwjJbCuA+FtTcbukq9ea2XWvESU5yIlJE4pzrXfQs5LyqNxZzZozH8pDyd7vFys5/m7I6IFtQ\nJnvhIV3i9j0Z8ToVGZZKC5s590csK/k6/Pa3PSRcIq8rFRyQBE2ekXHHYjfGfDPH4+fmPkiNudBZ\nygDzXKScr8zcakmzKAl/hTIE2SU2nzvhxO0OW4du+MNDxKJ6OK6HHMLRMqjSKa5Rt58ERsaK+ozO\nFV47z0fvTP4ZP97/XA81+3Dnz7N9p1t6XcT700lsOMFgj4JZzeqFz7UwWnaIjXH4KiTZoWRrjEX8\nmlSMGPetjjAsEw0ZoyiGMjxAjbqhy0DHANvRLrArsg98G2gvqZyI9+XFKLUCRjen+IKRYE92ZL1Q\nT0Jtgj0I4xLMchuF1ivlWanXRh0NhrFdB/o8MF8wXynWqD0YHElPEUlWXue4dFAL81ZJOt8lKyoC\nUgyKha9FdZYmWA8/i+HOq298jX/93rvZt6t4U0bJ+0Uj7BUnvM4yZpcOvkc7m3WhXIyv/tUr/qs/\n/B7/2zff5YP1PfYcK64DqRtiV2RcsF6j11sic71qyFH91nk27xiQbI2roSSbkufp0h9mduOoCK5L\nZak1or7MuV42uhsyop3n+bKx7Z1xL29+c7w53hy/FsevBucZl+uWOO/6KZx3usN5D6zLidYWtCpD\nR1RyZWfXnVFGEPGLoEunykaxjQeMB5QHas7/nZ0NjnbPytCOlxXTJdKmegliw8JTITyLKlVbkA6l\n3EiLJAX+ZnDeXTHkNZyndziPxHl8Bs7jr4nz+BTOy+SUVOSa3aJODzADqcK4x3l2e72v4bxJaEyc\nF9/Hm5l4SY60FB9TrRGEiBmhuCk3nHeQG00patlqOiLanZ3aO7KBXSXMZJ86XAxvD9HiUaJtCQus\ng0FZBq2N6DImVRtCempwqDbCf4E7nJebbI+9xQ3nyWfgPIK4oWOjIHvBJAszd1VH91AOjAa9DXoZ\ndDFattZGTkGMbyT8NUyS2GDg0jCijcN00BSKpI/JbMft5OvNuFgvmGsootUQ3ZD6hFYNMnEl8bOx\njOmjUaJAmEUZqYqrYV4oJlgXRlfs3GkPhfaiUs/K8lbl+dLY/MKzPaNd8Or4WthrsEiRYRdtQmYa\nat30Q7QQ68fwLZMEnOPTM1MiCTh1pAilFXwFMefj977Gv3r3XYYILU1z1ZMsmlXCxGGT3IixKZH2\ntwv1yXj3J6/4x7//Pf7Xd9/lg7/1HvsGtmdrPY6vHW8bIp3SB9WchYVFCkuBUTVYg92zWBpDSuvE\neTWu9YHz7JhXfpU47wtBbMxSspnlxorcoHn2WH7qBHkYqvTR6b3HVJkmTJp9QSKxiBiK+2Drncv1\nyvPlyvU6GCMWgNO68nh64PH8mEqNhdYUrY5pp3tn9ytdr4yyoTxTfaMNC7aWjeZXHtx4GMpDX3FC\nLlctWlGMgtPpON0zf0NgtJB2laEUL0FqSHxuEoOsJMPuPtnk6JsDwsW2VlprWUmNmcyyN9HuWjam\nIUy5W0RDhufA9LC4gQqmCmMywXBIHl+/dnKw5YJGm87dz28Ln99KAZPZzMlBjqZUYnEzD+Mwz8qF\ne8gIZ1lhyhPvhs/NFPQ2SAIwWXqExCI3eo8+vDvD0KAQskfUp0lXGiN2Z/QwvzpkgVPGmO7eFaN4\nmAaVEYkhsgPpyTA3o+aw/os/oP3p97n8t/8E3vtadJsWOVpbivUwjc1XVUQoquFGHetWKkZ+7ga6\n+5xfJxuscw3TeQ3ivLv3qEzs8fhY3CqaefFqeiM5Js65q/AYRAtKgZ6VJqkhD6xF6CW8inYRqgst\n3bNnK4pLDbPRzMtGDCVUHiIFKRWhg2xQOjp69DSPUIh4qXRdwATtilgF10xV3hklctdVCroWdFPG\nSKlwX1gulb6d6NdHlt05bc6p7Yyu7HIGOyG2RJWNUNFU0VRrxAmQdACPSWhGuhWGZP9pdXQadXZl\ndKUO4+TKMMOlRGVmEZgKsUQ6s7rESAXVnDi6pLQZusPf+f5f8jvf/R6npyv/8AcfcL5e+B9/6xt8\nshgmA9qG71fML/hegxQZWRE4epdjcbSR0lxicW6t0toSGwlJQqsIh8cNZOTXwsN65twWmpbItfcw\nolMH0QraMLkfo2+ON8eb49fm+FxxnmTdYHC5bonz+mfgvFTkLiut1myHvMN5EnGPXXsUGdRZvNN8\np3LljHN24cFbYBWPJKqYD5PYYBxG46MaXla8NYolziuVSuI8zUJWFlYC541P4TxNnFd/xTjvbq4+\ncJ7c4TznUHq+hvPm70/uVeQ+AAAgAElEQVTi4ahk31VwD5xn/x6cl38j15nAeXb7/TlIZD7353Be\ntKtES6UdTh5y/H3w9K0aPT7H0pctw6m6lCJQooVDdUQhy6PVvMlOtY5uDleOttDln/8B7Y++z/N/\n808YX/taMBYWxpozKSeSL5yqe6TmIUcxS0oko4SMIz+OtVOP9x6fsggxi12aQJF5XkfgPPZoQcl7\nJUzsA2feGEaiLUkLW3G6Dja1fISAFNyUlJNQNLBe+Io5iwcmKeZUUYqEqiG5kLinRSLbzTK4XjQK\nMElutfVK0R1RQ1dBrFBcKEMiZW4qdUpcG1ejE+0/jAJ7pZ426lmpzwVZQB+Vdq1svrDYQu2VixlW\nF0Z9RMoDVU9YOQELOlokvYzA7tIT57mgWdCabSO5+8g3GWSrVsdqJDh5tVBha6hhRzSD38aikoyW\nz6FH9MaE4kUHeIe/+92/5O/8yfc4vbzyD58/4PTTC//DN77Bxx5jV9zprQdWLzuyd8pulG5UaxRv\nCJXQT93c+KQorbXEeUFmzHSlG84TaimclpWH9SFxXv3ccN4Xg9hIvvieeSZdmS0XvNl7x6wUmsXi\n4QPXErFYpUb+typSIiDHR7RHbNed62Xjet3oe5hJqQqnZeWcsV9LW6i5MXMddDeuY2PnismVUq5U\ne2bxjWadVTsrG8vYaAPqXij77PUbMKK07Dogoy+7Rn51B7oqvRRqgyKFevzXqNIoUrJFYmRk6WBY\nLnYqycaHCZXmpDRj1KbbOMnohgzxZjR1sItT9pTnPaoq+pryTWSyxXGt5jHNqW6X8fXBPJ9394xc\nTEd+GYDmkKVy2zTHfis3dD4VGn732E+9Grl9PTfgnpu1m8wwZYm52En+rqkyUGC6cQ8z+m6Mnh4b\nsxVknguJha5kVnnFqD4iunR4SMd2gZQm2kfPlD/+M/R//gP4ix/BO1/C/rPvMH7nW1DC78CvuREm\ns6Q96Y0c35NMuTEVk+mYK5+9BgHmnSVzDCTwcLEgMQjXdDMPFYQDJohndcnjA5O870jFzE3G6uK3\nckOL1y8NegtGfSuFWiKKq5rcpKBagtwId7ZjnIiNMFqVitIR3SN2WPe8rxW1qDi4Kl0a3UrEmo4a\ni4Y7yoaL5H0VvYNSyiFztd7xsiCto8ug7kLbjFMzxhV0rzR9oNHijpxKKguRpTsRH2cSoNzCatO1\nJpFZca1425HVKF0Y6auj0Z0TvbhFYBFkVWgSEkyxmxInScNIUsoKgkUSznCnC7w8n/jZwwNfefXE\nkzRe1hNmMfYQi0W5biAb3kcAE2av7jg+zG9KKVGhliBNa6vpvC9HzLRbVGNKUdZWeXg489aLB148\nnDkvK7WUUENJqEJqLdTuHOzgm+PN8eb4NTs+T5xH4ryN6+X6y3FeKWnOaHTrXH1j9ytDN7x2tGyU\nstMYLN5ZJQpYZ3POXTjvC7N1ZozZchw7uCGDbFylY4waa0OVJdYjSZznqdqQElL/NNh0M0b6G91w\nXv2ccZ78ApwnvwTnyQ2KADe2ym4b5Z/DeXHccB639/EazrshuhvO87ufkuPHuU8++Wyc55/CeZY4\nryfOG4kNbhWjA+epoKneKGqZetap3qk2qGahzr2CfPhM/f0/o/2LP0D//Edw+hLjP/kO429/iyUL\nZmUm5nioc0rrVIEqSkWjmFlrqnjv8B6zojVx3u06/TzOy5qUR2tO7CHyKR1gCVLj7gMEKlH0SC85\nS+JgXks8eaj0W9ASWG9vSi2FvTjVClUSBalEy2uee1HBKOym9Iy8jTS9UH5aiXaWJk6RiH3WJGGw\nEgaWdpf/p8LAMCrWPa57aWgpUCvadlpzeBB0LxRbkXHG+gO+D3avyOktvD1i5QHXM+IrauGD6INo\nAR6SYzja1TUHfKhjDjOWo2hHmoFSQGu2B1WJwpsJ3UHFKNnidGdgB0gognsm0JgjHS7lxMv2wIv+\nxMva+Kt64tmEbcC+O+Uy0KbRAac7+I7ayDjeUBwjYJJhrBqFyColcV7Le4Q7nCeJ84S1rXc47yFx\nnn4uOO+LQWzIXQSVT/8EP9IoLOOXgsSNmdDm4iikVEzRemOp0aieMozRjeu2cb1e2a47vQeIL6Kc\n1hPn04m1rVRJt391hu9cx8azX9hGOPSt5UrxC4tfOdnOSme1nbbv6J4GPNVy4ziCWBanNEfHjgnU\n4mxZOFdCUqklMpqbNpo3msdGqpgiBmP03FBGRrcefZZJxEj4N1jGpVky3bEZmZtiORanWZH97Guh\n6Z0wn6N32+RPX7ZPLXZ3v/LWu2kcTtlHykpOzRPcxE9vz88Fe5p3zr8vn3oV82dzYSVlBUcGufVw\n6B3jkCNGO0q/PV8lssTne3ELT43J4u/O6IJP8/D593I+U/wgNwpGcUM68bETbQMm2EefsPzTf4H9\n4MdYH8g//WeMUrDf/mY8biN6OPeQc2rp5DKHTnfxKYtUvSEJvzsnr319u8S38zdTaTxyrx08HYps\nJHzwqIBFBSAqTOLx92ZFJSSbSbYlUWIFaEFu0EKNFCqEaAUpVe/WaAHNxTTJCkn5pFosEuJGmTUM\nKeAFlYpop0gQMi7KRuUqlV0LuxfG7Fl0xVQpHv2SWhrYEtU0cTqDTs+Um3jddRHWxRlPRr0I1Sqr\nnGgsAUSlRjRujuFpEOIjZK1+hJs3jIHJFq0x1cJNv3ucozTZgqg+ylpgkRuxkRUsQUi1bZo9hTJE\niL5HU6er879/830+WFfe+eQVf/Du1/hfvvkeF9uQ0eN6D6fYQLxHfy/pTC9Bws6+bE8CcXpptCa0\npVFrQcTREqZdpWTEcBGWVnk4r7z94oF33n6bt1888rCs4B7O2Gbhnt0q+yAAxxti483x5vj1Oz5X\nnDfucN6F7bp9Cuetr+M8UZAwHL+y8TwC55l2dDWEjSZXFt9ZLYiNxa+sDFZXWiapRexoVpArHMbZ\n7nSPpKyBYE3RcqKVSpNG41M4b8AY4zNwXqHWlikp8jnivLk1fu1Bedk+jfP8+PdpBhpk1FRoxL/+\ncpyXMvdcS38e571eprkZmPqN3Mlr4MM+hfN6thlPEuf/Yu+NfmxJkvO+X0RmVp3ue3dmFkOCtCSI\nD/SCAiUBkmHAD4LgN0HPhv9W2w8WIPiBtmxI7wJhAzQMSUsuuDS1M7dPVWaEHyIy6/SdGe6urZn1\nznQteu7evt3n1MnMyvjyiy++iFJZWTfniwQZfTBOY3Qy4eMrUTYVEKJCCEA9yo09yI1mg3KEQle6\noj/7BU//w/+C/dlPOY6B/4s/4dDC+IO/gw/YMqGxSKDsglELS8Wj6pEgmoBpqjUWxn1A5K9w3jWH\nUz1jktgk1T+B88jSkJCFqobvy+yE6CUxHeEnZ6Is834jmA9JrFCFvivsQt2FoyotW5aWJFmaToJO\ngIKJMrwGseEzwTI7AA1cHFPYtuPVBzQX3ML3LcRKM8Ej9BFijYFhdqK1InpAOcIT5RR81OgM3J3t\nHIzDEFe8PsH+Cd7e4/JMsY1iJboadYIISt+V2fnn8ri7GIzwH5md/xxKlpm3bM1MIQeUOmJOdQtF\nr1RCtV0lOyeSpc1xxnBz/vff+9v81Hb+yV9+wb/5nd/lT/727/PF/eD+RacPeDqBw7HDQS2wMoPi\nJ8WzE4qUtZdqCXzfSqNtG7VWRDqaRsalFIZ3pOjX4LxnnrftW8N53wtiYxoKTv+UmRGOoqZ5eJ2M\ntAbAF0LCLhXJOvCSk6GlRncLIqtp/eR8eeG43+nHgdsI0WCp7G1jazu1tMVwdzvpp/HiL3zpHzj0\nA8idxhneGnZS/U47wzDIXwy7g7kySrQKckmnWiUOewZaBlI6rgd4ya8NLUbbJWSJvlGthpvylNb1\nqx1pTeOoKUuE2Aws+79bKjomAyt69TYP8HA5a89aw48vX9I+CyZfv3mBhjwtN88MOr5ixyQ3sve6\nzBrNJC5S5LT+s2JfMvb+ENhyo36VT3houanTpGq+1uxFPuYhPP7Oag0WrznZbZmHu+EhA+1Rc2kj\nJG4evbbyHiN8hGxQLwngurO87/l9Af+dz7j/t/+M+j/9a/RP/4z7P/+n+N/7Q4oF+BKPDTvIhvTL\nwFdg1Sx/UaK165y7te3nfS1/hMdxylmNn7Y5a3lvSXDQ858k5XyW452fc7bpMw3X8CRs3LINjnq4\nK49Qf4wmQe4cQq/hWSk1vSOypncqJlWiI4tPyadqsNlRjINKR6SCdsRis3aPHt+HVw4rHEM5zxpK\nBaJEtgtJOEE6gjDEIvip0bVzVousmgRxUNTZU4JcLMgNJVQsbkGaicTzjEV8VwMbinfoUjlrQU1x\nU/oQVA0vPVqJbVmfXNJDpYZSg01hCwIN4nnSwWoJ7RZZI2rMiBlUy041Ovjr9+/4l3/8R/xiL0iR\nbFscBlDRpm5jaxsblc0LWxe8CVbD9GuIQQnvj2lkt+0BrIMvdIpGG7C58mpR6vONT96/57PPPuXH\nn37Kp89P7LXi3TjPE8uAt9XKvY/JQL5db9fb9QO7vl2cxzfgPEmctz/gvGio/grn9Q8c+oKXO62e\nFDtpflDtoMpB42Ab92jZ7TVwXh72ZvaaIujuyO0MsiFLOsUV94rWTtuhlUq1jeoVtYIfUU5iI9SQ\nglCzY8r01PhucB4f/dyFJeJMnfhEAuO8Sl4tkiPIA8+/XzjvEd/NP38dnBcHe1VJnJdYJj/rTFiZ\nhTdJ4Dxfr6mTuHGY5qLWe35FCaYPMjlxvbsgSRhpYpWrhEDzMwikGST455/x8t/8M/iX/5r+b/+M\nL/75P+X8e3+I2AhzWyvYSGyUvFMknFJR4qysualnWcnX4byvkj/z79dPC9FSN8qRxC1+zwZIB+vZ\nobEgGmSfePgmuGqUUs3xmkqa8aASchhVQhF6Qj9gbHA0CUPcLKctKvFlgkjBNTQvw1NthQBR/uBi\nuEZ3Ekc5/USzdbG5MVajgCguSrcVOqE/Tkv59I2piDa8FAYbXTqnOCOVFFItDF614eU5zmJnwU+w\n7kiXVMo+4DwCBzLmWSH3MZw6nNrjTynAnmRX0SxXjsThbLEqKsjmyA1k98RjgeFFUtlzgpX0tpPB\nz9+/41/88R/xF7WkQkyyfXT4MbbaKLVAiaTXTmfTIFHrKEkwhYSmbI1aNjZvkbBbOC8MjS+cJw84\n75PEebfEeeNbwXnfC2IjYkLJBzilU/4ot5qbXiyGcKeVyPYCpTVKDSOmUmtKFENOf7hFu7D7C+M4\nsNERCxa/lUJrG620lYkdozPOwf08+ZIX7vIB2w6KdjYxmg2anBS7I2fH745/CdydbuGH4Nk2SzQO\nc8toqYG3QW0nwyvFGzCo1dm2WJR1lHi4RrCs4QXhGaSyHVjTZR7lFo/y6FGm4nZl96cL9qOaYgYf\nS4nmVDpMVn4e0K8DsuOZBf/apbpigGSAmofr673yLxkQY/PxfI+5WX/82nO+J0u9SOuPEhCS9Zbi\nwjSWij7oM+iNDHrTeCoz4UmGz4c31AgwLMpQLqPS3IyM2JCyNEOy1jTsHeMxdAkDH9QuZ+sS/yrP\nO/af/wHyxQf4/FP4hz9Bf/xJHHqTMxGNfuWd4AeiKjUqMWdt3yDG4HX3lnwmckP0ZLOvB+gx2F0S\nT8VxDZmar926B+Fm0XaVXgi/i5iFRVpJydkrmEsoEEbO/SwjGuDVl2dElmUyu9VElxVjBDKAUrCq\nadSlywRN0uMiWsVWlLGC3DGUPgp9COMeJJTgeBWGFpQtKog8xnEQFYaGM3TQzTg9zEdDJgrNe1Rt\nW5ALntmh6QmjgTqW4z0d/AgH+MOdYUJ3ZfNCy77uqgXfAiDoJpQzAYsKVqPXuhfFSjiWF492h1IM\nLTZnK59VpRH3tI8oyblvjT//3R8z6Iic4WViAWytFKQ0tO1UGptVtlOgOVaUXoyilix/gJJWNUmM\nBJ8SXhoR8NIOuRT2vfHZpz+KYPejH/Fu39kEuvbYPcaglsLeGvWoTDLu7Xq73q4f1vXt4rzxgPPC\nIFwMikioJNpGKxsl6owTL53c/eRLf+HuL/TWkRIm160Pqp00e6HZQbETOU78rgyLMmLPQ/ksEZVK\n1OWLo3oiKhmHFdgo1dl2AudZQXuQGs5YeEP4GOfpd4zzHstFriTNOqgsnPfIT3wTzvOH//ENOM9/\nTZzHRzhvZBLr63AeH+G8LFsZgfEunJcEm1+fdxmMCunNkQkeImMfnzVvfP6hwPPO+MkfwF9/wH78\nKfYPfgKffYKk30jwAYk6PbHKfAFCGbsIPpcHnCcPOI+PcN41WLJm5hHnxRJUm3M1WZwO3vFRoVvg\nPCLp4pNAcWKMXRPnGcsA1QkSJLGTDaBH5xer4cOiSVIuby50KRuc+HNiGhXJxFNCK7IU2kMRsJTY\n7rhrpuk0iY3kILJbnlBRTkRORCvmB106R3FOga7CEMdUGF6jkUMPbzA5BbqkWWiOexi3JZkZ8M8k\nlGZszlCnDqFZmJC22qlPUNWjJL2HOevk48RIM1pBb45vgm/CyFqzQqh6pQHVkBqqZ9sbP/38x3x5\ndup50jSIHVFBq1Jqoe0NKpgqnc7Wk0TtStFMdmmheqFJoVpNI92PcZ4lzqvse02c91nivC1x3vmt\n4LzvB7HxoApw8wdTpPj3SRZ6PuTB8kW2XIpQaqPW2Ru8hKsuYSKIDbx3xnlg4wyJu0QWoJVob1NK\nRaRg5hznydEPPvDCXQ96PRAZ1GJsONWD3KjW4RzYi2d/YaeEbwtDHS9KLQItMgoU4CS7K3Sq9HgA\nxdmq0LZCq4VyFjDo2eps1ggW1Qx2hVqzg4dffd8tZXdzPKecfLK1saFeS22ynlNVMDuc5IzkOLMO\nNt/IbDwKBPKNllrxowBIqiIuWuMrK2H995J6ZX3dw1tABj5hsce2ai0j6M/WsJPksCQ6ZoRVmfLL\na81Zj81zdkPxrKmLe89AY4K6IlbQEfbIJr421aEOdcQBu8XmVE6hpin3+Md/hP2jn7AZSYA4VMeq\nI9mK6RQ4XRmECeV0fRe33GDj77pCbgbGDHJuZDtdXcz6Nbae4CXmoHhs7stQjGyzZyduig8Ng0uS\n9ReI9rPpj2EgplcmxKOONIg5SwWHRe1myYmTqd6ZNkZxOHc1rIZjNpPgqBUpYaIqWaIidMwHw+Do\nip3gdw838tw0vIcB1jlBXQZIe1AKDR90Gxx9MO4djkHp4GdBOni3xABJfEhkHpwSgWkEAWlHrJ8x\njNE7NOdQYUfZfKNYZCOkKbUOihs1AUr4gQqHFU4qJjVarMpgl5OtnbFvJOkw5dhSYHOwc2RbWeXY\nJf35E+COeMqGKlYalJ0iN5o1bmdB2smowiknnXT91QQiWRvrY8QjnmqNohLkMNFp4JP37/ns00/5\n8Wef8KN3zzzVmt1jiOcPqKXRSpTxZOPfr9lI3q636+36Pl/fLs6zb8B5hVbKa5w3nGN0Do9S47sc\nnHriN6EW2IpHqYGHAXzxF+To+AfHXhw/E+dJHHJLESipjPNIZkh1aCdNCkIDMVqBrRbaXijZGat7\ntp+3SM6URWp8jPOy1GJ0fvM4L/7+VZy3WJVfE+fFd385zuNXwHlj+XlcOC+TV1PdsXDeeMB5r+9O\n0rxdvFxeY4mn3DW6eWT7T9fAcAxBRiRH+j/+I8Y/+AnFg1ARc0p2irGHGO6ZzBoSr+lppu6mWe7q\ngTdXGksmbxGEgrJw32uCY+K8GMjiErBx/czEebn+HnFelpmyUhhhIimJQadSyfM59p7Sk2GR5OkS\nXR+XL5csPO+L0JCLF5I85NdCr5UaCIs6E1Ject4tiJSFXmMOenpWDJdVnqReEWnp09Yw3zj14BhG\nFxhSOBW6OX0onJqteg0fUEbM88TX7h4eHu6MbnSLknXrIMPoe6F5xbxhcksi4qA+dTgdO2GcFqrm\nfNapWYKyK96EoVGigztSBrr1YGtOkDYoDbaqbEWyocFF6AigxZFNKHtBtsB8O852VKopcjoiYYIP\n08cvsPWF84LYKMoDzqt88v7dRzivrC6B3wbO+14QG8jV39zJgRoj1N4jmfjz5H5/wUcBG8G2ptx6\nMvlayiU5E4KFsoH3E+8nak6V6MM7mVDMOE/jfj8ZwCEHL7xwlhPbHa3KbYO9FnYrVFfKgOpxEI4W\njAKH8/t/9Qv+yZ//nP/59z7n333yHm01TGBEwhzmBDmd0gdWjK2AbIUtv1RKlj9EraBMWWKrtCq0\nJtHiCGG6Z4/s7jF531mXGZluWQECJin+GLUiaoT8U7P+9frZtZEuRv2XXJ7svF8b6BXWvpoHkMdv\n8DBv81s+/3mWTsDlI+ErgC7Jo/VQuYwsQ3FfsswZGNeL+nV3K0DadMp+9ebx3h6EgqKoCWWqN6gr\niA9ma1MNdUKzVBAY2S8rVADJnLsQ3h1tZK8v5SRIjR5bcsjtrFwEhSc3kFHhavead2zBJKsRNX5J\nSEzB3wx0KzykP4ijaa4d4j73jpkwsiZUzYLI0Kwf9AANaNQ+FosDf4g1RrDbNqJWUyQIjumxlAtg\nzt2cB1NnFMv2aBK1h+l8PdTX+hUpwdgPx0+HY3ahAUkVXNSJOqKZQfISmYZFWoUprHeHlwEHcGrI\n/wZRcmNjgQss605zDhkZkU+9/n05vBds3xmqdG3gO+4n6p1uScpkKU13OAwOKZxe6VQKsNFjsIqy\nyUmVM1v9CssUfTjaw5PKVDjPhwfVgvQ4xuA+HDsshkArqhutFIZCkTNlm/OxSvAw0uxURpCqpVFk\nOtAPWi083XY++dF7Pv3kR/zo3Tv2rYU6yZ3TZ1eiXHvByUTb2scM39v1dr1dP4zrO8F5PXEeDzgv\n9ujzHIHzbHBw8uIvnHpizSmbUJ4KbXN2CfO+YkbVTrkP9G4rgfW3fv4L/uv/8HP+5Pc+5//60fto\nOV6Jgy2StfJOqQNug1Ic3ZS2KW0XtJGlsWMpiEWzw13VB5zHA847E+dFDP9ucN4jSnvYs/9GnPd4\nH/LqFS6cxwPOk0eo9Utwnv0NOG/8CjjPE+eNxHnO45svBeykNVyItKQ+lBQBPoLcSLWAzXJaSZxX\niTXoUdKwTDtlhCGnaiYqwt9kzK4+Mnvzaao55h1dmpGkLBLnxfuQatoL512fZJFWEmSBEyooEScU\nLGfivEzaWZCBaRgDRMdAPFSuZXpt4FmGDM7Au0UZcLayjWTMNQWe9xAlJM4Qy+RYdtNLxdOoTi+K\naKGUFvuF1/DdSEPamIP4LDaEcRK+b6en0afRKXFfMoBQbJxeOc0YFv6G3h3tTjknjiTOcyM85xb9\nJpngnDgv/X+0gFYFU8QrUlOi7RWzxuDO6Uf8fumMFgTc8g1UwYvgpWCl0KXQvSIeHWKGDvQM0swr\n0FLtuwnVhGawnXAyOOmcDuqFQqW0GL+Copad99SuDszm0CMBOzwJuRIq3ZLPZuA85em2Jc57z4/e\nPSfOc8TtW8N53wtiYzLP8fzMWsMRyWkb9N45jjsvLzBqQQnWzJGsLWpX+y8NU6TluD06Pk4Y0WSn\nabDms63UcZy8vNwp9YUg7k6OcmBqaC20W+V2M2462IZQHEqPrebsgvX4+9/5v7/gj372C/7uz/+a\nvygFN/jpjz+NiS6gefAijSXrDrUKZSu0LcywjFkvGOqCItFiZ9ZblhLbnnls4lOS6HMzU0n5/sNh\nd62tVyFmSe0gWPyZpX0V2XzRDV85FL+6Pgp0U0Xx+ufi/wuygu6MXRdxIdfhdb3//JnH343NM8oe\nQgo3x2IkAz3skcmfbLY/3I0vkmCywfYQFEMiGYxz3OdUTUh07bCy2qHOfWIQG2rXgpZgWKdk1Ed2\nunCPfdIj4+OatXUliIPTldOFE4nuOSZ4ujNnEWGUwiwwMr9iQN3nPuwLdExZ5+TgF7X0ij3yS+5J\ndq3J9wqxy0AlZRepgnA0vCBc0qQqymWclCqi+VrpOaO8xltTXTHXj0qUpNQgQaxkrWKWr7z6M4Ob\nHkFOeJKGYvnxNCWu+XmjNlJhumqbBTvfBe6CnvFvxQtlRIYArfmsZRompXkzuvqsC5oyPs8a4F7R\nKnhpWNnodNRP8B6Gnt7BR2QOIVuehWKjExmLIYEMogxIL+CUhl6re0D3S7pdZn4hyJnhcJjz0iOz\nwIChUc5TpVJ1UES58kETfATBZ12oNWpkt5plKRZtxfZaef9840fvshPKbWerherxPKrM4pkkXHNa\nho83XuPtert+gNe3j/N64jynqbJV/QjnHZR6Z6CccnLokS0ZC/W50Z6FVo3NhOJOMUfHVB2C3uHv\n/uUX/PGf/4I/+Iu/5i+8YCf8+88+xS0TDoDmIUQatN3R4tRNqJuiVRhlMBzG8MB5KmEcWdryJhAs\nO59MTDP30u8a580Xll8R58FCdPkW34zzLgjynwbnTaWGrfueHIcsVe/EeRPr5LoUsoQmzctFCFpj\nKjZkGXiHt8P8CvznGgSDFwuMWJ3i0CwO8uYORTA1RD2eg2LZ1QOGSb6WZvlzfF3Ej36E80INHDgv\nPmTgvDmHjzjvNev1GuclLlo4z1HZmAeXqZwKescwYs2pR8Io5kZCTTzCuyRK7x+WQ5atLJxH4ryQ\ns4SXyCxXLs5IP7ZRs8SKSOytNZdlQ+6Cn+lzcRBeNd3wEWNlqYYxQs3RuzB6KJqRSu1BdNUx2wT7\n1d51rEWbFUrzfWPNlFROi89zASAFV2VIgRFY2bwg3lOJkwno6f+SqmdLIsmkMFBEovHEoOOl49Xx\n6nHar4K0SWwIxxFjZr0zBEra4mspWS2woSOINGTE++Y5x6dp8xirG8+F8yxxXvsGnBdKp28L531v\niI049EULK5sPiUi03eyd4zh4Uadr+FggZMvIbHmadVzrgXLHe4+v0REfVILF32rhPAdjGC8vB/UX\nX+LS8KpYG9g+KFXZ9srt3Y13T0cYh55BbMih4CVacg2jDvgv//yv+MO//AUH8A9/9nOezfnvPvs0\nmNch1CQ2/AxTmqMCyCMAACAASURBVCrkexRKK3iB+5I4DSqC6kYtjU03agGVkeZIFuUn6Xo9na1L\nOt3OjgdzHOB1uJvO5NFc4wp6sx/5+oVvmq+HwPdxoPOHWsLX++l1CJfcq/2jf1/BTV7/HWbAe/ib\nsN53BjezHh1k8jA6mfwJfuYHm/uUz3WyyA/j8ZrBbjm5S5gA6SpL0dzvQg4bLd6M7oOmDrWHpFAM\nKUFfR8mGz4qM2JQ28Cb0Ev29D9Po8oEyhmCTie5+xWx/GBW5ZsXnlC95YvgzXPAmxix+JeoqJ7KY\nAtI1/x4mTjJsHarDxLMkqz/fJ3/BPTZ5JMgVCzmfpnJDrhuI91gt/iTVIlFHGGatpM9Ssk/55TEN\nayxJ12o5CeJnkjkrI+EX4Fl1oUQwHkQ3mlOQUSLWSmT5pirCtOPlxOxc47NWvzsyZNXCFlcoggxF\nR3yAIY5JJxypTlxDPYZ1OgSJJdEitlMZFLoYgzPnraSU02l+R7M/nhNAzzdPLJYkUGYy/YTeheNQ\nXkzSsEyghsqoSg1mn+h6U1a2iFVv6Q61VrYWX0K2qxN4um28f/fM+3dPPN92bq3SNJQ9lkDxMdDN\nvSAybK+fs7fr7Xq7vv/Xd4/zKudpifPugfPYwsuoGrYlznuq7O9u7O+i40U748xVDLQ7p0mQvCf8\nV//ur/jJz37B3eHv//TnbKfzf77/lC6RQd6dyKw2R5rQ3Nka7HtBm2DFeeHMMkioImjZqK2xeaNq\nHiBT0TFSlQD8luI8+Q3hvDjcXzgvu6d8hAVjXCfOy1OsxDH+MhxNtUSWALtnDzyXRW64DjxLTHDS\nGNRpDmMQJQyVyL4XxYulAUUJjwhPgmNyLiuJxSI5HmifxHkTSM/5z4Tc/JmF82bSChZPMoGQD/Az\ncd5DcksMtCXO0+seVpu2VLIYaSJfwuRTDUmfmZRnBM4zT3NWuXBenaU8XOU8Jb7C5i0O/pKYcaod\nFtY0IpnVLbxqXoysSYnS/3Sn91Q9W29R1u+ER6HNxUV0Y5lddmaiKgfLH0Ze3FcphywPkOzU0tsq\npR4a5SJqQtTnREvUaRQrmYGzWW5HlAIZGkSIO4VO0wHFo3NfBVr4bsyy+HLE97yHCqZLp4uFD3yt\nCFu2kp2JxdBVT2KMJJdrK2z5JQRR+DfjPL5VnPf9IDZIF+yR1n42wbus1pZOsIm5nS62ehkMzs3a\n8wBkFpK10SPLiKVrbKHVSpHOaYOXlxe0fsB1oz1v1K2w7zvtVtmfdvanjW2D6gfFCrVuaDvwdjJq\n9CiXJvxvf+v3+Xn7K/6Ln/6M//V3P+dPP/8xomU5IMzNRPJgFm28Kqo167YGZ++x/kWobWOXxiYt\njROjHrCPlCS6ZfzQ5aJ8nRxjUzP8gbGPa/Y4B6LeqshDAHwIMTMgfGWyHn/mIdilcuRjlm4Gusf6\n2plUf5x/5s/xsImsQ/C1Fc9N3M0ZaQI1N6SxyknyXswef/Pxtq/vmYXCzB4fwjhIurLMwWZQk+Wv\noegQpGuYjm7pIynhFVQyUDbJMpPpSL1IAGLzV8E24SyVUzYOaZyyRfbeK8MkCI3JTHeitm9GQJ/1\noTNLokxzztejPN9Xrm/nvUxlQ+bseRX0UoXnWeIi5sHuLyMox/I1rwxPzrX4clF3Lw9LJw/OzPe1\nlF4q0Tc25crui9gQvQKzjHwNM6x7kBsnl6HVnFvPn0ljtjE8pY05Wr1ELWVPtQUhvIzHIwxg3QWo\ni8AiQbmTdZdJ4ijXOEzJJebRIWbKTfPnI+p2DOguHKNgVqLO1RQK9CYclWh46xEChzqlCqoD1NZe\nOU7DavqBELLSuxUO3TirYr4zdMep6NjQUcPQ1MKUtWmjlwF10PtskecUFfatcds3tlboZ5iO1aLc\n9o3nfePWGq2k63mueS1QVehp8/64BY1s5/h2vV1v1w/r+s3jvBdcP9BuO7Ulznuu7M+B8+rWKZwU\n0/DxGAUpNVqjiyBF+Ff/2e/zl/pX/KOf/ox/9buf828//zFDozF5ZN7jgEio5qkaJvVFo2Xm6J1O\nxyw6utR9Y/fGRqOMEvFlOH308D74Cs6bTMIbzvvVcV4kNb4e55E4L+/bNDFU+mvMRNaIRJaM6HBj\nMhiy0WUwZOAtldNqgY2UOKQroRKFaB5QBdmA3RktShBOKieRyOoendQunEeSHL5yThfOG6+VEa8+\n/MPgT+i0cN7XkBsL52XXPQNMwxcNEucBMh3K4hVm1xZxcIsuJ7IIF0vce5ElPuebElhPppGw5zj5\nui2ZGJnAXJPs8fUzga84HE7DXgw/E+dVzU6sobwpuZYWzhuhVA0SKvApGsoIkwElGzeQz5gTZeQT\n7w6ibKXkmHiorke18KzTimb5z3TCmLtaupYgqQZPy2DCEDUmrWahk2tHGthmjB7+MIw1mYzD4RaK\nNtkVeVJsh7M0THaG3DAF1NBSqNpx6YE+YwulyMR5LXFeqItrEW57S5xXv1Oc9/0gNiSYJEvzH0/r\nkXieQ9ckWlCtyT6z9quo6bnadsYJZORJrJN6+ijrUKHW6LX7UpWj96jrPA7qeVBGpdQt+p0/bWxP\nG9tWkWrIaNFZwDd022C7o5tGj2JT/uKzjYLySR/8H59/xs9+9I69aAYUkoWMp0qahili3XApnANO\n6/TzRK1SpbG1jSqN6jVZ0YvF9+ybrnOB5WHq8lp4jFb572TrrxzAKWWcjtqvDaX8q5viQ+CKYfb1\n55SYzbn8eHIv0ypdr2uTTc5Xjx+9At5jSPQMcq8C7Mj62wx8ZjOr4LF+1n09LDJ/HBdfr3tlHx6i\ngQAZ7GQwmSPUNPqQD0W6hpNyF4YVumqQGoR8P3rLnxQbE4a8+jxGGAb12jhl52DnkD2IDa/0UbCu\nsYGedqk2uqeMLDMQCWx8ZhjyAVkzOscvRp7LtemyYZpjck17wBJHwKIOWoUo7LQelTny8LLCtW58\nvTx4rkuH5Tq+5iI/xzXTGbzDXEni4V7Pu6z3SEA7FB0e5t4jSZcZJlM2OI0sbOR7iafpKglYyspq\nzGAjmZUIvxHJRV2S3IgyG5uyVJfM3EgYkhl4l0hy4NhIczCcLjVlq1FiYu6MoYxT8NlhxQWvgknj\n1OjAqsQarQhVlaLRmteac+6DU5yjw6HK4fDSnS+8c5cdqzeMna5PmDXqWZAuyAkywgi3lcqoJWSx\nMt35o+Zy3yq3vdFKwc4Y06JpYtUKrU7WPtrKFfeo/Z3mozl8s6rbHvaKt+vtert+ONdvFud1zuNO\nPQ5KS5z3dGN/Tpx3q3i9R9Ki1GzFuqG90muPVuVN+emnGzKU5z74088/4z+8f8eeLVUjfiQZD1Eu\nUypaoh1YH87BySkV90Ipla1sVG/RmSC7TVw4bypy5SF5xRvO+3+F8+xvwHl5AB5y4TwuVa7MzmYj\n8J7bLDs2uhinOLU6ks6hUj2SWSeB+T1HthGt3RtYC6PMUxqpB0/Mp1iPEgtSqWvd07MgiZhXOI+V\njppKyzWh83O+wnnKV3FedlyzgRHP2DKpf4Xz/HqtVzgvCYK4OdLR9GFqs/OfPmDNqYrwhzU3iRvP\nzxIICnONzn35uE9c6eb4EfiOe3zZ6emj5qFqKuSeUVZJ9tRbyNxbDMRTgTy7FE5smmsxSLFQMJsF\n1nbTMJmXXH8KfsIogtfCKDA0FLKkC99cebOJUSCnJDmIUnLN8nbBMTlRPbF6Mpox9ixRU8PEwvQe\nqF6xTfBb4yyVIRsmOycbp4CpUaTQRBJ3DrwHqVNK7JW3PciLwHlGyXK+wHn6neK87wWxEZdjHvIy\n12jIOMzpFiYzpTa221N493sQEvMBne2sRLJ+CJItjGywwuoJvrXwtNi2wtkLHcPsDCdtcfa28f75\nPfvzTtsb2qJ1oduGyYbUG7od8FTRW4duFC00Vf6yfsL/+Okn+Og8qbA1jRZHlayRMmRTZFOoDZPG\nMOHlGBxB0bL7xlY3trKzWQ0p0zRJSoMkfMr6ZSlAZiCYVzwzsn6uaLSHRbLOUvQh2GVLMb8etgda\n9yvXx3Wd7nkAzPf8+GevYDdfN97IH/c+ket3H9437QozWzAzNFHLN8zCfCxbMK0vrq/gJx5P4Bcg\nmCUo6/cebn1u5HN9RUyMYKcjgp2cgpwKZ6F34SzZp0RDiYOeOHeqdMIxIzbq+fkG0c/75MYhTxzE\nRnTIzknDeg1j2jMO7/S5ac/PHc8LwZOHueccwAmuHgfDjVXHsQKfr5+f2qIQHkyAYFmTGBt6BP+s\nyVzQ5PXcz2m83vsa3EXwOEyvTfHM0qUckBHyR9Gob31cOolqcRNk9AABk8VXXwDGhMicTX1n98s+\nOknASrQe81KYFa6E0w1TBxqeHpcCJqSHGdwiLYN7YZgwbARUN6AnRzM88IFPSFHCh2o+s8ORcwKX\nGAt1AQmi7EiNnxHqjeJKYYAqVqFvnQPhLsIHL7x05Yuh/Mfz5AOVXjcoT4yx0Xu0vrXuyBHAqXhh\n08aoJ2cR/B5t4EQimG2thkN/EboEClBRijhVnCLRsld8tsOdtZYTfM0gHhM4UiH1dr1db9cP8fou\ncV5l2ypnH4nzOmYnIrBvG+/fvWd/t9OeAucdarhXkIrWG8UPvDe0nXgzikU8+tnvfMJ//+knWO/s\nIjTNuC9E5ws1KErZFGkVL5VuwsvRedGTXm80NHCeJM47I95+M85LsjwP8vN6w3m/DOfl6z2SJV/B\neXyE8+YhbRIbmcgaigywUTlNaEU4s2RKEbwcqeyOcwHV8Y1QfYpG15xNsFbTT2vnzhYJLW8c3uhn\nxe6CnwM7HD8MOy09y0icN2khecB5c0A8cd78mV8X58nX4Lw5RpMFer0EZOK7r+A8+QjnySpRcD8S\n51UCiemEZouAwFPNZQMbEiUvI2c7S51tliF3AudNZUf+vnj4FIYxa0l/CyIxNJNfqa5CiXJeEoNl\nKXbqbXCXUA8NXx4rWPCruGMlhky7MEbBamE0QAeWxEYMcRaf5ADaA09Ekk81sVT3G0qHdg/sRKcz\nGBrKr/PlhOZUbdi+cWjlLjvqe3SCoXGk9140oo0kup8WJdwoLUtQAud54rzwSSvCN+A8+1Zx3veD\n2Mhg5T5e1ToNF0a2FRKNMpCqydyNHqVDZKna2qPj4OhjSok8jIprtM+KwKfcbhsm2YlyK2xN2Gvl\n1nae9meen5+pzw3fnC/sxPSOtp2tCFqMMQ5kO9A9mK1SK1Y8DV9gaJQnhEM2cFP0JrAr1nakbFFX\n3yE6vAqVStXMFng8xKNHhxQbPZQamQGfGQ3PLPH1WMi14UjWgWmJgJPGUVGrqRmENPef14+WIFfm\nwbkCkspHAWnSoGlm9fg66+fm7/j1/2ewnAfW+ffrN9ZGvUoJepiEjWk8ltLI9S7xpGWNH4hKPFw2\n//GSUEYceDiBT7Z53UNuZg+vHRtvKDa0C9oVzsh+66GYNroWjnJGRj49E4qfSOrooif4FN8VTBun\nPnOy02Xj8J0+KnYmqXGQbs2sw/nM6jCJAKYqYvGlXEFtToQRurkZmB6C3iv2Y0GXxD35/VmjqkL0\nrprjomudyayrRFm6yTn08oBE8v9oZuwMW9kGM2dKQdULJiltnAz7+kzZrsx7jkHqFCXIiDK4DKoy\n4KaP9lxd696yFPP6rLPDCdPsabLPU253Zcdgyltzm3dHRo6ke7RNk1xpLohbCDMUxuyQs+Z1Tt+s\nkxUGjaNGV5ggNWpIFD061hxjcHS4d+FD9/wyfmGDQwpDdwZPMBR/UdydcQ7kIDqlpG+Lj2gvbdZz\nvxS2VsPMDhCMrQUAaUVj7myEaZid4YviBXe5FGUT9C3TumiJ/LGXzdv1dr1dP4DrN4LzWuI8v3Be\n+xqctzvdO+aN0jb2Imjt2PhAry9BbOT+O3BK74tw17BWQip40+jmtQu6FaSWxHlOT5wnEn4h1R5w\n3sg2pGcqcp2vwXkXcApIlsfHN5z3S3De/MWJ8x4/UdzrxHwL5yUBoB4qXbogPUzG5QRajXJRmQ5m\nYVBZUVROpAxEBmIjxkoVKztWGkMqfak0Gnd27rZxjrYSWZwstQZjzr1dKqZJbFwTdH3QR7bmV8Z5\n83cfcZ6EihR/wHl8dA/XIpnYaDFPxD1Pc0ljGlcGeRdYzVAfmIV/HaIPqDvu2XOv8FWOk+velDIm\na5KbxMJ5SbL0WBePxNs1DH2NqycGdbIUV4LteKzaeixjmgSMmyCdbI/r6xkSN0Zi9UGW3Jgs7sf0\n8r55PXXpOZQec+odbMNGw0Zj2OD0UAmdWvjQKkbFtWDtxuGFu1fEdsaonF44TqUfBsfA74bfDTsM\nNV3eGrVI9uYxthbGza1IYE3rX4Pz+FZx3veC2JiP6HSAnvVzJpJ1dISsr5bouYsz5GpztQ4n+QBH\nTVQyg1i20poMfmPbGt0cVDjNKa2y743bbeO27ezbjef9PdoKo3Q+2Aa6U0qntQ0thp8fYPuPIecp\nEj3V04Mg/RqxBlQom6I3hyeQveBtZ+iGe+EwoYsi2qJTQbKXDGKDPwfWT9xjcUkaAS3W1ckay2ur\nkoy2sgKbhDRxMuo6A11876Fo4VXAWRl5mdkSuU74DpfwKF5/mWzm4VMeNr15TeY8/7bIhPi111Ev\nWkrFhja6YSMkpcNGtPpkcqmy4tXkJyRj69zbX8Xbh4PqIjHy4D0/s/vjdjN/OQ+2s+ayC3IKHBJs\nvCpDlbME9Tu0cIpSvCLMA3iqNiaxwUbnicHOsI0+KuNU/FD87vjd4fCQJmYrq/BYCROtVcix5l/W\ncL5umfYwvo8P3vxcPlUJD/+WyoasfI5v2gh1Qb6uTIf6uSZzU4/Zu+7rcume4/+gipgu0Tku0cpL\nI8hM9+sVJ+dniE04iKJgBS63b79amkk4N9eS7zbHwT2BaZIUOnNGEYhtztGUsLonKJ/ES/jeRDYq\nM2qkosevWy1T3roMwNKnY663EQw/SVA6XBkHEZwSfJZuQfZIrKVhEtLm0bkPeOnKS3dehvMyjC/N\n6VZBdmDHD5B7dlzqAifY3bDjIk4tu7VEXbgmkRHzrAhtqxQB1QQDNru7dEYXuoxXD1vsGxqtCTPL\nZPY64/h2vV1v1w/j+m5xXnx1M1D9Ks7bd/b9xvPtPboXRuuUsyG6UcvO1hqlnBz3HWmCt9jnFUXM\n6YcvvCEh3AsMuDmyg26h2PBSGB44c6iECapG+YlK4rwR3gB2XIeI6ZO1XK/cH3BejOYbzvv/ivP8\nK5DoFc6b7zsVDJ0kNyJ+jiacAlLAxOkOlfTmkI6UTimT2KiY3hiyMaTRqdF+lMaLbRyjMu6CpWeE\nz68zO31kWdKluLiGk1fjPMf64YP9Upw3p9uub1p/wHklcV6SZTngku/zGuetSX7AeWEUEjhvdpbL\nZziVDGHKOtvpSsoY5qw9mPs/3H/k0QI3igxUnFrsAecF6SHZXUZ9rvYoF1NxTDKBNZOEPhLnWY5L\nDNBUHS3FGFdRj7kGzpsEy2Q7JfxyYizmfeSKlOjaIpOtJdbqyPyjRddYsBMbWyhuR2eMwWnZ5QXn\ny7LhKJSGlyfuprx0xW1jeKOPyvHijBfHXsKHxA6D06kiNNGoLEh8r3h06RT9COd1bJQHnDeX2LeD\n874XxAbkxm1hkLmClUsGLYI90xg495o9vLP+8KPX8XRPDkfplJ3XxtYa276xnSfm0XKpulPbxu15\n5/l2Y992WtlodaOUOJiKN1R2tBn1RvQDbr/AWsXbCUq08RKC4bSQeVl1pCm+A0+CPgmyN1z3lc3v\nLjgbKhtNG3UUGMI4LWVocegQ6YgMqswnzJekcNYMPrKSs85yfuXpjdm6KYwf566mr8bv4S8A2fL0\n8XWIPVYMFcNzHl4drh8O0rOsY82PrzAzo/R1JHdfAWlJEmfpxeirG4yP6YMQm4iKZLUgWfMWG2ds\nXvNAOjfTHL95W/MjXbF6fsT8b5Yp5CYonqfkQbC1p8B9fgilU7C9cNRKLdHuSZI6thlgIFtANYbc\nGGPHzgpn1Ff6fTo9gx+WAS4zFz43Yg+dH1O1ESO5AMyrdMWa1Ifor2tMLhr7gZWfwX0VBPrFnC8i\noiDE8/hqJqfkb70ic7Eyg4slq6tpMCV4rCePo/QkNFYdrWXAcR4C5GSG8/f1mru57maGSQBddZMW\nzwgh8U0bcwRDNcgQe5AGz/U0Xa1jvDSzjlepUhAXCkORHneoKutZi2xckBvuHm3DhoSkcT4X9QF2\nmuBD6aXhpYbreB10U04zPvTOvcN9FO5mHCa8uPFlF6wrapXikjWoGeu7YYczDqMfnT5O+rhHOR5G\nKTXKUKpG5sIHqpWnfacVcIvW2dYPfJx4l/QQCfMrITJoIlCqUIsi2ave3kpR3q636wd7fXc4b2c7\nO+agOqhuF857uoVxaN1oLXGeKkJFtVHrE/vNET0ZbUNqgXKCgW6hlKNJmA060Za8Kr4Bm6CbUPdC\n2SuIMFCGJ6lRN2rdKKO+xnnHwE5DGA84z9cBfZHqbzjvV8R513r65ThvYp/pH5GYLzEBBjKC1OAk\nVNiHYKr0CNF0FaoLBY3SgZh1CqmmlYLJjtEYNHp2QTu8cPTGuCv+4viLY3fwu6W3mkcZsl2qVEk2\n56s476PAurJBvwzn5WfX6Y2SGMx6jkkhC2E/wnksTHTRGvIRzgs/HXx8hPMSS3IRGgvrWa5Pf1gv\nk7SZJRAL54WiAwbz9gPnJS5zLpwncs0tnjgvSrqXrw3jI5yXqR2/PNTiHeYqLOGB6CWenyQqvI/4\n3TRbLauFb6b8hDDEV1Lu9bAoNVrddleGDYYdnL3Re2MMo5syrNKpfOlpYO8N9xsHhbsozg3vjf6i\n9C9P+peD/mHQXzp2GDKgtBIJrCpIyoxVJXGe49YjydfPaKf9FZzHt4bzfuuJjVXHZyM2s9GjL7Vb\nLHhm8AMIxljKdMgeq9d3HHog+lVfhxcRoZRg6p+enznODi5ouVPOTjOj7c/cnp94fvfMbb/RNNsg\nWjDqxQveNtpToewOdLw908sNK51SoSGUGhubjdw8C3hz2BSeYGwb1CcoO0M23BtWd6pubLpTpcWh\neXh0OjgH3uNhK3g8CPLI0s6swVXbGP8/t605ttdeFn+/toqH7ejh8Dnnpvh6bVnOVdcBzOWB3b9+\ni8nokoFGkrGEufEkUz5/7OEmo9uHrQPlY1cLLLLpgl9VFZKMLcBUMdjJK2OphwPxqitcbx6GXZ4B\nzX3qBmYeIloxrXpVSux1SgAbidpgxHGVcNjm4hvClTlTOmgG22RupWLesLPhXR8cnj0OosnYB7FB\nKjV6ynhHbuh5t8s6YwYASfLmIZ/yNTyHr9Uwp28GYhb5PF87gITFRs6lPImJsHg2c8xmIAri4AFR\nyCOT7/l8j7UuLmOqse53gpf1XhDzycxkzHrkGXjiZ8yytCVsoXMefGK/Kyv2II+e9amiUSrt4Z+1\nXNl9rdURz1z2UhGN1l+rleFc8x7IZz1nQ5B055bkyma7WPV8tnyOFYtACx12rHsT5TyVl3vliw8b\n97tzHELvIX+0w/APJ/0+oA+aODqUMgrVgzi1NE7u/eA87xHEFNoW3hqlhiRUPJj929Z4um1hLjUO\nigTw6cedUcJJvQctNEc5xuVhX3Kcnu70b9fb9Xb9cK7fLM47aeaJ8555fvfE7bbTytXumgGFCnVP\nnGfACe0Jaw1rBy4GBgWlDA3PUidwXnFoitxAnwV5qozWMN0YXrGa/mzticIW79kT5x0jzMHdEufB\nVb44I+DEYvKG835lnLcW3wPOs0UWXejlGpko4UnzUH34fBPncWEqcRiWnhQSgN9o6RcRZJClkgip\nDA+1xvDK8EK3Qj9LeGrcHX8x/E7gvU4aYdrCOswzwMRDyxDkERnxnxDnTUXFpa59jfMeyQ2CGJk3\nk2PsswSbSGTFSGdSSiQ+g9t1/6+y/Bc5duE8X782P3WQEj0YpoXzgqgL9dLEeem/9grneRiTapRG\nj+w4eWFOEucRr63Zpc4TX3IZ+EM2Fphf5PtOrEfiPC5yI4ws4NXkKFF+NJzuwv2svJyNo2/07tFB\nD6NT+YBxdmMMRb3ibDgNPTf8VLgb48Ogf9k5vzjxu6MmtBKG8KUKwkBcqaKJ81riPB5w3stHOE++\nVZz3W09saLJ7o4fMZmSnh5kJNfNroUmybx71PLEHWkh0UtoYvahjUQb5Fa279v3G83MPt1wplFpp\nx0k3p+5P7E/PvHu68bTt7HWjUmLzNadYAb3RNqVsRrfBqE+c+swoJ0IP45UGog16ZAqmBr43xTfF\n2w2pz6BPdLbcBG8UubGxUa2lWSjRWrFHveXltO25p03mMcxxonxSXjGTKwjmtdQdXA4M+njQXwvz\nio1TjajztZycl9xoFiP/OuA9/jlf73HDip+fjOy1C4cCYYQ0M7u/eAa7KSach9J1kzPCuIN33DvO\npWiIc6I9ZCjCjHKypz5v1Wf+P7LN8XvxZjp7ec9MRnPYDG/gm+BtYBuUDaQqUi3csSXaz10QI+tc\nJTL4RsWs4WGfHBn+7umnwQOpMeWI01Ni9gCbvhIPO8iaT89IFZ/hIjgWxOCCOw/z9TCFj2tgBUJy\nw7LpdpnjL8Hsr9IVv152wQaZAG0CHkvXdM/yj/nWfv3PY+1cvcUTps31v5j/aSwW471kzsPB07ND\nan6WaazGGrsIZBH0dMkJQU3S/DNn0i4DswhcBlKm2jcyXvgy+1qlNMRcyDS4Mg+zK/J1/JrK+Ag5\nttMMKzkUz4xV78rxohwfhPuLcBxgQwMnHGBfQv+yh8N1Efayr1I3y/cevdP7Qe93nOh93mqjtZSC\np3S01mjv+nTbqQL9jGcNG/Tjjm0VV6Vn0M7+AJRS82CSz5Z77O9L8vp2vV1v1w/h+s3jPKj7LXHe\nE0/bjb1sVCnLRLBYQcqNtkPZjWEda0/0cmPUA5XBroJUoUhlnD1+Vz1MB5sjTwLPBb9t9HqjS5jO\ne3mi1mdUVW8lvwAAIABJREFUnyi08G2YOO80vOdBch1cudQHGR/ecN6vg/OSmFg4zz/CeTzgvAiu\nuk73s4yHTCZYJq1GGEQWWYmGCz+kf0qK+lUUE8vqhDCuHGwMgtjopoyzMA6C1Phg+N2xl4n5LIwy\nM4kS8uCx3mkRX3MCvxbnPc7Er4LzfK2NwHmenha+MB5iDzgvxzcXwNKQzLUlOR9fi/Mm0rOvwXkP\ndzvLUWQmlsaVu3sgNWykklcCr0tkrsI4d6rcSWIrk1i6Fn6QG6YeySU8cZ4lDLOl9pBMcPpMThpM\ngzT3ch30h0/eZdnNBdyUHM5c6cWT2PBryqa/UA/i7DyVl7Nwv0fDC0+2r4/Kl2NwPw76gLoprTaq\n3lBvmSA9GB+M/mWnf+h4dwrhP9SaUDKpJzi1RsvXp9uWOC9vwjr9OBLnSeI8/1Zx3m89sSGq4H4x\n+A8LKoxs5lca+QmRBVdN06XBcRz0HtI1e5UVj7qfVityu+FmqAilFuq20e53enfKtrM93Xh63rnt\nG5tuFFeshy+CqlDYabojzfHROfUdvTxzl4PhR0ggFbwJ44jWXk6Yimqt0Sq2vEPKOyjPdLmB32h2\no/iNykZJB2ZGmPr5csa+GFuYh7cIEGXVWGbbxVUjGeM7t91gz9PVOgPmqtaTyU7PIJXHcHnoeZ4M\ncXdPw64ItpoHQHjYrCbvkt99vJNZZRY4x9eD73l/sQYe2p2lYc88ojPVKcQmOAHRrJML3d5gnRQn\nm/oYHOfBNSVvLvKwB+ml2nBBKDgNlwJVoRnsBTbDdkGeBvYkyLOjTwabUUpI3KIo5SIAHMEk2mrO\njhpk0HPXJXm0nvLD/JqkhlkEdIigDhZZpMUiPJAQmW1w0Qy4kU1/DU5yRh7Y1jVVs9QpgcXac3Pd\nxc9ZGHhNoynI1yprrpC5nmLdrbUpU/rqy41cJeZieCgF3A2ydGQinAjCTpmSWTfcJMx1c98wi84x\nI1vFYfEZSwamUgqpDk0glyBirYKHsdToRCKE0mKQWRQyA2FRiyiwDKRcZdVJL1prERzxLM2OPPOd\nJosfxEYGeiJDmMsEE2GWM9nhAYS+dPqHwThGlK2YYmey9F90+r2jW+F2E7a9UaicnHHIGEFqjHEg\nYtRWqSXc3kuJshktja1Vnp929q2h4qh3rA8w5zzv2NjxWsGzXpwAdpJ1mlMyHM+rXaTP2/V2vV0/\niOs3j/OgbNtrnFe+ivOq7NRtQ7aB94Ouz/TyxFFecD24bQTx0ZRyyNVpq4BsIDfBnzf67YYnzjNu\nlPIE9V0QGz1abtMjaeFJdl9H7vhzZoID54FIecN5vzLO42JsHkwbH8+agfMc98jyOxWngpb8UiiO\nNUe2gTVBNkc3xzeHJkg1tHQK2SdjEQ666iU8SzlcGk5lUPFe8AO4W5QxH+F55Ue2LO0xJuszy0xk\nJdGVQx65q5koe8R5X3kC/wac5+GLJmXRIhfOE/DxgPPy1QI8LTLkwnk5DWv85dfEeXP1BMFSporI\nJXFeEqA+S9qibGnYCPz8FZynqUiKtR2lTfNL1kq9cJ4jZgwkRcNB8IlJ4jxHSq7LhfPmU+tcXiGS\nqosHnOep1vAgOJx89outhR/LVYIMqlF+bif0u3C/C2dPI1IVTht8OBofPgz6fXDbhXYrgfO8cfYO\ndxhfhmJjvAxkQC0T5zlllpyULXHejX2rqFiY9/cOZonztgecN75VnPdbTmzI2gDH6CvYPR4w5gHC\nuGRJKuHCerpjvXMchX7GAi9ekXyYSlGwgrar4rCUipZGqS+0beMchpQWbP7e2PeNbWuIKGMIPjJI\nbkrpFetwjp1DnzjLM4ccHEOpvtFFEB28aKe74RRK9mUX2ajyjOgzIk+Y7ahvVNlopVKlZGupONiS\n8rPICGeAM8MUVssiiIeLayN5ZO9jhOO/k8mH2LCufedR3qivguUMKrEnBOtqY2B9hEcJgGgu7odg\nN9/4G9Z1Jm/i52emxpzhIzeCsbIoeQZeXMR6E4dZuhBM/ZTqyYNJT2Tb49B9MaKvby2DHvMAqg+h\nI0kHIdr1bg6bwO5wE7g53EBunbZ1tgJNneBtLYkNy9sNUmPIDKzzDvMQOxyGTGVekMDD5zLgUmiE\nm3RQy1fN4hXpHv6cGQhRpmLgVa+znIxLpjhHJciA1atbBkErk4TEBV+UkOZFnJjsunP1sp9StY9A\nmGRg8ZG+mhbGmxJMcJRcRECca+9SbVz3KiJIyfpGn2tpXHXHfaRRZwQLkhyIaxph+ep3ziQ6nPVZ\nIjgnaZMZNe8RWHs/QZRSBsXDtyfqRicwWCjrWq3zPslgmGM7MyURgOPziOmsYmJlvdwjy/di8MHh\nA9E5x4na9cPwL4OlP++dzQ2qoNsEilG3GfLNDm5oEVoLw9CiUNUpIuwt98S20WoBD31icKsBvqa3\niVj0kZmlOOig+AU6DafbeAAwb9fb9XZ9/6//H+K8Lfa0hfOSDNFe0N4YrXD6zqk3ennm1DujwyYb\ntgkUoxcJIlcEKwVvBdsqpTwh+gzyRNcbXp4QfYf6TrH6Guct0aVE7SMeB361B5znuJZ12HvDed+E\n8+KzvMZ51w1eOC9e+1p9urLt/tBBhpp4rwWJ4c2heZaXG9qcopG8KnRUHkoscnDizgtOYXhhWMHO\ngp2CHw6HrFLjqdQlO5WBgQ7I7Lc8qnPnGK1E0SPO49fEeXyE8yRx3qX+iMprv/gA/AHnBVb+Ks5b\nDMc34DzBiz7gPL/K0b4W54Xq9sJ5muQnSGcZsmfdR97ouD7BK5xH3FOSN5KKCZ2Emsb3vZM4byTO\nKxQncV5ZaqF44xgDT9J1Ylaf6oycG0mMh8X3fTz4mwhLpcLpkeQ+DF6AQ2J9SCTBrBv2hdO/GJxH\nZztjclRqzOsLjA+G3S1K3HuQS62GYWhRo6pRhMR54U/UqsbHWTjPwcZ3ivN+y4kNkin2Vdt0bT25\nsJiLeNZ4JSuXrNkwg35y9jNYJL9qEVWC8bdSKaLRllVLyJNKobbGOQZoRerOtrdw1G4VRzntzF6/\nghwCLzBE6Geh943OM6cc4YbsG91D3n6Xk5NgQON/FdGNLs8Ue0LthtpGYadqpYwapkNdsG4wctOY\nskRmHZphA0RsBau4rj8veSIZ4pcg8Pq5udkwmdE5VlfAnPKweTizh97iE3x4nnJXRv7XvTzf5yHY\nmY9g+taD8tVrHgB9fiSHKc3TzOBMV+QoJfAHwUseMnNvufqbz4y65POp4MHaewUaEdB24AY8OXIz\n5P9h7+1hbduW/K5f1Rhzrr3v69f9IDKWQJAZ5JbB3W0kUBsSAjJLBBBZApGAkIgQOSZGJITkCDAB\nInA7IyCxACEkC0tGAgkst2213PTrvuesNceoIqiqMefa59z35ffufffdPa/WPXuvvdb8GB9V//Ef\nVf+6Qd+NvRs3dTY4az7jaG7pmIS4rEjISp2jO5x+dHGEoJElvqIudzK+xXYksREs8+nn4rEuBEc2\nVNU8L+hQH88mQy2AWYQMkm3jJzgicqBJhySE0auQ1WC4CdbZGytctAz9Os8FsSiISZJyCckkoi9a\nCbx6w8UxzYgMzx2+1Y9GqVBrkhs1KtwbMg0dIbh7sschWhUhpAkSEsRoPpOKMAw8dT9W8wrQ4jFp\nUcBsOkwiP9jFwQTzCK+wGltvnt0ToFnlAgNF8iyI756CpJE3qSaVmJnEVzi7CGF15A7yiDQURhAb\n84Mxv5zMY2LN4GbZrpNpB3M+MDtwItWtLYfXaRrt1AX2feO2R3pKV02AUkGIJyit3OTKmzcXWtoK\nEuC6GXO+kxrvx/vxXTu+eZxnF5y3J87bcOCwEThPZQmBj6YcY+PhL1GOvX3EDmOTDdNYFBzeOC4L\nHusd7TvavkD5AvQLTF9Q/QJ4QWyneUMPwQ6D47IGU+K5fSbOswvOe9ua7zjvU5zHSW484bx6PuMJ\n78EF58XC3E+vFuv7nq/N8R3k5rA7sk2kC9omTWYSGxGxgRBirQKVfGFoaGq4Mg9NUoOlo1avIDcC\n8+GReiJM0ChFGo3iawFcY+EZ53H59yfFebnJkniqqoh8Nc4rYuACPuW83onz5MfgvMQFC+f5iZus\nwJHlQ3wO5xkyY90kIm9wHhecd7Zb4DwS5/lncJ5fcF6043Rn5ibOifM6yOV+C81nBFEt8S0XGicG\nrKjdy/MiqPawkeIrAMmJFLUoIuDIATKqckyUh55/bMw/Tpxnvupi+3Dml4EB7REZAOJOE78QG6mW\nIM6+98R5esF5fAXOi0z0XyTO+9YTGzHQwRMQX+erkwu7FbaY01ZBIzYvBvMYjMzddLMUsYlJ6Rql\nWNXC2bUsTymqtL5xzIGJQtvp28a+RQ10c6UNpQ2JHYOPk9EPGBKddt+w+QUPP3hgNIvcORXhzmSq\n4QhdO5olvpq90o8b+4xyX71tbBLOWEwy/SDCeFbExnL+lWMWeWCoZy4ZX+FrZLUBcjq20w1yOkaB\nK6Nf3/Y1KZ86LM6gEKKauQPwM/R9TPBkae3C1tYVLxan3o63TnYwdA4Al2RRgzEM+SahymOdlU9l\nObUzxLF+r+iNYl6DDaaDb0CFIL4AL46+GHufvLTBDeMFZ3NH02FoujWXiNY41iNFpuGEBSJ8CpIR\nll7pKJOIW0uV7aWKTRBf6LMgVPUpXFI+Lp9YzLHXEho80znEJpahiG93gyhiRZL0Sad3OrckNcwS\nBJE7R86pru6nMBnk+zF2VCKk7wxXCWdm5TDMsBTpWiJzucAPp57incq699YM650+ZtqFCHuFvC85\nnVGE0uVtmuIzRThzXFabRABMSsHm7si0JDEI0BbGLMMmV/OnvgZCcN3xOpOI2hrkRs2HeN4YhVtU\nTlnlfj1Exj46fGnoIbQhjOGpy8LK2S2CzH1i85G7Dx8Z84EzAjyp0bJUV2/kwiBK5L7cNl72iOJo\nGf005MRWp9ia0ntjTIsQa8/IlDXXnfle6vX9eD++k8cvB85r0Db61tm3Ru9nqcY2hWM6do+wbabw\nMGH4jaHf4yF3BpNuHfNGF7gzmDpxlK6Npp2uOyKv6CU6d+N79HmjSURd+AN4+Bmx4bBKnRfBw7zg\nPH3HeT8W5+V35LzolbR5xnm1cKyFZglOtiAl1EMMNje01mt3fDdky4hGjMbM+oaTiu5MlH6SGgjD\nhGNEOVd5WIqEgt39Eq3hKfxhhETjRMSC2Lj0TvRpPOTPD+dZkjwzcV5F+Fb/XHFebM+gRY4UzssF\n8CoHTL7fvgLn+VfgvDPVNyrm+AXnnRWBoNGaYl3po30FzjsjY6OaULaRRarJnP4G5+U8UVD0MzgP\nZvbPM86L56yxmkgu8Co1t3JGul9wHoHzuiHSYwAPO3Heg4js+WjoEJpJyBzMGDf+Q8P/xDOSQ/AO\nJoYdHroaH0OYGJ+ITlqTiNRonphOEud1XvZGU3mD85Keu4jqfh0471eA2IgJYJlnZ1cxITlDt6dV\nWa+Ja0NblAKTqZe/p0jNYjfPPL3YmDXojc23aHwRdGYImna0N3pTusZ6oCVgZzjzw+DuhtyVyUCP\nRjsa8miMj507O2ad1juPMWKHAcW8RyUCNkQiAkBV6L2z0VFtoathMVBtDGweQApPlr7G2gXPKVIa\nA8mo1lE7GUUQnjXJzxw7TQMhxd6nM1yuUM7zhEhOXUbpQmhEeATyq7ZgGkuJiafbOX8vu3eZAul6\nrp9Kg306qkWvX579egVRoVHMeDKjrpEbmiam4hWup1riWEloWOVhWnzfXfCIv0v23vFNYAe2Sduc\nvQ1uOnlh8Mpgd2f3IJ6E2PVWCSc36TRxHlRjwDSNAAcyXLGErvw0DOtfLjef3XTCjCIzEs6Uw5IK\nXb20+wqPq29WuKqsPMqCPCL1s5fPSkchrITbEl2ahjVFzDJ0NT2i5UdFA4yeAzNzJ6FJi3NmSayI\nnLGoO26GJTmiolH72xRPQaqzOc9AS4EgOiB2VjQ2QcLfneMu2sYJsmE1WZIXApPctQogVqHAVc+9\n0zHKObKcv7mc5V2r95zl6CrHM76yJsYSazt3LGoEV/uHjWTmaxh+ROkuMY2SXOZZMq8q5iQhgWM2\nGBblXc0rWsNomk6uxWcjhUq4tc7eNUu/NrYmYA23HrtO1ymZC4gtKrvhY67FTOjPWeZlvhMb78f7\n8V07vjmcR+K8njivob1fcF6W6LTEeZ4476ZMmcjcYL4w/IWPfqd5x7KCwMFgZDj+lCA2huyo31C7\nsR07e7uxyRabUB6LGj/Asuodfi0lX4vak/KWjEZ5x3k/Dued6SzPOK9SP+P90kJd6+rEG2shLrF2\npxPpxxsRpXszdBe2NtglcF73JDZk0iRwjyNMaUloZFptphpVFIRZy672M1rXL/+WY33CecX+VJQO\n5/8K8q0h4r9gnEdoTgCrfKwlufFZnAe4fAbn1UbtW5zXMPXY7P0szjt/DZznSO+fwXnZYk/iofGv\npA7dpzjPvwLnSeK8c3AlROPEeXZGA1ER1klwZFQQq2zsfIPzzlTxT3DeYfjdIuhkKj5GYKyHY3eP\nFJXZaLPBodjdGWOmHtGBcyAyaDpj06oZTascMdxaY+/C1iX+bQqmifOUqjQUndO+Fpz3rSY2ypAK\n1dG2drDJEPgaJG6pUm1RIkBVIt+p2FvzLCM2l7rz28i5qtigEsSCI2gLRtWlIU1pHbRl2I6G7I8M\nZxyDMQzZFGsxGfUhyF3xD8ohis9G68oxOma5EGsNs47PqByAxGKr0yMNxXpUw8BhWij8+kB8IFqE\nRnJ+nmxgsWcrPLAWP74eeDH3qy002PfMk5RUsRU5S/WsTonGCuBQ7ViT3SXLXpXdLSfprCi3z3X0\nG6e8DAxQFTdUKUtUduiNp2Kd6LyOrFdbzsQ/uebl6ss4Rd5nqK5T5AZyOrvMRpF0ct4d34y2Ob1N\nbgxuHOwc3Di4mdMhxgYRDqfiuDZMjaNVekp41ip4MVSxRowPTRggcJYXJSM2V4NEe0kaHS7se5Eb\nFye4mohydsEjQzg5EVJ+QlDPuSDn/FxtVoYXjZ2E3C/xDAPVJDEykCKdp7AKxxNkYoV+rvOLILQF\n3sLJK4ZhEqGRwbRLhFWqZ3rKMzO8doGqKVTTqeXzlFbN+k4Bruf3Iowx83ymp2r/6fRUhCaC9MYm\ngmgC7nGO67RqhGbLCa7qmgXfPNGII1ks5UyTwqMyQAHic56fO5shMFxvX3c9834TX7hnVYEZ9sWq\nso6EyKk2QjCKidsAjV3IrcHWlK0JvbUYn9Z4NGEOVoEXkSA2+lTMhOmPAJxGqqs7Y57aJe/H+/F+\nfDeObxbnNRzQZp/BeWR4NjSXwHkjcd5Dsc1jY+to2Ng4xs6HEfvzvQmHN8xj82t6o/lG9w2xnX5s\nNNto207XjTY7khpaPCyIjWGIz8R5sRCqKIVKNVWpaAl4x3k/Kc6LE1qmuZQY9+dxHrBSg8GzpHqU\n7wXfHd0F3Y3WjV2jtsmOsy1iw9iYqx/GJTlleEPSH09xLNaMWRkvcd7a0z/xWT2HCBecx4n3Barg\n5teP8wTUEudpRpQUq/JVOE8+g/MIQgPHYmgtEdvAfPIVOK+In/xsRXB8FudFe62RuHCUJc4LMobc\nnLKMNjhxniJd2UQRNaZZ4rzL/eT/nIzyzWtEv86F9UJOoHDeSaQEziM5oktEi2XkxvQQk4Ugv4ad\nr8PxQer2KH44Q4scDqxHRebKRJtkYQMS5wld9Q3Ok0jBt8aj8QbnydeC877VxAaSQi74cnbBVlUe\nZhlSx3yeVQ7cT9XruUWEgztzGnMa2kL4rmwlkI40JzwRWtO6UtUcPNV3mwqtgU1DNXKSZDrzMRgy\naLvCls7mDnJ35GOwbHMbuAY7t1i/LqhJLBwQpAnqSuuNzTY2D4dnbvg8mHbgFlUvpMK8sn3wi7bG\n1SC9ceoUK5/OqkQRlyqyRqVtqTSBN17qOiZl/S2YV/EWkQw5iBfx8hMM5JruXkYnv6Qi4VDixCzR\nKyQdUyWiBmCROtsypCnWg69ySterupeTDRLDzZNd9MXgr4XnFTeIRyHnjNgIMSmjtcFNgtR44eCF\nBy/+YDdoI/s+TGOY9TbxzYPZV0vdjSAkDGeq4+3G6BK7Bc3PvEM8wvM8nv/cl8gWWh3kJ1DIcbD+\ntNDDapG1UI68SwnnX8wEy8rGNf26HM+TuiJa71TqCMgMTsDVUWtIy2tVBMcaKGHkhXMsn//TJTJV\n4Z3rydblT6CLp/Bc7oCsJ00wHe0Rgk/VDtcxWOTQIpJyjjWyPGyOlYqmsBapKKpKlxYPXTmH1+un\n8nWNsUhvuew6rTKw7dKvBWwLFHRSlCT6IvHC6o/4WMKHc6xf54CZMcdkNCEE29LOLuJjyV0Fwz8f\n4expNHF6g14OzxVPtfGYN3bmiUqP8O4JQ6P/3D2rGhjjKLGu9+P9eD++M8c3hvN4g/PkK3BeSiZW\nCezHoE2FXdEWOI+Pgn3sPLwz9ixDSwcimsGk022D0WkjqmroFmkx24yUY7HQUPO7MY+MWGFmZYUi\neTJsXHLRuHCeLN/H+v0d5z1d9wnneeI8f4PzFvTJ+0iNjdxUonlG58ZLduDmbNvgprmJ5cbuk43J\nJsZGEBvxVEqpbgyUQafREDbcZqS53JxhDR+CzxCBdAVTf4PzCq9Y9CkA9kuA8+QrcB4/Jc7LSCGv\n6NnzueqhTpxX187UbeMkF34kzis8VISDrTVgEW0tY4Eou/FZnJcYbA5W1Y+6eLZbpTsFzvOkNli2\n6HKXFHl04rwchxXVddngOnVRTuJnRXvUUsIifX0OY7QjcV5WUfSIzJXU/gMy/f1O1KlWmkR6yjPO\n08/gPP1acN63m9iANZjd5ikQeBmkssRYLvuc4oi2YPJ7o9UgNmPapM0M0vdiLjO0p0SR7FwQSS4K\nXBRtpHCegUYeXe8Vnm34o0r/eBjojw4fHT0Am9gdTA1oGQYI0kGmoJtk2dhGb53NOj2NXtzXwOyB\nzQP3EdfzGOer7JNbLLS5OiJYC9w0bLVLKzw7vvqcii6Wc4lJ5d/KpHldJN+4LJ+p1f9ZjoyLIcvv\nX1jnz3vDS1/mrrzXqrJ2LLIPV/4emQeXjm5NbuzTifTWMJTT89qBZ5EbJ3MPnsJInmyuNPBORm4Y\nvRmbDHYGuzy4cec2D/phUcLNK3DwdLzSJBykhYOU5uv+zTNorQVhxoOM3jBcnFn1u8+N+dMxPLFa\nq9eejusGjV/e88u30iyzBFTdov2kQujKSUIssutOLmepxpa4V0GDmAlttQwbroGZoXcSYKWA7UIc\nvDl/IVcpMgeq1rmk5kYJbNpCLvEdv/4Liwiq9rCzpS5jJeeQCtraOtco8DWN2XLnQiLqq0uQEjPD\nB6MEvZ2AqnaJLMfYEqrVdC7p6L0RQIYIQW6SUTySKZyeCliEkFU24wrLXmJbZQ6S1BhH2NJUWc/t\nq3CrtSNYxMwcWOsIHgy/SrZFOmM9ywY7LBAZV2yEunrstDBjDI85GXN+Mj7fj/fj/fgOHF87zvOF\n9QLnyQXnSQrnXXFe7M7qJMQtSZzXHP/g8MHRe+gAzAdMFZCWZVAV3xSGIltUD2mt06WzjU7vPcLE\nB9hjYsfI8uRH4jxLnFelTAvn+QXnha98x3lvcV5huPLdcsF5/Gicx5mGIiIZqcGZgrKDbMbWjV0O\nbjxyI2uw+2SXSR/Q3GkZvSDNaM0xmWwqHBwhAO6DICVi02r2qLzjM8bYbJYRHLFAfMZ5Z2TGMzt1\n6YuvFecFARW6FBoRKDPwyonzTlLuJFze4rw3h8gF5yVW8xrfQRZoptE847y67x+F8+onWePlGef1\nNQ4/j/M0cV4ncJ4kzntDnFmO3tKZ8EvK8dkYVGpKEFMt+1gvdEylo50bWJFR42f4RAp0Sj7LHAdj\nZJSNTrADbFDzSTU3yrMaUeA8v+C81DBpkVoSOK+auEq4JhH9C8Z533pio5j8q2DmOejfLnKenWHT\nRu89ZfiIMKE5mFW/+M05plWoYyw4DECSSW4J8LMigKvQWji8bYP+gMMthPiyRBJ3Czb/XovhWMWJ\n5GJWHdlijElFaUhn85PUiHk+mPZgjjvuA/EZOj5OTpBMaHp2R+soX6fluGppnY7uDQeyviScg/fK\nmLrUjnF8PuZNGbwyIDXpno8l/HW+k+9ffy9nd3mU5ZTz2ktfgEuFq4vbTaMRZYfKcVlI9fjpkCvk\nq5xcsa1FbnjlvDknS3pZNFLrzi1SlHYZ7HKwZaTGbgebTfQjyICVeHd1wB0ku6+5IZthyYIbMFAO\n6Ry9Yb0tBxufSfJjtX92lr51dFcXdrl29n9FMK5u9fNU1e4BIjJcziyY7/rgm/6LcZX3tD5zOq8w\ngCxfGOGKCbRoIJddg/ruAqifOuylnyHP76MRETUvzP/zWIuoiXPnSC7niGBOy0GuKsxQdF3+VQS0\nRWkv9RI+8wgR1PTfxer3KJnmwByn8FX4IWWRbYvcyAG2XvE8K/WkBbGxhNuzD9euizpSTVn9kABP\nspPdLRzeQxAMaR6gOu2sSmoJVX/WTikhIqoaYeAq8Tue6uTZueHMbeW9R7PH/LUkY0MlO3ZiP4dn\n3o/34/341T5+uXAeF5zHifOa0CVERHlYlNxWhw+GfCBy2R+E7c3QdFENG7xLVGcYifO2ztY2umUa\nigv+mMxjMMeB24H4kREM5C7xvLSNvmmfd5z3eZzHBeclVjKo6MkzveA5zfMUij8xVAnF0wjcvjma\nWmq7PCIylzs3G9x8ss0QdJTZ0CGoBmbU7iHi2JJQk4F6ryUqhjC6MjewoVh3/PAQfax5YdlZWq18\nfX3GiX7tOM+T3LjiPM/044jyCJxX9/9VOK/GdnwmR9H6/RnnhYZ6RfK+Jbm+GudVMk2Mt8B5F6xU\nEU+fxXkTV0c0y0tre4Pz5gXneeK8k4x7mk/XGSq5Ge2SC4xGpeRF+G8+D+cG1Oo+PKJLzAP7Ef0w\nx4Mai8kpAAAgAElEQVTxAGEmzgsdNZioRMqdZlWhLGuSOC9IjZYVT55xXhExXy/O+1YTG2mWgTRE\nl/yk9boa1zdMX2tKs4ZK7KqaGWMMeuvhvXK2F3Pp6fQsOyezz4KEwMPZZYmgRoTk7Juw78LjgMeR\nuggzGcO7wR30HpGOa2rWOqURwqCearJ0tq2z9xtbb3R18IM574xxx8YdYeaC5FyQeTp0JSfpJecy\nNwySUJGzlNdaEJ5tff23HCLVB8vZ1af8sqo8J+cyHH5+7K299cv/01vyfDeXhembESFI5nw+O936\nft0x6ZzCiITY2PSJ1c/Zzz5nsKoZHmYzCc9Zk3XZ2vi97rOiFJNkkO7oNulyBHuvg5sc7HPS7458\nVDgk+ptsyGqmTqgWB2GPmnPbA9RMEYY0hnSGtqjrnREb5egsoyAWb0AY97PW63n4aqO3bS1Pbb5y\nGXOsCJzOxovZ52zv9a9z7brnfnyen57q1lEqtpxnC5LDr/mbLGewHjQdzukPzjEk8sy6r/soQ5wc\nQYwPW99zP89zatPI2mkxa6hObFYKyRkiGcRFY+DMMZkzlPO1EeHKmQsOEYpIKWKbU7Xlr5ghgFUo\nbkuGA5IlnoPECLKE/NOaz0aEr6qf5JufIAStnbywOUIy+UrsfgJmg6hLHmHYXSNnvEkKeanSW4Dz\n3iL6TBFa64CH4LHGogKEac4owVK7EknE+K3w8vmZHbf34/14P36lj18OnKc/AueROE8D5z0kw7pj\ngcNHh4+J81Km4rrxQSOiNW9BsnfvbLqxc2OzjT5CLHKOwTge2HggDJAzLD7+jd3VT3Ee7zjvK3He\nTJyXu+cp8GgL7/kF550bWFY7BStCN0gubxLRGh305my7cZMHL3rEv/Jgn5NteGC9IVHRZOb9Jzki\ne+C+ro70gfYok26uTFGGKFN3RgNrifUy9bh8Z7RRMRLPDfmrhfO44LzLGPgE5/lqCgGq4l786Ufh\nvGqXWOuZKaoxRpywJ1+N8yZMS5zXE+cF6RglTbPCnVWPlOiqg6dAqGeE1Jpz0bcRtKFp1wrkRUPE\nkD8JuxMDn/0utf7DEWbiPEc0xN/NDrADYaLqdNU3OE8S520XnEfiWM8IDv1GcN63mtiA7OzaATVb\nHSmL1QvGddrF8V0GrWrUOp8Qhm5MZp9Y77HTmLvE1qBlNYVZZ/HQL5Dc9Q3xPc/FQSxaele2LSoD\nbF04hmFkHXVSeApBjKyMQEUV5c+OTlCP+sBb71FStpGObTDnwRwP3LJKAedksFy8CsUsVmihnk5u\nCUzl76erWIvrauvaif6kHz75RZ7BxiedVu4p/xZb3+fhn3zr8vWEOhcneX7v2WjWj2/NesymGDc2\nY6EZDs/S6UXa0cyxdZIbGYmfIlJhaNtyfnExf2ozhNBbyRJfXYyeatg6HRmCDEGHJpGltP/9b8Mf\n/BGPv/CbyK99EevT1OuIcC/oApsaXTzCYd05GgHAMgVh2Ts5t+09n/0JGGIn6/0Gr9RzVP+bXRh6\nCvBc8U3sSFX+83meExjJ5fMRNlqd6W86y4kqM5UnmuGn7uGLkvk+/1cdfjpk8XPOX8fUNTojlN0h\nNLKv41ZW5ZnT6XEa3soJTaEslcwttnE61AtpoqKYRKjdtBKH0rABFb3RnDZ0Zd0WgAqBpdg5CH8Q\nIYir7n0C82rc6xhwPPRXNJ3d4bB56H/mmGpTaaa0lorlniQIkzlizGVQJ3iouDdRtqZZJcARm2hT\nXm43Xl9e2bewo0g4fAjHVy9Rxe1U4Rb0bNtk4mK3rMrhvh/vx/vxXTu+WZyXi5cnnGeLBA6cJ2yb\nJM6DY4T+hpshA5qFfRXzBXNECOI5RUg1/UNvUZFlZ6NTFTAC481xx20gMhPn+Y/BeekL3nHeT4Hz\n/HkTK4MgapEZOM/zPYJcqQWzJv7qWRZTSxw0049tso3QUuNQtv/1b6O//0eMf+E3sS++yOheiU2s\nLtCzmLvA1ia7DAaTQyZHm8imyIM1jmgSm2DVG3WvJaSQaarvOO/rxnnxCpwnF5wnzGtDOFRJ41Nf\nI3H7wu9y4jwaIj1+zvK53uN+zR0fnrov8QgiQtsS5w1BM7Un0ucGc3gUv6iJ6hmVIRmRtnBepBYH\nznv5pcN5vwLERqD5CB+cMGfkUnnmgmWInvvkbb3cAP+KmK68ygqFsTmjlrnoKnDgzVGLl80zh6mY\nO2boArQoaRLCVSpsvbNleKH5EWrAnuKiuVMrM3LbZ277184AFrmCKsH09SyfqC0WGLMqFViIvKxF\ntXuKJGX4ULL02rLslhSjfzrA2qldFilbKia6PNmhZwciz+8sZ3Ux/meHPRvTNIAkIXT5Whqa01RB\nhbZxTrz1t2I5T4N9Xbivnvc08uZMG0ybjDkYx8GsXXL35fAWiLKTwbdcYK7SosWKXozkahKJRaOo\n0STKYoZ5nKjPMDYW5eLUFflwIH/vD2n/y9+Cv/MP8B/8AP6ZP439499HNmJnJ4pRpMGxLBXmS6BZ\nNB2LPu/MeDa6e3IcVm16zopn9ntBncVIC1HW0y/9+jRurjMsO2IxzZehFU5LqpNT7DMElkKU6zpm\nalfmmlNra0Ooxkc4FJbzrVzg+FB6txxTxeav8ecgkg7uOqQgBariXM/PfdmVyHmEGoowXUPNnNxZ\n8mqDzE3KnPAoGz1wiXJ0pFPU1tPWTIbJ2iVy03NjrPKcSqBWL+NOA1yFplTOkwmBkx1m5TuCmNCH\nYN4xM44hZySHRd11kahh7snGU05SCSDeW4zDqmv+8soXr6/s205vjQrDVAkb1FqntYFICKGOOTmO\ngyY9Fiw1UBIvrDxU3o/34/34rh3fDM4zbCaR+4TzBNNGswnaMvyaJDWUbWtROcocsSAsmjeap4aA\ne+A8AcnPIJEWqDM+26WzaQ+s5oXzjthF9QAAzzjPE+ex8tw1ccA7zvtROC/FsDMVYKUETF+pKHG5\nK8473zvBRhIaofu6ysRfpUA3Jps5zRT9kwP9O3/I/jf+Fu3/+gfY/gPmP/2nmf/Y90MCy2VF6CKx\nAO0tN8U8MF9TR1qmk2bUJxqRI0z5DM6rtmIRhYucyrZ9x3m/KJxnifNInMfCQmFrBqNS3Z0zIOVs\nHFZ4V4UUxyIO0aw2p6FdkvnpMRdKX1FBELoJJh0T4zCBDx6LCTfmdESDdPNWg1wS52V0RtcLzmu8\nvLzwxesL+7bRm15wHt8ozvv2ExsQxn2OcFYpABVVAyJscS6jVYr+OblVUXeatpWxOSvPx4zuHlVI\nctvbL+kBCPgYDPe4Zho6yXrkSu4o5EKl952tT+aMVBQRp7WNrRtbd4aE2EyyGk/Go/o+Sne1le/o\n6fCipvsZQi7LSaVhkSAxVMuxnay9ajnAk8Vf9HMd/vzrjz9O5/LZkKI0gE+n1DRI5pG7uQa3P4/y\nesYUjgxjYmvXZtnozKFcBpLTWoTadTCHx/GI1zgibFSKx00DUyywn44uci41Dd+zw3tzqwi1U+JI\nLTC5KAVZAYAYJ+3v/0P2//av43/3D5hj8PJXf4/xr/3L2L/6W5zhnTkOa9cKVp+f9ejz2quVa9+k\nWuMEA5SBedOH7uVYfZ2BUtcuY3/xevGs8nSO68Ap0yzrb7FwLvDp4mAaomwpHlXj5AQ69ayyxtcK\nBbyO41J2rwuX7kXtvlRb4ZdHyN+X01t7fpc58TyePx3egqAhAGayxuayOx4VlTodmIwZJKnZyGic\nmN+9S0YFHbCq8CiVggL5vCVUtnGR25BIX2oBdFajT+BBgB/3zOcF9RbJpxuYTB5ToEd460wvE6GX\nnrm7mjrcEnXNU0ejp8De3hsvLxGxcdtv9NazvLSmPWy03mljS80UsDF4PA72jbBNLQBDgWOHzM38\nR3V578f78X58246vF+dxLtpl4sMT5830OVxwniwfHDgvNrHmjFDzIIQbW+tsrTMuAqVA2tOwq2Kx\noFU0hTtBEscEqTEiAqQIjLCKn8F58o7zfiqcV5Ev8V0rcsOcZ8HQy07+E64iN5HCb60KKRhiBkxU\nJ+pRAUJd6X/3H3L7r/467f/5A+zLQf9vAueNv/hbbCOBV21IKdCCxFPiFYtLRxVMI9qzANIlPubp\n/5/HebGOuKYmv+O8XwTOs6/AeX2tKao4xVnRJFvSSxw0BVyWnhoRlbslzqs/xZCDe47pBjqIlBUX\n2MH65OECXxrWJ1MHWESk2ZTMmcsNWPSC86K8qzIT573w+vLFLx3O+9YTGxAT07I2uQ/LiWq4SbKx\nwcyfBqwIAKA3ujg+YPrEZxnCIzqSLcWiomxYHDFtDWGOCRbONoiNgeqx2M7Is9dwbvvOsBAYHGps\nfWfsxm6GjAk6k3C8hHXlbG+qi4V3l6iewMzr5rSUshHpPEhWOxe78nTSWupyfrc+d36EtJTn7zX3\n4elcX3mUjbjYinVV+cTtrYm5hKk8DSFyjvV8Jrm+cYmYYDkgP98v4+ipm5Hs/XE8eDweHPPIU+UM\nu7gEL5BzqVIR4kmn0A/AitqoBqyIibVjIutzkbtrVBpLfE3gB99n/It/Dvmf/yb+B3/I47f/LP5P\n/anoy6Wb5qEPZBKlXS/U7lNYZzk6lU/NREyC5676pF09n/V0AsXKF7Pua7zI0/i7DLs3A6DIGTh3\nYq73YdiSakrHdSX4nggZWLmRdZ9rjMU1l4L7tVpNEo6rrS5sfv0QDHzslLho7A6KpjhXsO3OJVLn\nQoDV3aqWwKxnGdkCxbE72FFC+DfA+ZgT9dph01Deb6BjRli0KYvGUg/rvYWjqrxeWZouoG0GMGei\nTGQOXA6a3VF70HRgG3RRxDptVyaD9gA2A420OTzySutRtQAzsfugIulTUwuod/Zt53a7sfUtItKi\nRdY8aBpOr+ywuXMcj3CcfQtRf20JEDSn/9Pofj/ej/fjO3R8fTgvyrDGa8Q6YUQ1qMBbINJQfdDa\nljgvSqy2pmz7xrAsXajC1htj7+xzQ2YIucfehNSG7nJpLSMsVElCYxA474FnZYy1g7xgSpAEn+K8\n+JuUPgG/ijjvgiko8oOfAef5BeedZV7jPVn4Ap7xVjXUqVuimQKaHesTYcTijcBtMgW+/33m7/w5\nOP4m9vt/yIc//2d5/JN/CnNHjlph+GpT7yBW0bkz8ZFlZZ4gUkSzDZ+7/9KR0cGB8wrRGc84L9Hd\nO86LYfpzwXmSOC9Ij8B5xCa1BGGgzdExmIXz17MKS3iFs/qJbLG2k01gA1eP6jLNlxipp46adA8y\nrTWURnsosw3aBH5osAW5wRBMWhSxYIv0POkXnKeLO1H0gvNeEudFJbwT5+k3hvO+9cSGuIeTOo5Q\n658D84kSTFrpXlyFVJbDkxBCcenB/E9STCjON1qjo0gPfQtRoXdBtOGaxIZ7hopP5oiQm8WMUWy+\n0LSzdWF0GN1pw+jd2fedYQYimLAqbJDkhuTCVLLCgIiCG2M6eBAqdlEW/qR9JBccEs4yjpro/qnT\nWc6kHGTdRP35xzi4PEeYt2UWTwN7dVr5wes5Tzt8DSGTNEHllFnOfREY+e2wpXYaH7/m4YYwjc0Q\n4TqOg8fjEX1tYzk7rXyROr9zhkd5svjXy3KqZVNpidVeIklKX8iqOg+ns1x/+8FvMH73t5HHwP7f\n3+f4V34HfuPX6Iu5CMMXPvwc2/XfurErSGE16tleV0BTf37qi3IeZ7kpzzYv9vV0K5xO4+oUr/T7\nBUBAVDh5Op4sWQkoaRhKWct5TnBznvoJ+OAJkp4wGkX2eQK7mpdPDk5k5Wk6hqnGLpo6eMPEc1cv\n22CRU2efFtt8nlvW4xVYai0Zbc1IiJXrG+SoeZXOanQVRhNkxFndOYXnOqusHCk2JlucU7ujzRAP\nASj1A2MgdjD7nWN/YDLRvSItGscGx2zol4LsjvcZ4Y2pJRPpT+Hg0BaAQAOMk7NUEHrr7H3jtu1s\nfUO1UfnJ1RaqLf+mK61vzIHZFtdSXWHmIpqj5pqc/X68H+/Hd+X4ZnCe4qpBbLgzspzqHM7Sr3A4\ncZ7TUgdt9MnokzaE3hv7tjFGaBFEwEb5V8l01PNeg9gOfBc478iIjSyNJlc7eOKHE+eVZ/yu4Dx7\ng/PsZ8R5FQZf2PGEU/UwRQCAr0U0hdEbqVflGfrviBviE/HcXLAe6/xf/w3Gv/Tb2B8N5vd+nw9/\n8XcYv/FrcV6DPgrzEDvxBzAc0dDR0yT1pIiMN6+zL1YnxBNUu15HUBE2gLu+47yfO84LnFSCtYHz\nSJzXEuc5oxky4p7OSCHhIqAS7V+RGo0Q2ttDY8fU8BZpVkwDGSAT3Txg4hZEw7jDQUMfgrw4vk/8\nHrYJjYooKiTO64nzPHGeJ87jK3CerbkaOK+zdf/acd63nthwd+w4mB/umB2YDzzLnYLAVmxkLM7s\nMk1CsRW66lmep0p9jck4BgdVEiwXGy12UiuVa9hE54ARYW+TgxGWBZEW6W1EHjooxzCazgxbbBid\n3XdcYIoxXS8h3zGxKp+pJkqEh0/cRtb8DY2FnOus9AQhc51yMpf7WcZ5teJTm8rVWCx25WLAfuyR\nE0BqqWOrr67+9mJ5n98XuYTGCWW9zsvbyTjUkr7CD7M0azxk5FhWdQmzEf06gsEf9whNHCMEpSSd\nnc0Z0RZSGhqXEMi818UMv6EWK7rhyZx7OrmLUQh76OvvF94CM5i/85vMf/7PYN//gpJSYhEXXJyu\nP7VFtcfz5X1dZv17afrnfrt8JttVVhuUI/FCJefufTqS+rJ/5own6x2RLpICtk9MUD1TfecaCimX\nhlqQiqfvudtKl7jeZzi8cMYhvJ2LdaofT6Ydl8COyeLjEBmCHWyG/RfFMVRkOSogxIPz9k5Lk7EM\n5Vyvt5Vh0mFLIvcbI5Wzw+k1kRB0mgIS1z+jNcKxcQOq8o5OOoMmBvZA7EEjbKP6gfmD6Q+aOOyd\nvu8gzpfa+HhX2ovSboruIN0QWlWODaY+7RI+Is8XOfN41dlbMPlb3+m903JOxW5nhIBr7+y907Vx\nPO7YGAkYUvejdsHIa+HLlr4f78f78d06vhmcp4mnjGEDnSTOG0xSozH9mKVT7S0WIseoMtchuGdb\nY58dN880mNgdLj8cqajQW4S3C8a0IxbtNhjzgExDIMltL1yxcN4VI+UGzK80zkuM9wnOmz8DzuOn\nwHkl3s3bZfvajAy9kyAeonaZRTpNRdsewAH3P/+bPP65P8Pj+19kYZQUdDTog3NdO+vlSJ9Baiwx\n0JbN5yepUc28Vv6f79BzrV44L8mhd5z3c8Z5gqYm34nznCiEF9VDmrSYw/Py+AgnYyZnukkjojU6\n2BbdbM3xLfTQdB40Oeg80HbQu7LvIQz6cRf6FNoHpb0q+gLyiHHUFNrm6Aadhnhs0jcNi0qSq6Kw\nty1x3hbRF01XqmBEmxXOa187zvt2ExsOPibz/uD4kz/OgTdxjNYEuznWOz4sFI4t7UrYlgipyZJY\n3RsxU9qamHNOhk5EQySq+Sm4WXW7gin3NFqxqB5pb0UjNjzCFqPyQWsHugkyJBVjna05szmHGsKE\nI12BaKge7/nqsbqI0MsSuAx2zZex8TXTlojkUsNOJ3I1HJ6G8PSxQE5Irfw1CQMiJDnyo/l8ufw/\nflSKiV/3V1148Rhy+Zava3kI5Fzis65sKyuXNvLTlrNboYS2QMyY4ezG48HxiJzLKj/kYdUwt8hv\nXeRPGcGzYTSfKRycZHlOX05BNKIqQpPHIYGWueCi8aJh0sNedYkBmR0i6uivv4K/AhILyk7oJmxE\nNYsOrlJJBsy8F1vpKnXtvPcLIIAcA5bqVHJe+0Qetj5buY3h/GN+nLtLFXZ26XPhLRJ47m8zKLom\nQyLTH627CNY95xXpZCkSp8BQ/HiVFzNPUGGON0+ndvbd6VtPrxNvyepzd8NFI5rU415MFtQCyFDh\nAMqqukKUqwmXA8yblHLAq6X9MqQ0HJplnrgFAaAtww5bj8pILdJDEH+K1pAdZDekD5oONgZdBt0n\nwgORB80fGAedgXHHZTDU0XZD+wPXhht8fHH6q9BfhXYT2k6WdBX61thaY9taRIPQaBitOSohjrt1\n5fXlhdeXlyj32gPgD8CmMZMgu+23FJYKQdEHH2GMBP6TlouRAu9Fxr5zG+/H+/EdO74RnMcbnCeJ\n8+yC84IgEW2JjwrnNZqOjLBtWW5W2PbYSD3cMyUlcY5o7vgr0lrgRtWAMTYxG5hZhstXg7B8d0CR\n7xrOK0KjyIiZIfgWIqEL5x0/Ic67cCjZMLowQuE8Wc8Sm4cRMVLipwulrGdNpYm1eHta/sf/f+0V\nf33N8XW2TRPQFvfqRVbI2Ycrsntd79rY+Z57gNBPcN7lg5/gvMKx7zgPfl44L/+alVAC51WEbmC/\nwHktcJ7W3K3RkPMz04y9e5ZEJDa3NhB1WpuoPsDvmH3E5QPS7iAHe2/smyDNaWaMl8GH18H+PaN/\nCe0exGhXiQIVTdm0RUEDK5wXBE+TqPB54rzcwFIY6Buct38jOO/bTWwAPgfz4507qfLvYbxsCwc1\n+sY4QrxlZjkwS4O52GERukoY1lYlw2QthmO0TVwaPRlQo4Sq0ovmYtqYURbUMtS8Qdt6ppIIbW80\nkyUU1byxmTA2j1rVPDANtl2awC7ITdFbQ7fYSagF7Jw5INJpF0MYvkpSrfsUjpKqSb3+l20IT5Px\nE2N8FerhDF28Oqgnb1k2qa5TrPfFyV4dbDnD8xSX3+X6lwoxdfD5xrGVs/MzPcNtObs5B2MMxjEi\n1/I4OI6RVU9ssYZ1X0+3emmap7BNP9vjSUDUvITLM80yiI7ppZHdMZlY23IHKUmDGYZaTZAZVZqa\nZ5nNDdgDxPlueAcTZaAMGsOVYZrCQY5X1E/4rueHogiONCZloJO9LoNdQGL5qHz+eExZjk6E5fjc\n6/y1W3QBDat9S+zr9BCXTYDLWPA1HlYjrQe6AK8VWhgX8gXi8rOpBxFD8er0zueIr8Y8FstSYGs8\nO2IZMswZLos4zUmRuAIuy0qvXZ3VVt4INXBbwrQkeFAaqp5iop52rEW0FT3EZ1vYjJWGskgNR/dB\n1web39nF6D7pHKg84mUH5gfNHky/owyGCq0LqhuzNXwXPtyM/dXZXoV+S3KjCZuG4v++dbbe6Zsg\nTFTyhdEb3LbG6+srL7cgNiLvMnZCZpKMosrt9sJ+u9Eyv9Ln5BhjqdS3EpTKjjIPu3yO4ffj/Xg/\nvivH14vzlB7bvRh2wXlx3cB5oeFg5qh2tPXIJdckN9oW1QBaQ8SzXGIQvCqG2yOFTxOXdUV6Q3tH\nW0SPOJ4VXGrD5PS/7zgvN6yeSI2ICjxx3nHBeaG9ssT1Vzqxn7d6wSsBCTLSIIHAubkDa8nqWeXD\nA/dRgqOWbZfVMVxaJPWq4C10D0icF/rfkYouxM9NHekWGmoBBDERTKISh1PrADlh1Gfc40qbwTPK\nxy84rxaSp86GWdAH7zjv68B5luNQEudVkYHOWWggxqCEWEdsam7g3ZFdg9TYHG0T1YPN7jA/MuUD\nIh/Z5QOik5fe2RRQo23O2B58vB28vE72V+P+AD0uOK8pm3Q6HZmEcK2EkGhvzm1TXl+/4OX2mjiv\nXXBerMG+SZz3rSY2nGRojzsPG8GkYyDQRkOBrXce9wfHY3AcM8KA3Jl+Nl1FPHRtmafotT6MRp4T\nUYscrKD7mCPK1swjQm/ihJ7CLxMzDUfTG7RJ6xo58MoiOczJUmOd8dFp28Bd8SMMBr3B3pHXhnwh\nyA2kxSrTa/F62XkIgwRolP4qMSwtxeYL0Srhx9IRfea4hAedYlOnArGUI8ueWAzr1ZiU5aq3ygiu\nC/rFwMlZLun0HucJONv+dHTp0NyWsVqhdIvgsFQot+yzwTGM4zhDpkjQQ4XMnWb2ibA4w6YyFowS\nDYIqeQXpOCb4EOwwdDTsocyujOYcwEOTbN0P6BanC52wGJMu4EJzCfp+A7sZchPYlUOVh2/cbefu\nnYd1DuvYIfggwobGheC4MBwnh5yAyRxbebgEa5+fDQY/RFNFgrALBy/4cviyXqcD8/X3p3DYN2Pi\nCpoKrBVwe0ZQl5fXALycJ1HHGj7J5kd4jS/xq3J65+Q/82zDlyiuEZYpl9tGK72r6rZH2xkRaikJ\nFCTL8D2Bu2ojDTDjKNjM79fYY50nwviqv4CM6GgC4iM+3x3ZBNkc2Z0uB5t/5IUHO5NNBt0HXR4o\nB8zBPA70uOP2gc7EVDPsujNVkNZ53AYfXp3tVSNy48ss9SXCtkVZ17139i0AmxIOr8lk2xpfvG58\n7/ULbredrn3NJIcYiyLs242Xly+43W6xC3IcjPudQz5gblHnXDVAQHZaODw7++39eD/ej+/E8c3j\nvLCdzzgvYwlqA6sHEdJyMSstomx1Js6jIXTG7rQvRwhBt/SRrcFr4rybhF1vmhhHiSpYbS0mwy8D\nmikoPxHO+4yAOHyLcJ59Bc6zDEYtnDcXNj+q755wHj8C58UTFAkmuVQ7cZ4/9UGFxroJNgydDR8O\nU/ER6UdDO1M2BhNTYJ9P7dab0A5hGxHRixCERhe8SezOb+AbjCY8aBwer4GGvsxM3zq5tCssDZKF\n86LSWeC8xHb5pRPnZWrVO877OeA8WYSc1aNc2tCdVQSiojJUOq1FMYls9SDHGhGl3cFyU4sbtN3Q\nfrDxYPOPdP2I20cmH2h8icsdlcmLdrZmoIO9Cb49OLaDH24HH14OjvvA9h44T6Os605jp8MU1ILc\naNLYNuGL154475Y4TyjNFJ/2jeO8bzWxAWBmjBn56cGx5fa0O6Mpj/vB43GE00sjN+eZS1dc4SrJ\nSSoMZyi/kUydGrQR7W3OeIw0niOZt8g/J9MMPLO1nEiUM3GkN2iWkRyRW69NoTceL5PWWyxo7xoT\no4G8CPIi8Aq+p5TjmMwWZcgqv8yXM/J4jiwF1bRYYziNhnzSjtdxdBqgMO5rMV8GX2R9Thapmmy0\nhRIAACAASURBVA73yduVY0z/9YlD8/XZU2/Cl+FikQqX7zFzUZgiPGbn55azY5EaNsMx2pyMkWz+\nmFmJQpaVlVQbXikm2Sr+bLcoxd+4pYvAU+qcWKkYGyufksOw0ZhTONg4BA6cQ5yHCr0NuiYBYSGl\nJJ6ONYkN76C7cHThUOFB5+47DzYO3xjWmUOxARyeVVOiuU5i43TGLKf3pqpOlpJb9bLW01/JjXMR\nXk7x/P4ppCqXoXAloIF4vrP5r8T62ilafbMGaT5DesVyFHVao8SiziNwWIW1vtl9kusn8/enGz9n\nhZeDyfp0JyY7d7yEAJZ+Ks1eTp0lmsUWmFutuwCBpmiTJdjOTy0y1FDXSEdJjQ3djN4ONr9z48HN\n79xksNtE56SNFKS6Aw9DH0Ybxi5xjp0BHAyNaz9258sbvH4B+6tyv12qnrRw6ioxD1p2keI0hX3r\n3PYbW+9J3Dqa6XJjxFyt2ubbtrFtOyKpjt2DKJzTwI8ohdaiZBiQ5RznCSTej/fj/fjOHL94nOcX\nnDcT51nivCwTunCeJM5L9QSXWNBmFSnZCL0jj9KeSir+t8bjblEmdio8PEiABvIqyKvASyxiLatq\nzKWloYtPiIoWtXHFT4jz4veLR/olxXn1nSvOG8unnhobz5tXJ86zxHjxqkoUxdJ8ivN83U60Ui7Y\ny9/7KZxZPwXOqwYxSkuCGSRHbCZJKqJ0pgyGbAx1rHlWgkjtuyGRVnAkgSBAF6w5szQjt1jMHtI4\naBzeOWhMa9hseGpvFH48sXKMoRPnBRhcuKtUa58IBV2px+847x8V513Pfq4lIATYT5wX/UQWh1CR\ntdDHgSZIjzXASkHeQPdJ3yabPrj5g80DByJfMvxLun8JHHScF5weRo1ba/g2GPsIYqMfHNvB8E4X\nu+C8SLNqEpFFOpWmsakVOC/F391R44Lz5gXn7d8IzvvWExvujk9jauVx5UCyWMgej4P7/c7jcTCO\nWNSuOtVUONnp9CLcG0aK/kSmiUflkjEjx2l6lJB6HNGR03LB22jScOm4SCrVOi5H7gRMrMXuvG4S\nA6YrsnVuHxu7Kn3C7M6cKQb1AvIKvIB1Y3qG1bWJd0NnBXJpGuOK1sj2yJrmi1t0S1bz7WS//nxh\nZtP4XH8vsxE+9GJgli8twwFnIEMaq1ysrfCs+mKSMp6T79TIuDjGxdZHaTdfxMapxJu2PJzfjJ0e\nm7bq1o9xlmzz63OqppBUMflnpAZPrXVanPM9X2AnHJ2EnZop+DgdDseGcFiLiA2EXYSHKJsqez9Q\nvxjOSyu7krl1yhDlQefj7Nx945GvMRv+kIj6GJ47B2Gf427tJC2SlHEr1sPXuKiFq6ay9wIrEsba\nLPtJ8zld00ecQOrq+JZ1znORaZeLuCmPdgVTWZvcrwOzQFDmapZjKsa/YJtcPGQ5v8IgVwJ/jdHq\nX6mhL0+Y8HRGvr5jCabWkFzIR9IOnGPn6j9lNUJ9T9ICWd5DVD7SFgSVWxQb7EKIRbWWqSgBhmSL\nvMpNH+z2YLc7Nz5ym5NuTjsceYDfFbsbfBR4EGlODfoL3HZHiTrmmzTGLnx4ge+9wh+9wpe3CLMV\nTxAkSYRZ2pZ8dBWla0RzNI3v2JwMj52POeJ7muW/Wt+irKITodcaAmhzDGzKEtNCG4JkSPZ7xMb7\n8X58F4+vB+fZBefF9T7FeWGnm2jgPARzxVzxOeO8TKyH41UNnEdvyLaxfZx0CWJDPka0gTSB19zA\nuiXOI3GeTFy86kbE/RN+fEVr/FQ477Lk+6XEebWaTB0VG4nzCvtdsGC994Tz5gXnJbH1WZx3tsMz\nzrus0vOe170nlfXM4hjqnvyAn5tZ07FL6vEQj1d3moZopHSJwhUjfg5MGlgPjXQVE7DuzC4MOod3\nBo1JY0zNCF0PTfGAwkiRAZ7j3s7NrCo1/Izz/ILzYty847x/FJx3WRnUcIbEeXFtVUVbx0akywfO\ny2fVlvqIGV2jstKPvQObwS70PtnawY2DFwn8t/kdtzvTPtLGR7DJJsptNjadqMDcHNkm82b80Tb5\nk+3gY3twpyG6Iy3HSe6OCiF8KrNwXlRDifSSwnlywXmWOG9bL9y/Vpz3UxMbIvK7wH8E/BbwTwB/\nyd3/+zef+U+Afxf4AfA/Af+eu/+fl7/fgP8M+DcJPf/fA/59d//7P8tDVMjhda/dTJgjHdP94PG4\nczweK3XEstavWeQuVkMKMYjUI6KiQonmDM1iy9yoeQzGDKOKayxK2o7qhrQNbzB0chDRFaYDJBzp\n2Aa+GVsX+g59M7RN5jy4f3kgDMYUtEN/2dFXD4cnk2Na5IFq5N+BnqFU0nIyJNWhnsSppw9JEiAX\n8GVIy11m5/zItn5r9uv05bSWhViOLv62BGHclrEoS7SEsesLl3zK5Si9vhvy0F7iUZ4LratPTAcT\noXVBgsyRr6xzX+y9LFGk07mvR7qQGG+fH3K3IHmBMra6cv0E8dR6rBSTQ7CjMbpybI1HAqRNg928\nRT3N2B3Xczy7CFM1ozSUuzXubDy887CNYRtzaJQEe1ikoUyPnXp3qhoL+DLGskiiIIiyJ2IuIEjL\nqJGWz+0EQcPpCIMP8VzZni20DHwRI8hydp7cj+R7b6FXhPIt17VEnMqnlHN5CqyVOocg6xv5vXJ6\nJMufjnX1aYGxHzHuPZ2czQxtHYNpM0uyFvCLq3s9g8iTU6zznG2kQAC2qzq+itIa2ITpEtG4qW4V\nwtgR+ixd0G3S+sHOwc6DG3dufqc/QB81HoA78BH8o+MPxyfopjSPyky9g2zOtjlzh48vwvdvwh/e\nlB++gA2P8JHMb45IqcaZX2sBFgmH7R4h3AOhb/1sa6K8Wc/SYKot2P6mK0d8eIinjtHobbB5z7Yr\nJv/9eD/ej1/08d3DeaXkP+K8Mys5HQdjzsR5Yde1bYHzdMNpDHMOM6ZMjAEGozujRdUW7Y1229B9\n49hG5K4fnaNZLEob6EtGbBTOswi3dEmcZxkpmhEV5OI0cB4/Ac47fWR2zvnzZ45vDueduOQZ51Ua\nSryqWt2J82IBf+K8Ee0gINJWio7kYvoZ533yIF+B8ypCt4RFT2ylsDTVyFu2qUwXpkbkzdQgN7Y+\nQiNh2KVMbOyOm3j0dxIO3oyJpOz3xoh6ZwyPdBGGI5mWLjPb1wXJDQhZGDlIojhbYjNInMc7zuMX\nhfNynH0W50nivLRRKyImaMzIngmDFylJcmpq7JMuB7sf3OTOCx/Z/SPbeHB8PPA/MeTLsG9NlT4a\nfTTaTdlFEHXsZvzwxfjjPvmyH8gQpnakv2C2Bc6TGW26pkyM/ijtWjgP+tYuLamJ8/oF59nXivN+\nloiN7wH/G/BfAv/d2z+KyH8M/AfAXwb+b+A/BX5PRP5Zd3/kx/5z4F8H/g3gj4D/AvirwO/+DPcD\nRDhP6epV2JN7khBjMh8znN2YzGHhDJuhGoyjkuVsiq2WnIwqi1UeYyJccv2QxTSpKK3v9O2G7hts\nEmVdOXjog4cORjNme4CEidpvjdvubB36MbD+4N7vcBw8EKQ5t6oTvD9w6wxnhaKr5YCrCUMt0iMV\npUhRmE9K0g3FlxRw9tvl/58eviyNU7bBn7/3VU6P87Mn7Xn9uSzY6dh8RWV4OrU6j51/W680uuu0\nko4ljL3NiH6xEaI0UcEkwqG0BSFVGgfxGLLuef2ccZjXxykyxUv8xmtPJRehnI8kaexBENP0fcIQ\nmCIMEYZolFRSZ2ZkhabzMFGGdB7W+EDj7o2Ht0xD6cxD4SHIkZEaR75mgIeoneJZnztuyNLp2cza\n2p4higaijQjW1UyvqkGSc8MinxeLaBKzcKpG7FAtg37lheocxpthVt4yB+uKmDldmld/ODyLKjmn\ng5V8Vxc8Kefz9vDP/bbu8dr/LKBmKTB3HJGCZjayqlELB+X1jfMc5Uvr5DXcY7dBspRc2hd8KYOH\nIwVShMxqB6ZSUpoiLVT8lYkW5PFJnxN5CHwU/BB4gN1hfIzXzIgNcUG60kajz1AG780Zu/Jrt86v\nv2x88aLsN+FxT/ZuldzxBHnnfypZrz3LpnlWbcJBpcUOlSjbvkeJsG0PsT1zepUL6xmOaBaMfjds\ni+tFxNWllvz78X68H7/I4zuG83QttAPnzYUvAudFiLlKC5zXX9B+A200m6gPHv7gIYOhxtDJ1Ii2\n6K9Kvyn9RRlduJmxfxgMBjKd1hR9tdjAeomFlQ2HFpVTlEhXoe5lld3kJ8R5l367/P/T45vGeXWv\nn8N5fgn95yQ1zPBpWU7csFHRuXVjmmKsl82rT3BePUeEGXw1zvOMQDijONZ6z89/A2JJlk+VFIt3\npsAQGKq0DLFozdHpobNWTayOKQyEkZoaFZl7sDG8M2fDh55Yb3gKz0fyicpbnDeiuo6PxHkx5gPn\nSUYc1/jiHef9zDiPz+A8LjgvxWYpTRxJvBTBPitKSlsSGxNXx1UianePSJ6ug06mn/CI1xzofaIf\nHL505MNp25q12MgSDaFP6Uzd+I1d+f9uzg/7ZNrB0CMyDFpskC8yr9LeKqpYWuLTGBeB8+rcyrbf\n2LfbBefZ14rzfmpiw93/GvDXAORzown+Q+CvuPv/kJ/5y8DfA/4S8F+LyK8D/w7wb7n7/5if+beB\n/0NE/oK7/42f9p6KKK3G0Iv9jag2w1JfYR5Z43pOxtSsHZ5mWyJfvNjHnE713GncyqALqj0YYAeR\nRus3+u3G9rrBrdH7pOkGrhh3Jh9QDpQ7jcFL33jtG/sGvT+YeueDfMTkQU9e8KVt3LTTWyxupyne\ngokTNFIP0ohqKmxHmGKxln46hhmDx6RCM8nnDuN0zausZ668utPd1ffkKeTr9IFeHjG/dDFby8Fd\nHN+TM60OuzitmvVQnXlxauek4s3pohwuQWwMT2EpgvgQDcORTD6X57iSKFJG1XXZezK8LxxzhVpe\nxbLSNGX42AJOZ5waeDgUl9iNn4u8sGXET+wgGI2RZMbdgti4W+MxG8fssYA9CAf38BQOzWgim+BB\nyGlouaPUWE7l5iQ3YtzE+Aryp+539XB0rYWzQwiR+CRLmsQ8bO3ivKrdzLMZcz5Vl+ZJazeqKKRr\nl57dUo4jVLt1eU9f49f9Um7r6sSkbv7poS7n97dvPYGaAs9jDI5xMMdg28qD9XPs1pGXKKfJ9fxC\nzFnRRWb401wJYkNt7Utmr6UjVIm8S5K08srmtSgVXWDn8f+z9zaxtm3ZfddvjDnnWnuf++qV7fij\nCtvlctkyCrFihCwhhETDQYoQEoJIoCDRooto0KcRiR4CpNBLg0g0g0CBBogII7DAAkQsYieR7Tj+\niOOPqkr55dX7uPecvdYcg8YYc651zn31/FX16r16Z0n73vOxz957rTXnHP/5H//xHwSxcXO2B2Pb\nHO53Xrz/EntzgbWiu6A9ugBoga6FFxd447pwd22sF6W/CsAk+REfgTpJYCTRBiwyhGPNifuvRZPc\nKKyXC+t6obUIcm5ObwttWWi18lCEfY9WYGZRM+0luwOMQfN8PB/Px7f0+HTiPDnhvOONAueNmJw4\nr11oyxVqoWqnsIMp5g/s/oBhWPFor/gClouwXMGl83C7cV0f6HajdEcqLHcLZd1h6YRoJDbsik6M\niQ8SuQwV/wnnDYy6f8Jx3ryZifPsEUl+ECZnnJcJrD02RXNjlIpclZo475T/f4TzOOG8owTidZw3\nTu00YsY1zZ+Iy4FHs0udaaVrkhoibFIQ3anacd+p1UJhS3RGCVJDubmymfBgNQzixxbWG30r+A24\nWcT7nXgNA3VPxJCqmbyWg9w4cJ4zknzHTQ7g8ozzvlk4j8R5J1XHIPfI8WmnsZZmrDGuHNRC/TIe\nBbQ6xXdK0F5UNqpv6L7j94a/cur7O8vbL+nLApc6/X6KFuoS3fZMd95cG28shbvq3PbOg3Zch6Fs\n3E8BpEg0jZIoHZlKsDE3Js5bnuC8aAXrZh8pzvumemyIyI8CnwP+1/Ezd39HRP4f4F8C/hvgp/N9\nz8/5VRH57XzOHzvgObOkKyUzBzvrDt3SUOi2cbvdwmRq26lFKSLz78I1O8iLqJ2MjaU8YQunk2vx\noNksFgitlbI2yt2CXgu1RZmJUCkOrT9gm0OPQHitcKnGWjpFX7Hxkivv07lRUUSMK4WG5sai4FrZ\nWsOzxUr43IQSQNE0qwKRMCmNPtYxCG0GsFEjJvnQ02Lw+sV1RuA81o/BUJ4dkufNGEHv9JLz7zj2\n7mMBiC9npIrFJaWhU6bocZed0cLVD6XGWJBdUvIVElXrhvWYQHsXrCvujfAyaGhJYoqUbz5lSPIx\nzZPimRn0ZMZZz3EyV58R7MaaXyR71MdDa/5spFpkxJASPBWCi2RoEroXNpSbKZsVbla47YX9JvgD\nYQz54PH/6IjSmTWo0HF2fLROO5/ryMKbjVLKMMBKUETPmz/u81i7MzMgU+4Yob3mgjdNVgeYSD+m\n4YoknOJDDg4f/4/N/gRUYyvNvA9Cjzk32shk+c94rcejeQTU83mMQfwkyp3u/muHnH+f9dt5/o8l\nk8zrMR3e5yiP8TmfmuZcgmdLXZ/nPObmUfIx/+j4kO4x18d7OmEcmwZm0fo3Wq3ubnz32+/yL/zi\n3+c3/7kv8OXP/jDTrIrofLKUwmUtXK8rd9eVy9rYGsheAmSPdmiD0NBcdzL7EJ8j5p1JtEbUKpRa\nacvCZV1Z1oWaxAbu2N5YlpZmVIPNj6A35r8NufGzZOP5eD6+rcd3Fs4jzD+dUwIiMZKmajE70U2c\nV1bKslLWBb1EKV8thngFK7jFul+4IWpc1o11dS6lU/QlOy95yfs4D2wIKp2rKKsKpTi7CD3XfSkS\nXlmeOM81sqYMnOcnnCffAOfBJwfnBX314TiPKe0fySvrzr5bttHMja+U2Yr3wHlnfAen2opJ7szt\ndmbxBzk0NnJTeTD2A/OR13s+chPvJdQXomxSKNJxKjvRTayIoRrEjQG7C5snseHC5oUHr9z7ws0W\nblsNP7WbZ0KLTGaB94PMOIziPwznRScL+pN7+Yzz8vd/XJw3/spPY23MvxgfZnNU5WeO38/LOy7K\nuKZ5GnMvIbkz8KHG3pGtB8l1M2wzvutr7/KTf/vv8+tf+gK//yM/jEuW0+yC7kopipWFu3bhjTXU\nua96vM+uMT7EEucJQYyUUMoEWaiBy7pHpx0jcV55gvNq4jz7SHHeN9s89HPEWPnKk59/JX8H8APA\nzd3f+ZDn/JGPsUUbHE+wpjlHzUNWdNu5v7/x8uUrXr164P7hgcu20mqhlpDWFIYUKHuUI9HZSwpH\niYceGwEJ+TZTNqOUpaFrpVwWyrXCBeoaBMNiN+zWsIesfe+dS3Uu0mm+0bd7lts9y/0rLtuNglLE\nuFCD5MAjaLIE06oaWds9KlPUQjqGyZwUj0y2ct7NCaZD3ZF+EHNReBr7PAFAXFSZs+wU9MZ7yHmh\nOS9V809mAJ3fwGQHhiTRRu3lDHq5EJxUBsHkj3OTmTAwl2w1L3QT9g59PExzhDSEitLiOgIyJJGn\nBeogNGKEyfgMWF7PEe2SVMnAxmjPlG7GlOhTrSUXBc38+4m9tlzCTTS1FVFkYCh7tvfaurDv8eg3\nwR4cfwjfBG7gG9HqtXMKamECdNSqjkV+ZNzzfg/wA+EsPRbfYThKoB3vWdIiFmSOOajEQiKS7cTi\nHIMU5KRWydV5lLfYaQwcOAGfgOIYUzP4OfGZgDDCKqj3LOvwxy/EMd6ZwXC82Sg1ehz4zv8iJIMe\nX6vGPSxWcGyO4UOa+CTojXfKbMi88n4EtfiMOkHDMBRlEGUy3Mfjc4yM5fiZkCZgJJYYw9MssO4e\nZky7Od/3u1/hh37rt/kzX3sb+63Guhbe/rNfAK8kVUsphbZULpeV6/XC9W7l4b0wvp3ZKBm3UjNj\nqDG+s6zrOM/jHmopQWa0hVJG7WWA7lIbrS7UtlAThM5SMjuyePas2Hg+no+Pw/EdhPPSyyjj0us4\nT8KDow+Phyg51rYcOG+B2vwoVzFnsR3rO9jG2nbWYiyy4f4+97zH1d7FfIuklXTuKDQJkuOBAqVi\na0W6gklk4i02GOJnnDf2o4KzZQx5ivOy5HZct1M4Po6PA86Lu/wY5/kJ53HCeSTOC/unvXuqNUY3\nsWiv+xjnSeI8GF0v4nQeb6sPnNdnTJ4b5Nkl5aAzzhvqoDSS2DCN1q8mdBc2lEpBiLarT5HegFMh\nvlV2V26D5LDCrTf2vWI3xR8C80UpSvzvO09IjeyCgp9w3ii/Gpg3QIPLGBfPOO9Ph/OOc5p+M6/h\nPBLn5QknMeJJTDpBwB3bi1zoVFA1ioKaEQ1/N9S3MDy+GfbgfO4ffYXP/+pv871ffpubN3QvvPWl\nL9BLpXUN42IXmjYu9cLduvLGtfH+6Bapxl58XkqRSJhLEhuapXA5Uw7M+hrOKyecpx8pzvtEd0UZ\nA2hMYQi/G8sV2HF0N+5vN+5f3fP+ey959cYr7t94wXbr7C1ciqtCl8NoczB0RmxKRQPwo8kAU6Yy\nyDWZZQq6NsqlodcWAe8qcDFa7WAVeWh4rdiD4jejqdGAujn39w+Ul/Fo+41SoXbn4o3qErWT1nAJ\n5+0uCxQPBs9isGoPRo6evczHwjB5xuSQhZlpnXVg85mDjZ77e4bMcbL5krNPBuuai6J7BrZHEfPR\n3ZoBcHyiY5fGrK1Mw09LssEnk+/H76d8LOiEEXwiY0FkjE0i6O3Qu+BWcmGviCwwSolEEOth1jRI\njZy2cV6DJDhlE/KNxobTGb25hOm8nUoNLePrIDhGK95YOTRcqPF0wtB00S4Yle5BbOxd2W+CbUZ/\nMOzmEcweHE9SYwQ57wMc7PFZs/uJZ9AigV1UNYQ6hNxkHkE67lG0/hrBIgKcdGMfz9MAW10EpGMa\nBJtZ1m0OWWIGu9E9aAQRm7M4x4THKLH8egS7GUvm3I4khNIxLWCGjqAtnu/FzCa8doxAPjiEEfhO\nMWsGpSH31TDb9ERYAmma+cGHnIL08bk9x/EABIc8E2I826OsUM4cG9Lg8Qrj80bdr4pML5fJYfUA\ncUFsGN/35a/y+X/8u8je+b7f/xrtUnj3x37wyFZqGFo1KVwuK3cvrry4e+Dl6my3nmVvA1fk2FbP\n2kpF68mId9wrAVEJA6taqbXEcyexGiBCa41gmGz+vm9zrgfRZlg/xsrz8Xw8H5+O46PDeZxwXpmq\niMB5PddgDVJjPeG8VWB1aBptrzH6w43+8IBvRtPOok7F6PY+l/4ua38Xs52OUuhcpQQYtx28ItLY\nlwviFe0gPdUafsJ5w1BURvJFTzhv+B6VJziP+Yx5fT8WOO9kDjpxns+fDRXJ2JseOG9kfT1xnuOm\nJ5zXQBqj250Q5b5DPj/8MmS++KDQxub0UMK4j2eP2DzIsCTCGFn51Gu4IFawXbHqbFRKZJ3ojOTW\nbBqMe6ShNpcQYDjcTNhM2bqybxV7kDQEl8B+qdbwHXw/8Cky8NMZ5ymoPcF5/ozzxht+y3He+ItU\nKx2OnKfxdny0YyeSY1UkuywZxS1LkMPfx3fDbvH4/t/+Kv/Mb/wu+qrzZ37na3QrfPWHfxBzaD3W\njeIAlbWsvLhc+czdhXduD2yb0DGsGFP1JUnYmVC8oHWQv1kilBNIVJ/gvPIE5xW0to8E532ziY0v\nE6f5Azxm838A+P9Oz1lE5M0nbP4P5O8+5HgHngyvnSvGNSWKkfWeIySZru22cX9/z8uXL3l1f8/t\n4cZti/rLbo3dYmExRr0fudlLZUaJFoXhhl2DsRqbCHq2yZRQbFwW9NLgWpAr6MVZFKoJVRWXyND3\n3ZE9N6I3sHc69k7H3wk1glSh4NS60+oteqvLCu6oNPayYXVBu6CmqCmyTa74tGhZzjedpoSaTNro\nCPJBkysJuEcLzREMnk7x82rEk4Ujv0i1QLCYNiOT49l7Op4TwayfAt8pEI6/n0GSGeTG+6eYI5j8\nHgRH7xL9vt2TyMh2SoVYsHIxI83Cwnfp1G2GUaeYGfXcePowHBgbUy+TwJAq0cq3KrqUcEavJe5r\ntmYTzeVPAnC5KE5hp7F5o3vD93K09LoZkl0uZOuT0PAzY98tMyA7Tsfy/+kiLR7jGg1AWEISJmp5\nBTM4O/NejTZ5ByrKoBya3ph51sPoshuihkYTdIamTSiTOptjTp0yrmeOL5NHerzXRtj5gziZSLAw\nyx11paR3hQ8FEh9y5HiOz3CKpswYld9E2UWtlRG/J9oaYO9RdHvycc9B70lgfTRv8vtjHiojVzBZ\n/NPfHWZmaebpqTrtDv0gNXZ3fvlLX+CdVvjpv/ur/M6Pf4Hf+7NfZG+V5gQ5Qp6jFtaLcr1euXtx\nY710+quHMKKzOGHVzGiW6EPelnDBLrUEmCpKqcN0KwxPVfWRUiOu1jgbRUpDa5aI0aE7f/vXfplf\n/Ee/znsPD7z9/ite3d7n2N48H8/H8/FtOL5DcJ5PUl8TeB84ryTOGzhlSOhLKnMXdG1wKdmm1air\nU7WgXnDVMAePNEX0svCd2+0l7dU9y6sbtt2woiyLs3qhOLhtwIK4UaVgtUFrB87zE87rkht2nzFC\ncm3+5OG83JSncuN1nOcHDsm3eYzzgtSIMhQQiUSTUGGqrlP5rKEaGVdEJtAbSpGzUnjgvFQfEDp9\nOREaoqnELeHbVqQk3imBI02xXekKt2KTghpFMLHViPMbnX82YOtO35x9g755empkIiuVuj72Dz0I\njdT9Js472gRrCYOG2Q0FT5yX1xuecV7ejG8eznt6QvkiT0iVIykbDzsN+2N/QQp4454UDPWO2o76\nDltPYsP5lR/+Am/thT/3S7/Kr/3YF/jNn/gi90vlAjRkWhcUF9a6crdeeON64e6l8cqFhz6aT8T4\nCdVaCe2THwagQpSnlKofgPMyefUazpOPBOd9U4kNd/9NEfky8BeAXwJIE6l/kXDEBvgFaaVJmwAA\nIABJREFUIvf3F4C/mc/5Z4EvAP/Xh7/Dm0B79JPCOZceY8BycImTPZnD6XrbdrZ9Z5umUinTVtDp\nPWAZCCIolGzFOW5E0YpQ5qi1IQcsii51PmQp6GqURWjAatGtRwz6Tdgo4eR9c/aXHXuv4+8bvAyp\nkjYo1dHWkboh2qlVsFoQ2RDd6aXHJtUPeZGYzpZPeAbkLCxVV2oJMyzNxXhM8ngeUeKhw5jnAyZv\n3GeGmRZwmque15zUe44nnALdnLU2XuxgN80J+Z9n8BvO5EOW5TNoHjM/TVQZiwPJQ4SJoXXD0jMC\nCaJBsm0S9SA3QKbxkgDTOMn9kPfvY9Gpc6IGCSwxEqVEDK2CNEWWJDWWQrkUyiIsDZYiLMWoArVA\nUSjJapqMkFdwCk4L8GGOmEHv6PBQ6CRbfyY1BgmTmZChdCEWKkkG26RM87WzuZGkAgYbChmYAmAf\nXw0QkzJXwEQQ6cHMyvAIGQEnMgWPM0anpS4zBTEU87meQ2W0GTsx8oe6aDDh4/5zsP7iI2nx+Biv\nIcfI9qdPmikrnkS9IMBKGqsexI8/mimzdvTpe5+O12IeTHrig/7aPe75qDceUtgR9I0Ym0Op5XKa\nK2aIdd5/ceX3P/e9/Nr9S/7pD3+Od77nTS5VAqtVImtZCiqNdVUud87lurFcbmzN2KRHbaXIxCSq\nQlsqy9poS0WL4p5GtCWUHKUUtI6glxgxM43u2bwnXgzVWGN3eQB3fvpHf5yf+cmf4pd/76v8v7/+\n2/zf/+A3eO/+PeBrH3J1n4/n4/n4Vh3fWThPvgHOKxG3zjgPEK2v4TxZgVUoq1FVosGFRweXbk7Z\nO+w7/rAhL2/Iyx19uVPMqMVZaqfVG6UozoarpSq3suuCFwu158B5SHZhg6HdP3CeJs6TE84bwe6T\ngPMOhe5MAMwN6NwlZVwD77kZ7ATO86GiKKHWmErak8mlOVoOVQlzozqIjfPmMm6mUAbYA0oQJxL/\nSymZjS6UVtFWKS1Ifq2a5NLAmiW6XMhhX4bmXRCifFrCLyb8QwzfDd86dksy42ZHMmsLn4O4zJY4\nb8ClwJMq5fj5GMcT5x6E0oHz5BvgPA8v0VRlPuO8Pw3O++C/O4i9M8k0xr3nXB/XNDGeRTtq74b3\nzjt3V27f/73oj73k93/oc7z9XW9SNe7pMHZVUajKKitXv3K3XVkvO82y3EQlu/rE22iJ0pVFVlod\nOM9OOC+JjVoS5x1KjW8HzvtjExsi8gL48eNq8yUR+SngLXf/x0SLr/9YRP4h0QbsPwF+B/gf4t74\nOyLyXwH/hYj8U+Bd4L8Efv5P4pQ9pqPBMPAFhsFUTJIxiGwEm+4z2G3dojWSpRmLOLUla1cqpbZg\n8WuYEGmyv1Eq5ZkxBWkFbRVpBZYS31enVKe508RZ8DSHChPL3nfstuP3jr0y/KXBA5QxmB/Am+Ol\nI2qUa6G1HZEdsl2UtzR20ehuMMym3AWzsfUhF6JoWVT0MDfKeEdMXYvz0SRFTrHuHAAjDgzvBXk8\n2ee/OekGaz++nwErr/npTo7WXnhPBj+lSWNFcp/moMBsmzQfJsEmOzgames4q9kuiSawCL4kuaHH\nYjuclgUZ5YnQJWV+xGaR0WaqzveNxbNE4KygTdEm6KLoRdFLoayF5SJcF2OtoeIpGvLY8RAJieKQ\nwIW5luA1mGbvwZBSwjthAhIPSW2UoAxPjWNjK4+UJXHPVBwv8flN7ZFUdAYKG6DuuLP4qIfLcUJi\nq1HaKRJm4H1AgAyqDlF2cwTPOcCGXJBRUiFgfZJZQbL7LJcZ9c9x704BTwbIG+P0kOjO9zmvHR8W\nkR7pC4//ZEjuICW0Y4yN9z2e++TLD3g//9Cfn7/1NCl2I0ydLEZqJ2pxO4JJjA8vDsWx4iE91ZAt\nVjdevnnH3/upn2B9UVkXgtxrIBW8KtSG6kr1ynIR1svOurziVjqmDxEQbdRWGloqrVWWdaG1rL3M\ntaHoCHiFWkqsOwNk67gmQcYNXZloPK+kxHSYn9re6b1PMPF8PB/Px7fueMZ5sUH22aLRMzvf0NYO\nnLcUaI6kz0YTY+mGVMOrY9WQbvStc3tp+PvxkFeEHLxGCYxqR+UhYlkDFWWXBZU92sbWxHl7ejhY\n4jwLJV9sWyRjY6MUPmE4r59wnj3BeeedpyT/IOGnhqRKQzBTjlKRBlLCZF8L0W88w3qJsxGRo/LE\nCOWI9HlufsIScW09Nu+pBgn1dm7kRhJrrZRLpa41cN+iyCKUBWqDVqOryNxHy7kcVYL4t7yPA3uZ\nM4zA7VEiKzDfIHokW7weHhSaOC/Gsmli5onzErGkB8aB84I5eIzzUlFsgvf+jPNOz33y5R8D571+\nHKReyX1FEgOkEtePcTlyrn3Mfw+TeMd45zN3/NKf/wmkVoqEdmlsgaQo2gq6CK4rFy6s2x3rZadu\nhlpBtMTeJ/cQqiWIjbLQNMpQBvEZOE8T5+nHAuf9SRQbPw38b8wZwH+eP/+vgX/f3f9TEbkD/hrw\nXcD/AfxrfvQ2B/iPiK3jfwusRFux/+BPcgIj2HWYxHFeurlYDKkYCN2crVsw+t2oe4+l33q2BAs2\nqdZGay3Y11qDldVgaH2YKiXr74HioWbnizT2DMl/zB3FIgfvISSKhSBMYNgc24x9i9akKbAIQnMz\nbOvIpshqFAwXp0tsiq0SZSicmXlmzeIIRyolTXHI63G+ip4BPBYxtWgkWXRczVxAcgEYi9MHHz4D\n3GC7n8oTzyUmx2w/guDoxT5MpRgLy1iIEUbLVEGDpfdg6+ORwbPI8fJKbOIWiZrYRYLkKMepBJMs\nB7GRwYMb4SJNijiyvnWSBS7x+kWQJsgiyJqExqXQ7pS7q3NdnGsN09imRlWniFOL0wTCX6PTvHPD\n2NTYF6e3yt5LfN5aoEacjs/kdHe8ZzlL5/FCHdAP5pJyCgCEzFDzeo2ANy7aMEqV06tlRGH24/bI\nLJwo+plNC+WQR9mLRK1nJE38uH9CnMicr/karmQF5nzhiHFlZtlGa2NkkE2HZ/WxMEqew+n1n47Y\neb7nSHXw4uN6+vyXCRYfL7/xk0Pa+3RxPmWk5vPPzwuhNY/OJgmNodbY8ykqmFV2bWyy8+A1skeL\n4uuRMfNkQpr3NPpyShXkTpArcAFWsEXZy0IvK5QLwkpthaUaq77PvdzY2cm0EiYd84KKs7TK0iqq\nhtk+W3eJClqVkmqNqdR4cu3NRxYvr+uQTruDdWzf2fvO/kxsPB/Px0d1fApwXvkQnBddHwZhIuq4\n5wa56CwzDdmlQDVUneqdKjslCWUjTMt9U3hwyHaM3Geeu5NkdGyqBadIR9qOSkekx7rajOJZ224y\nRQiepqZxTbJ0+hHOe7TF+5jivP0DcF5uzqcp+8geH+XA7pLnU+fv8NgYUzXwUiayJs5LfDIIhYPU\niNgaBpyKWTlIEukgO7nzZig2pJTYJK6B8+pdpd1VyouFelepV6EuTi2WD2cZxvEML62xaZfEf1Gy\nvjXhJmR5clyTvqXSwwPfp1TzNZhx4DwYWE+0oK5PcN5jVe6gCI77NHBe3IdnnHd8xj86zvPTRfMn\n/x+vdnyWKLQZ80U0y4UMMKf3IHwKhc3D7bFLia461aB2pDnFnGpCKTKF6RdgUdAFyqrUuyiNb/VK\n6y8oy47WHTbFreA72N7jEykstbGUFuV8tmO946U8wXnlD8F545y/tTjvj01sePQk1z/kOX8F+Csf\n8vsH4D/Mx5/qyHUpAt5pED2aADJMJZ1936MN2G3ntnVa7SHxE6emg3Qpo1482fsSdeFDRy2zXmws\nSiOIxGIXFNkA8o64pWGnz37ClQIOuylsznf/1lfZvvYWX7lrsZxqrKXsKT9bDLWOeOT0q8TGwZpS\nUj40g51w2qAOadroWsABBDjizRxIBiZOdPPxOUAHm+oZQMNV+hiY/miCe96RI6j52FybJ+kSC/Mo\nlRgBb9Ze2tH2Z5hIHe7G+X/WOzIJjVz4RCIdMiTz+bSoCQIuIAuwcKgUGeeVrHYn/E82I3mTZErH\nWibRFyn/bJAaugi6KuVaqNdCuytcrsJ1dd5oxl3trLUHsZFGZsWdkq23TDpVOk1C+r/T2WhsWtmk\nsqmyq2I44gXpYfI00gBDQglMUu2gTv31JXXUnUZ+4DSjRsQ6CwLHmM/bRQZWUlVTYsb1k1qkuOE5\nvyhkC6ma75MmXxpjieOlJ2c03pnR4i6VR3NRTDmknMbfN1oSg+jL9eDUc9WPSXD8bAT2s0HsHOcc\nH3R83nmdJQHLB30Kf/yV+9OfPHnumD+SpVCpsukgJXxjeo6LGw1lT6l0R+z0GdyRHvJbEHSFck1y\n4w5sFXormC64rtggNoqwlI21rFSpAah3o/cAL1BQkZAgCrgbe8+GxeKUqsHgl5B6j5Z7idTSiXys\nUcIok5r3PAFCtHHs7Hv/hvf2+Xg+no9v3vHpwnktcV50a3qM8yxjXmH6KZSC1JKEhiLVkOqodApG\nFaNJ9Gg1U6QX9l3h3vneX/sq/tW3+Nq1hQGnEQIADoxU1qibF3ZEOl0drxGOFZ3k9iOc5zA6uugw\nQcz1NkiBgeM+jjhvdEcZOC/f+7zYn8zhD6+z43ehco2kH0ViZ7NEkoklv58bZDnMLmeZseElsGNc\nzixrGYxabpyDEMnSk6aUVqiXQr026t1CeWOh3VXaC2FZnNqMRTpVjKqdVaMTinNs8gbJYgg7hU0V\nSWDqKNYF2QpSLNULp2SAh5Jn4td8PEV6h4pB5z2K6W2D6UEGCfKH4jwS5/EE55UTzhux/NOI806f\nJd/vg3He+PvXSYBxmmEvIIhl8rLH2rVHDzs2L1QvtLIhQ6XbwtNEgSZCLUKt0CqUFnsfvSjlUmAR\nqlwoDy+o64bUBxwPD+PN0M2geBAXkjjPBs7rQbJ8IM4b65LjcpTEj/3ntxrnfaK7oozjadATJCwS\nmBiabsHe3z9s3D88cP9w4/KwsdSCEuoHhvFJqdmSsKasJpj64eXg867kjlhlsrexqAbJEOtnBDuV\nUFsIYcSiaRZVblC/fs8P/N3foL79Nr/2k1/Ei4Z8bCce3bBNKT0MY0wsShcKeJXw1cje6XG+Hp4M\nWC4iMte8WEgOUDBjY/5EHl3V+P9gOnNiu2XwT7PNR4xkMvizk8hpo+ww+mnPFl+jv3YGxUcB8cQk\nPJr6MtiKXPx9BKF0BS+5WBsR9Ho+tTm+ehAbK+jK7EoFgJ7kibvg1YMQYQTUvELuKd0glBvktW2C\nLFF2Uq/B4K9XeLEabzTjRTVe1M5aIsgVDNlJWanG/VNoy84mnU2MTufmOzcN8MXSMGlhImYGXZBN\noVjG/oP4mQBBFOiDZ+Z8xyalIyT46RwBb5xbuj9MmY8fQctJIynJ+65zTZtBzzSuo4cnw6T0M+iJ\na9Z6KkMaeFTPpJRW9DB0G67bg4hiqinPp/SBzP2Ux44BfYzypz9imJ5N0DkC2ZgPj15ZEhDKB/zu\n/JPjvUfGZrznVGh4XoABMBJYWHqqHJyeYlrZtFKoqDfcGq12ysVQycKmIf3tDgp6KchVkasgV8GW\nwlYKwgKy0jVkHKUIiz6w6JLEBuxbR40IoLQ0mSKkxLazbxu1xn2qpVBLpWqUowgDHMfnkZR5D9f2\nMsDXE/DilkGv98f35/l4Pp6PT83xzcd5jZKG8EXLN8B5Q5lJkB0D59WB8yRIjdJDrcFOlZ0msVbt\nvVA6lFfQ3rrn87/wG1z+4G3+4Z/7IrZkUmbiD8NUqZtR+s6eao2ioT618UGKZ6w/uzJlblkk4/Wx\necgow2wx+bHEefE4NugkRhBGpn+QGtiBYw5kaLjuYXBdHW8eiasVZJVQ14waECUy4fFngQ9vPPK6\n8BF3t2SQujBkH1IS57VCXQv1rsXjRaO9qCx3hcvVWGt0xGmyU4n/m0RrV9wTKs3iZ8yVTWLDGixW\npRfYK2xVcn9hQb6cTn1um2Xc2wO3DDJjXCORJOvmdctrkmPnTDRw/trDyyNwnp9wnp9wXuJll0wE\nj3v4acJ5r32Qb4Dz4jqdb8N4TxtJqbmHIcp/u+O70FXYRNFU/u/UaEhQDa9GuMGTKn2lqtAK1DVI\nDVkEXQW9FFiUYmuoNZYbUsG40TeHW8d2PdYTNHDevrNvN2rVxHmJ9TSsDiTP29OIN8qmoxTwo8J5\nn3hiI4cAY6pOHtJD1NMBsc6277x6uGd59ZL15ZXl5UuWdWGpSpGF0jSzj0lmnEmAcSPkCKB+PCHk\nfqnocNXwc1AY7YOGi20ZAcKC3HB3Xvzm7/PZv/lz8OWv8T37zr/yd36dv/djn+et7/+ulMYZvml0\nUOmh+KgSG0StimX9XDCaHsFkGjadSI3BjJFqEz8tiGRYHOqT08k6MNr+ACfG36J9VJI1x/3wU7Ab\nbP5YJA4m33wEvtHyK/7Oep4DUQNIttEKQyhhkhlp1ulDkjEMRNUOIUduurtEvSsLyMWp6866GLXu\nWb6TIEBPksAq7K1g4nMxnZv1rMcksy1C+mosSl1qkBrXyuUO7i7OXSVJjZ27urMY6CYh99okSlt6\n3qsi0J1WhVp3rO0RGK1TpCFiuBq9tSh52RXWguyObI7sO27KIY+Ag5UfM2bc5JR4jjGg4Xg99bF2\nPD+Gu6TP6ilQ+KGqkcmQhWyzz+Aad9Az85XmL4S0MOWqqkw3uByrQHaP0Qx4MQYClOT52GPKYJ7L\na6zwk2MGrSPQPZUovsZFTACRFJG8FmO/AaHxR1mlB0v/eL7MV3eP6TR4pz1+bKpstaF08B3zhe7Z\nRrrtDJnnmPNalHIV9FrwtbG1hpQF4YLIisqKyYLZgprRqFQaxULFZHvHe2SdYCGManduN8d9Y+87\nS6u0Go9Zbwm4R3au73uOdZ0ZlTLki+4TDMeUjPHZLepHn4/n4/n49B0fLc5LusDJDWT+TnU4fQfO\ni+L1IIslMF6l0+iU3ITYXvDN+cyv/T7f+9/9HPJ7X+PN286//Hd+nV/88c/zB9/3XVQhfC9QRB0e\nHLmDRTqmRq9gUfKO4ZjGjtCxGXjkvEkaFHnu0n3EfD7OOG/oBQbOC0zniVV87uTHbj4Ih3GPTIyu\nUQJJJUpQVkEuiqyJq7KlLyXLFYQg+zNZMKwgRhwOTGDz+goEIdYS562FutZUazTqdWG5CpfVuJbO\npXQWDaKrsFG80ywSA8yxlaoZMQyleJieDul+pVKKIk2hKVILUj2SmmKne54z49Em/xgT0WMxx4Dm\nraOfcFeeZ84BlfN4GmoGS5w3BhdPcJ4/wXljcj3jvKfPfPyex7x79Drn54yptkOPWjqKF4rX6Lsk\nYd7pLXFeVYqG/0V0sIt5oBdBLhKl8ovSq4YarHakPoBumHf61uHmaJcgSiyMSW/W8X5j752lFVot\nJ5w3LukZ5/FtwXnfMcTGOfDNxwx6ytZ3eBBevnpFfe892nJhbZUl2xUudQmGMD0yxiSJITcmRbzL\nzNyPhSRrO10ONYdz+vo8MxzI4FK0YpeV7Xs+S3nr69zceOe6smULTpLpdgsyYiyuRSUXuILXgqEp\nIPAwjzEb+/uD1JjzZTD38YHCFCs3ucKsUR2L2dOpHBv/XJXzb4ec63heMHURDLOODyZrP/qW40bP\n9qRmffqC4DY33PFxwh8E8hp7QXzUkIRpZziCewKPYI7NAwRYNHCmLE5rnaXCWoWlSJoTJWMs4Co4\nJZhz6bCGZ8eem3czz+4jwRvgcc10UcpSKddKvRTapbKsxmUxLsVZi3FRY3WndIVd8a70DdgkUItk\nNiABguCghsrO6Li1q7CpUJqyp1pDm6dhqeK3km1B/SC1JO97Bp9QGinTjGmMD1PQztEHfozzCPya\nxM8Y4eF+bolnYgBYH1HbJ2gMEt/DDdwHEIrxHVkSYbb0kBObn0NXBxhDJrMfY/ccSnyeygRurwX6\nP+LxlOGXBDbneczx+ieeh4kSX4txfzRy4wj2Tx5OmDl1RgIrAF8Req1s2oJkYKe7YyLR910NmuGX\nJBOqYmtjX8IET2t6augV1QsqK/iC7BXthWohdSwoanK0Ex7/W2ffbshwshOj1kJLckOLTnWPewQ7\nUmqpXuZ4mmMqWwDinl2bImNqHiaAz5KN5+P5+PQdHz3OI3HSCCocOE8lklcy/s8tuHh0VRPP/b4g\nLhQq3lZun/0s8k++zstu/MF15V5LdAro4bGmRfDd4+8sRCGetetWhQ1hS1ODifMcdEo+EiRkRj5w\napzZxxfnkTgvcNyB86K0eBqHZhw4CI6RzLNQ7ZQYA1YdXSRLjgWuIKujxaAkhlEiiUWoIPsOUhzU\nJ462gb3jcie80NgwLpWyVmqahNZLpV0r5aq0xVlbqDXW0lk1PFfUDO0e5q+W9ykJKknsY2JZMBxK\npB2oEj4JpUFvitbAel4cK+DdQ/GLT6wz8usDI4jMqxzx0yRxnoD0hFs6TvKE88brpVx0lOAT6o1w\nr+WE8+QJzhtM0TPO+8N/f36xwNbhtQGjO6MMddEu7Kqoh1J3Z0FoWAlDUE3/nOj0pAe5sShyVcqd\nIpeCLY1OxbSk4fwDLjfcd3y/4VuP7pJ7dObZZQuVuG0gnVo1cV5BB1kIT3Cef1tw3iee2IDHwW4I\nn8JXJ7Lt4sbuYH5DXr5E0gV7aZWlVtamXJcKMnwojkz2MGYahkax6B3BY2T5JUmN8d5KriHjdUSC\n+U7mWKtizXj40g/y9X/rZ/js3/hbfPWtt/g/f/ILrKJcdSx8gmuWBWgGpJI9gEsMZu8RpPpuYdzX\nY7Opg3EcARsw86iDG/uluf7l5EVOa8RB5Ixsxhxv4qfvx4DOuzCzzjZC3fx69i33nkTBju07vQ8D\nqXiDkKcHwSO52Ab0KLgXzAp49Ap3NORh4lB6jOrCZL2td0rdaLVzUeFOmD2diwSpMZU3InQKVZQi\nFarSF0UsAUi3cDo3GLWnUhRZC7qWCHbXUG2sbWctxpqmURWn7IrsBbYCpkiXWLh2zWArmUWAaJ9q\ntNYR3dmlsLHHZ6sWrZVaQRtBblQPZYqVvIzpRi4ppySuUZzvqIU7pH6mEcBEOjayJRbZmGFMq5OZ\njes6DM+Q0Q4rymMi4EX7VzMJk1wzXOzI4EP0eBdBxJJcGgFaHwWu88L4gcz8/B2JQ+UU1DmNz/Hk\nDJqBlhh+ItM7x2FAhBj+YY4VT/fHrzXh2Zg133hRHu2v5gV47Qk+3/sxsSGT3JinLyTILuxLi6yV\n7TQHd8XY8jkgS5jmaS34sqJlQXWh6AJ6RfSOqleMC2IrbKEqKl2D2PAatbwOZj2TPDu9b+ybgPcw\nmGqVpTWWdaHWQhmZOLcJtM1iLSgeJX+z1d8wHrWQzOq4fyJ0T5Pcb3hln4/n4/n4Tj4+OpwXm4rD\npkiC1JBQn02cd/ocU8wux0YvtIqKqfHqiz/I1//Nn+HNv/G3+L233uJ/T5y3SmjqfPh5ZBtXzdp1\nL2HI10uJYtIu2QrUpmpURwvP03UKnAcjI/3xxnm5nX+E86K82Cywi6TZflzXg5QJq7okNQhlrjeF\niyAX0KtT1k6pKaqWrK6RSPN0i02g35yeRIN5xCjrifNMs4tMKCZ0KZPQqJdGvVTKWmhXYanGosaq\nxqqdtYRfWqgtS5S22CAePCudAuepplGsRnzdRdiIjWlthd4UWxy9lcB5RaL0BlL14oSimcR5AwPp\nMT4mzitPcF4QUwMD6ykDHzhv/P2I4xbl09nyM3CePcF5MNDQpxPn5Sf9oE36nFRjVB+vOinb0VFm\n5ALTW8dU6Fs0udilsXkHFkwabVW0xvlq0XyEIbIuhXKn6F3BL5W9rtyssklhV8PKBdcH3B5g3/Bb\nzAEWo5fO7hvYjoqxNIl1da3hUyR6wnkxIw+cZx85zvvEExtjiYPXtgJHPWZOFjPn/naDly8RLVxa\n5bIUXlwq22WNzP5c0Ce3NNseHQaSx2CM98/dQzanDuOVeN9NlAcqlYpSqeUWdU4XoYhSHpRyV/jd\nf/5H+cpX3uSFQluE2gRWxxeDRZGL4EvB2gJlwfOBrLGR7SHv61uH3RA7ajdH1n3I6kYQjsVwnG8Q\nIapynHtOvKeeHE+PweRPF2A/3YWUK0Yw6xEwcvGzZPb6vtF7n59UB5sraccwFoi5CY86PLMaP0ti\nE/VsXylhFOqgvdP0RpUbq+9cCFLj6qGwqrEETMWGIXQPSaBSwUtkDyr0xekpUoD8bEWj6uMShqF6\nCTZ/WZXWhiO2UAsUzzpCG8xLZMJNFCvJahZBiqdRlIFEpr2Ih7QMCdugHgsXRfP5BS0eBlhFkC7Z\ncuuocZyDWxSkEqqNMhfg4pYZkB1lwyhJXKRMcZRY5b0VHQEfsM6ouR1y0/jkhkqAu25ZHe1J1GXQ\nHcRSENROtM5NYxSZ0POY5SMoPT0CuX2DcHh62gh2cg5wsWLEz06jPS+dD9XnXHQfL70DHB/ZqEcf\nijGPInkhx8s/er3TSjZIojFHZdSoCtIHMeLz77sVeql0WeguUXfpMbpHaI9GTYUqKyqNKiulLKnW\neAG8oPU11o6bw40gOLpSTCmS5mAS7Q/dw1ejd836SU0Wv9BGL3MZ50MSjfs81VCtlRgzfWffN9xC\nzaMi2R89Pr151F8+H8/H8/HpOz5anBfdI84+DsqIG4nznFRvAt3pRbJSUOieG7UC0oIcLk0pa+G3\n//yP8nv/5E1WhUWFRYSW8d6LIlWQKmgtiLZIXtUFLQ16xXqW1+4nnJcxbEbIoSxGTzgvr97HGueN\ndwpMRpYlmGUCRoYKOnfZNYPywCUdfCE81O522mpxnQk4WGYMjFFjTsRKV4oIpTgPi9FtJMQ8iaMc\nAQqyxH3UtVKWRl1bkBzLMGh0WoFWjCW73dW94D7qo8tJheIJJrPGwIRSO60YpsaOsXdjU2fD2Zoi\nmcjyCl4N2W3szfOw45upjDgMOA+c56kQOeO8eCEZDND8Xo72wB+I80icZ09w3rjio1DsAAAgAElE\nQVS/n1acB4PpfPTUM0EySCLP8XCaB6HclmiFuvmh1HWHHqXyD2UBMTorlY2dINO8OLqEH1BpaXa8\nNHy9sC13mL7A5co9hQffeHBn9wforyi9oqM8fvfozFl2undUOlpJVe7AeUEIPcZ5KS9JO4aPGud9\n8omNmRGMgXISusfhWW6QAH/vnYeHB1SEd5bKpVXeuCy8cXdl321uXMd+IuauAz1kVnhI5EjXXnJt\ndWGq7LvjWyj7N1WaKDcqhYZURVfJD5k1T1d4//Of5ZVsLF9/h7oquhA77+zeIavgrWIliA3KArrk\nCge+B6lhe8f3ZCDPE2RcjrkZ8jzH+N1QnZwXkhkUTwuOMxaMwxNgEvDzufb4kSZRllJEm7JEo/ed\nvu/B3uEzwkk68I77NjZnThgKOaMlW0n2N7Wbo75yUYpFW1WxG9XvWWxjcbh0Z8VprhQr2aJI8/xC\nxh+NlCpOxVC6CJsG6b63KIdBQE2DJF8FVqEsQl3CgbgWoSWp0RSKCck8BGNOBanI2+9gv/gryI9/\nCf3iD1HEEelxToyFsQdBglA9CA4dGYQaHS+8FqyEPUbcLT3uSapf4jKm9Gs6wI/tb4AStWg7FiRM\nTxmrpzopv/aYE2dimjlXnM5hOKYjsNGjc4plCy8N129JqVzIFEtyMBrXwNMrZFjIDxdS5uAeJ4XM\n78cYehzYzt/Pvzr/Lku0RB698CMS4vyjx7xyzIPZC16O/yJuRuAWZ8pgp4VGvu4QPgdMMMxHbfGE\nepgL0mG2gM2P0LtALeyl0VF2eiiefGTnSnjzSKHIQpWFXRYqK0WuNO6gX8Aq7AL3nX7fsfsOm6MW\nY6/Eh8gxEAAnsk1pIlVLlMqNdTlm1NFJKkGjdMVLndd/mFKZ7THLS45viX7uZk6fJl/Px/PxfHya\njm8dzjsUCqM1qWc2P3BedhnJV9ZhwBk1MCENt+gQ0ZEkNhKot8QjVdAmyALvfd9neWmB81ZVWiG6\nVRUiQVIFbdlKtkQbA9EasboHxuy7pdeRpzEfc68/cdrEeZbnEce3H+flBlqPGD320MfdG4aaifek\nTMydoyGSPkVCSVMEMY2M9mJI69TSaTgXnMUD61UiQaQepTPmsLuykx4ECqizVw+PtYVQQztEK1Nm\nc4DSNDLgLVSzpQmt7LQSmLNpdC6sLqgVvFf42jvwC78CX/wSfOGHsnNZlnC6MMxLa3G6wKLODaiW\nat8GuijewBroBl4TaPRxEQeoOEiNwFRByskcKIbSg4QjjOgf47wcIiHjSWJCvgHO88R5gdkESZyn\ns+XwpxPnRSvbaDAwJs9BgcRd8OxkOH4X8yEUaIGxoqVxDHsjcV8Hc2WvFS+N3VYqnSqOa8eqh7lx\nVWRRtBVYVnS9IvUNdn2BsfLK4GWH+21j3yrshbprlMt3C0V5+jtKs+ikXIRaZfplfDjOk28LzvtE\nExsCLFWRZFdHW+cxFM+ewLGfiO/3feP+lfFuUS618Jm7lTffeMH2xhvsuzFaRI9A6nLIp+eWUUrc\nmNzcikm2u3a4RT2fFWcvodpoFHaiHQ5NKUssEvIg4dq8hlNtvSpljaDoxfHFszWp4LXRy4LIgpYF\npIE36D3JFKNvBj07ZIw6SvHjs5/kg+FNkU9hyMDGJIxrPFqKTXWHJAhwefS8wTy6G+LngHeSIlrH\neqf3qM3vPRi8weIXkekjInm/pkxphD1Jjw0JgsApUHosngNMpPNvdUNvG+V2o9g9i91Y9gh0yy7h\nKVxG/3qdi4sXT+VExWkYlR1hc2cX0CrsNLo0xI1S4z6R4KVUqCVN0wuptIgOtFiw9lCDlNoF+43f\nof+1vw7/3l+mfPFHqBLSy1HDiIVZlGpmHTxClJZgO72UEGDUKEehg426yw9aICTY99HFZwQxQXCT\n2DwP9rjrybl6TIo0GOkZN50pwTUy85WsNp5AJkGSUlBJozTPmloruJSYsZ6zVx28IGa4CuIHUeIJ\nqs4Sy0HizfM7Bbc4P3l0JWbM5gh6iBztxPL1xnuOVeUc6GLO+JwTZ1D46HWRTBaMwMq85q/36x7v\nkAF4EBsp34xk0ynYW6x9kcERdq3stWS3kj3mkwtKiyo4CoWFQqP5QveVxa6U/Yp6dtvZwF51+sud\n7eWGPeyIhWKoaoDwqgShIU5RDSOpVqk6QHSuxO5pGja68hznKTiqaW+agBhPobEOl+0jV2vfBIni\n8/F8PB+frONbj/NiTXaJMrtDqRGvFVgE1BKfGLEp3S0S7bvTaxiYxpY5fDikgGbrUWmhxCgqNIRV\nlKUKpUY5QWCOfN4iYRapFSk1AIXWyIBblBr3njivH+UIH4zz8ucfG5xnifNOScFHOC9PRQgyQzRx\nnuY+NlUbxSHVLeLZFbAI0jqlbLRurOo0dVbxUMeoUpygnzyJDRM2Kkp27RJnA7Yi0Aq2hwmmmFGU\nw5y0Bvkk6W2mNbBeE49OKNqpHnsDekVvAv/gd+Cv/nX83/3L+A/8SOBFCrFLJYFUJKlqNVrpNIyG\n03BqjaSapdcGFaycSoIsb9DcbY/yqaF4GZ1HIi5b6aECpSQllwagqaqI1wjSRDQSXI9xXk+cF/Fb\n2CduCpzXE+cVNMtfAs58mnCefADOOybToYJ6ch7DDBYYHRhNPJLnFXx3zARvhX1Z2ImuTE3ApJNF\nIJgMD8bKRRdc77DyBiJXujde7sb7t87798L2ErhXyq7UrmCFmuvdsC9cmtKaRMvsvD9B9gycN+sD\n5jl+O3DeJ5zYkDAu8ZBq+e6nSz2OmERlzHWBMDcx7l+94r13K+/eXXn/M2/y8o17rpcrtTZKjd69\n4now1fnKsUDERjwWylxUdofNQsJdcnHQ6FwS/ggVtQVknzXvLGDNsdbxi6N7+DV4A9SC1FiV3hYo\nK6oXKBe8rEhZ0F0jGKdEkSGzzEVy9GSWlAQNajHOISctZ8H66drNFSHPfdR8PTnG9fGUp8vMp/Qc\nyBYBr3f6vrP3CHyW5oNu0Qbo2GRn9iUn+Tm7cBT/pMSuEAZeCSC8CdKgLDt175js7DxQ7BXFHyjd\n6a5sVmPyV8GrUEqeg1gAhVWoi7PWnsRGYcOj+64LYFiLRdhqiTZLdSNigiNeQ55PeppYkAayC76D\n73FJ+//4s+w/9/Nsr+7hf/5Z7O230X/7L1G/+w7tWUrSFUp0oijilJJt2YskARPSUhcNkKS5kPgA\nLGS9oxzGWUO+qfOSkpRzBHIVXJUpHJn3fZAlPdCeSSxmPspeYJhMWY67cEgeUkeL13WhFMUo0YDF\nyM24EzWtyegjEfidyE7p2Z19orXXB+TMTL02XD9g/H74MuqnUDff9oOOCYLTRMuDjDLLIJ1yy8dv\nlyF01iYfOOXROWKEbBNm3eVY7DrB4m/51CrZja0kJBKQFuOmKLW3MPasC3WvaC2UGsZoGPiD0d/f\n2d7f2N6/sd861neEjoonYTdkvUQ7sRoO2dECjJj3HoSIhfUoIS2Oz30oXY8TVs+NxCi5qkEEd/co\nETtLyJ+P5+P5+FQcHz3Oyw1NKjUC551UdgPnbeRm2mNplkFsCOYaa14xpMrMtiKdUpxlCYk4FRBD\nKmiTfBS01UheleVQbWTrettPOM9JnJeZ84nzEt3JkSj6eOA8PgTnHdf+NZwn5YibJXDbUOfG5lmQ\nsqN2T+kPlD3aqjaMmoqN1qOcMpixbJ5bhFI2CqPNb9zWzZWNgpUFq4J1oauFGX2Wcbh6fMwKWo0q\n0fmwjFTYLthW4Ablv/9Z7H/5ebZ37+n/08/if/A2+u/8JeSNO3Q3tKeawcOQVhWW6ixi3LRTvVCL\nUxR60fASqY7WxHlO4KZBAkgSG6NtD1kKM3BeqiNER2G9zl8dLpk5w5TEeRyEQCbdDpxnmIXPnxDg\nNogKpRQ74bwsYf7U4bzjM8SUtRPOG7NxLF52+jnM3r5b/v3ojOeEAeyubLqwF2cryuKG4XQv9OjH\niUkFWYPY0DdwX9h35dXLjft3ne3tzv5+KHTlJmhXqlkmwmTivlaFVvUJzuuIRVefwHlywnkn5ugj\nxHmfbGJDYKklmHzr2QGDE9eVLFp+KXh2wIyN2PZwz8tXhXfffZd333mXz7x4MQNebQulHg7XUyok\n8fenjq4xL7vFZnVjygpjLRH6Uti0oDTUGviCq1ErWFN67ezNQp1xl+2pqtCVSI0mqUEJUkPrBWVF\nvKFdQ4a2O5kymGyop5xdc7IKMZh0lB6I5tcZRE4mVINJHJfRk92UpwvMDKzOMJVy77lIdcwP9v54\nROmJ9QwuQigIBsM8dXD5GBt0RsDNhXpMGok1e8g+qVCrodZx3RE2xB+Q7RW9E5KrblSvQWwszM29\neQQMdhA3Gsouzopxc9jd6A7CHjI8BdUoHVGWWEbc4va7oyn5m5jBcxOaZQS9VHpb4jLWirQlciBj\nEIunEepxD46Llvci1RdSHaohuwazO9om5d8EmXGQG+gxTrOPa66rivSSNXYyBRrST5I6yzrMQaLJ\ngJqaICfBizm9O6U45h1M45qIToOzYbkRkrv4RjTmqhYhSncsA2zca6Uc1+Og0kNaPD7WsVKc/vXT\nv6dhfKDa/P7xkwZB6I9+ITODFEqj/DwnJ/eQPMYAnhmAQN1H2PYRBNONnZTtnZrVywAiYw4MVN8J\ngNUzKCtIjc9mOfos5T5SBEuFD7VGGVMvaUKryE6UtD3s3N6/sb18YLu/sd8esH4D31A1VILYEA3S\nTpXDW6NVSkl5sUWAVY/sQThnl3Smj1XG+sjwZRYwCeNaSphSaQJRhD8MmDwfz8fz8Z13fOtw3vKH\n4Dw+AOd5mLMPrFeBLRMkqnRRdgrNIltaajIeFbp2uhpUp6yKNonKVA3lga5KWRVpFdoKZUV0wbXh\nEuZ74Y7KgfPm5jKwBnlNAucNvJalFh87nMcH4Dw53u9R1kWOGFqSwWqhbBGVyChLR24PaH8J7Ehk\n+5BNDuULFelkVw8P4/VVkDKAUPJWKDcKXQn/lFooYnTtWOlYNbxYtMoshqqFJls6hR7Yc1d80xgn\nVFwXNoe9VKwtscHr4Xeve5AWhYA70kDcI5EFUUIjFmXTTQPnlSyD7ievEU9T+HEPKXHtRHIwH9g6\n1EeBTaSPseM5PhLnuOfr6oE9J85TzNI81DjhvCCOIqlXPuU47/h8r+O8034/Z2MIm0fDh3x/kShD\ny/P3aTpLqLOLYqp4bVgbtzzWI+8hH1caygX3K7ZfcCtsN+fVe8bDO53buxv7ezv2yuBmaI9rX1Ip\nrBJjvNaaOK8kznOwHiPCC45FY4uJ8/J8P2Kc94knNlptKMbed7qllM7ntAxm36dYbg4axdl753b/\nwLvvvMvX33iHF3d3XC5XWmu0dY2gJ3KYU0pM+pGJF097JotZKLuFaeiol9TInFop7NJQi82vu9Fd\n8NLZa2FfjL4YffUoD1iirMKk0KVCvWB6wfWC65VWLphfqHuLTehOBNoOsz2Xn/jHnEyT3cw+0ZqM\nriCnZgyDBMm/yQkoY607SenjCHZRZt3iqLXc6UOWuHf2vbPve7L3x8BVlXDs1dG/Ohj6sakzO+3h\nj33ePBwL9lxsbuqimYmj8z4Y3m/w8MDtXug3o+5GxVnbuN5jaSECp5HXyKnFaWI0oBGt1sSVLtFe\ns7DRaFTbKbZS3Cmu2a+lp7wunNvDdEgSFAj2F38G//zn0f/sr2J/8V+Ff+Nfj4XCd5wdsj0abnST\n7GUfWSEfF0UlCR1BFh0FgLHITkQmE6VFp9xRbkOU8GRHlijRjIVUds0MFeHr0CXUI7vHhe0jI5T1\ndZK+IYxzHIytnAjboUzwUxDJj+zOmGziZO1sfub8mebndPXY7A+VCH60Yy/k+IfRpu7/Z+/teqVL\nkuu8JyJz76pzTvdMczgczoCj4VgiBFOAYNCgZUGyDciwYMAG/C90Z/8Y/x0DBnhhgxeGZYiGLIEi\nRYJfI2pIznS/59THzswIX0Tkrjpv95CgIE5Pd5/dqK73fFXt2jszY+WKFStuMsP91z8V9OYP5ro6\n58MMhre65dv6E3NBbkAiqHv2LjSEjPEz2XtuAdQ92xJ7lvDsn4s7qePOdu1TDydIsp4BT4Aut7KV\nGVgnbqsBIjTrvosXimUrVzWsOdtpY3vZ2M5XWrvQ24XRr6HAkFAD1ZRV71lNVdZaOC6hBimpCHOz\nu3b2lZJO3Z43tbdGbxt2byilSi01mfwaQEg03bLfyI234+34Kh1/czhvTZxnPwHnvUdqZCZRhuPd\nkCQ2pApeFVsKQyvdKo0FkR5mkxAVw9XisUS/FBbJbvW5SX8Q5Kj4sjLKAeoDUo64rHjoz2+VH2lg\neuvkMm6bsamAeIXz9GcE58lfA+fdwN4kbybfIQt4VWS1JDaEpRtuDelnGFcYHRenW6gVpeROeIpM\ncDiAdKEeohzIEa7AAWVzxQSuRRlrdKUZi9LLYCyB2X0xtKRaw0eQKT7wMVKZO6AL/k//W/znv4P9\n7v9K/+//O+x/+h9jPzDCb6CMbH8pHgmle+W1WCpxJPcWkh4sOTCLZDkIYDcvNU9CQ/QO55X8mry+\nFqoKEl5EFxjJR4KHoTGWSUQjFcmB6B4l3K9x3pybdqfwucd58obznDuc5/k+94amd6UoBC72TpJC\ned9donHA5P6KYG2hL0FEiUQpW7FKZaX4ERkHuCz45mynxvbJxvZuoz1v9JfGOHXs6kiPFaMWpeQ9\nEIyiwlqF41JYapjuClGGYhKGsKLc4Tz5XHDeF5rYQCQyhDhba/Q0wHntKhWH7//ZfsncndY7p/OZ\njz/+mMO6UusSC28JR9nFFnQpueBGltqyR7dihGAq37dLZNe3dN3NBdpEGevCVmOD2omuG53B2c+8\nswMvunBeFroIlBpmla64VIRHqjwy9JFFHxB/YLUazGp2LvBG9kC/16iTmf5k+2aLJfFXV4ZcfF6z\n9P7qec9kOHe/k+179tZeTjhiD8ZoYRiVtZWjh1tyyCU12gMVjV7LWlOeNjfKcb6TiI7NU6x4qvFI\nPUpkCtxiUqUCQUosMqUQfccPlX5d6C5slw7nQemdFcdXsGYU1bwOI9phbYQkaxP6oYRvwSjUAQc3\nCoKZ4lKQXllloepKrQ/UGjWetSjqEUmd7JFeif7u2C6HLN//Rcr/8s/gl7+HjAuUaKNq0nHt8bUa\njRoSSVeaR6sy98Q4heiik19bnbVqef/Eb+UnhSBBCmjNcpaayp0MStIL2sGHQAPpJIEmEVA7IQ/t\nGYQzADsjNq37gh1BLIirXIgl7qlj+My8ORnAyz4+ZY4rbgDLLDNRTlxM9+Ty5swWxDRqOkP/m3PR\nXw3tV8Fs/nvOhdvE2deOv/rYabFX8ej2Un779917TqLiPvi/ZvETguTcsLuMIkIghZH1l1gQVPN0\nE6hMkZMUgsSoSqFQS2XxheoVHYo3ZztvXE4XrqcXrtcT2xbERu8NHz0qvmqhLlF2UrL7SS1KXZYg\nhWvN/ulyM9kisExRodQaIMec0Rvb9cLlcqFvDcZIRYhSa6WWBbUAOm+Cjbfj7fgKHn+jOC+UbIut\n7+E83sN5ylSA0CU2q8325BUqdCloXRBWxCOLWRGWamyrMA4DezD8yfGNMIYvEb9kEcax0tYDXh+o\n+ojrEdEDzoptBb8avoE3vyk3dvXEFNH7BE2fSgIlf/EeZ/DTxnmJ8dLv4SfjPG44z7P9qodQdOK8\nMGcVyiKsJpRR6F1gGNYvXC8NH7C6hxhAA3tHrclguMECcgwTfz8Io0JBWUfh6JVI2Di9DJAFqQ0p\nDZVOpbHICGNSd5SOeMd90CVJislEGfjf+kXkf/5n6C9/D7YL4gMdQW6IdVwGQwaiA9QYKunbGL5n\nO5orFkqfBWyNEqd94zxSkTPZuMIN5y1BiMgEUA5iJWwuXALTZcXrTmyMifOSfEjcETivcJOOCkjZ\nyavAefITcF58/6uF83j1/dfKkNtEncTexE03ki/2c2FP4bwyoM/b4mnLJ0YW/ypFKqWs1HagSCj8\n3ZztsnF5vnD9+Mz1kwvbS6e/NPpl4NuI1gkF6qKRxEqPv8B5NXFeucN5nhfC38N5/rngvC80sSEi\nUSsuHiDbFB2OfGqIBqNmueWK78Rj2OC6bXzy/I5aC5qBLlpuKcfHI4utUYNegg2NGkrD5M4YUUus\nut3D80HyXSTzBl4wDrgSrUS90Lxxsgc+sQPPfuCkB0apuFQGheYCLKg8sOoDzgNqD/hYEauh1mhk\nsLOQRNr8pJMtjUXrVe9vXk9iJ5jPV8zjbbbnJ/Zc0HzPEsyAN5JtNovnMTq9bbdglz3XPevrVCJr\nXLRSS3YlYTo23zZzbknI5InEIjYXRMt7OiJDA8Fcp0unJKFdqiLHhXJZQRe20Rmb0a7OQHj49x9z\n6Ma7b32DLkSvdRp+GNE27APBHyrjGD2jLc9zuTtX8UqRyqIrtTZK7ehiiC5BhEksxqIStZEIqd0L\nyd7PHdD/8u8TG9wTiGPSMRm4xko1RNh84ZqZhObKuHMQtmKM6tga49KqxXXnVo4yiQ1Jk3VZ8j7U\naLspaULm5uGN0AUfGiqkJNCkeQADIcbUjFYyiPRV42a+lqVPmo7YJVzJmfcxQYtYdldJcukWeA2X\naayV46DMcZFM/l4bHYPdlcgkoaHUyRmfAsL4fHtGYWcQAjT4/c9vAW9fLO5i2ut1iL1b1/2Pb0H1\n7j0zsN5nBG5sPtlCbf69A9kF6JY6u73vfP10o3fY2XuB3R9lTimtinoEu1oK1SqLVcooqAmjD7bz\nlcvphfP5he1yom8Xet/wseE+KEWotbAulaXG65QqUYqSLcBqvT1sGFMEFIa3Si0lSDcLp/x23Wjz\nfTzKlEqy+bVGwBMpme359PV/O96Ot+PLe/zN4jy9w3mH93Ce3eE8ueG8JPv39otRB8EohY0lDCbJ\nenEXujSuZeFSlW2FdowNtNQgUDoga6GsB6hHvDzg+gjlAeGI2IpvesN5Wyj0xCYhfrdR+tT1uP9q\n4jw+R5w3fTNu8cxnZ5cMsKp51+SGR8xSiSNyw3npqaZLlKKsXhi9Yh28dcals10D/3744495vBjv\nfv4bNIN+6fTR8DqQFeRB0KPCQbC14GWhyMrKAaQhbCArhUrxhWKNap1qI9pjDkA8OlIQj1l6A5F8\n42sH9Nf/PtUF206IO2IdfODTpwQL3wvJYWZBbvQdM0Q8NTVMR+C+YuHxRpzDbCcri2d5suKrRHlL\nlfQ4EfAol7bJwXRPZS7RUj6V4J6+HViJjBkGkoaumcCaHU9uOM+yvPl9nOdfAZznfwnOS/W22x3O\ny/uF3OG82zsEzktyMZOZ4rFGybjjMTXul1qSGjnvaq0sfaFQUVFGG2zvNi7vzpw/PrN9fKU/b/Rz\nx68dH54JLA2z0CrU3CfUKu/hPE2cl9SLyGfgvPZTx3lfbGKDyB4W8XgePTZs0WTjvcM/9cdObCRa\n77y8vEQC1AzVMDYsS2VgPLhnZjPYT/Pwv5jsWpFkLj0YU7bbpJqTxD3r3VdFtYaTM4V348C7fuCd\nPfAyrhE4vDCo9CQ2qjzg8oTwyDKO6FZjETGm0xHeHOsZWGS8lwGW3DQJmrIzl/jsk72fky7L/3f5\n1ZyWEl/EhGSy9rFBHeOupdeIfuWtbeGEvfcklr1/eiklJ11FS0kZ29yR5cR22Se833WHQKYbd5xZ\nFjbclVt4lFmIoQUWFxZZaccjvm5ctdOt0TdjG51f/n9/l1/44Y/40//613h3qPTrFW8XRm30w4BH\nkCdFPlhgeaAuazCWtaZMa24WF7QtaOlISZWFHDCtmIakUUSRcJvdVyIfAxkd98Z0o56BcaRpyhBh\nyMLmzoawubAZ9OFhzpXlOFYHwztDB7107K5tkqTUVkrWZ9Zw3l7LNIMsiJYwICUMfMaAPgo0jUbw\nzeHiUfYjaX40gD5TA1FiMB+qjmgAmlImk/+6u9Dc0Efd3ZQgZubGjXufCQBMAgRIjGtJv4lpvskQ\nKJrzoOxhbjpV72ywf/oc5u/tczcGfM6DHH77vJgkxf1qNMfu/ev7/geWbbtuiozbMT1R3AIQM0kN\nuZ2KTLL09V/GeYyc1Pf85QQpkHLdyKBVzWBnlWo1Wnu5M7bOdj1zOr3jdHrH5fJC286MvuHeUbFk\n2JV1DT+NZZmmoTOIzkel1hoALJkNLfH+pRRkWJRVjUFrG9t2pfeWdi/xO/MhWSpl71+0t+PteDu+\n9MffLM4rifM8cd76Hs6TO5yXxf+mYeDXuGGPAkMUZyH3HBihrCwUnm3l2RbOtbKtii8F18R5JohU\nijwy9ANcH3F9RPSRYkdk1Nhkbo5vifPSD8n1ntgInJTNCRLn+WfgPHbZ/E8f5+Vjbpb32Kqv46LY\nXbIt1acCu5RkEhsFSrH0Ea2YVWws9IuwDegXw3rno//nd/nWn/yI3/pHv8bHpXI5X2mXCyYNWwYc\noDwo5bGwfLAgjwf8eETqE0s5ItFblSILSyuUsiHlipQNkQVSjRIlLoap5eYeUMUZqHW0N2RIVnmk\nN4kMHIPiuw3GEKV5oeP0TGCN9DII1zZjiNGlY9lVJ+6rZLxXvIKuiiwe6qCopU5F8/TrYt8TBJHh\nMDz2FJuFOmROq573TSqehdaOpJeCvofzJu04b+gsW7nHefolxHm+4+6bp8bt8FRZBc67HSKTgJE7\nnLefTV6/aTga/iZ7jW/+euB7uSMMUpVbK3WbOA/GZbB9cuX04zOnT85c3l1ozxvjMvBuqDulRhee\ndVWWJR+ZwPo0ziuYSpTYvMJ5+rnhvC80sUFOqqIR+JZR6cMZZTB6DnRSor2PgFkiMtF/DNTWOqfT\nCQfqWilLYTks+TeO+xFIeRWDbHQR0jg6KhpfECRGjMtgCe7r1mwUrICrYl556Uee+5GXceTZHwHH\nLNxshwk6VtZ+pGxHKCtFCkUKKgV1xVv4engzbAzwhutNrbE7XM8JwS0Qwr4wadYAACAASURBVC2j\nbxKsNzaZfF5NWptfpzxzlyViu1lUbxutNXpv2Gi4x3XXHOS1RmvVUipVC6KaMkMH8agFnS2+0Fyg\n5k5triOSnpgp4ZzqmPyYNyPLyN0UdRaUshzQ4xM8Kuv1SvmLH/Gtf/HbfOMHP2S5Xvk7/9e/5A+/\n/x1+8IvfwCnh7r0ZnR7n2M8MfaEUZdHCYVk5LgeO64FlPUSbsTX9NBgYHZOH8EYpK6OWVC846hIS\n1GLRHngY0nt8iOLhdZDlJ1aczkIzCbUGsA2nbU7bBqN5ECEeMkarG64N0Y7mRlpEIuikoZjqoMqg\nMljNWEQoJiDhPBRXLowmhzqjVsZSGNeSpEYCpEoE8m5pbqTcyp5SrVHnonW3SUcCOTKDiQSDO+WK\n+f6aOHK29HKRVHVmMyt3JPRr8Vc5r8XD22NaTjBHkPPpLN8t5u0s+x7sfBIRtyDj87/pFTJfYI5B\ni7ll+J5psp3BvwXU/TrckXa3Z26fJ5n8V3NgshxT5sk0chPEplmM74qgmBZRmlU8WnVViXVTk5Ad\n1tm2E5fzOy6nd1wvz/R2wawhjKiNLkotYRK6LgvrurCuAVxLgtnplVNrYal1n9/uQsme9hPfBtka\nHVesd2AGuxq/K7LfPzNn+Hh9796Ot+Pt+AocPw2clytrrvWx9hjiPRSXGhtRlZHK3Ihb8VbxHrH9\nENwXWIUhqVYchRc78m4ceB4PvPgGGG4lypQRlDUSWPqI6BMqj9h4QK1STPEtcd7m2NWhh7w/ujLM\nHZjcHtxt3u6uTTYxy7j6eeC89PzIDWjEuRkDPwvnzc1quiXmnm4+e41SkSrOilAOFfqRfvka2+HK\n+qc/4rv/92/zjT/4IcvLle//5r/k9375O3z8rW/QtOC9QzNsC28Bzg7vQB4Kelwpj4/o8Yl6/ICy\nPlBZWFgo24bIhrOBhMmrlHXHIg6R6zEHDRUGEh1DxCUMtadSwcfeRtUFTIUBtKFsZmxj0IYEwTGM\nYUrHg9jIshUvSWrUMA8VkSAzqmNJbOhqyDJCpZTXusyI6lOdq0GYFQvVxNX3ahpfsqRmJGbL+lZR\nEufVvQz8hvMmgXXDP2qeRfzjS4jz7siQe0Jk7sf49PPM5d7Qzu39E7wlzksfFs+uMpRbyZBnc4ga\nfmdFI7FUe6W0il4jEz9GZ3tpXH584fLjM9fnC/3SsB7+MCoenjEFlkVYl0hirWuJRK7kHkYlvdY0\ncZ79TOG8LzSxkescVUMG3Ueh9UHXgWmwY7cl22PjNS82t8DkQDeHrTH8ZWei1sOBWas488ySLUZ3\no6P8HjbCpXi3uJh39EYsTILDa2VUpRtcLwvnS+XcVi79CAQj664Mg8VWTA5QVrSEe2yRkooN3Y0D\nbRhu4SB6Y/amt+57ZSie7Cm+V48KnuTGHQU4J/4++accKiWaY+Cerb16Z9savW+7G/aU4okqWiul\nLtFibZpHEaZH5kbI7bO2ct/U3UiNuaK8Uo7Ne3DnZ7Lf0Lm4Srx/XSp6eICnwtJWylPjg+ORJeWR\naykc1wPHxyekLgxZ6XplqxutbDTrtL6FEdlwmiz05Yitjzw8DOThgBwHxSxlk4YpWBFGIQKfavaj\ni8Vcprqk75xTOL6XcH7vCkM1vEGG0kRo5jQb9N7og5CFJpGCN1Q2hIbquBG6msyoSKgzpLMQ5MZB\njEU8s1GNycTP/tdDjCZOy9rY4fFgSMjiBunsPoPdvClZW1ui60aoUQJgiuqeedkZbCIwqMWn0Sww\nChPvsZtyG54lFgZaEK3hhzM7f4ikc7XeJJnEhZDb0HgVcPbnV1Eo8Z1PUOh3v3YLanepgT1gDkJB\nsRMafv8Kcgcmc3yK7oTc7IhCXktBdqJvzwLsa9ctIM8SFs1lJ/mKXAd8d6dWifrHWpSqYY7r1mnt\nyvX6wuUS3hrRCaUFfNmHbSjZllmKslSWukTrr7z2EEFrglz1NFB2dj8OmIHf9gygTadsTaZfb0SY\neWQQx7i/3m/H2/F2fBWOnx7Ok8/Aeem7gSCSRHEJUoGudxgp4x4CrpGlrBEH3YTTOPIyDrz4kTON\nIBEUc2UAVQ8s+gjyROUR8wfoCyoVSf8j3xzbLMpRumXezG4bs/1KCVD2jPHcFinpCCeZXNmxHXf/\n/pvGeYHVVDVx3v053+72K5y3x0FuOE9I37BU50p0FTkshXI4YA8fsF1W1mPjg3KkesGHoFIoy4Ga\nOE+2FWlXum503Wij0y8tVIrnC+VyYX28wNOV8vCEHI+orQgLIg30itRHqEeoBlpxrbiWxJ4eKt1s\nDevpERJGiaHU8DBFCCKhCK5CN9jQOJ8e47bbYIxoPetIKDVqlKaIwq1zSRjDszhaQRaoS6cusCyp\nlpjKjn2WaahdasF6jN1xnZg7cJoP0qQ8yYc0gH2N89jlQoHz4g76NEYnYrkaSeh9mXHe3QnsOC9q\ng1/jPL/tI+d7++tTnSSL5XxXmQbsOZZmlT4CRdAhFIty4zoKuoVapm2d67sLl3cXri8X+nnDekfM\nQpGb3jClCEsNYmNJo9DAeZOICcPYG87T93BenvfnhPO+0MQGBOtcSsihuxWWUWhZ7zfsnn27Bbdb\nhf/MEEdv3TEcp/H8EkFvWVdcg+UeOdJEUpavHiYOhIIDGbuzb4zKAk1y7qS8Ptl0qcFwMgbjpLTn\nwnZaaedjmuzmnR6OLBX1aMuqRcNBthTUSrxeI1rNZieNaHPl+/tO+ddejmK5scxQJ+64RFtYgTDh\n9BvzuYfFDHSeNLpZeDj03oO937bcbEetoEi4YMcArtSyUsqSXg43ksLcs/WW7S0gKZ6lOnADDPlv\n4NYOKBbXuWmLBUrz/oZ6wDzlcqVSD/DwQeHgB1p55N/94rf59v/+mzz+wR/xg3/yD9k++hrfBKoZ\nVhq9Nja5cubCmROn8wun5xOX04W2dTY6W+20p8Hjk/HwIXgXyBq3oRteajiml8pQx0sYlpUCZRlI\nGyEjHOxmn1YHjUKTSvdKp9I9WPo+erKaLSoNpKPeEGuob6i1dBiyfdwLBSXaM1UXVhnxUOOgI8gO\nBaQG2EIwwudl0Cni6d6+gJXo1z0N1FIOOvt5m9/IDa0FrTXqmfV+I3+T25k65MIci/cIgaKngiil\nnGo3IDcVDSYWrfo8OuAUNIeLZnnu3di5D2x89r/lU+OLnbGfQfCmvpjPe1optBMObsbwmB972mlC\nCJG9YxH4nl25tcGL8iOL2qX8fso+RQiD1hkEQrY3XHBKBghhGt15/i6zljoNdrUQ409j/exp7HQ+\nndiuF1qLGkiJSx/mUElI1HKTIq61sJRC1RLltDOkz6xctpPOHgDx+SDrsCPY2V6XHWc9ywCnnNQs\nrmu3rO3m7Xg73o6v2vH54Dz5DJzXkdnqfNxvXIi2reJJHlRYCrYsdFdOfuDZjpzsgbOPXJN1j7dV\nDrg8IDxwGEdoK0UqKiVarm/cSo5b7DJFb5vFwHd3GMgmnrrHebMsRe5w3o3Y+OngPP9LcN6rO77H\n+Vc4T3yHx69S9flZVMNoVo+PHJ4OjL/1yA8++ja/8L/9Jsvv/RF/+E/+IaePvsZHgAyj9IaOxpAr\nF79wthOn9sJpO3G5XGhbo183bLsg7UIdD8jDI8qKlkbpDemGNE/B6yG7lChWwmMkfC6izDSUCIF5\nbDdI8LvSmjCZ7w69Ca1DG0YbEqSGSagbCB9AiUwFNgS18JwTLXh19ABlddZlsIqxlFC2lDuF0e1Q\nrC60UhlroV8Vy9jNTGD1OD8vlpUbApIYr2rivLnDns0A4p4HzrPs6hG46suJ827nE8RKapAT84pO\ng2IBRpTpTo5oEh45Jjzfx9yjLM4n6ZrEVq5pMR8C381EobiEz4YXihVkCL0Z23nj/Hxmu1xo2xX3\nTihyB0Ut7hOWZSyhyFirstwlwuaqGjhP9uefJZz3xSY20gFXBda10t2iG0XvjJFOvHYLbEpMFgOG\nTBOWXFvmoDLorfP8fKLWv8Dc6K0lS93D0+DhkbGsHOoafom5+JY6l4pMv0uJ9pjZjcTjlKPcYxA1\nbSfHzo6fgQvBYO1RWbLtWNavdUWHhjmMCjIiPes+cO+4z56vk/WbpMaNvY+f5WSdnRRitrAHEe4J\ns2Bbh/V9YEJIi3rvtK3TW2P0wTC/nWsJVUnRNOpKKaGTtPs9WSHKlFAGOyw3ad5OXwZDrYRDdqzu\nsSOfJlduUXtqVRm10lno0ti8ciiDehC0h8NzceFQC5f/4ldpv/o91u/8PMuyMG1WvXR67XR54CBX\nHvyB4+GRo75w8hOXT670c+f8cmWcnXYatM14bJbERqWUhpYNqSW9NioioChd0u+EGQwsNqkIzSud\nEm3jpKbnitLd0pPDWLtResi7GBvi4aytHsTGjT2ODEi0fSosRTgU56EaRzFWh9pjjFFaqEwQhmxR\n/8sSgYcITKMsyFLwlDfOYGcSSosgoYNECTlqABxPuoTsiy1ZSqHmDAHV6HdvLrj1GBKTuPVQMYno\n3bici2z2fpcaIDTHyy5ue7VC3kDc/SC/xUK/Bbv7lNGcT/hN+puBJF5yzq09NO5ZgBvw1dephLt0\ngki4e0uxUHgF9ME9zLr0rqY1Spws2HE8SKbKrpiRonEZsj2vpawT2LMsIhWRChLlbq0Z10tju3Z8\nCGtdMRF6U6QZ3UkjuMJaCqsWatJliuzSZrqHMRXXXJeMZTnspUj7tTQLOfP1QrteGL0FSOa2BLmE\nHNc9QZ5FrfEbsfF2vB1fseOngvOc3jrbtt3hvKfEeTW6iKVZYqlzLUupIqToIAiQ+D+B80ywXmjn\nyvWycmkHLqNnTMwSDFdEV0yPSFn2ZIBqEMPSJUpfmuN9YrAwGInYIzuh8br8ZOI8S9w1T2ziPP8c\ncB6EEeRn4TwS5/Eezgv/LpmfanpRjUgiuWqU9LhiFFwrshiygq6CPRae//NfRf/O96jf/Hk+WJag\nexyqd4p0uj5wlCsPPHBsjxwvL5xOJy6XK711Lj++Ymenv+v0J+Px8QF5Euqj0nulWpkIh5lcCN0p\nUV68JJjxKC8OfGa45sAshDdnUboJV/cwuu+WHUlAh1PzkqhDseiY0j0Utq4FtEIJomEtcFDnqM5B\njUWdRf2WhPAbMQaF7p1CpVv6rS1KcxDLsqfuWIsSGC9RElHQxHm6394YYnYjNnacF8awNiYx8GXG\nef4a8+Xao9l6F9vPJNYAm+RAKDEmoRGeOZHo2okWFJE1LoPEtbYkMVHPMqKZjIwbMsxprXO9bGzX\n7BZUKyZOb460RvdQbWjRxHlCBWZrh2lV8EXAeV9oYmMO6lIE18piEexqLbRmIce3Oa5upnziITkU\nnzSATJU87k7vg8vlyo8//oRuxtY7W8rwxuj0Png8PuAHw+0QzD7gmi3BsqxC8DB+AiDqDNUlfAkq\n2NUZJ2ecDE6OXwUt8irVIB6ZXK2xKS8jGLjYbEZtvVvHvOE+Yml9NSpSnbEz+snzza/vMq3zmOF5\n5j5CHjQi2CebP6VFrQW4MOYGLWqxaq17i0+YKpHsV54Lk+yeDHMyyN6jWiQWF6Zcy6OZxhBD0rxS\nzFAre92fdY8NXRd6LbFIs1BYKGUgq0M3aAE4VGD7T76NCix7nVosZK6KaEW1o1IprBQ9UO3AOo68\ntBMv2wvnduFy7YztzBjT1iCCumhBSkGXwqiVoivTtXpva+oKDEQsyzwI0ygPn5UuNTb77lFqNDql\nb0jf8L7ho8HYCP1gR9Ox3HGGZ1YfBa2poCgsFRYTlgLVlGqaxEYE15CKCkU7RSO7ZBjdBwWDVKF4\niQA31Ogy6NnirmilLlEPrXpb2W9h6A7sYMnwzlE3XbpHBNMSLHSQIbOGOmSHpmSNYUlD2Z9w3AUj\n9uBw96NPBcK7P5Tb3zPH44ylfvdKsg/VuzLnm0P3lEnePrffrsjMPswMDhP0KlAwr+zGrOmYbhg2\nbkDKPUF7kciMFaJcqAsMTbmrQo4BShjFmhmtG70ZNjzqHuUBsxqC6dGoku2vEdZSqZq1lhDKSr8Z\nkfkwGi3ukAilLNQaMnLzzACOQWuNbbuyXc9B1jEFx/n597Kn8Kztw6M93xuz8Xa8HV+p46eL89od\nzjMej0f8cIxM6BKxJ3DezJYm7N921jo3zRLrbwNr0F+U7SS0S2Xb1vgsM1AYFK+41zDbrjdDPSVJ\njc3DR61bqunGvmGLY+I8dmzHJAE88OjUrczD2YtH+evjPN07LgTOi3P4D8N5t+AZHgwwZryXgXi9\nk7ZHdje8TT3IEZ3Kl0lsKFSF6nHPGlx/+dvIgLU5xcLvQwlJvNZKWXrW/K+UdqCeD6yHIy/vTpye\nXzifLlzPHVvO2AnsA/CzoB8kLjelMlUKSpGCe2GIhuJVPVQb4lE+bpZV6hH/PVWRsxPKNpzWw/jU\nuyPD0DFwc6rHZxge5RxiSndlUHFfQCpilWpwGPCgzgEP1Yazm7Let58wKTRfUCriFfeCSWGUwlgE\nX4xRjV5uJWCllt2IXLP7SxaRJAk4aY7EOrknmrP0y4/zbvPyNc5L7H9PbBDqcqTEfM2fBmZSjLHv\n1wTFte7ehJMgAAlSowpUQfPZFWwYrXd669gIE/giB8yExsBH+K5JCSy+Fn0P590r+f0O5/EZOM8/\nd5z3xSY2khGU9A6oValLobaoBxrjVvEU0yH+PTLowf20yxp/oHfDvQVbPaJN2DYNk1pjtEH/oGGP\nAz/O9xB8Zl61ZAuibJ9lFW3AEMYYMfCaRMupl854NsbZo7f5XPvvZqQIyCJoj9ophkB13DtmW5Aa\nFv2zb4uC5udLttFvQc/SNlv2RajkW90Wurkk3f42yiAi6I9X8iIQii4hWy/R27iWeldyMENnPlte\n+7ufTbIlgEF+x+/PxPfezpmORlGwEgujESBiCyMldaVRUVlCNqgOFephw67GqJF5qFJCQpqBdljW\nzEmoECLwFAqwVqE8VA7jgaU/oNuKv7zj3C5cz47ZmdGd0Qc2iNrAUpC1UmpDpAPRkSRMC0oubdGn\n21zoJnQ0y0Di4W6IDdQG2i+Ufqb2EzKu0C9JcPRdzXEzLbJsmaUgFSuFYDNiATUWxqhgCaD2NmrB\nKusi6NoYGlmN4h21jtjCkIWhEgZWDLp3ug9UhJIeDLVKtm7rt4XfE175bGSTeqfpM+G53FuW0niJ\nmuBSgnxB2c2jyIzUrN+8D9ozTbcPZG7Bbg+Ad8w7t9/51KoqZASbhmf5Xhms7iWNU2YYP3ufyLn7\n9x5I59wgPhuwG25R8JkVFI3gr55rFViWMLnGvCaNdH0mugZRa2t5TqumS3r0m3fXMITrYfxUdUFL\nRcUYY0NsMNqVUZXiCyrOIcGMElmkub7c6qUjiHbplFbCcGx+Tg8voN422nalXePhNva/F81aGSkx\nF8y5mrJZZHreeI234+34ah0/PZzXEufFBiBw3oeJ825bl8B5YWgo6rgF6UsD9VBsjj5gjZjar53+\nrjOeB+OFMGgsyqvgM3KPUrJ9ac31HMG7YbMbis0Oamk2vkcYg12Zm4oVA7LLmE8S/dV27z8E59Vb\n18BSqKX8BJznPwHnTT7mfZx3O2z6f2QgU7U9pHvCP+uGj1A+W1FMC0Y8hhZqBVNjyGCoU4nzrIBs\ngUjEA+NZcbwKrIVSYV2FslYO6wOLPlBsRc7vuGwX2sUZpzPjxRlPAzsDvSBWEKnZVU4ZUlBbb34W\nGZ9FHC+zjDSSTrvCw8FGyPFbH/RujN5hDKR3pDfUBmJBamkmSt0UH4EZkQVKlEHpQSkLVITVnYMZ\nVXODmrtz8dgUmwqabVPco7tMt4JaxSU9AcugS6fLQBcoXlh1TWJjbsVv99SIstsbzkvTSzHC/+/L\nhvPux3mOYRl3b/M+ATLnb9KL2e0kiMmYy1m9lL+TyV7VV2KxuJ9JnKggyz3Oi78bZnc4r6DlgMrC\nGIpYZ7RoQV08kpyHGsTGTmrkNfs0zhuUNhLn3QijzxvnfWGJDUEmjkdlytmFWqLHbtsGXYWhzuxE\nlXvXyW2jZPcFblx2UhSMNIUxrlFjmAOjbRuXy4WPvvY1vv7h1/j6hx/y9MEHPB4Hi3VKrejcIJQw\nNcId1ykrUOjxvtupsT032ktnnAxvHqSHs09gz42LHCUZs3BWBnBvEZhtw6zjyZjODVIwg7BLJJOB\nh5BEBZPPXXy8kybKJDBjoe2jx2LbevYzzxqrUkKGKLPrR0iqdn+Au42bzcVpL0mwYN3vJn7mqve/\nu5cyRtlMZqcjNGWP7fBXHmZ4DQLDe43OIFLBV0QChMhi+IPFZC25u5aQpg7zkNvNxTbf18KqOjIH\nriylclyV/lSxrfArf/Q7vIjxb7/zDV6eG707vecCVAU5hDeK6gGjw1jxItkGLFjL2fN+mIa80Epk\n5E1BB8pgtcHar2h7oW4n/HJhnDdG25Jw67tbs7vRxehE81jXqIXdNAifMyurL6y2UlmoUpBVkUWR\ntaCLwirIUeFglKWjdGR0sBV8RHkMBLERhZ9ordESd10oxUB6ElahTAmTcN/rZOcdR6fnVJhpucfm\n3cfYJY6UMKYkJX1Rdyv7EPEEKzt488gS3K+S98Bv3uG74ffq691f7TMXoEndswfBNLlgqhWm58Xr\nF7x7I+BVK2Oc0CnGbxhRShLZHmdvtjRf0DPLUTUyGbfLHPXfRvj5eKEC66GyHCt1DdLRDUaPjEEp\nFT2E7FMxWnN6tmw9HI7Mdq+1KCVbijEBq5L+P2EmClCqorn+uEdb4p4MfvQzjzHLbLuoQbbUGmun\nZ7eA7hKZIyeY/Ddq4+14O74yx08f5w1GH4nzrnz0tZfPwHmDUpfEeRZYzz2IBdPQVBeBLeDeduls\nnzTaJ4PxbHh/D+cZUdJpRMZ00VjTE7v5MNwmzms4ff8kM9YEhotPHTgvroVqdjZJTMbdhi0v8F8T\n5+lfA+f5X4HzeA/nzU2e70SLEMalgW0T52HR3nw4PsLzK0zWC10KC2GCyWrI4tF5zsgyT3Dz9Lmy\n8DerwCrYIlCjbFdFWazyeFT0sXJ8KXzn3/wOn5jx29/+Budro5+c/uJpIjs3awTWqgUZCiW+Hyru\n6fsWpM/IzX8QHKFWMbPoNNPBesdGKnPbhrcr1q947/iw3CNEOWo36EPpRCnKUhRZQdYgylwKXQtL\nqmoUDXUQcT+pitROrRumUQZdvKKjIrbgXugidDWooFKpslL1EJ4XRDl8Foz8BJynifMkcLyMLxnO\nu23s714g5+Tr8Z9ur4nzwFxj+sr0RYzxH68VviNSs2xd8zLb7c1ifSzUAuuxshwqdYmORG6RbHUP\nnyI9HFCJPUVrnV6FWguHw4q7Js6TxHlzzQB0+jwuLLUCHvuaTEr+LOG8Ly6xsa/TMcBF0u2/KstS\nqbVTatSIwy3YzfEwB9QcXp9i9IjF2TanD6NZGFVdtyvn8yXkaV8/sV2vbK3RPuwc+5G6HGJjt6xU\nX0LBEbRyblpycTO4nK9cT1e288a4RsC7JyLdPY0lLU2Vp0yr5zmOzDj02DDf17Dsj2nCZKnWMFSz\nhi21Rbv5ZjKjEU9jMI9pHpWtvqZZV8m+1bVGr/KSbZ/i5szXu9/ARQCfpjyRoogFLtaKrMfzW4Dc\n15F5P+Y12dnmEqURcJsQDXwRvAltqaBRriNkGchi6CHXoGUwJZLu4c8xajKGTgTCfHaLVVeTdV5K\n5UPb+PCTE3/7L97xiRunhwf+/FA5m0e92lKRVZBjKBhKvWI0zHqUc4iARkmAi+71kt2EMZQxSwkU\niho6NpZxhusJe/eCPV/YXja260bfIsuymzOJYzoYOsKToYRpV3el9cJlLJReWXwJYqMs1LVQDpVy\nqOihUo4FfSzIE/hDBckylzEyy1XZTKI9kxhShEKlpiu6SGeWPjEDG7ZL6PY1M921AyDF2AtyI3xC\nwlBKdjJqZ/LvFt0Z4DyzAXuw40YuxO9kfe6rmb4P2rvj9Wow/70HqDv2/rP6lc/zmyz/zB68fp8E\nc06SGyUJyduPEPbWa7NMyLM0aMY1sZR+TmOnYTG9LGSqxZ1Fo63hslbKqmF0vIUc2w2KLsihUsTB\nGmPMtq11B8ya7vOakkUtUVetpVBq3PdlDWJD0/UaD5Wam9N6o20hTeytRXtqoGihprS51AUpFZMw\nAe4IQ7N+eaL1t+PteDu+Esfnh/O2vwTntcR5B+oybjjPanqqhbnoLBm8nK9cP9nY3jXGS2zKfYWZ\npNm7GghBLndFOmFaWjJmvcJ54+7TKbOrSMSaifPI5JX/R8R55a+B8+wW8z6F82434NM4z+5wXryJ\n6KDQQwmj0XGOQXQ5Gc4wQU2J1EulSaGWBV0cDh6k/5BoZyq2YwHzvA+LwAK+ClY11TNKLY4slWPb\nOPzZie//4B0/MuPd8sC/WyunxdnOhpDq5FoiqbYoZamw1iC4pCbOi04p5uGNEd3zZDcC301bh0Pv\neG94u2DtjF3P9O3C2DZs2/bEhZFZfJIs8JIkBmxqlBL4sfnC4guLLGn2WoOQ0xqb06WgR/CjIEuJ\nz2QV8QVGxcfCoMY2poZ/WpWFKhUZkmqKmHWfjfNyHLzCeXwJcd6nX2ufLPdjmihZ2g8TPBValh0r\nXWRvNY0QrXRTrRHs7PxEWf6kzlILy+PCckycB4HzRmDxooocFooUsI0x2Nu2xv40k1tiQWIWRYsk\nzosEba31DufJzyTO++ISG/tjsgC3G7SMyEqWNmIS3bHF85LNCrBPB7r56rfFjz7o6X67Xa6cTide\n3j3z8vzM9XLhctm4XhsPT48cjg8cjkcOhyPLslKWNTcd6eQiBXcYw7hcXrhczrStMXrP2kHf3zum\ne5SXiIx45PfiyL7GTNuiG0N54ygz2O0Ex+sLOIMdd7+/f+VhJtV7p/Ue7r8Q/ZFzIxNSxDSNupN3\n3RtYzaBrSazMfs/TVyEmZmy8dd/VcbdI+f5v3zeBgvgIkiANFA2C3GSr8QAAIABJREFU82mObUKT\ngtWKse6fDhHqmmzk2CKTALgJ1iNYWpc9cNAzILpHkNLoLFEW+Lkf/Bnf+j//Odo7HwDfOl34P/7u\n9/jDh4XLpfHJu2f8APIgPB0kF4MH3GrEgFIz6EWLsJjUwkj2fYzCaKClgVyxfsH6Gb+8cP3Rie3j\nK9u7C9drtF4zi1o+KbHxpDpSY1ECQv1jznbe2C4bXIFWwCtaK4elcjhU6nGlPq7Ux0q9VuqoYJW+\nGMOdYYM2BtdtYesFs3DariUDZq1MhyRhqmp8v9822W0n2/uSAS+llSUIJ/FpguqoGUMEcUMok6K+\nn657UImuQBHcboHsJmc0Mtuxj4n8Xw78XYZ4BwL3GXUX7ObP5g/eD3y79NdzHZnZNWAn8F5Jpjzm\nkgqzO4qrhzlotTQJ9TQOTWULMU51j5EBjGSAjDCoLUAtweIvSxh90QiptUWZkGilFiIn5mMnyBCh\nLuHxoeIIg6ipDD+dslTqslCXhWVdWdY173VmMtyxPhgea8i2XWO9a5F1EoSqNUuXKrqsuC4MC1Mp\nyzYuLpLX8O14O96Or8rx+eA8Z7tsn4HzrlyvGw9PT4nzHjgcHhLndYR6h/Nq4KcxuJwuXN5daafO\nuGRHiVvY2MOUNIlHnxx11hQSZcYB/4PYiJikvC+yf28v9jeA8+bL5Gv4+6+VZZJ3SaxbQebsAMZf\ngfPsDufZDeeJ7t1rAgZ7+qpJytorYbO+UMRYV6M8OVIG3gL/UMOzwWt2GEkTdBbBFsUqMZaGR0Kp\nwDf/6M/47m/8c6x1fgH4xy8XfuPvfo/frwvnc0N+/AwKsgiygh8L6zE8UygSRo7iIUnNzdtIk8SR\nJSndIvYyOvQN+hVpJ2x7YVyfGecXttOGbR27BlGjKekvi3NYoBanacUYgZOuG60ZbYNTz9af1PQS\nqZS6UutKXSv1UKlPFX0S5Eh086MyRmXYQh8r3Q9QFnTNjj2zHsK4w3nKLG23uJk/AecFD/LlxHnc\n4bzbvLgnVeaeSdSDpCNLipiPUGlYDUuDuY+KEjWfcHFfHyORBHWtLI+B9UpR6DD6oNPD97EEuSB0\nzDu7KGTHeX6H87KVqyplKT8B5/EzifO+sMTGvliLM6v1VAuVwrIQbP7SqSVu3rir24mt/k3f8Nks\n3o1WdoDhdAY+Iss52khCYnC5bpzOZ54+/JDHxyeOjw88PDyxHo4syyFb/BRUY4MwDHrvvHs58Xw6\nc7lu4QTrWV84TycXCnapYZzNrFncW0XmZ7ivoby1eJ2LS0oGp3xQcvKlSWfEqpgp81V2ExjLYJcZ\n3OX9PuUzUMvd5OdWWx8Ly6z0THUEt8UhTwN1sg1ZBMN9scksQPzdLEURkJb1i8EYOmQgCa+IqFtc\nGDW22CG+UlbSxZslHZYd1DAZWBmYtpunRTWkSzDIeYnC4Mq5fO/b/Nk//nW++Vv/mnFY+eGv/gr1\ng4UPpHG6vtAxTpcz+onAQXkslYWCWEfqml4sNU1GK+ZKc0UGqBWapzHZGBQ/I/0ZOz1zeffC9qMz\n148vtJeGW6hfVCq1RraiHiq6SihGVmBNuZgZYxmMEvWnmxuPP/yEX/q3f8yf/u1f4vlbH1F7R/tG\naUFqVJLYOB44yeDsxtWMrTndVpRo9baslUINaaPn3j2zNbMFVJBcczDnGJUAPRAmW1FGmNDUgvk3\nd7wP9ppG2XHCq6B0kyhm4Mvp7RkEJ5u/g8t96vueFXgdjZy9DV4Gu1dtwO6+N3uM39OK+L00N14t\nnPnJMTsVQwCRDYvqqLxGaliFLH/FqyHaqWyod+qU7Xmsg5Lt0lCFJWSnRStLLdQlsjNRHTcYGvWy\neBi2uYTx0+gj2m55XBPRkgEuPFNUQ5pcS2FdF47HA8fHRw6HQyg8ps/Lvn7EehQeRT1J3HBNr+UG\nnpdlhbIy0D3YUgqy1Lt783a8HW/HV+b4XHBe/wyc17lcr5zOJ54+/FrivMc7nLdGLJeKZu34Dee9\n8Px84nK60lu0MrSdy86NlulOdscCnSbpM+mzGy/ezD5vBMAMVYHFdtm+TKn8fyyclxu8PUwaszx4\nxlzfn2cXh7kRTczp4Q1xazf7Ps7zu7+78zCYpotprDgNEiNBpLgUfFlv3gtEi9FlJUpBuiE9VLms\nAk2jlKXkYyEN0UOVS43vo87Ld7/Nn/yjX+ej3/rXXA8rP/hPfwV5WHiyxsvzC30Yp/MZfSfIk+IP\nij0UxBSpnuaquuO82RRNBqGY2c23HUaDfsavz/TrC+P0QjudGJcrto1IVoxKJXFeqegiyEHgALbU\nwDtm+KVh54HZwLrxtR9+wnd/+4/54+//Ej/++Y9Q6WjZQn1xiCRWuSr6KPSDstVKtyA0HAm/ulqo\nEmUqYhKb8h3nZce1OTz2/elInDf3KLkX+dLgvHiT1ziPO5x3Ny/cmf4hmmTs/AObe71MXu3rWBrS\nSVhwpArothYIZBdCjRKUY6Ws0VbWt8Ho0eERAx2BObMPAd3mnjOaJZTCezhP73De8TNwnv1M4rwv\nLLFxT+TtYUuSuaoR8JYaUsVhPVyz/RbsJulrd684l0R59S7TCikWi+6E6qAbfQvjveu1cTpf+eB0\n5umDD3l6euLhceNwfKCuB8rcvEo8W7beeTmd+OTdC+dtC7MpVQoz25lnoTOypx5pLgy58dEMOjOA\nzU8xB5uK3ExmsmZNlZ3kCI7EX8X4OQEta05DUjYH58rxcIg+5SLZIswjWzKvnThikgvFlIjmJJ+S\ntH3Ri0VjdkDRu3/PGzYXPGz2z2ZnCmMTXYPcQFKZmashYcokvkQbLVGaKi0KJlDJlmmSC5UMfAxc\nGsU2qm9UG2iJNlUxeDwYyAHbt7/J9Wtf5/HlQns68uNf+3usl3d87fQxfnK2caHZ4PxyZjnU6JCi\nQj00yrKiJdpqqRa0FIxon6UubF4RKo0abVzHBdne0V9esI8jA9RfOuNqaCk8nq88XRvj29+iHp9Y\njwvlIQyk9KDIMS6PmUcb29rp2hg/+iFf/8Gf893f+UN6LQwVzt/8KC6lOE17bIa10jGuImxS6Eka\nQbpjU1l0pXgB09AIeY4x1Z2bA2IT7TewOX2Sg/X36Ay0I9qosZ1KH/rY/64UmO1jZ3CZQE09fFx8\nDui7IHRj43f2ZScNmT+ac/4nBLb7r+EmvbX3XLsjoRDmTVPFEIW4O9f++lkEqjHrpl0dFsdXgRW0\nDEQaxS8wWmQ2Jhlos0xNQBXTCnVBq7AusCzBd/hI8kI6Q7OszZXeo4d4b4M+4vOIRsCMwCmZLQ2i\nY6mVw3GNgPfwwLquqGow932k50sAZhvhrm8jJKJRO68ZOBdqWSllxbQGvnMPd3upSF3uJSlvx9vx\ndnxFjs8P53luCAd964w+uF43TudL4rwPeHr6gIfHyx3Oy0SFxPNrnPfM+XJlWOI89V2Sf8NC87jR\nMbMER2d+S+BVd4n001DJTQ9l3zRpbob22PsTcd74DJy33OE8zXX8Hucl6b3jvPggN5wHey/Peffc\ndz8Ddb91QwkAmDE+/DjMnZne2nGeOKEG0FTmSpbrSLR7na1A1dI3BXqBqi264i0DGR5+JlmCOUs5\nvBClACLAyKy4gcDLL3yT8699HT1dOD8c+bP/7O9Rn9/x4ccfBxHTL7SROO+5BrnxQaEYlGVQNI0Y\nJ8FB4N9QtEQ3FyWusY+Gbyfs8kw/vdCfz/RzGN6rF57eXXl6aYxvfotyeGJZligZPih6vMN57vTS\nw+yTRvn3P+Tn/+DP+eV/9YdcR+HahOePPsIVtDjl2qkW3V1KmpH2Qxh6RpnDgaVmQmOsFCvQlMyp\n3eG8eY/ex3nc4TwS5+VA+VLgvEwamuXeRAiHz9drzP0ebj8d2M/fs8kBxYOMjMkCWQIkJUyLo4gp\nin6KBLGxLsLyAMsRtMY5Dwb92hm1p9Bf6T3nfDf6APckNaq/h/M0cV7hcDxEAuvhkXVd3sN57WcO\n531hiY0YFHNjnuuRxAJfiM4MyxJSxT7C1bn312z+fP60Vcl83YK6ZZ3W/QIdNYlXb7i/0LtxaZ3z\n1jidN15OFx4eryFTXCMzj0Y9m1AYZKux85nT5cL5eqGoUlR3S6iZtZ3SdE0DokliRM/jeJ5GTrtM\n0HOiJWOpHrd5vp7m41aeKbc6tbuNWLhiZ7CrlXU9sq4rx/UABKnRsxOL61SPJEHBzFTrzsAHW6rs\nTsECU1UiHr2YfYQEav6CzYXFogQiydJcSGXnScSj4/JOh+83V2AUxlLYamR6rhIb8TLBA7mIuIF2\noFFlYXjBtLFKR6XHdY2GLFHf6cDDgT//b/4BUpWHhwJHw4+OH+HlUmj9Qu/G+fkSgMeEh6eOHg5I\nqXsNa/SCjwUqnLRX1BeEio2OtBNcP6G/nGjPjXFxsMpSDizrwi/93p/z3d/+ff7kf/gO/ennOBwq\n+ljQo6LJ5qPR5szEGDro2vjGb/wLHv/V7+HA93/nD/l66/yb7/wiY6lR9uAp9+wW3V6q78CyasF0\nZdUDa1mprSItWNhM/HCrJfQcbESpjIdJEiR3J9EHXTLgl1lrmUEaM4Zl4GOau64R8Eqd4r2s05yv\nk9mX3Xb9BghvU91vLNmnjplFYifo7oOdJVt9mzcT4N3NwUncTUAohKP+lBzO65CsOerRyUTyfilY\ndTgYenAWroidoV0QrvkqCXZl4PQModH1BumU4lGGclijW9MG/dJp2ujaEwgpvYNlUBruqfaINl5a\nlVKD5Ki1sNbKuq4cjgcejkeOxyO1Rrame2Mkmx8mdD3mbl5LEIoolGgnNo2kRAvuUYplDmhB6x0j\n83a8HW/HV+v4qeA8DRXBp3BeYI5rYqneO5e2cd6C4Hg5nXl4PEfZ8RqKDTJRISgDEuddOV2ugfNE\nKUt0wBCbsW8maTy8Ogi1hshAc9OmEuTGvvfeN1zc4bwkaHacl6W9YdD2E3De2Luf3HDegXU93OG8\nSOgFzrtLoHn09Ah/CO5wHhOU3eE8EueBaSaHpjfEK5yXJvCpYJ6kxp4kMYm25c1vkvw5OKhsa7SK\nnUU7KxpYTwdFBloG1AHecRuY2530Pa7f7mUnQXaIgh0P/OC/+ge4Kscanermrn27FoZf6G6crxd4\nKfg7ZR2wHAdrjS5iKuGBMXMbRR0XpXoJj4FheLvi24l+OjOer4yzob2yyIFDWfjuH/85f+v/+31+\n8E+/w/UbPxcqzKVkxzMJZWdJnGf2/7P3bk+2Jcd53y+zqtbe3TMY8CKSAiyIHFAUQQESrZtDirBC\nD9KD6Tf9yXYoLIdFBkkpRCsomiJCYlgkCBKXmTm996rK9ENm1VrdZ4akLIOew+kF7Ok+u/d1rarK\nr7788kuGD7rvfOXf/yYf/Jv/CDf4ud/6Tzz8sPPv/sefidIVc2R3xpPjJfzYIieiWPXo4FML9dLA\nN2RsyF3D4JTZKWMqcqejDcyupoHzPMeuJM5zzJUioTJ993De3GOcFUZnnCeJ81KV645PdVaSOVNr\nD3m9lMPMtjquWYRSgEp0xmwDlR0dO8WMQigraotS94dHYXuolFLwIfS9s5c9FBsjcR4EaTsGwwXR\nRlFPnCeJ8zjhvJY478L1+kCt5YTzxucS572zxMYco89OQ66TggRLWqOmvO8DG0fQ+vQgd3pdYMqg\nptttkIGymOrJ8I0+uO078nRDasMo7OY87cbWbpSaPgqz/kxLtnoy7vc7++iYG+2yJVkRhyGxuUsS\nYpouLXY0GUxVXU7VoV54EbxObCNMWaKuCT5fc7LrzkFqnGstS8mA1zZKbcHIieV5mi2/cgJL6NNm\njeRhGJoR+eyiO1lSQCwMa3Bbk979qNW0k0xRfKAWCMfJgDfZX8mgmAls77ngN8VKo5eClpFimCzt\ncYvONTbQstP8FkHIb6g8xcbRLBzPTZNQCWMdedyQItTiXC6OXQx/gPqm8HS/0O831IX+yeBmT+hN\nYHOsbVQtFLW4ntlqlYvQ6kDKPTIRfcdubxgfP2FvBrIrTa7IpbLdBz/9f/4uP/F7v0/5wUf82L/+\nt9zvg/F3vxkLVRGkymoVquJYNaQaWgsf/61vMLzwpd/8LX7wCx/yw7/5IQ9f+jK+hW/JaB0ewa/C\nuG5ouyJyRcoDhQfMLrR+od4KaiWyIaQkL8eqz3EHrLpJsaMn+Qx2mVpSDDMh3TiCoU40NzxIljmO\ntJQEdnHtXD0MxfAwkEtyJV4oSLcpGIrMwXnxeAZrT3PnbUniDHbPGf6TFHGN9/kG8fuak8w3P5Wb\nQZD8lXBTLylDbobWTiXGpfoblDeI3xexoUS3JLHsmCQVkw3oiEKTQtUGRem1YGXHdOA6IlvVZwYi\nPnetG4hQpCIl6y4LoAEwpDakVkpt2SEgjNE8s21jhBHd3kOS6J6moxK1lvOMBKEXpXrmWaZnznCg\nVMp2YdSGlPLWWv16vB6vx1/u40eP82aMik2q5xMD503+wF7gvE8wYLfB094XJiLNIUEOnGcepqOZ\nJGrbRuhyY2NsQuK8XGPFTjdft0VqpAojYShM4jxLj8ls+cJ0fyrOGy9wXkmcd83vVMNIPbNHgfPy\nfHmWPK739RPOmyf5T8N5iVWf4bwkaWy2rA+vBTUDNZwRKb/hMAR2Z1VuO+GTZoWxNaxGTrtLya5v\nRtGB+ECkIxaxT8J4LDCnh5+HT4mLZrKlKFRhtA1HKO5ckoQB6LfC3S50vaEq9D64vXnCS3QI0RIJ\nTXdFcxOPBL6SYqj2GG+9Y7c79nTDE+dd/Eotlcd98NO/+bv8xO/8PvU7H/Glf/Vvqb88uP/330wb\nD0FNwpg2yRnL76RS+PgXvgFPhfd//bf47i9+yJ/8wofUL3058LODWqddoFZiY9sKtEK7Xmhlo5aN\nvjWGVWxPnDcVBUk9OlkuxMRcuYH3MSfVCed54rxjLr47OM9e4Ly3j1VaxfnNTz89KLSYV4YUixKU\n4mEUfyqFkmJoNUp1qnaK3yncKGIUCYPfKkornQdxLhKk2e6FvXasdryO9NizWCKy016lgStFWryP\n2OoWKaUgtSbOq5+B8/xzifPeXWJDSKbwmBjLVAYJ99Ua3Sj22ul7BIvzOHzJ6h8D79k7PXvM9AKY\n9xtRmrJ3o9w76I3hyr1DKXu0tGGKhuRE0UNPt1htNbp/pRePk/JLleXPsQw6J9uXTL5otm+SlLOd\n1AqLOVsR5UyOsE7cXGzcCUOmZM2HjXCyzbqorV0opa7sOu75+YgPLsAMShL5D5ss5gQNJ5ZyQpDz\n4jCeGQEJq35zZr/Xcz3LHZJdn610R3yWCPZxtwzwXaAJXis0R2pDa2Q5RLJujqgZLdLxPOfBtAfo\nKLaHOnEanVZFu6xWt16CP8FBe2F7r3F988Ttkyf6bce7sX9i6L5DVazBkBqLCbJ62MujIg+gG5Ti\neN+x+56mUYUilXrZ0HLh2jo/dutcbztmzuV7P8Tf3PF6QUvIDEOvNjMchhSlVMOb8Mkvfp1baZQ/\n/j5/8q1v8MnXv8alKFoFb45tA390/D2hP26oPiLlEZEH1B8we6BQKD2uv6eU9GCyo7aS6aFxQpRL\nySHH2IzLKxHkPIkn1WRy5ciwjIHWseSrYtEOTjwCQrFJDiY5uUZNzNqpgj0my4w/fswdnhOD5+D2\nWcHu042PcsIdJP9621z2gWx/ph7XakucrIJWo8rOxo3GG4q/ofgnqAcgUk+ibwykx5oi2uP1xMLO\nSypFGqaK1QZlYNWizGUnxE4mCCUls9kCVkKRZYwA4yqri08o0eLaeK4fZha16SPK9Hqa2uKEq3Yp\np9kdG5OQkgaL383oBkOEUhq0DSmvHhuvx+vxRTx+9DjPT/f56V/P1xvDE+cNyn0HfWI43LtRSouN\nF7JiTSyosa4HzhO0NSoH5vFJ2JxyTbPUJILf3JylOjXJDYWMqadYtXCe8zbOk/9KnLedcJ4xW5k+\nx3nzO0jiPH+B845zPeOunwLfWKWYeQL+TJyX3QXDZCBarOZXzjCc2XvBrDIuwihKl8pWRlStiAE7\nwkA0Hde8ox6N68V6Wq6NkPw3D0PQEeXBs1AcT/m/QmuF3hu7PXHjiV52XI3ew7xTXVAZuFeKFWRk\nOYZKtPVt4DWSgbbv2D0MZulKpYQqUi68Pzo/+cPOw0c74+6UP/4hfHxnlAsNQt1qZAo8KD0xpWTj\ngI9+/us8WWN85/t855vf4E8+/FqohfP66BhcmrNdHb0qZRO4FPq1oeWC6Ma9pln8kEXMTTJwjoMD\n5y3mbRFwqzvPGrtykHTvHM57XopyDPfjDQ9VB6exnqfN55hP8owgNKgeuLtlJ8My0NopZdBkULnT\n/E7lRsGoOEoQGxcqV3E2CLJEK/diyGZwsaUYEY+aAC0F7YTqg5hfRscZQSRKOeG8uL0rOO/dJTZy\ncYA1lXKyhcQnujREHXgtlaL9Wf4Uni2r65jLwnn7vTbkMieOLrZfM4MZBIYyTLj3qG2KkoIQazkh\nwZseEKKCEX2At1rgItFLu8QihUhmbdNwSBpIlFsIUyFByB6nz4bqyTzJju+T963vKy++92nf5af/\nAdnqq9JaBO/JyMbGtKb3xCkTPXtHu+KumBvD5XwWmZ9msvhrQfoM9nMuDMvFePppzD97ZBUEXw1j\nvKe0bXgSHh59xRtRntJDIuUlPEjcergoi+NbzfZGkmWW0f5ItmBIoyRMKbtG0JtjsYBoRUWoVK79\nwv70SP/4xtMP33D7+Mb+tNOfHOdOVw95ZE72UoRyUXQXZFd4yAXOYsOqhAFkfa/RxgUtF1QrP/if\n/znyr36N93/1N/joV/4Z/W98iJYC5WCAwyTLom1tA2/AFqrM/rWv8gf/4lfgYeN6bZQmUAXZwDaH\n98Aflft1w/URk0eGXPFxYfSNorGYu2WrXAuDsDCE9TVD16QBVmtSyUWdiMlneWoMyiTuVJFa0O6Z\nhZseMB0Z2f/KifKe9DNzwlNEdJp0soLTGlZpXpoD6TSOD5A7WXxO/z4en7Mlg50Nz3VJ5iwhZIka\nZV1zvK+4OL9rYDYTP8kRJeKJdKrfqP5EHU80e6LxhAxDhiOuWDcYhuweoKt2SrGYF1N5IQ2TaNl2\n3yRaC24FtSxpq4XihepCKSMySdIxi/r1PnZmYd6sYZ5zdxrQ9b1HhrJHJtCzxEYFyuyaMz1/iPpL\n87AF7JY3B9cCbUPbRhdNIP96vB6vxxfp+P8H5837jhIY1cBik8AYBvc+GOxRPiJJbDipMwwgL2nI\nXEplK7kpl4pRsqtDrI9hLJn4KgmR1UVEgmgOX7SJ8+zZN/n/FuedkmiEUkNVcyPICeMdN/PIvh5n\ncbm9LQPHA+fNzz1/5vny+bnjSvsz8sNXwiy6h8TfXMBunskUBYt4KF65b4WxhVFpSbUqdgcGKoPC\nvO2o7RTu4GAYWh1thlzC90xEqZYKEwHzymbC1SrGhd0f6dx4Gm+42Y1dd2w3bv2GuYVX2yhoT2Kj\naJq7K1THNBSOPjxicJq3XvTCphfqQ+VP/qd/zv4vf43Lv/4Nvvcr/4w3f+ND0MLwxFtGkEsyW67m\nKU1R6NPXvsp//he/wv26UbZGkTT0FCjmXDa4XEEeoDwodlV0q3hpDGl0LTA0N7YT5+XVW29kLLYC\nY7YQRWzRDuZ+kBvvLM6ztS7NOTY9DC2FJg5ncx+m7syTgAtsJKmCDRKD5liJG21QWqewU9m50Cl+\no/mdjRuVEZVHEh4um1SuMqgS516l0gvsDcajYFri3G6F0gt1KKUrmt45ZneG3enjnomsmFZ/Os7r\nn0uc984SG5CsetCFTHNdJxYwd6GiVBGqyKo3nAN3tgJ+sXTmT1kD0yfbNplvjgUVNL0zGqoN0YYT\n3S0YQVyExMgwIRQZhUVsuIA0hQfFHwS/5OtaLMYU4Ep0tmixGIqeSltkgGQwnKzaZGz9CFoQk+gZ\nI8lk9JMsOE3q6YtQSmZtSzkkSExwoWtNsrlIGIQwzHPxk3U7NrQpY8yIOLP6z2EHHOaKMq80iByX\nIVfrKcR/Jvey2CDOaxkJi1QISNZrFs32rXDU5s1/C0MqvVxQ9agDHB4u3NppbVDM0SErUM3nluKo\nhP+Ej43LtdMvl2irVZ544g39Tce6s++Dn/n279NuO7/34V+HrdIGlAQSmp9RtdAuLepfbaONC200\nlLb6kPP3v8X+V38K+fmfpXzwiKjjG3G7OH4Bz772ZoDFmBBXVDfsMUgqKUQ3jQo0QS+GPyp2rVAf\ncX3A5QpcENvQVMn4OEiNtajPqmW3nEK62HJZLtnz+vsaN3EoOcRQCsVnxSWQLUq7ZXs0yfFdg7kX\nqek2bhFXhsx4+AzUrUngp/tfMPfrOfmft93bjxIpy6Cnlh98Bs38erMsZ451n91iZoBUwl+jBrGh\n1SmlU8eeZSh3GjfauFP2IDHYwc2QDnSQeywDZYNaQKuh205hB9kx2TEp3LdCfyxoVzSDXbVG80p1\nRdNrxu1O7zf2LqBpgjonoRylbeZgw9h7D1JjRGAsKS0sRA/0IoWydOW5lgYnwz6DnRSkZqvs2qIP\n+mdwnq/H6/F6/OU+fnQ4jxc478UDIYG2LI801YpoxSkHzjsR8kZurmacy7aNUgSa4pvibRq6C1Yk\nVW8FkcCQIi0TWSVvBlIT52VW2+aHH6el8b8F55UTztNTrJzrvL/AebLez4y8nU6izGQXByHyaRd3\n4Tyfn+hTcN7JMcGPT4aB9Yk35nNOOE/i/mFgxRNrKD6JjWJURnQY0RpdwUaUBOum1NKjnHfTwN8T\nx2r4ZEF2Y5GNC53uF+p9o96feLq/oe8d252+D/7q7/4+1493/tNf++uMUgOuX9L0c9PAWiVadNZa\n2crGJheaNqo0KhV5r3D/u9+i/9RP0T/8WXjvMZQLRO5uddOQMGG3LG32EWNPHjfkUqnmFCe+b2Lj\n1ox6EfRBKFdBroJcCqM20AuQSRGXwHkjz3syCz5JrXw9T0YEC+iaAAAgAElEQVRQUtUTnmInCmFN\nuHcd58kJ58kJ583FJDDt9EZcKhYKUJLr8NiD5F3eHNmiJL7Incadxk5jp/qNzW9s40Zzp4rQUKop\nm3cubrTE2VU2rAi+RUfOsVUYF0rfaKNRe0F3YDf8Puh7SZwHw/YTzkuiM0na5zjPPpc4750lNoIF\nmkuhrNGpx6+55T1MlISjVvNlsJvHDHnL8IXn59pFliGOiyJksCsNUlXhFEwEmbLyWTeftfOuRGAT\nidZTjwKPwJb3p8prEhtcBS4KLVQG6GT1QahHEJzmmQwme3oKAzzbOEpkIWYEOS8AUjQlkzFItdSQ\nm88A5LO0Zi4GvnxDQHEv+Z6KuWKHlUI8x9MCyM9XZJ5gf3FlXhAci1yan6cc/043Ifc8h5OQMhBT\ndCS7ZMCQNGn0xfrO5jMigpdgO8ODI+vSvEAJI9Ei0T5JxozY8V6rBlYklDdbozWjUClWka7c7A5P\nH7P90ff5mf/wbbZPnvjD64VPfvLHuH/wSOtGHRFIS5IarVYuXNnY2Hyj9opYyfFd0L/5Ifvf/JDi\nAaasGDZJjQ1Gy/7trtmmaY73IDHqIJUdp58txt64VEa70PVK1wcGV8w38IqkGsYHWcMXwUz0yAiZ\nRVcZy/k4x830q5nX3d0nJsqrHUGvQEj08pm9expMDXqfg/DUGUij/MJMQr66CLljHhzH+W9+BDYO\nNdHy2Tnfv3739fj5GMMi4OYasqbWAoMk8RdzcE6DSWqsqVwGVTK4WfhrNLtT+o48OdwJd/hBmKl1\ngutUYuxUoV2M6gNlB3aG7DiNfSuYKdVakBp7C9LMG9UVYeDjid6V2+5hJLs7bpkR1VMpCgHuh4XB\n3tFRZbav1TDNK7O0axI7xzXpON2dTsG1ou2CbpfIFu1jCrFej9fj9fgCHT9anHfgl8/GeZI4L01B\nSyaWKLgHuSE+g76e/BkkEglzM9MkVbkEzov8T/y9Jq4rBUoDTXWutHzdQah06wnnwWHU+BLnPSdq\nDpw3SZ2MswvnCaXWxHlnEmESGGecF9nmRaIwS1FInHdgtLW+L0x3PsGnD/gpV+ptnCenp6ay1j2S\nKqtNLlmWLXGeHDDBhsSmn9kKvSBqDAwvhlEwuVORiFEuuVHb0WbonTDmnEGoEGpqFVxrDrZGM6Pc\nKuWTinyi3PwOH3/M5Q++z1d/69tcv//EH48LP/zxH+P+/iPVjZrnq9RCK422VS71yla3MGSXinhB\nXdFR8F/4kNuHH4J7KDaxzOs5Q0KMjAamDTNKopWtR8lD7VAGz7oHiUCtgm6yuqtwUbxVTC8YG0ao\njMzlwHlGJKjSdNOcxHm+5t9Z9TSv+3OcJ38JcB7r78+/6kzwBkyKv2ZJ15wn2ezAlShJqp6l8p2i\nUXZy4RbEht9pdqP1O1vfaQMqwtaUpsJWKpe+U+0eZJUANRTkbVO6NNyvlPFAsxZm/3fwN53+Zuf2\nJCecB4JlCdwZ5wnD/ITz/HOJ895ZYgNOy6DnEuhTzp5Lvk++9/nyCUud9exv/uzn8V/LZ0Zf7ZjM\nOjfVkpa1zEBUk8jwNKxkZWBp8ky1gRImjQ9gV/BLvCQjpqGLhWLjAjLJjS3LJyTbXknNhTpUHNlg\nB89Jd0zkY6JCBg4pkx+JsyBh/FLK/F4R8GTKEBcxEiPVk73t4b3EFIvGQ5yDwcnzuk6wraA4r8mL\nJYEZ1I4rNF2E5fQ3Xb+v4LfQzgRCilpBR4KTOgkQsD2k+h4NxYPEqPkyKpgU9u2Sb6NAQ7SHskGj\nPVXKFRKkHOdSRKiZFRA3eBCkF3RUNm48/pfv8eH/9utcfvgJ5sYv/++/wX/8h7/MH/7UT9A2oW6V\ndqlsD43tvQuX7cKFjUqjWIsSGNNVL0de4zGiNnEI2MXxzbENbiWctx2nbrcsjsqzPQ1e1KNcRTm8\nHi7CroU7F7pc6DSGbIxxiY43w/EexAaWgUoPvsImy2SB3d4KOJl5Wgx6GuIGIAtyw0XWOHWPmmAf\nwZoPszSMmx2DQs7oppiOCDzCATifRVlWkD0OPz7PaeAuIugUwPzZ/afxfVpV5v0vs1eWmbUJ+lZy\nrkgCp3TF951qO8XvVLtT+47cDX8C7uCp1KCzVBta0lKlgV6E2mHLB3YduBoPAiKVXh4ot0btjZbE\nRjGBPuhdkN0YDMY0dctvGAZRJeceycb76mUOmQUUiRrQKaPOWD7Pr7kQlZ3CQKBUpDV0u6C1RZ20\ns8y6Xo/X4/X4Yh0/Opx3ioEcqnFPU0txEudN4mK2J8ibnhSjxOY5Fl5ZfmkhNU+ct5HJhngZ0q/L\n1eACsoE0yeRVxSXKmyOg3l/gvPDlcjjhPFZMOdQaAtMT7XRC38Z5JXGeHBu5PDHuJM6z1e2AmYGf\nXgH+POZNLDY3jfNZ/uK349D1/OO/b5MeCz94jzfSGkqKngmeJNx1JuIscR5BbDBNsIviVdmb05sy\nVDFVmmuU/GrFtMOlo9ug7rY6XlAcrxLPkRolCG6U0dlqbARVAue9/5+/x8//L7/O43c/we/G3/7u\nb/Db//CX+S+/9BM0EapUWqlsrbFdL1yuFy51o9ZGKS3wjGv4X3XF9rjSPdtpmgVWG9lBzZPUcAHX\n8GlYl3JIyDhHGOHP0hXwID9yjLKBV8VqTVKj0b3STUN9nYTGnCP4VOvELj5w3hlU5YQlOqUdOC/3\nHO8UzjurTU6vdpp3B87zE86DqSKSVLDMpSX2IBZdUGpg8Co7zXc2ouxk487mgf/K00CeQEeKzhtR\nTuygLmzFwpPjusc+pFauWujaGHoF3qP2jbILvHG67IhHYmp4EEmRhrS0hAwy1ZFPwXmaOI/PFc57\nZ4mNQ16XjOAkHQimeAbCNUBPg1Fe3OKIDYY/u0/WBPH12klwzC4nkWoNWZSUjH0CLYmNLUiNSHB7\n/K0KUqIThl46eu2U6x5saSshqTKNkXHxUG1Mtr8RryekMKMeTL4U3HNQJhGhLicJ4fkcSMbcmGDx\nFwWNYhJSKjk9POagjlNpQMFHmECFNCtf1dMxN2tvRAjJaC4kJ20IJ1upeRVPi8zpCvlqankiN0r+\ne+6ic2FDWJIwj8+jtnjhWIjlIF+cEYar6uEGPCIgz7yPI4wGey2I9lhN1KJlqgw6HfVzh4+kWESQ\nnMbNOq0XSq+xgeRK+arxw3/8D/B/81v4x0987+98A/vwZ3n/gy9zfVTae0p5v9Deb2yPG23baCR7\nP0ICKxHJ1ncxMyzbVZvAaDA2ZS/CTRp7ep408fBgSGNI3fJ8a4IytRS1lCB3uLCz0dmi0s8bPkro\nyXaC2OgkUAu4FT3HQ6M6xDKxpBRd8DFBGQcLjsUC60Ypc55Fxsk8zY5MKUPpkn3v009M9j0AnExS\nxVcb3TWe9JjTwsvgO0ffMSbz/+vnWZr4aT3O47s/X1EiptvRDm/60ZgeYzbnn0sqI1KtIXSKRRlJ\neGzc0H3gTw5PwE3CS2ZyawNkCJpMvtRQkeo9MjXCoOYYdnWkKPfSKPVC3RttNMoo6MhMnBeGReuw\nUkpIaDNrIXleZ6CT9BeJAF6iXVipy9R4tf7Nc2XMrAd0j2A3imbAu1BqyBORQh8W7tmvx+vxenyh\njh8Nzpto7/RI4dn986WO9544Lzs/TKJjbqROytzwtRJcA0+JClyS0DgTGzNAqAdO3AhlR5PYsaRJ\nMwDaPgXn8QLn+QnnTcQaSRZd+Ag+G+fJIqnPpLsPGB6b6GmOLR6PCz+BwMO6lL9yiq/2jMaYf/Hz\nCT9dmjMJwum3WaIy7/L1IcbK/Ks70iNnGMJlTxiZOC9AYSipVcJn7CJglVE1zDxLQal0bey6hzJX\n70jrWYJDdKorhS41iA2gMLj4naI9zN29ceFK+xnjk3/wD9Bf/S3sB0/80Te/wf5zP8v1S1/mWpXL\nprRLYbs2tstGu2y0WuNzrNLpE84zh2Jpkh9nZ8RQyQ1yePn5VAGU3OyrBwHkEq/RJYDDyPNZWd5r\n3oRRK10ag0r3wvDCGFnWYks/FVA7TUsHUXYfSax51RMvTALhGc7zvyQ4LxaLaSx6JjgC5yVWyvHt\n6ffhwFE+xGEWWrL0mCg7ucidNoLU0Jshb0DfSKhzJXHeCHKjeDQgqNVp1dBmNHXuCnsVRhGGCrIr\ncivRurYPxr1ECckojNFQHzgjiSbJ1tAT59mn4Dz5XOG8d5jYkJXDn4vjCni58k2Fwmo19Zkn7Qhz\nzxfgT3mUH++0ahemckPJ1lCei0QGrAa+eUqMyHIFoVahNqhboTVl20BbxSwMQoFFbMjVIRlV1xgs\ngkAvQW6cFBvre2TLTbcpIfTctBMbjlmPqBMgpPmVOJluiMWVk7fGmrC+2plZ3k8GV4Zgpit8RT/r\niISzT3RcQydrRvI9cjGcao6jZodz3mVBGzn+tjxLVvDTGdazawThGj1XMHxG5fhmxdffk8takjfX\njVEaXXt4pogvYkPpKGNpRpTo7R6ETqfpTpkkVIc2Gk2dfXuPP/nqV5Bh+Pe+z3f+yT9CHq98UISH\nq1AeFX1fKe9X6qVSW0GZZTTgI5UnOWAtVTOr0kbBqrBX5aaNJ2/sKIbTUWrZaXqnquHD13eO3tlh\n+BrfrqVS48IuWyg2eoEu+J7ZkO6LTYm2dXmBbcr1gigRJdu4zojjK5DA3BQn8LCYX1POFgy9UbQw\nSpipjXTnHmMg7Mcczjlf3SlFibZtUdqDOrLmyQFy84nH2FhDZX7GYz1ZyiV/EfxerBtnFn/YJDfm\n3585iySxEeAEsehGkmOreKf4TrGe9ZCO34hbl8AnBuV25+EHH+Ffep8hG3oH2YXShTKU6rY6r7gK\nToEWHjpFK6Wn5wYSQXa6uBdFtYQXR86bLNmObEq6/kdWRLKrikZ7sLVOTyDrqw/88Gj51YEukf3S\nuqF1Q9oW5X0pffxMY+HX4/V4Pf7SHj96nPdpj5IXOG/ij6naiBLkDPJp9uyRcGoRg6mk6hGkSGTD\nr+BXh2tgQrEkDrDAiReQC6HsbbHRmf4EgS9ryMJlJnpSQWfE5v0zcR4vcF7EIROYCaS3cZ6fcF56\naHCEyGnMbia4h65F1FcG39eFUFaXF5/nV9e/Dzj2NgV1UFgn7DdVybIexGqJmxhPZtmCJfA7Uujx\n2LyUshM4wwW/KFaUUStDK0M7uzREOiHjvQO+MNGg0onNf/BWO5Unqt5oFNpoEeO+8h7f+7Gv4B8Z\n/bvf5//+J/+I/njlQYSrCNcS5Ea9VupWqTXi7PzKPrHKCbL6YFmtDImhEUpwwVJNEnyTB8tjhNdG\nKmqzbjRA4ohYLpWVQB2t0HV+v0r3ym7KGIp1CUW5CeqygJFZlkDjifMmjvbEUDPDP3GexXX4S4nz\nDoXHfKxPVVXOPc/rM5NZKEmIDoruFLtTPW7Nb7TR0ZvDE7Qf3PngDz7i/vg+bFsUCnj6C6lSnqBs\nQr1AaU5rTitwL85eoFcwjXnrHeSeHjJN0D5xXks8b2u+j3G+fi9xHp8rnPfuEhvMTWzcJlM8D8+L\nMQ0NF9P87FHPX+/TDn/2iPPteaCLIjHNkpO8XfLWQC+Gtk4Ry80vFC9sDK44Dzgbg0JllKg/ktKQ\nS4erh0Ts4nhLqZnnAq5kvfusv4wNr5vkgBwMY/XcZtanyVxEZuCW2XELPZlDrXPsZW3ApqNvBFHN\n3+M93Ua+d7yu1+To3YPDMOLvM2NNkhtrQpzWHaKzCmjKLU+qjcnKFjmMl/O7rM/8IvjN95L5nuJh\nRiZBoogl2DCCDR0sbw61yGAb6WBNbBILLdu1ZkvYVIOIOFV33AuyRUZFEmy0Ilya04dz+6f/mNEH\n73/pPWopbBXagyAPgjwKehXkokGYzcBWyV8yKM+F2PyQiorSS+EujZtXbrZxRzDxMMvySqfQ6qBU\nS2GpkuQ7ZjA86vK6XhlypXPBesP2Ajdig717tAsdSR7pMWuco5e6kEBqUm++RhOnrX1c/OFJ2jhe\n0ylb8joVidKiWlBzzHaGebozE+z+tiXINdzT/NYV11S5hLSEafLkOfAjkPmzMTjx0bp/PebtHuef\ntoo4ucCbpbIprtlBAAUZMA1sZ1YJiSyHzPNn6bzUM1szMpOWRkwD+Mk//CO+9X/8Gr/zP/x9Pnrv\nq5E58ZCylqx/RMHKbIVX6F6QkQamyUidlcVRYxkGo9VrjMGUKZrB6HFtS845TXlzmV0Ecg0R5Ah2\nc4y5Z8CT4MVKQWtD2oa2MGRmWJRXzfXr9Xg9Xo8vzPEXj/OevTMH1ps/E+DlWvoM763S44zRhShb\nUCJB9ejwnuMXjzbb5gfRfY3H+OawJc5LZa6YEuah9TNw3pTrywucB+euKs9xnr/AeWsnfcJ58/xO\nzJf3ZQnDwnEeZIWs6xNZeV+B9HyGJ7vxPG7O8yCrRHkmQPK8S6qjiZJikMR7wEpwTeImAIycLrie\njNQi0+0TBsStKLKHx4mVQteBSEfoIAWjgThGYUhjSPSk6FIp6gx2TDTKl0QpwxObRSOAj//pP+Z2\nG1y+9B5bKRSBqwgXFbYSWXatilSFkqdVIQFqXpdjEy1AqRLEwKZBXDQLHz4NbIvpvHhHQPc4xxnC\nkQFgSBW4hkn80C0SWVy42cbNUrWxK94lvTU0XyMw/4HzPHGerGsRY2KscfHu47xPXz+e4zyPPcXE\neavb3/F+wClv63PwItl+WD3os2ID7R7c2h3+yn/6I375f/01/t3f+/t892tfDRKpKLortSvaC6Ur\nxUqYKldCja4eamwxXAwrSaZkol2KoqVSS35vADpmkjgvhGTAp+A8Plc4750lNhB51lZx3cdE5aEO\nsFkbHrTc/5s3evH7C2JjukVmu08qyyCKC3B1ShuUulN1j4GKUdwpKBsbVzoPDC7sKBWbjXzEuNQ7\npd3hOvAtBqPJ3MASpS0ai72kVHJO4Fn3VtLk5ThN2TIsg948j8k9HHwD87WyFGUZ5cyFQvMxuRlS\nP9pVuh+TVeL9zTw8GUaylLmv9dRizYxvrC35fhKkBjoJmSQu0kPrEMzIOb6djvkmun7OEFgnQeJE\nMMgJHq+n8ZolN3Y6GUqLc5eLps+Sixx2louYClj2gXZAryONPSWAz+6U4Yzrj6PmMR40+oeXK3AF\nfwCuglWlpyTVbC6+x+7zYJUNsyAnOnBbpEbjpo3dBFPHvGG+M9gYdEoqToyjJZOXIK06lSER6Oze\n8F3h7vAEfjN8GlgmQz+NvfAJbGY4kwAbc2VkBouD1JDlhz2lfGFuRiUNwUIGrOrUYgH8DNx2xojg\nF/3OPed8vNpU/WrKFD2zSKey4BXIDrae9Tkmk3ju5HNi39bPqUaaWYLz95sAfL1W/k9msDyvT/ny\n58+ztEUzSCYgU6C689d/99t85fe+zQc/+CE/+x9+h+955+Nv/hy1Fdql0rZGaQWvFU2juCqVYgXK\nbBlNzrP5PrG2lBKGwHMJNDHMxppqZnNOBKiTQoJQsp2cLDwQxFl0V+lm4XkqUa8c7Zez7aFmDbuF\nC/erx8br8Xp8AY+/MJzH6T3OPyfOOwGOVGoEqeEH1lvkhqMtfLiEaJ3dLsZlcy7NubRBaZVVwqEV\nroZfPW4XxyqRfY+vGKl5LQgtcV7BPaQJfzrOS4z3Fs7zFzgvvu9U5cIMS5N8Uc6llLEJnNdAVzx0\nsYxVsnDhPJfz0qzN5CnTPZNXk9AQmThtlvtk/NczCT+Jjfz3lGwU4lzlR6sIsxXsrCeRtclPn7Is\n7ZUsoTZGqDYIxYZLmGabKGO2TZeaXVEs9wEWm1IX6tXXdzRx+Cs/jnXnwRxEKSJcJT1jG9H5MPzY\n46ZE6XoJjDmBzDSYlBakREHx5lg1pCpeooR4eJZ/5Pmdjf9miYB4KBtkXlsRvJ1IDd/YbQv8OCr3\ne8XuArsgnUxmSZITE+dlM/jcaMdhuI8gHxKLn6izdxDnHaqCde96rTPO422ct7ovnpeZ4zGeCvZI\nZnkowX0g5shwpDt/7be/zV/799/mvT/+IV/97d+h3Tvf+4WfQzV8Yao2qmZXEolOR6UoVpUhQhcJ\nIi4Twj7nUhFKVbyl6a4YJocSB8iWurkqSgmV++cU572zxMZcz+TZPfFzrtfh9XAwx/Oky1uv9Pbh\n62/+4nFzIZ+zpSTbxXP2/gpyceRi1LrT5Mbm0banMig46srFdx688+DGxTvFK10Kgw2w6GNdb5S2\nE71AJxubn2xt6kMubmejl5xcQzP4zQU9v8NsQSQ62frY3w85B70T27nmuSxSAylBUsxNqcJUQ0Q8\nsVjuZv3ZsDSb9MMMIg2J3CRMO2c0zAvskm7n2Sb3IDUkO0mwTLvm555L1hJqJGuj4zgHua6sDeP0\nBJOqETiapiIkbkXT6EiPMTFrGU9JpfzMQRR0EbpAvdwRGbFwtyA2dEDptsgeqYJsilwJcHOBcVF2\nKXSfCwhJLOnxGez5IjwQuhduVrl540blPiojlyiTzpBOoadHyEhSQbG1OKUDsgfJNkbD7xW5Cdwc\nf4qSCO4Oe+AJz1Zdq6jomU9KnGwzW+34lpHUCi/xX2cWVFm0qx+x8EZOKEzCilZMnVGIcp7RGT3M\nXM0Gw0YOoWPE29x8u0f9c+KlFd4WkLNjXMBxbv30+5yAE9Ct5/ppzjwnN+a3m8HroCuer11Hdizn\npEftpD0bY1G7rQplGD/9ne/wU9/5LhX4ye98l/rj73NrX6deKu26sT002BrWNrRUtDRUGqXXkDgX\nDUPanEMzy6dFot7V6/H5GCEP9TjHcbpi/j2TaBpYzhVFEogEez/M2M2in7kqQ2It0Qx6LMm1ZZ/0\nV2Lj9Xg9vmjHjx7nnXHdeY0547zInkxCAZHDRy1NP/0SBIdsjtRIZqkY1aP9+6XsPJTOoxqXsmf8\nSmVuNfQ6kAeDi2EXj9KWqeLLjmVBPkfrRpOdwHlHSepznHcq031BbATO88/AebCSTLnpnDj32SaQ\nmRFXcMN1HGkJf36LpyXOO0Jp+LItUj8wjc7PO4Pzat0qC/OFY2KSNDlAnlULqafBuxwkmMXG0UeO\nKU3iR0gPiyQ3hiBdsFIYBKHhMqLsWOPzrISVFJwCMvJzdJwW3+Q6Fl4Imb5Rdkd3x0UoomwFpPrz\n0vXcQ1j19GzRzMkdJU/SCLNwj+82pqdLIUtlhHHepJ825EldRarSI6EVG3ClyxblxnKJ5qKjcbPG\nfa+MW4G7RxeNO1gPgiNw33lCxT8C53GQGr7qwOcoeUdx3kFgsJ53KDr8xXcUP1RMx9JyoKT5t6ny\n0PWecWJDreuprjH+yh98h5/4w+9iBh/84Xe5v/8+3//G1yNR1TZaa9RSqKVEolQLXiq16GrBGiUr\nUY4iE+OVgpbwtqNG4tZwxvBFoC7zXF27p/gOFsa18afPB857Z4mNIGufRTzgqN+fzFlspvlvOGEv\nyY1jBV3Vn8neyyQ2UrFRtkGpYf6y8ZTutjvVR5AbXtis8TCMh+FsvVNLDepDw+zoyoXNH9jkiVIe\nYQuzS+/BAkoTpGrI2LQu1YaiadvEmqjrHMyYkczoWhLyh0rIyeYGF7L0hKy19NnSNZQqKr4myaF4\ns5Q95cQlGDm6RT3gHiSIG8H6RlFgBCAVgi2IwCup/JieXQeZwSEHVQ+wsdIBcd0cWS1JZYSqI5qg\nHHWaobqQLGMVdCvhTn5q0RsLACmXc2arpmVilEHUiXMnEkFmVgWW6tmOzmKsdMG7hxFoygIphHHY\nlZCjVmHXxp1KX8qYbCUsZW2AQ/1iC4xYOn/ctPI0KneUPio2SmQQ1LASGYniO9m/a1ESYRYLbsro\nCl3xXeAOdnO4GX7zaDG6OzIICR6G6jjmyypjmhy9gNkqSTmTGnOgrsyREESXyCFtVCEGD+s6S4Kr\nySvb6AwfDIsSiaXyQSiFGF8lJKMkUJHFu8R6cXANz6LXW2jtWe2wzOxDqjZmcASWwct8TScuuEff\nNfUJNzi+R15bSYIjPE8KZRqxpsxZEsT+X3/7l3jz+Mjf+tXf4Nvf+kW+90tfpz402rVxuW5sDxds\na/S6IdrQUhEqRQJgT1WSzF3EnHN5/nSCBQRL0sMtjL1ClhxF2CPX5TinsgC2BWPDSDDSbdDN2T0t\ndpdkVDEJgk1zzI8xspX06/F6vB5fqONHgvM+neQ4/na+nXBeqjWkyvMk1lRsXJzSOkU7jZ5tto2C\ncqHy6J1HjLABrwxXPF/gWjZqu6APHapFZn56qaWnQUjFJ86riPRPwXmnjebCeVMBccZ5/gLn5Ut4\npKgC56U3gEfACRWqIJrrfXGmWX0oQBLnYZBS9GeS/7xGCY7C1HJ1zZux4gURs8gKVsxb7qDizDJO\nT2XKJPxnZnnJ44VVPhNwLTZzy5MtCR3pqdS9pxlrKXh1LJNaEzNMFXNglUhwDWqoOdSgWlQsjSCJ\ngrA5BMKiQmlkQwFfpUcscqMwqjJ0i+ugIGrotiM2KMMWrjIp7C7sruxEeelIAitwzdx4x4Y5PzVF\nE214xOoeTUXj5pXdUqmRySy5kb5qRGnECGzH6RyuFI4d2D8w0YzfB0FAnPLYwwv5+Dy9niqg7Iv8\n+cF5U+0x1nxZOHYShW/hvCB1lBjzrpm40uckyDp7zlGCnJNHzHFRfvubv8THPPJL//I3+L1v/iJ/\n9Atfp2yNsjVq28IIvgh1+l9oxZkkR5Abqkkgjiynm/NlzgmLVcWEaFNrgllfpTZk8vs5zosv/nnB\nee8ssTH3kuRGSHKUxn5W1mJqfjKV+lNf7c/6+9sB75AlEizyMynioJadTe5ceOLCjQtPtLFTegQr\nFad0Rceg2KCMQhkdNqOKQ4GLP3GVGxe/UfVOKTuuaWiARHvHFsF2EhUqBSsVtXG0YXr5+U+lDLO+\ncpblifvRHiyD2+HlEF4TzMCTrbM0a7gQYeRzndjQmYx0DDZsB7rHetXJdqGAxftPVv/5heYU2Jht\n5I9Al+y2lmwj6+fvSKyp3ZGdXCiSbYZTucwREHV18Yjz+6oAACAASURBVJW4rpNQmUCBed5kLQxA\nEDJTZUIqNgi37iJOQdBtp5QkBExYa76BFoGm+AVGTQ8EGrtlAdNcEPIkjFkSFCgEy44s5kJ35dZL\nmD7tgu+K7IliaoFR8BKvP+W8x1zK+WMRyPzu8dwduFm0Gb0TxMYIkCM+WXTLltfTkHTqNzIATFkl\nwHkRO81l8ho55PiN62Z53+jOvg9utztP9xv7fl/9zgMICu77s2A3yb2q4ZOi0yA30E+8g89R60dc\nyhNx1Fjmfce3yutNdsY5VBqHe8j8wrZYfZ0yZDFUoi40Sl+Pc49LCjcFmzXV4ojMsqko+wC4ffmB\n737tZ/jd/Rv8yc9+BfvJ93l4qGyPjfbQKFuF2pCyIbpB2cALPonQBJNzLgTOS/CmZYFElYIly29d\nGCMyWpZt2cKINueRKAXHtSzX/uGwW9486i67BFkiWuiilCRPPNVDY4w1Dl6P1+P1+OIcfzE4b76B\nnP59Bh6z3jWR/lmdm95ncjFK67Sy07jHzUe0ARXhSuOBziODzVt4qVGJBojGhQtXudF0qnM7Li2+\nXKoVNJNYUzkSOC86SNhMmR47K/58OO/Y1K2c0AnrBdGQAMhLxE2NB4/5vIyHI2v3ozQoHjPDpZ9I\nDTEWubHMLc+ky1QNnkqN0dz4F1k4c8aq9XU13ixwmud3fVEGMDdkE64moRFt5OI1ZM/7TdN0U0JB\noXrE3QUGhdVJzkMxPUSxFt3JGDNrHx+zCJFUK5qlJ7OM5CA4rGn6fDS6XJdaV6yj1hDtlBIbZgfu\nrty9cB+ahcVBbPhk/txPnREPP7jgjRKrGOweKpXdG70rY1dGkho8OX4HuQN7KDayT0vivBOsW+XI\nc0Adao3j/vngPw/Ou/F0v78DOO8A87PMRT2SoEqoiFyIfNYBeN+atgepEbhazNbwffPeA3/w3/0M\n8ne+wR9+7SvsP/Y+X9oqNckNrZUyy+ZFkWxLHYmrJPQm1lONlsCz+5KWMAAuM1kNWjw6LY5QPB04\nz17gPMVVPzc47x0mNrKFFeRok2OGcYzLqXRz/K3nPxdOy+m/6xU4igRfkBopqZllCivYVUearyC3\ncV+kxsVv1D6C+bznZqF4tALr8+ZUGzHAmnPxIDWa36g8ofKIVIuaEUpsOE+eEKoRgISCa4lZtL7R\nMZnfOpsp+1MDF08ZFxEwz14OU+IoRLDdNOsCLWqnNK7LWOfQIrPgMWilyPquFMEmyZH1jTPQzI3U\nuq6TbCgsB3JNYy6tAylOKZlloGDLt0NjYbgXFvs55oKbC7/My+lH4CyCpgrH03xHJUxf5+eKUxZP\nPpf0uE4INjCP2rYB7EWC1BiGVktnHVn+FJK91X2LOs7hjW5RmrR7je8mBUsflgB0EmZAq1PO5HGE\n3QpjB26O3uOci/kBKEqJ5+bYEA9n8XleZBgSK1Pc7kSbsN2jzrJL1sRFnkYYiXk8SfwVIZaET9ye\nzbFJfjwfk8cjbDqbDw9TLTP2Prg93fno4094ur3h3vfIgOT4d4KRv9/vC8RInCykhqFmtEjzxVSH\nbvL5tD/kijlujtD9KZlBX7dZ851vmSHPF/iObJaAJPxI5Y9JnncDt3R/Z/bZiZ+qkuOUkDCj6S3j\nvPmpD/idn/gWjw+V967K9l6jPVT0WpGtQNvwSWpIw8kWTc/Wtrgq0+PGc62LWm1HC8uZfeQjB7Zq\nJKNDCuGarrMlcyi6zNMd26KCqbtwl+j9MgmWospQpZKZMNJp/FWx8Xq8Hl+440eP8/LwM7lxukmA\nj+lLthSiZ7XG5uhmNN3ZJFo0btyp3qluFFOu1nkw4zqMLZNYpgXTBm5cuXDhic1v1HJD28OxCZQo\nj2CWyWbZMV4RRiS6Xkj9177sBVnzHOdZxGv1o0Ec533nPAeKSlvEOhLxS11m19F4Tzli3eFTEA+w\nSWwMRbqk6GHG5km+rLdbJSUT9/kpoSXBDpzIjXiqLtIi43XIT/IDxM9EsvGkkMAGppsJsTQoE/f0\n29BVLu3ZpSPILUnT+pnttoypHSsjCKtmadCa3mqJF5XAG7IJXh1t4X1GNUZLTzWNTnR3uTI8vM+E\nvrB0yRIPA3bTuJUoWQ6l8PTFi4sZXfNCBXQQGxGb3Y3hHqTIUPoo+F0ioXVz/IlIZN2T3Oig2Uo3\niLEBnDb7C+dNTJS/J745z855/Nk47+kdwHmhWra8H3OiVMmYnXtEogRkYv6Xx7nsLt3umD2Qph/b\nRz/+Af/+732LulUemtKujbpN77SSXeymGWskr5bS6FTev4qSJs5Tj32kJ6Fhjo/BSGw/kMR541Nw\nXqy1nxec984SGwBHHUDOF/c0YJkbJV+DdY7V0zp4vMx/3ZsyA0RsZiXJDQ5yozhlNYRKcZd32uhw\nA96A3w1Bs8MFnOZSMH3qtDZodqdxo3FHfUdlhzrCzdg4DC6LRB/oohQvyfYPuk9nhedrisPqhpUr\nFMHOC6q+TICCKEnCIjPIApDtgeQiSPa+9iJp/gMiHewOdgPbcYsJ0qtiNRbQMQrsEsHO9CA17Ahy\nK4ApeLEgHqpQaqeooWLRO1xj4UBKsIAEC2npaG0lFzZz6Nme0pg2IQEaClBCBhoMekE2qDXeQ3Qk\nQa+LBQ2MlZs/gpyY/w4Ra/w3SnlKtFzN4DTr6ObC5ap4aXTdohsJjWE1MgEWwW0Q7ZLcCmbR6tN8\nsve+QIQNhd2ic87IcpEcMxnPQRwtswZQFrGkyCEbPXU9mYS0E4ZZrrP84qxKmODwgBHkY2YG5yA9\nnsHTg+SYrzRfcnj2bhfGMO77zidv3vDRRx/z0dPH9L5zuW5cH67RAx6BbEN6u93C12WSCg7uIceT\ncEiN62j6fCGwwwNjZqQmbDwA4MwSJl8/GXwPh2fHUtKbJVyWNdBGjp0Ys5loQi0Nvwx8SNTyUkEa\nKhtD7tQagIiRmaliMV+qhQmtQX1U2geV9qVKea8i10JvNTJAeon2vdqwUTNTpdFvPRVE8R0y8EnJ\neWXTuQeRKLHSE9FrJgl4R5BdycQDq2NKR9hdwtzbdf0cFNwVpVAlPD+oNYg3hT7G6nbwerwer8cX\n7PgLwXkv15eJ82ZpRBosz/LUUxeUUo2qU517z5LjG5t3dBiFmhUGNUzCh1E34DIyQcVS9W7hiEXR\nO9IeloJfpip34jyVFzjPMp0kfw6cJyk+KSecl6dRI8tss1R3dmMRnaKNlbzyfExQQvEmhwfBYpri\nGEEOSI+uJKSfxcIVEzcIuNoiD1bJ8WxGM0sw0YMEmYkmn4RE7jRtrO5hcxgBoRhJvCR4ZKrL8dq+\nvDx8YXs5ES6qUbI8/T7Cz6CFTiIJJsMo2x10oCdiRlrQbFpLeGVkFx3LVpyuyqCxs7HLlZ0L3UqK\nWnoWGY+81oY57MSmcZeIpT2vjbks7EH+Pkd2YE5BUq3bzbBdoEuUPu2EWrdb+uKR3niwpDoAh7NK\nElkTi9qz5NbbOO80RtcYsbjWI7L3b+O8/jnCefYpOM8WxrMEfqJy4LyJuZkedBxzJAk+cT0xeylZ\n0hE4rwbOK9WpFVpTHrbKw1a5bpWthVGoVoVW8haEXCRDQ1FkWcYeUyQU+IHLg7gtOb9E5ITzsqTY\nglR8G+eVzxXOe2eJjVU7CHNlPQ3E4+daZNfkOoLeZwe6WGTP6/KxcYsLrdktQIvGZraQZQuGFqfI\nWORGYVDGQLrju8Re/ykmRKkp21t7BIlN9e7I7pQxKLZTfEe9p+S/I9nFIxKqspyiRSSl3yN+amE6\nQa/gP79iBjvPbzUjhXiSBBoTLSRGaWKEBJPegE2i7/pGlN/UcJSofgO/IeOG8IT4DZOOSfQx7hSs\nNUapWC24Fabj9rOuH3kVgmyBkmxtLUQdq/bsHzOija7A2dwpargqO8Z+IUo4zEN1kOalK6BtrDIi\nNkE2o7ZBq07VQdUeOXOJwSeTCCImdZAZyY5IXTWfRaKuDVfMoye46YjrmHIzxZNQVUwaQy+rzrFL\npVuEsqPmNcuB8nJI5s5xC9Z1nbuU7ua6JJmQeJaeGTPgC+qkYoN44CAyRWnyKpDrrS+W2rDoh76Y\n7gwPfize8XaRyznPvUmprHkrU6kzh2r+QeNauVrU7A2LW/o7oILWSts22uUS7zsM9ztuzj4Gut9X\nPa3RqKWGFFU1vrOS6C5nexpezY4381wvvOaHYd041RNHvXdkU/oYcSqTTBqZwZrXZfaiF+LSISRo\niGs8StRguzfCDf+CloFcnijSY7x2IoBaAJUqyvZ+o325UT+o8FgZrUVnG7lwl0sYhPnGsAZdlww3\nMUnUqgfkzQGWeVPJGt3cZ+iU4RahDNJnJ2ve52aDowXj7sHg3wbcLW67CObR1alphVLDJr7UUICJ\nMvy1K8rr8Xp8EY+/GJznp63XS5xXKKWsTCirRJVIhjSLricyE1h3Nu5sY0fvPbLcBl4VukV3A4vN\nteKRgS/CxW40f6L5jeI3CjuiPdfcfK8a5AZpFu8+cV4Nb6tT1vk5zpPEeUct/CICIpMR4hCVVHDM\n52XWR8vhK1L88DxjvRTMwlvv6MnvS2YpqkskY3psnn3XiF2DMJJ3YpOtEtL4YnHOTr4TpXl6DSbe\nBaaJ6GwJ7F4Cq4wXOG8koZGKDNwDr2+SJrAWrVI3IsNfI+kjdWKzTCBqjImpnBFVSlWaKlW2pXgd\nLohUatnRMuDiaDe0C8uzalOsZJZbYIiyz1IQNu6+sXNhiDJMQCaFMRAZUX6ME3xElB+bx2Oj9a9P\nGy9m2dby0MrL67Ob0PBU5kpwbYOV3Jqb9mnIIjnpXAInCbbw0CI1ZhLkNG0nHvAsG5HlVzFxnkZp\n88J5ebORScjPC86zbLAzcd5Bbrh74BWf3312VOQkTD7m5nlrxgCvwpCKacO8hXK7ZhfN7I5SXChF\nebg2Hh8bD+9VtmuhXogk80Xwi8BFsFbpdaNLJEvXjtQ0yCoj2zYL0TEybQhybZgil0gs62fgvCTz\nPkc4790lNlhE7bpjDkQ47eNzU3V+3vPXmfccQY7TPTwLejNQZg1T0XSTzZq5NHnVYhQMzWq3Qkdt\nxNW+p5DhyfnSiAzsYIRxTvFkdUF2wXeQbqh11OMmdNxjlXZJiVWWoUwDy7nxnp/R+iloJzA48MER\n/udmHTmMbszCeCY27/EZEcfTMEsvYJcIBKV2it+Q8Qbtb1B5QuQJ4Qn3YOOiF0eNvt+l4TVaZw0P\nFrFbTAAzSRWm5VokVAlMsalT0+poY9CkU8UpIqF6WI7VaYikxhst3KmRmZ4KBGHJSXUagG2gm1G3\nwdYGVx00HWx0VGYZxXNDseBgKy5b/iTcmFMKVlQQL9lmdUOnlp9JbCSBky7pPSxm6V6CrZfZrcRX\np4w5/lUsZYeezGnIDV3Aczz6DHLmyCQDFvg5TK1mjaKkmet0vRabQTHJ5BmyDLCyvD3iCHB1BIaY\nk0thtmpdhWOmwuT2NOmR4zWCGXFVxAY2ghV3EUopEeSKcH184PLwwLZFwLNU5Yy+gwUbzL4fuK8F\n651VUPE9l0u8h1GSh7RwTpNlNAbM9mUjfWwmpePpbh0u1/lZkwTy/H2e87C08OO0zbORH3KY0rUS\nBnOXRMMGFa7lCWkjsigWwU6LUmujfWmjfbBRvrwxrht7u9DJ7I9HO7c+NqzXIDYmeTVvy536XBvL\nKfCvi5W+qJlJHFPqLIvIib7k0XFnH85twJPBrRt3E7rG86sonuOfUok2YJEqG3a6Dq/H6/F6fGGO\nHz3Om/hu3nMQANGZIdqxBtaT2NBOo/gKpQyK7qnMTbWG3aj7wJ8M+8R5r9+pRRiPkeUMVcFaQiNx\n0u80u9H8TvE7yj02spp+ArMMZfp+TZXoNANcOG/Gz0lmnHFenolZfijpsSBgJpRzW91ZfiwaHmrb\n/8Pe+/7clmR3fZ+1qvY+53n6dvf8NIw9A0SMHWwSFLCFEweEIoVIvPSrSPkj8sdFSUCEOOIFAiHL\nEEbCgPFM7PFg4x5Pz3Tfe59zdlWtlRdr1d77udMGKzBDd+bu0TPnuX3PPWefOlW1vvVd3/VdYCf1\nhKR5p4rjMigyENvAG4yxx/9pXIpUDKH3KI+1xMLeJXzWZkgpBL4sZFtTT886qLVTi1MFZlvyGZMd\nwbVGyecAHxIERpe9HT1G+F6kSloUWJPUuIKujqxAdbR4Ynkos2xj+mtoPR5LeBoUKVSVLGkpDC9g\nK/iGLp1Kj/KMZtkSXaHK7snREut1j4TW5msQHLZEKYoRJFOyQZJnADOf/BAjSQ3vjneizHtM8JFo\nVWaMzrnvGnNx2K6giT8TahebOC9VPJ5rSGLRTVJg7wwyPf3E9jl2Wqn7gf+Px3mBB57jvPrH4DxP\nnAej9x8zzrMTzsu/2xNbEz+dVP2TCZyKJpNdShXJufhqrUaJ2ZAgtzqDXkacJ73HEawqF1t4vKy8\n87hyfVGpq+wND/wB/BoER6+FJgstO940ieSqjyAWfV8beT8IeyvJuR3kvJasENAB06g3iJwsJfoU\n4bzPLLERXFg8Tk5QmFlt9kk2DxZvChWO36cgbb7G/LtJYxzP3d8r6TdVRascDLLEogn1QE5GLImN\nkHPZ5tjNkFedv/mDG9vlgf+jPLAshnYoDWQabO5010BssuEdn5WNk4coRNCdFLrPiTcP3xzO4Xs2\nf0qdhKM1WP7sRjzBTrsXCgVXo2gerlYPb5AL6NXQ2qNcpt8p3FBeI35D/YZyg6jEZ/OSfbYXTNdo\np8USSo50zjXyIJ8jP8stFwlyY8VZpLES7uMXaSw44Z8cNWXhRaEMGTRxVAq6VDZbYZOUQhJ+HRd2\nV3O9OGttrKVxoXOxeFx1RICbB3vPTQvFpeKyYGIMLphkycjJfMwkfTFYU37quzJm1oaSJj6dhT6S\n1OghpdRxQDLck/31FLbkHM6shUGUOA3HyiQ1Zp3lnPgH8yAZ9PZ4ZB7M+fCjFlBOq2FmdEoGiszG\nxM2ES/reZcWifnfCx9gn9bRePYObp0dJ/PczMQKhSBBiD1ZVLusFFeHBH5EadYbrulJKiTrLatRa\nox6wD3wEQNx6OyBsUuhh8GRx//khww9jRD/4Caznof2NXWF+A+d6zEOOO4Mdu4FXkchW6CyDkvw6\nclnP312DHb/XhSHZNhnLTjFCrRulpPxVYVkLy3WlvnhAXjxyXx/x8sBIUqPZhaDoKrSCbAH6pJMg\ncH7nFjLeXb4R36flfjbByfMRiPE5Al7UyTIGbukx0517H2xtcGuDzWAUZVmhpOxSZh2oHmM9Rk+C\n5O319np7/WRdP2qc9/x6pvdQgUkcJKkQCSRSQeEUHVSZ/SQ2Fm8s1oPUeGXox53//sMbfX3g137q\ngV0JZ8c7uhp67ZS2Ue2G+oZ6ujQmkU0LMkWLHLZIO84r+ygdOG9+CuE5zjthPWFPZqhGuWxhPsKe\n8ajgC2F2ucQ9uILKQH2j+h0ZN1TueVIaTGG/eJgFIkHQb3WwSaWpMkqWIvfz1+2RPCsSBMM6WMqg\nymDVzipGjRT8kU1OAsalxIGwrAFhrGI9PD3o/py891RgrIJcHLkMymos1SnFKJo+FJ6PJG6RCtIR\nanbTgxi1Wf5c6QhCYWgcTquPMNBnUGugQiSMEyPRFwUmrUQnkuYLzRbGqLAVpDs6ZsGExvtqemxY\nGjpm7JZpxj88ORDfiYm9E+CEOdFyLQ7WqSKaxMZU7JLYQLJfwTOSIsHKftC3s1ojFZ3x7byB846V\n9lxtReI8/wScZ4nz1k/AecunAOfZvvZm2UrgPNIXLUke9/npdkLWIcg9CaNOG5WmC4WVQqf4Gt0U\n18EqglJYdGW9XlivK/pQkaWE0W0Bvzq2gC1C10j/dkKtMWyJ7oidw92zJ+YbAAPzUAX5ySflnPBn\nJ8cy2TpLvvIlPg0477NLbOSGJudAlJeTgS5ZtDeD15v/4vnjD3P98/H8vGBdk9RIxYRk0ImSBQ/F\nhg9KHhSDrHD+9KvOz3944+debbQn5yP5kN+pK6+vF+og4tnm+ALeDOlG8fBlEM+gkRLCvRVptmuc\nNyn76Oh+yBiZRQ4ycY5dOkGkqQtoekcGsSHZOWEQ72HFKUWx1fCLIxcoy2ApGxffQkZpd5Qb6k/Q\n70jrWMuOGXSGFLxENwXXzpAW2WkLQmDsCgVhtqdSCbavirOKs9JYvbH4YOlOdBSfJUEEE6JhytSq\ngy4gHb84tpUwsOrgswf9xSmrs6yDq3ZWnfWyGxfvXMY4MZX5qJKH8YHLoJPuvzluw2sSoWnoZBo1\nbTZNM08im9ni1kOx0nt0nfCWgcbjM83WUzM4xB4dHVFmp5wZWEaRndyIcgX2pP9UcehkYvPRPQ+3\nw0IZZOwbPToJv2zwJtHSa29C4wFkYIaCYO2fW3bN6BGvEpt7bJxq0VZNcg3PQ36Uas2aTdBSuVyU\nZV1jHRShLDXY5NM71gVIQ8u+NXpr2Oj0PlBpQQ4VD2npNHRKwGRu+yd1j+9HMxLvoHkHjzvO3MPA\nXH/H55gBMDNNe3vV+Vmn1DOyJA64CEMFG8qoFdOVyWlbwqkiIVe2tbBcF/ydB3jnBePyyKgPDLnS\nuUT2Z4SvhvWC5h4jG2EKO2tqx8BtxB8sskyRtRg5GiMAxb41yj7v5jwxQq0xbH7LxgC27mx9cO+d\nrQ1agrRKAujpXXNqQeQe2ZK3pShvr7fXT+D1I8d5/sbfHkhPyA4CmubJqqdyEA/Dcglx9+JBbhTr\n6DYYT85Pf9T5he/e+IWPN7o6T9uH/O5XVl5JqApD/Jrx82roFp5qxbadIDAdEeNqmsNXPfwdkNP/\n0sfLPHGe/zE4T3fFxvROxzM5QRidh/cGFAUrhi+pZLiksnUJI3W8I/2O9BsqN4rcERpOD+eFTP6o\nh7ylS0c92oxrCSpoFMWzJSqSOtgCWpxaYC2dRTZW6VwkiY2poBBN/BTEhlHpaiFAlGzaVsFH3RNE\n4SGR33ARZHX0YpRlsJbORaf6N3S4hXycmI+KsUZU8+g2Qo6zJ85z18Q6FcXoOtLufVA1y5mJNr3N\nNduzBsnRqGwWMZpNkbtQmmc3E7JdpmEqcfB0R7oh3ZER2SvpIMPRRoxtT5zn7GVdcSAniA33Q5yZ\npIbnmcWG4d0O9UcSGeLnA+/8/VhRExrMPx84z6KLz78T58Xcfo7zeAPnHTj3Pz3OO5534Lwc693E\n86RQzhfw3dMs2qeOlkqlIvS10LSirMgkC8WoV9C6cFkuXK5X6mVFL9HEwkvsS6M6o4anX7caig1q\nlLabRsXAZvjm0G0vkYt7T++W3S+GE7777OC8zyyxEUFHfphyZy4iY1iYu5j5s8l5PB41h2/SGc9e\n71mok1wUssvsdom+km7DUYoyFRsywi/DW0yor7za+Ovfv/EAjH7nlz/4kA+/+Hm+7041R5tRNg/X\n5O7ZMiq2Psms7flAGW7dsjsuW06+KTmbi87GONj8qTjQKWkMZl1Ek0WMD2UemXhVid7cVbFq6KrY\nOmC1UDfIxpWNRTaKbIjcYWzQOuO1Yy0kguiglhH1jAysbAyvdJQlVQ6DGuUXxCYueLYUkiy5tFBp\n2KAORzdFLVoNaZWoi6xx+PdlsC6AdEw7vRhjJdqfahIbq8EF1sW41s6DhApkZQuH89FZhoXB6d4B\nxQLolGjNZDhdYduBRGWW3zhOd6X3EvL/DCJHu9g86JJSxh6EVnQfOWSa0X1HoisGIBLZ+11xMUmO\nGbRqkBUhU4y2s7tB5CQsBqhJkh1xX5Gkt51O9myXFYRaSPNslk9lT/sZzDxVLDHppg9JSNTC7+Pg\n/CEZXxKcariIa9ZABiGXRE4CGFWl1my3ln3usytd3kOQKTFUYXvkZrRy5y7Cdg/Tp9Z7/N1CmNCW\nwzg3XJqTPJzhyIPsm+btO55BoiTsk/bjmR7JL3wqOERq1l0msbFnPXLIZfqXxH+3qmH+uaYHm0aG\nJ2yYOgUHXbmsV8b1kXZ5B18eMI3aykFkgLoHW1+MCGZNkQ28eRIbTmpYwacPzKHYiDZuc5IcYzOp\npKlodAsfsG4HCdadCHbb4L41tp61mvsrJEhFnktBcUb/j9ff/O319np7fXauHz3Ok/1ZhwfF3IdO\nOC9ba0+TeK1OqaEkqPuRtFP6gPRQ++kfbPx3H9x4p0Pnzi+//JDvvft5vvtOxJarhb+WqOAPjmxG\nGS0txoMgGBqm6xRFapQvHDiPHbs9x3l2wnkTrwizdGW2K53ZYiSSL9jsqhc4wzB0UWwxfHUkSzXk\n4hTvlNEQa4jcUblRuQWx4Z0x31+UQsFSAi8sKGG0qdXovjDqlICSpT9GVWGRwYXGRRoXDWLjIoOK\nZ/STU2mFYjpoOE2itWQroQAeiyT2ErwG66FodL27DMpiUUYkW6hzPT0NBGqaZkceqaQiIzqBhTZ1\nmnSGYqMTJu+WUhfFKW50meSGBc4TZbiE8WeawncvdK+MvsAm6BZxmWbhY5YHS5P83MT8F1OkDyS9\nNTQJHB/Jj2WpqZIeKnkS30tHsoxrx3+WmG5ENt6ynMXTA0GYxqtvrtTTWemEkwLn8Qk4T/Z1vLd7\nzXNz4LxywnnyBs6L5xeRTxnO4xmxoWdiYy8NmyRCCGMtE3tOHJlQaKUisiAyCI16vPFlFeRhZXm4\nUq8X6rogRTHN80w2kBhF4lzllW6VTReaFfpQ7O7Rwnc7zhiMKSk23PsbOG+OxMR58qnHeZ9dYiMP\nOs9X1zFxzrVOk9GPZxwhTt94lGQBz6/1yW9+vP9+H/tN5RM4FsURlaPm/BtF+DePlV+9dbaHK3/n\ny5/n1cPlCLGyC/meLQRz0Fn7uI+D5CHpyCwgzwaFkMNbdNWwkb+fCY4ZwHVXIqRRBNGBOT9XOf3U\nCO5RP9hCQUFj1U6VjprTm2A3hSfD7xKqFRxm/eRqaDGQhqpEq9NSwjzH9Sj5Es0jslLcWTBKH2gn\nykqmZ4ZLBP4qSGY2xIWyQF8Gm3Y2OpsujEL23wpnEQAAIABJREFUE/f8LD0YewbXDKAXD0JD7x5Z\nbWNXV0RdqwTzOARxQ7UhdfYl2ysfgULFskTGj/HN7zquKPo85lx+86fsuKRxmaSplWg4obs18I5b\nmsuKYyU2/a7CMGhbtBHT4lhJQmKyx/l2osnK73M6TV0V0GwpqxYtYrMe7jB+io+gDrN1Lx4BScly\nwhPXPT9zkDCKuaGuGfZL3tKU7UWwKTuIK2idz7F9bexteOd8TTNd1XLaWJ3WGm5Gtx5MgdQAOjtZ\nGQE65r2fgpwf+3yuqyNPkfqMk+RyHv7PtZcHEZpqL4lx2GHCBOeZNYmaYccH0YZtvWBVGBq0RhGj\nFliWK315YFzepdVHRknvGha6V9oo0BRa1K/qULyNdEIn11AENfcW89dGtGme5lr5uVxidNx2levx\nmETabiXrQveQJr6+N25b474NRq7Vmux9opljT913ameMt4qNt9fb6yfx+tHjvE/kTPJtDlJgV1VG\nTcKunjyacYdCV90i092Mf4bw+5fKr/bO/Xrlf0+cZwSEWs0jcTXVBFlKIJaZ+DwsTINPLbKb1c9W\no+cxwfkT4jw54bwYgDi4BeaL13VmtbIshKfa6uhlsNSNxRrVG0UbohvF7hTueG9YG4x+UgZrwVSy\nBHVBuUSptgw6jZ6Jkyid1mc4b5XAlekQxcWMmskPFaFo2YknU6OLs4nQiCrjTZyBU8oIE86iuEVH\nDV2MpWSbXm+h0PUtRfvh5VGJTLNmImh4pfkIM273vbWqRU+UjHtTN6oZ2WMuDvK8qPl3Hl0mRpqN\nmod6RXZPjDwQapjqB2ycxEHiNJV84YLYiA5nEm3gjTMW4UionVUF+f3PbmhTwTF9J46Wps8PuEoQ\nLTIzS8on4Lz5fJ/cCeae3RUPmvGMoqKEIxNXz3Cen3DenCu5Bj4R50Fr248Z56UCZMd5shvMHl4w\nx5jsrz2ynG6SLCqMEt4YUhMDSyhYxlKxywLvPsBlZdRYWzvpIKRSY2WMowSludKbMDbHbwO/OX73\n8H1sFqVONnAiqeUeKvTPKs777BIbc0By095ndC5OG8nk7+18ztx8/mluEvk6xxDDXMCcfhcyc7z/\nOb+gGTZTzhdqg/zx6NdLGXmgh+9X54MV/oEUeFj4zuOFF7XwjsBaiAN5toHyEmUGzYU6DTXJQ+Os\nhfNkuk/TJD/QHvzcDRtxqBkjykIma7gHvn2EziM1Sy88/Tzk1B7VqRo+FwudxbKayzvWHZrQ7hIt\nbm+Ob9nnWRyKIdXCC0I9DuyLoGtBtIePAHnwUwlXcgmZmJpHO6pNdxn93lD91I5NRn6SJWthtWf4\nObWiktjxlUFNOWn1dDi3Tm0GmyN3CV8OCab5mTu35cuoE0YpHWEg0hFabqag6tTyfMmd+1tDyBmt\nRv/toUQ2Iw/tujilGqqO6kAlfFeQDUYnBqUnMSb0ort3SRWlF2FUpWdbsb3et8U4uHvIQH2WAcUm\nj4Spk2u2eM2AGQdizxo90oAo2rlJSAvCcUzzNXflwlyTmsGBDPRQJIqKjgGKA7XkhpgDH2NFZEyG\ne7xXOYhGmdxR/l6WhTXXhQOjt+jFPXqYpk0VxT79I0jIZPVza5mfPf58DuBz+zmAwWz96k6UeORd\nT2Is6i49Cb8RYzBVG9Ox2iWd4zX2NZTmgteQ9BZx1qL09RG7vINd3qUvK6JLlD5ZDSPeprFONqIe\nskddrvb8/kbKEJPYcI8At28wM4gz03zH3nGAlmDwRwa5AfRhbMN4unde3jZu987WB5RK1RotwkR3\ng62DI577FpE1eqvYeHu9vX7irh8PznvzPTOG7HegJyJaOath5+XnV8t98Xs4Hyh8YS3YZeH/ebjw\nTik8MitJjv1uxozhhubv+z2fbiwUDQdJsZtgJZ5xjzEJnGf/Hpx3fv0T/SOen5cdT8lClmz0IBs8\nFA5F7igbjAb3jj0NuPfwO/DE0BId9bRA1YrURqmNwiU8Jnz2Uy3RJcEFdaEwWHS+XwslhUEZ0WVC\nM6lXRKBEG11d4n00s+uSvL14tP0U0WjnKlA0vNou3rjQWLlz9Y3qHj+JN4vHQd5L4MiyBKzpJXuU\nSGipR47gDj7yrFCS/KrzdyfxQWD2kucGzxZ1VkucMebhfcTnMznwIjIQMQKW++7hpcOxIYwmSDO8\nCN4CvwVOS5znoeCY3dhc47TqShCFmmRG8Sn5PZIuOX9CKXzCfirRPTFb0U7jzbleAz+FwqXILCQ5\n1uiB88obOI+97AGTxHm6qzt8JrQEyrImzos1+aPDeceanYRNlHEfapa9DKXkgX4ce0SQRqmqGYSZ\n6DxyqkeLVlloIkl2VEp1+rri1wt+vdLXEh1Fcv060x4v9GPDL/HTF4YVbBP8bkFo3B3fHM+EFrbX\nIIUyNxNZcOwftpNLfsJ5gVw/bTjvM0tsAEdQiD/t/30eKN7c1Of03J85aznm6z17PNVEncIgcpjM\nCLlhotFi08Dt6IUyqHQp9CKwCLI4Xh0Wp63wfy2Fh4fC5xSuAg9FuC4aDRDSv4IlvBI2EyxNPAsa\n8WwQjH/GtvDJkNj4mNvPMTmj/nIcvZZH3k/Sk+5E4J4g4hTao1xCIlOxCJ7O0SHVC1Jg1cHindIN\nbxKHqA385tiTM7ZBHz3a+kzjRGVXWeha0IsjSw/Z5yzTKIpabHaKxOfeCt4cu0sc2LKFl1QPbxKL\n0heFMN2qRtGeZMABguZhU61Tsk/4dDkvo++kxkFsyPMONOFYGnNxEepiSB25uQe5URAWwvxqaBza\ndXLFMjnj2A6HC70Ew9qswFjAFVFnWSwc1GWE54qFFBRpOBvi0Q6MeeCn0LXSTGhVaaVwXyqihS5T\nVpbb+e4pdiZZ0qQ0S07IxxnMpHu0s+seqhUjD8mJJoYgXfFecwMbyQrPKZeBQ2QPmEFwlJAf5zCD\n75mmGexGOlSbR33tbpR7Xpxz7WqsDYjubu7OnRFmRZnVgmjrpmXfcZk3YMRmLvMwv+8MbzD7c1ux\nGehs744y5oatuqt9ppx0B6UM3HWvBrFpJprtdqfLvbnSrGbQgKILVl/g6wtseYdelvB4MQ0ZaoPS\nLZ3oA6iEc7oxktQIFmUyhIdddtCLJ7KGCW7ys7rjLqQtSxAalpZCA+698/reePl059XTnVsbdMu6\n2Oqs8+Ahp0yK6pGMdN+/p7fX2+vt9ZN3/Xhw3ptvCoe6AbL5606y+DyMyozeh0Q7wlnEy7vC/3kp\nXC6FF56CV4lEQymE8jJxkEl8nu6hEhDmWfL4UMHvxwH9RNfkbzPmkDjPTjiPE87LWOpy2ssnqVGQ\nNIiXKuGvsYCukVRZSudCY7HwH6tsqIdSY7w27LUxboOx9SBW5r0JUAVdN/TSKNeNIjd6FvK4aHRK\nYMEJvFDFottMmrPqpkjTPIxnhl3jwJ/+pNRrRy4WLel32G64V/CBEP4OniUm1TcWv7Nw4yqhDCk9\nu4xRouNXjpMU0NUoObmGBtZvaJS/cFIH5bwIQiPUKXEqOMpSlSifliwqNQmsP2rBlxKdXapHrspm\nUjVavRZtSCZ9POf4SFw/hkB2VbQF/C5Y8Sg17XNMklZIrzWZ59hp+hBDHHMlW8EGIZKzLlUledNB\nGJkwtRhm/YSPAtvG93G4oJnLGzjvpCaKjCYj8yjxdnk4jsPIeeIzX2R2AQ6cZ9zJRO6PHOfZCecl\n5pydM3dsur/asWd4mOszctg1iBsamMa6sAWkGq0oY31gXK/09cpW04Mt/iEk+dCyrGl4qDbcKnbX\n8NTYLMtQfO/SGcayqf4+t789ETqfNZz3mSU25vnlOMTAJCBCLnMKehz7tz/7mXnj/fifr5AHrh8K\neocN4k74nV80+wG7FYZG9XvJvtQqg7IMfHF8cahp+Li3G3X0AnIFLoJcQdbY6BqCD8WGUk0xU4pL\ntoLN2kiPCaMSNXj7/UpstLE4R7gHj7H7IsSV2/FcgKlC8GT3XZLQ0DCoyWqAINjlZIzkPXotd0E3\n0A3kHl1gtqfB61tju92zlirlFLNmdVXqpVIfSqg2FpLwiEOg1wIlO56YUjbw/LE7kXFGWYpTN6FU\nRxdBe9a31Q3RBZGOW3hfRGsuA3ooHmio3dGyIaNBM+wGcgO9J5EkAUBUCWZVCddtBykJAqpR0wVW\nXbDQH8ahPb+NydFLbrSSDO5AwkCKGq2ZascJOVvNrjSVKP8RaYhsCA1kQzSVGzmve7aMbRS2KFxA\nWLgvYXPevMyywAh4GshL1HH1E0AjCY/sioPhBr2BL4r30KXt3TW2JEoyiM6uKZOxxwbOJOCUdC9l\nCnrFp7+K7Jmzfa17fDbxVAqEiyqTFAlEm4AvibFAqY7WCjh1Wemj01tPU92OWQnZnLFn40Qlvl8i\ng2TuSN77kYE4B8DTNsQMBrZLpVWVWgp1WcLVu0wSMcYrbntEEO/RRWkPdjb3GIJ7WIBSwAqiF7Q/\nIu0R2jswCniIh5gdlrqg28g/y56FiS4o6Vjs0wY9jaPyezmOBBwB3yfgkDSQ8jDZHtDMad249cGr\np42Xr298/PrG073RhoNWXBeq77kNjjrw0wFEglzrfezZjrfX2+vt9ZNz/Xhw3n7M4/wOh0L32bYE\n5GGXqfXMTm6TKNCQlHuWFEvuoQEZQo9YheyWkAkeCf1knxI4g5LqPRPfyxNUzjhv3im7cvhPjvOy\nFCW9MALnhep4x3lJFvgSj6VYkAweBEB0gdnwzeivPYiNjwf9VeN+v9O2vAeSWyqgF6VcK+WxIkul\nLNFxZpQF1wUfK0PX6GKnTvGG2ohD+h3YHBthRqiZzd4VkIugTaAb9eqYEuWzOSaBD1IlaoNSPJCW\n3FnkRhkNHQZJnph5ltbmGBWBNRI6YgQlU+7pXRHfyVHuFHNK8KRujEXCPF887ilc8xQVPwSvInTp\n8efimErM7REUyuIbWEN9Q1KmPP2tXNKEsoROuBela2GI5OQj+55OijDif3RuPWbJVLp4knijg6ya\nvmucuqZEkoRUgwhBbkzPMCwLcSZGE0BsP9RLepE8x3mTGZQ3cN5cQXn68n1jeAPnccJ5I3Fe+zHg\nPD/hPEmcVymlIqUcm9FefpxlK+lb4rOUvu2bz76RuS0MVfp1YdR3aPWBe73iRShyur/8HqPBXWGM\nBbpC1yw7IfxaJqnR4kxDYj3ZSwDs+A7z0U6kxg/jvP6pw3mfWWIDjok5J/gMWjZbD82aS38e8OZv\nx/ZzzDs5Pcuf/S37hJM8+2sGE3HCU8DALbsYSKg1ahZqqHSk9lATrPEjOLZ6mlf63kJVrhJqjUts\nUhtBZsTElV2WXodF73IH8dnZRCbVmh/mAATmszWa7eZOs/3rlFcGkx+nrGApg1XzbFk0zbOkhGKj\niLOIsZhRfaDpyjwrJHxzWnPq733Awwcf8v3PveDJjdGztU+OZ6lCvSjLQ2V5WKjXQrkUNAOfLBVN\ntUHxwtgK5e6UpoymlO+95MW3v8P9z36V7Qvvs6hSqlJ6yDdt9SBHZMNHw2xJcDKinGNs4HeQO9gd\n2zr9bsiTwJMw7gV8UP7gA5bf/7ds//nX8c+/HwTrSCOrKpRVkerUtSFeUnI3nu1VMnvZk8KP08Qc\nAl2UJjX6TtOx/F6L2kkL1FA2NBxpYTS8d+jZBgxYpNFFqTKVPhWVgegFlvjuu0Ve3ktmjqrjxVAN\nqeMuK8xMgc6Mg6UUs0ioC2ad8ObPE2TTe3LONQ+35gnCEEc8gAqe4HACRwlSTTRMr0RmTM7VOvuP\nzXm+Z6AyYEmu3X3go6Sp1PjRogy3aPdlA7NsIZco4Cg5my8pu3Ruz36Re8zpv52vKd1jEht1YV2W\neH/J4D3JgwTCZpFl8G4hUZwEYHJw3h1vMd90FFQXyn1BtwvcFpBQkElKT2lR8+27ERkB1syzA0rH\n/ewJk9XCHutz/6Q+6yszkBOZwTGcrTttGK0bWzee7huvbxs/ePmaj1/dePn6xjYcF6UsQvH4fe82\nkHvPvqeeAp+NwX+s/uZvr7fX2+uzdf34cN58Q3Y8pJOAYBZwHM/zVAtmM9C9/LjImA3OTsYDsZ8q\n0UK0SGSNJbHUJDbG7HRhceAc5klszDKbUwe7JPqP+BYPB87zxHmnjPOO82YSQDO5k8TILLmZJSg1\nf1+cpQxW6ayW5SFpltpvjrx2/JXz8NsfsPzBh3z8uRe8cqNvqdAlx2INnFcfKstj4Dy9VlgKLAvR\nE/IBLyUrVaMjR78rdlOuf/iSd7/5HV7/2a9y/9z7mQEO9YsuGqqODmoDXaHU9KmiYF4w1/Amk5Iq\niDvKE8XvaDN8kzBU/L0PWL79b+lf/zrj3fdxI7LvF0GHUMyQ/K51bYFRkSQEdj0uUYrSWcR2dXPY\nsnomI0P14aQxuAhFSXPS9O2wATJQvyN2R9goYyPUuZEQCwPTeI2BsJTCXaNcVSTIjaGCN09fSD9K\nTWyWpgS5sq81CTKtDMW6RW20+ax3SGPSY97tJOGIM0T4pSWNKCTOC0Bx4Dx26CaaChYRTjzL5DGT\nAYRjcUnO5+fz/8B5lVIrWkriPPsx47z1DZx3gqoYZiM7gVgat+ZhqOVrmuMjMB5a4XLFxwPDXrDZ\nFVcoZDkRnip1ZwxnDPBRkCbRuGILHDgfp6eaGEGQyUjixk4471BvTIPmrdsn4Lz7pw7nfXaJjTzw\n5FkJ8CwDc8aU4O2bekzEWbU42fvJdvoemmal0vlKgxyO8oEgDg/Wc1/RFovah2KzRoqBeo+2Q6Vg\n2Qvc1tw3VsMWi4P3JQmPC3CR6EUsJfpxm+CmQWqM8DHQRsjEZikKsveOPpMxs9WQ+xkMnJyz84my\nv8qb9W/MN0BKkBwlfR5KbtZFBouP6OIxe183x29Ge3Xjc//idyj/+tv8zl/5WX5wXblvDe4tD0hC\nxVhWZbkqlxeX+Hlc0VUpS4VLQdcFLZVKpWyFci+UrdA258W3vs3n/+7f5w/+h7/B0/J1tmVhKcLS\nlCoC144twtA7Y3TGGOEmbQOxhnvDZcO543pj3Ab+WpAnwW+KP8Vh8/ob/5zlH/xjtv/pV2l1RS4r\nl81YXClFYTF07aGkkRYt3ZB97qiP2EwGKeuTaJE6p1EJsqux0GSwMQI8icY4+4jO576h1lBvyGhY\nM2wzbBtp9mOwQK2wVKGyUFkoEqy7K/hFY/ND8QGWSiLqoMgWpTneY4wyi6+5eZtAV6Wp0lel9ULf\nkozIdTXXxFS1TROieE45iIed3SeIj1Mt9V4LKnO8JrT14wl73XDO1336+7NnBxh0pFa0VrSWYPFx\n+uiUOsHeDHc/HMBmXsxOQc5tljUd73V4beR9CJRk8YPJz4A3Tp+DzLZ5j0dzfEQbv51zUPDpT1sk\nyLNa0HtFb9OoSg+ydYDNdnANvEuqmyJnFLKQnr/Hjyf4Ysc2h0zTzHeFhpnRx6CPsfct37rxdGu8\nfLrx0cvXfP+jl7x8uvHq1nAUrQurLgH6JAyx9I2gt5vASozjlFW/vd5eb6+fsOvHgvMm8RH/blZl\nBpu+30Zc57PN9KKSMI/Eo3+GiYRSQMB07qHG0eEt30ODOIia+uwqYAepgU+SgjCvTHJ/ekscJzn+\nHTjP/xicNyPZ/MR6fMhUkXgVtITCWBejSnqpSWdNDzLugt4cXhn80Y3P/ZPfofzLb/OdX/xZni4r\ntxY4z8TpRXA1yqqUS+K8dy5cXqzog6IPFX+ojGVD64KJMjq0u2K3wvLSWX/z23z5f/v7/N7f/Bu8\n/Atfx5YFFaEWZVkFbRqJJlN4J1u5ijOoiJdU0A5cCtFa9IZyQ/qG3YX+JJRXg/IP/znXv/+Pefk/\n/irbn1/pdY3SmItSh4JblpUEuSHSQobjmmTXnFFhgrrQQ9mc3SYMx8QYXvbQXsWTmHCiF050d0EM\n0Y7aLZJZ3DOpFbE7ey8m3BKGKI2C+oIWY9OFLXro4prlEyF3wofvag2RUBsE1vfdTDPUuBLPHVEm\ny4hzkO8lzMe6cMvOjMRYHGvHDvIxiZhnOC9xqdih4NgBmUA0M5DTG85N4UxQTiJUTzgvSlqMwCv/\n4TgviY75efe9JxZoKfWE82okVn8I50VCzb3H90GommkcmDn4BjBBSqHcK9wv2P1Cuzzglp31cm+Y\nyh5r4yg7muexjUiKzbL97tnhJjqgiBsusQdZllCPfY8d/x6c9+pTh/M+w8QGcUDSKL1wwHzQLX6G\nDaZ1jZ1+PKfs3AiiZ8UR7Cb/zg8voTgUiUdL15Ts74Wdw6JLYgMqtLLuz90y4z3MsNLol4Zf8t4u\njj+AXx1/cPwKdo0OFoMCfqH4wvAFvCJWqFvuEc1z8suh2Di18oK5yNOwwi3IVmBkPViwmE7JADph\ngM2PxjkoHpc/Gxgiy5CyQNLQaahy/f5Lfvrv/Tr1d/8Ae33jv/xn3+RfffVL/Nv3HvmFb/4+f/ju\nA9/88uewZvTeaHfPOqvcbBuwKLIpeqloXSgs1FapbWG5Kz/1T36T9/717wLwpd/4BtcffMwHv/iX\nYInpPW6KbIW+VXrZaK3RWkOGoqXj2uje6NJo0thkw++G3EHuQWzI9248/IN/xPpb30Kenrj+7V/D\n//CPeP3f/lUogm9K3QreoGyC9o5TmU1QdJIZRlLzzFN+EgCaxJGj5qyLUUpD1RmepQXS01ujo30g\nU6Gx181Zbow5fosjq1AW51JadqBxTKPXunnBlvDbsCEsS4faUO5UtqhrpSFq4fbOyP71jpnQKLSi\nbKNQi7IthSaHT/yMNNGnPt081PcSp9mvPAyXkhDJPubOZNFDbhou6OS/DTmpZMCTHEPJILdnAXJO\n7kQLHlmBqpRaqevCSDOL7oNqI42lNP7FCTc+n/z54AkKfHI4053fdnA5yQ1VjYBXlwh2+R0wXU52\nEHvUa8bwWYClLA1DctMyCIMNidbJm8ANTOwo43HSbV+y/ESYJlE+y07iCft9R9CdtGaOXWYczKO2\nsg8YSWq03tm2xm3buN0bt/vGy9dPfPTyFR/+4CUfvXrN09bow6EsrFqoOKhSSqEURbWcTPEmaD8G\ne4y+g4q319vr7fUTdP0nwXl5yBM5PAxPBLyNiGnSlbFUhsyj64poo5QoIbYFvHokEdL7q1SnLI6s\nwApeI5llFaxETMUL7iVi9EjvgonzbCo2ygnnpQJjx3meOM8T56XPk+0J+k/AeUnWvHluzJcUidhf\nPFvcSrREdQdx5fLdl3zh7/w69VuB837+//4m//KrX+IP33vkF3779/mD9x747S9/DhtGe2pIdWyz\n9OQC2YBN4V4Y144uC6MUPHHb8qT86X/4m3zhX/wuzeH93/gG/oOP+Te/+JeQUlkU1qYsKFUzyVQK\nhoXQIP2rzEvESC2IDAY3ut/Y7p1yE+p3b7z4e/+I6z//Fv7RE8v/+ms8/ZU/4tWv/FWKChdXrpTs\nFCdQNXHVQLWFf4pnVBcNRXMqNhYxSipyHEJFIcbwEU0GvDB80EUpHu1g1cEtVMXV7qjfKX6P4mJv\nMR+FxFyRkOwoi1RU4ztSd2RdaSq0KpQRZQWeeDRzXXgRVA3RgaY61y3niIUKwIYjHazF3KDlwtoy\nsTNLKxTclFCMhK3qjvF88gqaZ4uI+65BSKnGZwkcN3HexH2p5t3//uQFt9MN8u/BefofiPP8VGJ8\n9vjxxHmFWjN5pbKr4g+cF6TGgfOORKCTyeu5oTmxay0Cd4WbwBNYsTCZTauRXfExJMpPmh2kxt71\nLhJb3p1ZjiVJqzmW/Simz4/R05j5Oc67fwLO+/hTh/M+s8RGlFwdTP5Rmuj7fJis6Zlhs52tjiuh\n/OQX98CXAgVmw1NNv5pSo7Q9/pwRIt25fS72AlaULpcwYCIm8+aGszG009aQ/tS10C5Kf1D6VWkX\nxUtlaDgpiK8UX1h8QWxBW3TMKMOyPh6mx8ZsfcXp84cTbQQ9T1IjJIohc5wlKaGWDCLGckDjvnNB\nz8yIxaImMxax18guw6w1ep+zFMpqyONC+fy7lD/8kHHbkHcf+cK98+L3v8fXvvcRj/cNtPDB+y/Y\nSm7GZUXLipQaLKJF+zDRgVinSKNuQWz0XnnCeSjKI3Aryr0IozekhHyuWEjwtta59c69xY8O0GnG\nibHJ/H1gfaAjWE/pBbVOWxaWWlGEbV3pqoxtY1SlLRpBuoMPRVrFsXDvZmBdkPmTHUNmne4soRCV\nkH9CHNzX8CEZEgdPHQO1joyOt4E3g21gzfEt3Y63lEeQm9oI6WFZZxtYYUihU1m80+sa/IpCWYyq\njeIbK3eq36l0REKtIRbt7NwNF2HzQpNKkULTgpSCUGleQ0LpMTdDIUDUHJ8RVNbI+qwlnitVd1o/\nVqKED4dLSBVjwk6pZ6gW9jIUPx/M06E62egpaVYJ5cTolVYVayPLswYFzcP8s3xYfk++1x6e2305\n2aor19Ru2jbvJRnrWpf01wh5qOd77evVoq2bWUg1d3l1EjpBbGQeaOS/aWB3w25OLwGSAojHhrUr\ns4btwTjbrCRpMnI926EuyeC7g5BZA7wTGxH0WhvcW+Ppduf1043Xtxuvnm58/PKJH7x8xQ8+fsnr\npzttxHdXVqXmd68qaC0R7LIHO3s734P4cic9eT6BXX17vb3eXv+/vv7T4TxJnCfsNk65t3smsLzC\nKIWuK51QrkJnSKfXhq3AlWjneAGuHt5pV+DB8YtEIusCvQZOMw/zTDNlJEbQtEDacV40IIX9M/MG\nzkvN3QnjDYO9XaZzwnmT4Jijx9HhYcZPAheK+l4mowpFBdeCqcG6wPvvwuVD7Gmjv/vI+/fOw+9/\nj6987yOW+0aTwh++/4J7qeBG8RW1FfEaY7QNelAQMDpNC+OurFul3yov3bmq8gJ4KspLEe5bQ6ph\nKXenKr5m6fBimDpdhY7RqdHBgVBLIJ3GRvU73Aflpvi9cysLqpXVhVtdeRLldt+oRcGUmt54sghc\nJDxISs6y4ogahY6IUhVWHdThFIcyJnsUSUIiAAAgAElEQVQUY1jFMJFUZ0QHu+LxqC5p6mkUa1S/\nR1vdvqG9IcPwEcRGtJCN0t2q4dMR3f+SuUpsiRSsGmKeioFMALmBGiKdSKmGWhcNc0srEl36Cgz1\nME4tkYBlSx8+poohV2EPBUvM055Gu2nb73ISW0zfDAWN1alTpUHgnlDrlnjOTJg5J5wX55dIjPEG\nzltodQtVc3ZQKjOh9P8J5/kJ5x3tcCVLYGqt1GVNnDcJpzPOI5VmY19r+IGPd/EHp33vTij7n5y+\nGIMRqt3csHaF8BTepnn/mdyYTe6CBIknWuJA3xUbh4Fx4LxBa5172/4YnPfyU4nzPrPERhZJMevS\nfWfs9rXCPDxxNljJf35IEydfNrtPH8w+8+ikEeBKTd+GRcOcsmQwcI8JtEXiHY2eyiPlX+aE+ZMZ\nZo0hg15Slrgs3NbKdq1slxVfLgwNhUb3ivqVYheGL0irFFHWkf3Jk0WUlEOqBht2BCoBVUTnfUQ2\nd3i0TpoLc7hRfQa+yBDPnsV7q5+Rh6MeraAY2e5Hot2VFWVopa6GXg1/UGqrtJ/5Iq//1q/wKAX7\nF9/iO7/0F/nSb/8eP/ON30KG8e7W+XIzfuOLX+D77z2ialzeu7K+uLC8s9BobGwM35hyeRkd7YXa\nO8uofPvnvsa2rnzpjz7kg1/4Oh/++a+xaGf4gFQQdIP7Zjzp4H7fuG8LOqLesspAimVZTXwv6xiU\nMUIGZgN9qGy/8kuUdeXx1/8pL//aL3P/M19Fty2ci62EjNTBrAYrml3OYSANpCnagpUuPmdXzkfL\nzND0VMARhap9l2pp79G6q3WsjVRoWCh3Nj8eLVfC/iXGj+Is4jSpLDQKlaIDLYqrs+hgkcYijdXv\nXLhR5VSKMssVMMyFSmHzSpGFuxdElnBUX5Ls8pKCgPMBPT+whuxtKivMci0l0nzezzoGR8USmElk\neQwwzcxA9nCbkcEtA6LlHhHDEAnAgtZKWUP5s/WBeUsZnj/bU/bv57R3cGbu8d24zhKEzJING5nR\nEqWWSq0rS72guuSHzE+3S//IzE30t58y55k+mzjA3TPL4lF/vA2228amlcULqIXJrirzTs0GYdo6\nFRrPSY35oQ5p5cwsZHaJlLmaJ4M/uLfO023j1asbH718ycvXr3n56jUfvXzNx69e8/LpxtbDtE3r\nkv5eGew0gl0pU2V2csvOgMjM0GYd6tvr7fX2+gm7fiw4L49Wn4jzQrVBHmjoHmRyJrD6UvdDPhjd\no/TYlxvj6liLbJJfHXt0/AXwjuAPgj+ApVm81cJgpfqCWWXxShmFarCkSaOMkFCo1Oy6QXoRnHGe\nYmm+/ck4zzn8AIJAjwz0JDhIMjxJ8Hmgm+XX+1CHx5MvSl0r7U9/kR/8rV/hkcL4zW/xrV/6i3z5\nt3+Pn/3Gb8EwfmbrvN+MX//iF/j+i0cE4+GdK5fHC8vDQquNrWwYjdaji0VDGHeh3ytLq3zrZ7/G\nq7Ly8x98yHf+wtf57n/2NUrv4aehyigKQ7CuaBt4L4zmUZohAYW6eOanQ0VdaWzW8LtR7jBq5f7f\n/BKfl5X3X/5TPvxrv8zLr30V2zYQpa6FrlHWKV2hC7aBEEk0r6F6LbpQVFlcWN2jPGYotEzAiFCC\n6cAL0UqW8EwYCGqSRrKCe3TBW/zO0je0dXiKueXD0Zlg1ZzUFcqS60EmEaiBZ+rIPxsjFaZ42Nqr\ntSA0rFOsodLAg4gYSBqbZkMDUVqttKVipeAa7wcTfgVGg9m1ozK93wILZgI2/03WWCU+AEscsJcZ\nW8G17mqNs8zIXXez87nSg9Q547zC1nsoJf6DcJ6fcN6p65D7GzgvyLED5wlHKS9pUzJVvc/ZFZlj\nOCYF5kHQlcG2Js6zkn54mqa/8W8t2Mwdd++PfQd3zJau88e874ms3VFvV2qccV4oNH4Y5z196nDe\nZ5bYyOl9APH8r6JK0axzqsbSx56JHJ79qOeL+Hyd557YB3ctiDpalFqVZSmsS2WphVI1ZYqZYu3J\nrmXUDPZLcS90vTBr14c3ulvaSTrOlas/8NofKPLIKg8MlsmZorZSemU8FYoZS+u02qhSGXkQV1HE\nMrswRQD7EvVgQSWMrg655uTjz89nP0hlkhwkg2cSKZYETZgPxgY0JGV0UrBFqRdFH3xnCa8G7Zd+\njtuf+VNcHx54qZXfu1756W/8K77/xc/zna//OfT9d3n/ulAuyvW9R9b3rtR3Fpo07vbEU39F8zt9\nNEbrmA224QwxFnH+6Mvv8k//+l/m9ZdfMPyOuVJTRSIubF24deMmxq117vcNGUopwihOJZSQ6TgR\nG2UZSVKFskAQXv75r9G+9D79i+8h9OyscpTx2BC8dfotFBLhaXFH7mlstRUqFWehiu9uzEaWrMwN\nyCYtbajGWE87Yt/i0SaxMUmNFp1KIpCE5HEXP0B6ExlatpCE+YL4RlFHXKhsrDQubFzlzsU3tBv0\nyAz4SBLFQGSw6EBKR7QjLKhYqphiIWyLMi4SZA2eSpUYKFffi5kPFQenAmfZp++8dxeYdaEMiVKi\nE3kjk/WfFEYOJTLhre3voQSbL0tF+hZMtp8C3R+jT/Tj9H8yRZ2kYCq3Upo4dyqRcxlKBDz3w4M6\n1BiWdeMhPTY/6p9nz/azQV5IQ43NNqyNyO50R7tjtcQeNdtpyVRkTBJjrv6zs2v8nWHYmFLJVLIg\nKWsmlBq9s7XG0/3O69dPfPz6NR9//IqPX73i5eunZPU3ttYZTmTSAEFPJTka95fra3f71+eGUrjv\n7dreXm+vt9dP1vWjx3n5PkrivJI4L/fQJDZk3sTwkzJXsCJ0qdxXMFspHjIN58YonX6NfXV9AH/H\n8XccXoA8CONS8CrRtcJX1BbqKPReWO7CgnPFUTeKRQc8GaHamGWXh26FxHl6lA5yYL05bvNxylAk\nPQ2e4byd+LAcJ98PyXHWjtIgSonkXhric4Gn/+rnePUzf4r6zgPf10q/XvnKCefZe+/yzrJQivL4\n4pHriyvruwttadz1iSd/zWvtbNax3jHvbMOwZozmfPD+u7z+r/8yr95/Qb/dMY04oiVUDtaU0RUd\nJcqbCzQ0Spk0lAV9epEw6AyqR4nNbFcvTfjoz36N24v3ub33Ht56UGKaysUCtgXpwpOB9SjFKER5\naK1QC1JqdIbwgnmNUqKWX5c4Xjxqg4ojNXBelaguVcniEnPcDPVObQ3ZRhi0PxEmkMPCnEI5kkIL\n4a92ubHWEeVIOBHJZ8PZqVjI8nosylusobJRaIi3PLfAsEi4DCKR2bSwebTM3S5Ol8qYJcKek8k5\nlAM+9VF2rgnLuchOzPj07SATxmSZ/el8Irt5aODcmcSKl5prQkENRU84ryXOS23wnxjn+aGImAmf\ncTItnmdFkVMZSkW1nBRmkjiPxHl+lPng/BDOy7XqWfa7jS1U5BZmoHoHWyrLUkOpP3e2mfBOie1+\njzYOtsQHRsdGj4SeBdaLE2p4awTOa4nzbrx+fePj16/4+OOXifNuifPun0qc95klNuZEmhNt/685\nuZbqjCUYNTTKCoaDuzK366n52UlD90lK711Pigq1CstSWNZCXcJPoBQJpjT5TB/ZfislWSZxQHYT\nRlWcNVhob3TxMAVyB7/wwAOveaTwyNAHTFY6Sh9QrFCGQofWjd46vXZG7ZhWTCteznZZ8dnMQoYm\n855mC1fk2SKd2Y/JIufQ5vjuR8RYlEYE9oyYUccpodwgWkwtpWCrheSyC3UIYsL42pfw917w+NET\nT7XyqlS+9+rGh597n4+/8lNUVS6XSn1cefjcCy7vP7C8e6GXzt1vrP2Bmz2x3W9stxtdGqaW8kNh\nWx757vuPsUmXQdaZRN1eURrObcC9wL0b99ahR0ZmXZylGDXz/pqfPUgtUl4Y9XPtCy+wL74X6hhG\nSKrIDc+gDcHvjc2jpqR4R/0ON0HuBd0K5gtFBqNeKN/8JtIG7ed/nrJWynBKNIoGs3BD19zmNoPN\nkDbwu0HrWLocW3P6q4b9y28xHh8Yf+5nWIwkATy/+/gydW3h8O0LJUSTqVRsLNy5cOcyGks35B73\nYpmpGi3mgGCwOGUZrIuhxcJ/I+GjFWVkL/bRZSfJhFMA1qTfpvtRerSITsVJzDvJteJzig9Jk1on\nO54xWy2TwTXdRuO7QYknRtjbTYs0av8kbMh3s6yD2DxdJ/Ll7DI/yQaDkCr7ZPSP54gKpSyUulA0\ny1BmYM41aD770Md68kls5L0GbeORlcjXH73TtlTQ9A273/DtxsNl4TKDXpkBZMLb889Uasxa2mDM\nu40IejboFjXa3ZxmEezu9/TUuN14+XQLBv/la149PfH0dOO2NbY+sgf93FNCKq0a3WiOx+zznsZS\n00xqMvoAfYxU9Ly93l5vr5+s60eN8yL2/TDOqyecd7yOp5caTUJ1WAqjhP7DZEG5IHRMrowyGDWM\n+ZZa2dZKv5T4eVgYZaFroRu4L8ioLKPSm3K5Cwyj6qAyMK8Ru0zmiYznOM9POE/2cPXJOC/Gdd+a\nJcs6szwgnuenx/zf+XeJE7iUglShLoKswu0rX6K/eMHy6omnUvmwVErivO995adQUZZSWZaVhxcv\neHzvgYf3LvRL515urLyksnHvd7bbEzbuMEaUNRTh/uKRp8sjWJTmYgNRjQN31SQRZkcZ2LqwUaH0\nwAclyI0BVIyeB7nhk0RwdCjbuy9oj+9FYqyNZIBiTKxAvwtUw0qJBN48rBdBaglj8rKEipUL6299\nE389GF//ecgSa9EoXaFalE0XgijSLAvRUA+7hZeabobcDP+oUb7xLcb6gH31Z4IoEN+TRb4QbWnd\nKBdjKU7P5ASUg6jK6BxW7j0N4zeKb4g1pLcwoyTFv6Jh6CqFxhI9W9T2Egrzmh5yIIe4N87SnuUY\nqSqRIvt9Q45duupOk+Dw0/BdmY7CnuGaKoV9LWQ7XyYGnThPE+eVE86bpOCfBOcdvwfO8xPO8zdw\nXhzmS627LUDgPJtQL85Mdpiw72StzLFI1DNxnsEYneYjVDpbw542/HXj4XrhsqxJbmQp2rz9OWY7\nzksCyEKh4dbp1rHRMOvhV+T2Bs7bwlPjGc579ZnAeZ9ZYmMGpeNwMNmiZM0WuACglNJpI+sMyUPI\nTLXaZP0Ohm7KFYsKS1GWWqhrMPl1OQW7uYo9Fi7jYMJn0GHEptdLoXEJYgOniSazeOHKAw9JbJg8\n4lIZpvQGOpyLC6MO2trpl85YB2MZWDW8WrbEzPrQbDLtk32Y47IfkGaQYh+7PYjl/+9Emkp6GsRm\nIMk6cvIdbKZsEuqI4tlatBj1AjoENwUTljYYbWG0jjg8vf+C7/zif8HWQy1Ra6EuC8vlyvrwwMOL\nd7l87hFbnQe588AjT+PO69sTT69esS0fYy8bfhOWsabMzzCLKs2unh0+wkCzq0wrTLYBWyoRSgvS\naDXY8INMlvBTqdUgszaeZToQhMfRjjmYUDfoHfpWuPWGYKy+sdgT3ApyU7gV1FZUOpTB+rd/DfnB\nD2j/808j771HVbhuA7ohw5DhR8boHvcs24B7h2TvbTPaZrTvfkj5X/4u/av/L3tvF2tdlp3lPWPM\nOdfa55yvfrtcbto/QBMLmr90sIFqbAyypQhHgiQCiSi5yM9VlPvc5T53UW6ScAO5QVGU4AgZxE8w\nSAEiW9gEZDu0nUihZdrubru63VX1fWfvteacY+RizLn2/qqqu22CWyn3t0q7zvnO2Xufvddec853\nvuMd7/sJto9/GyQlt7iGpi1KDJw9ZGAUhPAMMRyVfZiGbqTa0bPDOdywpcqICwVvg+8vDicnnxxd\nHZ09nChNUvQZZ+gpQ5HRhxqL6iQ2mIoCHBn9qTE/2yDTpg/FQFxDWmcafcKug1UYLt1xyQ+yKVbC\nWOZcEe+j0ycIFE0artkpHNIOxdVxfHCSnWQ4Yw65zWy3WxDpkytUVOZiF5nmMttLxrhz92D0zegj\nLtqG982c/GEsyBYkjbtTW6XWC61uXM7Kthba5Z7708r9aWFd11j08ug/PqoLN4QnPha7SP2JqNlG\nay0y4K3TulN7Z2uVy165bBfOl43z6Ld8PG88Xi5ctp1trwcZ4siQSM+bDJInyMakQ5Z4MPlz8ZvV\niwHeWw/W8MXx4nhxfEsdv7k4j6+B8/LAeTqk0vOx4E2v1WYFktNFMFPaEp5ok9gwjKYyNt8L97py\nzgvLsuL5hGkUsMLvO6G9UFumXsJUMedOTx0Tw2X4CNgovIx36HP3OM/XgfOu69D4xw3Ou7lvnDr0\n8EIYHk6zqjXIETPocq3oGrEeedajJYVFKLmzlMKeG73A+eUnfO57fz+1zQ1sQnIhLSfS6Y717iUe\nHu6xB+du2bhL99zJxrP9wvnZMyrvYlQcoeQF2TTaKFqD3qMifbQUSBS7Bh7e3dnN2WhArCtJNFJR\nCJ8C06vHwEyfcTMwDS8Rv54+HQDEE1h2WlKQCnkQFA7MDXRKJF2iMu6d/Ff/HvIr79D+00/QX3o5\nPM2kB4GRLEzjC0ghlAZpeMqlKDBYdfxs2DNDfunXWP7H/5X945/g8d/9NrToSCu8ITbW8Rm7kO+M\nhA5KIx0Fn1BqgGBkOpmN7HsU4mrDt05vPc6vepBCKWGSqdJRylGY8QR9EawlpEkU5jLXdgiPz+m2\nXUayHEqNqAKOa3eKbsd1p1N1IHM8M8EVQdTMOcGjEOazleX/K86bH/6H4bxbsi/Gkkq6khoHzguC\nZvIlgfNG2kif5Ihci9AQ52nMV45R24Vad1ptXB6fsa0n2rML96cT96fTDc7LA+fN9zQ8VoR4rgPn\nNczawHn7Dc7rA+e1YRK6cb5cbnDe5SOD8z66xIZc2y6AoLYYcacqlBwGSyKJ3DKlR/rH4fc/zfIO\neTZMSbZMckOEorHglTLaT6aZ1CxBDx7UXQaVOzZhYsEmmhySM1WBnrG+YC0kSa2fqO2Ord2xtxNp\nP8Xg6w6XHps4dywZbjdmLzio495vWEM7Cryzf+oaqQk8p9awMajs+m+PjT2T7YQh/QIdcvnYbEq8\nribQMlUTm2TEM0mCYGFRMh1ViznLMsU6zTImY5ITp+wWFYvskA3PDc82Ej0g3yUoJ0wLbobsO3p6\nJC932MOFtDuLragpvnf2/UxrO3ijLEq+K6SX7ljKyyz6MkWekGuhVo1UGB0JMRb2Up1Ko9Kk0axi\nDbSFk3S2NIy35DqhzU2sgfROr1BpNKkohnnFvcHZ8LPCpVPNKL/0eR5+8qeQf/45rDb47/4S7Yd+\nkP4HPgXekMWQZmgPwiCJoBW82oh27XGrTr8Y+jM/z/oPf4r+pbfJ7z1F/4cN+xNv0b7rTXQSCRmo\nwxVZE0JFpA2Sw0m+k3wj24acHX8E2WTEQxGkxv68qi0ukSB+SjK6NDLRW1o9CCVWHSTZrCyNgLMR\nMzWVA6ozCm9KBYd8FIFptpkT1pWmKdq9evQPa3yQAVjjwYRL/AClN8qHyefBqNglHQ7Wc5Kd1Sy5\nSkwmEXCj6rDxjfmkTyb5NUXPY+JOiaQF0RzvY5R3ptwxTD1bLHoimAZQcA+wMp2vY5oL41AbXheX\ny8758RH1zmMWzut7PNytPNytnO7vOK1LqMzyaDGbb+Vg5XyQGTeERquD2AjFxt5bmIRuNRa77cLl\nsnHZg9XfamVvlVo7dfj/xHthKI7C3EqANF3Dk6JJrgvfWAxVrwz+nLq6vTAPfXG8OL4Vj998nMeH\n4LwxD6nf4DyuOG8Udo64M4b5nSnkAnLCpdFzKPBcOrsuXPSeizywcIfLPSZlEBvRtiy2UPYckaRm\n+OKBHfPYPIoxk7SmSiPeX78WWOZp+gDO8w/BeTfkhgQKUGOQKKOI5aE6ti50jcSN6kqVRFZjXTpy\nJ8gwWl9rHv5fGe0eMePq7DpwnoUiVayhPeLjRSEviXS/klZB0z2pVcrpnpoKfd3gXljqilTFL53t\nfKZvO94aS1aWJbM8LKQnCXlI2L3S0vBX6+F1IAYmfagVBKeO1vCKVKNXSFXIbagwRgvtTUPOiDvt\nWDWkShg4uqFt7s8NUwXpuBjp85/n/u//FOmzn8OfNdp/+5e4/NAP0n//p0i9ha9bMjQ7uoRprRbw\nbJgalkZLaHPs0Sg/9fMsf/ensF9+G3/7KeW8cfmTb9F/25vD4JUwNnVBimBFRvvvDJWN1zvt/hMR\nQVukk3tFa4vW5jPYRmC+4A+QIoFFk6G5RkuFR0dMciWh9CxIUVKXw58LCXWtqEfrdRHI49yJXEmG\nwytkXJOzbtxHWpxEa8ktMRlPqAPnpQFuxoPnpnvMF79xnCcfgvPmPDCJ1jl8QvmbNIXXzaHWEI5k\nO48Co42CXbQb61CzKGLpICanwsrcaM1ucJ7zmPPAeXc83J1ucF75Gjgv3kXgvD5wXr3BeZVmnb33\nMAndRvHqOZy3faRw3keW2EA4TEiYGwTiWw06NFi0Ef2U+zXaCuaFacdj44eT0R8bLaL9IKsOT41R\ndRYf5ALMDYrPq9yIuB3G0xrBTqogSdDBzKexaEgrWF2wWuh7GPGoK9IM2XpMsDiW/CAEgijhSDi4\nSqZuZImEYeDsZZIg1Y73Po1Cj7xzt+M5YkMWZjhxaqYzcRhfetfYHLfoaay5BLtMj3MvCc+ddaSM\nCBX1RPJE9nxUIJBoZajdaMnxk8PieOlY7lhxKIotBU8Rc5ZWY1kueF6xuzO5de60kF3x2ng8L+zb\nmd52csmUuxPpyRNseRXTl6n+QHfF3NnPFZaKlpH8QYtIVSLe1I1hmurIufPwy1/GT3dsb7yBG0Ne\n5TEyO9CE3sKsqkvoIPAGveG74pviZ6GZ4ZedpTbycBLqtdLPGzw7I1JDftkNNScvGn2Xgwn36pHk\nUUOtYdWhdZKBDomcVcNqw2tExpLAq0CFtjuNHZOCaR3XOujosaQ17Ax+FnQbCRzNIuKrgXVh9m1I\nEmiCjgjblHrEmyEU16hmZaL3131cIw0hMtjFO6N5ZZD1U2cR7LYJo8oQbUWdQpMMGC45xpqPvijz\nQ0SFyWGqy8xSP1pTYsyPGlh8jjkNxVNMvCJ6PBaZ4GBMxnNRZBIaV4WG+TDLmq0kmo+UH9VQyEAe\nC26UiFwjrcZTjHMvY5yPRV+GBwpjanIdbU9uXGrl2XnD607CuCyJx7Xw9G7l/u7EelpYSvR9SpKr\ncdOYFxzHRkZ5a5Va56LXDxZ/b7HgRaRrfN228NCY+ebtcAqf1TxnnFAm2giJopJTIg1TKR0O2ddz\nPk2nrq9vKkleHC+OF8e32PFNwXnhT5Y13eA8fx/Om+o6oOt1A3UUSIe60EqkpUjD1LGScDNqLmz6\nwEXvWOQe9A7XQneNtDwTtGfo6Ugwcffwr7Cxfo/X80GcF/4Mk7uPGMVJetjXwHnxrkRmq08QRTNO\nXT1MuX0Yl3pTWsrsmkmeuFBIAmmJeNMwn4TcE2tPWA+zSLEgLwo94iN9tPXiQ7HQY0ObQNZEuj+x\n5ChiUe7JmrDljNw7q62kmvBL5/yssJ8fsX1nyYnTaeH00on8coGHTF2U3RStAjtYj9cyryORmeMX\nhJcNg0U5d+5/8cv0csf5tTfi8x2xoHlsGFuX4fEVhI6OIl0ICmaYsABGOu/sl8Zaw2Ryq5XLeaM9\nO5NbJdFJamgZOK+ALhLGkNkxjc2eVcMfHbl0dLQDV3Mu1di2hl0qgpOUeF0CLIIvSl8SVW0kzihh\nLdsQbxHhK53sHW091MCXIDZkE6ijkJvj/WoRpIDQKQIVoXiieiKTsKSwBHabAlO7yRiWQ63hQ2VC\njLPhYRchHwNfesDgkdc7SMS4dmXWw4zRnhXkxhWaDVLjwHmjLSLnAUv0N4jzOMa/4wNuTpwXm6uU\nMppyECdcFVCDrRmPs0FqRNtUFEjjmhGZjxtjfSQX1e5ctsqzxwveGgm4LI88ritP7+5ucF4eOO/G\noHO8LccGzoviVa37ldiw+PneooAVOG97H85rHymc95ElNo7+nA+w+bEpT/MEj4s963VdO+4+Jvhp\nqTQne7cpibEhMQq54pXU6NeNybxwBTjcEEf1eL4kj3GTupA8UTw2KgkjWyZVRTdBLjL8FIiKwBZf\nBRirR0jCyniNdKbxYJCYI7tAYOYrgxx5yrP334bxoM+4Hw8SJNQfkS4R53ZMFDakicQirWLhubA7\nJKdJGaRLPKdLkBc9dZZ1Z0nxuURQWcI0YdrDZKkK0qJ63wtw6vjaaEullkrXhS6FJpEYY0tCSkNY\n0OUR8UY5ZU5J0N7g6QqPJ7ZtQ/KCnu5Zn7xGPr1KSk/A7kYlZietZyxBSjvZg7VexFjEKF1ITUMu\nVjvy1Wf8tn/40zx7801+8TOvkFMfbr9jMsoSm+zmmFY8jXaIISMMk0/D9iBL2htvsP/bf5rX/vrf\nYHnvKduf/3PI3R3y+MieK24dtx7KvU6QayZDOeH0NlyxG+F38j2/E//Yx3j4n34M+/ibvPcjP8xS\nQHulG0frkDeom1MtUbXSZcPVRgdVxVvFto5cQC6Cb0AfKoHu9D7kgWhUWzwWUu2CmZOSk+ksyDDF\ndlQ7Jop6mGDpyGUPxUhUD4TIW0cOLQOzrhAjNOEkOo2qhVQye4Je0mQUYpGbgKMG8RYL1BxUo2ow\nwJ31QW1oCv8LcTSlY/KdUrkY4XPR06E6GYN6/PZg8RnkxphZRDKqhZRXRFeQhUMXpdNv2zGJHkf3\njqcg03xULw4YOvxErIZOrKXO5pXH/UK/NNSM7QKP+cLp8cxpXShLHsTGkAWOfkcZRsPuPkiNRq2V\nOr621ujWjxSUfRiGxq1RWx8M+7U9ZzivTMg8zpoMwCIkTaR8zXhPwwAw2Hsdc60eYHvuGnof6S0v\njhfHi+Nb6vjm4Dz/Ojhv3v9KBkQlOUgV2rjvcRcBK3S5w1LCdMHdaEtmT/dc5J4id8Bd4CRTdovU\ntGIam/zBu1xJk0F0qIW54gdwXk+OYfUAACAASURBVFTiZ+vMFefZwHlhwvk8zlMg35xfCZx3RMZG\nccfM8ZbCX0syuxSUBR1VcCmJO23DD0IGrk0UT7gkNLJeqCK01tnNIlGmdLREgkhLOykXSIleElbu\nEMmU0gN3Ls/Ie+ckJ0rPsDvpvcz2mKmXM0vJ3N+vvPTqE8orK363cE6F7QLns5PPO23b8brj3kni\nJHGKEAWYKrGGdYN3n/Ht//tP8+4bb/L2H30FkR67cVWKhAkpFs1A0yc9M+ryFtdmnGfAncvAea//\n6N8gf+UpT//8n2O/u8OfPtIHsaHS0QJ5gbQoaR1PWpyeQrHtFdhg/+Tv5PHJx3jpL/8Yl29/ky//\nyA8HMXep0Yk7xQsa97cl04pwEWPX+H3Gyd5JHopdHUmD1IH3Noezw0YUMtVjHzJwHj1+nouzpMZO\nJR/YXpHi9DRSahagBiaSm/YtUqRKBikUa3uo5Aesmpv9rmHIP935JSpI4gPnNYc6yA2bPdvc4LxR\nnOT9OE9/nTjPPljIGkW9I1EIQSShmkl5QTTyfw8Hk9kq5X6k3rlrJNfJlRiZ/x48TPhxiNF6JDo+\nniM4Qc3YcuUx75weLzc4L4gNPbyBZgHLB867khr1IDcmzrOD3PjaOM8/Mjjvo0tsMCbk2x8MNg2P\njcfwyyQPeff1jnAQEsx+xfhZsK4cLReTBb8urtf7Xhc9HRuoUS4WiKYzmYg/KtsKyUNulEh075SW\nyS2hO7GZnHuwDlol+tWYldrw1Oi94p4xS8drnRFEs3px9C2Z36g2dCxqHfc2ZEnB1mXPB6uf0jgv\n41SJesgjPXoxnRQVje5DqhZ9l1sGTyP9RZ1mnUpm92DtWBS7B2xkvifHN8FbmLR6FvyUaCUjWrC+\n0m2h20pPp6hypBJMdk9YvsetUU9BMCQ3XB7x9IiVC5YzdrrHn7xGOr3Ckh+46yu9G+iOngvuUKRx\n33ce0oknqtzrQm6OXKDTefiFX+C1f/iznN5+j/y08tu3n+ALf+BTXF5/NYgNSfH55oSUwDzNA2z1\n3mi1x6JRQ91gPRZspbF9+tNBCLhA3UF7+IRYxVvHmo3kmcg3n6ZM/Yao8OmhsRT6979FO61I6/R0\n8HMxIVvct1alWqPKTpeEax+GnWe87/RLQ84gj8AmQ7kSH/fd//Fz5Le/wtM/9r3w2l1co8WhBgOf\nxCmjzuVD8piGI3bCSdIQjUg89VDJhBDPxroVlbTAiIpNp3cSJolKpbKQZWFJSpUci/mIU9MO7DfD\n3HTMFX6dRLmpiHGVzunsx3wfy2w+mGmmd8foleSoHxz+GsdGf0Ywp4VU7sj5REoFyEFY5PFot/iM\nNZJIXMdCPU1Tx1iMz47Ds8ccanaqGrs6XTtqFmatBns3nm2VlAOsp9EudMuSz1nMxjxQe6O3NuaE\nUIL1GRVoTreourXZH3qFAug4H3KclyB5VaYEMfpPcyrkXKKykUK2KTdR1dPw6wokwiT1hXnoi+PF\n8a13fHNw3lQ7+PtwnhMUcsz4kZk25icnSI1514nzRsxlkhwkgxTMG9IK3u9p7UTdT+S0Bh7roJsH\nEe9RE/OhrOg3ffEuYdIYbSUdkempFn98KMEPrHqNc+yjzfDDcF4Uvm66joNXmakylpC5oHWwXqgS\nhS2RhNACr3hjLUo67VGksjC9z6PZARxPgX+SD+JoEWQBiuPFsGJ4yjQWmq5YWqOy3w1PC5x2ci4U\nT6TmcO/oWdFHZc2J9X5lee2B9OQBW+/JLCyrsK6drezo5RHqmdQrJTlLcu6ysVqjbLG5e/jsL/Dq\n3/9Zyjvv8eSx8p3tJ/j8pz7F+dVXEVG6RqxpnJdoz1aL/XR2JzlBDk0jc+uICdIbzz79aXR3mgt+\n2cOUszXwisvAeYM4SKZIGThvtqQ28IvjG7gWts+8xWVdaVufnqVxmedRsMiBI/oubJfEWWBXx9RY\nh2I2UYFo52kVZAc2kA0efuLnyF/4Cr/21vfiL9+heZIIUVgN+O4si7PQqFTaxHkSBJwtQ627DEXr\nUBkFDBtlKxm4b4w/Jb7G5jnRcsZyCUIpR9yr2MB5oz0aje+ljY0zThh5zILvnBFkYBHQlG5wXkIk\nTGc/HOfN21SDDXsAj38Hzsuksozku9Fq7DdzkFjogzz8eHzgHMlccZ5cvTgg5gJzqGngvNhZhbec\nG70ZuzWebTspyw3Om2oIjn1g4Lz2PpzXBs6zG5xnA+f1jzTO+8gSGxxyapi9VPMymqeKqKWHGfJ1\nabz5bj7VVFzEx+WDUTOdtViOwRfPPBYhOvFRzzvo88vpZPCJhVBUyUQ/pWn4AuSWSbvA5aB+42aC\nNgZP4mFakxu9VcwqZjlYPwczPQwX54IXpMbk1WKgzgqtezD5M+bHvd/IFG08byzkEF4jruEW7e6x\niWxpGBRfz1CdbTlppIRLp1LInsgjnYRFkdPYiHtI7b0N9jNnWso0zTTLaEtYylha6JwQ7hFZQJS6\nZEzuUSr7ktCiZIGuFzydsfxI1YQuK+3uVdLpCZruKH3lzmKx9LuE9E7plQervJSEJznzIEJpwTZX\naZzuXmbNJ9yVPokFk+gZVWLxd4JFaGDa6VpRM7R10t6RPUiNIDaIiV2M/vGPRxQVjlgbxlZRYene\ngqluMRFkBzWJrPa4JOLcT6VtFurv/M7RSuxMA/W4IMdEbRIGp91HS9COSUKk47JhbaefLTw2zo5f\ngtSQxwvLL/8K6898lvz2V6gvP6F/z3fjn3gteoATR49k0k4ZE7u4kj0UCokgtMRjEx7KjaGMYnhj\nDCDlY8B5jjYU01BvLBpKkyJGTYmaF2qOPmBvGn2vk/U2j8XOB/kkIFNa7BwGnYyqXywMMRGHq3UM\nyCDtr522wb2MfkmuC9E1CTmYeZWE5oVcTqHYSGXIfX0YfQ0mXz3ADYYlixQeiXFHGvONySCxoG/Q\nm1NTZ1ejqmHDPBiPXmbpfoAHmdLlIVcO5nzOU0Oi3CMNxcfidu3J9utCbtfv53lDrovntax6dE/G\nfxK9p0lzVExSCTZfM6r5ajolacgx5yQ4TOt6+1eWb/7ieHG8OD5Cx28qzhv4Sa9qjg/HeYMAGK+H\nOUeNOXm2CTJIDekhwzZJYQxpGZUMW6GfCz1lOolEKHu1SmzMBmi0PjYaDOPQ1MODSWYSX38fzpvR\nYGWeshucNwsl9iE4b5L7cagEntEuuCfEDbUU604TLBVQ2LMjkkPNgOFaaZopWcirR0S8Ocka2Xp4\ndEhs0tPYc3p2WDqeG6Y7LtG22ih0XfF8F+WO1UEL5hteEiRFTch3mXLJ2GOokeW0wCsP+P3LWHnA\nWcProThL3ujLgmyFYhtrMu4KPFmctTv5YlRrnO5fZi2n8VpCIFlV2GXaPlzNNudVpETKRRcnD8Xo\nTGiTDsmCnKof/zh4HgrghluoJMwbLoHzwssuiocynsPy8HZoRMFmD6y8f9d30ixwwHMX/PAsmVih\nNWffhV2ci4BJtOEkaWSpeNux2rALcIH81Qunz/0K609/Fv3iVyinJ+yf/G7am6+hmdiIFx/+atFO\nlMXJo/B2bHZvUlom9gw8ck1iuXp9+DCUjPZ0Hd4NJokuC5YMK4qXHAUzA++CVBki+WsblnQ9Eo+c\nBkfRd2zLNZGUaJFI6UipCw8Wfx/O8w/Bedfku0lsqCiaC7ksQ7GRA7uOeNe5i/TpVzOmCobARDVM\neH1uJAe+6i2uraqdHaPKwHmD0G1mYZ3iXM/rczjvljaYOC8ICx8Exq3HYhTmZsvaRxvnfWSJjUEX\nXP8tjJl5LDTA2PaRpjzRj1Ca559oPn4ubnFthWEmV3Ij7uHXZ567ymOxnAvMpPAHy28cMimVHItS\nV5q3SB1Jg71OcwIYH3cfgw2HPKN5NswyvSutQc7hhRGD8yqrBG4WsHwj+5kbumvfZdyiaqtqqF5N\nqjgu3TF5uKKWYrOrseAdLKMrDTCJhaxRKZJJKJlMloJKSA7Jib6caa7sUtlMqCSaFWgZ9mjvEFUs\nZ7AV7XeInEASuyZsOUVM1ZLwkliS0FLF0gVLz+Js5IKWJ+R0h+gJpJDv4C4XpCe0Vpa6cd8rr2Th\npeI8sJBbRhah0nj6b/whvvDSt/PGX/5Rvvr663z+B94arC/BtKZ4vzY2090CQEjExsDuaFVkF7SG\nAiCpQFckR1qHjMmFoIRiIhKjWjC9AhRC2SHIUBGM2VwDkBydUCNKS5RrDJkylB8agA4Z6ohpKtVw\nNqzu9DP4o2Hn6LVsBuvnv8irf+3vIO89xYFXf+zHefpvfj/PXv++o0Vx5o9LGlJPYtLPg+dNdNQ7\n2g2p80/7QczMYWN99A+rhBdb7pBiUe4ZSikUdWoqtNKoxdiBZgJbkIgzClbGKiI6uWY9WqwZbH7I\n42KxC8OjMRFLClXikMdN4zW76Vu+bvxHZWUseg5oKuS8UpYTKS1HzBXJrsSGEB4bOlq5UvTWIiDJ\nIo0H6F2H8Wsslq0aNRstWfjvBAcZHXA+4lubgTXcGx7BzPH5zA6aAS7iIT6Mm97HmI/7udmHsOnO\nEb2GTGR+OHOP9TcAoKTINU/XRU9TRkbF5FaaeCx4zhWcv2hFeXG8OL7ljt9cnBdFLPXAdTe6kBuc\nN+a4Ccro1/v52K1PoW4iVLpdxtwWHm3NWxQkVMIwUX16oIayvupIQCOIjRbR26ZGz5WWlZyNa4LA\nbJMer/DAeekG5/lBYkx89zzOS6heVYu3p0kOw/iB83psJH0YSfYs7BJqDVHHrFBkJyOUlCiLkhzE\nOtl6KAIBTY74UNjkDrnRdWMn4bbQu9At4yzAEgqObCAZtxP7quHxkATuFvSyoKeCe3iYXNaXkPwE\nS/fsacVSIRVlKRtWCrplSn/kIRtPVnjlBEtX0jOhWuPpH/pDfPHJt/PKX/5R3n79df75D7x1tJJb\n7OzoaVjojfVaBDoRk5k7aA9SQj2MWDFBWviVHCkubpFFayOqXa7tRDB1QVcK5UhcHEW1IJpGMfDK\n1R2knAyPsWhp0mh38sQ2yhxJjCINl0rbKn5p8AhsUP6fL/L6//x36F99yu5w/2M/zvbD38/5M99H\nkfDG1YXwehubfF0t/G2Ye4a5Z5oGvbPAEter3IwtcUMHMaLDewXv0a5BxnQNI/WcsbzQUqeKUVs6\nikT4dZciIkiPicBtGuDGOZTZvnYYW349nGe/DpwXs4amFGqiZSGljEww7Lc4M/w0wpcilLleBkmQ\niIQY1WNLOew7aC0KV00HzhsYuQvvw3mB0QLnjflhkEpXnOcD500s5devz+G892Otjx7O+wgTG5Pt\nuUqZIIbNIIHG/+aKdmXkj4XteDb/4FcZn6U/f89Bil5/5LfPaeNP3y6rziFldB0X/RiQM/GkGl4N\nbzZikq7SyNjo2hhQM6JnGvwler8xPTyYy1sSI9QZ0V5yPeaiFwsjB2sXC6Ae5IYc0VBR5QiQERop\nb3FGdEwuR2qKC31YKVvPYNFzmQkjVlGFpFhSWi7s1tjc2SwMn2zPV6l/N1JzcoNlhZQNV6V59KNZ\nXlHPuIRxkXunL3d4O2G9IS60fsJbIaXYgWtO5FQ4iSLbhbI/UtpCzrAUKLKQrSBZUTpmGfkuePpn\n/hQ7wv3rrwRoydNMSbHFscVpudOy07ORavhJeDZstCIZsTG1Ht4TUsGwCNFxcDqWjO6RnrIZI1IJ\nFjGSQbIgvY6ywljEgmObpNa4lkekFF2wJnSBNoykGp2GDo8EY5eO1nD89mYj3jUUAPbSA1/4wbd4\n9ed+nuWdd3n707+P9tu/A2/baAMh1CoMM0y3g4EOvmMALTOsCV49rvVbYmN+7USme1Z88SC4UoyH\nvApJOqVUaqrU3Mk5ElV2g+5DETOTXBykMaSzzuFUPU7PBMo6GfyUx+I0vGbGRH4sbGZHEov5VB7N\nBYNj4RNVci6s5cRSVrTkIC7VDwNgm4Zw3cLnRHZS2ymtx5ymoCmULz20LjQNZrunR5pu1Fzpy1h4\ntcc5nYz7yI9nVA7Ex3wyeoHHTMA1VclvQJIgHzJD3s6Dx899zqcx9yrgo4VIB4CYi13OhZTzIVFU\nfV6mKANAzud2i97QF+ahL44Xx7fe8c3DefLc8wTOGxsP5uZpkgCxUfNZyPIwL3DXEUc+NyrDPNDA\n8mjPzDHXj8pZzLIjqt6d0bMf/mSt7bQWBazePeZK0RucdyVqZuJBSrc00DfCeYbOJIN53mSSSUI4\nP47qfI3kNJOEidBKihYDnE6jkUmSKCQWUYoqqQhycsR6zP9bRPEa0RLRU2X3BLXSzy3WwCJ4T5Ay\nEUIaLTulrPHesmBZQe/oekeXFbeKiUJ6wPWE6YmmJ6qeME1oOhEt2gNL5k45wXISlq7hF9Y6tmf4\nTnjvz/wpNhfuX3klVJ+En8gq4Suhd05bO3Yy/DRUK93wvWNVAtM1IXXw5njtWAM/8ById7IZKh3X\nTqeHUetQzNDCA2JqRALPXMmNZkL490dxRC2ur8PLYrSxt9pp4/m79yBhpNGIVmS2ip17pPZtYPcP\n/OIPvMXDz/w88s67fOnTv4/9u74Dti3agj1UN+YD540UGB/FHB8qbzlM+IdCd262b8aje6iOkoTX\nidrYSwwDT885SI0UpIblRk2NfXjbhYeqHsN5tu+KBxEXOC++isgNztMPwXnxwq44z29wnh2ElNu1\nuBU4TwbOW1nyiuYy8JYMPM9IP+lHAcvyKGK5Q9aYKwoH7mLgsy7Gvg+cW1rgPPXwBppYjkG2DOAZ\nKun4JOJns8D+fpznNzjvevxWwXkfWWIDOFifQ1Ex2cshWfQb0iEuXL9+fxzvX+yuy5vAVR7E3Cxe\nmX3nutDKzd+arOV4KeOn47E+ntQHO4ZgzcKUsQ/WbZhIhaJ+XMAzAsyvrHvcbJhGzdc/Uh50tqnE\n4JSRDBH9l/4cCxkLox+MflwW/tztmqzih9eG9XEOPKoWMjZRQbqGnM9ckS7xb080piRJ8KTUtLFr\nY1fj4sKla0TC9hTmmJfOsnVO1dC7jheLvk4ESxlZE60U1HJEforjssQgantEUu05wMfheB5mipIS\nyIUkd4juUDIsHjnrltCS0OS4FiQVnj6c0POZh30DdVJW0prQJeGL0LPRtFHVqNrRfSSu0OLz7o63\niBXLzx45/Ytfpb/5MbZXXwnlDmOj6x4xtCpUUSrjehn+FceVavGccxOvu/HwhbexdeXy5hsDj4Wp\nJ+a07jSF2uM5G8I+DGhnn6ZYOJjPSdPFMKDdLVy+57vRyyPrr73DO7/nk/DaHdn3kF8OQGduGKMi\ncTMIbLirM9qrbA8zVW9+sL1HMqsHMEwlwWgzkjJ6B0XR4qg2cuqk1NEU4MA1CBwpYIUgZiyUNTLD\ny0WuoHj4zgSLL1cH5zEBB8s/SLsJDO3alhGLHs+Z7AdfEL2GpYRaoywLWnSYv0XEcBAbNtj7irCR\n/QK+k72hIiQiEcAQuiYawmawy4b4IyaPeNrwpXHNVe9HOw8qQ0op43WNmfJWsjIWvEnQOgEqRKcA\nSI7F8Osdk/A95sPhT5Il2npyzuQSLH7O+broafRmzvjZK5PPIEvDA+RWMv3ieHG8OL51jm8uzhOm\ngZ3c9Npfcd6sOM8K+/CQsPmcQQbIWGuYpHdzjE5fxsZGLQzGhVBEtPl+iHXBooWk90rvSu9CCg9L\nJiaLPnodeK5jlp4rbH19nHdbSbjFecNIFTBP4bnRYy0VhnzQdVSeQ4FhZLKHMreL0lXpKuTkpMWR\nUdm2JFhrdDeqQ1MNCfruNDFIkFZBqoIMk3lbUFJUqFPCdRhUasflRPMFq1uYk+qKc8JZ6X7COIEW\nEp2+xJsQNSgNWRzW2ExnUdQc7wW3wn53Ij898/J5i1YhidaiJSfSSeBktLXR1k5bhjq3NvJlj0SR\nzYMoaKBPH7n7/K+yvfQxzvevsI/rVcd1NP0u+1Hkv7ZqRNoHB3ac+El2Y/nlt/FlZXvjjbjuZBhs\nmkdxY/hP7BWqVho73TV0m1IHudGhhteHt3i9+7Lw7JPfzfb0Efm1d/jy93wSebhj2fehkIhwEvfw\nBXOxiAFORpcolM3UFaTjfaTs+WhDOVrXB4mmclzHSTR8S1zQrKP9Z8d1wdNOTxvb8HEQjRMWuCvO\nk/pADlOtMjfPcm1FjjaU6aOmXwfnTbXGGDMHucHRngKgqqEgXhZKWdBhGhrqjuFPN5QaXR3LNlqO\nB45fJOJvCzDaTMwdasdto+czrVzoy46fenxO3fHej3mO4RPkPueRYb/vfoPzhlLoOZzncf7n7Ppb\nCOf9hokNEfnjwH8OfC/w24B/x91/7Ob3/z3wH77vYX/L3f+tm/uswH8F/HlgBf428J+5+6/8Bl7J\ntOy8Ye5hLlfXJpLbBW3qAL7W8Y1Oqk/qipvaONdF9PZv3V5Us6VjMn2x2XQLmVb3216ncREypVM6\nWgYYj4uesdac1qZXRpwEH1KSaRQKjASUGfuqx/0m4XHd3PRDLnVkv9+878nqe+yXghn2hDQfZknR\nk+lDQ+VNRry0RIRZc7oFE60eJo3kRLWFrTcu1rl04dyF1uN9Og7akPudXHdarbAmPMfc5SkNVVRE\nJ1lP0a/XIfUy5H6x+dTB3ppJ9OFqIkmK2Fi/j4k+79TFsdMAKC2hJ1jWQjotyJ2QHzP7XkCgrInl\nVMinJYxRMzQau3Qqjlw25LHCqdGWhqVG14adG6df+iU+8eM/zpf+2Gc4//7fGxUSiUlOZs/dojQt\nNBeir1aiZ3MSCR4pJVNdsbz3jDf/wU+yffub/PIP/WAw2ATQMSI2rHtj74RCxmGXcJ+OeKjI39IS\nMjlfQp0wVQV05yu/53eAO7IKIhvtqBg53pweTadID7dRH1ULuo2Kg0B1bDPqpeI1Gm2SxnUR7U6E\nq/KS6Gsir5m8JHRNpEUpLhQVUnJEDZNOVqO50TORUJM42nAmYXI7vGfMl0g6nLhDsZHGIjhYd5tj\nmUEecIzTQ6kxFi8fY1RESWmhlBNlWcmlQB5+Mup4mi0nhksl1wtrf0T8TLYdJyK90iA3QumcAjS4\ns7Uzur9H6k+RtCMnG5JVjzxxs9GCo1fXbdKHjOsxuid4mucGjyrj3EDgH/q4r3kMElRSMPkpZ0oJ\nM6mc82GwpSmhOY1Ug6icTaUZXBfR3l7Evb44XhzfzONbC+fJ17iL3/x2Pq9wW7iKX02cF15SmERR\nhtGn3h3JRtehzK1EolxxXCQMJo2Ys4WD1DBrQ7Gh9J4wm6aE43V9QJnbIlJcJkHz9XDebQX39q1M\nL7ZBbtjwLPDYzNITMsmSrrQiIeyQTNIwOQ94EqkjmhQtSvdCZWeTytadvRvVoLVMdaU6aIG0CVp0\npHEkTAVJhYIQeR6JLkpSx2l0K3S2kdZXQE6430FdUcKsWzQj6Q5fdkw6liu9QC+x4SS6GlgoJFkQ\nFRbNbLkgTpAapbDcL+h9GOC3pbGvxl6cXjuybeTzRn/W8KeNLo1ujbu3f4nv+Ns/zr/4w5/hK7/7\n99IGbZElbimHdwRFYrObDdLY2OcU1YUe5vyTfCjPnvGxn/hJnr75Ju/8iR8MDxrAVegeKiLvhu3G\nnqN1o0kOG1xJmNQgIcQCs492mIn9MedXv+d3UM2xJORtC9iWnDYwj2NH/LAJbGlnY8NgJJ00xCtS\nK/2x4m3gvDRSMWZXriYidSbhmskylLOrRmrNCVwrphtVyvCvyDiKlRQpI02vbceTc9QroYEkpmdZ\n4Dw5WkauOO9gJmNsTIJjtnkNMnAqNWKchPJjFrByXolEoVlkinnJxbA0vAyLjWQj4rNdgQVkcVT6\nQYRSK9IfsfQelp/ipy0MZ0fCojSDmWY4WlhCxBFFZLfb+TC++iyo3+5ZzX9L4rx/GcXGA/BPgb8I\n/C9f4z5/E/iPuK4Y2/t+/18DPwL8WeBd4L8BfhT447/eFyFy7fGRmw9jfmj4zSo4PnX5UCb/+UfC\nzfo5NlnO9aIHAvF/yOOvbzdIDZ9yIVembDEGzQi4HN/jHGaa04BQZymBoyGe6bQbexcfpAXj3xzk\nRUQPzaozh0liTCjynJIjzKXm6/Tjb73/HU7fERis/myncQHTsaGKRTD6TcdFPwyyvGnI9ZpGa4et\nuCm1F2qv9L3im6G7I7tHFcMNSR2vFes73iteE7FiRqyUDvmZIhH/xJBO7nIkerg6PiYQH/FZiiMp\nYax4usel01JhT52LgqizFCEtghaQJVGWO/qZMAIVJ5VMuVsodyu6RCtMF2fBaW7oXuGxYqeGr42+\nBMHx8t/9B6z/+J/A+cKr/+c/o7TK0z/6ffDkhN4l5GXwB0ir0nQljQlyYWO1zlINLmCpUb2yt8or\nv/g53vinn2X9lS+T33vkO8x59kNvUd94A1+gpUZODaSyVaE3oTrsKK6FrErLw7CJFI7ZWkEbfWv0\nPYzM5mBLxUNCl5zmjX139haLa/JOtgabYVvHNot2kK4hj7xULk93zk8voTjSzLrkYTQ0Fv6klBy3\n9b5wuls5PVnJJSMnQauQF6NRSV5RbyTpobBJgmbBskflwsb1K0NRNEgkHRR+LLhykz/OsXgdjP2N\nv4SPOxx9lmPMBv8oaCqUsrIsJ9IALWQOrxMyeDZEK6mfwc/Qn6H2iFFBGiW4mWDwLVJ2qiV675R2\nJm3vkOszlt6pouxZaUuoumQqR8xikZc5680XANGjPWa6ydcezP4Y7HLzc/9Q+P/8OTmmv5hLdQDb\nPBa9XCabP9t+xkI32tP0ls0XOYxve+8vzENfHC+Ob+7xLYTzBp45nnPc4UOnnNtiFQfhPYs/02jU\nPeavUPRZtI42D1KjgbWAkap28zfnH4yW2iA30qHQvbYJcygzrlXnifP8G+C8iUuv5+D2vU2lR5x7\nBs4Tpvun5D7wHtckilDzY75gDXqPNoldhDySxixlat659Mruxo6xm9NQqhdqX5A9kR+V1Q2WHgqN\nRPixrYkqKyoZFyWJ49Zo62IjOQAAIABJREFUPTa2boZ2JbWCqjLdHlUdyQlkxfUeXzqWdnoKM8ZF\nI149PDGiQLfYHaaEOsOcpJllWVgeVtKThD8o/c4oJQoy3juy75TtEX+vYafAeus/+gesP/lP4OmF\nl3/2n9Evlbf/8PfB6cSiiVUi4lVWxxaLdqXsYeA6MAwCtjfqY2XfKy//35/j9Z/+LPnLX8aePfIJ\ndy7f/xb+5hthzNqjybjlnZr2ICCoQD0MHEtOZMkkXWP/D9AafW90wuegEW1DNEeT0NTZa8N6w5qN\nsejjGjd2US7EhZklyIDLeWN/b2N/74JXI2tmXQcGmMkdomRREqF8WPPKqazkh0hA0RxFJ9OG6OVo\nfXBJdEn0HGppHwmUYqOgNdrkkcAYpISiQ/V09TBxlw/BeYMYhPfhvOtXJwphgfPCWyPkVHrMQzBa\nT9zpbvSp1hj+apKdvFRSgqQTtMUeUfpG6e+R969S2rsstmPJQ/CcwEbMresgWseUND1hgj2RMaaP\nieoG582XeIvzAsT+VsB5v2Fiw93/FvC3AOSWdnn+2Nz9Vz/sFyLyMvCfAP+eu/9v42f/MfBZEfkj\n7v6Pfj2vI8QHVzmLcOy8n5ezHBcZTP3QjZj/6/2F55/j9utz/9Dn7jvEFQcjbkyWLAwbrfdYcmVG\ntfKcvJ35M5/vam5IYsDNBSxcZLkZkCGLAq4xRs+1o7x/OX/eUCqqAVdZ+gEabgZFbIbG84gdbTUR\n9xwsoZqPSrkccqXIPxUYpkeYYp6Dba2KbYJfBLk00taxS7QyuDmShlzOd7rtUBOySKg1FsBytFA4\nyIxf6yC743sw1z3p0Vxzo6aMFhktuJyw1OkpU7VxIQwwyWGAmbIji5HKQrlzvI73WhKsK5xWZCnk\nHIM2uZMJjw1ZG5YbnoyeGj135G4lawxodWdVpT55QnrlAX2SkJcFf0mop0yXe7IouLFy5tQaZW/w\naLS0I37B+oXswrI3vEfs2IMqPNzTXn4FX52mjU124Mz54lCF3jKuK55OUDKaT2jaSHIiL2dYLlA2\n6qPRz07dos1BVWDJpJNixXi0zrMWCpCUEqs6ixu2V/pjoz92Uo1McqnCs/ce0S+/y+ntd/mlJVNP\nC/d3d5zWEpOhRGzVk73y8rML9eOvcn79ZcSFXArLqcDuyKmRrKKyo1LR1NEUEl9LAxDPvfwxX84q\nlyAaFbCkkEae+cgbO8jD26rWHBa384ETag08VExByhSWZWUpa7TTpHHdJY/vM0jqKDu0M9IfUTvj\nfsa9ImYRkGSCmtPNUWKhWlol709J9R1yO1PcOOkS/aieaLPtxBjImcHOTqY05pJQrDigHE7gPoWw\nQ37tc4n/kOnvA8fzNdJ4zFjIRqb5ZPI1Rb65juqMDiZ/LnbPHR6RyfavSKL44nhxvDi+8fGth/Oc\nr4/zbmfBUc3lWuUOnKcD52koHSFwnhkuKSquM+ZzJBT4qJ7JaP+M578lNvINqTGJjYnz9F8C5103\nT8/jvEnqTFJjbPDcRyV8KEu64s3R5oHlhjIXVdxzYNnutG4kJ/wrNGOp0NLGlhqbdyqd6k51qD3R\nvaDnUJKk1vClImniPEUsgWQ6GbEcCoMu9Nape8F7QxHWNNoUpufDbENNGdKKpYalRNcaPhNJydop\nI4lETSm2hN/HKtCMpIlSFvKTlfRSQZ4k+j2QEl0LbkZuG+u+REU+Nzz1UGsOhbXiUah5+Qnp4YE1\nJe5VKKugJ+gnxwvDRDwwlqiDGO28I3LB9ksYtI71MCs8FEVfuofXXyG5Q20026lyxpOTSiUVp+hU\nz2TucuKUEosU8pKiJcp2ajX6FikcRrQppJTRrKCdrTZq2+jWyDmhpkiHtgdm3jzaPMSdWo3LVx/J\nX3qXl770Ll/STF8X7h8C5+WSgrxBuNsqr7574fyxVzm/9DKchNQLCwVPjmhHtUHaKDLakaSECiV3\nWh7FzumDHxfeVZWrwbwl9dgrTFwo3OC863zyPM67qhxstPDaUMbnNAivsgaxMTCaz/EnNjrzg9ho\ndCwPr5Fk5GwsyShqZCLGZhqXYmcu9R1y/SqlPWXxhqTELlBNaCrhbaKxr5yJTMc0MiIRQ7EyCY6Y\nD/x4jRPnRVvUnGG//rz50cB5v1keG39SRL4E/Brw94D/wt2/Mn73vePv/t15Z3f/BRH5ReAzwDdc\n8KaZj4wA87n3jt8dfNSQz3G9Uo87fvCj+dDj/Qudv+8XNyPAZz/mGCA2ZUgofsiXoPVg9EenCO4S\nsTvdRn45g9kYpMKNe+w05pwKjUlozNvVKEeHpD5G7+0GLX42Fze/qQZMtvK2FcUHSLg+Zt7m5T+V\nHOKMmLBQTgxSLpyGuwQZ0DRSHTrMTkKpilwSeu7oRZGzo9uobHhEF9E6bpVuG1RFFseSktcTaiNl\nxoE6Xlf3yNveh6lTAhOLrO9ht0GWWJRTwnWhp86uikofOe2xwPRkLKlFr2jO6MnRlsLQSxKUFdYT\nVsYCACDh9JxyQySiTXGjYHR1nv7pH2H/tjd46S/8Rd5564+w/cBbPLzyCstLC+VJglcT9pJS7wsm\nT6iiCMaJM6d9Yznv+HudXc5oL3hVHn/fp/j8m5/gzb/y18m/65PU/+DPsrxyx919wk9OS41FLqhl\nzqVx3iDtBS9PkOWBdb1jLY1VK4tslPouPDxDTs9oxdhTw3IfbUSZfL+QTomaOtsz59mlculwKiVU\nFQj+GJWivgvaElTFLsZ77+x81xe+yh/83Bf5q2++whdfe4kqiSrC4sHkixuvfekr/J6f+xw//32/\nm3fKQiKxLIV6l0kPGTlVdNkGqVFRGpra6MGNGDgfySPPzR4igXg0Rq0qo88zLlpnEhVXhv46V8jx\nfXB9Pvoo5xSjwyH7RC4LknSk1hiewQtD+tqQfsH7BbNH3J4hfgbv4WreNM5XnXNctNuUdqZs75Hr\nO5S+s45+yq4W4HEp4U7WJZRSg9g5FqDDDJjrPHDIseY4v51Fv+Es+YFl0OeZ0pCepnxl8lMei53q\n8Aa6uc0IsOspjvfWexhmvTheHC+O/z8d32I4zwbOmybpDJw3EJFfb62HVC42VY670s3xvuGWcR8Z\n6Z6YfSgzSSJiaCeRcVVtTGLDx4ImMqX98TKvOM+/Ds6z58iNK867vsfrubLjPAeukkjFq7EJlw7a\nGMbeIYv0rvF6e6EaIJmkZRAbK1veqd7YzWjSqd2pfRAXO/hW6dsGRZE8cN7phPYciSoNKAPnmQXO\nqwPnEYWWNBLCwr9+bPCKIpKxtMbSKsO/TPowOrXwjuiC9EzShbII3qL9SEtGn2T0ISMPmb4mLBdc\n1hGLW0iLkD3aO3Dn8U/9CJeHN1j/wl/kK2/9Ed77gbdYX3mFpSyccuJBEuUk6L3gd2DLKAqO6049\n1r392Rml4Jvy+Ac/xfnNT/DaX/nr+L/2Sc7//p9lubujpETCkdpo/cLeM45g5QxrR8uCLyfK+sB9\ngZMaWTpSH7FTQeVMq8a+N2zvKEL22LinkujS4HGjVqdhSMnokpFFhy9gA4+CjDbBz3D+ys7v+txX\n+d7/64v8tdcD5+Utke8FWQSS0M34ti98hX/9Zz7Hz376d/Mrv2PB7hOpl/BtkZBsiMxq/x6bZzYK\nmSqZVJxe/UgDDFA3540EmlEsUlc0fAIntphExfSi+dDp4cB5fhSxBCHnTFmWwHmagtQwObZvJECc\nzvDrkIhxJnWyNrI2FmkUOtkjvQ4zzBr0R5b2LqW+w9qfBZElJYp+Iuwp0TTeP55iz2NRrMU5EqNE\nMsz2JJlv5jp7Xkf3N5wlP1I47zeD2PibhNzwnwO/C/gvgb8hIp/xuHI+Duzu/u77Hvel8btveMjY\n8KvGhXT1dXWuH9tclK5MvF/LtjfHBxe/D364U6sznus2ZmwQED6+PyJ9PIgGGzFczvS7+H/Ze5sf\n27bsyus351pr7xNx733v5ctM+zk/nJBp0nJR2LKo6mCpBKJDq5qmA/UHgGjwD0CbBjTo06CLkGjS\nQCpT4sOopLIoIUolGxuX5Y90+n2/eyPO2XutOWnMufY5cfNllhPSST3n3U/nnbhx40bE2WfvNcca\nc8wxHEQoEmkUkp/vbnR3TMI40isZUUl6bEzZF4daYwxJx2w5PhfsvRA543McZXpxzA3NJEquhqFT\nYTI3dMMGYnkRShIih5TkelPIfD/yXB+CDs/ffWa9dyKucgg28n2TIDsYilh09NUsHJ7dYrwFx3dh\nXJS9FMYwuFzwUvE+qKJ4bdHaGYqLhxzvEukeZoZkbrrXWNhmBKjncFnEZlVUQxq5pes4KjEfp4Mq\nHV9GFGM1es6VRn71Sq2aqSuGiCHeoUW2t/TYrIoHY7zwgsvf+C6f/fu/iX/7W5x+/sucnt3TnjfK\n84K8rYwXlXE6UeQFJgXFqP6KpT+wnM5QdjBhDKfj2LMT5cVz/Df/LvKVL3N6712WO42uw+qUGnl0\nuylL7SxnZdkX6vI2urzFut5zWgdr2Wh2puwrvp7QuiA1fC5k36iqrK2y3N9hpUQ0qz6gbad0Yb1f\nuVucZ3Jh6Eu6bFgZLPuCPzq+P/D1P/2QL3/vQ05752999JKvLif+7KvPOa0Ly1IpInzzD/6Ir//J\n96l75xf/rz/h42F88je/w7519stO3Sra9QB8buG0fpUr/HCdQRTJIDdEriZsMcrleZsnASk31zdc\n75HDHTvBpKXVZinUtsSsYYsZWdMw2qKEEkhqR21Hbcftgo4z3i+w9Zi97hIywz2fB0AYddnesVc7\nPG7UcWZBMdE0Y4PaJKS5qY7yMm93iWInmmfm9hzdrnTy5Bmevv7Xj6NJKtdlcd47ovIDs5el1uj2\nlIIUPYy8RD+Hxeda8N4oNt4cb45/oY6fAZz32j8XP0jvH8R5ZCc0fLzGGInzBEt5t41OH4M+5rx+\nfluJgE9hKueujasxArv1aTCfGFITjgXGm55QtzjvSsI/xXl+QLjPx3nlybmc5MgP4LwR50ssvdQk\nsJeYRCPLJEkYx7RFkscujA3Grngf+BbP0j02jtIZbWPfzoxiUBLn3Q3qUNxbFjlPo/CBbQPr4QUm\nSqSQVD98s3AJub6AobjWSIUr4S9W059LtdPEUIxSCt4arIL1gYiiNQgNv6/YXWWvja4rOwvKQMwx\n3SmboSdHdihvv2D/G9/lo3/vNxn/0rdYvvJllvt7lta4q4W7otQ7gXuFe8Gy6eGTHLEBYwdNnLc5\npZ2Qu+fYv/t30a98mdPPvcuqSkWo7ugYdIuo2c7Ai6J3g2V5AevbLHfPOVVhUaNYx/eVviy4FnYM\nU6GeFsoorDTWdUWqsLPTXxq+B8lx9+KO9W6lLMLj9kgbnW7OHRV5dHh44Nt/9CHv/fGH3L/q/Ov9\nJX8kJ/7snecssrBqpYrwtT/8I37+j78PD533fvdP0Ivx5//qd3i4dMrDTlsqLIouiiyKngbqG+or\nyo7SAm+rHE2cqcaYZAgZgxzERjxLxhD+aJznn4PzYuWRotTWaHWhlko0kLPBlSqsmOCK52Gxj3Dr\nqOxU2WnsLAwWOpUNvOPWA+/sr2jbZ7TtJet4wB2qLAg51iGVi4dX29bAp39dJU1nc700v56Q43HF\ngHP0Griq8T9v9fyC4byfOLHh7v/NzR//TxH5P4DfB/5N4Ld+Ej9D5WZOSuCQ0vlTLupmpuNztjc/\neMz39XO/9tjLz3c2S+vxI5zp0O1ZNKLYac5ZZtEbghwSopAqDTxkSmXg1aGREUCSCkGN3Y0SHhGa\nqiMPT8ZJcqhmqfe4iKZBzlRkzASVmXDiZEyY2U1ckCcDa9gY0V2Osnx7EiY1EvfwBALzgvcs0s5h\n6DMzpT0TUsIlORlOE7DpfH5dZCRnvjDB+oV+EWSElJBaIyVkWbB9wWvo/d0HvXf2y8bYdxyLnPoR\nrP4BWDyuj8iTjyLcvdAFtlS9CLFYDoxSgvwJR29nJ6LPtC7UslCLUJRQaDCu7sgL1Jz9iw4UNFvp\nv/gej+/+HUoRTsvC+vyecl/R5wXeVsbdii/3IM8J0yxDiBB1rYK7UkbkxC/FoEOVRvn2N8OheW3o\nCVjBm1OWNG0d4Vpdq7KME16/RGlvcXd6xnrqlJKmRVvF04VctKCnE9V3llpZl0ZdVnYquhlVHqmn\nASbcPTtxvxp3/gh1wcqGLM6yNfqnO9tZeNeVFyMWn19oK/3uOQ/PXnBaG0srVFV+The+bEoBXnRj\ndONTIc7/6NTRKdawEfLNI0pW/HAHvw3/mEqoYIpjcY9ZCzlmlbVoXMtm2BO5XALEmUrkGfV6Y8AW\nRLhQNKV4h1ojY/7Sgc01otDUd9Q23C54v+D7BTsP2BTfJYDjBplplkB60C+d8WqHx51iOxWl6U54\npgq1FLwqI/1PZvcib6ggHGWuE7drnVzlx/hrr934/EUxvu+RMjOfc55SSwl1z2TxW3ysNeYvixak\nRLF7km9+U/h8ShTfeGy8Od4c/8Icf/1xHjc4j8/BeX6D8+RKbljiqhFS/mlX5MBIw3cbZJJDiZqe\nisxYZyPrPJS5kYYSD46H3qh9A+eVG5xnNziPIDye4Lzc0HnWMxvY0NdwHhx1gBkNmVL1YFPiPRhB\nbIDnyFC+/mlgOBTDEIkGyNgc34y0fAgTxE3CCNHCtMM2oRcQ3TGN2FffnSYLpgvuBVrBucF5PXFe\n4cCuR+ceQK/iet+VrpVtgUKhiFPE0NqhdJr2AGxNkF2CSBGJyNG7BqfGWBqbLGwsdFqM2xRjaEUX\ngxVkB71b8W+8x+XF30ER7ttCu79nqZVTK6yLICdNYgNskZwU9TBhGR3rSmFQx2DpRltA32rot75J\nWRZKayQfQnFHiFEQM2OVjtWCrIKtbyOnt1nvX7AUKBiMnbE1pBRUoeGwNLh0mjdWWVhqjINsvrG/\ncqSfMDHuXzxnPbUYJ7k8sO4dhnOyislO/0R4d1deXKKp+ZW7lcflOZ+eXnBaGqdWaEV51xbe2pVh\nsG7GaQ+z/61bjL5sHdkrtRe0R9NSrCDSER1Izl/4DEbIa3Sq3ENOZAlVktgoxJpiA5NbEvAW53ni\nPOM22GEKHiIBpFFbC5znchjIA7jMKFxnSKg1zAfCRvFLkBq+s8pg8Z1mOz46tnf2fUcfH5CHR8rj\nmbZfgtgooZ4XShiN4qF6QRm9RJO45l7K5VBt+LgOmlxHj+P1Hj5rCJEl/Lkr5hcO5/2Vx726+/8t\nIu8Dv0QUvO8Bi4i89Rqb//P5dz/i+BQQhgvf++AzPn31Z/z8O1/mvXfeva0/Tzevx9PTwvcjmpCf\n8yLm8yQ1npIbVwlirknMmB/BXJPckJQjZmSlCF5SKl9GGMs0x1bHV4kYoCKplBhJjHDERFoZDBlh\nSmNgpsmQx8WvWlFtMd9o+8H8q14v6KMwz6xmZpysBZOfGz7n9ua/ITeyaB/Xep6Aox9yw16iWRCT\n2Q8VywgwkOeCGKNMl3DJyDSAkLrZOGNsmBfwCh36aJg13BVo9LGzbRcez6/wPiiqFJVjcQrjUDAM\nRW/AURJPlAyrCqLEUHaJdO4wyjT2YezFMamILlStVFWKGsqgsFPoDDTMNNdzLAoaHJWQC8FppRal\nLAty35C7Cs8Uf1Ho9cSmd+zcs0emCxtGyXnD6j1chLygy4KaspSFta3HptoXC+f11WOzOxr7VoNc\nK5XiJ1Rf0MpzluWELGBlY+/hIWLN2YdgslBOnVpgbcHKoiVGijancOE0wKVwd7dwqjsnf4k2oSw7\n5U6pj8pFHvnkPPi9X/4uP4fy3d//A/74V36Zj772Hl89rTQVWiksrfDw67/KZ++8zZf/wW/zx7/2\nXT785W9STxq/ow66dEaa5/aW5c0DAFr3HO1KnDhj025v5umzAaRVdpJZjusk1+xYfOdYykjgaGOk\nO/jVl0Ik5Ym1UUtFVEjP8STKHTDEOmI7Ynt0ZHrHt45dHN8k1E2p2mCL+8ENhg22887+uDPOMTJV\n1FHZqAhFakTbacUiVgWp5A5hEo5xDq6kxu25CSA8WxfX/2t2Nm6r3uesoHl/iwZ5q6WEkVS9Frsy\nTaVq5snnCJCIfO63/N9/53/iww9+D7fzzWd/Mqz+m+PN8eb4yRx//XDezccHzpscSpIaxCZ+pmz6\n8SyB81BUI6A9GjvKGBUbFbOK0yBVtSIjcN706fCWIyjliHsNZa5iNg0+JT02GqoFsy1x3vgROM8/\nB+fpDc67ktvzccV52ciasZGHrJ3oFqsEwDEN1cbQK87rxBhyqhDleDiy+2x1BwlTDJMdEw1vDKAv\nDVtb+EHQ6H1n2y88Pr7CR+K8JmQbIXBejiDr0OjmD8JbrBU2iwS9ciTojPTf2CltYGtnbBKkD4LX\nhi0LXld2bcTWNDw/DKF4Z9CotcNi+ApyX6i9cm8reCalnRqtVFpTuEtS407iUcn0YD84Lu8jxil6\nQfuCrkrzhUVXRBdQpblRJNSg0YNX1Au1LLRasaXhpxfo+hbl9CyUyDYY/RJ+DQ3G6ug7yunZHSvG\nSqMRRqxDOmIbd+cSamop3N3fU2tBGPjDA4xBHbBuwrY/8Ok6+Cf/ynf52qPyK5/8Ab//K7/Mh197\njxeJ85ZSWJfCh7/+q9jbb/ML/+Nv8xd/87t8/5e+SalJsY0gr0rvyCjAQDIV6LiGuWnG+lMsc2zA\ns2GKSIQOZNM0mkz+Gs6zxHkjcZ5dU2AmYpLyFOeJHgorIIg0uSU3jEGQMsoFtQtVdhbtnLzTrFP3\nEf4mZ8cfB/snO/3TnfFyILtTdFDWgWeKjCamdIWOQlNsSBj6GlfLnJux/6vP2sRb6bd23O8T5712\nDl8/vgA476+c2BCRbwBfBv4sP/WPCM/afxv47/Jrfhn4ReC3f/R3ewuIheFrX/0K//LXv4LtF3z0\n403y6+V3c1r8hm2Cz5ulkvz6G+h/LZhTe+N6U0fjAvHJ0ueXWzpIj4PFD3KDSW4IQWg0iQs/TSqt\nGWMxbAVOwCpITXYtc5ljHCUk95ajFVbDeXdgaEoK4zep4YIsFXfoPVQHpSilBLtIqjJmfvB8Dbfm\nMdf4rx92kcXfi89/OU+G5yKU506S1ddkEuf5IV+aCtQoiuKRVOE9FgcUKJnbrIpLfuw7ZhvuHfed\nYXA+P/Dw8iUvP/0UFeW0NGp9drxOUuKnkwTKczo3cEaMo+CF4YXdCmX6nBjs5uzm9A5QUGuhlBCl\nloHSqVQqeyhnRNiLsKyx4syfFcTGEu/H0pBThVPBTpW9NS56YuOOTRY6EaVbGRTtSOn40hn3O4wN\nLY0ihVpWtC1IrQEyKliFUSsbwkXCeMiagDQKdxS/p8pKoYE73RzzhSErpoNRHcqJIqCtIVVjBMVh\n704XB+/UEZLYcldAHhlDkNMZ7RdqtzAbKynNu1/49Btf4w9fvEV/7z2e3T+nFqUK1CosrdLuV+w7\n3+CD02+wf+ur1HefoTrgnvgZFXaB4cruSvdg/aNr5mE+e2Ok5AdAvXV9zs/JJDjyf8d42WSS4z4Z\nFq7gw8ZVnpg+N2FCmiZjGXOVl9Tx7Ep4xthALMZR3HdGT1LjTCo04nnszrbDMI/uVN/ZXl3YHzb8\n4tFla07xTqFSpaPU+BkFJCNmw6xUrk7hB0M/782bwZPbopNf6vj183kvHGfxZgchBLiVEh4/h0P2\nEp2N69xlsPghUwyn9tufO5393Zxf/bV/g9/6H/4+77//5ze/2A68/0PWozfHm+PN8dM+/nrgvPlt\n5LVKMXGe3+A8wEI1e6TZJa4x1yAyJOJJfcSIMRoNlaGOVYnuatPwfyC9zMaI2lNyLDl/j9m4msrc\nqc6FmYBXbnCeUYr/EJyX3eebMwj+Gs57ndyIr7nivNzkpRxF0hg/SA1HTDMWNn62m0QKzA6+yeEf\nJbuiu4Sf2jyhOHQHzS58ddh27Lzhl47XneFwfnzg4dVLXn72KaqJ8549w3RgkjjPRzSvyvQUifeS\nrTCqcKkSIyQeapYulZ1C8YHRGRImpSJK0YrKisvCkJatq0yQc8FpmCxI9Ujf2xwWQU+V6gvqStVG\nyw1faYqcBE4Cq8IieEscjB8z574XrBfYCnrfKEuh+UplCf8Jz3wPda4RJwWRSqmhJB71hK3P8PUe\nb3cMMboNxnAuOugaiR2lVNb7ESanImla7+xjMLrhywtwRbRh68pgwNjwoZS+U8ZA9o6PUCdZW/jg\nF77GP61v8eq99yj3z2kT55Uw39Rl5fKL3+D7/9ZvcPnGV6nPn7H6oGrE7AbstmzY+kFqmM/r9+or\ng1sqoa73OrePg+e42ej/AM6zxHkjcV42faeoiEjCeYLzjp+hc/k4lLqWag00FLrYRvWNhZ3Vd5Zh\n6Dbws+NnZzxmAs5HF/aPN/yzILm0gpvRFkdajLsHHSesWvFW2c1h19gvDrmqdUfez4cy7Nq8YmK7\nmQo1FRxfcJz3YxMbIvKMYOXnr/htEfk14MN8/KfE7OX38uv+M+B3iQxz3P1TEfmvgP9CRD4CPgP+\nS+B/+cs5ZU/puKBSMIk0DyBZtVujy5uiJzcXcf4nWaWuUP/2rGehS5brGDO5LXbEwj4Ze5LImDLC\n+XGw8IKJhIlg8WOkxNXxCqOFYoMF5CTxaPnbm3MoFYmNuBdL5UY+ZMrjSXKjItKiY+AF984YUz6Z\nNoEj2PE5l/kUCNx+bCSVnK88/uc+e9XZkTZDfORYS36PHHsRJfwFLM+paUb7SC4EEh3mJcdRVJCa\nXGIqPrwYaEGLQ1HQjrPhvmFe8WE8vvqMTz7+iE8+/Ii1Lfjz55zu1sj1NoPR018jSBSjR7EnC7AL\nwws2QrEhVpIBD5Kmd6dvMDZHvFCkYrZSEHpxinaG7ERqdxA0MaO5IRIGlxCvTUeNrPJW8VawtTJq\n41zuuHBiY2XzlZGKjcJAOSFq0HZ83bC+4VVCcVAXpLaMNyPjZ4VNlW2UIAAKWC0gDbU76rij0lAr\n2B4k2W4RvzZ8YCJaxrFPAAAgAElEQVSR9tIqrAumikkAqG0MenGkeSxkXpHqoVnxDcodtRpeNwad\n3TrDO7UV9q++y/s/9x7rEi7dk9cqRViWQl0UffElPv3GO3i6R7tWuAO/B1bFtNBJUsOTTBwcRkoH\nqTHThiZQk+u9PrPMQ+IX9/PRmTvSigZ9hPnayJGm2/gvAFGl1DDbqrUdpqGz3kmRVC3FPSKjo2PH\nxg77CCCU3Sy6MnZn77Btg+cffszZB59V5fzZmf2yM/YBC2jx7BuNhFkD0fCVoUg8zwKnZJE77uKb\nZVVe+/DmnN3wIJLXM3DIMo/vlwx+0YLWSp2Z5q3RWnvC4kvOXJZpJvU5c5cBOOcc7JvjzfHm+Gkd\nP3s4b/7x83Ae173mgfPI9X9iPg6sZ7MBZoqbZlc5NyISNZYC0iQSP1r8nOQp4vfQwIg+N0ikAjhT\nNtxnCl5sYgPnXf3UnuI8+xE47+ZETHLlOBOA+KHKDZwX3zhwHlzdqUuMORqH4hZT6BojwF3wjahx\nXSImds/nLmkAm++aGEgJk0cU9o5vG75tWK14Nx4/Tpz30Uesa+K8uuIakZrZFQslb1HMeqTQmIMW\nrBR6Uc4ao+C7D3YpLFIongphz/EBUQpBbAgNk0oPO0o8iQXLlpiVAc2hGbIIekolpUTEatWC1iCz\n/AQsCoviTbAqmAq4IVpzrMmwpeBrRYYHZvRGpVEoEW8q+T6ppdLUUakRbVoLqvf48gzaiVFWIHzJ\ndnHOMugSTael3OFNYCnXRJbe2XbnskeDbtBwXdirhpm/v4oo1twPjN3Yt4iOVS+cv/Quf/r2e9Sl\n0kph8nlFhSIRBTre/RIff/kdXIwFo1ApCq0RkbcaewDPa9Tz4rY55jvH6I9UydfJDY7xexJLc6Ow\n91SsB87rjBE+F1ecxw/BefVIXMkYlsAxKVoy9xALq+X48YbYhRhi2ll8ULrB2eGzwdvf+5iX2+BT\nUc4fndk+2ekvg+iUKmCB9UQGtIGjDClBwpWBN2O0EqRGJxpkk3M5Gsxz3ZQn3MZc4+Lr5QuP8/7f\nKDb+FiE1nOXgP8/P/9fAfwD8KvD3gHeAPyUK3X/i7vvN9/iPidP+3wIrESv2H/5lfrhAzurUYIH6\nDpnjHc47A44kkhtEDgcbFYSEXeV1XIvePGaxu6oY5lKfRMcTIiMyn/1QIqRccM5KTqWGxgLiFbxa\nENwlPrYS0n9fHE4gJ6LTKkkVGojdzDkWD+uNkgoOdYY4JbvTIpVSGqWEY+8YRh9xAYnO1zJv3DlH\nNl/49WTPFIWr2eBcMSIj3KaSZDL5mQASN4lkPjw3BEf8/HAsvjKpUdAFLbG4a9c0ZIxCN7vGM84T\nFbQ5rh1jp/cLbs6nn37EB+9/nw/+4n1e3D9H3Hnx4hljrFSLkZ4xJNyDR2QnD/ZUUCqUksVF8b0E\nQ+0a0VYmeHds8zBEtazrKbMcXuhrZGubViQGBFAKGxGr1VbHRZBWUCciY2vFaolOgK5cWNk4sfnC\nbgvDY26y1EhbERyTHS8dWwwpPXw3lgVpNfxbVNlN2b2ye2FD2VzpJlgrKI1qK9Ub6jUMXEcCRxOs\nV3Y/4b4geR2NumSTxtmsB5O/D+jQRi6EOwztbKyYtUz42BiXC1s/Y/RwD6+VO60xxlMki/B8Bl2C\n5NMGLEptilfgBHYnjFPDW8O0kq4mcZ91h26Zay7cglZm1ymvOUWPP4tOdnrGJ6dUNwkNO9h8Y7in\nlHcW22Tx68LSFkq9Yac1YtbmmBVi4a/hHayjY0tigwPk0WHv8NgNfzjz3X/0O/zFuvLPfuk7nF9d\n2C875qFaKtVhCYftQovhKTW0WFzPWagONvIHVtP8+x+myDoq3s0/kdf/nugGqCLlJvartWTxl3y+\numWXWsPTREPVJAns3T3XDE+fn/5Df7U3x5vjzfFXdrzBeVw3SXPUZORGZ26MAufNuFXlGCUxCY+q\nJIfDzy+2v5Y4MNQaAu36i8VsfL4E9TDKLIEdp2/bGFEnA+eV13Ce04e/hvP8h+C8G6J/ktmvm0o/\nwXkzRWUcXh24xdrvSTbJtc8742HDuGyS9kAXtIffnI7EeVPunyyKqoViwyPyPEY1d7pccJxP3/+I\nD77/fT744H1evHiOdOfF3TNGWakaMbojvQZQGAyGdHx31J2KxJixKX0RtkXZitE000WsHePZEm4c\nVFaEUOEEUoqNX2GqiDou4ZWnzZAFdJSMGS2UNHmlSIQDLAItlBpWlaGF4TkeIOFN0hVGG9ipI0YQ\nG9IQrzGqbXMz7UiSOtEjdESjsSn6DK13dD0FMeGFwc4Wg93sqkitlKbYWhhLjTheG2zWeVR4VOGy\nVLovmDRKcdQfEAZuD9h+xs47+urM9njGeg+lc6kUrYiGKXzRJDWy6SOJyYoS2EEVCy6KVqEtoQyI\nPXaQg3FPXc0/bw1x590tXDfRmr4Sc02Jr7jFef45OC8iWufI1jQZLSq02iLitbbAeXmolmzQzhUm\nyCYXA98D97Gz0DnROdnAzmAPTvvgzL/2P/8Of1ZX/vDb3+H80YXzZzvbeVCKx14wlzkVY830v9CI\nN6p0urZUWMtNOkyuh2kcn6aCN/e4PF0InyzAtwvl/PwXA+f92MRGZpLrj/iSf+cv8T0uwH+Ujx/7\nUBEKQrWY4ZtSobgI54hBvivm+aGE4mFK0rNgzRtlWs8cfz3VEVznGUMGNf+sRzEcMd2QN1hcEQeL\nn8ZXXiSMQavAAtbAUrnh1ZG2UfRMlTOLwCqNRR2VgWhE4PiVzg8GM9UfpsaQMKxUiUIR850rta2U\nusaGzCzYfpODSHDn8N+Y6ShHwfOIHgs6/XNYvnQatgFHN5zr1+Lz8xznW/xqPDpNqcjZK0lTzBhJ\nyaKoPt8ZEDtuKsShxixmtzO2xyb75cuP+fSTj/jkow9h79wtC/vlwqmvmEdkmA/D+87YKpttdNuR\nYpy00eqKlgXyWjALuZ+Zo7dZ0T2upyhURLHa4n0Z3qBqmnHF7jbcN4ThKTGtURzHnEPTIDY2Vi6c\nuEiQGt5L0L84XZeIosWCjPEe5kfaoaRZbErADKFLuH1sFmkoFxc2JOZ7R0RqaS+RTW8JvDxAS+yb\nBSRUKVoa5FjTsIHtBTs7XBzdPQggiWu910KnMkZNcqFjcmGUHVmdRSuLF5Z0xlYNoCYl5mJDzqnI\nCroQUt011Dx2ElgKe1sYeorFXArdSox8zfcn3XVlkhuEU/pk1acLPHh2vq6E5ex6zXtiPh+RYHME\nJdedIBhKdCWWJczcSKUIx7dmSoDJQhpucJZKp/jCKet1h6/+2ff4ud/9fb70F+9zXwsyOv/r3cIn\nLX07bH77CVD95v7KujTlqfIU0CedwxVRv17F5udnzXut6jypi6mwkmlaXI5Zy7o02tpoR1JMy3nM\nkhnncrwnr/Muw3J87M3x5nhz/FSPNzhvLnnyQ3Be/N0kPDzHjaOZpcemwkpOEqdKw1qMD48cP/Yk\n8INoz1X51gspG19eU12LodksCfPQ13FekBo/Ps5L1W3i1yvOk9dw3iGFvNaEYyzAjhMtqd4VxhF/\nis/XJkFaiB7d33B4nzjPA+fVklegYWOn72fMYwP68pOP+fSjj/jk/cR5dWF/58JpWbFa4z02w21n\nWGXznd12aLBwghoJYqFo1DTkv/ndZox6vieFhUGL807NPXS8T+rCnqPC0VHvtNZjnBwoS6XMyFI0\nx4QFVsFXYbTKrtOvo+T3NpDOQOhumAzKugMFlcrhZWIwDTJdEglIYksqXVZc7xlyx/CF3So2Bns3\ntr2y70YfAkSTaS8VVaVbzMPuDB4dzq5svSYeLtHQ846PBUYNIfTW0f3C8B1RZ1krVQrVIzVERUKx\noR6C6+IRBVo53ofYlAtaoSwgd8BdeKtJjaZgZtdEM4vcK+R9iAnqUz2h6Zse12lwEJOwjGbs9KSZ\npruzoXWMqU//wYywLBPTLC0Megn/syupOolMZ7gHoRazOYh1CkZVo3omC+3w1X/2Pb75j3+fL/3p\n+xQt/O3Hzm+1hUdzLrvRLHmKnSDEKtChVKOWVOuKU8TpOfJ8CwIjAfCG3HjSpP48nOdPXs/1+YuD\n8/7KPTZ+4oekaNwd2Q3pnnFRkHfzQSRPg9XJ0Llewf0sTJPly6GI69fPGwXjiG2dHYB8nuRFt8mI\n68HwT4LDIWbnisXZTlJDlhytKJ1SB6VAlULzysKIqCWBqgOdkUFS8yVGJjc6GDoiJ1kiEcIs1k1M\nw3uhnoLNly2ZyEnmBXs3ifd5Yw8z1HoAB42bPKLA50Zoum3nv8vTeBRJiAv4OIlxLnx+sQejryKx\nX4fDWFQkzWvmTRjNgOxieN6oDhrnPpyzYfdIC9m3wePlJefzS87nV6xFOT8+43J+xWlvaBfYlOFx\nbUgXtn5mH2dqdRbuKOUZi94j6TFhNJwaox4UTCYC8VyNY5PrGVEje1A2g8ouhFFTlHeGC5s7juLS\nw1hUZ1xbwaSy09g4BTPuNWSbFid8jMZeDGegvgIdE9AyoJSYfcziaR4GqKHaUDZTtiFsQxg901V2\nRXrJSNFIfLHJUHebXkuxkCHQSZYbPI0t2QjDIknVgzjDw0K1jzAqHXj4YyxGfa6UoSwUmpSI+pbo\n0ISExUPKuRKzp6vGeNJSkFVhifz4IStDVros7DSGFXyUVD3MdSCvIeb7la7YEmAq1li/jqME55Dg\nMIzVRp9JKElk+M1MZxpWBTET8sTWWhIlSepNWaTnucOO1BYbhpgzgoaPzoRpRiEb9w+v+Mr777Pu\nO7XvfPWDDyhffYeulVFGjpxxECGeHx/rz80t+QPL6FFc8l67LXL57Idj9vXbyHxdyE3sV5JFRcIo\n6mbmMgrdQsv5y1pbmEuVmsZ3T12ynzhlJ+h4I9l4c7w5fsaOnzrOm2O6E99dFR9XnDcVrvKDOM+n\nckOOsT+rgtSp0HCoMBZjLIOxDGw1/GShTFSLLjb+ZKPmOYI7ymAcY8eESWSYlqHaKHVNnLenD9T/\nV5w31+OJ8/xzcJ4nzstN4IHz4pcXN9R99tnjkbXX3aAqLpomjmRxyYKt2bZHktDpbPsjMi7se+fx\n8SXnh5ecHxLnPXvG5eEVp1OL8YWhDIGRM66XfgliY1Huy3P0FOEn6g1xQYegYrkRnt54kp6mqdLw\nivpsNOU5cglLEPccB+3ErnPDFw2zRyfxRuw6RSV99pTeCr00do/QT5Op8jHwQndhpNFlWzaaSozk\npo9LwOW4Vo1IFOmubDQ2W+iy0uWenRN9LHRX+u70ruybsl9KYGGF7o3dKj4UsQGjsI/BxeAyhLEr\n9Iqahk+MVGwE7hq7MHanWZia11PQb0srtJ7nwKGoxaiMOlqduoA2DeyQI7tSE/Ot4HfzIfgi9KJ0\nqXGuqBkkoDDkOuaOBPmXKXeSEfeHL/pUPmWzd5gx+uBp4t11JJlUaV1xXkucV27WnckicGBFI9Mo\nJUZ/smVFkWwamoAZp5eveOfP36ecdxbbeWd8gH3pHc61slso0xDQ6hmF6TCC6JkN4mtziyeP4756\notZ4evjNp/664LwvHLFxTEbshj1u+L7F7JzbYYJp09wvufh5wpxcQOc7fizUHN1Um0Vu/o1DGH/e\nFrTpnREFpg+//v2xMc+ipCMujLBsiLm7FWwFrR2VC803Vqss3Vh2Z+md1RbuXWhEwXMROo2dNGys\nQFEGjU6P+b2cfzw6uVooGjJFlcYgfDasB6M4b4YpxYrudE9zqhFSPo24Wp15XrfvhUzZ5CQl/JjL\ngpsT6MQCnJ4HuIMYFIOS07K5PiHTzyTmOCtRHMUNPaKAJBZ8Kbg2hnfMC9tw0A1tRquO2852fsX5\n4TOWR2WsG9advXRMd4SNsT9ifeO0KPQXNHmLO32L6s/wtkYGe1kYujC8sWlhzNdoRIemjAAEg0kL\nw4BdC1aF0YLY2Bw0LowDYmmOq0SnPlj7jUYfK2NvkU+dK4trKCFMG2ILIX2UNCOPaLQ+Y69c6K7s\nLuwmQXB0GJeYddVdktSI8Q3vhAphpCxspAwzHaqxeM9mrGpkchGjHyMJqFljCIZfN8V6xUZjqYVy\nX6ltsJjSKLTseIgMHAtTWPUoaneh0mBRrDUkR3b20ti0sekaHiQ5ssOoyABNtYYMyQ7T9XaP4hlj\nI8gsCBxFb+aU2zwPqcqwIw6ZBHDXwjcJudYqS23hFC63RF5cJ9aDOBoSv9sYIIMgrYqiix8pQIJT\nO7z/i1/n0/tn/O3/7R/yJ6L8/W99je/1hxxDmulIwp7KnOmyYVYO0HM8rovZzYOb5+Oufu1z8wzF\n4uuzWM7PpoGOlDCJqjVi0FqLrsaytCR8JpOfxlIl43VTPROv+ymjP+de39Aab443x8/W8f8PzpPX\ncJ7f4Dxew3lX4jjKQtIl00epCdrAVgnT7MjjxE5GXzt9vTDWgt85ehJaMUoKckcEpMSoK2E2OnTQ\ntVNLpepcEYPYEF0oulDKisoWXeInOC9eYOA8+zFxnifOEySjMZ2nkZHXUhK4YBL3x0YlYZumyOAY\n5ekxyjM8NkvxXpWoQLkLjfdrTJ9HMOijB86rr+G8V5+xnJQhGybOZkZnMNTZxsbOoN0vcLfRzLnT\nQdWFKoHCqgeGE5TdwcckecC1RtqakyPUQWKJBdEQ5MyCY5GcR0eLoyXPWyoRxAVXxVTp0thp7Kzs\n0kKxkRjAfWBe6RaJb4gyZA0lQxNQz5EZy/GkaLCOAbvBZhqqXznR9Z7uJ/oojIsz9s7YHNsGvoXv\niFTFpTCsYkVDGeHCGJX9YoyzxxhP2qwEl+BsJpE00xUb4feyrJXleae1Qt0LbZfAZIzEvSMbWIKc\nFF3IEWRFqwQx1QRfgTvHVqGvSl8qe1nYZKVrnDMbLdTTOXocwQOpKEigkhRUkhxJWDzBeXak3k2/\njqc4z29wXmOp6a8h03/Hr5jFgtAYjDB910ivtGG5V8r42QRlDvzJN7/Ox7/xjF//B/+QPzTlv//6\n1/jewwO270zViLuHPZr7laB5cpf+uMcPEhxXnMcXHud94YgNAMwYl439ZWxKbYxrTI9n55mrFYmT\nF6d7SmnkONnoLEzXOFA7imAy8jlb6MmyzSI23bCDRJvbJM2bIpn/jP5BiSjTqlANLQNlo/mZxS+0\nobS+U7ux9MHJVu68pJlO+HXsDKoY++GWrXNFyKzkUA74yNeupMlLI1yzhdEHXUBLjQ1xsuwTKERU\nWEG1x7ybzegwrgzgPK9ZuA4GTsPgK9jIOYRyfT6ovzlfl91uV03iJ9x+29hxC6OdilNsoBbmmbOT\nsRMbd7OKjI1BxUW5u4Pnby2M8z3ShWEXPnv5IXs7U7bCaDvoRpGNKh3GheIda8rYnzH6W/j+Ntw/\npyz3lLbiJcZThkVUWx8V5AT1nhkZa+6hgiDMe5xQMPQKPgqW0b2C4toSuehBaogXQm4bxqXWFetc\nGVrJM2kwNOLgYMVT5uVaMGKOEQ+j2j6E3qHvMDbDNo64Nd8F62m22R12o/f0YekZc0UQaO6OjQQY\nxMeYQbdMH8mZ4SQ9BjHe49vANsFHBW80HUiV2NyTnit5nxhRTEUFXQpjaWirSKtIa3irSWws7BI5\n8ruvjLHgvaFDkR4PugQoSRJN8FS9asx4JtjguC6vH3sCQIPDaM2Pv4EZ32pppKYKpZaI/moxT0iu\nN5HOQtyPe7DSXezKuA9BTakqlFURlyTxHZpjd41X777FP/nut/neduajO2W7xO8pjfgaDfNU0+xg\npFonCj1PHjGjeVM+Unp9DG/muZgdiONWlwmN4YiDnRsHrlnmtYYsMVj7NQrdstJSullbuIjPcamp\nlJlr8i2LLyKHx8kbxcab483xM3j8VHEeRymIzet11PgpzuNKh/v8mlw31YMwLyBFsSZItfRUG0gb\nUEMxqCgVo7GySmFRo2ZjZ2hj1MoxGiMjKo4aI/3U5mu1Sa5r/RycJ8TYv9zgvOkdlV5MPxTn3XRU\nQ2t/3VBprPsyG1bxZt3gvHniAL92eV3zTUiFAXU2bRQvcmyoVD1UyvlexzeO1y4uUI31rvD8rZWx\n32ej4MJnn33IzpnyqtKjjRdpNFXoOrAKK4X66QOn9opNXlAvJ+raoCWWLpLEgLC7Qjsh6z1FWxiQ\n9luuLD1fFLyW8PwivO66eFx73inq7Ho1zUQVk8JOy2blEtGxHuO08T6l4T+B5SgFlxGjugqjGMUt\nm00RJNM9fm4XZdeS33elc4oG0w5+Mfrm9IszLobtiVNqnOYxQIofxIYZ+Dn+ne+OZ9RcEDidbez4\nZVA3hyFUj9Q8WQtaoGwW+54xx53iIQV0EfQEZRG0KjHtrGjVSIlZwU5gpTJKYysLXU/scmKXlWFL\njDt3DaXuCAylXmJYS+dIVeKHY/yKG5znNzjvoEgTMk2cl2qNWmjpKaHJQl79PTyUT8MYPtJ4P577\n4QciiBaEfuwZ3J3eGh+9/Rb/+Dvf5o9fnfmwKFvc+YmRPQlUi8hUuHkdU392LIJXOHfTkzpu4GPt\n8mMd++uI876QxIaY45eNLq+w3o85qNgvWD7IDdPclMRmrKRHQyklZo80gP1I+dDw6SjtXGNeZ7G7\nKjWwOWJAMJt5kUSZ1TSMYda/wzxQS3hmCBvFzlS/sHChDaHunXKBskHbBmutLDiFYLKLDopEZnVM\nL4ZJJaXhusZcFzFnX9xwzRnMUvNGlNhcKZQR0vdJTkw2f4xBKYPIUM9cdY907NdZQrjSFteiqFH9\nNTeG8HQTSbCfVLIgC5IzdRFZ1ZH9gu4XxC9Ut3jNdIrMBQKaK50YeWA0hoTk6dkd2DsnxI39sw3v\nxquHT3klnyFnw8qZVTdOpXOqTmNQsmDYvnA5P6M+vIU/e0Y93SPrHbQ7rC7sVti8scmJcv/lGI2o\nNZWYhnQN9jtNrzyL2FgK1kqaniriNRZRB/UYPwipWMGHwkjZQzd8jlVIJnB0w4vkLOYCKEUVt4pZ\nifQWwq2972AXZ2yGX8D2ICNkk8yZtxgp2Qe+D0YfyeaHM7QDVKHYiMgxbuLjzANo9kiVkTKC6S+d\nMc70fgmH6d3xrmAt78ISXh5qBxSyJIdcQWpFW6NkwotqhTSf8lIZ2th1YWdhjBYGpZuGYqNrRslJ\n5nnLtThIGlcVRXV2phIIkyDqKHKpbz4IzVgAInbsCp6RIA7rlOS1IJmM+W+S1OhGpzM01ibz7AYN\noXhEYslCxiATUc4NZDi2Fn7vW7/Ax599zPjsI2hRaKWFZ48pdC8MKTHhO6WyR1MgCUWb99/Ns9z+\ncX5OjlL5ep05WPbXi51qxkhfjaTWNRj8ZcoUl5YFMRyy53syPUBuWfwjUz4L3hta483x5vjZO356\nOC9/4IHtwH0wRxmvOI/EeRlvCjjlqAUuls2k2BxKAargzdA6qK0jGqildqcNY7HOySsrFmOZFPo0\nAtSWvSAN0jqjI03jdYg5xcK0U9MHS0v4GYxhdB3/HJxXcrT0dZw3WYnr8YM4j4yUzNFUXmsWTJYC\noqaU8I+KsWq5msfn6AAlcKKKU3SEF9pMJUtwIOLp+wXr88YL7hEx9lcbPhLn9c8iCt47VEEWpZ4q\n0mJcpCtsn77k7B+xbM+RZyfstNKWhdoizexizubKLivL87epUtGyBnaZMtC54TTBcqzEteEloFsI\nNGITG84rUPJZTLNeN7pUNm/sVGzoVXDthpsyRipDKEmcxWnbPVzb8LgHYgDGGHgkxVHYfWH4wvAa\niTQXw8/G2IxxHvFIxQZVKGNgaxhgWm56zB27GHbpMZ6cLi9O4Ly9b4y9Y7shHZrFiLGXQshfQkbr\nI3GTWtwbTSMR6BQkRihyIy2GVqBJpMUsypAlEwIX9hyr2X2ljwXfa6TrDI2HlcBUmapzxXl5Fbsk\nzrPXcJ69hvPsNZx3Y5TZauK8G18eQv3RvR++GoMRmE/iep7+FBz4xg98uZXCP/36L/DBBx8zPvgI\nPM1OJcfwZ7sp8dGcNH56k952nY9VdLJwry2uk9CQY224/tUXH+d9AYmNkF9x2bF+hml2SMiJ4ib3\nVCbNgkcCfMMkpDFePSNDpy9ASsXJTZvNGcv8BjMfec5GERd23Oohz7PJ9WWBu/H6jIJXPFQCvkG/\noH4O5QAX6gYqHZcCZUGy808lWP7mLKtTWhTAfuRoN7zsUHaGj2OWKbT3nsW9RuETZYwdVRjdksmf\nN9fVOOf2MTdorx/hFAxk5500Y/ThoVKxYN59EF0MiQWCMsI1uCYAqIpUozRQIiVCZaPoBS0XyugU\nT5G9D2KSkGPxHlTwzpBG0xa54dqo5QWv2pnzq419v3B5POPbI0UeaSen3SnPa2EtTvOObjv+CK8+\n/Jj9z9+n3a3UZyfq/Qk5nbDljkevbHpHX9/mDo9Yo3aXkWaEu9jw2FiOEu9BcdgsZHcFvJRcEPP8\nyfX9mgqDmYITLzTlr3goKzRGNpzZqSrZaYhH+LwK1kdIUfeQEI59YJvhu4UScCgy5hhKx0bEqY39\nQr9s9L5j5pTaYEQUmUgCJAt5XO8be98CBFahVGFIx/YH+v6KzSK9I9y8C26VYdDHYBMNI1QpmeIi\noBFbJ2WhTEfv0pBSQVtIJbVhNPpYsF2RTTM2TqEXfEioUrofHBoS89qaYzuaM5dx9SZPnw7ZIfvL\nzl6eZfcgDC19N2J+Mn73UpW2VuqSag2Za00s4m4e3iQeBW6I0TVUL2JQvdBKwUvOiI54f0KCCL4b\nXTu77PTSsyMoaFP25ow0HXNpxBxwzt4OfnAU5ZbAuH2eg9THIbHOys2f8zweawsa3QPRdMCe5E5j\nXRaWZWVdV5ZlZVmXULTUIFhF01k7/VuOYse12M01xob9RJn8N8eb483xRTh+mjiPG2z32sfosYQG\nzgvMB3MUIxdWTWAugWuORIIilLKjpVN8pw6ofaN0ow5hscFijcWMmqrXIo2acnYT8KJ4jWbIJHXU\nRm7yE+eJUAF2AFYAACAASURBVHTivJLKW/scnDeTIEY+yl8S513XfpFoiqDRyHmK8/IkMJ9TwYIi\napl64SBBoiiCa0bZe2C8auOgqowgQlw0ojVFI9WtKKXd0arysD5yfriwbxcuj1tYXqqx3C+c7k60\nk9IaoRjtO3z2GY8Pjn9SeVwX2unEsq7UZUFbY3PouuLrC56hlHZC1ucceb+953WmMWNUBO+CDWVf\nKqMJtShKQ9gRd6qDWhqYp0K1SwtXDq/so2BDDjIHCzWtzT+nwalJQMzdR0buDtLejeGh2tgd+tD0\nUpMjTt4vAzt3/LwxLhv9cadfdmxE4h6bYplCcqiQ3OiXjf2y4T3SZopKjH/3B0Z/YLcL2E4ZRh/Q\nLdJmxDsiA2oPIiv6s0FoLIqsiq8FXyrWKrSC14K0IEZGqfQS4aibL0lsnNi5Yxsnxlbxi2Z8cLwX\najX8NSa+TBZq3rE+9zU2m1Q2r7LEealomhGweGIcpa3tBudd94YyyQHLTbqPMLnVxIsykFTuR4qK\nXpvmSRmaRbRu33fG6LmjnAao2TZPj7ipPnt6n33u7fv0mL/z9RP8aJwX698XEed9AYmNYF6ld8rR\nkQxCQfFDhjPr0kAOb7wwoIyFIpxqM3JV4tLuU954w+QL5B2R83YZIXVr2zJQTNLRGb8SG3BlvtQR\ndQob+BnGBSUUG4UN25SxK/vYGGWnk0kmVZAq2dENL2BJfwil0n1j+IaxM2RP2Y+Cj7n/iHmoUvLz\nhFxqGKXM+LTb6KObG96nRGvOFsb5e/3IU55Fz1OqyEwCi5t4khs6yRoim7lBqYKWQbFO9U5JEKC+\nUaxHEe+G7jnD6WE+2jS8Mkx3ui8Ugg1mWUAq4ncUVR4voGwgoXF4exHeXuCtBRZ3yu745oyz4Xvn\nzM62PCKnSjk1yt2K3K30tmDrc+S+I6d7WO/w5QTcAy2KtwWxIeZx8ufGUSSLYnSMJjCai51MkDTP\ns8e1LTav2yQ7PFlw33EbuHhE0U638W5YN6yPjD51ZHfYBrZ1+qXHEOZQik856WD0DdsvjMuFy/mR\n8/mR0QdaKmN/zul0R6n1UCGMPjg/PnC+POCj05bCshbQQd8f8H4G2xji7FJQb/nSlE4Y4mpu0kUq\nriVIjNqQuqBlQaQiLBFtZhFJG8oUjfGWXWFXZCfIpR4A4xj1SKClc8Qlz/JcI4KD8Cx2kVt+ROLB\nYQIV85I9Hp7Ehji1huN5OzVKKwEIZALEJEANvMe4jonTxdhEGF0QC0Oyok6VQVlmnJ7F+jWc3ga9\n7PTasdaZQNGqMKSGobCsDBbMG6NXfBqodg9y9LhlfS5mHATsvOZuyP7rV0/1xtOCdwW4esxQao1o\nr5i5nMUuAGNrK60tOXeZZlI5lnV0JW5mLmcvYRJJb443x5vjZ+/46eG81F9k8+qK8+bWOhSFMRag\nV5w3jzmTkXhr+qlRwzS7slFtp8pGGUbpDd0HdQhtDJo3luFUlDAR7wyMjmfzLFIgKC065dZjk2AK\nkjivEJ3SUv85OG82rfzHwHlxslNMf934pNeHm8TGza/ER76BR5cWBS3KKBa1WJWi0Q5sNii2x2N0\nqnQk48zjrb+OeTsVk0pZGkWVUlakBIZ8PBOYB6dW4+5Z5f554dmdxKiPd8Q31M6UsUM3+mNh1Mre\nGnVZKcsSSpnlHrnr+OmOsd5h7RTnxFoqA25w3tDsXsYZMnN6ies1fPEFKzEGK5pN0TRYH14YI/xG\nfPjVy8tCTeCZ2EGxTDnR8G6xeJ/C9D39MEzYu7HvxnYZ2DZg75Qc1eBijHPHtp3xuHN5deH88MjY\nE+c9H5zu7igttoWRDtc5v3rg/PCA751WCksLNUYfD9g44+wxfoPQrbBboXgjmUFMY0pdi0Za4FLR\npWFLZSxLjhw3tJVIwimKl5omoQu7rDl6nH4ko9F7wzeFiyCbIHtJHKxJCPixDgh5nSeZN7165pjx\nU5yXD++J8yzUB0uhnRZKi+TBq9/6teEdaYKxl+qECmHIoItTWqisw/o/MJBUxWtgySGD7jtGR6RT\nc6Qt7iNBmofJag2y1gs5LpSN0lSCHGKrqdSdZMFMtnyiqpofXVW6OftyVVp8QXHeF47YiGXBqW60\nEULEEEbNEpSFzSe7fkXtTrocZ5F0Idx9U9I4MEYu8nNuMyKq8nrw/4e9d+uVJUmy8z4zd4/IfS51\nqprTmunWDNUERiLBIUY9fBpyHgS9CPojgv6FXvRvBL0I0AOpCyABgihAIw5AkQ8URag1l1bPrarO\nOfuSGeFupgczj8x9uqp7BAjDruoTQFbuOnvv3JkRHu7Ll621bDbwzIDGg9hIif58B2LX8XNDbGhu\nSBkbwiUefkHHxtgrm1S2fWevna6DDmSxGh0xMFQFbQN0R9iBHWyPtlbaES+RhC05nISUEBVqqfT9\n6mmaLdOekxr2TJp05G94MP8zWfcrubXJBM0b/lbSJJakRnjuaJJKFIG0hFTvNNlpulO0o9JRjwXI\nLw5bqBbEQYvhzfEK5tH4qWR3lbB8LPhocVOugvtOoXMS+GQdvF7gZfXwBnZh7IW+CeNs2HCsdPxx\n0JedcrdTX27IqxbST634/Rf0uoJUaB3RUzL0JUIgaSDBWgby8Kw4DbAIP0M0NvDUGJ2TzJh745yb\noluTpRRxYL7DuMDY43WWIHQ0e69jg6DOQTIYVPZg6veHM/3cwaDSqJkc7WNn7Bv75cLl8YmH9++5\nbFuEiu0DzFjXE4Jgw9jOG+/fvuXh/h3Wd+5OjbuXK6UQ7Xf7hfjDEXDZS4YtZbtaEQtLCNHNRcqC\nlGwrqw0hHlhFRo1xbSWRbJAYh+1kD1tH2GtIYij+Rghggwi7mVOPrj1R4PMEgRHydCU3QpkxF7ue\npMYgq3NVKa3Q1oVSg5n2RNxxyYNkmS0Fp1Vsw+kWFQbzBXWl6GCpA/E9rrWMIDa2zlY3etsjUV/A\nRBml0L3R00PbfaGPhm1XKw5pY7rqW2fYRsgvr55Tv56YG4bj+lVOgJPYSOIy5ImReF1qzZTsJTyX\nayx2S3ovY7FrUVW89V3eLHbX6xOzywy5+yvUIj4eH4+Px7fo+OvHeWT3NZhtPOV4F34tYN3ivPxu\ntB/xG5UGeNqOVfdQ5tpGlQtlDMpe0a1TtkLZnbqfqCY0j24OXo2RsWOWf3dQMGm4hn1BPKThZE4Z\nKtmCsX6A864kxlSo/Hycpzc478O5dxLh83livDl550SuhOImc0OkaNqxY8OmJTtjWKgoyrhQfKPI\nTpX9sFlMVbS74FZwLTiNXQ1tDSkFWCKk80mpFkoIqcbdnXJ3qtw1p1mnWA/1DDs6Nnzv+O7XDIul\nwbKiyxrtOUWx+y/otcUGbdlROSG+IFYQK2DRq1Syfa3j+Oi4Bi4fZHZJq9m5bhIbqfgeAZPYDbXc\nHEtixTHwfcPGjkmM/6oNF00rcChlRnJ+w2BssD8NLg8b/aHDDtUb1QohFh+RW/N04fL+iYe377lc\nEuddBnzirKdTkDE22C4X3n/5jof3b7Ft525p3J1WSoXuZ8wugVWKM2p2LPGFjeRnJPJEahW0hc3Y\nksiQ1tDaoNYoamnkBaIFozAyXDVwTjyPWbzZNDry7SB72FDUIjj0FkfIvF+zZauN8RU4L+eG3GD3\nJDVGZspRhdJq4ryS3f9ynpr7G3fcQgFtqYrqdLpENyOvSrcaMQBEto2UjtSOV6dLZ+iG646WQV2M\nMvJ2U/Alw/RbzC1W0nocDWQxj8B4GWR4r1zJjSPIdxIbz0nLZzWtA+fxjcZ53zhiA2LCbzhLLksj\nF70pz48lZ17AazOcY7mcbLZ4tPDKxbJLsnfzD3kyWT7J+Hj1mRs965/XACs55npuHwVUI4eATMeI\npq0dxmBs4GdnY3AZnW3t9DaizdVSKB6VAnal7CA9A5YYIfeyHR8bxsZgTrjhyxPlGJAx0EI2NcZg\njPDwTUli/NtcCCcuiJt0pmDroS64OTw2btdCxi2pkQyghhRRavgRpXmsCdN/ap3FO4t2ljIow1CD\nsUkEUJ4dPzv09OpVhz1CFEvbkBaEyXClSiRct9pY7wr1dKIyWEU4UbiTjZNcWPqAi+NnqFuhWUM0\nWdEiWCPatImiVtBR6QP2/Yn97V9y3gx7f6a8eEM9vaKtd6isSFlRDVmj1hIp1gzUdka/JGPsSF1x\nvYO6Il6P/eMcqSTb75NBLYb7hvYn7PKOcTknC/sCaS+RcmJ2qsGiWuDDg1zoG9vTIw/v7jnfn6E7\nlcppObHUGonlvdPPnfPDhXdf3vPw8AgItoN6QV9Xiir7tnP/9h1f/MVf8PbLz7Gx8+rFHZ+8fslp\nbTFAs+2XiGd+iuJVZ6B4gJwiFKkUaRSZREZB9hoSTyuRSaIp/9NyqCDYZ/CphNwydZrqEnelekrg\nPEm+2fZLjvlhjm+fnV5uvJZTmjhlicPnc642CqXq0dNca0mBzqwS5K0xsipIVkCIhXMDhrQMUm2I\nO51OKQOhY3JhG5cgOpeNS+tsXdgsrCfdKjtLtAaWO7bR6Juisw3vThIbHqqNY3BdpZfPPSrXjcGz\nG/uY1XIezAqITolhEaSUY7Fr60pdT7TlRFvvqMtKbSulRF6KlkrRcrD5eix8sZGQm7/slh0QfnoJ\n+Hh8PD4e3/Ljrw/n3ay3kPqMrPzma966+uJvHfq/+UvzDUdNoxmUjrJR2Kh+oXKmjo5sBX8AXy5Q\n1vhkNTMGFiirUZeNknkNHUW9xMaIUOmJxmYuSPSSZMHEeTVto+MDnGdHUetn4zx+Bs67OeXzs0tg\nJMQiHDFJIldBJOw013MjlAqlBOZT61R2xNN+bBeqb1HQOirqEYjthGJz6IKOQXQhadgSG+JyUkwq\nojtFIrSzaad5j/NvG6vsLNVZSk0VqWTUh4MWVDxUp7Kx7/eMt8LTtnF+/57y4g3l9BptryisKCvq\nsTnXUZFaEOtgGz6e8L7HiKkVX9fYyBfFEMQL4Mgo2co4bCgSQw/zgY2dvj2xbWdcOkVXTE/AgthA\nUn2grgwTMGE87Gzvzzx8cc/5/RkuTrXKSU8sNNQF2zf648b53SPvPn+bOA9sG6iBfhJZCvu+Jc77\nc97+5edY33l1d8cnr15yOjUoUTnRA9dXehP2Et1RnIZpj3bFiZVKa8jSkBph8F5rVm8r2V0Bl2h7\nGzkkOe6t4VZhFLwr2uXAOGKRsYGXiHJQIXROMVgPRZKNxHkj7NPTbjwDdS2zMRLvXXFe+QDnJWkg\n13vEZ0vlQapoBt162I+bM1qjuNG8XO8rBV0fGKvR285eNnrbsHXgdVqSgxTUVeAk+GqMIhkMu2Rh\nqzGs4qMcsSah5kkrtN/OXlMZ8SHB8SHO4xuN875xxIYQb3rJB8niw/RdXonzecTCJDH5kpfXI4Bn\nZPiOiWc41AeX26/8xNRp+M0mwLj6Lv3Zhp5nXsv400FqROxnR30gw7AdbDP2YWx7Z1visReLDbVF\nRoBUwRal7IIWo3hneAfrIDuue8jRqUf1oRDs+WTdJNneCJDSZ4vetb3Rc/WGm0fgY34wVb+pZhAL\nkF8FGzd1cSbJIRrXKDI1PFu9xma96E6znSadRTqrG2V4hE7uil8cuQj+RCYzWwyCFuQGiyPDqSen\nq1AkCigVYakVUFapnLRxorHaTt0d3YIssQvoWdERErqmKadalF4sWms6MKK1b9kv9P0dl/Pg8u6M\nnt7TTi9YTmv0k68rpZ2oS4bpLCXIrLHj2xlGxynIcoeuL5F2B9KiKiGS6gI9KiDFY6SpDRhnxuWB\nfv85/vjAvm9w9xK9vELvXmESXs2xw+iKb8K4OOf7Mw9v77n/4j2P7x8Z50Hxwt1yx9oWWi24D7bL\nmcf7ex7u77m/v6eP3PQPx/uglErfO++++IJ3X3zB/dt3qBvLiNyX0T0lph4SOlW0p8+2E+nnClqT\neJOKykJhQSX6syOZL6N545SUrajEvDtuKh0W1yUIC2HKq2ZoqM5kbJnQN2/rSWLYbd/yhMz5vZnA\nb371XDpkdUyjV/fR1kpSlZgwOOWhPiwWOksJdC6aXWCUijTlLPG3G2k1Y8eACxcevPCewgONByzO\nsUe2zs7KzonNV/qm2EWQi8U98aFiQ2yueMfDDxZ/zpJ5/p4B2rxv81nn+NQIwi1aKLngtXVhWU8s\n6108n2LhK3VBS6NkGKxoQWUuetfFDpjiJiCAyDh69n48Ph4fj1+W498szpMbnAdR0poEh+JHaSuV\nCYf1JB8NahkUjU17Y6NxoXGBzRibs1929rKzy87wFVsK1kB3OabkpiPUBUXZPW2YEgHaJoWhJTZ1\nQnRDKxPn1cR5PCM2ZhHLvV4VGl+L86Lj161q5TnOm+dmnjW45oUlz6HkugPewJtHAaoMqnaWET1B\nStnQVDHruCBbhz3CKpHrFsxE8FKodUek4+S5kwVapVU9Pn/BEd9RG1TbqHah2cZqg9VhobLogtYo\nmvRZue/gKnTpXPyRx72zn5/Y371DTl+ip9fo+gopLxC5Q+WOmvkc7UVBtCN2wfaw6ApQlwU53cGy\noKXkGCqYVNwaPsrRrjTkyM6wJDUe3nF+uqePM/Z0ws938OIuayixIRyujCH0XTg/bNx/8cD95+95\nfPvIeByUXrird6y6RJ6XDbbzmcf373h49477+wf6GHG+d8O3Tqk3OO8vEueZsfQMK+9OaaG6oWR4\nZzZX6LXgtdJLoxXDKtiiWGuUZUVahVqgVEyjzaxRo7g3aoxPFEPDZjMUz66BaoqOqUqVaz5pqukD\n513v1hjb4ytw3hzPE+dlMHHiPcdBI18icF4Le0XJLMFZ2vYpiLC0aGdnwZGYUS1+tobK9uJ2JUMw\nimxsBfa205fOWPM6DL8KLAr4IrAqe1U2UTZqkhuhZrFRjvPBM8UGifOyf/S8b3/KahbPV5yn32ic\n940jNuC6hqx4isKDfZ/ry1zw5NggCkhkEscldvqwA/87foyFtK49OyapYTdfXxknv5IaxwQfj9nm\nFSXyBG6EhUpmRwxn7CAb7Pvgop21njmVhXO7wyUk/CqCLILsgvfw9gVr3UF6KDd8w3zBfWTbI4IZ\nzv7j0RFC6T0WvFrnYleT6Lg+rm3BxuG1KiK4a65s182P582N+1HjyBr59WSIZ1K4Hx1irh7UQZUR\npIZ0FjPogm0RDqkXy5ZTBAlkHr/fLcI5d0PGQGUE+auhVihFaRIt3+4ETiKcEFaHYsLYFNtALsAW\nAUTqcPd0YaFRTi+ywUQP9nV3ahto2Tmbg3V2u+Dtgb4sjExMrm2hLQusJ8q64EuLNHDb0e2Cm6FS\nkfUFnF7hyx2uS3DMEh5DyRRiNLybEZ664/sTPN4jb/8Cf/+WcT7D+gJ5+Rpevsa1RnjTcLbR2Ddl\nXITL2wsPb594eHvP0/sn+lOHIZy1sZRGLQUEuu1ctkcu56d8XCJcdN+xvtNqw4fx7su3PN0/0M8X\nFi2R4XHJ8FuVZM6z8lMCJE2VhhSCsPNCkYXijUKjBDLDPZUd0aP1SmzkkHPzK6nhQSJEnkwstDOd\nXSDJjSQ1Zg6O5317C+pu/MZGBrbORc6uZB/ukZDdsod3bSFPPGbqqCXGYgrWndFTAmmDPkb4u1Ww\nVti1xUIpzj6JDS90c57Gmfe98W4svLfOgwvDle4Vl0g8332l25Lj2K5qjUOxEbPUbe/0Q2N2LHQ3\nJcsPqnS3C9DhLtOQP88xqpPFX04s64mWj2U90ZaVWpdjsSulHjLF8MJyWOauR8wcdjD5H5mNj8fH\n45ft+OvDeddyzBXnTQRz1YVccd5zYmN2vZu4JuwWncJOZY+MDTaK7cg5WrFu2rmzMy/6ws4dda3U\nRSK8kSjOFHV07bFhJNQIselbcGl0GfE+BYTEeWk7fo7zSlqPy9fgvCh0iYyvwHnXsLjZJhe/Noq8\ncefnj2lUzGdA6LxIzSNAfXGaDBbfOZWdxTeqbyAbYhuyd8bTwC7RTSxiO1L5iUETbK2RQyKRyTaK\nIbJCrVRxisQIEDPER1wH32nWqdug9srS4VW/UF81ePUiSLCROG84wwZluTDswu5PXOyB0e5heQvt\nJd7uoLwCfRnr3t3CslWaWODw7Qm3HsGt6wm2C2NZEQ1iw6RlMWsBj/ywo6ZQjD4u7NsDl/svON9/\nyXZ+oq8L4+EF4+ULVKMaP8agm9KH0nfh8n7j4d0TD5/f8/T2Kewom3CmsWil1hjrfexcLo9cHvNx\nvuCXjl12bNtodUmc9yVPb+/pjxcWVagDaz0yHXp2MyxEGL07YhpKZwM7LUEPquBasdKoZUVLWIpM\nIh8iLPE1bMfzzs5Ws5aqhclwCQIeig3pcuzXxSfOi7HijFT8zCLtjUrjsKF9Hc5L1YLKDc6rYTe+\nek9iXkhBhA0PIsOMsQ96T5xXiAJfL9hQthJYywhVh3hjRziXwVY7fTHG8IOcUCStbcJohc0Ll5hN\n2FhCreEtxk+eDyY2tiQ1ZgbQgfmu7/+4bW/8798GnPeNIzYmkx+KvyNyMW+HW7/QDChKb5sUTEsm\nDo9Ivx2avdDjuIX+t3w0xHiZQ9rg2d+55bumv/CZUkMBvXVLRj8PmRu0DewCew+v1e/+6ef8yrbz\n37x6xd4aVsF3kE3QTSI0sRM2DCyUHxbKDfdwoQb7CEeSs0T7qXJjR+ndqDX8TcGIWvqdBr13Sik3\nm77MCshN409vgW4rHAcvl+cjf1JDdaJN8SZojUWoYSw+WLzTZKADbJcIBrrEs23CNoQ+Qu7VRoRi\nuvaoBHSir/ddZJIUlCINtKZ6Y7BKZ8VYXCnWcK9x/c0Zl8Fu4PfvePXP/jn9b/2Ax9/+eyxVQJ0S\nMRixMa/CqxLqChEP1cw+qP0RPTulaIQg1RmQ1NJ2YZH6LQlS9gfs/J6uK7sEsRGdNsrRXkmKUsQx\nBm4bsp2x83t49zncv4OnC6NULu/u2Nc7hlR2g/OunK2y9co2GnYW7MnxMWgpLRvb4OnhzP2lM3pH\nqlCaoLUgbtSqXMR4eHjPdjlzeXri7nSiSqFvG02E5fSStVZetIWFElap9INKkWy5JVckWiRUO1ZQ\nrxQqxSrFS3aSuanBTfxYUsgxqzcp+YNpNzFEIzFadd69kUAuSepFm7q5GEWLO0vZoftgtt+9tacM\nt+uCNTJYTYRSCktrtGWhtXrtRBQvHjJSl8MHO/ZB33ukXo+QO3oBGRGGtpvQq1CKo3TcCnsfPOwL\n77aFL/eV+zE4mzK84FSMxhgL3hvsJTrvbDy3oRy2xZuFLWe4q3v6q5j7vIfTUhNey9nuefYkzz7l\ntUabrzXkict6yoTsDJLKlOxSUtmiJRe8aWv7+mMueB95jY/Hx+OX6/jFwHnPzRjXFq+zWMPBhsih\n2DCkDYpc1RqL7NQ+0Av4ozN2Z/POf/D553z3k53/Tl+hdw25A1lBZ1hm0Yglk4EsO+Y7ZhtqG50l\niiEijGOO9yQmYlNxxXmziDXVGrc4b1DKJPj1K3Cef3AWPlwlbr5QDUuoCFKiA4prEh1NkcWozWh0\nTqNzso2mGzXzLuzi2FmQJ0HOIHu8jyCkelhyK+hpUE8DqxGy6qIMleg+kkWywqCoUXCaCsUV3RQ/\nO3qB+pfv+O4f/HO2H/yAd7/99+I9erRjpYD0LAwuRpVBk8HmO31/ovfBfj4zyhNDH+htZT83+kOh\nVahiFN8RiYyJvm/08xNoTXVCEhu64L4iFpkpkgVAimF+Yez3bO++YLt/y/b0yChKf7fwtC4gwjCL\nsNCh9B5dUGwDPxt+HrQen2M8dZ7Oj9zvF0a/IFWzyFmQ3qnApe88vHvH9vjE5f4hcJ5W+r7REJbT\nXeC8tbEIlJFZd4PA9OZhAz4cD1HZdS+pLmqILpmfVmDoDbn4nCyUicOijsR1sx05DeqCmh4b+CA3\nk/zSK9ZxHx/gPPsA59lfAectifPaYeW/VWpEngZJDg56t8B6e+K8mvgpC7UukrtuZ1jHeuPSC4+7\nco9yrsK+KHhuGyUwYuSNrOwS5rYLysbCbgujt+wESGC/6TgZRNvkY6a77lSfzbWppPg24bxvHLEB\nYa+oKDVJhcE1zpOciKUopUZATakNK+Hb2n0w9kD84WPjWPCOy35zFVKIAFzXsXl8eLF+6rrkvh65\nLqTcDLJ58+JRhf6bffB7Dr/dO3dfwj/8wx/zo9/4Pu+XJYqvFg8xMin8euNPZnKYIaPnz8VCE3kw\nHh5MDYkRkDei0Pt4Fiw1F7xaLRc9v56En/rsORlnTPD8MZv7vDxr4WHkurktSqlCFWieUZEeA9IH\nsJNdPYg2WPvg9f/5IzZRvvz17yHDKHkyzOIKegVrSd3mzs7pwa2UVHGIUz0WfwlbHkOdvQxOP/kJ\npz/6Y5Y//XPaMNTh6W/+Brw+RVcagTYi5EtqRbRSfGEQIaxqHfWODqM4FKvUUSl7o2VnmloULYKV\nQeeJy7bxZCXarnmJYMicxK/tSWPBNttSqvlEeXhgfXpCtgsmBd+e8HPDXRmmjC70Udl8ZfMVHyfU\nWqRan0LKunmw8/u4cLmcoUP1yqmeWE4FbSuixuV8wcZg60/oZtAWShHWuxMNZdHCQqE6oaLJiT9P\n+LUMVoJtF0qAr1IpI9rTIYpYTvzJmgWZkTdPcVxzM+4z8TrGls6Aslx04p+vi2GwzhMaBzs/bSaR\n/O03KfHB4A/PQFGLoClLWd9sn9zaypITetFclA/pH0cVrA+n74P93IPFtxGvVYmQWdGoWHRlFAfi\n/58uG+8vhXdb5d3eeOorl1Fxy0FLxXuJ4NSNUBztcl3g+jWM9lBmSOrL3AMkpoc5bmbh2Qw3/+2Y\nw5KqzEUrKoOzr3u7tv06nY7FLh71WPBqKem7VEpek+NPfzi5OAG+rX9UbHw8Ph6/hMcvJs67yfGY\n+7GbAlYQ+Zaq3JuHDdgd3+E3zoP/sMNvb50XF3jvP+b/+re/z9u6xFq2ETkdl+xUWx33tC/TQ7Yq\nHaMznrC7OQAAIABJREFUPDYv2Ay2nzgvvO0gNzhv5mxMnNfpvVDryM4pPw/nyUGUP8d5V5OnT8Cr\nQI1qr5RCWYDVaQVWi0JW851qnbJ3bHP8Iujj4NN/8SP2oXz+/e/B3IxadKigJmbGKKtHZxRCpaMC\npUTg7CQjWnFWBN2ja93wwcs/+Qlv/tUfc/rDP6c8GP0C7//mbzDuTkFqLNBEkEVZFmVpyqq5mXS4\n2GDzjX0IOwK9UyWKM82EtcJSoZQCYgzv7NvObgGPhpfoZpYFCh+h2IBQumgJ9bWMJ+TpPW17QMcZ\nH4L0J8a5HLaJrRuXUehWGN6Q0Sij0igspWGtsFXB7Mx+vnC53EMJG+3pdMeiFV0EOTmX84Z1Y3s8\no8NhWSgIa1tpWlhqYSlCRaLjWkgo0jYxq05zUER7Xi0VKRUp0anQJXMy5Eh0CIgyiR0nLNlxiVPF\nEmSZVgmc6EGazAD4o/udpkIoCzmB88ahzL3mylzDRL8e50nivOUG5xW+GueFMqz3wb53+t4Ze+yp\nIDAjXXGN5A+3xlCneNx/j1vhcS88WGHzRs8AzxB7KEZlEEHxoQELO8pujd4rvkngwJ0glCJ395rv\nOzPVfopduPm3I9zz24HzvnHERhRw4+YqlOjpzVyMkmNXjRCTtsDpBMuK1cpQhb4z9BLqhrFHkq0/\nr13Kzde3h918n6/4+quO+TpGegSZ7bsyivRmPvg1d/7j3vkUkPOZH/74z/jiO2/48rNP4iYiWMIR\nlCKC5AQR3jbL7g4+gtxgFBhOsaiCFxFKLXmDxoAKuWI5+pqHRLFnf/OBWfoxv+acxICd+QJx0x8D\nVOJ9zR/040IJGlrLUJGYUkTjWSXnzPR8uqPbRvv8S37lX/xLntaVx88+wWtlJDvrpCWlByni1omO\n1COeRZnexeSEQ9FRC96EsjiyGa/e3/PqT36Mbhv6Z3+ODuP+zRvGojRRylJQF4oUtBS0LVQWOgrW\n0bEjZkFuiFEsGjwpTrVGq8pC2FW8CHsZvB9nxu70nr2tjWwHGzI59ZBgekRnU0enjJ16Hujead1x\n3Rm+s49zyFZNo6e6LzTvGIZJodTGUgrFC16hSQmbydjoI4otWp2yQLtr4cm8K5wfG9u2B46rjhan\n1cqpLJykUV3R3ZHsnjL9jCpgJlFJmyNWBLEgN9RqZsgUtGuMD52MObF4FbmRSDmHrE6vDH7Mx3mN\nb1OdBbTMTIgIk5vj8wgGPeS4GRo1e5gng98zHyPAVFz7WmKCb3Wllmzz6zH+zSIde7ba693Y9519\n67Ho2Yh5xOFAxCOC1qwEDN4dHp4K7x+V92fhca+c94W+j8gT8bhnZvcT3z0WtQwWTjP5tU1wIoTj\n/hU/uMhbKfG1+ibX51uuQ7OVdPotQ5oYbb+W+VhX1nVhWVsudi0D7TJZu0S16NZvefvHhSu2NjNG\nNz4E2x+Pj8fH49t9/OLivA/JX55hm2krnCTDRHx45jd0+NXd+Y8unU8H+H7m757/jJ98+oaffPYJ\nZUQmY9lh7A5NQnafrxNy/45LVIRl+mrcKR65XEX0A5wXm66RrUOvOC8r2rftX7/mnPxsnDen6Elu\n5JcqSAsLtC+ONKcptAHNnWqDMvrR7U4fN9pPvuS7f/AvOZeV+9MnbKeKlygSOBah8UShCgFdguQX\nauBKEYoGZVDFaQKntMcgBRPjzef3fPajH+OPG+Xy56wX4/MXb9g/U0pTmhW0CXUo6sJSKsuSKSmm\nbEM4m7PR2SSUGQVjEWUV4a4U7tZKbdGGc+vOw/kCvWPdMYsOL8OV3QvDCtYzPF4GtUT2SLMLzS4s\nbKFMnplfPbtupOJ7eDksSgrUUlm0UKTgDq0rft6wy5l+iXwy1cDAra2sTWnaOJcIKz/4OofWKqe2\ncKqNqop62L6xq21XDcznHXuD84oio6C9Bl6WsB972or9uBklijye7ODBPOb3RDOUVq+bb584zxGx\nKFyKRLHywHk32C5bvP40zrMbnBdkB5A4rybOW6KNMnKQBYHzUpGbheB9D2JjkhvmnlZqhS3sNW4S\nHfFqhKtetsLDXnjshSdr7L5GAwgi56KIZmvgRmehS6O7spswesV2jcLWToToH50B4xwIfsxHc/aT\nedNO9cmB8/I73wKc9w0kNnJTmv+dQU/xvei1W0tBlxW5u0NfvoB1xVqhI7BvDIU6NrSXTNOdsZhx\nfDi53/7/V038cvuTnjuG3H/Nh3kYUXaCTe0UapFsfQos8L8b/OcC/+mA13cn/su/8R32dWUxo6aP\n06qHh7PGDTMkWv50KVEbMEF2Y3TQTnSNMMvgaqFMaZDIBwqNfuPFrMdid1Tfj0//848DPsRuMFtb\nOWQK91EmlgJScNVgcbVgqrGZrZnNUJ3Xf/Jj3vwP/xTevmNR5fQ//hP+7Hd+i/e/+llwkSU2upGX\nExP+7sY+043Fr20yU8jqGu03tQp1KZRTYft3f5O3L1/xN37/93n8tV/l7d/52/inL8OGUhyXsOzY\ngDEUV4uKigRr3DQUIRFopAiVwkKRhSqN5iuLLVRr4MLukRitS882qU7vjo2OW2dKetQ7dXRq79Tu\nkaK9CfSKU5ONdawI1pxdhLMUXljjyeOxa8E8ursUK9CEVgqlwHoqnF41dt/xAvVUaKtSWuVE48V+\nou8D6wEoi8cnqyiFCDedTLntAzdHs1WbWpynkLYli5/J7dODRxG8yHXcZGvgo5POTXjo8VOpABKR\nIKx0sh/5PIFVLrCa+RrmIB7eXeMaDNpnq68xgn3P5/DbZngsipZGqwtLC0+hagMKngPQnPidEc9h\nQRnsvacyKpPhNHJUPG0jLh7nwJ3RB/tjZ38/uLxz+pPgl2TlLSsV00uZqiY60eqrk9WMqUecZY+Z\neH+ttk07yrHQoRPBPiOHfIbCqaAZIKUlGPy6rLRlyYXuFEG0+QgGv0RVLZViMypFni93X3lMEP6R\n1vh4fDx+uY5fbJz3s973Ffo5z2Hg/P1/BvxnAv8J8PJ04r/47nfY1pXaDWuhyjXzyFH7oK/kFVrO\n0D1BDdzk+vlUYr5N6XzgvPEzcN6NyvL49D//Ux+GoLlB8UkK+XNyoyiU3Hzih51IJTajboq68/pH\nP+Y7//0/pf3pO8SV33j/T/iTv/9bvPu3PsNHBnsTghX2ERZt3XBtmO8RPi7CbGkpsdjjWNgX0op9\n/7d+k11e8en/+vu8+9Vf5S//zt+mv3wZp2B4tGvdC7Z52L4XoXrN3K/IPqki7Di7dLQpbYG1wWkR\n7ha4W6G1WDsvxVl98ETnrM5ukkoL2EzZpdC1xEbUB8vYWOksaWMqtSNlHIoaTzzdTdhNuJhy8cLm\niml2XbFCuRQQoXmhDFi1cGore3agqK3QWgmc96Lx4vUpMMqwyOQToWqojEuJ3BfJ1N3ZbEDdMBF0\nKD4s8uFSlavUsBtbRUfmpyH47NI2R5jM/kNysGITk3iEPSAZZnNFDVcV6lHkmg1LiD2HuNzgvMw4\nS3VA4LvrY4xxg/MELTVxXqg1VCuHCc7CghI4LwtYaTXe+04fHRsWb2RE9yJPW7Bnt5JRlJ3Cw6Y8\nbMr9XtnGKWtSPW8dQdFMXovA+OE1FNk7gQen/STDVCcOxOb9YlwbVt9QugcpK4fi5duE875xxAYE\nL1jQ3FbJQTZJUVqtsCzI3Qv0xQvKy5dwWhi1sIlj50d275TLGa0RuKJ2u2g+n9Y/XKCunP9RVuan\nPEz+wS8NGPY8YWN3paoi1dDmeIN3A94D/20TPjkV/vVd4TvqfMaIzhzNGTXIEFcFrREeow2jZbhU\nhArpblhWjs00bkkhBl6NhS+8YbHYxaNm5sa4kWxlwM7x8b6Gz5dg3DypuCnrj8wB4kYrz4FDxHNl\nKrKEH5NSoBlSHW2Gd8U+e83+g++z/KsNSuXy67+GvzqhNRfSIsHkFxiiYdlxZ2iSKi6MDF4clAid\nUscVTDzkf03gzStMvs/T02+xf+cN8r3vslQitHUBCYtgrp2SRM2IxY5B8U4bA9ljQRSJ4NJaC3UU\n6hDKiDZyDKEuykkqIk5dhN2F0RzvkQQdu+MkSix9hbvDxeDsoU6BkHw2RVow1qMIp6osKNVAh/FE\nZ/eOEYx5yFUF0YYuoHfCZZwZdKjQTk5tRimKjcIYwuge7WMtFrJiZAUpr+jcQyebDkyjYNiDauZr\nZE4JVUJpox6z8RGvYVFhmd7l2RFlgqVDqZE/c/y7X58PciOvV2Swxh0rcdcaIUWcLb6uC11PcmMG\nQgWYEBGKVmpdqHWlagsbzSQ1Mvsj0ug9bCjD2Hsw+mFFyYV4suIW9UeIgoWZYX3Q3+3s7zv9/cCn\n1WRIBGVNpNw9xoNpVu4kr8U1KEoOcsOud+6NDSUY/ZTBcnPeJotPVOmCaCpIqZTaIgW+rSzLwpoB\nUkv6L9syPZctSaz0WUvO1teX/pmHJ9n0UbHx8fh4/PId/+Zx3vPDb/774ZdfBf0C9syQwuum6y3w\nDvhHKrwqhf+jFt6Y81muD6EzDQI7lotc4FSQLBCQry03FuLAeeQ69SHOs6/AeR2zdg1TPDDbhx/u\nhg7KknU6j/N34+ujDpY2g7n+xnoXllH1sAwU9aN7XSiOlfHqNedf/z7+duMilbe//mtc7k7ZdYJY\ng9Uh11gfkaOAG3I8Qql4dLWZWHSAjSCKxstXPH3/+8jf/S0eP31D/5XvJkwRtCQsIWFJkh2MAdIp\nqShQhyqFRSzbylZOVTlJYTVl3UNH4mIUj5D8tRlbJciI4WxdktxwtlQARIe5HtksdmYZl2gycFQj\nUtovgfOGKE8GT8N4Gp2NjR0N1ZItiFWKCdKXOPeiXPZL5MJVKE2oS+SqVU+Vdg/cH5cv4jxFb3Jt\n8rwcY+QYHtdwQaEgHg8sMjWQEtXHCdg8wm4DY6R6VeYfyM8q3OC8/MOSeFFu/r7qV+A8v8F5ljjv\nFuPtB9a74rwgWoqWxDALVWvaumJyMAscfBSF8/X2vtOT2BjmQHYt6qHWsBLEg7fYd3R3Lg/O46Py\neG7sY2WY5N3vScaFtTwCVsNq7kOy850fQfFyExbvE49L3BPxenbk5hzX8QZPM5++JTjvG0dsxLXQ\nfMSmIvxVQq0VWU+0uxeUV6+or15SXr7E1sZeoPigK2x9p7VHaqn0HLA/3bU7TnJYSJ77M6/E9iQ3\n4NlCcEvT58Nd6B4uyS2rEFUKUozaBixzQMI/LsrLFT5lp7PRpdN1RKuhBlaBoriWVGw0TCvmLTz4\nFq/l3WPyt1iARBwtEpIyVQT/YMGbi54dio0xnFph9nyeCwXP5E3Pj2ftlMJwE8vM3PQCESwUUj1P\nZtaT3IjPqXgLpvny73yP7dNP+ezpzHlZ+LN/8DuQIVpKThjZai0EmyHzuwpBFfNCt0EXoRNcSBFD\nRFE1vBS0CvrJax5/54dogbvmh6JmEhuyOr5Az+wHPxjRHfUd3Qe6g51vJtoaIZdeQ11ifSCLIgNa\nU2RptGahKHHP1qrBbPsOvoVHz6xg+2BcOuNx4D3AiDSQRdFFUFeqCK1IhFAx6LaHH9TTxqSGaAMt\ncd+0wrJEq61uhmmnrs7aLANkw1IS3T0EG1dm2C3IJ8mKj8xSzSCYe9Vg8fNBzWtVLJKnJrGh00oy\n18hsEZvEyGSS52Qcqev6/N9vFtqZszGLAJbfn2MzxmN6L2fw0xhJQlxJjpk9AyBaKGWJxa4syeJX\nMElZYnJRPSWKPQJ6R59VAU+pYwmSgqx6JZZ0yd+7GP19p7/r2EO0/5IOOuQKKgah9hhZmYJrZgaZ\ncH8w9lc7yrz/nsNWvy5ux3/miSTPs0Zv8hq96Nuy0k4nlkzIXpYMk8qgrSlNLDNR++hjLsdc+/OY\n/GGD0cfP+amPx8fj4/FtO36xcN6H725+V37q+0FmyJHfN0kS++C3Af6xKieF19vO3baxZbh0bGJu\nCBIh33V5RogHnJqW3RmKmOepKFXTJ8+HxMbM1qiHFWUMo1a/wW5XePsc511n7vjZuX5Nmjx/dmaq\nCam4jDVbzdDsXFKJTeSIfmicv/c9Lr/3KW++PHPfFv7oH/wOftnwbQPPzdI8ocOzG4Ydf3VikNne\nPFrXpvK4R4HHLUgyf/maL/79HwKwMIPGA0q0GlkdqN9sZAfxgcbUZ1JVce8UGzQrrENZR6NJpUiQ\nMFKVRZ0ig6V4uAUcNhc2U7ahXKxwyRb2atDMqftO9Y1iF9h6bGSzIDLXVJowVKk4xdNLPDJ7hRGK\n5OJQI0ej9sriDWp0CjIZUdRaCOyYYGmMacmY5zhwboytidHyhCUREG1BBZGS92sBL/meJHPvCOCd\n42gqNOSwCk3sl6rW7PJz5D/MAtgcZTLz1EicJ1+D80bivCDzgoQIBe1znBd3aeC8wDC1pKo4i1dX\n+0m0drWR+K4PRo/XjmYMgJQ4f4NQVPUoXvlIsqUb+71xeYDzubB7w0yPWSNs24J1wbuErcclTsFu\ngcGnYiPb3tInQAzM5zcz0C22k+Nk397WE+eVbzzO+8YRG8Dhuzw8XQpSK8t6gpcvKa9eUz95TXn5\nkvLyBb0pmxjiO7t3zpcnaluOoBNGSZ7RDyZybtvntqDfTO23C+BzdntSy/IBbR8Du7uyi6ZnNBqB\nFR1BbDSOFx3q7Dq4+MbZdy6+s0mPDX/VCMmUQrcaCoV8PfOCm6AjMgHcLGRrI2YnZXaICA+mdI08\nhEO1sdN7vfFiXj1qZiUDnBQRi5Zgc11/hgLIlTBJDdckRW6+ebDPMWmFtC6DdaQgdUBVtMUkIh3s\nbuEv/+EP6SMsa66x0BcNNtyrQ4O9hr1FpYBWXGMZGj7o5mwelQIxaBiqjmuhFAMvUVlI5j46ckVL\nKxZBF2AFFhjaDmkYPjL4NNQVfgE7G4zBYMcUelqItEKthbII9U7wUyzG4YsVFgRo8Z5zsRs9qvZy\ncbjAeIT9ydm3YKBLdm2RRdBTQU7gJxirR0utvmC2MnxnsOOlMaQhEkSYi+OtU+ugeUel04rTgOp6\n3AMDUuUS/eTNG4yK9GTVCXghIkiP6hJEqrJUjVZ4xZPMMFwHJhZsuEguerndP8AQN4RGfF9uFjo5\nmPxgkQSLhXAONcJuIiPuZkt2+PBZela83I9/632wpw2ljyuLr1pzsWtho6GE3BFNcBiL1ehOH6RM\n0a/+TXecVOxYZKrMXJWjxNXBL8Z4MOzRsEe/Jlzf8BOHYuOGnY8fmKudffDvObkc5MbtY0LXG/nL\nzblGNAPAKqUt1Lam3zJ6mK+nE+sp/q22JaSLU55Yrh1+NGWKIrebi69n6f0GbHw8Ph4fj1+u4xcP\n5/3Vjg/h0Nf9qhEdSy6XjfNl53LZ2ddOH1GlLflCodrw68ZEJqkxyYXEeRbyd3XP9arc4LzxAc4r\nPwfn+V8B511J+ShUcbWgTEvIVF7qlMLHs4rHxsc11+h4oV4W/p/f/SFnC3W9FImMLvNQLkiQCi6R\nHVBV6IkHYy88O110RAazrWYUigrFgtyAyLWSm/c7VRs1GuwEVrmxfZuHZSZsnpF75ibIZYetRke6\nG7unaInfbYLXKEDVArU6SzHGAhcTzn3QRBkykB4tcItvyLYz7gd2HoxtHKN1V4nNdiULRWEd0aGI\nNdxXXDZ2RoTG9xaFEHdcRrwPUbwIukSeSGkcY0rHlc0Sh+KpdvK0PpQgEaSnNTbzGERKVvunqkiy\nqBvEms4BrDk2mIWU6GoXRJhfN99pk2AGUB44bxZjrs/OCD7rZ+K82S0ylRsHzrMPcF6QfrXUCMFE\nE+dxFHtHH4ye2RxpZekjXjf2O4LOsXDTaQUhiB4D3xPn3Rv2FHulaVqTVAiDRhB8hoICVxvyYUfm\nSugdRawp3bjVoh1n/Mo25DW54rzyrcB530hiQ1OeqEQ7GamFujTkxUvK609Y3ryhfvIJ5cUL5O7E\nXkDojHGmbpdjsSsaHRmKhFWj+GSxYiDMRldTot2Pr/K+nz/r19/h9su5GxzgQ2OTWipdohFYYVDE\n0GaUNdoVUeIv9zq4lJ2zXjjLhZOu0Yaz1GhnhkYSshSGKN01wql2h92RPfpDmxliiiaDrYR/qtaS\n1Xg7wqWuAVPj6Oowk4RjoogsA3XB5oSG5wYtPvoRLsVc5fLf535qEhvJfrpofAbmZynRL3oR9BRJ\n3WIOpvTvf4exD2rvmJZZZI7gxepYM+SootfDu0fKLONhDEnZJR49tiupHom5QCUWo2u/OQlGexV8\nFWzJ6GxvKBVsUNyoVpKocXSED87NGTK4+79/hJfC+3/vN6mlsGzK0nOhmLkJLdq7McC74Vv0xLbz\nwJ4Gfo4JcFyMbR9c+sDGoHpkfZQd2PfoKLOBvTS8hu9UrFComA7Uue6ONcc+A2Wj+k71TtMI3yqz\n3u8wkhF3lCEtLD5NsA6oRGs3ia/ZQVziPtWCNg2CKAmLyDgZiETHnClJ5GYBCzvK9P/ljTWDH0QP\nUkNmuQUOme61mHa1RB1tXg8wF5WumbNhuUh1u477KJeVXOzSglJXJGQnxOAhe5lbpM+PyErpgyN8\n1HJhmwsIN6RGBNvlbbEZ42yM88CeDL9YdAfyGxLDb/4/y2qSMg450kMnS59djZLkift1Eo1+TF3H\nxmGCj/k+U5p4q9aoy0qdDP56l33Mo5f5lCeWWlOeWDLTZ3IlHyysX3t4ApDbrcbH4+Px8fhlOX6x\ncB43OO/m//351+5HzGc+Sjxk5EaZeOSiagzG2On7hb5d6PvKyBaZppoB6aGU3DXW4C5hq7DhSD7b\nSJxnodxQOGywgfP6jWqj5vpm/x9x3k1NatpNnp2SOJMB8yZZHnpWuSFIrpuqWOO1KF7CEkxT9u9+\nh30flN7DyuAp6rS0olRDimMFSpEDO7iHtVQym2zuocfk7CcBUnLDnutcci9BaqigLYpYsgALaItQ\n0WIF94FevTGxaTVDsmXl8q9/RBmF8w9+M4mNwLKRoydIA5awDdOiql1NKUOgD7Rv1HFGtw0/d3gM\n7GeXcd38CSB74KgKfmfQhFqU5saK4FJwNvYcR1Fjcmge91LR6My2aHzemmjADbVr4KSQpIblxroL\n9MBeIT/Jn5HACForWvQ5zktrxdzbJyNx4AGZ+WnPcB5XEkNHwpFyQ3rMn7vew1ecN0m6eExl7k/j\nvKvtPt7cDalRA8ekESfemM/A0AiF76nInc+zu16oy66Y9MB5N3sM64Hjx+PAHg0/TzUvxz1z1JtM\njm4n0+p91K5yjymHkj6sJ0G8DWbOxlRhBc6TD3CefOtw3jeO2Ig6sKJURBtSCrVV9MWJ8voNy5tP\nWT77lPLqFXp3B2tDxRm2UXeoy9P1gmRLG5dCOTxlOax8Bq7A7ChQ8j3MRe96IT64JM/6OXMwa97D\nOtJrY4+0gwiexFnWnaKRLWEOozhb65x156wb57JTtGXLzAWzhmVeR4jjhHHxyF7YDN31WIh8OJbB\nTWSwVC3RmudgG7vlzTnyBs18jZwITPMx5OgyEsy1XM/AIU2DCRPmP8dplLTF5PkZEv3HpbBTURpF\nKrVu6KpgUd928VCZFIfNUAsyZL6uqeDFIoyRFt5CWgbvAB4eAaPHdZ1tQ0WyHVnK4jRsPCZEv/Rc\njLwRhMZJ8VbpdcFYcBacijKyorAjteM6JyVlbAaXM3f/2x8wzPjis8/YXr5gOzXuRiwaU+EjNVlO\nS2JjN2zv2GXA2fCzMS6DsUVAqu07fj4zanRZwaYsNR7SglnXGpaSOhn1yYTT55JA8akh2qMNG52K\npQd2khqaxpvCUKeL03H2utI12lkdeRgFsASlEsTGodhQMA0g4xLX1w5ZYT6nAVcS2MntRHkDSg+5\n681CGJd2bt05QMhs6TXGSM+l3/Qiz7wNy5+zOUaCHCsZJtXqStEYX3jFg4kMq46R7H8GwdoglpbM\nnkkZ8aFusWukU9ynxtiNvoXdqG8D3yw8vpM9uWHeJXWiV9/4LUN/JTeY5wCYAWwHqXGg8wnurwny\nM7hL03OptVHqQm3psVxPrKc7lvWONSWKLZn8Umuy9mQV5LaXuV8/xnzvcv3u8R0Lmef/n97Lj8fH\n4+Pxi3/8YuK85+8w2eLnlmOTsIxqwTLYfVCxMijNY4ObFVaxsAfjHdt3bN8w20IJWgwrzlCLQoIR\nYZEImwh7h7FbBMQPwrbaQ3GhuZEvKtF6sWRG1rEhGz8D5414DP0r4LxJXOQZyZM1yY1rgSvXt1vC\nRzSLSgJV0BadU0pXijnVwsIcKSvzbEts3Cr4QlgxSqhCncC7PXPH3BVXj2ivGqoDSdWBSmaR5FKo\nEh0DVaBUgaawgKyKrKBLhVrjnVgPp4QRKhAD74qfDb0/8+p//gPkbDzUzxgvXuBrQ1YJImOReN0m\nR25bL9HG2IaG3WXsSD/jTzv+aPiTo+92eDxHJ8AsnEVRzkMJYiB3sLwouNZDyaoSBNDuHrZVBylQ\n6rQEeyiRqyNlXPFDEng6qx0W3TykSxRZepz72ZUNL6hEILzWGng6Q0pMLXGepyX4ah+RqdLVSU7d\nEhb5txkcDJXMLI45HP0G59kHOC/HuI/EeYn1LPM2UtEROC82LYJSSkmcF6pcoYBrnpIg+sJuTBIa\n8Txm7ovPzJCShKBydBua94FZYPjzYDx2ehYtp8X/infyLkrpmGQ6743ThKPANVW5HoyH30xKVzuK\n3MxcE+fJtxLnfeOIDSD7MTREV+ra0Fd36JvX1M8+pX32hvbmE+R0B6cFrxWTQe0SVem6IKXFYhk7\nLZxQLlzvl2zRlVO0+uQq5gaCDCia12JuDuZg0mTZiMdO5goIXVrc1Ll6zgXAitK0U1qwm6KwN+Oy\n7DyWjSodp7DYivqCjSUWQEpMrAPkMpCz4+e8CXKRmYtQVGQlBm+Jvu/a401Gyq8didxTcmUp5Spz\n8VMN2aClhWDeMHPAql4zfeS6fZrJkFFYzglSYKBYrYg3xBvqC66DZYn0aSro4rAWfHXYC6OHHWUb\nZHP0AAAgAElEQVQG1XQvdHf2ET2ikSUWRAu/bex/91QlDBrOAhQJqVnJ4CIVAc+ydQtCgxVYFVuE\n0Rpdo5/0xsLOSs8eN65O9cHSzqG+2cBNefFHf8ir/+l/Qf/iL+nufO+/+q9593u/y/abPwiSKN0D\ntnnKBS2lZzlhDc//t5jUgKqwaOHNH/4xL370I97+/R8yvvNpED+L44tjJ8dXx9aVqieKxEN0SYVG\njFfBUB+od5pvVL/Q2GjsVB8HSDGUIRpBk1LpYuw4GxmPsS7sqSbSAtKVaoXiNStuGhUDsXyOh+tV\nEjpP/czU0JmtcYMhj6E2PZmT8Z+L5byHJRaUOaFGkcUPQuOIekliY3C1olxzjDQT5ktK8u6o9YTq\nClTca1hKIIKZiuDNMYzug6109jIYi0PJiT8lmm6ZoZJ5Je4ev9N3LtuZyx5BVGOSGlcz0HUizBDQ\n6431bMW7+dmvfhYm+JzMfXhlVWeQl8bFrS1Z/JAnRkJ2LHbr6QWnuxe00+kIlApQkF7LWZ2Z79lD\nNj2JlK9j9B0y0OtjV5SPx8fjl/H4xcF5coPz5rM/n26PApZiu9BbZS+BDS4MtBh6imq4SOAaN6KK\nXAa9bmzlwlk31rrSl0ZdDasVV6FboXdhV+EC9IthF4ug8k5I1bsiPrLY7dENrIQdRXtUns2T2Lfn\nig0z/wDnRYUbC2vuTcUgPrtq5mkdPEceuVEFyCB7BowumCrdC7tXqtcMaDTK6pAB907hTpwmhT5x\nc7bJdBNMBlYFTo4vGpZgX+heGV4oOEZ0klgURgGrBsUoiyNN0YsgLVQSwtyUEZuyInACOwn/L3tv\n92xbllz1/TLnnGvtc29VdXd1dbcadYMQAhMKWbZsAwoZR0DgF/HH8mLz6nA4AgIR4MAEtvgIuhWA\ncSNQo+6uumfvNefM9EPmXHufW9USXw/1cVfFrnPu+d5rrzVzzJEjx/AdbFOO0jjYMWIEpOWfVdSy\nJ6Vs/++/4Gv/+9+h/es/wA/nw7/xv/Lj3/pNnv/ML1Ee9gLW87WvBkl0zSKYtJTFjmxMEh5sVnjv\nB/+KV//89/j9/+6/5fb1r58bYBfHdOGoeCG0hW9a0Rh5VQ/cbxY4y6fjzcOgv02qTqpMVD3NV+Pn\nRX8q1Uca53ZuJQivKfih6ACZSvVQA6tEE+vcC5R1EwW281TY3nEeDzjvvOHuRIP46b22BKQsNe+6\nIpPoWYelYmPmY2FAX2ptHqNeU+VAqBWK6jl6cU+8W8ra9AQ0By9JBsLoxtGF3pUZ5oehfNAcd3rw\n+kOimTVschyd2/XK7dYZR2cefsdCj4AnR7SCtxCWQvc+vvwWs/qpx1teiHmxh5mvfAbO274UOO8L\nR2zI4vJrQ7cn6qsL+rX3aR9+jfbh19EP3kffe43vWexqQZloAbWBZrGLD8SF6ERiCUlWkJuaKHGL\nfc4bYJ3+F0zU2xfXjLs4Ny0UiB0guAiDGGW4R3fF7x/SqWWgOFOFKRKOxikBm72wj0odG5SdyYbN\nFtGiA+Q6KVegE2MobsyUv5vmIp7PLeI2G6oxkx8ERhgfTrv7Aix51bQs/L7mIdfzftgeCci9/5Hd\niPwEkqghCp0kg7sCwIY2hA3SE9zjPqOIQU2Sofm56TfJ2UxWvKZgQ/FZkBnzfjoFn4b60rYMmkyK\nx4iFZiQUOc/mJf7tStwZO8hFmZtirdF145CN7ovY2BhsVCmAselBaxPZRqSsTNDXr+EXvoN+/HF4\nH33n29Sn17jWM4vdc+E2n+GLYhbdnIxyUySMPkuYUfHmyv6DH/L0gx9y+dGPaO+/z+3P/imO7/9C\ndIR2sIsxLzDbRmFH2RA2nIbKQE9FxqRKpxCkRrUbZdyoZuiM0SUjWN0wxCp4MVqZqGaEqIDXOH+j\nFHSraC/oVNQqxdN8SSAjXpBisdl/cO0KkoJ4v9wliivlZM1TnsqM9bmHDsCDaCPuzjWCkuTd2e14\n8X4UHMuxrGD4wztDRal1Y2sXtu0VrV4oZQuwjIbnSK4OlmMfESvW6WUwWviIkD9LVIMMeZiPdOL3\nT5/0eXA7DvpxSxZ7eWREdTt7YQ+ERjz9twmOB6j5gmDkBAYPiyrp/XWSSWHaVaAWtLact4yiFtLE\nne1yOR/7nrOXdQtJ6ip4GrPL99/p92VjsVU/r+ilVPSdYuPd8e74ah2fL5z3SGg84jx9yTmfylyY\npdC1orKhHroN1UnbR6h0i6c83ZlijNY59MZRbvS60+tG0Q20xMbdGoNK98LNBe+CHIZ1TRVi4ERb\nNTDXTNVIeNA0YTQjVInDziSweY5e2mfgvHye5+uSdfYFzuOO89aONdd5mbnpnoJPDcXy8pejInWi\nl6gNYUEew0dIeJKt3+pIRNuKYmViW4xTGBtzbowZm+/oT/tpuKoioSwtg8qkCnghFBTj/qSW+SVF\nsF1gF3xTulYOqdyITW4FVCa1GGJzbdvQ9hr78Dv473/MNDi+9W3G5TVOjbSTwVmrzWaa+htYkC2l\n6Cl0baaoCfp8Zf8nP+T1P/0h27/6EV97ep9P/vSf4vYLv5D4B0TDD8UfCIHwQQvjVJeJyWTsqfYw\noE5UB1JubAwagxpSarJNE5xEGvsPCf+QIZVR8zzvFRkVnRX1xHnLMHTdEyKnp9rZfNKzhxLvF9Jf\nY+E8HnBenLO794Y/4Lw1QBbfc44VM7EcPfk0zvPPwHkkzhNqbWxtC0VC3SmlIpnk4oRaIywFHLcS\nXmodenfGFMyDIFAtiZ/0hc2FW6wvc0z6cXC7HvTrjXmbMOx8/nB/V3Jsn/PpJ356bGClUbzIo1LD\nXxIN+Y/Pxnn6gPO2LwXO+8IRGxCLm9QNvTzRPviA9o2vs33zG5RvfACvX+GXjVFrvlgF9RGyrF6h\n5GMZS2rMQAqTNQQoeWF4Lt+h+JG1ZMLDDXV//7Hg5R28Ct7gfnMSN1KXFiagumJgY6uZKexUC/Os\n2XfGrTFvhX5Uno7GVjY0Ry7cNkoXtE/KDewA6ZwxY1MtmPtzrYjiEcxiPU0BbY5gIE9/gPTdqJNq\nRl2xYh43m3rIytYZAE6DHUlW8V76zlcOkumUkefMY7ShbxX3DQ9OlYnQRKltovXIeUeDUfAZEa7D\nw2ekjzTaLBLKlQGl3wuzznkmQReZFANMX7yEnm9NYrFd3hq2CVYbR7nQ2bnRuLHTvdJ9Y/hGLXH9\nbLJxaUfG1QpUwb73XT7+xe/x/v/yN7FpvPnt3wZVtuJo2HREl7/NuHpS0iYe5loZnBXRTy6oQ5kf\nc/m/fxf9/36EzMFH//if8MnrnT/85e8hTfDN8V0YO/SyUWwHa7jVUAioo+pUBhudRqdxQ+0ZHVfk\n1tGbwAiWes3kaRGkGrSJ75yzjyaKFw0AuUm4N4+K9kqxgkyNuC/3lL3NXF09i9sjiRG/R5O4CIXi\ng7R1kRjr2nqb1DgXUj9vzZgvXL4q5D24HvHfGkdZRc8S9IpUatmo7fKg2NhQCamrawCIsClzZjFG\nHRw2OEpnMANIqZ6O9r5UXOvmMPDiDCbdBrceDvnTlmHYIjWSgXe7k4aP99j5/B/HTPJr7kg+iI5z\nrSOLkZzM+ypWkWYTLH5klie5sV3YLk9Z+FKauO3hkt1qdAjTTGopQFTWdSQvx4r+iGOl1byjNd4d\n746v2vF5xHnreGhmZQodqbxcj1ETX+kkgtdz/W5GU6MUzs2OudHb4FY713LjWjpVZ8ZwV8w3pkWV\n7l4YoyJdKIdjIx7TYyRBkxCQswascdswBrT0FDjx3ZwPOM8fcF7UGXVJYv7cwr+F8/SR4oivE8Aj\nZlbMYVp4cI3CbCWJjeWdMtBtUpZyJgkJKYr2fA2WmtAVl0iwO6riVKy3OD9eGLMg63UUToWkEupi\n1YFqj9TRkvtBOAmN5RNGE2yHsSk3r9yscUiN5hdOTbKgrL34FOa3vstP/+fv8cHHf5NxGD/+7d+m\n651EK3m+zGeORATWC4IrPC6KCtWVqkoRaM8f88E/+F3kX/6IeQw++Ef/BHTn+O73kvZzqgQOD9wc\nhM7EmN5DZYuyUULmq7HRFukUnil2De2xhEecZMNExKOJ5dHQGlIZstEljNOH7sxScFNkVnQWitXA\neabpKZgvQpijPJAYnOPDWuJ6veO8hcdWw0qItpqexMZJaiw8c45vvI3zHtHd/b81jmLLhyOvYRGl\nlmjgnIoNiXF2R9JD7d5AjbEuODoc3Rk5ViwZ8CCqscysaKS81pZio/fB7Xpw3AazT3zecdw5Wmx5\n1y3Vxlp3BJan2mqprYesJhjxOp79L3gL5/GA80rivPalwXlfSGJDaqU8XWhfe5/9m19n/+hDtm99\nA3n/NXbZGC0ME60WXLPrPWswTOvRYpZIWkPawMdawD1uTgg5DWcK8AMX9kg/fRabn1e0Kww9b+QX\n3+LCbBWvyqzhvdHTMWNRD9WEPiujN8a1MK5BAOxaaaPRpFDWWNVBFNUu+Ih7wXIfaOpMF8Q05t3S\n4CqcjKODbzjDoE/jGIPWB70O6qwMmxEpxZJuLTgQr0fsrzJ9YpEEvoiDB9mYO8yYnQWPze555jam\nGsiM4oUyvFIZwZNLg9JiAZfJtJA1TgmjranCLIIPAw2aKMJ1J+IjTDHpVDuQqfgosVhJSBfjpizL\nRQqpgjdlaKPLhc6FQy4cbNzYONgYs8XPwblVuJXJwaC08LWgECk1Itz+8m/hrrS24zmO4SV8MGhh\nUGUUvGSHf0SSRySiSmTSW8T9yje+zpu/+lfY/s9/wP6DH/DT3/wLHL/8fbSUIGXS03Kqgm64N8wb\nNkpcK9VRQoK4SQzWNK54P/Dnib8x7BrEhlh0AHx1OqrGaNAQyqvOvktG5baQ26pjrvisSC9waMTB\niuQP0ShoGjG7UhO3FD0Z5UVyaLph3yFmdtOibfTAcGc5POUaudzbA1N/Frq8/R7mLk9VhwXpZhaA\nMwBhGEm1dqG1C1pamGPp/RIPIDEZDDqdPge9DGad6bcSBmmi4dfhg+ywrL8lCS2MYYNhI6V5uZ7I\nvXCd/86Cfp6CF7OL/vA4b74kSOLeX6dqTZzLyiBfRalk0WqVum8R+XV5Yrs8sT89ZcF7Ykt2v+73\nmctSKiWfbzmLntydsk9G6o8+PGdl3yk23h3vjq/a8XnEeY+PpWTw+9jxIjY6UJSpla6+tkbnTzTt\nlG2GVjXHIkszbrXzRgY1I9S3UVCN9DKTneEbc9ZUa2QdGblBthypLEEmBM7LuqeC5JhA4Dynz/mA\n8/pbOO9Bwv8pnBekv2QdWZuufMVyIxYPdc3PB/kT/l8Vo8YYtYTXnODQepIxiTGLw6G5uws/tUo0\nEmYDsYrNhlGx1bZyycjzRero3c+NEn4iWtiK0S6Gztx8aahNLQkgb4VRKoc0rrJzk53OThFHpaQz\nmWUyn+dzC7+0T/7Sb3GYMtvOfFBBLBFwRTEpkQin60qLc1dMKC4Uj0Ykr7/OT/6nv0L5+/8A/ec/\n4Cd/8S9w/f73w19uXZmTTHoRxLMJyYifg9IWm1AULRHjKvNKsWeqPSex0alJvEnGvCphCOpNqNIY\nOmnVmCXUSKNUhkaaEKPASJzX5cTQ6nJXB9QcJ0k26CXOI65XHnFebt7T52Xtq5wgrNZt6XjiPHsL\n592vpRUccKo6zE6sFzgv8E6tjdbioSvm1dMjw0hvjWj89m70EY2oSeK8ImhdxIacCo2F8c4d4jLx\n7QMbQWowCRJorT6Ps9LcacU7bHpch+6K3tD/w/ILuuO8/CkqOX2ycJ6iRb90OO8LR2yIgu477YPX\n7N/8GpdvfYPLR9+gffg1/NUlil3K7qaGNE8HaKvp9Bov3v70mqf3OuaOasH6CEcYD4NBtxkPj51O\nMK16cvmffgkeL7THD8cG8cWX5VufGqkSHotq10aRmVuNGJc4htJvjV4L1oSpzmuDp5rnglAp+MhC\nl3S1J4MZUyNr1kuT2ZST9dMykdJgxA3fu9H75FYnpRl1TOoIqeIsMdYhZvm7y8ku3u/DZFhxInv8\n8dzE3yZGMKFeKOZMV8QLXhujRFd/Uqgy6Ewk3IpwbbiH8aMhTNOIHZUANjipIuioQ/W4WdQnzSdt\nDorPUIv0ZJV5MKss8b4mg4sqrg0rjSEbQzcGO4ONaTum8SJYEawJXgdGjwbF04giknNs9id/ESg0\ng8nAysQ3hzNCNmcKvVLKRIbF2M1Ib5QuYOlf8nTBvvc9xvMV3n/N8Wd/mfnhB2j1MIQquemWGoSG\n1yQ1wtskwIpRZFK10/ygWQ9j0mfD3zh+C2ARwSCe6gSQ6nh3hII2o+6TvUykeZqDCgfCHMHmmcuD\n/UMoUFRruK4Xidi3khttXW+jeK3FN14lvy/ucG7kFwC7X2cPH0+ywk/J4Z3EOIteym/j60hX6/iJ\nikZUYCahqG5oKXmtgEtoi6YPhgz67AwGox4YN6Ang10oZRKXqAT4lXTIlrxXe6TnDB9MGykvvT9/\nkfU81xqT4ygPxeOFKmOdtce6sn5W/j9polwLVrdNslAVtIZD9po7jbivNJFKFr/tqeao99z3l9Ff\nQlE5TaXuBe+PP9Ys7F1n8+54d7w7vgrH5w/nfRapkU2sR2KjE+35TnhKaA2pvdzriklgG00SYbLU\n5hIJJwf0Ay5HoWn4oVFi7JhZkUPDDHIm9ltRnjzwDCfOy7HcjHFkhGKj9+wa1/B1+2yctyTmb+O8\nmJ9/ifNeFJr4mINajAcX8fBnmxXTxtTGsD1UAjhehEKP3yGOV4/xY+Hs3jvhE3H+nF5xL7in30du\nXJda89zcZsxn8isxGqMgSehrDUKDUvCizBp475CNzoUuF4ZsuEKhY7JsNg/KFqllYoHax5/4RaYH\nESNz5PXlOTaSHENRaIoVT2m24xU0VbphMA6+XTi++z34r674q9dc//QvMz74gHMM/HzBNTC5BbYW\nSYzuhsqgSsG0J203Ub9R7UrzK5vfaD6THElCy5KMUkVnQXeoSfxYq4w6GcU4itPFGD2U52ddl6j3\nOjX2GBrRp5r2Gyt97dxc68IfL6nEdSmxyK4HgvAlznuILP7MUeNQZyxfmdXEWne1ImGun2koqg09\nQbTGmPCIx5hGn5MxB907QwZWLMbYS6bdlOT2zHNv5uFvMsA1Ro5PnJfE5lJmnDjvUXnx1km547w7\nHvTHEeSzkRUn8Px2Wd97x9tfVpz3BSQ2lPrqwv6ND3j6zje5fOtDtm9+nfK197B9g6Ihdz8Po4hT\nrbFtO5enJ169fo/eO4LQWuP69MQ8Dmbv2ByMfjDHYM4ogjYnjIH7BHNWXOL91vDzd3FyqenmS3pt\nwMs79pzLFHwWRi25KY2LNSKonILSj0oXiYvXIgarbpPaCqaOuoTJpMPjTualbYxwd/MxwgUXVJ2i\nRpeJ2aB34zgmtU56n7RmZxzYnIZqPCIG7M6Ny4sd1CPLuAiNPDfZ/pfMxrYSrtexOBWsblgL9cRk\nID5BJu4DpGMyg7UnvR+8hGTeNSO8juiQeLDWoX4xthWLOkCHw2H4yAV1yTctF7mWRVvC3VzSEAhp\nuNZQkGhFJWZ45aJoA6kX4Iil5DhijRlRQCktNvVZd00lRmsu4Dv4JZNeDErrSDekG/TM+M4FKXCF\nU6ow/9yv0H/ll8/4My8GLWJvrXiaqhamh+GTDcG7BTM8JyqD4oNig3JM7DDk8DA+vYEdqwCESVUo\nNoL9rk2gK2rQCnHttvgaA6YKTMFGkkWnx0sQFlrk9Cw6x1zydjm/fm22z+s3r6X7UG/U9zw9vhDd\neRUuUsPOQrfIjpAVphO8rfliS3IDlg9NjKHs1LKhGukzls83YMKk++Dwgy6dzsH0K8KVqiNisEoU\n9TDpjZEpKGnEGgVw1snQIEiGhBltiFz0payPhfMe150HTv4Fo5/v/Rzm/Pxw/vzlAVI0Zn7Lmrnc\nt5y1jEK3Xy7n/OULd+xylyaWEuk7S3WjJ0Fz/0v+uDLmZjl7+cd84bvj3fHu+FIdnx+cJ2/hvEdy\nI7GeyxnHeJrFKyCCURk7sdlBcjwglKia2KTgNIdjVG6HclyF21V4vQmXUmi1hXJjVrQLpXvGbnKX\n/ZPkSaoiz0VWiLQKNYoOuoQasPfJcQxqHYnzVlLKZM6C6kRVMNM/Buc9eh04pyfH1JMwVyRw1AQZ\njtXGKBdEPRQCImH8mT4TUhyawYjzFWU+2Aj3yqQyTzPYxJKEClXTl6xiNDEqHh5rHm8VQ90pmiO+\nGgarXmOcNkxoG0M3TC6Y7LheML1ko+vIV42YpRh9wWlkKDIb1YWWL4VNoYihlWj8NIlklOpoM7xE\nM8paYBNPmO4lNsFShNuf+RWOX/pl3A2dce1FU2Ntfu8ch3maklvcE5IR8NULIgPMKH6j5WOzgzIn\nHGDD8ZHj5kQzq06hyES3gZTBrIPZwhRddOA0psQgjKQ3iCDIDAytq4Gqko3UxC4nzuPENg8IJ6/n\nt3HeCmx4m3L8T8F5C9uGIWyMoWzU0gLnoVjeS5ajEr0bx7TAeww6g1lmJE62IMjYcgRF4nf7iLGn\nmICL9I+hg/WfZ4KN59N9QVqskeMXOC/fe2EWn2fhU9jvockl9wbWVwHnfSGJjcsH7/P00Ye8+s5H\ntA8/QD54jT/t+FahhCuwOxQLIqASjfElAxJRWmu89+o11+dnbrcr/TgYx0E/rhy3W/77Ru+dfhwc\nvTPGweiDMUew/X6/qO5vHzw2TnKDkD2Ot75sPSZnasoqgKeCTiO/nNug9We23rjMne1Vo+2VWh1N\nBnkptyyJdNVgwn15RlQPWeI5JpLZ02VDdMIkmMhliDOcMVOCle7ZpSzJfrKK60L2O6XzSPRE2Xvc\nlC1yg/jq9fwL4bWQDL8VMss9c5klFlGXEQuEECyoa4zYCFQxCkFEFK8IShGliLAPoaU8UiwX3pFd\nBQllhBZPNUoJoiJ9PUxnjKyo4ZrFQie2NVwKrcFTVS6lsrOxqVGsxqjJjA541RobVYfiA5cBu2E7\n+FboumFS0ixoUFoPb5BjQHe4OaSnQyycloSZ42XixfGapM8mjCYxLuON6RU3xdOEiBkaPNcZLurT\nYRBmqxaxaREdmxnw6yV1vxNn2dnXEuMx3gSrSi/Bm4hHYVy+GWtRPWf8hIAHshbB+8dPvOqP/3ix\nCsT95XLf04ufvhFR9+6u155/+8ni2z3nfJyknaex1Lp3oti1FmqN0mqMD6mFeqUQBcpnjI5ww8cb\nlGeav6H6EWoUDUmjyIhJLBMawq3EbHiXGlF+t8FNDw6JLoCX6OSIC5GlfpcZPs5anlwP967H26fq\nbXrz/IrsDKE5i1w04gFrpa6u5x7zljFjeaHtyxV7zVq2lCQ+MPhnsdO7qRSP68N/2BHO5eOP/8J3\nx7vj3fGlOj5fOO9xTf055IaVO6nxuNA5TC94A2sxhrC81JZioxDpYtWV61G4XeH2BvomvC6Vi1a2\nUSlTqOkhJjmCwoxO/52AybqYVpw5qI+qx+inTpjOyI1a7zMiYLMGfjbO8/P53HGevDgPoTW4j2HL\nInvgjhkW9+GVIXvUbAHzaGRJxoaKHkjtuGQHPo283bMZ4IVRwrUkgvPieVYxihnFBs0HjRlv3djc\n2MxoXakeQcKiBd0Ik3bPxDcTvGYyWDak0A3KJZQdWnOkNOT7rR747sghSFfKrPiA0mHrA7MBYmj1\nIDeaBK5snrMpjtX0KTPHR7ywbpZ+cUYTifQbm6FmSZN54lRAM7wJXoVJpZsyZmzMjcAs6p2gmCJL\nseUYsg6DG/jBnZjLDT+F2C9skSBTcFoxZjWkhMn/YDB0ZMqbJix5wHkWpNPpj0HiQFmqBN7CeQ9k\nxvq3P374PxfnWSp4PHFeYJ7WQolQSsgtkhvBPX0HpzM8ho0POoccjBYj/Fo10miaIpW7MsjABvgR\nJMdQY8zBrR7hv1YH3lJ9O3JfZutZr12TvYXz/EWT67yxJMmok8x40D98BXHeF5DYKFy+9j6vPvoG\nl4++jnzwHv5qx/YGNWTiMebgGTUVhkC+9E9AKYV93znee59+3LhlcbsdV/r1xvV65bhF4TtuV47r\njdvtyu263r/ROfAxYtMNfJrcWP9OcsM5PSU+RWosGWMuJBDSxIhbiu63M7keB21ceeLKzs5Go7rd\n59WW70C+a+k4HLK+kLuhKVGylLxRKN4oYzBGSDL7cHqPxxyxD7ZJLMDGC9n+nWHMFIkHtYafl7ic\nX0FKBuO7HKZnVCZQ0tOhBOtpqpgYLprmXxPzFpJRWwvZffG0EpvpyJ1RqhSaFloptFuhjIpjcYos\nncVtbQo91DLJrEaWuVP2SSuTqYOZL5KKUnVideC1sFV4VYwn1fA/0T3AVsnzrCF1uy/OI8wzNsdb\nYZbG8KcABx5FqPiBWKfsAzkmtInVidVIFHFNMwg8MsnV8BK+Gr1AV+WwRvflFp75wsmuyBop8hkv\n7vAATJOIjlszu8D7f/Bjaj/4+E98BC1isc5HKRlfBqVkDK97KkiyiGm+RklsBGSQLLSr46P3woc/\njO4+qBVOaUZcuyeQQ16oNkJ66OcasNSpntdusPjx1syYOYa1yA2ceI1LY2uxsJeiAUKKYSU8UoZ0\nBjdMrjDfIP4JxT6m2BWhU1UiC10rIJivMex00ioNp3GrMOug60HXG0NH/g5OczJxhSUJFuM+5rXO\nUbL8DxjyEX6ehU5WycxFIl28VQtlFbs0kVoFb98vpyRx3y+ZEBM557U2Si0pn10GqXK+Te/X++Ev\nV8uHp/Cpw20ybX76E++Od8e740t9fL5w3kycd2/Y3OH7QyNr3kl84AEKCmYxMuElxlNUwmNDxcO7\ngfDSkqFcr4WjBF5zIcBgcTbze+xjzuWLkV5qgaPcHC/l3vBmScOhFKfoYGCJ8+6jxysNz2ZutM/x\nTH/AefGkAudZ/mxLNcWDBwJksQ3c6+rZKPGwDwjbS0bdcopHkYyFFyKeV0rIUaYTm+ZFPEVWu4EA\nACAASURBVHjUGTt/s1PFKWFGRp09fCZmZ/dOm5PSJ3U4ZUDpGkaXrmGEPjUjfeO1CPyY+hBJwqWk\nT0utSCmnN4S4UvYaY7g9GmVlFOhQb1D7iKS7bFLQQKtAA2mBy61EDRaP/F/pHeQKTCQibFAxanrj\nMcPjxI3T98x3xzcJY1YPUmN6OZtSYgYeqTzKpHmn2aAOgwP8GsTG+7//Y+R68JNvf4SXQnGlzHhU\nK9S4GKk6IPFwYzBk4qUy61LPpFrDE/P5HdctPLdw3xqhuuO8BH4hV+X0clk/wR/w4TlqbInz/D8S\n50VTuJbK1lZ8aWK1Ba8NxgiVRmeGh5qG/+D0wIGya3BfzRGJJqh4qJE8cTBDMBn0ftDLQa83Rh1Y\nS48VJXDelPvIeZqiysN+cu23Ft57u2ElC+l9CufJVwrnfeGIDa3K09c+4Omb36B9+HX81c7cGizT\nlrwh1GPTLJLzZ8RNVpLFvzw9YTMYtDEGtx7F7naLx/F85XZ95vr8zPX5Ddc3V65vPuG5vgE+ifvP\n7DNekLeYfISTtXDuZqKL2EiZEvrwWIdIxE8B5sb1dlDHlTdy40lv7LKFxKzVSOEoebGVZdQDWpLU\naIbXUCN43gVrtk0Qyoyscx+DOe+KjeXebJ7OwH5n8tdOci1aItFT1mQOF3PrCwBkpnO8H/OhlsZd\nlCQCRvzd9/MgqdxQTMvdBMiW6VI8FxdniFN1huGjVDYp7KpsRSmzhaGP5O8zx6YgIzb4qEZH3tIA\ntQraBNkFrZNaBpsdiKz++bKEUjYRntS4FGcvhU1APRh0kNOgh9NEdsTvasKQHeOC+QVzobhhdsP9\nhhAEh24DqZ1ZBlYGswwosfKKW/weHaEiEKG7cpuVLhHmZawFyTNDPBYi8VBuiIWBkadyg1RqjJT3\nffMHP+S9n/2MH37zN5lPF2qpId2rlVI1jFYLjOIxS5mAw88FNSWfKMVKKGSAkFSuYqgJwfL1xJL/\nyrzth9trdUziy5M0zCIJPACyOzO/spV9AbYF4qZnXN6dBIGYPWy1sded1gpaiQQUnUw1TIxeOtMP\nhE/Q42Nq/xgfH1P8CHs0LRQdAcQ8+UuHg0L0mQIcFAUvg65XejL5tJBDLxISDxJy3UdJeZ6nYJW0\n0+zmTvHf16HH90Pzm2ZSd/AWs5Ybddvvbth7MPjbvmLA9pAutpbsfcqIH4yjdKlv1p+w/ipff5u8\n/MRnHMHkv90xfXe8O94dX/bj84PzBLfrA867qxRetFLJTtKQT3+ZEcTLEEZTqDXUeOKp6hOK3r/n\n+VnpU1CMZpN2TEqdJ1ZjqU7dl/1EqHM9yQ338CyT8y9LJaRRyo5qjPbOAb0bY1jivPSisof0CFtE\n+r2LLGJYNrFiJbc8E8tzg8B5OXbsRL30jLiN8yLM2ZhV6KUg3oPUoMeIL6F0MM+xXY84zVMNoHHu\nRIwmM70rJm0KzaANY5uDOgZ0QZ8NuRHG8ctsshApcWvzV6LjrhZR9oFjhJLmpCIlDcUlk9yiKVA2\nQydIV3RoGPl30D4ifaNYpuyxkoehwiwOUnAq6jWwZz1iXIMeag8ztFiMTpvkx/w+gVAc9oJvYNWZ\ns2FWTrHM2ukLoGaEXuigzoneHL+B3xy9Gt/+3R/y9JOf8c9+6zfpry+oVoo1qke6XZlhahoG/p1N\nKj0Gg5iJZzXVMGGAWk5/tZXWmsgtr5No2EZ9vyfgrWtoma3fuzXZojlxnn0GzgsMFDgv1Rknzpup\n2Fg4j8R5lb02WqnRTDYwkyRFRpAaHmNchwy6prdGdWiCXoS6Q62hgF6+PWtbcRRNknJix41eb4nz\nOuwzms3Ln0diexBpSw84+QEvyWkuui4CeHCRf8BVC+ctY/hIRrp7anx5cd4XjtgQLVzef4/t/fep\n771i7BVpEfdloqhnVNW0zOwtuGouUHnTab3Ha1okEezHheNysB83juPGcY2id33zzPXyiuv+hue2\nUbUurSNzzkwveGTzF2f9GfQVDuSsiEtsWFYUbHn72+KidM2uq4eU6To7b+SZi+w0tjS5AYkVOW6A\n9fOKIsUoNcYErEUXWEVPMiC4k0KxQrUasvoehopjcJIb62YPp98gODRHAU7eMI1DLW/E1SmOZ7NA\ngIfc7/yZucANgt3UKM4mZJGOU3FGjpJFk/i9p2JkRYYWhcxtr6Jsqlwk5iPCuCtm7CbOKPDBP/0B\nlz/49/zkv/51xqvXqDnb4XAzuE30ClIPSglzHAe8hOkYM+YM2xQ2PLLqvcdGXQrewkRCqiC1BPkk\njmp4c1hpQWhwYfoWjLwPdF5xb4Rfx0Ypt+wUHFi6SFuZ+JTQCxXnoHIg3Ey5eeGgcPNCpzLXLKqG\nCkhPNsjBY7bYMzbOkuCYDvtPfsq3fvcf8/6/+3dsffCn/vbf4w9/41f55M//Uix4tWbaR5jaRrZ4\nPsQzw3wBgCQvzsXQk+31e+E6L/51D+XbU6rod3An+gJWnpfgA/HlWezO/PJpD3PEsZjOsd7OJDfC\nPLaVxt4a21YoOSJmOvNhzDJxuSL2MfSP0fEzdH6C+Bt2OptAnRXxARJzmsMctSjY7i1MZGVyxSne\nEf0EqbfwXpnE/LF7xKQR60UoNx7YePzsOCHCp0vDA6khDyBO4j4RLUgNUkNrQ7cLZdtpaR7V9qfM\nL7+w7Rv7trO1xtbSQKqGgmf5gMh5r3/6eFwP/kOOc/by3fHueHd8pY7PF84bb+G8RWo8NrBynVrk\nxvqyR0VuJTYvVXJiRLBsXrksnBeE/rUdvOnPXI6d9npDLyXHdSurIXAWwBLKiSKSxqcxpqDLw8lj\npLGURilGrRHxah41b4yIfr3jPHLzH3toXWX4oQ2bdAU5aPByA7aOHGt1c0yCgDo76zMVC7oUuluO\n2m6oDoQYq3USd7qknwapcgnz86KTIkItRp3KPmEbRjVHr4rcKnKFD/7RD7j86N/zh7/664z2OjBB\njW7/lLn2f4Ghq4BMSJxnw3KoOtTLY4OO0KSGD/g2UY+EOxkF2QQOp1ok5mUcClTCo6yEuCdGbILY\ngA3mxMsR53E80wZx3akwC9i0xM4SRBnEtbMZsyoHGhoKLVgRfObFlzhPmCgdsQMZHTuC2Hj60U/5\nhf/rH/P63/w7OAa/+H/8Pf7tr/8qP/uVX0JlQ7xSLc1AO9CcUgZVOpVGk8GoFga+Z5MqFBviayyF\nl5vvdSE9Xi/rmmZtlv9zcZ69hfOcOewkNwLnFfZa2Vql6DK8X0QIp4dal073TpfO0MlUp2xO3Z3W\nOlVjpEw8SEO3UBstKq6IMuhUeUbLx8h2RZ4s92DB+pzbv+QSX+I8S5xnL+/FF3hq4bzsCp84T79y\nOO8LR2yoCturV2zvvUKeLkgLFkpKFDV3Q6bdX1NisS5VGISMptSZ7HbWHpuxUdsO6rGxHTtHOzjq\nTq1hKNNKpRAzUOM2Yh7zuDGnJpv/WS/koweHE2xDVrx03A2mn7uMcR1y/3QQkcIQ57DBm3Lj0q5s\n2555wiljlDQgrZIJFdHNn5GUirX8E1IxcvpMFaFJwzD67DjRqe9zhs/GiOJXijFNqbYWkrUOLaF7\nMOFLs7Eu7/vT0szy5ix4nuw9+Tq53M/W47lYxjSeRlaO3k01lyyrkGMrAgvcSLDHXgpeBDQYdD3e\n8PQvfsTT7/0e+4//kOO997h+7/vMb34Yf9M0fAo2weeI+UFqDk9Ep0BkIqPTXCjmqM08FxqRp0ky\nneY6Jdj+yBRvIE+477hfcN+CdZ4hcbNFKUucRXWDOtNFO8ZppuZkq0bRn6ZMCXOyFRw8PU1WkxVa\nHY/Fbk+CMV2zibB4BEGqwmXDS0HMKK8ulKc9HJK3SmkVrZLndUmAc8lb5p/rZ6V8TT0VG8q5SLPo\nkIe6t9Qakp+P/+t5vcUoyh1oLQDn3K/NJVdc7L3l/PCcAezGmGHmlG/nnAiRhLKdTHVcZyZ2f+hg\nlg7zGZlvkPEGn8/ofKbald2czRX1vB58ItkBW8ZlTSdDJlMmzZziN1SekdLR3RLEBL4S5SQ17oM8\n9nBe7kRQXp33E3kSGbkgrtdIC2hFSs2Ct1G2jbpdqJcL9fJEzdiv7RIGUvu2s20bbVvu2IWqhaIl\n7jPupFW+evfX51wJF0G1/sSfT+dbKuLeKTbeHe+Or9bx+cF5neM4mLO/hfMWtvuM9csyFuGzxo0r\nqczNppAIls0BCAWBOxxl8qbfuMwr29ypo1J2wthcc0ZxdUvT5HSKUHTGeENiHWClr4bniGyB88bA\nR8cM+rAT4wXOi7GUmuqKO85bz97PKuMvRlAeyXZiDMMyuWW17cm6PME74QEnGp5qxaEUrESTLkaO\nOZtgp/+AOJ4KFs2xhoLS1NlK+KzULmAF/dmNp3/2I97/f36P7d/+IV3e45Pvfp/bNz6M53IYWgWr\nAcloBZ8xahGqkTBO8TFCdeke3Xq3iHkXTiP0CLVLrCOpJlLuSRnLdDxJDZvCdCW84xpIRnXWDW0d\nbQNpMGc2ETXwqHg0AcUDv1uFKcrwypA0Vs2UQLfwhIvx3IFzIJbz5WvsGMXKxvCCYNh+YW471jYo\nFZEaJIUR6S9GeMMsXxOJ2OKJZ3SqhnKjliA2DFZk6xJVrFvnjvPObf25nSev2f84nOcPOG/8HJwX\n57mUwpbxrqVEhK6lktvM87UOH5FOKDaC1BhInbTd2ZqzF6dIJi4yMR85Nh/K7fD6E7ofVH9DkU+o\n5UbZZ2huE5adz36dMyTTdhaNsHCecffT8PPzd5wnDzhPv5I47wtHbIgo9WmnPF2QdMeWoOzj5Z2y\nRopyQxgXjgNa4gKbKdO7FzzL9ILoYA6tFKnkS4hadAEYzjwmt+3GtV6p5ZlDC2LjXPDXwv4pNvI8\nHmYy12yC3w2fHo/TCiav0SlOZ/L8fPDJfqVddrZXG5VCLaEICHMiP81ItUmQGht4iwXRJKKMrFiu\n3UKtFcNo1pg2se6M2Tn65DiMffeY0SzOzLd3R+O7M3aU2HiO8Wf7fbvl8XXmy/cg5zRlnQNg5PO2\n+3OPT99ZXE+G03W9zb+hgnskmTjRkWaGmWiQPUkKNGP/5BO+8bf+DvWnHwPwzd/5HX4izs++89Gd\nvZfonowVCZroRHFkTNQHagdlkskXhllleDs39WQhKmsuU9dozmmTDV4xr/g0DDu7E06m47ijUyKJ\nxmKxXJ0U8zwPkOTEw5LnC1ulj4mQxEsSIUiMnKiEPLUQXaGqFJTx0Uf861/4Ntvf/rvUn/6Ef/PX\n/jL+4Qe0S6FeKrortOWFkgAFjZMXBi+ILJVG/MyYW/UgpZZ0NW8T87fum7UYyrrOyJ/5eF89gCX8\nzuSvwmdB0s1cPBd7P0ZIk1fx62Ng08OPpW5sbaPWipYcX5J4/cOodYBekX6F8QbGJ+j4JEmNTh01\nHdJDNmkeChhLtZMXR9tga5OJoT6ReaPYFS0T3Thd7yVlq2JZ/BN8rMC5NYe5TsW5XiDn2xVdjOSc\nchIbUew2St0obUO3nXq5UC5PtMsT7fKKllnm++XCvu/s25ZgoEY8WikZ8yVJPq6XzB9enQdu/4Go\nWq/vp82w4gU1s0gqeHe8O94dX6nj84Xz2ls4D84G1QsS+eFwDU+1R3IjR20foV/Avwec57GR7Tp5\nPg4+8SuNnU02qsYGQ1bC2PoedbTKC2WuVLCI4gqSvEQNCZy30foIqb0ZozvHEWl4gfOS3Mi3n06u\nWDjv/szjT892lkcD4o7zAtuKS8xi5vlwydGZ6BkFNlINHCLx+Sic6Vfged4LTBGkxQiOaPzsohJ9\nnymnZ8X+40/41v/2dyg//hib8MHf+h36X3I++eijMDk30BEJefMgjD0niDaEgYwDyoH4FafE6LSN\n2Di7McVPRQtTKLmhPDvbRZCmicdhlFR9TMmnFn4hj02h9VARLEu3SwI+95TR5Mkvjil0EfoUhhSm\nlAilyfPupoSha6hs1jj3iru9fvgRP/wfv80v/u2/S/vpT/iXf/Uvc3z9g/BUaKHKTYid6oi49lRI\nJa6c4wla7mMoOvX0I7njPHvAeb5u9vNCuuM8+U/EefOPwHkjcd5MnFcT50W8a1yrodRwj2ZWDAtP\nBkutMaBO2mWwF+NSjE0mxQfqnXALTeIriY3iSnel+ZU6P2GzT9i0sze4SY3EoPW0XZBcN8TWXZ6k\n4PIQ8OWjsU7aOmXyc3Be+crhvC8csYEKZYsXR2rLjUdqBByKhPR93Tdh4gIuiorFjFGy+E5aey7F\ngRNnJBdeq5aGjeFrEIz+Fuy+1jAWOv+wR1Lj7RvyYRbqXLgevyc2+C+ljcqLn5ObUhM4GFxn59lu\nXPxGkzCEkU0ou6FbuBdv6tQCexF2KTQ0VB2lYhJmP24VnyGfLBLjKNqVyWTYpFvnGIPjiJjXWtN3\nI9fYkIq9LPL3S33x+Osj97nUdWMK4V4eHZhVzPK1IxGJyP0Uav47LRZc4XRxdo+McSlMaryVytSC\n7nImfzRT5Be/xZu//td47+//Q7Z/+2Oe/4ffQP7k93n1qsUc5JPj74G9BtsrN2lMacG+EnFi4hM1\nKG7oiK7CTGUALtF1qBXZC94LvhVkK/g20Bavk3r8HJ8jTdA6jDeIP0cxnZ1xDOQ6sdvAbxNuA+85\nBuUTakgyN4UIOAuSaoiGMZnUlLCSi17BPJ7PsA1pkyYWfhhVkF7YZom0mVK4/cVfw5jot99DnkrI\nYp8E38E24ZBKZ+PIczS94daiuCWZEUa16/30Mckr4YGKj+tlbcgfNue8BRjue/kEhZ4/KQvcqdLw\njPrKcZM1a31/TMYMuSkoWmqw1W2n1pYJNISKRgLIGAPGgY8r9CsyblQ/qD7RUZBD0SQmVrfJF+mU\nXRYucQOJ3KAf+HHFxw3FKaU8KIzWcuBRtGxd9OtxX3fOc+LcgZKmFDHng12ScCoVWZnk24W6bWyX\nS0gT87E/PbHvT1Ho9i3Pyyp2hZpxYVo0i95aqhbR+Sm4/7Ce/dzPnIelRPGdYuPd8e74ih2fG5zX\nPgPnvX28jfHWx3KxTzPuk+B4i9g4N6nrl1jiPB9cb53n243LcaPthbInsVFjE6mFiCCvzmwhj/fm\nzOqoziC1LTdMq9uuifOmMnsk3/XhHElw/HycB5+N817++f6gVA6ct5pcGuMk6XMR9YlUJJI75Yfz\ng9z3dE5u6LPWraQUKbiM06tLJDxYtBWkKfadb/GHf/2v8ep3/iH1Rz/mZ//9b3B87/vUS4uSWh1t\nZFNHzl+2xjYKB9WvTFdkKs3t9NAqGGoezRwvRGpLxNDKLKEkqlmDswnVTRgmjJlj3p7VUg7EJswD\n6c9wHCfes9vEjomlfCUagjNnhDjJu5USGCarMSwUyTMGVhCZOCU2u0KqZ2NsGyu8+Y1fQ+akvf8e\nWgvUQk01ihXCKDOeaowPlUI05yriafqq92aWZBqHn4ruJQHK6+WPxHn8F8Z5mXI0YgN9x3mh1Fo0\n3cwG4hQ7VTmdHmoNCRP/2ia7Ti46eGKy0e8jPjaw7tEYNqdI+N7JdGp/Qzk+pow3bD4ZOSJ/VHBf\no28eCvZT6bVuhvKwsqRK6sR56975LJxXvpI474tHbIigbUNbuhRnsWMVsXVvqLCyG0XjYvEiiNvp\nXxQjXR4JGU7M0U8/Uw+sNKYORglmv2iLtxIRjg92h9wXeOFxsb8fj9LFRwLks/79dqVbm5RgZyfG\njSA2druGYkOFrUy0GrUYmw42dRqxh9pRWm4unYaXjaGN6WmmOAuGRMG7xXjNPGZEHM1OH5M2S7L8\nefJekDT6sHjx8Hf7/ZkszwySKl9tCkn6I/Wk4dUguHl6Ciy2kpDki4eEcf3ccmeS3SMZ3rQwpWF0\npm7I1tEpMEM2J/oe9vo95rgxf/8PmL/+59HXr9gUaOCvHXsF9kqZZePggtGSEDU8R1EKRpmW5j+K\nD4nI1NkjuaRO9FbhqPhuyDaQHexpoEzwgfsAG9gw1A4YH4O9weeVeZvY1fHrhGPkY+JHEBvGxFss\nuGFyGh8bYlRpFNHoahSSQHIoFacx5870iRanNCI6eIQBVhlhaFWkYN/8LkfTkME2iRnSJ8V2YVTl\n0MYhjSGNqRtujTAC0zSLWu+dtPR9G37uy+3F6riiXxHJkcG8sbPYvWDuWcRBFDs8ZMf3EZRUa6RJ\n0fLZWMSGzVgTiiq1tnSCblHwlVDRSMS8moTUkLlIjStqN6pPmkHJ88dNoMtpVHWasTmYpimbOVIm\nXK/M2zMyBupKEZiaxMYaHdMEXQhQcGJs5m166GTw81yJhHEspYAkey8VzXnLukXMV1v55ZcnLpcL\ne76/r7nLU57YQp6Yc5eq0aVanZsFSN5evV6+c3+Nf/4RcvOfP+b37nh3vDu+tMfnGue9jfHeJjXW\n160aJ/fH6mG9Be3uj/jZkRZi3I4gNvbblfqUJo4CWitzy7peiZCtzbB9YhtomZiWLBupljCQGerJ\n6hU9lOkzO9uT0SMppa00iXUCX2BUfag2j+cgPr/2p7H5fuw0AxJ4bvkeCmQzK2v8w4hOlPul9uW0\nZ3Dz8CixxDKrS43m81SklkwfcXj/Pa5/7j304xvlwz/g+qt/nvnqVfwqh1IdbQ5L0Zx/h4qlf0d4\nSRg3xIXmk90O2hwRM9vBrTAtvTI0k/dsxHjKpie5NM05VOkThsEc8z5eg6Rys+O3K3Y98OvErw/E\nBqHwdDL2NZWkax7LNUgV94K5nEKJpRoOUsBADKnhTVK0oiWuK3v9XRyliYSvmApVFSmE8WsllM9F\nMgIvSQ1pEdXr5QHnJfm18P552/j9xeRtnHe+8IvT+i+I80biPA9ir9Yc5U+cRyShrAaUEdbu3fs5\nimLFKM3Y2uRJB0/aeZJOoyOzQ+/4nMybww10OBSnqFNsUN58jD7/lDZubA6DGkL1onQWAarLuR9U\nYu3yR1LjEefZA87L66zoZ+C8+pXDeV84YkOQkNO0jTCJzE/kRsGTIYz5wvhYnGgHM0TKi6VZADQM\naDwjLKsUXGfE4mhBKcnal7PzLJ9+OXlJbjz+ex1vSxcfiYxHYoOHr0ld3iriJbwVukyePVJSqik7\nzmuUasZmzkUmzYxNjd1gN2W3kudmw31gsjNlMrTS2xZbpamU50Lvndnjxj6sM2ZnWovoV1uy+k/T\nOp8u+i/PhSwGOSyS8/NJctytk0N6qAR7vtouZFFcLynL7yKKdixwhenGoIQsj8qUStlsjfmdv1aL\nc/yFX6NnI6Ci8Tt38Fcgr+DYNoY80e0JQ6kYTQciRsGoDHQK0uV0w/Zh2JiE87YHszQM74puih+O\njxtwJfK2Oj6P2OzOGz4/hvEJ3m/cPgF9drg69Il2g57ExhxMmcw2sW3iu1EvAyuTCjQJx/EqMBAs\nY6SkNJAdL4858QW9DJqBzEIdNRl9DU+QJadsxNsd5q70Ujl0Y+gWpIZuYC3vmZTM+uMd8zAb6BaF\n9mGIN+TFWeTOmzs39WfBi+I23U454ip0q+i5+V2SaDFXOU5DqSx2WfjMYuay1hoMftsjxlbj+rKg\nj0KtIZPpB/QbHG+o40ZlhP3JLDGCcigcGvnwDzPCQWyEkVqoOCZebtj1DXY8B+lmIY2OdhLRRSqS\nhQ6YYUgWMD/Wjru/jZ/nKbogYRpFSq/lHD/JzPa2RU75csXOAndZLP7lwuWyHLP3KHZtpeFEp6do\nSamqJibJO/PtYvZH1baHr39k7cP4a+JvL6PvjnfHu+NLfXw+cd5aiP5DyI3HzX/ulpep2dtfehLR\n60sFFCZOHzGSUq9XylGoIwZnShFKE8omYcJZHWuOXwzZYqxUtIWCZf156fUhCGpKuRV6eod0Gxxj\nMLoxNx5w3hqdjT/U+aMW43VOPHEeiecevidVmWRzLL4ja9bDqV59s9XUcPfEBGR8bIzTrhHYtSEW\nJJSmVUJ520C78/zf/Br2q2Q0blxMSuwD6+apPvUc144p5loMk4nTQWIcY9PBLp1dOrWDHzX82Gxh\n1wihVTT+zgGani1zCocKx5m4McMnxhd9M9ExsOcOzxNui9gYzB5+XCZhXk7xO5ISiVEtz7FrKqeH\nnwta4rpTz6GrAmVOqkooz2tBTU9WJ9OTMQnYJzmiTI66U1PxmVH2IhWxGvec5D3jD3fHOTJyJzUC\n52kSWg/g4GFb9J+G8+bPwXmWOE8ecN5GKTVIoVg2mDMIKFNjyKDTudnBKBPfnJrjJxeZPGln52Dz\nGz4mdjPG1fGrY9dQbXgF14nbgX/8BnnzMXUcbFaY7DjCVIlx7tkipScJJB+pkDFlKVXWyhKkxj01\n5iXOe1Tk1q8kzvvCERuIULdk8pORBhBdkisFiWik04fB7TRPVH/UFYTBTzXNJI54AU0N0xJpIaox\n5lE0mL1ofad9y7p5H8vn26/OI2HxWcTF4/esyrY+btwlSJIUM1BhyORGp9gbLsegX5/x1pAibAWa\nTjafNJtswEWVrQRJ4rqDx8Z7MOm0NKes2JNyexVFbxyD6TGO0i0XiOG5SGSChrLo4BcbLMnNqJDF\nae1lHzdgkBvbdVrClHMNLeqK5UIerARi8fWhZ40MXijP66naUCaFri2iN5vn/tjPRkKaVAQWIgq+\nFIFd4D3w1xXTJyavcXsKmR8d54piFJsxcjAFGQpDkCMWx9s0pij4oF2dNg3pBdsJ8sMBHZGBLhOZ\nA52OzAOdn8DtOQrcx2DPIDdHujG7Y2mCZDbBDdky0ioNR/Uyaa0zqDSB4Tn7aAW3El4j6vmyCe4V\nkw2TgTNp7uiIYhfSToGWG+xK5NxvwtBGLztDLoyyB1HGjtACXJicGeZrLtBxsCR9yB1/KhF0sc+a\n89TycDc9khqWxY7wznict/SMel1M/lnsRhS53nvMXKaZ1JgTd0FLyWirmLmMexxYpAbG8MG0I+J4\njytlHqh1NjWaRxwaU/EDxs05RpDvc8KYHiZtM0GMpzRVB+N2C+XHikoTi3jZ7JqkuO8lUgAAIABJ\nREFUFXySFiQAiehXX6TPwz0lSQyJxmiN1rtRaCkVbY3a9swvj4ivfb+EK/blKQre5SHTPKWJtdZY\nC9MYVvM1WsvTZxW7u8z0M4rgZxxn4cPTLfuzuqHvjnfHu+NLfXxucN5jl5QX7/HiY48NnPXvR3nG\nI65bX5sfc2JNP3X+913hGJNb75TjmXpTSleqK7UI2w60wEwqFn0HV7ZUZ6g2pEy0bDiKWeAmEaF4\n+f/Ze7tf67LsrO83xpxzrX2qqrENjpu2um38FRtkhEguogSE4ALki4hLJCRQ/ojk74kShQu4jRRF\nCiIxIL6EwgWh48Tmw8GEyNgN3XRXve9ec84xcjHGXHudt97qKtvVqKvfs1q796nznrPP3utrPPMZ\nz/MMyr1Qeol6KInzxmAMS5znn4Lz+Iw4by1sbTEVyKpZLuShC5vKWsBlrQsCyx/2lKViXNhl4fDs\n9gshmY+JbPnnauICWY6g+FlHYrzrJrCD3sB3YCNyMcrDQiEMVJybDDY5qB3kEHhtYRfwcRIbUCIP\nP/fHPAK7D4QhyjRhTIc5UBtIJqPKMOiGvZ7RyErFxuxhlY1x80t18TitpIRKZY1eCbVsAWaOXC2R\nB5fWk6JKsYNWQDXOeZkPpYXkMTHCqiMbsMXUF20CLQNeS0qFJG3LecCcXLhOO224cezjanrgPLng\nvDzhr6TG7wrnjQvOW6GhI3EeaFFqa4nzIsnXXMCdaRKBoW4cPjhscKczJLLVaoNbdZ6K8aQjlDvj\nQO6WqmrwV459GATHHEFsmDq9D44PO/OjQWHQimE1phhNCZXPUT0mKY4kN0qe9+aJ87IxnqqumCy4\ncF5Bq7Ky0x44b3sncd4XjtgQkRxZU8+LQnOF60iMiFrjRAg21I0ofsl8hTuPOFk8CqW65IjQZM9k\nzeyN+b0qwYahyRIjp3fsedF7G7lx3d4sgnJ5Xt9fBTF/RmDlSsTNPQI8h3Tuc3Acr+mvKrNVpMb7\nru5UJlWMasQ4V68xfhOLSQ/FKTpRBooFS7k12k243wR5JXFjYKQlZUYI43TGmOm7SsmbPD5RPDuF\nDPq8nPRxka6il0TDKWnyuJjnYvnz2K3fDzYAX9KsHHuFkAGL4NMxU4bExO7OpEmji6HNqRHRHe+r\nglvezrOx4kWQTbH3CvO2MeU9TN7H/b0knA/EPWSDfaJ5QYorYhr+WIPuhvzL30BLYf7k1+JCuwAW\nqcAhMbpMIxzUp2UY6SukH3AfyGvgFTFvfDrym7+FfPNbHD/2ZaxW1I26VC4dvIGYUzVyM7pCQSmm\nmIWPT1ruc5GQLdIwdqb2k9xYAEUkpb1VUzYXU1hGLXQ2uuyMcmPKLRhoa+EvnfroEFmCN1nkyxqd\ntzyXfp7+EYCUig2RB9u/zqvF1HuEd7mFomIVOkt232Z6JOeluJ1ey5mBUishW6laY7RVrac00T0U\nLXNOhg6GDcY4cItcjWJhJ6riYfnxOP59xKjkw5wxnfrqNX/gN3+bb9ye+PDp/ahZVfHqTJ94DytS\noUbCOEFEeVVcYyrLQ6obIbxr3wmTZx0v8SCjSpA1WrJI1ZokR8vJAFtIE2+3Z3PM99vtUuz2hw81\ni93J3ueM+TMk7fq4krdvFLvPUvTWtryXL9vL9rK9W9v3N86Dt2O8pci94rn1ve9CbCys53AmZ2aj\nZ7rT5+BVh3IEsbFNYccwqYg4RSZVQqW5ubJ5SaFER2SCTlwqsxRMWzaKhHoU9FDkLkxL27Gtjnc0\nsL47zot9Ulh9pUWyA2Zv4Lw13iv1H8UDuyXJ71erTrZuE+7lLpKHeDnVufiK0V7HSXHCkiHFwqJc\nE+etUaKnaDosOdIEuQnypHATuAWG4szGkITgodDdsJhiNgmr6WGUf/4bIIXxE18LdcPC7JXEQJKY\nFkwKNiWmlcwD8YnYpNpEuyMHyN0p/99vof/mWxw/9OWwtyxfUH4Gr3kQNANKq1KI3D+VUMwKJXLg\nUMQrwkCoEf7oitYZJFDNxtzZhAr1gpL7YQfZQW4gm2CtYmXDdMOlEYNONXFeHMNltQ1HUgbMnDhP\n3sB56zT4vHHeuOC88Racl41ei6yTOQOvDZsc1jkkbChWDClOq7BVZ5cIDK020D7x146/cuo3X/MH\nfuO3+S194jv1/diHVfHizPtkfmjYq2hatd1BJlOzcebOrITFaigMR/LcDfdQNgIlcxIzpy5wXhAb\nD5xX3sB5+zuH875wxAYC2gKkr0AjEViBRUJJP7xFmM/y7j8Mg6yjELI1QY1zNnYw+I6VGUx+qXlj\nL6Cx0IiAytXRfXO7EhfX773tv98kONbDP/476+a+ZErFmdLxORivjV6EXhtWK56yoWXPF8JG4Iei\nFYrFYtrVGWUiarGAlVi0vtqFcitIi4t++OCYB312+mj0rtSqlDJRlZCo5efw86P7Sc+s+5nnjeqR\nipzr63XDToLfkpEFf3gr39hbQevGQpK4R4SMK58HlQOj+OQuhkpOGNnjNowKvkmSDatLEDda3YWx\nN+7tRtcnpjxh8hQ3flfELRQWkvPLO0iVyNdQybnrk/f+1t9EWuP1H/qLYTtwoUzNzxQgoIpRZVIy\naVK8UxiID8QsSNqUkU6Dp//z6+jXv853/ss/T//RH40Z7hTUJ5MIchUR4nQNEKcoxUsGxUqM4Sol\nzmVvTLbsSHSUGHW26yDne0WQpSomMU7WRBlU7rJxyM7QncEN8z3muGdwJoMco/4AakFqGO5rBt7i\nWOQkNiRJl0Vs5JmVuV6LqV/yxOcBUlGUH8XOrpLEVGusYhfKDaPWjVJKeApbQ7VEn8ZDHdOL0fvg\nzmDMO3injEH1IBHKkmBqSemkMzzCo6bDD/27b/HH/87f5x//zM/yWz/3cwE+suNkY81UJ8gRAmAX\nqXhtMT6u+mNCynQuF9mDFEyggD6Ou9RCqY2ahU5LobR2ei3bltLDs7hFsWv77Sx0i8GvSZBcmfzr\n8fq8ix1wScv+bkTxy/ayvWw/cNv3Nc77pObUm//+JqZbv3P9nvJ8u6g8NBpDQ6IrrVMow7mZ8aXR\n8V5DRFliwb1LjBnfbYVDVrARgYbSMK3Maoi2UK30UG3IK8F74jw76GOn93nBealiqY+7+6fjvJk4\nLz/xggAiiaPWQjX//cR5F4WnyfKOnMLlkOZLWo+z401huIYaQgqmihdDGrDF64jmQrHnayNUlZjs\ndlN4UvRJkSfFm6RzSLGp1FzwV6BNKKlEZQpyn3zwN/4mro3v/KW/iNjMrAjNxvoDY1o2+2YqGCQ0\nxWFpno4MjymzE57+j6+z/6Ov82//3J9n/MiPxj7TC87LnS0ajadSI92iaKFoxcJYTahNapILMdXP\nJd/ffk9SJPCanFkwj+NBAXZHnkCewPeKbRtTtshUozApoWZelvH8U2HBTVXuUhgIj+bLGj8vXHAe\nQVJ+7jhv5rn8NpwHNo0+oY/JfQ7ucnBoZ+jEFGpVqlo4sjUapDIcvzt2D7XGB7/5Lf6T/+3v879/\n7Wf5Vz/9cziFzUGHYK8Mf+3QI2+ubHHRbIRNfLgwi8Z+HDWsx52HJVke+zC+NzMXfuG8kjivvoHz\ntncS533hiA0RQUvNcBR5dJZRHMMk/ecOy4cUycByznaGxzorSsySRUU4SinCnDGHOQIES5jxVGPh\nqpFabZeb+6dvb5IZb/10l+e4+UQrXh7eyyKRc9AcKY7Q8dEZrydHVV5TuR8xrlI1WEkTjzGvNVjs\naPAPlDt1c6gORTAiYHRvyn2D15tiPYJ4unX67Iw5mLMyplFzAojYIw7BPZh6wTGNUJtopMSBsvx3\n1n6Pg3opmEvV8JzcEZXMl4zxY6tmeqRsxec658UX5iGM5tzVV1PgHCffthmkjC21RYIIYjyVlbBY\n3HXnlTTuGhnYKEwvmBUsR7WqenTq8/5s7jz9i19n/9t/j/r//AYiwtNf+av4n/kTyM/+JLp5BEpt\nxKjUGt2iQsWZ6AwfW6tKab5Cp5EPv8n29/4h5Vd/Df/Wt/iRv/3LvPrFP0r/w79A2QXZBbkZvjuy\nC3MriDQiPLIi1hDLzIzieImJMS4jHslEGAMTw7SHJUINy/FRpjGazCQUMQcbXTa679jcQpLZgQOk\nO4yYYc+MaudJlOCPbk7wF3qSSnETf6TXr8LjWcjX+NR1TV3DpD6WlH0pdjNtJ1dG3+bEyQ5ezbFW\nMdsuPZdJUtjgkMF9htdSEkCaVFwMy5RwlJhyWxJAu/OTv/pP+dqv/XM+ePWKP/Lrv86XRudX//DP\n09sTs6xOVcV9R3RH/YayoXOn6GUySvFg7isE+ln3iBkDeNb9MIudVg2wXtcj1Bu1bWx7EhsZFtW2\nPb2V+4O9T1liKTnuLcHtkiauZxU9n5/h+08odr8zJn9mWvZn/pWX7WV72X4Atu8fnCefgPO+G7nx\naUTH215v2Qs1cN7KtMpQS2vO0COyMF7dOWpjaqRd1k3YG9yAJxduaPYkKsyOSI8OuzVmCduKt8p8\ngnIv6EcaUyXc6N7p1hm2Jc5zatZTMY1GFpyWgAfOSzFEYje7KC3Xvl8YCRbOWxjvsd8WcSHEMVqq\nHF8Ex3I0TMAUm5UpRtdK98rrHN0rO5Tlcl1jdsciuOQ8F/wmzFss2u1JYFeslLAyezT7BKWK0jDK\nhGrx/uu/+HW2v/73KP/sN3AX3vvv/yr9T/8J7Kd+EnQlbeQOSGxjiZPn9LAPjYcQWxD0m9/k6W/9\nQ/Z/8mvoN77FB//rL/OdP/JH+egXfoF62jciyDxOl1BseIGuEovSnHx3oiT3xOUGDDrKPXS8tPcG\ndbfYP4uYcImMOyFwxy74Lsy9MmtjsHHIxkHj7o0xG3NEdlxkzPEgN5KUWJPwnuM8Ljgvz5m8VD5/\nnOeoyifjvAljGEcPnHdIZ5SJNT/vF6oZQOBphTEPhfhwvvp//1O++k/+Oft3XvGzv/7r8Lrz9Z/7\nebw+BX6dcR4VaTGxqThahCGNRpy7lRbXaK1BymWobZwwnjjvQW6oeuK8cmK8B85rF5y3v3M47wtH\nbEB2nFVPdnc54SQXyEuaHfI0j5ujeHT4L3YAPKwAzlIwFCznYoeM28JzmaEsS4ZvKpcJXm87Gm9+\n723F7JMO/JXcyKt/dWOLhDSsCtpmzBtnIuOOcaeL8ao3Pvxop7T30G2n1I1WlFmhqIVlw4PHFeko\n8ZJOMH5NCntttAZlK9g9bxqWUvyZ889n5DrMJDZIJvbRX4eSN6dTyHld0K7PKBc2n1zA8iBB1r5Y\n6cnmXPyZPGeIJ6kWELzHTYMat/MgokJtsGmnlfA3xsvHm4gFtjJl3bh37tI4KIyIdGSKMjW6BC4l\nwpMsU9PdUXOQSfvoI2QMigry6jtMOt48p4rkcwupmmRgWXTtC3UWalNq87i5NUers/XX6OyYG9v9\nHv7CWigbyK7IbvjNYS+wFZQWo14lx4/NGiSOAGLRlaKCrrztyZT028qgiiFqIfVMxcZJbKAMGsMa\n07dQanRFDiJE9QC6J3PvuMzHgbraUIgiJ3oe6rQvPc6HjyVin2dZdHh8MfjXYmeXYncZ/RVf95An\nmlE0Rlq1FgRAMHSeFhSLRGwPYuOQztgs8C+Ka8XVmCXINi1h73LNwoOx9YP9fqe5c7PB0+zUKvQq\neF0dkpog6EbxG2o3iux4DTKNSgAPW+f8Q4sVSM8ppSI1/dMlFgVlKTaS3ND6RsFbha7twey3R7Gr\ntVFqi4L5pjTxUuxipnnOqz+v/HVZPYrc74zFj9dYKeefJ5P/sr1sL9sXYft+w3nXtI0roQEPpP8m\nofFZt9XAyuezgSWwCWyOb9FsmHMwX0HXaC4YMVa9SWGj0ERpniMZrSI+iG7DjpWdaYaq42Vn7oX7\nDcpTicVhv9qOB3Pu2CRxXhIKK/siP/8D5/E4Jj7fwHn6Bs7zxHmxTwPnPa8V5pea4ecqmDOWK23I\nPoSphaGFuxVUKkUapUzYJoWsxxPWGE1NcQ8lRtb7DuyC7YK3EuoWj3DSePehlgh1bNpCxZE+Kd/+\nCDtG1PFvfweOHp/NhGyVPZC+CFbjo5hEf6IUYlpf7pcynfLha+R1h274qzs2YsJN9N8UyQltQRKQ\nlhuhlsh5Hxc1xMogMZPc14OSpIZSgdfgI3CrX8YB5CFxjXPQaqHXxtSdITuHb9x9o3tjdMUPge54\nNrQYeeEsGwqe1pO1L5a6O8+kT8V5uTb4zDjvYjc2OyehtNYS54UEyBymRfZZ75OjD47e6TVsIkEm\naBAKSN5WgiRadps5DXl1UD66h+qmD+rRAYmBDBl0q1SqtggUrRbEhjaqNKo1Co1iG7QaeK8R+9E9\nCCacUhSpQW6U4qHMT3xXa0mcVy44b3sncd4Xj9gQQUrEFl9LzHU7h2hIFhqJGxM2L/8YDGnIwONC\nEvM4kNdHKTneKDoBLnK5Ry5W+tMOyCe+03zWN/59kRoZoqg5rWOFCVallEFTozJRDhivGB91Xr2q\nfFsG2kBvTr0JdROKCkUJBvCi1iwMioDvsXCtUqikBHEvjFfjlClGeKI9xlb6koblnXpNO8mPYERo\n1yRyASR9cY9PeQEDkgvULHQRCmTg+lB2aGbpmJ/kxioiTJBJTCcp6/gUum/YthK0NYogjeqLWo77\nhqiGv1aisPUkNjqVPpWJYOqnG2gAI8GPNl0qP3yb2C/8NMeXv8J7f+WvQa30/+ovwPsb2oibUpFT\niUEJQiWIDQl/pDbKHJTdAtgMw3/0h3n153+J/a//MuUf/wof/rk/y/zxr1CbXsKvNP2QSt82RDaE\nBp4hT6clJE9gjxFlM7GglcnQSZVBkciPUPFMHpcHsUGIKM0qNhsyYr/L4DEZpudOmkuKmNpEDXQi\nea4swirO84fELQqZPYoansqNN6XGnoU7w6bMcLPwV84VJLUKXn9IFWdU7lpLpEBvjVLixuyeYM6N\n7pNjdg4JFn/KpIrEDHetoBEsKjJD4ixgK7isOP/iP/4p/v0HT/yJv/sP+Kc/84f4J7/w88iXntLD\nCzRBJEaONXmPzo1mN8Z9j+5hI8BCy08sxH1MNI6pBEoLpj7GcmkplKpJaFzSrXMaynYLUiOSskOK\nGCNu1yPnnmexKxrSxMXmX4vdNS3b8dMr+buVJT42j3HG9qLYeNletndu+77BeWmZ+B3hPH/L9z72\nAfM5cV4qNqJLvoiNuP/LBtxAtSPjFfNVZ4jTEaY03HfUd7TtyFFxKVCgNENvA6WDdFwGI401Ls4o\njW0PYmMc47QdDx9Mt5iKkqSFZZecDGtd0vjnOM/egvPkDZzHSWqYz7NeR75D7gcNQsAsc6OQB86z\nxHmJ+WwQi26rqDSKT4pMVDekHYj0IL2ywaKxg0NJUUKJwKbMBrNUBhvmJW01cc4USdtKhjVCwX3S\nf+an6X/5K+z/3V9jlsqrv/QXkH07SThMlpuX/HPU4iAxzlcR1HOxLxKNvx/6YT76pV/iiV+m/qNf\n4d/+2T/L6z/4FaiaoZsxlp5V/otE864WaiWn5cb+dgk71USx08vT6JQcIRrjYaccVBmEjdnCMpKh\n7oZiWhi6MWRjsDHZONg4fOeYDe+azSw/8d/qXcXhW8pcT5wHD2pyERrrCrNPwHmJAe0xCcXNPwHn\njQvOmwTOq5k3Ebbj5XIOtYfTu3EcnaN3jjkYOpJEXfcIz3dsJy6R6fgIrPhrP/VT/Fue+C9++x/w\nK1/7Q/yjn/t5uD1RkwwJcrXQ6oY0xTfHNhi60WhU36jeMGKq4Kk+X6RXMoelBsmiGoqPUuUkNB44\nr15w3vZO4rwvHLEhIpHqK+uG+eYPZENaSKY/Rwp5MIZnp39p5wAhOr7BAmZCcB7QZ37/DLrxZ6TG\nZ93e9rNvngzy7CFpjaBwztemONSQE0Y85qBaR6wzZ+c+jO/MCCwuT6A3wZ6EvsHRnM2UPTAAU0lW\nzih6BKmhjSaVVip1h96EecDsj8ViBPUocyhWDZurUxJs9ipG+OOmtWbIXIeH+XlzexQ7vzK8RBFY\nxxOTc9b1IjeUGK+FCTJClkdfhzcCkaYLFI159RIpx8UrbiPkbiKI5BzutdgnJHfDGsNKBAGVuPFX\nJnecTZ2eM2Q1TK24OtYUPrhx/Ok/iVTw97cY85ryQVU7z6kOdJdQAub57aJQC1oNmkeY1a5QK+M/\n/WOMn/gJyo9/BX26odVhB7YY90YDbwUvGaQVQ8hjFNgpI/MAEgK4hExOyE5VpZfG0AAvooav9HEP\nEIMT3YypIe+cJEtP5I0M4AgwYb6CQsPCgXlkuqzzfYWErlPmvCr88v/Xq+cR5Gb4SWgEGbZkiY9i\n9wiPCgb/6AdjDJBY+N9WgFLbEFHWTO0xhT4zRGp2Dhkx8mvGaFwvW8qVCUCnOVs+Q3mthkTxaPBb\nv/8D/u4f/0W+8cM/wnyvUfcKzZlNcKuoVpo3rLzPxhNj7kwaOgTfCDvPCoitgBsiGQyXEk+tUXgk\n5aiPYtcobfkmK6VFga9tp+2Nre3UrVGTva8XSWOp+TrJ5C854tV3+eYt7FlS9u+22OXBNnPmGLz9\n3vmyvWwv2w/q9v2N854vuN4k2r/75mQixeWjPNSipxivPh7SnCqd5neqvaaM1/B6MMx5fdx49dFg\nuzllE7TGokeaonv0bnxOyq2jt1CJSnbyd4F7VdoT9FfCHInzCHXuA+dZ1LOZzSvnU3DemjvyfO+s\nZkU0pBbOy6aHlGiZnDgvfscs8t90nQUedhKZj2aWj4JLYzRnYBw8lBKm4LXjagQiKpGxJhK9nqbM\nWhlSIwzdWuJJi0kiOK3MMEDJxIbjIywI0xXfbrz+U38ycMAtMISusJFpeBd0SAa7+0n4CE5wHJm5\ntmwYKLTK/Rf/GB/9Rz9B/8pXmLcbxLsK5ZE/sudY+ySVmsu5uo6NecGokd1giojTi8YCgYonzq0y\ngtTI1lWQEY5nbsmUFpkasjG8MbwxR4W7wh3sbniSGjIU5sLtS61xvqkLznucGd8d59kbOO+SqfGp\nOE8uOG9PnBdYNnAe9GEcp1ojQnRDGZ42tRphtEGGBMZ0nw+SZTqHw7/54AP+1i/+Iv/69/0IfQt7\nxzRPlXShli1e61bgBnOHoY3BjcGN6U942RDZz2tHyAyUmbemFJuIOqVINKBrybGu5czHeOC87Z3E\neV84YkNVIiRFH/JEZF0GWVqSDYXVpI5FZ1KBj4Ol65JSTC279uGnkvQNPniGR/DNY9F9Lss/50/5\nxkmjeRNeixuJaQjqETqpPlEbzPvkeG1oN6qCvBbazfnqt14zft/7fPuHP+B9iSClejekSBATbaIb\naB2oDAozbClb4V415meb0efgGJ3eJ62V099mKsEsauZtlMXH5p7xx4Ct+Ezr09kp9zu9a9efyQ7+\n8h+i0fSXddN1Oxfn+Cp28Sw9/Z/uuAuzBsvuFKZPlIrZYHr4ciMAsiBWQCpOBDCNWfCpcVOdkWty\nSDTcD+DIYJ+akkArHpklm9B/8WcjtKqB1djfyxOJRNF5PeE1cHfAFacwMsHct4nsnrI+RybYT38N\n+8mvUQaxd4thu8PusBu+RW7H0MjQsLTM+FzAjfCrBktx7juEU4Yb00+ILA6xE1BE4fXT55qB68jI\n55mqjU7kaphHF4IR+s/Ltcryi8r1WpPzmrpeVed/X5Jk3R1PKeIqMEuxMdZ4148x+MHqT7O0nzT2\n/cZt36m1BgY2x2wwhtDHCFJjDoYMrDpsGqFYKVee6nSfgKIKUg1rYN2ZNYrv6w8a3/yZr6YVpCK7\n4rtBUTwOGIWdVj5g8ESbG9NqjhL2UxaaE14JkmggkmSRpKVJc6xvyhNbvWRsZMHTlGPWrVFryhG3\nxd7XNx6FuryXlwXA9fGxO9dn/N5329ZxjxFuz1VeL9vL9rL94G9fTJz3We5Tz5DR+T1JC0r0IXIh\nqB4IXY0ineqd6gdqr+B1Z9yNVzppHzrvbc6P+Wt4730++uADZBcYTp2W0yomwkFTQJWmYSfdSmXb\nlfsuzMOxYZHjMTt9DtosOfLVIh9iCmi8phbegvMWubHUFtmgSOwgSTit/SkL017ICDRq+aox7kn8\npDJ42VBkSnbNM7S9wlgh8dm4matuaizYq0rmTyhSlamVoRuHV7rFot3ybRdTqswgIZgMDJmh+DkV\nogjHz/9s2CY8yDNxyZGpAkMCq6VV2mZklkEoYVVIB9LCZ3H+9a9+jePLX4u9Z4F1Le0ZqnbWfV+n\nVDZAMz0k8CUF88IcJZpQU/PnY4XsUphUmnQ64yQhZGVi4Kn6qMzEw9Mr0xtzVuxQOCTA6+FBbKxM\nNZeHKjdJsJMMy+vrcoXl1fNJOG919a8470JqvEWp0XtPnFcT5+3c9lviPEncCGNcLShBiliOSJQM\nhI9HrBOWktfMzvc300rxamt842tfpWs0q0Q0fU+Rd0YV2JzyVOEJxg26tmhm8cT096DuVGlrJ8V+\n63nOE8SGqKPFKSUUHO0kKCIA+eM4r71zOO8LRmxITgwQyio8cv3X2NaY68iQyu/60gpc2HWJk8Rz\nJJJKei1nLlJ4FNUgEzwX2esGfZVLfd6bnl+te4GfBddyasY4CQ7xYJLH4dzvoH7HuvD7Pzz4U//u\n2/zLr36Zv/PB+5Qayc4zF58y4sEAn2FAFHGC1BVqU0axkCiOHuFS2hlDmavomcXONk/r2sNX6O74\nzIInKaO7bJ4F4fo5A8yE/UZdEc+iRjooVkFkkRv5mxZ+RRnxahH8lF0C85iWYjU671pB55mxjhfU\nwhISSKiC5SJ2Er+vIE3oVTm8cKfQMFQHVEOm4M3y5zmTq2keJ+UZ+gomhfsUXhPExkcO4uHJa1Jo\npVC3Qt0Nnx6FIAOe1DSKqxumCm3iN/CbYDdllMIhjUMqXTK1eu1dW7JMUi4YC2clSReVcK4o+Opk\nZck5p7k42S1JIiuzTc5Qr+kZGBpqDV82lFTfrM7YA1jm43IxPy94D07/0RdRAgxFAAAgAElEQVTy\nvPyW4ocTgM05L8nYk56ERu8jb6BQtLBvO3vK9UotzJFqjwGjk8Xu4LDO0HBZ6xSEiokzSyhtIqm8\nxYjdZiEzzHF50wIQyiZoq9AU3RXfE8SOCr4hckPLlyjcqGPjNoQ5hDMVfvmfUtkkElN5luc5vLYa\n+GYx+Plcs+CJru+HkqO2+ih27VLoSn0w+DWLnciz0V/r67XZeR1+PpvDCWhetpftZXuXth8UnHdS\nMN/1s16/EiFtxx5YTA2VTvFO8VToegTGHx1e+R0twpf94M/81rf5f3/sy/z9n3qfkr2E6bC67yJO\nqTNIknZQpdFUaSVwXq8eao3Z6XR66YxRI1MtF/PhBQ71arznxAfPcJ5TMsNg7YfVE+Hcr1ecJ4nz\n5PyZwHkWi8NnOM9hZgBoSvXdMlx0CLMJXfJ1XSiuCBUkFBtTYCihsKUwPVS5nXx4PS0rlVBRaBgy\naGU1FDltsvHxUm0hKwMmvp5EzFjPRpDNyLo4s0fUqbqaXUloFcfTYlJcKawsCUVsBmmTk0y8eP5O\nKlMy3N0lpmtMlGkx2SW80/G5nMpwZ7aCZQNMmUlsrGMY64Clc4mg+YrNis8ShMZJasDp7J6xPwQP\nYk48cd4J+86r7U268K0kB56jffPrZX8/cd6D0OhJaPTezzDKwHlbTAHZWuK8maOMjdGd4xjx6JNh\njmkQY3GvSKVzYujpwjRheKGK4RJEx/TAebUFPhxp5SguSHV6CQWH7EJ5v+Lvgz4Jm+9s8h6D95g8\nIX1nlvQUraDjvq4LRzTOERWnVC6KjaW6iPiCB86r7yTO+0IRG6pK1RK72T0vxOdCxSAAHofiscAm\nF0HyKCBO/ncyYyLnAc0+AEnLnWnPUfQezPQ5xONz31KG5cGOh7IhOxH5cFnetHw3uRidOHcz/rOP\nXvHnJvz4/eD93/wG1Z1f/amvMn7kiZFyS0mGe92IlxgNiSAmlfAZYoNpHmy+dra9MsZkzhpkhnkq\nNjLIS3P/2UXI6ee30AubscAJECxpLtauKc0RGpWLuCwi0b7W08aiIhHkOeIOuuwvIcMLi4BMw0oG\ndNUaKb/rJxcoWvs6Z6WfQWQFXCuj3pgqDFXuUlA6W+1ZHJIUaJyv45VUQER466glkqlH5bU07l55\nnZfiEIlCmn7O/XYgzChgi4hwA0tOQgzbYO6C7YVRK4ds3Nk4pHL3xt0Kc4AfFtkXM6SUpwrUYiKO\nrHCnSea5LEApD+njwpnGCS4k1SSxzs5ClC8eVE0UgIfSV6I464PciKk0eS3ZOm7x37a+9seN8Hwr\n5/f9zHyZI8LOxvRQbgyjj8m0AJq1NrbtxrbdqLWFb9DCOxkMvnF057gHKTJz/0sRdCrMwpzKIeEH\nntYobAwJe4nYgdnkGGF7ckBLhDppK9geippOTJpBbog+IeUDiu1sVLQS44hXJL8SlqFITgvFhs5H\nV+zMnotOZ30jVOr0TZZFdiRzv12KXU5RiTnoD0/lM9b+86tpn7rNl6koL9vL9s5tP/g4T5597Ujg\nvIU/Fv4RgBlj5XOwpmZN9QnzcO7D+M/HK36pwx/88OC9f/0NuDv/109/ldfliX1Zc1uMEpXh0ALl\nKYYqWSsycJTEeZ44r22MYczJGziPnEDzAHXfHef5BeetZsY6QDywXnbkHzjv8YIx0jdsKaEYlVBu\n9Pj5NQlk1MAThlAolLIHziVso8o6mBqWYw+bxaAyPF6jUhMDR+5YEaP7EWrnNsIi2onA+imUmZ9f\nYHmfZn3kbYVqSOmz4BJR4SbKVp0mSc7NDKRMPCNitBEvaURoeeS0SWTlbeC74xuMohwUDpTDhQOl\nT2F2wQ+Lc6DHeFxJO49PpbeNUWo0SfSSscFaY0TTz0dmtE2BLpFlt/I00n4s02OiTZJoQcKkwuDE\neYu0SPy5SDGuOM8uOM9PQmPZnSwVE3PMi0I3yY0xLjivsG0xEaQm1l+ho9HwWhaUxHnmKfQqaOa9\niEdA7ajBODoRyl9oeBlQJ0fpjDbBCLzlEeS7bPMuNVpxTdCbUD5ozCfFWkX9RpUnKu9T7Qm0YV5S\noZH3qbbwt51kJ+oRFlvknIhS65pqIhecV99JnPeFIjZEIyn7+Xbe/fKH5OPH5EoXX74nLPb0rCLP\nit/lB/PfHq+xLvxP4+N/99vzxd1jVecnvxE/FePIPC0rlgucPpxbn/yBPtlxbq/vvPfvvo3/eGfM\nnSHrBrTIjZWEkNkMyXQXcVQmgsbY1zG4c3DbG+PWImDKPOWOIZWTJAdO0LBWrBI/q/mez4BkFkWR\nbPdZ+HLHW7omksw5j4dILKTzDwQAMbDCGVpByBWlSIRNrcW7Zgd9jX3KoCxfMtbznHl0EYIlLzE7\nXZSuhSqRLm0Uqh6ojvDjjQegcl2MejwfJOEwN+40DhqHNRBhquW0m2S3W+ZRqOBzZjgXOdnGQg9R\nYbbC2CL09E7j8BbkhlV6L/iRxMZBkBpzESWgplHslyx0kRq5n05SY53sDupBZmQURz4WOJzE+Nh5\ndnDWi6g+Epbj60fS8jqx1+niCVDd89icp1OipnXdJtcTEsVFbthJaqwHLhQNv+F+e2LbbxStp5ww\nfn7Sx6QfxtGNcViec4J4Qa3AqFhXDolE7cMa1Y0qwlBB6sQrvK6W55uybRteN2bdsFY52DmsMUvF\n9QnR91B9nzIabRRK9bg7N42PquRnjnyd5QM6SUCNa1mXHUWfeyfLhdjQcmHyLwz++rlSNIKpVJ8v\nBNY98rv4Kz9XNt9CQfOyvWwv27uzfXFw3tuQ32e9/wnXrI21hDvfR97TVQ2VJDVkRjhmFERsQL87\n233yQ/eJdkfHHZVv8+ornfv7O6XGwl86QQB0h221ry7hmFXRFuGO1sOOcufgVm+M3THLMM+s8c9x\n3iKG+Iw4z0+V7eMYSHwmFs5bu9KXQ+PcUwIPdWhfL57vwwpuQm+BPopWmsqCeQnKZvwth+mVQcVo\nYbOw8NeYTkQrRSZTB1NGqDPV0TbxPfCTQ+zbuSZmLAWpM6qHSjcbW1OFw8ICoqJ4dIdwMao7niH3\nvqYBSvSXRCyyGoohjVB7Nkn7sTCa0Evh7pXDg9y4e6hO7fAI9byDjsz/mB7ZaE0jZ7cqUgthG0lV\nQO5tQWDqafu52o2lezTKOg/FLgvnhQXlmeXrFGvbs9PlDA99hvMW+XG5xpxnluPIZpinMnc9cKeo\nJs67se07RcsjVyN/J3Be2FDGsBwpvIL8M2B1SgSEHkQmmheEitIweQ1q9DKwzWJyDpViy9Kup2VZ\niyB7QW8Ffb9xbA3RDfEbyhOF96ljR6hBHlmomHCBmue2zFTUW9wXSijgIyj+gt2S2NBUZLyLOO+L\nRWxIpLP+Xvbpg+F/ltXMeaVdfur0g62vT2IhQy4vmRC/t+27vMb6m2uB7XJ6/E+lBhqBk2EuDL+h\nOH+jKP/Khf/GOr/ypS/xP/3Yl/l9onxpTvbMBFAhvINeYtqFy0luQKGoUUtj6MyO9uCwTr8NRo8b\nbplRjEXsLEqlaHbnOS8UPL2JaXW5furHmnnt8AuQWZXtskBei+HoyCwyIrIOcAu9oeXivcRLqcbr\nmgbRUUyREr6LIGfWGKklLZTzPIn3L3hRaMrYKqM0DmngB9NrjGsqHdVO3QeOx/7MfTo9+i3dCnca\nd9852Bm+MXqLxOhivEr5HgkMar2jcoAZ4Q41SnZ5Bs6dmiFE+0ls3L1yp9FnwY4Md7o7dqRVZnqG\ncHESObF/IrV6zUhfqEQuBynEMpKHY52bp7eF60hXETtTv5+pNMpFrXFCoweRF4d0qZb82b8/cFQO\n3jJLn2NYUca0sIFMP0kNm45o5Grcbk/sqdYAMnTKwmrVl3XFGB2mSZwHVqhJbMgU/IDDsyVBYxOh\n5Vhgs8nwTpcORSi1we0DtG64RnfoYOfQSBn3+gTyHupPVAsFlNVU+swkblYwnkwkH4vMCJWQn+e4\n6pptHjLFsqalaKFosPqnVLEtBj+Do8rjQUp6z2J3WQis//5ebstX+72ijl+2l+1l+/7bvtg47w0C\n5vw7n+HDJIF+/ZUryitk/U+FpA/BuvM3hvIbJvzXo/P1H/4S/+OPfZkvofzwfbJVRTbQDvMwpAs6\n47NJqheKyjlFa9SJ3RPnzU5vk9H9E3Cev4Hz0qfivIHzLgskzvJ9PQTxHZHHrnqG8+RU3oSyw4Ip\nWDljKy/MiADzKtgo9LIxMky9lIJohJFihstkmjBNmV7BKjaiO48Ce6U3KDooOplyMFxDSStGsehc\nucRbsZk4lAvBUQjlbiOm8Unj8A0kFAEJxDAxZhs5MC6z3DwzRlSQEu/Z1OJY3hRvHoHxmzO0cLgm\noaHcTbjPFejpyCHInTOvSwuBj3OSHzUySlauy5quK+uwrKZVBraehNKafDeC8FoYUYs/VBonzst9\ncyF+Trx34rw1Bc/xEwjGk5Ehk/YIiT8HGUw7FRs2I0MncN6Nfds/BeflOsZh5WpUXcSGpDLKMIxh\nArUhqaDqVsEFKwPZhNaEUipqaWNHkSqJwyRIjVvF39tRvSHcUNsRnhB7orKhQyOLI7NkZOUHQuC+\nCLMLgk3JPLX8GyfO0zdwXnnncN4XithQ0RzVo5/+w59lO7Uvb9mh68CeASrrJ/N/drnqPrcDcr3l\nyxvffl4wnVNMCIuIiC/PCSofKvyzIvwPe+NbAr99vKa8amzvwz7T1yjB2GPCnMIQZ2hI+XFFtVA1\n5kCHBCxHguXcaBvGzJnaKkFhexFsGqWc1TnZ/fww5yr5UubexANOMNqXnzk7Ghe/noo85Gum4ANf\nTKflY66C6Tm9hMgj8LiwRUreOOPzxbiyfLvCo1CZIVKYBaRUDtFI1ZZC8Uq1jpaBph82JHXCEGW6\nYFKYLnSt9CQextyYY4NeY8RcEV7JljkcMMWoBgXJgmhUsYg0oTIMDgpdNoZv9FnpNA4qvTfmXbC7\nY68dX8nVk0fAFVlEmacF5Nxvejl2egWLeQYm+Fvj33zZTlgzqS0KnEgEW+VNV0qEt618Dc+dHDJD\nTtnhyj+xtf/XqZKn0JmUbX7mY8y5/Jep1MicCxGllodao7YdlUdGTBS7Th+D0UPpEbPfC0iJ2e9e\n0Rkz2w2PjkgRTBvWlC6CTmP2ypgbJo6WRqsbXt5Dy4brxkwSauiOyQ7cUG4wN4qUc2SslxAfuROe\na7dUGGWCfHZFBJBC2pc4C1Yw83ISHZGcHtLDWi4jwvJ7a6RXKGrW43HET/n2J6w43P0T/+2zbitA\nypMEndN+T6/3sr1sL9sXa/vBxnlvkhzKx4DPWmSmhUFPpBcKC1mj5Uc8f2fAr03hv9XGNxz+1f01\nP/ZRo1TYS4yj11QAygHeJzo7rgMSQdbM2Si1hL2VHKU5QiZuw5ka8ztVkuwpjk0+B5znz37mgfMe\nx+Q5ziOaTCaxuDZ5hGwXoDpaBWp23L1hLcahQ1oZEst62ll8auZEOK6Om0Y47R4Np5WbsfJWfBck\nFalWPHLLznMk1J0Ux6tjuzBKo+vGYMeoqKdFWpTBZJOs33UiW1o5sr579bDoZE6bbWFp9gqjauA9\njzGux1wWFA1CIx86JFQVc51bHvuu5dfKaRVZjahF8slqECZ55BkY7yP3vWV7VRxKNLISppzhqIHz\n1inwGOn6wHmrgbVw3rKFrBGvF/tJEhpnzsYYjDkT5wm1VLYWuRq1hdX4gfMyb+0MHU37T5zYSQ6k\nbWUGcThz4t5owqAgpcSEoC5gipaNVoSmDSklMgGtIBSkKbJpZqtV2HZmu4E+gd8Q3xG7oWOnjhqN\n00LOBtYgNwgyUYjpLJrTCrVE3kopcipyg2jM/z5xXnnncN4XitiIUYb1stN/Zzs3EpYfO3Q9r4b/\nW37hWbGLLYrd1fP1+W8XgmPVh/UtI5OVlpAw3JcmmpIn4qY345e+JfC/UNh98v7rj/jwrtwOYR8a\nwUoigGIujCkMiUDEmYFMQgmGMkM/zXIc2BznTUZNo4MgcT26EbPgLUiWc/flxSOP/8iL6OP70Fmk\n/XVfW9bJLHbrtVcOiVpaSYwzK8M1AdI6jvmLFoIzyQtciBTrmN0+me7njTZuxZ4hnjPZ7UjXnqIM\n1ZCgSYsRYRLkxvrtmX7KsLBEV394zF4fo8FRIvkYwdIr6bWFxUShulC8ID5QsVRsBLs9ROgpp+xW\n0yfaGFaZ94K/Bl4Hc7/Gcamng1DktDWExSUTsZ0IiFpqhWzErALF2YOZeI4Ic7HY77JaJ/7oOqWv\n5hEUuuwn+qybs9h7uxBLlnYUHMwzE3/Zscwj2foscOG3nNMZJ9kRvk8tSm072/5EazdqjdFsD4+m\nXVj8yZwJ+ZIMW+OAw2Oaf1uNWWCWCCoTdWavzN6wuaOapEbdMd0R3UE3rGyY7pjccN2RuVOs8UCy\nYSmz4kFsSJ77WJAaslLRF/iRi/Qzip2UUGeUElaYkuO7zqkppZzhUZpjvq5Tak5gI3K9Uk+54veS\nxT8DwmwRZC/by/ayvSvbu4HzPv6Z5C3fXhUynlczgWeLTJ/ONw3+Zy3ImOwffsS+KU9FeL8o266U\nTZBWkGGhSpjRgFg5baKKFkdrgCrzrIsnzpuZqeW42AXn+QXnybMP8rvHeRfs8AznZbaHJrlhms0s\nOxWkFDlDRcln9YqMSowKFFZmitiE4WHPGfGwkXZnM1xqTr1bj4Vroi7XvSOMIBzMcX9+rro6XiQy\n1WSjs3PIjlMQd6Z3BsImwhQo4pRqFE+7qUbQPHkeUoLMsOpQhFmVoTVDTxuHV4blFJQjxhmrKWoR\ntsqaXGceD01iZ+Gz4onXHtfCirLLaK+4fqanQPfSZZKwypDZcKe1QR/H+dwvSWo8x3kktrt+fcV5\nntgurSRJbgyb5/np5onzKtu+0dqWU1AWzrO34DzPTMGlLIlmblwEQXSthqe70wuYK0eXUKrMylae\nKE3xorjWzNQoiFRkq2iryF6hbljdsfKEcQOewHdk7KgFgeYqqdgg8gJdEoNmk1BnBgoHsSFpJSmp\nhi6J4Z7jvPLO4bwvFLGhEoF4v1u26DpO5lr8nm2y1s4PxipuV3LeXB8yqu8V6L50GDI481T4r4Lm\nweHHwNeYw91qwbZJWb60VLvNOTnkoJjxYQ9SY5tKlYpohQLdNW6Ks8QkDdMzWDKijkpkXcyQ2Y+R\nDxvICD9sLaH6iP3r6RfM4vWWqv1pR9HhAi4evsPz2AiAIUgurPP7ShQ6lncsdkZcqLGoFy/oTHZV\nNd9r3MVtShxnixFbw0OK5ppMvFhIwii4F0ZTtBpVK8JAfCI0Vl7EJaoLS1JjmmJHwQ9BVggTYZPx\nCbYr0xtWoamiUmMSjq8gsVCzTApDCoPC8MoxCzYL9AIHIUG8E8TJjIkqVStFM9iJFQaSJ9fJp80o\n1BeQsgKGHl0VS8rnQWaEF9DOgyuLslcuhMaDGllNnCTpczwvEeR0OUvWz3v6iz0L3szpI+O0nXgQ\nHcNOUiSmgWy0ttPaE7XuqFRAcevYlBzv6iG7nY6tMLPweUSBmSF/NZw5kl/MQNg5YSDcp2BWEbmx\ntYLUHW8bXRoqG9Qb1FBpiN+o3lBqnFcegVVoTASy4sy29vMkUuKDfFp+2CjICf6UUwKqK5U7/Z1r\njFfIEKOrUdcI2BLk37IG6QKTF8+lnOjuP8DmHmqw79n99WV72V6279ft3cF58KyJ9ZZ/eiDBNKSc\nUlU/eXApueick3k/AONVEz6qyuumPL1fqVYpwFyLxekMCQLds7kVWWslFpcp2T9HaNpARmSC1BI1\nMppFesF5/lb70O8M5/n5S2/HeZ44D5bzZYU8ylxHMLYYypGTLUxj3OlqjiycNxw/DOueltULzlOj\na8EpseBMJYuR0Rki1B2kTtTmx47iwuaHV+7sdHa6b9EwcUenx7AzEaZqvJ4ItcY+pnVKj8+4GkQx\nrE8ZCCODT+9sdN+zodXw2agzj7lnMOR5MJKlmA/SwCfBYJyLYs79fk4kWaRGEh2PMMtEuIlFTjW1\nxpE994mvc9gT5/EJOC9//BNx3iNLI0i3gflMco4YbdraSWoEzssMvQljQM9pKIHziDWWSDaN8gOY\n5mhX4hrJ9ccoQlew4UgvVN/QtmNVGU15LUJLhYTWDWrD647XG142vGxM2TF9wnlCbKNQaUfIWwIG\nSjRcK3Fd6gSxtJ8URGP9EbgvCJkHzpM3cF55J3HeF4rYCDl5OUfQvJ1F/2wH5ZOK3du+tboGi1lc\n1P/3pt6tF12eI0+5Fw9PXAcrha6NUiKxueSC1+uBPE20Lh+m48OZPjkUPpJXbKY0L6jfGO40q4zZ\nmNKYUpnW8FlCmteJ5Om0LuDO9MGYB30ezNkpxXAvTBOK6NkZsSC3g5txHgnZyZAGUZ+3tbXOfUPm\ndBa79XOaxIQ8ficWoPHf2d9PiX52tWXBAn329+MetrrhD5ZYeVgcmPY41jmCDY00cCdkajLAqjCj\nIuQNMmSPq+ibKWbg+cxU/AA5QDoxBxxwYlEuM477fd+YtWYHaxIlbeZ0jEi5nl6YFpM6fARTT+dM\nrS6joCuQCMkxepyTaOJ9XpQW13aJJNjTyz4XCFXM8h/P/P0rSMtF95K5yXOCIoPP117PfRTHeuaz\neQAZyWoZQaKppJlE4VlkRn+EhPb8epqg0tBa2W839v1GazdUN5wSESzmmZCt9F7P34vTrbDGfDmh\n5mFInBtJNphGANjQyaAzbeClUFpF2g6+xcz3WRBuqDyhcqPITvGNSovcDotkWXGJv6vRmdHT1Cqc\niCLZ+7geLmqNPOclU641x7/qxfqzCI+6ZIm1PJtdHirUh5LrrQXve1z3HM8OzIsN5WV72d617Qcb\n5/kbDx7Pl4Xj2cCyNQ8lxnIOr8yqSHOkgdzWYtIpw1Gb6AH20SuOXXn1fuHJNiqFogIlstTcaio9\nC8NL2C7tcq93z+74QZ935gwpu7tE3oaQ2EYw9zdw3vMd+/ngvEeHLHCeXXCeJNZ4TPxgYY6pyIj6\neuZVrb6fCd7BOqdqw43AeYdF9kRxTCUmoNXKKLHY7e5UDzWtysjxt6leyT8Qx61ySAtSg43OFrld\n0xA3KhKj5B2aVJpUZilMu4fFWSYr5c0lpqgNyVGusmzHNw42hm3ILIH3rFCsUKaic/lZ7YHzPNcV\neYyQ7Efl/lxd/EUuxH7zrMlXrLfsSWGl4Wx8LZy3QnsfJOHHcR6J85JMYZ1Xhs/ITZuLzOiXCSg5\n6nWaBd6phf22J87bUK0XnGdBanSnd2GMVKX78nwlgYWsjPbYRUQeiw2DDKSfpTMdija0KN4Ksyq9\nCANnaqPWjbLtlLojdUeT2JhSGbozZMe4Ib1RPRUia58rsUMrEeSPhEpD7ZFRh6TVR09C40FscMF5\n+k7ivC8UsaEXiSJ8As/9WQvZJzH5+fMPz+UbDNY62U/68vOoetcCtyrbepaoGNfQngrWFbRy6JZR\nCHnDKSDloBZDjZgtPmPROBh8VKB6oYwdxuDowtYb5g2XhmnDR0V6CSXBIDv9EuoGB7PBsB5FbxyU\nusW/i2aBWgvDy9fyWMwahKQyb4Lk9/1j++Nc9kZNWxe0vnFAl8Rx3Rzh+X3iXKM/L6aSc6jJBbMs\nUuTsjOd7M0fXn1jhUhqEiJjiXXKkq2ARVfzQT1pmRKRk1LNLINPPZGmGpL3BMHGYM/x9rnQv+GZY\nC0sQXuHMsghwYVYyDCosQTI4LRP05f8sCJIMb6Z7y0MNI8/IiYcULfb76vZzXgqe+kRPUsSzaPrl\neIivDkocl9VtEpZf1h9nvZPjWh/PnufI6cH1SGcPFVKEbI3hobTIR5AansohRWuLkV/7E3Xb0dpA\nSyiezBlT6FPpXRlDGbNFlsrDHJrFLq/NKcn0ryDcCHMyP5jeA2DeKlU3qt1gZDCZa/gp5SkIDt2p\n0qhSUY+gqpCALGWR4MWoGtfLGRMvznUk8mownJyaRFFbPstV5JYF6AyXWuFRUk754pJkryA4XffA\nNyS2ce1876peeC7ni2LjZXvZ3sHtBxPnrYbB9b/Xsz/+/arOndEQmVYYWk9l7tCCNkf3i4pVoXbw\nw1EbWId+KB+Nym3uNC9ULXjWgmmVueywUrCpMcLdQ+mKR07asJE4b6NUD9uxLM5HT5VrfM1bcB4X\nNoNPpKm+O85b4IvH512IcTWtTpyXSt1VT0WRHpPpgOc4zwIryZC0FUTfCgLz0oF7EBuOct9rNEJU\nqB6zMSolbAErewMSC5GK6kpnCzWFb3SvETRqgnjN/DXPmBBjSqVQaKoULxQdaGK9UPxWTCJGdma2\nWpAaDbcak0+SzNCLFSWmiVxxHiyFsyTZIxqYTVe0Hde8i4Xz5on3ljUn4N5aHJM4LzG9c/69h1oj\n8jJODLXgneTBXfjvxHnZsLpMQDlJjcxm0FLYto1tu1HbhpYGEkRc4EToA3qPaTFjahwDrfnBNUmQ\nPFGmhEbW04aeU+isHAztWIXytCFFoTVGKp/cnaEbrTxR643SbpS2I+2GS8U1bEOTDbcNtUI1oZzt\n1dxxunDzwnkPi8myIi+1RdhQ4r75wHlEWHyRdxLnfaGIDVmhUm8sgz91O++Lj9vq70heeLLM8X9L\nlvV7lyiu37/ewN+k7fXBrg6CXDzy26r00oJ90/W5BBOllUmpFtYFnxSL0aD3Nvn3Mhl34/jQeK8K\nTyUmeiANl5jDrB00O/4+iQtDNOSLTObo9H7QR6fN8HCdn8ovjyQ3SFvGmidutjr58TtGfN8/tj9y\nDy2iQjkXzu7Xy1AeBAdcil1Q0XGvkLMQIpOVvBzHdT6rn0LkhVBiUW55847jkDcH9/AbZtBjugnC\nC1mefbj4uemhABmc888jWTqPrcX7YuTrWpxrswteJQiGRRAQ1ptrd0czFJSZrzeImeMjds2yK+iy\nMaS3yddzFudzFNsCF5qMuD5Sq6PYZZE7Q6CyuCchIaqoG75Gwq0O2BwR7EsAACAASURBVDpUcjlH\n4Cx2q1gt4OTne1uESDzPSchHR4TdziyEy0qiWqit0fZG3SvaggU3CX/ndKP7oNuge9hZInhWQWp+\ndmF9MrMBXkKxMQyzwbSOe2fM15gYdS/stbLZho6ak3Di+lEPaWTxjVp2atmC2DAN0jBPeXGJrlEh\nOwpL1SJI2nzW+S0Z+nWy9Skp1UVi5HMUygdBpRKqjrLml+f/NEkVvXw/W2T/wTZ3Z47xoth42V62\nd3D7wcR58sbz+v7ltRfOuxAbPgQrJbK5pDKlMdhiJPwemGWFPi4bgBpYHfz/7L1LrG3Lkp71RWSO\nMdfa+96iqkxR5ZIfF2HZxiVZlmxACIwbtGyEAdEwdCyMaPCSEC0LiRZGQqJhWTws0aBD04AQAiGM\nhMTD5iXAFgIb2yUVtjFV1+Aqu+x79ppzZEbQiMgcOdde+zzuPeeee+5ZuTX3nGvMMccjM0fGn39G\n/PHEje+0d1yOC7VXim9sBKnfe8F74aBwiGJd8O4oC85zox8D593YOtRaGQhpamK8iPMyUsTSM1TG\nlJ8F571P7oTNeQnnLfU2xUZz3/QMHYsmwYfoxEJDb85xZvrQxCDShdIVzBErc7U+FhElNDvUwSWy\nqGwVrUrRCEUJWXFjelWM8Fz38KSlhCe0bfS+4YfiR3oqUCO6dTOaRnbCTQtFhM01ju0tvHMhCA0J\nET2T9OChcvSN3ipyVUoTtCtiivYMz+nkIlR0qhPnZT1NnHeGJ4ywkcgM9BznDbyYxJLKFEOVwVB4\n4FTJMI8Z1sXAebbgvCWTjJ9tPl4j64m1yHzXU1NtTIpVNUNQIgOKaoQZW48Fqd6c45avA1oT3IaX\nRI1shBp6hUZ6VHt6bTfHvNH9wOWg8YRVo74pbJdHtnLBi9LEOSTmZFt5oJdHtvqGsr3JBbXIiGfU\nePZaQY/wri5jjPFRdUFUoEFEzew4WkIHJ3XWQo5NnuE8Znt+nXHeV4vY0GCfPJm0tfgnEEvP20sk\nV2F9TBvud/6QMZv7fu4s02r0npMbgJUzFCXJDc+l2mPPI0iqHXjhkIOCnWKTJfKfK8K177y7Ktfv\nwDc25+0mbFKCIT4Uc6c2pzSjpJKyeorPFMlYt4Nbu3K7XdlHnuSRV3W88kE1Y7Lkjk/lZcMjr3Yy\n78ZJ7t+VtHSDWRzVNQzr8NKQIYQ1H2CS1JDlsuJc0YzngDpY6Sjhwj98KkUkVLLJOjfFW3qipPve\nuPVQsZZ0IcvrTGJDkoWOPOKE10aXIDEaMAxkRhxE+GK4RFIlBr3RH+aySaxMqMvUtlLjJMK6h3tm\nemiorn2rz3NGvT0jNlJMKQbWE4T4ZNxPY+fTy2hdWAnmacbJCnOfMxNK9vYBkOYzmStmlmTdfCY1\n4yVHCEky+UekpWud8I5Qp+yV+lCpDxu6B0jxEtfazGgYVz+4cdCkYVM8K2IttWRO+7znIUzbu2Gt\nY0fHWqP3G+adUmCvlQerbK0GQZIeKFriGSqyUdipRBhKlY2SWXxEPLPHjPYZAsGWjJlFR5urVMOL\nJlPpzvCqNFiprTFB32TqwwBOB0RPlj/3Ox0TNUkUyefyi2Pv74pDa6+hKK/ltXwdy9cH563bcmxf\nYV+KX3pXWq25+p9p5bVRqqEXC9HGJDa0BMYwhaN2PvIbe3ui9p1iF7b+EOGUGmEN3ZUDSVFJUDIr\nBJ3uoWMQOG9j35S6hadCAJ6lHsUXnJe1p7LgvNwxeZuXcZ4sOG859vQqDVAW868V551k/8R3YoQo\nRRzITSaxcda8oIPJkOh3bjmp99CY8yMpCyME6rtiNbCE1ZoTzRTz9kFrBBbqLqF3Zoq10OfywzO8\nmZhQF8CU3pxbVXqBooVDg9hQBrEhWIAD8IrlSpp5xZrCoeghyKHptZELcJ0gc4ZXLhaev5PYyMxq\ndzgvXifO64vHxuigPsmcAQ3ucd7Zs0+cd2K8EXYURztDeIbGWrQZ6a3RQ/CzHZHJ5Gi0HlnrBKWU\nCP2odU9SI8g7N2gd2uFcb8btFt68ke1OEAmBT9XQt0g+I3BHLrBZN+wwrDe63zDtlB32S+XBNva+\nw01pGA3B64bXt5h8A+ctlQfwC8X29MxV6gwZZ4rcTtHcgLiMOVFgryQtxNMzdwi0ptdFhhqfOI+v\nPc77ShEbEUdUmN6B59zxtBPPH6qlvORWcyc0NafIz74bJ8gH8byA8fpey2rsxvsaaJmT2LESvyg1\nuwhdwg/dxekSgpLV67M0YZ0iMcnVtlGuhes74boLxwYPouyHsDlBBpghLdINqYX4ULivx+DVrHM7\nDq63g8ulsdtQOJZ5gTYm2TLXT+Kyh3FJoydJcDhp20YoQz6gITo52i/pkSXntU5jd1+fMreMsw+j\nO1b/8zrsfkIe1mBJSZp1krKNSWgMg5eCPy2Ih1DoYhWwCOY3IhbCwA6iY5IbY2mIc7UByRUFkEoo\nVrMalnFwP/f1dCVN4UsfaV3J7BliEQc5Qkeyf0Ve+jDOo89PT4BkWIYRdDxFVdu5YsPg4rMkwTM9\nclInY6yuzDacNe6z8TyftcHWm+VTlgTBSPfWm6eeRuO4dW6HcXQPQTCVWFVJUqM8VqSmboUE7Git\nc6VxyMEhnV4sXWeHEchsOiKInYZ9pB7z3rB20G8H7XajKGxp7C59o7RKz/YVE7QKRSpVK1XitclO\nlbKQD4NcGv1zwMQkNXwYoHgNUkOEqWQ+yYsJVLIfD6JquonKuTqWrH78fslnDvPzF+mS+Lw49ioe\n+lpey9e0/PDivOdXPI77zDN38diggVehW+GQCHE8Rua1Ymy0WKxQR0oskEiPwxyb8aQH3/Erpd3g\naOxHaC55ijK5CeZCOYiVfqBIySx4suC8K5dLYbdVgDNq0dyf4bwkONJ2owtNf4fzct87nCefgPNs\nwQ1Aam2s9Rn6G4onjpvCl2NNyGHtVDquIT/Eyr1EOtkmZ7eASAu7EaHHSZZZqJQu2MimWKUfEsLt\njdDxOCy8ayG8QUp8JzUwZK8eGioZSqBsJ46VUIsV0j3YNEKQDyKd65HeGl2C2OikKOtznGcLzvMF\n52WIK325l5XUgHMByxecJ5NMEspcdLnv7fkbH6TJeE9CY+I8n8KibrGiH3oaB8etcTsaR+tYi44V\nYbUXar1Qyo7IBlSsK2ZCOzrX2yBGPLLdJbYbxIZkXlpZEhWEHp7huYDVj0brB2VztrLgvKMmfI8E\nAX650Pc3SH+L2luKPUK/INQgYZIwi5TNSxuNzDeD1Ch9kg6qljgvsuSIJKknfoafqGZoySvOg68Y\nsYGUyDzxRdb9s4Pf2bzccDeJ+9zb5Lkx7ePCwloNcuNcFscJw9e3C70oXQslkoyOITq8NnDUww1L\n28b1qrSPIqXoN5rxpnbQgzLYPM8HYghLSbD5IhppX7txtBYqw91TIDMmam7BFprfzfEBj4XsSXrA\n4HMl6/s0euOhlWQsk70YTO9wW2MlJsbJhtPj+EkPUifdCoE7dhjyvKTY5zDcmUXFs1+UPGDoHqQG\nQ06m76z1uFsL17vQO9FgJy3DUkY4B53hcjZcxwRNEawgQFLSIq9tXCsM3lURNK9npOga0+JBaIis\nQGp4a+RqhdzX/VBNDq2JUYukh0YHs7vnYBC9gUlOkDLj91hJjWe93Zce72TO8WFCp9vMtItD8LMd\n4bFxuxlHuilShLIX6qWwvdkpjxW9KFJlEmndnSadozeO2iLmUx0884Z7rtykgKt56J0MUiPyqIfG\njLUbWKfWnYd64bE+sHmFI9LQ0kY7FWovbLax+Ub1jY3KVspZ11MrZtyrz7oBTVCSx7trG6bS9fBO\nUo1+RILGka55GL57oyez743fn5kCvn+GbpQAOq8eG6/ltXwty9cK563BGX5Pagxi4wjvgIMQihd2\nxizdilK0U2pHzdDmEzL2Ha6bgRl2c/o7uNQIoVhxlXaQ9MwNofiS7u6K2UHrcLSDozVa75jVDDEJ\n7QY0vGJU5K6iXD1xnsyJ//s4L+3MvB79BJw3FqzGuYaNyGUrd8QtjuNjgS3DZLIMPDKw1FgtuMd5\nke7eMk0qEu0wQY6ctjc4qUhTLx76aYahDbxZhHMfjh8eYvEe9lop59Sy+Zla9RBcCl0ja83dgkW6\n5gg6+4g0kjwJfQwZ3rqWK0MpOE9iwBBuTSwxJsRKzrbjHgPntQXnDYzteZwTJ5z4RRJv6tLHl97+\nQZw3FrlOIOpuKfjZaUcIhd5ujaO1zMiTqUxrZdsulHJBNQgEXLEUuW0GR89FLw8tkyBwFNGCSyz7\nYjq9kM0kcV6n90ZrB9Y6dKNuGw964VEf2KzCLUKIhue2UKh7Zdt2trJTZWNjY/MgNpThqQFjwXqG\n4Wi4artm+Eku2Ep6awApFJ/PgDDDUE6ctxAVX2Oc95UiNlSDyY9Rxt8zTp+1rKvDwPM5V2ySdf/h\nLuR3D/t3eXbOwVle2LaEoSDMFdsu99eZuwcBqrRSsarpHneKYKoMzV8irMXCtVEctDf0ekO3mACW\nUiIHsoakTUdCT4IkN8qeaZeU2wG3A45DOFLAUCXaSD2N2MIwjruM9st3Ip4zK3mmMVqFblCdD3PE\n8qX/hC3HW+pQGBk1zs1hJG0+xD5COYS7bb50iDinMONScvAt6b7FvMYR4Dpn95FVxQcDnascIrhY\n5GLPf0gwtnGbTlHmQHTqaGSWkPTGGN+fREiSCKNPp2cGsw+ArJ4aPkiNMWCeVbgSEWv/N/KYWQ0D\njgWpsQyUw8MGmUZutFEY1jjA6poYmU7S9dEsvTXHMZOwkWTTp1BoZEM5DqO74wXKRakPhfpYqY8V\nfSywp1eNRHiLeafrgXOE4nX1yHcPqEd8Kgf0AzjiWswES2KqNacfDbeGiLNvhYfLxsNlixSvEsJr\n3vpJCDoUUaoWaqlsNRSra830W5JeMaLzgR71Eq6Vls/faJsTXIxnZGauWciNu3SGY7/Rt2Z3lpmB\n4Fwx+/JKpHd79dh4La/l61h++HHe2L6+hkee5wIWob+V0MOL0KlcxWFqXYV3bpFOkU6VzJBXE/cU\nBSncbKfdCseT8FBhJ0iJ3YRNnD1tb28SYuadSJNaNFz5m3E7GrcjV77LuQgDmjgv8dacLOVkdb19\nBkkRYGwImd/jvLRME+elR8bw8k07eOI8nuG8Hst4PkIlYpI+UnrKnLivOA+GO/57OG9obg3clYt8\n85XZ2SCFzR3cjOIaYvFNIjNhhh97j7pSlNJzAcuJuONMI2jikQFFPD0xM5sZC85Lz55xXFIENdLe\njtCOzghBGXHKqotXrsDU6hqVnggxhUlAMkvgmDtMvJHvQ+h1tnm0kWR2xNnT38N5PXGeLzhvvCfx\n0c4wlJZ9r3dwCqVUat2o20YtF1Q3kIpLwSW1NTLk2KoFgaKADz2yTO2KEM1ndGySLd5DqLQfB26R\nmWYvlYftwsP2wK4b0jPTYfYvqXHs0gq1VWrf2Hp66FLjnDNkXE7yTjyy60m2WeLmc3oR/WLUkaQH\n9cDdp2hotMErzvuKERsiQqnljgb4bso5oN2v2J8nOs+3/h2/TXZtpR+/6/Js1J+fF2M3SI2xZD/E\nK9cyo1YEqyXi+ornAxAPhUqk6BIETBErSKvUBk/HQXn3hOwgG9SLxqtauIUypqGKaEX0Anajm3Ac\noTR83JyjDgYx3eiTwdVkdCOxeNahrO3QwcMACRk7l+TAOeAy0cdYGFAN/YF1ZVtGLS5kxVnXOfT6\nOXmMo8cE0Oe2MUCvpMcwBiMsZpxsED7kQB/G3olBvPswlScT4HloV8d7KHa7ZRCPOEVHSMJpUD3d\nPc2zGvUkNQpJJkwDldoXll4ZU1R1ACibdX2KqY7V/qx3PckJZluNwdVn3d8DT5kM8ylASgLEkIeV\nZGfPdGB5VRapc62HhoXP3OKj/WW6LLYe2U9mBhQLUkN3pb4p1DeV+lhOb42NcNP1XA7rN8QPJKIi\n0RrPhKqk4JjiV8E1BHetJx00xEkPi/RfBrUoj1V5fNh42Cu1SLpvkuBAU9sEqgq1KluN91qhlIiL\nllF3WZWhKyIpKuqDGTpBBX5qzgxgqNFPh/GahvADRg54z5NjJUK+lJKAs7UAPq/ltbyWr1f54cV5\n4/M42YrzlnBD88B4S8gxAl3KzO4R81qlUTM/hgW5UeKzEiLysFHsgaPt3J4Ku8KOs5vxZjPeFKeI\noX14bgQmCaFpBRO6Zchnhn0e1TKrWpJAOUEe2G/EdgQGZPGWOAl7IWy+JDnyYZynMRm/w3kZfguJ\nMdd6hQilWFZqxqLcxHljmy3ky5mWNM4tiJa5UANBZEh650pPTILHBN0jDDiaVONWu+GN6f3pNjBu\nZBksGeIdXSBxloQOnhHkk2T4t2o5cV56UmMEaTLIKPPTwdsNvIWnMrnANfHeUtWpdxfbxnMScwYR\nQ3Wpr+X5OBdSnuO8bJ2xTnmH80Zd9cR5PXHe2eYnzjNa77PftdbpKe6uWkJTI8VCy9DWkLGAFR4z\nvee5PLMfemB9rSWF+MOz3JvRW3qPSC6s9UZvB9bDayVw3sbjfuGhRopWa0lq5DRNPY5dj0Ltlc2C\n3KhSKdS5AHmSG1knWHQxcmKUnX/U7dScydfYd6R9PXFezk9ecd5XjNjQ8Cb4Xhn8TzwPS6PPHpXF\nk3UeE73PVNb9n9+DP/u8Gj0Yug+x7BxCRHe7DBfGmi8VfLgwxZiMi5DhgBQDCvSbcbs1tDxFbvSL\nx+SwF+qlIgWqlpyUC1AiRZKGoWndOVrn1jtbN0ofHgcag/20FaeAlJtPwjLqeaz9hxEcjO2KKeIw\nJ1UhSrD4Aw8s1Tf3T4M7qzsN3AhyGCz0WJUZObZtenKsk/14KxkXqTnpDvCTbaQw/AlPQc0QamIh\nF6SEu+QwqO7B+s/UaTh4Qe6QDQjBHA9JSZVTEHTmEF80NGzqNURlWhIejLSuw5jnfXp6C6yeGjLi\nZodhSOIixtZYGZlVP0iNpcVsbUBJCyDLd8TzZB4Ego+KXkZyd09lbAs9jRkzGYx8kBqF8qDUx436\nplAeFXlUZHekGCoH2hveb6gdKEdkCypCV8WlIhrnb6a4SqZga2H0WqfRsJ7Gzo29FB73ypuHjctW\nqVUQ2uy8KpFZx1JgTItRq1Mr81WKp/Dn+dxLdG2Kx7MR/avMZ2RUzakgn2CLQQRxx86vBu699xcI\nkC+zDFqxt5ZutK/ltbyWr1P54cZ56z7PcZ7E+1i8ekZshC0s3PYQsOxaqGxJbPTQURshx5D/bxQe\nOOzCrVXqO2c/Go/bgVxulG2j1vDcrV4SRwp4EuUSXggjxebtaGyHUXQswJA4T+akTKdgJwvOW+tj\nhEPICzjvRA8wcB4v4LxBb/i9x8aCNwcyCc2Ngft0LpDYxGC62E55AecFNvKRQjbrJ7LWeMKp90Go\nmCA9vazNmCLoCYrcethtkVSKH5gsPWxF0RqaKDPzBQMvM0XnLUXioxINo6e3xohVGYtXw4P6xLMD\nd5w4Ly9DQlR0zLfNT8U68rt7nOcLztM87yfhvMmoRJV5pP8MnHdwux2hrXE0Wov6UykpFvpALTul\nbJFytSapUQLnNuk0Mbo6XR3q+bxLzXaFyHqiHjjPHOuJ86xhdgCdvSqPW+HNw85l36haQhsvPbLD\nGzfoRL0J2nL+1FNTTSOF7wwBGfAbMDpFz/nH2omn93POY0b2o6XKEEnP3Nz2ivOifKWIDZUIj/h+\nNcrUB5Ax4DojO8Jgj7/7cg4KUeTZdyupwf0+7mCD5JC7eEypEnMgzVd26EEEOjHgOkF89OK00nii\n4bXje2fLB3PziuzAFg9ujPhKxLF13DoN52aNW2/s3ginq9SzGKy9a5w/Tp634BGSkSKdwQivBj6G\nzTFemt9LRuELfBBhhjiM+5QxKc8He1b3eKTyIMP94znIGOEPC74SEaQ4peS1TiVs8jdlAoFw8RvG\nxUczMEiGaVTU0z0x8nWHoTciEC8bcWIrm7+T4dWxrNqP7zIyFZE+iYzTBdTO+5QxgC5hDSekYHhM\nnFuC8FEZtTRrl6U11iZiiE6NFGBLLcT47meXPl0kwxVviGe23iPk5Na53hq3q3F7MlpvmBhShPKQ\nnhpvKuVR0UfYLj2yAUlD7AC/gl0xO+h2UDFqplBzremhYYga172EsNph2Ga0W6fpgUtDtFM35XGr\nPF6UN5fIER4rWH3c2TQgRR2tUKskoSHTW6PU8NK5Iy0gdD4GQLwP+knQM/pP1KkIsy9M74xnhm4d\nN1dW/wetBMB5DUV5La/l61i+njhv2MZ+4rrhmbtAkzG57tuGb4Uuhqqh9JkBT8fEmAIUSn9gu+0c\nVlCMXW80/Sjs5UNl2+t0SigDb0h6n4pkdgnnduvcts6+dWpxak6yVNPrNL10V2ZieucS7RrgaLVn\nK87zu1Dhce+fHuf5gvOGZ+iKdeQ86MR5iZ3KELxMPFScUmzBeT09YIQQ7ozrkEZ4Sth5obKcQlwy\n020QKyKexEN4xkxM9Kyvj9BtMT0ntIvJDigbk2TpPTO2OTbwx8QhZ7jx0NV4z+aPS8i6Gdev6d1y\n4rwTp5w/zBoeC1yjMWdNSyzVfRDnJbk1cV7nuDWutxu3643b00E7emTckUqpG7VeqOVCKSEKL1vM\nebyCidMkMt51DW8AL1H/wbkEYRUcUIT9mHesx76tdZofuA+cJ+mpsfHmsp04z/qcnEhmtCumaCZu\nqL5RLTw7ikW6VV363ySUNBcbx4LmUr8y64gpVChLd7nHedzV6XmMryfO+4oRG8Hkf+H2bs7xlonC\ntDExOXweo/fdlWWEvhswXphoQ75nWhQfysic5EY5v55sP8/eV0Oh4Oo0bTQzujZ87+xeU9hwY8Y9\nFk3jp+EeR6F1o9O5cXD1Gxd2dqn0UlPJd2HCkygI4zcm2KmbkaSADIM6JtqcA6FbGLBxI7LGR+aD\n/7xbDPJCSPsx1bx9EinB4p7iXafA5pjwj3AeiZSp6ZUhml4fMq5FQplcMr7TPMgJST2LhSCIuMW8\n1+m+RxzHYpkjyI1wn/Rs+3MwY1E3Pke6M0YxDK3KYO9HKNN9rOS4pufubLPu5B6OqcjpgZHkDKN9\nlv51EkgswDC+cFgY/PNCZJrrXP1Bo2ub05uluvXB9do4rp3bkWnVKtRLiQwoj5XypqIPUC+drRxs\ncqB+Q/oN2hVvT3i/4b1jePRXqZiEl8tBAw5aqZF+bVPardNLp8uBqFF3eJCNx8uFt1vhsoGkCGxP\nb47od6HaLcUoVdg2CW2NKmxJcJzeGs96ri9GabKCZ2PEYzka8LRsqyGb7ofPv1uOs34/2utLZ/Nz\n5eY1FOW1vJavX/l64bwxxumzzwKtvA8FndR1GCHHICXIeBkenHMiqqgVqu5Yr/Qnhd45/AlTY79W\ntjeV7XHLyaGeCzmiKSxZaHR6N25H53rtXHZnr06vKQxKYg8/QWcQGomzpuUJUkMG9pLT9nx2nLfY\nrPz/xHkLoRHAitM7Z2A7GITSxFXzvj3xqyEaC1OB80bIEAihryDDKTd10CbOS8yjE1t56Kp5R1J8\nHc/MKyKI63QOOk16ioGKnwKSIggDG8Y51R2j4WOF0zOtK5z1PGrsPZznH4PzfMF5SfKNC5w4L49z\n95wMnJfI9T2clzWYF3SP84LUuF5vHNcbt6NhHXCllkqpe2RAqTtSw6OFKnh1rDhdjC5G805P7KtJ\nzUT4DJG1wCO02AiR0t4j9KVrO3GewEPZeNwfeLttXGpJnBdhNLN+vMQzJ7EAvGlho0ZiZilU0VN6\njyTKxrM/QoXGnGQt2U5n1pmzc72P807c9orzvmLEBhIxTF+kxTu1Hc7hc5qk8XCPh/gLXVFcSY1x\nBX3ZPl4pbtTlJDjuIxhYnoGzSHIj6nRxvHVcOtyMXStbqWxbDSHPdN3SGmmRVAtaFI5QHj60c+gR\nr7qxlYbWHMTyWiQHMfWSPEeKf840US2BxiA2fLazDW8OW24pjzenxHc350lizBrKrXa2m/sZXcMi\nKCrxWyRcHJ3TCIdSc0smPeM4h5kVQTJcIOfliHsOqmOohxnjOAenuNeiYSx9ciyShm4w7nHzI7Xt\nzGWNzDRlk2nI86CRttfFz0gY5O5aTiu8dpZBSqydxpf3EdZy5h2fJk2YHXCe0mewTzgb5bs7zJjA\nHMQHB2Ju9B4rRa31ePUexq873TpSibSue6E8FPShIpfCdmns9WDnRvErpd8Qe8L7E/Qr0q+MB6Xr\nFsZNjOYH6gXvSuuVq1eoJbR2i0E1qsKD7LytD7ytFx6KUIlY1ojRzL6TXjJOCX2NoauxCXWDUpVS\nQ9/tvPFlSBkoZLaFz88jvnV8ZvZj7rY9//xpy5dt9IbB+94nFK/ltbyWr1z5WuC85zhuBffptSGJ\n614gNuYaVwEvQWWIgqX2hUB4/aEUDa2L7oYfPVebjf2obEdl6xV9EPQSEzDVcPlV2VAN0YbeWwjE\n19RU24StJXEvJUmNcyFLU98tcN6o4MjQN8MtpmB21L557PPpcR6TxLjHebmYcofzZB4HBs7jBZzn\nuHf6cOaYOC8wTeCVCpQF54XHzB1cGuEfDCQUHrxFg3AInOeMhaHAeXlDE+fJJGTO/mlLJQR2Rntc\np/QkX/J87+G8te+dJM/LOG/4Ia84z57hvPUXPnmkoU1zj/NikW6QiKFt4onznNaNlqldW2+Z5jW+\nEw+CrehG0R2tO1IruguyOb5FuK9l/+9ioVshR4ZoncTW0NLrKdTaPYRGm+Uke+upqQEPuvN2T5wn\nheoxBwicB0g/64ZIyzrDjDenbiHkW6pRNIWBh8f4IsJ/Flkwz8iIMup7xXlj3vCK8z5UvlLEhqpQ\nSz0nQpyP4Wcp6+9eatbVred5cScf8jGcfp6Nso4wz4/9kgHM7T4IDmG6MT6/dFmOvljxMah5ijde\nrfPR0zvqpVCfUnwxjdZWBN0VqQqbIkfBWqNX59gbx3bQtka7KUOzQgAAIABJREFUdEotEWoyAvWG\ny53J9O5DCqEbASIVyfCJMdkf1+wxG551IOQxJvlxgpM5wA53N4jJZo6wYyUGH9nOsx4kBuQhcjQI\ngCBD5lAS9d9G/GAoL009AwMpWaGDfAiEcRqZOze9NSwkMpMMdbCTf/HZ5OH0EoPRYIiHd+SMd1wM\nNpxxksuaydKtfOkLfp5v6Xe+9hXOa1r4IRaVjXPn025O4sPXgzrTyK0uicPYTaHOnkx+HwJPaSiL\nIJtQLgV9KOilUC5Q907Vg+o3Nr9S+zuKBaFBu+K3G9xCB0MIA2bFMDk4hptvK5ReKK2ivYZg7l7Y\nUS5sPMrOm3rhwsYGQR5ZJFY+n6uhLh59VEsJEqYUqgbYLKqTbR+DzoRCfv+cSwKBQQCdAGohOF4g\nNz7E3r9UVkP33Nh8Xw2ge6QV9M+fyX8tr+W1/GCXrwfOG4siz1mLgfEWcuO5YPyqqTbCjiXIC1Ib\navgV4AIlv0uxyd4S59k7qoXrvLoyQlq3LT0JS4W6IZaij8BB5/BGc6OJxVKOpD5XEiKnTbJzUj8n\nlyepAT7h28fjPBbg+hznMbfZrM4V58HwDYYIlXkf5wlj0SsCJ9J7pvUEWCVxXghXioVu1xA8GNkH\ng7gZTTz6y+g/Z1iIagIi5BnOG5hN8piaOC+8hQNeZGVIniNdRkTPEKQ4p8xJdFTQBN2J32xeH3wI\n550eS0FqfBLOe/akjD8kCaGJ83zBeaGf1rvRW0+cF+RBtIciUiklCA0tG1oieyMVbGN6a1jpWGkI\nB8WvqF9Df0bGIyLzvrp3bubJD0ZmEd8AiUx1FzYedefNduEiG5sp0jreIthr6MW5B4kyJglaBK1C\nKUJVphaN6tIOSx29h7OWido9zsu358+CrM/E+83zUvk64LyvFrEhmi6KC1PFHCPeKx/XRKN/+PL5\n/X18+S5HILMp/vPFlDkavLB99d54yRim98aQzn7x6BJCRSm+ORhxHLo53TvvjivlWqjXQj0UtYh5\npQrbRYIpNUW6Ilew0um70PYbbd9p+xZpLEsIHkWu6LhM6ZCS3pFWcxZZHt5hKIaBGm5tw90w3uev\n5ayvmcI1jVqQJmOQJ9ye8rvI6xHGc8SGxoSUcA2U8LjAh3lK18FxvSMfdt5f0Tz/qvQ9jFJcXFrg\ncV+nZY5mWOrAQTwm8hRigE8gMNzaTpdN7giKu74puY6yDIankTq9LdbeNkNLxpFclm7nE3u4ne0T\nTi7jItYnajF2w55zuv0Ogzev3Eljl4KhnWDzh/HL9GBSNci3h3jpRdFdKPWgyo1qV6p9RO1PaHtC\n2hWuB/7U6FeHHgBatg6104vnMwC1C6XVeNlOKW8oD5X9svPIhbey88jO3oXSHCh0W12TUsMmV08c\n7jydpGSKLs2840v/HKOST9edpV/LGj+ZNTk8dZb2fa885zZeMF5ftlviWtxDVOqLyG/+Wl7La/nB\nLj+8OO9+jL+/qudYTghyA0DTWTdwE4WpqXYSG8u7zOlq2IayUAIH9MPprfOuXyleqATZrkUpNXGe\n1Fis8ZpC5y1d/TuHNA5tNOlUzQwpBVwFl0ECjPOPrGzjnoYH6uqx8Wlw3h3DwZmtJkI6EmpNoGE2\niI2RZeTjcJ5NMfSgXTxxXl6zWuKUghMT1Xucl/f5Is7LSe8MT/WlI/rkGyzUwvMri8WrifOyD4w6\nmM/FEqI+QpDucN4Zej0wnXASGu/jvPO6cObCjNsQtPcF573Uu0+djfdxniw4LwmBSWr0ifFa7/Te\n6ZZZ9FSpulNLvLTU8BavYHWQGpnStTQoB8We2PoTxa9UOjX7kSSpYT08gKUZ1qB3pYsilx25XKhy\n4VEuvNXLifOOeP66KXRlrCg6w8si7z4xnRaQkp5LGu+sLskT5611uYSgTyyfNTYw3icNduufX2Oc\n95UiNlCdaX3W8uma6lkHmo/efX8ZRu59gzYG56FXYC/s892U9RgvkRlrGTF+LxEcY1Rfhah4792R\nOTCNwUYlB/x87g5rvDueKFel3iraCsUjDEWqUB8qikQGlM1RGpSGV8erYpvQ9mC3ixomjmZaJBNB\nemYnT6OkPkDMeb8+CAVJl7b1Ic9BfrLSaagETgbSg/Gf40huW0Qi5u/HhPqEMTLPj+v0kohLHJoR\nCwMxxrkZmRLt4IvA6F2rSrrqLcY3W2YSMWO1SmcyDD/nzXfERbb92sxzDDwnvxPY5KTZ3HCTe3Ik\n689suBzmdzO7xpn6y83S8A0wkif1XI0Znicsv3GWyfm5QrQSLpFqKwzd0ZzWnHaExkZrHct0a3WP\nrD31oYbXxg5SneIHxa4Uf4f2d+jxDr0+YdeGPxn25HBj9i0vjtXII+40RI0iRm2VzS9ccOrlgpbK\nXt7wyM6lV7abIFc/638iyhMmO0l8aa706Hje5Gyf2W7r8zx67gLsnz0fZ/97/px/fPlBMmwfKq/i\noa/ltXyNyw8tzvsQvhu4bpybZV/P7wqnYDzPvDW4IzUGjhthIVIlbJCDtyA3vCXO8ydK6hdoLZQt\niA3ZYuVaNDwxRAsunVaNozSaHhwlMqpoVUrVmf0LIVKVA2aaGT/OVfMhrp1T5zlh/jDOY5IY03t2\n4rzTWn4Y5/EpcB6ck3ASU452SDuvEVozUwsydNYgtNTuaILwWE48xZKN7uNxHonznDN3q3BmlON8\nTw+RM9Rl9Jpz0mwuuNl7E+WXcd55PZPImDjvzG4yMK3MiXqSQQNPDzg4Icrw4nkJ52V2u9YC42Vq\nV+vR72vZgtSoF4puaNWZAcXUMDV66bjeQK5oe2LzJ4pd2fzGJp3qPbTs3DHreDuQ3qEZrQluFWVL\nD+AHtoeNnQd229mOxHlJPNGyA9qK87ItVeeCVSxAhgdQhNwPYmodS3y23fz72cLV2f7L508xHn3d\ncd5XithQzfzm+QTLmGh96nJ2mjG4LNPfZRj1uwFjjnLTtcuWz19kWTvnagTHIDGM5XPC42NIDWTO\nwn3Q/zOZddxxM+PWD94dT+xto/ZKsYgpLMXZqlGloXogsQRAFSjWUB9xgQolJ44a8ZPdTpfAqEYJ\n4gBwT40KOVnMyJwyYiDHYH/WyTBuw2XuHCPOyeGsjdwe3/gY+pch5XlNTwdFivgy6J9tcz+YrdW9\ngKnhxbECG88r8VBEdjuvR0RCm2N6MsiC75b+CNz5qgm5wjFMmy+/XfZ7YW68bpuuh+tuzql2zkpW\nLI/FOF/agKFePm59NM8EELMfxrbuLMaucRxOa+mx0fqMt4x+oOhWQltjV3QTtBpFG8VvFLtS+xO1\nPSHvnrCPDvqT4U8OV8dvQe4ZYayshNBU1yNcGbfOphtvqrDVC/4gyCVyp19sp96UgkPv4YHUTkQy\nU7q5pGJ7QUoJ0FhKioUK09bfGbO10t/f9uL4v+73GWzZD7LhO0Wl+ifv/Fpey2v5oSpfH5z3HN8Z\n7w/iq81f9NTWkOMV5uVXY4KKSGTfKPl3U2iCt/CEvPnBO57Y9426xyKB7Ip42C1LcUZKTJJbcQ5t\n3EpnK41aGloKpRhaO4qEepWNayTqUAMrzQBgscR5mQnue8J5zHYe7fXpcF4wQiMRbOC8cxFn0gRy\neldKisefWhd5fg1tjvumsyROQjT0xHl5TGfBeSceOImf0a73hIbPhSo/m35MmMcxfOk3c9tyaXdh\nVvnTifPOOpwEx1zQi5OIh7bE2D1+smBHlzviJk/6As5LUmPR2AjdBUFQtFRKqZTF2zXyJljqanS8\nHCBPaH9HtXdUu7JzZefGZp2S3ldmHTsavR1UizSjb0TZywWrgj449RHqm9D0kFbQJ8B7pHdtnqQW\nJ2k0cV4mVaiFUgQti8aMJKH1Hubys12X+cHztK9n53jh8yeUryvO+0zEhoj8S8A/AvxG4B3w3wG/\n393/7LP9/hXgnwJ+FPjjwD/j7j+7fH8B/iDwe4AL8EeBf9bd//LHnV952UXxU137mExzDgcas6wp\nHXm+/O51Gj0jE2Dzfsf6vDuQfODzKIuxm5/lvd8tw1be5difnLbbJDVOgRrn8I72Gx+1d5SjULpS\ngYsaKjc2MdAbRa44B8WM2pTSoHSoLqEsXcCKzEwh7ppVKZR8QMVjZdv8nJgPczRW+YP1HzGNMOSv\nR2yiZ8weOcBO7Ya1qgZlISPzxlqXY7f8jaTbnTDrRmSt39BH0JIiZ5PZ8AkosHRsHPlRRxsFk0PE\neqbhyDsWF8pivAb7G/Zl7Luu6oTXxQAzkxx5ZgzP21z6rd7/eeeaOAbXYXSX2mIar3OyPcgNz/Rm\n2Qz3L9aBVqatHbHM4ZoYJEZrPYxehyNJDUsFcc0c87IJbAIVtBhFDtTSY6NfKbcn7F2j/w2jvWtw\nBbkJfshM5UcxujQ6oYbtW0MunYdvOvt2wR4EHis8bLBVylGCWGk9or7S+ybqYOhbj3cNUqPUyLeu\nZTL6A7A/H0cmDH9mkD4k9ORr43xGI/aDavQGk+/mn7zza3ktr+VzLa8474vCeR/6rXzg+0F0rNPy\nXMSyOxfRu6uUTAE+iY28JUqQIZIi807iPG589NE7yqVQHgv6WBEqUioyZghFY/VenaMat9rYa2cr\nRqmdMkOPQbzEBLkHjikjcwpBbtgi1h5XkYTFl4LzwoYPTbd7nBevCC046/OOMBBS7NTwqZ0xcF6S\nGqSOQIpvOkEiFMlJMZo4LxrKvZ8Ya+kjMnGhLjhv7T6j/66V4c9w3rpw5Z8C553ERm6a7zK9YMYi\n1hLy8rE4L4mN1mmtcRzDQ7fRe+hrhHitIhREaui3jCh7zQwoxfBquN4o9kRp7yj2EZtfuciNCwel\ndeSIc3I07GhwHBRvqHb2hwpVkUejPgr6KOgFevHQdCNIQG+OHwY6vIvCIzf8WSRxXixeBQlG6qKc\nejJr7Z4479wCn4TzZNn1049DX0ec91k9Nn478G8C/3P+9l8D/gsR+dvd/R2AiPx+4J8Hfi/wfwH/\nKvBHc59bHucPAb8T+EeBXwb+beA/zON/uKhE7uLPnUS4pwSe0wPDMpwq2Yvo46dkzj57WYmKFxi8\neYWr8Xuf2HjvXaYpycmmJHOeQpiqMVjUSAP75FdKh+1ovLld8esDuu2UGiEoqgcuB+qdzZTShdqV\n2srM+qDFoFywckGo4JHGihaDv1AQJFwlUUZsqcv64Idnh04Lxr03gHs8ICkA4ZyrNWttDA8Gh7tB\nZRg7WBjYYTVyxWjxfgxPjKXWp4/kOKMkKWESE+BwY2CYD7F0VxvHuXOdjLjPyL02zpn5rjN0xZXI\nnz1kwibrfxq7M6bxBEbTEM07uS+jJ40c5hNgrHtIrHIE5jhDc5zwvJBB6BCT/WijcS0CVmYWD8t2\n6yOH+HBLbJYuik5vBKkBCTIiHnh0d5tgtKF2IL1Ba9jNsRv4DbhJuOAewi1Xq8wM9YbTMDmw0lGM\nsgt7qZSHDd4+0B92+lY4dN5guI4WMHH6fJY8LsNHX1LQipSNUis1jZ8OwLW00VkWwLLWuqyK2c9/\n8cNFALjbq3joa3ktX155xXnfF5z3/JgDTYzzrvEl6xWP63nJQ1fmxNaJ0F8f2hGne2VOjiP4o1nj\n6biiV0WeFOklUliWiu6Kq2O7YCa4eISjPBi3i7Fthm4WHhvF5ry/jEWIoQ3iErpsImhOzMctzwUk\n4PuP8+RjcF4IeZ5nyT4ho41yQTC1JF0j7CNgdrSl5O7v4zwWnCcDRH4CzjtDh+O6E1PKeb0nhlxx\n3vt29JNxXm7LeiLrfpwnYJAx/KLPNho4jwjXyPuKqOsV5/XpoXHk3yEOH/WmKdQaGXqi2MjuIo7p\nGT5cPIiKjYPNIxvebjf06vjV6FeLLCtHox8H1noshO3C5VK47JXtbYUHhQ2adg45uKnStg02sJvT\n1ZfFrOc4ryClLjgvMwydXWu2+6zeF+r8xHnrnG5t3x+e8kXivM9EbLj771r/FpF/AvjLwG8F/lhu\n/heAP+Du/2nu83uBbwP/MPBHRORHgH8S+Mfc/b/OfX4f8KdF5O909//pQ+d/SVQK4LMawLH3S1TA\n+2Uxau74neHzZ/t9r+Wz3Mfa6dcH4aVj5vdDpAmdD6VlSjAyfShFkApSBavOwZWjN25PT7SPnrDt\nAfYHNhGqOq4d1wPtna3D3qAeoFWoLWIuVdMzRB3qA+4aE9UOQomUTmmkZWgUBD3NzEE+7nYQCMN7\n4YXJ3ios5Us9TJdC96kgvhrAscIjQzQjPTGmLoksvWGcoofHy0omSFx2njY8GER1uVZPFl0zE5eF\norf5CUpcMAwdAlCWKxUWsb9iw1raPMfpgrp2JZ8Xe6/y/qz7LN0ljPl6rBU4rf3qBFme1yw96tVF\nJqlhnuKxA1BMVoNIt2U9U36N8JN4781oLUKY3CU9ZGqQAxnSMSBHaIY0rHfMGtYbvRneLDPmCh4p\n3jl655v/7y/yI3/lF/mFn/hx3j1WpBgqTqVwqYU3Dzvl8YI/Xjj2jVspQdzM1GmLu+jiqjkIQ0Nw\nVUQrpW5orfGScKdch7C7Wp1Ay++t3geY/LWVf1iKO/TWXz02Xstr+RLKK877fuK8cd6XBN/Xc9my\nz3PiYxzzvMspQ5kenuY6twmagphh602dG0cstrQQzlYKtcakT6tQMaw1xDtFY8FKBLwIXp1eYwVd\nZAtMYwVRx468Oit0zjYU18Sd6X0xPFTHHsOD40vFeXF+x/HeGZlR7nHeiaUC58kznBfATDJE20as\nbsz8Eyuw4DzDvCfO88R5ctaRCy4jnGftSgPn2YLzcvsn4rzRdV5gNp7X+WiaHhjWJckM92Win3U9\nzmfQ3Recl8RGtyQ0MtTYPHFeQbXmq2QIk0+8Z2KRUUUayIHYjdJvFD/YpLH1TmmGv+v82P/zi3zz\n27/In//xH+ddrXiL7DF1S5ynFx7LzmWv+A6tGjdp4AcmilXFiqWezRkuNeT3DU2cty04rzzDeQP9\nnvU5dPveq2Z/34vjvv5/eDDRF4nzvleNjR8lWu0XAUTkbwV+Cvgvxw7u/ssi8j8CfzfwR4Dfludd\n9/kzIvIXcp8PGjyRYPI/q8v1ZynTte35OXwwoGNiuAxen2v5uOM9Z/Lm7PkTfnc/UQr3smDyGUmi\nBMhURewKe4fNQBvWjP6R07Yd2x6QhzdU3bhsuXLvB/RONacWD72DKqg6VQxRAzFcwaqC72CKdUJU\nFAFX3DJmbd6qPFuz8DGSzokkfjqcCmTqpWCHbQElOuhRlxAw1ci+ET5jzweYERsYhs9FU0E7J+xI\n6p4Oo5apuYb68Uy3mwOayGwyHwZLJNN+hZK4WmeoRbt7uPmJpDp3ghPrDGpcyLpL15HQ10igcOep\nMdh7u6uPu16VYlCedTBiI8ffJynB4rqod8cKIiaHbhstdipHz8r1k+G3DD8xg2bQWmRY6x1aZkZp\n3fAUl1UNV78Avac+h+G4dXrWUe+d3g3pHe+5wpPPgJtR3j3x03/+L/Ktn/05vvNbfobr3/Jj2GOE\nFu1b5c3DztuHB8rDhX4JY2UoB2ASYAQLEHJXB6SuWxIbSIai1I2ybUnIpNFbleMH0BrjzkAaH/DQ\nWMsnPflfxRLuqo3nKW9fy2t5LV9KecV5n+so+9KxPoTt1rJqcNxnzbojNuYkXhLnJQ5IzwkkdMGC\noTAoTtfOjRsYFKtUlAdV9rqz7Ynz9Ia0TqWzWaNYiwmaNqR2fNsTqeyB5XoQDCagZokLgtA4iYNY\nVPt4nCc/ADjPGRleVAPrkV4pnx7nCWoD/6w4zz8G5wnqgwCSGYqCjFS0K86zBee939emh23WwQjh\nucd5ue+cWuTi2dxuZy+cGQKdQRp9GOdFiEmzHoLwmeWuzex3qasxcV6lSEV0hHonzpMI/ugYcCB+\nQ/otyA1vbDRK78i7TvlrT/zKP/sX+daf/jl+6Tf/DB/92I/R0tt3L5U3uvNWH4LY0IIXuIUrOR2l\nyUmSDf3eCIdxTHJRDoGpo7ZTtjNzi96NMec4co/z1sr+cHnFeZ+tfNfEhkRr/SHgj7n7n8rNP0XU\n/7ef7f7t/A7gJ4Gbu//yx+zz8jl1MPnf7VW/XwYrP4WquB/8xt8zfsw8XcW+H91sJS7WbasBXPf7\nuCL3nxe1SxGPh7YAG3gF2Rz2jsoNbTf86aBvhb5dYH9C7JuU/YKi2AF+gB3Qr51yu4IFY66ZDixs\nmFJKDRaUPVb30xCvabVHStUchxnzyDDlNg3euO1hEH0armUYSKAyiG/GfNxJt8hRFc8AwkhzMutJ\nU1gqivm4trgOVU9SZgzsdh5tGA1nggxhMLPJQuv4Htz7iHgIfY68ER+xpXlvZhCpcUmm25nyrFkH\ns98OcLP0hOmR8byfyFnvZ30yDdXAR4icGV4YIck5oZc0SO+RG5JERBAakcJVkswIUqM3oRs0O5W4\nIwSlUEromhQd18ACgCJ2s7dGbw1pHaxHUzSwZuy//BG/8U/+Kf7mX/g2l9uV3/an/xw/d/vV/OzP\nfIvHh8rbNztv31x4fNyQvXIrSpNQuJ5ZkgeIyHc4+9Splk0CyHTpHasP06i9NIi99Lx/fPlhYvBH\ncc/85q/pXl/La/lSyyvO+yIIjQ/htg+RGmP7skBwt40PfI5JF5yYI+IiOPUKKvgGXo2mYFzZDB5v\nHXtqlP0Ne92oCnAg0lBrbO1GvV1DsJs3FDmo8kDZGlI8wjJ6gSNXrZuc2WtNwk6O7HwDV+ALznNG\nWNBog7Hc4kvoyOeH85Y6GwKivITzxrV+Es4balvnCrwjL+A8Qay/gPPOPmBm00PkxHkZBJJhMXce\nRozgmVFrS9dYy3s47+xZ7+O8rF8kiRM5m0DOAyS9ROA8EudZ4jybi1W9h4ZFN3+G83RqVagWCiXu\nJEVbXdJjQzrYQfEr2A21G+pX1J7wp8b2V77Dz/wPf4qf+vPf5uGvX/k7/uSf48/+2l/Nn/nbvsWl\nVh7LzjfKhQfdeGCjmkYdSqNTaK4criiFLhk6naTGWk+jD6nWZzhvePfckxr37x83wPmzv15x3mcp\n34vHxh8GfhPw93xO1/KJ5ef/0v/Bf/af/BJ//L/596nbBsDf+zv+Qf6+3/G7P7dziMhUKn5RxGX1\nFvhCy0vExTNy4hN/t/72dE1bxqFw0ysgVfAq2CawO1KNohGvVu1KOZ7gnWO6c3jnuBb2B6GUC9oE\nOxQ/Ov1dpz053WLVWhRKij26KWYV14LUArWcg7wQbn1GGpuyXHF8Z3PnVa18CDBxttnzwTp3HccZ\n24ZsmNyN0BKD0h35sxAckzzxnFAPEuHc/wyc8aUphgFeOs4Y9KYxGgYq2XwhCKK5H6yrNmMyH/Nk\nndcVqwIwRLnO8BOfp5VJOsThgpMIS+eze53148s+w7AHg67nFN890VLWlY96u1+PsQyr6T36SRi5\n8NI4Ghw90rz2bOYQ1kpjoQXV4Q56rqzFqkB4a4xwlG4dbx26h9fRzbDjxl/dlDe18KDK0zfeYN94\n5PGy8/bxwts3G28ed/ZLxbdCK3EewREf7sCe7WBL3Z4gaBr46PxT2VtLuFXeCZ7dtcuyqpT95EO6\nGmt5Dkw+bfk0x/5uy/ciWOWM/OZOaBe+e2+P1/JaXsv3pbzivC+krJOc5yd5Cb996BjvY8Iz5GRg\nFZvwJEiE8GagOF4dqsPmWO2IRtYIu97w79zQ/cZWLzzsFZWOyAEclC6UW6XIjVIOam3U2ije0cwu\nguxnNrWEAzOMwYVYSTtRXoSCWMpnLFhv3G16kk59ieHdO279e8Z5y+eJ6VacN8416nc58V0XGljN\n779LsiNwWc9XHs50wXn3fcKX88tMGyrPcF6+lt+d6yfPcd5yiQvpco/zYHhPW9a95bne8whx1sqZ\n5w/9XU+cF54ZvVkKhRpHtyUExRMb6YnzpIBrOI0MUgPHIodd6KnJDbEr9Cti77Djin3UuH7nxl91\n5RtWqE3565c3XC+PlLpT9wv7vrGXnYtUqmto/plRvVFFqYTyn0oQrK4anjuSyRyzXn30mVLRsn0C\nzhvtkhOWpZ+8P868/9y/4rxPX74rYkNE/i3gdwG/3d1/fvnqF4hq/0nu2fyfBP7Ess8uIj/yjM3/\nyfzug+VX/ZrfzO/8B34Pv/m3/FZ+5G/60U+s1LuHfOkNH2K/Jps/BtBnPSh0BDyzgPkHj/PFl086\n72rwFnIkpLFjsJYMZ1DQLTQxbBPYoG+gpbPJwcbB7leqP6FPjW43PnpS9qcL25uNctlQU7QJ7Uq4\niO1GcagawZhll0gZ1gpSNtAgN6wK1mPgUoLll5Kudj4mx5yZJ8Zkz06DN7KOTHZawhip6szTLTMr\nSYYuqi8DToz+wppeNSbk8+87I3YavEkNiATLL2ksdRAsSztNozPARprE3B6357gHgzkJi9R2kDyN\nryrh2a5h9DwG2B4hP0AazrOfThgg6dKYITTjG0+DOezWOJekJ8iZPO0EC0MmtPuIsYy2k9F+6eJ5\ngq6olm4SbP0MOQkyY4qG9vN4Iukto3qqMS337p6rAm70HoRG6z1CUaxhh9FvnXZrfKTOt3/dt3hS\n5fKXfp7//Tf9ep5+1U/wjbcPvH278fB24+GxUHflyHAqJ0JdVpe5aLtZURN8nK0c916kxupjGWmV\no7+tT3AMOx8A1+9t/WqUz2JM38sAY76ISj3may0H8P99r5f4Wl7La/mY8orzvgycN84ly+exfbV9\nPPu8/D1mrCPbHR5ChhqLJIaAQi9AdWR3fAfdOlIOtDX8XcH2J/zhStnfcimPVJzCgdsNN0O7UuVG\nrZ1SjVqNUjykv2qJ0GMV1DRzRxC6F6TmhJVzEu8RZuADIJAhpNNbIyDhPc6T7wPOi2/ex3kyJ6/v\n47ylPd7DeZ4kxMB5njhvkAsD5+XhXsR5Al0T53nivJPU+GScF5f2Ps5bp+BDNJW7V3dSly82iJ/1\ndLbUCEPx8MC19NJIUmNmvUudjdCBeYbzJPtv6uyF94gY2VulAAAgAElEQVRjJM7jQPzAZyjKE35c\n6R9dsb9xcG3On/g13+LdR8qve/p5/tff8Ov55Z/6CS5vHqiPG/qwoVuhilJSG84PQ6WhGxSEglJp\nHJmRZXiMhNcIuCTOlZI4LzIJxUqxfgDnjRpeMewrzvu8cd5nJjbS2P1DwO9w979wd6HuPycivwD8\n/cD/lvv/CPB3EYrYAP8L0HKf/yj3+Q3ArwH++487t4pQ6/uiUt91+Qy9aXXpH/9+sHvj3SO1bDtX\nnUWD0Ni2Srk4tkGvHakNLUalU4m4tV0acnSOG3zEd9iuO+VdpXxjY5MNTGjXFAFtzlGF49Jol8b2\ncKPUHcqB9BsuN0w2mtfIHS6WqycDdCwr/jNDyjmZHLZP8tbcPQdwYBloYzBfWGxfqiEtyGDBdcoX\n6zSaUXWrkRvGMdWkhyvlJDQ003mOlYB7QmYcb/beQdQwXF/jSm3Z3wcQGDcrC7u7riRITO5FJQDZ\nHDBtuifOW0pgEYbv1OSAEDi1WV2W25iVferEh/EyJD1phtFcCQ3mOXyM6h7q1k2CdT88SIhmLUWl\njHZAdz1Z/BSQGhbf3CJMpzvW4jhSIt2aGBF+6o5yYH7Qh/cGhlR4FOWXvvXT/J+/+qcov/JX8KM/\n/sjjNx64fLNyeSuUR8F3warSpYRh9gyN6YZ34jwLiDpdl7OdUtF7pHotpaLZL0abjWodoEES4K2Q\n9qWneC0/0EPQpyovEzq9t1RIfy2v5bV8v8srzvuycd46+Vm3fdr9B24xRB0twlYrRcNbo9OhGFYt\nQo93o9bGJjc2O9Cb0T/6Du1yo+sN8UaVinSwm0XcqPawtUUoG5QNao2sZd4LvQgdocueK2iGDsF0\nHfhuLFKtGhLrpPuTcJ58SThPPyecl5b/RZx33s/04JXweBX1Zzgv8cenwnlD+4J5XeMaTpw3ev/w\n2ogwlBPnjfrKBa/RXrkNJ7XThN6Eo0toqOXiVbxHdhX3XAzUkpoa+XtPDRJLLw3vgRtL4DmVhnvD\n+o3errTbO+x6RY6OGNSifPvX/jTf+emfwn7iV/CNbz5yeXhgu1T2PfQEZ8Q0QT4NWsqtMrLJDHrC\nyD5o4ytNnFenV26E0LzivPfL9xfnfSZiQ0T+MPCPA78b+I6I/GR+9dfc/Sk//yHgXxaRnyXSgP0B\n4P8G/mOAFJn6d4E/KCK/BPx14N8A/vjHKWUDMaCU+vkZvE9RxrnmoDTEinLrF3jmz/l46zUntypQ\ni7BdKtuD4LvSNqdoAxc2MzZ6EhyxAt5vztPxRL19RLltbP2CbaBSaAdoKj3rtXM8NW5PB/u1IHtD\ntgNrB8aBSQxOeEEcuqUAp4xYQp31cMdnijDyg/k0GIL5UmPDpU8G175ksJjfD7e3ck+mCNPoSYZR\nhAfGfRzmMIqDcGG40U13OtL42rzOwfKnpYrv5uoB5wg7WioH95nyZLmHu0WCxAaq4f0wbLNPw5n1\n5Esl3R8u63F4QIwdnp0DD7Z+vAhx05F9LX4WrLtr6G9Y5v2O/PRJrWXMZROjeaf1xqGNRqN5T2Go\nqFNNl0RJgsXMkR7kmUsoiDfrUI0+mrqDN0JdXA5cb3h19CJse2Vjp2zf5PrwwNtvXLh8Y2d/W9ke\nlfIW9NFpW6WXIN86he5CP5ikxuQIc1VpVSIfgEhLodR718TTyPmzJjgB9H2zyLrH51a+SPfET1PO\nMfw5IPdp8F7FQ1/La/n+l1ec9/3EeR9Xnp/3BaP9wX3HuBr4ppbCtm9steCl0cQRcZoavRpl79TS\nuMjB7k+U48DedQ5tXHvnOJRSHqhe8FvMWiO05MBLhlzWMgWyrcWaN1Low3NEoLudC0BTZyNeqw7X\nOSNccR4v4Dy+IjgPvnuc5/OzW3jEfG84jwXn3X/jmZ0lYM3ivWupl54LTqNunZLtEkKro37dJXGe\nnNnuDuFongQH9J5toaDpHyGU+C1E6K+1XGxLUkMaXSPcuEvnsIa2A2kHHAebHVSBulcedIc33+Rd\nfeDN5cJ22dkulVKVrcJWHC3ELLj4zHrSXRkKKeF1IbPShl788K5RCTHSkn3/wzhvoTeW/rx01rv2\n+bzK1xXnfVaPjX+auML/6tn23wf8ewDu/q+LyBvg3yHUtP9b4Hf6mdsc4F8EOvAfABfgPwf+uU86\nuYhQtPDdTPo/zi1RxkDnz7YvA1CI4HTMOz5Vi7+IMgbVTyovGb1P85uzJkSg1MK+Vx4eK1wqrQo3\nDjClHkI1qBibG2JGP4z2kaG3jyhHZbMduRi17hyqFCLqpN+M49o4nhrHtcNDQ1ujS6fR6aVHbJ11\nsGDxy7ylNHRp9M7YyDBeosrIYw7j4ZUxs85jKCKWA1DBV6M3XAlFMxXYCLPgPNci/hNGamH2h5aG\nKjr4XCFd+YbRFFi8S/LITLEnIURS81pcZeYrFzmNpI2wGxnXdzcVPm/XI45xursttm22N2s39zP+\ndR4i9Dts3tB5gGkMyRTBmbLXXMPojRPUfJUzFrFrGsI8nfXwfOhqNDqHdY7eaNropWOWxAALgEhU\nMx09PVN+9UZvnb4ZUsMw9+YczTmsUzgo20EVZXvcedSdN/UNj5cHHh8e2N/ubI+V8qiUC8jF8Aej\nlY2b7Ny8clBpVrBDkeZIA5oPmQ1GOIz7YDtKknR1ZnHR6V4Zqx+nDO1S/2tjPWuCr1cxevti8pv/\n/+y9za4kSZKl94mqmrn7/YmIjMyqnu4mMEM0GiBIbghyQ6644GqGz0A+Ad9hXoALvskQA3AzC2JA\ngD8ACXIxwIDEED1soInmTHd1dVVFXDdTVREuRNTM7o3IzMjKzJ7OCteEZ0Rc92tuvypHjxw5chu3\ncRvfOm44798oznsRBL725/aRz4zPyQHneZeZeZ45nwuUQktCUmWVTsudnJU5Nc5UJlZyv2JPK2tV\nnq7Cu+tELkqSGVVPOqXsCalOpacF5kQqGSkFkQljwkpB0xSeG+5XkOHQqTZFEisQ2IbzAmbplh4/\nKBiO5+HfFM4bl1AY5ScDh343nOfXS0cL2K/FeXvW4/vjvMCWx4VAgLMtuRU40JNJO3GxW6W6Dx6k\n7b1uwvBYG8SG9ualxk2pLVFrotVE14yq4FUeCZHi58QElFABK3TQ5K1du3S6NSc3Ssekodqw5glT\n6405G9O5cJln7uyOs5w55TPTNJOnghQvfS+iTLmTJpAJNLxmTBJqydu4xnGMBJZ1T2xtsCTurST5\ngPMG/h965xvO+/rx4+G870Rs2J5G/7bP/UPgH37D+wvwX8Xrk8fX9Tf/ln3Z/v4pv7exw3Zoy2Mj\ny+z9l7110UF2/gEb9WyLn7yvP+x4GTg/DJApQS6exT6fT6Q7o0+JyVZsnYBMaULuIPgkY9WliHWt\nPNUnkk78J+//gi9K4b//wz9kLdkf1GqkVVjXxro0pHobpp4UzW4YpGKHydQX5kmNdJT2YyPMbe2T\nMEOTt8xCdZMK2nbUI/Bkht5DNt402qIm9z2QUQ93JHzi817+MAo7ZX8Ju7okjdZl48zKTsrGYlfh\n0PrJmXDRvgWJ0Sp2v0pGVwlfhxBZ2iGfMfZnKFPG3qsNMcv29rOrfojHxzv2iBe2Fuvbh5ydcEXC\nzuB3Eyc2NLp+iWFZnhEbNsiNo5+oeYvX3oyeol5ytGgtwyHZA39KQpY0yhv9fKo/e6b+Wc2KpkZt\nK5orKyulN6amnFQ4p4npPnHOhbty4j5fOJcz52nmNJ+Y7grllEizoJPRS6JlYU0nVptpzFSbUHUZ\nrjQcqne2zJ6NH4yzGuAnleSMfpiUfcxH4zaejwGkev9x+pvfxm3cxjePG877m8Z5v22S6ps+t7+X\nRMg5Oc67nEhno+dM6kq2ziKVosakjYnKpCu5V6hKo3J998S79xP/6a//gq8o/NPf+0Na8faY1oyK\nUHKjlUbJK9N0xdJEyhOiM1IalgqWAueZN3xNzxIC+yJwmLpiEjiPA86zA86L45R0wHkpzk7k1J/h\nvB0nsm3j++I8C5yngfPYlBxmIDrKG74O5ykWXhuKH+NmdSqHHd3wq/4AOM8OOE/2D23K01EaM3Ce\nBbnhG3ckmreXWZAgGtuTUH2gdAmcJ+rEBK60UAtDW1yRm9Pk53lcPcVJi44/h+LkRtVK1ZXWV6Rc\nKaygjUmEaT5xLhMPMnOvF8525mwzczoxHVqwmnnJdi4Ck3kpVgEtgqUgNoLcUGRTRG+eL3u7mMB5\nfgyO8/aOOh8+1zc8M8aPjfO+T1eUv/HhN+MP0wbsWSCMadEnk5guD7PFMCccr+13Zb/BPx5oPjUQ\nfh0B8UOM40N2mCljt1NKTFNhPk1MZ0HPmdkW+nTCZCIvmWJCbtCjbaY1aL1xv175D1bl3/3Ne17l\nzL8uhT99/Ya/fjyTqtHW7qqNpZFDf6a5Y939EIzo/BXBLpsz1zYY0kj0K5DHTD6MT4Pk0/j/8zN9\nWETKYL8PISk6a4js3g2bgc9xwg8jUDjI0Q4/l3QAX4OgGac6WPhhMGlJdlNR7YzWqSMyjcWvxtfQ\nOs0AvF3pZgwlDgDS4TYZssJRD7zVsH5wO+4/2ymR2FeijZdG0JYdIHoXk0FuhCrCwFR8OS+GFcGC\n1LCCBwxxcsPby2mYwCrWOpoqKhWzhlqP6x7HqEFskJ3NN3EioWt4ZTgRYqmj2eWJVRaqLPRUmUw5\nC0iaOZ9mprNwOU/cn2buy4lzKsy5hLdMQabsHYGS0ZOwkqmcqMxUJnqfsJqQiis1QrFhg9ywY21K\nAI4U/dhLJuVdrfGdx2fIhdxKUW7jNj7fccN5X/f7L3/3m/ZlkOyBL3JiKoX5PDHdCTpnkim5N4ou\npAVKU6bWmLRRaocnn4cf7cp/9NfKv/fL97y2zL9eC3/y+g2/eDhTmiF4yUotjflUsVNF8krqlZQb\niViYpsB5UebjMMlCkOp+XXnDWC5FkFDmhibiIzgvzsc34rzAcT84zvPv+nqc91yx+2k4b2AIC5y3\nX+sfBufxAucNAmUnLxznETjPHOcpUaYyPDUyFooNs7Rxf5aCfhGjYzQNIiMSmpoD5xUQS0h0jfMW\nqXF+zclF616ybHh7106j1oU1LazTSpoWbGqcklCmE5fzzMMZHtPMvZ04tZlJCxOFIiWIE0PVrxET\nMImrNbJfO00J7SVIjeTEjoF1Y4N5drj3kngCrqTAeR95JD94Pj8ybjjvBx0/KWLDmeffTqJ4HB+t\nO4qFnKTDazC8I/M+JrCQIMmov9paQPIsaA7zxsM3P//CD/4+tvVjjcEc78easpCzMM+F+ZxJ94XO\nBV0umM0YBdFEroKpt+BMCr0Zf1AX/ov+nhO+pPsHf/Iv+cd/7+/yF5efeYvXVZzYqB4oU2/eirME\neJDB2hPbNkSV1NmCQqgIGSZGcjhXtp13OQSq+MyY2A+BcpQebjWS2Zl6n6vimgUQIImT+Cn7z7dg\n4ddoOGp7z3NANRjt0fbUnt9nQ7aWPFjooRXrkEWmbIgVxs5nXNmgoj6xYmTxXuiygS0PBENCyDgH\nMQE/u9PFSYn9DvN7eQRf21zgh77F/6cGvT8Peu6rsZMXthEauKRvAg3VhmUQGaxYx1KD1PDWcaHt\nixSCZCF1IZuDnKSEUWiAzdbp2lCcJFNpVKss+sQiV9a0ciqKnDJ38z3lrnB6mDnfnTifM+dZOAtM\nScgpwTTRU6aTaAgrwmqZlZnVZqoVtGWogjR1UqObX48epVRHfeIAZHKou9yyj59h9Pothtnob37L\ncNzGbXxu44bzvvXIDtt6eYz7d2w4T9zsMpfAeZdMuitkjLlX6vrkHR6uRu6d0jtSDVtAV+PfWhb+\ny+t7zhWawn/2y3/Jf/v3/i5/ln/GpXoSqaZGnRrtrJRTI80rYhVRf5FmxwLqC15B3XZLfeEsyTyb\n/uzoBtlw8M84EBISf8J3wXlx1j5rnDfKTQiqb5h1uneH2rAOOyS0NAUGT3E9vPudkbaSY5NQ6OJY\nvonSs5NZvQSZVQLFm2sbchKyhNLFxA3hTbEWZQq9o9JRXK2x6BMLV9ayUi6NnI0yn7jcZe4fMo93\niceUuLdMXgulJnJPZInrZ3ib3ASWBSvmHWmyoSmjHF4mW5mNbazP8Tz7HLDjvMR3UZl97uPHxHk/\nKWJjmEqlH+Hm2Zh7Oy6eAXFVQ86ZeZ44nU5cLnf0umDa6ALa+4HdZ590gVE/+C3f/pE/f4wHRA6B\nYKxObcx7lJKZpgzlDiY3XdRUMRbMrvBUkUlpGUSNP7HEfzPN/Odr41VK/OPHR/48Z+pamebsoUGF\npTdS61iDXozeoJvRxJzxV99eCu8FVBg1hmM36d0n6y0hYRFcZDu96QBERtnHVsKAjZbkpHw0f0og\nRtLRk9oD4lb7uQXMcT2clbWYKDf2345BY88u7Fc13KUtFBCqdN1j6NZ67kVbLmf1JYwxdTg4uLlS\nbH/YjWynBicdZJuEY0txGPp8jzyY23PrLW/J5sc+CI3e5ZlyQ1OQGSXY7xlsMic0iiFFyamT6aBe\nD9l7ZbhHSWug3U/vLLSc0ZZILZNUvLqjKbqCou7L0Xwb3SpKo9nK2ldWW9y9fTbyfGY+Z86vJs4P\nM9P9RD4XZEpYIZQZoCJYKu7cTqYhVBNWSaw6UftEWwu2CqxAFahg1dBqrjyK/vHDRdxPrLhTfC6k\nkskpHTIrt8D37UPR1pw0uo3buI3Patxw3g8wgkiXDUgEIZOhTDlMFM09C+pCT1dM3oElpDoeaB2k\nG//CEv91nvn7rXFfEv/o8ZE/y5nrUkmaoUC6Csu1MV0bZe3up9YqXRoNV2uYWXQr88UrNmT7I1li\n3q7evC2sZzQGzmPLXO3lHi9xHi9w3lBbDJwHSe2G89jvVCPWApLcs8z0kMQiykwyz8pPxM+Zgqtw\nUxAFQig11LvcaaN198bQ3EHME1fq5ztb2p9xVbQFzqvdcV5rdF1R7TRdWVvgvFwRUaY8cTlfuH9V\nuH/IXO4z89ncZwNjWhK5CdKFZMJgc0bzOiugJ9AZ+pRoFKpO0QeyUDVTa5jGN7Dmag9XlMsB52VS\nSR/BebfEzDePHw/n/bSIDUmUVNh7T/8442hAJZE9cOOlC/cP9yzXB6xXxDrrAo2KqretiXDycs95\nzrK/HH8Ti50Dk48fo6n64qz75JhJTDmR5ot3MUkrnSudBbUFlvewVnTxZdwvE/yvkvhZLrzOE//7\n3YmUjPu+0OTkgUSERb2OpVYL3wXbMv50I1VFNbmppNrGNEsaQWLUILrCIyVne7eawb060++LlPZ6\nvSBBthpM82uaomXXLjkc12cPOiOQ7RuKSSvYfzUnZMx2Hwy1wwI3CCNjlysqXlfW4/dcnjgCdeyr\nZHIyyINZb6Tm52wviZT9H/gxcJB0bZLFZ3kKthIWtzfZ74lnKrvtHolAGFLErmEkFWfTxK8nU0Jm\nYHYTJiuK5EZOnYlO1gq2on2lVXexTr3SWyd1857hqVDThOYJm8yVEdXdsE28FrVro7VGqyutL7S+\n0rTStKLSSbNwOp24ny7c35+5PJ6Z7yfKJfu+ZaFlIyVFAxC53NAlhw1YRTygaabVhC4JFkMqWMWJ\njbarNRwM9O18+D3IptjIn8rk32LgNszwNmAfy7jexm3cxu/0uOG87zvG3sXCebQYtViepsRUspce\nS4d+T+c9nQum79C60J76pjb4hcH/IolXpfBQJv7n04mkxsN1oXIiV8gt/NTWRlldoau5U0Vp4tuS\nwEfjNbzT3L9idOJwlUMyI6XQ5G5wai89kVBRfDPOSy9wnqszfndw3q68+Gactw998cmdtPFSFMd5\nFuXHaePEbHSOETcNVYky8qRYcVm1Jeij0516t7uWG12brzWKuk+ZOdGwmYV20OZeI50XOK8GzuuV\n1iuaOmmGU5m5P114vD9z/2rmfJ+Yz0KeGyl7K9g0GbnhCvAov2F0PAqexiboObGmSGZF+XG1yQ3j\n14RVRZuhzbAuuzg3iKoPcd43kBo3SLONHxPn/cSIjY/XXh5Py28bOo4mRseN5pSZponz+czDwwPX\n5TXWGi7KUp6ysF6vrKsAPbZz3JsxlXzTnskH///uR/KcN/741+zyScy27hRO0XpHzkJC0omclZI7\nSqWFDIymWO206h4ZdJ8i/0mZKXkiS+cklZYSNWcogkwK0mi1IVdvr2Qx66bunVZyzyQ1yph8QoIn\nMtQB7D2to1ZyOxaJmllG4BpmT8NnY6Py9zObonYxWoBJBDG2ekMPooMhH2TI9p2bkZQ9q6PcJKyM\nz+9Bp6mCaZhf+n2ScJJmZB88mPo3CwnRTM6x8bQDk7FwlvhHUgsJ5ch+6KFHum2JCD8fLySwtjuF\n7/fP/rJos+rH5wSAIVuZCRmYCGLD0KKkvFJYmejMWim2ou2KthVplVRXcpQlFYVGocjMnIyWjYZR\n04xK3oyjGh4ga1up68KyPNHWK603QCnnifPlzOPlgceHBx7v77m7PzPfZeQMlpSWzEtispHjkLtB\nM4kmJxLlKIm1JnQFrgoL/qqGhWKD5tkYF9Y60een0f9MOcxDc9r6mvs1+La54DZ2ieLNY+M2buNz\nGzec933GwCn7ol3VJf1oB/NFb8mClEIqJ0TuUZ5Qnmj6jlYXeKq0ot7aVRx//JPTjOaJ3jun6jiv\nT94KvZmy9sq1LshamOuMFu981pP7JAhuDF8250rHYjIqUc2VHGLd8eUznJcCF41E1EucBx/HeYnR\n+WTHeeknjPPiGA4Ey8dx3suHR7AP7rnxuSgzsTCrjw4njru9A56X44wWvuLKjGxoMpjxLngJGk5s\n1FBrKA216ufEvARFLDuxoXglctNNkdukuZdGX6l1YbkGzmsNTCmXifN05vHugcfHBx4f7rh/PXE6\nC3nqWKr0tFKlMp0qSTu5ezuXkTjFjCTQk9BSYiVz7RNXm1lsZmFisYlaEyygi2M+74pi7O6svp75\nOM67jW8bPybO+0kRG94z+IcxlXo5jhJF8Ekxp0wphWkeAe+euq6gPkkXjKlk3ofcbV0X+qgZ2ubu\nIVF8yUp97CB+jMfhGMT3hb4REvrubCTdEBWSZYpALmdK7kCjSKfQEW30qpT6npYVq76w05ToKfnm\nQ5ImIl5TKZmlZ9IqSFZy9u9PHWZV0tYvXjapnJMbNmL09l5M32zMNYPA3il3i/ZT6GCtA0YEaZGI\n1l8REC1qDw/k+w4KGDW4eQuyJi+Cw0atW7Sh/ZCtNbOtdnDrsRV1mDmHhC1YfEyDHTckKWKemSAl\nZOgxtz7qTtBYyn4tI5jq+M4IkJaEPEifQ9vR/SaVbbLej92DXVcLRQNsPeeHd8bogFLsUHqyUliY\ndGGyxmwruS9Yu6LrQorWXNo71jsqQiU7cUGn2okqimSl9syaE00azRqtLyzrwvJ0ZV3e01tDgHkq\nPMwXHi4PvLl/zcP5nst04URhsox06HHPa4qMEC5ZbeqS2x6d/TTwH1eLF0FqsKlIrBlq4aJrjSOo\nNcyJueRz1ehtvqdQ2M/9Lfx9dGzmYTfz0Nu4jc9u3HDe9xy2H+DwZHBsYKEUEJJkShbyPJPLGeEB\nlSvKlaUtyLXSfmNObjTFrIMl0OQlxcAqsMzRNU8FeiK3CutKvzYsu5LSsu9Ljt2ygTcOZcTP/UoO\nWppI1kgSLEoY/LjkBc7z8zqy6M9xXnqB88JHbMuup2/AeYf9eIbzto3tp91wL7Do1udYTaLE6bfF\neeHZId6x44fBeXZQQjl54ziPA86DUXJiG+CT6HAXpEb2smOKuvl6NrpVTBekLxQqnh2qCK6ShehQ\nQ3as3t3HRdVoNXCeLixtYVkPOE8D550uPNw98ObxNQ9391zOZy5SyBlsanRWVjJJClkyGqXQljqW\nnHDyc684zMtcNXNl4srMyuQpuTWhi6GLwmpQLfzVCONV9WuVvLTdy9sl8ob2/NzfcN5Hx4+J835S\nxIZEDeQ33Sgvw8p3/o7DfyklSinM08z5fOZyd0etzhyi4Zs7Fshjwl5WzNpWf/d1zLx85Gc/7BGN\n3zt8hx3o7JgQR8tKwqQxqcvEcpoo5Q65KEU62Rq9rbTW3Mk2r/QlSkREEVFvzVXqxrYrhYphPUFL\nyAqpeI3lVFytUST8CcL0ycywfMyqDCJjZ6HNtoZY8RnFZL8OIs40A1ug8/ITr7kcrVcHxWODigef\n+FMw5YNlj4Dz/GrIR/4t7Nq/ASzUWe9R44jtEsnDhJjiOFQF0c7Wf11s3/aB1BHJrgqIxbRaItGj\n5nKURbCfu8h62CEDMO6HnW8ZpEZ2zBFEhp+faH2VZGvhahkvG5kgRfmJkxpXJr0y20ppK7mu6Log\n6wq1om1kkJxoyDnTc6eh5KRkGqYTzdydulpn7ZV1vbKsV+q60OtKlsRpmrm/u+P1w2te3T/y6vzI\nuZw5yUzRRG7eLtYyaFZadkVLimDfNVrPdtwUtLmSicWQBWQRWFypwerZBYZh6EZovDSOk63dq+Qg\nNcY5Z1cFPRty+PXPbLw0+XO37Jt56G3cxuc4bjjvew7PzjAWtGa7gSU4pEiBh5zQOVHkAvKA2hN5\nfQfXhfprhbW6QtcMifPh3TIqVcyJjZYQddIjtQZ1pa0VSvc6gOJ2jDIw3jApHx3wjqfnBVwNCiLe\n0Gj44d1NXNEbv/YM5x0UHTJML1/iPF7gvPwdcB6RUdvfcZx3wJPwEZyXviPOkxc4TwLntY/gvNin\nT8J5+3eYjJLucX5GWbJ/l43XQWniWMrQEuTGJJ7cSg10IdkTIldEKiIryaovLqLTiKSCSQ5s5yap\nPbk2fLXK2q4sNXBeD5x3mrm/3PH61WtevXrk1d0j59OZU54pJG9CoIWWo9uhFCDTxEuiTZsTG3Qn\nWcz/drXMQuFqE6sVFp2oLdMXwxYNbzXcX61buKPumO/rcR43nPdi/E3ivJ8WsSFQjq2XvmV859M1\n2N601+bl7BJFr70802r1THNvoM3LI8ZEHfe7GRg4LpgAACAASURBVHQbTNS3MXYv3/uhL/Jxe4dJ\nTLYIs7cy6iAdcneDH5OZMt+BdJIpva1or5hWSEYtldY8E96ke/eSLPQMykKzM6Un6Amas71pMYoq\np+wqkCn1kCv6drplBDcaSiNAi7PqYZWEl0cEq25gFh4b0fNcY/Go5gZMfl0TkoaRY9rPzWDPkcOp\nit8JR+2c8hbwFCLzEYTCM7JxyCbjHJs5A0D395JH07zdWykAxviVREp9N4mKVqKjjlIhSmgO5yRF\ngYl1erRI9V/fKmw3eaVFT/IhmUPC4Gq7SyLaj3uF4Ug+wEGUBgWpoQfFBqVTZKHoQrEnpn6l6JV8\nrchTg6fmCp9qoQ5ybiAVI8+N+dSoRUl0xCZazywtoyqszXhaK9frlXpd0NrIIlzOZ14/vOKLV1/w\n+tUj9w/3zKeZIpnSM7m6eVoanlfZvVQ0JVQCWI1yrBZRvzs7Lw1YQVaC1DCog/F3JdN4YCTZ9twb\ngS+GqVTy67vxS1Hj+2F99rPb6PMeBr15Xe5t3MZtfF7jhvO+/zjmaYaQ5Fg+E7lzsgilZGY5kbiA\nPVDqb5DrlXbXYTGojabDLLt77kaFJnCtC7llcs9eUqHixuBLRUpFckNKp6BIUldOqtJVkO6shodE\ne568CkrD/R3G/nPAeeJoUByTZEaJiQTOy9HClf1EmB65CD4N5/ED4bz0HXEe34DzMoN+8bsuCKv4\nnVEuk9LwH5EXOO9w/LBhO/+7nyPVUElHQmucK8s7sdGLxp9GSo3EQulXRBekX0lW/UV0v4uOKqYZ\nEy9rFo1yYIFFG9e6cl2c1NDWyClw3n3gvMdH7h/vmc8zJWWKZXIXpIJKoqYEEganJCqNZA1sinPs\nCSmzUB3hxMbCxGqZ2hL9Peg17v2h1h2qJBvOdaG0yfj1/QDnfQKlecN5PxrO+0kRGyllUin+8H4Q\nSD4SKOzwKfnwE3Z82ahZcwXB9ixnIZVMiaA3zyfqqXI6n6nrhVa9nWltldb6Vsdl4EYzB6Ofj93q\n8uxvY3lpH/3EbzMG233I38fu+GS6tTBqnq22alhVb2+ZE8wzabon3cGsbctYqPyKlt+jy4qaZ6iz\nOLOrOfG+JcoilOz1q4hnYBIwV6+FK5IpOTHnTCuJJj6h95jtRksuvz4eipMIKl4yYwRDnUZmIq7b\nptYYpMZQagx2PiZp8zpHZ633+0k4sP+j1VcYSYntFIBP/sazkxvft11PC9OQIA2SEIF31MH6sclm\nXx6f3Un7jdXPxfdv7NMmm8SiDjK+NsHu5b3v3EhYmMavj4Bmbs7pY1h4e03ROLzRblclDLQSri0t\nQpqULJVslaILuS+kdkXWBX3XsPeKXhVdvTe5diMao7tHR3f/lDwvpFSdea/CehWersa7d8L16mVT\nuQh38z2vLg883j3y6u6Bh7sH7s5nTucTJRfv/x7BTtQ8M5ODVNiwU5yX0F9KCzA4OIuK/371Z8Nr\nVeINovxE3BBNBsCJW8+DXCaNNmDJs0GyEUo3UmNk3D58g3BmH9nQ27iN2/icxg3nfffxIc4LIDBw\nUSSunrUqbxqtLDPkiTKfSTyS+xWpCquQSSS58pQaPeKpdzT3ZMbKSrZMsoGRhKzdpfuLIrmTSuek\njZQajURTSE1cJYmEwneUR/sRpPBxSNFS1A9nJLLwGPoM56UteZUOpboBbxDsoE7Yz/i34zwnNT7E\necdSlmizcQBgKQiTnNILnAefjvPkgPPG/bt9GFLe0lDHu367z5VdaYQTO47z4l4LFYWvBUYabBi5\nSihQhr+GYz2L8hMtimalF0VYSbqQ45V0IRF/2kq2Flv17XXze4AOVjv9qixX5elJuTZ3Lcsn4e5y\nz6vzA4+XR15dHng4P3B3ujjOK74WSCpIw/FzEDF9mrCc0JzJVIQJcAPboKxQjG5hFN8ztWb66n4a\nXM1JjZU9f6XuD4KEv04kJFNKm8fGhvFGa+Dtfx+Zs24470fFeT8pYoPkwWeU5g028njfjGAxKgJ8\nDtxPrL2c2dgzrWrH2j4G9RY9wD3oTfPEdJqYlpl5PnM6V9a6cl4rdW20pm6IYoZZ80XctsHYtxc3\nuxz249PHxz78NQ/Rs/d2b2mf0PomC6ThBMcqUHBio0xIEeSUmMwwSZhkmsws6VeovKd1dzAoOUfb\nzEztE7I4kzmLM7PSIa/N23JKZiqJecqsU6FoomUhl0SKiXafgwejLGG/kVDNpHQw/zyck6N8cZSg\nbMFunHABUFcAjuA0/noo3Rir4UEKDDuPYXb18poNuerYnZ1akPjR+DO8QMQlnhsns+9ESBQz0WL9\nIHHcyZnRkstGcBI8e7BFvDgn2766cZJa+HNYTPMmW6nMFp/HcTLUG/vinVFPmEGykqSTtCFWSboi\nfcGWij11+jvDrt2dr5sdeoIrUvze66Zob2gyqhrrFZYrLFehrhNqE2XKXE5nHk+PvH18y+PlkfvL\nHefpxDRlSs7k4d6tIO4IiiRDRkepQW4AW0+zAHyDxpduO4dRfT9Nu7P9wfiL2DNS49lzJ54B2nqb\nB5m23Xtxicdz+Lku4L/uuFXNjcduio3buI3Pb9xw3mF8H5w3NnFQBIx41wxrgjVBNUOekelCSUa2\nSjIjGwgJS0LPT9Sr0RtkxUmCDG3qrLJGyiqTNSHNsKWDKEmUkjpWOlkaJSWaJrIpqYfqFfULOUy4\nGTZrgmooWg+Gn+M4d5yX9rKPKCnZEggj3G4JpgCVH+C8nRhy4mv8OUqkPySqtnvM2LDRftXG9qJc\nRpws+W44b9utDXcOHOdQTTaFyfjWD3Fe8EHmSmazXbXtX+Ab82fikPyyodZ13xErAlmw8FPzMhSF\nvJLsStIrpT1RgtgofSX1haw1cKEfuAJNw9uvKv3aaFelXQ1tGWSinE9ccuC8h7c8nh+5n+845zNT\nLo7zoonAhvPw8yuWPOFY/NVGFxnTeAaC2DCwbtH9TuiLoKuXn9hBqSENpEvsv2/n0OHACdFnOO8w\nXwWWvuG8v3mc95MiNpIk8sbk+9iZMbZJ6KMjbjSNRfyeufenfrDvgMuILIFoKMEk6uQyeSrkUsjT\n5K/5RJlOlNOZaV4payNPDRlZaT71or1YHP2gYz9bY1k9mPytXWUs5jTaWlrF746pYLkg80xJBSkT\nkk+sMlPshPVfsS5upiVkSJlmmWsX+lrAYELJzchZmW1Fk5AyTmycMvO5MFuhz+bto8YiW2OiPaTa\nU0p0dbZaLLLhMCLN4VjD5ElkN2+UI+nBxoL7dXZOWbaylwhMcb/sAc+2IOPbCBNT2Sevof4Yfzfd\n+7CnFMDCOmn7zoO35LbhhIiRckyO454fkYcIpuoh1cwOJTIjCMv+uZAY+jMw8gU7yTJgBaPfd9Sz\nciRqkmymrgiu2EgWlZPqkl2t/uoVXRt6VdqTOrFRw1TLDNFRBqVY71hv1GXlmlauvfJ0hesq1DYh\n6YHz+cTd+YFXp9e8Ob/m9eMb7qY7zuVESYUs4Qo+Wv5u9he2K1zHa+AbI+omLYiNIDW6B0vr5s7m\n2jALSfIwozEDGdc6rkFsfwt2o+zpALC+y/gxWx3+bR0jr9Nu5qG3cRuf5bjhvO8/NlLFjrglFBoe\nytz7ugpWBZ0ntESHhwSlJKYpYbGYbdmwd6v7Dphnqk2g5c4yrTSDqoVcJ7j69wlOZpysI1NjypU5\nFfrwVQNMwrcDDb8IPzcpSeA8EEsvcN6LI00ux5RRSrIRYiMgmy/SAyPsJFhiYD0nfaLUeTtf9gk4\nj2/AefYRnOe/LxtWDXPQZzhvsHUHbLHhvGMpNPBMs6HP7i7HeXHs25YkcN5h+yN5t5mGBl6xOD8p\nhToXrEAP81ArjSQLuT9R2hO5vafoE1kXilZybeTaXfEaHeREGs0q1lb6daVdO201aJkp3zuZ+PqO\nx9Mb3lze8Pr+DXfljnM6U3oh2zCIjenA8ISseXnzUCZZEXrxltGjUcLoXmd4Yk0bWDW0Grq4Ut1J\nDUNW3FejOTtkargFfff7dCM1gtDY/DX29ccnP6s3nPeDb/+nRWwkD3jjRlBsWwhuS7mP3SNpTEZs\n9WzYix7pY8JMyZm/7BMqNiRuaQt6kjM5F/I0k6aVNM2kUpBpIk0TuUyk3CH3I9V62KGxqgp2+tmC\n/Lvc5C8fnuO/xwGN1Zy/b7i7tSDoaFumGhMmaBV0JeroIJeoRc0FUsZOhSITU89MfSb3GeMddV39\nEFOhkb1LZku0mpgbTLkxp9XNRJORSmI6z5y108Tow4yyuNu1WDhbH0iGfaEuWwDBDEturiQR0ZyM\nD+PPsaoNwDOCQ1zsjbh3Q48BoEKpEWveEQB6yPsGu01k4dNoQbuBCduCiJkfj5/jABY5YWaHxTio\n7DSDz41DxeGqF5PRPzum5tjWUTkyMlLHsppxT5jtviJmXlLibdYGceHMtospDlmNEfQHA51k64pC\nHqepg3o9JVqhrtha6U9Kv3baVenvR4Bz0kTVMLfERtNKmxbWvLDkhausdJ0pcuHhfEe6PHA6v+Wh\nvOVhfsV9eeBczkwyk8lkktc7Bj1z4LYOihw7HNMe2IcH6CiT9g474aURLVKc1Ohslthjw4MAYr/e\nCIe5IoXgJ3boawLY5xjYvmmoKtrazTz0Nm7jMxw3nPdyfNM8+MFKH3Czcsw7gmiUeLinlHhYa7Il\nsbQKvU30nOiTExs5O+47NTircBahnd5h71esgWRvl6mW3FexG3nxJbQo9K4kVeauPNTOPHfabPTi\n62UTQZMikRh5fjwSMMoVG9tZ2HDe+GQoISVHucdQ2B7W7YDjvEFepe13N6XGR3FeJLAgcJ7tnUYc\nsQWMsO27dJAjgRPdBF9e4LzDPRw4dMd5BM7bCQ3HeYNk2U1gd5z3/NpvqtuxTwKiFjhvJ7ue4zxX\nIOwqDQLYhWno8FSL9q6WFc0VYSHpldyfyP0dub8n1Su5VqQpVPUGA0un15XeVyoLq8arrSBwzhPT\n+YF8d2Z6eOT0+CWX81su0yvO6cxkM7m7GldGm1gZJ3wcguzK2y5OdhTbTvamQhlklPpnrZr7py2u\nJma1vQSlxQUL7GfbC0bHmuc4L+7fIwu7rcHGnHXDemP8mDjvJ0VsIJEJDSbfVCNYsNXUjUUtwFEC\nY+Y+Aj0mh3SQv+iYMNiNFpPuXsxj9bvX4wmSc/QBn7Y/c5lI45UbSQoiIX+KkoPBVe0BLxZj+0Ei\nHGa/b3gQPk3Z5N/hLa+il3Qs6p3j1X1S7h7stEDPQs7RsjUHKz4Vcs7IqXC6K5zazKWfufZfcdV3\n1FYxK3QS1YxlVdYK9dqZqVRgkgYF0lw41ZWFxpo7dVKamtdfanzfqNscJRviXTlE3EmZ5Oc1ixsc\npa3uUthMFbZykp2v3rR8zzqHjI7mhwU9sn1kyAC9guKwUBXDVGJi2zMEg5G3Z+SS7Ox7im+zQWjo\ngbax7T4YFZKDDd7Ji102uRMbY/uyB70Xk+n+bAzYtRMyfh/oRvz4fZv2QDqis+BdbPCsDBpSn75C\nX7Fa0WunXzv1yUmNtnS0Gal3vvirX7II/MXdGVuf6Fxp+UotC32u2EmZTpnpXEj3d8yvXnO+/5K7\n6Svu0oMbnWlBWnIvDRy6yEFBsR36keTgoLAYQEHNFSOjRVsY6jqd7+UnpuGQb+6o7ZF1kCiH7wzi\nJ+VEKiFP3PSk+612G988drfsm2LjNm7jsxs3nPdsfDrOi0gu0cXkUHe54TwVrGdPYFXoq5An6DXR\n50RLiZwlDBETcxfOUrgvhV4KWn5DvVZ35E6Jbsq1Gotm7/+quI9WVaamnGsnr5XzubF2pc5Ky9AS\n3kktEgQiu2LAj8GTW4owXDazhb/aOFVpkBPj5T5uNv4/TrvA7mlx8EAZi14IvCYHnGcHnBcqELUX\nOG+HkPslCiw1cFgaxNz4uqOedr9m0Z/HsYVwIC92kmbsmw1CRQ/3/rPbZ5Rnj1Lj/W50AkMPapTA\nLyL7d7CTRI77gmQRo0unS8OkeglKeyL196T6nlzfk5YVlo48db74V7+kVvjX5UxdnljblapXqi2o\nVEid08PE/eVEeTxxenXP/PoNpzdvyPMbstyTRkl7FYRM6oOLCnZmPMs9LvEoJY4qmu3pG+dODyc0\njOKphq3mxEY1aFG6vEmz3V/Ntk54Tvak8OXZcd6zS/DsrnhJQN3Gj4vzflLEhku5wrW49+2kSJQb\nlJB/vxwagbH37i6sRJVU3ovaxsmVeMj9+z4MnMAmMU/JfR5ynijFJYslmPxcqt/0LUU93Mcu3jHY\nvbzxv+8K6Li9weKOUDukZ7GY3TIKoD3R1jDxTFAKW0xIClImtMyc5zN2/4DZa9b2C5b+S66/eYdq\ncl/IVeFasaVTrVFrJ+nCKZ9hTuTzxKk1Tqkyl5V5mt0QKBcG/VnIe8ZbgGxbhwvEXZ59VZujW0gi\nmU+AmIX/ZTg725DljVOrbgY0iIPouOKLYjmcvghggrPFEWk8GPgkpwln3IN8GWZWmG6ldppw9tf0\ng3rRl9JAwTa5XRrhcEzMIxBtgQ6GidZGeNhg+G0Hauz387i1dCg7Rhva7c6JXuwAAQaVcd4ZvqJe\nG6sNbRXVivYVq1fausJTpV81VBvKtSm9K6frlT/+P/4Zf3me+Bf/zh/R3r9D+xOkK5wb+T5ae91d\nOL15xen1l0yvv2S+vGUubyj9TG4FVm87i0BSQyT6wJh6ectGUh0InvEcx7nRg3eG+2dELabq/u9o\nD2ab+5qxyTsGgGEv9BGBlFN0RBnS2BdB7za+cZgZrfUP5t3buI3b+N0fN5z3fcYR542EhW4LXMio\nJrSJ47wCfYKyQp8T65RJxVtYTnlilhnyBaYHGmdW+QVr+rUbQJKoTVhFeTJorVCb0daGzMpl6ejc\nmU+VU63MdfVuFnMnTXv5TgEnOMbIQrKBoUZ5h0JKXuIRSSw5lpJEAkxNNqv2Ab42weRGOsR5P2Cn\n8aNPx3k8K3H6dpwXGOGg6tlxnnwE521w8IDzxm/tBIevvTVwHgect2OOD3HewIt2eM+2xN2WvZId\nGfdhuEmn0xC9gj5Be4fU95T6RL5esfeO+aZfXfn3/8d/xl/KxP/zR3/E0/t3LPWJplfIjXxKnO5n\nHvMdrx5ecf/z18yv31AeX5Mf7unTmW4nbCl+ToUwqBWkE7htqFvYjzfhyuAU11qGkuZwHsNbzfRI\nZuAG8sM8fsN5/gOjOS4Ofw0vE98JQJ6Votxwy6eMHxPn/cSIDX94VZXeO7VWWmuIeGtF5tkXFBHI\nRpmFmtFb84DX9xM52P+jE3MuBcEngx7f01qj1bp9X3uxjZQzKU+UMnsd5lzJ60pKBUl1o133y2cf\n+fPFu9sE8ykX/es+Iy/ePxAcMoLtIfs8/rTscq4KtoKlUB6oILMwafbJXwTLwpJX1tSo1j2wdQuP\nArAm1FVpVelNScVbOuV2pVhhKoV5njjPJ6bpRClKSk5gDELeF9KdXBJWQIpsx6DgZSQpeytPy6Qw\nw9wCCUoactMk0bLTT4ck80CFREanRzAd11c2Z2lBvMtGH1n6ncBAPZ4xanq3S+NSyUyCbBHwRmg5\nnvsjj68MHYJfre5Bc2QR7Ni6K+13j6c6PAQN1cYgWdLICIw0xSBIhht2KDTiu0bg1ziPo4RnfJeF\n3NRaJ0snaSf1DrWTa4PW6NVLTlQ71pTf+/N/xR//yZ/y9he/5K4k/uPe+d8ez/zlXWI6dc7zzP3r\nC69+9sDly58xf/EV0+NXyN0bpDxgeiKtyWWH2dUa3gFGSeL3g2kKwsUiSsFezzqeheO93wNyHImN\nHvBHkXhtn98UH3sJyjGlJuIsfi7F+5tHD7BbucmnDj+fvTfU+rd//DZu4zZ+p8YN533d+KbPHLcx\nYo0y1KrPXoZnrUZ1ZRX3VVtBs1CZSJMfK3Mh2czEiWkxSkvQMtqNZoIlj7ddjKUnnnqmaSZXIDWk\nXClzmLDenzhrZbKZQiOJl3ckTdtumhnZEpaTJ6hin3UszC0j2aNyImFkf687xkmxIB+wDLOAaRJr\nz72sY2AqkCCwxpLeAuftXVoGgYEaKj06qBxxnt+3mRw4Lx1w3hFzPL+aQa0xzNkde+oB5+1EjHuh\naVzq5KXk6uUuwWh8C84bpMjAMuMzEs0RjyXNYTSKPx+tq5OMSenayFaxvkBdoC1YXbG1YU/K7//p\nv+KP/88/5e2f/5KzJv7Dd53/6fHMb06JIp3Lw8zD5cLrNw+8+eIVj1+94uGrR9LDA3Y+0U6ZJe6H\n3hMpi5Nd2dXcfu4EtRY3zQHnDaJjQIfDqbfBVYw2vs027kJC6eEqEI1tehmyBUbcjUPjVBc3G77h\nvN9m/Lg47ydGbPhkMYLdsizUWhERSvFDmed5+/zIXLfWtqDVVfe+uZHNNrMt2I3JxoDWmge5WlnW\nlbVW1lqpq7f86uaTipv/ZEpxJn8qzuynvHpQVd09GT8IduPv+zT3/Offj9O34xHZ8eiM3W3nBbkx\nVrBdYAUTn2zT8L6wzJwKCc9IX8vCmitVVp60sbZOViIQCdYafW1o9WuxtkruVwrCNBXO54nL+cx0\nqkx9IkX7z5SMXICk3hJsMmQWpGxLcSdoUoLUvY0qhxpEVbTLNh8ZiWyZYU7qWZsROHYPjE2tgJGy\nyxPSMK+Ky2LDBV0snNnNTYWyZwY2KSByMAS1qAeNK2OjFjaucrC9oz3YxkLbqLeMK2cvQqSkPUhh\neMeV0bNdAgI4CBg+JJsccbvk3lvehopFbLsjVJ0siebqkRkxb3nXlEr3gBAtg7UZSZ3jH+a02ir5\nN7/i8pd/wVS9TvfhF78gn96SHi6c7mZeffHAm5+94u3vf8Hp7VdMr76Cyxe06YHOib5sph6o7edZ\nIqhLMPbJPLvi18hNyTaAYUdS46DEsCA3wsjsWZpEFInyE9tA0VG1Ma4/0eIte8BLmWc+LzfZxieN\nIVHcszG3cRu38bmMG8777uM5zjtuV18ksQJveN/23UtgxbtdiNEl0VJxf7VyQjiTOFEWmGom1YQu\nld4MzXn7nq5K7UZdM8WMRCOlK2VKTOvEWWcunJhkYkruHeaJI8iWN5wDwyw0Q5TQjO4dfp4SWbwN\n7KbUIGEaeDMLORI7hm3qHEcBuweGbjE8zDvNfUV2nOdlqv6ljuM8zgtkC/yxG3PKhsEOuARiPwaR\nMHDe/v72D3MKRweetKMdqG2ExkB/vrjfTeUd6WVsOJEcVR0bzrPAeWnbz0BJjvMOZdYmspmodu30\n1mnSsbhpcne1rvQVWkWXRn+q8Fe/Yv7zv0CeVu+E2H9BK2/p5cLdaebV/QNfvHnFl1+94c3PXvHw\n9p7LmzP9dKFOhWtONHHfli7eBEDybgI8SrOTJDR1rAc2iwSlH9BYx/jLNoP4/e82uuJtWcJIYkk7\nqHij3ysH89EgynJ0Udq7M95w3ncZPybO+4kRG4Akequs68qyLKzriogwTdPeu3p8ONj4wcKvtfpi\nV2O6GDe9GaUUpiFTxJncuq7+PevKuiws1yvX67IFv9b3bUkYbJZg9HOZKLmQUkFph/D28aC2B71R\nF/mxAPh9xvF7UqyZx5Jsl9wjGooqXyxbN3cH3vbeH2jJhWRuKPpqarRTZ50rrE+IVRQHELlkVK5o\n7yzdF4Str1y7Lx6nUjjPM+fzhek8MbWCzG7ImXPCihMZVoBZ6RMwpV3yJebmXSmHTDHYWLWYk9SV\nI90OZAtsrTEUVIYMz7P1ujmTemmDZH9MJAVFEJhg+Ft4W9pRDuEu0s54M1DOdu5GL/ZxPbbYKrZn\nDGJuDB4hPuNyQ9MR7HYGnk2DJ9t1HRAhrhhE8B/fPLIDvXvwbi22IX4fy+grr5496NiOi7q3ldXk\nNa8r3pO+V+hdmBXmuC6WKsqK1if+5HHi//3jP+Af/N9/xv+XEv/d739Bfjzx+u2FVz9/4Ks//II3\nf/CGV7//mnL/FXZ6zVoe0XSmt4LEOVUFbUpSXEXkLNxIzji5od65fA/bO0DYyIlg5m2oNLYSlJ0c\nc6IJnvl3jNcg0IhMh4SqJ2V/PlIOt+xbsPsuQzcm/4evvbyN27iNv93jhvO+yzhSNB/5rmc4z+Ok\nhFpBOki0NbfVvPOFAEkwKfQ8eyeMuSPpwtSym8a3xJO8R9cOZHIWiiiyrqTqHgv0wHmmkGFaCude\nOMuJKWemLIh4jMwpY5E4chJD6JpidSJ7J7akkbm3OH2ylRqDYD1hCbIlL5vdLoNsitoPcV6oNi0h\n2WttHefxEZw3khyhJklyuL9gKG8dg6RnBJMN7ClywHnyEZznxMeO83bksg/Hv3uK0hi0his58q5Q\niNugdy/RbW0n+3acF4onjQY/QbyY7e1qzaA1o9JR7UzSKV23zi9WV/r1ieX9E//8MvEn//Yf8Pf/\n+Z/xZyT+0d/5ArucuL+/8PbxgZ///Au+/PlrvvjZax6+vOP8+kS+yyzZDWyH0kXx5zohuAKGSETK\nAedJ2HmORNXhKRgkhulGZLinGvHzXXnrOE8RCUJjkzP572+khgWxseG87GTYKEW5jU8ePybO+0kR\nG4igQzIYLPsaTL6ZkXMmD8ngoW5SVTcGf9RhjtrNHm0ne7gZb+y+6i5JHN83pIprZa2NWhutxcIW\nr6svZWKa5i3o5ZzpY4b8pgD07GfPg9Wn8Fnf/Ew930Lk3fFFnpMNaooSPcBG/+qxK8NxuMbvh8dR\nIlF64SwzD/nO237JOMdCkYkyzdicYRGsLb5IDv8CEeP9+8zpNHG+myl3mdJ8UhZc3jVPCZmAonAC\nmTp5dkWBhFGXiJFTglRQJp/iLaEZpCtUI0mit8EPpOjYKX4g9FjgDoZbNzCk5DhYJZu3oEtDKrtJ\nT2ULWnlz5xav4zuc/fT8AmwZhvG7R4xzLJP0YhDZA9W2pcFgOyEhklEdV0/3SVgSI1IPk/EwjHeC\nYuhANQW3kWMi94W+MvxH4lRtZlJKVUXFvnt9UwAAIABJREFUyM2JDetxr5iCLtT2nuv1Pe/fv2NZ\nr5hc+R9+fqGeZk4/e+DNl695+3uvnND4vUfObx8oj/fo6Y5WzliaUCZM3HvFDd3CoDOMcIdXyq44\n8iDnZMQoMdnlyqb7v3ddShA543GxI6Qw9if1oAiyw8UEf2ZSIeWJnCaQgkjm257Oz3F83Zzmj50H\nvC3jehu3cRufz7jhvK8/Nd/47sdwHgw1KtZdPTlwnua9g0Rl99A6YpA5e5lvz2Q6czbmGXKaELsi\nmpg1Q4KeFoz3jvNWo6/eLUaA9z1zksJ5mihTomQBOSOpIAnmYa2WDEuCZfVylGFRJeFfkTotyVan\nnJPjsNFJLiF0ddXqZoGBsamTx2LWDI2khuO8tJE62VIQDi9xnjHaA+ehqo3uHHsiaW+uuuO8l5d7\nLILdq4GxUB5UxtbKdVzFuF9H4koSqt5NJpOiFWy8H4SZDt+1TXya9i4ocXEl2tA6pmlBYGy139t7\nitKsU1OjWsN6I9FQa2iv9HZF3/2G+qtf8/6v3rH86orVK//0zYX3ZSa/eeDV69f87M0rfu+LN3zx\n5SOPb+64PJyYzxNpKqQsyCjpEE8gZvH1ReoJKYLUAYjj3A4PNFHMhsE7gfMO5IWOqxPXfyS6bJAW\nB4LroOTdWsTa8Vr4dSPlFzgvHd5/SVZ+ypP9uzn+TeG8nxaxAV4LeQh6rbXtvSnqK7V3d7Pe5EH7\nkGD47bAtDbnZkCmCPxzH90fA7NqjHrNTa6f27iwnrmLIxRfzQ6aYS0HWHNT4x8ZLPvZDfvbrx7ct\nmL72tjq8N9jrkF/RsM1mM1po+urXg6AY1HANFhdLzDZxyScepgtLvtJoNFUkT5ySIE2w6udxWSvd\nGr3BivL+mpneTZzuZ8pTYbrPiCYyiSwZcqZMkGaFSaEokiAnIyfvZOIvAcmQTr7wNnPn7hYTPaHR\naIQx1AAhQyYYBMdWkhI8eOt0hCQp3LgTpNG+aw9EW2jSvc5zLHyjQtSViMpmbLRNgJKQl9fK2Jjz\n45W0g9wRhhQyxwI6RetZ/91O98W9E95bkmhkGFTxtq1J/FwpThKkjGny+2F0YpEI7uqlJk07TTs1\nd7ooqSu9uUpGu9LXBusT6/Jr3l9/xXV9T+sNJvgXf/DI48MDP3/zhq/+zlu+/P23vPn915y/OMPd\nmTadWdLFSY1UMC0oJa6xyyxTjtpcU8bNaFugGsTGIZCNDJ56aQzG9vnnyIMtkJntRMbYzh5U44Ka\nk3A+MiITKc2kNCHJnXdtsFSfb3z7boduRr+Zh97GbXy244bznh3NR7Z1fO9j25EXnz3ivDBDNLCe\noCWkcsi8HDbRxP0kTCj1zIxxTp1ZOtcmWFVKmpnMF3smrmxY1pW+KL12Vum8R5iScJoLZcpMxctN\ncp7I2ctccxYkm7dJLYJlI2eHdVu2XnBiJsPwlEjmiSwgEju+D7tQciQnYpX/Ac5TpJk31hBIUvwX\nE5t6wHGA/00giAU74Dz/jCCB84y9fcvAeeOqGJsj/9ad70UC5cViepQ2jwW0e+f6Nnrs01BYjJKX\nITAdpS1bp0Di+ZB0WMDbVrkxsJSa0XCc16TRUqNrRXMlW6PqSm4Lsr5Df/0rlr/+Jddfv6c9NUzh\n/3r7yOnuga9ev+HLn73l51++5edvXvP4cOJ0N5FPCSmQc5SaZAmPEHZyo0SHuXF/DqJqo5J64Dwv\nJR4KY8d5g8hiZ3gOz4QFGbYTGJHgpAfOG+SHXyfZnqmB86bAeY69bas9Oj53x2fxd3/8bcF5Pyli\nw8xcGhjGTsMkCjxYDWbeLLpTpERSJeVM7h1NYbRoPolZMPr6guGHkMnECR+tv3xR5dvQrrTWXOIV\nGvicMmUqTG2izDPTPFGWaTOf/PTLNz75KcTFpz40Y/KMGsIx4YcHwmhraVrYTXJCmifEvyew5O3C\ndKT7jdzhROG+nHnKJ5a0AEpJAqWQs4B4MFWtWPUOGb0r67rw7vqe+X1heipMayH3QsYliuQpJr9G\nlspkndKNgns0pRTt1Uydbc4rlIrkC5bPkKaQiRkme5lBCCqcbTdvW+oqkGC1PVKgKKK+rylrVC+m\niKkSCZrd48JZSN0yQgThcszr+/eNgOVsh2zXx7bJ2PdzdOnwwDo8rHYpa4pg5ZOrm2R5sE6EkaaY\ne5QcSGUz28tuC9AF6bKXIDWifjPkngQZUp29X1ipubKWlZaUrB3tDa0uH87Xd/CbX7K+/2uW9R1q\nynwpXC53vHn9hi/fvuHLL7/ki5+94eHLB+7eXuC+0KYTXc6QzqjMqExoz6DiChcNhYZrRA+39whc\nut2/TjyN+ki/xzfFxqg13s77+HeAAg4BdJAa29jhie9CDoKjkNNMzidyOSEuNQLyd3pSfxfH18Hv\nj43hln1r93obt/H5jRvO+9jnvu4zL7cx5sxIlgx/jVBrmLXAeS2CVwYrTm68IDbMQAuEvJWsidNa\nuNczT/3M0ioszX1PZCLnCYKQ0NaxVemt09PKunTeFWX+TWKaMtNUnNSYJvK8gs1MA78UJWX3yrAi\n0VYzjs7UD2mIExIUKYhFK9aO+2KEqaYojoFi8SqR8Ni6sMTi1XGel9KmnIZLxQucdyQNAuextw4m\nSJDNMtTGVUnb98kWCW1Lrgw8uuO80f52XIldZbEntCSqXYxkQ03ElmQbLJVt907sTHb8P0onbJiQ\n2sA5nsTU7oahi67UVFlz3YkNXaj9Cep7+vLXXJ9+gf71X1F/9Wv0SZmlcLm/4/Hyhoc3b3j48kve\nvH3Dm4cHXt1duJwSZQ4l9rTzLcM0+FhkM/zodkOSI05+ifP6RlCoDe+Gja3Zn5UN58FQJhP40I4l\nKIMA4Yjz7AXOmw84L91wHn87cN5PithQNZbr1eWC6/r/s/duO5IsWXret8zM3SPyVFlZtXf3zECa\nIUGIlwIxhEDoQgIEvYFu9U4C9Ba60QMIEgTyBQQQ4ogDHkBQMzwMpem9KzMj3N3M1tLFMvPwzKrd\n083pPd1blVbwyswIj5OHma3ffvvXv8gtp7Kzqp1170FNbLfb2hjIvRy9G+Nc8ulfNp/YZFukesyT\nTS7VJxiRQIwDSiWaEofkwW4YGVpZsFpKk0Pq/tl3x5fewS/rIi/Z4F8rmG4McZ9ItQX+ilppcrSX\nAbMzxkbALDbFgp8XQiVFZRpgGmEcoJZKDJWYHAQYE9by855PMK8FVSOXwrzOPC+JYR5I5+iVL4p4\nSqVmRnUzymiZFAopKIMFUjOgFnolE3wnoi9mgzq5ISM+6QRf1DaTL58bndIWMSRoY+FbsLLu6eBB\nLG5lpDxwSLB2Bfa0hDXGV1ouZptAe3/hct2wC5Kw3ffhl1rbJFpbTqj3RV+Ld3+N4N+VdRmlNSmn\nH4qi4gfBPIc2cAFf3R1axUUP1Q24tHh5r2pG0eavpGD1Yv6abSXHlRIzNWYKhTVnmM/I/AzziTCf\nCZpJx8Dx+sjd9S3v7+95eHjg/f09d+/uuL47Mt4eiDcjdRjQOKJMIAdMRozRgVeXzLa4Iy3aXLwy\nmoTQfoC02Pw2et6kvbrfSb+XILLPDT3AvRxlvssRLoodic0hP235w/RUlN88Kf2Tab/aR79c425W\nthmZvbW39ta+mvaG816/u37Or4PzeKkEMJfrO84rDeddFtjNNAvp1fD6K9bLOwgmpBKYdGDSxFgT\nda1EFcd5YcBGww6GTpXnYsyaUS3krMwzPKexVb8bCCkhYyAc3OC9hkRKsREZhiawIRIHXFnaP4/2\nGF12a/hEstAyqQUrSoOFrYrdRcXpuK3jPBrO8+pttUIsrj7ZLqO4CtcsNE+P3T6KXBbkIFi44OWL\nmejlW9uW2BvOs4bztOG8Rmp04qN/g9s6+4JPrOPTXtWke3QQLjhP2mtIcKLFHOcY7CoCGUVjI/wc\nE5dcHefpShbHeZoKOa5UO5PzI2H5njh/T1qeSetKSoHjuyN34y33V/e8v3ng9vaew+0dx+sjN4eJ\n62kgjUIYGywfgdHQQfAKN25+2nXYFw6jXYxeqnXDeXv81lXX/XiNA/drmn58Tmq83MTqqToXBbZI\naDgvfgHnfb2Y5XcJ5/2kiA1TZZ5naq0sLeD1MmACjVn3GuYxRmgyw42pr3Wrc97/7oHvxev0QPnq\nNuisvtcuDk2C1CXv2nLWUqqkNDAOI3mcGMcRLWUjELZV9YsB9mtfDV4GvV/Wvvz8PtTVy3FuLsB1\n95TipEFjf30/oiDi1TVEXA0QQ8WiMiRjHGBKsAZ1wiMoYUyITCBCbf4bVWfWNaNWyXXltJyJc0DO\nAnMgrDBk41g8WAVRohRiyESpJA0M5vJGaQtVwyhWUaoniaQma4yC2bBlm1ixzdrClQt+JaKZu103\nxrxfBxc3GLXnc4a2lx/kIpiQS7/pOEHEU2SkGXeGdgU9wLQKJLb7HjdCeT9R9wM6jYJ0QycHBCbm\nRIjgpHI0LCpVFA2N2IiGJGmpKu11W4B2k1jxa5MNDUZpQU9rO9q4yWshr5msCzk0UiN6ACxlpp7P\nMJ8J60JSuJkmrm+O3N/c8fHhgY8fPvD+/Xtub244Ho8MhwRTxKaBIgeqjFQZKUxUG6g6gkZCcWJF\nqrzgIrYA13dlrOdEbhDiVY+/9PzL7tYu8NnnY2XLQ31xC5tKse/mSJsT3EzKd5/6DsRF4/HLRuTX\n2/aAr4PMr5oNemtv7SttbzjvxTviV8d5rx/XSA1sh/MKl2oPl6d040lXRkpt/hTNXkya/1c0sBoY\namTUgakm1rISDJIIIQ3IKHCEep3RWqh1YV39e8lr4HSeifEJiQOMETkGQu7m5o5dQgqEwdBknno8\nBEKShqdanFelEpFmul5FfF8nNHKjb0p0jwm9XA/HeTSct33xLZZXaqhedU1Ce3xP3+jeE2DaNpfs\nQoyJNJzXiLGeZXLxcLi8VnuH8BnWc7zgjEn3e5MtNXrfJ/xzCVVp5F37LoOb7/tmmp97Ebj6Rpip\nE4jFoKq1cdI28YqSc8N5dYfzSiYzs+gzNT8RlkfS+sykhdsUOb4buR/f8fHmPR/vPvD+5oGr6YZh\nPJJSZBwC0xi8smEnNiajDmAxoAyoJqpFzJL3x4b3vJIJG+gy6ykM+2u3JzAu1/NznPeyimA/d/OV\ne4X0Nu89nCCSVtHHzeHfcN6v0/6mcN5PitgoVVmW5VJzvJRNUihAaTL4cRyJKXl33Qe9JkF8YS7V\nF6OvGH/tOZe7HM9aXN4kwcuOjZO0fC7P6fNdBKOmShpHxmmilEwpV00N0QiE2gbYtiKGz1nFX6Xt\ng96v8ai+Kms73Kp+fWxX5rSz4z2PzS+yS/gEI4giRIgtrzEoKcKQhJQgxu4yrKQohMNIiNHZZQ2U\n2kpIiVKsMJcZZtCTwQmGU+H6aqUOA0hwQ0zJRFmJoZA0MlpkDJFAC1DBWKxSzfMCO0VACuQAFhMW\n2Uwze6lXw+uW1yZjC6FHJPfM6KCkVmfWt9SOiJsaRdkMNRtfsFl4dCWomPuGmATEmnlpK49qaruS\nsNsmEbvq5lsxFy/l6gFNtZX7Cuqfqb0nkmFJqcFVKxoMGbx0bhhan2m7FNvzaIQCtkIJStFKrYpG\n9cBnlVrbOFgztRYqK5mVlZlzfea8nqn5RNDCSOJuumO6HXj37oqPH97x8eE97+/vubm5Ypp8jNYg\n1DBQGMkykWUgM7IyUnRE1+jGZtWQVqJO9galXYbY8yPtEqS+PJZ+2RjbB7QOMl4GqdeP7D2o63F8\nd6cbuEqrlPLWftWm6vPCV7zx8dbe2lfd3nDe6/br4rzLwtdfZo/zetWHDkw8ctneHZ7gm/zF00Dc\n10FRCwQVkkYGiyQLxCotDcRIKRDGsXlc3KCaKXWh1pValVKMeV4hnNEkcAC5FuJt9I2eIFgaSWMl\npoqkCtEXkUOMJKm0enNU7cxLQqO21OKABd0KknRig9AIDhfStvWxehU9wcmq3a5xrXWzN+ueZr0S\nirXbDE+N7RsbmwdGEKKIG58K7nGmdfvGZYdLLsahF2xxwXnSFEfe93pxjxfGok1FUBvpoaLNqwJI\nnnLiz2cvlv2oYgVKaThP3AC+tvFQS6HkQs3ZFUjiqg3HeU+cyhNFH0m2cEC4mq65vk18ezvxzdV7\nPtw88P7mnuvhmimMJPPqKxIFRpCJLQ2Fo2BjJItjwBJGqo3U6inIshNgbOVZTV/hPHg5rvbja//7\n/tz+m18Z2z2uY+79eOpU1LYaEGka8Dec9x/Tfmyc95MiNjAj57x1us0ACu9otQW3XAqxFGII9Hy1\nEAIpRqoIVoozbbRwsTOf6sFub1rVAyZ4sIsxMo7B5XK1BcmWi9lz5UrJ1JwZy0TOB3LxnQd3ga2+\nusacEidwkS5uH/Y3eeFe/e7B3Y2PrOX2Xcx1RHoY1U3qFky2heR2tNlYRAlBkaCk5ORGDG3SMCWI\nuUFQSBgDVQO1etmt2RZKLBTJLBVYleFUuX5eWKaZHCaU5OkSQd1PA0ODL9xr9PJb7qosjLFQkucd\n1uA5sybBp68wUSXSszeQRgY0yaJUa+ZX2hiJxoK0tJTSvTCk3ZxAhoC007TdtykCAa0e+UQ9JEsz\nuvLSr5evXjojQu+TOyZfLtOqNqVHbUG1YlhTZFgCBv9pg6GhIqEQW6pQirplAboUrInxQkBDokqi\nqJAL1KTU6JVPKnoJeGsmLyvLOrPWmVXPLPrMuTyz1BMqxnQ4MF4fub478u79Ne8ebrh7f8fx7oZ0\nfYUOiZwimlxyWGVwQsMGivnvpQ5oicga3Ky2tNLDSpN4NnktjczQ3n/3QepVn//BgPdLxo2wjZd9\nVflOe4CDJCRu+aB9TPUguYMtu+d+C4Nfamq6zbVv7a29ta+wveG8/5iL9oW/22pYosfKXhGmxcm+\nScXmS9BxXsDzPhMX1YljlGD+MxEYQiAKTpRoJjA4zpsSxpGqmVpXtBbmJVOqUbSw5BlbjHAW4hxI\nc0Jy8OcnEw2iKckqSYVUhUGEMRgpOMngexsR38mpRH9jmAxUiZ5+kmzzBe+pDD3t9oLz2rXqYVqh\nVBDt10V2CuUL4QDQi9r1/gT+OAuCVPWqKttX09QdXUUhHUvuEMVuM1GbSqCqf4Z6gTds5W37I8VQ\nMcx5Hu+vURuX1qzUO69GSzdGKebjqIpj8dqURrX2qkAN5+nMag3n1WcWPTmpdxg4Xt1xezfy8P7I\nx/dHPt7ecn+85na8YmAgWSRp9M8WndCwhBMcA9QxUFJilZFsY1PsDtgakRo2FbFVP1yesic1XlA2\nP/D7D922w2X9e7CXCFJ35zvOCzucp69w3uvXhzec9+X2Y+O8nxax0YKSl/YM7nmY0mXCBg96pVBL\nQVpAlOAlugCkGZVYM5sKbaIPLcdyc8neBTtTZ7ZDiKTk7yM0f4cu6dJaidmDmNZCKS5L1FooeSWv\nE2taKGX13XHXuuFfbPNI2CsmXvz8TbeuLnAGVDcGtAW7jUXu59WmRGhlQK22RXp/j57PFoO7WKdG\nbFRftjqzGYSQEiEmVIWqlUzG1pY6EpTMCrUwzzPz45lzOrHIgaUO5EOiEEgWEYtIsM0z0wJYCqRJ\nCKMyjArJA0uVgEogBqEAGka0uWnTUkm2TBDr/73Mj5Xg5EFn5nuFEYkgMXTfIKyz0i3bw+dda/4U\niqogLbButa+jXObWdv5lQd3Z5BakrOdGtn4nnmqjwX/SgoaMtVWPyQTJJMmMoZBMic0stZpRqxER\nVAIaBhZ3aaVGoQShNhVIMaVqoRbfKVvOM+fTM0s+sZRn1npitZkqmXhMTOPE9d01dx/vuPtwx+2H\nW65urkjHAzomVhFqZDNqK5LIJLJGqg0US1gOkAOygmTBykWx0a+RdlLD6oV46KBtGzo/FNxe3/9y\ndHz+2w9BRw+GW7DTuvnVmHo+7z5ovsW5Xdtfi3Zx+87rG6/x1t7aV9recN5f9wJyiU5tQbbhPMdq\nm9+lL9XxDQIazmt+ZObkklhkI0nMXRBiIxmi6FaVI5AIIRFSJMQJrUdquXGSygRdipeItxWtSlgh\nniNxToRVCMtKPAxMIgQzkhlJjaRCVGFIMEQnnKoJ1YKno1AhKBKtfZLBF88V5z30grFQ2eG8l4eI\nNKWtpxBfYrs180/vHwaOHeNuZ99sq7Ci5htYfk28okxj1sD2O/sdG+xxnrbvoHvF7PCedo2A+310\nTzVtCmKLBiNocmxqG2HRU699Ua4FVFuln6DUAEgjOqzhvLyyzDPn8zNLObHUZ1ZtOC9m4k3kcJi4\nvZ94//GG9w/X3D9c8e5m5HocXEldhdAwW0Camhg0GjYIJCHHxBpcrVtlotiImn8IyQKtyp4Vg+oX\noldyAd2tQdiu4w8f/Vylr27244QXv12ed7vNuunsHuc5gel+PN07jzect2+/BZz3kyI2XBY4kVLa\n6pj3OuWlBaYgzqh2CWLsjH30fKhQa4stSqrdXQhiKxtm3Vtgl5MZYmQIgRSTlz4q5qXIWk6ammI1\nEWJzIu75nS1wDuNKGkZSGpCt5FJn713md6m19ZqB/Kvar3refjrd55a+Gvz9NOkDvAfhsAU2N9sJ\nvpDfzvFJOQYauYFPRO2+ENp1TBNmUKyyslLPlVoqa8pYrBgrZVGWpxPPPPKYB4bnkThMmFxRw4FD\nmNpi3BUbGg0bE0yCHAw5QjoUVBaCCIVA8fpYTm6IGxS540WvJOKMhVloaTmdoQWJ6n2nO04LvQhJ\n+ypd/heSkZK7VQcU7UICFWoJ7mOh7nNh1dqrh63Kh+OdRoS0BbuRW/DrLL25AsVcXWLB0Gg+kgdg\nNBiUMKxE82MgM2l2KWcbG0Xd9dpEsBBRG1FNlBqJJuSQqDGgQagoRTM5L8znM+enJx6/+455eWIt\nZyxkwqAcDpGb6Zp3N+/48P6B+w/vuf5wy3R/hRxGaoqs0Xc+Qnf1Fqe+skWqJrQErAihK2NX/ylF\n2pfX9yAuGsXN+OkLYOXz/v+lfv/69nZPk6lu46IFrM14dv8sTd5cqwODWjKqlajBQdDbQv1XatrK\nLL4Wg761t/bWvo72hvO+1H4dnNdjmHIpD/8a5/nijqZCePFeNkmrG06a1B3OKyCVGAoxFlIqvouO\nArHhPGFII6ZHSq2sObtK186srGg0qhTmOhPWiJyATzPISMgD083A4RAIh0CM7uMZK05uDIlkCcVJ\njUJCpEJx08ciSqWSY/K4K2xGsBL7Qju2tKLuydWJDVeDhNquo+c3t/tKIzNalZYIxE5UtecKdoEg\n4marhu1Uujix0p7TRSQd53VH9P5ttfSSzieZoLvvZdvQC67UsEYa9M0ti07QVFOq1eYH55+xilf5\ny6Gi0VOVLRiVSqkN580N5336jnl9YtUzFjNhUg5D5OZ4zcPDDR9/fsvDww1390eOdwfSwUu4ep+p\nBDVPVwoX8sVC9A3HEMlhJMtIZiL39OM8QE837obxiqs2zKCRc5cx9EPj45eRG3K5ztIuclfNNOOU\njv/21EdfF9Sa33DeX6P92DjvJ0VsjOPA1fFISomUEiHGJgcsW3mwLrUr1RPqtMkTgUte5S7X8uKE\nfSnEtE/8kRA2SZkBURMSK6yelyitjra2SUlHZdBKKZPvKNRCzplxnElpJEZ3zvYSVNDZQ289+P1Y\n7ZfTiBciI7waoBeCgm1X/BKkX2TwBSGlQErRP2MAaSkcIbh79lEOaIAaC0wGi/Fkz5RUgOwlQ0+V\nU4VPi5tSaThS0h053VCHypgGxjgwREWToYNhR0MqRLVmBJ3xWt0DJpGCUFQoJaElIVWIGgkavA76\ntprtrswtcDVzToEtfYQIEo0QlSie4hFNSOY7PLFNhRUoEggxoBKbJ0akhkiQiEljs9vltdqY/9ps\njOySiuI1sfz9qLwObOb5pbEQpBBtYbSVZCujZCZWkhWCVYoZSZ2hN4RaAzVkakmUElmrEHWgSEJD\n8oonZWWeTzw/P/L86Xsev/+Oks8YheEQuD5O3Fxf8/Dunvfv3nN/94GbqzuO0zUhHlBJFDyFpu8W\nBfGhplWczCkByYK0YCYFyIZl24LbZ+lQDZhs7LvZ5738Bav/hZvt8rdtw8R2Qe3Lj+9do9eB11qh\n+M5dzStWMhaim851QLu91m6OkV8+Lr+mplWbodRbe2tv7Wtsbzjvr9texxN79dcOv+1X4j0XgwK9\n4hrguzgd57XgHIyUXJ2rGISKUJCm2ogpcGRE7Yaq5s8RhKdsrKFQRVktI+WEnAvhu0dCjqRz4rhM\nHG5GjmVAU0RixELAUkBTwoaExECMAWJCGPEacI7T1Ir7NFir4KdCtEho/zyoO5BTvJ/sNzCkykVl\nGeqm6u3lgENwM9OQPGXJaB4d2vubXzVtPmZBnSAKW94KzZ/Dzd8V77NONtGlNH7qZlIqm2GpNtN+\npBEaA1gSGMU3t5IhwTd9xCpB62WhHrw0vY7aSELQ5HizSGatC/Ny4vn0yPPj9zw+fkcpZywUhmPg\nepi4ub3m4f09Dw/3PHx4x939kel2JBwiOkIJFZGKycXzDGmJIwGqRCoRFffWWMU91dY6UjVhJcBq\nvrFVLl3O+oYfTkTsaxFeuvnnm1pdedPv31w0NpzXE04+fyzt7Dec95ttPzbO+4kRGxNX19fEEJzN\nj16iqORMiJF1WVqpLWsyF/OABXQ/CVXdaqNrO7cHPOgTjFwCIZ42sNknixINSlQ3TVLcH6FNNIMl\nTAdqLtRpotTKOK4M40QaR2IaCCX7a/uMxqXMZOXH0zBdWMofut+VHBd2cnvYbsC3DMBtIt7firSU\nkxhJKbpyrD1JwIhBSDEQYiIMsbkig52VulZmWz146kpZVuaSeZ4LMFC4okaljBWblMN4oAyVISWG\nQSmjYkWJ6gAkBSGmgsVAJVOIfpiwVqNWCAVCMWINxBr9+zQQgrPjElrJWLZqI1taZ1RiLISYCRQS\nxmAwqDDgSTtmUE2IFqgSKNEn9BoQ+XV8AAAgAElEQVQGNAxok4Kauk8HLfdzK1nXyY0OgnrajACD\nXQiOVgXFYkVkJbCQ6kpi5UBmtIXBMsmKB7rqpcWCGipCRCiN2FhLJOZAqAmpA9UG1po5rQun0yNP\nj9/z/OkT59MTpoVxDFwNI/fXdzzc3/Px/QP39w/c3rxjmq4ZwoFoI1rd+bzXK0c8X9fUmswQN4oq\nbMQG1S5BrVpLQemKodesfWfd/ZyLY/aL7vuit7/q+f6HdLy7z7T8XJ74cui0fEtRtHh+al1XtBRC\nauko2GUO+ezhX3hOvs5AqC3v94euyVt7a2/t/9/tDef9ddoP4bweO7uUv+G47e49sdGrQ7gyly2T\no/kaSCUEI7S0Y8d5TZmLNpwHIYyEcFGvWIR6qqieW8W2ylpnwnImqZJWYZoD13nimA9c5SPDMFHi\nQAiJHAaXbgyVeBBkDMQpIlad1mgbbtaUCplEtUQwceWABmIjOkRdr6uWuCAAc9JhYzJw/7Im3JAA\nMQVCgjhWSKFhsoabm8Fsv9z+OsEVRmpY7aoN2vlu3G66r8Vh7Tk7qeTfTU9DseanoWK+g9ZUGtI8\nKxgMSZUQGtYzT5PafNpE3Li1Am1TsFZPD1lYOJczp/mRp+fveX7+xPn8hFEYp8DVOHJ/03DeQ8N5\nd3dc3U4Mx4CNbjwvoaLSUsylYMHVNGquztU9sUEiM7DaSNFEzREWIAuUtqlVaOrvjvMu5rcb0QHt\nol7+ZI+d998x/Bo4bw8a33Deb6r92DjvJ0ZsjBwOB0TEpYchEMxe9CM3bvILVkp58fi+YKz7vEqz\njenfKhpIN528BEnDJ66qSt1VEPGHuvGRAJYiWr2+eS9JVsaJsR3DMLrhVG1BpcJlgfZb7ODbOO7s\n9f6+3SDfFoyKmefs+XziICFEz3NNKVHUqA0Q9AofgjEMkSGNpKuAHAw7Vcq5ENaZnE/EYpgWqq6s\nOZNqRqo2TwrDJuN4WJnGA9N0YBwrhzJgVUni5EkdAuOYIFUqhdL+zyRK9TSMUIVQK1qMWozYSNwg\n7m5NCG4OOpjXZ28Ho5JSZogrg62MFAZRBjUGjMGM2DJP1YRCpFoiE6kkshVKKORhxGyA2vw2NnVI\n323qQa/drgZBW9KvkwO9ygtJkVSIZJL6+xpYiCwkFuJaIftndXPLizxXghFjJuIETyqBsEZsjZQ1\n8HzKfHo68/TpkdPTE3k+oVo4TAO3N0c+Przn22/u+fjhgfv7e26ubzmMV0SZEB0JOSEanNQI0tzA\nfW9MFA9a1XdKRIFijb+QV4Gtg63aJKQe1HoKs4ls5rLW+mqXmn5xAt2Sinf3v2T0eBHYWpj0U6Vx\nTJeAaebeGrV4aTQtGdR3seyvJBbfGrD5k7y1t/bWvs72hvN+xPYZznu5cNs2Cl5sEtDSd9ryWzzd\nJLYNrKJlh/NoOI+26TSS0gGJARuMMhZsaek7g4JkKBmz0nwfjIWB83rk8fkGHQ6U4cAhHajBlbpl\nUNJRSMdAvIqko+trJUI3cTR8UykTmxVF9UoM1TeyRP27lz251WCV4RtMRNsUESQgCbUpIhgUGxqx\nILsFdVNjtDeAaG3qUy8XLEWaYMevv/+I7tnQru3WRTaJsHtqdF9XjTSj+MtPGZQwVmJYSZaRUpwA\nsAzqcgfDUBPHVcXHyWpGNmNW5Xk983R+5un5kdPpibyeUAqHw8Dt7ZGPH97z7bf3fPzmgfv399zc\nOM5LMkIIlGisQTFpxIZ0zO2bUCpu+GoSL6lEEsmWWGtC14AtQMYNQ1fDMr7xpf27VU+Bf4HzdMOD\nF6LjVb/+pTjv1flvOO9Hbz82zvtJERteC3nwbiOyLaohuQyrBcJSipeSUfUyXbDVMe+M6j7IDcPA\nMI4v3LV767XRrXbXYN3Oicm7vNBqSjcpmSnU4nlstVTylJmmibEdpRTP2SwuobTaGHyDl8Hvx961\nvEwCfYLo5EUjM3eHbZL/ft/rMu3drVliQFIklNqulb9ar0EexJz5jhM6XFOnih4r43llnhf0vBCz\nEKpCrdRsrGtm1jMigZIq5/HIH9kv+HvziX/2e3/A9+/vKXlkksgYI8OQPPBEIZPJkigyUFE3TaoB\nqhCyEkrwQ4VIk6Um98KQGJDBZX42GjJkJGWSLAy2eGagZAZ1ciOWSrRK1AtDHoLngsKAiFeGURvB\nCtUGqgy0hJRdgDSsKJtCZtvtcb+PTkoYYMF8p4TCYNnVGSwMzKSyIjmjs2KLesCgj4tGoIiiCQju\nPEIBXSCfjdOz8vhd5vvHheenMzWvxAjXN0fu7254uH/Htx8/8OHhnvf377i5vmYcDiRGRAcoke5j\n0o/tQ4oH1618a7POkF1ajqhc5Iz7hMtLbsp2yFajrfXXrS/3nanPx1NXKHmH5vL4HbvfR0iXjFrv\n+AKXSchalox6wMsrtWZQB10OTi47AtJ2hHq+92dv7SuMjWZtvt3lxL+1t/bWvq72hvN+k+3lwq1X\nqrvgvN2i3BT3Geu4o52z8x3o6gTAS4smx05muhlo+w83ao0pEsLg1dUGRaeKzBBW4cwZwz3Aki6E\nWmCt5E+J06kgsZDjkYf8C/74+cS/+OYP+P7unmkaGa4iw3VkKAkr6hXtpmakKS1lwwK1eXiJBkJt\nR4nu+yC4wjh4Sdu+uWQYFqoTCL0s6SCEUZBkkBSiKxGidOwBIE6E9JSo1LzVWvlc34xq5qG967W0\n417GdUuklb6kbs+LOInRN7MSW/W7MCqSMpGVpCvRFqJmxApijeBQ3wxSA4qgGcqisFTKKXN+Ljw+\nnfl0OvN8PlN1JY5wfWw47/0O571/x81Vw3l2wXk1Qo5ekaUGJVOJUtomX93Su7WZ0yoBLZFSA1YC\nthgs5oqN5q1GU/N6p+vGt5f+2wkbtj7b+/yrUdD7+g/ivIsa/YLztsv/hvN+g+1vAuf9pIiNGBMp\nxS0UGI0lFiOKeOWLGCg1Umr14KQepKr6IhkxNMi2oIkhMAwDaRicvQdCbLsEIVByoVj1OUm940p7\nrRgiW880PFWBgKmRSmIoiToOTOPIMk1M44FxPFDagr+EQC2BSsGsNKdJ4cfp7Z8/Zx/O/a++s227\nwb/lo71QbVx8H6wN+Ev4bOQGXenZA2JjXK3Vfg6QhgTTEY6GXBvTXDg9rSyyYOeZuAihutGm5sqa\nV6xCtsIxzfz8/MR/8f/8O74z4VHh080NR0kcYmJMAzUlJEIhssZElkyRgdwmUzKELJADsQREvSZ1\njNELpiRP0whBIHm6h8TCwEywmWQLgyyMFJIVJzRqJpQK2br8gzAIIQxEr8WFMVJsQmxFOZBtwkju\npN3xTk/F2CbcHUCJlW1rQcx9OqQQbSXY6qSGLcS6ENaMnSt6MnRWNPt3oE3JoOZTeY1KTQULBatK\nPhfOz4WnT5nHx8zjY2FejVESh6sjDzfv+Pb9B775+IGP7x94d3vLzdUV4+SyUdGEFa9ggzpwCK1i\nzNb5+hbJxlPY1r0uG0fqgZm+A9FNQy87SiKX/gr7rmpcYsnnOc1dirj//bWacbvybb7YiBDrYLeP\nDcMdzSvaA172nahLXXTdNg9CCBtw6UFvL4T8WquiazO1fWtv7a19ne0N5/112pdw3ssFXzdAtI1k\ncdx22dzqH1TpJqMXnGcvns9xnpMEHfRdcJ4QJTjOS0c4GHJlhCWQZuFxrdRlRtbKaMXJjVwoc+Jc\nK2aFG2b+4NMT/+Df/Tse/7bw6Wfw6faG6ToxLYkxD9Q1kYoiNxVNoI2gqBIoFqiaCKpQAzEHJKun\nH0vYzE6jW4CAgAZDg/+0ZFuqhw1GSAqpEMgEy0gthN0yVgmIBCdXJKLRTdG7P8bm83KBL26UucPQ\nO7kGDTjT074Jrf9Fc+XIqBBXoiwknf1oxEawgmhx1Uir4lG0qZOzEs6VelpYnxdOnxaeHhceT5ml\nKEMaOEwN5z184JsPH/j4sMd5I4GE1Ijl2DbshDLKlsgUQvP4oOwQrDvuqQXn0UqALNiqTmaswMzF\nX6OTGqZuErtTZGzpxrbDZRsu3PX+TZl0+f2X4zy94MY3nPejtB8b5/3EiA0hiPnE0XthkxISfJKN\nUUga3JzEDNQaq14ptdfObU2846WUiCk1Us4oJRFjpsRECYUS3fW6FvcmUAFiwMLFZNPUqFW9woUZ\nWipW/ahNnjgdJg7LAdXiE38IZF/9YtWNqaz2hdyPyeR/Ifj1Rd7GgoYWtva7Ci+nAYcHQjc7uqgL\ndu+756/igziGfrqXax3HhKQrYopcrcp8VXiOC8v3M9XOxFoIqDOkuaJrRmvlv1nP/HGeMeDv/+t/\nyfXpmf/9D/8OCwNHS0wMDAxEy1g11jGwxsQSBtYcKVl88sxCWAMhu2N2kEuQi4mmGhEoCikz5DOB\nM3BCZEFYHAhV9/go2VM+bG3XMwAjMK7IENxbRCYCK8LRr68qmQN9VwiTnpHSHMf9Mlu/kNoX/D5R\nC5WkC+QZsRlsBjthS6GeK/as2LOhi3kA6RN7k99Wq5SYWcPKLGcWO3E6rTw9rzw/FpYFrCTG6Yq7\n6ys+XL3n5/ff8rOHb/jw7oG7q1uO08g4DMTUklEtQo40hOApo1u36wRHM2vbkRoXeWyXFdYXhEZP\nRbmggh3h0/rmZ8dnw+hy/p5EN9hVPPkMDn42ZvaQ0V24KtQW8NaFnBdqLf5dBR8rF87Fq+K4gmX3\nvTr8+cJrfR1tY/Lf2lt7a19le8N5v6m2jyMXUuOC8/ZRbo/zdmkoG86DDkqsx+F9jG0h/YLzZPPA\nlGCMMSHxihgiQ00clsjxsTA/ztRnYSjKVCqpFHSGdYGUK//t6czff56pM/zn//xfEr575n/9w7/D\n9fPA1XNiOg8MtwPjkhhyol4rdTRqcJKhqnuqUQIhN5yXI2EjNiLRjGCNbBJXHHi1EO0fDRFjDIpQ\nkZIJthBsJWhuaRG+aHdDeCfMjEQgURkoYUBjhOoYT6QvmPG+VDqWdpKpkxtmBr2iyH4jBkAqQTKx\nzoQ6E3Um2ZlkC0lXghZP4S6GZoVcCLUgusK6Uk4Ly+OZ+WlmfpwpixFKZLq64nY88HD9wM/fN5x3\n13DeMDGmkUjDdkXwZWT75qtAdM8ODQEJCQuD96We36E0RZW89NFoaShbKko2trIwXhLvRd/8DP+9\nGEYvSY43nPe71X5snPeTIjac7Ww5j21Bve+MEdDo6QMk2Ux6anSTqUEv3gV91g3iZb5cjuYTSQyB\nGCI1VD+KSw1LsY2NtIgb8bQBq6rUoi6dV9ChokXRoTKOmcNhJC8TJR/AlIAvtGNI5HWllEAtUKzt\nOHTSYPt8+2H5a1213U95cUtvtrtxXx1sk93vGM+X5MbL53B8oWi1rYRaZ/MF33EJwYmD2CSAFgNx\nCqRD5HhVyMfCVVg4p8ISFeInVFfq6rsHaoVShX+qynuFPwb+uQX+r6Xy/fffsejArImBgYmBaBNW\nKnUM5DGRh4E1J+oiXoFjFaQYoTRiw1o5r2Duep2BBJKUuC6EcMbsjDFjnEEztfjErMWQrLAalpuZ\nVSM2ZKouo50CkpQQfUcjAGbiFVPchMInwkZuXIQGjSkWRVs1FKphRQmlEGwhyUI1J4RUF8qpwLNh\nJ0OfDZ2NUtr7MnfyrrmgdaXYyiwnzjzzpI88LjOntbAuQgxHbo4Tw+GWD1cf+Pb6G35+/zMebh94\nd3XLFA+k4NdNLjH5JU5SLrs6rR95nDbQy3vyE3V70FbKlV7SVXcXZR/Q9n1z3zF/4PbPR8ClbWPA\ntr/7MLgw+a+kim281FohZ/K6sM5nyrqih0oIwzaiv/RuROTiLfcVt6pvHhtv7a19ze0N58GvHwh+\nHZzX0ksawbGF3q0s7R547HeYL7va2tJ1Psd5tBQPr1oSo/uu2SjEMZCmSJLAWAPH48ppyizDSjgX\n4rmQTgWyokthmYU/OSu3Gf6ewv+pgf9jrvz7X3zH7fPATSM2pvPAuAxMZYCSqVdKHgI5eBn5XKP7\nXVRzX7VinnpskRCVoNHN27tJvLXSrY3ViFSSKVZdARElk2x1VaytTYHjxAYSMPEqLkICGVEGKiM1\njGhMWGzmpVW260ZXz6gjBLNL6iu9TGq1bRPIMIIVUllRTqBnxNpRM1YyWhSyYqtR50JZVta8cq4n\nntcTp9Mz5/OZeV7RpTKGA8PVLcP1kfvbBz7e/Yyfv28473DLFA4kiwQiYr5hRQ2eepODg6RCu5Zy\nIWSCA6jNXFXt0r1qIzcK2I7UcEfaNrC3eq8XXPjZWHmxRvmh9obzflfaj43zflLERgxtscdFAmf0\nzd42wYb2k0sHEvFFl/bx0Fdf2wLsUoISAw2RGNRZx6jUNvBqNap5Hl8N6u7EWqnqzH2htrJEiqYB\nHRqzN2bKNFCOB2rNbcchkuaREBd3jl79q1CraK8B9aUB/BnBsG/y6ufL27/ED75kMWWbX412YcNu\npLMf8fv3c/nV1IOe6eU8Z6j99V3aGbw6SvDazxaFcUzYcINeGcdQmJMxD0IZAlmeWOpCKQ4qtMI/\nGgdmEf6TrPzD4zV/MiQOT9+zSuIcEkNIjDIQ6hFdFZ0iekjoOKAaPQ1lEcjBSY3igSZYRIIRJCAx\nI0m8fFZURpsJ4cwgZ5QzWhe0ZPIa0NKrrOBpKGvjgoM5G1+8jKlUQ45efSW0OvdGRIlUG9AaCdoU\nGxqaFM8vsIXackhbcTMxLChxWBGdSdaPhVIXmBVmsNnQs5EXZSkeILR4PnGZV0qeqXnmLE+c9JEn\n+8RjXVkACQeuDjcc3t1wdf+Rb29/xjfX3/Lx+gO30y2HdCTUVpc91KbECZfx1ADU5/mFl34spvQq\nJ9ZRastP2fw1NmOo1yqNz8fHr0JlfD4CLn/vQXTPL3751s2xjEnbTJR2c/WYnRdkmVnOZ9Z1YSqF\nEI1uUgaXx+x/36SKP1Le4U+hmTa37N/2G3lrb+2t/VbaG877beK8l/4FFyVHL2PZ4qG2dFbt8fo1\nznPSKMVISE5A2SiMx8QwRCaJXB1W5rEwD4X66OVBda0U8ZSitcL/JgPfB+EbUf6XwzX/OCaG778n\np8RyShyWxLgmpjwy1ZFYV6wodUosQ2KVRK4Jy7GpNQRZXb0hVj0dSTMSxdM7uq9G7P3PGCik6qkn\nUTJJCoNkRnNPC6y2FANXibi6KBHCAGRMRgoVEaXGEQsRw9NgvCKP40CqQS/p2lOFtZEsqZEbyZqI\nVRlKJuiMccKYETtBPWNrppwVy4oufuSnlXyeWeaZU33itD7ytHzinGfUKkMcOB4mDvcT1x/fc//+\nG96/+zkfbxrOC0dCcQJDq79nsYhodJVGYwWsmF/H9pFoKitwKGil95/W+aqTGFY7TvbNukv/q7vj\nJf67/P+rtDec97vUfmyc95MiNqSVQBJ63lJLcxCaIU1t4rm6dZw+5Xqtpj5BX/Ketrt7wAseWH3B\n7fl6KYEWH2dFjSoVL2ZUKRpauoAQDTQpqSZqq7dtmqg1UeuI1gmoPuGngSFlUho5hwWRCHiwgFYJ\nQwu8YM97kNnLBl9cod3nklf38Nn5JjSjpQ1CXC6GdRWYYhIay2qXkkZ94mnn+hO22zf5mO1e13zX\nBM+TTXhd8RdBOk1IgkNQbqZAvhpZr0fm4y+Yx0/Mw8wyZPKpoFX50yr8j/WKv4iVyplZA7l6udI0\nBwgTWgv1DHaI2CToJMRaiXlqJlIBKYGozWCqG11q62X+pokoVmdimClypsiZXDJhrcgCsZEjqYqr\nPLLnsRJpLDWIynbNvBhKoCLu3m1CyYqW5EqS0hUlLoNVwKR4PxzUq5uoO1CnWCBmApko7veRrCLt\ndbV4mkxeK8taWqmqQl0z62lujPMzc3hmDmfm+EwZIE0Hxqsrrj++5+bjz7j78Hs8HD9yP73nJl0z\nBs+zvPRJw7ZyrnCRnHwJtPXfe7DqJIZtio0LqVHp5eTMLkDqy0DwB9oX7/r8xhfP/Mq747N3vwG6\ny52qFSXDMjOfT+R5ppZCGptZnbyk61V1y7t9a2wmfnzFQf+tvbWvub3hvN82zlMkvCI4Lg6ur3De\nqxhIqzaDtLKvlw2s/iXGcWAchavpPfVg5CuhfBLWKZBjYLaZpWZyLagp/9SE/0Gu+PNayfMZk8A5\nRSiBhcCgiaSJ0UZiXTwF9wB5MkowilbCmpAlENfgxEYJiAXc9kyQUSAJkho5k9wHY9BMyhnqCrIi\nISPByY2khZirpyHjG04xCNYOwoAyUhkJZMQyZhPFRiqpVYFryo3iaR1b+VezixGutI3CgFfAC0Yc\n3c9NdCHISrAFdMGWTD5l6nNxlca5UE6Z5dPM/HxmPj0z6zOznpn1GUuVwyEyXI/cfLzl5tuP3H37\nLdf3H7m6fsfNcM0oI0EbzlM/TCJCK8lX5dJ9BecggrXv23bKCPhMdNszstphvfqd7U98vZn1SzDl\nG877SbQfG+f9pIgNxJmz0COTsS2gzDzcVa1eYEi9frm2cSDWqjMQiUQ3M5ToJSgbq29t7nXKWS7M\nW3fmVjyfruUmbrYA6uNbm7UAqeWa1VZpQ6NPvDqiNJYqCIgzt2rSvuiCWkbcZgr1EdQ+vHHRMH2u\nZdoHuh1HuD12z+Xb7v790lL7OVvNq8ashh7g+nPtmHzTF+kqPaWgl/zCnMwIIvT4Fg2CmZfh2r2e\nMLhh57XCZHAI5GMkH0fmq4HT8Znz1Ynzp5l1Lqy58q+ygRUkKJoEjZFigaVEygJVIzkN6PmZmiIa\nA7GuDGUklYi02uZRnYGOEpAUkLWrOAKxGqkqGhYIrtqQcMbWSp4NWYSYhVj9oHgaHhgSjTgDE8gB\nWEGyUA6ZJSqrGCtedmtdKnUZkEV2R2iBpPWxZE5UxCbrE6XEDGkhsbKwEFkJuiCzwWzUs1KfC/Mp\ncz6v/O2/+A8sa+ZPjkeW55mynqn1TEkLesjIlXF1OBDvbjk+fOD2259x+83PuHn/Dbfpniu5ZtSR\nZImgAqHlQnej2G2XrJNgXPrGFwKSXdxDMfRlr9yY7S5F/BKp8cO//TrNXr2vl7996RW9baOsgZFq\nYOvCcj6xzGfWZWE8qM81/frsnszMQdHmnN2f9ysMglrV81V/22/krb21t/bbaW8479XP3aX5jeI8\nNpLCcZ7CDst9jvPYFiIvcZ6B7UroBnGcR8N+7fa2swUxIKMghyvkWJBDpR4rZYJlCDzLMyc5c5aZ\nNRQWqfxrM1YKUvz9KJEsbiKbYyDGyBITWKGulTxAnqDGgpYFciSusREbbUOLgKRW7WQMhEkIoy/U\n3UReOehKCCspLERZSU2xsapvFoWWNtHTVoggESw4FtWUPAWFicpEtYlVJ0oesZwu6dBLgBLcTsxa\nqk9L0bXQsF5LlQnJ0LUQ60KVmcqZas/UfKI8rtSnlfJp5W/9m//AfMr8k+HI+dPM8nwmz2eKLNiQ\nkcG4Gkeurg/cffOOu589cPuzD1x/8550e0carxhsINZEKAIasOp4FItsucXdAH6rBGgX/BeMrdDA\njqMwswYPG0HWqhBtJvEveutLtcaXcNrlb3g9Zl63N5z3228/Ns77SREbIts0ySaNo+UI4rXHV80s\nulLqStZKrdpIPs+piySSDAxhIMXkUrl4CZ4vOnVweVlNvrCs1ahqFCpFC9kKVTw9oErL05Tq8sXm\nWuyDWQg1kDSSdGBQdYJS/ShVqXVCG6PbB3ExRSkvWa09+2n7my7/f4nNl1ddyF4d3fKz6yysL0i/\nlIay/5tLMLTG9vuuOi3w+b8gEBu5IW3BeiE32h6EBYIEhsk8sBwSHAfqzUi5GzlffcfTzcDjLyLP\njzPz88K6uNkXqMsdh0qJkYKR10QulSVkSpjJRKpCymdSScQSCBYIRFIDRFEiMgjhKhIWN5pKxZjW\nSg0LGhZMzliYyYsSz0Jofh2xCKFCLEbKlXlMkAJTBJkEJtxvYwa9iqxTYZbKgjKbMq+N2DgLLEJY\nAmH23EWTtrOUXDZr0QOCYKRYkLSQWJqp1dlzLk+GPVbqY2X9lCmfZuLjM3/3T/8Zp1z4Jz//Oacl\nM1e3o5ZrJU3CcRo53N9x/c1Hbr79fW6//T2uP/yc6eYDk14xlNF3QKorXAhhoyicyZILqdEIjU5O\nbBN6L83ae5/VrQfa3pm9KzW+GNC+FIJ+teD2edu/L3v1FF8QPPaNr+3PDvAM00LNgWWemeeZdZkp\npZBicjAll/FlnfAxmixVtue1Dai++jQv/vjdDIr/sbG6qpdPfGtv7a19ne0N5/E3jPP60YgU2x0v\ncB47nLdLL7Ue/3iF8/yxvrHlVgzSvFFCEtI0MnBFOijxqOhRKIfAYzzwKT7yGCLPcSbJQtACrRRv\nQEAragJV0FWoKZLPgWrKshhLEnIycshoPiM5EtZIWiOSA7FEJAhhiE5oHCLhEIiHiBQhYYxWsbAg\nYUHCSpAFIYNWygqH2bg6Vc4xUWIzSI+dvMErqYyBOg6UMFE5UOzAykSuE2UZoWG8MLtiw1TaWt82\nYoNgXpklsREbiYUYz0TOJHsmlGdYnlm/y/CXM9P/+8x/9if/jOdz4R9//DnfnzKneUXzSpqU4Uo4\nDiN3V9c8fLjj4+89cPd733D9zQfG+3fo8YoaBiwnWBvOqwGLboDbS9d6J7OtX2xVR9Cm2GC3wfXq\nnN1mqbOG3ZR2r2D6IdXGX4Xvfuj+N5z3m2y/qzjvJ0ZstAG1+5K1MfirZeY6cy4zczuWmslaWrVI\nIWhgYGQKE8fhwGE6MI4jYxh8sqQPST+qNYNFxQOdGlWrH+Y11It6uTGtXr6mWqGSKWSKZHfbDhVN\n5nWoh0CokaRK0kRSY6ij107ngLv/FrCCWsVKCySbg7ZAnzT8Df+1m88tTf7WB+DumstnJ7MBhMvt\nTTqnutWVb4lpHkAai+9u543JNzfrjCaIBpflqSBhJEYYByGOkXAc4GoiXx25fXfF7V9+z6fvnnh6\nPHN+nlmWQq2e97amQAmRyg4VfyQAACAASURBVEhhpFgia2CpQi6VupwJ84Lk5pKtQCNVxJqZUwrI\nlRBPkbgkxtk4HAtzXFjlTA5nVs0MixJP0dUd2RUe1YQ/+sV3/IM/+3P+0R/9If/2/T3HIAwTxEmQ\nCbgSbA7U64GzZM4UzlY4l0JeR+TsDH5YBJnjJYikRmwEvORrdkOsJAWLM2LP1PpE0UfWckKeKvWp\nUD9V1u9X/ta//47/8s//gg/nM2rGf/9nf8b/PCb+dAzEUZnGgevbiXff3HD3+99y+/Pf4+ab3+fw\n/luGu/eE8YawjsTFSQ0sXN5bD1CbHlF2o2lPWNg22UuT9Ox9NPwO2/pUV3HYD6o1Pv/9rxwav4wX\n+eykV7cKr2bzy2tut5rnZOeybkHvmBdIiSTxxcM/y7UU3CX9dzOO/bjNDOumUm+pKG/trX2V7Q3n\n/S7hvB6PL4vYlzivn3MpnRvEq8t1n8T+dxRBJDQ8CClGxjhwGA6M4y1pMuQQuA1HbtORT+ORT4cn\nnqYzp3HmaS7kXLECcTAk4cKBAIgTL6VU7yPrzFkSK1Dn1VN6mwJWlpbqiytH4iESrxLxKhKuPFVl\nXAqH00qWhRIXaliptrJU5bRCWIW/+++/47/6F3/OP/xP/5D/+/4eGdw83ckbYBLkINh1JKeRNRxY\n7cjKxGwH1nKAJRHOwXFedaIGQNWaCqk6sTFyUQJYYQgn1J5Qfcb0kXV5Jp5m1r9c+Tv/5jv+63/1\nF9x/OrMW4797/jP+p5T4tyEQRblj4GqYeH97w8cPD3zz7QMfv/3A9TcfGT/cwvHAkgb3JyE5zlO5\nkDbChfR6gfN6urBtXQcTpCs2rGG8beNql+70ouLdayJDX/30DtqTq37QVe0N5/1utr8BnPeTIjaQ\ngKrnQ168m5WshaWunPPMU37iOZ84lTNzWVnKSi2GFCHUyCEcuE5HbFKfYGMgpejpFNACXaGYsmol\nFy8fllspsaragl6h1kLt9dOb54HXVS/UulJrptSFoqsfFIoUNCiWQFIgjpGhDm3QF7AJs/+PvffZ\nkSRJ0vx+oqpm5h4eEZlV1dPdMzsEeVjM7omPsW/At+SBPBDklQAvvBAkgQUILpecBWeJ5W6D21MZ\n4W5/VEV4EFUzc8/Iquqerp6KKteEpXu4m5upqampfPqpyCcZI6OaMSsUa4a+Mpx7XYvPHsprFv+L\nz42welPIfsc6QW0pqWSdgcoGCVaitblV+YO7xgVqm6z6T53QaOSGbH/jxIZocLXqGr8nGiAFLHl6\n1K5PxKGnHwb64wPD6ZH++YXjyysvn86MFyc3piWDCblE0A7TjqIdmY6cA3k29LJQLriRW2SbRzd3\nOsGV1ktw4kUSQ1GmOZPDhMoFDRdymekmI5zj6rHRLfDPXi/8ze9/z1/87nf8TYrY6yv/5umJbhDS\nQaAXwgQ2C2VJjGHhIoUzpRIbA1yqt8YailItWhIsqtuZWKA3wmJEzSzhwsILQ/7EmD8xlBfCa8Ze\nMuVTJv/9zO/OL/xtvvBAQYPxtxHGBGlIDKfE09cPfPjtE7/66294/qvf8vibv+T41W8Ij1/B8IjK\ngVCSL70EKqLAG7Ct6lRH1617NldCw/N/b9/umfstTEV3JMl3CSxZNanb8SpPshm6t366Hu/my905\nv8sarueUbbOb7wVAFV0WlmlkvlyYpomQBkJIhJDW520VpPriVb7P8tlt+wEG3GhM/l089F7u5Rdb\n7jjvJ4LzbIfzDBdR/ENwXn1PVUuRsGE+gmeeix1RCl13ZOiUvoPBeo7xwGk4cno48fL4ysvvLzy+\nTIyXhWVe0OieM5pAe7DOKMmRRi7GbIXJ3KunXAxGQSZgEhjxtKIiTkDNQsiJVKJ7oaowLAtlGt29\nNk4gEyUX0mJ0I/znv7/wN//u9/zq737HP50j09ev/O8fnjyjXnISIPQgDyDnQD50zN3AhQdGDlzs\nyGgzjB1yicilZhipQpymLQuPExvS10ihXJBhIdkLi34i6yeKvtCNZ8LLSP6PM//h9y/8H+cL/2wp\njGr8qwjfApYSsUucnh746usnfvObb/j1b77hV7/5mq+++Uj/4Rl5OLL0PRoS2SKSavjJ6oXbyh7n\n2RdwHlCFNzecd0tSNJx3G36y7SPr4ljrs4437zjvH7/8VHHeuyI2jEAx6iq7T2CyKXNZuCwTL9Mr\n384vfDu98JJfndVfFkpWQg6kknhMD9AbKST63Hs8pCnBAmrufjiXhUkXpty2zLJkci7V6GU3apXF\nb66LqFYDWCh5QfNCyTNlWch5oWRnqVbGPEBIgdRXg0cPZMwWVBdKXiglo1Iw2U34Vg+ejT98uz9t\nU7+rT1dxR6keFaHGosr6cdtv3XVtcXxQMVvVxcGNnVZAYNqEINvxtrRWq3hXHSSDuSEJuhEckgVL\nAZWAhojGREodfTfQHU50pw+k5zPD6yuH11fOrxfO54nX84xNxjLDPDcF54jm5IPzDDYrNqsbt+rx\nts7J6+VYAUJ1mYzCgrqQVRhRuWDi6VS7EeS8haIcZuOf/4ff8c9ezyTgn/+//57lMvIv/xLSAeIs\nyCBIActCXhJjLFxQLqEw5kKeF2QUZJQrYkNqKIrrNXmedXpDJiUuyhTPTHyiX76lL58Y8pk0Tch5\nwV4zOmb+tRT+9sOB0+vIEuC/euoIXeTp1HH86shXf/2Rb/6Tr/mL//Q3PP76rxi+/i3p8Ru0fyaH\nI3npaOloV4PVVmwoyCoCarv+eM2+yy4Exa6Mz95I7ekKq+TThshaj7fdfusiwvbD7c16+N3x699b\nIsFtBWBvwNdw0d0RBaqyvNV66HpKkRp3bIaWTJ5npmkkTxN5WIhd52JqhB1rf/P0fp9xePux/mmX\ntYF2f75xDVqK5ze/e2zcy738Issd5/lVvx+cx0aQ3Gzt3KGRGlRSwwRIa2Y3RAnRSAl66Tl0Aw/H\nB05Pj7x+PPP6+wuv3164vIxcxpFJZyZZWCSziLJEpSRQi76IZUJWI88FnYAJbMJx3wy21EvSWp8q\n+Oji8ZB1gnlEwsVDUGRkmYw4wXE0/ubvfsc//f/O2AL/2f/z7/n9y8j/+JeQEsQo7rUxAGeQi6Cn\nRO57xjBx4YGJmVEWdOzgkpCza2xIqYhEWT1jnNhQQgGdC/QTnb0w67fk8kKxb+nHC/HThH6b+Vdz\n4f98OPBfLCNn4L88dZQu8nDoeHg48vU3H/ntr7/mt//k1/zFX33Nx19/5OmrE/L4QB4GSkiIeEpX\nkeBYx7Y+sHpKrPhpr4Wxx3m1N72J8zZSoXl6YOraNvWYtx4ZLWRjXRy747yfXvmJ4Lx3RmxAKUqM\n3tEUZ86nZeEyj7yMZ76dPvH76Vs+za+c8+j6AVlImjgwMMQeFd0GXVyhuqi7F06auZSRS554nSfG\nZWJcZuYlk3MNeWhsffbsHMXc4K0psKpRtJLd8C0LZclYdaOTHJASfPBIgWQBoUNEEQpo9vit7CsF\nZkbOblB91g1br7+i4HelMe83368iWdU9sKZfDc3PrQkCVRZfZG/urs/Tzr4x+LoNxm0Q3BlREds2\nrAplm6dYVRfelBxgcfq/SGTqnNiwEOkkIWEgxBNDtyDHifg4kc4XuvNIPM9wyeilUC5KnpT5YqQz\naJVjFvV0sUVtPw5fPZCezMOwYpRcyZBQCDETQyFSEFnoTYlQNZKEIsJ/83zgdwL/4tOZ/+7pxP96\nGlj0TCmCZDz2cvGMKDM9F4mMITGFxLyIG66LExsyQZjDmu+c6nrp+cEV6c3DUXJh6SeWMDGUpbrK\nKr1lUpwJ3YL11WhE478/VULj2DE8Hjh9deL51x/45p98zYe/+guefvNrug+/Jpy+xvonNB5RHRAN\nWK6rCiu53hqvGbY2WIkLJTVSQ0BWlp2bRr99yj9jKHa9ev/qfauZQjHcnXc1aNVYNc+QFh7Vcqnv\nDJ8fzuq+7pBScFAn1v6Wna2RFfitcaMKolpXGR34Wp6xefTUYCUTaZHNVh+KsKvD7fW+1T6yvbw3\no/cdpd2CNbb4H7c693Iv9/KPVO44773gPLs+3XbaDe9hlUgRgnm4cWxeuTmgUViiETGiGCEaw0Og\ni4GuT/SPPcePDzx+M3H+duTycuEyjpzzyKWMjDrxWjLnoiwFbEmY9GjpsTG5HkTWGubBVTTDRuIY\nxYAilAwhuzbHoiNLGJlkJDGhoxInKJPwXx8P/LsH+Bfjmf/26cT/fBw4X86kIMQqICoLkB0/qEXK\nYWAMxogxib+Wsccu0cNRZqmZ8xrpYlhRz0S4eL+wUrBlQeUC5kLxSRdCnhGdMFMkKpaM/+FDh0rk\n674jnA4cn098+PiBv/6Lr/nNb7/hm7/8iqdfP3P66oH+NFD6DqKLeSgRsxoGrTtiY9Ve2UJKTJRV\naLZiqK0P7furvbFxfVNqf99w3oq2VqU1aTovVavvc5zHHef9RMufC+e9O2Ijm5HMU1OZeSqnOS9c\n5omX+cy34yvfji98Wl45l4lJM7EEBhnoY4/EQOwiqU+EJFiAbIVcMpMuXPLI6zLymi+8TGfO88g4\nz8zLQi4ZzZvBs+yiVUXd4Ckt93Rl7EvBNKPLgi7FB9gMyRIdPZ0MpOiClVGEIEaw5uK4uEG14m5p\nZii5PrR7o7e9rI30ZsvVXX2xvdo0dw9ENsPU9pH2Zn3ZKLi9IrZVEqCl72mrFK1em728DjeQKt4j\nAAqhCCzBBb6irOnB1CJLF7EY0dARYyYEhViIfaEfMnKcCKcZLjN2KXBekNdCeJ1JKTNYZi4zc158\nRWbx+2Y0d8ptU6wmafFBUQtoVsjqgqRmzMFIGCIFC2WNGbUY+LeHwP9iPQ8o//LU8+8GIcqMXrUD\nZE2MszCGwiSZOWbynNERZAKZBWb32mjZY6RIVcY2z4pihpiiYqguaLJ1lUfMgyEtQBqUYIXUQSTy\n7dAxHAe+OR15/OqZp1994ONvvuL5t99w+uZX9B++wQ4f0P6JHI+YHaj5ab0Oe09BcMKoGqorRtxs\nvebNTNzCpuvvv3sU/9zouaFrA6Zdn659fmuU6+i6/92GJrYScGPqt+5aqs3dcjfXXC2175tV9t8I\nCJYXyjJRlhF0QdaViHq6EOqYsRnosLbTl9qiHqEZvT/AOnzfIsEfXP6IA36puoYz+bmU79jrXu7l\nXn7O5Y7z3hvO23lnwA7nbR6avlgkjvNKINSwC1Mh45Ehq+5mEpIEUuoYjoX0mBmeDxw/Hpkup0ps\nTJzzyOs8k6aMzOreulNgmSPzklCL1ftX0eILVVYaMVVDqisO1dZ8a6jNggUPE1IWsk2wmHt6zIH/\nm0Dqe+KD8j8NPX8XhLTMaICQIUTzrPUCdECX0GDkmCiSyCQygZINzWnVaAu5UlW1Lqa2LhBZMjS4\nNkuJMyreb9QUo0DMSFJiJ0SJfAodXTfw2+HI8PzM41cf+Prrr/j1b77im7/4wNOvnhg+DvSPHfGQ\n0NRhIVFpJk//2+pS22eVP1txWCU4ZO+xsafZfgixsf9u592L4a2h34HzbNdX2993nPdLx3nvi9gQ\nj7UsGLGy70vJTMUN1Xm+8Dpf+DSfeVnOXMpCppDo6GKPdIFu6OgPA93QE1MEgayZsUy8Lhdelwvf\nzq+8zGdexldel5HLPLEss7sYFs9brTlj2ZVdszqbb7imr2kdbKxgpUDO6JKxbMQS3NUuQEwJYk9K\nEUKoYWw1HVhx90SP5axsvkG5mqmtLcPbDN9bT0N7dGVzRbyxmLbuyUrDyzZSoWbEOpgY6qmpmkFo\nwkDVoBKq0Vvr0mjzgkgBSz5A1BAUycDsDotW08CaRZauw1IhRiWK+qiQjNApaSgMxwIPGZkK8ZxJ\nh8KxHxnTxBhGxjAxycQsC3NYWFKmLBnNVShsH1cbFQ34is/K0QQIlWChbjFDV/yygmAZUOP/SpF/\nc3x0L7RY0A5/0pJB9FDKBWFSWMzIERZ1AsVy9jaohk6zExuETUnZB9xqZZaCRXWwBS7eRSJI8tWh\nlAmSSR30BA6x4+F04vH5kcePz3z45is+/PprPvz6I8PHb4inr5DhmSU+UORIpkdLh+XooTs1RNht\nWCMv9sQFbH3uS6+3ffP7SI23Pr/97HODtTEbN6ewN76zZkw3o+271afD9oa19X1b+72ag6dmaAPV\ndTFnyjyTpxHNM1iphlpw95tmwp2mCTSw1dqysUfbyqNX91b//ofZnj+FGbk6j7EB4x9yXrPvrENz\n8b7zGvdyL7/Mcsd57w3nscN5rT778FP34F3F4Zv3aq5eG12kRNmRGwFLybHLQek00z8WhnngOBce\n5syDzrwsme5SiGMhXJQ41hDjEeQiDKLMqGe0CUoRpZD9VYoLuUbQpC722dKpBojRnIBCESnImoe1\nQQXjX3eR/+35kSIgVip5A0kqFgnmHhtZkGKYBQ/fkYzKgpFQDVVLo2rMGWvYrbQJuxhowYpC7WcE\nrcRVvYvBCL0RDoEuRAbrOQ0nHo+PPD4+c/rwkeevvuarrz/ysXppHD4MhGN0gdMOx7bNW4PAqmW7\nSaet/c+x6Ft6GZ97X7yN+9767Psyn9R9PgtfWG/KDtuxe3/HeX9Mec84710RGxIDGn1FPZuSdeGy\njLxOZ17GMy/TxV/HMxebWSioCJ0EUkocjw8cHx44HA7EFCkommeKFc559JWA6aUavFde55ExT8zL\nzLJ4vKUWZ+RtKWh2g5SLx4CWOrl0frGqBGvBdr9LlkACfVAsCCEKMaZNJ0o7ytKT+4FuyfRddYtU\nra5Q1QVwfWB3xu6ml2zfvN17rBmt1c2qnkPNLQzXDL8fydZjNhZU1arYUTVguECoiNRkbVZ/6dkt\nrJIbLhiUncDQ4BPnebeiYE54kMUn0imiEawpM7e6BSNGo+8LwYzBCo+SWdLC1C9Mw8R0nBgfZqbT\nxHyeWcaFvCx+/7KS8+KvJbv4V1JKr9jB4CjIweiHmSGOHDhy5MxgZ4Y8IWOBBULdqGlfV1q2M+jN\njUeCEiMWe5AepPON5O22G5DFjCihJr3TKrTaWkexbCgFmRtbDjpESkyoDGgQRDq6+MApweMh8fxw\n4Pn5A08fP/L48QOnD888fHhmeHpGDs9Y/0hOD8z0LNaxlB6bBSa/N8z4faoGT1bqnNWd1ZoA2hX6\nesuY3fbW79rnS8f5/nKFAW8Od/vdepb9ab5Qrfb80NIbtx3rM2B4/OU8jVxeXzieX+gfHuhjQqoA\n6z44p1XIW+7tk9ob3/y5yx9jaK9++0bl2+d6T/d6L/fyiy53nPdecB41+0mo2WYazqvnWDW3PAzY\n1DwkpCaEkcZkRKEMHTkKs0QCHVLjOIKoh/8mha4Qj0qnBS2CFQiL0c9wmJXjWFOwvhrP3yrTsLAc\nM/m1kMdMHgt5XMhTIU8V+0WldIoNBgeBI4STMnQTR0k8EDiYcCziBE3V0QxARpqEAhhEM6LVRMV1\nfioRJPr9L0FI0ZzAwTMDSjAQrWFCLcHxziMBbzeV4uEPWkOqpWq4SySGjkGOnCRwOHY8MHBKJ55P\nzzyfPvD09IGH0xOnxycenk4cPhzoH3viEKEDi4KGQCGQNZARMoLuQlC8PrWv+Kwcs32PuRX9hM+J\njdv33Hz+1nb7u9vfbOWO8/605T3jvHdFbJRQc4uTMVVXyJ6dwT/PFy7LxFhmJl3IVtwtTCIpJYb+\nyPFw5HA40vUdEoRcV+rnMvM6n/l2fuH31b3xdb64saviUUVLjX20+uoDTqmT4dmKG1BqOk6xuvna\nQ5sJikRIgnSR2CdS6umkQ2oudSmGDq7EnasLpN4wlB6G2ahUL5sh4kv2b92vfVdNkKdSs5rOzBQI\n1Z1w75S1Wylo52vufLa5Z22T3FDTU8nmYbAOetvmJIc7g4kJ5LgZixaLqc72k8TFM9O1QFWodRGg\nE2WIhg7mPSUWlm5hHjLzYWY+zcyV1CgrmVF2BEemmJKTon1xxe0DyMGIx0yfJgZGBl4Z9EwqF+I0\nw1yQpcCsfoOWOkAFsGRYMko0XGC6Qxgwjkg4IXok5OOars6KQWGN+YvmscKh3hIneqUyyOLjrbnA\naIyBru/p+sKhUx4647EXPh4DHx8HPjwdef7wkcfnDzw8PTOcjqTDA/RHSjxS4oGFgVl7lpIoS4RZ\nYFLPIpO9jlJaB7MtZJc60Ius99vsu4bnH0JW/KmG9u043/F4XFdnjyt3nxs7oEh71d3Osu5Yckbm\nkcvllcv5lcN4oRuOSPChV1XX/W+1pW4tyT+2ofvuIl+0fJsbKKyq/2/uiMeya/4R6ncv93Iv76Hc\ncZ6X94Xzqu2/8jRpruaV5KgeD1Kgze4lAiGgIZAJSIgESZgkVFyrIAYjiSKxEiRA0EDSyMEiUiAs\nQpyhu8DDUZmGzHzI5FOhnAt5VPKUfZuz47+i5KBoV9DBcR4HkJMydCNHOXPghaO+0ucX+FTgVbGz\nwlnJkzHP7mGDQTD3MHJiQpHB/HiPAo+RfOgQOWL0YD1qPcE6rERChqiVLNLaTlW0UjFUxEOkgyAx\nkrqBoQ8cUuLU9Tx1Jz70ygcSz90DT/0jz48feDw+c3p44jAc6foD6dB7WttDgN49NTQKC5HZIguB\nTKRoQHPY6ZLUzDrSsErx+nyG8/YeG7cEBTff8cZ+34cFvw8F3XHej1veB857V8SGirHYguAxOtN8\n4TJfuEwXLvPIWCYmyxTxgSBIpKt5so/9gYfDkUPXk2Jyl7+yMM4zl+XCt+MLfz/79jKfueSRWbO7\n3FljXwOR4CmQLFDUb1BWn4wWU0pw8RpJrHZCIz5JryrDISXiMNANA30a6GRAsjs4uspuU+FW0Br7\ntYt3M/MYTi2N89PVQex2wGgGbu2L7emtlLBV9gx187PFprXjyOodtUsathrMzTWxPfz+pS/ey6ZR\ntZ67DYQVAKyik7myAO6mKM07wQB10SlyZcBTVfEO4srDwiYMWapITxDoBkyUEpXSZfJByY8u1pXL\ngpUqJqZWHzQjl7oGE43SG9a2A3BQum6hDxd6eyXpmZQvxHxGlhGZZ3TO6KwwV6kjMTQquYafzBYY\ntaPXno4DEwfmMlDOHSoNgpi7Mc4QkiGaEfP0X6uQcz2uRUVDQCKEBN2Q6E+B4ynweBCeHxIfjomv\nHjs+Ph748PjA49MTx9Mj/fEB6RIaOrJ0LCQW68jWs5SOsiSYBJu8LjKDLIKo0Vz3RLSKhDV2Q1YF\n6GtS40sGjpvPvm+fP7z80KOs43JdiWgup+tYXZ+dKwa/xkx+TuDUfq6ZZZmRy5nxcmYaLxwfM7Fr\nBtL3vbYV313jFg36eflDOPU/Zfkh593DjC8bPdWC5vLmd/dyL/fy8y93nPdecB47nCdfwHm+gLWK\nS5boHrjJM8lJC2ERwYjkYBAjKhHFw45TMFTca7XWnlLFLUU6OvMMHmERhh6WZOS+UA5KfjRsNMqs\nHmI0lS30xwwNRukMG3Y470Hp+5khvHLQFwb9RL+8Ii8T+rqgL5nyWihnJZ+VXD1hxJRgioiiomhn\nMBicoDxE5q4j2QPBBoIeEB3IIWEEgoEERSbDSvEojyp+qajrhKSAdBAG6E/CwwM8HwofBuWrI3xz\nFH51SHwYDjz3jzw+PPEwnOi7I0GSh1IHgR5soGJbIafATMesiZnILJFSIlZCDaOpm23YDoKL0cuO\nEPgikfElMuOt372FF38IoXHHeT9+eT84710RG4XseamtUOaFy3zhZXrlZXrldapGqmQKINXYHdMD\nz4dnno/PPA4n+tQjIm4wl5nX8ZVP1dh9O7+6GFUemTSjWgghkEKkDx19SHQEUsHFJJfMeZ54nUbC\n5IJGRiajaDWSQTxtqAvNCDF0pK6j65OvrMeeXjpEfPU9aI/2mZJ7+j7X1FpV/yEXNPnE3EJ98DTz\nNjf51mBSP6lsozXqsMVMtge6/m/14a+260ogqlRVYsONvpbmQnkduyktp3n0nOb+d3WjC3gu88r4\nh6AEUYJEHFpEUGlRFpXk8C00j424nWvlSFoiDhUgEkPAuuB55Yfk16ueltSzt7XXukiDoEmwzjwz\n2wAcxD03hkLqZjo70+mFWC6EckHyBHki5AUpGSm5rpDUCBsNzCYsWRgtMWnHaD3z3LPMiXIEOyvl\noNiDwWSe8aQoUpYax8sO2IiLiAY8rd1RSKdE/9gxPHUMp47jKXF6TDydIk+HyOOxYzgMhMOA9gNz\n10OI7oJIZCGRtUNLDzkSskA2z4SSfaWlkU1N8Xwb6z7vPz9G+eOG9B9Yl++ywbb7uILClpd9fXZ2\nwlArzDRPi1eWiWWeWKYRywuop7fzcFy5OdkvrzScraWq7n8WR3sv93Ivv4Ryx3k/B5zH5zivHjsY\nhBII2rboISqL4wrtAjkm11QT8+iVqnfhOMOJDZVIrqniTAOpSq91ybABIGDJJ/GazbdStU20OM6L\ngiWrGA/HeQ+Qhpk+jQz2ylBe6Msn0nSBy4y+Zuys6LmgZ9tsVq1f9edBu+LkwdGYYsclDLzqwLEM\nHErPuAzYRbCDIAeQi2JzwbL64lHLOiPmMg0HI52E9JjoPySOT5HTE3wYjI8H46sjfByE5yHyOHQc\nU08fe6J03kaG96cOrA9o6tCYWEJiZmCWgcUOZA6gHZLdG0aK3GSVcYC9ei98kXj40mdf6sNbueO8\nn2f5c+G8d0VsLFa45JGkQp5nzuOZl/GF1+mV1+XMJc/M5gYvhcSQjjwOjzwfP/B8fObUn+hjR1DI\nJTPOI+fpzLeXT3zKr7wsZ85lZLJMNneT6ULkkAZOwwMPsecQenoCFCMvmdfxwjC+EtMrNgXIE2qL\nC8MEW70WhEAUIcaOlHr6fqDve7rU09G7i6IFdz/MBe3LmmasbWXJlNiTY6mTcAWJPunddxCh0ZD1\ng/b4yeZB9SYz+vlHzdhtwlKbca2ehdVFUa9dtWBN8+WsfFsNYPW2aFmQQoAYrJIcRgwQgnhO8Zpu\nygwfUIJPsAnVgO70Yu/y3wAAIABJREFUZ5o4s1S3uXXeLWBJIIbaCiBEv8zdWOWbYBawEFzNuhcY\nBBnEjd6gyKCkOJFsJOlI0ImgM6IzyTLRMsEWikIxYSnCrMJcAkuBSRNTSUw5kcdIvgja19CXwbBZ\n3chn99bAsqf50nYXq8p5EIhC6IV0jHSnjv6xZzh1dA8d/SkxnBLHh8BhiKQ+Qh/IMaIhAgmzgCIU\nDRSNqCYokZCDExurpoasoM2ZpbLrKztPk53S1HX+8rXX3HS06+//HOUtc/vmDreP0G6z2mnaClZr\ng620NHq40SsLeRp9m2fSkEmpc6E0PheI+qHX4Wf6qZQv1eStq7vd1/cpqpRy99i4l3v5pZY7znuP\nOI/V++Ia57HDeVYT3gWCBaIGgiZCDqvHR5tQWooeLtOywNWVqyrVCBYwquCaBkLxjCJWwyYIwYmm\nIWBBsLKlqFXL9TrEPRg6x3gMghwFjkI4ZNIwM3DgoEf68kBXzsRlIkwLjIpcwC6K5oYDWphSDVaK\nSumN3MGFgbP19NozlJ7D0jOPHXYU5AhyBEbFZsWye9Z4eLXUeGQIRyGdIt1TR//cc3iKHJ4Cp4Px\ndFAee+PYK31nxM5AgmfjI1bMUn1nkqAxkWOHhp4sPQsDhQG1AXRANBGzQA2LbtoonrnnegXxrbmp\nvckefBfy+hLR8cdjwzvO+7HKTx/nvStiI+vCeTkTMyzzzHl65XV+5XW6cJlGLjaxkLEIKfQcuxMf\nhmc+HD/w4fDEQ38kqqCWWRY3eK/TK5+mV17ymbOOTOLikRZ8AO47Vxf++PDMc//AYzpwkA7UWPLC\ny3hheP2EpM7j4OaAFiFLwUIVB1KpHglCCj390NMNbvSGONBLj4hhRCLiatylxl2qeaqxUsid51iP\nNe95WFW5fareHrj9hLJJ0Gwr/ftSY+PsesLZ7FozNvvymStVdVHE1FOWNUNZjVzYG7s1Ps9rG6K3\nSYxS37sadQy6MvwQ3GsD8+tU30+qOpNEVjGrmqcVoWINlx/3PyrLLGJV6MqP6REs4gaPzXvDjWxY\naRChkSIJwwgpIbFHGAi2ECmkdfO8KWpGUUgaiCqkIiwFkkb6nDhMEe0N7RSNxdO1DorO6q5/qoj7\noroxqTljJXjqOEIkhEjoI90x0Z0S/bEnHSPxEAhDJB4i6RCIfcA6WBLMLdtMCQjB27WEVaQ1lICo\np2STLCupsYb6BnDxV2jiaU2UrFrk6nr6Rpfb953v/PvPUN6qwq2R2y1KrORa7e/N0K3GrinFW02t\nV3uNYSubP40X5ulCfzxCf/BxAccPrbzVZLvu/SaQ+KmXH8rMW0uf+I/RH+7lXu7lH73ccd57wnms\n13yN87jBeRCjp0ENgvvjWnTPjeay6xdV8QiEEpFYvSoilUyp9akLWKG+UkOVWXC8UnxhDHPNNqVy\nIJorznNTThAsVGIlbAtGIQmhD3RiRISkgc46eiYGm4mTESZBJl99RhUVpzasem1oVHIURkkkG4ja\nE0tHV3oOS0c+B2RsxIbAZNhsa8Y5ESHWeoUohGOkOyW6p0T/2JMeIvEh0J+U45DpYybEjIbCHArF\n/VoIYnUZzzFtJpGlo0iPSU+WgaW+mvbI3LmOmnpdLNuaJtdKE/0vILr2uy1Gut6f7yUn3vr+LYbh\nT1DuOO/PVn4qOO9dERtTmfg0fiIuxjLOXEaPvRyzi0ktFEoUQowc+geeDo98PH7k4/DEqTsxhAEr\nmZyVeZkZ55HLPHJZLow6MoungrKaWrOTjkN/4PH4yNenD3wcnnjqjhxXg5c5dGdEkutFFiVjlMUQ\nMsV99+vxIFbV7tT19N2wuih2DNVcZUIxtCuU3gWvNNdUpLmwdJm0LKTkrotWirOJYjcdantqbTV6\ncv11ezGquje7J+l6f9v9Zv+h1thCblyK2i+lhZ5UN8VtBcHqgLAJT4aa2SQEc+NHIYTq7LWqL4u/\n1yoYKm08lZtrtTr5bgmWmjiFVTHT7doCgoo6hVHJkIBiBExqTGFT8p63hjBzV74lBTR0lFBTiKFk\nCi3BUzGhqFAsoNndQuMiQCCBa3CIokmhc5dPC0aoo63UeFzadYrriohEQoxI6IgxEbtEHISYkruE\nWiCo+GrIVL1eivMXfqRK7ki4vsbmdtjAQpE1TZuDDk+JYraL+bmNO7zqPq2z/QMGsLVb+urAVc/8\nAccVPu++nx9fdu9t94N9H7y5xuamqG7s2gKa0NKIediViVE0k+cL8+WF6fLC8HCiO2RC8jsduH3q\n/qEX9T5LS7n8c7y2e7mXe/n+csd57wnnyRdw3n6RwxeUROwa54F7WkioeMMqQWHVU0MIqeFIKotS\nr3WfgKN56lapNhcolbqP7xhEUSmevtXMPUhoCDHUFXfZwpmzYDmQUyJKRw4uZFpMXOT0kIlJib2n\n9q0JPCkS3N6jZAIqiWg9yXo67elLhy0dURJaanvV9pNUPUdqE4fgeDXEgMRI7HyhKh6E2KUa9uNZ\n81SUKWUImSKZJJmIh/JElCgNMnjYcaajkDB6Ch1FBkru0CXBHGA2mAVbbBeGckM6rN1nj4veYhE+\n769vGvg7zvsjLup9lh8b570rYmPME5/Of48sRh4z0zRyni5MeSJrQYMRYqTrD5wODzwdnng+PPHY\nP/KQjvRE5ipakpeFOc+My8glT4xklpir0rWzvTFEhq7nsT/yPDzy8fDEc/fAQRIozDkjJJasnKeZ\nl27kvEyMZVnzkFdnA2esLZJiIqWOruvpu2rwrHODZ4J0LipVsmfqKEXJRSm91zl3mdxSkmlGrfiq\nu9669XyZ8WyftjzZthOS+lIWiytmTWR92EvdVuPHxtgHCZ7GKrqXgey+2ybDLXQhuOGrq/2ut1G2\n862eE9VTY/2ksaaNMGnmu3poNIMvjUzZkST1NRrO5iNOIlytf8i6gmA100kby02ruFh1mzTx9Kuh\nGnCpv3VMIJh66EwsQizmQl5mmCgWDFK9D4EqyunERqun4HE7EgJBohu7kJDQuYFL9Xtzoy65tlI9\nNxloqXLrIC+NvGlaJqUCBNuRGwa0GEMaY28329otNldW2dTcP+tDN0Wa2OhV/9j9rvY3oWbA2cc/\n7i+JTbkbcSKpZc9p7z+3YV5xaTnDW1dqccR1RzFZV778/tf7ZbY+S3JlidTBmBUojck/M11eycuE\naSFgLePeWv/9X58Bz3da1vv7PcXUBX3v5V7u5ZdZ7jjvveA8ALnBeZtWhx9wj/GqkKi4lppTCkZY\nHTGq8Huxmi3F8VLzCiHIdlytIRAVR7UQ5D3Rsa6sVxYkmuMsxdYFMV/AClt7KZ6VrmZ/05jIoSOK\nsuAermIBCQsSMpLKCnMMq8RLbW86zBJmA1iHlI4QezpLxBKg2xaNROtFluolHGzVKZEYHOelROjc\nm4QW5q1AEUo2SB0WCkUKSTxVrgfsKEmaN0/NemKRQodpQumw0mFLhDlgE05qzAZLJZoKa98RsR3O\nawzE1p++y8q/jfPa7+447/va76defio4710RG+f5wt+fv0VmpcyFZVo8VVeeyVYgBFLXcTgcOT08\n8nx84nl44rF74BB6osGiHtu45IVpmZnywlxmcljImK9gi9+gGAJ97Dh0A6fuyCk9cEpHDnQQjI6F\nkozXNHKIA0Po6KQjkAhkFFd+qk5xnpIsJlJKdKnzLXZ01vvEMeEqyKXQVbdEzVV7oRSWZaFbFnLf\nV2XnTKyMvkpjevcGqxoxvsASNteqFkPmIzLUfVuq1rfYxXaqltdcy8bmt0HFGeVIDNEn3qthqooM\nto/XqylfxV3n/DWs37VBGdnIEb9Ptks3ZtVlswlkNRXRGr4ith5rffhki31rKxCNi/V2q6JLxbbW\nrId2LwY3RgRn6UtIXp/oI6rUy7PsxjJUoylL+1sxjWs9SZXYWRu+DeAC4u0ooaquh4hIrH9HqGKr\n5gxOvZ+NoMBzxte2ay2xXncDA+12rH1J6lX7F+6xsQcq1+mrVuKqpiqz9Tifl+13Phi23zbD54JL\ntn1m5v2tuqTKzWGDiMc8W2sv728mgSCOOrUSV0irWy0tjKnasPbajFlrB1kbltXYbX6MrC3q1+O/\nVQFUKctEni4slwtlnrCSaXcjSA3e2dXpqu1EtutaP37zqf5Jlh/qoliKojn/4P3v5V7u5edV7jjv\nPeE89yhwnBd2OK/hBvfudNxQxSKIFd8VxzFQF1BqyGuotrjCP6mhx+srrjtiatW71FYT3IKHqdna\nrNlnYdc+7UpDpVbimrrUwy0qXluEEpN7FHcBIfrikgbUIhoWLC7uXWuODooFioGZkK1mmaOnWEeh\nA+uqLP4WtlRF5hzDqWx4dQ3zCYgkJCSkzY7V59FksJmaDlYoGLlTUiiVtlGiGMl7KY4uI0WiZ5bR\nhJSElIAs4qE8M5XUoHrxen+RNR65YT5bQZjZl3HIHefdcd5t+bFx3vsiNsrIf5xekFlhUUrOLDmz\n7ASghm7g6fDA03DicXjgmAb60NNJAiveAdXI2Q1G1kw2pYgLFEmNsxNxlrQLkS4k3yTSWaQTdysq\nuApD1JoejEgguJiS+cgU6qwxEAghEZOLSqWuJ6WBLnUkS4i5wjZqaEpo17nB28VhLkumLJmcF3Lu\nSHmhhOx1VnljcGms4hsPhjVyYffs7Awk+1/sbSjNMLjRULWqbrtzU5SqkC1xJTdCNXque1FJCDVP\n+1NqxhJViD6ASCU6aLI7a9yJIKLbpB+tGVL81JGNgFivI/hguG+Dq8n47jLbB3b1r3peFHOFcbHG\nqvhv6+oCoREUthpnapyiZJBi1RhZXREwZME9JOqSz2rMGutcK9TICqkhNoh7eoCTFj4WVsBmATRW\nsOKeHk5ayHqx25G3gX7jKnbhOlJ2X2556a+CEn9sjnl/eOGLp7Pb190bu/pgv0+t/+7HHuhka/u1\nHrW+r/e1qWU3Tqrdcmf0a2XNV6YihpVMmUculxcur584Pj4T+8HTFzeBL/arabZdbq371aX/GZr+\nz1u8Pe8eG/dyL7/ccsd57wnnBd++iPOchFD169OQMQ1VyN3bsuGKQKzYpREb1ta7akhGDUkBooZK\nQhi76tRlq/2ii+6up05GWzvtyA7DvVpNFc14FpLFcZxJIidfUEIiSIfZjNlCIRNq2tNim6dvQSgS\nWeiYLbFoj+aIzPEqhWrQSsVU4GcBqIt17eZYWx1TD49podmNWPKf1v6MYSWQUwTxjINFjBIqJjFx\nT2MVmvAqpS58LftNbjw19vjvFvd96f0fWO44747z/kTlXREbrzrz+/xaBYP8YVPzfNQiMISOx3Tk\nY3fiY3fiMR05dAN9SkQCLQWGanGDV42eD9jtLLLbcMPXJurtG2kMfXXjrx3P59p1sA9uBEudUAcJ\npJBIodtY/JToYjV4ya8DTVhKzuZ3CSud17cU+mVmWXr6pWdZFtdWEKE0F6zvab/b4QfYXBSx3QCx\n/ebaTEojQetu7iGhqpUhtdpmVQeixgDGKMQYfAu+rYyv1TpowSywhjvgk3Zpp63xlY3cuDbksu5r\n0gwYu9/W2u8vZrXqm5ETbE2N1hhWq3obWif7qmBlawchODER2dXP6lin3uVa7KeH4q4hH6umRaVw\nPXzFKktfmWmq0W3X2a5nJ9BpVJc93PAKEMwNV6jhL6ubZjOYtsmhtlvR3PScym7t5WBmDfX5TGXp\nsx71hff78oeO0rfHuaGibANpm83d+nRbpVpXA5pRWQ3M1ibQVhA2YCeNzV+rsbv+5p6Jt9fqVbsa\nvaqXUsOUrCzM45nx8sp4PtMdHohESGGtz75dr1pyvVHyMzN0tRgOfvUuHnov9/JLLXec995wXrjB\neUIMvu1DUjac18JZA4ansZWqSrahL9mgxr5yWttAtS7W2IbzfIdKZjT9rxaOcovz2pXWNqnv1AKi\nVskNgehchi0RTTUNrRSK9BRbKFVzDDNKOwbVe0ID2RJZIyUnbInIAiGLe0goroVmvr8F26z+Fc5r\n96GGShcn03wBDFpIlYemiGfzK7UJg0CwpnPpiKb4+ZvXsRSppAnutVEX3dwbRmsb7kVN3uphb5U7\nzrvjvDfKnwHnvS9igwWYSNF1EYIaiBINekmcQs9X8YFfpSc+pgdOaWBIHV1MRCArqO1WAJZMzsVz\ndVfZZFOfypq0B6at2pe6Kc0bYGWyzWiJOajMaZBU55AKIkSipwCLnec0j27wUoh0GiD6pJmoaEqk\nUtDSoZ2ScqHrM93Su4vi0pPmkRB9BixXM/a3yvX3e2P32WByZbg+P8oVN2CsabRMKw9eDYxn7tjc\nEt3wBWLcWP1VHNSjHt3gafFUq6ZtZPcJfB1RrrmJ9vD7fuuAIM1tbjdorYa6XuuVy0ZlTKWxtroe\nbx38JKB4nnpr0h84eSCxEhYNCFgN3dAARZ31vYngcC+NUEmHJq4lrDojwhrSsw2pttbXB+naNg2K\nSfS4yvr70AZic1Z+88LYyAxhAx8bEeTP1eap0frEdQjK54Zoj0Le6lN/mkFs1xLX59ghtvZ8bgZO\nV3DXPtcVbMHeS8VgF4fZjOr+Om7qUx8Ms7rAZJurZpBm7PAkcJYpy8x8uXA5v9A9PDKERKirg1+4\nutuL5faZ/qmXHxp7qS0N2M/RoN/LvdzL95Y7zntPOM8zd4Q1PPYW58kNznNSwzRUnLdlRNm00Kqe\nWAU/bjYClQNZ7xnY6sG6LgFJ89LYwpD3uEkINRqh4ZmAiVacF5EiaDD3rs1W9c4qvtRI6UA7Q0Om\nkFl0wbPW2Q0yEgoBKxFdIjILccE9dBfPNheaMDsCoU6+97hqDaWRbWHJIkgiKIQcHVu3UKJ6SVJk\n9SKWhpvbe8M1TeqC16qj1vDpbhGuuhbtvtjjv9ueZjc2225e//Byx3l3nPfHlndFbExaIE8kE1KB\nzgKdBA4p8ZgOfDw88vXwyNfdiad05JgGuhA9ZZIZTQBRraAlU0qmZMWKogEXDaqhBho8u8WSZ6Y8\nMpaRMXV0JJrI0aiZ0TKTLsw2ky2juIikIARJiPiDliTShZ4hHTikniH19CHRh0BfQxgKINoMSHG3\nOLNVQXZeZrolsSzJlbZnz8qRF3nTOMG+39wavR1JUB9YEeocuRr7z+5ADWvgenBog0td6N9iNlfj\n34iMSKhGz7dQ4zNDDRVpx6vGz9oku4Z4bJzzWjsDVBt5ss3Qm9vhRmjUq26j+2dXtz/+rvWkGU1P\nsdpUtEFWbwvRthLgvzGroSsVSFnz1FDff0siCxL9aM66b4RGY4bbysI2lNe0bysz0bRJ2rXayuSL\nCIFSV0Oal0y7tlZnWdtpa7d2ts1Ub0CgGbG2IsLuddeffuSymYVWH6vV8NU6B2DGxuL775oI1Wer\nVzRwtetj1twSd0aoGT7bhGn3z5HVIaR9H+q9KO3cqtVN8ZX08on+4YmQevrUV9D1Q0b692XsgB9k\n7AwoWn7U/Ob3ci/38tMud5z3HnFe9XYJNVPHmzhPashO84QtFStRw4tbWEqguZa2xStDbnCe7fBK\nwz2tlrp6m15jPbl5v/tMUv0kEM1DNWwvtk7FeQUkGyaJIsEzi1i9h6XNiWsbWUA0kBqRkf33oQmG\nWsVsoeKWHbHhOK8SPVBx3oZnRaLfpeLBN8FYhUQlUwHg9rrp0jmolJWnkGp4YRVONVi9NNqK3Pr3\nNfFy3fv+4WTGbbnjvPdVfio4710RG5itLI9oIBrEkBjSwONw4sPxkQ+HR576E6f+yCF1pJgqi6Rr\nhzN1Bt6KYUUpxXxQyq7G7JNlz0k95ZnzMvK6nBmip2myCFaESTNjmRh1rkYvex7rnQERPNYtibsj\n9rVzDzHRx0AXAl19yCKGaMQsodq5sTMllUQqHd3c0XWJVLeYkgtItgn9jgtsA4FcDeDbNzSXxjaj\nDcKOJN+xmHXiizPybZXCk1658bN1ctue9vWG1TN7LQLO7scQSLGSHDvvjXA1sfbRtg317Qi2P3ab\nTws+2VfW7Ctb+++1KviOscJu3tVBfDUkVtvGwck6CBrOcN/Uy/Ngs6Uhq3bAvTOkikMZTbpUpLm5\nyboasgoz0UxePeY6KAqNPW8iXI3YqEnMEIkEdG2/tXFgN1SHtRtct0UzaO2z6jnzli/rWp/9Z/bG\nPn/i0gwQrAaOla3fD7S7erT9134rW0dq4rK3l7A/TLOg1n4B7UnR2j5Wv3Qxue0+qhbyMjNfzpxf\nXzmOF/rjiV7VV+X40VvsJ11MFf1M+f9e7uVefjHljvN+RjgvvIHzWhht8wQAR0JNW231NaXZ5/Va\nqodBExGlebrScNEOp+zEHt/sZm1GX69nWwQL63lsYbX1FFx/Igom7nFioi7LqYaWOhFuWE+FYMG1\nNLLstDVwUqPdqdDCrxvh49jzysN4xXl1Wa1hW8N1OnL0z5V6j+s9Equ6cPUOtdWyRmhovb7Vm6m1\nX4uhfktbbet3t/X70dDLHef9rMqPjfPeFbGRJNKTCGqkIiQNHFLHqT/y/PDE88MTTw+PnA4PHPqB\nPvVECdU98XrQCXVkVzUsFywKljamGoRsyphnXuYzn8aBLiREqupxgblkXnXkrBOjLSxkMoUSFK0d\nXoIQVIjBlbL7lBhSou92Bq8uyxcLWIqoKrlEoiWSFlLpSDkTu0RcjV2oTDjrRHZv6PbT1q28EZ9Z\n69hY9212u6MURGqK0ep1IZHoXpUEyQhLJXRr7GJkdd+0oljSdipPDRad2IjNWyO4+FbLg+4T8uZd\nUYFKTae01XFbaWgrCNbUyVsIi3DdBqu3xm3LtM9uJ+UNuThDjng+9HUPA92njloXCGyXIkoRq8RC\nYMfu2s5Dw2rb3N6pdo26u9r9PtuKiqBIlTbzUJRYXRSN69WXLbWZrten69G2a4dr50puXr9EbrxV\nfvwh3Jpxa26HXyJVPnsoZN3ac7/debu+zEpWtc/2RFQrwYwie1UUW2Ga1nNoyczTSLi8Ml4uHB8X\nVIuD17ee0e++gJ9VKVV5/17u5V5+meWO835uOG8Xfixhh/M8bGTDeYJVxklkc5XYcF4LLHYBzb0X\nwtYGjdR4y/7f/t3sjKy/ayL1oWY/ab9SU7/msHasShrYemiP3q2eFbXvBa2kRtWykOyfNdAo4oJr\na9a5NwQ6N+xmFefVfC7VS8VFV0FyWhe2qF4tzmHIju+qx2p4FVYvk+tQk7e2tzDfH4oF/2HljvN+\nHuXHxnnvitjoLfJgnls8AUNIHOPAqT/yeHjkNJw49ke61JNCrGmVnGeLIqgEuhQ95jEmktS0SyZO\n3BbcFSt5pytmTCVznib+Pp0RAqUYY1zAAsuSeZnPnMuF0SYWWShhx7Y2glxcSKmLwY1civQxel1E\n6CxU0ct6XjVSdU9UVVIppJLolkQ3J2fzk3s8vM2cX/9Ne5T3c/e35vc+sq9GZZOX3Hnk7WIj1gn9\nF55QWV9lDbcQ2abZq6J2c2NcBbzaJN/Wg6hVA2j25jPf9DUa4/9ZJda/a8rYG6PZ6rkNODWmVeL6\nfo0AwWP5PF7v+uLbPiFU4VAaIGHnRsgWF7ljuvfxlatLohlKO9COtFnrvCkzr0atHtdXXhw8hHpv\nr/tEC6tp7bSF6lzH5drV736IIbveQ9Yr2tr6B5a3TnHDQTmp3owdu7rLej3U2L/Vg6feA4X1GRIP\ndN1q1+7vVR2uK7SaS7lpIYM9GGhYI1pdm6pp/abxwjyOnuIvRoR01ThvUUprDX98HPFnL6ZKKZmf\n5cXdy73cy/eWO877ueG8z7e3cZ6hxg7nfY4STLap4xaysseEbTYqFee1T/e1bPfA2Rlp8SDVc9Va\n+LHhQvFqiIZKavgxLNbFqBC28BzbSAgBxIRgjdSginEKtuICrUSGp8RVCq4tpzsct9V+C69u3wtC\n2bx8xXMIguzuX/UOkO2+b+3ScN7ee6b9/dbr59vWzWxt/TvOu+O87ys/Ns57V8RGXIw0+fjSETnG\njlM68tSdeBpOzuCngT4m0rpi7Y+/iriAU+oY0sCh6+ljTxeSZyNXxbJSloxYhOgr9EsunGUmySuW\njXnOnLoJsUDWwus88rq8MulEloxFXQ0d4gN9NCFVt7yUmtGrBlCcybeaqklNSMkotqXYSl1HKkt1\nTexIKTkLHsMmCrSbQl7rJOxf3+hE68etpZobYkRW4xdow6p7T7gBMmtiUNugs3kQ+PGawRdpoSbs\n6slm7HYiVEG4Hth3sXz7M3xmzMDrsw7bu13WAxpIWLOfbKPnteFrg2WzB9sJqkqo+QBp1Ewiu0MZ\njTUHsc2FsFV5uz5bf7SFmtSBe2dQ2gC+CZnC5jq5M6T1fWiCV9Kul5u22kw72ErGeJ101ybNRdJ/\n52dpRMz2+W2x3S8+L9dHW10IvzS+XXVlu7oUq59d7XrT7aVZdfG4xtZGtrqvtv/CrnFv6rMzqKtb\n6u77/QKYK5e3d3WzJuYaPduNgaKUvDBezpzHM/04ElJH7KqgGlz3u820rmBTrr77aZcfKipVamrA\nH7DrvdzLvfwMyx3n/RxwXsUsNB2SW5xXRS/rNTnOkrWiHkhbrdxn2AVsDUtutbliAmgipFtm3D3e\n201w4QbnVdyzNmdd1NKG6YIfu1RY0QiG2r77vwNhy0ZXwzwMq+lbPcy3ERuN3KDihQ3nsREXbJhl\nrcoq9N4uzdgW9sJ6DzAc/5ju0DHshUEb4XKdAa95C39ObuzJjM8xSNvnjvPuOO/z8mPjvHdFbOg5\nU76dCBLp+sjh0PGYHngaHnk6nHjo3OAlST5w78bFJAFLHYc0cDwceBiOPAwHDuNAJxfmMlE0U8qC\nVFfALkVmKwRbEDXynLmkiXM3ulCMGmOeueSJUUcyGQvmaTprDGAwIanbzxSr4Vs3IUkgEdeJdrFA\nTEZUJaRI1EQqmZTSusUad9niFjevPbvZtmnz5wZPrj7y+a8zzKEZoqrEvXo3mDmzbOLCXGvn3Gsx\n+LEbCb7mNW/MfzDWAAAgAElEQVSun/WctqvGleBUpZ5XQ1MH9v1x/d13PRHtO7kZGNp3rob95d9u\n5/O/qmAnsnsQK/O+goX66erx0AZC231XAcmeuVkbZC8ctfeY2K6nmazVlMuWO55GaqxgoZ6jnkdp\nYKgNnH5l8tk52uvnrodNWeTq8/VQdmN8qhGpBMgmzLTbp8b2vjkQ3n5k3/VdE496u5+v4EmqoRMH\ndqsaui/T0Gzjrvu0u9Fu0ZUp387A1mevzH0DEk1XxXCuPjicyJnL+UL/8kJ/OJH6gaEK7L5V9qtO\n7638EGMHhq2iUndm417u5ZdY7jjv54jz5Dtwnu1wXsUl0sJabm1hw2f7MJKGbN6yi299tj/GJlK6\n4Tx2WKLqbVgTjK/XvYZ6VMKjgYP9QlPDWlrPWdOWrF4aWCUzmpZF+36jJHw+vsd53sYbzmvt57+9\nxnlbf/C/aw5Y9qTEPsyknb8hjZ3Hxrqq1m5qa3fbvX8TGd1x3h3n3e71o+O8d0VsdFnoJmPoIqdw\n5GP/xNfHZ746PvF0eOKhP9ClgVRjJNug3gaZEAJ91/HQH3g8nnh+eOJ1mRjzTJ6VeSnMywKLop0i\nQ0dIIEHRJbPIwhQnxjSuU7asmUldMTtXdzJpMXrmLF4g0hHoY3IxqRTpggsqRQn+AIg/BMGMoIVQ\nYxNLjIS6xeiGLsXK5Ke96KPtBp3N2G0dR7nyo1r3aIN2dKMksbL4ESFesZTtITbLrKrjdqP/sJtP\nB9kJUQVZYzy3M///7Z1drGzJddd/q2r3x/m49449jsdBTmIrDg6R+NIYIydxPOBIASMcRZEc8mIc\nHlDkgEReHEVCGPGCABEZkgziASwhBCIkBCGwPc4nxrGNsZ2g2EnsaJhgBWfGmfFk7j3nno/uXYuH\nqtpVe3f3uX3uved0nznrd9X3dO+9e+/a1dW1/r1q1aqcTyMbuzQy0S1TVa499MjXCUHrxEFSdTz9\nnktzz1SSCVH3bn1EiIa8O75ydvQ66l4FUXewuVidM6bzM9QOgEpxDARLF3oHXdLRXBfROeKytyRd\nt3L35CVsFeqAkiIe6hJrKYlmY1dK2GdJfUmKJumqobQzVU9OilXXd/Z2l/mS+dzdG8uj2hayuMof\nZ3oiSdnWb8siLhviHH4qOXGUSBQzRIEa0tzXnFsraDL7EqcDxbsoz/Kywlp9pnkObBY7XTLXLjms\n4iUep2HGyfEhdw8PmOzus7O/jx+NGHlP1eKrz6mq/S383a9VG71f2jak9c0Nw7iOmM57uem8FAsi\ngvNyhs7LU4npRFNtTvo6L0d0DKimsPR13rA+sgMlOxfonBp5ZZb4uvwtBY0CIR9dqcxUtuFnkvVP\ndkBkZ0Z8niNiIHSj/p1bJA+C1VpYat0YKp0nZCdGyaOSnTd1eZPm6mnk5MDovR48JDW9ekWPzhHk\nTOeZzlubi9Z5V8qxse932Pe77Ix3eGR6k0f3X8Gje4/wyN4t9ie7TEdTRi5mkM5z5rrvP9E7PfIj\npuMp+zu73Nrb53h+yizMmB8EZiEwP22ZzxV0TlDHvFFwgVZhLsKp85w2PjW+uOJ5XNE6MEdjviGp\nPM4BvIOR80ybEZPRmHFac72RklSJEGeJOg1I63G+7ZbMKgYvLZvV+JhUyjmcH06XqJvKsNn0vdyF\nnPc65pOAmPtCUjhg/dUrkySGoWnlzNniZcMXvfrpmp0nVbrtzmWnRpqG0s1Z6SxE5RxI8iW9jnYs\ne3FThy4MvniDjrhXV8u+oHUHTHVMbTBZ2Ce9D6Kqk+oeSrm091dSZ13enuo1de7dLpG48ksWEdW9\naPXW+hPLZVNAcyLTqhxSVebCqI9QB52sphYgyfLEAD1FJeXy0DKSoNmyqKYRkXy/lRhIrvPaIGta\nJg9SKGb+zDWPM2ixk1U15yV4+1KrGrER6ZJmB+JITCuajF3f6OXM5SKaU7Z09RdQnNMudDVeLY8+\ntTj1OAl4DczCjFaPOT065PjuHY6PbtA0Y5qmQZwnjy70xsge0KBcNOt57M96f0u4wPXNDcPYbkzn\nvZx1XnRoOJFK53Un7GmlRZ1HpfM0XWN479ngD3Vevkj/eV/ndQUhJzPtOzTykqvVdqUTGz1nTu/a\npQ7jPbSxwWR9R/4RH2u96DxZofPygFv9mUUtEwe3otYpOi9U5QZ6TqrQ3bYsREIMn+fq0bJFq9Zh\nOi9Vkem8e7//YnXelXJsfN3NV/LoKx5jd2eXWzdu8Yqbj3Dr5i1u7OyzO96h8aPOe5wmoMV1jkMe\njU7e/GbE7nSXR/ZvMdfkiZPUiSCczGfM2zS/bB5SDuzoY507Ibi85KcSJNBK8vw5Ygpp4lzK2PV5\n/Mgxdik8cjxlMprGxFfS0NDgpAEnOf1DNGptyiLtBe9TZmyX1gVvHM777gdut5xGNx1gVWtZ9kM9\nJclMnvxYA3H+l/SOTU/rtatz/obuyPKDuRg16YxdF/KYDF15pOO7zrw4KHq/wfM1qmJ1nWF3Xde9\n3/WVwOD5vSgRF8WtMKy/6syDchYjVozeMFqjdjqU49MepQq7y8Yy3lsO6Ryes3Q2qQ1S3quaPcop\nu0mXVbwu9FltZ+ltr6RzanTlyNfKHv1y/0uvmZrXoutJWbY1t4zlpc8CRMjzGqPHPY8yJEPnYj2F\nEA1cHFMJtKQEbyittp3hi6vk5GtEYULQOLkSQBWflrbr1lt3xGRixFnCLjja07scHxxwd/c2o9GY\n0XhMM3KU2OO6DdRaaruNX83acy9bTX2veTYM4zpiOu+66zw5h86LuT3Oq+3KWbPO60+xKY++din5\nSIqOWa7z8nVKPRadl3VdnN6j2nbTK4RSR1HnFcdRPl+x/fFz1bRkbp5Kk99fdF7tnMn3usx5kV4v\n1anLnpvOi0U1nZfZFp13LseGiPw48H3AtwJHwCeAH1PVL1XHfBD464O3fkRV31EdMwF+AvgBYAI8\nBbxXVb961vW//tHH+PrHXstkPGV3d5f93T12p3vdfEsvDkdcF0slJRdKEzDzjzwnQuMbpqMpN3Zi\nZ+aTx3zUjNkZTTg4PeJkPmMWWtowR0OLBsU58AoS2uSBzKFKxIcn9UASOxvncWnpr6mbsDuOoxDT\n8Q7j0RSvMQzQSYOG5ENXkDYtt9V4XGhwfh49+U3y6qf5djmpVKzU+KfMNSwNRiF2ptmIdM7XkkAq\nLu+VQgq1LIXWD0/QYvTSslddFIKTmD06v87vSN/O3GHH0Qhflv7KczIlj0j0DV/V+Lr91Z/O456P\nzAms8nlqlHj/+d7u/ZXqG8BVz4sxk845UUYe6jLURq/elx0T8XkI0VMc57WmdUvEVXUrvWt2Xu/u\nnDroXJKhqzbFkQ4/uM8VLNqWhc269DSrTdCZVAUdXkOELiFUdeV08AqBs7Rcw7ZR++hBpbzOibX6\nnvy8BndZ1Sab+WxGJc197domcYRARfGqeFpaZujshNPjA44Pb7Ozs0O7s0vjG8T72tTFf9Uc0Qd0\nmj80HtR7350HCKGNIYpbcm+Gcd0wnWc6b/t1Xp6eM9R5MtB5qxTIMj237JiSB6F2MGRnRtF5/fPW\nU36Hjg5NURoxFH+o82ptR1XPWdf1r6e9nCeucrIUnVjusdabtWMj3+DAyZHvddDGTOeZznug83Dx\nOu+8ERtvBX4S+Ex67z8EPioif0JVj6rjPgy8h9KqTgbn+QDwl4HvB24DPw38XDr/Sh7df4RX33oV\no9GIyXjCZDJl3MSM104dEpIB0OI1qjvEoBqTJoln0oxhqslT7vEubtsdTzk4vsvdkyOOZyeczk6Z\nt3NC2yKSHPUh+/eUuSYvnxDXPZcSItU0jolv2HETdptd9sa77I73mIymNM0YH3xcDoomevAJ0ai6\nlrZx+OAJvk3lc0gOUXSuePEhVrMmY5d/WDPwyUo2g0IXvkn05orLRjTNv+w8n1XlL1tdI3W64gQJ\n9XKo5br9zjh2tD7NO82e/fpd0h2XEmJ29rxyClQdXp0/or5G/d6uPBpHXLKxWtI11jec3lPmPC4c\nUQrUPa+Thy47dmi08jXqCI3oTQ6V0XI9x0nfqdHdHSAry9ufFzc0cvcweGuz+Ok/OH0HTawDXfJp\nVEYyu7vXKsdAHKb+Io+g5Bop80eTSVwWtqkxiVQev+hKnL97kmZ9urgcmA8BF+a08xPmx3c5PrzD\n8c4eO7v7jMcTxDdkQ9cXKfFPN9X6ZUQILcGWezWMTWI6z3ReOetD13lpFYkUdUGlZx6uzpPee6qb\nXHi9mDcg66K8XaErW+g+k+JEoDo2OpjKc7pj4yN0j/jjrkwd6js0Fh0mXW0rLOo8XaLz+tElZfsy\nnXfWtovGdJ7pvIfHuRwbtTceQETeA3wVeBz4eLXrRFX/cNk5ROQm8DeAv6aq/z1t+yHgt0Xkzar6\n6VXXH0nDxI1oZBRD+5Q4Va1NXlAVggLOdSFFiiK5fZJ+4BE9vpNmkrzJPr0esz/Z4fD4iMOTI45O\njzg5PWE2P6UNaR5c0ORtCsxDSxsCcwJtCLQaaFWZEz2wYzdlr9nnxuQGN6f77E9vsDPaZeKneJmk\neVspoVPqIJ1TfONpNKBNvFbn/c55KLwvHSv11y4volq+xL2vZE42mZZFkuTB967BuwaRNAqCFEuy\n9EMsjzLtQwj1XLh8Tc11H7+2nbF2KcTSlQO17qfSeXKHUTr9qlxS2WAp15a+RSBXhFTp0+/9dSqd\na39belZ1Pt01zzqb9J0bXaE6Q6XJ0OW5l1UpHF2irXrUoHdz14S+MTvrQNaslsqk1fOAgBIqqnUH\nUhm7wWnyuer9xTOHEw8ufse8pFFBDej8lFO9CwcjJtNddvb22MnefBczoGt+BOhGqSS8zD766NCL\nIYqGYWwC03mm89JlLljnxR/efZ1XBnHqcqyv83QNnScLzxedBLVWy06NodMg/61/bFcmv1e09GO5\nc2hknVf9ME6zErrpOguacqj57iVy8v7hMascG8uuMeSs4x8epvMwnfcAPGiOjUeIVf61wfYnROQ5\n4EXgl4G/q6r5mMfTdX8pH6yqXxSRLwNvAVYavI/98kfYv/XZ6NV2Dp9C9XzOJO2b6On2HlxMukM+\nTqL3uMmhcSkETgWCBmbtnFmYx7/tjNN2zjzMaduWkDytnQdZc+BS8fXFLjmSu6MJMG6gOQU5CejR\njFN3wvHcoS7gnacVz8jHM9RJdHJyJVeF6onkzl0QF+eXZgNXDF0JkurIvSZ5FQ0P0uBcQ5PmevnR\nKIZAdiF+/bovfk3JM8+67ff81vUdkH2vvAISEwvlPiOPRMR90s0bLOdL3s1k5DrD2+1eNg0l+led\nxLq+hx+i83z3p28sc2QMjeEKU5puaOjUqJdSy1EboLHt4mNHiZQpNul6WjtquvOz8Lquh2J0e5V/\ndkWck7VtzH0QNcZAzOiiO7vznJ83zq2q/94H3xtpWVKu9F/Oqt7ZZE09gwjUnxUx7NQJeFHa0CZv\n/gFHBy9xd7rD7s4eTdMwnja0qVkFJY3Ile/Ky434fbCpKIaxRZjOM53HPQ3OQ9F59fmks62LOq8/\nZaNf/vPoPCqdN9ROjkWdN3QI9OtkGLmbjyl2rWiJovOk0nm1vNGFyIyhA+ZsnVdqZHDXK8u/uG35\nZ246z3Teg3DROu++HRsSv0kfAD6uqr9V7fowMdzwGeCbiWGMHxKRt2hsTa8BTlX19uCUz6V9K/mN\nX/9fwGhYkpRkx+ObpjOAeY6i7zJON/j82mUDmb3KpXMhGUGgWtYoGZ2c8Chela7VkjLtZi94Os98\nNKGdHtDuHjB74TZ3915gZ7rLuJkw8tF73viGURPXY1fSB64peU0bmM1mzGanHJ+ccHx0xPHxEcfH\nxxzcfonjuwfMTk5o23nKIKy9ekl3QWfBlNhh5PXEkzcdJwQNzOctp/NZnA+ZvveNh6ZRvIJXj0uh\niG0bmLfpy9oG2hA7ieBBgubcPT3DqcQORdHqr8QOJT2PnYoQQkiGZdix58+qcm5kw5f3D1zm0l2d\nmNSn23rvb1XfYPSNXAkRrTrKe56zHFMbuejc6K6URnmK8XYU4VMnCZWqjVa3vODcWTTwQ0M9fL4e\nuvDkvOdZp84iQv5uOrJRGr5TBoZn2TFLr94ZutC1z7itm40JWo2TidBbLz7ZMxVJedeikeuartSf\nT0w01YjQOGg1EMKMcHLMyeFtDscTdvf3GU8nTKY75JnjGhRc01+DnYftmtosIYSYLdswjI1jOs90\n3mZ0Xj7vRes8LedbGCSi2peO7v0SW6Zdho4QKD+WW0Lo5z8Tl6ffRC23XOdR6TzXK1OshmUadfEe\nl5d7Vd3o8lem80znPQQuWuc9SMTGk8C3Ad9Rb1TVn6lefkFEfhN4GngC+JUHuN4KlBDiYz6fd3aL\n7K3tvL5SdXSRriO9V4upOtze5rR91ReqCylLYUbO+WQw+1MsctnidIO03FcO40vnyJ67kL6Y81nL\nbHbKyckJs9MTtJ2XL+2wEwlKyXIdQznRFsXRhlNOTu9ycChoe8zxsWfSOKaNYzISRg2MmjiPtBnF\nNdWdi6GgoVXCLBDaQGhjDTXqkEZwKmkEJH1KqeNpg+LatkQg+JgxGB+QAC0OJcSEw1LXoRJDKmPn\nr91+ynOqCIvUKZS+oe+91+6g8mr42d2b1UYhlqvs769Y0ndqaFVPQFn1JJU59ZH3bqa5rpY6NIbG\nb0u6yXP6UvK3WFe8OY+U5CVnz1WIfHxIz+tRgu5cOcQ5f48rRxVRUIVQPrNc6q4PSUZUEBwtY+e6\nr+tMZ8yPDjn0DTu7u0ynO+zu7qNuTMATtKz00wbFV6375UJOKmUYxlZgOs903jXQeasax9k//M+v\n80r4vUvRRkXnyUPQeaV8fZ03dMicxQVoCtN5pvMqLlrn3ZdjQ0R+CngH8FZV/YOzjlXVZ0TkeeAN\nRIP3LDAWkZsDb/5jad8Z3Gbxa7+THrnRluZ3JcOZRbpM0lQd2MLUCqWbxhDyvND+EfVJ+/vbQNAW\nwoyjcEI7O+To6CVG3tM4h3fQOKFJS3R5AfEpXNK5YmQ0ehe16hiiYY/GvWk8o8YzHo0YjRqaJo5a\nNE3c16TRlKZb4iwm+GqcT8mzfFrDPYaXxlDUajQmh6p6iSGoPoWfehczp/uSvCo7C5xPAiRvS4Kk\nW1/dxeXbnO+HsvZrVJNx1c7Y5g9Fe39XfBbVecpqJnUTkP6hujjNZlkYZk1/X/Yin2UIN4QIC67p\ns46lGBOVJUYtC9s0l5elRmGVd78Wi/k7FRCt58OWjPDFk++iYAnRIItTNMRAxDxvNo88KVF/egJx\n/nNKFquCtsp8fszpkePwpRfZ2dtnZ+8Gzc4++DEisbvOodF107vKaO60U5/W9kYlj9Kj/w7DMC4W\n03kXiOm8LdN5boXOK799ax+B9v6WH8O9z6I6T7ec6zINtlTnsSGdd0FfJtN5pvMuUeed27GRjN33\nAm9T1S+vcfxrgUeBbBg/C8yBtwM/n455I/CNwCfPPttNFkMUX2aoEtqWwMP0Zg0bSAuhjemMWpid\nPsRLVXTGLxmjaLSiEekMmOvva3w9nzZtT6GlTRONYV7jPRu93rFNNtolPLXb78u1XOPxTtL8XenK\n4urypPO5LmyieNbrnB6dMKGMzvQcFem/PKIUvfSuf0w+r0vTTmpvPtEw1/XZrQOfykIygD4nHksJ\ny8SVeZt5PikM7YQOtmWxuF7HstR/k84xdPCUp4OM17XhGxgyrYTD0HzVrxfHJpYYu85uFSdUt7F7\nxCx0Wm0TFNGcqaX6vJLZUQQchJBCRV2gmx8rgvfxGA2asu0rnhBHpQRUlCBpLu4JHB28xOFL++zs\n3mDPNfhpg/hUnDK8MPgrrDLlpUa210QqyeD1QhTzD5qaGfD8pZXLMK4bpvMuGNN5W6rzin7rRcxS\nNFY06a47LvNwdB7J0cIZOk+Szquu4eiiY4rOyzqur4xqPbXoFFytH0znmc57GFyGzjuXY0NEngR+\nEHgncCgij6VdL6nqsYjsAe8nzr18lui9/0fAl4hrmKOqt0XkXwE/ISIvAneAfw782lmZsiMnvOwN\n3kPliMXGcnkEVUIbvaIyl16kVjYa9cZoUui8scWjLeU9+Stbe7IH55P8f3WS4psooar19U9ObjOd\n3uoZJ0nGzCfj472nqY1rNqguG+CUuKxJ23xcz91LMcoujZY0je8bfO+KMa/O26SRjsY3NL6Mjvj0\n2lfG2ntPk0dKvK/elwy3c/g8z7jUdvdXO2uQ/+QxsfqoyC9+4mN897d/V/e67nrrx/LhtP62zizl\n0MkzhuByaGd5czI6muZlalVmrZbx6ub3xr95rmsgZ8BPOU60ePCzIcz/clkFjSNt1HMvY6NxKUEa\nIoTk8XdO+NzTz/Cmb/nmVMdtMp6gROHpyfObFW1nzI4OOLz9R4yn+4ynu/jJDo0XZm2gLxWGdXlv\no7eNqCoaQpxDrnfZZL9lGNcZ03lXDdN5F6vz/AXrPGc6b/hO03mm8x6A80Zs/DCxhn91sP2HgH8D\ntMCfAt5NzKT9FaKh+3uqOquO/9F07M8Sk0p/BPiRe1/+BNg/Z5GvM5s1eDU5DKn0o9v2pfwadw5X\nLT8k0YPuHI4UDZHm00oaqXApdLPnSe/CTcvz3AHm7fG4KkSyer8TV4V8plEGcYiXEpkhxbPv0jVK\nNvlUJufiNarz9B5VWGy+T1m4djVKII7/8N/+K+PmRnWddH9dGGu/fmKoax11EpfCct09xDoWSREm\n0G3PIYFxu8a/TnqfT25cqtGYkee0ZiOnmhz0Ie0v817z0muqLYSYRCqG3obOqx+9+XWe+FB58iN5\nicE4ECH4LNRE+MzvRoOX76sY4bTWuSqNQBCAlnZ+ysndOxzefpHdG7doJjs0zRjB4zrht23foftH\nVWlzuPUW9VuGcQ0xnXel2J7+8uWr84pOihETZUqLVJpGqunLZRpM2earc+XIWtN5pvNM5z1czuXY\nUO1yIK/afwz8pTXOcwL87fQwjC1HCYGU7OZqJzZ0KSzTJ09/GYUoIweuyyhftvXmvHrHV194kac+\n/ml8k0YgXP2+OGIxDEltcnioL0vyNVX0i0vzfePx0UnUGdtsJH0SBz4JCdKIi2Yjlr3vRCOlxRCS\nvMW947JnXzUaumwo0xK8oU1LtKWl2vKCe0XIRCNMNqJot+KXCHHlvSCEoLRtmsepZUQgoIgGHLEz\nDs4lYzhnfnIUQxXvvMh4usNoMkWaCV6aMmqRROTi3OxFYxiT012skbzfEEhFaefzlDTPMIxNYTrP\nuJ6YzjOdZzpvHbZd5z3IqiiGYVwxYmb5lvm85URy6KZ0cwRLl5U96CW0s9uGcHJ6yOe+8MVeGGkv\nvJQSVpqjIeMlurMvhJrWeUvq/rucqzpOJIVnVvNkUyKwGBZKN5e26UZOorGMIyKSRhfi6INPy+vG\n0QQqYxrDDlNeqM4Qx5DSVAYnnYdeBBoRnM/zeuOow7xtObh73BnsxqUVBDWNThCzwDddQGTovPkH\nf/Q1RuMpo8mU6b7gG4fiaXP85Sobsyy2dEtRVdp2HoWDYRiGYRj3hek803nbyGXpPHNsGMa1I3u6\n+3Msz0fL4dEwi/HlUoeA5jBI1wuNrMI/c4hjNy1IcMmK5rDJ7py1EYYuZJL0vEwTymXobHoxlhJD\nOhEQB394+y4f/fVnUuhpGYXIn4UqINHsqXhaPLgGacZM93+fvRuPcOORVzLZ3aMZTXGuAXJYa0yS\nFrPLxws6ieGpkkZW4vKCQlxKL2azL4lo87KDw9DV/r4oEobv92lUxXeJzu4LzZ78VWHChmEYhmGs\nh+k803nXU+ddFcfGNP4JxEypxnooVl/rYnV1PjZfX6rQtlclaPQuv/r5p1fujUvPSWWw83zWlChs\nNGY0HjMeT/BNg/dNNGYuZZhP23zKNu9ysjPv8Y3Hu7jf9TLIl+O9b/BNQ8lUP9jfeJxLicx8Mq7p\n3OVazX0aPGU2m3FwcIc7d57n3m1rnp9M7+NihmFsJ6bz7ovN2+Krg9XV+dh8fZnOM5133itdFcfG\n6+KfObbM33mx+lofq6vzYfV1PlbXV16Sz8is1bZeB3ziYsthGMYl8br4x3Te+bH6Wh+rq/Nh9XU+\nTOetz8XoPFmWfGTbEJFHge8Bfg843mxpDMMwjA0yJRq7p1T1hQ2XxTCMh4DpPMMwDCNx3zrvSjg2\nDMMwDMMwDMMwDMMwlnHmsl6GYRiGYRiGYRiGYRjbjDk2DMMwDMMwDMMwDMO4sphjwzAMwzAMwzAM\nwzCMK4s5NgzDMAzDMAzDMAzDuLJcCceGiPyIiDwjIkci8ikR+XObLtM2ICLvF5EwePzW4Jh/ICJf\nEZG7IvILIvKGTZX3shGRt4rIfxGR/5fq5p1LjjmzfkRkIiI/LSLPi8gdEflZEXn15d3F5XCvuhKR\nDy5pax8aHHNd6urHReTTInJbRJ4TkZ8XkT++5DhrW6xXX9a+DON6YzpvOabzzsZ03vqYzlsf03nn\nY5t03tY7NkTkB4B/Crwf+LPA/waeEpFXbbRg28PngceA16THd+YdIvJjwN8C/ibwZuCQWHfjDZRz\nE+wBvwG8F1hY/mfN+vkA8FeA7we+C/hjwM9dbLE3wpl1lfgw/bb2g4P916Wu3gr8JPDnge8GRsBH\nRWQnH2Btq8c96yth7cswriGm8+6J6bzVmM5bH9N562M673xsj85T1a1+AJ8C/ln1WoDfB9636bJt\n+kEUAZ87Y/9XgB+tXt8EjoB3bbrsG6irALzzPPWTXp8A31cd88Z0rjdv+p4uua4+CPynM95zLesq\n3eer0n1+p7Wt+64va1/2sMc1fZjOO7NuTOetX1em8x6srswOr75303kPXl+X0r62OmJDREbA48Av\n5W0a7/QXgbdsqlxbxreksLKnReTfisg3AIjI64nesLrubgP/E6u7devnTUAzOOaLwJe5nnX4RAox\n+x0RedqMYE0AAAPeSURBVFJEXlnte5zrW1ePEEc/vgbWttagV18V1r4M45phOm8tTOfdB2aL7wuz\nw8sxnXc+NqbzttqxQfT4eOC5wfbniA3quvMp4D3A9wA/DLwe+JiI7BHrR7G6W8U69fMYcJo6q1XH\nXBc+DLwb+IvA+4C3AR8SEUn7X8M1rKt0/x8APq6qed6zta0VrKgvsPZlGNcV03lnYzrv/jFbfD7M\nDi/BdN752LTOa+634MbmUdWnqpefF5FPA/8XeBfwO5splfFyRFV/pnr5BRH5TeBp4AngVzZSqO3g\nSeDbgO/YdEGuCEvry9qXYRjGIqbzjMvC7PBKTOedj43qvG2P2HgeaIler5rHgGcvvzjbjaq+BHwJ\neAOxfgSru1WsUz/PAmMRuXnGMdcSVX2G+P3MGaCvXV2JyE8B7wCeUNU/qHZZ21rCGfW1gLUvw7g2\nmM47B6bzzoXZ4gfA7LDpvPOyDTpvqx0bqjoDPgu8PW9LIStvBz6xqXJtKyKyT2wgX0kN5ln6dXeT\nmLH22tfdmvXzWWA+OOaNwDcCn7y0wm4hIvJa4FEgd1zXqq5S5/29wF9Q1S/X+6xtLXJWfa04/lq3\nL8O4LpjOOx+m89bHbPGDcd3tsOm887E1Om/TmVPXyKz6LuAucV7OtwL/EngB+LpNl23TD+CfEJfD\n+Sbg24FfIM5FejTtf1+qq78K/EngPwO/C4w3XfZLqp894E8Df4aYVffvpNffsG79EEOqniGGSj0O\n/BrwPzZ9b5dZV2nfPyZ22N+UOp3PAL8NjK5hXT0JvEhc3uqx6jGtjrG2tWZ9Wfuyhz2u98N03pl1\nYzrv7PoxnfcQ6srs8EJdmc57iPV1me1r45WxZoW9F/g94jI6nwTetOkybcMD+PfEJdGOiFlj/x3w\n+sExf5+4JNFd4CngDZsu9yXWz9tS590OHv963foBJsS1mZ8H7gD/EXj1pu/tMusKmAIfIXqnj4H/\nA/wLBqLzGtXVsnpqgXcPjrO2tUZ9Wfuyhz3sYTpvZb2Yzju7fkznPYS6Mju8UFem8x5ifV1m+5J0\nIsMwDMMwDMMwDMMwjCvHVufYMAzDMAzDMAzDMAzDOAtzbBiGYRiGYRiGYRiGcWUxx4ZhGIZhGIZh\nGIZhGFcWc2wYhmEYhmEYhmEYhnFlMceGYRiGYRiGYRiGYRhXFnNsGIZhGIZhGIZhGIZxZTHHhmEY\nhmEYhmEYhmEYVxZzbBiGYRiGYRiGYRiGcWUxx4ZhGIZhGIZhGIZhGFcWc2wYhmEYhmEYhmEYhnFl\nMceGYRiGYRiGYRiGYRhXFnNsGIZhGIZhGIZhGIZxZfn/DcYr1UOGjecAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=[15,5])\n", + "plt.subplot(1,2,1)\n", + "plt.imshow(out_img.astype('uint8'))\n", + "plt.imshow(imresize(a_img,(256,256)),alpha=0.2)\n", + "plt.subplot(1,2,2)\n", + "plt.imshow(out_img.astype('uint8'))\n", + "plt.imshow(imresize(d_img,(256,256)),alpha=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def merge_compare_maps(maps_small, maps, image_size=64, num_landmarks=68, num_samples=9):\n", + " maps_small=maps_small[:num_samples]\n", + " maps = maps[:num_samples]\n", + " maps_rescale = zoom(maps,(1,0.25,0.25,1))\n", + " cmap = plt.get_cmap('jet')\n", + " \n", + " row = int(np.sqrt(num_samples))\n", + " merged = np.zeros([row * image_size, row * image_size * 2, 3])\n", + "\n", + " for idx, map_small in enumerate(maps_small):\n", + " i = idx // row\n", + " j = idx % row\n", + " \n", + " map_image_small = heat_maps_to_image(map_small,image_size=image_size,num_landmarks=num_landmarks)\n", + " map_image = heat_maps_to_image(maps_rescale[idx,:,:,:],image_size=image_size,num_landmarks=num_landmarks)\n", + "\n", + " rgba_map_image = cmap(map_image)\n", + " map_image = np.delete(rgba_map_image, 3, 2) * 255\n", + " \n", + " rgba_map_image_small = cmap(map_image_small)\n", + " map_image_small = np.delete(rgba_map_image_small, 3, 2) * 255\n", + " \n", + "\n", + " merged[i * image_size:(i + 1) * image_size, (j * 2) * image_size:(j * 2 + 1) * image_size, :] = map_image_small\n", + " merged[i * image_size:(i + 1) * image_size, (j * 2 + 1) * image_size:(j * 2 + 2) * image_size, :] = map_image\n", + "\n", + " return merged" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(-0.5, 383.5, 191.5, -0.5)" + ] + }, + "execution_count": 125, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABL4AAAJyCAYAAADKGAn5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3VeTG1mW4Pm/awkNhFbUyWR1VW11V3fP7prNrNm87Lea\nz7XWZrsPMzYtp0tkVjKpGYKhoQF3uNwHhzOcUWRWZVcKZvD8zK4BZCAQCIQfx73Hz71XyfMcIYQQ\nQgghhBBCCCFuGvXHfgFCCCGEEEIIIYQQQnwfJPElhBBCCCGEEEIIIW4kSXwJIYQQQgghhBBCiBtJ\nEl9CCCGEEEIIIYQQ4kaSxJcQQgghhBBCCCGEuJEk8SWEEEIIIYQQQgghbiRJfAkhhBBCCCGEEEKI\nG0kSX0IIIYQQQgghhBDiRpLElxBCCCGEEEIIIYS4kSTxJYQQQgghhBBCCCFuJEl8CSGEEEIIIYQQ\nQogbSRJfQgghhBBCCCGEEOJGksSXEEIIIYQQQgghhLiRJPElhBBCCCGEEEIIIW4k/cd+AX8uRflv\n+Y/9GoQQQgghhBBCCCHExyPP/5vyTV+Xii8hhBBCCCGEEEIIcSNJ4ksIIYQQQgghhBBC3EiS+BJC\nCCGEEEIIIYQQN5IkvoQQQgghhBBCCCHEjSSJLyGEEEIIIYQQQghxI0niSwghhBBCCCGEEELcSJL4\nEkIIIYQQQgghhBA3kiS+hBBCCCGEEEIIIcSNJIkvIYQQQgghhBBCCHEj6T/2CxBCCCHEp0D5wG1V\nfu32+n0hfuokDoQQQogfmiS+hBBCCPE9U/5Ey6813nNfiJ86iQMhhBDixyCJLyGEEEJ8j8pBvXrt\ntnofIFu26sA/W35NBvzip07iQAghhPixSOJLCCGEEH+hb5q2pVF0N6rNWP5/2dJKS4B4eZtSDPrT\na8/5ocoYIX5MEgdCCCHEx0gSX0IIIYT4C5QVK+X964N+AzABa9nsZTO4GvyXg/wYCIHF8jbmKglw\nfb2jrHKbIQN+8eOSOBBCCCE+VpL4EkIIIcR/0DdN2SqZXA3yfcBb3pqVFnM1yJ8Ds+VzRcuvaVxN\n94KrQX5ZAZNztUaSED80iQMhhBDiYyaJL/E9+KZSf/jmDln1Kmn1+69f4ZSSfvGxkzgQN1l5jJZT\ntPRr96sJAJe3g3zbAc8B1wHTAF0Hw4AkgSiCKIYwhCAoWlZO9Sqne5WVLTFFMqBs5b+rjxHi+yZx\ncHOVn73y+So+ZRIH4uaQxJf4jr1vl6KqDw3Wr3+PytWUgetrWFQXe5UTsfgYSRyIm6x6bBqVVq1c\nKQf/KlBftgZ4JqwaRfNV8DRwVQgymKQwTqGfwEVcDP6zcrBfDvjL27Iipmzh8nWVU8KqMSbE90Hi\n4Oa6/rkt76H4FEkciJtFEl/iO3S9xL+63kWpOlhXPvC9Klcdxevfc30dCynpFx8biQNx05XHqEYx\n0C/XLHJ4/7pFTaAFtIsB/poCd4CuUnypqcA4h3PgPAcrhyiHQXmcVwf7ZVXLFBgvm758PdVkssSE\n+L5JHNxM1c9hSRyKT5XEgbh5JPH1vbg+kH3f/dL1k0l1etP71oiodmiuV438GCelanVKdWeicsci\nrfJ1uFqLonqbVb6n2kk0lt9T7fTFvLv4a8y7pfzfNL3sfdUyICfz74vEgcSBuFnKY7ha3VK7apYJ\nlgW2VUzd0jTQNUhqEHsQW/gbU5q3h9QfDXEaC0wnwnIiooZJ0LSZr9nMmj4Tp8bUrJGmOtga2Cnk\nOsQ6xCkEGkx1mFoQ2ZAakKqQV6skY6TDLr57Egc/fdXPyPdVWpe35Wd0WT1XdX3pASF+aiQOxKdF\nEl/fufdNb/rQlKdq1QaVr1UrPVT+eMB8veKj+u8f+qRzfW2LshNYXvk0efd3KK9WloP28qqlwbtX\nScsdj+Dqd1wAAUUpf9lU3t3e+/r0sFL5/lSTDNX3S07W3y2JA4kDcbNcn9ZVHp8toFs0R4fWsjlq\n0WwVAqsYmE8VWjt97tx/xu2/ekbbGtDMxzSyCeNGjfO1Dud5h6PeFge1HULPITVMaIPSgTxTYWYU\n7UyHIwsOfRg7sNCWh3I1xnKujnU5tsV3QeLgp+96ZXX5+V3tc5RfLz+j4U+vsSnvrfgpkTgQnx5J\nfH3nPjTN6UPTnVKuStGrjy8rPj5UKVK26r9/jJL28gSpczXAtygWcXUpBvHVE2hZoh/x7gDeorha\nWu50VH5/2XFLl4+dUJT2lyX9LJ+z+nrK11RNrpSVMuVUgfL9qu6EJL47EgcSB+JmqU7rKnencykG\n/GvAZjHA7yiwoUADqCnF4TxSoK9CH1o7A+7ce8qvf/aPbHPE2vSctekZZ1aPV/42L71dnN6cwHU4\nsTdY+CbKNrANSqKSD1QYaPACMHKY5xBbkOcQJ5CVx3XEVTJdFvgW3xWJg5+264P969XZ5Wdq+ZiY\nqz5F9f3LP/B/QvwUSByIT5Mkvr4z1c7Q+04g1cE7XA32q9OUqoPnsuKjrBRRK99TZt4XlVY+Tzn4\n/dDUsvdNEfs2J6nrz1sO9C3e2Z7bdsC2i1J/TQNNAVUpSvOjGKIE4hDiAJIQDAtsHyyv8r02KApk\nGaQpLGyYWTB3IRpDqkOaQ57yzpQDpay4USu/WploKN+v8n75nsnV0O+GxIHEgbgZrneMq5WM5e50\nLvg++C7UbLydGf7OBH9niu2HWF6I7S0Ipzbzkct85LKz+pq99BW3X72kFZxgjQaEwwFqLabdzVG7\nEflCJavrKHchMk3MeohFiKJD1lLJfY2x1uCCHhdml8VrGw7rcJRConBVGVmeU36MZLi4GSQObo7r\n/ZPqRgT2VVO04jNXVSBfQD6HbM67mwVUq7avX4SDT/t9Fh83iQPx6ZLE13ei2jEqO0XVE0h1h59y\nrnRO0RkJKSo4ykFrOYD2KS4R2ry7wHU5QA0pKj4mwIyrKU/fNLWsOsCvVsnAn3dyuv58yvJ3cnh7\nxVNpF80zoaNDxwBLKR5mKDDLYJQVOxZNI5iHMFuAbUDbgbYLHRPaetFUpVjcNc6gb8OpAyd1mNgQ\nKhDGxRVOvGVzQDFBsYr37e2FiJirXY9myzZdvvcqRQJAynT/MhIHEgfip696XJcJaI2rKV3XKhmb\nDmzrsA2NvSGbewds7R3Qti9pm33a5oDLRYeTcJXTYI3bs2fsDvbZPDghHQ4Z9QMOBhlGO8TZumBn\nM8Js5FheRHN3gJpk1IMJ9eMxqpWR1VXStsorc4/f2r9k1nNYtDxQPLjUYK5QDPanFOeCsqpRiG9D\n4uBmuf631Ln6zHZ5Z402dXmRSleKgX4ygWzC1U6ZGe9edKuutSkXj8THTOJAfNok8fWdqJ5IynV9\nHK4GoS5Xg3+Nq4H2gquBZ8JVUqAsm28tv7/MysPV9KgA6PO2ouOdXTeqHbbqVLPqekjldKtqieo3\nnaCuP1f573LA7y0H+2tF8zRYUWBHeTsOx1agn8MZcJqDGkO6gHlULNrasWDLgm0NtpWiqSxzIjkc\n5fAkLxIAqQlZDNFs+fLbRVN8UBzQHMi1ykXOiCI5MgFGwODa71xepfhT74P4MIkDiQNxM5THdjWB\n7fLu1N1lazlwy4CfKzRuD9m9/ZJHt37Pjr7PpnLIlnLIfr7Ds+weT7N73PndC3b/eZ/Nfznh9Djg\n4DLj2WVOby3gzp2InTtD2vdnND8bsL53hDMOWHl1ycrxJVo9Jq0ppG2Ff+v+ilnP4dntuwydBlz6\n8JW/fP0T4JJ3k+VCfFsSBzdD9bO67J+UFXt1ioH+8rOTTlEtrVP8udMp5ANIR5CXCcTyott8+Xzh\n8ueUA/2y/yGfoeJjInEghCS+Puh6tcj1+9XHlQNhm7dTnDSvmK5kemA5xVQnywJVXU5ZyiCOIHBg\n7kGSgGqAZoBpg1+Hmo/i2GhajqblKGSkkU4a62SBDtMcJirMDcgtyKonsrJV1/lJKm1BcZKKeLdM\nNf/A71Zd7LDKpdiHuw31FrRq0LTxt2fUt8fUd0YYboRhJRhWzHzkMr30mF36hMcG0ZHK4sjBXE1x\n7s5x741wVwO8zhy3E6BpKfkyPzLxfPpWm36jzWLfINuvke93iysSfgP8BqpnobsaupuiahlZppBn\nKlmkkM4s0hnkcxUCFeYaJAZF57C66Pe3nfZ2k0kcSByIT0eZuC6rNiuDfMNbNhfMZRxbJsZdHePe\nAvP+JWu1E/bi1zx484Rm/AY/OiWNTnAdWHcVDDdmc3pCb36BE4boswTGkPQhdzL0eYYdxejBiHSk\nYJwvUC8W2C+HJF8P0dwEdwz2UGG9fcp67Zi1xhGLnknYdAk9j9Q0ip3tMr1I+r5NiKcf/K2FeJfE\nwc1SfnaXF6lswAG9DnoTjCbU6ih1D+omhp1hmBGmGZMGMYuxSTRukEceJGnRogWEISxCyGZcrbsZ\n8u7SDfIZKj4WEgdCSOLrva5XiajX7l8f9Jf/V1aotMGoQd0tyt+b1nKHHw1MtajUiDKYpHDmw3kM\n8wwMFQwNGgbs2LBjoawomNYC2wpRSQnHFouxRXbpwD7w2oTYhXQ5pSmb8c66E2+rZFSuylFDrqY5\nzbha56ec5lSeoKrl/dX71d3g/OL3ZR26Ptx34J5Ca7PPrbUX3Fp/Tt0c4xozPH3OWbDC4WyLw9kW\n/VctRk/qxFYDdz1g9WdnrDw6Z90/YV05ZZ1TTGNBZhX5jIPGNl90H/GH258zeOySqB7puU6eqrBp\nw5aDtpbjdkPcbojqZKS5RpppxGONxRuNxRuH9ESHc62olkksrnYsKdeaKqfAfeokDgoSB+Kme9+0\nLoPiuG4WzfKKNYx8D5p60Ro69ucBtQdTardDNocH7B295u7lS6LxgPl4wvkkweiOaawdsrI2p/1m\nTGsxQHUzVBcMoyiCtHTQraJY0cwi6mdT9DBhcpIw/jrg8EmGr8HKS1jp5Li3A3oPL9h9+JrEM7j0\nVrjwTVJXgYVS7G73zoC/Wg0qxPtIHNxM1YtWJm8vzBlN8Nrgt1F2LJRbOurtGMcLqJljasaEcKAz\nOnVJTmqkEwWCrGijBPoJ9GPIxsAF7/aZqkspyKYC4mMgcSCEJL7+SDVgq9Ud1YGz8oHHexQD/lUw\nGlC3YdWGDR22FNhUwFGK3XcC4DwHO4d42QlxlKLns6bAIxV+qaDeTjC9GNefohPDWYPkzCZ+bYNp\nwqQG/Xrx2rKcopPWXL6OOu/uzlFd22fE1VpLAe9OASs7RWVpf7nmUnlbrZipAR2KAb8BDzX4PxRa\na33udp/w6+4/0tPOaCsDWsqA59kdvkh/hpZFqI93SGyTcdrB3Vqw+rNT7v7qKQ94woPBUz7rP8XV\nZ2R1SJvwO/3nJBkc5WtMGi75hU/2+xZ5rsGmCo9U9HtznN2Ixu4QvRYToxNjEJ455F/5xF85pI4H\nmQUjD2bm8veYUyRCyl3vPnUSBxIHEgeflutTIModRtugrBQD/oYHHbeIzfWiWfcWNO5N6d05Y+u3\nh+wdvebe/3rB4cmCi/OUF2cpm3sjbt+fcfv+CXaYYoQJmpeiuWAayxUANdCsYokiM43Rzib4RzPi\n/ZzDpxnPv85oJmA60HPA/VVIt3bB7sNXLFyb1DMYem0WjgK5CrG6rP68fr76lAb84tuTOLh5qn/T\ncm22BpgtqLWh1YG7CuqvE9S/TXDqE1rGBT3jnPFJg+SFxfRljfTChDEwzuEkhyQv7sf95c+JuKqW\nLpdQkOle4mMhcSCEJL7ecX2gX06TKtccsrgaJJedh3JaUAK6D6YPVg19xcK+nWDfGuFuLvC6c7zO\nHN1OyBKFNFYJuzYDt8mw1iIYOyh2DjbY3ZD23QHtjQGN5hBPmeBGU7Q8YWw3mKw1GBsNhtMWg2mL\nWeYUA/9JXOz45tWLKWKuh6opKLpSzCxb2GShSh4aMNNgasDcpjiDjfjjne4q5f2aftXyFPJlZYjS\nAbUOqoPdCXHWx7h7c3b119yavuTO8AV+foGZjVDzEXVfZbtukNfB9FPinsP59jreSsB67ZQH2hN2\nJ09onbxGfXWEogRYDdAb0Om0WV/ZZ6f3imxVY7jaYbjWQdHA3xvh35vQ2u7T887oRadYs5BY1Uk0\nnYle57yzyvmdVUbUWEQq4dAiDX1IPEicym4l8fd+pH3cJA4KEgfiJqtWt5RVjNXdSR0w60Xy2qpj\nbitYOzHm9hi/O6XWm+J3pzS2BtQ7AxregG1ln254gT+YoV+kpCcwP4HUTTC6CbUJzK06Z50V+r0W\nk0bApDPBXp+Qbxj079mw41AjpDadUptOsbQUOwZ7ClYKug6qDYqSoyxPUbkKuVJJxOfVO9XqFul0\ni+skDm6+sk9T7hRdA1pQq6Fs23BLo31/SHfrjF7zlLZ6STvo0x72mQY1LvxVzvdWmXU9FlOLxcxi\n3nGZeTWmjk86qMG8BfMYYqOofMl03p3uVSYCZNqX+LFIHAghia+3qhUrZXWIzbsLmfoU1SxG5fER\nReXIvLgE1/SgZWPt5rQ/H9J9dMnayhmbxjGb+jGeMSPSdWJd52y9x+OVz/hq7yGLYAXVylDNjKbb\n5/PmH/iZ9yU7833MwQJzuIA4Z9KrMen6nG+u8Hj6kMfp58zcLTh24QSYRcvpTjasaWhugu4kaEZK\ncqkQ9w3SCwMODTh0IWwU86dyhXfLUBWuKmYaoGtgacXi21kGeVbcGvUi0aFDrT1mtXPCSvuYu8df\ns/f8FZvPTojCMeM0ZJzGZFt9ende0LszRQ9VBm6XZ1sP8Pw5GxzzsP+E2uFroi/6PP8iwV5AzYGa\nDfndOZ1fHvPAf4zmwOtuxmyvjmUu2Lqzz86d12y6h6wPj1k/OMFN5mSWSmqpXBodXhi3ebF7mzfW\nOv1pi8uzFsHcLpIeMwcym+LqRMSnOR0AJA4kDiQOPhXV5HaZzLZ4u+6H4oDTgHoNGi7ugynNz4c0\nH07YcffZdQ7YcfdR2wmqm6CSsMtrmgxRvuF4OWv0+LLzOV92HmIFF7RHr2iNXxHXXQ5Xerzo9ViN\nL9mb7GNPQ+xpSvsVRBq4JtS7oG1AsqUzb7qM9AaTvEaYWmTRcgp1mlPsclo2mWYhPkTi4OarTl11\nKKrAuygtG+Wejvo3CWtrb/hF/bf8Yv47WoMB7tEc92jGwrOL/sZajaHaZBC36Mctjjc3OOztEK3s\nEByZcNKEEx2mLsQORAbk1Z2myyqY6m538rkqfkgSB0JI4gv4450uym0sHK62dm1QDH6bFJ2istpl\nTrGr3KBYpKHpwoaDeWdO52dDdv76Nfc7T3k0e8yj2WNaSp+gZhHUTF6ot8iDjDfzVS6SFpqeohkp\nDfo8jL7kv0b/wM+GX6K+yVCeZ6QLlekvXSYbLodrWyhpzqm5zkFtB3wHVAuGGdxX4WcqygPQ6jFm\nY4FhRYQHDumhSfrKKhZmnWZwGi9/j3i5U0e12qcLrBRNV8FRwVeLqWQpxa2lL5uC35mw0T7kbvtr\n7j1/yu4f9tn4hxNOJwuO45T9KKP78wE7syk77iGRWeeZex99K8FTZ2xwwmeXT0henfDqi4SX/zPB\nGsGKWrT8b+a0a8fc++wxuW0w79Y43t3GdWds3d7nr27/hnuLp+wcHLH95RG18RQ8yF2F49VV2rf7\nGLsLlFZKdqYxed0iGNiQ20WFUGxRrPFULoIOn9YJWeJA4kDi4NNRdoIN3g7y39nW3AOnCa0aypqL\ne39I56/7bPz6iF/kv+OX2W/4Zf475rbNzHGY49Bl8KcH/PUev9n9Of9w9/9iW3vFzxOL9WTKWG9y\naN7iwLjNXrCPPQrZGB9jny1o14ucs2lDrQv6LqRbOkHTYaQ3GOc1FoldDPhjrg34pXMtvonEwc1X\nHfDbFAP+DkpLQb2bov59zLr1hl9F/87/Hfw/NPeHqL/P0H6fktxSif9OI17TOWt0OVI3OVI2eXz2\nOVHP4rS3RtCsFYuDz2vFWqO5vlwus7oT9bJ/8UlX3okfl8SBEJL4equ64N+yw6PXikoOswFOHbwa\neD4YBqqao6qQxxl54JOFOdR02HJhy8Deilhpn3Pfeca95CtWLp9jv3mFsRih1Uw83yCoKWzVXrFb\nf0ns6EWpuqawEpyydnjMxuEhaweHBC8heAlpouI3LPy2hWpk9NQzvN4Yw1iQGwq5q6CPM1p3+7T3\nBjRWR5hGgGkEaHnMvF5jtukzs2qMFw3G8wbT0IWZV0wRm4e8PSkqBtTbUGtA3cNqRNiNBVZ9QZ4p\nb1uExSKHKNcwVmLsekDNGuOnE7zxDOckRBvFZAsIIshWI+xRRDuc0dDG2CxQ9BxdTbH1EF+fEOdz\nrDnol6CNwNDB1CGb5lhRgpVFmGaEVk9RVnJsJ6RXu+C28ZKdyQsal2eor05JzgNUF1QHrCCj3Wux\nZdaYN1ymzQanzU2oWRDqMCmn8VUH+58iiQOJA4mDm6ua3C6nctmg1ECtgeaDZYNtg+NAz4eejbKq\n0eyO2Wvs85n7B3YvH9Psv0C5PMDSXVTdw9ZdjOOUwDQ5vdclaEWY6xErlxHWlsXsls3htsN+c4d9\nbYfXsz0SzcDLQ9w8Yxw2OEi3OUi3CRQPQ0tRmuDtDMg/W5CPQzRLZXxL52TP4OnaHQ7zLS5OVpgc\n1gn7OlkQQRxAGi4T2OXVZXh3J9bqsZ2/5750xG82iYOr96F0U+Pg2tINyvJzXTHRnRi7GWKtzunM\nL1i9OGXz6Ajr6YTgedHfSFLIWqDUwevOWLMWOPYcNSo2IDBuxZwo6wySNoNFm8j2YRzBJIPQKKpe\nYntZ9VKuI1r9e3yKFXjihydxIARI4mupWuFSln82inUd6g1o1GHFgU0LNhVUP0U3UnQjIZ+lJGcm\n+XmT3NBh3YE1FWctZN045bPxE7ZnT8m/Oufo8YKzQY5vJfhWjrE2offoDfcefY3dWBApJgvVore4\noHE4RP/3iOhruDiHs3MIlJx2PaFlgR8EuI05TmOO1ZiReyrZmoozD7jf+ppHzT9whxdogxh9GsMi\nY+zXGXl1BrfaPA/v8Sy9x1TfgUMTDv1iXjYWKFaxuuqKB3dcuKXit6Z02hd0WhfFDnHLXeJGkxbD\nSZt4bJKvKuQ1hVxVyClu0UBVQFGWS6su77+dQbWcUZUvZ1hltWJn3ZpdVLdYOnQ9aLswbGhgWwSq\nz1x1iVyTrK1i6TEtdcTG/ITW4JTgfMLr44TsDegm6AbEeUR+a8DK4pCZ0eDU2sD0I/B9GGugVRd/\nhU/zJCxxIHEgcXCzlR3fMsaXuzppTTBaRax3jGKDho4BDRsaBkozp+v2uZ884+/6/4Ly5JTw6wGP\nn4CnJLhagKumLNoek06T6O99kmCMOxuyNxuRNRuMOiv0uz2ep7c5m64S9H1Okw20FEZph2BhMwxb\nDMIWs16N+Y7Hm+012rtn1OlTX70k1zUWHZ+o47Ov7PEkfMDp1+uMv64RvlHJZgEkE8imlekVKVdX\nusuEx3XXp4PdhAG/+DCJg08jDqoJzuV9RQGt+CA2zYiaMaFh9GnOhziHIcrvc2Yv4PQQTofF0DxT\nID8Dq73AqffZqCW47Zh2d8Ct3kueqPf5Mv4r/pD9FVHNgYsaXKgwcmA2g6kPyRgYcvW+KlxtIPOp\nVuKJH4bEgRAlSXwB71/wrwNmsxjsr9bhng6PgEegdBN0O8K0F2SXKvkLk/S5RZ7r0FWhp+L4Ieva\nCZ+PvqZ79ITXv4t5/U8R6VHOupKiqRnmnQkr6hvu3/JoGhMmSo0pPrVoSv1whPFvEYvfwEUALwOY\nmjl3zYRWluKHc9yHc5y1GfbWjHRNI1to+NGYe8lj/nP6//H3wT+jDHKU/Yx0oNL/rEm/1+R4awUj\nixloLfatXdBMmHhwDChu0VQHVjV4pMHfKvidKavdY3a6r0jQSTCI0Tl+ExMdmQzftGAN8CFX1OKk\nqoKybGp1wF/dUTsGwmKWVW5D2gJ7uRFgooJtQNuDdgvipobi2Mw1j7nmEnkmWUvBJKKljNiaH1Mb\nnDI8S3h1lDI7AFMBSwVLj7EvBvQWGrHV4IV9F8OPij+1rYJa3fXvUz35ShxIHEgc3GzVaV0uUAel\nAVoXjC44begpsKfAtgKOBo6K4qZ03D7302f8Xf9f2X+y4PX/iNj/H7BOzIaS0iRk+l98Lv5ri4v/\ntElLPaOb5nTTOSd6kwNji33zDs/3b3H2bJXgucd8XmOYdHge3yebqcQTg2Sic/5whTfeOn+494D1\nvSO21w7Y/vk+sWIwMDr0jTanJxu8+XqLkycbzB/rpG/mZLN5MeDPpxRrDoZcdfZV3un4v/W+9Y/k\n2L/ZJA5ufhxcH+wvf29Vffunt4yIujFmxTgvBvwHAepvc2ZHcHwJT4YQjovBPr+H9VbIrU7CZnfC\n1ucX3PrrF0xXHFbrf02YObxU7zBy60VFvO6A6heJx2AGiUnxXi64GuhXk4s/1fdZfNwkDoSoksQX\ncDXYN4qFTNUaaA20poe+raHfjXFvT6jvjKh1x9i1AEOPMLWIyLOYrtaZKnWmqc/c9Zi5PpqR4igh\nDWVMPZlgTSE/h/QYFC3H0HPUdoI9X+BmAY4WEOCQo5CqGrmugqWgWmBERRoiy8HScgwrBycrxqgo\nkCs4TojhRawk56y/ecPG8QHrb/ZZHEB4CIuRSsMZYzcHuI0ZL427+CsT1Dwhv1DJX1rFc9lOUdrv\n29S2x9RuTajdHbOnvGQvf87e5UsSVSNRDRJVp6FMsVsLNCPDb0+JdIuT6Tpdo8/q+jn9nzcJJwHG\nIqG5SNAe2oy2PF42XY6CDUbTOtmpyjTxOWxu8qX1iEb3mOxOQPbLAHWRM25qpA2N471N3rhbHE13\nOM3XmEzrpKFOpivEuc5Cs3B0E9UE28rI7RxTLbYH120FxTSIVYsFFkmmk6dqsQZGVi7kXZbdlscD\n/PHJ+CafnCUOJA4kDn5Yf8l00m/73lfiGwvwisG+3oFOA1Y81FWDxva4iPHNCZqeoekZhhGxXd/H\n9BaMjDqTxYx5Pyc8iMiUHE1JsVVQZioL3WLUq5NkOmFQYxyucxRv8nqxy+tkl/3DHfovGsSPVZK5\nRpiYkGh5PoraAAAgAElEQVTFMoFTBaYKC9UmqHcZeA2CpsNCcwk0nyTXGWStoh02GT5rMf9aJ34V\nw+UUogHkA4ony3h3V9rqjn3V9z2j6ICXLV7elrtP/ZQH/z8VEgcSB9+X6mfVcs2z5d0sVUlSgzC2\niVWT1NXI26DNwYzBCyENIJhA2IfxKGM8jhgPI3w7wO+Oaa6pTMw6x+YW/fUeB8YO07rHrO0RvtGI\nDjQixScbZRCHEM+Wn7UK7763Ch/3+3w9Rj9UMfih7/umx/+p/sSHzg8f4/v0sZI4+G5IHPzUfeKJ\nrzITXlnYVHPA8MCso69o+PdDvL8es7lyzG37BbeDF9TnY7QoRYsSZqrPmdnjfKvHcb7BUbzNUbRV\n9Bec4il1HxwLmlrRr2nYxQ5tWU1FtQ1izWaGx4gGF3QJzRnTVZ/kMwMzg94bUI8hUqC9Cc59mD5Q\niOs6i9ghubRoeBM67jnbyT6twwv0fw8IvoTLAVwMYBLl1O2ImjGlk5rUzQmOM0ffjsie5qSOQa5o\nUDehp6GsZvR2z7i98Zy97gu29w/ZWrbMUMkMldTUWOlc0uoOaGwPCQ2bIHN5evkZth1T/2xCu3kJ\n0QgzmbOezAnWehzvbPBibZMvDj7nZLhK/FTnMuzwRe9npDmsrh3Q+tUp7doJRpyhOBaKY3Ho7/AH\n/xGPLx7yZrbF4LRNfGYQ+SbDToNDZ428NcHqjdjbGIIaoVtFIU942+S82+TM2uQw3WKwaBFNjeX8\n8wWkE2BK8YfTij/cH5X9Z5X7cHNONhIHEgcSBz+sD001+rbP8ed0Dq9vWrHcsEKpgdoGs4uybcHP\nNIyHCza7r7nXfcqd9nMsYqw8wlIibC9g5rn8o/O3RP4BsXmAzwxfBU8vmmkoKJpGgs7RZIvZmc/8\n3Kc/bdOfLdt+k/Fzn+xlCmEIWVD0qiOKLesWKtkLnTgzyE8cBvUuuW0wtRukuUoQu8xjl/mFyfxQ\nJzsK4WICwwuIz4AxRYWLxtuTDzbv7tinVd67hOLqc7i8LVvM1fH+KS8M/n2SOJA4+L5UX2O5g1wK\neQpp8dkVRhbDoEky1+g7Xea3PHJFxXsB6y/BNOC8D2eTogUxnE4gTqH7Oqfr5XTzjLXeBb+q/YZ6\na87Lxh4HG1u8nm9zftBmVPcZqR7RGw8mPkzqEJUD/fK9rb7m6m53P6TqwPz631i51q7/3/VERXm/\nWmV0feD/vn4Fla9Vf8Y3veafyvH4Y5E4+HYkDm66Tzjx9b5OkFVMbTI9cGsYvRjv3pj2ry+57T7j\n7wb/zN8N/5Xu8BJllKOMcvrNJvu3t9jf2uKJ8oD0XOPivFfErAZ4xTqpjgUNFXJ1OeCvQVRXUB2d\nSLWY4jOkyQVdFpbDbNUnfWBgadCxoB4XyXF9A/T7ML6vkCwMooVN0rdwCFk1z9hO9mkeXaL/W0Dw\n3+E8htcRXGo5t80FTS2mlavUdybYuwFaK4KORu7opIoGNQ3WNdTbOSu7Zzzc+JK/6f4T61+dsfaH\nM9b++xnYkNsKuQPt/61PrT3C2x7zIrjLi/FdXgzv4tgh7QeXrP7imCYGbj6klWfsWz2O7Xs8cR7x\n8s1dTgarJM8MLmnzxd1HHLHG3uoL7vhPuPfgCXqWEmgegeZzMN3l8eVDnlw8pH/RIb4wiC8Nosxk\nkDV4467jtsb0VjJWNma4ZoTiFTPWznYNLrotzswtDqNNhmGLaGoWO/otFpBOKQb8OVdrHFUH+MsP\ni7cLMabcDBIHEgcSBz+8652n/4j8A/c/9PPKSheTYiFvH5QWmF3YylF/laH/nyGb7j6/cv+Fv3f+\nCS8J8OIAJ13wxLrLE+sOvzEf0fJMWuaUNgd4GngGeOa1Af90kxfH93j+/B7hhUM8MIgGBvGxQnwE\n2VFSXPVlDPmoWEAk0yHTyaY+8Umd5Pc2Sc1h5jc4rW2QZ5CFGmmokU4T0klIOg4hHEFyAckxxcK5\n5fnM4u3OfLhc7danc3VcRxTTwebLVl0Dqax+kQrH74fEgcTB96k6oFx+bmVZUe2S5SwWFmnYYjr3\n6Ttt5nsu2aqC1wLDhO6ieJeSFAazYsB/MoWLOcxUMPKM3hhW751Tezjn/vYznjdv8Rvt5+hqgPrq\nFpmiMZs1iWINch/mAVeV1eXfqDpwrr7uH1r5WqoXta6tDfXeqXPVPkJ1IF8ef9en11YfU649R+U5\nuPZzPkQG+38eiYNvR+LgJvuEE19V5UFpFKtAOybUTKxWQLszZGvlkK30FWsHr+i8eEnjtE82gnQE\ntbURa80F5u6MyLQ4VjYxiQgVizOjx1PnDkE7Zb4bkD0K0Dopka8yrmlMd1Y4bW5wHG9xfLHJebRC\nP+6wCBwO8m2erN5DUXN0PUG3E4hgcctksWJy7KyzP9phdNwknRvkuyq5raAYOQo5Sg5qBnoMZgiW\nAnacYZFh6RG6nqKqOSgKKDm5koKSFxcEmwqsQq05YcN5w33tCe58hHM6JH42RLVAsUG1wdt06cUW\nka/SDzsos5zxaZNjc40X7g6ec0nH7FI3ptSNCfv5Ls/yz3iSfcaJts7QaZI2VFLT4SLqMb6skTb0\nYpHtmoGWZswjl1nscjJc583RBpevW8wvXBgpMFIIIoeTtTWeDO+TZDrTZpPkbgN/bUruFrv8nbZX\neW3e59XwDkfDbQYXLeKRCXMFFjpkyykP70wBKAf4Zdl/tLwtW3m14qYsAC5xIHEgcfDd+FBZe9kJ\nKqcbXV9o+s8p8b/eWfpTlRjV17KMb8UE0wbLRmmY+L0x/uaI1vYFO7OXbI+fs3X8DD0OMJIQLYlx\nOy5up41rzMk8l/HKDsFtHcud4ntzWv6My+0ep846h7MdDs522X+1x+uv9kgvDBhRrGk7jmESgxKD\noRbHuKpDqkCiQ6xBrJP3dfILg8jRiTwbfCBLYZFCmBZXixcBRBPIRhQJ23D5XliAA6pXlJoaPhhu\nsVOf6RQ/M88hzyCJIbRh4S6nX1iQGpDPuap6KY/vaqdc/GkSBxIHH4PyGCl3kQkgn5JNLKJjDZ66\nnHVXeeHd4betX9LYHKLNU7Q0YdacY5xM6LUmROOUbF68JcYMlFNII9AI0YwQ27yktZmy1TEJOhpq\nOydZtelvrTJPLaj70ImLv/9Eh7EFizlXn60x76/8+C5V46w6CK8OyquD9+r3aJVWjd1qRWA5PTbl\nakqxUXmseu3x1/sS5fdXf9715Hj5uspEzk1Zl+77JnFwReLgUyWJL+Cd3ex0DVwVGuDUQnr2ObfU\nl6wO91FeDbj4t4TxGwiDojpdmS2wOkNW1zJGjR7NcIxBzMSo8cS6i23P2F5Zo/aLE+reMfY4ILZs\n+rZN31/nceszHs8fsv9yl8moxnhYI8gWfNX8nLSl8rx+C7cxw9ueo8YZw40WI6/J6WyNr9884PJx\nl2yoEKgOw3aTy5Uu806N/LaJ04feOWhnsBJCtwP+NuR3IXdV0swgGZhk04g8ioAEjGL7bqWmY5sL\nmtmY1eCSaTDnYr5gOgN9Afq82CUuHIdo4ZhefkYzGGL3Q5SjnMG0zvNglyBI8bwFTj3Frqf0ux1O\nV9Y4XVllrDaYb3pkv9LAyUlyE16q9N0emgVTs44a5ERjk2hkMj6uMThokBzkMIgh1CDQmM09Dps7\npA2ds+Yaq/UT1h6d4OQBqamRmhoDWuwnu+y/2uH0eI3hQYtoYEGQQexD1qMY8JdTAFSuTkIRxRXQ\nchvecNlu2la8EgcSBxIHf7nrV/WuX8EsKzAsio5QGXfw/s5LSbn2mGpCMqn83zd1dpbxrZjg6FBX\n0FYyOs0Ltr1X7Ggv2Tt8RuOrM7Inc0ZpTJCmBOQkn12y/tlTuvenvHY7vLr9gFf/6X9n0jogbu+j\ntQ94vn6Hx7WHfHH5C04P1xg+b5F/oRazroJl09S3PxvTA0srkg+BUlw+nqowtyBY/t9i+dITIE8h\nCYs1QpIJpMOiSoYxxXGoUhy7DaAOxnKBXd+DhgMtA9pGsdNDmhdtlsKlCxcxjOewGMHChnTMVfVj\neXxLZ/LPJ3EgcfCxKI+JhOIzbARcwMCHpx6YLqe7a/zr9t8w3fZp+CPsW3PsVkDj/IDW6XN2T1+g\nvwnIjyA/AjcBPyime00zGExheADB7Rne/UN+9iDFimHitni1dbt4/yMPYgVObXjahKcBRNPi9eRl\n0rJ8n/8jG8x8qHqy+jxlXGrXmlpp15MO5fea11o5mK9Wg0dcJUrL6bUOV+vLGbwbr2U/Ilh+T1kF\npFUefz0ZUa1eKp/nfcnvn9Ix+kOQOJA4EJL4Aq4yqjroOjgqNMGpBfSs5YB/coj6asjl/0qIDmCa\nFsvi1KOIvfUhqztTZtkqzXiEQUJfb/PUvMvI9tipbXDXfcy9OyYkYwLVZ67WOI63eDx6wNejh7y5\n3CI51klOdHQtIvsrlZOtHq2NS9pbA1rRAD1JOWaTEzY4H6wyfeMz/apGdq4SdByGt5tcrneYt33y\nWwbOHLQX0IggGYLZBnMbFnfKMnmDZGTCLCKPFqDMl7t7G+Dr2MaCRj5hJbhgFqScz1NezpY7xClg\nquCOItzFiB4qjXCEPQjhKGd4UCc82uHo0EdramirFuqKRXzLYnHHYqFaJJpOsm6QNVWY5+RTk/SV\nQd/QmLl13rjbMM7JT1SyU5X4SCE+VIgPc5jGy/hWmS18DlvbnDd7vL61R7t3Tuf2Oaa7IFYNEsVg\nNvTpP+8weNVh9sInOTCJBwYECUR+UfZLzNU0AI2rk09A8QExAiZcdc6r2fabQOJA4kDi4C9TvWJY\nLYGHq47Ich093OVtuZMmvNt5qXZYqomDaicn4qqDVw76P9TJKV/LstLF1qCpovZSus1L7nrPeKT+\njvU3L2j8z1Oy/3fOMM84I+dSzdkc9dm25qxvHDH1/jP/fus+/+L8F+K136Kv/RZvHZ5Ft3kcfcaX\n/Z8zP3SJnltkf1CLQ6fMT3RUWFVgRYOaDq4NblYcUhcKXAIDDVIV5mrxKyYUz0FSXKXOJpAPIa8u\n4h1ztZ5RHeiC3gTfh44PayZsqcUufZ5ytXZ3P4dXy45iFgAWJEbx899OAYuQ4/vbkDiQOPiYlAPE\nmKvPMRMGGTzTYeJxOllnptZ40nlArT6i1hpSN4c8Gv6OX5+F7J4dUP86IDeBKWRDSAKIRtDvw9Eh\nvLHAfjhlKzpgq3GOVdN55d3B3lzAmg6WVyQ39xtF1d5xBoMR5G8oDoqy2kPj3STjt/GhqpDyfqXi\n8Y82PPim5Q1yrqbIlmvGWcvb8qDOeHe6rEdRouhzleQ2uYrZePn46fJ1zLlKOJTTkcu16LTK18qf\nFfP+SpkfY22onwKJg6v7EgefKkl8AVcHUApKCkr2NmYUJUclQ80z1CRHi/Ki0iMBIwFjkWOkKboC\nmpKgphlKlLNILC7zLvOpTWjboCuouk5dGzPNfSaJz1m0xn6yy1m2wpgaupaimQnoMDLrTE2Hvt1i\n6p0QaQZWFnERdDgPulyOW8SKSZzrEEM4dhifNrior/CGTV6v3qKRT9HcFM1LUAc50W2TxZrJsNZk\nP9lhFDXIZxqqk6PvJKjhgnTLIXMyCCGKDWaZx1BtEtghWTPEXAsxFTCUojo/b+mEjktCnSB2iecm\njBUWM4dFCKPERs9VDE3DsDQcLaSRjPDmc1Qze3sOyHSVNFdJEw1FydDI0NKUODcINZvAtFE9FbUF\nWpST1AyyTCHNdJKGzjSqMT2uMdV8JrFHP2+it2NizyDxdVLHIHUMMkvF8iOMlQQrU0kbOfFUIZl4\nZImCYlgopgWKSp5Y5EkCsQ1zDQIDIrMo/89UyBWKDP31ctifKokDiQOJg2+vWtFSDt7LTlS1imX5\n/igmaLVls0HTQV2WsadJ0fJqh4vlVFxlGaIJpCmkZee1rL4rE5TlQrEfmu6lgKKCroCpoNg5lrmg\nrk9oq30aszHeWYD1MkHNIcmLP7v6IKQ2CVnLRjhmSthocZLdY9+bU8vnmOMZzyZ7HI42uRj3SA/1\nYvAeLH+sB9hgb4S4OzOc7TlmLUZ3Y3QnIZqahH2b8NIhHuokA51kpJPH6jL1oZAvUvIgJ5+rsNCK\nRcAjHTKTt1PnVA/0OuhNtLaPsa1j7CTYmwu89Tnu2gzDS8izonBmMbSY+DUm9RrhoUl+7JEd58WF\n5zxeJgGq07x+igP/H4LEgcTBx6parRZSDDB1CFQ412FuMDct5laTM6OLuzLDb46ptUZYWkSvPWLd\nn9BWB+jEGEqCehigngYop3PyaUo8gXkGqpGgtKc4jSnt1iFbi6c8iH6PW5uQtHXidYOF7jB/5TLr\neiQjYDGGyIV0RnHcLrhK8H7TtNLr07WqA+Pq16oVIOUgf7nGXTl419Qi/jSVt+s/5RlkSXGA5Gkx\nTVZ3i1vDumpZViQw8gwWTjH1djEH010mObzlY82iZUkxtTZdTq8NbQidZSJ3CrlanB8UF1QXVANU\ntWh5Duny52UR5IuivbMpQ3Wa2afWH/kmEgcSB0ISX8BVWeIc0hCiGIKcKDQYx3VO81Uca4DfGdDb\n1jAyCOfF8aw3NJyWzbxnM6rXCEKbdKqSjTWihUUewqW6wgs/Z+o3sLWQRWyziC3GRo3zeo+wYaKt\nx9jNOe7WHF1LiXomEQbR1AFLxbATPG1Gy+iT5SpmfcF4pcl4p0moOiwyG2W/wfki5Yn9AK2ecd7q\n4PQC3Ntz9FnCYLdFv9vmPO3xOP6ck8UaRGCsg+XlmI9yFnHR0hOFYavB62yb3zmP0FdPqd09ozkI\n0bWiIEg34PyzOmfdTc7VO+znO4yyBlmqQF0F14JdBWsloL4xprYxZ9M7Zsc+ZCc7wFzEb89BC9Ug\n7FgEXQuDFDtf4OQLRrUap+0VTvdWGM5qTMcO04lDEHiEkUYYmaSJtrxiCelEJ3jtknsK6kpKtqeR\n7qkYdozfnOLfm6KtpMRjg2hsEg4sphc20wubODZQGwpaIwFDIZtBOtPJhw4cK3BswaVTDPojtfiZ\n76yBVC0t/SmSOJA4kDj481XXhCg7WmUnqryiVx34LztdmgV2A+w62HYxxcleVsOEWdHiyoD97RIP\nSvEU87SYmppFwATycXH79uoivPu3qKqUxy8XtiWDNFeJ0YkxUVQdS1epmVBLoJ4Wz+qqYBjFr5br\nvO1DD17XeT7ZIhjHnCTb9NMGWaLAMcXppEUx46pbtMbmkI2tQza3Dmk4I3xzim9OGYRNTmernM5W\nmQQ15nOP2dwlyQyyXCVFJbvMSd8YJG98uFShr8HQgqhchygE3SumU3jFYL/++Zz6ozmr65dsu4ds\nu4fUzAmpppBpCperbZ6t3OX57bucvW4T/14lin3yUCmmkyVzyMp5Zp/S8f3nkjiQOPjYVZKnbxfx\nVyBZVuFlKRx4kLpw7pJ0NYK2Q95Red29hdFLGfSadPb6+M4Uf2NC98kZa78/ZDU8wstS/BhqORhj\niJ5BP4XMHbCbfMF/ThLOt9aZ6TVmW3XOmyscdnc4XN9hMlVhqMPQhNSi+PtV1/P5hsTtO5WV1XWE\n3jd1uBz8lvFoUVQE1kHxiit4dpEEJsmXRSNZMTBPYshicFzwHajbUDegrhctyotYjXO49OAyKqbM\nNk3omNC2lo9dVjcuMgjSIobPLTjz4HRRlA1lfUj/f/be80mSMznz/IXWqWXpqtbdAAbDJY+8493t\n2dr+2ydI2z1B8jhHzKAbLUuLrEodmaEj3vsQmd0FcGZtZhcD9gzSzdyqUKjKDvE+Ee7+Pv64VA5Y\nUmul61p5XLpcHlsiys9IY8iD0sV6MM+CT9NI4fNcp9IPvq7tj32cGxxscLDBwabwBXxK+KVVwp9B\nIEginVlW5VZ0aJpD1MY17V2FSlHSO4sJxFWVsGERtD3mpkt4Z5AvFfILGXFhkF1opLnBolnlormP\nrOcUkUIRyaQ1heS5RtzUULZSLGVBVZmiSjmzrE6Y2yS+jEBB0zJsdUmhyWhKglkJkTuCaM8iwCEu\nLNIznXSgIz8RzLseH/b2qSUzqvEUM4s5V3a5UHe4zLdZJFX8uFrqqvYF9nOB5RbIrwT5K8jeSUx3\nqpzke3jWCw66OoePIg7z27IAbZS+PPKYtXd4JT3nXOwyzauITC5H99UkqGuY/YDa9pzO1oAX8bf8\ncv4Nv/T/BTsNPz6HlhWLedNl3nQwipRKsKASLrmROx+nKF3RZ5g2GWYNZpGMCA3ioIAL4E3p+Ugl\nTB2SzETaFoi/lBCGRGVnhltbstW5wJYCwtQizCzm0wpctogvXNLUROmlqP0UyRSkY51irCIuDXhl\nlrvLkVvuEudFOeKEgk8tAOu19KdqGxxscLDBwe9v64DrPl3epKR0rGgdHxP/e3oRsglmDbwaeCZ4\nErirF78vYC4+6fkgVrGc9EkSYk0/SRMoRqvP/yH9HX43I2MVVAixYu9LFIVCJjSSVcJvqjIVrczT\nfbFK+JWyyIspfYojMxifVQm+2+XqlU2k14nMKsKUPrHtG8AucFB6ZWfK4fYHXmx9Q0+/piUPaclD\nLvNt3uSPeZM/5jbrMMnrSHmdWBhkQiUXKumZivhWR3ppI46NMkD2bT61CSzKXVjXhbqLtpuVyf7f\n3PC4+45fpL/ml8k3tOU7Mksis2RO5T3s1MdPbfxjCzKL7MqmuNPKzy18KAI+PR+ze9dxYxscsMHB\nZ2/inq9ZJHmZoBY5xCnENbgV8FonrSsUbZu4ZZM/V5l8XeP14UOarSGt7RGtZMjj1hv0KGX74g43\niPBEWRzNZ5C8hfEVqMqYPfENe8UxyxcNxtsdxnKH97XHiLbMcKuNP3egUGGpQ7xOxu9rDP0uWyf7\n6/asNe7WeFv/XOb7+ndrXSILaJYuVcsf2VLZwbUmTCainPYs4rLAbJnQMKFtQk+C7qpdNwRCUX49\nLUrGy7yAuly21e7J0JOhI5W+EDATMBXwwSmPa1ZAYZZFmDwHuQJaG/QO2Fp5XLa0qteIVa4cAAvI\n/dV5y3yf3fI5JvtrW7OR1iZ+x/c/pm1wsMHB52Y/PQ5+hoWv+0Hamo5/T6ROqKWmQSaRRCbTRZ3L\n6Q5etqRZm9N+6JO5U6RpgTwRLHZs7lpNhlqDd/FDhrM2ybUOZzLFmUxxBhk6UeqU99fmYxuunkVU\nxYQteUJVnlATU6rZDFkUjEWLMS2kDA5Gp+zdndNkSKQYRKrJLKthkiDacnkqfukyBUvV4ULdYSTX\nqRYzqukMM4q5YIcLaYdb0cFJQlzFp+cOqDgTqs4Ez56zND2WeoVAc6mmc+Z+hZeDZ2S5jlzXMR4a\nSDqrqjOcVZ9zkj3mePCAaVhDMXPavQGal2E0Y4xGQqM3pNEf0Ozdsnfzlt71G5onrzGjCFbMUadu\nUgsd4sRBKVKMxRJ9sUQ4Y+JWiuQm1JUJQ7XJKG0x02r4ThU/r+JLFebzCvNJhSTRKaYKeaCiL2K8\nxMcVPp1iwF54wl54giMtCVWTSLWYeTVuu11ujTlhbmPUQvRaiKIXpKZOVjWIXItZXmWeVQkVF25j\nGGRlpZ2c79NK7wfcn7NtcLDBwQYHf5jd351aY0fmU/BklXR01V25+YnWLsllECQEsq2it3S0VoFe\nj9DcFM0tC86Jr5H4OnmsICGQEUhSgawVyGqByCWiqUk8NUhnOmKeliJ7oQSFtKLZZ3zaIb2f9K//\ne/U7SQGhoPAlgoXDcNnmMtrBswMaO3OaX87I0gI1LbCFIN43uW1aLHWb67yHv3DhFuKRSTypM5sb\naFUVzSuoVSbIeoGi58haQbKrE++ZxPsGFW/OlnHJk/A1rfAKNx/i5iMKwyddtSS3xR3TvM4kqxFj\nkEsqmaywTDxmyzrzokYkqySZSjrzEMVqGl4uysEUngldA2srotsf8qj/nsfuS/YGr2jdfkcjGSIs\nGWFJZF7Ebq3DfqdPlFuM+h3ypkVWsWBhlkWFzOCT0OyatfRfar34c7YNDjY4+FPFgaB8P8WUbL8V\nq4OsnI7plwmimBpkUx2GOjPFYuno3Hot7rotmt6IVmNE3lXRegKtD6ZyQ1zM8MScLEgRc/BvwUpj\nqsRUGZJ1RtjBAlsKWRoeJ/YRmpeWxV5DLidsfq8963fZR+ojZdy21hcyQLFLhoi8ah1W1BJzRbby\nVcIvNJANcGtIjofk2uheguElaHZKnijkqUIey2RTnWyqki9s9L5A3xPoewFWO8JqR5itiDyRyWOZ\nIlZY2C4L02VheFg7AfbBEns/QGukaPUMrZZSxBJFIFMEMkvdwcdjUXgUswyWKSwzZMdCqVkoNRXN\nFWh2gmalFKlCutRIlhr53CCfCvKZUjIT0xzS7N5yvJ/8/1vFIz98Xt5nJ8k/+N31JuL6eXW/WPFj\nYmyDgw0Ofmr7fHDwMyt83Q/SVmOeP1aF115d/Vwiik1G4xb5RTnhLq9qzJ5VqB3MUIMULciYux43\nnR43YY/z0R4np4cEb204BSaUyb1FufFZp9z1W2HVq/g8a37HC+k37EzPsUYh1jhACIlpv8a0X6dQ\nJLbOruifXFMdzchsjdRWmTo1Ks4CvZJgtZcfB0IUuUzoWUSJyfSsRXTuMD+ro91lTJp1woaLUoee\nNeCgcsJe64z6YkzjfELNnxLPTWLNJN61uFG6XN90eRM9Z6o2OVUP+Kb/FcjSqs9Y4iLZ4vxqh8uz\nHYwiolkfsvsXZ7SUMS1lREsdYeghmhKhSSHVyTnx2wkf/qFAXnxqobacHK8W4dYESZ4zDhP8sCBr\nBxiHNzw8zNmRb1jOXRZzh1CziWsWUdXiwtzmu4OnfOc9ZnzbJB+oFAOVSt3nwc4bHjXfsivO6J7e\n0D0bYAchiauRuhoLx2XktBhWW8SKjhMucS4CNJGS2SqZozLpN3iZPeeV84LLVg++tcuq/my9gxBS\nVtz/VJL9DQ42ONjg4Pe3H76o7wdcCmUVtwJUQXNX7UUOeEZJaa+oJVMlAzKBXkmp7QbUdsdUGwuq\nxsbkXuMAACAASURBVIyqMUdIMInqTKI6YWahkqGSoUkZmpygKwlZrnK77HC3aDMbuYh3BsX7Klyq\n5a5tstJGAv61tkPBx3HhRQJRBtOCQlEY3zU5vntANDURdQ31lwVqNyHKE9I8QRMZwydbnOz38fUt\n/iX6ksGgA28pNd+aFvxCwe4tqPXn1PoLDC3GUEof1xrc1dvc1du4M5/28R37w3PUYEgYLbiIYorW\nmObOMY2dJZHwCAKbILDJJJVCk8k1mduiy6m3x9nzfYZ6g1niMpu4ZUdclEKYgq5DXYUtCae7ZM++\n4Jf5N+wMX6G/vOLyNxHDMRiawNAh6gXUXlzx5Itv0VTBO+cJQcslaLvl/Y210j+26v2XgvE/Z9vg\nYIODPwccrO+/4NM5rNYDIbDSGfJtKGyKtwZ5rCEuNZYHFaQjheTQJksM5pUGx0cP2N5+y477Ldvu\nS7idMX8F81eQzu4rDAly8pU2Uooq5Uiy+AMu5X3srdu5DMArXXZBc8CwwTDLoQ2mXAqRxkVZ0EhF\nyaopFNBVpEMD6UhC242o22Oa1piKOSPMLaLcJIwtlqelh9cG3pMp9aczGo+n9M0BW+YNPXNAiEEk\nGUQYvG884MPWQ5YPXBqdETvdM3a751SZUyl8KkufTFOJ6xpJV+PEOOSt+5h37UcUAwPuqnCroHUE\n1kGBdTDGc5ZU9TkVfUacG8zjKrOkwvLaIDxRCU8cxAiYZTDPIVtf0LXQ9/pe/9QF2h8m9/fbwdcx\n+H3L73nBby8A/Fi2wcEGBz+VfV44+JkVvu5fbJNywoLH92mRVdZUwSgyGU9a+BdVgr6D3/C4OWhT\nUecYeYyRRcyzGhfJHpfRLuObJsszh+CdDZd8um8VyoS/AfT52AHg2Que2q/5j9L/xrPJK5QPOcr7\njEyozH7pMet65LpM43JK4/+c4rwLKGoyolYWBPQXKfmWhLyffvy3klRn4G+x9D0mVy2U/y9H+VWO\ndFyQPtRJHmqoD3K6uwO+6HzD1+1f0fpuRPt8TOPdhKKiUFQUkj2d/yP49wxuurw5fsbpzgHmboDR\nD6GQV64Q3loENxbhwGJv64Tm3pDD3Q8cJSccLk85XJ6SaxKhohGhE0xmLN9N+PB/5WSz1ZIW0DMy\n9s2CjpWS5oJxknOSCJy9gJ3ZDTvFBF1o5AOV7FYl9xTyQ4XiUOFl5SnSfs71gxbziYs4heJMwbPm\nPNx+y982/55Hi7fUz2bU/tMc8y6maMoUTYlwx2LypMp4u0ZmKlSPF1QufMwoJj+QyBsyl5UtZDtn\n0Otx2d6G0IbzdevGeiTwx/6Ln2gt/7fYBgcbHGxw8PvZD5P99UtavecOUKOcnlZZTU9zoK2V9Peu\nVI7/jIFEoNXm1B6P2Hp0Rb99TU++oa/cIICLfIfzfJe5qGAQo5NgEmNJAbYUEBcGahwRxjr+jUXh\nakiBgZhY5WTOPC7blL836ae453n5M5GW2hJpQZHLjG8bBEObu1kHtVZgNgOsv/TRRIAmQjQRM/Qe\n8NZ7xlvtOdfhNoPbLryjTK4bMjzUsQ/mtA5HbB1e4Sk+jrTAlZacKXsItWCmuLijOZ0Pd+z/6gJ/\nOGPqZ1z6GbWjnK2vArbTa5RCJZ+o5FOFQpbAkhCWxIfWAf/S/RK1lyCbBxRjmcV5jTRQy3OK01IH\no7ZK+DsBu/YFX+ff0By+5uq7iKu/j0jPoCoLKrJAfhhQla54sitjOYLAcbls7kHLhUiB2Q8nPn0K\n4X8+tsHBBgd/LjhYt/2sE8GMcscspKSMG5B4UFQgrCCWFfKrCsU3DsFzg8S3mRt1RnmHk8oDrMOQ\nr6x/5n/ZSnjaP0Z7PyPMIDoFMbuf5pUJv0KCTooi5Ujr//l7X8Y1/tai3DZlrNYAqQa6C7YL7qp1\nuCKtXs+i9IgVI7BcS9LTAvmvBdpXEXVjyI5+Rk8fMBcVZqLCPK4gf9Mi9QwiTcd9FtH75YC9r055\nlr7mWfaap9lbfMNhbjjMTQdn629ZTh2OZw+oV8Y8qr7hq9qv2BoP6A7v6A6HxHWNZd1i2TH5x/pf\nE7RsTnYOSc8MOKmAZaMeLLF/Maf6tU/HvaUn39CTb1gIl0HR47roobxvIH5VJZZsClkpmZ5BUWoy\nkfJpyunvanf+Y9v9JF/9ga9j8PuW/cBXrYjAp3X7Y9kGBxsc/FT2eeHgZ1T4Wu9OroAiuSVA5BqY\nFjg6ODpy1UKpSSi1CKuf4nhLHCmgqkxw3QVKKyeydRbYZJLCeNTi8nSPy5M9lq89OKEUM11Q4rAG\n+laMu+/j7foY3RjZKJBMwZF0zPPoFc/nr3h495r4DcRvIFEU7L5Ne2lRSDLaXYh6HKK8TNBroNRA\nnvtsuy5+28Sohh/PMs4trDRGKqAQClFgEY5s4muzFFUNQS+W1MSMPXHOs/wlzmSGczbFfjlH7YHa\nBYRKNz2ikk3QSAgii/GkSqToZQtcrpQ9yPPVuWagktJVbnlqvGI3OGZrekpncEYxUUmmDsnIZvI+\nRjoNiK6L8m8BSYCsCTQ9x9Ry5hmEMYxjkPIMtZ7RaC6xcojPIb4E2QMjBaOAdFfhzdYD2t1bptUq\nIR6BUDHkiI57y0PpHQ+Wr1EHIeq7CPUyQ2mC0gQv1HBdh2bHobBk9KsFxvsl+iJBy0udQ7fv81p/\nSrtziyfPSV/ppK5GrtpQWCBWlFlSPv9AcIODDQ42OPjDbP3SXrcDr4OtFTtSroLWALWB0rTK6Wk7\nOUY/weqEWO0IxcjJU5k8kam4M3a3TtmtndLTL2jGA5phmfDr5hzb9gkUDz1L0NMEI4sw8xAzC4gk\nA9lNUDsJTnXB9KbJ7KJBMLJh4kDurASu10Hs/Ul68GmXN4ZsCdkMgUk0MIg+uCxrLqftfbz2DLWS\nYksBlhRgkHCcPePN6Dmvbp6yPKuwvK7AELRGhtZJ0B8n9Nq3HDZPeaC/xSl87HSBlS0xrQWaEaE7\nMUfiA/3JNfXjKclNQD6D2RQckWO1Irq7oMYQX0F8vdqjtMrOhfBByrhpMW9YJEudsO1y1wDGKsQq\nLNRyGpMhgyOh2imuvqApD6nHI0YjQXYmiN+tNkMl0NQMZxSgxxN8b4KtBShGVmo4aStW5/cKuX8q\nbV0/tm1wsMHBnwsO1q0zayZERtnCGQFqKWCdrJLEUEWMHQQyha6T9gzYB98VJYt9G+z6kgc777nb\neUNFh/wqQL9cItVyVCSQZNIHBn6rwkJvMyyaLFKHLFQgkCDVSl0fLMrCg84nvcx1a+4P8WeV8ZtW\nBa2OZNdQWxpqS0VrFmhegu4lKEZOFqikgUYWaiSRThrrCB1qhyPqj0Y0Ht6xG52xG57TjW/w9Qq+\nWWFq1jlpH5Fu2/hJg+q2z27ngue1lxyNXrPjv6Y9eotnOzQsh9hyGGhdLpo7fOhesyuf8UB6x/Pi\nFU3/htrgjtrZEOFrZLlFJpuMpBYf6g+pV8bIdpXcUslsncr2mO29W3a6Z3TkazrhDe3ohqXqUrVG\n1K0RV9EuF7M9osilkHVEaiPGRcniJKR8Rin89C2566LwfRmRe614kgqyBtL9hF+U605kZfH6X03n\nS/nxdZo2ONjg4I9pnycOfgaFr/u7lPc1KNZBWgu2TNhXYF9FbQrsaoJVCdmqDjionnJQPaVeG2Ob\nC+xiwSyrcCFvc67sEPg2yQeN4p8keC3gDPCl8r7uAY/BO/B5tPOahztvaDt3aEmGluZ057c8v35J\n9XpGeg3Dq9JjW+DdJVSGoCcycz9hHubEEVhzMFOQixTTvOMofUPvfPhxHUSaSbs9otMa0tm65Wpn\nm6u9He5isxRW3QGpJ7CUmOrUp+mPCU5DBmcJ0Tm4M3CvwawKtL0x23vv+Xr3n7m563Bz3OXmHzol\nNaXIy/6sNqU/BM+a0w+veXL8Hv38huWxz+uTAkfPqXgRnlegnWTYtykNHTK3lPsoRDn0orGaCCvF\nZRHgo37qEphAEMPdLdxdgzGEVgjtIWijlKqY0W/eMNcq5cC5ioWSC4w0xRlHqHch80nKbFlQ+GAK\nsCIwigLViLEkyA0J/3XM4E0BPjQn0LoEfSejejijd3jFtnPGzK4zs+sEpgyptBIhvL8LvhZj/JwC\nww0ONjjY4OAPt/uUepNyZ3Hds+uWrrvgOeC56Hs51ac+1adLOp0hW8412/Y1hhoToRNhYImQXnFN\n7/QGNxghRnMYzRAS9Lohnd4QTAvVz1D9DGWRQZDAMiExVKpPx+w/OeXK2uVV+wteH7wgWPThVIfI\ngcU6UNDuHT98uhc5ZTAxKr/PF3DTgF83KeYe416Ld93HLDouupKiywmqnHG96HO96OMv6sSnJum1\nBgIcZ0GtO6b2cMKT8DueX7/k2btXqH6ItIiR/BjvaEzv8SXPnrzmiFP2xDlakbEeqvdRhWl1iMsA\n7u7g7qSMgVQNFA0WhOjbd+ylx4Sqy8jqoFXTso1uAcii/MBcQCooCplUVoh0nczQMbScppSRS4KG\nAg0FJE1mpmiEkkUoLNJco8jkVS6w+rz7ulAfd8j/lNf1H2obHGxw8OeIg49X/J4VlOtmnTA6fEy2\nUj6+h0vCvICKYF5zOa4c8I/GX7HdquJ9eUZHOcOYhaiSgiorjLdq3D7d54P7nA+TZ1z5W0R3FgxV\n8C3IanyfebPWYFpf3/uMCQvwQK2C50HVQ24Z2A9i3MMFle0ldXNCwxxjqSF+UsFPPOZRhcmswXRe\nJy80DrbPeOF8w+P0NbXjEdV3Y9yLOWnTImmYLKsVzHmO7zS4PtqiUZlwlJzwi+tvUN8P8N/NeHkM\ntpZi6SG2XtB+eMPBg/eMHjZ5MvmOw/EJO6Mr8tMZ05OQwYnAreZU2jGVdkGjP6W7fcPO1inmToul\n7bDsuHT1Ac+Vl3x9+S9UJ7fo13P06xm5a7C1dUmyVeFd8Ri1njP7qkqqueS+RnHmIVhNekVfXa+f\nUnrhPit2LR1iUbY8eGWRRlXL0bDKDxL+NC09j1fHv57OF/F9vcI/RgFsg4MNDn5M+3xx8DMpfK0v\n/r1pQ0qlTPjNDvR1+EqCv5TQuktsL6DmzjjS3vFX0j/x38n/L011hGykKCLjQ3ZArOocy/sEi1XC\n//8A7woI5PKBUAP2gb8C99GcR43X/I+Nv+MB77HGCeYowZ0FVE7nVF/OSM5gNIcPc4gaBQfDlPoo\nx8gkFn7BWVgwiaCSQmUJXpDipne0xgvMuv7x/seuQfvfDWl3bmls3aHvJCz2PO6SblmA2AGpKzCD\nmNpsTnM2ZnGSMzjNuTqDlgZNFeqWQLPHbH/1nuKXBt/9/ROiDxo3f98us3Qhlf/mX4PUBh4IvKXP\n1vSax9fvmHw35/JlwsW3BT1FYFiCvpVSiQoaQUFqCMSqAC2KUvfWtECzQApAWg0X/PiAHUMYwGAA\n76/BzkG6g9ox6MuEamtG78k102qN1LaYVerIYYGepjjjEPU2YjYtOFkWBAuoRlCdQi0sqEsJbpKR\n6RI3H3JOPxSkMyguoFIDfT+jxoze9jXb1XNkRxDZFoFpgySV7W75/WT/PtvlcwkKNzjY4GCDgz/c\n1gzJtXiqQ/nirn9y3SwTzo6Kfjin9qVP/99d86j9ji/EK74QL3HlBb7qMNcclHlG63RC82yCOF0w\nOkkZnqYUEnSeDGk+1XE8BelOIN8JimFBPC498WT2sjPynsVNYxepLXN7uMVFtAWRDrc2ZZC44JMW\nzw9trX00Ln8vG8HNPvgmxXGV0VaLYNvmoreLrK4ExRVBODQJhxbRyCKPFYpIgQJsZ0G7O2D74TlP\n3nzHl+9/w9cvvyEbpMR3OdGwYOu/N8A04JFJhSUNMUfNs7XO+fdDGAFBADd38P6kJOTocumaHaI/\nv2M3hUCtcWofoVazVae2+H7Cn0GRS6SySmisEn41oSHnKOuEX4NUk4kUjXSV8CeFXib8mbiX8N9v\nkfuxW07+FGyDgw0O/hxxIH7g9we1rFgvH5Pv1ZcF5ZJxgIqAlsCvu3zwDil08FsWL77MebAzoJJG\n5IpKpmgM7RqD6j7fel/x/u4xE79FdGvCnQJLGzKVEmcx5cs+4futaOt36zp+88r4zatAx0M50HB+\nsaD5izHdBwN25HN2lXOq8ozbvMNd0eEm6aHc5cR3JvESDrZP+Vv3/+Z/SP4z0nGC9J9i5F+lyPsK\n8p5Csuvie3XeVx4h9wQNdcpRcsLXV7/m6lXE5T+F3PwKtuSMbaWgpSR0/sM1B5X3RF+ZPLl5w9HF\nMbtvrrl+HzP4kHL2QbBl5xg1gVPNaPzFhK5zw87TM5R6wrjTJI+hO7vh+eQV/9PVf8Z8NyL6NiV8\nmaJ2FKwXGtYLjVp3wbRR4/3hIb5kwalOYawnJ034/qTXn4qF/kNGkl3eK5qU7Qa1MuE3NNDvJfyF\nKAO+Ilkl/KPVZ4jVsa9ZqvDjY2+Dgw0Ofmz7fHHwMyh8wacboFFWHF3QPaiWo56tvQz3kY/zwqfm\nTajnI+rFiEfxS46Sb9lNfk1NTBEr0szMUWg2tmjVy4k7QeSgLPISo5kAWUJxMrRugn6U0NkbsFec\n8iT8jkeL75AHCfJtinaRow9Am0Dow3IB4wVEKvRGBdJ1gRpAOoFZCHdrvdYY1LjAypcoiyWWzcfn\nlVLX6eznSEWIUk0Y1dsctx6U8jtrvXIVZLlAETlakaJkApKCPCwHXgitvGqqkmJVA7ytGZYWoM4y\neC+vgqBVpPZAKtdeVULPYzyxoL0ckYwiikuYfyg1JISdYdgl+z6nZM6LlQNIjoTUlsg6EvkECgrw\nV0UBA4SzYsVIKxZkCkItnUQg5wUKOQoZclEgZVBkEpmkERUmoWSSGCmZl1JUCwqF8rMtgSrlGEmO\nkoA8g2IM2bS8FuQg1wRqlJX71FqEqqbIcrF6fki/xT9X2+Bgg4MNDn5/W1O0VwGW5IBSBaUORg3J\nqSHZFZSGjN5J0boBnUdD9g/OOdj6wCP7Ow6m37I9fYmX+4S6Q6i7qFNB9XpJ7WxB+D4leA/5u7Ju\naCvQtaBehfyy9HgA/hjyEdAA+5mCM5WpZBEvja+wmwH0JbhQwNDLY/1eoLMOdtbFi/uaChmICPwQ\n/ABxGxAsBcFch5EKqlz2uSoyDIGhgGG2kgOUwJQxzYhaZUK/eUlPXNG9vaL98orgOmd2B/EduF3w\nXkhUfJAkhaKqstizSdwcdZlRXWS4fYGugeSDmEGxgCKgxONKTo9YIGcZmkjQSJGlAkkRIBcgZWXA\nlKqwzGEsiGcGw6jJMfvkdoLUmSMdzdGVBFmTKDSJ6KDBpNrlmh2ugz6zhUc6A/yV8Hl+Xxj9/tr+\nU0/6f1/b4GCDgz93HNxnvNxvBZLLl7QhgQF6I8aqBlh2iG7EqGqKKqd40pyaNANJEJkufq3HyHxI\nVCxJZJ1Y0RloO/h6g1zV0NQEx10gWgpR1yJeqCRLnTxwIXYhrkC+bulZa/Pc37hcMV20KjQc2NfR\nHxU0D6YcbJ+y3/xAPzqnH53hxVM8vUvduKNqziiEylSvk4cqDWfMQX7Ks/F3LC5g8Q6i34Dtg+MD\nS4v+wwu67RtaW3d04gG96IZ+cMNsBPk5TF5DQylAKTCVDPf5gno4oa3f0hQj6vGU6nzOaFSQD2B5\nAYktEIscfZljHsVYWYhtLLDdJREGIQa1Ykz/5pqjyxN4P2X4GuJvwRxCS4e2AxOjRbt5h9vzMe4a\niIpGphqIf4X9f4tk36Bkw1ZLKRGrCWYDya6guqJ0+9NfigIy3yRdmOSLvCRaRRLE689bs6Ck1dc/\nhl7TBgcbHPwY9nnj4GdQ+LqfiN2rELs2bOmwL9F8MORR7zWPKm9oLoZ4J3PcY5+af4mZXjJIEiar\nYqMELHYW1L4444sXJqaZIrUVxkdtAiHBQoIF6JWYhjei4Q05yD/QPbnBO/HhJmU6y5lNC+QAWim0\nW5Rr84qyuJ1SVtLPKNfLHRB94uxogFTALIaFD/L3WKA5UrjEzEb0JJOqNsWw4rLYKoAFiBGkukrY\nMFjWbIzLlK12ilfPcCvgVsBuwO2uhV9pcMkWY6VJqDtgKatRqQVkOeQKIlGQ4lUGbUhQBdUBSy81\nBR2t7IKQqpCksAhgsSzjqGK1kahtyRhHKuaXGsF1QVKkiJsMHIHYAvEMzCl0lyDfgSGg2QO9D9kz\nDb/rcWe0GaUtFnOX7FYhyXTG7RrntS1gjno0ZXcyQ27EWBbYNjgVcJugNkEKoTGBvQtIQ2i1wNiB\n+IFM1DGZWxWmokaQ2WSJumo5FuVJfHxh3N+z/ZwCwg0ONjjY4OD3sx9iZdXSpVbBqoPZROo5KPsq\n8n6G0w6pV6fUqhP2Guc8rr3hUfiW1t0J6vsbLt5HmH6OocSYKugpqPMYaV4g5uU1DvLyiiVxmejm\nBYQjCIawGMFkCdOs7KztBgXWGLRhgRoXSCrlutal3zIKfH0O6123tcaCfu9c11T0CMSgHKM9SspF\nqhgg66UvitLDopzaJ3tguuh6gqMsqTJDj5ak04T5tWA6gVFY1gjaEWhTQf0GItnEP/LwXY8gjLDj\nBQfxgkaWUU0FyqXAuYN+UdZW8mrZ4qVqEPYN5pU6A3WbQdHFjz2yhVoKuSZJWSGINRi6cCqYexXe\n9R6iRjEXlS6t5xe0xQXeeEGoqEwUlUm9w6u9p7zKn3E83Odq0Ca4FjBYwDwqx4Ij+BTIrQc43C8E\n/DnaBgcbHPyccLCOLGQ+sRpr4HrQMaAjUXk0ZefpOdtPz2k4Y7x8gTf0sdMlphxg2UuKTGYyafJ3\no/9AEmvkqGQoFI6E1Mx50fyWw8oJoyctRqLN8EGL4aDF6LZJcKvDrQu3tbJoSU6Z+aV8P+FfiXnr\nVaSugfxEYD1dslM55yv/1zx++xL1eox6NUbyA1r1gFZ9RK86JTA8roxt5hUPkgJpJCimMB/CIIBJ\nDs0ZNC/Bzgrs5pQt6YRnjd+wHZzjaXMQoOrlwDwXsFUwTdANkG2ZQlNL6XJTLQcR9cAYQMWEllR+\nNWsg9SBrKsS2QSA7ZKgo5DgssaMQbZIiXQriW5gtYJBDJQZ7Ao0rUOo5RjfGyZfYUkAhaySKRbGW\nM/rJluW6oHBfcN0q1w9t0JrQdWHbRu7LuA0fr7nAqSw/fkKRK8xHLvOhy3JowlUFLhW4tVafuW49\n/GO2PK7PZYODDQ7+a9cOfO44+BkUvuD7qfKqQuzasKXBU4nmwyFf9r/hf67873QGA6xXEdbfRYR3\nAbN0yXUakxerR4EE6pcLasYZrcMAyxRM2m3eHT0p/40hMASjEtGs3LHvHXOQf6DzYUDl7xfwLmES\nFZyGAmFCsQ3eDshNPrESg9XX09Xh3kv4180GUgHzGOZZ2VUGgABdLegFAd0sx0Ghps3+VcKPIpH2\nFMK6wdKzMU4i+u2CnXqG1gO1B1JfQt6zWVQbXLHNWL2X8EuipIFkebn9mEqISEEg/+uEH7B10B2Q\nGhD7MAtgFKwmjovykWZZMt6Rjvu3BuH7nHQgEL/OPyb8xTOwxtC9g9pJGdeaR6A9hvShht/3uDPb\nDJctFnOHfKCSyGXCf1bfxnDntMfQX4a4/RhlJY6uVkCzy+NVRtC4AMOC3AS3BeYhBA9lwm6Z8E+o\nEeQ26Trhz7nXAnA/6f8cbYODDQ42OPj9bB34rV/cKx0Juw5eC+lAQ/6rHPUvU7zujK5xyY5xwSPx\nnhfpK55H36GcDrj555CLf4yRbwp6UkxPztA1UM0cySooIkjuJfxxBIUPRQzBCKZ3MB6V5JLhinln\nLQXtcYE+KlAygawKcKRSyFr5IbNlnfCvNZnse9/f/50CCEEsyv6qNIRZVLJ7JAcku0x8sxyyDOw2\nKCqYLpqWYisBNabo0ZJskjC7hmEANxncCJAiqE1BvoakbjA+qnHzRReDOW4BnTzCfVfgfVug/Frg\nzMqEv14vmZeSBbIN11sGs0qdgbLNTd7Djz3yhVJewCSGYlm2ug0TyAp8z+Ptg0eM4hrnnS2ePv8W\neUelSCYUkk4u6VyzzbfiBd8UX3N+1yccFITrhD9dJ/zrNbGebLcOun5KzYx/C9vgYIODnwsO1vGR\nQrneHaBaTifd1uGxTOXJjMMn7/nqya/YTS7oXg/p3A0xkqjUHWjkvI8e8g/jv+EfLv6Gu0UHkcsU\nucR244Jf8Cu+9H6FXo25fLrN5dY2ZzcHSMeCxYcqwfvVOpvnsCwo28vmlC/Z+4z9+wm/KBP+5wt2\nFhd87X/DF3f/zOTbhMm3MfEgp7E7ormrke7ecbW7xbe7z5C8HtJtAUNRstLv4CqAqxziGcgRKH6B\n/XjCtnRK3DDZ1s7x5DlSBqpRhkEuYGulRIPhgmzJFKpKgkFmahQ1GXqgn4FnlU1OVWOV8PchbyhE\nlsFSckjRUMhxWWDFAdo4hUtBskr4bwpI43JjrrgEpZVhHMa4xQJbDkgkC0kW/0byor+ttasGdEFr\nQ1eDZyrysxynH9Du39JsDT/+dZaqKFd9kiuD5XkVfqPC0oHb6upEIsrAFb7fbgw/7olucLDBwX+L\nff44+BkUvu4HNWvanVXqLDQ12JNwOwu2rUueZy9pTm7gPEO8zBhfC/ysZHmn4hMx3rFTnF/OqaY5\nM/UO11mg1nNoSB9lJRQ9x9RDPGNOJZnh+AHGVYJ8nJNFsAyhaEDch7xZbiRyC5Je/j0hMCtZLHoA\nTgaxBJ5SuqlCqJbBUHqvPVbyJBJLJlVVCnQyoVDkUllMmANLKOYyM7PKRWebt84jqq0F1T0fb7Qg\n25Ip+jJpX+O2tcNNsc3NoM90ViNKdJBykNKSSk9crsGpCjcyoWkz1ppc1LaJej7ZXoL5MEFyZcKO\nwqijEMwyfDcltFPSTHzcL0wPHYKjOqOHNZZSRPpwgv1ogrylMNtxOO25OCZo+xnaIAMNlo8V8scK\nZ909rtU+w0mb+bBKdGGRnylEusFdq8WH8AhZL0gbDuqBRRH7UJUQNQkckIwCyRBIVg77GdJ1JZZl\nsAAAIABJREFUitQQ+I8VFo8VBnt9BlaP0bKFv6wQTnXyQEC26kMWq0j8s9753OBgg4MNDn4/W7+4\n14GfDVTArELdg56DdZhQezil9nREv3rFTnTOTnjOg+iYo+V79oNT4ps5w1NYfgdcQlPOUaUcrSZR\n7CjEdZ3YBcgxlbzcnWurhDUVVZOIGhlZkFFIBWJ1WUVTJnY1lopGkntEqUmWqpCIFetuXXi81wog\neyt3QbdLVy2Q1gGugCwsk/wsgSyFOIYg5BOtfL3DtnK1AE9AB5Rqjm4kWFKIrifIXo5oUsbLedl5\nJdslVORbwJAQdZm8p6Cg4CYy7RQUTaIIYHoDWljumroWJFWdsGkRNG1m27sMzH3OFodcj/vMxhWy\nqQzzpDzmIih7gP2yaBFdWdydNZh8qBClJpqcYSkJc3dMrJgkqslNtsX7xUPOlgfcLhuQLUBZgBGD\nrIJkrorbKyE+ASXg77eF/Cmv999lGxxscPBzwsEPE/7VerdtpL4Kjwu8gzlbzUueGt+xuzimMR5S\nP71DtxLkTEbOJPzIRT0LmJ1pjBc2qrQqEfo5thjTyo7xanN0dY7rzNG7KVHhMNQ6LCWdYiaRnxmI\nj8VZm/Kd+sP2IRNJNVG8GKWXYPRC6mdjthZX7F6eIz7A7BWkF2D60AxBLTLa3h213Qm2u0SeZaSy\nyhKL2MhJ3YyiUVCsYirhguzkaHaMYYekhcqkqHGebTNrxRS7CfajGMVVSF0Z31OYtRuM9SbDZZuB\nmHLpTKl0fcKdiOQ2RR+nFD0F/0BBPlS5bXYYS01m4xqhZSIrBbIqyFOVTFZJLI2sokAgSmanK1FU\nZRJHJtV1cqFSRAoiksoQZP2QkH5K1vn6mbAuyBhllVp1QKsg11yM7Qjz4QL32Zzd6jm71VO67vXH\nT0hzHUtEqJZAchVi3yAemCRXJmQzSO1yJ/KjxtFaAPaPxfja4GCDg/+atfP54+BnUPha2xrIqyqk\npoEtQw1kTaAtc4zLjOw6YzopmESCcNXJ5IrvE+VVZFR0ElbTbwqNIpc/TdpMoMhkkkInEDaBapO6\nGqIlo7XBmUAjhUIBxwa1zkfpDEld7VPK5feqClUFtiSoyFCzoeaUFWWnCo0qRGsWC1BUVNL9JoNK\nj6k44DLcYTH14Iby+DLIVJVLeYd/dv6KqV2n6Y1oPh9Tb05IajpxVSeqmrzJHvPm9gm3F30Wbw3i\nGwnCBSTRSnQuglkBZwp8YzLcbfFy6ylOd4b9dIBqjNC2hyxNg9izufFs1HCB4k8x/Slmnq34IYLp\nUZubB0fcGYdo7QnVX75nS4uJ3Ronh4/5F/kxqq1QeTjDM32EJhF2LYKuxTl7vBo9Y3zcJrq0Sd/q\niHcSoWlzbWwj6TBstnkvRrT6QywpotAUCl0BAxQrQ7EzDDXE+8UUz5uhBilR3yHqO9x6Xb4NX3Dz\nfovltUt8IpH7ERQRpaBVxKdxwJ87y2WDgw0ONjj47Xb/pb3GyVqfoF72g+6Y8FSm/nDCi/q3vMh/\nQ//qksrJmOrxmE4ypOGM0JyUdAZ6uBpAIJetrrYKSkMlfmTjf2URViSsYcD+MKCQJMwtj8mWx1KT\n0IY+9p2PMY1xA2gGENsqyrM6g70Gw/oRg0GHcGzCpYBJVia9JKtj90DSSv0LowqmB00dGjpU9ZK2\nud4RnJkwc2CWwNIthfaCJR/Bgs/HaTxUoOLBtgXPKAdFVAUSBVpfYP8FVBRQ5mAtobmERr2cWCqP\nwFIjmkxQ8gJzEeKNfcxxxuJtweS1YHJbXvGWgJYKU6/G6e4eJw/3OK4ecFwccXxyyM2HDtOzCumN\ngGkMQQRFWBZh0zlgIgYuxTcaWaIza9Q4FXtkosDWAzLXJHMt5ladG22LULXKG9Uy4CnlDRvbMI5h\nHkI6g8SAfD0aHD4xG/8chL7XtsHBBgc/Rxz8MOEvBwBJloHSlpAPY+zaknowof92gHM5xn+9ZPSm\nwJah/kFQb0MlGbI//Be+HuYsRI2qDRUH6v6A5uA1y2+GCDfEqkgcVkMMS+DrdW57baJUIjwVhIYg\nQ6ZM9uur41lvLK2HNcgl+13O0dUEQ47R0gx5IRBTSIKyW3chIIohn4M+zXHiJU1pRMceoLUTfNVh\nYHchXdLNFzSMkHqtjKmMpkT0C4/bzhZveEygugztNqfSHvqTW3T5Fnv7jtg0uTVM5qbJm+5D3uhP\neH35jEBymeoNLntbmF+M0N0Jxv4Ev2py1XKh5fJSfc7x4pDhyy6xbSA5AskVjESL8U6dqe6h7iU0\nzhOUiwSjqmDuGCx3dcbdKmO3wXjaZj6sEfk6RZqXRd8i5ZMG0E+V8N8bHqXYUNGhKqNupXT2BvT3\nrthqX7I3PWPv8pSef/PxTxNFp1e9pVu943RvwOCmz811n+GwCXMF5josTH5rAf6Pyvja4GCDgz9k\n7Xz+OPiZFL7uB3IrbQJVLRP+qoSsCtRFjjFMya5zhlPBcQxkUBVlmGPyidxdIJOiE2MTCZO00BBr\nNsnKi0whyXUCbELVIvV0aMloLXBSqC9KKSDHAbUBuQWSWyb5klTGHawTfhmEBIlSdqa5DdBbkPVL\nz+t8LOaGtsKH/SYX3hHvimdchNv4UxcGlAyaJeSFwqWzg9/0eNd+RNe7pvv8htaXtyw1m0C3WSoO\nt8c9bi973B73yN6mZIMUgsUqqIqAqFyIZybIgqHS5GX3CUFDY8c9Zmv7hJ1fqCwUh4VWZ6nVqedD\nOukl3TRFE8nHAx+5bc7rj/m18Rd0Wld8+XVMf/+aa9HjVPsL/kH+9xS2RvvhDe3DGwpNZmbVmJo1\nxrdN7o47jF62iN/bFOcyxblMaFtcadtM1TonB4fY3QV2f4li5eSpRp7qSIpAdWI0N8arzui7V/SP\nrjDziInVYGI3uIs6XL3Z4frdNss3LsVpSD4PQayoQ0SUQfbnznTZ4GCDgw0Ofrvdf3mug7514LdK\n+N0KbJvwhUxjd8IXtZf8x/x/Zev6nP+fvTd9biPLsjx/vm/YNxIkRZHaQqHMjK69q9p6zGb6D58P\nM21WVd3VlZ1bhHZRXAAuIHbf3d+bDw8QIVVELZmlrIgRntkzUBQBuMPfcdxz37nnav+Yof9tiicS\nakcJ9lFGMgUnAl+oyivfBM8Fs22weOwz/qsm5Q4Et9AZpQipM+1VmfZ6SMegu9CpLlKCWUoxgXwK\nS93i8lGT4eEh7/wHXF12icYenK8J/0qBiKGOW6uA3VSeTPUaHOhwX4c9HQxN/ZkEBgKGAoYl3IZQ\nVNQaZwJM+Yjwa32oWXBgwdeg7Uu0mkTTJPauJPgzSf0AqrfQuoV8rEQjbg7aLbgyoSUE1SzEuC4x\n3+dYpwXjC8n1UPLuGtouGBY0A0X4Xx4+4n988xeciCMur/a4OumzfOWTvNcpLiVMUihSKBN1OfMZ\nlCbySlDmNcSFx9yuU5T3uBEBplciOh6y45F3PaKeT9Lz1IXqOErh0nDhvVA7pmUMkQ2FAeU6wCo2\n5k/Ry+77xhYHWxx8yTjYVCsowq97FkanwDzK8FnSGkzoD67RXt8yflFw/rykkgOBpBZIauUth+Gv\nicNTNM9mtwv9LkgSJvMZ48Wcwino78bs9W+pHEquHu1werDPzHDROja5Y1FgoEpxm6jEc7yad951\nmiYxjRLbyHGMDDMv0JcCMVOEPypgISBJoFyAPhX4SURLu6XrX2OaGYuqz1Vrh1oxYkfkVL0Yew/s\nPRB9nXSnylWvzyv5mFurzZlxQNsZc/jVK+73X3P4pyWJUWOuV0mNGq+Sx7xMvuLV4GvGjQ6DVp/X\nzWP61TP698/YXZ4RWnVmbpup0+Hk8gEnZ8eMznpkFRutDbQlY6/DZL/B9EGV9mVE60TS6+WIhkl+\n7BAeB0zNBuOkxe2sy2xUp1jKFeH/PgX651qX2sbjRlm44SnCv2tg3S/o3b/iyb3veNp9zv2LU+5/\nd0r/1RVoKtbNPIveNzd0Wjc0Dkc8v/wZ0cBndNOBSwNyB5YeKsZaJ30+5zltcbDFwb91zWyunR8v\nDr6QxNcPjNUaEKVOUVikuUuJTWoXpJUSB4ljql0707DJdZ/Y8Ij2GyxrLULaDLI9ZlGdfG7CQkIo\nIVGd4eKly2xaZ1xpc+t3GB10II/JAoEZlJRVjejA4nrHonAh2k+wjhI0t0QcmCz3LUxHJ5Wg6xIr\nBNnRyToaZc8g37Uo9kzKlvkhmRtaPle1x7zLn/Ly+isur3eJrj24XtWIpRpS18gSmzCvgNDwnJDA\nW+K5S0IzIDQDllpAZPokwiOPbcpUIIp8JXPPUTeeJSxtuPKhyJg3fM5291nc81m6AbnvYVZsliJg\nLNqMyxZd74bErCBND1vL0BBoSAblY06Kr3hx+TVhWaEnb5kHl4ySY94tn/Lb8E/ITIteZchOpUdp\n6kyzBpO0STT0yd7ZZN/aiLcl3ORwLcgDyAOHueWj5W3MIsewCyg0ytiiiGw0TWKtCH/dmXJrdJgE\nLTwt5lZ2GKVtJpMmi/Ma85cVsucaDDO1E8xMfQYf2vz+FAk/WxxscbDFAfBxUthRUw9WxmcVaLpo\newbasaDaWbAvL3g2f07v4ozwNYS/Bl2Cma2qp6SBtBxk36Zs6uSuIHVLkgdVhvt9Lnp9yp5Jxx3T\nrY6RUmNY3WVQ26WwDcKgTtau0YhninNPYFFWGLaOeWMc8zp+yNWkRzxw4VzAOIMkRhnhmSuyb6M1\na+jdCkbfwTuK8I9j3P0EDJVYlqVGWnNIag5p1aY4cyikTpnYquSrXCo3ccNQQYxZx25m2P0E+2hG\n0xvTiKbU38/x0hhT5FCROBr4rmoAmF9CPoTZJWiLAn1eYN2COQXjCsxbYKF4dVpAZkJZAdmBZS/g\nYmefb/tf8358xGzeZPqmRfFawjCCaQjxnLvaaKnqEwSqI2pkIIcuiW6TUGeMrzqUFgaWZWBXBX4e\n0xRTDL9EdkG2NPK2Sez5RI5P5leQNyXyWq74/brV+zpp/VP3tNscWxxscfAl4uDTpK/StWMa4JVQ\nlVh5jidi6uGcfBLBNUQDZQk3t2BuQi5D3DykV1zg1+BIwJEOUQ4vLmF4qcRy1jihvQTTqtA+vKVW\nm+EbIfGOhr5jw60FQoPSgdKHPFSzXHvnrDxGMwGRREa62mS0fMLAp2gWmDsFrinQmwZ5SyepO5Su\noc4yh4WscW4eIDyD3U6T3ft1DG9M2NdgTyPpuVxoRwyTAy7P+8ypc80OFZakhoNeMfHqOjNZZy5r\nzGSd1xcPObs55Opil+WOzyStM5Q7TMwGkVejCCpMZZ0b0eVGdrma97k832HxXUAZWNDVoKtx2+9w\nsX/Am9ZDlkaVGhFVKySt2sz3K8x3Ak6W97ka7TA/r5OcOTBOlBJfRqy67vDHWZOfrhsbDFeZPrV1\nzN2CZnfM/fYJXwW/YycesHM6pPGr0YenFRWTfr8AEoxWyrzd4Lx3CF0gNmC6Kh1jU2n5Oc9li4Mt\nDn7ftfPjxsEXkvhaZzlL1Bd0AokFExMuJEnXYRw0uGj2CdKSYL7gYbjAzUqqFahVYOLVGbjHvHeP\nGd/rsTxqsNSbXM72Ob++R3LmqaBrVsAyJ58JFkMf7U0Pfyel5cxwv0rY2WsgpjFiGlF4JoOHLdJ7\nLYQlsf/kArd6gT2LyJs1zpp1BqZHORGUE4FIgaqNrFjkFY9Zpc4saBB6lQ+nmEqbi3if83f7DBe7\njJ/XiU91mMRQtWDHxGhLdo+HHO6956Bxys70it3BFZ3FDWlVBX1J4PFSPuFV/wnCh0QYJBOT5H1F\n7SgWq92/NFTlAaVF9rJkiYuYdNErGrFb4crrk6UOy6RCGAcMggVn9SPa9VtMXZmlakiGUZ93s2Mm\n8y6kAjv7mlkuuU13eJfukaQ2hWUz9xvgg9B0otInLn2ykUF5kiNPEhjlsMyhzCDR4cZR3hRzC3Fu\nwHMDHAORa5CValU4OjgOoVPjxi0pHBtLz1kWFZZ5hWjmEb/XKU8S5Xg4m0K63gEOuXP3/rHL/Lc4\n2OJgi4PvH5sKFwdVylQFp6lMXSs2+q6G0S0w2hmWnWDcFmhjSXoOtxO4ysHKVeMB24Ki5RH1e0yf\ndMldG81KKa2UpFrndf0Rby4fsZxVqMiQqgyRUmO6rDEd1hGGTsOa0bDn+FqsPlYHksLhetbletrh\net7l6nc7RK8cOMtUsJOEQAh6HQwfrVLBPDKxfpYTfBVz1H7HcfuE/cYFegm6kJSFycDdZdDtc3nc\nY/Gdx8LyWOYBRIEyFo1jcFwITKhAvTel272i273i2dW3PHnzioeX73GTMWUScpWoirigruYyg9Et\n3J4o9abjgxtAUFHNoip9CC6hf6Iqzyo9aD4B8zEUxxZRvcI0abO4qZOcOsgXEk5i9cEXY+AWtQ4T\n+NDyvFReRGJFyM1ABWC+hbVX0Hi6oP50SXtvwq5/za5/RcUJKQyd0tSY9hq8ax3z7v4xN6dNyt+Z\nlEUVGWkgV53z5KbH0efqsvXHHFscbHHwpeJg0wenZC1bl4VGGeswdyhMG+GbyL6GcwvNE9g3lK1c\nXMIJkEjlfDADtEL1BZBzlSMUicqdClM9ylUVklZKdCnQPA1t34JvfAgc9aJxqb7LJ1Wl6Is01n5H\nsojJJxLOXBaVOiOtw/lBn3ptH3pzdvfm9GYp1bZL1nYJOx0ud3cYyn3OB/cJszo3aZ+TdEIjm1Gv\nT6lWFkjPQOoG2cLh2/FTTif3yaY+CINCOGTC421QEvsVhv4BcekRF2oOB/tMB03khUbetInaFURL\nZ+BKUsdn5PaIc49FXmWR1ZhdVIje28jTFBwBNRPqFuPDNs+nzyhjg5q2wCPFbaXkpkkSOcRnLmfX\n9zh7c5/0rQPvCrgMlSM5M1RMkvPHX4+rUi/NAFsHX0OvFAROSMcY0ZWXiHTG5SLlcsydUCaTlMsI\nJ79lT3NoWFNcL1W3YFdXiSdM9dofnvQ5xhYHWxz8e4wfLw6+kMQX3EmyMyCGxIGJAxeS1HEYNxuc\n7/fZ1xPqkWQ/jXC1EqsLVgcm9Qbnta/4n7W/5jy4R+hWCbU6y1mNxXVNEf4LAXEOSfKB8KevAzRp\n4HZj5D1J321SyaZUsimpYXFRO+Kieh9NF3xV/RVPHmU0sjETZ5dre49Qr6OnBVpWqh1JyyOxPBZ6\nnYHYZyD2uZWdD2cpUp3wvEJ0ERCdeWQvJekZMI6hIWFXw3go2D0e8ov+r/hPzV/SG47ovh3ReT2m\n7BmInk7Ws2lUZ4i+xu2jBvNpDXFSI3ErkM5VIFXGkNoqbR8ZZMJFTDyStw5hvcZ1vY9bTyhDg2Jm\nUswsrHaO00+x91J08y77HI89FsMKy8sq4cJkFkteR3WSvMpM7BOXNtKymbkNYsdHolHkJkVmIuIM\nsYyRy6UKePMIikiZR11XYV5DXgQIx0O6PhgGUgikUJ2ISl1HGCbSMSkqDrOgiW4K8sSiiE2KCMpZ\nosq6liFkE8jXhD9aramfir/FFgdbHGxx8E/HJuF3UeVMbVUeVa9A10bb1TB7OVY7xcoTjDBHO5Uk\n5zCawEkObgL2NTQTKAyP6Mku0798TNj3KfQlsb5kHrX4zeg/8dvhN4yKLlalwAoKJJDNbbK5hZQa\ndjPHaWQYQfnhsMrMILlxSK5d4oFD/NImeWXBeQ5pDOkStEjJSywfLWhgPUhx/3NK/S8mfGV/x1/b\nf8c35q8xEomRQpHb/Lb3jN8YzzDKr7i2dsgTh+UkgHEFilDVCLgu1E1oQ7034bD7jkfdlzx7+5wn\nv3vFw787IYpSFknKNJY0n4L+M/BbsMhgcAtv34FTQtVUs/MM9D4EfwKVgaqwaoRgHYD3FIw/hbxt\nEboVJkmb+ahOcaohnksYxBCPIR+gStE2lC6UQKIiaiEVTrVCZR+6PvaRoPGzOXt/PuDB7ju+zl7y\ndf6Ctn5L7htkgcGFvsff3v8bFonP9KQCpYkYOMhLG8poFcWH3Jmsrrve/dTW/ubY4mCLgy8ZB+vk\nXck6ThKFiYwMxMykrNmIwABLw7lWPR6kARMJs1JVycaoHguZBLtU3UrFXL2sSKEUoMmVWC4Hcokm\nJLqUqvnBwYrwt3yYSTVvBBhCde2Myg/HJ/KSfOJQnrosqnVGnS4X9/ZoOdc09w36Ryn+MifuuCSd\nOte1DpfZDsNsj/PBEddhhr3McLIUtx3htGPseoLILERmUcxtZid1pq/rpO88isImKQRhWRK1qly2\nDnCbMWVmUKYmRWYQD3yioQ8DKAKbqKKTVlySSsCouoNbSSlSgzy2yCOLfALZSCJuE9UswtXANRnf\ntPku+hkX4h5WK8PwS4y2QGYaxdKgvDYI3wUsvquTPnfhMoJZCNmYu7bga8/RPybZX6ldNBMsY0X4\nBRV3Sccc0RVDrpKE63nKZHz3TKMQdJcRnQxqmkbTmuJ6yYrwayvCv1a56J/5PLY42OLgDxk/bhx8\nAYmvzV2otRlaBLEDIxfeQ+R7XHV6vNYeUlQN9vcquKkLVkrc1aCjMag+4p33Nc+9bzgrDoiWLtHE\no3xvwoUGVyWMc0WCixix1EkvA0X4dXDNQ2RXMg1qNCsTWvqYTNq8EQ95Gz1A1wSek9MJYnR9xFAc\ncC4OmIoGZlBiyAIpNSJ8IukzLRqcR/c4iw8Zpd27042AgYTXwBsB5xlcp6rI2S6hKzGOBK3umAf+\nW74pf0V1MqV6MqPy6zlGH4wxyJnB1aMm571d3h8doPUhbQXgO4C56l5dQJGo7j8JlHmNcmqQXniE\n9ZX7eENTZW8TYCqVfHOkwUQDeyNbeyOVMe1AEM1sJlFLJaqFg5KzxmCUlLZGYq9K2jIJea68llhw\n58Gx2u0Vhoo0F6sdC4oV7FfyWABNR5oG0jDJfIOs4bFsonAVrWeuWhomQFYoWa3MUDeTP5Zp4B86\ntjjY4mCLgx8em/JsF+Xh00QLamg7NvqxJDiMqDcn1M0Je8sB9ekMc1ggRlDmkHtgmMqnTlqQVzwW\n+z1unj1icq/OvFxwWy6Z3jZ5FT/m9eUjrqNdsDSks1oDq07NmpDobolRKdE0SWkalI6BFLritReo\ndX2awGUC4wUq1ExBL9QOm+egN1z8/pLGwwn7T884WrziyfI3PFv8A1oMWiLJcoe0k5O2JXmgo19p\nhIMGo4EDwoXIg5mv2ssFBlpd4tdCurVr7lff0U/O6Z5fUv/lLWkkSRK4SVUHu+AQsJUdUJZBtFC2\nE7YBjg7zwkXUfKKjAMsDPSkxkpJsXyc+NiiPDAbGPrfLDouhUrlwnsMghdES1aJ1jNrZ/LTkqgAM\nkJ6ahg81ATsGzoGgczjh+PAdXzW+5fHNtzya/Y5OfkNZmJTCoFq54bLe5n3/gInbYPm6zrJVJ/VN\nSH1IXRA2av3r3Jmr/nubDf8xxxYHWxx8qThYqyE2u4XFkJnIuYu8Nkh1h8gPmLVrGL0ldien3cqR\nQhLpkGuQ66rE19HAdjSo6OSBTinB9EuCmsBwdOgZxF2TpO6geRLPiGnaM/S2jnskiIOAYq42y/Km\nRao5ZJlPIYFsqb6D8wJx6yBOLGKnwo3e5aRzhFeLOJBVDMdHS+fcNhvc1psMvD43kx7x1IdMI09t\nisQkzn0Ks0lR1yh7OsWVTTl2EEML3gr4TsBzQZlrUGhQGoTtCnSq0NbUklvPax2uNbguKT2N0rPB\nc4gbFWXT1OCDQwRLYJHAfDUpwEzBKAmFQWh0GOpd6GvqfTqrOGqEipXeSngl4HUOsyUUcyjX8U/M\nndLlP7j8dgMGUlMWeakNkXP3e9OG1IJyk8v/E0HL+hefE1dbHGxx8JnGjwQHX0jia7O8KwRsZdB5\nGYCQzLU6781jhGlwbh/Stsa07o8xzRLhGkjT4Hy+z/PBE0aLHvHCIZ9J5DyEUwmvhXLOKzOl4ZSx\nKiG7Um2M8khjOq6hD+6xaNYJzJDADCmkyU3c5SbpoWuS7+o/I6pXqNoLxmlL+fbkAXpZogsBAtLS\nUV3ycp/xskmydCDZWMyZhKtMzetCEe0E0A3wdGhqaF2Jq6fUJgtaywnJ+4ir84zTCwhCCG7APZNI\nIurtGw45RZgWS7eusq5Sg9yA2ELdGFc7jGWkbkRyrtL/mQFLA1IB0WrqBggLliaYG6t5UShT2nmh\nOublC/U6GKtrNgFpKjRkmjqGUoKUfIiSCVEMPVmfNAro6er/vNX07362XKgaqiV5E1VH3Fv999pD\nca7ByIGRVHFlXkCWQ1muDn69K7K53n5sY4uDLQ62OPinY+1JsN5FslRJqB6AVsNoOtgPSuw/X7B/\nMOCx+5qHo9c8vXrBw8t3eDcxMoNeDeQDsD1od1TThfTYZnzY4sw8YLjcxY0y3CglDn2unR7lfR0r\nTxCYlJqJLHVoSaiAYeT4zRCvGaL7kpiAiIAscRR8F8C0VB5rxYQ7SbsG+spToWlg9go6tRHHzmse\nZi/onZwins+5fgdZLskySPWS7OmI/a9fERzmYFnctnpwD0gNmK5MSjVLrVsTDENgaQUOKZQ5aVYy\nT2CawaRUFDwwILMV165WYK8GRkMtd88Hz4PxwQ7Pm4+5tJ5gdCTeVxFeIyKv2sS7AZHm83rymNen\nj0jPHHi+kvFnS1SCd8ldQwXxyTVdX9fV8dseNCzY1/F2Y/acS36WPOd4+Bz75ZDhi4TJROI4AseF\nshvReHLJo8cvEKbJRXCf85ZF2vZUMwthQWGjcPW5d+A/99jiYIuDLx0Hm5uDGeo7dAGRrkjsG4dI\n+AwPdnjRecR+z6R6NKb69Zj2IsdwoGJDftf2Gtcz8Gouy6qDQFKNE46SFGmZmI0aN40a834HeU/S\n9a+x9BzDVrnJvGWxqFeY71UY77YYVvYY1vaZnwZwpa+MnjW4McDUyFKbq3gXO8qZ7zV4Kae05BRf\ni1mOfJYTn4VZYWFXaTq3fLP3S8ykwExyKGHUbjOqtRjrTeTURL6RiOfA+wwuEpipNa6WjbOzAAAg\nAElEQVTiu1yVMGUGzHWVBMg19fU/t1Xch60y4K4JFVOJR+uo+MK9+4wQBiS2ypKIVLmPkygLjveO\n6iD6fvUa1VUctSjVvMngMoU4hXIG4hbkYnXt1t5Gn9vU+9M1tIqxRQZxARNBMTK5XbR5lx1RMUcY\nnWvaj67oLTL1NA1kYJAfNrmt7bKQh1wk+yxmFZXcWAhl+kfGx5uMn+OctjjY4uDfYw39eHHwhSS+\n1oHASuWCAaGvzJmngrmocWI+YGT28PeWeO0Qv78EXaPMbcrcIrytMH1bZ/q2TnolEOMIMQ5VhDPL\nFVEts5XXQQKJC9cGLFyyG5fJRZ3odRW7XmA6BZaTI0qdZO4Szzw0QxLtVTjbO8IKCtKFTbp0KCIT\nrZBohUQWGqLQEYVBkRqkC5N0aUG8cdHLEuJEkeYkhdRRO3K29THhT1Pq0wXt5YSz04LLs4LLc2hf\nqy7fTR9kK6T++Ib7nBKaNW68XQXaXFcmc5ioTHKiHsulKv/KPcgsWFpgWuqYihKKQqVyFy5cOSvn\n29XIc0gTyNJVeVa4ks9rfAjEhbHqJrQKrsSa8K+PYb3TuW4rqK1+t0QFfWvVTBVoq2naUJOwA+wC\n+6tZRZH9BJjocLJS+BSGUg2VOZTrm8m6g5Tg89be/yFji4MtDrY4+Hh8SgxXZpxrwm/UMZrgPowJ\n/jLiXuWUP43+kb8Z/T33Ls5pXk7xbmLIYLcGtT7oO+Adgn0IWc9hXG9xZt7jXXiMMQZ9LJFSJ6ta\nlB0NS0sp5iAWhvK5qAKWwPBy/OqCZnWMYZVM0jZZYpNpK8I/RzHraAn5DSqzuzqXNeFv6Zi9nG7t\nhsf2K36W/Yr6u/fI/z7n+u8lCwFzAYlb0k1GHFRjnvRuGVtdXrW+gkNgYsCFgyL8tjL2NsEwSiw9\nxyVFEzlJLpjFMM1hLBThbxgKdtJX9lBGHZpN0B0wm4r8Xx3s8F3zz/h/rf+GFgiajQmNx2NiLWCq\nt5jqbcbjFuO3LZJfuXCSwHAt4197y30aBK3X3mZLdg9sd0X4NbzdhD13yM+S5+xNvuP6dxGDv40p\nzqBpCFqmRN6LaGZDHnWfY9Y1ZGAxbnWYdJTHB7G1Snp/bs+Vzz22ONjiYIsDNdblXWvCP4fIVN/T\nbySh6zPs7PDce0zZk9w/gs5iQSXNqQbQqyhx4PortqgYZHWPsF5B0wWVFFppTqbbTPw61/4u86AF\nVUnXv6FfXtJxJnSCMVgaV26HK6/L++g+Zr1g3qgzr1dU6dDChGsBNzqEGtnE5irqswyrvL89wqln\nOLUU0y3JpyZFbKJT0tu/pHdwSbv7AqdMcIsEKTVeuY8RziPmZRUxKSnfSPhHCaNMdTidLkBGK2V5\nrGKYuQWWCWLVcltokPkq9sED01GSn4qpMP19hD81VAJbM1TcKOYgb1WiOavAdUWpLC1bzbKEPFMz\njlSMFy9VokAu1DVbqz7/6Er0NeHPVfIiKmCsCP940eIke4Bnhhx2Te4/Cukz+XC7yjydd/ebvKsd\n8UY+XRH+KtygCH+2JvzrsrXPmfza4mCLgz9k/Lhx8AUkvuCO8K+7sGnKAyINYRaR2C6JX2NkNdDz\nEpMco1ogNZ1iaVIuLeSZBq8kfCvhIoRJAuO5Klwm4470rUhn7qmU99ymnEqisUM09NT2nwt4mnIC\nnKJKnwyN+bULt12oaDCXat1G8kP9MwV3XDaVEBbKLTWJN861RKFnvjqWKqCDbYMhwZbggJGX2HmO\nE6UQCrJQsgiVN0dgrE5rWWBlKT4hjp5iGOXKU05TbZDQUQe1qoUS0aoky1GEn1W2+4MSpFC6xqWL\nkpJsBkkrOe0Hlcp6rgO4VVAuNut6P61DXxPw9e807pIB6w4gtiosNwIwBVpNYO2kmEcF5j2J3c+x\n+jlGtVQBeA7F1CSxXBLdJTNduPWRo9oKgPknx/ofLCX9Z8cWB1scbHHw8Vh/pmtyaILmgOmC5WHV\nMvx+SuPhhH454OHr1/zi9De03o4oLiC5Ad0GtwnVLhT3LaLHHqPHLhfVPYZFn6til9GyixPluHGO\no6cEekjLj9RmYemQ5S7CMiEQEEg8J6Jt3NCWI8ys4LacU9NCpkaTyPSJbZ/MkWCWoOeodbOKNPVA\nBUi+gV4VVLwlPeOa/fICYzTBfBWT/S9FlWcS4kDSO1zQ/GbJrljStUb4lVgFZhVd1WNhgTCh0NVa\nyE2S0mUpKwS2R1C3iXd08kIgpcSQUHQtwobNuGJjtDXog/MApKch2xpZS2O0d5/X3jP+If0L0AVt\n+5aWPyJKKoyXXW6XXYpTQ6lJn5dwFcFyDvmU1Y2Bj5UumzjZvK4WGBZ4BtQ1rFpOw56yLwfsLAZM\nhxC+hOgV2JqkqkuceUb16YwyuiZpNjm3j7D9HIJV/YaxThKty7t+ymOLgy0OvnQcbJZ4rY2HEtXR\nMy5hJilDg6RwWJoBS9cn9i2SqobhglUFuwJ6A/Smjt7UmVUDZl6HodcDTaNZzGnmMxLTYez1Off6\nJJqDn8V04huaywk7kyE70yG6LOnYO/TsHTw7YrLX5Nw8ZGS0EFOBeG8gS02RwUVKudCZ4zDPXVjq\nSrXd1dBqYGU5VlZQN2bshhf0wyGPKs+xZYIjYwQapSzJNINMd5jlLWYLnXxsK4V6Wag2rcVKzV+s\n3MnLciXtWV17TVeePrYFdonRzDF2JeZOjtUusNo5ZqtAJDrl0qBcGuSGRS4sssxWhuVZofxJo0y9\nNwUfusvicFd+t97Mm3OHgYiVuxQfq1z+GOtmszwwXRH+DCYF5bXFZNTg/fgQs5NjO4LOXoa0xQeI\nlpbLtH3EGY95NX7C8HaX8MaHUak2lLP1OW/6NX0uxdcWB1sc/L7r5sePgy8g8bX+QDbrlTWUJH7l\ncRP6MHBBOMiRQflGh46B1CQiyZFpqj70ixwGhTKOi+crp75Nwp9vzPX7FFDOVxJGBzITLE1xYYFa\n0KFQLXyuTSgs1bkgFmqmQpUyCancAEvUv3MBaa4UFx/Ki9bnua5NWgdBujLbSAyYWsgxZJZF2PRY\n1APsYU7/NCNoF1SrSo4fNOD20GNZbzFgj3HRIk48ha9EQrG+Kd4ZDN4t+Jy7nWODO9lsyZ1pkM3H\nQdL62mx+lmufis3gbR3AbQJs8/XFxu+1T6YNBGBVoOpD1cXuazS+ntH8ek5rf0rXHdH1bqk4S0pT\nRxga826Fk/oxJ/eOuD5rq65G31aRoQayuMv8/6i7Gm1xsMXBFgc/PDbIoaEr3zVXw3ZTGuaUXe2S\n9uIG531I8cuS2XuY3sDsBpwqtJrQLmEmG7zWHvBGf8Bvxc94GT1hEdap5BGH1in3e6e0xYggifDf\nhRhaSW5bFJ6FsAw0Q6LpEjvMqIwXVG4XGEXJslVj2apxbfd4tfeEl/ljLv02fFeFeAdmAR/WmXRA\nBFCayKKkKC0S6RLjU9dtaqaBZyurO1tAqEFgGmAbRJ5NapiUQr+LLdaKwkTCVCI1jcmkybvwGFFI\nnu7puH8V0feGNLIcuyho5yXyaYPbxzuMmjuIQxOpaYi2RmGbFIFJUbH4tfYNF+UexXsLmWosorpq\nRx47xLGnhKMX6apzXQThDLIJyBkrEPIvB3ar3UdZqntHpn6UJpQ+UAHPgaYOgQ4dC9omGJ5GZFsU\nhkMiPTJhIQpdJerX96KftK/d940tDrY4+FJx8D3JX2xFXms69DT8RkTfuuJp9oru+D352YR33xYY\nSzBcNe1DA++Zjbdrc232+W72Nd8NnxIWAYGMCYgRvkbYdlmaHkG55Gh4SvdyQv3qkvx6zul1jiYE\nemdJo6NzUK/Sdy/p1q8YH9SJX9sknkVuGGqjTUZKST61lXo7smBoQNXAbAraBxM6B1P22pc8i77l\n6e+ec/y/3lDmOUWekxnw4LGk9mTK/Z0zXjSe8eLwGYtnNQhtCCvKrmESwKSmFP5VEyqGmpqmpq6p\nTT9pg3TwjyJqD2bUHoS0q2NalVvalVvizGOZVlmmFUYXXUanPW52u5SXNlxVVWvYYr2BuuCjEuwP\nyZiCuxhvbe3wfUqQP8ZYK1zWKqkEylh1gZ0klLbN7G2FQX2fIrMJqTHwDujdu/4Q/uWaxVl5j9PT\ne1wk+4yfN4hOLRglsIwhjbjrnv05u/RtcbDFwe87fho4+AISX3D3gawvhkRlRiWQwLIKgypMq8gT\nD+G6SNcFrUCWKZSpKpuKEggTpZAplqqk6cMi28ysltwFIgmUnuqeVzgQmgoUhq6CqEIZ86HpULow\nc1fOsIUqiypLkGIVoQj1HCFXwUumjo38k3NdKzDWNy8HpKfqjWcOjDWynkXY8phXKtinMbs9wX67\nwOqB3QV9V0NfEf4L9pgUTZLEVevtA+FfJ1HW7/fp+64fNzPB65vpp7L49WuVn8z1tfuU9K+fs7no\nNxf/pzuem4S/CrUAdjzsY0Hr6xn3/uyUo/57HiVveZy+paONyCs6RUXn0urxdwd/Qxg5TM6rIEzk\npU15biuyr81BLj/5PD5dez+GscXBFgdbHHz/+JTw6+CD42bUrRm72iWt5WhF+AXJGQwSuIihIkEm\nUCthSp1v+Zr/R/+vvBBPuIl3WU5rtLnlYeMNf9n4e47SE2qnS6pnIZbMKQ90irqOrGoYJeiFxAgF\n1kmO9SJDSyT5E5v8qc1Fe5//u59wW21z2ehBXIVzCyVLgQ9rS3ggLGQhyIVJIl0Szael29RNg5YN\ndq7mghXhdywizyEzV4Q/Q5HbNbFNpFJmZjCdNJDREZOihtdf0vcuMR+7NFJoJxI9LTntNni3c8xJ\n4ymZa1O2dMRDg9SwSU2XxHI4vz5kcLFPcW5TDnXkpU566VFGOnlmIjINwhQWc5hPIZtCOV0l278v\n+Pl0bCRh5Sp5vlKNCkOj9DW0QMNzJA1dVSh0LGi7IDyNkW1S6C4xLnm5IvwfNho/xdz/H8YWB1sc\nfMk4+D7Cv/LU6UJQj+lbV3yVvsYan3N1GnP+XU5xq5qNWQYEC4PGrkvd9hmYu3w7e8bfnv0XbqIe\nlllgmgVWK8e0Eqx6ymF8yv2LCzrfjqm9uWI4SBlc5MhS0t9ZsL+bYt7z2H1ySffJFVdOF61dp/Ac\ncl1DqcyvoAhh6kMSwMgDywLLxuwWtCsDHvz8jMdHJzz91Uue/u4l9168Z5GULGJBaGlU/68ZD2qn\nRP1XWA3B+LDLu+yRIvyRrqwZTlfxSCSgpkFPV416dFQ8p6PU6EIHYeA/m9H5+S27Px9y7J5wbL3j\nyHzHTDS4Kbtclz3eXjyi3DG47bYpX9pQVmGkQ3GLSureqPf8EC9tbvCtNwY3484/dlkX3G0wbqhw\nRKxi5TyhFD7ztwGp7THJOgz29vm2/xS/G969QmGwOK+xGNRZnlVIXhikZ7rqkFHEkG8mNtYbrJ/r\nHLc42OLg9xk/DRx8IYkvuMtErn9elXohVLlUbigybNhIE6RpgLZaNFoOIlOZ1zKGMlHyPbleaGtf\nnc3OCesFmKidx9yGfOWP81HnmzVB1FSHHDxUNrfYmGvyuxlglNyVlH1K+NfTXL1eAMJXwB2ViAuT\npV/hSu9x2rxPozencbCgcrNA9nXyvkbRN5nu7HKj9xlO9pjMGsQLG5aF6uxWrBU9m8f4r1l8n5Lw\nzePePL8fAuymnH79d//cWL+GjiL8PlgB1D3oO9j3Qzr3JxzfP+Fp61ueXD3n8fw5vfSKUjMQls7A\n2WfUaXDq7nPT7BK+rRG2apSuDXmgyvnKdVejdSLjxxoAbnGwxcEWBz881jt2gAG6IbC0HJcEO08x\nogIxlWQz1U17XqxQZGlkvsbcq3Fi3OeX+Z/wVjykzCzKzKJihBzIc36h/4bH+XP8UYj3JsQuc3Qd\n9KryyzZS0FPgCvK3UPxGbWKaBlh12PXu8d4/5FfNb3CqGdpQop9ZyKlBWeoUpYbQdeU3kRvISCeO\nfSZpi+tih5obUXbmWPcWuJkkyEE4GmUrYFKpkFotbrUWsXBXxFYFbmBCJtV6T2KWtzbJdZfRsMW+\nO+B+95ybg/dU0hg/SfGTlIV1zJn1Fb9OfkEibYSrq26keMT4JHjMswazUYPiLYgTKN8bJO81pfIs\nClVSwALl3XSLUqiu2yCtPPV+EHNrXKwCwzJXpRpzSb40WZQVru02frVL2sqwd3P0qMT2NXRPI9+r\nElWaTOkwjluEsUselSr5n6cg8n/h/X/KY4uDLQ6+RBxoG48bCWBHU3tFbk5FX9IWY0Q842oiWF4K\n0quVgF2DsmsiY4/SrnOp7/Bufsx3588YTA/AEGAI3N2YejChvjOlki8pJwbV8yW111MuTmH8Xu35\ndccJwTzB1sY0DmdUgjleNSSu+OjWqqSKFJiCmEBUVWVF5GB4YEiMrKCejtmrnXHce8NBfsLuyTnt\n/3GJjCCJlN9c82BM8xcGpjhn5O9wvnPEubyPTDREoiEindRRieNMONh7Kc5ehr2Xgg6aIUFHlWuV\nNpnQqT0O2Xs05NGDFzwQL3mQveQ4f8lcbzPSd+npfZAac6POsLpPlNuUI4fSMiELUQrFxeoc12Mz\nNtpUuG+q3P8jxjoeXZUGSludQ7ZElC7RuUukV5jkFlrZRfdLtMbGsSYa4kZHvjGQLzQ4i1Wn2sWq\nOzchH5evfU6sbXGwxcHvO378OPiCEl/wsVrCQnlBVMCogl1VCoiqD3VHOZJagO6Brqt+m3Mf5lWI\nIkiWapbr4GM9NrOsa8XDWgGxSQjXY71YNe58cgw+Vnt8n6JjXUq1Djh+6HxXndyEC2MH3lUopMNA\n2+eX/p+zdKu0gjHtp7c0G1Oyhk1et0jqLs/lV7y4+oqbQZ/FS4/0CmWel4Uq8fEh4Pq3ZJY3if6n\nhH9TpfJDQ/7Az//ce2l8ZO5qeR/MXZ1+Ss+55kn4mgfxS6yXV1y+SpjegutLHF9QdBLqj645fvSa\n1PAY+PcYNgzSdkXVkC8NKNflbNo/czw/lrHFwRYHWxx8PDYSqeUqCaxDGjtM8iYXcp9WfcTRw/eY\nf2VQ78P+FJwpWHs6lYcW2TOT5a5PYnvkUwdhGuh6idEp8PIlwTykdrPEHkbMX2RcvRAYGTTn0LwE\nvwaaVHnmdAy3r2A8VDYS7bfQssCIBN69iObBmF57iP3zDNtIkQ9gNq8xW9SJloEq50108oHJzWWX\nVzdfkbVtkk6F4i8skp5FWpSkZUlsaky+2WPc3eOmOOB34ufciC5IDaQFBKgy4QLkFMoRcuBR/tJD\nSo+L9iG/bP0lUauKKzJsUWCXOefpAe+Te7xP7pHHIKISEZUUeGSaT675xNc22QXI8whGOYxjyBIV\n7Yo13kPu/CvWQc+mx8O/cD3X2E9duPXgRLD0KrxqPqJy+F85a+wQPLshKG7wrmMK22RmW8ybHb7b\nf8q32TNeXx5xeVUlvo7gNoHlLeTrDoKfmsf+lMn/FgdbHHzJOPgeMlmsVH4LyGKLGTWu3C5BkFKt\nRjysRYi0xLRWIvW2RRpUmRhdRkWHMA4opyYMS9W0Js2Qs5iyWZAf6xS6iXAMZKChBcoH29VVrtWy\nlVWdrGiUjvIByoRFKQ2k0Fe5Rqnmps+nUShfuoqDtmdhNnRcJ8eVEbLIWCYlo0g1g7sRsJRg55J6\nJPAWKQ/FO/4P97/Tbd2SSYsUi1i4nFbvc9a7z8XxAd3eDXvdc/a6F+iaQNcFhlZyKXe5Ejtcyl36\n1SFPilf86cn/xr8dIK+vubhO0O0ZFR9qXkLk1Zh4bW72O4wvm4RNj9D3ELkD5apC4KOyrs0Ya5Pk\n/xjW3Cbpj1FYXTU2mgUw9KHwYGEiL0xk27h7agFyUCCHCQxzGC8hDlFx9S3/tIHF5z6PLQ62OPh9\nx48bB19Y4gvuCL+JIvwBGBVlUOHVoOPAgQH7BviaMrA2bNUyeyAUaMcxCv3+SuGwJuvrm8RKQfPh\nwqxlf5uG1GtiuF6oGndeQDp34P1UQr75uJkQ+PQc16+/CnZKGyYVKAvKpcnA2ydq+pw0H9D1r+h+\ndUX76xGR4xPZPpEVcPV+h+uTXa7f75K/LMgvy1XXiFDJFz90j/u3LMD18X9KjP+1RP5fkxTYHJ8S\nfn+D8Os4uyk7zg1Pwtccz19w823E8H/G5KfQMgUtS0PbS6j/n9c8aL1C65rgG8yaLcbtCooVmJD8\n1Aj/FgdbHGxxcDc2AqayVIRfSpLYYZw3QZbs1i6JH1QxSoPGLjjn0DqHcs+AhxbZ1y5h1SOeu+QT\nF2EZWM0Mu5nihSGV6yW1N0vstxFXb0vO3gq0BI6GUHkNegW0tagkgtEATgaQ5cryzstAj0p8K6TR\nv6XXvyT4eYi/H8JI4+LygOzSJxpY8EaDtxrFxGR01SO+9hkftMnbNjQk5Z9qaCJDkxmFpvG2+TWv\nml/zpnzCqNxdEX7Ubp1cqQTlCMQU5Bgx6CLpIa4aXNy7R3ivyrt7jzBMgW4IDEOwHAUsbiosRxXE\nOEdOEuQkQUgPofsIPaCISopFgVxEEC8gmUE6UyoSucZ0yl3DhzXRz/g4Ef5D13NlsEqklKSjHHTJ\nwq/y+v5jloXHSfeA45+94nj3FY14ylR3KQ2PG22Xb8Uzfpv/gtPLPuFVTHwdwjhUZL+Y8XG78B9D\nwPmHji0Otjj4UnHwfQqKVQI4ljCHNLGZySqXTpe+H1GpQK+WYBYluguaA5OOxSCocWX0uE3bLKOA\ncmrAZamaAU1DZJhSHpUUiU4emJS2DoGGHiiS7xgq32k5oAXAmvDrFrmwKaSJENoqKbp53KuNRaNQ\nzYG6DlofrBXh92SEyBXhLyK4KVVDvFBCPZOISOAvUh6Vb2m5c35u/JbQ9Vm6HlOryj/0/prkvstg\nuk+3ccWzxu/4ReN/Y2oFJgWmVvCtfMZ3fM1SeuwuBnw1f8lfnvyS6as5Ny8jzl/EdIKCfjOm3xwT\nPapy83WH4UEXbVgiW10irwqxDdmK9MtN79jyk2u2ee1+DGNtJaKhlJlCVUfMq5BVYVxFngdI30dz\n7bunCYkMc4hCNZO5ug98SHQv+biBxecaWxxscfDvMX68OPjCEl9r4rcif5oPWhX8ClrLR2s6WPck\n9lGEc5yhByUYKggrbg3yik3mORSugTB0RGaucJavCPCntbXrCXelST9ECD8te/qU6H/f+KHs7tr/\nZ30DKEDmEBcgBQKdxaRGsnCZpC2ipkfatEgbFgujwtKosKTK5LrNNGkzGzaUoeoiVEbiH5mX/751\nxH8IOP8tz91UN5mABaYFgQktDatZ0DBn7BcD+rMBs3NYvoD5CzB1CDSJdz8neDijF16R7tQZ2gc4\nQapuqKGmJMAfyP5PgfBvcbDFwRYHaqyTrRsJ1HIVNJUF2dJgMa9STHSugl1GnR3G5g5mTUOrSFxX\nEPccFvcC5nsB12aXJPGwsoKaWBCIBb65oC+HtBe31AZLrJOU/BTm5yDjVX+IsSL8eICrDiGZwTyC\npIRorqwezFpB7XbG7mRA1LKpekuqwQLZM6Cjk3QrxPUKxcKkODERc5P5qMF80GDab+L1Y7x7IUYn\noyoXVMUCS+REWZPbbIfhYp80dzGMkpo/Iw8s8sCiCHwoNCW7Kcdw6yHDGvK8ZDyqM5421BpYtS/H\n1mAo4VzChYSbSPlV3Ej1B7oNuqVIfZmACFFlXOPVTPlo5/aflDv/kMJlfU3Xc4PwZyFMQygi4qrL\n+UWP0f/H3nt+x5FlV76/8C69hwcIsoqsrq6WWtKs0ZLezL/+xkgjaVqtkrpUhgQIwpv0mRGR4e/7\nEBlAEs12r6q6yMU8a8VKeETcuDvymH32uakwtOvEjoFekQiUEb5i4Ss2t4seRzdPObk95GZYh/Et\nzDzwfBBB/iz5SXQ0fgxb42CNgzUOHtarWO84n67mpjAUBBOTwaLJm2wP2cjYrGu0tgRmOQBLQlgw\n2Wji2l2u4x1u3B7zSYVkqMJtBoME+hFCTUjvZKKZhq86TOUad1YbqTYlbEaonQjSjKyr4HcU5vUy\nru7gRzahb5AEClkilknR1cLfMtiU4qWUpwYlhdQ0SBSDUNYJDBW9pJDVluoWGSR2ntuVY4ExS2gn\nt9STW3YzCV9z8CSHqVFj2qlx0djmdfKUnnrFofodX6j/ikKSTwEnJjVSAlNlapbZfXPGwegNz26O\neX2U0P8SBv8G5UqM2fbpdaDv3NL55I5Ws4/bLOOWq0iGkvsnSSHkXRRK/9Ce/6ltlXUD98XfLM57\nwv3V4q6JQHlwy6RsyVhKQIT5Q1EUQt5FV8GfC19rHKxx8H3s/cbBR5L4KgKxpUgfZu5dqRVQGig9\nC/VTgfbco7MxYLt1wU77HFtfoIgMhYxxvc5lc4Or/Q2mpw7+S4WFbJEOUwgWeYNwuspseXzj/xBD\n4w+1Pb3Lftf338Hmkcu5nk9bRdlIaR306Wzd0G3dsskF27NLurNr/LKFX7ZwbYfvqi/4bvcFk6QG\nkQx9Y/m3LXLPrmDlfEhBbgYiy2m7ywJlZkJWAskHy4KGklNsWwY0DFArElNTJ1YsfGyiTCdNFe4n\nGn0w4q5rHKxxAGscFFac42pgudSqy1xgQjbWiV4B/+Rw2d3hV85fsbAtGlsjDDNE70aElsG0WmE6\nrzDSmgSayW73hCfJK1qLPu3XfQ6mJ3ziHlGyXIw6NPuwtyxyNdtgbJGP3S4DFdAjaJ1AokMcQfcJ\nWE9A6gVsBBd8/i8G7S8vccyAkhmQmDqOE2DaIc6uy+iyybjXYO5W8wLZS0hjhenPK1xaW+jNgMPw\nNb3wjs3FNYor0ZpP+MQ9ZppVmdZqTJwat/EGt8mS+TLWYGTDpAqpBNEcuIT+0ilz9dw3UyRQJZgk\nME5glObJ4oVHPvxAyzcbywqmKCYSzZeHy28nzR/r+/0hKxLtRcCvQKZCKIOUIK5tkn/TCBcak+0q\np+UDkopBqewTlXWiss5UVLmZbLJw7ZzNSCmfeGHqOU0/0SErprOuMlc/tATAGmSVN6QAACAASURB\nVAdrHKxxkNsqYyQAXFjYcBeDEEydKieNp9CFm2yT7Z0Ltv/+EjMKyHSZTJe5rXR5bT7h+PYJ55c7\n9M/bRNcajGQIzHzmQpYSjyWkE4lbd4Mv3b8kMiw2t44xK+dYT88xlAWjbgW3U2ZQ2+NEPmBw0cW7\nKxFey2R+wMM0t9WhOsoywExglBFXDPrzNi/jZ2R6yuETidJ/m1Hr9tEjQSXMSCTYOISSDdkYJrcw\nuoXpUGCYMYa1oGQrdLZv2N86Ztyrs3/xivbFOc7FgIyUlJSQlPrTNzw/lKg9nfKz7Du66S1SIiDN\n41kBDx1pCUipQM4yZPJDkkQu2fRW/Wy1cPe+76t3PU8fH8uOCEl+SJJrQGZAWoZUgUTNsZVaPDwT\nZN4uuP5YvtYaB2scfF97f3HwESS+VhkkqwG/kwf8eh25J6N/EWH+vc9W55y/tP6Vv7J+TZ0xWpKi\npSlnyQ7/nvwcJf0cubcJco1oWiWNJcBb6v0U7U4hD9nYP7bndjUzuvr5H/M777rmIuA3ADtPcFRN\n2FJRDlOa+32ebb3kWetbdscX7I3O2ZxdEXQNFqqO51ho1YTRToNX5lO4k+FVsTPt5euHFPAXT5gU\nshQSAZHI5TrUZcC/yAP+upqP824a0CiBqMiolkakWnjCIRQGaSovC6+r9Nr3+SG0xsEaB7DGwWMr\nzrV4Y5aXAagL6YR0XCY6skgkm8unOwRPTU4bu1TqU5yOh5N4RInBJK0zmTfQtJiGM2C3dsKme83u\n1QW7l+f0Zrc04xEl20OqQ9PJp4MLGSpt0A+AXaABNEEP8qlq1pJE6TwF6wsQlZCNby5Rv3TZvzOx\nKilWOSXqWhgvQtSfRWidkNOzA8Kewbz/EPBnfYWZVeVqZxNJZGyEdzjzBfuzC5qDCU8HJ8ymFW56\nHW66Ha4bPb6Jf0aU6PTTNpwuhxhMqnnbg5jnbU53FswtuFnqABbjvMMIghDCMH8uxC4Ij3ttwXQ5\nvEIUrcKrI7kfJ1EfH3/sPY3Jn0PSsgicQOoiriokQYPsTYNJu0rSMxj0emjdlLQrk3UVQkPHm5RY\nuBaECohSPiHKtCDUuJ/adN/SXSQlPpTE76qtcbDGwceOg3cx5DxYLKAfgyuYOVVed54w3GpyWd9h\nZ+eUq91TDDkkVRRSWaEftjl39zi72Wd00sA7t/OAfyyBMEBWyTJBNJZI38BdoJEIk3N9n52tY55b\nv+aFJbCtCWO7x8Ta4DLZ5+TmgMFlB++1Q3odkS6WCYl7oeeVpHUW5QMMxoLE0RjMW4goIzA0nMMp\n+5Uzaj+TqfoZwpOQAoFtgGNANoHJMZx9DddH0NMSNjRB0xJ0/u6GA/s1waHJXv+Izv+9oPQPfRYI\nEjJCBLX//oaaPuX54SldMaSb9ZGT7H4gd8ZKnSwFKQVJiDzYR+Re1GqwXxBR39kN8D5asYck3mJM\nvdWitkxIS1LuQpYAS4HYhFjNB0CFOggT0sLPLP5ewMMeXf2fP/T5r3GwxsH3sfcXBx9B4gseAuBC\n38YE1QajBHYZvRtSejqj+ssx25U3fBp+xS+jf6QdDdBEgpalNJ1DopLALZmkukw60HHPWkSuDIkD\nnr0csxmSL+u76HjfJ4j/U6+1uN5lwK+UcrHyLQX5aUpjY8hB9ZhfaF+yubhk8/aS3uUNaaiQZCqh\nZHIjenxX/wSr4pF+p5NWdFJVy7OxQssj5beC/vcRgKsMoyX4siTvm5gJUlfGb1iMzSqTao2kkWA0\nU4xOhlWVUCsS8YZDUKowo8E4rOMHDkmgLZkyggfx2ffd0VvjYI2DNQ5+21armxL5JBoXMBAzieRU\nA19hEDcY2lWONg6wLJ+KPaOiz4gXBpNxg+msyYZ5Rb00Yq9yyqfxN+zN3rD3+pTKdIZkA3ZOjnBs\nsKp5+7C6BeqhRPoEaIFoS0gulCeCyrVA8oAN4Akkekz1ywHatwOSr8Csg1mD6MBh0VYJNIWwq+K1\nS9w1ezlzZgrcgehLhJ8azL0yk6xK4imY/YDmbZ/6bZ/sFuKJzI2+wfXmJu32Nv5WiWtvGyIJIhVG\nFlCGbA7ZUmg7cnLBUkq8XZEMlseCh2k8Xv59UeBltRJYaBb9EC0dj4N+Kfcw4xjiBSIUiJlDdp5P\n8osOHKahhCoEipyiaAmyI5BDQTlzSTWZqKQTNR0S34TpkuWYFHtnObobeLu1+0OyNQ7WOFjj4OE9\ncjlkJ4wgSmEOft/BHznczDaYNGv4XYOgq2GYATEaMRrDmzaXxztcjXfxr51cPGgo8jymo0DJQK6k\naFKEPo/AholTZ2rXiBsK7c0BycY5acmgn+zxJn7CaX+f88UWk9MK4UsNbv2l4HOhr1YUG5c+SBZB\nEEEakYwEk1EFf2QQuAY7zgXj6gnB4RW6m6HNU/R5iuGFKG5INorxbmDwHVz+Gmwlpaum2HZKc3PA\n1i/OiS2VzekZtW9v0f/n9L7EGQKNdkjzsyFNoaHKAlXN8HWL2EmRaglmM0V1ZLKaTFiRCU2dSDKI\nI4M0VslSCZGJJR2meC2swNWH4F+s+lwiD+6R82S4Lt3PlVKrKUo1QXYyRCQhIoksNMhcyFwN4ZvL\n4mLRfl4kmFf1dH8s1tcaB2scfF97/3DwESW+JPLgVAMM0HWoKtCUKDfn7Dln7MvHHA6+oXx8jXcc\nIOYpWSrIEsG0N6f+7IS/eCZhKwFSVWG42cWf6zn9e2ySt1P5vC3M/VNd71IdtpjgJttQ0ZA2Bep+\nRMWc0RvfseNeIB+NGbxaMD6F0rGg1EwxWjG17Qlb25d8svmSid1gUm4yrTYglCBScgcQlbfZLu8j\nEFcrFy6EBgx0eO3gGSWO7UP+9+bfc1ltY302xIqHmJ8vWFgaA0vDqzf5euMzvgk/4/jiKbfXXRZ3\nZt664CW5E3nvqK62Ibxva7HGwRoHaxy824rzLNwWF5AhEjDPQEoRRyakOtmdRlwx8VWBUFVSQyM0\nLTJTxqyFtPwhB+4pnfEFydWE0+MY9Q4UA9SlYGvJAOfnoNclsqcy0TOZbEMmK8ukZQUpAV2K0aMY\n1c/uSSAxeedUPwMvAycAZwaMBaEXYMQuNSbYio+qJzkUl4xyWU+p2lO21Et209fULm/JvvIYfQPe\nFPwp+KEAzceyhuzqEq/8EZa9gB3gRgFriSN8HqpuGfdV4beqkdHKEawc8Lb+XrFXfiydoCIol7lP\ngOslqFhQ0TG2EhqfTqh/OqGxMaFu5YelBSSGTNqQmTUqvHH2OO3sMTitwSsTXtVgsVp9LK4t5f1+\nDvw+W+NgjYOPGQePC2YaqApoci6HWs2QGhlyK0WvLbAtj4o8RSdigYmEudT4yVZu4XINSsCBBE+g\nvDtne/uM3e1TauVJvseJKZszWuotiaxyHWxw0d/ldHDA+dkW428cwm8ieD2C/hiCMTAhF30OeGA+\niLwYl80hmYAnk75WiP9JZj6vcVR7jlbNuCrtoEYCJcqw4pDD9JhD/Ziec45mgq1AWQJbB8MErSKw\n7YiKNqfOCGspMh3yMG4hPwuBEBmKSHCdCvNehblSJbQmWN0Rz56NcAyTpFziolTitLfLmbHL+c0e\n/ZsO7thG+NlymkXRulbo2n0IjPLHnRUWSCVQq6A2wGnAlgNbCmovpFaeUCtNKNsuYaITJTphqOPf\n6vi3Bos7G8YVGGUwLToY4O22vh/jGtY4WOPg+9j7i4OPIPG1yhNcCfgNLQ/4u1BuzNm1T/mF/O/0\n+q8ofXmD9z8WuMOUQAgWGagv5tSkEzY3RliqYFjt8N3mZzAzc80HdanVcC9A91Zj7p/Z3sHskW2k\nioy0Acp+RHk2ozu+Y3d8we03ATdfB4xewZYj2LIzSpWE6t9O2LIueXb4kgtnj7SsM600wJXzSmWk\n8SCSvprgeF8Audp+VfSqL8d5DxxQMzzD4XjjkCDWOG1tsfPiNbutE2remES1iDWLkdThm+QF3wSf\ncdrfx7+xWdxZecAfpysBf/FQeh+D/TUO1jhY4+B3W7E+8BDwZ7niqZtCmMKijBhU4DuDWDcRikok\nW4iuTHygkR0oGFZIazFi3zunMb6gf7Xg6jgmulz6jApU27DxDKynoOxDvCkTb6okNZVYV4l1DdkT\nOEgoYYbqZXl8HUAiwzSByyx//68GUElAn2SEfoiRzKlKU6wi4Le4Z5srekbFmrKlXfIkOaZ2dYf4\n0mf0jzAMYRjBDEHP8umWU7pOSEseY9sL2AZeqysBv0J+jwt2Z+EkwwPeCxZLUTUukqLFzxQVy2Lt\nV+/BD3lfVyn3Sz69XoK6BZsGxmFE62dD9n9+wl77lL3FBXvBOVVpSlRWicsKl9IG/9z5r0wPSgy3\nqwhMuNPgRstvTDGu+x5jH9r+L2yNgzUOPlYcPPaRlkUzRc3FLm2QqgKlkaC0IozaAtt2qSgzVGIk\n8oE5KgmySJHuhXyk/LUMPJHgv0Dp6YynzVf8deuf2VXPcBYBtr8g02SmWomJVOY62ODydofTlwdc\nHXUIXqZEryK49GExhGBIznQpko2FpqrIzz11QYwRnkR6UkIkZeZXVY62P2W00+Krzl8gSQJZFpQk\nj/+u/w8czWOjdI5ugKVCBbA1MB3QqmBZIRXVpcEIGxeJ6K1gPyd/CxApioB5yeFc3uKiukujc0H7\nWcbOdEKomfhmnXOjw1m6w3myy8XtHtPbMsFYI/NSCJOc2SFWhzl8CCzCdxRcpVK+gEYTqg14JiP9\npYLyIqJmDdm1z2mbd3iZg5c5uFGJ0UmT9LXG4qQMpxnEEkxV8vsbkT8MiyLFDyl0vsbBGgc/hL2/\nOPgIEl/wNtNleRO0pYBNXcKu+HTNW57KR1QnZ/BySPIPEf5NxoxcSq0R+vQOfA4WNyRGjd84f4HW\niqEh5ZPRVC3/u7/F/Pgp6IjvuF7JAFsgNQRyJ8EOfBreiO7VHeNT8F7B5dfg6IK2LlDthFLXo/n5\nkC3jCt8sM7Q6uaxRLOXiqG8F++9rz/HjCraX9w+PA4gjFqbF+ZNN+sM6V80eXr2C3NQJ6eNSwhUO\nd36HlxfPOLk75PpkEy7TfCrJvBjhXTiyP1al9oeyNQ7WOFjj4Hdb4UhEy9ckF/9PlmyMaQaXKgKT\nFINU1gglPXfishxDWi2hHLi0wiElb8zdOGNymzG/BENdjufWoaRBbQPUXYm4LhGXZGJDIVY1YkVH\nlgRyGiMFEpkL0hSkYS4T5EUw1WDs5P9WSGDJEEkCpBSVFEXKxVELGSFMkM0MW/epyyO66S3OeApv\nQvyv8ksbZjBRod4NsbZDOpOISmWOUYnyGL8kgb6cCHqvs1BMnXsXu281mF+dtvRTmcxyxBPoDjQs\n2NYwDn3ahwMOD494Xv6apzdHPJ0f0YiHxJZGrGi8Ke0zrNQ42jngqrZBcmGQfGWTKSqICQgThM5b\nbRb3SYY1DtY4WOPgw8DBO1jxWj4RjpqE1oywGnPsukvLuqOZ9GlMBihSgiZHaHLCYlHCyTxMbUFk\n6GSaQqbJUAZlN0b5IqXxdMQT/Yhf6r/iWfQSJ/SwE595WuZV8Ix5+AzPLzEeNri72qB/2oKzSX7c\neeQJxvHy9XGCMcuvQbi5fpwvkV3KZGOL5MLh4nCTi+kW7EpgSmBIVKwZ9dqIA+s1h8a3xNUUtZ7i\nNFP0mgQ1mailkNY1sCRkMoQuyMoSSUMmRSyfGoKkrOa6cOjcqR1O7H2+055zWDYob8Y4wmUhNxnJ\nm1wqW5xc73NxvsPt+QbBpQKjCBYRxAG/7VN8CMH+Y4mNZcBvlKFSReqUMZ4u0H/pUf7llC3pnAPp\nFdvSJTO5zFypME1qqKWU2DbxzRpZYpCOQVxp5JPulsMx7p8lPzTra42DNQ6+j73fOPhIEl+FrQBC\niBWNZ4kk0wgxEGiYkoopSZjkC6QBJUlGkRUiRSGUdRIURCot/Zii/3bV8fkp23xWgb88RAqRjFgo\nZJ6GkBSoyEg9sE6hYeZs9boNdg2UBqRNjcC2mFFmkVnEibbsYhL5Nb9VRYSHgF/mp7v2VVutnBbi\nrgqkBoQTkAzEbYnkNxIhGrNXDc6sfVJTo6LOCVKDIDOZexXurnssrk24SODMBbfoKx+TtzYUoorv\n+wMJ1jhY42CNg8dW3KNirxR0+QUPLL7izTUkn8S2bHGNdfANmJrEnsa0WebWbCPKE6yqz159QRon\nqHXQGqDWIEnh/DegvREYTobhJKh1gdrL0HsJ6UTgjiL684xsDMYRmBlkVdA92NqBViun39s6ZG2V\ni+cNLmsHvMk+5XqxgTdxYMB9ISwTEkFsMc2qDOUW1UoffUOn8QRkFxwXvBQ6NRmjJxPsqsSZQprJ\ny9ubQVxQylcp978rmF/FxU+VCF1tOVvR+tNtqGuwI2N0Q9rykCejN+z0T5COB1wehYxmYJYzrHKC\n1vJp7dzyZOeYhWUzKrcZ1du4DQ0CCQIV4iIB/lMxXH8IW+NgjYOPFQfF+hRZ0qWOm+NAT4ddieb+\nkMPGSw7Vl2wMLmifXdM6u0ZLMxLbJLVNOtoQSw6RNwS3ix7zmwrz8ypqPaZWHVOrjDmMX7FxfkX1\neoI88pm4MbdeRmCFsD9ge08lMUzu5C3MXpA7JSMNzmxyTolB7pWtFtmylc8Tcswq+bdiAUECUx8u\nNIg1GGp55rmsk9RUrvc3+PfaF8itEOmzEUgjtJ0pvmNyZRsMShbnz7c5a21zRY/tnZds/61E2XQp\n5SlwqqSEv+zyZmeD7+QNzm4OOLk84PTygInZ5Mre4Vv7Z7hZiXFaZ5TWOb/cY3DaJj1T4CSCuxmk\nM2AEyzayh4D/Q7FVnJVALUPTgh0V40nE/s4b9mtH7HFC5/yG7vkNjf6IsGwRlSw8u8yrZIJdCVCe\nJ7gzA+/GwC/ZS+FvI590R8pD0fWH8jXXOFjj4IeynwIHf9g+ssQX3D8cxDJoTQRZKhMLlVDoCHQM\nFGrkhA5VLGfCSRKKrBIreh7wCzUP+JPHwe9q0P9T2eNzyR0yEcsIX0a4KkJSEGUJSQKrBg0DMgka\nDtgtULakPOC3bGZU8IVNnGoPvp74XU7cY2fnfQn6C20jCTIVIh1Slew2JRUO4q7EtGWQVjVGtTa6\nEZHGCmmsEno6/t2yrWsQw9SF+RAYknvCPisL81Nd6J9oaxyscbDGwdtWnHO68nnBVCgm0RQaPiYI\nIz9iB/wyTDUiT2OW5QG/WRljVUc06hGamiDvg7wHngR3l3D9FWSuoKGlNDVBpZOif55gfi4TZoL+\nOOXSTfFGUM6g0ge7AUYPtndBb4LqgObAvK7yZr/JZf0J32bPuVps4k3sPOAnvwyhyCwik2laYyi3\n2K6U0DfzgN+5g1Y/HzqnV2X0nkKwqxGPFLKR9BDwR8tpSfc6bqv7anW6zuM1/akTwIXWxGrAr+cB\nfy+ipQw4HL1hd3DC4D98rv4jILsRdPSUji5Qtzyaf3/Lk8YRcdngTSVlUS/lAf9UhlTJpxB9MNNd\nf5+tcbDGwceKgyLo18hp3ZU84N/Q4VOZ5v6Qzxtf8d/U/5fW5RXqlx7qP3pokUBrKmgNlc7OGOUg\nIzlQUETMzfkWi5aNWQ1oV+/YKb/hSfKSjeNLav80QT5bMAlSrsOMtBHRGg3YDhdoXYNj6VPMXghC\nhjM9z/rikN+/1eTiasBf4HSRfyyW+ptZAIkLsQVjCy6svMJXl0m6Kpf1Db6Uv2DWNNn47A0bvRPa\nf3mJr5WZqBUCvcpx/YDX9SecSTtEOxIVY8bB0ytMYmRiJCKOOl1OO5/xSv6cm/4WN19tcfPrTc5q\nBzgdl1LbI4p0wsAgWJjMz8vM3lRJ3ygwjmA6g6TP2wH/h1RMe5xgLuWT05sWHCjon4Xs75zwd/V/\n5C+kf8U6d7H+wcX8aoHUVaGrEnUd7K0FYlsQ7qn0b9ukJy18pwKL5TM30cnv8+Mk8w+Z/FrjYI2D\n/7/2U+Pgd9tHlvhaoZun2TL7C0mosYhtpmmNulyhas0wqgZaKMiEyGPbskFsOUxUmylVFolFtpCX\nLcUZZI97b/+cDs7qzX4ssF1McIvztqyZRDZWiSwD33GYO2WyVorRyKjVMsyOBNsSwb6G3ywx0ytM\nghp+YBOHKkTLlofscWJD5u3rfd+SH6tTjTSI/TxbHOukrkV6qRGXHLxOlds2+bO+aNh2BQwy6Itl\nW5dPLqY45GGM7ofU3rXGwRoHaxy821bZcUXAX3wMSAKkBCQLJBNkC5DzN+GRIJzojMIaF/ImtuWy\nVZep9BKqzTnK8xT1ecJgJri9gP4RhKcgS4KSlCK2QVJk1JZMZIEfCAYpTGIIBpAMQcwljI6Os61R\n+lTJxSfKMC83mVubXKgHvJ4fMptWWYxNGCWgSrBsLQsWJuOgRj/qMLeaxL0KyjMH2xI4ikBMIexo\nBD2N+YaDF1nEIy3PcYQi3+/SMtAXrKzPT92+9fvscQXbBNWAsgZtCa0ZU3enbM+v6F1fMX4No9+A\nfwqGJKjLKfqTkNr2mK2/vmTRqjCz61yVw1yvJJTBKyj9H2rA/9jWOFjj4GPEQbE+KvlEhBJYFrQ1\nOJCobk55Vjrib8X/oTq8xf0GvP8F2gLKPSh3wYoC3A2LSavMQjLx2yUG9TZ6KaRWGrHpXLA1u6B5\n2af0r3P4NsRL4CYGqRfTVqd0q1MMs0SjMUavRyAkqGr5bcMkb1VVVs57tcgn8aDluUzQJjEkAYQ+\nuA7ggFqCpoCWShKY3O20iH2JgVzjRbuE2pGpyBJjUWdMnaFocJQ94yg75Gy+R82Zsv30jsWnFxiE\nGEQYhLjZLifZC37l/g2jyxbjr5tM/k8D0ZFhW+QDIgJy7QwXuBDwRsBZmvsjzMgz1TN+m0X+IfgV\n72BWqg7UDdhV0A4XbHWv+IX97/w/8f8kucxI/k2Q/S+BuQPGDmQHBr5tMPmkzOigRvJSY96og2OA\n0HN2LRo/3lClNQ7WOPi+9lPgYM34WrHHQV+Yj2YdpyDBbKPCyeAJTAUTu8b8szJpqqDNXGJSIpHi\nPqkzebbJxNrkaPKC08Eei1MLLrI8Oxsvxw3db84fM+BfdWBWe2mLQ+VB1ygBPMgmMCzDiULiqFxs\nb/F/d/+KpAXa8ylaNkHdmjNumSgtA9Gy+U3lZ7yeH3Lz9Raz0zLBQAF/AVEAyapAq87bGg4riZV3\nJkH+nKBdbTt7JLRHCRQHbAPKMtSAFtDmYWCTv/z1ubR8vn6oDh2scbDGwRoHv8+K6ynWRyVfgMJB\nckBbsiQMA0wdTA1MCxITLmQ8o8RZ7QC1mTBQO2x1rtj8mys2xA3d7h3dbh9V+DgmNJS8K6ihQ1UH\no6GxaJWYdUsEZRnlwGVr4NKzQhwTHBNoOFw/O+Cr7gGu08lPNYH5tMzXN885XRwwv6sQfKOQ3C0g\niEFWQFbIVIF3bTA4aiHZUAl8pK5galfQ9mO0cYTqJyx+YbLoGriUONEPmDi1fE9UtPwkLAnSOSQl\nSEvk3pvET7e3/xQr+rqXieuAHL4qUAGlBrYFdTWf5lS18kuWmxKUNELVxBcWUaqTJfJDy7N436/7\nT7E1DtY4+BhxsNoOuqLdqShgSOCApIC0ALkP8RAmPtyloEXQmEIiQTBIkd0FpWRGSZpjyAGKkpEp\nMrGsEUoGkWKQWSpyVUatguXlbEZkMA1QSuTT71TyWxWR3yfxh4Sti3VfTcCuMjhj7ofbZB4EEUxT\nhFIm/Fowx4G7LrqZEJgOl8YeXurgpQ5uWuIm7DKK2oSxzXl5j19XAtxyFVWK0eQEVYo5cp9y7D5l\n6Hbw/sMkOk4R49myO1rAWCyLrVl+jFJwY8gSckrlkDwbUAyM+JCC/cJW95AKkppP9HBkJAfkRKAO\nM+QwwxsKRguBm0F1DpVb0BVB9iTAWsxoMGSktND1pcZgJIGyuld/aD9sjYM1Dn4oez9x8BEkvlYz\nwKsBfwyTFELB7KbKm8ETJtMGrl0mfaFgbIeUkzESMRIJw+omr7ovOLaec359wPVwi+DUhIsYxvGj\ngP/HZLu844F076A+FtleeoN4ubjfWIETk0SyudC2ULZ+yW29Qff5Bd3WBe0vbvCtCgurgmdWeTX5\nlJPxIbcXW4RnEuEAWCwgDSEt+o0hz7hqvO3sFZOMVidRrNI0/5zgfTSW962AvwSWATUlD/aLwyLP\nwmvL0zaKgP/HeKP5c9gaB2scrHHw+624pkLRbjn5jBpQX65RCWwnZ0lUFKjKuU7ETIMLBZcSp809\npp0ql90dNtsXbHYueKod80L/jooxR/N8bAPqMrkWuAk1B5S6xqxVYdDtEtUVSv07tqcRVjVEq4BW\ngXHd5j/bn/Av7b/nyH6Rb58EooXG8LLJ8KLB/KxE8jogvQ1gkYCsgaSTSSretU5y1CQwSihNgd81\nuXnWxg587MDHjEP8joXfsXClEm/eCvhVKFn5eKOwBKII+Itg/zHm3zdbeQaKNHc6Q5E/Cpda30oN\nbBvqy2RMzYZSDdJlwB9pFgthEWXLgP+e4Lj6jHsfr/1PsTUO1jj4WHGw6lcs3ysVGQz5PuCXA1D8\nZcDv5ZNFtQiSGUghLAYpkreglM4oSy6mEiKrecCfyCqhZBCqOqmlIlUktApYGZSX0ptGEfA7PAwN\nvU8sFv7b7/KpVtd+1d/LeAj2lywJ4UKQQgoiglDSyCYO4esyYdXhrrqBXfaJI2156Hi+je85hAuL\ni94efq/Mm94hspzlh5Qx6deY3NUZ39WIzxPisxjGs7xFeCzgUuSdAUkKaQqLEBZB3oKGSx7sz8mD\n/VVB7w/FHieOVJA00GWwl4mjWKAMBfJY4A4F1wvop9CeQzuBciLIhiH2YkZDGlFSXXRjGfAvWAb8\nP2bxcY2DNQ6+r72/OPgIEl/wdhAaAQFEIcQRzBO8GxvvxuHqZpt4W8PYCKk8n9NQB+hE6FLETbbP\ny+zn/Dr+Jf1xl+jGID5X4XqRb9jEJ78Tq5oPP7Q9ehDdB9qrh/ro56X8iJsmtgAAIABJREFUmjMX\nZjZcp6SyQn+/RZCp3FSafFIqw66CnQmGcoOR3GAomrz5do+r200GZx24XcA0gKBoZxIP5yEVVeGV\ngF8UWiCrR2F/LodwFXir67VszZAdsCyUmoLcSZF7AXI7RWlnYAqEJZMZEhky6VQhHSsIb6ljkaqQ\nrSZYPgRb42CNgzUO3m2PE6k6YILkgFQDuQ1WGblqI9Vt5IaM3ExRGhnMIAtThC9Ihhp3/R7Xt1tc\nlra46XW46nXxLQsrDeild9QHAUo1pVTJkGoCpyqhVyXirs201eK8ukPc0Njfkul6Mc2WyKemNmBQ\nbnOuPudftL/jV9JfL9tQRV4gPBbwtYDXMYwCGPu5WBEmYCCEyeLWZvG6wlxTSX8hM3vqcPNpi7qY\nUM/GlLMZfmbjZw6e5zDOamSGRKk2J6lqJFWVpGrnbQJZCaIyD85kwax8HwPeR4noNIEwg7kgW8hE\npo7v2AQ1G7ma4VRTsprAbEsoLYm4ZxGWHVypzDwuE0Q6aSQgivP2ibdavN/H6/9jbY2DNQ4+dhw8\nYhFI0n1NTQiJNFBIAp3EV3GzjImeoWnLElIEUZghkhRNRGhSjCKlSLIgk2UiYeSsEcp4VgWvUUFq\n+UhSgilSpIpAqiqEVRnfsYginSyQwRP5fUpXi2i/a30fM84h35erPpMCwoBQglABTyH2KsRXNn6p\nzKRVzQtfNelB6iAA5uK+8+p2r8vtXhf2AFl6cAEuBJwD5wJmM5h5MJuunPOqFl4hPl7QygMe/uFq\nofBDs0fdCJKcJ46KzqyFjJgrpCMF388YC8GtJlAEGAtQZ5AuUtQ4wmaBIUUoSpr/7p/N1VrjYI2D\n72vvJw4+gsTXKuWxmMQT5VlexoABozJ8Y4FkMd+scNbcR2mllPQ5qpSgSgn9sM25v4/rV4mPFbJv\nQ8RoAcE0T3ELn4fM7A/d4vWuoFUnF+BxAAtkfXlob196Rq7WLSn52KOGjNLNqFUnbBlnbIkznrqv\nOXSP2ffO6JT6zEslplYF2YZpp8ZptAt9CU6Kv11fno+Z01/V5SHgXiw9i3JGTBaSA9lbvhYMmfgH\nXqPfZavJEQuogF6BSgkqJnpXUD2YUDl0qfVm1Mpj6qUJuhbhBQ5+aDOdVBm02vS7HeYXJtzZ0K/n\ns8+Rud9TwPubkV/jYI2DNQ5+t60mUwsmnJOvkVMGp4TeU7D2fOy9OeWGS600oVaawgL8Q4tF32am\nVZh26kzUOvFQZzatIR9nGJUYrZPhdxzarUu0n49QszH6MCSydca2zrze5Kj2lFeDp3i+w5vskE7v\njnLLJTMVMlNhQJvfzH7OaNbIna95CvMk1zC6ipfMywC8KcRT8r2m50dqwqwBVxroGumGSuTrREKn\n7Lrsz8/Ydc+JZgbhVCd0TYb1JqN6k2GtyfnWHmef7HER7MClDhcOeDW4n/Cn8PvbD34Kuwc/D5Ve\nF0Id+iq8NnA1hyPpCf+78becd5qoX0xQpAnaICQs6wwrOrNGh2/rn3I0+4Tz/jaja41gOIH5BII+\npFPe3ZLwoQX/axyscfAx46A412IIzAICDYYqnAsWXYt+qcXr7h6lUMJ05xykc8xFQt2CmgX9Tyym\nhx2O7aecLA4YiCaR0MkimfG8gXyXgKoQ2GWuDnZoli/Roxu0+AalkfDmRY3T7RqX5jOORwe4VyV4\nncFtCAufBz3Nwsf6Y/dZsQcKdkRMjotx/vVkAaFHTsWQIZLzgQUxOSswFrBYHqGA/jIL4il5UkQm\nfx2lMExgmsJiDvGMnLmy2p62miANV47Ch/jQk6fFWi8LzKmfL8GtSnotM9dL3FTbXNpbpDOPju9R\n1he5xroNZl3m/PMKt+0tXomn3EQ9XLe0HK4hICo6CX6s4vIaB2sc/BD2fuLgI0h8wW/39sqAB2IM\nSDCM4Zs69A3m3Qpn3T2mvSq6Gd1TF33XZjKq4Y6qJLcZ2fUCMXIhnEA6A+HxsGF/6Df7FaogBnnl\n0gaq+SGVQTZBNUHRVy47g2QJJDkFS4OGjNzLA/5d84xPxdccuKc8uT1ld3DBoqMToOOZFlOnxkl3\nH0lPEW9yivvD6FgTqIG6pL+ayhLHYrnMAbCAzAemPDBhiofNn6PdazXbXCRIqqBXoe7Apol+kNJ4\nMWbrs0u2N87ZV0/ZVc9wZI9h1mQgWly6W7zsvGCxYTPvOPCtnfdkT2Vy0BVZ+nTl+t5HW+NgjYM1\nDt5tj5OqyxHeRhlqZWiV0J/FVD6fU/98wkbjml39nB39DGKJ0aLOyG9w429yFuzhLxyCgcFsWiWa\nGMRNA/+LElf1DTba52x98YbN3gnOwmOs2cSqwyDr8d3iOd8NXjCRapSrM8q9KboZkQqdJNPw5mVu\npj1Gp42cKj9MYBjCOMwHDrg+eH7uZCWFPsSyZS2z8lY0SojMIXmqEPk6cbYM+O/O+cXtf5BeqqSX\nCklfZf6Fg/u5zWy3wj9v/S3xQuNC2QFNy9kuF0Ww7/HQj/C+3fuC4VJMeHIhNODOBDPD0xyOG09I\nJTjtbND74ozexhmOPyc2SsS6w0Dq8W30nKPZJ5zddFhcu4TDMczdPOGfzPjtqaYforO6xsEaBx87\nDlYDfh8CHUYmXIBvmNxVW7zu7LGlplSSazqqjy0SzDoYNRhtWEx2u7y2nnHCAUNaREIji1QmswZh\n32RWrnPt7PCfBzM2ds94Yv6GJ+ZX6OWAu9Yed81dzr0nHLsHzN+U4GUGtxEEHnnAH/DQUvvHrLF4\n9AoP79ki7/FKPBAWJFbetuyqoCl5AS9dFvKS7OEY6OAZcLfUNpWWxyLKjyCE2Msn6OHyNnNlhRX/\nFutlVRLifUoc/ylWXNdKkjlbwFyFW5PsWmG+WeKm0+GytIWzGNCJUmxngdkEswFpWybezwP+I57R\nj7p4rpPPElpkEBcB/4+ZYF/jYI2D72PvLw4+ksQXvEXvBnIHRQaR5os40eGojNe08bZsrra28z7U\nQjJoCtwsj/k8p3ZHLmRzctCEPLA4fsgM7WrbQTFhwwEqIDdAboJSQzJMJMMAbSXgzzJE5CLCOShh\nrhzbUpA3UmrVCTvqOS/Cb9meXLJ9ecHmxQ1ZDJksEZkar5UnNOpDtEpA1tLIbI1M0kA2QC6DIvIO\nCDvvhMjJRBIiARHk7WBC8nNdJcFStK+4F8XHP3Y2e5XpshzLq1eg4cCugf6JS/OzMfs/P+F592ue\nx9/wafQ1FTHjRt3kWt3kOPqERdXmpr3BXbWN8HWyy2re2iY88g1UtDe87+1eaxyscbDGwbtttb1r\nGfCbZaiXYMtBfzql9sWczb+55En1iE+zb/kk/Q6BxJ3U5U7qYo98gjcWg9MO/pWFf1LCOy4za1fo\nV1scH+6z1Tzn8/0K6oFClQkzKkxFlavRFt99+4LvTj5jELZRn4VoWyFSQxD7BrFvkMUaDAWcCHiZ\n5tXP2wVMPR40IebkuHZ5YKAokNrglnOh7wTESCYNFLJMpjx32b6+5MXr7xBHkB2BuIDYVIl3FRam\nhd+2OcmegC3yxMG5vVwzl4ex4u/b0IPV6u4q08WAoQNpjGeYvNnb5S6sc25v8ny/gXhiUJfGTKUa\nU6nKzXyDo9efcnLyhLuzMtyewfgWvDvyJELRmvBjVuH/XLbGwRoHHyMOVgO1IuD3IDDzouBZxqJq\ncbfV5rhygGImlLKUpulR0j3oAG0InTpDbYM30hPOox0iYZFqCiKTCEKLeKIzV6tcL4nXO6VN5FZG\npzXFMANOs+d8nf6MM2+XyaSBe2rCcQKDAIJC++cx0+WPWedV1n/xecE+9yE1cjZkZIBf9CIVmqXF\n/1gJ2gOL/Plg8XZxrdgHq61b3tu/+851X2Ulfkj75l32KMmcejA34DYlrclM62WuzB6t3j57nkor\nidmohtADeuB1HFy7zY21zevFAQvPIZhbObs+SSEpugV+DIytcbDGwQ9lf24c/HHr9RElvuDhJkAO\n5oK1UbBHNIgdcA0YGhApeWxt59+iBDQAVYW5k2d7M3i4sYVjsZp9/j4bd5XhUgT71fwktDrUy9Ao\nIzd0jHqMWQvQy/n/loAsFQQTiWCiEkUafKIjPQNlN6Ksz+iO7tj2LlBfjRm8DJi+gdIpOC2B2RaU\nt2Zsbl3ySe8lU6PBVG8w0+r5g60jQRfsiodTdimVXVKhkKQqSaYSjhSCvkw4sBCTKkwFTBXIDPLs\nSaEz9WMK9q0+hJaaRjhgOEgdFelphrXn0VVv+OT2iIPBK7TBLXfDgMkiQVguNavPrmlzbZ5zY2zi\nbVh4TQu/bBGaKiTqUueoyAytOrzv60NrjYM1DtY4eNtW9Sw08g1fBacEmwY8l6hsz3iivuGL4Zf0\nbk6o9C+J7vooQqJuRZStOZoiCLBxO2XUMMa/c/BxyAYK0X8aSCJj1GtzYj4lMU1sxcdPLRaZxXhc\no39SI3idIgKP7AaSVwpSSSYLZUQkYBLDWQjnEfSDnGkRu+QOVeFgFQ5XMarNIBcWlXNmoikh2wLb\n8GnKI3rZDeXBBPlVyOLfwb2B+U3eJeZcZ5ReSxjtBF3EaFKE2onIqhnCUBAY5AkSdWX93jdb1fdY\nBvypCgsF5Izs0ib6UkKKDUa7LU4rT0iqJo7j4es2vmEzCWr0h22CsZlXgIMKpD3yvTIhx/KcHMsR\n764sfwi2xsEaBx8rDoqA8xErbmFC3wE5wdUtLrUtFCVlbLY5DZ/ylX2HqYX5r83gzWiPr93PGXtN\nspmKLkcYX4TU9CkbrRs2Wrc4lnf/X+3MoyHuCIXJyK/Tv+syumsxO64QfAPp+QxGEXgDSIbk6+zx\n9uTs73Otxeer7Ax15cgeHcXPLlvg7qdZw72W6v1RtG5Fj/7G43NZPYcP3YprTLifHJgYMLbhLCXB\npK92eak8J1xYnHgD2s6A+vYE4cggS4Suyb/3f86pf8Bi6hB/JZHeLnIN3XQOohgg9WNIiqxxsMbB\nD2E/FQ7+sH2kia9Ck0Zafq3I6EoQJ+BWQNLzH5W5zwXgLH9F1iBxwNMgKbRtVtu7itdVQP2p9lhk\ntmg7qAId0FrQNuCJgbQnYW3PqG7NcNo+0hI4WSQzuS6TXVWIpg7SgYS0L6FsxpS9Gd1Rn53ZJYOv\nA/pfL5i8gg0nP4xyRum/ztjUr/hk/yWXxi6ZrjHT67Ahwc8k+JnArvm0a3d0ajdE6ITCIBQms/My\nnJQJ31TgXIZzBebmMjDOyB8Uq9nzHwvoj1lCJTBspLaM/DTF3nPpLW745O6I/cErxidzbl8vENOU\ndnlOpxJjdRSuPj3j+tMe080Sg1aLpKIRmhpEGoRFwK/yoI/yPj+81jhY42CNg3dbEfAv20Gdch7w\nv5Cptmc80U74L8NfUbk6x/t2jveti55ArT6j3ujjbKa4e2XG+zUSITF83SHCIBwaxP+pk93IjGoK\ncdVkUO2iaQlxrJIkKsFUxb1UCS5ThO+ROQbCMUDXECmIVOQslZkPMxc8N9fWi2bkbJNVR2tVP24Z\njEvKMuAHyc6wdZ+GMqKXFgF/wOJX0PfgxoNBBNvXgq3jlHIpQW/HaK0ItRuSViVSU0Gg8hDwF8+S\n9ynoX63uFk48OdQWGSQRmagShWWyiwrZhkW8ZTLc7qK1I+KSRlzSCFMTr18iHFs5VT+o5AxOHPLr\nFzwMrnjsGH+ItsbBGgcfIw6Kol3EcmwYLCzoh+AneNhcyVvMswqnnSeUKh5OxUdR03yrTWE6rHB7\n0WF83iQzZYxdD/sLj93KKb9Qf8MvlN/Qyfr3s258YTIUNUbUuPE3uTvrMfzPDrPvysTHPunFFEYz\niEYQj8lVtf/UFq9Ve5yMLILTItFR7OGigFX4b6uBetEOXbzfr369+FtFy9bjttd3nav4HR9/aFZc\nX3H9S7ZUqsOkAnFK7Kv05Q6RrHMTb2KXPeyyi9UOEJkMQiHxNO7O29yed1icO2RHi4eAXxRausXz\n7cfQgVrjYI2D72M/JQ7+sH2Eia9iM8U8BPxL7QdJgUyBSAfPQTIl5FQgK9l9TkCUQKgyIjbIPGu5\n1oWGT5F5Lm6EWPkff6qtiswWY8VNkKpAG4wOUhvkQzA+Dyn/f+y9168k2ZXu9wvv0pvjbflqR7I5\nQ11oJOBKgh705+rpAgKuoCvNYEbizLDZbFP+eJveREaG3XrYGXWiDqub3WQ1p4uVC9jIOpUuYu/4\nIte39rfWuhPQvNOjvt5DQaAgSEId9Wid+KjEvGOhbsWoGwl2Y0blcMTKRYeNg0uGz2H4Dbz8FlRN\ndidv24JSZcrKwyv2rQNSx2TqVemWVhFbCnwC/ANU6yPWqhfsVF8RqjYzxWWmeOjPV0nqFr5rkKIh\nJjriwoU0XURpR9xcrD+VvV3polgOSitB3UuwN2e0DzvcOT1g++kB0y+h+3tZp7Xa8KnUfcy7sNk4\nZ/3TMzqtBlHdYlxqgO1Ioh/fJvv5mv+5a/9T2xIHSxwscfDHVlS6LPT3rgerGtyHkjtld3jMr3pf\nor8459VvYfDPoMdQXYO9NXA/g85qk4vWClM8wpLNSNSZ9x2SjkGS6oSuzbBVk92CbG42AicRdMfQ\nGYMfkr1WYarcSOPnSEXF8NYo1o7IncA8sG0tTk8FXQFTQbEFljGnoo1oZj3c4RTlOCJ8AkMB5wLO\nVLC7gtapQC+n6HqK3o7R6hGiZJCZxQ6qxTXPx89lzfP7Xe6ACcgy2R0qjGUXwq5D8sJi3iozeVhF\nnWaovoCaQKkBCoiRgvAV9FCQpS5CKSG0EohE3vuYceM85+T/5zQPP9SWOFji4EPEQX6twA3hB+ae\n7OLcj5ilLjM8LtNNCFS4g1R+6wLFl4NLEM+BrxXcjQn2nYDax312mgf8Yvxv/E+j/5sd/xSxuN7P\n1TV+F/+C66xJL2gyOG8w+qbB9GsHLmZwOYFxD1nR+fY1/ufOaf6+ot+Rlyi4ff0W8aQUnv+uAG9R\nNVN8/FCsqCJapFinhuwGPopJhxo9vUVPa8mX7ycotRQaKUykj8hQhUPgDwK+TWVn2uEM0j4y4JPX\n0fsp0h2XOFji4F3YzxcHH1jgC24uzrxAtgNaGfQa6E3UtRLaroq6M6fS8mlWezSrfXQtIUk1skxj\nPKzQv2rSu2wRXRpwWYHLDILc8cnTlvIf/T8XmHk0eVFrQ3PBMcHVMFYSartDancHtLa6bKanbL08\npXXQkYRfCCIMzsUWZ84W1/sraI0YrRJTtifsVw6ptkcoc/BOoOXIjq6tEpTKYDQgbZkErseYCpWN\nER/9/R+4q71EPFDkaML65IL18zM2RufEpk5kW4S2xXG4y6G9z8FDn3Hk4Y9sppc2YrLInY5tEHkE\nPI+m/3VuCkIoiEwhy1QyoSIKbXoVlde1CZVCrEWoCpmikKEiflY7uX+uLXGwxMESBzdWDA4WhgKK\nloEhUJUEJRGyV0EAcSRr+6uZ7J0gfFCCDC3KMLIYXUnQlAxFE6BEkPmyyKmfyC6giQqGAomQnYLm\nEfiTRTHuBKm2yfOLc4crQjp8fuFxzg3W3rbrtXBARAZxBoEg81X8sEQnWcHTJqyuXZB+5uAE0BpD\nNoHKHFbu6GgPdcYf2/gVl3nikJxbZH0QQU5sw8L351hdKEdfz+1tGf/bxl/D8nU2eZ2z7TRgzYM1\nHXfLZ/XOJav7l9TaQ2w9xNYjhIDpuse07jFuV+h5Lfpuk2ndgIEtdzH9kJud3jz4/z4Q/qItcbDE\nwYeKg6LyI1d9qMgAaxdQIKzCoAJnFfBUGbSNwbRDqVgo+aBD7BhEKwa12oDt/SO2nSP2xs+wn10z\neBaSdSRu4gj8xhzj8SX3DBM1UwndMhcr29B3pS/Vy0tQmLypPvkp5jQnq0Uif9snKc4Thdfdfv59\nUvr9FJbPZTHda7JI9zLhyJTF0y9VxEuBUgcRpFLNOk1kGvfxomGHP4ZohCT7eT3dH9vN8MccNyxx\nsMTBu7GfHw4+0MCXwg3hdyXht2pgN1G3DPRfZZh/F9BqXXHPfsFd6yWWEhIL2fL6YrzBy859pt0y\n0QsXvqzAyJS1El53iMjrGxQX5Ide/MUoc67ScEBzoGRBQ0ffSmnudtm7c8Du9gF3Tg7ZPzpk/foS\nRQgQEJkmhzs7HO3scrGxhu7E6HaMZ/jsVQ6oJiOUFNw6tGxJclselFZA31DI2gZz12WsVGht9rir\nvqS11UM0FLKmQtZUaV32aH3bo/2HHpmnktY00qrO0/Y13ooPOykXs3U6F21mB2XSzALFkhe9mHNT\nNf227PSnNSFURCYQmYJQFISuvBY7qYocqPJvoYPQFISivib87z/pX+JgiYMlDt6029ebsuCvGaoh\nUNRU1rObCUn4E5gL0FNIIhAzUGYCNUoxsgSdBFVNQRWgxJCNIO5ANJc7X74uJzgTciQRRJNF95+8\nJlHu5BUdh5AbiX8xpatYO6LosC3wJ9LXhF9MVaahRydto2shd9dekX5q45jQvgD3AlZ6oO/paA9s\nxh95zOYOYWCTnFuIQYQI4rd8f074lVujSOxv18r4a++E5veSEtAEtwFbLnys494bsrN9xCdbX7Jb\nPqQ6n1IJppApXNXbXJptzmYbvHQfEDo2U7cBRw5EFfDzAHawGMWd8/fJljhY4uBDxUFRAZJv2E2Q\naxdBGEkVguJBVYdt+TJTC6l6A5p2B2owW3Hx77o0nQ677UMeud+ycfoC69k1/f8nZHgMQQqzFLTt\ngLJ5wb3VGXZZ5cLZwlmZy+/p6WDY3NSZKF5TP9W55yrt4v/f9kvyx+86jrcFCD5Ey33fHA9jec8b\neDLg3zPAU8DVELYi733JHOIARhOZyj2Zyo2C2OfN2oXvuoHU7eOGJQ6WOHg39vPCwQcW+Co6ILcI\nv12DcgNtK8X6xQT3f5my2jznfvaEX2X/jseMOTZzbF7OHjAbepwPt/ArJcTQQ7wswUCVXp/stcmN\ng/bnODX5cea7hjaoDngmtHSMjYTmdpf9vRd8svEH7h+85P7BS7b/cP4an3PPpG1f0XjQYXVnHT2L\nMbIYJw3Ycc6p1EYoGTg1qHsKhqlQqYGzDuq+StYyiByLIHWotgY8an7NJ598iVBUOVSVsj+l8mRK\n5b9OURfZZ8oKuL+akm0J/Psm2UgleFmmWzdI57Yk+7PcmQ356xTCLjicQvq+WaySJhopGqmukVoa\nwhSolkA1BYqlkDkKmaWR6BoJGkmmSXXMHwXx36eb2hIHSxwscfCm3Va6yP+TqrcMRZVKEZFAGqmI\nRCURglgXxAmkAtJYQcQKSipQswxVLMKDCkC0IPyXsgh3YPLHZD7iRsES8boL3WvCnL/ubalcxUdR\nOAdu3icWAYtMkM3ADzyySJAJGLRazB+X0VoG5ZdQLgOnML5jMbnvMn5Uxj9xCY9t0isDRjFEKahz\nEJH8bLg1f0XVUPEYcwcoPw8Kx/1TWjEtodClw6nDloryCxXvI5/d9iGfr/wrn2h/oNXr0+wNEInC\nYWuHo9YOT8UD5obDpbkOeksqNzuVxbnk6cvFVIn3yZY4WOLgQ8dBTtLgJmC3OKdIhXEJ4gxlJUPx\nM9RE4Ok+Ta/LZuUETMFIqTJSKrS5ZFs54r7ynPrkkOhln9E/R8yeyTDCGKg+CGluXLP/+JqSa/CV\n8xl2ew5DBY71RYdqixvC/1PO5w/ZeFuS+T9tt9cnA0JQfBAmTDTZPEqxF88v7hUilRuhYgKiD2KA\nTO3Lm3SE3NwvfsryGLDEQfHx+17zp173IdvPEwcfaOArJ9ELwu/asKLDmkJ9a8Be7SV7+gu2uy/Z\nOnmFc3yGPQ9xVRNNNcDTCGoeSU3nrLVNf7XBYL1JGCpS7RJYkJjc1E/6S21RYE/VwdKgpKBVEsrO\nlFX9itX0DPwBl92QyTmvfae0khEMJ5SCK3bCiPQkITlJUK9idHuAas8RmsK8UmLweYneisdoBdwV\nsFYU0qrKdv8U/d8TatNj1Ok5F9MZpbZCqa1QaSvE3ZDOKOHcByMFKwVzBsHGHHM6YjW7YqC1uLJm\nKE62aKxULBj4UzpEuROZ71oEwEQW4b7W4bnBPPU4Vzf4qvkRU1PgmyPKayPK4xhRcbiquAStdQ6b\ne5z6u1yN1xldl4lGqkzJiCPI8h3O3AkvOt4/R1viYImDJQ7etCIZzetaTBCzDK40sucafrXMpb7G\n8+17lA0Dwx2ztzLGTsAsWYzLFhdbq5y2tzgM9jnvbjEc1IgnOgRzSZCzPP0nl3zn3y0K/5enTKW8\nWSvtNrkvzm9xUHgspiss8tCyEYQW6XlG9KXOxKzyzHyAZ8zoVZqYWxGGFWNsRSj3MpRGSorCxC1B\nK6PEiOQ8IzlRSVY9mJch8GX9j9dBirzeW177qOik5Eqd/FzzrkfF6+ZdWzGYo4OiyzQ7TUP3Mtya\nj9sK2HROWOtesHLSpTQZEfQDjvsJqVAIN8bUNy7ZKbsch/tUWkOsuwHppSB1TAQl3tyRzlO83idb\n4mCJgyUOpBXTQctABUo1WHNgTaX+qM/G9hkbrTNW00vah9e0x9eoasas5DIruWilBLcy56y8xUTV\naFgqDXdCy50zTWS2r6WqOIbO3NaZmC4hFmmoLpqRCsiKqbv/EcrApf1wy/1qDenkVYAyaBXwKlCq\nQLmMUrNQagpKOVqUlZDrnI0gG1mIUQXGCoxNmLrIIPKIN1P7fmwGxV9yTkscLO3H2M8bBx9g4Csn\nm3mRZxccG9o63JGE/1HtCf+d9k+0Lo8xvuhh/nMPZ5BQ0jVKmoa1n5L9UkNbSSi1xrxauc9svUQ4\nU6FvQGwuCP+cv/wHPz9mXXbRs1RJ+KspZWfCqn7NWnaG7w+57MyZny3eJkCbZVSHU6rzjNVwxPRl\nhv//ZkRfJRibc9TNOWJdIaiUGf56jcv/1MbwwHAFhiMw+zHbvVPuPj9gejViejXi/NJn/bFC+ZFC\n9TFcd1OuhwmXPrgzKPlQ6sHsTog1HbEirrjW1nHNANUTYCuS8CsLOnQ2AAAgAElEQVQ5KNTvPPN3\nY/kNskD45zpce4jnBgEe51ubfLX1EbNNldraCfWPTrBCn9hscGk1udZ3OEz3OZnucHW9QXBlSMIf\nLMh+lnftKBZa/DnfkJc4WOJgiYM3rRgczAn/FGYq4tKB5yb+TomLlTWebdxla0VQXT1j/26ALgRp\n2WNUKnPhrHJqb3MU3OG8u4U/cInHOswySIqEv6hUofDdeb2gnCwWU6SKx/l9svviv99C+MUIERkk\n5w7iSwcR1ni+85DxToVvNx7i2T7eqo+X+lQaIyqNISVlytgtQTuj7I4ITi3mGxbJmgPDMogA5iHS\nyXnbyM8r5kbNk9dmmi2ONX/+XRP+ooopL2Kng66DoWO4KZXqmFa7w6Z7zPrJBatPOpROhlwPYq4G\nKZEKzb0xjf0EY9PkWfOacnuE5c6Jn2sI11rsOzq8WYPkfSP8SxwscbDEwZtzZSEJfxO8Gmw48Eil\n/rDPRztf8Xnrt2wOzqkdjqh9PUYVGfGqQbxi0Fuvc7qxwam9RVnzKJlTGt45FRdmc5nmJVQVWzcJ\nbYeJ5TIXJlmoQiAgyiB7G9l/X35XP0TLU4ht5HXTAq0BFQ9WS7DuoOwqqHugrEdommwcpSSLIPqx\nTXpsw5kJqQvTMjdB80Wh+TeC//DTXQ9LHCztz7WfLw4+sMAXvEn4F0W9HQvaBuwr1DaHPKg+43/U\n/hG3e8Hwy4Thf0mwrwR1Q76s/PdzlNUU8zcz1GbCdKXM2fo2jCyINFnn6HVr63eodFE0qXTxFLRy\nRsmZ0tY6tLML/FnEdT/k4vLmXXaU8WA4YTOYshVA7xV0/0kw+W+gfwrqpyBUnfmDEqOHK1zf3SXv\nhKelKfd+d8DW8zPu/u6Qpwfw5BVcvIJyB9QUKjW46MrmS89mUEmgAdQVyLohhj+mLTrU1CG2OUdx\nBFjKf7DSZQyhAdcGvPAIdJfz5jp6bc582+BjRWUTnwoa56xwwSYHkzscHu5yerDD9fEaXEcwDiHM\nd2lvK13eh5vxEgdLHCxxcGNFpUshODjT4cpEPNfwrTKXa2s837yLbsU0duZsTXugC668MtelJhfB\nGqfXWxxf73HRWYdBBhMhPbvXhL5YkygPEOb2LpUe+TklvK7NIWbACCKd9FwjjUtEvSovkhIv2ndQ\nKzE1e0jNGVC3BmxxyqY4Yy27xLddVCehUu+jbNZJN2zm6y5QkmR/FINwZN0PXFAcJAF23jxvMQIG\nIHJFCIV5yPjjOflLrahyWRB+dUH4TQ3DzahUJ6y0LtlwTlnrXtH+okfpyzFHQzgdwtyEUmdCfTSh\nFmq0S13KrRHWSoBol0hsi/R12rhR+L73zZY4WOJgiQNp+XzlDQCa4FUl4X+sUL834PHWN/znxv/J\nTucE9zDE/acQLclQ9oF9eBrfp283OG9v4Kk17tpn1EoW6yVF6vwSmOsac9MmsEuMjBKBsEjn2qJE\nalHp8j4qqT80y5UuOpLwV4AmaG2oOpLs3zfQPg3RPo3Q7kVouuwUq8SC6BsX8bVFZluIzIZRGa5y\nFejinvX6/vBTl8UontMSB0v7MfbzxsEHGPgq2gLQeTczA1RVoKcZ5jxFCVPmScZACGYCtFS+bJ5k\nJGmMQYilhOhKImtfqAo3bdDUm89/647l91lRvlfY/cxiCBIYZSR9jeG0zkm8TaV0l7jeY2WvR70z\nfv0VhgsbGlSOBSoK0YFgMoS+AC+AxgDU84xKPGGjc4n2bUqWCdJUIGJB/eoa58KXG6SxDLinQBaA\n6APnUIlgqwrcB0eXNcdLFnQee/RWVrlQ73KebDKeVcgGKkwFhCmIIkH+rrW5XViw+PhDrah0mQFj\niHUY6XBukegKY6PEZbyB2NCYWy5X1jquOmMQNxgkda7Gq5wfbTI79uAwg5MZTMfIGlYjJDnIz+d9\nvAkvcbDEwYeOg2LaVIhUYIxkN6GOCbrDTLO4ZBU9ipmVK1wpWzzjMagw0sqMtDJHo11OT3cITh14\nkcg5CmbI+gS5oqOo8HubguVdn1eR+M+BqSTbcwdGFbBACxJ0IiwrYDc84t7kJfvhAdVBn8qwT2k0\npNzqs9k+5XGzzQv1Ps83HzD9uxLiiQ6pB10BVQsaFtQtVE9FcxJUdyYFgZEgDQ0YenI6BiaEprwO\n44Wa83Ux7J8yeCpACGQxdcgyhVjohMIi1GxiRyerKChVsELwpjJGbVmyDGJcVkhNjTgziFKTJNFk\nrbu/CUd8iYMlDpY4eNNXyQmcCYYuizA3BKqZYkxinMMIcRjRu0w5Hwq0ObgquAFEIsaqT2juddAq\nAv++w8Fsj8HdMuk8I51nTFZLdO+v0THWOBjf4+X1PaZHJTjOoB9BNEPiMCd+7/O8/i3brVq0igOW\nA6aLWjfx9gLcj8eUHwS06h1aQYfa0QCVDFXJEKlCf96i124y+LjBOCsxCktM57YsGzJzYV5afE+e\n/l1M+fqpzmmJg6X9GPv54+ADD3wBKJKoL7qZqYpAT1LMeQILwj8UoOeEX0CWZKRZgilCLCJ0NUFR\nxYLbF28URbL/Y63opBUJfwojQdLXGfg1TpJtStqAdkNjZW9GbTZ+7XeoKpRVKJ+AdiWIX8FkBD0B\n9QCiAShngsr1BOWpoKqPiSKIYkEcCRqqj6P4oCwymbIC4R8A51COYLMG5QdglMCsyDF6XGK8sspL\n7R5n8SZjv0I2VOWub5jJCMLrgudvWZM3dgq/K6Xhh8xhUekyk58ZazA0IXKIQ5dR6BEPTCarNa4r\n67woP8LQY4LAIQgc/KHH6LTG7NSFixQGM5gOkK1933fCn9sSB0scfOg4KNY28gEVAgM6DgQVZpHF\nZbjGbFLisrXFs/KEcnkCQBhbzCOT0XWN7qs280MHzmLoTCDoczM/IH92i3XvBH+8tu/S8rXPCb8G\nQoN5BUSMogr0WYKlhJStCXvjI37d/R2fX/8O5SCQ43TO1sMTsscu6UOPf1RmTLbKvGzuI1IduiXZ\ndamtwV0d7miorQSjlWA05yQzg3hikE5MOFLhlQEHHowNmGny0ER+nefpYPm19K7nYnFjWPxTZCpJ\nphNiM1ctEttAVFTUKpgT8LQC4S9BlBN+YRJHJmmqyc3o957s57bEwRIHSxxIy3+DDTkMHUoqNECz\nUsxJgnsdkh3G9C4zLoYCfQrNGTQ7EOkx1t6YZtQhrjpMH7i8rO7iTNooSYqSJAycOgetuxya9zjt\n7XB1tcbksARHC8IfzpC/2XnNu7+l+f1bsaKvu8iiUB2wHSg5aG2D8t6Y1sdd1h9dcS94wf3ZC3YG\nJyiJQEkFsdA5ru5w3NrmeG2b02ibdLrNdFyGng1ZTvjze/Of61P/uee3xMHS/pS9Hzj4gANfBWKu\nKDe1PpUbpUsUpswTuSmnLki/noGWCpIsQSfEVCJ0JS0Qfm6R/uL4MXabrEaQRW8S/mmd42gHV/ep\nNQLaex3uwZvijglwAuEQ4nOYjqTSZRpAPAAFQXkypTydIqYQBLL+7DwEZxPsTWADSCThzxQQc8hy\nwm9BuQ6bq0ATaAMteLnmMVpZ45V6j4tok1FO+KeZLG77htLl9s2rWIeCwmvEd7z+++YwDyhEvI4M\nxyqMHBiVSIYW44HH+MyBlgmtxXlY3LQbGQg4k+fLIN916AMdbtqq/pSthX9KW+JgiYMlDt6co7zD\nZgaBDUEZOiHBpEQw9bjqb8GGIq+H9cVbx4txAjwFngHDEWRTEN3Fk8ni82+ntxa/+6c8t0IhcQHM\nmzBPIJOE32ZOyZqwFx7x66vf8T+/+L+Y/g6mX4D/NZT+AcopuFWFaa3Ei807KLUEpWcgXtpgaPK6\nvw/8GvQdH3M7xt7yCccOWVdH7elkX5qAK2Mgqb7ocJ2CKB7j7Voe72oeFkPcqF2yTCF5rXSxiG2D\nNCf8ffB0MFSwbFDLICoFpUtkkiXq35DSZYmDJQ6WOJD2NqWLAZ4KdYGqppjXMfZZhDiM6V/CyyFo\nwxvkxF6M+cspzajLpFLHr7gMH1RRRIZBjElMJ27zpf8L/jD7BdejNbhS4UiB4ylEMYQBf6x0ed/n\n9m/NioR/keqbE/6Kg7ZiUN4PWP34ijuPn/HrF//Ob/r/zkfHT+SyhhCqJt98/JBv7jzE3RqTTVWG\nvSaXHQPEQukyLHFTe/GvGfRa4mBpP8TeDxx8gIGvovMTAQt220vgWDC2yrwq7fGvxq8orR8hftFj\nL+pjjBLKmkJJU5k8qHL9cIdT9wEvB4+4nKwSdS0pIfETSPKaN0US+H0AVb7jUSz+vSiEmprS+ewH\nJE6J0WGZ0/YWxCpR4NJttfnWfQQZKEKgpwn1YEA9GOBNhqhnIatnIU4vprlqkq0adGs6yYuY5EVE\n0kmYxTBLYa5AqwGtu2B9DOV92OoBPaiteczWPZ6vl5jqZcZ6hYleJnU1Mk8j81Sehg/4+ugjro/W\nmHxVJTx1EFNF1hVKHGTOb1G5Uozg512QTG6CHsXaID+0c9xt1dHtLksGCAMyDVJFLtmUG388byAx\nyGA8h2iOjAIMFy+83XnqfSL8SxwscbDEwY0V1yAPsqrI8+wh564GVEBUMMwMuxZgbwR4pk85mFCe\nTWAV5hs2wUMHv68wHadMJjXikQejSI7Q56bbWVr43nc5Z8U1zzvKFYcqFZ6qgmKCqUd4qk9NDHGn\nM4yrGA7Av4aOLyG94oPWAfcQ9J0EpxRQtidEWzbxryzi1GblzhWrD65Y3bnCM6a411Pcnk+imMSK\nRWzbXKyvcfrRJqf2JslLHV6VwM9kHY/XRb/fpcolv9fl66qAmEDaAVTSqcvsKmH4ssxlsMlL7Q6t\n/R79ssNsPyC6DkhUwcXdMv37JXqtXV6Fdxgd1siuVcRpgpguUudkQRJuMPm+2RIHSxwscSCtuOm2\n8JFCXdYwvdRIKga+6zLYreImYyqTmLujCL0taLpQd6H/sYW/XePc3mRKFZs5NnOSzGAU15nGJTqD\nVa5P1glPHXiWwdM5DEKIR5AMQOS/sXmzhxwftzcTbxNA8Scel/ZurUj4DdmEydagoqDVUmrugG39\nhP3kBXb3iv4Ln2ffyL3PLIbUyJhVRjTXTnnU1hhqbY4rd2EFmKhgLYJO6Nw4Z8UaRz+VLXGwtB9j\nP38cfGCBr6KMPif8AQQe9FJJ+KsVDjZ2+a35OTvrLmufvWC3NsUNU1RTQzU1Rq0KV9s7fO19xsH1\nfa6ma4QdC3qxJPxp3pY678zzp8j+9yliCoQ/02BWg3ROorkMDyokJZ1JWqdbb/OquUdtd4iy2Mmz\nszl3k1fcjV+yFRyjno1ZOxWs9xKUdZNsw6NbtZkrPvMrwXyeMEtvCH/WAPse1P8Oyj5sTqHiw6zm\n4ddX6dZXOVc3OVM3OFM2iRSTRDFIFYPOdZvrqxU6FysETx2iU3tB+HVIHRAVbpyi3PHN18ZEFsSz\nC2uVr9ftQtrFNLHvmufbhH9B9jEl4RcFwu8XlqyPlDmNUlmfJFoUo32D8OfH8j7tQCxxsMTBEgdv\ntyIxBEn44fV8CxWEh2HGlGtjaht9VsuXrMcXbMTnEMBgUmcwqdPp1Lm4aBKeN4hPdTiew3wOYd7d\nLZCf+aMVfD/EimudN7DIi00vntMUqe40xYLwT6mKEe5khnEZIw5gdg1dXwp4VB9K18ARGKUYZz2g\nYo3xt6QEMm4YrKxc8unq7/ls9Uuq3TGlK5/SlY+oqaRtnbSt88X6L/gX+zdcrbVIHANmHhyZUgGJ\nvzjOd9npNJ/XfF3FgvCrICJSv0pwVSF9WcHKNnjl3cG94zO862D7fWx/QIag31hj1FznXNnj1fE+\n45Ma4pWKOI3BX9TCwuft3QrfN1viYImDJQ7+yEeKTFkX80oh1gymVZf+ehVdGVId+pT7CWac4rbB\nbcHkrslsq86FvYlPiRZdbAKSVKcbrnAS7NC5WmX0TY357114kcGFD/2xrMGQDUHkKpdiWYTcPyrW\nUFVvHffbBrzf6/FztdsbiwvCb+lQUdHrCXVvwI5xzH7yAq13xeDFjNEXkGay0S1uRmV9RONuRjOM\nOdbuUCpPpXq0o4KZE/7ifUHl3adBv82WOFjaD7H3AwcfWOAL3tz1KihduokszrpS5iDYIzRUkrrG\nam3K3sNjyuqc0NGY2waHepVrZYev+ZSjeJ9w4hJ2LehFEN1WuhSJ4HepMYo1kN7m5CzaW2fAzIfZ\nnDTKGHplhnqT80zl4Bf7WPd8zHtzFASKEHhM+Tv+lRSwY5+1U8Hq6Zx6N6C7ZdLbKtGvlphew/T3\nEdN5wOvygTrYTWjcA/H3UE6gkoKawHO7RMdZ5blzhyfiEd+KxzzhEfPAIQpsosBCnKhwqCF+p8Ip\nMj1qCiQ6srtRkfDnxD03G1h0REJw0/lpzutd2tfzVZzX71O7fAfhJ1e6qDcK2nz5ushN7knuiPa5\nqWc05Sa167tqNP2cbYmDJQ6WOHjTisQQbtYlBMbItCAPRAvTiKjUhrQ3L9lrveQhT3koniJQuGCd\nC9Y5uLpD+LxM91kN3DLMA7iccVO8eoxURmS8e+e1uOuWB1AtXl8nilS5yOUvEP5siDuZoV8miFfg\nj6AzgxMBJR9WO/KjjLUYJwqo2GPEtkrS0uGRzYpzwWfOF/yvzv9BYzSicu1T+WKKuifk5b4NpfKI\ny/UW/yY+g9iBYxN0bTHPA2528/L6T+/COc3vd4X7URZBNiH1A2aXNrMXZTArOI9miDsZ41WPDc7Y\n5BwFwTn3ea7c57Czz9WLDUaHdcQfVDiNYTrljwn/+xoAXuJgiYMPHQdFX6WodLEXSheFuGrgr7v0\nd6vUzDLNfkqrF2ApKewAu3C2YeGv1jl3NpnhYDGnRYck0+mEKzyfPub6chW+Af4ReOFDMoO4B1mP\nm9/Y20qX27/ntwk/3BD7249FJf3S/nIrrsUtwp8rXeoJdW/IjnHMneQFV50p1y9mdL+4qeSnlzM+\nujdibzBiNRzxlfYZpbIPKwqcam9RunzXJvG7tCUOlvZD7f3BwQcW+MovepBTPAd86XRMPVA9oiPB\n8KsSqrnBk3oMhk5fX8HRZ8S6TqRrHEZ7PJs+Zug3iZ7IFKlsNJKSzGwCIt/BzJUutyPLt/Ngi2lH\ntxeTwmfkRNiCTJfFUHsq4kQlEQZ0HdI/6FLpgiDTdE7K+1iVlLHToDYdUUvHlD2fua0zNwxiHcqb\nR5Q/T2lGY+aZrLkdKQr2xzWu1+pMzDrz0GU+dplPXK5qLa7UFldui5N4h37UYh56RAOLpGeQ9XXJ\njcvAJxnKdoY6ylDHGWKckk0MsklJyhbHJkxcENni1BWwDXAtcGzIhAyihAmEc4gCObIZ8kY45Yap\n395dVLjZ6XWQKRp1sBtQr0LDwmikeO0JpdYMqzxH01J0NSWJdUbDKuNhlaCvw7UD1zV5/80UGZ4W\neXTgXdfg+KltiYMlDpY4+G4rXpMeMjhZBa8FGyV4rFDeGbNnHPJx7ys2ewfU+mfQv0QTCi0npOyM\ncERMEltM10uosxXmlyphSScdOpDZkFkgTOSc5XLtv2TuiniyuCH6i+NXPXAEuAIsDeIaxAYiTAhm\nFoNRE3Oc0K28Yvy4TKCY2NcZ69cZajejvWfArkF/zyS7B7XGgD0OUeagDgRqX/CZ8gceKi+oK2PE\nNzN6TyKuXmaUplCeQOUK3PUZrbUu22sndNyQwC3ju2VEqMjAa1J0YFXeDXG+HfS1kcAsQdqEoARD\ng6ijMqw3OKvtEEU2vXSFs3QXJRKcT9e5mG7QuW4x+cYkfjaDizkMBxANkQGc/J73t4CFJQ6WOPhQ\ncXB7Y3DRCdk34MwGM2Oc1njJA2xzznG8T70+pPHxEE1NSRo6SUNnlFYQhyq/fP4lepLQzq5oZdfM\nbA+tLvBqM05r23RXVuhutZnNFBirMNQgzP2ffO6KPlGRXObXuFF4rqgQLzZJyIMGtzcjl/bnW9Gf\nLpSiECnEGQSCzFfx5x7dtEVHXQVPo9mIqa0FpBmkKSieQrliM3cdzq0GA6rM59YCTrkcJi58x/dt\nJL/rc1viYGl/yt4fHHygga9cPbHo7BPZkvDHHuGhzkj3iAKHcMWj11jlaeMjdCMmQyUVCoNhncvL\nNYaXTaJjjexlgBjNZB7ya8JfrHlze1GKDmUOVmsxbG6k+Dlwc4AavCb8qQG+Bn0FgUJ6rSO+UUhN\nY/ENgtS0ONncw9+qcLy2j22E2GaI7YQY5hxdm+NoUx5uCtq/7rPXgCRejEzh+mGTy/U7XBt36Edt\n+qMW/as2c2HIgEHdoB+36ftNwolLeqaRnWpwqkiRSkXAVoYqUvQkQU8S0itIzg2yMxPOLDj1ZNqa\nEGAqYClQ06Cly5EIGGdyTEKYBJAEkI3k2r1RtPu26qVI+F0k4V8Dpw6bLtyzMXYi6usD1tYvqFWH\nmGqEqYTME4eTyTbxRCO4rMFXDnylwdyEWICIF6l8xRsrvB83zyUOljhY4uC7LZ+vnPC3gVXwqrDp\nwccK5dURd4wDftP5NxqdI8KXY8IXY9RUodUcU2pcUWrH+Gsl+msN4lRj9KpM6lVIDQeSBdkXBjeO\n2F+6A3kbTy5QQnYqaIFaXfwpoKzAwIK+jghjZr6FGDVJRwbdSpvRx2XmOxbOUczGcULjLEO7a6Dc\ndenf9RBNQa05YJ8DGsGQZn9A82zA2vyS9fCC2nxC90XM9bOEq5dSIbN5CaWX4HwW0NS77GwfobqC\nrguB65EGCoTqIvWqWPj8XcxLEQNFHDQgbUjCP9KJuzrDSoPYMxj4TZwowI1mMIbJZZnJZRn/0mR+\nkRBf+NCbw2wM4QiZDpjXNsqDz++zLXGwxMGHjIO3EP6pDeclCATDtMZz4wEjt0q91qdaH1JtDEGD\nuWEzN2xq3TE7r4759csvaAx62ImPk0zx1z0qv5yw+qsrXjXu8e36xwS7DrOgDOcqBLqUm7+hXskJ\nfz5UpM/kIje07ML/w41CPEQGIvNanHkntPwc38fA5M/NigGihZ+aJTJteSbIphrT0KOTtLlSN2h5\nKe3WlOrGiGxR2yizVZKqx6xUZ2yt0Rc1gsCGoYBZBnGxtutfc92WOFjaD7X3AwcfWOALbkhhrnQR\nEFsQezB1idIqUVBifFXiemuLZ7sCZVdIXC0yrcSFgnihkL1QZMXTaSTbxCUD5I9+vtv1tg5nt3fc\nTCRYHW7SmuzCa+AGuLkDmitdVOgrst73VCed6vK+lJsD/kcVTh/vojwQKKsCVkFzE+pml7raZVW7\noL3Zx6m8Yu8RiMU9IY0Vxs0GV817/Fb/NafxLqejXc7OdzCtGVZ9hi1mzCOPwPcIhw6cK/AS2cnp\nfgZbAj7LUEsxmhVhWBHKoUn2xEF5YiN0ZDHXS1kbA1MFR4GGAltImWyIzKrqAGok5a9+IOeAbLGG\n+TwXnazbhN8B6sDqgvCr8ImK+VFAfWfA9s4Rq7ULXGWGQ8A0KREHKp2gAcc1+f6OB5eOXIt0Jsfr\nvHf11nf/3G2JgyUOljh4u90m/C1gGzwHNoGPoOyN2O8d8Hfdf8P99oTj38Lx/ydQEmhtwc6mQvWT\nmH69wdnaKhPDI1kxmJYaYNogbEjzekMxN0W+/xLn6zbh94Dq4vg3QG1Jwr8CNAWICMYxwk+Y+RbB\nuEwwrtKttRntVAhKFs5TqD/LsBsweGjSf+jRv19FKIKaIgn/3eCQu/0D7p0eoA0zlJFAHWVcHcH1\nITw5lL0cPAc2HHAIaG132TGOiR2LuevR8zJSf6F0iTQQRaXLX3o9FXeGi8GQKtCGpC47BY104q7B\nwK0ztOooIwEBKIGALogX8n7HeYgIOhAMZf0RMUEqLvMaJH8LtY1giYMlDj5cHNxO75oBKvgeBBFc\nZozSGhO3wsvafRzdp7Q9pLQ1IjU0pvMS03mZTy+/YvvVCb/+b1+we3RAEkESCfyPXFarV+z98pBG\no8dszeNodw/8MgQqdAvNF15bcYMwJ/0WUrFXRl7n+ftA+gTB4tini/8vlkYoXk/v2/r83Kx4vSxI\nuUik0mUmSKcq03mJbtrmWl2n6U5ota7Z2+B1N7vYVDitupyWGpxZ6/RFTSpdRsBMLAh/Ueny1wjW\nLHGwtB9j7wcOPsDAV255TR0VCYiRdDLCCMYBQpkjMgPmGgw02aI6MyTR7qmyVk+fRYaRkKlIwJvO\nhXJrgASpyQ3Rr8qhe+BZ4NoyxUlX5QCZ3hQl8vhKZShZaOUMtzrBq82w7RARgAgUkplOMHaZjT2S\nzKC6P6R6d0jlzhjP9PGY4U1mlOwRZW9MORrhhCEv5g/oz1Zuyj5kKk+793nav8eJsocSw7Z6zO7O\nEa7h43WmuJMpCRYRNrFu0W816KV1el6DanNI0+7RHHcxZxG6EqMrCdNpmaFXZ3SvxiitMo4qjGZV\ndDvGXZ3hrAaUVyaU23JEiclkVGYyKuNfWgTHOrMTk3TgwawsyX+az3sxhzuf60VBW80CUxbZM1cS\nyusTytsT1hoXPJg+48E3T1jJLtCjCD0O8Q0XvRlRaw04qe1yvbbO1d4G44kDXRO6jgwSvQ4c5cGZ\nv0ahyXdpSxwscbDEwdvtzfoRiqqiGCmqnWLoCXqaoPspip+RBNIPFDEkPigjgT5JMcIIW4SYWoiu\npSiakGmsbyth9xcdZ05m8+BmFWiC3oRWDVoW2kpGfbNPfbNPpTHE2A/QOwGqHxN8ViG4U4aqzrp7\nTs0YYSoRScVgtGkz1DWSioYWZNSPxui6wNXm1LUxpcMrZk/HHHwdY07B8sH0IetCfQZ3VVgrQ6Ul\nYw7JhoFf8RioNaZZiSi2EHNlwZOFVD3+kXw9P8fcxK3H75ubfBTIvl4CxwPbxWhruHemuHeGlDZm\n1BojavURlhOSpBpJquE3PDruCteNNuNTB05sOK3INn+v61/9lLVW/iNtiYMlDj40HBTnvND5Woxl\nzSGhw9AjOzLBMAh7CuqpQ7ahUGpM2aheUq4+477+DeXsmEqDlLAAACAASURBVOFsiuqnRAnEMWRR\nBImPl6nUGeIaMzQnlRtepiJrz2GC0gDVkceg5Glci0CAUMEwoOxAyZE+k77w0RQgsGBuw9wDvwSz\nAMKFYocx0mmL+WOV+NK+35TCo3Lrb43XmRRZALMQ+jGJazI4rXN0tAc6RJqLv1fh2l5DiQXEgkTV\nOd3a5ERscnyxzcHpXUZHNTgCOon8LGbcZFH8NdZriYOlfZe9vzj4gANfeWoOvI5ik0AcwNSH2JeA\nGZhwaoJug+KAokqFyRAZgSwKLYA3lSzFYq35hZF3FsoLW7flMMpQ02FFh7oKtgL2IsUrT3HKFFi3\nYc1EW02pNkasNi6ploZksUoWq4Qzi+7xCtmJSjBWaD7qsvv4FTt3j1mddFiZdGiPephOiFmao7op\nx7NdnkwecTbafo17kSl0h026wya9YYP9jVdy3HlFpTeh0plQ7k7I6jppUydt6DxfucvT2n2e7d1n\nNz3mgXjGo8FTrChEjTLUMKPjtjivrHOxss6xssNxuMd0WsZuzGnc69K632Gjfs6md8amd4qflTid\nb3IWbnF90qZbbxLZTdJTDzpliCLpJL4u2Fok3AU1kW6BZ0BFw1qJaG9cs7l9yn71gIeHT3l0+JSV\nq0tSPyXzE4KKRfPzLnu/PuS0ssfvVz8n3HcYz1xZrM93YewtLoA8Ja+YQvi+2BIHSxwscfDddvNj\nrqgCTU/RzBhdTVCTDGUmSGcQxbL8ACnEcyl+UKYZephgZiGmEsn36OJGhf9O+GExKJE3KsgJfxvM\nFdh04LGF/iBhZfWKu2vP2Kkf4vg+ju9jxCG91RV6a21m9TJb2gkNtY+dRIw9h/F6hUm1RGnmU576\nVDtTSmZAwx4RmSbjgymjJ1NOvoBSCJVIDhFCcw51Ayp1qG6DsgfRrsm0VqanthhlVeaxLQl/KGRK\n72vns7iTlwfRKTz/Q0l/Pk/5zrALRgkqHtRdjD2V2icT2p/22Ni4YF87Yl8/oqqPmOsWgW5yFa3w\nh/VPCe9+yuR4E/FvFkxr0NeRXQ6n/LED+LdkSxwscfCh4eC22kUBJpLsk8G4DEceTEqkpzphWydt\nlajfGbH3+JDHlW/YMJ9R4YBOFNAPZcZPmIGdpTSzgGaaUWGErQVoVrpoOqrIhguKLevRaRqoC2WL\nUthMFCo4KqwYsGFAW5N/O6p8ySCBQQr9BDqxHGGAlI0rSIct3yhbpnr9MCte20U1Zn6tL64NQqmE\nn80hi0k1hf5JnXRVY2JWGWs1OvttDu7soGYZapqRCo1Tc4uzbIvz0016x22GB3V4JWCayM9ixo2z\n/dcK0ixxsLTb9n7j4AMOfBXljTMkqANJ9BNfkv6+K0GnOKClUnmiWfKti3SvN8sXFMl+LtlXbz2X\nFxTNJeYL+b1Rk6UWNoF15Ua1CXANdASkCjwA7ivoez7V1oiN9imr1QtSoZGiMZu6iK9U/K/KxBcW\nzYcd7j1+zid7X3L36JA7/iE74zP52XNBEDn878EKz6aP+C+j/+2NzDJxqZC9UuEQ7v+n59zbfs5/\nvvNfqU/G1Dpj6l9M4A7Sx1yDf2n8PaYzY+I4PL76mv/+7F/4H87+BXs4l5lvYzje2+Tlyj4v7u9j\n6BG+X+JstI29GdL4vMf250c8KD/hsfItHynf0qfOt+IjHHzUVwmh6TBIV6XqKIrkTY0EGf3NOwnl\nVlS6mODJYIq1Oqe93uHu1nMe69/yePiUj373lNbX18wHgmAI4YpO6hyRPnY43dwnXHU52t/neL4F\nvrlI9Sotrp28rWrG++fsLXGwxMESB99v8ppVFND0DN2M0YlRkwxmckMrjqQKOyf82QTUqVgQ/giT\nGE1dKF2KDTnfybEVMZUT/hoykLwKGwr8UkH/jc9K84pHrW/4rPYFZTGmIsZYhJyo25yoO3SVFpvJ\nCfVkgJVExJ5Ov1LlSl1l69UFtesJzYMhwlPABeEpPDkUnDwRPPk9NDJoC4nmpg5NQz5qdVC3QHkM\n0Y7BpF6ipzUZpVXmkY0I1Jv+COI26adwjrzluR+qdskJvyeVpRUPVl2MvYjaJ1M2f3PKw/UnfB78\nns9nv2dVXDNxXaaeywt1n2iucxxscnq4gTKxES89UCxgCqLPO1zUn6ktcbDEwYeEg6LSRVn8rQAp\niAAmNZjW4VghK3mENYeoZmMOUvYrR/zDo3+iarxkIMZ0oxnTuVzaOdBIU5wsYDMLqTDG0eeS8Nss\ncKEAlqxHp9VAcwqxROVm6R1gFbinwC5yD7GCXIILpCL/TECWwSQviQDySGbcbHy+i9p6H4IVMVT0\ncYv3HwGEkM3AD2EWkySS8A+bTS68Lbp3mpztrdHavEZ6rClprHF+sc355TZXp+uIY5XsUIXDTKaL\nZW9Tuvw1gl9LHCzttr3fOPiAA19FyxfOAMUFrQJqTUon6ybUTXRPl+oQp49AJ0pM4tggnQIDGzGo\nLkobKBApkGq8Cag8IprnItfBbkK9DA0LazWmttentjegsjLGtkNse44iYLxSZjIuEwoTazPE2gyp\n1Mbs+gfs9Q5Zia/INJVUVZmkFRgaDNwW060yVXfMZnDB/vkB7qsr/Kcjjo9DnGNwmqDUYdU54TPn\n30nKOkEH5h0IO2Bfy+H0BL84+x0PXz1npdJDPJ0xeTZj/CKkFEB5DKUrqO8O2Nw9497uC1rTU9Tj\nHoMvA9RRRDKD1IepGOE2LtnfFOiBoJpO2dIucSY+K68uWYkuaRonuNkp43RA4sa0qjYfVxPMWUpY\ndrm+t8b/z957PcmRZWeev+tahIeOSI0UUFWo6upucnuGpO3LmO3L/rv7uGb7sDM7s0ZOs9jsKlRB\nI7UKLV373YcbgQygqptkWy/ZAOKYXXNYAsiIuH4/jyO+850w85BTCy4CVJA/4070cBUACxBqi5Y5\nR6A7Oa4VUjFGBHKAmE+ZD2J63YzpFGYzyEOJP4PSOKcyneAWEYadQ0ko4XF9VVhxleL5MdsaB2sc\nrHGgbMlSXLZwTpGRQ96RiLcms1JAx2hxsrdHSRQYzoy92hw7ldhli2nZ5Ha/wXVjk8tol9v+BpNx\niWymQZQt2JGrDsOqGOuf4syusF2EpUY+WwZ6UxK0h5TbY1q1Gx5On3N0+5a96AyKOaIISURKKdC4\nV05pe10qgwumgzFvRpLYjbDcERu2hn4ypn8cMT+VGI5EdxSBMH0BpS7sF1C2oGpD1QHZDOi0ynRa\nZZJ7DsmBRbJv8Tvvlxz3DhlN6kQvLNJOhkxHIGeL/V4+HwQqgcHKHi0D/dWJTMvrslL7YWvYcq20\neFmeeqbt6jg7MZv+DV9mz3nQ/RH/4pzRxYhiGoJTgJ1SDrpsNc942HxBVrYYVuuM6nXCmg6RocSb\nUpP3BXM/BVvjYI2Dzx0HS7YL3LGnNZDe4jaYYFmwoSOPBPpRjlcNqeUjmukY24jxgoJwC9IyJAEY\nT1ySvSpv/Spn+SNuphtEXQfGOtgO7AZorQyrAmZljuFGCCHRhKTINOK5Qzx30J2c5qNbWg87VHZG\nmEaGaWQgYap5zMo+05bP2C8ztsvMXVMJk09LEC4rissWNlizXf6QrWJnWUhcDmNaSnYs2++W/3aB\nMZlDMkF2cvJXBWmWMekU6BcV4raDRoEmcmSm0es0mN56ZNfA6xD6CeQh0OP9aak/p5v7/7etcbC2\nTwMHn3niazVruagQaiUwqmC2oOXAAwPu6xitBL88JwhCCs1gmvnMUh+uNYrXNvKVATeGGsGaa4qV\nAigHRnLn0C3HRzdUwL9bggcG9lHE9t4FR3uv2K2fUdOG1LUBSDhPdzhPd5iIMuXymHJ5TL3osXtx\nye6Lc5oXPQpTIA3BwKkzrDR5W33AbbOgbE3ZGl2z3z9h8nxK57uQs5fQ8KDuQTnI2fjihP/8heDg\n8JTBMQxeweg7qMWLlcDW5QXbpUtqjOk+S+k8z+i+gc0+7FyC/xL8v56yaV/zYM8jGF6Qvhlz/j8L\nsgnEKUQpeHZIsNnhYD+iORlzkJzzS/k9Zj+hNJ7gP5uS5UPmyYibZIbZyqjuS7YPRhiuzo23yfMH\nc0TqwaWFtDQUAIa8PwVQvH+PhfauEKxZObYREWgT3HRCHkUMxjnjEYwSGGcgCsl2lFOeJHiTGCvN\n0A2pCErWIoHw5+3V+A+0NQ7WOFjj4M4+pPaHwBQ5h+LGIn1lMdkucx1s8Hr/gO1mjrtxy8FBgiEl\nWtljUva5CdpclrY5i/a56u4wG3qkUw3C/A8E/B8mK/+ttnBENBMcA8oCo5XRaPbYbZ5wELzl8dlz\nDn84Zvv1FeMsZZSlzLQcdzenujvFajvMT0eMT6bcXEpqQUg1GND2Q4ZXIb2riNG1+vW2oa6iB5UB\n1HQlF+RVwavA7YMy1w/vcf3oHuNGhUk1YFwrc9w/4PXNfcY3NaIfIb1JkOlUtUnJpcC5g3KYlu1d\ny/1Z0kyX1dmliPbqyPIPGTCrDNQF02UZ8O9puFsR2841T+bP2O//SPxdn6vvQm5uCipGSsWQOO0R\nG391zqO/fgauxklwRFa3CRsBjDSleZguGY/LxM3HbmscrHGwxsFdklFypwWkccdktyGw4FCHv5bo\nRxl2MybI5tTTCM9MqVcKUhPyPch3YfLApXu4zUXpiNfREy6nW0S3Lgw1cBzY19D9GHcnprQzwq6m\nihEhcrLIZNSrUXQ1LJGwf3TCk6PvOGge48URfhxCJrgO2lzvtLgKNznz9imsfeZWHa4cKHwIK4vP\nsNTmXGUPru3OVv3jpX7gslthOYhpueyf+T85pCPohlBEFP2c+bGHrPvMyw2EkAhRIAvBfOgQj0wY\nJtCZwHCM0hL5QwE//PslaNY4+Lzt08HBZ5z4+jlqvKMCfrMGdhtaNnwB/CeBuT+i1BjQqHfJDB2Z\n5iSpTv7aRZYdRGIiU1sF+7Nlv3CKYrsUvB/wl4EmuHXYteBXBs5XEdvbF3y98898Vf6e7eyKnfQK\nIeGp8YSnxpd09CZtrUNL3LLRvWWz22Hztx3qvxsibcCGbq3F2189oNyeoO0WlEdjdkbX7N+e8PyZ\npPt7ydn3sCeUVJLl5mzkJxzsnWNWdC5ncPkSrv8f2HFge7G0i0I9cGY5N6/h9pXk2Rvl45Qc2LKh\nZEzZ3L1G5DnxcED6eszFbwtmM5hJmErYD0Lq+xEH3R7W5JQi1ijQoC/RbiWiIzmfFLwMC25DSfVg\nzvavhjyMztAOHJ5vPcLZnCNS4JmNNBfT5XC5a7X6UE9KAyHAEAt97xzHiAjEBC8fvwv405HSae9L\nsApJEGVo4wx3HGNlGZpZqJexlkwXbeU1PlZb42CNgzUO3rdVXZ0U9SU7QYY6+bUBL00mepnr+gav\nDw4xjJgHBwkHwx6aLulWPHrlGtdpm8v+Dmc9FfDLQYGcFBAVi+/on2O6LPfyT2G6LBwSzQJXh6qG\n3spoNLscNV/xVek7HndfcfTbt+z810vyBPqJZKJB9asJO18L2oeC508lV98XHD+Hx/WQzXrEbkUw\n7Ul6vYIXffCFanD1gU1NdSVv6koyyGiAsQk3X1e4/k/7/PNvfsG1s0FHa9IVLYbzOuPbGqPf1sjf\nzOB6BunwA6bLstfhw9HlyyTMkoG0/Pt4sQ+r1b8P2S4/w3TZ03C2I7bMa76aP2P78geef1fw9v+W\nhK8k90SKQ4p7OGTDOSd7bGPuSrKyTbe+AY2yYrWGJu9XOj8FW+NgjYM1Dt5nuqyezSWD3YHAhgOp\nAv7tDEcklPI59SQEUyIrIBvAV2qdHXhctnd4UfqaZ7MnXE62CW9cGOrQcqHloO/NcR+HVL4YU2qP\nMcgwyEhmDsWZzvzMx4kj9u+95Tf7f8+vy/9EtT+m0p9CJHhVP+RV/ZAXPKSwdPpaA2iCtGFcgt4d\ni/OnhbK13dnP+cguqnBbQfmxy6u38v8y3k05zSbQHUN/TKHnhM4ekdMCa2OlM0wiwxwZ5RAlqk88\n76C0qKbcTUpfTrP792YkrXHwedung4N14gsNdQN9oAp+GTZcaBtUvhjTPrqhvXNDw+lRG/aodfsU\nusbEKTFxArpmk5vtba5/tcnMN8mfmRTTMjLMudPbWQn4hQG6CbqNHmi4jTnOdsJO/Zy98Iz9l2ds\nZhdYUZ9xOFZBef2KezWTdrlD1R1SdYYEyQhtPmIwnjHppWgWCBOm+QwvPuWh+Tuc6oxH2nPqehcj\ny/E8qArFOKk6agCGWwHXyXFFjpmAkagW2iReDAyVIBc+lHBB1IErKHRIM0glJIUStU0inSizmOOi\nWzO8QMdqCComhAumS8PVMX2TWdkknuXIaYq8iEivJekA0gHczGEYQxSrVistAjPOMfMUXeRoZoEw\nJVJHBfI/CbpXtS8WLQB5rhztESQjm37Y4CS/h+FOad3LaP/VgEowwc6glIJsmnBU4roVMHQO6Yyb\nhENHYW+SK12ld45nvvKaH5utcbDGwRoH79vqni3bR0cwN+DGBMtjjss1W9hFxLwUcJvvcJo9QOgF\no6zMcBJwnB9yNr/HNAooDB0aAu4L1Q4wC5RQZ2wuvtjHi4A3Qt3DdOV9/FtscQYW/pvQJbqRYekJ\ntojQswQ5z0jHhRIizyA0IEMiHDArKl9AoTSbiCUikRg5lCVsCEg0NXDVNdTVbJYYN0rEzRJhxSes\nqOub3UNeu/d5FR3RH9QYjSuMRhXmZyWirkchdAhM9ZzRM5iZEHrqwAuhpjKZxt1kV0ODvFCTXZN0\nAc4QknCxd8u1rAT+K86hBCEkup5jWimWmWFLcBai5K4Ong4WUvEoBUghkEKsQG31zH/sZ3/V1jhY\n42CNg5/asoi0WJrAsDNsP8KqhFS1AV5nhtHJSN9Kpicw7SkCYukGSlVwnJSKPaFd6zDzTjF3MoKv\nZwxHVaKaQ1Rz8Coz7hkn7N+eUB/20PMcvciIcperbJur6jZmkfJg/pLdHy+oJV3kIGQ0nJPmAm2n\nw8aOTh4Y3LLNm/YUERXIkQ7niwl5TFF+36eozfnnsNVA30aluUugB+CUwS2DV4KSryRBHAs0CUKq\nboepAxOpisBzAXMdkgRZgEzHYOQK42Kx70tMZwmL8iN3gX7MXSvzXwIjaY2Dz8c+LRx8xokveJ/2\nXQJqEASw68AXgvqjPl8ffscvN/6Jzfk1pYspwdspGBBv2CQbNsfmPr/b+iVZXScLmqShQXIWIAdS\nOSFyyHvaRpqpRq/aBmYgKdcn1Dd67AUn7B2fcu/knObVDaNpyOUkJTHAPeiys5/h7ji49QinHiLi\niEEUcTtPmc3AiEDXoNAT7PSMJ9b/5H7llC+tZ9S8HhjgVxV5xxTQ8KHegFJbOXm6BnIpTpsrUmE5\nU0dtWoCtg1MBfQe45l1CtyhULJ0C88xkWngMqVB1I+oNi/YeyD6kc6WVrpVN9KrPoO4jOzHFZEZx\nmjG/lcxCmIUwTmGYLVxeqdbyjAupwCREgfhZKv2qtsVqwJ/BrICBJB7Y3M7bvMweQiXDuz/Bz87Z\nOFLDPuIQQt9k8rjJ+fYOZ6VHXF5uMu95cCmVkHgco0C4bDdY1dX42GyNgzUO1jh435Z7thTSHCk2\nw40Dcco8driMtgmnHteNXSruhIo7BiGJMpsodeiLGjfGFqHhKj20TU3FomUHrqpwZcPIh2QA0oR8\nVZttWV39E/dyJQ8qkEo/gYKiKEhSSZio6XthAaEGiQtFDWgrHVnNXiB1kaMWJlQs2LOVX2N6YHhg\nutB/XKb/aJv+421uzU1u9C1ujE26QZOe0aTXbRBeekQnDtGJQxpbpJmFdAW0TPB8qBvqPPUy6OXK\nM/E18DQ12twR6hpLJU47LpRg6jRU2g/ZCBjw/rnPf2ZjFniQUmWzM6n+2aKrTHPBtqCkKUJjYELJ\nBs0VaJZOplnE0iKTBrIQK8d9tQ3kYz/7q7bGwRoHaxzc2TIAXAT7ugBdYFopgTOm7A6oZz38qxn6\n05zwDdycwOW1cne2LbAk2DKm4fXY3z7B8mNaB112nAsGUZ2BW2XgVinlc54MfuDr10/ZmlyhJRKR\nFIS2x8XONhe720gDHr16wdbrG7zzKd1JSneaM9cEpfsjGg8K3G2N18YD/MYUYeVwoSM9d/F5htwF\n/Evx8rXd2ZJBumzrKgM1JQNSLkE9gJYHO6ZaDQ20AnSJSATywoZLA65c6DjQKSnHqkgh7UN+y3sT\nCvMUiqXW1Ix3TJmfFBf/o22Ng8/LPi0cfMaJryVwVwP+KpTKsOfALzTq93t8tfsd/9vG/8ne8TnO\nRYL7DwmaXiAfCWQh+H7nK5INk/PWNsNSGXnqkXq+ylzKEeqQLHuhhfKeTANcE6MkKdfHbG5csRcc\ns9c/Y++fLqh9f0t/KLkcFMwtePRNj53RgO1YIBKJMApmmeQ2lFzOJZdTFcRbgGMmVNJTvrTGVCsu\nNW9IPRgiTKU50XIg0CAoQdCC0i5QUWcunysCxzxXXbTjXPlW0xSkDkYZ7B3gLYrhKKCQkOWK7RLm\nJpNFwF92pwQNi909geEAA/U7RhWTQdWnX6uRGDPySUZ+Omfcg4GEQbEYaiTvBhvJZWK3UM6U6gWW\n/8KzaemwLwL+bBHwF5Kob3M7a5NkOrqfcXj/nFLLZXsEcgyMoa9b/LjT5HzriGfFI66yDeY9VwX8\nw0xVWYkW9/ZjZrqscbDGwRoH79tqwnD5xQvMbYgC6GTMxw7RbIvb0TbatkRrFWhtVX2SI4EcC3JT\nI68Z5HVdQWtDKNpEWQPDgrAMcUkF+5lYee1lEhH+JJFVcXdVhViJLlSLrswL0mwR8KPuXCQgdSGv\nAm0QZRXw6yhmh1j4O2VLBb/bLogAqIKowOxJwOBvd/jxb7/kVfqQl7Fa6dwhDw2Knol8qSH/WSB/\nJ5AVgdwSsAl4pgr2cw+u5aJbSyoQV4UayldGPZaCxa3oovZTjyELIQwXP1hOa1qOmV2yhT68rwsw\nFfLOh1p0auiLYmVJg0xTAb/vAp5AtwwyzSLBJisMilxTSYNimZX+FM7+qq1xsMbBGgc/tYW/JHRV\nKTPBtFNKzoSm16E+7uFdzdB/nxO9gpsevOqpRKIloRGBZSbUt/pkMZSbIyaHl0z3AnqywZXY5FLb\npnQ74xed7/jb1//AwcmpyjuHMK15nDvbnD7eJvEs9vvnbP32GufbKfMQzkLJyIZH/RH3wgmbScbG\nXgdvb4rWzil+1MEzkRgsNAv49HQ6/1y2DPiXU8gXurRGAwIfNnw4sOEJ8KWAPYVdYUiYC8RzG/mj\nrrZYejBZPEfza8j7IHrctS8LkEt9vuW49NVAfzm84i/F1jj4fOzTwsFnnvhaLp1lv6qwTbSaRNuJ\ncStzgmhK7WSI83pEcpIxPc8xpcQvwJ9DMB1R13q02zcM3QpDr0nqeeSODqkOmaH6oZZAWqHzKYao\nRNNzdD3HkBlGlmHEOSKEYgbxHEbnOTdWDjmUcqUlZLlQ8WFjF/Sv7hjwomYSbbQ4Mw84mzc4io4x\n4wJ/NCVesEjGEkQCzgzEEJXsHqIcqxnIdCVUlurI2RoUDuArZ9A01KPC0cAywDBAmBqFbpBg06s0\n0fcl86iMOUrRJgXatKD3oM5Npc3NrE0grmi1XtJ6MsXq59gJ+AlkDkgfZAlKuy7h/RJv75c4qe7T\ni5skZy7FmUAOUsiWbXTL0aZLB3n54Fq0aRQRpDMQE/KBR/hWR/xzmcvxHj8Y3+AaOafakcK0hLEM\neDvf5+3pPifTe3ReNYmOTbhMYBipG8OyJePfc7Twn9vWOFjjYI2D92014M9Qe6qpbGDuQK4jJz75\nrUWOpdq0YgtyB6uU4VlT/M0ZJXtK4E4J3AmmnpE7gqKpMa36dEotuo0mszMDzl3kWU2dvXciqwn/\ndrbL4v0WKUQ5jCVZT2cwqnE6OcBMY4oNifvrGa42xpIZDTJMu4BfV7k8qDBslBg9nKBNJ7RLM/Sq\nzajm8LZik891ipmmrr5GXlLXyy83me6UMYKc1qiDlkhawz5FrivhclOj36jRPWrQpYlfnlJrDai1\nBip5LgVSCoYbVXrtFr3NJpadEFTHBNUxrh9iuxGOFxNHFtNhiemoRHhjEZ7pROc2+aikEihhpIJw\n4C7wX+pRLIc+SJWh7ks4h7nvcmru8m3zV/QaNsnjCclwjH6YMLMNbh2DcKPB261D3uQPOO4c0e21\niPqOooSGuUoov3PMfk5f6WO0NQ7WOFjj4Ke2qEAtk4Y55JlOmLqMkzJTo0RctykONOwcqiZs5Qty\nQwyXXbBPMor6nMDTME8TrGSMkbpo+gC3NKDl3+IMIupvj4lfD7g9CSlikDGkUYHo92jNQDMNmrKP\nJyKEJjELsGKVWLDyAksvMO0MzSgQQiClDizyk+/dm0/p/vy5bFkUXrBcNBcMH8wSesPGPshwvhji\nHyZUN0dU3SFeNkPkBaQFeaYxLleYHFWYOAEzw2aeKhYssb2YgLrU61sN6j+c0vqX1N64amscfB72\n6eHgM058wftsFxOw0Wwdo5JjbCbYdojdi3D6KfmLjO5xwe2NxE5hMwStA1qUUqqMaR/cMNBrZLbN\nxKsSewJCoRyeYknb5/24sACkIuBLNKQulPC08a5lWgmvdlQb1TiCbRv0OpQ2oF4G8UAxDDUTdAPC\nwOTp3h4/mr/hdnRAPP97qrMxm91LZmPoJNCRoIXgDxZbUAOa3FUSU/VWl1yRFKVbWpiAq4q0tq66\nvFxdVQZtG3RbozAMUixuqi36R3VeBQ8wwgwzTjGTjFuvzVVlm4vhDg/4AXdnzuP/fILVj4imEE9U\nxbXYgnxLELd95s0tXjZ3eJne57bfJrryKN5oyG4IyVKUMOSPBvwyhGwKckTRL4hfGUjT5/p6h39u\nQrfVpuqP1H8xIU5s+r0q/WmNwW2V0Y8lwjcGXMaqDy1e6mh8mGj4GG2NgzUO1jh435aHc3nn4d34\nblKIfeg7iiKS+lCUAB17J6K53aG9c82Oe8ludsFeYR5wyQAAIABJREFUfoGnz0ksg9TWudzc4vv2\n16RHXxO9blJ86yCHupqEKmOQy/u4PHnFynv6Y+938V6LVAWhsiCzDbr9FnIsmGcu5nZC/e/6tB52\ncIs5GzKkrhcMdluc7B4yaWxR+vKCoHzO1hfXSLdKz63SdaokiUmaWiSJRWqZpLa6ZhsaeVPDF1Mq\n0ZjH/ZdYl7lqy/IFeIJn9x7xtPYl6YMnbDlXPPRf8sB/hallFFJQoPFm+IAf9r5m3K3g2xN2Kmfs\nlk9pOF2q5pCaOWCclbmMdrgMt+mcNejVa6ROjfzCh16gPOp86SxFiz1Rz7S7gL+AuIBuAW8lM9vn\nTfUQmzkXzQb1r89oVM7wRxNGhsPEcBk4G7woP+JZ+oTXvfsMb+uEXU8lDeICsmVVcumk/aUFKX+q\nrXGwxsEaB3e24rTIQmmtSUkam0zjEnkk6DsNZls++Tc6jg8bNlgZTAfqOJ4NwTrNqZkhjajA9UPk\nzCSbmehWj+bWDcamjxaniBcdem/ndM9VTjHPQddyyoMplXFB4Oj42gyrlJDVwMpVIbIQ4NhglFCF\nPEtDFgZFZkBaKG2GnwST68D/zlaLwQvcaB44Hvg+etsiOBpT++WIjYMO93nLkTxmo3+zoOlLImzO\nrV3O9ne5aG1zk29wM28TzX0YOTBy1XPz3YS6JU5XsSP5y/Sp1jj4POzTxMFnnPha3tClYJu6qcLS\nMCop1kaEHYc4oxj7WUL+PKN7DC9vwZuD3lFaD7pMCA7HtOMb+lqDqVWl42WKBpJrEC+pk8sbxx3L\nXIJEUCAohEBqAqkvtCR01TZdpDDowKAPvTFodajuQq2qAv7KA5DbKH/Ggp5r8W31Hj8av+G70TdU\nJ1O+mLyEDswXAf+ZBD+E1pIF3wDaKDr9SsAvWcm76iAXA//0RcDvowJ+21bDgXRbQ+o6qTDpV2qM\nSxVG98oYRYYjE2wZczPe4my4z9nwgAybR7sn1FoGtSHILsge5JuQPxZkj+G84tE1t3hhPubl+QNu\nLzeI3ngUb4SaxpFOuBO9S+/2+CcB/1wF/LlNMdBIXlVIxz7hZZXuozZPi1+gbRaqIGqDTAV5VyM/\n1imOBfnbjOJtDjczlTwolgH/KtPlY7Q1DtY4WOPgp7b8HMtWqyXjJAVmKuBPfaVNFKWADpqLUw1p\nljoc3H/Dl/4zvh7+wNfDH6loI6KaSVi1eG48Iol1zuJtOpsN5MhGPPeRwlgE+wPUDVgmGxZB6r8Y\n8C+ZLos+3UiS6SbdfovBuE43bVHbHrB/cEZsHFMqoFRk6DJjaLU4tR/zwnzMl2WfLx6kbOdjbkSD\nG22TW7FJKF1C6RJJl0g471bD6NEwejTpshtesde/ZO/iEq1ZvJt2/d8af0dmw5m9yT3tLb/Wfsvf\naH+PRUyu5qTy29mA8bjMy/EjSvaUneCMJ8F33DNO2BJXbIkrbmWbZ/IL3OIL9DdHpLbNOGuRFDpk\nAYwyiJfB/hR1/q2VtWS65NBV+zl1fV4fHDEg4Ly5yVeV73C/kHhFl5EImBFwGe/yvP+YZ70nnFwf\nUNxo5B0dBiHIRRn7XWveX4oOy5/D1jhY42CNgztbnq9cfd5cMV2SxCSLAqahSz+oM9/yyKs6rg9W\nCs0h3MTwcginIzBnOXYYsXcTYwlBNhBEA3A9jcYjQfORRiYkpy9yTt9kdK8XzT4SSkbGw/6UvfGM\nrbJAiALNlxRVsOfgLwZqujboJSgCkJZGUejIyIA0XcglrIP9P2wfBvwLpovrQdnDaBuU7ke0ftnh\naP8V/8vNP/Kb6295MHjzrjNrbJZ4eu9Lnu59iWPOkXONcb/GoG+r3xd6KAd5KROxDPiXC/5y78ka\nB5+HfZo4+IwTXx9STlSGUWYGeSjIRiapbpF6JumWgTXRCfoFGzcS14GgDGYAxa5BVHMYmxUmMiDK\nHPJEUxTyTLIizKOWXAhMxyn53GY28OjfNLlmmwtvh7OHV6ROTDaMCIYRzFJEqn6XVdbJD0tctQOG\nVZ/Q8AhdjziyFxOkBUOtyg/yGy57u4y7Fa6NDd4a+7Rb9xk/mOLGE3bKc0q2SW6ZDFwDsS8RBxK5\nKdE3MxqtjKNGTsOBugMlD8KjGqONGmlQZb4/Jfz1hFI+QVg6U8fkyjE4e7DLqXfA28EDBlGVyThg\nPAowZI4pUixS+vMGnWmbybTMpb3D0+AbGrUhFW+IVi4Q7YK8JMg8nSzSuU42OM4OOM4OOD/do/+8\nSvpCg9MEBvNFwD/lfU0LuEvkOLwbuaqV1NJdpLCR0qCYG2SXGlGmw7lUSq4WSl/jMofLDK5SuI2U\ngGw2QTnkS5bLh9PsPraH5hoHaxyscfCHbbXNaim+CUqE24PcBEylWdQUuNWITeuax8kLDqPnlM7O\nCE+7aMkUERjYgUm1dsNW44zDxmuymsmoXmdYbxBXTEX7jszF703uXg9QDsiH+7pK01+2GS3YMvkQ\nQov80iL/3mKqB5zX7/G0/guKso4vZnjMMMh5ljzmWfIFJ/k9tCqkNZtJuY4mC7RCslXcEof2u5Uk\nivGSpBY1d0jNGVBz+wTHtxQvuvSfDXHKEqcBdgMae5cc7b/gr+pldobHtG7eYtzeoGcJGhoGGhvG\na74ya0hLp5oOuT97xeH1K6rZNU7SJU16mG7CZmBglFOsIiOuO9w+2GSeuzB34CrgTo9qstiXxZht\nqwx+CUolqDmItg4bOcURzGoeUrbQxhJrkiEnFpV4yFz4zIVHd97i/HqP4VWV5NiEkwhGiymEqs+L\nf9MUvY/O1jhY42CNg/cSq8So79whzEoUFwY8NeiPmzwvfcF/K/2vPKq9ZGPjlvbeLXYSYudgjYEI\n4qFkmEt0YDBW22hEULsFuwSuAzUB8yboNmSF0hE1N3X0usvYd0ltn4lTZuIEzMsGmTMg2xuAF9H5\n2md26DOtbXMyv8fkOoBbCTcZzEPuGOLLgPMvkVn0H2GrxeCVgrBuqRGuFR2zkdOo9DkoHXNovKA6\nOCN/1WF4OkJmyr2N/ATXvGCvZYAvmJcCrhu70BZqhGx/UUFlzl1R+C+V4fWhrXHw6duni4PPOPEF\n74NXOUoyEWQjHXmjE9dcoopNXDJxdZ3mFOxugVVIqlvgbkPxyGSyXeHW3qCTt5kkJbK5AWHy81TK\nIlUj42RKNrGYdHyKcw3TyGmXOjS+6pE9SBHhgFo4oBFOMcIMY54jLZPJ/RbnBzsMW9t0vTadWYtR\nVEUpuAqizOVN/4jbfpssNOhu1Xm1fYRfGxDo51Sb5+x+GWJYNoXt0XU8tFqBVi8Qfo5xG7JxGVG/\nzPEa4NXBbcDx4ybH2484Dh5SeXBO1Tmnun+G1B2GpsvE8HhdOeJF6THPuk+YXZSIjm3itzZaXqBr\nObpWMMdjJgMKNG432nxr/Jphs4IfTNHrKUaRkqc6aWqSnlmM52UG0zr9SY3RRZnRm4DsrYROBKMZ\nZGPumC5LZ2uZoV4Zu6pVwaiBXgU7UGUATwch4TaF60XgvmyzywoYJzBKYBzCdAbxdPFaI9TDctne\n9bFT+tc4WONgjYOft58mhe8mzpnAgvZdN2FPw9sI2dJv+HL0go3+a5Lv+5w9TTCHkrKdU3HA3J3Q\n/vUlj371HOHonAaHxHWfuGbCWIdsGfCvaOL90fcHd9haBPxMgD6kGlwE8E8Bad/kcmsHsSW5au1g\nGQmWkSBEQWfY5mbUZjivEj9w6Txs8dY/5FH2iof5a+6nb8i6BlnHIOsa5BOdfGqQTXW8RojbnOM1\nQmavpox+nHPxe0nFgpoHNR+cv+pzqL/A3Elwr7sE/3jG7NspepShIRAIau0Tfrmbc7hzhZ+GNMZd\nGqMu6WTCZDLjdjJD1Asa+7B1b4RpCbpem5cPHkLmwo2tErYkqLEUDsqRagJtNXa7bcGWDTsmYk9D\n7BWwLUlbJjNZgo6gODMYnDdxhyGJZpFqFrO5T++6yfzKh6sMrqcwGaCSv33uKKKfIgZgjYM1DtY4\ngLsE8JJNNwZ6MMnhuASOQX/Y4PcH3zA9LHHm7vHXzW/x783Q4xBnBuVbpUwQh3BbqN/Yj2CQg5NB\nfQpZV80XqrmgH0JTKgJjnkDeNEm3qnTrTSb+JmfuPc6te8wCh63WCzZbLwlaPS63tphsbXLr3OPl\n8D7Dsyq8lnARq+9xxqhgcx3w/7x90Amhm4raXxVYtYSG1+PQeMNh/BLr6pre0zmjH3g34Ztahh30\n2NqVlMoFV9Yuz6szFfAPdKXy/q71eNkRUfBxCKuvcfD52KeHg8848bXKTLhzlIrYpBhZ5Nc2seMQ\nt2yiloVuGjS7sHleoOugPwT9EeT7FtOdMjfOBp2ixSwOVMA/jxWNUq5S9nKVAk1TyBLSic+46zM9\nq1AEJo3tHpXtAVolZrMw2ZQp9TjGGYEzLggzk6fNJmeNBzzzvuTYP+R4dsR1tKnayTKBnOkkoUVy\naWEMMnpBg1feEfp+zFdN2Hs44ijqMLRtBk7AwCqjL0XFi4zypaB2nhGcg9gDbRfEnuDpYZvnO0/4\n78Hf8eXD73lyoLOXjpkTMBBlJqLC6+F9Xgwf8az7FckzC/mtRvGtQKSosaYaFL6mVknjpmgzaFb5\n3vkaqxpjuiGWE5N3DJITh+TcIbs2ybs6eUenuJbkVzn5ZQ6zSLVZ5WN+ynRZjkO3UY1oNRA1JQpl\n1ZWD7gooCXVPrjO4ilR7gNAWkwhzyOdQhJBPoRhBsUwuRKgEQ8z7FNmP0dY4WONgjYM/bqtto8tx\n1ysBv+1Cw4J9gdsO2RbXfDl8Qen4Fa9+n3P2/+bIS8mOlmOKAvPLCS33koePXISjEwcut/UtlTTI\nNZgvGC8suPr/oq0mrgXqvkzUe00knAN9h/S1x+XBLp3DDYzdDOFIhC1Bk2SXBtmVQTHU6CRt3lSO\nKO2NcJKUJ+lzHsev4FYgj0EeC+gJZA9kT6DdK9DuScR+weuXBedPC17+DtoFbGugaeAUPQ53Eu7l\nl8yvQ2a/nTH7P6aIiZqpZAC1L485/PUFNetbrKlEP80wznKubnImXcltp6C8G7L1qxGH4SnansWL\n5kPseyEiFcgXFpg26vwPuZvU1AB2wC5DS8ADDfGwQDzI0O+nUIU0M4lzj/ltQP9li7ff54jrYtF2\nLShCjfzKIL/SYRBDOoWsA3RQjvMy4P9UmS6wxsEaB2scLP0kgfrumwCWurw1YOrTmzeZ2AHPdh9z\n427gN2c8yl5QC7u4t1A2YZpBnKu6VQSMCzVsJ8hgPoW8o1BV34bKFmrITaheclIxONmqcFXb4VXp\nId+7v+R7+xum5RK/+eJ/YP1S4hzZXBiPeGU84nh6xM2LHQZnVfhBwkWyCPhHqPuV8Gl/f/8ptsp2\nWbR5rQT8Zi2h6Xc5Mt5wGL+gfzmm833I5B8WshgSnI2U+zs9Dr4aYeyGPDefUFoG/Fc6WKuae/rK\na34MtsbB52GfJg4+48QX3IF3SQkfqctlgPzRZpTVeC0f8vf+37Dl7OPvzvF/GSIMSbZrku4ZvPLv\n82rykN6LFrPnHvE1yPkc8gnIGcgIFRgug34DmIAcQKhRXPsUL0xmaYnrzhZe9xFx0+Ha26HlH1DV\nRthFhqWlxMLl5eiIl7P7vC0OuBxvcjNqMJgFylHMNQg11ap0JhGTnFGpxLm3A0AhLEJR5UbsMyoC\nRnGZse6jmwWamWOInLo/oH4wpJoPydsG+YZO2jb4XfXXvBBfcDa8R2BPqFhTqqUpM+EzpsyEgOtO\ng+G5R/gcstca3OgQ6oo5YrFQAV8sG7LIJLs0mQsf3U8xrBjTSih6kF5oZOc6sidVCWCQqtWPVDIl\nXY7gWw32l20YCyAJH4wy6FVEuYy+YaJt5DitMaXahKA+xZIh+WZKsZ0RjwwmaYVJUiaeWzC01UtE\nGcqpi7mrDCyTC59CW9caB2scrHHwL9sysP6Zz7v4rtb0AlNLcfUQV49xcrBmquPKNsA1JUUmMaVE\nRyKERCBXhquuUryXCQaDO6bNH2slXQb9CcoZ1ZW6a6QtyJwpqamRSh2mOngWuKYaRxotXqomyX1I\ndJ0sFYQ3DsU16Fcx4RWElxBeoc7DaHFdyD0xhOkr0G6gNoOKrSavOh4IP0eaMYUQFGlCPEtgUGAY\nErcJbgvsZkIRJkyegTcDvwtWF4wByD4kfchLoI9zvBl4SYilJehuhnALMHWktqJFgQ+mBa4Lro29\nV1C6PyF4PKF0b4IfTPCTKcY4oygMCmkQFh6DUo3+To2Z5pMODLKBSdET0ItgNIXZBOiiWC6fY7V4\njYM1Dj5XHKyyHpf+kgGJDmMDpE5e9gjbBmGzzHmwy9PwaxrmgJ1GC/2ogydvMS9DJn2Y9CCO1Akv\nAYEj0DYMoiOd3oZH32sw8OqEjoteztDMnHngcurvcTre5XhwwNuLQ66vNgn7Lqcbh5TbE/pWm9P0\nHqfpPlfDLcZPA+I3Ei7nKmEZLYP8ZWHMW3ye5Xf6h/aHAtHVFuOP6X6Ln/mz4KeB/rLFWoJUAu6q\nbquRFQaxdEg0B1MLqegarqFI8nkBphR4wiDXLRLdIREWea4pgapcqt/13jP0Y9rDNQ5+uh/L68dy\nD+FzxcFnnPhaBe6yR3kAUw3OVAWzn9T5XvsFE79E0+hS2R5SKY2QhmAeeMzLHtfzTd5eHdK9bhO/\nsMhOEopZCHLI3VSiVbE2gfKUTIgkXAGZQ3JrcVvfIG/odFoblDZmlDanOOUQoygwioI0NejOGnSn\nDXrjGuOeR9Q1YJRCoYHUFKV/WMCwoMhyxroP8TbzbsCg1OJN6SFVd0SY20S5Q1RYaL5E+AW6m1M3\ne9SP+tS2+sQlh2ixTot7nMT79K7aXFVG+OU5ppUQ4qq2LTy6vRrz5zryv89hJGG2aKOqAPXFWg4U\n0lBO6DHwFgo0ciyk0JCzhGKYIEcJzDIIMzUGZB5DGEK+7MteZuqXCRW4G9ntKkVDuwx2DW3Tx/yF\nxPo6orY7Zs87Y889pcSYdKqRTDRG0zKnkwPOpiXiWxdemvDChbm2eC3Jp9fWtcbBGgdrHPzrbTXo\nX7IXC9XOu9z+BcHOCMC3oaapIQ1VFwIP4oqGcExiXQlkp4VFkYmFI7DQv/vJfVyyWFb3W/7M+wLl\nsIV3PysKyBKIptCzILVgYIPvg+9ByVADHRpqyS2h2IiZRnYuSH8niH+vhkp0Rmq9I/tFKB9xAJyD\n3gWnB4cSqiWobkBlA9IdQVIRxJo69BoCHXDaUP4GKr+EcA6DKxh9B9VIjT63FzoRRbHY7QV5VC66\nqYSUCK1A0ySFJpFIlKPmACWwTWjY0NJx74dsP75g78kJW7VL2vMOrZsOvgyRjkbh6PT0Bs+3H/Ks\n+ZiL7W3mT0vM+z7FWEA4gWy1rWsVdx9q3H3qtsbBGgefIw5W2fEJKtknIBMwF+rG3ATwtgROiUGz\nwe+db5jZJR7W7vH48bc83g4xzkLiH1SrVxqpcNsDAl/DPrKI/tahv7HJs+GXPBs9oStbWLUIazMi\nDQw6aYvObZtOt0XvZZPZG5esb3Jp7lBkGqXLKYNZjeGsyngYEB1DeprCbax0jZKlD2ah2OBi8Vng\np9/nq4Hwz+3Fh4nwv3QT/PQzabyvZ7Qa+MNdl0IBoSQPdWaJT6+o0zJbBF7GZnWK01QqHkUKlHQ0\n32PulBlYLUZFQBJZixplocYT3o1N4uPCzBoHP92LNQ4+FhysE18UKOBOAR0mJpx5MJT0swbTUomX\nrUdUtgc0djo0HnfIDI2RrDIsKkxPAqJrn/DbEtnLFM5D5HysAv53mjurTBfJu22PgGsHumXiN2Vu\n/Q36fgO9naM9KNAfFIitAmFJhAUyE2QXBtmFTnapkV9lFFcZ9BOQi6ys1FRjbV6Q6wXj2GM2KnN7\ntcPbjRyjnaHXc4pQIEONIhGIKlCXaLWCeqNDY7NDrd5jqvlMtRIzUWLWC5h1y8x6AX6hgn1ZkSRY\nxNhE2HR7VWYvdOT/mCl2S1mHQEJTwA5qCZRvlALXwJlacq6TpRoiNSDLkXmi2reKSDV1F6lqtyrm\nahGurKVzvKwMLwJ+rQRWBfwaYtPC/GaO819m1I9uOdJe8AvtO5p0CQuHMHe4nm+R9QJ6vT0Gr131\n8L4CbpYPxuVZ+ZQqmmscrHGwxsG/zT4I+otccbpjVQXDBEoq4PccqOmgLQP+CoiyhnBNEt0hlC5J\nblKkCzZKXqiI9t0UPYM71suqw5XzUytWFrzT7CsSdVbykRobPfTA9BelVRNqKJ+vATwGmoLCE+Sp\nRnaukf6jIP6/oJfBSQbHyy6m5UsNeFcU3MlgL4NdqfSz3U1wH8B8R1CUNSKhIxdaRu8C/l9B83+H\n6x9heAWvvoN2Ck4ArUBtR1GoY1hItd1qryRCFmiiQGgFQiyds5X2XtuEug33NNwHc7YeX/Dki+95\nZD7n4NUZB9dnVMMR1AXU4Ky2S2n775hVbSZdF9kXJE8d0jEQTSC/QbV1TbkTxX33hv6Uw/QR2xoH\naxx8jjhYnquEd0nYTKofRzlYOTg64DPYrvP9ps/LzUdc1TcJtuf8yn1JcHxLL4bkBNKeSk+2gVJJ\nRxzZhH9T4mJjk3/68Vf81x//C8fpPl59ivtgiihJpm8rTC4rhC88slc62VsN2RNc5tt0Zhto1YJ8\noJMPDPKhpBjNkOMZTOdQxFAsE8jW4rMsQ8GlzuuqLQPfnwv4V7//P5bEzWow/yGzZVVPcPnzRYKn\nyFXAHy0C/tSnXzQY6i1q7pStapdWE4hARpCUNDqeR9epcWO2GMmAeDXgz5fSIks/6mNjzq9xoGyN\ng48NB5954ms1Y72gxGe2moqT2WSXHtkLk7kRkFwaxBWTWcUj12GSuUxSj+TcoXhqU7zS1fSz0YJt\n8m7851JrYQmigneiq1KHxIREIKMpaaSTTnWIdVUaTQ3o6eAZapkCPcnRKxmWGVH1B/i1Ac5oRoZF\njkWKxRybUNpkmk6z1KMZTKhaM4opyBjkNQgbNAdwBGM3YOyVmQUuVW/EpnvNtnXBXPOYLVbo+oR+\niXnssxOds3N6xu75OZmuk+omqWFgnu8Rji1uaGLWcux7U6x7c4L2lEprQrk5Vjue62SZzrhUYeDU\nGDg1sisDrgWyqy3GcM+AHir7vjKliWixYt6noy7Bu0JZtTyoObBh4d1L2N28ZLd5wj37Dfudl2x0\nX1GbDyiEjdQcyvqcUC8T1gP0VDI7LjFtBcQdExIbEgdyZ+V+LhM4H7OtcbDGwRoH/zpbrewtpxnN\nIXbUZJozyczxOHV2+V37GzabJZJHM5LuDLOXMQ4MZKAz2NvitHrAyfyQy3CX4ahGOrNUm4D0wKxB\nrkOeKcdMxihcznn/fv+h6tiy1Wv5d4szITWF68yAwoENA7EDxn5E86hHc7dLvdlHM3PELMOcxRzJ\nY5yNmOFXNbJOgt1JqHdThKc6aIUPIlm8rRgaJtQMKEvVXTaJoN8DLnNEOcW2Y/JJQb5hkP6di/ZE\nkD3WmG9r5JcZjpnSyFI82yDbtugf2IRFhjNO2BrHOC2L5IHP+b7PRXmHYVIjvXKQVwI5yiBbzNBG\nAI7Sj6ia/H/sveeTI1mW3fl7rhU0EFqmLtXVzWlyhqSRNBq/7Z+8ZjQjl9zlznBUd5fIShEyQyGg\nhWv3tx8ekIHMrp6eIXt7qqtwzZ4hAhkJB9zfcVxx7rlsC+zNlLbf50iecTA9pXJ7S/H2jmg0x6iC\nWQN7x6Tx9Ird1hmTaoAWCCIvIHIs5expy8T9aoXyp8h6XONgjYOfOg5KPvjeLRfBfwj0NNB08swn\nz0zmZZ1btrnwj3jbfs6GkGT3UxrzCeIgoy50XE3H2jPR9gWaneESEVSmVHdGeFmb3DEYxC2y1CQe\neMQDjzyywJNwIKElSWs2qaVBIlT36T0wKFTBTORQKcHQVeur7kJWKMZFlkFqQCYWH0lbWfrK48fY\nX65sZf3xWpb+afZxYL/0TRei3Vg86AwB71mTi+cLodyxAWR3Jv3bNqe3j9A6JbnvUD61mTsNRAoi\nkcS+zbudHa60Xc6Gh1x2D5hdV5QEx6CAeOnHLYuIP7Tz9Y+1NQ7WOPjTwsFPOPEFD5nFDHXiBZSm\nCrQlcF+FlwGMArKqTuj5lK5OKQqSAvK8pBxlyFsdbk3F+A6NRVDooUqJyeJYi9d/7yyEPCQcQpA+\n5BZgwcSCK1u1SN04ELhQcdEaOuZuiv04IqiN2Z1fsjO/oBH3iXGJ8ZgT0C07dGWbuHR4kp/yZfYN\nT5JTinvIr6CYgnEAxiHIDYOzzgFnnUOuW1u8MF7yQn7H09lrYtsitixizWbq1JjUa0zsKjuXN2xf\n3rBzeYO0NApHo3B0nIs/Y5w2eNv2sB9l1D6fUPtizkHlkmPvjGP3jFITxAtmzOn2Md8dvGDWc8hf\n+vBrDUYC0gzkUj9izkM7xcc3lnzxb6uZaYOHKqenxHaPNILDGY+bb/gz439yMHqF98097t/fY9+F\nuIaBaxjUmhHJE5fysYbdibja2Odqc5/k3oKJDdMAogrK+V7uH/hh3dT+V2yNgzUO1jj4x9myurec\nZjSDyIauA29KxlaNV81n6KTsbuzS+PKaeu0aZ54Q2g53tkPX2+Wl/5zvJp9wcX/IqNcgmdmQGEAN\nTA1kHbJcOWRFhBIRWrIntY/ey/LnVVs+L3hwykqU81IBo4HYNtC+BOvLkOPWG37e/A2fVF8i5iX0\nS7RZTtPpEfwsYvBoA341pfX3E+qDDL0B+g5o2yDGvNc5qhZquQX0S7jvwf0MqllBK0xpjUqEblAc\nGGS7DnLPYH5skHkGpRVRt2cETq6mzn1W4+7PakgzwQ/HPApz0opHtLnF641t3hSP6E42iO89yhOB\n7KWQJR9+VtOCqgFbGlYrpaGN2R9f0xlcE55OuPguQ9wpRpLvQnSYYhkDdnfOiU2f1HEZVDuMazbk\nmrqvfaB58VNkPMIaB2scrHGw/D5eMhEBcsWDl4YcAAAgAElEQVR4HEvFWsxqkFUg0ZkJj4v6Hn9n\n/YzDbZP6l2dsVlPcSYGhW+iajebr2C2JE8ZsyD5HzjmD468wipTbfIu7uy2iWUDeNSlHi8B0R8Ae\nIMWDezBDXZoMiAW4lmIzuib4JfgFWCWEy5WpSaoTVND/ftTCci0D4eV1LnkovK0+rrYhrzL//rn3\nxiqjZfl5bBTHyF15dBf/tpqwWCR1cw2mAqQgsS3u320gLwQzUWUS1Bl+2mDjcRetKNHyklh3uKgf\ncCEPeXezx83lDuPTGpxKJcsRLrVSl1hdZQz9KdkaB2sc/Gnh4Cec+FrNKqaLx0Jlq6VU2d9uqujr\nbyxy02Zm+IRGAKSURYQsQmQuITNVFSwXUOpQLkXyllXJ5Q1hyXJZVkkj3qdOpQO5C4ULqQfzAG59\nsAOoC6iZiH2BuZ/gPJ5T/2TAYXnOp8XX7MorplSYUmEgm5hlTlK66KnG0/sT/kP3v/Fvbv4HaRfS\na8hPwXLAOgLZsfibzZ/zN5s/R2+/4NPoG34Z/S2/mP2KrNTINJ3U1Bk4TQZ2k0G9xdbbLltv7tn6\nb12EJ5GBgIpgPq3wNnuB1vZwnoyp/2LK1r+55jPr1/xZ+bf8Uv4dhS6Y6T5Tw+evk18yDx1OwkPi\niqO64r7TYJYBM5D3i/Ozer1W6ZDLtXS+VgN+TwX8bROOBMHRjCfNt/xb8//msPcN068zpv9nhva6\npGkL2rYgO5pQmhra0xyjmSI3NIabTUZ3DkgLYh+i6uJYy+TDn3rQv8bBGgdrHPzjbbXKtwz4XehW\noJCM/Sovj5/SFQ0ONvZ4Xn/J808s8mJOqAXMtQpX831e3n/Cq/sX3F5tU/QM8qmxgF8NrGDBqMgX\n7bpz1LWEh/O8ZFjAh44VK3+3dM5WtROW/WcNxE6O9vMc+z+EPNLe8O+0/4v/KP/r+8nk8haGB1WG\nz6r0NzepOxqtXkr96xlmE4wjMJ4Dd6h2XQP0bLFyiEO47cOrEA5mBcGoxL9L0T7zyL9wSD/3Sas2\noW0ztm2q1oSmU9B0QiabNnef1bn995t41TkbaU4nndIzPF6727xxnvP65gnd+03iE4/yRINeDuky\nQbxw6iwbagZsCexmSlMMORhf07665s1pweXLgvBS6U/VNTC6KdZ2n50vzylbLgN3g/NqAjWhNO70\npQO8mnT5se/577M1DtY4+KnjYLmnlj7NQlMuzWBUwCSHMIdEg9Bj7vmcH+2DlRG1Db6sZTx/ckez\niJibFqHhIxJw+iHVfoge9TnaOCPZNNBlRnGq0z3dIrr1kTMNORPq9O8Cu0K5Wl3UPnyHis9TFOsl\nsKBmQktCXaq2Xk8uErUShouW4qSAuUThzEYliJcMEJMHv2PJRp+jgtaFxtMHDJjlnvghsACXAf9q\nB4ILVFj0Oq88Wjy874UPxlyxT2cahJAKi+7lJsPtFrf+NsPNBvePWnRqd+iyQJcFSeZyNnnE6fgx\nt7c7ZO8s0lMTTgvFYi1ifjvg/1PE0BoHaxz8aeHgJ5z4WrVVSnyoMsaUC0KF+mKXIkDqLqXugm2p\nUp5XgCPA0hB2iUQolkxmQ1Qq4Mx1SGwoLZUMkHOUo7jMBC8vdgoy471aabH8fxIaEnywminbtVv2\nKhfsW6cc9N+yO3hLe9alpvtkhsfYapHXbKbVKnpN0pwMaSf3dPpdxkMYjyCZgDWEWg/snsGRe8a8\n7mKUKTu9N1hX18xuhghXIByB7WrUGwl2M6TemODMxmj3IyYXYzQHNA80HzInpHBz2Nepbs04bFzy\nwv2a4/lL6vdnFL0bNCnwDA/bcNkOOhxWT3jS2qa7ucO0XWfarFGkAlINYhOl2bRaqV3NtH9MI10F\ntQG6DrYOgcDwCnw9pJmNqM+HRCNJ0lNSFb6lOu3wTez5hKocUreHePYcw81VEtzUQVvN+H/c5/1j\nsDUO1jhgjYPfacvzvRRoi4E5ZA5MPZAe2aXB+DuPtLoJOwLDBGlauCIkLH3m0qMbbXI93GU0bpCW\nFlY7xf1kjrGbq+l2QlJmgmRqkUws8qkGk1TN+o6XDgs84BV4PzACHmjsS0HwCogqSrm7Dnhomo7v\nzvDrEzrNO7a6N7Tvb2l0u0TXEN9A3BNIUWAHUKlrWFkCRUEilRCtmIDogRwqYqKMwMzBytVjnoAR\nQTUEawClJgkzSbZVIESB0y6YGAF3yTY3820C5nS2+3T+rM94q8JNZYub2QaejOnQo0OPQd7kJDzm\npDzm4vKAwdsG2WsNLjIYhpBPFtdpUbmUUt07cvUjBkhbojlSTeQuwcnVaPWKDtIQJJpOKQxyTIpS\nV9T+9wz8P9Xg5A9paxyscbDGwYMtC1ELXMgY8jmgw8wC0wPpk9RgsFFDa+xjbBeYukTTbbaKG+zJ\nHDueY41D5nc5STcnNSLMuMeuYSI80DSBXcnYzm/JKwZ5YiA1gdVKsSoZmiNJWhaJaRFZLtO0yjSu\nkng27k6o1laEW41wqjGmkxJPHbWGJtFpQmi6xHJDtcZaFpgm6Kb6ztcMkCWUpdL5iRwIvcWgnSkU\nFpQGDzIMy/OyTAT8c9jHbV2LKacEYASqoGoH4Pjg+uB66jNLqVaWQqjDfDGEKTMgy5CzhOxGI/vO\npMwDbgcblGPJuFFDFwUaJWlqcXu/y32vw+RdBU5T6IcQLyanv9fGS3nw6/6UMbXGwRoHfxo4WCe+\ngA8Bm/BAU4SHbGeKSg8vJrTt2Ipa2QJR1xB1EFIiZzpypkNPhysTrjwYeyqizLRFMmGZGV+tmsJD\n9UznPVBMA5oaHAmcxzFH7Qt+qf8Vz8dfYb/sY3/dw76YUnMtbMcirg+ZPavQe9aibGv4kznmVUb5\nBiZ3cD1XbbU7YzCuwAtKOlqf58FrGtUB4uyO+a+GfPsbNXLcNcGxSsznMd4LqL5ImY4jeqOEyRjM\nmWLRmxbc7cGsA+U+NDsjnpgn/MX8r3HO3lF+c8/JNwVuKvD0GE8rqT/pcvT5W8K6z1kw47JxTLTp\nU6QGTFxFjc1LFChWAfH7xO8W51ho7xPbQgetkOixhEiSZGroXyrByMGUYKSSNM/RZYJNgqHlaHqp\nUKKjXu93Tvb4MdgaB2scrHHwu22VbbcM+DXl6MQOSJPinU9qGsixR6+9gQx0RkETy0hJc4s0txQj\nUWuT6A6mk1N5NKH6aIQrQjRKdFGQxhbDfoPRoEF+Y8FpDU4NiG0ecLHUe1vug+V1MXigrHsgmqA1\nQDRAVkA6aKKkqk/YNK7ZF+e0b+6w/m5O/JWaWtcbwyCUVMqIQAq204TkXUg8jhkXUAyhOFv4eXMo\nZ1DMICiVfEalhDKFeg6mACcBRtDPQOuXiHmKU2pEsc/p8BG/Gv4Co8ypH4+oN4bMpc9AtOi/bGKY\nBYE1J7BmhJlHf96iP28xuKoxelsjewvcRTCeQTZeXKtFYqYwldDuVFJGGolvMWt4tEKXai3lyJPI\noMCpgBNAuKMzrXvMzCaDssk888liAyIJ6cLR/ckOdVjaGgdrHKxx8KF9HyYMyGYw86H0yM4tJrZL\nmW6RbzvMqnUuasccJqc8vf6aJzffYPRDBtOM2bSkDDKc+YhOUVLbiqlpE/a3L+htt4hyjzB3kblG\ntZxRK6foccHIrzGsV7nf6HBuHnNuHpP3GtSPhnQO79jYvqPt9Gg79wTmjEHSoh836U+a3FZq3Ikq\ncd5QA3lqhsqCWhpYumo9zuVilXDnQjdTHQGJpwqUqYEKZOGfn8X0fW1dHsp/bYJZgZoHDR/aDmyY\n0LGUX1tKtbWnBtwZavhSv1AtXtNU6a/emCAN8p5k2vahtcW00kCIEiEkRaYzGdZIhraaiHE9g9EU\n1ardR7Vrf5+20Z8yntY4WOPgh4+DdeILeABqufLzkoGy6lRZQBV8U1EqPzPhsERsF4jtQv3XvoEc\n6HDqgOWrvuHYV4yNQqosMSUP2c3VlqVlMGvwnjpq6tDSVcD/JOaodcZfGH/FL0Z/yehlxvg/ZyS/\nLmhXNJoVAds1+kWL684OUdv5MODvqj13XYAxhsYVaFpJ2+9R60w46pxyepZx9j8zLv+L6ixrCklD\nlzT/fUxNT2luz5iPS/rjkjcjsKQi+zgC7lowC0A+gsbGiKfmCX8+/2tGZ2PO/zLl4r8W1OaCLVHi\nk1L/d3ccVd9gfVFi+wVxw+dmY49krqt2t2mVB5aLWDk/vw8UC5ALAbpQk/U0EAXoi/HjcQrjEkIJ\nRgFmAU6yCPjLBFvEmFqG0KV6DU2o1/veqR4/FlvjYI2DNQ7+YVvS1ZdOnVSsxMiERKdMJemoRvbG\nI21UGDVbXLQyhCWRqZoeWjg6+YZJvmHgbocEOxM6e3dUqyN0CgxyotBD3mrMbyrwNgBpwH0APR+F\nleUkz1XMLit6y9HcFaAOogPaxiLgN0DqaFpOVZ+wY1zziBPa113svw5J/rPqlDrL4Qp4UsY0ZMp2\nNuHuXcl4XHJXQDyEZArxFeTFYpWqg6ANtCW4UvFqtlD6pVEG/TG4/QI/TPGlJIx9TgeP+R9X/5bc\n0wmOJgTtCcmNw+y7KrNva5Ro6EGBXiko5zpZ3yDvmeQ3kF+V5O8kzGKVcciXAf8i8VE4EBUwkRSx\nRmxYzBouWepRq8NmkGNWCrQWaG3obetc1n2mVoOBbDLPAvLIWBQkV+9bP/WAf42DNQ7WOPjQPsaE\nUHqlMx9CjyyvMk095vcOg51NzrcfYe2kPJ1/i/w6YferV/h3IcOi5LKQiE7G43xEx5hRpcf+7gWz\nHY9pPWAsa4xkDRnqbNz22LzrYcUZV/Utrrc2OTGPEKZkYLWYDqrUnw7Zf3LOo703HGlnHGmntESf\ny3Kfi/KA8/khgqfMZy360y3YELApoAO4AjyhcsjpYiUS3kjQpPLthK3wny59ghy1WcqV8/LHtu9r\n6/JRAf+mmnRdd2DHhUMDHmvwSCiHL5fqdtIDXjnKwSMDOVe9y2EOtzb0bQrHZFoJCCtVNFc8HLaA\nfKpRTDWY55DMIO0tXnSM6qVenYb6Q2iF+0PYGgdrHPywcbBOfH1gy4By9Qt9kSV1DKhpUAX3OKT2\nbEzt2Qh3K8QMEiwzUdnNlkkRGMzNgGHZZECLOPDgrgp3udpI7wXxMn47iF06b6hjazrYAioCrVri\nGRHNdEhr1iPuQ/8OwmtIF5OFzEInGIxoJj2mukdQnaJv5+THGoYrCSxJfQTOrobcFyT7GnQkZpCg\n6zFuKrEmEr0LlgBHA1cHZiZR4TCwHBI/xmgk1DZiLKG6qGwNvN0Sey/H3EtxKiGBO6UphuRJiDmG\n4hbkXKJrEluAN0rx4ohAzHCNCNPMEKZcBOirtMxVHYnVx6WJledXmEl5CvMChpJ0ZDFwm5yLA7LK\nlHhvRvDZDLeaUtEEpqaR7ztM9hvceDtc5XsM4wbpzIKpVGNX81Vg/pidvTUO1jhY4+AftmV7lVC9\nTXIKpQZRicxL5Kwkndqkk8WgAudhYo7ZKnD1EK8+p1Xvsa9fsD8/p5EP0MsCvSwIC5+GMaG6NeVO\nbjHrVpheV4nnDsSuWpnL+/bgDxh4Gorl0gCzDc0GNAO0mkVFTKlqE+qVIYePTzhsnLMjrmnmQ9wo\nRpuqFi0nA1+Al5W4Womz6Gy2deU2lZlaeQTGUv7CAiNVydReBjVUjtQVSpt8liupwHpcYsc5Viyp\nlDNaRp8d75rCFATllEo4IU9MYjxi22Os1xhWGgyqDdJER04KyosCblLoJzCJF5pGhXoTwgDNVau0\nYWLCO0EUeFxVd/lq+wsiy6O1M6D1+RBnO6FsaJR1je7WBmf+Yy4mx1zHu4zuq6RDXentJRkUS4/3\n4/2/xsEaB6xx8JPFwaotMZGADKGYQGEgZyX5fQ1Sk7RwlMBoXadJj8jz0TsCMyuQIxUb5l3J+CJn\n6ObIJCEbRJT9CVbdpqGNCEQFEWt4N0PMmxEizailCZoIoQHX9j7BzhS7EdJpdHnEKS/G39KM3hHE\n7zDSIQ0nR9gxHhGlZxEdVon1Kn5zTtCa4zVCxRS3UO2xEmQpKHPByK4zrDQYNWvIa5vyXQV5hWoD\nk6kKjoEPOwn+WLZ6D1gmwR3QfTADMAOMDRv7sMB5NsE7SPA35/itOZafvXdDU9NiXFSZWBXCqkV2\nUpIVGmWmK32iNEOGGnlkkE8MxQgSKMCXEsJCyX2kCSrQ76PQv5T6WJWu+LHZGgdrHPwwcbBOfP2W\nLTeJxgeZ0aAKew4calSfjHjy7BVPn76ibd8TzOf413M0oySv6uQtg2t3l6/ML/iq/jPidh2+8hU9\ncC5QDsOMBwbNKhiWx162KS3YGgvAUQBzKCcQRzAuYFiCk6p36k0K9HhOLe+zZdgEOxO0IidvGgQn\nJfunBc1bSfBEx3xiMH9sIDYkYlMi3RLNLqjqBVsUtHRoGdC0YO4FDII282oLbbNP7bBP45MYwwDD\nVuvdi5L64xR7J8KwU3Qth4UOqq0rBzLQwNfB1yDRNYSmNCRyaVCWGvJ9rmWV7vi7mC0ft1stbywp\nSnnPg6EHlyWh53JZ2+VX5udMtgSVzy/Zti/whhmmpWOZBqNmQP/JLq9qn/Iq/Yzr2S7zng/3UumK\nZMspen/sm9c/h61xsMbBGge/25bnWKD271T9XiaQhyAnahppaUCkg+eCXwVPw3YSNlq3bB1cc1C9\n5Hh4wqPLE1qzAVqmJuHMHZ/d3Rv2di+52D3g/PARZ91j4rQC9yb0lwF/iqqWrV57ABdEHew2HHjw\nwsJ4lLNl3XBknXDgn9F+ek9rs8eGuKNhjfG9BKcGjVC5IV4BGz74GyAOwblUjPhlunq5LEcVDe0a\nTCcwGcN9BplUPo+G0o3to5ZeSBppiRnCpt3ls+rXlLbAmBRUB2NqJxPIBDkW2Z7FqX/E17VP+Kr2\nKWNhU7yNkf0E2Y9hFi3EUZdMnwZojqLvmwFIFwY2CJ2pXuVN9RnZpsmZf8zO4TU71jVeHJJ6Fqlr\n0bPavBVPeHP3hKvuDuPLCklvoS2VJFAsB3Us9/+PMWD5p9gaB2scrHHwoS19mYXIN2P1XJ6rAlRZ\ngh9A4oBwEHUwbbAPwLkG61swvoF4Bv1b9eduV1LWSmQtx/CgagiqeoaZC6bDkMEoI6fAG8ypjGB3\n16Ht9AkaU7zOjM3ojic3b3nx+lvi+xGz+xGjaYTbvGezlbJRm5MJh+jARR7BnvuOPfcd284togSt\nBFFCYQlKU5AZOt/WP+Hl/guiT1+Q/50gx6O4t6HIoFjoHb0vwq0yOf7Ygf8y4HfB8KCipoNb+9B8\nMab15ZDNrS772hV7XFONJu9rjSO/zpuDY95uPOJme4OZ6TAPbZJQqqxMPFNYyBb+V7bir0rURNpi\nOcRpulgzHgq+P2Yfao2DNQ5+mDhYJ75+y1ZpgRZqwkFdOWv7DvxMp/pszOPD1/zr4//OUXRGYzKh\nfjPBsHIyXyNt6ny7+SlpzeJs55hetQ0TH84cuBeoC77Mdq62L31crVwE/rpQRdJlwB+qgD+KYJxD\nX4KfQiUDMS3Ro5B63keYGpWdKaKVkz8yCDo51aCEGmSf62SfWcyfW2hWiWaVUJboVkZVL9GAlgZN\nExo2nLsBg2CTi9oBe5sGe4cJ+6M+misRC5bN66OC+qMMayfCIEXLC8glhqmYMD4q6Pd18A2YGQKh\n6eRiGfDrCx9KLgL+30el/zjgX95YFk5wGsEwg6uSqOby7nAH2/qMtC343Cp5unvPRjYldXQy12Ds\nBPTtXV45n/D19WeEswph34P7EtJiEfCvVjl/zLbGwRoHaxz8blt1ZGLUBYtVda+Yqtai3IbYgrEJ\nQQ06GjguthOz0brjycErnhvf8fzyNc+/fk3noo9IJMQw73js/et3vHu0TXvjHtnVuO916EVVkCbM\nFkLiRChALK//Aj/CVS1ddgf2dfilhvEvQza9Wz71fsPn3m9w3AjHi/GLOQ1zQuAn2FXVlmVm0CyU\nX+pvAIdgfwdVTx1tdXB3xYVKEyqbcGrCJIP7iTozGko3bgwMULU+v5DkSYEVlmzaXcrq1zSsHm4a\n0zwd0/h6hO6XyG0NuSf4m+YvyOtwWdsmmvikYkY+mEMvXAgrhShmTxOog1ZRQrqOp87VQIORxpQK\nbzefcnW0RzvocnxwwtHjtwTGlEjzCHWX4bTJ1eUB7873Gb6pU1xK8nsJk1Alc2TCQ/v3T5nxuLQ1\nDtY4WOPgQ5N8MCSIEkggz5SmQKyY6yQChIXWAONAaas514ppaFxC3oPBLYz6oJkgjALNKKmaBa6Z\nUTXn2MAgKrmKC2a25PFkxtY8ohKZtB4P8HemeLUZm29ueXL9ludvX3J6mtM/yen3So73Uzb3R7QO\n+0TPPGbPfcojyed8xRd8xfPyO7QQtAi0WJBXBHkgiH2Lyv6IMLc5zQ4Q2Mg7j+JrW/kb5RRVMF2y\nw5ds9T+mv7C8FyyHW7gKD4ELbQdrP6bxfMzeLy542njNF71v+KL/DZtRV711Da69bf7fjX9J4UuS\nPQM5b5NcVUi6GjCBbKLairNS9TiLZXfEwheTqaKEqr44HiacL6UrCn68tsbBGgc/TBysE1/fax/R\nAgkQjo3eEWjHCdWtMZtml8PhOXv9M8zTGeZ3M0wzx880jExj1qqybV7TaXcZ7jRImzapa1EYi+pn\nuRrka3xIFV86kgsefZTDSFIMdSZehRt/k1Zlh2g7wn0a0hIJvi7QDUHetAj3fYZ+g0HWph32yacm\n2qCkGEjyMRRziUzUcTSjJDd0ct0m13SkG+LWJE47p+pB4KlhD/mmy6ja5NLcw5MzOuk9+gxEBjKH\nMoVgc8KuvORT92tq0Zj+vMnfTH6JlH3inTHOL8cYGWS6zsTQ6D3d4Ka2x3l8zO10h8mkSjHW1RTA\npIByVftJfnR9Vic2LdsnTFRaoQoEasrURMBdTlIR9Dcb6O0jRAQmAlM36Vk9EssksUzeFTuc9J5z\nHe4zPG+Qn2vk/XQxrWMO5VKA76dC71/jYI2DNQ6+35bsu9Uq3uJLXC4qW4UDhQs4YHlAAbbE8jLq\n/pBd/4qd4pzq7Br93T35m6HyDxIo4pDgk5L9PCY3Tc4rxzitBNpCDYwwTfW6VFHYcR6Or1lgO2A7\naG2DYGtKsDelvXvPo+gVx7M3HPTfIhcOhxZnJK+nDHspaaYKc7lU0EwsAwKTrKkj6zl6LSeo5BQ5\nhJmSePCF0n2tGqolWBMLmdKGgKZAbwocJNVSIkuJ8cRj0gk4tXy0UsMOEw7mFxi3Ieb5DF7PMLwS\nJwQ7hs18gy33mk33htRrMbEluWaQCxvEAheWq6YReRX0ioNZl1j1EMOU6EWBXhQU2zpR02Vk1kkz\nExGXZKWOK0Ni6RDjMB1X6J+0GJ1WiE50uIlgGi40k6b89vShn7qtcbDGwRoHH9qqXMOS2S5BWooV\nUWSQ5lCUqrBlgaiB2BRoEsw62Ca4K5TCBw63xLQlZavEaIFjghmCNgMtBCMssPMCXYtwrQjHi7D9\nCI851XBKtT/FvIP8GqI7QC9w7JR6kLMbXjMpKlhaxP74O6qjE8T4nQr2Q9BisAOB6wv8islW64z9\n1imP2nsMN9oMWh3SWgVCW63cRrE59D/SeRcrP68O4FlqGzmKUlQ1YUPH2UrZbN3zrPaap/q3bE5e\n45yeIcYDNAs0G/xWRueozVG7QdKxEG3BvF1j3vBACjXhLskWLW1LPKwm37OVtUx+LH25H3PSC9Y4\nWOPgh4qDdeLrt2yVZWKgUp4Oum1g1XOsnZggmFAbjWmejbGupozfJEzeFlhI2rcl7RPwDmIax0O2\nH10xrlQY+w1GboPCkiojmueoyTjLoH8Jio/YGnkEYwuuSrLA5P6gzev2Y8zWBCe6oW3dsHec4Lo6\njqOT1l2Gjzc4bT7mKjqkdjnl+OQc46xgel4yOpfMBlCtFdQ6KX5LMq0GRFWPme3h+wK/k+MdRjhV\nsKpATRDvOYyqde7YpDm9pX3lMHyp3nZpqYKiZfY53noJUpCFLpfdfc7fPaJdnrP59BWbu6+QwFSz\nSDSb041HfNd5wW/CL7nq79Hvtcm7JgylEmItl0BZDbCXYFI6Icvro6ZUuCgh26p6zFyYmSBTMqtk\n4nnIYot812FWqXNROca3Z+RCJ0dnFNc46x4xuO+QXZqULxPkMIZ8qqhFMkRlqlepmT/WYH+NgzUO\n1jj4h235mZfXpPzoOYG6NhromtKo8wWGn1Gxp3S0e2rJPdlsyk0v4+5uEWznoPs5/mxOJYTN7J6a\nNlWaCxXA1cBYTqwzUE+mKOZkqCLuQOlmmDs5m507DupnHJonPH3zDbvfnlI7vSOhJKEkzQoGFzHD\nswwxAj0BPVsMvdZtHNvHdj3cyhy3Mcfp5OQzGM3hOgetUExLGYFI1e86YO0InC90/J9puJTUMnWs\n+VGN/uMDzqv7NKIJm/0um7074pchw1cp4xOJr0HrGlp10D6PqWl99rYuyXTAaTCvNMh9qfqc4whc\nG7ZqsOVjbkuqO3Mqu3N8L8IuY5wyJgpc7rc63Dc3SGODwWWD8lLDGqdk0iTDJJlbzO9s8rsC7ufQ\nm0A0Rk0gGqvzu27v+sjWOFjjYG0f2mpCuED5UR8xtxe/SgmlLihMlRMwdKWhnfNQxip5aA6SDshd\n4BnoHnivoJGCE0PFA6sJ5YZErxZYVoZNiilzRFE+xJurtaoC9KygPevztP+GhtuDky7TkwnfXaii\nnkhByyGwJb4FjlvifDlg72enfNmocmo/oayaDDttGGpQGBAudSmWLJf/v2yV7b76nLayFqLelqUy\n01sCrxOz497wafGS/dl3cNrl+u9jbq/VEHHTgGQ3wSy7HHZeg2mQeB7d5ja0fEh1pZuHyQODJVl5\nD0vG06om6u9j7//YbI2DNQ5+eDhYJ75+yz7OjipqoGZrWI0Eb3dOhTG18zGNr8dYb2ZMzkrenpU4\nOehVSatW4H0S0zSHbD++YlSpIn2Nuf41rUgAACAASURBVBuQ2AAlFAUPyFtluqwIAhIpnYyRC1cF\nqW/S7bR55T1G3415agn2NibszEbkVY2satAPXIbWBqfWY15Hzzi6vCT5Ow/j73PCruTmHu5DOGgV\nVLZK/M2SaVElsnyGTgPLz7E6Ic0D1ISfJtCCeN9hXK1xxyataZ3OtQr45aIiWmhgtnscf/KSXdnj\n1/N/wd/c/Sv+5s2f86Lza/78mcHewQBMyVR4xHicZMe8TD/h1/OfM+o3yO4t8q6hxJqKQtFnfsu5\n+ihzjYdqw6uhAv0Fy4UK5BrMEohSsgwmhcd8WKe/u8X57jH2booeFMhMIHPIhgbxqUt06pBfSeRg\nBoMJFEOlVcLHAf+P2eFb42CNgzUO/mFbTfittpku967O+2qnpik6iA+mn1OxpnT0LvW8y2Q2ZdDL\nCe+UHlAmwa8WPJrO2QpjRFajpk8x/QxqQgX8uo667ktslqi24SFoGfgOdAyM3YyNzi0v6l/zufkr\ntq4v2P5/Lqj/9zsmSDX+QEpmccksLohi8EpVZXVNgWPYOFYVx6vRqmrYzQynHZJrqr34ag5+CZ3F\nAKcPA34N91/pBP+HgU2BEWcYEbyq1jhvHPNV7UuOJhcEd3Oqr+dk34YMXpe8PZHUUuUzOgbocUxt\na8D+l5fEhkvo1LmvNEgCC2QMaawmT2x68MzFfBpSeTpn4+kdjdqQQE4JmDGRVUokYypMLmsM3zaZ\n/mUd7UJSSg0pBWVaUsxyilkG0RyyIWRLIdYZHwb8P5Xg5ffZGgdrHKztQ1v1Y5Zr5Vyt5gMklJrS\nDZK2wDAk7iJG9lDc7SV/ImYl4P8S9JpKtjZvFOEi8MFsQboBerXAtFNskWDIHG0Z8H+cly5Az0o6\n0z613pQ9aXD+q5Tzv065+o36GyHV4Lq2Bh0haVoFTjxkr32C+3mJtHWG1baafldoEC7bqpYB/8cB\n+R/KxEdraavB/so0O9OCmg5bArcTsePe8lnxks7wJecnKed/mzJ7+zCh236SYLW7HH5a4m5odP1t\nXjcjxTidLhmnyzA6Q+Hi+679x7pOPxXMrHGwxsEPDwfrxNf3mvjoZwFCo9R0Cl1HoqFpJZaWYZc5\nVgzWFIwMdBN0F7RSIihBl2AUoC1KgWWpqIHvWRnLwL/kwyAyB0LIHZh4cJuSOwaDVp3z9gHClJSp\nBY7HzNoh8Q0Sz2Tg1Lkx9ol0H0MW6PMC7b5EeyfJhjAfwSiFzkRSTiTGBGwnw3ESPBEjpxlhWNKL\nwZirz6PpkM4z9CwmYIaZRRRhznysPs7yE1jTGD8Z0STjVRETxh7v5ns41pT24IaGcweeILIqRFaV\n1+NnvLvfp99rE72y4CaD2RTSKapq+zGrZMk+MlG3wipQA7MKXkUtx0M4NpptgiYpCx1ZakhNIzMd\nsqlDfK0zzTyYFWrWeCbVYUYSLgu4TOA+gmik5pXLEb8txPdTCPbXOFjjYI2Df5x95EEBH9C5pVR9\nUykUqUacO0zLCjOjShEkmK0p3taDRILd0igrNnPLZSyqhIVLkeiIEoyWRH8hES0oUos88yljQw2M\nmOtAClYAronmlbhORMMa0ta6VMMhdncKF/H78QeJBrIO5gaIKngpeBk4QpBteowqTQpzE1oC9zih\nPppgXkm8K0ldB28LjG0otgT6TOCNNZoTQeVnBvZzA+3QwEzBHRW4GvhJjnkdId9NEeMZ2jTGsFIs\nK1cp3AzcAixDDYQQBqAJSjRKDCQmEgeErcrCtolRL7F2C6ynUzaO7jmsn3LIGa2wh5vN8dI5M72C\n586peFPurG1GRpORaBFmDsxKhYMogSRS2CvGqEB/xEN710+d5fj7bI2DNQ7W9mDLqH6Jhwylc5TC\nNIeepOwJ8pZOKk1S3aTQSgQFGvK9B6bZ4DQ0ak0BW4KyXTLMJclQMp5DlClFhGIGRReKKyjQyQ2L\nxHeZ6FV6rTb3Rx0yMybwEzrDDHPLJtyy6W0a2M0Ex4yx44y7MZRdCC8fZkpbqLy1oYNtS5xxjhsn\neITYWoquF8ol0VFsy+8NxP8Qtvq6y4B+taWL3/3vYrE0ELpE13NMLcWWKU5c4I4l5VBpsdoa2FOJ\nGReYRY5Bhi5KhCY/nL30/jqv+rDyo8efuq1xsMbBDwcH68TX99pqGloBtSgM0sRChoLY9cmqNnJf\nw5pCswupqYBQb4F5CMWBTtx0mVoVpqFPnEvKdA6phNyAsoGC0ELDiOV46CVFsEAxXaYL8daAXPqM\nnApC7hP1KvTdTU7cZ9TsCXmokWs6iWUxbgQY9YJ945IWfdw8gkTdELJyocyw6KASscSbRLT0IXYU\nM7+ec38Zc3EO7j24LjieJPXnVPfueMQJbe6wmBGJh9uYqudKLEp0SnRRoi2A0e/W+Pb2kPlfhYiK\nRVqvkdVr3A+36N5ukt+acJnC1QTSCUr6dYTKGqc8tEssbzs2KlnSBjoq0N92YNtGbBgYbYHeSpEm\nFImgSBzkTIeRCSMNwhLeJXCTgMihkGpFBQwSlREJQyXYV05Qzt4yAfFTEnNd42CNgzUO/un2sZO3\n6NsKSxhKkqHNfdThpHgEbkx7BzY/n+IFoRoElEPRsch3W1zVNrgyHnOXdoiGDtpc4myXuEcZusyI\nJhBODNK+A5c1uLRgUoAegGYjRIomVKisU1BSkiLRULsqBGID/ENofwr+E5W8tiZgxILrRz7DxgZd\ncYi5UVD5bEq7auC+Kdl5XeLbJfXH4D8S5I8FVmpQjw12EoPgsY59qJPpOkUkKQc53Ajc+zHt3ikH\n9zGdxhBv657yUYETw9btIlehQ70Nfgd4YhG2K/TMNsOyQZh6lJGmmIy6Cb7AaoXU98Y0nk04rJ3z\nSfiSF9++pDW9xxinGOOEqOay9+KST158y3ntmG92v+DbZ58TS0vhbp4s5qcPQA5QLV3zxVrVNFoH\n+/84W+NgjYO1KVtiIAFCSFzo+3BWIj2NfMMkzh1izSEVKZmQZIvEcQ5ogcB6YdD+mQEdQT7KeHeS\nI+8l8QUkEzBS8K+gbkAx04if2czigNFOkxtzm9PDI9z2CPGkR2vQozUv0OoVRrUWs4pPWx/Q1gb4\n8RhdB0O8l8LGRZXYOia0LWj6EDoGpeEwIyAuHfLCWFFkWO6NP+QeWQ3il4H8qr7patC/emx98Vyp\n9KTSUtVSY525dBlaVSpOFc+OOLQiCivHNBWJpQh0ZrbHVK8zlA3C3KNIDKVplElV8fzetq2SNT6+\nz9Y4+N+3NQ7+d22d+PotW90oD+FsWUKaWmShTWT7ZBWLck/DnkDjVElNaAKqLTAWAX/UdJhYVaal\nR5xDkcwV3qWuSosEPPTExijHQlv8XgAhFAKmAUQReeQwJiAMq3R7u5xspdhbKUY9R6YCmYKhZ7TL\nO9p+lz3ngjZ93DxGLrQE80XAX6wG/NMIq0ipmBNOrwp67wrOL6CmQVVXGnjp3pzqF3c8wsKmi8Xs\n/Qyn5TIBuXAsNUqEkKBDv1slPD/k7NxCNHzK7QbldoN04JFc2eTvDJjOlIZE1kXNPRrzYWXx49au\nZcC/A24AWzo819CeFOhHKeZRinQEzCzKuYW8NuClgO80GGVqLPdkDnECclGJLjPI5pCFkM9BhqhJ\nScvWrhh1N1vukx+zrXGwxsEaB/9r9jFuFlF8WMAQkpFNL2xzWjzC8mKaOxM2P7tiqwUyUV1Lk5rJ\n2W6L6/oRr41H3CUbKuAPJc5RQfXTHLOdI+4kadcgvXCUbsMsUBOTdENRFEWCEPJ90C8plxKzRDwE\n/O192PkL2P43oHfVkkMYPvaZNTpciAMqG1M6lS7JIwOvkeNZkt0CxOcC7XNB/jMNE4N6aWNIC93T\n0H2NXBfkcUE51OAK3FdjWt/F7L+6pvHzHO8/JsjjAjcS2G8lnUBpdphHYBwDj02idkDfaDMsGoSZ\nRxkvAn5TgKFjt2Y09ibsPL3kCa/44ptf8y++/RWt83vK25LypiTbM0hMl+Sxy6vaC/Idi3fhIfd5\nA+YpvAuV5yz7IG9R2Fu2GWcr1/OHU7n8YdsaB2sc/NRt1Y9aSjeEkHgwSEGUlIEge6wC/khzSDRJ\nTv7+bAvACgS1FzrV/2RBU+P+v8DN35VMvyqRMRBBUELjGpIxyK5GHNvM9Qojs8ltY5uTjUNcf8Ju\norETh9TziDu7yq29xURvUU403EmE3x2jGWpL2SjvbMEpp2NAy4VGIOgtAv45AUlpU+T6wqmSi4D/\nD1kYW2W3rAb6S22hhYbg+6B/Jdm+qhtbFqroGkIR64Slw8is0nEq+LakY6VYdo7ugO7AtKJz6bh0\n9Rqjsk6Ye+SxsSC9l4uA/2MsrN731qZsjYM/jK1x8IewdeLre22VjqkCcRlryL4N5xbTrMK1tcN3\nzWdMDmzk8xQ5TRECwmcG989MTjvHXKc7DE5bzG4qJHNJGUjYXuhcaJoCRZZCmkIWq+lrmQPFMtDN\nlAeYzSEbI0tBeuuSSgciG8Y2jDWoi0U8KrHMBEmG7YXEHY+56zPdDZh9EkCYEYQ57bJEf+wy2XZ5\nV7ex7BTTztBFhqYroDtSadBaC0qnrgkQOgU6sq6jHRuYvzAwivL9ds8eBwyabYaixW22yTQMKEeC\npGuQXLlwVoW+DVMTJqig+zaHuxCyEdBfrKWO0DLxIXkQ8nZQAiHBYu5tgLVn4D+a4T2f4x/O8Dsz\nvGCKZkky0yb3bULhM4kqTPMKkdApz3KKLsiBVB52ubhrLoVxiXgYVv5xq9lPxdY4WONgjYN/mi2v\n0ZLyvRjQkCuNNcYJaU8wvKnx7mIPayMjECn+Vsk82ECkEpHC2KrwxnvE2/kx7yZ7EEkOxQU71i1V\nfUiVIYaeMWi0Gdo9hnaT6azKdFQlKl3VI5UWFKOc2dyhm7Z5p+3RahW0noSY/SkGJR4lwhPwhc/8\nRUDvsUM1mFH1ZrhBQlVPadzPaEVDKt4c20vRfIncMOHYRpYa4iCHVo4wCyxDEugSS5PEYUl8I5nN\ngdsC61qqOPo6RVyk6CdT9BZotyAGggKHeMMl/swlr5gUhzrFgcHJxhPeyX3ubzYZX1eJhwZllKlk\nuK2Dq2MGBZXqlE7tnk54S3N6R+3sDu9Vn6gL2R1opaB2q2MPDSI7oGmNsNqp0uMIJGilooMudQUJ\neWjTW+75H54T98O0NQ7WOFibsiVTewUHxf/H3ps+SY5c154/7EAAsWdE7ll7VS+kqOXpzdO8GRub\n93fPhxkb2ZOJNjJKInupvXLPjH3DDrjPBw9URhW7KbKbbDbVcczckBkRmQk4/CDvvX7vubnKrF5I\nsoXDOOlwKk6Q3gq5N8T6dIRprZDrf7NGX0PvQFlIxEJALLFKiWup4KhuQs3SMByD3DaQLZN6sOS+\ncUouHLr2BNnQWHQb9Esfs3TwcwNrAdqypFxkiFmJnEsYgy11/EOd5t/o1DBwMTA0g6KmE9V0CCyG\nB/tcWcecze8zmveJFv7aZBGQVxn8f6zM8CqzpdJMctTQ1kN3QDNA01UJlxTrlNFy/XOu+jV5CQsB\nA0ncdbk92ON5/IzS1NntD+g/GxAEEbgamqsxPWxx3b7Pu/wRp7MHjCc7pBNHNR4KBRSbneo2s1u2\n9tFvY8uDLQ9+HNgGvn4LmxHSBKVpM4WVhPM6/LvFLGzx1ckzzOOUvQcX1PUpwd4UDY1kNyDpB1yU\nJzy/ecbo17tEgxbZTFLuAW3AXO/QFVKl48+LdeZFBItYFSizRLGnWJ8DKhCwqoFWg8SFqQWXlsqH\nL5QohvBKFrrNlb+HtCx2WhP2fnFD83CIloTsJivaZUZ22GZwuMf1fpeGuaBpzqmLBdpuzG4vorFT\n4vrg+uAEcHbocVvvcs4xe0cZ/v+ypNkcokmxXt6S2ye7XN97zI3xhK/jzxiM+4hzAwYCVplyqpMQ\npjMoNLXFurJAWOtr3OwYVGWVSD7sSLHWNPIC6DnQ1/EfrTh+dsrxs1N2G7d0sgmddxMcLad0TErX\nZGT3eHH8mJftRwx2uiSGTjrzKJeo+ZYzlHD3x05+9dD6qe1wbnmw5cGWB98N1T/7Sj0oUWs2jkCG\n5DcOi1c1pL9HcWwT1uqc145oNuZKE08IEuFyW+wyONuliE32Vzd8Vn9B1x7jhTHuVxFcSKY7babd\nNrfHu7xaPOFV/JTYcWGewzKjuEgZjJs8jx6TmjZP79u4/3tM92ROkxyfgsyG+ZN9Xh3dI7b2eOS9\n41H9LcfpBTuTCU/fvKY5W9A/HNA/HGMfFKwIWB0ErJoBdXNJPV1Sf71EswtMG2yrIL3QCM80Rmcg\n0gIvL5CFpJhDlCgpOXsG+WvQfymZu3Uuewdc/Z+HLOt14q5L3PZ4V97nxfwZg6s9Vl8FpJcaIoxU\nZqLhgutgOgU1M6KtTQmyGXIas7gqSa5hvoR5BlYCvZmgf11g6SVGKtAcoK6Bq6vsIEw+1Mqo7ueP\n14j78WLLgy0Pfuqo5mszJ3ztGEoJAiLhcSGP+Hf5C1Z1i/1PX3CgxTR+ESHXHn8hJGFRMPoXRSF3\nVnLYlti/AC1Qwwg0HN+h9D2KwOawfcn/1v5HPvGfIx2BNAQCnUIzyA2LLDExTyOCL27RXs0I0hl2\nGqEV4AYmrc8t8r+3AReJR4RLaltMbRvNcfmq9ylfOp/z5c1njG57zG+bMEA5/Gm1WVo5w98VVXZL\n5ejbKJnzdeMezQPLA9NV69YAjLVNmQo1RBV8yCEtYCJAl6y8Om93H1GeGFzXDrh3/5QT45TGcoGw\ndIRpMPG7vOo+5lX8mLPbe9xe7hFd1uBWwqpQm7XbDte/B7Y82PLgx4Nt4Ou3UO1mrcX3Kkc0NODC\nAnxmssXX7WeM/Da7+1cc7F5y8PMLQGPs7DCxd7g93eP610cM/3GXaFJH9CRiD5Un6Woq8JoCN1KN\n2wKIIU4gWazPJV5/KEQZjUtY+ZAEMK2pRW45St9BCJAlZR0Wvku80yDuttlt3XC4f07fuqKZ6eym\nGW5R8Lre5jK4z4V/j13tlj39ht3CwO/r9HsF/k6C0VHd7LSOxu1BjbDe5YIjaocL9ptDmp87qpQL\niYbk0u9zHjzjX4z/ynV8xGDcpzzXYVjCKgcRQ7KCIlGBDWEq0fLS5YM25O81JKoeHpXDb/Pe4XcD\n6NvwSMf/RDn8v3j6Kx6J1xy8veXg3Q1+ESF3NOSOzrvmCbXWf2dVcwh7LnIWULxxKW8lZAWIOZTD\njb9bReg/jmD/VLDlwZYHWx58N2waeWv+VA5/FlHcmixe+UQ0ma56XDw6xu3+DHsnxdBLDL1EhCbR\nqU90HtCbjfnMfcH/Wv8nPq99gT4uMU5LCsNg+tdNZvsNzvrHGHHJqOxxbe7B1zlcxxRRxmDcII49\npsYOzv2Yg/4t9t9fUiPFJKXUNMbBPq/8n/POekLh2rSCOfeyc7qvx/j/FnL8xTnOzzKcn6XYRsm0\nbjPdb3FT77N3M8C+yemcLTCdAumVSE9j8huN8Fdw+69gepJ2SyBbkG84/P4MijcqyWT1rM7Zpyf8\n+6efM6z3WNhN5laD8XmPwdUew692SV6AuIoRUQi6DYauRL2dgpoZ0tKnBOkcZjHLK0F5DcNCjVoq\nsWeS/rXEtksMW6A5UtmOjq62i7/V4d8Ge/9wbHmw5cEWH2a6VM6+eO/wx6LGhTiiQCdpmNQ+jXhy\ndMFBOgKhoUnJ8loS/s+S8S8F+Q3c2xcc7kt29kDrAjtQdHTCpsOqFZC6Dof5FfezCwoszp0DLowD\nFvgUukEmbXJhYpzGBP8Y4fxPQaDnWHqB5mt4/2DS/txB+7saIXVWNAipk+kemeYRawFfRZ/wZfg5\nX1z/jOzGIRvYMERll5SV3fh9HP7Nsi4Tld3ioQrO2mrodTBr4NTAWqfpm6gyLslafyjkfafXtISx\n0jYK3YC3Jw+5Ge9z5t9jcP8r5g/rtPUJuWZRaCbjfIfXy6e8Wjzj5nKP9NIlu3RgkCiB2GLT4a80\njrb4Zmx58N2w5cEfG9vA1zeiImiGckAXKitjZEPpEnsGw3aLRavGvFdnpddZGQ2k1BiHXSZll+l1\nh8WiRSh9dF/S2l1Qf7DE7SbotsCwBGVqEDddoq5H0rHJPI2UGqWmKX2dbAVlJSS97oaXZ5BXKegO\nd628FWRkkp06ZF0P6QRc7h3xav8Jjp+yY07YcSb4IuYNj3mRPOFdesLI3mFk7zDQd+k3RvSOx+z8\nfIJoa4i2Ttk2uOg+5qJ4wPnlPRwtw9YlZt1U3R3WDv+b/HPejD7h7dVj5m8ahBcOcpjCPIY0Uucv\nVlCGSjz1feqlw51xvFnWtSneV3Wyc4AauB50bDjR8A4T+q0Bj8zXPFo8pzkY0ng1pBbHWD0we5Af\n5BzeP+CwdcQir6PvaKSNgKxmqbTQUqzTQb8pNfWn6uhvebDlwZYH3x2C93oWMlYB29JFLCC7Ccg0\nk6jwmAkPTdtBW0oMs8QwBEZWYi9LLFlSM1a0syH7ySkH0WuyK8ivIdcNjN6E5omP1cp47T2hthep\n3b1rtZNaznTC64D0tUm+U+fUe8SuO6FWL3G0FJsUqWucOp9yZj/kXD/mcf6WeOWpatvrFN6l8AI0\ne+1j22DsCwytxAgK8oVgeSExXkjcJrgdidsBBpCew/IlRE1VxSwlWAJqTWgZ4HUNZMck8k3Gfpfz\n+jEvms+4NXZZhA0WUZ3wbUD4skb0tUl5VsJYUy34LG1NFY0yN0hLl1AGhLZP3rDRdjWMCKwC7AKM\nnkHRsFg6NkutTlq6lImxltCTSvfiG9P0t+v++2HLgy0Pfuqogobr/6tybb+kMdnSZnZbp3hziGOm\n7AcDjvduqWslwSqkvlohZIoxF2QXEJ9DokNWX5tAa9nNMgHhSLREYskMZ77Emy+QhaQdFiSphpO2\nadorXCtDywRymlNeZGQvC2ILQgu0lkZaGMiOg/HIJwp3uY32uY12iaVHIj3CwufN+BGXN4dMbnbg\nXQ7DDOIYlaVf6YF+nwyQzW50lcpSHawWuG1wOxiBi9k0MBtguCW6KdBNQZmapEuHbOkgVobacFxl\n68dQCdmK/NYjf+ey6NXJEhujVSCaGk13RoFJgcls1eb8+h7X13vM3rTgPIdJAtECtRlcbcp+fJ1b\nrnwztjzY8uDPj23g67ewecM2yrxyU7FB6og3HrkwkQOXeasLjkHoNEBAmASEiU9U1Ig1D/G5TqM+\n59HeSx7tvaTvD3FFhiMyksLlur3H1ckeg8EOk3qLidkislyY+TALlB4GEXflRnJ9jLkTtKuGCbkH\n1z78uqSYO9ye7PPF8V8x2e8SmCGBEeFoGbdxn5uozzjrcNs+5F17QaOxoG8P6D8Z0NsZkddM8ppF\nVrN5Wzzk9eQhF8N7pKbH0NzjlfkMXVNzpWlwMT/ibHbMfNohem6QvymQ8xkkc6XPJKsslioqLFFk\n2dSNqBz9j1u1bnazW2f4NE3Y07BbGa1iyf7glubNkOT1itOXBcYc6gEEdYgfZHhMOOidERoBwrVY\n1NtEdROkrUQW89p6Xr9PSup/Fmx5sOXBlgffD5vZLjGqZFdTQdv5WjstrcHMQZ45UDcQuobUJXat\noLM3ptcf8nDnFe03V4g3EZMLWMxhPofckTTOMhp9jaa+whMJRi2DXQkNXYl8ZzrizKT8Z5NoZnLW\nfYjW1blqHmPqBaaegwWjnS6jbpeiblLOdOSphnwJ81MYjGEcQ28A/TfQK6E2jtmZTbHnBcnXSyZf\nx1x/DTtH0C/VxqMoVBy1QMlMiARYqnV4sKO61hl9G2O/xnjP56q1x4VzxNngAeNpl+TCJb50SS91\nsguJuFzBRIOlDqUPmgWhDZpGMnMZxju8KR9gN0J2ngyphTbBffBX0F1BsWNhPmkxvN/iMthnOm2S\njy24EaokLq8aN2wGnX+chttfFrY82PJgiw9sKRFBtgRmlAOf5GsNadQZjPd49egJzqOE0Ay4f3XK\n/bMzzK8TzHOwQtV/YDqCtzoMp6iKJx/MQBA0UoL6EssyWK0SxsuCRIJ+f8bOPZ39ozHN5oJmc46d\nZ0zzkpkQTIFEqAqoRq6RlSaZcIiFz9XwkK/PPuXl5VPy0iIXFlnhMLzts7htwi1wHsNojuL2COX0\nVzbOd80WrzJcKmmHJtBV0eJeHXoB1r4gOIgIDhLcWoZtZNh6RpTWmCx3mCy7ZNcWvK2rCVukaxKO\nlDbsywZkDdLXDqNWH9kGz4kR6JTSII48psM26cCCmxQuVhCq+6aaD62463K95crvhy0Ptjz482Ib\n+PpWVOSM1deFBisDYg0RCfJBneLLgML3Cf0GAz+HEsqlSbEwKHcNxN/qlH+nEdxf8Kj5gv/e+Ece\nG68I4pggjliKBl/Zz/jCfsar6WOwIMwbRIWv9IviAOLN9MHq65gPs0AqQnhqx+4qhVlJfmpx83Cf\n+aDJq5MnmF6J6RXoliQdOyRjh2xhYR0VmEcF9mHGbnBN//E1veCWxHDV0D1Gb/pqvO5z6+zj2CmO\nk6K998kl8bVHfFkjvvQobyPEIITFSuX0y82o8GYWiUA9GD527KtU+82WrBvd7OzK4dexWzmtbM7B\n7YDG2yGz1wWnLwrKoeq+sWNCOczwehMOPzsltQMWbpuregoNGzJLaUZRg/etdrdQ2PJgy4Mtvhsq\nh1+i7jlArlI+5qmy3EYFnNbBsZCmjdAANIyjiO7/GPPo81c8Dr6i8+oa8Spi+hu4ydXI64KHpxnt\ndkHTWlLrxpg7OZgCmgY46p6KUxO5MojfapweP2R4ssdv9hI0U6AbEs0VmEWK5aYE/pJyZiBPdeRv\nlMN/PoJ3MTwegCegN4faNMGaFzSXC06/LLn+ouDdF/AgBceH3h7ItcOfs7axYmAFQU91qtt5DMsD\ni+V+ndFeh+t0j8v5EWeD+8xftCh/bVD+RkeMUkQUIcNQrdHCVw6/tCDUIddJ5i6juEcpNOqNJU+e\nvqVWt9gdQHcE5QgWDZvB0yaDwK+HowAAIABJREFU+/tcsM9s0iQbW6rEel6o+/Jej+PHL9D6l4Mt\nD7Y82OJOOiJRZUfZEgoHMYTkq4Bs5nM70bFJyXYtYtfHvJLs/XpE44sJ5jmYIYi1wz9fgr7e58MA\n3xY88FPatZy6pTEOBZdRycyAk89mHC8i9hIDcz/HkjmFUVDkklkpuWLt8AuIMqAwkdIhEQGXw0O+\n/Ppn/OrX/wWRa4hCR2Y66dAhHTgwlKp8OZ6gvP85dw7/93GEq+x2Ja0BLaAPtTrsefCohvV4Rf1Z\nxM6TEUF9SU2LqBExSzqIpc5y2SB7WVNNgGYuxEuQYyhGMDPVKV7WSOsuw3afebuF4ZZICVJqlLFO\nPjHIp4YKFsRzSIbcddxefXSdP+4Srx8Htjz4w7DlwR8b28DXN2IzHVNXLwlDjVxCKlRHCV2ndG1S\nXwPfVO/HFkQmpl3iWhHuYcTBwQUn6Vsezl7yIHmBFcXYUYRr1lnuCPJAQAvS3Rqjk32moalEu0c+\nygCJ1udRae1U5KkcZJP3goFCV5HY0EPOTSJ0otKD0AdPg5qm+DOWMJKwkLCowcJAm2mEuy7zfsBY\ndkhwSaRLIlzCM5/wlU/4taOcbVuqrMvNZJRrAVcSrnJYxRAuIK3EskO+uStcdS2bGTvOxth0+Jso\np9xQHSvWzwPNEJhGgaOnuKTYmcQMJawfiLoFMpYYeYklVPKmoZVoulyf/2anjE1Ni586tjzY8mCL\n747N7L1s/ZpQpUSpVNuK4WZJqY/UHNBcpK6jJwKzlmN1Uox6gW7L97fbQDVD1bT1bdMBTao7ZoLZ\nKTEeFJhJgWXHWE6JYUtyyyI2PRZ6gyI2KTMToWnUgzn19hw9ECSlS2ZZFL6O8CWaLzF80IM7AVnL\nLbD0AkpwI9DnIAYQ3XOYai7XDZfVbopxP6ETJtRsA1kzWfkm+f0a0YlPeOIz6bYYN9uMnDav5o+5\nujlkdtoh/KoGXws1El0JtZo6Wl1Dq4Hugm6VaHqOrkv03ZLY8SjjHlfuCWfuY97sDoi9DjQktGDu\nNLio73MhDnizesRg2CM9c+BcwDSDLOKuNOGP1YVpiy0PtjzYAj7IfJQJyBCEgwwtypFHmVlEvs/8\nWZtBFtE1x6wWAeWNiXaNSq7I1v+qNbUUNAHFUsmFmoAMSqygxLHUHluyhMgCuin+fkoz0okyj0XZ\nZGlbhM0Y7SjCf5ri6EoqTgY6q/2A0N9lJu5xvjzh8uqI65cHSgc0X4tjTwVMYpitUA7wBFUXXHWD\n3tT7+V3rR/voWGEj410zwfDAqGO0XexDifU0on9/xHH/nKPglKY5o5bHeEXETO8QdCJqvZgxPZaD\nOsurBnnuqg7gs1JdQ7qEqU3peMRjnbihtPKUqSXV82mZwrKENNy4zil3zYf+MnSNfjzY8uCbseXB\nD4Vt4Ou3sLkwq8j0pnNdgEzXZF1AZiuLq9CVuJxRh2YDt5Ow27xhN7jiSfacg5fn1F9MEIOIaZYT\nZoK0kaI/HnD/sYbla0zNPm93n0Ckw9SG8xpqQS1RjrDOXTS1GpVDnGyct6E+V4Ywt+DShtAE2wBL\nV930VoUaiYDIg6GHfOuStGxmzTZ50yEXFrkwKUqL9EYjvy7gZgGmBEOoY+XwAyxymBXqmKwgX6yd\n/RV3ZWpV+VQ1n5W16qIE+zxUDXM1jI3rstfvSyUaGFswk4i6Tu6ZxG2bZmTT7pboQYGMJUEDggYs\n7pmITsDM7jIWXVZZQBGb6rmUybWuxWYg4qeOLQ+2PNji+6Oax0o3bRNVx5914witDkYHzC6FbbI0\nGgz0Pk1nzP7uFdanFh0B5gzqM8hdjcaRiXxos7rvkQiHIrbQE3D7Gd4/hPifr2iaC5rmEs9OWLQb\nLNoNlrUG4VWgdI9mHtnEIRzVMb2CldsgeuSSNQ38juDQEwSGZOcE6veAE6C+Hg2onUOvBrkG+E2G\n/V3G9/sY/hhv55anj25xLQfpBdy4ATfBEWf1e5w795jHDcKkxuq2xtX5IdevD8hfWXBRwnUOaQZ2\nqbIaWwH6roZ1AOZBhOWVWFqBpeXIjkbRN0nnNS7TI/6l/C/MRZumPkerC3AFsfCYpi2m79oMb/tc\nf3VA/NyDdyWMU8hC7vQqfl9jdYvfD1sebHnwU0fl8Fe6qevUP+lAUYe0REtBKwSGLDFkiV4KtAxk\ndlcyq9nQ7kK3B64N4QBWQzAS8B2w6uozVgleDL6mfFijBnlgcuv3Oa8dMQyauA8vacWX7PUGOJb6\nnOabTD7b4XTvMW/4OW/TB8yXLZhIpVGaLpU2aVSoAAA5Khox467k6fcpk/0mGYdNp1/nfcWBKVTH\nUcfB7ZU07y1pfbrkfv2UZ9Fznn75nFY0w17kWIuMVTvgwYN3DB72edd5wIvjZ7x89oy5ZsK5o6oI\nsvX8E0JpQGwDlrILpVzfLgFJoVI1iVHZLXPuNjD/Mkq7flzY8uBDbHnwQ2Mb+PpGbN68zTTv6qav\nnX3NhdyC0lSi37WmarRQr+GtHf6n/nOeZl8ph///miJfxUyE4EoIxG7K4XLAsTGneSR5Yz7B24tU\ntsq5BY6HSm2shLs3Hf7KcdY2vq5eL4EIxAwWHiQeDFzVrUc31wGKDIpUObrDJlgSbJPEs8ldm5XX\nQhQastQRhYaIY0S87ranl6CVKsxenQIobYg8VanyZagEvKtOfB90fJDclXJVGSYed1Zki/fdKrC5\nexBsCH8XBcQlzCWip5G1DeI9GxKbdjejG5QYicTcBXMXyhMT0fGZ210mSYcw99cOv4RcgNgMovz4\nifvDYMuDLQ+2+H7Y5NCmE7mhm1dl+GktMDWw6hS2zdKsM9D6NJ0p8V4D6xObtgnBFfQvITc0ikOL\n4qFDeL9GeutQDkz0pYbby2g8XtIJRuxrN+zr1zT0BbfWLrf2LoNyFz0V5Nc2yaxGNnEoWyYEGiu3\nTvzQJX9i4jslNQEHaYnzKTifAZ9yF6fVwd9RDr8FXNca3PSOuX7whOODd9x/lHJ/OSS2HJZ2g1t7\nhy+TT/hV/Hf8Kvo7wmVAsTQoFgbJa4/oa5/ia1MFjhMleotvqAYOhw760wLr8xTn8xi3keCS4GoJ\nWeqyiJok8zpXsyMWVpsX9jNsO4NGiWaXlKFBduuS3bgkb12SrzyS5y5cx5BtOvyb7ce3HPjjYMuD\nLQ9+6qgyH0vuHH4DhKtskExABnoh0aVAlwKtkGpDam2iFFJlbre78OABND0YaTAOlSnjO2AGoHtg\nJeCZ6scdWyWKFIHFba3Pl94zzusHfPrQ4hN/ycMnA6QHuBqxZ5C2upy1nvAr+TeM0x6zZVMlsaQx\nJFNIh+oPlpVzX2W3VMHSyhGurvtjbDr6m3IV3zRnlcNvQGDj9CM692bsf3rFk/Q5v3j1b/zNq3+j\ndTVDvxVot4LkocPCClg8Cvii+3PKI5PL6Jh50YbYgVt/fZ5zYLZ27F2lDauZ6j5JCVKAyNcOf3XP\nNoW8txmRfzi2PLjDlgd/DmwDX78TVcrex0TNgASkBdIGYQE2WKZ6zxYYbkHNiWjZM1rZlGC+wrtI\n0N4UiBIiASQl1klIJwyxyhF1Y4XlFMrndQ0w1r/3fdc6jzsn+eOFVgUkqnPNQEaQemrgclcnrK+v\noYrUVuQsKUyTwjJJTXPjZanyRavxPqjwsfh1JYpaddvbfABs7vRWRK+609mqHavRUsNtgdcCr41m\nGhi6wNAlUmSUBZSFgI4OQoOBRlz3uG3u8tJ4TNkwaBysaDxZYe8WlLs6Ys/g5vCAG++Y69Uhw2mf\n1dSnWGoQr6P1YvMh9fG8/tSx5cGWB1sefD98zKHKgNgMemog20BMWRiESwdj0OYm2OfKPOH86CGu\nI9FbJXpLUEqD+VGdRSvg3D3i1tklMV1sO6NbH3PcO+WwcU4/vqaXXFPPFjTMMW1tTMeccFa7j2ga\nRC0fIXSKgUWc+QwPerw7fMCXnc9xDzKceYYrcsRjHXHfQBzo6w6mqpNpeZhRPkqRlxnL/QMu7Ie8\nWH5GatYwahZezWKhNxjpXUZ6ly+Sz/hy/jlf3X5GMrZhWsKkhFMBbwWcryArQc9BlxgNgXlQYj7L\naDxZ0r4/prM/wvdC3CLBLRIizWeU9RhrfRZlkyhV3xe6DkaJphcwl8hzDc40eCfhrITbWCmks+Qu\nI/PjEq/t2v/jYcuDLQ9+qqjmsLIBKvspgSKHtETEBlloES9qrPQ6S6fOolfHvuej1XOCVoFlQO2x\ng/nEBs/AdAW2W6LNIOsbzHoGoauRtAv0boEjJMl9h+G+zajZ4RWPeD5/xll6jFMI6nWBX7MpXY3S\n1Qgtj9PiGWfjR5yFJ6q5wsiAZaQyXLIZZBPU+qhG1Ym6Cmp/W7B009Hf5Hwl0rQpsVAFx0swHJWG\n45s4jYJmZ8HezjX7wwt25xfsvL6g/nZOcQvFLRjSoPbMZndlEwU+XwQ/x97LYLzeTDWrTdQCWK7v\ngQuFsz6P6l5V1Q6VfZjzoaO/DQr/4djyYMuDPy+2ga//ENXNFBvHzQBAVWZlfbBGpNAphEkmbQrd\nRnNMrEDHDMBPoZ4AukrRNDzu9KSr9VWuo6zAnWh3JR63uQA3S5M2F2h1rMoIbO4IpvNhNLqKVM+V\nPlNhgjCVeIaQ64hvAnLdgelbHf58Y1SBkZQPS9I2hbsd3rfisJSDj9eBvg+HNTg0MIMS14px7ASR\nQxIaJKGHyNfBllONuWjx3P8UsWPw2jyn/2BAXx9iZxlpwyFtONy6uzzXnvL27DG3l7ssz33yiYAo\nhSwBUZ3vd+288Z8dWx5sebDF98MmhzYzKAF0lAp2CvkKsTBIznS0f69zEx/yG/9nZA2bF83HODsp\nzr0UWWpMdjtMZZvBbJc32gOWnYBaY8mJfsrfTP+Vp4OvsK/n2FdzzFlMa2/Ivf0zlp0d/lXG5McO\n03aLfGhT3NqULw0uHp/wy+y/MZEdalaEdxLjtWKypktWc8lCB8MpMJwcwy6oPxxTFxPqvTGn/lPe\nRk95/U/PmNV6XNZO+LL2M+LSZVUErIqAy+sjbi92KS4MVQ4cJRAmqsxqmkOZqWC37YHtYfcKgkcr\n6r9IONy55CFveHj+hka+wApzrChnZdcZNnsMOj2uiiPOpvc4m91jNfdhDnKuqcDCtIBxAeMMRgmk\nVQn1iLssl203uz8ttjzY8uCnis21v3b8ZaEcfnKKlclyEsD1Lr4ec9G65PwXh3AvxFosOVosKTTQ\n9ttcH+wgXY/iMKX4JEVEgrTuMap7YOmUy5BiuUKXJcOTHa6Od1h29nk+ecary6dcrfYpaw7D2h6/\n9n6xlm/VSLF4PXnM6eQB8Sgg+7WgvIqVUFIxg3KJymCvbIWP7bBvWy+bWS2Vjmm1oVltahobn6ky\n2wvQm2C54OpYTk5gruhqY/x0hphEzM9KVpdKTjWMwQ4lrUlB6xrcTo5VlGiehLoGjgHGupzr/d+T\n3AUuNrWWNqsHPh5bXnx3bHmw5cGfD9vA13+I6qZWN39zEVS6Rxbvb/zarxVCo5AmGTa54YBjYNU1\n3EC5uI1cVXI5NuhVI7XKny5YO/zVYqoc/o2HxPtI+Waq4WbL1GrhptxFlaujtvE5gXL2F4AD0oDC\nAM1Q11SlOX4Q4f140VfYDIKUfPsDoIp026jZaILZBr8LzS7cd+FnBvzcwNxJcb2Yem1OEZnISZ1s\n4iPObHhtwCudedLk+c6nXB4dsbt7w8mDU47vvcPRU0LLZ2X5jJc9rs6OuDw7Yv6yTn4u1g5/DCJV\n44PrE2yxiS0PtjzY4vthk0PwYbmrDrKEUnU6Ekub9NylcGsUWY3smc31/h7N3QlBFuLnIVomGWW7\nDPM+s3mH2HNIOjZ1fcm9yRl/O/4Vf3Pz/xF/kRN9kZNdldQ+sfA/sSieNMl2HG6P+rx1T9D+SSJ+\nbZD/xuEiPWZuNvna/wy/tsA/WVLzVkRpQJTViaI6lpFg1VKsWsrxw1OO+qcc/9Up79485e3rZ7z6\nzTNOWznuToK3k1KmOnlkUkQm8VmN8K1P+dZUXZCKCMrFWjcjgjICuwlOD2ot7H5J42FI768HPNFf\n8LeDX/F3F/9KezxDmwj0iWDRr3P7sx6393s8Lz9BzHUG811WbwN4B7xFZdNkiSpTyEJlwKYr7rJc\nlmw8eNiu/T8VtjzY8uCnis2NubVtIHIlWVAWFKHGchKQXPs4QcFl65CLowNqxox2qNGLEqSEy0aH\ny+Y9FnYTN13hpiv0oiS0moRmk1I3aeRjGsUIXRYM/Qdc1B5wUTzg4uKYi+cnjE77DPf3+Xr/M9yd\n9H1VU5nprE4DVqd1olMPcbNE3CRK00hUnakrrdJqbGSlvL/Oj1Ft9FUZ7pWTXxl+PndOuKnmptJJ\nMhpgu+BpWE5GYKzoaiOCZIoYx8zPBdkljHM1mpFAn8DOtcCVGZZeotfWDr9rrtsA2txl17zfaeXu\nWbT5fNq03z4O1m/xh2PLgy0P/nzYBr5+b2yW/HycsbF2wEWpdHISSRGZhGHAeLXDSO8zaQyY37tF\nlBnlSmCvSoqeTnTocNNxGTiHTJctspmtaohjXTndjq3U+AyplPqEUH9HrHdFyxREwoc1t5vO/GbU\ndlM4r7oO1j9jqiHXgQFZRX8lH5L54+PHc7T5M78r4m2iyB4Abai10HbrcORRe5YTPJ1Rf7Kk3lxQ\nN+bUjRlZ3WHRaDHvt1ladcJ5ndV5QJp4DIcewze7TJM2Yb3GsuFjGwmrMiAsAubTBrPLDtOXLZKX\nJlyHsAqV8PgHnfaKbznnLRS2PNjyYIvvB/nRsQrE5iqbUC6QsUEx0Ch0h1y4pHafSb2JaxwSaCt8\nVui5ZDLpM570iAof5yjGqUf4/pLucMTR5JL7p6cMXkH5FeTnqnq4b4Hlztj3r+kEE/z+CgKdvLTJ\nZh7zRYt52IJY4HtLau4SrxESDeqE0zrxMMCqp1j1BKuesjQCQjMgrfucFve5uu0x/rKGaJnQ09RI\ngFCqcWnAmaFKrSSqOYQplVaeKSAQ64pmA2oWTruk3ZtzcHDF0fIdR6s3HL5+SfNyRjmBcgzOAx/n\nYEJbDMl1mzMeYMtMadfdSngtYJSj1vhiPZbrY9WVaFPTaOvs/+mx5cGWBz9VbG6K5esNpwSRemRL\nh2zisFw2iDo10j2bwjORQx1tpCFjSHKN6VJj7hm0GwbenoFuW8yzHS7TI5Z5nR05ZkeMsETO2/Ih\nb6KHnM1OGJ+1mbxssXjpMpvVYLWjOrwVUp1SArwTapxlEEYQzlWWy3tB6yow+rEswrfZDBrK1rF5\nv9Gn+UAAdu1u6BYYaw3WMr/TYPV81cI015C5RiEMMmmTGzaFYyACDdFQ5qAooajrZI5FjEUqXHJp\nIoS+rsyqNlM3z1Vyt4m6addW72158KfBlgdbHvzw2Aa+vjM2UzXXpC1zSNTiT8c248EO2pVE72i4\n/Qzn7xN2nnpkaUKZpGR1m9MnfZ7v97kyH/Fq+YjFaR1e6zAzVT1vW1c6R64HZqYU+nIBaanKk6J0\n3ZVhzp0RU5VYfVMmyqbD/7GDXnCXXvltn/n4+E3z8rsiwZvRbhdlgnbRWj76YxP9rwt2j6941n/J\nM/0F7ekUdx7hzmMyx2LVrrNsB1wcHfNq9ZSX4inLZVNd+i8hqzlM6jvIuoZp5qSlQypc4rlNdGlT\nXuZwE8N4DmnVmWLOhxpM/znI/cNgy4MtD7b47thccykq48KAQsCiBK1EljWKVIcrC9E1EbpFqtfQ\nSghXdfKVheZIrCzDa0X4fogbJRjjEnEN0QymKUwEOCE0R2BdSazdHC+JCfQlhW+T9GpwBPRQy9HW\nyFObZOxTzk2yU5fyzIIzEJZBYdpIU2fi9dA8ndBrMHoRMH+uIa+HqpPqxIBLU11Puh4zF5YeyJra\ndaz7UNfXtc4ZaJnqDGsFYBk4tYS2PeVIu6Ad3SKvFoy/KplfQhKqYbg57nVI8wq6/hSfCKNRQktC\nrQQjR63tBaqcq3L0qyB5VT79l5m6/5ePLQ+2PPgpYXO9b3S2E7b6NrQww5JaGtEWU+rhhOR1yMWv\nC+IrydCakpoGRmdE7dOc5ic59AKyscv16Ijz2TFBviLIVxhZyTDqMYx7TKYtwpc62asIrhNILJhY\n0DDX+3pru2qUwyiDZQrZAorKrqq6fW46+r/L2d/UMrJRGS2eamCht0BvQ8OBrq0aN3iGKsFydGVD\nVl23cxtKG8aCaOIwiHZ4Ix5hNmNaT0Y0ZibWDdRD6EUgjxz0Rw1uTxpcuXvMpw2KqQkDocqKiyrA\n+23lvN/29RZ/XGx5sOXBD49t4Os7o1ogG9HqIl+3NhWkY5fR7Q7LqwaZ4+D0Eux7MSvDxhVLvHJJ\navmc1Z/wtv6Us9lDzhf31g6/BgsTdB3aFjRcaJRgS4ikslPCUhlGeQpZxF2ZWb4+v+Kj85R82CK1\neg8+DATwOz73bcdvmptvw6agt4dq/9dFa1nojwXGP+Tsda74W/6F/8H/TW86wnhToL8ryboW0c9c\nohOXL7yfI6XOpXvE8k0TXgIvIU1cJkGXVRCgG5Ky0BGFQRkJimVBscghXEE6g3SMaj0b8qHD/5+H\n4H96bHmw5cEW3w/VrmeGugdSpfwvSohL5KykvPIRvw4oXJvU8DEMlWVYZBZFZqJ3BHYzp/YkIthb\n4UQpxqh47/BPUmXrtELIhqDVJNb9HC+JCLQVie8T7pQfOvyW+v1iaZAmLuK5gXhuwAsQhYHMNcrC\nYtLos2o0uWkekl5HJFcR8maodi0tG8wqQ7NQI69DpgMeeJYKavcd1XdcE+suqXcNKFw/peNMONIu\n6IQ3yKsloy8L8itluy1LaHoFJ9che9cp3Z0ZvowwmyV0Pnb45yiHf843ly1XxusWPzy2PNjy4KeE\nEmUHVA7/EoQDqQmhhxGW+GlEu5wSpGOGrxKG/2/B7MuSRB+TaiH2oYWXazT7GqK1RzpxuXp3xJeX\nP8dKCsw4Rwsl6cwlmTlkE51itKAYLmAWw9hTpVOWs87+EGqNVuW2WYTqTF3pGVUi3pWodTW+DZsC\n3jbvbR2tA0YPjD40TTgy4J4OTQ2C9ZhLGAkYShgCQw3GknjiMIh6SAH15pzHT95Rt03at1BMIJ/A\nctdm/KjF7ckeV/ku83GDfGSqrMdlseHwV+VpH6/1bdD3h8OWB1se/LDYBr6+NypjLQeZQhFDsaKc\nm0TXFtFrH0MXNA9nOPWYsFmjri1paAsi6fO6fMbz2TMuro9Z3rZIhh5aKDHdEiMoMN0cu5ljNTMM\nW1BEJkWk2l7ntzaZa1NOHMhySDNlKKJxp3X0H0Wi+R2vfx9oH31dfb8uJcMAzQLNBb2GGUjc3RD3\nQciudcOD4Rt+NvgN7bcjspeQvYBy30B0LeSxReY7vGg9w9NDjChHfq0jLnTKkUZcM4lrEnSxIftU\nqIdXFoFYANP1qPQsqofYf06i/+mx5cE3Y8uDLX4XNgPHlVNaGV1AKmFVItbGYanJjeZ3uvpcKdB3\nS+S1gKmGjNcNJSybNLApmwKtW2IaEjo6RVMn9W1yw6IoLERq4LgZjb05ZlZg9QrsWo4pCuTaDxaF\nRlgGhMInFD5yCnJswBiitkXUDqADzMcwK5VmUFlCub4W1s48AmoS6gJ8ib1b4O4muPsJuiXeUyQT\nNkkJSWGg7Qr0oMQwCnShfme5jq8XBeQlFKVElgK9LNGF6rKnkjYF6IUKjlOVQq9QxmsVrP9dmZtb\n/DDY8mDLg58SPs4wX+uUigRyX5WmRhItExhCYGQCORGUZxLxQmATYxPjhTr+z13s2CUuNZKVx2zY\nZnC+B4tCRUPn5frfvIR5ts6QX0AyRzngNZTOUHU+JWpXMeJuM6waH5d0gVpg8GFJVAVjY3ioSHJb\nNfCpt6Hewr2f4T2OqD2KMBsleq3EqAmKpUnWtch2bDLfJBMm6dwkLRzm8xbFtUWvPuHSu+Dq5Ias\n1UabSJhKJo0Wl+0DLoxD3i3vM550yC8suCrVHOTV9VQZjttA758HWx5sefDDYxv4+t6Q3BE2QjHL\ngjCH8wbQIBm63B7sw75k0NzFMxNcMyErHW7CXW7CfZazFvF1jSIzMToF/v6SYG9BozOn403peBNc\nM2GZBayygMWiwfS8yeSsxerShWEdhoXawHvv8FeLuTIofwhoG0PfOG52sViL6Rk6WBpY4HgpbWdK\n2xrSXw2pv1lifCGITmF0pYaZSZrNkpYJ3n5KLYjwWyvcbkgeOBSGjSgzSBfAHLR0vYEpoSyUYK5M\nUA+xyujb1LPYOvvfHVsefIgtD7b4fVHNdeWAbqJgLQyEasvmrG1ETQVMpQ8yQBQW6dJiMWwwGfUY\ne11GTzvM203s85TD84SdaU7jwEIeOkwPmoz7HYZan8moR2CEHB2eUW+uaOlzOvqMZrigdDTKtk7e\nN3hlPeFF6wmvjh7DVzp8qcNI/3Cp2A74TaXLlxiQmBCbytnXBegl7Lnw0IGH0OxNOehecti5xLIy\nZTJqklHR4yo/4DI/IN2zmPZbXFhHWP6K4GDGzmcGZlNpgichmPsW9n6N2X6NcdAinNYo5wZMJISF\n0sf44DlQzfvm2OLPiy0Ptjz4qWJtmwjxXh+1TA3iosZMtFjpbTxrwZFTcODdcUP3DAzbI9WbTGSH\nVRGQp5bKhB9HMAxhkkAkIBQQZ5BNoKg2u0KUs19lyldOf/oNI9v4zKZdAx9u6m3+nvXmHiZKtLsD\n7EK3AQ88eKjRPR5x7/gt947eUbdWeDLFlQlLt8641WF80mbY3WFY6zG0e5QNm2TkI39pcta9zy/r\nJdNgh7q/RLcK9HbJSvOZ5F3Gp11urva4+fqA9LkLp0J1Tc1X3HUv3cza2a7/Py+2PNjy4E+PbeDr\ne2NzlzJClQwBUQnnGkw8knOX2709FvtN7GaK4ZQYdonIDeKJSzzxSGOH0jApDQNnJyV4smTnZwP2\njq85Mc44Mc6o60uGZY9RJakKAAAgAElEQVSR2OFmuYf56oS447MKmmAG6s/PddQCjnlfLvCD7eBt\nOvub7Vg3Sb+R6aIbYGvgajie0q84MK/oLQcEb1fo/1wSXcDNHN4swI8FD2xJtxB4YYL3JKJ2uMLd\nicDXKA0TRAbZDIpr0EKVtiolyEK9J3PUw6vKbqlqm7eaRt8PWx7cYcuDLf4QbDqcH3cGqpz9qt21\nBVKDUlNZgrILCGTRJFlZFEMHZ1wyqXUZ77SZP2nini7Z3yuwJgX5iU1+r8Zsr8E47TDKekxGPVre\nnKODcx7arzmeXnE8uWR/cUNeMyjaOknX4v9p/R+sjjxezx6ovg9DDb6U6nwqWA74Bjg1WGggNEh0\nqDJ0DAm7OvyVAf9N0upNeFB/xc8b/46nx2iaRAPe5A8pUxhmHVLfZNJWDn/Tn3FycMnOpyb1BpRT\nKCcQ75tE+z7zgzYTvU04rVEsDJgJVXZdVi3HN7MZNw3TLf782PJgy4OfIqq5FyBLyCUkUCYGUV5j\nKlqstA5ts6Dlhng19VMakLk6U6vGTG8xlW3CwidPLFgJmMRwNYXBQqUEFuW6CdBCdQ8l4s4eWXev\nfn8+VUZLJdxdpYx/0ybe5msad5ytHP5qrBv4sAsdF55Z8F81OgdjPul/yd/3/5leNqYZLWmGK26t\nHu/cE955J7zuPKK0TKbaDknsIkcm+dTlbN9i9qjL84efYjcTTCvDsHLylUU08ImvAqJXPtHzGulz\nBwYrSFLVzXQr7fAjw5YHWx78MNgGvr43NtM0U1T0WCjbIrNg6lBM6iznOstxHRqNuw6mmQZjQw10\nOJJwBNZhSudwzL2jd9zbe8NR+o6j5B31ckHL6tM1+zTtOSI2Wcg2C6NJGZmIWx+hA3IJ0uK3ibl5\nzh9fw7fhY52jb5uD6rNVHXOlTVF1sHDWx3W6p2aAXgPNBl1D1yWmXuDoGZbIMZISbSmRCyhWqjLL\njkGGEiMsMZMSQ5ToZolulWjGuoRAZlCulCXInLvodRWU2ezAsSniujX6vh+2PNjyYIvvh2ruN7lk\noIySyigzUJ1GdZAeaq1ZyMKkmPoUZy7LRpPByS6nzfs02zPa+YK2tsDvxsz3fRYHAYNOj4vpMaOs\nR5T6eF7CkXPJ5/5v2B9dsD89Z/fyGnIdiU5hOFxae7zafUj7YEx25ZGdemSvPax2it3JsDvZ+8uQ\nUiOfWeT/P3vv/RxHluX7fdJWZnkDb+jZftyudl+8eAo96Q9XKBQhxdPuSmtmunua3SRIkPBAeZM+\nr364lawkht2z09104PlE3KhCORSA+y2cc+4xA5t44GrHf0llO8S7P8X/7YJ97xn38+/5NPuaqlqA\nUhgoTDdiWvMZOU1S0ybB4Xy8RSedsNu+ZPjwCtp1zL7C6CsWWw3O19Y599Z5FtxiMOmQnDhwqq41\ncS33spAMl/cT0YHo4GOi9H85SyHIYKxIBi7DcYej+S3q9hzqLo1dg8rCRu+ElGjLZbZWIfV8FkaV\n2HbJPRM8pbNmZhkMi95JxSrKt0JePaQrU+5bVLYLimz1wq4pVtm+KgcISoEAwwOzBmYTu6Ow9xOc\nLwK2mqfcd57wm+xP9BYXVEdTqqMJ9eYmrj+i2piQbVgMJmscxinqyCQ9NUlPXKKRz5AuuGCGKVY1\nxq4lqAGkxw7ZMxv1GD2Z7zSC8Qxtm86Wv4NynybRwbtFdCA6eDtI4OsXUxZDkUUBq82fQFqFmQOG\nDXMLbF3WROrArKpXw8Ho5fBQUb0/Z6/+gt+N/8T96Xc4p1c4Z1ek85BWM6TdHLFWm5BYHpNuk7nt\nszh3CQ5cItuD3F76scX7KrJOXpfaDn+52a83+L5+vfzY8vVy1NxHT6vz0BHu5chWwwLD0H05VAOS\nOmAShy7jtImrNhg0usz3a+S/tfAbsHUKxil4a9C9A9ZXkN6yiGsVgmmdcFglWViorChrK6/sR1YR\njb/5In87iA5EB8Iv53V7sfgblbMHiwDuFHB18PgM+NYhXrgcD/b49+nfcbW9Ti0OqNkBbishyCoE\nlxWmkwY/qIf06WFWMxrJlO3LM+6ePkN9P2TwaMHgKTRaikY7x++kNO6P2L1/xGd3v+Nqb4P+7zfp\n49Nsj1nrXLLeuUBhkGOglMlg0GNw1aPfX0PNjZetMjrbA/a7h+zVDrk3+J77B49YPzjCjcPlT6/Y\n3bVJ7pvU78+4jLcYDnsMhms8TgHTZLjfobk+wZ4lOPOUqVfnsrbO5WCDo/N9jh7fIvzOg6eZnsoU\nF0ZuxF/2/BPeP0QHooObTrGvi8OoEOIQRgmYOYHnc7y9h7WfMV5rc7H1lMF/6bH9yQktJrQYYzYz\n4s9sVBssO8Ps5Bi3FAQWDKvwvIPWyxWvZnao5e0/9p7KdoHByp7xSssvrXIPo+tlYcvp2rYFrgmu\nQbU1o90e0u4OuTU9ZOvgjN7ZEGM0ZzCJOJoqso0FlVsX3L2dM1Zdnnn3cO5GGGmqsyzHph5yFCm4\nyFH1nLxikLo2zHPyfoK6iuAihqtI/24ZA31W5V3S3uHdIzoQHbxdJPD1q3DdcCgcygSYQurDrAKR\nB5YNpqGdXuVB0oHUhroF3Qzzkxz/wZy94Ijfj//IJ5d/ZPBtxODbkOQqY217yNqWQ7Y7YHq/ycX9\ndfpbHayDDmmrQuT4+vWUoRuqvhRr2VG/bkyWf4brfYmuL/Pa88urnOHiox39BtBGp3a29WMMQ/8O\nlKPHsyYmUegyTlvkStFv9FjcqpJFJk0fthxohWCug3cX7C8hW7OIc4/FrE448smCnPwvHP4iiv1j\nTv7HIfK3h+hAdCD8Moq/RRFkLfZu8XWRSVgEcKf6egycOTCvE1/4HE33GUctvg8/w65n2PUUq56T\nLiyyK4sktpm0GkxaDYxaRnM8YXt8xp3+ISffRJz8KebiO9hxFbsueH5G438bsdt4wWef/5mnewkx\nPv31DVqtMfvtQ+53fiDHIMciUxbP+3fILm2Glz2yS7TNeQXdnQGf9B7xh9r/x/bBM9b/45i1/+MY\ncxq/dMPNv4+oOzP275/wKPmK/zj/A0+efMKo2mWw3+HJ/h3q7oxKGuIlEYuwxtV8g6vBOuPDNrPH\nDcI/+3C8gDDWk5leTmMqZzgK7yeiA9HBTafsWC+HDiQhDFNY5IRWleO9fcZnHc5q2wy2eox2WgzN\nJjucsI1FzZkTtRxUC0w7w+jkkCpITHixnBaKi/6b5+igZ/mA7nX2S7lEK2eVzeLy8uCOGnoSdRNt\n25RaN7zMpFmgHevlsi3wTahCtTlno3POXvc5ty4P2X50Ru+fRoz6M/rzjOdzRetWwPZnF+wEEwbr\nm3TaA5zNEHOWkn9nokbATMF5Bt/nKBtyy0CZNipNIEogDHTzu2AK8RSYsMp0uR78Fd4NogPRwdtF\nAl+/GkXEGlblQ8ux3PnS2Y88Xk2HrKNLnxpAjlnPMbdSKtsBvaM++xdH3Do6JPsBBn+E+Ay8fVgb\ngJ0kbG6e0/WvaPZGRG2fqQ/YDigXMpeXzbOxWRmI5ZKn6/XLildPUovIddnILBz+8io+HIpSrgqY\nDbBaerltqHSg0sG0wbRyLCsnz0zyxCJLDFLPYRHXyPoGl+46p41tju7vsm5VMMmx8ox022R0yyLZ\nszl2d+hf9AguayQnNozDZRp/kbpaRNjLJV3lAIfwZhAdiA6EX466dlmm2I+g/87LXkdjHyZ1srHL\nyPYZmTVIDFhfrrqhm1z3lT4hvGVABerNKV4W0g4mrE/6DK4gOYbRAbQtSG2F6eV4n4U0FxPWnD6z\ntRYLt0GwXmPfOuS+9ZjP7G9RxtLhNywcOyVtOMy36iyOa0S1CpFZod6esVM/4VPvOzqLY7wXA9x/\nG6DG2cuwRr2RUvtdyDYDFlmLH6afszirM61XGTWqHHe7+EaIR4znxESzKsNBl9FJl/ixo1P6j1O4\nKnpYzNCnvB9XSv+Hj+hAdHATKYK6xf/iZZZ8FkIQQZCQ1A1G/RajQYfFTpXG5oTe5gWzqs9kUaG2\nsMljgzTOsC5DqmpOkzGd1oDO7pB4vULUqpD6DX3omDmQl+2Y8vcvSoqLw7HiPYK21ZaZLWYTrKa+\ndFtQaYLbBMPCMC0M00QlPiqtQrKA2IXE1pmYZlXbZRUD10uo+VM6tSva2ZDm1ZT6D3MmFzHhDPpz\ncJMYtxGzvj6l1xhScxaY3QyaCkylG5X3U92ke9lwXGGhsHhpczJHO/nj5WUxyKec5SK20LtDdCA6\nePtI4OtXpexQFmmbZUEHrOqCCydcP8YwDEwrx3ZSHCvBynKMhULNdPA7zCDIIY4gn4MxVVhhhpvF\nVIiwjRTTzPWEuNQHo4U2bkrT415x0MtpmEWD63K2StGTqHDiy+Vb5VKpZfomCfpDoQr4UGlBtQ3V\nNsaWj7FtY+wkVCoJFTvEsyPisEK4qBIsquRdiySooP7V4LSzy783fkfWsehZffxagL8bENddprsN\nZkaDg8F9fjj8hMXjKnyfwdliNcWOBa+KWYy7t4voQHQgvDmKgK2B3nNLA04N9G1xAFcVsF2YutCw\noWGBZ+peF/NU971IXfAcqJs687Ch28P5TehUIDSgV4NGQ8dr6TlE1SpTGtSdKQ+rj7hlPufO0QF3\njp5y5+gAwwRME2WZ1NYiahsBzY0JJ4tdzgfbnNnbmFaGY8T4BBhEBKTMUa+o0iXDI8EjwjViLDPF\nsBT5UJH8MYPvEjILYsMnMOokiwrh0CEbpnAaw0mgTzkZolP6p6zGdn88Kf03G9GB6OBDpvi9lw8I\niyEOU92qIalA4OIGMevhFQ/iAx7Ej7CfDEl+GDC9CHCIqLJgvQp37jxmfquG24w5725ztrnNaLMK\nMw/mLQgStC1T2F/lA7/XTbBL0Fnry4yWSgv8FlRbsOEvl4Pp5liVBKuiyIY52dAhH9Xh0oZLHy6b\noJqQVyE1yHKTRDmEeMS2Q+Zb0DSw51BJoLYAzwbHA6MOyjNQpolKHVRiLmMSRebOaLkyXu2vVDj2\n5cybwtGXoO/7g+hAdPB2kcDXr05hjJVTJZPlfQbaYS4aXDsUEVrDMLCsHMdJcewUK8swAu3wp9HS\n4VcQxyuH3w5T3DSmYsTYRqIdftME00OXUylWdchO6f2krKLAc1ZZMCmvNuqrllb59rS0QlbNAov0\nz7rObmm2oduGT0yM34D5m4RKbU7TntJwpixmdRhBOPLIJxbp2CX7V5uT3V2Szx2Obu3Q3RjQ3h3R\nCkYEVLm0t7gyNukPewyedZn/sQZPYzgPIBrxqsN/PVVVeHuIDkQHwpuhKPsqjMQCA1SiR1Rf1WFe\nh5MqOK5elgVpDEkMbgaVGvRM2CocfgPD07Zct6JfsVeDxjpUtg2MNYfI95nSoOsM6JmH9CoDtr4+\nZfPfz9j6v06xTDAdA9OB5t/NaP7jmM5nV/x59iVZzebC2cSyMlzzVYd/xirXMgfq5DgkuIS4RoRt\nphj20uE/z8jOE+LYIjCrmGadPLFIQ0UepjBfwGwE4RhtCI5ZOfwf3+nmzUV0IDr4kCmXVCXovVw4\nqFPI3eVkO4vKImY9vOR+/ISHwSOG30YM/8+I4FFGB5MqJtX1mLv/aw1jHfztgO96XzLfrDHarmun\nO2lDYLLqO+ouv29xaFe2hYpMSoOXDr/RgcrSnum04aEFn9rw0MKsxdj1FKcWkxw5qBcO+XMfnviQ\nNOEqXWXgpwZ5ZhLnLgEeseOSVi3dn2kKFT2cGt9aOvwNwDdQpkWe2OSJBVkGKlv+rvrACTpAUc7G\nL/9scenrcsuHj8fZf38RHYgO3i4S+PrVKUevy5kvxXWLVSplUYqUQp5BkkOoUKFBnDsEls/Cr5I2\nU6y1FNfIMdomSdsirFeI7Apx5pKGDnli6f0PYHvgNaFigeXpr00XVK5Fkqc6GybxIK1AburbVZGt\nskzntGpg1ZeXDpgOWK5+fp7qx6fBalGlcPiNWgNjo45xy8f/dEHtiym1r6Y0vTEtxrQZMwub9Bfr\n1OYB82c1grlPeOkztHrMN2ocT7ZpNsd03T7dyoBFVOd8usP5bIfw0IODDH7I9anmfAZJUbd83bD7\nuET9fiA6EB0Ib46yoVhO048hW8A0hGlxWlmMT7V5afRUc9ixYd9D7Zgs2lUG7S5nzS3mmwnsJPi3\nUswdi3jHZLrrMFrrMrR7DGY9NuxLtu0TPqt+R2M2pP5sSP1fhtimTrCxHIh6OflXCW59wbTa5KSy\nh2nlpKZNaHjMqGNVpkSdiHTHIKuvTOB03SaoedhmnUVeI05dVGygBjnZQUr2KIa5rVP9LROUgjyC\nrJgoO1iuIq1/wSrLRZz9m4PoQHTwoVMusSp6coagQu0gJwo7TmkmU7aSc7bmp0RHcPk1LP5N56A4\ngLebsf7wjCx2SH2XS28DzwvBM6DqQb2lnW7LX64K5DHkib5MvKUt5OosG1X0Mq0DTTA7GM0mxlYd\nc8/D+yTE+3yO/1mIU41wqiGOHxLWq4T1GkGzRqwqRLMK8WUTUGDmkCQkoUGwqDCdtRirNuNmi/Fe\ni8CwoZLhV3LMHYtgw6HftRl5HRZJjXxow8jQJ6B5zCrT5Qpt75T7rxYHfuW+poUdJHv//UN0IDp4\nO0jg642ifuJ6aYIFM1TskF0ZJAcOc6vBVb7O4d4+bmOI6o3Z3hvDJKLR9onaPqPeOqe72xzn+5yc\n7TEatAhnDiQZ1Gyo1qFWgaajV83WAYU0hyiHgQP9KowaEFsQZ5AkQAudJdOCqg91D+o+VC2o2voy\nzvRrxJmevDGKYRyDqoChjUtrzcb+LMf5w4xb2y+4X3vMvfEBzbMJ/jigOlkwr9UYd1qMu21ebN7i\n6ew+B9E9HcQ4cOAE5k6OYZnEdpU4rjBbNMgWFpwm8HQB/QUsRpAMIC/XLl8f1y28O0QHogPh16cw\nXNLl10bp6yKgPGM1aKEoKzZ1n4tBFZ5mpJ7H0YM9/rn+9wQbFv6nA/x8gLc7ZtDxMNo+ebvG182v\neBw+5PiHW+y1T7BaOd3WgDifcZXFHKfgGODk4CQQRQkqm9NmSJ0propAKUaqzYG6R50xW5s/0PvD\nE7aYYgUZKP1TzR42ubp7h8eVO/w5+pKz0RbxqQuXOcxS7dirAFQE2Uj/LlRxmlluJvvxjer++BAd\niA5uIMarl4YCIwMj1Wd3mVrlbiSsmjiAwsxyzLnCuFJwZWrnfqsO+xVouNBwwLchsiByYVGBvgP9\nGgwakA71tO1sBkYbzDa4bewdC+e3CZXfjrnTO+Ru7xm38+dYowT7MsFKE0aqzbjaZvSwzWm8w2my\nw2m2ixolMIlgEhMNckYnDfLHFr14RHdzSO0f5lifDokmC+zJgvlWg4O7XR7vd/km/A0nV9vEVy48\nSeEqhHSGDu6GrDLv9c//ahZR2cmXff/BIToQHfzKSODrjfK6zXW9id7S4U8qZH2P/KnPvNLgcmOd\n57t71O6O6O6esH0ZUQ1SwrZP2G5x7q9zmm1xnO5xcrVHPLSIZrZ26D0HNmzYQqfvb1vQM3SNWIie\nAHFYhWeZTvlfZJAHugkfbWADnSfqQq8C6y50DOia+nKu9JopOMl1uuW4yOKxwLCwejHupzHefwu4\nZT/jH+N/4b+O/4nG6RT7RYr9PCW4XWH+VZXZ7Sr/wR/IQ4vjbI/o0CN76pAf6pTO2PWZOm2y1CIO\nXbLQgnkAkylMhxANtdGnprxq4GUI7wOiA9GB8GYoGzFF5ktxWjpnNUSi6E23TO/PajCM4VlOhsVR\nfZf8ds5xa4PdTw7Z2zhk6/dHzCst5pUWU6fD49EnPBk95PjxLWa732IZOd3GgLMspp8lnGTg5npS\nd8UAL07w0zktbOrMqKgYI4exanPAPWJsvtqwaP1+ytbOIX4Sg9KG7ZNuk8ebd/m68vc8iT7hbLRF\ncurAZQizZJnREi6zN5enmKow+oqfv+jNUfSyEB3cXEQHooMbSGmQtLFMFCFbOfzlZgs6pKkwyDGz\nHGOu4ErBpQHbFdi0YSuHDRM2TWiZ2naZ5jBScOCDmen+R5GjM10yC8wWWB1w2tjbEd5vImr/y4IH\n+SP+a/7P/JfsXzBGOUY/xxzknO+sc767wfnuOt+kvyFJXc7zbbJnqc6Iv5wRDi3ykwaLJ12aawvq\nG1OchxHt7IJaMqQaDxhWNzht3OaseYenzx9wMtwm+c6BgxSuAkiLqXThK7+BV7Pb1Y9cFz4oRAei\ng18RCXy9E8qZLgEwg7hCfmXBQY3ArXHprvN0+y5ON+auW6HetvDSCeN6l6tGl0Nu8eJkn/PzbYbP\nenqqQ5JieBl2T2HfAudujr0T4eykWGvZy97d+dwg9D1C2yMyfLiaoC4bEMzAboLdBXcde13h7IO9\nr3B6CXYvxe6lZHOTfGaRTS3iikuc+8SBqydWLDMq7faY6l5E4/MRu6MjPn3+iP/p6P/FP5iTPoH0\nMaSxTbbpkCYOcaXCk+4D3DyEywb5lQn/ZpHNLCLXBjfVn3Bxrruc51NWqZ1F74piYlFR3vVxi/v9\nR3QgOhB+GWVnv2hqupyM9HICaZH2bqEnpzYgN2ASghGRpVUut9pM71Q4vrXF0OoQrtdINmsMVYeh\n6jLIuhwPbnE82Kf/fJ2J3SJs+aTKJnIyFrWMaWfp8KMloKoGpmviYJFnFnliQAjTaZ3j4R7Tyxq1\nypydXp9g7RRLzfRproIJdzgyPuHPoy85vthjdNEhPQMGCSwiyENgqjNdXhp85VT+110XHdxcRAei\ngw+ZslO6/HuV2j7kgcki8RnlbcZ2m7CRwEaMvZNiYJJhEG+5BE2fqd1kkjcJUp80tTFQOK0c91aC\ncz/B2sywNzPMVg4LUDODfGQQOr7uNZTWYZTBKIXY1BOpnQaGX6OyHtG4O6f75SW3zw744uyP/MPF\n/yA7hewEslPoWRtsbGyw1dxksVnneLqPkShdlnWZQBKRjGokRx7zVpPTdJtqfYbRztisdFkzrlgz\nrjhT2zzJH/BD9pCL8Sb9kw7JY+B5BMM5pGNedfhlj3/4iA5EB28eCXy9dcqZLoXDP4HYhisX7BpR\n6nARb+CEnzLdbvHcuM83Rp+qGTCd1JiaNa7CHgeHD5kctuDYgL4JVRvrXkbn8xHdz0b07g3pekO6\nlSGtbELugaobRF2HZ+4dnq7d5cXtXfJvDLJvqqhhF5oN6HgYPZvWvSHdB0O694b0/CHd5ZolNWZp\njVlS46yzxWl3h7P1HVTfeNlSwvNCOvaIDU7pjvpUHs/J/i1nfAyjcxhegNfKaTzOaHTAa0VU7BB3\nLcTuxeR1i8yytWGXTvXvKE8gz3UfCxZoR3+MPtENeFX4Ivj3G9GB6ED49bmeym4uby8GSiz7Pygg\nqsDMQZkG2Z8NYmUzP2ly5u2iPJthZZ15VmOe6jUY9FgMqjCC4VqHg/Ae/2r+HebGOdUvzvl8fK7n\noJrgmDD5bZPB1i2eWnc4iO4yGHfJL0xU5BAENTg1eNp+iF2HQWMNz4xevtOjYI8fZg84n+0w/b5O\n9APk/RnMJxDNIC/6FRUZLeXhDddT++WE8+NDdCA6+JAoB21jINAHW6MqHOUENZ8XzT3+dff3THoW\n1pdnVDmj9fkUHxsDh3mrw/GXd/i++RU/ZJ/zvHmL2a0GTpqy8fk5m5+dsXbnkqY1o8mU6nxBZptk\nPZOwW+HAucfTzl2Otnfhhwp834ZpBdwGVCsYLUWjOmXbOWVPHdI7P8f444zRn2A+0nMUZmMwvRC7\nOmK3ntObDalWAtgDTi2ouWB4MHHguQF5ynzoc3axRf7C5MLfpmFPqTtTRnGH83CD83CLyWGV4JGJ\nejGH/hQWk2VLhxmrfV8OmggfJqID0cGbRwJf74RypssCsJcOfw0WCfGkxkW4yXxe5+jiNn4rxG+G\nWJWUZOGQBA7hoML4SYvJkzZcAFUTqgb2mkH3szF3fveUO/efcmf+gruz52zHp2Q1g7wJs1qV/7H+\nX4nvWZyN1kgNE3VeJfsBaDVgz4fbFq3Ppux//pw7nz7ljnquV/6CS7vLpdXjwlrj2/WvSDYcLra3\nyJ6a8BRIlw6/M2THOKE77OM9WZD/s2J8CUdzeDGHXlVxq53S9TL8OxHeXoS7FeCsRSQ1l9y0UCqC\ndAD5GahFKaU/YuXkR6ymVRTCF9G//4gORAfCr0fx9y7qAnJWDTJglfWidNA0ciGzITZI8xr5RY30\n6zpnTZtxs8vzRkAaOySxQxrbRKlHmHmoHIa3OjyJ7uOaAfc2vuPOFwl3nQssS2FaYNrw3e0WB1u3\n+cb8LQfRPe3wn5uoS4vFqUFcr3CwadHfWefP219iu8sSLANm/Rrj0xbj0xbRC0X6IkJdLR3+bAqq\n7PAXzbrLv4Pr14WPB9GB6OBDovx3Khz+EJJAl+Ee5QQ1j+d7+zgEjLo+9776hns7EWvziByPHI+Z\nvcZx8y7fNH7Dt+lXTJttprcb2H7CxufnfPrFn3mw+wNbw3O2Rxf0ZkPiNYukZzFuNPi/2/8z8z2f\nozs7YFegb8GzBjgO1F2M9srhf5A/pnt2hvmnGeP/HS4juIzhKoJtP2CnnrHTmNPzBlQrAcaugmcW\nVB0wfJjY+kcdpMzOPPKjLcabXdxajOMlOF5CtHAJJlUWE5/kUpGcJ+TnC+3sxxPIisO+ELF3bgKi\nA9HB20ECX2+d630oQsCE1IZJAyYL0lmFceYzDmswMmHDgHVDt6UYK13ZdAk8MfQaK7gPbJlYdxSd\nOyNu3zrky+2vuXv8hPv9x+z2j/R3dw1m1RqDdoPDrT0eZ3cJDiBouWSGC80axp6L9Rm0HozZv/OC\nL/a+4d78Cfdmj7k3e8Klu8Glv8mFv0mce1xWNjjoPSC2Krr868zCcjIqZkSVOZUoxBql5GeKaAiz\nWH+OVWaKZKywBgbWWoalUiw/xfRTDMfSHQxVCGoM+QU6qp2xymYp96yQ1M4PC9GB6EB4M/yY4VME\nSpe6Sx1ILQgN8rWEhqoAACAASURBVDnkJy6pUyXq1Bh26nq+Q6ggUtoGdc1l46Kc8UWT54N9srGB\n6+SsbwW43gjTyrVVYcOsts+pe59H4885728zvmqQX+bkoUlmWsSGyWJnjbPhOswM3RCpqEY7U3C4\nXFdzPTRiMiml9RfB3mJEt+x34TqiA+FD4XWZLgvdBNtKiGoOpxcbxEODYL2C20rZ6MxpmxaB8llQ\n5TTd4fniHk8WDziY3APLQm1ZtNpT1u5ccm/7Mb/t/Dvb42O2Jyes9S/JbJu8bjFqd7js9XjcvUt1\n61PSY5fsG4/McXXNbgXwEipuRMOa0qNPdTbFPI2JftDtUScZDHLo7SY4/YTOeEHdmuPWYq2hqgGu\nDYYDixwWMVxGREOH6NJneNyEmgG+oQdjz9A9l4YKZguYxzCfQj5GTyktJlfHiM1zUxAdiA7ePBL4\neicUG7Ps9M+APmBAMoOxCycuBA5cWNCwwTW0shY5TBVcOLBYCqhhwbaFtZ/R8UfcXrzgwdEPuI8u\nuHq0YPoC/DpUGwraGdUHQ3YfHPLFxp85N7qcGT1Co4PZtrFu5bhfBPS8PrcnL/ji20e45+dMzqd8\new5mI8SuD9lr5JzUj9lrHLG3fcj4qM2s0mCeNogyj2He5pQddtonRPerWP9o0jqFvQG4A2jsGDTu\nm6RfmUSbLpFTIe77JH2HfK5QedG3otyc9XVOvkyp+DARHYgOhLdH2agssiwNIIU80l8bY5gvM2JC\nE1LdM480A7sKdg1sn8VTi36zS2bYmI7F0F7jwHqIgXop54OLOzx5cY+zaJfxH+uEzwzUcKanoBqJ\nHstkWDrLc+iAbaySdMYpXC3XbAZhkdJfTusvmrgKwt+C6EB4nyj2I6yGEgSQzXW/UXNKduoTfGMz\nNDtYxwqrDuN6l647IM5d4txlGLb5YfAJ434PAgtqYNQy7PWIlj1m++qcnYsjjMcjLn4I6Z9CvZfT\n6Bm46zGd/SH7+y940PyBUa3HqNFj0lg6/DkQGISxxzhrccEGrcYl1naF9ifAFPwpdKew3japbptE\n90wS0yZXpj6knCu951WhuQUwh9iFWQWUB7NlUNk19MTsea5tvTCAZA6qmGA3ZWUPlQ/7xPb5cBEd\niA7eDhL4eicUm7IwvMpp+TGkExj7EPnQ98B19TKXBliaLD8TKrDwwPf0WNYtA3svo+OOuD0/4sHo\nCRePFlz+64Lxd7DmQM+FejPH/+8j9pqHxFs1bPMT5kaLS7OB2cqw91PcLyK6V31u9Z/z+dUjLg4C\nLp8suDiA7XbIditnu71g94tjdr98we72DnYnJa+YLNI6YeoxzDtAxr12j/B+FSsxaB2C+xy6Npi7\nJvYDi+Qrm9B1iUKPuO+R9m3yeQJ5Me2vKN8qLq+XconIP0xEB6ID4e2iWI27XiyvR7p8Np9AUoXF\n0gmfmjoQkMd6md2Xa3Fgk5ldposu4601DjYf0Nya6pddbsnJeYPxaYvRSZP4aU7yLEWNppCWArmB\nA0MPjipa16DlH8UQhhBGEM90f7uX00oLLUh2o/BzER0I7xPltg8RYELuaIc/rZIpg4Vlk0zaRE8b\nTNa7PFu/T6UWkqcWWWoRzSuMjtuMjtuo1ML4bYbxuxxnP6I5GbN9ec7O5Qnnfw45+3PE9BB2qwq7\nmtHsxXT+25C9xhEPNh/zopaQNDwmzY7OPMxBLR3+Udbmwthgr/ECa8ej9Ql459A909vVbhs42xbh\nPZt4bJENlw7/LNcOPynaYe8DV5C4MKtCWAXLBsvUK820jZekkIWQBaACVlmO14c5SPD3w0d0IDp4\n80jg651RLvMqjJYMCCGbwbymFz46v7KCbspaOL4Adf28qgm+CR2F2ctpJDM2kgt2R8dMT2DxGM7+\npDXkG+A3c7z9Gb0/XBKbx/SNTXxyoIpZDzA3EuxbMY1gwsaLS24/P2L+CA6/geffQK0bs9eLWevB\nevuKtc+uWOtdsmjUmNhNSBVRWGEyb5GOTS6tDfqb6wztNRq1GVYlp2Eo4lsOwS2X4FaFftBjOmkQ\nn/hk5xZMQ8gWaHEXEe2UlcMv4r4ZiA5EB8Lbo3yimvPyVFUtlqeILmQO2jSwWBlWRWYJgE10XCPK\nazCpcXl/HbJlar5Sq2SaFwoeL9f5TI/enk4gL045FzCvoLVdZdWAnOX3DHh5GsocneES8+rIbnH2\nhZ+D6EB4nygfAsaAoR3+eKonXScmUdIg6teYHXtcbndhx4AmK1NgChwaulm2AWyDYedYvZTafE53\nPmT97Ir+c5g9hvPH0HQVqauwuwn1/Rm93/fZrJwx9dpc+hH4amlyKFSeEy4qjOYtLhabDN115ltd\n0k9b2DWF4+bUTcViy2OxWWGx4TGM2gShhzoHhjkECXoCaZHZfwqpC2kNqLHSm8Uq66cIghSrsIGK\nvS/7/+YgOhAdvHkk8PVOKfc5SnnZcPWlxRShHX1nuUxWpU2FceTo1MjluFdCUA6oun6I34CuA6kB\n6x50PWj2YNBwSFyfKXUCPFJsQJHnBnlmkqUWOSbKNsDTVWSWpd+FZYHhAh7krklmWSTYZFgoZYKC\nrG8Tf+9BE5437/Av3j8QdH2axpRKI6KyG7FY85k260wnDb4//5TD7+8Sfe/C9ylcBpCMWdUvlw08\nEffNQnQgOhDeHoW2yrqDlf4stK5MXi2rnaF3PhDUYRDoE8jU0SVaL5yVw68UXCRwnsB5CpMpBBNQ\nE1ZBhBBtglTQdQRlh79s5F0POkhZr/BrIDoQ3jfKGS8huqQVyGKI5jCdg/J1T7qZrQ/6MiBTEBjQ\nd2DqgGdDoFBzk3xhoywL1TIwN6Da1BnvmNCugd8Ca9sg7TgEXpWpahDkHmlqL1vHJRCnoBKCM4vh\nkzasmTwKp9jtnMXvfNz9GHeg1+CzLv1el/6ix9cXv+H46R7qaxMOUxgFy1LdOaueREXJV8armit0\nWBz0lQf3iKN/sxEdiA7eHBL4eucUAr/u/Me87I76MvJbiEChDSQHqILKIF05/FRANfRdfh26LlgG\nrHnQbUF1zcBuOKSuz4w6IZWlww9KGeS5SZaVHP4KmI7OlLHRDr/pAD4o1yC3TFJsMqWfgzLIBhbR\n9x5p7PD8/m3CBxUOd/ZpdibUd6c0whkzo8HQ7DKY9ugfr3H1wzrxv1fgaAGXi6XDP0E7/OWyLuHm\nIToQHQhvnkJf5Yl3Jq8amsa1+4v9Nlu+RgzBAvIA5iGMfHjhQ9XXjn4xLW8RwiLQK57qCUSq6ElR\nTKErNG3z6uS9ohSgnN34ummlogPh5yA6EN5Hiv0H+v89QKL3WDiDdKZbP8wqcFkB21oGWRVkFgQ+\nhB6YFVRoo+YWKtAOPy0DM4VqC7oVsE3o1KC6DuaOQdZxtcNPgzD3tcOfAFEGYYjKIoJzi+xJm6De\nwt7ICTc8LtZ71MK5XtGc49o+R7V9jub7XF2sc/V0jfxrUwd/hwtQxRS6iJXjXhxwFhNXzWv3lVc5\n2Cv7/mYiOhAdvDkk8PXOKad2FmIvNn2xyiIo8NApkSGoBMIMpgo1NgjrFaZeg5HbJummVLoZrbWc\nas/A6Rmw7RG3G0ztNsOwwzypkeQmkKKSnHxhkk4s4tQlsH2mzRpJO8PsZPi9DKtnkq2ZBGsmQc0n\nMKuEkU8cO2SJCVlOPjDJc4t0YHGWb3DZ6vDozgOatQmt+oi2PWY6adIfbNDvb5A+s+FxDt8p6Ic6\nqp8VDVyLGmaJbt9cRAeiA+HtUTaWCqOq0NfrMFidRoYQxxBHMI3QpcZFr6FyFs28tKboPTzl1TIt\nfuT7lgPgZaNPEH5NRAfC+8T1LMTlPlMLPd0umUNQRds9HvrQr3ishd6Dmb5rZsDQJhs6hL7PtN5g\nYrXI1jMqaxnNtRxn2yTbN1jcrjHrNBmbLcZBm3lYJYks7exH0bKp9oLoskb0tM7MqpJ/CZO1Kie9\nDZpMaRoTmkx4Nr/Hs9l9np3dQ70Anip4nOm2DeG8lOlSOPxlvZRtPXXt9yE2z8eD6EB08OaQwNd7\nRdkAKwwgg1eFUIihiAzPdfR7aMOhR+S7HDq3+H/W/pFpu4L/YIj33wd4O1MmDRe77pI1a3yz/SWP\n4s85ePaQi8s284UB+Rg1tMif2WR/qnBpb/C995D1exdE9ohsbcTmwyFmu0a/XSNs13ncu8/z9BZn\nT3YZHbcIhzYqjCHJQKUQpajvTPLYIj1zCLwahm2Q2hXChU849cinCl4E8CyEWQDxELIhqyau5dR+\nEfzNR3QgOhDePupHroPWW5EJU/46RhtvPtrKLJ6rWJVmBaXLYg8XmSxlXV9/L9eXILwNRAfCu6Rs\n/6S8+ncv9lqR6W6X7rd52fsnTaGfwxOLyHU5vLXPP+3/A7O1Cs4XYxxjjPNgTr/nYfUqRN0W37Q+\n59n4HuezbSbPG0R9A8KFzlLMR9oOmcRwkqHynChUTC/rqCcWc7PJyOzimwFX801mswZqZsDjEA4D\nmAcQ9yEbowO/AavAb9meKbIwr+932fcfH6ID0cGbQQJf7xXXN3fZCLoeAS6Ev1g6/B4cZsSWx+Ha\nbdL7Bi9q2+w9fMZ++ykbvzsjcmpEbo251eJR+DnfhZ/z5Ol9goucxTwHNUINa+RPq6Q1j8tbG3x/\n+yH2rYi1jeesffKczWnCorLGVWWN55U1Hs/v83x2m7ODHYIjh3hgoKLlBKQwhGlIHvio0zrqa5/A\ntUktj4XdIEss4tBCBTlMAxiPYTrWDn/xAfOKwy8nnR8HogPRgfB2KZd+/dj9hfFZZJ0Uzn5hfDrX\nHp+8ZpWnDxX7+Ke+Z/lSEN40ogPhXVN27q9n+i2HMLzS9qHA4eXeSnK4suGxT0yFQ/82+Z7ieG2D\nza+O2No+ojPrs/CaLLwmE7vH98NPeTq6z/n5DvELiAYGBIHOOM+HoEYwzXQfpZFJdG6SP64RdppY\ndoq9XMGsSjCr6kybUQTDCcyHkA0gG7HKXi9nR74uwFz+Xcje//gQHYgO3gwS+Hrv+KnTRtAih1Wm\nywKyCoxrkMckVDm9vUl/0OJZfIvP2z2Sjk9m1JjQZKKaDJMOB08f8PT8HsdP9uF8APMBqAmMDNRh\nhQybgdvlye5dopbNJ+0qFcNk24y5Utucqh2O1Q4HB/c4Odul/3id/CiBYQBRAGkxsWgOgyYKmwyf\nzLKILQvsCuT5clRrMd1iiJ5wUTTzLqYXSV+jjw/RgehAePv81N4qlyEnrEqzCsPTuvb4sqEq6frC\nh4ToQHiXlB3d8gTScsuHYhU4vNxPqQkDD1SdWFU42d5k+LDOc3OHB+uPWWy02OKUIV0GqstVtMbR\n+BbHF3sMvuvBizkMFrrVAhNgBPSXFbt6ryenNRK3wsKtr+K9DsvHKJgXAeERcIm2Z4ryrnKvup/6\n+YWPG9GB8Osjga8PjuIDoOTwKxtiD+YuXOVk35okpsniuMGpt4vpGfTdDYLMJ8h95lGNi+MN5sce\nHMXwPIDxFNQQZhZcuKAqzF2Xq2SNfGATVzz63jrPvPsMkzbDpMMo7nDyfIfxsybqMNdlWoOxDhww\n1+/tlVHcY1Am5IYer6cyyAuDcMarHwhFI28p7RJeh+hAEN4+ZUO0nI5flB1ff+zrJs/JHhY+dEQH\nwtvmx1pAULoeAnPIbQgrMHFRZznJ1wozd5gedjhx98lcl3N7h3lWY5bVmYZ1BocdwueWtoNOZzAb\no22REaup0pPl+4ghr0JaBXzIDEgMHfONckiLPT8qrev2jOx/4ecgOhB+GRL4+uAoThoNXk5/UAbE\nLuQWKldkf66j+jXUtw3OmnvMWi2eV++QpjZpYpOEDovLCosLDy4TmAQwmekUzrkLuYea+ywSh3zU\nY/aizaC5zmHrPrXmjCjwCBcVwsBjflxldlxFHeX6daYTyC951dl30R8cHuSWfu/KAJVrp79oXEjA\nqv9FzKspoIJQRnQgCG+X62VgxeX13kTGtcdfd/RlHwsfMqID4V3wUy0gCpa2UG5A6EBmo1JFmldR\nFz7Z11WymsO41qPihSSJSxI7xIFDeGkRXNpwFcJ8CrMhMEA7+YXDv3T2mUPmgfJ0pr1pgGGAYUKW\nQlbYM8XB33z5vGXvJTnEE342ogPhlyGBrw+OQiQpWkCAUpDYOtIcKPKpQX7okVZcwm6Xq14Xmqx8\n6FDBKIXR0tmnSOMcQ+DpUbCDKuHcJ7yowVMfegb0gC46KaUYTHSRwnkKFxGoZTYLfVYOf4g+BbWX\ny4S8SFEt120X47qL3hcyvUj4KUQHgvBuEMddEEQHwtvnp1pAKLRDrbQtFNsQW7oLxNgke+YTV3zm\nLZ/LFlBdPjwEwhxmkZ44tygyWoqWC0W7hmKqdAjYoFzIHMhcVqVnJiv7pSjjKh/elXvaCcLPRXQg\n/Hwk8PVBU0y7SNCCXDrRKoUshGSi65ANEwJTp12mCpJl3XGSoMV7hRZ4hPbibf06sQ8zH5QPiQkz\nE/qWTuEMch04mMQQFqIuIuNzVk37ElaTj4ra7GKVSwDKfTAkCi78LYgOBEEQBEH4mCnsh+XAH8xl\nK4VY9xs1RjBfZsIsDG0DJUo3AQ+jZZ/REG3DjPnLadJFaVZe+vq6PVOeVlq+FHtGeFuIDoQfRwJf\nHyzlHkcxr4zVzkNQM1BV3asotsC2IFe6kXauIIn0omioPUULfbJ8nUA7/MpfOv42uA649rIR93LF\nIUQRqGVN9ctVnmBUfAiUmxBeH9V6vemrIPxnEB0IgiAIgvAxU9gNhY0x52VmSrbQPUdzX7dZCJe2\nUJZpWyjLIYsgK8qwCvtlwcqpL/eoKw7nioz7sj1Tzmj5sf52gvCmEB0IP40Evj5oCuEVolqOeFUL\nUBXIXUgdWNjobntl8UWlVaRgpqX7ZpD4kHiAjx5T4S5X8QFQZMoUPYmK1ymmVEiZlvA2EB0IgiAI\ngvAxU7aFyoN/5roHUeZC4qBdP4tX7ZOy3VK+Xj6IK66Dtn2Kdg3X34Mc3AnvEtGB8ONI4OuDpjzd\novi6fFvKqyO2y4ItZ6KUUzAL4ReCLSLZRW8ip/T44rFJ6bJ8nwheeBuIDgRBEARB+Jj5W2whk1cz\n5ssHeWXb5acyVF53u9g7wrtGdCD8OBL4+qApN1ctC7cQdpF6WUSjy49/Xc1x8bzyB0DEKipeBA7y\na98re80S0QtvC9GBIAiCIAgfM6+zhcp9iF5nC10v27puC/01Z//6/WLzCO8a0YHw40jg64PndaLL\neH3q5fXnvU7M5bKs8gdDcVn+kMivPVdSO4V3hehAEARBEISPmeu2UGHLlHuLvo6f039IbBzhfUV0\nILweCXzdWP6aEP+zjvn1lNHrGTN/y/cUhLeN6EAQBEEQhI+Vv2aT/LVSLkG4CYgOBAl83VB+zCF/\n3WP+ltcxXnPfz3ldQXgbiA4EQRAEQfiY+bVsIUH4kBEdCBL4usH8WuJVP3JdED4ERAeCIAiCIHzM\niN0iCKIDwXzXb0AQBEEQBEEQBEEQBEEQ3gQS+BIEQRAEQRAEQRAEQRBuJBL4EgRBEARBEARBEARB\nEG4kEvgSBEEQBEEQBEEQBEEQbiQS+BIEQRAEQRAEQRAEQRBuJBL4EgRBEARBEARBEARBEG4kEvgS\nBEEQBEEQBEEQBEEQbiQS+BIEQRAEQRAEQRAEQRBuJBL4EgRBEARBEARBEARBEG4kEvgSBEEQBEEQ\nBEEQBEEQbiQS+BIEQRAEQRAEQRAEQRBuJBL4EgRBEARBEARBEARBEG4kEvgSBEEQBEEQBEEQBEEQ\nbiQS+BIEQRAEQRAEQRAEQRBuJBL4EgRBEARBEARBEARBEG4k9rt+A8J1jL9yv3or70IQ3i2iA0EQ\nBEEQBEEQBOGXI4Gv9wqjtF6HunYpCDcR0YEgCIIgCIIgCILw6yCBr/eKv+bwG0C+vC5Ov3BTER0I\ngiAIgiAIgiAIvw4S+HpnGKVLA91uzVou89r95QyXrLRUaV1/zetcDxD81GMko0Z4W4gOBOGXYfzI\n9ddR1okg3CREB4IgCIIg/DgS+HonlDNaTFbOvg04rJz+YvZAYaTlQFpa2fK2nL8MIBTrelDgde9B\nvWbxE88VhF8D0YEg/DKu73P4aae/0InsZeEmIToQBEEQBOGnkcDXO6EwzgrHvnD23eWyWWW9FA55\njnbwYyApvUZ67TXLQQRKz71u4Jmlx5aNwOuPF8NQeFOIDgThl1He639LbzzZz8JNQnQgCIIgCMJP\nI4Gvt0rZ0bfQWS2V5fLA8AEfTBdsE2wLDAOyHDIFeQZ5ACoAFQIhEKEDAA76z1kECwqnvygHKzv0\nsAoylB3+12XSFNcl60X4tRAdCMLP53qGZLHK+77s+Bd7OkNrJFleLz8+Lt13PWCgXnNd9r/wrhEd\nCDeR69mLrwvk/lhmevkS/nPBX0F4HxEdCG8GCXy9NcrOfmFoeUB9tYwGGHVwPPBM8Axt08VArCBO\nIZtBNgc1A4oVL1/LQwcPitc3edWBLzv9TmkVAYEMHUAoVrxcBq/2UxKEn4voQBB+PuU+eEVJsMMq\nS7KyvCxnOybofZ/wapB4GWDGZaWholxYyn+F9xnRgXBTeV1At9zvFFY2TPmw7j/b6/THAgWC8D4h\nOhDeDBL4emuUU/ELQ80DGkAHjDYYHbDaYFdXd9nAYvlUlQBjyCfL5xZ/vhCoLVeVlfFXnGAWp5iF\nU5+zCg64vNoofFFaASujD1YfMILwcxEdCMIvo6ydUqYk1eXyWBmLBqsAbsgqEGwDTbS4/OVji4Bv\nuVysXPIr5b/C+4ToQLhplJ394uCu6HdaznYp2yple6a8L3+s5Pf6PgbZw8L7hehAeHNI4OutcD3L\nxUOXcjXAbYHbwag1MXsVrJ7CaYV41RDPD7CsnChyicMK8dwk7Zsk/Sr52ITQgdCHLALf18vzwLH1\nsi1IUkgSfZnleikFFQcqLrjO8vZMXy5qsAghCEFN9WLKKv0/5i+NPzn1FP4ziA4E4edRGG02Kwe/\nlClp1aBaAd/T+9kywbKW/n4CUQxxDPEc4oXWSrWpV8WHhQkLA8LC2CxWUepbLvct3ybZj8LbRHQg\n3CSK/VwEWS1WB3EVVtmIDqtggGK1/xJWwdyEV534co/U4nspVnv4+l4WG0Z4V4gOhLeHBL7eGoUB\nVWS41MFqQbUNjTbGZg3n0xz304jadkjXHdJ1BjhmzCRpMU6bzCZ1Fo8d1IFH/NyHQRWGLYgyaDrQ\nc6BrQ92EugUVA+Y5zDNY5BApXSqWKWhbejWs5e05hAouUr2iGNQQcgeUgXb0I1YlYa+LssuHhfDX\nEB0Iwt9OOUvSQ2c1NnR2JB1wmtC2Yc2Gjg2uoZcB/z977/nk2JnlZz7v9RYeCSTSVmYZVpNFtpme\nlUY70oeNNX+zNjZ2JcVImukZuqYtm94gM+GB6++7H26Ciaome6YlNodddZ+IN1CRVZWVAM/v8pzz\nHsMkg3EG4xRmc5jOC7uuerDmQ9WEvihOuKyEWbYVrM48Wm39XX6tdBJLfkpKHZS8Lby5hEelCPSX\nFeseRSVihcLWVwP+pd2FFBdyM4rK9NXt1suKd33l35LcVb8vfZmlLa/6MVDacclPQ6mDkp+WMvH1\nk7Ba6aJTZK590G4D/nodZdtA//Uc+9/Nqdwf0uWUTXGCLQIuZQdDriGGbeQ/1kgMjzh1QeawkJBK\nqAhYF7ApoCGgSfHcGAIDYCSL58GC4jmxDnQFtLnr6JoBuiwC/0EOmXH7jEi5C/ZDXs+yL7fplWX/\nJf8cpQ5KSv503mwPXgb8VaANogN6DWq3dt8DbFH4jApwKeEC0DNgDtEc0ggqHvRc6BogFJgrcLNs\nJ1gG/KvtYUvhLG9nl0sgoLT3kj8/pQ5K3ibetOfVeacVoAY0uHNiltUwq0H7nMKxWS71WV68CV6f\nXbf6dwO+345XK17K1q+Sn4pSByU/LWXi6ydjmc02KDyxKphV6Diwr2E9jNhcP2XbPmI9OqE16tMa\n9TGSiDX/nG2/wVXe4bC2y+H9XVLNIK+rZL6GMs3x96b4exPczRm2F2K7IYaZENQtwo5JtDBJQp0k\n1MlTBb8xw29McasL4lgniXXiUGfo1RlV6owbVRh6MIyLZEGegIxXTlS8fvfwWCYClmWj5YOi5Pso\ndVBS8sd5cxbFarLYpHAIG6A3oVmFuoO2Jqhtj6jujPA7U3QrRjcThIBp22Pa8wkHJu74Bmd0gx1O\nyTcd8g2btG4z0jWGaExoFu1hmgKKctsadtsiFi2K9rB4mR2ecdcyULZ7lfzYlDooedtZ2vRty67i\nF8lbrQZ2DSoVqDgI20BTMzS1qEbJIoU0tsgDBSYSpgoEDojbikNVgG2CZRbjHJbJBSkhjCCMIQqL\nJUHpDPIZd/7LMmFQ2nHJT0Wpg5KfjjLx9ZPwZqWLC9TAqkLPgg8EzsMZ9xsv+G38O/aPnmE+m2E+\nm6LMUtIdl2Tb5rrR5WNjQbhvMen4JG0T2TTRxhnt/Uu29o/Y2DihJW5oiwGemDOQNW6oM5Q15onL\nLHVJMoNt84Rt84SufsEMlxkOk9znaes9nm08ZHyvBi8seF6DyIQsvZ1/lEEWQB6ADCjKS6e372+Z\nfS/bvUq+j1IHJSV/nO8bwrq6uc6mqHBpgdWGTQfeMzD2Y3rdU+6vP2WreYSnznDVGQqS42CLo2CL\nQdCgG57QDY5ppn3Sqk1atQgMj6f6Lk+Ve0z0tWKLqqkUuelxBqPbMwlgHEAcUNyuLmcfle1eJT82\npQ5K3hWWAX+lWOpjN8BtQMuHXQt2dZS2xDRDLDNAyTOCiYUcW+RXNhwKODThOr4tnJHFeIemWrT8\nVlQQt+2+KTBIizOKIZoU81Fjk8J/gSLQXy4BKin5qSh1UPLTUCa+fjK+p9LFqkJPwAcC98GMvfgF\n/y76bzw5/Yz445z4v2bkA4n5kYrxkeDmUZewZ3HSW+fE7EEDspqGPkpo3+/z4P43/GL9C3aDE3YW\nxzSTISd2WBOlRwAAIABJREFUj2Onx6nVZSgbDGSDUFp8mHzJR+kXPMyecaPXuTFq9LUWSi9jOGjw\n4uoBOBYEBpxXIZHFEQAzkPPiFYO7J4ngrux/datGScmSUgclJT+M4A+D/jc3oFaAFpht2FLgVwrm\nL+f0Wqc8aX7Kh5XPaMgBDXmDKnM+5wk+H3Iit3ggn/Ig/5ZteUSsmsSqyTitoigZ17LHK6VxO1JD\nFLmFcwkXt0eJitvRSXj78yUULQZQtnuV/LiUOih5V1gN+OtFwF9twYYLHwj4tUC5l2C6EZ4zQc0y\nZF8hubRJDizQTJj6MJV3I5JcihEO28CauOvwioETebu8NAVhQ2JyFwouZ9itzjgqKfkpKHVQ8tNQ\nJr5+EladuDvnTagqmp2g1hI8f0r1YkL9aoh/NGJ4CotLSAdgnBRLh3LbouaNqG2OqNRGaOspWpZh\njmLWvEt2Fofsn7ygOrxEGV4QzSdYNUm3luBW5oytKyZWhVA1Wb95gXF9QjC8QjNDGsYcy1xwYh5y\nam5yvt0ln6hkqUpmKsVrqpGlKukEkrFJOlYhuJ2vFEiKp8iy73pZJlo6fyVLSh2UlNwhVl7fHO6q\nrPzectirDsIAzQDdQK0oOK05Tm9Ot3POTnzAvZNDtpIjtGyEko5JlZxqrcJe3aDujOiMD6mPj9Fn\nl2ho2OgY+ZjtyQse1VqkH5gYVopuJWh6xqziMmu7zHouwaFG4GiEigdhBcKgaBdgQdEaoPHD25FK\nSn6IUgclbzurNr607+U8I4ci4DfA1lB6CmIfnP05zf0bWu0bavYIN53ijqeILGei1pisVRkpdQbT\nBoNFk7njodgZip1jVCJq3RG19RFec4YQEiEkWaIyblUZr1eZXjhkpyrpqUt2KSBNiy2nWbTyM65u\nr37Tjkt7LvlTKXVQ8q9Pmfj6SVmmmwvRKwqYeoxlzvHUKeY8RD3LSY9gPICzqNjAzQicY1DsHHMt\nxA+n1LUhRjXBIMH2QzrjS7aPTtkcHrO4mNK/DEkmOW5rjtu+otlaEDas4tga2fNrRs8nDA8kVSOm\nakxp2ZKNR6fsPXzB5L5P/MAk9g3iXYMwM4lyiyg3mR+bLI5N0mMPrnLoA6F6u/UuoaiAKctDS36I\nUgcl7zo/FOSvrt5eXe196xwqOlgqOApaI6HeuKHTuGDXesW945dsPDujcXLDKAm4TBLmukTdv2Lr\nPuy2LpAvh/BiyPhkjoGKjoKlx/S2XpBs6bT2hvhijscch5Dj5gYncY/TcJ2rZosru0mouHDjwU0E\nYUbhrM5vf8blZqSIct5RyT9PqYOSt53vs3GdIolrUgT8NqAhHFB3M9TfRjTuT/nA/4In1hdsTU8x\nbkKMQUSeC6Ydj2nH52Kzy1eLD/havs9i3UWtp2j1GL82Zq/yjAeVZ2w4J6giRyEjzkxebO/xcrrP\n8fUmwecqgWKSLYzbmUchZCF32lN5fcvdcuB3OfS75E+l1EHJz4My8fWT8aboBaqQmFqMZ83x1RnW\nLEQ9y4qA/6YI+BcpOENoCTD1HGsvwg+m1LQhei1B9xMcf0FndMn24QmbXx/z4jinf5RxPcjZX5/T\nWQ/Y6g3INwX5pkJcE7z8POXl7xLOPod9PaKqJ7TciI34hNF6haihsfAcgl2HReIwx2UmPea4KF82\nSL+0WNgeaAICFa5NkMtgfzWxUVKySqmDkpLv32S0PKsb5ZaB/+1ZBvy+QK+nNOo37DRe8sj+hnv9\nV2z+wymNf7rhJsq5jHKuLdj7X/psp0PWdlUuPk25+PuU4e8zfAQaAstbsPF/vaD6cMbDJy9pxUNa\n0ZBKPOML4zFf6I+x1MeoTkYgPG5iC1QXwhRuoHBctZX3smz1hdc3I5WUvEmpg5K3ne+z8WWgvwz2\nLUBDuKDupuh/HdK4f8UHwe/5Pxb/N4+vvkUc5SgvJGmuMv21w2zb4aC9Q56rnJs9zmc91F6Cvh5S\naQzZU5/yb9T/yvvKl2ikaKQscPj77K/JMhiPPFCrJCOX6NwCEUB6u+30Nd2tVi9mvL7NFMqgv+Rf\nRqmDkp8HZeLrz8pSGCsOG1BUgyyQmSALM5KJRlixCAyb+ZpNuGOhklGVGdYsx1kTiLYg3tYJGjZT\n4TNbVIk0nUxXUOwcXUkw8wgrjFCnkA0hvgHpZGiVDDtMigvIFKIMjAAYQXoF0pKoZoaZSWrhmHV5\nTqgaJKFBMjSJhwaB4bAwbQLT4cTc4mR9C1VClKbEg5RYKNwNnXUpbjoT7uYcrQ76Lnm3KHVQ6qCk\nYHXBw3LW3e0mI0wQJihmEdgrarFZTiiQCsgEqBaoHmg6QsvR9BRLi7CVBVYSYk5j9JsEcXthmTog\nggRDSbEt0DKQE0nSv5tcoc5y/MMx7lMJzSlmOEELJsTJHLfpstnUoCbJbJObtTXYV0A3QXOLhO9c\nh4UFCxfyCaDfVj1G3M3JKG2+ZJVSByXvAquB/oqNK06RNNU80C0wDTAMtE0Ft5vitUas2Zes9S9Z\nO7ikfthncQDBAcSKgtkwsdomMQYNbnCbM+zWjGb7ikb7ik3rkJ3r57SvD/AnJ4jbqsNMt+m0XvCg\n5SFbCkdruxx1DebrFdBdkPVihmkeQ3a7wfq7LXchd1WMMeXGu5J/OaUOSn4+lImvPytLsa9mjSWF\ncCZkqSSaKMhLl4lfZ+zVGD2qsNb0cBsh236InOVUdxS0bYXphsForcqV1uVi2kNYOcLOccWCTFeR\npkDYoBigq0X4rWmF/7iaUBdG8XVDKRYXGWoxLkOxJb4xo6P2QUrEOShfgfINxDWDpKYT1wy+1t/D\nrc7JW4LxWGNyoJAIFYnC3dDZkOLBEFI8FJZZ8nLexbtHqYNSByXff+NpAX5xhAfq0hE0io1ypig2\nEUWiMCF0UDzAQMoYKQU5ghwFKQSoIG7zBJoAXQHhCLKGQtIRZNUcacKq3YlUYh5HGP8wRb2JmIQh\nl2HMNJWoeyNae4c0d0NGUYuD2n14ADga+DbUVbgw4dyHOIbMglwFmd++T8ldq1e56KEESh2UOnh3\nWF3IYFPYeAUUHywPbB88E2rF1jn9fkRlbciaNaAbXFA5HqN9nBA9hetruLyG2JA0qilNG9x5gFNb\nYNXm+JUhW94he8Zz7oXP2Xj+DPPTK4KXC1IkKTmRl+N+dMKjXwoavRmGlzJZq3OxtV4kIVIJoQXx\nra2mCXcbq6cUc+yW9ry8zCsp+ecodVDy86FMfP3ZeLOXeXmgCITH5ClE0wpx32XcqjNq1hjtVAkS\nF6ciaVsJxjwjf0+Qv6cSdE3GUZV+1OFisoElF1j6nFRo5JqCNIsNRKoBmgqGAFUrLk+xuaskNUHV\nwVSLL5lasRBDtSWeMWdN7WPLGfZZjP1xjP2fYuS6IF9XkOsC//4MeR/G9z2UE4/kM5eJcG7fq0Wx\nZlxfeb/J7euy3L90+t4dSh2UOigpWK1yWc63WDqBDRB1UCqgVcC0ioJBVxR/Zc5t7CyKiB61uIWU\nRbCfCwWpCKQqihFISvHdVwP+uCNIK5Abr28pUlKJdRzhTxKsLwWj2/awo0xy71cj7s1nbCh9Dp09\nPq2OoQtUdGho0LbgWwmxhOsc0ECuLnbIVn4N5YakklIHUOrgXWFp50sbrwJNUGtgV6DiQ9MsNs91\nBNr+iMpan659XQT8R0XAH/4ergJ4GULoSB6YKS2R4cUL3McL7I05lfUR2+oBH6qf82D8FcbzPsb/\nd8Xi7wMCJAGQNRNq2TEbvQH3Ny+ZelVedR7AlijKIucWjGvFj55LSDNgcHuWvkxOYcvLpG5pyyX/\nHKUOSn4+lImvPxurGW6H7zLcmguWDZYDLYPcNkAazEOP0/kGXxrvE6NTcWb4m3OMNCbuaMSOzmXW\n4eXNfW76LcK5DU0JDcnc9LhOWhzXN6ju9xmrIYob4l0npJsm11sW2YZBuqaStVUSVzDeWZA/WeAq\nETOrxnOrxrnr4zSmONmUen+MvIjJTiNmRwl6AMYM9DH4/hXNnUu6lXOiVofJhoW4ZyFnGkQGRE7R\nI53OIDWAgCJDvsyOQ/mQeFcodVDqoOQPq1wswC5uPI0qGHWEV0Gtm2h1gVZJMOwY044QQhItTOJF\n0XabpYIsVchUlVnqcT1f4ywYs+YP6O73MdIpaZBghSm+LQgfVDluV7lyLeLNMdkHY7xghomCQJBL\ngbJI0YMMY5giAsgWRStwupBIkaN4KW29z3vqN9zkLVJfJVNV0prKWNQYiRpjUYOBC8MKjKLbGD+j\nKNFZBvxlwvfdptRBQamDt5vleIflJlIbFBd0H/QqSt1D76noGwl2J8Brz3Bbcxq9G7prZ3TNMzrR\nJRVriuElqH6hFC8tKtNtS6L7ktTPkQbkuYqMFXQ9xRVzKvkEZT5HXMfI8+xur3Qi0cchbpQjVAuv\nOsPsBehphG4n6NUEbT0lCkziwCAJLOTUhUkGU1G0GqcSspS7C73VCvaSklVKHZT8/CgTXz86S8du\nObhv2fLUKo7uQ12Hlg6bJrQsMFUWscPB1R75tcqBuoelBdjtAE1LSUyddKozvq7y8uV9Bq+ayJFC\nsmbAGkyadU7MTb5uvUfeztA2r1Ef31Cdz4hqDY7qDV5Vq4S+ReRZJIaK8+QMt3aO/3jAZfaIy/w9\nhuzyi7Uv+UXyBa2DawbnKTeDnMEMKgL8ECoDSDdCnOmIrjxnUnPo73bgl1W4ljBIi7OYwsIuSv7l\n5PYzWV3tXfJ2U+qg1EHJ6yyrHg2KJHAF9Br4NahWUbo25n6GtTfHWwuoGmNq+ghVZIziGsO4zmzi\nE57YRKc2aa4zTBowgtxX8RoLKr8eI/YjkmSOk85RdLh5sMPh2h4Lo0l77xVr6Usau2eoqKhoZIkg\nexkiXwRwmKFmoEdgZpC7BrO2zWDLoT4f8Jv5P9KbnBNYFouGSdCzeKo94pn7iEmjinxuwosKjLmt\neIl4fbtpuQmppNRBqYO3mdXkrk7h+zig+eD64FXQtgzcX4T4v5jQ7t2w5R2z5R3TqF5jNUIsK6AV\nX1PpTjAeJ1gC2megnhd3aPVNMB7B7IFC4urEkU147RL7Fqmnk6OioqAhvvM4lo226m0Ffq4qUM3R\nNmNMd4G/PsV/OMWeBIyiGuOwymTuwysd+cKHQ724twskBMV3Kmw44fX5pSUlUOqg5OdKmfj60Vkt\n47/NcH8X8G+AUYGGgC2lKKtsKmApBInDwfgeF5N1DC1C34nQdiNEJScbG2RjneTcJPjaJvzSRl4K\n0p5BtqEx2co5fbCJszkn3lDYSA7pJSrVXONc63GhbdLX1pmpPlPVI1U07le/4cF9QSvM+XL2Hr+b\n/Qc+n/2GMDbpRJe4h59wfiE5H0hezqEdQnsIiQrp4wB7MqTLBf1qB2tHIIIKHClwKkHIok86syAw\nuQv2F9zNuPgu917yVlLqoNRByR1vOoG3Ab92G/Cv1VD2VMzfTPD+akZje8C6OKerXKCTcJb3UGWM\nvJbIf4IkM4ivLIZJg9mowqLqUWlMaGzfYNtTfDnEkyqWgEN7l2+cX3Gqb/PLezaNzoJ6NCTFIEUn\nDVTyvxPINIV+hBoVs/EMIcgcnXnbZbhVoXZ6Q3dygTn470x6HuOGx3jDw3JDJo0qz7qPkKoJowq8\nMCnaAGa373dp78vFFuVMjHeTUgelDt4FluMdlgG/C7pXBPyNCtpWjvtkQuNvbtjeeslH6ud8qH5O\nU7sm1CxC3cIyIyrdKcZ7CaYGLRNqaTE6TtkE9SFk9wXJXCea20ShQ4xJaurkt/++RuGBLa2uqE8R\nSBQyRUFUc1QnxuwsqGYD2ukVlWyCGsXEscpsapP/TgNhIMde4dOkOQTLy7uYwp+B8jKv5A8pdVDy\n86NMfP2orM4zWgb7PuiVQuiOi95V8fZnuPdnOOsBhh9h+jGKKokdnVjqRKrJ3LQYigpRaJJfquTH\nKvJAwNMUDkK4CZCxhpxrRDOVm6yOmW6TLlRmXoWZ26DuDOmbbS7NNa7VFpNxhel1hXhmIk0FaRpM\n9Q4v1Pc5UPY5UTa51LrciAYT4ZP4CXo9wW8luAbYOhgGeI2QzBmhcc7cr5Ctm5hZzsivMW36TNs+\nySkkJxZpLiBKIA2Ltq/vHgrLB0bJ20epg1IHJa/z5lYjF6iCVUV0bMRDFfdhyMbGBZvVI9aVU5qz\nPs3ZFVqeUveu6XiXXPrrnHS2ObkHN45OKjSSEx1lWud0fZPq+oi0plCNBlTiG0SS81x9yEv1Pmfq\nFp6xwDZTMt0jkTqJ1AHo1vvM9i5pJNdcTg2upybDUMfuSWQmMU5itMMpysEUcTTDmztYsUszczhI\n92j7fSp7Q6ITnbSikGg25B7I29bm12b7lW2+7y6lDkodvO0ovG7nJuCC4UDdgg0de2vGeqfP/ca3\n7Onfsjn6hur4JU44wsDFwUXLFWQiGbUqzFWX1NBIXY1YGIS7BmHD5Fjd5HB6j8lJlSiyuElaHJi7\nWOqU5ppF6xcSP8kRSDQkeU1nvNtk4DdZyA6RNNnIz1Cy39GYD2gsBnjhlHX7gr51ypXd5nprjeub\nNYaLJhy7xaa7ybJuJrh9j+XCnpI3KXVQ8vOkTHz9qLzp1HlADawqdG3YULF3Anr7p2zdP6TTvKTO\niDpjNJEyqfiMhc+V0uJI2eZwsUMwdcmfSuTXGbxM4WoO13OYpyAcCBzyscZk4CJerLPoelxvdjjc\n3MPtzQnrBmHdILBMpqdVps8qRMcOad1g0FijWhlzuNjlatFGhoJFzWJQrXO23iUbTGkNJtTGCW4F\n3Co4FTAeh1jtIa4QGE5KZ63PY+1rDpq7vNq+x6vpPaZf28xNnXlQQU5iWCwgm99uOVoOeoXyAfE2\nUuqg1EHJH7Js8bp1AKkh7ArqhoryJKV6f8i++5zfTD5m5/oVxtEU82iGiDO2do6IdnwuKxt87Pya\nxQObUbNCfqKRv9RI5gb9jS7KZs5VtYk9HGCPBjBPOTP2OTM3GVttntXeY16r8MJ7SJarZLmKmmfs\npS/Zu/eS9a0TDsMqh2GN88jDN07RJqc0/u6MyUlI/zhhegLVi5TaSUD9VUajO6TVvWKte8Gk7jNz\nPRLNhcyGvAJ5SHHjO+UuyJeUAf+7SqmDUgdvI4LXKxpXA34HTAeaBuwoeJsLdr0j/ir5hK2Lb9C+\nuWT27YjkOsAVGQ4Ras0k3LWZ7FYI9x3mNZf5tstU+ow6dUZmnYtJl2cnDxl83SCeG5yJHko1YdJ2\neLDrI/49GA9yJBkKOdgmFw8ecNp6wE3aw5vPeTR/zm/Gn+GezHFOF5g3EbMtj+mOz6hT47PKL/ls\n/1cMzRboJswqcKpw176r377/5dKe5a9L3k1KHZQ6+HlTJr5+VL4nu00N7Cqs2/BYxX4U0Ns/4f37\nn/PQf8rG5ILN6TlGHnNZaXHpt3kp7sEVXF136J/o8G0CHyfwPIBkDPEQsgiCGgxyMs1j+tJhYfpc\n19bRnqRoT1L0LMHMF5j2AlVLmJ5WmX1SZfGZx83mGi83Y7RORhhbhJENGSwcm5tKjfPtDo2hQmsY\n05jOUDugroHaAXs7wG2DT0TXuSTXBLKq8HH+a+x8xjy3EO4aadBgcV5B5nER7IczkAlFsK9SBvtv\nK6UOSh2UvM6y7Xe10qUI+JXNBO3DhOrukAej5/zb4X/n4dE3xJ+kxJ9myEBi/ErDCFQu728SVGwO\nu1scTTdJL0C+VIif6VxudRlu1zEq91BOhyhnQxhERE6byF0j9WvMelUOe3sYrRiZCmQmMJSI/r01\nZvsusy2L43ydo3ydftxk+6t/QP36hubXQ8ZnOf2znFfnsH+c4K9l1NZCmr8d0mpcsdY5R9QzUtdg\nrleRqQ2yQhHYCwpnMLp9XX6ttPt3i1IHpQ7eVt4M9t/wgUwbWgbsKribc3a9Q36bfkzn4hvOP4k5\n+88Rs4McQ0Q4YoayW2H8v1e5eK/L1f0Ow506g6TBdbLGedbjItvgpt9iceKy+NohHamcVXsMtyr0\nuy24B/XNKc1shkqKQgaKw7n1gE+sv+Yk3eFvF3/Hb4ef8uvLT1G/zFB/n6Ec5WR/pZKqGrO6h1HN\n6dvrfLX+PsxMOFYp2tZmwJAi4F/6MMtmMiht+l2l1EGpg583ZeLrR+fNnmYPYdqoLYF6L6KyM6br\nX7AXv2Lv+hm16z7u1SVamtBqTbGaYzDhPNrglTrgymiTppDMJPmIImCWC2ABqQ6RhVRMktwmUSwS\nqeIrU0wjpKJPqIQjKv0R1iDgYrrOpaqQ1E28yhTPneHac9AF0gRF5lTMMaO8zueLj+hYfbobV3Sy\nPm5rXpz2nFQI8n4KV1PUPEXLU5Q8odWosNv0WaxZvOo+QK7rjNfXyDMTEgsmDsVmo3DlcyqD/reT\nUgelDkrueGObndBBGCiGiuGFWM0AvzKhcX1Dp9+nfXDJ8BDCQ8gC8BvQaIBwdZrmDRVnjKPPiTRJ\ntFBJrnVC1yas2CA9mFow9SCIEK6HsG1EXSGoWkSegXAk2Vwjj1TUJMUbTjEuI0LVoF9v06+3mbgV\nFhfPkYaBmSZoASgT4AYUS6J5GUYCFTmmo12wa71C66TIByrhrx2Sm5x0ZJINa5BkkKSQRrefx7LN\ntxwE+25R6qDUwdvIaqCvUyR1dYrErle8qjaYOrgKmpPiaXNa+Q2NYMDNENJTSA8hFxmaAGElZAuF\nQLUYGTXOF+ucjTa4GK/Tn3fpz7pMzyvwNIHDBKYRixcqYaNGniscuvvU3Sm5aaLGGVqcEkqLk+oe\nN9oagWajjVPqJ0M2Xp0SPIfgJcTHYDeh1oJGzWbNv6RWGWLX5mQNlcxWyJaDynEpNnUH3G0tXbZ/\nlTb97lHqoNTBz58y8fWjsjrQW6fIcNuohoHZSLG2Q+rtazrTS7b6p7QGF4QXU47PE0gy3PYcvyXp\ntT26zUvWWpdc9RrMGw5zxyFSdcgF5BnImKJiJAIthqYO6zn6Ts76e6fs7b9gu3dAfTKkcTTEnEV8\nnT3m6/330PYS7lVeca/yik3vhFwqyFwhyxXGVBnNaxy/2qaRDqivDWg0B2y5x99t3EheRsQvipPm\nGanMSSSk79/Qe/It1eoC244Jmh5H27sQq0WGXHEK75UFhektHwjlgNe3i1IHpQ5K/pBbp1AIUAQo\noKgZlhriKxMq2QRrFKKeZKRHMB7AeQxxCozAPQXFzzGrEf7mlIo2YaYKUsUkWUrNABxRzNCQQNNC\nuaei3JOo2yFaJUWrpihWTnxlEV1b5Dcag4smr473GYkaiw9s5k9ssvsqgWWRNjRED+wp1C6hC9Rs\nsJrAJvjNGT37nIfiKdp6Rv5XKkHVZv7cIHiuEryowCSFWQLz6HbL3bLNtwz63z1KHZQ6eNt4s8p9\nGQzXKWa7eRSzTvXbP/sv+45L0rnG9FmV/lddLo43mAY+8cKAUQYnczifQZTCtw557BAeuZw2tqGp\ncmpvo4xzlHFOLhUm73nkjxWaa9f4wynGi5jsCxgdwuUVjGbQuYTOC3B1ibEb4TpTqs0BoWUTaPZt\nwG9RBPt1CsEtZ9clKwdKm36XKHVQ6uDnT5n4+lH5/p5mxTCwGiHe1ox684a1q0s2n53Ren7BwXHK\nyXFGGkvurc3pdELMexadX13Q3r6g6beh3iKyHSJNh1SAXA34Y9ASaGawJ9HfS+g9OuXDvU/5qPMJ\nrdGA9tENxmmC8yAguq8T7uo8Vr/gt+rv+FD9nAyVTKhEucnfnf0tR+e7/H3/3+J1J7jdCX53zIfq\n5wSaiaXOyT4fk36WkP7HmEUmWQALKWlMBvSqAc1fnBBbLsfNe6ibOUxU6BtFwM+cu4eDQhnsv42U\nOih1UPKHrMy+UASooGo5phriq1P8bIo1DlFPM5Lj24A/gjABdwRrp6A4OeZmhJfMqBgTUtUkUNPX\nc8yOAtIEU0OoOcqHRQuZ/jDC0GMMI0IjY34gydAIZibD4ybz5x4nl1uIRQaNDHM/ILwN+NkAqw91\nu5De6wH/lHXnnBRBvq6wqNqMHlfhH+tkZpVwVkGKDNIYFlGh2++2IC3tvpxz9O5Q6qDUwdvGaguv\nSRHgV4Earwf8S9/oT6MI+Cv0/3OXiy97pKFGFqkQphAuIBqCjJBJE84soobLSW+b694ahhcjLoAL\niZ6nVNIBlc6QTvsafzDDeJmQ/x6GN3A0gLM5ZJfgGOBmYNgR7taUqj9AsWukmk6Ecvs+fV4f2bBc\n2FC2e72blDoodfDzp0x8/eislvLfPgAUFUyB8HJUJ8UUEW64wB4HiBuILyEOQYoUQ0/R2wFWFmEY\nMZqZopo5Qll+z6WQljeEAjQFKgJ6oO6kVGsjNtUT9ufPcK7G2Idj5EFGo/OSHbuG7GbsDr+hM3hG\ndfwSKRSkUImwsWYfkCU5E9MnclXmNYtJy6XLOUOqzHBRkgBuFJRXOSJbWQ97GeHOUlpyQUUZYyoh\nQpegaqDY3G2/mFE8LFYrXcrbzreLUgelDkrudKDdHr14lQA5MsvJIoVkYRDbJrFuEjUM0q6GInNs\nJEoiUdcV0o5C2jSITYM4McliHaUqMfYjPGWMs7nA3ZqjNxOC2CaIbHJNobo9pNYYUDHH6DLGiGKU\nJGesNBhV64y7dRYXLnPpMZ1V0G4itNOY/EDhZtHi2Nni6fZ9wllMEMegxsheDF4McYx2HWBrA/yF\npOubRL6C0Uo4Wr/H0dYus36TTFgQuzBctvjOeC0B8p2mv49SD3/5lDoodfA2sqxHWc6ss0HxQa2C\n2ijmmno2wlNR9zKM7Ri9lWBWQsauz3Nrj3E1Z7w5QX9/ilVJUFGJhUK8XeWm3eJc3eBstsn1VZvJ\ncZXghXNXSJKlfOdjKbfailSyUGeR6CwWflF0cynhEnQlJr1UUCYpcWqRaDq5p0AD1Bz0DCy1+PGp\nCdK6Qu4JsHMUI0NpZSh7GcpHGXKhIQMHFjnECsSiOMwpkrnZyvkfsd2lJn4I+cZryb8epQ5KHfzl\nUCacs7DGAAAgAElEQVS+/iy8bqQSQYZGjEGsmqSWRu4LlAroFlgKqAoYVvGsSCuCzFJIVJ0YnTTX\nkLmATBbb4GRKISIFMECxwNOhLVA6GbYSULse0wiHzF4EnL9KmB3nZO9dsh18xVp6TeXgiOT3A46+\nzYsF20KSKwnx5gJ9c0Jtf4Baj9HcBJ0EhZwMlRgDCx0LFUsWBrTM79tCQREasdBJU508VJFTYKFB\nYoNUuAv4He6y4KuvpXjfHkodlDp4l3lzkLdZHHnbqpumpJHOYmbDTZMbZ41hq8bkI49mx6JykLBz\nmJDFAn9XJ9/VmfQ8ho0ag7TFcNZAdgTm3wRUnwzZrJ+wWT+h4k64SLtcph0W0mHPeMle8IrNVyeo\nQYoWZshE0HfbXLlt+vfXOJ7vcDzfIRA2ua6SnhnE/5hzWtvgs9oT5D2JaY2w1odYH4xw5iPi+RCO\nY+RlRGZMyMyU5p7E25/w4P4xn4gZSdvi9L1tslwr5i2d+MWCh+82IC0/p++7/X1z7l2pib9MSh2U\nOngbWU1WGhT/L/dArYHdKAYEdV2UewbiXoa1E1DdnlDZnuDUJ1wYa/wX82/osEHjV89pVF/gD8fo\nwmSBxaC6zsHufb7SnvB88pDLeYdFYEOSQyYK7aDe/ruASEF1i/lJGoWL0QcUCWNgCrmlMg88xGIN\nI0oZN+pEH1ioPtQPYOcQ6tdQe0/BfKwQPdSINnXChkmkmKRbCuLfZGjViPxMkJ855Oc6DDUY6hBb\nFIO+FYprwOXW6j+lov37tgKuIr/nfN/3/6GEQTlP9cel1EGpg78sysTXT4BEIUUjxiRWDVJLQ/oC\n4YNug60WxSq6CYoHsiLIbZVE00mkQSbVIuDPgXxZV7LcBmQUwwI9DVoCZS3DHobUrifULwaMXmSc\nv8q5PIf2zSXbwYJa8orx4Yzx3804/k85JhITUIyY+H9boPcmVPcGoEuEIRHkCCQ5CjEGNhoWChXu\nAv5iv4WCEBqxMEgyjSxSitg+0CFZloQugAlFueuyWifhToBlqf/bSqmDUgfvFstW32XvlUExD8K4\nzW2mZFHOYmoR3Thct9qMGnWmmx7pfQu/DfVqhgglySOd5JHNpOUymtcYzFuM0wZOZ4azM6Vt9nlo\nfM2H+uesqZc8lY94Kh8yiut81P+M31x9wi+uvkGMJWKUkyYap++tc9rucrSxhT5PmM4rnGc9clVF\nnilE1wpnH2wi2jmD3Rqd9VO64Rnd8JTapxrJJxF8M0LOIvJZSjqf0/jrCY3khHrdIFMsTlrbKFYO\nUw1OrcL5ZHz7uSxt/fsC/n+JQ1fyl0Gpg1IHbyurg7wdoAJaDZwGVJqIbQPx6xzltznW1py6f03X\nu8QwI86VNq+ULTrODr+taGw8HNJMYkI8Fnj06XHIHl/xhBfT+0QLgzg0IJYrMatKMUPJKr6gqWCo\ndwH/hMKtiIAYMqEwD12iuYmIBaNmg8izULah1gDHgsQB3hPwa5XwiUZk60S2QaiYZFsKVHK0hzHp\nVyryKxsMDzQdYgNG9u3nknLXwvs/EuyvbgRU3/gzq3pYbSP7oe+1GvSX1TF/HkodlDr4y6FMfP1o\nvGlYy8A8JE800jHE5wYz1eNGNjltbMDunHkcoRCjh5JwV6e/YzBd79HX24wnVRYLh3iskUU55Ont\nNrvvK5sUd2MzlBxFy9C0FF1I9FRiBpLK9ZzOYUSrriC+zVg8S4lfQF4zSGomwnEwlZSN6AwmnwMC\nKYr31HUuMeyEme2R2DBteJgbXdAWYM7BXCB2QPEFaipxlTlt94rt9hGDSZ3FwmURusipAwsPFtXb\n4a45RTa8rHJ5Oyh1UOqg5K7K5TbIFy4oleIYFbBtcDTkliBvKGCpLDSXc6vLt95DclPg9EKcNESJ\ncubrDvOqzYm5yfF0m+GiQZZoVCtjNteO2PFfsDf+io3xNzTmfQJyMhKmUZ2dk29YP31G4/wV+Riy\nMSSZSrsWoG9PsbUFV36X550ZzAWEAhlClgpGixpyKJlfOkS+gVqXuG5IcDAhzkyyPiTDnGiYsxgl\nNLoh1X3YHEFbv8a1FwhbQk0BSweR8V3FDxaFfpcpY3g98ZvzepvAqtbf1EipmZ8npQ5KHbytvDnI\n2wVqYNWg5cGmg3M/pnHvivr2Ne16n07YZ63fRyowsJtcO000UxJUalw17xHFTWZjn9nI53i2zUG4\nx3nYY3jRBHLoSkSWoygSVckRQiJRyBEIVaC7EYYbo+g5aaiRBDrpQiOfKuRTFakrpIFBem4weVnl\nzO/x1H9IozNAmWWoaYZSyeBhhtjNSLoqIsxpL654PPiWVGpkmkra0JluVJnENSZKlUSXJJFFMtCL\nxT3ZHDKDO3sV/LBtrgbm6spZaYn+A59y+X3T27N6abj63+bNZEH+xoF3ufLlx6HUQamDvyzKxNeP\nwmpGdnljl7Oc4SBDQXauEn+lMwnrHJo7fNZ5wk3NRl0boDwcIpKM62aNq2aVa2ebF3Kf/mmX6WWF\n6Fwhm8cgl6tSlxUit4aeJxAoMNKQQ4VU04jaBpFr4lykbL5KafYl9RtJ/fMMa5DjfJnjXUsCTSHZ\n8Ynfb5A8blCrSKrBS37xj1dIAQiBVECuQ96DkV1lVu0x3XGZfeTRrJ3Sbp7Qap5i3Zuirs1wgxld\no8+DjadMbJ+j6i4n9W1O6hbpqQGnPpwlt8sulvOOlg7eH3swlPy8KXVQ6qDk9dtPC/CKQF9vFKfu\nw4YFPRtlT0V/nKJtxWRVwXG+jRjB8/gRphZhdiJEJgl1k2hoMhw2eDG7z2hWwxQRW9Exv0r+iYez\nL/CenqF9dU5wNMXnkD0CstSmMTolGo45GUMYQBRAokrMjTn2lsJmW6WRjrCdqFhVd+tLyUwQCYvp\nyyr5kUJ9b8Rs3yd0LcJEJ54rpEMIZ8WiujHQSCFZji5yuCvw0W8/EgSv3QoDd2v4Vqtalk5czN0g\nj9XE8GrgL7nTS6mZnw+lDkodvM2stvAuN7s1wKvCtg1PFGr7I95vfcUH8nM2Lk/xj6dUTqZIAfOe\nx3zDZdG0CT2DL7wPCCc2i69cFl+6DK7aHKvbzFWv+M9pCfglKB9KTCPENEI0LSORGik6ipJRNcdU\nzRGmGjNLPKaJz3zqkhyaxIcW6Ugp3IxnEIcGr7b2+C/bf8tpewOjEmLeDzE3F1Q2xlSqYxw5xxzF\nfHDxNTtXp0hNIdcK3+pQbnO0vsNhY5uJ4jKeuyR9BwIHQhuyZUI34Y/PrlutajG4a4deaYt+rRJy\n2Tq2LOG5LeN5rUp+6YeqvO5LrXYK5Cuvq9UzJX8apQ5KHfxlUSa+/qd5sxxxmbHNKILzKTJQSM88\nsi9txlmdwwc76DsRg7pHNzqmGx2j5wlXRo8ro8dJsMuLg336x+tMn1XIz0LyeQhyTmHcKXfljQnk\nMQQajCRypJCsaYRrOrFq4B6A38xR7Rz9Jsf4XCKegnMO/rUkUhXGOz7z/7XH/N+v0zu4ZuPwJevf\n3Hz3lqQqOPrFBofOJke9DQ5qexzs3ONgusejza94vPs5xrZOXT9DVWKcIKZrXvKo9y1iK8VqBoQN\ni/NGj9TRIfbhUoFkGexrK59dyV8mpQ5KHZS8rgOdopXVA1EDvQl2G5oe3FfhAwVxP0PbjLE2AzJT\ncDTc5nS0hRpnqHaM1k1ASrKxTjowiOcW89RlkbjUjCFb0TG/ST7mSfz3jL8NGf2/IcHHKT4BXS4w\npEqcBERJwHECswymGaR2zs72gvpFTLWX0UhGWG54t2X81j+LX1mkL3SiU5vx4pqZ7xPs2kSxQTxT\nSQbFtr15UnQTLFJIAmDKXaGPAWgCVLHyuSwD/qI5+LsWhe+csJjiubF64E7zyz/7ZitYyc+DUgel\nDt52VitdVgP+Cmxp8EuV+uaID+yv+D/5f9jtv0L/IkX7pxQUSN9XyWKNw3yb/yZ/yxfmEw7Gu0Rf\n2UT/0SE8dAiqNkHFgQ6wJ+AxiHWJ6UR4zhRdj4iwiKSJSkpT7bOunuGJOVeyjZa3YZyz+ESSORrp\nU/0u4D81eTnf40pv83HlV7jVKU5nim+N2bBP2LBO6eVnrA2v2Tn4itbLAdgCaQsyR+XT9hM+3fiI\nvCm5WHRJLk0mL91ia3VmQWhS2O/Sr/khu1wmTZYacCieF/bKr1cD/pjC/wsp3szi9vdXA/7VapnV\nZPBqdUx6+3vLC1T+yM9Y8sOUOih18JdFmfj6n2Zlax0W3xmp4oNm3fYaK8hERY40Flcu/UYHZZAR\nqBZz1SfSK+gknOc9zhbrnA16nJ92mTx3SZ4LuExgMefWpeJ2jQWF4QeQLWCiwblJ3lCZ2y7XvRbn\ntXUa3piGNcYXKdEUgokkkpBEYEqo10F0JXInR+xneP0ZzrCP/fXpSsAPTlXF3XJwqSF9hclGjbNs\nm27zEtm2cb0cdZoRjTJG4xTcCc3qKY8qKTOjwsVaD8+YwMwiPVPJNA/EDKRF4QAuBfp9vdB/rDT0\n+3i3+5f/dSh1UOqg5PXScoOi7L8KZg2aFWh7mPcUKg9HVB+OcTdmWM4CK1pAJAlClyD3WKgOE73K\nzHQIYxM5FuQHAoYK2EVLmFbNqGRT1rMLNpNT5ABGhxA9hSoRPuALmJowMyHRQclAzUBGoN2kaK9S\nDGtCS5xzT7zgfeX3xHWdpGYQuzrBkUNwY7P4xmG8WeN62KYSbdAwB6yvnRPeNyHJMJP8/2fvzZ8b\nOdM8v0/emUgk7oN3kaxbLWn7mOn1eh0b3vV/bXvDjvXEesc73dMzUkt1V/EmAOIG8s739Q8vIEJq\n9c607OltlfCNeIMsFAmCieebfM7vQzUXGIcOYcuhV3IY6zWixFUUXUpIV1VG3VTis0YTLFPdHywH\nkKilFUIRM0sgTUAsVbJbLvnDgH/zrNv+fzqVy79cbHmw5cHHjk0bX+vXeWi2hdEQGPsxldaUncUt\np3fvOTx/T/IO4tfqO10LHAcyzcLRU5YVn0HaIRyViS4CsksbTRdodYFXCam0ZgR7c4K9GWVDHctM\nSWyHxHIwtJyd8Iad8BY/XdL2WtyV29x5bfoPdhgsukwMDX0p0JfKNmLDYSHKiGSPkjOnZC2oeiNM\nI6cphthZinc3xT+7Ifj6Gs0D3QPh6+wYJQ53fWY7JUTHYN6qQ92CwoJ43aWSro69cc2+qzVk8c0o\nl+YrgVe9DLZ3f3T9/tvydMWJGPIQCkeNk0nBN86aZoK23vCnreQkJMgcZKqkMr7pkkm49yVhq6P3\np2LLgy0PflzYJr5+MDZncdflvACoAVUwK+D7UC5D3YPAAdcgiy1mZ1WYQuyXGNstLu1jDC1nmtSY\nJFWmkwrTs4Dkgw7XEQznEI+BEWpF6rqdMQEWkLswtOBdiVw3GQUN3h+cUK2NOREX2HmBny0Z5zDI\nYSyg7EG5Ae2qxGvMqTg3hEWInI8Y9ZeMPtz/itKA/GSJt+xxCkyCBr3dHarOiHY0YG9wzen5OXIw\nYtpfcteXWNUYpzlmv1nQq1yzU7mlud9Hu64RVRxC00VqqzZOuZ5h/j4n7Y85btrGx+/eQLYV0D8f\ntjzY8mCLe3xf9bMJfgMe+PDcpPJwzCcPfs/z3a/YcW6wJyn2RYqUGlHFI6x4DJw2r+UTXiePiYYe\n8kMGX2TK9PccdaqgSRXE6wXIQi08XbtYGSAM8GrgtKAWQBKqMa8ig/IceAmLQU5b/8Cvjb+h6/SZ\nfFJlElSZ1Gtc2/tcpQf0xrvMJjUuZw9IFi7l5oKdX/ZY1t9jRwm7cUolSimOA6anHcbHbc6mh0xG\nVcRYh+sCZhmIBCwdvABcHwIDKiYEK7sXEgqh2nHGGYxzSOdQTJQjqeaCV/iuxsV6DCzfeHxr+/99\nsOXBlgc/BWh/cEyjwHFi3HJEWZvijGP0s4L4FfSvYTADXUDnEtomGDLHL4XUd8fU9DGYOqnlkVdN\nzNMM45cZjdMhT+uveOq8Yn96jTOPceYRhszJmxZ500TTBcGHKcHZFHueEu6WWe6XGVZbfOV8wleP\nP6HY1bCTFDvN0IVgUQmYVyrESYl8ahNHPvY4w/Fydr0Bj7R3iP6I0dmSuxdg2kq/W/ckYWlOdf+a\nJ7hETpl+eReaQKLDYnOD67qTZLM4ummPa7/RUv6ivTpVBxoWNG2w7rVbWRYwyWCSwyKEaAHRXG34\nWz+Xbqpiq7Ua8RJylRfOoIhBxCBDVEvmHNUxs8mpTWx5809jy4MtD3482Ca+fjA2A/4NDQuaQEcZ\nbtmBhgMNUzk2jk6eWMzOa0SvfUZaC7uUYZVSNE2SLSyypUU2Ncj6kqwPTCLl8KRj1HrUJfdZ2UT9\nO7dhWII8p8gcRvsNPiyOcQmxRUGrGNHKekwSOE+U73XsQ6UOrX1BpbkgdVPiYsj1POW6l3L7gfs4\nWof2pwvaCzhkSa+8w7l9RKUxovW6z/75NcevzuldRJxfZlxcSHYaMUfdnP2dBb3n13Q/vaV10Ce/\nMBBVg8iykboDwga5znRvVjDX+L7HNq//921BWlc7fxptm/99seXBlgdb3OOP6F34dTiy4BcGlScz\nnte/4n9p/K88Dl9jXgiMNwIhdaInDtGOw4faMdpMcjvd5WbYhQ85fBnCnVDOS80EbRXwC9ByVejL\n5b0SUAYIUwX87gHYXRBjEBPIZ5AsIBnBMstpmx9omiN+Uf6Cm/Iu1092uKrv41gJYepzO95jNqkS\nT13uFm26zT6n9fcsf17GnWsEC4EzT7loBZy19zlrP+TszSGT8xrirQbXAma5arGxbSiVoOpC24C2\nBt2V/a5/gb4ETUAk1QuW1iqPm3Fv82udipz7ln+D+3QH/OHyiy3+PNjyYMuDjx3fLTqpLgvDEHh2\nROBPCLQpzihCfyOIX0P/Bt7OwCxAu4RqBKZeUNpdUk/G1PUxmemysGukNYlxmmH/dUzj4R2fJl/w\nP8f/F88mL9EvCvSLAi2VyGMd+UBDmhL9ywzj7zK0nkB8YiJ/ZjJ62MKq5kw7AWO/QkmElESkBLyX\nBenSIYp8ssimECYmBW41Z6d6xyPrHRf9lIuzlOuXYOvg6Mp0rb0ZlU+vaZDTt3d5EyygAcx0sE3Q\n7FUn+7oAt04CfNfH2dAwMmrg1KFUh44Jhzoc6fdTXjowlHAlwJKghyBLELsomy+po1sq2Hf1e8WN\nHNUlQwhivVV7M/nAxmtdY9s1/09jy4MtD35c2Ca+fhC+2+XiAQGYVXBUO7/R8HB2C+y9CLuRYZXV\nQWqkU5tkYpMlNrOFRxbaFKmuWlDGqyzuLIRpCPEMFehPURnZdTuiRDk2qxbHZQJZQWEZTCdVrqM9\nHBmzWxoQtUqwv3qKKWiReulSV06imCSI8xRhgrwCFvJbzSMa4GQplXBOZxJRs6f49hLLT3HtiHKy\noD6cMr7Jyc5g/B5qsxwjy6kQUz5YUNJCnEqEVU4xHImmGaoN85vWWMF94mQTmyJ8cuMVbQqpr1/s\nOthfVz2/W/H8Y/i4SP3nw5YHWx5s8YdYd7pYoKlNdrrnYLZyzOOQ+t6QfXHJ49lrHvdfkH+A7CUU\nUgfXQtYtbC3jdfKUqpzhyIQizCnuJPIG6ABDKDoG83qF22KHtrPPvBWhnYZ44wRmEM4kllQTVJUK\nVFsgfaABxRz6FzC5gMmNoGpOqZlTSsE11mSGVSwxvIyesYtXhBBpJEOX5MJl8TLgqn7Iu/pDuq1b\ngtKSIAgJqiGXzglv9Ye8Wjzk/O6AyVWAfCdVAJ8AroHR0DH2NMwdDbcb4XUiSp1IFSQzHZHrRE2P\nZdln6fuIsYR5rrpfRA66BoYOQkCRr06y2qIUrSqYEfeO3Do5AH9o21tb/5fDlgdbHnys+HaQr7BK\nPEpDvT85SF1D6DqFrZN7OrIkwZdoOWir2FTaGkI3KAqTojAQmoG0wCgVeM2I8v6ETveWg7NzTnuv\neHj+gvQM0jOQKTi58hw0C8K3EL2E/BpKBng2NI0JvaMOg6CBdMHLI0pZiCEEPWtMzZkxEB2W8zLL\nWZksdhAY6K7AMlPMIkdPBFoI2nqCqgA9lZhFgUWGoRXomlhdDl2NV2ECnnphlFSLjGGpjxJAgJQg\nLFX4Ew5atYzeKaF1bUoHKf7REv9wieEWaLpE0yTJ0GFZLRHWfLJrk/zKoyh0ZGGq7km3hFHSsEoZ\nlp+jGSByDVHoiNghX+gUSxsZmZBIdYq15p7BtzfjbQp/b0eH/xBbHmx58OPDNvH1g7BZzXRQ1cw6\nuHXolKHt4OznNI9HtB4MqTfH1JwpVXeKkBqjqMEwbDKeN5iMGkxGdaKBo+Z15/Eq0F/t2/4m0J+h\nKnnrGqbGfUt7opyeTCBig2Xic5e2cIgYt2vEP3MwTKhdwdEVVPrqZlBMoR/BIoVFT7L8ArQbqBfQ\nOPn2r1svC+pRjncusWoFsqqRVS0Kw0Q6OrIEugOmudJwNdS/KYF0NQpTJ9dMCmkgpL7izGaX0Fr4\nb1MYHe6rmAn3zttmh5HNvUMnV9ck3vie9cDDpuDfd7EdCfth2PJgy4Mtvo0NR1AzVGCqa5hOTrk0\npxwsaGt9gus59mVOfgZ3Z3D3AQSSmlZQj8E7igmaCyrNMZXGlLhsEFsOWWHCzIFrg6TscFnb4+8P\nPidqQOnZJSXtkmBvQPqVYP6VYNmX6FIpLFUMVLLAV80yoa2mh/s3EAqICghyyaLIQST4hNgkmBTK\nFPrAlyAzjd7uDl/s/ZzlbhlXprgywRUp/WGLXtqhn7S5e9Vg9sJHvsuUJB8O1A3skwz/eUjp2ZTd\nxi37lWv2gytAkgqbrLC5Ptjjw9EJH/onxNcmXJbhQoeiUFudHE11xUQFRALCBKJInWKdJP+uWOt3\n7fqPfb7F/3dsebDlwceIzUDf2DgS9Xd2RpG5RAsDOawwq9VYtn2inzuUagaNQKCZAlNKWodgH0F+\nbDHfq9DXdhhEu8yLKplhY2kZVXNKR7thN7omOJ+g/zZl+RJGQ3UK1JhYW4LtwLgH/QVECXTuoPsB\nHJlytLzg10uLg8E19jzFnqeQwV27zaDdptfu8j59yPv0lNG0QVj3GJp1boMuorKgXV9QaYRqxMsG\nowSzlsfMa9LngFHWIIq8jWkpDaSmshq6rTpPSgb4hvooUfPIQkJqQGpCamLsGlifgvXpkv3uNSf1\nD5w03+MZEaYsMISg32xztnvE2aMjJu/KhL+3CPMShW7BjgNdA7sRU61MqFYnGKYgExapsIinNtGt\nTXhrk/cDuJMwMCByUS9+sXofN/Xy1gXEYuN8d6vqTw1bHmx58OPlwTbx9YOwSXgHNdrVUL30nTI8\ncnAez2k9HnLy5B0HzQv2jGt29WsEBmfFEWf5Ay6HR2ivJOErn2hoKQHTxQKmUyju1GHKtwPXtRFu\nBPwygTwDIShinWXqk2egkzPp1Ehw0JtQfwmeCx0J0QzCKQwWMOrB6AVMPTgMYD+A/e8E/LYvsCOJ\nfV5g5gJMnaxqkZsmwtHB19BdMEw1hmyaKuDXfBXwC9Mgx6TAREp9pbGng7RRAb+2upbrVs31jTVB\neYvh6ndfP25vfP064BeoYD9EjcJFqwOKtN+HdXfMdiTsT8eWB1sebPFtbHBCM0A3wNKxVgF/q9yn\npfUJbmY4v8nIXsJwAO/6UBiSk7igNhGURjHlz+dUd1TAr5UDMtsjK0ow1eHKIHFtLg/3McXnzCsu\nz565PNtb0nk85sbOuRtIwr7EB1pSvSS6wBGIMoRzGH2AG1TMHEsIMxBFDjKmxBKHBINcmUIPZT43\n0DvZYXnq8272EMMV6I7AcATJ0CEeOMR3LskHneS9jviQq9mAkg0ND/tkQvCLkMb/MOJx8IJPzS/5\nzPoCDUkoS4TS4/fLT0lnJlezXeI3ZfgyAFFSP7+8OikwkTCVMF0tuEhWnZ/kKNtfi4DDtwP+76ta\nbu39/z9sebDlwceKzS7rzWU0MTAlzwRy4ZPd+cxKVRZtn+jQQW+bNKyceiYwNXCfgfMcsh2TuVdl\noO3Qj3fIC4vcsPCMiKoxZU+/YS+6onI+RvtNyvIfoRfDRQKprX6yn4HuwvgWzhcwS4A7tS80CFOO\nwgsa4Zio4aEPBHpfIFKN4S/rDFt1bto7OMOEaVZlOGkRph5Do85tuUulYtKu5VSaoYrfSyADjXet\nEoNSg0v2GeUNongd8GuQr/iv+2BUwaiAr0Ndg7quAv31dG6oqe8JdYy9BPvzBPc/LDmon/ML++/4\n187fUhNTrCLDynPeiEf8RvySXGrQ2kNmDeK7EoXrwFMdnuo4eyn1+pjdxhWmnRFJlxiPWb8Cb2ok\nr33yt64qOk4diEooH8pC+Uqbwf6m37keHd5yZcuDLQ9+rDzYJr5+ENZO3arTRVMrqbWSj7FjYDzO\nqT6asbd7zePgNUfmW9rZNa3sGqHpGM4cz1/iipS8bTGeNZjPHGS/QAoByYZgN3PumbEeVVoL5G0I\nmcoEihiZJiQTnezGx7pscq3t8652Srd0hyEKdK1AMzKSDyH5IkTMYvKp6nKMddAfQ9CCziGkESSR\n+igXkvxSIkPQREypNKOxO8RyU8K6S2+3w2wZIdMUX2ZoOybhA4v+ocWw2mQqqoQjn2RikUdAkSph\nDssGvaLmkL/ZXLEK+DVNzSKnS0g9vtlWoWmrVtHVFiRNB1Golv88gWz19cUStQnJ4n5l6xprR+/7\nRsI2O2e2+OPY8mDLgy3u8T1t/1oBZKBp6EaGYWcYeoaRC7SlRJuBnIKYqfynVpUYc4kVFhi5QNcF\nmi3BMJRWRGHDogA9J3Mlw8sq4vKYItDo6gNM7zW1BgzLSgM7FLCMYTmDxUwj1T2ylku4ZzM7jShO\nY+xecj8o6wIt0DyJjkDzJNSB7qoqOZJwJ1mkDovUhrixkpPQ1OkL6Em4lXCbw00OwxRaNvgW7DqU\nD1N2D3scH73jMV9xsvg9B9MvMYQkpUSKR2xY9Bodrjr7TKwGQhgIYWDkBWaQY5VzisQgndqkE4r8\nP/oAACAASURBVJtsoJP1XDLDRi4kZKGyf7HunIR7O18nePONzz/+TUZ/Pmx5sOXBx4rN7XVrPdMy\nmGUl+GNryEAnNyzy1GWa1bgp7/Gm/IisbeIdprjLFEMXiIc64oHOW/8RV4t9RrctlheBWtyQArZE\np8CUOabI0XOVlZWhcnNEoibJxLqxr4QaK3NBVtQRZdDsAn8xxb2YUtxAMYCiD3mhY3eH1J4E1OSI\nS+0BgTFHWDoTrcp5cUgte86ef4PcL+E9d5ElkCWNomwwbD3gSjvh/fCU/qjJcmTCeAFRpuzN9tAq\nJbSKj1YpYzdS3EaC00iQhYbIdUSukc4dZb8zB/coonk6ofGkzwP9DcfzFxxPvqSaTDDyHDPPScsJ\n47rDvO5hLAs4M5nvNtF9QenhHP/5kk7rlgPrnAPrHMtKiQ2PyPAYak1u0n0MXWdGmSw0yXoBIrLU\nvcUwgRhksfKlstX4cAIyRiUD1p30P2WubHmw5cGPlwfbxNcPwsaIl2arFLNewvQtvG6K93DJzs4N\nx8kHnr1+yc7yPcV0wmI6QRo6lbZO0A4pewmh7nNzvMvYDChGOsU7H0GB6nCxuR95gj9sKVw7LSmq\nqjeBzELeOMh/tIlFmbedR7idnOvqAe5uiOtE+O05bfeMTnhG++4KPQN9NR9d9dSkmtyB6SUMejC8\nBLcPng9eCaQxpd065zP5BdVgwnivxt9bn0NjhDieUPt8gqyWuW1WGTRrvLCecBkdMHnZJPzgkY4K\nZD5XyoauA14LaobaWtGwVFVU09SvvXBg5MCoDLlQuha6Bp4BFQuqlrpEmVRrwhc5jHwYpRCGkM/V\nkTnfbsctNq5dzD2J1yN06wrpj4fMf35sebDlwRYKa/s07j+XQjkKLCgykzDXmRQVpn6NsOVRPDRw\nUqVrLSMQGnS64D6ExalBXHeZaxVmYY0o9SgKQ216i1TVTdwmRC8MNK1KcNMmcnxwDdxljncm8OaS\nsFCjvNNL0DWT8V6HcbrHolTHfnBF5dfXtCt9XJRCn23D4jOdecci1h2ypol4pMNfsQrmVytRhzlo\nmdIccnRlq7auhLvXZ6qpKqbUVJWzY8GppN4Z89R5w6/i/0q99x77zTW3b2OcROIgcEhp7V9z+ugV\n0cMS026dNLfJAhu3iKm4cwJnRpx7DKMGo7DJ+KbC7K3PNCiT9cowqSmNwLS88d4I7u16NRr9TQVz\nnfSFH2Pr/l8OtjzY8uBjxDqZu7mlrQK0gKbS1GmulvgcuepzV2da1Ph6/AlirtPJepTKEd7zEM2A\nrOqQSYfr4R5fX37C7LICZ8A7YARFzWSZlbmTLRpum3CnjPbcwhfQHYJ5B3kOHQ88S41eNRpw4kCk\nQ+sQ3EPIKhDeQnQL0UB1OEYzyAyJ388oXy+pt+aU0girklNoBn23y4vlz1j2AvacK/YfX7HTvKWw\nDYRtkDsm77wT3oenvH91zN17j/lVAYMbyHS1TS5oop/aGI/AeBzRLg/o+n06fp9CGqSFRVrYjMZN\n7oYdhndtqg9nPGh94LHxkpPeC8pf37L8OiZd5hSFoBCS+YMpzU/e8atPBL4dk9ccbvf2cYKEk513\nHLffsS8v2Tnv0b25xS5SMt8m9S161g5v9IeUD5fciC7TYaA2h6cl8HTwHNAz5UNlEpIc4kTNzGUh\n3wjEonPf+bL2kX4KXNnyYMuDHz8PtomvH4TNTpdVwG+UMH2DUndB9eGUneCak7cf+OTNS6rnZ9xc\np9xcZ0gLdh4t2XnUo3kUc7uzw8v9J9hBl+ydjSg5q59RQmXT187Kd4PPzU6NjPuA30BeVxG6RTTz\nefvpE+6cLr9r/5xgd0Jlb0IzGvCr6L/SuF7QeXuFoYEhwRVQ89QyCbkL0x5cTOH9e6iaq2OAbE3p\nPD7HxCILbMZ2lX6rRevkhnZ8STuRTK02t/YeQ2ePV72nXF4eMr5qEb2XiGGEzJdK3M931VajfQOO\ndXigq4rpulg8kHAu1InlKs+iQU2DHQ12dPVYjNp8tP76vEC11MxA+Er7aS20C9w7ezGqo2jB/RNt\nXtv1td/iD7HlwZYHW3xbb20d8OsgpQr4xZw8d4lyHVkETKwaUatE8dDEyaEdQ3mgnsldBfzioU5c\n95hTZRpVKVKLojBV0jNS3X8iy4g0h3RSxX+bE5XLaIGBIwrcc0lpLlkWkE9gGkGYmlw+73CZPmNa\nOuTZscNTN+T0uH+/XNuE3q5B2LZINIe8aSEe68qn+apQM2CXKdzFSofvOlHVQd1QTl6WbBxLzSBI\nG0omdAScQqMz5onzmv8p+i+kHwbc/W3I7d9ElBfQJCVAp/VX15w6PtZjwaxbIwo8ogceFTmja/To\n6H1mssJZcazGpc8PoLLL0qiRmWWQKSwlpOnGe7LuIF1XLNejw2tsdjdubf1Px5YHWx58jND4tm2v\nZQkqQBvYU5WwtqH+bj8woGWAqzPJ63w9/xlX0QFlZ47fWFA6moOpEaVlotRnPqwwfVtl+mUFPqA6\nXYaQuyaLrMydaNFw2oS7AXxi4ZtgfVB/+uUcXBccCwxb5Rn8BhQBmE/BeqaRlmH5nySTFzD5SuVB\npxmknuRBLyW4yqm1bHw9wgxyiqrBgC7LsMxFdMRe6YL9J5d0S9fkukWuW6SazU1/X50PeyTv5iRX\nMxhcg11XzlPQQD/Nsf5NjvVvQzruLY+M1zw2X5NhEkmPUJY47x+T31qMb5pU96ecND/wS+O3NHof\n8H57w/J/i8gmBaGUhBJKv5zStN/x6KSHbcFtfZ/f7ydUK1Me777kX7f/M8f9M5rnY5r/ZYQdZoiG\njmzoXOzvUz6Zox0VaE4OF3uEtQpJ5EPNhWoAhlA+VIwqIE5TJb+RLbjfxLeWm9jskvzYubLlwZYH\nHwcPtomvH4Tv6FdoFugWug12kFNqLanYUxrpkO5tH//tHXdnEJ8DNjgyou2AXfZpdMeU6kssK6Oo\n2GjWunXU4l7o+o9hbWwZynGZQq7DWEcWNnnkMLQrDEt1dE8qgdjmhE61R/twyMOTC7JBFWKBlUjc\nQqKfCIpDSbwjSAJBpgmypSA3IDegMMGIM9w8ImBGX+7QE116RZeDIEC2bUqexlyrM6PFmBph5iIG\nGk6eUuiSzMspGgLdk+gdDaNt4B5meMcRpQcRuie+yXOkdYvY9Yg8F5Fo6IZEMyVWLcPpJrjdBM0U\niERHJhpJzyF0Sywtn7xiw8KApakSAMZqmwZSjY4VCWQxZA6kjhoJY8H9zX2dxd6Oe30/tjzY8mCL\n++TveslDCSiD4YNtgQ2irJHYNoW0GWt1bvxd3reOMRcF5izFWmZommRyapIfm5x1juiLDtNRleTa\nhbGEJFO9/dkMsjlS5GTjBpkRMM+rDIIul4tDmuY1cy1Eby8p6zH6QpAsJFEfplc6k3OL2YGNTE3K\njka3q546zSARoOUF1jTDyxNcGeO1I1wtpJgWFOcFQkglqK3J1djtavRWrh7PVglXqatWeQqwCyhL\naEIpiOiYd5zkHxhN5kzPYPEFGHNlXTbgNUPKkzlVfYLrJCA1pAZBOqaZ39JIe8yNCqazxA1CrDQn\nm7oMow6x7iJ1X4nGzgs1AqwbqmU/j5Wt5xHkDuT2agR4M/D/8bXu/2Vgy4MtDz5WrH2dtV/ig1kB\nuwpOHWvHwHkQ4z5dYu1lWI0cy8ygkMhCJ88txm6dUamGbKrlBdFNQHhdJn9jwuscXhVwFUGsQaxR\nhAXhxEYf1BiUO9w6e1wdHlLRFvgiJFiGmDIlNVdTVZES9q64YJYgr0PRhbQKogbCWQ24aqoZJdPV\n50JqIMD0Mjw/omQvycYmw3GLu0WbsOUxt8rcGQ0yLHJhkgqb8bjO6LzO+F0ZzmLVCbkIoVGBsglN\nH//BkMaTAfWf3fEwfcXDxUseLl5QaBaJXiLWS1jVgkT3mAVVWvUB3eote/o1pcUA7XIBX+ZkI0GM\nKmu69YTyMGM3m9Kz+wTBHKNTUCqF7JZueGa84Ch8j3uzxH25wJzmGA3Qm5AXKXe7ZYaVCqHhkTzw\nmD9qICsGdi3DrqVohiSPTIrIIJvqZAOXrO8ipjakubpJFOuAf3Nj9k+hOLjlwZYHP34ebBNffxK0\n75yNh1cBqq4JDAp0UahZ5ESqOeRc+UJItZBHJqClEq0Q6LLAQCgtiX/qZ32DTXHS9Qa3lceUaLCQ\noOXw0oPQQ17apI8cFg8rWHsFt9Vdzn7+gGbnjjTPSbOcQuYYRxnag4xiN8XoJnRaCaVGgleCUkmN\neV3sefSDBtfsczPa5+Zin5vLPaJdn/DAZ3pQwTIydAQd+uRlE3GgY1gFQ7vC2PIZ2z5GVcM7SHEP\nY/YbtzyonnNcOcc1429+xTu9yWVpn8uDPdLCxtQzLD2n7kzoen12vB6WkZFpJqlm0et0eNc55d3R\nKdNBGYY2DAPlhJYMNRomgaUDS0+l/IdlGMYQLoEh96LiBvdjX9txr3tsebDlwRbfrn5a3G82barj\nBtByoeUiTyxEXSfXDIZZky/EZ+Saw1fVC2rPxtS6I3S7YP4gYH5Y4cre56vr50yva/BWwkUEy/Wy\ngpk6hoCyBW2fqOvxxnnE/+H8ey7tLvXWW+qfvaWeXCJeZIgXGVm/IHjfZ+8/vaB126ftXVDyphQ2\nTCZwN4HxUmI1ItzGkMO65Lx8Tbd8Q/tBj/CtQxg4RJajRnJrNtQ9FdgLQ32cujAtKXsqpEoCiJUT\ntGk6q8u2ntg1tfuUialBjsNEa3DJIe4sZee6x+71LdZoQj6bMp3NKPyUVhca3RkeGUuvzNXjfZaB\njahaiGpZdbuYunrSVMJsZevzBOZl5aCmc2DC/f1lO+71p2HLgy0PPmZsFPiwUbtBa1BSm6tpa/gn\nC3afXbP79JpGdUhNm1EtZhhGQRqYZE2TodvkwjvgIjkkGpZJv3YQX+rwLofLJfSXqrMiMyEzEQuN\n9EJj+Q8l+otdvvJ/BhWN3lGbh9P3PBy+oxoNGCZwN1SSqC0XWg5UQhXg0pFYEso+6I/AlVBdQHsB\nqa7jH7qkhyXuDhvkjkZgT9jTLpiPK8ynVcIrn+i6xNBqkxoOhTTUKQyWPY2kF8H6TAvAg8CGPQNO\noLvf45PgC57zJa2rK+ovb6m9uMHUDXTHxnBsnHoBTQ2tI9mvXlL252S6icTGwVCjx9z3qfvoGLpF\nqlukpk1eMpEVDcMo8NKY6t0Cs79kMkpYzgSMwU3BXcAsyNAmC+rZgJ1KjehJiaX0qc7HNEpDmt4I\nQ89ZZGWWaZnZJGByUWV8USG6cWEQqBHnxWZR8KfCkS0Ptjz4OHiwTXz9SVi/yRt6QxsxuaZLNJQQ\nnyEKtEyiJSq4L3LVnY9Qwf9aXkHPJYYQ6BTo3+qo+J6f9QfYzLZG90+eSFVpjHMIa3BpIF/aJGOH\nQlpIz+SmuseHxhHBL8cYIsEQCSYJmh8j/YjcibE7c7otwVE9waiD2QCjDoM9jyioc6PtcTk85OrV\nEVf/cMj8eYWpXWG4W2fXuGGXa7rcogcC3RTYzQTbOaCwDplaHax2SunhnOqjGafOG34t/o6/lr+l\nImbfNPG8qxzzu/3PMazPCHUPlxhHSzgsLnmWveZZ9grPjAhdh9BzeZU9hqOC3qzNdBDAlQNXtrre\ntdVomACGEoYCbgToApYFhAvuxdLXIuCboq9/+ZnsPw+2PNjyYMuD72/7D7hv+y9Dx4BTA3miUdQl\nQuObgP+cYzqVAfvdC/a9c0wvo+936PkdBtMu/UmXyYsafLUO+CeowHSKCviBIIB2Rrxb5o32iDut\nxSvvEb86/Bt+dZByaA2JSxrRSJBf5gTv+njjJfrvHTo7S0o7IaIGk2s4v4LrO8lBJ+Sgk9Huxuz9\n7Iad57e0HvSYdOoUgUVkulAVsC/gQK4WgWqqbHq7iupDAcRQrHTj1r7Q+qworelgaPfOnKWpk2ku\nExpcckB3PuDR2XseffGe/GLMzW3GbS/FaSzoPp3RfXKNs6NxVTugtLfA6FahYiErDjLSV0tPNRX8\n30pl6/0MiCCO1QII4NvbirbjXv98bHmw5cHHjM2A30EF/FUoBbDrwEOd8pMFh8/OeP7s9xwbZ+yN\nb9kb32LqGVHFIWravLYfQ/ZvuUqOiHplxNc68v/W4V2qik3hEJJUjcQKG7FwSS48cs+nH9vwFO52\nGtw0umQji1bvjtJ4wLAH74ewnEPhgu9AJQa9A9oeaC6US2p0uFKF/E4Je6e5xvLQY3lYY3LYoNA1\nAn3CXnZBn12ymc3yoky48MkWFvNlFSk0dQqNfDklW0xhMVPb6CIA9z7gf6IC/n8V/AP/nv8d43qG\n+H9CxH9c4psaZd+gXNaxP8+RvwT5XFAJZvjWnFxTTHAwqKB90/tvAbamo2sWqe6QWI4K+KsaZlZQ\nSmIqdwvMQch0XHA2kxRjCBYQDEHWMpjMqWd3JJ2A5WOfRbeMzOCBccYD8wxbS7kTLe5Ei95oB+3N\nIctGmahcViKwC20V8K+lNSLuyfwxY8uDLQ8+Dh5sE18/CBtdJlKw3nwgc408MUiXDpHjEZolFlUf\nOh4aOSUzV9sudiyWDYuZHxDikYUWYqYjI1QbzLe27Py3nI3N0mHKN0LVuaayC0kBi9X/30gK36Yo\n20gvYNDp8KF7jNlMcYoEp4hxRYLnRnhuRMkKadXHNPdHOE8m5A2NtKkhmzrDzgE9/YCr4SE3oz36\n4x3uJh2sWUp1MUGEBsYixY1nBHEfXY+wzIiKOcWsCtJ9n7HWpdQJaZ8O6JzechK94nTwex7d/T1B\nPEMWq+mA2pTFjk7YNYnsEl4R4xUR+7MLHt294GT2gpJckpZd0txFc1KuGju8bZ+Qdiz0GuhVMFKJ\nUREYlQIE5C2TfGyQVSxizSNOyuRYag14slQjYN8QeHNz4OYc80/VEVxjy4MtD36qPNhMyG6MdhmB\navu36pgdB+dBjPM0wj5OMIMUM03RFwJyncR0GJaayLYg7FhIW+NmscvNYpfJTY3sg0X2xoS30WpL\n0BS1tmjV6YIOcgZyQSbKDGSVAU3unBb12oiDR7fs1IcUtxPkxRhrOMMhxhAx1gQqrsSxBbKA+BIm\n72BwBa1xhj3PqKcZ1cMZZWNOqbEg3vVwjjKshwL3KMY9inEO43snUGjEFY/Yc5XA+FSqjpJZrhLQ\nkYApxFWHcVHj2twlDRzybox3kmAvQNN0ck0j3vNZVAImRo16NMMdpHTe3xG+ndC/gOUl6F3wjQV7\nJVj4HWrtMU43otSIsMwC2y0wYrUNULclxdIgqdokVZssMMhMhyy3VX9pHkO+BJGu3t912/7akfsp\n2vg/B1sebHnwU8Daxm3UCG8FSj50LbRHEv90we7ONU+DF5xGr+ksb+jeXmObGTkOuWVjlAouxDGB\nmGFHKfnIIrvQkReFms8Sc1TwaAE2MvYpegaF5lPoZbLWHiOq5IHJSfMD4V4JOVM7a9Ji9edaA2Er\ndyybQnahXCCZqce0ssp9WqXVRG5NYyR0JmMNw5nTdS8RUsdAstTKDGmRTSyyCwuuUV2LhQQhQIQr\n1ytXwkqODSUbOi7smLAPleqMQ/OST5OvWPZjxm8lo99JTEM1CjUCmNVK7H4SMAtKiJJOJixui10K\nC8xmRuV4gVFLsJC4QLHnM61VmZg1brRdZrJCIQykAFEYFJhkwiDVJYkjKFxwDDXSJgydVFrEhQM6\n1KoTHgQfsLOYw/g9h/E7bJFSd9q0zA6BvkAkJgutRqK7FAuT/KaM1AXIBUhn9X6ti4IfuxzElgdb\nHvz4ebBNfP1JWL+R6zc3V0wq1GacLHRYDj20yxa91h7XtX3OPz+ge5hij2ccjecIU8fo1rjZrXNT\nPebG2mV62yC+LZEONEQco3QWYu51df5bRrQO+jc1eJYbjyXq3/kEbuvwZZ1iUWLUafK++5Bls4wV\nZZhhhpXk2Psp1n6Gs5PQcQe0n/RpV+7IyyaZb5GXTV7rj3k9fcTFPz5gMm0QBj58Cq3uiGfaK37Z\n/w1B/wb3agCXA8rulKAy4TDoYduSzHSYnQTUGhOOah84Mj5wOHqF8dWA2y9y7ubqJpULWBzPCf7V\nGZ9WAWycMMUNU5yrEbwdcPYmxY0knpPjOTF+d8Le6QXPHn5Nu3qHI1JcN8WLEkpElGSElDrzls+i\n6TNsNLnyDrj2D5ie2XDrwG0ZZinrG6+6CSfcC4Gvib2+3n+5BP+XwZYHWx781Hnw3bb/lRPolpWy\nalOndLJk5/k1u89vaLbuqGhTquMZjpGApYOjEZU8Rk6VoVZlNK8zftUgfFUme21RvM0RHyIYhxCO\nIZ8CcxQvUsg0GM7A7KsGGDMAo0zasLg+2uWL+HNix6D98D3tf/ee+l6BhvbNTiZLpugyhSRHd8A0\nVq30ptpTQQmEo5ObBpluoe0XOL8OqQRj9hrX7Dev2GtcU0iDXJjk0uDq4IDz0yMuB4eINym8jmGx\nhKUBfQ/eSUZug69bTynbU6pH5zi/vqFaucWNJYVmM9Es5qdVsocOhiMwigItFRCBjFddo1LJS4gc\nZApkEkMWmHpOwx9y0L7i0LiiEs+xRIElcpYln365TW+vzXC3zrhcYWJWiK88mPkwD5RuBZL71v2f\ncrD/z8GWB1sefOzYtHELtfezjOZ56G0d7SSj1FzQTIYcvr+iPugRv5vx/m2OIwWVRkalCbWdGd2D\nWx4cvCetWEyCBpOgTuJLtT0tzaCIUD4PSoNtboDuIss6Wc9AG5SIbJ+s5CAeGFhAM4JiCHEK3R0o\n7UDegIkOo3cw/6Bk3USh9i80utDsgleXpElM+Lsp8W8LqnsZlZ0JB80BCIPhTotz7UgF+XerlyVz\n9UQyB0cDO1CBvm8oPaOyCccetG1wV1ctkpgjQb6QzFJJTyrzEpGSx4vCHLKEkgwZ5i162R6TtMFu\ncMnyUx8ssKIlOQU5gslJm8HDIwbOEW/DZ1xOD0h6DonhMGrVuGju0Ypi3OMZJ/05eifD88Dz4O6h\nz3nniBfyFyTzgFZyx6fJ1wSjO9yrAc7VADPJ6VYWdCt3NL050jQJuz65hPDWYfnOIbU91VaUOyht\nPMG3faGPUQ5iy4MtDz4OHmwTX38SNvWEcsBQ3kaRgkjIlzbLYYnkyiewQ65q+5wfHmCypD6HziJW\nK1KrDW6qB7wVx9z0dpnc1Ineeoh+gohXATox950Vf8x4NvvlJd/OtKaoQHUBTKDw4aaAhYs4Cxjt\nNIm7HjfNffSxQB8LtKXE+LxA/1xg6AU77jU7T27o/uyG2HKJTYfEcrm92KV3ucft5S5J4JDVHOSh\nRsu84xPtBf+u/zdkX02Z/y5m9ruYoGpQ71rUuxb6qcbiUZn+aZN20Oep+4KnxgtKw2v4/YCb/5iR\nDdWUWgJ4v1hQr51x9GSEp+tYswJ7nDN/l3D724iz36TYI8GOkbGj55SfjdmTFzw/CghbAWV3QdCc\nU13MaUyn1KdThNQZVJv0K03exycY5ZxJpcY0aIHhwKwMM4Fyf9cre0PuNY82V7fCT88h3PJgy4Mt\nD763+umVoePAiU7p6ZKDTy745JMvOXHes9vvsdvrUZZLJX/ka1yW9/hb+6+50rvcznZZvggI/8+A\n7PcaYhohpzNYTlXCNp+i7DgGEhXw301VMO0V4Bbg2GSRx/VojyKGkVPhs1OHSj3C/8UU0JCAkUnM\nGw39WqBdqoDfMlarJEw1FoCvAv7CMMl0C/1A4JZDjKc5J84bPnO+4DPnC1IsUmmT4vC7+c+JZxZX\n8134zxksI3i3gNCCXgAGDBsNvj55RmjbPDz8mkcVh4fPlpgF5HhM8JgHNdK6je4ITFGgbwT8a53A\nXK7GpRPQMtClwNBzGqUhnxhf8lfV37AX3eJGKW6YMZJ1XlmPeGk94n3vBM08JMwqxIULWgniMiTr\npG64em9/ajb9Q7DlwZYHHzO+m9z1gADNddDbAuMkp+QuaPWGHPav8N71uHqVcvWywIsFD8o5DV9Q\nfTpj53/scXz4nrjioFUkYcUn8QEKyLPVSOzq72oew9yFOEA4DtmtgehbRLUyaclVAb8HrTvwz1Wu\nwDsA7xHkVRi/h4t30L+9txO7Asf/BpzPwXkoSP8uJvpdTvR2SfdnEzo/u8J5fMnIbvJq5zG0CyX3\n+UqqbdKkytfTUrWhtBxAtQ4tDVq6+tg11TY/T7HMiCTWSJDPJbMEeihtbC0CI4UwLNDShJJccl0c\ncBEf82L5nAdBFz7T8J+ElOUUnRyNjEH5mBe1T/na+Yzr8SHDaYfk1iEpO4w6NS4be8rXHMDeOMSL\nMowqGDUId3zGnSO+4BcYc9hd9Phs/nva52dM/iFm+o9qCUZ9Z0Bj12LncEp4WmL4sM6i7DF62yQN\nPFLLAxzVVlTYfFMAxuDjLQRuebDlwcfBg23i60/GZmv/el03IAUi1Ej6Dsk7m5HZ5Op4n7fdh2i+\nJK0GWKlPgUHPesA7+wFvpg+5ne4w/1Ahe2tBP4Q45FvVzH/2qNdmF45A3TTWK6tNEEuYlWAWIG/L\nhCMIBz7Uyt+sjWUBYIBpoLkao3adu3aTXr1FhEcsXeLCZTapM7+oMfuqBo+BtkQ7EgTLObvTG55O\nXjM6i7l4AcPfKqLV9uFgBGO/Ree0R7N1R8vv06XHHtdoyzuW10vCF4Kwr+4tEWDXEkrDnJ1sQUUI\n7KzAjgpux5LBJcxegNWHhlag6+CaMeXP59SLMRVrQacY0Nb6NIoRlcWYYDBBoNO02nSqbZwgZrjb\n4r1xysCsI2ITOSkhU2217chTd9LCVqv8pMn9GvDNjPZfZmb7Xw5bHmx58FPmwabtmyhdozI4PrRs\nONbxjiO6O7c8qb/kSfqCzuKGztUN5XSJGYOZgy8nfNAOsN2EIjUoBibFG4vipYQs5/9l782b3Miy\nK8/f833FDgQCsZDBNdcqqbRYSWprm/kIY/N9p0em1kgtk1RSrtzJ2COwr767v/nDARLJgMT7swAA\nIABJREFUKmWV1FVSZhLX7FlGBiNIwP0dxz33nXsu6QqKOSUWlpR4WKswCgGrFayU8mU4JtgemTCY\n3FSIrnRW+y6+GtBqLql1UiSCAoGaFGT6jJwZTrogmqUoiwxHZnCsER5ojLs2M6/KUnpECxvLjvD9\nOfZJyL3gCQ9WX/Iw+BUZBhkGKSZL32JQa3Cp9lj1Y+IXMbEnyi0yz0EmzHsO5zc95n2H3FOw/Jxm\nLYJcEqQ2q9ThWttnrDQJI4coswgNm6Bmk7ZDFDXHMXLMhkLe1FhWdCLHRDVyKtocjzl3s5d8HH3B\n4eocfZGgLxPGRgtaAbQT0CEcugxGB7ByILZh7PJuT2t8d6jGDy95+2HEDgc7HHwI8X5LrwG6Dk6K\nqOfoSoInVzQWU9TBHC5h8RqyADKnQHULbDfGWyypigkVe4ZthihGXqoe1RxETpnrrAu6RQZRFaIV\njGyKG4viwiCouIybDS4bPdp6H+04Q73KUayC4KHK4pFCaEuGtyGLeUh4mpSEn3LCXTJbDxZSIJuk\nRC9S4l+BqS7o+NBszOjsDXCrS3BzqJdvt+SzBWjlUhsSrSvQugpGJ3m7iopCXlHJKyqOFlAoCrO8\nxkpfkVVSxF6CzCBTIFEhrqmEtkkobKZhg+tBj9eD+2SWjldZ4DcXpT0EKbpIOctOeJF+xDdXHzM9\na5GcWqSnOmHTor/X4WV+D2zIOw72fQM1D5A1gawKhrW7XFfvcqadUIkXaIucw9EV3cvX8Bzm/wrF\nDLxD6I7BLwSn+ze0/AFVb4+w5qI6AnQDCgcyf32/NlPHJe8OA3N+erHDwQ4HP34c7Apfv3NsJ3ib\navd6XDfrqmegw4UCQhDOXS5Hhyjjgn6tS12dUldmFCgM0iaDrMXtqMPNi32iFxacZdAPt/wrVpSE\nfbt163eNbSK68edJKM1gb6BIIVRhokKilHlkSNkYfePANw5yZRPWTCa1OllVIy10ksIglTrRpUNy\nacAliGqOcpKjWDlqkKLEBUwgW0KYwFyCm0CyBDkCZZ6jRylWEaFSkKKxxMMRAZ4aUdMFqQZhDlEB\nNiqGsAiFharmYEboboTqSCwDfAUMFVyjzHczVycyfIZqC7EStM9HVM+XuNdTVrch49scqRRovSWV\nA8F+vU7bHFCvjfHvN4hjiDHJ6wYsHJinsIxh5ULgrScfzbeu68YAfHPdf+qJ4Q4HOxzscPAuNg1T\nayyYFtR1OBAYzZR6PqN3c0N9fEv8ZM7pVxnmEvzq2mD1MMb7dMTxp6esVI9bq8etb5L4OgRZ6bVT\nrBPAt6bTGyxsVHcRyADSBYgpcirIngsiU2c2bPDSf0jh65w7dwCQCFQy9oo+e7U+DbdP3phS3J1S\nGy1JWhUumhUuGnWeu/e5Cg+Yv6rTqr3gfu0F96ovaF2c4j09Z/5siYaGioaDTvfuKR+dVClOVK6q\nda7aVa4P2xTheob4dEH6KmdlmRRhk9f1B2SeydDrwjInHqskY41ptc6o12G838ZJEi72Dzj/ZQ97\nouDOltyfLcG3yHt1zno1+vst1FbKsX5GZTKh8ayP+mxFMEiJopwokkT1EO3BLfcfKAhFY2x0eL0f\nwaIKUx0Mm7fPMHTKU0vJd/fzh7Kv/72xw8EOBz/l2OQS7+wdZK5TxArZyiC3DQpTRTYEeqOcHtdU\nwdLBqYDahKKlkHgGgeYQxDZJYVBkylZqU7z3b6SUBd45xAbcAN/qrAqXZ/ceYekhb5w7+Hfm+Mwx\nFglB1ybsOuRFRqX7hkrzFc3qLUVRknxNhc4AvC9BDEE+hWxcDvrM8rW1W0w5ZVsUqFqOVBSkEEgh\nwNHLZKOi4T4I8R8u8e+HdCq37FX6dPw+gW0T2g6B5dBVL1kqFl8on6Cc9LFXQx5rQ2y1wLUEni0Y\nfVzl9u4hT/RPeX1zwvhJg+IrlblZ5U3jHkVTwdZDVJGjipzBqsnFvEcws0lvFYprAdew2vM4t4+R\nFvS9Li/MIe0HAwyRkhkauaFy6Rzw3HtAZJs0wjFKmiMWknwOcVTO9pE5xCEUUxBTiRakGFmMqUZo\nSoaiFqUcNPVB7FE+88a8U8LHW3vm+/bTjxFDOxzscPDjx8Gu8PU7x2Zq0WaihUM5uchbf23CSoML\nFaaCYOBwOTpiNq7zohNiugmml5TGp3OTcGYR3lqEb2zC12Y5XScIIZxTGlUs+Y8T/k0yuP07Yv33\nrs3oQg0yHRball+1Arf1stZwZhA6Frmjs3SqFLnydmULjXypwRLEUYEaZ6hWgipSRJTDFNIlhHFZ\nYqgkJU+WAtRZgRGlWDJCJSdFZ4GPpazw1AUNTUGqZe04klCgIoRFIDyElqFbBbaboDkFlg6+KAm/\nZ5UeiytPIzR9hkobfZkjXytU/3mJ/WrGuJ9x0c+RKhwcLTk4jJF3fdoPBtS7I7xOB4FLZrrkDQNu\ninL1U1Dc8tQ5sSmLPpsHMnxYCeEOBzsc7HBQxm+Q/hs21DU4FBjNhFo04+D6hsbZLVffJFx9mSKH\n0DUgMyB7mODrI47uvCHSHHLbYOo3WVS0MvNIEkg3ZH+zNgmh4K1/nQzLzVaUhD995pHPXfJXLi/3\ndPqdfZxmAJR3RtdSDg/OOOydc9A+o3VySSu8oBYPmJpdbq0uY73Hi8kDriYHzG/q+IcrHuvP+KvK\nX5Oez0n+fs78/1nhSoGLgo1C97+fIW2VykcBX1c/Ju18wu1Rm+JWwiiGyZz0tcEqNImuqiRth0G7\ny7P2J9BPyc8KijcF8YFF/JlP/KmH2wi53D/g/N4BvSSjspT0ViEr06Jfa3FVO2LqNdDslDvGKdXJ\nkMYXt2j/Y0VwljDIJYNcoh5GdMJbDsw5ZlPnlfkIaz+GUIGrDeFfP8PQ+HXC/2MlK3/o2OFgh4Of\ncmy/523CX1AkCnKlkGs6haVCS6A1y+lxLRUMHdwKqB0o2gqJXxL+UDokuY5MFUiL0ihbvl9UWE/c\nZA6xDtc6SIdV7PJUe8Sg3eRfa5+zd/eGvd4NjlwxsetMnBraPOFP9/6O/eaUh7Xb0tQ7BSHAHoD9\nBRQvoTiHfLJOe/LyZ4hBZBKFkvDnKkihAgo4CjR1xF6B8/GC1h+N2PujWx7pT3lsPOWR/oypWmOq\n1ZmodYSQrITNF+JTDu45HOk5R60Rmi1QqgJREeTNCrfNI77WPuNmdMD02wb5X6vM9Spv9u4x7LRR\nzRxFKRCKJBzrrK4NVtcm6VxBBgoygOXM59y6w9hs8up4gd+a4x3NELokzcoBDivdYW77RLaJliSo\naQ4LSTEvSf5yfenjYE34JwVakGFmMZYWoyspQpWgqqBUQGwOfzetXRuVy/ZB4G/bWz+W2OFgh4Of\nBg52ha/fObakndjlWAilCloFTAcMA6EpqEqBIjOIBIuVz2xWpVCVsmC9FGVJeVBAv4DbHC5zuMxg\ntqRUULxn3Pp2os6/d2NsfmeTFELJ5DNgCaleLvT1n62T15mEWfleU6Nc6A4UKuRqWRTY5EIaKBQo\nWopmJkgDEl1nqbrENhTVDK2VoeiCwlVIHUFi6SSKQZIaBKnLTKlhKgmGmeI3IozDAMWIUTJQM1h1\nfOZOi7lo4pAQ62NyRyeuRsh2jnVQYDggfEHqKwQHFRa1GhO9gZ1EFBMV+yLGehmQ3cD0tuzS6qYx\nbhGjumO6d2458M5Z1D2WaYWlWiV0XJKqQewbpK5BbrjkmU6RaZCvzRdluL52mwf05jr+mD7M/r2x\nw8EOBx86DraJ/noDbIZMqxrYKvgCzclw45B6NKUym3EzKKew5TdQ0SDVACPHHIdUkxk1Y4qjBahm\nDoYELQexqcZuFC7bLb+bxEIAIRRLKDTIBcWVoJgaZJcWYa9Gf78O7XdjpjUzZaJ4TGoVpnqFO3Uf\n2bRRFZ9bvceFdsClcsBNvkc6NfBXS/aiPifZaz6V33Azyrl9XjD5XwU65WBzDaj2BvDHGo6eMXFa\nnFUylGYFFhGMQlityLOiLBjfKASdCoO9GuyJ8jnwMocXZZsZ0gBNZ3Bvj/PjI1rN+2SaRi/2sBKH\nQKlyY9zlpX5CbBpYekRVzGgGI7yrBcbXEfHLnKCAcQH2KuVwf8bewxmy0qSmz9CrKTQEeHqpUlKd\nUrovHd6pizbX7UNr5/1tscPBDgcfSmyIeMbbNqxER85N5EAlVmzmapV+rU2+F5L2MozDFC2D9Fhl\ndqQw3m8wsepMozqLuU8cGOTxupU3z8oCL9sLSsK/gESHsQWJQywrXNc7XLc72NZdes4lPfcS11oy\nMpqM9AZ2EbHfGvL54RvM2TWkEpEAuUTVC/I0J5mWn9d6pcB2CmjqRL7O3PQJhU2WrA/1ohJ+UgCe\nAh0FcRf8uyG9kxvunzzjcfwVj+KveJx8zbxoMs8azEWLW2uPa7vLjbWP3s6oi5jciSm8gqwqyGoK\nfXnMZXaX0+EJ07MayXOT4quUUNcJ+02Ge21wRdlFbQKTFK5SuEogUMtW51wQTy3iS4ux1UIrEgwl\nxKiHFCoksUESGqWDRZGhiwyZCJJCJ1BsbNMm9zPUZobQJbgKqadQuAqmEVNTpzS1IUu/yqJTI+vp\npAuNdO6RB/q6MB+tBzxtnkfbudB2bBd2iq3v/Rhih4MdDn78ONgVvn5rKJQ3bFPRtEuzHq0JehMa\nFei5sK+jVzMcM8AxV+BBWLcJ6jYpBnKqIicKjPPSw6gfwiiCaVpuFlaUIyMWfNfQ+3/3dG2zoTaJ\n4abnNqZMVjdta5skFsoH2qr080nNMvESbrkMB9qUqwPKJwXaXo6up0Q1g/5hi5fmXbCH+NU5jztT\nfFvDqJjMqgb94zaXjQPeLO+ji5iZVWVi1Vi1XaKfWSSqiT6PSYtScjo8anN55w6X8g5OGnEorjiw\nrzAOpqR/EpA7AWkgGFkGK8vkunfM7b02C8dHySWZq1PUBWodrEWZaEsNbAfUOtiNkEP3nD/S/oWO\n2id3DfKGwRKf62qX68M9hrcNFk8tloZFpLrv2r3iaH3dNoZ+P7xe5t9f7HCww8GHjoP323xNyizE\nWH+vKBO3SIWlBB+kBXIP9AXUKyWPLQxoVaFWhdWhSl63WBhVprJGkDnksVpuy3Rz+vl9KotNsXGD\nHVG2CmQpRBGwgFsNYg1G75Qb0ihYhoLbcZP01GRu1bmyDqlZM8bNGpNGjVm1gm1GnHRe8Jn1BZ82\nv2TPvkXJC5CSXMq353nbjWdQnpIKIbfsgbb89rIUohDkFIQOiQEzvVxTDXId5hq8VqAQzIdV3vRP\nkEPBmXOPujKjpswJcpt+2qaftdArMc39Ia1un4o6RbF0bE/BdKGWlF26pgK2AapLKWjZdM5lSvk6\nTEpT9rRWJuGFTqk43Ripb97ph6Rq/E2xw8EOBx8SDjZ7bnt/zWAl4BL4WmcaVHnSe4TX+2/snZxh\nFBOM5gQ1lwybDqLhcOnf5anyiIvzY0bnTZZXFvk8hSQoDbxlzLvi7qawu/YmlVpJ+ldKqbz+1obY\nIntusLCr3DoFph+z7Hgs2y6ZFXJZOeDbnz1GHOSQSUQu0YocWw1wlACDALEM6C4DqlmKdlRjeNzk\nsrvPRXHIbFSjONcpLkEuZcn6qyocCsRH0GyMeZi94M8u/xHr6pLkasTzqxxLCzA1hQM9I7trMD+p\noJ4U3Mgu86LB19nPkUvIU0GxELyY3+fl5BGrSYX0C4X8NEJGyzLnmtog7NIs3AaqQEWBjgqPDQhE\nOdRitb5FKfASipFC9kaHr0BqOXlaIJMQXEHRVcj2dFaWz0Bpc3p8ROaGaNUZR3tztDDDq5pEVZO8\nZ+A+XnDXf4NmpPj3V/jJgsveIaN+i2G/xbJvwMCGQbX073ubC20OXDdrez9t50rbU/B+yGrKHQ52\nOPhp4GBX+Pre2Nyo7fGtPig1MBpgdaDjwsc6fK6h7Yd43oKGN0RaMNVqZBoUI0HxBIqpQJ5la8I/\nhdmiJI1JSKls2Ri3/j4J/6aquvk7NtX67dg+tU0p0TOFwlqbWttlccNQS9XLHvC4XOKRRF0T/rhq\nMjCavGzepVPTaHQK7hzNkb5G1rCZN1z6Rosr9ZDTxT0UmTGlxtioE7Yckp8bZEc6ZhJRSCgknFvH\nPHU/4Qmf4CQh94xXnOivaPVucZ0x7r0JaQYr1SNVXa7cQ25rHZaOhxXGZI6GbCgluR+Cv36b1prw\nm/WQQ/cCVUt4oL1Adwv0vGDuVPmaj/hafszL0T1UvUMSO0ShVWaMqVtqQt8WT37KBrA7HOxwsMPB\nd9t83yf86w/5fG3KtgCaAulC4b0j/Ipe/rhfA78H+YFKUbNZ6BVmRZUws8kTbW02QXnz/829v91y\nsPHBKEAmZQJZrCB1IDFhaoJhsMFAocFybJFeNZl19rn2j7D8CKMaE9/ViXOd3BJ8Yn7DSfslH7e/\n5dg4o2PcohQFFJJCvktP36Wp5WtVKBDILdJfrFU7EWTrU920KF/b3Cnbq2IPIh8KuyT8bxQYwqJf\n4XR0j/GkhVWPMJ0Uw0nIYpVwZhPOLOqdEYk0MOoxqWqimBq2L1A8qK5glZXT+mxzi/BnrMWfAhQN\nLAWs9SllLtaEX9u6zvDjICh/6NjhYIeDDwkH28qEzbTp9RTRSx10hylVntYeErg6B80j9ptn9B6f\nI6RkYdVZmA0ug2NeDB5yeX7E6HmN9LogW6TrfqIQio2ybrs9KCr/U1D6kOaU2IprcKmTuxYLu0Zs\n2aiNnPSRTvpIIz80uKr0eNJ6RKTqCClRigKdhLqY0BATanKCE4zpBhlamnNdr3FTP+Lcuc/5+SHz\n8xr5qQFXGXKRgcihAhyqJeHXxzxMX/JnV//E4MsV/S9XXH6Zc2AGHJopPXPJ8pc+fbONeifnpthn\nnLcZ5W3ySEUuQBaC+WWFyWmd1VmF7DyiuFhBtADFLnvSUrOs1u5REv6qAEsDa030hwqMRDkm7xo4\nB5krZLZBYWtIJUYWITKPoCXI7zkU93SCI4/hXpuz3hH64YpGR3B0FGJmBWndJG54pHUTr7bgbiWk\npkzw7y/xGwvchwtenT5gdeqxfO2A5pTGSHMob9KmQLw5VH2f8G+rVzfEP3/vZ35oscPBDgc/DRzs\nCl/fG++fbK79jPRqmbHVquhHKtbjEPvnU2oHE9rmLW3zBqnCmAYj0WCuVAkuKqw0nyTPIUiRkxhm\nG5K/aemK1mvbv+L3ceO3E5QN4d9OXLYJf0IpK9VB+uXJLRIcD7wMKmAeR1iPI+w/DrHrK2xrhb1c\nUjFmCL9g0XDxrDoVN0PUIPRspnWfWd3nLDrmctmjv9jDjEIMI8LTF0SYLD2HieFiKxpCL5PjMKow\nX9aZjJpESkDNnlCzaph2hLZX4NwpyDXBigoLfMbUWOKQopPpOkHFZrpXQZtXyYIcI8gRmkT0INkH\npS6oMEUfryhCiRXHmFHMXFSRtZCsKikagmKkMe83mU8syB1YurAMKT8Aticf/RRjh4MdDnY4eNfm\nq1MSfRfwQPNAN0EX4EuEWSBETq4oLCyPW38Pp7lAdlLM/RTFkogjhfhYYXHcYOq3GGVtxqsGq5VD\nFgiI8rXL6iYReJ9kbhdw2fqztddRHkMeQGpBZPOuMFHufamoRIsO0cCFWqNsc2oAbTDMEL0R4WQL\nPLngWL7mZ/Kf8JI5djEnyguyELAF2oFAkeX9zhHEDYul5TGTNVa5S5IayFiUuU0hQCiUDrNJmeBm\nOYQCFAV0C8wCfAVFgBA5SlSQzjRGoxYDp1OebG7ezqoo26WHBatDA7MW4B4vaMsRK79G0vMxkwRt\nIXEWEtEVZE2VeUVj4XjIBNxwSdWekTdUsp5GnisUM4tiVkMGKuRr1ZDcKEW3pfk/xeLu7xI7HOxw\n8KHhYDtnWJP+0IZ+Arlk5XicHxwxWVYYOg2W9Qp5w0EgGRRthrLFbbTP5eSAwcsWqxcG3C5hFZYT\ncNh8hm638rL+nlxvaQFZAXEBcwHoFIogNCE0LWiKclhPriBy6Pf2eFENmTc8FFmgyAKDmJY6pKWN\naCtD9pIKauLiZQEz/YRT/SFPi4dcBgfMLyvIpwpciVK5KXJwVGhK6An8cEkvuOHR5CXZGVx/BTf/\nH9TtBM1JaDjgd5ZYHyUIKZkkNZ7P7/G8/xFZqJVvLQbeCHi5XosUggKUGHStbHNWQbdirEqM2Y5Q\nOzlKRSIqEhkK8pFSKlscjSzWyPoaLEAJyqKzJCGTCRkJRaiVT4hMJShc+k6Hl4f3UL0cVBPf17DE\nkqKqk9R0CkOiZ0ucWYgpx0g1wWwHGF5CbDoM3Q5Ts0Kx1Ciu3bINTqaU+aMCQi2xLpR320jK8o3L\ntYP6W8/CbYXTDxVPOxzscPDjx8Gu8PW9se1hYVAmeLXSpe/QghOF2qMJ949fcL/5gr38hur5jMpo\nBgJWNZdlzeUm6/Ky84CXf3SfkVclV3TycRU5W7cFbE4of239IeI3tQxsn+Rt2gAE5UmuDzSg4cNd\nE+7C/qMrTu6/4mT/FU4cYN+EWG9CWs0B7VafVnvAKvN5mj3mH7K/YDW3CSKLcGjzWr/LjdalcCQt\n0efj5RM+X31BY3SDez3GuRlj2RlWC6wW1MMlzeGUB8PXGFlCW+vT0fpYewHK3RxxUpD6KgYxLoIK\nCyos8FiAJbntdPiy+IyG16TYX1B8tERXEqaHgvxIYJk53MbwJKJYJszTjCQtiLwY5f4N9x98g2nm\nZJZNf69H/6hRGqIPLd5NPtpUs3+qnhc7HOxw8CHjYFPI23jbWUAFRAOUOvg+dBzouCgPNLRHBdpR\nQNg0eKo/QkszDozHVB6OqMoRepRSNE3yhsltdZ9v9E85vbxHv7/H4sIhnRTlKNAkWp9+bjdQ/SaF\nxbbiZVvZuFHAROvXrb/7falBbMPSL1UnmgKWQIkLmnLEnnbFvnnJwzdP6JxeYJ1NSWTIsEjoS0gD\nBe1IZe//VjEol0Rl/Nkhrw8+5nX+Ea+WjxiOWhTXCoxNiCqgClDT9crKUeiGWa6WhdLVEN0M3cww\nlQRTjcksncixiRyHIlJL+78zYJbCLIRZSETE4MBHXNxD0QXGfob+y4TqRzWiKCGKEvKWzuKTCm/a\nFcZej0KR3Def4RgL5pbPYq/C8tImONcIz3TSvgeLuJxoGm8K4xtp/g+VmPwhY4eDHQ4+VBxscqAt\nm4S0KIkwkvxUJfJsyGBQz0HVWKg1RCFZZD6L1Gc2rLA488jOJFwFMJxDPKGcXr2gJH8bwgff3bub\nf3/zvQQIQNqlKi9RygE95x5Ij2yoMOtUuG4fsKp4iEQiEolGxnVtgV9b4vsLqmJBVVlgEnOddLlO\n97hZ7XH7rMPyqV36zA3zsrjK1sva3Pa1+FOIdxmisq7rboa7lfVggRzl8DRB/mpV5g7pWs050mCg\nw2qNTc8r1Sw1E5oWtASNO2Pu3HvDnZM3eOYSI8/QFympLA/1gorFvFZhsldn+qhGESqYxJjExIXK\npLCY5hZxbEKgIq8hjGyu033UOGfSaPGKR7QYsSdu6UWX9EYXuPGExThhNEqJ0xzFG9LzcnRbMNMa\n9OsdVndtgnOd0NNJda8sEhc60ABdKZcq3qWzeQFFBHlUKpxYba3thukfoppyh4O3scPBjxYHu8LX\nb43vIfyfq9QeTvj06Ev+e+P/5Xh2hnUeY32ZIHJJdlcnPdF51biL3YmY9Sosag7pRKd4ZiHRKcn+\nZhLC+4Z+v++H3mYDvX9Ct50kbldZDcAH0YKmDQ8N+BPoHV7xJ4f/yF/u/w3OaYh9nWC9jjHvhpgy\nxKyG/Ev2C77NPuIfsr8giFyyRCWLVRYNl0XHo6gWtOIBnyy+5f+Y/0+cFwPir2OSr2OsWkHlPlTu\nQxZe8+DiNcsLFzUssGWILQPihzqz3Gfe9ch8BZMEjYwQG585PgtSS+e20ybxNOq9LrWgTy3s44iA\nqStYegrGMMJ+MsL+u5DidcyoKBgXkrwT0Vze8MBZ0ulF9K0eT/Y+gUCBoQ6WxXcnH/2mHuafUuxw\nsMPBh4qD7Vbf9SRTUQGlBcoeVNzStOiRhvKoQH8UYR7HhJ7J0/gxV/EhHfOW48evOL77CkuEBJZH\nYHr0ky5vBvd4fXmP4esmyYUknRYQhqVapdicgm1OP99PAt7fyxtfhU1SuJnAsClKbn5Nh9iHvAFJ\nvhbuKChRQbMY8lB7zkfG1xxfP2fv7y+w/nbKjIypzJkJif+5gv+5RuNzg0LoSAwKDMbVA57XPuaf\n8z9ntGwzGzcprgTMTYgFqDaoBejrZSvgquCoiAcgPgHl0wzTC/C1JZ62JEpsCCAJLIozFU6BZ8Ao\ng3AJwZRQkQwOfJaXTfKuhd5N0Y5iOvjo+Qo9Cwhtm2F9n1GjR2Q4KFbBff8Z3folN90u1x91GVy1\nUb6ukdoOqWbCbQpxXp4uv5Xub4riP+ST+T9E7HCww8GHiIP3P9M2hD8vCX8MudCIM5tspJP6Jgu9\nxrV+WP5YpJNGOvFMIx4KsmFRqtzDGSQj/u3p1Ztrm/KOLW6U6GsbBmmW3myFCgsLztowVshf+8xr\nFZK6xdDulOlVIFGkRD9MMI5S9G6KYacYdoKq5wQTh2DqsBrbhG9MwtcGnKcQFhDKd299G3rrRgCh\nlET/O4RfAakIpBBIBHJUIJ/F8LdBOUF04+OQWiUmEh1coxxRXTHhQIU7OhwLGgcjPtn/ij/v/T2d\ncIAziHAmEYFlM2lWGTerXJ/sc/74iPPVMXmu4LHEY8kid1HTfcLUIT01Kf5Zg1cQXllcRz0WQZU3\n+/ewKxFWNeae+or/Fv0NvfAKZzRj9Kbg5nVBEijsd3L223NqBzmDex0u7vcY+1WUpzUyzyTVbMAA\nWSnvpS7AFmCId91cWQFpADIo27CZ8O7AMOZdDryJHwq2djjY4eCngYNd4et7YwPyTYvX2tvIdhB7\nOuJhQfVkxon/il8o/8jJ/BXyXMIXoKSgRaAJqClTrg+7PD18yK3eJvzCJ3McCkW9O+Z0AAAgAElE\nQVSUgJWbCvZ/VhLxm/7+978neFfkqCKqCsodgfJ5Stu/5ZH/hF+Kv8OYx6jnKepXGUoCilHmwl8k\nktu0y6/UP2YR+RQDlWKooB6lqH6MZsXUkzF3lqd8dv016osJgy9g+A/gNKG+gnYBagDZG8hPKXuh\n16CZxz7FnYwo0igSiYwkRSzxpEpd8wh0m5laZ+U4TCo1HLlHL6mTpBUqzFH0HMUosKM5jVmA8Y2k\n+JesbJWWwGFGtzth/6MJrT1Bxxhg1SJoURok6cb6+mwS6p8a2d+OHQ52OPhQcbC993VKwu+CWgGr\nBmYDraNj3E0wPg2xTgLc7hLHWSAVhbBwuUoPWOg+aVslqWqYaswsqjKLa4xuWtzOuvTfdFk+t+A6\ngPkKkiXv2n7fV7r8ptjOwjaEf/O6t9fWIAdRgFKAVqDpOaolsd2Ytj3g2Drjgf6c9uSC+tMh5t+u\nyCnPY/sC9J6g0VJo/qXCPPeYZ1VmeZWr6B5v4oc8uf2IZGiTTw3kSkEgEJ6JUtcRukQxChRDUriC\nwlMoPAXzUYj92RLnj5b47pyqMqci5gQrl/E0xJwlBFOXGJNkZlKMC4hSiCPSkcHsymP2ugnCwN5f\noddj5lWfijXHt+bEwmSY73GbdVHSnG52xV52hVQFXnOC3V1g1SKUXBDGVaLMRWYuTDfqlpgyMd8U\n6H9K+/y3xQ4HOxx8qDjY7B/t3RJ66YemKmVyk4NYgHItyWY6c8NgblQpUpVsqZIvNeQsh3ECkxji\nlLeT6lisv94m9ps9XGz9d1PEjSgxsf7cLdRyZU5JpIcGhaoTeCqB55ZKiyXvjK9PBAwFHItSyO6L\nEs59YCChL+E6gesU+qt3l0EHMq307luqpOishMvUrhJXUkQzw+lmaE45vTryFELfJtAclolHPDbI\nzgR8k0KkgJDlsjVwM4RfoDVztFaB3i6QdyX5PUl+P6dVH3LffcEvrH+ku7zGmgdY1yFhxWFSaTCx\nG1y4R3itBQYxuVTxsxmVfM6MKoqSkysGI1cQnrmEuUIyMkgMk0neKqf23ZHgSJbC5eHiGWIosM5C\n0m9g+g0kC+gdxjQOgVSl0+1T90b45pyo5qDaChhWORVVALpE9XI0L0dYBTIV5UokRWBSBA4ytMvW\nvbwoPavethHn/Drx/6+OHQ6AHQ5+AjjYFb5+a2wnTaXEX9EVdC9Fa8XY1gpzmqBfFaQvJdPXMO2D\nGkNDhUYI+jLFZ0G72aejtBkbktQ2yWxRVqnTNWB/zQDuP6vSv53UvjeWXGigaBhWglVJMFsJ1cUM\n73WANU8JnmXMn0oWr6CSQj2E2hDsZkStPmGvfYW+aLGauQTPPVSRYe3HmMoKK4vQZhniWpIMYL6E\nfgGVGJwJ5Jel3/l0CNNZOfSj2Nh9RCkiXVLNBfZIJ3gpCV5K7HzFUTOg0xowrPc4rR9xWr/DPK2y\nvK5wfXNAVc5o7g9pdIcYIkJVVVxDQTVL89cgh0IBUwPFgsJa3x7JO6NduX0asX2ftlu9fignNb+P\n2OFgh4MPEQcbhctG5eIBVXB96Jqwp1B5MOPwo3MO753TqIyoLOf40zmKKkkNk8QwiV2TAIOprLOa\nOaxe+Cxf+izOfJbXDul1Djcr6M8gmlGefs54lwj+7/jcvcNsmeF5oFah3YGOj9IVVA9n1I6mNI/G\n7J9c4daXyDX+FMTbK7BZelFgZRlOAufTJk8mj3ky+Zjn0wdcTQ7JphbFqYaMFNgHrZ5gtmPMToRp\nRJhajKnFJKZBaNqElk23cc2J95q7s9dUh3PsZYC9DAkNh6lfZ1qtcXV8yOnsLqfJHcIrDaZeeVCo\na+VEoX9VCc9tbmv7KFXJ8LCN/2COd3+Oby7xJis+nXyLPV5gjCYYoykoYLZn9DrXXGt9vrBSVg89\nVrpBEWvk1x7ybSv2Rtm4Sc4+lNjhYIeDDw0Hv6G1V/jr1t4WNKtw6MCBgt0KaNRH1GsjdCul0BRy\nTSEIXWbjOrNxneRKA1WDQEK8OSz6Xa/d9oFgtvX1JldSKe+FXn5fLkrlSKCBup6Omq1xM9PhUoNo\nM8hAKRUZ86KcxjbPYRpBuPFZXedAUoeZhHMV+URj2G7ytP2AZvPPyD8bIawhR0dDHNMiMG3OTJvX\nx3d46Tzg+eAjbqcNFmENKd2ySLJOr8ShinIC6klMvT6h7Q9oVwYkbYNVx2XZ8dgLr2m8GVMZL+Em\nYnSdEVxJqGbowxW1AaiewFYSOsqILFQwZyHGPCD0HQ6PL/jk+FvOKnd4efchL3/xiOmlCamAIQi1\nQOulqNUU0w3RohQxKX69q3qrIUEUEiHl2+EVQsjyTHgP6ILWyqhUZlT8GZYdkuY6aa6TRDrhrUbU\nV4n7HkwymMiyRY8p79Sqm8mp/9XFrx0OdjjgJ4WDXeHre2Nb2rmZaGeg6gq6l2A1IywzwLiM0V4X\npM9g+AZOB6AFkIfgDkCLMvzmgs6jAQOlT6qbLKw6oS0gEpCvJZrfOZH8/fe1fv/73Cb7m2r+uqIv\ndAwrwKss8dszqqMp7psV1jcp47OcmzPJ2RkczEEdQf0M7M8iaj+bsPfoCnkJciaIXjiobo75cYyr\nrLCzEH2WIq4kyfAd4c9iaEyhuCqfOYMhXMzKUdx5UT63KnFGJ12ylyelqd8XkuBvJFai07k3xL9n\ncX13yrLweO4+5Drch3MFvlZoyAn3sheolZyGGKNpGq4hMI3yMCCQ5XPA0kGYkJsgNUovvreee++r\nkrb3yn/2/ftDxw4HOxx8qDjYPuVcq1yoguvBgQmPFSqP5tx/+JxfnPwjR9kFtdMZtbMZupJRdFSK\nPZUL74Bfyc/5FT/jYnZI9I1L+NcO8XODZAVZkMMqgmAK0Ub2v30Cuu158e99/Zv9bAF1YA+0NrRd\neOSiPBZUjhccHl9weHjGXuUWt1oSfoF4++6/S/hzrEziJDmzUYMnZ5/xP87+T8bXDaZXVbJrkwIF\nKRTogX4/xXm0xH08xzcW+MoCXyxYqR4TrcZUrXGcnfKnyT/xy9n/ojaYoV1naNcZwZ7F4iOP+aHP\n1+JTiCW3yh5hvQrXHlyb5Uj1oQ63CqHqcGPuszAqeB8vcLM53t6cu5zys8GXfHL2hPqbG1avY5av\nY1Bg//EN7mOT6/0hK9fl/OEhfb9Bdq1SfOOuix8z3nnZbdSNH0rscLDDwYeEg/dzng3h98oxyGoH\nmh58ZMAfq9i9gE7tmju111hmSCY0MkVjPG8hbiXBrUti67DS4HqjnNf4Ttvtb43tD94N8d/OlTYE\nMQI5hVQvPXaEtlZSrFuAZxYkFozMshigaeVQhSSDJC1XvCqn7BFRWhk4IB2YaXBhIW3BUGnyrPsQ\npZvQs1+wf6hw9McLErVCoFaZqjXecJdXPODF4DHLqU0Yla3AqAJMUfrpHReof5qj/XlMs9bnnvmC\nh+ZzQttmYLcZOG06r25ovhlT/WJFchExHhWcDyRuPaU3XNEeJDS8kI42ItDekE1FOYXvKiPt6SR/\nZZO0bZ74n6DeEdykB0wrDXgh4CUoskBLU4xqiFEP0KYJilJ8N7WRW7cgL9vT1s1ra9UOJeG/A/wM\n1Ac5lcqMbvWSmjMllDahtFgFLrOXVfKXVeJXTunTl2iw2Azd2LTxbXKr/8rC1w4HOxz89HCwK3z9\nTvFdJYhQBKpRoDkJupqixjnKSJINYDWDcQDaukUpi0BpFhiLBCdd4RJgKAmKVoCmlhtfbD9cfp9J\nxG/7uyTfTWg3Sa1N2cZgrU1XVVRHYjgJth1gphHmMMF4lZFfFiyvYHgLflz60Io56HspdhHi1+bM\ntCr6sgoXEqUrUWc5epqhZqXsMYs1klwl0QtiRxIrZetv0YcogskUrlawKNbE2wChZnTSDH8Rkg9h\n/q0k/zswE2gu4DgDWxM88x8iupJl4rOcVFleVKgVM7Ruih/MaDIisn1k00HrrjBjiRtLkiaoVUHq\nQmwZ5IZA1TN0PaEwMgoLpKVCrkGuQ7EZ5b65rpsWgB8z6X8/djjY4eBDw8F2MXRroqnjQteAx+A9\nWHB0cMbPa//CyfAllfEc/9kMS6aoUZlTfat/xIXeJfEMxqsm4alL9CuP7BtKfwO5oiT4M0rpxpTy\nQ3/T4vXvKSC+r1zcmr4n6qUfk7mH2gb1Ptg/C2nvDbjTfcOD1jOcYokbL1HnCWqSoZoFamtT7haY\nikDxNTJdJ8w1bmddXlw+5J+f/mnpPXQGnIHoFah3CsRxgfdoQfOzAa3P+tTUKbW8XDO9gm+0cIwW\n925f8vnpF/zy5u/x38zJX0PxBuIHBnHHIhI2Wi1lcLjHK+0+uaeW7WGWQn6lkt8q5LeQrEyS3GSS\nNTHDCO9khhfO8PUF5jjl7tkZ7SdvuPqG8vqrsBdBT4WanvKicp9Kb4bhJMi2Q27ZFIj1NdT56ZL9\n74sdDnY4+NBwsNk/G6WLDaoHRhXMBmpHw3iYoP9iTqd3y7F5yiPrCa66IhU6qdC4XfYoXI1VxafI\nFLIbnczTkDN93ZqlULpe/y45zzbz3C7+btTx6XoFpSolMyDT169/w1wFrJxyYfMu31F5N1Ft00YW\nll9rshz6YOqoaowSR+gzjTgzuDXaqI37KPWUGhEaC2ZJk3HSZJS0eD044fT2Dhf9Y/JbAcu1VN1U\nwVGgomIcrXA+XeH+xYID84z76VM+Sb9ghUdd7OMXUw7n57QuR3jfBkzOU1Zj6I+h3sjZT3P8PMJz\nFm+fDskAolOI3oB4AOYBGJ+D1w656R7w1PiYpVYln6vkpwqiKNCVCE1PUMyc3FKIbJPItZCVHL2R\nIQwQNYW0opLbFrFqkmYGWaJRoCItgagVGHcSjM8TKp/N6VmX3LFe0zT6rBSXQHGZxVUMq0dhmiSa\nS5GZ5BMFOdBKs++3z8BNUee/OnY42OHgp4WDXeHre2NbVrmR3MXkqSBZqDBwCWouUc0m/ljHNVSa\nQnI/LNAiaLfBbMP8kc7iyKdv73G76rBIK6SRVhrlJRKKTeV6u6/5P0IU3y8cKO/9//sl281Dw+Td\nlKYaUC8Tw0od6g40IKmbLLMKxY3CsqiQtEz4FCo6HMalwqVdh+oxKHcguWOwrHqMZINFViHKzJLc\nL3XCkQsXMMkbjDsNBn/SQO3k1PZjHnYivKmkEkC+Ktu60rj0wTN9qOxBpQutO9BJwfoKVn1Jegmr\n9c8lARRT0Gcp1XBON79hatbptyC+axOlFrd2Fz1IyYRB3tNR/krSemCzylLSLEXWJMufa+QtjZnZ\nIaurVMSEbnHNaqSxmmrEWRVmWZmjrwzeNZAH/GYD3h9r7HCww8GHjIPtomiZ+AnDQNRA2U8xKyHe\nakn95QzzcsH8acTgZYERQ3UE1VMQJwn+J1N6ziULtcLQ6jDyDDJPLftYkynkE2BOee02RP93uX7v\nJ4uCkphuCrheuUQVrAqYFkpdUN2bUTuc0eqN+Dj6hk+efcPDf32GiCKIY9QoxJtOsI5DjP8LHKFR\nUzRyRSf8WYdndzs8MTp8lX/K7bIDg/XLj8uXYNRjrJMA6+chJ/VXPEhe8OD5C/zVHGce4MwCgq7D\n/NhndsfneHLK3ssL8n9OGV/CYgDzIWhWgfsqxWnCfvWWT/iaqGNy63QJmg7BscP8usrkvMH0ok7S\nN2EMjEFRc3QlwSYolZXLBGVYkI9KP/BZVooWayvIhyBGBdpeipVHWCKiQCf9yU0p/Y/GDgc7HHxo\nsSmaroc5WBY0NWgKqnemHHTPOWhccpyccufsNXduX+MkAYWmkmsat/YAzw/wqksuDw4ZHbQY9tpE\nqVKqXlYmpCblHv+38pTfFtv9RxuCuPFje2+YA4J3Pm0r3qkgN0qZjYfeOgdSLGg60LERHQvvKKNy\nNKR6dE3n3i3t5i0tOSSQLt8WH3Eq7zC/rLA4rzI/r3I2PmE0biHHAl5m0I9LUusasFcadzcPhtyr\nPudEe8Fh/zW916c0Xp1RzU3q6ohj7YL90YDu7Ba9mWJEUEmgM4WKAU4NlG4pPkkHkA5hOYDpBCYp\nGBG0JtC6gKqY81A85y8b/5P9h5fM1QrzToUVLmHTIry1mK9qXMkezw7vE/opWW9K99EU4gyt6jOs\nekwbdzivH3E9P2CYd1gqFdIDA8uPOL57ynHnlEPjnO7NNfv9a6qLGbFjErul59Wr9D4vW3Ms7Zhl\nYPH/s/eeT5Jk15Xnz7UKrSN1ZeluNEmAAMnhjA1tP6zZ/slrtp92dpdDiGmIVqUzK1VkaOlavP3g\nEZXRhQYICjSAqrhtz7K7uizDw/2diHvuO/fc5dDEH1i5wXlk5MWad89v+yDxTxU7HOxw8OHgYFf4\n+ldjW9eXE/4s1oiXKulIxzMc/KpJ0NRRbJW6n1IcC9RIYN8D4xSSeyqLgxIDq8Vg0WIZFYl9Dfww\nJ/vZxoT1P0L4t0n+d5m4bj5Att/P5rU2J7g2UAda+SqasGfCYU74RSoT9EzctERUN8HM1S3yCCo6\nWDVwjkD6FOKjnPBPqLFIS4SJeUf4Rzbxtc6sWmXSrDI6qFHbC6i0oNGI0M5S9DNIBxCuII5zhapZ\ngNYJHH4K1QLYMVhfC9wbiG7yDolEXhP+OejzmJI/p5PdMrWqBHWb2UkdL3DoWx1ct4CrF5D2BHor\nwEsVlCxAznwkI2PVNFg0DeZGnaQiU7JmtNUeo2mdeFEjDAtwDYTrD27G3E0c2aiIPpTY4WCHg48R\nB79D6m/oyJUMZS/GKPgUhi6VwQL99Yrh84Sb1xnqCvYvQLFB6kcUrSl7965ZqmUSU2dZqOIXANeD\nZAbphHX1kJzw/64Jdr/r+jax3ZJmAyWgkhdxjRKUTJS6RLmzYP/giuP9c55+8w2fvviaRy9e4C9T\n/GVC6KUUHgdYj0K0/w1sWSFRDFBM3jYOeNt8zFvjCa/ThwzcFmIo/RbhL95bUPrhlPvBa340/SU/\nfvW/cHoe6k2CdhMTfqLhY+DvGTizOeXXY5Kfx8z70PPh1oeynnJQh2oxpXPU55PO11htl363zeSg\nxiSocXN7gHyW4TYLRGcGnOe3UFYydDnCknzMJEBzY+SxyAm/e0f4/RWkY5DHAm2VYCQ54Y8lE/mj\nJPzvxw4HOxx8TDjY3k9bCnDLhIYGxznhf9B5wd/UPud4cE73ZZ/2z26x5mHevmRI9I/6FD7zcPaX\nFPaXvNp/yHK/RODJIKm5x1FskG+WbcL/b4kNJjYYSbd+1/tFBGn9WttNu5scaXsYRIec8LegrsN9\nHemRQvG4T+d4RPdoQLU8pVqeUGbGSDS4yI4Ypg2CG4fglzbBLxwW8xKLRZlsIcEsgbkP2QocG9oy\n3Ddo7I/4pPIV/6D+f1SGt5ifTzD+xwQ9VNANA003KJoeZWuRE/4ISnNoKWDr4JRB6UC6gvAK/CuY\nDuE2gNsY7BC0CVSvoWwuedB8hVxN2K9d0Gt16T3tcrvsMli18foFlpMKvVaXV4f3EfcjaqtL2ssA\nLQ1ZmWVGZotL6Ygr/4Db5R7jRYtYNoj3NEp7C06Oz/hJ66d8qn9JtT+j9vPcEiOtK6Q1hWWzRHlv\ngdKNSfdgMGoRv23hFwrgm5AZa4WSRp5DyVvP+Psufu1wsMPBh4eDXeHrX42NImRTHfYRkU4ys+Da\nxHOKzPYqjLp1SuoccxhT6Md5+9JjmeUTiXG3zqjYYJC0GC/qxCuDxJPy8dnvkrrN+veS/W2Cr763\nNsDeVtNsZopmvGvpoghqNfe90NuorQTtOEZ9tECuCmQpQ5oIJBPSuky4pyPPBM6tjHUlIQ5k0nsy\n88cy03qFqVZhtqyyWtkkvoqIU9KVQjowiM5NZlKN/lGby6N9REmibkwpOwZq6iOGEWkYknji3V0x\nHKjtw+EnUMxAvILsFWS9vJVbrH0HRQYsQZ9GVKczDqbXuFKB0HJYdiskgY4bF5ivqgSmhdVysVor\nkoJMVUypZlP0LMJLTLzYYrFyUJSQpnFLWpWRujLBvIwXmogkI5soMNbW99MjT9i33P8+iNjhYIeD\njxEH77dL5ftKUmVkO0OupGhahBX5FEcues8n6sG4B+oMSmpuWyBpCdZnHtVoSlWeMtJaKGaSG6pG\nAcib9i6Xd9L6d3v0913b5rreL0yY5Pu5kE/ek6tgVJGqNnJDQT+IKe/P6e7dcNJ4zUn0hpOzM47/\n5ZzJDKbTPDfTa6D9F1D/ERTVQlIqCLXCOD7lZfwpv1z8kOmszmxcRozSXL0ZSyBLGKWQ4t6cxqMB\nh2/f8uTqG3704nP0NyHZGaTn5NN9uhLiU5lkJkj6Gcm5wBvnQ+QGGYipoN1P0C+hbo7Jiim2NKLt\nNBgV24zkNmYxJDBNRk6LUDXIPJnsVgZJIGUZSpwiiwxiiSSRiYVCombEtgAFYlUmymTiSEVEEkqU\noUYpcpIhCfHe/d6sv+SC7r81djjY4eBjw8H7hV4LTCOf1nMAxb0lx/Vzflj4nKOrM0oXc0o/naMP\nYmQLZAtsdw5HCYodkOkys1aVq9YxTGwIFJhtiN1GbfLvvZfbpP93vZfvKgJ8V5FBA0kGqQR6G6UB\n8n3Q/zqlvudx2O1x2nmJI1Y4qYs9cRkrVcZyjZfKI7xpEe+8iP+rQg7lhcjX9iQ+S4a6AYdQac24\n77zhJ9Iv0MYT/Gch/v+IcHxB1YSqCdo+yKf50pxcKFOTwDDAKANdiXQMiSqIPPB8WAqY6vkhYOCB\n6INTWrFnXmBUp1TKPWqlY0onM/RJRPzCYDxo4YoC/UabV8X7UE+RkWmKCA2flbTPlXTA6+Upl+eH\nDPptFuNq/vhaYBRC9trXfFb8NX+X/RSz72N+EaD/OkLu5N3Vq+MCQUFl8dhmvl8kfmWwqNWhYORk\nP9zsiT/VkKf3Y4eDHQ4+LBzsCl+/N7ZVIRF5MjbNDUSvJPjSYBZW+Cb4FE2O+Sa9odB2KfzIRRKC\nsG0Q1A2uxAFf3nzGeNUkfqOSnscINyTvX3VZj5rg2w5yf0hsfyBtNsmmVcta/9S5MxDcqFsS7nwz\nIvKT0FIO8EYJWgZSW9C8P6D9oEfntIetBNiqj634PLKeYRdcrgpdwocGvmThNy28AxvvxMbfs/h1\n+Fe8vT4heOGQfiORDfy8Z2uuw5kBksF0VuPl4jGSL6gxpZC6FCseneoVh4U3HBpvMFQfIwMjA10F\n1covM/HBi8Af5YKhQgvunYCpQCMFPQV5END5ckCyVLG6IZX6kmZ9xKVzyO24S2+yRyAb9NUOz+wn\nxJLG0/AZe2Gf+nLI/FZD6evI/gS7PGWv0mNs9LCTkHRPJZIVwhWENxpJz4HMArF2AP/WacNmL/2l\nxg4HOxx8bDjYXPO2lbVgI40XsSB1FZhqJGU999k5ljACaA0hfQuKyNteC1UIH6kELYepUWMSVPFi\nhyRU151c77f5/iHXtl3c3SSMm+Kuxrt9r9h5q265hFS1sY4zzOMFxZOA2uMR5doMR6yQw4BglTCd\nwsiFUbSeqxOCvQRpLNNX9nimPOGZ8pi3Nwec9w6Y3Di4zxSiZzFMFoAOkg6Wjm6ElNQFLWlIcTlD\nug7wvxEsbnIJ/tIDeyooXUPpZYa+AKUC6l9DbQjZAqwFlGpQq4BahshPCb7xWL0AYWbU7JCqPUfT\nBIFss+iWUVYR3rmNJ1kkgYQ7d5AHTYaVNsN6g9EPazQ7c5zbkJN+hJAlrAOL5b7JoNNkVGwwmdZZ\nTioEM5s0VUHN1l4kOvmpd8LdZ8n7XiMfUuxwsMPBx4qD9wt8CigyGDLYEpqRUMCnFs7RwxWLMGQU\nZ0ghaALUBIJVQhx6FLIpZXmOpXnIZporYVQZ5O0BAX/sAuJ2UWDzehsPTpm7CdYWGCaYOlJRptiZ\nUzlYUD2a8iR6xuOz5zx8/hzFD1GCADkMkY5DaicjTk/e8Kb8kLODh7x58hBxte4QWMYgwrvXlqV8\ngp4OipShJwm2FxIHMW6SMkBgZxDG+SdNYQHWAGwVpBkoS1BSQJdIKgp+W0EuC2Q3xSalPgIpAjsC\nq5ync3oKSS/DGwXMvpKICkOqVYFTdSkoAbFkMD6qM0/LzKMy589O8bQCfWOPV/pjNDliEtcZxzX6\nsw43bw/wzu08dd3Ll+QItDTBnoToXoA7ihkuU2IXrBGYCaRkJCc+jj+lyZCp2kA3I7AlCKXcDPG3\nyP6fMnY42OHgw8LBrvD1e2PzRb5p21kBOqxUuDIgLjILKnwjf8qw0KJWG1PuTKk0p6DAQiuy1ItM\nZzUGN23GL5vELzXEuYtw18UDVvzHCP9mcxjcEf0i78Z1v/uzTa/spnixIi84eECZXM5ZgkYBHulI\nTwWN4wFPT77ik6MvqHszat6MujdDMlMoplxVu8zUMrNWldknFSaFGpNSvm7O9rm+PiR4bpM8jxCD\nYE34LTgrwVRnOq/ywnvCMGlhVgI0O0GvxHxW/TX/WJDZ02/QVR8jAUOApoCyJvxxBqsIpuP8HRXu\nQfXxWrNzDfo1aP2A9rKP88alfjyh+aMhe60rXpkP+XLwVyzGZaZplVu7g1sxiSWN7qqPuYpo9gYo\nXynwlYI+UzEPdawDg+Vem7SpMtsrM6mXWPUc0mcFElWD1IJUz+U273rLN/LMvxTC/12xw8EOBx8T\nDrYLqe8T/nzPiEQic23ExCA1tJzwlyXMCFpvoVAASQH7AKwjmDxSCdoOE6PGxK/hJjZpoEKQ5g9R\n/KFKx01ytj2EYbP0rX8386VYUC7BXgn50MJ8uqD8dEHtwZRadUy5NqMgVkhhQLBMmExhFEM/homU\ny+PrC5BHEn2ly6+UH/F/S//E4muDxa9NFr8xiCcS8SSCSQyWnScupo6hh5SUBS0GFJYz5KsA7yvB\nfAp9D/o+tKZweC2ovABNCEQVsh+CfAvmDTR6udrGqeaEP/ESgguf1UWMovjU63NqNR3rMGN5r8jo\nXo0kkBiXq4SyRBJouDOHqG8yNKYMG01GrRqFh2MKvRXlXkomSYT7Nsv9CiJinRYAACAASURBVLd2\nk6HXYDptsLiskMw00kQFJc7vt9Dzoi7R+v7H/OUPcPhdscPBDgcfKw62lYNbpF+Rc7LugGYkOJJP\nNZpjBEvGUcx1nJGE5N/VAShuihy6FLIZFWWGpfkoZrqeDyDnipJ3v/+PGRs8bQjkNpHcvMc1ZqQC\nGBYUdeS6RLmzZP/wisOjCz558TWfvvmaJ6+eE88SonlKvEyp/bch9/U3hPeL/HPlvxMcOJw9fYCQ\nElgFcOODiMhzgTXhX1sFKnKGkSTYXsQiiFklGX0BZppnhGEKtQVU1ZwwSx7IC1BTkHSZpKzidzR0\nOct/pZOhjQWOC003n5tUsHLCH9ykeJOQ2SQhNiNqxytqR30q3ZBxvcH50THLyGF+UcZ9W+TGO8Ap\nedglF0XJCFwT3zXxxg7LiyLeuZPfVg3Yzwm/niRYkxBj4jMaZVwtM2YulBOorEBPMtKRR8Gf0ZSG\n9NSDNeEnP0xW3rfm+FPGDgc7HHx4ONgVvv6g2Fa7eBD4MIhhlbGixKpc4qxxH1tbUq2OqFVHZCrM\nwiqToEqwsBAXMvxGgVcBjEPwFuT6R487Of+2lPz3Xcvm72w2xkbdUgCKoJTzI0OllOtMZRtkA0SS\nryyCdJ6T08wEUQaRE36ppiLdV9B+GNFsD3jYecFPmj+jMRrRDIc0gxG3SYceHXpqN+8N3uvSU7rc\nJh1uow63cQdv5RC+tQh/qedgH3m5ae0qBleBnsEytFkKhwvpEI4lOAAaElFV47B6QVT/X8jZEi0R\nmLHALApUUyCpa8LvwXgKugOlEnTug5nlrdPZBYhhRCGMKIRTiuMxxf0xLbmHaflMsxqvlg/ph23G\nyzqToIKmxbjzIsY4pvJ2RvQleP8M8gBaj6D9EIJwwm2pzVnjmEtzj/RLjaCggKKDsHK1Cya/3UYH\nf/mnoTsc7HDwMeBgm+xvjLwNkNRcviKHoJiIVCA8hSg18EoO81qJil9C62bUWhlSJBD3JNKHMt79\nEotqhYmoM/UqeL5F4kt5NpOsJ/x8y9vu913bRt2y8S6yQLJBNvMlmSCtkzfLRGrYSEcW2iOF0hOf\n1idDOvdvaKc96tmI0nyG5nskSYIrgavBSsnr2p4iEyQKgWtwK/b4JvuUf8n+K7zw4Oce/D8+m9Zn\nCEESYOqg2ahKgikHOLjoUQCLmGgIqyVMMugJUFxo3IL0UqDWyKHbBLWsoJsatqIhVzK0aozsxKTj\nlPB1ivvTkIJwKXXhsANKonOz1+Ft44B54OCXVea6Qxgb+HMd/1pjVGjSP2hzc9ilJM1pd2SaexGS\nEPRbJvN2gaUoEFyYZCMFaSbl29YACnLuYReYkFjkn1Xh+if85RR1/y2xw8EOBx8zDqTfXpL0rt4q\nyQI1S9GTBJEmuJJgqOV2RSZgSWCTYUspDhGaFKNKKZIicsIrwd0k6+8rfpdHzqYYsG5l0w1wNKSK\nTKHu0m7fcq/zitNvXnH/8hUP/uUlyzEsR7CaglmWsR4pWJnMxGnyov0kV3HOUriMQPL5lo3F1jYR\nmUwWy2SRSiwUAk2wKuQCUFXKCbsmwFxCFEES5j5GWQZoErGjIFdVJDNDjlIkJMyywFxAZZGrNeUE\nlAjSQYb/MmLxElTdp/h0xokLjiTzov6AcnuGHO7hvizhvioS9w2oC6iJfKrfnNy/byjgCrgkryQc\nSpDKSBpIkUDxMqR5hu8LxgkMgHg9LNCZC1I/QU18bDwMOURR0nVX17oY8r0on/7Q2OFgh4MPCwe7\nwtd3xuZGbxIrndz7pwzUyMcYmbkULyJ/mi8gGWn4WoGZliGEhBfZpLGeT/l5HcBFDNMVeNuTizZA\n2CSZ2wZum+vYKG62f8Jd+5adXxdVUCtQs9fLQiqqyCWBZMdkIYhIQQQGjIswVmDqQGznS9IxihFW\n08PZ92lFfTpnfTrPBojBktEwZDgA0fHROlMOOwK3VeS6pTBtVpldV1idlfDPCsSvZNJXIdyEMJ2D\nP10bEAXkiZIHSwOu9Pz0MNZA06GmEVZ05j8o0XPaOKsMkUaU05iiE2MZMfLzhORa4PZgGoKhQnkK\n6TWECSz6sJhAMIc0gSwGggQ58CiEExrphILiolkJkiZQnRjFijC1AC2KkWcZ2Qi8ZT4NI0jBWeaT\nMuRKhn4SYUcejuniySUUNc1PLYQNaW39jNbtDqy4G4+bbD3Dv4TY4WCHg48JB5t9tu0P55BP+KyA\nVYRyAcoFpFMT6UBBbiUsygW+Mp+i47NfvKb0dEmRFXImCDsGQcfgsnDIV/6n9J7vs3xbJrhUyJYB\nJC6km1PAzfS67yL+m9NQlXckHydXJ8pF0AvgaFDQwNZA0kDWkBwF83GG+WhJ6dTjYeEFj8bPOV29\npjybrNeYwniCc+pjVfIEyQ6glUoYf1Vh8qDCotXgcnTAYlqCETBI8/GhuOu1nuQZi9yYVK7geg6D\nqIWOT7Ex4eCTK6yZRGMC0hKcFVQsKK4gfQFxM/d+UAQM9Qbnx8e87RxRVuecmBecxG/JvIA4hkCA\nlubJn/BA9jKUKEXLIjQtQSmD1FFgpsJUhi9htSpytrqPTsSsXOOJ/BxqEpV0hhbH1K9nnIgL/LSA\n2kjoSjdciwOujQNmNRt6FtyU8yT2nfo1XD+fP7e9/B+JHQ52ONjh4NsWD/lAH8Iof989warkcFnf\n5wv1UyoNG+nBmJMfj5EnEZqaK7PDhzaz4w631j1e+/nwg3Bk5BVPN4Uk5u57cXu4z/dZPHxPzSPJ\na5YNkiHQtAhbdimxQAk9/HnMaASzJUyjnAM3AkFzllHqC7RVhizIPzLMdSsbCncHYBH4OoxTuBTM\njRJvKif8wvohxv4V6l+PeJgMMaIUW81hbEwg7sHoFjwP5jHMBFhpRj1IKK5AzDLGz1O8rwTZEBQ/\nX5YEJSNfwoc0zuEpMkijHDeSL1DiDFXEaEmCvEqRRgKu0vxNFtZVAz8DL8ubBGYSRHKe/64MGBok\nDYWlU+S20qJl7sHApTtxqSkBRSufkyS1FKYPywwr+7wRpwzCFt7KynuqvQzizX3aKF//1LHDwQ4H\nHxYOdoWv74xtif9GRbJF+CnnChJVznE6ADJIVRUvdIhDDWKIE40kURFeArMgR4g7h3ieTy9iRV4O\n3hB+deu12fq5SQC3zb8l7jwsCuvraoPayMfM3tPgREHuZijdDLmW5IbaroqY6/BGgddG/rs8FXwN\nKVUwiy6l5oLa/oT2qz7t8wHdV0NuBxHDfsTtAFr7Ae29Ka0Dj96jfYQsM21UWfQqrH5eIvh/HZJB\nSDbzYOpBMINwCmKaX7NwgQUsbbhyYO7kapw6cE8lKuvMPy3Tf9iiniVIwqOUeZTGAeY1KC/S3Ph1\nTfgtLa8npFc5wR/fws0YFotcEZNkYAcpndClE8XU0ymO7KFaKXKWodoJhhVgqmvCPxWko3zC0TQB\nP4XaKif8WlGgzSOs0KMguSzkcE34FUhtkGrc+Ytsijeb3nWx9ez+HL7Q/rXY4WCHg48JB9v7faNw\n2dpTVgFaJuybcCojHwiUNeH/WnnCkDqt0oDO41va3T6yJFg6RZZOkYHb4vL6mN7VPouXReLLmHTp\nQ7zKs5B38vfthO99VePmmmygCFIZlCooNTCLUFegJUNlnYQoMnIxw/xkSfnpktbRkIeTF/x4/Dmf\njr5CufSRLwPUcYBxP8B8EKD/k4S9ENQXEHkSw3tlhieH9FsnXMz2mc+LcAYMkjXh98hTvlm+EgP8\nKqQCz7MZxC1iIbFfvyb6pIily9g9cPrQHIA2B2MFSQ+kBWhZXksfNev8pvMZ/1z7ew6Ca7KZTGd6\nS+bfEX49WxN+N0/Y1DhBFzGaHqOUBVJHhViBmQxjidWkwBmnzJ0KM2pINlRrE8zYQxvFWKMQI4tR\naynV5phOrcfn+o9ZFEvMSsXcWG9ezjPNd2PQPe5avD6U2OFgh4OPHQebfbfJN94n/LBqOFyG+3yh\nfcJJXaH7QOY4WeK4EbIOigG9jkXvqMtr6zEvFw8ZrFpEYwMmIif8aczdYdC/x+bhPxrvt7Gt//ud\n95BAV2Mc2aMk5siBj7/ICf8ognEEE0AJBOV5ht6XUCKBjFg7TEjrVrZNi3QM+HlReJzAJcyqZc6O\nT3DMBcf7FgcpnJSnmKQoJigmRM/A/yksrvJhE9MUphnUEkEhTNDdDH8mGL/IuP65IOqDloCeQNWC\nrJZP2842hD/bIvw+SJ5AjlK0LEFNYpRlijQUcJWBGoC2yq87WStTIwG+ApGSq4JWBRgppEOFhVXg\nttyi1eziTEZ0FjG2EaBVQK9A0FJ49bDMsLrPmbjHIGriLe0cT24G8cYe4s+h8LXDwQ4HHx4OdoWv\n34ptAKi8I/tScd0yVUGyHaSCilxKkfQMKQBpKBCBRDzTCGcGwpXWB2FSvsNEQK5+2Chc5uRkf3NC\n9v70uW3iv3n4CTlg4vWfr0fLUswTP7kJdhOlnaDcT1E/TdCOQvSjAKUdkyx00qVBMtFJbJVY2KSR\nipgDCwlCgVbKsKo+pcaMyvMp9ZsJzV9NGN7C/BbObsHsh+yPQjozcCyPrKswExUWgzLeFwXC/8tG\nBJtTwCnvkkHm6/u69v9xi+CWoB9BIYMjBSYWQdFk0qxyWT8gMRSK8pKitET+ZgFTmfQ2Jb6JCV2B\nrwpQIYxl4oVEGsPcyxjEgkma36lIgqqUURExWpphZwG6FCOr+aQiRU3RlBiVGCnOSH2ZOFAIMoGv\nZXh6/hiTSEL1QY1SrCzAll1Mw0cvhiiVFOEaCKWM8HVIJcjEunVD5q7laxPpf9J+/WPFDgc7HHxM\nONiWVW8KdjpIDkhVkFtIRRu5K6M8lFFPI4xOgF4KwBAM0ia9pEPZnLFfvebAugZJME7rTJI604sq\ny1mFxfMK0XPgJsp7VNONv9zG3+67kr7tIsSmrasMcg2MOlgNpHIRpZugHqXIrRQUkFRQiynlJx7V\np1NanVvuuWd8OvqKH33xS/wX4L+AcAR6GfT/JqH9dwkx0RBTlXhh0K936NdP+cp6wmV8wGJchHOx\nRfjXxVumwBiSSp5VRSn+yiRza6xck77dZXFSJ24UKV5IOOcxmp0QvQZ/AME5pCG5HVMZFo0S540j\nPn/0NywWJY7PLnBnDjEuqZYh7Cz3iJWACJQwxYgCCtGKguxhliO0/Qx5BeIyX/7c5qZu0TvaI6rp\n7JlXPDa/piMUnGWIfeFipwssfUGne0WlOGWq1Hhdesi1uYeY6Yiz0vqZLNfP4s/Fi+U/K3Y42OFg\nh4M8fofSZZ5AL8Nt21wv99CSAGFDeT+ipE6pptI7S9FBsc6scsgb5TFv/FPGiwbhRM8l1N5G6bIh\n/Jti7/cZ76lcNs9Rkt/9L1nKUKQEjRiRJYSpYBnnWcxUywc51yWZMJTJ5jICBYT07RQO1u9tTfgD\nGyYJaBnzbpHz1RFJBlSgqfpUW0NM3SO1IbMhNFKCq5iFmTDTRC5g1EEzIBQSWSgTTQXzC8HNVxD0\n1k5NUi4+L8gy1aJMqgiELpDsDEkDocskkkwiVEQqQyyQfYG0FDAWcJtA5pEnhyvuPpsE74ZpJDYs\nFehbJFWVWavMtbFHtT7i6EClsUppFDJoSNCEoF7BrbW41Q946x4zX1bxFwbMs3zCebLJb7f3w5+y\nALbDwQ4HHxYOdoWv34rt5Goj76+CXYVaCWoWejOj0JrjtH1MJ0RXI3Q1JowNZqsys1WFYGghrmWy\nSwXmYi25iNf9RpsK5pr8vjvBtMiTOZ275HMDkoh33krv2sLWXkZqMZ91WlPR2jGtT/o0n/Rp3BtS\nVJcUJwvspUcmq6SSSmSbXBwdcqEdcLPXJRuopH0VMZcJmhYLKiijjGVQIdRMqIK2zBUlJfKfmpPf\nlsyRiXWNEIMYjfSdOWGyvtYFOVA2o8kl7iYBbd5bkJetX+ggl1iclzjvnKK0U8rlGZbjYzkB3bTH\n6d4bTv/+DI7mlIcR9wcRsq2gH1rMDi1EkmHs++wf+TQWKUmWF6blI5PkqMabUpVL6RG3fht/ZJKF\nMommE8o2rl1iotXonzQpWE20is9+zSNbJFTrKqKu4u5bRE9URBV0I6Z4sqD5X/ootRhvbOCNdcKx\nBeMyjIGFRn4WILgr2Gy3ef2pT3R+V+xwsMPBx4iDTaHXAAqg2+CY4OjYJyHlhwsqny6otSbUGVHv\njdHUiAw5X46EqEpkOiz8En7PYXlTxj0rED6XyF56OdmfzSDaKEQ2gx1+n7x/a0qdXMoVdYUaHNtI\nJxLmgUu7eUun1adWniArKYqcIVsp7AkoZDjpEmvuIl/FRK9h1oexC4sM6jOoXQq0ZwqXyREXyQmX\n2TGX432uJ12usn1uv2yzemnBRQRjH7wN2d/48wkQIYglpBPSgUz8lQQlh8v6Eb8o/pi0pHCv8JYj\n84Ij7RJPSRhJMBLguFDvQ02FmjTiM+ULUkWhqC2xLZeLe/sopoFeXnCvO6c0S6gFoAXgqC6H7g1J\nT8PQE6SyRPADG8lICYRFOLGQ9Ayz6GM2fBrWgNpoSuViiTb0Wb6NGL7NIAN9FmEMPSqtBVVzSs0c\nUWlNCEsqoaGRyDoIFcTWyfAHFzsc7HDwMeNgW+mS8M6WIPJg4YMUEFwojOtVZPOYtKyxzGpcKKc4\n5iqfQmMKbunwbP6Iy8Uxs4s63sAhXajgx3dfgcC3yPb36pO2neetl9AglGEhI8Yys1WFi+gYXfZ5\ncJBS/smUBqCHUAqgFYH1V0Xmp2W+ale4nOwxH5fy7/3huhVYeNy1Aq8gNGGetwcHbyQmpTJIR6gO\nuGqJS+UYXYvIXMhUKNGjfnpO/X8/x5kHVGNoxyDdd/Ae1HlWq5HOQzAnHOkTJD1CU/IJ2EZLRzx0\nGHzqkGgZxtDleOAiqTJKp8Cw43DTPKRndZiMmix7JYKxRhYmawXqnLyvecGd8knincVGnMHEhrcp\nETp9rcM32ie4+wXeJENa7SHl6oLMUsgslaVa4OvRU856D5jPKvjPNZJhtDZuWuUFc36f8vX7jB0O\ndjj48HCwK3z9Vrwvpa8ALXDKsFeAExPjxKNyPKd1PKBUnONILo7sskyLXARHRKFC/FYh+1xDRDIi\nJu8Tyt4n/Ao5yd+0aZXXy1pfy4bwb/kBsViviHdT69Qi1C04UdFOY9qf9Hjy5GseHrygMRrTHI6p\nLOeIqoyoynhFi58d/gQ6P2EcVIgvDcSFRNJTCBsmQkgkI41FWCZaE351knu1FgFLXxP+CmQFhVjX\nCDCJ0chQ1ttyXdFmwd3UvI0PxKaqHq3/zir3n3hehFHKcq/M+cEps4MqRitAayaojYT72ivCPQO7\n41KbppRuXcq9hNTUCA8KTA8qyEmGeThlv5fLNLMYsgSWDZP+UZvr0j1epY/p+R2CsYmYy8SSRpbJ\nrJolpk6N/kmL6l4TozbhoBGjuylyV0V0TNy2RdRUoQK6GVE8mYMj0O8FjK/qpNd1wgsL3gCRDovN\ns9w8v82XyHZi/+dC+rdjh4MdDj4mHGwrXbYUjoYNFQMaGtaJR/tRn8MfXHCsX3Aye8vJzQVO6iFU\nCaFKjKtV3uqHXBQPGC0NvNcOy19XWL20SK4j0isPJqu8JzXeqB7/tYmmW+3GkrVWXdbAqSGdKkh/\nJ2N+suKg+JYfFL/knn2GJiVocoxQYVqsMnUqpLGMNXeRrmPCVzBdwo0Hoyw/yHMuoFhVuLKP+J/2\nP/JT4x9YTgosZwWWkwLuK5PVCxMuQvCDvAeWJfneXU91E1E+VUGakA0c4q9t0sjm8skx6ROVm26H\nHxc+B0uwp/fw1ISBBOdAzQW5D0UfqmLMZ+oXdLU+Xtsmqqhcdvex2xbV7jXt+y6lXkLhGrQbKGge\nB941xZslRi3GK9uMWzVCS2MxqZC80pD1DLu4otyYUjeHVC+mlF8s0c58hr2Em5uMTMDeMKZ7k1E5\nXlJ9OKP2YES1NWFRLpEaGoms5YQ/k7dI/4cSOxzscLDDQR4bkrUh/ArEa8IfBgSmwtis4mcFpntN\nLuv3+HVjiWZHYGRgZriRw2RRZ7xo4F4UiAYG6ULJU5nNIMxvqesV/rDhDv8Zsf2aGx/X9TMNFFhI\nZJrMbFnhIjoikmXK+1Me/PgtjTYUl9BcQLiEycMi49N9ztoHXC73mS+LiAtprYiMtgj/mvSHJiwc\nCAoElsxEruC7JVatKpeNE35Tn6Moaf4EBDwVv+Hv7iucHvawg4DYg9iHSdPh9v4eb+qnmIMVbesN\nR9oS24hQ9XzWTtTSWT4oM/jbBlIpxZ6OOJ5GZLKCWy8zqLW4UA649TtMhg2WFyXiSUYaxpC55EX5\nETnx3zwXmXcTYxNgUoYoJQ4s+nqXQLfoJfsUywuK7TmW7ZNkBnGmEwQ241GN0VWdxdsSyYt4TfiD\n/PWyzebYzpH/HBRfOxzscPBh4GBX+Pqt2ABgfaoolYEGOAXkPQ3pqYL9KKRxOubo9C2NwoCSmFMU\nC6ZUyRC4WCQvFMLAJuwppPO1g1y0XbXcGOjZ+WvIFZDruWxfdoBNGpEgRJBvAuFCpkOqrFvGNoS/\nAHUTThTUT2JaD/s8OfmGv63/jM54QGd4S+NignyYtxh7RYe4KXNdbvHCOiV6ExNXE+JKCmVBJqmE\nE5soNolMnbihIk0ERgkKjkAvyoiKRNiQCRyDUDEJI5Mo1kizTaU+5q5AsSH769PQd7E1In1hwqIB\nZzGrls3qyOKqvwcHUr48iUm3ht1d0ercogYxtVuNWk/C1016nQb9bgstS+h2ZIoHKYWl8k4g1HOq\nvOkc8Np4wvPZI24XbfyhiRhKpKlGGmm4UZHxgzrXrS5VZ0y3oNCsZBQjBe/QwDswcGsmWSqjpjFO\nukJrRBQbS0r35khvIXzr4JdKZLFNNrIQPTt/VmLT1reRDG/avf4ci16ww8EOBx8fDrYJv8Ed4Teh\no2EfhXRO+zx89Jyn3jOejJ/z+OoFJW+ZD7sz4Cw+Ri7EjBpVhCsTXZq4vyriPdNhEsPEy6cNvPMD\nWnJ3qpVtXcd2bIrQGnkPVAH0MlKxjHovRP3bkOKPZxzK53ym/IrP5N+gE6ERkaJwqR5xoR4zjyo4\n/hJlGpEMYZXkvqq3CpR9ic4IskuN6/ohv6j/hP9T/T/yPOdc5OsyzNeNz13ytiTf05tj2xDECsSE\nbCSRZRYMDHrSHsN2na/1R0iW4MC+JrJ/jWeGTA3oaYIsgeoCEh/KxpSKPeWx/pxLeZ8X5Qe8rT2g\n2lRpt+YceQrOGWRrqzwNn+bcp3XZB0lwe9rk4t4eC61I8kLDLRSRzQyr6FOqzahoU0qzOcVnLtrX\nAd4Aev18R5YnMdoophisKDUXlIwZBXtBVDDw9BLIWn78+q1W7A+J9O9wsMPBDgffbvFaq7TjAOIQ\n3IhILRDpDjNhIMegGClKN0VyUiQ1zacOBBJiqSAGCtlAIVsoiEiGTMrboLa/+39rqM/3Eds+fjpI\n65WpEMsIX2IZF0lT8GSDh50zwkoN44GNMQEmICYSs06TUfeYb0qPuMz2mc9K61bgFNyAO5ysV2RC\n5ABLQqlIGDrMJw63x3I+2XqTGiYSJODVCxzt9VH2vqSUxjncVuCZDWa1E57Zn1I1JtRsj2apTy2M\nkNbDXcddh9G9BjdPD1EbCUcriaobkUgqU6fNTeGQ89URt6+6TG7ruG8LMHIh8MhfaJ6/UaZb903l\nnRl7ouSGS/OIeCkzMuuM9DqSnKE/CNG7PnInJVqZxK5FstDhVsDXAr5OYTiHUQDxRvW6rXT5vr2u\nvit2ONjh4MPCwa7w9S42X9hbShdFB10HTcdoZBT2ZxTu+xzWLnm0eM7jL55Ri4fono/meTSKBUr7\nU44OLriyjzlr3+f84QPmqQ5XJkSF3AwOEwhBVcAq56tUzEl7XUIuxmhKjCYnSFlK7ELsqqQLJ0/A\nxjosYhDrUd2KmU8xakvI3QRHdmmMxrTGA3g+p/8sYnQGhVtw3oDUzjAeLWg/vuHhyQv0YoK+l6Br\nCZqUoMoJhoh4UnqGYsa8bp2wqCf4JwnqZwnTwwLuYYG3h0W+1p/QG3UJ5g7Ja5l0HEEWcWdYvt23\n/X7Fdvu/Q3JQXeejsicSyDL4Ri6fvLaY75d5dfQI7TjmlfqIQuDjKB5xpjGdlJl5JRQyKvGcqlhg\nmGH+OZbCTCpzPjni7eKQm36XyYsy0SUwDsFVYKwQjE2uvQO+8P+Gab1ONZhTleZUnBllY0JJmaKF\nEdXrGQ+vX9OdDkg0lURVWSkFzhlRd6ZcnR4wH5eZ3ZZZjTUI9NzEMLK4a2v7c40dDnY4+Fhx8B0n\nf7oKRRlaYFd8Olqfx9ErOtO3xJcTzr+J0eagqDkPnN0LUK0hR3uvCVUT1ypyW96HsparHZXtfQB3\ngxxU7gY2bLwTNrEpQKv5XOuCBCUJvRPRrvZoOT0O0zPuXzyjdn2NOpqSkuT/mDLG8YDusaBVdOge\n9Sn9vYduQn0OyQJKkUT1iUH81KT/oMKcIiH6WtkeQC/M1S1jHzyfPCHZSN43hdxNchKSJ0lyPuln\npYLQyfoS6TVI5wZe4jArlRk8rpPKElU54JEUUlUE9SLoRQjUtUbyJQzHHovzAfKXMnrZQynOwEnw\nxzAbwPwm7ywzJ2D2wF1FGNaU7t41K6VEZJvMqnUiQyOwDFZykZVWICybpHsy2gxKEbSnuR1duQxa\nF8J9mais42oOq6RAmBmkmQJZ9v1bkHyvscPBDgcfOw42+25bdbL5MxnQwNSgIcOJROV4wkHnkv3a\nFQV1ieonqJOYNFIIdZNwz2Aq17gVe/S0Lt6FAn0bBpXc4+jdntm2APhjEf9tD7+Not8BrQxaDcwa\n7BVhT4PDFOPTgGJzQUXMmIQ1frH8MdNFI9/+gLAlrr0u12+7XF93uflyj8WLAuI8gVEIrp9XZfHI\nc6GInPhP8+sIPZgXQCpAqsFChVs1/8xRVJBVht0mv0x/iConFJUF6Ml6SAAAIABJREFU0ppr98Mm\n5/Mj3r45ojke4NR9jH8KqISz3ExckxnWGrwx7nF2do+sr/BcTGiICSkKQ+oMpTo3k316r/cJ3lhw\nlsCtnw8jykfMbT2X7cLupt1r0wam5QWhkZ4PTApU0p4gfqUil1XSQCULBSxjeBvlnyXDABZziDYH\ngov1Pdp8jvypAbbDwQ4HHx4OdoWvd7ENgnWyp+p5X5NtYDQiagdTmvcHPFBe8oPLL/nryy8oD0ak\n44R0HBPt6Rz/w1vCapFX1mO0dsboYYd50oTQgGGR/MPCBiJQVSiUoVaGrg0PFaQHMkonxtB8LM1H\nTjK8oUU2NElvjNz/JyrAMsl/l5BBkaGoQRvkbozjr2iMJrSnAwbPQvrfhCxeQ9uClgWFaoYRLmjV\nbnh07wXV4oyaPKVSnmGvQiw3XxQzsDNeW/fI7gWIVYiyCpgV28xL+XrWf0qvt0fQc4hfxWSTcK3C\n2RD+TXL7Xb4dmwSb9d9dewCFOkwU8FUYl8ARYBssDiq8nDxi6tawqx66EaMZCWkqE04MAt9AUgSm\nHWI6IYqZvnusoW8wH5WYj0usLm3cF1pO+CcRjDQwJIJbi2v/EC90ONu/j2kHmHZIwxnxWP+ax8rX\nHASXVM+ntD4fo5wJMlMmsyRW5QKNkwnl4zlOc8ll/4j4SmPVr8NMg9RYE/61l9OfbexwsMPBx4iD\nbcXCOqFDB12DkgItCbvi0dX6PI5e40zOmV6uOPsmIR3mg001GfB9tP0BR6FMotrc2vvolQjKdm4G\nq2yk25sJaBucbdp5tw09N7FJzPIJdRRyc1C9G9Gt9XjqfMnD9Bv2zl5T+59XKF9PCckIyEjKMuZ/\nFZQsF7NmUD2aUZJcjANo3IB1A625RPLEJPmkzOy0wXxcJBzp+cSlUQg3C7hY5i1d/ua0ctO6u5nG\nuklQNsMrEohVWOkQmYi+SXqlI85MvFqBWbnMYL9OyUioyNCQImxb4DRBb8HiFvov4fIlrDKfqDBA\ncVz0gwT1/grpNMEbQ78PF9e5kLBsQtkALw4x96d0wytctczMrnNTifENk9AyWcoFlmqBsGKQ7Suo\ncyjNoKPlXL5UAX0PxL5MWDFwVYdVVCBITdJ0Tfj/1N0nf7TY4WCHgx0O8thuwd98Z2/2qpabfDYV\nOIHqyZSnna/4ce1ntIM+xiTGuI2IZY1lvcCy43BWPuU32t8wd8p4xRIoDixS8DZkf6Ny+GOr5rYL\n2+vBQFIBtArYdSjV4VSDzzSkTzKM44BSc0GFDeGv8/n4J3cfExZ5G/B6rZ7brJ5bcJ6AF4Lv5+rH\n3yL85P8eFmHm5cqSuQU9A2wDLANsE2yFod/kl/IP6RkdDCt699re0mY2LrGYlJhrFcxaiHY/omgs\nyGSFTFHoB21eLx7y+s0DfGwsO8CyA4SQ8FwLz7VY9gvM31TwzyzopbDwwJ+RFyVcvm1EJXG38TfP\nbpb/nXgJoyJERcTAJivoJI4OhopIQSRAFMPChfkSlquc7Edz7qwwfP58pjrCDgc7HHxoONgVvoA7\ngG2AsCb8yprwFzSMmk+lO2P/5JLT5Ssef/2MH3z1JcUXE9wbWN0AD8GqS5g/gGZrSr+xz6/j/5+9\n93qSJbnS/H4eOjMitSxdV7UC0ABG7MySXNou3/YPpu0DaUZylrszxAwGotHqytJVmZVaRIZ2PnhG\nVd7q27MDDGZwuzuPmVvdm5WVwsM/j/Md/845fwZhB3o22O76tdcdEQwDyhVEp4x4bKJ/GqP/PMI6\nDijZczxrgR5l6Jc1uDCRrwpksU020pAjQCYImUIhQ1YFtARaK6F46VOfjGmeDrh9A6OXcPFcLU0T\nMLwMpzWn+6NrtMxg17lkz7pkt3yN2/fxVj6FMOBN7ZjX7WNOOoc4IsAWAY4IGKTHnGRqXN/uc9Pr\nEPzGQb5OYBRClnd+yGtefFvUdnNDDVCgWUFoQmgooiwidR20EvNbl3ngcpI8gn2gCbSEwltfQm/9\nBbuoE+G8XrqBwuythOfAqwTOArgKYLIi38jDnslN0uEm6aqPsyegAG2nR2xq1MSAveCCytmU1i+H\nVH4zVyWpPFjuFHFKS8yPV4jDhOjMYthtQ1OH1ALfRimcVqiN9n20LQ62OPgh42Az6Lsm4qYOrgZ1\nKJQCWsaQ4/gUplcMryTXL2F5tRbICyjbEY2fjahHMaFVp+pMMEsxlCQ4GWibKhcN5XAZIAxAogrh\nRbxN+AX3ShcdPA0aAqsV0a72+bD4NT/Ofo173sP92x7G/zu9c63iJnjlFe0Px9RNHWNPYrQk2Qc2\nhddQeA1pT6f3YZnesyZXR13GaZXg1lHx19sIbhZwNUQ5JDnRDzfGpkMccecExTbEDvhFZF8gLyyy\npsXS8Bi161wfd9CNhHYKHRlhVmK0A4m2nxH8WjJ4JTk9gWQUUCDAEUPsD0FPgKogmAkGI8lZH+RQ\nNQtKANwYazCjGfWZGm28wgK9kpCZOoFpk2UeC1FiWSoS7NjIqYnTk9RLEpmqvUvuCYJdG79UYCk8\nlqFLHFtkeZdSHo7vk21xsMXBFgfK3vX91oTf0RENgTiU1PZHfFD5iv+5+DccBycU5hHOVUhYsJk0\nKowbFaqNMROzxsvSM4RRRU4dOBGoNT5Xr4nOfdHofy3b9O/W3VFFCewKeDVo1NEfJ2g/j7H+MqTk\nzKjbI1rhgAv/iMvZIZeTA7KiRlZQQ14DZ8Ar4CRW4yJaH/7ldY1W3BP+jTIQ0UrV9ZkH6rPkw8ug\nokHVZJjWGVp1fuf8SJV/tYT66EMJb4A3sNq1sQ9W6H8e4TbmJJgkGPTOdnj5qw94+foDZkEVGqiR\nogSbt8CVVAX2ToBJXpZiU+my2Yk6n798n8y4C2akS9WpcKxy1DJ0sruAfd4JLw/u5AGFOXc5a3fN\nm3K16/uCqS0Otjj4/uBgG/j6hm1EgTVtTRwFhplQ1FdUxJRiNIdpyLKXEd3CZA7jFMwYmjOJfSPQ\nNYkWclciCUsDTQdhqlwADbSKhnUsMX88p/x0xW7nip30ikZviBOvcKIAmQgmos7YqzF62qBPm36l\nzezjEoYWYYgIzUuJP7CIHRvmOtLQyJpqwyhfw74HBR1qEjwJhsyozqdwc0n9VUBtMqI+HuFOfMJx\nyGycEs0gOFrgHvV4cpTR89pcefv03Db9CzVuL9qMT6qs3ujwxofbOSwmqGjEjPuI7bfJVfO88c3/\nx9w5t/kGmK073y0KcGWqOeyvUy/KOiQSJun6JFlA1VCjoIEm1B66yOA6hqsY+oGKrEf++v3zrhSW\nSp97YympaWaCbaIXUorGiroxobIYEy2WXM5jLmegR6D7kGoZq6lPIRrTFn3OzRlWIQJXqF6y+sP8\ndY0/vYz5n7ItDrY4+KHhIL/BbqRaJSkEGcwgWllMZYme3cJzV3jlgMfVFUmQYeiKi9M0kW6Jsd7m\nNm2xiDwSX79v+JaBup7rLqm6pjBh6QpyYQJRAunGnAihAg+mDl4BnKpSYWoBAnk38m+Qh1bzb5H/\nJpYm5/EeN6s9Bqs2wsoQ7YysIJg6FSaTCsOgzvOvPmL0VQO+Bk4TmObNF+6+wIP5epi2m797XtNi\nAlMdTm0QktGqzvP4I5CSZjSkWpxSfTyhWRrQat7Srt4Sl3yqXsgzN0QmEstUoiNvV8fcs5gfmMR2\nRrUT86QRoZmSUgHKBZg/sRg1y9xaXXp+h3lUIvENZCxIX5vERcm41eCFeMbf1kZcfNxGOCtEdwkZ\nZE+KyCcu17UDni8/ZPR1k+TSJDtLyBb5Ke3/qBD7d9m2ONjiYIuDt8s+rO9ZYq021DSsYkSxtKJQ\n82lnN9RPx5TmPvImZniWsjqXyGKKMQsojgX1yoSqNqFSnTDqVIjLgtg0yLC5v9f/azcJeJjGXADK\noNeg6cKRifE44fDRCUf1Ew7EGfXrEfXRkMpkwki+ZiSbjGhyqe9y5e5wVdkhISOZSJI3UvkVi2BN\n9oeo1KWc6OfrZDOosc4VI0atKQewIXFh5SoVzqUFcp3+VVz7o4ZQSqF+Av2E1TKkZ1XQg6c45ZgU\nnUxqTHolxi8c4ucLCFLlL3ma+hjzTI1RAuP1nsMcFQXYTLfK07DXPhIOqrasB6JwL3XVTMhcyDzI\nCpDpkCbrQP5GNz/yhhh5ICTfGDcVLu8LnrY42OLg+4WDbeDrG7YBCKErAmmBYSYU9BUVZorwzwKW\nNxlZX63vfgKFGOwZ1HsS3QIhJMICiipooAg/Kl/XNNAqEvs4wP35gp3HN/xU/oafZb/lsHeGMU4w\nRgmxNBgeNBju17ns7vJF+RPCA53F3ME2AhxjhW4krEwPaZkw15C2IGsJ8KD8CvCgZoCVgpmBkWXU\nFjPKvYzs9YjC6QrnJMA8D5gtUm6WCb1AUu8vacwke8GSYafJZWefvzf/nMVpieUvPBa/8AjGOsFE\nR05W4M/Bn4LMo7e5/P/bcnTlg9+v09buyL6xXu8SshAWLlwVYF5Q8k/LBNtSkvsghDBSQRrbBsdW\nSiIhFOmPEpivYOHDcgmruZJjknAnh4kcGLoQehAW1wV9NfRKpgi/OaW6GNFfRPQWCfM5WCuVgm1o\nGelsRTEc0RK3lM35mvCjCL+Rb7KbEfJ8vb0PN7eHtsXBFgc/JBxsSrbza7BB+OeScGXeEX7hLnC9\nCdVKhB5lKoZrwbxh0vfKDI02g6i5JvzGOwi/B7ig2eAIlbYlUIHJNIN0Yy40VFCgoIFrgFMAwwYR\ngFD4AolE3iWOvU341e8TaXASH/P3q7/mC//HCDtFa6fIuiRYFViNi6zmLsMvGwx/14CvJExTmIbc\nE/48QLs5V/n/N+cx5f5Ez4CZDWceTCXjqM5z8SFDo4lbmVMsLinWlzx2X/OR9xUfe19S9IZU3Dk1\nN0aXKXoR9ALIHYNs32GxX0SaCZWOT7mZYBRS7DpYdciemMStCrdWh/6irQj/0kTONNLXivhPDuu8\nOHiGPIST7h6V7pDKR0MEkkm1ybTW5Cbd4+XJU0YnDZKXBtm5j1z6KAc2T2F+V+ryd9m2ONjiYIsD\nZWJj5IeAujq8MTWsQky5NKFeG9CJr6mdjfG+WCHPYka3KVd9ieEmdMcrOoOE2tGE6sGE8uEYt9vA\nLxdIjcKa8Oey7M1747/m98r9C4c7wt9w4amJ8ZOY44NT/qfaf+cvxD9QuPEpfL7CeR6yahdYtYos\n2x7/qP+MXxZ/zrTqEpAiJynJm0z5Ff5m04ecOG8qODbxI9ePB9xL002IXfA9iEuQrP2dS0cFvrX1\nAWoYqaLhfsBqmtGPKviDKkZRIKVASo1gLFleSeKrdaFua12zUErlD4UJBJGq2xfnQeq8a/iKe2zn\np7frIAl1NTRP+bWOUFH/1ILEVMW+40zldaV58GOAUreE3Hcpz9O+c7K/WU/rfbAtDrY4+H7hYBv4\n+oZtAFys6waZoBspthbiiQVO4pMtI/xxRjCDgYRrVCmg5lKQDgXCEwhXKMLnoKKgYj0MGywHvZzg\nHPqUfzpn9/iSn1z+lv90+X/z0fXXyAvgHALNYuA2uH1W583hMXFXox81GGVVXHOJZy0w0wT9RpDd\nmOhzifQEcVMnEQbFdoZbkmBIJciXkGSS8nxO8WaO8wr4nRrJVxCF0IvgRQKfLH0OUp9H+pB/TP+M\na2uXX5T/HdmZQfYPOvJ/11XrIZkXel2gQDJe//9/dBK4eUr6sJZHTvoTkOsOSUsPliW4KaFkoHna\nVLp+vxX3taPyhLZ884y4l1JuFtCLuDvFiAswqqqo9wqo6rBjozUzCmZI2Z7j+TMufElvJbla3cO/\nYGWUlwGlZEZNjHCNJaYdr1VO66DDncLlIel/H22Lgy0Ofmg4eKh0iSFJVO2JGUS+xSStcGV2KBYX\n7FYydus+RTKkAxTgulWg79YYii79uM08KJEsNwi/FCBs0CogWuAUESWJqMm7UnWkAikBhPo4lkS4\nIEoSKiALAmmI9ScWpFIjlTqZ0JDrS5jJddyAdSmeWBJFBufBPv/g/yV/s/qPCC9GqyUIMyU9M8l6\nFumJCa9AvhSI5xkyL8igReqnVNL1t+fs4Rzm6zxEOU8C5q6S8F9kTLIqE7PKK/sZ+uMI4yhC3wv5\nafE3xKaGZ0459DLa5Yx2JcCygRLIEiz2bEa7HpPdCrYWUesI6u0EK4phB+QODB8VCeo1+voO/bjN\nLCiR+DpyIJCJQTbSmSxrvKo8ZuhWae8fsscle+ISgeRS7nPOPv2bDtNZnenzOslnulJKLucoaf6S\n+wDI+0RS/hi2xcEWBz90HGweyGzcr4S2VjUILCem7M1oVXs0+32ql1PcX6wIX8dMpnAygaKXUZ2E\nFEchtXhGuTHFq8wohEuSkkVo5OqJPL3rX5vsb36nXOlSAr0KDQuemJifBhyWzvjr8v/Hf87+C1yD\n/BXwtyA+AT6BtGJgEjByyryoHgMpyTQlPEtRnZvzEXBPbB/WOM33mDztaTN1SoPUhbQEwRLm61oK\neBtzpXOvplwQjIoE4xa3py0wnfu38OcwGcJ0sFayrOsWAvcpVbnflhcfzwl5yv31zwn/muxrHRAd\nsMqIIuCtD3hjkLGAKEUGAYSh8g3lGGQPpaJ5V83XTaL/vuBoi4MtDr5/ONgGvr5hGyedubM3Bn9W\npBd0eJE9Q6uGuJ9McSbnlC5BD8Bbgeja8JHH1SOP0+o+w6BGdGvCtYRprKKoGmDr4ElML6ZiT9jR\nrtgJLihcjAl/GzJ4BauhGrGTQXeF055yoF3zs+wzCjLiR+lX2FGIEwWIVDLW6kzMOklXp1D2eVM8\nRqT/K133hm69R60zZLmA4QIWMTRn0LpSDTmYASaItlLqlGZQT8GzVGchGoApkCsd2TOQsa5kkscC\n5gYsbFgI1uxWvRgRf/jmlS/+XFq5eXabF8XOZbEW94X18vdcd/m7K5Yr1q+VSynz5+rrz5w/v4iS\nba4j674FQ414aDIs1TkxjihWb4n35rQ/nFHJVli6CpqLpsHiUY1e+ZDb7Ck3QZfl1FX1QRYpxAl3\nbV/f2dnvfbMtDrY4+KHh4KFKw4dVALcx6JJZscyb+hPMdsxt0mVv95K9f39FYRUgTUFmafTrLV4W\nnvCq/5jT/jGD8xbRtQVjDeIiWDU1tV0H0ZHY9QWV0oxyeYampfhLl+XCJVg5JJFJEpnoWopXmVOq\nzNCtlPmqzGJVIgxtrvw9Plv8jMCweFL5nCfPVpSXE5ZDSIeqpurylWT5XzOKk4Dd4mv+ffFvaBUH\niDBFiBRpCsZWjXGnzsSuERQdgq5N+LFFNMyIhiXi4YE6CVyfKt67Dpt16zbVLvnvckduglpbAmYO\nnKl24bIP6SugpWrBfd35BLoG5/oFu4+v2flPN5hJTFbQSAsa026FW6/JYNbATiIau0OafzXCkAlJ\nVSepGVx4+3we/IizF48YnjZYntmkoxhmC5UO7GekxAS6zmxWQrQFqWGxMCoIIRnGDUZJg/mwRPCV\nTvpiBT0JUx+inOQL7qX+uUP4rk5U78va/n1si4MtDn7oOHio3Ft/HynV3AFJrLPKHOayxML2COs2\n2YGGHajyOzsLJbgu1cDYg7SrEbo2fubiRy5RYpFJ7R3v88ecq02/Q248tpnqpcom6I5EL4fYtSVm\nEKJfpcg5zE4VV14soHwDZROKkcQmoFKd0D7ooxtFEqfI0qsodUcSQrL53R4GRh8e9m36N/m/g/Vn\nlKg1tUId2OWpcBrKl1gHFRJf+akiVinQ+VuEPoRjyMa8XUIC7hUmOenPFTmbjTfyw0cXtCpoDSjW\noFWClonRSHDLC7zyAssJSVOdJNVJVgbBSGc11InHLkzqMM1gaXOf5pXXTdr0hd4nrGxxsMXB9w8H\n28DXN2wj+poksMwgk6ymBXqrDmkGhdqSg08ucIoW9T54Y2iPYVm1mX9Y5+pRl1PtgNF5jejWgqvs\nnvDrqLQkL8MsxVSdKXv6FTvBJYWLMcFvIgafw2gFYx/Scka7HdBuZlS1hIIecqhfskhL6Os0sDTR\nGBw0GB40GHerRLbJG/uYi3CPn3qfUWjE1DtDljr0YlWnlRl4VyASdYCJpYK2tgAvhLoPnn1P+KWu\nIX2dLDSRkYYsC0X4e2s1ydIEmZPnHFB/aMQ+vwYbGy15sdv89DSXw66L4d4VzMsBmv+e9WN5sCB3\nyvJIuY2SI3nctbOlCGkBlmvCPzAYduu8MQ8plMZU9q/ofBDjWSt0G3QbgprOi+M6vfIRL+SHXAc7\nLGeuKjq4yFQHi7dyl9+3k52HtsXBFgc/JBxsznFOVHPCn8BKMi9UeNN6zLRb4aJywMHeOfudMxwC\nUk0n1XWGWZPT+Iiz/hGD1y1mZ2WiKxPGOlAE24SuRPzEQPwECvtLWoUb9osXmHrMbdTiNm4xCaqE\n8yLZQsOQCbXqiG7tEiuLuHm1S/LaxA9cLv19grnDrFDBqYQ8/uCcsoDBC0giWN7C4rVkEUjM1wG7\nz15Sfubz86MvIMgQmSQxdU6sI047h5x195nuVpl+VGE6KbN4YSBflIlf1mCwBLkAf7Ges9wJy1WK\n95WU7p203ImbcKc4nHlw6sLURb62yTwL6dkMnnWQn5gMZIc945KDJ6cc7J5hEJOYBrFhMtbr3Og7\n9KY72FlIa69Hq91HN1JCxyZwbIZ+k4v+AZfnB0xeeoRngmQcqVQ1PwUzJV0KVjOD9LRMVPWYO1X6\nzg5CSFZBgdWqSDDTiXsxST9QzSoCH+L8xFZDEf4CbysXN08v35XW/L7bFgdbHGxxoGxTfbC+T2Vr\nwp9BGhsEaYG5LLN0PMK6RXao4SyhuoSdPpjWmvDvQ9bViTybpXRZRkWSxCKTeYr/vxbZ3yTSD3+3\nUU5BmOhOjFmJcOpLzPMQ7TpFnsLkDZzfqt4O+9ewH0BhDHYloHI8pU2fxOiwcCrg1WEVQrCAJPd7\nNgn/puWEmm/5mTeMyA/rTO7V6/lzNvyZpACrGJJA1Ri6iyesIJ5Ctu6yeufzwFt1DO/8os21u+Ef\nCVcpgvSWuqiPHPjExDhOVOCjekPJnRFmFlFm4/sFpmcV0rMK8bkLZ5lK/Vq6KLWL5D7v+31WTG5x\nsMXB9wsH28DXNyxfnDHEKWQphJLVzKG/ajONPWrNCYsPvsQ6sqmNNWo3wA30nQKzoyZXh4ecLvYZ\nndaI+mulyyRRzoImwS6Am2G4MWV7Sle/oRNcUbieEn0eMfylShm7liDrGcVWwEE9YFebsWvfIOz1\nR7wAeQFRbNJ3mvQfN7ho7/Ib8VNe8Cn9rEOxFPCoeY7ogp/A7QLOZ1BaQOca5BIVlq+CqIEdrZUu\nAlwHzDJkDQFLgfAFYqlBIhBlkI8AoSN9HQYCUgdkTvhzueofeg3yzTYHdB7Z3iyMnW9aDzfL/PFv\ne928tkjeyaOsJkHk+XjrXPOVDmONeGQyDGu80Y8olBd8vJPSXEw4qEyUv1eEcdnmxX6DnnfMi+QZ\nN6suy2lRtUJfbipdvitFYLc42OLgh4aDfF42Tr6CAIIYBpJ5scR8v8Tp0SPOvFuud7tc77RwCivi\ndeeccb/B9ct9ri/38U+KcCHhOlMZpaUieBqik6H9OEL/jzHFp3M65hVPrK9x9BAbX7kfoYYYQzo2\nsJOQWm3IQe2Ugu+TSJNJr8Z0XqUXdOkvu0zDOk8qp8hnv6TkghlB2ofVFfhvJIs3UCwFdP/DG+ru\nGyo73MU1QtPid42P+V3zE5zagj4t+qKNlrTh75vEhRp+XAemsHRQRHfdiQhzPXfZg3mE+zoWyfr/\n68Km8wrMa3CRITWQmgm6weimxShrQQ26B5c8OuzQbzXQzZgImxCLwbjNVe+A694BthPQ6VzR6Vwj\nCilLXJYUWZ6WmJ9WWbyokHwp4cyH8RJmeYHWhOzWIjyvENol5gV7nT2wdjbz2qurCMIpRAtI8iLe\nuYOWE35427GON+ZA4/1b4/8c2+JgiwO2OAC+QfplpurOpUrpEiQO86zEwvII6w7pvo4+1SgNJFiq\nHptbB7EniLsGQdFmmbj4QRGZ6JC9i/D/seZp8/6fX4NNlcu90kUIE92JsMoRdnWF+SZCu0nJvoLZ\nOVwO4ZUPegyVCbRvJNbjkNJ0RotbFkaVgW2CW4NsDsla1Qjc+y/fNr+bPzdtM/i+6ec8/Pv1NUpt\nFaBf5QeCueU19hbc10/V3v7bt37Kjc+eHypuEH6zCeUa4pGEv5BYP/ap1Ufs1c6puwNWFPApMltU\nkF/rrL4q4xeLyNhQtVMprd8rV+7kvt37jI8tDrY4+P7gYBv4At5edPnkR4C/jo6OkCOH5GsQ/9Wm\nt7/Lr4p/hu4KGslQrY0STClzPWlzE3U4H+zT+6JD+NyGs0RJV6K5us5REfyMxDeYRyX6aZtKYUCl\nNcB5alL2VYc0z4fIAGMGNy9VozjHVEPPIBhCMIJIZMidFVZnStc1GbsXLD2PkrGg1h6RfSyZGyWs\nTsxuPaZ4kdKIQcYwnoPVAKsJxi44BlQ1VaDW3C0wbxdZNYo4js+n9m8QlmRuuywbLotDl3GtxrhS\nZ1KpI0cWTDyY1NZTmqde5fZtoP/nXJuHDuWmk5U/tkn4H461lBUDRFEBV6tCoQzVAlSKStrjGOBo\nivevRS9xyWK4anFy+oR4ZjFatjktH9NwRmAIpKmxNFy+mn3A18sP6C+7zL4uEl1lMF/Aylc1oO4K\n+CX88Tf3P4ZtcbDFwQ8ZB5tztK45oZuqUKeJKmlQyaAm0UqJOhnUYjQyMjRCbMLEJgkM5EzAXKpg\nQRargp9tA/ZMSs9mHHRP2XdP2PPP2b25ZOfmEiuMabs9nrhvmBTqzKwyc7OMoSUcXJ9x+PUp+jzB\nnEk4EFQOptR3JtTKY3aNax6XXhHbOtfmHox8ugsflxBtqnjrdQzzaxh+BsWlKrcmNJB6RlCaUi2d\n81E5Zb9SZl6tMC1VeZU849XuE1KhkZgJ8cIkuaioSLGcqTnM6Yq2AAAgAElEQVS62y8eWu5EwX36\n7d3xI7ACOQdZgtSDYQGeO6A5BB2HYb2JVkvRjZQYg0SazGYllsMi6UgSWxrzmodWayNMSShtQmkT\n3FrEryXyzRIuI9VuNt7sTJSCNCBdQjQDYYMUEAsQBgS2GqkA0wDbVY04jFh5vKy7HsWJSvlKfDWy\nPIV49fZ7vVXA9rtgWxxscbDFwb3l129DAcmUbG4RnmmIX7v0ajt8mXxMaXdBw7hGVgM4XCE9HflR\nkezY5WXhQ15PHrO8KsFL4CqAIEHVAt2slfb73g837++bxHjzcGzzNXPCe/+dpAxIl5JoaBH0XHzN\nZblfxNcKOE7KrkiwZMZeDco1EA3B6uMiw3qTs+SQQdjAXxXXvQ4kJA8UQn+QbeJmM1ghHjwnH3n5\nB7hXsrDx+KbK/KG/tDny3+X1jBzAA8uDhg0NncKjFZ2ja7qdG7r2FXs3F+y9uKQSTohsi8i2mOoV\nTlaPOKlPufxgl+XMYXFbIBhbENlqJDb3Sv7Nz/Q+2hYHWxx8P3CwDXzdWb64NpQVcglMIbPJxmWS\nL4vIpMjN0S6/2tPo7e9SKK7UdfIgDG0WY5f5hcvsosz0qwrh1xZcR6qtaTQHBERl8FMS32ARlehn\nLap2h/3WOc5Ti2YC3gBaA1j6MJvBTQDJqaozXdXAljBewcSHyMlodQJarYxySbJoe0S6Rak8o9Ye\nIQ2YNTzsxordsqTrpYgbkDcwmoJngNcE8ykUdBACCqZgvldk3qmzaNYV4bd+w4fWc3qNFj2txY3W\n4k3tCW8qT5iWa8g3lpLuz+qQ5vVBFtyD/g8h/Pm1YeN18k1AfMvzNgH7dkRfKVsqoDdVlKNSgkMT\njkzo6krwUgEsqbrQBhBnJkO/SXRiMhg0OSk/olKeUiwukehIqRNFNoPbBoPbBuOrCuFXEF1nMFtC\n/JDwv0vu+r7YFgdbHPwQcbDpMD0g/I4OBQFlCdUMUcvWhD9ZE/50TfgtwtQiWa0J/yKDMIYsWBN+\nB54ZlJ/N+KjzFf/O/e88Wr7E/XqG+4s5+iglbheJO0X8rsf0oMJ0vwwSOtc9up/1Scca4lgjOTKo\ndYY8sd7wxDxh17jGtANiQ+OqvIezGNCNUroiZHAGgxRuB2Bdg5WAeb52B4XqxGnZY2p2Srs4Ij1y\nSI9swgOXsrMk2TEY7tfxlxby3CLRXRUIzwogLe73ioe2eXqYn+TlqbjrUz7pqpNR4cGwAl9XYWgS\nVB2GlSarShGhSbJMI8s0Qt8kmNmkMwm6xtwrEbuOqgGb6SSpQbLISMYx2Xip6hktpxBPuE9HS0Dq\nkM5AFiCzINYgWNfFS8qQVECzVffAoguFAtgZ2Os1u8zU9fVjlc4gF5AtUJKm3MEWD+bhu2BbHGxx\nsMXB25bfs3PCr7qdpQuP6NQk/bXHzdEOX+x8TLRn0N65xjsaU/rpmNiyGDdbTBotLuaHvL5+wvJV\nCfm1XBP+BSr9dcG9iu73JckPCX4+8lILeRmETWVHHoiM1XfKAtKljhyYBDcuK63Icr+A3y1gayG7\nsaQdZ5QOoLQP4gD8Ry6DRpPz5IBZVLsn/LGE9I+RtrSJm4cpYA+ft2m5miW3/HvmKvPN13motJG8\n7S/lHf9cMF1F+B/pFD7wOT58w6edX/HMfkHrxYDW7waUrhekZZ20rDOtVah3JjidAKMR0rvtkF60\nCW6Kqh6szAl/nnb2MDDzvtkWB1scfD9wsA18vWWbwAbw1WmeNJAjQfq1TXpj07ss0fvJDr82fw4d\n7hQRZKj7/RvgpVTjeaaKFBEACzXjUbhWupjMQ6V0qZljonZFEX4BnAMaTG/giwn0JjDwoYvacgrA\nOrOMqCyx2wH7zYBuJSDSTChBuTah1J6TtSXzRyVqJUm1EOPpIcMERn0YzUHoYDeBx2ppOxIyDYLd\nAvNOg4v6LofmBR8azzk0LnldOuJ16YhXpSNERTIp1TgpScBUdSvOBKQ52V93pLsr3PcvAf/v+7f5\nqXW++VncFeYzm2B3oeLBIfApiCcZdBJEOwVdwpWES0k8MBkumgwHTTAl2ocxYi9B7GZksYGMDOTE\nUNf+OfBlCpcLuFoopQtL7jt6bJ5mvK+2xcEWBz9EHGyS/vU85YTfE1CRiGqGqCZopRjDjjFFBBIy\nBBEWUWqRBDpyLmCeKaVLGqgmCB0dnlqUns75sPsV/1vx/+LD8efEX0Hyf0q0C7CPwXkE6ccWo2KZ\n8XGFVOjUrqfU/m5GMHCIayb+gU3j0yp/PvsVfz7/NbvxDSelA05KBwzlLo+ClE62oCxmxClcjuA6\nB8oNdxXgVH+ejCMxpSOm7FtgfQr2T4HYJH5m0j9u8uLwEfKiRvJbl0CvAGNFlmWe7qW/a0K5X695\nemuIIt75eiyC9NQYJTAy4XmJoGATeAWGrsZdaY4UCFNVv8JPyIRGbHosLFMpVfJYQraCLFoH7Ceo\nzgoj1An12tGVGqQWpCbEm92R3PVzTKV6tCwoW1A17kvfob4+JqjigDOlpImn6/WzKdnPP/j7fpq/\naVscbHGwxcG9PVS6KMKfzXWiUwtkkV66Q9LU6e806DRu2OGaHa5ZUeCUI8445PZlm/m4xvLLkro3\n9gIIJtwrXTYbvvxz7SHZNzeGtR6bNC/j/h6cB2JDkAGpXyAd2AQ9DX/PZbnvsqwV8GJoLjLcZQwf\nAx9B/IGG77oMii3OkkOS0CbxLeXqvHW9/6Uprr+Pv7N5jd71Gv/coOumIuiB0qVpwyONwgcrjo7e\n8Fedv+NnyT9SvVlQ+cWC4ucBtIAWTI/KOIUV2ceSuKmRnhvMXtahYqsgc5g3E8obDG0GNd5HfGxx\nsMXB9wMH28DXt1ruEtlAAWwHqiZ0BfZ+gLc7x9uZU2j5FOwAxw5ILIO5LDEvlPCdAqGwCUOH1DLA\nt2HlorphCAgD0onEPzeZfF7jYnHIZ6sfI1qSG71N1+nTtXqY7ozGGB5NoOFDzVC+hwWYPpR8SBzo\n1qHYAOFlWP0l7s0toRlS3I+w9yP0Uko6yVidStKvYHwFt3OYZCB6YH4GTgiLG1j2YTmEsLTCNoYc\nBBJzPGI0XrEYw6qxxGne8rgBt9EO5+YR5cdjgr5G/BoSUUSBxOJtmemf4hpuRqtLQB0KNdgrwp6O\ne7yk++yKnSdXVFsTdGKMQQwSoswmatos3BL9cZfeuMMsKCNvNJhoYIBMBTKRsIzhbD2uA5gsIJyj\ncpenKGfzfVO5/HNsi4MtDn4IONh0nPLOlhXwPNiz4EDQeDZkv3XKvnNGd3pN93WPzrAPQrIoeSw8\nj+tglxPnMW8+fMwYjyjICK8Fma6rLqYlgbBBC0DvS9JrmE4lk1iJYswpmFdgFDO03RBrsABTw58H\nzJcpwSqCRZ+j6XO6PRf39JLB6RJ/mLIozNGdPiV7SaLFDJwKi49MMnw6pk+hEir+uz5Y1QtgFEC3\nwPZVs7YwhsYU6hfg2mB5Ed7OghpjMs0kMF01PfE6OJI9TC/4Ngdt8/Fs47Fw4+907oIDqQXh+nrk\nhF9KVW8wiVGdKASkBsSGIvwZkEmQebB5iVp3c+67mObrbhOHeVdTF6yyUj+WHYwGeLsz3N0At77C\nsQMcJwAki0WJxdJjOXYILyXhpUncL6sAzyqBKNv4XrnC81/q/P5b2BYHWxxscfC25WQxL1mwBMbq\nn2NAFySWxJcW2riOrOoERpGpXic0bQZ2k5Hdwr8uE/UdskBX11Dm9+K8pMSKe8XgZp2dd9lmOnJO\n7PMGNa4qY2Caauj6RrxRQhyrkQHlOpSr0HSwnkrMYx9vN8CvObxxjnG1v8RqJlgfJJhWStIxSWom\noXT4Rf8vOPePSBYW2RcZ8tZHrbfZxnf5t7zPb+LqXWlgf4ht7Iease5ELtDcDCeL8GY+BX/JchIy\nXaSgtimsGEIjI37q4wUjWuKWW6OL5URqS11q6rq8Vaf1fbctDrY4+H7gYBv4+oY9lPpbQBEsRzHt\nXYGzH9DYu6W7c0WjPqRqjKnpE1bFAteFHa6bOwwKTWZRlWRukqY6jBxIPJXLHKMklVPwz03Sz2sQ\nGmgtybRV5qbV4af2ZxTMFd3ijMYIzDGEK3AcNXTAG0JzoHyuch3c5prwv1zivsxIxgusv9KwTA2t\nCMk4Y3UmCb6C0UwV+B6lYN2Am6nudoMF9Jdwu5LUdZ9aDN2xz+h2pcYAqjs+1Z0B3V2fy/YhrfYt\n5b0x4tSFkk0iCigHKif8f6qNPd8Q88CNB9RVC9YDFz41cJ+NeLr/gp/v/5JD+xR7GGEPIogFy3qR\nZbPIjd7hd8WfEpgOs34FeS3gRkOOBTIDZKYcvKkP06VK6/LnG4Q/dzjz097vgtO3xcEWBz80HOTr\nfa2IuyP8NvxIo/FsyKftz/gr++/YHVzhfbHA++0SgSTasYh2LE6qxxQKAcEHFpnWZX5tkTg2mW6A\nrYG3JvyhRPchvZFMZ3ARq4an+kSVzylaGe3jiPYgwywI+vOEvp/i+1Cc9zmaxug9E//LMbe/XhK/\nSbGNObaZ4VQKJJ8UGXxSRjuuYplD2m7GfjWEE9RIQNRAqymRyfgWxn2VdZBMwb4EL5NYOyHefE6d\nEaFeZGbWVOwUVO2ft+TwD52sh/YwzWBT/ZHL7yNgsSb8BqRrBY2UamQppGu5vhSQ6Yrw58/J1qe3\neX7uWyPm3nHfJPy5w1wGuwpNDw4czKOM6qMZnUc9mq3B3f4mhOQ62uE66nI7ajL7wiMresSaA+NY\nfb4od3RzZ/73OWn9U9sWB1scbHHwtuXKjfV1QawJv4BQIwltlmOL5MRmVfKYWA169orU1VmWXPxS\nkXDuEPdNskADqYO01aK7S3nNGwfkio1/Sh23eZhlc6fGoA7UQJTBMqC4Jqm5O5dJ1WQmL05eLcJe\nAXFkYT1ZUTxa4e0uWBYKvLGP8TUHmgKEQLY0ArNIYBRZSZeL/i6Xp3ukpzbZ18s14V+XxcDnXuH+\nb3mflw9+Pnz8D7H1POu6qntaEmjFDFvGeDMfZ+LTm8T05ynLJbjJunagnpKMfdxQEf6yObsn/LYA\nPfetvyuBL9jiYIuD7wMOtoGvd1qOjhxMRdWBrmrCjsDZX9Hcu+Vo9zUHlXO6XLPDDXM8nrc+QJMR\nmQvJwmQ5KBP5hpKjzF3VIScRkISkE4F/5uEbHou0xsQrc9I64KrWwbECHhknHBSgUYPGCOWzeOsh\nUWlgOmoPqgNNSL0Mu7/E/dslfK2hGUW0R0XEkU06zkhOJfGXSvB+ux7FG6j2oAoMgBMJZxp8HK7o\nTlYcXigFzPAGvryGj499ukc+j4/h5M8e09rrU34yJv1KJyk7BKKIvFO6GPxpCf+7lC512NfhZwbu\njxc8qb/gf6n/P3wa/YbiKKR4G0EgmFRLjFtlXlUeE5oOZxxxPj2EG4H8Ox2+3sxDX3d3khPUhjfj\nnuyH3Kd3fZccvy0Otjj4oeDgYZDXBarglWDfgR8JmkdDftr4Lf/Z/i/sTy4Rn4P2fwASxDPgA/jq\nwxvCj2x6HzZZWDbJFxVWtkMs1s0CPAE2aGPQx5LsGqZTRfh7MXdKlLqW4VyF7A9CnBL4M9WUbemn\nfLzoczTpU7YFX3wpOf1vcPsb2GXBHgtKHYdx8YDxn3eJP6pw7Eo6tSU7talaAvP1+1SBXYjq8KWE\nkzmcjMCeQiNSz7OfRXiLBTVGzPQqlhWpJZSJe7XLW0Hyf0rN8S5nbFOWnytU1qlXqQHhZre8PDCQ\nD9YBgTy9bDO1IN543mZb7nxspqRl3BF+qwqtIjwtYH6ypPbRlP2PzznsnrDDNV2u0ZA85xkWK+RQ\nkhUNVnENlh5kCSzy98xPr98VEHlfbYuDLQ62OHjbNu9VefpQAqFUaryxQXJbIXlTxndKUDTXZR8k\nVAU0gcb6ZSYo/0WCWkD6+rUX3KvD81o335YitYnRDd+MMurNuqDVwdLBXY98aaaowGi0fqkacCgQ\nH6VYT33cIx9vd4pPgdc84pRDoqZF2LQIM5vFrMpiXmExrkAf5OcCfomqFTFaojynP7Wy+48ZYHio\ndFkTfldiZxHebEXhdok/hrMF9BdQXahpdcnIRj5eOKYl+pSMuSL8BQGWBtp3VfEFWxxscfBdxsE2\n8PWWbSojTBAWaA5oBYyywN5ZYT9bstu64In/kp98+QWt7AJ7NUHzxzhWgcN6Rqk+peWP+cKNWTwt\n42dliG0YlEFLwDDAMNHqOtZhgvXxjOpHcw7bZxzopzxLXvDMfEW5MifMLAbVBoPdBsvUxXBizEKC\nEwRU/BnVqxn23Gf2Guaa6pDtfwGrAcSZpJwmlJIQlxS5HyP/WpLYglYo0UOoh9BNoZaAk0Bj3bG6\n4MOeC2UX1b3UXksXJRiaSgsQRZCOIDM1EmGQCh15d4L4b72Rbzqdm5th3sFOVwDTDPRChlMKKNRC\nOtYNjf6I8ukCcxCyOIkZvklIY4G+CrDmGvXOlKqcUC2MKXUnxGWT2DRJpeS+5/cC5Unn//a5Tyt4\nHzvY/VO2xcEWBz80HDxUOK7rQxg6oigR9QTNitHnKcYiIzqTzAcwXyplinel4rCYMU5zQe3xmKo+\nZeUUmHqaqp+z0qEHsWEy0StcNncQ2Qh95rO3WlEvx2qqlkpg03ZUWSXLhnobjp+q7qUdBwoj0H2J\ncwtlHyKpPnEM+FmGlBE2SxxdwymuMGsJ2a7OOKkyLlVZfOTi1pe49SWW62OUYjrFGLuUsFMHtwFp\nC+Yfu9xW2pz7Rwz9Fr5fXF9O+aBw6x9SjBbedqbzekA5Yc/Xbv68/Hd5/cHNdc7G+28Wrd1Mlcj3\nNX3jtXUQBmhqj9M9E7sTYj9e0d4b8Dh7xY/efMHh6Rvs1RjbHyOR7NUz3PqMthjwhf1jwqMi09gF\nYcLUUxLSuzbdufP+XSA3WxxscbDFwdu2GajM5/SukJp63AQqQF1gNwPc9gKvPcetLfFKC7zSkgyB\nv3RZLossBi6LiyLz8yLxwFZzNa+p9YTGN9fTJmnOa+4YKKJfBepg1aFehXoBvQ5uY47b8HFKIUJI\nNCFJU43FuMRiXCKMbLxHc7wncyqHU3acK3b7l7T8HnqaoaXqPaf1MtNGmUm5wvVin+zaZH5ZhfMI\nbkIYRbAYQjQAhqhrHfDtAYv31Tb3PsE9zhIggiRSxbgHkqRuMK2Wuap2KHV24dCn+9SnKiI8C1wT\nRNeg/6hKv7zHhXzMbdjCnxdgIlVTiGQzIP1dmKMtDrY4+H7gYBv4urPNi73uZKTZYNhgOJhlgbc7\np/J0zn7xjGe3L/nJyeeUB9csBiuWgwC7bHD4dMrTZxe0vDlLt8TJ02OGWhmGNrwSoEkVgS7o6I2U\nwrFP6Sc+ex9c82P3Mz7VP+PD6Dk7xg2VypTQdrjQ9vhS+5AbrU3R8CmaK2qTCYdX5xh6gj7zGb2E\ny1vom5BcQzIEDYmeJVRSiYdOdpiSGRnpYw1jKqnMMuIZeCGUQigE0LwG5xpafSh7UFora3RHdbR2\nUMpRfa0olY4gNXQSDFJ0sj+pouWBs36nstEV4dcNMHRMR1Ly5lSrYzrmNfXeiNLXS7STiOlNys21\nJM4k7VlEayipHk6p7k+o7I8o70zwqy7S9kgRKHLfQ2mH8vbdedHEzSLe71tNo2+zLQ62OPih4mCz\nXoRa+8LUEa5Eq8boZoI2StFGktUZ9AZw6YO1Ur0dxBxkIcF5vKQajajqU6ZOHb2kwcKElQbXgsgy\nGXcrXLR2sEtj7GjAgUwwyrGSHvZV/dBKAQqGCrY2O2B+qNZzpQDFIRBCoQ+VlXIb8jNSH4kgwmGJ\npUkKhQCjmpBoOrflBq+OH3ETtGkX+nSKfRpigOn67NhLdrwE7wCKB5AcCOZtj16lzan/iKVfwl+6\na/W+XLfqfhex/n2cl9yJ3iT0OdnfPAXcTA3L33fzmm2+3sPXzG0zHe0B4dctMBx0z6DYmVN+PGN3\n/4Int6/4yasv2Lt9hT8M8AcrYiHZfTrj+NkVR+0+oVXk8mgPnF2YWXDmrd9vjjqF/i6d6sMWB1sc\nbHHwLtu8zpsqDqm+Xg3YA+cooPn4ls7jK7q1GzrWDV27R4rObdSmH7e46Xe5fr1LVLeJT2049yBa\nq2dIuU9JzQOFm3OW39vX5SeoAR2wGrBTgGcO+iNJpTOj07mhVh2jiRSNjDgxuRntkY00kpVJZW/C\nzt4le40Lno5f86T3isPn52hxhogkmdS4+aDNjWhzXerAXGdxXaH3AjgN4WauVC7xAOIhSumS3/O/\nS4T/4YFhjrVciRlBGsEihX5GXDcYexUuvB3KpX2co1t2hyl2IcLyVOO7Vcfg5nGVXvmQV9kT+kGb\n1ayo6mH5marT950KfOW2xcEWB99tHGwDX8A3TzlzpYsi+1gFzHKIt+PTeHbLXnjO09OX/OSLz7Ge\n9zk7k/jnYDXh4K8EBwgaTwJO6scU95dgCnhpg2ODJpRM0NXQGysKRzMqP56y+/SCH60+5z8E/42P\noucIU6KVM/q1FhfuHr/2PuWl84gKMypM2en1ML5IaOoj3OmA8S2cRHAaq5iCkFCoQCVL0JJE9eg5\n0EiPBTITVG7B6Av0gUQsgaVyWG0XmhKkD6IEYk34tTXht1E/tZzwF9aEXyjCL9H+RPDOr5/Jfa73\nhoxf6Co32dIxChmet6BV7dM2r6ndjCj9wxL9dxGzMZxOIBBgjSJ2exHV8YxqYUr12ZhyfUJW0Qit\nwvr9FkAfuOabaQX5Scgfegr8b21bHGxx8EPFwbvWvgWGjuYm6LUELYnR5iniBIJT6A/g5QqcGYgF\nlAVQTnCGPrVIKV36Toju6RCZKh54A5FrMt5RhL9sjjnOYg6MKTUPVXcI9faioIQTONBor7ME6iDG\nIIYQ3kLhFirB/SzH8P+z96bPkVzZlefv+e4e+4IIILAlgMxkcq0qSSXJZK2eMZv+MvMHz4fusbG2\naZPULZWqWFySzAUJILEEAoh98d3fmw8ekQCTZEklE0tMMq7ZY+RGIML9Hcc99517LgkKlwiPBQUt\nw3UDdJGSFg1urSbPrYe8NA854BWJ0NHjmJqtaGkxFS9EvgfyCYQPBfOkyE3S5sx/AAsN5Wu5uO8b\np77fdRr7x8R9kn7/ftxXsdz/t3/M93r79HJ1b5dk/z7ht3LCX2iH1A+HdFoXHHWP+fD4KZ0vX3L5\nGi5eK9Cg81eCnUzgaz0u6rt82v4ENhS8NqGwam0ekSfl3/U5fqyxxsEaB2scfDtWP7NW93rVL7W8\n/ivC3wH7cUjj41v2P37FUf0lDznmSByTYnCqHnDKA5xeQFx3GBTbYNoQFeF2RTJD7tQi4t73W8Xb\nhL9KTvg3YEvAh2D8ckGlM6Gzc8FW43J5HJcSpQ6yrzMZVJkvSlSaY3aa5zx2vuKTT7/kk95THn/1\nAhECAaQYnGi7nDT3Ke5Nmc1qdK928knd5xH0ZjDug1qR/QHf/Dn/Y/15/12xeubdv9ZvKV1mKdwq\n0qbBZKfMZWGLWrnPwV7K1nxGqzKDOog69Js6aqtGr7zLsTxkELbwpy6MFAQSktWT6sd8GPh2rHGw\nxsG7j4N14et7QyxzBQG6QNMVlp7gaCGODLH8BGOcwViSLMCPwI4gXSjEFIx5illJMK0Yw0mQpoHU\n9Lw/qqjBhsBpRWxWrjmyn/Mo+ory2TmLkykX/QwlQUqYFWO0w1t2j15QMGaUbueU+nMar0e0L27w\nkiBvwQKsGDwNCm0otKDcgXYNCleg/w9ymSe5LYWuqXytfLcLIGuCkVllVK8yOqyi1WS+KpJp0yfd\n96l94JPsFbjaLzDb83hReEhvvIn/RYn4VCcbJ6BWrU6r9qYfakOvkrllco6ZfxBKQBkMK/cWdwG3\nCHYFbBO5BXHVZmEVWJgF4rKNbGsYt1DMoDnLWyYqhfwZGm8KkpKJr3nMkwJRZpMpnW+fvK4A/F1E\n/1156L0daxyscfBzwMHbSosICCBWqLFAdg1i12HulhjuV3GzOYUoZi9McEJJswhuAWYfWMx2q3Sd\nDj1/k2lUIVkYOfdT+ZcMM5eutc1X1kfMK2XO4iOeVW5oNHtUul0q8RXOaIp6kdtQ6B3wigKvKtA8\nwcJXLCaScABZBZwaNBKY9GDcgziS2Ccx5t8tsMcxfhIQJCmpgGRzRHvzFL2ZIdE4FUecpkeUzRnl\nzRlFc0HW1MiERjSy+e3gz+kOtlE3OjyPYRCTq/fG5Mx/Najg33tff1cR4P6f/0vxtmpplSC75MVg\nmzuslEGrgm6h6QpDT3H0EEeFWGGMMUkRQ0k6Az+EUIfEVzAFY5pilBIsI8ZwE5SlI/VVq7O4t+Cb\nieSPNdY4WONgjYPvj/tqeJP8OhbRPBt9S6E/8alv99njNR9efU3n8hXerMt8PkQJnZJncFhI0CUE\nFBhsN4kjQXIjSVwbqXmgHFCr+/S2Qm7VArb8e90GxwJXx9xMqWyPqeyO2Wj0OAqOOfr6JVvyEl1K\nNCmJhE3J86l5E243NtgtnbHnnLLDa5z5LdPunLPjDBWDjEFqCv9mRmnS4yAUnKtDPCfIbZRckedx\nylheh8ryvd4/+Ho7F/gx5QDf0d3wBgtvt9BVIPFgbMGFRmTZ9AptnnvvE7VdruQeJ+1rquUJ0tNQ\nnsbErvD55ENOZg8ZTprMX9gktwkEM4gXIAO+mRv+W5Si/1GxxsEaB+8uDtaFr38plodUmiYxRIIt\nQuw0wghSxESRTSEOc8VelkESgJyCWCj0NMM0E0w7ITUESugoQ+R8tAVOO6RT6vKh+ZTDxRcUXl4y\n+gefxXE+aCJTkG1EGEmXw4bioXOOdx5QeBpSfL6g1h1TiBeIIhgpOCGUdNjYg41PoPEQygEUL0B7\nCWQKkYEuFGIHxA7QIc9/TFCGoN9o8PLokFfhAwwnxXRTDCfBOerjzG6pzfr41RbnlRaLaptnk8dc\nj7bwT0pEJ5JsmIBcjXMN+OEkjPdPQlfqFpccnM18WfNTN3YAACAASURBVG7+DGoAJSvPyB2LrJMR\nVh1mVomZWSasOWQ7OuY0PzXe6ufqy2oFrG0IdzSiis1cFJhFJeLUIZM63xy5u1qrB9y79EPsXxFr\nHKxx8JPGwX3lxorw+6hQQw4t1KVJ1HaZFkr0mzU2nBnldE4pyXCUpNSCwibIfZvJgxoX7g6X6Tbj\noEo6N/MDQB8YQhC4XOnbRJrDZWeXojOnWJqz0Thj3/wNDwKfWm9KlkJ2A/aeoPmJxkZHx7Shdyrp\nTRThUNF4BI1HuRdS9Gk+SM2/UlSOY6xUYX+tM8oSxlnG3FI4H/bZ/kCyLac8FR/wVDzmlTrE033c\nto/dCMmEQSpNkhuL1yd7XJ3swImAVxH0p+QDC4b8sIR/dU++a9/8S3vpvrJlhYnViPPScnnkgHdA\neKAVQbcQRoihpdgixpYRZpigTSVykk+T9TPwBUQRZDMQM4WeZBh6gqXFpIaVP9++1ZbxrsQaB2sc\nrHHw/XGfIK7MtEtono21lWG979Oo9tmfn/HRyVMqt6+ZXc0Ydmfomka5lbK5McFtKoa1BhfbO8xw\n8V85SNfJCb90QFl8syi5OmBS996DnnstlAyoa5g7Ma2da/a3Tziov+LoOF9bV9eIVCEySWzbNN4f\nsvn+NYPdOk37loZ5Sy26RZv2GXYDRi/zHC7LQFmKSn9BZQr1IOFr0afg+dAQ+cGltSqoesv35HDX\n4nXf6mDV8rVaP4a4XxBe5U0O+Wdxl6+rVcgJ/8iGVCPOLHr2Foll0Qs2qXpjKq0Rnh2QYZIKkyD2\n6PXaXN+0GF1UiZ5J0l4MYQTpDLK3Cf+7ovqCNQ7WOHiXcbAufP2huFcI1TSJKVIcIuwsfkP45WxJ\n+JcAicNc6CHmEj1NMY0Y005QhkGmgTK1PN/YAKcVslnu8oH5lAf+54yO5wz/zmf+u6V1BGDvxWw3\nr9n/YEizpuOcJzj/HGN9kaKhEEiiEpghOHMoadDeg72/hK2PQfwjiBcgPgM9IpdwaMCvyff2Lm/y\nIFnU6FsNnlsP+Wfrl1jEWCLGFhF76jV7ymBLxYxFh3NxyIl2yMkXR3RfbeF/ViJ7tYChD3JCTvjv\n92f/EFLP+w9fhzej12kBHTBL+W83yUm/K8AVZNuKsOqgWSWmZomgmhN+Ywblft7Zl8VQqoDVAbmj\nEZUtFqLILC4hEwP1hvDfJ/b3DWd/QrHGwRoHP3kc3FetpeT3zIfIRI1M1IVJ6LnMmiX6B3XK5THN\nKKUR+jgmiEMQR6A2LCblOpfuLpdZhzj0SGZLwr/EUTB36eodemILEUvEvkS0Mtrpc35h+izC52z1\nILmBVMunjaYdDaeiY28IelbKq4kkGCrMGnT+HGrbubdq+hr8Vwp5HGOeJdga+EpxoWBQhPfmfbat\nIfXyLS/FY07FEf+v/l8wKxFGK8QoJKQDm3Rgkd7aZC815Gc6fCFgGsF0Qt7SOiLf2yvvth+K8P9b\n434yt0riyuR9GPXlr5eJnLDy1mtDIPRgSfgjnCzCCFO0mURNIQ5gkcJCgzCEbA7aDPQ4w9QSTCNB\nmTpSU0uPv3eR8K9xsMbBGgffH2+TxBXh1zA7M9wnPnWtz/7Xr/nw5CuMZ5c8/1px9lxh67B5MOHw\ngaD8AVyUt3neeUjfriE3DCLXyv0ZlJPfC7X6+h456X9bKSJywl80YUPD3Elobfd4vP0VH9U+52h6\nytFnZ2z9rpdvzxjisknbvGbn4TmjehkPn4JYYAYLbqZzbrsBg1fLYysFwlU8uV3QmfjsBlM2GOC5\nQb51imJJ+FcFCZccA/5bS3CHix9TcWd1L1dFYY98NEeJPGFaYWOpfElMGJkw1okWJjfWJrdmC50U\n61GI1QrQWhlpYJOENmnfQg515Jca8isJ3SnqdgrBlLvBP28rXd6VWONgjYN3FwfrwhdwVz2+f9qZ\ngswgzSCSxAuLyaTK9aDDRjakt3VB/y/q2NsRhUnC3jRBlHU4KNA78LjY2mZAg6BbJD03kcMszxhU\nnMs3MwOZCTJpkCgTqSxsaVBLBYX4DnBWrKhHCeVYYYeCcJoyGWQkNxJNgNAgMwSTlgkHJoWahnOQ\nYMkEcZ7hX8HihrwdIAGZgNSA14ALIgDTBWuZ+wz3dWZ7FsGuS4ALgFCKcOwymDQ5Hx/STTa5Trfo\nppvcPG8xf+YgX8TQ9WE2AzXmjvDfl3b+e8Z9A+97Ez28BtRLULdx2hGVnTHVnTFedYFl5y13qgFR\n2yS0LbCgV2vx6c4nDKigzBDViFCpgg8c1EOXXnWHl+Ejxqc1ZFdHXSawCMhPelenve+SgeH3xRoH\naxz8XHFwf8/nKheYwFyHKxOcAtO0wit5hGf4XGa71Mtjao/HmEaKbOhIW+d4ccjXww8YRk3iZy7J\npYWMNBAJqCCXdS8ksmcgLRNHT6hVptQOJux6z3no9NgzA1oaJEv7A3MC7gtJ+ncZoi3wZpKtXUVU\nBsOE/iuY9SHKoPo+FCrQuAa3pxBD0BWYCmwTLKmwtAzbiqmbQ3aMc46sFywcj7lWYBGXyG5MsmMT\neWzAcQQXPozCHDzJiFzpskpWfmz3+34SZ5IncDWgCk4ln1RRKSFKNoYnMAoROCnS1sgsHbWlWGwV\nuEnblKMZvcY5/U/qmOURziShM0kIdbAOPUaHHoudbW6tJvNBidQ3kbcKGa5OdgN+2IL3DxFrHKxx\nsMbBvz7ywp4QoGkKw8gwSDHSBDNM0fwMwlzUkBlAoNADMMIEM0sxtQRDz9A0iRAsp2qWQWyCHuZ+\nqLaT+3JKla9E3c2O0ax8AoRnohcCPMenbg5piBtENGE8DUj7KTIFmUIaK6Zfz1mUNJJ5xGzLYd6p\nINw6qt2j/H5KceKT+ZD5oJSgsOGxKHucOxX6qk4QOHm91zBh04MPl+9LLV99DxZR7nuRzXLpv7T4\n5tCb+y1Nf+pYqSBXLb8uebtAJV9OCcpevlwbTD2fQK70fCJtIECIvKh7qSFjDTkUpJc6oipJI4Ms\nNpETAa9SeJVAN4TxBMIJMOHOu2rVCfBjKoT8W2KNgzUO3h0crAtfb+K+l8KK8KcQZyAl0dxiNK6R\n9C1qlSndnTNuKg02pj6l0RxvnJG4NmGnRrezwZm1y62/weKiSHJiIvsxKopACUhdSDRUnEsFF8oj\nooAtIkqajtBypUuiwFCKWiYpxil6CNO5ojdRjAeg57ZLaCWBOrLhY4/CgYmd+OiRj3yeMX0NN7cw\nnC4TyAxSAVwAEYiLvFBeMMH2YPTXGgtLJ9k1ibGIsImxGIw2ME8yzJOUmV9iFuRrcWGzOLdQFwFM\n5jCbvkX4V+qPH0LlsuovXxH+FhRrsF+ARzru/ozO9iUPOq9olW8oGnOK+pzIs7iqbXHlbJEZOlfV\nTaT+K06KuxRaY4rvjRFSMm01mLQa9LQOz07fY3xWRx2L3MxwvuAOuKvE911o6fqXYo2DNQ5+rjhY\n7fmYvJBnwcKCCw9CyTSucMwj5kaJanVEqTCj+HiG0BSpZpEKm/6wwfnlDqOrBskrG3luoGIBRgLZ\nBGQfohT6HiQeruWzc3DBQ3HOkfuCQ+c1R5ZPzchrzYkE5SvM5woZZaRtKBUUhUNFosFiCjdP8/3s\ntaH+IXifgPdbcH8HDO8cOGIBtp7bYehuRt0dcOi+ZGyXOJe7XMhdposq8kpHfaXBpwr6AfQnsJhA\nMoZ0RfgD7gqdP5b7fd/PaNUiUSKXObbBLcOWBfs2WgesVoLTDhFFSIRJopkoB+a1EllqYocJD9pn\n3HhNSo9vcUYLdkeSVAmi7QqD7SbXlT1uFi3mt2WSrk3Wi1F+yF2L89u+Fe9CrHGwxsEaB39MCBQa\nEo0MXWZomVpNWEBly08tQd1NXkBkEk1l6GTLUTgKhAlGNSeYXgplAyoG2GJpFaTyWuuIpde3DqYD\njonmLnCtgKo+oSyHpPGC3iKhO4VM5sNH00SSPQvIFor0LCX69TahvoF8WGWzo2j/ckHDHSJvQd1A\nNhdEm0Vm1Q2unS16aoP5vJArNzULtoCasUwVVf56m8LNciUjSCyQK3WQWL1x/mPave61x70xRS/m\n3nZWHewaNIqwY8GeCQ0jV8h7GmQCBhoMxJ213zWoK4E81UkrFjgSlQlUpiDMcuX/YAGTBQQTiCfk\nz437B6Lvmtrr+2ONA9Y4eAdwsC58vYnVBb/XpiOXapdEEs1d4nGdyW2dcmlGd3eLm3qTUjqhMcyo\nD0Pmhs2rRp1uY5ez2S63zzZYXJZIXplwG0LkLzuBNEgsZKIRpxa+KhCKAkWxoKlpeFoOzkSAUOCl\nEi+WRAFM5/m0tcvhHd21NY1q26b6NyUKv3KwPwP9s5jsGUxfQ/cGzqd3HcYxwDlwCZoGNZGfBZZs\nGFkCf18nwWROkRklZqpEOCwQvCwS/raAnGqoqUBOBWoYoQYRDEPIFqBWhH/BD6t0uZ/YrUbZbkKh\nDPs6/LmG955PZ+uCD7c+46D4ioYYUmfITBT5QvsYqcEVHbq1Tc4r27jbAZvymk15jaFSzvVdLrQd\neoMtxn6d6cs6/F7AVQzzlb/Hyrz8xzyx7o+JNQ7WOPg54uB+m2ZEft8EzB0IKnCtmARV5kaJE+cI\n62GIs+9j7y+Q6MRjl2jskQ5Nsuc66Wc66lzLE4MI0ON8P8guRDHclmFQwbOn7PzqBb/UvuB9+5iO\nfcW2NadkvMkLiReweC7xX4LchOrfQvVjkE34+v+D3tN8oNDD/wt2P4LOQd5uLM8hfH5H+FMB9nJw\nm+5lNEp9joovSFwBCxjNG6QLG66Ap8A/qlydGY/yfjM1Iy9wrlq7VoXOH0PcN2hdKV0c7gh/Z0n4\ngfcF+pMI6yjEO1igVVPCzIXMIQltZtMik1kdkUK33eHmSZNNrUxtIKkPIlSicbJR4arZ4UTs0XvW\nZnZaIX5hwXWcO3+/Ifwx7xYm1jhY42CNgz82VoRfJ0NTEi2ViFi9IfwrIciqniwShZZJdJWhkaEt\nm0LRTLCqYJfzDqMW0Ba5e8EqaZmQX8b58usZAhyB5smc8GtjKmpIP57TXySMp/n/lpceFc48xHkR\non2eMNZ2Ge9tkDzZpdqZU7V6PN4GTvKV3ghebRW5rW3yyj2gJ1ssFl4+uK5sQsfIFSErkCbAicrf\n30wBNsgliN+Q/IhvPmf+lPFdLXpl0GpgNcDbgEYBjgR8DOzlf015+dnORZ4zngDPgK6Aa5CagRR6\nnqiS5dUdEpALkOPc9kItFzPunhs/VF74HxNrHLDGwTuAg3Xh61ux2oQrf4spMIBZgjpzyT51mEyq\nnGwfUdye0bV2qAQzKtkMX7lcTTfpJpucjfbpXW0Sdt18POtc5BlXksBkCl2fsDylu1vgy/F7RK7N\n3s4pwV8VaDZ62GGAHfrY5QS7DnoAZj8fFb7ZAvPRUumigdVUFLdjihWfopniyRAzyGAKaQBhAqHI\ni7ilKhgFWIzzFc3B3ARvU1DtwE5zjNE/ofb3Jr7jvVlXwTZX1W26TzrExwbxRCe7MWAWwyLOP9cb\n8OpvLfjmpv5jN7d4a62MvJcjVzXxRoZp1TIKrSmFzoIHpRMOJ684Gp7QyV6jp1NkNkPYc1oNlw8b\nkro74ZxdztlhnDSIph6zaRXdl9ymG9xkG4wHFYIvLJKXMVwHMJlAtKpY+7zbLV7fF2scrHHwc8LB\nfSVCSv7DWAM5AzWCzEHNiqQ3NpzZULDQGzGm0PDsBRuFPgUZoLck2aFOhs5is8hwXmc4qxMNdbgu\nwHUjN8hRBcg8okTnNtjh5SxFMy1kx8T9yxhKkuQyIblMiEaSuYS5AhGDZUKpIjBbUGkqtupQXEB9\nDNbTnJvPj2E+Bl+HpJibfpfqeXHXPgM0SdGZ0nK7RK4gqRhoFUnRWzAs1xnWG4w3qjATMBXLKvFK\nCfpjOqV+GxMrBeTSxNvywHOgYOA8iKgejak8GlPbGlJjQL03wBpHxLpFrNnMRIm+2qDvtjBJGCR1\nvhx8zFRWKQdzytkCpOBq3Kbrt7kId7j6epvF1wV4IeE6BH9GnpW/i5hY42CNgzUO/nDcv/95O3AW\nGcQDHf+swNirc+1scnq4S8lVGC2f7X0fQxOIDZfblku306HntBkOm8xuq4ShS2bpaG2JuRljbMV4\nGwHl2pRybYJlx6SJSZoaBFOXyVWF6XaVYOaCJ2GWkZ4rRjtlzqMdCsU+onVN8b2MYhiSGpCaS6X7\nrSK9gWyRUJ6PKM4u0EcxxfMe87MFZ2dgX+dLHyn0QkA1G9K5cbgaX7Ph9mh+dEO1OKJeGFEtjMgy\nnSzTkZlOv9pgsNlgsN9EXpioyyLqYqmCUctW528Q/j+lCvB+C/CqIFyHQhX2PMS+TuHBjPZBj80H\nPYqNOUIoRAJpahCWHIJ9h7ldYKJqjNMqgeHCLIV5AkHCXRubT07uV2vBt/2MfmwT/v6YWONgjYN3\nEwfrwte3YgXmhPykagKYME3gpAahxbRX5vjgIYtRgXJ5iqNHOHpMIgym0xJTVWI8rDJ83SDq2svB\nPyJ3aE0yGM8hCwichIsHReLhRww6W4z3q4SuQ/yRxcakjzPNcGSC0QQtACOGhg76NrQtEAZoBug1\nibkTYXpgpTpuFGMECcqHLMq71BIDGi1oH0J1C3rH+RqG4O0LKn8haH4Cbthns/+MxWWfpG6R1Ezi\nmsWXxgd80f6QtKMxSxxmFzbxyIYwhfj+BLd7I2ZJl78Wy1/f39j/2g2+IvirtSoiGLyRjC4r/XgC\nux7RbN7S3rzmsf2ch8cvOTo+pXJ7xSQKmYYRSdWn+UTRfjJmszUmweGMQ/qzTRbnZQavW4hbxSIs\nsAiLBBOTpJsgu37e8hCMIfk+wv9TiTUO1jj4ueFgdV9WiZwCpuSThTQIYuhXcjl9RWLuJthpRKvQ\n44H3mgf6GY4WEnsWcceiO93ixeI9wrlNdFaEzyowN/PRp8u94csSF4FFPNlgVmkid3UK3hx2ApJ/\n9InninAYMyc/2NQ1cG1BpSQwa1Btgb6tiH1wh2D+r9x6YXCWt/bOdajVobaT/1tPgP0SeCUpaDNa\nukJ3A8xfpFR+MWXzsMvzjfd5tvM+44NqfpKX6fn7RuMuSfsxENgVJt4m/DpvjLxtD5oWtDW8Rz7b\nD885PHrJTumCzWGP9lUPL/HJPJ3M0xkUmzwrP+ZZ+TFD6gxHdX4/+hXP/Pdx9Bhbi0HBbFBiGhaZ\nDCsMX9SZv/DgLIPxivCv1J7vIibWOFjjYI2D745VXpRxlxstyAKX8MYgOy4x2Gpy4W7z8r1DOvsK\nZ3TD/jgBoZGUq/QqTU6tPS7VNjc3m4yv6kS+Q+bo6Fspzkc+3kdzmtu37Lmv2XdfUzKmBNIjyFwG\niwZn1wecdk2CaweuM7hOSQJF/2GVl8EhmhWz29HY/cWUZnWEdEG6ECUw+D0MPoP5TUo9GlCdKYr9\nHtGLIeNPZ/S/hMocKjMoBQoxm9O46FFoR9zutunubHL9pM1D8yWPzJccmcfEmMTKIlYWX21/wNPJ\n+0wmRbLfaWSigLpx8gQsC0HN+eYADXnv2v7QcZ/wu+QSlgYUKogDE/FrReXhkA8aX/Cr5m/Z0a8Q\nU9AmEKU2g0KNQb1Gt7HFiXZEIgwCx4aLGC4DCBfk+dCqjSsgz41C7tQtCe++t9caB2scvLs4WBe+\nvhX3ZYcB+Q9ulRcqTyy4LDPrlvFHBc4WB2ibElFWiLJCIVALgfQ1sr6GvNSRXQ0GyxE4qZ5v+vEE\npn0CU+PieofucJduJyHet9CeSCyZ4NxmbNxOcUZzxHIohBbkhL+2nUv9sfJWaFVWqO0Y6cWQCvRY\nYQSKeJET/iTLv3WxBTtPYPdxvt3DAcxvwduDyt8INv4PaP/9AP0fhmj/JGBboLYFsqNRPJgRHxrc\nHNQRF0Viu8BsXMh70dR9CbuWvzES8u9icJdIK/74RPG+umVF8lfJ5zLZWw3SKAucWkhzo8+D9jEP\no2c8vD7m4B9OsV7cEs4Vi7lCbUF7PmbfO+VWm3PGIRKT/qCNeKoQn0s4BTXTkHOBWqQQjVGxn/t7\nqHEu23zja/RT9K9Y42CNg58bDu4rXVavOqDl9zaQ0DcgK6I1JeYkwUlDWsYNH+hf8Gv3N5TLE4JO\nnpg9j94j9B3OFzuMvqzCogLHFbiF1f0MpOIibNKdZIzSJoXdOVsfXOIc9olnivhZxKphaA4YGlQc\nQVgUlOuCaktS7wADRXQN0VOYDXOoXaQwtcGpw94B7HSAV8BLUOcSL5thZHNK7oAKE7YedNkvnyGa\ncNvZ4Hj/KC9ST1cFVm15XX4shB/uEjhx78/uKV1sDxom7Gt4D312Hp7z8cPf80R+ze7VJbsvrqhM\nplATqBpctTuUnQlJQSMSTxh027w4b7EYld483xAgexqyJ5BXGvJYkB2L3LhVhrk6igk54V+1/75L\nmFjjYI2DNQ6+O+4T/picyC3IAgN54xG9KjAwN7g82ub46ADDiTiMYvajEanQeW3X6Nkdzqa7XJ11\nuD1rM7mqowKBsgXGRoDzkU/5fxuzeXjJE/ElvxC/pyn6TFWZKWUugl3SG4PbXovBcR3+IYOvExIf\n+jc1joNDhCWod6bUOOfRPlAGVYIwglcS/EtY9DIa0YCD+ZiNvuD5S8mL30gu/he0JLQlZEpRvpxR\ntRfYpRFX/2eH1+/vcPHrLT5Qn/PX6n/yl/KfCDT3zbITn0lS4EVyiBIOqldAfm5BGuVtwtLhjvSu\nish/qj1xvwX4PuEvIQ5SxF9mVN4f8cT8kv9i/Dfe979CXxL+RVbgvL7NxW6H5/ojUmFyIzbp6/X8\ns40WMJqQ97/1yfd+stwnq8LG2+tdxcIaB2scvLs4WBe+vhUrQMPdzQpALiUjqULGOtLQSUrg1ebU\nqkNqlQEF4WMWE8wgIfYsJoUy02aFRcsmeC2IbJ2070LkQGihAo20b5O+dokqGnJLRytmCD0lnGWM\nThXZOaQ+pAsQEorVfImiTU9rc61vsjAKtMbXbDy7ppyOmD8F/3Vu+BqWoFoHy4X2DlQcsKdQDKCa\nQqigkkBhobDGEAxSZjeK8Ephx2DNwRoIbGtMbfOGbecS2dxk8cBGfOTkJoVKgZR5P8HCyqdZpHNI\nZ8sRHmF+Db+hcvlDG/3tVi6LO5PW5fSJNwmoBlTzCSC6iTB8DD3BMSKcKMSKIsxpghilZP7SXqoE\n+BIrBCeOMLQMpQuyVId5Bn0B1ykEi9ynIvLzqRzZnDt/j+8awfquJ3X3Y42DNQ7WOPiGF4JlQEmH\nlqBYn/PAPeWQlzwYPWOz9wK914VwgYONjc2m63BQ22BcrVBoLphs1Ji0akRTM8+8wggVQNq1SZ/a\nTKhwcbjDV6X3iTYklSdnVP5TQrUd4kooSwUlEKZi8ByiW6heQ8VQOG3yrTWC1IBaESIbijVB4bFN\n/J7NoG2QjiOy44hsmpBkMi8GpwoZznEznQ1Np2xOsN0oHwTnmGC45FL4gGXZYXlt/i0F3H+ve7Jq\n5Vrh4v5rgXwMdwFMKzfGbQmsRkzNGrMbXbI5v8Ds9pmcTglvfYwSGCWId8e49g1bW+dM7RJR5HE7\nbeP3XBhkoGd5BX0oYZhBPz9lZpZA4pO73a5Mz9/2rniXMbHGwRoHaxx8u71rAYzBF6hrHRyPRVqg\nG23hJO/jl4vcah0uxREpOte06KoWrwcP6L7q4B97yIGWp1ct8NoBu40LHjrPeRC+oHP7isLta0x/\nQk2bUtE9DAUX0QF2HAECmho8Mcgim3mtyq0vMC4EhW4EVzZdfw/LjrE2IrRqwOLJBHM6prU1p/JL\nhbudYXgKR1d4CRTDvB241MitQrOJYjTNyMYRwu+xlz5DE4r9m6+xr68Y3UxRIkJpAZZm09w452Dj\nBcONOv1am0GjxaDVQk2MPC9a2KBWRk33FYo/9L64n0/poOlg6GDqWOWUYmVCqTphV3tN6/qa0s0I\n82ZO0IOwB4GeYiQmLZERVFxOtSPsVpArV3ta/ox4o+xfFYRWhk/3lf4/hRxpjYM1Dt5dHKwLX9+K\n+4qMe6MnVJIbfCuVX7US0IZSZ8ZB9ZjHla9p6T0K8YJCvGAeljgNH3AaPOD6ssWwUmGkVUi1AowL\nkBXz/TCw4VRDFCSmEePVAmy1ID6P6f8uY/Q1hHHuT6S70HkP9BZoGw4vs4f8Rv4FvbjNn/V+w59N\n/5nSYMTkFLqnMJyA9xAaD2F3F2oJFBIQXXBGUA1zs8HqXOH1QD9VzC/huqe4GUIlgsoYSl3ImgHF\nh0O2uWRRdxk83IBp8Y7vpgpuPOgl0EvzNqjIytsDmC2vbfrW9f2+WCVz96T6uOQZ6Mphz+LNKbRY\nJqTCQAiFJvKpIprKIJWoWCHjfCR6tMy90oy8WHG/Cw2Vz0KfJTDx80kc8TAn+zIkf8CvihchPw3J\n8vfFGgdrHPxccfC2um45OMBxoGnAnqCyNeFh6SV/Lf6e1u0xxu9vCX83Qg1iXEJcdJo7Noe/KCN/\noVMqzTmpHxFtukQTAaM5pJM8XzyvgKYTxg5dY4svNz8krOi8956kaQ9pfTxGZhKVQhIqZhPFzadw\nGyt2imAVwG2DsVSXiwzaNfCqELQ1eN8jfK/MRdMleT0hsSckSUKicqGiRFEioYxPmSmuHmBaad42\na5qgFcj36sqrweIuQbtPZv9UEv1VW9fKn8IhJ/nF5XJ5UyQ2LSga0BRYlYSqmLI16VG77TG99Omf\nJWRX+bR0x4Z4mqA1R7QeX+CbJcZRg6tFDH0FiwTm8XJE+dLHYhHBNMwLOKvk/w3hv+9f8S7GGgdr\nHKxx8M1YKeEF+c/BGaDnh11dB8Iy/tzletohGjlcN7Z57k2puFOUEkzDIrOwyOimxuBkg+jEyb9c\nG9iCwu6Cw8opfy3/if2br+HzAeLzAUkvoGTNKZoWumNRL46wCzGYApo6FAVSwKIF0rdJjj3iS4+r\ni102oj5Fd0Jpc0q5MqD55BUN7xXtT0IqHYm5j3YCrAAAIABJREFUJckcielCxVSkBmxsQeM9qO7D\n4Dn0X8DoQqLFt+xFX/Mg6MNJj+zTPie/VzgixRHgiIzyn11z8KvniLbOS+89VM1guLmB0jSQJvg2\nedv06tDuT7Ev3iL76KDrS2sIsMsxzcKATfuC/fCU2ssBxm8j/FO4neUr9lLKyYyqzEg7Zar6CLse\nIDKJOtbBXpmErxKplSJqte4feL7rscbBGgfvLg7Wha/vjNUGXJl7LyV66i3C34LikvD/uvI/OTKP\nqWUjatmIvmryO/FLDELUuSTVTOZ+gzB0QBZh4UOsYGDBqYbmKqxagrsfYEmf6DzG/50k/ufczHWm\nwGyC1oKqBXrT5WX0kP8e/e8cJ0fovYz956/Zf/Wc8QheD+FawKMq7PwS9n8J+nPQXgBdcMZQjUBX\neR+z11PopzC/gMsevBxAawRtDTZ0RXYUUJoM2OaCQWODi0cydwePtbti7iuVf0EfUHauchFiub9T\n8iToX5MA3R+z6pIncyXyiXUNoL7885XPkQZCB6HlBnxCvZkqIlKFiskJfwaRArFKdFf52Gq6LDIf\nsT6LYbwAbkFdglrNzF0BeFUpWP3ZuyxZ/kOxxsEaBz9XHLxtEO3mhL9hwL6g0pnwqPSSvxF/T/H2\nNde/T7n+vzOSc4UN2AiavwBZ0il8GOKWY6K6S3dzm8nIzJWAswH4Ci50GHuEkUO33WHxoUO4bdF8\nMsQ8ekUr1jASMOOMxQU8/29w+6licQ72L6DxCxBtMKagj8DKwOvAxiZEexq9Jx43T+r0qyWizyGy\nQ6Jk8aZciVLsqpgKiorQ8fQAw0zyj22aoHvk+2vGHZleJb6rdrg/5X1/25i1AFS5w8Tq/ckl4deh\nKTCrCRWmdCY96r0b+heS12eS2RkUBZQ0sIIE8WhMK7gkKxW5jPaw5hH0JVwluX/FyAe1aucKQM5B\nLrib4LoqCK+uz7uMiTUO1jhY4+Au7h8GhuTXX4FvQVSCmxR/4BKNtrjpb6K3JFpdojUykAI51pAT\njayrkZ3qZKd6XqNskA9j3vc5KJ/xV/Kf2L/5gu7nGVf/NSM+VriOYMsRODWL+t4Yey+GbWBDhw2d\nzDPwZw7BXDK+aHL1ehfjdYqTBDS2bmimN2xXXvMrT2fzcEonu8HSMwwjI5uD5UkqJui6orkJjU+g\n9An0BPRu4PRE8TC+5WE85EGoc3qScfb3KWf/Feqk1MnQiSgn1xy0dZq/XkBBZ1jf4HhLQqKDv9qr\nAXcJx2r9kPEdHqm6Bq4GJYFVDmkUBjxwTtmPTqm/HGD895jgS7jJ4CSDrJ7yWM6ossDKCtQ6Y+zt\nEByJqGso2yHf6/cJ/33S/1OKNQ7WOHh3cbAufH1v3N+IWr45TAGWwK4GFGtzCvUZh9pL9run7B6f\nU4+v0OUMP5uRuhmNxgnvN0xMXaIqFqOdFrOFk2vvB4VcdhFZMNOQU40wtJmlRRZ6GdecUbB1Sja4\nKRQT0JTAtXXSskFaN6gEYx4FzymoBa1ODyVhbFVRZzGlOEZOU6wh+K+gq4M6Jffs6QIWaA+h+gTM\nxybxoUm6YaA2EkrNhE4zpW5D1YaiC6qxwNJuKU90VGbheQkb7RFS5QNolRIMCnUGtQaDrQbpawP1\nuoB8rSCROeNWPnfk+LuI/+oEc0X0HdDLYFTBqEChAuUyVDw028AwJLqZoEyNzFKktknUsRl5dS7i\nPQr41DoT2n9+g7sZ4SQJ7TQhbRgkH5Z4vVOmVzjiJtggnNpwqWCUQBAsEzifO1O+1YP+u3qTfwoJ\n3ffFGgdrHPzccbDc+0LkAwQs0C2JrUUU1AI38dEDSKcgJ3dnWtoswYpCPBa4mo9pxGiGBEOBJnNJ\nSpbl1zmbk13b+C901EaF7myHZ+6HeF7M3KmzZV7TKV5jNSdUthSt3bwuCXDby2cMOJe5gtFagBiB\n0AAUggj8BVpF4U4D3E6K+ps7gaJwoNmWlOIU9zykFg7plC95cHjMYuKyGDr4fRtCByIXogJ3CU2y\nfP1TSfRXbV0meaZcA6rgVaCc40IrCAwnwnBSVDsj3ZGkGshII7ZMfM+hXHRwiglNL6FYlHgmeCao\nus684DDTS0xlmSByyRY6TDOYLWA+BH9Kfsq9WsG9FfNNL4ufEibWOFjj4OeOg7eV8Mupp2oKqQup\niZoWSHsGqTIgMnN1h+2hewqzHGEVYuximnultRWZoxMfOkR1B82WWCKmkPi4gY+YQzSFeJSnSKkN\npr5gQ7/iUfMr1LbC9mJsK0bXMlJPIzN1QuEw6DXpZ01GszryFuJLk7Rs4IoYMBnpbQwvwfQSDCdC\n7E7R/myKbs2ZfaKjnujMdjXCBz5e16fjBzS3U8qVFEcX2JnCCMCY5LvQRuECqZ+RJAmRiDBEgqbL\nu7O5b3D7H0r5Ie69vk30V0UGmR/gSglSoZQgUzqJMEl1E2XraJ7AcqHgQznMU7eCJnEKkqSYolsy\nf+uJhsok3/R4/anHGgdrHLy7OFgXvr4z3pYDGnkPbEGDIrj1gHatS6d6weP0a/aOT9l4eoMzmDDO\nIsZZRtL0cR9f8uS9GM9WjJ0mr7YfQlCDoQWv3dxYKLEg1MkCHT8uMJR1xnYDrzCh3jQpb0KyyJd0\nBU7RIqs6ZHWDzuKC/2T+D+Z6iYZzi7ad0j9sIn4zo+3PaE5S4st8mF7vBOQQ1BBEAI0DaBxB9UAQ\nb1r4WwWiuovWX9C68Wn0U9xq3ibg1qCwt6Bm3RANA6rRnAfGBb+sfEZi6mSWILU0vm4+4eneBwQT\nm+BTnRQXeWODXKpcshl3RP/+Canim9PqVlLJEuhVcOv52izAAwceWOi1DNsNcdwQiU4YeshII6y6\n3BbaJKGFpilqD8Zsete05wFeOmcvkQQFh1lni5fbu5zxPheTDv6lCycS+jGEPnenlvdl+vcB/eMG\n9r9PrHGwxsEaB2/iPhxWv13eNqW+XcqUqOWVUYjl+tYXkxKSANQENXBJnpmgHPoXmzxtfcxko85F\nc59f1X+LVY/ZLkyp7oD2iWLuQTiHmwvoTaE2yVcpBD3KVS9ZT5KdB+hPh3iVOY7r4+5G2I/e5DoI\nDUoNSSkE42VC0x6yVz3lSf1LutMtrsdb+IMCjGwYexAVl5804Yc/oXzrer3BhQOUQTRBbECxBHsO\nPHDQ2ylOPcKpJShHEagMmSrShc6i4jKoViklVbyNOftNiYgkZiFvlZs/MFg0S4ycFj21yTQuk/gW\nLDKI5iBvyf2L7rV/v/FAXGmHfip+Rt8TaxyscfCzxsHq86wm2kHe1qnlv48LMLFzdi48KJVgQ8eo\nZxSqc0qVKTYh2jxDn0kiZTNxa2SefldHXaqz4zQXQ0YK/DQ/etJkyEb5go/2P6V12KMaTqmGU+xF\nRFi0iGoWg3Kdp72P+NL8mEVUJBh4cCpIMcmExS2bPLU+xtyMsDYjnNKC9uFrWpzTeHhN0LEYdGy0\nmo69d0N9dMOWCKgcCLyGIFlO07Y19aa5tiDy1xjBHJ0UgwwdpZZqd3W/Ffjt/OHfa3/cfzjdJ/tL\nRfwbypvlhD+TkEAW64SZzUyVmJslkqqDvq3jjaF2m9tDSAOqJbBaQFugLA1iHTXTIJS5fP5HNfDi\nh441DtY4eDdxsC58fSvero4uJ6iZS8JfF3gNn816l8fVr3nv9iv2Xp7R+n96pKcT5qnkLFOY+z5H\n8wseutfUOopX7iPcnRASAed55TsHtg2BRhroLJIl4debbBdvaTRNOu28w0gBiaMxL1rMKwXiusG2\nec4j/SWarRjuVBi5ZQbzJvUANs4inBc+p1fQ68IlOe/OMtAdePwR1D+B8n+GYcHG90qMzRK1G0H7\nOqF6C2ILtC3QNkFWFygrQA37HOjnpIZBVtGJizpJUSMu6NTUfybILE6yfVKjjLp1SL9wII5BzSD7\nQ1MsVsncvUlElMGogduEchN2HPhEwC8F+naKXYkolqdkkY681Yj7NqF0ufE2GYRNKAg2D3rsf3hK\nWR9RSSXlNGSqOQycTV7Y7/Ns8CGX8Rb+pZcT/tsYonw07zcJ/2r9FHwq/jWxxsEaB2scfCveUqSv\nCL9U32wMvrP5z//7nWQfkZ+OJSGkEjlMSZ5VSW4douMK44MGzw4+4OTgCFMk7FdO2Cm+prYraQBz\nT/Hyt3D2FYxeQidb5hwSjFE++U5oEqn76HqAWxHU/1ZR/1tJ+c94c9gnUtBGCm2ckb2MaRwM2N88\nZdbxEGPJol+m1+vkkpjIg3GRuxHmfyp5/upZdM9risqS8HegVIA9Ab8Q6A8D7B0o7aRkgUK+ylsk\n0oXOQvMYVqpsUKHelNSaIW6aIGogatB7YHDeLDOy21zLTSZxhXhhwiLNCX92C1z//+y96W8cWZbl\n+bN99X3jLkqipFBEZGREFqpr0Kie+TAYoDH/8GA+TPc0pjELumoqImNVSCIp7k53+m672XvzwdxF\nlzIyKrMmCxWR8gs8OElRdKfZO8577jv3XH5a9fj++iuODQ42OPhgcbDaw6tDq2Lt8wBSpyyMztzy\nwKqjQeqg2xnezpzGowFedYEucnSREwY+YqwRjJZ+p0sBoUhKwh+JkvQHOUQFeCKmW7vgN4eS7PEL\nti5v2b4Y4EcB86bDoudyLncRr1WujF3O4gdEQ5fkxGEW1hgo2+hKju5kWIRY1YhKa8InD7/m0z0X\nO9OIDZdIdykwePRAYSsJeOAMkY9AthVyU0HRJZYq8JFvXeV8BRaKgqKo5BgINIRUYZ30y3WS/69F\n9tdJvra2VoWApblpISCViEwjLpx3CL+6q+JOoZmXah6hQ626JPxdIFaRsQZzDeJlUvlXp3D8udjg\nYIMDfpU42BS+fjbWpIKKAqoCGii6QNcyLC3GIsZKU6wgQ5kWqDnIDKgLjFDg5BkuIaaaohoCTKVs\nF1NUKGSpdpkV5Hcqk36Ny6t9zDzDsgXGY0lg11DnBepMoFoCOhIigXUSIYch0TBEBAWiKrGqYGBT\nUWK8BzlGroLwiaTPrLDxZgsq8wW+jDDbNkHH4arjcSF2uMh36Ec9WvaI1sGIthjRbI5pNMc0mhPi\nhSC4FIQvAD19y80VR0FxVUxXpd65Yq97wked77lp7DJs9Bi2PIQ0yikWuQlyZda9LsOUvEv4bUov\noyb4Ndh3UA41qo9ndA8HdLpDqvYUN1ngDufkQmehVZm3q0xEgzvRZpi3GS+anGaH1OLPGesNqnJG\njRkL4fNydMTL/Alv+gfcvWyQnihwFcMkhHQ1ND3mD6dQfIixwcEGBx8aDt4/zYzLwuW0gBtJUPO4\nbO7yDZ/QaLiET2c4/36K8TjHREOgEhw1udnb40I/4jh6yHBWI72TMIpKM+g8o2wRSMuEKI2Q8/L0\nLS98ctUC6dEXW/yoPKNj/R2LVoWKtsDvBKgiIJ0t8MMA3YqpGgqWrkChkA0kya2gmECIIKC8g74E\nWQG1rRD3JfEAkv69CjIPBbk5odM557miETh1bhr7sKWUxrWjlTfF2lCFty1ef6n4OYn+mgrS9qHi\nQMXCfZxSfzwuV29EQxtTH41QQgiiCoFawdEi9Czn9eKIRVGh1x7Q/WSAux8iKiqiqjFotnlhfMzJ\n4DFX8x2mV1XSOwVmSTldo3g7xYJ3TzXfP8X9a4kNDjY42ODgp2OFC8k7RE9dGjybHmZdw+vMcXcj\n2o0pu8UlO/0LqqMZmsjRRMFCVLiSAzrukKo/Q9ELLvQd0nZIcjSnPp3h1xK0IYyHEKUZTKe0bzRU\nW8c+HZOdjgnmEdrYpj60yB2dbnZLa29A2+1Tbc+otuY49ZACnULRyCydwHUJpEMYbFO5W2CMcqKp\nT+w6xI5DbunMwgYjf4vrg0NkW4AnQC8QW1OK38ywplNQNBJFZYpK/6M9TmtHHAdPOJ8+YDqqIW8V\nmIqSGL+jCvxLKV3eJ/rvT8FerTU/JVmF3IVEIZ8rBLcuozdtrjp7nBi3tA7HTC2PfCsne5AhbIXb\n5y5su1zah5yMHrC4qpSeroNsqZBfcD/Q4Zff8vWXiQ0ONjj4deFgU/j6U+M9ZaKQCgIVqagomoKq\nK+g6mGLphaqUJ43qKieCdwcarD4PBYiCtK8yumhQHGskwiGzbRbPPM4f72LEGUaS4RYBXWNAdzLA\nGSwYnaeMzguisaBWj0prB1/HUSLsRxniSKPQWiT6LknRpPPmgt2zS3rjhLxXYVZrc2t2eTl7wqvZ\nE07nD2modzQPRrS27vjIesFz6wUNY8LsDq5fwvX3vJN/uQZ4hsQzBeZvx+x+ccLnTZeXZoSs6ow6\nbUShlGXiyITCWLsg67F+kulQTqxrQ81DeWyi/K2gvX/Lb5tf8oX7ezrRAGOYYN4l5RtXzyXYcjlT\nD/km+Ixo4RAsfE6zR6SpxUueYusJthaT5iaDeZvBrMOkX2X+yiF9LeE6hEUA6Zx3Cf8vC7T/prHB\nwQYHf/WxTt5W/hURxDEMM3gjmVWqvNp5jMOCvW6T1ucntGonOIsIfem9M2v2eHNwxDfmF5yMDumP\nWkTXAvoBBBFkq+mYy+RHGJAkIGNQamDUoKgR5h4vtafkps5xfkTPuqFX69Oyr/GKKzr+Je6TGMtV\nsTwNLVGJ/t+C+J8gnAhWDatCAU9XqNkKqQXjAYy+koy/gSKEPAAhBVZtRmPvgmaUcK3u86I6L6ct\njVSwV0qTVeF2BYK/FMl9n+SvCsGrz23eTjV1fdi2YE+h8nTKoyeveHL4gh39iuZgRGs4Qo8KMmmR\n6hYTs85N2uWH4ce80J7Ta9/Q+10fV4RklkFmG4xo8iZ+wJvzQ/pXXeanNumthHlSTjot1tsH1hN+\n+OvDxgYHGxxscPDH4/0CnwqYYLpQqUG1ib1b0H0wYutozIF/yaPJCQ8vT2iEE5RMoGaCuV/hYm+X\ni91d8pqOouW8Ug+5M21qxRlbjRz9QcLiKxj9HpSkoNkPaf4gMUcas+OQi9OMYippn2S02pJqa0Gj\nOqZ9NGC3csah+4YH3ildZ0CCRazYzNUKx+4jjrXH3Ey2uPphl/Q7k+vjbfKuRdY1EW2dc/uQb+0x\n9Z0pRjPBcBJMNaJ78Ibev39DZ/sNOQZzxSDC4GTniG9bn/Ht/Lf073qM+m3kpQITUU4Blcsi91+M\n8L+vhFwVpd3lWg0FqpT/piwPcDEh90Aq5BOFxaVH8UJDjwWuESEfwdaDLcxZgDkLyQ2N8UGX8U6X\nK/b5cfKcyesafC/gKoFwwf0k05Q/THT/WmODgw0Ofl042BS+/tyQIGXpVCFQEYoKqoJmUHaC5WAp\npferpoKyUhb+lKKxKFUrxDmZqTG6aDDtNJnYbRb7HqP9Gp1GH1vG2CKmtRihHgt6xwO81wuufhRc\n/CgZ9+FJI6JbT+htl74X6meC6KlNYTdJnEckYhfvS9j9csajkzvOuhXOqlucmg/5Ov0NX48+54fb\nj6l3R9T2R7TaA/Jcp5WNeJa+ZPYlXLyEF/+Ze2EK0FIkHUXSVsAMRuw2T6h+liEsg3G1w+uugFiF\nUAfFpATjutJlFe8rXapAC6VqoTwWqH9X0O72+a38kv9Z/i/sTq5QzgXqC0la14lck+jI4mv7N0S5\nw8nkEefTA07HD7m620PLcxRbojoCGavktzpZX6e4kYjrjOI6hWkERQBizn2L17rSZRNvY4ODDQ7+\nqmOVyBWUf7wjiBO4y0GRzFoVXs8fESg2H3V9fluXHD6/oyYgxSbFYkaPM474Sn7OWbBDNirIbgro\nh5RT0N4zhBYKpHHpdZQnIFQIXILE55X5lDPnAXVjzKOdVzysvuKx+5LnruRwa8xeNCarqWR1nThS\nKaQkuBBMX5Z3MKT88TUDEkchMRXGQ8HFV3D9nyWpKGcvSFPyeHfK9vMF2/GIF9rHVCuLUulytU74\n1/fvX0rl8lMS/fdl+qtErgKuB9smPFOpPp/x6Mlr/t3h/8Xj6TGdV3d0vhnhJAmiqyC7Kt9bH/G/\nJv+RF8OPua102GpdsvX0CscNiVW7TILHVe5+7DC66LB44VK8SRG3KczisiVAwH3BerU//ppjg4MN\nDjY4+OOxIvuStxOYDQ/8KrTbODsTOoczHh+95qP8Bc8vX/D8+x9pXY8gBiWG6U6Fc3uX86Md+r0O\nYxq8Vh5Sqbb5rJ7z7GiAtz/mVQrnZ5BeFPj9gOoPEe6Fwt2x4PJYsBhJ1FpOu5ZT3Qto/P2E9he3\nzD+x+VT9ki/UL3mkHrPAZ4HHQHZREsltvEU49kl/MBj87x20f0yRD3XkYx0eamiHGdrDFH0nxfMC\nPGdBRZvx2cGXGD2F3b+ZkWIRYZNi8yZ9xHfJb/iH+d+RjEzyvoG8UMqCqcj/COH/l8Y6VlZ504rw\nLwvD1CmnnDaXX1eW9VoJmYRMkE8VFpc+Qa1aKkyPIHjo0G1tUy8m1IoJmWJwYj7ixHzE1e0e82mN\n+XENfpAwLAdnlIQ/5J7wfyiHhRscbHDw68HBpvD1B7Fis+sJXw5FDnEBC0kytRhPWlyMD/BFSGNr\nRuvzMVZPRaY5fpIjtg2mT31edn3OrSf0513iOwuuJUzzsl2AZPl+IZGhTt73yF+6zHObwbQNM8ls\nu4rViDEbCVuVPlvWgEwx0fKi9MmeQX4HMhOosUApIKhC6MJcFaSdiEZ3jOoZbLszmo0EL5BUqwl1\nY0FDTLC1hMJRWVQ8hCaJY5No7NA3eoyNOgvPoVALzKSgNi7ecfmx1XISqqeCDAVZVpCQoSsFqirK\niUrKEmB/AMzViaHCvWeFDooOmg6qgeFKnFqA3QroGrd0+7d0+gOqb4YEryF8DaKhYtUMvKpOt7lF\nIxvjuXN0K6WYayzeWMiZBCsvV1rAnYBRAqOsHMu9iCCdARP+0NfoQzvJhA0ONjj4cHGw2vMKb9u7\nCCBzYFFamCYXkvGPFYr6DkYvw7QKFMvEtxYktklqWZwpB5yLB0yLOontIBo5cjuHuYBFBQIFUp3y\nWi9NomUKMoBUg8ACYSC0gsjVy4Rq0cQY7yBmkqxpkmcOkWxwZfdJdZ1U6BTkmL0bzM/6eMYdhpQ4\nQlJUNLIndS6aDW4Nl9idoNTHNFpzpnNI5hDNIbkoyL8uwJT4+pAt/ZzHBz+yuFFZnCsEVX85acIt\nJziR8Ieqjz83VgXf1TL/yFolcX7ZRtHQYVfBaqc09DF7wRW9wSXG5ZT4ZIYIM8wpmBNwuwOq3Vta\nvVtCzSadmdzMtkFKUmmRSJNoYhO89li8MkhPc7gJIQigmFCqHxN+iYncv05scLDBwQYHPx8/QTg1\nHRwDqgZmTdD0p+y5F/TmZzizPun5iNmbGTIpt3kqc5yJym6aoeSSSdqkn2wzkF2a+pTt+h3t7Rxl\nO6K+HSHTjHpd4HoCUwezACsqt6LhSHQJth6zbdzw3HpBTRuxP3qBN3oDs2tcXCxcLDXiUaXDxK+B\nDXlHJX+oUEQq+q7A2BNoW5JF22VRdwg9BxGpRCOHeVzD10JMXSI0h0SapNIilSYvR8+4Hu0wG1WR\nP8RwMy3bn4pbYEr5PvJ25ivvqiT/JXtpVSA2KFXyLmgVMOpg1sGtlsbqVQfV0jD0HF3LQUiyRCFP\nVYShUega3OoEms+w6CBzwbxVoarOqKhzcqlzke9xke9x12+SfauSvUlLP9TFFNIpv/QWr3+92OBg\ng4NfDw42ha+fjHVfi2UiludlO1Yhie8cbodbZAMDxQfvIKTqzWiEGnkeUSlCwqrP7d4ur3f3OE2f\n8SbYJzxbGkcPs6Vx9CqBiCHRod+Cokk+tlmcOchOl/leFeOjFP1ZSlqzeKq8JrZsFAc0E0wVLAla\nCjKE5A7uXkB/DOOTAv3JHVvPFB7s3NKJ76jac9S2pOou2FFv0LOcc+uQWmOCYceIhUI0dBBnGtNO\nnWm3yrTpoxgJDTVBpXg7qDoF2ip0DGgbIE2NmWYSUb4B5IWOXBWz32J6XYapLB/fI/+qCoYKhoLp\nJNStCU1zQDe6pXI6R/t9QXQK/T7c3IA2kXTsgo6UOPsJbifE7SxwwwVJYiMvVIorAXoMeghFUjok\nhjmECYQh5Ku+5JXKJeFd/4oPMTY42ODgQ8TB+75GS/Pq3CorqYVDfm4R2gYibHK2pZLUXa7re1j1\nhLyhUzQ0pk6NG6NDbhgYtYJ8T0M+N5CKCZc2XFTKyUdoy+cKls+bgJxDppefj2NQXJh75Dcqk+sq\n8kol6FYZuFu88p5RsRYUoUquqthiwZPaP/Hk331J7+MpshAIUZAaOrdPe5x0j5jpPXrtV/SOXrM9\nnXN5Dtk5hLeQXULwDzAfSuxnI/aeveazh00ur3pcnPYI2h0IQlgsIJ8vr9nqWq2f/P6psUqa14n+\nMnF7+7ha9v33GCZUdegq6H6On4a0rsbYb6ZM38RMzwXqFKq3UPEhfRhRt694evQtlhkzOm4yOm4R\njDyKQiMXOlmgkg4UikEKoxTGE4inlInqlPtkbgXov+bY4GCDgw0O/ni8T/aXS1PBUsEH002pmVO2\n1GvqaZ90OuPiOke5KM8QRQFGJcOfzWmEgmRegZnG3bRDhEOrMaHeGJM4AqM5YGd3iKtkNA7A3i3P\n0txLaJhga+X9NTpg9lJ2vGsQsDf2Ub/rk313x81pgofEJ6Xh5Dz69Ef4VNI9uCV8ZhM5NukzE68e\n4dZDzFrOZX2by/ou19YWybVNemIxO3M5sx4S2x5X1j650CmERl7o9G+3uet3kH0FzhZw0wfZp8wp\nVrneyhB9vV0W/rAd4E+9ByvMrIYB1cBvlGvLhQcWPFDQGymOEeKaITJTCOcuwdxFzHSYqjBRyOc6\n81EV8UZlUamW1hBGTCE1JmGdWVQjHZkUZwniPIBZAOkEiunyd1xh4360x193bHCwwcGvCwebwtdP\nxuoGCcqNmZYGrEEBkSQaOmSDLe5u2whXo3owo/HJHYUh8JhRkTqZ1uTWPOJ781OOL4+4XBwQnLlw\nLGC4mpg2520ikWhwK2Bkkr8xmPsugV9m1518AAAgAElEQVRDOwA1z1CbGZlncKe0SsLvgm6CqYEp\nQcuAsBTQDMdw+hIGlZxHoxGP5Ix9TUVPcgwrR20JKt4cVwmpZnNemB9Rs8eYMiJ/bREPXeI3PpO8\nzqRSZWr7qIZCQytokhCVT0UEtDRom9C2ITA1VM0kxiEVFrnQIFfWOPP74Fy1c9ncJ9gFaFppDuWA\nZafU7Qk71hW9SR//ZIH+f+eEp9BfwMsA7LHElDndSMGNYlw7wHs0xwkDZKyQnZvwUoISgTIrT5JF\nAiJdtlqEIILlb7TuN/Khn2hucLDBwYeKgxWZS3mbkOQmFA7EFrmoEUQ+0aXHvNfkansfYztD2ZHI\n3WXLkyJBK1CMAqNWIPcMioUNaGV7752AucfS5I57IpmAyCCVkKUQRzBrwIUk930mVxXmFw1u9g7Q\ndzL0nRytLkrlfKLQVIco25LDj65pN07Q8xw9F8RS58bb4tj/hGPtiL/rwMMndzwuzshVmExheA3p\nBYQDmP0gsbQRe09fw0Md/exT5lsNrtp1UAPI5hC4vGN8/mf7HL3vS2Hyrjy/snysArW1n1+AqUNV\ng66CUcnxpyGt2wnO6ZSLM8HxhUAMoatCV4M8Cqk/vuRp5RsMpeC7y085+z8eMnjVQ+YgCwWZ5cgk\nQqRh6XFXjKEYUaqRVmhfjZz6EPCwwcEGBxsc/PF4j+yjlX+3LQU8ML2UujlhRykJ/3gyo3+dE1xA\nLstd3qjnHE3nNIKAfN5CuVW56/cYqC1q6hS/PkVzUx60BDt7czrWAm0X9N1y2p1Xg6ZZpk4rwm/1\nUna9K7piyGKkcv5dxsV/yhn+Y842GTUU6o0QRUiaB2Me118zc2vMHlUJM5e6NqGhT3C0kO/0T7C0\niFQYjEct4u995v+tQez7XPkHGH6GzBUoFGQO2aVJdmHABRDPIb4C8Zp7u4R1BYi29rV/iaJ8vSV4\nbcqp0QSvAc0mHFrwOwlfSLTtFMdeULMnyERFDFXigUt+osHvFXgD+dBgflojMH1USyyXRAooZhr5\nVEcsMogDZDSHdAxyBGKldFm1sH1I7b8bHGxw8OvBwabw9bOxIvwZyKg8fRRjxDQjPdPga5XR3ONs\nawdv62MmzTq1yoR6ZUJgugzYYoFP5uqIJqi75VQ6mWvIwCkVF3kMuQZCQBpAOoQ4o4g9irlHploo\nb3SUY52ZVuMm3uK48hDnYMw4DlHUiEo7wZ7n6LMcZSEgveez2iTDmWd4CwjHMB9BHIA5K7BuC5S2\ngrc1ort1zUHjjEncZNJvEbyqMvC7/Nh7SiWf0GgMqD8bUP8PA1IpEEvQppbKzFSRlsbVo31OvYe8\nnD/larLHfFRDjJSypSFZ9TQrlKeXJmgW6C7oDhgS9KI0h6IBwgWhIoRKJnVixSIxLApPQ9YVjCp4\nBdSj0m7DdcGoSZRKqbjJC4M80SlitZyBGyaUYBxRFlpWWp0VwV+R/eX9/gVWqf/tYoODDQ4+VBys\n9r6y3PszEBoyUpATE5FXEbZBsaWRVXX8SkBTH1HPJrizADNMMEYxeaKzMKos9irM8yrzqMpsUSVV\nHYg8CCsluX9L/LNSuiiXfhB5+TpklpDrDnluk0QWzAwYW1BTodAg18hMgxPtCd/6fbSqhi4KdFmQ\nCItvg894FT3nQu7ysDhn0uoSP6ljBCmtaYYIMjomVC2wfKBjkNQc5rZPpLvkWKUCJ9dK76W3hH21\n/iXJ2ipZdnhrvmpWwF4u1wPXQ/Es0BSkLMr/e6hBSwWpIAsodIXCV1EqKo4jqZsK0pJULHAsSBoK\niq9RODppapCmFunMIh1qkMWQJlBEZfFXhOX7HBNKv4qV+nGl5vnQMLHBwQYHGxz88VhdB1HmMJmE\nGPJYJ8h9RrKJbjSQ1RyvF2IF5VYuBLhtDVFxmFkOdzSZhjWCO5dZUeXa2sFxAlRdYHkF7cMFjWaM\n4udIJ0NNBcauivNbleLAYrjVor/VxGiYtJ0hbW1ILZ8xCIARZHdArcCogVMXJOGU5FVBqgdYmk9d\n8ylUB7OYYRUzVGK26iZ5XeJ6MafGI04bknDfQ3czDDfDcHLi3CbJTOLMhtESAxGQKVC8XxRZFW3X\nLDTeqspXj39q3rE6QFz3M6qjeBWUPQv1SME/mtE8GNJq3FEzxlTTOZV4hig0JmaTyXaDsWwymjQZ\nj1tE0qFYKBQjtSzMmwLMrJQlLWS54gTEBMQY5LrCZd2z6UOMDQ42OPjl42BT+PrZWG3IpYyEMWDA\nPIATE1KT4ALOd3pkOzYX+wdUH0yoPZigmgUxNhoFvrPAPggxlBjN0xGmhYhVZKZBJMtWIxFSEs9+\nuYHyGlCHmY+8dOCFTSJcrlo7fNP6mLQtseoDzMNbalcjvB8jrB8j9DdpeVaYg7Pcq1pR1hbGN3Bz\nCqNLqHvlcuoS63cztn53wbPGD5wvHlLcmMxf17npbPH7B79lHNU46J7w4G9POOicABnKMinNdYOZ\nZqLpBi9az/i28gnf3n1Cv7/FqN9C9DUYFxBlIGJKgHqAXRJ91y2Xp5TjYT0BoQPjCow1ssRgkVcY\nyjZjr0G461J8ouFb0D0DXYDehNY+mB+BONRIfYso8ommHlmkIQpBmazNgDvKJG71prKaVrUaLbu6\n579MwP7bxAYHGxx8qLE6hcsp/6Br5edCg8yDRKCqOVYrwn4csdu95LnygmfyR1rTEVqUoUU5kWpz\n57a422pyZexyGj8kTx+SGhb0Lej7y+l2BeX+T5fPvST/5OXXiwUslu1OkQNjEy5NcM2y51c3SXyL\nEx6hCMmb8CEqAlUKcmlwJXe4FDss8Og7W1xXttjxezCf0Z3PaBcZfg38OpgthfzjCsP2Fq85op/1\nCEJv2ekkSxfwt3vkz90n66pHY7l8oAG0wPah7UHLgy0DZUtH2ZZlP7MEpIr0VKiXiWWhaSSeybzl\n4iYOtTcJRitF1SVeHdw63D0xyHoVhlaX26zLXKmQqTqoGTAtTyuLWVmYlqsicMC7Ax4+VExscLDB\nwQYHfxhrRH/1d3RlBzGBeGoziDoci0cIN6W9Ldj5aIbtR4h8Wcvds8i3W1xWu5xohwzSFsnEIg1t\nbo0eQlMpqjqeFdN8PMJNF/hxSCUKUJUM/VDH2tGZ5XVO1OecKp8Q2zV+63zF58aXbItZ6WOtgGqA\nvg3mEVh7EqkkJF9D9G2GZwU0rAm2YRAmMWESE8ic2tNT/GcBjx5dU/ED8qc6o04d3wzwjAWeGTJK\nm4zSJkmqI4UKCxX6KoQmUIG8xb2aUb+/VmSUGI+5L6iuVrF2bf9YvE/4K0AdpeKhP1LR/y6lu3/D\np/43fCq+pTe4xbqLse9iclNnseUz3/E5393nu8Vv+FZ8SuRacJrDIodFDFoAelBiIRGQiuWJ6gLk\ngnsF5LotxIdWDN7gYIODXw8ONoWvn41V29HqBHJcfm0ewLEDFy5B2+Z8f4v+3iHuNKFqTKj2JlRr\nE2pMqDHF9+Y4+yFmO0avuuSxiRi4MLPKn59kkBWUSowFSAXyNhQZzAq4VJCWTSxcrj7bxXoUsziw\nePDomAepRm2Y4/0XMKMMbZBi5uAkpdjRWhJ+EcOkD2c/wPn3sKNBqkLLF5hM2d69IP3Io1iYTK5b\nyFcKNwdbjEc1XsRP+LT3NWHXR/tbsIjfrgSbVHFIFIfvg2d8s/iU34++ILp1yfoG4kZdekKl5Unx\nW4+KNhh+SfbrHjTUcthEQ8KdWprdDjSy2GCe+xRSMloR/lzDMaAnoDUFpQn6PhjPodhSSQubMPIJ\npx4yKpBilUTPgeH9fQTeJf6bE8yfjg0ONjj4UGO19yXltRPlozAgb0BSoGlgtyL8oyl7zTf8zeS/\n8T9M/ms5cXMg4VYy832un2xx1dviRfMpeapzm20xwQFhw6QCi5Xybs6792JVDF5A4cLch9CDOw80\np1ymW9ZRPY2kYXEqHnEtdjDDFEWVywFsCklmkqYmhppx83CL684WN50e7UChGyQ0ZYC2Deo2FNsK\nxXaFYWeHVzxmmjVZhH5ZN03eJ/z/Ei+jdZ87i5LwN4EeOH7ZN/zARnkCyjOB+qxAesunEhoEKnKs\nwAQKTSVuWSx2XdqFQ2NLst3KMWyBugPaDkSPDbJulaHV43bRZaZWyFUdlBSYgLgsTy7fFn/ff1xv\nTfjQYoODDQ42OPjpWF2PpWJjRfjHknjqcBt3eF08xnJiOttTdp5f0mmCXG7zcdfkZKvNZfUBx+Ke\n8Cdji1u1x1g2ibZcmr0R270LGuodyjnY5wk2OfqhhrVjIp0Gp4OP+S+3/yODaAvpKuzpF2xnx2/n\n6qgG6DtgfgbmIwlfpSRfZkQvQ5qeSs9TaNoKV4EgDCSBkPT+w4It9ZJ62yWv6Aw7LU6sfZrqiJYy\noqGM0ZN9kkRnHFdhoSNvFTgGpAV5BaIW93vc5J7Ur3LKgJK4x2vX9J8j+/Bua/BKKdlArZrojxLM\n/y6h17nmi/mX/E/z/42D23OU1xL1tSCvaoSmTfjY4ofWR2TC5Mx+wMBold6npwksQlDGoIyARVmh\nEcX9zXu78rX1oWJjg4MNDn4dONgUvn42Vske3Fdjg1LenlsQagjXJFdNZM3E9RN8sWB7fEMn6VMP\nxzSCMZmqU/Nn9CoD+vVtbne26D/eJshtOPcgrkG89FB6a+oagFw2LI91uLDINZOJW+HC2SUvNBLX\nJXaqBF6b2U6f6KMbquqIaJGjBRk+OdZHBepujqwKVA2MBOwJWCaYVumLqhcSVUhUBIqgbLpOIOnb\nJC9MZq7PhT/D8RM0HywlwVRTLCUhkRaJtIilzfHgiOvbXSb9OsXLHPoBRBFko+XvZpSJqeWDVcXo\nGpjbAmt7gdNIcOoRTi1CjFXSpknWMcj2dXJFJX7jMvB6vOYxX259xrbooqsZhp0j6irpQ5OkZfG9\n9pyz0T7BwEecKGsG6iuz7lVFfd2/apPI/XxscLDBwYcccm1BOXhAKf3XbLDchJo3oetfs6Oc0xld\nUH99iXt5Q3oH2RC05px6JUPbCokshxPvCHM7hZkKAwPMVbKyIpYm5T1aTf5Zfl0uJ6sWKxwuveE0\nF2IPIg+ROYS6SliYMLLvrR8UBTINMh1LS7lVtnjlPsFwMrrWgN7OgJY+QrZURFMlbVh8Lz/lrH/I\n3U2H+I1FeichXpRDEMRKkfNzxVJl7XF9rdrDVmR/qXw0XDB9zC0N+2GM/VGId7DA78yp2DM0PUei\nIKVCVLgs/CpzWcV0E+6MJt+KT5ladeo7M+qfTjHTjKKrUXQ1ztr7nKhHXN3sc3fdIhjY5IGAPIE8\nKE8umfOuuuj9YvCHrHLZ4GCDgw0O7mP9Pq+ppvOktBSYJCQDlfFFnYuTfaxqhqUV6Lsag/odZKBk\nkrFb59g+5GR6yPHsEYPLDvGliQwlRUMFQye3NJQCjFmOlqZEFzmDE4kRgJKXOYvdFGgCiqpG4hjk\nqYa4UGAM4gqKoLQalQYoTjknoigEyRTCq4LcBdUth4QSQhpCIIFBhjuN6AQhh7zhE/U7Is2iHk6p\nhRNq0YyOM2TbvWG/esGw2+Vuv8vwaRfuTLjzYbTyLDVAN0rsZsthSXEEiV8+yuWhJ3P+sKUW7nG0\nirX2MUUHzQDNQPfAq0VUmxO65i3d6Q294xsaJ32iU4hOQdRVvI5BZVtn2qnT0EY4vQB9niJeCYSu\nLtPeVafDjHeVOOt2EOuKzw/t0HCDgw0Ofl042BS+fjZWN+59OaIExQAqaL6F9UBgfh7Q27viE+Nb\nPht+zfbiEvsqwr4KEabK/KjG4qjKmX7Il50viJ57BHoHhAN3VZis1BiLtedaQK7CzARpUeQ+C2HB\ntEN85jHtNbnsHdD1b3lcec2jz16z8/CcPCnR6ssQqxOhdWIwErw6dKxy2Ebbg1YN/I6C1jBJbI8J\ndQLVJTOMMg+7VeCfVLiCcb3Faf0xQaOKruVvVy70cgpQYTAcdBj3m8i+CpcB9G8pR7euQFEBuwrN\nCjQ97IcJ9aMZjadzOrUBXfuWntMnCw1mH1WZTmrcFS0GaofB77vc1Lf5qvsZYdeh693iNxb4Dxak\nlslkq87UrXM+3+flxTPmL334MYfraG0aUcR9AWeVvL2fzG/iD2ODgw0ONnE/jMAB3QbbgKqK5Se0\nrSGH6inb83Os12OC/ydDnMFsUQoj6eV4lTnNumCrOaAqFxjNDHpKOZHNWCk9VEol4ILyXs0ok41V\nUhFR3q/VCeGyPUrYy8l4Pgi3zOoWJlwY99waFQobCofC1OkrPVT9U0a0qDOh3htT6c3JDYNCN0k0\nm9PhA07vDggGFbJvC/KbBLIAinnpAfS2PfanSP86sVf/yMdLso9TFj0qDlRtnIOI9kcj2p/fseNf\ns8sle7eX2EqMVMqkb2i0ObP3OavtI3SVvr7F/zn7exrFmPbOgLY9RFdyYt8mqVjcyi4n80ecDQ4Z\nnTQJ3+jkk7Q0+8vj5enl+gnsehK3Ifr3scHBBgebKGM9N1oWYfOonJAsItIrnfGrCoWnk+3azLwa\n590DfH2OKgSqEAS5Rz/rcXveY3DV4e5Vk+TUQFEzzCcpZjul0p5Rn4xp34yo9sfMTmJuT3LEXNI6\nz2n2oLIV0Nwd0du9hqqgfjLGOk6Qx1C8LL2nEyDLyw4lIshTiIulljIv7d0yAUkKUQGhCklR1pfV\nSLCTXPPF9Cva3OHcRDjXEXY/Zva4Wq5HVb6qf8FXDz/njg7yxoSbCvQNcBTwtHJFohySFBQwyuAu\ngzSDYkxpwyC598rLltf6/aIx/KSZuqlgOik1Y0pPuaaz6OOfzlH+ISc4htshDIagLCStVkHbkzgH\n5YGjXQ+wujFZRSPXdQTG8nky7lUtK5yvE/31Vr8PMTY42ODg14ODTeHrn43VDVwn/RIwQfVRfR1z\nf4H3ecBW45pP+t/y39/8V/aPz+B7gfy+AE9BxjqypvFy+yPitssr7wnXVg/uHHipLn/mnDIBipbP\nFZRPO7MhdChmBouZTXRZZXSscXWUoT/JqR1MGDWaRAcWia9RkRN8McGXEyxVQVVylEWCW4OOXdoI\nVV2otsDa5p7wK3VC1SXT1wj/VTmlYtJpEXYqXLYPUAz5dslCQeYKslDI+ibpqq0rWkByA8VryoSu\nVi6nCi0f9jys5wmNz6fsfnHJQ/+YI+0VR+or4sLmNu/Sz3scnxyRfmNx8/Uu/fY2sWvz5uk+jdqI\n1uEdrfSOWNhcyx2u2WbSbxJeeUTf+PAqhWH4E4R/HZy/bID+cmKDgw0OPvRYm5ij2eDoUFWw/ZiW\nPeTBivCflIR/dgKDolzOPONRY06jHRKJAVVnjtHMIVChaoBucU/2C0pVnrV8XsG7hqEp7xqkaiXB\nT33I/VLxsnDgxi0HJ6xC0UBKkAaF7XCr95iaDU6Mxzi7Ac7eAqsXkYYOaeSQLmyioU38vU38g4W8\nmCNvllPemIFctZ6tT/5cj3Vyr733+EcIf9WGroXzYE7n6ZAHvz3ho/wFn1x9z6eX3+Onwdv/fto8\n4Kvqb7B2Q87lATezHt9MP8NSEno7V/SeXKOaBYHuEWge09s640GL8Y9toh8MirMYMY5Lwi/fJ/yr\nk0zYFIPfjw0ONjjYRBnrSpflfswjCCOII9Jrn4lfZa40uYu7nD/bxz2cYzYTNLVAVQryscniuMri\nvEr8o0P2SiV7o6JWMgxinHaI35pSv5nQfjWi8uOE21PB+YkgmkmUekGzJqg8CGn+/Zith9eorZza\n1yPM7xLkP5Y8Op1AopTiEhGX2zZPS0IfypL4p0kpQEkLiEVJ+NN1wp/e0EwnfJz8gPpCoL0oUF8K\n8r/XyR2N4qGOU8u4e9jmq/rnyAsT6jr4XjmQtKlAQ4GZhLEsZ+yYsvQLGksoHO7bqVe55qrta72A\nvO6NtyL8KphKOUXQSamZU7bUG7qLW7zTOco/5gSvoJ/AcQx6KNG9go5a4KQJ9vO4tOLoxMiKQ2FY\nlO9zytrrWA0BWk3m4yceP8TY4GCDg18PDjaFrz8rlkRRAXS1lBI6EqeSUG1Madp3dBZDem/6NF8O\nWBzD4hSUCvhn4B3A3KzTcMZ4zQVGmCJqIAwTiU25uTTKJ1gmUDKCfA65gcwFuXTJI7c0vi5MSHyi\nmUtld4axm5IUJtViRlXMqDKj6pXLr8xR9iOUTyLUJGHa0Yk6GrLncN5+wGVxwPX1LpNRnXhhltPn\nwhTCDMKMLFLIFgpMlOXkOVGuYjmtolDLivWogLu0TKDeFkcM3o5X9XzYtuGpSuUgYK9xxcf6d+xG\nx2wFp/jBKY5iYRhTasYYpVCYm1Vu6z2mRo1g7BH86DL1akzUOiOlRZJb3EY9bqMu0RsbXhTwJoHb\nOSxmkK+mTayAumnp+v8XGxxscPAhxnsnbVIpt6YEKVUKNKSioSgqhqagK+AK8DOwc4mtCHQLLD+m\n7o3Y9i+ZFzbFU0kxEWRNlSS2SWKHIjJKf4WwgHSV2KxO1lYnq2LtdaWUc6YzKGLIHMrzyzXCj8bq\npE5GPsmlTuJqQBVz6mDMq+ijgiywSAOTfG7Cj0WpGHwdwXgBiynI1YS31eS91anf+9fJWFvm2lqf\nbGTw1vPCMsviR0fD7URstW542njB4fAFzdEx+ssLlEX4lvC7B9Ctujw2DHKpM02aTEYN8lwjdkwW\ntoeqFYTSLVffIfrBJv5BJz/NYBBCNAMxoVQWrQoqv2xj1n/72OBgg4NNvBsrb6OkzFWKORQjxLxA\n3HhkqkcqTEJRRyuq6M0CVRWoalFaGhybpCcGxbEGV8BUQTUEolAoVBVhKKiawFAzLJFhxqDPQZ+C\nZkg0R6IXBZoqUCwBrnxrI6o54EbQtkAtwF2AvCpnCcX9spUroxw6PZRlp1RcB6cG3ZaC9sRlsu1x\n4jv4NwHeTUj9ekL0GsLXEL4B5wD8c3AuoKMNqLozTD/GtFJcL8Sth1huiuWnWH5CGhkkC5NkbhFW\nPBaWz0LzkTMfghoEIYiVd97KkkGjxMg6bkzetjlLE6QOhYIUCoXQSKVJqpkUtg4VBb1SimG8vOw0\nMx2JWgHpg9QVikJDZCqyUMo3tHe8T9cxsY7zTdzHBgcbHPzyY1P4+mfjJ/wYVAV0BQzQzAJXD2go\nE+rxBGcQob0WJK9heAs3UQmg7SEYp6CYAmM3wa6HOJWQ1DbINIPi7UZeyRrhXt64KD8WESQO4ID0\nQNRgWiO70hnudFB2JONmEzuNsZMYR41wjwK8xwu83pzmoz5N2af2cEThO+S+Q+JV+N58zsvoKecv\nD5mde0QDE+YJpDPIZsC89Fia6qU3hpaCmpZTgKReGtwKA0IDolWCl1Amm22WJW6gUUr4d3WUjwW1\n1piH8pTfXX6JP7yguBgxvphhajqVSkq3OkNaJhOnyfDzNlqQEQw9wh89FnkNoRvEhk+e68zjKnlk\nwp2AixD6YZmcJmMQ0+U1XBUhftn9x7/M2OBgg4MPPVbquIK3o7ojysEDWTlxs2k12ep4+A813AL8\nKbQmoFVVKm2dYtdA7Aqa1pAj6wWGGRLnBnHTILjyGA1bjIcWUd+Bq2qZ/KUrPKwUJeuvZ73FIOG+\n/SuiTIaMte/XKBU0cyh8GDnlcIq5TXGqQkNHVEyKVC1bAJIM+hHcRjCIIJxCslINrsZWv+89sa5s\nWalYbMrs01s+rl6Xfn89ycE0oaJBR8GvB+zYVzyX39OYnZKd33H8TVb6qypLm6YoxOz2efhUI8Vl\nsNjCuMuIRg7zsIaIVJRUkhYmmTBIpyrZtUDcBHAXwXQK2WTt91mdrm7Ujz8fGxxscLCJd2N1/1Y+\nOJPyy2lSTmYWCTJyKIYm8pWBcE0URaCqEhkK8mGBuItgqMDIgNhASI0sNyFRiHKX1DERbQ1tC/w+\ndE2IdahVwexBsauSNEwCy2NuVIjbNsWRhhZD86ysT7dG4E2AVzC7hKgP+ax89TMJl5SD6Mw9aD2H\n3kcq0UGTm8Ndzrtd9q4v2e1f4XwTMu1D/w5uE+jdQe8MnO9B7eUY3QSrE9CxhmzXrtnavqHJhIYy\noaFMmdd9RrLGWNa5bO1xXntAVHfILwy48CBugljH87K74C1mVo8r/OjLNmcDUEhjk3lWZSA7jLwW\n0b4Hn2l4LmzdgHkDahPqhwraJwrZgUbqWiSBQzp0yBcgslVb1yZX+tNjg4MNDn75sSl8/Wz8BNl/\nS/gBC3Qzx9ND6sqYWjTFuQ3RXhcl4Z/DSVgq640BNE5BdQRGLcUxA5xKALZHoVlLwv/WhIJ3W5CW\nEn9hQmJDZkFUgamEC5vcdRjudJlt13nTOEQLBGoo0PQcM42xmhHewYyjxy95vPuKvfScuVZlrleZ\nygYnV485uTzi7OKQ4lySD0RJ+OUUxC1wC7EBmQkLo3wtSghKBHKZ1Em7BFyx/JiCEpQt3iH8voay\nC3wiqDHh4eSEv7n4J/Ifh5x/nXHxdUZNV+h2pxx0NNRnBsPftLn+TZf0jUHxQmf+nxpEdyaR5TOx\nCqRQyCOdItZKA+84gmQE+bg8xRRT7g2930+aN/HPxwYHGxxs4p3W0EKUsvRIksUm86zCQHbo2S1k\n26PyUKNdQHFdfmteUcg7OtmuidyTNNQBj9UX+LUJi6bH/LnP3V0beWoRnLSIXjnlU00smBqUJ2wh\n98nPKgFZV76skiOF+3HZ2trrVykVKv8fe2/63Vh2XXn+3jxiBgiOQTKGzEhFpqSSXHJ1t7s+1H/d\n3atr9eruWlVty7ZkpXKKjAgGZ4CY8ebh3v7wABIRStlpW5ZCTuy17kIskAg+PtwNnnPuOXu7ILxK\nU2/ZgMsape4iDJdCs5GiRMoSRA5ZWBV+szmIJZSL1f8R85Dwr+8NPLTdr22110l+Y2OtuzrX48wr\nIVfTgLoGXQWvGXBgX/MJXyKXN1xeZFz+piC9e/gUqqsxvY9u2c8CcqXG6+AjzFFGfmawvKwTXXrV\nJFqhVKeXWYZMAkQaVb9PseIGy1/bKMcAACAASURBVI17+2G7EX0Y2PJgy4Mt3oXkYewnWj1m1d/h\nSQqLHHnboHxZR5gOimY+vFRkyCxE5quWk9yFXEdInaywKBKDqHDJbAvRU9GXUHsLPbM6f2vUwdyD\n6FAha5lElktg+CS9KuHXFWirUFtt4WQGyaQyyo6zasyrpAqjQlmZSZ8ewt4vYPd/Vfmq1uas/pg3\n1hMydLzbkN3f3DCP4CKEVwnkY3DeQt8CTSkwegl2J2Sndc2z4ms+Lr/mKLrmILzhMLphaHe5dPe4\n8vb4vPcZcdPlunVAYZuQ+HCrrBy+13qvCg/F482lrm6iUo2HZToUKnlssChqSFky9rpERx6y0PG8\nyleoU4LsgHKioLxQyPsa6cIkXbikYxsZZMhi08n0fQ2jLb4bWx5sefDhY1v4+kexFpZb/3u1pLyP\nuUSpkuYWUe4RKS6ZbyH6KmoA5gxcF/AUlI5K1tZIahaZZlCkOmWkIwoNqVTjYpVHdXv1Y95vJ1xt\nflFUHS9FBmlV6ZWBIBUqaaJUzkgxEFfdOHrHR68LHLooJgjDIDQaBNJnKWos8jq3b/cYvWkRvbHg\nIoZpXLkVsepyIQShgdAh13lH40lVQdUrDQ3Lqk4rTQMUE+QqaM09SD3IrMpFo1aitEusJKE2Degs\nJ4SjOeoNJBfg6qCnUMug3l/iKwFeK8Aex2hFiRwrFFcK6CUYGYiyshXPWAnNTqmGptcnmGsNjnUw\nt8U/D1sebHnwQ8V676+T7NV7LvKqE0TLyecKyzuf4VWfK3tO3x3TPZ0T2k20nRJ1V6D2S5RHBUqr\nwFQSWpMRRxOFWjYlNj1iw+NO6WM2JeLERJMF6QjSN1CwFvxu8253yFpP4333tXLjWpWN30XlvqtE\nZpAVlZAqKeAi8Vajxpvt7Ou9v94/EQ+C1+vCwmZn5vo00qpmm9UGqHVwauDWwKuDYaAYBoquV7p4\nOdUY264DtZUIuVxdt6KgCQWzADer+KBQ1dztvNr6yvqtiavLlWNBcZNTnKeVWcb9R0gCMgC50ma6\n50XIP+3K90PHlgdbHmzx+7HZcZitnhNVR2QmK4GgFWck+Wp/rUeWBCgCFLV6QzUNbBUMFRkqlNca\nke0xoM/L+hO0o5h8kpJHGXJaMnpisHxiEJ20KDo6PWOELVL61hCnESP7KlnoEEuHpK5TLmLkIsEI\nUmoZ9NKqeV3kVbily6pMW1egrigUWo2hscdL8ym92pjT7luU/WrEzFqCF4LeVilbGlFLxSpCdm/O\n+UT8PU/MMz42v+Uj8xXt2YDmdIAxHdKoLRHtELe1ZCnr3LQP8NUlLEzKS41C86gOCmMgqeIr3a1c\nW027suI2rarlUa5i0dyFzIJMoUx0kjsHXkuGvT5vlMd8vnfLVG2hGwW6W1DWVOJDi6Rh8ZJnXM0O\nCc99xGsFRgWkEd/dIb/F78eWB1sefPjYFr7+Sazf4HXHSVklmHklapHGFtO4RRlDxxszP2mQS4PG\nEexcgXYNhaPifWKRPzeZ7/ks7RrhvEYy8MgDE4FaJcmiBUKpRrdkSmWTnVAFWTEP7YbrIE8DChAL\nCPVqlizQIVchU0HTEV9ZlKlF+trlzttDeCYjp09aWCSlRZLZLG484hsDbhO4W8Ji7aK0bnuHd09S\nV45OmKDXwFytplEJ+LWMh1sngLkFUwumGopVopoSVS/RFIEiBKw+aMrV1EQpqrqGzEDJJWop0GRZ\niSAaYnVQmlVdLNkUyrR6kZQ8VMYDqkBu9YHx74SwfzpseVBhy4MfHjb3/irhL1PIEpAx2Uhnfu5R\nfrGH0ZdoGoSPPboHI8xlirVMadTm9B4P6XpD3HlA+3NQP49ozoZQs5B1k3G9j9NIUTsCU4aMv3WY\nWA4FGlUIpgEtHjLY9TjBuutk021nveng3aR/pb9xz+OUBzOJdQfKpp5DwsPeWf9clSp0WHe1rPeT\noOLDSqRba4PRBqMDuzbs23Bgo9RB9UHzC0SkIBY2YrGy93YsiFXSyGSWN7lVdmmaOTVvjt+cQ16g\nqFWcVzRMcqfORO0xynoEmU8R6RBmEE+r8d4sqUYFSgkyBxlv3LPNAsbvEybf4gFbHmx5sMXvx/v8\n2MR6j86pOv+ch0fFrJJ8zQFDB9sEWwdHrb79a0mU+rzZP+W/7/0lNyddPGOCtzvBiDLSXo2sW6No\nOyhNyXPja9w84lS8paXMKFyd8eM2N3t9Fkuf1mhA+25Ae5RiTKE+g93ZSkI1qC6/NwX3LYiuQnjg\ncSd7XOwcMe59S/yZi2JC4xaObsEbgvexjv7CYv7CxBnOePLN58j/d8pBfcJR446jxohstGB+F3E7\nlFitGHtnwtFOzqCxz05jQPvRHdw0iRsmpWYhFb+K/yir++L41aqvhMKbelUgKVf7emnCxIaJhogl\n2Vsb+UuFm0f7/KrzE8KOS8+9w21EeI9CCkNnvtNkLhpc3R3w7ZuPWHxZr/T8rpNK9+4dDb+tJur3\nw5YHWx582NgWvv5JbLT1rwOhta5FAVlsMo1bLGOXnfZdlfDv6di30HsJzW8gtVTSFybJj13mdZ/l\npEY4qRHfeshAXSX8KpRNKL1VAhtWY1RySdW5sdasWLsZra8ngnIKkQWpCepK2E7ooJiIpIm8sCg9\nl7umwbzZRq8XiExFZCplqlLMBMVUwDyBdFkl0YxXP2cdPG523GyIdGtNsJtUVnkaHCiwvwow1/y4\nVSuniVQFS6AaAl0vUdUSRcjq4Lio6iiFhGKV8JOCkj0k/KoqUExZxZNGugrorqEMQAqQ69nyjIfA\nN9u4b+v3c4t/PrY82PLgh4rNU8zVvhMppAnkMfnYZ3HuE9WaZIVL9NhhcNql6U/xihCvCDnQL3nu\nSNrOCH8QonwRY//vE+S1ir2jYu0oTE77KD8W5I81hJcjOx1Cq0NEnWqfNXnQOFpZht93oaw7NuCB\nE+vOjfWYMjwELusOlyVVAr/WiFgn8OK9/6fkQbdI3fheg4dEueRhrMsDrQVmD+w+7OrwXIUXGspO\njtbN0To5ykyDgY0Y6DDXYKnCQiGLLGZFgxt2Mc2YnlfQayyxNi5j0jC4choMtD4j0SVIPcpIe0j4\nkyvIlw8nofefGd/lWre+/i0vfj+2PNjyYIvfj80Ouc1YaZ3sbxgY4FGNuzapKqA10G2wbfAVqKng\nKFW++RKixOe1e0r42ObtwSH7exccfHqJU4aMzR1GRg9Vh8+U3/IpX/A4O8MVMa4SU7g6o902r2qn\njPQOzy41WlcBrcsJtWsorqAwq2bDNIcihNoM3HOQrkIoPO78HhedQ8a9DrHhoBxA4zU4r6D/BtLn\nOslnNvOfurj/dc7jb2bs/tfPafcyursZnd2Mi2HB7VXJ2bVkv5dwsl9weLDg5pMbdj4b0DoakZ3r\niHqTRLeRyur+SQV0E9w6NGqwo8PeKr7SlfsYlOEqvkpUylgizy2KwuB2uU/8E5ez42Ma7SmtoynN\nckZRmAzzPnf5LrNRi/DMI/rcg29zmCaQLKkqLpvdnVte/NPY8mDLgw8b28LX98Z7BBYxECIChWyg\nkr3yGIkeb/xTPvc/Y9mvo2QCVRVkqsmi77FwfF4pT7gu9wnSGhIVo5NjfJShtirnClGqiFSnjBzK\nUENEGiSyGmFay0jcBywR98FbYUKxth3dcHrIQM5BaoKkoZA0FPA3umFytXJMioBYBVWriga2DcJc\ntZ2UQEzlUBeDaoHmg9pG7blofQt1V8XbDfF3A7y9EAWJFJWrRNT1WLZ9gq4PhxLFADlSSTKHmdrk\nttWn3FdQg4SOSKgrCjQNlg2D6V6TmdVkHrUIAp80MZGFrPpRRVxpbYglv+s2sfm4njnf4l+PLQ+2\nPPihYmPfy9W4kJghAhA3HrlpgnCRokuEjt9v49Zi3FpMoevsiiEi1NEmOfJGkL+VcAHKAuw51DSV\n1umQnj5g1Kwz6TkYe22YmFU7u2VX+7IsoCghTysThdisir2lCaW2Go/aTGbXyflaP09bPW6MLb/j\n0LP+PcXG9661iNbcYqOBptwYSV5rGXngN6Fbh55L7aOAxsdzGh/NMOsphpuiOxmFYpDpNnnDYnlX\nYzlosJB1Qt3jJt/n6+Un5Nhk3Rr6Jzb2MqlON1UYnuxw4Z7wOjzh7eiE6ahDPjRgUkCQQh5WXaDv\ndO5sFkLWv+N2rOufhy0PtjzY4vdj3S33XftqtWfUYpX7qyiuitaSqE2BUU8w/RTTy1BsSa4ZFJoB\nriSSHlfLQ4KJTyQ8orJGXVsSGQ6xb+MpAfpdjH83oja+pVjAbAGR1IiOS5R2ht1KsOMcKxGYGZga\nlT9QB5KJijlRSEKN6KDGtF8j8FrMjQZ+GfIkfkO/GOIpYTXB29ZRCx3N1VGemHCoI7ugaRHWPER5\nE2HNQVlCMYd0XImIB0PIyxLNLPE8cNMIS03R/RzVzVCMVXe/JkAzQauj9TSMfQ19v8DZi/D6IV4/\nRNElolARuUrcc1jWaywbNfLQQEgFrnQixSdzDKZ2A6/XoaHNaWgzitRgvNxhvOgRn9vwbQHnWeWC\nnSwg/y7zij/vTpc/LrY82PLgw8S28PW9saltsT5hHEFQwGsXHJfZqMPnhz+mOLDo2iO0Vo7u5BRS\nI7Q8wqnHndjhTfiYQPjojQL/4wW1ozlmlpELnULopKFBcqMT35jVCeDdSrMoN6mirHUr//qDZFNY\nda1nsQrsZE6lTTSBZBW8JdoqOLSqx0IHaVSVdrMJhgmGv5rJlpV4rZgBM5BqNdZlNcBqoZ+A/SLH\nejHjqHnBSeOM4/pbFCRCqpRS5XJxxOv5Y97MTslME6mpFN+aLOwml84BX55+TKPhYO0OefJsiKHq\nqH6doV/jsrnPZf2Ii9kxw8EuwdSjCFmV5FezYb+j7yHeW1v84bDlwZYHP1Rs7qt1u74KcQ53GZQl\nxVIhulKRX7jEj0zMxwLzicCrZSzzb5C5jhwKFku4KaDMob2sDuuytkAuE9xiSd0LcHYE2jMbbB+l\npaI0VbBAxjoy0it30Vsdbh0YVdpxpFql9HrPjZJ3E/UN9593kuDNfbP+HQXvCqh6D2vT60KsXiuL\n1c9ZjXm1fXhmw3OF/uktn5x8wSeHX+CmEcY8w7zMSS2T2HNI9hzO7FNemh/zjfExi1qDt/ljsqHF\nqOhzc3DOjbOLUyRVPUNVGDo9zrxTzu6OuT4/ZHC+S3ZhwqCoPpaK9Xu27gx6nxObXaxbfH9sebDl\nwRb/ODbHvdbC0xr3zp56E/wG+E3UXQfzicR6EuL3YlrWlJY1RdNLlmqNpVojVl1yRSe7sJm87SFS\ng0XapGnPaD0e03o8Yce6xnk1Ifl1yvAVBEm1ErNACSbsKiqP5IBeMMJPQ1BB7IDYhRKFMtIoIp00\nc3jbPOWs9ZSrxiM0X/DYOuPj5Td8PH7J/uQWJhBbFsGOR3Dkoe4WqK0Cl4iUlJCSqYQwhuUE5jlM\nAsgiMGU1saXZoPggHZXS0MgxKKVAyKAa7dJNcA1wPczjAv9FjP+jGXu9W45qFxzVLzDUnEyYZKXJ\nzWKPV4+e8Hr0hOVVHXmmIt9qyDcKZarDpUJcA3SNTHcQhUoQ+RSRBuMcLkMYhRDPK5Xy33HBXne6\n/Pkm/H98bHmw5cGHh23h63tjs1q9TvjN6uGNAqHDbNzmt9FnvDVPcfYjjFaC6cfIQiEZeyRjlzh2\niagEwPVGhn+0pNsY4FgRKRaptIhmLso3DbKvPfJvzZVmkV3N7pJS9X0GvJvwr0/u1I3rXQWmcgbC\ngFivLMFVA6RblbilB6oHigGGDbZRzQ/bZWVtAdXcFQ4ItSogGDVw6uA1MU4i7J8H+P855MR5xc/1\nv+Vnxt+iIiilToHOr/OfUOQKg6xLedOguLAovzWZ95tcPTngy9OPeHwMJ09zTpYTcs1k4tS5c3pc\npgdcLg+5nD3ibtihmCqUoYS0qObA5FrjYzPA3Wyz/fMl54eJLQ+2PPihYnMMKKbaYwUkOYwEzBWK\nK4vIUkktD/WphvqfDBRLp9ELWaZNZKIj7iTLVcKfFpAFVeOMelcilylOvqBmBtjrhL/nwYFAORDg\nS5hpyJlWjc5+7VSjrUkKobaSPFJW17dO6ledJ7g8dKzoPCT5GQ86PzEP2XxJlbzXV2vDkW6d7KtU\nrxfZqri8YbHdNuCZAf9Job834Kc7f89/6f0f1K+WWFc55uuCeMcmrDkE+y5/W/uPxIbDG/2UhaiT\nFSa3gz1u/H1u9ne5fb6DrcdIRUGiMAp2OJ8eczE6YX7eJD23yM4tGEYPtYv7Iv1aF3CTE5uPW3x/\nbHmw5cEW/zjWf3PXhhBQJfwWUAO9AV4TOi20Ew3rZwH+L0I6hyMO1CsO1EsMteCOHndKj8m8y+xV\nm/BVjeTaYRk2uQ1z2rURL+RvOO6ese9f4r6ekvy3lOEvYSxgXEJWL3ikjjlqBOx6GtYyw0wrdwS5\nA2JHoWwrFEKnlCap9HhrnPL/Gb/gC/1TfhH/kl8kf8PPg1/hjwK8qxA5UEgeW8yO6owet6hZC2rW\nEo+YCQUhJUPAicHNwZlDXFY+EqYEQ6t8gPBAOAqloZMrJgUlQqar+KoOXgtaPuZJQP0nUzr/04hn\n7a/5sf4rfmr8GouUmEqw/Mv0RxShwk20Q/C5iwx1+FJFjlXElYEwdUpDJzMcAqNECigzjSJVIUkg\nCSCeQD5ZxYprF+w1Z/68u1z+NNjyYMuDDw/bwtf3xvudLgGgQqrARIXUIJUuqeExVutoC4HRSjFb\nKUiFbGaTTW00IfD9gF3/hpY7Zs+6ZpdrPLEk1S1SzWJZr3O7u8egzJmqTbIUsolDuZBQ+lA6INYC\nrO+fXr4vsroqCsgSSgPK1VtuiNXLFbS6RK0VaPUUwy7QnRzdKshjkywyyCMTsfQQiwZyUUCjAQ0f\nGja1/Ql7RzfsnVzyJPqSw9nX7Ay+QZMCiY5AY1pzGDZajPdaDIM9pmGH2as2Qehz7exjtRNyx0To\nLkrTJ1UtBlqXgdblZfyMq9sDZpct4lc2DGOIYyjXrZfrE8z12p5a/ttiy4MtD36o2NxLGffdIKsJ\nWGKJxKPAqhzoFBP2bDhymCtNplqLsdpGs5vk7QxjP0VVSkwddB3KXZ3Y9JiFHZZBE8MW9B+NsXZK\nrHaC2UnQ7BJha8imTla3mdNgptYJLQdualUVIVGpgpQElBIst1qmU3Ux6iZoetVmU6xW4kDqVLbj\n99pwBZgNMJpgNlFcH8XzUBwHTRWoWqU3V6YWRWJSphIivSo8RDq6V6L3M4zHMT17yGFxzrPbl1hv\nl4hvS8Q3JW5g0jQdhG9zp+zQs4d4/YB0ZhFNXJbTOkVNo9jViKWFaaVIWRUkZpMWg8tdBlc9kpcm\nXBUwCyBaC7G+z4mSLf4Q2PJgy4Mtvj/WBVSde01QqwFdH05trKcp/eMRB7uX7DUu6QfX9INrdFHQ\ntrvsOF2Gxh5vjRMy0yJWXJKFRXjloNgFyWMbJQbTzdDDAn0sUG+qLS9LEAtJ+TqlbKfkRTX5Srj6\nWgFCVioOpSopVUmqSzILipqCcME+D+gOBhycvyG7hfQGlncQupJsV6AhSLEp0JlTZ1FfII6WeJ8u\nMQUYykoFT1FxFA0VDR6ZLE5MLo9NBvU+07xFdOuRjjSKSCBFCZaAlgr7Bt5Byv7+gMe7L3lm/Jaj\nxVd07r7BLlJyHAocIkvn2tvhurWLNhMEnQahXacoNGSQQ1pQUlLqsor7pNgQUw2pHLD/MRfsP+9k\n/0+PLQ+2PPgwsC18fW+su0okVTAUAgqUymraqoSBD4oDcxfxtUbpqmSuBY5KaRlIS8VtBjwyzzht\nv+ZQu6Q/HLA7vMWLQwpXp3B0plaTV9oTXu3NubQOmS7qzAZ1opkNsQOJByLloeXe4aGF/32b77Uj\nXs59UUA1wfOhXoNmDeNYYJ2k2IcRNWOJbwR4Rsg8azDPmsyzOvlryF/XKN5YVet+x4E2dHojnntf\n85nyKzrXr3F/e8nstzFGLqiorVJ7dsPpi69RXyi8ip/yaviU5SuPcGJxm/UpAoNZo8OFc8pv7BEF\nOovCZ1n4DAa73J7tk52bcJHB9RLSGZXo+JL7wHSb6P+RsOXBlgc/ZKz/6Bc8dBWuTzMzqn1YA/xK\nJXVmwLVN6liMuh3edB5RGhFqMOaonGCexPge+D5M2zbznT1ezl5wJR9hKhnPdr7GkTH1bEF9vMQm\nQdoq0tGY9xt8oXzCF81PiPv7yH8wkVGjcvRZu91pAhomdExom+Brlbado0JYVrp2QVmNiN1lkGVU\nOnYRKCl4jarA22qgHmjohxLtIMJSMkw1w1QyorlNPLOJ5jZcqnChwaWKZUb43pJac0lnOqJ+HWBd\n5qQXgsmFZHIOzkTQDDMaU0m9F9DozGm0J2SBQTJ0ST5XSVWbabuNaKtoRgFSqXqNFg7LkUcxEnAb\nVisNqEwwplSfTZujXVv84bDlwZYHW3w/rF0/Te7FvN165e75QqH2ZMnT2mv+Q/R3PFq8xjqbY7+d\noWYl+32fou8z9A9w9JTs1CJ1DdLEJD0zkbEgCzXCwiFSa7RtG7+mU2+CFoMRQ5CBuIIbHUbXPPjd\nCFAaoNRlpSmulOhKhrQj6i9uePLiS/yTmEe3r7F+PWP5K5jPYTaHRQiul+J5C/pOyaDT46p7wMDq\n0dx7S+tnb3lmBGhItJXWdqQahKpNqNqU7SbXnRbX3RZfyY+4Wh6w/KJJ8hqKsVrFk44NXR1OFBr9\nOU/s1/xl/jd0Bq+xv7lm8HWCFRarAeaS2sGQR5+8InzuUXMjLhvHXOzYFEsd5ksog0oPUBSQrwrA\nZVkl/veHuGtzjIR3Y6o//2T/T48tD7Y8+DCwLXx9b6xPOQXvnHKKEtKVwGqWwLwBZwrStCk0nVIz\noK0hj1XksYrnhhybZ/xF56/5KP+anfGI/t9XDkeioSCbCqN+h+bpDP0oQ/YFyuCQ+K1PdLuyfS28\n1YZtrlaNB/vstbvQevRrzsNI2KojRjHB9aFbR9mvYfw0wPvpktpnS7rKHT31jrYy4Ubsoct9slJF\n+WsLYdcoAqtyk9jRYAe6O2Oe+1/yV/w/FNcT4r9eMP3fIqxErhQxFGr/+YZTT2Hn4zlmlBEMXd6+\nOiR0HPLlLtNxj7e9x1idDKuTIgqVItQoQp3kyiZ55ZC9tmC6gHgJ2YjvTvj/fZDyw8aWB1se/JCx\nOTa6drhZjxAtqfbgapQo02Fmw7UgbZiMOm3etI8xOiEHpWTfDGgmMXob9A5Ehs083OOb+Qtuw11e\n7P+Gj/a+4rH2mt7FmJ3bEbU4gP2KH4NGH7OVMDxpc3G0C7EFb63V1a2uU5PQUOFQhSMFugp01eoy\nZ7LKi0ei6rtPBMxKKgfVoHJT9erQq8NBDe3HOcZnGeZnES6rpURoty3KgU50a8I/KJAocK1gmylN\nb0q3OaBzc0ft5RL7f+Qsbktu7ySvR7BzV2JNBXu3OfUXS+rOnOazCdGNgxiqpL+ySCObqd8h8Oso\nmrz/CCoTyJeScikhDiEZQzYGZjzYb68T/i0n/rDY8mDLgy3+aWzOwq4T/iY4DTjQ4IWKf7zkqXjF\nX4X/ndOrr0j+Nif5ZQGRxPlIw/lYZ3hySLpvMTjqMu404K1LkUvEVJCGOmHhEik+imXj1zR6DTAV\nsPPKpHpyCTcTWFrch2+KBN2odIZMXeIpBT4ltidpRNc87SgcPbqje3OJ/espy/8TbvOqmXIo4MRJ\nqTkFfTvi6mSfc+uYv+v8hJ/sW+xYAU9PzlBUkCuPoYVmsNBcTK3G0NxnYB4wMA/59vJjrt8csnjT\nJHldIscq8p2EH5q7C546r/lP2d+gXl5z+zcJg/8rwZxIOpSYpNR/OuSR9QrzqcBxc4qmxbC3RzSX\nVWd8OKrmqct0NZK8SvrvXbDXMhGbWqnr7sgtb/512PJgy4MPB9vC1z8Lm6ecq4RfSihl1S6f5xCt\nN4qPxEXiQF+FuoRDiamndLURp8obnmTf4I7neG9mmG8T1CZoDRBRyE63wb7dYOH4RO0ao8Yu1AzI\nPYibFVOdRrVsH9UwUE0DRdMRAoSQyKKEWKlc6mK9Gu8qKm0jpeWgHhvozySdxzP2Dq7Y61zRiUd0\nohHNZELDm9KqTeg4Y4bHuwzGewznLagp93IXthvT1iccKFcsg4C7m4zFNzlqUpUXAKzHIfpiQk0q\nXCoTXCVGUQRFpFLcqkSJDmMbOmoVkBZAIKt1K+FcwOUS4pWwOFMeAro1KbcnmX88bHmw5cEPHWLj\ncZ30a6vnVlbdmQVTFy5LEs9i2OrxavcJ0ldI3Rpiv04o5vd12zNOuBg/ZpDtEUgPp0w4zC95ln5F\n7W5C/c0EdxFixWBl4PcXHNWfsdu+pq0fkex4JDWP3LbvGx/VeolzGuE+W2KfxJjNHKNZoHsFRVun\nWGrkOwah4RHiEysuRCpEGuQGWttGP1YxPsppPhnTOhzT6k5wiwgnj3DziHGrx8ToMWr1CCOfcOoT\nDH3oSJS6QHNKVLVEKwRaJFAXEmUOcgKKIdGaEjMR6EWBqpZV8UFS1U9uoZxJSluS2hIU8VBzyQpI\ns0pbSsyp2vPXheCYdzUptvi3wZYHWx5s8Y9jnfTrVEm/g2KaqA2BupfjdgM6oxGHo0sOLi8ZnUH+\nspo68hXoamAaKjvtIS1/gu8uKQ5UkkOL0tIIzDrDsE9jHtKylvSO5jhxTrIoYSHQFgVakKOHOdpy\nY8xVVrluXoIQYCGRSDS/wPlJiBFOKaWkXi6wsxQlBjWrllaCkZZYZYmjFqSFzTDu83LxMbUypuWm\n9LQMVEGpVbKoQemzLGssyxrX2R5XyT5X5QFXF48Yv+qQfu1Qnmcwy6oYTdeqjsy6guWmNI0Ze/KG\nPBwxGUD6CuQdCAQ64HQiGrMZhbjjzpjiWhGaW4ItQM+qAjZLkKtOzndipk2n03Lj+X8fif6HgS0P\ntjz4MLAtfP2LsN4ga9E+dLZDBwAAIABJREFUuG+pJ6ZKRmtAC2iC5oFjQtNE90s8GdNezPAnM8JR\nzHhcUtyBFYI1gVyWiNMlzWTIrtfmztzD9LKqPT/ywZAg67DnwIGDsmti1EuMRoLmSvLMIMtMikiH\nKw+u1MrxaB3IoaL1VPTnJc7Plxx7Z/w4/w0/evNbnKsA+yrAGoQcnlwSnjQIjxv8Wv8JvzqSDPUe\n5CoUSrUkSCqRVVDQUL5TaUmsvi4dFdnV4NioTlXLuNIrWgB3Onh6NWydimrN82oV+eq+TnhI9t/v\ncvn3Rc4PH1sebHnwQ8b6Pgse9n/Ofbt4asHYB5mTKCYDo49UFCa9Hm/UZ3SMKa4eVy+LYKK0+dp6\nxnLXxSpj6uWC3sWY5nRM/FXIxZc56gQ6F9Btg7JfUP9kxsEnV5xYZ4ycPmNfJW/Z0AbaoPdzdp4O\nOHxywd7RNQ1lQUNd4CkxQccl7LjMizpvvRPeNk+52jmEGwOuXRhr2Hs57vOA2s9TnjiveJp9y+PX\nrzAXWbWWOeNWh3Grw2i/w9nklDeLJ0TpY/ITg6jpMlMahJ5HtmvCUwUX6CVQ3kHLg3of1CdQ7OnE\nrsOiqBNmHmlhIIVStbSkK5FVpXjY4mWxcjRdObay5N1kf8uJPw62PNjyYIvvhvKdS1UlhpFhOimu\nFmFGGepAkN/AYgaDHEQO5hwa16DWBdZhip8G1OpLklMH7X9WyEYO414PZapRFA6YKuJHGrPjGiQJ\nSpyizCPs1wsOXs85uo7uKSpEJRMax1CkVaRWo1JfilDJ0SlUA6WhYx2p1D4BMQV7Ar0ltFvgHirk\nT1Ui02GWtRle7vFFXhJkTc7yJ4Csdp4C6dwimdokM4t5UmeWNJimdWZ3HZYDH3GrVPXauawubr1n\nVx8rUgWxCqY0tSqd3HutKtW9VhQViYaQKlIqlQ6e3Hwv1pMKa26sObEu3G/83C1X/oDY8mDLgw8H\n28LXvwhrnaP15iipNs/aQUincv1ZnX7qGrgKNPSNhH+OfzdjNC45n5QsRlU+72lgUFCOq4R/T21y\nbs4x3VXCv6xVrnOqgH0NXmgoH0n0vQinH2M0c6LYo4x0iqkJn7tgWZALUKskXSkl2k6G+TzF/Ysl\nj6Zv+fn07/ir2/9G+ZsC8dsC8XWJ8h8N1NgAz0TVJYOjHX599CkMgKEKg1XCv0r6FZT7ev5mwi/v\n71qV8NPV4FivVAcHAQwnIJSV2KxZvaJcudXlKWQxFDFVkh+s1voUczve9afDlgdbHvyQsQ4KVB50\n79ZFXxVSGyYJBDlJ5jBQ+sxEm7ePMqx+hrmTozll9ZIQcl0jqtmENZt6PqV2taB3Oab5Zsz8q4LL\nr0qSIZzaYDtgHBbUtRn7h1eM9zrgaoRenUUTOAQegXFcsPNkwMdPv+CTvS/YWw7YXwxoJTPG9Rbj\nepNbu4/VTFh061XC/5UBpYaSmFj7ExrPAzp/MeL56Av+cvRL/uLmb1EHAnUoUAeS0Y9bjOstRvtt\nfhn+gijxeCtOyI8NopYLakHoe2R9A/lUwY1h5w5sFRwX6jugPq4S/sRzWORVwl+UBkIoUCRVpJnf\nVHpL90Qqq2Rfrh351noUm2LeW07822PLgy0Ptvj9WCf66v1SFYlpZDh2iKOFGFGGMhQUt7BcwDCv\nmucbM8g1UH2B9XGKn4XU3IDl4yaaC/nYYRLuEE6bLKYt5J5C8Uhl0XRxRYBbLqlN5uz8D5WeTGjF\n0f3lFGXlRzQpYJneK/LhAPkqgslVA6WpVQn/c7Avq1pykYPWVtAOFPJnKtHMZTZrMRzuERRVsu8W\nUTUMsM7bL1XKC43yQiVfaOSBShZo5IlNnjiIRIVMVkvcB1QgZfWggjQqc29drUbYLMBSqiUUBRUV\nsVoS5Tty982EP9l4j+R737jlyh8eWx5sefBhYFv4+hdDvrcKqo10721NNcccgbSrEq2wkKVCKVWK\nVRVZ6CAtgWLLKjvWQFoKQlcpVY1CqIhCItOVEJ2lQttBMwXeSYD3UYj/fInfWOA3FlhuQux7xKVP\n1PRYJjWWuU+keIhzFSlUCCSGn+L0Eur7c3rBHYezS06/PWP5EpZfQfAV1JpQ74LXV/hN9wWtzgS7\nG1OkJmJgIGYqYeBxl+9wJo9Ra2OKgznmj2aYiURdfbIkjxrMGjvMOWAodwioIVQdZAZpBMGkIvm9\nMPn6fq6dA2MeCLoO6tat+1uHoj8ttjzY8uCHDkG119cdkCmV4UMA8QJij0KVFLZBqLgQ1SFQKw0g\nV7l/WxVboB3l6H6BaklMNccVCV4aYyxBjqEcgnABFxRfoscllkyxtQRDyVAVAbpEbZeoxwLn45Be\nd8ip/YZP8i9ozwe0hwNq8xlur0WrbNJqThjZO7zdP8XzAopIp7gzkCMTt5nT2pmyv3fF/vScg9Fr\nDr/4lmII5QCKIaitCf5xnR1RZ+Ds83VvjpJAWddJUht5JRmHXa68A16dnGLFASIuEHlB8FQjemIw\nODY49x4xSrtE1x7ZrY5crASMZADleoRr1Rl0fzpZfMd6/8Ryiz8OtjzY8mCL38VmR+RqjEiUkEuI\nFYSjkSkGsW2T1G1Eu8DYKdFiidpSKFsKtAU1d86+dkWkOvhuTKMTMlNb5KpBnuloRcHCrHPuPSJs\nuPjqkpoa0PKniKGPNbVwFee+06UUEjHP0OY51jJHW8UphWey2O0ysPcZF3vknkNxaJPlLlq9RKuX\nqB1BfGIT9S1C3+FsdMJwtEP4pkaYe9UBYy6qxH29DW8qsweu1OprZQmlQFUlqg9WI0GIvHLWKw3o\nGqCqMFeIFzajbpc36jF23STej7E+jrF6EkVRyBWV4KTJpNHjRh4wTPoswzploEMoIRPVAeLvcGSL\nPx62PNjy4MPAtvD1r8Y68Hi/JXBDKK7IVo5BkrxlMHfqXNf62IzQDxYcHs9BTbEcsGxIjnSuDpsM\nvUPOy0eMl3WSoYBRCJ4Jj0ysXsbR8wtOT19x2LugHsypv1ngpjGZb5F5FoFR42XvKS/1p7ztPyL/\ne5M8M5GZiqln+GpAU87wFiHGVY78FoJbuA1gKGFvCeoteN+CIXPcWkzdnpPkHunUJX1rMO51+Cp8\njkpOf/813V+c0fMFei7vq87jJ4e8PvqEN/IT3oRPGYz7lNc63BUQRitdioJKDcng4YNxfQ8zHoT2\nNt2JtsHch4MtD7Y8+CFj/R6s9REyqrGjSfV0GsDYAZxKWfXagJYBpnb/lsoWiEih0HXKtomwNGRf\nQY+gcQn7FqQ6dJrg7IA8Ucm6Fku7xlw2iHOXItJRYoFhZZj9hNrhjG58x97FLXvBNdn1kuF1ys1E\n4nQT3O6Cna7OTmdIv3PLzt4NQa9G2KqR1GxcJ6SnjziSF9QmI/LXMXd/D+ECogWES/BucrzLkM55\nSS0OsPQcpScphUZ+aSPPVa78Q35d+zFiX6FuTHHaAc6zJUnPrcaI9xp8tXzO28EJ2a2N/EpUo795\nQqVlF/DQlr/e8+XG+mG06H/42PJgy4MtHnA/j8oDHxJErpPNNLh2WSoNZl6L0Udt3EYDtxVz3IhQ\n0pLWng57GvJI0n0y4rn/Fd18xDJoEowbLJd1FmaNxYFPoPrEqs3srs1osoNlJthmSk0uGNb2GLzo\n0z8c3Cf8iiwx4hlGNMVIl2RoVZeI6XD29BnfNF9wHj1mxxmysz9kx73D3o9xniWYi5TJSYdRq8M4\n6vDV8EdcvzqE3wJJAWkKSfruBFVkQmiBtCoN05WWqe6k2HaCbadkqUIaqySxj8SsnLcvFKZWi692\nPsZRA3q7b/B/do3vXmGEJZliMMXgevcRL48+4YvyU86mjxmMdklvTRilEBRQruOntdadypYffyxs\nebDlwYeDbeHrD4JNbYvN51YEL7Jqw40keU9n1q9z7e9Sd8a0D6B/HONZKWoDtDpM9gwuD1rcuYe8\nLY4YL+ukAwl3ITQlPNIwn6UcPjvnZ6d/w6et39CazGm+WVSuePsaYl9lsdPg/+79LySHBoO0g5JI\nxLVGOVCxVgl/S0xxFxHGdQ4vYXlXuWGfSVCXULsBbDBqOc5hRMNZoBYKYmKQvoXRoy5fBp8wlk0+\n3a/xqSc5/GiCJiupvRKNsXPES+9H/JJfMA76LCdNimsNRjlEEYhZdZ/WrT6/M2tcfsf6YRH1zwNb\nHmx58EPFZmC3crNDWT2mkC5h4kNQgxsPTAdMG1TjIUfdU5G6Ttk1KBwDYenIvopeQPMbwILCgEYL\n3COITlWyrk1g15mLBlG2TvglhpXi9APqB1M6347Yv7hl79sbLi5yBuc54zvJcTel3ilo7Qr6/2GV\n8O/foPUKipZBWrPw7IiufseRPMefjslfRwz/DqY5TAuY5HB8k3F8WdI5T6hbIaaZQQ/EtU5+qVJe\nGlw/OUT8SGF40KW7O6T79I5OdMfMbjPwdhl4ewxe7jIc7JL9yoFXaZXwF2sjhyUPXY7vj1dvJvj/\nvlv0P3xsebDlwRYP2PwbvpHwZxb5zKC8tlm6dWatJqODNu2jJl4TuvUMsxDIUw15YiL6ko53R92d\n8jTXEYGBGBlEscdgt8eg3+XSPuSrm0+4uTngen6I6pZorsB1Q4Z+n9v+Dn379v7KDDL65RX94oqO\nGJJhkKAT4XNmPuNz46d8EX9G276jsz+ifTCini2oZwv8PORCf8Sl9ojL8BGLQYPF6wb8A5WxURRD\nHLy7DU0PDBVMs0r4f6TCj8BolTi1iFptQRzayHmNdO4jL3U40+CNwtRt8fWTj1kqLk93u3zk/Zb2\nswSzSMlwiHC4Uo95qT3n1+XPuJ3tE48csoEFowSKohJwuneghYdYdcuRf3tseXB/G7Y8+JNjW/j6\ng2FN7HWQV3Kvt5AnlTD1jSCtW4y6XV5Hj9HsksNWHeXUo2wvkHUFWVe4a/a4dh9zEZxwPT9keueT\nTg2IJTgC9gXm45Ru947H5mt+FH+OfRdgvw6wz2KMBRghREmd80d9Xu6c0PGOWOy2EU2d2DKQqoIo\ndcrUQKBRWhpFTUFmQFFJdMumQuGppLZGoenVeFhK5TI3FTAoCa49yvM95q/q2E5KTU9o9RJUBAUa\nJTpnyceczZ9xNnhC+NZF3CiIcQrLlWaRXAdybNy/9zuI3n9uiw8TWx5sefBDxjq424x0sso6OkpX\nbqcJlXSqQ9XZpwIaZAZy34F9ndR2mLQ7nLeOqO1OKR9liKc5uILgsUbyWGN20mVQ2+Uu2WEatgln\nHkVooOSg6gLNL9EbOY4aU4sC6qMl2g2k57C4gTws0OMCX1HxwghHDbFrEaaboeolKKAocqUSIVGk\nrLQqVu5H5epxrV2hiEqLYqWvigwk8koivpTMhE/uHzLtNunaO/TU6uR0IlvcBHvcLPYJz12SVzbF\nNyVcxTBdQrHpXLo+qdxM+Lc8+DCx5cGWB1tUWL8/a927AJmYlHca5SudQK9zq+zyqvUEpS5p787o\nlDNsJUacQHkKup/jL5a0B3PMUUp5KSkvICksXGOHZruH7cbcyH2KUmdcdNDKAl2UxIqNahekTYOR\n37lXSzDTjLnWILLrhGqHQhjkQicsPV6HTzgLj3ib7DL1XO7cFnV3l7oyp6Es8M2Qy+QRF/ExV/Ej\nuASugRsgFBAVEGa8o+m0I6EvoQ/ecUjtyZL68wU1d07NnFEz5sQ1j0WrwTJrstRrLIMay5s6Ye5x\nPd1jceFRNlVMXVJrlZhKSiwdYunwKnjG2ewxl9Njpq8acFPANIMo5F13083PpS3+eNjyYMuDDwPb\nwtcfHJtaRykQQurAJANFEGsO194hii8Z97r0jDt2Hg/xRERhaZSWzlxp8CY+5c3LU+6u+yzPLfKg\nErxWfB1lR6DvpDgipn6zxF8sCV+mjN8U5GfQnEPzGpS3AuvnAT3/lkf+OTe6IDNtQtsnwmMSd1AD\nybjZYfmpR97QcS8EB5cC90bSeKKjPzFZPLZYtGrMlQaL6xbJ0CKfqhBkFG8h/aWFjDQum8coNZVJ\nvYeCREiVUmhcLQ64nh6RzRzENwJ5lkKcVnoVYkOk9TsTfN779xZ/HtjyYMuDHyLWRUmo9v7aQWf9\nfE41rmSulvXwmLhwC3xtEOLy8tkTnOZfcdHdxf90im9OMecpec8l77pM6l1+Kz/l4uqYybhHdOmR\nB0ZVbpYamTDJsChMA1FTUVpgeOAaUFPBsUBfma6WvkpumqTSIs8NRKzCUiGMPe6KHpfKEf8/e/f9\nHEeSJXj+GzoitYIGdbFUd0/XiB2xZ7trdmf3V5+d2a3t3e7s3Nxu9/R0CWoBjQRSh47w+yEymIFs\nssR0CQJ8HzO3BMkEmADipfl78dzd7Y7ZuXfExhdQm0F3Dv4cGjsW+p7LxW2XWVgnWlgwAU5SOI7h\nMCLNckLfQh22Ua5BaNUYW30WaZ1J0mYRt4gOIH0eF8n+eArBGNRk+fMKkX2LrhOJA4kDcbUDslz2\nO4bAgCMDdI+FX+fl4h5aDK87d6knPvX2goY7o9ma0LQm9BZDth+fYH2doL0IGV3A6BJCPcMO5jRj\njZ2dOt1shNv1sboBdc+n5i3w7ACdjPGky/S8DYfAIZgXKROny7G7T9OakccGWaITxTavwy1GoQXx\nhNjNWbgemeMQmnVmZhfHiBipPou8UVyCzyhW4gKrJN9gtW2DBV0HHlrwOezcOeKz3a/5zPuKxmKG\ne+DjjgOihk3QrRH0PJ5tP+Cb8FO+Nj4jVRbheQ31n3UOG3egaXLZHGBqKUluE2cW55Mtjk73iM4d\neJHAizkEC4oj8qYUSf/6QUASOz8PiQOJg/eHFL5+EuXdzgjwIfbhIoZ5TpB6HNX2GNe7vMzu0d4Y\n0d4dYTciYmxibPxpjemTDtMnHRaP66QvNZKZDgZoTYWxtUz4T3xax3Mar2ZcPMo4fJ4zegG7h5Db\n0NzIcBszNu6dcvvWK2LTY+z0Ua5OQJ0ktEjmDpedAfNOnfgzk/o3Gd4j2HmWkX5qkn7mMP2kzsRv\nMl10mBz1yM4V2SgvEv4XOsp3SF55vN66x8XmJo+3PgMUKtdQuUZwVmN+XCc+8VDDBerCB38E6WTZ\n5bL+c3tbm/6HFZg3g8SBxMGHaL1wWW4gGlN0bJTnfBoUCX+9GFEKpxbodRZ5ncedjxg9aPL14AF7\nzmv27r6mHs+ZuF2mTpdhssHrF3c4eHmbyycDsgOTdGGi0MiUSZJbRQLvmG8SfrsOngVNDVwHzBao\nHmR1g8SyiHBJEpM80FEzjUVYJPyO5rPdPca8V2PTh/R8NcJdm2C/zsXtFtOTOtHERp2zTPgDOJqT\nXjrkr13i37sEtQZjd4DpJWSRSexbJIFNNgtQsxlqOoN4XHS55JPlzyxkdZCDJPzXg8SBxIFY/Z7K\nhN8E34RDD8YZi1GdF9E9zrMN3NshZjvB7CR0OiNutV5xy3rJ3clzrMcJ3f88wvhXuAjgZQBBLeNW\ntKCXRNiBS3drhLflY3VDGs6Ynn2Jp0Iml13GFz0Wx034A/AH0J7nHDVj7GaM5SUoX0P5GnmgsUgy\n/CRDpRNiq0Zm1Qhsj6mdYTgZhp0TWzax7RT5/JB3JPw2RUenCz0DHhrwD7DTPebfNf9f/nfv/6B+\nNsd4lmE8zkj3dZLPDZJ9k3/a/nti0+ZZ5wHzV02CZ3XiZy6J63C5scGTzY/RDUWe6OSpRjj08A/r\nRAcOXAYwnUFYvrApq9hJK78T8fOROJA4eD9I4etHVa2clpVtH7JF0Wboz0kNg2nHYVrzMPMOXtKj\nZvsYWkqcOcSZTXxhkb0yyL4xyZ/ocMpyeZdCM3KwFJqtMLQMK4+xkxg9VOQLSOaQWUXCrxzQgwwr\nS7CJsEjQyUFpJDOb5Ngmf2FwOtji5cYdHrcf4kQpdp5gWxmzuzVmO3WmvQYHi1tcDvuEr2twEMAo\ngihAXVikvgWnFvGZw3jbheGgiPnypuSZguMcTqJivXM8huRyeRcz5OokTiZy15/EgcTBh668u1nu\ncVTubRFRTIbKo70d3rSeJxqMHMhqxGads+0uo50GZ9aAidFm7rRouDNGqsco63I56zE66XP5tEPw\nyIYTBX6GludkviIZmYRDj2na5rw54GR3i/k4gWmCY2ak90ymd02i/SYXjX7RcTKsE41ssimoeUow\nthkNOxhnKSfqFqebx5ypM/RzhX6ao/Vzxvs9hr0uQ7vHUbTH9LKFeqnBUQrnAUxm5OOE/BxSwyDy\ndPDMovIQUZw25MfF+0M2Xe51N6GYpC1YTdSky+X6kTiQOPiQrXe6BIAOiQWTGkzrJGmTkesxMurF\nCafbxVM72ojAtskbCi/12Zqekp5acFDsjBCEEDYU2mZMbRrT8MfsRCfcTV6wSF366pJBcoGdRxwH\n+2iJRpLaxLFNHDqkvklkpphmiq5lpIFJFpikvkY+n5PP5+CHZIZBpjtg1tE6OXonR+9kWCrB0xe0\nzDFZzSTdMMgaJtk4Jh1DZtmQOJA6kLjFSXg7CeZHKZvaGfeiZ/xm+Aes1z7xU4j/CHpYFKHNTbh0\n+/yx/SvqjTnBxCOfG0SPLCLNZrLZhK0MDFW8nSQKLhQcKTgKwJ+AGoO6pNgbb87VJV4fXrL/y5I4\nkDh4f0jh60dXTfgTikndnKLNUINwAace6C75yCR5phP0PfSaRpobpLlJNof8KEUdhHCWw8SA2ABb\nL1rvxwbZxCZ1TJI9E+XotEaK24c5gwvo9oph7Gkkt2uMmz1O1TaTtE0UOcX+qK+Ll5ONTV7fvc0/\n3fkHRvs97CzG6idYbkpQ8whCD/9FjcdPPubk8TY8Bp7HcDEHxpDpEOmgDLgwIDFhaq5+FDkwS2GS\nQpBCMi3uXr5p3S/3rJCNum8WiQOJA7H6PeaVR60yoLgjqC2vIQtmJuo4Ifu9BQuLxR9anLq7pI6D\na4QssjqLtI4/91i8ckhep3A0g8scghylK/Izk/Qbk8BucOjt84f6r8k+ztEbY7S9EdpowcWgxajf\nIuoN+Eb/hMPhPpPjHuFzg2SYofw54bHG5Osmed3iK+czMtfk7KNNrK0Y+3aCPYsZ9gcMzT7D4wHP\nX9zn9NE26o86HCYwWZ5WquYUCbxdxEmuQaIXE7U4h0xB7i+fN6OIB5/VJE1OML3eJA4kDj5E60t+\ny85uAzBBKQiacLw85W1oQcuEtkF2C6Lf2MycJlOrRdTxYNfAPof2BWxdFNOhThPsTbAGAR9FT4mf\n2zx8+oSGmlPPF+iG4rCzx1Fnl6P7OwytDc63NpieN2m6M5ruDM8OmcUN5nGTuV8nfqWIXrokRy5F\np4oNBlgPYux7Efa9kK41pmuN6JhjFkmdRVxnntRZHLjMDxwWB3UY2zAxYaLhOCENb0a9PqM7vMB7\n6aO9VMyfw/AZDA+gAfRN6Efg7MY0tuZ0ty6I6xaBXiOMauRhAlkA8wD0dJm/q+LE8EkKSVLEjyoP\nhChPQq2ehC1+XhIHEgfvDyl8/ejWK9uKYgKjAwmEPpy0YNpCvayTODaZU0MzTXKlFdunJinKD1H+\nHMIEYgtiG2o2KnDIxzrZxCJtWSR9g7yv0z7IqT/SUC2Fswv2bQjv66S3PCbNLqdsMknbxGEl4Z9A\ndmBwMLnFLGnyjfkZphdhDWLM/Zh46hbj1GX6TYvpH1rwr8AkLton1QWkarWKIbFg6sCZvfpRACQx\nxFEx8gWoBavKczmhk8nczSJxIHEgVnFQ7nFUJvnlY6UQkAOhAYmGSjKyRZv8uYtquWQNh0m9h2Fn\npJFJGhd3JNNxQjqJYRpCnBbLxGyN/KyB+sbG1xocPtzD3fCZ7zls7h+y6R/Qii65dLa4dLcZ6rs8\nOviYo4N9Jq+6ZC9isvMIFiHRsUX2dZOADtlHJucfDfj6wUd4SUAtCfASn4tgk2GwwfB4k/nLJrPH\nTfI/6jBNYBGAmoLKK1s86ZAYEOrFRC0vdwePQC13nH2zgff6Jt4SG9eTxIHEwYdq/fe1vLmlFBAX\nCf9pAyYNcD2wHLAc8gcQOjazuw1m3SZR20XtGTiX0FKwNYPUhHYDnE1wBiEfHTxjcHhBcO5hxilm\nnJK6Jge/3eVwY4fX9/Z5svkA/dMYwi02jTO2zDNa+pTzbIPzfAMtGLD4XY2sViPJPcgNyE3QFeZH\nCe7fLKj/1Yxt/YBb2gF7+iEXeX85elx8PSD7esDCqy33b9IhANcJaXsj+vVzuq8v8F74aP9dMT+E\nozN4dgpbEZgR9Edg/zqh7s3p3r/Ar3nkuk4UuTBOYb6A8zFocfFzVKpI9OOoOERJBRRdkuXy4OpJ\ndnJj8ZchcSBx8H6QwtdPJqfIgssLSwMSSGOYxTBLUaRkeGTUKBYIlyKKu4KT5cfLtcGZBxMddWST\nDBxGRpeDwT4vmvfxdmO8uxF2nBLc05nf1ZneaXHa3eMs2WF4tsFs1CCe60U7fZTDOEedKcaGx9ho\ngKZhDBLMfoLRTUmHFtmJSXZiwaMcnmTwbAHprNiQm1ExkUuXk7G43KTWWftZLE/1+5NR3sFMf/wf\nv3hPSBysSBx8uN62X1v55+UJngpIDUg1iBRqqqE0k9iuEzd0aHpgaRCrZa00hSiCaF70/JfLyHQd\ndamjXjjEuJy7PbT+PRYbHretNlG3yUAbcqx2OM53OA53ORrtMXzZI/zahtchjAOIF6TDJqltEaYu\nsb7BZbPJq8096vjU8KkZPqNFn9Fpj9FpH57m8CKDwwXEC8jny+6VGFRWjHx5uhEGq0S+7AwtR4ac\nWncTSRxIHHyIypuAcDXpjCEJiiR1GlH0ejQAjSxRBB87TE7aXNgbDL0Nzva28KIFgZOhWRmWkaHd\nykh3Mqx2Rv3ZJe7hBfkThQqLGmrSsNB2Z9TViHZ7hN2MMPOEVjphKzxlMzyhnYzpult0nEvajDmb\n73C62CFM2pBqqERHI6d1b8rG/RO27h+xH7xiP3jFXvianjugbw0Y2Ru88iNUajHXumSGTuZDfgKa\nnmMYKZYVYeQpepgPTq+LAAAgAElEQVTDVJHPiq0pIh+SZahoU9B9hZEVn6PrGXqeoyWqOBFWLUCN\nKN4AypiIWM2pygS/2ilZnYeKX4bEgcTBL08KXz+ZMqDLxL/cw6faBTNjlSCbVFpDKKq0i+Vza8WI\nm3BuwGOXUHN5nj3g//H+Iyebu3S2xnT/ekztrk80cAgHDpN2m6/iz3jx+i6TSY/gqUlykUA8AX1Z\nfMhSOHSL9tJLB9WArKGhahb5RKGmSdHZchTCMII0hPxiGWxzVhOzjCsnV7y5k1t+P+WIuTqp+7AD\n8OaTOFiROBDryjjQWG36Cm82AVcLyNyiKwQNTK1YFpUqSDNIfcjLI6qXsZaZMDPg1CTPFb5mcTnv\nkr60CZwG5+4WTWvOOO4widuMFx3GL5uELwx46cNwBvNRsQx3EcF5DGlKlunEQ4P8mzpKs4g1j0Bv\nsph4xGOziI/XAZz5RQEiHy7b7H2uTrr0yqi+P2SV51STfImNm0/iQOLgpnvbcq/q3Kjs8ssAnSx2\nWJx5aI8N3Czj63yMdSvhtN9Hv+ejDwNc3Sf+eEF+a0FgBfhJjH8REx5m5AnkCag4x5r41OcX3Flk\nuFHCZjhkPO9QP5xQO5zgjAL2dg/wd1tM+n3+1fw12l2YtFrkkUEemWgp7Oyc8Bf67/nV+b9Qf3VB\n49UFtdeXdHrn3Oo3SHpNOukMvZ0z/4s6QVgjOKoRpjWi2GEat1BRzrjeJrjlor7QaLRg1wYzgfYW\ndB6A/jEk9ywWjQajsM/MbxPGDnmugUqWnSyz5c+snHe9bW5VjSPxfpA4kDj4ZUnh6yf1tlONEoqg\nLo/ytlidblQtCJTLn+BN9TvJ4cyFrEkY1njmPOCy3+PL9q/Y3jpmu39EW42ZuU1mboNJ3uHk6Q6n\nr3YZP+6RPY1IL6KinKz5QFDcKT1owmUTnjXJTRNlWcVjHKPiuFii5c+Kkc6WLfuz5feQVsZyvfaf\nXFblZG59yGTuwyBxsPo5SByIdeV1US4JToCgSPYZQ2qDWi6L0rViOVSull0jEcWJoClvThHKbJgV\ny4LzuYE/N0mOekwHA84b2zjNCMtLiBc2sW8TzyziM0V8BgwDCKcQXYK6hEUCSQrTnGxYRz2qk9bq\nJHqGbuQYek4aKtIIiGKYz2AxgnRcFAzUlD9N+MvTjqpF4WrSv57oS2x8GCQOJA5uurfNhcrNvi1W\nhz64ZKGFf+YRP26iNAd7LyG6ZXPY3KIZjWmFYzraiKx1gda+wB3rXCYao8uM2UFGmhd1YSvL2R8v\n2J/F9BcztmZDHs6fEZ3b5P8Sk/8+Rr3K0H9jof/GJvykhe4phnf7PPv4DmlgowIdPYRd95i/1H/H\n/3r+fxJ/GRH9c0TyPyPcOxbeHQv3joWxl7PYrXG8t8X4tEf+R4Mo9YgSh0ncJoxtxrUO4S0PZWs0\nLDBi6I3A3gb3ARhfQDqw8ZsNxuGAmd8mjQ3yjCLhJ2B16EMZT2+bW2VrP2/xfpA4kDj45Ujh6ydX\nJvBlcFcD3KiMcu+LauW7vCu4nASlOkzqEDVIU5dhv8tw0Md277DTPOCsOaBdGzGlxTRrMlu0WJzU\nWTxtEH5pFac8TPzixKA3nTQhxHGxXpgMcFA4KGxWlfeQYrlZOQKKSVzA1YS/bNvX3/IzqA5p1//w\nSBxIHIg/VV4LZWzkFMlxRHFd2aDM5dKvMkmufk55Vy/jTQwpByIbIhM114j9BvHQgoYLLQ9aFKuG\nF8BcFWMWwDQo9ox4c32Pi+VkcQ7zHHWRkaEBVvFSdJYFiATyuBiMKA6wuGAVG+tt9uWG5m+LD4mJ\nD5PEwdWfhcTBzbU+F0pYzX+guCjr5LFNfG4SP3VQuolp7RENTC56XXr2Jd3WJQNzSOQek7oOjdBk\nZunMjYRAj0m0IuG3i+3yUCisNKU2u8Q6S9BfZ0wfwexfIHgGLQ2aLlCv8/TOffo7Q7wdnzjI0QIN\nzdfoLS65O3/Fry6+Yvgchl/CxT9DawSDOQxCOKzt8uzOXTr7lyQDm6BeAw3S0CIba0THNhfWgOPm\nNq9qt2hECww/w/Az4vs6wT2D87sGR+Yuw3DA7LhFeOYUhwNl5ftBeejDgquHPlQLKhJD7zeJA4mD\nX4YUvn425YWXVf5ctHKuJkDlc6r7PegUEyYDlAGpC5EJkwye1iCvkx/ozOtNzutbzN0mYeYSZB5B\n4BC/1sleRnAYwmgMYXlEdsBqMla2m85YLdEyubqxajXA1jfjLtsnvy3IpNosQOJA4kCsq17v5WN1\n0lIWUavxsV4Yzrm6X9C0eI6KIK6DXoPcK06Q87Vij6RIFXvchTmEy/01CChOAJpRxEL59cprfwpc\nLv/75esp1hEsn1OeRrd+aEP16Oz171cIkDgQH5bq77/s+iuvncui2HqZggFpbDKfuejHA8JBjZHR\np2Eu6DRHjG73Gd/usGk1aWy+YvAwxAkX5FmxgwNNA3OvzbDbY2659IIR/ZMR3rMZszM4CWCcw84U\nzCPwWgrbi6lvLmgbYwK7TkCG0g3MWYw+yeAQwksYBXAMGD40zgELrP2Emu/TVhMWRhPbSaAOytfg\nuUH+3+F4a5f/b/BXpBsm7dsTasaC+uaCcOCx2K8zrzX4ZvQpzw/vER/a8FUCpz6ky+5PFlwtdr+t\nQ1JcDxIHEgc/Lyl8/WzKC1GrPK6fbLT+XMUq4V/+MTWL63qSwdMunFlkf6wz95rEnoNpp2SJQZqY\nZJFGNgvI5wHMfYhHEI0oAqacjJUbbs8pEv1q902510R5R7UcZXU+5WqAlZPQ7/o5iA+XxMHqOULA\nn8YEXN3rp+wIWV8SpSrPK2NEZ3U9RqAWkHiQ1yByYaGDuTxhKMsgy4tZYbbct46QVXE3Wn0dFqz2\n4XNALQsQ2fKwClXuJbG+merb4gPefv1LTHzYJA7e/Xfi5qnObcpktUz4taLD8EKBb5BdNJgfOcSP\nakxaCtNOMe2U1taESdxh2m4S9m0+3ggYfHzOrlnUelUEkWdyut/ltLuPb7e567/GPY5wyoTfh9MM\nrCm0D6FmKeyNmEawoGOMMZ0MzcxJLRsrj9HHGeoAgkrC3/BhMAQSsD5eJvxMmJg9LDtBqynUQkc9\n1yDQOfp8j9ixeHHnFr1bl/Q3L+h9fsnMbDG0BwydAReHG1y83CD+nQ0vAjidQzLmasJfzsvWN+yW\nGLo+JA4kDn5eUvj62f3QSqyimDQtPy83in0t0ry4Y3lqojSNyNGIHAtMq7KvXVZEfD6juENZJvsT\nVk8qu1yqS83Ku6rVJWfVfSeqleW3vV4hvovEgRBXVWOi7FwpN/z+tudXCwaVJcFld0rmQVYm7GXX\nTPm8crwtUU8q/1bdt275NVT5/1WX+VZj4tvio3z9QqyTOBAfkvK6WBZPCQAFmSoKtAuDfKSILupE\nng2eC44Ojs5or03a1Yj3THA1Op7P7v6MzM0gAi1SZKbHaOsOL70HjFQHO0/p5SNa6pzEVESeImpB\n7EJiaGS5jspASxRGnGOo5UlyaUaeacS5SagcIisnrWfk3ZysDnlNI7M1cl0nVwZ5YqAyHaVpRags\ncjjMURc5Y6vJtF3jxfYt+o1LBtY5G7VzJkmH03CTs9kWyYGFeqbB1xmcBjCdQTqimMP5FHH6XbEl\nrg+JA4mDn4cUvt571buZZZs9lb8LgEvIdIiXdx5TijcLlRV3OqmOsvW+OkGrJvTwp0sJqndVq49C\n/FwkDsSHRq09vus563f4yqVf1c7DlNWGsdWCbjmqXSnlncP1pbvl160uNyu/Trb29SQ+xI9F4kDc\ndOX1kVFcf3ClMKsWkNRA84oCbuiB5RUHlz6vcdLbJvdNUt3hvLnJVvMULVNomSLWbY5aOxwnu8QT\ni2Zzwfanp/Rbx3gvU/ZfpnSHGf3bBtYtg8Vtl+lui0uzz/B8izByCWMXFWlM4xbDzT7HtS3yhs+g\nucDrBPT7Ou7AIBjojD7qcNzZ4cXsAcPZBot5A7XQgAiCAKwQ9cgkTyw4sfFrDUaWIrUd/KTGImqR\nRTbqdQrPo+IU7fkY4kuK01HnFDcpyxiV2Lo5JA4kDn56Uvi6Fqprdn1Wk7fliQ7KLRJ+ZUCqFZ0w\nSkGeUwRGuYdReTezrBBX9yWqLjkr/7w+kVRv+ViIn4vEgfiQVDtYvu05b3t+NfEvi8XlprFvK+hW\n7xjma39f7r2R8e74WB8g8SF+HBIH4qarXiPVPUNTipNN3WKpbuZCVAe9DXqbVNWYPq8ROTWmYY/h\nrQ0e33pAfTDH0DJ0LSfPDSZRh0nUwVqkbDdOuf/pU+488KhtRdQ6OZxkaA8N9IcW/l2XSd7kUvU5\nP9smWxhkCwM9yJh22ww3+hw/2KLeuGTQyrjTCdD3dYx9k3DfZOS0ObF3eT77iGBWI5w7KB/IYtDn\noE9QUR1OW2R/tAicJqnjsLDbpIlJHNnkkQXzGKYLmE4gWZ6QmpfLu8qEX4rKN4vEgcTBT08KX9dC\ntdOkfBMoE/45YC6XfpXt+9XnVpdyvWtSJ8R1IHEgPkQ/9Npcv56rh0e8y7fFgcSGeB9IHIibrlqk\nLTsOA1A2ZA5kNtCg7GTMlSI4qBNoHpOkw7nexWynGN0Uw8jQ9RwNiOYe8YVHPfR5uXOHl/07bDVO\nqOcBdQLcToz/kUPwwOZyr8vJyTYXJwNmZ51iRdUUzCBh/FGXo+4eTwYP2I5abFGn4dYI9y2CWxbR\nvsXhaJ/j0S5np9vkZxT7sIbxckPuCXABswR1rAM2sWUQ2yYLy1xum6ogjkDNV89nXLwIZqxuXEqX\ny80lcSBx8NORwte1U959LOWs9iUqW0KrLfbVjbnXW+8lWMR1JXEgxPf3Xde5xIH4EEgciPdddbkX\nXJ2vlEt3l52HaQiTJpgNVOqhFibZoYHqO2R6jq4rUJAGNrmvk2g2r+/d4Z/nf8flVh83i3AHIVY9\nJqo7RL7N/FWTL5//ivPnm/CKNztD5LHOebDJ19FnhLFLO5rR1ma0NmYkpkkyNUheGvzx8NccHe6i\nDjT4MoQzn6LVZQRcLh/LDvwp5DokGqhll35G0anPgjfVBhasDppIKj8TcXNJHEgc/DSk8HXtlO32\nZeJf3sGs7llRTeqryf16+70Q15XEgRDfzw9dKibETSRxIK6D9aW65fLalOVpPbw5jCf1YRJCFMOo\nSX5YR9Xr5K4DmkJbXuo5OgqDuGbzan6HWdrkm/xTTC/C6keYdkoS2qS+TXTiMvq6x+jLPjyiyMtD\nUKnGebRJlLgcZrewmzF2K8EeJOSxRj7VyYcal496jB73UI80OI3gbAJ5eaBQOWYUXSxukfArHXKt\nSPTzcr4Wr/7zK1tUyCbeHwaJA4mDn4YUvq6lauJe3Yh7/RQ6mcSJm0ziQIjvT+JACIkDcT2sz2/K\nveXKA3kiyCPw02KQoVCoN53vS5oGdg52StrWGOodhkYXNNC3UozNBM3NyRcm+ZlFfmzCoxy+UvBN\nuNwOVaFymJouU70G7MCOVgxHg7FaHpat4Ovl+CqCYA7RGNSQIsEvl2npvDkZVZUJ//r2FFnle60O\nid8Pi8SBxMGPSwpfN8rbOlqE+NBIHAghhBDipqgm/ymrAxbKbR0iir1Ox4CzfO7yOZkBiQG+CUcO\naA6MbFQL8raG5hnkU4WaxTCO4CCGYQhxDGleHBCkFExseOVAbMNrEzomtA3wc1hkxeNRDCcxBHGx\nGXd2SZHsl5txJ6wKFwZXO/WrCX818a9uUSE+bBIHEgd/Hil83RjrbaFCfIgkDoQQQghxk1Rv5JUd\nH2VSXCb7NkWyX0ntlA65BYkNCweOGjBtwss6yrbIHRtME+IEFafFcrH5vBjRHFQGeQoqh3EDkjoM\n6+A4y2FDkkKSQJrCYgELH0If8inkZYdLuVQrWb6wasGifKx+T+s3MGU+J0DiQOLgzyWFrxtHgkII\niQMhhBBC3Cx55bHsegkpEubqAT8lDXIHcCDzIIrgojzox0ORUxQKyv2DAorOlDJRL/dSymDRKgYx\n4AHucpR7LsUUhYfZ8nFO0eGyqHyddO37qSb+1f1Yhfg2Egfi30YKX0IIIYQQQgjx3isT4rzy53Lz\n77JzpFTud1om2+udMTZFKpiwStrLJN3n6hIrWBUYrMrnV/ceClhtxl2OhHdvxr3+vQjxfUkciB9O\nCl9CCCGEEEII8d6rnkpddofAqmukSqdItstkvkzoy0S/7I4pu2YyVifHxaw6atTyawQUnSzrn1vt\nvEneMr5tmZacsi3+LSQOxA8nhS8hhBBCCCGEuBZ+SJJcbqBtUHSelB+vn4JdLq+qdrdU9xmK1z63\nHNXCg3rH1/m+348QP4TEgfhhpPAlhBBCCCGEEDdONQkvT7+rnohXTdrftbE2rDpecq521ax33qwX\nAIR4H0gcCCl8CSGEEEIIIcQNVHadlB0tZaJefVxP2nnLY/Xz15eSve35cgqdeJ9IHAgpfAkhhBBC\nCCHEDfRj7R0kybu4ziQOxNWzPoUQQgghhBBCCCGEuDGk8CWEEEIIIYQQQgghbiQpfAkhhBBCCCGE\nEEKIG0kKX0IIIYQQQgghhBDiRpLClxBCCCGEEEIIIYS4kaTwJYQQQgghhBBCCCFuJCl8CSGEEEII\nIYQQQogbSQpfQgghhBBCCCGEEOJGksKXEEIIIYQQQgghhLiRpPAlhBBCCCGEEEIIIW4kKXwJIYQQ\nQgghhBBCiBtJCl9CCCGEEEIIIYQQ4kaSwpcQQgghhBBCCCGEuJGk8CWEEEIIIYQQQgghbiQpfAkh\nhBBCCCGEEEKIG0kKX0IIIYQQQgghhBDiRpLClxBCCCGEEEIIIYS4kaTwJYQQQgghhBBCCCFuJCl8\nCSGEEEIIIYQQQogbSQpfQgghhBBCCCGEEOJGksKXEEIIIYQQQgghhLiRpPAlhBBCCCGEEEIIIW4k\nKXwJIYQQQgghhBBCiBtJCl9CCCGEEEIIIYQQ4kaSwpcQQgghhBBCCCGEuJGk8CWEEEIIIYQQQggh\nbiQpfAkhhBBCCCGEEEKIG0kKX0IIIYQQQgghhBDiRpLClxBCCCGEEEIIIYS4kaTwJYQQQgghhBBC\nCCFuJPOXfgHiQ6KtPa5/DKDWHtc/FuK6kzgQQgghhBBCiJ+LFL7Ez0T7jqHWBm/5WIjrTuJACCGE\nEEIIIX5OUvgSP4MyqdfXHqsfA+TLUU388+W/ScIvrjuJAyGEEEIIIYT4uUnhS/wE1pdy6YCxHGZl\nGJVHBWQUCX5aGdlypKwKAJL8i+tA4kAIIYQQQgghfmlS+BI/srct36om+U5lWMthUyTyZWIfA9Fy\nJMuhL/+N5fOEeJ9JHAghhBBCCCHE+0AKX+JH9K6lXCZFUm8BNcBbProUib9LkfAnFEl9APjLEXH1\n8FHpdhHvO4kDIYQQQgghhHhfSOFL/AjKRN9gtZyr7GyxWCX1Llg1cDxwamA74Fhg26ByyLJihBH4\nYTEyH5gBc4pCQLkBeNntIom/eF9IHIjvUl3++rbTPeGXPdTgXa/lx3q+ECBxIMSHaj1W3vZv693y\n1X//vu8H73qexKZ4H0gc/FKk8CX+TGVHi87VpVzVLpYaUC8enRq0XWh70DKhZUDbKPL3KC/GKIWz\nFJIU8knxdVR18+8y2ZeOF/G+kDgQ36U6gSmvlfVJzfqBBj/XwQZvex285ePq86uP1b+vTrSEWCdx\nIMSHaT2Br/59+Vh9T1h/f4A/fV94m3e9b8jp2OJ9IHHwS5LCl/gzlUFZdrdUl3I1KBL95mo4HrQd\n2HZhU4dNDTYpcvg54Cs4ABIFYwVxY5nsVzf4jlkFcznBFOKXJHEgvsvbOgKrExu4Okkp93ur/v3P\n8fqoPH5bsaFahKXyPLkOxbeROBDiw1Mtdr9L9QCgt70/VDvdM94dY9X3jWoRWk7HFr80iYNfmhS+\nxJ+hnLyWm3PXl6MBdg3cZWeLvRrOVo63t6C2P6He82l25jQ6c/JcJ45sotBi1m0xaXaYtDqk5zUY\ntYvul6ScXCasAjf/k1clxM9L4kC8y9s6AcuDDMriaDm5gaund8aVUS14/hjJfzW5L19f9XWU/56v\njXLSVJ2QVVUnWutL1T7MSZYAiQOQOBAflvVlWt+WwLN8XH9vKA8Aqna8lO8L5QnX690ziqvvG+XB\nQNX3jvJ57yIxKn4sEgfvGyl8iX+jMsiqJ9R1gF4xPBe6TjFaNjRtaFrU9sZs3L5g49aQvfoR+/YR\nt5xDEkwmqsk0b/Jq5zZPtx/i79dIn1nwqAULfZnwpxSbfZdJv3S6iF+SxIF4l3KSU3YBlteHy5sl\nr1dO9dRYTU4iYEHxOw5YnfCZ8N13+b7rNVXvOJaPFqvJVrVIURYYqoWIjKvLeauqz1vv2pEluR8m\niQOJA/FheVuSX42VajdLNTbKvVBt3tw8pMHVeKwm87CK0WrhIGJ1MFCwHOHyc8q50nfdLJQYFX8u\niYP3kRS+xL9BdbJYLuvygDbFeq0dcB3ombBnwoZWjIFG7U7C5t1z7t59yufG1/w6+4rfpF8SGjan\n5oAza8DvR1/g79V5fecOQaMFcx1e1Yr5Lz4wpgjelLevkxbi5yBxIL5Ndfmrw+oUzwbQWo46q0IA\nFBOVcrIyXQ6DYsJS7Rb5c5LnakJfTrrKrhubq3cjqwl/9a6hVfmcqvIO5PrnljLEh0biQOJAfDiq\n86L1A37KWKkWmKvdkZUDgOgsR3f5eeXXLQvi4fL/q3Zolu8H1feNGavCwvpSr7f5sPc/Ej8WiYP3\nlRS+xA9UnSzqFAFaA1rgNaHWgFoN705C/e6E+r2AWsen1g6ot3y2e0fsWq/ZC1+z6z+ncfmSaHSK\nplt0nAjXWTAxupzoexzu7GMNtwgGLkHDJV84kNmQWaDKarkk/OKXIHEg3qX8XZTdLcu7dloLtDY4\nDag3oFEH1y1O87St4tNiG2IXQgfmFsxdiGqgpqDKJDxi1cb+Q5ZOVTtvyiJEpftG80BzQdfB0IvH\nLF+OjNUdw2D53HJUrr08BpUUg5DVxKya/KvvMcT1J3EgcSBupvV98N71Z5ei0O2B7q6GaYJhFI95\nDukyvnQLDAcMu3hvaDah5aGbGqaeYRopeaJII4ssMlGaBuYyTjUgV6AURCYsDPDt4j0ktiG2IF+w\nit+Mty81K+PzbUubQeJSrEgcXEdS+BI/QHVpQPUObgPoFMG55cK2SfOjMTsPj9h5eMy2e8aWcca2\ncUZXu6Q9H9NejFDHlyQvLnn6IqOmoOXN6Hsp+3tH3L73kpN7m5iDhGF3g6RlE890iAwIzUrCX23v\nvL6BKK4TiQPxLtVro0z4a0Wir/eLUW/Cng17DgxMaOnFqZ4aMNVhasGFDYcuHDVhtCgKnW+aW9b3\nHIJv/52v7y9R3mksD11ogNYAvQF6HWwNbB0sbXnCqAKVg5oVgznoTTCWoyqLlyOiuMM4o7jbuD6B\nWh/VfZukG+b6kziQOBA3TzWpr974q/4ZVnFYo+iAby9jqgZWHVwdPL14TIAwh1CBZYBjgmPAjg13\nbLgNZj3BtUI8OyRdGARjh3DsoHQDXA285evKVBE2Iw1ODDh2YeTC1IHMhdyhOD2oXCpWduKUCX+Z\n2Ff3QlrfV7D6/YkPk8TB1e/vepHCl/ie1vfCqN4tXSb8jQbsuvDQpPn5nL3PD/n08y95qJ7wMHzK\nw/AZ3jjAGGWYo5TDrzKe/T7l2e9SBnlGvZbSry8I/vqIO62XDP+iSz7QSboW41aPeKwXd3tjC/Jq\nwl++CV3PIBTXicSB+C7ldWHxZh8jrQ36AMyd4vrY1+AzDe5psKFgUxW/vnMLzjR4Beg5zBRMF6A0\nUGkxrkxI4PslyNUiRFmIqFO0z3dA64DeAaNVNObUKCZSulr+dwoYFUONQeuC0QWru/b/RKAiyELg\nglULf/m6qwl++ffl0FhNrsT1J3EgcSBunuryrereReXH1cS5RrFMa2MZU01wm9DUV4dchxQ5+Jxl\nfVyDugYPFXwBfKEwuzGeu6DpzojHLvmxSXRsFZ0xreXX0VitQD6y4BsPrBz0GmQOLFxIrOVrLN87\nqsuay4p6uvy3eO2xJHEpQOLg+saBFL7E97S+T8dymF2w2mC20bZctLs6+mcJ7Z0xe/YBn8y+YWf2\ngsbla9LLE/JpijuH+gzcV6AdQXwGKQqtmWEnGY4f42QRjhliWTGGmS3fS7TlcoK3DVV5FOKnInEg\nvs369bEshjod6DWh6+Hezuh+OqL7yYja7gLDSzGcFDTI+iapZ+F7NcZZl3HeIfA8GDXgsg1+eZhB\nualpObH6rk6XaueNB1od7E4xnC5Gx0PvmBjtHNuNsd0Yy0mIAqcYvo0aO+TjJmqiY/VdrL7C6vtX\nFtkmC4jnFsnCglkOcw3mJpCBoZYFhKxo689ziiVg5Yar0fJ7qm7QCm9f/iWdje83iQOJA3FzVDsl\nq/vhlUuYq/sWVQq7dq8YTgdz4GAONKxBhNOMceshTj0iDU0i3yH2bVLbJPMMMs+geXtKb++CbuuC\npjmjniyoR3PCpFacdm11yTUd08wwzQwNVbycHPzMY5K2mThtgqZOYpskUQOl9OJmYeaCnoJlgmUV\ncyqliiVieQZJAmkCeUixT9KCIjarJ+OBxN6HRuLgJsSBFL7E91Q9kaJGUVpuFcHc6EK9hb6nY9xX\nGJ+FdPQR+4sjPv3mCfrxKYuDKaPXOf0UtrXiJqp2Aua0KEZbJhjL+aiyITc0Ms0gR0cp7Xtse1FN\n/GUyKH4qEgfi25STIpOiy6UJ9KDehf0aPDRo3J/w4P5jPrn3FTuNE9xFhDuJQIFfcwm2PM5aGzzS\nP+NR7ROCTh+eehC3wS+7Q8okWfHdd97K1vvKa9Ja4HWg1YVeG/M+2A8SnDsRLWtKy5xQNxeMky7j\npMM4apM+hvSJR/bMwXkY0fjEp/lwjKYV15kGzId1pud1kvMGHLTgtQl+HTQFlirmhGledM7EiuL2\nZrn5arnnhBjo6soAACAASURBVMHVTVfXu2OqRQ65xt9PEgcSB+JmqC7fsiqjzupUVq8yKteo14B2\nAzoNrAcJ9QcB9Y8mdGsjevYlPfsSP60xjjtMkjaB4RFaDpHlcrv2ks9qX/Kr6Ctaoyn2JMIex/h1\nj8mgw3jQRs8VtUWIN4swVPamFnFS3+LJnfs83nnAsN9jrhzykUsaO5As30OsHBoGNHQwteUqLlUs\na/ZTWGSQ+7zp8GTK6r3mZux1JH4IiYObEgdS+BLfU3UiW6NYGtAv7uA2OtBroe0lmPdjrM9DuqeX\n7D8/4JPnj7l4NOPZo5Rn3+Ts2uC0YKMF+gSMGdgZmDboJmgOKEsjN3QyzSBTOjn695jXaWt/vj5B\nKK4TiQPxbapdJWXC34daF2478IVB45MZD3Yf87/s/hc+zh/RfOXTHC8g15g0G0y2Gjyz75PXDI57\nO5y2NopJyklZ1AwoJh/LDpJvPdiguteSsXpNerd4Tf0u2l4L87cL3L9d0PjtjIF2xpZW7EN3lO+C\nyghSG+2/OSjLI5vZOJ8Naf/7EYN/OEdDLQcYBxskLx3mrx2UY8OiDgf56saoR9HQklMUAdSY1VKw\n8tQhuJrwl/tLlMu/8rXnyDX+/pE4kDgQN0M1bixWJ861eLNvEQ2KGG9wZa8614aeDTsO9ucjGn8T\n0P3rS/adA/a1A27prxmpLif5Nidqm6nWYqY1mWsNbi9e8HfTf+J/m/5fdE7GaK8U+uuc+V6NcaPF\naNDCTlLawYz2bI6VpW8OwnvU/Ijmzt8RtCySjk4+6hO+aJNOnWIfpVyBraCpQX/5LZVNLP5yL78w\nh2TOqnunLKxXY+/6LvcSP5TEwU2JAyl8ie+huhmsW2zOZzTB6GJuOph3FOYdn/5HF/Q3z+m75/zK\n/pJb9iFte8osj1BzCM8hrkFmAB6YTZ1aQ6dz18CumUQti7OWxcmdbU69bc4m24wu+/hTj8ynqECn\nqmjFRGe1CUe13XJ9g9jvswRCiO9D4kB8l7XJkeaA5qG7FlYvxboV0926ZItT9s8O2J2+Qnseoj8L\nUDm04jr1vEbSsdnilO7GJfVwm+QZpJ5FrnlFKyAmV0/i+a7XVF63y5NH9Q5av4Z+38T6JGHr7jl7\nvQN2zEN68wt68wva/piN1jm7rWPOGlucbO1yfH+XU3+H7vaUe+ZLPpo8KpJ9VST8J+xy1B/TdOfM\nZ00Wlw0WJw2sRozTj7D7EWlqEgUOcWCTz+owTWCqilP8sgakLa5OpMr9JcolYOVIKs+rFgjEL0/i\nQOJAXH/VmCkPglgOrwXu8hRrrwaeh+a5qPJEOaVgU0fb1tG2oHd3wt3uS+6ZT9nwjxjMTxjMjmm5\nbdq1IVu1Uy68AefegHOvz1ZwzMbwmMGTY9zXU6IjCA9BTxzaG3Mau2O0IMV4vkB77pMnGYYDugP1\nXZfNB1vc2+mTdQzwTGZmj6hhwSBH8xR2K6benVPrLTDtlDw1yFOdeGYRDD2Cc5d03IBZF2YpROX7\nWTX5l3nVh0Hi4CbFgRS+xHdY3xfDLU6jcFrgtrFvpdR+G1D/YsrD7cd80nvEJ+E3PNCecav1GmMv\nQz8Gs14ckGTqoC/zdHvLoLllM9i2yet1Zm6TwG3wpH6fZ/UHvDh/wMnxFrNhg2wKBCkk+XJuZ1Lc\nNrVZLQGobshX3Sy2mvxfj8AU7xuJA/F9LSdJmlG07+kmpquot3zqgwUD94ze8YjO8QzrMGB0mHB5\nkKNy6JxHdI4V3d0J3a1LeltDOpsX+K0aC8cj1m1QJuTfN9mHVQGiLJC2wOxibOmYv8qp//WMu7Xn\n/GX2O3716o94rxZ4rxc4JwGL+00W95vM7rT5H/Zf8j9ua5x5m2xoZ3w+/Iq/H/4julKgQMsVB/19\nXvVv8er2LQ4ub3M4vIV/XsPb8enev6R7/4J53mAcdhhHHXipo57VUU8tmLYgSIrT8FT1+qzuL1F9\nLAsAst/R+0niQOJAXE/VfUNNVvsYtYA+aD1o1mCzBhsebJpomwbaZgaZjkp1SDX0rkLvZui9hK3a\nMb/mj/zNwT/jHl1gvJqiv5rS7rns7hzCToPjrV1ebezz0r7FYHSK83hO9N9ygmO4mMDlBBwto9MJ\n6TZyonnG6FHM+HGOCsC2wDZh/rFPzT7mwd43KGXiqwYn+R40FfqDDO1+RmNrwm7jiN3GETXLJ85s\nktxiOmtxdrrN6ckW6aEDL5rwUofIXv5syuIz/Ol+e+JmkTi4iXEghS/xLcpkX2O1aZ9XZO9eAxpt\nrFtjGn8R0v1PlzzUH/H3+T/y76N/pK3PcFsBhp2h98FYJvyWsUz4PbBvGTS/sMm+qDFudBnrA8b6\ngKez+zy7uM+L8/uMj1qkQ8hmqkj483w5GSwnsAar/T0yimS/eke0ut8RXIegFO8biQPxfVX2gdAM\n0A0wLUxXUWv59DaGDLwzusNL2v9zhvUoYHqW8+JUkSn46CRm83VC96MJvb8Z0b8zpONcQlsjcmrE\nhgWZWXxtpVX+z+96PeXdSg9ooRkdjK0I6/OY2t/OuXv5nH93+c/8h1f/N/w+g3/J4VEGf2uiUoO0\n6aA5cHxnh9/f/TUbT875/MnX/Men/xUtU5AXCf+L395mq3/M4M4J9jgiOK9xdLaH93FA74tz9v/y\nNRdajzTSmMU18t/bKLsO4+ZyQ9Xl3hJXOud9VvsfTbg6bSmvebmu3y8SBxIH4nqr3uwrT2ZtAxug\nbUPTgh0H7ltoD3K0Bxn6g5w80SA2ULGJVk/Q6xlmI2ZrfMrnoy/5T4f/hfgPPpPfp0x+l9LYN+h8\natD+1OBlcoeGPUMfpMuEf0b8XzOmQzhI4XUKfS3DbYbUvZh0rBh/qXjylSKZFwfheRpY84Da3gkP\nvsgBhxO1h53FaM0c7eMM4z8k1O9M2HVe8bnzJW19QohHoDzOZlvkRwbjwy6Lxw3IW3Beh0uHYk41\noyg6lzFXvu9IzN1MEgc3LQ6k8CW+RXWyWG5M0QCzBo4LNZtmO2C3d8ztzefcOn9C7/gl9uERSZwQ\n5TDOYOaDOYDBX2loVpuTVo9Zq0fUrLFwPRamx1i1uYx6jJIuz0/vc/x6h+nrNuETB84iCKJiMqg7\nYHTAyMA0ljuBU5xAkeXFXdIsgjQCVW4SW94VLffIkOUA4oeQOBD/BooiKc81FDrK1MhtHWVr6IbC\n1DLMLMMMisMNNAVmJ8fKINVSdCNHWZCjkxs6StMry1urdyK/TfXaNUAzQbPBsrBqAbWOT7s3pn9x\nyebwjO0np8yfwfwFBK+gsQX1TXAGJhsb53Q2xtT7M6wXE9RoRPzoHK16eNGOyUasMLwI1TGwN3Pq\n+wG95gVb6RHbZ0eMGx12vWPOWpsM9zYZ3ttkON4k39Ixggw9yCDnzY5JKnLJFznK1yEwIDSLkdsU\nRYAy4a/udfT+T74+GBIH/z97b/ocSXZl+f18X2OPABBYc6/KLBbZZDfHptUj2XzVf6wxmWlMYzOS\nZtRikyxWVa5AJnYEEHuE7/6ePnh4IhKdRRabWy1+zJ4hkQh4eLz3juPe++49t+JBhe8J7naJLoW8\nbcAFywPTA8fD2UtwH81wniZ4mwvczgLXXCB1DWnpCKGz9B3mNYeF7+AHM9rBmI3za6anMYsTiE7A\nE0WFWMeBSa2FtREXW1hXCjPHA3MJTgR+Dq4mMS1QfIEWgCUk/hKyGdgaOBposYRMokiBYkiUGrAh\ncdyQzu6A9t6A3fYxj6YvuT96SSOZkWo2mWbRkWMUUyHbMTDzhPDSJXjrkk6cQmMwtVacKw8Yq27a\nPzxUPPgh86AKfFX4PVjvYGdRdK6og+YUuZQONM0J97Ujfsav6A3ekP9myPGvBDIumhZlAlQf9C2F\nnScKg2yLF/HnnEWfE2g14qlBcmQQ5g7B0mUZeIwuO9ycbpCdGnCew1UKSVS0ADd9MO3i+eNo4K4E\nvxMBsYQ4WQUHYsgXFCej2uqzVOUAFf4tqHhQ4dtCfjhEMbciV4mFxQKPhekRNy3ybRVjAvUFbAyK\nJL56A4w+LLdV4obF0vBYxD6xsBC5BiL7llIKdw231VCVwu83JJYWU1PmtMQYb7rEPE2RL2B2DhdT\nuEmhP4Gt06Ki1xAJXn1B0xmT50uuZglfnVM4/KuPq09CjHDIrsxw7YSd1hU/6X+Nmyyov5pSfzEl\n2HGZ36sxP6jxtfeM3+z/HVNaZKmOqcQYalTMGUVDh3woyc4N8vMacqDDjQk3NiTm6o0TvrnjXYW/\nDSoeVDyo8KdjPaj7l/5bvd61bv29V3aP4oJnQ9NC6eg0Hg7ZenrJ1udXbIoBm8kVm++ukLoKhorU\nVd4Y93jtPeC1dh87idGnGcoFJCOYh3AjQY+hPQZ5AWnfIFi6TEWTWm2K2LOwfqpinoF6A7Uh2D2V\n2r5K/omG7kl6JzmmkyMSMGwwLAibBhPHY6y1mdhNwp6DeKDRsGc86b3kmfsFe4tDOs8vaf/uAm8c\nolk6mmWw0Rqjb+foOxn+9pzL/jYXm33SiQYLDRbWqtwrXZurCn9ZVDyoePDnQxX4qvB7cLcluQvU\nVg6/Dg60zAkP9EN+wa/Irq6JfjPm+H8TxNGqAljC5r9X2PlEYec/qgzmfV6e/AP/x/H/yowGYqog\nI4V8oZGPNcRIJb00SM5M0jMdFnHhxKdRIYxkekVYvKZBQ4EmxTOwlLuYpyAjSGLIS2e/NAbhw04U\nlcNf4dug4kGFPwYrZ3Ol+YOEPNeIhY0qfZaGT9y0EDsq+hRqA9gwKES964XDL7ZV4obJQvdYBD5x\nbpML9Y9snrNuwK2GqoAOqiGx9ZiaOqclRnjTBcZJingBsxs4m8K7FBiDfwodbSWCerCgaY/J8wVX\n04Svzvgghro7CtkLMnbFjD37EtEyEDsG2usc/XWG9ipDfKaSSZ18Q+P/dCfM9pt83fkMaYPpRTj+\nAjTI0chRSd6ZyK8s8q8tsBzIHJh4kGjcptyvC3wr3KbeV3v7b4eKBxUPKvxpuJvN+Jdcx3WOKGv/\nt8p0KR3+nomyq9F8NGf/6TFPfvqCh6eHPD455NHJYXEu6CngwX9z/z2InEu9i5XGaNMMLguHfxbA\ntSwyWMIJSAOyfYMgcJnIJu3aCLlvYQUKbh3qb6EvQGwoiAON/BMd3ZR0v5ZsuAIlkag+KD5cN3Tm\njsdcbTOxWwQ9l/yhRssc8WTjJf+L+184uHqF8vUS5T8tsU4yPF/B8xWmD68x/inFeJxg1GJkX2Gy\n1WI+9AEdIhPistzr22gLVvjTUfGg4sGfD1Xgq8I34E4HO80BzQetjt7V0Q9S9HtTWttDNqwBu+E5\nQTZnqofgSZQIlAXIORihhu7oaLsG8ajJaLLJib7HbObDKIcoK7oZTYGJhBvgJoNBWpzsmgJ8DbWp\noncV9G6O1UqwazFWPQIJaWiQBgbJRCMeqCTXXuHvR2kxsvJBWYp8VwZhhW+DigcV/hiUp5FrOmsy\nQEYq6RCUY5tp3uRc9nndfUjyEOI4JSFBCkifmUweGFz0DjiX20wHLeIrm+wGRJRQRDUjbh3c35f2\ncjerb/VaKZECslQniWyiyCPWLdKWhtgB1ShS5X0TjA0FuaESbxgkrkkqTbKlCULHtFW89trlAc3X\nSUyHueJSSyLq8xm1YUByKQlPITwqqgT8LXD6sNc6Yc85YadxgtQkLW1EUxuhKoJc0RCKyrxeZ7rT\nYiLaBMIkninEpw6CGkXEN6IoQS673qVrY73hQ4W/HioeVDyo8K+zDeHjDrz8ht9ZzzxZX8P1cff3\nP/b9t7nHUrzbWBtlhrsPuOBY0NFRdhTq3Tm79TOeWl+zGR7TvDhGf36C6q4aXnvQSbbYcfo82Nyk\n49ygtzLmWx5pomCR0VYz3LqK0tMIuxqzjs9Ya3O92MAi5bA9pPloQd2ZodVztHZOdGCy3HRZOC5W\nI6F+sKD+0zn6Mkd6CtJVuLzf59R7wOHyEafsMVFbpHUD00xoGVN2sgu2FmfMb1IWZxnRO4HlFh/V\ntDVq8xu6ap2e1+Lc30X300I4yVJBW5VLfxAYqfD7UfGg4sF3B1Xgq8JHsF7TvCbkbftg17H2E7zP\nl3g/H9Pp3tDyptQnS1wrwr+X0f4niA4hPoIoABsdTXGZKw5L4ZJkBjJSYJTBdQA3ASxyCGUxFhRD\nAJYGdR3qHsZejvsoxns0p9We0rVv6No3IGGW1pknNSY3DcbHDUbvmuTnLgzqMMghU1YXTCicfqjK\nvCr8flQ8qPBvQRlQjClS8KaIJWQnOvzaZDzr8KrxGLsVcVzrYzen2A+mICRhv0HUb3Jp7vJy9ITx\naYf0rY44TpCLUtx6sbp2qdP2sbUr/+9O6VNefC8TCEKX0aKLupSMmx2Cz1zyjkrtSLL7VlI/g9oT\nDeOxzvKRw7zhM9WaTK666NTY7Fk8+8laiZeAeK/GsrnFSN1ka3bD9skl/hch83eSqyu4CqA1hM0T\nsBpQuzdnZ+eEZ70vcMOA7esLtkdnGCJDqgpCU7lSNjhx9zn+ZJ9B2mF41mBoNBA4QIuCpwuKYEip\nZxdx29yhXI9qj/91UfGg4sGPFXcd9rtZJOvNZtaCscCttML6V/iwhHV9P9/9/fL9v83f9XXtO5vb\njPY6UFuN1T0rGjgmtDTYgro/Y1ec8+n0JdnFmOnrOaPfgmGAaYJpQZJM6Dbf8rOHNjutC7RHKTdu\ni3xbp30S4PaXOG0ds28x37IYddpc+xtcjnYIFZ/MM7ne71JvznB2QuxPQpa+z7jbZhS28c05/ScX\nbHkXmGlKbmnkps6Ft8Vr/xGvbx5znu9wvdwgUS1UXaKnGfYiQZ2nBJHgKpfkApZJwRixzEniGEss\n8ZQllhajGWLVQ0gBReH76Oz/bVDxoOLBdw9V4KvCHaw/qEpNIwcMF1wfanXM/SG1nwa0/8OQTjak\nmUyoTxeoVoq4L8hbENsQBxC9gwSdRHFYKHWW0iNJTWSswCiF4yUcTSDICmNUSMjlbUKK6UGjCZsu\n+uMY7+8XtP5hxG7njHvaEffUt0gUrkWPa9nj4nIH8VxlXm8RW24h9j1RIJDcGuARle5Fhd+PigcV\n/i0oja+MwtksHH4ZaOQnNYTlMo47vP78Mcv7DludXTbuX7IRX6IgubK2uLL6XE63uTjdZfSyQ/aV\nDicBcjkHJtyu3R9yZMt7WTMORQ5SIBIIAodkbpEtDMbNNsuOQ/5UpbYp8GogXEn2E43sc5PlU5v5\nwmc6Lxx+TdbZ3LB49hkfiHof7dV409jmUH1MNn+LfxLS/2LA4hrOJ/AqgJ0RWMfQ1cE35mx3T3nq\n/Y5eMOTh9RGPXx5iJRHoRTna0eYBv9t/hr2/RI/ukX2lMDUapLgUHLUpHP45RUDEoDBgyzmAKtvl\nr42KBxUPfsy4az/ofOjEw4fOfum8c+f12trrS2e/NAqy1fXKrO31v+XyG/59F2UQQuMD/VI2VqND\nwbEQlAQcA1oaSl9S9+bsigs+nb3i3UXKuzcp735bdJNz1OIr9Sm9R2/pyQirnaK5CTe7LWrbCq1+\nTmMrIOnphHs2812fYdrietnjarTNwNvkptHhVfM+DabU0xm1bMYsbXKVbHMZbdM2hjx8/IoHT19h\nqxGJapKqBpeLPkejRxwOHzGJWiTSItFMVE1iZDn2PC0c/hgGQhLlEMUQp2AsBWmSYIoATwmwtATV\nzAuHX1dA/WOaavzYUfGg4sF3D1Xgq8IdrG/ksoudDZYFNRM6Bn4vYmvzioP+Id3zU/TBhPlxihrn\niAxkCooJZh/sz2GwW+PG2OV8vM/bm/uMhm3yoQYLCZladKSzJLDq1pTJ27JhX4dNHR4auPdnbPev\nuNd8w67xjv7ymP7yGIC6eUPXusY3A2RPY5nVEXmTbK6SnrvIWQJyBtKk2PaieL/K8a/wUVQ8qPDH\nYH2vlKnxZbq8DqmGnGvIgU7ou1w3eiS+zjysMVVbTLV24fAvN7nKNxkOOsxf14heacijGK6XEE0p\n6mCX3Gbs/SFHdj0AcVtyRrYgH5vkxyaLlzUuNvq87D2h07jB2MoxwgzdEiz3bYK2w9zyOBo84Oa8\nR3xmM1O6DOr3OGn8BEXI92/ztvuQN/kjXl48wp5n9LUBsq2i5nlRLCxBbyjIhkLaULD8kE37ik90\ng1o4ont1jPXyGDNMUFY2byOHrU2bZc0g6evMHtQ5/2wb2vbK7jUgNiA0IDRX3YZ0yEuDO1rNQ0aV\n3fiXRsWDigc/Zqw7+aXdYK1GWTalr15TrkEZHE5X1yhfrxflROoq00WIYsjV/n2fyZeurlFmcMO/\nDvbeLQlbv9cyo90DmqC0we9ArYXi1bH1FEePse0JyrMQ5cEcc1tnw7/C92YYaoKZ51iRwJ4XVVCm\nVgxiAXmOQkogPYayRyBcmvaMdntCW04IGzbzusfcdHk9f8zl5TaL0xpZXSXcshhnTTx1Ti2dU8vm\nzBd1bqabDKZbTK0GogVJS8cyYlJpkGIwHLY5P9vg+tQjTMyiAZCtkDYN5k6NgbKBcMak3RDrXohu\nZtir+5YPdMKex9hqMxRtFqlHFupFGkxSfJ6qdPgPoeJBxYPvLqrAV4WPYP2htXpgWQY0NNiAZmPC\nPestP+XX9AZHJL8bc/TPkjyBLC9G04f2NrQ/gelml5fOM/7l5B84fPeQi+MdsrMVgWoePFZXD7NC\nd4PyQHcMNE3Yt+EzaOxOeWS94Zej/8HG/B368Qj93RgNqLfG7LfPaXkLclNnvl9DSMny0mLpWaS6\nC8KG3ACpU1iKZZS/MgIrfAwVDyp8G5SOvkphqLmr0aDQ3mmBrENuQ6qRjxXCr1y4VEhrJoHlM7R6\nKEhmSZ15XGM5cojeKWTHIVwlsJhAMuFDh//bGhzlKWpCkREyLpzkqxp8VSPLDI7v3eP/vv8fuNrp\nY2oJ5k6C3kkJbYcwcwhOXQ5fPeLqZR/ewPn9Pv98/+dE94ziHlZb5zLb4mK2zcWoT3cx4cnWG8T/\nrFA7g50TsE7Ava/iPtOIn+no2ynd9g2mSEinC8KLKa9f57Ao7FxFhcQMMQ4GHGQGQdvn/LM+Bhlc\nKxCYhaN/o8OlCZcezN2i25DUQJTrcrepw59zn3/Tiec6nz6ma3L3Nd93VDyoePBj4MH65yzv+2MZ\n4ibF/vdWw1n9v81t2ZakcNjLrjTcvl41wVDBUIpLJxJSCXmZQVmWtUbc6t2tO/ZlNszdsrD1z7Em\n40AD6IG+AVs+3LdR9iVNf86Wd0mvdoq+o6Jtq5h92DZP0KyEodFCqYVseCG+m2NYRUc5w4Zxy2Lo\nNBixyWC+xfX1JoPrLaw8wZMhnh+QoBONLeKZyenpHmdHu2RvdPKaQtK3kVsqeWYQL1wWywbxwmax\n9BELhdCxGTQ3yZoGup6SS41caiynBtOBQTaYgZpC04OGR7DrcF7v86XzKft9ifn0kt38AnuS4diF\ndNNk2+bkk00O6094FX3C5XKLcOQUrfcWOWSlht6PvWy44kHFg+8nD6rAV4U7uJvpshL1tg1oqO8d\n/gP7LT9TfkN2fU305Zij/yxJkqJ7XSJh75dgfgIb/wSzrMOr2TP+68l/5OZtl/DYJTszwJHQ8aBj\ngyZv7dIbip0ZAU0F9hX4TKHenPIwecM/jv4HjcNjJv+SMv6XBENCZ1envavRehAwf1zjaq/H0rCR\nrzpEXo3UkJDaIMyVw1+mx64/uCtUKFHxoMK3xV1Db9X1873D3wTpQa5BppKPVMIrjySxWWg1Rl4P\n3S9OKbOlTrbUyReSfLpEzAMIZpBNisGUYkOUBse3zXQpRcaXwBhyFQZAbpGNHI7nBwxlhy+sn2LV\nI8ztENOLiSYO8dglGrgsX3sEX3jILxXO3T7RM52jT/c+6I2weFtncdRgflTnfvuYWb+B/KmKfwhm\nHboq5I9V8s8Nol8YaF5KV7thU9xwOUs5vkg5fiNIJ6sQigK1ZkBzdE0vS5i327z87Al6P0MZq8iJ\nClMN3lrwwi1OVjMHpFpkTIry868baH+J7Ma7Tv/HSiw+poch7rzm+4yKBxUPfug8uFvas36/5QFS\nmelY7v/V3i+FsXG5db0kRcZKmcUIBV8aoNqFs++svV0uIY8pTsQmFCWty9X1Yj7McMkodk+ZBXO3\nFer6oZ69et8uaFuwqcFPdNSfS1rtBQedCx62X2PYOaadYdkpm+olmppwQxOvptLzczwnKjrK1UD1\nIW/aXNkNBsomh4tHvLl4zOGbR0hfRW/laK0cESiIsYqYq4SvHILnLunXBviQ9FWyvkkcuqhDgXqT\nI5YqWaQhIoXAcciam0yaHRRdIoWCzBXyZUg6XZBNZmBHsKnApk1gOZzvb/GV8wl5M+dRLtj1R7Tj\nJVoN1BpkDYtla4PD2hNeLD5hvOwRjRwYSghySMuGEeudsX9sqHhQ8eD7y4Mq8FXhDkpHX6d4CKxq\nnW0XGgZsgd7IsO0YnyVxHCGnGWIAIlo9jySQaGR1jeihRrK0SS8MslgDT6J1UuzdEKse4W0u8baW\nqNqKrEIhvHFYtDwWLZ/8noryUMBeiqMFtAdj+pMLvIsromPI3oCWgx1DJ4HEbdA+GNL0JnjNBUuv\njmopoOurtP+7nSjWrNUKFd6j4kGFb4t1w8kBtQ5KC+wW+D7UbPQWON0FTjdE1zLkXEXMFbJcJ9Ic\n5rlHlhhFsPMKmIaQZpDOIR9TGIPlyWaZ0r+euv/7sO7wh8AMhAoLHTIDGWrMLY253oa8i9lNMLox\nRishubJIBybplQkvcjjK4XTG/FQjPu5yc9wqNE5XSI5tkrc26aHNmbLLq80n/Kb3M9w0QM1yVFUQ\n7psEmw5L36ZmLmgzoc0EhQxNgLGSbNKUwuE3pcCSCQ4hHX3IgXPMT2pfMtKukL6G7GoElsdUaTBR\nGqS+B5cJpPmqi2nGhyfBv++Ect2Yv/vvEnLt6/pzQr3zmvUT5nVR3296zcfKML5PqHhQouLB+mt+\nKDwogYXmLgAAIABJREFUA7ulFpBy52flz0tR7DoYDXDq4DRQbAfNMlFNEzQNiYJERaQ6MpDIoJgT\nxfVRXA/N0TGcFMPOQJWkoUEWmmSBjlwK5EKByADhgHBBxrfZ4lIU38uE23KwsiRsPTtn7VDPcMDw\nUOoOTj/AuTej/mTGfe2IJ/ohT5LXaFGKJhI0UrxGgN0MyeoaSddDu2+g/KyG9BSEryB9heuDPQbN\nHS6UPgO1x1hrMTPqWEaMaaa4ZoCSyPfSTJYeY3gpWidDd3PMWoxlx2RSJ7ZtItdCxGqxlecK+UIl\nnOuENwoo8jZjPspgGUIwLdJXchsyn8g3GPS7mNsPoaWgqAZmx2LBCLlKMDrR93gbPeH09IDB2w3C\nc5t0mMMigjQqDLyPllh/1/brXwoVDyoefL95UAW+KtzBuvHqAQ1QOoXD37RgE5KmydL2GNPC0RJa\nVsiWWzSMS7LCznJ0A013GBsOsi7pyAFPnd9x3dxgsttg+mmDnn3NXv2E/foxhpqRS5VcalzO+hyN\n7/F2fI+oY6M8FKjNHDNI0JIMZSrJphBGMBNgZxAtIR+BOhEYQYqdR9hKjKGmqJpcawryTUZchQrr\nqHhQ4Q+hnMO100LVB60JWg86DXjowgMVpx+w1byg37zA1ZfkkU4WayziGtfJBtfJJtmNUdgQNxSb\nJw9AjIEhhbMfcuvsl07rtzEyytPP0vHVVpIaWmEDzlM4cYpMwCub3Bcovo5wNfK5gpjlMAvhMoRB\nBHGIOHJIDRt5437wTtnMQEw1mMJFs8//O/0li8DHcZaY+zFmKyZ0bZaGR3DjsuVecs99yz33LZo7\nwm9NebQ5RXFzFI1ibGooNYtYc/GigGejr+lejImkg3BVRFPhVNvla/MZX3aeMX3lwRcuTJViyojX\n5q8UwP2mtSyNdm3t3x8r4SoNPWW19qWO1frPSz2pnA+DAuuOfbY2PlaGAd/NIMA6Kh5UPPgh8+Du\nfHxMdLs8OJIU2S3dYrh16NvQd9A2VKx2htWOwVbIpU6GTjaD/EwnP6+BBG1HQ9vOsFshNXNOzZij\nKoJ5UmOe1gknJvlbneytjxzYkCbFyLIiwJnJQmdBhCACkAG3LaIVPtRBWukvqRZ4OtRU1F5OZ+uG\n/tYZO+0TPj19ySenz3l08ZoszYshcuzPBNZnAqshWPR9Bj/fJKj5ZJZWdJWzNU53dzjt7XCm7LD0\nXYztiE3zgm31ggPtmAPlBN3MiviICWf2Nm/7+7z9yQGOFdDxh3T8G5aJz/Wyx3XQY3FSIzj0CN64\nyHkGWQCLAEQCMgOx+r9kAWIOiVvwVkbEtsLIayIVlWjTZ2ht8sb6BM9YFtMTwShu8Wb8gMvRDsGx\nS/oiR4wWkC4gnxfzSkyxp79t0P2HgIoHFQ9+GDyoAl8V7uBuqUIT6IKtQbNo35o2jcLhV1o4+pKm\nNaXvrUycBLIYIt0gNDzGRgNhSnrOgKed39FItrlI+6jJNvvaEX+n/5qfG/+CTUyKTiZ1vk6eImLB\nIOqSWQpaLUet5xhJ/N7hz2cQhjDNiwPheFEksqjj0uEPsYnQ1RRFE7ftV5W7KboVKnwMFQ8q/CF8\npBRW8UFvgdGDrg/PVPhHFefekr5/xqf+V7SMCUlukAiDm2ADRjAbNVke1grfXgWSvDDUZOnwlyeV\npZHxMcfwm1A6/GU5wcrRTIE8gzSGpA6DOlgKQtdJdQNF05FZjMhWBmU8g2gG8Rzxtou8Nsl/86HD\nLw0FaapgwNnGDrNZna+Dp7i1BU57gessiAKXxbzG8rrG48ZLxvpvyOsKfU+n18rpbc4xajnKSgN3\nsakxqVlMNA83DPhs+Jx/OPkNii0QuwqiCb/tfE7WVXn7YJ9pvQZTF944q7uas2pFxIfCtx9by2/q\nPnU306XMHlIpajBK3ZISYm3NMm7FfLW1tRAUi5Bw25XqY/f3XS8Dq3hQ8eCHzoMyw0XnVg9ofcBt\nILZG0QVup+gAvaPBUxX1YYK1F+PtL1BrgliaJFgolwb8zkB8WayT9lmK8ZMUd2tBW7tmQx2gkTMQ\nGwghya6a8M86QrXJhQqRhEgU5a3lVJNBtgA5Bzlb3XeZWbdKK0HynrOKBa4BHRVtW9Dp3/Bo8yVP\n21/y6OtDHv32kHv//R3LSBJEkiAHbW6iNw3UZxaDvsdxfY+TT/ZJVZNEM0hVg5HTZui0GaltlJrE\ntGI2Ouc8C3/H34e/5u+DX2NZcTGFdfhi+xn/rP+C2FBp6hMOtLfc098yFF0O8weoeYb6PEfUVKLE\nRZxlMFrAYgxpUGT3kICIb0cqYRZAEJEIl5HSZB61uNrb4dVWjN2P0dz8fYPYdGSwPPJYHrnEJyAu\n5ojRvNAWlHOQIbdi6t+/Mq8/DRUPKh58/3lQBb4qrGHdeDVBs0CzQXcw6xFWJ8TajGlpY2rjBe4y\nwjhLUWc5QoDugt0EzYB5G5CS5Friaws24nP0ZInrTak1JtS3JhyEhxxMn9O/fo6dxwh0BAaBrXHt\nt7je6HKtbBBlNuHSIQsNAtVl4jWwOjPop3jLFCeVKHWNpK4S9ByWtscyrRFEHmlmIVCL9E/F4NY4\nK0se1k8+vz/ErfCXRMWDCn8Id08/VwFS3QXPhZqLta3gH0zxH8/Y2TrmcfKcx/FzWuGITDXIVJNr\ndQR1lcSy0JOM8K1D2HDIXApDJRUgVjVPf1IZUPk7ZZmTAKlCLgqnP0mLjBcSJCbyffelZDViCg2N\nIr1dTnPktMz0WNPT8CgkPHxYnussW20u3Q52O8RpBDiNgGTiENz4hNc+bICZxOh6QqB4ZF0P4xML\nI8nIDQ2hayTbGqmuY4wE1miJfzTGfzXGslOMpCgJW7Q8dt0TettXLMYeScchcR2EYYOwIC8d/tJw\nX9/v62UbpS7J3e5TZSv1ci5X+haKArpXDM1am2pZRL6zpDh51XRQdVC1ovxCSJD5qixjPZhTGpLr\n6/yx9f+uoOJBxYMfMg/KTMby85d/N90iO0Q3i6ECyiqDRG2A2gK1jtHXcA8CnCcB9XtTmt0RreYI\n3U2JVZNENVniM120mWYtpALNR2MaB2PazSG98JpeOEATORvONddOj2uzx3DYYzjZINA9jCTBjDO0\nRJDFGnmik4UaYiHI5yoy0FeC4AIyQZHxV67dKnNH0cFUwVNQGgKvvqDnD9iz39GNzvEvr9FfTFAi\nyKMiHu18ZmNMLKxUEmsOl26fr82nWEaMZUZFGVeY0AymWDcpphNjuxFWK+J+/JztyQs6py8wRYKy\n2nrbdZUHDYeFY1OTE/rhMdvZOzyrg+pF2F7E8U7A8TUsRg0yoRRb5kZCnFKUQJf8XGUaCgWSGSQ2\n+ViQnzpEmc18acO8DqEKrnK75YYSjiQcAVchzGMIAhDL1dyt6wr+WGyligcVD344PKgCXxVWuJvC\naoCpg62CC/XOnG5vQGfrmscXL3l4dMj982P4esLyKGC+gEYfmvvQ3ANnO4F4ifmlwJxHWKMZ7tCh\ncf+G7WenLD5r4V1dU//qmMWXc5IgRUdDR6V2cMG9T18gnmocy/scjw44GR0wjxsMrB7Hj3bpNlLs\n9pT7mxNMKfHaFmHb5majw2W/z0lywMVkh1nQJMvMIvVTlh07SmOvLJNI1+bhu+ZYVPjrouJBgYoH\n3w6lQbhy+G0XuiZsqdQOZjzcfMWD+isO4iO2X71j5+Uxtekc1dBQTI3N5hCrn+Jsh7S2Rlz0t7nY\n3mE202BuwNyByOX2dPKuMOsfi/VrlIZfzq1DP+FDA3d9H5QaPT63p7vrbcTTW/kkARyrkKpwpZF5\ngtgxkE6dNDDIFgZyAbP9Bm+n90lSk6u8z+nGHm9/eQYSIs0mUm062pDd7Izdlyco51Nmz0OuXghc\nFTrvoNMD+15E5/GQ/SfHpK7JyOsx9nRiR4FEBbnStnufvbJeulU6+qtsJXyKyIW7+r50/kvkFAZl\nDKoAzwffA9u+9ckzCcusEIGN86I/uKUW3anel2GIoowvC1dlA9Htdd+fmpeB6bJc7I/NcvproeJB\nxYMfEg/WA7rlQZFNUYu0Euk2V2VRnl68RM2LeTCcooOBqePdW7D7+ISdRyds1S/YWA7YuBlgE5E5\nOrmtM6TDkXOfoyf3kTrcbxxxPzli6+wK/2RO7WSBkgkWuz7znRoX1jZfNH7CF09V0m2VlhzTkhOs\nPCLIXYLMJVzYRKcq8YlJeqHBRBRbeqFS6OStZ7qooKiFkJyuoBgSQ8twlBCPBSKLmMQZWQCzrMgu\nXwAbeYadKPgh5EuT0WKDw+Vj7jWP2Gpecr95iDICTlU4UVD7Ocpujrqb49+ckX55w+v/L0dLi7dW\nFAhbEza7r/nHbowSh+jzEdpsSKM3w7k35969c75Op4iWycWnO0TShKUL56UDXmrYlXsnXa3juPi8\nSQBTD6QLoQ1DA47NIthRbrOFhKGAYQ7zaKUfEa5d88dkF1U8qHjww+NBFfiqwL8+tV1lupg6+Co0\nodaZ0e+dcX/zDY+OXvLg+SH3/q8Trgcxl4OMy7mk/wjMh9D+d2CnKcZS4H8VYZ/OcN5p+O808n9n\ng2Mjn9hEg5DgVwsW/2mOMRE4KDhA/R8uuGdptB4HeHlMeF3j5O0D5lad6+0N3vV30XZCepuS3u4C\nTRNEGzZBz+fGbHOZbXGa7HM52SENDNLUWHG0dPhLo7ckMHxoRH1/CV3hT0HFg4oHfwzWHUYL8MBy\noGPAgUptf86jjdf8Y/2/cX/0ktrLEbX/fYRzGmE5CpajML1/jfM/hbj3FrhbC5S+ZNJvMRvXQTEL\nZz/yuC0Z+lPLU9fLi0ptndLZL53e9dKm0vFfN3odbh3ghFsnNSouF6y+TTQY6PBCJ9dNYs0i1SxE\nriIzDTKF2ScNktRkYGxxurnH1sY5m5+ek+oGc2rMqfPs+mvsk5hnR89JX0+4epnz7qXAT0BxoeGC\n/bOYjj1i/9E7IsdBuAYLv0HsrtYn01YO/3q2y7o2VZnd4nPbfarGreO/Xr6V8b7tupaBW4O2BzXn\nlj6xLLIr09UwFfCUYvpKbd04h3RZnKCK5e01CbgNpJTZL/Hae3/XeFnxoOLBD5EH5fysmjXgU5Ru\nbQCbYFhQU6CtFD8uNTRtrSiXckuH/5jPH/2ah9khu6/O2Xl5gR8sEQ0FWVc4a2/zq97PUQ5ypAW/\niH7N30e/Zu/8FP23GfqvM4gk2U91slTn3d4+oqFy1t5motVpaUN29FNq6oKxbDGWTabTJvzOJ/ui\nRqobxceIlJXDX3KozHRZ7QFVKZJeDDC0FEddOfx5zDTJmYYwlYWe6EIDO8/ZiCV+kJONTYbDHkej\nR2ylV7SMCZ81v8QdRzivEpzfJuSfKmS2QrajMrlZMv5yzpv/LCC87Vza6k7Y7Mf8ZOucYJ4zHiSM\nrxIaDzVav7ygaVjYnuSytcNv6n9X6BadOqCrq/0xXn2uMtNlvYtfDMkSpj4ENRi6q+CMU2QhlrHt\nTECcrYRao0IfKr8r5P1jQsWDigc/LB5Uga8KK6w7/WqhpqqphaHigOVG1L0pPf+KTnpDazCm8WLK\naCGJArhJwDMgboKyA9qlQDsXyDcp8TtQ34E8Bqet4j3V8QcaozPB5WHO9HmGHN+enVq9Bc3xEFeo\nDMMt3KsAXiksvBoXZp9XnSdkpsGy2SJTWmh2zmzTZb7pcswu00kdOQHLitA6Gcb9lEwT5BOVbOYh\nl6IoaUiTVeu9gFsDuMyC+a45FxX+Oqh4UPHg22BdI63MDlyl+/sadBScdsSGN+Ch/oaD+DXiOkC+\nWSLfZKhOYWt4pHSeWUSaxtJ3uKhvY7YSaCgw10EzKZzNkA87of0pKNd3XV9nXaC2dIwNwC3S/1UD\nLAtsDyyvuC9N/7BLeHmoWE6Ppry/ZRmp5KlOnpmQKO8rx2LTJHYMpmaNYGmy2LUZGQ2SusncqTF3\n6tSDBUvdx8oStCBGm0J+DXkC0gPFA20mMOMUW42w9AhdT1E0eevX/6tmDuraWAVrqIFWB6tR1Cpb\nPpppoVo2iq6//20pckSskscmip7i7CjYOwlGO4VcKSq4Eo1oaBGPLLKljllLMGsJupORxzp5rJHH\nBtnMJZ9piIUFwi6yMYULWVqMPFlpaQSrPVCWg/1bS/3+3Kh4UPHgh8SD9b1c7oGyO10TrA64bfCa\nGG0FezPC2gzRnRxFE6i6JDEMQtMlNDWc7YjN9hWP3dc8nLygPbyi/WaAMw7QGqDWQe4FXNXqXNcb\nKI7Cg7NDHg9e0T88J34N8XOQURFLtjxw9IjTzV1OWzs4fsBOfMpOckZNzBlbLSZWi6Hd4XK2zWWk\nMJZNcmGQz3zkkGKDynLuVvW40oPUgkBDzhXiyGKe1RgrbSw/xNqaYDwoYhqGKJL2xIbFwnMY4DJM\nuoyCDuNJB2Fr1Iwlu9o55vES/U2E/lWIIjQwNBRDQ30hiF5ncCSRIcjVpnJmEZ1lxN5szHAG4SWk\nV+BJaGzB3gGca/dp+DN0L4GeAr5ecAyT26YJZdpKGSCNiq9ChdiA2AFVgilv49zlKKuBHQUyFWId\nYqsQTRdpUbKL4NY+Kt/jb/0s/nOi4kHFA36wPKgCXxV+PxRAkSiKRFNyNHJUISCTyGQli7HSEkwl\n5DnIFMQcxBWIt7C4gps5XAhoLiX6RU7zhcQ8lugTgZp/aD6z9pUAuACew9L0OY33ySONi/oOLWVK\nS5miOSmpopKistA9Eldnh2Pq+xMCxWPZ9Vie2AQnBsGpSXpVg3EGY1HUNb/Xuigj4t8P8lb4K6Li\nQYV/hbuOY3laWGQ0aGaOTUItWWLFAaMsYSQEQoCXFqaWDHPiJMISc2rqAluP0cy8CLTqSqGF80Fm\nxp8T6xkvdz+TBTiFTofWBL0BPQs2LNgwwdGL4eowV4pytJl1x49WixJhW4OFUQQwZkpxGDmWxZgK\neJdDmpOcKsw7PqKrke/oRPsO8Z5NmpkIT0PuKtgTaJ/Ang6OCo0uGJsgdjXClsNMbzCXdeLMJk/U\nQoQjl4We0AcdANcDNQ7vm1eYDeh5sOGh9gzMrsDqLtH9ouk6FFJE0bVGfGOgC+jdu6F/74bmxhwh\nVYRQiTOLwXyD61mPZezRcse0nTG+tSDIHMLMJYgcwlOd4NQgvqhBbkHmFYHoRV6MZQZydjtYriZX\n3Bl/S1Q8qHjwQ+BBORdlWVc5SpHuDWg0YN+DfQ23P2Nz85KNzUs8Z4muZhhqyiRvcZbscZbsYdYS\nmnLK9vSS5tWA6GzOu+MM5RpMu3Dil8sErTtm8+Eplgrt6zHm64TkJdycwfUM8hh6F9DzwVMCHotX\nZJ7O50qH5tsxrXcTrFlE0HMJui43fpev1acYBxm5C1GkEV2ZpGf1W6dVmhSZ3w0QdZj7cGWRKyrD\nJ20Ow4doWsK9XZ17v1yw610SpxClEAuF5Kdtrnb7HDvbvDYfMFJbIMGY5DhxTO06YPk8ZniYMTuF\nWiZoTKFxJPHfSDZOJKYoplxTivPFloB6AOoI8iWEcZFZY2SQhCCmQF2Ck6OaGYqZgw5SKTMz73Yh\nvcvncp/XijK8pgVNGxra+6nAkIUxlwhYOHDtFieasyVkNqTGKmsyWLv+uvbc9x0VDyoe8IPmQRX4\nqvDNWPPCFUWiIt47/EomEavOsalYVRSLwuFnZaPkV5AdwWIGNyGcCsgXkuaFwHghMN6BPpZFSTi3\n4wPzZcmtw694nEZ73IRdrK0Ys5VitlJ0JUEnRiPG1xc03Qm71gm5qzLuthl90mZ81oIv28Q1n9Sw\nindZAqHCrVZFwq0xWKHCChUPKnwU62HK1aqpChilwy+wiaknAWYcEGaCCykJBdQS8DOwQoGaxlhi\nga/MsfUIzRSFv62vNCfeGzF/KYd//brrZQ1eIU6r98DsQk+FRxo8UqGhQlMpMnIGBlwLGIgP5fF8\npSiBqCkwVOBKhSvgbKXtM5WFWEaawiAldRXmrk/o1pFPVfJfFO3AM9ci93WwFewhdOqga2CY0OiB\ncR/Enk7UcpgaDeayRpTZiERbZTMKkHdFWEvjvixdawGbYLWgZ8JDE/WhwLy/xLu/xOoVJ8MKkmyu\nw1GN7NDHCGHjyYQnj1+xs31KjkYmdRbCx4weEkc6SabSsm7YNU/oGkMmssFENJlGTSZfNsm+somd\n2ipyLorOVENRCH9HAsQQhAly/clQlht8FwzMigcVD34IPCivW2b5Wav1rwFtYKuoJ31owC9UvIMl\n/c0znmw+p2WPsJUIW4k4W+4hRio34x4mKU05Y3t6ReNqwMl5yvFxRnwOnlYkRSppgvZozGZ0iq9B\n63qE+SYhfgk353A4K7aGvFwVoIolT7zXbPUHxFgYrxLM/ydBvcjJH+jkD3Su97sYvYz5gc9op4Fy\nWSN74ZPqHmR5EQCVNoWH2ywc/oUBiY5IYDTs8CZ8QKiZeLsLHlsn7D4oKp3yCLJY4dVum9Odh7xy\nn/LGvM945fDrkxx7kFBLAiYvUgZvBEcnsH0tUY4ETV/iLyTWVNKSRUxbU0HTwBJgBYVMVBZBGMFM\ngr1y+OUUlI5AaeUoRoZq5ght/flwNzh+9xjxrsNvwLYJ2xr0KYYtIZCFP38t4EgU3EmCIksmV0CU\n110vIfuhHBRWPKh4wA+aB1Xgq8IK5WZdGUVydUKYSogUkshiEdcYRR0mZpNZ12f5wEHEGWaWU09z\nzBaIBBbHoF8DQcFDxaFo/JEDTY3M0gmlTiRzYpmRkGGtqhksE8K6SWDXGCs9hmmbYOaSD1SS1CTR\nTKZ5vajTlgrUwVfmdMUVnfQKL1uysbxkJzhFEzkTq8241maw1cdaZuSZhcQjTy3yYR05F0UKvZxT\npNCvdzmq8ONDxYOKB/8WrPaLEIU2QgRZpBGmLlPRQDfqxI0IuR2hpEVqn1Qh31JJGhaZ4bOQNaLc\nJk/VlT9XZmiUJ2h/CWOivG5ZPqbwXuNHaYLfhHoDWnW8hwu8T2Z4ny5QPYnqCVRXkvkaWUsn62qo\nmkTVBIom0Nzi56orSFs6adMk6RhQF6h+juLn5KlcSVZLUuGQLX2CmQc1DbpAGxabPoPGBoede3R2\nbMT9hPwsBUNh8lBj+VDjbHubK2OT4aTL7KZONDMRUb5y+EuNoDI1vwzqrjSNVBd0H/QGWsvD3Mmw\nHod4j5e0d65pbw/xmnOUlcOfeDbDvMdQ76IFObvdU+7rr7gXHyIUDaHoLFUfs5FgbCTc6F32ohP2\n4mO66Q1Tq8XEbDKutzmf7aIlCrlhY8QpRpKghznRtU3YtomvTZjnMJeFkq6EokFFqXNVljN8V1Dx\noOLB940HpfNWapyttIyUVdc6rQ16E/Q6Rk/B2o+wnkbsbJzywDnkU+1rWtkNpowwRISdzwgdi1B1\n6ctLuuo1jhqgiwwlE8hEImIQWjHURKJkAl1maAoomkAaIC3IHcjdYumEU/joupbSTYd050PEEuJj\niF+CeAdmCGYMtXzGO3eXjfsPaLq75B2DyK8RWjaYfsEn1QKrBraPYjooq4x21c0JTIdBtEkyMtmR\nV+w3B+z4s/d9B/JEZdS+x6i+xchogSXpOtd86j5nk0usLCYQLlEakSQpIkrJl5APJZmUmFohnVqz\nC/Oq7HMgy2VMi67YVhP8Fuh9naRtMPFNZlqNOLOQSwWWsshmFHDrfMs761pmLq26cxsOGC5az8Da\nyzEfLrB2U8yNBGsjQbNzRKIgY4WkZ7C0fBa6XwRlb7IiGLuAW42o8qDwu5B9+6eg4kHFgx8HD6rA\nVwVuCVKmwa8MpCSDuQABs3GD0/E+8dTCacY0fzplq3aJTJe00xAzC3HiojnPxX8HLwbPBO8ZNHPY\nFeBI0O5b8InP1ac+Exlz83bOTFvQcAV6G+ptiHZ9rpt7PNc/5xWfMGCDFLPwx28EiLwof2gV0e2G\nMuXT9AWfL37L9vS4aPN9OELLBEnPI+n5XFg7+PqS/IGK1DeJZhrhiUU28gstidwCqXMr8l3hx4eK\nBxUP/hiUznK5V+LCwZzkcCEJmi6nvW1+q33GXkdFf3zJzuIC8+ESSwdLh2Db5vTxFie1TznMPuVi\nsUV44xRtqRdZcb33AqzrJUp/bpQGr0Gh89MCZQN6NXhooT4U9A8ueHDvNQ8O3mCmKVaaYs5S5rrH\nYsNjvulhqCmmmmKqCZZIMEWKladMG3VGXpPxThPlQGCME4xRyjK3meEVY9JidqMyv3HIPa1ouvQV\nDIP/n733fHIky648f64VtAyEFqmqu1qwSe7McMXscv/ttdkxG+Msh9NNtiqRIiJDAwENOFyLtx8c\nyIgqFofctS6RXbhmzwJRkYYIPPfjde99557T5I9nP0XpxLQP+5T+ekapPgNZJunYJG2ba+OYN+FL\nHt70WL6rENwrZKsIUq8Ao3jqEif4CstFtaBsQElFP0hpnYxpPx/T3R+wn96xd3lHLZ99GPEKJJtb\nZZ/b9j5JqnA6fs3+xQU99xJFkVGUgp3TOp5xdnyJWytRu5hSez/FeVgRNm2ips2yWuWL5BP0nRia\nglo6o57OceIV/cUu9/NdBtMOnGtwXoYLpciOs7j4TB90Nb7v2OJgi4OPFQdPx7pMCh0jB6RyITwk\nV8CuQqkMJRlnz6W7W4x1PeMtP7n8nJeDdzjejDRJSNOEvB4i7yd0Dx6olHx2pHsCSYdFDaftc9wO\nEFlaaBWZEBxrDJoVJvoOri1ROvRpZROcukzjnUA4giyG1ilop5B1QbZAmkGygMlaQiH0oDmEpgRC\n5BiNgMrpnIYzIVJtXL1WGAvoRlH02zrSjo7UlZBbMbKSoch5wbTsQpSYzL9o8lr5hFzRuZGPvyIX\nlCUFs73NmLY5Rap+CbHCbnaHlkecZ8dk8YzqZI5zM8cJBNZ6RAwVDBtUG7wYJgFMQqiq0NagbYNT\nh14DlCbkhxbJSZ2r0zrX6j7TuEF8ZZLfALO40IHDe3JvbwrvTbG/FmXXS1A3oaZjHia0PpnQfjX5\nootYAAAgAElEQVSm1ZnQ0ia0tSmmFpA6CqkqM202eFd9xtvdZ4wv64jPDERcg5VE8Szy+aCbRMaj\nttIPm/Hyz2OLgy0Ofjw42Da+trGOTad2g+i4cHRYn9ouplWiucFo3qFWXdD9xQNHP3uPnck005y9\nNMT7jcD9b9D/B2i0QTmAyrNiGsAU0M5heWyweF5l8KLNfOUyq+csFB9Lz1G7UD2E4UGZYe2APyo/\n54oTxnRI0CAUMMqKsQBLhiMAmZq04JP4NX+7+s/s374n+3VM9vcxcizQTlW0M5XbwyPyHYXZQQ2v\nbCLdVonLDqkmQ2KtKfQbp6Mt0+XHG1scbHHwb42n98q64I9jWKTQF3hNm5uTPRzlp0RNiWcvJI7N\nGQ3PQzGKg8Z+zeTtTpeL8ku+mHxC3+sRTCwYCXBTSDcF/9dP8f6UsTkN3BTB64Jfbhc6Rj/Rkf5a\n0Ove8xfd3/DvO3+HMwpxhiHOImDUajJsNhm1mphygC352AQ4y4DS0sdZBPRLO1yX9rgu76OkGWYc\nYMQhU9HggQ4DOjxcCfK3Ft6bOtmKwnZ8BJO8wR/aP2VgNOkd3rFbv2X3k1tySWFp1lgYdQaTXW4u\njxi838V9bZLdx+ReWBT8wi/YjMQ8Ml02Y2xWkXWWDWhr6Psp7ZMxpy/f8qx+zvOLc55dntMZjT7s\n1LJc4u3JM96enuLKNqfnr9n/+3N2v7jB1CQMTUJtypz9h0sixyQxVJTzGPnvYuQvEqRjFY4V/KMy\nRi8m3DXwOyZ7+S374pZmNuEz/6cEns7Dsgn/VUeEGtw5hRmF8CFz1/dD/C3cD/9fY4uDLQ4+Vhw8\n1cQxKYaoqiDVQW6C2gDbgqYOLYXSvsve7g0vel/yov+GV+/f8OLv36I+uLhhjhsK7JcTev/7APHy\nc6SuikJGIBmIeQ2nBZ1WjE5aiHpXYXSs0W9VGRs7SLZE82hC0NAp70g0SlCRBUSgfQrapxJZHegL\nlHtILmEygPcuuD4cP4CxAiPOMY4Dqt6CZmfCUq2jGQk4cnGNyyo0M6RXOfKrHOUkRlVTVDVBkXKy\niU40sQi+KPOlZXBnH/Bry/tAHpGVnOPknKP8nGMuaBtTOrUJbXnKUnNYaiXe6ce0Fzqd65ROZU62\nlgwKIpBV0B1Q6xCuYJDA+xS6OmgqNG1werD7DBrPYbxn0e+1GewccD3fZ3bVILkyETcSzBNIVxQF\n/8bF7mnBrz9eW6MEDQv2dcwXHp1PR5z9/B2ntQtOV5ecri6pSEvimkpcVblUjlD3QkZuncleDWIT\ncWtCf6NttKCgvWzyxafjXh9TbHGwxcGPBwfbxtefZUhf+/r09dMb8Zte53ywjs5CyAJIfKKJSnRT\nZvG2Rn93l7udPW5299n1FMpuQme1YCDDdAnjy0KWo7pXPNB0ozCGQAK5IRHaMrkkkwiZWEhEQKaD\nUgKzBdR0VlaNgdxjSAefEhnKo2uSByxzpFRC0lMcdcVONOC5d07v7oLFOSw+AymAWgDVpPh7LptH\ntOpDHuQ2cd1iZSuFFW+uQ7axL39ia/sDBe02/q2xxcEWB99WPB2JXTdICSEOYRmDlhD2NYaDFuro\nGVITTEPQ2E1R89GHSYIHfZ9b5RmX02fc3h6wHFSJxxIsoiIzSjcU8oRHCvm3cZL2pOCXTJBs0Mqo\njQz1MMH8JKKr9TnTzvmZ+wf0SYDWD9BuQ0qiSd1q0ZFa2FmAnXrYqY8+C9AnPvo4wGgPMcwZJWsB\nWYaqBmhqSE1tUdFm1PQlZSKMLEdCZjUqE00NopmBH1v0lzuMh3UmlQYLqcqqXCEXSmFbHjeYzutM\nb+ssXxvE5xSN4TAuBGwRfHAb/HAaubEtMkA1CivWpoLeDWh0Jhx3LnlmfslheMHO9QXN9+MPO2W1\nSoStDGHGLC2HTniNdfUAv5sVYwkaWB2odQvdJckC/wb81xD/HiwXLA/ywGKYNRiZNaKyzD437HND\nkzFhWWXVtPCEjfdQxr8qE9RL4DnFSmwe7cq/z9jiYIuDjxkHT7WMbJAqRbHvNKBSg0oNvZVhdn3M\nTsju6R37vRsOq5fs9a9pjftUX4/Ir338EPIAdNWl9ospNUnB1xrc5z1u8z0UM6fbHqOcjpBaIXFV\nQtQkZjs9RvYh9/4R6UrGkX2sRoBHCd3N0MIUKYL0VCY5VJDtjLLnUR75JFJIpOfEdk5aEsUYmAFC\nB6FI5MhkuYLIiwFVZIFay1H3MrSDGOe5i3PqYh2t0OQUVUmQM8EqrbBaVlnFFYLcYhHViF0d2clQ\nnAzdiqmmE54vUnazAZ3VPZ3VPd3VPf3yPlH5gNSqocgKtixRlySWksCj8HIQRjG+JfeARaHWkGaQ\n1SDrQNaVyE8tgrMSq9MSo8YuN+UjLuRDrrwjJg8NknMVrjOYhZC6gLu+Dzb3+tPrawJOQa9pmHCg\nYhzFtHtjzprnvNA/53D6nsPxBZVkSR6p5KmKXl5x4+zytn7GVG4QfukQVh1Sw1nP3xkgtPXvfJov\nfWx50xYHWxz8eHCwbXz92cTTIn9z4339NXw1URVfW5ufZxSnqytgWjw9Hhz4Ywkih+UvKtzJe3zR\ne4WYyJTfe+xeDci+EITDwn2inEC8AjGjYM2uE1xzFtFIFigPOfKXIdHQZ57+W+eBN59HRVZzFCtF\nqeZoRoi6TJBGOfE9zBdwn4ASAROwr0B2csyDkHLkUpFcPLWKomWgyYVIX/L0xGNT9G/2aRsfT2xx\nsMXBdxWbPdkUXmu3m1UJhE98IzOvlkHdI90xcI0a1/oJZc39IIswTeqcuyfcukcsb6oErxXSUQhB\nALFXZJDf6ojXU5aLWixlbbdtS9gln0p1Sa02ZWcwoNGfUe77uKOYyTDDHYI+jNBHC3YnGboXo7sx\nhhuzWsaMFinuQiD2fYzjESfzjGiZE44SwlFCtexSbk45at6xL/Xp2QN2PukzOOwxWHV5WHVJc41s\noSD+i8lCbqCoECol8lzGT2y81MEbaQTXOfn1DIYC5nnhMoFCwdxpUiR98XptxF314vOaMlQk9EpC\n3ZpxoNywk1yRzybc3UY8nD+56n5C8nxGM9KoWgaCEXNCXAFODk4KpQCqU6jcFG2FxRAePFgm0JpB\n8xrsIKU5GvDq7R8oN8dUmFJlhq2uOH2moz2P6eyPuaydcdk74/rEgaEKDwZ49vqeU/6E98L/39ji\nYIuDjw0HT/WM1kwIuVQ4dypt6DlIz3SkZxm19pS92h27tXt6u3fsdPtUtQVKFhImCdNAEIcwTmAi\nwM4EVpSjrCCa21xHJ/w2/iWRb9BtPdD91RAzDUltldRSGest3nHGxdUZ8UDDtWvcOMfU8xlGJcJ8\nGSFlgqimE8UGtgg4cd5zcvKemj3AViIOCMnrKe0mlFqQ7CmsXlQYVHa4SQ+YRE1Cz0SJcpzKitKz\nJbVPZhzYNxzE1/SuB8hZhpLliExiSIdhrcOw0mU47TKc7jCetDH2Q6y2T6nr0lv2Obi65WRxRTab\nM5t6TKZAy8NqD3nWTii9nqPer1gtBdMARklB4szsoinaOIXSEnbLoJah3JMon0hkJxL39R5vSy94\nw0sGsy7jSZNx1uThpsPkdZP0Sxn6Acw8SBcUBX/AI9Nlk/MpFImXA7oNDQ0OZMxuREca82xywb5/\nCW/G3L6N0ZeCkpPhlEDverSeD3j2/C2pqfNQ3mVY7+HW1cIJ21cgUXk03vjYYouDLQ5+fDjYNr7+\nrOLpDb5xdXj6+mmR/9Td5+uF/0YvYV3wAwybEKtw4+AqZe53dlFERHnis/dmgPwbifwCgmHhzF2P\nIfFATJ/8KqUo+OVhhhN7JO8z5sMUOf23JrCPn01SElQ7Q6tG6EaIEqRIfUHch9kC7hJQY7Cn0E5A\nKWUY05By7FKWXGbK2jVKl4tiX/56wa/wKPD9w+tYb+N/FFscbHHwbcfT+2Q93oUMiQkrH8KAWHaY\nq2X8qML0oMPNzjG/6/loTvph2ihe6LjXJZbXZcIbhewmJBsFECwhX31Dwf+nbEA+bQpvrrVWWMXp\nMlhglz2a1RG9+h3dtwMan80o/3ef6TxnMM+5WsD+KORgktKbeiiTHGWYI48yFl7O0M+58qF96rM7\ny9gLliz7gvG7nPg8p9xRqR3r1I51Rnv37OwO6O71ectziFMWUQnvokz+mUr6R4NFqBFqDhOtg8gk\n0kglDVVSNyKdL8nmM/DzwnUo2bAXHYpUx6ag5fs8apnoxbyBKUMFtGpC3Zqzr96yE9wwnnvc30Ws\n3j/umpGktCdz2mGMgcIAnwcCVoCTQSmHagj5FIw7UFKYj+DWKxLeZApaAOYwo/FugGau2NMvkImQ\niMFM0f42olMfc/rsmn+oR6x6Va6Pj0EosDJg5FBQPr/vFG6Lgy0OPjYcSPyLBb9aB72FtKMh/VxC\n+p8zaq0Jp/ZbPrX/SNOZYDk+luaj5CFRnDINBH5UGJ+NBdQyQSPMUVaCaG5x453w69W/Yy5V6bb6\ndA/7GHpEpBpEisHCrTG83WF4s0OUGNw2j7CaAXbFx6p4WB0PScoJQocwdKjFc/7a/m/IzRSt7WPl\nLtU0xWikmIdgHMJsX2HVrvBQ2eEmPsAPy4SeiRzmONUVzWcj9n55wy9mf+CXsz/wYvQWKRDIgSDJ\nFK72D7ncP+Sydcyb1y8JhxaTYQujHVK2FjS6Y7rTPvtXtxx/cc3dQ8ztIObuAXb3Pfb2U/YO5mRv\nYtK7GHcpmCUwzOAeUB1odECcQGlVFPuNMkgnoH4qkX2qcMcOv/b+kv/s/S3jWYtoZhBODcIrg+Dc\nID2XYR5DtCn4lxQF/4bpsinAN2Lt9prpohcFfyeiLcacTS7p3F9y//uQ299GiKGgp+b0VIF+4tFK\nB5ztviOzNCgruPUabr1c5EqxCslTdvzHFFscbHHw48TB9501bePfHN80rvX0e/nJ0p6sDX1V4bHA\n34xxpTwmkpv1lKa4Ea1TwbXBS6AP3iuH4bRDFkkcRH0WYY0oMMiVGKWWYx3k6HVQDJDWhX+cQhyB\n6qdoborlhtSWUFWgeiBhdDSSXY15S2NpV/Fzm3hpkC0V8lAgxFPLaglEYa0qpUVnPskVQgwUVSex\nM/JajtAEuV1odgtTIGs5qpyiSimynSPVxVoYXIfI4VGc7+mMMl97vY3vN7Y42OLghxJPGYQbN7sM\nogyilEyWCFSTILRYuAqsRMG+KLO28KE4Gr0QcJHDfViMdrkuJHOKhusmgXmq1/BtfIY1dqT1UmQk\nVULTU0zLp2QtsVMPaxpgXsUwh3AO8zl0tRTNTqlWQvIbyK4gvYIoBDeCaQwVkWAYCS17Bdew+ByS\nz0HtQT2AwwzKeGimj95YICoJSUUiNjVGqy7Lz+osh3XCiUUojGIvYgpX0w2rP5ULu20pXx9sKiBp\nkGsgHMgiSPwCiJlYz0GoIEkgS+uPL1DkDI0EjRiylCQRhNGTHYsFIstQRYymKKilFKkjyPcL0mQq\nQexAWFEIVAWERKjmxHZGWsnJ9OJPQsmxFkvU+yVOUHycCEgsidqzlPrKpafNuHcO+bK2hDYwUYoZ\nMnSKZ5rM9x9bHGxx8LHh4Gmjc61xptngOOCUMHoJ9tkS51OXQ/s9p/FrXsR/pOy7hUszoI5XyFJE\n2hWk6/M0OQfRVQlLBgtZZxh2uZ3tczE+Y6w2mbbqjMwmmhETmiaRZRDJFuHQIkot0kgjik2mqYQu\nhVTLMyqtGZqUEA0dQs9GTgXzao1Jq0G90cJZOThRSNZO8A4kxIHEsNXhjgMe3B7TSYt0qZNlGpqZ\nUqot2en1Od674MR9w8nkM07Pvywk4DxIhIpsuugHLlbDx7dLDOQ9SEFRUgwrxK6sKAuX+nxO62rG\n8A6CW3i4hYYXoycxbRl8H1wTot562jYDOYN0V8U70Jgf6xCoJFWNpKERH6nEpyrRocrrxUv+6H7K\nb8d/waJfhkEOgwzuUrhJoe9BuBntcilytIjHPEV+cp3X+Z+igqlARUItpZT9FW1/TGM5YfgA/iWk\nt9BQBCgCTSSUfuFRT6Y0KlMc3UO10oIk6a/x8pEU+98cWxxscfDjw8G28fWDjacjW//S+NbXkrUP\nN7ZNcUdaFKd56xO9DyelGUUiGT75GvHhtPYrlP91QvFk2imKTJZenWyhMLI6jM+aTK0azDxa8xB9\nFtEUUKPAwzKA8QzGPpQjaEbQjMGsQfuVTNqWyNslvFaDt60G76xT+kkP97xG+N4gneaIxPvKZxUR\nZFOJ+MbEb5VYWFVGZw0ka45jBhwbAUac0myD2oL0WCF8ruOVbfzEIm5qZMcyeCooFfAFBDpFc2Sz\nR5vGx9fH4Lbx3cUWB1sc/BBjw7rb0MfXlt9YfJhnTRRYru+bJC/MCPopmBnkotjeVbrmvcewCMB3\nIV1SnNqt+Ko7z7e976JopOYCUoGIIUlVwtxkJTmElkHaVGEPDBmqEXTmUDXBqAM9CJewUmEVgZsU\nCXAVKKWghyCtIPXBT4pPaMWQrECMQc0jzIcZ5c9yDo5Bf+7Tez7govSct91XvD218TUdphFMonUv\nRCmWkhXiu3qzILZUVChroEhrj/C82OtZqXA/8uO1HVNarDCDJSRLjXlQ4y7bw1SnyLUxe3tj9hbJ\n4zb1VKR6janRBEOHwwk7fzVht56gK8Xe6LaMtmfh71oEtoYqAnrCp+VENGtQqxeyev47WJzD8uax\n4E+BEiklImx8dDlCUbPH/r0EP5wkc4uDLQ4+Nhx8E9PFAtOApgJtiXpvxlHtgmPznKP5O47evaX2\n7hYrCD78Ri0JMJwA4/8QlCOJcgztWJDu2QQvu3zR2uFN+pK+1yW6N0hXGiutXEzRNlLSQ5XkSEPR\nMsqVFd1nQ9QsIS/L5GUZp+SzU7pnR72nkrnkqAhUNBJq0hSBxLV+QNyxiFKTxDVIHZVM01i4NT6b\nfMLDuEf6oJM/qAhLRjnMqLUW7Fu3nKTnWOMHlm993v+28I9II0iVHNF0qe73MXYEt+IYp+xDF0RV\nIjNkMhRyRUZoBSNS1kCRi91UFJDX5CHlCMyjQruo5YPuQc0H+blD8LLBm4MGblpj3qmxWFUJShah\nZhBNDM7vn3H59oT4jQ7DpLC8mwYwDWEZFQ1c5sCMotjfaAB+naG+SdqyAtdpDtG64a4XS62BY0ND\ngUyFql18nzZkhKMRqTa+cIhznTxR1r9GgPiYc6ItDrY4+HHiYNv4+kHHNxX3T0e2nnZyN0W6BlTW\nq0yR/ZQoEtENmyWl6AyvnnxdwQd766fvtdZO2NzPWVHwZ56Cv3AY2R0mz5pMntVwXEF7lbPnxpgj\ngTUCaQTuHO77cHELnbQ4WKwAVlui/UrC+huZcbPM0NhlaB7ybnZKv7/L8qpG+F4nn4SIZMNCKT5r\nHumkE53s2sCXSywaNcZ7TUqtKSUT2kaMSYp2COqhRLIjEzZ0/JKN79nELZ38RIZAg6ACD5vGiKDI\nJCO+Ogr3dBO28d3GFgdbHPzQ4um9YfBoAW6vX2uF5sFShkAqtHbuEzCiYuZHrAv4JIYwKFbsFeKk\n2caZZ7P/30XB/yRxydfJUCKRZiqhMPGkEpFtFgX/PpgxVOfQBaoWmHWQdiF8gJkK47go6qWnBX8A\nklsU/EECSwHlGGIXxATUcYgV5VRiD+MvlvTUPtnJa1qlGXHX4vr0BD9VYBWCtwJXFJSRXCtYLZYJ\ndRvaCnQl6MqgS4ULaiSK+YubrGi+pD7Ec8jnRcEf5LAUJAuNWVDjNtvH0efs1nJ6uy61wPuwU35b\no9+s0Tf2CEyH3SOJnuTROHVRtCL5zU0Zt2axqtWIZAtbzOiJFLscYeyBuQ9SqdDmXixhePPYcs8Q\nSKSUCHFQMeQIVcmK5FRhfbr6dH2fscXBFgcfIw6e5hHr6tTSoanCIdR7M17UX/PX5t/Tvbqm8rsB\nlf80QJvFj/yYsxzjVynG/yKQTRnh5eDBsOJw0dvjffsVr0evGHg7RH2D5FZj5VaIVhZSNyf/K5lc\nkansLShVH9hvXlPWXFJVIdNUKtqCU/WCM/UdnWyMRo5GToLGmDpj6lzrh/TbPQalHtOgSRKZxJFJ\nMHOYX1aZv66R3RqITEKYEmo7o9acFwV/9g5p9MDyjcfyH9cEzRxyQ9Dbc9k7i9l3A75kiFPyYAdE\nVSY3FTJJLQp+XQITpLVEnEbxVdoYhfbA2AF5B4wFNCaQTmG4X2JwvMPg8JA79rlL97hL9liFZcLQ\nJpjaLK9qzL+sEf9eh3EA7grcRWF/F/nFvYtHkbNtWC5PdY02eIavMFET8Wh6t+7RK/WiwK8rxRRt\nzS503YOmhHB0Qs3GFzZxppOl8hOpwY+n2P/m2OJgiwN+dDjYNr5+cLH5H/jTIv7p2hx3qXy18F8v\nSQe1CloFtCpoTrFUq0gyRQ4ihdgsVrJ2cktlyKUn762BohdzWqpRvK+0Lv71omiXUgG6RKbJJIqC\nEAqqLGGpoCegRiAFBa4CF9x7cCSIbRAW5KZF0i4TnZSYVw64zU95n59yMTxhNGrjv7VILylmBNKN\nbfV6HwKLfKTAuYqnlBgaHd7vHCM1c1p7M1rZFEVykXd98t0AuZxjyiHlpUvdnxPpNvGuiRpkxFOD\n6M4hW8rFKXPqFLoiH+zZN1pPT7vn2/h2Y4uDLQ5+qPE0UVxrJshlkCqglUG3CgaEKiMrIMnFyKjI\nU/IgK2x7IlFkV2kKIlzv84aqvklg1q6i34qY99PYvPf6NDDPiiI4SUl8hWBhsZxWmFFn0mgyPG2z\nEikiz7DyDH0/Reml0M6IyrDUYJSClBW7VAa0uOhjuBNwl+CFEIii8A9WEEwg9lLSWYqY+Ti2S/nT\nCaVIw1NrfFn+FLWbFgIiWlLMj0Xry6DKyCUJtSuj7kvovQS9F2PsxEi6II8k8kgmGWoEhkUol0iH\nesF88cLiUYICsUTs6czcJteLI4xyhG5LNA4y0PQPu5VWysyqR1xnZ7hBGdnSKO0plFr2h8nqWNcY\nGU1GZgM/s2jvTGj7E9TSgnhPYrkvkZUEs4GHf+eRjcJHlUFTIm7o+KaNTIUgs0gS9VHiKt9cq++C\n/fQ/ii0Otjj4mHGwuX/XbBddg7IMLQmnvmLX6fNKe03Vv4ObJfxugTTKHjMSU0b99zL6KwXqJsnc\nJFmYLKUj7s2XfBn+hIv5KaNZi3iskw9VooVKtLBQRYI5D3Ein1Y6YV+65bn8lno6Jc1V0kSlwoKz\n/JzT/B3tYIg6TlAmCb6wQT1lZeoIqUOEydKsMFUaxMIiji3CtBgtTj0VaSXAkBAmSBWBZiXYqk8p\nd4nDkHiZEY8hzIslbIFYJehhRjmTsaQAVUvBgAyFJNAJ5hZeXmLhVJju1IjiFDlJKYkU+UAl7GlM\n2yrxXjG2FR1qyHOQpyBPYFY95LZywjtOuRIH3IhDrsUBK69MOLYJRw7iLfAuh/ME5h6ECwgnkG/G\nuTweWfoxj9IMOV9lqW8OOaOCzrPSYCJIGhpLo8LA7qI15gTdBPUwQdJzRFMmbMq4B3UW5SbTtMVs\n1cD3bNJAKZ5ZyfoZ8c90Yj+22OJgi4MfFw62ja/vPb5plOtpob+xIN2cplpPvv8640Uq2sw1pzjx\na1jQ0JEaMlIlR2QgMhliHUY2jGSY6LDSwdPA37A91u9vqVDSoKSCUgbVBBXK+0sanQnN2pjjwQW9\n2z6Nuzmp7zEOE25CQV2Fpg5NByyneH0gQcOGchvUNgyqbb4MXvHFxSv6So9R2GYUthnetJmd18jO\nKfQ+phvRvoQPTByvDHca4OAGZd5Hp5AKrkonlPIV5faK3fSes9U7nr9+R0V4nIhrJCHTVSfcWXvc\n1fbpH+/yMNnhYdzDTWVYaLA0IbQpgLxxP/phA/njjy0Otjj4GOIDwZ8PY11KtRCD1epQL0PPgR0D\npSahmTG6lSCEIAlk4kAjn+swEMVayJCEEEtPCrmUryYv32axv2HxbRKXhGJ+1kckK+KxYHVhw+9l\nrvJjfl+ZI32aIXU8pLMV0nBFad8l2VtCZUliFeTBBR+MszGBJIDJpHA6Hbqw9CDPIYphuSocjsKo\nmN6aCqhkAiNM0VcCgxRVZMXpqS6BKhfNZ12Gsg4lE+MwpfpiQfWlR6szpesM6ZaG6GpMJHQiNEbd\nFtftYy4Pjln2LejbMGgWcKo4oKtEicFo2kG5TAkaDjOlyf3JLo292Ycd8xSbG/uQm8kBK7dEPz/g\ndf4TamLx4TGUygquXMKVHWKhUU0XVFtLnKpH7ijkioISp7R33tD6n95w0Lsky9eSV6rM6pct7roH\nLMQR5/4Zs2kd7oBpBkHMo+bV96W7t8XBFgd/LjhY5wwbjTMFZDlHlRIMKUQiJiAlXP/rTUZiIeNI\nOkLSmeddrpMTbvxjbrwDbqI9bqI9Rg8dlrc10kArWBUV4AScvRUHz6456F5zIF1xdH3F0d0VFW9J\nrsnkqowhAprRECdySYOExSrDW+WERkL6fMqOp1Jt++wlD7xIzllmFVJFJ5M1XLvCxdExF/YJ98c9\n0rFOOtbIVzJ+aDNJmwyVHpVyRr3jYh8UpMs0hkyXKNVMkqrNoFxnvqgQhQZiKpGg4wUlmMJ9tMe7\n1hn10pT4cIH0akl3skB0aww6NcbdGnOrziyvMxvUIZaQUpANGIdNhrctHm7bTNwGk3kdb+EQLzUy\nVyBWUcEMvY3ADSFaFBQZMeWR1bLpgG4O5TaNcXhsYG90XAPALWQchiq8s3DVEm+1M/5L92/Y7+xg\n/mKMaUzQFzFeyeChZDCp7vBl7RXv5s+5WRwyHdSJJ0oxvxwmxZjwV7QHP66Rr6/GFgdbHPw4cLBt\nfP0g4uujXBuNoo0LQ+nJKq+/2jw2BmQ+3GCKBDUdDnQ4VJGOQDoSSL3sgw6E8GV4K8M7Ay4cGOuQ\n6uBb6/d2QHLAkqEhQUsuhER1DXSoHCzZ69xyVL3g5PU5vd/3qf/dnAc/YhRn3MawdwTKM/F4vu0A\nACAASURBVKg/A6sELb14lpZsqLRBOYFJtcPv/V/yf53/n4yiDuHCJFyaBPcG4a1Gek0xwxx4kCwo\nCu/1XvkCbh2Y5azcMu/TM8aijbXno9UitHbEy+AN6Y3C7vWA3mLAaXpNO5tx3Ljl6tUBV7sHnFfO\nUCYpy3EVN6gU/PzIgtDi8Sj1yf5u41uMLQ62OPghx9Nx2k3BXwa5VmjqmG3o2PBKg5+oyLsJRi3G\nqnqIHIKFTbowyW9U+JxHIl3grZmGXy/4N0nEtyHmDV9NjjangSnkIYhC/Doea+TnNrFd4nL/BOUg\nY7VvUwtG1IIxtXBMXR2QqilCW5Ja4KuwlIrd2hT8UVAU+74LblrczrmAOFkX/CF4OUxSmOSQpTmN\nCPRVjq4mqCJH0sV6zElaF/wKVA3oWBhnLo2fL9j9i3tOGxd8It7wSrzBVnxczWalW5xHZyiHKaN5\nk+VdCd448NYspDF0DXSVOJEZTTqs3pcY+V3u27tcnJxQKrkfdi2MTEbjLuNxB88vY5ohlhmga8mH\nLRW5RJKqJKlGjoRZ8zHbProTkcU6WaxhxhF/0/tP/E17yeGvLiEHkUGCzOe9Frfdl3whfs6F/4zp\nuAG3wDSFIKJIYDcsqO86tjjY4uDPCQfr+1mSPqQcipKjyQkmITIRERlzxIfhIQVwkMklDUkyucv3\n+E38l/yD/x+4H+7hDW1WDw7hzCJaGiSBWqQq3WKVDlacnFzwq+5/59niHb3LB3b+nwdK9yuEKYEp\nIeUZ8ipAcQOCIGGcCvqJIKkl7HhTeiKg5D0QBQZhYJKgkzdkRF1mUmryd8f/nuhEZeZWCH8nyFcy\n2UjGi0qMsxZDuYdTWtHoDNk9BOFB7kMqS/g1E69WZVZuM1cqhKEOU4hDg2ymkNgG95093nbPMDo+\n9bBPPbynG6VMrC59c4+xtc+de8jt8oC7h0NyWS7I8iaEM4NwYhKMTcK+RnRXrCyAPFmPPvseeG6x\n0gXkMxBzHlktmyJ/s75eaG80SmOKJoELoQFDE9ScpVHmTfcZnmyw3zrgwLjg4Pg9TuwRaiVCtcxD\ntssX7ivezV9yd9Uj6mtEUxVWwVobL+afs2w+1tjiYIuDHwcOto2v7yW+aYxL/tr3a664ZBYnqUq1\nEJ/WysX4lmrzwXlISMW8biqQdIG2k6OdZGgvIvTDAP0oROvF5KmKSFSyQCNSdSLZIJI0cs0mjyF3\n9fWIQgl0B20vRt9N0HZjZD1ANj1kI6d9+ECrNaTpjKiHMyp3S0q/9xl6GV4EDzHYMuzsgnBAaSjo\nXQ1rX0XqKARnMuKZzI16wOv8Fb/t/yWzeQ3GGYwyGKYwjGHoF8IXbERuN6LjEkQKRGWY+YSiRFhp\nMKq20ewEs7rCqq0oyQvGqwrL9yrNuxgjnWAkE8yDCWrPxTYXKFbKrNvgsncK02oh8j3ZsIo0Hmek\nt/Gnjy0Otjj4mOLrehjro0u9BtUa1GtoRzLWcx/7Z3PsPRfHcXGcJULIeF4Zb1XBr5bwE4vAs0kz\nA6YGJEbRdN1oyX2nJ2abpsLG3TQEsYJ0STYrk10ZxLLNg9RBNHKWqkO38kC3+kBXekDPTIxcxs5S\n3HpE0o1QdmPUVEKXJAwkkkyQZgI/FaQKaBaUzcJYSFIhUtdp01pTPKmphIbGKtcJUps40RCJBKkE\nuQxCBkOFugZ7GtZRSvtowunxOS+tz3m5+IxX889whIdvOgSyjW74DLtt3u+cEDQtJFVCkoGRRIEp\nyHSFWDaY+G2WfoXQ0Ai7KuXuEml9LaKlxXC1wyjYYTmuFz34nKI3v5k2CMV6hq3YW3U/QVETVDtF\nESALqEkLPrHa5KqNoxbFPilEQkIq6USyzTKq4sc2aap+lfj0vZ6mbnGwxcGfEw7W77HRdIshTRTC\nzMQVZTTDJa5l5LshuU5BigHCjo4oVQnUOlfxEZ8vXvKbwS8Y3uzAnQx3ElKUoxoZeilBa3noBzHG\nYczJ7ntedr/kZ+Xfczp7R3k4p/zZAvM8RLKKdAeKsdjMgyAstIcWOaStjF7Vo9Hx6CqF8WkyL5iD\nyg4oAUx2Wgw7Nd539rkTOyz7ObmqkgcKrldi6HapeEuqhk9vZ4n0wkdeCZQVyEJm0u4ysLvcsstD\n0MGbOTCATJHIVIlEkxmKKpe1AyQ7Y79UIZNsTNlklB9xtVnRMVejE65vj8kNea0lJBUsz1sBNzlc\np48reeqyvaLgTC54zH2W/HNWyTeNVj0d73rCdIkNmNmQRwQllfuDLvOHEhOjTmDYsKtTYsUyr7DM\nKzwsdng/OOH+Zo/peQP6EcyjQovwA9Pm4yj2//XY4mCLgx8HDraNr+88Nqelm/GtdWFf+EDwyHBZ\n2ywoFpQq4FShWoKWBS0TqiooAkkWSLlATCXETEbJUhqfTGl9MqF5OqGpT2j6E6pXC4QiI2SFBJ3b\n6h43L/e4b+8QlBSCVCFcVqBjQltFagvqu1M6uw+0e0NMNcRQI0wtRNrLkBsZY6nFUq0QmwZSCbQM\njBycpEjkVAMkC4Ijh7HVYHBWJ6o6ZB2LrGPxe+9T+uMdkrEGqxgmHgx8mIXgbdwqlhRHkR4FuDZJ\n92aPAFGDrAxJiUq65Fh6x7F2zgmfUfHOeRh4hDd8OEnESGCxoOXL+EaVt9oCoxxDVQJLAWVzTTaN\nmG386WOLgy0OPrZ4qoVhUlR6DShV4ciC5zL1Z1Oenb3lWfsNLWmMOQww3RAhS4Qlk7BsMex2efv8\nBe+U50yrJXhrQVBbF4cxxTXemAp8V0nE5lQwoTgVXBTqpm4GAxCpRJAozOY1smsNT60wUTvcqkcM\nOz0GnV3uO7uoJ300v8/zUh9TKJiKiiZrlN0Uc5nSXCZkSSHplKVglsGqg12DOIdaDDsxZGcllmdd\n/tDo8OXyBUOvTXKnwYMErgyZUuiQtCU4kXB2PPa1O362/Jy9h9fIFw9cX8ZYXo6uRRg61FoT9o6u\n+OT4MxqNCeppjmplSK5AICGQ8KQSD+oOA7WHXM7oVh94rr+hSx+ZHJkcV6rwWk/wrTJLu77WRlpf\nshkwBWaiGANwY4hT8nMJGhJqS6K1P6S7P2Kvfkvv9i3czBj0C7mMKIdQzkhPhhydfEF5L+IflZhg\np8zdTw8Kxmlow6hKoevhftPF/JZji4MtDj52HDzRcts0OaMYZhncCRbdGu+9U36d/xXd1juqv7yk\nS4i2ykCSkCSJ5WmV8fNjxuYZb8evGLxvEP8mhX5QzLn6GnolprTvUtpb0mqO2S090CsNONIuOeMd\nR8ktdrTAiwKmcUYegpqDGhf9TEcGpwK2AxUfGn5RXpZE8e+SECYjmNxAsITyVQHDsJdh/GxOT7/h\ntNrkngNSDJZZjcWszu31EamqEWcm7kGFu8YucpijRBkil7jv9biXdrm72+P91SnTiya8FiB7IC9B\ndXH9hPtZk2RgMTJ2uDJOaRhTJmGTcdRiHLaYDGqs+jqi7xejubpcjOkuUpgmBXNvGhZjXPlTjaJ0\njb+NhtHGdfvpKNe/1vDcPDPW1xcFUgOCwt07v7WJfwuENtNum/dWTmCVMKWQILIIIovlosrkoUM4\nMKGfwV0A/orCRW+Ti/1wR7r+9djiYIuDHx8Oto2v7zw2SaPGoyjsZmlP/vv6Z4pVILhVgZ4NZyqc\nKrArIWk5kpYhpTlcqYgrGXUlaHwy4/jTC06PLjgaXXM0vmZ3MUBYElgSoWXyT9Vf8E87vyBGZp5U\nyUZVwtsy7CvwXEV6Jqj3Zpz0znnee0NZXlKWXcqSy11plztnlzv2WKpVIsNEKknFQyoumtmGAur6\nMDholZic7nAjHzIzGyytKq5d4/L2lH60QzpQi4J/5sLDrHCtSALIAx4B7/NIZ38qrr3W4kgFxCaV\ndMlz6S3/Tv+v7EhfkHl9Hh48+rfFQYYQUHISeosFvSAkr1aoa3P0UlLYLlkKqJtGzAfP7G38yWOL\ngy0OPrb4esFfAupQrsKxCX+pUDud8Wn7D/xvnf+bA/cGbZihvUsRqkT6TCGpq5x3z1CkjGG1y9Sp\nQWDDrQwTQXGN5+vf8V2OsT09FfSLzynywjEukWGuEsxlsrsq3hd1JkaMbsZoRsLg5z3uzV1ujnc5\nO/6Ms1LC2dkDQlbIVINUMbFGEXpfoA9SRCAQUXG7yl2Q90E+KJqx2XrMoN8qc3W4z1XjJV96z3lY\ntUnuVXigcAjMFDALAV6Owdnx2dfu+dnicyp354z+yePmHyO0cUZXjtmRM6rPpuz/x2u8/TK9nT66\nGWN0Y+QkQ6zL+XHWRk0SlkkFoUp0a0Ne6G844RyFDJWUidTC0yrcWUcFyDfwiCiK/RvgXsAshlkA\nXoIwdHLDgKZE638d87L9OS+rn9P53TniNzMefl24+y0FBFpO4y+HHKUhPzEf8OQK191jUCUIdXiw\n4YMjrfbPL+W3HlscbHHwMePgKYtww6qICq2aeQYaLMYVLrwTslzwSVvn018EdHt3OGnRvBWyRFSp\nMG4d8zvrV7xfHdK/bBD9JoWRD6YFporeiakezGj/6oGz+gU/TT7n0+QL9rU7KiyoJAuiKGASp9zF\nBVPcSMCQi+nVbgWccjFMXJGgmRSkdmdT8EcwGcP797C4h45eyCmovRRDm9M7uMWvVkgwmdFkljWZ\nz+pE1yZzaritCqP9FhfVI7QsQcsSyOA+2ecuOeD+fhf3uoJ7XoU3gOSBNEbIQ9x5heShwezqCKMU\nYZQjjFJE5BqEbiHXEI4kwiGIoV+w8mUFFBmiaG3MEELoQeRB7vFY8G8MLTYrefKz/GvX8l+6xjzB\nclTcnJla6BslKrnIiUOH7NYma1gE1RLDag9FzkhXKulKJVkWAubR3ChmlL0Q/AXFs8lf/00/fDHv\nb44tDrY4+HHiYNv4+k7iadH4xDYWC2QLJBtks9DVkfViCR2EAbaJ0raQD0zUYxn9RYjxPEbbj5HU\nFFlLEYkgdkwSx0Jfxuye3XN2+I6fdD7jaPKeo/F7dq/ukEoglyCsmoRHsGhbTBtV5CsIu2WWNQt1\nL0V9EWH8PGKn2ue0cs6nld9TEnNKYkFJLFCUTwiFxjhtk6oay3KVfmeXheaTOxF2OULuKAQNjUlZ\nY1DvceOccOE8Z0ibiWgwzRtMaDOOGoVe9yyE2RJmYwhdis72RrxvA/anoBLrfc0hVyGpQJBjRBHN\nbMKxcklTuWYsXMZJjB+vYSlASnOyNEHLBaaI0KQEWc2LhEqRigfTB72pbfzpYouDLQ4+5niqO7d2\nsZPKSLaN3AP5ZUL9YMaJesGv8t9wPH9PfgP5F4BW3OJyB8rtJZeNE35X+SWa2CV/r5BbDkJKQdis\nBXz4bvd+k0Sl8EG+NoVQKdZcIVnaJAMbz7HAdIqC21JYmRazVoXRSQNZz2nsBIjunFjR8FULX7Ww\nhxFO00dp+siBQIpADgX5jkR8KJEdgpSC4hWHqb5+xH3pBZ8nP+X98oTJqEFyJ8NQwEpAJhUnpmUJ\n2mDUIppMOYqu/1/23vNLrivL8vs9b8O7zEgLIAECJMuwumuMNLM0X/RvS6PVUqslVbMcSbiESZ+R\n4c3z5urDi8gMoFg9Xd0sAizEWeuuIJNE5IsXdz+cfe4++6APLxm9gckfQLmEqpyiSCmleEbn8TVJ\nZuGbNqYIMAhQ0hSBjECmJ7YJcpORqJOh0hVnHIxfcX/yHIUUhYxSNOQy2OZC28Nz3duvKE9kgsQi\n8CzisQoDUbQtT1OEpiE0GXwJe+bTkm/YcU+x0wHKMCB8A34O8xx8XdDo+lQnMVuRT0MZYblh8XtK\ncuHDdHtA8CGUmBscbHDwt4SDpeIlzYu2zBkEnk0/bpELQaM8InFe4+4blIhJFJVUVolFk5tsn5fp\nY85GbeYXCsnLpXFbRwNTYLghje0BBw/e8ND5jie93/HF9e9oz/pIPkgziG4KxcpCh4kFSlIoXSIZ\nSmoh5NaVYkK0sQA5L9q4mEKSQ9ArJkVPz8BWwFXAinK0QUApmFITI5x8hpYG5GGGPzXxezYzvQw1\nEI2c5FBGD0K0IELycq57dfr9GpOrCqInY/o+OgFxPCaOZ8SpT5CWCWYO46t2YVZepjg0m4hlZ5aA\nkV8M5Rl7RVvurSV6yJ2SZbG21gl/dvfd3L7+JUXwddIfL79qHWIfYguRmGSBTTbQiWsmfsdF6uTI\nWo48K5aYS2S+QuYpEKTFJFopBSUtCuL5ukXHTz1P2uBgg4NPAwebwtcPHtLaq/Q9PzMoWgNKxehv\n3Sm8hAwTbLVQWmhqUZFNVRRXxnqcYX82oXLgsVO+ZEe9ojEdIokcKc9IM4Wh1GDYbZDtqDxpfMcT\n6Tn3R69QzwcMXvpMn4JmgmYAlZwsntAsnfG4UUIyJeblCv3mFuX2lFpnRL0z4OH4OQ8vX/Fg/IY0\nCUhjn3ni4+6f8mg/ZXt/CIrM2849Tj6/j5VdYEun2Jzh3avw6qjBy3aT82Cft6eHvJkcMg3LeLHL\nInZYXNiEpzL5iQ+9OUxnkK2kkyu55/dNqoA7wq9AqoIvwwSiqcEwbPA2OyQ1A/TOFbsPI2QtRuQF\nRpV9A6lT5dKpcSEd0o+ahBOjGKPkpYWh4G2h4adRwf74YoODDQ7+1mKtPVdaLllFNTIsO8QqB9QY\n4lx6aP2M+ATGL2DypvDvqalQi0DfS3HbC2qtIbXSkMA2CXSTVFEgX64PkkSs2h6WBh9A0WIrin9P\n9cIUVRgQ2eDboFuEryQmVpk8UfnWyfDsMmf2IamkEEk6MTp6FmMSYbZD5DRHygRylpMZMlmukF0r\nSLmElICcQm/W5vRql9N0l/6rBrPnFvl5AoMEvASyrEggM1Fsz5zbjmnFAFMFRwJVAVsDUwPJSinr\nPnV5jDX10I89tGMPdZggISEjo5VDgn0TZT8jVRXunT6lcnqBPBqTk5OSIes59yp/RK/G/Kz63e3W\n8HSH4/YRL/2HXGbbBTFXLShpxfFzSyXfFXifuwwaLa7VLt0dj8ZXA1oSlCNohhAioT8uM9mvMmm2\nuLzaYj5z4JL3ptl9aHP7DQ42OPgp4uB9m4XlAZyqFYy5ArKboesJlhSiSCmprLLAIUJnIbssJJe3\nwT2up13GswbeRYl4kpKnGRgZVAVsC5yOx55zxi+kP7A3eYby8orzb0JG4+LXaTpkIWg+7N2Hmgvz\na5hfFYQ/sSGvQqYVAxHGajH1U++B8wwsE9xL2A2gYUCtXAxU5UCGpsXCqjIUNRaBSjINYTgB14C6\niZJnNPIBR+IV95PnyG9CpOMA8SahO62zmNZYLKokikXyxCL+3OLixubyxuG6vweZCWkC/X7B1ccU\nkhw/L9qV/Rw8D6JF4Rj+jndrtLZC/rSFa92/KF/75x8iltegLtuEaxJKN0O/H6LfDwvFThBiBhGZ\nrzD3y8z8MtFIgQsbLuowUpZDkiiwtzp8fOeaP/bY4GCDg08TB5vC1w8e0r+wZO4If2M5BakEdhlK\nVjE5riaDKUEsQyyjlBPszyfUvpqws3fJL4M/8ovgj9yfvoVQIEWCQBi8bR5wsrPHrFLi8/wZT8Rz\ndkev6Z0H9J6HjH9f1BIsBYxyTuZOaN07xZRk5kaFi9I+UlNQbk3Z6Zxx0HnDo8vnPPzumKPfvWUQ\npPSDlLGfUvp1QvfXfcqVY36vfsVvt37Fb6WveOD+kc9L/8znZZ9Bpctl5T4X1ftcvdrl8mSH62+7\nBBOT1NNIPI1kkpOMUsQ4AG8G4XRJ+AP+dFLF+4nNaq6Iukb4JcKpwSBo8jY7RDN9DtoRew8HlB1u\nnyPels5Np8Glu8cr+XsIf7o+oeLjBO7HHxscbHDwtxZr+1dSQFFBUdD0HNdeUC2PC8J/tUD/fUb8\nCvoXcHIBigKHEZRGoA1TnF8sqG8NqJcHTOwaiW6QKkt/O6EsTwV/bLK/SlxWhc5VkTUCFpCoRTEi\n0UCu3a7gWCGLK3iDGotWhdP2PX7bmiNyiSyXyTIFpZKg1hOUVoKiZChSjixlZL5KNtdIezqIpcm2\nBMHUYn7jsOi7BCcq0WuJ7DwpZPZxCtnS/TsTd9tToeiKNgsLIFcCTQZHB8sG2U4p6x6xPCacyajf\nzlH/+xzlTYSGhAo4e1OU/5pS6UxJZYXW67dU/uES+cWYBEGMQK4H3Psq4eEvT1G6zu22GJhN/nvw\n3xgnNS7pFhm9KhfJ75ECRzL5gxxv32XQaHKl7tDYGWB9ZbLdhHQOyRziSKb/uMzN/g7XjQMub7ZZ\nzN3CBHf4sRS+NjjY4OCnioPvI/xGwb4tBSoSipujGzGWHKCuCL/kklEcrg2kJm+jQ66GO4wvmnjn\nFunUR6ReYfBZzaELTttjzz3jF9LvqU9eMn654PwfQ7Kzwv/TXHoXVbaheR/CbTjVYD4tOs4SG0QN\nMh38QUH4/Rk411BZFGeDpQCMsPgIVg2sLfAPl4TfrDDKa3ihSjINYDSGehkiBTXLaYoBRxzzi+S3\nZG888n/wyf4pgthAxAa5ZBL+qkrwsyqLL+r8/vnnRM+fcP1iDwYB9AMYzt+1ZU3T5cog8SBZqVhW\n913mTs2yOtBbn063UrWsewb9UP5Ba2pVTYWSAi2QDzKMzwPcn81xWzPcdE4pnZNGGtf+NqGvE12W\n4Hd2oZYJjWLrZUuTPnLePZxct6H4WGODgw0OPk0cbApfP2jIvFvNXX9dLRfkSpEs2TXkuotcd1Dq\nGlorRW0myFaOiGTySMIoh7QeTWg+vmav85ZHJ9/y8+H/x2dXL8iXBWRfsSi5fVx3zGS7zv35G3bn\n5zSDAZNJTnQtGJ0UBoGJBHZZoPRDSv4Eixsq6hTDjJAcgV1a0KzesFc9YSc6Z/vkks7/2yPwoO/B\nwoOm5dHd6nPvCbyWH9KrdvhH838iqOuUGz77jQE3Yp/j7AlP4yf0By1GrxuMflcnH8iFJcNcQBAU\n872jBYjVxIoFRcV7VS1ef12PtapymoOfwSQhGikMxzVOJwc4tk+7PMe8f0OjEqJGKWqUMqkrTGsm\ngVFiRolQ1kECWUoRkljm2ssHw60s9c9dxyb+NDY42ODgbzXWCrhS0Q4qKxmanmCaPmYcoC8S5Kuc\n/BzCHkyHBe8LlYKjquUc3U8w5QDDDNC0ErICyHIhGV9NKH1HLfljxTrRXyVhIaAW15ZLhdfRraeD\nTHLhkgQuXt9l3C3DjgRT6c5WIgW6ORI5uDmKkRekX8nIIpVsqJFeasVnXdn69YFTUazLEK6DAnhx\ndnedmQxhDjNBWlPxTZuxUUWUJmS1FLOdoCCTGjozw0CtFAm9q3gYXoI4ncPXM+Tv4ttfqz/y0Q4T\natGUVFXQLwdovx/A195to4DSgbo7pbMLlQ6sJsD30g5XRpNXzXtcK1skhkpqaWSxjPZ5hPpFgvUg\nwNU8FHKysYqqKjhdiWpFIpyZRDODPHRYdPe5KN/npfSAy2Cb+cCFMwGDFPyIItuM+DCFL9jgYIOD\nny4O1gn/ql3SBsOAigIdgV6JKKkzWlGfElNIYhaJQozJVHGZyhUWkxLhxCKd6mSeiogVBEphXO1I\nUAWjHFM3RuxJZ7j+Bd5lzuKpwD8GWwIH0HaK4QadCsQVGJ+DpBUeRklJJm7LSCakg5y0JMgWgjSD\n1INckVA1Fa2qIpdUpD2JfFcivFdjXmswosVg3mA+N4lnaeEbGuqQ2igIKmLGjrjgKHtJ2POIvvVJ\n/jFgNc9Zt2T8nzfx95vM/uctRmaDt9kTmLXA70O+gOmUuzxkpZRcEfqVN6n33r1/n9ivcoq/Rn6x\nfuC6/M4lHQy1qFnvZtiHEfXDIY39PvXWkEo6oZJNSTINI4+Qs5zBVososAmHFulMLabapeFSGb8y\nDl8N4/ihChR/zdjgYIODTxMHm8LXDxKrU8nVA2S1DIo0Ym1aneosy9F1lJaFdT/DvD+l3PVpugOa\npQG27hOlBlFiIlkZ9YMhNXdAJ77Euuwx+0PA25eFoV8SQWKlxOaEZu2MZnlCJZ+SmjLTagWtFNF1\nI8pOgmEUzzSlJjGrWMyMGkPaTNMKUWjAAuQoR0kzNGLkNCOLcmIPwrBo7fUoxslmq8moq32twsBv\n8TT5knSoMZg1uJp0uZlsMz/WiV7EiKtBMR0pyCDMiobuzF++0cokL+VPHwDfFxkFwGaQakVjOCrR\nucTouY1s76G2c0xi9G7Mou7QmI1ozEYYVkRTG5IlCqlmMGy3Oftyn7Fhk6CQTCvks2X7QBaDWG95\nSJavHx+YP3xscLDBwd9yrMnNRb6UdguSVMWLHaSozkSt4rds8scKpgxtrRjSIyvQ2gXjCNKHCn7D\nZixXGUc1vNgmTZTidDDPKUZu/tCy9n/LZ4U7QrlSFq4SJ48CyznEXpFICrdoTV6o0FMLI7mM4j6d\nq4hXKlJDJdcUkIvJqvlckE8SmCz3lSoVbzvLYJjCMIFJAJ6/NH2F22dIIKBnwLFgJpd5qT/g/+z8\nZzo7HdS/G6DYQ6KeydNgF9/fxdwRtKuXdLRLNOZ4JHgIMu7qDFqeosY+NW8EyGTRgjRL35mxFIcw\nfAOxCf2zZW0Y8I2AauMl/6nxv9M9vKLfbNI/aOLlNo2dIY3tYrpsvTek0RvRHPc5NE+oGlNSXeUt\nBxw7R7x27tNL21xftOldtLn6bpvZSxdOMhjG4AfcFcbTv9YG+Bdig4MNDn7KOFgnfwbFcIYqlBzY\nVeHLnGp3zAPe8HeXX1Ofn2Lc9JjfjFFkjYodU7VnSIaCp5WZbFdRZ3W8tyqeY5OpyzbYWCZLFEJh\nMpdLGIqLLUd0icmkHFspOsrKQHUC2huIBUh9kCMQhkLQNBnfN3ArElYSsR+FiHJKvVy0cymuxsRu\nMLYazN0KaUMnqetMKnW+Mz/nVe8h194O00tB7MFtdVKRQMmRlQxVTtCICUgJyfEoyH68vDvZksTr\nxKhyiizny623LHrfqiNXbVorZXrKXRtXsnbvV+1Q35ff/NBEf/mZV/2/kgGKDUoJBeOVfwAAIABJ\nREFUtWpi7KeYP5/QORhwZLzkYe8lnV4Pe+JjTXwyRWWw/YrBdoOrUpdXOw95/fiIARV4a0DsLguw\nEbfDMG6L5h97bHCwwcGniYNN4evfHetV1BXJNyiafG2KWvbapDrFKlq6qmWUXQnrZ3Mqfzdj66DH\nkX7MkXZMTRkzz0ss8hKZKlMuTSm7U9zZEOvyhtk3Ad7XBWf2M6CS0a5PaO3EVLdMElMhMRUmlSpa\nec62k6PZCbILigt5S+Jt1eTGrHIjOkyTClGwJPyhQE1TNBKkNCUPBZEHUVoQfp+C8KcxBbZXOaAK\ng6BFOlK5CrqEFybemYN35hD3Q5LBAjEYF6Nys7h4gzwqllj1Nq8m1v1LCpdVrAh/DqkCngqxQmy4\njBybgCr5AwN9P0E5SEgUlawv4/Y9XMmjpQ2x04BcVzht71GtjLBLTYKJRv62Qn5lFhVs4RXN57cg\nfl96uokiNjjY4OBvPVafNytIeZ4XQrukIPxxpDAxqgQtiyxXMCVoh+AOipNLew+Mx5A9UAvCL9WY\nRDXixCRNlYIYC1EUE/7Ey+1DfM6VTD3nDtur18Xy59FyEpED4QLmBtwYYOjFW+V58ZkMG0wbYekg\nSeQS5JIESYSI4mK6EQLkZRKZJBCERaU58iFeQLbyx1iewwYK9BzQc6ZmiZedB6SaYL/bYs96xe69\nV/i9Cs8uf8Wzi69wygH/ofJPNLQbbAISYibkhNwRfjfPaMQeVS9BA+ZRwiJLb3d8QjFoNXoL4ynI\n7lLwBCjVkOqvj/mPW1O+OnzOy/wBL8UDBlKd+84b7jmv2cvPcPoB9m8DnOOA8vaMcndB2lE5cQ/5\nv9z/wv9t/if8kY1/Y+H3bbynFv6xBSdpYWwSrgh/xIcrfG1wsMHBTxUH71suOEAFXBN2FaQvcirm\nmHvJG/7+8muUkx6jZz7j5z6OItOqz2g1+igHCuOjGr2DJqkPNOuETokMC4RSEP5YJspN5rJLRXGw\nZTCkFEXOCytTDSwB5hj0t4UdkDwAJQLKCmHTZHKvDG0JK5hT9lL0aoq5DdY2hC2dabnJ29I9Lt0u\nnungmS6TvMZJ/x4nN4dcn7WIL30ib5lXyNJtS5Yi52hSikaMWBL+OQXZL0i/uJ3iqUsxqpQiK/md\nN/c7hN+jcPN+X/Wykjuu7v0KW+sY472f/xCxurZV/5kGklkQfs1FKetY+wvKP1vQ7Zzz5eQbfn3z\nz+zfnKGep6hnKZkl4f/awqtbnFQPMbsxo7jJQKpBZEDPXfvs2vJ3rVq8PvbY4GCDg08TB5vC1787\n1jeUTkHybZCW7FotUYwx0oplm1CzoW6jbUdU7vtsf3HN4eFrHiXf8CT+lmbWZyFVmUsVYtnAMCIM\nPUJNFySTGfFZTPwSPFEsuZ7TvPEpz0Jakc612mQi6swUl5YzotVQqXZlclchcxWChkngbjEUXS4X\nXcbzOuHchDnkvkwSa0SZSSTrhIZG5CqkQiBygSwEWUkh0lXmQiWXZCw5oCX3iTKdhVdiPi6TXOrE\nb3TilzpMR7CYwyIAsaAg9iuJ+rqP0GqCxb9G5plz6+2QqYXBYGiS6AbJdZm52UAuadR3hjSrPerm\nkFpww3ykYkQpxnyOqczxKgad6hWtTo9rvY30vE5SrZCYFjCDzIbMWLu+VRL8cfYuf7jY4GCDg08h\nVmQ8KxRwIiGLdIKFTjjSmOg1Rm6dodGgnM+QJznuIAddIj+UmT2UGezUGak1pn6V+dhFLOTiiDNf\n93n40EoX+NNkbJ30r/znQkgDSH0IPIpCt7lc65L9lV9S0QYhbt8n5m6ikVj7HauTwxVGlv8saSAL\nkBRkKUFJIpRFAAvBLHA5T3fQzZDG1gSt00N0avQr+zy1vsTWPbq1M55oJUxFI7IzolpC1Li720Yp\nRxUR5VmEHhZ1hmlaGOymBmBI5HLhQZQMBFl6lz/bnZjdrUt2v7jE0o+x7BGq5dM32jzJn/Ikf8q9\nyRuk6xy+E8i/FchHxWSqAJcbpcnz+kN+U/t70r5K1lPIXyjwOoazBHpr9+F28MWHKHzBBgcbHPy0\ncbDe4mUCLtgqUjtDupfhxnO6V5c87r/EfzXC/z14vwFdBWcLdrYglVxOD65o1W+Ytiv41TKKZUBo\nFV/zAmJPZxpV6OVbWOocxxnj1sGaR1gGmLqEagrQC9V6nOWg5uiVnKil47Ur9Dodgi2d5nBEc25g\nt3zEnkSwJzFpV7hwDzh2P+ONccBMlJmJEpN5jcFpm8F5m9lzB64Ab5lf5GIJL4k0U4lyg0CyCE1I\nKhlZM7n7W96WkUsaqa6TYRGjk6Es+WzR4nxHckMK/4Y1RegHs0aQ1l7XvmtZB9UE3UYpS9hbMdX7\nE7YqlzyYvOJnF3/k4MUJ2WvIX0FeBprAI4lWvc9ZbZ/f8SvIJLjUwLIosGtxN130x/Yl/PfEBgcb\nHHx6ONgUvv7NsfpC10wBKQG1YhkuVM1ilbS7SXXGcoSFKmNXfQ7UU34R/o7Dq+dUzs7g/Bp/OkdX\nYzragrxss9h38PYdMsWk5ITUm1OMLYiXB4TClqi5BmnF4Nqp8CJ8yIvJI64WW3TVK7a/vKLRHjNL\nK8yyChO5xqXY5uJii0t/m96LLRZnJcRAYjKucTK9R+apKK2M8q9nbDnX6GnMVhbjpDHKZ1UGj5pM\ntloEmc7D9AVWEhCVdWJLI25pXJR2OGvsc7ZzQPbWgNcVeCMVxrDkFAnL+6bdf2mSu17JXk4k0Q2o\nqtCVMFshHa3Pw8Ur9kavkJ4POP8uYjguTF5NB7ytCPtxn4Mnx0SKwal1j7hqEdZMmClF+1iiUyRX\nHyeIP2xscLDBwacS64nM0uiaESxSONHha4PxYZ1vG19gNCJ2uhc4v/CxKx5ClfAOHPwtmxP5gGf9\nJ0yHNcQxcBYuZeIT7kZZf6yKulWr1/utuCtSH3CnG1n/73OKU1CHdxOilUH1Sk24fnK6ks6v3kMH\nzQWrCnYVc0em9nBG9WjE1taAXeWMveMzdk7O2c0u2MmuMEXCQ+kls+0ySVklbSg8NZ7QL9vYn53T\nWlygfzYrSLsEtgWVGmhXkC3AuywmkU9dCeO+gv1AoWxJ5K8y8tcZ3OSoKsUCpHO4/kcQ/ZS0O2Cn\ne8x2vU83uqAazZDGOdO3gllf4E+hcgGVFJRFjsOEbuuMI/s5U1FjsqgxuynD1Idourx/g+Xrqlie\n/9W+6T8fGxxscPC3goM71YskgSwLZDVDSXKkXEAsEDFkWVGTTfOiLitCkGKBnOaoIkUlRSa/q2EO\ni69qbpU57hyhzBIuzG22PjtjOz6jNJqjajKqKqNoIGsZspYT5zGp71MLAiS3zHD3Ia+8z0n7NarG\nlOr9CWYakZY00pLGIilxft7l3NumHzQJEosgtfAXFoszi+Q0h3Mfej74fqEsX7hwk5GWNa47Hb4N\nv0DSIpx7Z9j/5Zzd+jUKEookg65x81WHm+4R1+KI4/SIcVQDT1pWQZcKknUbi9v2pnXFpMSHxfHy\nGmQJNAlM0IwUR/Woy0Nq4Qjj2iN7kTJ/BrMbmE6KP1K5hsprgSrlKHKGYibItRThgFBX3Q2rz776\nrD+12OBgg4NPBwebwte/OdbJ5qqlqwy0gA4YJWgqRa90R4a6DDVpOd1GgUDGdgIOlDP+Pviae943\nzH+3YPH1Av88pml5tEwNedvl5D/s0i+38Cs6ZWdKvaHR2ioSksyD1JbJXIO07DJwmryYPuQ3l7/m\nePiQffeE/S/e0vqqz+Vol+vRDteTLTwcFpcO3qmD/9LBP3fIhzKTcY1kqjH1apSbU7p/f4n3+BVG\n4rEd5+wmMRfNKhetQy7aR1T8BUfeC37t/YbANvAME1+3+F3rK/IdhcujHbKvdQjKcGZCsiL76y1T\n64R/lST+a2PVt7xG+CsqdGXMVkRb6/PIe81W/zWDFx4X/xyRXRU1gaoK2b0YW+pzuPMKYetEls2g\n2mFcs5atY6uH2QrMm3g3NjjY4OBTibUWL2JuZ1cvgJMyQjUY+w2+/eILhls1Wt0bGuUhjfsjcklm\n6NYZug1uxh2u+11m31bhBUvCP6Mg/B53RO5DFDX+pVgla+v7czW9Z2Vqukp8VN4tkBhrS157z9WZ\nasy7se6PsTqNNgvCX6pBrYl16NP6+SV7v7rigfaWh4OXPDo+pu3d4CYL3GSBWUuYHb4kOVQYNBsk\njsIz/TGNUpXHjyX2yiOa89ntAaXqgX0F2iX4Z+BdFYR/5kg0P1Op/S86paqE9H/ESJMcpV+cfusG\n5BL0zqE3hcVxSuPzITtPImq7Oo63wPU8pKFgdiI4HcBgBjsZiAlUBjl2c8r2kzMe2s85F/skC60g\n/DMfoiFwzXIixvJer5ShP3ZscFDEBgd/GzgocpgV4VeUDFnKkDMBUUHw02zZqJQvfT1DkCKBkmWo\nIkWRMmQpR5KKP8OouLyZXeb48IjhvMZ5rcujz54RbZvUkglCVhCygiwLVDlFlVM04WGkY2rpmDyr\n8Sp7wB+8/0gv2qPkzHDvz1G1hCi3iHOLYG6zOHeYv3YJrizSUCGNVFJPJh4JknEG07DwhvMDyGOY\nJ3CTk5oqvfsdvg0/J9A0Hh8afGZ77D65AWSEJBMrBiftDm/aj/mGX3GZ7TKO6kuvB7lQmb/v33qL\n11VrMLybM3wI1ctySdItjFQzxdU8GtKQWjjE6HnkzwvCf+XDpQ+SAvs9sF+DogiUTobSTlBqCbkj\nkasa4tbCYzXA6eMm/X8+NjjY4ODTwMGm8PVvivXeaJXb/mi5Akod1DZyzUbtpqhHCcpuhtxKkZsC\nSRbkE5l8LNGQBhwYJ3wRPeVg8h2vX8DsnyA6BtWGqg3a/Zjrdofwc4N5vUJSKaN1y7jjOcosQ5lm\nZIbMuKwz0UzmqcNw2uTyepeT/n2yzxXSezKTvTJn5wecnx1ydbFTXMNEJhvKpEOV1NcglVgsyixG\nZQa9NjvlCw73T+iVd6jGM6rxnHI858JoM9O3ODd2KMVP2Unf8OXiG6KSjm87+K5NYqpcN7Z5Gn/O\nwnPJ3hpkul34VIgxCJXvl0P+pSqXdQmnXozOdhWoS+jVmJo2YSe+oDG+ZHwOk+fgvykGIUkS6PME\n82hK278icsucGwfoTgwlCeZyMX+d1bV+nCD+cLHBwQYHn1qsWrxWShcNPBkuVQht5sLBrx5ysrdD\ntTSh0+jR6VyTC4XrtEMv3WI+K5Oea6RPNXgRFowymAJjPn6lC7zbugV3hH9VFF3tkfX/T11b6/vn\n/alG7/8OQaGOWapnNBvcEtRrmLsJrUcz7v3yDZ/Nn/LZzTOevH5G5XqKWIpk0sOc3Y4BtZSTziGv\n8ge8zu8zUFq0thaIeg9LJGTLQYJKL0cOIziOEf2M1Fs2IDugdmXcxwq1hgzHGZIjFeoYHWynEHH2\nRzA6haGeUcumtKwpBzqIhYRYSAQjiWAC40Bwk4KzgHoIbiowFgEVMaZlXjPLyxiLDgwEzMOl0uWG\nguiH3O2RD1UU2uBgg4OfMg7W72tRlJSEhJTmyLFApDKJ0AgUk9jQEU6GUsmQJQnhSiSWTKJpJGik\nqUqeKOSZjBBAlIOXQybwXR3/YoeLqx1GRoOsqqHsCOrakFSopKhIkkAjQZMSStKcNje0JZNs2qL/\n5ojnb77kVXyEte9hNn3kUk4wdwjnDslQhzcC/iDglQBfFMMO/LTwnIsCSDyKIqEHSgpeBIOEVIVB\nr042OmLh2VSrUx42z6kpOiKTELlEmKkgu8zkJpdxl0lWJZY0VC0hV0EoKkI2QeggVqR/VeRdz0vk\ntZ+/j+cfC9tLwi9LoEpISo4mJ5hSiJmGKH5CPhaE42KmxGB5uTVfIhnJiLEMFUDOkcwc1GI4xZrR\n04/0OX7I2OBgg4NPDwebwtdfFKsvVF5bq2kY9UJ63rKgqWDv+bSPrmk/7FFtjnF1H1fzkCWB3zQJ\naiYduceh8QZXWSCW1fRIFJOpo7TodZZDgUhylLwg9r1um/RnGpe1LSrBlIo/xRY+WVXBOg/ZHt/w\n88k3mLOUh8oxuhSgSyGqFFPSfY5Kb4gaNl7JZtFxmAcON5UtbqodBu12Yc10BuJ/k7hub/HH9i+I\n2joOITYBDgGKlqBpCV9pf6B0do7/dsyzE4FhZhh2iOEIGp0+e90TPtv+jptyh0mlzrhWJ8eAqAxR\nG4TF3YjXlZwf/vJkd+0EOs8LLW4gEIlEasvEFRVRVXHsnC1FkCiCmgk1E0RVIbJNAqXEXJQJM5Ms\nUZZZnij6wN852f2+B9anFhscbHDwKeJg/bOv2pnUpSKuqCCKtxa5qpJNFIKGy1jPyHWNXEhM4wph\n7JDeyOTHEZx6MPbBH0M2oUjKAu4UDB+b0uXPxTr5l7hL9gR/mli/r8xYv6d/LlaK0mUvlSlDCQwn\noqaP2ZEvqERXRMMZJ6cp+gWIFPIUcismG09oezLhzOXMP2ThlxnHTcwsZZbXaIjh7W6u+BMeOG94\n8OQ1VmlI4xju6RDmgsYgpf4bCd2SmD5PmE4EmQrtEsitYl6HcgNaUpQnVBkkFYQlEdsacUcl6CqY\nImEnSqmIlFYFqlXQ2hLhY4dBo80Z+wySJkFgF/WflY3UO/drXRn6Y8cGB98fGxz8NHCwrlhceajN\nyBc60pVM+lxnZle40Ls8u/cIy7zAqE54sDvBkmWUss2wZHHR3ea8usv59IBef4v5xCXzpGIQQRZB\nHsJQhqcmCJOg63BZ2UGp5LjGgkzI5CggCRQ1Q1UyTCWgrM0oqzPmM4cXr+4zO9YRi5DkGKSGgWRJ\npIFGHgLjBE4iOI1gHEOcFklTHEPqQb66ccuWUCFBPAfPQYxUoleCeclB91sMd9r0d9oMmi3MUYg1\nCHHGIYf2OZH1NRV9wWvlPm8P7vFWPyR0IIplokG5+F3pvPAY5X0SvFKA5H9m/Wv2/r8n1r7vLC8S\nS1kQL3TGUY2LbJeSO2Xn/jnSf9YotWB7BuoMsrKC+0gnfGIw3qvgmS7xxCTvq4hJhojTtfv7sXgS\n/mtjg4MNDj5NHGwKX39RvF+5XXnquEAN7Ap0bXioYB/N2H1wyuMH33LgntLyh7T9IbKUMbErjJ0K\nluxzGLzB8eeIBJIl4Q/EErMSKJFApDlynpHrCr1umyt7C/NexE56wU56Qce7wb4MsM8CSiMfU0/Z\n0y8Yl2uM5TJjqYInWdSMGbXSFEcE9NUGN2qDHm2eVb8grusMWu2iy+AMxLcSvf0tkn2Ns909ND1D\n01NUPeWX6m/5pfJbfqn+jul3M8bfzLn8Nqclp2zpgrKe0vi7Pnv/+S2P79cwywGiKjGtVcgTHagU\npFyYy/u3upfw7gPgLwHNEmh5DomAAPJYItUUooqGqGm4Vsq2moIKZRtKZQhqMgPHJFBLzESZILPI\nErW4vtV0qXeu51Mj+98XGxxscPAp4mA9UVyZUYvi73kPiHNEXCaflBDHJQJHIzM1PKOMEBBHBlFo\nkC1SxCRGTObgTSGZQPo+4f+4E4d34/19+n3KxRVJfV/+/uf20vrkvDVVqaIsCb9UEH5jzK50TjW6\nJhpNOT1NSc+K7Z/lUCrFtEcTOl5IPK+hDzO8UYWrYJsZNY6lR1giLIYICtiVz/iv7j9Qr48obw9p\n6GBnkPUE5iDF/I0gzsB/m3M1yQkUUEpQ6oDrgpwUiaIWFZcqawXhj8oaXtkiQMOIA7qLADlPsXfA\n2oF8TyZ84NKvtzkV+0yTOr5vFVtifRjUO4T/Q2Fwg4Pvjw0Ofho4WP+zq/07RSxcskub/JnGdK/K\n+dYOz7YfsrOl0NqDnSdzUDVCp8TAqXGhdDlnl9PpIb1+h3Ciky4kCCIQMxBTGGrwbRWudPyGw1Vj\nl0WzgmYmCCEhhAQySHqOrAsUI8UwYnQzIp4rDF+4zF9oiHFIamrklomkKuSpRJ5STIeeLWA2B9+D\nPIIshiyAfEX4w7v9mOvFpIJ8hhAa0bFOHjtIfY3B37Xom21u6i0awzHmywT7NOCwdkaltuB+9YTf\naL9CPUiZHzrMUhdx4xK9ciGag7DXCP9K1bieI64XKletwesTov9asVZQyJfJZc4t4Rd5Ttmdsnjw\nAknSKe8U3naVK4hNmeyRSfDEZdSssJg4xFOT7EKFcbqcwurzbsvtTyU32uBgg4NPEwebwte/Ot5v\n61q1/iwnYVAFq4y0pSN9Bs7jBTu753yx9w2fyc/Y7l2xPb1GERmjSp1htUGuKtQnE+Q4J5BNEj0j\nd1MoCzJFIpElFEMlUVQSNALFYt5wmTdLyGSIXGDmPu5ojj4OUS4iSk8XlNtjDtuviA2dk2ifN8EB\ng7DJQXLCfnZKR+5x5WxzVdri3Nwlkk169hZKOUF8LSNeSIg/SowGdUaTGswElKXbVZUn/L3yzzyR\nX/DybU7vWzj9f0Amp67kGEpCxZ7QeXzFvlElqFiMm3XUbkKGilAdyFWINcgUSFf3VXBnFvt9ng1/\nDkSr5DiFLIUgg5kg9RU8LEZWhWq5CpWQUiVCr6fYdYFTh3zLICs7LLQKU1EhyCzSRFnD7vuntR8n\nkH+82OBgg4MNDu6Sl6RIsuKgGAAQ6oihjZAUItUkMm3mBoVizqeQ4KeryT+rtq7ZcvkUCeiK8P+U\n7vMPfa2C4tkieKfILsu3pqyqkWIrPlVpgp1M8byQ4TjHHy7TSgHpPKPpB5SiiJLvIY/AuyhxPe9y\nLW3fXXMuQS7xoHRM42DE0f5LGt0BSiAoLXKUPEfxMpSzjGyREy8EMwTzMjRbMsGujFGRIBFoXo7h\ngVRSiB2FuaMxqZeZtEsEukFltKAyWlASPuK+RH5PYnHgMC416RsdLhfbxJ5J5OngZSAyEOv74a95\nKvyXxgYH78YGBx8/Dt4n/B4wA09BXBmI5yoztcxls8uz6iNoQrmdUgo9QtVgaLa4MtucTva4uNrl\n+rLL+LIKowzCDJIEhAdMYarBVIc3NpFrEbVqDFo1sKS7ra1QpE8ri1QbsCVYJPByAS896Htk2GS3\nE9NWRDkorv0WP8HaWleRrwYt2MXk0dRHpDbJpU4SW+A7zFpV5vfKLCIXp++TvpKQvotptHo02z3u\ntVWCQ43hToXz7S242CJ66jK3neJ9MwtikyIfXF3fkuxLS8IvVj9PuPO0S977Xv4asfy+s6yQQCYp\nyUJnNncJFyq1xphhq83crpO0R6gngkoFAtVgeK/KcL/Ktd1hMqkS3ViIM7n4vqNw7R7/VBWqGxxs\ncPBp4WBT+PofxupUblW51bg1kMYA6hRm3haKIaPVE7T9hFp9SMvrs/P0mtr8huhqzslVipxnKC0f\npyWT1xxmboUbt0O8l5J+NaBjDVB/5lNRDDJVZ1hvcvbZAS/0x1zMdynrE+r6iCYD9r0ztr0elesx\n8aXHRS9FXIPpgzECtZ9DMKfpXePceGj9AYO+z2QqEFUfqzZiryJzpl3R0a5oHfQITi1CyybKTZjG\ncBYVlftDA0wDHOOdeodmg61BRQJXBdMCzQKpJJPqOqFkkjVk1M9jXGmGfKmT3EgkPQP6Zegr0Lcg\ntbgzgo34/gr4erKzKsCsS3U9CE24seBVztwo88J9hLW14K29R/Vxn0rYpzRcYLsZtpsy3apzcb/L\npdvlJmkzp0witEIKK9Z9k9bXT+UE+oeMDQ42OPhUcbC+91cm/w6F0UG5MJq27WIZLug2aMpdXpYD\noSikjPIqSVtPyNYk+D8BmfiPE+sF1pW5dwxpAn4GE0E4MxlGDd7mh3SsGK1zxf7DAKwEkRWHmtqe\nAa0Sl26ZE2WXYVwjnmjQy8GPwU+Kt1Y0UHQWzRLP1MfYpf+VY+chZivE+HlIaWdBIxrQDAfo/gx7\nErM3iQkB67DE5NBhUdEJuhHWoxAimB/VeX5UI2/VGaoNhrM689ylos8o35vj1H2Suk5S0/EUl98P\nvuT09JB4apF+J8gH/pLsz0GsikGr/fEhYoODHz82OPjr4GC1t5Z/XzIBT4FeQYo9LK6SLfAEC7fG\npbLPU/VLEkljQokpFU77+1yd7hCfGfBWgpvlsAJdgUyDTF8S3OX0yVSDhQyyUhQtV9taBjQZVAn0\n5TIkCBPozyFcyd0MinxLWbv+1XCJOUun7ffW9x2cKYAGigEtFR4oyEcZTtOnEY/ZOu/B6YzeScTN\nazAHYFyAWoM8XVArX3Nv+w2SJuPbJQYVABUSg6JasXo+qEWBVpVBkQvpYZYXCnJ83sX9aq3ynX/v\nM+59heUSNwTF/RITxDwlfS3DP+kMrjv8wfkl2Ap/sK5QthNUOyGRVCZOhcmkwtV1l9fPjpg/LcPL\nHK5C8FdTWt8fxvFTeWZtcLDBwaeHg03h638YK2K5audabWqHW4XLkvDLhoJRD7F3Q6r1Ee3TPt2z\nK2pnfW7OQ3rnCVIq2GoFbLVT8j2Z/uM2b+oHRA2ZHfMlOzs+FS8k1QwyzWVkNDkv7fPCeML1Ypsn\n9jfck9/yQHrF9qLH9uAG53zC1VXCdS9hcg3lMZR1KJUyDH9O08uQr0f0zwMG5wHTvqDT9Gk3M1rt\nmO6DK7aOrml2e0ybNYQl3xH+cAGDOZgl6ErgGneDK9TCfNzWijvgaGA6oFVAchUyQyPCJG9IaE8i\nnPYMcenChUl6biGOdcCCcQXS1djvmLtRsO8/rNYloesnfynFybEPoQ39Angzs8SLrUdMvRI79Xsc\nfPaaw+YbmlEfS4+xtJiZU+Wivs2lu83NuM1MlJaEHxAyiPfJ/moS08cL6r9ObHCwwcGnioPV3l8N\ncDAoyH4baIHmQMmAhg4lvXB5duTi6/Eo8jFyCFKQYm6/oz8h/OsnZT8llctfK9aVHcupd2kKQQ5T\nCOcmg7DJSX6AavnstQP2jvrYLogERAzBns6kVeeytM0Ju4ziGvFUh6sM+hH0/eLWmzYYCvNuiefu\nEybtGnVzSKk9xW3OaGc9jrJjjtJjtoIca+izN8zIUon5TolJt01UcVC8GZZeVlc3AAAgAElEQVQ/\nQ08Fvdo+N9VDbux9evMtbmYdpkGVkjaldG+GpfqEskMgOXiZS3/Q4uZNi+i1Rf7SXxJ+r2gXYZ3w\nf6h9scHBh4kNDn5YHKwrXVaEXwJPh54DiwQ/Mrn2t5hPK1zW93ErHm7ZI89lolAnDHXml2Umb2rE\nr3UYSYW/HVIx3jLWINdApBQKlBEkEizUwv1flu8uRZIKQiwvTaKVFUGOixbgaLr8zOttU+vF0IAC\nSyvsrCaEfl/usMKvDqoBDQ0eykhfpthuQCMe0zm/oXcacfM2YvS6yKHKBjiOICsvqN7rcU96g6+V\n6NvbRdITK+Athxvd5oQuKFJR3NAKFSCI5SWtVJ4T7gY9rAoY8MMU91f7Y0X45eI+iQWIMWIO6Wub\nXLbp37T5w+EvuDrsUqlN0e0QoxuQZxKLsMx8UmJ2VWX0osH8mxK8zmEaQTDnXZXqx93i9W5scLDB\nwaeJg03h61+M99u6lmRfKoFcLqbXyWWQXVBM5GqO1sowuwGuPqcWjum8HeA+HXFxAr23QAK1dojd\nDsl8m3m7xCvtPv6WhVuLeXAwoZLnjLQKU63Kdd6lN9+mN9tmPG4Ufz7ts8tbWsMJzd4Y7XrBRR/G\nY7icQiBBKoM0FliyTx0fewKTVzB+BWcX4GyF7G+FbO2EtMt9Gp8NqHaHJFUN33AKffw8hrEH+QR2\nZPBNUCA1FELTYGE6ZOUEtZxRKueYJQmlLpHXJfKqCrqMlBXmq2VrStJVMdoR83YVua2RKDrZ3CC9\nUJd5bgjZgncr+euxepCtHmrrapjlwzuKYJRCKPBKDqejfS6DLa6NNsmegXWQokgyfh6ii5CZVGKs\nllmoLqGwSGSNXJOL0wZVBnmtan9L+uFjBvUPHxscbHDwqeLg+/a+A1IVlCbI20glC7kloXQlpLpA\nLmfIpRSRQD6UyUcyuSzI05g8TIpELo+L1rBbhcvqu9yQ/T+NNYXj7dAGiEOdaVrhWmzRtIbc6/TY\neqhRrclkkUoaKfS2alzVtznV7/PWP2Do1YlHGlzlhYrzbFGYCTqFVNOPTd40DnjTOUR3I6q1IZX6\niD3nlFDWUZUENU6pDmbUBjrEMG506DV2mZQr1BlRZ4REzki+z3Ppc17En9GbdbmedplM6jidGW5r\nilEP8LwyC69MsHDhUsC3wB8yGKYw8kCMuGvdWN8jP3ZscPDhY4ODHwYH661EqxavHEILwhIMA4LA\nIvBqDEZt6MqwLUFXQsoEyiJDXuRI5znSK4H6OkWOM3JDIXNlhCkjPLUgwElYqNTEtGgvClQIVm1a\nq1j3/1lfMQUhnlAQ+pXP2/vecKv78X4usIr/n703e44ku9L8fr6vsS8AAjuQa23dTbbYo5mWHsYk\nM+l5/laZHmSSzEbLcIZssljFyj0TawAIxL767ncePDwzKiuLVRwWm5mVccyuRSAARLhfv5/H+c79\nzjmrf59/npoVXisrsCMh3RGYQUDJn1IdDOl2BZOO4PIKqnIWq4hNgfjUw52O2OSGtrKHoftZWpqp\ngm6C6oJSBqWCpJSRTJCMFMkUiEAm9SWEL2fK9kTldRtRRBal/dYm3k+B/dXgTsSbAM8EMdcQFzrp\nQmM0LzDSazzbuoduBdilKU5pihSmLM4LLAYFwo6BuJQRp1LWkCOOIMkD93lR7w/pnrXGwRoHHycO\n1oGvd1oOkLx+kcobVUsJjCIUHSi6UDKRKjpSWcA9QXSoMtdsFolNqOukJRm5lKU+ucsMJsPOMBGV\nFXzHZKIWuI2byBOJ7nADdz5nJtnMcFgkFoon+KX/O1TfpxU8xg5PmEcjimJBIiLMBVQV2C9BaRsc\nG1wLCgUoboC+mR2+3AVVz7isooK09F1TXSJRFWJUUuSs0KCArK7P8kYySeAyhUdwu9Pgj9ufUCoN\nkO8OIBoiV0csTI0r12ToGsx2i5TNMX/X/ZppWGC2cJnOC4xEmZFUYdSqcjvb4Ga6ScfbIrpRYWjB\nsAiJnRFteaU1qiDbNRD+0lEOeeMsq9mJYGUnpaigSOhahKuNKehj9qILDq9PudN/RXN8ReKFxH6E\nbFjc3Q6p7/RoJ20eFz/lyaHBwq9lEtiZC9OA7IY7500w4mOwNQ7WOPjYcbBK9k2ybb0K2BWoOlDV\nsFoB5d0x5f0xhcoU15rjmDPiRGUyKzGeFZl0XGZnNtMzi7Brw8SFSQnCPF0135lk5fFjtncEWSiB\n7kLJgE0JuZGiORGm4qNrAdJGQpTI9DYrXEdbXMdbXBktLpVtLq92uOzu0nm1QXCqw3UE4wVE46zW\nRRjAYgE9G56ZEJukZ+AXTORCiU6xxdNSjF92OTHu4IQeTuBBDN1ujd6gxlyxcKU5rjxDUgSX1g6X\n5ja30hbjfoVwaCJ6EnFfx3vsEKPh+xZJoGZt308DOPGh78NsBGG+E5w7lKsqqL/l9Vjj4F/P1jj4\n6XGwmv6TbyLJZGlSvez3vgXDZRkH3YSyCZKJU5pTrgypyAOsbQ/tIETvRCxii4FWZahV8AYq0blM\ndFZAjFh2mAshzVOYVoltbrmKenXEZDJJn+z7XeLdhH9VAf59c7KaMrs8ZxFCoMI0RYwgNDVmJYtJ\nwUXfiNiqRViVGNcC1warKHHZspi7Va5oMQwq+DMTBkCkg+3ChoS8YaBsCOQND0v3MTUPS/NZBBZz\n32HuO4hbFToudCTw5ez0wnSpLJfeOp+fivivztXSnxMppAJJEshGjOwm2O6MqtGnJndRtZhJqcwk\nLjH3CwRdk6BnEkcyTHSYuln3wtcqneitz3ufbY2DNQ4+ThysA1/vtNW0rtVaFhWgAWYRaha0TKQd\nFfkApL0UWoJwQyPRZOaeQ6DrpEUZpQyGBQUlW1+mlRH+pCzj2yZTpchV3KI32eSbmy+QBxBGKmGs\n4UYzHiZP+GX8L7TmJ0Q3fcLrPvPFmKAZkjRjVCsj/Ho5K6GhV0CrZo9GCfRShiP5ArQ8Q0sF2QRs\nEIZMosjEqCRCIRXy0q9YFuETEYwTuBSgwa3a4I/NT/BLKpv3TtmsnrHx4Iy56jDUi4RagaI0pySN\n2L89JxkqhD2dsKczbJTp7dbo7VR5Fj9E8lL6cZ3IVuHUhGkhi3wrFqhWdg1eK/3DZWTZe2tIZM64\nmRF+WQVVRlMjStqEpn7DXnjOYfuM40cn1C+umAwTJqMUo6TS+EUPVXrFde2auGhwdbjLTdrIdira\nLhmI57zpvJfvOPzcbY2DNQ4+dhzk618h29IrAjVwKtBy4EDDOlqwcdRh7/iMzdI1Ta1LQ+3ipwbt\ncJt2tM31dYub2ia+ZROaFly74IcQ5g6gx5vaCHnNto/Z8nnPCb9LRvgLGeHfkJHrKZq7JPxWCBsp\nkSMzCYs8Tu/zVfI5Z/4BvUmD/lWD0WmZycsiwZkB1wF4OeH3IVpAOgfhQFyCW4m0YOCbJompEpcN\nvF2X670dnPocTY/R9KzF3GJg4c1MIl9DU0J0JQJdMC0XmJYLzHUXv2cSDA1ETybq6qRdmXCQEMcK\nSaJAlMLYg9EEJhMIxxBNyFIh8m5Jf+vA1xoH//q2xsFfBwer6T85AZ8s39eDwIGRnZUMcIuwDUgG\ndnHOVrnNfuWEcjLEmS+w53MGaY0T5QDkQzgtIf1eJwlcklSGWQCxl31vv66v87YqYvX7NB8Jbza2\n8naW7/q+XVVH/imi+ZbqQ0RZEfKpQIwlAlNjVrKZ2gW0TY+tmmCrEmd+VAXkBnRaNrNClSvRYhBW\n8KZWRvh1PStUXjaQP0lRP03RPl1QVMeU5RFlZcQgqIJfx/MNkqcqfONCZMJ4ifNwtaFPsHK8PyXh\nz4M8cbaBSApCIMkpih6jumFG+PUeLaWNLoUMS3MM3UdLQ6a9MklfJfbkbEMwcMHPNx7zVLtVJdX7\nbmscrHHw8eFgHfj6jkkrjznhX5H1S00kx0VqqsiHGsr9BO2Bj/rARyoJ0lQmTWREJJFoKmFZI6lp\nKGWB5QqIQalIxA0Zv2YxM13GZG2lp8My0+syQcdCCgWEgv34jM/Tb/gi/ZrPJv+ZV0/g5AlMxxB8\nAsknoGyDqylYNYW0ICHXE6R6ilRJwQBhZPVkJTcrw2HZIDsqkaMwdxw83cIXJmGoE8cKaUqmchF5\nRDiCaQztBMKUXqNKfHyPG7XOw80KYsugQsJUcRnJZYZymTvXr9i5vOTB5VPUdoRog2jD8GGJ3kaN\nXrWGIhK6foOn6Sd4QoW5BbdFUDQko4Cku1kXDAGkEiIOIPIQ4QLSBYgZGREXgA6SBpoJmgaahKZF\nFLQJTa3DTtRm9+qCg6/OKT26Rr2FsANGAzY02NyCW3fImXvEv+zOABku9axYExFZQEHjTd2lj4Hw\n549rHKxx8DHjYFVxUQCqYBeRtkykhwrOfY/NwxvuHT3lwH3JtrhgW1yykGxeyncoyGPUzZhQNRmI\nJnNhZQ5lP4FZTOYoTPl2q+uP3b5H6WI4SGUNaUug1UMsy6OQzDBZIDkxgS3Rlwq8knb4Uv6cV907\njOdVJv0qwYWBuBTQFnA7J3POpsAsI/zRLEvxGAJopJJCqCqEqs286tK738h+ty9lotcK2SW7laAD\njEHREmQ9QbZSpLpADgQ4IMYSyixFngUkpwrRE4PglZylrCXp0vn0sjehvzyufOQ7qH/LuhlrHPxt\nbI2Dvx4OcnIJb4jlcnMndCFyYVZA2gAp0pA1k1JxzHbzkgdbj2noNxTEhCITruUtJCXCU3TEY4mx\nXyW4dkgWCiRzWMx4U8/OX45VMvtDKpa/5Fzf9Z7LLqy+AaMU0ZfwqiYju0S3WafSnFDdkChtpMgb\nKfJGQroloW/phK7LgAqzxCWKtIybWzoUNaiA/mCK/U9T7H87pUGXZtqlkd5ixnNEJPBjnbBoEUUG\ncbeYHVYSZ00WkjwAs1g557/0Wr/9PktCLgmQs01MWU8wLQ/LnlE1e2ym1+wG55jCx9HmmIaHngRI\nOxD0TYK5BZGOGDkwyQP2UzKcfmj3rjUO1jj4uHCwDny901aLuC5bn+o2WCZYBsZeTPHehOJncyqt\nITWtR63bwxj7CCEjkKgmQwr6hLPWLj3DInAXBLsLRCJxtWXT23K4re3zUjqie77BPCgSnFmkFwry\nPMGoB+g7PmVtgN2do3YjxAxiH4Jk2RwpzDbnQl/nqrzJdWuTserijm4odG+wTgZZUw0VYgWCCIr3\nwDhS8Zx9fu8eMCsc8Ch8wIvr+4yiKotLk2iUQjLNCLWYATMILJhYgEH0LGGumjCrcWYdkZg6Q6OB\nUffQ6iFaLYBhjP8iYfSlIO6CN8iGsCKkxoxaXaKSTLBkH6mZZjnfqQmGQJdTzJKHWVogqRJCSAgh\nE80kgqFEMDRIF0pWODG0M9DqajaUTIqLrCA7KboRYssLzGiBMg+JByl+H6YzGMZZTKPgQTwm2+jI\nU8wNsu4icv6C/M6V8vO2NQ7WOOAjxcHbab4aSDrIBsgWWkHG2PAwD2dsVdocTE+5/8fnNKIzlEWf\n/nxKrAcUKhfcK0foIsHXbDpHG8xSnXSikF44CEKyCc/rXfzcVHTS9zzmJr7ncVXpomcKRslCdRSM\nZoB+5LFRvWFvesHdRy9phueIWZ+ruc9EG9IsPuO/L8q0pFteiju8ah0zWNSIL1UiXUW8Po485WFV\nop+QOeQ2pCokGixU6GhZ17uRmhVtdyQwlWVKsYpej2kWOzSKHaruAFv3sDUPTY7xqiaLgsms7nBr\nbHBrbzKsVKGXQi+GYcDrTkuv1S15d6q8bsnfIui1xsFPY2scvJ84WFUl5GtPy9o06yXQq1h1hdLm\nmOL2kDvqK+63n/Lg1TMKYQ9CDyn0qFR8HmzH1Hd6nEp3eVp5yNNjmyhZBiynDgT+8txWShe8Ppe3\nyf7bx/bn2GrwIP/e1pfDWr7uZ77NQIdTh1g2uVJ2+L3zSzzdplHo0vykS6PQpV4YUC/0KZUmFLcm\n7LiXjKUCYlNj/EU1uzSaeJ0UsOXecBw85871M0qjMcXBhOJgwqhcZlCrMqhVOS8ccLp/yJl3RPxC\ng5cOjKpLwh+QXf+35+Vd94O3FT7vWhurc6GTBY/LYJWgZcEdheL9KcfV5xynL9i+Oad61aV2fYsW\nRMwrBRblIrfyJs+Vezw7SJDkJmGYEnYNkn4BxBRSgwynCd++f30IqtU1DtY4+HhwsA58vdNWgbIs\n5K1ZUDShqmPu+dTv9Wl90WbfPedoesJR94RiPEXIEsgSgaUzLTmcNvZgawt7b4Az7iOERM+tM3Pr\nXCf7vOwdc3u2wey2RHytkVypKEqC2VxQ2B1TLg6wkznqbYyYQhIsCX/6bcJ/2drmy+PPOS9ssPnb\nr9l8HlB9PCCUIZQhtaB2F2oPwNzT+NI74Ev/n/k6+BW9sEbvusbotkJ0kRKNE0hnbxF+E4QJvk6o\naoiJSXhWIC4ZDEt1TkvHbN+5ZJtzdirnMIjwn6eMfp2VaRh4MPChYods1Gc0qiGVwhhb8ZGbAhQF\nDBPKKpozx92YUt6cIOspKTKpkPH6FpMLl+jCJR1aMLdhHmeXypHBXXaf8zTwZGQnwdAzwm8lC+R5\nSNJP8QYw9WG43ESoe5CMyfysvBmHwbKo9yrh/zk54j/G1jhY44CPFAdvO0xqRvgVA1QL1QV3c0bp\neEJLv+Tw8pT7l8+xO216PY9ez0N2VCoHEXv7A5yG4LawwfOjO/TUMvG5gjAdBDFZd9RcRRd//yF9\ncCZ9z1i1dzlqgu/M+zLQojpgbyxwj2dsqDfsXZ1zt/0Sq3NJr+txdesjrCHN1lMOtnvsbvTQGzGT\n7QJebOI/sUh0leT1ceSS/7yJRC7Tn2Q4TzUQGngGdOxMjdk2QFOyUdBg14Q9Cb0esLVxxcPNP3JU\nfEltMaLqjbAij2GhxMAucSs1eeR8Rlg0GFYr8CyFKIZhSEbw87bgPt/dEf9bpDmucfCX2xoH7y8O\nVt9P8JocqzbYJXDr2PUZzc1bWjsd7k+f8uDVUx4+eYraHzOdR8zmMdWDAY1/7KFaL3giDwmrFufH\nB0zCEkwMuHKX55A3rZHe+vzv+079c4N8b+M1D5ouSyBgLP8uyBroDB0gJvZU2vYOQcXgsrxLq3DJ\n9qdttu9dck95garGlNQxpcqYHbdNIkuMNypcfrGfNXbNm+n5GeH/Zfh7/sfr/4h56mG8DDBehfh3\nDfxPLbyCyX8p/BMcKFw6+8SyDuMCnCiZM8ec7D6Q8iYIvnpu77p+efrru9bG24GPJeG3l4T/U4XC\nnSkPas/45/T/4ejmOeofFmi/WyBPU8S+jtjX6Wy00IoxsyObeclk3rVInpskqgyJlaUUCI03tZPe\n785237Y1DtY4+HhwsA58fcdWHZN8gVigLwl/Q8fcndE46nP48BWfiEd8/uwbPrv9htpk+Lrp2WWj\nxe8qf8+z5hHzss1G2mFT2KRCpi12uBRZkdGL6336500Wr9wsR3gAesnH0WdUWn1qjVvcmwmaFIIP\naQKJArGWPRceRJ5Kx23y5OA+jxoHHD6esOid4f1x6b4IoAj2Ibh3JJr/g8Z/au/x9eWv+N+v/9fM\nzxgKmAq4mGbtSdNcXr4k/KEBoQ6oxIsScdvCs4pMGmWoS9CAhfQVdn3OrjgjnaQE54LpH7KmPNcC\nbgSk5ZjGZkx5c0GpNcVuLNDrIaqbQkGGpo5dmVLZmdDcvUY1IxIUUlTGN2XEc5WgWkR0TKQlSZcU\ngVQWSCWR1f0eyIhBilqM0cwQQw7RkggpSIgXWW1FL4XZ8h7gxRLhQiKeK1knO2d56WUJpHfJbt8f\nAP/1bI2DNQ74SHGwurO2Sjy1JeE30NwQp+FR3h+w4d2w++SCO49fkT67ZXQJw8usrtzu52OOF2Cj\n8qRyD3d/iqbFiKZFYlhkTkGePvqubkUfsq06n/LK81Vbkdy/fswd4FWVkQGyiWqFWPWA0t6I+uKW\n7Wdtjp6dEj+9pXsOnTOw3YC9e2M+ufeK1qczBvUKzzcP6aY1kopKqIkVwp+nPOQ1RAQZ1pefK/Rs\n5J2uegUyYCy3dSsGGDLSvopRD9hsXfHJzh/5+9Lv2Lq5ZSPsUPDmdKwGnWaDs8IevmFyXWxxWjqA\nIEF08sLCeeOIPK1rtUjs38LWOPhpbI2D9xsHq99lS6WLaoFdhFIVqxpQb4452Drh2HvBnesX3Pkv\nr4jOZtyMwR+B+QVsFWDrGJxyykn5GJMA5gpcGplyBpvMj1L5rtLlp/ouXV1neSfmXOGybHojAcQg\neTAJYZ6QjBU6zU06O5uoexEH9Zcc7r9kUnGw/AVN/4adUOBoUzaVK/TA46KyT9Eco+zFyAOBNBBI\nfcGufMk/+H/gf27/n0iPU8SXIP4A0gykAkiHIGyV850DtK2IYGLBKzu7p2RO2PKYU75dUuFduMkD\ntjJ/uhB4/r8a2XUogVmATRXuyxQOZxzLr/h38X/i3s0j/K/B+79BDMD6FKwxXH+yzahY4nynRafR\nIH2qEhRKhKoBwoJUB5F3vc5xLlYe33db42CNg48DBx954CsH3aozsupsrYBG08BVoC5hlxdsWtfc\n5ynb0xekl13OH4Xc9ECSszHdC5CsLrvbLxj5TbyRw6PRZ0ymJQZeNRvdOuOTCuFLHWkmUMox8l5M\nuTXg+PAl940nPAifcFd/Sak8QduFWhUOD2Huw2YKdgr6IGLnos0vS1+ycXtJs/OMZjqkXMxqxoYJ\nCF2iaugkhkFPrzDFIYy0zLfpBdALoevD1RimI7LdtjFvnI+VTm6JD2HWCpWJA4oNOPgTk6Ff5lps\n4RQGNLevKX0qoQ/AnENlDuW6jNVS8Q4V1KbPVqHN58UvmVoFJD1FcgW1qE/rts3WzRW6HJIqMqki\n00/qXIhdLnd38esW8iJBWaSYso9rz3DtGUmiMJkXmcyKUExJNyXO5V1kI6J4b0Trf7qifH9MzUsQ\nfkpc1FAeFrm+V6DTOOQ2rOPdmln9i34Ivsd327TC+wLgn8bWOFjjYI2DH7TVOIBE1gGHFFmkSIl4\nUys0ISsNJ3hTHi4GKRVIpEhSivSznbfVgLm6MrSV56v3mNVOTDnxjXij/HnbBNLKWL70F/rMq4GG\nPKXi7WPK1TB5ulUJJBtZM9CLCcbWhNpGn2Zwy+aLWxpBl+R6wvVNxM00RWx6mBsjtmomG8otda1L\ndadHUFcIbIVIXhYhFPry3N/j+nlrHPwIW+Pgw8HBqv+zHFKmWEcFWUnRpAiTADUOSLyYxVgQzLK9\nsYEAN4aKv9wny7mqBhgSKDJIueokV7n8NQK7qwFqjYzkLwMNqguKmwUenOXLugLzAsykrOh4ooBQ\nUURKw+9zb/KCL6LfU2ufMrkc8+RGIKkRsrLA1mTqGzfsbZ7woPkN5WhMJRlTTsf8d/3fsHtzgdQT\nTE9g1IHxHAo9KJ9B6RtQ6xFmZYFTGZM4KbGuEkmrOFGXx6+unE+OHYlv16LKZTarI1+3efD4u+of\nSZGRzRSl6KObPuo4QhoLwgsYDDNXUIRQ70P9DBQrxWx4lIIJZWlMqNpMjRiM5TGly/HB2hoHaxx8\nHDhYB76+sxDgjfeQ77YtCX9Bzgh/xWPTvOG+eEZ19pJpe8rZ45C4nd0nJAmUmY/a6rLrg+ULvul8\nxuPzz7i62cYfWHhDC69v4d3aRLc6kpmi7IXofx9QPh5wVHrJr/Tf8Fn0iIbWo1iZoEZQVbNDiUIo\nnIN9AeogZPeijakE3C3Z2J0eTjrELEISLocuIXSDRHcZGxWmkkMY6TAX0A3hbAqXU5j2YbqU3OSa\nzdeEP81eS+ZZTaHEBrUGUh1iG39sMvLLXItNNgrXSDs2pYcSpRsod8HvgVJTULc1vEMDrRKwqV/y\nufElfmIgOylKNaVx1WX3tM3OSRsz8hG6hNAlrqtbPN+8pbQzYqHbaFGEGsWUpREbaocNtUMgdK6i\nbdpRi55aZ+yWuJB2iQ2F7bttFlWX2kCnOo4ojiI8Q2e8X+Vqv8Wpfkj3so5/a8JZmhH+IC/EmN9E\nfo5KlzUO1jhY4+BH2QrZl1gh/OkK4U+X7ojInhOBlAikdPn30rKg6M92/nLHOW+IoS8f87HiWL/u\nJhXzBmc+b+5F33ag3sRclqRfiJ9oKeakP5fmy8vnCm9UJzn5T0GyQVKRNROzNMfdnFNtdmmc37J5\n3qF20aV7FdC9DplPU5obHo3NlK2WzMbBLY2DW6q1HtNaAWEXiBQz2ylNtbd2S99TW+PgR9gaBx8G\nDqTvDllaTr2ErCRocoQp+ahxSOIleBPBfAbjCIZppjr3c8JvLacxF5moq4R/VfX31yCHb6cyFUEq\ngrpsa227UCcbNnAtZ5dz4WW1eYSEIhLqQUb4fzH9PdPHY6Z/GNN5BDU5pCYJilpC/Z9u2P2nE8aH\nZfaTC/bFOftcsn3TZuvqGumxYNqBdhcuFrDVA86gYIJyN8ZwPNzCmMhR8HSbWNIR3yL8y7qyWLxJ\nUTOX55kHZ/O0uflyLJbzGiz/LgfE2z5uRvhVK0Irhmimh3ITIV2nRBcwHMBlCEkE8iBr5SEbCdaR\nT9EfU7JHTJUSqr4k/AkQ/bUCOf9atsbBGgcfBw4+4sDX6gJY3YlbzZXNXzcylu0oUJUwSx5No8sx\nLzFmZ0xuBFfPYHzyBs5lKWDniz6tYI4UuHhdh6cvHvLi5T24Jst5GgALCRag7EZopRDz8zmVz/oc\nzV/yi9nv+bvJ1wAIB9iAcg0qtezwBCCugEHEpnrNZnCN5JC9ryQhqhJ4EsKH2FDpWjZds0JHrTMW\nRQJfh4mA2wDOZ/ByAPSA7vLxbfn9kvinZnZziJbgi23wBf7YYLQoo8VbjJ1zkpaL/YmOWUiXOBX4\nTY15y2C+Z6C6PptpGzkNSSUFRU5QpYSNfpfd20v2/uUSax5k/2vBxb1tnOYEfdtjXrUx0gBDhDRE\nh4P0lP30FE+yeCHf5bl0lyfJA8Z+gaughW+YPDh+wvSzElJoUupKOMQKByoAACAASURBVLcpU2Ew\nblS5buzxyt+ne1nD7xpwIWAQQeDx7eKqPzdHfY2DNQ7WOPjRtvp9LjL1ikglRCqRCplUkkAR5Jt2\nQpZIkEhT+fXf5+Onl/e/D5YjP3c6TV47bdJyoGZ/IylkXdyWW4p4S7Irk83J28rTN8qW13OOTCrL\npKoMqkDSBJIGaBKpImW/Q0akEiTS8i3envfVe93bXYjyY1DJ1n24/LkOkoqkGhiFCYWNGZVGn/qL\nHs2TLrXf9+m0odOG7gSsTZ+dLZ/6YUrd7lG916O8PSCpqni2m9VuEsuOrK8J//vrOK5x8EO2xsGH\ngYNVkvYWGV+SfkkWWZEBESGlMUmY4vswDzMd+ETJ+r/4kUQ0l0g8BaFJS1dq+T7S20T/r3FOq35c\nTpZLIFdBr4BTQSoVkDYF0o5AKsWAD1MPfI9UEghk5DSlFgy4E73i74KvefQMbn4NL/4/SIkpEONo\nAXWjw96dE2LL4NPoMZ9Gj/g0fozkg3QFfAWzBdx48MIHRlBug1BAKcXo+x62M2Nh20S6sVQEraTW\nYmTBCqkEkrsMstrZeYrlGhVzEOPleFsFA2/W8Xc3dyVFRjESNDdE00PkIIZbQdiRGE8F10nWaLQ8\nha0QZDdFHwW44ZyCM8VUfBQteXOdpbfX04dkaxyscfDx4OAjDHzlF+NtKeFS9ygrIMugSCA72YKj\nBJoLiQkzmXChM45L3EibVI0FtrPgsLQgrCaZ0kUGtaKh2wXGSoVu2mAWFog9NWvbPfVg4sFCZA6Q\nY6EXI2pWn6Z6zeHiJaVXXZIXHoMLWIzAG0MqoHQApQR0DcYTGE+z3+mA7oNakhFlE/GJReqYhJFO\nFOosVIvLh9u0rRYXwz2eXj+kf1aDl0AnznLG3klsc/AkKz+vLObEg3ABzAhvBZOXDvx+kxfiHpYe\nEtwxsGse2m6E2o9xDmcUNqa46YTi5ZiwLYjaPnJRxtxOMVsp+mzCfDjjZTdFHmc+kKTDrBjAZEgz\nbiNmGlYvwOr5mJMhyWJIex4SqwK1eMt+USFxdcZOhba9g2SkDLUKr+QjZEVQscdUqhM8YdF16vTV\nGiNRZpHYJJHy7a7ZP0tb42CNgzUO3m35yea7ablzEUMcASHRTGLWc1Aum9zoLS5rO5z9ww7uDhjD\nBQfDBZKtku4UuNgpcl4/4lpsMTkvE1wYxN0UEeTdy3y+PdEf2mSvOjm5qkUnq/ZaIiusZ4Cjg6tn\nxbBVOXPwwgT8GLw4C64G82yI1do+AtLsOkRzhfmtg3yS0jG2OC/u8vyzI5wNHXkwY7s3RzEVgq0i\np1sFzqrHXIltRudVvFOLsAtp8DbG/9QCXw0KiO/8SgiJGJVA6ASyQWRqpEUZqQL6CBwNAglME9Qi\niCokrkKo6fiYREIjTZXlISzzAt+bNbDGwZ9naxx82DjIlW5RVmh/moAkmA9c2tMWqh8gSinm53M2\nghvsfsxmlGCGCfKOTfBZmed7JZ7rR9yOG4QdHS4TGAUQ5UqMfK7zVNJ8vfyl55mT2VxdaINaAKUE\nTgn1UEM5iDF3h9RrXRrVHhV7gNgI4TgimkjcHOzTaezhJ8VvxWxVNctUcwBLAUsF0xA0ojFx/xL7\nNKXYbjNtT3jUhtIzKLWhFEPBgB0rO7TGHQnrnoJ/T2axY7HQXWa9En7oEBd0OJCga8C0ArMk+6Ci\nA0UbXDPDjLsk9YkMsZpFXEYSjHTwzKz+aqhlTYmYr8xr7qvlQVsPESrEQ5AudbzEYWoUGRxVMLUi\nthGyr4XIs4RGBYwKzPc1Rkdl2sY2F94eg0WVYG4sIZS+xuZ3C4x/aPexNQ7WOPh54+AjC3ytRrNX\n5edFoEwWFbYyVYu2LOAqL4emZ5W05zLhXGcUlbiWN1H1GZbdp1oOUWbJayWnX9UYOQVGapNu2mAa\nusQLbUn4pzAZZpWlnSo4GnoppG71OVROMsL/8pb4//XpP866wPUDSC3YTUAzQS7CYJrV4B6MwfHB\nHYFZlUk3HcQnFeIHZeaJwzx1GFPiVeGYV/Yxp4NDejcNBmc1eAFMYpgHfLeGz9tddHJJ/tuEfw7J\nlOBWYfLCJbBdnm/F+E2Tm50mbjTD9Dyshcd+4Zw7lVfUkz5chkS/9Ul+M0bbkSj8o8B1BPNZQH/o\ncX6bEA+W8RcFlHqAOh6wEctYMwnnzMN55hG0Fwz6Cy57AbIZU2ndctBaoO5oXO+0eG6PmBs2Q6XC\nS+mYWNVoOl021A4xGrdGnZ5WYyxKeKlFHKs/7Ad+0LbGwRoHaxz8aXsH6U+XhD8NCWcG055LeGFy\ntTHOCH9jl1YYY857HMxCQs1gXGlwXmnxQhxxM9piel4ifGmQdEOEnwVKs9YL0cpnfWi2ej/Jd1ht\noMbrfAJbg4YCGwpYUuZBmlLWSGKUZmPiwWSeOcfJDJgA0yUJzvIo4rnG4tYhPtG52dzivLRHs9lh\nM5GwvA7bi5hYNZi5TU7cFi/jY9qTFqPzKouXNsltvCT8c94EWr6vCxJ8ex2sOG/Lp0JIxEIlwMCX\nzdeEX66A3sn800gGy8yyLERVInFVQt3AwyQUWqaCSvNUNfHdz/qb2hoHP97WOPiwcSB4TQjDCGYp\nhDAbuLSn28w9C63k0/z8hmjToTRZYMwjmvOUScWmv7dJe2+P59Njbjt1wksNLtKsU2W04E2QMZ9r\nwXekk/9Nlr9HXgPIyBQhagH0MlKphHo3Rf9VRPHTGUfWcx5YTzjUThB3U8QsxVsYfKUGxEqBdlJ8\nU1pOXhJ+ebmaVTB1sCxBI5pgDS5ono4YP5kweTLl8gnsLEujFmMoOLBdhKIL+l0Z4wuF4AuVhW4y\nlzLC7wUOcUFDHEqZU3dThYUBtgIbOmzrsKXAhgybS7VQXsLoWoUzHU4dGJgw07JAQJqX68hr0eVB\nlWT5jwtEqJEMNUTbYKE7TMwi/aMy5WoJR5/hqgm6l2RB/B0YbmkMm2UuzW3Oh7ss5sUl4U8gFpks\n5j0m+z/e1jhY4+DnjYOPNPC1AgwsMsJfB6meFb4zLDAtUJVMri+DMJby8AWvlS7XbFHUp5TdiN3y\nlIIfvs4K69Z05k6JkdzkNmkyDQpEcxWmMUxnMOlClGZbYXYBrRhRtQbsK+fseycUT7okv/YZ/gau\ngDaQVMFwoLYBpgzDWZaZdTWFyjQLWbihTGLaJA9rhP9+gxFlhqJCL27wZPgJT4efcHJzJ0szOwNe\nxZkjm+S7fz5vIvFvOx+rzujytdSDdA7RjPC2QPjCZZoU8LHobtV5fnBIwZjiSlMK0oww1Gn4fYwg\nQmsviP8Fkv8N7AdQcaFyBO0JXAzhpAuL7jITWYLqTkBrOqKZhFQXCYXLBYWvFnSfxXQv4OoCTCei\nec9n714PIzR45tyjuDthoVuMKXHGAYFssDAtYjO70faoMpTKTEURPzVJEuUNbt8vvP5EtsbBGgdr\nHPyw5dd6+UUu4qzYQRISzwxmXYfZhc6NPeNyf5uNgz0M0+cgjNiOpswlm77W5Fw/4mX3iOvBZkb4\nX+hw6y/rpv1clC75/WS5y0oBqIK0AVILHBmpKeBAIOUN4WxgAKIjgQ5C9jPHeD6HRCPD3zz7CJFd\nh9hTiHsa3rlLz2rSbmxTPb5FKQQcEtJixBybPhuccsTzq2Ouhi3GZ1X8lyZ0ZxCuEv4fE9n9E+qT\nFJJUIUwz5Upo6CRFFVGV0AqZwCdWBaYtIZchrcpEjkag6vipSZRqJKm8vKWsrrf3aQ2scfDjbI2D\nDxsHOWFbKl2ibD7mQ5vFxOB6vkGhNeFu/SWhWcTwZjhjCWeUcqm5XJZbvCjd5/nFMd3FkvBfJjDK\nCb/HmxqZq0oX+S8819X0JRUwMwW96oJZRiqXUO9MMf+NR+nfDDgUL/hH8Z/5gj8gkBFIzKIC4U2J\nq5sDbvo7yHqa1e9Tss02U80qXNhaFrw0LTDjCfXBBHEGj76B9m/gyW8zVXpp2QTUNcGtSmxuSvh3\nNbxPdbxf6szHNvOOy7xTIIgsKIJ8kILQEb6WdQ0tSLAlw10J6VjAUQqHKUjSsjSGDC80hG4hPCnL\nREgU8HJyHy/nPN+szF/LCb9JMlRJLnW8gsP4sEjvoEozrtCQoSGF2FFMehfEXfBrBsOowlW8TXu+\nC3M5a4m9WKysnVWly4d2/8ptjYM1Dn7eOPgIA19ZQbfXeb+UwSlDuQQlB60qYVbnmLUJqp6iyAmK\nnBDqBnPTZW46zGsuF2Ifox8w9ivcbLS4/tUl7nQGCghFol+tclI44NXwkNPxIZ3zLfxLEzoCJmlG\n9kWaRUcjQRrJ+LHJRBSYKUVqBQuzqeJuQbwA2YNYgbILWgOkHSjfwH4XSgKcpYJebih0Dkv0Si06\n8RHDTpVhp0a/W+dm0GI+cqEr4Bs/616XLiAdgJjypoD3D9XwySPGOaDG2bwuQujFIAliKcQbS3Bm\nEW8peJsW080yB9El84WLWMgEQxgvoJOC0wfxR1B08K8hPQU1gKKRRcmLDhRaEk5JRlYVYk0i3FcJ\nApVQhyRJoZsiGUAF2IG0KRPKOv7AQfJkmmGfT4InbHnn2NM+xrSHkCRalZhiZUxTDDH0iMWRyxyd\nNFERPRfRT8iCIcvz/E79iw/N1jhY42CNgx9nq9fYJzt3I1MsXhRBV5lPXS57e+j9kH6hyXOpR0Pu\nE6QG7aTFZdLisrNN73mD8KkGpxH0FhBMyNQcCz58pUseRHeBKlDPWq82bGhIVHYH1HZ71HZ7mLaH\naQQYRsB0VmA0LjMalZlf6CxOVRYnJunEyRwpzwPdXqaIqdiHHuXjMaXjCUe1VzwMHnH/9Dl7+iV1\nbYCtBkyiKv1Fk5eLe5xcHdF/XiN8LsNpAL05BHm31gUZzn+IZL+9G52QF5MVkU58mxA81ZloZc79\nPb6qfkb4CfjunGBnTjKK6OzajHcdwq06z7S7dK428c5dwnOZZBKQ3T9WlaarpOB9sDUOftjWOPjw\ncLD6/Z43GFB48z3Xg6GFeKohFTX6Ow0eVT9HrybUGGD4EUYQMUirnPZ2OWeX9kWL4aMi8SsBt2mm\n2lDKoEtZfbVUWfoZeROD6B3H8ufaWyleqgVFHeoy+m5Eq3rNrnnCQfCCw8vHWJfX+J0Zr69pGrMX\nPObf+RrHwQn/wG+piRuiBLSpROmuTFKTKM0FxiIFX2TL2+V1GpgpZz9aavbxOHC73eT63gY3dzaZ\n79osNItF1+JFchdPN9luXqDpIYXiDLc5I9zSWBxZzL+wkMqgtFLUVopdWlBQprj9GYqSZKRfkxls\nVLiON7kubbJ4pRA/VUnCEmKSQBpkm5Gv12rKmwZFI/DkrKj5I5N54HK6OMKOFnTsFkVpQmlrgiFC\nUlsm9WSurzb5pv85w0ENTgS88mEakuWZ5X7j+0v2/7StcbDGwceDg48s8LWqcrHJtCEb4Bag5cCe\njb4bUNydU9qdYFoeuhShSyHTuEg32iAIDWaaywX7zLouHWWL640WV7UtXGYISULIEkOqnKf7nA32\nub3YZHRexr+woBNmNY2iBJQUEgERJKGMl5hMRJGpWiIpWFgbCtUtUPpgJRnhr7igNaSM8PcE2hAC\nFbQC6AUIloS/W9rmRXSXfrtO/+sGwyc1psMS82Eh6zvb9aA7gmQIYgBiQuZ05IQ/dza+T/ae54Ev\nlnOawiLObnBziEYynMrEX1r4n1qofweqDv24yWLqkk6XhN+DmxQKfVD+CGYP/Bmk1xnht03YqsFW\nE4yWRFKSSBWFyJEI91QCVyOUIenGSE8Fki6QqsAuiGbWHtsbuEixTHPa59PZE7b7z1lceSyuFwgZ\ntg9HmEdtWo0BC8OhfbxNx6mS9BWSZy4CideO/rcKP36otsbBGgdrHPw4e1dwU4aZgAsVZg7znstF\nd495z+WkeoxjLrAtjyRWmMwKTGcFJjcFJqcuwYmarf3pAoIxbwh/yIerdFktJOuSpXZtQc2GBxY8\nlCjvDDnees691hMqxpCiMqGoTrgJNzn1DzjxD7l9XqfvVPFTl/Qmhr4HgQ+GDTUDGirO4YzW0RV7\nd8+4qz3n4egJDzrPadLFMefYVkC80On3NnjVv8dJ+5jpmUt4pkA3gMkMwhEwInP8fqiI3eou8ttp\nAjNEqBN3dMRTnYlc4ayxj9ucMt01cXe7FMZddH/OuFRnVmwwMLZ42rvH7fUWiyuH5Cz8E4T/fVoH\naxz8sK1x8GHiIF9r+foOeUP4DRiW4EkB4RkMdpt8s/s5/Z0GtuWjSAmqlOItLEaTIuNJicmFzeyF\nSfQqzaY3MkDRsoKkkQKRCsIgW/Orn//fShTfUbpCMaGgwaaMthuyVbviC/MrHgZ/oPCyjf3ra7yv\nZ8v/kpBkj33rERtWn1grszm7pD69IQxAO5Ap3lPRtmVK5wnmGdBOvpfwmxpodlaLu7PT5A8PPufL\nX3zBVC8xl11mPZfYUIlNme3iOfVSl62NGzb9G6Yzl/68Rm9WRzIFeiHEKITUwz5b0w6b/Q6GFmYf\nVJB42Tzid6W/JzhWSGtVglAjvTYQixTivOB3tHJ9QzJ1qZwpZa5M8IvMZw6n0SFzXJ5tPcDUF1hb\nCxQlIRUqqacyHRdon2wzOqnBK+DUy8p1MFxey7ezBD40W+NgjYOPAwcfWeBrVQZpkUkimuA4Wf7s\nQx39YUDh/pzm/RtcZ4qJh4nPYFon7BsM+1Xm0wJz3+Wit8dFcY+r7U3a25u47pRlc2lG/Srt0z0u\nT/aYnRbhHLgU0Al4vbMmL5UuoSANlUzpkhaZqCXSgo3ZVClvgZFAYZal7GoFCbUhwQ6UhhK1iUAx\nRFZCogajpgrbJXrFbZ5Hd+m1m/R/v8Ho/69m63JIVssIj6zt3S2va0i8rrGRK12+z1aDAd7yZx8W\naSa97KkkZyZJ3oauq4Ouw65OP22wGDmkI5lglBH+jgCvD2YfCn/MXB6xvEqFMmxV4c4usCUxKsoM\nFYXYkQkdFWVPI4xT0icpmCmysST8S6VLNDHwhzbqMKbZ7/Np/wk7F4+4fA4Xz7JNh9Y/wK4Hw0+G\nXBzs8NX+J2iNGJ6bpI65PBKHNwnfqzufH6KtcbDGwRoHP85Wg5seGW7iTN49d+EiYX7tMO87tAe7\n0OR1mTxC3jQHvU4zuX87yVJ8WZCtt1xx8UM1dt5ne5vwV4EtqCtwH/hnqLQGHDef86vmr9lSrmjQ\npUGX59ylzN8BCVQEQeowmBhZIDzwYOyDZUHVgF0V59Bj6/iKB3e+4eHsCfc7L7h3+pJiMMs+2oVk\natA/b/Lq4i6n7QO4jrPxun5frnTJA9x/at5XyX5ubytdSsRPdMbC5PyXe8T3Jfp3SxxwxgGnlBnR\nYY8z9jmf79Ee7WVKlz+4cD6CSa6g+nPSzv61bY2DH7Y1Dj5MHKwqXfI6ODnhlzNfwdfhvMhgv8Hg\nXoPHs8+zy2stxwi4WI7LCNo+XAbZtJpGVtXftEComQPzunN23rggTxH6c01aGflmppkR/mJG+PWd\nkFb1ii/Mr/lF+GsWr+Ys/uMM///yl33dQFdhd2tIo/WESgXCm+WYgfofZEp3FYr/i4r5OzB+l2bN\n5Kq8dgcUFUwFXCmrfaQ6QBk6Ow2+evgZ/8ev/j2jYY3ZTZlpp8R27YL94ksOGi85Vl5ylxcc84IB\nNc7Z44JdZFIsPGwW7LUvufPihLu9V1imn0FMhd+Wf4HvqpwVWswch/SqQPh1Efpkm5ipBWKViOdK\nlxQ8Da5LcJOwGBU5kw450w+R5BR5L0TZDMEQpD2dpKcjrhR4DPwBOPFh5sNsRPZhudLlfbx3/1hb\n42CNg48DBx9J4Cv/slZ5Xc9ItcAwQDewNiPcvQnOPZ/tcpv98SkHX51QSKdoYYgeRgy1CjvuNQfO\nKTds0Q03uPU2CGcG434F9WmMqXivCf9iYjO9cYivgIsFXPngBWRO3hBYQCpDEMIsJBoYjK8KXL9q\noQcxthYi3xF0inVEPyIdRMSahPd5kUWlSCRbqLUE7ThFrggSRyG1ZaZWgW/mn/Di+T0Gizrzxybh\nZQyjcZaCFeWy0sFy5A7n6mJ9l7RcWnnUeNMJ0CWrY1HIqpaqpaxtj7RsSY0GkgpjBU4l5gWbG73J\ni9YhktfB8mfckWa4vZTGFErTrMySFEIcQpxAEoJYgHSZgAjgekZoC0JCJkQEgxhDTdn9twK3BNWH\noFdBdSJcZUrN7qLKMe54ijqPScdZWZF5vNyz9CEdgzQSqF6MLkJ0OUBICjH6ynmvtuH9EG2NgzUO\n1jj48ywn/JA5Zv7y+ZjM6xAQ2DBQsu2+iQy2DI6cLaNJkqX0DiOYRhDlkvA+2Y5bXuT1/ZaGv9vy\n65+nTWtZpzpNBk3Cqcxw61Pc5pSj8CX7z87Z+fIKI+4zT2bM44jFf2XvTX/jSpNzz9/Zl9xX7pRE\naitVdXVXt+1pe8YXuNfA4H4cYP7aAQZ3xjMwvNyx213VVaWFpCiKZDL35eTZl3c+nDxiSrfarip3\n2yUpA3hBUkomz/I+J+OJeCKiPqHVeskXbYERpITVMtfHB9DIMB8mmE5IoqkEpZSgLLCqAV1pxPHy\nnM7wiuhizvmzBN0BdeXnOqZDyzrhl5/9LfW9EcOzFsNyC39ogdsAV0Bskt/DGbdKI3jb6S4yx8Xz\nsgyUQKqAWs8xblUAE0KFbCThfl1hvOgivpEJzRITs0NJdxnFbYZxh9GyzexFleA5cO7C0AGvOI5i\nP/wU98IGB7/fNjj4MHBQqCGgCOjlk9OAKMs/jMcmvFIhUmFHy9e2hlX2qd2ZU+3MMI+W6BMPbewS\nJhYzvc1ca+MvdJIrieSyTDbP8sbhUUQ+BU1aO9c/ltox98pAvEFz8SmeCQh8WIwhDXMe6wb53KGK\nl1GZpJSuBd7rlPG5IDjNE3TGNRg1WLg2/n2bdMdmVlWQqzJeVcH/xGSn2+PP5b9lZHSZ1NpM6HAg\nveL+7IRj5wU1p4cxv2E+n5MZGe1SRrm0RLUEuhlhmCHWqzH+swUnX6dYEpg1MOuQHHrU7vc5un8C\nqsSNvUdUt0hrUt53KFUh07l9dunkEfk6mE2oVaGuwaFAvp8h3cuQdjIoCUSqIOYSWV+BCwleZnAd\n5c8wd5mXCqczcl/23UmF79Pz613b4GCDgw8bBx9R4KuIBOuAmU9NsA2o6FjbS9p3Rmw/6HM/O+VR\n/xmPnz+jOneQlynKMmWxXaX/5Jz+ky4n6kO+nv6MhV/FHZeYL+rEjo4ax6tyIIg9FW+qk0wFTDyY\nzsEvJP0OOeHXc8KfRSQTg8V1heRMI5UMZEMQ39foPehi+B6G55HIMr2dPXqNPWZKA72ZoOsJ8l5G\nJOvEkoaX2Axuthj0txlfNomeZsSXCcyCPGwdF3W4y7UVcet4/r6HzbrUXeN2XHedPOTdXDURtMEq\ngayCVJTUyTCT4RV4+zb9vQ4nu/doywol+Ya27VO6zLCvwe6BNwN5CUmSt4DK8h58cJUibgL455RI\nAp8UnxSllmHvZDT/XFDdhloXtCaodkLJXtASA9QsoXThoHgrwu/nk2IzKf8+nYM0FyhBip5F6HJE\nIuvIUvYd1+B9JfwbHGxwsMHBD7N16X3MbZnPbPU1XBF+A0IDhhpoap46zDIIYghjCELwAkiK4QnF\n/n9fG3q/m2FdkX5NzQMeNpSaS7bbPba7Vxy/OuHu81fsf9PDdR2GUcgwjDHuTmk9FNx5NCNLTXrV\nA9T7KXImqEoJdSkkiDRmQUrkg1Xz3xD+yuCS+aslL58mMMkvuaGCd7ig9fkpv/xUoxHN+ab8hKVa\nwdcqeV+/yFgR/qJPXeHkv+uorWWOKZErYxt57YJWBrMElp0HtkOVdATuokJ2IuNaZSaNDq/rHrod\n4folPM/Gcyy8nkJ4DfSXsHTAW3BbclYQ/p/aXtjg4Lttg4MPBwcF4Rfk+3FFwrMU4hgyHyZ2fs0m\nJrgWqDY0FeyWx1b7mgPrgkY6wvYdSp7DPKtxodzjQhFMrhr4X2pkWZlMyLAM8+xWVijL11USf0jS\nWKQh3yb86yvNwF/1pvaWMA3y5QJ7XoYxSWhcS4xfC3qvMvpnUDOhZkHFgsWxTfCgTXrcZm5qeIZG\n39CIOxrb3R5NaUjf2KFX2+HG2OHe9BWPps95NHlGfDlnebFkduFgV3za3SXV7hC9IVDqKUo9xT33\nmD116X2ZYoZQN6BuQvwzn5rW52j/hEzTiGyLSb1DUJVWDb5XgWjE6n6WyMsCunnEoFuCAw3pWCA9\nSFHuxUhdQabIeW/ThYy4kRHnEpyl0Ath6uZB2mSWZwoLP/at9hjvy/Pru2yDgw0OPmwcfASBr3XH\npJChrwh/yYSGgbU1pXM44u7DE57cfM0vXnzFL778iuqlkyckJ7D81GbcrjP5ZZ26OcWRK5z4D5hd\nN5if6czPGrelypBPw/Bj8MK8K7eYkpdTzck3RpTvizCCMCKZCOZXFebNFo7ZJHyos3hQZmt7mxpz\nasxJMpVvk8c8TR5zne1itCKM7RBZyvBDiyA0CScm4kRFPFcRX5GPurta5EoXxrw5oeIY3vTU+D5N\nRNd7Q63Kt6gBHWA7TzVaOlSMt1sASeT+zDm4ZZubO11e7B0hVxPaJZ8HrSHWyertknyit5zkl+0t\npcskhWGKGIZEYX65JwIqX0Dzf4PD/xmqd/OWUXIGqhJT1hza+gAlTClpDqobk80g8sFN8x6LoX+r\ndFH8ZEX4QyLJXD0g1/fR+6p22eBgg4MNDn6cFW7RumNWTMWZ54Q/LOXOICZQqPyyXJlHQF5O5HFb\nxlPsuYLs/3Rl4b/f1vfCmtLFlqEO5abDVvua+93nHL045c6zVxz8H9dcTCJcH8492P/5lDvulE+s\nc7xWk2+qP0PdSqCaUa0ldOsRy0lMdJmyuBRYUkBXHnHsniMGVwxfwctnENzcDsizM4f2n5xw+NmE\npuqyVMqcx/eZJFburE8zcpCl5PclIMd8cS8KW0sQvCld2wK5LD3iewAAIABJREFUAbqRj3WytPwS\nBHlg2p2Wcafl/K12BNIO+aNhAWIhwTwDx4WFm0/twyF/FhYlZz/VwBdscPD7bIODDwMH7/YYWvUw\ny8Kc7McOBGUYl0Eq59mopgr3LKyyx87+NQ/3v2XXvqLGjDozBnTREHiUCJ8aZKJONCyDo+dkP/BX\n6vNCRfnHGxojvTnH27Msdm4qcsIfeflr+6y8NB0MT9CdpBjX4F3C1St4fgpdKa9o7sqw2LbxH7RJ\n//dDXMkkxCTEYJdr9qVL9rnkytjjwjjkVe2Q4+U5n86e8tmLp1x/HXHyFVx9BWYbOvfg/j3Qd0Da\nBnbg/CX0nsLJb8GYw/bqiiWeR+2gz/GfmMSqzbjU5byRQE3Om3bLha9b4LNCTvj3wKzmJ3EfpMcp\nyoME5SiCCgjXQCxVsrkCN+S9jE7TfBDSdAHelNyZK5QuxXMs+aPcu39f2+Bgg4MPGwcfQeBr3Yqb\nroAigyGBDboVUdUWdKUhpWhCPHUZXiXMrwWxA8kShJMgzTzKU4ma7mCJEKWUgZ2BlEKY5CVUhQOR\nRBClkKYgXG4bv3nkm6LImi6AIYQpDMtwWiKOYTEt0e9tE7ZNbNnDlj1SIdPz9nH8OnFsgqKSKhqy\nJIhijTjWyJYy4izOJy304lxhExQKm3UZedHD6PvKyQunrujzU8tXtQW1CtQNrHaE3XGw2xGaEqNK\nMZqUULI9KuUl5ZLLvn3BneFLDv/+Jftej/psgTrP8G5gMQRnAnMX9Azu6VCRoRRANAHFAHUbqoeQ\nuhAOYTkEdQHqGSj/APIEaEPWhtDQcLwK40UbfIlBq8vg5206LQdzHHI4ikhlCWPfZLpvMd3bYWh3\nmE8bePMS0VghC+PV9XqfSzHetQ0ONjjY4OCH2bpSUufNvZeqULKhYUDTQCnLaFaGamWgSCRCJ8k0\nMs9GTKuIaZRnOH0/d/aSIhhQ9Nn5Q2c5/wNMWv92PcsKCPHmFKUMJJEvWRJ05wO+6P0G37OgLKg3\nxzSaE14HB0gzhcmsS1xScWWLSbmOXXWoVCPulSPSaoah5Q1ljUaCoXiYS5mw3OOoecbwcRfT8FiU\nqsyNGuGNCksLnApERTe9osdI4QYbQBWogdaAah2qJZSGgtXxsTsLzFqEpsdoWj6Rylk1cfc9myxW\nyGI5J/qLIO/T5ATgrx6mONz2t/qpB70K2+Dge9sGB+8xDtbLvVbBWwSoSp4s1CuYTYny1pTy7pgj\n45xHN8/55Oo5jaSPErsoiUu94vNwG2pbc17Jx5w0H3Jy7yFRqINsgFvK9z9F37Ufmkx6S69Cfu9W\nChonhkFGXNXp7e3wu+Az0mZC6d419l9eU6oN84begCLASBKMJEGJU9QIyiEskSg/KuHcKXG2beG3\nXeo1l0cVj/pK6VK1wds18aoNbuQdKs6ShjOn6jgYizHZYkTfcUnMEU1bwrICdod9Gr0ZyjKFIE/q\nRWmubs+C/FL4fVgswLmE6SUofdiP85xi04KWCYuWyqRks5BrLLMKQWySBVLuRyarTCEhbyaYGyUo\nG1BWsA596g+nNB5Pqe3NqMgLKv0F2iQmRSMTKkujQn+vQ1/qsmjYxM8ESWKTBWl+oNkShL+69uuD\nHz4U2+Bgg4MPDwcfYeBr5bgpSj5W1QbdLAj/gFIwIZx63FxlpL1cme9HUHISuvOAzjilWlliEiCX\nMihloES50+A55CqSab4Z3iQvi0Zy6xLu4j/n+TFFCQxjiCAZmzhXNukLlXmtiaZF6GpMlkksFjWW\nToXUMxCySirn/TXSTCZNZUQkYBLB1IOZm5eVhev1t+vHUMgRvy/hL1QuJfKsXycn+3cqcMfAPnBp\n749oH4woKR6W5GPhsyUP2ZFu2JX7NOYT6v0ptW+mVEOHarxEjlPcHtz04XIMSpDnFY8MsCQwAgjD\nnOyre6Af5coU7xswHdAd0E7yGI48g+wJiIpEqGk4yyqjxRapr9Bvb9GvdrAeTLFHDndGKRky8U6V\n6XaDy/Iug7jLbNLEuywTjwVpWEw2WS/FeM8d8g0O2OBgg4Pvb+tKyVVvPOogdUDqQsWGOwrcV1F2\nYsymh93yEDoEqYmfaiRDhewMxCnQi2CyzElfUigd4O0Sgw/wuq7i7ZIEsrTWKnt1ebdmfX558U+0\nX43AElgdD7Pt85XyOdO0w/P0MbGqslRKjMoNuvU51eqSSiVBjjNUO29ZqLQSVNlHdVIS/Ybj5hnL\nSgm9HvLKukugWYSWmk8yigrCH5OT7oRbmaZJTvjbebO8dgUObNQDmeqdGa3DCfXODFtxKSkeAole\nuMN1uEuykEhOdMSJjhhJsPDAmYEzh2Sxuu9FiV+xCgVVoTj9qe2BDQ7+ILbBwXuAg/U9uKYCV1Ww\nLShVsdo+3e0xO/sDHiYnPDp9yuOTZ9iTMZ4X4foxtd0ptS9mPFRescuYrKFzfbTPLLLA0+GmRH7O\nLm/aIbwJOn7f8y6CxIVaL7gl/DcZkWXSm+zyZfg5C8Pi6PgbjvWM9iN/FVqQkDNBKQgo+QLTT6ku\noONAEEp4TyosjroMdlvYnT7N5oC9qofZyNsDGU2J/p6FV6nTYxvbOad1NeX48iWLK5f5pcf1pUel\nIWi2AqrtMbXQpeYtkN2MLMiJfsStsh0fln5eUXUZgjQDawwHMZQtKNeh0oSkq5KVbRZKnXlWXRF+\nJU/AJuGK8Ee8mWBulKCtw46Cdd9l7/ElR49P2K9e0l0M2OoNsTMPUZIRJYWB0eXLg0/57c7PSLf2\nCFINf2iTjeV8Wl48B6Fxu2eTtXvyIdgGBxscfHg4+MgCX/CW0kWXwALdiKiqDh1piB1OiKYeN9cr\n9QXgCNh2Uiozn9LEpyYtsQiRyyulixzlNUP+jFwPeM0tgBVus2jrk+IKkM7zf4tiGEow0kkvdJxK\niWW5AbaGZIg8uZqBmEiIiQTObVz77feL87IC4YCY5euNyibk7ekZP4S4FpneQunSALahZsAdAz43\nsB6GtI/HHN5/SV2dUcGhyoLj8JyHwSkPg1OMryKkbwTSfxdIiUDSBRjgDaHXh+djaAloWXBkgZqC\n6+cr60B5F0p/BmIMCweMM9DmoJ6CMgZpCVQk0gcQZjqLZYXRsEsk6wy2txhsd2jLQzqjlO7QJ8tk\nXncqDDpbXGY7DM+6zF42cS/KMPbySANFtPynXbf8w2yDgw0ONjj41+3dMiadN6WtUhekgxXhB34B\nykMXcz+jsu8hLAkpNkjiMtkrC/GPGpLQEUmcOwrLOQST1d8p9iP8sST+/6Emvb3eXFUpDwAgQXc+\noHMy5Bf/+M/5Zd4CaUtAReGF/QjdjolrGo5SYlypU6vVaFcTOlUPI+ON8IhmCooHjgcVjWWzTNKU\nYDsj0Cz67AAmRFZerkFE7nQ75PegcLwt8pKAFugtaJtwZKI8Cak89th6fMP27jV1ZtSkGUJIKCLC\nFSaLcRn+T4nsWiVzpPxYnCksizLvoifG+vPnhz6L/j1tg4M/iG1w8J7gYN2XWAvCFYS/XsVqh3S2\nptzbO+PhzVMeXz/jk799jnQ2p78QxAsoPYIt7YKtA4lO2+W6vs9v7v0Swg7cGDkBJSAPJKv8+PYB\na34PIaR+TvizjFjTuZ7uMA9KDIwW6lHG/r0xZTEgW2kQ5VRQdqDmJFQWEYxADCFxZE6OyvTvbXOx\nc8D9jmCv4XJUGeb7chfEHmh7Jn61zg3b3Flc0ryc8fjbF5x9mzL5BnrfCMwdn8bhhIeHEpoukFQB\nWl5Bl6YQC4hTyFaE311AbwDPBtCM4Qg4EFA1wGiAsQPzjka6IvyLN4RfhqBQurirayMDdt6Prm3A\nXRn7kc/uo0s+ffwln0hPueu85m7vNXV/DluAAuetO6jbAaNGncleDTGoEz21iXUDxBxSEzJtdd2L\nQPFPNXHxY2yDgw0OPjwcfGSBrzUZZJLkoxoW4LsWw6jNubjLTiWkcRjS/sWYbABenLcoso4Msj2b\nXsvm2txm5lZJxiqMM3DjPLJMwNulQIWjuC7DLI6jeJBEvNkoQsv/K/HBNxDCgEjLA6mqlMvjHQG+\ngES8877FSni7aXfRcO7HligVD5+iOZ4BqgFavqxuTOlgif0g5L71ggfj5zxYPsOKlhiBhx56dMWA\nqjTFICJ6keC8hEUvzyNWSrlE1Eqgq0NYh0oF6jug7UA4h9k5DF+BGQFzsPqgz6HiQUfkddleABdz\nsAZQeiWwn0qoOxmaiNEqAZ5p0Ctv8Tv9Uxy5TLc8ppONyFKZS32Py3iPc+cul70D3LMynAkYRuAX\n17AowfgQlC4bHGxwsMHB97d1lZ8NVMAur7qaKpQfLGkfD2nfHdKsjmksJzSeT5DUnGD6msk0bjJo\nbdP/bJuFbRFrgti1yYIEMg8yh3zcdMat0/DHvrbS2tfft4rjePdYChwUE01XK9bAS0Ba4k4VBuM2\nyjChork0jua0//MId+liBCF7QURnP6N8J0PWMvxU4EQCx8uQvVUxXQh6e8CD7pf8r6UydX/Opxe/\nYyfoU3J8REXG+dMK0TTCCCJ0PyaaZzinOb92tkOkvTF7eyquVKGnHGDue8hBBTFSEUaJ/Jlgrs6n\nCGqrIOlvRuQpNRVrx8c6dmgdTnkoPePB1XP2+hcYvovhuWSShLW1ZHvrhmv5gIvGXS7u3GUwbcOl\nBokFy+LvFeUccPsc/KljaYODDQ4+Nhy8G6lcyfRUCUXNMJQIW/YwUg/Jj4hmKek8w/FgHuaf1U1f\nIC1BLSXIIlu5DxKoMkhFUrAIMn5fsl+89t2JmxWgDMLOGbTvkU1l4pMU/x9MJm6HU+shupUws9uU\nKwsq1QW25fFa1kmFjpTJdO0+3e0+jeYUXcS0zybIJ4LuxZgyHvJBvsWjBUSBQI2nbI1e8uRU43B6\nRn06RglSCAVZBEkMaSQgBNkX+FULt1Ni2S2x6ATY2y7Hd12qJQ3RMrlpm3iTmNJ1wL2rgIoiaJbA\nKEn4jTLDZh23XeN0+z5PlU84u7rPzfkOi5sy6VTko6rDbMW9i2tk5f5aTYVtCb0Z0ZDn7M+v6bpX\niJcTbp75zOYJxmsw6hDtedgPR+xZr1joFXp2SlS1CKo6LJV8Wl5S4OXHBGreF9vgYIODDwcHH1ng\na41kxzF4GczAc2wG4Ran2TFKzad5NKPrqJgjiF2IPQjvGASHLS63OryO95j16sRDFYYZOMmqR8W7\nk4ngbacK3ibnKbf9LIrXR5AtINJBGPm4WGX1kBEiHyebrJeIvZsdWzUifEs6XjSRfbd597/mYKw/\n7AqH18gbmtr5Km05dA+HdO4PeTz+lk973/Bp72uUqU82j8lmMU1jScl2kOyM5TVcn8NVP5+eupfk\nYqFSCjsmWE0w9qH6CcifQHCVN+6+6uc9jswJNC5Bc6G6BFmsukNE0EvBGsLOKzBqAjVI0bsR5pbH\nuFbnxtwikWWupV1a1pi2MkbECr10l2tvj/5oi9FlB/e0BKcZDEMIltz2pPpQSrw2ONjgYIOD72eF\nUyWTU1AbqIJdgh0DDmWqj+YcP3jBkztfs8cVzasJzespmkiI6ypJXePK2OV3zU/5XfMzqG3jugbZ\nlUU2JS/3EcY7UvFC7fLHvL7r57b+/fpK19b67xlra53wqznhjx3ciczNsI17U6OieTQeTmnvDtDi\nCVbisJ86NNSYsp4gaxmugF4CV2FeNV2JoeyAKoY8qvyGLXVC2fPpnvfZOr9BsRLiqsbsf6pgTGMq\nL5coZynBNGMwhisBaTukcjxmZxoRtqq8MB5i7nnIaUb2UkUYNvkzoSD8Rf8+DWQdNB1MA7UmU9nx\naB5NOTi45PHoWz4/+4rD8TnZKCIbRySSxO4X10RfPGO0u8vf1f4c726FQdQBocOsBIN1VY3C7TPo\np5sdzW2Dgw0OPjYcrKscV0uScj9EBVnJ0OQYS/LR0pAsSAgcQejCPIbJ6vPcX7XAoUK+fVRylf1b\nhH99WMy/RhyLYyqCk8X+WwWjqawIP7nSY5YQPzcQsQGvm5y2HuA067zqHLO3f8G+fEHLHNFPdhmE\nuzhhjZ+Z/8zntd/ySPbRXkZ0z4e0LqZUwiVl4cIBhBNwx7Ccgno9YefpC6z6lH1rTN0cI1kCkUCW\nrbyFDMTK7XRtm5uDLjePu6jLGeVxn87IJ7NN0lqdXq2BPPSoXExpXESYVordldA6EqNqlQv7Dq/s\ne5xynxfxA05fP2R01mR5bZJMVknYOF1tp7XhDLoJVQ22ZfRmTEPM2B/1aA1vmJ+4DJ/GMICqCVUL\nwrsRpjJmf/cVoV4iNk0m1Q7UdEhlCFQI1bX79yHaBgcbHHxYOPjIAl9rSpc4AS8FWeA5FoOgixAp\njeqcx0cXdHWFxphciT2Dm22Ts8MmV91DXk92mcY1ktGK8C8LpUuhJlknhOub4N3MFtxOQIhX3y9z\n5yBeLUnjrYeAKF677ogV71W8d7L2f8k7r/uhZPXd8gYzjxbbOtR0St2Q7sGQu/dPeLR8yuc3X/HF\n3/2W5CrGuxF4fbCqglJbILcEyzlcD+HpAHYssAVsy/nbWQZs2SDuAV8Afw7+M5jewNVvoRZCawrp\nJVghVJ38EZcC1xG8XBF+4xy2NNCkFL0SYdR80g70RJfrbBtL8mlaE1qlCSKUuZnv0nd2WYzqZFcy\n4lSCMz+fRBgUE4cKpcuHQPY3ONjgYIOD72frAc+ivKuaK112dHgkUf1kwfH9E359+DfcH5/Smk5p\nfzXDDEPEHrAn8WLvGHU3ZrJXw2nYZJctwq9tYl3NnbO0IJzvSsX/PQj/utP5bub13Z4NhRUOpk1O\n9lcZ1ljOg+mSgzsp4Y1qDPplqjsOrftDtjrXbMkyLSSaRJTHAnuYIQ8k3EzQi+FZBJoDLQdaErSM\nIQ93JrSVrzB8gTzIkPsZzt0S4z+vM/t1FWMSoyYJpQsffwr9IbwYgNEIeTyN2PWniIdVWndHmHsu\nspwi2iqSbiBIeFvpopFPJNRXU+sM1LpCZcdj6/iGO7tnPB485YuXv+Xe16csL8B9LYhlKGUS9rbM\nYnsLt17lxd1HOUGY6nBeIkfpMn//t5zEnzqWNjjY4OBjwsF3kH0kkOQ320NWMnQ5wsJHSwOyIMZf\nClwX5iJvrJCmeX/UdEn+0VlwdI28zcRbhP+HkP5ijxZYtMlbL1SAKggzTwwmHiIJSE4aJDdlwm8r\nOPt1zvfvY991+VT+kqBh4LdNvkk/55voZ1xH+yyrJpXOjH37JeUXAY3nc0p/EyDtCaRdgTiAaJmr\nCaffgi6P2ZWm3JHOKB9lVI4yOOZtwi/WCX+Jm/0OJ5/fYyfr0Vl6HC9HTE2Dq1KdXnmbRm/O3nbE\nXnuO2shI70kkd2SWdpVz+Q6/kX/O6fUDXp/c5fXru3hnBuI6RkzjnPCLokfUGuFfV7o0IurBnL3x\nDa1XNwxPBa+fCrzL20l9Wj/G3J2w98Ur0o7F2OxwUQ2gVs2n5S2KG/p+KF1+uG1wsMHBh4eDjyDw\nta4iKcjyqvY38EBaEg9SFqc20m+6nJYfYCUxQaVEVVsg1TPkrmBi1blK97i63OFV7y7Dsy7RSw2G\nSg6uRi0fX50ZkFXygEKk5iuNuS25Wh/hXZSBrateMt4KAIhiI62/riDv64qX9fPNfs/6Lqn+D7HV\nA1CWQZPAlND0mJK2pKFOsaIFYurhX8V4g4T5HOY+1OogV8Hey8vCOxkEATTLUG2D0iafbLSadO71\nYPE1LBKYz/Lqtv1PwPIBDYZ9cHXQdmTUQwndheZIcDDK0BsS5bsy6QOZ8J5G2pGRzIxq5tD2x7S9\nMQ1vRsVzKLsOIpOZWOdMzBajRpebvW3693dYpHpee35ThqhQMPm8Xbv8PtkGBxscbHDw4+xd0m+A\nrr9xHLRaTCVd0hmOKV+PiV673Fz4aG6CMQdzAMyXlNUx29tXzI0ama3hlmsEpZXjliiQ/lCZ/489\nl8K5XBHbwhnC5E2PDUnNnVER5evdSXtKebVKULLANvOvsvSmYZFoW4jAgFOVSb/OmX2AZj+hUdqj\nWvKolTzaYkxHjOg0R7i7S8x7PgdDHz3IqBpQ1cEuCySR4J0luAFE03ylekzW9ykNVaRJwmIYsRxm\n+DFIW7BzAKUmNPcEZkugWBmSKiGESpaqiExaPQXE2+dWXCdJzsm6LiEbGaYeUFEdqmKG4SzhJiC8\nSHAGMFlAZABzsIdgDEPUKEHWs3zwq62AVgTNi/v8vtkGBxscfIw4KPyNJG8N4WaggjezuXG2sYKH\nUEowH7m0//MAox/STjKkJEXeMwkfV3m5W+HUvsdw0SZa6NDLcnl2vD7J9F8bsrOefDMAEyQ7dyqU\nKuiVvON1xQZLyxuDqmnuOKgWqBqaGbPT6rFT6rGbXrH3+iX7y5c0vh0iFKgoDnOtzc/dL9mTr7Fm\nAdFNiDeI6Y9SDAmMCPQFTK9hNodZCkYqMEgxSJEsBWlXgycKSZyiDlLKUooS5DOGhjK4ixg58qiq\nc/yoxLP4CS+9R8zcGsNpk6HSpDJ36TgT2vIYOUhJexKpL3GZ7XIaHXEa3uNm0GF+ZRNdQnYRwMiF\nyAUxIS+jTVbXaxW0zpK8WsATiFgi1WViW4GFQq2csadlxJqgZkLdhLQts6iYeGoFR1QJUpM0UlZu\nq8irDz6aJOAGBxscfBg4+AgCX/A/llTJOeEPXcgcohuN5TOTRDVhT8Fp1zhr38Oq+CgkqCLBDUtM\nvQaz8yaTlw2mL5pEZxosZNBsaK3GhCb1fIqCl4IjQSrlf4sJ+eVecEve4XazpGs/F5nFou/RugNY\nvP5dMv9d57tO8v+tG3ItAr+q7UYHTYuxZY86M/TAJZ7HzPqC+QzGPgwFbNtgdaF5BKUq7AqwfbCr\nUNsCZYdcTLIa+uddQN+BqzNgNXX13qcgLSC5gX4PjJZM9YlC5YmCFgjaz1NKzwVSVcJ+oJD9TCO4\np5E0ZTChnsz5ZPmUn02+Zm/Yw+iF6DchmSKzvF9ieb/MZXeff7r7JwSJxULbAcWCRRXmRdnckltZ\n/k8/qv0/2gYHGxxscPDDbD3zuFbmqulQVaAroVVSSqFP42qBce4wvogYX2ZIc6gPoG5D4MUYrRlb\nD3o4Sh3PqDIqb0NZy7ERyBD/exDB9dIAkzxLulLvFGoVSQNZy0m/CCDzue27tAo2KxUwKmBUoatC\nV4MtNceDwqoMQoNQgxOJWVLhLN5nkQjsZoKxBWZX4rB7wVHnlOPuCaXDPvZ0zINliCGy/O0redun\nqA+TF+AuYenlk44sO6F15dN8nRJPM8a9iPFNBjKUDuDwYR5Qrq+U/aIsIVSFLNHIIhWRiDz9+p0q\nUOm2nEOTkPUMQwmpyA6V1EFd+MQ3Kc5V7mPehLnSX3WhOgL6rHxykQuBTCmfoPseZUXftg0ONjj4\nWHGw1hoiimGZQiJwJyWunF18X0eqJLQ+HXKv/pLGfEnXj2n6GW7dYn53m5ODfZ5HD+gPO4Q9HS4z\nmEZ5DwlcbttD/Etkv1DFFKXGJZAqoLbyaZuVCuxqsKNBR8mvuZnlybnUgETFIODIPONPzf/OZ/KX\nmK+nWN9M0COX7p0Bjw+fk+6W2HWu2HMvKcU+w+uEwShlPIdaAvUFVHowncF0kSt6VuEHDCCtK2R3\ndMTPDZJ5hHYaUpNS5BC8eV7lGk4jVN+hJYZcR3d47tzhcnSXhV/BDW3c0MJIIkqpTynxkMKMbCKR\npRILp8R4XmM8r+HMy7hzg3SRwCyA6RSiYpBRQfjX7l8ag5/CQpAFEnFTxW9qiECj3kjQLQG2wGyA\n1YDFvkKvYbPQG4yzJm5SJgk1CETeOypbT8C+H6T/x9sGBxscfBg4+IgCX/CmvIsVCU+XEC2I+zUS\nrYzrlpl+0uHss2OUgwS1GaEZEaoRkfU1whOT6KVF+lQlew7ZmZS/9a4N7VKOw0jka7FyJryMnM2q\n3JZcrZdhrRPzgrivZyN/n2PwXb/3x7Q1yevKCcIATY0pyS41ZuihSzyLmN3AyIeeyJdcgtYWiGMo\nl8AOYHsOUg2kbZD3yB2kIeCC24ebU3iRQv0BNP8Ujn4G4QheT+FmAJotkR7IaH+lUokFnYpAj1Oy\nkkTwUMX/XCfY00lkBUkW1Jw5T5xn/NXo/+b++SnSc4H0DFJLIrJUwgcKJ537BLHJS+OI1+oeLEy4\nKK71Epjxtgz3fbMNDv7ttsHB+4+DH2rr+3CVZdR1qKqwJaGWE0oTn+Z4jvHSwbkQnF1BNoRtCRIJ\nsiTCvD9nO7jG0+oMjW20cgQVHQIJ5Hf7W6z/7T+kI1EQ/lWT0zdlAS2gmS9Jz/v6yBqkLkgu+Tjs\ntXIvtQZGDexaroc/Ao7zIDDaavWAawlewnRUZTE64HxcQ9oz4biEdGTzyWffMm3UyNoZR4nEXTfi\nTjzB1EFq52v2FLw+jF/AeAJjkYfP26WE0nVK9bXHcgbOleDsBswteHwAd/4SGlsgu/lCksi0FeEP\ntbzTrHjXYVu71tJtYFvWMgw1oCwtqSQLVCcgvklwrvLjuc4gMPN+e9sjMG6AzurylgFDzidhvVeE\n/13b4GCDg48RB0VQcNUaIsnyz+dJicDZ48bvYjQDjj49I/55BSuY0nQE9iLhRrUYNrY5qT/i2c19\n+mGX4NpYI/web09L/pfI47tlXRWQGqC1wexCpQZ7EjyS8umqqzZH6OTc15Uw/DnH6Sn/Kft/+E/L\n/wvvMsP7KiPqCey/kLE1GWtLQnFTFD8lXWS8vhZcj+B0lvsrWzJ0JJhmMMtyb2C9011aU8juGPBz\nm/i1hNZIqUoRSpB3TYjnoE9CNN+hJSROo0f8zvmMvx7/Fe64RDaTEDMJyQCpIpAqIm+10c9XdpOS\n9ROyXoIIBEIIRBaDWEI2hWxA7msGa9d0lexN43zSnbMi/LpC0NERiU69Adt2ilrK8SbvAvsqNGwc\no8lEtFjGJeJAXcVnRF6/9h4R/n+bbXCwwcGHgYOPJPAi9uo/AAAgAElEQVRVWHFzEnJZpQNCBT9B\nTGIEKZli5BnHuY5cVVE1A0VPEAuFpK+T9jWkSKDsRhi1GMv0qLSXVNouipaSxBpxohLMLZY3JZyb\nMvHYhFkVZhGERcS62CSFQ7e+YdZ//pccg38vsg+3mcAkb5bnZTAH17Ppx13OOEJueVQfjyj/pYRY\nghSBGUL1E5PguMSrA5uKFVISHiXNJYwEyxScC2AA6hhUH8ZB3ic9TMCbwPR1XmmFDFlLpvxrCbMl\nU5LAfJqiBwK9n6ElMKPKeXTAq+UBZ8u7jIwOph7Q9KdUrmeY37hwErB8De4lZCUwX8mYJzKVeImd\neJg1H207IqsJMk1DvNX34v1o3vcv2wYHP942OPhwcPB9bV0tuLr3SfpmGmqmy0S6it820OY65VbK\nbjXPhjatfOidt6+SNGzmWp2pqOMlNmmo5hmzRKz6MPwxnYYikLBS6mACNZDqoNShXs1XzUSzMzQr\nRDN9Ij8jDjQSv5Kfc5xCkiK1TOSmjNxKaO+OaO+MaO+OUOQUWRYocsa8VGNarzHdqhOcywQaBH6V\nesOnudOjdezSqE/xQptvXn3GxO9wZdzh7PA+phWi1FOUeoq6nKPdHWH3RsjDGCOEcgjltoLe1vC6\nGrEpsPdidg8i5I4GWzbjls3YKrOY1XDGVZ4FjznR7rPUynCV5dNKQ5/cGw55W8Eo5T+uBI6JozL3\n61zHu9jagtr+iOxXJpYJzSBvbeibMvoDi/kdi6i7w0SpEy6M3PecpRAWwzaK8u7159z7YBscbHDw\nseCg8DnWyruIAB+EA2KCmJVIThSkv9cZH3Z5Xn9Cpe5zJg8wgwgzipgETU69u5z17nJxfcDkeY34\nJdALYO5BvCQn/Bn5njTJk5Lrw4GKY1nvMVoGmmA0YbcC+wbGQUz3bp/O3QH1rRmKLJCVDBmR/6oF\ntWDOL0b/zN7oCvPGxxnCYgGOC50plAZg9SC0dFzbIiipsBPR2Im504/RfIh86IfAFthbuYo96udr\n0QfTzZAHMdZZQEpKdl+G/2oiJbdh8/iXNby9DpHS4UbeZqo1cfUSWj2iaU1otMZYeoBhRhhmhF+1\nWFTKLNoV3JqFaxh4mUE2y8CL8pUW5XJFyRzc4nzlswQSjIAzWBoVzqxj/q79Fwy0bRp3pjR+PcOc\nRSQtlbSl0O9u8dR8wtnwmJ6zy/y6SjyRYBmumlZFa/fqXd/1Q7ANDjY4+PBw8JEFvtYcNnzy8GkG\nYZyT8SiCoARDG05shCmTKgpCURCZTBYriERCqSUYRyHmrku7PmK/dMWefYWuRPiZhZ9ajGdtrq/3\niK4M4gsdzioQSRAWJULFB/93kf3v+vofbWsPvjCPFJMJHKfKVbRPKiTK23MOv7ikWpYpz6C2gK0F\nBEclgoddzva7tCpzto0BVi1geZFwfZFPt2MC1hxMD2ZJrqJNBfgLGJ7lQWx7X0Y/VGj8SqEkQXUh\nsP8+RXcylGWG5Avm5RrP3E/4+9GfcWXskNXArnm0/QGlSwfpyxj3KfRncDMFUYHtc8F2I8OIEox2\nhN720bsBSVUh1hTEm/Ttep+p99k2OPjxtsHBh4OD72PrZL9w/OJcJbHUYCxIbZmgYuBs2ZQSi/pF\niNXJUHSB1QK7CYOHKvF2hZG5xcDt4kRVYk/Nfb2okIp/F+n/Q+z7d0vUTPJSrjrIXdBbsG3AsYl0\nV8NoeJQaLlbNx51ZuHOLZFbKg7y+AD9D3gN1H9R9n/3qOZ9Wv+az6tfoIkZPE/Qs4ax1l5PDI07C\nIyatGjO1SuRWaR6MePzoBY9//hxXrjD0u3z94nNONZ+aOad2OMO0A/RShF6K2Pdecv/+N9z3HFo3\nMe0ZBHNgR0XZt1kclBDLlMrYxZ6kRA2DsNvkqtplJO3xennI694dXk3v8krcwaECgxRuAggcckYe\ncutYr/Z18XgSEM11xm4LKUyQjYTdoysyyaJyBPIEqlPwUIgfVZk+bDHcOmA0buKPTbgUMI7zsVZv\nZbXfUdb8pG2Dgw0OPjYcvLvfZfLjngMGzGJ4VkZEGtODNt/ufYaz16BsL1GlFE1K8UKLsdNk4jSY\nXVVwXtjEp0DfB9eFuBgYk+XvicSbi/2d6ndl9bqVOtFswYEJXyiYjz3udU/5vPtbjsunaF6K7iWo\nUZpvdRXMKODu6JzueED2CpYjGPgwykBxoNyHWkPCPzRZbJVx2hbyZMnWaEl7GjMZw3QE4wia+9D6\nFTR+DsN/gsE/wbwP9XmCcgGVr1JkISM9UpCPtTfnISExOmgyvrPHQDngWtlloVfJSjKN8oT7+jMe\nGs9oyRNqkkNNchglTV7H+7yO9+i92qZf6RJqW6RXUj5YKQxXg5WK4Urp6noV+puV3xJI0M/Ldxdq\nlee1x3i7JU4qD9m9d8Vu+Qor8glsk9A2GSltTsNjTnv36V1v4742CUeAE+Z+8hvCv96X6kOzDQ42\nOPiwcPARBr6K6HHRqyGEKIQ4gkUMgyQvYZJ1hGSQSgopCtgSVCWogvKzFOMowP5PSzrbfe7Lz3gi\nfYMl+SxElQVVLqeHxK91RhddqJZzhcuNCVNl9bcX3Ea4i835x3D2/lBWHGcMUZpnZkNwnAppuMuU\nCvtbV8Slb6gdSxgjyEYghnCxY3N6t8vp/j385gCzFtDpjnBj6L2AZ89BmkMly1cg8oKqjNwfG3mw\nfA0tSWL3VzLdv1KpzQTmf4ux/j5BnWZvWnMskhrPl4/569F/YWw2OFTPuFM6o+0Nsa8c+DLB/Qb6\nCZzGIALQXgk6hkDPUnQjwjgM0JUQUTFJdYNs/YHxQZR4bXDw422Dgw8HBz/E1pR+RPnENjeFiSBt\nK4RdneWuTZZZ1HcFpXaMbmVI+yDtg3OkEW1VGRtdBk4XJ6qQeFpOoqNsTSr+xyKBhcNYEP7SivB3\nQNvKa9E+kZB+maFvJ5R3HKqdGQzaxH0bb1DK/dy5gAXIDwLUByH6g4AD5ZxfKf/AXyn/DTsMsKII\nM4z5R+0XlLQ5gSaDcYfILTHv2TQPPB4/fMH/8vO/5tngCdfP9vjm+c8IOzrqUYB6EGKWfSw9X38a\n/yNN16EqXtBsgbgB0Yflrspkz2Z6UEfzYprTlMbcZ1E2eNltcVU55Kn7Cb9zf87vbj5ncLVNEqkk\nsQrTEPoBBMWwjYLwrykZU97E5eO5xsRtsows0AVP7n2L2DepOFC5Bq7AD1ReHVUYHG3zqrLPyGni\nz1ZlwqME/JDvJvw/pefbv2YbHGxw8LHgoDieojUE3BJ+Ja9teqbBZYXpQQvnQZ0X88fILYFkC7BA\nOBLplUx2pZBdpmSvY7LXMSwCEC5khdJlveG/4JZAFn8f3m7ovSL8RhsOBPwKzF963Cuf8hfl/5c/\nlf4/zEGEGccYYZz/ShWkRKCSoE4S4lewnOWE/zqDyhK6fRAliWDLYFatMr1XpT2W6A4jahOXZ1Lu\nh/QXUN2H6p/B3f+aFwcMbmD+TxAtUtTXGZVyhPLIRHpoIj8yyZR8Twkk+kqTsbbLmXrMtbLDwqiQ\nWRKNypQHzef8uvU3HIhLtqIx3WjEa2Wfr7QnlPQnKJ2EULUYJTsgRJ6AnAS5BIeC9GfcdlsqlOpy\nPoFuIMESHKXK851HnB0f064PObr3gqNPXlDWHJZymaVUZjpt0XuxR+/VPovnFbLXEdkozgk/IYhi\ngvl6y44PzTY42ODgw8LBRxj4Wle7rCScQgYhAWle+xoH5LJvmzdNTw0NygrsKlR3He42XnLPPGXf\nf8nu8JzW8BwrDqmqJRKtRFnySVOdsGNiej7ulYXXtIgXBsQGxDpkRWRb4e265nd7Hv1HOAXFca03\nElxNcsqUvL5bRCQDCJ6apF2ZC/sev9H/BF2HLeuGVntMqzxCNBSMWkRNXxAJlVe1Q0Zyh6g+IbTH\nbCkjEikhA5Yi7ylbXU2TEClkQb6MUGDGGXaWQixYuBmjqYARqAEoPixLAXbW507pBaVqF9t08RSb\nmdkg6NiI+wpmAvUl7DiQVaC8IyMOZYJdjcjUiX2DZK6RuRIiLqS97wL6pw3sf9k2OPj+tsHBh4uD\n72PF/su4nWi5BF+Hvg4vBAulwpl2xD9Uf01P2qWxM6fxxQw1Tkg7KklH4bK+z7fJEy7PD5lctXCv\nDJJ5nMvE4wCydzNmf8i9XgjriyypDXI57zZe15E70Lo/onU0ork/pimPaU7H1GYznKiGk9RYlqvE\nhkpSV4kTBWkvRe4mSOWUO4NTGv0r5P6EOIqI4wQnSpC3e+zuPedXuzJ3KtdMdjuMH3Y4sJ6x1/sG\n9W+uaE51HvUqSNcSsa8hpwmyn6CVIv5/9t7zR7Lsuvb8XW/Du4z0WVmuu9lkNynxiRgBgubDAAO8\nP3aAAWaABwEjDJ7eSBTJFtnd7HJZlZmVLry5Edeb+XAiMrMNjSjyQdUVGziIyipk3RvnnhWxzdpr\nG3qEoUc8Dl+xVQwwOymB5TJu1hnv1Rg26gzLDYZ+AzVJqdem1B9PWKgu5+ou5709ToeHXJzuMjmr\n4V+pYq+TVZV5Pl9VmpPVvtTFwArNANUAzRVL1SgciWSmk/9WYpI0eOU+4Z+dKWO5LTQ46hBFBtd0\nuB61uRzucPlqj8WLEpzk0IvBXyJYNesWhPXn3LtgGxxscPC+4mBdKFyzUBaALI6oX0CakRsOsWFC\nYYqgchsog1GLcAoP11qg1CKybkb2ICeex4S+TBDUSRcVmCtiQFAUITIJ32S/3xvGIKliMqaqoFYK\nnOocp+axZ5+xPb6g+WaAM5mQjlO8ccp0mQmNNQfkAtw34C5AMaHUgE4JFBlKhxrZocr40OKsvs9J\n8YCrcZen4QsMOaftTKiUYKsq3MNqXUeq6syrOnI3pn4U8+DDmOojnfzYYHho0Ct3uM46XPe3aCZD\n2lGPTtSjVUyJuEIqFAw1w1Zj3KrP4+QZx1cnHJy+pRz1ycMZo3BOUhpQa57xtCGRJTrTcp2zBwlB\npMNUh4v1cIp1kC+LB0AZrBKUXFF4LRtIZRmpksGeRNpWSSSd6aTGTbqNlORYmU9QWAS5jTdzmb6p\nEJwqpGcJ9Jbi/BZTRNH2m5MIv8+2wcEGB98PHLxniS/4Om1z/XOwek0QgPYQ0xDKiBnMVbBsaOvw\nUKayP+NJ+SV/k/0Ptm5OUX4zQf18jO6lmI6OaetUWj7pnk60p6PuxvQ6HdJGh2SsgK9Cvg7418H0\nWjA1+47X/N69/qVNurfW03fu62FYUKiQF1BEZNcSyecaeaJx1n1A3tG46uzx1PotH5S+5MNmSuoo\nWK5PR+4x1Jq8tg8ZKG3q1XN23d9yZM8I/JRBLKimtgH1KrRqkEWwnMAiATctsP0cc5YSTwtGXk5v\nWZB5YMZgLmBZ9ajzhk+q/8JNY5+xVWOk1OnbbRb7ZfhUwylD5xrMa8gcCfuBCh+pBPsmgWwSLizi\nnkE2z8mT9Zm476B9H4L9DQ5+v21w8H7g4I+xdRI2RlQl5+DrcG1DnjOjygvjKX7VoW33aHYHNN0h\nipwSuiaRYzJIWpxNDnl7ecDkdZXwTCabxGKiahpAfr9i9uemit/XxVgF/EoJ6iYcqKiHGd3HV3xw\n+CWPO8+pXU6oX02o9GZEFVOssoVvm/iGia+bpBWFtKSQSgr7l69wfjnA/2VMlKT4eU6QgfTxlPYn\nr+mWPQK9xLLt4D91USd99FdXxL8aUolzfpiEPE3OwFOQpjnSZY5ipahGimJktEsDdkuXGPWIQaPB\ny+yY5+ljrpQuQ6PFcNJEkTLKpRmVxzPCxGQQtxlctBidNRmf1IlOdSHIkU0gH0PsCYXZdK2BsXIY\nZRNMA2wdbAtMMRK9KEkUM4Xs1zC/qfJs+0OCbZfPqz9CykGyITVU5qGLN3eZTSsMf9tk8cyFk0K0\nkPtLRJV8uTpLf+7Ezl/aNjjY4OB9xME66ZsgWGorVnqeQZoKuvSsCmoN4hWjogpYYJZ92s0e3eQS\nIwyIfZl4qeBNTEZDh3SwRXqlwRliK6LF6pprHKz35Z4fIqtgCPa9Wkmol8dsuZc84BVb59e4v5lT\nnCRMlzmjZc485nbYgq5AN4LtCGplqK3+vu5I6A91imOL4X6VE/UBnyU/5tXlQ6SpQjsZcay/pupC\nURMeIRWD3C7TV12oe7QeeLRGMTw0yR5VuHpU5kX0lGfLpzwbPeXj2ef8ZPYrjqbndPM+dhHTLka0\n90a0HgxpHfU4uD7n+OUJ3Zc9kvmcaRAwCXLk7hL7wRVPHwREaolz6wD1MIGlCW91UF1ux2FjiTcs\nNUBqg+PAjgF7OlJXQW5LKO2Eop6Tl1RyRSMeGYyvG6TXKuo8Ick0klQjXmoEA5V0kIuxpdMZBFNE\nUmaG8Jnv61B9n22Dgw0Ovh84eE8TX/B1NsmawhkgtmQ9caaGcMAUsCQxxuGhTmV/zpPSS/4u+yfq\n16eMP8sY/bcMbQTNqkSzCo0PlsSuTvgDjcyCdEtj2miw7GmQaxBqgvGCdu8eVroZtwKC9y3jf57d\n76PWuGW4YAI2FApkQvghvzGIUwPpSuf0yRGXT/f4pZbws60WlDLa7Sss1ceWlzjSgoHW5rV6yM+t\nn/JR5Uu2SnMe2C+YGQHLHILkLuB/uC2GKfUTGM7BSgucIMOaZYQzGHnwyofIE/TUkgRad0G9eE2j\n6nPZmPBr6Ue8kQ+Q7ZzlQZlC07AbYL6ElgaJKREdK0QfafhbBkHPIupZxDcGxSwUY3u/JcT6nx/Y\nf9g2OPjDtsHB9x8Hf8jusyPXAb8KvgnXFZjkzIoqfsXhzdYDqgcT2t1rOh9cI5uZoIrLLt5VmflV\nFe9FleiZQn7uU0x9CJdQBNw5eOvJO3+uvV0nb+8H/M5dwH+kovwgpfvoih8dfsbP2v9E7XRG/fWM\n6m88imOJ4lgir8lMKyVmjRLTuksgW/iKTSBZOJeX2D8f4P8fMeMsZwSMC9hfTjguz3nw8AxZk8k7\nEoUp0/ss4/ok5epfEmrqhO3KGdtVDU1b3aJaIBmAWSBZoBymaE9T1MOUWa3CS+OYfzL/C6feEaN+\nm1G/hWQU2B0PpzMn81QWJxUWF2XiFwbZiUx2KsFwBkyguEQI864e6y2jtQ1KGUwdygZUVHBlcMVU\nu3yqwKWMZ1Z5/oHL6/gRykEm9HUdsdv5XCa7kMnPZLJnCtkzBc4SkdDJFty1dr9rCeQNDjY4eF9x\ncL9AuG4figU7MQ8hXcAsgUiDSQlMDY4RAf9WQNu64dh6ga0sCHOTILcYjFukpxVmp1vwvCRkE/oZ\nzKbi/75lxK19om8G/OJ5aJWEemnEgXPKQ16ydX6F+9/n8POEaVpwlsJ1zu3xt3SQWlBpQbMF1SqU\na5A0JWaPdeaPHQb7dV7fPOCz3o/5vPcJremYD9NnSAZUXHAT6KoSg4rJwKowVBu0GjKtBzGt1KN/\nbNI7rtB72OGr10/4l5c/4+ev/gauVY565zi9iFrq0S5G5IVC56d9Wq0+7eo17bMBR6/O2f6HHteD\niGlQ8NIvaB4veTQJeJj1WGw3+U39h2g7MXgy/NYAVVvtm8PtOZaaIG2LgH9bgg8lpIcZ8n6Msh+D\nnpF6ErmnEF/pjJ81mX5eQ7qCIoUikSjCjMKPyP1IJOfzKWRDREF4yV3A/5/5/P65bIODDQ6+Hzh4\nDxNfa7vvyK1/XjtbKWJr1g4YQu/IBEqgmBlGEeEuF5jzJfkMljNQxuCuhioozQDDX1CSZpR0D0MP\nUfRctIqZLlhNUVWTCrGKYjUiNltVPX3uDlTMHY3w/j3/JewelRSbWwDpJbGMMji2qAI6GrgquAqF\nK+NuLWi0hjTqQ3bj1zhv+qQvfCJ8JHIkcrTGkGb7ggedOnu1SxoPZ9g/zQhfg34B2gUoKcg+MBVT\ntN0a5DbQgsCDy18Lhn4RQqMDhQu2Klb6UGXRcfDsOqO4yWRSx5tUSEKTZ8VTqs6cy90dVClBc1My\nRcbbcljIDufzfd5cPmD+ukzxHLiOIVhyR+X8rqkV77ptcPDdtsHB+4WD32XfbAtencnMg2gCmU7e\nd4le6US6QdGrQC0jqatIek5Q2Pi5Rdi3iF6YRC80svMcRqy0W785YW59zftVzv9oknEd8N/TNpIs\ncHRoKkjbObbp0wjGdG+ukS59ordL+qeBeMw+Ik6uxbj1ALu+YNBsETYt/KaNmRpooUxpUYgJpAUY\nBRhhhp7n6FqKlhfIcoEEzGMofAhmUFYyNGLKQKbAshBoz9a5CV2wGN0MnAj0ckBF7bOlniClPlvh\nJUFYxa85LHKLpW6xzE38kUrwSiJ9lcBNDMsYkikwRpzjiFvmplYGxwXXQa1pWFsx1tYSsxZj2CGG\nHSEB/sLC92zCwiIqGYRLk/RcBSUXvRNJDr1MrOsELgMxoSIOVtf1+Lq20buEnw0ONjjY4ODrRcJV\n61WhgqpCWYa6hNvxaNSHNMsDdoq3HN685nB+gp37xJpBrBn08w6OHKNtQz9usxxY+JcWiW+KQmBs\nCDb813SV7k3aRLqFQ4FEIUkUioSkSKhqgaYUGKtp0mZ8V0ZMDchqomaXOiq9RpveVpvBVhOv5DJP\nXUbDOs+uPuDmfJv5dYkrbZvn1cd0mlfU5lNq8ymV5QxnPyEs+SSZRkkNcOwUswZOnlAe+cT5jK15\nj0P1DfNumfrsjCSacH6doifp7f2H4ylWqLMj5zSkGZV8hh4nKGEOS/ERwzJHjXPMIsWQYlQlWyWH\nJZBl4TuiIRK3ZbAsKNtQ0bEPY2pPx1Qfjyl1PUzLx/J95DgnyzQyXcOrlul32/SWLZaKCzcSTCWY\n5pBEEE8FS5IJAjdLxAfXOth/l87wn8M2ONjg4N3FwXuc+IJvO1T3A2mZr1ErZVkcrnVXVgosRZLb\nj2CSg5KBEwhh6nieQxBjZAGWEqDLCbKai55kswSpDFpVOAoKq9FtuRB5zUPEwVr3z/rcgf0vzbb4\n5qjYKlAR91xerS0NtnToaGAqIutuQHu3x4d7X/Bh9wu6b07oPDsh/2pClCTkFGTkGB9ec/BjlVp9\nwXZ9QPfpNaqeItdWrmgf1EgklINETKk1m6A3YaHCdA7TX0CRC2gfHoCug26CZsH40GS41+LcesDJ\n8pib0y7eiypeAp93f8hsq0yrPcCxfextn6KQmLkVZnGVwbjN+ckBsy+q8DKHywiWHl+vTv5np+X/\nKbbBwbdtg4P3Dwe/y9bvcx3wS1BoIiotCphU4KQEnktSk1i4LpmrIikQZxpJppHOVdKBTD7IYZIJ\nEbdkHYCv2Ce3E5PWtnYs/xwtvt9gu8iWKHvWZKRWhkFMaexTufYYn8WML1Mm14jH3QPpBBrlhHo5\noF7JGP+gif+xw01zC1Oe01b61LTVHWdi2YqEosskloSUFShpjuoXZJEYIOsXEKaiw61QhAt1nYkV\nr/POCjR86M7BuAZHm7FTnODnPodWCaVqoVYsboxtXsTHvMiPCQIV+SZEegGcZDBZiColK6YLy9V+\n6EAFjBq0SrBtou1C9XBO83BIvTmmqk2p6lMkYBC16EdtRn6D2azGfCaTvlGEuPsiE33Iixi8GOYR\nTEMIgtUmjlfXX7Mm72thvCsY2uBgg4MNDu5srRXniACzo8GBROXBlCfdZ/yg8hv2gjNaL3q0vuhh\nLkIKV6VwVHqNLZxOiL4VY7Pg5nKLtN0hmauwXMk/xAYioFxpsN63VV2ySCSSTCMoLHzZJnF0aCjo\nbXAnUMvE0DUfsRRAUUAyILZ13tQO+eXWp/x2+0NCDKKpyXLgcHW2y+i0Qd5T6B21+WL7Q6T9hMfL\nVzxevKIazDB3IqrlOVoS4xQBhhaCBdYipD6ZYaQJcfU5ej2m+WRAZfqS7NU1L2Y5cnT3lsxlhBVP\naZNRUQJs3UeyciRDaJbqEqiyIPiIVjUxjY5Mhmyd+ChW784GqoIuv2PCvoL7cMzR0xMePXrOlnVD\nxZtTvpyjywl5WSGvKFxubfMr5VPCxo9YNi34tQxDWTCQsgXkQ0SW3kNoW32zAPg+2wYHGxy8WzjY\nJL5uX+8/tDWdEm6ZH7ICmgyGJP4pAXwR8C8jkRCVUlGRq0RQzHOkMBEBvxqiyQmSkoOugVmG3BXl\nQAVQizsSSwQkPiKcVe7dz9r5W9/vX6rl634rgItoc2sJdk61BG0XHkl3S2E1/Q/azR4/bP2av2/9\nA9pXA7Iv5uT/54zYz2+5Otb/es1hzcP54TmVRkjFXKDuJ8gaaH0wvwB1IUQDgzmoFph1sH4A6Rzm\nn8PJF4Jo8/ARHD6GchukMkglyDom0W6bM+uYk+ExvdNtvH+tEuYmsx9X+Kr7GKftUd2eUVWnSAmM\np00mkyaLyxLJiU7yuQavYvBD8Od8XY/i3QL4H2cbHHzbNjh4/3Dwu2yNj7W+USEYKlkBWQzjGOY5\nvNFIdAtPd1kaZSgkilQSVPGkgCylSFfRcA7k6zO2ap0lvXed4t7P8B+rpN1v81olGCQTLE0E/M0C\nYxTjDpdUejN6ZwXXFwWvr4Ce+DVZhcd2StVOqbohSlywbLpc/6BLSxqgKiZ1TSRis1y8A0eRkA2J\nxFaQgxwpK8AvyEKIV4yYMBM620UhYuarBJ7HYqLp+rb3RmBcQcsFJ5+zE/ho4SnqlkL1iUTlsczL\n+gcoccx10WYUlpB6wIsMTkJRocwm3DFN1voXBncBvwvHFtqTgOrTGbtP37K79ZaudE2XaySp4HV+\nhF08QB6nFJ/JBH2b4NQSo6CuEhhFkPtiZSs2VL52ENcud8i7Mvno27bBwQYHGxzc2b2A37ahI7RP\nq8dTnna/4u8q/w8H09fYzxfY/22JPkxQ6xJqXaL3pCMYdB+JwQjpqca002A5MkQyOVjR/FAR5/We\nn3NLvJTIU/ku4FccUttAaigYbeGD1ZbiN6frX5NAUUHSRcD/unbE/9v9W/5x++8o+grFQCW/UUne\nqKSnGnlfotdt83nrQyY/cskCmXow4Th8jWmEaFmYfq0AACAASURBVGZMKZmjUKCoOdhgXYYYlzHV\nyznGjyKa3QFHT18xPpswUUc8n+Wiq3llO8uQgzijXSxwlQxDT5HtHNkQ96pLwuWUVZGoEFGrJIL9\nVFq5IeuA3xL/5uiwbcFHMqWnHg+OT/jp8T/zMHxFazqmeTHGkkI4kig68JX7hKih8Trd57rWoRgB\nX8gQpVAsEMF+n7tpeevi37t8fv9ctsHBBgfvFg7e88TXd9nasbpP6Q9F1nmmwk1BpBgMrTqnzj6V\nrYTi4ZKmt0TdyyhpEooqs3hoM95tcqHvc8EOE6tK0tBRwhRTDjHlAE2OkZUcRcnJEgV/5uBPHeKp\nBdMyTFJYSlDI3I35Xgf/66BzzYD5c7Av7gf7Jqi2EMvTyujbMvpxjHY8pdqdUd2aUa3MvsY6/cT7\nBY/mz2m/uiL89YLZm5DZKCUP7+5M9hKMKMQtINFMrt0tzowDgsMA/4dzyos5zlWCO88x5jm5Bgsf\n5tcwmMJiAOkU5BS0BZhLSNISfaPNoN7ipfaQ3/Z/wPngiOGsgzcpk5R0ZCvHqoe47gzXmuPqCww9\nJAl1koXGonDx4orwyTzEmN00Fo4bC+7onO9Li9cGBxscsMHB12yNBRD7sGJDZivnIwKCErnqkquO\nYDXqiHi+UoBViD/LxaqbWBKR7bKAhQKhseLgK5Crq2usS4LrCPhP2e9vsjkzKDJIFQgK0bGGQuxo\nRE0DtZZRLqd07JwoEayUxAdFKlB0UMjJkYkwWOAyb1WYfNhgOO6wTFKSNEfJcsIfGoy6Jp5qUA2W\nVHse1VcexWVBMRdQ9nMYpkLTdqmKzrNmCbwElgEsQ+FzpbnY7jzJSIKMcBZhqaDXoFKGWnNCeWeO\nmy4wi4ggV5EyDbJ0dUwT7uj4q0EasgmSg2ybaJ0c7XhJ83DEgXXOU+85e/Eb3GCIGw6Bgr1yjFVe\nUE3nPLdT/C0Hz3MpZoVgrs4lhCO4QLjYS+6C/dXY77+IaPv/bNvgYIODDQ7uCoOaaPGyFahKaG5C\nSfZoh0Oq8yHJNGI2jlD6OUYkvquzioexHFOX+jTNJtfmDqqVCQ1VTRbM+lvGuckdCzKDIoYkhjAm\nW6gsxhbD6yaO6XOuD2gejMnlnOUoYTlMKGYpBiklUgqjINk26W9b9HdavN3ZoV9tMzUrmKUYM4kx\n0ghpZpJPZAgUHHdJyxmwa55jDUf4Fz4XV6xY+hnIoM9An4rX8KYg6mVENxl5fYG5XbA9CJG0nOhQ\nZfq/NNGmEeYywlyENCs5VSnBmWcUss68W2L0icFkN6OYx5TnMdK+yeipQ9p1ODGOGPoN0okGVxnM\nIkGXZC3iZIOpIjcl5MMEu7OkLo3YGV7RHl2hncwJns8pshh7Bu4IGp0RrWaPbuOKcb1GUHYJ7BLJ\nussuy1dsmvwba2MbHGxw8K7ZJvH1nbYOrteCzgsIdRjqcJbjqxbXe1t8VXvMrgF2fsV+KcEMQgxb\nxbBVhu0yNwc7PDef8ip8wsDtEHZMNDuhUp1Qrw5xrQWanKDJMVFs0pt16c27xNcOvHDghQSxukpy\nJ0JEEPg62+J+wP+nBqLSvbX+kLFAs8F2wXYxDnzKP5xT/rHPQ+01x9prHsknSEVxe+mtqwu6F+fY\nFx7BSYR/mjJM7+oBBiCt7rdAYizXuFR2uZT2MLsjGn91Sr15Su3NguqbFPdNQhAXjMcw9GDuiYBf\ni0W/tjYHqQcTp8bnjY/5TP+UV/FDrt5ucXXRZRpXCco22YGC3V7S2b9hp3JOzRijKimalOBRZkmZ\nEekdgShB6FRkCeQB3+5jfl9avDY42OBgg4M7u58Ivt9yu8ZJBEUkGDCFAZYKDaAFNIGGLF41CUJ1\nJQKrwaUOVw6MHQh0CNYBv3zveveD9v/ovcfiPgMZpirFUCK2NZYNC6/loPcjuhdQu4iZeDBdgJeC\nZYBWAhqQlRRiXSfEZLpd5eavOpQac/IsJssT8jzBOywxOigTKRW25z2kiysqXyzhPBMdT7nodLtK\nRXezbYFZg4c1mCzheiiSDWgI0mUdkkBoIw08oXVUnkB2BXIzR38Q4WRLbClkqTjIuin2OtUEM6mA\n22BfMkWbm+KguDp2J8A9ntPdueTB4oSPX3/Jzuw10XBJNFqSSQVbB0t2Dnvs1EbEusH1wRbXRhtm\nUJyv9QBT7qbhBqu1xsx9hsu7jJsNDjY42ODga22z8oqSYYOi5Rhpgj0PkGcRMz+lnxTkMbgeOAkk\n44xs6VPKplTVKbYaoBjpityy0uu59Rhy7vSNVtqnaQhhSDY38G5sitMOaAoldYn2MGZ+aCEvlyjL\nJUq4RCWgQgBqTlxu8LbcYFbe5sLdwXMdFDXDLc+pm1PcypJx3mScNAgUh2Z9yBPzOZ/mP8e+vCD8\nxYRXvwJ5dZuyJKQtnBDcACaeWFMPqq2EesunXk0JCgfvaQln16F8M6d+NaVxFVPp5FSUAnOcM1dM\nhgcNhrUmSRCRhx7VcE5QrXG5tc3LrW2ezT7ierBF8laD1xmMAki91fOwABPZUFDqBepejFVbUvbm\nNPtjrLdTps8jps8y9BC2zkGpg3YUU/vhhN3SBXOzwsDukDkGiQNEsvicytafRdI3D8J7bhscbHDw\nbtkm8fUtu1cNvA34lxCaMLTgrMB3ba63OzyrPYZOyhM3Zn97hCtFRFWVqKoTGmV60jbP5SechI9I\nHIu4Y+C0l1QOpnT3L2nUhhiEmIT4sUs+V5jNq3hvyiA74nqDVX9zvhb4XrcZrD9s7juef2ollHv/\n31prwwLdBtuBqou5v6TysUf7b3t8OP+cv5n9Kz+b/xw5y++27DKBn8fw85iBl7MMC4bZqtCLeJVW\n1yqQGEt1XqiP+az4hO3tS37UzDn6eETjWYz7ywKXFP+8YDSAkz6EAWgJqCmYCahzkPowqdb4PP6Y\n/1v/3zmZH5OcqCT/pJHpKvnfSOQfy5jHIZ1Kj8eVF7T0PpmkkCMzpM2INirJXVdFDMSFqCjctgSs\nK6V/qda6/2y2wcEGB2xw8DVbZwTXVa7b7CC3k+6KDDID8qrw1+rAEXAkwb4sllkIAsQCuATsHNIC\nYlcE+rG0ItSsz3h879p/6n1/M+APIVBhalCMVgF/3cSru9iXEtU3GWYz5loS+tSyL+QitDLQXAX8\nhk6AxXS7Qq/Zxvg4xChCdMTy9AYjo8lIaZF7OpWLJfmX1zDKVsrdIuAPc+hLsKfCcQ0e7kN/AmEM\ngwl3AX8D4oVI/PYVqMTQngrCkLKVYcwjnHSJLUXoqoSsWaJqXGh3GhjrSbWSCYoNmo3qaNidGdWH\nE7aaVxx/+ZqP33zJ1osTrs5zrs9zCgm2Pu3TDRS8R0Ou612+7HyI3MjIzxRwVAohm7t6sJPVc4u4\nawd4N6uj37YNDjY42ODgaxPmlJXGpyOhaDl6kuDMQ+R5yDyA87QgiqGaQmUJ2iQl9wPcbEpFn2Kp\nPoqRCZdDRWj33Bbf1gy61SpCITSdhqRzl0Xfxj+tENol9P2YfL9g3nKoZGOq+ZhKMcVlTok5ChlX\nSpcrZY+38iEX6TaL1EHOM0oVj7Z2QyMfISUFQWgTYdGsDXhsPuev858zuAwY/MLn8v8SeYn17O9a\nDtVCsBd72arrNYPjekq5nlEthSz3LGZPSzi7XZqvdXafxew9m2I0QJFzlAkMqibDgyYn5UNMaUmt\nGFLLIVQ6XGuPeak95fTFMddeh/ilBm9SGIWQzLljBZlIhoRSj9D2Iix9SaU/p3EywXo+4+JFwemL\nHNUDxYSqAeqHMdXyhN2nF8ytMpmlM3PqYGui0yBRBQP1VnZjY3e2wcEGB++WbRJf37L7FcV7TJfI\nhIkDb2MCW6NfaWGUH5KVNcKkjKe2sdUlkawRpjqvo0Nezx4xmrVJQgMrD6jVp7TVPkfyCQ/GJ7Rm\nffQ0Rk8jfMnBsQPK5TlXe7tM9uuMD+r4SwNmJswc8H3ugvLoG/d7O6+CO8fij62o3de+WFFWJR0M\nXYyybiuUmwv26hccV16wM3yFc/WW+NUAsoI8hyIHdSjIMepjCbVfoA1A74NcM8haFmHLxD4GuSgw\nX6VULY+O1OeQc2xnSVJyuKwekdUctpwhrjagICeJwV+Ka5QdqNlgtRxG3Trz7QYv9n7Ei/IjrrIu\nk7Au3roKluVTLU+oNsbsGm95PPyKx6fPqCcjClkhlxXq8oxcVskVFae2xKuX8RoloqEEkQqRAel6\nytS/d1/fZdvgYIODDQ6+2+4H0Ot9WDl/mgK2DLaEsRviPvRwP/BwdnzMaohlhqh6CmXAkQg0i6FU\nZ2Q3WDZV8jOT/LQqEo6kwrm7bfP6U1gS32jtup3Gt4CpCm9NMltjQJtnzgcYbkitNKP2YEYlmbGY\nBQTTAMUL8Fs6Nx2dZdvgtHXAVbLN8LwNqUyYOkyTBroUYUgRuhwzMytMrBpTq4amFTS6E3Y/vqSY\n+ZSDlL0wJV13QS2h0YRqG5wulGSoDaGpiLHhhQ/zKUSFkAZsH4JjS+gNhbghszy08UplplENb1Eh\nDCzyRFk9nvX7h9skuaQJvUJZQVJBM1IsK8DRFjjRAne0wLr2kW8g7kOkgDQEewhS28OuLDGsEFWO\nySxD6LvfJtxXirvfYrd8H4L9+7bBwQYH7yMOvplATSBNYZnDpCAq6cz0CtfaFpWKT971qRwHFOV0\nPfyZ9LHGol1mbHTo5x28uEy61MR3rWZDrQKGCkkmplwnsWBdZ/6KtZdBMYdQIuuXyE5clrnBYNlA\nCw4JpxZlZUZZnlOW5zjKEkdZoqgZN8YWN+YWQ62JlMPD4jXH6SntWY/2sk91MWN71OcgvWBervCR\n/Vu2tB46CUaUYnoF1lh4XyorL6xVodeqcNOqkOQzyGa08hnVowKnW6CWwDUj6qpPwhwr9sm8hNGw\nQF+C5oHeg8WRRPBIId5WCbIG3qLK1eKI63iLN/ERp8kRvZdt5i9sstMEbnzw5pDNuJ1OSkpRaBSZ\nTJaqFLqCpIHqZph2hiuLZLESg2mBagKWRK7LpIpKWqhkyGKfb92c4t6z35iwDQ42OHg3bZP4+k5b\nAzpFsEvUVcDvQhoRqipDtUGaasxadS6tA760R+haQrJQSGWZ0bzB+fU+3lUVTctoHI5oH/Q40M54\nPHjJ45MXtKd9FD9F9jMC16T9dMDBkzPOagc82/6QZw8+wI/q8FaHyAK/hDjUDnesi7Vzcb+qlt5b\n6/fzh2wd9K+p6jpYClRlpE5BrTrh0DzlE/6N0uCM6Mspr/4/yDNRpM0KqLWgsSfR+ImE/pWE/W8F\n5XFBtmWTf9LE/7RJyfFRmOL8esK2dIMqFbQYM+uWWBw6PLM+wCuqKJlEI51CmlCsyDS6BbUO7HbA\n369ydvSU8wcf8rLyISfqEX5ki/yMBeyAW/Y46pzwpPKMg+SEnVfn7Hz5lvJwjqxJyJrMtD7EeJBg\nP/CpdcacdQ95u3NANDNhasDUhbTEXbvF/fa6dxv8f9g2ONjgYIOD323rs6IhzqMLpgNNA9oy1rHP\n9geX7H50zlb1hmYyprkYYcti6g8W9LstPnc+4vPdj0h226S6Sjopk08lEewXa22c/8ie33dOVwns\n3ICxAW9cstjiSt5BsX/CwG7TsMY0Ho+odUfYQV+saMTULTF2y2RumWfSU07DB9y82MFbVhksuzj+\nAlVOUZUURckImyZ+0yZoWbiOT/eDa0b1KtJCorEMcP2M4qYQbJ8rKLegtgVKR7Tw1mzYlkGJoJjA\nOAUqUK6BdQRaW8bpasTbOtNmmWG9xU24w2DSZrlwSEMJ4pzbjPTtM1tVLCUFFAlZKVClFJ0YPYtR\nwxRpLvSX4gD8dPWJEok8ieQVKHGGJiXoWkKsKOTS73Klvg+B/h+yDQ42OHhfcHC/ILhmIoYQRTC1\n4KogdE16lRYv3QfsdDP0hz0Ogj7GPMWwxPf3aM/k6qjFmX3Mq/kxA79FNDFgqYDuQEeCpAyLXCw/\nFjS/YgHZOgE8EaJzgwQKmXRmMuuV4GyHeaOKqYeYWoiph+h6jKFHSFaBVysxr5fJygpH8hs+lr9i\nLzmndL7APfGw3oZ4VhnPLhO4Fm39hpoyxsdGpqBMKobKsWK6SHCz2+T602OuPzlmK3lNNzmhG8+p\nNwoqDZCaYOkhzXCMcRWzOPOZnSy5el5gSeDaYnmLnNhNUY8SJssGw4s2g8sOo2mD8aLOaNFgcWGy\nfKORn4cw9mA5h2yKGIzhAhFFKpMFMsXMIFEMMluFHQljDvW3kK2k7RpNMHZgfqgQNixmRoVZUCHI\nLNJYEYn3dI2bd0vA+y9rGxxscPDu2ibx9TvtvoMkiYA/DWAeEcYOg6TJZNHmfCdH66ao3RRJLygi\niSKCtKcSvzSIXulUqxMa5SFHn5zw1HjGRyfP+Og3X9F51aeYFRSzgqilM1VPmR5XOGkfk28rXE+3\nuYmbQgNjZHEX4N9vL1hTP1eJCWTuWgLuU8p/30H9HUwXU4WaDFtQrU45Mt/wKZ8xG8yY/tbj5h8L\n4uzuLg7+XkL7K4nG/yaj1QrsSUHlN+Bv2YR/3WL5Xw9JbgYoX4bY/xZTinq0pTFPpJc8e/KYX1qf\n8mznKcu8RCObcZycimJvBnkBmgW1Nuw+hLdPq1x+8JR//PDveS09ZHZTw7+5F/Bvg1tf8KB9wn+p\n/A8eTZ5ReTmm8g8jnNcBmimhmbB4UMbRl5QeT3FqHllXYbTdZDy2oTBg6a72Nl+9y3s95u+FbXCw\nwcEGB9+2b+rBWdwG/C0dHsjYT322P7zgox98zmPtBQcXFxyO31LJ54KNbsNJ6QHyXsKN2mS0W6OY\nGWQvDLjQVtHlRLQo3Z7z+1p2f6zdD/gjYCF0GsYO+AnpSOXK2mFYa/FV8yOalT7NrR6t8g2H+WsO\n8tfYhcpEbjNSWozkNi/PnvDm7AHX57so4xx5mqFMclALJK1AUgvyA5n8UCZXZOrOhIMPTxn+uEYz\nSGl4GSUvRH5ZwFeADEoN1C1QO2AsoWqJv498SBIYz8BRoXYEtY+gOFYID3TCA4upWmGwbHG92GEw\n6ZB7kIWISnFxn524el6SCpIMMkhygSKngqWTR6hBijzPyWdCSynIhAxUFCGG03kFSiICfk2PyVWV\nTC7IvqZ5UXxjfV9tg4MNDt43HHyjXZZAZAOnKVwX+A2L3n6Ll6UHyHbMsZ9woEyoxAFSGeQyJA2T\noN3m1HnEyeQhI79FODVgoULDhaYNUgGjYtVVFAMzMdI5m4k/MxHtwAMZJhbZhcHsrMSiXkWuSMhm\njmzlyGaBZOdIVgEVyHdksl2FUubxA+MrfmJ8xt8m/x3lLEP5lxzp85z8kUL2WCFtKQSGwVIxCLBR\nSCkRUuVewI/E9W6Tq599wL/915/y01DnYTDng/AEXVlNz1PBXgQYXkRtOOX0NOfqVcbJswI3FrJ/\nDRlCtSA5zFDThLlX4fnFB/zmy0/wbsqkQ5V0pJIPY7JRSD4MIPIgn60C/lVGmIgi1UkDDWmmkToG\nua1SuBKGB40q2DpIGVhNMI4gP1IImhYzvcLUr+BnNlmiCNxkhXC+3suBPr/PNjjY4ODdtE3i61t2\n/wt6nclGZJjTKaQ6+Twi75kkhQFLDaa6CMg1BAc9KmAqCwEGX0GtZJSUBS2jT0u+wV4O4HpKdOaR\neJB4kOUh6iSlufAJEoeqOkUvJVCTwFFA1UAxVu0DsnAYk1R4QkkiPJMkhHStxbOukK6ZMP/eg7p2\nZr++LRIFWgp2BMVS4CEtICnAylVyW2fRMhhul7jYK3N6WELbM3G2DWodH2O8JPAibk4z1GUCUgwS\nZO4I67hPJ72h7MzJuhLjJzViV8LYieiOIoyqinRoMT206G3vcuPuch3vMPDbxH2T9EqF+eqtOqBV\nYqrWlG3lmlZ6BYsFwWhJfBNjGGDqELsS+mJMHZO2UaNkzdHcBBxJ9Kor6+5thTstqfV6d4H/h22D\nA2EbHLzfOPh9dj9JuorgDQvqGuzKmN2Ipj3iKD1lf/GayuUNxYsb0nCJ3gSjAZWOTWvnkp3tc+b1\nMpNqg2m5SeBoItEba0KUmoS7fS/49+37/eTvykEtVIjnkNmQa0RvNaKKzgKTtAFhXWNZt0llnUh2\nWEhNxtQYF3XGRZ2r0x0mb8rEp7JwUj0ZFpKYxmSLreB6ddtT6Lc6vGw/otyeUc8mlKUFZWOB3ohR\nj1JULcEoRxidCKMTks8iUidEl0PiPCfMYZ5CsIBsAlkf9GoBzRwlTVHknCKTSTKDJNNXAxlSQdPH\nBhogu+LzQ1NBLQntPk0E62FsM/dqTOQGk1KN6VEFDQd1klKfJMSqhHJkMDsy8NstZkqVYG6RhSr5\nDIr4fvL9vmP4PmBjg4MNDt4XHHwX0yUQWcmJC3pKUNbpNdq8aj4mtQyWUo15c4tS4d2eibfqLi+m\nH3Ex28cblFHllPZRD7lVoNZTtHpCJiv4U5vl1CEaKSQ9lbTnkE+Lla/jQxaL12RIEcekuUkaGsIX\nMySxTBnM1Rd9VUUxMuROiquBGYZU5zNaswH+OfgXEF2KAQuuCZohc+VusWg36UkN6g2F2sOYyo89\nlCnIE5DnULYimpUZW50+7uWcfB4yvxQD79amawWaXqDbObpRUJKgnghpv5ImgvBEU0kUizllpmGV\nybjO+KKBf6XDMIaRLyZNLwII/BXrR0YwXFwE41SFUIG+QvFKwctKnDb3+VXzEwbdKurTEMULkeIC\nDlU40njbPeBMOqR/02F+UyHsq2TLRGhIZRFiGup3Bf3fl3P977UNDjY4eHdxsEl8fafdB/Q66F0i\nRvBkEHswtYWz5BnQ18WJlSVBB0xzKBTAAltCqafYzpKaMsFNJmRLn9E4ZT6CIIQgAjkuqPsx9VlB\nyVtipjGKnokPCH0VeKoGNHTo6FBWYZGJfuplCl4IXrQK+MfcjhhfJyxuGRp/7AHNRYY3QiTyY51F\n5jKmjqHk1PWIri38qmzFopc1HUUpMZFdzstHfLl7zBcfHbN32OeD6im70ilKOGIx8Zhc5RTe6lIS\nJNselcUpH+cJRgXUBzE3ZgtlomPPJxx5KZltkrTanDbbnKhH9JIO3psK8cQivdIoriTxyFbYV8wM\nUwkpZx5m6jHOYiZ5RpKDFYOZgxzmxGmEni9wJQ9TjcS+G6ymiqydeul37NP32TY42OCADQ5+p91n\nuhiADboJNQ12JfRGTL2Yste/pDm4IvjK4/zzBHUGNQeqDiQHEaWfjNgvnRLKNqpZiBHSFV0E0ZkK\n6f1k459i9xPYa70+GYopZDJEKVyvDsvAJnJ15qUKiWMQaxYTtcWpOsMvbPxcrFnfZdk3oB9CokGq\nilVB5D8sYLhaz2C43eKrvY9Y7JVw1ABTijClCEv1sfYW2NtLqvaUWmlCvTzG7o8x3SGGHJOR4yNk\nsqcLmF1AP4ZKmNEgpq7n2JUQvUiQilx4mfKaDaogbsoQI8ftlfaUboLkgqSSSDAPK+RjGUf3uWme\n0ftJC+vBGGvssz9ekkgSxU6Z8W6dXnWPXt5mPqwS9S3Sfk4erDSjvjb19N2uiv7xtsHBBgfvEw7u\nS0Cshv5EFkxDyGICw6BvdUhVnVGzzRvjIQ1rgqFG4jEUMJ1WOR/vcjXeI4lV6vqI+l+PKetzbMfH\ntn1iSeMm6HIddBn3q/hfafjPTGJZgUUCixgyD+Gc9KEYi/vAhtgAVV4tDdQyaCWkuoK6H6OpEXZ5\ngX4VolylZG9h8hZuRjBdQqcHXQmqoYznutzsdjiV96CbU/nUw9WBZ1A8h2JR0JTHPJReYRHj3rwl\n+WzMyS9AyoU+uQS4jxTKT1RK+xpqO6VdSbHNHF0FqyJWvKWTlMqM5BbTuEYwt8j7sjjokylMZ+CH\nEMWQr8/Xql8aF6QqSBYEGlwq8AVMkwq/lT8ga8P21gW1T0ZUGyOULCOouwQNhxtlh68WT7k52cF7\nUya6kMi8EJIl5D5iwM866L/fQfA+2wYHGxy8mzjYJL6+0+47SOvAf/1zAJENqQueKybiKJZYkgxF\nKparw5YEHR21luHYPnV1QikcrwL+jGQI8wK8HMwoR13GdOYppbmPmUYoeg72inEhK6DpUHfgyIaW\nCeNCxPbjVcY9iiBYIpzDNZ0f/n26GKsPs6JYTVgqvhbwj2iwrUTUdI+uhfgAywQDcqrqjBWXidTg\nrPyEL3f/hn/+6Gfkh//K09qQPfmSeTDlfJxwfpmRzFaXlKBxNGd7kdDN+sS1ClOrxvVem1JkshWl\ndEOPmWrxxmpxaj/g9eiIm5Mui9MK0aUFfYmiLwm/eweog2LlWGpIOZ9jph5BVnCZ53iZyK7bKdhh\njpVE2PmCkuRhquG9qSLSaqrIN1g/741tcLDBARsc/F5ba+XogCWYLjVN6Cg0YurLCfu9K2pvrjj5\nKuP81xlZD7qKiLXzpzFuacjBkzektkVguvTLXagYkMoQrLXm/qNJxzXb5V7iN18f2giuGjCUKJ7r\nhLpOrJt4usTYaKEaKYqRkWcyWa6I10VGushEknktcKGq4jbt1SVGQB8YwGi/ifewxOv5Q2Q3R7Zz\nZKug1JxR6YyptMd0jWt2lAv2lAvap29pujEtZUpKeptujxcgR6DcQDfIMYyYrVKC0w3RrQTZKkTA\nL61bMBSgKvZQlYVfWJVEEj2XIVNIZfDCCsuRi1GOuW516R23aNCnMoLOKKLIJC5bFS7bXU7lPXpn\nbbzzKtEri6LvUwSr1jlCvs12eR9sg4MNDt4nHNxvmV1CbMMkhHlCkFv0lDajrI16mKHupWh7KZJZ\n3A4/zaYK0YlB9MKgao4p/2TO0Y9P2Nm+oKZMqMpTAiye50+Q8v+fvff8cWTLrj1/4SMYDJokmWR6\nW3VdS+0kPYzmfXrAAPP+4ZkBxn0YYB70JHWr3e2y6X3Sk+EjzpkPh6zMui3X3bc1fW9xAQeVlaYy\ngnEWa+991l67oLwB6TZJkxqEFaW8SDJIwK8v1QAAIABJREFUc2CmlsggrULmg+4p7zZtMblTAzQH\nbeZi/jDHtSK82gz7LEG/KRFfw/gCLoZwHUF5D9U51Ica862Au696nOoH1Ddn7Dp3BNtq1k0xheIE\n2toQT8vZ5J7R7ZzRz2e8+18kWvnE2Pb/pJPtWmgbDs66znpdsu3m6D4YPdB7MNiwyYOAvt5hlDaI\nph7yQYeHWE11mN4q9YlcxGZ4qAkZNdRJn68S/siEGw1SGGkNvl7/ggt9k17nlp3WBbtfnWNSMrTW\nGJlrPPbXuft6k/t3m8xeuYjLCDENoZiBjBfPeTmg4fu4n/9QrHiw4sF3D6vC17+K5wnyUjFSqoS+\nKKBYnm4tpyhofJABSg8CExKfIjOZl1X6skXVblNthQR7JvZiD+klGD2DsuMxqnqMzTazMiCPTIy8\nxF8LqXw5pLI/wz4wcPZ19JZFPPaIJx7JwCG+Mkl8i+w+UNLHJFL91h/MqJfBzz+3UZ8ntcugMIUk\nh7FA3sH0sc7VcJdgMiV2A8o9F/tvDLRcKkVMCTdHPa6DTa7jTd4kX3JVHDFkixEXjGgxoklhFZh+\nRK1ZUBpP11IJdDTHJtVdRkWLq2iHy3CHSpHwKDfp6w9My4Cz+S5n811O7w/oX3dIr1z0icSyUqyN\nDD+ICLozat0ZX7S+Zse/pGJFmJ7E60nqL1Th39XUMg5M0m5A6HW5kz0maZ0stNV88VRA+U1Z5/P1\nqWDFgxUPVjz4vaCBbggsO8cpY1wrxSvBnavDSccB21YvqyGUjQVIVV9EfYxWgLZsHXpesP1D8Vy9\nqaOCGBOEpQLHTIKuI5omompAw0D3JZqfY1UyhNAxhYYQGtlYQ0w0SttACyR6rUQLMqqtOdX2jKA1\nZ34bMKXGNKuT102Khk7ScJC+hnTVimo2WV2nWAMMSS5N5rJKtGZgHoW0//oBt19QLwRZIcmeTTP3\nKoZqKfZtZpZPWjiIqQ4zDTJdBbtVDeo21G2sRonXjKg0Q0ynQJQ6otTJA4u07ZLgMY3qXJk7fG19\nRWq6NI0pTX+iEn7Z43q2wXmyy+3FFvM3VcRbDe5yiOYov5GQ73fC/3tixYMVD75XPPjnLCB0EKHy\n2MldxLhKeuOQ6g4kDsw9mBrqP9pMQgZmWOBEKX5tyrp/z652wcvJWza1c9xihlNMSCyXtC4w6yn1\n+ozT7hHZrk88r6kkPvQhTFFxSgRoasoOOZTPi8MpqgobIEMPMZeUM50itMg0mzSwSbsW2lTgTQSN\nRFKpg1UH2daI2h4Dr8UNmxzISzLhYpQQCZguPMetYYrzTlD97zH6bzLK05zkHhBPCX84bhLFG5yL\nDer1iMbhlOZfT6ACZceg7Bic9F5yziFXt7v0b9qEDx5itCgsRwlkkTI6xQYccKtQrUG1hu45GK6G\n6Sbg64iKTlk1EGsaszIgvPPIYptCWKTSwxAlE1FnLBpMHupMXgdErw2K0wz6ISQTpQZlzscJ//dl\nL/8xWPFgxYPvLg9Wha9/E8/bvZ5Ph3sm7/ww22GZMAso6hB6MGqQjh0eog7vi2M0P+VoP2b7b+5p\n9JQ4JUsga9pkRy1uel2uqkfc33eIhx72LKfTG7G5c0HXu6XRmtNcC7F8yUO8rta4Q/9dm8dGi8yv\nwKMP/Rpky1PN5Ujpf0618c0EVgAL46IohccCMo3hdot3ty+Z3QcMKx3GXzSYt310IUBKNCE57+5z\n2jzgdHrI1XCH+0GPsm8QrvncpT3ecUy96lDp3vPyOEGbFx8uJd2pEDW6nBkbXM/2Ob064vTyEK3Q\nqDkzavaMpHAZRk2GcZPBoMXgrk1+Z2M6OdXtKcHWhM21Ww4qZxz6ZxwGJ+w33uN5EUbdoHUksEJB\nfiixDGVxMV93uXjR4yL4jPfFl9yEG8SDCjwCsxKKZcD9nOzfXcL/4VjxYMWDFQ8+xlI9slQSFlAW\nypNoDrIJ0gVRA3MG9QC2LJVft+rQaEC0YSDrLnOrxkTWiQuPIjfUFLYiV/JyIlTA8W3IypfXXH68\nNEDXwbKgp8OxjnYg8RszWvU+zdqAQpoUwqCQJtPbgMldQH4boHcFZrfA7GX0/Gv2qufs+hdcXO1x\nsn7MvBPAtsQ8zDCPMoStU+oGpWag1wt0r8DQSiJZ4brY5L7sIpqS1g/7yNopwSjBikqaUYGYAmNg\nAvq2jX5Y53G3xr3dYTqsUgwM6GvqpFPTYA14YcILDXcjZr1+R69+i+dEFMIkFxahXqVvdhiYHaKw\nwkW8T/moc64fUtFiPC0BoTEZBYzzGqNxk4e3PcJ3VTgX0I/VRCXGPCX836dk/9/CigcrHnxKPPhm\ny6yGSgpNQCi1Sd+HogJjF64dpVy0dGX/UArsWsza1ojWD8YceGe8jN/y+a/f0I6vSKKEJEywqhY7\nL1M2Xzyw7T2i+zqDvS6DvAGpAw8+T76lAjV8ZqmMhKd4Z1kQiEH4FKFG2neJHgJCq8p8r0Lc9PDc\nnC09p20VrG1CdQvktkb8uce43eBedpnM6qQ3LvJUiU5uZ3AroHMl6Pz3gvpU0nhVwrXAWbxMyyjr\nouhxFv+Ys+lPaAZjel/d0WveUToGWdUm9W3OtH3eZS84f3vI8H2d+a1LOc7VNL88V5J6bFTbbhOq\nPuy6sONirAu8tQxvLUX6OrllkdsWpW4g0SnfW8zzOvcJJImPngniwiPOPeKJRXKtU94k8JgqVU02\nQu3lZcL/fSvi/rFY8WDFg+8mVoWvfxPPE+Flb+tS2rn0nFiMhX7+M2UJURNGJcnI4THqoJcFViVl\na/+BuuWycwByDmIOE8/m5KjFTXePt8Yhd+U68cjFnhV0vhhx/MUlxztv2LJu2bRucfWU9+KI9+KI\nk+kRWh3mdo2J5oBWgbAG4+W1Jjy9GeiL9RzPjb/Lxb3pqoqeljCG4W6L+V2Vi4c9ptU68y8qJH9t\noVOiSYmG5F32Ga+zL3g9+4Jo5JMOHcqBQThVCf9bjjn2BYe9hKOjR+yYD/WHq50K7xrrnJuHvB19\nztvLz3nzy89JSg8zKDGCEpHo5EOTYmiSTyzymUU+s/F3ZwS9Ke2/euBw/S1/I/+RvxH/yKZ5jeFm\nmG6GXjdoHUHbE+ghaDZoFtwGDu8665wGn/Fq9AW34QbRwIO+VAl/vnzDfP7G+ilixYMVD1Y8+F08\nT6CXCb+AUMn5RQ1Ea5Hw10A31esd1CDogejpiLpHaNeYihpx6S2m6Ahl2CqXCf8yOf82r/eZik+T\nizZiU40Q/xK0nwqqrRnrrTu2Whdk0ibDIpM2xukG2YnH9NTF2E+wDjLsw4Seec2X+q/4kfFP/KL3\nE+adgLPWAWxKzP0Mez+mxIDCQhYmulNgeAWGXhKVFeZFlVke4DYTjn54gvzKI5jNaY4l1khDe5DK\nLPwWpj2bh4Maj3td7pM2s0GVcmBAX4dYU0qXNeBzDf5WwzlMWA/uOaq9oWZPyKRNisMgaiMedWb9\nOrNJjYtwj/uoi0WOHgiMQO31YmBSDAzyO5P8vU323obbTA3TyKco96XvT3D4+2HFgxUPPhUePD8E\nXP59edgXQxJAEcCkBtdVMP2FXcCTH4L9ckZz54HtH9xw5LzlxT+85bNfv6V2csv9uORuLLBaOhvT\nBzquxePOgL7f47e7XwG68lN1/WfXIlGHjsuPl8n+MrhQvmuyzChCm/LRJXwMCNd8wr0Kse3hoVHP\nSmzAfAnWSyiONJI1j3GrwcMy4b91kO9gdgc3U3hXAlcl9Zmg8qZAm0rsiST4xiM/ybu8jX/E/z37\nr6wHD+x+dcr+D0/JDZPQqBAZPnfXG9yebnNztk363qC8LRGTQh0+imXCb6FaunoQVGBXh7/UMQ8j\nvO2MYHsCPsR4JJpLdueSv3YoXtnM7xySqc9gto4WSsrMQCQ6Ii4Q8wgRRpBMoRhBMUBNCXre4vV9\n28t/DFY8WPHgu4lV4evfjeftXoKPVSPfnHKmQ5lAGoMeUQwrzK4raO/WqaQx69mIhp8wMXuLXFwy\n0WucWHucTvc5E3uMRR2jUdB0BmxVbjkS57yYvaeW3VHN7zFkRseTSC/HljlZzWW436Yv24jURD5W\nkB+uFVR1eDmV7fljl6jNvFzLe8ihjFU/QjYmu7fI3rlQDbjpbGF1MkRHQ9cEmqbeZC7G+1yNdngc\ndSnPDDiVcCuYr3nc3mzgXMWI2KasV+AzH6fIPpTBL9tbvNWOeXN3zNnlLtfv2vRfeyS5C4GupPop\nC2dXlNGtaYANlSBmo3HLUes1n7m/offwBu/hDJIBuWWQWga6oWObFnbbJuu4zKgxlXXOtV3ezH/A\nWXTE7e0Gk4sq2YOAaQRJDEXCk1Hrc6XLd5f0fxxWPFjxYMWDj+9/WQCOIXNhaMOlJKpUuHa3+FX3\nB0zWPPSDGOPHCcawJO2aTLoGDzsbXFb2uJ7u8DDvMBs4FNMMIglZCWIxJe9DArkszi6T9eU1/CGF\nSB2wVPWzYoFvoDWhtjOmtjelvj9mVztjNz9j++6S3LDIDZPMsLmwplS6KYYjCbYnVHcmBJsTPhv/\nhr3Ba7rD92ynVQaVOuGRj1kt8PQQbxwiDJ1CMyk0E38WUhtNqeUTYqfC2Ksz9uq03T66BWOrRT6r\nIGyL0rDRdNBcgd4oGdfq3Ppd7uJ13g5f8ni9TnZiw70GQqlc3J2I+u6E+v6Ezc4lx8kbjh7eUBcT\ncsMmN2z6ooMjCjQf7vIN4mmF+VC1WOMKtYSAwWI9CrjO4DGGWYgi4xSlckn4ODD8vvNjxYMVDz5V\nHjzfaynqHnPVZpUVC6V5gkq256C7YFhg2hiFxHUSas0pdX1MkI2p3k1xzuYwgXQCIgH7AZojkO0B\nVW2OGRRqwnVFX3jJueCUyv/UrKiDxlKownMRqyE/pUDFOymUM+SwijwzSX2X+4Mer53P8ToR1bWI\n6kFExY0ptw3Epknc9Pit+QU38TbTtM4sqzFzq4TtCmJY4IxL6vMSPwA3kBiBRK7ZFKVDUjgfvVqz\nl10GzR53YpMk9iiETioccmkSC49YeowvGozeNwnf25RnGfTnkC76oskBSw1k8DzwKni7gurhhODl\nlMbGiLVqn7VygJYKUtMhMVymZp2h12bYaBFNquQDi7hfQYwkxJmarJTGaqx4PkfJKScoz6iIJ6X7\n93kv/zFY8WDFg+8WVoWv3wvy2Z9L4eKywr1M/BeKFyGV+RxzyoFG/M5AenWuHvbQ6zr9epeGMwFD\ngidJSod+2GIwajEpa6S6g7cf0pBjtpNLDk9O2f3NOdF0ynAakpcFdveB7V5Bo5kx1ta42tjBrmxS\nDKB871FiLa7HRRmbWuqYVTOf7VuBClSWa2kesZSFDtX3Pdbg6xpMLabtGtetbZK2q5J9TXlyDEct\nJsMGYqQ9BUf9kjCocNveIAtcppU1bv1N3n9xhEX+4WXsl21u0i1u3m3Sfx8wemtTno4hscAx1Cq0\nD0pVfBu6Lqy7+L05e9VzfqL9jO3ha5zf3HD3y5hhX2IZAtsAs61jvXQxX7hMgnVOo2Peh8eczfa5\nnGxzMd5hfNUgfqVTPiSLPur5osXiuVHrd5vw3w5WPFjxYMWDp0R7qSacQ+zAvQtvBROzzqvgc8SW\nYLt+RPOrB9bcR5w4owxcyprLg9vjlf4FJ3dH3N32mF4bZIMQwoXXUFlFbY6Cp9PLDBVgPh8tvbye\nf88zWXJ0YUSuV6HuQtfA2Crp7t9xtPmOw7V3bF7csHl+y8bVLaVjULoGhWeyXh/QaEyoHId0mg90\nqvd0tHta11e0f3mJ8ctH1rfe8+WeTmN/hpckBMMZtfMZ0tMQVR1R1bEnGW4/wevHxOsO4X6F2b6P\nZ8UExowHbZ1QBPTLLoOsS2nrmN0co5cRUWEk1xhdN3m46HL7epP0laviNBfYhuBgxtHGW1403rCX\nn7Lx7orN11dUpyHSNZCuyaDRxu/FeN2Imj3hbrjJbbJJfl9VSsdsYZ4bFmrNczW5Kl0Y+jJEJfzL\nwnDxezyL7wNWPFjx4FPkwXPFyzIOWiaFyyLwHLW/bDBq4K1BxUWrmZgu2EaOVaboSUk5k2QzlX/O\nBUihhraVS7Gjw5ObxHLSsmlAzYc1F7xSqSwzCUmplOphAmWO2ucZFGN41OCNQ57ZXCW7/IOWc8cG\nVWtGdS/E68VkFYfUc4lTn5PogPPygKT0mZdVJt0aw0Yd3Y1ZtxJqRkmrB7Ue0INE8xnR5F5rfvRq\nDbodoo0q0tSIHn0eb7rkNzZlZpCXFllpEfdt4nsDcR/DYAajIZTDZ69xBSoVWLehqxG8nLJ/dML+\n/ik985b10SOdk0dMPafwLYqKyZ3e411wzLsvj7iv9piXNWYPNUQpIJ9ANlbJfhktlKXLGHCZ7D+f\nYrfC72LFgxUPvltYFb5+L3zzP3HtG183Fp8z1clYlkIxo+ybxG990qRC9Njg8bjLb47/AtPPwZZg\nCUSsk1/Y5Bc2eimoHY+oH4zo2dfs/uqCo5Mzdt6ecXJfcP1QMi0k+y8Ktl+OMI7mXO7t8Nu9z7F3\nEjhxEIGjrgMXCIB8kewveps+3JJAVXWXa7pYS8NyTX38WMLMgpOA2VqNZM3jsdldiHwkmg75yCIf\n2Mihrk5pc1Xxn1c80mCTvr3B9dEW9f0javtjDKf4cBnzm4DpSZPpaZPkVUbxZkbxfqIuQbfUkvoT\n7zY92NSgZ1PtztmrnvFT7Wc0hu+4+03K7f+RUpxDFUGgSZyXFobtYHxW56a+y99nP+Xvsr/ltH9I\ncuqSnDpkFyBuQsRDBOFk0X+3PL38tox1vw9Y8WDFgxUPPla6LBN+F+6qkAvGdp3fbn3BVbbBRu+a\ng69OOHzxHk9EhGaNuVnlYdbj/PKQs8tDhu98iqsJ5XAK4cK8VAQopcsy8FjuR4OnBBM+fh7/WqL5\nXJ1poRJ+H2oObJvoLwTd/Tt+sPUL/rr1d6z/uk/31306/+8AGWjIQEMEOo0fjql0QswXKbvmBTvW\nBbucI2+miL+bIv7XGZ3/LGh0przcvqB+FdI8n9J8PUGvCWRPQ65r6DcC/b1Af1eSvbBIKhbJgc3Q\navKodbiny6k85m3xGW+zz8lsC3stwW7F5DOL+KpKdFkleeORvXJIf+uol+YI2ILawZTjjbf8bfP/\n4Wjwlsb7IfX/c4R3nWAGGkagMTxqUflPEc5RhG0lyFONcdxkdl+BQQ6DGOZqRDtlqlSs+RyKOR8H\nh0uVy6fGjxUPVjz4VHnwTQX8sjC7LAYuJ5EaYLTBc6DWQa9Zi4Q/w84ytKRAzATZFOIC5uU/k/Ab\nqNlBNmBoyrvNNFWxtmdCXVffF0k1IlvLldomTfgQ1+QhPNoQBeTDKpdyl77b5teVv8RvTql2prhB\nTBRViaKAKKoShy7x3KNMDObrAZNejdFaHd/S6GolPgnWEVjHwBHEZoWh1ebG3EY8TalgUK4Tlz6y\n1Ij6PtmvbEY/a0EIIteRhUYZ5YgwRYbJIhF/gPJ2cdMNtSoV6NlwrFH7bMLB8Xt+evD3HIzO2Di9\nZ+OXD7hFgljTkWsaJ+v7BBsz8g2dIjCQDxrxbyvkRQHFBLI7yMcgY5DJ4tkti+rPrS++rwXcbwMr\nHqx48N3BqvD1R+GbG+C53D5XVdNygow1yr6kLA3y3CMqfShqMNBUwu9I5cVwocOljmvFVDZmGG6B\nF0T4Wkh1Nse/D9FvIL1VbwpaUFJZA2/dxRchtpdi+CW6D5plgmmDr0PVhEqJ6YBpa+gWCGlQCp1S\naMh5iQyB0IBcX8SWkqeJR7kyEUzV1L4iNilmBvHQVtV2DfXmMy3VmmQgl4RJKYY2xaVHbLgkeYN5\n5jIsGmqs7aI7LrtySd5WSN76iNMZ3EYwKRTfHKV2MSoSy8+w/BxnJ8J+OcU5tNnfOmWjcUPL6lPJ\npwynEu1OIC/VP28i0Wsaxdwm1SpM9DoPSYer4RbXtxtwWcBJDlcxTObKoLUco45Mn7d3fd+DuD8U\nKx6sePCp4Xmr71LKH0LuwqwCwiO79Bi9qTBreCQDF+GYlLaNayTMhU8oq4yGLe5PeoxPGsRnNkwz\nsBJoCmWybeiLzoEc8kKpJ4tQLbGU/cWLa3reBvYv4XnCb/ChxcszoaGhrwtqtRmb1i1H5Xvc2RT7\nbkpyMkOvguGDHoC/1aBdBOwGHjtcLtYVszBh0s+Ynqe4B2Pq9wXeYIZ9G2OfzTBezXFrEm8I7gCy\nW0hO1HIMnUrXwNgwcN0EkerEqYtfTqmWU2rOhJHTYK5XifIW6cQmv7bJ3tjItxpcAYNMBb6mDg0D\np5Gy5g7Z1S7Zis/RhiHiOiI5y7GrYFfBdCD4skbXqDBx69xZm1haDoWEMIPRgg8fXuvnp6FL34tl\nQeZT879b8WDFgxUPnu51ed/L6dHPvU9T1f5VQpE5zLMa/WSdR21Ar3VL+MLH06fYRUkjF5Qtg3LX\nZdD2GFa6TESNfGqhhwKzlmG9iHBaCe5GibtRYgaQxRZ5ZJHNLJI7i+TOIe9bEOcQx6r1LC4gD5GF\nQXRuEvkBmqzhdQK89hp2IyWeVohnPunMg1CDUMNMCwZpmxP7iEZjRCOY0tiaUpdT5JaO6OnIhsZ1\nvsF1vsFVvIHUtQ92qlfTPSaTBnKiU34tKN+WpO9zVaD4IOSMVVEii4ABT6baAYqvDjguNE3Y0vA6\nCZ1Kn0N5yvb8lOrdAONkiBZnOA0wmtBITDqNHpv+OvM1n6zmMq60VMyZFEAGYrmnn/sYfT/auv5j\nseLBigd//lgVvr5VPJd7LuWdGhQLWbjMoPQhcuHOVYm4iZJr5poSmEx0tCZoY9AzZZaNBE3Kj/fc\n8z34zb34QcGvwYYOuxbaloZTT/BqCW6QkQqHVNikuY241CgvPMS1BRMdJgbkJiqIXRqCz1DVZh0y\nD+YuFK5K9LVFEJmkSvYul6exixPAeQVua5AFlAOD7MRAtqtoDgu5KhRDi/zWRt5qahrRSIfSANeA\ntQqsVbF7GcF2Rm0rorExp7ke0eyGHDVP6dbvwJWUhoOtF9S1HIGkBtQ10DSNuWaQoe65mJjIWx0u\nS7gN4WEGoznEUyhmqIfxfHzrd9vM7z8WKx6sePB9x3N5/zLhN6A01TQ7qcNNgPgnl2LsErZr3Plb\nZL6HZeSkpU1WOERTn9ltjfzWVvtNVKClQTtX+9bS1K+Zler0cp5BGEIUKs8HJqhNvvDV+Ki96F96\nTsukfxGIaoaatORrEIBjptTzOa3piNks5n6eMQ/BLsCKwJrDbJRgJWO63LPGkKqcYS/2SErJBDAm\nOfZ5RPOXJdFZzuBVzuSdpOnC+jWs12E2hsdHeHgA35e01wQtD2rljO7wDnMYU+nM6Rw8cnhwypl5\nwLvwmPf9I/Jzm/I3Ar6O4VIqz6FcKOd0ywXPwXBKPJlSi+c4UcgozRgWJUUOXqS6IspJSRrHVMoJ\ndX1MxYwx7AJsAWYO2pL388UK+d3T0O/+iO8/DCserHiw4oHC8p6X/0cKnvxEdSgWwwakRjJ2eZx0\nETMdoyFoHQ3Ysa5w/nJCPc6w45TUt8n3O1wedrmqvODucZ2472JMSqqtiOA/j2noQzr1AZ36EM9J\nmeUB06zGeNagf9Hm8aJNflmBOw/uapAaSkFZTCCO4NoDUUE+uBRVjaTqkns2eWJSJqjW1tyATEdI\nnbt4g1+VP2JMEz8P8Vtz/HpI6ZiUpoUYm4zva4zv6ozvaoq3i7a0h1GX4bCNGOhwHcL1GKaThYef\nhFIqFeEHac+yqCp4UmY6YFsQGNDWsP2Mej6l+/iIfzNkfh1xf1WiTz/YHzHNU+zukM2Xl4R6jZnT\n5LaaQ9VSr4f+3O/1uXfgp1a8/baw4sGKB3/eWBW+vlU8l3kuDbILKFJ1YpakMEngLlBVVvN5wrwo\nB0sJu6CNJFomF6GZ/JdjOMnvfm35zzmokdxf6WhfaTjdOUF3RrU1IxQ+WukjUknxCwvxiwpIQ52u\npgZMTZRZ6cKslhnqjUtCHkAZQKw/u3ZNVYvLEBUUTRc/M4V5TUlN+yBsn8z2yC0PzdHUNTogYx0x\n05BzDVINMk0Zd9dtaFVgu4b1WUjtLyas/yBio33Ptn3DtnPDpnVLx7xHMyWlYWNrkjolOiU1DWoa\nFOikmJTYZIuEX9xqcFXATQiPQxiNQMyhXAZ1y4LHKuH//bDiwYoHnwKeK13Sxac0tW9yibwpkeM1\n5FufMKiR1T0GjQ66KRGZjsh1ytCgGJuUY1PJ9tcryrOtKcDTlKRfAI9SrUEBhJCFkE5Re25ZdICn\nIgTP/v4cz5Uui6UZYOtQ0dBqEtfMqGUzWtMhk5ngYS44C8GLwdOVKMYcJVjxhC42TUYEzHFkhpQl\niRRMgWCaY1+UrAUp0YWg/0Zw8h42dbAcZccxT+EmhncRrFsSxyvpIqjN5piXCcHlgM4P7jmonhL+\nqM4v5I+J+x4nF8fkryzk1wnyVwn0c8iECh51W92PZ2PYAk+k1OIQOwoJU8FlIQhz8EvwE3CmJXoS\n45VTGtoEz4wwnRIcAWYGeoTi8LINOuR3pgF+0r53Kx6seLDiwe8GH8s/F6rxUlexQgrp2OVxss54\n2kBvS3aPLhgfNelk99Rn0JvlhIbNaavNVfuQN9kxd/dd4jsPYy7wj2JaxyM2ujccmSccWKc09AkP\nosuDXOdmton2TjBvBUyrDdArMJMw1FVsIqYgMrhpKA9SRyM3LErDRTMMhBBIIUAUH+5DWAb35QZT\no8Fb5wVOO8bpxNithGLuUMwd8rFDcWKSf21S/NZEOijuepD1HbIHB/GgQxRDMoTkFmSh+tmkXLRY\nLRUnzydIK826SvjtZwl/Tj2f0X3sY94Mub8uOb0SiCHUdKgZgJFhfTakl14RGQ1u3W2sIIeqDXNd\nFYg/TCMvv/F7P8V9/MdixYMVD/68sSp8fav4RosXqI+lUHLxolDNyuFycpzDh2RZs8DywPQQNUE6\nsgj7PlO/zshqMuiuUTluIhoZ1fVQmgNJAAAgAElEQVQMrRBohy6TXZdJp8vIaBJNfYrIoswNZE1D\n3xYEB1OC4xm1FxPWvD5Nb0BNToisCqFXIaxUGW+tMQxbTGSTwtYpU49yqCsiikyR0HTBstSYb88A\nVwdXQ40XWhQtEh1SHRIDMhMyA1IThKmSd2kgLR1p6uDrWF6J5eTYbk7p6xSBSZ5aiEgi5xZyVkFr\nW2i7FvpLjdpxzNbGA0f1Eza1S9rTGzrxDWv6kMCbYbspxDpmw8H8zIIAhKaRoREdNnnsbHGp7XMx\n32M4bJHdOHAjYJDCPITs+WlmzNPJ8fdL5vmnx4oHKx58Klju80x9LHVVOBVS7fVIQ2oahetS1DTi\n2sKPIrMgt9X360AFrHqOvzfH3wtxOzGmV2C6BULoxAOPeFAheTDJrnUy26fs65BnkC18dwAVsOj8\n+4KVRVAjFxOQUqkG8uUWofSZGHXSSgrNFHc9VbMVdLBNMBoS3ZXoCIy0xExK7KTA1QR+TxL8EKrr\nkkq7xLFLXMDNwQlVsm94oHmqvmyV4KZgJFDcQ6hJmOQk1znJTYzZimlOZnTKAX3ZpZbP0FIQwgTL\nUJGd0J/y76ahTlhTKCKTeeEzZA3daZI1Y6ztBE8WuLq6H23LIG1UyOw6I9EgyisUiQHJ4r1KpDwp\nPpdr+dyfv9d9yljxYMWDFQ+e8Fz1stxfxULJEVJOLcobk+RNwIPscr52wKvmV2S+S1WPCKyYSFR4\nxyFvZ4ecRAc8ph1i08H2UzrBI8f1E/b892yGZ2xMz6nmUxxrRN0aUBMzRGAx360Taj75VFDc2JSG\ntkiuC6UsiQ0Vq2g6UhiU0gRp8qTky9Tm1HWwDOJLg7jigVbF3CgwJznGvKAcWxSLxesS3pTwtlCh\nnXKGgJGEQQSDEMQA1cI14OMC9VI1KHmawG0BTVSbVwWkrWIpsdh1uoYwNDA1zAU3xYKftgmlqYFh\nUGoGBSZC6kihfeOt4fn+/beUoiv8+7HiwYoHf35YFb6+dTwneokizfLzy1aApTTf4qki7kK5BjQp\nY4do4KJdtfDcjEt3h5PPb9F2Isr5mM58zJrIke0WN+11xsEeF8UO47s1stCjiC1Ex8AyczZfXHO0\n95b9zhlr/QFr1yPq0wlZ3Sat2cTVCm+NF7zZe8H7tSNi3SSamZTXNSjKRaFCB68GQQBBDboOrDtq\nooShKX8jXYOBB48GPDowcmDkQV4Fy1c/7wWwY6Ht62j7BV41pOZMqTsTMmEzKwLmRZX8BspTh+LM\nQNsA66WG+eOE1tojL/R3/PTqH2lNr9DuJmi3E3QrxO6leN0EKXSiDZfyv3ikiUWmGcwxGDS7vN7/\nkjfGF5yOj7h52CK6qcCtVH5MWcaTsmVZkFmeYn4/yf+nxYoHKx58KnjuJ5TwlHCXKI+3ORQORDoI\nQ43eLutQ1qDqwAawBe5WzNbWJXvb53Sa9/hWSMWKKKXJbbjBzXyDx8c249dVJl6VyPJhUoVpDFHG\nU6E543cHTizxPLBZ+DrIFKIchgJxrzPxa1waW7yuv0Df6NM46rM2SbEcsGzVPTV7aTJvucypEoQh\ncmBi9iU1Q1J+CXZbo+lLqjXQalBNYeNG+QjV29DcB3Mfggls3oFzu9DgzOHxApJQzVWYF1DNBa0o\npzWWeFaCJQt0T8K6rnyZ1jTVAhdLiAS4prrQoU5c9bhrdfmt85LdTol1dM/O9B5rp8C21bfNt1zO\nD9c591/wvnzJfdQjGXkwlMpdt1i8Th+1cX2/A8M/DCserHiwwsdYKg9zVKFwAjyq1/OkCkaV+W3A\n+80XlJsGb4LPcclwZEZW2DymbR6SNv2ixVBrka7b+HbIVuWKH05+yfHoa/TLIfrlgGKaUKvHtOoj\nOsGUzHeYNmqEjsv8psL8nUdsV5R1QuGBzMFUh4zoDhSminFKUM950WIlBYjFoeWjB7oHUxdR0ynq\nOrLmUkYg4hKiEu4TuI8VH5f5ugVEC18lWaBU9IPF6/Gs3RiTp0TfRQ208ECZNQA+5A6EJgw18orF\nrO3TbzVZm80IehFH3QjdLXF9cH0YHdkM2w0e7E3u0h7TtEYRmspTKS0Xap7lwd4KfxqseLDiwZ8P\nVoWvbx3fDAKWle4l4U2eWGA8+zFfkUpYlLFJOHRJryroNZ2r9g7rO/e41Rnt3KBTJFgSrpwW184+\np8VLLk93GF2vkd5UkIWG7GiYmyrh/9Hez/lx5x9pXY9Yez+m/naG2NAQGzpJz+W/rf0nxB4M/Tr6\npEFxUSdxa+rkU2jqWt0AmjXo1OBYh2MDXuhPt2MA5wacOHDig1VRyf4kVkebfgXqFbRDifZTgf7X\nJV59zpr9SM+5I6KCIdoUQkO+8pB/b6NlPvpWifkyxflhQkt/5Pj2HX99/TOq768Zvs4ZvCrQ3RLr\nZUnlpaDcrqD3PIofrhFXfEpMBBbX7PCKr/gnfsrVaJfk0SO5duE2VgFdsUzyl6ea6Tee5wq/H1Y8\nWPHgU8EyqHvuabH0vQlBjiG31OlcYqoMWGogPZXw94Afg/cyZrt3xV/2fs5R7S1NbURTH5FJm1fl\nF3xdfIHZPwJ3k7gIiFJf+e4kCUSL4QvE/G57wTevdXmNi0BUpioQGwnEncakV+NK3+RN4wU7mxY7\nxwlb+VANi6iA5sP1kUXUcpkRsDafIO4NzAtBUAPrc6j/D+BoGi4SXUJ1AOZbWLPBaoFzDOaPIbgH\nx4N2CdMxjOfwOFdzISa5muvQzUv8SOKOCyp+ik2hBkJ0dWjasG9CKJ+GsUaaGk4x1IkqLrf7XV7Z\nL5CVnMMjwTYjmmGIvlDb3LQc3mx2OK++4O3wJfdRl3jkwhAIBRQ5Hw92eP6cV5x4wooHKx6s8DGe\nJ/wR6uGYMJdwosHAJTyvcnJ0zN3RBnYnQ3cFuisRuUb24JA+2GS6RXZokh8YtBqPbEfX/Gj6Kz67\n+zmPv8h5+EVGdi9o9UZ0eyZyd8T0yxoP2x0GWw20tx3SeoXY9tXgCRGAlGpohLXwtku1hWJwydsI\nGKvCgMxUot6vwawGlzWE5SJNF2E6yDJHihzKHNKZaj9Op6DJp47iMoNiUWD+yAZimeQvVwWoopL8\n5VqO8XOU19JcUwl/y2Ru+wzaTSrRmFpXsLWeYFdL9Cboa1Ae2BStOvf2JneiyyStkc8XXMnEs4T/\nU/Wm+4/AigcrHvz5YFX4+pPheUCwPFV87ilh8OQzgfq6VFVdmZgUD1WK9y5To85ttsk75xjhwabZ\nIrTbOFrKabnPaXLA2eyA2+sNZu+riGsNOhq0NYz1kkZzzI5xyYvoNU5/jnM+w34VYY3BGkE5ttn4\nfION7ja93hZaWyOtV5n6NhgV0AUYBmbHxtzXsQ5z/N0QfzekuhV+ZJGRlC6x7hJ7Lqmjk0qLNLSh\nZkHXhq5FcDyheTCgudtn3XxgPXugm90TWRUGlRYDr0U/7NAfrtOfd9C6YO/luBsxwXzKWj6g93CP\nc/lIeAr5ezBcpfo0XCiqBtF2nf7WFn1/jWTikYxdbmbbnM0PuZ5v03/fgosChilEM558jJay1k+j\n6v0fgxUPVjz4FLBMpJdeEEuPhMWAA2lDYQG28hIyMjAERqXAWU9xDhJ6ezfsmme8iN9ymLzGkyNc\nMSY1bLZ8jcKXmI0S2bOY7HUYR7YarDD2efKgs3gy+f7ms1tybPm1hSeTiFXbcb9AOjDp1rnY3MFa\nT0k0n6LjI0UNXA3paUhXJ6y7COlSG87RbhLik5zH1xKjB/qWhmuBUapYMc2VgsXTodJUcy1KDWax\nmmdh18HfAq2qumzDKVg52CW4JWhdi6TmMrJcYtvFqSasW3fYRYpdZjhltmjnMihCg2TqMRsFzEdV\nEsPlIVnH7R9DRUOaDmbXY1aO1EGqA9fOJmfF55zfHnJ7s8Hkpko+kOoCkwTK59PqnnsYfb+Dwz8M\nKx6seLDCE5YJPzwN+jGUd+dYh7lBnlSYCINJ1lADbTwNKoui5b0ODzpUQOsWaJUSu5lSS6Z05o+s\nPzwwvwJxCukNGCEEEVi6xtrekIY1ImhOmdcDzKqEmolmG2i2QLMFllNgOjGGKchTizyxyBNdhQJz\nHSJrkajnIBJl45AsOeMi8ZB4fNQSxvTZWkJ79vVlYXqpJl9KYTwwqmDVwayDu1DHewGYJpquoWka\nrEtkXUMWEKY+N9kGr4oviJ0K670+nc/6OHmGaOqIps5lZ5dL65CrwR73N11mfZ9iIiHMleWGeL6n\nV0XcPw1WPFBY8eDPAavC158U8tmfy+T++SnjwtcInSdJ5Uj1Gt8Duk02t3kYdNH6glG3xTt3Qt2Z\nYBo5g6hNP2ozGLcYvFsjfu/AuFC+Q9sGelviaBnBMKT+MGV2kTC8LkhuIQgheAT7RoIdUt94ZGfv\nksJymHpN1UZsmWBXIDNwd1KqP5jj/2jAfuWCPe+C/fxCTdlbHP7dW+vcbnW57XYZuE0GskkeNhDr\nFhwYcADdnQd+0PwVP8h/SeuhT+1qRnA1I6tbhJtVwi2fd/KYX2/8gNh0yZsm7maCZ8e4RYoVFmgj\nSTlRsdhSgZ+GIEaQTFz6cYvTcp/ryRazr2vMvq4zuOtwk2yRxBV4LOB0DvMZakzsePHaZzyRfoVv\nDyserHjwqWAZ4H1TUbJ8LU0wJLgSXLCbGa1Wn1bnkSPnPQfXZ+xcXdMaPjLPIx7yhMQrsHdvON4t\nqfkZkVnnenMX8i7MbLj1Uc9sxpOCUvCx4mX553PuLVqOZaTctR9yRCEZ12tcVPaJNZ97fYN37jHt\nwz5SMxCaAZrOlrhia3TJ/uyC/O2E0W8iHn4N1RoEDUlQV7dplKCXYI3BjsDqKcu7+Y2aZOd5UPMg\n2FdzLuql+pl6qmZgJAkUhxWSg3XedTo8VNq4xZzPiq/REo21aMRaPAIborpLpHncRT1OBkecDo9I\npcsg6iBf64RewL21xRv7C3w7+iA0Hc/qnM32uJzuMbmqE7/RKR4TNe0pn6uCCEsl0ads3v37YMWD\nFQ9WeHqNnrd56YtPSSCDuQ93NmQ23JpgL4YslCZMbZg5aG0NPRQYMsc0CnRRosUSOVci7aRU3a1Z\nBiIEbSYx4hKryHG0FMsu0H0BbYm+XaBvF1jdnKo1p2rPcPSUWVpjmtYowwry3EKeB3BpQWxCoqlf\n8iFhn/CxOiV/tqLFfUY8xXUaT+8By72j8yHRX7ZwOXVFnmoD1j3YcKFnoVXAsEsMq0ToBkI3KTWN\naVbn/eQF+b3NeXnAeveBzl89YGk5ecUir1jc0+V9csTZ20MeT1vMz12KQQFhpHwBPyT8Kx/TPx1W\nPFjx4M8Hq8LXnxTPN85zr4nnAdhixCs5qgquKU7d2zCpkd15PDx2mdw3OOsdYtVyrKBAMwXZ2CYb\nOWR9i+xKJ7syICtg2wRHQ2tL3HlGbTCnPpgwPBfcXgtur2H9ATomNAIJvZDGl4/scMnUanLnbamE\n316MOc0dnN0+9b+Y0f4f+3wV/oq/mv+cv5r/DD0TH94DXjeP+W3vJb9de4ltHJBHDqP+Ouxa8JUG\nX2l0g3t+Yv+c/7n432jejDD/qcD8WY7o6pR/YVLoBv/Q+CnJhsPJ3h6R7+EECRU7wi0SzEXCX4wh\niWEqFgl/pBL+dOzQjzuclQe8nR0z+rrN8H9vM39fI8k9ksJdGKvPIeyjdPxj1JvTciT395Ps//9h\nxYMVDz4VLJPp5VoqXiRqj9ugq2SfAOxmylqrz37nhGP3NQe3p+z8t2uCNw9MkpL7pCSua+z85Ibt\nZMDmXsSVucevtkIVFN7YalY1Ber52YvfU/Ix1/Rv/P1Zwi8sCBNIM8RMMq7UiSyfO7GJtxPi7kS4\nmxEitxCZhUwN/kv0f9EZPXIQXnD5NufhNznnP4d1A7oW6JZK+PXF8hZye3sDsgmMr+GxD/V9ML4E\nfx+cGhgO+K46VC1nIOZwt+5zftDlvHPMzAtwRchn8mvW5mP2xlfsyiswJKNajVGtxqv0C4q+yV1/\nk8GgTX/YYXpV59bZ4s1WhrOVYlTKD3WYfGYSnVaITiqk5yAuY8p+BPFURc9iyYn82XNd4V/Higcr\nHqygsCy+LhP+hQRQpCBDmFcgq8CgoszfNFNNWJPOwuPahNLAmJeYFJhmjlEuEv4Q8hTihbVblqph\nddpMYiQldplh6xnmIuHX2qB/VWL+JMP+PKZmDmkbfaranIesS55qRDMH8Q8WmDZy7i/aswpVfSVE\nxQgRT35ES54tW6WeJ//LuM7gY4jF55ctXTVgDewG1OrQqcOxBZ8b8IWOXi8wKiWmmyFGBsWthrgx\nmSwS/htzm7Van/XuHetHd+hOSWK4JIbL5LHB4N06/Xcdojc2xXlOMcxVwi+S/4+9935yK8nuPT/X\n3wtvCijLIll03dMz0k5I70nxNmL3P9/YjRex7600uyNp2tEWWb4KHrje5f6QuCyw1DPT0kx3s9n5\niUiiDICCyS94zslj5PvwPpirDvx+OJQOlA4+DlTg60dDfMfXmwZY9WGAbLoXehB6lCGEpU4Y27JR\ndlOTy0JOh5gLeTkqYVSAVkhNZvr7PyPWJViadis9XZMDKuQwOjmVTqAjhLaOU2gy4m4ZoAkag5jt\nnRvuH7zh8O1Ldi9esHX8HC0RcuBdCruPcuJegdbPEUOL5U6P010NsS8w7uUY93O6xYy91QWPZ6+p\nvVsQv4HkOZgLcFxwPbh5MGC4f017ZyZLt4qCIrBIYpfQ8vC7dYwdD73MaWo5jqWh7RhEOybzdpuR\nPuAi3Od8fMD8vMfsdZfkhQ1lJi1IsUI2FKycfR9Z4rV5kqn4YVA6UDr41Klet82siCr7ZO0BGwJs\nMJwCz41o1RZ09BmtYEHzYoX3JoIQwhDiHhjbPt0HPs2dOq3aCsvL5NtUM8Bcl47JmXHIk0OT23LV\nu4+t3Hh8iXxsmQ/ZElKX5MomcSxWpYeeNNCLAp2S0rAodQuhm/xG/IECg5a2xI3lvi1vpMa0tcOf\n5ZBmcrX3wbCh1pMGqj+H8QXQgmYKwoK0U2PZa7LqNcgTi3KhIxY6551djvsPeOU9wDIyBtmYg+Sc\nweKS4fU5/etzdFPQ6LXYSltkps2ZfUh/OCLMa2RXFv55k6Voy359mYCGuD3cHJfwpoTXJZxHMIvA\nX0L+XZr4dI3Bvz5KB0oHCslmtss6aCjWQx/KCLIIggg5/q1qGOryft8uHcS8QMyg6JqEZY2512bW\n75DvptT8FK1RYLYMspaBv1fHbzRYlS2CuEHiOZR7GiYJ/Ydjeodj+ntj+smEfjymkfkMaiMG7SGj\n3pD5tMd83mcZtOC8LstcV9md57HR3+F9Gdtm+Wu58fuqAWr13DZprpeL3rAw9nWMI0Ht0YrGUUDj\nIMBqJFhWgmmnJJpDmDYIszpRXifKPZaTFqukySprMCvaaFZJjEssXKILj/BNnfB5jfxNAdcZ+D7k\nS27bO1QiUDbPD4vSgdLBT48KfP2kbKZ/VrW/cCuQEoqlTOPXLAgsWb7l6tJjr6ZHhCWsDJk7b1kQ\naTAzEVONxLHw+zVW7Sb2VcLeeUJ3VNJsQ6Mtpw6dP6gxb29xxgGTvE8UedLOqSNrqhuCdmvBoXPC\nb/iS/uiE+Js5b/5J+tB5LleRLuk0TvnNvZRIb3PRvIe+U6IPStxugNcMaYwXONcx2luB/wpGl3Dj\nQ2MMw7eyLZNdZDQ9n639CXlmkS5dlssOY3/ATW/I1d8O6O7HNC4Dji4DdEvH2amz2Klx3Rtw0xow\nWgyZX/UI5w5FUkC5gnIJour86iNLIqp01M2eRp+26D8+lA6UDn5BbFb+ChACRFV+tZERr2nrYaHI\nba5ttsLbvB/g9tSwwe0p42az0mLj6+pyI9uFubwPkcKiBuc1iD3ExKQ8NhFbJmLHQOzqsA3ChLIF\nRU/D6wu2avJeux70W9Buw3QFyyWMl7L0wF5BZwzZAsIYFiW4KaQ+iCmMWn1e9J/wvPEE322SY5Nr\nNotGk4ndZqp12A0u2b+54uDmgsb5Jcm7BcenuXzmnYhmRzAcjtnbu+Rg74SsabIouyzmHdKZDdMC\njnNZT1asV5DDKIVRAvMAwuXaGKyazlYZkEoTf1WUDpQOflFslv9WVM7z3d50OjIDZO1kZ3XKiUF+\nbBKZDUbGgLd7h9jdBaI7YWd/irGIqbVdknaNaXeLi51dzjjkbHHIstEifWri7QUcDV/za/0rnty8\npH7h07gMcOYJq70mq/0m016PLzu/4aunv2HptMF1IGzBlcFtVkrEh5kuVW/QmNtMmCqA4XAbjK7W\npoCr+xBY3RjvcYn3DzH3tq44qr/lYXZMbRqiZzlGnrPUWkzsPuOHfa6CXS5mB1zO9smuLfy8RZlr\naKUgKy255jrppaC8CmEcw3whg9vvp0Cow74fF6UDpYOfFhX4+smp0j83m8FWaeQR5DVYeRB7MHVk\n6qdhSOuvyGSzvULI5q65K0eyRibMS8qJRrJn4/dqrOpNnFON1tsC+yrD3AFzF4p9DR7UWba3OBP7\nTLOedPhXyAPTOjDgvcP/a/5ANh6RfLvg+L8L0lweHqYCdmtL9u+l7EcjxvoeXzd+jb4t0AcZta5P\nqzGnfrnEvo7RvikJ3sDlNbzy5TQjU4duAJaT0djz6ZcT/LLJZF5jedFhYgwYdQdcHQ2xI5/WlWD3\nKqK0TVbbdZbbXa61ATfLIeP5NvPrLvmioEjKdYbLDXCFFHplFKcbq3oPPm3Rf5woHSgd/IJ4fyAo\nvXj5pYbQpGevaetsRG4zE7XNKq3NA0VY/8JBbtTN0rKcD9/bhA/L0KqTV11etwxg2YakBeMW4m0N\n4dTRPAvxGx3+RkOrgehKh7/sgteHQW0tEw8afWhuw3QMyxxOV6Al0FnJQEG2kg7/XEA9g8QHMYHx\ncIs/8AX/Z+N/Y1xukVIj0TwKV6ewBSXgBgnWRc7B6wv0l1ecvMw4fZVTy+FBK2KnlTL8bMzOP15y\ncHRC2PAQQiOc10lPLChzGaUWxTrSImTT2sSXDfJSXwbZ35+Cbjaf/fQNwh8dpQOlg18M31X+W+3F\nTWe/iuzWqPakSDXKSY3y2CF064zvbfF2/xCvvmRvV2PvKKQZp/htj6Dd4sYbcJnscpbc43x5SNHQ\nKDrQ1uccFW/4b/n/zT9e/zPmtznmlzn6eUn+W5NMM1k22zidjLE75MXwKYQOnOq8r0t+ryFzYwXc\nln8t1s+leg41pB6byIB0kw8d/nj9/COsbkz9SUL7H+GR9YJ/CH7HP/r/RHO5QlsKtIVg1OtzerjP\n6b19XkyfkQcm4+WA4KyBf90iuvbkENlCpyw0yiSjjCPKOJST9rKZXKxQWe4/BUoHSgc/LSrw9VFQ\nfRBsnqaVQAoihNST64P0z6pWukq7rMtVlLA04dKl6BjM3C7vBvfpORO6W3N6Dxa0Mp9yR6fc0Yl2\nXM46D7hI7nF9vsvipkU8N+RY8Gwdcbc1TDPH1WPqBMRJjFjkZDfyIWvrzy9znuPFMU2R4ekRlpmh\n2WK9yzQ5sA+N0tAoHJ3SBeGC5iGtRQ9wQVgapaZTFgZ5YJFeuMQvasxrXc70A573nhHXXQZbUwbm\nlMw0mbS7jOs9XvlPuJzusXjXIX5twyiEOFxnuMyQpV3Ljde4QBlzHwtKB0oHnyKbKe8liBJyAYmg\niHTCsMbc7zKp9Zk1uswP2oh4hYhy6lGB0dLI7rmM+y6+t8M8b5MubZhoEOqyrsq2wKyBWYBuS4e2\nLKWDm6/HZxdVb4rKkd10+kPel3yl69qs97oqZZmwt55M2jFZ6k3Ou/t803yGvp2gPUjQvkgRWxli\nO6fczuGixLALbK1Eb+gUPZ2oa1C2S8xmQaNVYu2Z5AOTZdvi2hnwVtzn2/AZN8k26axGMvXQGwWW\nEWN5MUHSQIugtfIRMx+uIDwBLQPRybG7ObVhRD0NqFs+nh1ilRlaJGCWy4Z4USBfj83PF/z16+Jv\nrHjjNVDNvP9ylA6UDn7p3C3/rQKzf2TCdZUpkpqIsQnHNRLTY2QOedM9QquVJF4DMWjSKZZM6m2m\ntQ5nHPBu9oCby21WQQv7XohzENFuz9m+vOLh+B1PTl6SvJQtFrJTcBrgdCBtN/i68Sv6nQluP6R4\nYVB0TcqaLbNe3BycAnTjdqUWpI60zxILElsusyYHA1m19R9YL23D4U9D2UM1AXfLp7vjs3Poc+C/\n5d7oJYfvvqE29inmUMzBuNfD6CypGwtSx+HK2scycspEI70x4aUO80IeiBYZiIjbPV1luCy4Le9K\nUfv6x0bpQOngp0MFvj4aNo3CnNupQ9UHQsKH6Z8at47qhvOflzC14bhOXrpcGAf8vvb3TK0+/dqU\n3rMJ7Z0FadsmbTuE9Rovw8e8OnvCZDkgemGS3pQQLyF2IHIgskhSh2XRYkIfz8ro1EN2u7LkOV8n\n3NQcG82pMXE8FnqTOHcQgUaxtAlnDcqmzkpvE96rkboGTk9nuy4wNUGjDb0HYN6H9KHDcqvDdb7L\nZDQgeN2g/BeDldPi7fIRRWBw3HhMQwQ0y4Ay1/GTOv6oxvV4h9PXh0RvPHhXwHkA8Qzp7N+dWFdu\nfP1pC/3ng9KB0sGnRPV6bmSfFDkk8vVO5xbTSQ9tJDC2Ba2hT/cfZuw+zRFZQC8NSTyD6HCHF4fb\nXNce8+7yHv5lHU6AqQ7Ckv3u6kDdAieV+z8XkJbg57DKIUqQ7/8MWdJVTfGpHNoqowP5OIm5PYWM\nYdGAEzlS+0Lb4587f09wz6G7P6bzD2O6nQmd5opuyydt+WgnCYN+jNtJqG2ZWHsOyz0H4WdsTRKc\naYKx7VAetji/3+KytsMs7xG+bZJNPYpLE640xFCjeGZAzSYrTEpLh6aG0ZD2Z12H+nrwqt6BsqWT\nuyaJYZMKi1wYiFJb97ZbrDMew433Jvv3z/UDQ/CXYQz+sCgdKB0oPmRTE9Xrqm2sqt/pUjrUEwf0\nOmlmMcoG6HHBcrfLifWIr4XbyyYAACAASURBVMwpnhERLGoEeMyiLu/ePWTxroMel3h5TKszp9+Z\n0Jz7WG9Sim9h9hZGI1itYHAFg1dgGwLnQUzDXdBtT4jaNeKeRzzwYNuAbU1Ob7BBs0GzCsTMQExd\nmJowsmBUg1EHaja012vgwNCBgS5rlyumNtw0YGxR2w4ZNucc6ScM5mdorxaM/7lEG8vholEEWpxg\ntmbsbQnGYo+WucIY5DAt4XTdVLwI1i0dltxmK1YZRVVGThXQ3Xz9FT8+SgeA0sGPiAp8fVRU5V6b\nPY+quudqKsRmJLy6XjUNL5d22qQGSU7mW5x7Byy6bV61n7BVv2Grf0PHnRFYNQKrTkCd6fMtpmdb\nzJ73KF4kFNexPBGMS4j19w7/qmgyZot9O6RTn7Pf1SAUlBGIGELXJnTqjJ0OC61JnEmHP1talPMG\nSd1jWWsTHngkRybNts5QK9kKBdYAnF+D+StIezZLt8NNJh3+7LVN8S8GK6vFcXjEdbyNM0wxmzlW\nK0cUGvnSJFsZxGcu4fM60fMa3ESyK25UGbk+H06t2DTkPn2x/3xQOlA6+FTYDOSu93GZy5HYmZxI\nOp30CW6aFC2T7vacrcMRhhFRL2f0SkgMi7e1fY7rn/EmfMa7k0NWFw14rcHUgFKHpgE9C/o1qJfr\nygEBoZBNxFMBUYo8OYXbpqxVpktx+/jeO/s+Veo9IoZ5Ce9sRNjgvL1HeOjwqnzAg7233O8c8+DX\nbxmaIzJrjLAM3KHPVrtkv5GS7ZskjzwWRw2sZUR/VLI3Slj2XCa7XUZ7O1wud5hd94jOG6QnLuVb\nHfFWQxzpCM+k2INcWBS2gWiB0QDHgYYGtQ2HX7Q1cs8k1R1SbIqycvhTEHPgEnnSWVEF1bM7S+ni\nr4fSgdKB4kM2nXy4tXs2Hf711LjMhEkD/Jx04TGOBvh+i7OD+zi9FKeXYrgFeWiQhwbpxCZ41SB4\nWUdPSrxuROfpnC0mNGYr7OOM4g8wu4F3I9lfNLsEz4R+LnDcmOb+km5jjNHqUnRN4kEdHmvwVMAT\ngVYr0GoFultQnhpwaiJOdHhdh7SAcQGeDls67BrwSJO3f6SBueHwnzjw2oLXNWrDK4aNBY/0Ywaz\nc7RXCyb/syAew6KQq1fGHPRL9nd9Rs1DWuYKc1DI4Qy1TGq0WIC4RrZ0CPmw7LkKdG/2/VPDGn46\nlA4ApYMfERX4+ujYNDDufgBof+Q2xu3vSh3CBiQ+Zeqy3LJZdrcxrCGTQYfRVp+mviBI6wSiTpjW\nSE5s0pcO6dcGXOYwDyFfrYPsNsKDYFbnZrHN8fIRhgmNYcHgsxg9LNFi0CKBvzfgqjHkqhhyGt5j\nPu9Q3miUsUmZm2QRzHb7nO8e8KL7lN7+DGeW4QQ5bGmUD3XKewbH2hGXwS7zSY/w2IOTAk5jEkOQ\nmB6zsgYzDboa9HR5ojsVcqrf2Xoq0bsIFlUq5xyZ2lk1794UuTLkPk6UDpQOPiU2DA6RQhFB4VOs\nbKIri+hVDdPIOdm9T3t3Rt4y6OkTevqUTNi8yz/jRfQ5byZHXI+2ia5rMBUYZoGxV2AaGU4/we0n\nmI2MMjEoUoPcN0naDnHdI/PqMtslSiHJkXui6q9xN9OyCgSsH7vIIbRg7EDksdz38Hf3OB/sENp1\nYrNGateYOSOmzoixM6YzWNGKV7S1FX6/xrLfZOE1aZkr+t6M/taMrFWj6DUo+waOltCbTzkQZ0xF\nRKDVCYwaRWYgFhrlpUno1pjS47yzR2OvJH6QYi1SdE0j3jMZ75vc7AyY2H3mQQd/3iAJbMqklGVd\nZbg+/Zzfec6bWY9KEz8cSgdKB4oPEXcuq4O9KsNdh8KSwwbCOkWiE+gGQV6DZROGmpyG4yHb9SyF\n7GRwbMAbHavMYQwEGpRr+2k9N0hYIJx1EqANpQWlgWy5JwR6KdCbBeZBhv15TONJQP1xSO0oQHcK\nNCdHs3JSwyNxXNKmJ6fIxS7xrIG5l2M9zLAeJrgPYtwHIe79CM243VOJ4RLrNWLbwxsW6EInu7DJ\nLmzyG4NyAuVMxsmLAliW2HGKV2R4RFhGhqYJsAToGYgERIi0dabIzJa7GafVXq/2veKnR+lA6eDH\nQQW+Pmrupn3+qeulvC//KmeAAXEOFzUwapQTh7jlsGh1SBouSemQljZJZpOfFhRnsSyHWswhWoBY\nyebgszoUMD/v8vbsiPjMxTfarI7aLFsNjLRAz0qMrOTs4IDTzj1Olvd4e33E9ekO5WtD9gK8Ajpw\n83DIvwS/JcGhXS6o7YTU7IjCNUm6Lmnm8mZ+xKuzx8RnLjzP4CKQ9c+UcG3IT6SRIY836yaUQk4k\nCnKYZTBJ5PgkVtz2Mgq5nUqkUvZ/XigdKB383NnMXIyQzrYjJ5GeNEFvEo89Lvb30Q8Krns71K2A\nuhVQlAZXwS6X/i6j6YDlaYd0bKPrJe5ehDcMaW4tGTau2a7f0HIWxLlHlLsEUYPri12uL3eYXnTg\nrAanPbipemlUpV2bRmdlcOrr7xP5q9yB2AShI147lDhw47Aw+5yagthscDZY0dhe0Rz6eFmE50R4\n+xFJ6hCdeURvPLrtKcP+DcPeiGZtScPy2U2v0S1obIXsmpccdx/y5uAhx8+OCESdwjAoXhos2x1e\n9474f7b+C1v2NmZ9gnE4JdE0rjpNbjoNTuuPeG084vLsgNlxj/DaofBzyGJZXic2M0m/y/hTmvjh\nUDpQOlD8aarXvNKJjsw6nMjf5T4sHNnDLrSlDdA0wdLX2ekF+BqMXQhcSkcnTOtM4y28NGbZ65B+\n7mC40H0Hh2+hM4Gtp+A+08geG4TbHkujzWzep6ibGM9yWr0ZjzrHPGq/4aH2Di0o0BYl5CUzusx6\ncl0Ve1wWe1xme9QeBbSfzmg/nbNbu2TPvmJ3eomhFe+f7Y025GJ3l8veLnaeMJoO+P3o73ny1uaL\nxKe3+w7DTegHsi2d1zTwehbRtkXgeqRzi3KpgV/K0unyuzIVyztLZTB+/CgdKB38MKjA10fLprP/\n5zZl5fCvKQ0QJcQpnHdhDuK1SezY5K6Nb0OR65SFTplrlKGPCGMI/fWkhzmwgqgGWRd86fAnZw7X\np7usGm0Wj1rM/6aBVeYYIscsC47FEW/EE14vHrO8ahOcNiheG7dDLeowWm2T4HLceESzvaSxu6Tx\ncElaOARpiyBtsrxuM3/eJv7ShZMIrnxIJlAWcG3BwgLLBnO9hFg3rk0gjSAOIK2a196dWLFZy6z4\n+FE6UDr4FPguh1+WyHKiwcQjfudxcbjP/H4XZyvG9HJML0cUOtHEJRp7JAuXLLTIQhu9XuLei2j+\nds7w8RVPzRc8NV+wY1yxLFssRYtxPMC6yAgu60zf9cCpw8qEG2/9eELk3rjLZtlBAqSQmzKTMhWI\nNx3EjYn4g83c7BMZDUbGLubjDOtpjvkkw+xmGK0MYyuneGtQnFkULywGj2/Y+V/O2X1yzjP7JZ+L\n5+xl12xZE/a3zvms/xX/eu9v0eKMUdInPbPgjU35wmQx7PC6+YhyCw72B+zdf8te8I4cg4U9YG4P\nOPEf8ubqERdnB0zfdMivC/IghzQBkcnPhA/ej7tOvtLED4fSgdKB4k+z+R5kd76PIV/AsibtkrEn\n/++3bNlcu1j3zst1SEqITUrLJUzrZJGNlRUs+x2SmoOxB90ueBZkdTA/1zB/qxF9bhAVHsu8w2y+\nhdOIcDoR9V+teJZ9w39L/yf/mP6z1OwcWAjOd/c429vjfHeXr4tfk+QuV+ketWcBg1/fsPvFGb9a\nfcsXs2/4YvotlsjeP9sXrcd8tfs5X3U/Y3w8ZPzNkFdffYaxKniUnNDbMWl5kE+h0CBv6eQ9m2in\nRiA80qWFCHRYiT/h8H9Xdrva3x83SgdKBz8MKvD10fN9NmWVll9tbl0aNXkOy1ImeiDITYvcMEE3\n1x8KQFkiHeKqHKqa9uDLedvZCuKA+Nokftti1umh72cUexpxx8bUM0xyTK3gZPaA4+kj3k4fURwD\nZ4XsL1QCtly+aeK7Qy7cHbydkHpvRaO/Ik0c/HmLYNGkeKXDywJeZDDywV+s1V5AZoFv3d4hzvr5\nV+NwQ26nEW02aK0+AJSz//NE6UDp4OdMZXTAbd8gAZkGcxPmNvmiyTI2WQZt6Hegtk7bLzQYazDS\nIdLkz2s6Xieluz1l//CUw/tveBw852H4DdvxJaHeJtTbTKxt0r7LwumwqLXJphbpiU3uWFAsoWzI\n9X5YhH7ncee3qyyhjOR1JhZMPAQFsW4T6y4LQ4dEu7WztnMYZlJjM0PeZmwS7zjYRUzHmZJlUMwS\nxGxBTc+x7Cld22JVs7joDTitH6AVgtW7DsuJTVjWudjeI5mZ+N0aieVB36MUBjdiwE25zXm8z/nN\nHvNXHaLXNtwEEAZQVoHfqoTtl9XX4uNA6UDpQPH9EHxoz6wP9soI4ppcVFOuHWTmYrVPq751OiLX\nyJYG2aXH/KzLdWOHk+Z9Xrceo8cFelqiNQXpkUl6z2A+bHF+fcB02iee1fD2A5oHS4bDK+6dH3N0\n8S1Pz/9NmiITyGdgmVNqgynt+pRVv8353j0IBI2HPjv3L3ly+IJHx1/z4Oxr7r39CjPP3z/L5GFM\nNBSkuyAmOpN8wMXogAvuM24fsGzvYQYu2qREnwjiwxqzrTYzr81JcI/Zqkt+ZcKohFWGnNqa8GEw\nt9rnyub5+aF0oHTw10UFvj4JNutzq5PUzbTGBFhCaQKGvCzFOtW95Ha0d7ixYnkbxiAMmNThZQPi\nBsGwxs1gm2xgYegFul5iaCWT+RbLWRsx0+DtumQs8+XfqezdKwdMF1YeeQvihoOo6xS5QRqalFEB\n1zGcxTCJIFxANkX2o9gcd2sgt6/J7QdjVQteOfnrE1pV1vULQelA6eBjZfPELUfuTbjNKMnkcePC\nAs2CpQm2BpYmMxd9UwY6DRN6JhxYOA8SDrtn/Jbf82T0JbU3V7hvLklvFnh2RNte0Kv5RFsN4i2P\nck9jst1n2u+z6DQgdiFqQZpxazQ6dx5ztXeSjZ/FSJ04yAYZLghHrgVwtr7aSQ71BOoxCFs+9XsG\n3cGCx84b/kvyO/oXbxDPb3jzbYGdl1hGjm0KrPszdj97y9981qapBZzoR0R6g2xh43/bQkw1yqZF\n6La4dvcR6CyzJqusxWzUZn7SIjsBLiIYLSGdIftcrLgt9VXB3x8fpQOlA8X3Y1Mr8N0TrgPklOtq\n0nX1OwO5X1NZ2npZhz/USXKH1wdH/F/7/zvn/T2cToL9LMY8yIj6HpHushy1+Ob4C65f76BdCtrJ\nkv36OQ+2XtO9uqT8V5/Rv8oYauDLuTm6FuK6Y44aGcfhUxq1AO0A2lsLDmsn/IY/0JqdEL6e8e3v\nSvSNxPwwXdHonfKrR4LM8Rg3tzEGBfNam1e7j/gfu/+VTj7HClIsP2O+1eV6uM1VtM3x9REn7+4T\nf+vAcSHbO2SVDXe3pYPi54nSgdLBXxcV+PpkuNuboWrWmiBPVZ116ZcBmrF2wquAQHW9KjpcOclL\n3kfPp32INbhwCTo18q7NvNNDMwSaLleycEnmDuVMg1UM/hyyyTrrZn3X1w1YteCdRmFbxKZDZnqU\nQjbtE3khJ+mFSwgWkC2gXC/yjedb9Xuq+m9sRrOrFM+70yqU6D99lA6UDj5WqiENVXr75hS1ALIa\nLDyIXJm2r+sybR8TMkeutgueAwcGzqOEe91z/k78nt+M/5n5VxGL/xGRPk9p100GNQNzMCf6+xrx\nwCHb1bGGR8RbHotOC5Yu5M11dXBjveobj1cgAxPh+tLnw+BwZWTKE1VKR0pFsM6urPomBXAo4IEJ\nR9AZzHnsvOEf4t+Rno0Y/b8Bb/57gRuUtHToaCXW30/Zs4+xH4KlCyKtwYVxQDit489axF97rLwO\n18093FaCALLIIost0qlJcq2T3QhYRBAvIZlyO9E0QWW4/JQoHSgdKL4flVY2nf9qwvX6AO/90rj9\nv9/kvcOfZnBZAhbpssab4BFTq8+/tf6GWndFfbDE0WP8dYuF1U2LxXGH+Zcd9OOSVn3J/r1znoiX\n9K6uEP/mM/4/YJrDNINZCftuyEErZ7+3YFsbUfdCOIDW1pLD+gm/0b5kNZ8yfeNz+juBiG+fYbu2\novf4nMNiwdLu87r1FH1QMO+3efXoCPGooGUu8PIIN4sZM+BEu89J/IDpdZ/luzbJcxfOfFglkFWH\nlncDu8ru+fmidKB08NdDBb4+Ge5u6OqDIUVufhNZ+mWAqIy0TSe5yhTZTIUMeD9VIwACA0YmaV0u\nGh7omvys0ZG1xasclisQC+TJ4pj3kfoCGXVfyr9T4lJik2NxW6aWI08j50gDrepNFPDv67y/i7uT\niTazgBSfPkoHEqWDj5PKaNvst7DOTixdiDy5sLk16BzeO+KeAbYFPYE5zOm6Mw6LU47mb3h7Bstv\nIPpX0OpQb0BzL2F4/5pt0WPc7jBv9XAaKdR1mZlCE0wTzanLZdXWoVS5v8rMpsxcRBZDYq5tyAJM\nU2bhmCWam6O7GZqXopslulWimyVFkpDHGUUsYFvI+EAHao2IvjXhkBNmyyXTM1h+BfkSXK1EAG43\novPbGVbhMmGPhuajU1IEGsXUIJlAYJnQqkF7/dKGAqK19uapnMqaLpD6mSHTcCL+fd8LxY+P0oHS\ngeL7sfn+VPZBddi1efBVXbfk1rUTUAhZYps65KHN2G4x9rrolqDRWlJvL3HdGH/exJ+1iG4a8Bo4\n1rBOU6xxRi0KaYklbhShT3OKc8gKORQ1LoFpiutndDKNmh1i2xlYYDkZdSOkw4wiDpjPU9IrQVEl\negLtaYYbBnRETkP3cawUzRX4Vo0zbUhc5DSsEM9J8dyESTDkdPaA0/l94tcOvC3gNIdxAHkIhc93\nO/yKnzdKB0oHfx1U4OuTZNPBrT4AqvKozcl4m9Hz75r0kCHT+eF28lEIubWeamR9+LkTl5CWIApu\neyTN7zyedH2fK6RRa3FbplXc/g0CpKNfnbJWp5N/zkjbzPZRBt0vG6UDpYOPkc3MvMp428xOrLJI\nqhLWGnJzefJS4zbIuq7gLSPIUogKCAREGSQRuIGgTEqMosDScgytQNNL6ay3bWjWQTcxtg2sYY65\nJR1rnRJNlKRTnWSuk03rcgLejQOjFtQd6MjMG3NHw97NsHYWOGaCbaQ4RkoQWPi+je83EF0XBhYU\nGqXQKEyNzDXA0XFNQQdBXYOeAT0dQkMn1k0yHFJhURSGfKnSDCIfgkC+Xokm5YGQmstK+eSjBMoq\ny3OB1Fm8fn2Vs/9xoHSgdKD4/oiNS23jUkO+l5sZMSDf5/UghsyUffGmObx2IXURZzapZ6J7dTLL\nIQkcikCT/YFGOiwMhKkRGw5Lrc1Y26JZH+MMbbbug+NDy4dhAP2mjjswiA8M0tikiHRYQOI4zFtt\nrthBsyb0anOa7QSc2z1n1h00u81IazMreoSJh/A1koXG6spA/IvF0m5i2ya2ZeJHHZaLNsXShLMU\n3gZSB/kUihnSZqr6maosl08PpQOlg78MFfj6JNl0eqsslk1Hf9Phry7Fne/hthShKpUKgblsrF3a\nkFof3l1RyAau73t3VOUBm2KrpidVJ7nVae7mY042VsqHU+jgz4v37vNQ/DJROvh+11P8+NwNSubI\n97janwa3PSsypLNfgqbdZhcavHf4ReXwl3KadZjJ+KsXgIhL9CLHIsPQcnRdgKlBzQbPQGs5mE9T\n7GcJzlGKSY5BgV6UBKd1ytMa2UkdXriQNGGUQ92AoQF7BubnEe7nEbXPQ+pGQF2Ta7LoU8y3CBZN\nRGZJw7OAUmjkpk7q6WiOjmuWdDVBQ5cOf98E3dSY6xapZpMKm7w0ELkGaQrxCoIxZJkcV26sSxvK\nHMoCivVk0yLhQ/1Vzr4q7/p4UDpQOlB8PyqN3J1wrf2R6ybyd0JAqkNRyoBp0oLLNqKmkxkmpWmi\n6VCu5y/If0ypMU8j0V2WWouJtsV+vYkzdNh6AK0RpJrUm97QMbZMogOL9MakCHWYQ1x3macdrsQO\nA6ukV0votZfo7u3jnzccpk6bkbbDNO8RJTXKQCe91lnODKKZiW46GF4bvdYiiz0S3yFfGbCKYLUE\nf91dXMxBVMMbqn2u9vinhdKB0sFfhgp8fbL8NaK71SSNqv9GBKygtOTK7O+4frU2HfXNx1Ed0W5e\nVg7/ZuZNdT/FxlIo/qMoHSg+Vqr3uDLiqp+tewVRTe3UeX9yJ4p1NoegDHVi02VhtphbHeJWij5M\ncQ9ydF0n1zXiLZuw6eEbDfysSZx55KkJBZiNEnOnwN7PaD2Z034yo/lwgSlyzDJHL0rmTp95vce8\nWZJmNunCIb1uoQ8LjMMC41FB95lP/8mI3uMRjdKnmfs0cp+b1g71YYqTQDhtEE08oolHjMvU6HJm\n72M2HbJBjHsY4YYC05SNzNPtNstaj1G+wzTuEYZ1ykCHIJddZJMFJBsNMj7Qyrqnxwe9+jbLupQB\n+HGhdKB0oPj+3LVnvsu+Ecj3e21LFJo8kEszCAsYyfe/wKR4f+i2tm+0EpoONF2EbRAlDjO/y9Vi\nl33zmsXwivDZADolelPgtEqC/TrBVo2gWePmZojv1+ESAqfBdWuHN/1HCMPE62uYRzlmemvHpMNt\nJs4h7+J7XPp7LOctyqlOcSYozgXxGaDpULehVpMHjmEps1vKJbJ8d8JtRuPd8i7Fp4nSgdLBfw4V\n+FL8CTazT6rvK6OqMqQ22XTON531zQ+kyrgtuK0N26zLrv7m3f5ECsVPhdKB4ofk7r6oLjfLwNbN\nsbMazA04c8gaFtfbA55vP8ZsLSEaseXcsP14ScOyMCybVavD5Wf7vG4+5Rv/C64We/izBvqipPFg\nRevenO7nU+55Z9xbnrD37QV6WsrR3jlcmdtcu9tcP97mZrXD9XKH0Wob91mM97lP7fOAR/XXPIpf\n8+jla7xVhLOMcZcJ036P8XCL8WCLd/lD3oZHHBtHjPU+X2lfYJKwtX1K8+8uaVlXREmJMExCw+Td\n/kO+Gf6Kr8Nf8W78kNHNkOzKgkkq03iKBGnYbWrsbp++7M7vVKr/x43SgdKB4q/DXc3oG99nvM9a\nf3/gpnO7XwRkHQjblEaD4NJldDyg6JnU4hSxreM3G1iLFGuRYq4yxk8HjHoDRsGAb26+4OLtPuJr\njVna5Y3+mMyxGBvb3BxtM/IGGMXtgJ7z4T5vaw94N7rP6dl9RqdDircmXJewSqEIQUsgKUCEUOgy\n6C0EsoR3jnT2A+Sh5GaGi9rnv2yUDpQO/j0q8KX4E2yeCm724dj8kNikvLPulo5V19ksNftj6al3\nl0LxU6F0oPgh+WPv7WbWX4zsKxfA3IazGmnd4qY14HntCfp2wqH7kvu7AYPVitS1ydw6c7fDlbvP\nK+8pX/u/JlrWCac19HlJ01myfXjJwW9O+WL0Nb+++Yank5dooUALBWWqc3J0wMnDA97du8fz1eck\nC4fRchvnWUT7b+Z0/3bMs8m3/N349/z9+f+HdZVhXBXoVwXL3zRZuE0Wj1v8Lv2vZHObE/M+Y32L\nr7UvmNDh0fZzHv/dtzx5CJQFgeZQag6v9cd8bfyaf4l+y3g8JLipk19aMCkhyzcc/qoMON94HTeD\nxXc1qPh4UTpQOlD89bj73ld9RUOkg+wgbZfq4G0dHBUapAkUGqK0Ca4csjcDVo0uYqATbNe42epT\nS0NqWYibhpy4D3nnPuAkeMBs1GP+tisdftEjc2yu6zvc1La5ORow+qyPoW04/Nk93qZHvBs9ZHHe\nJjhpULwzYF5AkkIZysefhLKMqxRQlshp3NXzqfqfVgeRytlXVCgdKD5EBb4Uf4bv6hNUNRC86/Df\nzYz5U/enUPycUDpQ/NjcPa0MIfdh4cFFRuYZjAdd3hw+RBuWmC3ouxldYbNyGiycBhfGDqeLB5wu\n73NxeU9mwkdgaymN+ort4RUPDl5zNHvOo/GXPPnmOSIAEUCR6diNObUHMxr9BeGwweXeAUzAPYxp\n35+x/fCSg/AdjxYv+PzbPyDOBMU5FGfQqzmkD1zS0mVu9HhpP0N3S1Zli2ypc3PeI3UsrDq02hkG\nBTEusXB5uXjC68ljjiePCE5qcFXKhrR+jDTyYvlE3n9d3HndVCnXp4PSgdKB4j/O3czxDKmfdbNv\nDG4P3db94aoM9MKCwoXSI7nxSN56+JaNVubEbZup16buBTQ0nxohx8Ejjv1HvL16BG9LeFfCu4TQ\ntQm9LXCGxPs24a7LqlfHMG4d/qvRPmejQ86uDsmPDTgv4CaFKOTWmU/XiTjaxvOpguGbJbyqHYTi\nLkoHig9RgS/Ff4LKab9rUClnXvFLQulA8UOy2ettPZktt2DlgVGj0D0Wbp2Lco/82iFwOpw79+na\nMyLNJdIc5lmHlzdPmV734Qo4BxzQH5S0Bit2a5fcL45xZyMW7yJefSl7YhcJ5ELAoU99MuLIF5yI\nxzRqIQzAbcV03Tm7XNFYzClOYmZ/gGgCwQz8BdRHBY2zlMZrgUuCSY7WFxQrg/QPFmLpcF3b4ZtW\ngd9qo2mCTFjkpcnVdJfRzZD82oLjDM4CSANgjDylrVL5N0u47r52ik8DpQOlA8Vfxt0A6GaLhbvT\nrQ1k6dRMDmJYtOCkBWmdaG4yO2+TP7dw9QRHj7H1lPFqiL9qySELrxN4F8oedJcu6B4sXaKBy3hr\nQDEw0PXbx7KYdfDHdcqxgJMQrgNZ1sUIWb4V8mGP1OpQsXL6N5fa74o/hdKBQgW+FP9p/lhJgkLx\nS0LpQPFDsFneWjn8IRQmrOqQhOSxyVLUSfwas8sh5/1DvuyHOM2EPDMoMoMksFm867B424FrZI9w\nB/RhSXOwZNe74n75FjEbsXwXsvgK0hLSAgpDsPs4YGeS01+FfC1G1GshDARuK6Zjz9nhivpiRnka\nMf8DTCMYJzBJYG9c0rGpTAAACrJJREFUcHgOwzcFXifBqhfQFxQ3GuIrk/z3DtfNbfydNme7R6BD\nWWiIQicc1/AvmuQXJsxCWCwhnQBTYMmtw785qnvztVN8GigdKB0o/nKq1gpi4+vN9gqbbRdKZJ8g\nE0QB8xxSEBOD6MKkeNkh6HQxzOL9ipYe8dKTPbUXCSwXEM7gqgUrAacWYdujaJus2m20jST5dGWS\nLGzEQsAyhNUM8gmyWXcV3K32991eq5vZ9aqMV/HnUDpQqMCX4i9CiUuhUDpQ/HBUBk0KaPLkMVpB\n5FHGJmHpEfp1ZhMHdoBdDTrauvpJSN/4WMBxCeMYDgw4MNB6AquR4dkhDeETJTHRKieaQiIgKWWW\n/1aQYyWCVi6oiRjTzNFc0O0Sy8hwSNDznDIuSX2IMvALWAjoZJBFAs0XaC5oHmCB8DWKNzrFP+nM\nG3XmBy24Z94OVMqBiYBLAZcppCuk8TdGnnyueD/dT43p/oWgdKB0oPjL+HMOcdW2oUQKBxA5hBqE\ncvJ0NvLIXBdcTw5bNZGXK6RjvwqRYpsBIzk9by4AndSzSOsmq7r7YawhKiAo5HQ6sUDWId+s7zTg\ndjKdKt9S/DVQOvilowJfCoVCoVB8dFTGWdXDQUMaYgtk/4kUwhpMa5C7EJgwMcAzIBNy4k9UwiiD\nRSZTWKIm+A3KpY4fNbjJh5zr92i0oL0bsvd4TpZBnsrJ3/WBR9xpcNLoMJ72CGMXMdUIt2qM0gFv\neUBta8bes3M6/yuYS6itoL+C5gMb/chlfOSyMJpEhYO40mRj7jAFEUNcSOdeCNDF+jBTwKqQkYOy\n4NaAnCENwJhbA1AFnT99lA6UDhQ/DlWAOePWK9eReyyG3IHEBeHKGLShga5BXEqdUXI7XW6+vp8Y\nWMkIcmyBMEHb8PjTHLJq8uhyfdsVt0Mb1B5X/NgoHXzKqMCXQqFQKBQfHZsnk/nG1+uR20UIQQ3S\nuux3NHbAtsG0pKNclpDnEEcQRfL7aAC+RbmqrR3+bc70exy1Qjr7Yw4fQxnJVeQaq60aq26fq+YO\nY71HFHswhcCvc5MOgYK9/jk8q9NBo3kj6F9DegPJA5vkYYPJ4zbzeYv4unL4Cwgz+UeiBMoMgvUE\nIrF2/rMM0hSKDOnkVyvmj5d2KT5NlA6UDhQ/PJXONG57CVXZJTGwhMIB4UBuS6dd1+VlnkNRBaar\nRtzV5Qpw5W2EJfvzbaa6lJnc3yJbX79am8261R5X/FgoHXzqqMCXQqFQKBQfLeXGZWWUZTJTJAnl\nwlsvF5lzXxlqGdLwCsAoILJh1aac1/AXDa6X29TDFR0n4GBnjvXZHALQAkGZ6kyGO9zU93nHPa7i\nbfx5A64gGnpMJz2ymcGNucdsd5fA3ca4yNG7Aq8tCO93me30GXV7XC+H+MsG4lSH6xT8RI7nTtdr\nFXF7mrl+fiTfsVSq/y8XpQOlA8UPj0DuryrjpXLETShtKC1kk7yqJExbXz/buEw/vN3mbTP7zt/L\nNm6Tb9xH5eirPa74KVA6+FRRgS+FQqFQKD5qvqvcq0rHz5EnkQHSEDP4cNJPDCQgNJn1sowprZzl\naZ3LF7sUjkkZ2SwHLU6bB+hJiZ6UkMHFYJfLYo/zt3ucHD9g+roHryDTbcK0gVjovPSeYriCcaeP\nbaRY7RTrIGPe7jCjx/S0y5vXj7n6dpfiSwNOc5hFUC6RU5PWAYkPAhpVsKIy/qqvVar/LxulA6UD\nxY/Dptbgtql2tRe1jVXpsbjz9d2pc5Vjv8nmHt908lV2i+JjQOngU0MFvhQKhUKh+Kj5rnKvyrCK\nkf+VG+vLqjFruXGdXPaUiEMoYsoiZ3VSJ+vYLK0eq2GLy+E2L/qPMYscs8jRc8F1tMNNtMPNu21W\nxy2Wb1rwGrLURix10huXl0dPGR/1+Xr3GV4nwisjPBGxCtssgg7Lsw7z1x0WzzsUX+owy8GvHP4l\nt+VbmwbeHxvVrYzAXzZKB0oHih+ezXKvzQl4lY6qDJeKTZ1tTpirfqYhdamvL7lz22LjPsSdpVD8\nVCgdfIqowJdCoVAoFD8LNsu97p446htfbxpca8NJ2JCFkIWIPCK8dAnrNea6yVKrc7U1oNFeYpFh\nkWOUBdPTLaazLWYnW3Ii3mkJ5wlFplH4BoxMwnKP88YO7JfU3ZBaLaDuBIRxg2DeJDhtIV4Br0t4\nk0MSgQhALJF9L3xuHf7vYvN5KBSgdKBQ/BjcdboL/r2zX13vz+3NKkNT/0/cVqH4KVE6+JRQgS+F\nQqFQKH423DXANp187c51xJ3bhcAESgPmDTitIzKPdC4ITzzKfzUxtAJDK9BFiT+ukYx1GEVwEsvS\nLGKIDZibUJrwtY0ILLQzm8x2iE0Qlkkys8gmIKYRnKYwSqCIQYxBTJFOfsRtg+4/5vArFN+F0oFC\n8ePzXRko3ycrZTOLUaH4uaN08HNFBb4UCoVCofjZcNeZ3zx11L7jepsBgRCYyslDiw5kGWIqyE5N\nRMMjqTfR9BJdF2iaIA0gC4AggeUCVusR3bEjm7SGDoRNOG8hvvTIdQehm2S6R5EUFHEBcQwrH1ZL\nyFcg5sgR3z6yUfefm0ynTkAV34XSgULx47JZ+nX359/39t/nZwrFx4zSwc8ZFfhSKBQKheJnxd0M\nlj9FlVZfIjNLAJGCX4Avjbdcq5NrFmj2bQsKHZmZkq8zVJgBY2ACqQepC7gwFUhTwqVAo3h/4xzp\n0EdIB3+2XlVJV8SHjVwViv8oSgcKxY/PX+KkKwdf8amgdPBzRAW+FAqFQqH4pNmcfJesf2asf56A\n8IC1A19qt1cvUxkcIEE24F4is2U2nfkc6cDP+XDCUXW7ZP17f70ibkd2q+l0ih8TpQOFQqFQKH6p\n/P/t3dFKwzAYhuG/U/H+71VRpls8aKOh9FA3+fI8ELpJCzsJmJe2Eb4AINb43omP+tkJr9W68H6p\nqqf1pd/1WHU5VS3LOtq56tq33n6vdfHej333vNeqeq41GIwL/v7S8R4H+jhvf7c7HbdkHgDAzIQv\nAIg37nD3uY23Wv8N2J7rav14tGjvC/RxR6P+ONfDNsad9S67a46+w62ZBwAwI+ELAKbRF/2X4fO4\neB/vVhkX6t/PfQ3XjIv7ZTf6efvr3N3Cf2AeAMBMhC8AmMK4E17flajfcTIu1mt33nX3vYbz9tct\nB+e2gwH3Yh4AwGyELwCYRtsdPWrFjMwDAJjJ6d4/AAAAAAD+gvAFAAAAQCThCwAAAIBIwhcAAAAA\nkYQvAAAAACIJXwAAAABEEr4AAAAAiCR8AQAAABBJ+AIAAAAgkvAFAAAAQCThCwAAAIBIwhcAAAAA\nkYQvAAAAACIJXwAAAABEEr4AAAAAiCR8AQAAABBpaa3d+zcAAAAAwK9zxxcAAAAAkYQvAAAAACIJ\nXwAAAABEEr4AAAAAiCR8AQAAABBJ+AIAAAAgkvAFAAAAQCThCwAAAIBIwhcAAAAAkYQvAAAAACIJ\nXwAAAABEEr4AAAAAiCR8AQAAABBJ+AIAAAAgkvAFAAAAQCThCwAAAIBIwhcAAAAAkYQvAAAAACIJ\nXwAAAABEEr4AAAAAiCR8AQAAABBJ+AIAAAAgkvAFAAAAQCThCwAAAIBIwhcAAAAAkYQvAAAAACIJ\nXwAAAABEEr4AAAAAiCR8AQAAABDpCyW0lI29WitiAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=[15,10])\n", + "merged_maps=merge_compare_maps(maps_small, maps, num_samples=9,scale=scale)\n", + "plt.imshow(merged_maps.astype('uint8'))\n", + "plt.axis('off')" + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "metadata": {}, + "outputs": [ + { + "ename": "RuntimeError", + "evalue": "module compiled against API version 0xb but this version of numpy is 0xa", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;31mRuntimeError\u001b[0m: module compiled against API version 0xb but this version of numpy is 0xa" + ] + }, + { + "ename": "RuntimeError", + "evalue": "module compiled against API version 0xb but this version of numpy is 0xa", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;31mRuntimeError\u001b[0m: module compiled against API version 0xb but this version of numpy is 0xa" + ] + } + ], + "source": [ + "import tensorflow as tf" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/MakeItTalk/thirdparty/face_of_art/old/main.py b/MakeItTalk/thirdparty/face_of_art/old/main.py new file mode 100644 index 0000000000000000000000000000000000000000..72e4bb52462d08630b876d344720a78ce937c148 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/main.py @@ -0,0 +1,46 @@ +import tensorflow as tf +from deep_heatmaps_model_primary_valid import DeepHeatmapsModel + +# data_dir ='/mnt/External1/Yarden/deep_face_heatmaps/data/conventional_landmark_detection_dataset/' +data_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/' +pre_train_path = 'saved_models/0.01/model/deep_heatmaps-50000' + +flags = tf.app.flags +flags.DEFINE_string('mode', 'TRAIN', "'TRAIN' or 'TEST'") +flags.DEFINE_string('save_model_path', 'model', "directory for saving the model") +flags.DEFINE_string('save_sample_path', 'sample', "directory for saving the sampled images") +flags.DEFINE_string('save_log_path', 'logs', "directory for saving the log file") +flags.DEFINE_string('img_path', data_dir, "data directory") +flags.DEFINE_string('test_model_path', 'model/deep_heatmaps-5', 'saved model to test') +flags.DEFINE_string('test_data', 'full', 'dataset to test: full/common/challenging/test/art') +flags.DEFINE_string('pre_train_path', pre_train_path, 'pretrained model path') + +FLAGS = flags.FLAGS + + +def main(_): + + # create directories if not exist + if not tf.gfile.Exists(FLAGS.save_model_path): + tf.gfile.MakeDirs(FLAGS.save_model_path) + if not tf.gfile.Exists(FLAGS.save_sample_path): + tf.gfile.MakeDirs(FLAGS.save_sample_path) + if not tf.gfile.Exists(FLAGS.save_log_path): + tf.gfile.MakeDirs(FLAGS.save_log_path) + + model = DeepHeatmapsModel(mode=FLAGS.mode, train_iter=80000, learning_rate=1e-11, momentum=0.95, step=80000, + gamma=0.1, batch_size=4, image_size=256, c_dim=3, num_landmarks=68, + augment_basic=True, basic_start=1, augment_texture=True, p_texture=0., + augment_geom=True, p_geom=0., artistic_start=2, artistic_step=1, + img_path=FLAGS.img_path, save_log_path=FLAGS.save_log_path, + save_sample_path=FLAGS.save_sample_path, save_model_path=FLAGS.save_model_path, + test_data=FLAGS.test_data, test_model_path=FLAGS.test_model_path, + load_pretrain=False, pre_train_path=FLAGS.pre_train_path) + + if FLAGS.mode == 'TRAIN': + model.train() + else: + model.eval() + +if __name__ == '__main__': + tf.app.run() diff --git a/MakeItTalk/thirdparty/face_of_art/old/main_fusion.py b/MakeItTalk/thirdparty/face_of_art/old/main_fusion.py new file mode 100644 index 0000000000000000000000000000000000000000..3b0c45cdc3811c3926ea651114fc956fb5901fc0 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/main_fusion.py @@ -0,0 +1,122 @@ +import tensorflow as tf +from deep_heatmaps_model_fusion_net import DeepHeatmapsModel +import os + + +data_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/' +pre_train_path = 'saved_models/0.01/model/deep_heatmaps-50000' +output_dir = os.getcwd() + +flags = tf.app.flags + +# mode and logging parameters +flags.DEFINE_string('mode', 'TRAIN', "'TRAIN' or 'TEST'") +flags.DEFINE_integer('print_every', 100, "print losses to screen + log every X steps") +flags.DEFINE_integer('save_every', 20000, "save model every X steps") +flags.DEFINE_integer('sample_every', 5000, "sample heatmaps + landmark predictions every X steps") +flags.DEFINE_integer('sample_grid', 4, 'number of training images in sample') +flags.DEFINE_bool('sample_to_log', True, 'samples will be saved to tensorboard log') +flags.DEFINE_integer('valid_size', 4, 'number of validation images to run') +flags.DEFINE_integer('log_valid_every', 10, 'evaluate on valid set every X epochs') +flags.DEFINE_integer('debug_data_size', 20, 'subset data size to test in debug mode') +flags.DEFINE_bool('debug', False, 'run in debug mode - use subset of the data') + +# define paths +flags.DEFINE_string('output_dir', output_dir, "directory for saving models, logs and samples") +flags.DEFINE_string('save_model_path', 'model', "directory for saving the model") +flags.DEFINE_string('save_sample_path', 'sample', "directory for saving the sampled images") +flags.DEFINE_string('save_log_path', 'logs', "directory for saving the log file") +flags.DEFINE_string('img_path', data_dir, "data directory") +flags.DEFINE_string('test_model_path', 'model/deep_heatmaps-50000', "saved model to test") +flags.DEFINE_string('test_data', 'full', 'test set to use: full/common/challenging/test/art') +flags.DEFINE_string('valid_data', 'full', 'validation set to use: full/common/challenging/test/art') +flags.DEFINE_string('train_crop_dir', 'crop_gt_margin_0.25', "directory of train images cropped to bb (+margin)") +flags.DEFINE_string('img_dir_ns', 'crop_gt_margin_0.25_ns', "dir of train imgs cropped to bb + style transfer") +flags.DEFINE_string('epoch_data_dir', 'epoch_data', "directory containing pre-augmented data for each epoch") +flags.DEFINE_bool('use_epoch_data', False, "use pre-augmented data") + +# pretrain parameters (for fine-tuning / resume training) +flags.DEFINE_string('pre_train_path', pre_train_path, 'pretrained model path') +flags.DEFINE_bool('load_pretrain', False, "load pretrained weight?") +flags.DEFINE_bool('load_primary_only', False, 'fine-tuning using only primary network weights') + +# input data parameters +flags.DEFINE_integer('image_size', 256, "image size") +flags.DEFINE_integer('c_dim', 3, "color channels") +flags.DEFINE_integer('num_landmarks', 68, "number of face landmarks") +flags.DEFINE_float('sigma', 6, "std for heatmap generation gaussian") +flags.DEFINE_integer('scale', 1, 'scale for image normalization 255/1/0') +flags.DEFINE_float('margin', 0.25, 'margin for face crops - % of bb size') +flags.DEFINE_string('bb_type', 'gt', "bb to use - 'gt':for ground truth / 'init':for face detector output") +flags.DEFINE_float('win_mult', 3.33335, 'gaussian filter size for approx maps: 2 * sigma * win_mult + 1') + +# optimization parameters +flags.DEFINE_float('l_weight_primary', 1., 'primary loss weight') +flags.DEFINE_float('l_weight_fusion', 0., 'fusion loss weight') +flags.DEFINE_float('l_weight_upsample', 3., 'upsample loss weight') +flags.DEFINE_integer('train_iter', 100000, 'maximum training iterations') +flags.DEFINE_integer('batch_size', 6, "batch_size") +flags.DEFINE_float('learning_rate', 1e-4, "initial learning rate") +flags.DEFINE_bool('adam_optimizer', True, "use adam optimizer (if False momentum optimizer is used)") +flags.DEFINE_float('momentum', 0.95, "optimizer momentum (if adam_optimizer==False)") +flags.DEFINE_integer('step', 100000, 'step for lr decay') +flags.DEFINE_float('gamma', 0.1, 'exponential base for lr decay') +flags.DEFINE_float('reg', 1e-5, 'scalar multiplier for weight decay (0 to disable)') +flags.DEFINE_string('weight_initializer', 'xavier', 'weight initializer: random_normal / xavier') +flags.DEFINE_float('weight_initializer_std', 0.01, 'std for random_normal weight initializer') +flags.DEFINE_float('bias_initializer', 0.0, 'constant value for bias initializer') + +# augmentation parameters +flags.DEFINE_bool('augment_basic', True,"use basic augmentation?") +flags.DEFINE_bool('augment_texture', False,"use artistic texture augmentation?") +flags.DEFINE_float('p_texture', 0., 'probability of artistic texture augmentation') +flags.DEFINE_bool('augment_geom', False, "use artistic geometric augmentation?") +flags.DEFINE_float('p_geom', 0., 'probability of artistic geometric augmentation') + + +FLAGS = flags.FLAGS + +if not os.path.exists(FLAGS.output_dir): + os.mkdir(FLAGS.output_dir) + + +def main(_): + + save_model_path = os.path.join(FLAGS.output_dir, FLAGS.save_model_path) + save_sample_path = os.path.join(FLAGS.output_dir, FLAGS.save_sample_path) + save_log_path = os.path.join(FLAGS.output_dir, FLAGS.save_log_path) + + # create directories if not exist + if not os.path.exists(save_model_path): + os.mkdir(save_model_path) + if not os.path.exists(save_log_path): + os.mkdir(save_log_path) + if not os.path.exists(save_sample_path) and (not FLAGS.sample_to_log or FLAGS.mode != 'TRAIN'): + os.mkdir(save_sample_path) + + model = DeepHeatmapsModel( + mode=FLAGS.mode, train_iter=FLAGS.train_iter, batch_size=FLAGS.batch_size, learning_rate=FLAGS.learning_rate, + l_weight_primary=FLAGS.l_weight_primary, l_weight_fusion=FLAGS.l_weight_fusion, + l_weight_upsample=FLAGS.l_weight_upsample, reg=FLAGS.reg, adam_optimizer=FLAGS.adam_optimizer, + momentum=FLAGS.momentum, step=FLAGS.step, gamma=FLAGS.gamma, + weight_initializer=FLAGS.weight_initializer, weight_initializer_std=FLAGS.weight_initializer_std, + bias_initializer=FLAGS.bias_initializer, image_size=FLAGS.image_size, c_dim=FLAGS.c_dim, + num_landmarks=FLAGS.num_landmarks, sigma=FLAGS.sigma, scale=FLAGS.scale, margin=FLAGS.margin, + bb_type=FLAGS.bb_type, win_mult=FLAGS.win_mult, augment_basic=FLAGS.augment_basic, + augment_texture=FLAGS.augment_texture, p_texture=FLAGS.p_texture, augment_geom=FLAGS.augment_geom, + p_geom=FLAGS.p_geom, output_dir=FLAGS.output_dir, save_model_path=save_model_path, + save_sample_path=save_sample_path, save_log_path=save_log_path, test_model_path=FLAGS.test_model_path, + pre_train_path=FLAGS.pre_train_path, load_pretrain=FLAGS.load_pretrain, load_primary_only=FLAGS.load_primary_only, + img_path=FLAGS.img_path, test_data=FLAGS.test_data, valid_data=FLAGS.valid_data, valid_size=FLAGS.valid_size, + log_valid_every=FLAGS.log_valid_every, train_crop_dir=FLAGS.train_crop_dir, img_dir_ns=FLAGS.img_dir_ns, + print_every=FLAGS.print_every, save_every=FLAGS.save_every, sample_every=FLAGS.sample_every, + sample_grid=FLAGS.sample_grid, sample_to_log=FLAGS.sample_to_log, debug_data_size=FLAGS.debug_data_size, + debug=FLAGS.debug, use_epoch_data=FLAGS.use_epoch_data, epoch_data_dir=FLAGS.epoch_data_dir) + + if FLAGS.mode == 'TRAIN': + model.train() + else: + model.eval() + +if __name__ == '__main__': + tf.app.run() diff --git a/MakeItTalk/thirdparty/face_of_art/old/main_fusion_server.py b/MakeItTalk/thirdparty/face_of_art/old/main_fusion_server.py new file mode 100644 index 0000000000000000000000000000000000000000..213fbafc276b681a2b42d73dd4a6f4a48d4c19be --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/main_fusion_server.py @@ -0,0 +1,92 @@ +import tensorflow as tf +from deep_heatmaps_model_primary_fusion import DeepHeatmapsModel +import os + +# data_dir ='/mnt/External1/Yarden/deep_face_heatmaps/data/conventional_landmark_detection_dataset/' +data_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/' +pre_train_path = 'saved_models/0.01/model/deep_heatmaps-50000' +output_dir = os.getcwd() + +flags = tf.app.flags + +flags.DEFINE_string('mode', 'TRAIN', "'TRAIN' or 'TEST'") + +# define paths +flags.DEFINE_string('save_model_path', 'model', "directory for saving the model") +flags.DEFINE_string('save_sample_path', 'sample', "directory for saving the sampled images") +flags.DEFINE_string('save_log_path', 'logs', "directory for saving the log file") +flags.DEFINE_string('img_path', data_dir, "data directory") +flags.DEFINE_string('test_model_path', 'model/deep_heatmaps-5', "saved model to test") +flags.DEFINE_string('test_data','full', 'test set to use full/common/challenging/test/art') + +# pretrain parameters +flags.DEFINE_string('pre_train_path', pre_train_path, 'pretrained model path') +flags.DEFINE_bool('load_pretrain', False, "load pretrained weight?") +flags.DEFINE_bool('load_primary_only', True, "load primary weight only?") + +flags.DEFINE_integer('image_size', 256, "image size") +flags.DEFINE_integer('c_dim', 3, "color channels") +flags.DEFINE_integer('num_landmarks', 68, "number of face landmarks") + +# optimization parameters +flags.DEFINE_integer('train_iter', 100000, 'maximum training iterations') +flags.DEFINE_integer('batch_size', 10, "batch_size") +flags.DEFINE_float('learning_rate', 1e-6, "initial learning rate") +flags.DEFINE_float('momentum', 0.95, 'optimizer momentum') +flags.DEFINE_integer('step', 100000, 'step for lr decay') +flags.DEFINE_float('gamma', 0.1, 'exponential base for lr decay') + +# augmentation parameters +flags.DEFINE_bool('augment_basic', True,"use basic augmentation?") +flags.DEFINE_bool('augment_texture', False,"use artistic texture augmentation?") +flags.DEFINE_bool('augment_geom', False,"use artistic geometric augmentation?") +flags.DEFINE_integer('basic_start', 0, 'min epoch to start basic augmentation') +flags.DEFINE_float('p_texture', 0., 'initial probability of artistic texture augmentation') +flags.DEFINE_float('p_geom', 0., 'initial probability of artistic geometric augmentation') +flags.DEFINE_integer('artistic_step', 10, 'increase probability of artistic augmentation every X epochs') +flags.DEFINE_integer('artistic_start', 0, 'min epoch to start artistic augmentation') + + +# directory of test +flags.DEFINE_string('output_dir', output_dir, "directory for saving test") + +FLAGS = flags.FLAGS + +if not os.path.exists(FLAGS.output_dir): + os.mkdir(FLAGS.output_dir) + + +def main(_): + + save_model_path = os.path.join(FLAGS.output_dir, FLAGS.save_model_path) + save_sample_path = os.path.join(FLAGS.output_dir, FLAGS.save_sample_path) + save_log_path = os.path.join(FLAGS.output_dir, FLAGS.save_log_path) + + # create directories if not exist + if not os.path.exists(save_model_path): + os.mkdir(save_model_path) + if not os.path.exists(save_sample_path): + os.mkdir(save_sample_path) + if not os.path.exists(save_log_path): + os.mkdir(save_log_path) + + model = DeepHeatmapsModel(mode=FLAGS.mode, train_iter=FLAGS.train_iter, learning_rate=FLAGS.learning_rate, + momentum=FLAGS.momentum, step=FLAGS.step, gamma=FLAGS.gamma, batch_size=FLAGS.batch_size, + image_size=FLAGS.image_size, c_dim=FLAGS.c_dim, num_landmarks=FLAGS.num_landmarks, + augment_basic=FLAGS.augment_basic, basic_start=FLAGS.basic_start, + augment_texture=FLAGS.augment_texture, p_texture=FLAGS.p_texture, + augment_geom=FLAGS.augment_geom, p_geom=FLAGS.p_geom, + artistic_start=FLAGS.artistic_start, artistic_step=FLAGS.artistic_step, + img_path=FLAGS.img_path, save_log_path=save_log_path, + save_sample_path=save_sample_path, save_model_path=save_model_path, + test_data=FLAGS.test_data, test_model_path=FLAGS.test_model_path, + load_pretrain=FLAGS.load_pretrain, load_primary_only=FLAGS.load_primary_only, + pre_train_path=FLAGS.pre_train_path) + + if FLAGS.mode == 'TRAIN': + model.train() + else: + model.eval() + +if __name__ == '__main__': + tf.app.run() diff --git a/MakeItTalk/thirdparty/face_of_art/old/main_primary_server.py b/MakeItTalk/thirdparty/face_of_art/old/main_primary_server.py new file mode 100644 index 0000000000000000000000000000000000000000..c51e416da4612ddafad84954143de980e6ba41c2 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/main_primary_server.py @@ -0,0 +1,89 @@ +import tensorflow as tf +from deep_heatmaps_model_primary_valid import DeepHeatmapsModel +import os + +# data_dir ='/mnt/External1/Yarden/deep_face_heatmaps/data/conventional_landmark_detection_dataset/' +data_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/' +pre_train_path = 'saved_models/0.01/model/deep_heatmaps-50000' +output_dir = os.getcwd() + +flags = tf.app.flags + +flags.DEFINE_string('mode', 'TRAIN', "'TRAIN' or 'TEST'") + +# define paths +flags.DEFINE_string('save_model_path', 'model', "directory for saving the model") +flags.DEFINE_string('save_sample_path', 'sample', "directory for saving the sampled images") +flags.DEFINE_string('save_log_path', 'logs', "directory for saving the log file") +flags.DEFINE_string('img_path', data_dir, "data directory") +flags.DEFINE_string('test_model_path', 'model/deep_heatmaps-5', "saved model to test") +flags.DEFINE_string('test_data','full', 'test set to use full/common/challenging/test/art') + +# pretrain parameters +flags.DEFINE_string('pre_train_path', pre_train_path, 'pretrained model path') +flags.DEFINE_bool('load_pretrain', False, "load pretrained weight?") + +flags.DEFINE_integer('image_size', 256, "image size") +flags.DEFINE_integer('c_dim', 3, "color channels") +flags.DEFINE_integer('num_landmarks', 68, "number of face landmarks") + +# optimization parameters +flags.DEFINE_integer('train_iter', 100000, 'maximum training iterations') +flags.DEFINE_integer('batch_size', 10, "batch_size") +flags.DEFINE_float('learning_rate', 1e-6, "initial learning rate") +flags.DEFINE_float('momentum', 0.95, 'optimizer momentum') +flags.DEFINE_integer('step', 100000, 'step for lr decay') +flags.DEFINE_float('gamma', 0.1, 'exponential base for lr decay') + +# augmentation parameters +flags.DEFINE_bool('augment_basic', True,"use basic augmentation?") +flags.DEFINE_bool('augment_texture', False,"use artistic texture augmentation?") +flags.DEFINE_bool('augment_geom', False,"use artistic geometric augmentation?") +flags.DEFINE_integer('basic_start', 0, 'min epoch to start basic augmentation') +flags.DEFINE_float('p_texture', 0., 'initial probability of artistic texture augmentation') +flags.DEFINE_float('p_geom', 0., 'initial probability of artistic geometric augmentation') +flags.DEFINE_integer('artistic_step', 10, 'increase probability of artistic augmentation every X epochs') +flags.DEFINE_integer('artistic_start', 0, 'min epoch to start artistic augmentation') + +# directory of test +flags.DEFINE_string('output_dir', output_dir, "directory for saving test") + +FLAGS = flags.FLAGS + +if not os.path.exists(FLAGS.output_dir): + os.mkdir(FLAGS.output_dir) + + +def main(_): + + save_model_path = os.path.join(FLAGS.output_dir, FLAGS.save_model_path) + save_sample_path = os.path.join(FLAGS.output_dir, FLAGS.save_sample_path) + save_log_path = os.path.join(FLAGS.output_dir, FLAGS.save_log_path) + + # create directories if not exist + if not os.path.exists(save_model_path): + os.mkdir(save_model_path) + if not os.path.exists(save_sample_path): + os.mkdir(save_sample_path) + if not os.path.exists(save_log_path): + os.mkdir(save_log_path) + + model = DeepHeatmapsModel(mode=FLAGS.mode, train_iter=FLAGS.train_iter, learning_rate=FLAGS.learning_rate, + momentum=FLAGS.momentum, step=FLAGS.step, gamma=FLAGS.gamma, batch_size=FLAGS.batch_size, + image_size=FLAGS.image_size, c_dim=FLAGS.c_dim, num_landmarks=FLAGS.num_landmarks, + augment_basic=FLAGS.augment_basic, basic_start=FLAGS.basic_start, + augment_texture=FLAGS.augment_texture, p_texture=FLAGS.p_texture, + augment_geom=FLAGS.augment_geom, p_geom=FLAGS.p_geom, + artistic_start=FLAGS.artistic_start, artistic_step=FLAGS.artistic_step, + img_path=FLAGS.img_path, save_log_path=save_log_path, + save_sample_path=save_sample_path, save_model_path=save_model_path, + test_data=FLAGS.test_data, test_model_path=FLAGS.test_model_path, + load_pretrain=FLAGS.load_pretrain, pre_train_path=FLAGS.pre_train_path) + + if FLAGS.mode == 'TRAIN': + model.train() + else: + model.eval() + +if __name__ == '__main__': + tf.app.run() diff --git a/MakeItTalk/thirdparty/face_of_art/old/run_tests_template.py b/MakeItTalk/thirdparty/face_of_art/old/run_tests_template.py new file mode 100644 index 0000000000000000000000000000000000000000..e05c6e3cfb35c35d3f10cb865a47b83789b9e014 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/run_tests_template.py @@ -0,0 +1,50 @@ +import tensorflow as tf +from deep_heatmaps_model_primary_valid import DeepHeatmapsModel +import os +import numpy as np + +num_tests = 10 +params = np.logspace(-8, -2, num_tests) +max_iter = 80000 + +output_dir = 'tests_lr_fusion' +data_dir = '../conventional_landmark_detection_dataset' + +flags = tf.app.flags +flags.DEFINE_string('output_dir', output_dir, "directory for saving the log file") +flags.DEFINE_string('img_path', data_dir, "data directory") +FLAGS = flags.FLAGS + +if not os.path.exists(FLAGS.output_dir): + os.mkdir(FLAGS.output_dir) + +for param in params: + test_name = str(param) + test_dir = os.path.join(FLAGS.output_dir,test_name) + if not os.path.exists(test_dir): + os.mkdir(test_dir) + + print '##### RUNNING TESTS ##### current directory:', test_dir + + save_model_path = os.path.join(test_dir, 'model') + save_sample_path = os.path.join(test_dir, 'sample') + save_log_path = os.path.join(test_dir, 'logs') + + # create directories if not exist + if not os.path.exists(save_model_path): + os.mkdir(save_model_path) + if not os.path.exists(save_sample_path): + os.mkdir(save_sample_path) + if not os.path.exists(save_log_path): + os.mkdir(save_log_path) + + tf.reset_default_graph() # reset graph + + model = DeepHeatmapsModel(mode='TRAIN', train_iter=max_iter, learning_rate=param, momentum=0.95, step=80000, + gamma=0.1, batch_size=4, image_size=256, c_dim=3, num_landmarks=68, + augment_basic=True, basic_start=0, augment_texture=True, p_texture=0.5, + augment_geom=True, p_geom=0.5, artistic_start=0, artistic_step=10, + img_path=FLAGS.img_path, save_log_path=save_log_path, save_sample_path=save_sample_path, + save_model_path=save_model_path) + + model.train() diff --git a/MakeItTalk/thirdparty/face_of_art/old/temp/Untitled.rtf b/MakeItTalk/thirdparty/face_of_art/old/temp/Untitled.rtf new file mode 100644 index 0000000000000000000000000000000000000000..e32df21fc834cdc45965353bd9efddd7f3be6ccc --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/temp/Untitled.rtf @@ -0,0 +1,7 @@ +{\rtf1\ansi\ansicpg1252\cocoartf1404\cocoasubrtf470 +{\fonttbl\f0\fswiss\fcharset0 Helvetica;} +{\colortbl;\red255\green255\blue255;} +\paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0 +\pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural\partightenfactor0 + +\f0\fs24 \cf0 a} \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/old/temp/create_art_data.py b/MakeItTalk/thirdparty/face_of_art/old/temp/create_art_data.py new file mode 100644 index 0000000000000000000000000000000000000000..03cf7293db6c9b0b6917d9a8aafd1ce83b50e5b9 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/temp/create_art_data.py @@ -0,0 +1,132 @@ +from create_art_data_functions import * +from scipy.misc import imsave +import sys + + +'''THIS SCRIPT CREATES PRE-AUGMENTED DATA TO SAVE TRAINING TIME (ARTISTIC OR BASIC AUGMENTATION): + under the folder *outdir*, it will create a separate folder for each epoch. the folder will + contain the augmented images and matching landmark (pts) files.''' + +# parameter for calculating number of epochs +num_train_images = 3148 # number of training images +train_iter = 100000 # number of training iterations +batch_size = 6 # batch size in training +num_epochs = int(np.ceil((1. * train_iter) / (1. * num_train_images / batch_size)))+1 + +# augmentation parameters +num_augs = 9 # number of style transfer augmented images +aug_geom = True # use artistic geometric augmentation? +aug_texture = True # use artistic texture augmentation? + +# image parameters +bb_type = 'gt' # face bounding-box type (gt/init) +margin = 0.25 # margin for face crops - % of bb size +image_size = 256 # image size + +# data-sets image paths +dataset = 'training' # dataset to augment (training/full/common/challenging/test) +img_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/' +train_crop_dir = 'crop_gt_margin_0.25' # directory of train images cropped to bb (+margin) +img_dir_ns = os.path.join(img_dir, train_crop_dir+'_ns') # dir of train imgs cropped to bb + style transfer +outdir = '/Users/arik/Desktop/epoch_data' # directory for saving augmented data + +# other parameters +min_epoch_to_save = 0 # start saving images from this epoch (first epoch is 0) +debug_data_size = 15 +debug = False +random_seed = 1234 # random seed for numpy + +######################################################################################## +if aug_texture and img_dir_ns is None: + print('\n *** ERROR: aug_texture is True, and img_dir_ns is None.\n' + 'please specify path for img_dir_ns to augment image texture!') + sys.exit() + +if not os.path.exists(outdir): + os.mkdir(outdir) + +gt = (bb_type == 'gt') +bb_dir = os.path.join(img_dir, 'Bounding_Boxes') + +if dataset == 'training': + mode = 'TRAIN' +else: + mode = 'TEST' +bb_dictionary = load_bb_dictionary(bb_dir, mode=mode, test_data=dataset) + +aug_geom_dir = os.path.join(outdir, 'aug_geom') +aug_texture_dir = os.path.join(outdir, 'aug_texture') +aug_geom_texture_dir = os.path.join(outdir, 'aug_geom_texture') +aug_basic_dir = os.path.join(outdir, 'aug_basic') + +if not aug_geom and aug_texture: + save_aug_path = aug_texture_dir +elif aug_geom and not aug_texture: + save_aug_path = aug_geom_dir +elif aug_geom and aug_texture: + save_aug_path = aug_geom_texture_dir +else: + save_aug_path = aug_basic_dir + +print ('saving augmented images: aug_geom=' + str(aug_geom) + ' aug_texture=' + str(aug_texture) + + ' : ' + str(save_aug_path)) + +if not os.path.exists(save_aug_path): + os.mkdir(save_aug_path) + +np.random.seed(random_seed) +ns_inds = np.arange(num_augs) + +for i in range(num_epochs): + print ('saving augmented images of epoch %d/%d' % (i, num_epochs-1)) + if not os.path.exists(os.path.join(save_aug_path, str(i))) and i > min_epoch_to_save - 1: + os.mkdir(os.path.join(save_aug_path, str(i))) + + if i % num_augs == 0: + np.random.shuffle(ns_inds) + + if not aug_geom and aug_texture: + img_list = load_menpo_image_list_no_geom( + img_dir=img_dir, train_crop_dir=train_crop_dir, img_dir_ns=img_dir_ns, mode='TRAIN', + bb_dictionary=bb_dictionary, + image_size=image_size, margin=margin, bb_type=bb_type, augment_basic=True, + augment_texture=True, p_texture=1., + augment_geom=True, p_geom=1., ns_ind=ns_inds[i % num_augs], dataset=dataset) + elif aug_geom and not aug_texture: + img_list = load_menpo_image_list_no_texture( + img_dir=img_dir, train_crop_dir=train_crop_dir, img_dir_ns=img_dir_ns, mode='TRAIN', + bb_dictionary=bb_dictionary, + image_size=image_size, margin=margin, bb_type=bb_type, augment_basic=True, + augment_texture=True, p_texture=1., + augment_geom=True, p_geom=1., ns_ind=ns_inds[i % num_augs], dataset=dataset) + elif aug_geom and aug_texture: + img_list = load_menpo_image_list( + img_dir=img_dir, train_crop_dir=train_crop_dir, img_dir_ns=img_dir_ns, mode='TRAIN', + bb_dictionary=bb_dictionary, + image_size=image_size, margin=margin, bb_type=bb_type, augment_basic=True, + augment_texture=True, p_texture=1., + augment_geom=True, p_geom=1., ns_ind=ns_inds[i % num_augs], dataset=dataset) + else: + img_list = load_menpo_image_list_no_artistic( + img_dir=img_dir, train_crop_dir=train_crop_dir, img_dir_ns=img_dir_ns, mode='TRAIN', + bb_dictionary=bb_dictionary, + image_size=image_size, margin=margin, bb_type=bb_type, augment_basic=True, + augment_texture=True, p_texture=1., + augment_geom=True, p_geom=1., ns_ind=ns_inds[i % num_augs], dataset=dataset) + + if debug: + img_list = img_list[:debug_data_size] + + for im in img_list: + im_path = os.path.join(save_aug_path, str(i), im.path.name.split('.')[0] + '.png') + pts_path = os.path.join(save_aug_path, str(i), im.path.name.split('.')[0] + '.pts') + if i > min_epoch_to_save - 1: + if not os.path.exists(im_path): + if im.pixels.shape[0] == 1: + im_pixels = gray2rgb(np.squeeze(im.pixels)) + else: + im_pixels = np.rollaxis(im.pixels, 0, 3) + imsave(im_path, im_pixels) + if not os.path.exists(pts_path): + mio.export_landmark_file(im.landmarks['PTS'], pts_path, overwrite=True) +print ('DONE!') \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/old/temp/create_art_data_functions.py b/MakeItTalk/thirdparty/face_of_art/old/temp/create_art_data_functions.py new file mode 100644 index 0000000000000000000000000000000000000000..082045384f48d2f35d3ef80a26ed882ce11bfd7b --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/temp/create_art_data_functions.py @@ -0,0 +1,318 @@ +from menpo_functions import * +from data_loading_functions import * +from menpo.shape import bounding_box +from menpo.transform import Translation, Rotation + + +def augment_face_image(img, image_size=256, crop_size=248, angle_range=30, flip=True, warp_mode='constant'): + """basic image augmentation: random crop, rotation and horizontal flip""" + + #from menpo + def round_image_shape(shape, round): + if round not in ['ceil', 'round', 'floor']: + raise ValueError('round must be either ceil, round or floor') + # Ensure that the '+' operator means concatenate tuples + return tuple(getattr(np, round)(shape).astype(np.int)) + + # taken from MDM + def mirror_landmarks_68(lms, im_size): + return PointCloud(abs(np.array([0, im_size[1]]) - lms.as_vector( + ).reshape(-1, 2))[mirrored_parts_68]) + + # taken from MDM + def mirror_image(im): + im = im.copy() + im.pixels = im.pixels[..., ::-1].copy() + + for group in im.landmarks: + lms = im.landmarks[group] + if lms.points.shape[0] == 68: + im.landmarks[group] = mirror_landmarks_68(lms, im.shape) + + return im + + flip_rand = np.random.random() > 0.5 + # rot_rand = np.random.random() > 0.5 + # crop_rand = np.random.random() > 0.5 + rot_rand = True # like ECT + crop_rand = True # like ECT + + if crop_rand: + lim = image_size - crop_size + min_crop_inds = np.random.randint(0, lim, 2) + max_crop_inds = min_crop_inds + crop_size + img = img.crop(min_crop_inds, max_crop_inds) + + if flip and flip_rand: + img = mirror_image(img) + + if rot_rand: + rot_angle = 2 * angle_range * np.random.random_sample() - angle_range + # img = img.rotate_ccw_about_centre(rot_angle) + + # Get image's bounding box coordinates + bbox = bounding_box((0, 0), [img.shape[0] - 1, img.shape[1] - 1]) + # Translate to origin and rotate counter-clockwise + trans = Translation(-img.centre(), + skip_checks=True).compose_before( + Rotation.init_from_2d_ccw_angle(rot_angle, degrees=True)) + rotated_bbox = trans.apply(bbox) + # Create new translation so that min bbox values go to 0 + t = Translation(-rotated_bbox.bounds()[0]) + trans.compose_before_inplace(t) + rotated_bbox = trans.apply(bbox) + # Output image's shape is the range of the rotated bounding box + # while respecting the users rounding preference. + shape = round_image_shape(rotated_bbox.range() + 1, 'round') + + img = img.warp_to_shape( + shape, trans.pseudoinverse(), warp_landmarks=True, mode=warp_mode) + + img = img.resize([image_size, image_size]) + + return img + + +def augment_menpo_img_ns(img, img_dir_ns, p_ns=0, ns_ind=None): + """texture style image augmentation using stylized copies in *img_dir_ns*""" + + if p_ns > 0.5: + ns_augs = glob(os.path.join(img_dir_ns, img.path.name.split('.')[0] + '_ns*')) + num_augs = len(ns_augs) + if num_augs > 0: + if ns_ind is None or ns_ind >= num_augs: + ns_ind = np.random.randint(0, num_augs) + ns_aug = mio.import_image(ns_augs[ns_ind]) + img.pixels = ns_aug.pixels + return img + + +def augment_menpo_img_ns_dont_apply(img, img_dir_ns, p_ns=0, ns_ind=None): + """texture style image augmentation using stylized copies in *img_dir_ns*""" + + if p_ns > 0.5: + ns_augs = glob(os.path.join(img_dir_ns, img.path.name.split('.')[0] + '_ns*')) + num_augs = len(ns_augs) + if num_augs > 0: + if ns_ind is None or ns_ind >= num_augs: + ns_ind = np.random.randint(0, num_augs) + # ns_aug = mio.import_image(ns_augs[ns_ind]) + # ns_pixels = ns_aug.pixels + return img + + +def augment_menpo_img_geom_dont_apply(img, p_geom=0): + """geometric style image augmentation using random face deformations""" + + if p_geom > 0.5: + lms_geom_warp = deform_face_geometric_style(img.landmarks['PTS'].points.copy(), p_scale=p_geom, p_shift=p_geom) + return img + + +def augment_menpo_img_geom(img, p_geom=0): + """geometric style image augmentation using random face deformations""" + + if p_geom > 0.5: + lms_geom_warp = deform_face_geometric_style(img.landmarks['PTS'].points.copy(), p_scale=p_geom, p_shift=p_geom) + img=warp_face_image_tps(img, PointCloud(lms_geom_warp)) + return img + + +def load_menpo_image_list( + img_dir, train_crop_dir, img_dir_ns, mode, bb_dictionary=None, image_size=256, margin=0.25, + bb_type='gt', test_data='full', augment_basic=True, augment_texture=False, p_texture=0, + augment_geom=False, p_geom=0, verbose=False,ns_ind=None, dataset='training'): + + def crop_to_face_image_gt(img): + return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size) + + def crop_to_face_image_init(img): + return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size) + + def augment_menpo_img_ns_rand(img): + return augment_menpo_img_ns(img, img_dir_ns, p_ns=1. * (np.random.rand() < p_texture),ns_ind=ns_ind) + + def augment_menpo_img_geom_rand(img): + return augment_menpo_img_geom(img, p_geom=1. * (np.random.rand() < p_geom)) + + if mode is 'TRAIN': + if train_crop_dir is None: + img_set_dir = os.path.join(img_dir, dataset+'_set') + out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False) + if bb_type is 'gt': + out_image_list = out_image_list.map(crop_to_face_image_gt) + elif bb_type is 'init': + out_image_list = out_image_list.map(crop_to_face_image_init) + else: + img_set_dir = os.path.join(img_dir, train_crop_dir) + out_image_list = mio.import_images(img_set_dir, verbose=verbose) + + if augment_texture and img_dir_ns is not None: + out_image_list = out_image_list.map(augment_menpo_img_ns_rand) + if augment_geom: + out_image_list = out_image_list.map(augment_menpo_img_geom_rand) + if augment_basic: + out_image_list = out_image_list.map(augment_face_image) + + else: + img_set_dir = os.path.join(img_dir, test_data + '_set') + if test_data in ['full', 'challenging', 'common', 'training', 'test']: + out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False) + if bb_type is 'gt': + out_image_list = out_image_list.map(crop_to_face_image_gt) + elif bb_type is 'init': + out_image_list = out_image_list.map(crop_to_face_image_init) + else: + out_image_list = mio.import_images(img_set_dir, verbose=verbose) + + return out_image_list + + +def load_menpo_image_list_no_geom( + img_dir, train_crop_dir, img_dir_ns, mode, bb_dictionary=None, image_size=256, margin=0.25, + bb_type='gt', test_data='full', augment_basic=True, augment_texture=False, p_texture=0, + augment_geom=False, p_geom=0, verbose=False,ns_ind=None, dataset='training'): + + def crop_to_face_image_gt(img): + return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size) + + def crop_to_face_image_init(img): + return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size) + + def augment_menpo_img_ns_rand(img): + return augment_menpo_img_ns(img, img_dir_ns, p_ns=1. * (np.random.rand() < p_texture),ns_ind=ns_ind) + + def augment_menpo_img_geom_rand(img): + return augment_menpo_img_geom_dont_apply(img, p_geom=1. * (np.random.rand() < p_geom)) + + if mode is 'TRAIN': + if train_crop_dir is None: + img_set_dir = os.path.join(img_dir, dataset+'_set') + out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False) + if bb_type is 'gt': + out_image_list = out_image_list.map(crop_to_face_image_gt) + elif bb_type is 'init': + out_image_list = out_image_list.map(crop_to_face_image_init) + else: + img_set_dir = os.path.join(img_dir, train_crop_dir) + out_image_list = mio.import_images(img_set_dir, verbose=verbose) + + if augment_texture and img_dir_ns is not None: + out_image_list = out_image_list.map(augment_menpo_img_ns_rand) + if augment_geom: + out_image_list = out_image_list.map(augment_menpo_img_geom_rand) + if augment_basic: + out_image_list = out_image_list.map(augment_face_image) + + else: + img_set_dir = os.path.join(img_dir, test_data + '_set') + if test_data in ['full', 'challenging', 'common', 'training', 'test']: + out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False) + if bb_type is 'gt': + out_image_list = out_image_list.map(crop_to_face_image_gt) + elif bb_type is 'init': + out_image_list = out_image_list.map(crop_to_face_image_init) + else: + out_image_list = mio.import_images(img_set_dir, verbose=verbose) + + return out_image_list + + +def load_menpo_image_list_no_texture( + img_dir, train_crop_dir, img_dir_ns, mode, bb_dictionary=None, image_size=256, margin=0.25, + bb_type='gt', test_data='full', augment_basic=True, augment_texture=False, p_texture=0, + augment_geom=False, p_geom=0, verbose=False,ns_ind=None, dataset='training'): + + def crop_to_face_image_gt(img): + return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size) + + def crop_to_face_image_init(img): + return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size) + + def augment_menpo_img_ns_rand(img): + return augment_menpo_img_ns_dont_apply(img, img_dir_ns, p_ns=1. * (np.random.rand() < p_texture),ns_ind=ns_ind) + + def augment_menpo_img_geom_rand(img): + return augment_menpo_img_geom(img, p_geom=1. * (np.random.rand() < p_geom)) + + if mode is 'TRAIN': + if train_crop_dir is None: + img_set_dir = os.path.join(img_dir, dataset+'_set') + out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False) + if bb_type is 'gt': + out_image_list = out_image_list.map(crop_to_face_image_gt) + elif bb_type is 'init': + out_image_list = out_image_list.map(crop_to_face_image_init) + else: + img_set_dir = os.path.join(img_dir, train_crop_dir) + out_image_list = mio.import_images(img_set_dir, verbose=verbose) + + if augment_texture and img_dir_ns is not None: + out_image_list = out_image_list.map(augment_menpo_img_ns_rand) + if augment_geom: + out_image_list = out_image_list.map(augment_menpo_img_geom_rand) + if augment_basic: + out_image_list = out_image_list.map(augment_face_image) + + else: + img_set_dir = os.path.join(img_dir, test_data + '_set') + if test_data in ['full', 'challenging', 'common', 'training', 'test']: + out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False) + if bb_type is 'gt': + out_image_list = out_image_list.map(crop_to_face_image_gt) + elif bb_type is 'init': + out_image_list = out_image_list.map(crop_to_face_image_init) + else: + out_image_list = mio.import_images(img_set_dir, verbose=verbose) + + return out_image_list + + +def load_menpo_image_list_no_artistic( + img_dir, train_crop_dir, img_dir_ns, mode, bb_dictionary=None, image_size=256, margin=0.25, + bb_type='gt', test_data='full', augment_basic=True, augment_texture=False, p_texture=0, + augment_geom=False, p_geom=0, verbose=False,ns_ind=None, dataset='training'): + + def crop_to_face_image_gt(img): + return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size) + + def crop_to_face_image_init(img): + return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size) + + def augment_menpo_img_ns_rand(img): + return augment_menpo_img_ns_dont_apply(img, img_dir_ns, p_ns=1. * (np.random.rand() < p_texture),ns_ind=ns_ind) + + def augment_menpo_img_geom_rand(img): + return augment_menpo_img_geom_dont_apply(img, p_geom=1. * (np.random.rand() < p_geom)) + + if mode is 'TRAIN': + if train_crop_dir is None: + img_set_dir = os.path.join(img_dir, dataset+'_set') + out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False) + if bb_type is 'gt': + out_image_list = out_image_list.map(crop_to_face_image_gt) + elif bb_type is 'init': + out_image_list = out_image_list.map(crop_to_face_image_init) + else: + img_set_dir = os.path.join(img_dir, train_crop_dir) + out_image_list = mio.import_images(img_set_dir, verbose=verbose) + + if augment_texture and img_dir_ns is not None: + out_image_list = out_image_list.map(augment_menpo_img_ns_rand) + if augment_geom: + out_image_list = out_image_list.map(augment_menpo_img_geom_rand) + if augment_basic: + out_image_list = out_image_list.map(augment_face_image) + + else: + img_set_dir = os.path.join(img_dir, test_data + '_set') + if test_data in ['full', 'challenging', 'common', 'training', 'test']: + out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False) + if bb_type is 'gt': + out_image_list = out_image_list.map(crop_to_face_image_gt) + elif bb_type is 'init': + out_image_list = out_image_list.map(crop_to_face_image_init) + else: + out_image_list = mio.import_images(img_set_dir, verbose=verbose) + + return out_image_list \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/old/temp/deep_heatmaps_model_primary_net.py b/MakeItTalk/thirdparty/face_of_art/old/temp/deep_heatmaps_model_primary_net.py new file mode 100644 index 0000000000000000000000000000000000000000..e8bae0f1ffb8c62bd8768f9fd636319e441585b4 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/temp/deep_heatmaps_model_primary_net.py @@ -0,0 +1,911 @@ +import scipy.io +import scipy.misc +from glob import glob +import os +import numpy as np +from ops import * +import tensorflow as tf +from tensorflow import contrib +from menpo_functions import * +from logging_functions import * +from data_loading_functions import * + + +class DeepHeatmapsModel(object): + + """facial landmark localization Network""" + + def __init__(self, mode='TRAIN', train_iter=100000, batch_size=10, learning_rate=1e-3, adam_optimizer=True, + momentum=0.95, step=100000, gamma=0.1, reg=0, weight_initializer='xavier', weight_initializer_std=0.01, + bias_initializer=0.0, image_size=256, c_dim=3, num_landmarks=68, sigma=1.5, scale=1, margin=0.25, + bb_type='gt', approx_maps=True, win_mult=3.33335, augment_basic=True, basic_start=0, + augment_texture=False, p_texture=0., augment_geom=False, p_geom=0., artistic_step=-1, artistic_start=0, + output_dir='output', save_model_path='model', save_sample_path='sample', save_log_path='logs', + test_model_path='model/deep_heatmaps-50000', pre_train_path='model/deep_heatmaps-50000',load_pretrain=False, + img_path='data', test_data='full', valid_data='full', valid_size=0, log_valid_every=5, + train_crop_dir='crop_gt_margin_0.25', img_dir_ns='crop_gt_margin_0.25_ns', + print_every=100, save_every=5000, sample_every=5000, sample_grid=9, sample_to_log=True, + debug_data_size=20, debug=False, epoch_data_dir='epoch_data', use_epoch_data=False, menpo_verbose=True): + + # define some extra parameters + + self.log_histograms = False # save weight + gradient histogram to log + self.save_valid_images = True # sample heat maps of validation images + self.log_artistic_augmentation_probs = False # save p_texture & p_geom to log + self.sample_per_channel = False # sample heatmaps separately for each landmark + self.approx_maps_gpu = False # create heat-maps on gpu. NOT RECOMMENDED. TODO: REMOVE + + # for fine-tuning, choose reset_training_op==True. when resuming training, reset_training_op==False + self.reset_training_op = False + + self.allocate_once = True # create batch images/landmarks/maps zero arrays only once + + self.fast_img_gen = True + + self.compute_nme = True # compute normalized mean error + + self.config = tf.ConfigProto() + self.config.gpu_options.allow_growth = True + + # sampling and logging parameters + self.print_every = print_every # print losses to screen + log + self.save_every = save_every # save model + self.sample_every = sample_every # save images of gen heat maps compared to GT + self.sample_grid = sample_grid # number of training images in sample + self.sample_to_log = sample_to_log # sample images to log instead of disk + self.log_valid_every = log_valid_every # log validation loss (in epochs) + + self.debug = debug + self.debug_data_size = debug_data_size + self.use_epoch_data = use_epoch_data + self.epoch_data_dir = epoch_data_dir + + self.load_pretrain = load_pretrain + self.pre_train_path = pre_train_path + + self.mode = mode + self.train_iter = train_iter + self.learning_rate = learning_rate + + self.image_size = image_size + self.c_dim = c_dim + self.batch_size = batch_size + + self.num_landmarks = num_landmarks + + self.save_log_path = save_log_path + self.save_sample_path = save_sample_path + self.save_model_path = save_model_path + self.test_model_path = test_model_path + self.img_path=img_path + + self.momentum = momentum + self.step = step # for lr decay + self.gamma = gamma # for lr decay + self.reg = reg # weight decay scale + + self.weight_initializer = weight_initializer # random_normal or xavier + self.weight_initializer_std = weight_initializer_std + self.bias_initializer = bias_initializer + self.adam_optimizer = adam_optimizer + + self.sigma = sigma # sigma for heatmap generation + self.scale = scale # scale for image normalization 255 / 1 / 0 + self.win_mult = win_mult # gaussian filter size for cpu/gpu approximation: 2 * sigma * win_mult + 1 + self.approx_maps_cpu = approx_maps # create heat-maps by inserting gaussian filter around landmark locations + + self.test_data = test_data # if mode is TEST, this choose the set to use full/common/challenging/test/art + self.train_crop_dir = train_crop_dir + self.img_dir_ns = os.path.join(img_path, img_dir_ns) + self.augment_basic = augment_basic # perform basic augmentation (rotation,flip,crop) + self.augment_texture = augment_texture # perform artistic texture augmentation (NS) + self.p_texture = p_texture # initial probability of artistic texture augmentation + self.augment_geom = augment_geom # perform artistic geometric augmentation + self.p_geom = p_geom # initial probability of artistic geometric augmentation + self.artistic_step = artistic_step # increase probability of artistic augmentation every X epochs + self.artistic_start = artistic_start # min epoch to start artistic augmentation + self.basic_start = basic_start # min epoch to start basic augmentation + + self.valid_size = valid_size + self.valid_data = valid_data + + # load image, bb and landmark data using menpo + self.bb_dir = os.path.join(img_path, 'Bounding_Boxes') + self.bb_dictionary = load_bb_dictionary(self.bb_dir, mode, test_data=self.test_data) + + if self.use_epoch_data: + epoch_0 = os.path.join(self.epoch_data_dir, '0') + self.img_menpo_list = load_menpo_image_list( + img_path, train_crop_dir=epoch_0, img_dir_ns=None, mode=mode, bb_dictionary=self.bb_dictionary, + image_size=self.image_size,test_data=self.test_data, augment_basic=False, augment_texture=False, + augment_geom=False, verbose=menpo_verbose) + else: + self.img_menpo_list = load_menpo_image_list( + img_path, train_crop_dir, self.img_dir_ns, mode, bb_dictionary=self.bb_dictionary, + image_size=self.image_size, margin=margin, bb_type=bb_type, test_data=self.test_data, + augment_basic=(augment_basic and basic_start == 0), + augment_texture=(augment_texture and artistic_start == 0 and p_texture > 0.), p_texture=p_texture, + augment_geom=(augment_geom and artistic_start == 0 and p_geom > 0.), p_geom=p_geom, + verbose=menpo_verbose) + + if mode == 'TRAIN': + + train_params = locals() + print_training_params_to_file(train_params) # save init parameters + + self.train_inds = np.arange(len(self.img_menpo_list)) + + if self.debug: + self.train_inds = self.train_inds[:self.debug_data_size] + self.img_menpo_list = self.img_menpo_list[self.train_inds] + + if valid_size > 0: + + self.valid_bb_dictionary = load_bb_dictionary(self.bb_dir, 'TEST', test_data=self.valid_data) + self.valid_img_menpo_list = load_menpo_image_list( + img_path, train_crop_dir, self.img_dir_ns, 'TEST', bb_dictionary=self.valid_bb_dictionary, + image_size=self.image_size, margin=margin, bb_type=bb_type, test_data=self.valid_data, + verbose=menpo_verbose) + + np.random.seed(0) + self.val_inds = np.arange(len(self.valid_img_menpo_list)) + np.random.shuffle(self.val_inds) + self.val_inds = self.val_inds[:self.valid_size] + + self.valid_img_menpo_list = self.valid_img_menpo_list[self.val_inds] + + if self.approx_maps_cpu: + self.valid_images_loaded, self.valid_gt_maps_loaded, self.valid_landmarks_loaded =\ + load_images_landmarks_approx_maps( + self.valid_img_menpo_list, np.arange(self.valid_size), primary=True, image_size=self.image_size, + num_landmarks=self.num_landmarks, c_dim=self.c_dim, scale=self.scale, win_mult=self.win_mult, + sigma=self.sigma, save_landmarks=True) + else: + self.valid_images_loaded, self.valid_gt_maps_loaded, self.valid_landmarks_loaded =\ + load_images_landmarks_maps( + self.valid_img_menpo_list, np.arange(self.valid_size), primary=True, image_size=self.image_size, + c_dim=self.c_dim, num_landmarks=self.num_landmarks, scale=self.scale, sigma=self.sigma, + save_landmarks=True) + + if self.allocate_once: + self.valid_landmarks_pred = np.zeros([self.valid_size, self.num_landmarks, 2]).astype('float32') + + if self.valid_size > self.sample_grid: + self.valid_gt_maps_loaded = self.valid_gt_maps_loaded[:self.sample_grid] + else: + self.val_inds = None + + self.epoch_inds_shuffle = train_val_shuffle_inds_per_epoch( + self.val_inds, self.train_inds, train_iter, batch_size, save_log_path) + + def add_placeholders(self): + + if self.mode == 'TEST': + self.images = tf.placeholder( + tf.float32, [None, self.image_size, self.image_size, self.c_dim], 'images') + + self.heatmaps_small = tf.placeholder( + tf.float32, [None, int(self.image_size/4), int(self.image_size/4), self.num_landmarks], 'heatmaps_small') + self.lms_small = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'lms_small') + self.pred_lms_small = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'pred_lms_small') + + elif self.mode == 'TRAIN': + self.images = tf.placeholder( + tf.float32, [None, self.image_size, self.image_size, self.c_dim], 'train_images') + + self.heatmaps_small = tf.placeholder( + tf.float32, [None, int(self.image_size/4), int(self.image_size/4), self.num_landmarks], 'train_heatmaps_small') + + self.train_lms_small = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'train_lms_small') + self.train_pred_lms_small = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'train_pred_lms_small') + + self.valid_lms_small = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'valid_lms_small') + self.valid_pred_lms_small = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'valid_pred_lms_small') + + self.p_texture_log = tf.placeholder(tf.float32, []) + self.p_geom_log = tf.placeholder(tf.float32, []) + + self.sparse_hm_small = tf.placeholder(tf.float32, [None, int(self.image_size/4), int(self.image_size/4), 1]) + + if self.sample_to_log: + row = int(np.sqrt(self.sample_grid)) + self.log_image_map = tf.placeholder( + tf.uint8, [None,row * int(self.image_size/4), 3 * row *int(self.image_size/4), self.c_dim], 'sample_img_map') + if self.sample_per_channel: + row = np.ceil(np.sqrt(self.num_landmarks)).astype(np.int64) + self.log_map_channels = tf.placeholder( + tf.uint8, [None, row * int(self.image_size/4), 2 * row * int(self.image_size/4), self.c_dim], + 'sample_map_channels') + + def heatmaps_network(self, input_images, reuse=None, name='pred_heatmaps'): + + with tf.name_scope(name): + + if self.weight_initializer == 'xavier': + weight_initializer = contrib.layers.xavier_initializer() + else: + weight_initializer = tf.random_normal_initializer(stddev=self.weight_initializer_std) + + bias_init = tf.constant_initializer(self.bias_initializer) + + with tf.variable_scope('heatmaps_network'): + with tf.name_scope('primary_net'): + + l1 = conv_relu_pool(input_images, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init, + reuse=reuse, var_scope='conv_1') + l2 = conv_relu_pool(l1, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init, + reuse=reuse, var_scope='conv_2') + l3 = conv_relu(l2, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init, + reuse=reuse, var_scope='conv_3') + + l4_1 = conv_relu(l3, 3, 128, conv_dilation=1, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_1') + l4_2 = conv_relu(l3, 3, 128, conv_dilation=2, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_2') + l4_3 = conv_relu(l3, 3, 128, conv_dilation=3, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_3') + l4_4 = conv_relu(l3, 3, 128, conv_dilation=4, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_4') + + l4 = tf.concat([l4_1, l4_2, l4_3, l4_4], 3, name='conv_4') + + l5_1 = conv_relu(l4, 3, 256, conv_dilation=1, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_1') + l5_2 = conv_relu(l4, 3, 256, conv_dilation=2, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_2') + l5_3 = conv_relu(l4, 3, 256, conv_dilation=3, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_3') + l5_4 = conv_relu(l4, 3, 256, conv_dilation=4, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_4') + + l5 = tf.concat([l5_1, l5_2, l5_3, l5_4], 3, name='conv_5') + + l6 = conv_relu(l5, 1, 512, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_6') + l7 = conv_relu(l6, 1, 256, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_7') + primary_out = conv(l7, 1, self.num_landmarks, conv_ker_init=weight_initializer, + conv_bias_init=bias_init, reuse=reuse, var_scope='conv_8') + + self.all_layers = [l1, l2, l3, l4, l5, l6, l7, primary_out] + + return primary_out + + def build_model(self): + self.pred_hm_p = self.heatmaps_network(self.images,name='heatmaps_prediction') + + def build_hm_generator(self): # TODO: remove + # generate heat-maps using: + # a sparse base (matrix of zeros with 1's in landmark locations) and convolving with a gaussian filter + print ("*** using convolution to create heat-maps. use this option only with GPU support ***") + + # create gaussian filter + win_small = int(self.win_mult * self.sigma) + x_small, y_small = np.mgrid[0:2*win_small+1, 0:2*win_small+1] + + gauss_small = (8. / 3) * self.sigma * gaussian(x_small, y_small, win_small, win_small, sigma=self.sigma) + gauss_small = tf.constant(gauss_small, tf.float32) + gauss_small = tf.reshape(gauss_small, [2 * win_small + 1, 2 * win_small + 1, 1, 1]) + + # convolve sparse map with gaussian + self.filt_hm_small = tf.nn.conv2d(self.sparse_hm_small, gauss_small, strides=[1, 1, 1, 1], padding='SAME') + self.filt_hm_small = tf.transpose( + tf.concat(tf.split(self.filt_hm_small, self.batch_size, axis=0), 3), [3, 1, 2, 0]) + + def create_loss_ops(self): # TODO: calculate NME on resized maps to 256 + + def l2_loss_norm_eyes(pred_landmarks, real_landmarks, normalize=True, name='NME'): + + with tf.name_scope(name): + with tf.name_scope('real_pred_landmarks_rmse'): + landmarks_rms_err = tf.reduce_mean( + tf.sqrt(tf.reduce_sum(tf.square(pred_landmarks - real_landmarks), axis=2)), axis=1) + if normalize: + with tf.name_scope('inter_pupil_dist'): + with tf.name_scope('left_eye_center'): + p1 = tf.reduce_mean(tf.slice(real_landmarks, [0, 42, 0], [-1, 6, 2]), axis=1) + with tf.name_scope('right_eye_center'): + p2 = tf.reduce_mean(tf.slice(real_landmarks, [0, 36, 0], [-1, 6, 2]), axis=1) + + eye_dist = tf.sqrt(tf.reduce_sum(tf.square(p1 - p2), axis=1)) + + return landmarks_rms_err / eye_dist + else: + return landmarks_rms_err + + if self.mode is 'TRAIN': + primary_maps_diff = self.pred_hm_p-self.heatmaps_small + self.total_loss = 1000.*tf.reduce_mean(tf.square(primary_maps_diff)) + + # add weight decay + self.total_loss += self.reg * tf.add_n( + [tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'bias' not in v.name]) + + if self.compute_nme: + self.nme_loss = tf.reduce_mean(l2_loss_norm_eyes(self.train_pred_lms_small,self.train_lms_small)) + + if self.valid_size > 0 and self.compute_nme: + self.valid_nme_loss = tf.reduce_mean(l2_loss_norm_eyes(self.valid_pred_lms_small,self.valid_lms_small)) + + elif self.mode == 'TEST' and self.compute_nme: + self.nme_per_image = l2_loss_norm_eyes(self.pred_lms_small, self.lms_small) + self.nme_loss = tf.reduce_mean(self.nme_per_image) + + def predict_landmarks_in_batches(self, image_paths, session): + + num_batches = int(1.*len(image_paths)/self.batch_size) + if num_batches == 0: + batch_size = len(image_paths) + num_batches = 1 + else: + batch_size = self.batch_size + + img_inds = np.arange(len(image_paths)) + for j in range(num_batches): + batch_inds = img_inds[j * batch_size:(j + 1) * batch_size] + + batch_images, _, batch_lms_small = \ + load_images_landmarks_maps( + self.img_menpo_list, batch_inds, primary=True, image_size=self.image_size, + c_dim=self.c_dim, num_landmarks=self.num_landmarks, scale=self.scale, sigma=self.sigma, + save_landmarks=self.compute_nme) + + batch_maps_small_pred = session.run(self.pred_hm_p, {self.images: batch_images}) + batch_pred_landmarks = batch_heat_maps_to_landmarks( + batch_maps_small_pred, batch_size=batch_size, image_size=int(self.image_size/4), + num_landmarks=self.num_landmarks) + + if j == 0: + all_pred_landmarks = batch_pred_landmarks.copy() + all_gt_landmarks = batch_lms_small.copy() + else: + all_pred_landmarks = np.concatenate((all_pred_landmarks,batch_pred_landmarks),0) + all_gt_landmarks = np.concatenate((all_gt_landmarks, batch_lms_small), 0) + + reminder = len(image_paths)-num_batches*batch_size + + if reminder > 0: + reminder_inds = img_inds[-reminder:] + + batch_images, _, batch_lms_small = \ + load_images_landmarks_maps( + self.img_menpo_list, reminder_inds, primary=True, image_size=self.image_size, + c_dim=self.c_dim, num_landmarks=self.num_landmarks, scale=self.scale, sigma=self.sigma, + save_landmarks=self.compute_nme) + + batch_maps_small_pred = session.run(self.pred_hm_p, {self.images: batch_images}) + batch_pred_landmarks = batch_heat_maps_to_landmarks( + batch_maps_small_pred, batch_size=reminder, image_size=int(self.image_size/4), + num_landmarks=self.num_landmarks) + + all_pred_landmarks = np.concatenate((all_pred_landmarks, batch_pred_landmarks), 0) + all_gt_landmarks = np.concatenate((all_gt_landmarks, batch_lms_small), 0) + + return all_pred_landmarks, all_gt_landmarks + + def predict_landmarks_in_batches_loaded(self, images, session): + + num_images = int(images.shape[0]) + num_batches = int(1.*num_images/self.batch_size) + if num_batches == 0: + batch_size = num_images + num_batches = 1 + else: + batch_size = self.batch_size + + for j in range(num_batches): + + batch_images = images[j * batch_size:(j + 1) * batch_size,:,:,:] + batch_maps_small_pred = session.run(self.pred_hm_p, {self.images: batch_images}) + if self.allocate_once: + batch_heat_maps_to_landmarks_alloc_once( + batch_maps=batch_maps_small_pred, + batch_landmarks=self.valid_landmarks_pred[j * batch_size:(j + 1) * batch_size, :, :], + batch_size=batch_size, image_size=int(self.image_size/4), num_landmarks=self.num_landmarks) + else: + batch_pred_landmarks = batch_heat_maps_to_landmarks( + batch_maps_small_pred, batch_size=batch_size, image_size=int(self.image_size/4), + num_landmarks=self.num_landmarks) + + if j == 0: + all_pred_landmarks = batch_pred_landmarks.copy() + else: + all_pred_landmarks = np.concatenate((all_pred_landmarks, batch_pred_landmarks), 0) + + reminder = num_images-num_batches*batch_size + if reminder > 0: + + batch_images = images[-reminder:, :, :, :] + batch_maps_small_pred = session.run(self.pred_hm_p, {self.images: batch_images}) + if self.allocate_once: + batch_heat_maps_to_landmarks_alloc_once( + batch_maps=batch_maps_small_pred, + batch_landmarks=self.valid_landmarks_pred[-reminder:, :, :], + batch_size=reminder, image_size=int(self.image_size/4), num_landmarks=self.num_landmarks) + else: + batch_pred_landmarks = batch_heat_maps_to_landmarks( + batch_maps_small_pred, batch_size=reminder, image_size=int(self.image_size/4), + num_landmarks=self.num_landmarks) + + all_pred_landmarks = np.concatenate((all_pred_landmarks, batch_pred_landmarks), 0) + + if not self.allocate_once: + return all_pred_landmarks + + def create_summary_ops(self): + + self.batch_summary_op = tf.summary.scalar('l_total', self.total_loss) + + if self.compute_nme: + l_nme = tf.summary.scalar('l_nme', self.nme_loss) + self.batch_summary_op = tf.summary.merge([self.batch_summary_op, l_nme]) + + if self.log_histograms: + var_summary = [tf.summary.histogram(var.name, var) for var in tf.trainable_variables()] + grads = tf.gradients(self.total_loss, tf.trainable_variables()) + grads = list(zip(grads, tf.trainable_variables())) + grad_summary = [tf.summary.histogram(var.name + '/grads', grad) for grad, var in grads] + activ_summary = [tf.summary.histogram(layer.name, layer) for layer in self.all_layers] + self.batch_summary_op = tf.summary.merge([self.batch_summary_op, var_summary, grad_summary, activ_summary]) + + if self.augment_texture and self.log_artistic_augmentation_probs: + p_texture_summary = tf.summary.scalar('p_texture', self.p_texture_log) + self.batch_summary_op = tf.summary.merge([self.batch_summary_op, p_texture_summary]) + + if self.augment_geom and self.log_artistic_augmentation_probs: + p_geom_summary = tf.summary.scalar('p_geom', self.p_geom_log) + self.batch_summary_op = tf.summary.merge([self.batch_summary_op, p_geom_summary]) + + if self.valid_size > 0 and self.compute_nme: + self.valid_summary = tf.summary.scalar('valid_l_nme', self.valid_nme_loss) + + if self.sample_to_log: + img_map_summary =tf.summary.image('compare_map_to_gt',self.log_image_map) + if self.sample_per_channel: + map_channels_summary = tf.summary.image('compare_map_channels_to_gt', self.log_map_channels) + self.img_summary = tf.summary.merge([img_map_summary, map_channels_summary]) + else: + self.img_summary = img_map_summary + if self.valid_size >= self.sample_grid: + img_map_summary_valid = tf.summary.image('compare_map_to_gt_valid', self.log_image_map) + if self.sample_per_channel: + map_channels_summary_valid = tf.summary.image('compare_map_channels_to_gt_valid', self.log_map_channels) + self.img_summary_valid = tf.summary.merge([img_map_summary_valid, map_channels_summary_valid]) + else: + self.img_summary_valid = img_map_summary_valid + + def eval(self): + + self.add_placeholders() + # build model + self.build_model() + self.create_loss_ops() + + if self.debug: + self.img_menpo_list = self.img_menpo_list[:np.min([self.debug_data_size, len(self.img_menpo_list)])] + + num_images = len(self.img_menpo_list) + img_inds = np.arange(num_images) + + sample_iter = np.ceil(1. * num_images / self.sample_grid).astype('int') + + with tf.Session(config=self.config) as sess: + + # load trained parameters + print ('loading test model...') + saver = tf.train.Saver() + saver.restore(sess, self.test_model_path) + + _, model_name = os.path.split(self.test_model_path) + + gt_provided = self.img_menpo_list[0].has_landmarks # check if GT landmarks provided + + for i in range(sample_iter): + + batch_inds = img_inds[i * self.sample_grid:(i + 1) * self.sample_grid] + + if not gt_provided: + batch_images = load_images(self.img_menpo_list, batch_inds, image_size=self.image_size, + c_dim=self.c_dim, scale=self.scale) + + batch_maps_small_pred = sess.run(self.pred_hm_p, {self.images: batch_images}) + + batch_maps_gt = None + else: + # TODO: add option for approx maps + allocate once + batch_images, batch_maps_gt, _ = \ + load_images_landmarks_maps( + self.img_menpo_list, batch_inds, primary=True, image_size=self.image_size, + c_dim=self.c_dim, num_landmarks=self.num_landmarks, scale=self.scale, sigma=self.sigma, + save_landmarks=False) + + batch_maps_small_pred = sess.run(self.pred_hm_p, {self.images: batch_images}) + + sample_path_imgs = os.path.join( + self.save_sample_path, model_name +'-'+ self.test_data+'-sample-%d-to-%d-1.png' % ( + i * self.sample_grid, (i + 1) * self.sample_grid)) + + merged_img = merge_images_landmarks_maps_gt( + batch_images.copy(), batch_maps_small_pred, batch_maps_gt, image_size=self.image_size, + num_landmarks=self.num_landmarks, num_samples=self.sample_grid, scale=self.scale, circle_size=0, + fast=self.fast_img_gen) + + scipy.misc.imsave(sample_path_imgs, merged_img) + + if self.sample_per_channel: + map_per_channel = map_comapre_channels( + batch_images.copy(), batch_maps_small_pred,batch_maps_gt, image_size=int(self.image_size/4), + num_landmarks=self.num_landmarks, scale=self.scale) + + sample_path_channels = os.path.join( + self.save_sample_path, model_name + '-' + self.test_data + '-sample-%d-to-%d-3.png' % ( + i * self.sample_grid, (i + 1) * self.sample_grid)) + + scipy.misc.imsave(sample_path_channels, map_per_channel) + + print ('saved %s' % sample_path_imgs) + + if self.compute_nme and self.test_data in ['full', 'challenging', 'common', 'training', 'test']: + print ('\n Calculating NME on: ' + self.test_data + '...') + pred_lms, lms_gt = self.predict_landmarks_in_batches(self.img_menpo_list, sess) + nme = sess.run(self.nme_loss, {self.pred_lms_small: pred_lms, self.lms_small: lms_gt}) + print ('NME on ' + self.test_data + ': ' + str(nme)) + + def train(self): + # set random seed + tf.set_random_seed(1234) + np.random.seed(1234) + # build a graph + # add placeholders + self.add_placeholders() + # build model + self.build_model() + # create loss ops + self.create_loss_ops() + # create summary ops + self.create_summary_ops() + + # create optimizer and training op + global_step = tf.Variable(0, trainable=False) + lr = tf.train.exponential_decay(self.learning_rate,global_step, self.step, self.gamma, staircase=True) + if self.adam_optimizer: + optimizer = tf.train.AdamOptimizer(lr) + else: + optimizer = tf.train.MomentumOptimizer(lr, self.momentum) + + train_op = optimizer.minimize(self.total_loss,global_step=global_step) + + # TODO: remove + if self.approx_maps_gpu: # create heat-maps using tf convolution. use only with GPU support! + self.build_hm_generator() + + with tf.Session(config=self.config) as sess: + + tf.global_variables_initializer().run() + + # load pre trained weights if load_pretrain==True + if self.load_pretrain: + print + print('*** loading pre-trained weights from: '+self.pre_train_path+' ***') + loader = tf.train.Saver() + loader.restore(sess, self.pre_train_path) + print("*** Model restore finished, current global step: %d" % global_step.eval()) + + # for fine-tuning, choose reset_training_op==True. when resuming training, reset_training_op==False + if self.reset_training_op: + print ("resetting optimizer and global step") + opt_var_list = [optimizer.get_slot(var, name) for name in optimizer.get_slot_names() + for var in tf.global_variables() if optimizer.get_slot(var, name) is not None] + opt_var_list_init = tf.variables_initializer(opt_var_list) + opt_var_list_init.run() + sess.run(global_step.initializer) + + # create model saver and file writer + summary_writer = tf.summary.FileWriter(logdir=self.save_log_path, graph=tf.get_default_graph()) + saver = tf.train.Saver() + + print + print('*** Start Training ***') + + # initialize some variables before training loop + resume_step = global_step.eval() + num_train_images = len(self.img_menpo_list) + batches_in_epoch = int(float(num_train_images) / float(self.batch_size)) + epoch = int(resume_step / batches_in_epoch) + img_inds = self.epoch_inds_shuffle[epoch, :] + p_texture = self.p_texture + p_geom = self.p_geom + artistic_reload = False + basic_reload = True + log_valid = True + log_valid_images = True + + if self.allocate_once: + batch_images = np.zeros([self.batch_size, self.image_size, self.image_size, self.c_dim]).astype('float32') + batch_lms_small = np.zeros([self.batch_size, self.num_landmarks, 2]).astype('float32') + batch_lms_small_pred = np.zeros([self.batch_size, self.num_landmarks, 2]).astype('float32') + if self.approx_maps_gpu: + batch_hm_base_small = np.zeros((self.batch_size * self.num_landmarks, + int(self.image_size/4), int(self.image_size/4), 1)).astype('float32') + else: + batch_maps_small = np.zeros((self.batch_size, int(self.image_size/4), + int(self.image_size/4), self.num_landmarks)).astype('float32') + + if self.approx_maps_cpu: + gaussian_filt = create_gaussian_filter(sigma=self.sigma, win_mult=self.win_mult) + + for step in range(resume_step, self.train_iter): + + j = step % batches_in_epoch # j==0 if we finished an epoch + + if step > resume_step and j == 0: # if we finished an epoch and this isn't the first step + epoch += 1 + img_inds = self.epoch_inds_shuffle[epoch, :] # get next shuffled image inds + artistic_reload = True + log_valid = True + log_valid_images = True + if self.use_epoch_data: + epoch_dir = os.path.join(self.epoch_data_dir, str(epoch)) + self.img_menpo_list = load_menpo_image_list( + self.img_path, train_crop_dir=epoch_dir, img_dir_ns=None, mode=self.mode, + bb_dictionary=self.bb_dictionary, image_size=self.image_size, test_data=self.test_data, + augment_basic=False, augment_texture=False, augment_geom=False) + + # add basic augmentation (if basic_start > 0 and augment_basic is True) + if basic_reload and (epoch >= self.basic_start) and self.basic_start > 0 and self.augment_basic: + basic_reload = False + self.img_menpo_list = reload_menpo_image_list( + self.img_path, self.train_crop_dir, self.img_dir_ns, self.mode, self.train_inds, + image_size=self.image_size, augment_basic=self.augment_basic, + augment_texture=(self.augment_texture and epoch >= self.artistic_start), p_texture=p_texture, + augment_geom=(self.augment_geom and epoch >= self.artistic_start), p_geom=p_geom) + print ("****** adding basic augmentation ******") + + # increase artistic augmentation probability + if ((epoch % self.artistic_step == 0 and epoch >= self.artistic_start and self.artistic_step != -1) + or (epoch == self.artistic_start)) and (self.augment_geom or self.augment_texture)\ + and artistic_reload: + + artistic_reload = False + + if epoch == self.artistic_start: + print ("****** adding artistic augmentation ******") + print ("****** augment_geom: " + str(self.augment_geom) + ", p_geom: " + str(p_geom) + " ******") + print ("****** augment_texture: " + str(self.augment_texture) + ", p_texture: " + + str(p_texture) + " ******") + + if epoch % self.artistic_step == 0 and self.artistic_step != -1: + print ("****** increasing artistic augmentation probability ******") + + p_geom = 1.- 0.95 ** (epoch/self.artistic_step) + p_texture = 1. - 0.95 ** (epoch/self.artistic_step) + + print ("****** augment_geom: " + str(self.augment_geom) + ", p_geom: " + str(p_geom) + " ******") + print ("****** augment_texture: " + str(self.augment_texture) + ", p_texture: " + + str(p_texture) + " ******") + + self.img_menpo_list = reload_menpo_image_list( + self.img_path, self.train_crop_dir, self.img_dir_ns, self.mode, self.train_inds, + image_size=self.image_size, augment_basic=(self.augment_basic and epoch >= self.basic_start), + augment_texture=self.augment_texture, p_texture=p_texture, + augment_geom=self.augment_geom, p_geom=p_geom) + + # get batch images + batch_inds = img_inds[j * self.batch_size:(j + 1) * self.batch_size] + + if self.approx_maps_gpu: # TODO: remove + if self.allocate_once: + load_images_landmarks_alloc_once( + self.img_menpo_list, batch_inds, images=batch_images, landmarks_small=batch_lms_small, + landmarks=None, primary=True, image_size=self.image_size, scale=self.scale) + + create_heat_maps_base_alloc_once( + landmarks_small=batch_lms_small.astype(int), landmarks=None, + hm_small=batch_hm_base_small, hm_large=None, primary=True, num_images=self.batch_size, + num_landmarks=self.num_landmarks) + else: + batch_images, batch_lms_small = load_images_landmarks( + self.img_menpo_list, batch_inds, primary=True, image_size=self.image_size, c_dim=self.c_dim, + num_landmarks=self.num_landmarks, scale=self.scale) + + batch_hm_base_small = create_heat_maps_base( + landmarks_small=batch_lms_small.astype(int), landmarks=None, primary=True, + num_images=self.batch_size, image_size=self.image_size, num_landmarks=self.num_landmarks) + + batch_maps_small = sess.run(self.filt_hm_small, {self.sparse_hm_small: batch_hm_base_small}) + elif self.approx_maps_cpu: + if self.allocate_once: + load_images_landmarks_approx_maps_alloc_once( + self.img_menpo_list, batch_inds, images=batch_images, maps_small=batch_maps_small, + maps=None, landmarks=batch_lms_small, primary=True, image_size=self.image_size, + num_landmarks=self.num_landmarks, scale=self.scale, gauss_filt_small=gaussian_filt, + win_mult=self.win_mult, sigma=self.sigma, save_landmarks=self.compute_nme) + else: + batch_images, batch_maps_small, batch_lms_small = load_images_landmarks_approx_maps( + self.img_menpo_list, batch_inds, primary=True, image_size=self.image_size, + num_landmarks=self.num_landmarks, c_dim=self.c_dim, scale=self.scale, + gauss_filt_small=gaussian_filt, win_mult=self.win_mult, sigma=self.sigma, + save_landmarks=self.compute_nme) + else: + if self.allocate_once: + load_images_landmarks_maps_alloc_once( + self.img_menpo_list, batch_inds, images=batch_images, maps_small=batch_maps_small, + landmarks=batch_lms_small, maps=None, primary=True, image_size=self.image_size, + num_landmarks=self.num_landmarks, scale=self.scale, sigma=self.sigma, + save_landmarks=self.compute_nme) + else: + batch_images, batch_maps_small, batch_lms_small = load_images_landmarks_maps( + self.img_menpo_list, batch_inds, primary=True, image_size=self.image_size, c_dim=self.c_dim, + num_landmarks=self.num_landmarks, scale=self.scale, sigma=self.sigma, + save_landmarks=self.compute_nme) + + feed_dict_train = {self.images: batch_images, self.heatmaps_small: batch_maps_small} + + sess.run(train_op, feed_dict_train) + + # save to log and print status + if step == resume_step or (step + 1) % self.print_every == 0: + + # log probability of artistic augmentation + if self.log_artistic_augmentation_probs and (self.augment_geom or self.augment_texture): + if self.augment_geom and not self.augment_texture: + art_augment_prob_dict = {self.p_geom_log: p_geom} + elif self.augment_texture and not self.augment_geom: + art_augment_prob_dict = {self.p_texture_log: p_texture} + else: + art_augment_prob_dict = {self.p_texture_log: p_texture, self.p_geom_log: p_geom} + + # train data log + if self.compute_nme: + batch_maps_small_pred = sess.run(self.pred_hm_p, {self.images: batch_images}) + if self.allocate_once: + batch_heat_maps_to_landmarks_alloc_once( + batch_maps=batch_maps_small_pred, batch_landmarks=batch_lms_small_pred, + batch_size=self.batch_size, image_size=int(self.image_size/4), + num_landmarks=self.num_landmarks) + else: + batch_lms_small_pred = batch_heat_maps_to_landmarks( + batch_maps_small_pred, self.batch_size, image_size=int(self.image_size/4), + num_landmarks=self.num_landmarks) + + train_feed_dict_log = { + self.images: batch_images, self.heatmaps_small: batch_maps_small, + self.train_lms_small: batch_lms_small, self.train_pred_lms_small: batch_lms_small_pred} + if self.log_artistic_augmentation_probs and (self.augment_geom or self.augment_texture): + train_feed_dict_log.update(art_augment_prob_dict) + + summary, l_t, l_nme = sess.run( + [self.batch_summary_op, self.total_loss, self.nme_loss], train_feed_dict_log) + + print ( + 'epoch: [%d] step: [%d/%d] primary loss: [%.6f] NME: [%.6f]' % ( + epoch, step + 1, self.train_iter, l_t, l_nme)) + else: + train_feed_dict_log = {self.images: batch_images, self.heatmaps_small: batch_maps_small} + if self.log_artistic_augmentation_probs and (self.augment_geom or self.augment_texture): + train_feed_dict_log.update(art_augment_prob_dict) + + summary, l_t = sess.run( + [self.batch_summary_op, self.total_loss], train_feed_dict_log) + + print ( + 'epoch: [%d] step: [%d/%d] primary loss: [%.6f]' % ( + epoch, step + 1, self.train_iter, l_t)) + + summary_writer.add_summary(summary, step) + + # valid data log + if self.valid_size > 0 and (log_valid and epoch % self.log_valid_every == 0)\ + and self.compute_nme: + log_valid = False + + if self.allocate_once: + self.predict_landmarks_in_batches_loaded(self.valid_images_loaded, sess) + valid_feed_dict_log = { + self.valid_lms_small: self.valid_landmarks_loaded, + self.valid_pred_lms_small: self.valid_landmarks_pred} + else: + valid_pred_lms = self.predict_landmarks_in_batches_loaded(self.valid_images_loaded, sess) + valid_feed_dict_log = { + self.valid_lms_small: self.valid_landmarks_loaded, + self.valid_pred_lms_small: valid_pred_lms} + + v_summary,l_v_nme = sess.run([self.valid_summary, self.valid_nme_loss], valid_feed_dict_log) + summary_writer.add_summary(v_summary, step) + + print ( + 'epoch: [%d] step: [%d/%d] valid NME: [%.6f]' % ( + epoch, step + 1, self.train_iter, l_v_nme)) + + # save model + if (step + 1) % self.save_every == 0: + saver.save(sess, os.path.join(self.save_model_path, 'deep_heatmaps'), global_step=step + 1) + print ('model/deep-heatmaps-%d saved' % (step + 1)) + + # save images. TODO: add option to allocate once + if step == resume_step or (step + 1) % self.sample_every == 0: + + if not self.compute_nme: + batch_maps_small_pred = sess.run(self.pred_hm_p, {self.images: batch_images}) + batch_lms_small_pred=None + + merged_img = merge_images_landmarks_maps_gt( + batch_images.copy(), batch_maps_small_pred, batch_maps_small, + landmarks=batch_lms_small_pred, image_size=self.image_size, + num_landmarks=self.num_landmarks, num_samples=self.sample_grid, scale=self.scale, + circle_size=0, fast=self.fast_img_gen) + + if self.sample_per_channel: + map_per_channel = map_comapre_channels( + batch_images.copy(), batch_maps_small_pred,batch_maps_small, + image_size=int(self.image_size/4), num_landmarks=self.num_landmarks, scale=self.scale) + + if self.sample_to_log: + if self.sample_per_channel: + summary_img = sess.run( + self.img_summary, {self.log_image_map: np.expand_dims(merged_img, 0), + self.log_map_channels: np.expand_dims(map_per_channel, 0)}) + else: + summary_img = sess.run( + self.img_summary, {self.log_image_map: np.expand_dims(merged_img, 0)}) + + summary_writer.add_summary(summary_img, step) + + if (self.valid_size >= self.sample_grid) and self.save_valid_images and\ + (log_valid_images and epoch % self.log_valid_every == 0): + log_valid_images=False + + batch_maps_small_pred_val = sess.run( + self.pred_hm_p, {self.images: self.valid_images_loaded[:self.sample_grid]}) + + merged_img = merge_images_landmarks_maps_gt( + self.valid_images_loaded[:self.sample_grid].copy(), batch_maps_small_pred_val, + self.valid_gt_maps_loaded, image_size=self.image_size, + num_landmarks=self.num_landmarks, num_samples=self.sample_grid, + scale=self.scale, circle_size=0, fast=self.fast_img_gen) + + if self.sample_per_channel: + map_per_channel = map_comapre_channels( + self.valid_images_loaded[:self.sample_grid].copy(), batch_maps_small_pred_val, + self.valid_gt_maps_loaded, image_size=int(self.image_size/4), + num_landmarks=self.num_landmarks, scale=self.scale) + + summary_img = sess.run( + self.img_summary_valid, {self.log_image_map: np.expand_dims(merged_img, 0), + self.log_map_channels: np.expand_dims(map_per_channel, 0)}) + else: + summary_img = sess.run( + self.img_summary_valid, {self.log_image_map: np.expand_dims(merged_img, 0)}) + summary_writer.add_summary(summary_img, step) + + else: + sample_path_imgs = os.path.join(self.save_sample_path,'epoch-%d-train-iter-%d-1.png' + % (epoch, step + 1)) + scipy.misc.imsave(sample_path_imgs, merged_img) + if self.sample_per_channel: + sample_path_ch_maps = os.path.join(self.save_sample_path, 'epoch-%d-train-iter-%d-3.png' + % (epoch, step + 1)) + scipy.misc.imsave(sample_path_ch_maps, map_per_channel) + + print('*** Finished Training ***') + + def get_maps_image(self, test_image, reuse=None): + self.add_placeholders() + # build model + pred_hm_p = self.heatmaps_network(self.images,reuse=reuse) + + with tf.Session(config=self.config) as sess: + # load trained parameters + saver = tf.train.Saver() + saver.restore(sess, self.test_model_path) + _, model_name = os.path.split(self.test_model_path) + + test_image = test_image.pixels_with_channels_at_back().astype('float32') + if self.scale is '255': + test_image *= 255 + elif self.scale is '0': + test_image = 2 * test_image - 1 + + test_image_map = sess.run(pred_hm_p, {self.images: np.expand_dims(test_image,0)}) + + return test_image_map diff --git a/MakeItTalk/thirdparty/face_of_art/old/temp/main_primary.py b/MakeItTalk/thirdparty/face_of_art/old/temp/main_primary.py new file mode 100644 index 0000000000000000000000000000000000000000..cece9e41f8a8d1834052b74386c9d1f4a69eb297 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/temp/main_primary.py @@ -0,0 +1,121 @@ +import tensorflow as tf +from deep_heatmaps_model_primary_net import DeepHeatmapsModel +import os + + +data_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/' +pre_train_path = 'saved_models/0.01/model/deep_heatmaps-50000' +output_dir = os.getcwd() + +flags = tf.app.flags + +# mode and logging parameters +flags.DEFINE_string('mode', 'TRAIN', "'TRAIN' or 'TEST'") +flags.DEFINE_integer('print_every', 100, "print losses to screen + log every X steps") +flags.DEFINE_integer('save_every', 20000, "save model every X steps") +flags.DEFINE_integer('sample_every', 5000, "sample heatmaps + landmark predictions every X steps") +flags.DEFINE_integer('sample_grid', 9, 'number of training images in sample') +flags.DEFINE_bool('sample_to_log', True, 'samples will be saved to tensorboard log') +flags.DEFINE_integer('valid_size', 9, 'number of validation images to run') +flags.DEFINE_integer('log_valid_every', 10, 'evaluate on valid set every X epochs') +flags.DEFINE_integer('debug_data_size', 20, 'subset data size to test in debug mode') +flags.DEFINE_bool('debug', False, 'run in debug mode - use subset of the data') + +# define paths +flags.DEFINE_string('output_dir', output_dir, "directory for saving models, logs and samples") +flags.DEFINE_string('save_model_path', 'model', "directory for saving the model") +flags.DEFINE_string('save_sample_path', 'sample', "directory for saving the sampled images") +flags.DEFINE_string('save_log_path', 'logs', "directory for saving the log file") +flags.DEFINE_string('img_path', data_dir, "data directory") +flags.DEFINE_string('test_model_path', 'model/deep_heatmaps-50000', "saved model to test") +flags.DEFINE_string('test_data', 'full', 'test set to use: full/common/challenging/test/art') +flags.DEFINE_string('valid_data', 'full', 'validation set to use: full/common/challenging/test/art') +flags.DEFINE_string('train_crop_dir', 'crop_gt_margin_0.25', "directory of train images cropped to bb (+margin)") +flags.DEFINE_string('img_dir_ns', 'crop_gt_margin_0.25_ns', "dir of train imgs cropped to bb + style transfer") +flags.DEFINE_string('epoch_data_dir', 'epoch_data', "directory containing pre-augmented data for each epoch") +flags.DEFINE_bool('use_epoch_data', False, "use pre-augmented data") + +# pretrain parameters (for fine-tuning / resume training) +flags.DEFINE_string('pre_train_path', pre_train_path, 'pretrained model path') +flags.DEFINE_bool('load_pretrain', False, "load pretrained weight?") + +# input data parameters +flags.DEFINE_integer('image_size', 256, "image size") +flags.DEFINE_integer('c_dim', 3, "color channels") +flags.DEFINE_integer('num_landmarks', 68, "number of face landmarks") +flags.DEFINE_float('sigma', 1.5, "std for heatmap generation gaussian") +flags.DEFINE_integer('scale', 1, 'scale for image normalization 255/1/0') +flags.DEFINE_float('margin', 0.25, 'margin for face crops - % of bb size') +flags.DEFINE_string('bb_type', 'gt', "bb to use - 'gt':for ground truth / 'init':for face detector output") +flags.DEFINE_bool('approx_maps', True, 'use heatmap approximation - major speed up') +flags.DEFINE_float('win_mult', 3.33335, 'gaussian filter size for approx maps: 2 * sigma * win_mult + 1') + +# optimization parameters +flags.DEFINE_integer('train_iter', 100000, 'maximum training iterations') +flags.DEFINE_integer('batch_size', 10, "batch_size") +flags.DEFINE_float('learning_rate', 1e-4, "initial learning rate") +flags.DEFINE_bool('adam_optimizer', True, "use adam optimizer (if False momentum optimizer is used)") +flags.DEFINE_float('momentum', 0.95, "optimizer momentum (if adam_optimizer==False)") +flags.DEFINE_integer('step', 100000, 'step for lr decay') +flags.DEFINE_float('gamma', 0.1, 'exponential base for lr decay') +flags.DEFINE_float('reg', 1e-5, 'scalar multiplier for weight decay (0 to disable)') +flags.DEFINE_string('weight_initializer', 'xavier', 'weight initializer: random_normal / xavier') +flags.DEFINE_float('weight_initializer_std', 0.01, 'std for random_normal weight initializer') +flags.DEFINE_float('bias_initializer', 0.0, 'constant value for bias initializer') + +# augmentation parameters +flags.DEFINE_bool('augment_basic', True, "use basic augmentation?") +flags.DEFINE_integer('basic_start', 0, 'min epoch to start basic augmentation') +flags.DEFINE_bool('augment_texture', False, "use artistic texture augmentation?") +flags.DEFINE_float('p_texture', 0., 'initial probability of artistic texture augmentation') +flags.DEFINE_bool('augment_geom', False, "use artistic geometric augmentation?") +flags.DEFINE_float('p_geom', 0., 'initial probability of artistic geometric augmentation') +flags.DEFINE_integer('artistic_step', -1, 'step for increasing probability of artistic augmentation in epochs') +flags.DEFINE_integer('artistic_start', 0, 'min epoch to start artistic augmentation') + + +FLAGS = flags.FLAGS + +if not os.path.exists(FLAGS.output_dir): + os.mkdir(FLAGS.output_dir) + + +def main(_): + + save_model_path = os.path.join(FLAGS.output_dir, FLAGS.save_model_path) + save_sample_path = os.path.join(FLAGS.output_dir, FLAGS.save_sample_path) + save_log_path = os.path.join(FLAGS.output_dir, FLAGS.save_log_path) + + # create directories if not exist + if not os.path.exists(save_model_path): + os.mkdir(save_model_path) + if not os.path.exists(save_log_path): + os.mkdir(save_log_path) + if not os.path.exists(save_sample_path) and (not FLAGS.sample_to_log or FLAGS.mode != 'TRAIN'): + os.mkdir(save_sample_path) + + model = DeepHeatmapsModel( + mode=FLAGS.mode, train_iter=FLAGS.train_iter, batch_size=FLAGS.batch_size, learning_rate=FLAGS.learning_rate, + adam_optimizer=FLAGS.adam_optimizer, momentum=FLAGS.momentum, step=FLAGS.step, gamma=FLAGS.gamma, reg=FLAGS.reg, + weight_initializer=FLAGS.weight_initializer, weight_initializer_std=FLAGS.weight_initializer_std, + bias_initializer=FLAGS.bias_initializer, image_size=FLAGS.image_size, c_dim=FLAGS.c_dim, + num_landmarks=FLAGS.num_landmarks, sigma=FLAGS.sigma, scale=FLAGS.scale, margin=FLAGS.margin, + bb_type=FLAGS.bb_type, approx_maps=FLAGS.approx_maps, win_mult=FLAGS.win_mult, augment_basic=FLAGS.augment_basic, + basic_start=FLAGS.basic_start, augment_texture=FLAGS.augment_texture, p_texture=FLAGS.p_texture, + augment_geom=FLAGS.augment_geom, p_geom=FLAGS.p_geom, artistic_step=FLAGS.artistic_step, + artistic_start=FLAGS.artistic_start, output_dir=FLAGS.output_dir, save_model_path=save_model_path, + save_sample_path=save_sample_path, save_log_path=save_log_path, test_model_path=FLAGS.test_model_path, + pre_train_path=FLAGS.pre_train_path, load_pretrain=FLAGS.load_pretrain, img_path=FLAGS.img_path, + test_data=FLAGS.test_data, valid_data=FLAGS.valid_data, valid_size=FLAGS.valid_size, + log_valid_every=FLAGS.log_valid_every, train_crop_dir=FLAGS.train_crop_dir, img_dir_ns=FLAGS.img_dir_ns, + print_every=FLAGS.print_every, save_every=FLAGS.save_every, sample_every=FLAGS.sample_every, + sample_grid=FLAGS.sample_grid, sample_to_log=FLAGS.sample_to_log, debug_data_size=FLAGS.debug_data_size, + debug=FLAGS.debug, use_epoch_data=FLAGS.use_epoch_data, epoch_data_dir=FLAGS.epoch_data_dir) + + if FLAGS.mode == 'TRAIN': + model.train() + else: + model.eval() + +if __name__ == '__main__': + tf.app.run() diff --git a/MakeItTalk/thirdparty/face_of_art/old/temp/predict_landmarks.py b/MakeItTalk/thirdparty/face_of_art/old/temp/predict_landmarks.py new file mode 100644 index 0000000000000000000000000000000000000000..7ca891d9d82b5c27f32d87b77d295a8c31dddf94 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/temp/predict_landmarks.py @@ -0,0 +1,100 @@ +from menpo_functions import * +from deep_heatmaps_model_fusion_net import DeepHeatmapsModel +import os +import pickle + +# directory for saving predictions +out_dir = '/Users/arik/Desktop/out/' +if not os.path.exists(out_dir): + os.mkdir(out_dir) + +# directory with conventional landmark detection datasets (for bounding box files) +conv_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/' + +# bounding box type for conventional landmark detection datasets (gt / init) +bb_type='init' + +# directory with clm models for tuning step +clm_path='pdm_clm_models/clm_models/g_t_all' + +# directory with pdm models for correction step +pdm_path='pdm_clm_models/pdm_models/' + +# model path +model_path = '/Users/arik/Dropbox/Thesis_dropbox/models/model_train_wiki/model/deep_heatmaps-60000' + +# directory containing test sets +data_dir = '/Users/arik/Dropbox/a_mac_thesis/artistic_faces/artistic_face_dataset/' +test_sets = ['all_AF'] # test sets to evaluate + + +# data_dir = '/Users/arik/Desktop/Thesis_mac/semi_art_sets/semi_art_sets_wiki_train_2/' +# test_sets = [ +# 'challenging_set_aug_geom_texture', +# 'common_set_aug_geom_texture', +# 'test_set_aug_geom_texture', +# 'full_set_aug_geom_texture' +# ] + + +# load heatmap model +heatmap_model = DeepHeatmapsModel( + mode='TEST', img_path=conv_dir, test_model_path=model_path, menpo_verbose=False, scale=1) + +bb_dir = os.path.join(conv_dir, 'Bounding_Boxes') + +# predict landmarks for input test sets +for i,test_data in enumerate(test_sets): + + if i == 0: + reuse=None + else: + reuse=True + + out_temp = os.path.join(out_dir, test_data) + if not os.path.exists(out_temp): + os.mkdir(out_temp) + + bb_dictionary = load_bb_dictionary(bb_dir, mode='TEST', test_data=test_data) + + img_list = load_menpo_image_list(img_dir=data_dir, train_crop_dir=data_dir, img_dir_ns=data_dir, mode='TEST', + test_data=test_data, bb_type=bb_type, bb_dictionary=bb_dictionary) + + img_list = img_list[:10] + print test_data + ':' + str(len(img_list)) + ' images' + + preds = heatmap_model.get_landmark_predictions(img_list=img_list, pdm_models_dir=pdm_path, clm_model_path=clm_path, + reuse=reuse) + + init_lms = preds['E'] + ppdm_lms = preds['ECp'] + clm_lms = preds['ECpT'] + ect_lms = preds['ECT'] + ecptp_jaw_lms = preds['ECpTp_jaw'] + ecptp_out_lms = preds['ECpTp_out'] + + filehandler = open(os.path.join(out_temp,'E_lms'),"wb") + pickle.dump(init_lms,filehandler) + filehandler.close() + + filehandler = open(os.path.join(out_temp,'ECp_lms'),"wb") + pickle.dump(ppdm_lms,filehandler) + filehandler.close() + + filehandler = open(os.path.join(out_temp,'ECpT_lms'),"wb") + pickle.dump(clm_lms,filehandler) + filehandler.close() + + filehandler = open(os.path.join(out_temp,'ECT_lms'),"wb") + pickle.dump(ect_lms,filehandler) + filehandler.close() + + filehandler = open(os.path.join(out_temp,'ECpTp_jaw_lms'),"wb") + pickle.dump(ecptp_jaw_lms,filehandler) + filehandler.close() + + filehandler = open(os.path.join(out_temp,'ECpTp_out_lms'),"wb") + pickle.dump(ecptp_out_lms,filehandler) + filehandler.close() + +print("\nDone!\n") \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/old/temp/run_tests_fusion.py b/MakeItTalk/thirdparty/face_of_art/old/temp/run_tests_fusion.py new file mode 100644 index 0000000000000000000000000000000000000000..f17012a226cb8a0fae7ce5a1d02cd4ebb0077806 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/temp/run_tests_fusion.py @@ -0,0 +1,136 @@ +import tensorflow as tf +from deep_heatmaps_model_fusion_net import DeepHeatmapsModel +import os +import numpy as np + + +data_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/' +output_dir = 'tests_fusion' +pre_train_model_name = 'deep_heatmaps-50000' +num_tests = 5 +params = np.logspace(-4, -6, num_tests) + +flags = tf.app.flags + +# mode and logging parameters +flags.DEFINE_integer('print_every', 100, "print losses to screen + log every X steps") +flags.DEFINE_integer('save_every', 5000, "save model every X steps") +flags.DEFINE_integer('sample_every', 5000, "sample heatmaps + landmark predictions every X steps") +flags.DEFINE_integer('sample_grid', 4, 'number of training images in sample') +flags.DEFINE_bool('sample_to_log', True, 'samples will be saved to tensorboard log') +flags.DEFINE_integer('valid_size', 0, 'number of validation images to run') +flags.DEFINE_integer('log_valid_every', 5, 'evaluate on valid set every X epochs') +flags.DEFINE_integer('debug_data_size', 20, 'subset data size to test in debug mode') +flags.DEFINE_bool('debug', False, 'run in debug mode - use subset of the data') + +# define paths +flags.DEFINE_string('output_dir', output_dir, "directory for saving models, logs and samples") +flags.DEFINE_string('img_path', data_dir, "data directory") +flags.DEFINE_string('test_model_path', 'model/deep_heatmaps-50000', "saved model to test") +flags.DEFINE_string('test_data', 'full', 'test set to use: full/common/challenging/test/art') +flags.DEFINE_string('valid_data', 'full', 'validation set to use: full/common/challenging/test/art') +flags.DEFINE_string('train_crop_dir', 'crop_gt_margin_0.25',"directory of train images cropped to bb (+margin)") +flags.DEFINE_string('img_dir_ns', 'crop_gt_margin_0.25_ns',"dir of train imgs cropped to bb + style transfer") +flags.DEFINE_string('epoch_data_dir', 'epoch_data', "directory containing pre-augmented data for each epoch") +flags.DEFINE_bool('use_epoch_data', False, "use pre-augmented data") + + +# pretrain parameters (for fine-tuning / resume training) +flags.DEFINE_string('pre_train_model_name', pre_train_model_name, 'pretrained model name (e.g. deep_heatmaps-50000') +flags.DEFINE_bool('load_pretrain', False, "load pretrained weight?") +flags.DEFINE_bool('load_primary_only', False, 'fine-tuning using only primary network weights') + +# input data parameters +flags.DEFINE_integer('image_size', 256, "image size") +flags.DEFINE_integer('c_dim', 3, "color channels") +flags.DEFINE_integer('num_landmarks', 68, "number of face landmarks") +flags.DEFINE_float('sigma', 6, "std for heatmap generation gaussian") +flags.DEFINE_integer('scale', 1, 'scale for image normalization 255/1/0') +flags.DEFINE_float('margin', 0.25, 'margin for face crops - % of bb size') +flags.DEFINE_string('bb_type', 'gt', "bb to use - 'gt':for ground truth / 'init':for face detector output") +flags.DEFINE_bool('approx_maps', True, 'use heatmap approximation - major speed up') +flags.DEFINE_float('win_mult', 3.33335, 'gaussian filter size for approx maps: 2 * sigma * win_mult + 1') + +# optimization parameters +flags.DEFINE_float('l_weight_primary', 1., 'primary loss weight') +flags.DEFINE_float('l_weight_fusion', 0., 'fusion loss weight') +flags.DEFINE_float('l_weight_upsample', 3., 'upsample loss weight') +flags.DEFINE_integer('train_iter', 100000, 'maximum training iterations') +flags.DEFINE_integer('batch_size', 6, "batch_size") +flags.DEFINE_float('learning_rate', 1e-4, "initial learning rate") +flags.DEFINE_bool('adam_optimizer', True, "use adam optimizer (if False momentum optimizer is used)") +flags.DEFINE_float('momentum', 0.95, "optimizer momentum (if adam_optimizer==False)") +flags.DEFINE_integer('step', 100000, 'step for lr decay') +flags.DEFINE_float('gamma', 0.1, 'exponential base for lr decay') +flags.DEFINE_float('reg', 0, 'scalar multiplier for weight decay (0 to disable)') +flags.DEFINE_string('weight_initializer','xavier', 'weight initializer: random_normal / xavier') +flags.DEFINE_float('weight_initializer_std', 0.01, 'std for random_normal weight initializer') +flags.DEFINE_float('bias_initializer', 0.0, 'constant value for bias initializer') + +# augmentation parameters +flags.DEFINE_bool('augment_basic', True,"use basic augmentation?") +flags.DEFINE_integer('basic_start', 0, 'min epoch to start basic augmentation') +flags.DEFINE_bool('augment_texture', False, "use artistic texture augmentation?") +flags.DEFINE_float('p_texture', 0., 'initial probability of artistic texture augmentation') +flags.DEFINE_bool('augment_geom', False,"use artistic geometric augmentation?") +flags.DEFINE_float('p_geom', 0., 'initial probability of artistic geometric augmentation') +flags.DEFINE_integer('artistic_step', -1, 'step for increasing probability of artistic augmentation in epochs') +flags.DEFINE_integer('artistic_start', 0, 'min epoch to start artistic augmentation') + + +FLAGS = flags.FLAGS + +if not os.path.exists(FLAGS.output_dir): + os.mkdir(FLAGS.output_dir) + + +def main(_): + + for i, param in enumerate(params): + + test_dir = os.path.join(FLAGS.output_dir, str(param)) + if not os.path.exists(test_dir): + os.mkdir(test_dir) + + print ('\n##### RUNNING TESTS FUSION (%d/%d) #####' % (i + 1, len(params))) + print ('##### current directory: ' + test_dir) + + save_model_path = os.path.join(test_dir,'model') + save_sample_path = os.path.join(test_dir, 'sample') + save_log_path = os.path.join(test_dir, 'logs') + + # create directories if not exist + if not os.path.exists(save_model_path): + os.mkdir(save_model_path) + if not os.path.exists(save_log_path): + os.mkdir(save_log_path) + if not os.path.exists(save_sample_path) and not FLAGS.sample_to_log: + os.mkdir(save_sample_path) + + tf.reset_default_graph() # reset graph + + model = DeepHeatmapsModel( + mode='TRAIN', train_iter=FLAGS.train_iter, batch_size=FLAGS.batch_size, learning_rate=param, + l_weight_primary=FLAGS.l_weight_primary, l_weight_fusion=FLAGS.l_weight_fusion, + l_weight_upsample=FLAGS.l_weight_upsample, reg=FLAGS.reg, + adam_optimizer=FLAGS.adam_optimizer, momentum=FLAGS.momentum, step=FLAGS.step, gamma=FLAGS.gamma, + weight_initializer=FLAGS.weight_initializer, weight_initializer_std=FLAGS.weight_initializer_std, + bias_initializer=FLAGS.bias_initializer, image_size=FLAGS.image_size, c_dim=FLAGS.c_dim, + num_landmarks=FLAGS.num_landmarks, sigma=FLAGS.sigma, scale=FLAGS.scale, margin=FLAGS.margin, + bb_type=FLAGS.bb_type, approx_maps=FLAGS.approx_maps, win_mult=FLAGS.win_mult, + augment_basic=FLAGS.augment_basic, basic_start=FLAGS.basic_start, augment_texture=FLAGS.augment_texture, + p_texture=FLAGS.p_texture, augment_geom=FLAGS.augment_geom, p_geom=FLAGS.p_geom, artistic_step=FLAGS.artistic_step, + artistic_start=FLAGS.artistic_start, output_dir=FLAGS.output_dir, save_model_path=save_model_path, + save_sample_path=save_sample_path, save_log_path=save_log_path, test_model_path=FLAGS.test_model_path, + pre_train_path=os.path.join(save_model_path, FLAGS.pre_train_model_name), load_pretrain=FLAGS.load_pretrain, + load_primary_only=FLAGS.load_primary_only, img_path=FLAGS.img_path, test_data=FLAGS.test_data, + valid_data=FLAGS.valid_data, valid_size=FLAGS.valid_size, log_valid_every=FLAGS.log_valid_every, + train_crop_dir=FLAGS.train_crop_dir, img_dir_ns=FLAGS.img_dir_ns, print_every=FLAGS.print_every, + save_every=FLAGS.save_every, sample_every=FLAGS.sample_every, sample_grid=FLAGS.sample_grid, + sample_to_log=FLAGS.sample_to_log, debug_data_size=FLAGS.debug_data_size, debug=FLAGS.debug, + use_epoch_data = FLAGS.use_epoch_data, epoch_data_dir = FLAGS.epoch_data_dir) + + model.train() + +if __name__ == '__main__': + tf.app.run() diff --git a/MakeItTalk/thirdparty/face_of_art/old/temp/run_tests_primary.py b/MakeItTalk/thirdparty/face_of_art/old/temp/run_tests_primary.py new file mode 100644 index 0000000000000000000000000000000000000000..931cd68898e4235e35a83ab46c4288f13e617737 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/old/temp/run_tests_primary.py @@ -0,0 +1,130 @@ +import tensorflow as tf +from deep_heatmaps_model_primary_net import DeepHeatmapsModel +import os +import numpy as np + + +data_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/' +output_dir = 'tests_primary' +pre_train_model_name = 'deep_heatmaps-50000' +num_tests = 5 +params = np.logspace(-4, -6, num_tests) + +flags = tf.app.flags + +# mode and logging parameters +flags.DEFINE_integer('print_every', 100, "print losses to screen + log every X steps") +flags.DEFINE_integer('save_every', 5000, "save model every X steps") +flags.DEFINE_integer('sample_every', 5000, "sample heatmaps + landmark predictions every X steps") +flags.DEFINE_integer('sample_grid', 9, 'number of training images in sample') +flags.DEFINE_bool('sample_to_log', True, 'samples will be saved to tensorboard log') +flags.DEFINE_integer('valid_size', 0, 'number of validation images to run') +flags.DEFINE_integer('log_valid_every', 5, 'evaluate on valid set every X epochs') +flags.DEFINE_integer('debug_data_size', 20, 'subset data size to test in debug mode') +flags.DEFINE_bool('debug', False, 'run in debug mode - use subset of the data') + +# define paths +flags.DEFINE_string('output_dir', output_dir, "directory for saving models, logs and samples") +flags.DEFINE_string('img_path', data_dir, "data directory") +flags.DEFINE_string('test_model_path', 'model/deep_heatmaps-50000', "saved model to test") +flags.DEFINE_string('test_data', 'full', 'test set to use: full/common/challenging/test/art') +flags.DEFINE_string('valid_data', 'full', 'validation set to use: full/common/challenging/test/art') +flags.DEFINE_string('train_crop_dir', 'crop_gt_margin_0.25',"directory of train images cropped to bb (+margin)") +flags.DEFINE_string('img_dir_ns', 'crop_gt_margin_0.25_ns',"dir of train imgs cropped to bb + style transfer") +flags.DEFINE_string('epoch_data_dir', 'epoch_data', "directory containing pre-augmented data for each epoch") +flags.DEFINE_bool('use_epoch_data', False, "use pre-augmented data") + + +# pretrain parameters (for fine-tuning / resume training) +flags.DEFINE_string('pre_train_model_name', pre_train_model_name, 'pretrained model name (e.g. deep_heatmaps-50000') +flags.DEFINE_bool('load_pretrain', False, "load pretrained weight?") + +# input data parameters +flags.DEFINE_integer('image_size', 256, "image size") +flags.DEFINE_integer('c_dim', 3, "color channels") +flags.DEFINE_integer('num_landmarks', 68, "number of face landmarks") +flags.DEFINE_float('sigma', 1.5, "std for heatmap generation gaussian") +flags.DEFINE_integer('scale', 1, 'scale for image normalization 255/1/0') +flags.DEFINE_float('margin', 0.25, 'margin for face crops - % of bb size') +flags.DEFINE_string('bb_type', 'gt', "bb to use - 'gt':for ground truth / 'init':for face detector output") +flags.DEFINE_bool('approx_maps', True, 'use heatmap approximation - major speed up') +flags.DEFINE_float('win_mult', 3.33335, 'gaussian filter size for approx maps: 2 * sigma * win_mult + 1') + +# optimization parameters +flags.DEFINE_integer('train_iter', 100000, 'maximum training iterations') +flags.DEFINE_integer('batch_size', 10, "batch_size") +flags.DEFINE_float('learning_rate', 1e-4, "initial learning rate") +flags.DEFINE_bool('adam_optimizer', True, "use adam optimizer (if False momentum optimizer is used)") +flags.DEFINE_float('momentum', 0.95, "optimizer momentum (if adam_optimizer==False)") +flags.DEFINE_integer('step', 100000, 'step for lr decay') +flags.DEFINE_float('gamma', 0.1, 'exponential base for lr decay') +flags.DEFINE_float('reg', 0, 'scalar multiplier for weight decay (0 to disable)') +flags.DEFINE_string('weight_initializer','xavier', 'weight initializer: random_normal / xavier') +flags.DEFINE_float('weight_initializer_std', 0.01, 'std for random_normal weight initializer') +flags.DEFINE_float('bias_initializer', 0.0, 'constant value for bias initializer') + +# augmentation parameters +flags.DEFINE_bool('augment_basic', True,"use basic augmentation?") +flags.DEFINE_integer('basic_start', 0, 'min epoch to start basic augmentation') +flags.DEFINE_bool('augment_texture', False, "use artistic texture augmentation?") +flags.DEFINE_float('p_texture', 0., 'initial probability of artistic texture augmentation') +flags.DEFINE_bool('augment_geom', False,"use artistic geometric augmentation?") +flags.DEFINE_float('p_geom', 0., 'initial probability of artistic geometric augmentation') +flags.DEFINE_integer('artistic_step', -1, 'step for increasing probability of artistic augmentation in epochs') +flags.DEFINE_integer('artistic_start', 0, 'min epoch to start artistic augmentation') + + +FLAGS = flags.FLAGS + +if not os.path.exists(FLAGS.output_dir): + os.mkdir(FLAGS.output_dir) + + +def main(_): + + for i, param in enumerate(params): + + test_dir = os.path.join(FLAGS.output_dir, str(param)) + if not os.path.exists(test_dir): + os.mkdir(test_dir) + + print ('\n##### RUNNING TESTS PRIMARY (%d/%d) #####' % (i + 1, len(params))) + print ('##### current directory: ' + test_dir) + + save_model_path = os.path.join(test_dir,'model') + save_sample_path = os.path.join(test_dir, 'sample') + save_log_path = os.path.join(test_dir, 'logs') + + # create directories if not exist + if not os.path.exists(save_model_path): + os.mkdir(save_model_path) + if not os.path.exists(save_log_path): + os.mkdir(save_log_path) + if not os.path.exists(save_sample_path) and not FLAGS.sample_to_log: + os.mkdir(save_sample_path) + + tf.reset_default_graph() # reset graph + + model = DeepHeatmapsModel( + mode='TRAIN', train_iter=FLAGS.train_iter, batch_size=FLAGS.batch_size, learning_rate=param, + adam_optimizer=FLAGS.adam_optimizer, momentum=FLAGS.momentum, step=FLAGS.step, gamma=FLAGS.gamma, + reg=FLAGS.reg, weight_initializer=FLAGS.weight_initializer, weight_initializer_std=FLAGS.weight_initializer_std, + bias_initializer=FLAGS.bias_initializer, image_size=FLAGS.image_size, c_dim=FLAGS.c_dim, + num_landmarks=FLAGS.num_landmarks, sigma=FLAGS.sigma, scale=FLAGS.scale, margin=FLAGS.margin, + bb_type=FLAGS.bb_type, approx_maps=FLAGS.approx_maps, win_mult=FLAGS.win_mult, + augment_basic=FLAGS.augment_basic, basic_start=FLAGS.basic_start, augment_texture=FLAGS.augment_texture, + p_texture=FLAGS.p_texture, augment_geom=FLAGS.augment_geom, p_geom=FLAGS.p_geom, + artistic_step=FLAGS.artistic_step, artistic_start=FLAGS.artistic_start, output_dir=FLAGS.output_dir, + save_model_path=save_model_path, save_sample_path=save_sample_path, save_log_path=save_log_path, + test_model_path=FLAGS.test_model_path, pre_train_path=os.path.join(save_model_path, FLAGS.pre_train_model_name), + load_pretrain=FLAGS.load_pretrain, img_path=FLAGS.img_path, test_data=FLAGS.test_data, + valid_data=FLAGS.valid_data, valid_size=FLAGS.valid_size, log_valid_every=FLAGS.log_valid_every, + train_crop_dir=FLAGS.train_crop_dir, img_dir_ns=FLAGS.img_dir_ns, print_every=FLAGS.print_every, + save_every=FLAGS.save_every, sample_every=FLAGS.sample_every, sample_grid=FLAGS.sample_grid, + sample_to_log=FLAGS.sample_to_log, debug_data_size=FLAGS.debug_data_size, debug=FLAGS.debug, + use_epoch_data=FLAGS.use_epoch_data, epoch_data_dir=FLAGS.epoch_data_dir) + + model.train() + +if __name__ == '__main__': + tf.app.run() diff --git a/MakeItTalk/thirdparty/face_of_art/ops.py b/MakeItTalk/thirdparty/face_of_art/ops.py new file mode 100644 index 0000000000000000000000000000000000000000..79beb61ccc9814f9bdf46416145432e87edce263 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/ops.py @@ -0,0 +1,99 @@ +import tensorflow as tf +import numpy as np + + +def conv_relu_pool(input, conv_ker, conv_filters, conv_stride=1, conv_padding='SAME', + conv_ker_init=tf.random_normal_initializer(0.01), conv_bias_init=tf.zeros_initializer(), + pool_size=2, pool_stride=2, pool_padding='same', var_scope='layer', reuse=None): + + with tf.variable_scope(var_scope): + conv = tf.layers.conv2d(input, filters=conv_filters, kernel_size=[conv_ker, conv_ker], + strides=conv_stride, padding=conv_padding, bias_initializer=conv_bias_init, + kernel_initializer=conv_ker_init, name='conv', reuse=reuse) + relu = tf.nn.relu(conv, name='relu') + out = tf.layers.max_pooling2d(relu, pool_size=(pool_size, pool_size), + strides=(pool_stride, pool_stride), padding=pool_padding, name='pool') + return out + + +def conv_relu(input, conv_ker, conv_filters, conv_stride=1, conv_dilation=1, conv_padding='SAME', + conv_ker_init=tf.random_normal_initializer(0.01), conv_bias_init=tf.zeros_initializer(), + var_scope='layer', reuse=None): + + with tf.variable_scope(var_scope): + conv = tf.layers.conv2d(input, filters=conv_filters, kernel_size=[conv_ker, conv_ker], + strides=conv_stride, dilation_rate=conv_dilation, padding=conv_padding, + bias_initializer=conv_bias_init, kernel_initializer=conv_ker_init, name='conv', + reuse=reuse) + out = tf.nn.relu(conv, name='relu') + return out + + +def conv(input, conv_ker, conv_filters, conv_stride=1, conv_dilation=1, conv_padding='SAME', + conv_ker_init=tf.random_normal_initializer(0.01), conv_bias_init=tf.zeros_initializer(), + var_scope='layer', reuse=None): + + with tf.variable_scope(var_scope): + out = tf.layers.conv2d(input, filters=conv_filters, kernel_size=[conv_ker, conv_ker], + strides=conv_stride, dilation_rate=conv_dilation, padding=conv_padding, + bias_initializer=conv_bias_init, kernel_initializer=conv_ker_init, name='conv', + reuse=reuse) + return out + + +def deconv(input, conv_ker, conv_filters, conv_stride=1, conv_padding='SAME', + conv_ker_init=tf.random_normal_initializer(0.01), conv_bias_init=tf.zeros_initializer(), + var_scope='layer', reuse=None): + + with tf.variable_scope(var_scope): + out = tf.layers.conv2d_transpose(input, filters=conv_filters, kernel_size=[conv_ker, conv_ker], + strides=conv_stride, padding=conv_padding, bias_initializer=conv_bias_init, + kernel_initializer=conv_ker_init, name='deconv', reuse=reuse) + return out + + +def deconv2d_bilinear_upsampling_initializer(shape): + """Returns the initializer that can be passed to DeConv2dLayer for initializ ingthe + weights in correspondence to channel-wise bilinear up-sampling. + Used in segmentation approaches such as [FCN](https://arxiv.org/abs/1605.06211) + Parameters + ---------- + shape : tuple of int + The shape of the filters, [height, width, output_channels, in_channels]. + It must match the shape passed to DeConv2dLayer. + Returns + ------- + ``tf.constant_initializer`` + A constant initializer with weights set to correspond to per channel bilinear upsampling + when passed as W_int in DeConv2dLayer + -------- + from: tensorlayer + https://github.com/tensorlayer/tensorlayer/blob/c7a1a4924219244c71048709ca729aca0c34c453/tensorlayer/layers/convolution.py + """ + if shape[0] != shape[1]: + raise Exception('deconv2d_bilinear_upsampling_initializer only supports symmetrical filter sizes') + if shape[3] < shape[2]: + raise Exception('deconv2d_bilinear_upsampling_initializer behaviour is not defined for num_in_channels < num_out_channels ') + + filter_size = shape[0] + num_out_channels = shape[2] + num_in_channels = shape[3] + + # Create bilinear filter kernel as numpy array + bilinear_kernel = np.zeros([filter_size, filter_size], dtype=np.float32) + scale_factor = (filter_size + 1) // 2 + if filter_size % 2 == 1: + center = scale_factor - 1 + else: + center = scale_factor - 0.5 + for x in range(filter_size): + for y in range(filter_size): + bilinear_kernel[x, y] = (1 - abs(x - center) / scale_factor) * \ + (1 - abs(y - center) / scale_factor) + weights = np.zeros((filter_size, filter_size, num_out_channels, num_in_channels)) + for i in range(num_out_channels): + weights[:, :, i, i] = bilinear_kernel + + # assign numpy array to constant_initalizer and pass to get_variable + bilinear_weights_init = tf.constant_initializer(value=weights, dtype=tf.float32) + return bilinear_weights_init \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/ops.pyc b/MakeItTalk/thirdparty/face_of_art/ops.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0eb5ac3313b5c21d81c28c96ef08790ec52a24fe Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/ops.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_functions.py b/MakeItTalk/thirdparty/face_of_art/pdm_clm_functions.py new file mode 100644 index 0000000000000000000000000000000000000000..660dfc9364e24e43315dd1f24b9cb247caa95333 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_functions.py @@ -0,0 +1,203 @@ +from thirdparty.face_of_art.logging_functions import * +import os +import numpy as np +from menpo.shape import PointCloud +from menpofit.clm import GradientDescentCLMFitter +import pickle +import math + +jaw_line_inds = np.arange(0, 17) +nose_inds = np.arange(27, 36) +left_eye_inds = np.arange(36, 42) +right_eye_inds = np.arange(42, 48) +left_brow_inds = np.arange(17, 22) +right_brow_inds = np.arange(22, 27) +mouth_inds = np.arange(48, 68) + + +def sigmoid(x, rate, offset): + return 1 / (1 + math.exp(-rate * (x - offset))) + + +def calculate_evidence(patch_responses, rate=0.25, offset=20): + # from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment + + rspmapShape = patch_responses[0, 0, ...].shape + n_points = patch_responses.shape[0] + + y_weight = [np.sum(patch_responses[i, 0, ...], axis=1) for i in range(n_points)] + x_weight = [np.sum(patch_responses[i, 0, ...], axis=0) for i in range(n_points)] + + # y_weight /= y_weight.sum() + # x_weight /= x_weight.sum() + + y_coordinate = range(0, rspmapShape[0]) + x_coordinate = range(0, rspmapShape[1]) + + varList = [(np.abs( + np.average((y_coordinate - np.average(y_coordinate, weights=y_weight[i])) ** 2, weights=y_weight[i])), + np.abs(np.average((x_coordinate - np.average(x_coordinate, weights=x_weight[i])) ** 2, + weights=x_weight[i]))) + for i in range(n_points)] + + # patch_responses[patch_responses<0.001] = 0 + prpList = [ + (np.sum(patch_responses[i, 0, ...], axis=(-1, -2)), np.sum(patch_responses[i, 0, ...], axis=(-1, -2))) + for i in range(n_points)] + + var = np.array(varList).flatten() + var[var == 0] = np.finfo(float).eps + var = np.sqrt(var) + var = 1 / var + + weight = np.array(prpList).flatten() + weight *= var + + # offset = np.average(weight) - 20 + weight = [sigmoid(i, rate, offset) for i in weight] + + weight = np.array(weight) + + return weight + + +def get_patches_around_landmarks(heat_maps, menpo_shape, patch_size=(30,30), image_shape=256): + # from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment + + padH = int(image_shape / 2) + padW = int(image_shape / 2) + + rps_zeros = np.zeros((1, 2 * image_shape, 2 * image_shape, menpo_shape.n_points)) + rps_zeros[0, padH:padH + image_shape, padW:padW + image_shape, :] = heat_maps + + rOffset = np.floor(patch_size[0] / 2).astype(int) + lOffset = patch_size[0] - rOffset + + rspList = [rps_zeros[0, y - rOffset:y + lOffset, x - rOffset:x + lOffset, i] for i in range(menpo_shape.n_points) + for y in [np.around(menpo_shape.points[i][0] + 1 + padH).astype(int)] + for x in [np.around(menpo_shape.points[i][1] + 1 + padW).astype(int)]] + patches = np.array(rspList)[:, None, :, :] + return patches + + +def pdm_correct(init_shape, pdm_model, part_inds=None): + """ correct landmarks using pdm (point distribution model)""" + pdm_model.set_target(PointCloud(init_shape)) + if part_inds is None: + return pdm_model.target.points + else: + return pdm_model.target.points[part_inds] + + +def weighted_pdm_transform(input_pdm_model, patches, shape, inirho=20): + # from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment + weight = calculate_evidence(patches, rate=0.5, offset=10).reshape((1, -1)) + pdm_model = input_pdm_model.copy() + + # write project_weight + ini_rho2_inv_prior = np.hstack((np.zeros((4,)), inirho / pdm_model.model.eigenvalues)) + J = np.rollaxis(pdm_model.d_dp(None), -1, 1) + J = J.reshape((-1, J.shape[-1])) + + initial_shape_mean = shape.points.ravel() - pdm_model.model._mean + iniJe = - J.T.dot(initial_shape_mean * weight[0]) + iniJWJ = J.T.dot(np.diag(weight[0]).dot(J)) + inv_JJ = np.linalg.inv(iniJWJ + np.diag(ini_rho2_inv_prior)) + initial_p = -inv_JJ.dot(iniJe) + + # Update pdm + pdm_model._from_vector_inplace(initial_p) + return pdm_model.target.points + + +def w_pdm_correct(init_shape, patches, pdm_model, part_inds=None): + """ correct landmarks using weighted pdm""" + + points = weighted_pdm_transform(input_pdm_model=pdm_model, patches=patches, shape=PointCloud(init_shape)) + + if (part_inds is not None and pdm_model.n_points < 68) or part_inds is None: + return points + else: + return points[part_inds] + + +def feature_based_pdm_corr(lms_init, models_dir, train_type='basic', patches=None): + """ correct landmarks using part-based pdm""" + + jaw_line_inds = np.arange(0, 17) + nose_inds = np.arange(27, 36) + left_eye_inds = np.arange(36, 42) + right_eye_inds = np.arange(42, 48) + left_brow_inds = np.arange(17, 22) + right_brow_inds = np.arange(22, 27) + mouth_inds = np.arange(48, 68) + + ''' + selected number of PCs: + jaw:7 + eye:3 + brow:2 + nose:5 + mouth:7 + ''' + + new_lms = np.zeros((68, 2)) + + parts = ['l_brow', 'r_brow', 'l_eye', 'r_eye', 'mouth', 'nose', 'jaw'] + part_inds_opt = [left_brow_inds, right_brow_inds, left_eye_inds, right_eye_inds, mouth_inds, nose_inds, + jaw_line_inds] + pc_opt = [2, 2, 3, 3, 7, 5, 7] + + for i, part in enumerate(parts): + part_inds = part_inds_opt[i] + pc = pc_opt[i] + temp_model = os.path.join(models_dir, train_type + '_' + part + '_' + str(pc)) + filehandler = open(temp_model, "rb") + try: + pdm_temp = pickle.load(filehandler) + except UnicodeDecodeError: + pdm_temp = pickle.load(filehandler, fix_imports=True, encoding="latin1") + filehandler.close() + + if patches is None: + part_lms_pdm = pdm_correct(lms_init[part_inds], pdm_temp) + else: + part_lms_pdm = w_pdm_correct( + init_shape=lms_init[part_inds], patches=patches, pdm_model=pdm_temp, part_inds=part_inds) + + new_lms[part_inds] = part_lms_pdm + return new_lms + + +def clm_correct(clm_model_path, image, map, lms_init): + """ tune landmarks using clm (constrained local model)""" + + filehandler = open(os.path.join(clm_model_path), "rb") + try: + part_model = pickle.load(filehandler) + except UnicodeDecodeError: + part_model = pickle.load(filehandler, fix_imports=True, encoding="latin1") + filehandler.close() + + # from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment + part_model.opt = dict() + part_model.opt['numIter'] = 5 + part_model.opt['kernel_covariance'] = 10 + part_model.opt['sigOffset'] = 25 + part_model.opt['sigRate'] = 0.25 + part_model.opt['pdm_rho'] = 20 + part_model.opt['verbose'] = False + part_model.opt['rho2'] = 20 + part_model.opt['ablation'] = (True, True) + part_model.opt['ratio1'] = 0.12 + part_model.opt['ratio2'] = 0.08 + part_model.opt['smooth'] = True + + fitter = GradientDescentCLMFitter(part_model, n_shape=30) + + image.rspmap_data = np.swapaxes(np.swapaxes(map, 1, 3), 2, 3) + + fr = fitter.fit_from_shape(image=image, initial_shape=PointCloud(lms_init), gt_shape=PointCloud(lms_init)) + w_pdm_clm = fr.final_shape.points + + return w_pdm_clm diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_functions.pyc b/MakeItTalk/thirdparty/face_of_art/pdm_clm_functions.pyc new file mode 100644 index 0000000000000000000000000000000000000000..08e4079c130c6d320db784510d0c7484d1675f77 Binary files /dev/null and b/MakeItTalk/thirdparty/face_of_art/pdm_clm_functions.pyc differ diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_all b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_all new file mode 100644 index 0000000000000000000000000000000000000000..74080a4dc77957a19fdbfb3aaf8e356979958fe8 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_all @@ -0,0 +1,519 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.clm.base +CLM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'opt' +p6 +(dp7 +S'ablation' +p8 +(I01 +I01 +tp9 +sS'verbose' +p10 +I00 +sS'rho2' +p11 +I20 +sS'sigRate' +p12 +F0.25 +sS'ratio2' +p13 +F0.08 +sS'smooth' +p14 +I01 +sS'dataset' +p15 +S'demo' +p16 +sS'ratio1' +p17 +F0.12 +sS'pdm_rho' +p18 +I20 +sS'sigOffset' +p19 +I25 +sS'kernel_covariance' +p20 +I10 +sS'numIter' +p21 +I5 +ssS'_shape_model_cls' +p22 +(lp23 +cmenpofit.modelinstance +OrthoPDM +p24 +asS'max_shape_components' +p25 +(lp26 +NasS'scales' +p27 +(lp28 +I1 +asS'diagonal' +p29 +I200 +sS'holistic_features' +p30 +(lp31 +cmenpo.feature.features +no_op +p32 +asS'patch_shape' +p33 +(lp34 +(I8 +I8 +tp35 +asS'expert_ensemble_cls' +p36 +(lp37 +cmenpofit.clm.expert.ensemble +FcnFilterExpertEnsemble +p38 +asS'expert_ensembles' +p39 +(lp40 +g0 +(g38 +g2 +Ntp41 +Rp42 +(dp43 +S'sample_offsets' +p44 +NsS'cosine_mask' +p45 +I01 +sS'context_shape' +p46 +(I8 +I8 +tp47 +sg33 +g35 +sS'response_covariance' +p48 +I3 +sS'patch_normalisation' +p49 +g32 +sS'_icf' +p50 +Nsbasg45 +I01 +sS'shape_models' +p51 +(lp52 +g0 +(g24 +g2 +Ntp53 +Rp54 +(dp55 +S'similarity_model' +p56 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p57 +g2 +Ntp58 +Rp59 +(dp60 +S'_components' +p61 +cnumpy.core.multiarray +_reconstruct +p62 +(cnumpy +ndarray +p63 +(I0 +tp64 +S'b' +p65 +tp66 +Rp67 +(I1 +(I4 +I136 +tp68 +cnumpy +dtype +p69 +(S'f8' +p70 +I0 +I1 +tp71 +Rp72 +(I3 +S'<' +p73 +NNNI-1 +I-1 +I0 +tp74 +bI00 +S'\xf0\xd2\xc7\x95\xdb\xa8\xb4\xbf\xd2\x8eq^b\xc9\xc4\xbf\xdf\xe7\xeb\xc1\xf5i\xa3\xbf\xe1\x83`\xa7\xce\x9d\xc4\xbf\xa3\xe2\x86\xce\xe8\x8bs?V\xee\xca\xec5\xea\xc3\xbf/\x85\nX\x96\xa9\xa7?BI6\n\x94\xad\xc2\xbfv\x81\x14\x17\xd2\x9f\xb5?b\xe1-\xdb\x9dx\xc0\xbf\x0c\xef\xab\xdb~#\xbe?\xab\xfaA\x84`;\xba\xbfU\x84\xa3\x1c;\x9d\xc2?\xc3|]9\xa1\x19\xb2\xbf\x0ebJ\x92\xf8i\xc5?r\xf2\xad\x9f\\?\xa2\xbf\x17\xe0\xd5\x1a| \xc6??\xb62\xb8\xf8\xccn?\xbcJ\xe1\x07\x90&\xc5?b\xbc\x042\xda\xb1\xa5?sz\xbe\x8c\x849\xc2?\xf5f\xaf)J\x8a\xb3?\xd1\xfc\xacg\x1f>\xbd?\x82\x92O\xab\x03u\xbb?\x18\xdc\xd7q\xab\xa3\xb4?\xfa\xe7\xea\xa5\xa4\xf1\xc0?\xca\xe4,\xb6]Q\xa5?\xe8L\xb5\x05!\t\xc3?\x05V\x80o\xc8h2\xbfNq\xeb\x02\xf5\x1b\xc4?\xc5\xa8`F\xc1\xe6\xa5\xbfE@B\x02\'\x9f\xc4?\r\xdc\xda\x00\x10\xe7\xb5\xbfm\x0b\x8c\xacn\xbb\xc4?\x8d\x94\xfa[\x87\xf6\xbc\xbf\x0c%\xec\x01\n"\xc1\xbf5\x90p\x15\xc5\xe5\xc0\xbf!sb*\xda\n\xbd\xbf\xa6\x1b5@Z\x9a\xc1\xbf\x80\xe1\xf2\x8f\xa3\xb3\xb5\xbf|%v+9\x14\xc1\xbf\xe7\xc5\\\x10\x100\xac\xbf\xb7\xbcp[\xe3<\xbf\xbf\xac\x0e\xb0\x0bh\xc3\x9c\xbf\xfap\x1d\xbdK\xd5\xbf\xbf{\xdcwj\x86,\x97?\x92\xe2\xcd\xf8ss\xc1\xbf\x8f\x08\xbe\xa5\xbd\x1b\xaa?B+\xfd\xdbU\x01\xc2\xbf[=\x90J\xbe\x9f\xb4?\x08\xf5\xb8t\xc4L\xc1\xbf\xea\x84\xa1\':\xf5\xbb?U)\x99\xff%\xfb\xbd\xbf\xe9/\x1f9\x8e\x89\xc0?\xbe\xc2\xe5\x0c\xc0\x02\xb7\xbfx\xce*\xed\xd2>U\xbf[\x15\x1c\xba\xc3\xe6\xaf\xbf\xc6N$*#/P\xbf\x0b\t/\xbf|\xe5\xa1\xbf\xb8\x1f\x99\x96\xd2\xb6C\xbf\xef-\x8e\x00j\xb9{\xbfYI\xce\xf2RV\x12\xbf\xbaa\n\xf1$\xc4\x89?\xa3\xd8\xce\xf5G]\xa1\xbf\x92d\x17H"\xe9\x92?q{CE\x9a\xbf\x91\xbf!\xd6\xa7\x0eG\xc6\x97?\xa2J\x15uj\xb8\x12\xbf\x1c\xcfT\x1e1V\x92?1Dxb\xe8\x96\x91?\xd8g\xeb\xe9C\xf7\x88?\x9d\xb5\xbd\xc7\xbb\xad\xa0?\xe8\xbd"\xd6\'\xb5\xb5\xbf\xdda\xad\xf7g\xbd\xb9\xbf/\x19\x7fj\xad`\xb8\xbfEx^\xd3\x9d3\xb5\xbf\xb0m3qyJ\xb8\xbf\xbd\x9b\x03\x1aI\x90\xaf\xbf\xba\x93\x0c\x02_\xd6\xb4\xbf\xa4\xbf\xf7\xb3\x00F\xa6\xbf\xbe\xd5\x07\xfd\xf4\xdc\xb3\xbf\xacs1\xe0\xfc\xe6\xaf\xbfG\xc5\xc8\xb3\xe6\xcd\xb3\xbf\xdawRf\xc4^\xb5\xbf\xacY\xfc\x8e\xd01\xb5\xbf\x08\xa2\x1cN\x89]\xa4?P\xca\x9d/\xf5\xe9\xb8\xbf\x17~\xa6\x96\xba\x02\xae?Na5b(\xf6\xb8\xbf\xae\xde2\xe1B_\xb4?Z\x98\xd9j\xa2r\xb6\xbf\xef\x11o\xac\x81\xcf\xb8?\xbb\\&\x1f\xcb\x89\xb4\xbfqa\x87\xdbX\xd4\xb4?A\x7f\xbd\x0f\x89U\xb4\xbf.v\xc8al\t\xaf?|\xee(J\xe1\x9d\xb0?\xdel\xca\xa7\x95\xe0\xaf\xbf#\xc2\xb1c+\t\xac?1\xc8\xd2\x8b\xeb\xd4\xa3\xbf\xb7\xa0\xb2!\x9b{\xa9?\xe92BB\x07\xd2\x8f\xbf\xf0\x1bc\xf70\x84\xab?Y\x85U\x1f\xc3V5\xbf\x12\x9fj\xdc\xe3X\xa9?\x92\xaew\xcet[\x91?N\xd7\xe4h\xd8\xcd\xab?\x12!\xdf\xbaq\xd3\xa4?\xff\x11\xa7#p\r\xb0?\xf2x\xd1^~F\xb0?\xec\xc5\xaf\x81F\xe4\xb5?\xa0\xf3\xdf&\x15c\xa5?r\xc9\x0f\x1b\x97\x80\xb8?\xdat\xd9\xae\x82\xab\x93?%\xec3\x0e\x8d\x10\xb9?#\x96\xe2Q\x0b\xa8G?\x0b\xecn\xf2i\xae\xb8?\xdbJ\xeb%\xb0\x88\x90\xbf\xb4\x16\'{\rJ\xb6?g-\xca9\xa1\x06\xa4\xbf\xb4T\xd3\xa9H\xdd\xb0?\xe3\x87U`\x01\xf3\xaa\xbf\xc4\xbf\xd2(\x1fH\xb0?\xf1p\xf8\xaf\xc9\xdc\x8f\xbf(\xaf@kB\xa9\xb0? b\x02\xed\x078\x0c\xbf\xcc\x9eB\x17\xf8#\xb0?\x7f\x15\xbd\xde\xb4\xcf\x91?\xa3\xc4F\x0f\xcbl\xb0?\x1e\xcf\xdb\\\xb1\x9f\xab?\x1au\xa5\nY,\xb3?\x96\x96\xf5\xd7>?\x92?\xd6\xf7\xde\xc9\x03\xc8\xb3?\xf5C\xfe\x9b\xbd?\xf9\xe7\xea\xa5\xa4\xf1\xc0\xbf\x16\xdc\xd7q\xab\xa3\xb4?\xe7L\xb5\x05!\t\xc3\xbf\xc8\xe4,\xb6]Q\xa5?Lq\xeb\x02\xf5\x1b\xc4\xbf\xe5V\x80o\xc8h2\xbfC@B\x02\'\x9f\xc4\xbf\xc5\xa8`F\xc1\xe6\xa5\xbfk\x0b\x8c\xacn\xbb\xc4\xbf\x0c\xdc\xda\x00\x10\xe7\xb5\xbf\x0c%\xec\x01\n"\xc1?\x8b\x94\xfa[\x87\xf6\xbc\xbf\x1fsb*\xda\n\xbd?3\x90p\x15\xc5\xe5\xc0\xbf\x7f\xe1\xf2\x8f\xa3\xb3\xb5?\xa5\x1b5@Z\x9a\xc1\xbf\xe5\xc5\\\x10\x100\xac?{%v+9\x14\xc1\xbf\xac\x0e\xb0\x0bh\xc3\x9c?\xb5\xbcp[\xe3<\xbf\xbfv\xdcwj\x86,\x97\xbf\xf8p\x1d\xbdK\xd5\xbf\xbf\x8b\x08\xbe\xa5\xbd\x1b\xaa\xbf\x91\xe2\xcd\xf8ss\xc1\xbfY=\x90J\xbe\x9f\xb4\xbfA+\xfd\xdbU\x01\xc2\xbf\xe9\x84\xa1\':\xf5\xbb\xbf\x06\xf5\xb8t\xc4L\xc1\xbf\xe8/\x1f9\x8e\x89\xc0\xbfS)\x99\xff%\xfb\xbd\xbf\x94\xce*\xed\xd2>U?\xbb\xc2\xe5\x0c\xc0\x02\xb7\xbf\xd7N$*#/P?W\x15\x1c\xba\xc3\xe6\xaf\xbf\xc7\x1f\x99\x96\xd2\xb6C?\t\t/\xbf|\xe5\xa1\xbfvI\xce\xf2RV\x12?\xed-\x8e\x00j\xb9{\xbf\xa1\xd8\xce\xf5G]\xa1?\xb9a\n\xf1$\xc4\x89?o{CE\x9a\xbf\x91?\x91d\x17H"\xe9\x92?-J\x15uj\xb8\x12? \xd6\xa7\x0eG\xc6\x97?0Dxb\xe8\x96\x91\xbf\x1a\xcfT\x1e1V\x92?\x9c\xb5\xbd\xc7\xbb\xad\xa0\xbf\xd4g\xeb\xe9C\xf7\x88?\xdca\xad\xf7g\xbd\xb9?\xe6\xbd"\xd6\'\xb5\xb5\xbfCx^\xd3\x9d3\xb5?,\x19\x7fj\xad`\xb8\xbf\xba\x9b\x03\x1aI\x90\xaf?\xaem3qyJ\xb8\xbf\xa2\xbf\xf7\xb3\x00F\xa6?\xb9\x93\x0c\x02_\xd6\xb4\xbf\xaas1\xe0\xfc\xe6\xaf?\xbc\xd5\x07\xfd\xf4\xdc\xb3\xbf\xdawRf\xc4^\xb5?F\xc5\xc8\xb3\xe6\xcd\xb3\xbf\x06\xa2\x1cN\x89]\xa4\xbf\xaaY\xfc\x8e\xd01\xb5\xbf\x12~\xa6\x96\xba\x02\xae\xbfM\xca\x9d/\xf5\xe9\xb8\xbf\xac\xde2\xe1B_\xb4\xbfMa5b(\xf6\xb8\xbf\xed\x11o\xac\x81\xcf\xb8\xbfX\x98\xd9j\xa2r\xb6\xbfna\x87\xdbX\xd4\xb4\xbf\xbb\\&\x1f\xcb\x89\xb4\xbf+v\xc8al\t\xaf\xbf?\x7f\xbd\x0f\x89U\xb4\xbf\xd9l\xca\xa7\x95\xe0\xaf?{\xee(J\xe1\x9d\xb0?0\xc8\xd2\x8b\xeb\xd4\xa3?!\xc2\xb1c+\t\xac?\xe62BB\x07\xd2\x8f?\xb6\xa0\xb2!\x9b{\xa9?\'\x85U\x1f\xc3V5?\xed\x1bc\xf70\x84\xab?\x92\xaew\xcet[\x91\xbf\x0f\x9fj\xdc\xe3X\xa9?\x11!\xdf\xbaq\xd3\xa4\xbfL\xd7\xe4h\xd8\xcd\xab?\xf0x\xd1^~F\xb0\xbf\xfc\x11\xa7#p\r\xb0?\x9f\xf3\xdf&\x15c\xa5\xbf\xea\xc5\xaf\x81F\xe4\xb5?\xdat\xd9\xae\x82\xab\x93\xbfp\xc9\x0f\x1b\x97\x80\xb8?\\\x96\xe2Q\x0b\xa8G\xbf"\xec3\x0e\x8d\x10\xb9?\xd9J\xeb%\xb0\x88\x90?\x08\xecn\xf2i\xae\xb8?e-\xca9\xa1\x06\xa4?\xb2\x16\'{\rJ\xb6?\xe0\x87U`\x01\xf3\xaa?\xb3T\xd3\xa9H\xdd\xb0?\xedp\xf8\xaf\xc9\xdc\x8f?\xc2\xbf\xd2(\x1fH\xb0?\xa1_\x02\xed\x078\x0c?&\xaf@kB\xa9\xb0?~\x15\xbd\xde\xb4\xcf\x91\xbf\xca\x9eB\x17\xf8#\xb0?\x1c\xcf\xdb\\\xb1\x9f\xab\xbf\xa2\xc4F\x0f\xcbl\xb0?\x96\x96\xf5\xd7>?\x92\xbf\x19u\xa5\nY,\xb3?\xe8D\xfe\x9bK\xab\x05\x8b<\x1b\xaf\xd2Hh\x0b\xbf\xbf]h\xfc\xc0\x0f`\x8b<\x1d\xaf\xd2Hh\x0b\xbf\xbf\xd6T\'5\xe0<\x8e<\x1e\xaf\xd2Hh\x0b\xbf\xbf\xb0\xbd{\xf7)X\x8d< \xaf\xd2Hh\x0b\xbf\xbf\x0e\xc2\xc8\xf5\xd8\xab\x86\xbc\x1f\xaf\xd2Hh\x0b\xbf\xbf\xa0P\xbe\xea\xaf\x13\x83\xbc\x1f\xaf\xd2Hh\x0b\xbf\xbf\xdd3\x93\xfc]\xd6z\xbc \xaf\xd2Hh\x0b\xbf\xbf%\x18\xf4\xe4\x912p\xbc \xaf\xd2Hh\x0b\xbf\xbf\xbf\xf7OH+\xa7X\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbflt_\xcfs\x91f< \xaf\xd2Hh\x0b\xbf\xbf\xc2\x18\xde2f\x05w\x97@?\xf3`B<\x1e\xaf\xd2Hh\x0b\xbf\xbfR\x00N\xd0\x055;<\x1c\xaf\xd2Hh\x0b\xbf\xbf\xfd\xa8>\x1c]K/<\x1b\xaf\xd2Hh\x0b\xbf\xbfQo\x97t\xae\x89\x08<\x1c\xaf\xd2Hh\x0b\xbf\xbf\xf8\xfc\x90\xf7}\x19i\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf:\xa1\x16\xaf+?]\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf\xfb\xd3\r\xfa\x1a"*\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\xf9XH4\x02\xedU<\x1d\xaf\xd2Hh\x0b\xbf\xbf;\xa5\x82\xfc\xbe)g<\x1f\xaf\xd2Hh\x0b\xbf\xbfh\xfa\xb8\x0c\x99u\x81\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbf\xe2g\xe5sMM|\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbf\x1d\xab}j\xb6Tr\xbc\x1f\xaf\xd2Hh\x0b\xbf\xbf\xa0\x12\xd3\x03xDi\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbf\x99\xa0\xa8+\xd6\xb4t\xbc\x1f\xaf\xd2Hh\x0b\xbf\xbf\x1d\x91\xe5G\x89\xfe{\xbc\x1f\xaf\xd2Hh\x0b\xbf\xbf\x9c\x93\x1f\t\xe8ap<\x1f\xaf\xd2Hh\x0b\xbf\xbfZ\xa4\x0f \xf1~y<\x1f\xaf\xd2Hh\x0b\xbf\xbf\xcfN\x8cV\x8b\x14\x7f<\x1e\xaf\xd2Hh\x0b\xbf\xbf\x82Q+\xd4\x96\xe8\x82<\x1e\xaf\xd2Hh\x0b\xbf\xbf\xd2\xda\xbbw\x04\xaf~<\x1e\xaf\xd2Hh\x0b\xbf\xbf`\x18\xca\x03qVy<\x1b\xaf\xd2Hh\x0b\xbf\xbf\xa6+B$\xf9\xe1x\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf\x9b\xb69\xf4\x8a\x15p\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbfF\xfb\x07[\xf8?]\xbc\x1d\xaf\xd2Hh\x0b\xbf\xbf\xddZL\xe0_\x06>\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\x98\x844a\xb6@R<\x1c\xaf\xd2Hh\x0b\xbf\xbf\xa1\x97%\x9d\xe1\xd0h<\x1a\xaf\xd2Hh\x0b\xbf\xbf\xb0:\xdc<\x18cv<\x1a\xaf\xd2Hh\x0b\xbf\xbf\xc7\x98O\xd1`\xc9h<\x1b\xaf\xd2Hh\x0b\xbf\xbf\xd9-\x0eOCWP<\x1b\xaf\xd2Hh\x0b\xbf\xbf\xa0\x0e\xc7\x1b\xef$G\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf:Mq\x98\x95\xb6a\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\x07\xa7Q\xee\xe6nq\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf\xfb^\x99-\x05\x8bu\xbc\x18\xaf\xd2Hh\x0b\xbf\xbfQWS\xe2\x0e\x0f^\xbc\x1d\xaf\xd2Hh\x0b\xbf\xbf5-<\xa9X\x80B\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf\xf0\xebj\xeaA\x93P<\x1a\xaf\xd2Hh\x0b\xbf\xbfhz\xb6)O\xe7q<\x1c\xaf\xd2Hh\x0b\xbf\xbfD\xd0tj\x12\x1bQ<\x1c\xaf\xd2Hh\x0b\xbf\xbfQG\xdf\x02\xb8WD\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf\xdb\xe6b/\xe3\x8a_\xbc\xb1\x01\x17\xe4\xf0{\x8b<\x1b\xaf\xd2Hh\x0b\xbf\xbfI\xd2\xcc\x13\x85M\x87<"\xaf\xd2Hh\x0b\xbf\xbfD\xf5 \x18$\xd0\x88<\x1f\xaf\xd2Hh\x0b\xbf\xbfGg\x03\x86\x0f\xf0\x87<\x1d\xaf\xd2Hh\x0b\xbf\xbf\xdf\\\x16\xae\xa7A\x86<\x1b\xaf\xd2Hh\x0b\xbf\xbf\x86\xf2\xfb\xc0\x13\xb9\x82<\x1d\xaf\xd2Hh\x0b\xbf\xbf[\x14E\xa6\x06\xc1~<\x1e\xaf\xd2Hh\x0b\xbf\xbfPwD\xbar\xd7v<\x1c\xaf\xd2Hh\x0b\xbf\xbf\xa6\x17\xc6\xb1i\xc6d<\x1c\xaf\xd2Hh\x0b\xbf\xbfb\x94\xe4\x8f1\xf3=\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf\n+U,\x0c4j\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\xb9\x80\xe7\xa4\xd6\x00y\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf/\x05*Y4\xc8\x80\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\n\'J\x12\xec+\x87\xbc\x19\xaf\xd2Hh\x0b\xbf\xbfc\x9a\xd06W$\x88\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\x01\xa8n\xa8\x1b\x12\x88\xbc\x1f\xaf\xd2Hh\x0b\xbf\xbfJ\xecD\x1f\xfa\xc9\x8a\xbc\x1f\xaf\xd2Hh\x0b\xbf\xbf\x05\xe0\xc19G\x8c\x81<"\xaf\xd2Hh\x0b\xbf\xbf\x83\n\xbb\x11d\x05y<"\xaf\xd2Hh\x0b\xbf\xbfG\x9d#\xce\x82+q<"\xaf\xd2Hh\x0b\xbf\xbf;\xfet\xb0\xd2\xe4]<"\xaf\xd2Hh\x0b\xbf\xbfDS&\x8b\x88*\x08\xbc\x1d\xaf\xd2Hh\x0b\xbf\xbfU\xac\xfe\x08U\xff\x1c\xbc\x1f\xaf\xd2Hh\x0b\xbf\xbf\x94\xf8\xd90B[e<\x1d\xaf\xd2Hh\x0b\xbf\xbf\xe4\x12i\x9fDQZ<\x1d\xaf\xd2Hh\x0b\xbf\xbf0\x92\x8b}\n46<\x1d\xaf\xd2Hh\x0b\xbf\xbfiYk]\xe4\xceQ\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbf\xee\xaa\xb3d\xe6\x0bc\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbf\xf6\x96.%;.x< \xaf\xd2Hh\x0b\xbf\xbf\xac\xce\x07\x82\xfc\xb4r< \xaf\xd2Hh\x0b\xbf\xbf:\x9d\xc7\xb1\xac\x03h< \xaf\xd2Hh\x0b\xbf\xbf\xeb)\xcc(\x9ap^< \xaf\xd2Hh\x0b\xbf\xbf$\xef\xb2O\xf7\xc7k<\x1f\xaf\xd2Hh\x0b\xbf\xbf8\x8e*~\xbc\x1f\xaf\xd2Hh\x0b\xbf\xbf\x173J\x85\xf3\x0c\x81\xbc\x1f\xaf\xd2Hh\x0b\xbf\xbf\xfe\x82U\xea~\x97~\xbc \xaf\xd2Hh\x0b\xbf\xbf\xa9V\x1av\x97\x08y\xbc \xaf\xd2Hh\x0b\xbf\xbf@\xca\x86\xa1\x8cXw<\x1f\xaf\xd2Hh\x0b\xbf\xbf\xf5\x94i\xcf\x81@m<\x1d\xaf\xd2Hh\x0b\xbf\xbfX\xd5\x04\x9f\xd3\xc0_<\x1d\xaf\xd2Hh\x0b\xbf\xbfM\xd4\xba\x88\x0bAL<\x1c\xaf\xd2Hh\x0b\xbf\xbf\x01Ai[\xe7\x06@\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbf.\xb87\xacT\xf0d\xbc\x1d\xaf\xd2Hh\x0b\xbf\xbf\xb9\xafcr\xa4Mn\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbfk\xf4\x08i+\xe7Z\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbfk\x96\xab\x9c\x93\xff\x1d<\x1f\xaf\xd2Hh\x0b\xbf\xbf\n4\xd5\xa4\x025Y<\x1a\xaf\xd2Hh\x0b\xbf\xbf\x9f\xad\nZ\x9a\xedf<\x1c\xaf\xd2Hh\x0b\xbf\xbf\t\x95-T29r<\x1c\xaf\xd2Hh\x0b\xbf\xbf{\x1c\x07\x84\x1brt<\x1d\xaf\xd2Hh\x0b\xbf\xbf\xd4gO\xfe\x00\x00b<\x1d\xaf\xd2Hh\x0b\xbf\xbfu\xb9A\x1a\xae0Q<\x1e\xaf\xd2Hh\x0b\xbf\xbf$\x0e(b\xcc\xfa(\xbc\x1d\xaf\xd2Hh\x0b\xbf\xbf\xa5\x07\x85fS\x80g\xbc\x1d\xaf\xd2Hh\x0b\xbf\xbf\x05\xbe\xde+\x02%*\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbf\xf5\xa6\x1d\x13\x90\xf7S<\x1e\xaf\xd2Hh\x0b\xbf\xbf0\xa0\x1e\xeew/c<\x1d\xaf\xd2Hh\x0b\xbf\xbf' +p75 +tp76 +bsS'_mean' +p77 +g62 +(g63 +(I0 +tp78 +g65 +tp79 +Rp80 +(I1 +(I136 +tp81 +g72 +I00 +S'\xf7\x82:y\xe0;A\xc0.\xe2\xa1\x89\x02WQ\xc0\x800\x83\x8f\xdb10\xc0\x14\x0eV\xa0\xa82Q\xc0p@!}-N\x00@\x106K\x9b\xd7\x9cP\xc0\xec\xb2N`#\xbd3@aK\xab\xf1l)O\xc0\xcbk\xc3\xa1\xe3\tB@\xa8\x843\xc6\xdczK\xc0\x9dz\x8a8#$I@\xf5\xd5\xe8\xfb\xda\xe1E\xc0\x93!(\xf3&\x0eO@\x82\xc3\xa7\xdd\x972>\xc0\x11\x81x\xfb\xf7\xdcQ@\xb6\xb7&I\x8bq.\xc0\xf5(P\xf97uR@\xc7[r\xfb\x82\xb1\xf9?\x1f(9\xdd\xbc\xa4Q@\xd0\xc8OO\xee\x182@Y\x1b0I\xcbgN@\xc4\xc0\x89\x99\xd3L@@\xc2\x04\xedn\xccdH@><\xed\x85|\xe7F@\x8e\xac\x9e\x8f\x8c7A@Z\x8d\rn\xc7DL@l\x83\x1e\x94q\xc81@\x8d\xacHl*\xc2O@\x04W\xd2T\xa6\xb6\xbe\xbf\xeb\xfe\xcc\x00W\xc6P@\x90\x12~\xb8\x0fE2\xc0%\xbc\xaa\xe1\xc73Q@\xf8a\x05eQEB\xc0\xb9 \xe0\x16_KQ@3\x9e\xc9{\x13)H\xc05Xhl\x85\x95L\xc0\x05\xc4zR\xf80L\xc070\xe3\x93\x07:H\xc0\x01\xf3d\x85?^M\xc0\xa2\xabp\xd6k\x1aB\xc0$\xb7t\xaex~L\xc0\xf4m\xc9\xe2\x84\x837\xc0\xcc;\xaa\xdd\xde\x0eJ\xc0\xdb\xbe\xd5Cn\xfe\'\xc0\x17\x87\x17\xae\x01\x8eJ\xc0dT79\xd0T#@c\xf0\x03vY\x1dM\xc0\xffW\xe3\nw\xc75@\xe2\x18r\xaf\x0f\nN\xc0\xc4\x12,\x14F4A@\xb9\x1a\x01\xc4\xce\xdcL\xc0@`$~pRG@+\x93\xfd\x0e{\x02I\xc0\xbd\n\x91l\x1f\x97K@\x93\x91\x8d)\xf71C\xc0\x0c\x8f\xbe\xe3\xf9\xb8\xe1\xbf\xe9\x07T#\x94\x9c:\xc0>\xa4\xfb\xa4E\x00\xdb\xbf\xd2)G\xb6\x99\xdb-\xc0I\x1f\xf4\xa4\xf9q\xd0\xbf\x9bc\xc2Y\x8b \x07\xc0\xf9C\x87|\xda\x97\x9e\xbf\xb8},\xbad~\x15@\x9a\x1e\xe6\xca[\xf8,\xc02\xe5\xc1C\xc9\x8c\x1f@\x04\x9f\x19\x19e\x9c\x1d\xc0\xccG\xa56\x12\xd5#@\xdbq\x82\xb0\x81;\x9f\xbf\xae\x8c\xae\x0b\xa2\x97\x1e@\x1a\xdd\xb8>\x80X\x1d@\\\x82\xb0\x9f|\xd3\x14@I\xb5\xc4\x18{\xd3+@r\x96\xbf\xba\xaf\x1bB\xc08\xa0\\\xc8\xc5xE\xc0\xeb\xbb-q\xdeUD\xc05\xa6\x9d\x88\xa0\xafA\xc0\x9a\x1cN\xf7XCD\xc0\xfcF^wpT:\xc0\x96\x99c\xe5\xd7aA\xc0\xd1\xd3&\xf8\x83\x942\xc0\x10\xaa\x8bF\xc9\x91@\xc0+\xe9\x7f\xcf\xc3\x9c:\xc0\xdd\x87,\x18:\x85@\xc0\xed\\\xbcf\x9f\xd3A\xc0\xcf1\x98\xc0\x1f\xaeA\xc0\xdf\x99z\x84\x0b\xfd0@-\xa4\xd2\xc9b\xc8D\xc0\xeb\x05\xcb\xdd\xcd\x089@\xae\xc4\x91\x1b\x90\xd2D\xc0\x06\x89"\xdf{\xfe@@PS\x0b\x1c\xbf\xb9B\xc0\x94\xb8\x11\x1bR\xb2D@~\x1fM\xa9\xf6!A\xc0\x00K\xe0\xa9\'`A@\xdf\xed&\xe8^\xf6@\xc0\x0e\xd0\x7f\x85\xf0\xe39@\xc8\xf8\xee\x0b\x08\xb9;@\xad+{fl\x97:\xc0\xf1\xcd\xb91\x13c7@W\xaa\xda\xfd\x14\x8b0\xc0\xd9\xc4\x0e\x1a\xe2A5@\x11W\x08\xe7G\x8b\x1a\xc0P\xdd\xbc\x92%\xf46@T\x9a\xab\xed\xf1\xcc\xc1\xbf\x02;.}\xec$5@\xb6\xfe\xb2hP\xf5\x1c@\x9es$x\x9617@\x9f\xb8^\xdcf_1@1\x82x\x9a\x0c\xc8:@\xd2}\xd8&=\';@\xe6\xf5 5\xfeBB@47\x95\xf78\xd71@E\'\xfcu}pD@\xd1R\xb3\xed\x89h @\x95\x87\x1ai\x94\xe8D@\xb7d\x8e\xda\xd9\xbb\xd3?\xd0"\x03"\xb7\x96D@t\x04\xeb\xeb\xac\x95\x1b\xc0\xa4y\x11\xd5\xe4\x97B@?\x85\x83\x8a\x8c\xb40\xc0W\x04\xb7\xed\xcf"<@\x81Pr\xfd\x08{6\xc0\x15"<\x82\xf4);@\x0b\xd2\xcd\x99A\x94\x1a\xc0\xf3\x98\xd76\x04\xcc;@\x08\x9a/\x81*\x8a\x97\xbf\x8b\xa8H\xa9\xa3\xed:@\x1d\xa1\xfd\x1aC\xb7\x1d@\xcf8\xcf\xf7"g;@\xe6\xf8\xe7\x8d\x16\x0b7@\xc6B\xd4r\xec\xfc?@\xcd\xb6\xfd\x99Yq\x1e@\x86!Z\rQ\x80@@\xfa\xdc\xcd w\xc0\xa6?\x07i\xc5\x13\xf9%@@\x08x\xf8:J\xed\x1a\xc0' +p82 +tp83 +bsS'template_instance' +p84 +g0 +(cmenpo.shape.pointcloud +PointCloud +p85 +g2 +Ntp86 +Rp87 +(dp88 +S'path' +p89 +cpathlib +PosixPath +p90 +(S'/' +p91 +S'Users' +p92 +S'arik' +p93 +S'Dropbox' +p94 +S'a_mac_thesis' +p95 +S'face_heatmap_networks' +p96 +S'conventional_landmark_detection_dataset' +p97 +S'crop_gt_margin_0.25' +p98 +S'100032540_1.pts' +p99 +tp100 +Rp101 +sS'points' +p102 +g62 +(g63 +(I0 +tp103 +g65 +tp104 +Rp105 +(I1 +(I68 +I2 +tp106 +g72 +I00 +S'\xf7\x82:y\xe0;A\xc0.\xe2\xa1\x89\x02WQ\xc0\x800\x83\x8f\xdb10\xc0\x14\x0eV\xa0\xa82Q\xc0p@!}-N\x00@\x106K\x9b\xd7\x9cP\xc0\xec\xb2N`#\xbd3@aK\xab\xf1l)O\xc0\xcbk\xc3\xa1\xe3\tB@\xa8\x843\xc6\xdczK\xc0\x9dz\x8a8#$I@\xf5\xd5\xe8\xfb\xda\xe1E\xc0\x93!(\xf3&\x0eO@\x82\xc3\xa7\xdd\x972>\xc0\x11\x81x\xfb\xf7\xdcQ@\xb6\xb7&I\x8bq.\xc0\xf5(P\xf97uR@\xc7[r\xfb\x82\xb1\xf9?\x1f(9\xdd\xbc\xa4Q@\xd0\xc8OO\xee\x182@Y\x1b0I\xcbgN@\xc4\xc0\x89\x99\xd3L@@\xc2\x04\xedn\xccdH@><\xed\x85|\xe7F@\x8e\xac\x9e\x8f\x8c7A@Z\x8d\rn\xc7DL@l\x83\x1e\x94q\xc81@\x8d\xacHl*\xc2O@\x04W\xd2T\xa6\xb6\xbe\xbf\xeb\xfe\xcc\x00W\xc6P@\x90\x12~\xb8\x0fE2\xc0%\xbc\xaa\xe1\xc73Q@\xf8a\x05eQEB\xc0\xb9 \xe0\x16_KQ@3\x9e\xc9{\x13)H\xc05Xhl\x85\x95L\xc0\x05\xc4zR\xf80L\xc070\xe3\x93\x07:H\xc0\x01\xf3d\x85?^M\xc0\xa2\xabp\xd6k\x1aB\xc0$\xb7t\xaex~L\xc0\xf4m\xc9\xe2\x84\x837\xc0\xcc;\xaa\xdd\xde\x0eJ\xc0\xdb\xbe\xd5Cn\xfe\'\xc0\x17\x87\x17\xae\x01\x8eJ\xc0dT79\xd0T#@c\xf0\x03vY\x1dM\xc0\xffW\xe3\nw\xc75@\xe2\x18r\xaf\x0f\nN\xc0\xc4\x12,\x14F4A@\xb9\x1a\x01\xc4\xce\xdcL\xc0@`$~pRG@+\x93\xfd\x0e{\x02I\xc0\xbd\n\x91l\x1f\x97K@\x93\x91\x8d)\xf71C\xc0\x0c\x8f\xbe\xe3\xf9\xb8\xe1\xbf\xe9\x07T#\x94\x9c:\xc0>\xa4\xfb\xa4E\x00\xdb\xbf\xd2)G\xb6\x99\xdb-\xc0I\x1f\xf4\xa4\xf9q\xd0\xbf\x9bc\xc2Y\x8b \x07\xc0\xf9C\x87|\xda\x97\x9e\xbf\xb8},\xbad~\x15@\x9a\x1e\xe6\xca[\xf8,\xc02\xe5\xc1C\xc9\x8c\x1f@\x04\x9f\x19\x19e\x9c\x1d\xc0\xccG\xa56\x12\xd5#@\xdbq\x82\xb0\x81;\x9f\xbf\xae\x8c\xae\x0b\xa2\x97\x1e@\x1a\xdd\xb8>\x80X\x1d@\\\x82\xb0\x9f|\xd3\x14@I\xb5\xc4\x18{\xd3+@r\x96\xbf\xba\xaf\x1bB\xc08\xa0\\\xc8\xc5xE\xc0\xeb\xbb-q\xdeUD\xc05\xa6\x9d\x88\xa0\xafA\xc0\x9a\x1cN\xf7XCD\xc0\xfcF^wpT:\xc0\x96\x99c\xe5\xd7aA\xc0\xd1\xd3&\xf8\x83\x942\xc0\x10\xaa\x8bF\xc9\x91@\xc0+\xe9\x7f\xcf\xc3\x9c:\xc0\xdd\x87,\x18:\x85@\xc0\xed\\\xbcf\x9f\xd3A\xc0\xcf1\x98\xc0\x1f\xaeA\xc0\xdf\x99z\x84\x0b\xfd0@-\xa4\xd2\xc9b\xc8D\xc0\xeb\x05\xcb\xdd\xcd\x089@\xae\xc4\x91\x1b\x90\xd2D\xc0\x06\x89"\xdf{\xfe@@PS\x0b\x1c\xbf\xb9B\xc0\x94\xb8\x11\x1bR\xb2D@~\x1fM\xa9\xf6!A\xc0\x00K\xe0\xa9\'`A@\xdf\xed&\xe8^\xf6@\xc0\x0e\xd0\x7f\x85\xf0\xe39@\xc8\xf8\xee\x0b\x08\xb9;@\xad+{fl\x97:\xc0\xf1\xcd\xb91\x13c7@W\xaa\xda\xfd\x14\x8b0\xc0\xd9\xc4\x0e\x1a\xe2A5@\x11W\x08\xe7G\x8b\x1a\xc0P\xdd\xbc\x92%\xf46@T\x9a\xab\xed\xf1\xcc\xc1\xbf\x02;.}\xec$5@\xb6\xfe\xb2hP\xf5\x1c@\x9es$x\x9617@\x9f\xb8^\xdcf_1@1\x82x\x9a\x0c\xc8:@\xd2}\xd8&=\';@\xe6\xf5 5\xfeBB@47\x95\xf78\xd71@E\'\xfcu}pD@\xd1R\xb3\xed\x89h @\x95\x87\x1ai\x94\xe8D@\xb7d\x8e\xda\xd9\xbb\xd3?\xd0"\x03"\xb7\x96D@t\x04\xeb\xeb\xac\x95\x1b\xc0\xa4y\x11\xd5\xe4\x97B@?\x85\x83\x8a\x8c\xb40\xc0W\x04\xb7\xed\xcf"<@\x81Pr\xfd\x08{6\xc0\x15"<\x82\xf4);@\x0b\xd2\xcd\x99A\x94\x1a\xc0\xf3\x98\xd76\x04\xcc;@\x08\x9a/\x81*\x8a\x97\xbf\x8b\xa8H\xa9\xa3\xed:@\x1d\xa1\xfd\x1aC\xb7\x1d@\xcf8\xcf\xf7"g;@\xe6\xf8\xe7\x8d\x16\x0b7@\xc6B\xd4r\xec\xfc?@\xcd\xb6\xfd\x99Yq\x1e@\x86!Z\rQ\x80@@\xfa\xdc\xcd w\xc0\xa6?\x07i\xc5\x13\xf9%@@\x08x\xf8:J\xed\x1a\xc0' +p107 +tp108 +bsS'_landmarks' +p109 +NsbsbsS'similarity_weights' +p110 +g62 +(g63 +(I0 +tp111 +g65 +tp112 +Rp113 +(I1 +(I4 +tp114 +g72 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p115 +tp116 +bsS'_weights' +p117 +g62 +(g63 +(I0 +tp118 +g65 +tp119 +Rp120 +(I1 +(I132 +tp121 +g72 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p122 +tp123 +bsS'_target' +p124 +g0 +(g85 +g2 +Ntp125 +Rp126 +(dp127 +g89 +g101 +sg102 +g62 +(g63 +(I0 +tp128 +g65 +tp129 +Rp130 +(I1 +(I68 +I2 +tp131 +g72 +I00 +S'\xf8\x82:y\xe0;A\xc0/\xe2\xa1\x89\x02WQ\xc0\x810\x83\x8f\xdb10\xc0\x15\x0eV\xa0\xa82Q\xc0q@!}-N\x00@\x116K\x9b\xd7\x9cP\xc0\xed\xb2N`#\xbd3@cK\xab\xf1l)O\xc0\xcck\xc3\xa1\xe3\tB@\xaa\x843\xc6\xdczK\xc0\x9fz\x8a8#$I@\xf6\xd5\xe8\xfb\xda\xe1E\xc0\x95!(\xf3&\x0eO@\x84\xc3\xa7\xdd\x972>\xc0\x12\x81x\xfb\xf7\xdcQ@\xb8\xb7&I\x8bq.\xc0\xf6(P\xf97uR@\xca[r\xfb\x82\xb1\xf9? (9\xdd\xbc\xa4Q@\xd1\xc8OO\xee\x182@[\x1b0I\xcbgN@\xc5\xc0\x89\x99\xd3L@@\xc4\x04\xedn\xccdH@?<\xed\x85|\xe7F@\x8f\xac\x9e\x8f\x8c7A@\\\x8d\rn\xc7DL@m\x83\x1e\x94q\xc81@\x8f\xacHl*\xc2O@\x02W\xd2T\xa6\xb6\xbe\xbf\xec\xfe\xcc\x00W\xc6P@\x91\x12~\xb8\x0fE2\xc0&\xbc\xaa\xe1\xc73Q@\xf9a\x05eQEB\xc0\xba \xe0\x16_KQ@5\x9e\xc9{\x13)H\xc07Xhl\x85\x95L\xc0\x07\xc4zR\xf80L\xc090\xe3\x93\x07:H\xc0\x03\xf3d\x85?^M\xc0\xa3\xabp\xd6k\x1aB\xc0&\xb7t\xaex~L\xc0\xf6m\xc9\xe2\x84\x837\xc0\xce;\xaa\xdd\xde\x0eJ\xc0\xdd\xbe\xd5Cn\xfe\'\xc0\x19\x87\x17\xae\x01\x8eJ\xc0eT79\xd0T#@e\xf0\x03vY\x1dM\xc0\x00X\xe3\nw\xc75@\xe4\x18r\xaf\x0f\nN\xc0\xc5\x12,\x14F4A@\xbb\x1a\x01\xc4\xce\xdcL\xc0A`$~pRG@-\x93\xfd\x0e{\x02I\xc0\xbf\n\x91l\x1f\x97K@\x94\x91\x8d)\xf71C\xc0\x0f\x8f\xbe\xe3\xf9\xb8\xe1\xbf\xeb\x07T#\x94\x9c:\xc0B\xa4\xfb\xa4E\x00\xdb\xbf\xd4)G\xb6\x99\xdb-\xc0L\x1f\xf4\xa4\xf9q\xd0\xbf\x9cc\xc2Y\x8b \x07\xc0\x00D\x87|\xda\x97\x9e\xbf\xb9},\xbad~\x15@\x9c\x1e\xe6\xca[\xf8,\xc04\xe5\xc1C\xc9\x8c\x1f@\x06\x9f\x19\x19e\x9c\x1d\xc0\xcdG\xa56\x12\xd5#@\xcdq\x82\xb0\x81;\x9f\xbf\xb0\x8c\xae\x0b\xa2\x97\x1e@\x1c\xdd\xb8>\x80X\x1d@]\x82\xb0\x9f|\xd3\x14@K\xb5\xc4\x18{\xd3+@s\x96\xbf\xba\xaf\x1bB\xc09\xa0\\\xc8\xc5xE\xc0\xec\xbb-q\xdeUD\xc06\xa6\x9d\x88\xa0\xafA\xc0\x9b\x1cN\xf7XCD\xc0\xfeF^wpT:\xc0\x97\x99c\xe5\xd7aA\xc0\xd2\xd3&\xf8\x83\x942\xc0\x11\xaa\x8bF\xc9\x91@\xc0-\xe9\x7f\xcf\xc3\x9c:\xc0\xde\x87,\x18:\x85@\xc0\xee\\\xbcf\x9f\xd3A\xc0\xd01\x98\xc0\x1f\xaeA\xc0\xe0\x99z\x84\x0b\xfd0@.\xa4\xd2\xc9b\xc8D\xc0\xed\x05\xcb\xdd\xcd\x089@\xaf\xc4\x91\x1b\x90\xd2D\xc0\x07\x89"\xdf{\xfe@@QS\x0b\x1c\xbf\xb9B\xc0\x95\xb8\x11\x1bR\xb2D@\x7f\x1fM\xa9\xf6!A\xc0\x01K\xe0\xa9\'`A@\xe0\xed&\xe8^\xf6@\xc0\x10\xd0\x7f\x85\xf0\xe39@\xca\xf8\xee\x0b\x08\xb9;@\xaf+{fl\x97:\xc0\xf2\xcd\xb91\x13c7@X\xaa\xda\xfd\x14\x8b0\xc0\xda\xc4\x0e\x1a\xe2A5@\x13W\x08\xe7G\x8b\x1a\xc0Q\xdd\xbc\x92%\xf46@Q\x9a\xab\xed\xf1\xcc\xc1\xbf\x03;.}\xec$5@\xb8\xfe\xb2hP\xf5\x1c@\x9fs$x\x9617@\xa0\xb8^\xdcf_1@3\x82x\x9a\x0c\xc8:@\xd4}\xd8&=\';@\xe7\xf5 5\xfeBB@57\x95\xf78\xd71@F\'\xfcu}pD@\xd2R\xb3\xed\x89h @\x96\x87\x1ai\x94\xe8D@\xbcd\x8e\xda\xd9\xbb\xd3?\xd1"\x03"\xb7\x96D@u\x04\xeb\xeb\xac\x95\x1b\xc0\xa5y\x11\xd5\xe4\x97B@@\x85\x83\x8a\x8c\xb40\xc0Y\x04\xb7\xed\xcf"<@\x82Pr\xfd\x08{6\xc0\x17"<\x82\xf4);@\x0c\xd2\xcd\x99A\x94\x1a\xc0\xf5\x98\xd76\x04\xcc;@\xdd\x99/\x81*\x8a\x97\xbf\x8d\xa8H\xa9\xa3\xed:@\x1f\xa1\xfd\x1aC\xb7\x1d@\xd18\xcf\xf7"g;@\xe7\xf8\xe7\x8d\x16\x0b7@\xc8B\xd4r\xec\xfc?@\xcf\xb6\xfd\x99Yq\x1e@\x87!Z\rQ\x80@@\x16\xdd\xcd w\xc0\xa6?\x08i\xc5\x13\xf9%@@\tx\xf8:J\xed\x1a\xc0' +p132 +tp133 +bsg109 +NsbsS'global_transform' +p134 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p135 +g2 +Ntp136 +Rp137 +(dp138 +S'_h_matrix' +p139 +g62 +(g63 +(I0 +tp140 +g65 +tp141 +Rp142 +(I1 +(I3 +I3 +tp143 +g72 +I00 +S'\x01\x00\x00\x00\x00\x00\xf0?\xccF\x8f\xf6g\xd3*<\x00\x00\x00\x00\x00\x00\xd0\xb9\x80\xe5\xf0.\xd8vY<\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xa0\xb9\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p144 +tp145 +bsg124 +g0 +(g85 +g2 +Ntp146 +Rp147 +(dp148 +g89 +g101 +sg102 +g62 +(g63 +(I0 +tp149 +g65 +tp150 +Rp151 +(I1 +(I68 +I2 +tp152 +g72 +I00 +S'\xf7\x82:y\xe0;A\xc0.\xe2\xa1\x89\x02WQ\xc0\x800\x83\x8f\xdb10\xc0\x14\x0eV\xa0\xa82Q\xc0p@!}-N\x00@\x106K\x9b\xd7\x9cP\xc0\xec\xb2N`#\xbd3@aK\xab\xf1l)O\xc0\xcbk\xc3\xa1\xe3\tB@\xa8\x843\xc6\xdczK\xc0\x9dz\x8a8#$I@\xf5\xd5\xe8\xfb\xda\xe1E\xc0\x93!(\xf3&\x0eO@\x82\xc3\xa7\xdd\x972>\xc0\x11\x81x\xfb\xf7\xdcQ@\xb6\xb7&I\x8bq.\xc0\xf5(P\xf97uR@\xc7[r\xfb\x82\xb1\xf9?\x1f(9\xdd\xbc\xa4Q@\xd0\xc8OO\xee\x182@Y\x1b0I\xcbgN@\xc4\xc0\x89\x99\xd3L@@\xc2\x04\xedn\xccdH@><\xed\x85|\xe7F@\x8e\xac\x9e\x8f\x8c7A@Z\x8d\rn\xc7DL@l\x83\x1e\x94q\xc81@\x8d\xacHl*\xc2O@\x04W\xd2T\xa6\xb6\xbe\xbf\xeb\xfe\xcc\x00W\xc6P@\x90\x12~\xb8\x0fE2\xc0%\xbc\xaa\xe1\xc73Q@\xf8a\x05eQEB\xc0\xb9 \xe0\x16_KQ@3\x9e\xc9{\x13)H\xc05Xhl\x85\x95L\xc0\x05\xc4zR\xf80L\xc070\xe3\x93\x07:H\xc0\x01\xf3d\x85?^M\xc0\xa2\xabp\xd6k\x1aB\xc0$\xb7t\xaex~L\xc0\xf4m\xc9\xe2\x84\x837\xc0\xcc;\xaa\xdd\xde\x0eJ\xc0\xdb\xbe\xd5Cn\xfe\'\xc0\x17\x87\x17\xae\x01\x8eJ\xc0dT79\xd0T#@c\xf0\x03vY\x1dM\xc0\xffW\xe3\nw\xc75@\xe2\x18r\xaf\x0f\nN\xc0\xc4\x12,\x14F4A@\xb9\x1a\x01\xc4\xce\xdcL\xc0@`$~pRG@+\x93\xfd\x0e{\x02I\xc0\xbd\n\x91l\x1f\x97K@\x93\x91\x8d)\xf71C\xc0\x0c\x8f\xbe\xe3\xf9\xb8\xe1\xbf\xe9\x07T#\x94\x9c:\xc0>\xa4\xfb\xa4E\x00\xdb\xbf\xd2)G\xb6\x99\xdb-\xc0I\x1f\xf4\xa4\xf9q\xd0\xbf\x9bc\xc2Y\x8b \x07\xc0\xf9C\x87|\xda\x97\x9e\xbf\xb8},\xbad~\x15@\x9a\x1e\xe6\xca[\xf8,\xc02\xe5\xc1C\xc9\x8c\x1f@\x04\x9f\x19\x19e\x9c\x1d\xc0\xccG\xa56\x12\xd5#@\xdbq\x82\xb0\x81;\x9f\xbf\xae\x8c\xae\x0b\xa2\x97\x1e@\x1a\xdd\xb8>\x80X\x1d@\\\x82\xb0\x9f|\xd3\x14@I\xb5\xc4\x18{\xd3+@r\x96\xbf\xba\xaf\x1bB\xc08\xa0\\\xc8\xc5xE\xc0\xeb\xbb-q\xdeUD\xc05\xa6\x9d\x88\xa0\xafA\xc0\x9a\x1cN\xf7XCD\xc0\xfcF^wpT:\xc0\x96\x99c\xe5\xd7aA\xc0\xd1\xd3&\xf8\x83\x942\xc0\x10\xaa\x8bF\xc9\x91@\xc0+\xe9\x7f\xcf\xc3\x9c:\xc0\xdd\x87,\x18:\x85@\xc0\xed\\\xbcf\x9f\xd3A\xc0\xcf1\x98\xc0\x1f\xaeA\xc0\xdf\x99z\x84\x0b\xfd0@-\xa4\xd2\xc9b\xc8D\xc0\xeb\x05\xcb\xdd\xcd\x089@\xae\xc4\x91\x1b\x90\xd2D\xc0\x06\x89"\xdf{\xfe@@PS\x0b\x1c\xbf\xb9B\xc0\x94\xb8\x11\x1bR\xb2D@~\x1fM\xa9\xf6!A\xc0\x00K\xe0\xa9\'`A@\xdf\xed&\xe8^\xf6@\xc0\x0e\xd0\x7f\x85\xf0\xe39@\xc8\xf8\xee\x0b\x08\xb9;@\xad+{fl\x97:\xc0\xf1\xcd\xb91\x13c7@W\xaa\xda\xfd\x14\x8b0\xc0\xd9\xc4\x0e\x1a\xe2A5@\x11W\x08\xe7G\x8b\x1a\xc0P\xdd\xbc\x92%\xf46@T\x9a\xab\xed\xf1\xcc\xc1\xbf\x02;.}\xec$5@\xb6\xfe\xb2hP\xf5\x1c@\x9es$x\x9617@\x9f\xb8^\xdcf_1@1\x82x\x9a\x0c\xc8:@\xd2}\xd8&=\';@\xe6\xf5 5\xfeBB@47\x95\xf78\xd71@E\'\xfcu}pD@\xd1R\xb3\xed\x89h @\x95\x87\x1ai\x94\xe8D@\xb7d\x8e\xda\xd9\xbb\xd3?\xd0"\x03"\xb7\x96D@t\x04\xeb\xeb\xac\x95\x1b\xc0\xa4y\x11\xd5\xe4\x97B@?\x85\x83\x8a\x8c\xb40\xc0W\x04\xb7\xed\xcf"<@\x81Pr\xfd\x08{6\xc0\x15"<\x82\xf4);@\x0b\xd2\xcd\x99A\x94\x1a\xc0\xf3\x98\xd76\x04\xcc;@\x08\x9a/\x81*\x8a\x97\xbf\x8b\xa8H\xa9\xa3\xed:@\x1d\xa1\xfd\x1aC\xb7\x1d@\xcf8\xcf\xf7"g;@\xe6\xf8\xe7\x8d\x16\x0b7@\xc6B\xd4r\xec\xfc?@\xcd\xb6\xfd\x99Yq\x1e@\x86!Z\rQ\x80@@\xfa\xdc\xcd w\xc0\xa6?\x07i\xc5\x13\xf9%@@\x08x\xf8:J\xed\x1a\xc0' +p153 +tp154 +bsg109 +NsbsS'allow_mirror' +p155 +I00 +sS'_source' +p156 +g147 +sbsS'model' +p157 +g0 +(cmenpo.model.pca +PCAModel +p158 +g2 +Ntp159 +Rp160 +(dp161 +S'centred' +p162 +I01 +sg84 +g0 +(g85 +g2 +Ntp163 +Rp164 +(dp165 +g89 +g101 +sg102 +g62 +(g63 +(I0 +tp166 +g65 +tp167 +Rp168 +(I1 +(I68 +I2 +tp169 +g72 +I00 +S'j\x98\xf0f\x82\x840\xc0o+\x83e@mO\xc0 \xe0o\x19O\xa5\xe3\xbfEm?j\xe2zN\xc0h\xffU\x19A\xb8-@\xe4\xe9\xf3\xe9]1M\xc0\xaf}\xe8\x9a\x03t=@S\xfc\xf0!\xc5\xe0K\xc0\x05\x0cR\r\xe88F@\xa8r\xde\xaa\xf6\x02K\xc0\xa7\x87\xaf$\xc6=L@\x9bp \xd5<\x0bH\xc0\xd2\x97(\xfb\xd6\xc8P@\x03\x7f\xad\xe7\x97\xc6C\xc0Oh\x9e;\xce\xcdQ@\x97\\\xb21\x08X5\xc0s\xeb\xcd\xa6\xa9\'Q@\x91\xcf%t\xcc\xe6\xfa?}\xe02\x06\xd1[Q@^\xa14\x10\x99y<@\\\x1d\x80+\x16cP@\n_D}\xa5\x06G@C\x1d\x84b\x86\x85K@\xd4\xe0\xbd\xa6\xc9\x0cN@\xdc\xd3\xa1\x88a\xa4E@\x99\x07\x8b\'\xe2\xdfP@\r\xc1bM\x7f0;@\xecj\xddG\xca\xc4Q@!9\x0f\xb6}\xa3)@\xf2\xca\xe4\xa8\xe8\xfdQ@\x99\xfa\xbcc>2\xf0\xbf\xaf\xectQp\xfcQ@#w\x8c\x1b\xf7\n-\xc0]\xe9\xd7\x18<\xe5Q@\xe7\xd8\x99?\x1a\xe8J\xc0j\xef\x89\x98\xd5,K\xc0p\xa1k\x06s\xc3L\xc0\x9e\xe0\xd7\xeb\xbdRF\xc0}f\xbaO\x84dM\xc0\x92\x9f\x9d\xc9\xdf>A\xc0\x9e\xe5\x80\xbf-4M\xc0Bd|\x1aFc9\xc0\xb7\x9d\x0flE\xa1K\xc0Uv\x90"2\xc7/\xc0n\x1d\xe1Z\x07\x87M\xc0\x8aJM\xed\x0f\xee @\xc8\x9d\xcc\x05\xc4\x93N\xc0m\x07k,pz5@,\xf2\x11\xcdq\xc6N\xc0@\xfc.\x15M)A@\xbc\xe8\\\xfc\xa95N\xc0)\xe8\xc1p\xae\xebF@XzO_E\xdcK\xc0\x97\xf0C\xd6\xecZL@\xe1\x16\xf3<\xb0#E\xc0Db\xf0\x1e\xd9\x05\t\xc0B\x1e\x1a\xfaI\xd1@\xc0\xc1J\x80j\xe1\xa0\r\xc01\xf1\xfbZ\xef\x139\xc0\x04Q\x14\xa1W\xc3\x11\xc0\xe5\xb1Q\x83t\xc6/\xc0\xb6s\x1d\xd5\x9a\xfd\x14\xc0\xbc\x97\xacb\xc6K\x02@\xe0\xbdc\xd1\xe8\xdd-\xc0\x9e\x94\xaa\xdaz\xd0\x06@u\x8b\xd9\x839}"\xc0hQ\xd5(T\xf7\t@.\xf7\x99\xbaS*\x0c\xc0R\x97\x1eH\xd1\xbb\x01@\xcdH!\xf2F\x81\x06@3>\xc35\x0c*\xe7?\xa5\xeb\xe3/\x9cc!@\x0f\x1b\xfc/\xa7\x1d>\xc0S\xd8\xb3\x16\xa64F\xc0+\x8a\x16D.sC\xc0B\x15/}8\x0fC\xc0\xe5\x06\xfbw\xa9\xa0C\xc0\xc2\x92\xfbZ\xaa\x91;\xc0i\xbf\x11e`{@\xc0\x82\x0b+\xac&\xa93\xc0\x8fD\x13\xaf\xe7E?\xc0R\x04%}\xfd\x11;\xc0\x06\x1b[O\x93\x18>\xc0\xaao\x1ep\x9a\x95B\xc0\xd8\xf2j\xe7\xd8\xfe@\xc0#\x1e \xbd\xa3F2@\x04f\x17\x1fJ\xfdD\xc0\xe7}Y\xdd\xef\xef9@\xdf\xfc\xc4s\x14\xdbD\xc0\x01\x03\x8dv\xfb$B@\xb2F\x97i\x0c\x18A\xc0\xd7)\x10B\x84\xd6E@\x13\x17+\xf4_\x9e@\xc0f)\xe3)-$B@\xe5\x186~\xb1\xaf@\xc0l0\xbc\xd3\xd5\x96:@\xec\x0bO=-F=@f\x81\x91\xbdh*<\xc0\xd8F\x90\xc9\n\x1e3@\xccX\xec\x9c\x8f\x0b3\xc0\x0ci#\x06@S-@\xe4k\xb9|f?#\xc02\x92\xd4\xb7\x19#/@}\x14\xe8\xdd\x1d\xbb\t\xc0\x85!\xacB\xf9\xc8,@#3D\x06O\x81\x0e@B\xa2\xb7\xf2a\xb62@\x8fnIq\xbd\x0f.@\x06\xe7\x91\x96\xa5\xde:@mp\xf3\xd5\xbe\xe5:@\xb8\xd0L\xe1\xe6\xf2?@\xc0\xfd\xfa\x1ew\x99.@\xd6\xad\xac-\xb2\x96A@\xab=<+I\xe7\x12@\x8c\x00\xa98\x16\xfdA@b\xe4\xd3\xbf\x13\n\x00\xc0\xd1W\xdb\xd7+\x1bB@\x06@\xf0\xc4\xc8\xc1"\xc0\xf7\xa5Z\x8be\xc1@@\xb6\xa6\\\xbd\x82\xdf2\xc0DX\xba\xd76\x94<@\x88Ca\x068\xd38\xc03\xab\xf20?\xc87@\r\x95kN\xe9\x94"\xc0\xe9\xf0\xbeVd\xf46@R\x1b8\x0eg\xac\x02\xc0\x17\x0c\x0b\xb2\xb2\xcf6@\xa0\xfcx\xe5\xa8\xfa\x0f@\x18\x0b\x14\x8a\xd6U;@\xde\xdf_\xecx\xee6@\xc5\xe0\xbb%\x14\x8f9@\xa7\xf7)\xbc\tH\x10@H\xef\xa5\xf3\x1c\xff:@\xe2+o\x90\xe4_\x03\xc09\x00w\xd8M\x05:@\xf7\x83N\x8b\x06\xc9"\xc0' +p170 +tp171 +bsg109 +NsbsS'_eigenvalues' +p172 +g62 +(g63 +(I0 +tp173 +g65 +tp174 +Rp175 +(I1 +(I132 +tp176 +g72 +I00 +S'\xaa\x91&\xee\x06\x84\xa6@\x03\x05\x82*?\xb9\x88@w\x05\xc4\x04,Wt@\xa3\x1e\x8d6\xe5\x9fm@\xae\'F$E\xeba@\xa2F\xa5\xd8\x9e\x1b[@2I\x1b/\x1eyV@\xab00\xb5\xd1%T@\x98rhI\'\xacQ@\x88h\x18\x15\x92\x01O@\xaf\xa7\xa2>P\x7fF@\xbbJ\xce`gvD@\x9a\xd0\xa9\x84\x1c\xd7B@\xb1\xcf\x89\x00\xdf\xed@@\xee\xac3\x14\xbe\xa97@\xf2\xf0J\xa2h\xb44@!]7P\xe6\xd02@\xd3\\\xae,%}1@\x8c\x96\x0f\xfd\x11\x0f.@L\'\xb4\xbf\xa2\x91+@\xb4D\x9f\xb4\xa1J(@3\x84\x10\xd4\x04\x82\'@\x06W(\x16/\xe1&@\x92\x18\xa2p\xfe4&@o\xc6\xfb\xa0u\xe9!@\xf2\xba\xf5\x86\x8d\xed @:\xc0\x9d{\xdfK @\x90\xed\xf0J\xad\xa8\x1d@\x07\xb9\x91P\xa4(\x1d@\x89;\xc0V\xd5s\x18@\xc8\xb92t\xd4\x19\x18@8\xc3\xbb\xc2\x1c@\x17@w\x811X\xd0:\x16@\x93s\n\xf1\xd23\x14@\xf4\xc4\x84\'6\x91\x13@\xd1\x80\n\xfc#\x1a\x12@\xa6S\x8a<\xcb\xff\x10@]!S\x05u\x16\r@\xf4\x8e\xd8\xber"\n@\x93A\xa6\xd2\xfe\xe0\x07@O}{\x04\x89r\x06@\x10\xf6\x9b\x86f\xf8\x04@+^^\x8d\x0e\x05\x04@[X+\x8dR\xce\x02@\x91XqK,v\x01@p\x91?\xaaB%\x01@\x902\xc17\xca\xd6\xff?WVj$\x85\xdb\xfc?\x03W]\xc6\xbb\x0b\xfb?\xf6\xe8\xa6\x06\xfd\xcf\xfa?\x04\x933M\xe7\xc0\xf9?\x93\x82:B\x88f\xf8?ju\x190X\xdd\xf6?\x88\xd8\xa1.I\x12\xf5?8\xfa\xca\xb6\xceI\xf4?\xd9\x1aUk\xd5\x9f\xf3?\xca?\xf5Z\xd2y\xf2?\xf0\x86\xe2\xed^\x9b\xf1?\xf3N\x80\xafvX\xf1?\xcc\xeb\xa6:\xad:\xf0?n.\xad\x04\x9ds\xef?^\xe7\xa6\xbb\xc7\xce\xee?\x95}\xbd-Io\xee??Il~\xad>\xee?\xf6\x8c\x07PM\xc6\xea?\xc6\x9eb\x92kt\xea?\x96\xa1\\R\xce\xab\xe8?\xdb\x8eel\xbbu\xe7?\xd7G\x0f\xc6\xfb.\xe7?\xdc?\xf1^\xba\xdb\xe6?\x97\xe5>\xb1)\'\xe6?\xd0~4\xa7d}\xe5?m4\xb0\xa0\xf9\xb6\xe4?\xd88\x90[7\xa1\xe4?\xceT\xb9\x08-\xc4\xe3?\xbf\xce\x08\x8f\x93.\xe3?f\xbb\xb3\x03C=\xe2?ex\x8f~s\x15\xe2?\x03,\xb6\x17\x16\xe6\xe1?\xfb\xc4iTI8\xe1?g\x0c\xde\xc4\x8d\xe5\xe0?O\xa5\x8b\xb3-\xa6\xdf?j\xa3UE\x1a\xd9\xde?\xaa\xc5\x13\'\x06%\xdd?\x13l\xd1\xedN\xa8\xdb?\x97ww\xe7?&\xdb?\xb6\xb2T~\xbe\xbb\xda?\xf2n\xbe\xd7\xccM\xd9?>5i\xfcj\xa3\xd8?G\xb1\x04\x80\x8e\x17\xd8?\xe0\xc0\xf7!J\xb1\xd7?\xec\xe0m\xb7\x02\xee\xd6?Ql\xbcU\xfd\x95\xd6?\xbcw^]?A\xd4?\xb1c\t\xde\x19s\xd3?\x8b<\x89\xd3\xa9L\xd3?Cf\xd5\xa3\\0\xd2?\x0c\x15\xc5Zu\xab\xd1?\x8f5\xf7\xb5\xac*\xd0?\xbd\xe2N5 -\xcf?>\x878\xca!\xf1\xcc?E\xf5f[z\x91\xcc?\xb8#Mu\xf4;\xcc?\xdf5\x16*\xca\xce\xca?aY\xc3\xce\x13\xb6\xc8?\xeb@\xa7\xa5\x10/\xc8?\x8d\xa1\x96\xc0\xb4\xeb\xc7?\x15]\xd1\xe1\x1e\xd2\xc6?*\x88\x1e\xfc\xbe+\xc6?\xf6XD\x80M\x99\xc5?\x80\x8c9[\x07\xf7\xc4?,\xb5\x10\x1a\xb0\x83\xc3?\x86q\xd6\x9aU_\xc2?\xb82\x8aX\xc3t\xc1?\x16\x1a3\xf7O\xb7\xc0?\x97\x95\xd8\xb7K\xf8\xbf?\xa2\x159\xd1\x1c\x03\xbf?\x91q\x10"\xafp\xbc?\x17\xc6\xbb\xdbP\x0b\xbc?\\\x95\xe6VPY\xba?\xd6\x8a\xff%G\x00\xb9?\xd9\xe3\x9c\xc1\x0e\x87\xb8?\xa5"8\x8b\xd1\xe5\xb7?\xc0Q\xc5=#\xfb\xb5?\x03\t\xf9\x80;=\xb4?\'\xab\x84\x9d\xc2\n\xb3?\xce\xdf\xfd\x9cp\xf4\xb0?<\x1f{\xe45O\xb0?,\x12\xef\xd4\x05n\xa9?\xef\xcb\xbd\xdd\xf1\xb9\xa5?\xa5\xb1H\xc3\xe4\'\xa2?\x19\x8b=J\xf0V\x98?' +p177 +tp178 +bsS'_trimmed_eigenvalues' +p179 +g62 +(g63 +(I0 +tp180 +g65 +tp181 +Rp182 +(I1 +(I1 +tp183 +g72 +I00 +S'F\xb0i<\x17\xf1\x94?' +p184 +tp185 +bsg61 +g62 +(g63 +(I0 +tp186 +g65 +tp187 +Rp188 +(I1 +(I132 +I136 +tp189 +g72 +I00 +S'\xc2\xa7q\x05\r\x0b\xa9\xbf\xdd\x84I\x14~\xc7\xd0\xbf:\xe92\xd1\xfc\xac\x89\xbf\nt~\xb6\x85\x16\xd0\xbfJc\xd2\x1d~R\x96?\x1d`\x17\xfbP|\xcf\xbfVg\xf2\xeb\xb17\xa9?F\xa3\x93\xdf\xe7\xc0\xce\xbf-\xa7\xba\x031\xa9\xaf?\xf7\x9aoQ\x11\x8e\xca\xbfY\x8e\x11\xe1/\xc8\xad?\xa2\x8d~\xec\xf5\x7f\xc3\xbf\x99\xf6\xd3\xcb\\\xb2\xa5?\x83q03\xed\xf3\xb5\xbf\x0fp\xd5\xa9\x17\x05\x93?C\xa8\x81\xf9\x03\xf5\x96\xbfJ%vZ\\y$\xbf\x06.\x84\x88S\xea]?r\xd0\x87\xab\x93\x9a\x95\xbf\x93\x99y\xc2\xc2>\x94\xbfD\x14\x07\x1ahP\xab\xbf-\x9cxd\tT\xb4\xbf\xc6\x90u\xb1\x1a\xb0\xb3\xbfk\x83,\xb9\xef0\xc2\xbf\x80\xf7\x88\xfe\xd2\xe6\xb5\xbf\xc0\xb1\xec\x03Jn\xc9\xbf\xb1pj\x9b\xe1\xe2\xb2\xbf,\x0fC\x9a\xdd7\xce\xbfT\x95\r\xd2\xcb\x83\xa6\xbf<\x9cE\xd0\xc3\x99\xcf\xbf\x1117@\xf2H{\xbf\x93\x97I\xbd\x9b*\xd0\xbf\xdaY\xf9~d\xeb\xa0?\x02\x90cl\xa5\xf3\xd0\xbfZ\x16uSN\x07l?\x0bJ\xa5w\xf7\xa1\xac\xbf\xed\xa5w48op\xbf\x80Y\xac\r\xe6\xfa}\xbf\xb1\xac`\xa8;\x08\x8e\xbfj1b\x8ba\xb8\xa0?~Jm\x16o\x83\x8d\xbfvn\xf5\xeb\x84\xa1\xb1?\x89%rn\xc6Ew\xbf\x13\x1a[\xf2\xbd\xb8\xb9?\xb7\xbe\xcb\xd6D\xc2\x84?|\x0e\xf1\xf5\xe7{\xbb?\xd1I\xc2<\x92\xdc\x93?m\xae\xf3x&\xfe\xb4?\xe9\xa4K\xf8]\x16\x96?\xa7Q\xa4\xd5\xa4D\xa9?\x9e\x8b\xc7I\xb6\x03\x8f?\xe0\xda\x1av\x87x\x86?\'\xd3"\x95(\x01\x8a?\xf2*rP*\xb6\xa4\xbf\x99\xd19.:\xa0P?\x05\xa6\xad\xa4w\x83\xbc?`G\x8e~\xd3"]?0\xbe\x9b\x8f\xbf\x85\xc1?\x19\xc9Y1\xac7V?>\x81\xef\x90\x8cf\xc5?\xa5\xaf\xc3\xcbt_N?$>,iRS\xc9?V\xff@B~rx?7;(\xf1\xdd\x1e\xba?O\xae\xa5\xb0\xb2\x8fG?\x1d\xcf=\x96\xf5\xbb\xbe?\x7f\xe3%\x1aa\xdcj?\xbdX);\xef\xa3\xc0?\x05\xa9-\x04\xd13o?Q1\xe4\xe5\xb7P\xbf?O\x1aA\x1b\xc9]h\xbf\xd7}\xbf$:h\xbb?x\x93\xad)\xe8\xf8\x80\xbf\xc7Om\xb8\xcf\x8e\x90\xbf\x0b\x18Fk\xb3[r\xbfC\x0f\x8f\xbb\xc3\xc5\x81?\xc2mjQ\xca.s\xbf\xd5\x1f`\xc8\x90\xc0\x90?kw\xf7\x94F\xc4c\xbf\x80V\xb57\x99\xdf\x8e?\xc4|\xddA${a\xbf3\xd4\xea\x86\xc6\xfc\x8c?\xad!9y\xbfSt\xbf4\xd7\xdf\x8d%\x95s?/@\xbd\xeel\x90{?\xfd\x96\x8d\xabRE\x95?G\x87A\xe4\xd9q\x84?\xceP\xfc\xe7\x7fv\x97?\x93\xfeA\x04\x11\xcc\x83?\xa3\xdc{\x97h\x84\x8f?\xe8\xd4\xd9mo\xef\x87?\xe2\x01K6\x1eX}\xbf\xbf\xb9\xd1\xa3\xcf\x9e\x83?\xcb\xee\xd3\xd65\x0c\x88?\xb7\x13d\x8cV\x94}?\xe2z\xc8T\xbf$\x94?\xa8\xea^/\xb6RK?G\xd5v$1\x08\x88\xbf\xccX\xe7\x15 \xcfk?()h\xbe\x9a\xf3\xad?\x0f\xd4\xfa\xa1\x10\x1fo?\x17\xb7\xaf&\xc5\x1f\xb9?\xa3\xa2\re=\x8el?\n\xfc\xc1\xd4\'Q\xba?\xc15\t/1\x1dm?\xf1\x07#A\x18\xd8\xb8?;;\x17W\xf9\x89$?\xb7\x02\x85Q\x9b\xf7\xac?\x14\xfeI\x1f\xbf~(\xbf\xfc\xfc\xbe>\xe94x\xbf\x06R\xb6\xae\xb4vj\xbf\xcf\xe0<\xcaU\xfb\xa3?\xa0\x8dY\x83\xd11A\xbf;{eI\x1f \xb3?\x02\xd5\xe7\xdd\\eg?\xccN\xc2\x06\xa8\xc5\xb4?\x99h\xa3\x93x\ty?\xc6B\x80\x0b\x05\x86\xb3?)\x0b\xbe]3\xb5\x81?\x0b\xaes\x1cG5\xa5?F-\xb8k_gP?RR\xec\xc2\xee\xaer\xbf\xbcm\xff\x02{\xd5g?\x04\xad\x01E\xef8\xb7?\xaaZl\xca.\xf4[?:\x8f\x80&0\x8b\xb8?\xaa\xef\xf3\xaf\xa8\n4?~\x0c\x02\xe2a\xd3\xb6?9\xe6\x986\xb8"R?\xd8\tJ\xb8p`\r?v>PT\x17\n8\xbf\x82~7\xe9\xf9p\xb5?\x83%X\x89\xc0\xb4t?\x91\xb6\x07\x03y\xf6\xb6?<\x9a\x8a\xce@8\x84?t\xe2j;5\xad\xb5?\x8a\xff\xe5\xe3\x00\xf3\xd0?\xde\xd7\xa9\x0e\xc2b\x93?\xab\x81\xc1]}6\xcf?h5\xa3\x85 \xec\x84?\xf7\xa3\x8bM\x96\xd7\xcc?\n\x82\x0fz\xaf\xe2v\xbf\x87\x80\xa7\x12\xc6#\xcb?\x99\xa8\xb2]\x05\x8b\x93\xbfH]^\x7fZ\xec\xc8?\xe35\xb7\xa3\xb4\x08\x9f\xbfi\xc6\xf3\x96\xed\xae\xc5?\x15mr/f]\xa2\xbfi\x8ap-\x16\xc2\xc0?Y \xc3\xa3?\xcf\x10X\xfa\xe2g\x88?{\xeb\xe44\xe8\xd2\x9b?\x98\x97\x1c\xd4\xfa\xffT?\xe8\xbe\x17O\xfc\xe5\x8b?P\x8a]1(\x94\x83\xbf\xae:\xcf}/\xb9\x89?\x08\xb7\xdb`/\xb7\x8b\xbfv\xf7d,\xfc\xec\x97?9"\xf1_\tou\xbfmy\xf5\xbd\x0eq\xa3?\xb0\xa8\xe0\xd0\x83\xa3\x88\xbf\xc4x\xf05\xbc\x9f\x81\xbf\xce\x1cw\xfbo\x0c6\xbf\x85U\xfbb\xe3B\x80\xbf\xcc\xed\xdf\xc8\x05G\x81?\xc7P\xeb\xffx\xe4\x93\xbf\xfc\x9d\x10s\x7f6\x99?\x98\x16[\x0f6\xae\x9f\xbf\x83\x05ph\xdc\x05\x7f\xbfoT\x9c\xfaE\x05\x9e\xbf\xc8\xb8d\x11\xee6\x91\xbf\xad[\xc3qn\xd1\x92\xbfV\xa2w\xf4\xba\xd7\x95\xbf\xbc\xd3\xcf4V\xbd\x84\xbfi\xc0\xdc\x83\xfb\xc2\xb9\xbf|\xdf\xc1\x1dg\xd8\x8f\xbf\x89\xee~\'i\xf1\xc0\xbf:\xa4\xe4\x0b\xb1\xe2t\xbf\xdb\xed\xbd\xa4\xefp\xc1\xbfK\xf1\x84\xdd\xae\xd36?\xf3\x8e\r\xf4O\xd6\xc0\xbftT\x9e\x8bn\x02e??\xa7\x89>\x1c\x94\xb9\xbf\xa4\xbc\xbaQ\xbc\x81\x89?\xa1\x81\x9e\x16>O\x99\xbf\xed\x90s-j/\x85?xBJ"x\x1a\xab\xbf\xc0\xe3\xc9\xa4\xd8z\x83?O\x1ey\xa3\x1b\xa9\xb2\xbf\x93,\xe3\x89\x8d\xb3o?;\x8f\x8f\na\x86\xb3\xbf\xed\xa5w\xa4\x87\x0f`?.\x10\xb68v\x8a\xb2\xbfY\x9c]\xafv1X\xbf\xfa%\x15K\xdd\xd9\xaa\xbfx\x0bt\xc0\x99\xab\x85\xbf\xe0\x9c\x9a\xd4\x14\x9e\xa4\xbf\x16\xfc\xac-\x81\xb8\x83\xbfjs\\\xe2o\xc7\xbc\xbfU\x83\xd7|\x86\x18k\xbf\x08\xd1\xa40ya\xbe\xbf\x01\xd3\xd6\xbduZ3?l\x95\x88x\x1b\xc0\xbc\xbf\xf2\xcfi\x81I\xc0`?\x02\xff\xb9\xe6\xcd\x8e\xa5\xbf\xb4\xe8\xba\xcb#g\x84?@X\xc9 \xd9\n\xaf\xbf\x95;\x1fWmOp?.\xf6\xaeZ8\xb9\xb0\xbf\x1a{.\xb3\xc2\x1aZ?\xc6\x11\xfd\x91\x1b[\xae\xbfe\xbc\x92\xff*Bg\xbf/\xcf9\xe9\'\xc7\x86?E\xd7k$pN\xc4\xbf\x99\xe7+\x7f\x00\xea\x88?\xde\xbc9\xed\xb7\x94\xc0\xbf\xdcDC!\xa0\xd8c\xbf\xb8\xd1\xf8[\x0b\xd5\xbf\xbf\xc1km\x05\x87\x1a\x90\xbf\xc9=D\xdfo\x90\xc1\xbf\xefg\xa0\xfe&T\x98\xbf2\xa5\x9b((\xb3\xc2\xbf\xe6\xa5\xf7+1\xbc\xa7\xbf\x9c\x94\xcee9\x12\xbf\xbf=\xa01\x03\xedU\xb5\xbf\xa5C\xc8;Y\x99\xb1\xbfU\xa6\x0c\xb1\xdb:\xba\xbfu\x17\x88\x8c\'K\x98\xbf!t\xbb\xa4\xc1>\xbc\xbf\xb77X\x81\xb3\xb7{?|~\xe4\x89\xb9\xa4\xbb\xbfm\x98\x85\x98-2\xa0?Qy\xc9\x99\xc1\xc3\xb2\xbfz\x85vzG\x95\xb1?\x8f\x1f\xe7\xcaS\xb9\x99\xbf\xf0D\xc3q\xd4\xd7\xbd?\xd5\xb4l\xb8\x94\xd9x?\xa4\xd4\xde\xdfE{\xc2?\x989\xf3\xf3\x0c~\x84?\x07\xab\x9cfZ;\xc2?\xf2\x19\xe4\xe0\x17t\x88?@\xb1\x1d\xbf\x9a\x17\xc1?\x9d\xc6rf\xa1\x1b\x8e?O\xee\x06\xb8!6\xc2?uo\x99\xc6\xb0\xe9q?\x9e\xb6\xdb\xa1\xcf\xda\xc4?\xad\xab\x849#\xab\xc2?\xf8q\xc9\x8c\xc9\xd0\xc6\xbf\x08wG\x81z\xf0\xbf?\xe2<\xb5\x1b\x9f\x85\xc3\xbf\x1a\xc8y\xe3h\xde\xbc?6\xc1\xf1`z\x19\xbd\xbf\xe3\xd3\xe5\x17\x9d`\xbb?\x10\xfc\\ \xbf\x1b\xb2\xbfn\x1e\xa9\x9f9\x04\xbc?\xbbB`"\x0f:\x9a\xbf\x8f\x18i\x88F\xea\xba?|;\x97\xf7\xf0\xdd\x91?tq\xbaQg\xef\xba?\xe2\xc7v\xeb\x8c7\xb0?:<\x90\x1bgK\xbb?\x9d2&e\xe3V\xbb?\xe4b\x15\xaa\xfc\x07\xbe?\x8b!\x81\x06\x952\xc3?\x0f\xd3H\xaa\x8c|\xc1?\'\xb6\xb3\\\xae\xb4\xc7?\x1f\xbd\xe0JTt\xb2?\xd9\xe3\xccr\x0f#A\xbf\xb7\xb3\x17\xf9r\xac\xac?@U\xf7\xbf\xa1\xfah\xbfr\xbe\xb7\x12\x9an\xa4?[\x82]\xf4}]w\xbf\xa9m\x90a\xc9H\x9a?\xf5\xbf\x08\x86^\xc3\x7f\xbf)R\xa3%\x92\xa3\x88?\x1d\xf4\x1a\x0f4P\xa5\xbf\xe8\xbd8\xe6\xfc\xd2{?\x11\xaf\xa4\x84\xad\x1b\x97\xbf\xec\xee\xc1PO*y?\xf4\x85\xb8J*\xfet\xbf\x0f\xc0\xb0\x00\xc7\xb3o?v\xea\xb9\xe0\x1fA\x84?n[\xa6\x9d\xf0\xdb\x80?y\xdc\x8f\xd4\xd0\x01\x9a?L\xb6Zz\xfdd\xb4?\x90\xe0\x03\x8dcR\xbe\xbf\xfd\xf3\xa2n\xaf\x10\xb7?\x03\x11\x90z\x93\x8e\xb6\xbf\xf5\x95\n\x00\x81\xd9\xb6?;V\x03\xeb\x10?\xb2\xbf\xab\xd9b\xcf\xf2:\xb6?\xd1\x19\xe7\xbbCa\xa8\xbf\x12\xf9\xfe\x0b=\x94\xb3?:\x84\xc96\x9d\xdf\xb1\xbfr\xf2\x7f\xea\xd1\x95\xb3?\xaf\xb6;\xd0\x08+\xb7\xbf/\xf9D7\xb2?<\x91\x12`\x82\xaf\xb4\xbf&Z\xef\x1c\xa95\xb1?yo\xa0\xe6Nm\xb2\xbf{\xa0j\xfd\x91\xa2\xae?\xfe\xaf\x8b=Gp\xad\xbfB\xcb\xf8\xac_z\xaa?\xdf\xff\xf2e\xe3_\xa6\xbfcRg\x17\x8d\xe1\xa0?c\xa2\xd2-\x8f_\xa2\xbf:(\x15\xfc \x1dp\xbf\xeay_\xc5\x16\xc9\x9a\xbf4\x840\x1b\x98\xc1\xb1\xbf\x0bx\x98\xfa\xb4U&\xbf\x89\x8d\xa5u\xe3n\xc2\xbf\xeayS\xb2\xc8m\x90?\xeb\xc4\xd9\xb2G-\xc6\xbf\xdb4x\xa6\xbd\xa5\x80?\xf8\xcc\xd4\xb9\x81\xc7\xc3\xbf\xf9\x8d\x01\xb8\xc7\xa8.\xbf\x97\xc7}#A\x94\xb7\xbf\xdeE\xffeuo\x8e?\x14\xcf\x05\x8fB\xc4\x9b\xbf~\x0e\x13\x864\x19\xa1?\xefjY47\xa0\x93?\x90\x99[\xfd>\xcf\xa0?\xe1\xe5^-\xdf\x03\xa9?\xaa\x84\xb9+\xd2@\xa1?]E\xd6N8\xb3\xb1?\x15\x8c\x97\x11\xee\x8d\xa8?\xba\xc0o=\xd3\xda\xb2?\x9c{\xe7\xb8\x0f\xc8\xb0?\x14\xe5uXf\x88\xb3?\x85\x87\xb1v\xfa\xd1\xb3?\xc1\x86X\xbf\xe3\xe1g\xe3~_\xc6\xbf,rY\xef\xe2\xf2\xb0?O\xc4\xdc8\xe7\xa7\xb5\xbfEq\x01\xbf2L\xa9\xbf\x08X\x9b\xa9{\xd9\xb8\xbf\x84\x1b\xc2\xba\x8d\x11\xba\xbfTo\xc1\xa3\xd3\xa0\xb3\xbf\xa7\xbco\xc6e\xd4\xc3\xbff\xbaTv\x14\x98\xa7\xbfv\x9b\xba\xde\xed\xdd\xc6\xbf\xc1g\x1b\xbd$8m\xbf\xe7\xfd\x01\x94y\xd7\xc6\xbf\x88\xffR\x84i\xba\xa5?\x15T6\xc9\x18\x89\xc4\xbf\xd14S\xba\x92\xc3\xb5?\xdb\xb4\x81\xb8\xcd\xea\xbf\xbf\xee\x8a\xc1\xb3\x1a\xa0\xc0?,\n\xba\xb5\n\x08\xb4\xbf\x02\xfd\xec\x87\xb5\x08\xc4?\xcb\x12Y\xab\xcca\x93\xbf\x0e\xe0AfM\xdb\xc3?\x04:\x87\xc8\xbc\xbe\xaa?\x82l\\\xdc\x82?\xbe?\x99\x15q\xe2\xa1:\xbc?cJ\x1a\xf2\xae\x9c\xb0?\xb4\x1e}\xd0\xa1\xeb\xc2?eg\x16\x8d/\xbe\x91?O\xb2\xb9\x88\xddk\xc5?\xff\x96\xa8\xacsI\x9c\xbf \rW{xL\xc5?\xec\xdf\xec\xed\x96\xfb\xb1\xbf\xe0\x1axme\xbf\xc2?\xf0\xba\x932\x05\xa6\xb9\xbf\xbfL\xbd\xd1@\x99\xb9?n\xf0\xa0\x1d!\'\xbc\xbf\x1a!\xa0p\xd8W\xac?Z\xf3~8\xad\x89m?\x14\x8e\x16\xb7\xf4/\xc7?M\x03\xfa=\xc6f\xad?##\xe0\xae\x08v\xc8?g\xce\xb3\x13\x19\xa9\xb6?\x9c~\xb9\xe3\xb1\xb3\xc5?\xa4_\x89\xa1.c\xbb?\xc5\x94*q\xca\x9b\xc1?G~I\xf5<%\xbc?\x7fg]\x8b\xd2#\xba?F\xcd\x94\x91+N\xba?\xbf\xef\x97\xeb\xa4\xf8\xbc\xbf\xa9\xdfJ\xea\x12\xac\xb7?\x88\x8f\xf7\xc6\x10\xe5\xc2\xbf\t\x00S\x95\x9a\n\xb4?g[\xb1\xb7<\t\xc6\xbf\x05\xa6\x93G\xbe\xc8\xa8?\xabt\xe8y\xd9\x9f\xc8\xbf\xb7\xb7\x88\xf4\x1e\x9b\x86?\xe6\x05\xccO\x02e\xc8\xbf\xb1\x05Pr\xbb\x8ej?\xf7-\xc0d\x0f(\x81\xbfo\r0L\xb3d-?\x08\x9c\xbdZ\x19Kq\xbf`\xc3\n \x11\xaa\xf4\xbe\xc6(\xd8\x0e3\xd4Y\xbf\xd1\x88cC\x85\xfbs?H3\xe2\xed\xae\xcbL?,U\r\xb6kZz\xbf\n\xb0q][Sq?\x03\xfc\xdb\xd9\xce^\x8d?\x9a}\xe2\xf5\xb1\xf0t?\xa2\x07h\xcc\x8c\x0e\x97?\x05\x9f\xd6\t\x83\xe2\x87?\xa7\xff\xbe?5\x8a\x86?\xd0;Hf\x0ec\x8d?\x9c\x04K\x81t\xf8\x7f\xbf\x89|\x1b Q\xe9\x84?\xbd\x06\x1fcl\x95\x89\xbf3c{\xa7e\xc4\xc3?\xbd\xf8\x01H9#\x92?\xfc\x85\xe8#\xee\xa5\xc0?a\x00s\x9e\x9d\xf9\x8b?TyZ\x18\x8b\xa2\xb5?\xbc\x02j\xf5[\x1b\xa1\xbf\xae\xcbxR\x81!\xab?z\xe1\xb2\x1b\xb8\x16\xa5\xbf\xeaT\xb5\xa8\x1a%\xb6?~\xecn\x11\x9a\x04\xa5\xbf\xd8\xc6~\xce\xd6x\xc1?\x16\x96qU"-\xa4\xbf\xec0\xaf\xc8\xbc\xdb\xac\xbfWA\xba}\xd9y\x7f?\x83]\xa9\r\xf8"\xb6\xbfN\x0f\xa4\xc6\x04r\x85?y\xe4O\x93\x8d{\xc0\xbf9#\x0e\xb1\x06\xa9\x93\xbfF\xc4\xf3\x9d$y\xc3\xbf\xfe\xac\xca~[B\xa7\xbfX|\x97\x7fd\xee\xc1\xbfn\x159\x94K\x86\xa9\xbf~\xa5&\x8d\x85#\xb8\xbf\xf5\x9e0;\xf4\xe1\x8c\xbf\n\xd8\xd9\\\n\xba\x9e?\x9eF:\n\xbc\xcb\x86?,H\xc0\x97\xb7\x11\x9f?\xd7\x17\xd2\xd5Z\xea\xa0?\x06\xf8\xd0\xbd\xd6\xc1\x86?b\xd40\xdd\xde\xd3\xa0?6\xf8u\xfe\xe1\xc9p?\x0f\x93\xe3)\xcc\xed\xa0?\x95\x96\xaeFsYJ?\x91\x14\xa15\xd9 \x7f?\x9f\xe0\xf9\xce\x0br\x90\xbf(\x18\x92_\x08i\x94\xbfpv\x86<\xb1\n\x8a\xbf\x94;\xed\xe7\xc6\xbb\xb4\xbf\xf6J\xc9\xf2\x025\x96\xbf\xca\r\xfb\xf5\x91\xec\xbc\xbf\x91\xcc\xb3sc\x99v\xbf\xcb0y\x81\x0ct\xbd\xbf*\xab\x8c_\x88\x8bm?\x81^\xb0\xfb\x155\xbd\xbfr\xac\xe8\xa5\xd7\xd9\x8a?\xe0u\xbe\xd6ec\xb5\xbf\xd6b\x06I\xed{\xa2?+\xd0\xe7\xedd\x9c\x8f\xbfk\xd3\'\x9eM\xe7\x98?7\xdb\x1d%;3\x8c?K\xde\xb82\x9c\x1d\x88?\xc34H\xdd\xf1\xf7\x8a?\xacP\xb8\x17\xd7\x01p?\x8eA\xcd\xafn\xf7\x8c?\x9c\xd2\xdd-32Q\xbf\x8c\xfdr\xe8tU\x96\xbf~\xa62\x87\xe4\xfb{\xbf[\x8c\xd9\x1c\xca\xb5\xb4\xbf&\n\x18\x9a\xec\xadq\xbf\xa4\x16\xa7\xf3?#\xb5\xbf\xcc\x8d\x9a\xb0\xd8.^?\x80\r\xc8;\xdc_\xb4\xbf\xf1\xe3\xb8\xf8\x8e\xbe\x88?X\xf5\xe3\xf1\xa7\x97\x9b\xbfL\xab=&n>\xc1\xbf\xcf1\x18\xb0\x8e~\x94\xbfP\xac\xd9\xe1\xf0N\xc2\xbf\x1e\x13*CA9u\xbf\n\xfc\x89\x92!\xcf\xc3\xbf\xc0(\r\t\x1c\xfdb?\x0c\xf2\xaef\xceg\xbf\xbf\x999\xff\x81\x08Pz\xbf\x03ab\xb6\x95z\xb0\xbfQ@\xd8O\xbd\xb6\x96\xbf\x9c2\x05\x1dd\xfda\xbfTf\xc8\x9d\x12N\xa9\xbfl\xc0\xfab\n;\xa7?TE\xde\xce\x1e$\xb2\xbf\x97\xc0s\x13!%\xaf?g\x9b\x184\xfef\xb4\xbfM;\x82\xd6\x9e\xdc\xa5?|\xabM\x0fZ\xe5\xbd\xbf\xe6F \xa3\x0b{\x95?\xc7r\x10\x81\x02\xd2\xc1\xbf\xab\x91\x80\xa1\xa9\xbb\x8f?\xfe2D\xd2q \xc0\xbf!}\xb3\x1bO\xf4\xa6?\xeb\x14wG\xc8\x1f\xb8\xbf\x99\xfbe\x8d\xa3k\xb4?A+\x9fON\x98\xb1\xbf\xcd$Qto\xab\xbc?l+\x8a]\x8cu\xaa\xbf\xf5\xe4|\xd9\x02D\xc1?\x0f\xb4g\x00\xd6 \xa1\xbf\xd0\xc6:\xbd\x85_\xc1?\xa6\xa3\xf8P\xdb\x9f\x8d\xbf\xa4\x1c\x1e\xa4\x0b\xbc\xc1?\xa6\x0f\xfe9S\xb4\xb8\xbf\x99\x1f\x06\xc9\\\x19\xac?/"\xed\xee\x81!\xa1\xbft\xad~a\xd9-\xb7?-\xf3-\xf8Y\xa0\x85\xbf\xcb\xce:J\xb4\x9b\xb1?\x85\xaa\x8c\xa6\xaa\xd8\x82\xbf\xb9_\x9a\x1e{\x85\xa7?\xee#l\x98\xe7\xeb\x8c\xbf\r\x84\xa9\xb7\xa3n\x96?`\xd3>\x9c\x01\x00\x8e\xbf\r\x9c\x81\xfa6\xe8\x94?\xa6z\x17\x86\xad\xf2_\xbf\xe9Cw\x1f8fF?\xa7\x04>K\xe3ik\xbf\xce|c\x03\xa1\x88\x91\xbf\x82\xcd\xden\x127\x8c\xbffD\xa2}\xe5<\xa4\xbf\xbeBJ\xb4q\x05\xaf\xbf\xd5Z)+j\xd7\xa0\xbfB5\xed\x8d\xf9\xf6\xb3?\xb8MnY\nA\x8a?\xb5\xc7v\xc0G\x1a\x92\xbf\xadE\xf6\x18i\x19\x80?\xdf\x91\xb0\xf5)+\xbd\xbfq7\x9f0a>o?4\x10\xc5Gu\x97\xca\xbf\xbf==\xbb\x04\xff0\xbf\x84 w\xb1\xb8\xea\xb2\xbf\x87e{=\xdb\xe7\xa3?\xf4\xd9\x04\xee\x99\x9f\xba\xbfilO\xbaKN\x97?7\x10\xee\x9f\xb8\x87\xc0\xbfCl\xa8\xec\xf6\x99q\xbf\x0f)\xee59\xbc\xb8\xbf\xd7\xfeK\x9eh\xf3\xa0\xbf\x0ce\x8f\x0e\xf5A\xb1\xbf\xf6\xb8\x15\xdf3\xe5\xaa\xbf\x94\x95\r\xbe\xbc\xc4\xb7?\x82[L\x99Y\x00\x9b?l\x8c\xbf\x12\xf9%\xb9?\x8a\xe5\xbb\xdc\xba\xe7\xa2?\x9e\x82\xbb\xdf\xa0\xd1\xb8?\x8a{\x8bqw\x10\xa4?\x03y\xc3F\x14I\xb9?\x06T\x9a\x12J.\x98?M0\xe5\xf6>$\xbc?\xcfD\xe5\xd8P\xc3\xa0?\x0f%\xed\x9c\xab\x88\xba?w\x01\x9f\x9d\x99\xcc\x9f?\xd8\xf4\xd5]$\x9b\xb8?92\x05\xbd\xf4\x99y\xbf\xa0\x7f\x0e\xa4\x0c.\xb8?\xee\xe8F\x06\xee\xb1\x97\xbfc\xfbR\xb1\xb7n\xb9?\x8c\xeaD\xf0rg\x91\xbf;\xe3\xc7ju\xaf\xb8?\xccWj\x8cM\xa8{\xbf~\x13\xb0\x96y\x99\xbb?\xe4\xf4\x14\x8b\xaa\x10\x8e\xbf6\xeb*O;\xd1\xbc?lO\t\xac\x16b\x94\xbf\xd6ibPCP\xb3?\xd7\x1fg\xc7\xda\xec\xb3?Uv\xb6\x84\x03\x97\xb3\xbf\xee\x13\n\xfd\xb7#\x92?e\xa3]\xec\x1f\xa0\xc3\xbf\xac\xfe\xae\xcf\xbc\x94\x8e?%\xc9\xf4\xf8\xa0\xcb\xc4\xbf\xf8\xdf3\xd3\nI\x96\xbf\x14\xcd\x88\\f,\xc3\xbfH\x16\x16}%\xd9\xb3\xbf\xa9?\xc8h\xc10\xb3\xbfx3\x1ch1\t\xb6\xbf<\xad\xdf\x92\x91I\xb3?\xf4\xd7\x8d\xed\x87\x05\xc0\xbf\x80\xa1\xb4\xba7\xf7\xc5?\xb8\x96\xb5\x90 \x80\xb5\xbf,\xb2\xe6\xdb\x12\xf4\xc9?\xcf\xf0\xb7\xb3\x9a\xb2\xb0\xbf\r\xdb\xe6E]\x8e\xc9?\xd9\xc4s6\xc1b\x8a\xbf\xbb|\x84\xc3\'\t\xca?\x82\xa3Z \xe0\x1f\x91?\xa0y\xb6\xf5\xd4K\xc5?&a\x94\x9enC\x99?D\x14\x81\x0c\'\xc9\xa9?\xb6\xb2\xb9\x0e\x94\\\xb5?\x8b\xf3\x85L\x9b\xee\xba\xbfm\xfe)\xc4\x9dN\x95?\xdfd\x94\x88\xe9\xc0\xbe\xbfP\xed\xff@\xad\xcc\x93\xbf3$M\x0c\x98\xb5\xb9\xbf\x0c\xa6~\xe0@\xfe\xb3\xbf(G\xc6hof\xad?\x81L\xa4\x8b\xc4e\xc1\xbf\x92\r\x13\xe7\xf4\x95\xc3?\x16\xec\x1bM\x83d\xb2\xbf\xd1\xcf0\x06\xfek\xc2?\x9eU\x96\xc7\x16\xb6\x91\xbf:\x90\xe8\xbf\xc92\xc3?^*\xd5\x01\x81X\x92?\x9d\xbb\xa4\x1b\xb2\x05\xab?Gzy1<\x82\x8b\xbf"P\x04l>_\x94\xbfm\x16\x977\xc9\xa4\x91\xbf\x04\xfe\xd6C\x97\xae\xbb\xbf\xccc\x85e6\xd0\x99\xbf\xf7\xcb\xd2+\x88\xb3\xc6\xbf\xe5\x02\xc51x\xaf\x9f\xbf\xe9\x13.\xf5\xc2J\xcb\xbfSp\x9dH\xc8\x84\xaf\xbf55~,\x1e\xa3\xcc\xbf\x0f<|z9\xcd\xba\xbf\n\xea_\x84\xf7\x02\xcb\xbfl\xefn\xbb\xc2\x8f\xbf\xbf8OZ4\xf7\xe2\xc0\xbf@\xf6#\xc6d\xe5\xc1\xbf\xce\xa1\xde\xbb\xbc~\xad\xbf4W\xaa\x9d+#\xc4\xbf\xf7\xca/#\xeab\x8d?V\r]\x90\xe1\xb0\xc5\xbf\xff\x13.\x16\x8c\xa1\xba?\xd2\x85\xe2\xd2(\x93\xc4\xbf\xb1/gn~\xe9\xc5?\x84!\xf4\x9f\xfa\x1b\xc1\xbfh\xa0;"\xb0\x08\xcc?o\xe6D\xbe#\xf0\xaf\xbf\xec\xd1\xe2P,\xd0\xcc?\xe1\xab\x90W\x9dm\x94? \x93\xc4\x87\xdeP\xc6?\xdd\x15\xe6\xb1\xf1\xbf\xb0?\\\x85O\xaf\xea\x1d\xbb?\x9e\xbbL\x9d%3\xb2?\x06H\xf9\x8aP\xac\xa3??\x8c\x10\xe9\xaeA\xae?\x96\x8d\xc4\xcd\x86v\x9b?\xa7\x17\xac)\x8e>\x82\xbfm\xa2\x07\xa1N\x0b\xac?T\xe7\xf2\xc0\x90#\x97\xbf\x92\x83\xc9\x0b\x0f\x05\xb0?[\x85/\x88s!\xaa\xbf>\x8f\x02\x849\xca\xa8?\x7f$\xf2\xa9\xcb\xd1\xb3\xbf<\x1c]\xc2In\x92?8\xbd\n\xdf[\xf4\xb7\xbfWc!P4R\x95\xbf0W\xb8\x00\x16\xce\xa9\xbf\xd7\xd8\xfd\xcb\xf01\xab\xbf\xa7u0Oa\xb4\xb5\xbf\xcd\x9b\x1d\xf8\xe2\x1c\xb6\xbf\x9b\x92\xc6\xc8\x15\xdf\xbb\xbfT\xf2a\xb3}\x94\xc2\xbfr,V\x80\x07L\xbc\xbf\xc9\xecs\xd2\xec\xd8\xcb\xbf\x1c\xb6G2FG\xb0\xbf\xfe\xe6)\xbb\xd8,\xa1?\xc0\xda\xfcaE\x96\xac\xbf\xf9\xdb\xe75\x02\x86\x93?\xbf\t\xa9\x8d\x81;\xa6\xbf\xecS\xa9R\xed\xd1o?\x183\xa7\x16\x99h\x9f\xbf\xe9\xea\xba\x9a\xa4M\x8e\xbfDwl\xd6gL\x93\xbfw\\\xf6\xf3(\x86\x99?\xca)\xa9o:\x1b\xa0?EM\xbb(g\xea\x81?=\xed\x04\xc0*\xa2\x99?G\xad\x0e\xd6\xa9\x1f\x81\xbf\xe8\xa3-U3\xd8\x93?J\xbe\xd5z\xb5\xb1\x94\xbf\xb9\x1c5J\x131\x8d?\xbf$gu\xa5V\x9d\xbfX\xa0q\xc3\r\x1e\x8e?mHY\xf8\xd2\x9e\xb6?\x16[f\xbe\t\xfc\x9c\xbf\'6\x8e[~(\xb1?\xc8Q\xdf\x9bN\xfe\x9d\xbf\x83\x0f^\xd1fZ\xa9?0Em\x90\x044\x94\xbf80\xc6*\xfb\xe9\xac?\x8f\xed\xfb\x7f\xa0\xa4\x90\xbf\\}Q\xf9\xfd\xec\xb2?\xc3\xd4#N_a\x8f\xbf#s\'k\xdc\xec\xb5?p&\x90V\xbaI\x95\xbf\xf1EoW)\x08\x8f\xbf\x10\xf1\x89K\xad\xa5\x93\xbf@\xe7\x005\x90P\xa9\xbf3 %\xd7 T\xa5\xbf\xb9\x98\x07-]\xb5\xb2\xbf\xf1?`R\x04a\xa1\xbfk\xbc\xc0\xfc\xca\xc6\xb2\xbfG\xf8\x03`y\xda\x99\xbf\x87\xeaR\xaeM\x1b\xaa\xbf\x06E\xf9\x9f\xf3\xce\x92\xbf\xe1\x1dw\xc8\tD\x9f\xbf\x94/\xfc\x17\xd7u\x94\xbf\x17}~\n\xbaG\xa5?\x12\xbd #\xd6\x16\xbe?\x08\xc5\x1a\xe3\xfa,\x90?\xa3\x17\xa6\xb0$\xd0\xb7?N\x12\x00\x8fc\x91|\xbf\x90b\xb0z\xdf\xf6\xb4?\x93\x18y\x11Pj\x96\xbf\\B\xbc\'\x96\xee\xb2?\'n\xbf\xda\x89\xd6\xa0\xbf\xc5+\xaeD2\x0e\xb1?!$`\x86\xf4\'\xa7\xbf;T\x00\x1dV\xf8\xb6?\xa1\xc6D~\x9b\x19\xa6\xbf}a\xb7xb\x9b\xbc?ww\xa3sb\xe3f\xbf\xed \x91=H\x86\xbe?Z\x17M\x91o4\xa1?\x16\x01\xc3V{\x1b\xbb?\x0e\x1c\x9eP\x8f\xb8\xa8?\xf5\x10\xed\xd4+\xe2\xbb?zbf\x88|f\xaf?\x08\xb1\xb8\xb1\xfdE\xbe?\xfe_\xd1Y\x90\xea\xb0?O\xba\x88\x8b5\xd9\xbe?jw\njgY\xa4?oI\x8b\x19\xc1\x08\xc0?\xab\xeb\xc6\x8do\x03;\xbf\xc1O)\xc8d\xf5\xb6?m\xb8-\xfd\xbb\x8f\x90\xbfx\xf9\xaa\xe1"7\xb4?\x1c\x07\xd9\xfa\x1a\xea\x98\xbf\xde\x1fd#\xff\xc2\xb2?^\xac$bx\xc0\xa1\xbf\x11\xfc\x8dB9\xe5\xbe?\xa0"\xc6a_\x0c\xa2?\xc28\x95\xc4\x06\x93\xb7?\x8c4\xa0\xbat5\xa5?\xc7!q\x9e\xce\x8c\xb8?\xb4\x11\xdc\xf0$ \xa9?q\xe2\x1at\xb1\xcf\xba?\x97WBw|\xb0\xba\xbf\x0b\x01V\xcb\x0e\x91\xb0?\xa5g\xf7\xeb\xff!\xbe\xbf\xe3\xe2\x9d%\x16\x9b\xbb?\xae\xe9\xf3\xbcP\xfe\xc3\xbf\xb40\x1d\xa8\x91\xe0\xbf?\xcc\x9a\x1f\x04\xfdF\xc5\xbf6\x97\xfa\xe2\xd1\xd6\xb3?\x96\x84\xc2\xb4\x95\x1e\xbf\xbfz\x93\xdcV\xcf\xdc\x9a\xbf\xdab.\x94\xb3\xa3\xac\xbf\x94c\x9e\xa08\xdf\xbe\xbfu\x16#\xc8\x9dVy?4"\xdfMpi\xc2\xbfO\xa4\xf3j\xd7r\xb0?8V-\x08}\x85\xb8\xbfrm\xcc\\&\x1b\xb9?\xd0\x8ae\x1bl#b\xbf\x8f\xe0\x8f\x87\x9f%\xbe?\xb1\xf8U\x10~\xf7\xb5?\x89\x93\xf5W\x1c\xa4\xbd?129\xa2\x04\xd3\xc1?n0\xef\x14\x0b`\xb0?5\x8e\xbf\xb9>\xd9\xbf?\x98\xecy\xec\xbd\xbbx\xbf\xbc\xf8u\x8a\xaaw\xa6?\x8b\x15PO\xb6\x05\xb0\xbf\x1e\xfd\n\xfc,(\xb0\xbf\xf1TJ\xfb\xa8\x02\xb3\xbf\x8e\xef$\x8f\xb8\x03\xc0\xbf6R4\\\x14\xa4\xb2\xbf~l\xec\x0f\x83\x93\xbe\xbfj\xa4\x04\x14\xfe\xb6\xb2\xbf\xd22Mw-\x7f\xb9\xbf\x00F\x83\xf9\xf2\xba\xce?\x00{\x00\x88\x166\xbb\xbf\x1f\x08\xd4oH\xb0\xbd?\xaf)~\x01\t\x8b\xc5\xbf\x037OH%\x06\xa5?\xf3\xf8\x07\x11\r\xcc\xc0\xbf\x8dq\x12\xdc\xf8=\x91?\x17\xc0:\x86\x12\x86\xb2\xbfzD\xa0\xc7s\x9a\x82?\xf0\x8a\x8dY`\xff\x81\xbfT\x0f\x8f\xd9\x1d\xfc\xa3?Gi\x80{\xc5=\xb4\xbfR\x19\x0f\xfd$b\xaf?\xdaY\x91/\xa6$\x85\xbf\xb0k`dY\x82\xb9?l\xbf\xa9\xa1V\x9f\xaa?\xff\xb2\xae\xf8\xe5\xbf\xc6?\x17\xf9\xfe\xed\xab\xca\xb8?sD\x06ao@\xd2?tw\x7f\xb7\x0c\xac\xb2?\xb8\x19vT\xd93\xb3\xbf~g\x8cR\x1e\xc8\x97\xbf,\x7fv\xb0\xc7\x83\xc0\xbf`f\x85Td\xdb\x99\xbf\x1c\xbe8\x99\xdb6\xc7\xbf\xd3\xaf\x1c\x1e\xb9\x97\x9d\xbf|\xc2\xeb\x1erM\xcc\xbf\x05!\x8a?\xd3_\x9f\xbf\x95m^U\xcf\xdc\xc0\xbf^d\xa6\x81\x18\x93\x88?\xadt\xd7\nI\x1a\xc3\xbf%;\xac\x8e\x17\xf6-?\xfe\x89R\x01\x94\xb6\xc4\xbfW\xe4\xc3R[8\x8a\xbfTO\xc1\xdf\xc1\x95\xc2\xbf\xb8\xa8\x15M\xb2\xd4\x9a\xbf\x87s\xe3^c\x18\xbf\xbfxq\x83\x98\x94l\xa0\xbf)\x08\x99kL"y\xbf\xc5\xa9>\xeb\xc35\xa2\xbf\xf5\x98\x11\xa0p\xdb\x92\xbf\x8b\xff\x14\xa99]\xa7\xbf\x9c\x08L\xdb\xe5P\x9e\xbfW\xfd0\xd0eg\xa5\xbf#\xda\x1bf{\x0b\xa4\xbf\xeb^cZ\xea:\x9f\xbf\xd1\x05\xd9~\x94V\x9b\xbf\xc7\xb3\xca\xc9\x13\xfa\xa0\xbf\xc3f\xb6\x91\xaf\xec\x8b\xbf\xd1\xfc1\x88\xa1\xbd\xa2\xbf\xff\x05({\xeet\x91\xbf\xa6H\xd8\xc8wPp\xbf\x82\x95\xceQ\xf9\xf3t?\x0f\xac\x0f\x08di\x89?\x02\x12\xd5\xd7\xb5\x9a\x97?\x8b_=GI\xe4\x90?\x16\xffDA\x05\\\xa3?\xa5\x91n\xa7\xaf\xee\x87?\xc9!\xc8\xd93\x8f\x9a?G.p4D\x96\x80?\x01Mq\xe5\xc2\x1a~?\xa9Dhg\xefFU\xbf\xc8\x03\xe8\xe3S\xcc\xc0?r\xb3\xea#M\xa5\xc0?\xc9^\xa1\x95\x17\x7f\xa0?\x8e;\xd2F\xec\x8b\xb5?\xc4\x07 x1)\x89\xbf\xb4\x8d\xa2].\xac\xa4?\xca\'u\xb3\xe9\xc8\x7f\xbfT\xf8V:\x18\x9e\x9d?\xb7\xd1rO\xfc\xffv\xbf#uu\x01\xbb\x15\x8f?5\x86\xe1\x80.L\xab?\xeb\xf9\x81\\ /\x81\xbf\x93\tJ\xca\xc3<\xc4?D\xbc]L\'\xad\xa7\xbf\xcf)\x10\xf8\x94\x19\xb5?\x80O\xd5\xf3\xfb\x0bm\xbf\xc7\xe0\xcc\xc6\xb4%\x9a?\xf7O\x03\xcdL\x0e\x98?NN\xe2\xda\x13\x9b\x84?\xb3\x99\xdd\xcf\xc7k\xa3?\xfbz\xd8\x90\x93M\x87?:\xbe_"\x10\n\xac?Sv\xb1^\x17|\xa9?\xed\x06\x97r*_\xb7?A\xfe(\xe0 \xe6\xba?\xc7C%0\xaa\x02\xc2?\xca\xd4q\xeb\xfaZ`?4%l{.*\xa5?\x8c\x9c\xf5\x86\x18\x9eA\xbf"aC\x81\xc0*\x9e?\x0e\xfc\x02\xfdYt\x8b?\x0c?\x1b\x02U*\x92?>x\x11+\xf9\xd1\xbf?\xaf\x07\xca\x81)\xf4\xaa\xbf\'X\x10&\xd7\xae\x9c?&v\x89\xc1\xe9\x1f\x96?\x1e\x95\xe3\x8fE\xcb\x8e?7g\x18R(\xe2\xa1?L\xa0K\xea\xf2p\x85?\x15\xe2\x0b$\xc9\xad\xa8?\x9e\x02\x1bgxW\xb7\xbf\x03\x15\xacE\xf3W\xb8\xbf\xdf\xb4\x96R\xaf8\xb3\xbf\x8c\x93\x00L\xf8\x93\xb4\xbf\x14\xf5\xd2\xf6\xa5\x19\xad\xbf\x8d\xcf\rst\xe8\xb0\xbf\xdd\xcf7\x81LZ\xa1\xbf\xd3\xd0O\xbaia\x9c\xbf\xddD\xd8!\xc4\xb3\xa3\xbf\x16\xf9\'BU\x8d\xa2?\xc4\x958\xea\x8b\xcf\xa9\xbf\x89I\x1a\xb3h+\xbf?\xf2\xc8FA%\xda\xb0\xbf\x90S\xed\x8b7\xdf\xc5?\x9a\xea<\xa9\xb3\x98\xae\xbf\xd6\xef\x8e4\x86\xba\xc6?\xbc|\t\xd7V\xe4\x9b\xbf\xd4\xd4\xc3\xc1\xfas\xc4?\x00\xd5\x95J\xa1\x99a\xbf\xdc\xec\xf0)\xf7\x83\xc1?\x85\xb5\xfbQ\xc4\xf6\x99?\xa8\xee\x92-&\xb9\xbb?\xfems`\xdc\xbb\xa8?vl7gg\xb6\xae?*\x15Y\xc3\x0e`\xb3?\x93\xdb\xe4rp&\x95?\xf1\xa0|@An\xbd?Bv\x14\xb2\x9b\x7f\x8c?\x88Q+\x82\xca\x00\xc1?\x94\xdc\x88\x89@+\x87?%\xcd\xda\xf5.\x1b\xc1?\xc9H\x88\x90\xc1cY\xbf\x94\x116\xca\xc0\xad\xc0?\\mP\x07;p\x96\xbf\tc~\xd9c]\xd2\xbf\'B\x88\xe0L\x11\xb4\xbf\x02\xda6B\x0cM\xcd\xbfT\xb0>p\x94\x80\xa6\xbf\xfd\x0b6^\x93\xed\xc3\xbf\'\xa1\xbdz\xe8a\xa6\xbf\x8f\x03\xa7(\x9c\xb9\xb8\xbf\xdc_S\x8fD&\xb1\xbf\xcf}\x97\xdbL\'\xaa\xbf\xdb\xd6\xdf\xbdMV\xb8\xbf\x1f\xfa \xf2\xf5\xb3\xa5?\xe8\x7fm\x88\xb5L\xb4\xbf\xeb:Td[\x03\xb7?\xf1\x99\xb5\xb3\xf7\x06\xb3\xbfm\x17T\x98\x87\x83\xc1?\xfb\xc2\xa2?\xb9\xe6\xb4\xbf3\n\x04\xf1\x84/\xc6?x,\x15A\x16\xf3\xba\xbf\x05\x10c+\xbc(\xc6?f\xb4\x1c\x07c\xc3\xbe\xbfP\x80\x0f\x0eO#\x99??\x98\xc8\xc4n\xba\xa9\xbf;\xc9p\xd6\xab\xa7\xa2?N\xef\x08s\xd4\x85\xa3\xbf\x1d}\xc0\xd3o\n\xa8?>\xe6>\x85\xf0D\x99\xbf\x95s\xd8\xe8\xe4\x13\xad?\x02X3\xa9fV{\xbf\x1cM\xc2s\xbe\xda\x8e\xbf\x83\x93\xf9\x96\xc1f\xa0\xbf\x9b\rFG:^\x89?*6\xe6&%\xec\xa0\xbf\x80\x9f\xdds\n\xa2\x9d?\xb7\xca\xb1\xd8Q\x18\x9a\xbf?:\x91n\x91z\xa4?;\xb8gH[ \x9d\xbfA\x8c{\xe5\xfa\xe6\xad?\xa6|\x19\x94\x08\xdc\x99\xbf\x89\x91\xe2\xa9\x8c\x8e\xc6\xbf\xe8\xa5\xa6\x14\x0b\xdb\xad\xbf\xe2\x90\x7f\xa5\x06T\xc3\xbf[\xdb\xec\xe9\xc8\xc6\xad\xbfJ\xfa%<\xb0O\xbc\xbfe\x14\x82\xa9\xa5\x14\xb0\xbf\xe3Z\xa3#\xcd}\xb2\xbf2\xbb\xb8.Ma\xb3\xbf\x8e\\\x1d\x8e>\xae\xba\xbfPy\xae|\xd58\xb5\xbf\x11\xc1\xb9,\xa2\xd2\xc1\xbf\xb4\x84\x1f\x02\xa3B\xb4\xbf;\x1b\xc9\xe1\xdcp\xb2?\xe9.\xb6\xffaL\xb4\xbf\x8222\xb3T\t\xba?\x10\x98\x0b\xdd\x9fq\xb5\xbf6sU\x92|0\xc1?ccd\xba\xda\xd8\xb5\xbf2\xb8\xd9\xde\x9c\xc9\xc3?\xd8\xf0\xa8\xc3\xd3Y\xb6\xbf\x8e\x8fJj\xcd\xa1\xc0?\xca>][\x98\xbd\xb9\xbfH=\xff+\x9bs\xba?\xa7\xa5\x19x\x02-\xb9\xbf&\xb1w\x05#\xfd\xb8\xbf\x05\x0bt8v-\xaf?\xb8\x15\x03\xd1\x14]\xb1\xbf\xf4\xedFy*c\xb2?UX\r\x87\xbb,\x99\xbf_\xa3\x1f\x9f^\x1b\xac?\xb7\x1d,\xe8\xe4\xa5\x82\xbf\x0e\xc8\x8a\xd0\xc7\x8d\xaa?D\xd7\x04\xbf\x85y\x85?18\xfd`!\x80\xad? vy\xb5\x01\xb5\x9e?\xbf\xcey}\xbd\xf0\xb2?\x19\xb8V\xa0\xdfB\xa8?\x17\xddz\xcb\x90w\xb0?\xd6\r\xc3T\x94\r\xad?Z\xd1A\x0c\x83 \xb5?\xc6s\xdd\xbcd\xa9\xa1?\x1b\r\x0f\x81\xdb\xf4\xb1?\xdd\x19`\xb1\x80*y?L\xc8\x13\xe4\xbf\x1c\xb1?\xf9\xabUv\xf4\xd1\x98\xbf\xa3m\x89\xc84\x03\xb1?\x80\xe1\xed\x9e*\xeb\xb2\xbfw#\x1an\xdfz\xb4?\xa3A\xb3\x9f\x9aE\xb3\xbfA\xd2\xd1\x06\x14)\xb0?\xfd\xa5\x16l/\xe6\xa2\xbfH\x95_\xcf\xc76\xaa?%\xbe\x9fj\xbd\xb4\x92\xbf\x18\xf5\'9\x80\x11\xa9?HE\xe5\xb2\xa2\xf7i?\x80\x03\xd1\xffB\xd9\xaa?\xbe\xf8@f\x01\x98\x9f?\x1f\x98\xe3\xbdm\xfe\xb1?\x8b\xe7Z\x19f\x02\xa4?\xafD\xf1w\xb5\x80\xb0?r\x1aR\x13\xea\xb7w?\xab\xb9\xc0\x04\x93N\xb0?\x91PN%]W\x99\xbf\x89\xbe\xe5\xb4\xfcy\xb0?+\x8a9>\xbe\x8e\xca?a\x06/(cZ\xc4?[\rH\xf8\xec5\xb6?\xbb\x1a\xa0L\xf0\x98\xc1?\xa5\xbd\xcb!l\xb8\xa0\xbfI\xa5\xfeoU\x14\xd5?\xb1Q\x06S\xa8\xc6\x85\xbf\x02\xc0\xba\x1bzb\xd0?\xab.n\xe5\x8e*}?\xda\xd6.fv\x8d\xc4?t\xad\x86\xba\x19\xdc\x86?1\xde\r\xf9@f\xb0?z\xed\x97\x08\xd0\xc8;\xbfx\xf2B\xe7\x88\xee\x99\xbfo\x8e\x94\x92\xd4<\x9c\xbf\x10`\xa53\xea\x01\xb9\xbf\x1d\x9b\xab~\xee\x1c\xb2\xbf\xa8\xd9?\x08\xe9\xd9\xc2\xbf\xb5\x10U3\xd1"\xb7\xbf\xb6\xbd\xfb\xd0\x9b7\xc3\xbfH\xe7\x17Q\xab\xb8\xb8\xbf\x1b\x99?_M\xbf\xc4\x80\xc8\xb4\xbfi\xfds\x0e3\x00\xa0?\x9b\xcb\xcd\xe5t\x86\xb1\xbf#m\x05\xdf#\xec\xa1?\xd2\xac\xffo\xad\xe7\xa1\xbf\xa0\xb2}\x05v3\xa4?r\xc4\xc6y\x081\x86?\x02\x836fx\x93\xa4?\xdb"\xa0\x85\xb1\xd5\xac?o\xe9\xbe\xc7\xff\xf3\x97?u\xc3\x14\xd8\x92\x03\xae\xbf\xc3\xd7\x8bi7\xe4\xac\xbf\xc4e\xa5g\xc8\xac\x9c\xbfH\xd9!^\x01\x1c\xa9?\xac*\x7f\x99\x9cv\xa9?\x1cG\x90W\xe6M\xc1?\x04.E\x81\xf1\xf9\xbb?=)\xcc\xee\x961\xc8?\\\xfcE\xa3\xc4e\xc6?\xecN\xe6\xe3\xa7\xd4\xca?ru\xa70\xd9\x9e\xca?S\xab\xd8\xad\x08\xa3\xc8\xbfAw\xc6\x89\xa7\x0e\xc4?\x1cJ\x83\xbf\xd9L\xc5\xbf\x17l\xa4\x88\x13\x14\xbd?P\xe6t%v\xca\xbd\xbf=\x19H\x03\xc2\x85\xb1?\xa1\xaa\x17\xd1Y\xf6\xa1\xbf^#\xd3\xea\xa8c\xb0?\xc7@\xc2XS\xad\xa6?\x93F2\x02\xf6A\xad\xbf\xc6g\x020\x00\xd3\x83?\xec\xb1\x19z\xb89\xaa\xbf\x9aY\x15\xe6E\xbd\x83?\xe8\x03\xfd;\xda;\xa5\xbf\x94\xd9\x89\xa3{+\x84?2E\xa5%Y\x13\xa0\xbfT\xbf\xa3\x9c\xfa0\x86?^V\xb5Z\xce\xbf\xa2\xbf\x7f\xaeo\x03n\xa8\x94\xbf\xe9f\x98\xff\n\x03\x96\xbf\xf1\x9c\xad\x86;n\x8c\xbf\xae!e\xb7\\\xb2\x8a\xbf\x87\x01Ay\xbf\xa0{\xbfQ^.\xcb\x92C\x84\xbf\xed6\x1c*B\xe6p?\n\xc8Q\xf5R\xdf~\xbf\xf4\xdd\xbc\x17\xa7\x1d\x8f?\xd7\xed\xc5\xdc\x88\xb2\xc4\xbf|\xdd&\x8f/\x19\xb3\xbf[\x80f\xc4\x1c"\xc7\xbfx\r\xacH\x8e\n\xad\xbf\xfdV\x9d\x8b5u\xc5\xbf\x856\x99E\xd8s\xa3\xbf\xe5\x9bK\xfb\xdc\x13\xbd\xbf{\x17\xe7H\x90*\x9e\xbf\xb3\xb3\x8d\x8e(\x98\xc1\xbf4\\a\x08\xcb\x84\xa7\xbfWhy\x18\xe6\x11\xc3\xbf\x8f\x19%)\xac\x9a\xb0\xbfZ\xb7\x8eX\xba1\xb4\xbf\xfc\xe2\x99\x88A\xe7\xa1?\xe4\xa1\x81+ \xe3\xbe\xbf\x84\xb6b/p\xec\xa6?\xc1\xd1\xea0\xc2\t\xbd\xbf>Q(\xf3\x88\xe2\xae?\xf7!|/e\xbe\xb3\xbf\x10\xa0\xab\xa3\x8a"\xb1?o\xcaQ\'uO\xb4\xbft\\\x88\xaf\xa4\xfc\xaf?\xcb\x08\xd5bPV\xb5\xbfI\xeb\xb9\xb4\xca\xf3\xa9?ODj#\xa1\xd5\xa2?\xc3>\xbe\x1f\xc2x\xa1\xbf\x9dS\x03\xcdT\xf9\x8d?\x96\xc3\xb6\x83$t\x9d\xbf\xe3\x947\x19\xad\x8e;\xbfy2\xb2!\xd5\xacs\xbfj\x8d\x89\x9f\xfd\xf3\x96??\x99\xdfEa\x82}?\xad<\x92g\x9b9\x8c?\xdc\x82\xa43u\x90\xa1?\x1a\xb4*\xd9\x93[\xab?\xef\xae/~\xc8\x04\xaa?=\xa4\xab\xcah\xd9\xb6?13\xc0<9l\xa7?CX\x0c\xe0\xa0\xd1\xb7?_Da\x0c\x84c\xa6?\xd9\x98\xba\xc6u+\xb8?\xb8Rw\xd2\xff\xcb\x99?\xf1$O\x0e\x1fl\xb6?\x8f\x83r\x05\xf4\x05l\xbf\x14\xa3\x84\xd2\n\x8a\xb3?\x84\x99\xdc\x16\x1fP\x9a\xbf\xa0\x18\xb7\xf0\xddJ\xad?\xc4\x01\x1c6\xbb\x02\xa4\xbfo\xc4$\xd4P~\xa4?\r\x03\xc9\xaf\x1fF\x9e\xbfm\xe8\xfb&\xf9\xa7\x92?\xa5\x96\x0c\xca\xc8>\x8a\xbf\xd2\x01\x99\x1b"\xa4\x9d?\x15\xa5\x8a|D\xb3^?\xe9\xcf7\xd7E\xb8\xa2?z\n\xef\xee\x16\x8c\x9c?\x8d\x9at\t\xa1O\xb5?\xe9\xf2\x7f\x04f[\xa7?\'\xe0?\xa1\x9e\xaa\xad?\xba\xe2\xb5\xc2\x10v\x9b?\xe5\xe3\xe1:\x18\xba\xaa?g\xc7\x97\x1b\xc9\xcfS\xbf\x830\xb2\xa6\x0b\xa0\xa4?L\x9b3\xe7\xdf\xa0\x91\xbf\x04\xa5\xeb\xf0\x90\x85\xcc?y \xa2\x0em\xfce\xbfL\xc11\xe6\xfd\x8e\xca?\xa5[aj\xd1\x96\x85?\xa8Ee\xfc#I\xc6?\xcd\x02\x8f\x00UJk\xbfdt\xdd\xa4\x0eY\xbe?\x12\x0b?Xj\xbfl\xbf0\xf9(5\x0eF\x9e?\x1bb\x1e!\xee\x10\x9a?6\xde\x80L\xa2\x93\xae\xbf\x12\x02\xca\xc1.\xca\x98?\xa7I\xb9\xa4\xda\xe4\xbc\xbf\x8b\xff\xb1\xf3\xed+\xa4\xbf\x05\xa4\x01,Tr\xac\xbf\x96t\xd6\xe04|\xc3\xbf\xf0\x94\x1e\x10MF\xa8?\xa7\xc5%DW\xb9\xcb\xbf\x04\xd8\xb8\xbf\xd1\x80\xbe?f7M\x98b\xdf\xcc\xbf6qm\x8c\x7f\xae\xbc?\xdd\xca\x96\x98k\xd7\xc7\xbf\xf8\x1f\x08\xc40x\xab?\xfc\xe8\xfcE\xf5\xb8\xbb\xbf{\xaaX+\xe5\xd1\x9e\xbfdsA\x8c\x066\x98\xbf4\x85\t_\x11\x01\xbf\xbf\xa3:r\xd1\xf2\xf1\xa8?\x11\x95\nV\xbe\xbe\xc9\xbf\x94Q}\x02\xeb%\xb4?G\x1a)\n\xf7P\xd1\xbf\x9bu\xeaIMh\xb2?\xd8\x8d4 \x86\x10\xd5\xbf\xf2(W\xda\x9aP\xb2?#A%\xbe3\xe4\x7f\xbfD\xfa\xf8\xdeh\x1e.\xbf^\xf3\xf6H\xc1\xcf\xb6\xbfc\xd9\xb0Z\xbeI\xb0\xbf\x9c\x80xG\xcd\xd4\xc3\xbf\x94\x949\x03\xa7\x88\xb0\xbf\xc4}\x96r@\xc2\xc6\xbf]\x00\xf3\xf9\x16\x97\xa0\xbf]o)\xbb\x81d\xc4\xbf;\xac`\x17T\x18\x84\xbf\x99^xw{\xae\xbb\xbf\x7f\x16\xed\xc1\x05\x89\xad\xbf\\\x10\xed\x15\xc7\xae\xb7\xbf\x1c\xf6\x92,\x81?k\xbf\xfe\xa3G\xa1;m\xa1\xbf\xd5\x86\xdcI,\x82\xac?\x17\xe3\xbb8\xb7d\xb8?\x12\xf7,]\xe7\xd7\xb5?\x17U\x9e\xe0!j\xcd?b\xee\x99\xae\xc9X\xa1?+v\xad\xf7\x15\x12\x96?;u\x9c\xf7\xaf\n\x85\xbf\x9c\xa0\xc6\x95s\xd7\x97?\x9a\xc8#\xb1\x14\xc8z\xbfbi\x84?\xcb\x90\x91?2\r\xdc,\xba\x08\\\xbf\xdfWk\xec\xf0\xb2\x85?70\xae\x9c\x9dbx?n\x87\xa2\xaeo\xe5\x8b\xbf\xc7\x8bS6\x12\xae\x87\xbf#\x07\xdf\x95\x94\x90\x82?\x1e:\xe6\x04\x808u\xbf\x84(U\xd2)\xc0\x93?\xfd\xbc\xa1\xe1\xda\xc7r?\xb0^\x89\xe9\xa4\'\x9b?+_\xf9H\xdb\t\x85?\x14\xf2\x19\n\xdc\xf9\xa5?F)\x01\xc4\xb3\xaf\x94?6X]\x17\xd1\xeb\x92\xbfLB1cTM\xb1?\x9dS\x93S)\xefd?\xf2 7\x9fJ\x17\xb1?\x1e\x91\x1b{\x83D\x8e?m\xa1D\xb9\xd7n\xaa?Q5\x8f}\xa0y\x8b?\x90\xe4\x99\xaf\xf1G\xa3?3`G\xa72d^?\x7f\xc7<\xc2S\x9a\xa9?\x88\xf5\xb80k\xfe\x80\xbf@\x1c\xf6$\x80\xdf\xae?\xd8I\xcbpQ\xf9\xb3?\xe5A\xe1\x07\x04\x01\xa8\xbf\xd8\xcf>\xac\xe1F\xbc?\x90\xbcRe\x1c6\xa9\xbf\xc3\x9be&\x13\x8d\xc0?\xe9d(\xd3X\xcd\xac\xbf\x9d\xd8\xfa}\xd8\xc6\xc0?n&\xbc\x932\x13\xb1\xbf2"\x19R<\x98\xbd?7\xae\xa8T\x0e\xfd\xb1\xbfA\xddq\x93\xe8\xa1\xba?5)x\x16\xa8K\xb0\xbf\xdc\x10XpY\x06\xba\xbfd\xd5\x83\xa1=\x15\xac?\r\xa2\x92\xec<\xf9\xa0\xbf\x99Jdb\xf04\xb3?\x89\xa4\xc9\xceX~\x8a?wef\r\xcc\x12\xb1?\xcb\r\x87WO\x98\x95?3\x82T\xb0\x01\xde\xa7?\xdfs\xd3R\xbf\xb5\xa3??\x1e`yp\xcd\xa6?\xd0|lrm1\xa0?\xea\x1a\xe5\xfc;\xee\xa1?\xec\xe7\xd8T\xf0\x97\x80?\x99\x9a\xdd\x82\xd4<\x94?\xa47\xf7xh)\x85?Xr\xac\x99\xd5\xf8\x80?\xf8\xa0\xf9b\xa7\x9dK?\xfb\x8e\x12\xa4Q9g?wG\x9e\x98p\xf0\x93\xbfnQ\xafk\xeeWv?g\xa0\xe9\x9aDp\xa5\xbf\xd8Rs\x15\xd0\\\x98?9\xee8\x83\xb2\xe0\xb3\xbf\x90\x91\xf1f\x8ez\xa5?\xfc\xe8x\xed\xd0\x16\xb5\xbf\xe1\x1f\x97q\x9f\x02\xa9?$\xb1\x88\xae\xb4\xbc\x9f\xbf\x1e\x8cau\xff\x1d\xab?\xbe\xb9\xaco\xd7\x04\x85\xbfjW\x8bUo\xab\xa0?WD\xa3w\xd1[x?\xb9\x88\xe8\xcd\x0b\x05\x9d?\x15\xdd\xcaj\xfe_p\xbf\x81Y\xc1\xe2\xa2e\xa1?\xa5\r\x9aC{R\xa0?u\x1a$C*\xf8\x92?\xf1\xcdQG\xb0i\x87?\x89JF\xee\xe4\xba\x95?\x9f\xb1c\x17o-\x81\xbf;(\x1e\x10\'\x1b\xa4?f\x98k\x8dL\xd2\x82?\xf3\xbaC:\xc5\xb5\x98\xbf\xf6s\xe6f\x8f\xd9\x9b\xbf/b\xd5\xaa\xb0\xf2\xa6\xbf\x8c|"psV\xaf\xbf\x96Y4r+j\xb4\xbf\xb1v\x82\x8b\xce\xf5\xb4\xbf\x8a\xdfY\x83\xe5\x87\xb7\xbfs\x0c\xb9\xb7\xa0/\xb8\xbf\x13\xb90/\xea\xcf\xb0\xbf\x9a"M\xcd1-\xb6\xbf\xf2\x162\xe9\x96 p\xbf\x88\xa9h\xc67%\xb1\xbf\xc5i\xfaq\x83\xda\xab?^-C\x07\x9aB\xa7\xbfZ\x9e\xe2\x07\xdc\x82\xb7?y\xaf;\xd1\x95\t\xb2\xbf\x9b\xc8\xb9\x15V\x8a\xb5?\xd7\xec/\xe4\\\x82\xbf\xbfE\x0fc\x1f\xed(\xae?\xff7\x03N1e\xc4\xbfL\xc4\x11\xb7\xf1\xca\x94?k\x8dh9\x95\x07\xc0\xbf-\xa46\x9b\x9d\xb6\x89?\xa4\xe3\xc3s\xcd\xdf\xaa\xbf/KU\x1e\xec\x02\x99?\xef\x85\x8f\xa6]\xe6\x98?\xa8\x07 \xecFH\xa7?\xcb\x15\x06Eq\x80\xb8?\xef\xd4\xd0;8[\xaa? ,{5\xd3b\xc3?\x8e\xea=O\xaa(\xa3?=\xab\xe1\xdb\x90+\xc9?\xb2yz\x99\x94\xe9\xa4?\xd7\xfe\xdf}e\xb3\xd7?\xa0gp\xf3\xf2\x1d\x91?P\xb9\xf6\xc3\xba\xbe\xc0?7\xb0\x9b\xcb\x92\xe0\xba\xbf\xa1\xfb\xe1O\x92D\xb4\xbf\x81@\x86B\xe5\xa0\xaa\xbf#\x9ew\xaa\xe5\x83\xc5\xbf\x9b\x98\xee/\xe7\xd4\xb0?\x83\xe40\x805\xe2\xc2\xbf\xe62L\xa3\x07a\xc5?\xdc\xeb\xea(\xf3\xeb\xc6\xbf\xf0#\'\xd8\x89~\xc4\xbf\x7f\xcc\x1b\x08oG\xca\xbf\xe0\xe3\x1a\x872+\xb3\xbf\xe6Rv\xcb\xe9\x81\xc1\xbf\xb0\x90\xe3\xf1\xa1\xe2\xa4?\x8d+\x0fUN\xb5\xb0?p){\xadl\xec\xba?u\xechz^z\xd3?\xca\xc1\x14\x83\xfc\xa0\x84?\x0b\xfe\xa3K\xa8\xc4\xa7\xbf\x1e\x937\x7f\xd9\xf9\x80\xbf\xd6f\xc0\xef\x84\xde\x88\xbf\xac\xbe\xa8\x86\x90>u\xbf\xe7\xcb(\xcf\x8e\xb5\x89?\x1c+\xef\xad\x9a\x07*\xbf\xa2\x042e\xa8g\xa4?\xb5x\xf3G\xe84s?\xcd\x034\xe5%X\xa8?\xb1\x8d\x94\xe6\xd6\xf5\xad\xbf8\xd5\xb9\x99O\xf0\xae?\xdax?T\x13\xce\x99\xbf1\xe9\xe6\xecLY\xae?\xc0;\x11\xe6Xkt?\x04\xc8.\xa1i\x04\xa9?\xa3\xb6\xfcTQ\xf8\x9d?\x11,J\x05\xd0}\x9c?i\x16\x8bN_\xbe\xa7?\x80\x82\xd2\xcc\x9f\xb7\x8c?\xc6<=\x0e\xe65\xbe?\xaa\xb0\xa9\xa1\xa7\xee\x97\xbfQ\x9d\xc0\x9dd/\xbc?\x8cO\xb2\xe4\x99\xcd\x99\xbf\xbaM9\xa8I\xeb\xb9?\x979\x8e\xfc:\xf6i?\xdb\xc7\xaa\xf7\x93\x1e\xb8?\x12.\xe3\xdd\xc6\xfd\x89\xbf\xc3h\x91\xab\xe2\x9e\xbd?\xc0\xbe\xdc\xda\xc46v\xbf\xef\x07\xedL\x0cH\xbd?\xff\x80\x92:<\xe3\x9f\xbf\'\t`_~\xee\xbc\xbfi\xfbN\xa13X\xb6\xbf\x8d\xc4\xd1j\xc7?\xbb\xbf\xb1\xe4X\xa1dj\xb5\xbfhU\x89"\xa3\x15\xbc\xbfd\xf9\xaab\x92\x01\xad\xbf\xf9\x98\x89\xa5\xd5\xbd\xbc\xbf\xdb\xa2E\x12\xe62\xb2\xbf\xd6\xcbyj&-\xbc\xbf\xb1\x00\x8a\xed\xac\xce\xaf\xbf\xf7\xdf/\xd4H \xbc\xbf\xdfZ\x00\xc3\x19\xc7\x86\xbf\x85n"(\xbf\x01\xad\xbf\xe6\x9f\x80\n\x01\x81\xb0?]\xe4K$\x03\x07\xa6\xbf\xb9\xab\xec9r\xf5\xb6?\x96v\xfc\x9bBg\x96\xbf\n\xe3\xb9V\xd4^\xb6?=q\x02\x01\'\x0e\x93\xbfL\x19S\xf4\x98\xd7\xb3?s&\x06\x1b\x0e\xf7\x8c\xbfc\x95%v)\xc9\xa3?\xb8\x90\x94\xbb\x83\xa8\x88?\x12+\x94\x07\xf2j\xaa\xbf\xf3\x81b\no{\xa5?4\x83\xd0\xa0\xea\x81\x82\xbf\x887\\\xd7h\x10\x90?\xa5\xc5/\xe6r\xa3\xa1?\xad\xcf\xcc\xd4\xd4\xbcR\xbf\x18\xd5\x0e\xe0\xb3D\xa8?k\x1f|v\x04\xe7]\xbf\xbc2M\x19\xf7\xea\xa9?\x9c\xda\xf0\xa8\xf9\xac?`&\x0e\x14\\S\xc0\xbf\x03c\xaeQ\xd8\xeb\xa6?\xacm\xd8\xc4\x0c\x84\xba\xbfuT\x8b\xef\xdb\xe3}\xbf7\xddj\xd1S\xc2\xb9\xbf\xc2J\x08?\xdbm\x9f?>\x02\xd3\x0cx\x91\xbb\xbfP\xfe\x88\xb1\xea@\xac?\xe6]O*p\xfa\xb6\xbf/\xfeb\xf2\x8b\xde\x90?\xa3&\xabZ\x93)\xbb\xbfV\xbeX\x14h\xf0\xab\xbf_~=U%l\xbd\xbfs37\x0f+\xaf\xb0\xbfM\xa0\xe9 \xb1\xdb\xb6\xbf\x8b\xb3\xad\xd2h|\xb6\xbfG7\xa6\xc0\x08\xdb\xb6\xbf\x97jk\x0c\x91&\xae\xbf\xea\xd8\x1f\xf5\x1e\xf6\xb6\xbf^\xafEV\xdb\x8b\x9f\xbfb\xe8\x06\xc7Y7\xab\xbf\xce\xe5o\xbc\xa5\xed\xb9?\r,f9\x9e\xd5\xa0\xbf\xed\x15l0 $\xaa?hk\x9c\xber\x8cr\xbf\xa90\x1f0\xaf\xd1\xa4?\xe9X\x9f\x10\r\xe0\x95\xbf\xf7\x04\xd9y=!W?D\x04U\xc8cb\x82\xbf\xbfn\xa7\x7f\xc5\x85\xa9\xbf\xde_\xb8\x8e\x10\xc5\xa4\xbf\xe3\xbeM\xa6\xac9\xb5\xbf\xcfJG^\xe4\xf8\xae\xbf\x99\xe4\xd6w\x9c0\xc2\xbf\x8c\th\x88\xca\xd8p?\xef\xd5\xcazCE\xb3\xbf\x9c^\xa2\xc6\xe5\xa3\xa3?\xbe\xdbL\x93\xcb>\xaa\xbf\xb8\xf0\xd6\x8a\xe2\xe5\xa5?\xcc$\xc2m\xd8\x0cg\xbf>\x87\'6\x8cX\xa7?{\xc4\xad\xb2Yj\xa1?\x13\x96\xb5F\xb6\xb6\x91?,Z|\t"\xd7\xa6?\xbd\xd1>\xe1\x04\xcf\xa5\xbf\xdbg\x13\xc8\'\x08\xb4?\x1a\xbc\xdeJ\xd8!\xa7\xbf\x19\xae]\xe1>\xc5\xa5?&C\x93<\x8f\x0f\xaa\xbf\x1fA\x8f&\xbdBn?\x8c\xdd\x81\xb7K\xd9\xa9\xbf&s\xd9\xdc\x9c\xa1\xa9\xbf\xeb^\x8co6\x8e\xa5\xbf^)\xb5\xa5\xad*\xc0\xbfBKU=\x96\x01\xaa?\xd9p\xdd\xceV#\xa9\xbf$\xa1Z\xee^\x0c\xab?\r\xd88\xf2\xac\xc3X?\x97\xa2\xae\xc2&K\xad?=\xbaWY\x04\xf1\xa3?\xbb\xaeE\xe3\x08\\\xb0\xbf\x04\xad\x9d\xd8P\xdew?"\xa5t66\x7f\xa5\xbf\x9d\xcc\xa8\xaa\x7f@\xa2\xbf\xde\xd0\xd9>\x9c\x9e\x86?\xcb\x82{\xcd\xaaK\xb0\xbf7\xf6\x08z\xf5\xa4\xaf?\xbf\xe7\x05U{\x17\xaa\xbf\xe0\x9f\xe8\xb1=\xcd\xaa?\xceim/\x8d\x89\x9a?\xea\xe5\xec\x17\x89f\x90?\x83\xa0A\xe0\x12j\xba?g6\x1b\xe6\xa4\xa6\xa5\xbf\x97\xfb\xc96|\xc7\xc0?\x8d\xf1\xd9Z\xcbJ\xbb\xbf3B_\xe7\x1a\xbc\xac?1\xd5\xc8tQS\xc0\xbf\xd6y&\x82}\xb6\x97\xbf\xca\xc4\xca\xf3{\xaf\xba\xbf\xe7Y\xd5\xa9\xd69\xb4\xbf\x0e20\x0f\x17\xee\xaf\xbf\x80\xe6\xcc\x08\xf8Y\xbd\xbf\xf2\xdeFt5\x17\x95\xbf\x8b_\xc03"\x9a\xb9\xbf\x19\x81Yvr\xb0\x9a?\xc6\xbd\xebH\xf9\x0e\x9c\xbf\xc5\x0e\x9c\xc0wC\xa9?C\xfa?=\xa8#\xaf?B\xa9\x81\r/\xca\x89?*\x99\xac\xd8\xbdJ\xb8?\xd2\x03\xc31l\x1a\xa8\xbfj\xa2\xbdD\xf1\xd3\xb0?\xc4\x998\x8e\xca\xc5\xb4\xbf\x16-7\x84\x1d\xa8\x9d?<\xc9\x98M\x108\x93\xbf\xecm\xb3\x80q\xcd\xb6?H\xe9=>c\xc9\xb9?X\x82\x83\x9f\x87~\xa7?\xd0\xcby\x87R\x9b\xbf?Q\xfa\xe7\'y\xe3\xaf\xbf\x18\xcd\xaf\x9d\x1a`\xb3?0\xf2\xe4X\xf9\x18\xc4\xbft\x97\xf9\n(\xd0\xaa\xbf\xd4\x8f\x15\xfc\xe7\x83\xc7\xbf\xf2\xa8\xb4\xc3\\@\xa7\xbfG\xe6\xb1\x03 \x8e\xc8?\xe6\x10\xf85K\xe5\xb4?\xcf\x06\xe3\xdc\xad\xde\xc1?R\x05sOh\xad\xc0?\x02\xde\x89\x05\n\t\x9c?\x9c\x90\xbd\x9f;}\xbd?\xf7\x83\xa77\xe1>\xbb\xbf\x88\xab$\xf3\x8dw\x93\xbf\xaf\xb4\xec\xa1\xd4\xc2\xc4\xbf\xc5<&\x15N\xd0\x9f\xbf,\xa1\x97\x19\xc6sy?\x07\x9bd\x7f\xd3x\xbe\xbf\xf5\xb0\x00\x86\xa2\xa1\x90?2\xb85\xf0\x80\xff\xc9\xbf\xa4\xb4vs\x17\t\x9e?o\xda\xb3\xa2\xc5\xe6\xd1\xbf.`\x8e\xc2*\xe6\xa3?\x05\r\x98\x11\x85\x91\xbc\xbf\xca*\x11\x0f\x19\xe5L\xbf\xe1wD\xf2N\x15\xc1\xbfD\x9e\xec\x1d\x0e\xdc\x8a?\xdf"P\xf1\xa6\xae\xc2\xbf\xe3\x92\xb9T\x01\x98\x95?\x06\x8b\x01dC;\xbf\xbf`\xe4l\x0f\xcf\n\x9c?\xa5\xadX\xf8X\x82\xb7\xbfVx\x8a\xc5\xd6:\xa5?W\x84\xa7\x17\x13\x8a\x85\xbf0\xf5\xf5\xfc\xe4F\xaf?\x92\xff\x19\xd5\xb4W\x9d?\x96l\x97 \x01e\xa9?xYj\xf3J\x93\x89?\x02\xee\x08"Y\xd7\x96?&\xcdn_\x8fO\xa7\xbf`4};\xc8,~\xbfm\x13\xff]\xe5`\xa4\xbfa|)\xddp\x9e\x94?\xbf _2\xc5\x81\xa3\xbf\xa9\xe1ii3:\xac?1\x8dn\x90\xbe\xda\xa2\xbf\x96P>\x88M\xa8\x88?\x03\x8e]\x18\xee\xbd\x98?\x80nwO\x90\xfe\x97\xbf\\\x93\x19\xe4\xc8\x84\xa3?\x9d7_\x92-\x83\xa6\xbf\xb1rV|6\xc5{?[6w\x03\'\xf4\xab\xbf\xc5A3\'_\xa6\x8d\xbf\x8a\x02sS\xdb,\xaf\xbf\xd8\xfaM\xb9\xc1\x9d\x9d\xbfO\xd9\x1cw\xb3\xbd\x9f\xbf\x19\xf8\x84\xaa\xbe%\xa8?:\xd1\x9d\xf0\xebq\xc3\xbf\xfa\xdaL.-\xd4\xba?A*\xd9\xf2\x12\'\xbc\xbf+\xddZ\xb3\xe6\xfa\xc0?_k\n\x97\xa0\xec\xa5\xbf_\xbc\x14\xc5\xeeJ\xc2?\x17\x18\xedl\xd8\x1eq?\xe7\x14\x9c4\xb7T\xc2?={\xa6\xe3\xcd\x04\xae?\xca+`\'\x95`\xc0?"\xebQ\xaa\xde1\xc0?`\x93#\x9b/3\xb6?\xa5F\x08h|q\xc3?\x1fL\xc11\xa9\x07\x9a?6\x08\x0f\x13\x1c\xe8\xbb?x\xe7\xc3W(\x96t\xbf8\xe7p\xa6\x9a\xab\x9a?}\x17qxwF\x91\xbf\xd1\xfb\x88]\x9cU\x9b\xbf\x9f\x9b^\xce\xc5$\x96\xbf\xd77\xa0\x94\xea\xf5\xb1\xbf\xc1q*\xb2i/\x93\xbf\x0e\x1e\x14\xf1U\x89\xc0\xbf\x881>\xe4\xfa\xdd\xaf?@M\xcd\xe4I\xe1\xc5\xbf\xc88\\\x94G\x0e\xc1?\xc6\x0ft|\xf1\x07\xaa\xbfu\x8d\xd2\xb4\xa3\xb7\xc2?bx\x9bL\x949p\xbf9\n-\xdf\x8f\xdd\xc2?\xc3\x8d:\x823e\xa9?&{S\x19\xeef\xb6?$;S\x06!\xe5\xc6?Y\x11\x0f6]al?\x06\xe0\xb3\xa6G\xd6\xa1?0k\xc4\x95\\\xb6p\xbf\x10\xa7YdN\x86\x91\xbf_M76\x89uw\xbf\x894\x82\xd7\x08\xba\xad\xbf\xd4\x8a\xb3\xf6*\x06\xa1\xbf{^\x16\x84\x87\xd3\xc1?N\xc2F\xfc8\xab\xa8\xbf\xf6\xa6\x9c\xc0f\x9a\x9a?T(\xdb\xe9q\x10#?1wv\xa8qq\xae\xbf\x17\x84>Q\xc2\xce\xaa?\xc1>\xa9\xd9\x0f\x01\xb3\xbf\\\x8bDG\xb9u\xb5?KLg\xde}\x8b\xac\xbf\x90\xaa\xdeZ\xe2\x15\xba?&\xdf\xa9j\x88_\xa7\xbf\t\x06%\xd6\xb0{\xbf?\xcb\x8f^#\x01.\xb2\xbf\xedQ\x87\xadI\x80\xbb?\xeb05\x0bm\x04\xb5\xbf\xf7\xd5\x95j*\xde\xb0?:\x8a\xa7\xcb,\xc7\xb1\xbf\x98*\xac\x89\xcb\x9a\x90\xbf\x1e\x11\xf3\xc6\xe0\x9d\xb1\xbf!\x93A\x19+O\xc0\xbf\x02\x85\x9f\xbb\xae\xb5\xb5\xbf\xd3\x03\xb6\x14\xc0\xf0\xc8\xbf\'D\xf8F0s\xb7\xbf\xd5\xe2x\xa1Vo\xc8\xbf\xd1\xf6\xd6vs\xa5\xb4\xbf-\x87\x9e\xe05J\xc1\xbf\x93\xbc\xf1\x07c\x10\xa8\xbfV\x82\x8b\x9b\r\x14\xa1\xbf\xf2\xc1\xca\x0c\x1f\xb1x?\xff\x91\xe7\x93ra\xb5?\xdf\xaa\x07!s\xfc\xa5?&\xafU\x9a\x940\xc8?\xb5\x06\xef\x19\xe0\xac\xb5?\x1a,Z\x16\n\x99\xc7\xbf\xce\x9bH\xb4\xa1\xb0\xbb?AU\x90\xc0\xa6\x1e\xb4\xbf\x87\x8a\xc1\x1c\xc3/\xc2?\x057\x08\xf2\xfb\xb9S\xbf?\x9eo\x9f\xe8\xe1\xba?\xe71b\x87.\xee\x96?m\x1b\x97k\xf3,\xab?\xda\x06X\x7fX\x12\x9b?KnhV\xc3\x82r\xbf\x0b\xee$\x15\xcaXl\xbf\x88k\xeeN\x9dh\xa9?\xbc\x85h\xb7\x05\xd5\x86?#\x9c\x9d\xb8\xd4*\xbb?\xe8\x0f\x04\xc0\x19h\x9b?\xdf\xe8T\\\xafO\xc1?\x08<\x94Mn\xa8\xb0?1pf\xe8\x84\x15\xc2?\xc2\xc8\xbb`9\x82\xbb?,\xa2\'\x83I+\xbb?\xed\xdb\x8a)\xf4\xe4x?\xb3[O;^\x1e\xbc\xbfnRc\x16\x0f\xc4\x87\xbf\x8e\xf7l\x9e\x9b\x88\xc4\xbf\xa9*\xed[=\x1b\xa2\xbf\xaf+\x12e\xc7*\xca\xbf\x83M&ed\xf2\xab\xbfIk\xe2\x1f\x13\x1e\xcf\xbf\xfe\x0f\xc6\xf6;\x99b\xbf\xb0E_\x9c\x83\xca\xc5\xbf\xd3\xc3\x18\x06!\x02Y?2\t\xdd\xf6V\x91\xc7\xbf$\x16\xb8\xb8\xc9r\x88\xbf\x86=\xec\tD\xa3\xc6\xbf>:y\xd1\xb2D\xa1\xbf\x02\xc1D\x1a\xac}\xc3\xbfd\xca\x07\xafq\x16\xac\xbfu\xddi\x8e\x15\x82\xbc\xbf\x1b\xdb\xfbY%I\x9b?^`\x8b#\xf8\x02\xa3\xbf\xbd\xe5.\x07\x96\xae\xa8?R\xc0\x1e\xa4\xb7\x9c\xa4\xbf\x94|\x8f};3\xaa?:}Q\x822a\xa9\xbf>$\xc8\x1f\x14yn?L\x18\x8b\xfbu\xb4\xa5\xbf\xb7LHKE\xdcx?\x8d\xa9\xd7c\xcaS\xa7\xbfwLY\xf2\xc4\xa1\x8e?#\xea\xd7\xda\xcd~\xa5\xbfJb\x86W\xe1\xeb\xa0\xbf\xe8W\x82\x05\xac9\x91\xbf\xd1\xeb\xb9\x80\xcb\xc2\x8a?\xca\xafz\xd0\x1d|\x84\xbf\x06\x87\xbePg\x1e\x94?\x18k\xcc\xb1\xfe\x1f\x9e\xbfl\xbc\xd3\xd5o\xd5\x8d\xbf\x9cu"\xd6\x14\x98\xa3\xbfg\xb3\xae\xe3\xaa<\xa7\xbf9\xed\x96\x92e\xdc\xa6\xbf\xfa\x82\x1a%\xa5\xf8\xa6\xbf4\xae\x01&\x97;\x9d\xbfj:\x04hg\xb6\xb1?\x1c\xfd\x16\x04\x0eQ\xac?\x08\x84D\xe5"*\xb7?\xc7R\x9cz?\x83\xb3?u\x9b\x94\x89?\xe8\xb2?\xa6sx\xec\x07\x84\xae?QbH\x912\x04\xa7?\xf5e\xc9/\x89s\x9a?G\xfex\xb1\x95\x1f\x90?\xb5\x96\xa9\x15\xb4>|?\xab4\x02v:V\xa6\xbfQ7B^\xe9\xaa\xa5?\r\x03n\x92\xc4C\xc1\xbf\xe6\x11\x9b\x82\xd5\xec\xb9?\x1c\xcb\xa5/\xb74\xba\xbf4\xbbv&\xcb\x99\xb7?J\x8a\xe5\xae\xb4\xcf\xa8\xbf\xfa.\x90-\xf6\x94\xb5?\xc9\xda\x1b\xdbfM\x84\xbf\xa8<\x81#O\x1e\xbc?\x88\xadr\x91\x8bT\x9c?Y\x0fC\x1f8\xd3\xc2?\xa7\x02}^\xdf\xd8\xb5?\x8f\x0f(hF\x84\xc1?n\x19\x84\xedDd\xb1?\xf2\x82\xafj\x85\xbc\xb0?r\xeb\x95,\xb1\x14\xb0?\xb8\x88l\xc2Y\xef\xb2?\x0f8\'\x1f\xa52\xa0?[0\x97\xf2k\x0f\xa2?\xcb\x95\x8c\x16\x1f\xa9u\xbfI\xa9\xa3\xf1\xc4\x00\x94?\xe2\xc8\x06j\x01\x9d\xbb\xbf}\x9f\x8a\xd7\xc8\xb3\xc0?j\x04\xec2\xbe\xa0\x93\xbfn7\x85\x90-\x87\xaf?\'U\xa2\xe8\xb24x?x\x1c\xe4\xbb\xdf\x06\xb5?\x03^5\xdc\x8ba\x9c?dC\xf6\x9b\x84\xe1\xbe?\xa5hFy>3\xc2\xbfO\xf3h\xbeF\xa4\xbe?#a\x0e\xfc\xf5\xfb\xbb\xbff\x1a\xdcN\xdcB\xbe?1\x9b\xf3\x14\xd2*\xa6\xbf$\xe6\xb3\xd0\xae\x08\xc0?\xfd\xc0W\xf0\xe4\xf3\x94?vG\xd0[\x01\x94\xbb?\x17\xee\x1d\xe9\x17Z\xb1?\xac\xc6%\xa5I\x8a\xb2?\xfe\xe3\x1a\xcf}\x1d\xbe?\xde6\xd3f\x1e\x01\x93?qn\xb20\x17=\xc1?\xc7\xf7\x7f\xe5\xba\x16\xb4\xbf\x85\xa3\xa3\x9e\x19F\xbf?4T\xeaS\xc0@\xc3\xbf\x92={\x1alq\xbb?\x14\'|\xd1\x9fB\xc6\xbf\xd7\x90\xa0\x9drJ\x9b?\xd7\xba\x81V\xd4R\xc3\xbfuy\x8e\xd7Yc\xc0\xbf\x11\xa4\xd4\xea\x1e\xd3\xc1\xbfn\x80\xd5\x94\xa4}\xca\xbf\x01\xd7\x01\xbc\x7ft\xb5\xbf\xe4\x9c4YW\xb6\xc5\xbfy,\x13\xbb\xd0\xb8q?\xaf6\x9eM\x0b\xfc\xb2\xbfP\tu\x06\xfaj\xbe?\xff\x82M\x10Ug\x92?\x9e\x10\x99\xcd\x18\x18\xc8?-d\xc5\x9dE\xd2\xc0?e\xefy^s\xdf\xc4?7\x13\x90\xc5*\x01\xcd?\x16L\xaf\x15\xa3O\xc2?\xb3\xa4;\xe7L\x9b\xad?\x8e)\xe1O8\n\xc8\xbfQ\x08\x94\'/\xcf\x96\xbf\x9co\x89e6u\xca\xbf\x03\xd7\x1b\xed\x0b\xa6\xb5\xbf.\xcc\xe4\x8b\x00\xbb\xc1\xbf\x8a\xdb\xf2\x19\xf2n\xb3\xbf{Z*\x9c\xf2\xfd\xa7\xbf~)\xe2bTy\xa1\xbf\xda\xa0\x87\x15\x0b\xb3\xa7?\x95\x90.\x85u\xa8\xb0?\x85+\x88\x99\x82\x18\xb2\xbfP\xc2\x91\xe2 \x94\xb3?\xae\x88\xdar`\'\xbd\xbfNb\xb7>9%\xb1?gc\xd5\xe3\xad7\xc3\xbfh\x0el\xea\x0e\xfei?{\xe1M\x875U\xc5\xbf\x0eC\x01(T,\xa3\xbf\x1a\x96j_K_\xc5\xbf\x02\xd9\x1c\x7f\xeb\xd3\xa3?Q\xae9\x10\x04\x8e\xb0?\xaa\xb9\xd8o\xeb\xc7~?U\xde\xbb\xd0\xe4a\xb7?\t<\xf7\xfe\xca\x96\xa0\xbfIE\xac>\xe7\xc0\xbf?\xf07\x88\xd0\x1c\xe2\xad\xbf\xef\xd3)]\xad\r\xc4?"\xc3\xe4\xe2\x8c\xa5\x91??\x80\xaf\x9d\xc4\x17\xa6?\x05.\xd3\xa3$\t\x87?\xca\x07\x88K\x9f\xc8\xb2?\xf2\xa0eP\xd2\xc27?0\xbcH\xec>\x9b\xba?Z\x19Z\x05HV\x7f\xbf*\x9bLv_\xf2\xbf?!]\x7f\x89\x9b\x1d\x9a\xbfu%\x8cP\x16a\xc1?\xc2\xdd\xc8\xf8\xd2^\x9c\xbf\x1c)|z{\xfb\xab\xbf\xb3\xcfF\xcfpl\x81\xbf\xdb\xa97\xa8\xd0\xf9\xa4\xbf|{\xe9\xe4fxc\xbf\xdd\xe0\x9e\xcdej\xa3\xbf\x8emn\xb3% \x8b\xbfNQ\xef\x91\xcd^v\xbf\x9b\xcb\x98\x0f\xfe,\x95\xbf\xdeK)\xcb\x14t\xa0\xbfL\xe7\xeb}\xc2D\x93\xbfg\xf1\x90_EQ\xa8\xbf\xe3\xb1\xf2\xb9\xfe\xf4\x8f?\x9d\xba\x8b[\x88\xe7y?\x12\x8d\x1d\x999\x8d\xa1?LzsM\x92\xe8\x83?\x17\x8d\x14Ab:\xae?\x93\x01\x17\x8d\xf5R\x80?>\x97\xe4^\xc4\xf8\xa5?\xc3U\xc7\x9fi!Y?\xfaM\xa5r\xdc\xb9\x9b?\x97\x05O;+A}\xbf\xb5\x0f.\xba\xdd\x9b\x92?\x02$a\xd4\xa0Wr\xbf\xe2\xba\xf2\x15\xe3\x9b\x97\xbf\xc8\x06\xe1s\xcc\xd5\xb8\xbf\x97\r\x1aXp[\x83?\x19\xbb\xca\x83\x16N\x94?Rd}+\x02\x88u?\xe7\xba\xab6\xc3\xcc\xbe?h\xb4\x9c"\xab\x16s?\xc5\xaa\\\xcc\xe1z\xb4?,?\xdf\x8d\xb0\xbe|\xbfB\xb0\x90\x07\x86W\xa3?\xcdQK0\xfc\x11\x99\xbf\x84\x07\x11\xb6\r%\x9a\xbf\x11\xed\xef(_v\xa5\xbf\x16\xdb+\x9c\x8d\x92\xb8\xbf\xa3\xf2\xe5\xd5\xada\xa1\xbf\xd0\xa0\xff\x08\xbf\x03\xb4\xbf:\xdf\xb7\x08_A\x8f\xbfF\xd5us\x88\xad\x9a\xbfL\xa6D\x1a\xbd:\xf7>`\xb4\x0b,\x03\x01\x92?\xa0KI\xeb\x8cK\x96?\xed\xa4\x14\xfb\x9fb\xaa?*\x01Au\xf7\x7f\xa5?9\xb0:\xa5\xc5\x05\x9a\xbfh\xc3\r\xbf\x8b\xd9\x96\xbf\xed\xe1\x06\xca\x9du\xb8\xbf\x99\x12\x9bX6x\x95?\x81V\x9a\xab\x05\xe4\xbb?\xedA\x84\xfb\x81\x94y?\xc5aZ\xa4N\xe5\xb1?\xe8G\xed\xee1*V?\xdf\n\xa97\x04\xf1\x9a?\x1f\nV\x184\xcd\x9c\xbfM\xba\xbb\x0b\xb48\xbc\xbf\x1f\xb3J\xbfq`\xac\xbfIC\xc6\xe2\xc4\xdcv\xbfOk\x0f\xc1\xfc\xce\x9d\xbf\x15\x96xF\x0e\xb9\xa2?5iQ6q\xafa\xbf\xe1\xe2\xbb\xbeG\xbf\xb3?<\xc9\x03,\xc2\xb5\xd3?o`!\xbc\x92\xf4\xbb\xbf\x93\xcd|\x9b\x91\x16\xbe?\x0b(\x90\xd2C\xe9\xbc\xbf\x82\x92\xbbO\x1e\xa9\xb4\xbf\x92+\x99e\xbb\x10\xbe\xbf\x1f\x06\'\x9d\x12\x19\xcc\xbf\xb9\xbc\xa3\xd0\xc8M\xa3\xbf\xc2"\x97-]|\xd1\xbf\x94M\xbe\xf8\x8a\xdf\xb0?g\x03\x899\x06\x00\xcb\xbf\xf0\xe66iHT\xc2?[Z<\xf5\xf5\x0e\x9d\xbf\xca\x98|s*\xe4\xc5?g\xa7\xfa\x0b\xc46\xca?\xc3\xcc\xba0\xd6\xdc\xc3?:#^_\xf3\xe1\xd1?7\xc3\xe7]j\xa4\xc0?\xcb\xdf\xe32\xb1\x00\xce?#!m\x81f\x03\xaf?\xc8\xe0y\x0e\xb8\x1d\xb3?\x1a\x0c\x1d\xb4\x95\xa7\xa7\xbf\x9d\xca\xea \x9a0\xb0\xbf\x9c\xd02x\x93p\xc0\xbf\xad\xea\x1bJ\xecO\xbe\xbf\xd2_\x82\x8e\xa6\x14\xbe\xbf$\xea\x15\xd89\xfd\xb4\xbf\x19=\x0fw\x95\xbc\xa1\xbf\xb4KV\xb0\xa0\xf2\xa1\xbf\\\xd2CU\xd6\xd0\xa1?lRF\x8d\x8dC\xa4?\xdd\x0e\xf4i\x85\x8c\x98?\xd4\xb4[\xfe\xa7{\xc1?\xe9D\xa8R\xa4\xa9\x81?"\xff$\xb9\xf72\xa1\xbf\xe6+Z\x9f\x0f\xb7\x98\xbf\n\xe6Q\xfa\x94\x92\x89?;\xda\xf0\ti\xa7\x92\xbf79\x18\xa5\x82\xa6\x97?Pa\x03\xec\re\x94\xbf\xe7Z\x13\x8a)\x11\x98?[\xd1\xd4\x03O\xe6?\xbf,\xb9\xba\x1cLg\xa4?\x96\xdc\x12]N2\xa1?\xb6\xf5\xd2G\x86y\xab?c\xd7\xb7t\x92\xa9\xa4\xbf\x81o=\xbbmA\x83?\x98\xd3\x0f\xa8\x98\xfe\xa4\xbf\xce\x81\xb7\x16Vm\x92\xbf\x14\x99\x08s\xd2\xd5\x96\xbf\r\x10\x05My\xd1\xad\xbf8\xa4x\t\x1f\x00w\xbf\xbc\x9b\x08\xb9D\x8f\xb9\xbfm\x1d\xec\xcc\x05\x84\x9f?\xa8xP\xb9\x95\xd2\x9f\xbf\xb4\x8dO\xea&\xb0\x80\xbf)G(\xce\xafW\xb2\xbf\xdcOkA}Q\x82\xbf\xc2}\xc7r\x94q\xba\xbf\xdbc\x8fI\x11Z}\xbf\xe6\x93\x81\xb4\x11\xd1\xbf\xbf\xd4\xe6\xb0\xf8\xe8n\x85\xbf\x94\xdb\xab\xed\n\x1a\xb8\xbf\x01\xb7\xd8\xe6\xec@\xac\xbfl\xbe\x0f\x95m\xa4\xa8\xbf\xdfe\x0c\xa6\xc0\xed\xa1\xbf\xc8[\xf0\xc1\x14[\x96\xbf\xe2^\xe9~9`b?\xb9iH\x15W\xff\xa4\xbf%V\xfc\x1d\xfc\xa4\xa1?\xdb"\x7f\xe3\x12\x11\xb2\xbf\xb0\xe96\x01\xf4\x9a\xad?7#\xdc\xcb\x9b\xcf\xa4?\x88D\xde`\x9aU`?\xfe\xc3fQ\x9d\xc7\xb6?\x8f\xe1\x9e$ \x88^\xbfT\x1af\xa0\xf1<\xaf?V\x9a\x93\x98\xa7M\x90\xbf\xe6\x98FJ(\x8e\xa0\xbf\xe7\xf5`\xc0\xf6Kt\xbf\\\xc9\x0c\x82\xccja?\xf1\xcdB\x93\xe3\xa4l?U4\x95\xe2\xf4\xec\x93?|\xb0~\x19J\xbd\x92?dsPS$\xd3\x9b\xbfb"0"w\x1e\xac?\xdb\x99\x1e\xff\xa0\x03\xb1?\x004\xea?\x8a\xa7\xb8?`\x07\xe6n\xa0\xd9\xb4?\xa9\x83\xd9{\xbe\x08\xb7?o\x11z3[\x92\xa1?\x9a\x0cm\xe2^\x0b\xb5?\x85\xc2`\x14Xk\x9b?\x84\xf80\xb4\x94\x81\xb3?N\xf2\xa2(\xe9\xed\x83?\xb9\xd9\x1e\xa2\xba\xf6\xb3?h3\'\x1c\xa20\xc3\xbf\xfe\x87Q]\xc6\xf2\x99\xbf!RD\n\x87Z\x9d?I\xa4\x16@\x97h\x9f?\xa8X\xf4q=8\xb9?|\xc1\x13\xf7\xdc\x83\xa5?\xfd\xf2\xba\x7f,r\xb8?\xbf\x13\x84\xb9x\x08\x97\xbf\xaa\xdf\xc0\xbeRA\xbd?\t6+\xdc\xf7\x96\xb8\xbf\xbc@`\xa1ik\xb0?\xf9\xe8\x10q;8\xb2\xbf\xcbo\xb7\xd3\x10[\xb3\xbfG\x8f\x93\xe4\xb5"\x93?\xd2\xdd-\xca\x1e\x81\x92\xbf2\xa2\x96\xda4\x8a\xb2\xbfH\xa1qo\xaa\xed|\xbf\xd6\xec\xf3U\xed\xd4\xb9\xbf\x01KH:\xd8\x1d\x9b\xbf\xb1;\xd5\x10\x0f\xab\x9b\xbf\xc4\xc9\x16\x9d\x18\xed\xa3\xbf\xabn3\x0ch\x0b\xa3?\xa8\xb1\nLn\xbf\xb5\xbf\x1f\xbe\xb1\xe0\xff\x03\xa0?.\xa1\xca\xbb\xbf\x9d\xbb\xbf\xd4H0\x92Z\x93\xa2\xbf&\x9f\x9b\x89\x89\xce\xa4?\x87K49\xb4\xf7\xa3?\x18\xa3\xfb\x1bP\xf4\xab?\x04b\xe1\x13Z\xb4\x96\xbf\xb0\x1el\xe89\xff\xaf?\xe5\x81q\xedP\xe0\xb8\xbf\x11\xf4\x8014\x8e\xa9\xbf\x1bi\x16\x04\xb9\xd7\x98?\x94\x98q\xa5\tg\x8a?;\xf3\x93\xa7\x1bb\xb9\xbf\xf1{\x14\x8e\x12q/?M\xa7R\x0e\xcd6\x97\xbfV\xfb\xbc\xb9\xad\x90\x8d\xbf-N/\xa1[q\xa4?\x075%\xc7\xfd\x88\xad?z\xa7m>\x96\xee\xb5\xbfcpr\x1f\x7f\xfas?\x16\xfaDxv\x85\xba\xbfE\xd1\xea#\x7f\xc4\xa2\xbf\x8d\x80a-R\x16\xb8\xbf\xaf\xee\x8d\x93Sb\xb3\xbff\xa6u\x93\'\x87`\xbf\xe3\xb7\x112y\xdb\xb6\xbfc7\xff\xfd/\xab\xb6?\xbaD~\xfd\xf1\xc6\xac\xbfSo\x0bK\xe2\x14\xbe?\xcc \xce\\\xf1\x85\x97?\x9ah\xa3\x8b\x11\xa5\xaf?\x8c=p\xd8\xc2O\xb3?CX$\xee\xc7vu\xbf\x99|\xa22\xf0]\xb4?!\xa5X\xea\x08\x0c\xa5\xbf\xe7\xb3\xcf]\xc66\xb8?\xeb\x1e\t\xeb-\x9e\xa5\xbf\x07\xcfm\x85BN\x93?\xb0:2\xe8X\xc2\xac\xbf\x9c\x86S\x94C{\xb2\xbfJh@P\x11\x0c\xb6\xbf\xaf\xe6j \xce\xbf\xbfdZ}u\xb9\x90\xb4\xbf} \x94\xdcG\x00\xba\xbf\xca#\x86SJ\x8b\x9d\xbf[\x14e(\x1c\x90\xa8\xbf\x88\xacy\xb5c\xf0\xa9?\x81\xf6\xcd\xf0ef\x9a?\x02\xbd6\x14\xf1C\xb4?\xd1\xb8W\x01\xfcg\xbe?\x84\xf6\x0c\x1d:X\xb2?\xb05\x90`\x9d\xa6\xb9?\xda\xbf\xa8\xaa\xd0\xb3\xb8?\xf4%\xfd\xb6-\xd0\xb7?\xe7\x07\xb6x\x8f\xd5\xa5?\xbf\x89\x1e\x7fZp\x98?\xaf\xc0~\x1e\xef\xf1\x86\xbf\x9d\xa2\x81\xc2B\xfe\xaa\xbf\xcd\xd5\xfb\xc4\xf0\xfa\x8d\xbfI\x8e\xd1\xe3\xc4\xb6\xc0\xbf\xaaJ\x98-[5\x90?=\x85\xa4?@\xed5\xa7\x05\xce\x8e\xbf\x90Hs\xde\xc6\xce\x94?\x92\xd6\x1d\xe0\xb3\x89\x98\xbf"\xe12\xb9\xb6\t\xa9\xbf\xd0\xe7{\x00\xb6-\xa2\xbf]\xa0O\x8a0\xfc\xa2\xbf\xa4\xa1\x86\xca\xa5@\x94\xbf\x05u\xad\xa9\x88\x9d\x98\xbf\x86\xb0a\x7f\xbb\x89L?\x88|+[s}\xad\xbf7\xb8!\x03\xc8\x10\xae?\xe7J\xe0\x85\xbbQ\x98?6\\b@\xcdz\xae?l\xe6\xaa\xe2I\xf0\xa6?19\xf8G\xd4\x83\xa7?Pr\xb8{&\xcb\x8a?7\xb1\xfc:\xcf\x9e\xa2?:\x13\x18\x8f\x8c#\x90\xbf^\xbf#9X\x01\x97?\xbdMEf\x17h\xa3\xbf\xc5\x1b0\xaa\x0e\xfa\xa4?\x8d\x01\xd6\xb6A8\xcf?\x19\x05\xc3\xb3\xa9\xc2\xc0?\xb3\x86\xf9\t\xf5\xac\xb4\xbf9?t\xc7~P\xba\xbf`\xea\xc7\x0c\x8a\x9b\xc7\xbfka])\xcc{\xc5\xbf,3\xf9o\xaau\xc5\xbfz)\xea\x99\xfd\x13\xa3\xbf\x83\xc3\xa7\xca\x1dX\xc8\xbf\x8c\xd2\x99>\xe0G\xbe?\x91\x13/l\xf2\x9d\xb2\xbf\x83\x1f\x80^k\xa5\xc1?\x81x\x94\x05EX\xcd?\xdaU?\x17\x85\x8e\x9e\xbf\xc5\xc0\x7f\x82@\x92\x84?C\xe2[^\'\x03\xc1?\xd9,\'\x17\xe9}K?\xe9-\xcb\x15V\x8b\xc2?$\x9fo\x8bO\x81\x91?\xe1\x8b\xe8kj5\x86\xbf\xc6\xf4\xe1\xed\xae\xd2S\xbf\x03\xbb\x16\xa1\xd3\xb9\xc1\xbfX\x9d>\x04hNq?w\xb7{s\x8c"\xab\xbf\xff\x15\xf6\xd5\xf6Z\xc7?\x15\x1f\xd2\xb1\xac\xe6\xc3?\x10\xb4\x0b+\xcbFF\xbf\x7f\x8c\xbfaxn\xc4\xbfA\xbf/n\xe6\x1e_\xbf\x92\xb5\xfd\xb7\xc3\xb0\x9f\xbf\xb4hO\x1c\xd7\x8fr?\xe3\xc0\xe46OA\xbf?\x1f\x02\xd7\xd3j\xe1\xc5?\x91)\x83\x86!\xe1\x99\xbf\xae\xab\x8e\r\x9c`\xc5\xbf\xd3\xaf!\xd5+\x81\xc0?E\x91{\xfaa\x8b\xc4\xbf\xed\xed\x80C\xc3\xaf\x96\xbfQ+\x1f\x00\xca\x0b\xc7\xbf\x0f\xa4\x0f^\xf8\x94\xc2\xbf%\x8e\x99|\xe3s\xc6?\x83\t!\xed3U\xcf?\xa6s\x95\xf8b\xf5\x96?f\x12^\xa2vz\xbe?\x00\x01~6\x03\x85\xb4\xbf\x1a\x0c9-\xe6\xc4e?\xb8\xf4L1\x12M\xbc\xbf\xca\x11\xf0\x99\xa8\x10\xb6\xbf\x10\xe4\xcb\x85\x19\x98\xbb\xbfT\xae\x16\xc0\xfdr\xbe\xbf#\xf1\xd88\xb3\x81\xa1\xbf!y\xb5\xa89\x8d\xb2\xbf\xa6\x18/x7\xd0\xa7?\xd9\xa5\xc8qR\xf3\xa4?\x12\x06\xd6\xc5\x99\x8f\xb8?\x1d\x12\x17\xa3\x14\xb6\xc6??v\xc2\x14\\\x9d\xb0?Oi\x133\x9f/\xc4?e\xc78\xfd\x98\xf8\x99?\xfc&%3\x03\xf2\xa7?\xfbz\xcc\x8b`{\x98?{\x12\xc5\x9c\xfbp\xb6\xbf\xb2\xd2\x02c\xaa\xa1\x9a?\xe3eCN\x8fN\xc2\xbf\xfe`\xeeD<\xf9\xae?\x93\xdf0\xf0\x1c\xaa\xb2\xbf\xff~\xf4\x0bW#\xa8?\xc5\x116\xf7\x11\xba\xa0?\xe9=\xd7\xb9X\x95\x96\xbfy\xcbu\x04\xff\x98\xba?\x96Z\xdc\xb9%\xbf\xb5\xbf\xb5\x0b^\xc7S\xdf\xaf?3-\xff\x9d\xd9\xb8\xb8\xbfo\x90\x81I\xfe\xe2\x93\xbf\x86Dv\xfa}C\xc7\xbfOn\xf3\xb0*1\x9a?:.\x00\xd9\xfc$\xb2\xbf\x07}\x15\xec(\xee\xb1?\x8dn\x03S/Iy\xbfS\x89\xb2A\xb96\xa6?R\x97\xcc\x18~\xd5\x86?\xc7;\xa8\xfc\xd9S^\xbf\xde\xae\xe3\xcb\xb1\xac\x9d?T\x05\t\xa1\x0c\xd8\xa2\xbf<8SM{f\x99?\xe5\xd5yF\x94\xab\x95\xbf\xcd\xfc\x8f\xf3?\xfb`?8\xe1\xc7\'\x9e\x98\x9e?\x81\x1a\xf8i\x7f\x1d~?\xccaP\x97\x15\x13\xb8?\xcd\xcc~o\xac\x88\xb6?\xc2\xf2<\xeaf\t\xc0?\xcd)\x1fZ\xb4\xe2\xc5?+?D:\xf6\xe4\xb3?Z\tj\xbf\xb1\x9d\xc8?F\xd6\'<\xd8\xf5W\xbf\x05\x90\xd2\x93\x8f\xdf\xb2?\xe1\xf9\x03q2\x85\xa5?\n~\xb5\xe9\xb4\xc0\xa8\xbfzX\x7f]\xc9\xcb\xb8?\xbf\xc1\x1c\xcd\xae\xb9\xc5\xbf\xdb\x9f\xf2(q\xea\xc2?\xd8\x87\xf2Js$\xba?8\x03R\xa2]D\xb0?\xbaC\x11\x10O.\xa9?\\\xe7iD\xb5\x00\xbb?\x94\x01\xb3\x87\xb7\x04t?\xd4\xc2\x19\x9fF\x1e\xbc?1PZ\x11^\xe2\xa2?\xd2\x0b\xcd(\x90\xc2\xb6?.\xb7\xcb\x90\xf7\xf5\xa5?W\x8d\x80\xf4\xbc\x94\xae?\xfe4C\xae\x98g\x98?\x7f\x1e\xecu/!\xbd\xbf\x8e\xef\xdc\xf1\x0b\xe9\xb9\xbf\xb4J\x8d\xcd&\x9d\xbd\xbf\x82\xa3}\xe4\xd3(\xb6\xbf\xd0\x03\xbd3\x9c\xba\xa2\xbfO@\xadT\x98\xd9\xb7?\xd1n\xc9\xedZ|\xa1?\xbe\xf0~\nX?\xbc?J\xe3I\xaeU\x19\xa0\xbf\xca-p\x19\xcb\xa4\xbb?\x1c\xf9\x83\x1ct\xc9\xbe\xbf\x83\x1d\x98\xc5\x84\xd7\xa8?\x95\xda\xd5\x90 \x8f\xc7\xbf\x1e\x97\xe1\xd1\x87S\xc4\xbfx\x97\xe6v^|\xc5\xbfrg\\<\xbd]\xc5\xbfs\x9e\xd9y\xf6/\xb7\xbf[/o\xeb\x9a`\xb1\xbf\xea\xb4x\xab\xd4\x15\xa0\xbf\xca9F\xb9\xf6iw?\x92>\xad\xe4\xe1$\xaa\xbf@>\x94\x16\xc1J\xa2?ZG\xba\xc9FI\xc0\xbf\x1b\xc0\x85 \xe7J\xc1?#\xc3\xa4=\xa4\x8a\xbd\xbf\x7f\x81Fw|\xf7\x80?\xb5k\n\xfd!\x8a\xbb\xbfd\xe0\xb8c\xfa\xcd\xb4\xbff<\x84\xc4\xdc\xa8\x8d\xbfe\x9eA\xb1\xc0\x1a\xb6\xbf\xd0q\x08\xcc\xec\x8ez\xbfa\x9e\x9c\xc4nI\xbc\xbf5\xfd\xde\xf2j\xb3\xa2\xbfD^g\x17\xca\x17\xb0\xbf>\xe6\xea\\b\x04\x86\xbf\xe7\xaf\xb4\x18\xca\x08\x88?\x1b\xc6\xb5\x94\xff\xfc\xa4\xbf6\xa5Ct\xad\xb9\xaf\xbf~\xdeKQ\xe2\xea\x82\xbf\xfb\xd0U\x08\t\xe3\x98\xbf \x9a!:/]\x92?}\x19\xf3W\xe8\xc3J?\xf8G\xe2\x11\x14\xfb\xa3?\'S\xea\xec\xe4\x16\xa1?l\xa2\xf5\xd8\xc2(\xa3?t\xfc\xe2\xf98]\xb0?\x13\xd2\xbb#)5\xad\xbf\x80\x9c\xfb\xb1\x8a\x1c\xbb?\x00\x8f\xa91\xa8?\xbf\xbf\xfe\xf2\xafv0\x06\xad?\xde\x93\x0b\xa8B\xc7\x89?\xcc\xa3\x9f\xfd\xa7&\x9f?9Q\x10x\x9f\xb7\x89?\xe6\x89mA\xdbr\x96?\xad\xdf\xae\xdba}\x92\xbf03g\xd1\xe9\xfcp\x94\xbfSj\xe9k\x11\x05\xbb\xbf\xb8\xfca\x10o|\x86?\x86|\xa8\x19\x11\xa5\xb1\xbf\x9b\x96\xad\\0\xb1\x91?L\xa0o\xaa\xf3\x0f\xaf\xbf\xb9v\xa6\x87I\xad\xc1\xbfn\xf1\xf1\x02\x8d\xe8\x83\xbf\xa5j\x97\xcd\xe4k\xb5\xbf?\xe8b\xd5\xb7[\x95?\xa3\xd5p\x9e\x88\xef\x85\xbfts?\xc0]^\x80?\xe5\xed\xc0Z\x1f\x0f\xa2?Q\x1b\xfd\xfb\x9e\xbe\x90?\x10\x9e\x81[D\x85\xa5?\x1e\t;\x96\xdf\xc5w?\x9a#\xaf\r\xaey\xa9?\x186\xf7\x88<\x80\x90?\xc4\xb4\xb1\x19?C\x9d?\x93N\x9d_w\x81\xa6?P\x8f\r\xb4\xcb\xaa\x95\xbf&U\xde\x1bV\x08\xb0?\xeer/o\xf1S\xaa\xbf\xe0\xf2\xc1\xf2\x9c\xbe\xb2?\xd9\x824W\x87\xf8\xb3\xbf\xc5\xf3\x94W\xacEe?\x82.\x11\x16\x97%\x9e\xbf0\xb0dD\xbfU\xa7\xbfA\xcf[\x00\xe4\xee\xa1?\xc4S\x02\x06z\xa6\xb4\xbf\x90%\x9fV\x07O\xa1?\xde\xb4\x959\x8f\x1e\xb6\xbf\xcf\x11_\x9c\x05\xe3\xaa\xbf\xd6\xea\xd7T&\x03\xa9\xbfZ\x0b\xed|\x06\x03\xb3\xbf]KSh`\xc2\xaa?\xd8\xb8\xc7$\xc4\x89\x9e\xbf^\xbc\'\xff:\x8e\xc0?\x97b\xf0@F\xbd\x87?w\xcb\x0e\xf2\x19Eo\xbf\xcd\x97=\xa8\xf8\xcd\xc1\xbf\xd2)L\xa2&Y\xa6\xbfP.\x90b\x80p\xc0\xbfk\x91\xa6aH\x80\x9e\xbf\xca\xdbC4\xd3\x8b\xbb\xbf{j1\xe4\xd9\x85\xa2?T\x89-\x93\xb1\x80\xb8\xbf\x95\x1d\xe7\xd9y\x80\xb6?B\xacf\xf0\xb8\x1d\xb5\xbf\xaa\xda\x7f<\x88\x9f\xc6?\xbe\x14r\xd7V\x96\xae\xbf\xeb\xcd%\xc7C\x1c\xb3?g#\x9e1\xf5\x9d\xaf\xbf%]\x94&r\x01\x92\xbf\xf8\xd8h$S\xe2\xa2\xbf\xde\xb2p\xea\xa3\x93\xb7\xbf6\\5dR&\xa7?\xe2\xd9\xb70\xfc}\xc0\xbf\'\xa5L\x1dn\xca\xc5?\xc4\xd8q\'?\x91\xa4?a\xef\xbaF\xd7\x8b\xa1\xbf\x15\x93R\x85;:\x94\xbfm\xa2\xc1t\xc8\xf2\xaa\xbfD|o\xae\x03\xd2\xb2\xbf\rz\x00\x13~\xc0\xb2\xbfp"\xa5a\x89\x9b\xc0\xbf\xe0\xf4\x85\xae\x95\xba\xb6\xbf\xb0"\xd9\xde\xaf\x89\xb5?\x9b\xb4\xbe~\x95\x84\xc3?\xf1\xdd\xce\xc0g\xc0\x94?\xb7\xece>\xed,\xb0?\xcf9\x1d\xe0\xbc\xef\xa0\xbf\n\xa6\x97\xb0\xe5\x90\xad\xbf\xa1\x9f2\\\xc9]\x9f?\xe8\xe6\x1c\xd5\xebT\xc4\xbf\x8d\xc5\x98j\xdc\x1e\xbb?\xd6\xe1_K\x87t\xcd\xbf\xea\n\xa4\x1a)\x96\xa8\xbf\x19*|P\x1b\xbb\xc1?\x01VS\xcd\x7f!\xc6\xbf\x0b\x12\xb7\x02)x\xc6?\xb1:\xaa\x85\xad\xb8\xc1\xbf\xf8\xa9\\ULB\xd1?\xe9\x8c\x03\xf5g\x0f\xb3?\x91>H\x7f\x88\x93\xd0?\x8f\xfa\x98\x07\x02\xcf\xb5?8\xc3\x96\xeeax\xcd?\x15}\x00\xa6(\x06\xb1?\xbd\x90\xf9\x8dW\x97\xc1?\xe2\xd9\xedoc\x03\xbc?]\xd0\x9d\xcaH1\xb9\xbf\x82\x0cp\xeb\xd6\x7f\xb9\xbf\xb4aR2L\xe2\xb7\xbf\xbc\xd0,\x14\xc2\xda\xc0\xbf@\x85\xcc>\xcf6}\xbf!\xe7Q3<\xb3`?or\x8bve\xa4\x97?\x8a\xbf>\xbf2\xe2\xbb?B\xfd\xbfL\xcc\x94\xa4?M;T\x18\xa9#\xc1?%\xa2\xae\xbf\xac\x12\xa5\xbf\x08\xf6"I\x1c\xf4\x8c\xbfH\xfe\'D\'6\x99\xbf\x84cB\x8e\xf1\xd8\xa0\xbf! \xbe\x8c\xecC\xa0\xbf\xa7\x9a\x98\xdf\xbf\\\xb2\xbf5\x8c\xf7\xee\xcf)\x98\xbfaPUB\x0c\xab\xa6\xbf\xc9^\xd38/&{\xbf\xae\xf6\xcb\x89+\xad\xb0\xbf,\xb0\xa3]6\xc1\x9d?\xf53#\n\xe4\xad\x89\xbf\x96\xcaW\xbd\x05s\xb4?\x88\x99\t\x85\x9f\xaf\x8a?\xf8bi5(\xd8\xba?\xb3VJ\xbd\xbb|\x9c?\xaeU\xaaQ.\xdc\xb3?\xcc5V\xb3\xcbw\xa2?__s\x07\x02|\xa6?\xe3\x83M\xd0\xf6\xb8\xab\xbfm\xf85g\xc0ni?\x9beML\x90\x87\xbf\xbf(\x8c7\x94\xf2y\xa6?.\xb8c5SK\xc0\xbfJ]\x0c}|;\xa0?x\x0fMp\xdf%\xb3\xbf\xd1\xb0\x12\xd0\x01\xbc\x94\xbf\x91\xc55\x98\x8a\x03V?\xbd(\x08Y\xd0\x0e\xb5\xbf\xbb\x9b\xc60\x7f\xca\x9e?\xbd\xfaO\xbb\x9b\n\xbc\xbf\xfa\xa24]\xb34\x90?\xffG?\xc9+p\xc0?\xae\xbd\xc2\xe2\x06\xef\xc8?2\x87\xf2\xb8\x83\x9f\xab?\xab3>q\xd68\xa1\xbfIo8\x7f2\x14\xa3\xbf\xceH\xc3\x0f[O\xc1\xbf\\\xae\x90\xc0<$\xb2\xbf\x80\xa2\x11r\xa2i\xc7\xbf]M\x07w)"\xb8\xbf\x92\xe1S\x1c\xd1\x18\xca\xbf%\xc0\x84\x10\xfa\xf9\xa3?\xe4&U(!\xe0\xbd\xbf~\x83L^\xe1\x0f\xa6?[2z\x95\x10G\xc3\xbf\xc4\xf0\xbb\xf7|2\xab?\xba\xcbq\x0c\x08K\xc4\xbf\x9f\x00\x04\xd7@ \x9e?=\xe8\xbb\x88\x9f\xf7\xc2\xbf\x92%\xce\xcb\xc5Uj?^\x95\x96\x9c\xe3\xdf\xb6\xbf\x19JVvi\x06s\xbf;J?,\xc3\xb1\xa1\xbf\xc9\xcf\xe2\xc2\xbb\xa4j?<\xab\x9e\x1e]\x00\xaa\xbfj\x81w2N\xa8~?7\xed\xbc\xe0\xfa\xe5\xb1\xbfE0c\xa5\x94\xb9\x91?%\xbeWc\xfb7\xb6\xbf\xaaF\x0bO1\xb1D?B@\xd4;\x97\xc8\xc2\xbf\x82\x16\xc0;\xbcd\xa9?\xe94\xfe\xc4"\x04\xbc\xbf\x1e\x82\xc7\x81\r3\xb1?\xf6p\x03+\xbe\xc4\xab\xbf\x04\x94\x8a\x9c\xdc\x8e\xae?Q}9*\xd2\x1cl\xbf~\x07\xd6\x8dPa\xa1?h\xaf\x12<\xcf\x1c\xa9?4WTyZ\xa3\xb2\xbf\xbb\xf9M\x86\x83\xee\xa5?\x08e\x01\xc7\xc10\xb8\xbf,\xdb0\xef^\xfc\xb3?)\xf7\x91\xfb\xe1Y\xb4\xbf1\xd9\xbe\xf18\xeb\xbb?\x06\xeb_\x95\xcf\x1b\x94\xbf2\xed\xb7\xdbO\xbc\xc0?\x94\xfb\xa0\xab\xc2\xb5\x9c\xbf@B}\x18RO\xb9?v\xd8\xbd\x08h\xde\xa5\xbf\xba\xef\xf3\xf0\x99\xb5\xaf?0\x80\'\xd4\xd5\xd9\x91?:\xe2\xb7S\x91U\xb2?\x90\x12\'cA\x0f\x92\xbf\xf0\xce\x0fo\x95*\xc6?B\xad\xe6\xa5WU3\xbf\xb8\xe8\x97oYS\xcc?\xe2\xde\x19\x13\xab\xa7\x9f?b,.\xfbS\xdd\xcd?<"\xfe\xf9\r\x98\xaa?\xed\xfa\x11\xc4\x85\xb6\xca?&\xf1>3\xe3\xc4\xa4?H\x02\xfc\x84v\\\xc3?\x18_N\x08\xb0\xd9\x92\xbf\xddF\xd6$L\x18e\xbf\xaf\rX\xa2\x91y\x9d\xbf\x03+\xfc\x8f\xa8>\xa3?\x99/>\x9a\x948\x9f\xbf{E\xed\x13)(\xaf?\xcc\xa3\x16\x13%\x00\x9f\xbfO\x9dG\xef\x9ab\x91?\x0e\x03\x99\xef\xf1\x1f\x9f\xbfK\xb8\xb1:\x95\r\xa8\xbf\xfe\xff\x11\xce\xcc\xa9\x92\xbf|\n\x07Z\xcd_\xa1\xbf\xe98V\x9c\x00,\xa5?l\xb9\x19\x0e\r\xbd\x9d?_\xafQ\x9d\xfc\x1a\x98?c\x9b&\xba\x94\xb4\x9a\xbf\x86\xe5\xc0\x1cc\xed\x84?\xa4\xbf\xbe\xd0-\x0e\x9e\xbf\x1c\xd1\x18N\\\x9bX?UT\xfa6\xdc7\xa1?O\xdd&\xe9k\x0c|?5~\x01\x8d\xd6\x13\xb3?\xfa\xd4~\xde\xd5\xc1\x9a?\xc3\xc3f\x8f\xff\x9e\xa9?\x9a%m\xb2\x17\xdd\x8b\xbf\x90g/\xe8\x87\xc1\x8c\xbfV\xbe\xa2]\xa5\x83\xa0\xbf\x89\xbdHM\x91\xc2\xb0?\x95\x07\xaa\xf3\xc1T\xa2\xbf\xf8\x7f\x87\xe8\x87L\x94?j\x0e\xe1\x03i\xd1\x99\xbf\xe2\xad\xbf"\x0f\xa8\xc6\x84b\xc2\xbf .\xd6\x00\xf1\xd5\xa3\xbf\xf6\x18/\xa6e\x87\xb3\xbf\xb0\xae\x1f\xe8@\xef\xa5\xbf\xa4\xac\x1d\xea\xa0\x91\x87\xbf\x8c\xc7P>\xb8\xa7\xa1\xbf\r\x1etF[\x7f\xaf?)\x16\x10\x16.\x83z\xbf\x9a\xf8N\xc2m\xe6\xc2?\x98\xd8|\xe3\xa1\x1d\x93?\xd6\xb0\x96\xbc\xaa\x1d\xc1?\t\x82\xb8Z1\xbf\xa5?:\xf44^\x0f\xff\xb6?M\x9b\xbb\xf5\xf89\xab?\xd5\xfb\xd7\x16\x1f\xf8\x9b?\xdbw\xff\xe4\x85K\xa0?\xca<\xf6o)\x9f\xb9\xbfY\x1a\xfb\xce\x1f6\xac\xbf\xee\xcc-\xc5t\xf6\xc8\xbfYm\x9c\x89D\x80\xad?/\x05\xf5\x12h\xa9{?\xe2evO\xf6e`\xbfV\x18\x18,D\xe6\x97\xbf\xa4\xa7\xbe\xefm\xde\xae\xbf_[\xaf\x98\x97\xe0\xa6\xbf\x9e\xde59\xc2\x88\xbe\xbf\xb5-\xc6\xd7_\xc6\xb1\xbf\xe0O\xf6\x04@\xd7\xaf?\xb0\xbeF\xef\xa1\xd9\x9b\xbf\x1f\xd2I\xaaSx\xb4?\xd5j\xb8\xd0\x05\\\xa0\xbfQ\x89\xce\xc3l#\xad?\x04\xcf\xc3C\x98\x84\x9d\xbfE\x0e\x8e.\xba\xc8\xaf?\x9e|`8\x1cJ\xa8\xbf\xef\xaf\xdfD\x85}\xa3?\xef\x1bu\x9eI\x8a\xad\xbf\x83^G\x84\xffs\x8b\xbfg\x99`.\xc8\xb1\x9d\xbf\xfe\x82\xaf\xb6!\x16\xb7\xbfJ(\xc5\xd6\xe6\xa3V\xbfW@\xce\x8c(\xd0\xb4\xbf\xf3[\xc1\x05C\x90\xb1?2\x18\x15\xfa\x12%\x95?b\x1a\x82Y \xea\xbf?\x07\xac,\x14\xf4N\xac?%\x83M\xb6\xdcQ\xb0?W)\x1ft\x92F\xa8?\xc0\xc9d=\xb5,x\xbf\xdbKg\xe9\xb2G\xa2?\x17Ol\xe8\x84\xda\x96\xbfb\xec\xb0)\xf5\xb6\xae\xbf\x1dHT\xd8\xe0\xc3\x82?\xd5I"\xb7Q\xdc\xad\xbf\x829\x17]c|\xad?\xeb\x18H#[r\x97?s\xff\x8f\xed\x11t\xa3?6\xfa\x15\xa7\x7f\x19\xb2?\xc0\x1a\xc5>S\x9a\xad?\x90*\x0c]@$\xb2?\x8c?\x1e\x087\xcb\x8c?8q\x96\xc4x\x94\xc6?\xe5\xbc\x82\xb4\xcf\'\x9b?\x92\xa8\xb4[\x94%\xb5?\xbb5\x88CV:\xb1\xbfB\xb8\x14\xd3"S\xb6?\xd8\xd0\xcb\xac\x7fa\xb4\xbf\x00X \x9a\xd9P\xab?J\'B\xe3\t\x97\x9f\xbf8\x9e\x84E.\xf2\xac?\x7f\xdaf\x9b\xdb\xd3\x9f?\xce\xf8\xf8\xb6\x1a1\x95?ReKf\x8b\xb0\xa4?\xc2\x0f\xe5\xe9S\x86\xb1?h\x84\xc67\x87\xc7\xa4\xbf\xca0\x95\x08r3\xcb\xbf^\xc6"\xed\x82\x0f\xaf?\x9c\x00`c\nS\xcd\xbf\x84\xa8\x9e\xa9\xebS\xb3?\x1b\xbfH\xd2\xf5\x10\xca\xbf\x07>\x99\xd3\xa8\xbf\x93?g3\xc7\x02\x98\xa5\xc6\xbf\xfb\x9dP\xb9d\xc1k\xbfJn\xbc\xb6s\xe4\xb5\xbf\x02}v\xf8\xa6\xa2a\xbf\'\xbcY\xcd\xb6\x9e\xbe?\xcb+\x1d\xe86;\x83\xbf)\x8c\xdd\x88\x8f\xc8\xc7\xbf\xfd\x96#\xfc|u\xac\xbf\x8c?\x9a\xd1\xd5\x18\xca\xbfp\x99\xa4\xb8\xe3\xd2\x96\xbf\x0b\x18\x1b\xed\xeed\xcc\xbf.\xa9,\xc3\xce\xfb\xa0?\x05\xd0\xe05\x19\x11\xa1?w\xdf\xe8\xd1\x8c\x90\x81\xbf\xf1\x82\xbe\x80\x7f\xc5\xcd?2z\x00[\xf6\xcf\xb1?c\x05l\x03\xd7H\xd0?\xb2\xe1\xcbvE\xd9\x84?lq\x81\x82e\xe1\xd0?9\x8d\x03\x1b\xbe\xee\xa1\xbf\xb0\x0e\xb3A\xfa3\xc0\xbf\r\xd60\x80\xe0v\xbd?\xac\xda\xc3%\x14\x8e\xab\xbfS;\x11\xecn\x7f\xa3?\x13\x12\xb4.\xabd\xa7?H\xe8\x83\x1dLN\x9c\xbf\xa1\xb1\xe9\xf2\x82?\xbd?W<\xab&\xe7\x19\xa2\xbf^,cpb\xb2\xb4?4\xea\xfaT>=b?\x81\x89U?\x08\xc6\x88?\x95\xf3r\xae\xf0\xe3\x8b\xbfMEa\xd1\xdfU\x9f\xbf\xf0\x10\xe2]\x0e\xce\xa7\xbf\r\x18\xfa\x036Z\xb0\xbf\xb3h\xdb\xf3\xc0\xd7\xb4\xbf\xed\xc6\xbe,r\x02\x84\xbfR}t\xe9~=\x9a\xbf2l\xfdG\x8a\x1e\xb3?\xac|\x17\xa8pr\xb3?\\\xec\xec\xd9\xd1p\xba?\x06\xb2Y\xb4\x86\xfc\xb4?.A\x99k\xf9\xc4\xc9v\xed\x9e\xbf\xda\x88\nX\xd6\xec\x98?"\x01F\xc1\xeaT\x82\xbf\x9d#\x7f\x1d\x9f\xd1\xa8?\xb1\x03\x91\xb0\xddu\xa7\xbffM\x07d0\xe5\x8f?jd\xb9o\x92W\xc1\xbf\xb5q\x9b\xdf\xc2\x14\x9c?\x08\x0c\tS\t@\xae?v{\xdc\xaegjt?5L\xb1H\xd5\xeb\x82?\xef\xce\xc8\xa7T\xcf\xa1?\xf8\x7fD\xa8Bw\xa6\xbfBQ\x19\xfd\x15\xeb\xb1? \xbd\xd4\x1e,,\xbb\xbfk*\xad.\x88\xa2\xb8?K"i\xee\xa7\x97p\xbf\xe2k(\t\x86\x92\xb8\xbf\xc4o\xc950\x8d\xa8?\x81\xd7\xcd\x7f\xad*\xa1\xbf\x0f\n.\xa0gm\xaf?\xe8!\xd2\x9a\x83\xf6\xa0?\xa6\x1a\xf6\x1c\x81d\xb7?\xa5\x85\x8b_\x0b;\xbf?\xd4\x01\xc2^\x8f;\xb1?A\xdb\xe2l\xdas\xc7?\x7f\xba$a\x91\xef\x82?\x95\x7f\xf7\xe1\x02\x1e\xc0\xbfm\xab6\xbfT>\xb3\xbf~8V\xeb/\n\xba\xbf\x00\x94\x032c\x8a\xb5\xbf7\x94D\xe2\x91\xc1\x96\xbf}9\x06\nZ\x83\x82?\xd7M\xf7\xbc\xaft\xaa?\xb2\x85\x16\xad\x19\xa2\xa9?\'\x07R<\x87\x9b\x85\xbf\x86\xa7\x1b:\x14\xcc\xaf?\xe5e\xf5\xf7\xeb\xd7\xb9\xbf\xca\x1d\xad\xdf\'\xca\x92?r\xe2<<\xf3F\xc6\xbf\xb7}\xfa#5\x8a\xba\xbf\xb4\x02U\xcf\xf1\x1f\xbc\xbf\\\xb1\xf4\x05!\xb9\xb5\xbf/P\xdc5os\x95\xbf\x7f\xfbq\xa8\xd9\x89\x87?\xf4\xe42\xa1\xc3\xda\x8c?\xc55\x86\xa6\x18\x16\xaf?:pi\x03v\x9b\xa4\xbfb\xe7\xd9\xcb\x95\xbc\xa9?\xc4\xcf\x0c\x93\xf7\xea\xc0\xbf\x95\xa8\xael\x9c\xa7\xb1\xbf\xdc`&P\x1fm\xc3?\xa9\xdf\x89\xf8\xafw\xb1\xbf\xf2\x12\xcf\xe3Pk\xb3?\xe7\xd4\x16\xe5\r\x85\x97\xbf\xd8\xd3\xf6\xc7\x9aG\xa5?\x96\xa3z\x8cWe\x8d\xbf\xc5\x02\x9c\xd1\x17\x93\x9e\xbf\x10\xf82\xba\xee\xea\xa1?Cr\x16/D\xac\xb1\xbf\xef\xbdL\xb4\x97%\xb3?]\xd3)\xba\xc7\\\xa9?G\xf3fY\xeb\x8e\xc1?\xc9\x9c\xb6bL`\xcb?u\xcf\x88\xcb\xcc\n\xc1?\x02\x1a\xe3]\xe1\x0b5\xbf\xdf\x02=\xf9&\x89\x97?\x11\xe0\xe4]\xeb\xe6\xc5\xbf\xad\xf3f3\xcf\xcd\xb3\xbf?\x82(\xf3\xc0\n\xc0\xbf\x8a\x1e\\hk\xee\xc1\xbfg+\xb5@\t1\xb1\xbfm\xc6mF\xc5\'\xca\xbf\xb1Ni\xca\xc7\x82\x9d?\x0cp\xec(\x03+\xad\xbf\x14\xa8 \x92\xfcc\xc5?v\x82GM\xadO\xbe\xbfS\x00.N\xac\x9a\x7f?\xfb\xe1\xd3\xc9~\xb1\xb8\xbf\xed+\x1a\x93\xe5\x8f\xaf\xbf>\xebl\x01eL\x9e\xbfzx\x90\xcf`\x04\xbf\xbf\xcf\xe4v\xba\x98L\xba?\x02o\xc0l\xdb\x9e\xcf?\x14Fk"\x15\x14\xc4?\x9d\xces{\xd0\x00\xbf\xbf.V\x1f`\xc0\xab\xaf?\xf46>\xae\xb1\x11\xb0\xbf\x1c%\x00l u\x7f?\x99\x9d\x07\xc3\xd2_.\xbf\xc4\t\xc9]\xd3\xbc\xa8?\xae\xe8t\x11\x9e2\xd4?\xf1\xdbv\xf3\x84\x8e\xae\xbf\xe0\x80\xeb\xfd@\x07\xb5?)\x0c\x96\x96\xad\xa6\xb2\xbf\x0e\'\xdc\xa8}\xa9\xc1\xbf\xda\xbf.\x96\x9e\x0c\x93\xbf2\x96\x9d&\x1a(\xcf\xbfv\x98\xbeAoh\xa8?\xe2X\x00\xf1\x01Z\xc2\xbf[:H\xa3\xfa\xd5\xa4?\xdak\x96\x96\x87\xee\xa9?\x88\xb3g\x18\xaa\x0cr\xbf\x1d\xda\xe5\xd4\xb2z\xcb?\xdb\xba\x99\x7f\xbaI|\xbf\xa8\xc9\x86U\xf9\xed\xc3?c\xf44s3\x87\x8f\xbf\'\xe4u\xff\xe8\xc7\xb5\xbf\x94\x93-:\x9d\xbb\x98?\x856\xbc\x96M\xaf\xcd\xbf\x11OA\x98\xcc\xd0u?$\xf7\xcb\xd1\xcb\x98\xc4\xbfMN\xcct\xe9\xc5\x9f?8\xb7\xb54k4\xa7?\xe7+\xc0\xb3\x89y(\xbfa\xea#\xb4\x93\x96\xcb?T\x81\xa8M\xa2#\xb0\xbfy@N\xaa\x14\x87\xd0?l9\x07\x9c\xcf\xf2\xb5\xbf\x98\xfd\xff,\x18\xe9\xb8?\xe3\xd2d\xca\xf1\xca@\xbf\xb7\xdfV\x1bd\xb4\xc1\xbf\xba\x9encf\xbd\xc2?\xff\xf2\np\xbf\x1a\xd6\xbf\x803\xde8u\'\xc1?\xed\x8d\xf5\xea\x82\x05\xa5\xbf!\xa4\xb4\x93\xe6`\xb2\xbfiqE}\'\xad\xbe\xbfT\xe4<\x0f\x14H\xb8\xbf\xcf\xd4\x8e\xe9\xafV\xac\xbfz\x02\x99\xb6-\x08\x96?\xfa\xcc\xf8x+\xe8\x91?3Z\x19\x9d\x88\x9f\xc1?\xf3\xa9\xe1\x13\xaa\x1e\xa7?\x91\xb9x\xed&\xe8\xc1?0D\x07\x89\xec3\xb6?\x97\x81]\xb96\xc9\x81?\xcb\xae\xf1n\xaa\xb5\xa8?f\xc9@\xf5\x0c\xd7\xbd\xbf\xb0\xd7\xbeKk}\xa7?y\xcfa\xa6\x02\x8d\xc0\xbf\xf3\xeb\xf6UL\\\xad?\xf9\xea\xf9\x93Xk\x98\xbf\xe6\xf1\x8c`X\x9e\x9b\xbf\x9bbM\x12\xb4\x97\xbc?\x84\x11\xb7s\xf7|\x96?\xc3\xb1\xf3PH\xe5\xb1?\xd9x\xdfeU^\x8b?\x8a#G\x9a\xe1\x1a\x98?\x1e\xa6L\xa2\xcc\xa2\x84?7\xacF7\xff\x1a\x93\xbf\x81\xb8\xdbm\xa6\xcdu?\xe2\xb2\x1f.\x94\xbcJ?\x11\xfem\xc5\xe1"\xa6?\xd6\x17hST5\x92\xbfG\x1b\xde(r$\x89?\x85\xc8y\xbd\x05\x0e\x9f\xbf\xee\xa5\xf8\xe8Cv\x9e\xbf\x14\xeb\xac\x0853r\xbfC\xf3\xb5?g\xc2\xc3?\xdf)\x81\x92\xf7\r\x90\xbf\xae\xe8\xb1\x13\xd4\x9d\xae?Sr\x1c\x8f~>\x9c\xbfk\xe6\xc4x\xd8Y\x80\xbfD\xe7M]\xe8\x86\x7f\xbf\x98+ \x97Kp\x85\xbf\xe8-\xdd>\xc252?G\xfa\xe0g\xd6\xe3\x99?\x11\x12_\xb2\xff\xb7\xa9?\xca\xc6\x0f\x82T\xb9\xad?q\xf0&zU\xf9\xa1?\xfc\xd0d\xa6\x0e\xba\xa3?\x11\xdd\xe8\xcfq\xf0\xa6?jIsu\xee\x82n?\x88,\x1bN\x0c\x12\xa3?v\xd9q\xe2M\xf6\xa7\xbft5\xcf\\\xaaOu?\x03|\x13\xed\xae\xca\xb5\xbfr0\x86\xb0\x13\xad\x9b\xbf\xbf9H\x82\x1dT\xb7\xbfb\x89U\'\xb8\xb2\xb2\xbf\x14~\x8e\x84\xed\xeb\x8e?\xa1\xc2(3\x08\x08\x8e\xbfOA\xc7\xf0r\x18\xc5?\x01\x0f!\x83\xd3\xba\xa3\xbfV{\xe14{\xa2\xa2\xbf`{\x9b\x0e\x97S\x91\xbf\xc8k\xb2\x10\t=\xa2\xbf\x90\xd2{\xdc]\xefh\xbfD\x8cyP\x93\x0bK\xbf\xc5\x87=\x95\x9e7\x9a?\x86\x01v\xd1o\xe5\xb0?,\xb7:\xf5\xb7$\xa0?8\xa9\x96\xc5\xab7\x86\xbf\xdf\xf2u\x1d \xc9\x91?k\xb5\xe6\x0e\xcb\xaf\xa9\xbf\xf1\x06\xf3\xafS:{\xbfe\x8fI\xdd\x86\xf9\xab\xbf\x93\r\xae{\x81\x05\xa9\xbfcE\xb9}o\xc2\xaa\xbf\x8eA;\xcc\xc3\xfb\xa4\xbf\xfd\xca,\x91\x10l\x9b\xbf\t\xe4\x9d\x80\xbc]\xa1\xbfb\x1cv^ie\x98\xbf\xeej\xfcn\xcb\xcav?\xd3\x821\xe5\xb6W\x91\xbf\xdb(\xee\x0c.6\xa0?\xc4l\x83\x01f\xca\x93?K\xb0\xe5\x18\xeej\xa3?\x06\x05+\xb4\xb7s\xab?\xe2z%\xae\xa4\x022?,I\xbcK\xa0`\xab?i\xcd3{\xe6\x03\xa2\xbf\n\xd0,q\t]\x95\xbfk\xdc\xb2\x80\xe7\xd1\x9d\xbf\xc9z\x14\x08\xd9\xd2\xb5\xbfru\xc7\xfc\x0f\xe8\x8f?\x85H\xeaJ\xc6b\xba\xbf\xbb\x9a\xa8y\x9a\x1d\x91?\x05T\xf1\x87\x1e\xfa\xa4\xbfk\x0b]z \x1bv?\xfa\x13\xae\xff\x991\xa3?\x01r+\xcbw\xda\xa5\xbf\xcd\xc9\x13IT\x8a\xb2?x\xce|\x00n\n\xb7\xbf[\xc1\x88\x08\x12\xe8\xad?\x83\x9f\xb0x\xe4\x0e\xa0\xbf\xa6Qk\xd4?tB\xbfUO\xa4;\x9e\xa4\xa9?\x10H\xa6\x0ee\xb7\xad\xbfc\xfc\x8fC\xec\xe5\xc5?\x93\xb8\xdd5\xc0u\xb7\xbf\xf0%D\x85\x00\xd3\xce\xbfU\x0c@\xbd\xd1\xeb\xc8?\\\xc7\xc9\x85\xa1\x91\x8f?>\xe4\x1a\x13]\xf8\xc4?\xe7\'8\xc3c\xdc\xb9?\x88/o7U\x0c\x97\xbf\xean\x9a\x01Cf\xa5?B\xdd\x11"\xf7\x0e\xca\xbf\xb6\x97\xe7\x9b\x1a\xfb\xa7\xbf\xbd\xb7\xb0q\x15Q\xd5\xbf\xcb$\xe3\x1e\xfft\xa9?\xfd&h\xcf,2\xd6\xbf\xdcT\xe5\x846g\x96\xbf\x1a\xbb\xac\xa3:)\xcb\xbf`|\xb3\xea\n\xfc\xa3\xbf\x03\xda&\xdcPe\xa0\xbf\xcf\xe2_\xea[\xdd\x7f?:\x86\x15(\x1as\xc3?\xa5\x9a\x1c0\xefX\xbd?\x01\xbc\x1buf\x1e\xd2?\x0c\x8d\xe1\xe0\x04\xdf\xb8\xbf\x1bFaK"5\xb1\xbf\xc2\xa9\xf2w\xd2\xb8\xb1\xbf\xf0N|\x1ew/\x92\xbf*O\x1f\x90u\x1a\xa6\xbf\xa9)!V\x85\xe2\x9c?\xd7VWd&&\x96\xbfz17Z\xb7\xf5\xb2?\xe1\x1aGA\xd1h\x9c?\xa3w[\xca\x17=\xbd?9\xa9k\xb2\xbc\xe6\xa5?&\xd4R\xb3z\xcd\xbe?\xfa\xa4\xd0DM\x1a\xa4?fL\x8c\xf4\x90\x08\xbf?\x86\x84<-\xf93\xa2?\x89Vc\xe2T\xdb\xb8?\x14\xcd{\xab\xb1\xad\x8d?\xd41\x9b\xc9\x92d\xad?m/`j\x8d\x9e\xb1?\xed\x01|\xf5\x08+\xa0?\x9e\x95\xca\xcb\xa81\xb8?3v!p\x93 z?\x06\xd8\x00\xda\xfc\xd9\xaf?H\xc4\x88\xa63\x82\x90\xbf)\xb5\xdd\xca\x1a\xc3\x96\xbf.\xfe\x92\xcdA\xb6q?\xfdNF\'|\xc0o\xbfT\xafw\x00\xd3\xaaj?\x1d\x95\xc2]\x871\x95?\x1c\xdd\xa5\x17\x01\xe8\x9e?`\x0c\x96"\xcc*\xab\xbf+\xed\xff\xa8\\`\x7f?\x05\xf9\x9e\x18\xa5:y?"\x97\x91\x9a\x91\x8d\xa2?\xc5\x9be+1&\x8a?\x9b\xba\x08\xb7\xf2w\xa1?\xea\xd3\x01\x08\xd8B\x9c\xbf\xb5n\xe5\xe4\xf6\xa8\xb1?\x13\x86; \xa7\x9d\xaa\xbf\x9f \xa3\xbf7U\x95?vT3W\xaf\xd2\xac\xbfa\xf0\x85\xe0d\xa0\x91?i\xcc\x97\x9b\x86\xee\x9d?\x83\xd7\x08]K!|?\xb2\xecx{\xf6\xae\x96?\x14$\x1b\'\xe3\x8f\xa4\xbf~{\xdc$~5\xa6?K\xb0\xc7\xb8\x0c8\xa1\xbf \xb8\x04n#O\xa8?\x1b\x9b\x91>\x82\x0b\xa2?\xcc\xec0\xdcM\xda\xa2?\xd60%]\xa7\x97\xb5?\xe5\x90\x12\x82q\xbd\x92?\xdc\x18GC\x1b\xbbm?X\xb7\x96"\xb7\x83\xa7?xDp\xe8\x03\xa1\xc0\xbf]~#\xdc.\x0f\xb9\xbf\xd8\xce\x97n\xb6\x8c\x93\xbfu1\xbc\xd4@\x9a\xb2\xbf\x11\xef\xc3X\x15\xf6\xac?\x8c\xdc\xd5>i\xfe\xad\xbf\xc8\x8cD\xfdT\xe2`?i)\xc1\xb86\xf5\xb4\xbf\xd3A0\xfc\xf2\xc3\xae\xbfR:B\x9e\x8f\x7f\xba\xbfA\xb8\xb4\xc8u\xf2\xab\xbfq-\xf8[\xb9\x80\x90?\xa7\xa3D!e\xf6\x93\xbf\xfa\xfe\xd7\xe5\xab\x82\xb4\xbf\xcej3\x9a\x93\x7f\xa0\xbf1\xec\xdbjqK\xb1\xbf\x12\xbd\xacF\xb7\xae\x9f?\x11\x91x|Q\xbc\xb4\xbf\xbf/\r\xce\xbb\xf1\xb3?\xc8\xf1a\xdb\x16I\x9f?\xb6\x0b\xc5l*\x00\xc0\xbf?;8\xc1,\xd5\xbf?J\xa0\xcccN\x11\xb2?;*\x8a\xf2\x9cZ\xc3?\x86\x9a\xcf:\x08\x8b\x89?5l\x03&\x0cF\xc1?\xac\xcf\xab\xf3\x1f\xf3\xac\xbf-_\xe2\xc0\x97\xe8\xb1?J{\xda\x18t\xf8\xb6?\xf36\xe7\x12\xb6`k\xbf\x7f\x04\x8a!\x9a\xdd\x96?Y\xe0U\x98\x93\x8e\xa3\xbfwc\xe0;\x01@\x95\xbf\xfe\xcc?X\xe5j\xac\xbfD\xfbSY\x8d!\x8c?\xb9k\xcf\xc8\xf9\xf2\xa2\xbf\xf8\x10\xe0[\xfc\xd0\x83\xbfNyO\xfe\xf1\xd2\xa3?\nX\xadB}\xa6\xa1\xbf\xe8\x1aD\'w\xb7\xb5?\xb8\xe2\xb4[\x8c\xb3\x96\xbf>$HXV\x85\xa1\xbfF\xb4&1j\x8f\x9d?\xc1\x82\xcar\xf4&\xb9\xbf\xa85\xeb\xff\xc5d\x93?\xa4\x7f\xe4q\xe4\x16\xb2\xbf\xddmy\xd7\x0b\x11\x81\xbf\x92\xcf\xd1\xf7S\xc7\x9d?Z<\x81\x00@\x0ct\xbf\xd8\xb6\xe6]\xb7\xd6\xa1?\x1e?\x8eX\x9f\xb0\x8b\xbf\x14s\x13\xf5\xbf\x11\x9a?I\xc8\xde\xf4>\xe8\x8d\xbfn\xb6\x97\x8cZ\xfb~?&(!Q\x05|\x8f\xbf\xb7\x06\xb3"h\xaaz\xbf\xb9\xfe\x82B\xa0\xe4\x8c?p\x14"u&\xd9\xa0\xbf|\xab\xd6B\xeb\x9d\x86?\xac\xb8y]r\\\x9a\xbfb\xcb\x8f\x9d|-\x91\xbf.F\xd0r\xb7\xd2\xb6\xbf\xdc\xd5h>\xe3\x89\xc3\xbf\x0b"\x81H\xf0\xa6\xb1?\x87!\x03D\xf7U\xb1\xbfa\xb8B\xc1\x1e!\xb6?J\x17W\xfa\xd6F\xa2\xbf\xe2\xc2\x97w\xe2I\xa6?\xa5\x96\x12\xb6\xb7P\x91?\x8am\xdc\xceQ[\x8a?L\xaf1\x9f\xf1a\xb7?9t\x0cL\xcc^\xaa\xbf{\xa7"z\xf0\xc0\x81?\x8f\xd7\x7f\xe7\x8a\xfcu?\x14\xa20\x08J\x1f\xaf?+\x81#q$\x9f\xad?\x13\xd2(c\x9b\x1d\xb1?,J#QP\x1d\xae?\x00\xe5\x93\x18\xb9\xb09?#\xb8+QV\xe2\xae\xbf=\x93C\xed\xbfD\x86\xbf\xb6\x19Y\xd1\xcdu\xd3\xbf\x9c\x87O\xcb@\xd5\xa0\xbf\x8c\xee\x1d\xa2\xdcz\xd0\xbf\xc8Ncr\x96s\x95\xbf\xae?e\xa9\'\x03\xcb\xbf\xc0\xc8\xd9BR\xdd\x10?\xeddB\xbd\xcd\xb1\xc4\xbfm\x99d\x00\xcb\xe0\x9b?\xabOX\xb6w~\xd0?\xaeUh4\x95\x8a\xbb?\xceT\xfb\x80\xd2\xf2\xcd?\xfd\xed\xe2\xd5L\xaf\xb1?\xaf\xcdZ\x8d\x7f3\xc8?\xb9x<\x00\x11}\x92?x\xc9\xc4\x9e\xbfF\xcf?L\xa4\'\xd5,$\xa7\xbf\x9ak\xb4\x94?x\xd1?w`\xf7eV\xca\xb8\xbf\x05\xc3:\xf9\xadGy?\xe4\xea#H\x1dC\xa8\xbf\'D2X\x85\xe9\xc8?&\xdc|\xb2C\xda\x97?>\xad\xacy~\x01\xc1?\x15\xb9\x98\x1b=:\x93\xbf\xd9\xcc@\xe0\x91\x92\xc1\xbf;\x1ch\x8e\x94\xdb\xb1?Q\xd5V\xca<\x8f\xc3\xbf\xacI6\xb4\xa1\xc9\x9e?\x9c\xb4k8?:r\xd3\xc2\x80\xe4\xb3\xbf\xc8\xe4\xf0\x80\x0bp\x95?\x86*^\x15\xb4\xa4\xaf\xbfq\x19\xf3-\x0c\x13\x83\xbfC,B\xe9f\x95\xb4\xbf\x90\xeck\xff\xa1u\xa9\xbf\xa7U6\x02c\xee\xa9\xbf*\xae\xf1\\\xb2+\x97?\xa0\\P\xae\t\x96\x95\xbf\xa6\xb1s\xaf\xfa\x03\x94?n"\xf5k\x01r\x90\xbf\xca\x90\xacI\xc7\x15\x82?\xd5E\xff\x92p\x12\xb3?\xc7_/,\xa0\xa1\xa5\xbf\xfc\x18\xa7\xc1\xe2@\xb3?\x1f\xc9\x81{1\x14r\xbf\\\xf0\xd1\xbav\r\xb2?\xbc\xbbw\xaa]F\x96?\x91Y\x10\xe5s\x89v?\xf4\x03Qd,\xf1~?\xd4\x0c\xda\xf9\xb6\xb8t?!\xbc\x96m\\\x08\xa0?\x89v\x90\x8c\x9a\xc8i\xbfW\x08FB\x8d\x98\x9b?\xec\xaa\xa9\x12m\x94\x83\xbf6\xad\x95\xae\x1b.s\xbf\x1f\x1dr\xeb\xe8\xb0\x80\xbf}\xad`q\xcd\x9f\xaa\xbf\xb6\xa1)\xb8\xaeJ\x92\xbf\x82\xcat\xd6\xc8\xaa\xa5?9E`6g$\xa5\xbf\\\x8a\xa4\xd4\xddf\xab\xbf\x82\xdc\xbc\xe3t\xe5\xa6\xbf[8=\xa8C\xcfs\xbf}\xbf\x0c\xcc-8\xa7\xbf\xcc\x10,%\xc7"\x9b?\x10\x9d\xb5\xb5\x85\xec\xab\xbf\xfb\xc4\xe9\xe1\xb17\xc3?\xd1\xe7\x90\xbfFd\xa0\xbf\x85\x04\x97\x87\xf7\xf5\xa5?\xa9\xb9\xb9\xd5\x15\xf0\xab?I<^\xe0\xbbb\xae\xbf\xdc4U\xcf`.\xc0?\xc0\x87<\x85\x14Z\xb9\xbf*.\x1cg\x91 \x9e?X\xc2C\xcd\x99\xd2\xa0\xbf\xc3\xff\xca\x19\xab[\xb4\xbf\x8d\xd6\x8d\xd8\x01i\x9d?\xe1\xf3z\xadH\x9b\xbe\xbf\x84W\x0bK\xaa2q\xbfY#Z\xecm\x18\xa7\xbf\xd2\xe6g\x91\xd4\x85\xa3\xbf\xe1\xb8\x85\x1a\xd9p\xa4?\x12\x93\x1e\xb3\xfb\xb6\xa6?3n\xecW%\xa8\xb0?d\x06-\x17\x99N\xbb?f\x19\x81A\xe5Q\xa8?\x0eZ\xad{\x98\x84\xa8?\xa85p\xea\n3r\xbf#\xa2zS\xe7\x00\x9e\xbfhN\xf7\xa7\xc9(\x85\xbf8\xd9\xed\x04a\xc6\x99\xbf\x8aM\x01/\xc3\xac\x92?\x03\x85\tW\xfe\xaa\xa1?T\x18~\xae\x0c\x89\x8c?Ft\xd9\xf3Uz\xb4?\xa0\x19\xe1\xc3P\x10i?\x90x\x13\xf6\xbc\xce\x94?\xf2\x1a4\xd5\x0ea\x81?\x04>\x1c\xea\x03\x86\xb0\xbf\x89\x01vF\xb2\x1c\xb8?\x10\xc3\xd8\xb7\x8a\xc6\xa4?y6\xe2\x083D\xbe?\x0e\x92\xf28\x15M\x8a?9\xef\xf1\x0bA \xbd?6\xbc\x84\x8a\x1b[\x9d?n\x85N\x85D%\xa7?\xf6\xe3_d^\x9f\xa4?)\x19\xf3\x80\xb7\x92\x96\xbf\xf19D\xb6\xb2\xf7\xbb?\x8c\x01BD\x8a\xfc\xb8\xbf\x84\x1d\xb1%\xb3f\x98?\x82\x17H5\x13\xf3\xa0\xbf\xa9[\xa2\xa0\xfe\xa7\xb1?H\xae\xee\xd6\xb23\x95?p\x1a\xb6s\x0b\x9b\xac?\x95\x8d\xe9\x99\xf3\xe3\x9d\xbf4\xdb\x12C^i}\xbfo\x15\xe8x\xbf"\xc4\xbf\x02\x16\x87QTR\x94\xbf-\xda\xaf\xf5\x8d\x1a\x97?\x00\x06\x90\x19$\x0b\xa8\xbf\n\x8d\xbc\x92\x1d\xa5\xa9\xbf~jO\xab\xd3!\xab\xbf\xe9\xdf\xea\xde\xaeM\xbd\xbf*fqT\x00\xce\xae\xbf\x92\xf9o\xfe\x182\xc7\xbfN\x9fps[\xc4\xaf\xbf\xb7\x127\x0e\xc7\x9f\x94\xbf>\x8fL\'\xcbR\xb6\xbfw\x06[\x87^\x17\xa6?\xf4\xcc[9o\xc1\xb6\xbf\x80XB8\x96\x17\xb2?\xa76\x01\xa2\xc6\xff\xaf\xbf\xf4\xf6\xed\xc1\xb8d\xb2?V\\o\xf3\x1b\xf9\xa8\xbf\xd0:\xd3V\x19\xb3\xac?\xd1\x81\x84#\x9d\xfe\x9a\xbfs jx\xbc\xb9\xa2\xbf\xf8\x95\xb3\xef[\xe7\xb5\xbf\xf9<\xb5\x1dRg\xb2\xbftm\x8d\xb4\xe0]\xb2\xbfKa\x89\x9d\x16<\xb3\xbf`\xf0\x90\xaf\x1c\xeal\xbf\x93\xb7lzL\xd6\x92\xbf\x97S\xa8\x85o\xc2\x90?\n\x86I\x11\xfeL\x9f?Xp\xd92\x86\xc3m\xbf\xa8\xd1s\xc36\x8e\xa3?\xccWbW3#\xb1\xbf|\x18\x9e\x8b\xfdD\xa0?\xa1x\x9f\xd7\xa1\x99\xb7\xbfS`C\x88kJ\xa2\xbfJ\x13-\xb8R\xf6\xa3\xbft=\xbaC/;\x95\xbfhv\x9d*\xdc\xb5\xa5?Ob|a\x97\xcc\xa0?\x11\'\x89\x87}\xe5\xae?\x93\xdc%\xdb+G\xbb?\xe8Z.\xb5\xb3\xec\xa8?\x84Z\x04\x1e_.\xba?\xaa\x9e\x08\xdf\xe8h\x9d\xbf\x0b$1\xcc\xae\x8a\xcd\xbf\xbe\xf5\xefvf\x1d\xa8?\x80\x84\r3\xc4y\xae\xbf}\x17\xd8\xf5\xd8\xef\xa1\xbfo\x0f\x8aB\x90H\xad?\nJ\x13\x94D\xe7\xa0\xbf\x84#q=Jb\xb5?p-\xf4\xefdA\xb4?\xc4\xad\xed7\xd9\xea\xad?\xbcR\x0cz\x83\x96\xcc?\xda\xccv\xefvy\x8e?*\xef(AV\x8ar?\xfc\x150E\xdaj\xb0\xbfN\xad\x0ct<{\xd4\xbf6@9\x8a\xa1\xbd\xb0\xbf\xd5^\x17}\xcf\xb2\x9a\xbf\x84\xe3\x90\xeb\xefV\xad??+\xd8\xb81\xca\xc9?#\xc3\x99\xbanb\xbb?+I\xb4:UB\xac?Z\x05_,|\xc8\xae?|\xfe\xb3\xe5a\xa8\xb2\xbfU\xc7:\x08\x93e\xc0\xbf\xb4v\xd3\x98\x8ef\xb3\xbf\x99\xd9\xdfL>\xf5\xc6\xbfPX3?\x1d\x80\xa5?\x96m\x12\x83zQ\xa6?\x8d\xa4\xfdu"\x96\xa2\xbfnT\xbaE\x927\xb5?.UY\xac\xee(\xb3?_@F\xf3Q\xfd\xae?\xa8Us\xb2\xe3j\xca? e\xc1\xbf2X\xa9\xbf\x14E\xe1\xd5\xc2\xce\xd5\xbf\x108?\xbaQ\xe4\x82?,q\xf2$R\xd6\xc9?\xd0\xa4l$\xef\xb9\xae?\xderi\x1b\xa9\x0b\xb0?(\xca\x14\x97\x00x\x8c\xbf\x8a\x954q\xb5a\xac\xbf\xe8@\x91Y\xd5{\x8d\xbf\xcd\x90"\xf0\xa3\xc9\xa4\xbf\xba\x1b\r4\x1c\x89\x9a?\x0b\xd6p(\xf2=\x9a\xbf\xc8"\xb5\xf8s\x11\xa2?\xacv\x83\xd79\xbf\x81\xbfJ\xc70\xe8\x01A\x81\xbf\x80\xd1\x07\x8a?\x04\xa4?\xc9\xfa}\xa00)\x97\xbfM\xbby\x1d\xe5\xff\x9a?6\xbc\xe2\xa0\xa1\xbdt\xbf\xac\x01\x96\x85[\x8e\xa0\xbf\x7f\xb4!\xe8"\x1a\xb1?iL&@\x12\xfe\xb1\xbfEUM2\x13\x97\xc3?O\xa6\xe4\x86\x9f$\xb5\xbf\xa0\xd2\xf7\xcc~\x8f\xbe?\x80\'3\x851D\xa2\xbf\xe78\xab\x9c\xd7\x13\xb1\xbf\rf\x04\x89\xf1\x86\x97?u\x1b\xadm\x04\x16\xd0\xbf\x82z\xd2j\xf5\xcb\x82\xbf\xfc\x87j$\xd0a\xc9\xbf\xa8\xbc\xc9\xe2j\x87|\xbf\x91\x8b@ \x90f\xa3?\x10\xf6D\x88n\x8bC?}\x9bZK$\x80\xc7?Da\x97\\R\x81\x9a?\x91\xfdm\xbd\xc9\x8a\xc4?\x07\x99\xde\xff\x0c\x0f\x8d?(m6\xec\x10\x05t?\xfe\x1a\xea\xf8\x05\x1eo\xbfW\xea\xec8\xe6\xa1\xc7\xbf\xca.pXV\x98\xa1\xbf\x99\x14\x85\xe7bY\xad\xbf|\x00\xcc\xf7\xa5\xe2\xae?\xdf\xe4\xa0\xaf\x11\'\xba\xbf\x0e\x87q\xfd\xf2\x92\x9a?F\x12pS\xa8Q\xb2\xbf\x88AVs7E\x9a?q\xd5\xc0\xd8\x9a\xaf\x80?\xe4\x11\xbc\x16\x13\'\x92\xbf\xdeS\xf2-\x08]\xc2?\x80k\xe1\xcf\xcc\x1f\xc1\xbf\xce\xc6\xf4\xadc\xec\xb0?\xbe\x12\xba\x7f\xd6\x84\x98?\x9c\x95\xcc\x8f\x9a\x14\xa7\xbfLw\x02s"\xd6\x9a\xbf\xc0\xb4\xa2D\r\xe4\xb2\xbfT\xdc>\'\xa0\xa2\x95\xbf8/\xf7\xe5\x89\xf6\x92?\x84\x8f\xd5\xe4\x1c\x11\x9d\xbf\xa6\xf5!|/k\xd0?\xa8\xb5\xdc \xd6\x1f\xc9\xbf\x87\x17a\x98\xa2s\xc5\xbf,\x15\x8b\xda)\xe5\x99?\xc9\x7f\xc8\xd7Qd\xc0\xbfd\x17\xf1\xc0uQ\xa1?\xf41\x96\xd3\x0f\xe3\xb3\xbf\x02k\xa6\x92i\xe1\xa4?\xea\x01\xf4kD\xf7\x97\xbf\xc3\xbe\xeeO|\x83\xa7?/[\xbb#lT\xa8?\x8a\xaa\xba\xe3\xa9;\xb1?\xb8\xb0M-\xb3~\xa0?\xb0\xfb\xf5\xea3i\xac?[\xd6j\xb9\x06\xd7u?\xf3l\xe4\xb0E\xff\xa8?`TA\xfd{\x16n\xbf\xc9\x1a\x12\xbfl3\xac?\xfbE\x11I%Q\x9c\xbf:\xdd"\x8b\xb8\xfb\xa6?\xda\x1f\xde\xcf\xbf\xff\xab?K\xd0\xc2\xb5\xaa\xd8\xb4\xbf`t\x10a\x13>\x99\xbf\x1e3\xaaG@,\xb0\xbf\x88)\xe7,N\xeb\x90\xbf\xaeb!\xa2\xc7<\x8f\xbf\\\x17\x08\x06/\x8b\xad?,_\xa1shm\xaf?k8\x1f\xa4v\x92\xb3?\xcc!\x1f\x85\xba\xc4\x82?\xcb\xf5\xd6\x86\x1f\xe0\xb8?\rD\x1e\x7f\x9cQ\xaf\xbff-\xd7\xc0\x88u\x9b?sz\x12\xc4=\x16\xa7\xbf\xf46\xc4\x83\x9f\xf3\xac\xbf\xa7\xd3\x91\x01\xab\xfd\xa4?\xa6_\x18i\xbc\xe7\xaf\xbf *\xa3\xfe_\x9f\xb4?\xc0X@e\xa0Pg?(b\x12\xd7\x10\x1a\xb3?\x17\xc8*\x03s\xc4\xa8?\x0b#\xc0\x89\xd3\xe1\xb5?\x8c\xe7\xf0\xdd\x07L\xa8?\x07%\xc9G\xce\xc2\x95?\xfd\xe0\xdc\x80%\xa9\xb3\xbf\xd0\xa6\xb3\xc94\xc1\xd0?P\x91\xed\xfa\'\x9d\x8a?#\x0cqV\x82w\xb6?\xa9b\x0e-\xae\xb5\xa5?*\xfc\xa2\xe7S\x0c\xbb\xbf\xc8y\x8c\xab[\xa6\xb1?$[\xbd\x94\xe0\xec\xa6\xbfb-z/\x1b\x1e\xaa?\xc3\xcb\x18\xc2\xfb\x16\xa7?\xf0\xb5\x08\xd9s\xdb\x16\xc9\xbf\xfabwB\xa6\'\xa0\xbf\xc6\xe6\xbdI\xd5\xee\x89?^(1\xb7\xfeg\xa8\xbf\x07`\xce\xa1\x01H\xd3?\xf3i4\x13O\xa0\xa0?\xe7\'\x0c\xf1B\x1f\xc0\xbf\x14\x9c\r]\x8d\x9c?Q\xae\xab\xea\x96\xe9\x91\xbf\x18;W\xa1E\xeev?\xfc+\x1f\xc4\xb9\x80\xca?\xb0\xd5<\x817=z\xbf`\x8c\xb3r\x85M\xab\xbfQ\xd2\x01?\xa2b\xcd\xbf\x1c\xdb\x05\xeb?\xf0\x90\xbfr\x82\xd1\xa1\x836\xc1\xbf\x0c\xadgZ\xcf\x1a\x8e?4\xcb\xfa\xad\x8b\x81\xa1\xbf\xb0\xd4=K7\x96\x95\xbf\x8fI\xa0r\xe6c\xb1?\x14\x85\x89\xd9u<\xa6\xbfkJ\xce?_\x8b\xc3?\xd9\x16\x0eF \xc7\x91?tp\x83\x8a\xc4X\xb4\xbf%\x18H\xa0\x1d\xee\xac\xbf\xe0\x94\xf1M4,\x86?\xe4,\x02\x1e\x12\xafd\xbf\xb1S\x17?`K\xae?\xc2\x8d\x05?_\x05\xc0?\xca\xd2\xca\xb9\xed_\xb5?~A\xb6\x84\x8f\xd5\xa8?\xc4\x94\x0b\xe7]\xa7\xad?\xc6iT\xd3"\xc5\xa7?\xa3\xdd\xc2\x1fa\xa4\x9b\xbf\x90wi\x19\tD\xc2?p/\xdce\xaa\x02\xc3\xbfK\x01\x89\xf8?\xb7\x97\xbf\xa5L\xc5\xfe)\xc2\xb0\xbf\x8c\x8a":\x1ff\xb0\xbf#\x97\xa3@G\xab\xa1\xbf\x9bU/2\x15\xd8\x8b?\xb9e\xb9p\xe3\xaa\x95?\xf40\xf1NW1\xa2?\xd2\x11E\xfb\xa59\x8f?@\xf7\x97\xdc\x02\x96\xb3?\xc8\xa6\xb1\x17\xa8\xc0\xac\xbf$\x8bl\xba\x9e\xb5}\xbf\xdd\xacV`\xcc\xe6\xbe\xbf:\xaf\x05\x87l>\x95?\xd4m\xca\xb81\x1b\xbf?\x80r\x0e\xd4\xf4\xd1o\xbf2\xbe\xfb\xdb\xd8\x97\x9b?\xaa\nh?\xd6\x9c\x98?(h\xf9L\xb9U\xa8?\x82\x8f\xdd\x81\x93r\x93?@O+\x9czG\xb5?\xe8\xd6\x0c\xd4\xbcT\xae?\x0ba\'\xe4\t\'\xb1\xbf\x98q\xf8I+F\x87?D\x004\x90P\xecy?\x90O/H\xefe\xc0?\xea\xc9\xe7\x15\xbc%\xb7\xbfp\xca\xd7N\xab\x90i\xbfz\x82[\x8c\x94\x00\x9a?\x00\x19\xe9\xd5.\xc3j\xbflX;\x04\x9aGq?\x88\xab\xc4\x97\xdc\x0c\x84\xbf\xb0\x96\xb7\xee\xd2\xa9\x92\xbf\x00\xb9@O\x80\xbb\xbb?\x82~\xfe\xba\xf5\\\xa7?/Z\x9a\x9a\x9d\x10\x87\xbf\xa0\xa9\x8fh\x8f\xd1\x8e\xbf\xa0\x0e\x0fr\x93\x12\xb0\xbf\x80\xf1\x83\xcf\xcf\x8c}\xbf8\x12?\x93\x97\x1a\xa7\xbf\xb6\x84\xfb\xfe\x80\xf1\x9e?\xa1\xa4\x9e3O\xc4\xac\xbfr\xf2\xd4\x85\xc4r\xb7?\xf0\xcb\xb2H\xda\x11\x94?\xa4\xd6V\x80Y\x82\xb8\xbf\xfe]\xc2\x94S/\xae\xbf\x05\xbf\xb6\x15\xb3\x84\xb0?j\x01R\xaf9l\xa5\xbf\xd8\xafL\xaf\xb8\xf9\x84?\xee\xde\x1br\xbf\xab\xa3\xbf\xcc\xf6\xf5\xe1\x1ep\x9b\xbf\xc6#fS0\x1f\xa3?\xfa\xceS\xdb\xbaK\xb7\xbf+\xda\xd4\xfa\xfd\x86\x80\xbfI0\xe6\x004*\xb7\xbf\xa2\xcf\xcb"\xec\xd6\xa2\xbf6\x92\xe8\xae\x81r\x96\xbfN.\xb1-\xcbL\xa9\xbf\x13\x11\x80S|S\xb7?/Cw\xe2\x00\xd6\x9d\xbfN\xa0:\x7f\xed\xbb\xbc?\xae\x82\xbb\xd6\xb0\xb7\xa3?\x16\xaeumK\x16\x9e?`\xe5d\xe0:\xf7\xaf?\xc2\x99\x84{\xe9q\xae\xbf\x9d\xe6a\x94X\xc8\xad\xbf\x94n\xa6\xbb\x01\n\xa7\xbf\xa7\xc43w\n.\xb5\xbf6\x17X\xe0\r\x9d\x87\xbf~\r\x94\x81\x85\x92\xa5\xbf\x85\x98O_\xde\xbb\xa3?(X\xd9\xe7\x17\xf4\xb1?)q\xab\x82\x06>\xb1?\x89\xdd\x17El\x9a\xad?R\x84\xc8g\xcf\x0ba?n\xc04Y\xe5\\\x98\xbf\x87\x10#\xb0\x18\t\xb9\xbf\xae\xcd\xd4I\xa2\xf2\xaa\xbf\x0f(z\xafx\x95\xb7\xbfY-\xb5\xd9\x98N\xa1\xbf\x8f\x95(\xacZ\x98\x9d?HM\xc1\n\x86\xc4{\xbfnp).\x8e\x07\xb8?\xba\xa1-tv\x85\xa2?\xf4\xe1\xb3\xf7\xb7X\xbf?v\xd6`\xd0\xb5\xb2\xcc?\x1e\xedAd\xf2\x1c\xd5?i\xc7jG)\x9e\xb5\xbf\x18\xf7\xcd\xfaaNt\xbfs\xd5\xb4\xcfk[\xc8\xbf\xeb\x08\xd6`\xfc#\x95\xbfq\xdc\x8e\xbd\xc1\x17\x94?p\xdb\xc5\xeb\x1d\x18\x8d\xbf=\xa3}wI\xb7\xd7?\x8c\xe3^M5\xe8\xc3\xbfi\r\x80\xd2\xa3\x97\xd3?M2\x99^2/\xc5?\x97 5\xa6AJ\xbc\xbf\x18\x01\xe7f[\xa4\x97?{\xbc\x11\x02\x19\x81\xd4\xbfg\x920\x0f\xc4\xa7\xb1?\xf1\xf9M\x17\xd7b\xc9\xbf\x1e\xd7\x8b}\x16\x8f\xb5?6\x1e\xa7\xc2\xd4q\xc3?\xef\xfc)\xd0\xe7\x9c\xc4\xbf\xaf\xd6\x04\xb4\xedY\x83\xbf\xd8\x81\xa0\xff0\x02\x8b\xbf4C\x84\xa3|A\xa4\xbf\x18\x0b\x86\xbc%L\x86\xbfX\x15\xdf\xd1\xe1\xb8\xb3\xbf\xad\xc58\x1d\x1cMx\xbf>\xaa5\x96F\xf8\xbb\xbf\xe0,\xb2\xa8g\xbdl?\xa8\xe6\xf1\x17\xbc\xcf\x95?\xdc\r\xa1Xb\xcc\x8e\xbf@\x87\xf8@\x00\xa4\xac?]\xce\x99"\x89c\x94\xbf\xbe1D\xf8>\xe2\xad?F\x9eu\xdbN\xb2\x8c\xbf(\xa7\x08-b\xf1\xb4?\x84\xc7\x0b\xfc\xdc\x84\x8a\xbfe\x14\xdbr\x10f\xb5?\xb7[y\xe9\xe4\xa3\x8d\xbfv\xe3\x19\x9c\xd1\x1f\xa0\xbf\xa4\x15\xb5\xb5\xb5(\x82?\x9c\xeaw\x88V\xc9\x91\xbf[\x7f\xff\x94\xd2=\xa6\xbfD\xc4(<\xe1\x9fy\xbf\xdf\xfb\xf0\xea\xcf\xd4\xb6\xbf\xd55\xb6\xc3\x8c\xc0\xa0\xbf\xd6r\'\xcc2\x94\xad\xbf\x84\xc1\xc7\x10\x07\x9c\xab\xbf\xee\xe0\xe07e:\xb1\xbf~o\x8ce\x89\xcc\xac\xbfu\xc7\xa9\xa6*\x9d\x9b\xbf\xe8JA\xf7\xc7ka\xbf{n\x91\x8c[Y\x8f\xbfl\xcb\xe0z\xc7\xa6\x9d?\xd0$w\xe4o`e?\xea\x83\x82\xda\x14\x0e\xa0?71\xc8N\t\x08\x97\xbf))t5uM\xa0?\x16Im\xc0\xf5\xb7\xa6\xbf\xf6\x8b\xea\xb3-A\x91?\xfaw?d>\x86\xa0\xbf$;\x06\xe0\xd7~\x80?\x8b\xc2\xf3\x04\xd8\x10\x91\xbf(\x1c\xf5\xaa\xbc\x1c\x86\xbf\x1b\x9a\xf5(\x03\x9d\xbc\xbf\x18{\x98\xf9<\xa0\xa7\xbf\x88\xc3g\xa4\xb0\x1f\x8f?Gf\xa2\xab\n\x12\x9f\xbf\xc0{P"\xdbB\xae?\xabD#\x00\x88\xc2\x97\xbf\xb6\xbc\x95\xdf\x9f\xf3\xa9?\xbfJR\xbc\x03\xb0\x8f\xbf\xe2\x9a\x06\xbfM\x0c\xa8?\xdc\xde,B\x93y\x83?\x00\\ \x98\xe5\xd9\x0b?\xbd\x9e\xea\x10#\xb0\xba?\x91\xc8\xac~\xbe#\xb0\xbfZ\xaa\x16\xbb\xca\xab\x9a?\x98\t\xa7p)\xcd\x93\xbf\xe0B\x82\x05\xd2\xf8\\?\xc9\xd47\xd52\x97\xa2?\xf3\x1b\x94\x16\x12\x9a\x87\xbfN\xadKK\x08y\x9e?!I8\xde\xf9g\x91\xbf\x1b\x0cz\x00I;\x9d?L\xb5\xe1\x93\xec\xcf\x98\xbf\xe0\x12\xc3^q\xceu\xbf\x1f\x91\xf4zZ\xd0\x97\xbf\x04=\xd8\xeb\xf2\x85\xc4\xbf\x16\xdeZp\x9f\xa1\x92\xbf\xbc\xa8`\xa0\xe2\x9c\xac?\xb0\xc2\xc8\xdb\x16\x8b\x95\xbfq\x95\xeb\xcd\x91J\xa9?\xa4\xa50H\xbe\x03l\xbfH!\xcb\x06S\x1f\xa6?Ii\xa2\xecJ5\xb3?#\x03O_\xc0P\xa9\xbf\xf4\x92Vm\x16\xbf\x7f?\x82E\xa7\x90\x0f5\xa0?\xc8W\xa1\xc6\x97Wj\xbf\xcc\x81\x1e\xc3J6\xa2?\xc9\xad\xa3h\xb6\xeaz\xbfg2j\x875\x9a\xa5?\x9a\xc7\xa9\x1fH\xcc\xa9?\xf2\x8c\x80\xa3\x97z\xaa\xbfN\xc0\t\xc5\x07\xd0\x9c\xbf\xff7\x8f.k\xe8\xa0\xbf\x01y\xde\xd9[\xf5\xa8\xbf\xff\x9cM\xf45eu?-\x00\xe7\xa3\x04O\xa0\xbf\x9b\x046\xbe\xc9\xfe\x9b?\x14\x0b\xc7\xebH\xc5\x95?\xfb]\xe4\x93\xe5]V?\xf7\xd2\xa5\x15\xc7\xa8\xb7?7P\xc3g7n\xa0\xbf\x0c\x9d\x06\xf408\xb2?\xb6*n]\xcd\xec\x90?\xcc\xc6\xd1\xd5\x14\n\xc4\xbf\r\xff_\xb2\x95\x04\xa9?\t\xfc1$_k\xcd\xbf"Y@k\x0c\x80\x82?$\x17j\x8b\x95\xa0\xb3\xbf\xde\r\xf6\x01_\x90\x87\xbf\xb0\xda\xfa:S\x91\xd2?Y\xc0W\xef\xc1\x00\xa8?\xb7\x8c\xf4u\xa9\x80\xd2?*\xd7{\x84\x94\x12\x9a?\xab\x89\'u\x86\xca\xa6?\xe4_\xf4\xe9\x1f\xaf\x92\xbfB\xfbl`Y\xce\xcc\xbf4H\xf0%\xcb\xdd\xb5\xbfl\xec\xbdLb\xbe\xcd\xbf\x0c\xad\r\xcc*\x8d\xac\xbf\xce\xd0^L\xbcn\xa2\xbf*\xef+_\xe2\x13\xa8?\x14\x8f\x12\x12\x99!\xcd?\xc1\r\x13@\x1b\x81\xc2?\xe5\xb6d\xc9\x19P\x90?\xbb\xfd4\xfe|\xb3\xaf?\xa4\xc4\x0e\xe7{\xcd\xb5\xbf\x06\xb2|o0\xed\xa7\xbfF4\xd0jQ\x8d\xc2\xbf\x8a\xb14\x95\x99W\xa8\xbf\xd5\xf3\x92\xf3dI\xbf\xbfPa\xc3\xf3K\xf4\x96\xbf\x04\x83R+jx\xb3\xbf\xb6\xd7\x9b\x0fO]\xa3?\x1e"\xd9\xfa\xf1^\xbd?`?\x87\x8a\xa8T\x86?3M\xaa\xba&\xc3\xbc?P\x8b\xdb"\xf9\x13z\xbf\xfa\x02\xf4\xbe\xaa\xc5\xbd? \x00\xa1\xf5Cq\x93\xbfj\x96W\xc6\x8b\x9f\xb2?\x12\xa9\xa2O;\x1a\xa8\xbf\x1a\xe6\xad\xd6\x1d\x05\x88?,q\x0e\\bu\xa7\xbf\xf8\xbc \xe5$\xff\xa9?\x91\x0f\x1a\x8c\xb2-\xa3?\xce\xe3\\\x17\xdb\xd2\x8e?n\xc2\xce\xf3\x9fA\xa4?\x9a\xcb}\x1b\xbe\xbc\x9e\xbf\xe3&\xabe\x08=\xaa?\x14\xa6\x17\xfd\xfa\xf5\xb4\xbf\xb1\xfc\x00\x15f\x18\xb0?(N\x8d\x8e\xf9L{\xbfR*\\\x9d\x002\x9e\xbfz\xe3F\xac\xcb2k?\x8e\x02\xa4C\x07Ly?\xe0\x14\x95C\x1b$\x88?\xa8\x1f.I{6\xa3?\xa9)\x8f\xc3\xbbL\x95\xbfH\xe1\xc4\x9a\xfa\x98\xb3?m\x85\xcf\x82\xd8|\xb5\xbfF\x96\x01d5~\xb6?\xa3\xdf\xc71\n\x8c\xa0?d\xf0\xc5\x99\x1aN\x7f\xbf\x80\xe8\xc9d\xdclp?*\xd35~\x15V\x8e\xbf0\x08\xc6\xab\xc8\xb6\x84\xbf\xc0\x9a<\x90d\xd5:\xbf\xd0\xd6LO\x8a\xeem?\xd8n\x8f\xff)\xdfK?\x1ft\xf8\x18\xba\x02\xab?@\xef9L+)U?7\x82\xa3!E%\xac?\x01u^?\xc6\x8a\xaax)\x9e\x8d\xbf\xa4\xfbu\x17\x81CY?\xf8\xc0j\xd0\xed\xbb\x95\xbf\xf6h\x02\xa7\xeds\xc4?\xad\xb7\xeeMb"\xa2?\x9b\xb2\xe0\x19\xbah\x90\xbf\xc6\xf8\xefX\x98W\xb2?\xa4V\xf3s\xf5,\xc0\xbf\x8a\xf0,\x0c\x87\x15\xb1?\xdf\xf4\x0c\x18\xd0\xc2\xb3\xbf\xea@0.\xc1u\x9a?\x9a!\xc7\\x\xc2\xa5\xbfh\xf2Fj3\xb7\xb7\xbf\xc6\xff\x16\xdbE\x81\x93\xbf&\xd1\x86K\xde\xbc\xd2\xbf\xe98Tf\x81\x9e\xa3\xbf\x869\xb9\x99W\x96\xc5\xbf\xfc\xd5la+\x95\xa0?B\\\xb6$\xd1K\xa0?\x89!\xe0Q[K\x9a?\x03\nU\xa1\xac\xf4\xb9?\xa3\t\xa5}.\x15\x95\xbfZ\xa9k\r\x97\x7f\xbe?\x82G\xc7\x16\xfe\xc5\xb0\xbfP\xbe\xedR\xe7;\xb6?4\x12\x88\xa3Z-\xa3?lI\x15\xb6\xe8\x8f\x8e?\xfb\x10\xc5z!\x18\xc2?\xd4\xafE^\xdd\xb8\xc0?\xa2A\x95\xbam\x9f\xba\xbf:\x7fr\xa1\x98\xff\xbd?\xb7R\xca\xb8\x0f\xb0\xae\xbfDC>\x86-H\xb3?j\xa8T\xf4x#\xa0\xbf`\x87\n\xf9\xca\xa8\xcc\xbf\xd0\xb3\xf26\xaah\x8f\xbf\x98x\x93\xa8\x91\xd6\xa2\xbf\x88\xe2(dN\xeej\xbf\xdc\x84\x16X\xef\x10\x98?(\x82\xd1\xc1\xa5\x9b\xa2\xbf\xd2\xdc\x0c\x8d\xe1\xe5\xa0?\xe0\xbb\\o\xac@\xb3\xbf\xc7\xf4b\x8b\x06n\xd1?^(\xbc\xe2\xb7q\xc2\xbf\xa7\xed\x83lm\x90\x91\xbf\xe2\xf00\xeb\xb2\xcf\xb0\xbf8l\x1d\xb2\x0f?\xd0\xbfC@\xe0o6\x0e\xa0?\xac\xc5d\xa7\x1dq\xd0\xbfF=\xb90\x13+\xbe?\xdb\xee\x8a?v4\x9e\xbf\x06\xb1\xb1\x91)?\xad??\xc0\xdcB\xfap\xd0?\x947\x8e@\x7f\x19x?\xd8\xeb=\xf4\xaf%\xda?A\xdc\xca\xb1Vk\xac\xbf\xb45\xafUrm\xb6?\xb8\x99u\xd2\xb1\xcc\x9f\xbf\xf2\xc3p\xf0i\xea\xc4\xbf\xa3@\xea\x0e\x18\xd3\xb5\xbfD\xd2J\xd5\xf7\xd8\xcc\xbfjUwz\x13u\xbb\xbf\xa3\xb8\xbf\xf6\xb7\xa9\xb6\xbf\x1e\x06vN`i\x9a\xbf\xa0\x97\xdeu\x06\xfba\xbfrF[\xac;\x07\xb0?d-;\r\x01\x9e\xb4?|\xcc\x14 \x91\x8c\xb1?\xb0\x81\xa6\x19F"\xab?\x90\xd2\xa4)\x15\xc9\x9b?\xc0:\xef\x92=(\x80?\x08\xf6\x93\xc5P\x06\x98\xbf\xd0L\xa6?\xc7\x02\xa5\xbf\xdc\xdfc\xb2\x0e\xf0\xa0\xbf\xb2@\xa2\xcc\xde\xec\x9f\xbfb\xe9RZ\x81/\xa3\xbf\x00\xaf\xf8!\xaf\xdeE\xbfX\xae!!\xb5\'\xb2?\xa3TK\xaf?<\xbd?\xf4A8\xbd\xe2s\xb4?\x0b\xa0\xbd\x8d\xc5O\xb8?r\x95\x12$&f\x9e?h\xdc\xbe"\x7f\xf0\x81?0X\xf4\xd1\xcdl\x87?\xcc\xe2\xb85cK\xb4\xbf\xd4\x8d`Q\xb1/\xa8?&-\xf2W\xeck\xbb\xbf2\xde\xff\n\xa3\xcc\xb0\xbf\x98\x05_\x04\xe1\xa8\xa9\xbf0\xde8T\xe0S\x84?PY\x04f\xa8\x91\x8b?\x84T\x98\xda\xa2\x9f\x9f?h\x01\xf3\xa4,9\x8e?xJx\xc5\xe7\xd0\x9d?}!\xbc\x9aL\xd1\xb7\xbfa\xf6\x99 \xd0\x0e\xc0?$(9\xc2O\x8e\xc4?\r\xd8\xab.R\x99\xaf\xbfe\x92D\xa2\xa5\x01\xbc?\x0cy^=\xce\xa0\xaa\xbf\xefbw\xa9Yj\xae?\xc0\x19\x99Sq\xde\xa5\xbf\x00d\x8c\xbb\x9d\xf6]\xbfw`\xa6j\xf2\x12\xa1\xbf\xd3\xe1\x8ao\x936\xb1\xbf\xc4L\xcc\x016\x84\x85\xbf>\xa3\x1e4\xe5F\xa1\xbfR4\xd4\xc9\xfc\xda\x9e\xbf\x98T\x8cU:\xba\xa5\xbf.\x8d\\\xb2\x7f\x1d\x89\xbf`\x9bN\x99u~\xa4\xbf&\xf0C\xc2\x13\x9f\x91?.\\\xa6 `\xd1\xa2\xbf\x00\x10m\xc5W1\xa5?\xd0\xbb\xcdm3\xee\x9b\xbf}"dz\xc1\xe2\xa2\xbf\xd8\xfc-\xe4\x80\x91\x9c\xbfj\xd3\xcd\xb1\x91\x14\xa6\xbfh\xbb\x07EI\xe4\xaa\xbf\x12$\x92\xbd\xc2\x91\x8d\xbf\xf3\xdd\x08\x1f\x8f\xc2\xae\xbf\x83\x15\xfe\xc9\xafa\x91?\xe0\x8e\x15\xea\x87\xb1\x98\xbfK!\xee\x13\xe39\x82\xbf($vv\xd9\xe1\x85\xbf\x05J\xc3\xe2\xd7\xba\xa4\xbf\xca\xa0;\xab\xff9\x93\xbf\xafv\x9d\xb0)@\xaf\xbfL\xf0\xe1fh\xb7\x85\xbfB8\xcfr\x9dA\xa6\xbf&*\x9c\xe8o^\x86?\xe1\xb5\xbc|\xf2\xe7\x91\xbfN\xc1\x11B(i\x9d?9\x04\xf2?\x12\x84\x85\xbf\xd4\x97\x00$\xd7\x89\xab?jo\xc3\xe9-\xe3\x99\xbf\x1b\xe47\xdb((\xa0?\xcd\xcfa\x9eh"\xb0\xbf\xe87\xfe\x18\x8f\x12\xc6\xbfP\x1f\x11\xa5^2\xa0?\x08,\'k\x8ek\xb5\xbf\xb6\xaa\xf9\x95i\xb4\xb1?\x08\xfd\x00\x8a\t\x1b\x97\xbf\xae\xc6\xdd\n\xec\xd3\xbf?0L\x1b2\xc6\x9bw?H\x1e\xa4\xa31#\xb4?jw\xf0Ad\xa5\x9d?\x0b\xf7>\'p\xb8\xb4?0\x03f\x9c\xa3\x95\xa7?NT\x9b\x11\x9b\xbd\xb3?\x8c\x9e\xa96\xc1%\xa2?X\xd7\xdb8-j\x97\xbf\xa7\r\x03\x91\xae\x1d\xb6?\xc0\xcb^\xf6\x13\xc7p\xbf\xe0v\xbb\xebf\xac\xbd?Xt\x102LR\xaf\xbf\x14\x07\xe1 \x1b\x13\xb3?\x9c\xf6\xd7\x9c9\xbe\xb2\xbf\x88\xff\xc8\x86\x01I\x9a?d\x97"K\x8f\xa2\xb0\xbfz\x813\xe7\xb5\xbf\xbe\xbf\xcd\xb6\x91U\xd4\xd0\xae\xbf70\x00\xa3\x02\r\xc0\xbf\xd4Q\xf5N\xf5\x94\xa0?\xdbA\xa82G\x06\xa4?\xe7\x97s\n\xe9C\xb5?i\xcd\xd1F\t\xdd\xb0?\x19\xbc\x89\x94\x03\xe4\xa8?\x1d\x92X!\x0eb\xba?Db\n\xb7\x10\xf6\xa4?4\xc2\xf0\xdb\x9fD\xa5?\x9c^\xe4X\xbf\xf4t?\xa0p\x1f:Wxd\xbftM\x0f\xb2-\xd2\x83\xbf\xa5I\xcdDw\x0b\xa3\xbfZ\xbb\xcc\xac[\x12d\xbfL<\xbf\xe7\x82\x14\xb4\xbf\x82\xa2}|\xb0O\x9c?\xa8\xf1L\xee\xf9\x1f\x88?\x8a\x99[\xed\x06\xee\xbb?t\xf1=&\xe0\xad\xb0\xbf.\xbd{\x05\xc5\x19\x8d?>\x91\'\xdc[\x92f\xbf\nT\x92\xf6\xe5+\xb2\xbf\xba0\xcd\xf7\xf1\x95\xa4?\x0e\xebW\xbeC\x01\xa0\xbf!\xee\xab\xf9\x1f-\x82?\xac\xaa\xd3\xad\xdbb\x90?eW\xd5}\xd3\xa4\x9d?\x8cwH\xe4g\xa6\x91\xbf\xb0V\xea\x9c\r\x1f\xb6?&\xed\xce\x15\xa6\x1d\xb0\xbf\x9d\xbc\xbe\x8c\xe7 \xa4\xbf\xabf\xdb\xce\n~P?\x87Y\xd3\xc8\x9d\xc2\xc0\xbf1\xa2\x83dQ?\xa3?8\xe4\xcf\xe3\x83\xa5\x80?)2\x17\xc2\x92\x9f\xa3?\xe7G\xc4\xcf\xa4n\xba?\xb6.\x0f\xd9K-f\xbf\xe0f\xa6\xd2WG\x9d\xbf\x04]\xe4FYl\xbb\xbf\xc2\xe0\xe4\xe9\xfb~\x81\xbf\xc6%\xb4r\x12H\xb2\xbf\x9c\x80\xf4Z\x18\x04\x88\xbf.\xb7\x1d\xf5[K\xa9?\xaa\xc0\xd0\x04\xa5\\\xa7\xbf{"\r1n@\xc3?l\xa4\xb5Em\x13\xad\xbf{\x7f,\x96\x8f\xd5\xa5?~\x12|\xb6\xcao\xb6?\x12\xa5\x90\x90\xcd\xb7\xa8\xbf>l\xaa\xbbT\xa3\xc2\xbf\x7fj\x9f\x9d\x8aD\xa0\xbf\xc4]\x15\x7f\xf0\xd5\x9e?)\x94\xaf){\xa9\xb8\xbf<\x89N8\xba\xea\xa3?\x99\x8dP\xc4\x0b\x15\xb5\xbf\xe4\xd7\x1bv\xa1!\x95?\x00\x9aI\xce\xed\xd85\xbf\xeaLXz\xdc{\xbe?\x11\xd5\xc5~\xbe\xd5\xc0?\xaf=D/)\xdd\xa4?\xaep\xa0D\xe8\x8b\xb2\xbf \xf6\xfb\xb4\xb9\xe6\xb1\xbf\xd3\t\xecCn\xad\xa0?\xfa\xa1\xa5\xe6\xfeW\xa9\xbf\xe3\xdc{\xe5s\x88\xbf?\xc7\x01db1w\xa1?\x9c\x1ec\x10\x95\xe2\x98?h\x80 B\xc5B\xa3?^\xec\x9aJ\x1d\xdb\xc4\xbf$$`\x8d\xf1\xc2\xd3\xbf\x12\x9dRR\x08\xcb\xb5\xbf5\x0e\xd78\x96\xd4\xb9\xbf\xb2^*\xe0CP\xab\xbfm7 }\xf7\xdf\xc1?\x0e\xec\xa2\x8e8\xeb\x9b\xbf\x94\xec\xde=dW\xd4?\xee7\xbb\xb6\'\xdb\x8d\xbfr\xbe \x84f\xde\xc7\xbf|\xees\x14\xa6\xc1\xc7?\xdcJV\x9cO\xd5\xb1\xbf9\xb0)0|\\\xb8?0i\xbd6\xe0El?\xd6\x05\x04\xc3\xb6h\xa6?k/\xd4nj)\xb1\xbf\x9fp\t\x1f\xa7\xfd\x8b\xbf\x04\xf9\xf4\xfd!\xd6\xc8\xbf?\x93\xff\xd5\xb4\x85\xbe\xbf\x0b\x9eT6ms\xb7?\xfc8\xcac\xbeP\xb3?\xdanE\xa1\xc3(\xa2?ZE\xefH-@\xb0\xbf\x0e\xf2\xba3 \xf5\xa9\xbf6\x86\x94\xfe\xfb\x04\x87?+\x88O\x95}\x9f\xbe\xbf\x0f\xd7\x0c\xe2\x0b\xc7\xa8?2\xe0\xb9u\x9b\xd5\xc5?\xf6\x05W\xc8\x8dV\x92?A*7\xc2g\xb3\xca?x\xc2\xf2\x91,\xe1p\xbf\x1b\x92\xbf%r\xcd\xc8\xbf\xe9xh\xffu\xc9\xa2?trzh\x93\x18\xba\xbf\xec\x8a\x84j\x9f\xc7\xa0\xbf\xe4m\xa1AU\x91\xa0\xbf\xfe-\xe4\x02V\n\xa7?\x12r\xb0Z\xca\xbf\xa2?\xc8]\xb0h\x1a\xe8\xa1\xbf\x1c@\xea\xb5\xe83\xc8?\xbd\xe7\xbb\xc6K\xb9\x94?l\xb6~\x15^\xba\xbd?cW-)\xf6<{\xbf$\x9b\x0exi\xe4\xb1\xbf\xff:O\xd7G\x98\xab?\r\xe3\xc2/p\x9d\xb2\xbf\xc4{\x80\xee\x8a>\xc3\xbf\xa0\xf1\xc3\\2\xc6K?\xd2\x0fE\x00j\xe1\x92\xbf\xf50\x8a\xc1n\xf0\x82\xbf\xdez\xa9*\xc3\xba\xa7\xbf\xb2z\xc3\x9eN\x1d\x83\xbfX\x0e\x04\xf5\xe5\xc2\xb3\xbf\xb6\xa0\x19\x1c\xa6k\x93\xbf"\xec\x18i\xb9p\xa8?\xaaZ\x9cR\x13\x88\xbc?\xf6\x85f[\xc4A\xb5\xbf\xdcaw\\;\xdb\x9c\xbf\x9c}u\x1eG\x82\xb6?4\xb5\xad\xb9\xd6\xfd\xa6?\x90{\xa1\xd2\x11\x83\x9d?R\xfa\xdd\xf91E\x90?|:"\x06by\xa9?\xc0\x00\xe2\xb9\xdfI\x94?H\xef\x83\xbey\x94\xb5?j\xffZ\x8c\'\xb8\xbb\xbf:\x9c\xed\x9f\xa1\xd7\x91\xbf\xb7e\xe0\xe0v9\xa3\xbf\x84v,\xa6";\xb5\xbf\xa8\x87\xec\xe7\x8d\xbe\xa8?\x00\x8b\x83\xacL1\x9e?\x9dH\xbe\xe7\x94\xdf\x99?\xc8<\xde\xa4%\x11\x8d\xbf\x075\xd9r{\xf4\xaa?\x87\xd2\xe3\xedkx\xb2\xbf\x8c\xf1p\xe7\xe3.\xb7?P\r}\x1e\x879\xaf?\x10\\\xf2\xdf\xc8\xe4\xa6?\x96\x18\xf7\r\x96\xa1\x96\xbf\x18x\xd4\xaed\rg?:\x88\xcb\xd6\x98\xeb\x9d?[\xe1\xd9\x90\x9f}\x9d\xbf\xa7\x9f\xbe\xb3\xe5^\xb3?\xa0\xcbrMl\xb9\x84?\xc9P\x8dcv\xa6a?\xc0\xe9\xf24]J\x86?\xe8\xc0\xa6\xe9\'\xde\x97\xbf\x83{\xcc\x00\xb1+\x97?b\\\xa7\x14\xff\xa8\xa4\xbfmU\x8f>v\xaa_?\xec\xd8ceO\xc9\x91\xbf\xbe\x1d5\x03q\xf0\xa4\xbf\x18(\xb0\x1c\xed\xa4\xa3?\xd6\xd0\x9c\xc7\xa3<\xae\xbf\xcf\xb0mS\x06\xc6\xad?\xe20\x82\xdd\xa8\xb8\x89?t\xd4\xd8\xacu\xbb~?\xf2q\xc3\xb4\xc2\xcb\xb5?\x10\x1d@?x\xce\xa1\xbft\n\x00\xf5][\xa3?"\xd9\xebu\xe8\x98\x88\xbf\x99:\xfb\x88\xa2\x95\x9d\xbfC\xc7,2\xe8C\x8e\xbf\x96I\xf7\xfe\x9e=\xbd\xbf\x99\xa4S\x9e\x02I\xa7\xbf\xf6\xa8\xbb\xea\xee\xb3\xa9\xbf\x10\xe30\x89\xb3ux\xbfZ\x13b\x86/\n\xac?\x86\x02p\xfd\xcc0\xaf?\xb8:\x8b4\xd4b\xb6?b_C{\xf8Z\xb6?\xd1\x80\x86\xe7\xd8.\x98?\xf8wn\xf7\x96/\x92?\x82c-\x83y\xee\xa1\xbf\x14\xf7sj\x9e\x0f\xa8\xbf\xf0\xe9\xe7\xc3\x1d*\xab\xbfNS6D\xedK\xb3\xbfp\x10\xf6p\x8f\xb0\xd1?`\xfbM[\x96\xf8\xd4?\x00\xdbR \xa9\x987?\xf8\xdb\x052xy\xa1?R\x9f0\x7f \xdc\xc2\xbf\x80\xd2AE\n\x9b@\xbfbA\xf2\x07\xa8_\xc4\xbf\xf8NP`%mu\xbf\xa0}\x15\x15\xe4l\xc5\xbf6\xc8\xdaT\xd9\x9e\xa4?hLf2\xffe\xcc?R\x9d!\xb9\x88p\xa2?\x13D K*\xae\xcb?\x9c\x9dq\x8b\xf7\x81\x95?q6\xd4\xc1G\xb5\xc7?(\xfb{\xb6:\xcaz\xbfrPK\xb1\x06\xa5\x9a\xbf\xcc\x1c%\xd4\x08\x11\xab?\xf3\xd8\xdd\xd3\x8aC\xd4\xbf!5\xd4}\xc27\xd3?\xaeTX\xe4\xdf?\xd3\xbfw\t\x9cO-\x1b\x87?#\x07\xb1\x0cM\x99\xc5\xbfu\xdf\x00\x96\x9cd\x9a?6\xbc\xd1\xae\xb6\xa7\x9d\xbf[my|\x8a\x98\xa4?>;\x8fa\x82a\xbf?\xb0\xdfU\xb3pe\xad?\xa8\x9e\xfe\'\xc2\xeb\x9a\xbf\x18\t\xec\xa7\xa4\x06h\xbf\x87{@\xb7\x8d\xa4\x80?\xf7\xf7\x84\x944o\x85\xbf\x88\t\xe9@\xfb^\xa8?\xa6\x91\x08\x1d\xc9"\x8e\xbf^3o\x02\x06\xaf\x92?2\xcbx\xb9U\x9f\x94?"\xb5:\xd7\xb4\x9b\x9b\xbff\xff\xe2|7\xed\xa9?\r\xf1/.\xd2\xae\xa0\xbf\xc0q%\x06\xa0{\xa2\xbfI2\x81\xca\xb6\x9f\xb5\xbf\x98z\xa9-\xcd\xc6\xbb\xbf\x16\xea\xbb\xc2\'\x1c\xb5\xbf4\xb6q:@\x95\xb2\xbf\xacv\xf3Z\x04s\xa9\xbfD\xd3\x80n\xf7,\x9c\xbfl#\xa6\x95:s\xa3?\xb7i\xba\x94m3\xb0\xbf\xea\n\xba\xfbG\xdd\xa6?\x05\x9c\xe0\xe6q\xdc\xb6\xbf3\x04\x14\xec\n\x8b\xa4?\xf3\x8a\xd1)9}\xb6\xbf0\x97\xd7\xb9\xaf\t\xa4?\nP\xf0e*m\xc0\xbfGJ\x87\x0b\xd4Z\xaa?I\x19\x14\x00\xd4r\xb3\xbf\xf2$\x18\xe3\x1cY\xb6?+\x1b\x9b\xfc?c\xad\xbf!0ah\xea-\xc0?\x8d\x9edh2\xfc\xb1\xbf\x80\x06\x88\x85\x95\'\xc0?\x19yi/\xe4j\xba\xbf[w:\xaa\x91\x15\xb5?\xb9\x94\x88\xa7\xd1\x89\xa1\xbf!\xb7\x02\x92\x91\x81\xa1?\x16\x08\xfe<\xf9oJ\xbf\xfc\x88\xf7\x9fAL\x89?Xfi\x83Z\xa7\x92\xbfST)\x02p\x1cg\xbf\x9e\x00\xfe\x12\xed\xbd\xa0\xbf\xcc\x0fz\xceBI\x90\xbf\xba\xf5\x83\xbb\xce\x8a\xa2\xbf\x9d\x08\xfc\xc2ge\xa0\xbf~x\xb3\x97:r\x93?\xe0\xd0\xfb\x10\xc9\xa4\x9d\xbf|\x9d\x18\xcf\xc3\x11\x9f?4(\x86\x15\']\xaa\xbf\xe1\x13\xc2\xbf8#\xa2?\nt\xc271\x93\xa1\xbf\xd6HM\x99\x9dGk\xbf\xe0L\x925t\xd6\x99\xbf\xdb\xeat\xfa\xdc\x8f\x90?\x98\x12\x04\t\xeb\x13t?\xbc\xb9\x98>*\r\xa5?s\xeb#A\x8a\xb1\xb0?\xb6W\xec\xe5b|\xa9?\x83Ew\x1b\xc1\xa5\xb1?\xba3Y\x92\xf7\x90n\xbf\xc4jV\xba\xae\xb0\x84\xbf\xce3\xb5\xc2\xd2\xb0\x89\xbf%\x7fU\xba\x1c\xe7\x97\xbfT\x8e\xad\x02\xc6\xa1\x9e\xbf\x90\xdb\x98\xeao\xd1\xa3\xbf\x8f\xa6k\xb0\x1b}\x9b\x81\xbf\xf4\xcc\xcfN\xe4\'\x93\xbfl!_h\xa2\x03|?3\x061\xc5\xe3\xe7r\xbf\x10\x8bS\xe7\xc7\xe9\x96?\xb6\n\xb2\x18\xe2\x96\x91?\x1c\r\xb8\x95\x90R\xcd?KK\x87\x14\x0f\xbf\xd1?\x02\xb5\x87\xfbd\xa9\xb0\xbf\x8a\xae\x94\xbdR\xd0\x8e?\xd6\x80`{ZK\xcb\xbfG\x0c\'\x07\xebc\xd0\xbf\xb7\xc0Qx2=\xb3\xbfw\xc2y\xaa6\xb5\xd1\xbfK\x8f\xd2\\h\x0f\xad?\xdc\x813\xdd\x1c\xfe\xab?\xf5\xe9\xb1\xd7h\r\xbb?\xe38\x85\xa1\x94]\xd4?\xc8\xe5#,\x8b\x1c\x9d?\xa4\xf8\x07\xd3\x9f\xd5\xc8?\xb8\xac\xaa4\xa9\xa7\xb1\xbf\x95\xdc[\xeb\xa0A\xcb\xbf\x00\xf31\xcfR;a\xbf\xb1\x92j\x8b\x9eT\xd2\xbf\xb8\x131&fq\x96?P/Ej\x8aK\x87\xbf\xb0\x0e\xf2\xec4\xcc`\xbf\xfdP\xe6N\x7f\xd8\xcc?Zhi\x03\xe7\xee\x93\xbf\xdd2\x96F\xd1\t\xc9?S\x06p^\xc2C\xad\xbf(\x9f+*7\xcd\x9d\xbfeV!D\x8c|\xa6?\xff1\xafx\xb8\x11\xcb\xbff\n\xefd\r5\xbf?S\xfd\x8b\x15\x05k\xc8\xbf\x96\xd5\xac\x94\xfdc\xaa?\x1a\x8a\xb8\x82sB\x9a?\x00K\x05\x0b\xc7\xa2\xc4\xbf\xcc\xc4ZEHF\xcb?\x00\x19\x9f\xc0?jv?3\xf8zi\x14\xbc\xbb\xbf\xe2w\xffD\x95s\x90\xbfpC\xc54\xb4B\x82\xbf\x1d\x984\xbf\xe1u\x93?.\xd3\xa2\xb9\n6\x95?/N\xc3\x94\xf1\x90\xa2?\xc08@\x82Yqr\xbf\x00Ib.\xcf\xb0$?r\x81\x1e=\xb7\xdb\xa1\xbf\xf8\x90t@\xaf\xe2\x85\xbf\x80\xbc\xd8\xd6\xe1\xc5s?\x00.\xcf\xcf}\xf9X?\x90\x80\x95\xb0\x9b%\xa0\xbfdw\x85\x93v\xfb\x9c\xbfP\xba\xb9\xc8\xff\xd5\xa9\xbf\x08#6\xd4+fr?\x08\t\x07-\xfb3\x94\xbfp\x84\xfc\x10?\xf5\x91?l\xd6\x1c\x0c\x07\x13{?\x10\x1a\xd5\xd0\\\x96\xb4\xbfkL\\\xdf<\xb8\xb6?\x9cag\xcb5\x13\x9f\xbfs\x85/\x96i\x00\xb5?PO\xa8\x17\xdb\x83\x84?\xc9!F\xc0\x87L\xb3?$\x93\x89>\xff\xdc\xb0?\xd1sH\xbe\x9b\x08\xb0?@0\x0b\x10rW\x87?\x00/\xae\xf7z\x16u??d\x8a\x87\xe1\x8f\xa1\xbf\xbe\x86\xd6\xde\xbc!\x9c?~C\x8f\xdd\xe6e\xa4\xbf\x99\xe7bw@\xad\x93?\xf84\x95k\x96\xda\x9f\xbf\xcc\xa7c\x19)\xde\x93\xbf`\xfc\'E-8h?FeWZ\xf7w\xa6\xbf \xaa!R\n\x9c_\xbfP\xa5WYaqw\xbf\x939\x8e\x8bk\xb2\x92\xbf \xad:\xc9\xcd\xbc{?(kCN,\x8fw\xbf\xc8\xd0\xac\xd8p]\x97?\x10\xd3\xe2\ns\x84\xa0?\xd0@\x1dr\xa4\xb4\x8f\xbf\xe2\x80\xfe\xe3\x19\x9b\x89?\x80kb\xd3y-Q?\x87\xe0\xea\xff\xa7x\x93?\\Nx\xa9,\xe3\x90\xbf\x8c]z\x03\x83y\xa7?\x88\xb5\xc0\x1a\x14\xc9\xa0\xbf\x18A\xfa*\x80\xcft\xbf@\xbc\x0b\x03\xf6\xf3\x8b\xbf\x847/\x0c\x8c\xb9\x96\xbf\xf0\xae)j\xb5w\x83?\x90\xd6x\xbaq\rr?\x00<\x1c:\xa6\xe1|?\xf8\xc1\xcb\x8a\x9bpw?p\xa9=\x9d\xa5\xbd\x90?|\xa12\x15\x14K\x98?@\x15\xf4\xd2\x84TQ\xbfP\xfe}\xa1\x8a%\x80?\xf4\xcf\xf6\xe0\xdc\xfe\x9a\xbf(\xe4\xe1\xb4\x89\xfd\x99?\xae\x8d\x94%N\xde\xac\xbf\xf8"R\xb0I\xbf\x8e?@\xc3\xd9\x12\xc5\x86\xae\xbf\xc0)\x9d\x02\xc7\x87\x85?sB\xce\x95\xf9\x81\xa8\xbf\xa0\xa5`\xd9\xa0\xbdh?\xc6}\xa5\xd8\xad?\xa4\xbf\x006\xdf\x94\x92\xdfl?\x9c\x0fu\xaf\x90E\xa9\xbfp\xec\x0c\x98\xb5c\x96\xbf\xc6\xbft7i\xe2\x9c\xbf\x00"\xda\xa82\x8a8?D!\xe3p\xe5\xc1\x8b?P\x9ap\xa1\xf0h\x9e\xbf!\xbf\xfd\xc3\xb1\xe5\xb2?`\xe6\xda\x15r\x89{\xbf\x00\x0f\x01\x0c\x04\xd8\xb1?\xc0\xcfk%\x17$y?~N\xc7K\xfb\x9c\xb2?\\F\xe8-\xa5\x19\xa7?\x84v\xe0\x08U\xaa\x98?\xe0\x8a\x17\x81\xfe\xa5g\xbfv.\xfb\xbb\x8fI\xa0\xbf`\x11\xb6@Li~\xbfd\xa740\x9dW\xa2\xbf\x80\xa5@6\xf09a\xbf\x04(P\x95*\x02\xa0\xbf b\x94\xb1-"\x9a\xbf\x92\xc1\x9dm\xc9f\x82\xbf\xec\xd8\x05\x99\xaa\xf7\x95\xbf&=!\x1aDH\xa1\xbf`\x1d4v\r\nt\xbf\xb6\xe6\xb5\r\x8a`\xa6?\xc0\x17A\xe4\xe5\x86b?\x82\x82\x11\x81M~\x9c?\xb0-\x1a-b\x02\x8e?\xf8\xbd@\x1d\xb6\xbe\x9e?\xe6\xcd:\xea\x16?\xa8?\xfa}i\x80y|\xb6?\xeb\xe0\x01\xb7:\x89\x9f\xbf\xa5b^\xab\x81\xa4\x9f\xbf\xe4\xd0\\\x01\xaa\r\x9b\xbfn\x1f\x8e\x83M3\xbb\xbfBW"\xfe\xdf\xc6I?;\x92\x15\xc4\xa5\x05\xb6\xbf\x00\xe9@\xde\xd8ab?\x9c2\xb02%\xc0\xab?\x18dc\xe3\xd1\xbe\x94\xbf\xd0r\x92\x062\x8b\xbe?i3E\x80\xb1}\xb0\xbf\xb1W\x9c\x9dB\xf8\x90?\xde>\x94\xd2o\x1f\x9c\xbf\x82>\xf1=\xb7\x80\xbc\xbf\xa6\x14\xbaZ\xe3\xaf\x92\xbf_\x8f85\x96/\xa2?v\x0cg\xe9\xa21\x9a\xbfe\xfb\xf7\xaa\xe8\xc5\xc8?pI.\xf1\xcdd\xaf?2+J\xa0\xfd\x87\xbc?\xb4Ru\xb7\xc1\x1c\xb8?8\x7f^\xa7\xd6\xee\xb1\xbf\xa8OUle\xb4?4\xd7\xf9F\xbbMt\xbf\xbc\xaa\xe3\xf7\xa8}\x84?\xc4\xbf+\'\xb3S\xa1\xbfn\xcd\t\xb9W\xf6\xa8\xbf]\xab)\xcb\xd8T\xa6\xbfb\x93\xfe\xc0\xe3\x84\xa1\xbf\x00i\xf8\x10\xe6\x8e\x9e\xbf\xab\x8f8?&\xcc\x94\xbf\\3HE\x9eV\xb1?`\xf2\x00\xf6\x9f\xdcy\xbf\xa6(Yh\xdd\xea\xa9?lpSt\x01\xaa\x87?0\x19+\xa7|\xba\xa8?\x11\\\x1c\x1ci\xd0\xa1?}r\xa2y\xda\xac\xa0?\xdf\x8b\xc0\xcc\x01I\xa7?\xe5\xe6\xae\\Z\xe3\xb1?\x96\xb5z\xd9\xae\xfb\x9d?&:\xd0\xb5:\x94\xb5?\x00@(\xec?X$\xbf>R\x00A\xc5\x98\xa0\xbf\xa2\xd3\xf57\xe24\x87\xbf \xc3\xd6\x82RD\xa1\xbf\x90\rz\x9a\xea\xd4\x7f?-29J\xbf\x9c\xa9\xbf\xa8\xf0\x15\xa5N\x9b\x7f\xbfX\x19\xbf\xd2\x80|\xb2\xbf\x7fUo\xf2\xbb\x16\x8d\xbfV\xd3l\x03\xf8\xe9\xb0\xbfO1\n\xf5\xda\xd0u\xbfl\x85F\xaefh\xa6\xbf\xe6J!D\xed\xc7\x83?c\x87\xf6x\x92\xbf\xb8?\x96<\xd6\x98]\x8b\xb2\xbf8^\xfe\xf6\xd7\xdd\x95?\xa1e\x18\xf5\t\xcb\xcd?\xa0S\x84\xa9\x02\xe6b\xbf\xd8\xd9b\xb5\xf4\xcc\xd0?\xdc\x12"\x89\xa2\x0f\x88\xbfiR\xbfH\x1c\xd9\xcb?\x82\xbfE\x88\x14\xb8\x94\xbf6\xafj\xcd\xb9q\xd1?\xfc\xf2\xfa\x179\xcf\xa1\xbf2\x0fm\xc2(\x01\xc6?\xacI?z5\x06\x8d\xbf\x98\xd0}I\x1e\x1ay?\xf8\x7f>\x0f\xdb@s\xbf\xbd\xda\xff\x96\xa0\xd2\xc2\xbfdP\x7f|4b\xa0\xbf\x92v\x1d\xf4\xa7O\xd0\xbf\x15\xc3\x80\x14\xefY\xa2\xbf.\xbaO\xc1\xda\xf9\xd2\xbf\xf0\xcc\xbd\x0c\xdc\xf9\x95\xbf\xfaz\xe2"y4\xd0\xbf\xbeb\x8e\x87\x8d\x14\xbe?\xac\xf8Z\xbd\xea"\xbb\xbf\x9c\xaf\xb9_T<\xb8?u\xf6&>\x1e?\xb3\xbf\xd5\xe2@S\xceL\xa1\xbf\xb0\xa9e\xab|\xa7\xc3?L\\S#",\xa2\xbf-\xa7?\xc4;\xdd\xc4\xbd\xb4\xa3?%\x17\x9bg#y\xbc\xbfP\x80*\xd4\x0e$\x94\xbf\x08\xaaKg\xd6\xe7\xbd\xbf\xbcg\x10UG\x07\xb5\xbf\xc0\x8f\x0f\x1e\x82\xfae?\x92\x14\x90\xc2\xf8T\x98\xbf~\xfb\xbf\x1d\x97Y\x96?\x98\xc5\x7f\x84\x05W\x9d?`2@B\xa8\x87\x97\xbf%T\x19\x94\xa3\x19\xbe\xbf\xf8:\xf3O\x90\xa3\x85\xbfF\xb9\xed\x13\x14\x12\x9c?\xb6\xdc\xa8\xed\\\xaa\x90?\x16\x0f\xd0\x12\xdaE\xbf?\nv3\xd0X\x82\x81?\xdb\xaaz\x0fz\x1c\xb1?\x7f\x7f\xd3B\xd5\xde\xaf\xbf\xb2j\x01\xf8Io\x89\xbf\xde\xdd\x19\x95Y\x11\x90?\xb8P\x8e.7\x1d\xb2?\x18\xc6\xfc\xeb\xaa\xbb\xb3?5\xfe\x9a\x9d\xcdM\xc3\xbf \xd1O\xe8HG\x9e?Q9\xcf\xbb\xf7\xbd\xbd\xbf8_\xda\xc64\x83\x80?\xf4\x97\x1b\x99;\xaf\xba\xbf0M\x9d^\xcc\x8f\x85\xbf\x06\x98\xdd\xf9d\xdd\xae\xbf\xe8\xbe]!\x1d\xf5\x9f\xbfK\x85\x90\xd4;"\xc0?\xb4+\xa9\xbd\xf4u\xbb\xbfm\xedN|\xc4S\xa1?$\x16pU\xf4\x03\xa9\xbf\xf9;\xc4~p\x9a\x9f?\x0c\x8e\'\xc4P\x9e\x9e\xbf\x9e\xa6\xeb^=N\xad?vQ\xaf\x16\x81\x89\x9a?L\x1du\x9c\xfd\xef\xc3?/\xc4\xc8\x0b\x80m\xbc?\xb3\x1d\x14\xcfE\xd0\xb3?\\\x98\xdcI"\x92\xcc?\xc4\x82\x15iQ\xce\xa7\xbf\xd9S>\xae\x19,\xb4?\x17\xa6\xddB\xdf\x93\x9d?\x1e\xc7\xa6\xd8:\x1e\x93\xbf\xc8v\x1dO\xf2\x96\xca?\\\xb5\x1f\xe1z\x05\xd1\xbf\x8e$^p\xd4\x8d\xc1?\xe4\xe2{RI\x87\xae\xbf\xa8P\xdf\xc2\x94\xea\xb6?\x17\x89\x9c\xcb\xf4\x85\xab?\xff\xc0\'\xa3?\xd5k3:\x10\xa9\xb8?\xd4\xcd7j\xd7\xa8\xad?D\x83\xf3Y\xf5i\xb9?Z\x0f\xfa\xe6\xc2\x19\xb9?\x90$\xd0\xeb\xb8h\xbb?\xfc\xe0\xd3\x83\xfc \xa4\xbf`it\xb2\xa3\xc1\xa7?\xa2M\x8b\x17\xc6f\xbb\xbf\xae9u5g\xdb\x92?@\xe0\x0b\x99\xfb\x15\xbf\xbfHS\xac\x0cPg\x9c\xbf\xba\xfb\x8a\xe6\x82h\xaf\xbfTPs\x80[\x85\xb7\xbf\xaeos9\xa7\xee\xa2?(\xec\xd3\x1bK<\xc0\xbf\x92]\xca?\n+\xc3\xbfh\xbc\xb8GXB\xbd\xbf\xff/\x12\x92iE\xad\xbfLJGIC4\x94?\xd2"W)\xcd\xef\x9f\xbf\x14\x1a\xe7\x85\xdb?\xa0?\x04\xabs\xd0\xc4;\x9c\xbf\x90\x8a\xe6\xfc\x82\x80\xb5?\xdc\xa7YA\xd2p\xbe\xbf\xd7\xfc\xb4\x1f\xb2\xa5\x9b?s>\nZ\x07w\xbe\xbfx\xc6\xc9#i\xe8\x93\xbfLX\xe1\x08\x98\xfc\xbc?K\xb2P\r\xdee\xc5\xbfl\'l\xe5\x1b\x93\xc0?\xe4_\xb2@bn\x81?\x95\xe2%\x14\xc2[\xb8?:\x15\xd1\xab\xc3k\x9d?\xb1Bl\xb5\xaaK\xb1?\xe2\xaa\xa2\xaf\xb4B\xa9?O\x15\xe1\x07\x9c\x1b\xa9?\xb8\xda\x0f!G\xe7\x99?q\x93\xc5\x8e\xca\xa1\xad?Z;=\x1d\x15l\x9b\xbf\x17\x02\xacv#\xf4\xab?\xb0\xa5Avf\xc2\xa3\xbf\xae[\x8b1\x07o\xb3?\x8aG\xc9<\xae\x82\xb6?lO\x1b\xf07\xd2\xa5?\xbe>(\x19/H\xbd\xbfz\xdd\x84k\xc3\x93\xad?mKcut\x1b\xb0\xbf&\x05z\xed\x8b\xed\xa8?X\xe0\x88G\xa8\x8a\xa1\xbfc\x16P\x86\xb9\xc0\xb2?(\x0b\t\x0c\xf4n\xbc\xbf\xe8\x8e*\x8b\xa2\x84\xbc\xbfF_\xf4\x90\xe2\xfd\xb8?\xf0F\xb4\x87\x9d\x11\xb1?\xc0\x82\x8d%hb\xa1\xbfD\r\x03\x89\xaed\x9e\xbf6tc\xcf\xf8p\xb2?\xa0Z\x1d\'\xc3.k\xbfW[.:V\xa8\xa4?09\x0b\t\x01\x93\x7f?\xc0T\xa6\xf8\xc8Dv\xbfF\x8f\x0f\x0b\x93\x1d\xc8?\xc3M(\x1f\xa0u\xc1?-\x84%\xe8\xc8\xa2\xa2?0\xad\x1a\xdc2c\x96?\xf0\xff+\x82B\x98\xae\xbfuq\x04\x85)\xd2\xbb\xbf\xe1\x01\xcd\xc25\xb0\xab\xbf\x00\xebP\x03\xc4t\xaa\xbfN\xe7\xe8!\x13*\xb6\xbf\x10\xd9\xe6\xc7\xde\x9dy?l\x94\x96\x9e\x1bA\xb3\xbf\xe1\xbcJ]KH\x9e?\xa7\xe2\x00\x9c\x96A\xb1\xbf\'\xde\xa9\x05K1\xac?\xaeK\xcd\xcc!\xc4\xa8\xbf\xe0\x15\xb84 }V?\xcf\x92\xc4\x0b\xde\x90\xa0\xbf]\xaa:\x00\xa9I\xac\xbf\x98\xc1\xbe_\xfeR\x8e?\xd2&\x8c\x9aB\x85\xa3\xbf\xd3\x80\xee\x85R\xbf\x87\xbf7u\xc8v!\x8e\x82\xbf\xffa\xb8\n\xd1\xbc\x91\xbf\xa2;\x1c\x88\xaf\xcf\x8f?\xech\xbf\x19\xd6\xc0U?\xd2r\xc8\xcc7\xac\xa5?\xfae\xd3o\xe2lK?\xa8\x8b\xc0F\x90\x95\x97\xbf\x8c\x1cTa1\xdc\xa2?\xd6u\xa43\xc6Y\xa9\xbfb\x97\x1f\xed\x1e\x18\x90?F\xb3x\x0e\xfb"\xa7?\x89\x1f=\xd1\xc2b\xb1\xbf\xc8l\x06\xd2x\xeb\xab?Dg\xef6\xdd\x80\x9d\xbf\x9e<\rVxl\xb5\xbf\xb0\x97\x19\xa3\xcd\x88\xae?\xb2R^\x89&\xa2\xad\xbf\x9d?E\xaf\x9c\xec\xaf?o<[\x05C9\xb5?\x04\x90C}m\x1a\xad\xbf\xa8j\xd8\xc95\xdf\xa4?\xe9\xbf?5\xdaI\xb1\xbf\x83\x83\xd7`\x1b}\xae\xbf5\x86{v\xf5F\x90\xbfo\x16\xbd0\xc77\x85\xbfR\xe3\xfb\\\xf3(\xba?\x86\x81\x8c\xb1\x8b;\xb3?\xae\xb8\xc1\x0ei\x92\xa4?\xe5\x1b\x0eN\xe8\x14\x8c?L\xac\x86\xb32\xca\xac\xbf\x88\xbcE/\x80n\xb4\xbf\xe6\xf7\xc7\x14\x0c\x84\xa1\xbfpXz\x9fH6\xbe?\xb3\xb1m\x91\x03\xd8\xb0\xbf\x94"\x01V\x07\xf5\xa4\xbf\xcf0r\x13\xb6;\xb5\xbf~\xfd\xde\x9d\xc3e\xb0\xbfJ\x85L\xec\x8d\xe9\xbf\xbf\xe0r\xbd\xd2\xda\xb5K\xbfN\x1d?R\xdee\xbc\xbf$\xc5^\xe3\x8dm\xb5?v\xd5\x86{j\xce\xb9?\x00\xeci\x06\xe5\x85\\\xbf\xf3\xd0\xb9_ho\xbc?$`\xf3k\x8e\xa3\x96?\x9c\x93H\xbc\xbb+\xbd?\x10\xdc>\xcah\x0e\xaa?\x84\x14\xf9\\\xac\x89\xa7?\xfc)\xbd\xa5\xb4\x12\x81?0K\xde\x94\xe0d\x87\xbf.\xbd\x89\x8a\xaa@\xa9\xbf\x03\xc8\xe5\xd0\xa6\xe4\xba?Az\xe6\xc0X6\x9c\xbf*C\xee\xd7\x94#\xa6?\xc2j\x18\x15\x91N\xa5\xbf@\x15!@-\xda\\\xbf\xd6K\x16\xe1\xb4\xa8\xac\xbf\xbb"^\x8c\x08\x19\xb0\xbf\xeb\x00\xbc\xce\xdcn\xc2?\xd2j\x81#\xder\xa2\xbf\\\xd7(\xf4\xea\x83\xc5?H\x11M\xec"\xf2\xa8?\n\x00\xb91\x8e\x0f\xc2?\xc9\x1e\xdf@\xff8\xc3\xbfq\x00\x85\xcb\xba\x08\xb1?\x80\x01\x05_u\xb3^\xbf;\x9a\xad\xbc\x83\x97\xd2?\xc6\x1fP\xcb\xc0\xdc\xb4\xbf\xdc\xb3\xc2\x10\xa5\xd0\xb7?\xa4i=\x8d\xb4\x02\xc1?\x8d\xb7)\xb2\x014\xae?8\x88\xf7\t\x16&\xa5?:\x17\xcf\xde\xf3\x19\xaa?d\xf30\xec?\x94\x99\xbf,\xba\xba\x14\x94G\xbc?\x84c\xe7\x07\x9b\xf4\xbc?Xh6\xedK\x89\xbd\xbf\x1e\xceG\x16\x95*\xba\xbf2\x05e|S\xac\xd0\xbf\x1e\xfd\xc44:\xbd\xb4\xbf\xf6\xa7\xe0z\x98I\xce\xbf\x9f\xb81E#\xd8\xa2\xbf\xbb\x08\xaa\xdd\x19\xf6\xcd\xbf\xa6j\xe8\xa1\x87#\xa1?\x1c\x97\xa1i\x87\xc5\x98?\xd2oQ\xcc\x91\x0b\xb5?^%{\xb8\xca\xb5\xc0\xbf\xac>\x9c\xdf\x05\xbb\xb9?\xaa|\xbe\x17\x0f\xa8\xc7\xbf\x14~\xc1\xb6\x17n\x97?\x8a\x86I \x1cn\xca\xbf\x8f9\xe37\xd2\xc2\xa0\xbfX\x87.\xd5\x18\xf2\x97\xbf\x84\xd6F\x8d\xff\x18h\xbf\x004K\xbfK\xc8\x81?h\xccQ.\x0eW\x96?MD\xc8X\xaae\xa6?\xe6\xa7\xcb\xd3}\xccv?\xe1\xeaL\xad)5y\xbf\xb6\xe2\xd4\xb6\x1f\x89\x83\xbft\x14\xc3\xcc*\x11\xae\xbf\x84-\x01\xd8\x0f\xf1\x9d\xbf"\x0f\xae\xde2hr\xbf\xfa\x90\xe2\x9b\xcf\x0e\x98\xbftg\x12\xd7Fq\xad?\x9e\xc12\xbde\xaf\x9f?\x8d\x94+\xf5v\x0bY?T\xa7\x87\x9e\xa8\xd3\xb2?\xdfw\xca\xeeH\xef\xb4\xbfw\x8b\';\x03\xaf\xac\xbf-H\xfc\x1d\x10\xa1\xa8?\x9aL\xf1\x7f\xaf\xed\xae\xbfZFK\x1aH\x0c\xaa?:W\x84`\xc4\x02\xb1?#p\x97\xd2k\xb4\xab\xbfD\x998.\xe9\xb7\xa1?\xa2\xaf\xcd\x0cw\x85\xaa\xbf\x02\x7f\x17\xeb\xf2k\x88\xbf\x9a\x91\x96|@a\x9b?Jx6\xea\x89!\xac\xbf\xba\xe0"\x95\x1d\xba\xb3?6i\xfc\xa9\xfeT\x87\xbf&\xcd\x93\xaf\xc4Sx? n\x84Vzpi\xbf\x98\x1b\xa6\xdc\x07\xc3\xac\xbf\xb8\xc6\xdc\xed\x13\x0cg\xbfm\xea\x9f\xde\xc8\x9b\xb9\xbfN.9(_\xdc\xa1?\\1\x9b\xed?\xa7\xb8?\x11\xee\x19\x04\xaa\x01\xa9\xbf\x92zv\xd5\xedS\xc7?\xd5=6\xf8|F\xb7\xbf\xa5\xb9\xa7\xb2\xe5\xff\xc0?3\xb2l#\x9a\xb5\xb0\xbfR]\xe0\xf2W\x84\xb4?F\\&[Z\x9e\xbd?\xaa\xd7Q\x1fOQ\xc0\xbf"\xda\xb5\xd7\xb4.\xbd\xbfm\x03!\xae\xce5\xbb\xbfBY\x04a\xb7\xd1u\xbf\t\xce\x8cG7\xff\xb1\xbf\x05\x85\xc9<\x8aB\xac?\xd4\x05(N1i\xb0\xbf\xa6\xbc\x81\t{\r\xb1?\x14_AY\x83\x96\xa7\xbf\xf0\xce\x12\x1a\xda\xb9q?\x95b\x8a~\xda\xcb\x9d?O)\x9d\x8dOU\xb3\xbf\xf9v\xf9\x8e\xa8\xdb\xa0\xbfs\x05G.\x90\xad\xa5\xbf\xb8\x87\xcf\x1a\xa2\xd0\xad\xbf\x06\xd5{\x06^\xf7\x85\xbfd\x88\x13\x9b"\xc0\xb8\xbf\xf815\x04\x0e\t\x8a?\xe2\x0cKpAh\x94?\xeaE5Y\x80\xe0\x9b\xbfL\x82J\xd0*w\xad?\xac\xee\xe8t\x04E\x81?r"\xd1%\'.\xb2?\n5=h\xfam\xa3?V.\xe8\x08\xa4d\xaf?\xd5\xf4\xca\x89,\x16\xb6?\x9c\xee\x1b\x020\xf7\xa0?\xbb\x8c\x9b\xe5\xf6\xe9\xbe?7Q\xbdL\xdf\x03\xb9\xbf\xa2YE\xe6\x81\x96\xd0?\xf6`\\\xda\xbd\x84\xc7\xbf\x96<\xf9Ld\x05\xa3?\xedB\xca<~?\xc7\xbf+\xd8?\t\x8b\xba\xaf\xbf\x04c\xf0\xe6hL\xb7\xbf3\xd9Q\\\xac\xf3\xcb\xbf\x00\xc3bB\xcc>\x96?0\xc2#\x92k4\xb4\xbfx\x8e\xe3$\x94\x94\x93\xbf\xd2\xd5\x9f\\i\x8a\xa5?\x88\xd9\xeay\xf6\xfb`?\xb9\xef\xb4:4\x83\xd1?\xb8\x0b\xa3 \x10v\x94\xbfu9\xff\xf5\xc5\xce\x9a?T\x15\xe6\xc2O\xea\x92?\x97\x93o\x1a\xc7l\xa6\xbf\xe4\xb3\x8d*\xdc\xbc\xc4?\x03\xcc\x1a\xfc\x0e\x83\xc6\xbf\xb2\xfa\x192\\{\xcf?\xa1\xe8\xb8\x04\x07!\xa3\xbfFf\xa0\xad>\x02\xca?\x846f\x9fU\xda\xb2?ne\xe49\'\x08\xb6?\x06\xf1\xc9\xd3\x93+\x92?\xba\x956\xde\x1e\xc0\xa3?(sV\xf3\x03!\xb9?\xe1\xd5\xcf\xb9\xf6\x89\xb3?\xd7\x90\xeb\xf3\xddf\x80\xbf\xe7\xa1V\xf12\\\xaf?8\x89I\xc8\xfd\\Q\xbf\x8f|\xc11\x02\xd1\x9c?\x9e\xbc\x91\xee>\xf3\xae?\xe4\xe4\xf8F5\x80\xa7\xbf\xc3\x19\xc3\xf5\x99\xe9q?\xa0\xbb\xbfvl\xaa\xb7\xbf\x8c.\x94\xec/\x03a?\xe1u/\x86\xa9d\xbd\xbf\x97}\xb5*-F\xa8\xbf\xb8\x0f\x9b\xf7\x8e\x03\x82\xbfr\x17\x9b\xd1\'\xb8\x9f\xbf\xb3\xc1~\xa3\xd2\xa6\x9a?\xa4\x92VE\x16 \xb9\xbf\xa4\xce\xa0\xed\xc7\x06\xb5?\xec\xa0\xf2;\xa1\xa4\xb0\xbft\x9c\xc7?|\'\xd1?#3\xad3\x19\xe7\xba?\xb6\xa9\xe2\xc8\xceU\xb5?\x89w\xaf\xf4X\xdd\xb4\xbf\xdf\xbd\xbc\xa5\xa0\xa9\xb7\xbf\x9c\x8e\xf80Sw\x7f?e5\xaf\x9b\x96{\xba\xbf!\x19g\xe7\xdbf\x81\xbf\xb0a7 K\xcb\xbb\xbf\xa2\x930\xce\xc8\xc5\x9d?0\x8f\xb6R\xe0\x00\xb5\xbf>JU>\xec\x96\xb2?\x9b\xefB\xe9\xb2<\xc1\xbf|\xb7\x9eUq\xfe\x9f\xbft\x1c\xd6\x17\x18\xda\xae\xbf\x9d\x04Z\xb4\xd9F\xb6\xbf\x02f\xfd\x14\x97\x08\x88\xbf\x8a#\x0f$\xbaP\xb0\xbfT\xba\xf0\xc9e\xb3\xc1?\xf2b\xcb\x07\x07\x13\xc3\xbf:\xcd\xc8\xc5\xff0\xb5\xbf\xae\\\xa3\x91R\r\x98?ZG4\xe6:8\xc8\xbf\xb8\xa5C\x18\x1b;\xc4?\xa3e\x95\xcb\xd6\xe0\x9d\xbf\xfa\xd5+\xcd\x025\xaa?n\x13\xc9\x16\x0fd\xc6?C\x9d?5\xe9\xc8\xbf\xbf\x93\xc7\x03}\x19e\xc7?\x0e\x19\x05\xabH\xe6\xb1\xbf\xc4\x80;\x05\x94,\xb7\xbf.\x9f\x97{\x1f\xff\xb1?Q\xf9\xb6\x99\xdaz\xcf\xbf-B\'\xf7\x02q\xa3?\xa1\xa2u\x8a\xdb\xd2\xa2\xbf*M\x1a\xc3\xb3\xdc\xa3\xbf\xfc\x18\xd8ZG.\xcc?p\xc1\xdb\x1b\xcb\xce{?h\xc8Y\xd5^8\xc8?^FtT%~\xb2?\xaf\x81\xe4\xc3\xce\xe3\xc7\xbf\xc1)_;Y}\xa7\xbf(\xbc\xeeoB<\xd0\xbfQ\xd5\xb2\x842P\xc1\xbf\x10\xca\xeb\xc8]\xb2\x94?\xf4BG\xd2&\xa0\x9a?g\xac\x0b\xf42F\xd0?H\xa4\x99fa1\xc8?r\x8a\xfaw\xe2\x17\xb5?.(\xbd\x9d\x03=\xaa?|\xa8\xd15\x1e\x15\xc4\xbf(-\xc8\xc6\x9b6\xc7\xbfSh\xdc4.)\xb8?\xb4z\xd0\x98i\xc6\x92?$\x11\xa7\x1b,i\xaa\xbf\x10L;\xea\xca\xe4T?\x16\xfe\xf0|CZ\xa2\xbf<|[r\x97\xc8\x9f?\x90V\xb8o\xdd\x89\x85?p\x91\xf5\xd6\\\x9f\xa5?p\xff\xb7\x07\xd9\xb2w\xbf\x98\x06\x0e>\xbc\xeb\x97?\x80j\x80\xf2t8`\xbf}\xe3 \n\x01\x11\xa5?\x01\xab\xeb\xcaV\x89\xaa?v\x1b\x99P\xac\x01\xa7?\x1c\x88\x8e\xe4\x92\xe9\x92?\xa8\x12q\xf3_\x1b\x95?\\.\x86\x1fw$\x9c\xbf\x80\xd1\xbf^{\x87z?\xd8hw(G\xb6\x9e\xbf\x98\xd6\x9f\xb3g\xdb\x9f?\x94\xbcm\x8d\xc7^\x94\xbf\x93O\x8a\xe4\xfey\xc5\xbfH\x19\xaa\x00A\xf7h?>v7\xb1{J\xc2\xbf\xf8\x88,Jo\x13\x88?\xb3p\x8c\xf1\xe7\xf6\xbd\xbft" \x90L\x96\x94?&\x8b\xdf\x91$V\xb6\xbf\xe7ww\x113\xc6\xb0?>\xc0`#\xdd\xf4\x9b?@\xaf\x13\xf4\xa6\x84\x80\xbf\x83\x91 \xfa1b\xbd?\xad\xd0\xeb04<\xb0\xbf\xcf\x94\x83)\xc6\x9b\xc3?$U\xa3\xc3\xa2J\xae\xbf\xa6\xc7\xbf\xc4?3\xba?\xcc>\x15\xf6\xf2\xec\x89?@\xb6&\xc6\xd6\xe4\xb2?\xb4j\x90w\xd1\xad\x9f\xbf`\x0e\rM,<\x95\xbf\xb9\xdb\x9b[\x84\x9a\x9e\xbfQcz#}{\x97?j\x9d\xf2\x92\xecG\x8a\xbfX\xc8\xfb\xab \xeb\x98?>\xc1\x00G>+\x8d?\xc5\x01\x11\x9f\x16\\\x81? N=\xbe\x0c\x95\xa8\xbf\xa8}\xc6\t\x7f$}?=\xea|\x88\x94\xb4\xb0\xbf\xe0\xa6\x88F4\x93s?6\xa9\xe6`\x81\x8f\xb0?q=S\xc1\x92R\xa4\xbf\x9d\xb8F\xd6\xab9\xaa?\xdd\xf0\x90\xcf@\x17\x90\xbfR{\xb4\xf8G?\x9a?\xccU\xed,O\x91\x95?`\xd1^\xd1\xa2\xae\x83?\xce;\x80Ye\x94\xa9?\xa4\xb7o\xcd\xc3\xae\x80?Xl\x97\xee~\xb0\x90?\x10W\xa2\x8b\xcd8s?\xd4&\x00\x91\xef\x99\x8f\xbf8\xa4\xe5>s4\xa5?\x00{i\x0b\xf2E~?\x8e\xdb\x04\xc8\xadU\xa3\xbf\'&\x08=\xa4\xb5\xa8?\xe5\xdd\xba\xbb\x96\xbc\xb2\xbf\xf5\x08){\x89\xd7\xad\xbf\x97s\x9e\xb3\xa3(\xb4\xbf\x82\xf8"\x83D\xa0\x96\xbf\xc0S\x82\xb2Fd\xb8\xbf\xc2\xce\xecru\xc4\xa2\xbf\x08,\xaa\x8aa\xbd\xba\xbf\x17\xe5\xee\xbf\x8a&\xb2\xbf\xc57\x05\xaa\x0b\xec\xb3\xbfp\xc9< _S\x97?8\x9b_2\xcc\x1d\x90\xbfD_\xd0\xc3\xa3 \xa6\xbf|\xbf\xa7@(\xb8\xa3\xbfP\x89]s\x0e\x08{?\x84\xf2\x12{\x18\x9e\xa9\xbf\x98\xd3\x91M\xfc\xcc\x85?\x98\xf8\xf1d\x12_\xb2\xbfH\xb9@\x1dj.\x98\xbf\x148\xb2+\x8di\xaa\xbf\xe2\xae\xc3\xee\xcd\x86\xb1?\xaa\xa8T\x13\xeaV\xae?\xd4\xbd{\x1b(\x96\x92\xbf\x12~(\x8b\xda\x10\xc1?\xf85\x90\xecM\xc0\xaa\xbf\xcag\xda\xa5C\xb0\xc0?x\xe4\x18\xaa3\xdfa\xbf`i\x99f\xf0\x85\xbd?K\x17=~\xf0\xdeJ\xbf\xfe\xe2\xcc\x1a\xeey\xa3\xbf\xe8O|c\xc0\xdf\x9b?\xa0\xbdB\xf1X6\xba?1\x97\x91\xea\xe0b\x91\xbf\xb9\xed*\xf7k\xfd\xba?\xb8a\xa3\x91\x15\xe9\x8c\xbfhx\xff\x05\xa1\x0f\xb4?\x1b\xfe\xe01W\xd1\xab\xbf\xd6 \x85\xe3\xe8\x9b\xb1?\xea=\xfd.d\x8b\xc0\xbf\xd2y7\xa0\x8dT\xa2\xbf\xa4\x8f\x99\x1e\x1d\'m?\xd4\xd0\x80\xd3\xa0\xc1\xb7\xbf\x7f#\xbf\x10\x0b\x12\xbd?\xf5;\x07\xb7\x93\x97\xa1\xbf\x03\xe55\xb6o\x13\xb0?\x87\x1a\x0f\x93_\xc2\xb6?E\x8aX\x93\xacU\xae\xbf\xb4\x15U\x13\x955\xb7?\x18\x95\x8f~\xd3=\xae\xbf\xdc+m)h\x8f\xb5\xbf\x03\x11\x93\x1f\xebd\xa8?\xae\x08\x03\xa6\xb7\xaa\xba\xbf\x10\xe9aW\xd9^\xa1?\x00\x1c\x1d\x18\xa3\x89-\xbf\xa0\xe5\x97\x0f\xfdt\x82\xbf\x16S\xa3f{\xd8\xbb?\xa0\xf2\x89bzY\x8e?\xcb\xa1\xae\x0e\xd5\r\xb6?\x06\xae3\xa3\xad&\x9a?(\x9b`\xa7-\x98\x93\xbf\x1a\xf6\xc0\xf4\xf8\xac\x80\xbfle\x0bZK\xef\xbf\xbfX5\x8e".\xf4\x9a\xbf\xc6\x8b\xa8\xbb\xaff\xa2\xbf\xc4\xb0~\x17:\xda\x89?\xf8\xe6r\x0cJ\x9a\xc4?\xa0\xda\x00A\xfco\xb3?R\xd0\xb1].\xf6\xad?\xbe\x9f6\xa6YS\x91?\x83\xc4k\x08\xc5!\xb9\xbf\xbe\xe8I0Y\x00\xb4\xbf\x16\x1d\xadK\xebt\x92\xbf\x12/\xba\xd7\xe6\x92\xb6?\xb6j\x1a\xdf\x8b\xb9\x9a\xbf\xc2\xa8d\x1a\xd4F\x94?H2\x87V\x9f3\xa1?\x16\xfd\xf7!\xab\xb4\xa3\xbf\x89\x17\xd2\x9e \x19\xab?\xc6/\x93\xd7\xb0L\xb1\xbf\xe4m\x8b\xdfR5\xb8\xbf~\xe0ZA=\x04\x9b?\xf5\x1b\xb4\x91K\xef\xa3?\x9e?\x0f\xf5\x9d\xd7\xb4\xbf\x94L&\x0b-\xff\xac?\xd0!s+K\xa3\x8d\xbf\xc4\xe2\xa0\xf9\x86^\xa2\xbf\xbcE\xc6PG[\x99?\xc8\xcc\xc3\x86\x0e\x01\xb4\xbf\xb0`\xc8\x0c]C\xb1?\x18\xbc\xa8\xe3?\xe6\xa4?\x98\x87\xce\xb9G\x1f\xb2\xbfD_\xb1\xaa\xf0}\x94\xbf\xcb\x8d\x9a{\x12B\xc5?\xca#\xeal\x0c\xdc\x91\xbf\xcaS\x7f<\x7f\xfb\xc3?h\xc8b\xf2\xde\xda~\xbf\x84\x8c\xf0\x8a\xfc\xda\xc2?\x9a\x8cL3L\x88\x98?y\x10T1\'\x07\xc1?\xe4+\xe2\xed+\xce\xb5\xbf9/o5\xa45\xc1\xbf\x98\x8d\x85\xf5\xd26\xac\xbfQ\xda\x9b\xcc\xdb\x82\xc4\xbfl"\x13\xad=\x8cy\xbf3\x13\xa06\xd9\xf6\xc5\xbf\x8d\xe5@\xb1r\x9a\xa9?&\xe4\x034\xf7\x83\xc5\xbf\xf0R\x08\xf6]0\xbe?\x1f\xac\x8eH\rC\xc1\xbfp2\x90\xfd\x03\x90\x92\xbfW\xb6\x00\x17>\xc7\x80\xbf:\xd97\xda\x1b\xda\x95?&w\x7f\xa9\x8evf\xbf|\xd4\x90\xe3\x06\r\x80?2o\xd6\xf4p\xf3\x89?\xe4\xa7\x9cFkH\x8f\xbf\xbc\xfd\x1b\x1a{\xa9\x91\xbf&\xf9\xe0(\xa3\xce\x9c?\xf4\xd9~cp\x0e\x90?B\x0fL\x05\xadK\xa6?\xe0\xc6\xa8\xaa\x9fd\x90\xbf\n\x13Kxt\x8b\x80?\x91\xd4\r\n6B\x83?j\x8a\xdd\xfa\xe2\x8a\x83?j\xf2\x12\xfc\xdb\xedS\xbf\x1a%u\xb84\xccp\xbfdej\tF\xd9m?\x04M6\x9cX\xa5\xac\xbf\x08\x9d\x1cf\xa7)\x9c\xbf~\x99\xca9\xa6\xde\x7f?\x0ch\xab\x1e\xadN\xa0?=\x8d\xdd\xac+7\xa0?\x1d\x04\xaf\x9c\x9b\xda\x89?\xc6\xdc\xf1\x1dl\x9c\xc1?\xb2\xa08\xae\xb1\xb7\xbd?\x80\x82W\x17\xfd\xa3\xbf?j\xfbH\xf7\xef\x1c\xd2\xbf\x06" \xb1\xbcu\xad?\x13\xaaw\xc0\n:\xc6?=\xcb\xcc\xbb\x8a\xbb\xb0?C\x9d\x88Y\xab\xc9\xaf?\xe4\t`=\xde\xfb\xaf?\x1c\xbf;41\xe7\x95\xbf\xa0q\x0c=\x06|\xb0?O\xdf\xf1\x958&\xc5?(\xb8u\x11\x11\x90\xb5\xbf\x80\xe7\xa8_\xd3#e\xbf\xe0\xa5j\xbc9\x90\xb3\xbf$\xba\x99\xe7\xbd\x98\xb9?3\x01\xea\xfa&\xd2\xb4?^3y\xb4\xfbQ\xbb\xbfQ\r)\xd67o\xb2?b\xa5\x97\x7f\x97\xb8\x9e\xbf\xe6\x16\xa0\x9d\xb8X\xb8?\xe3\xd3_9\xfd\xee\xb0?Sf\xa4e;\x1e\xbb\xbfLd\xf8G\xe7j\xd4\xbf\xaa\x00z\xb9B7\xaf?]#\xe1\xad\xe8G\xc2?z\x17\xe2\x17\xd2\x8f\xb9\xbf7\xd6^X\xb7\xe1\xc2?\x88\xafk\xaf\x80r\xb9\xbf\x19\xf5\x10t>C\xa1?\x16\xa5\'8\xef$\xbc\xbfw\xbc\xd6d"\xab\xa6\xbf\x88\xcfQ\xd7\x04v\xb7\xbf\x9dp2\n\xa8\xc8\xb0\xbft \x97)c\x8f\xba\xbfF\xcf\xb5\xf33\xa1\xb3\xbf\x91\xed]\x1cq\xb5\xb2\xbf\xa0\xf6\x00\x13 \xd6C?\x08{\x8f\xe3X\xb6\xa6\xbf\xad\xfc\x89Bnk\xba?Hc\x7f\'\xbcQg\xbfi\xfe\x01\x00\xbf\xa3\xa6\xbf\x9f$A_z$\x97?J\xf3\x9a\xcf\x00\x0f\xb2?\x14\x05\xf1\xafj\xa0\xa3\xbf\xe0e\x1d\xaa\xd6\t\xa9?\xe1Z\xcf\xad\xd3\x86\x95\xbf\x02K\x0e\x15\xe2\xe4\xb3\xbf\xd3\xa8\xd3\x82\xf1\xd5\xb3?\xe4\xbcq\x99jb\xb5\xbf\x8d\xac|\x1e\xcd\'\xa1?!\x187\xff\xeaY\xaa?\xc6n\xa2\xb4\x9c\x9b\xb7\xbf\xa1n~\x01\xd7y\xb3?\xf6H\x13sJ\xac\x99?JX\xcd\xb3\x85\xab\xc1\xbf\xb0\x88\tY{\x1a\xb0?9\xa5`{Ho\x9d?\xee\r\xf7Z\xff"\x9b\xbf\xd1\x06\xa1 \xfd\xc6\xbd?\x97B\xe61\x13\xaf\xbe\xbf\x14\x0e6 n\xab\xaa\xbf\xc9\xd1v\x88\x8c\x04\xb9?\xa6<\xb0O\xaf \xae\xbf%R\xb2\xf6+8\xbc?Z"\xb3Q!\xcas??\xed\xeeM\xb0\x8c\xaa\xbf\x89\xe9A\x15%\r\x83?\xb9~\xa9\x92s\xbb\xbe\xbf:\x00\xbb1\xb4\xde\xb2\xbf3\x9e\x1c"O\xf1\x94\xbf\x7f9\xf54WC\x9c\xbfX\xe4\x068\xeet\xb5?o\xa8\xf9E(\x12\xba?\x1e\x1cQ\xda\x92\xb3\xb4?\xd6\xf58Q|W\x9f?\xbb\xf6:\xa7Hy\xb8\xbfT\xcf/\x10{\x81\x8f\xbfg\x13t\xefOK\x83?\xe0\x844\xdd\xf8<\xa6?~\xf8 \xe9\xf8+\xc0?\xf5\xf7l\xa6\x1f#\x98?(\xa2\xa3\x036|y\xbf\xc5N\rD\xcd\x85\xa7?\xeaO\x135\xec\xb8\xb0\xbf\x1f\x94\xf9v\x94\xb4\xaf?\xd0\xf3\xc4\xb8\xf1\x8e\xa7?\x84\xe8\x85\xac\xb2\xcb\xa7?@\xe9%\x88|E\xa3\xbf\x1bN" \xe1\xb8\xa2\xbfb\xee\x8c\x01\xe6\xa7\xc0\xbfP\x9b\xcf\xe1\x13*\x8c?\x06\xf0~\xca*>\xa6?\xb0\x13\x9a\x06\xf5\x9e\x9e\xbf\xb0(\x1ap\xdb\'\x81\xbfFM\xfe\x87d\xb6\xca\xbf\x12\xca\xe4|\xb9\xa6\x91?\x0c\x9eU\xec\x81d\xca\xbf"\x81N\x0e\xaad\x80?\x94\xf9\x16\xe7\x05p\xc9\xbf\x96\xb5\r\xadkc\xa5?\x88 \x0f\x87M\xf4\xc7\xbf\xc3\x0cG\xfbx=\xcb?\x1a\xbe\x8f\xf0\xa1+\xbb?\xef\xfdG\xcb\x01\xb5\x91?\xbf\x93\xedB\xe0\xa5\xca?\x0f\x1aY\x84\xcf5\xbf\xbfl\x83\x07\xe4\xa6\xbf\xcc?\xd1\xd6\n\x18\xb1o\xc0\xbfp\xa6\xe1\x00\xe4\xce\xc6?~\xd0\x06\xb5\xcc\x84\xa7\xbf\xa0XNhy;\xc4?`\xf8\x1fsX\xb4\xa3\xbf\xc6~6&{q\xa8\xbff\x9f!*\xaf\xe8\xa3\xbf\xe0\x83\x80\x1b\r\xc7~\xbf\xd6\xa4b\xda\x98:\xa8\xbf\x9a\x1f\x9f1:\x0c\x8c?>y#\x82\x82e\xa8\xbf\xec\x9e\x86\xadi\xea\x98\xbf\x08c\x16\x15\x05\'\xb4\xbf\xe0\xddE\xcby\x92\xa0?\x12\xec\x03U@\xf3\xaf\xbf\xf0\xa2$\xfe\xfd\x96\x88?MS\x98\x0b\xab\x81\xa7?8\x18\xa0r\x19\xb7\xaa\xbf\xa7\x1e@\x9a\xfb\xb2\xb2?\x8e\x85od\x9e\x97p?\x9cPM}\x045\xad?\n\x0ex\xf9\x1a\xb9\x87?\x13\xed\xbf\xd9y\x96\xb1?J\xb3X\x9a\xda\xea\x8b?M\xc5\xc3\xdf \xd5\xa4?8\x92]\x17\xe1\xda\x9b?8\x08\xaf\xf9\x1e=\xa5?_\xa2\xda\x15 \x18p\xbf\xe0\xc1\x8b?\xeb\'\x8c?e\xebe\x81\xeaI\x92\xbf\x11(\t\xa0\xac\xaf\xbb?\x18\xed\xe4\x13\x84\x98\xc8\xbf\xd4b\x10\xb4\xa7\xc1\xb1?~\x19\x16\x88\x8b\x9e\x99?L\xf0\xc1\xa3\xa9D\xb2?\x1c\x9b\xf1\xcd5\xc4\x89\xbf\xfd\xd1a\x7f\xb5\xab\xb8?\xfe\xe60DF \xb7\xbfa\xa2\x0b5R\x11\xc0?\x7f\xe4\x1a\x0c\xe6\xc4\xbf?4*,\xb2\x88\xba\x8d\xbf\x04\xa6\x82S0\xe7\x90?r\x1b\x16\xe4=M\x9b\xbfX\x8c\x1c\x04\xb8\xaa\xc4?\x0b\xce\xde\xc1\xc7\xa8\xb0?\x06<7M\xbe\x9e\xa7\xbfR\x9e\xc1\xeb\x96\x12\xac?\x96\x03\x15iN\x0b\x9b?\x8c\x14\x9e\xc4$\x04\xb0?\xdcU\xde`IA\xb4?\x80\xe0i\xa1\xc629\xbf\x12\xe3\x99\x00\x0b;\xc6\xbf\xe8\xa5\xa1\x15L\xed\x97\xbf\xcfi\xa0;\xbeE\xc2?\x12\xa8\x03\x1e\x8bi\xc0\xbf\xa9ur\xf1\xcc\xf9\x9e?Z\x04\x02F\xa0\xf5\xbc\xbf\xf5@\xe6b\xae\xac\x91\xbf\xf4i\x9eK\x99E\xbf\xbf-C\x8e[\xc6=\xb3\xbf\x00\xa7\x99I\xb1x\x14\xbf\xf7\xbc\xc2@"\xc5\xc3\xbf\x0e\x07Z8El\xb0\xbfp7\x9f\x9e\xda\xc5\xbf\xb6(W\\\xb8y\xa4\xbf\x0c j\xdaa\xf7\x8a?\ta\xcb\x13\xcfH\xd1\xbf\x00v\xb3g-\x9e\xc0?\xfc\xf3S\x7f\xa69\xbc\xbf5V?V{\xe6\xb1\xbf\x9e&\x18\x9d\x8bM\xd0?\xf2VYC\x8eT\xb6\xbf\xf4c\t\xf4\x19h\xb5?\xd1\xad\xcd\x93\xdcI\xc2?\xf4\x1aK\xd8\xc6\x01\xc6\xbf\x00\xcb:s\xa9\xf2\x93\xbf}\x00\x93\xf6\xe5\xdb\xb6\xbf&\xe1\xe8\xc7}h\xc1\xbf\xd0\xf4f\x03\xd6\x93\xc9?\x00,M\xdc\xe9\x05\xa5?7]\xc5^\x999\xb3?\xb4\xfb^c:\x19\xba?.o~\xdf=7\xce\xbf\x08\x01R<%\xfb\x92\xbf\xeb\xc5|\x05\xea\xb9\xc0\xbf\xa2\xf2\x9dw\x9c9\xa4\xbf\xce\xab;\x90\x90\x89\xcc?K25\xd2\xcb\x8a\xa6?\x18L@\x8e\x00\x01\xc7?\xb2\xe4\xe8\xb14\xd7\xad?\xe5)\x90\x95\xb2(\xc7\xbf\x9c\xb5n\xffo|\xb1\xbf\xf0&\xde\xb4\xc2\x05\x99?|v\xe2\xef\x16d\x9f\xbfh\x1f\x147\'\xcb\xa4\xbf\x1f\x1b\xd5\xeb\xb4\x7f\xa1?\x80\xceq\xbc\xf0\xf5\xa0?\x80\xab\xd4a\xd4h\x9d?\xea\x1c\x92=\xa9v\xb3?\xda$\xee\x88$\xe0\xa5\xbfv\xcd!)\xb1\xdc\xc9\xbf\x86\xe6;\xca!\xe9\xa6?~g\xbfl\xcf\x88\xa0?\x10Z\xe6c\xb3\xa0\xa0?rk\x05C\xdc\x87\xc4?\x9cXywZ`\x9c?(v\xfbp]v\x9c\xbfH\xc9J\x02\xb2\xef\xb0\xbf\xa4.[\x1ci\xeb\xc5\xbf\x0e\xa6\xcc\x0f\xea\x8e\xa1?\xce6#\xff\xa7\xd7\xbb?L\x11X\x0c2\xbd\x9c\xbfm~\x83N7<\xa0\xbf\x10\xb4<\xf6N\xa6\x9b\xbf\xe0uH\x1dx\x0c}\xbf\xfa\xe4\xe7=\xf1\xfd\xa8\xbf\x84K\xb7\x9f\xdb\xf7p?\xe2d\x9b\x15\xc2+\xaf\xbfQ\x94c\xf2t\xcd\xa7?h\xedl\xa5wy\xad\xbfPw\xf6\xc0\xf1\xfd\xb5?\xaeH\x88\xe8wm\x82?\xfd\xf0\xe9w\xac+\x84\xbf[ \x87X*\xa5\xaa?\xe1\xfd\xe0#M\x1c\xb7\xbf.BWj\xc54\xad?\xc95\x1e\xd5\x94}\xb4\xbf@&\xc4\x9bH\xff\xa3?\xa2\x0f[\\2\x8a\x9c\xbf\xfc\x9bz\xb5\xd8\x0c\xa2?\xe8\x11{\xbc\x9b\xb1\xa9\xbfx\xd3c\xb9v\x08\xaf\xbfo\xf6\xca-\x8eJ\x89\xbf0T2n\xf6\x8dr?&\r\xd0",\xb3\xa2?\xbc\xc3\x8b\xb9S=\x90?\n\xbb\xb5\xceIz\xb6?\x12\xea\x1e\x979p\x94?a\x9d\xf5\xa0\xed\xec|\xbf\x08`\xb1\xb9\xd6\xb5\x8b?\x8d\xd8\x7f\x89\x0e%\x95\xbf8\xb4\x92\r\x96\xfe\x93\xbf.\xe9=|\xc4\x85\xbd?\x9f\xe1\xce\xc54\xbc\x93\xbf\xc8\x94 \xean\'\xab?\xb0\xb3[\n\x96\x05i?X\xc5\xdbh-K\x92\xbf\xbcG\xe8J\xc8\x86\x95\xbf\t\xfb\xda\xc9\x00\xf9\xb1\xbf2}We\xb8v\x92\xbfu)\x9d\xa0-2\xa9\xbf\xfcL\xad6\x8f\xca\x97?\xb4\x1c\xdc\xfad\xe4\x92?\xdc\x9fjG:"\x99?^\xed&/\xed\xe3\x87\xbf\xb4\xeb\x8c!3\x9e\xaa\xbf\xc0\xf2)^\x9e\x01i?0{\xe1\xe8|\x94|?h\xfdmM\'\xce\x93\xbf\x86"\xc3\xd8\x0f|\xa0?\xb0Lj\xa0\x98\xcds\xbf\x90\x88\x19\x96\xaf\xb5d?\x0c\xe9\xbe_\rE\x8a?Y\xf2#\xa6\tU\xa1\xbf\xfb\x1a7\xb4x\xdd\xa9?\xed\xc6v\xdf\xe3\x18\xbc?V\xfe\xa5A`/\xa0?\x80\xaf\xa2Y3\x04\xa2\xbfC\xba-\x94_Y\xb5\xbf\n%\xbcS\xf5U\xb7?=l\x12b\xa9\xab\x95?\xad\x85~\x12@\x81\xa3\xbf\x8d\xb1\x12\x029y\x92?\xc0\xc4a\xd0\x04\xb2C\xbf\xbc\xf5\x87\xdbG\xe1r\xbf\xa8\xdfgo\xf4\xca\x92?\x99\x18.\xeb\xd2\x84\xa5\xbf\xc4\xd4\xab$\x9a\t\x92\xbf\x96\xdb\x92\x1f\x16\xbb\xae\xbf\x88\x12\xa2\xe3\xd4\xfe\x97? \xbd8\xf8\xe6\xa3~\xbf\xe0.QUH\x86n?\xcc)SGb\xa9\x95?\xe4\xe2\x94\xdd\xc4\xa6\x8b\xbf\x9a\xb1\x9eP\x98\x18\x9c?\x96\xfd\xdf,\xcf\'\x9b\xbf\xd0\t\x84\x1f`\x04\x81?\xdc\xfa\x01\x19\xc6\xb2\xb7\xbf\\\x9a\xb1\x8e\xae\xdb\xa5?\xc0\xbb\xc4\xad\xe5\x10\x92\xbf\x14qJ\xf82\xf2\x99?\x98\xa6\x15\xdd4p}?\xde\x13\x9c\xdc\x14\x12\x85\xbf\x08\xf8t\x10\x1e/\x93?\x0f|\x1b\xfa\xe2\x12\xa5\xbfR3\x99wk\xe7\xb1?\xbe\xb1y\xfan\xa2\x95?]OA)\xf7\x08\xac\xbf\xf8[=\xa7Fh\xb8?\x04es7\xfc\x9b\xb2\xbf\x1e\x80\x184>\xdb{?=\xf1\xab$\xb0\xfbj?~\xbc\xa1\xe6\x06\x9c\xbd\xbf\xb2\x0f\xa8\xacQ\xd5\xa6?\x80r4\xd7\xb5\x01\xb0\xbf\x91\x97\x05\x83\x9f\xb8\x94?\x14\xa1\x14\xba\xd4\xf8\xbf?/\xc5\xd9\xceW\x95\xa6\xbf#\xa0aU?8\x88?\x13t\xaaq\x80\xa3\xa0?n\xf0\xc5\x17Z\xa3\xa9\xbf\xa3\xb5\xf4-\x8a|\x92\xbf\x94~\xe5\xec\x07d\x9c\xbf\xbe\x91\xc9c\xedz\xb3\xbf\xac\xb6P7Us\xaf?\xae\x83\x98\x1a%\xd4\xae?\xe8\xaa\x88\x0cZ"\x95\xbf\x9dZ\x1c\xac\xf8\xa3\xa4?\x80\xb4T\xdc<:V?Xb\xd4\xcf\x9c\xf1\xa3\xbf\xdb\x9aZ\x80\x05\xde\x98?\xae\x03\x921U/\xa9\xbf>\xe3(x\x86\x80\x9f\xbf\x1f|#8@#\xa6?eY;\x1c\x1a6\xa3\xbf\n\x17\x1cF\xd6c\x97?a\x11n\x8f\x1d|\xa6?\xa8\xa5\xb7\xf5\xe7\xe3\xa3\xbf\xf6\xa6\xb1&t\x10\xab?\xac\x02\xffr~1\xad?\xf4k\x18\xff\xf2\xa0\xad\xbf_M\x84\xa4\xfe\x05\xae\xbf[\x1e\x98\xb6N\xd5\xb3\xbf5\xaeo\xa5[\x1e\x90\xbf\xe2\xc4<\x93\x05\xdc\x82\xbf\xab\xdf\x07r;=\xa7?\xcc\xb2\t3d\x07\xcd?K46\xa1Y\xd1\xa3\xbf\xcd\x10^n2\x8e\xc6\xbf\x08@! \xc6\\\x91?\xf0\xcer^\xddt\xb9\xbfT\xd1\x07\x01\xdb\x0c\x94\xbf^\xf1\x06\xe0\xc0\xf1\xb3?]\x07s\x9eRE\x91\xbf/\x9cto\x9f0\xc6?\x883\xca\xe3f\x04\xb2\xbf(\xd5\xa7\r\xa4\x84\xb8\xbf\x10\xbb\xa8\xbe\tp\xba?m\x1ce\x1e\r\x81\xa6\xbf\xcd\xed5c\x89R\xa9\xbfJS$\x10\\D\x99\xbf\xc9\x9b\x94\x81O\x17\xaa\xbf\xac\xb6\xb0\xffi4x?\x00\xac\x94HL\xe5\xa4\xbf\xe4\x99\x1f\xe9\xb3\\\x99?\x132\x12d\x1cj\xa1\xbf\x08w\x95\x0e8\xa2\xa1?\x8a\xbc\xdd,\xc2\xae\x9b?\x94\'\xa2\xdeG\xaev\xbfq)\xca\x040\xab\xa4?\xfcCU\xbd\x1c\x92\xa7\xbf\xa6\xd6\x8f\xaaha\xa6?\xca\x8f3\x1duF\x9c\xbf\x8e\x85\xa6\x19\xba\r\xa4?\x901J\x9f\xc0>\\\xbfg\xaeP\xda\tO\xa4?\xcbrW\xa3\xe0\x14\xc2\xbf\x00\xbf\xfb\xee\xef\x08i?\xb0\x98\xffM\x9a\xf6\xa7\xbf\x16\xb6B\x89\x120\xa4?\x8b\x85\xde\x8b\xea \x9c?D\xd3\xf9\xfd\x96&\xac?\x19\x9a+\x802s\xb6?O\xb5\x8f"\xc4\x87\x96?\x7f\xf1\xf1\xf5\xff%\xa7?\xee!]\x9a\xaf\xdf\xa9\xbf\xb0zN\xaf\xb4\xa5\xa8\xbf\x10[\x12\xac\xf1\xe7\xaf\xbf\xd1\x95)\t\xee\xf3\xa4?\xe2\x8e\xc1\n\xc3a\xb3?\xbe`[\xa5\xb6\x90\xab?\x86\xd71\xd1\xa3\xe3\x97\xbf7C\xcf\xfco@\xa0??\xb3M\x1b\xf3\xed\xad\xbfX\xef\xc3+\x9c>\xa5\xbf8\xeb,\x02\xae\xabf\xbf D\xa1\xc7,Sj?\xa06\x99n\xdc\x937?v\xcfN.\x1c]\xa0?\x86\xb6\xbd^\xb0\x13\xa6?/\xb5h>\xac\xfe\xc1?\xc1\xa8\xf3zP\x86\xbe?h\\uT\x0f\'\xc1?\xeeNlcie\xd0\xbf\x90V;\x19\x1f\x89\x90?\xf0\x08\xecXR\x08\x9b?\xe8\x98\xecG\x151\x8f?\xf1\xe7\t\xc5\x8d\xe9\xbb?%0\x84\xa8\xca\xe7\x87\xbf\x86\xf9+\xfb\xba\xa2\xac?\xc0\x99\x98\x03\xd3\xf4\xa1\xbf\x06\'\xbf\xed\x8f-\xd5\xbfj\x9a\xc59M\x96\xc1\xbf\xc9eH\xf4u"\xbe?\x93\xf6\xa1\xea(\xf3\xc5?*\xd6\x9e\xf3\xf8\x9d\xd3\xbf\xc2h\x86\xc7\x9e\x1c\xa1?x\xb6\xb2\x1f\t\x03\xac?\xb0\x87\xeff\xf0\n\xa6?\x0c-\x01|\x95\xed\xb6?p\xe4\xfa8\xcc3\x93?0\x96\x1e\xa6\xb7\x0cc?\xc4%\xf8r /\xd2\xbf\'\xe6!0\xf7<\xd0\xbf`\x071p3\xc2\xc0?!z\x1b8h\xb0\xae?y@\x90\x91\x1bC\x83\xbf\x9a\xb5m\xf4.2\xa2?\xe4\xf7\x83w\x95\xb2\xa3\xbf\xfa\x9dw\x94J\xcd\xbd?J\x88]\xf5[\x89\xac\xbfGyWb\xe9(\xaf?j\x8f\xbb\xe5)\xce\xb1\xbf\x90\x02S*\x13]\xc1?\x18y\x0bFj[\x91\xbf\x9c\x027$*\xcf\xa5?\xe2\x96\x99\x81\x86\xfe\x83\xbf@\x9e\xefs`\xf0\xb8?\xc3(1\x11\xd5-\x8f\xbf\x1c\xb2\xa4\xb89Z\x95?\xa1\xde\xde\xd4G\xc5\xa8?\xdf\xbaT\xa5\xabV\x94\xbf\xc4\xdd\xd9\xcbb\xe9\x86\xbfy\xf3BO@\xac\x94?l\xf7:"\xea\x85\xaf\xbf\x9d"\x06\x11a Z\xbf\x8a\xdd\xde\xa3B\xbd\xa1?\x1d\xd4\xa2\x8c\xb4;\xa4\xbfB\x10-\x17\x8bU\x96?\xd5i\xbe\xd5\xea\xaf\xa0?Q\xca\xeb\xf4\xb8f\xa0\xbf\x9e\x9b\xd5\xba\xef\xd7\xa0?!\xd83@;K\xa4\xbf\xd9\rW\x1e\xd7G\x97\xbfc\x02\x86\x7f\x8c\xe3\xa5?\xbaQ"\xc0)\xfb\x9a\xbf\x01\xa0\x9c\xb0L\x92\xa4?\xd3j\x996)\x0f\xb3?\x9b\x8bES\xa7\xd0\xa8\xbfbz\xa7\x02U^\xa0?}fA\x97\x86(\xb9\xbf\x9b|"\xa3Ln\xc1\xbf?]\xa8\xd1\x01\xf5\xc0?\x8br\xb0{\xf1\xa6\x8e\xbfA\x94\xf5!)\xcf\x84?lr\xaa\xbd&\xe6\xbf?\x1b1Gp\xac\x8c\xb8\xbf\xb6`wpK\t\xa7?DQ\x99\x81\xaf\xe8\xab?\xb8\x9cD\xf3\x03\xde\xc1\xbf\xcae!sB\xc3\xb1?\x8ax<\xf5"G\xb0\xbf\x1dP\xb1\x88\t\x0c\xb0\xbf[3\xb9%\x1a1\xc1?\xae\x89\xa0\x14\xd2\x99\xae\xbfm\xc4\'\xdf\xc09\xc3?c\x0e8X\xe9\xa1\xb7\xbf\x04\x88\x1a\xa0\x03\xf5\xa9\xbf\xb6D\xe2UO\xb2\xbc?\r6\xcd\x00\x11\xc6\xc1\xbf\xf0\xf7\r\xa5\xa17\xc7?&\xdd\xda6\x9fb\xc3\xbf\x88\x0cw\x98\xb0S\xc9\xbf*\xb8\x80\xbfpp\xf5i|\xd1n\xbf\xb8_W\xe7\x9b\xf7\x98\xbf\x9f\xe8\xb7Dj\xea\xb8?9d\xfa\xde\x11{\xa3\xbf\xdf\x1b\xea%\xb9\xb5\xa1\xbf\x18\xeb\x9e\xad"6t\xbf\xcb~HN\xf4}\xa9\xbf\x0c\x04\xc4H\x0b\x11\x87\xbf\x01p*6P\xcf\xaa\xbfs~\xa1] L\xba?\xc6\xec\x96\xe8\x98\xb0\xa8\xbf\x9eB\xb85\xdap\xa2?\r\xb8\xe9\xbe\x82.\xc2\xbf\xe1\xca\x95\xfc\xdb\xc6\xcb\xbf\x83\x88yX@\xff\xc0\xbf%\xb2\x0f~+\x0e\xb6?\xbb5\x81\xb57\x98\xd3?\xaa\xae\x95\xeb]T\xc2\xbf\x96\xf4\x18\x80\x00\xff\xa9\xbfx\t%\xa1J@\x8a?\xcbI\x93d\xafW\xba\xbf\x8e\x03\x17\x15\xcb\r\xb0?\x9d\xf5\x14\x80\x13\xda\xc1\xbfz\xbag\xbcT\xb6\xa7\xbf\xf0}\xa8\x88\xdd:\x99\xbf\xac \xcd\xc3\xa3\x91\xb4\xbfz\x10Q5\xcc/\xa8?\x98\xe6\x89\x17\x81\xae\x9e?p\x8d3\xc8]6\xb7?{RUN\tP\xa3\xbfi\x80\x85z\xdf\xa1\xb8?z#6\xd1\xfdS\xb5?\xddX \x03\xfc\xdc\xaf?}\x9a\'h\tX\xb1?\xbdm\xa1\x94\x85\x1f\xb1\xbfT-a6o\x9a\xa4?(\xb0\x97\x1cM\x15\xb4?\x06\roN\xe3d\xa8?\x8a\x03\xecf\xcaU\xa0?\xa4\xebB\x00\xcc\x82\xb3?\x8dD\x86\xea\x8b3\x9a?t\xa4\xf1K\x91\xca\xa7\xbf\xfe\xd5\x0fP\xa1\x07\xb2\xbf\x13E<\xe4\xbe\xcd\x98?\x1aa\xb2\xd9\x95\x9c\xaa?\x89\xe8\xe7\xae\xf6I\xa0?\xb6\x91\xbc1,9\xa5?p \xd5\xecT\xc1\x8a?\xaf\xc4q\xe6\xec\xe0\xa4\xbf\x12h\x17e\xbc\xb0\x80\xbfI\x1b\x82\xa6S\xbd\xa1\xbf\x92cnS\xc4\xe2\xb0\xbf\xe4\x8c1\xd4n\xbb\x9b?X\xc0EI\x002\x95\xbf\xc0\x16\x1f\x80>\x8f\x8f?\x8d\xa6\xfa\x89\x18t\xb7?$\xbbS\xd2\x05\x10\xab\xbf\x99"\xfeQb[G?\xa9l\xdci\xa5z\x95?!\x804\x80W\xfd\xaa\xbfT\x1a\x16\xc4\xf0]\x91\xbf\xd6|\xff\xa6i$\x97?\x1ea\x11|\xa0\xa1\x9d\xbf\x96\xfa\xe0p\x8fE\xb2?\x17AB\xc9\xf1\xed\xa1?\xf4\xe4\xb2\xed\xa4Q\x8a\xbf\x17\xab\xcd`\xb0\x93\x94?\xe6\x1b\xeb\xf5\xa6\xd4\xb6\xbff\xb6j\xcaG\xbb\x90?\x80\x9d\x92\xd9\x04\x8c\x92\xbf-/}(C\xf3\xa7\xbf\xe3\xab-Kuc\xb0?$\xfd\x17g\x8aQe\xbfI\x9e\r\xb1j1\xa9?\x18\x15\xd2\xd7+My\xbf\xc2\x07\x17\xcae\x15\xa4\xbf,d\xa4_U\x88\xad\xbf*\xdcOda\xba\xd3\xbf\x18\xe7\xfe\xf5\x1e\x84\xd3?^cA@\xcd\x0e\xc8?\xffe\xc7\xacP%\xb6?\x97\xf2\xf7\x13F\xd0\xc0?B\xfd\xb1\xa4\xc8\xae\xcc\xbf\x04\x03\xc3z\xfb\xed\xb3?\x96\xdd\xf9\xd8\xc7\xf5\xce\xbf\xdf\xe7s\xe5\x0b\x11\xb9\xbf\xa3O\xf0\xd4\xf7Y\xd7?\x02p\xbc\xfe\xfaX\xd0?\xa0\x06\x8e\xd2\x1do\xa9\xbf\x13d\xa5\x12\xb3\x9b\xba\xbf\xa4\xd6P\x08\xea\x0e\xc6\xbf~G\xbc\xd6\x84/\xbf\xbf\xd6\x9f\xc8\xe4\xde\t\xba\xbf\xb0\xa3\x87(r\x98s\xbf\xd8]+\xca\xfc\n\xbc?\xed\x03\xe8\xfd\x97\x88\xb3?\xb5[\xa5\xad\xb4\x9f\x93?\x84\xe8\x85\x93d\xc8z?4\xb9S\xd4Q\x0c\x90?\xe5\xce \xaf\xd3m\x9b\xbf\xa4y2r\x8a\x01\x81\xbf\xdd\x07(\xc0^\x17\xad\xbft?q\xff\x1b\x88\x96\xbf[S\xfc\xe7\xe5\xb0\xb7\xbf\x1e\x18w5\xa9\x9f\xa8\xbf\x08\xd6\x80\xe4\x98\xd2\xa9?T\x8eB\xf0\xd5x\xac?\xec\xe8\n\x8d\xce3]?T\x92IC\x1d\xc4\xbd?|xDK4\xaag\xbfJ\xdbo\x8e.\x85\x97?\x83\xcd\x00\xceG\x80\x93?\x95z\x84\x9c}\xd0\xbd\xbfp\x18\xe1(\x1d}e?w\xfe\xa6x\r\x13\xc1?2I0\x9e\xc3\x8c\xaf?P\xd4v)\x1b\x05\x9e\xbf\x04\x18y\xdb\xffU\xac\xbf\xe0\xcf\xa2,\xb7\x1a\xc2\xbf\xb7\xbf\xbbCO\xdf\xba\xbf\xe2\x7f;\xb3\x89g\xc2\xbf\x10\x84\x81\xca\x0cf\x9f\xbf\xe0\xd1M\xd9=\xfb\xb1\xbf<_(4l\xe2\x9f?Q\x13q\xb1\xb9\xf9\x94?\x05\x06\\/Bm\xb0?\x14\xfb\x7f\x96a\x80\x9c\xbf\xcf\xc8/3\x812\x94\xbff"\xa5\x83.\xff\x8b\xbf\x1d\xc6\xaa\xf2P\x8b\xa6?\x8f\xeb\xac\x9b\x94\xa2\x88?\xe1\x86uK\x02\xc1\x93?\xfec\r\x87b\x02\xc3?\x91\xdaf\t|\x07\xab\xbfD\xee\xf05\x02p\xb4?=\x12i\xb0\x82\x0c\xa0\xbf\x1867\x9a\xb2A\x9a?"\xc7\x80\xc5B\xc5\x92\xbfUU\xbeM\x94\x8d\xb6?\x11\x8fzIm\x93\xa5?\xdf\x8d\xcd\xbf-v\xa6?\x19\xf6p\x8a\x98\xcd\xb2\xbf\xa2\x02\xf8t\x06\x00\x87?s\x95\xd8\xa2\xd2\x9f\x99?:\x17\xf7\x919\x8fj\xbf\x8bHd\xfeg\xd9\xb1?j1\xa0r{\xafi\xbfm\xd4\x07\x8e\xbaM\x9d?\xc2)\xa2z\x14\xae\xa8\xbfh\xe1#w\x9d,\xb8\xbf%\x1dL\xbc\xf0\xfd\xb3\xbf\xe6\x92\xe37\r\x96\xa6?\x1a\xb4\xcf\xb6#\xe6\xb8?NW\t\xbf\t\x91\xb7\xbf`\xb6\xa0\xaf`\xca\x82?\xbc\xc6\x81\x10\x83g\x90\xbf\xe0{\xd6\x80\xa4\xea\x85?\xfbh\xad\xea\xd5\xfd\x96?\xce\xa2\t\xfdivy\xbf\xc4\xeeW^\x84%\x98\xbf\'\x9d}\xd9\x8f{\xb5\xbf\x94\x90ipc4\xc0\xbf\xb6\x1c[\x06Y\xde\xaa?N{\xab\xa8.6\xa6?\xe87\x8d\xfdk+|?\x92\x13\x90W&\xf9\x8e?\x0c\xe4\xb9\xe1e7~?\xac[0\x9d\xf4\xdf\xb1?\x80\x08\xca"qtg\xbf4\x85Q\x7f\x11z\x9e?\xd6\x05>\xb1\x81\x0b\xac\xbfH]\xb7\xe2;\x1d\xa8?\xfczw\xb6\xbf\xdd\x81\xbf\xe8T\xa3\x83AyR\xbf\x00j\t)|\xb1z\xbfd\xe3\x7f\xc2\xa1s\xa4?\xe0&\xf4\x94\xb7\x97z\xbf\x92\xa6\x1a\xcb\x93<\x89\xbf\x1f\x07\xf6c\xcdd\xc0?P\x87\xb9[\x01M\x99?\x9e\xeb\'\r\xa7\xf2\xc2\xbf\xabTJY!\xed\x9c\xbfiG\x08\xb9\x1a\xd7\xb7\xbfn\x00\xe8\x91\x80Z\xa2\xbf\x0f\\\xf2\x13\xb6\xa3\xb7?\x16{\xa6W\xddr\x9c?\x06\x8a\xad\xfd\xf3q\xbc?z.\xd1w\xefn\xb5?\x1c\x00[\xb2p\x10\xa0\xbf}\x8d~=B\xa3M?\xf8\xcdF\xbb\xca\x9c\xbb\xbf\xe3\\\xe0\xd3R\x8d\xc3\xbfQ\x01w\x86`\x1a\x89?\xcc\x93\x99\xae\xf2h\xb4?\xac\xab\xbe\xfbM\xe4\xad?\x12\x8c|\xb3\xda\x86\xb7?\x00\xe2\x1dT\x93\xd6\x91?\x93\xd2\xc9%\x9aK\xb0\xbf\x9c\x10kp\x11\x88\x8c?\x06\xf9\xec\x06jK\x7f\xbf\x99z_\x82\xea6\xb4\xbf+>\xffD4/\x99?\xf7\xe8p\xeda\x18\xb2?\x13\xe4\xe3A\xaf\x15\xb3?\xb8\xc2t4\x0b-\xb5?A4\xee\xa1\x8e\xa6\xa9\xbf\xc4\xba\x18\xd5\xa90\xb0\xbfC\x0f\xc9dj\xb9\xb1\xbf\xf8\x86\xe4\xd3\'\xd8\xb1\xbf\xa6\xc4\xf3\xad+}\xa3\xbf\xa8,\x974?\xda\xaf?\xfcU*/\xbd"\xb7?X\xb2\x07\xd2\xd4\x8b\xbc\xbfz\\\x1a\xf9\r\xc0\x94\xbft\xfa\xc8\xac\xc1\x9a\xcd?\xff\xa3\xd7\x98\xd0T\xa7?t\x8c\x85\x7f\xfax\xb6?L\xc8$\xa9\xa8G\x97\xbfz8\xe9\xed)t\xc0\xbf\xfe\xfcX<\xeb\xcb\x92\xbf\'\x0c*\r\x95\x1f\xcc\xbf\xd4\xef\xdafa\xfc\xb2?,z[\xd1\x95\xf1\xd1?\xc7m{\xd2\x07\xae\xa5\xbfP \x0e\xb9i\x82\x9f?\x94v\x80L3\x8d\x92?\x16\x14\xa4\xccl\x17\xb3\xbfcI\xec\xc0\x10\x16\xc0?\xe3\x01\xcd\t\x9d\x12\xbb\xbf\xffS\xff(\xa74\xb5?\xda\xa2\x98\xca\xef\xfa\x9a?7;\xc5tL\x7f\xc6\xbf\x85\x8f2\xdbX4\xb0\xbf,\x1a\x91h\xeaO\x9d\xbfE\xe151\x0e\xf9\xa5\xbf\xb2Bx\xc0\xfc;\xa3\xbfP\xa4[\r\xfc\x0e\xa0?\xa6\xe0\x17ZL3\xa4\xbf=\x0fH\xa1[\xaf\xa5?\xcfI\xb08\x9c\\\xa6\xbf\x96\xe2\xba\xb7\xfbp\xbd?\x14\x1bC\xef\xa6\xd8\xa6\xbf\xafo\x80\x96\x85\xcd\x97\xbf\x10\x01=g\xdc\xf2v?\xcb\x94\x0f\xcf\x9d\xbe\xc6\xbfp\x86m\xed\xbd#\xb0?~\xd6\xd1o\xdd\xfc\xaf\xbf\x8e\xd5 7\xa3\x9e\xa9?l\xa1\xc5W%\x8e\xb0?\x14[4;r\xf9\xa5?\xbd\xb9\x12l\xfd\xda\xce\xbf\xdeR\x81\xaa\xb9&\xb1\xbfu\xed\x07\x03yi\x90?1KES\x0e\x88\xb8?d\x92\xd5|\xf7\xe2\xbe?\xe4\x18\xfd\xb6\x80x\xb8?\x1e\x81\xf7u<\xdd\xbf?\x00{T\xc8L\xb79\xbf\xbc\x94v\xb4B\x17\xad?\x00\xbb\xd8\x00\xa1\n\xb9\xbf\xd4!\x83\xa2\x18\x15\xba\xbfPd\x1b"\x96\x92\xb6\xbf\x99\x89\x06~99\xbd?\x0c_\xdf%|)\x99?\xf0\x05S\xcc\x1d\xf2\xba?\x12\x13p\x1f\x0c\xb8\xb6\xbf \xb8G(\xa1\x93F?\xaa\x90n\xd6Og\xb1\xbf\xf2\x96\xe8G\x17G\xcd\xbf$:\x0f7|\x16\x93?\xaaKK\xc5\xbea\x83\xbf\x06U.$b\xfd\x9e?\xc7t2\x0bG:\xb3?\xaa\xc4r\xa8\xc0\x8e\xac?\x06 >o\xea\xa7\xa4\xbfT!\x91C\x93\x00\xbc?\xb24\\\x10m\x87\x93?\x9a\xbf\xe7\xd8\xa8\\u?\x90\x15\xd6\x0f\xc9\x95t?\x16\xf5\xb1\x80\x08\x14p?\x90\xc46\x9a)\x01\x93?\xfe\xb0-\x83\xfd\xc4m?\x98\x90\x84\xa1T\xea\x8e\xbf\xed\x02\xa5\x9c\x161\xb0?B\x8f\xec\xf6\xe4d\xa2?*\xc8\x12\xb9>\xe0\xb8\xbf\x0feq\xf2zH\xb7?\x81\xb2c\x95\x86w\x9c\xbf\x8e8\xa9\xb10*\xc9\xbf\x94\xb5/\xe0\xd6\xd2\xc2\xbff\x92L\x84\xe6\x86\x9c?\xe0@\xc4\xca\xc1\xea\x9d?aW\xac\xccw&\xbc?\xc0Q\xe2\x827\xa2\xa8\xbfj\xbe\xd5N)3\xba?\x7f\xa7\xd4Q\x97,\xa4\xbftU8\xc7\x07\xb0\xae\xbf\xd2TF\x89(\x9b\xa5?\xd0\x854v\xe5\x90T?R\xb6\xeedf\xae\xbb\xbf\xa8\xefN<\xdf[\xa3\xbf\x16qXo\x83\x95\xa2?\x88\x8e_\x82P\xfd\x97\xbf\xf1\xf8\xfa\xc0\xea|\x87?:\xbfm\x0e\xfbJ\x99\xbf\x8d\x119\xf6\xc4\xdd\x91?/\xbd\xc2\xba*\x9b\xb1?g&\xf4\x00\x88\xfa\xc5?\xab\xfa/\xfeLP\xb3\xbf\xb0\x1e\xed\x12\xb6\x1b\x83?\x80{\x9e\xc0\x19\xc9~?\x8b\x18\x1d\xe5\x83\x04\x9d\xbf\x80\xc4Y\xd0\x15ih\xbf\x14\x05\xc0\xe2\xb3\x17t\xbf\xe2\xd3\xc7<\x85G\xc5?\x8f\xcdz\xb8lO\xc1?@\x96W\x9c/$\xc8\xbf\xe6=\xa2\xa8$\xdb\xc1\xbf\t\xee\xcb\xcf\xa1\xc6\xc5\xbf%p\x8c\xff\xe0,\xc5\xbf\xb4\xe6\xad7m\xc5\xbd?u\x0f\xca\xd6\x8e\x9e\xb9?L\xfca\xce\xact\xc5?Q\xab\x00\xa3@\x89\xcb?:x&\x1f\x11H\x82?/\x1d\xf1yP\x1d\xa9\xbfWBF\xda\xf9\xc1\xc3\xbf\n#\x95\xfeK\x01\xd1\xbf 9`\xe9u\xa6\x82\xbf\x89\xc0\xa1.`_\xbc?\xd0\x8c\xec\xc8\xf2\xc9\x8b?\xf01NJ2d\xcb?\x14GOX\x05)}?p\xc1\xc5\x8d?\xf1\xb1\xbf97\xaf\x9e\xe4c\xa3?\xdc\x06U\xf1\xd9k\xc4\xbf\x0eq\xa6wj\xf3\xb0?p\x19\xe3\xe9\x03\x14x?\xa8\x9b\xef.)\xef\xc0\xbf\xca\x0f_j\xc8\xd5\xc0? kZ<\x99]\xbb\xbfX\x19Ai \xf3\x94?\x00\xff\xc2\x00\xc3\x10\xc2?N\\\x86\x8dv\xb4\xba\xbfDes\x14x\x13\xc2?\x90\xbdYe\x0b\'\x94\xbf\xca\xa5\xe0\xfe\x16\x0c\xc2\xbfTqK\xd76\xaa\xa2?\xfc4G\xcf\xa9-\xa0?\xb4\x11\xd5\x82\x8c\xc8\xb3\xbf\x82@C\xe0\xa2\xdc\xa4?\xa2\x99S\x9c\xec6\xad?\x11\x97Z\x03\xf0\x05\xb2\xbf\x9e\x03\xdc:\x96N\x94?\xf0\x02\x8d)\xcb\xae\xb2\xbfX\xbb\x7f+\x12\x7f\x9b?]Zb\x81\xd7\xa5\xb7?\xb0\xe5\xdd\x1e\xaa\x85\xac\xbf@\xafA\xa6\xf32\x89\xbf\xfbt\x0f\x7f\xa3\xab\xa8?g\xc0d[\xa0K\xb7\xbf\xcc\x97\x8f\xff\x7f\xb7\x8c\xbf\xc8 \x1f\x91\x83\xe3\x85?J\xbb?\xf6y\xc8\xa5\xbfz\xfd\xa0H\x98\x98\xbd?\x8e\x97\x8f\xfd\x1d]\xab\xbf0\xd7\x11+\x13\x1d\xa2\xbf^\xc0\xb1\xa0\xc4k\xb7?\xc4\xff\xfc\x9f7y\xa6?,w\x99\xa24\xf6\xa7\xbf\xc0x\xc6\x0b\xd2[\x8c\xbf>y\xf4\xe8\r\xf3\xa8\xbf\xab\x02\xec\xb9\xc2F\xa9\xbfrh\'\xee;4\xa6\xbf\x89\xa7\xe0\xae\xe4\x9e\xaa\xbf\xd2\xc2\xd9\x97\xb0\x10\xa0\xbf\xdab\x17n\x07M\xc6\xbf\x8ecl\x92\xc5O\xc0?\xf3\x80\x8c\xac\'\x99\xbd?<\xdc\x0c\x03\xdd!\xae?8\xa55z\x86\xce\xd3?\x1e5\x9eN\xf9e\x9b?"\x85\xe51\xca+\xac?\xe2\x84O\xc3\xbd\xab\xa2?\xd4\x90\xd4\xc8\x14\x8e\xd0\xbf@a\xdf\n=\x7fi?P\xdbX:\xd8\xe1e\xbfV@\xe1\xb5\x18\xc3\x81\xbf\xe71\xa6\xa4R\x9b\x9a\xbf \xda\xe0\x08\xe48\x8c?\xc0\xf1{\xa5e\x02l\xbf@=~\xb5q\xbb\x8b?X=\x87\x00\x1a\xdc\xa5?\xe0\x97(\xb8%>t\xbf\x90[\xdb\xe6\xe1\x86\x80\xbf\x82\x00\x90g\xbdq\x92\xbf\xe0\xa5Bgq\x9c\xa1\xbf\xc4\xae\xa5j\x16\xad\x83\xbf~\xd1\x8c#\xab}\xaa?\xb4\xe3+j{B\xa8?\x905\x0f\x11\xc4\xfd\x93?\xcb\xc8\x16\xc6\x9c\x96\x80\xbf\x0c;\x13"\r\x97\x90\xbf\xe4\xfa\xa9\xb7\x02\xad\x93\xbf\x12\xe9\x86\n\xf8Z\x9e?\xd8\\t\x1c\x88I\xac\xbfLE\xd1\xe2\xf6\x10\x94\xbf\x817\xcc\xfd\xc2\x1fr\xbf\x00\x90\xfdFy\xeaz\xbf\x9e\xc9\xa5\xf5\x93\x82\xab?\x80T#dl\xd9\xaa\xbfx\xd9\x9e\xef%\xd1\xaf\xbf\x02\xa5\xba\xa5\x02\x92p\xbf\xf6M\x13\x95\x87\n\xaf\xbf\x87\x0b\x8e\x7f\xb2\xcc\xa0?\x87\xe6$\x01\x1b\xb8\x91?\xa8\xbf\xa8&\xd5\x9f\xa6?\xae\xc0\x96\xb9\xb1\'s?V\xb9\x97P\x1c\x98\xa9?6J>\xa2\t\xbd\x8b\xbf\xa4/Z1\xbc\xd7\x88?\xbd\xcd\xbd\x1d\x91[\x9c?\xd0\xd9X\xd0\x83\x85\x9a?\x88\xc4\xb9\x88\x16|\xb8?\xc6^\xa49\xdfqp?n[\x0e\xa1\xd5s\xa6?TI\x01^\x90\xf9\xa0\xbf\xd5U\xd0\x18\xf1\x04\xa1\xbf\xa3\x1f\xe4\xdf\xfaM\x8a\xbf\xd0{A\xdf\x99\x89]\xbf\xd0\x8b\xb0#~\x0e\x8a?\xc0\x1d\xa6\xcb\x8f\x880\xbfj\xaeS\xc7q{\xbe?x\xaf\xee\x17>\xfc\xb9\xbf\x10\x1e\r$Fds\xbf\x1c-\x8d=\x91\x8e\xc2?\xe8\xb9\xd3U\xbe\x06\xa8\xbf\x18K\x8e\xdf?\xa3\x83?\x94\x9b<4\'\x86\xa6\xbf\x08fSU\x8a-k?\xfep$\x18\xe3\x00\x9b\xbf!4\xe2}\x96A\x8d\xbf=\x98\xee0\x11\x9a\xa2?\x82\x19&\xad\xb2\xe7\xb6\xbf\xc68\x92\xee\xc2\xfe\xa8\xbf\xe0\xc6\xf9\x8b\xab"\xa0\xbf\x94\xfd\xf8\xd4_S\xa5\xbf\xde\xa4\xa2jl\xe2\x8c\xbf\x80\xeb\x04\x84n\xe4c?8tx\xf8e(o\xbf\xe7\x02Q\x82\t\xab\xad\xbfC\xc3\x9bd\xe6\xfb\xa5?\x97x\xf7(wC\xb3?hsSU\x18=\xaa\xbf\x8a\xc2\xa5\xe8\xbb\x86\xa1?\xe2!\xba\x03\x90\xf2\x97\xbf\xbc\x1c\xbf\xc0o\x07\xb5\xbf\xd6,\xfa\xfaS\xc5\xb2?\xc6\xae\x82\xae\xfeq\x82?Lh\xecX\xdb\xe8l\xbf;J\xac.\xc9\xc1\xae?\x84\x95\n\xcc\x13]\xbc\xbfm\xd6z2\x8a\x84\x82\xbf"T\x8f#<\xc2?T\xe4\x04\x16\xe9\x82\xc5?\x9c\xd2p]Yf\xb1\xbf`\xf7\xf5|\x7f\x14\x95?d\xf73\xa1\x04\xc3\x94?\xd7w\xbe\r\xcf\xe2\x9e\xbf\xd0b\x9b\xe8\xd0\xc0\x92?\xf3\x9bE\x02\xf1\xe6\x8a?\xeb\n\xc4\xbe{\x9d\xa6\xbf\xaf\x9b \x96\x12\xfb\xb8?r\x8b\x9f\x0b\xd7\xa2\x9f\xbf@u\xf5\xc8\x12\xc8\xb7\xbf\x88\'\xf4\x87/\x94\xb1?p\r\xdbT\xb2\xd7\xa1\xbfG\xa6\x16_\xd8n\xc1\xbf:0\xdfu\xe3\xed\xb2?\xf6\xab1\x00\xe12\xb3?\x80\xe3a\x81\x02\xc8\x82\xbf\x9f\xfe\xbe~b\xe8\xb3?\xf4\xd5\n{\x1d\xef\xa5\xbf\xe6R\x95\x94\xf3\x11\xb6?\xdf7#Z\xf9\xcd\x9a\xbf_~\x1c\xb2\xfd\x83\xba\xbf\x00G\xe3z\xf2\xd4v\xbf\xe4\x01FM\xbd\x91\x90?\xa0\x05Pz\xb9\xb1q\xbf\x80\x1bK*\xc7\xd3Y\xbf>>\xeb\xd1\xa1\x96\xa7\xbfx\xdf-\x9d\xdb\xec\x81\xbf\xc0\xff\xf2\xaaV\xd6\x8c\xbf\xf8\x16O\xba\xb7v\x8c\xbf\xb2r\x9c\x0b\xd5\xad\xc8\xbf\x066L\x96\t\xfa\xb4?|\x10\xb7-\xef\xa6\xb9?l\xe5\\\xff)o\xa9?y\x15\xd0\xd0\xb3]\xd3?\x8f\xb4\xd6B\xab\xa0\xb0?\xf8aG\xc9\xc4\xf1\xa6?\x1b\xa5a\xb3Fcx\xbf]\x9d\xdd\xb7A\x99\xd2\xbf\xe0N\x98M\xd3\xdb\xc1\xbf\xc2\x8c\x1c_\xb9j\xad\xbfk\xfa\xcc\xcc<\x8c\xb4? \xb2\x8e\x85%\xe3\xa2\xbf\x8d\n\x1f\xb2\xd6\x9f\x8f?\xfc\x1c\xf6\x0b\r\x9c\xb4?4\x89\xb7\xea\xf2\x80\x8b\xbf\x9eB\xa3\x9f\xe1\x19\xc6?\xb2\xae9\xa9\x7fd\x91\xbf\xc8%\xff\x1c\xe7q\xb0\xbf\xa3\xdc\x1fk\xe5\x8f\xb4\xbf\x97ET\xc1a\xa3\xbd\xbf\xa8\xe9R\x90\x0bP\xa8\xbf\x9bM\xd5\xa5\xd8+\xce?bK.)\xea\xb2\xb7\xbfoP\x15\xcb\xa5\\\xb9?\xa2\x96@\x11\xee\xe2\xaa\xbf\xc2\x1d\x14\xeb:\xce\xa4\xbf`\x90\xa5\x1a\x8c\xac\xa5\xbf\xc6\xce\x0b\x92\xf4a\xa7\xbf\xe0\xb9V\x05\x94H\xa7?2d\xf3\xe3\x11\x18\xbe\xbf\x06\xa6H\xe9\x7f"\xb4?\xa8 \xda\xfbC\xd1y\xbf\x06UG\xf5\x0cw\xa9?\\\x8f\xd5.S\x07\x8b?\xae\xf3!\x95\xe8\xcd\xb3\xbf@\xad\x117\x91e\x9d\xbf\xf8qq\x07\xaa\x9c\x9a?NYaK\x84Q\x94\xbf$\xfbe\xd4\xb0\xd9\x9d?\xc4\x84\x1d\x05\x88u\xa2?\xb9\x0b\xc68{\xa5\x83?\xbe`\xa5\x84\x0c\xac\xa3?\xc0\x02\x05h_\xbf\xaa\xbf`\xb7B\xa8\x08\xc5^\xbf\xa1\x14\xc5\xe1\x05\x85\xa2?U\x99({\x02\x89\x97\xbf$\x00e\xcb9\x13\xb1?\x06\xe65\x91\xe7\xc8\x9b?\xde"\xe1g\x99\x00\xb4?B\x82u_w-\x82?\xb6`,\x83\x18\xf6\x9d\xbf\xcc\xf8\xd3\x80I3|\xbf\x84F\r\xe3\xc2\x8b\x8e?&\xde\xbbF\x9dL\xa4\xbf\xde\x86\r\x83\xabM\x82\xbf}DV\xef~\xdc\x92?\xdc$k\xa4\x1c\x92\x94\xbf\xb6\xd4a >8\x90?\xf3A\xf0\x94e\x0b\xb3?\x802\x00\x7f\xd4vf\xbfF\x9c\xb7\x81\xd7\xfdx\xbf\x88\x98\xcaOA7\x80?\x00\x87Wd4\xd9k?\xa0\x04\x92[\xb2\xf0w\xbf\x80\x8d\xb1y\x19\xc0\x14?\xd0\x01\x8em\x08\x17\x87?\xd2\xc5O\x12!\xe8\xb7\xbfto\xe9\xc4\xbf\xa4\x8c?P\xa4#pd\x99\x96\xbfhM\x01<\xda\xe5\x91\xbf\xea;\xebY%\xabv\xbf\x10\xc7\xdc\xa9\xa8\x8a\x82\xbf)D\x9eF\xc0O\x9a\xbf=b\xd0\xaeiq\xba\xbf\xf0\x98\x0c\x90\x1f\x8f\xc0\xbf\x88_M\xc0L\xab\xc2?\x0c@A\xea\x8a \xc4?\x82z\x97\xda\x8a\x9c\xb1?\x02\xcar\xc8Gr\xc5?}\x1b\xda:\x9f\xd0\xb6\xbf\x03\xc8\xbe2z\xb9\xc3\xbf\xd2G\xe1&\xe7\xe5\xb8\xbf\x9b\x8f~\xa6\xadH\xca\xbf\x9cG\xfe\x16T\xd5\x9c?\x8fA5\xdbxV\xc7?\x03s\xae=\xa4"\xbd?\xbb\xafu\xc8\xba[\xc2?;\xfa\xed\x05hY\x91?\xcd\xe5\xf5\xb5!\x98\xca\xbf\xf2\xac\t\xf9\xf0\xf5\xa7\xbf*\xa1\xae1\x7f\x89\xa7\xbf\xdc-\xd1;u\xb0\xb1\xbf(\x81\xee|g\x93\xc3?\xec\xaa\x98\xc9e\x8d\xa2?0\xb3\xdc\xccOw\x83?T\xc7E\xf8\x16\x04\xb3?,G\xa3\xb9aR\xc3\xbf\x03\t+\x07\x97\x01\xa2\xbf\x0bYp\x06\x0e3\xa2?\x12V\xeawYq\xc2\xbf\xd0}g\xe2\xc9:\xbd?\n\xc0\x00\x00\xf3\xff\xbd?\x00#\x8a\xd3\x15\xd2H?J\xac\xf1\xfcfO\xb8?\xfc\t\x1e\x91\x05\xab\xb3\xbf\xb3\t\x0e\x9e\xad\n\xb3\xbfp\x8c\x16\x05Zq\x80?j\x95W\x8d\xb9\x95\xaf\xbfJ\x07v\xbc\xe5\xf8\xa4?\xff\xbb\x00\xc6\x85D\xc0? -A\x17_`\x83?\xc0\x8c}\xc0:\x9eP\xbf\x83\xb8~>\xf0\xf2\xa4\xbfy\xd9\x83\x02\x1d\x19\xb6\xbf\x80\xad\xd1\x8a\xce6\x87?\xca\xe4\xa5x>\x0c\x95?4\x1a\x94_}\x83\x9e?GeE\xf0r8\xbb?\x18\xf9\xae\x86\xf6\xa2\x95?\x8c:\xd68\x93\xfb\xba\xbf\xcf@-\xf70a\x91\xbf\xab\xc7"\xb9\x8e\xc2\xa7\xbf\xa7\xd6\xdcY\xc1H\xac?P\xa4\x0bS\x16m\xb3?\x04t\xfd2f\x97\x91\xbf\x90\xd5q\xee\x8d\x93\x83\xbf \xdf-)\xd7\x8b\x89\xbf\xb4\xfc\x9a\x8b\xe8\xcc\x8e?Z\x91.(\xd1\xab\xbd\xbf\xeaw\x82\x94\xe4E\x98\xbf\xeaW\x81T\xb8\xfb\xa9\xbf\x80+]\xcc\x1f_\x8b\xbf`\xc8,\rt-z?Q\xa8\xdeB\x83\xaa\xac\xbf\x94\xdd\xa1\xac\x15B\xb0?E\x90u\xec\x1f\xe4\xc7\xbf0\x16\x1b\xac\xda\xfb\xb2?H\x8aoSND\xa8?@\xe7\xb6\x8f}\xbfa?\xcc\xfe\x1ayj\x9b\xc9?\x80\x1f\xa1\xaa\xd4\x8e^?\xba\xd6\x0c\x7f\xc1\x9d\xb2?@,\x85\x0e\x84\x86X?4\xc0UFAt\xb9\xbf\x00\x16;\x88\x0f\xc8\xa3\xbf\xf0n\xe6\x10\x7f\xd1\xd0\xbf\x91S\xd0h\x1d\x14\xc7\xbf\xa8\xbf4i5\xfb\xa1?v`\x88\xc9:\xf3\xb3?d\x03\x17t\x8d\x10\xc1?\xe6t#\xf7\xba\xe2\xc6?L\x92UR\xf5\xcb\xaf?\x0cN\x95\xf97\x8c\xb1?Mo\xa8.dE\xbb?C(\x9dE\x0f\x06\xa5\xbf\xccR[LLX\xad\xbf \xffH\xae\\\xea\xc0\xbf\xa0\x1d\x7fX\xde\xbc\x9a?\xb7\xc2S\xe6\xd1\x02\xb7?\x17\xb1Z\x7f\xcb\xed\xbf?0/\x11\\\xd6\x95\xb3\xbf\xf8\x7f?Zqi \xbf\'\xf8\x01\xd4_9\xb2\xbf=\x9f\xfc9\xe1\xdc\xca\xbf\x14|\xcd\x12\xbc&\xb4\xbf4l\xa2\xaed\xe0\x9b\xbf\x13U\x1d\x08hJ\xa9?R4s\xee\xa2z\xac?zk\xd2e\x93O\xb9?\x00p\xca\xc1!\xd8\xb1\xbf\x1cSb?\x13|\x88\xbf\xfd\xd8S\x8d\xa0d\xb1\xbf\xfc\x97\x012\xdb!\xa0\xbff\xb0\x94*l$\x8a?\xd0oT\xae\x98\x81\x7f\xbf\xfe\x1f\x9e\x17V}\xb0?\xec\x9b\xd1s3\xdb\xa0\xbfH\xb5ca\xba\xfaw?\r\x0b\x15\xc8\xcd\x86\x88?v\x08\rw\xea\x80\xb3\xbf\xa5\xcb\xabM\x00\xef\x93\xbf\xf2\r$\x97\xfc\x80\x9c?\xb1Mx\xc1\xda!\xa0?U\x90{\xb9}<\xab?\xb8\xbf\x1cjZ4\x8a?K\x95D\x04\xbd\x80\xaf\xbf(\x13\xa1c\x89\x92\x88?E>\xc5\x1b_\xe6\xb2\xbf\x18\'\xee\xfd\xb5\x89\x92\xbf|\xb5P%x[y\xbf\xba\xb3B\x0c<)\x90?n\xd7\xe1E3\xa4\xc3?\xd7\xbf\xf8/Z/\x88\xbf\x84V\xd4\x01\xfb\xf4s?C\t\xe7*)\x10\xb5?\x14\xc8K\xe2\xba\xe9\x89\xbf\xb2-\xe4m\xde\xd6\x8a?\x1cE\n!\xa3;{?\x81(\x98T\xc9A\x9d\xbf\x8c\x8a\x015\r\xa2\x89?6 \xdf\xb8j\xb3\x93\xbf\x1cc\x86y\xdf\xfd\xac?\xc0\xd6\x11\x0f\xec\x1bR\xbf4\x17n!\xa1\xf0\x94\xbf\x181\xce\xd9\xdb"n\xbf\x85B^\x1c\xd1r\x8c\xbfC\x94\xaa\x90\x14&\x93\xbf{r\x05YH\xbfX\x1b\xa3?\r28\xfbv\xb6\xb7\xbf2\x1a\xa5 \xedZ\xb1?Gsc\xad\x0b\xaa\xb8?<7\xdf\xf4\x8f\xd8n\xbf\x9bB\x7f\x85\xb8g\x9b?\xf4\x05\xcd\xa9\x0eh\xb9\xbf\xde\xf9\xf0"\xc2d\xaa\xbf\x9e\xbeF\x1bh\x92\x91\xbf\xc8\xc1O\x1b)\x80s?\xea\x0b=\x8aL\xbe\xb3?\xba\x0f\xd3K\xe7\xd3\xb9?/\x18t\t\x80-\xb2?\xde\xf7NQ9\xef\xb5\xbf\x07|\x17\xe8\xeb\r\xac\xbf\\\xbf\xb5D\xa6v\xad\xbfd4\xf8\xa7$\x0bw\xbf/"\xae\xcb\'\x80\xac?\x7f\x05.\xee\xc5\x91\x97\xbf\x1e\x89AZ3A\x9a?@\x91\x0e!\x16\xd3\x95?\xa0\t\xe9\xca\x04M??\xac\xd8\x1e\x92\xf9wz\xbf~\xf56#\xfftb?(\xb1:l\xa1\xbf\x84\xbf\xdd\xd0\xc9\x02\xa9\xbd\x94?\xa4f\x96\xca\x9c#\x88\xbfx\x9a\xf4}?3\x8e?\x10\xd8\x80\xa6go\x7f\xbf\xbdv^\xb5\xa6\x8c\xb9?\x90\x9d\x9fr7P\x85\xbfb\x80\x9a)\xfd\xba\xae\xbf@\xdf\xe3\x00A\xab\x8d\xbf\x04\xf7!\xdfV(\xc6\xbf\xff\x01\xa7|\x01\xdd\xa6\xbfD/\xech\xee\xcd\x8c\xbf\xb25q\x9e\x99D\x84?\x0e\xc6\xd9i\xd2\xa8\xc5?\xaf\xe0\xb9\x98\x91\xac\xb5?T4W}g\xa0\xb1\xbf\x8e\xef?\x18\x14k\xaa\xbf-\x1ee!\xd26\xa6?\rzB"\xfe]\x85\xbf\xfe\xb7\xb1\xf5\xa5Ky?\x8c\xb2Q\x9dT\x8a\x91?\x16 c\xda|\xc1\xb4\xbf\x97\xaf+T\xd3\xc1\x9b?F09\xa1j\x84\xa2?\x8d\xfaQ\x88\xd9$\x92?T\x99c\xb0\x03\x14\xa4?<1\xc9\xa2\xb0\xdf\x85\xbfR\x86\x84$\nu\xb0\xbfL\x11\x1b\xec0p\x8a?\xa4\x0ct\x9b\x83\x89\x99?\xc07b;b\x984\xbf\x88\x13xGPK\x9a?\xba\x93\xa3*\x83\xc9x\xbf\x04i\xb0s\x08\x96\xb2\xbf\xb3\x90\x8a6\x0cn\x94?h\xcb\xb1\xee\xee\x7f\x93?jR\xad9\xc7\n\x9a\xbf\x98ZN6\x06\xf3\x8f?\xd0\x96S\xcaRD\x83\xbf\x1c2\xe1\xfe?\xb4\xc3\xbf\x98\x99\xe3\xbdR\x9a\xae\xbf\x90\x87\x18\xd3\x06\\c\xbf\xb9zV\xbc\x80\x0c\xc3\xbf\xde\x1f\x94\xc3\x1ehu?0\xb59\x82+\x9fk?\xa7\xb6\xa8\x12\x17\xe0\xa4\xbf\x94B<\xf6tix?\xe0\xc8\xfe\xac\xe2\x0eR?\xe5y\xdc\xc3}\x17z?D\xf7\xc089\xe7\x8e?\xdfW\x16\xb7,\x01\xb8?\x91\x98\x87\xdbG\xbe\xc0\xbf\x1f\x08\xa9K\x1e\xf9\xb3?7|S8\xcb\xc2\xd2?\xd5-\x87\xf8XT\xb4?\xe5,\xd2\xc3[\xfc\xc6\xbf\x84S\xa5\xa8\x9f\xed\x82\xbf\xc3\xbf\x84\xfaK\xba\xd0\xbfD\xa2\x1c\x19\x1a\xe4\x83\xbf%\xaa\xee\xf5\xd08\xc1\xbf\xf6\xa2y\x88Do\x93?\xf6#\x92\xa7\xa1\xc7\xd7?-M\x1fT{\xed\xc1\xbf\xe4A\x8aK\xf6y\x9d\xbf{\xb0\x7f\x8b\xb2\x17\xd0?\x13\xb6\xf39\xc9\x1f\xa7?\x0cQ8\xe3\x8a\x9f\x86?\xcb\x91\x8a\xbb\xd3!\x84\xbf\x96U\xdfn\xd5\x89{?\xfc5q\xb3\x85?\xb3?\xf2\xb7\x9d\xe3\xe8Ys\xbf\x04\xe7&\xfb\xf1\x01\x80\xbfaE\xd7\x12\x8eb\xcb\xbf\xcey\\w<\x02\xa7?\x00\xe9T\xe4=\xael?\xcc(\xc9\x15\xffd\x94\xbf\x1e\xb4v\xe9\xdb~v?L\x14\x8a\xce\x93z\xba?\x15\xf3R\xef\x1c\xd0\x96?\xb9P\x010N\x84z?\x15w\xcf[\xb4\xd7\x8b?E\x98C\x92\xa5oo\xbf\x9d;cH\xeb[\xa0?Bjf\xcbPQ\x8d\xbf\xde\x97[\\\x10\xea\xa1\xbf\x94\xc1\x81xTC\xa2?>\x16\xb0P\x92\xdb\x99\xbf\xd2\xccj\x8a\xfb\x98\x97\xbfQ\xe4\x8d\xf0\x08\x0b\xad?}\x99(\xf4\x12\x9e\x97\xbf\xd9K<\x06\xe8<\x83?T\xb3=\xc9HI\xab?\x17\x9eb\x90\xebP\xb4\xbf\xba\xc0\x14^L\xfe\xb0\xbfW>\x1b\xbe\xc5\r\x8b?^R\x9e\xe5\xd6\x89\x91\xbf\x1e\xb4K\xc5\xe6[\xa9?\xd7\xa9p\xe8V\xda\xb0?\xfc)\xb5\xcc\xcd\xd2\xa4?fO0\t\xfa\xbe\x9a?\xd3\xd3\xea\xa4A\xbf\xb9\xbf\xd0 \xe2\xf0\x9c\xaf\xac\xbf\x8cX\xce=\x9f\xaff\xbf\x16\x00n\x1a=%\x9c?\xef\x95\xfd\x08S\xc2\xb0?\x96\xb2\x83\xa6\xc7\xa9\x80\xbf%#=`\xf4\x03\x9f?\x97\x181\xb4!a\x9d?\xd6\x0c\xe7\x7f\x84\xe2\xab\xbf\xb0J\xce\xc2\xbf1\x8c\xbff\xe8Up1t\xae\xbf\x00\xfa\xd5\xe5\xb8\xcc\x15\xbf\xd4D\x92\x93\x0c\xe0\xb1?24\r,\xc4\xd3\xa2\xbfo\xa8\x01.Z\xf0\xa7\xbfx\x1a>\xa6r\x87\xbc?\xf6d\xdb\xb2\xd6\n\xa5?\xd5:\x10o$\x92\x98\xbf8\x10\xce{\xac6\x8e\xbf\xac)0\xa6\xaaf\xb7\xbf\xa0\x16\xf4&\x87\x8c\x99?\x08\x1f\xf4\xaf\x91\xae\xaf?\xd4\x85\xee\xd2;\xd4\x8c\xbf\xc7\xd4\xa9a\xdfG\xa4?\xaeV\x84\xed^\x01\x8d\xbfi\xa3w\xf97\\\xa3\xbf(\x91\xffV\xc1\xff|\xbf\rey\x84!\xca\xa1\xbf\xa9!2\xa5<\x95\xa3?\xbd,\x14W}w\xaa?\xd6\xae\x17\x02b\t\x90\xbf\xed<\xdbV\xab\x12\xa2\xbf\x9f\x9d\xd3\x80\\C\x8b\xbf\x82\x1ae\xce\xe7\x18\x8a\xbfN\x1d\x12A\xbf\x8e\xb5\xbfH\x9f\x85\x01@\x18n\xbf\x1e\xc5\x0eh^f\xa1\xbf\x9cP\x85+\x90\x8b\x81\xbf\xbe\x91\xcb\xa9\xddM\xa4?\xa0\x18\x8d\xb7]\x9b\x84\xbfx\xd2s\xbb\xe1\xec\xbd?\xffUm\xfb\x16\x85\xc3?\x9a\xb3Qs\x14\x83\x83\xbf\xe3\x10X\nN\xd6\xa7?{\xf1\x1ep\xec\xf7\xa1\xbf")\x86wf\x92\x91\xbf\xbe\\\x00\x01\x7fK\xac\xbfD\xd6U.\xac~\xb0\xbf\xd0\xc8\xf4LC\xf9\x8e\xbf\x80\xcb\xfd\xb4\x89\xeb\xbe\xbf\xbcn\xbc\xfe\xc6\xaf\x82?Y\x86;\xd9t\xb1\xb1\xbf\x05C\x9a\xb7\xb2\x12\xb0?\x1bt4\xa6\x8b\xc5\xa3\xbf4\x17\x08\x02\x7f\x17\xb7?d\x82\x07t\xa1\xb0\x9e?\xd5|9\x16A$\xae?\xa2_\xb7/\xa6-\xae?Zy\x92\x1bS\xf4\xb4\xbf(^f.JuY?Z\xed\x8d\xa2Y\xac\xac\xbf\x05\'\xaauq\xed\xa4\xbf\xde\x08\x9ep\x16\x04\x87\xbf\xb4\xf4\xec{\xa5\xeb\xa7?T\xd9S\xdea.\xa7\xbf\xd4)\x1bw\x15_\xa2?\xc3\xcfw\xc0\xc3\x18\xaa\xbfj\x91\xe0e\xef3\x8a?\x0cn\xdd\x8f\xcc7\x9a?\xfax\x08Q\x92.\x94\xbf\xbd\xfbw\xf5\x8d\xd5\xb5?T\xc8@x\x81o\x95\xbf\xeb\x8a=,D2\xb2?n3|}\x16\x7f\x96?\xad\xf3B\xb9\x17\x80\x91?\xec\xf9\\0\x9e\xc8\xcb?2\x9cQ|\xcf\x9e\x9a?\xad\xce\x90\xd5@\xb7\xa3?\xc9\xdb\x9c\xf3\x0fd\xbb?\xa4\xc3\x94\xfe)\x88\xbb?\xf27f\xc2\xfc}l\xbf\xd3\xa0\xb3\x8bS\xa3\xb2?\x82\xd4\x91\xed\x92S\xb2\xbf\xa7\x8c\x19\xa8RJ\x93?9\xfd\xf2\x87\x91Uy\xbff\xf0T\xf7;+\xc3\xbf6W\xe9\x83\x0c\xaa\xce?\x9a\x16\xc9a\xc6g\xc9\xbf3\xd1\x81\xc7}A\xd1\xbfM\xee\xd0\xf4l"\xda?m\x85\xceA98\xcd?Ts"dY\x0e\xc4?w\xc6\xd5t\x03\xdb\xa5\xbf\xb8C\xeb,$\x05\xa7\xbf\xd70\xe6\xfbr2\xb0\xbf\xf0\xa2\xb2/C\xf8\xc2\xbf\xfe\xf4Y\xf9Tl}?]\xb1\xdb\xa6\xc8\xbf\xce\xbf_\xd1\xbcy\x8c\\\xc0?k\x1d\xaa\x10=;\xbf?\xfc\xfc\x18\xec\x8bE\xc9\xbf\xd8\xa2\xdb\\\x98@u?\xd6\xd36v\x817`?,\x8a\xd2\x08\x15\xd6\x8b\xbf\xf0\xeb\xc5\x87\x136\xb1\xbf\xb5\x96\x99c\x05;\xb4\xbf\x8a\xdc\x0e\xc7\x97\xc7\x92\xbf\xcdm\x99\x0b\x94\x93\xc7\xbf\xbc1\xf1\xa3\x11\xa2\xaf\xbf\xb75c\x81e#\xb9?\xd1\x0b?c\x80\\\x92\xbfr>{Z\xe94\xa5\xbf\x1a\xc1MW\x9aF\xa4\xbf\x0c\xaf\x0b\x96\xf1\xee\xc2\xbf?\xf9$\xf5\t\x84\x95?\xf7\x16\x1b\xe2yE\x97\xbf[\xbcK\x03\xa7WS\xbfc\xf2R[\x02\x04\xa0?\xe3\xf6\xcaZ\xff\xac\x90?\xc7\xca\xe78\xf9\xd0\\?\xbfk\xf3?\xa3\xb8`\xbf_R\xb9\xd8\x02\\\xa2\xbf+\xadG\x98\xc7\x06\x88\xbfoQ\x05\xb4\xb0(\xa1?Z\n\xd9\xe9\xbb\xd2h?\xa5%\xd3\x1eG"\x9a?O\xa2\x00\xa5\xd4\x80\x8f\xbf0_G\xf6\x90q\x94\xbf=\x9e\xc1\x06\x94\xc3\x9b?\x89\xcc\xc543\xd5\x9c\xbf\xb1\xb2\x8d\x80 \x17\xa5\xbf\x8c|\xa8\xb6\xae\x11\xb1?\x04V\'\xe3+\xedl\xbf\xb6E_+\xb1"\x99\xbf\x16\n~N\xe5\xb8\xa6?\x95y\xb7"\x8fI\xa9\xbf\xe6o_D\xcd\x87\xa3\xbf\x18\xb7\x18w\xc3W\xb7?\x16\xb0\x17\xd3\xd45\x99?I\xc8X\xd9\x88\x9a\xa7\xbfF\xc4\x8a\xa4\xce\x04\x9c\xbf\x15?a\x8f;\x9a\xae\xbf\xbcy\xa9\x06\xd5\xa0\x81?\x88\xab\xbe#\x93\xc5\xb1?v\x85\\pZ\x85y?\x00\x03\x16~\xf9\x80\xf2>\x08O\xca=;\x9e\x94?y\x86\td\xa5M\x95\xbf\x92P\x85\xee\xb3.\xa2\xbf\xba+\x82\xff\xfb9\xd1\xbf\xcfS\xab<)\xc1\xce?z\x94\xfb\x1dj\x07\xc6?\x1cr\xe8\xf8q\xee\xae\xbf\x02\xf0\xe0\xe9\xb2\x99\x9e?`\xd3!\xfe\x998\xd9\xbf.\x87\x84\x00\x14\xb9\x9f\xbf\xae\xd7\x16\xb37\x94\xbf\xbf\xa6E,\xd21M\xb9?\xf8\xd7\xf1~\xa4I\xd6?8\x99\x7f\x93F|\xb8?\xd2o@\xb043\xc5?U\xed+\xf7\xfb\x8e\xc8\xbf=#\xc8{\x10\x07\xb4\xbf\x104\x87\xff\xc0\xa3\xbb\xbf\x80\x95}\x00[\xc1\xb8\xbfI\x9f\xd0m\xbc=\xcd?\xcaV\x856\x1b\xff\xbd\xbf\xc0\xfcU\x85I\xd9\xa0\xbf\xdch4*\xc7!\xc1?@\xee\t\x19|\x8a\x9e\xbf\xba\xafT\xe5\x1e\xb0\xca?`\x11ty\x03\x951?\x9b\xaf4\xf7\n\xba\xb2?^\xefU7\x95r\x83\xbf\xda\xddn\x0f\xfb\x11\xb0\xbf,\xa4\x14_\x9a\xd0\xaf?F\xc6iyI\x8d\xc8\xbfP\x9e\xac\xc6\xfe\xc6G?\xc4\xa5\x0e\x14\x9c\xcf\x85?\xb7\xa4\x7f&\xc5 \xa9\xbf$[k\x98a|\xa8?2\xc4\xf7\'!\xbc\xa5\xbf\xf4Zv\xe3\xd7U\xa9?\x18^\xdf\xb1\xdch\xa1\xbf\x9f\x96\xcf2\xb9`\x91?\xed\x10\xd6R\xd3\xaa\xa0?\x84?\xee\xe4]]\xd4\xcf\x86?T\x7f\xc4\x90\xc0\xa0\xae\xbf\x91\xed\x03\xac\xb0\xa5\xb9?|\xce\x9e\xc4\xecB\x93?Fhh\x99:<\x96\xbfh\xd2s\xcb\xf7\xbe\x9d?\\K\x9e\xba\xd4\xa1\xb4\xbf\xc4\xa3\xaf\xb9jY\xa7?\x85,\\\x98z\x06\xa8?\x086\xfd\x9fy\xe3U\xbf\x8bl\x05\x1c\x03P\xb2?\x19\xbb1N\x0ed\xa3?\x90\xdf\xf7\xa1%\x95\x91?\xf0A\xf4si\xa4V?2\xfa\xaePe\xb5\xbc\xbfh`\x99_\x04i\x91?\x7f6\xbf_\xa8\xa5\xa1\xbf\xc1\xb3\x9c\x94i\xd5\x83\xbfM\xef]\xc0\xd7b\x80\xbf\xde\x18fI\xe3E\xab\xbfl\n\xa6\xe2Q%\x9e?\x04\xebt\x9a\xd9`T?\xc4\xb1\x86\xde\xc2]\x81?\xd5\x98\xba\x9dT\xa0\x83?O\xc01W\xeep\x9a\xbf\xc2\xf5\xb8w|\xbf\xb2\xbf\xd6\x1fH\x93v\x9f|?g\x19Xb\xfe\x85s\xbf\xdccL\x96F\xadi\xbf&|\xeb\x83\xeb\x91k?\xc0\xb5\xf1\x10&WJ?\xd6a\x14>\xe3\xea\xa3\xbf\xa7\xe8\x1f\xdf\x07\x8b\x9c\xbf\xe0\x11C\\\x80c\x91\xbf^o4\x17\xfaw\xa9?\rK\xd2a\xb8\x8d\xab?\xbf\x99e\xf9\x1a"R?\xf3\xf5w\x00\xee\xd6\x89\xbf]jLx?\xce\xaf\xbf\x0e\'O=\x1c\x8e\xae\xbf{\x8b\xc9\xc8\xf5I\x97?4\xaa\x1f=>\xdf\xa9?0\x03\x89I\x9f\x07\xaf?\x886\xe1I\x07\xe1\xa1?$a{Ry-\x80\xbfF\xf8<\x81w\\\xb4\xbf\x8b\xcdI\xef\xda\x03\xb4\xbf\xffXH\xfa\xf3\x0b\x9c\xbf"\x12N[\x03\x8b\xaf\xbf\xcbW=\x1fk\xd2\xc1?\xbaIA\xed\x94\xe5\xbe?\xef<\x1a\x9d\x89\xc0\xaa\xbfWfs\xd50\'\xb6?u$\x9f\x89\xc0\xc0\xa4\xbf~\x04\x81Jb\xf0\xc4\xbf\xa0b\x03\x05f\xbd\xa9?\xa9\xf9\x8a95;\xaf\xbf\x94\xff\xc7\xcd\xa5\xb5\x9b\xbf\xd6RK{\x96K\xce?\x83\xe3\xae\xb6\x06\x82\xb8?]\x80y\xfc\x8f\xc5\xb5\xbf\xe4$\xb7\xe0\xc6\xd7\xb0\xbf\xabq\x0f\x9f{\xad\xba\xbfQaUI@\xc2\xb8\xbf\xe1\xbb\xf78\xd9q\xb5?\nh\xa3\x05\x0f\xa7\xb7?\xa0\x16T|\xa44\xb6?~\xa6\xf0\x81\xc5\x03\x8e\xbfA\xd1eo\xe8\x91\xc2\xbf\xcee;\x0f,\xa9\xac?\xb4\x97\xcf\xbc\xc4}~?\x8cF\xf1\x9dvpz\xbf\xd8qI\xb1\xa4\x85\xc6?\x9b\xc3\x81\xc20\xf4\xa0\xbf%\x19}\x08\x82\x19\xdf\x95>\x9e\xbf`\xf9\x9d\x8c\xf5\xc6\xb0?P&\xe5[\xa4\xc9\x8a\xbf@,v\x0b\x1b~\x8b?\x08\xbb\xd2a\xaf\xdd\x89\xbf\x19\xf5\xf6\xcd\xae\xca\x98\xbf\xe9\xab\x81\x15\xc6/\xae\xbfl\x7f]\x80\x16\xe8\x8c?\xc0k\x92\xf2\xf9\xca??\x11U\xa2\x07O\xfd\xa2?\x08\x02\n\xa1Y\xc7\xa7?,\xbbWX\x81\xc1\xc0?\xcbv\xab6\x03\xba\xc0?r\xdb\xad\xdb_\x00\x8b?&\x05\xdd\x87\xc0`\xa2\xbf>\x97y\x16\xee\xa3\xb6\xbfT\x83\x96m\xea\xf3\xab\xbfk\xfa\x8d\xad$O\x9d\xbf\x05<\xca\xe7\xa1\xef\xa1?\xf4\x83\xca\xff%\x8e\x96\xbf\xed\x8b7\x90\x99h\x9a\xbf\xc9\xc9L\xc0\x7f*\x83?\x80O\x97\xbe><\x8a\xbfL\xf9yI\xb8\x9c\xab?\xa8FR\x0c\x0c\x84\x8d?\xa0\\\xcc\xc6\xeb\xd51?X"6\xd0m\xd2\x9e\xbf\xf01\xa4\x86l=\xac\xbf#\x1dq-\x87\xca\xa6?h\x0e\x13\xf0V\x05\x9c\xbf\xf7\x1d\xdf\x03A\x94\xc6?*\xd0\xaf\xd9\x92\xbb\xb0\xbf\xf4\x87\x1e-\x99\xfb\xbd\xbf\x04\xd8x\\\xc8\xd5\xae?\x01f\xf7\x13\x95z\x95\xbf\xb6\x89|\x00\x9e\x80\xb0?\xc8\xd3\x00\x1a\xe3l\xa4\xbfL\xa1!\xb5Jt\x82?Z\xb0\x9f\xbc\xb0\x82\xa6?{\xb5\xfc\x18v\xa5\xc3\xbf\x06 \x97V\x0bz\xb2?\xf8\x05\x18\xbb\x12j\x9e?\xa96\x04\xdcqc\xc9\xbf\x16G\x1c\xbf6\x87\xaf?\xb0T\x0e\xdf\x980\x81\xbf#\xa6PM9\x85\x93\xbf\xa8\x1f\x8d$w\xe6t?\x04\xd4Z\x0f)\x10\xad\xbf\xd7\xa7K\xa7x\x0c\x9a\xbf\x04\xcfjo\x7f\xb7\x93\xbf\x17\xb2\xcb\xbd\x1d%\xa8?b~:<\x8cz\xaf?\xc4&\xadH=\\\x97?\x18M\xd2\xd6\xf3C~?\xea\xc0+d]\xea\xbb\xbf@l\\\xcb\t=\x82?$t\xe1\x13\x8ej\xa2?\xac8\x8a\xcdg\x9b\x8b?\xf7\x03\x97\xd5\xbbL\x9c\xbf\xb6\x1fh/\xc4t\x98?j\x99-\x1ax\x14\x9e\xbf\xe8p$Iu\xb7z\xbf\xbe)D\x12/\xec\xc2?\x03\xcaZ\xb9\x16\xf5\x97?rEi-\x81w\x8f\xbfPe\xec\xfc\x1c\xddw\xbfn,aPR\x05\x9c\xbf\x02Y*\r,C\x87\xbf\xb7\x19\xd0\x08\xab\xb7\xa5?\x8cMC\x11i\x06\x8a?\xc6\xa2U&\xb6O\x96?\x1e\x19\x9b\x9a\x92h\x95\xbf\xf6\x9a0W\xbb\xac\xab\xbf\xac\xf7\x1e\xfd\xd4D\x95\xbf\xc9\x96\x0f4\xff\xfb\x8c?\x8ep\xb3\xf7-\xb3[?40#/\xb9d\xb3?xg0\x0b\xc0J\xb7?\xcdD0\xd8\x03+~\xbf\xf2\xc2J;\xa5&j?\x9a\x85\xe1\xb4\xbd\xb1\xb9\xbf~\x14\xb0k\xc3\xfe\xc9\xbf\x10\xfc\x0e\x13\x07\xfa\xb3?\x10<\xc9s|\xd0\xc4?\xecX\x1c\x95#\x90\xb4?w\xc0\xe9\r\xdfj\xc5?\xce0\xac\xed\x14?\xb6\xbf\xf7N^\xe7X\xa6\xc6\xbf\xf0\xf8\xc3\x93\xbf\xe3\x05l\xa5mQ\x99\xbf\xb8\x80q&\xb9\xd1\xb4?4]\xbf\x95\x0b\xd5\xc1\xbf.Rjj\xa3\x92\xae?\xb8\xcd\x8a\x82\xd8W\xa7? \xb1\x94\xaf\x8b\xff\xbe?\x1e\x91\xf0Q\xe9\xf6\xb6?\xee\xe3:\xb4fP\x98\xbf\x1c4\xae$&z\xb4\xbfr\xa6\xcc`\xf8\xe9\xb8?\xa7\x1e\xb3X\xc8\x87\xb3?\x98\xfbR\xaf\xf7a\xb8?\xaf\x13e\x8dv\x94\xa9?i\x1c\x8ff\xef\xf3\xa0\xbfV\x1a\xd9q\xdc\x90\xb5\xbf\xe2 \x11\xf6\xe1\xfc\xcb\xbf81\xfa\x82\xf6\x1a\xaf?\x10\xde\x8a\xa3Km\x8d\xbfr\t\xe6\xa0\xeb\x1b\xba?\xb2k\x89\x132\x86\xaf?\x9cO~\x81Et\xa4?6\xf3\xc7\xea\x0eO\xa6?\xa2\xc1\xa0\xdc[\x16\xa7?^\x00O\xec\xebA\x9b?\r\x89\x89\xf5\xb7\xeb\xa6\xbfm\x90\xac\xaaJ\xcc\x94?\xc6&\x81%\xba\x0f\xa2\xbf\x80\xf0(\x95\x7f\xd3N\xbf\x81\xbd(\x17\xf0\x02\xa0\xbf\xc5<\xaehH\x18\xac\xbf\xff\x90\xfdh\xa0\xb4\x88\xbf\xa5R\xbf\xd0\x17p\xa0?\xa8V\x15\xe6\xa9\x83\x89?\x08O\x9f\xd6-\xa6\xb2\xbf\xe3#Q\xcd(\x00\xbc?\xf8\x9e\xa0\xee\x8f\x10\xba?M\xf4\x02\xf5\x1e\x14\xa3\xbfD\x0e\xad\xf3O\x7f\x8e\xbf\x0f\xf9;\x9c\xf7\xad\xae\xbf\xf6\xa2l\xce\x0e\xb0\x81?\xd3\x11\x89G4e\xaf\xbf\xe0\x12O\xc0\x08\x13e\xbf\x80\xac~\xb4\x0f\x04\xa6?\xe6\xc8\x9b\x01\x00\xbfN\'\xf4\rv\xbfN$Y\xda\xfc\xa7\xa6?\x8c\x03\x17\xfd\xd27\x91?\x91g\x17\x08\x9e%\x85\xbfC\xb3?&K\xff\xfa\x90\x1a\x89\xbf\xec\xe9\xe2\xac5`\x9d?\x02\x98\x9c\x13L\x81\xa2?\x05\xcc\x91\x12\x19\xc4\xb2\xbfz\xb9k\x9a\t\xaf\x9c\xbf;\x14eM\xb4\x00\xa6\xbf\xd0\x12r\t"\x9f\x99\xbf\xa4\x17\xffT\x9a\xc5\xba?\xaa\xb1"\x1b\xcd\xfb\x90?\n\xf5\x94m]\x12\xb3\xbf\xde\r\x19c\xc4\'\xad?\xb6m\x03\xf0\xfa\xb6\x9a?@\xb8\x0b\x7f\xaa,1?\x04\xd9\\\x84p\xc8y\xbf\x81\xf4\xff\x9d\xb4\xdd\xb7\xbf\xf4\xc5[\xfe\x14\xfdx\xbf\xf8\xd0c\x9c\x82\xa7\xae?D\x05\xfa\xdd5\x0c\xa0?F\xdc\x1ems"\x80?\xac4\x90/\x04\x16\xb1\xbf\x16\xb7\xae2\x87\x1e\x8f?\x1au\x8a\xdc\xa0u\x94\xbfg\x10z\xa8\xb3\x84\xb7\xbf\x9a\\\xfc_\xc0J\xa2?\xb3\x83\xe5\rl\x9f\x96?d\x12n\x10\x95\x05\x9f?\x7f\x9b+\xa9\xcb\xd7\xad?XU\xb2F\xf1\xc3x\xbf\xe1~\xf2\x8c2T\x9c\xbf\xb6\xc9p\x1f\xeb\x82\xa3\xbf8X\xc2yUG\x8b?\x80n\xcf|\xd2W\xa3\xbf\x9b;iG\xc9\x11\xab?\xa0\xa4\xcbcJ\x13\x90?n\x0b\x8a]\x90`\xa0\xbf\'\xb4\x18bz|\xa2?\x8cF\xa4\x9e\xf1.\xb5\xbf5\x82\xfc\x0b1z\x96?\xb8\x99_\xb2\xb8\x1f\xbc?D\x00\xf1\x98\xd1j\xb9\xbf\xe8b\x7ff-\x13\xb8\xbf\xc7\xeb\x10]v\\\xb2\xbfJy\xec5\x0b\xf6\x95?>\x96\xba\x1d\xe29\x90\xbfZ\xfa\xd7D<\x17\xc4?>\xec~\x82\x8a\xbc\xa3?\xbe\xedO\x14\x86\xa3\xc3\xbf\xb7RG\xd7\xf9\xa2\xa4?\xa8Yp\x03\x84\x16t?\x89\x96\xdd\xad,\xaf\x9a\xbf\x0f\x16\xa4\xab\xd0\n\x92\xbf\xaa\xf0\xc5h\x04\xf1\xd6?c\xd0\xa7\xab\xa9c\xa6\xbf!@\x802\x00\xbc\xc3?\x9ep\xb1\xc9\xb4fx?\xe1W\xc9a\xcd[\xb7\xbf\xdc\x8f\x91\xae\x10b\x93\xbf\xd6\xcf\x1e\xe5b\xce\xd6\xbf"\xff\x9d\xb24\xaf\xa9\xbf\xc3\x87\xd0\xb2\xc6\xd6\xa7\xbf\t\xbe\x8f\x88-I\xb0?\xacD\xcbV\xb5|\xaa?h7\x1c\x17\x80u\x90?\xfb\x97\x98\xee\xf9\x11\xca?\x92_!Wk7\xa5?\xec\x87\xa2D\xbbJ\xb4?\xef\xd2\xa4\xfe\xbf3\x99\xbf\x00#\x04\xc0g%\xb3\xbf\xac\xad\x03)F\xad\xa7?eq\xa3\x19\xf2\x86\xbf?\xdc\xcbC\x11\x97\xcds\xbfx\xba\x0c:\x03\xcd\x92\xbf\x8d\xa4\xd4\xd1\x83I\x9b?e\xe6\xb9n\xcbE\xbf\xbfL]{\xeb\xe4\x02\xb2?"\xd8Y\xcc\xf0{\xa9?\xfa\xa2\xd4{S\xa9\xae\xbf\xeb>5\xbd\x03|\xb9\xbfL\xc5^\xdb\xef6\xbf\xbf\xa4\x1ar\xaa\xdb\x0cm\xbf\xbf\xb9\x9f\x8c\x16\xf6\xb8?\x05\xa8\xfdD\xe5$s?\xa46cD\x11H\xa1\xbf\x0b\xa3\xad\xdc,\x12\xc3\xbf\xc2\x1aZ\x96h~\x87\xbff\x16\x9bG(\xb6\xb1\xbf?~\x8b\x18\x95D\x93?T\x91h\x1d\xd1^\xca?\xc0\xeb\x1b\x15\xa1Kr?Ge9\xb3\xf2y\x90\xbfn\x9b\xd3\x17\xa8\x0b{?[\xa0w8h\xd8\xb4\xbf\x01\xee\xcaU+~\x98\xbf\xa0Y\x91\xeb\rM\xd3?\x8b\x87\xf9j$\xa3\x97\xbf\x920\xb0\xdb_\x97\xc3\xbf\xb0\x9f\x84Mc\xcb\x85\xb1?D\xac@J\x92\xfa\x81\xbf\xba\x9boS\x0f\x1c\x99?\xde\tW\x03\x86c\xa6?\x16\xd0\xaa\xedQ\xd5\x8b?y\x92kocs\xa0\xbf\xe6[\x7f<\xae\x0c\xc2?\xf8\xbb\xc5\x8e\xb3\xd7~\xbf\xbf\x078\xed\x83\xbf\xa1\xbf\xd6\x074Xl\xfd\x97\xbfA\x9f\xceOz\xca\xa7\xbf\xe5\x90q@\x8e\xbd\x92?\x16\xdf\\P\xdaFp?\x06\xc6\x13/\xf2\xc1\x94\xbf\xd1\x8e/z7\x16\xc4?m\x06xa\xcf\x84\x9c?\x9c\xeczA\xa7\xbd\xcb\xbf\x8a\x9c\xff\x14@-\xbe?"\xa6SN\x82\xf3\xb4\xbf\x81\\\xf0P\x18\xd4\xc3\xbfls\xe9\xbd\x02\xc2\xcb?$6o\x9fQ\xed\xae\xbfF\xce\xf46\x85r\xb3\xbf\xcb\x14G*\xf4\xec\xc7?f\xb1\xe6\xb5\xe5}\xb9\xbfoV\xd6\x8db\xdb\x9d\xbf\x82\x111\xd1\x95\xab\xc3?C\xb21\xb9\x18\xa0\xcb\xbf\xef\xb7f\x07;\x9f\xac\xbfF\xfe\x16O\x97\xc9\xa0?\x90\xce\x91;)\x13~?\xa7m\xfc,\xaf\x03\xc4?YbQ\xb9\x91\xa5\xc2?\xfbV;D\xd7\xc1\x91?\xce^Is\xaeF\xb5\xbf\xd3f\xde\x9ap\x17\xc0\xbf\xa4\x01i,\xdd\\\xac\xbf\xd1j\x02H\x84P\xb7?J\x00d\xbf\xe9\xeb\xb1?\xe6\x86\xafA\xfcV@\xbfVX\x0c\xdfZ\x99\x9b?\x0e\xad\x8f*\xefz\xab\xbf\xe7i\xdc26q\xaa\xbf3\xd0;\xf7\x1bT\xb0?:@\xf4\xfc\xfcG\xa3\xbf\x06\x81\xbdc\x13U\xa7\xbf\xe0\x04\n0\xe0\x86\xa5?\x8c\x88QI\x1e\xb9\x9d\xbf\xef\xa7\x118\xf6t\xb1?H!\x01F\xa8\xac\xab?\xf5n\xa6\x87\x11\x97\x89\xbf\x0c\x80\t\xbe\xe6L\xa1?\x9a\x89\x9d\x95\x02\xd6\x98\xbfJ-^o\xa3\x93\xa0\xbf\xf6\xb5h\xf5\x8d`\xab\xbf\xabr\xea\x82 \x0e\xa2?\x88\xa8\xa8\xc5\xdf\xa2\x80?A\x9b\\n\nE\xa5\xbf\x0c\x856Re\xa8\x97\xbfX}Z\xb8\x82\x84\x8d\xbf\xe5\xde\xda\r\x89\x95\xa7\xbf=\xd7\x0c\xd3:\x89\xb2?\xb4z\xa2_\xaa\x8d\x85?\x10\xff\x1b\'\x0b\xeb\xbe\xbfh>G{\x86fv?\xbc>\x1bo\xcam\xa4?\xa4\x80\xd6\x0f\x05\x03\xa3?0$\xccA\x10ra\xbfM\xa4N\xccX\x07\xcb?\x11v\x93\xf5\xea;\x99\xbf\x94b\xe4*\x99\\\xbb?\xd1Cr=v\xa4\x94?\x80\xad\xfd\x8b\x8fcS?\xe6\xaew9\xa4\xae\x85\xbfE;8y\x88\x98\xbd\xbf\x01\x00\x84\x9b\xe0\x88\xd0?h(a\xc6\xbf\r\xa2?-\xff\x01\x0bcd\xc0?\n\xe3\x07\xee\x7fp\xa0\xbf\xb2\xa9\xee\xaf)\xdf\xaa\xbfT\xacz\xb6Z\r\xb5\xbfIy\x89\xec?I\xbb\xbf\xc8l\xb3~\xb5\x98\x92\xbfVW1\x84\x80\xf7\xca\xbf\xd4\xb9\x1b\x8d|\xd0\xa0?\x10t%\xfc\xbb\xfds\xbf\xce\xfc\xb7T\xb0+\xc2\xbf_\x86[\x02\x8b\xf9\x9b\xbf\x1e\xad\xbf\xdb=\x85\xa2\xbf\xd0\xa6\x96\xda\xdc-|\xbf\x1eW\xe8\xd9\xcdM\xac?\xa8&vi\x9d"\xb4?\x8a,\x01\x1c8i\xcb?\xa6<\xda\xae\xc3`\x90?KM\x90\xd8\xb5\xf3\xa0\xbf\xef\x11\xe2&ZZ\xb3\xbft:&e\x06\x9d\xba\xbf\x95qliE\xbe\xb4\xbf\r\x7fiW_\x90\xc6?\xa8\xf5\x1c\xbd\x10n\xa4\xbf\xa2\xbb\xfd+\xfd\xe4\xa1?\x9c\xa7}e\x94\xd6\xa1?\xd7T\x9e\xbc\xfe\xd7\xa7\xbf\x9eu\x8bDl\xb5\xc1?\x1a\xf4L\x1f\xdda\xc4\xbf\xfbP\xec\xbe\xf2\x1a\xa1?\xfal-\xc6.\x83\xb7\xbf\x8cH\x8aJ0\xd7\xae\xbf\xc8s\\Bo\x91\x97?\xd5\xcdV:\x11\xf9\xc0\xbf|ps\x90\xf8\xf5\xa9\xbf\xb0\xc4fr/\x18\x8b?XG\xf7\x8f\xdb\xda\xb1\xbf g\x9b\xba\xdef\x9a?\x0e\xc6\xdc\xba\xd7<\xa1?\xd8\xf1\xcb&\xb9n\x98?\xf0\x96r\xfa\xe5\xd6\xbe\xbf\x00G\x87\x14\xfbc\xac\xbf,\x84\x85\xeb\x10:\xb6?\x0e|a\xd7f\x10\xb0\xbf\xc0\xbfm\xfdy\x0f_?0\x0b\x148\x84=\x83\xbf\xe0\\\xa0\x8f/\xdf\x8a\xbfPc\xea\x13\x1e\xb8\x8d?\x84\xf6\x1c\xeb\xda\x04\xa6\xbf\xf6\x12h,\xe3\xfa\x9f\xbf\x9e\xbd\x15OF\x1a\xa4?\xac\x11\xbbX\xf2_\x88\xbf\xde\xf8\xbe\x84\xbb\x97\xbe\xbf\xcdH\n\x01\xa4\x8d\x98?pnSK\x0c\xf1\x98?M\xb1\xf9\xd0\xe1z\xa0\xbf,;\xd9\xbc\xa75\xa2?\xdc\'T\x8b*\xb1?\xa1V\xdb\xaaP\x00\xb5?\xa4_ `&J\x94\xbf&I.\xd5\x95\xef\xb9\xbf\x84y\xfa\xc0\xe1\xc7\x8e\xbf\xf2R\x90>\x83\x81\x9f?\xe0\x0e$\xd4{\x01\xbe?\xd8\xb0]\xa4\n\x8f\x84\xbf\\\x93\xff\xbc\xa2\xf3\x8e?\x939\xbd\x9a\xae3\xb3?\xc8\x8d \x9d\x95\x9f\x81?\xbb\x83vf\x7f\xa1\xb3\xbf\xbaK0\xf3\x88\x12\x85?\xa5\x06\xba\x82\xfe\xb9\xb8?\x05\x05\xf3d6\x04\xb2\xbf\x90r\xabK~\x92\xaa\xbfp)\x9anfO\xbe?\xc6]d\xdfB\x12\xb4?\x88\xf9\xb4/\xba\x83\x97\xbfdU\xb0\x8a\xd41w\xbf\xf0O\xc3V\xd5\xd5\xb3\xbf5:i\xc1uK\xb4\xbf\xe0u\x94wY\xf4\x97?\xea\x962\xb6\x83t\x96?\xf8\xa2%\x93\xd3\xc1\x89?\x11%\x0b\xc3\xa3\xb1\xb4?\x11\x9e\xca\x1e\xd5 z\xbf\x95"i\xe2[\xfa\xa8\xbfp\x1a\x7fy\x81\xe7}?\x1b\xe0^\xbd;\xd5\xa6\xbf\x93x\xd12\xd0\xce\xaa\xbfA\x0b:\x1c3,\xb7?\xfewvuO\xa8h?\xe0]I\r\xf6\x1cD?\x85\xf0\xc1\t\xad\x12\xb9?\xcf\x15\x86\x93\xd7\xe1\xb2\xbf\xe4\x97\x1b\x8b3y\x88\xbfT\xa5h\x7f\x9e\xa9\xb0?\xaf=F:5t\xc1\xbf|P\xeezfJ\x86\xbfX\xdekm\xd6!\xbf?\xbf\xdb_j\x9a\xf4\x99?\x98snu\xfbB\x8b? \x8f,\xd4Pc]\xbf\xae9\xdb\xb7r\xaa\xb8\xbf\x08\x85c\xa7\x94X\x92\xbf\xf5\x9c\xa5\xafe,\xa4?\x003P\xd3\x81\xb7z?G\x8c\xffU{1\xa4\xbf\xb3^\x87\x08\xba\xe6\xa7?Z\xa0;\x8c\xfdc\xa1?pZ\r\xa2\x896\x9c\xbf`\x9est/\xdfT\xbf\xb9\xc64e\xff\x99\x88\xbf\x1b\x0e\xb9\xbdV.\xa4\xbf&F\x0cYU\x96\x94?\xc6\xdf\xea\xf4\xf9\xf8\x96?\\\x96\xb8\xf8lk{?#\xa5\xbaS\x89\x14\xa1?*\xd8\x87\x91\xa0\x8f\xaa\xbf\x9dN\x8a]4V\x8c\xbf\xc0\xbe\xc3Z\x1f\x8fK?\n\xf6\xae\xf3\xab%\x95?\xa2]\xc7e\x980\xb1?\r\xd6B)\xdf\x9b\xaa?Q?\xdb\x05f\xc7\xb7?\xc4\xe8G\x7fc\xc7\xba\xbf9{\x91\xf7\xff\xf5\xb1\xbf\xc2*\x9dY4\x18\xa5\xbf\xb0F\r\x89=\x92\xc5\xbf\xaagJ0\xc5\x1bw?\x8c\xbf\x0eM\x98>\xb3\xbfS\xf9D\xec\xe1l\x98\xbf\xda{y\x08*\xd3\xa3?\xbf[\\\x1c\xaf\x8c\xa2?\xe0K\xeeld\x19\xc9?-\x1d\xb3\x7fYT\xc4?\xa2\xe1i/n6\xb1?.g\xa5/M~\x97?\xf2\xf7,d\xf5\x12\xa9\xbf\xa4\x8br\xb9`\x15\x85\xbf\xa0l\x00\xd0wS\xc6\xbf\x9a\xd8T?\x84\xc3\xb4\xbf\xa3pT\xfe\xa0D\xae\xbf\xd6\x93\x0cr7=\xc1\xbf\xc5\x89\x93n\x0cD\xb2?,~\x1f\xf4\x0c\xd7\xc7?\xa2\xef\x81\xaf\x8b\x89\xbd\xbf|\xf1\xef"Z\xb8\xb3\xbff/\xab\xfa\x89y\x90\xbf-\xe1\xda\xc7\xd0\xa1\xb7\xbfY\x8d\xd7E\x02~\xa1\xbf\xc7-\xc52\xa9K\xc9?\x10\x88i\xf8\xe8H\x82\xbfk\x9c\x0f\x97\xeaG\xc3\xbfnY-\x8b\xb1\x1f\xbc?\xf0\x9dL2\x9f\x15\xb4\xbf|:\x17\x0e=\xbe\xb3?\x0f\xb6\x1e\xeb^;\xd0?\xab\xa9\xab\xd7^\t\xaf\xbf"\x05\xe4\x02\xd4\x12\x91\xbfH\x84\xf6\xce\xd9\x86\xc7?\xac\xbc\n\x94\xce\xcd\xab\xbf>w\xab\x1bJ\xc6\xb2?Ii\x06\x86\x9a\x03\xc8?\x8a\xae7\xaa\xb3\xf3\xc1\xbf\x9c\x99\xc8\xf8l\xd3\xbc\xbf*\x0e<#>S\x91\xbf\xf3\x1a\x8dn\x8b\x1c\xc0\xbf \xa1\x88\xac|\xedI\xbf %Rd\x82\xa1K\xbf\'4p\x1e\x17\xc3\xcb?@9~\x95l\xf4\xa4\xbfH\xc6\xde\xa1o\xdb\xba\xbf\x8c\x90\\G\xa1\xe5\x88? \xfd\x10\x81L\xcc\xb0?\x99\xa6\x01\xbd+5\xa1?\xa4O\xf9\x0b!\x97r?\xab\xf0\x1en\x95\xfd\xa3?\xb0\xe8\xb8\x1d\xa1?L\xbf\xa9\xa3\x1c\xcc\x1d&\xa2\xbfJ\xc7\xf1\x98\xe9.\xad\xbf\xc3<\x10|7x\xc5?\xd2gl\xc7\x0f\xb5\xc5\xbf\x00\x8e\xd1bc\x8d\x01?\xb9\x0e\x9b\xd3}\xeb\xa3\xbf!\x007#\xa3\xb2\xb8\xbfg\xe0\xe7\x8fm\xb0\xa2\xbf\x82\xd7\xfaY\xdb\x9a?\xc9_I\x8eY\xb5\xa9?\xee\xf4E\xffJg\xb5\xbf#\xef\xd4/J\x7f\xbd?\xa3\x91z(\x14\x08\xaf?$\xcd\xf2\xbe\tg\x97\xbfB\xaf\x98\x12\xf9\xea\xa3?\xccP\x1a\xcb\xb4\x90\xbd\xbf^\x0b\x9d1\xa7\xe8\xc0\xbf#\x03\x0c\xac{\xad\xa6\xbf\x19\xb8\r\xf9\xaa\xa4\xc0?\x96\xa6\xd3\xe4\x88\x84\xb5?@g\x04\xfcx\x02\x92?LR\x84_\x07U\xad? \x13i\x01\x07\xb5m\xbf\xc6%[\xdd\xe5\x8a\xa8?\xe0\xc4\xc9\x11\xca||?\x1b\x88\x08k\x86\xd1\xac?0\xd7\xda\xa3OD\xa1\xbf\x0e\xf53l\xa3\r\xa6?\x8eUD\x06\xd9\x92\xca?\x1e\xcb:\xe7\xafq\xab\xbf\x8a>\x96\xad\x16\x92\xbc?\x80H\xdf00\xf8\xa5\xbf\xa0\xa6\xaa\xf6\xf4\x0cx\xbf-\x17LK\xe2[\x99\xbfL\xea\xf4\xddg\xce\xb0\xbf\x0bf\x9e\n\xa5\xfd\xa6\xbfh\xf8\xf9\x8e\xc9\xad\xc8\xbfh2\xa7\x1e4\x9d\xb3\xbf\x0c\xc00\xf9Y\x1e\x9a?\xaf\xccIr\x80g\x90?\x1e!\xc2\x89\x80\x94\xa7?\xbe\x1e\xa1\x89pU\x86?\x18\xb1)\x17\x82o\x85\xbf\x85N\xe3t\x92\xab^?\xf5\xb3z\x8ar\x9e\xb6\xbfR\xc3\xc4\x94\xf7\xde\xa5\xbf5T\xe5\xfe\x9a@\x82?\xe9\x93z\x0e\xef\xba\x9c\xbf\x18\xabT\x1b"N\x87?C\x8fDx\x1a\xe2\x99?\x92\xd8\xf3G\xf2\xb2\xbe\xbfYL\x1a\xd1^8\xab?\xd0\x90\xe2S\x97\xe7}\xbf\x806\x05\x8b\xf1\xa6\xc3\xbf\xd0\x82\x96WMz\x81?f\xd0\xd2\x13\xabG\xab\xbf,\xd4\x03\xf0$*\xa4\xbf\xfd\x9e]\xb8TG\xbf?\xf5"[\x83\x9b\xdb\xb0?\x8e%W\xc8\x8d#\x96?\xc6\x96\x91\xf6\xba\xda\xa8?\x00\xcc\x81\x0b\x86\xa9\x83\xbfN:\xbd\\\xc6\xfa\xb7\xbfO\xa4,[aX\xbb\xbf\x14lw\xa6Q\x90\x9c\xbf\xcc]\xe5\xfd\xfc\x90\xa1\xbf\xbc\n\x15=\xf7\xc9\xb6?\x00E\xa7\x9fV\xc0Y?\x86\x9e\x98\xaa\x1aQ\xa5?\xad+\x8a\x11 \xa4\xa4\xbf\x80~\xde\ra\xad\x84\xbf\x19\x8d3\xf7\xabZ\xa7?\x0e:?\xee^\x03\xc5\xbfX6\xa2\x12$\xea\x9c\xbf p\xc2\x1c\xaa\xa9\xa2?z{\xedu\xb8\xda\xba?K9\x99\x17\xa8\xea\x90\xbfN-\xef\xc3LM\xa8\xbf>!\x06\x82L\xa6\x90?\xf0.qK\xfa\xef\x98?\xc9\x16\x1f\xa0o\x96\x99?Ms\x8e\x806f\xb0\xbf\x1e\xef\x0eu\xfb\xcd\x94?\x98\xe8\x80A#\x9b\x86?\xe6\x98d\x9e\xb55\xb4\xbfn\n\xc95\xc9C\xb3?\x7f\xd9\xd0\x13\xc2\x8b\xab?\xb8\xf3h\xe7\xff\xf8\xb8?\xf4\xa3\xc9y\xd2(\x9b?\xf7A\xc7p\xd3-\xa1?\x08C\x0c\xe2w\xc8\x8b\xbf:e\x1b\xe2a\xde\x9d\xbf8\x9c\xa7\xbfv[\x9a\xbf4~\x95\xe3j\x18\x89?L*Nh}\xf2\xbb?`\xd9\xae\xd2G\xc4\xa4\xbfd\xec\x03\xb1\x18\xcfs?\xaa\x7f\xc2\xac%\x0c\x91?\xfa\xacsFI}\x91?D\xdeQV\xb5\xdf\xa2\xbf4\x9c\x08%Pk\x7f\xbf\x0c%\xff\xad\x98\xe6\x98?\x88\xb1\xc5\xf5;0\xaf?s\xe4\xdb\xd8\x86\xac\xa8\xbf\x0b\xab\xc0\xa0\xad\x0e\xb8\xbf\xd9\xa7\xf6A=\xfdp?\xa6\xfa\xb0\xf4G\xb6\x9f\xbf\t(\x9b\xdf\\\xd2\x9a?I\xb0\xbe\xa8\xed\x16\xc1?e\x14\xa0u\x0fd\xa1?(dQ\xeb\xfbd\x81\xbf\xee\n\xd4\xbc\xf6w\x8e\xbf\'^O]\xd6\xa5\xbd\xbf\xec+75=\x9d\xb6\xbf\xcct\x02\xf1GJ\xb4?\x15\x00%-\x8f\x9c\xaa?\xa9C\x08\x84\xb0\xdep?\xb8\xc1\xd3\x1f\x8bM\xbb?\x8c05\xe8\x8b\x90\x9f\xbfG;\xa8I@)\xc9\xbfy\x91\x0f\x15\xe8\xa3\x86?W\x86`\xa1\x11\xc5\xb1?b\xdd\xffw/D\xa6\xbf\x86\x02\xd0\x10p\xb1\xc1?\x83}\xd5_a#\xbc?@\xc7z\xac\x1ed\xc2\xbf\xe1\xb6\xe4\xbe\xfa>\xb7\xbf\x18\x82\x95\xc2Q\xfd\xb1\xbf\x99\xa7\xec+\xcb\xb1\x8c?!X\x1d;!-\xc9?\xcb\xbd\x80\xad\x7f1q?\xc2^\xaf\x9d\xdfA\xa3\xbf$&\x1a\x18\xf31t?\x88\xdf\xb7|\xf7\xdf\xc1\xbf \t\x9bq\xd6\xdaQ\xbf\xc4\xa6\xbf\x91D\xe9\xb0? j~\xbe!DM?D\xb2\x154qt\x82\xbf\xf6\x1fu\xc9\xdf\x8d\x92\xbfi1\xb5I\xdb\xc0\xac?M\x90\x1c\x0f5Y\xad\xbf\x8f\x04r\x06\x17\xb9\xad\xbf\xb60\x01\xf8\x8c\x0c\xab?n\xe6P=\x80\xa7\xa1\xbf(J\xa6\x1de\x0e\xa5?_\xa6\x85\x96\x82\xe1\xa2?I3\xa4i\xc5\x94\xb4\xbf\x82\xd3\xeene\xb3\xa3?9Z{@\xe2\xfd\x9e?\x8a9N>\xd9\xf5\x8c?\xbc\xc7ZE\x13i\x87\xbfS\x01!\xe3\x97\x95\xb6\xbf\xd8\x0c\xcas\xf4\x17y\xbf=\xb7J\xc1Q\x1d\x96\xbf\xee\x8a6cyJ\xab?b@\x06\x00\xa1C\xa7?+\xbc\xb2\xb8\xc8\xcd\x9f?\xff\x05\x19\xfc\ro\xb3?S\x1b\xe2U\xd0g\x90?\xe8\xa4R\x12(;\xa6?6?\xdb\xb8oU\xa8\xbfvx\x104[\xed\x91? \t,\xd4z\x10o\xbf\xc44\x00\xb6\xf7<\x8d?\x7f\xee\x96\xc5\xec\xec\xcd?\x07\xb3d\x1b\x8fM\xc1?\x80\x8b\xf5\xd0$\xee\xbb?\x86\xef\xbb\x99\x19\xf8\xa3\xbf\x00\x07Z\x9a\xb0\xc0\xb2?+t\xef\xcc\x80t\xcc\xbf\xc5=a\xb3\xf33\xbe\xbf\xd4\xb7\x08\xa2\x17`\xb0\xbf\x9cD\xd0W\x945\xcf\xbf\x16\xec\xee\xc5q\x89\xbf?\x9e:\x19|\x0fv\xb9\xbfy\xe0\xe2O\x9f\x8b\xc6?\x85L\xc1\x8cRc\xa9?*"\xb2\x03\xae\x94\x81?\xfe\xaf\xb1\xd1\x9f\xfe\xa3?\xea\xa0\xccR\x89\xbd\xb2\xbf\xc0\x9e\xe7\xf4|\x1b\xc5\xbf\x07\xa8\x85\x0c\xaeR\xc8\xbf\xe7U\xb6\x16\x8c\xc5\x9f\xbf\xa0:a/9Kw?\xe6mU3\xe7\x87\xb3?Zt\xce5L\x14\xb4?\xf0\x13\xc4P\xc3\x8d\x93?4\xc6>\xfa\xda\xf6\xce\xbf\x01\xef\x1f\x80\xe0\xf4\xb1?\x9c\xb2\x05\x80\xb0\xff\xb5\xbf\x00\x14\xcf`\xfa\x98\x17?\xb0\xfcl\x12\xd3\\\x90?\xfa7\x00t\x98\x99\xc6\xbf\x81\xa39\x86\xba\xe7\xbf?.\x81i\x0c\xaf-\xa0?\xadS\x91\x05\x80\x01\xc4?\x93\xbb\xbc\xe1\xca\xfc\xc0?\x00|dx\x94\xef \xbfb&T\xd0]\xb8\x93\xbf \x04\x83.\x86 \x87\xbfs;\xc6\xa1iD\xa3??\xc19b\xbf\xa4\x9f?\x1c\x10j0\x82\xd1\xa8\xbf\xba\xd5\x0f4`\x93\xb3?\xffO\xf3\xb3\xf5\x8e\xa4\xbf\x85M\x96:\x04\x97\xc0\xbf\x96\x95\x17\\\xe0d\xa6\xbf)\x01_4\n\x19\xa2?\x9f%\x8c\x9e_\xc6\x90?\x84\xce\xa2.6G\xb8\xbf-\xae\xe9\xe2A\x9c\xb7?\xe0\xceF\xaaG\xcfi\xbfN\xf6VTpt\xa6\xbfB\x0cA\xd8\xa9\x9b\xaa\xbf\x0c\xeaL\xc0\x86\x1e\xb1\xbf\xecc\xff\xb7\xde\x8e\xa2?g\x85\x007\xa8\xa6\x83?\x1by\x13<\xedv\xb3\xbf\xaa\x8b\xc7\xce\x9d\xbe\xa5?\x1ev\xb3\x0b\x8fS\xb4?P\xce\xb7\x12\xb2\xc8}\xbf\xc6k\xe87G\xc4\xb9\xbf\x92\x14$\xbd\xe5b\xb5\xbf4\xc3\xc2+\t\xa2\xa5?EO7\x07u[\xa6?C\x03\xec\xd6\xf9;\x98?\xd2\xf5\xeb/\x15&\xab?\xa3t*\x98\x03/\xc3\xbf\xc2\xec\xa4\xa8\x89\x91\xaa\xbf\xd2\xbd6J\x95\'\xb2?\x15\x067\x06\xf3"\xa8?\x0c\x9e-\xd8\x11"\xb9?>\xc1f\xfb\xfe\xda\xa4\xbf\x8e\n\xc5\x8dV\xc8\xbd?)51\xbf\xb5\xa8\xa1?\x95{\x84wO\x90\xb2\xbf\x08\x1b\xb8P\xc94\xaf?\xa2|\xe8G\x1cl\xb6?\x0eZ\xa2rE*\xb2?}rW\xfaB\x8d{?\xfa\x1a\xa4|//\xc4\xbf\x90e\x94\x12\xbb\xe0\xb2\xbf\x8b\x05T\xec\xf2\x19\xa2?\x17\xec7;\x0b\x92\xb6?xk\x99\xdbY!\xc2?\x85&"\x8f\xce\xc8\xb5?\xbe\xf0\xcfsd\xd6\xaa\xbf\x02\x00ol\xa7\xf4\xca\xbf\xa4J\xf5vx7\xbc\xbf|<\x06\xe9\x00a\xad?\xf0\xa2\xa8..\x8d\xa1?\xf6{\x1c\x00\x18f\xc6?}\xf0}\xc7\x96d\xbc??\x96\xcdz\xbb<\xd2\xbfM\xcfp\x1dA\\R\xbf$\xcd\x1e3\xf0\x9f\xc9?\x13 \xc2\xa1\x96\xa7\xc9\xbfx\xa5\x16\xdf\xee\xf7\x9a?\xe7\x93\x81\x07\x9b\x1b\xcb?\xfe\xcf\x81)\x82\xe5\xd2\xbf\xf0\x88B\x1cJ\xc7\xb5\xbf\xd7\xeat\xee\xf4\xf6\xd0?;\x04\xfcR\xc6\x16\xae\xbf~\xc3\x14\xbc4\xc5\xaa?\xda\x13\x0c\xb1\x86\xa1\xb1?_\x04r\x8c9\xdc\xcc\xbf\xc0}~\xc2\xc6 \x9f?\xfe\xd4\xfd\xe26\xf2\x9c?\x8ed]\x99\x9f.\xab\xbf\x1a\x1b\xbe\xf5\x96\x94\xc7? \x164\xefF\t\x90?M\x98\xf3\x14\xb9}\xbc\xbf\xc0)`\x97\\\x1cj?\x00\x98\x1cP\xd6>8\xbf\xec&c\xa1\xd2J\xa4\xbf\xb4\x02x\x89R\x98\xa1\xbf}\xddA2\xc6\x90\x92?\x86C\xdb\xc2h\xab\x87?\xf8\x81.}\x8c\x10\xb0?Wst\x1aH\xaa\x95?\xd4Q\xf6\xeeTh\xb4\xbf\x9c?\x0c\x83\x99\x0e\x90\xbfpD4\xa4\xd5 \xa8?\x90w$\xe4\x11vg\xbfX\x19\xa6h3\xb6{\xbf\xfb*Oy\x12\x18\x87\xbf\ty\x98\xb6\x13\xc5\xad\xbf\x80KS^\x97\xb8\x7f?\x082\xb5-\xda\xd0\xad?\x00b\xc0\x01\xff\x84\x9a?N\xb05+\xd8\x7f\x8e\xbfs\xee\xf6@\xfd1\xa6\xbf\xa0\x99\xc9\xfc\xe4\xb8\x96?\xdd\x078\r\x83:\x8d\xbfpQ%\x9bE.\x82?hK\xe0\x0f?\x01\x89\xbf0\xfc\xf6\xb7\x9b\xd3\x84\xbf@X--\xa9jr\xbf\x80\xb5W\xdd\xe1\x8fP\xbf0\xcf\xd7\xf6f\x96\x87\xbf\xbe\x85\xa2\xed\xbf\x88\xa9\xbf\x97\xc5\xbb\xb0\x1c"\xb6?\xc85\x87\xcf\x1b\xe7\x88?\x90)\x9d\x02\xc9\xc7t?\xeee\xbe0}\'\xb2?\xfb\x1c\x9a\xf9\x9d\x8c\xb1\xbf0\xe6x\x95\x0e\xb7\x9d?p\x19\xea.\xd1w\x84?\xe3Z\xa0q\nu\xa7\xbfv\xa0\x98?\xd8\x86l\xde\xf7\x83\x99\xbf`x\x9bf\x19\xcap\xbf\xf8\x88\xd7 \xd7\xa0\x88\xbf \xf8\xc8\xdd\xb3:t? 0B\x1e1\xa4\x83\xbf0\x87\x1e\xbc\xce\x90\x85\xbf\xf8\xb7\x14\xd9a\xc5\xaf?\x14\xf6\xe1\xe6^\xb9\x94\xbf\xd2u\xb6\xa7b\xad\x9c?Ps\x82"\xf4N\x8b?\x0c\x16\xc6\xd4\xf8r\x90\xbf\xda\x85\xc8\xad\xe0s\xa0\xbf\x04\xcb=$\xf0\x90\xa9?08 \xf5\xd1\x7f\xbd?\xb0\xdb\xec\x8e\xe7\x10\xa9\xbf(1\x1dE\x9b\xc6\xc1\xbfP\x06\xda\x84\xbe{\xa7?\x1c\xce\x10\xe0V(\xb3\xbf\xac\x07aN\xc6\xfb\xc2\xbf\xfd\x15\xc6\xe0\xfdm\xb4\xbf\x17M\x96\x92\xe5~\xb1?\x89\x89\xefW\x93\xf5\xce?\xa8/\xe7\x02I\xa0\x81?\xb2a!=\x02C\xc2\xbf\xe4\x04\x0e\ri5\xa2?\xca\xe9\xb65\x0bA\xaa?WI\x1d\x96\x84\x8f\xa6\xbf\xc8\x1fAv\xd6\xfb\x9f\xbf\xde\xf1\x1eU\xb0Y\xa2?h\xf5\x9cl\xbb\xdf\x83\xbft\xef\xc2\xa4\xa4\xbb\xba\xbf\xc0#0\xeetOT\xbf\xf2\x16\x96j\x89*\xb3?\xfe\xfd\xc6\x90\xb0\xc6\x95\xbf\x18\x81\xa9\xf7\x9a\x03\xab?a\xb3\xcd\xdb\xa1M\xaa?#\x19\x07\xd0\xcbf\xb0\xbf\x00+\xf8\xe9\xec%4\xbf\x9b\xb4\xd0\x16\x93j\xa8?\x00\xb8\xce\xcd\xf9\x87\x93\xbf\x99\xd4\xdd\x807\x8b\xc4\xbfxZ\xf6\xba\xaai\x96?\xea]\xdb],\x06\xb2?\xe7\xfe\x97\x1d\xee)\x92?M\xb5\x8c0A\xf1\xa0\xbf\x80\xa1\xb1\x0b.\xc1\x89?\x90Z\xfd\xdb-\x87\xb7?\x94\xaab)1Dp?\xf2\x02\xc9\xf8\xbe\x80\xbb\xbf\x1e\x1d\xc9\xbd\xc4\x13\x98?P\xac2\x8d\xd1\x90\xb8?P\x01{5\x90\x1a\xbc?\x88\\g\xd9\x84\xfa\x98\xbfL\x9b\xc2\xc8j\xa0\xc8\xbfoug4#R\xa4\xbf\xe6\xd1\xb8Q\xbcQ\xa6?\xb7\x0f\xbb\xf5\xb5\x98\xb8?\x9b\xb8\xacJR\xde\xbc?\xeey\xe6\x95\x16\x82\x97?\x9a\\\xe6\xe7-\x12\xa9\xbf_G*\x82\x80\xe5\xba\xbf\xb4\xcf\x1e\xcf\xc8\xd4\xb5\xbfJ[FAr\x02\xa2?A\xb7m\xaf\xa2\xce\xa9?\x84F*\xebdi\xb7?\x94\xdd@\x0e\xf4y\xa5?kr[\xa5\x9b\xb4\xb2\xbfB_\x90\xaa\xe7\xed\xa4\xbf\ns\xa5\xea\x90\x06\xae\xbf\xc8\n\xd9n\xc2\xe5\xaa\xbf\xa2\x9b\x08A\x03\x19P?e\xb1K\xf5\xc2o\xaa\xbf\xb1w \x96\xe3Z\xa9\xbf\xe7\xcd\xc2\xcd+\x93\x99?\xdfX!)\xdf\xc3\xb2?\x04\x1c\xc2\x16z\xcf\xaa?\x8cAk\x9f\x01\xd3\xa1\xbf\xfa\x9f\x03\xe8\x05o\xac\xbf\x8cs\xc0\xfb\xc4h\xa1\xbf\xe6\xd09\x05\xf2\xeb\xa6?^qe\xf5\xc6\xb3\xa1?\xe0\xd1\xceN\xb2\x04\x85\xbf(\x9f9O\xe6k\xa5?\xaaD8\xee\x91\x7f\xa7\xbf\x1c\x1b\xa9T\x0c\xe1\xb8\xbf\x00\x9e\xb8M$\x1cW?ZRAt\xa8:\xb4?\xc0Fu\x06\xc0\xa6\x92?b?\xaeq*\x7f\xab\xbf\x19\xa9\x02-\xfaF\xad?\xd0\x96zF?&}?\x01+\\,w\x97\xa2\xbfL(\x95\xf0\x05\xc7\xb4?\xc3\x98%]\xedS\xb0\xbf\x0e\x8akKN\xe9\xb7\xbfX\xc9\xd9\x14\x89(\xa7?\xf84\x0f\x9b\x80\n\xa3?\xea\x84\x98\x87\xc38\xa1?\xb0\x07m\xaaU\xf7u?8C\x08W\x8a\x11\xa3?h\xc8\x96\xfc-\xfd\x8e\xbf\xa2;V:\xc7\xf1\xa7?\x00\x90\x8f\xc2\xdeh7\xbf)\x0b\x04\xa9\x8eI\xad?|\xb8\xf35\x1bIy\xbf\xf0\xe3Q2\xbaF\xb1?U\xa4\x12U\xceb\xcf?\xbe\xe7\xc4\ta|\xbe\xbf(\x0e\x10}\xa6U\xc3?:\x1dMl\x81\xb8\xa6\xbf\xd8\xf3S\xad(K\x87?\xcc{\xea\x95\x0e6y?\xf0\x92\xacJ\x93\x97\xbc\xbf\xe7\xeb\x9a\x1d\xa2\r\xae\xbf\x1a\xdd\xde\x18\xc0\xd0\xd0\xbf8\xcc\x14\x12\x80\x83\xc0\xbf\xf8\xf3._QT\xb8\xbf\xf0\xea#\xe2\xa8\x82m?T\'\xa8\xff\x1c#y?\x9e\xc6p\x86\xd5\xdf\xb7?\x88\xc2\xf9c\xff\x98\x80?\xf0\nf\x8c\xa4\x13\x97?q\xbd\x0f9c\xac\x94?N\x97\x97\xdc\xfck\xbc\xbfF\xe2\xf9H\xe0\xe0\xb0?\xde"n\xda\x0c+\xa5\xbf\x108\x9b\x87s\xef\x94?\x82?\xe44O!\x94?\xee\x17}*\xa6\xa6\xa8\xbf\xf0\tm\xc7t#\xb6\xbf\x10o>kR\xd1\x95\xbfb.f\x18\xc8(\xb8? \xea\x9fAs\xa82?\x04\xbe\x03\xfao\x80\xa0?\x02\xf5\xe7#z\x89\x89\xbf\xf8\xe5\x87\x10M*\x93\xbf\xd00\xa5\xc4J\xe3\xa3?j\xc0\xe8\xa6\x9bL\x97\xbf6\xb3d\xad\xc64\x83?\x9e\xad!\xcdj\x9a\x94\xbf\x03\x19\x13\x1a#\x1d\xac\xbf\x00\x8f\xc3\\\xd4\xb1\x80\xbf\xc0\xd6\xd5\xf9\x12H_\xbf\x82E\xc0\xe9d\xe3\xaf?@+0<\x0f\xf1Z?]@\x0cdj\xa0\xbd\xbf\xc6b\x83m]i\x93\xbf\xd0H\x03\x93\x0b\xce\xd1?\x98\x1fu\x1e-\xa7v?:\xc8\xd9\x11 \x8f\xbc\xbf\xba\x164\x08\x99\xa0\xac?\x9ay\x87\x10\xb7h\xb0?\xd9vK\xb9\xb6\xcf\xb0?@\x0b\x8f\xbdY\xa7Z?#S\xe2\x93N\xe0\xab\xbfP\x18\xa7\xf2&Q}?N\n\xa2\x10\xe9i\x8e?k\xcbKi+\x95\xbb\xbf\xc0\x8bq\xd0\xebm[\xbf\xf3k\xc6\xa2\xf4\xb6\xcd?\x98"O\x19(\xe3\x98\xbf\xf7S4K\xf6\xb8\xc4\xbf|\x82M\x97e\r\xb0?,T\xfc\xf6+\xea\x9b\xbf\x8c\xe77;j\x19\xa2\xbf\xbe/\xc6\x92\xa5{\x93?_\xf4\xeb\x12\x91Z\xa5\xbf\xd8S\xe7\xde\x02P\xc0\xbf\x1ea\x83\xe1\x90\xeb\x96\xbf\xa7\xc6\xbc\xcc\x0e\xd6\xd1?H/\xeaZ\x91\x91n?\x9e\x87\xb6\xd5\x87\x8d\xc3\xbf\xa8\x08C\xad\xcd\xa3\xa6?$\x18\xb8\x1f\x13\xcb\x94?\x90"\xb81ev\x95?.\x04hP\xa5r\xc1\xbf\xa0\x1d-\xa5\n\xae,\xbf\xb0\xb2\x91\xe9\xd6E\xd0?\x16Xb\xc8\xafF\xa1\xbf\xe7t\xf6\xcb\xc8\x98\xc3\xbfC\xd6\x1e\x0e%q[\xbf\xf2\x92d\xe0\x16n\x9d\xbf\xfc\xa6\x01;\xbc\xcf\x9e?\xc6\x1a\xf9\xc5\xf0\xad\x9e?\xb8\x89\xc89\xfd\x8b\xb1\xbf\xbf\x1a\xf69\xbbkp?h\xedL\xfa:\xbc\xb2?a\xf9\\\xdbD\xf0j?\xbd\xa7_-\xc9E\x8b\xbf&\xc9\xb1\x0f\x14\xe4\x93?\xc9\'7\x7f\xedA\xaa\xbfd\x12\xcf\x0eI\xb4n\xbf\xc4\xc8\x12]r\xa9\xa1?\xfbe5\xde\x81{\x98\xbf\xf5t\xe7\xf8\xe6<~\xbf\x8b\xce\x84\x1d\xb7\xa1?\xbb\xd2\x860\x0c\x84\x97?\x02`T\x9cs\xe6\x9e\xbf\x16B\xe4_\xa6t\xa0\xbf\x0b\x1d\x83\xb2o\x82\xa0?\xba\xd8\x97#-^\x91?^\xfd)\x11:v\xc1\xbf\xfc\x0b\xbaI\xdd\x85\x97?p@\xa9\xd8\xc8\xb1\xb1?\xa3X\x1a\xa5y\xef\x92\xbf\x0f\xa7Ds\x1c(\xa3\xbf\x16\x9a\xc7+\x07_\xb5\xbff\x8d\x16\xb5\x9b\xa9\xb2?\xbc0mgn\x9e\x95?JR\xc0\xa1;r\xaf?\xe8\x81\x9b\x9d\x1b\x04\x9d?\x9e6y\x9c{C\xc4\xbf\'5\xb3q\x0c\x94\x84\xbf\xc1D\x8b\x8e\x02^\xb6?\xde\x1d\xb0\xb3\xaf\xd1\xb4\xbf\x94X\xd1\x89\x03h\x85?pm\xad\x10\r\xa6j\xbf\xb9\xc8\x96\xd4\xbc\xca\xba?P\x80\'R\x9e\xe9\x8d?\\\xb1\xd7\x89\xe3\xaa\xbb\xbf\xf8m\x0e\x0ft\x19\x87\xbfn\x14\xcd\xa2?\n\xba?M\x97\x86z\x8a\xcb\xa4??m3x\x15\xe4\xa8?1\xd2\xeb1\xc9a\xb7\xbf\x10\x9cPo\x00\x11\xb2\xbf\xbc\xc5\xb9\\+8\xa7?\x0c\xc2O\x98\x0c\xe9\x97\xbf\xb5\x19\xe7\xc6\xf5\xd4\xa9?\to\x9b\x8a\xd5}\xb6?7\x13\x8eS\xae%\xa5\xbfW\xd4\xd0@\xba\xe4\x92\xbf\xed\xccqSy8\x94\xbfZ\x034D}\x80\xc0\xbf\x83\x8c\xa8\xae\xa3\xd7Q\xbf\xd2\x92\xf9\x19D\xa6\xc6?Q\x86\x85\x05M8\xb3?a\xd2\xbdKck\xb6\xbf\xb4bG\x88\n\x02\xaa\xbfR7\x87\xa4W\x91\xa2\xbf\xec\xe5\xac\x12\x17\t\xb1\xbf>\x1c\xfc\xea*\x10\xc2?\xbe\xfcq\xf2\x94\xfe\xb3?\x12\xa1!\xe2\xaa\xb4\xc8\xbf\xa2\xe2\xec\xc2\xe0\xc6\xb4?\xe0\xe2\x18\x97\xe1\xa6\xa6?e\xdd\x14&\xffQ\xd2\xbf\xd8\x96]pkC\xbb?%X\x88\xf0X\x02\xcf? :j\x1b\x00\x8b\xa7\xbf\xb6\x11\x00OBk\x8c?\x1b\xe9\x9f\xb2\x99\xb3\x9a\xbf\xb4\xaa\xce\xf6E\xab\xc4\xbf& \xee\x89\x81\x86\x94\xbf|j\xa6\x1f\x0e\x17\xb7?8D\xa6nWZ\x9b?\x82=\r\x86\xb1|\xa2?\x98a\xb9\xd2\x8f\x12\xa0\xbf&1\xf1\xf7l\x8f\xab\xbf\x86\xa7\xa9@\x07\x97\xa0?N\x920\xa6\xf9\x08\xa8?\xc0Y\xfdR\xfc\ne?\x81m\xcc\xb0\x8d9\xab\xbfT\x7f\xff\xf7\xf6\t\x9c?\xc2\xbf\xabou\xee\x9b?,\xff\xcb-\xf6\xa7\xa2\xbf\x8e>\xabE0\xd5\x82?\xe0\x01\xc7\xf6@\xa7I?\xab\x9b@\'&\x8e\xb0\xbf(\xc24\xfa\xc5\xd3\x95\xbf\xb6z\x84\xdb9/\xa7?\x1b\x0b\xd5;\xb4\t\x93\xbf\x90\x8f\xfc\x0e\xc77\x91?Yu\xe1`]%\xa0?X\xd5\x1c\xfc\'\x00\x85\xbfv\xc3~\x82\x14&v\xbf#\x1aS4\x9f\xf7`?6\xb3\xfe\x07-\xa3\xb0?\xac\xdf\xf9\xc8\xec;\xa0?9\x03\x044\xcf4\xa0?\xd0|)\x1b\xc9\x8e\x7f\xbf\x82\x83\xef\x9a\xa1\xdb\x87\xbf\x80t-\xf0\x03(m\xbfT\xf2 }\xfb\xbc\xaf\xbf\x18~:Q\x93\xbe\x8f?\xce\xdf2\xe9\x95F\xc4\xbfI\x8eE\xd7\xaf\\\xa8\xbf\xfd:\xd8\x13\x00`\xa3?\x02\'\x92?\x9en\xa3\xbf\xfa\xd5/w\xee\xb3\xcd?\xe8\xff\xfd\x92\\H\xa3\xbf\xa4\xaf\x97\xcbL\xe3\x89?\xca\xb21Pr\xe5\xb9?\xaf\x19:\xdaQ\xaa\xc0\xbf\xeb\x1a\xfd\xee\x8c\xdc\xa9?x\xf4f\xd30 \x93?\xe21Md.\x87\x90\xbf\xa7\x95\x1a\x149\x02\xb7\xbfR\xb6\xca\xae\xd2\xf3\x98\xbfX7\x06\t\xc4\xb0\xa7\xbf1\xb0K\x17\xc1<\xbe\xbfPGT\xd1\xc7?\xaa?\x00+\x1fy\xb8\x17\x9b\xbf\n\xd8\xb9\x0f\xb4\xbb\xa0?_o@-\'\xaa\xa5?\x08\xf6\xef\xbej{\x96?\xf0\xc2\x9dN\x85R\xa5?Tw\xd6ud\xf7\x99?a1\x08Q\x87\xee\xb9?\x1e\x8e\xff\xef\xc4\xda\xae\xbf\xb8/(\xa4X\x9ee?\xd2\xed\xdcb\x1d\x81\xb0\xbf\xb5\'=9i\x16\xbe\xbf\x98\xfb\xe36\x80\xddy\xbfMdV\xc0\x93\x11\xa1\xbf\x83\x0b\x88\x97\x13\xb0\xae?3I\xa6|\xa9\xd8\xb0?\x12\x1d\xd6\xa5\x97\x7f\xa8?D=\x1c\xf4\x9f\xa1\xb6?\xfe\xf4FeFg\xa2\xbf\x9dh.\xcbf\x03\xd0\xbf\xf9\x00\xbdYCW\xae?\x04\xd3i!(6\xc6?{\xe0\x10t\xe7\x06\xa4?r\xda\xfb}\xf1Q\xca?\x0f\x9d\xcfca\x1d\x94\xbf\xe2\x01ul\xa6\x91\xbd?J\xb15\x85\xe8z\xa0\xbf\xadx\x9c\xcf\xa6\xd7\xd9\xbf\x88df!]~\xa9\xbfe\x82H\xbdw\x98\xc6?\\e$a\x0c\x1c\xaa?\xc2\xed\'a\xa0\xfe\xa4?t\x01[8\\\x82\xa4?\xd8\x8b\xf2!\x85N\x93\xbf`\x95\xb44\x97\x93\x82\xbf\xb0\x01\xf8\xf6]\xce\x8a?8\x18\x8d0\xc4\x8b\x82?\xd8&\xb3\xd4\xe9\x07\x9b?i\x80\xfb\xf2`\xf6\xaa?6\xaf\xea\xba\xf8\xd2\x90\xbf/kypH\xfc\xb1\xbf\x10\xcf\x0b\xdb\xce\xe6\xac\xbf\x08\xbb\xae\xdc:f\xb1?LV\x92\xd8\xb4k\x7f?\xc2T\x1d\xf6\x1d\xd7\x99?\xdd\xfe\xd1=\xf1\xe4\xac?\xf7\xa7\xd7\xb9\xc9G\x92\xbfl\xaf\x11E]s\xb6\xbf\n\x03G\xd4\xfc\x81\xaa?(\xc2\xde\x00\xa13\x82\xbfk\x13K\x17\xee\xa2\x91\xbf\x15\xe1\xc1\x11\xe1\x88\xb1\xbf\xfc\\\x8d\x11\xddh\x9b\xbf\x14\x9e:\xf3\xa4\xbe\x98?\xac\x9d\xbb]\x15\x18\xb1\xbf\x00P\xe9\xcc\x16\xe9\xf3\xbedU\xd9c\x14\xdb\x95\xbf\n\xd5ju_\x0b\xa1?\x9ci#$\x8d\x02\xa6\xbf\x94Vku\xb9[\xab\xbf\xf8\xef\x97\xc3\x07\xf2\xa8?\xc0\x14\xeb\x86~_r?s\xfd\xa7\xb6\x91\xd1\xa4?\x1cQ\x95VT\x17\x83?\x107\xf2\xbd\xaac\xb3\xbfIP*\x85\x9c\x04\x8a?\xa8\xe3\xc5\xb1\x7f-\x8b?c:BB\x1f\xe24?\xe5i\xae\xc7I\xf6\xa4?\x95\x02\xaa>\xeb\xb8\x91\xbfY\xc1\x18\x81\xdb\xfd\xa0\xbf\x97i\x80h\xf8\xbfV?ilj\xbe\x9b\x1f\x82\xbf\xc6\xc8}\x04\xbe\xa5\x9b?\xe6u\xab\xc6\xfe\xbc\xa8?\xadg\xae\xd8\xfc1\xa4\xbf&\xea5\x90\x01\x99\xaa\xbfL\x7fs\x18\xb8\xa8\x96?\\nR\xf8\xa9\xaf\x95\xbfN\x9ep\xc3$\xda\xaf\xbfN\xfc\x1b\x9eFX\xc0?\xb7C\x7fk\xa6\x80\xb8?znf(\xf7,\xba\xbf@\xb6\x12\x9f\x7f\xcb\xba?\xf6\x91\xc6EG\xef\xad\xbf%\xc5W7\xba\xc9\xde\xbf)\x1e\xe6d{R\xbc?\xa7\x03\xd3\xb7\x84;\xe2?\xe2\xd57e\xe8\xf7\x96?\x01Mf\x93\xfe\xf0\xcc\xbfP\x7f\x95\xf5\x00\x1e\xaf\xbf.\xf5\xa1#\xbb\x92\xb0\xbf\xeb\xd7\xbcV\x8b\xc7\x93?\xed\xf3\xae\xaf\x8f\xbd\xc3?q\xba\xe2\x97\xaa\xbf\xfeIq\xec\x97r\xa0?0ta\xe8k\xcb\xb3\xbf\xf6\xfb\xe8\x88\xd3w\xb1\xbf\x0c\xcd\x8f\x06\xd6\x89\xb7\xbf(\xe7\x8f\xc1\x7f\x82\xb7\xbf\xe5\xed\x8cgX\x9d\xb5?\x15\xc3\t\xe9O\xe7\xac\xbf\xea\xe1L \xa4$\xb6?\x9e\xd1\x9c`m?\xa6? \xb8\xce\x11\xb9K\xb3?\x978wv3\x1d\xba?#\xb3\xb2\xd0&\xd9\x95?\xcdA8!\x9d\xde\xb5? $7}h\xbd\x85?\xdbc\x84wcF\x92\xbf\xc0\x9c\xd2\xab\xcdF\xad\xbf\x8aR#\xb7X6\xbe\xbf\xd6\xa0\xf0L\xe1\xf3\xb7\xbf\x109\x19\x94\xedR\x92\xbf\x12\xb3\x9b?\x16\xed\xad?U?\x9a\xde\xc0w\xaf?\xc8b\\\xe6\x83\xd3\xb5?\xe0\xda\x88M\xbe\xb8\xa6?\x00\xb3Ii\xcb|p?\xa8\xdb\x87\x1f\xca!\x9f\xbf\x1c\x90\x08\x0f\xa9y]\xbf\xce\xa4\xc2\xd8\xed\x08\x98?\xb4\xa9\xb7\x94qV\xa4?T,\xa1\x87d\x16\xa5?b\x11r\xeb79\xa6\xbf\xa2\r\xda\x8a\x8a\xd1\x96?z\xd77\'\r@\x85?\xabwO\x003&\xbb\xbf`\xe7\x0b\x99\x1c&\xa5\xbfB\xcb\x01\xd2G\xd2\x9b?\x10\x92\xb7\x96\xeb\x97\x91?\x00d\x1e\xd6w\xa40?\x07\xf34\xfc\xeb\xc7\x9d?\xe0n\xdbZdj\x90?\xe0=\xe0\xb7\xb3ht?\x92\xf2fQ0A\xa0?\x82/H|\x1a\x8b\xa2\xbf \xf3\xd9\xf3\xa8\x98~\xbf\xcaJ\x0c\xd4\xae\x95\xa6?;\x99\xfb\xee\x18\xe4\xa4\xbfP\x06D:\x8f&\x98?@\xc5^/:\x0ex\xbf\xe8P\xc9;\xd0\xe9\x8c\xbf\xa8\x07u\x97n\xc1\x82?\xf7Y\xcenZ&\x87?\x10\x1a\xf3\xa6>0\x9b?\xff\x1d\xbe+jN\xb1\xbf\xc0\xc8\x13\x93N\xa7\x9b\xbf\x8fyW\xa6_\x87\x9b?\xe09\xc7\x81\x1b.v? qF\x882\xddq\xbf\x98\xee\xfe\x0b?,\x80\xbf\xad\x15\xeb\xb13N\x98?\x10A\xbb\xfa\xa3Us?\xa2E\xe6\xa3\x7f\xc4\xb0\xbf\xa0\xdb\xff[\xe9\x8au\xbf\xb0[\x86\xfb\xa0,}?~\x9e\xdc\xe9\xf3\xca\xa4\xbf\xb1\n(\xcc\xb8\x0b\xa9?\xcby\x89\xbc\xca\x8d\xb2?Y{\x01\xa4\xf7\xb6\xac\xbf_\x8e\xc6\xb8\x98\xe9n\xbf\xfa\xdc\x97\xb0n\xc7\x96\xbf\xba\xaf\xb8\x9ap\n\xb5\xbf\t\xc6^2U\xac\xa4?\x8b\xaa\xde\xbdf\xec\xae?\xe3\xd1\xea\xae\xa5\x1e{?\x9e\\\x07\x81=\xed\xa9?\xe5\x12\\\x90\xa1_\xa2\xbf\xeb\x10\xae\xf0\xbb(\xbd\xbfr?\xad \x02\xde\xa1?\xf8\xc6Z\r\t\xd0\xb8?Y\x9b\xc3@\xfc\x99\x95?H\x8e\xadp\xec\x96\xa7\xbfa\x03D\xb7\x9c_\xb6\xbf&\xa66\xb0>\xe2\x82\xbf\xe1|y\xb9\x13\xd8\xb2?z\xbf\r\xd1\xeaA\x80\xbf\xd89BW\xbf\xf5\x98\xbf\xf8+\xc1b\xc6o\xb9?\xc2Uy\xc6E\xf0\x9d\xbfc\x89\x1f0\x13\t\xc8\xbf%i\x08\xde\n\xb9\xa9?\xc8\r\xe9\x92\x1c\xaf\xbf?/D\xa6}\x80\xde\xa8?\xc0\xe4\xb7.\x14f\xb9?\xfeQ\xcc\x11~\xdb\xb5\xbf\xc5\xa6\xe6\xde>8\xc8\xbf\xacj\x12\xdf\xcc2\xac\xbf\xac\xc0\xce\x9a\xbb\xc0\xb4?\x10\x8b~Yd\t\xb8?;[;\xdb\x10v\xbe\xbf \x8c5n\x8ey\xa3?\x88s\x9c\x93Z\x9a\xd0?LTB(\xe2p\x98\xbf\xf6\xdb\x9b,\xa0U\xbd\xbf\x9c6\xa4\xab\xd8\x9d\xa7\xbfq\xffK\x1f\xde\x8a\xcd\xbf\xa1\x17\x8c\x8d\x8en\xb0?\xad\x98\xfcv~\x93\xc8?0\xa4T\xe4\xedN\x92\xbf\xa3~\xe2\x85\xf7\xdf\xc7\xbfX\xa7\x90U\xb0^\x86?\x0cj\xf6\xbe(\xa9\xc8?\xc54\xb9\xc2\xf4\xf9\xa4?\n\xed\x7fxD\xb5\xc5?\x98\xe4`\xd1L\xf0\xb3\xbf0`h\x1e\xe1*\xd0\xbfmT\xc17\x97q\xab?\\\x94\x9b\'\xc5\xc7\xb7?\x90\x91/\x98J\xf3e?<\x9594\x9d\xb9\x8e?\x13K\xcd\xef\xe1E\xbc\xbf0t.>\xc9\xdb\x85\xbf6H\x84\xc1\'\xdc\xae\xbf3Y\xcb\xcf\x00\xa9\x90?\xa8\xfa\x86O$=[\xbf\xe0\xf1r\x8b\xf6\x88j\xbf\xb5M\x8d\xae\xee\xc8\xb0?@\xdf\x86-\xdb\xa0\xbc\xbf\xbe\x13\xa5\xdb^o\xa9\xbf\xdb\xcf\xe6\xdb\xb4J\x88\xbf\xc4\x9c\x00z\xf6j\x96?\xe1\x94\x19\xac\xedEu?J\xd1\x08\x0c(\xeb\xb3?l\x81;\xc69\x01\xa6?\xc5\\.\xb0\xe1\xa6\x83?\xdeD\xfaR\x82\x93\xad?\x06\x80F"\xf9;\xaf\xbf\x1dN\x13\x12O\xf4\x9b\xbfD\x17A\x15\xf6\xdd\x9f?\xf0C2\xdf&k\x9d?\x924G\xda\x86\'\xa3\xbf\x91\xfc\x9fki$\x9b\xbfq\xa6\x01\x17\xcbH\xc0\xbf^\xd1\xcaA=\xc2~?$X\x7f0n\r\xb9?!H\'\xfb\xa6\x98\x96?;\xbe\xdc\x0f\x8c\xc0\x93\xbf\xc4\x81`|\x7f{\x9c?\xa43hX\'\x9a\xb3?\xa0H\x8ax\xa8\x16\x90?\xec\xdd{a^\x18\xc5\xbfH\xd9\x81aE\xb9\x80?\xa4\x8a\xee\r\xc5\x9a\xc8?6\xb5\xdc\xa0\xc9\x11\x82\xbf\xf6\x1d0\x00\xee\x1a\x9b?\xd3\x18\xa8\xa8\xbf\x11\xc3\xbf\xba\xdes\n\xd1\xa2\xc8\xbfpd"\xb1\xd2\xfb\xa3?\x00\xe6\xbf\x93\x84@\x08?\xa4%fp\x96\x9b\xa8?,W@\xf3D\xae\xc2?Z\xdc3*\x8f\xe6\x9a\xbf\xb9\x9b \xc4\xbe\xe7\xa7\xbf\x0c\xa3\xd2\x96\xf5\xec\x99\xbf\xe4\x086Pid\xac\xbf\x08>\xf4\'h\xd8\xbd\xbf\x19\x9cJ=3\xed\x96\xbf\xd4\xfe\xe0\xe9\xed`\xaf\xbf\xde\xfa\xe1=E\r\x83\xbf\x80\xad\x9f\x0e-\x84\xa2\xbf\x86\x80\xea*6\xdb\xa9?{&5\xc0\xdd[\xd1?\x1d\xaa|\x88\xb5\x1f\xab?\x0fz\xe1\xc4\xc7V\xc5\xbf\xe4\x07>Gm\xbd\x99\x9e\xbfR\xa0EO\x10\xafz\xbf\xf4,\xea\x7f\x91O\xb4?\xd4w$\nj\x1c\x90?\xe0sW\xda\xd4\xc3\x8c\xbfj\xee\xb1\xb4h\\\x94?\xd4\x07\xaa\xd5%\x9d\xa2?\xd8\x84\x05Z\xe3W\x87?\n\x8a\x882\xf8\x98\x7f?\x18\xc6\xee\xdf\xf6Ej\xbf\xb29++\xccV\x85\xbfD\x11\\\xdb\xa4\xea\x8f?Z\x9fm\xa9\x9a\xe2\xb9?CiG\r7\x07|\xbf\xf5\xd2(\xf7\x8d\xf1\xcc\xbf\x11hr\xb7O\x16\xa1\xbf(\x1e8\xe4J\x96\xbd?o5@\x17mN\xb7?4C\xd88`\x05\xc1?\xce\x89~\x03\x8c\x86\xa2\xbf\x94e\x16O\x80\xf9\xc5\xbf\x8fe\xc7\xc7"\x8d\xbb\xbf\x06\xb7\xcc\x9a\xda\xe7\xb2\xbfK\xe5\t\xc5k\xd9\xc1?y\x8d"\xf1\x1c\x08\xd0?\x80\xb5\xb1A\xe2\x1d\xa1\xbf\xbe\xd5I\xb3\x0c\xb0\xcf\xbf|\xe9\xbb#,N\xbd\xbf\xe0\xc3\xbdfr\x18\xab\xbfX@\xb6\xcf3\'\xce?\xb1\'\x18T a\xd4?N\xd7\t\xe4i\x0e\xc7\xbf\xd0\xe9\xc4\xaam\xcb\xcf\xbf\xe2E\x7f\x80\xe4\xc0\xaa?`\xe0*\xe9\xbd\x99\x97?pA\x0e\xf2\x1b\'\x99?\xfa\xcb\x04\x90^\xcf\xc5?\x90n\xc9\xd9\xac<\x98?YI\xc41\xb9\x94\xc6\xbf\\\x8cZJ\xc4D\xb0\xbfX\xaa^\x1bB\x80\xc7?\x9c\xa8Kb\x86`\x9f\xbf\xd7f\tR\x19\xbd\xc6\xbf\xad\x80\x83\x95\x84d\xbb?BW\x1f\xec\xdc\xe2\xb1?\x8f|\xaa\x04\xcf\xe5\xa8\xbfTZ\x806M\x04\x95\xbf\xaf\x10\xe3\x85Kr\xb0\xbf\x81\xff\xe93\x9ac\xc0?\xeeN\xbf\x0f\xfc\xe5\xc2?E\x97a\xe3%\x9c\xbb\xbf\xb4\x86j\x95\x88\xa0\xb5\xbf-r\xabv\xd6\x99\xbc\xbf\x00\xa8\x1d\xff^\x06~\xbf^\x876\x9d<\x97\xbf?\x00\xe4\xa9\x85\xc8\x9dy?{7\x7fu\xfbe\xbb\xbf@\x8cZz\x05\xd5\x84\xbf\xd4(\x8bk \xe6\xc0?x\xc2\x1c\x91\xdfF\xa4?\xf0\xdc\xf0\xbe\xfc\xc0\xa9?\x04\xc0`B\xd5~\xa6\xbf<\xae\x19\x1eq\xca\xbf\xbf\xe4JCsR\xc6\xa0?\xb6\x08{OTZ\xa7?\xa6m\xca[\x9f\x16\x8b\xbf\x0ccy\xd44}e\xbf\x96:"\xb8\x16\x95x\xbf|Z\xdb\x07\xe3\xf8\x99?\x80/\xed\xfa!P\x83\xbfZOT\xd0\xbdV\xa2\xbf\x17 f\xc7\xad.\x90\xbf@\xc1](\xf2\x0f\x97?\xe0k\xdb\xda\xb8\xedY?\xa4\x8d\x82\x12\xf1)\x90\xbf.R\x1f\x7fR\xee\x92\xbf\x82\x0e^\xcc\x84\xf5\xad\xbf\xc0\x84\xad\xa5l\xd2\x9c?\xe0?\x01\xe4\x0bBX\xbf\xe8V\xd6\x7f\x84\x88f?\x1aJ\xc2\xa9\xc7(t?@\xb3W\t\x14S\x96\xbf\xc8\x10\xb7\xd7)1\xa9?\xf1\xa1h\x0b)O\x9f?\x05}\xb1T\xda\x06\x9b?\x94\x90\xb9\x1e\xb7\xc4\x86?\x80\xba\x1f\xb1X\x83\x9c\xbf\xe2\x92\xa1R\x11\xc2\xac\xbfL\xa7\\a\xba\xc9\x9a\xbf`_Z\x929\x0bp?I\x9b)\xc4\x1d\xa5\x90?L\xaa\xde\xe9\xb4G\x9d?\xea\x84`S\xa8X\x93\xbf(\xd2d2a\xfd\x9c?\x85\xdb\xd2\x8a\xda\xbc\xad?\x0f4\xee\xcbO7\x9a\xbf4\xf3\xf4[hY\x80?c\xebSY\xbd\x8e\xa0\xbf\xbd\xe6\xb2\xe0\xear\xa7?&\x955\xebgS\xa2?Vmu\x1a\x90T\x97?\xe5:\x9a\x8ag.\xa3?`\x0e\x99M\x82y\x8e\xbf\x1c\xb8\x18\xd4\xc2\xe0\xb9\xbf\xb5Z\xc5\xbct\xc3\xb0\xbf4\x966\x9f\xb9\xc5\xab?4\x9c\x14\x1e@\xde\x9a\xbff\x02\xfd\x19:\xa3z\xbf\x9e\x7f\xe0\x91U-\xb3?\xd6\x02\xd3\xe3\x8b\x0c\xae?\xb9B\xee\xd0)\x92\xa6\xbf*\xc2r\xf9f9\xa7?\x98\xf6Yf\xe7\xf7|?\x04\xff\xd5\xd1F\x86\xac?\xb9^\xdf\xd6\x91g\xa8?O\x91\xd0\x0f\x16\xc4\x84\xbf\\C\xb9\xc8\x87\xf6\x98?\xb0\x8c\xd0\x11n\xc4\x9d\xbf\x0e\xcaP\x9a\x8a\x85\xaf\xbf\x9fQ\xbf;\xc7y\xab\xbfJ\xd8\xcb;\x85f\xb2?\x10\x8e\x8c\xb1L\xea\xc0?\xf1\xc42\xca\xab#\xad\xbf\xbeDT\xf1:E\xa4?3\x01\xa8\xdd\xff|s\xbf\xb4A\xa2B\xd0\t\x88\xbf\x96\x8e\xda\x07\x99\x14\x83?o\x932\xac\xde\xbb\x9e\xbfrKK\xb1\xe3{w\xbfJ\xf6j{\xb7\x0b\x94?I)\xc1\xb5\x86u\xa9?\xe0\xf4\x85\x90\x02\xb3\xad\xbf\x99~\xd6\x0e\xd4\x00\xbd\xbfQe\xc6\x01\xd7\x1b\xa3\xbf\x04\x81;,\x98\xfcp\xbfl\x98.ob\xf8\x85\xbf\x8af\xb1\x87\x9c\xcf\xa8?\x9c\xc0\x15\x01.\x91\xa1\xbf\xf3R\x8a2\xdeI\xa2\xbf%\x0bI\xea\xba\xb3\xa2?\xf0\xdc>r\x8a\xa2z\xbf\x9fs\x15\x0cuu\xba\xbf\x80\xd2\xab\x8f\xd3[@\xbf\x18>\xb2\xa7\xcd\xb4\x92?\xd4Q\xe06\xc7\x9d\x99?\x9e`h\xcd\x01\xa5\x93\xbf\xd4@Wk\x0b\x02\x84\xbf\xc0\xe0X7\x8akK?\x00\xe4\xbf`\xdb\n\x8f\xbf_t\x14\xdaF\xcc\xaf\xbf\xb7\xe2\xa3\'2\x94\xb5?7\xf4\xf8\x9e\xfeX\xb8?j\xa4\x14\xc7\x88.\xb8\xbfE\xa6\xb0\xd6|\xc2\x88\xbf\xfb\xcb\x06\xc1s\n`?29ce\xc5%\xb6\xbf\x95\x9bX\'\x83g\xaf?\xea=\xa8$\x88&\xbc?a\xf9\xf7|\xc2\xc9\xa0\xbfTS69\xcb\xaa\xbc\xbf\x91\x14\xa5(\xc5\xdfs\xbf&1\xe5\xf9~\\\xb6?\xe1M\xc7#v\xa0\xab\xbf}9A\x88\xadm\x92\xbf:\x00\xa5\x9a\'\xe6\xc2?\x94P\x8f\xdd\xf0\xfe\x8d\xbf\x026\x81\xf8@(\xc4\xbf\xd4\xe4f\xdf\xba\xcf\xa7?57I\x8ei\xe2\xba?KPS\xe6\xb9\xd4\xbe\xbf\x80L\xef\x98@\xe8\x9f\xbf\xfa\xf3\x97\xbf\x9d\x04\xc1?]"f\x06\x97D\x97\xbfLr\r\xdb\x18u\xab\xbf\x84&W\xc6\xc5t\x8e?\xf0d\\B\x02;\xa5\xbf\x82\x86zn\xae\xf7\x92?u^\xc6\xd2\xe2S\xa2?\xcaX\x12rZn\x9f\xbfc\x03\xba\x18X\x82\x9d?\x88\x1bB\xcb"\xed\x8e?\xbe\xfe\x9cNO\xc9\xa3\xbfFK\xe4\x1d\x8a\xd6\x94\xbf\x82\xbd\xbb\x01s\xb3\xa6\xbf\x7f\x12\xd3\xa9\xa75\xbf?\x07\x0c\x96\xfeO7\xa9?\xefCM\x9cSJ\xb7\xbfp\xfa\xf9\x86\xbd\xbdc?\xd4\x95\xe6\xf2yk\x91\xbf\xd7\xf5\xb0@d;\x97\xbf\xdf\xb2V5\xec\xea\xa9?\x00\xda\xf9\xff\x08\xf7k\xbf\xdc\xd6\xe6\xea\xcc(\xb7\xbfh\xa8hE\xad&\x94\xbf\xa0\xa6\xd4\n\\\xa8\xb9?\xd8\xab\xde\x98\xb0\x19\x91?_)\xdb4\xc27\x97?x\xb3NU\xe7\xb7t\xbf\xa9>\x08\xa5q\xcc\xbf\xbf,\x9b\x1d\x90$\x14\x91\xbfn\xe6\xda\x9f_k\xac?A\xeds[*$\x8a?\x88\x19\xf6\x96\xdf\xee\x80?\x80\x98\xf5\xb1\xf6\x0e\xbc?\x10p\x9a\x93\xabT\x8c\xbf\xb4\xbd\x96\x01E\xef\x94? \x80\x8c\x99\xf8 \x93\xbf\x93\x14\xc6\xfa\xd4a\xb0\xbfPO9:0\x80\x8a?(E\xab\xb3c\xf9\xc3\xbfIb\x9d\xeb\x8f\xd4\xb2\xbf\xf3\x8a8ML\x08\xd5?\xe2\xec\xf0\x8f\xf9\xc0\xb3\xbf\xaeU\x9e#r\xf9\x9b\xbf\xbc\xab<\xab\xb1f\x8c\xbf_\xf8\x9b<[\xf3\xd0\xbf\xb7R\xe8K\x1a\xde\xae?\x8c\xad\x07\x9e\x8b\x0eT\xbf\x0cV\x1c\x0e\x05\x1a\xbb?u\xf3\xaa\xb5y\xa8\xd2?\xec\xf6\x8c\xed \x12\xce\xbf<\xafL)\x82\x89\xbc?\x14\xd54\x15\x1d\xde\xa6\xbfhpB.\xb1?\xb2?\xd9\xd6ml\xdf\x92\xbd?\x94\xa1\x1a\x01\xc8\xfd\xa3\xbf\x8b\xe5\xe1\xc6\xa1\xf2\xc1?\xd0\xe1\xcc`\xac"\xad?\x9c:\x95n\x8c!\xbc?\xcd\xbd\x96\xec\x14W\xc1\xbfA\xc0H\x08\x08\xc7\xa4?d\x02\x8fP\xa5\xd0\xbc\xbf\xb1-\x16b\x8fh\xbb\xbf\x85}\xda\xc0z\xc4\xb2\xbfrl{\x19P\xbd\xb5\xbfz?u\xb9\xe5\xe6\xc5?1\\Z\x1eW\xaf\x9d?\x92\x85\x1f^\xd0\xa5\xb8?\xf8d\x1d\xe9F\x9c\xa7?@^\x9a|\xe4\x14\x95?\x0c\xceRv\xa5\x84\x96?^\xc4\xbd{\n^\xc2\xbf\xcd\x8b\xe8U\x80]\xa5\xbf\x89\xef\xd2\x1f\x06\x14\xc1\xbfbi\xd1\xd2\xa9,\xc1?\xaam\x96YKW\xa9\xbf%u\x90v\x88\x9e\xc7\xbf$H~\xff\xd3g\x8e\xbf\x90\xf3}5N\xc3\xb6?\xa1\xa7Sb\x97\xcf\x99\xbf\x16J|j\t"\xb1?\xce\x0c\xf0\r\xaa0\x87?\x05_\x12"E\x0f\xbd?\xf21\x95l\x10\x85\x94\xbf\xb8\xb6\xff\xd2\x85\xda\xc6\xbf@[\x83`w\xeb\x9a\xbf\xe33p\x80\xed\xef\xb3?\xecMV\xcb\xb9\xe7\xa6?\xa0te\x11\x11\xe3\xaf\xbf4\xd4\xd0\xd7\x04"\x9b?^\x18K\x1d\xa8\xb6\x99?\'\xb5I\xf3\x0c^\xa6\xbf\x95\xf4\x10\xa0\xc6\xab\x95?\xd8\xeb\xff\xdf\xbe\xc8\x88?F\xe9\xeb\xa52\xf2\x9c?H\x00,a\x1b\xd2a\xbf,\x96\x8e\xd1v=\x7f\xbf\xf0m\xbc\x9fQOX\xbfkK\xba\xdf\xa9\xe3\xa5\xbf\xf0 t\x86\xcc\x1c\x8e?\xa0\x1e\x91\x13\x1d3\x89\xbf\xc47\xcc\xd36)\xa9\xbf\xbe\xae\xbf\x01\xce;\x97?\x84\xfa\xbe\xcah\x1e~?8\xe2\xb6yI\x1c\x87\xbfX+\xe6\xd0\x8d[\xa7\xbf\x1a\x94\xb2`G9\xa4\xbfW[U\xc4\xed\xce\xaa\xbf4\x0c\xfc\xd2u\x18\x93?]|U{\xe6)\x92?\xb0\x83.H\x07\x88\x84\xbf\xd8\x13\x911\x18\x15\xb7?\x01D\xeeX\x7f\x8e\xa5\xbf\x1e7\xb4\xc8\xeb\x90\xa0?L4\xa0A\x83r\xa3?Kj\xc0\x17#?\xa2\xbf\xdd\xf2V\x0byS\xb8\xbf\x01\x85a\xb9\xc1\xb1_?U\x11\x1d\xf9o|\xbb?;\xb5\x95~\x99\x80\xac?\xd5\xf2\xb2\xa3\x9f\xdf\xb6\xbf\xc1\'p\x944\x0c\xa1\xbfX\x0e\xf3\xc41\x13\xb8?\xe3\x87\xc5\' \xd7\xb3\xbfl\\\xc0\x8ci\xbd\x91\xbf\xa9\xd8\xa5\x03M4\xc0?\x9cq\xc9\xc51\x03\xbe\xbf \xcf\x05sJ\xb4\xb2\xbf\x86\xf4\x04K\xa2l\xca?\xce\xf0\xe0\x0f\x8d\xa1\x87\xbf\x98r\xd3`\x15\xd2\xca\xbf\xa3\xaf\x11$\x1c\xac\xa7?\xd0\x91Y:/\xb0\xb3?\xef\xe7y\x9c\x89\xad\xae\xbf\xc0*\xb8\x19\xe58\xa6?\xfb\x1d(R\x8f\xad?P\xda3er\xe1b\xbflc\xc0e6\xb2\x96?\x90$-\xb5\x055\x90?\xa8\xcd\x1e\x06*\xfdq?P\xfa>\'\xbd\xa0\x96\xbf\xd6\n\xe9\x8c\xcb\x89\x9f\xbf\xbc\xcd\xe7\x9c1\xe6\xb1?\xd8\x01\xad\xbf6\x1fv\xbf\xf3\xac@\xdaj\xc3\x9e?@Ig-S\x03\x99\xbfm\xe2J\x96\x92\x13\xaa\xbfp\xc2\xa8k\xb8\xc0w\xbfj)\xcc\x9f\x12\xf4\x91\xbft\xc1S\xdb]\x15\x8c?`\xae\x89\xc1\x81/\xa1\xbf^\x9f#\xff\x19l\x81?\x94F`\x00K\xa9\xb7\xbfO\x07\xab\xdf\xfe\xd2\xd0?0\x07\x89\x91"\xe1x?j\tx\x151"\xc0\xbf@}\xf0\xba\x03\x07\x8c\xbf\xf7>&=8\xc2\xd3\xbf\xedR\xf0P\xbb\xcd\xa6?t0H\xa6\x8a\xaf\xd5?\xf6M\x8d\xda\x04\x0e\xa0?\xba\x90\xb7\t\xcb\x1b\xc1\xbf*\xbdh\x00X\xce\x91\xbfP(\x82\x9f\x97\xb1}\xbf\x99\x0c\xf9Q\x97\x1a\xac?\xe9\x0c\xed\x9d\xfc\x97\xcf\xbf\xe8\xfd\xc5\xa7\xa2c\x9d?\xce\x05\x02=q_\xd2?\xab\xffv\xc8\t\xd0\x92?\xc3p\x05e\x8a\xf2\xaa?\xea;\xcd&9d\xc1\xbf\xc7%\x95$\x113\xcc\xbf\xe2\xf1}\xde%\n\x92?\x07\x8a6\xf8\xd9=\x9b\xbf\xcf\xd6\x1d\xbe\xcb\xba\xa2?T\xf7\xfb\xf4\xf7c\xc1?\xd2\x11T\x94W\xa6\x94\xbf3O"\x13\xe3$\x92?S\xa3\x16\xef\xab\xf0\xb7\xbfr\xa7\xdd\xd9\x130\xa7\xbf\xb9\xc1T\xb0\x10\xf8\xad?\x00Q\xee\xbc\xd9\nJ?\xaf\xd0\xc8\x11\xbd\xe2\x97?\x12\xa7kD.}s\xbf\xc6\x89\xe69\x9cJ\xa2?\xacAM\x07\x9b\xbfv?,%\x0e\xfeM\xcd\xb9\xbfLc\x85\x8e\xe0\x9e}\xbfM\xad[\x1a\x87\xeb\x9e\xbf\xda\x8fn\x13X\x8a\x83\xbfD}\x19\xb5\xda\xaf\xa4?l\x03C\xbb$\xb0\x88?RO\x90\x11\xb8\xf5\xa0?\xd8\xac\xbd\xa0\xae8\x85?\x80|\xc9y\xba\xb2\x96\xbfn@5\xcd\x8a\xcem\xbf\x947\x85\xba,"\x8b\xbf\xdc\xa2x\xd0\x9fC[\xbf\xb6\xbb\x17\xe8\xcc\xbb\x89\xbf\xc5v\xe7\x8d\xecZ\xa1?-\xb4\xc70\x81\x9f\xab?\xecN\xb3\x9a&\x17|\xbf\x00\x97Z\xb4\x9b\xdf\x83?&\xac\xb9\x16\xe9\xcc\x94?\xc0F\x92\xb8\x102P\xbfs\x1dL\xed\xf2p\x8f? \xa9\\^\xf8\xe2d\xbf\xaeqa\xebpq\x84\xbf\xb0\xb51\xf6El\xb1?l\xbd\xbbz\xd8\xe1\x87\xbf\xb0\xc8v+\xaa\x13z\xbf);\xbe\xbe\xee@\x93\xbfQ8\xfd\xd3]\xe2\x93?@\x90\xaa\xbb\xb83e\xbf\x1b\x84cY\x8a|\x94\xbf\x90\xcd\x8a#\x9c;D\xbf\xfc\xfa\xd8\xd8\x8f\xc4\x8c?\x07\x84\x8d\xd8\x96\x9f\xbe?\xec\xc92"\x0e\x91\x91\xbfQSnB\xb4\x8f\xc8\xbf\x1d\xac\x91\xfbC\xe7\xad?\x836\xdc\xcay-\x98?\xb4\r|\x17\x03\xfd\xc4\xbf\xa7\x8a\x1b\xeedP\xbc?4&l\xcb\xae\x97\xca?\xe1+vx\xa3\x84\xb8\xbf\xbc\xfbFi\x00=\xb3\xbfx\xdb\xc7\x12\xe9\x8e\xa1?\x17\x06]F\x01\xf7\xc4\xbf\xd4\x0f\xc4\xa6\x88\x11\x83?\xf7\xc4\x08 \x8b \xd9?\xb5\x95\xfc\x847g\x90?0gJ\x7fo\xd2\xd9\xbfX\x03rtTy\xb5\xbf_89\xdc\x1bY\xc6?rBC*\x0eD\xb5?GE\xbd-\xbd\x14\xa1?9\xa5\x9f\xc8\x91\xe8\xa0\xbf\xb5\x91MU\x9c\xdd\xc4\xbf\x80\xddP\xfc\xdfF\xb3?\x18\xf3\xb6)#\x02\xcd?\xe9\x93\x10\xfc{Q\xbe\xbf\xea\xe8\xf6\x83m\xdf\xc5\xbfs\xd1c\x9d\xed,\xb1?\xa6\x0b\x00\xadK\xf8\xa8?\x8c\xb4AQNN\x8b\xbf\xde\x0f\x05\xcdG,\x9a?\x11\x94T#xg\x84\xbft\xe9\x03\xcf\xd9\x07\x96\xbf\xea\x18\n\r`(\x91?b\xa1P\xb0B\xde\xb1\xbf\x95J\';\x15{\xa5?\x1bK\xab\x18\xf9_\xb3?\xee#\x80)\x93\xd7\xb8\xbf$\r\xa2\x1b\xd4\x07\x9e?\x18T\xa4\xe8 \xf6\x97\xbf\x96\x03\xf5\xf5\xa3`\xb2\xbf1f\xddn\xf0[\xbc? \xf0\x9ax\x99\x9f\x9c?8\xdfd\xa2 \x05\xa8\xbf\x98z4\xa5Z:\x9e\xbfgSg\r=\xa6\xb2?\x00\xce\x8a\xa8\x96x\x89?\x16\x1a\xc8|\x12\x1c\xaf\xbf\x06/\xac\x12\x15\xa2\xae?Q@A\xeeF\\\xb7\xbf>,d;\xfc\xee\xad\xbfyt:\xb3H\xea\xbf?\x10=&\xb3\xde\n\x95?\x9b\t/(\xd9\xbf\xa8\xbfF\x84a\x8b\x16\xdb\x88\xbf\x95\xdd\x84-tE\x9b?\xbcNX\xdf\x9b\x00\x9d?\x18\xea\xd0(\x96\x80u\xbfp\xffd\xff\xd1\x9c\x8e\xbf\x17y\x99\xd0\xa9\x10\x9e\xbf\x80\x11)m\xb8\xe5T\xbf\x0b\xb7\xa4)6!\xa7\xbf^x"\xf4\x837\xb3\xbf\x14\xba\xe5\x14\x08N\xb6?\x92\x940\xcar\xa6\xba\xbf\x07\xc5\xf3s\xb6\xf0\xa1?\x0c\xc6\xff\xba\xea/\x9c?.g\xfb\x9d7\xfc\xb5\xbf\x9a\x0c\x0b6\x05k\x9b?\xc4wA[\xfeg\x85?\x00\xd3\xbb\xa3\x0cW\xbf?l\x06m7\x02X\xb9?}\xf2\xa2\xaeY\x81\xa4?0\x97\x01\xff\xa7\x8f\xb1\xbf"\x0eQ>\x90Z\xa9\xbf\xf2\'\'-/\xb7\xad?@\xc3?z\x87\xb3\x93?6y\xa9\xe9#I\xc1?F?\xfcm+\x91\x9e\xbf\'\xa1\x9a\xaf\x81\x0c\xc4\xbf\x19\x85\x89 P\xd0\x8e\xbf:\x1bB\xa9\xb9\x07\xab?\xc6K\x15\xb3F\x02\xa6?\x0e\xe7\xe6{\x00}\xa3\xbf\xb0\x8cq\xce\x1d#c\xbf\xea\x18\x95\xc2\xd0\x89\x99?\xce_\xa8#\x18\xb7\xa6?*X\xecd\xdah\xbb\xbf\x80\xb6\x89;U\xdbB?\xea.\xa4\xf7\xdf\xaa\x9c\xbfR\xae\x9e*\x97\x87\xb0?\xebm\xa2\x0f\x88\x15\xb7?N\xfa\x06K\x15\xc4\xaf\xbf\xe6\x8a\xbe^\xb6=\xab?,J\xa0\xb2\x8d\xed\xa6\xbf\xae\x9eS\x13\xf8\xc8\xb1\xbfTS\xdb2b\xdc\xb1?\xa8=\x8cL\xfba\x96\xbf\x06E\x99\xd7b~\xb4\xbf\x08^\x04\xd6\xe5l\xb2?\xc2z>\xcabb\x8f\xbfF\xae*yw\xb4\xac?\\\xe7Bo\xbe\xae\xaf?@\x9c\xe4\xb9%\x11d\xbfM\x8b\xf0\xcb\x12\xed\xa1?\x06\xe3\x95\xfc\x15\xfd\xab\xbf\xb6\xb3\x81\xa5t+\xa7\xbf\x902!\xf4\xb0\xc6\xb0\xbf0\xc4\x1c\xf3J\xc1l?j7\xe6W\x02\xe6\xa6\xbfz#k\xdb:\xadz?n\xb2\xc0\x19\xe3\x19\xa5?\xf0\xa8\xa3[\x966\x81\xbf\xea\xc1\xa0\xe8G\xd5\x92\xbf\xc0\xdd\x19\xbe\x0b\x10c\xbf\x00\xe9|\xcb\x8c\xf9|?\x88=\xe6\xec/db\xbf\x98\x90\xc6\xdac\x03\x85?\x00v\xb1\x88\r\x0e7\xbf\x8e_0#L6\xb6\xbf\xa8\xcesIB\xe6\x85\xbfL\x03\x07\xcdZ(\x88?\x88[o?>\xa4\x8f\xbf\xb8\xfa\xa5\xfe<\t\xa9\xbf\x89{\xa4{JN\xb0?\x9e\xd8\xfe \xb1\xe2\xa7\xbfL\xc8Za*\xa2\xa4\xbf\xbfbe\xad22\x94?\xe8c3\xb83\xa0\xa2\xbf\xbc\xb7\x9b\x1a%\xf8\x9d?\xd0L\xcb\xc9\xe6;\x8b\xbf\xa3V\xe1\xfc\xd9\xe9\xb0?\xf0|\xcc\xf9\x05h\x8b?li\xc7\xa3\x99\xbd\x9b?\x88\xea\xd1D\xf7\xbc\x87?\xacJ\xd34,\xf9\x92?\x1a\xc1\x95\xb6[\xa4\xa5\xbf\x0cAD\xaf\xe1\xce\x84\xbfz\x91\x13\x9a\xd0{\xc0?h\xa9PR\x85\x04\xb0?\xa7\x88W\xed\xae\xcd\xc4\xbf\x8e\xd0\xd8\xd7\xe3\x19\xb6\xbf\x85-\xcfKD\xe7\xaf?\xe7Roo{\xacy?A\x18EQ\x9a0\xb3?W\tNS"/\xb8?\xb3\xbb\xff\\\xf6!\xc4\xbf\xe4\x1d\xa9t#\x9f\xbc\xbfj\x8d\xad\xdd\x85\x92\xc5?i\xd4\xb5\'\x11S\xb4?\xb5\xd6W\'e\x9e\xc2\xbf\xc5\x84\xed\xd0]z\xad\xbf\xd9<\x12R\xce\xb1\xa8?1\xed\x9a$du\xb0?\x9e\xe3XozX\xa1?0\xe5\x93\xd5j_\x84\xbf\xe07e\xceA\x0c\x91?\x9d\x84A\x07\xb8\xcc\xb1\xbf\xd8\x89\xc1\x94\x867\xbe\xbf\xef\xca\x8c\x86\xff1\xb6?\xbd\r\x12\xe9\x9b\x82\xc7?\xe4\x91\xfe\x9b\x14\x08\x9e\xbfo\x01\xaf\x9d\x1f\xa0\xc4\xbf\x80\xd5\xa0^\x13\x82\x7f\xbf\xab\x98)\x11\x0eU\xb5?\xfc\xd5\x8b\xaf\xf1S\x8b?\xb8\x08[\x87Z\x13\xa1\xbf\x905\x8d\x93\xf9Hk\xbf\x9b\x9a\xe8nDF\x93?bO~\xe2\x13B\x87?\xb8%%\xc2\xe6\xb2\x96\xbf\xd66\xc5\xff\xa5\xd8\xba?\x8d\x8a\x8d\x19%\x05\xba\xbf\x0c;\xe1\x95\xdf\xa8\xd0\xbf<\x12\xd0\x88\xa8\xf2\xc9?@\xccw-\x0c\x08\xb8?\x02Y\x00\x80X)\xb2\xbf\xea\xee\xb1\xbf\xb52If\xa5$\xa3?>\x98\xc3\r\xc5c\x99?p\xc28\x873\xbc\x83\xbf\x88\x8e\x9e\xa5\xc9\x8f\x80?QZ\xb5|)V\xb5?\xa77\x08\n\x1f\xc9\x93\xbf_>\x90\xe3ym\xa3?("\xb2\'\xe6B\xa6?\xa4\n\x07\x83\x7fj\x91\xbfpH\xed=\xa3\xdc\x9c\xbf\xd1\x86E?\xc0i\xb8\xbf\x80\xfa\xca\xa1j\x8f\xb9\xbf\x81\xb3P\xbd\xbco\xb6?\x95f\\\xf3R\x01\x9c\xbf\xd8\xc3\xc8\xc1\x94\xaf\x87?Y4x\x0b\x16!\xa1?\xa8x\x90\xad\xf4@\xa2\xbf\'\x8b\xd2\x1ah\x1d\xa6?\xa8\xee$\x1a\x9e\xb5{?\x975\xc8\xea\xd1\x18\xaa?\x9e\xf2\xc9<\x17`\xae?\x01\x88\xb0\x8cNf\xa9?3\x96\x17W\xd9\x0f\xba\xbfV/\xbd\xeb;\xf8\xb7?\x90S*eR\xee\x9d\xbf\x13h\x97W\x19\xc8\xb0\xbf*\x9a\xc6\xb6\xd5T\xae\xbf>\xb1\xfaD\xf8\x8b\xb1\xbf5\xed\x81\xb7\xfc\xeb\xb6\xbf\\\x14:\t4?\xb1\xbf\xa2\x80%\xe7\xb9\xee\xb5?\x10\xaa&\xc8\xd6>\xaf\xbf\xed\xdd\xed\xe2?\xd2\xc2?\xf1\n\x7fR\x19\xac\xc2?J0#\x07f\xdd\xc2\xbfpK\x16Pl\n\xb0?\x08\xce\xdb\x0b\xad\xbd\xa8?\x13\x8em\xc9\x8c\xec\xb1\xbfL\xcf\xb5\x9f\xf1\x88\x94?\xa3\x10\xb3\xa2U\xa0\xca\xbf\xa1\xf7.\xa8\x92\xdf\xc8\xbf#X2W\x92\xd7\xb0?\x1d9\\\xd4\x83\x0b\xb3?\xb5\xf0{\xc3\t\x91\xbe?\x9c\xc8\x97\x84|\xed\xc1?\xa9P\x11\xdf\x08p\xb3\xbf\xf6\xb5\xdb\t\xa2O\xb3\xbf\xa4\x19\xb5\x91u\xea\xcd?R\xfd\xe0!\xfcd\xaa\xbf\xa3\xa3 knO\xb5?\xca\n\xcf\xfa\xae`\xab\xbf\xd4gr\x85\x8f\xed\xa4\xbf\xa7:\x92sR\xc1\x94?\x98lq\xc9\xf5\xbb\xb8\xbf\x84uFp\xd0\xee\xab?ZD0\\\x86\x06\xc9\xbf/\xcf\x1b\x00Vc\xb5?p\x99!S*\xc9\xb9?\xc1 pF\x15\x99\xa8\xbfx]\x9d\xd6\xcdkz\xbf\xbee\xceT\xd1\xdc\xa7\xbf\x84}\xff\x86\xfd\xc4\x93?\xf4\xaf[\x14&\xc3\x98\xbf\x9c[\xaa\\\x9c\x08`\xbfY2\x82\xe5\xc5[y\xbf\x06\x00I\xb7\xf1\xf3\x8b?0\xcb8\x0e\xda\x1fe?2\\Y\xfb\xac\xbe\xa4\xbfY\x92\x81Re\x94\xb7?\xc0l\xe5+S\x86R\xbff\x86G\x88\xa3D\xa7?\xc02}\xcc\x85\x17\xb4?0\x1a\xaf\x16<\x0b\x86?\x99\xbe\xc7V\xff@\xa2\xbf\x84g\xfc\xd3\xa1)\xa2?.\xe7\xe3\xbc\xfez\x97\xbf\xcc\x85\xf4\xe4\x01_\xa0\xbfp\xa6\x96\xdd\xe9\x94\x84\xbf\x1a\x10\xb7\xbdI\xe9\xa8?V\x9fT[,\x1c\x8f?^\xd5\x92)\xcd\n\xb0\xbf\\w\rL\x9a\x98k\xbf\xcc\xe4\tyn\x16\x88\xbf\xf7pP\xcan\x15\x85\xbfb8P\xc8\xaa\x93\x94\xbf\xd0\x1e\x85HnS\xae\xbf\xa0\xa3Z\xb7\xc5Y\x85\xbf\xad {\xe8}\xca\xc4?!\xa7\xdf\x04o\xc8\x8e?b\xaa\x92\x1e\x82\x7f\xc6\xbf\x0fMH\xb9\xb5\x80\x9f\xbf\x07\x1a(-lx\xa8?L$Z\xe0\xc5d\x98?g\x00\x88\xc4\x05m\xc0?\xa7u`\xa9\x885\xa2?\x90@\xf7\xf6u\x8a\xc5\xbf\x08\x95,\x02\xbb\xff\xb3\xbf\xe5\xf1\xa3\xf1$\n\xad?~!\x89\x8a\xc4\x01\xb1?-\xa7\x12\x1b\x16\x0b\xaa?\x80uf\x0e!\xa5\x83\xbf\xc3X\x9a\x9c\xa9\xd9\xbc\xbf@\xccf\xe4b\xdf\xb1\xbfS\x19\xb8\x13\x91\xec\xb1?b\xdbEyP\x11\xc2?\xce{\x84\xc4\x03\xbf\x9b?J\xbc\x9c\xb2\xf1\x05\xba\xbf\xe6\xa0\xf63\x91\xc6\xa3\xbfH_\x84P\x11m\x81?\x9c\xfbS\x01;\xef\x9e?\xe3\x03\xb0\x01\xa6\xef\xb1? t\x134V\xda\x8d\xbf\x98\xd3y\x0e\xf9\'\xa5\xbf\xa9\xfb2\x89\x89@\x9b?]U\x06\xdc\x85\x19\xb1\xbfFW%d\xfa\xd2\xa0\xbf\x94\x95T.\xf0i\xbf?(:\x08wP\xdd\x8b?\xa4\x86\xf3@\xb6,\xae\xbf\xc8\x1c\xa0\x84\x81C\x95\xbf\x13\xc2g\xd82\xf0\xaf\xbf\xb4\xfe?\x1eKN\xc3?\x84B\x98V\x86x\xc2?\x12,U\x97\x8b\xce\xcb\xbf4\xf6\x1a\xa7\xb1\xe3\xa4\xbf\x84\xaa_\x93\x1eI\xb6?\x92\xff\xb7\x9a\xef\x80\xb5\xbf\xb4\xa33A\xd6\\\x98?J*<]t\xad\xae?*\xd0-m\x0f\xec\xab\xbf\x92\x11S\xe4\x95%\xa1\xbfy\x0fA\xf6\xb5p\xc5?SYR\xd5!\x05\xc0?\x1cz\xf8>9\xf0\xc9\xbf.hOb>C\xb3\xbf\x1e,\x01\xc0.\x0b\xa8?\xcb\x9cHq"\xa3\xb3\xbfo\x7f\x19O\xa2+\x97?\xe3f\x18\xcfz\x15\xaf?\xf2\xc0\x1c\x8d\xa6\xcdU?2\x99\xd8\x07]k\x9c\xbf$\xbe\xe2\xbd\xf4i\x89?fc\xc3Xb>\x92\xbf\x7f?\xa9\xce\xcaf\x94\xbf\x10\xa1\x00\xa4a\x95k\xbf\xe0\x85\xdc\xff8xj?\n\x1463\xb1*\xa1?\xf4\x9bB^.\xe0\xa4\xbf"s\x12\x96>A\xbe\xbfb\xc6R\xd5f\xc1\x9c\xbfF\xb6\xdap\xb0\xab\xa2?\xce\x95\'_\xe5e\x9e?j\x87\xe3\xb7\xca\x06\xbc?\xd0\x1c\xc9\xb8)\xe8^\xbf\x80\x98\x8dM~\x8do\xbf@q\x16\x93\x85;\xac?\xfe\xb5\x03&\xdb\x81\xad\xbf?\xa1-\x1d\x19\x00\xb0\xbf\x9e)\xb3\xe9V\xf8\xbf?\xe5\x9a\x8b\x17\xda^\xa3\xbf\xeb\xc4?\xbe\x06\xae\xbc\xbf`\x80\x99\xb3\x94c\x8c?\xf8\xd5d\xa3\xba\xd7\x88?\x14G\xcc\xc3\x94D\xa1?M\x85^^l\t\xc2?\xff\xc9\xb9\xb2\x99\xb8\x83?\xd0\r\xab\rd\xdc6?$M\xe7J\x156\xa6?\x12\xaf,\x1f\xde\xc1\xc2\xbf":\xaer\xd4\x93\xad\xbf\xbe\x9a\x18\xc2\x98~\xb4?\x0e\xafz4nw\x90?\xd0\xa1\xf8\xd1\x11\x02Z?\x9f\xbe\xc7{\xca\x8f\xae?f\x03h\x00\xfa`\x97\xbf\xd1 Uh\x08\x17\xae?\x88-\xba\t\xb0\x02\x80?ap\xd6\x85p\xdc\xa7\xbf\x08\x01v\xfeA\t\x90\xbf\xbe\xe9\x94\xde6\x95\xa3\xbf\x0e\x9c\x1d\x04B\x85\xa5\xbf\xd7\x19wa\x81\x85\xc6\xbf\xd4%\xa1;\x14\x95\x9d\xbf\xd6\xd3:f\x0b\x07\xde?\xb1\x91r\')\x89\xaa?+\x93W\x1a\xfc5\x98?Hp\x0e\xdc\x1d\xb5v\xbf\xcb\xca|G\xe4n\xb0\xbfw?\xcc\x95\xe7P\x94?`\xbb\x1e\x1dY\xe2\xc5\xbf\xebT\xe0\xcd\x88\x9b\xa0\xbf\x8cm\x80\x08+2\xc1\xbfP-Q/g\xa4k?\xccMT\xde\xe6\x00\xbf?\x1e2J>\xc1\xea\xc3\xbf\x87+\xae\x9d\x9c&\xa4?\x16s\xfec\xd4\x1d\xa6?\x14$\xbb\xcdz\xd2\x9b\xbf\x0f\xac|9\xd8\x00\xa2\xbf\x08l1\xa7\xd9D\x84\xbf`\x9c\x83\xf1T`>?v\xe7\xe7\x8eL\n\x91?\x86\xba\xb6\x03\xae\xc5\x9b\xbf\xf88\xc4\x11B\xc8\x86?\xf7\xe2l\x00Bi\xa8\xbf3\x195\x00h/\xbb\xbf\xbf\xa1&\xd57j\xb0?\xfb[\xe3\xf5[\xfa\xb6?l\xfa\x88\xa6&f\x93\xbf\xfb*4\xaflp\x84?^d\x04\xf8#\xf1\x97?\x13\xf4\xacCZ\\\xbf\xbf\xf2\t\xcdI\x9d\xf6\x9a?\xa4\xf5\x94e\x1af\x8a?\xf47Bi\x86\x7f\xc1?i\x08\x1b\xe3\x15\x0f\xad\xbf Ok8\xe0\x07Q\xbf\x101e\x1a\xe1\x05\x80?0\xc9\xd6\xf7?%\\\xbf\x91\x9f\x0e\xfet\x8b\xa8?\r\xfd\x91\xefC\x9e\x9c\xbf\x82\xac\xf4\xde\x81Q\xa9\xbfk(\x89\xbb~\xd2k\xbf\xb4\xd1\x8b\xfc\xf9y\xbb?\x8ce\x80\x0e\xc5\xfc\xad?\x1eC\xb4\xee\xeb\xa6\xc1\xbf\xa3\x96\x92vV\xd3\xb7\xbf\xdfT\xdf}F3\xb7?}(L!0\xba\xb4?\xf9\xf75\x9e\\\xce\xa1?0%\x89?\x1e\xc8\xa8?W\xb0W\xa4\x1e\x81\xbb\xbf\xe2\x16y\xd3\x8dp\xc4\xbf\x8f2\xb1\x99\xdfY\xa4?\xabv\xd3]\x17\xd2\xc4?x\x91\x1d\xcd+\xc3\xb4?\x1b\xa1\x83\xcc\x07\xbc\xb9\xbf{\x11\xd9\x93\\\xe5\xbc\xbf\xa0\xb3\xc1D\x96\x82\xa1?\xff\xbf$\xb8\x1bL\xb3?\x80\xf0\xce\x02k\x84p\xbf\x9c\xc2\xbb?\x8c\x00\x06\x84\x15h\x98\xbf\xc0\x02d\x17B\xaeA\xbf\x80\x8a\xb6\xb0a*J?{@[m4\xab\xae\xbf\xf0r\xd6K\x04\xbd\xa3?\x8e\xd6\x00\x06oh\xae?\xd3V\xf9\xd7\x179\xaa?\xaf[~%\xfe\xf2\xb9?\xc0<#x\xe7\x87^\xbfTX\xda\xf4*5\x89\xbf\xb8\x0e\xdchT6\x9b\xbf\xb1\x89C\x82\x0f`\xc2?A\x12\xdbr\xd7\x15\xa4?\x00\xa4=\xc8\x1f$\xc1?\xdeh\xcf\x13\x0f\xc9\xad?\x9ejr\xd8[\xca\xc6\xbf\xb6_dt\x18$\xa1?VmG\x8b\xad\x84\xb5\xbf\x0c\x14\xe8\xd9TF\x9f\xbf\x8c\x01\xd3\n\xbd\x1e\xb3\xbf\xd44A\xe2*\x96\xa6\xbfB\x1a\xb4\xbd\xc4$\xcb\xbf\x96\x86\x91\x17{\x84\x98\xbf\x90\xbc;\xd8\xab\xd6\xac?\x8c\xf9\xc3aU0\x81?~\xfan\x82\x1b\x99\xc4?1\xecY\xf8\xe4\xd9\xa1?\xfa\xde\x8d\xe8\x0f\xec\xb8\xbf\xf0\xaf\xc3\'zw\x89?\x02\x8a\x85mT\xfc\xa8?\x80\xdeEp4\xff\xa9\xbf\xf7\xce\xbb3\'\xf1\xa5\xbf\xa9WW\x10\xaf5\xbf\xbf\xa4\x14\x01\xb8\x9b\x1e\x86\xbf\xe1\r\xc3-\x18\xc8\xc8?P\xfbS>;\x845\xbfF\xc1/o\xf5\xad\xa8?k^S\x11L\x97\xb5\xbfI\xceg\xe4\xc5\x8b\x80\xbf\xfa\x8a\xd2|\x07\x1d\x9c?B\x97\x18\x8fV\xa1\xb5\xbf\x00\n<\xb5\t\xb5T?\xc8\x1c\xdc\xc6\x91\x9c\xba\xbf&\x17\xfd\\`t\xb8?|\xac\x1a\xf4\xe9u\x9f?\x8b\xa5xSU"\xa9\xbfZv\xaa\xd4\xa8I\xad?\x803\xfc\xda.\x03 ?@\xbf \x02\x19sl?%\xab;\x1bb\x9d\xa6\xbf|\x1b\xaeD\x86o\x9b\xbfI\xca\xdcpn\xb9\xa5?\xa2\xb5\x99\x10i\xae\xa2?\xa0S\xa4\xa6\xb3\x84\x82?\xb0\xd2\x07V\xdc\x8f\xa9\xbf\x07(!\xd6\xbf\xe9\xa6?G9W?\xb4\'\xa5?\xc0\x8d\xfe\xa2\x9d\x86d?\xa4\xee\x15\xa0\xe7\x96\xae?6\x14\xa8J\xf6~\xa0\xbf\n\xb2"\xea\x8e\xcb\x98\xbfb\xe7\x96\xa2w-\xa7?\x89y\xb0t0x\xad\xbf\xc0%I=Q\xc7\xa5\xbfHn\xb7\xda)\xdd\x86?\xc8\xc99\xfaX\xe4q?UF\xaae\xc4(\xa9\xbf!\x83\xb9V\x01#\xab\xbfL\xa6h\xe9\xc8\xb9\x84\xbfG\x87\x95\x16vy\xa3?\x0e{_\xa1\xdbt\xa9?\xac\xe3\xab \x01\x7f\x95\xbf\xec\x19Y$`R\x9a?\xfa\x7f\x856L\x1a\xb9?&\xc2\xad\x17R\xc1\xb7\xbf\x04U`\xe0\xbc\xcc\xc2\xbf\xa56^:\x04\xd7\xc1?\x1d\xcc\x8b\xa1R\xd2\x9b?\x88d4P\xab\xce\xae\xbf`*\x1b\xdd\xc1\xc2\xb8?\xd0\xf4\x07\x061\x8b\xb3\xbf\xc8\x1e/ma}\xc0\xbf\xbe\x1f\xafOC\xb3\xc3?\x90\xf6\xb9\x1aH\xe9\xae?n\xb6x\x82:\x83\xc0\xbfAN\x14\x02\x83^\xa9?\x1f\xbbjb8\x1f\x8a\xbfg\x97\xfbia8\xc2\xbf\x04Dk\x82\xf2i\xce?\xd2\x92T\xb3/\x95\xcc?\xabJ\x13H\x08\x15\xd4\xbf\xe8/KQ\x83(\xd1\xbfMS]\x94\x91\x1e\xcd?br\xfb\xb5\r\xc0\xc6?\x84\xe3}\xba\x83\xa5\xc1\xbf\x89\xf29\x80^\xb1\xa2?Gu8N\xac\xaa\xb0?\x86\x8f\xb2\x97\xb5{\xcd\xbf\xeaV\x97*\xad>\xae\xbf\x83Z\r\xc6{B\xcf?\x1d{\xae\x15E\x8c\xb8?\xb2\xeb\xa6)p\xfd\x9c\xbf\x1e\xa2\x0e\xa6\xd4\xdd\xba\xbfq\x1a\xfb\xc7\xee\x80\xc9\xbf\xb8\xdc\xde\x12\xfbE\xa4?p\x8c\\\xb0\xc11\xc0?p\xb0\xed\xe1Sg\x8f\xbf\x0c\xca%Z\xda\xbe\x94\xbf\x94f\x101\x02\xe6\xb2?L\xe9\xd9q\xf3E\xa9?t5\xac\x95\x00\x81\xbd\xbf\x00RY\n\xbfEX\xbfl\xff\xe8\xe8\xa7\xc7\xa2?\xeb\x1fY\xf2\x1d>\xb3\xbf\x1c\'\x16\xc1V\xf9\xa4?\xba\xbcv6\xc9\xf1\xa9?\xf0\x8e\xd3\xe4\xff\xbf\xac\xbff\x9c\xa9\xe0u\xab\xae\xbf\xe6\xd4\x81[\xe8\x06\xbc?\xb3Z\x03R\xca\r\xb7?T\xb4\xf6\xb3\xdc\x8c\xb7\xbf\xd6\xfb\xe0\xa1\x86w\x9f\xbf\x80\xfa\xec-\x93\xcdt\xbfJ\xfa\xfe\x05\xa9n\xa9\xbf.\xf8\xcc_0K\x92?XeU\xb9\xa46\x9d?\x00\x9a\xb5\x81@\x13.?\x88\x00o]\x9a\xd8\x8c\xbf\x06s\x91\xa4pjj\xbf\x80n\xc6\xe86\x08N\xbfx\x0b\xe2\xee\x7f(m?\x0c\x88\xd5\x00[D\x90?\xd08\x08^\x98\xe5v?\x80\xcc\xd1\xe32;h?\xa8Wl\xd2\xb9R\xb0\xbf\xb0\xc1k@\x8fIq?\x88\xfc\x84\xc8\xd1\xd7\x98\xbf@\xfb\xe4\xd7\xba\xe2\x81\xbf \x94L,]pp?$gO\xbb1\x05\x9a?x4\xeeQ\x81O\x90?\xf0\x13\xca\xed8\xa0c?\x06\n\xeb\xeb8k\xb0?+\xa7!\x9e\xbd#d?DU\x87\xf6\xef\x01\xaf?EM\xc9\x19/Z\x86\xbf\xa0\x91\xd7+\xa4\x95\x99?\xa8\x9b\xcf\xe5\xed\xf3\xa3?\x00-\xd3\xd8\x00g\xa4\xbf\x90\x96dp\x19\xa8s?0\x13\xe3\nt\xe7\xa9\xbfhP\x8e.\x86\x90\xb2\xbf\xec\x87\x01,\x91\x8c\x95\xbf\x08\xf3\xdc\xe5;gu?\x8ak`\xab\xd8/\x9b\xbf\x86\xf2\x8ab\xdd\xb2\x9c?\xba\xbd\xfc\xff\xca\x15\xac?\x94\xd0\x1cQ\t\x90\xa7\xbfHK\xe2\xa2\x08\xd4\x94\xbfF\x95\xe3\x07\xb7:\xa3\xbf@\xc4rF\xf2D\x98\xbf\x00\xae\x03\x8d\x1b\xf7W\xbf\xbc\x93\xa2\x95\x02)\x9b?lP\x06\xcf\x18\xd6\x97?\xd0N\xc2\xebf8\x83\xbf\xd8\xd6\xa7\xb8gi\xa0?\\\x87w.\x969\xa0?*x\xafE\x1a\x92\xa6?L\xa1\xc4\xe0\x1c\r\xb4\xbf\xdeWbu\xbd*\xbd\xbf\xdc_B\x06\x84\x95\xb6?\\\x92\x14;\x01\xe1\xb3?\r\xf4\xae\xa7\xb0+\xb4?H,\rdU\xae\x8f\xbf\xd2\xaf\x04\xd7!\x8c\x91?\xb4\xba\xbdH\x05\xdf\x9c?\xe8u\x83r)2\xa4\xbf@\x91\xf7\x8ar\x86\x9b\xbf\x0f\xed\xe0a\xc8\xd5\xc1\xbf\xf4\xb9l\xff\x08k\xa0?:*\xf6\x89x\xf4\xab?z7\xcd\xf6\x1fX\xc2\xbf\xa4\x9d/\xecE\x82\xa6?]\xd4\xa3\\\xad=\xa2?h\xb3\xe3\t\xdc\xe8\xa1\xbf\x008\xde:ofr\xbf\xe0]V\x12\x19\x13\x84?\xd1\xbf\x93\xcex$\xa3?ia\x8dm[\xd5\xa3?@\x13\xe7X\xbe\xf8\x97\xbf\xa6\xb6\xd6u&\xd0\xa4\xbf&\xec\xb8\xc77\x97\xa8\xbf\xc4V\xb7\x06n\xac\xae?gs\xed.\xb4\x0f\xba?5\x82\x98P\xbc\x14\x95?\x1e\r=\x93=\xac\xa1\xbf\x80\xf6\x83P\t\xb7d?\xdc\xd9nj\xd0\x84\x94?QE\xbe\xa9\xa3\x0b\xb1\xbfe\xb5\xe43%\x9e\xab\xbfm\x11\xc1 \xdf\xf6\x95?N s\x1b\'\xe0\xbe?t\x0f\x80|\x19I\xaf\xbf\xe0\xb6yc\x90c\x95\xbf\xc0\xb8\x13!v\x16y\xbf\xb4\xa7c\xf1\xb5\x87\xa6?\x0c\x86\xe2\xd1\xdc2\x9d?\xe4\xd1\x8a\x93\x95?\x9c\xbf<\x16\x11\x9cL6\xb1?\xc6\x7f\xff\xddM\xc9v?H\x0c\xa9\xf3\x036\xca\xbfJ\x1ea\xd3\x91\x12\xb1\xbf\x0e\x9b\x88U\xc3\xef\xcf?\x02U\x13q\x81\xc2\xc1?l\xcc\xdd\x0ez\xd0\xbb\xbfM\xde?wUi\xb6\xbfL\x01D\x92\x03\x97\xb2\xbfC9c`vs\xb1\xbf4\xce\x80e\xaa\x1b\xba?\xa1>\xd5\x89\xfe\x1c\xcb?\xfa\'\xc7=\xf2\xba\x92\xbf\xc0\x9d\x96OfB\xd1\xbf\xba\xd5\x9bm\x10\x15\xb6\xbf\x02k\xec\x97t\xda\xd2?}6\xcb.Y\xc1\xba?lO\x184\x1a\x01\xd3\xbf\xb8%\x8cr-\xa9\xaf\xbf\xc7\xb1\xca`\xb1\x18\xcf?\x98G\xd9V\xdf\x8a\xab?\xa7\xff\xc7\xccS\x87\xc1\xbfN3\xd5\xd7+\xd2\xa7\xbf0\xa8\xf4\x89\x82(\x9b\xbf@\x93^\xdd)\xe6T\xbf{\x84\x93\x00u\x16\xc3?\xe0A7\xab\xaa\xa0\x9f?|\xd0\xdf$R\xb7\xbc\xbfT$\x11\nZ\x12\x94?d\x1dP\x98t\xd6\xa1\xbf\x9a\xab\x9b(\x9al\xb2\xbf\x11y O\x84\xed\xbd?\xa9\x07\x147\x88\x81\xa6? %;\xc5c \xad\xbf\x14&\xcd\xeb\x84\xcb\xa9\xbfx\x90\xca\xcc8<\xa9?\xed\xdaL\xdd|C\xbc?6m%\xee\xff\x1b\xc0\xbf\x87\x0e%\x92C\xba\xc0\xbfpG\xf2-Q\t\xb7?\xefV\x94\x95\x90b\xba?\x10\xf8\xfe\xbf\x92R\xa3?x\xc8\x02\xbd`-\xa3\xbf\xfe\xb1?X0E!\xbd\xf9]\xbf$\xde[\xb1^+\xa1?\xac\x84:\xee\xe1e\x93?\x97\xe8H\xb4\xacC\x9b\xbf\x08 k\xf6@\xce\x82\xbf\xa1\\Fd\xa0\xca\xb8\xbfQb\xb1\xe4\x93\xf0\xb2\xbf\xa04%\xa4\xd5\xf3\xb4?\x10\xbd\x8a\xe1\xee\x95\x92\xbf\xe4\x01`5= \x90?\x18\xa1\x8c\xfb\x9f\x00\x82\xbf\xa1\xa11\xd1\xe3\x18\xa0\xbf\xde\xc4]s\xacV\xa7?\x906\xf10X{\xa0?\x13u\x0f\x96\xa4\r\xa7?\x8e\\\xdf]\xce\xfd\xab?\'\xacH\x1f\xc1\xdb\xb5?\xfc\xf5\\\xe2\xba\x1a\xc3\xbf\x10\xe4\xc4\xd7\x1f\xe1\x88?^\x14\xd8\x9cE\x94\xa9?\xd0XED\x07\xdc\xa7\xbf\xb1\xa0J\xd1\x0f\x15\xb4?\xca\xcd\x9b\x8e\x04\xb8\xac\xbfW\xac\x0f5\x08f\xc4\xbf\xd0H\xc4\x10\xf7\x89\x8b\xbf\xfc\x077E\rm\xaa?0e\xa5\xe1\xf4\xfa\x98\xbf\xf41\xd9\x8a>0\xb0?X\x9bt\x02~.\x99?Db2\xae/\xa7\xbc\xbf\xc8\x17\xa3\x04#\xc7\x80?x\xce-\xc4\x10\xf3\x8b?\xc0\xeb\xa5\xb7\xb8\xcep\xbf\n\xb5\n\xed\xb1m\xae?\x00\xc1\xacYP@u\xbf(\xab \xe6fA\xbd\xbf\xf0\x07\'g{\x04\x81?*+\xfaR\xfel\xab?P\x18\x88l;I\x7f?S\xf7\xe1\xca\x1f$\xab?@\x01l\xe6\xb5\xf5\x80?\xa1t\xfe\x970\x1c\xa6?\xe301\x83\x91$\xa1\xbfrKfI\xab\xc7\xb0\xbf\xdc\xdd\xa7\r\xc4\xa6\xac?\xace\xf3\x02\xa7va?\xdd\xab\x93D]N\xac\xbf4o\x8e\x8fVG\xb6?\xdb\x00\xe6\xccm\xfe\x92?3\xba3 \xa4\xa3\xc1\xbf\xe5\x96\xd8c\xc2\xe9\xa7?\x90\xee\x9c\x85\x16K\xbb?\xb9A6N\xb6\xad\xb5\xbf\x9f\n#\xd5\xf93\x95\xbf\xac/(\xcbn`\xb6?\x825n\xea\xde\xc1\x9a?\xc7\x84q\xa2\x96P\xbd\xbf\xda\xd1\xae\x08\xcbY\xbd\xbf1\xf5Otv.\xb7?\xd4\xd7\x94<\xc8\xf4\xc2?\xe6w\x0b\xe1\xc58\x9e\xbfV\xb8MM\x0eA\xbe\xbf\x1e(\xa1}z\xd0q\xbf\xc56\xad\x0b\x8d\xa0\xb7?\xab]|\x01\xc7|\xa8?\xa0\xdd\xb1\xca\x96\xa9\xa6\xbf:$Q\x15\xea\xf8\xb6\xbf\xcc\xdb\xef^\xf1\x16p\xbf\xea\x94i\xe2)\xfa\xb0?@O\x1e\x02\x83\xfc\x8d?\xa4\x80VZ\x14\x9b\xa3?\xf0\xa2\xe8\xcbz\xc2b?\xaa\xf2vc(@\xc0\xbf\n\x8e.4\xd7\xc3}\xbfJ\t\xc7\x1ckz\xa9?-\x85\x8d\xf3\xd5p\xc0\xbf\xe9W\xc6G|\x82\xbb?\xb4\x15\xd3\x81k\xb2\xce?\x13s\x149\x80t\xd5\xbf\x929@\xdbz\xd6\xb1\xf6\xd3\xb0\xbfpk\xef\xbf\xdc\xf0\x8a?\x8elR\r\x83A\xc8?\xbb\xfeq\xdb\xc4\x14\xb1\xbf\x8d\xca\xc3\x15\x13\xaa\xcb\xbf\x9c\x05\xf1\x0f\x93\x7f\x90?\xfc\xbd\xf6\xc9@&\xc1?\xa2\xc7\xd7\xc3\xe0!\xaf?|l6n\xe8o\xab\xbff_\xf2\xb2_\x11\xa8\xbf\xac\xb0\x18\x05Q\xa9w\xbf\xfe\x94X\xa6\xffZ\x8c?\x99\x8f\xc2FAE\x9a?1[\xf4\x93\x97\x84\x83?,b;\xb5\x03p\x91?g\xae|A\xa3)y?==\tV\x83\xa4\x98\xbf`$\xb8\xb5\xb5\xdbf?\xf5\xa7\xddb\xf4\x8e\xa9?L\xa9\x93_\x98\x1e\x93?Y\x9b\x9c\xc0\x9d@\xa8?\x90\xfb\xe9\xfd\xa4\xba\x8d\xbf\xdc\xbb\xd7\t.\x07j?\x05\x85\\\xcc\xaf\xab\xa7\xbf\x9cC\x8e\x8d\x19\x9a\x9b\xbf.\xa8\xb4FR{\xa3\xbf\x05\xa1\xbf\xcf#N\xb3\xbfd\xa7\x9a\'dx\x80?)D!Sp\x15\xb2\xbf=\xfe\xe5\xe5\xfd6\xac?\xec\x8b8\xef&]\x99?c\xda>\xba\x15L\xbb\xbf\x88\xe1\xfa\xcak\xb5\x93\xbf\xd0oD\x1e\xe1\xed\xbb\xbf\xd6\x00\xdc\xfa\x9eJ\xa4?\x1e\xa6b(Q\xa8\xbb?\\oL{H\xbcu\xbf[$9,wW\xab?|\xef\xabF\x1aNq\xbfZ->\xd0y\xe7\x9b?J\xe6\xda\xb0*\x9a\x9f?bA%\xb6b\xf3\xc3?Gs\xde\x9c\xef\xbc\x81?{yE\xc0\xb7\xce\xb3\xbfp\xc9\x0ep\xbcX_?\x04\xf0\x1d\xecW}\xbb\xbf\xfcI\xbe\x8d@\x81\x90\xbf\xae\xb4\xb6i\xdez\xc5?`\xc0\xb1\x90\xc2[\x88?\xbem\xf2\xf6N\x94\xb0\xbfp2u\x0ch\xads\xbf\xdef\xef\xdf\x8a\x1e\x91\xbf\x07\xb1\x05\x9b\xfd\xf1\xb0?\x9b\xb4\xf5z\x04\xfe\xb0\xbf\x92t2n\x1c\xdd\xb1\xbf_}\x0f\xed\xff\xa3\xbe\xbfW\xd5]\x1d\x0cv\x91\xbf\x18\x8e\xbd\xd3\xce_\xb9\xbf\x88\x92\xa0\xdf\xd4\xec\x91?N\x9c\xa30\xb8\x00\xb1?\x8c\xa0\xe9s*;\x93?\xb7\x9e\xde4\x9a\xb5\xa7?\x87\xaa$\xb5\x0f\x01\xaa?\x02\x08\xcd\xcf\x9b,\xc2?\xfe#e\x07\x8c\xfb\xb3?\x7fd@\x1eA\xef\xa1?*\xee\xffmt\xc3\xa2?\xbd\xb4\xea~\xe67\xc2\xbf\x9awh\x92\xce\xfa\x8b\xbf\xe7I\xaa\xee\x8c\xf8\xb3\xbf\xd8i\xd1b\xe4\xc2y?\x05\xf4\xa9\x13\xf2\x98\xaf?\x0f\x99\xd8\xd0$\x1b\xa1?\xa3$\x19j\x02\x9f\xa7?\xd8\xad\x9fu1\xa5\xa3\xbf?i\xf6/%P\xc5?L\x91\xf8\xe3\xa5N\xb4\xbf>\xfa\x9eQ\xd0\x18\xb0?j\x89\xa0\xaf{\xc7\x8d\xbf\xa8\x18\x86\x19\x8bG\xa7\xbf\x02\\\xf8\xf3H\xe6\xa0?lGW\xb4Qm\xae?\xa5hd\x82Lu\x94?\xa8\xc7\x8e\xf3:`d\xbf:\x0b\xacPU\xee\xc1\xbf\x0b\x8b\xde:=\x15\x92\xbf\xe7\x1f\xccI,\xb8\xb9\xbf\xa2\xd4\x8b8\x03\xa1\xb2\xbf\x8d[\xa3\xebR\x80\xa4?\xf7\xb8Q\x9fzL\x9a?\xdeW\tSf\xa2\xb1?\x9d\xdc,J\xa1\xcb\xa7\xbf\xe7f!zJ4\xb6?\xd6a\x97\xb8\xd2\xce\xc2\xbf}nz6\x17\xaa\xcf\xbfF\xbb\x9a\xf8 \xfa\xd1?*\x16q@\xef\xf5\xd1?O\xfc\x9f\x9b\xf8\xcb\xbd\xbf\xb1\x15\x80.[9\xc7\xbf\x97Z\xe0\x91\xa3P\xc0\xbf\x99*\xac9\x8d\x0f\x9a?\xda\x9a\xdd\xd5\x03I\xd0?G\xbeBG\x03\x15\xb3?\xdcJ\xadt\xd4(\xcc\xbfN\xc9S\xc3\xaa\xdd\xb3\xbf\x9b\x0f\xd69_p\xbc?\x16\xc6\xcb\xf5\xbd\r\xba?_]\x8e\xc9\x07\x17\xa6\xbf\xe6\xb0c\x93\xb9q\xb3\xbf\x90O\x0b\xfe\x11\x8c\x8c\xbfH\xc1J\x14\x95\xf5\x8e?\xc8\x84\x14v\xed@\xaf?\xaeY\xe35\xfe\x15\xa0\xbf\x95\xd4\xd6\x01\x19N\xbe\xbf\xa9\nBv[\xe0\xa5?\xa5)\x10\xd6k\x10\xc7?`\x97o\xa3{2[\xbf\xd6\xab\x88\xe4t\xa2\xc6\xbf\x93\x98m`j\x9d\xa7\xbf\xf4\xb5\xf2\xefx\xb5\xaf?\x9f\xd0:\x1d\x14x\xaf?c\x895\xb9\x96!\xbd?\x00!\xa9\xc9\x949\x9f\xbf\x15\xc7\x9dJ\x00\x83\xc9\xbf\x90V\x98\xc6\x8d\xf3S?W\xae\x1f\x11\xc4r\xb6?\x0b\x1bg\xb7\xad\xff\xa1?\x9eY x\x9d*\xa8\xbf6w\xab>o\x92\xa0\xbf8\xcdB\xf4Z\x99\xc3?O\x8e\xc6}\xd2\x19\x90\xbf\x8b\xac\xa7\x13\xddd\xb8\xbf\xd4>^\xc6\x11\x06\x92\xbf\xd4\xcdK3*o\xa2\xbff`\xca\xe8c\xc3\x96?`\xdd\xb4o\xe5C\xa4?PLD\xfe\xe9\x9d\x9c\xbf\xc4\xbfj[\xc1\x81\xa9?\xb4f\xde\x82\xa7\x9c\xa0?\xe0\xb7\x9a\x05\xe6\xb8\xad\xbf\xe0\xf5\x83\xee\'5u?"\xfe\xec\xfd\xb7\x1f\xa2\xbf\xe0\xa1gx3\x1c\x8f?\r\x98\x00\x1a7\xf0\xb3?d\xb4"WJ\x8e\x98\xbf\xb0\xce\xddhG\xf6\x89\xbf\xa0\xe3\xffl\x8b\x16\x8d?LW\xc4l\x0e`\x89\xbf`S\xf2}KA}?\x8cA\xa4q\xde@\x85\xbf\x98\xc0\x7f\xe9\xc8w\x80\xbf\xc0Q\xb1xX`\x80?\x80\xa6\xdbN\xd9\xb5}\xbf/\x01/\xa9\xb0+\x99?\x1c\x1f\x06\xaa/G\x98\xbf\\\x85\xab\xfbF,\xa1\xbfX\xc9\xa0\x83\xf0?\x91?\xf4\xd5L\x92\x05\x1c\x8f?\xe0\xef?\xdf\xb4O\x87?`\xfe\x8e\x83t2\x95?\xf0\xa0R\x18\xb9\x85\x8e?\x88<\xba\x14o7t\xbf\x80\xe8W\xc4\xbcMj\xbf\x18^\xfb\xcf1\xd4\xa2\xbf\x8fq6+\x83\x05\xa0?Pv,%\xb9oc\xbf\xa4\xab\xfeE\x12}\x81?A\x9aD\xb8\xfe\x9c\x93?}\x10\x18]\x92\x9f\xb0?*\x9d\xa1\xe8\x8c\x17\xc0?8\x9d\xfc\x17\x0e/\x88\xbf~\xed\xee/b\t\xaf\xbf\xd4\x80`\xa5\x06l\x99\xbf\xa6\xcdU\xfb1E\x94\xbf\xe0\xd2\xf4\xd5\xa7\x19\x828\x8c\xbf\n\xec\x0e\xfb\x83\xd5\x87?\x9d\x11:\xc6\xf1#\xc1\xbf\x9e\xadC\x8dk\xf9\xc8?c=\x87\x9cc\xc9\xc5?J\xd2\xe5\x90\x14\x98\xb5\xbf\x07\xfb\x03E\x13c\xa5?\xafZ\x01t\xf67\xa2\xbf$}\xd9T\xbb\xc9\xb0\xbf\x10\xb7\xe1 Qi\x91\xbf\xe2ejy\xfd\x07\xae\xbf\x82de\xe7v\xde\xa4?\x93\xc1\x01i\xd6x\xb3\xbfM\xf2N\xab\x92\xa5\xa4?\xd8\xd3\x16\xe9\x9d\x05\x8a\xbfo+\x86I\xc5\x14\xc7?@=6G1\xe6x?\x15\xecv\xc3\x92\xf5\xb0\xbf`\xc5\x84\x87\xd6T\x8e\xbf\xe6\xb1\xb1$\xca\xd6\x85?\x80U\x8fm\x88RX\xbfPEn\x8auxg\xbf\xa0\r\xe8\xc8\xd3\xbb\xa3?\xb0\x0b\xc0\x17Q\xd0\x9c?\xe8\xa4\xf7\x058\x8d\x97\xbf5\x9a%v\xd5\xdf\xb8?P\x85s\xd8\x14\xf4\x86?\xb8Q\xed\x1e\x06e\xc5\xbf_\xb0\n\x1b;\xfb\xb3?\xa5\xab0\xfa\xf8c\xa3?>\x92\x9ahZ\xbf\xaf\xbf\xaa\xc6\xf2\x9b\xe4\xde\xa0?\xc8\xfb\xc2\xb6\x1d\x1ds\xbf\xa4c\xed f\x92\xab?\xac\xd6b\xb4+>\xbe?\xa6\xe6rv\x9e\xf6\xc1\xbf\x90q\x88\x90\x90\x96\x8e?\xe8\xc1:\xb7\xa9m\xa6\xbfP\x8dM\x02\xd4L\x9f\xbf\x9d\xa2A\x00#,\xaf\xbf\xb0vU\xdc\x1c\xe4x?\xee\xab\tpie\xa5\xbf\xf61m:GP\xad?9\x81\xaf\xb2\x07Z\xa3\xbf\x91g\xa9\x8c6\x96\xc2\xbf\thu\xb8 \x9f\xae?59\x08w\xee\x93\xc2?\xe5{\x1e\xe0\xfd\xd8\x83?\x0f%\xfa\x07\x04b\xb7\xbf\xe1v*\x80\x8a\xee\xb2\xbf\xf1X\xd2%8}\xaa?x\xac\xdd\xdd\xf9l\xb1?\xd6<\x9f(\x87\xe6\xb0\xbf\x81\x8c\xf2\xa5\xa1_\x95\xbf\xc4\xce\x99\xe1\x93\x15\xb6?\x94\x16\xeb\x0eQO\x84?>\'\xa7\xde\x84\x8c\xb8\xbf\xdc\xcf\xd0\xd4\xe2\x85\x99\xbf\xd4t\xfe\xf0\xe0$\x9a?;>\xf7\x953\xcc\xa9?\x9c\x95RB\xb8E\xb4?\x08\x1e\xbb\xc1GMj?\xc1\x91z\x86>\x05\xbd\xbf\xca\x0f\x11\r\xea\x9e\xa5\xbf\x98\xfb4\xc5\x18&\xbf?\xf0G_w\x1b\xf0\xac?U\xe2W\xde\xbbW\xb5\xbf&z8\x0b\x07\xfa\x94\xbf\xc2\xff\xb8\xf7\x9d\x8b\xa5?\x18\x8eh\xb0\x83\xb1\x91\xbf\x00@\x97\x90\xeb\xab\xfb\xbe\xb8X\x11\x7f\xb4\xca\xa0?\x00\x80\x17\xac\xb2US?\xb8h\x1b\xf3\xc2\xcc\x85?\x08\x14\xfd\xfavEx\xbf\xb6\xc8A\xb4\xe2=\x9e\xbf\x08\xf0\xb1\xf0"c\x9d\xbf<\x0b\xf2\xec\x9a\xaa\xa2?D\xea\xb4@+\xba\xab?o\x13\xc2\x98\xba\xe0\xc0\xbf\xb7+\xebMc\xf6\xa8\xbf\x8c!4\x06\xe2\x13\xb0?,\xb5\xecT\xacQ\xad?!M43j\xf6\xb8?Z\xfe\x13\x9en\xee\xa8\xbf,\x0f/\x9a\xdc\x8a\xb3\xbf\x00\xe7\x85\xb8\xe7\x1co\xbf@;v-$\xf7]\xbfx\xbe\xdc\x92\xcc5\xa0?\x9e;\xd2\xf9\xcef\x96\xbf\xa5\xf1c\xd0\t2\xb0\xbf\x981\x84\xfc\x86\xa7\xa4\xbf\xc2\xae`\x9fL\xfd\xb4?\xb1u\xa6`,,\xb3?h\xa03\xa8\xeek\xa3\xbf\xdc\x14\xee\xe2O\xfa\x99\xbf\xd5\x17\xc3\x07\x90\xdc\x86\xbf\xaf\tr1\xd8\xc0\xae?\x90@\x9a5\x9f\x01\x9b?\x1f\xd9\xef\x8b~\xff\x96?\xd59\xa5\x15\xed\x96\x98\xbf\x89]\x83\xcd\x05{\x96\xbf\xe0\xba\xdf\x06\xbe\x88X\xbf\xd24\x95v\x01\x1f\xa2\xbf\xa7vH\x83\xcb\xc6\x90?l\xba\x1e_IA\x8f\xbf\xaf\x81\xdf\x87\\h\xa4\xbf6\x04\xa5\xe5\x9a\xed|?\x17\xb0\xc8\xdd6b\x91?\x06\xfb"\xaeW\x0b\x93?\xb0J\xc7\xa9)\xc7}?h\x14-e\xd6fR?\xd4\xe9\\\x9f\x04\xba\x81?\x1e\xad\xf2\xbbm\x86{?\x98\xd1#\x1c)\xfb\xb1\xbf\xc0\x16\t\xbc\x87D\x91\xbfD$\xac\n\x10\xecD\xbfu\x03\x7f\xa1\xfa\t\xa1\xbf\xd2/CO\xe4N\xab?R\x0f\xb3\x1d\xc1&\xa9\xbfJ\xbe\xa5!\xa9"\x9c?\xe4\xfb\xa8\'\x99g\xa1\xbf\xd5\xf5\xc8\x01)Q\x91\xbf\x0e ?wX\xe4\xb2?\xa5V\xf0\xe0\x06\xe5\x9f?\xb2f!\xf5\xd9y\xac?>\xf10\xa6\xc7%\x98?\x15\x04\xeb9\xac\x02\xad?\xc0\x81\xebO_\xe6H?b\xe5\xae\xaa\xc3\x1c\xa4?\x9c\xcd\xc1\x92pv\xa9\xbf\xc8\'\x8a8\xfc\x9cy\xbf\xfa\xa9\x82 \n\xfb\x89\xbfR\xd2z(\xd3\xde\xad?\x00`\xb9\xea\xce\x18T?(\xa36`\xe5\x11\x95\xbfY\x98"z\xed\x19\x94?{X\xc4\xabT1\xbf\xbfv|p\xd3\xbd\x8b\xc9\xbf\x02\x17(\x9e\x8f\x9b\xbb\xbfd\xe9\x0e\xf4I[\x8e\xbf\xd5V\x91\xcd\xe4\xb0\xb5?y\xe7Y\xe05\x1a\x94? \xb2\xe8\xf7T\xe2\xab?\x1bc\x91\xca\x81<\xb8\xbf\xd9\x1e\xac\x14\xad\x0c\x9c?\x8de\n\xb6V\xc2\xc3?\xbc6\xec\xba\x99\xd3\x98\xbfD\x84l\x05T\xb0\xb7\xbf%\x106J\x9f\xfb\xc9\xbf&\xa4]+\x16M\xc8\xbf\xe3\xdbw\xe3\xb9\xd5\xd1\xbf\xf7\x00\xa4-\x9c\xbf\xc1\xbf\xe8\x816:\xa0e\xc7?\x11\xf2\x8eSO\x89\xb9?\x86\x81\xc4\xc4\xbcP\xb0\xbf\xac=\xa1\xfa\xfe^\x86\xbfH\xfck\x14\xd8k\x8e\xbf\x9dO\x18\x979\xb2\xb1\xbf\xfee\x7fG\xf0\xc5\x8a?\xd8t\xb0d\xf4\xce\xbb?dbT%\x07\xd3\xc4\xbf\x1c\xba{\xdc?\xbd\xd3?>\xda)atG\xbb?\x08\'lD>\x15\x97\xbfp\x01l\xeaA?\x9c\xbf\x01\x1a\x8c>\xe3\x89\xba\xbf\xb2e\xc5*H\xee\x86\xbf\x8a\xa4Tcr\x9c\xa9?\xa3\'\\\x03\xe5#\xb3?\xdb\xa7j\xb6\xf8\xe8\xce?\x1a\xa8\xf5\x1b*\x05\xce?\x84\xff\xab_\xa8\xd6\xcf?[-\x80Wev\xa8?\xe0t\xeb\x80\xc4\xee\xc1\xbfo\xf0N\xe8\xda\xf3\x87?\xbf\x01ZN\x19\xed\xc4\xbfh\x83\x15J^\x1eg?T\x96\xd4v\nz\xa4?\x06\x89\xf79\xb5=\xae?|vU\xf2:L\xb7\xbf\xd0\xac\xea\xd9\xfa\xb0\xba\xbf\x98\x8e\xcaA\xb9\xef\xc3?3\xf1.\xf3\xf2\x97\xb1?\x87G\x182;\x1f\xcd\xbft<\xe6\x87\xce0\x96?\x1a\xc5\x0f\xfaGN\xce?^\\T\x0fJ\x8c\xac\xbf\xc3\xe3;\x88\xa8s\xc5\xbf{\x8e\xc8\xfa\x91\xa2\x89?\xf6*=f\x1a\xcc\xb3?J@\xbd\xc3\xc84\xa0?)Z\xe7\x02\xf0\xcak?\xb8\x1c\xbc#\x02\xb7\xa6\xbf\xeb\xd2cb\xc9)\xa6\xbf\xaa\xf2\xf7\x96\x10\x9d\x98?\xa8\xe6\xf5o]\xf6\xa7?dK\n:\x08~\x9c\xbf\x9ey-\x96\xaa\xbb\xa7\xbf$UC\xb0\xaf\xd5\xac?\xb8\x83\xdbb\xaa\x19\xa6?\xb3\xf8\x96\x8d;\x8a\xa8\xbf4\xaey\x06:H\xaa\xbf\x9c\xfc\x8fc\x17\xc9\x96?\t|\xe9\xf5\xd7\x9f\xad?p\x13\x981\xed\xcau?}\xa2\xcb\xa4\xe2k\x94\xbf8f\x16\xa2\xc2F\x94\xbf\x87\x88%\xbc|c\x95\xbf\xd8C\x9fI\'\x02\x94\xbf\xea\xd6h\xdcRS\x8c?b\x1d1a2!\x96?r\x13\xdd\xb2\xa9l\xb4?\xc8q\x9d8\x03U\xb6\xbfk\xfb\xaf\x10V\x12\xb7\xbf\xfc\x93u\x83?M\xcc?\xf9\x935u\x9f\xc2{?_\x0e\xe6I\x1f\x9e\xb3\xbf\xb0`\xf5^N=\x9f\xbf\xac1\x96\xc1\x81\xf0\xc0\xbf:QVf6\t\xa7?\x88I\x87\xd8)+\xb4?\xea\x9d\xc9*\xf3\xc6\x87\xbf\x9c:\x94]y\xf0\x8a?\xe4\xdc\x90E)]s?\x1c\x9e\xc7\x8d\xc8;\xa9\xbf\xc0$/\x98\xae\xfa]?`\r\xe4~\xfd\x12\xa5?@\xe2\x1e\x19\xb8[y?b\xa36\xa7\xb7\x99\x9a?\xe4\xf4}\x01\xfb\xc4\x81\xbf\xe0Mj\xad8K\xa5\xbf\xc8\x86<{\x0f\xdc\x8c\xbf\xc6k\x1f\xa5\x0b\xb0\xa4\xbf\xadIF\x9f\x9c\x05\x93\xbf\xfb\xe57\xe4;.\x93\xbf \x07\x8b\xae5{\x98?\x00\xbcN\xfa\xb5\xe6\x12\xbf\xa6\xc6\x9e\xc8\xcb\xdb\x82\xbf\x9c\x9e\x82\xb3\xde\x17\x9b?p>\xa2\xac`f\xb2\xbf\xdc\xa0D\xf0\x00\xbe\xa1?\x96/\xed\xe2)#\xa9?\xac:O7"\xf5T?\x80W<\xf1\xc6/\\?D*\xca6C\xb0q?H\xa5\xd1)\\h\xa4?\xe0\xca\xee\ts`h\xbfk#\r\xb7\xe1\xa7\xa3\xbf0X\x07(\xaaY\x95\xbf\xd7\xb5u\xb0\x8d\x05\xbe\xbf5\x1b\xe9\x9b7\x1b\xca\xbf\xf6E\x90\xdfx\xda\xa1?`\x80;\x02\x17\x92\xb0?\xef{\xe5\x85#\x0c\xae\xbf\x01w-2O\xbe\xc8\xbfJ\xa6\x83\x82\xcb-\xb2?\xff]\x85\\e\xa6\xad\xbf\x01T\xb5P\xbe"\xaf?;\x1e\x8f\x9b\xe5\xa9\xb5?\x10\x19N\x1fF\xdfp?4\xfe(\x85\n\xbe\xd2?\xcd\x82\x9fn\x91\xe8\xb2?\t9~\x12B\xea\xc2?V\xaf\x18\xb7s\x95\xb0\xbf\xf2\xf3\xa5:G6\xbd?\xfa%\x89R\x89A\x92?\xf0\xc7\x9bA\x19\x92\xb0\xbf8D\n\xbe:\xcd\xc1\xbf*A>\xb3\xdb\xf6\xd0?#\xdb\x98st~\xb6?\x95\x9f\x9c\x80\xb3Q\xd1\xbf\x9a\xf0\xe8\x82pE\xa6?\xc4E\xf8\x9d\xb8\x0c\xc3\xbfL~_\x04\xce\xb0\x9f?\xaa\xce\\\xc5\xa1?\xb0\xbf|\xdav\xe7\xc3\xb2\xbe?\xb6\x8fPW\xa6z\xc6\xbf\\\xf6\xba\xa8\xae\x98\xa6?g\xb5"\xda\x86+\xa1\xbf@\x0ekG\r{\xa1\xbf\xc0w\xfc^\x1f\\v\xbfd\xbd\xd3\xf4k\xb4\x92\xbfg\xaa\x9e\xe2|\xdb\xb8?\xf2\x1c6`\xaa\xa7\xb2\xbf\x1f5SnH\x87\xb7?^\xd6l\x88\xdal\xbd?&\xf0w\xb9^\xb4\x80?@\xbcR\x82\x17\xfa`?T{\xc0\x01\x8e\xaa\xbe\xbf>%\x84\xaf\xbc\x1a\xb2?\xc4\xed\xb7R\x95$\xa7\xbf4j~{\xa7H\x8b\xbf\xf6\xc5\xa0u\xc9x\xad\xbf\x8b\xed\xc5\xcf\xa3\x87\xa8\xbf\x80\xe1}s.\xfar?\x00\x15r\xc2\x89E\x99?\xbc\x82\x15\xb4_\xe6\xc4?\xfd\xd9e\xd1y\xd2\xb6\xbfZ|\x9f\xc2\xa5\xa9\xa9?@\xe3\x01\x99R\x8bf?H6\xab>(\xb8\x8a?P\x07\xf4\x08Ae|? \xf4\x1e\xc0\x14\x15V?$^\xd9\xe6\xe6X\x92?,\xc5\x04z\x99\x84\x93\xbf!\x92\xd2\x9c\xbf\xf9\xc2\xbfP%\x80\x98\xd7c\x88\xbfB\xbc\x16\xf8\xb04\xb4?\x88*\xae\n\x05\x1b\x9a?\\\n\x9f\xf1\x96\xa0\x91?\x00\x12\x1d@Z\x80\x9b?\x98\x8f\x8f\xef\x1d\x17\xb8\xbf\x9a\xe7f\x95M*\xa4?K\xfb\xb6\xdd\xf5\x82\xa0?j0\'\x9c\r+\xb8\xbf\xab\xad\xbb\x9cU\xee\xb1\xbfK\xc8\xba1\x9fz\xc6?0\xaaO\x82g\xa7v?\x97\x83g\x8e\x123\xb2\xbf\xb0A\x82\x7f\x112\xc6?\xfc\x0f\xbal\xc6\x07\xa0\xbf\t\x9a\xff\xb5\x96\xe0\xd4\xbfUw=bT\x88\x9c?\x98\xab\xed\xad\x946\xd2?\x86\x06F\x99\xb5"\xa7?M\x0b\xac2\x04\xf6\xbf\xbflQ\xba\x11W\x9a\xb6\xbf\x95\x08U0@\xaf\xa5?0\xb2\xf6\xecAu\xb3?\x05\xce)U\xc4\xb2\xb5\xbf\x81Z\xce!\x7fg\xb2\xbf\xbc{\xf0\xc5\x0c\xa6\xbc?\xb6\x97\xb0\xe7\\\xd5\xbc?Sss\t\x8d\xff\xb2\xbf\\0\x1f\xf6\xbeM\xc1\xbf4\xdal\xb9\xec\xe1u\xbf\xf5\x0f\x9c\xdfg\xf4\xc2?\x0e\x01\x01E\x8f\xc0\xb8?\xa6\x1a\xde\xe9(\x08\xb0\xbf\xc21l\r4T\xb3\xbf\xd0\xd1\xcb4\xfc\xe4\xab\xbf\x98\x7f\xc3c\x93\xf9\x9d?\x93\xa52\xf3\\\x84\xaa?\x90\x9b\x91\xf4\x15\xb7\x90\xbf[\xc2\x95\x833K\x91?\xf0\xfa\xc5\xa1\xdfzq?\xce\xf5\xd0\xdf\xfc \x96\xbf0\xd3rr\xddk\xb7?\xac\x90\xd9\xf4\x15\x92\xb4\xbf\x14\x82\xb5\xda\xcd$\xc1\xbf\xc8\x90\xd9K1\xd0\xc8?\x93\x13\x13\x01C^\xb6?\n\xbf\xb8\xdc4\x08\xb8\xbf%j2\x9d\xbc,\xaa\xbf\xf6se\xf8hw\xb0\xbf\x8d\x85\x10\xe98\xca\xa1?0\xc7\xb5K#\xf9\x9d?kmw\xdaq!\xa6?\xf37z\xcb\x99Q\x94\xbfT\x18\x86\xd1\x10y\xbd\xbf\xc6\x01p\x9eAo\x94?&\xb3]I\xafY\xb9?\xb0\x07\x81\xfd\xfce\x98?\xc6\x97\xbb\xe2\xec\xb5\xaa\xbf\x10\xe2\xca\xce&\x97\x8e\xbf\x98\x87\x89\xab\xd5\'z?4\xe4\x0e\xfa\x13[\x90\xbf\x84L\x9d\x8c\xf4\x1f\x9a?Y\x161%\x92\xdax?Bh\xda\x0c\xe33\x87\xbf(\nf\x8feo\x99\xbf\xfc%\xcc\xb7?\xb6\xa8\xbf\x07x\x13\x90\xdcg\x9b\xbf\xb28\xba\x8a]\xff\xa2?\xcc\xddw*\x0b\xa6\x94\xbfu\x8e\xd5\xd8\x08V\xa6\xbfxQ$\xb8\xbe\x88\x93?\x9a\x93\xae \\;\xab\xbf0\xdf0\xc94+\x9d?\x98\xad\xef\xb3c(\x95?z\xa3R\xba\n@\x88\xbf\xd0\x88\x8b\xdf3n\xa3?F\xc5Ny\x02\xe0\xa1?j\xe9\xf6\x87w\xa6\x9d?\xe0\x9cjc-\xf9\x83?\xbf\xb27\xcf\xf9/\xa6\xbf\xceL\xf0+[\xc7\xa7\xbf\x7fW\xc8pl*\xb7\xbf\x83\xd0"\x18\x8f\xbc\xa0?\x84\xb7\xcf\xd4[P\xa0\xbf\x19\x1b\xe5\xd1|\x8c\xa9\xbf\x98"x\xb4\xdel\xa0\xbfj\xef\xdc\x18H\x18r?P*\x11\xf5\xa2s\xa7?\x08\x118\xa5+\xde\xa4?\xb0t>FFl\xbd?\xc1\x10\xaf\x0f"N\xa0?\xd0\xd7q%wq\xb0?\x98n\xc5\xdf\xca0\xa1?\x1e\xf7_\xd6\xfeW\xab?\xef\xbeY\xeb\xd3]\xb8?\x88\xd0\xc4AK\xed\xa8?\x7f\rY\x87\x81\xd3\xa3\xbf\xe6\x82]&\xd1B\xa9\xbf\x94\xe9sM\xd5\xd5\xad?XR\xbc\xfan\x97\xb3\xbf\xbe\x7f\xc8\x1e\xd4\x83\xb7\xbf@Y\x1d\x8c\xdb\xf4\x8e\xbf\xd4\x8af\r\x17`\x9c\xbf\xcc\x02\xda\x80\xaaK\xa2\xbf\xb9\xa0Ef\xaf\xe9\xce\xbfr]t\xc4\xc3\x03\xa1\xbf\xd8*f\x9f\xc5\x836\xaa?\x07\x7f\x15$\xdbY\xc0?\xf0\xfdD\x06\x93<\xb5\xbf\xe2H\x9c\xb2\x93\xca\xc2\xbf\x98\x1d|i\x19\xcc`?\xf5\xc2\xba\xeag3\xc1?%a\x04\x98\xb3[\xb5?\xfcW<\xe7\xc8%\xb9\xbfr\xe3_]\xf1\x8d\xb9\xbfJD\xcd\x1d\xa7\xf1\xac?\xbe\x96\xdc\xe6\x1fd\xb4?|\x1cnd\xa9\x0e\x8d\xbfpMg\xdc>\x0e\xb2\xbf\x8e\xd3\xa4\xe6\x8akf\xbfR4\xa1Cvv\xb0?\x88 \x01UOT\x9a?\xc2\xf1\xe2m\xc7\xcd\xad\xbf\xa3\xd0\xb4s&\xe8\xa5\xbf\xa0\xc0mC\x9eE4\xbf\x8a\x95\xe3\x1a\x03:\xa5?\xbe}\xb6\xb4I\x87\xb1?\xd9\xe1+m\x04f\xa9\xbf\x86}\r\xfa\xcd\xa3\xbb\xbf*LL\xec\xaa,\xa2?\x02\x90QX\r\xd2\xb3?J?\xae\xca\x7f\xee\x8d\xbf\xfcv\x972\xee\xd7\x81?\x04X\xbb\xa1~B\x81?T)RU\xc7\xac\xb0\xbf\xc5\x98\xc1\xf1\x02\x04\x90\xbfp;\xbb\xb3\xb2`\xaa?<\x8aW\x98w\xd7\x87?\xae\xeelT1\xd2\x90\xbf\xb0\xbc\xfaA_\x90\x8b?\x9e\x84=:pi\xa3\xbfJ\xa2\n|\x19\xa9\x9e?\xe0\xaa\xbf\x1dp\xe2\xbe?d"d\xa2\xc3%\xc7\xbf\xe3\\\xab\xa9\xab\x03\xbb\xbf3\xb4)\xd9\x9bO\xc5?\xfcn\\\xe5\x16*\x88?\x89\xe7*&\xe6\xbf\xaa\xbf\x8f\xd1\xe7Px9\x99?(\xbb\xfff\xfd\xf1\xa7\xbf\xb8j\xd6\xad\x81\xe1\xc1?V8\xe6T\x88\n\x83?\xeb\xd2\xac\x0f\xd35\xcd\xbf\x9c\xd7C\xee\x84D\xb1?l\xd3u\xbe\xa9<\xb4\xbf\xa0\x06\xbc\xff\xa3\xa4\xb0?`\xee1RQD\xd3?8"\x02\x85\x9eN\xb4\xbf\xa2A\xee\xec\xd1B\xbd\xbf\xb0\xec\xf7\x03[\xdaf\xbf\xd447\x06\xce\x8d~\xbfL\xd3\xbc\xaa\xd4\xab\xa6?\x18\xa1\x01y\x84\x9b\xa0\xbf \xd1!\xc3\x92\x92\xb1\xbf>\x1f\x95\x96R\xf6\x93\xbfG\\\xc0\xfc\xe9\x91\xa0?\xae?\xd9J\xa9\xbc\x8e?\x88\x9cD\xcf\x92\xa0u?h\xf6\x94\xdb\xab\xfb\x85?\x1e\x9ayA\xfau\xb6\xbf\xa0g=I>@B?\xbb\xa7\xa1\x81q\xf4\xb0?j\r\x0b\x8a$P~?\x8c\xfd\r\xe0\x99\x03\xa7\xbf\x9c@1\xcd\xbd*\x90\xbf4\xa9\xe4\xfc\x8d\xa9\xa8?\x81\xc0i\x02\xc4\x0e\x84?\xa8\x056\x88\xee\x93\xb8\xbf\x9e\x92\xdd\xec\xebe\xbb\xbf\x9d\xcc=\x15$\xb5\xa9?\xeea\xca8\xa0\xc5\x9e?\x85>H\xd63#\xc8?\x80\xed?\x81\x1f,\xaf\xbf\x9a?o\xc5qx\xac\xbf\xf8\x8e\xfa\xbec\xe5\x9f\xbfy\x92\x1c\xf1\xf2\x99\xb7\xbf\xe1\xcb\x86=d\x96\xb2?\x83A\x82Tq\xa9\xa6?\x9c\x83\x1c\xa93\x80\xb4?\x9dc.}l\x14\xa9?\x00\xd8z5\xf7\x95\x02?YY\xed\x04\nh\xc0\xbf\x9a\x0e\x86\x9e!?\xbe?\xa7\xa9\xc9O\xc1g\xc2\xbf\x04-\xcc\xcd\xd7\x8f\x99\xbfE64o6^\xad?\x18M\x7f\xbb\xa3_\x86\xbfu\x19\x80\xe8r\xdd\xa6?\x0e6\xd9\xf1\xdf\x08\x9e\xbf\x9fJ\xad\x9eo|\xb6?\xaeU\xcb2\xef\xaa\xb0\xbf8Dc\x8f\x83\x8c\xbd\xbfC\xe3\x9f>\xd4F\xc3?\xd8\xb1\x1c\x93\xaf\nj\xbf\xd5\xd2\xdf\xa8\x9c\xe7\xad\xbf\x95D\x89Ur\x8b\x8c?ka\xffP\x9e\x8d\xad\xbf\x10\x0e\xc7\xde\xff\x94\x93?\x98\x9f\x10\xba5\x1e\xa0?\x10\xe8b;M\x04\xb9?\x80\x0f\xc7C\xdc\xbd\x88\xbfU=l\x8fN(\xc5\xbf\xac^\'>B\xdc\xba?\xfa\xb2\x1f6\xf2\xd2\xc0\xbf\xd2\xac\xee\x19\xd1\xb7\xb4?\xb4\x93\xd7ODd\xa1?\x1e\x9aU\x9a\xbcB\xac\xbf\x8c\xaai\xbb;\xfc\x92\xbfa\x07\nI@\xdc\xc6\xbf\x0b\xb0\x128rB\xa5?T[\xb1i\x89\xe3\xb3?\x08z\xc9b\xa9x\x8b?Z\xd71\xcf\xbc\x13\xc3?L\xc4I\xf8\xa3\xc6\xb0\xbf\xe0\x11\\ \xb5\xf9\xb7?\x13&~\xc7\xac(\xb9?\xde>\xd8v\xc5&\xc1\xbf \x17=t\x116K\xbf\xcat\xc3\xe6\xcdU\xb8\xbf\xe2A7\xae\x92\x8c\x80?Z\x89?\x08\x05\x1f\x8c?\xc5\x16\x0f\xd0l\xdf\xb0\xbf\xf0\x8e\x9c\xd3T[\xc4?\xb73\xf5\xe2]N\xd1?4\xa6\xebKq\xea\xb3\xbfJ(\xb0\xf8X\x1f\xb4\xbf\x869\x95lE\xc6\xa4\xbf\x88\x08g9\xb3@\xa6\xbf\xdf\x05\xa5Y\xefo\xa6\xbf&\xb46E\xb1\x96\xb7?\x0f\xf7K\xcc\xed\xdf\xb0\xbfZQ\xce4\x0eu\x97?K\x1f\xb6r\x8b\xda\x99\xbf\xde\xd5[\x7f\x12$\xb3\xbfO\xee\xd93\x93M\x85?FNR\x84\xb3V\xc2?\xfd\x9bDy?)\xac?\xe5\x19KO\x9e*\xcd\xbf\x03l^\xd5/?\xb2\xbfr\x13\xe0\xd6f\xdf\xd2?\x1d.\xd0\xf9\xb4h\xaa?\x10\x00\xcf\xb9\x18\xbb\xcf\xbf(C$z\xb4E\x94\xbf\x82X>\xc0\x07\\\xc3?\xd1\x98\x8eK\x1c0\x8d\xbf\x18H\x19\xe1\xe2a\xc2\xbf\xe6\x80\x86\x17\xf3\x01Q\xbf\xd6\x06\xb95\xbf\x06\xc1?\xab\x1bO/\xcd\x8d\xaa?\xf7\xc0\xa7\xc0\xed\xf0\xb3\xbf\\Ow\xc7r\xbc\xb3\xbf\xa4\xd6\xb4\xbe\xa1\xab\x91?\x08h\x07\xdf;^\xb4?L\xa9\xd3\x96\xbe{y?Hg\xa2\x85-%\xb3\xbf\x8c[@\xbfZ\xa0\x94\xbfaB5\xffVb\xb1?\xfce\xa6\x17g%\x99?\xa2\xe54\x06(\xcf\xa1\xbf9\x9aw_\xd4\r\x98\xbf\x17\xf4"\xac\xbc>\x99\xbf\xec\x19\x86l=\'\xa3?\x9f=\x1c\x83<\x9e\xb3?-Bf\xa5D$\x9a\xbfZ\xce\x89\x1a\x1f&\xa4\xbf\xa0\xc5\x10\xf7>\x16L\xbf`\xa3P\xd2\xf2Ve?\x90\xb6q\xdb\xe3{w\xbf4(\xe4[\x93\x9d\x9f?\xcc{9\\\x8b\xa4\x82\xbf9*qQg\xcd\xad\xbf\x87\xd0\xa3\xd3\x9f\xd2\xa9?\xf6E\xe7\x83\x81\xab\x96?H\xabR\xbb4\xb9\x90\xbf0\xa8\xd6\x0e\x91\x1fz\xbf;\xaa\xbf\xd1\x04\xd8{?\xce-\x8f\x7f\x04f\xaa?*5\xe1&O\x01\xb1\xbf\xc6\x19\x1e\xd3j\x11\xba\xbf\xe5\xb6\xc6P-\xf6\xae?ez\xf9\x1aj$\x97\xbf\xb89]\x13\xbc[\x81?\xe6yH \x08\xc0\xbe?8\x08\xe8\x9eT\xa3\x9f\xbfF\x9d\xa6\xbc\x0fH\xac\xbfJ\xac\xef\xe7%\xa2\x93?\xe0\x04\xbf\x90o+\x98?\xb8\x9f\xb6\xa3\xf5\xc0\x98?\xb8\xf9\x16\xc7\xdeg`?\x12\xbb\xea\xa5z\x05\xa8\xbf\xa0\xde\xe9\xf3\xe3\xdai\xbf$O\xfc\x9c*F\x8d?p\xfe:\x170:\xa0\xbf\xa9o\x03\xd1\xec\xe3\xa0?a\x15\xe9\xd7#\xde\xa4\xbf\x89\x8c\x9d\x8aw}\x92\xbf\x12C[\xb9\xd7\x19\xa0?r\x13\xd3{\x98\xf5\x92?\xae\x8a\xb0\x9e\xe9\xe9\xa0?\x1cb\xd8\xba\xe3\x96\xa3\xbf\x00\xaf\xa6r\r\xd99?n\x06\xd7y\xbbD\x93?@\xad0.WLS\xbf\xb0V\xf4b\xd5\x99x\xbf\xa0)\xeb\x08\x08\x97\xc2?\x99T\x19O\xbbZ\xb0\xbf\xcfPe.\x87K\xba\xbf\xc0\xef\xf8\xeesQ|\xbf\x03s\xc2\x05\x9em\xc1?\xba\xcf\xe0\x82u\xe3\xa7\xbf\x04\xa3;\x83\x885r\xbf{\x0b\xa1(e\xfd\xa6?\xa4H\xe4\xc5\x82\xc6\x83?#l\xa3\x1f\xc1\x9d\xb7?\xe3V\x82\x98\x9bN\xc6\xbf\xa8\xdf\xe9\xb8\x8f\xc2\xb2\xbfaqs\x06\xe4\x02\xb2\xbf\xda\xe9\x9eI\\\x81\xb9?\xec\xb3y\xb7\x93~\xb9\xbfT\xcc\xf8g\x19\xd3\xa6?XEk\x83\xc8\xb4\x83?\x9a\xf2\xf7kr\xcb\xc2?\xd0MkD\xe8\xd8\xb7\xbf\xfa\x96\xd8\x18\'\x19\xc1\xbf\xc3\x8a\x9c\xd4`\xed\xc4?j\xfe\xaeN.\\\xbd\xbf\x8cE\xb5A(\xaa\xb6?`\x87\x93\x0eNnc\xbf\x9aU!\xbb\x07\xcb\xc2\xbf0\xf4\xdf4\xcdI\xc4\xbf\xe9\xba\x05\x9e\xb6\x8c\xbd\xbf\xe1\xcf\xf4#\xda\x8b\xab\xbf\xc0\xe2D\xf3\xd3U\xb3\xbf%\x1fmY#\xa2\xb2?\xc2\xd3B\\A\xbe\x91?\\\x88\xd93\xa5\xd9\x97?\xc2\xe6\x19M\xc25\xa1?\xae\xd5rjk\x00\xb7?A\xe0&\x80yJ\xce?\xc7\xff\xc7\xdc\xdf3\x95\xbf$\xe0wj\xce\x80\xc2\xbf\x17\xf6\xcf\xc2\xe1\x90\xae?\xa8\xfd&J8\xb5\xcd\xbf\x9b\xc5\x9d\xe7\xc5\xcb\xb2\xbf\xea\x10"\x00_\x9e\xc2\xbf)\xd7\xa3\xab\x94\xac\xa5?\xc8\xca\xc0t\xc3J\x9b?zR\nQ~\x13\x9c?+\x95\xe5.\x80x\xbf?d\x8a\xd1\x14$Y\xa0\xbf=s\x9b\x8b\x86O\xc1?\xafX\xaes\x00\x1d\xaa?3%`\xfb\xce"\xc0?"\xdegjZD\x9b\xbf e\x1b\x9c\x17\x9c\xbc\xbf$H\xa3\xb2\x98n\xb1?\xfapP).\xae\x90\xbf\x98\xcd\xab\x92\xcc"\xa6\xbf\xa3\xb5E\x1b\xdb\xfe\xaa?\xbb\tJi\xd8\x06\x9c\xbf\xf0\x7f\x06\xeeE+\xc1?\xd3~\x07\xd0\x00\x89\xbe\xbf\xb0\x8c\x80I\x9d.\x81?\xe8\xdc\xb6)\x04\x05\xa6?\xa7xO\x1c\xff\x94\xa6?\xd0\xab\xd2\'\xaa\xdf\xb5?0\xa8V ~\xad\xa1?\xbc`\x1e\x86\xe6\x08\xa9?\xb6H\xa51\xa3\xbc\xb7\xbf\x99\x85\xb3\\\x9cE\xc1\xbf\x81\xc5\xb1\x8c\x0b\xab\xc8?\xa6I3\x06\xff\x9a\xc3?\x19t\xca\xbc\xec\x7f\xb2\xbf_\xd0R\xb3\xfb\x03\xbd\xbfN\x92\xe7\x13%\xad\xbd\xbf\x10\xe6\xe5\xdd\x05K\xa2?\x93\x99\xaei\x82-\xc8?q\x16\x18\xde\x9a8\x8e?\xe2T\xe8@\xfa%\xc4\xbf"\x96\xf2\':\xab\x86\xbfD\r\xa4~\x8b\xef\xba?\xdb~g\x9e\x90z\x9d?\x8e\x92\x0c\xc1\xc7\x04\xb4\xbf\x8e,\xcd<\x97\x03\xa6\xbf(\xb1\x08\xa5x{\xb1?\xa4\xfd\xfa\xfc\xa6\xa2\x81?\x88\x8a\xfe\xdfc\xc4\xb2\xbfr\x02\xcf\x8aG{\xb1?\x88P\xb5B\x1e\xf4\xc1?M\xab\x89\xc7\x85\x0b\xba\xbf.vbO\xeaH\xce\xbf\xae]|\xe7\x01p\xa8?\xc7^\x0e\x184\x11\xcf?\xa4.PoHGt?\xe8R\x07\x9b\xc3\xa6\xc0\xbf\xe5_<\x8c*bu\xbf\x040[V\x1b\xed\xb6\xbfN\xd4\xcb\xf7\xf1\xeb\x81\xbff_\x9b\xb5\x134\xcc?\xb0\xeb3BiT\x86?U\xbcOy\xe3}\xba\xbf\xa8\x87\x93\xe6\x16\x83\x91\xbf\x80\xaa\x9a4n\x85\xa9?\x90\x9a_\xb4\x88)\x80?F\xb6_\xaf2\x9b\xb1\xbf\xdd\xec\xbc\x0f\xce\xb0\x94?\xe8-\x9bG23\x88?\x0c(\xdd\x83\x1dh\xa6\xbflE\x0fB\xf1\xc9\xa5?\x80\xdc)T\xf4\x7fS\xbf\xd1\xfa\x84\xfd\r\x0c\x92\xbf\xa6\xdb\x19\xdc\xd9\xd0\xa0\xbf\x80\x8a\xe8\xc8\x8bk1?\xa2\x1erm\x8c\xa7\xb1?\x0c\x9e\xc2M\xc7\xdd\x8d?2\xc3\xad\x9b\rRr\xbf8v\x02\xf1\xa3o\x93\xbf\xa2M\xe2\xf9X\x9a\xa1\xbf\x98\x10g\x8fRRg?pW\xcc\x9e\x80\x04\x93?\xe2\xb9\tk\xd6y\x83?\xe0H\x11\x86\xd8(w?\xf0\xd5\x10\x83\xe6\x0et\xbf.\t\xb7Yp\x91q\xbf$C:\xc8\x92\xb5\x83\xbf,\xf6\xa2\x1e\x13\x0e\x84?\xac\t\x81_,\'\x82\xbf@\xce\xa8f\xbe\xa3v\xbf\x18G>4\xf9=t?\x82\x0f\xfc\x99\xd4\xa2\x8b\xbf\xbe}\x9c{a\x83\x9d?\xb81\x04Q\x8d\xbe\x92?\xe8\x97\x8c"w\xfcx?\x0c\xc6\x7f\xda\xee\x02\x8a?\x1cr`\xb3\x02O\x99\xbf\x9ch\xecK\xf4X\x94?\xa4\xa1\xcc\x92\xd6\x81s\xbf\xd6\xa9\xaeeJ\x08\x9c\xbf\x02b\xa8m_\xda\x84?\x08O\x10\xe7\x860\x8c\xbfw\xae\xd9\xd15E\xc4\xbf\xa4yq\n\xec*\xb1?K\xcb\x86\xeb@\xdc\xc2?Y\xf0\x17\xd6\xac\xdf\xb8?$\xa9K\x8f\xa9\xdf\xb3\xbf\xb0\xe0\xde\x0b\xec\x8f\xa5\xbf@\x92!\x05\xec\xf0y?\xf6k\x95v:\x90\xa7\xbf\xf6V\xc4\xf2e\xf5\xa4\xbf\xea:\xc7\x0e`\xcc\xaa\xbf\x03c\xa2`\x0e\xb9\xb8?}\x10\xae\xdf\xdd\x10\xa0?4s\x8b=\xce\x8d\xa2?\xa0\xb7R\x04\xa7\x84\xc4\xbf\x9d\xa2r:\xc3\x8a\xb2?E\xda\x13\x98\xccJ\xb7\xbfpc\x0e\xe9\x84\xb9\xae\xbfz\x1f\xcd\x19U\xfe\x98?\xce|\xc8\xe9\xbb\xdd\xa6?\xc0\x13\xfd\x93\xa9\x1a\xb7?\xc9\xf7\xa5t\xb1q\xb6\xbfdE\r\x1f\xa9\x90\xba?1\x905\x11d\x10\x83\xbf\xe8\x15\xf2\xce\xb3r\x7f?\xc4:\x9f\x1d?\x19\xac\xbff\'\x994\x82\xe5\x9e\xbf\xd6\x80\xbb\x8ea\x8a\xc9?\xeaN\x96a\xec\xb6\x90\xbf\xe4\x85\xf7\x91\xfa\x91\x96?\x90\x87\x1d\xaeg\xc1\x8e?!\xce\xe9.\x9e\xaf\xbf\'\x9aF\xd7\xed\x81|\xbf\xa7\xa4)d~D\xb0\xbf*m\x8a\xac\xeb\xd7\xc3?\xc60\xc8\xf9\xbd\x99\xc3?\x86\x05/\xfb\xdb\xb9\xc0\xbf\xec\xad\x96v%\xea\xb7?\xa8\xc9\xa7\xbc*\xfa\x8d?\xfca\x1cn\xad\x02\xa4?\xe9\xa1\xa3LY\x04\xb2?\xb8\x92\xb6\xe6\xba3\x94\xbf\xc7\x81\x13\xd1\xcf\xbe\xc1\xbf\xea8\\d\xe8\x8d\xc3\xbf\xd6\xcc\'\x80\xb4\xf9\x87?r?!\xd0\xe5\xfe\xa2?\xcc\xac-\x17cm\x94\xbf\xed\x0ba#\xa0\x9e\xa9?\xac\xa5\t\xdb\xd5\xba\xb1?\xa0\xf6J\xc3D\xddD\xbfj\xb8\xe1k\x18\x9d\xad\xbf.\xe0y\n\x0f\x96i?\\\x98\xba\xcf&\x94\x8f\xbf\x87\xb5\xa3\x8bBv\xa0?\xf3\xd5\x925\x1cy\xd2\xbf\x8a\xe6\x02e\x96E\xa1\xbf\\\xa5ny\x16\xa5\xac?\x04\x9f\xb3\x9d\x9ar\xa9\xbf0{~\xac\x04A\xd0?DG\x8a\x982<\x92\xbf\x90\x99T7\x86\x11s?)\x9a\x98\x07S\xd3\xa4\xbf\x16\x9e2i\x07\xdb\x88\xbfR\xee\x15\xbf\xe2\xfa\xb6?x\xf1\xca\xad*\xc3\x86?\xc3\xdc\xdb23\xa5\xb0\xbf#\xb2dk\xfb"\x96?y\xd7\xda\r\xfa6\x9a\xbf\'\x00\xe1\x14\x88H\xbd\xbf{\xf1\x08\xc7\xd6-\xbd?|\x14\xae\xfa|\x18\xc8?v\xfe\xe5G\xf3|\xc1\xbf\x17i\x9f\x82\xad\xb5\xc1\xbfj\xbe\xe2[\xba#\xbc?\xdd\x9c\xce\x93\xab\xe6\xb7?M-!\x9dyH\xb1\xbf\xb8/\xecz\x99=r\xbf\x9fH\xa2\xda\x80P\xa4?\x01\x11\x18E\x1b@\xb8\xbf\xd0\xd9\xfeC\xc4<\xb8\xbfT\x01\n\x92Ge\xc0?N`W\x8bP\xec\xc6?\n\xc2\xe4cB\xc9\xc0\xbfw\xff\x83?E\xd4\xd0\xbf\xc9U\x9d4V\xee\xaa?\xe8\xe8\xe1\xae\x99\x12\xc9?:\xe7;\xc0\xb2\x99\x81\xbf\xf67P\x89;gv?\xb0\xb4Y\xbc \xd6c\xbfH\xea;DT\x06\xc5\xbf\x00\x15\xa3\xfb[g$\xbfN\x14;\xdb\xb3=\xc9?\xb0-aC\x9a\xf8|?\xd7\xc6\xdcm\x1f\xf1\xb6\xbf\xf2\x92s9y\xb8\x99\xbf\xe0\x01\xb7\xaf\xa1\x84\x9a?\xb0\xbf\x84\xb9\x89\xf5\xa4?\xd0\x18.R\x94q\xb2\xbfN\xcf>7\xec\xb0\xa0?-\xb95\x7fH\x15\xac?\xf4\x9a^\xefp\xe7\xa5\xbf\xf6\xea\xa1\xd2w\x0f\x90\xbf\x9d\x88!\xf5\xf5\x8b\xa7?q\xbdLM\xb2#\x7f?8q\xc2$jN\x9a\xbf\xb03\xabz\xbfA\x91?\xc8\xacwD\xc7\xb4`\xbf\xa0AP\xe8\xbc\xc7n\xbf\x80\t\xa1dl\xe9l\xbf\xa6\x92\xa8\xd0\x9e\xa1\xa2\xbf\x90\xb8R7u\xdb\x95\xbff}\x1d\x1aw\x90\xa8?\x00\xa9\xfb\xbb?\x91s?\xac\xa6\xb2\xc9\xa9\xcf\x95\xbfT\xdd\xe8{\xca6\x81\xbf\xa6-\xfd\xdf\xb1\x0c\x86?\xd6\x80\xe3>`\xfb\x91?\xa6\x8d\x84\xfd\xa2\xf1\x86?\xa0\xd1f\xe8\xf6\xc7\x97\xbf\x83\\\xd9d\xe8A\x89?\x80\xe1}g\x1fJY?\x0ebpB\xef\x93k\xbf\xdb\x18\x99\x15\xe4O\x9f?\x0e$\x04a\xb7K\x92?\x1d\xceR\x13\xc7\xc4\xa7\xbf\rh\xcc\xc1~_\x83\xbfc\x19\xf2\xa4\x0b+\xaa?\x15\x08(\x8b\x12\xde\x9b\xbf\x8e\x06\xa9\xc2\x1cqx\xbf\x8c\xa5~\x0eq\xaa\x92\xbfG\x17(\xad\xcb\xb5\x93\xbfG\xad\x80li\xe2\x84??\xf9\xe1\xf7\x1e\x01\x98?X\xe9\xcbeG\x07y?:\xa1\x9b\xc8>R\xcc\xbf\xd8\xc5A\xa3\x17\xa6\x98?\x90\xae$\xfc\x9c\xf6\xcb\xbf|\xbe\xf1\x9e-\xf7\xa1?\xa2 \xb3\xb11\x87\x88\xbf\xf0=$@c\xcc\xb6\xbf?\xde\xe5\xed\xb0\x07\xc0?\xa0\x19\xe5\x9f-z\x7f?\xe6\x07\x94\xfc\xe0S\xce?\xe0\x13\xcaM\xad \x8d?\x8d%\x83\x01$=\x85?J\x8e\x02\xf3\xdb\xc3\xb1\xbf\xf2\xb3k\xb7\xbb\x17\xd2?x\xf9\xc1\x8b\xfe4\x9e? yh\x8f\xbc\xe7\xc4?b_\xfc\x16\xd5T\xb8\xbf\xc0\x9f+\xf9\xb1\x91\xab\xbf\xa8"a\xce\x9cl\xbd?miL\xcb\x8f\xdf\xc8\xbf\xa8\xef\x89\xc5\xa6\x95\x96\xbf6r\xb3\x90\xcd\x1a\xc3\xbfp\xe5\xde\t\x17\xe4\xa0?d\xe5\xce\xa5\xcb\xef\x8a\xbf\x0e\t\xc4\xb4#p\xad?v\x1b\x93R\\\xa4\xb9?\xac\x90m\x0fJX\xbd\xbfR0\xc0\xde\x05\xb1\x8e?\xfc\xcf\xb3L{\x91\x87\xbf\xe5\xdb\xd7+\xf9\xce\xb8\xbf\xa8q\xd2dS\x08\x8b?\x16t\xaa-\xaa:\xb2?7\x89\x99L\xbb\x08\xae?\xf66\xaf\x83\xa6\xd5\xb5\xbf\x1c\x87\xc7\xcd\'\xa0\xa3\xbf\xe0\x84\xcc\xcc$\xee\x9b?d:\x9aE\xef\x88\xb0?,r\xf6\x04\xach\xb3\xbf0L\xebF\xe4\xcbt\xbf P\x05\t\xde\xfd\xb7?\xea\xc0\xde\x88\x13}\xb1\xbf\xa8\xb5\x82X\x81-u\xbf"A\xb0(\x93J\x97\xbf\xaf:\xd1l\xb9\xe2\xb2\xbf\xc7\x13\xddS \xc7\xac?L\xd7\x99\xe6Z*\xad?\xea\x03\x87:/\xbc\xb5?G\x01\xf6\r)-\xb0\xbf\x91\x9f\x82\xf9\xec\xbf\xa6\xbf\xe8y\xe7V\xdf\xd3y?\x00\xf6\x0c\xf0\xfeQ<\xbf\x8a\x12\x90\xb0\x9a\x0e\xac\xbf\xe0\x1d\'\xd7\x96~?\xa8\x86\xad\x0b\x9c\xf1\xc8\xbfB\x03\xe8\xe3\x7f|\xb8?\xac\xa9\xc3\x02\x0b\x99\xa6\xbf\xb4\xae!\xe5i<\xb5\xbf\xc1\x9f\xf1\x14\x12[\xa2?O\xa6\x05\x7fz~\xb1?n\xef\xb3\xdf\t\xb8\xc2\xbf\xaa\xa1\xfa\xa2\x13\xf2\x93?=\xe5}d`f\xc9\xbfAT\t\xd5Al\x92?8\x0f\x962\xce\xfe\xb6?\x1a.\x85N\xcb\xa7\xad\xbf!6\xf4Z({\xb4?uM\x97\xb2 \x90\xb4?}\x06\xaf\x9b\xcb\xa3\xbb?\xba\xc3\r\xeb\'\x19\xc0\xbf\x80\xe2\xc7) \xa6\xc1?\xfak\xdd\x8d\x05:\xb0\xbf\xf7\xdb-\xf1\x9d\xcd\xaf?\x97\'\xfb\xe7\xcaY\xbd\xbfGfM.\xe0W\xa0\xbf\xb6\x0cV\xa7\xa0\x1e\x90\xbf<\xb0\x83\xaf\xcfn\xbf\xbf\xa4V<\x93K\x02\xa7?\x18\x9b\xc4s\xfc2\xc2?+\x98!i3\x9b\xa6?\xb3>\xea\xb1,?\x9a\xbf\xd0\x01uV"d\x88?\x02nH*\xac\xe3\x83?\x9e\x94;C\xda7\x9f?}\xcdNNWf\x9f\xbf\xe0\xda\x02\x91\xaf;\xb2\xbf\xddTxU\xc4\xd8\xa0?\xb6\x10\x17t\\[\xcd\xbfvz9&\xe8K\xa0?\xf0two\x1e\xc6\xa0?A\xd9\xc6(Yq\x9d\xbf*\xd1\x0f<\x0e\x13\xc4?.Q\xa3[\x95\xaf\x97?\xe8\xa2\xd2iR\xcf\xba?y;M\t\xb9\xf5\xc4\xbfN\x00\xa1\x8a\xee\xa4\xaf?p \xca\x84\xbe7\xa0?(\xf4\xacC<\xf3\xc0\xbf\x1c\x0e\x14\xdc\xf8\xb8p\xbfD\xe3a-\x88\x8b\x9d\xbf!;\x18\xd0\xe4\x08\x85\xbf\x84\x01878u\xca?\xaf\xfc/}\x06\x99\xa8\xbfD\xa8c\xcb\xf3\x9e\x8f\xbfn\xc9\xadr\x84\xe6\xc2?\x1b\xb6g\x06\xc7\xd5\xa1?\xac\xa9J\xbe^\xcd\xb6\xbfT\\%\x18\xd0\xa2\x9b\xbf\xd4\x07\x867&\x85\xab\xbf\xba\x80)\x89q\x8b\x9c\xbf{\t9JD\x8f\x8e\xbf\xdb\x0e\xb0\n\x95\xea\xa2?(3\xde\xc3\xc3\xbc\x9e?\x8cb\x90\xfb\x83\xc6\xb5\xbf\x11[\x01\xce\x03\x97p?O+\xcf(X#\xb1?bo%\x9f\x9f\xa0\xb0\xbf\xfcW\x8e\xb7\xe5\xbd\xa0\xbf\x8d\x13\n\xeb\xaa\xff\xba?\xf4\xe8\x97\xc3\xd5`h\xbfw\xd4\xa5\xfc\xd7X\xbb\xbf5\xa2\xeen<\xae\x8e?1l\xb4\x8c\xa7)\xb4?-1\\,7Q\x97\xbf<\xf0L\xa3\xbb\xcb\xb0\xbfBcgVS\xa1\xa2?\x02\xcd\x8bC\x8fp\x9b?\xb8\x82gJ\x01:\xa2\xbf\xb0s\xfc\xce\x9ej\x9c?\\8\xd9\xb9H1\x93?\xd9\x89E\xbd0\x83\xa7\xbf\x1aw\x17v\x10\x17\xa8\xbf\x81\xda2\xe53f\xa8?\xf4\xbc\xb5\x07[\x1d\xb8?`\x19\x8b\xe7N\xc3\x99\xbfsN\xee\xeci\xd4\xbf\xbf\xd6X\x93\x05\\\x86\x89\xbfb\x92\x98gwy\xba?\x82\x90\x8c.d\xd7\x8e?\'\xf8,\xc7*\xd6\xa5\xbf\xd8\xfc\xdf\x88\xb0\xa7h\xbf\xf5\xe9S\n\x92\xbeb\xbf\x80\xeaI\x0f\xf1 0? \x07\xf3\xd4X\xddV?+7o"]?\x92\xbf\x1c\xcc>\x8a\xb8p\xa3?6v}j\xb4\xf6\x8e?\xda:\xb9\xd4I\xd9\xc0\xbf\x8b\xf7\xd0\x7f\x16v\xb3?\xf2\x0e\xc3\xa6\x96\xc8\xb9?[\x80\xe5zQr\xa2\xbf\xf9\xc4\xf2\xb5\xaf7\xa5?\x08z\x1bC\x04\xe2\x89\xbfR\n\x8f\xd0XS\xa5\xbf\x05nN]<\xc7\xb0?|\x9b|\x18$\xde\xc2\xbf\x91e\xedw]h\xad\xbf\xfc\xd1\x1d=P\x96\xce?\xd9\xb5\xfa\xab\xec\x12\x90\xbf\x98\x97\xaa\xa4\xa0\x89\xae?oL?\xf3+\x1e\xb8\xbf[0V\xb6\n_\xd0\xbf\xc0\xe5\x93\x1dn\x91\xb5?]%\xcf\x05E=\xb8?\xee\xd6\xc2\x06\xf7\xef\x99?wY\x9d\xec\xd7}\x99\xbf\xf6\x9d\x8fsVR\x99\xbf4>\xec\n\x15Cb\xbf+U\xc3\xbc\xbd\xbb\xa6\xbf\x05)\xc9:\xb7\xd6\x84?\xcb\xa9#[\x1b\xca\x9b?2\x18\xd1"\xeaI\x90? \xf6\xdb\xb5(uV?\xdcS\xdfR\x7f\x7f\x86\xbf\x10\x1e\x06\x85\xd2NR\xbf X\xf8\x12\x8b)O\xbf\xe7\xdfQ\xfb\xdcw\xa0?\xcd\x07p\xfb\xdb\xed\x93?\x89\xae\xc0T\xcf\xd9\x82\xbf\xea\xd9\x14Ki\x9d\x95\xbf\x1c\xfe\xf0s\xb5a\x96\xbf\x00V4^?\xdf\x80\xbf\x86\xec\xec\xdfd\xbb\xb1\xbfHH\\&\xd5\xeb\xad\xbf\xa4\x89,gl\xe2\xbe\xbf\x98\xd4\xef\xcbOmu?x\xc1\xe3:\x04U\xbf\xbf\xf5>i\xea\xc8\x94\xb2\xbf\xa0\x06D\x00:$Z\xbf"\xc1\xb3@\xc4\xd0\x9d\xbf\x8d\x1d\x19\xd1&\xb2\xb5?P\xbe\x17\xfaf\x88\xb6?\xd2m\xf5d&\x1b\xc7?\xa2\xa9\x8f\xdagq\xb1?\x81\xb8\x1c\x83\xb2\x82\xb1?\xd0IL\xfe\xe1\xa6\xaa?\x9d,\xa8\x05\xea\xb9\xc0?\xe24f\xc9*\xec\xb6?\x18E\xc2\xf9&\xa2\xb5?3\x0e\xc1\xd3]K\xa4\xbf\x0cU\xa5\x19\xf9\xd7\xa7\xbf\x11\x01\x0c#`\x8c\xbb?\xa1\xad\x02\xf6AQ\xbd\xbfZ\xb7\xbf\xd8 \x90\xbe\xbf\xcb\x81\xa0\xf5\x0cR\xb1\xbf\x85akR\x8b\xb8\xb0\xbf4\xd26XD1\xc3\xbf\xc4\xf4\x1aY\xe8\xba\xcd?\xba]\x19\xb7Tn\xb5\xbf\xcd\x17S~i\xf6\xbb?Gz\xaf\xa7JE\xba?2\xc1\x14p\xe38\xb2\xbf<\x0e=\x95\xcf\xad\xb3\xbfJ\xff)\x8b\xb5G\x97\xbf\xb8ta\x1a"M\xae?B;\xa6\x8e\xd5\xa3\xa8\xbfUR\x17\xa9\xa9\x93\x97\xbf\x99\xd7\xa8\xcf\xd6r\xc1?\xa5\x8c\t\xcf\xe1[\xb7\xbf\xbb\xa4QP\x8aE\xbe?\x88\n\xc9\xd9C,\xb4?\xa2C<#\x1e\\\xaa\xbf{Eu\xf6"B\xbc\xbf\x11\xd8\xdb%\xb6\x88\xb4\xbfd\x18\x91\xf7\x84\x9f\x90?$_\x9d>\x95k\xa4?n*P\xe9(\\\xc0?\x1c`\xed\x86s\xbc\xa7?\xb2\x9c\xbd\x83-\xc9\xb8\xbflT^F\xf1\x9d\xb3\xbf\x11\xb9=\xb4\x02\xdf\xc3?\xf8\x86\xe9\xc8\xa9d\xca\xbf+\x18O\xae\xfaS\xba?r\xb18\xbf\xd2\xeb\xb8\xbff7A\xfa\xc4R\xb1\xbf\xd6\'\xe6\xf6=\x8a\x9c\xbf~\x10\x99\x01\x1e\x97\xb6\xbf\x00\xc6_b\xeb\xce\x0c?]]Bh\xbf\x0f\xc9?T\x8c\xef\xa3=@\xbf\xbf\x8a\\AY\xa29\xc8\xbfZ\xab\x06\xab\xb2\xe5\x98?\xee\xc6\xf2\r_\x0b\xb5\xbf\xf5\xe8\xd1@\n\xd8\xb1?\xef\xa6\x0e\x16\xc4\xea\xcc?\x14\\\xc6\x88,t\xa9?\xda\xdd\xbf^,\x99}?\xc6u\xec\xf3\xc5\x99\x87\xbf\x14\x99E\xfb"\xbb\x94\xbfRas\xbe\xb6\xdfC?\x0c\x19~JE\xc3\x94?\xf6xB\x8b\x15\x00\xa5?\x1cZ\x8dE\xdf{#?\xac|\xea\x80\x84\xb6\xb6\xbf\xafd\xc8H0E\x9b\xbft:\xfeh\xd2\xee\xba?\xa1\xf6\xf8\xa6\xc9\xe5\x94?|\xa9\x95\x13\xd1"\xb0\xbfu|\x07\xc7\xa2fe?\x01z\xc8\xa7\xc4\x0f\x9a?Z\xf2\x14\x16\xaf\x1a\x81\xbf\xe6A$\xdeV\xcc\x89\xbfh2\x00j\xb0R\x93\xbf4\xb94E\xa7\xdf\x8c?X"\x86\xd3\x12\x1b\xa2?l\xf7\xf1\x9d\x92kd\xbf\x00c\xaa\\X]\x98\xbf1_\xeeJ/k\x90\xbf\x08\xe4&\'\x04\xd0\x8b?\xf0\xad\xc8\x95\xc4p\xa1?D\x11\xc9\x03\x982\x89\xbf%\xf3\xd4\xee\xc8\xae\x98\xbf\x95\xc2\x8eE\xdf\xef\x80?wR\xa3\x99\x9d}\x87?\xdfhy\xfe\xf3J\x83?(\x81\xbd\xe3\xb5w\x82?\x9263\xa7\x93\x85\x85\xbf\x0eY\xa0"\xff\x1d\x93\xbf\xd3j\t\xbe6/a\xbf\xcay\xad0\xc2u{?\xba?\x7f\xbe\xa8 \xa1\xbf\x04\x1c/f|\x91\x93?\xc7\x9d\xbd\xd6\xa1A\xb8?\x06\xd4\xe7#I2\xb5\xbf\x9f\xef\xce\xa9\x9a\xd3\xc6\xbf\x0c\x17\xb9\x9b)\xe5\xbb?\xaf\xa1l\xdc\xbfy\xc4?\xa9U\xc0\xa7\x97\x06\xa8\xbf/)e\x1b\x06E\xb2\xbf\xd05\xe6I2\xda]?7v..2z\xb9?D4z\xe8\xe9!\xa7\xbf\xd2\x1eG\xf0q\x8d\xca\xbfL38\xe9\xf8\x04\xb2?\xf9\xae&\xc2\x8fm\xc5?Ru|\xc0c?\xb0?\xa7\xdd\xa1\xdc\xe06\xb2\xbf\xb8\xf0\xbej\x0cO\xbc\xbfz\xe5\xdf3\x9f\x16\x9c?V\xf7>\xabP\xbe\x9b?%\x81\xe8vS\xfe\xaa?\xbc\xc1\x18\xd5\xa5\x8a\x96?\x92\x18\x98\xf8\xd9Tr\xbf\x907)e\xeaQT?\xcf\x8d?\x8e\x9e)\xad\xbfD\x17"\xfc\xfd1\x87\xbf\xad\xb5\x0f\xdbKm\xa8?<\xe8[\xc1\xc26\x8d\xbf \x1a\xf0\xd9\xd2\xa8y\xbf\x95.\x12g\xef4\xa2\xbfK\xdeWd\x8d\xe7\xa1\xbf\xdc\xdf\xea\xe7j\x8b\xa1?\xfao\xee\x86\xfbI\x9c?o\xc4\xb2\xb0N\x05\x9e?\x81we\x05\xfc\xf5\x9d\xbfy\xbd9\xa8\x800\x83\xbf\x87F4\xc9c\x8a\xa6?wxJ\x0c\xfb\xf9z\xbfS\xf1\x18\xb73\x00\xa0?\xfc\x89\xe4\xcf;E\xb6\xbf\xae\x85J\x01\xfbd\x8b\xbf\xcf&\xa3\xa2Z\xf2\xc5?\x03\x1fE\xf5l\xady?J\xa8\xf9\x7f\x0cT\xb1\xbf\x8bH\xc7\xa7\xd6\x1f\xa7\xbf\xdf\xb1\x03\x83\xfb\x90\x87??t\xf0\xacd\xd2\x8b\xbf\x1b\xfedK\x0e\xdc\xc0\xbf\xf9&\xbc\xb0\xef\xf6\xb1?\xa7g\x8b\x14\x030\xb7?\xf0-\xa6.\xb6b\xb1\xbf\xa4\x08.\x16Ov\xb9\xbf\x7fD\xf3g\x1f\x05\xad\xbf\\\xd1\xb7H\xb4`\xa6?\xdf\xf3\x9e\xcf\xf4\x0f\xaa\xbf\x9f\xe7\xcc-\x16\x07\xca\xbfdX&\xe6\x84c\xb8?{\x14\xda\x1c7\xd9\xb5?B\xf1\xb8\x06\xaf&\x97?\xa9\x05\xd9Y\xb7\xfb\x9d\xbfn*\x155\xdbe\x91?\xe26M\xf2\xbe\x95\xc8?\x11\x99\x89\xbeDU\xb4\xbf(\xa7g\xb0\xcb?\xab?%\x88F\x91M\x9a\xba?F\xe1\xb1DZ\x9e\xa2\xbf\'O\x02\x95\xd6\xbd\xcf\xbf\x86\xda\xbc\xba\x96\xfb\xb3?\x17\x01l\x14\xe2K\xd6?]wk\x94`\xf3\xa5?\xdfd\xedQ\xba\xf3\xc5\xbf\xcb\xc4\xaef\xb1\xc2\xa4\xbf\xcaS\x99>&n\xa0\xbf\xe2\xf0\xa3\x8erD\x8b?\x16\x0c\x98\xe6\xc8b\x99\xbf\x1ch|P\xbc\x16\xa3?\xb1\xbb\xd4\x81\x12A\xa0\xbfcxx\x86\xa1\xb3\xa0\xbf\xc1\xc1R\xd6\x80H\xa0?\xe0\xffJ\xc9\x0fH\xb7\xbfd\xe43\x9c\\\x00\xa0?\xc3\xde@\xa0\xb9\xfb\xa2\xbf\xd4\xc4\xcd\xcf\x1f\xa2\xc0\xbf_\x91\x8d@$\x16\x9a\xbf\xbc\xdf\xe2_\x9b\xc9\xba?\xab\xbe>\xcf{\xee\x91\xbf\xb8\xf7\x9b\xd3w\x83\xad?"\x8e}T\x9bk\xa4\xbfp\x16\xdd\xf3]\x97\xb4\xbf\xb0\xf6\x89~\xcd\x96\xb6\xbf\xc4QI%\x84D\xd0?w&\xec8\x99\xcf\xaa\xbfl\xd4\xb5n%\x93\xca\xbf\x91\xda\x19\xe8\xe6V\xa3\xbf\xb4\x8cR\x88t\xff\xac?X\x937\r\xa8u\x98\xbf^\xae\x16\x85\x92\xa8\xa1?\xae$\xa4Wo\x07\xba?F\xfc\xee\x9d\xbd\xc6\xc9?^jw9\xef\xf4\xbc?\xbc\n_n\x0b,\xce\xbf\xb1\x03\xc9-\xa1\xd7\xb4?v\xff\xd0\x89\xc0/t?\x15\xca\xb3\xb5\xd8-\x90?\xcb\xcb\x8b\r\x16\xf1\x8b\xbf\xa7\x03s\x96D{\x98\xbf\xd5\xde/d\x1cq\x84?6\xe0\x87\xb3\xaa\xbb\x95?E\x9a\x90\x0e\x7f\t\x87\xbf\x89\xdc\x01\x91\xa4\xb6\x8f?\xc6?\x81*\x0fw\xa3?Y\x06\xea\x0b\xd7N\xaa\xbf\x97\xa3\xef\'\\\xbc\xae\xbf\x1cR\xac\xe1\x05\x14\xa4?G\x84\xbbE\rU\xab?\x10\x03\xc7\x85<*d\xbf\x04\x13n\xe3\xcd\x1b\x9c\xbf\x08|\x16\xf4\xea{\x8a\xbf\x95ZE7\x13+\xa0\xbf0\xd9\xcd\x8ff\xff~?fV\x16\x89\x14\xd4\xac?\xa8\xda\xd9}\xaf\x16\x8e?\xbf\xe0OS\x19K\xa8\xbfN\xec\xdf\xa1w(\xb3\xbf\x89\xff&\xc4C\xfc\xa2?\xe1\r~@X)\xbc?A\x18\x06\xa2\xb7\x91\xa3\xbff\xab\x83\x94 \xe2\xb5\xbf\xdd\x0cT\xac&m\x93?\xf4\xa7\xf3\x06)\x91\xa8?\x00\x14\xf1\xf5\xe5\x99\x11\xbf\x16\xfe\xc6R\xac]\x99\xbf\x00\xd3`+5\xf0@?\xc0\x8e\xd1\xa3\xfd]\x8c?\xc0\xe3\n\x98\xa4=3?Xp\xc8&<\xbch\xbfX\x861\xc7\x87\x0f\x85\xbf:\xd5\rV,2\x90\xbf\xe8Z\xbco\xfb\xc1\xb3?`\x8b\xe2\xf6\xa1\x04{\xbf\xb2\r]\xbd\xb9\xb9\xc6\xbf\xb7\x02\x80E*\xe4\xb8?\xcb\x18\x80l\xbc\x0c\xc5?^?\\\xd1X\xd0\xbe\xbf\x0c_\xee\x15b~\xaa\xbf\xcb\xbcZ\xba\x9f*\xa8?>\x1c\x16\x91\xbap\xac?r\x93\x98*\x9e\x99\x81?\xa9\xec^\xd7\xc5\xd4\xc3\xbfy\xc4\x1b\xa2\xf9g\xa6\xbf9@\xd6\x1e\x9d[\xc5?\xd8\xf6\xc8\x13\x04\x9d\xa2?\x94\x97\xc5\xa6\xcd\xa7\xb1\xbffc\xed\xea\x10\xb0\x9b?x\x00Z\xb6[\xa8\x81?\xec\xe7,\xc4\xf9\xb3\x95\xbf\xda\xc0\xf2\x8f\xd7\xde\x83?\x12X=\xb7\xe7\x9f\x92\xbf\x9d\xb9\xd37kBf?P\x04\x80\xf8\xdbL\x8a\xbf\x94~\xd4\xb4As\x93\xbf\xdb\xe2c\xa5\xf9\x15\x82?\x0f8g{\xd2\xf3u?\x0e\x9b[l4\x1d\x97?\x17^\x97\x81\xaa\x0c\x96?k\x944m\xf7\x8b\x8c\xbfN\xd8\x14\x0e\x97\xc1\xa5\xbf\xf3\x10\x93\xea?\x03\x91\xbfP\xb9b^U\xcc\x95?;\xbc\xbfk\xf5\x1a{?\xf2\x0c7\xe1\xc3\x93\x83?\xd0\xa8\x08\x07\x18\xb3I\xbf\xd0\xde\xfd\xdd@\xf4t?\x10.b\x88\xa0[q?Fu\xa5V\x91\x03\xb0?W\xd8\xc5\xbe\xe38\xbe\xbf\xd3R\xe9-\xd8\x16\xa4\xbfH4\xabk\x11:\xd0?d\xe8o\x81\xc6"\x7f\xbf\xc8\x98\xf7\'\x87\xd1\x8c\xbf\xe1N\x91L\xb6\xd8\xaf\xbf\x04s\x87\x85\xaf\xbe\xbe?\xa4\xb80\xd1A!\xaa?K\xda\x9d\x98Y\xae\xd1\xbf\xb2K\xe6\xe6}1\x85?"\xdb\xafy\xcd\xc1\xa7?\xe9\x98\xbar\xad\x89\xc3\xbfx\x98\xf6\xbd.n\xc0\xbfPsK\x8d{N\xa3?\n?4\xb7;\xe1q?\xcc\xa0\xf1\xbdy\xb4\xb8\xbf\x08\xd8\x958^\xdb\xcf\xbfc\xb0\xc2\xea0\x0c\xc2?\xfc\xbb\x1b\x83\xa3\xa2\xa9?\x16\')\xb2\xc1z\x91?>\x8d\xd5\xad\x9d\x19\xa3?=\x83\x19\xc0U\x00\x88?_\xabi\x13-s\xd1?\xc6\xab\xa6\xd2\xf1\t\xb7?\xde\xa6\\\xa4\x7f\x8f\xa3\xbf\xd0\xb8\x08\x8c\x1c\x87\xa0?\xada*TF\x13\xa6?\xe4\x12\xc7\xb2\x1bi\xc2?\r\xcdq\xc9\xc59\x87\xbf\xe4\x87;\xf7\x9d]\xd7\xbf\x069\xec:Sw\x9a\xbf\x06Y~\x92\x8f\xec\xc8?\xb0\xdc\xf1\t\xe02j?\x12\x12f\xe6\x03f\x83?\xef9\xbcJ\xb8O\xa7\xbf\xc3f\x91h\x07\xe3\xb5?M\xa0\xd6\xb6\xbbX\xa5\xbfV\xed@wt\xd0\x85\xbf\xd5\xafvd\xc2\xf9\xa0?b\xa6\xf22#\xc8\xad?`}\x1c\xe6\xdf\xe8\x8d?\x1dIx=T\xc9\x96\xbf\xf5\x84];{P\xa3?\n}\xe0\xc9\xf2\xc7\x95?\xde}\x0b\xed\xd8\x9c\xb0?=\xff\xf6\xba7J\xa3\xbfm$~SW\x9b\x9c\xbf\xc8\xa9\x81\xc8\xe8\x11\xbf\xbfB\xe1\xb4\xe8\xef\x89\xa7?\x94Q\xeb\xc4\xbb\xd8\xb0?\x01\xa8\x00j\x88\x82\x83?\x8c;V<\x90\xcb\xc2\xbf0\xc7\xcc3\xc4\x05\x89?H$\n\x19\x8b\xb6\xc1?\x88#`\xa6\xa7\xd1\xb9?\x05\xb7\x8c\xa6/i\xc1\xbf\xaf,\xaa\xd6\xaf=\xa3?p\xba\x07D\xde\x16y?Q\xc5\x80\xfa\xfd\n\xa4\xbf\x9c\xbbDx\x9c\x11\xc4\xbfy\x8f\xa7\xad\xeb\x08\xb6\xbf\xd0\xe2\x81)\x87"\xc5?B\x95o\xe4\xac\xdb\xb4\xbf\xe1nw\x86\xc2\x01\x90\xbfy\xc2\x1cB(\xadt?\xfa\xe7;S\xf2\xa5\xa1?\xafY\xae-\xfb^\xa0\xbf\x13\xc9\xc6\x18K\x83\xaa\xbf\xd1\x8fOo\x8f\xb9\xa1?\xa0!\xf9\xed\x1d\x83\xa2?\xa1\xa2\x88\x0f\x98;\x87\xbf\xb3\xd2^J\xf6+a\xbfM\xea8\xed%\x80\x80\xbf\x1f\x1e\xe5\xd6m\x7f\x9b\xbf\'\n_\xe6\xf6\x03\x94?e\x90\xc7\x9dU\x9d\xa8?M/\xd1X2~\x9a\xbfqaU\x98\x8b\x83\xa7\xbf$;\xd8[6z\x8b?\xe2\xaf\xae,\xf5\x05\x96?\x95G\xb9\nF\xe1~\xbfN\xa9\x89\xef.LR?\nH]k\xa9D\x90?d>\x0c\xc8}\xc4\x8a\xbft\xfb\xb1\x8c\xe1\xc5\x99\xbf\x82\xd2\xec\xa0\xe0\xd8\x97?<|g{\x81\xc4\xa5?@\x9f\x88-\x84\x16\x8e\xbf\x1e\xf5\x95s\xf7Y\xb2\xbf\x8al\xc57\xa4\x1ef?\xfe$\xcd\x02\xc8\x0c\xb2?\xab%f\x98\xb9\xca\x8c\xbf\xf3\x84%V[9\xa0\xbf\x92A\xaeo\x8c\x9f\x97?D\xeb\x8d)\xbb$`?\xf8D\x9ac\xc6_\x81\xbf\xa4\x93\xbc\xe7p\xd6V?\x10w\x11o]\\\xa5?.\x8fG\xc1\x8f|\x97?r\x1c"\xc2\x9f\x99\xc6\xbf}\xe0\xa0\xab\xb4\xce\x9b?\xd1\xfb/\\]\xba\xd6?\x19S\x7f\x80\xa0\xfa\xc5\xbf\x95?\x7fM\xa3?\xd3\xbf\xeb?\x19i\xbf\x0c\xc9?\x87~7\x0b\xf3\xbf\xaf?\xf1f;\\(\xc1\xb3\xbf20\xa4?H<\x06\xa0"\xd6u?WsE<\x9f\xe2\xb6\xbf\x96\xa4\xcc\xc7\xa8\xe3\xa4?\x8e\xf9S\xb6\xeea\xa6?\x9a\xe6`\xf8.\xf9\xb0?\\\xa8I\xf9VX\x8a\xbfBJ\x00\x7f]\t\x8f?\x81\'\x13\xeb\xdf\xbf\x8a\xbf\xba\xf1,|\xbdo\x8b\xbf\xe4\x1eSZj\xf2\xb2?\x16,t(\x16\x9ds\xbf(\xb8\xc2;\xbb\x84\xad\xbf\x84.\xa9\x90\xff\x1e\xb0?K<\xd1\xa5z\xb1\xb0?8\xba=]\xc4\xb2\x8d?\x13E\xc9\xe7\xda\x06\x90\xbf|\x13\xfaI\xff\x14\x98\xbfH\x95\xfe\x04\x94\xca\xa0?\xf0\x91\xef-\xdc5\xa3\xbf\x04\xa7BF\x90s\x91\xbf\x12H\xcc\x16\t\xdb\xa1\xbf\x00Y5d\xcfVF?\xeb\xd0`\x06\x7f\xc6X?Y\x15\x06\x8bK\x01s?\xf1\rU\xc8\'\x88\xa3\xbfh\xbe\xfc\x91\x81\xbfT?\xde\t\x81\x97`\x88\xb4?-\x9b\xca\x84\xec\xc7e?\xb3!\x1f\x8dy\x06\xb7\xbfp\x00\xba\x0f\x8a\xef\xa1\xbfFZ\xd2\x81\xe1M\xb3?y\x81\x04)\xdc\x1b\xab?\x87B\xee\x04N\xdd\x81\xbf\xad\xa6o\xdbQ\xb3\xab\xbf\xb0\x07\xadc\xa5~g\xbf"c\xe7\xe0\x8bn\x91?\xa7\xce\xf1\x00\xe7\xa9\x90\xbf\n\r\'\x80\x98\xe1\xa5\xbf\xda\xeb\xb2\xd4-D\xa5?X\xe8\xe2\xd7\xf0\xe5\xae?"\xa6\xbb=\xaf5\xaf\xbf\xe7\xdb}\xbd\x81\x0c\xac\xbf\xf4\x81\x12\xfb>$\xa1?\xd2\xc5\x1c\x94\xd7D\x95?rd\xa9g\x08\x03\xb0\xbf\x92|\xb5\x02=<\xad?\xed\xa2/\xad\xb8\xd9\xb9?\xbfB\xaa\xb7\x91\x10\xbd\xbf31m\xbd)\xa5\xb4\xbf\xe5\xd7\x14\xef\xcd\xe5\x90\xbf\xd0\x8f\x85+4\x1d\xb5?2M\xd9h\x08+\xb9?\x98@8!\xb2\xb8\xa3\xbfC\xf2\x1bQ\x96\r\xa7\xbf\xe0\xd1\x18W5\xa0\x90\xbf\x9f\x9an\xee!\xb2\xa0\xbf\xd0\r\xbf\xb8[\x8bB\xbf\x84\x97n\x18\x8b\xddu\xbf\xe5Y2\xfb"e\xa1?\x80lX\x0e\x05\x976?\x90"n,\x83\xa9\x9b\xbf\xc3 A\x03Esz\xbf_(\xb9\x19\xce\'\x91\xbfJ\xd2\x0e#\xd8\xfc\x83\xbfq\xe4\xdbi\xfa\xf1\x95?\x7fl8_\x9cb\xa3\xbf\x91\x8b\xf1\xc0.\xaa\xa4\xbf\x1f\xdb\xdf\xbf\xdf6\xb0?_\x194\x19T\x94\xac?c\xbe2\xf1C\x98\xb1?$\xed7\xf6\xac\xacz\xbf\xecj\x82\xf0\x8c\x13\xb2\xbf\r\xfc\x16,T7\xbb?F\x8dD\xc3\xf7W\xb0?\n\xaf\xb8`h\xc8\xb1?K\'x\xc4\xc7R\xae?\xf6uo\xdeij\xaf?\x94E \xd16}\xac?x\xbcg\xb4 )\xc5\xbf\xb2\xf8\xce\xe0E\xed\xb3?\xaa\xa9\'Qft\xb8\xbf"\xa9\x82\x17\xdb8\xb7\xbfm\tWl6\xec\xb0\xbf\xc7\xe85\xd8\x95S\xc3\xbfW\x8ba\xd8\xf3\xad\xbd?\xac?\x80K{\xcf\x99?\xf9\x85:O\xf2\xd4\xb0\xbf&\xb0\xb8=\x11W\x94?\xb1\xaa2\x18\xa0Y\xb1\xbf\xb0?\xd0M\x9d\xfb\xaf\xbf\xa0\x02\x13\xba-\xb6\xa4\xbf\xfei\xef\xa1\xd1Q\x83?\x0e\xf9\xc5\x81\xb9\x9c\xaa?(]\xf3bY\xcdd\xbfb\x96\xf0\xdfV\x91\xb9?.=d\xfa@\x92\xa7?F\xf6\xf0\x03\xb75\xa6?\xfc/\xf2\xb4\xe9\x1c\xa7?\\\xfbj\xfb\xbd\x06\x98?Ms\xa8\xd6\xedX\xc2?LM+B\xb4\x92\xbd?$Yj\x8f8,\xa8\xbf\x16\xfa\xd3J\xa9\x04\xc2\xbfI\x0cm;\x05@\xa7\xbf:\x0f\xdc\xbf\xedG\xa2?\x00J4am\xd2 ?m\xe0+F.\x0b\xae\xbf\xb0\xc5\xa8\xe9nj\xc5?5\xd3\x8b3\xbf\xc0\x93?6\xd5\x8f\xb6\x02\x01\xb1?\x8cV9i-^\xa3\xbf\xaa\xe9(\xc9\xbe\xa3\xc9\xbf\xacK\xf1\r\xe4\x1c\xa2\xbf\xa4\xf6d9\xb2\x0f\xc0\xbf\x08\'\xea\xfc\x1et\x84\xbf\xd6KUc\x8e\x15\xba\xbf\x8e\xbc\xffV\xc6M\xb0?6[ p\x9cr\xc0\xbf\xb8\x16+A\x84\xe6\xa1?\xc8\x17\x10\x89.&\xc4\xbf\xc1\xff\x1d*u\xf6\x94\xbf\x0c\xd9\xeb\xc9\xdb\xe4\xa7\xbfx\x94\xaeN\x8d\x1d\xb1?\xa4Y\xeeMs2\xc7\xbf\x0eO\x94\xd5\x7f\x05\xb3\xbf\xb8Lx\xb6}m\xc6\xbf\xd3\xa1\xce\x88\\\xd0\xa3?h\xb2\xbb(]x\xc5\xbfv\xb4\xf6\x9e\xb3\xae\xa5\xbf3t\x17\x930\xbe\xab\xbf\x9e\x90\xa45%?\xbe?\xe2\xf5*`\x14\xc4\xd3?x?K\x8ey>\xb1\xbfo\x15\xdb\xc86\x98\xd6?h\xefX\x9f\x12*\xb2\xbfN\xa2\xf2.K\xf6\xd4?d\x81m\xd2\x0c\xe0\x83?|\xedJ\xce\xcci\xb7\xbf;\xb74`\xcab\xa4\xbf\xf8h\xcc\x8d\xc1j\xd4?\x0f2\x16\xe7\x84\x7f\xac?\xe17W\xb1:\xd0\xdc\xbf\xa6\x91\xc1K\xa0\'\xb1\xbfG\xb3\x9b\x0e\x9d/\xda?\\\xdaD\xe1V\xd3\xb9?\xc4\xd7\x1dg\x83!\xd2\xbf\xd3\x17N\x94\xe7\\\xb4\xbfYZ\xa5\x96\xf8Q\xc2?Bin;F\xf7\x9e?\xc1\x8a\x03\xdc\x07~\xaa\xbf\xa9\xcdt\xfa\xf12\xab\xbf\xe0\x00\x14\xf3\xa0\x83\xa3?\xe2\x0f\xbe\xe2;\x19\xb2?\xee\xccT\x15w2\x9b\xbf\x9f\tHD\\\x92\xa5\xbf\x80\x03N9\xd5\x90h?\xf2\x04\x88\x9dw\x9a\x82?u\xeaj/\x0e\x1f\x9c?j]\xdd\xce%\x0c\x86?\xea\nr3\x13?\xb2\xbf\x00\xcaO\xb3Y}.?\xe2sk\xd5\xdf^\xc0?x\xa6\x1b\x88\xb8Y\x81\xbf\xb0]{\x8eC\xca\xc6\xbf\xc0io\x17\x96\x9c\x82?z\xdb\xda\xc90\xbb\xcb?\xc0\xfb\x8aS\xf7l[\xbf\xe3\xed\xef\x01\x07w\xc9\xbf8\xfd\xe9(\xba\x03q\xbfZ4\xb2r\xb9\xa6\xb3?\xe8\x0cP\x00\x06\xd7\x88\xbf\x90/\x06y\xa1\x99\x89?J-\xb3\x0b\x7f\\\x82?\xd0\xf6\x8aZ\x1a\x84\x97\xbf\x88P+f\xca>\x8b\xbf\xb8\t(3\x0b\xdf\xae\xbf\nk#4+\xaa\xa6?h\x02\x81\x9d\xad\'\xbc?\xf6\x0b8\x89%)\x91\xbf \xa5?\xc6\xca\xbe\xa4\xbfXl\x01\xc3\'\xcd\xa1\xbfP\xd7\xce\x1b\xb6us?\x88\x10\xf2\x15ro\xab?\xc0\x0b\xfd\x12\xb90]\xbf\xfd\xef\x80\xdb\xda\xb2\x9d\xbf\xc8tb\xd9\xe4Bw\xbf\xa5d9\xb7\xb6\x00\x80\xbf(?\xff\'\x82y\x83\xbf|\x8d\xa7g\xec"\x87?\xe4\x91\xb3\xce#\xe1\x8f?\x856\xe9\x8a\xb2\x9b\xa1\xbfG\xe4|\xd1\xe0\xc0\x96\xbf\xa4G\xfet\x031\xa5?\xf8\x906e\x87uW?p\x0e\xb3\x03*6\x8c?\x00\xe8\xb1,\xdd\xfb^?\xb0\xbfU\x81w.\x97\xbf\xc0\xd6o\xc5\xa2\x01\x8b?n\xa9!Gg:\x9d\xbf0\x98\xcb\xefE\xc6m?\xe2\xa0^!\xd24\x93\xbf \xb8\xe5\xc8\x1b\x0fq?\xd0i\x96\xb9\n%\x83\xbf\xc8\xf6|\xdf\\\xb0\x8a\xbf\xe2\xe8\xb1\x18\xf0o\xa5?\xf2K\xa9X*\xc0\x95?@-\\\xddM]}?\xb0v^\x9a\xb8fm\xbf\xbb\x9c\x04\xe3V\xce\xbc?\x10+\x07@DAv\xbf\xbbC\x00\xb4\xfe\xdf\xb1\xbf\x15\x05\x19\xae`B\xc1?\xad9sY\x11\x14\xb4\xbf0\xce\xbf\x9d\x07yi?M\x02\xb5\xfa\x83o\xa5\xbfW=\xfe*\xf1\r\xa9?\xb8\xbb\xd6\xc8\x0b3i?\xe2\x86.\xc5\r\xe8\xc1\xbfU_q\x83\xe6\x19\xa4?\xc4\x87\xf9\xea\x8bt\xa9\xbfle\x9a[\x14\xd5y?\n \xfc\x8f\x99\xd4\x90?1\xaas\xfcu\xce\xbe?U\x08\xbdd=R\xb4?@\xb3?\xae\xaa/\x9b\xbf\xea\xd3\xe6\x1e\x8b\xe0\xa8\xbf\x7f~\xd1\xdf\x189\xb4\xbf`\xa9.\xf0B_\xa0?b\x81\xc1\x82\xb7;\x8d\xbf\x04\xbeZ\xa5/`\x9f\xbf\xc4aV\x85\xa6\x12\x96?\xcaU\x9b\xb6,m\xa9\xbf\\\x1a\xec\xd0\x17\x02\xa2?T\x15s&\x92\xf5\x98?pJ\xee\xcb\xf0\xc0\x99?\xce#\x15ZM\x1c\xa6?xi.\x90\xae\x82\x90\xbf\xc6R\xcb\xb5)%\x8f\xbf\xc0?\xc9\x91\x9b\xa9\x84\xbf\xda\xa9\x11\xa0\xef\xde\x9d?\x00\xe3\xe2\xc2H\xeaH\xbf\xe8T\xe4\xd9h\xe4\x93\xbf\x00\xf8\x18G)\xe4)?\xa0x\xb0\x85q\x16\x91\xbf\x94C_\x1e\xfe\xa1\x9d\xbf\xe8\xe5J\x15i\xf4\x96?\xdc\xe9Pj\xb9\xbd\x89\xbf(\xac\xbc\xe0__\xa5?(\xd7\x1d\xa8\x98\xe3\x98?NS\xf33\xbc\xf2\xbd\xbfX;:\xec\xd5X\x83\xbf\xf6\xd9\xf5\x9d-b\xa4\xbf\xac\xc8\xac\x9a\xfa\xdb\x9d\xbf\x1c\xad\xd8\x87\xc0i\x95\xbfo\xd4v\xf5%\x1d\x9e?\x14\xe8\xeb\xbeO\xf7\xa7\xbf\xb6\x02^p\xda\x7f\xb1\xbf\xc4x\xdcO[\xe4\x9a\xbft,A\xae\xd7r\xa6?\x06\x8c\xe5Y\xe0/\xba\xbf\xf0F\xbe3\xc3w\x9a?`^\x8d\x8c\xee\xf6\xa1\xbf\xf8\x1e\x17\xa3}g\xa8\xbf@|\x91\xcf\x12\xd1j\xbf*0\x1c\x98\xc8\x0c\xab?\\o(\xf1]\x7f\xa3\xbf\xc2%\xcb\x1fL\'\xa4\xbf\x95\xe1\xf0\x9e4\xb4\xb8?\x0e\x86\xda\n\xd0l\xa1?\xe8\xaf\xd5p\xea4\xc0?\xa08\xc6\x9dL\xc2j?=\xbb\x11\xecXr\xb6?\x00\x0b2Z\xc2\x94\x19?\x14\x16?\x9b\x87D\xa5\xbfu+UX\x91\x92L\xbf!\xbc>\xaeuc\xbb?h\xc6W\xe0\x98\xb7e\xbfr_y\xd3\xef\xce\xc0\xbf\x87\x00\'t\xa5\xb7\x85\xbf\xa84\xe1V\xf1t\xbd?~U\xa5\xce \xf7\x85?]\xebEIIv\xb3\xbf\xaf\x86f\x02y)\x94?G\x93\x96\xd5,\xe5\xa5?a\x04V|\xaa`\x9c\xbfR\xb5\x031#\xa8\x80\xbf\xcd\xce\xa1\xe8z\x18\x9a?A\xc4\x16m+\xa3T?\xb9\x19\xa0\xca$\x06\x97\xbf\x84tv~\xff\x8fs\xbf\x9c\xbe$\xb6\x926e?@\x18\xd8\xc4\xfb\xee\x90\xbfEI\xd767u\x95?\x99\xafs\xbb;\xd0\xa1?\x1de\xe7\xfc\xd1\xa8\x99\xbf\xff|\xb1C2z\xae\xbfZz\xa6\x16;8\x88?\xc6\nQd5\xab\xb8?>\x1d\x12\xbd+\x14f?\xcd\x897>KV\xba\xbf\x92\xba\xee\x19v@\x81\xbf^dcI0\xc4\xb1?\xc2b\xc0\xe0i\xaa\x85?\xde\xc2\xcc\xe3\xa4\xeb\x9c\xbf\xb1\xd7h\xcaU>c\xbf\x15\xd9\xa9\x01\x87,f?\x80\xdb.j\xe8bu\xbfp@?\x00x\xb7~\xbfF"\x8c4>\x8b\xa2?\xd0\x85[F\x9e:v?n\x9e\xd0n\x82\xe1\x9c\xbf4\x88Fsn4J,\xb6\xbf\xe9?T\xdd\x85\xa2\xc0?FO6\xb4\xc4\xea\xb7\xbf\xcdB\xd9\x85\xf1\x16\xd0?\x80o]\xf2\xd0\x81i?\x85\xe3\xa7tE\xce\xa2?O\x91\xd5\x1c,\xf0\xa0\xbf,\xa6\xc3\xe8B\xce\xc9?\x06\xd2\x0b\r\x19_\xba?\xf3sV\xcb\xa9%\xae\xbfN\t\xb4tx\xba\xb0\xbfw\xc5S\x8a\xe6\n\xae\xbf\x90\x01RR\xee\xb0m\xbf\xb4A\xe0T\xdf\xa9}?\xb8_\xd5\xa3\xec\x81u\xbf@\xa3\xf58|:\xc0?\xe8z\xb9\xc3\xca\x12\xa5?\r\xa8\xc3\x1f\x85\xb3\xae?\xb8\x99p\x81\xd3\x00Y?0\xa6\x02\xa5\xd2\xc4\xc3\xbf%/S\xd3\xa4\x91\xb6\xbfA\xed(\xa3\x18\x17\xbe?\xc6\x90\xccN])\x95\xbf\xe6C\xd6O\xdd\x8e\xa7?^f\xe8\x8b\x00\xd7\xb6?@\xe2.\xf4\x1e\xe2C?j\x97&m\x9e\xf7\x94?9IyJ\x11O\xcb\xbft\x14\xa1\xe2\x84\x81\xa4?26\xad8\'\xed\x99\xbf\xb2rh%\x17\x95\xbd?\x87\xe8\xca\xae>\xc2\x9a?\xc1F\x8ev\xef\x1a\xb0\xbf\xc9L#\x1e/A\xa0\xbf\xb1{Yl\xfe2\xa9\xbfPu\xf18\xaf\xf6\xb9\xbf\x8a\xd1\x90\x14P\x03\xb3\xbf@\xab\xc9\x1b+\x00\xa4\xbfl\xdd9t\xb9\x7f\xc4?\xfc(\xdb\xbdv\xfa\x89\xbfK\xd7J`\xaf0\x9c?2\xf1Sq\xd6\xba\x8b?\xd7\x1970\xa6\x14\xc8\xbf|\xeb\xb8_\x89\xf9\xa2?|\x18T\x0f8\x00\x90\xbf\x8f4\x9b\xde>\x0b\xb4?\x18\xefp\x00\xf7\xe7\xa7?\t\xd3\xf5\xe6}\xe5\xca\xbf\xa8\x0e\xef\x96\xa9c\xa2\xbf\xd7+\xe4\x13\xc4\x9f\xcc?)\x0f\x9b\xbdTvM?j\xb7Vqi\xd0\xc6\xbf\xd8x"\x88\x18\xcc\x80?\x01\x1cm\x05\x9b\xc6\xbf?\x93\xad\xf0\xc6z\xd5q\xbf>\xdf\xd0:\xa9b\xb0\xbf\xde\x9b\x02~\x9d\xd0@\xbf\x9c=\xe6k\xd2\x10\xa0?cxa\x1d\xbb\xf7U?iN\x12Mq%u\xbf\xa8\xf9[5f\x92\x89?\x88_\x9d\xea+\x14|\xbf$\x91\xd9\xf9\xbd\xe5\x9a\xbf\x08{E\x83\x95/s\xbf>\xdc\x00\x08E\x7f\x97?\xde\xec\xac\x9c_\xa0\xa0?\xf6\x98\xb6\x13\x7f\xfa\xa8\xbfH\xf2*G.C\xb8\xbf\x99!\x8f\x8ejV\xb5?~\xe3\xa7(9x\xcb?Y]\xe9\xc7\x88\xfe\xb0\xbf\xa2\r\xd1\xea\x08\xd4\xd5\xbf\xa5\x8c\x90\xc7;\x03\xa5?\xdf\x05\x9clx\xe4\xda?n\xca\r?~\x00\x99\xbf\x97\xf4\xad\x1f;\xf1\xd6\xbf CT{Z\x9cn?\xac\x8f\x0c\xa4 d\xc0?\x98\xe8$u\xe8[m\xbf\x00|yW\xfc\xaeE\xbf\xec0\x16\xccXy\x96?\xbe\xf18\x87j1\xa4\xbfh\x83\x94\xa37\xbc\x87?\xa8\xc9\xb7\x9e\t\x91\xbe?\xe9W5\xbf\x80\xa0\xa7\xbf\x0e)\xea\x9b\xb5\t\xbb\xbf\xa4\xcf\xf7q\xa2R\xa0?\xb8F(\x84\xeb\xc7\x99?\x1e\xbb\x7f\x03\x06\xe1\x97\xbf \xdc\xc2IK\x1f\x8b\xbfx*q\xcc6\x05\xa5?\xa0\xbb\xb5\xba\xc1u\xa5?\xd8E\x92|T\x08\xae\xbfRqWs\xf2\xf4\xb5\xbf\xbfh;\xf3\xee\x83\xa7?\xb0\x15\x98dl6\xac?\xc8\xad\xd2\x94K\x1d\x90\xbf\xff*9$\xa1\x0c\x86\xbf\xe0Y)\xbc\'2\x9a?\x80Z\x8bi@*=?\xfc\xa3\xd7\xa0\xa5\xc5c?p\xaf^^C\xd9i\xbf\x96\x84\xbdH\x8b\x95\xb0\xbfX\x9a\xddX\xa4xv?\x00n\x88\n\xd6\xf9\xa2?\x80]rZ\x9b\xbc1?T\xb5L\xe6\xdd\xeb\x96?\x18\xfb]\xe5\x9b\xc3\x97\xbf\xce*_\xb2Pg\xb0\xbf\x83\xd5\x95\x87\xe1\xd0\xad?\xfey\xfe\x96\xfb\x8b\xbe?l\xcda\x02\x1a\xd4c\xbf\xa1\xdaB\x8e\xcei\xb2\xbflx\x01\xec\xf4\xe5\xb0\xbf0\x18\x85\xa4\x01\xaa{?d\r \xd9\xa8m\xa2?.^\xcei\x0c\xa8\xb5?\xb6b\xf9\xe8\x8dl\x9a\xbf1F\xac\x97~\x8e\xb4\xbf\x08z\xa46Aw\xba?\x8aJ\x9c\xe3\x07I\x93?Y\xcf&\xec\n\x05\x8b\xbf!C\x98\xb5\xad\x9e\xba\xbf\xba\x94\xfcj\xa3\x0c\xb2?\xd81\xb4\xf5-\xbf\xa6\xbf\xa9\x98\x13\x8c\x99\x1b\xb9\xbf\xd2l\xdfu\x96\x11\xad?\x1d8\xee\xcfl1\xa4\xbf\'/\xe7#\xbfC\xb3?d\xa6\xc4\x9f\x0b\xbc\xa5?\xc0\xb0\xd9\xcd\xf6\x06r\xbf\x14\xa8rV\xbaG\x9e?\x0fq\x1awA}\xa5?\xfc;\xb4\xabd&\x9b?R\x004_\xcfc\xb1\xbf \xf2t\xc0d]\x80?\'\x90\x91\x080\xa0\x98\xbf\xb2\x0b\x97\x11\xcc\xa1\xac\xbf\x97\xad(et\x1e\xa1?J[\x8b\xef\xcb\x9d\xa1\xbf\xbb\x9b;\xed`c\xa3?\x80\x98\xc7vt\xc7D\xbf+\xc8{w!\x85\xa7\xbfTM\xf9\xcc\x15\xae\xb1?\xf0\x1c\xf7\xact\x8c\xaa?\x00\x91r\xde\x96Q\x97\xbf\xb8\x18\x12\xc3\xe2\x81\xb5\xbf\xa3;\xfa\x12oq\x99\xbf\xfb\x99\xd8>\xd3\xdc\x85\xbfX\x7f\xcf\x87\xd9\xbc\x81\xbf\xeaK\x88\xe7\xaa\xb9\xb9?h\xeb\x1e\xb6\x98\xd4\xb1?\x86\x8d\xbd>\xa7K\x9d\xbf \xd2\x044\xb4q\x7f\xbf\x00gU\x85\x93TN\xbf\xa8\xd27\x1a\xf9t\xb3\xbfb8N\xbd\xbb\x0f\xb2\xbf~}~\xc0 \xc3\x91?\xcc/Bk\xfc\x9e\xa1?a\x8f\x03T\x81`\xb2?nD\xcc\x15\x17X\x9c?\x01a\xc7\x85\xbe\xb3\xbfTM\xa9\x9a\xae\xfdB\xbfrq^\xc13&\xaf?\xc2\xf9\xd5\x8f\xfc1p\xbf/[d\xc4P,\x94\xbf\xf6\xfd9\xfb\xd1\xaa\x8d\xbf\xc4\x86\x0cI\xbdQf?\xcf3#\xb6\x80\xb8\x81?\xf1\x84bJ\x8aE\xb8?y1\xaf;\xf0\xa6\xb4\xbf\x04.\x96\xeb\xa5@\xd8\xbf\xf2e\xb8jE\xb7\xc9?\xbb\x0f\xbf\xc0\xbdB\xdb?\x1a\xa9\xff\xb3>X\xbe\xbf\xaa\x19\xc3L"\xdc\xc2\xbfU\xe5\xac\xe9\xf75\x82?0\xd3\xe0d\xb1\x84A?P\x84\xb7\xbcb;\x7f\xbf4\xc2\xe2q6\xb0\x9f\xbf\xc7R\xe2D\x12h\x9e?\x98\xc0%\x00D\x96\xb9?\xc3uf9p\xb2\xb2\xbf\xe0\x82\xdb\xce\xc2\n\xbb\xbf\x00\xb3D3M\x0f\xa6?\x87(:\xf2\x12\xb2\xa2?\x83(\xa1Q\xec\xc1\xa1?\xf6\xf7\x9b\x0f\xcc\xa2\x83\xbf\xa6\xcbo\xb1>\xe0\xae\xbfH\xa8\xf6cU#:?\xaeR\x00\xc1S(b?\xe4\xf0QH\x12\xf4\x89?{\xa9\xf1)[\x05\x93?r9\x89\x9a\x08\x9d\x8f?\xe4\x9a\xd3\xbaU7b?2\xf6X\xb9l_h?H\xd3b\x03S\x14o\xbfc4\t\xe6(7\x98?\x0c\x89\x9dJ\x17\xf0\x95?w\xfb\xa1\xe9\xb5\xff\x9b\xbfv\x9d\xday\xfdc\xa1\xbf\xbeP\xd6\xcbN\x8e\xa5\xbf\xe3\xb9\xb3<\xf8\xf3x?\x0e\x87\xe4\x1c\x1f\x84\xa6?\xdf[\x0c\xaa@6\xab?\x00b\xb8\x90\xb7\xcf\xa3?@\xc7\xef\x8c\x1d]\x91\xbfP\x9c\xda\x8f\x9c~W?\xee9\xe6\xf5\xb6\x86\xab?\\d.\x11\x88\xbd\xba?dH E\x84\x12\xcb\xbf\xbc\x08]-\xbf\xc1A?.\xe9u\xba:\x1e\xa4?P\x7f\xb8l\xf6\xf4\x9a\xbf\xa6\xc1\xfb\xb8\xff\xd1\x82?\xa7Tq\xc2\x0f\x13\xbe\xbf\xb0\xae\x0b\xd4R9\xc6?\x9b\x03D~\x94\xb3\x8b\xbff\xed\xe9\xab\xf7\x86\xa9\xbfp6\xbe\\\xe88\xbd?\xf8\xf5@\xa6\x12\xa2\x97\xbf\xab\xf2\x1cz\x87\xef\xac\xbf\xd4\xf9N\x9b\xee\xdc\x90?\x1a\xd5\x04}\xb6\xf7\xb1?\xf4\x12\xbb`VQ\xb0\xbf\x1dT\xe8\x88\xb1a\xc4\xbf\xdd\xbc\x14o\x91f\xa0?*\x05\x82D\x10\xa9\xa7?[xO\xad\xdd\xc5\xb6\xbf\xa5\\\xad\xe4}\x1a\x9b?\xbe\xc7\xbcK\x0b\xac\xbe\xbf\xddo\x9bc=\x02\xa1\xbf\n6\xd5\x98\x1eE\xc5? \x0e\x7f\xd2`\xbc\xa2?\x05\xd8\x0e1\xd10\xae\xbf\x0b\x9fz(Sw\x9e\xbf\xe9\xb7\x8e\xbawR\xb1\xbf\xe0\x9eA\xa2oT\xb3\xbf\xd0\x86\xe8\xa8%2\xb8?W\x86\x8e\xfaa\xad\xa8?F\xd6\xe5\x8dKS\xbb?H\x1eM\xf3:\x81\x81?\x8c~\xd9\x9b\xd0\xa4\xa2\xbfO\xde\x96\x00\xd77\xb6\xbf\x83\x10{\xc0n>\x87?\xda8\xd6\xd2Bi\xc7?\x96\xa1\xc5^\x1a\xc1\x8d?\xf7\xe4\xf2s\x8aP\xad?\xd4\x07\t\xa2]%\x9e\xbfSe*\xa6\x8c\xc5\xbf\xbf\x1c\xdeTWc\x9e\xa7?\xf7\x00\x8d\xee.\x0c\x80\xbf|\xf8\x9d\xfb\xc8J\xc0?\x8e~Z85iy\xbf19\xbb\xbc\x1c\xb8\xcc?w`*\x889\xe3\xc1?\xfcX\xe5p\x12U\xa1\xbfzO\x13\x91\xb6i\xa7?a\x9e\xce\x1e\xf4\xa8\xc8\xbf\x08+\x8dL$\xef\x9c\xbf\x10\n~\xeaFR\xc3\xbf\x80\xec\x7f\xce\x05\x81=?\xff\x8f\x93o:B\xc3?\x995j\xd9qa\xb1\xbf\xba\xc9\xf9\xd2\x0c\xba\x99\xbf\x84-1z~\x95\xa9\xbf\xf5\x83V\xc6\xaa\xcf\xc0\xbf\xf6e\xab\x90\x13\xc3\xad\xbf^L\x1a\xb1\x06\x90q?\xf4\xa8\x0e!G{\xaa\xbf}\x94_+\xb3\xa3\x96\xbfU\xcb#\x15\xdd\x00\xc0?\xecu\x86\xe8\x85\x8f\x99?UW\xdc\x1bm\xf7\xc1\xbfPW\xd0\xac\xf2\xff\x94\xbf\xf2\x88\x8eH\x8aD\xc1?n\xc1\xfcQ\xe9\xbd\xa6?\xcae\'\x95\x18O\xbd\xbf\xc4\xaaG\xa8\xdd\xa9\xa8\xbf\xfao\xbfI\xc7c\xb3?\xaf\xd6\x90S-\xd8\xa0?E\x8e=*\xe4q\xa9\xbfig>\xb5\xe4=\x9f\xbf\x07&\n\x95\x8bC\xa3?\xc5kPh\xf4\xf7\x90?H\x1fwi\xdd\x7f\x95\xbf\x98\xec\xa0\x0b\x14\xca\x93?p\xa8\x90\x02\xa3\xd9v\xbfGmg\x8b\x890\xa3\xbf\x0f\n\x1f\x1a\xcd\\\x91\xbf^+\xd7S\xdb\x15\xa6?\xf0%*\xfa\x89m\xb2?4\xf3\xf8/\xc2\xa8\x9e\xbf~H\xca/~5\xbe\xbfy3\xf1\\\xef\x13\x98?\x06s\t\xb4\xc6\xaa\xc1?x3D\\\x94\xde\xa4\xbf#\xc5\xc7jp\xea\xc6\xbf&\nt\xad\x14\r\xa0?X\x9d\xeb\xfa\xe4`\xc7?PM~\xa8\xd1\xa1r\xbfzU\t\xfb\xd2\x17\xb3\xbf\xdc\xbb\xb2G\xf9\xa6\x84\xbfp\xe4\x06h\\\xd9\x95?\xa2\x11\xb7d/\xdd\x8b?\xea\xec>+\xf5\x88\xbe\xbf\x12\xa9\xd5bi\x9b\xa6?\xc3\xe69s\xacG\xd4?\x18\xf4^\xc6\x8d\x08\xc2\xbf\x85\n@\x1e\xaf\x8e\xd5\xbf\x10]\xa6.(\x0f\xb6?\xe36:\x18\x05P\xc0?@1\xe4\xfcG\xe7y\xbfXbl\xc5\x9cY\x88?\xf1\xb7\xad\x95\x18\xdf\x92?\x96-\xd04\x83\x94\xa5?<\xd46\xbe\xb2\x8c\xa7\xbfLv\xba\x04cU\xbf\xbf6\xbb\x9c\xcf$\x10\xb1?4\x80\xed\xd3s@\xbb?\xb4\xa8\x94B\t)\x9b\xbfG\xd3yW\xa8\x8c\xa1\xbf 9\xe3\xdb\x08\x01\x81?\xf0\xfa\'u\xcbbu\xbf\xe0`pPp\x82v?\xdc\xb5@\xdcpG\x80?\xa8Okr&\xea{\xbf\xc0}3\x0e\x9e;z?`\x1e(H\xb2\xcf`?\x90\xc2\xebN\xad~~\xbfh\x81\xf1\xbd\xfa\x8fy?\x00\x14\xc4\xe7R\x98\x86?\xa2n\x82*\t\xd7\xa4\xbf\x1f}\xb8\xb9\xb4P\x9b?\x02\x80\x87\x968s\xab?\xaf%G\xbf=\xfc\x9f\xbf\xae^\x92\xe6\x03\xe3\xac\xbf\x9a\'x*[\xb2\xa0\xbf\xf9\x9fIi\xefT\xa1?p\x97\r<&_\xaa?`((\xa3\xfd\x05\xb2?X\xa8)\x88~z\x94?\xc9\xec\xcd\xff\x1eI\xb0?\x86q\xe9\xeb\xac/j?\\WSS%,\x84?\xa0q>k%\x82\xc4?\x181W\x11\xf1\x94\xb5\xbf\x1c\x1a]i\x9e\xfdq\xbf\xfc\xb8\x98\x9fj\x8b\xaa\xbf\x16\xb2\x1e\x02\xd7\xe4\xa8\xbfT\xd0;\xfa\x10\xba\x94\xbf\xacK}\x969\x80\xc2\xbf\xcaN\xfbv\xc8\xd5\xab?\xc6Z\xaa\xc0\x8av\x94?\xfb\x0b\n-,,\x8c\xbf\xb5v\xb7\xb0\x04\xe5\xc0?\x9d6VeK\'\xab\xbf\xac\xa4\xab\xa1\x7f\x93\x9b\xbf\x82\x07\x1a\x90\x83\xbd\xb5\xbf\xec\x8a\xf7y\xfa\x99\xaa?\x1d\xe7y[\xf7d\xa5?\xc2\x7f\x91k\x18\xe2\xc1\xbf\xc9oh\xde\xc5>\xae?\x8e\xc0\x98\xe4\x061\xa8\xbfu\rBN\x98u\xa6\xbfP \xd0\x8d\xf1)\x80?\x90\x83\xbb\xe5\xf1k\xbb\xbfLu{\x82\x10z\x91?\xd6\xa0\x8b\xdb\x998\xa6?\xe0\xca\x02\'\x80\xd9\x80\xbfh\xc7\xbeu\xda@\x8c?]\xdc\xcf\xc6S\xcd\xac\xbf<4D|\x1c8\xa6\xbf\xacv\xa8\xa7e]\xa7\xbf\xf5q\xcde\x90<\xb8?\xcb%\xa6\xfcW%\xb7?h\xd3c\x80\xa6\xd3\x92?P\xdd\xb5\xef6y\x92?\x92\xa4\x81\xdaU&\x93?\xa2FZ\x8eOJ\xb7\xbf\x06\x8cX\x94\x89\xb8\xb4\xbf\x94\xa4\xd2){\x0f\xb5?\xa2\x83#\xd0\xddX\x8a?\xaa\xfap\xed\x89\x9e\xbf?\x9e\xe0,\xb8\x08Z\xa0?\xee(M\xe1\xba\x97\xb9?\xb4hO^\xd00\x90?\xfa\xc7@OlQ\xa5\xbf~N\x02\xcd\xd8[\xb5?\x18\xdd\x16\xed\xdb\xaep?\xc5\x9dQ\xd7<^\xc1?\xaf\xd2\xb0\xc5%\xbb\xba?\xee\xbb{L\xb4\xdf\xae?\x8c\xa1\xf9\xfc\x8b\xc1\xb0?\xa9\xcb\xfd\xfb\xaan\xcb\xbfEU8\x1aG\x91\xb4?h\xb1\xa3\xcb\x89\xc3\xa7\xbf\xd0*n\xa0\xdb:x\xbf\r\xca\xfe\xd9IL\xba?=\xe3\xb1\xe34]\xc2\xbf\xd9\xaf\x05\x10@\xb6\xc0?\x8f\xe1)\xb54p\xc4\xbf}\xf1\xbbt\x92>\xcd\xbf\xfb\xa8\xabu\x97\x85\xc3\xbf@\xab\xfc,IGs?\xde=\\?\xae\x8b{?\xafji7-\x8d\x80\xbfNU\xd1\xcc\xc8\xbe\x8f\xbf\xb5v\xfc\xf6i\xcc|?\xc2\xc2?\xcaB\xf2\x8f?\x14GZ8\xda\xcb\x97\xbf\xf1\x80\xda\xc1\xc1\x10\x96\xbf\xf4\xb5WF\x1bP\x9b?\xaf\xc7\x86/a\x01\x92?\xc2J\xf7\xe9l\x93\x84\xbf\xd3\xa5\x16)\x8d\xe1J?\xdd\xffQw\x83@a\xbf\x1d\x8eW\x15]rZ?\xdfT\xbd\xd7\x87+P?\x9b\xcf\x86\xa3\x97\x16\x81\xbfU\xe3+\x8d`\xde\x80?D\x08\xab9\xfb#Z?\xfc\xa9R#\xf7q\x92\xbfr\xf9:\x17\xe1\x16x?_\xbf\xe3\x8fD\xe5\x94?\xbc\x98\x18\xe90\xac\\?\xc7\xa3\n\xe7PI\x93\xbf\x10\xea\x08e\xd4\xdff\xbf\xea\xda\\\xf6bW\x92?\x0e\xf921\xfa\x13\x91\xbf\xc9\xab\x19\xc3\xa1T\x82\xbf\x80\xeeo\x7fZ\x9e\xa2?\xc8\xd1\x1e\x13\xbdl\x87\xbf\x7f\x12v"\xb6\xf5\xa7\xbfH\xad\x13.\xdf\xdf\x8b?\x19<\x8b\xcf\xf6G\xa6?)Z\xbe\xa4\xcb\x89s?\x88;Y\xca\xd1\xeb\x8d\xbf$\x02\xfbO\xe4B\x84\xbf\xf4\xc7\xd1\xa0\xab\xebw?\xbc\x83n\xd23\x88~?\xd2\xccn\x89\xbf\xfb\xa4?\xd6\x16o\xc0\xe9"\x99\xbf\xf3\xf2\x8fF!\xcb\xc4\xbf\xd26BO\xeaT\xb5?Y\xcb\xe6\xf4I\xa3\xc6?\xa2\'\x02W\xa8\x03\xad\xbf<\xf9\xde\xab\x01`\xad\xbf\xcf\xde\xb3\x92s\x93\x91?\x7f1M\x0b\x91\x90\xa3\xbfE,\xa6\xb4\xf0e\x84\xbf6\xfe\xe8\x1f\xdc\xe3\xa8?\xb5\x8d\x84\x18\x95\x89p\xbfh\xfa\x1b4x[`?C\x15G\xaey\xc3t\xbf\xb8X+\xa3\xec\xfe\x82\xbf\xd8\x1e\x97\xb5\x7f\x07d\xbf\xbdfI\xa0<\x1ad\xbf?\xeb\x889\xd1\xeb\x86?0\xba"\x8a\x1cqq?\x7f\xe0fN\x8a\xc6\x86\xbf\xe0D#KU\xc4\x14\xbf-\x1b*>\xc9\xb9\x90?\x10U\xa4=ZGh?x\'\xefF\x87\x87d?\xceB \xb0\x8eQ\x9f?\x19f\t})\x8a\x80\xbf\x92\x0b\xdb\xebr\xfb\xa9?\x83\xce=\x8b\x9d7\xb1?\xa6\xa1\\B\xde\xab\xb2\xbf\xbdQ\'\x80`\xf4\xb4\xbf\xff/\xa2sQ\xc3\x96\xbf0\x1d=t\x16\xb8\xa8?%\'i\xa8\xb8\xb1\xa6?\xb9\x95\xe7\tyo\xa0\xbf\x1e\xb8\xa3\xab\xa2\xf3\x96\xbfU3\xf2\x88\xbfn\xc9?ek\xe2\x81E{\x83\xbf\xe0\xb2\xed;aa\xc1\xbf\xa5\x18\x8a$\x91\xb0\xb9?\x0c\xca\xc1\x8f\xc7\xbd\xa5\xbf\xbd\xb84\xab\x01[\xb2\xbf\r\xaa\xb6\x1ef2\xc9?&\x7f\x18\xce\xb7\xb9\xa4?m\x98h?\xaa\xa3\xb2\xbf\x85#R\xd6\x06\x87\xa8\xbf_\xb2\xec\x8f\x9a\xae\xbc\xbf\xbb4\x07\x9c\xee\x81\x96\xbf\x04\xe8\xac\xb1\xf7c\xce\xbfwC~h\xe9\xaa\xa5?\x00\xb8\xf3\x98l\xde\xb8?\x13\x98\xa7(\xb0y\x9f?\xc7\xe9\xe1\xa8\xeeA\xaa?\xf4\x92\xca\xf1\xbb\xcc\\\xbfU\xa2\xe3\x98\x05M\xc6\xbf\xa8K:q:\x14\x90\xbf\xd3j\xa1\xb2E/\xc1?M\xcd\x107.\xf2\xac?\x82\xa4\xcb\x96\xcd\xfc\xb5?u)\xce\x83|8\xbe\xbfWcE\xe1\xb9B\x8d\xbf\xcc\xf1*g\x82\x1e\x80?\x18\xe0\xb0\x1bN\xc6\xb9?\x07\xbfi\x00V\x86\xcf?ks\r-~\x0f\xb6\xbf\xe8\xfb@\x04\x108\xbd\xbf;\xe7N\xf4P\xe0\xb3?\xd32\xe4\xd9\x81\x1f\xb1\xbf\xc2\xdc\x04\x8d\x88\x1e\x87\xbf\x012\xf6\x1c\x04c\xa4?4FY\x97\xa5\x1a\xb4\xbfs\xe8\xa4\x9e\xb7A\xc8?\xb6N\xcc\xff\xbb\x87\x97?E\x8b\xbe!\xd5\xa5\xa6?\xbe-;\xc0_*z?f:3\x98\xadn\xca\xbf\xcb\x9c\x14v\x92\xb4\xc1\xbf\xd6\xc6-\x96\x1e,\xa0?L\xf4\xa7\xeeSUv\xbfO\xb4\xf3\xfe\xad\x99\xc3?W\x07\t\xe7\x05 \xc1?NM\xb0\xd8E\x82\xd4?\xa4\xe8\x88\xf7>4\x83\xbf\x19\xf3u\xffX\xdd\xd0\xbf\x90\xbd\xba\xd7\xa3E\x9f?Di\x98\x8d,\xebi\xbf\x06\x11\x04H\xeb\xf7\xca\xbf\x10\xb2Bh\xbf\xd2\xb2\xbf\x9e\xea\xd8p\xc0\x14\xa1?\xaa\x96s\xde\x99\xe9\x9a\xbffl/-1\xec\xc6?:\x99V\n\x81X\xaf?\x1d\xe1\xb1\x83\xce\xe5\xa9\xbf*\x12\x93K\xcb\x0c\xa0\xbfi\xe4\xdf\xbdi\xf5\xc5?\xec\xe6\x04xI\xf9\xb9\xbf`"\x7f\xe3\x06]W?\t\xc0\x1e \x89Y\xc0\xbf\xec\xbe\x1dg\xb7\xa4\xc3\xbfD\xe6\x9c&\x8e\x9a\xb6\xbf\x88\'\x8a&tn\x82\xbfIk\x08\x10\x06\x0e\x84?)\x15+\x146\xca\x9a?i\xd5C\x83@8\x95\xbf\x1d\xa8\xd7\xdb\t\xd0\x94\xbfH\xa0\x99H\xd9\x90s\xbf|!XE\xca\xf3\x91\xbf\x86&\x8a?\xf9\x8c\x9a?s\xbf\xab\xa1#\x9e\xa6?\xaeE=\x8b\x1a\xf0\x94\xbfY\x98\x0fe\x99[\xa3\xbf\x102\xc4T\x8f/\x92?\xa5\x82i\xf7\xe0\xdc\x9b?\xc6\xdb[\xfb\xbft\x94\xbfb~8\xeaj\x11\x98\xbf\x06DCl:\xb5\x82?\xce\xf9\x99\x1c<\'\x90\xbf\x84\xef\xe1\xd5\xd3P|?\xc1$\x96\x95]M\xa6?\xa0\x8f\xb0\xb99b;\xbf\xc4}\x97\r~\xc2\x9b\xbf:B\xe4m\xb42|\xbf;\x91\x0f\x15"\xc1\x90?\x8c\xdds\xd8\x02\t\x84?\x18e#\xe7\x81\xde]\xbf\x00\x8a\xb2\\\xec\xabV?\x98\xdf\xc6\xfe\xdc\x9fj\xbf\x9a\xa0\r&YM\x9f\xbf\xa3\x05\'\xf5R]y?\x18\x8e\xdc~%\x0f\xaf?\x1f\x82:W\x93b\x88\xbf\xcc\x8a\xd2\xcc\xf6\x96\xad\xbflC,\xca/;q?\x87e`\xf6\x8e\x06\x95?\xaf\xbf\xcf\xb6=\xad\x83?\xb2^\xaf!d-r\xbf\x9d\x95j\xbeAz\x8d\xbf\xfc\xfe\xb4\xeagnw\xbf\xbf\x89\xf3\xa4/\xd5\x97?`MY+\xfc:\x9a?\xe5-\x01\xd0\xd5\xee\xa6\xbf\xf5\x1b\xaay\x0f\xb1\x90\xbf.\x10\xb5\xcd\x851\xa1?D\xba\xe3\xf0H6r\xbf\xa9\xd4RT\xe6\xa6\x9b\xbf\x16 \x1d\x9e+\xf5\x89\xbfo\n\xdfYb\xb5\xa3?\xb8\xd7\xd5vB!g\xbf\x86;\x8c\xc4\xc8\x81\x80\xbf\xfamKI\x86\x0f\xac?\x80\x8cqF\xec\xad\x99\xbf\xc0\x9e\xb8\xa3\xb5\x16\xab\xbf\xf4\xc9\x90\xf4i\xdc\x8d?h\xdc,\x96%[\x7f?\x8aqj\xd0\x19\t\xb0\xbf\xd0tB&\x0fH\x89\xbf\xff&\x9e\x9f7\x87\xa0?,\xc9\x93\xbe0\xa5\x8b?\x9cm-K\xef\x13\xb8?\x89X\x88\xd0v!\x91?\x13\x94h:gg\xb1\xbf\xfa\x84\x8f\x02\xcbL\x81\xbfr6\xef\xe1\x85\x12\x99?\xb3/\xe7\xa6#\x99\xa4?\x99S1\x12\xc7\xbd\xaa?Z\x0bv\xb5f\xed\xb4\xbf\'\xca\xd5\xd9G\x02\xbf\xbf\xd2\xcc\x10\x07(8_?\x11\x05{\x01\xcb\xcb\xbd?l;`E\xb6\'\xa6?\xd5z#\xb1f\x14\xb4\xbfl\xa4K\'?\xb3\x99\xbf\xb5Z\xac`\x03\xd9\xba\xbf\xfc\xc4\xd9k\xb0(\xae?\x9a>tBA\x9a\xb8?B\xe97\xa5\xca\xc7|?\x9c\x04[\xab\xc9y\xa4?\xf1\x1c\x9eD\xbe\x17\xb9?\x1a-\xd3\xc9\xaee\xd7\xbf}\xc2\xaf\xeel\xaf\x8c\xbf9\xf9@\x94\x03\xbf\xbd?=\xeb\xb8K_\xd0\x89?\xf7\xc0\xe5\xd4\x1c\xb9\xc1?\x1fS5rxr\xc4\xbf\xaf\x9b\xcaT{}\xd6?\x97\x16\x9d1\xab\x1f\xa4\xbf\x1e"\xf3\xa1\x96\xfb\xc2\xbf"5\x8a&\xf3\x99\xbc?\x97\x94t\xe5\xc3\x99\x95\xbf\x9dS\xe9\x95\x1f~\xb9\xbf\xe2K+\xdd\xdd%\xc4?\xda\x19\xb9\xf6\xfdF\xb6?\xa6\x82{4O\x04\xc4\xbfz\x92>Fl^\xc7\xbf\x85\x1a\xc4\xc6Uf\xb6\xbf|\xac\x03j\x85\xa1\xc2?\x90 \xb9\xf0[\xd1\xb1?`~X\xe0\xa0\xed\x7f\xbf3\x90\x04\xca\xd43\xb9?-&b\x0e\xa8z\xb5?2\x07dC\xed\x80\xb8\xbfp\xc9\xeeR\x0f\\\xb7\xbf]\x06\xb6\xdas\xfa\xc4?F\xfa\x88\x8c~Sj\xbfc\x1e\x9f\x19/P\xae\xbf\x01\x19\xf0\x9cuD\xc2?\xad\x1c\x06I|g\xbc\xbf\x8d\xf4\xc1a\xe6\xca\x88\xbf\xfa\xa5\xd7lM\x93\xb1\xbf\xe2\xd4G\xef6\x07\x97\xbfJ\xb0\xf6\x00\xf8p\x90\xbfw@-\x93P\xb8\x8c?B\xc4\xe7\x1e\xaf\x81\x9b\xbfpi\xedR\xbe}\xaa?l\xe0DXL\xff\xa3\xbf\xed\xaao\x9f\x9a\xb0\xac?p`\x9f\xe8\x17\xae\xb8?\xb1B*\x91\x01\x93\xc3?\x8c\xf4I\xc9N\xe7\x91\xbfu\xdb\x07b\'\xa9\xb2\xbf\xa1d\xb6@\xcd\x01\xb9\xbf\x80\xd5\r!\x9c\xb0*?\x0cE%_\xb2\x91\xd2\xbf\x0f\x88Y\x9e\xd5\xebx?\xd8\xd2-\xf5\xf3fp\xbf\xd6\xe0&\xcdl\xea\x84?:t\n\xc5\x14\xc6\xd2?fs\x85\x9a\xb6\xc5\xa7\xbf\x8f\x18@\xec \xca\xb8?\xb0\x126/\x12\xb8\x93?\xe0\xee\xbcUt\xdf\xab?N\xc6\xa4R\xfbO\xc0\xbf\xc0\xdc5\xf7\xa4R\xa5\xbf\xdfbW\xf2D\xa3\xbc\xbf\xaa6\xce\xd1\x08\xc4\x85\xbf2q\x0f\xe9\xc8\xb2\xa6\xbf\xe0\x07m\x19\xd4\xbf$?\xa4\xc2\xac\x1c\xc2]\xec\x90\x98\xbf\xf6{\x81?\x08#f\xbfQ+\xc2\\s\x85\xa2?\x93\xc5&\xf3\xd4\x04\x81?\xa93VWp\xad\x9e\xbf\x12\xf8D\xeb\x89\xe8\x88\xbf"\xdb\xa5+\x95\xa5w?\x0e\xb5\x83|\xfe\xb9\x84?\x13\xf4\x9c\x0e\\\xc5\x84?[\xee\xc43\xd2:c?\'Lo\x8d\x9dRt\xbf0\x93;\xbf\x97\x85\x88\xbf\x19=E\xf5\x8f;\x8e\xbf\xdd=\xe6\ne0|?\\\xe0\xf0Jv+\x82?n\xba\x88f\r\xf6\x86\xbf r/y\x06A\'?+\xfaM\x8a\xd6\x17\x91?\t\xf5<(m\x95|?\xad^\xdeK?\x1d\x92\xbf\xca\x82\x0c\xba\xd1\x06\xa5\xbf\xfb\x90\xee\xc9\xbd\xe9\x90?\xe6\x8bE\xdf\x90\xa2\xb2?\xf1~\xe4\x90B\xce\x96\xbf\xfd\x0b\x02)\xeaO\xb7\xbfe\x08=c\xa5J\x8e?\xaa\xc1t\t\x15\x07\xc0?\x05 S\xbc\x89\x15\x86?\xc2\x95\xff\x16\xbb\xbe\xbc\xbf\xc4\xc9\x7f\xb6\x80\xa8\x86\xbf\xee\xee\x0b\x904\xb6\xa1?\x00x\x04\xa7\xc1}!?H\x97\xd2<\xfe\xc9u\xbfH3\x7f\xf0\xb2\xcc\x8d?\x04\xca\x01\x99\x11\xc4\x80?F\xa2K\xcb\x9a\x97\x8e\xbf\x85\xc1\x13\xbe\xed\xf6\xb3?\xdfo\xba\xae\xc2\xa2\xd1?:3<\xcb=\xd2\xb4\xbf\xf2\xcf\x9c8%s\xd4\xbf\x95vZ\x8b@)\xac\xbf\n\x11\x16P\xd5\xbb\xc6?\xecsL\xbf\x84\x9b\xbf?\xc0\x96a\xc7X\xf9\xc7\xbf:H\xd28\xed0\xb3?\xf8\xadl*\xdc*\xc7?A0D\x17\xd7\xa2\xa9\xbfN\x1c^\xc7Q\x8e\x86?\x86\xb6q\xf0\xe9Zq?P3\xb2<\xc7\x10\x80?H\x88\\G\x92}\x9c\xbf\xca5\xf31N\x04\xaf?\x07-\x02\x0f\n\x84\x95\xbf\x1aS\xf2(\x9a\x0f\x9b\xbf\xce\xce9B(3\xb2?\xd4\xa4\x1d\x8a\x975\xbf\xbf\x08m-\\\x81O\xa1\xbf\xa2\x17P\x8ec\xfe\x92?\x97\x88\'\xe8\x1b1\xac?r\xa2\r\xb7g\x96\x90?D\xcc\xe5v%\x91\x87\xbf\xa2\xca\xfb\x97k\x19\x8e\xbf\x8d\n\x05\x7f\xe3\x1b\xbd?\x12\x15G\xb30\xf0\xaf?\xd6+\xec\x12\xe8(??\x06#C\x8dh`\x87?\x9a\x8c\xf8H\xc5[\xbb\xbf~\xb4\x83z\r\xce\xab\xbf\x90\x1c\xf3\xa7\xdd\x81_\xbf\xdc\xd9G\xb4\x1b&n?\xac\xbf\x8a\x1fH\x82\xb3?Z\xc7\x13\t\xb7\xac\x89\xbf\xd6\xa9HG\xb3\xd5\xa1\xbfPO\xbd\t~ZH\xbf\x12\xde\xb3b\xeb\x11\xab?\xc2.\x10\xa4\xf6\t\x9a\xbf\xa2\x81\xd0\xdd}\x97\x90\xbfL{u\x1c\x8d\x8e\xa5?`\xd7\xac$\x07\x8a\xb0\xbfd{O\xcc\xa3\xda\x90\xbf\x8aD\xd2.?\x1f\xab\xbf\xc49\x01\xe6^\xe3\xa4?\xab-h\xc0e=\xb9\xbf\xdbp\xe3\xb5\xcbE\x7f\xbf\xd7\xa4A\'\x10\x0b\xc4?\xf8c\xbdA\xd1@\x81?\x00t-\x00\x1d\xa0:\xbf\xfbH#\x04\x1b\xc6\x84\xbf\x13\x93=\x11\xd5\xd4K?L\xb6pXo\xe3\xa0?\x0c\xde\xa87\x7f\x18`\xbf_\xbd\x9e+x~\xa4\xbf$4$\x82\xca"V\xbf7\xb0\xbb\xb0\xf5\x1c\xa6?\x8f\xe0\xdcIh|\x82?\x8d\x80\\\x81\x1a\x1b\xa2\xbfe\x89\xc0w\xea\x06\x90\xbfY=\xc5\xa4?\xeb\x82?9\xed\x816\xc5\x16\x8d?\x0exw&\x06\x97l?<*\xce\xf5wM\x89\xbf\xdf9@\x83q7\x86\xbf\xfa\xea\xff\xf6#\x15h\xbf\x87R\xbdkP\x81\x91?\xb5\xd7Tt\xb9\xa1\x89?\x9dl=i\'\x87Z\xbf(\xf5\xbb\x10wV\x91\xbf\xad\'=l\x82+\x84?w;\xa6\xdc\xd3\xdf\x8f?j\xe7\xf9G\x9a\x86\x97\xbf\xb8F\xb4\xd6\x88\x11\x88\xbf\x9fz\x93\xde;/\x99?\x00\x1f\xf6\xa1\xce{\x87?\xfc\x0f\x0229@\x94\xbf\xe9\xf7_[\x8d\xacl\xbf|)>+\x7f\xd8\x99?\xb2\xc0e\x19"\x02g?u)\xb2y\xf4S\xa2\xbf\x15$H|\xfb\x98a\xbf,\xb0\xa4\xf9V\x03\x93?L\x95\xe8\xcd7S\x92\xbf\xa4\xb4\xc4i\xff\x93\x85?\xca\x8a\x0bG\xc3\xb2\x99?\xc2\x17\xf9#\xe5\xaa\xa7\xbf\\\r\xdd2oV\x7f\xbf\xef\x9dd\xe0A)\xa6?\xa8c9\x12\x12\xa3k?\xdbBX\xc0\xa0#\x82\xbfT[\x1e\x10\t]r?\n.\x0cu\xd8\x0el\xbf\xdd\xbc\xb1dv\x1b\x96?\xae\xa4\xae\xbd\x95\x86\xa0\xbf\xe1\xd9M\xe1d+\xac\xbf\xbc{7\x1e\xf2\xea\xbb?\xed\xbd\xbd\xd9\xb8?\x9e?\xabPU\xceg,\xbb\xbf \x11n\x93\xa7?|\xbf\x02\xa5\x1a\xa4\x9f\x94\xa0? \xfb\xdc\x7f\xd0t{?\xc04\xd3\xcfj\xbe)?\x0c\xb9\x0e\xde[\xf6\xb0\xbfM\xf0\x7f\xa2\xf3\x0c\x84?\x7f\x9d\x82\\\x00I\xba?`vA\x88\x19\xea{\xbf\x04\xa4\x81\x99W\x93\xa3\xbf7MP=\x12.}\xbfz"u\x18\xda\xda\x84\xbf\xc6\xff\xe0v\\\x87z?\x9e\xce:\xdfd\xaa\x9c?\xce-jT\xadN\x9a\xbf\xb3av\xf6\xfcA\xae\xbfnn\xbc\xe1\xdfu\xb1?\xd2\xf1\xeb\xa9k\x94\xbf\x96u.\x15j\x18`?\xfaB\xabG\xd4\x04\x86?y\x01\x8d\x16\xd2\x0b\x91?\x9c\xe3\xf54?ui?\x9dJ[\xb5~k\x8f\xbf\x85a\xff\xc3\xb5\xd3\x8b\xbf#\xc7\xfeS\x86+m?C=\x1e\xef\x91D\x85?\x0c\x8b1\xd1\xfc3\x8a\xbf0j\x85\xb9\xb8\xf3\x83\xbf\xd0\x83+\r\\_\x91?_\xc7\x06J\xd2A\x7f?\xb1n\x1aS\xae<\x8e\xbfko\xb8Qm\xd8\x8c\xbf\x10k\xd3\x17\x1b{1\xbf\x89FnL@\xa3\x96?\xcc\x16\x89\x8eS\xdd\x87?\x10\x00L\x91d\x04\x80\xbf\x9e\xd3]\xec\xa1BB\xbf\x804\xcbF\x87\x19:\xbf&F\x88g\x03\xe3\x89?\xe4\xbd\x08@\x07\xaar\xbf\x12\xf45\x0f+{\x9a\xbf\xa12\xcf\x92\xcd\xc7\x85?\x86\'\x97\xa0\xd8(\xab?\xbbA5Hy,\xa2?n12\x02s\xa9\xac\xbf\xc4\xd5&\x14\xfe\xcc\xb0\xbf\x0f\x84% ;\xdd\x8d?\x06\x94\x98/Cz\x9e?D\xc4q\xae>\xb5\x97\xbfa\xc2\x0c\xbf\xb0+\x9c?\x13\x17\xfb\x1bX\xeb\xb2?\xd0\x97]y\xc4!\xb0\xbf\xa9n\xaa\x7f\xb2\x16\xac\xbf\xab?\x0f\x1fi\xb6\xaf?s\xc7\x9f^R\xd0\x86?J\xad\x02\xeaE.\x95\xbf$R\x06\xa8\xc6\xedg\xbf\xe3\xf2\xd8\xf7\x96\xd8[?\xf8b0?\xab\xf5|\xbf\x9a\xca\x96\x92D\x1b\x91?\xceR\xa4y\x94Su?\xbf\x8a\xa3@\xa8\x88\x91?\x83\xa5\x00\xcb\x8b\xbf\x80?\x90\xb1&/\xc75\x89\xbfP\xbee7\xe6~\x88\xbf~\x9ep\x99\x8a/\x81\xbf>\xc7\xf4\xe9\xc8u\xb1?\x0f\r1\x02\xc0\t\xba\xbf\xf6\x0br)\xddQ\xc1\xbf\xbfj\x14M>\xf4\xc5?,\x15\xc7\xd0\xc5h\xce?\x96@He^(\x89?p\x04\x12\xe7\xe8\xcb\xcd\xbf%e^\x99X\x9b\xc7\xbf"\x15\x9b\xa5c\xdc\xb2?Z\xe9\xc1\x9c\xbb\xaf\xb8?\xd23}\xe2{>\x93\xbf+\xce\xd0\x83\xd7M\x83?8S~~\xcdQZ\xbfi\xa63n\x0f\xc1j?\xba\x1b\xf6\xffV\xe4\x9f?\x98\xa5\xc9>\xaa3\x9b\xbf\xe1Av\xaf\x1d5\x8a?\xda\x8b\td\xdab\x97?AD\x04\xd3#\xb4\xa4\xbf\x8eC\x1d\x93\x1f\x0f\x97\xbf\xf2+\x8c?\xc7\x17\xa1?f\x15\x1a=T\xa1\x7f?\xac\xb4\xc95k\n\xa3\xbf\xba\xec\xefaUR\x97\xbf*\xa8\x14%\x00\xd3\xa6?"\xcc\xf6\x02$\x05\x9c?\'N\x81\xb5l\xc7\xb7\xbf\xc8\xe4\\\x90\xd5\xfa\x91\xbf\xef1\xd06\xebK\x92?_\xb4\xeb\x19\xd7 \x9a?\xd1\xcc\xed\xc8&\xc5\xaa?B\xc6\xaaqnG\xa6\xbfS\xd4\x0e\xdc\x0e\x83}\xbf`\x03PG+\xdb\x95?C+{\xffN_\xc1\xbf\xa2\xc4p\x83\xd3!\xa9?@\x9c\xd4Z\xb8\xdd\x9d\xbf\xbc\xb2-b\xe6F\xa3?\x0c\x135\xf22\xd0\xc4\xbf0\xcf\x8e\xfbC\x16\x18?\xf5\xd7\x81\xfa\x19\xa9\xd7?\xf8\xa4\x8d\xd3\x16\xbf\x80\xbf\nK\xd6m+1\xc6\xbf\x05X\x82\xb1_\xd8\x82\xbf9&\x99\xdc\x93\xc5\x85?\xc6\\!-\xdc\n\x8d\xbf3\x849\xf8M\r\xca?\x16\x93?\xd5\xf0\xa7\x96?\xceC=\n\x11`\x99\xbf\x99\xae\x9dVp\xa9\x93\xbf\x95z\xc0\xcb\x9e\x07\xbb?\xf83\xdc\xe8<\tx\xbfuY\xf4\xd2\x88\x1f\xbf\xbfj\xbb\x87\xd0\xa5\xf9\x95?\xbd\xa2\x99\x10\xd8\xc2\xb0?\x06cb\x902\x92f\xbf\xac\xd8\x1c }\xbe\xa2\xbf\xd7\xee\xf0\x04J\xc0\x9e\xbf\xfbX\xf4\x1f\xf7]\xc7?\x8e<\x07^\x148\xa5\xbf\xa8\xb4\xb9\xb8\x087\x81?\xb4y\x0fcr\x9d\xaa\xbfI\xf8oV\x03\x80\xc6\xbfL\xc7\xc3\xc9\x17p\x9d\xbf\x89\xb8\xa2\xe4\x16\xb3\xc4?\x18\xa0\xdc\xedUk\xa1?\x8a\x9dL\xd6\xb9\xbf\xd1\xbf\x05Z\x03\x1ba\x9f\x9f\xbf\xe8\xa1\xbe\xce%\xe5\xc5?\xef\x91\x17\xac\x1af\xa1?\xba59=h\x16\xd9\xbf\x92C \\\xef\xa4\x8e?\x9c@e\xb0\xf3)\xcf?-\xd3I_s\x08\x9b?\x90\x9c\xba\x07\xc1\xa3u\xbf\x1a\x98\x97\xad\x948v\xbf^\xc8P\xc2V\x90\x8a? @\x11i\xa2\xc6q?{\xa9\xfd\xeb\x0c\xde\x8f\xbf\x18\x9f\x19\xa0\xb2\xb7|\xbfS\x86\xa5nw\xa7\x8c?\xfe74\xe7\x957m?C\xed}\x81\xce\x974\xbf\x11\xae\x8e%#\xa2t?C(\x13ou`\x81\xbf\xdc\xb2)\xf7\xae\xf6\x8c\xbf`E\xb8\xed\x05\x99v\xbf`\xafX\x01,\xf4\x88?\n\xcf\x10\xab\xb9\xed\x80\x9a\xbf\xab\xc9\xec}#\x1dw?\x82\x1a\x8cP\xca\xe7\x8f?PV\xe6\xec\x1e9p?)\x96\xb9\xd4\x8a\x80\x8b\xbf\x0e\x9alU\x1d\x94\x81\xbfBo\x9duU7\x92?\xec/f\xa4\xec-\x80?\xd0\x95\xf0\n&\xef\x95\xbf\xdd1(\xa9\xfc\xc9\x91\xbfR\x18\x11\x90e\x93\x92?\xce\xd2\xbbX\x07\x86\x98?\xcc\xc8\x18\xb1\xae\x90\x84\xbfynf\x8d\xa1u\x97\xbf\xde*\x8f\xb8z\x9dq?\xd8\xa53\x10\xf2\xe2\x8b?8\x01\xd6\xdc\x06\x16j\xbf\x98\xce4\x1bt\x81n?e\xc0\xc4T\xd7(\x90?\xd6\x1aR\x15\x94`\x9d\xbf\xf4\xc8\x8dV\x1b}t\xbf6\xa76\x16a\x1a\xb0?\xbaq2\xd7\xa6\xa4\x9d\xbf\xc8Q\x9d*\xd2}\xa8\xbf\xfa\xd5l\xa3%h\x97?^r:\x80\xa9(\x87?\xb2\xb7\xa1\xb6\xbdZ\x8f\xbf\xd0zT\'/\x9bt\xbf\xeb\x83xw=\x93\x81?\xf0*\xe5\xa79C\xa1?l\x0ch\x03\x8b\xc3q?\xf5*N\xbc\xe0\xdd\xa8\xbf@y\x9b\xd7\x96h\'\xbf\xe7\x81gh\x07\x0c\x92?\x10\x86/\x9f\x1d\x03H?\xc2\x9d$\x8bC\xf7j?\x009l\x03\x92\x80\x90?\xbf\xdf\xf2&1\xfd\x7f?<\xed\x1b\x9c\x8f>t\xbf@u D\xcbs\x08?}\xaf\xf9K\x8e-\xa2\xbf\xf2\x9eX9\x9e\xc1\x8b\xbf\xf8Ur\x04\x97\'\x9f?\\\x13\x8d\x87\x9c\xa3{\xbf\xce\x1b\x9c\xfe\xe1\x82\x95?\xdc(\x0c\xd6\x92\x85\xac?\xb2c\x9a\x96\xd1M\xa8?\xda\x13N\xad\xb3\xb9\xbf\xbf\x8cw\xf4\x06\xbca\xc4\xbf\xb1I\x0f\xf4\x81\t\x96\xbfa\xcc\x19\xde\xaf\xb2\xc6??=\xd0\xea\xf8p\xc7?\x19\xf2\xb041\xfe\xb6\xbf\xab\x05\x19\xa7Os\xba\xbf\xa0x\xdf\x1f\x89>\xb5\xbfh\x11\x81\xcd22\x9e\xbf\xa3\xdb\xef\xf7M}\xad?\xa4%\xbcl\xe4\xe9\xb9?\x02\\\xe5\x95\xc7\xe6N?O\x00R}Z\x93\xb7\xbf\xa9\xcd\xc6\xa1PQ\xbf\xbf\xc8\xf9\x80\xe9\x1bp\xb2?;3\x9c\xc6\x80H\xa8?s\xa9\xe6\x87\xf6H\xb3\xbfto\xa8\xbf\x89\xc3\xb3?\xf7\xac\xf5nt\xb3\x9e?5\xcch\x89"\t\xc0?\xae\xbc-\xd1\xaa\xeb\xb9?*\x81-\x86\xc6V\x9b?\xd0&\xadg\x10\xc2\xb9\xbf\x8b\x0b$\xc2\x7f\x93\xb1\xbft(\x05*\x1bb\xc6?\xafZ\xb1\x81\xeb\x16\xb2?\x0c\xdcjF;\xc3\xbf\xbf\n\x8b\xbbIR@\xb2\xbf\xc9n\x17@\xf0\xd9\xbd?\xc8\xf1\xb6&\x89\xce\xac?v6\xf8\xab\'*\x96?\xa0">\x7fG\xae\xa0\xbf\x00\xbcu\xd9N.\x95\xbf$\x8e\xe2*8\x83\xa1?r~?T \x06\xa3\xbf\xde\x9e\xd5\xe4\xc6\xe4\xb4\xbf\xc3BW\xf2\xd4\t\xc4?N\x0c\xb3#G_\xa0?3\xb9\x8f\x1d\xb6@\xca\xbf,\xd3\x90\x08\xc2\xd3\xa1?\x9bv9>:\x00\xbe?3\x8a\xd8,\xf9&\x91\xbf\xd2qO\xa0\xbd>\x9b\xbf\xec\xaa\x16/\x81\xd6\xbf?\x82U"\xdb\x14|[?Ko\x1eTk\xfb\xb9\xbfS\xd6\xe4*\xd1\xca\x98\xbfd\x8f\xbbbI\x8d\xc2\xbf\x05`G\x066`\x96\xbf\xeb\xe4\x98G\x89_\xc2?\xbb\x0e\xa0[\xd6\xa9\x99?>J\x98\x0b%M\xa1\xbf\x0f\xc6\xfa3R\xb6\x9e?]Bl9X\x12\xb0??\xb1\xea\xfb\xe6\xcc\xad\xbf#\xd0\x17\x14*e\xc8\xbf\xc2*\xa9\x8e\xb1\xe7\xa3\xbf\x9b34\x9d\xdd\xd7\xca?D\xee\xe4\xbc\x9f#\xc1?\x8ej\x9d\x06\xfb\x02\xb1\xbf\xde\xa8;\xf1a\xf8\xb0\xbfF\xc0\xa9Y\x9a?\x7f\xbf U\xe7]V$\xa3\xbf\xd0_\xb6c\xf65\xa1?\xbb\xc9\xd4\x15["\xb2?\x92\xb1\x18\xe4\x19h\xa7\xbf\x0f\x12\x9e\xcd>\xe0\xa4\xbf\x7f\xacK\xf4\x81>\x92?\xcflE\r\xa0\x12\x81?:\x9f\x1a=\xef\xf0\xa5\xbf\x93\x7f` \xfeD\xa9\xbf\x80\xbf\x9e\xdb\xe5\xf3\xa7?\xf5\x03\x14g\xab\xaa\xa3?@*Y\xb1\xb3o\x85?\xb8\xb8k\xd9\x1d\xca\xa0?\xa0\x87\x14\xe9\x9f=\xb1\xbf\x03\x9b\x80\x9dkc\x9b\xbfi\x15# \xfd\x0f\xb6?\x8f\x03\x9a\x0b\xe7]\x93?|\xbd\xab\xc1\xb4\x8e\xa1\xbfD\xd7\xbc*|\x9c\xa0\xbf\xb8\x82\x02\xe8\xbb\xf5\x92\xbf\x16\xd8\x90\xce\xb5v\xb1?(\xa6\xc0rR\xac\x9e?\xf9\x81\xc7\xf3\x10\xa2\xa7\xbf\x04@\xc9\x9d\x19\xbc\xc7?\xb6\xc5\xd6#\xe6g\xa8\xbf\xd2B\xb0,N1\xae\xbf\xc2\xb9Y\xd5_\xb7\xa6\xbf\xc0\xcao\xfc?\xb5T?\x90\xc2\xc2G\x0eM\xb9?\x19a\x90\xd2\x99\xa4\xd2?\xf5\xf0TEQ\xbah?\xf3Tw1 \xaf\xcd\xbf\x05[\xa1tX\xa8\xbb\xbf\xbc\t\x9f\xcc\x89Ct?\xe9\x81\xea\x82\xa9\x85\xb1?\xf8\x06g\xd5\x07P\xc3\xbfF?(\xdf\x11\xe3\x98\xbf\x06\xacX&@\x19\x9b\xbf\xce\xc0\xa75\r\x0b\xb6\xbf\x08\x0c]\xe2V\xc2\x84?\x9e\x80\x05\xe0\xccx\xb4?@\xee\xb1\xd4m}\xaa\xbf]rN\xd3`\x82\xa8?\xcc\x8e\'\xee\t\x9d\xb2?cK{s\x10:\xc1\xbf\xce\xfe\xccO^}\x9d\xbf\xf5\xdah\xc4\x842\xb3?\xb3:\x93I\xf0K\xd0\xbf\xe3\x8c% \x98\xf0\xa7?\xe0\xc6.\xe1\x8c/\xcb?2\x83\xb62\xd7v\xa0?\xd9\xbb\x02\x98\xec\xa6\xc5\xbf\xe7\x95@K\xabDv?\xcd\xc0xC\xd5\x0b\xa6\xbf\x9c\xd3\x0f\x87}\xb9\x85?\xef\x18\x90\x83Y\xe6\xca?\xceK\xfe%\xab+\xa2?EjG\'\x82\xa8\xca?Q\n\x92m~P\x96?\xa0\xb7Ns\xff\x1c\xd5\xbf&J\x10\x1f\x12\x1f|\xbf\xcd\xc9\xe4\x04p\xd5\xc2?\x18m\x9a\xc1\xab\xfe\xb2\xbf.F\x85\x02\xe7\xc9b\xbf8\xbc\x98T\x80B\x83?\xec2Me\x0c\xf1\x8f?\xf6q\xa5c\xe0\r\x93\xbf\xb6\xb3\xde\xba\x04\xdf\xa1\xbf}4}\xa1^\x81\x95?\xe9\xd9<\xcb\x8d\xf7\x9e?1\xa8X\x99\x12\xad\x84\xbf\xac\xd9{\xb6y\x19q\xbf\xd5u\x87x\x94\xbfL?\x8ei\xb4\xf1\x16\xf2\x82\xbf}v~\x08\xd1\xa8x\xbf\xb1\xbb\x97\xc4\x90#\x84?\xab\xa1$\xcc\x02\x88k?\xb8\xd1\xbe\xa81\x12\x89\xbfYqatQG\x86?\xe8\x10\xb9-\xcf\xb9Q?8N\xf6\x84\x8e\x1f\x84\xbf\x13\xe0\xe6\x96\x8dZ\x90?0\xaf\xd6\x7f\x9d\xa3@?*2\xb5\xf8;Qi\xbf\xd8\xaa\xac/\x0b\xebU\xbf\xc7\xfe\x11\x18\x08@\x86\xbf\x91C\x13\xe5N\xa2\x82\xbf\xda\xc4\xca\x91Q\x14\x90?d~\xfc\x1dl\x12\x91?\xac\xe3=x\xa9\xf1\x9b\xbf\xe6-\xeagx\x84\x91\xbf\x80\x90\xcc\xe5\xb4\xc9\x94?\xb04?"\xcaG\x9e?\xd6a\xe10~eR\xbf\x86\x13l\xfa\xd87\xa2\xbf\xf6s\xc8\x1a\xfb\x0fl\xbfK\x08o\x8etX\x90?0.\xb9\xa6E\xb3\x8e?\xe8\x81\x16\x98}\x8e\x7f\xbf\x11C\x962,j\x92\xbf?yh0\xc9N\x90?(\x07D\x1b\xed\x1d\x89?\x06g\x94\x16C\xb4\x8a?\xdf\x88\xd4\xa4\x83\x02b\xbf\xdf\xaa\xa2\x063m\xa5\xbfd\xb4+\xfa\xb4\x8fw?\xf8\xb3oi\x7f,\x9d?\xc2\xd4\xac\xc8\xb1\xeav\xbf\xb8\xbf\x94a\x9eI\x7f?Qu\xa8,\xd3kq\xbffy\xaetO\x9dy?\xae\t\xb9\x02Vh|\xbf\x12\xbe#T\xc1\x1f\xa1\xbf\xfd\xb0\x9e\x82,\xb2\x8c?\xd0\t\x7f\x95E_\x90?\x91&\xc8\x16\x12Dz\xbf\xc2\xe5\xfdT\x8b\xf5v?\x16"\xd7"\x1a\x86\xb4\xbf\xc0o\xdc\xc9\x81\xd9\x8a\xbfc\x89\xc3\xda\xaa<\xbd?\xf4q/\x0c\xcd\x9fx\xbf\xe3`\x8d]\'5\x93?\xeaF\xc6_\x82A\x86?\x8f{[\xaa\xe0Q\xa9\xbf0\x03\xe4(\x9d\xa8g?\x92s\xb7\x86\xea\xecy\xbf\xae;\xe9=8\xda\xb5?\x10\xa0\xbf\xe7\xe2\xe4\x0b\xf2M\x94\xbf\xe1\xb0\x10\x19\xfa\xb3\xb5\xbf[\xee\xd8=8:\xb0?\x8d\\\r\xdd\x8a\xb7\xb6?\xf2\r\xa6\xce\x841\xb4\xbfN#\xfcx\x05\xe2\xb1\xbf\x00h\xb3A|\x86\x95?\x99\xd0\x96\xdb#\xb6\xa2\xbf\xd8\xc3m\xc9\xc1\xc7\x96\xbf\xf2v\xac\x02\xab\x8c\xbb?0\xad\x83\xa1;\x8e\x9f?V?\xf3\xb1\x93A\x8a?\xec\xea\xa3K\xef0\x96?\xd8h\xfeP\rx\xb8?\x04\x10A\x8a\xe1xr\xbf\xe9\xdb\x83\\\xc1o\xb7\xbf\xdc\xb9\x98u\x96\x1d\x9c\xbfh\x18\x9c\x0bJa\xb0?\x11S\x18\xbb\xfb\xe8\xa2\xbfD\xa9\x83k\xact\xac\xbf\x8a\x8bG\xca\x170\xbb?\x15\xa25\xb6Ilq\xbfO\x9f\x02\x84\x98\xc8\xa8\xbfLWA6E\x1f\xc5\xbf\x06t\xef\x15\x0cwZ?\xfc\xf0\r{K9\xa1\xbf\xc8S\x8c\xcc\x8e\xb0\xbb\xbf\x89\xd7\xc0=\xd3\xc3\xb3\xbfU\x97o9\xac\xab\xa5?\xb4.\xe6\xbe5B\xa2?UA\xc1:f\xc7\xb3?\xea\xfa}L\x95A\x91?\xaa\xcb\xb1\xccJ\xec\xa5\xbf\xcfp\x9090\t\xb3?.s\x12<-\x9d\xc3\xbfv\xd7\xbf\xba\x15\xf6\xc9?\xd0\xc6w_\xfe\x88\x99?e\x171\xd9\xed*\xb5?\x1e\xd7.m\xe8\x10\xcb?#\x03\x1f\x86\x8aF\xd8\xbf*\xb4L\x8d\xf8\xbc\xc5\xbf\x1e\xa5_Rk\xf6\xb3?\x0bB7\\!\xb4\xb2\xbf\xde\x11\x00\x98\xd9\x9b\xd3?\xfd5\xe5-!-\xaa\xbf[\xab\r\xc2\xa1\xb1\xb5\xbfK(\x8b\xefI\xf1\xc2?\xc1s\x16\x1dF)\xcc?X\xaa\xa4\xbf\xa2\x01\x9d\xbf?U{\x00\xb1\xf3\xa9?\xb5\x0bf\xe6\xeb!\x97\xbf?\xd4r\x19\x19r\x85?z\xab\xa1vN\x11\xa3?*1\xc4\x93\xaa\xec\xb1\xbf*\x85\xa7\x94\x0f\n\xc0?ET\x98\xe3\x9f\x81\xd1\xbf\xee(\x1fN\xa5\x84\xa8\xbfh\xde(*\xeb:\xc4?ZR\x81)3\xde\x81?\xc7v\xbbl\x86\x19\xad\xbf\nx\x90\xce_H\xa0?\xad\x03\xf3J\x8e>\xb9\xbf\x04q\xc6\x1a\t\xf1\x98\xbf\x8c\x14\x9b\x15\xc3\xbck\xbf\xf5 \xda\xcc\x8b\x9aI\xbf\t\x82\xe0\x8a\x80\xeap?*\x1cDqw(~\xbft-\x18g5ki?TX]P\x94\x05\x90?(R\xa6\x89\x93{r?8f\xcbt1\x91\x96\xbf\xd9\x88]\x84\x0c\x0b\xa1\xbf\x88\x1f\xb5K\xb2X\x93?\xe6I\xa2\xd2*P\xa0?\x10\x8f\x9b\xca"B\x80\xbf\xef\xa6\xa6\r\x010\x0c\xbfL1\xf7wRZ2\xbf\x9e0\xbe\xd3\x0cD\x95\xbf\x88I\xa1\x0e#V{?\x04\x08\xda\xcfA(\x8c?*\xa0\x01)S\xf1j?\xb88\xbd=\xc8E\x85?\x14\xaav\xa1\xf7\xddT?\xdc\x03\x93bN&\x86\xbf\xdcO\n\x9d\xde\x14k?S\x03\xfdB\xe0\xb4d?\x1a\x15g\x17,\xf8\x82\xbf\xcc\xd8\x83\xb7q\xa0[?\xe3\t\xdc)\xae\x87\x85?]i\xcb\xea\xaf\xa6t\xbfRk|\xa1b\x16\x89\xbf\xb8R\xb0\x8c\xeb\xdcY\xbf\xf1\x90\x0b!f\x07w?\x86\x04\x89\xd8\xc4#\x80?.\xd2\x846[C\x8c?.\x96\xe9\x01t\xd7o\xbfN\x04V\xc8\xc3\x0b\x84\xbf*\xf3\x83\x14[\xe7\x8a\xbf\x16N\x17\x8a,-\x83?|\xe6J\xdb\x1f\x04\x88?\x80l_\x85\xc1\x92\x8f?\xc3\xa2\xc9\x92\xcc\xe6\xa5\xbffCO.Y\x7f\xb9\xbf\x00\xe5{\xe1\xe6i\xb3?\xb1\xdcZ\xccG\x1b\xba?;\x85\x82\xdd\xcd\x9b\xa1\xbf^@\x01v\xb1\xdd\x9d\xbf\x98\xb0J\xb3\x01z\xbe?\xefm9Do\xe6\xc1\xbf\x0f3\x85\x87$\x08\xcd\xbf\xd3\x14-\xc2/d\xdd?\x99\x9c\xfd\x87\x8d\xcd\xb6?:\xf4cQ\xb0Y\xe1\xbf\xa2+\x105\x03\x9b\xad?\xe11I4\x96\xc5\xd1?\x06G2\xda\x97w\xa0\xbf\xe9s\xf1t\x9a\x05\xb0\xbf\xaf\xd7\x80n\xd9\x11\xc0\xbf\x97\xea\x9a\x16\xc5\xbb\x90\xbf\n\x86\xfb\x05P\xe3\xb6?%r\xf8\x8e\x9f\xd3\xa2?\xe3\xf52=\xc3z\xc8?\xfb\x0bJ\xc0,\xa6\x9d?ri\x89uE\x05\xc5\xbf\x810N_\xc0\x87\xa6\xbf\x81\x16\xf8\x00\xc8\x00}?[\x87a\xa4m\xc9\x98\xbf\xe8\xb5\xc7`\xeb\xf1g\xbf{\xb4:\xabM\x99\xb0?:\x02\xbf\xff\xc0l\x9a?\xb4\x1f\r\xe9\x19\xff\x89?D\t\xcf\x80\x99\xe8\x9b\xbf\xf7\x03\xf5\xec\xb0\x9c\xbd\xbf\xf0\xca\xdc\\\xba\xda\\?\x0c\xb30\xd6\xa0\x03\xb2?\xcaZ\x8a\x19\xcf\xbb\x92\xbf\xfc\r9\xec\xaa\xee\x85?\xd1\xcdS}\xd5@\xc0?\xda\xbc\x97\xf0\xe6O\x7f?\xc0c\x83\xb8\xd3\xfd\xb5\xbf`s\xaaj\xdcy\xa2?\xb9\x7fE(r\xa4\x8c\xbf\xfcM\x96\xa2\x80\xdc\x93?E\xbd\x90\x91\xba\xc3\xa5?7\x0c\xf9\xea\x02m\xad\xbf\t%E\xe1\x01\xa0\xa8\xbf\xc05l!\xc3i\x8e\xbfdw\xc1X\x85G\xab?\x03\xee,a(\x97e\xbf\xeed\xd8\xe3\xfa\xc7\x99\xbf\xee\xed\xf1\xa0\x92\xbeg\xbf\x9e8\xc6\xbd2\xb6\x90\xbf\xb8\x81A\x8aL\xe2\xb0?f\r\x8b\x10\x1e \x8a\xbf\x0b\xa5\xbf-+\xec\x94?\xf7\t\x8b\xa6L>\xa2?\x07\x8e\x98\x04c\xee\xb1\xbf\x9b\xb38F\x8f\x8d\xa1\xbf\xb3\x84\xa8\x16\xe9\xb0\x85\xbf\xca\x9d\x1f\x0b\xdaX\xa6\xbf\xf2M62\x17_\x98?.\xf9\xe1\xd9\xd1t\x8d\xbf\xef\xfd\x0e\x07z#\x93\xbf\xb7tN\x00E\xc6\x9b?=\x11\xa2\xbbMF\xb8\xbf\x90\x91y\x93N"h\xbf\xdbD\xd7\x90\x16\xf5\x86?)\x06\xe5\x87B\xe2\x89\xbf)\x11\xc8\xbe\x92\xc1\xc4?0\x02\xa0\x81J\xff]?\x95\xb93\xb8\xed\xf8\xa9\xbf\xb9A\xf3\xbc \x96\xb4?!Y\r0\xe9\xb6\x8c?\xfa2\\\xb8\xac\xa5\x88?\xf6D\x11F)f\xa6?\xb3U\xa2\xac\xcb1\xa9?V\xe8\xff\xac\x91\x04\xb1\xbf\xcc\xe2\xbaF\xb9\x97\xa7\xbf\x18%\xe0\x1e\xbc\xc4\xa9\xbfZ&\xfc/\xcf]w\xbf\xfb-\x08@\xc7\x82\xa4?\xd2\xa4\xc8&\xd8\x88?\x94y\xfb\xb4U\xa4\xa7?2x\x1b\xac\x899\xb1\xbfp\x97\xad\xbcqxB\xbf\xc3\xa1\xd9\x86\xfc1\xba?^;\xd0\x1eM\x17\x90\xbfmi\xca\xbc\xd5\xd4\xb3\xbf\x8c\x17\xda\x82-\x8a\x8b?\xa2\x05[\x19\xfdB\x95?A\xa5\x10)\xa5\xd6\xd3\xbf\xfaQ\xdd\x96\x905h\xbf\x13\xef\x82\x94\xd6f\xd5?z\xf7.zw\xad\x92?/\xd9\x92\xdc\xee\x86\xcd?\xc4\xb0\xef\x0c\x84\xa6p\xbf>\x85_\xd8\xec\xec\xd1\xbfb\xc2\x12\x05]c\x90\xbf\x98U3\x90\xef4D?X\xdb\xa6\xe4\xb0O\x9c\xbf#\xa4\x9eij\xd6\xa8\xbf\x8cFyWZV\xab?\x19\x1aI \xb2\xdfy\xbfe0\xee\x05P\x94\x99\xbf\x89\xfa\xca\xb0\xe3\xd5\xb5?\xa8\xa9i\x03G\n\\\xbf#\xdaN\x8d\xe1\x0c\x9a\xbf\xa0KI\x91\x8a\x97\x84?J\xae\xaa-"\x96\xbd\xbf\xf9\xc1\x89-\x1aN\x85?\xd5a\x10\xca\xc3&\xd2?\xfa\xbb\x8d\xa7d\x15\x9a?\xc7\xfc\x00\xdb\xb5c\xcf\xbf^t\xc2\x81\xd1\xf8\x86\xbf\x87^\xf1\xc2\xe3\xb4\xac?#\x93|"F\xba\x8e\xbf\xd78\xaf\x18\x8b\xc6\xbf?\xf8\x03E:\xc4\xf8\xa4\xbf\xd9\x8d\x80\xc5\xc5\x05\xb2\xbf\xc8\xc4\x0c\x00\x0c\xc4\x87?\x07+\x80\x93\xfd#\xb4\xbf\x8d\xa3k\xe1\xf3Vt\xbf\x11\xeaC\x05\xdfN\xd2?\xca\x99ga\x92A\xb6?\x82z\x03\xc8,\x1e\xd6\xbf\xa1o9(\x96\xad\xaa\xbf\x87\x98j\x80\x8b\xf7\xc0?\x95$\xda\x03/Z\x93?B4\xb2\x98\xfa5\xa3?\xe4y9\x89\xe4\xd3\xb1?\x18\t\xc9\xe3I\x1b\xab\xbf\xab\xee\x1e\xceSw\xbf\xbf\xefX\xca\x9d\x8f\'\xb3?\x04SZ\xfd\xf4\xb3\x82\xbf\x10`y\xe4\xd3\'\\?\xe4\x91\xa3\xad\xab\xa1\xa1?v\xcd=\xf8A$\xa8\xbf$\xd1\x80\x90\x88v\xb3?\xb5}\x99\x16\xf9\x83\xb3?\x8a\x15q\xbe\xa15\x90\xbf\x87\x14\xad\xdbb\x12\x92\xbfh\x0b\xdeU\n\x95\xbd\xbf\x8e\xceJ\xfa\x91\xc9\x92?p\x1d\xb6=\t\x90\xbb?f\x0bg\xd3\xd7i\xba\xbf$\x8b\xd3w\x97\x8f\x90\xbf\x90\x06@+S\xb0l\xbfy\xebe\x06K,\xbb\xbft\x0fW\xe0\x18\xfc\xa1\xbf&\x88L\xf4\xab(\xb4?\xb4\x8c\xe1\n\x06\n\xae?\xb6\xf5\xc9N\xc5\x8e\xa2?\xf8\xd4q\xd8\x9b\xaf\x99\xbf\xe81XL#m\x8c\xbf\x1c\xd0>\x9b\x85\xdf\x87?\xc7\xec\xb9\xa8\xafL\xa0\xbf\xd9\x91\xb0\xd0\x8e\xf8\xbd\xbf\x99}\xf9-k\xfc\x88?\x87\xbd\xef\xc3\x86u\xc2?i*\xfb\x84lLa?\x964$\xdf\x07\xe6\xa8\xbf\x1e\xea\xf5\xa1\x9d\xfc\x93\xbf\xdbw?\x19\x02\xb0\xbe\xbf\xfd`\xb3 \xbb\xac\xa6?\x00\rj;\x1c\xb7\xc1?/\x0b\xf5Y;\xf8\x97?\xda\x99\xe3\x04D\x92\xa3?4@\x89D}\x9cy?R\x11r\x90\x93\xee\xa2\xbf\xca\xb0\x1f>n\xbd\x9f\xbf1\xc2h\xe5\xf5\x10\x86\xbf\xf8\xa3\xe2\x07\xd2\xb2\xa9\xbf\x9c\t4\xa9\x13\x8ci?b\x1cdW:\xb9x\xbf\x110\xa3\xfa?cp\xbf\xda\xfc\x91\xcc\xe1\xd4\'\xbf\xb3\x18^\x86I\x0et\xbf\\\xe1\xc28\xae\\b\xbf\'\xef8\xe6gub\xbf\x1c\xbc2\xeb\x97 z?\xf0,\xc3T\xca\xd3\x83?r\r~\xe7\xc5 v\xbf]\x19\xf0\xa8J\xf1\x91\xbf)\xdf\x8b\xf4G\x06t?3\xcf\x82\xcf`\x1d\x8a?UIt\x80l5x?\xed\xb2]\x97\x12u\x89\xbf\x14\x19\x80(\xb5\xf6\x83\xbf\xce\xbb\x93\xe3\xe7\xae\x91?\x02\x81\xf7}\xb8\xc1\x88?\x92\x1b\xa3!\xc9\xaa\x80\xbf\x8dg4B\xb03\x83\xbfj\xc1z\x8b\xbc\xf9\x82?\x047\x17\xb9\xd5\xddm\xbf\xebM\xb7\xc4\x02\xd7e?a~\x11}k\xb1\x93?b?\xc7).\x08\x88\xbf\xcf\x1d \xeb\xc8\xe9\x9c\xbfr\x07\xb0\n\xf7F\x89?\x82>k\x9dV\xae\xa3?8\xec\xf9\xd0\xcdph\xbf8\x11\x1c\x90\n>\xa4\xbf\x10\xd77\xc8\x8b\x86x?\xae\xb7\x8b\xa2}\xc3\x9a?W\x9b"k+N\x82\xbf3\x91\x10l#X\x88\xbf\xe28\xa9~\x98\x8fi\xbf@,\xeb+B\xf24?\x97O\xee\x04\xee\x84\x96?f+\xf8-XB\x86\xbf^\xbfh\x11\x19\xa4o?\xf2\x05^\x0b^\x90\xa5?\x00\xb4f\xfa\xcc\xb4\x04\xbf\xac\x99\x16\xcd\x10\xd5\xa4\xbf\xb0\x98\xe0C\xb0\xf9Z?\xb2\xee\xd9\xae\xdd\x08\x8e?\xd8\xe9x\x02\xf9:\x83?\x186i\xa4\x00sz\xbff\x04\x07P\xa8=\x8d\xbft\x02\xf7Mn\x7fi\xbfv\x87\x88\xdc\xc5\x93r?\xd1QJ[\xa8\xc2\xa1?\xcc=\x0c\xe3Yu\x92\xbf\xc8\xe2e\xbe\xd0\x9d\xa8\xbf\xae\xf60?\xcb\xca\x81?\x18\x05\xc8?\xe3\xa1\x91?\xde\x16Ho\xff\x87\xd3\xbfJ\x90\xc7\x81;\xffy\xbfJ\xb1\xfaHby\xd4?\x88\x97\x88\x9f\xa6\xef9?\x88\xf7\x98\xf1C\x06\xd1?\xa7cW\x055Z\x91?\x0eLp\xd2\x1c\x91\xd2\xbfF5\x86c\x12\x0f\x86\xbf\x9d|\x93\xfc\xecC\x92\xbf\xcf@I\x00S\xbb\xa6\xbf\xd9\xfb\x82 P\xd3\x89?\xe4\x8c\x1e\x1f\x13\x86\xbd?\xe8\x16\x0b\xc9g\xbf\xac\xbfeN\x82~c(\xb0\xbf\xe9Z\x89\xd3\xda\xb0\xbb?\xc9\rK\x19!\'\xa0\xbf\tS\x08*\x80\xfc\xb0\xbf$\xc8\xc1I)\xe4\x92?\xf1o\xb6\x197k\xbd?\x01\t\xd6\xce\xfa\x1d\xa6\xbfk\xef>m\xcb\xf3\xdb\xbf\xe6x\x8f\xb59\x1f\x96\xbf\xeau\xa9\xe5^\xe3\xd8?U\x17\xa3Z\xe9\xf3\xab\xbfba\xd9|\xb9\x1c\x96\xbf\xe6u1\x90\xe9\xd4\x84\xbf\xc3ej[ \x15\xb8\xbf\xe9\xea&\x1e\xe7\xc2\xae?7\xe2\xaeH\x1d\xe4\xa7?%\xefk\xf9\xfe\x12\xb0?yG{\xbf\xa3\xbe\xa7\xbf\xea^\x11\xdd\x02\xd6\x8a\xbf\x82\x1a\x90\x05\xe5\x07\xc3\xbf\x16\x81\x7fc\xcas\xa9\xbfJ\xa3B\x10\x1f\xb5\xcb?\xa1(\xf1ix\x93\x97?\'"\xff\x1a\xa91\xb4\xbf\xecB\x81q\xc0(\x9a\xbf\xffL\xf7\xcc` \xab\xbf\x87\xe9l\x00\xce\xc7|\xbf\x8f,\xec\x1b_e\xbe?\xd7\xd6V(\xff\x8a\xb5?\x9f\xd2\x0b\x11|P\x9b?j\xd4\xaf+\x04>|\xbf\xa7\x0e\x03\xc5\x90\x9b\xa2\xbf\x05\x89\xa5\x8f_>\x9b\xbf\x82n\xb9\xf7Z]\xb6?t\xb2\xf5\x07i\xedc\xbf\xc0\xb2-\xea\x81Sz?*8v\x18t\xcb\xa1?\xd1%\x81\x1c\xbf=\xba\xbft\xb6Q\xb2m\xbf\x94?\x1d\xf9w\xf5W\x96\xae?\xceB\xdb\xa0P\xeb\x93?\xc2 P\xa5\xfdm\xa8\xbf\x80,\xd0\xe0\xe1Cl?\xd4\x9e0Ak.\xa7\xbf\x8a\x15J\x96\xd2\xf3\xa6\xbf\xcd\xb9\xfd\xd0\x14"\xc2?\xa1\xd9\xe8\xdb`x{?&\xb5>\xfc\xd0\xf6\xb2\xbf\xfe\xed\xf0\xe4\xa7\xd1\x9d?\xb5y\x9b\x93\xb4L\xa9\xbf\x00\x89OL~G\xfd\xbe\xdf\x9c$\xba\xce\xe3\x9b? m\xe0\x1a\x89\x7f)\xbf\xa5t\\\x18)\xe1\xa7\xbf\x1c\xca\xd7\xba\xe6E\x97?@\x9d\xfa\xd7\xd6P\x91?\xed\xa9W;\x06tu\xbf0\xc9k\xb7\xba\xeb\xb6?\xb3\xc8\x11YA\xc4x\xbf5\xbc\xb0\x98M\x8d\xbb\xbf\xe5a\x9fJ\xa8\xcd\x8d\xbf*=4\xe53\xc5\xb0?/\x9b\xf1\xbe\xd0q\x8b?\x93\x99l"\x83Y\x95?\x988\xd2\xda\xb1?\x90\xbf\x16>w\xa9\xf3\xa0\xba\xbf,8\xcb\x99\x86\\\x88\xbf\xc6s)\xac\xe5X\xb4?t\x84c\xf8\xbfa\x88\xbf`\x81\x88\x16\xf9\x9bl\xbfa\xff\xb3\x8b\xd4\xe0b\xbf7{ n\xd8\\\x84?\xf5\\\xfc\xd5/0_\xbf\xdeV\x17\xc9\xb1\x02\x83\xbf\xc2\xa6"\xe6\x1e\x8eE?\x10mq\xcb\x86\xd8~?\x89\xf7I[\xdd\xd7\x82?\xc9\xe3\x01\xb1\x87\x8fp\xbfs\xa1\xda\x1f\xb5\xf4{\xbf\xf3`\xa7\xd0\xcc\xabG\xbf*\xae#\x92&\xd9:?\xc9\xfa\xe3_f\x9eT?>9n\x8dZ\xe7L\xbfT\xbe\x0b\xde\xf8\xb9\x85?\xfa\xbep\x8fE\x85p?J\xec\x9d]C\xf0_?\xd0.rH\xf0\x97\x91\xbf($y\xf3\xd3iz\xbf\xb8\xaa\x19\xef\xab\xef\x87?q\x0esf\xedc\\?\xc6\x82\x0b\xf3\xac{k\xbf\xfe\x0c(\x820UW\xbf\xa8~\xf8\x8b\xfd\xdaU\xbfQ\x8d\xd9\xb3$Nu\xbfT,c\xcc%bj?0B\xcd\x8b5\xb1.?\xa7\x0c\x08|H^a?\x1c\x9bZ\xc1\x9a;M\xbf|o\xa4z#]n?y\xbb&\x12\x85Z\x87?\x1d\xbax\x95\x90\x18\x83\xbf&\xfcf\xfer\x99z\xbf\xacp\xed\xac-5d\xbfd\xf7:7K\x1a\x7f?\xbe\x18p\x12\xb3\xac{?\x04\x92\xeb\xc8\xb6U\x93\xbf\xd4\x94N\x8ej\xd9\x90?~\x885\x0fx\x8c\x8f?\xee\xe6\x18!+2\xa0\xbf\x17\xeb\xa9\xa2\x9fl\x83?v\xaa\xe74\xa3{\x9e?\x93\x15\x98Q\xe3\x1d\x8b\xbfz\xfb\xc9\xd72\x1f\x83\xbf\x9c\xb7sf\x93\xdfp?\xf8|\x12\x12\xa3[\x8f?\xfc7\xad\x07z\xf1\x90?5\x86 \x99;\xd4\xa9\xbf\xcbE\xb4\xa9K\xd4\x90\xbf\x1e\xc9\xd8\xec\xe4\x9a\xb2?\xab\xc0:*\x92\x9e\x95\xbf\xc2\xbfa\xc3\x00Y\xa3\xbf\xf0\x1bq\xb8)\x81~?\x8e\xf9x\x14\xd2>p?\xdc\xb4\x916\x93l\xbe\xbf\xd0\x89\xe4\n\x18\xdc\x97?\xb4\x97~\xb4\xba\xe5\xc9?\x82\xbf\xa0~\x87\x90\x87\xbf%\x169Q\xfe\xea\xb0\xbf\xc4\xefYm2{\x8e\xbfT\x80p\xf1#\x83\x98\xbf\x92\xb1a\x07]o\x8c\xbf\xbe\xd2\x04W\xf60\xb0?D\x05p/\x15\xab\x9e\xbf\xe4\xfc\xba\xbe\x8d\x19\xc4\xbf\xb6Q\x7fOn\xc7\xb3?N\x10\xc7}0\xc2\x9f?\xe5N7\n \xed\xa3\xbfQi\xf7~|\x14\xc2?\x1b\xa1C \xac\xb7~\xbf#\xd6\x86\xcc\t\x14\xb4\xbf\x9d\xfa\x8f\xf8`C\x85?\xd4L\x12>\xadq\xa2\xbfD\xdb\xb9\xcf>\xac^\xbf\xc3\xeb0t\xc3\xa3\xd3?\xac\xf0\xd6\x08Od\x84\xbf\x1c\xbb|\x15\x1d\xb6\xd6\xbf`\x15v\xc4H\xeb\xc0?\'W\x9c.\xe4{\xc2?Q\xd70\x99\xc3\x8fm\xbfaU\xc8\x8f\x8bE\xa9\xbfN\x02@l\x17s\xc0\xbf2\xd5\xce\xc3\xa4\xa6\x8b\xbf\xfe\x1b\x9eE\xde\x94e\xbf\x06\xacW\xcb6\xff\xa9?\xdad\x84h;\xbf\x94\xbfp\x18\x1ct\xe0\x92\xd9\xbfB\x07\xdeT\xc9\x98\xb3\xbf\xcdF\x08T\xf3\xb6\xdc?\xf4\x1bf}_\x87\x86\xbf\xa6\xb7\x12\xeeX\x07\xbe\xbft\xd4\xda\xd9\xa3`u\xbf\xad\x83V\xe5s\xe0\xab\xbf\xf4\xd8\x075\xf2G\xa2\xbf)\xe5\x04C\xf5\x19\xb6?\xfc9\x8c\x82c\x1c\xc2?h\x897\xb0\xb3\x1d\xa9\xbf\xc8\xbc\xd7^\xdb\xfb}?\xe6\xf8\x1dG\t\xf9\x96\xbf\xbew\x15\xbc\x1b\xd4\x96?F\xc3\x11\xb1\x0b\xb0\x94?\xdc\xd3g\x90a\x1c\x83\xbf\x1a\xeb\xcc\xec\x85\x1a\x94\xbf\x17\xd6\xd9\xf0\xc6\xb3\x8a?\xbcI D}#\x99?"\xbe\xc6\xc5i\x83\xca\xbfE\x03\xad\x91\xbb\'\x80?`\x86_?\x85\xfe\x80\xbf\xf7\x81\xe71\xde\x0e\xa5?\xfc\x81\xe3?\xea<\x80?\xa8JZ]"1y?\x07\xd9z\x11\xd6\x12\x90?\xbd\x82VR\xe1\xd8\xa6\xbf\x80m\xfc/\xe4\xd4\xc1\xbf\x0f\xe5\'\x00\xb1\xcd\xa6?t\xc9\xd3,\xba\x08o\xbf8\xc5\x1a\x00,>N?\x94\xad\xac%\xed4\xab?`\xe9:\xacd\xdf$\xbf\xb5R\xe9q\x0f\x89\x89\xbf\xeft\xc8\xc2!x\xb0?^\xc5\xe3\x0bM\x87\xbf\x9ed\x99\x85\xff\x81q?\xae\xf5\xca\x8b\x9f\xbd\x87\xbfH\x96p\x82\xe7\xae\x83?\x8d\xf8\xc9\xcc\xc55B?\xb7\xc2\xbf\xf1&\xd9\x8d\xbf\x14\xb0\xf1]\xe3\xc2\x8b\xbfb\xef\xefb\x07\x92z?\xe4lz\x12\xac5\x83?\xc2\xb8Bh1\xd0y\xbf\xe6\xa7\xa5\x17W\np?\xd5\xe4\xf0\x91\xacJ\x8e?\x01\xd899=\x9cp?n\x92W872\x91\xbf\x1e\xd7\x85Z\x83\n\x87\xbf\xbd\xd8>]\xb9\x05\x8c?Y\xd1\t\x8fm(\x84?\x1d\x8b-~v\xbcz\xbf\xb4\xd9\x00M\x8b\xe0Q\xbf\xa0GR\x13\x0c\xd7\x81?\xf6\xaf\x9d\xf4\xf3\xe8e\xbf\x8b\xa8\x93\xf8\xa9\xea\x81\xbf\xd6\xd3\xc7.5\xeb\x88\xbf\x1d_\x0b\xd6\x84\xf9{\xbf\x10\xc9\x10c\x13\x91i?\xa4i\xc0\xe5\x93+\x8d?\xaa\xcd\xbb\t=\xd3\x8a?P\xe0\xd4\xc0#\x12\x92\xbf\x89\xa6 g\xd7\x16\x92\xbf\xb0\xc1\xf0\x03T\xa7\x7f?\\\x99\x98\x96+\x1b\x8f?\xeb9A0\x87\xaeX?g\x14\xd2>:h\x81?+Z\xa95\xf5Yi?\xf0\xde\xd78~\xd4\x88\xbf\xa3\x83a\xce7\x1el\xbf\xe2q\xfdGxQR\xbf\x02\xec\xf0\t\x95\x06X\xbf\xe8R\xb4p\xe9\xfcg?h\xbdv\x82\x92(k?\x94\xe77\x84{\xd0m?\x8eqC\xab\xcc\xb4\x8a\xbf\xc6\x8c\xdcL%\x13\x91\xbf\xcd\xf3\xdc\xcd\xe2q\x90?|\ne\xfa\xc2(\x8d?\\\xd8@\xae\x8b\xfca\xbf&I\xbf\xa4\x05#f\xbf,Q\rzjQn\xbfK\xc1R\x1cF\xedp\xbf\xb8\x97\xff\xbeH\x94e\xbf\x10I{Zo\xb1\x97?\x93\xa7\x02\xad~\xc6`\xbf\x06\xe77\t4\xb8\xa3\xbf|\xc90\x12P\xcdq?\x03\xef\xeb<\xbd\xd3\x93?\xd0\x0c&C\x95%A?\x80\xa6\xb3\xcaTV&\xbf\xacg8\x13\x9d\x93\xab?-\xb7\r\xcbe\x13\xa7\xbf\r\x10Dn\x1fN\xb8\xbft\x12\x12\xbd=\xb8\xa0?#c\xeb/\r\x0f\xa4?\x86P)h;]\xa3?\x0c\xc1H?\xaa\xcf\x83\xbf\x12\xb3\xc5\x0b\xb3\x00\xad\xbf4\x0e\x7f\xe5R\x7f\xd5?Sy\xa5k\x83\xccz?\x07G\xbf$\t\xda\xe5\xbf\x92\x0b=!\xe2\x1b\xb6\xbfp6b\x1a\x84T\xd0?\x9c\xae2\xf1%\xd2\xa8\xbf\x1ax\xfe\xa4R?\xd0?\x930\xeb]\xbd\xf8\xd0?t\xadbNJQ\xc2\xbfKl\xd6\x8f\xf9\x91\xc4\xbf\x89\xaa\x9f\xc6\x97\x84\xa0?8X}\xa7\xe5hG?L\x05}\xcf\xbd\xe1\xaa\xbf\x9e)\xa1\xc7%5\xa9\xbf\xad\x12\xda\x9a\x1f?\xa5?0\x17%\xae\xc9\x137?\xec\x12\xd7G\x08\xa0\x9a?\x16\x02\xaa4Y:\x87?\xde\x1d\x97\xf5!\x86\x96?\xfa\x16Oo:\xb6\xa7?;\t\xa7\x1f\xdag\xb3\xbfI\x9f\x9a_\n\xcb}?]\xde=\xde\xa3\xa6\xac\xbf\xcagk\xe2\xfb\xe5\x82\xbf3\x84k\xd7\xa0\x91\xb7?\xa3\x10\xbfJ\xf6\x99q?\xd8\xb7\x94\xf98}\xb3\xbf\x828%EM$\xa8?\xe8\xbc8\xf4\xc2\x16\x8c\xbf@\x1f\xd3\xb3(\xdf\x99?\xe8,\x86\xfb\x063\x92?\xd8\xba\xd5\x866c\xb8\xbf\xc9\x1f\xa8\x01\x83B\xa3?\xb8\xec\x9c$\t\xc6\x98?z1\xa1\xfc#C\x85?\x84sb\xc9\r\xbd\x87? >\xf5V\t#p?\x0f*X\xa3v7{\xbf\x93|\xc3\x02A\x8d\xa6?\x08\xd0W\x16>\xc8\xb5\xbf\x80\x04\xbc$B\xf8q\xbf8r\x8a\xdf\xeeM\xa2\xbf\xf7*\x85\x18\xe8#\xaf\xbf:Q\xd9gu\x05\xad?\xd4\xd9\xef,\x0b\xa5\x9c?\xb0up\xd5\xee\x7fp?\x1csU&\xe1n\x91\xbf`@\x13J\xa7\xea4?\xf8GY\x0f\xbf{\x85?\x98\x01\xe2]VUl?i\xa5+.LC\x98\xbf\x9d~[\n\xefY\xae?\xaf\xf0\r\xbb\xa5T\x96\xbf\xe7\xed\x7f\xfa\x9bt\xb1\xbf\x0ft\xb4\xf7\xff\x1d\xa4?\xb6Ph\xcc\xc7\xe6\xac\xbf\xc4\xc9\x95@\x93\xb9{\xbf\xc7\xb5\xbc\xe1\x13=\x8d?\xfbX\x95\xafD\xc3\x9c\xbf\x9b_\x9e^\xdc\xd1|\xbfbE6\x031\xf0\xba\xbfW[\xec*\xf7\x01\xba?}x^*vb\xbd?\xce\x18\x0e\x97\xd9u\xb3?\x11\xd0\xe2\x8e6r\x8c\xbfv\x9a\xa9]3\xec\xb2\xbfPs0r\xaa\xb1\x99?\xe0)d\xc4\x9c\xf9N\xbf?\xe3xs\x1b\x03\x81?]B\x84\xc5\x00\xc6\xa3\xbf;Kl_\x82F\x97\xbf\xd1\x97\xc3\xa7$\x9f\x9f?\xe8m\xb3\x91\xa2\xf8\x93?*\x94\xfa\xae\xbeX\xae?\x04\xe33\xc1\xf3\x15p\xbf\xfc\xb4\x0b\x7f\xeeV_?!\x80\xe3\x8d\xc5+\x8d?\xe9~+\x89\xc19\x85\xbfM\xed5\xc2\x964\x8b\xbf\x17\x96\x96\x1b\xbbB}?\xa8\x8f\xa5\x02\x91;x?\x8d\xc3\x13\x89\xe1t\x84?\x83`\xb7\xe3\x1d\x9d\x86\xbf\xfa\xc3\xeb`o\x10p\xbf\x9d\xff~U\x91\xa1\x8c??\xef\xe2\xf3\x83]#?]\xaa}\x1b\xe9\rn\xbf~\x13\xce\x0c\xed\x8f\\\xbf\x8a\xcd\xb9zp\xedv?9M,\xe4*\x04Q\xbf\xfd\x1b\xc9\xc1U\xf3s?v\xb2M{\x07\x8a}\xbf\xbf\x19\x03\x10\x047\x94\xbf+\xdeq\x12\x0b\xd1q?x\x99 +\xb8\xcd\x90?\xdd*\x1c\xb5\xc1\xfd\x80?\x0b\x1b\x14\x86\x9c\xca\x81\xbf\x84l\xa3\xbc\xbc\x10\x92\xbf\xc8,\xc4&\x18\x9cz\xbf\x05\xa4\xcb\xf4\x92)~?\x81\xe8\x98i(\x93\x90?\x02E\xd3b\xb7\x8c\x8c?\xc8)B\xa9\x06\xbb\x91\xbf\x88\xc8\xcf\xdc6\x9e\x82\xbf\xd6b\n\xd7\xb3)\x83?\x08\xf6\xaa#M\xcc[?\xc0\xd4\xca\xca\xbcU\x11\xbfP\x14\xed\xefb >\xbf\xdd\xe1oA\xb8\xc3w\xbf\xf0R\xcbS~\xee;\xbf0\x1ePBK\xfe+\xbfc\xfa\x085\x16\x83\x8e\xbf\\\x99\x17\xd3\xdb\xd9\x8b?\xacF\x89\xb0_\x8c\x90?h\x0b\x82\x1d\xd4p\x8e\xbf\xe4\x7f\xdfH\x1dZu\xbfdN\xc0\xb0B\xbad?\xae\\4CLme\xbf\x04\nU\x06\x84\x02b\xbf\xaea\xb7\x8a\x14\x9br?\xd3\x0b\xf1\xff\xe3Nt?\xe0\xf5\xaa\x80\x88&\x93\xbf\xd2\x97Yt_\xa3t\xbf.\x0e\xe4\xd6\x15#\x8c?\xe4\xe3\x97\xc5\x0e\x1b\x80?\x19\xbc\x03\xc4`u|?\x00USs\xf2AT\xbf\xc46\xf0@Dd\x88\xbf\x96\xdc\x0bj\xa2\xdc\xbd?\x95\xab\x04\x01\x87\x93a?\xfc\xeb\xaf=\x83\x86\xc0\xbfrz\x86\x1e]\xd1c?\xacJf\xd2\xe6e\xb3\xbf\xdc:\x97\xec\xb4\xb7[\xbf\x0chNa\xbc\xd7\xbc?b>!\xdf\xecP\x81\xbf\xda\xe6\xb8f\xe4i\xa0\xbf[\xa6\xa2.\xb3\xc5\xd3\xbf\xef\x88\xf1\xbdAO\x83?\xc7~\xa1h\xba\x1d\xe3?\xee\xe2\x87\x96]@\xc8\xbf k\xf9\xb4\xc0\xac\xc8\xbf\x8c)\x13\x1c\xe9\'\xd8?.\x8c5\xa1\xc4\x13\xce\xbf\x80\x9a\xfe\xb7p\xeb\xc7\xbf\xe3\xeel\n1\x01\xc0?\x1a$\xac\xc4#\xefH?\x83U>(\xcd\x96\x90?\x19:\xb3\xd2\x98E\xa3?\xc2.\xae\x8d"\xf7\x85\xbf\xd4\xf0#JK\xc4W?3mhf\x81\x11\x84\xbf,\x04\xc3\x80\x9f\xc3\xa2\xbf\xdd\x80\xbd\x1ag"\x94?>\x99l\x15\xb2A\xb5?\xb0\xb4\x1a\x97\xcaT\x9a\xbfJ\xce\xf7\xe5\x7f/\xb6\xbf\xb9\x8f*\x90\xac9\x8d?\xbb\xbe\xee\xb6\x90\xc4\x92\xbf\xcc\x03\x9b\xf2\xac\xf6s?\xa9\x7f\'\xb4\xad\n\xb8?\xc2W\xd5\x16w\x8b\x81\xbf\xfa\xde\xeb\x90\xbe\x18\xbf\xbf\x13\x13\xbaC\xad4\xae?E\x13\xa1EW\xcb\xa5?\xeex\xb02\x10\x95`\xbf\xc0\xe9\xae\xf6s\x1a\xa9\xbf\x98\xba\xfaHo\xfd\x8e\xbf\xb2t[\xd4\x90i\xa7?\xb2xH\x14\xd9[\xa1\xbf\x96\xe6\xf8\xdd#\x90\x95\xbf\xf2\xb5\xa1<9\xf7\x83?E\x18\xf6\x8aR-x?\x05\xec\xf7\x98\x89\xde\x84\xbfQ\\\x1e\xf9\x14$\xb6?\xeba\xe6kI\\\xb0?\x12\x08\x14\x11\xe9\x8d\xb8\xbfSm\x90\xad\x0c\x1b\xa6?\x16\xbd\xc4\xf6\xc0\x04\x80?-\xb7\x01\xe9]J\xb5?^\xd0\xbc)\xa8\xc1\x9a\xbf\xde>k\xb8\x88\xfc\x94\xbf\xfa\r\x1fV\xc1$\x82?\xfc\x8bu7\x88\xe6\x92?\x8d\x90gb\x89\x8c\x83?v48\x8a\xceD\x92?\xd6\x9f\xdfT\x93\xcf\x9e\xbf\x9e\xc2\x94\x97\x06\x92\x96\xbf\xe6R\xb5\xacOt\x9d\xbfX\xca\xf0\xa2\xb6+\x9a?\x9a\xce$\x1a\x1ea\xb4?\xde\xfc+\xdfp\xc7\x92?\xc3m(\xe4\xab!\x9a\xbf\xf0s\xd7\x9f-\x8e\x96?\x18\x94\x94\xf5C\x1f\x9c?"\x0f\xe7\xf3\xcc\'\x89\xbf\x06\x11\xe1\x91\x87\xee\xc1\xbfp\xca\xb8\x83P6\xaf\xbf\xc7\x7f\xfb\x18\xbe\x89\xc8?\xb3d\xd5\x05f\x85\xb2\xbf\x17\xe1\xa1\xba\xe7J\xa3\xbf\xb4\xc2\x0e}iX\x9e\xbf\x1ev#\x87R\xc9s\xbf\xf6\xd4\xb7c\n2\x98\xbf-{\xd8\xcc\x15\xd7\xa9?\xde\x9b\rl\xeey\x87\xbf\x15\xe6\x86Q\xff\xbf\xa8\xbf\xa8\x08\xe8\x90\xde/s\xbfZ\x9a\x1d&\x01\xa0}\xbfx\xef2vo/\x8c\xbf\xba0\xee\xeam\'Y\xbfh\xeb\xee\x9b])x\xbf\x07\x92%\xce\xaa\x0fi\xbfF\xfa\xf7i\x84\xf0\x95?\\[q\xddr\xc0\xf0>)\xf0+\xd2\xbd\xe3\x94\xbf:\t\xd5\x81T\xa2?r\x06\xeb\xfaj\xb7\xc1?\x12W]\xca\x01\xdf\xb6\xbf\xef\xc6H@a1\xb2?(\xa1!C\xa6\x82\xa6\xbf\xab\xae\xb0\xe1p\x1c\xd2\xbft\xba"S\xedH\xc5?\xd6l\xaa\xa53\xc0\xc2?\xc6\x88J\xf6E\x0e\xb6\xbf;\x89\xfdY\xe8\xdc\x9d?\xa12Uh\xa5\xecm?\x1f\xcf\x82gR[\xb6?\xdc\xb2O\xe7\x9f\x14\x9f\xbfC\xe4\x1c\xea\xe9V\xbd\xbf\xae\x90w\xc5\\\xbfw\xbf\x00\x84\xe3\xda\x12\xd4\x94\xbfT\xa9\x91l\xd3.|? @f\x87\x1b\x00\xce?\nk\x9f\x88\xa72z\xbfl#|\xb0g\xa9\xcb\xbf8\x18}\xcc\x0c[\xa1?\x9f\xa963\n}\xa5\xbf\x96\x85\x0b\xd4LM\x92\xbfm?\x00\xb3DL\x8f\xbf\xd9?\x9f\xce.d\xac\xbfD\xc9p\xf8E\x89\x98?\xb9\x84\xcbY\xa8-\xbb?\xe8\tSdB\x84\xa2?\xf4H7r\xbfbl\x0c\xac\x05^P?\xff\xcf\xc6bU\xa7s?2j\x9ab\x89\xa2|\xbf0\xfed\x0c\x87\xe8g?0\xaf \x90;\xe27?\x9b\xd6\xe1\x84\xbeu\x8c\xbfX[\x9b\xf6\x92\x9bu?B\xdd\xd6U\xe5\xcf\x93?\xd5\xbf\t$\xeb\x9bb?\xa0\x13\xe2{\xb2\xd4\x94\xbf\xecyM=\xf44v\xbf:\x98_\xdc\xfc\xd7\x8b?[#$@C\xf3f? z\xf3\xdf\x86\xd5k\xbf <\x14\xbb@\x93-\xbf\xf0m\xe1f\xb7\xa7@?\x9cR\xe3\xa3\x90\x7fx\xbf\xae\x15\xfe\xb2j\x13k?\xb0\'\xfe\xcc\x88\xe4u?\xdf:\xf0\xd8\xc5\x0c\x94\xbf\x85\xc5\xb3\xc7\x02\xcc\x92\xbf\xbbk~:\xc2\x0b\x9a?#C~\xd5\x97\xef\x83?\x18\xa6)\x80v\x0f\x8b\xbf\xe8\xbcm{j\x15f?\xa8W\xa4\xee\xf1\xa9U?\xf4\x13\xa5K\x18\xc5p?O\xd8\xa2\x1d9\xd0\x80\xbf\x96\x0eUJ\x8aO\x86\xbfnoi\xaf\xce\x19\x83?\x087^\x06\xf7\xc1s?\xa7\xde[gK+d\xbf\x90\xe1\xc6:s\xd4|?t\x8008\xbe\xadQ\xbf\xc0Q\x89\xa5\x98?>?\xc2\xcdil\xd9O_\xbf\xb8\x9b\x11\x0e\xff\x87\x98\xbf(V\xd5-Y\xab\x84?\x98~\xbawf\xdc\xb7?\x97R\x98qga\x8c?\xed\xd3LU\x02\xe4\xbc\xbf\xa0w\xff4^)\\?P\xf4\x7f\x0f\xb0G\xa4?\x90q\xa7L59y\xbf\x1a\xb0\x0c\xe0$\xcb\x93\xbf\x88Gy>\xec\xc0\xb3?\xdb\xc4\xda\x06\x18\xec\xa1?\xb9=\x10ny\x04\xc1\xbf;\xe7\x1b\xc1\xee\xe6\x9a?\xe5\xadyQ|\xdf\xb5?\xed\xecQ\x17nA\xb4\xbf\xcfQm\x94\xc1\x8c\x96\xbf0\x9d\x05\x16\xb5\xc7\xa4?\x8bY\x1e\xdc\xc3\x94\x92?\x90\x0b\x89<@\xa0\xa7\xbf\xf2*\xd7I3\x08l\xbfC\xcfn\x95\x80\xcf\xa4?O\xd0\x8b|T\xad\xaf\xbf\xe8\xae\xedVP\x17\x8a\xbf\xcd\xa4\xb6s^\xfc\xa7?\xbb\x18\xec\x84X\x19\xa3?\x00f\xaeqc\xce/\xbf\x89A/C\xcc\x05\xa2\xbf]\xb2i\xb0i\x9d\xad\xbf\xca\xda\x9a\x14\x85\xd8\x9b?y\xeb6\x0fNE\xe1\xbf\x03\xbf\xd6\xf0\x83t\xad\xbf\x01\xf6[\x95.I\xc0?O\xe5\x18[\xa5\xac\xa1\xbf\x08\xfe\x9c\xba\xef\x93\x91\xbf\xe0\xd4\xf1\x97\xd0=\x92?\x147\xf7\x8b\xb3\xc8j\xbf\xbdh\xfe\xf2\xbf\xe0\x92?\xc0\x84\xa4\xee*\x0e\x9a\xbf@\xb5\x88\xec\xa4\xc8\xa6\xbf\xafG\xd4\xe2/\x19\xb8?n\xfd\xe8\xa0D\xb6k\xbfc\x93\x06H\xa3\x1a\xb4\xbf\xd0\xf4\xdd\xba#\xca\xb1?X\xaeDy\xbe\t\x94?l|\xcd\xd4j\x92\x19?\xf6Y\'\xe2,\x0c\x9a?HYfT2\xba\x8e\xbf \xe1\xf0^t\x8f\xd1\xbf\x87/K\xb2\xa4|\xc2\xbf\\\xdf\xbe2&\x90\xba?\xe9\xd3\x8c=\x9fS\xb3\xbf\x8c\xba\xa4m8Z\xc6?\xa3\xbaR\x02\x7f\xa3\xaa?.\x82g\x8c_\xe2\\?\x86\xf2v\x17\xe6\xbe\x82\xbf\xe3\xfc-bS\xcb\x94?\xc0\xa6MrZ\xd0\xa2?6<\x92\xe45\x14\x83\xbf\x07\xfb\x8e\xaa\xe9J\x95\xbfC\'/yK\'\x91\xbf\x00S\xfa\x80W\xf9\xa0\xbf\x81\x9f\x89\x9e\xfd\xd8g?\xc7{\x93\x86\x84\xf9|\xbfRR*\xed\xef\xef\x82\xbfN\xb8;\xee\xd75\x80?)cK\x0fx$\x94?\xe6\xd0\xe1\xa9\xa8\x01q?\xd3&y\xc4\xad\'\x91\xbfD\xf5\x80Vk\xa1;\xbf\x8f*\xec\xee<\xacl\xbf\x1fvg\xbd\xae\x8c\x80\xbf\x02\xf6>\x83mW\x81?\xcb\x80\xba\xc2\x82\xddp?\x1e\x99\xdb1\x04\xfdp\xbfi8\xcfC%\xc6w?$\xaa\roo\x84\x80?\xe0\x86\xaet\x16\x16t\xbf\xa8J\xabLX\x1cq\xbf\x1a\x02#\xf7\\!q?N\x80\xa8 ?\xe0~\xbfh\xe8\x18\x02 \xa1<\xbf\xfb,\x9b>.m\xa4?@M\xdeCgfL\xbf\x8c\xe2m\xe18\x1f\x98\xbf\xee\xa8t\xd9$J\x89\xbf\xa81\'\x92{_M\xbf!\xe7$*\xfc\xc3\x90?\xe06\xcb\x83\x93\xbe\x8e\xbf\xcc\xd4@\xb83\xe4\x91\xbf\xcb\xdc. \x9e/\x8b?E\xae\xfb\xb8>\x89q?\xa0R\x7f;\xd1GI?\xee\xb4Vp\xfb\x92o?\xe83\'\x14e.F\xbf\xa1Q\x10\xc6\x0e\xcdb\xbf\xe1\xac1|\xb3\xef\x91?\x05L\x80\x84\xd6\xf9\x8c?\xb9\xa2\xd5\xf4K\x02\x86\xbf\x06\xd4\x9fD\xa1\x1d\x98\xbf\xe8\xa6\xce\xeb\x15\xfc}\xbf\x8a\xb4\xf4&\x85Es?\x87\xfe\xc6\x06I\'\x82?\xca\x19{5\xf7\xf8\x80?h\x97\x13\xe1\x95\x05\x95?\xe0\xe4vz\xb7\x93\x8a?\x94\xbeL\x91TM\xb1\xbf\xfa7\xd3t\xc3\xd6\xa8\xbf\xa2\xdf\xeei\xe5r\x9d?\xbdd\x03\xc9yI\xac?\xe0\xb9\x8b\xbb\xe3Z\x90?O\xce\xca\x15\x08E\x92\xbf@\x91\x14\xb2|\xde-?\xd3[\xe7\x98\xffI\xa3\xbf\xaaM\xc0J&\xa4<\xbf\x1b\xf4\xb1\x8d\x12[\xae\xbf\xca\n\xde{\x9b5\xd4\xbfk\\\xa5I\xb8\xb2\xb1?\x94\xab\xa6\xe0\x97\xdc\xd3?\x9a?\x01X4:\x8b?\xe5~\x9c\x9b\xff\xa4\xa4?97]\x1e\xb2a\xc0\xbfb5\xa5\xe7=\x0c\xd9\xbf\xe3\' d)\xdb\xc1?\xa2\xb50>\xd7\xe9\xd6?\xdbu\xcfr]\xbd\xa0?s\xf99u\xebf`?\xad*\xd3OF\xc9\xb9?[Sz\xca\x08\xd8\xc6\xbf\xcd\xe4Ro\xeaq\xbc\xbf\x83\x05\x9c\xfa\xa5\xb1\xd3?\xbb\x98\xa3\xc9\x16u\xaa\xbf\r\xb8\x19N\xe3\x91\x95?\xb4\xa45\x8a74\xc3?\xe3k\xfcOje\xd5\xbf\x03K\xa3\xc7\xe6,\xbc\xbf\xc0N\xc3\xc2\xf1@\xc7?\xd8\x1b\xb6\xd4\x7f$s?\x99c\xfeLO\x96u?\xde\xf5:y]l\xb0?\xf8\xa3cK\xce\'\xa3?%\x0fd\xc4N#\xc1\xbf\x04\xb0\xb3\x16\x0c\x0c\xbf?\x93\xb9\x17\xdb\xa7\x0bx?\xe5\xfb\xf6\xf2\xc9\xb9\xa0?\xb6P\r`\x88\x1e\xbc?\xcdd^\xa0\x02\t\xa7?\n\x94\xaf\x01\x0eY\xa0\xbf#\xb4\xe3\x06]\xaf\x9a?\xa4<\x84Y}V\x86\xbf\xa4]\xa9Y\xd0>\x80\xbf\xa6\xda\xf3\x83op\x90?xk\xe6\x1d\t<\x90\xbf\x8a$\xf1\x16\x15\x93\xb1\xbf\xb7\x9e,\xb9dV\x86\xbf=5\x86\xa9/\xe7\xb8?\x95\xfb\xfb\x97\xbb\xfd\xbc?T\xa5:\xf9\xec\xef\xa3\xbfr\xde-v\xf5\xd8\x95?\x18;\xba \x99\rk?\x9aj\x0e\xff\xb9\x18\xa4\xbf\xfapa\'\x97\x93\x98\xbf]\x90R\xad\xba\x91b\xbf\xb3P\x8f[\xd6e\xaf?|I\xd6\xef\x99\x08\xb9\xbf`\x88\xf0y@\x06\x9b\xbf9\xcd\xbfR\xec\xb1\xbf\xbfF[\x8e\x9f\xcd>\xa4\xbf\x84\xa7\x816\xae\xcb\xa3\xbf\xf2LF\xac\x0c\x90}?\x84\x93\x1a\x8a\x05dU?\x082\xc5\x00-\n9\xbfp>M1!\x9e\x81\xbf\xce\x87\x96\x90\xaeA\x9b\xbf\x88\x8f\xed\xb1\xac%\x9c\xbfG\xb5Q-\x90l\x97?\xf3p\xcf\xcd\x03\x88\xa2\xbf\xe0\x03\x9c\x05\xadAW?o3\xcf\x08\x10\xf7v\xbf\xed\xe2\xf9)\x06\xf7m?K\xed\x14Q\xff\xf5o?\x82k\x1ebc\xc1u\xbf\xaa\xd8&L$qi\xbf\x88\x81\xaf\xe60Qu\xbf\xc4bQlW_s?bp\x9d\x98\xf3\xf3y?Ib\xf1\xa1o\ta?L\xe19v\xbf~n\xbf,q\xbdj\xe3uU\xbf\x14\x01\xa3D\x10X{?\xb1\x98\x89\x97K:{?\x86\x15\xee\xc0\xb36w\xbf\x04\xc1\x08Jb\xe3x\xbf]5\x8cb\xfa\x02g?,*7K\x84-b\xbf-\xa3\x85`\xf0?=?\xd7\xce\x96NCcp?^7\xd2\xc2\xabNT?_\x83J]\xe7~k?I\x1bc\xeb\x89Ad\xbf,\xf5\\u&_\x8c\xbf\xd3r\xa2;rbu\xbfW\xa9\xb0G\xa0w\x90?#\x10\x83\x83C\xcco?\xc0\xd5\xa7\xe7-\xb9^?c\xefJL\x99\xb3\x82?){\x0bsf\r\x8b\xbfJ\xb4\xe48\x8af{\xbf\xc8\xe8\xf6&\xac7\x8d?@\x00\x9f\x94\xd7n\x14?\x1a\xe9\x17D\xa6\x0b\x85\xbfL8\xe2\xa9\xcb+{\xbf|8wel\x92R?Z\x8f%~\x91c\x91?t:6\x93\xc3\xb1\x8b\xbf\x08{\xe0\x1a\xdc\x02G\xbf{\x93n\x17\x98\x8c\x99?\x183\xcb\x96H\x0c|\xbf4x!;\xaa\xca\x9b\xbf,\x8f\xaf\xc1\xfct|?\x82O\xca\xac\xc5;\x8a?\x1e\x08\xdf\x0b\xda\xde~\xbfh]\x0b\x8d\xd2\xec\x82?\xe3\xe5,m\x90\xf4}?\x9e\x1c\n*\xd16|\xbf\xdc\n\xdd&\xe0\xe8j\xbf\x8eR\x9d\xb4!uQ\xbf#y\x18\x1am\xa9\x80\xbf/\xbdQ\x8fg?z?\xc8\xf1\xe1%\xcd\x82o?*\xf2z\xb6\x7fRp\xbfzi\r\xefU)e\xbf5\x1e\\\x88\xa2\x10\x95?\xf3\x04\xe7\x042r\xa4?\xe2\x19\xe2\xa4\xb2\xce\x13U\xc6?[Oy\xfc\xf3\xbd\x94\xbf\xaf~?\r\xd2\xa4\xa6\xbf`y\xc1\xe9\x0c\x00\xa0?5\x95\xefi~\xe1\x85\xbf*\x9fJ\xe5\xc2\x13p?"\x0c\x00TH\x1d\xa9\xbf\xe54\x82\xbe\xd8I\xc4?\x99Z7\xd5\xdeD\xb4?\x00\xbd\xf2\x1b\x04\x90\xd1?\xeaV\xb5sY\xba\x86\xbf\xe9\xc8\x94|\x82w\xbc?\xdd\xd5R02\x14\x82\xbf\xb6\xb6\xfa\xf7\x1b\xdf\x9d\xbf8\xfb\xddr\xf7\x03\xae?\xd5\xe7*-N\n\x87?\x06\xb8<\r\x08\x85\x8c?\xb0\xba\x7f1Y\xc0\xa0?q\xcf\xcc\x88\xa34\xae\xbf6\xe0\xc5\xfa\xceB\xb2?\x16\r:\x8b\x88\x95\xd0?\x12\xf5}WwX\x88?\x8aQ\x82P9V\xce\xbf\xb6\xcc\x907\xed@\xc7?\xda$\xaa\xf30\x88\x9e?\xf7 E\xfb\xd2\xe5\xa0\xbf\xc9\xa5w\xe2\xee\xcb\xa9?\xbf\xee;|\x92\x1c\x9a\xbft@\xa5\xbdz\xa2\xca?\xb4_:IJ\x1e\xd0\xbf\n\xc7\x8c^P\xc2\xd2\xbf\xa1\xbd\xed\xde\xf0\xc8\xc9\xbf\x12L\xb7|W\x03\xb8?\x11\xd4&\xd4\x81\xc8\xc2\xbfV\xc9\x86\xd4\xda\x99\xb3\xbf\xb8\\\x05\xbb\xbc\x02\x90\xbf\xa0\xdf\xbf\xb3\xb4\xf2\xb5\xbfI\xee\x0b\xb9\x95\xbd\xa5\xbf\xdb\xd2[\xfb\x0e]\xb5?Z\x8b\xcf\xca\xb5\xae\xb8\xbfxxF\xafh\xcdC\xbft\x04\x12\xf0\xdf\xfd\xa9\xbf\xabcW|\xb6\x98p\xbf\xaa\x1c\x03\xdc\xc8ap?\xbb2\xb9)\xc0\x06\x87?\xbb\x86[\xb9/\x01\x84\xbf\x95\xbf||]H\x8e\xbfh\xcc\xf2"\xa5\x0c\x90?\xbe\xd9D\xefev\x88?\xe7EX\x85\x9d\xc0\x86\xbf1\x05\x9a\x90e\xe7{\xbfs*\xa7\x0c\xe8\x99s\xbfe\x0b\x02\xf7\xe4\x0b|?y\xeb\xde2S\xad|?\xb0\xe5BQ\x04\xdfj\xbfI\x03\x08\xa5\x9b\xcfK?|!om\xa2GT\xbf9}q\xfcF\x05\x88\xbf\x9f\x12~\xae\\\x11r\xbf\xea\x1dgSBk\x94?\xed\x91D\xb9\x8d\x98\x81?\xf9\x8f\x9d\xb1\xa7\x1d\x91\xbf\xec\x91\xc0J\xe2\xfes\xbf\xf0\x18\xee\xd2\xe2}q\xbf\x05i\x88a\xe3\xba`\xbfx\xc4\xfe\xba\xfe\xdd\x94?\xe6\xbb\x9b\x86\xaa\x06q?\xbc=:\xa5\x8f \x96\xbf(\x81\xef|"\xabP?>\x7f\xad]\x91Y`?\xeco\xcctyi\x83\xbfKj\x1d\t\xc3\xfe\x88?J?\x08N\xd0\'\x86?~\xb6\xbd\x10x\x8a\x8e\xbf\x0cK!t\xbf\x1cr\xbf\\\x80\x16\xec{\x9as?d\xc0h/\xb4wi\xbf\xa0#\xc86&\xce~?\xc4\x07E\x02\xabjh?pv\xe5\xb1\x16f\x87\xbff\x9f\xe0[\xd0\x87t?l\xa5\xcfV\x81\xf1e?NM\x88n\xecSY\xbf\xfcO<\xc5\xf6\xe2h?\xd2\xf1\xf3\xdaCbR?\x80\xe7\xb7\xafW \'\xbf\xb6\xbf\xd9#}ke?\x83o\xc2\x81f\xdd\x87\xbf\x00p\x85\xff\x96]|\xbfD\xcb\xb4\x8b[1\xa2?\x01wv,U\x90g?/2\x8e\xb3&@\xa1\xbf;\x8e\x84\xc7\x98\xfcU?\x03\xdd\xc1P\xba\xcc\x83?\xc0\xed;1\xf8\n\x0c?\x80\xf0\x12\x94B\x05O?\xa2oy\x88\xa51\x90?\x90\x8a\x1b\x17\x17[\x99\xbf^iE%\xeb\xfc\x84\xbf\xc0\xe8\xdd\xe1\xaa&\x9d?\xbc\x90m\n\x9e\x1f\x8e\xbf\xb8U\x18\xdc\xbe%\x93?K\xd5\xff\x9dw\xc8\x88? \xb6\x0f\xb8$\xe6D\xbf\xb7_\x8d\x1c\x9c!\xaa\xbf\xcd#,\xcd\x92]\xab\xbf\x8e\xd3\x17\xac8,\xbe?\xf3n\x04B\x84\x13\xbe?\xf2\xaehw+x\x8e\xbf\x9c\x0cf-\x84(\xc5\xbf>\xd5s\x13\x90\xc5\xbb\xbf\x1b<\xc03\x1f\xe5\xbb?4\x7f\x14E\x9f\xbf\xac?L\xf0K\xea\xf37\xa5\xbf=\xeb`\xf2\xf3\x98\xa6?\xf6(\xd4/H\x90\x94\xbf\xe1\x0b\x80qhy\xb8\xbf\x83-\xc3\x03\xe8\x03\xc0\xbf\xa8\xe1j\xf0\xfaf\xb6?\x9d\x02\x8b(\xb21\x99?\xea\xbc\xe4\xa5\x8eb\xb4\xbf\x02(N\xf5\xb2\xc2{?\x99\xff\xd6E\x8d}\xcb?NId\x14Zk\x94\xbf\x9dh\xd4\x8d\x1a\xb5\xc7\xbf\xefZ\x0cx|\xd3\xc0?\x00>b\xeb\xa2f\xaf\xbf0_\x83M\xa88\x9c\xbf\x8b\xf2zz\'\xc6\xb8?\xc5\xc25\xe7\x1a\xfe\xa2\xbf-UDR\x92\xbb\xb8\xbfY\r\x0f\x00&\x16\xc2?\xd3\xf3\x0c\xcd\xe2\x98\xb1?EG\xb6kK\xd1\x95?\xbdW\xf0\x98\xf2k\xcc\xbf\xd3i\xb5\xc3\xe0\x04\xc6\xbf\x1ezA6\x8d6\xcc?\xaa\xc0\x8fbr<\xb1?P\x913\xc5&\xe4\xa7?\x00\xff\xac\xa61T\x1b\xbf6\xbc\xc0\xfc\xdf\x84\x9a?s~\x1ae\\\xce\xa2?\xe1\x9f(L\xfc\xd2\x9c\xbf\x91/\xb4\t\xb5`\xd0\xbf\x9b\x8d &>~\xb6?y\x8b1\xdb=h\xcf\xbf\x86\xb7\x9cj\xc6\x1d\xa7\xbf\\\xa7D\xfa\x98Y\xd1\xbf$!\x90\xe9\xcd\x00\x86\xbf\xd5)$\x9a:A\x95?v+-\xc5\xad\xa0\x87\xbf\xf2"4J\xd2i\x8e\xbf\xd8\xae\xa30n\x7ft\xbf\xefX$\xea\x0f\x96\x83\xbf?\x85gu\x8cY\xa4\xbf\x10G\xeb9\xd8\x8d\xca\xbf\xbcNIyz1\xaf?\xcd\xb4\x11\xaa\x07\x06\x9a\xbf\xe2\xd1\x93\xe0\x0c\x06\x93\xbf^\n=\xa5:\xa0\xb7\xbf\xc9\x91\x95\'f?\x8d?\x90\xe4\x0b1>\xb9\xa3\xbf\x8f?\xc1#,\xcc\xb0\xbfl_\xc4\xa6\xbc\x8a\x80?8\xdf\xcaX\xf8I\xa1\xbfz\x83\xcdU\x88\xa4\xce?\\X\x91\x1561\xbf\xbf\x12?\x80.|X\xcb?\x93<*4W\xa0\xc1?n\xfd)\xca\xccE\xd6?T\xeaB\xc2~i\x92?\x1aS\xb5\x84O\x11\x95?\xf8\x1e\xe4M\xbbK\x96\xbf\x87\xa6\xbf\xf2\xb7\xc6\xba?\x10\'\xea\xbc\x03]\xb4?b\xae\x97O\xcd\x16\xb7?\xef\x90\xd1\xb3\x83+\xb1\xbf\x14gecy\xf1\xba?\x85\x1c\xdc!\xe7NU\xbf\x16\xbf \x87\xfesY\xbfe\xea4\x81\xd4sQ\xbf}v\x91\xd8$\xaaQ\xbf[\x9c\xd5\xf4\x8a\xcdw?\xec_`b^\xb8^?#"\x87\xb9\xa2&s\xbf\x9a\x01Gn9\xc9F\xbf\x18\x1c\x12\x03\x1a\x03Q?\x9f\xa6\xcep\xb8\xf3v\xbfQ?\xc3C\xc0\x0ct\xbf\xf3C\x14!(^z?\x0c\xce\x8d\xfau\x0cq? \xf8\x80Q&\xfbi\xbfN\xc2\xda\xeeu\xc9j\xbf\xb8e?o\xa5\x1a5?\x17\x16n\x0cv^m?\x1e\xec\x18j\xfa\x19a?\xdf{\xc11\xc5\xefU\xbf\xc2)\xe0-\xb1NR?v\x90Q#\xf0\xa6j\xbf\xf8vk1\x05zr\xbf\xc0\x8e\xbe\x13\x94\xb0z?\xb3\xd6V\xf3\xc0\xecj?\xb8\xb7\xbd\xd5e\'}\xbf\x80\xc8A-\xc4Nw\xbf\xfa\x1b\x86\x1f6\xdfq?\xea\xa9T\x06\xb2\x1d\x82?\xbf#\xab\xe3\x05\xad\x83?\x80\x97\xf3\xbbJ\x809?\x14\xe5_x\x92\xc5\x93\xbf\xe5\xcc\x0bD\xfe&\x82\xbf\xf6H\xfbMbz\x83?\xaa\x1d5\xe5\xe7\xc3m?|\xc7#\xd4\x0c\xf9\x81?\xe1\xee\xd8\x1b\xa1mr\xbf\x01\x98\x86\t@\xe2~\xbf.\x0c\xe8\x8e3\xf7\x93?\xb2%H\xe8^\xe5\x88\xbf\xf1\xd6\xa9w\xa2o\x91\xbf*\xcc\xa0zJ}\x90?\xdcH\x9ec\x87\xfd{?J\xf7\x98\xda\xa7\x8dx\xbf\xef\xe4\xadO\t9a\xbf\xd8\xc9\xa7\xb6\x8e]Q\xbf\xbdEG\x8f\xdd\x82g\xbf\x91v~\xd4/\x86F?\xd1;\x1d\xb8\xbf\xcdo\xbf\x16\xb7\xaaOc}m?\xe6|\xb6\xe8\xb0=\x85?\xa0\x82\x01\x02\xd3\x95I\xbfJ\x9b\xed\xd0\xd8WU\xbf,\n1&.\x0bb\xbf\x91\xc8kZX\x86t\xbf\xa1\xcf\x81\xecN/e\xbf+\xde\xfd\xc2c\'\x9a\xbf\x9f\xcc\xe2\xad\xee\x03\xb2\xbf\xd7.\xa0\x89\x16\xe4\xa7?\x91=_t?\x8f\xc0?G\xd884\xac\x0e\x98?\xcf}\xc2\x11\xfa\xe5\xb1\xbf\xe5\xd4\r\xc5F\xb1\xa4\xbfP\x96a^\xe9\x90\xb0\xbf\xf4~\xe0[v\xe3\xbf\xbf\x1f\x0f\xe8%\xd7\x1e\xbb?n\xf9\xbbM\x1f\xda\xd0?i\x8d\x05\x9c\x94\x0e\xa7?O\xc6Q\xe1@\xd3\xd6\xbfF\xbe\x1bm\x98G\xc8\xbf\x15\x96\xf4~s\x95\xd8?a\xf5\xb3D\xfc\xf3\xbb?\xfd\x1by\xcd\x00\xbc\xc7\xbf\x13\xe9\xd8!\xb1*\xb8\xbf:\x16\'\xbb\xe5\x86r?\x8f\xe2%\x9f\x8bD\xb3?7\xc4R"\x85/\xb4?E\xc9*\x05\x90\xc5\xb1\xbf\xab\xe2\x84_\xadu\x94\xbfYs:\xc9+\xa1\xb7?^\x04]&\xb4\x11\x92?\r\'\xc8\xf5t\x18\xd4\xbfX0rIz#\x96\xbfMX\x15\xa1x\x91\xd3?\xf3\xb2$m\xde\xc7\xb0\xbf x2\xb8\xbf\'\xa3? @%\x11nT\x9a?N/\xcf\x03U\rP\xbfjl\xc2o\xc7.\x9d\xbf\xa0.\xb0\x83v>w?^\xd0M\x1a\xb8\x1a\xab\xbfi\x19.$)O\x93\xbf\xc8\xde\x97\xb3d0\x86\xbf\xe5p\x95\xce\xadc\xc1?\x84\x96c\xd3\xac\xa5\xa9?q\xd1\xb4\xbeO\xb7\xc2\xbf @32\xa7\xc2\x9a?f\xbc\x9d\xd4I\x0eq?\xe0\x8d\xc4{\xff\xcd\x7f?\xd6\xe4$k\xf4j\x9c\xbf\x92\xf3e>\x84\x98{?\xa4\xca \x9b,A\xbb?*\x05A\x9d\xeb\xbc\xb0\xbf\xf5,=3k\xf1\xa0\xbf5O\x1d\xc8\x0b\x90\xc5\xbf:,\x97\xa8n\x80\xac\xbfAm\xb3\x01\x8e\x8d\xc4?O\xdb\xb4\xed\xf8\xa3{\xbf\xf7?\xcf\xbd\xb4A\x9d\xbfPY\xb2\xd7\x8d\x12r\xbfH,\xff\xc9)\xf9;\xbf\xab"\xef\xbc\xfb\x82u?\xc5}\xba\xb4\xdc\x05\xa3?1F\xcb\x8f\xb1\xca\xb9\xbf,B\x87\xf9E\xca\xb3\xbfL\x06\x16\x05,O\xc7?\x15\x1bg\x8f\xe1\xf5\xc3?B\xc3G\xe2\x16[\xbc\xbf\xbaxw\x9fdK\xbb\xbf\'hY\xb7\'5\x94?\x18X9d\xbd\xca\x92\xbfpWxi\xec\x9ew?h8\xc7Xt\xf3y\xbf\x81\x0b\\\xa0K\xbf\xb4\xbf\xbe\xddpc\x7f\x1e\xc0?\xa5\xa0\x1d\xa5\xd7{\xb3?\xf1\xe7\x95\xb1\xe1L\x96?R\x1b\xb0mo\x8du?\xdbl\x9d\xa9\xeb\xa2\x98\xbf\x15\xfe\xc2\r\xaa\x08\x81?\x8a\xad\xf4\x18X\xfaQ\xbf2\xde\x01j\xde\xd4\xa9?\x9bJt>\xf4\xed\xb7\xbf6L\xccR\xe7\xd3\xb1\xbf\xc1\x84\x0e\xf4\t\xa9\xa2?\x91=|\xd7\xbes\x9c?n\xe0\xb5I}\xd2\xaa?\xac\x10\x1fE\x95Lr?\xc6\xca\xa8\n1W\x83?q\x81\x9am/\xecr\xbf\xffo\x06\x1bL\x8c\x93\xbf\x91\xac\xb3\xb2cvH\xbf\x85=\x075\xa2w\x91?!W\xa4\xfd\xd7\x05p?\xc9\xd0\xe8\xf7\n\xc0\x94\xbf\xe2\xcd*:U\xf8\x19\xbf\xdb\xaf\x7f\x8c\xdfR\x93?\x03\xacG\xb1q\rH\xbf\x99\xdcm4\xd3=\x86\xbf5\x87\xe1\xf1\x00\xa3|?\x13\xb9\x14\xf2\'*s?\x81[\xa9\xd1\t(\x93\xbfP\xffR\xf4\xe8\x1et\xbf8\\\x8c\xfe\xc7q\xa0?${\x11Z\xd2\xe5s?j\xa2\x8c\x99C\xca\x9a\xbf\xb4\x0f"\xd4\xb2=b\xbf\n\x10\xe0\xca\x94\xbbn?j\x91\xd7w<\xb1f?\xb0\x822!\x90\xfa2\xbf\xcc\x92\t4\x91\x9a\x87\xbfp\xad\xc25\xe9\xd9i?\xc4\\\xb5\xf2\x90C\x95?xwL}l\x9c:\xbf\x1c\xd4\xa5,\x0c\xc4\x92\xbf\xc7\xabp\xa9\x98\x93m\xbf\xcc8v\xa4p\xc7p?<\xe8^\xdd\n\xd9L?V\x03,_\x0f6V\xbf\x00\xee{\xa9\xaa\xce\x11?\x8a%q\xfe\x8f\xa2w?\x10e\xc1\x1e\x84~B\xbfD\x9a5\xfa\xedD`?\x04l\x05\xd9#;l\xbf\xde)\xa0\xeb\x10\xc1r?}.vk\xf6\xf6\x80?\xb7|=\xf2\xed\xfd\x92\xbf\xcc\t\\u3Pf?\x1a\xac9Z\xe4\t\x9b?\x1c\xf2\xb3\x19\x9cl\x88\xbf\x0e\xa3\x86\x1f\x85\xa4\x86\xbf\x80hs\xf9a}\x00\xbf\xec?\x04\x03a\xebu\xbf[T9\x9es`q?\xaa\x9b\x9aS\xcaU\x83?x@\x0f\xea\x0f\x16g\xbfi\xd0\x12\xb5\x14\xf1\x83\xbfvO\x89\x12mKo\xbf\xc0Dr\xb0\xd0\x90o?\xd2\xda\xa1\x91O\x11`?\xfc\xcb\x9a*\x8e\x02n\xbf\xb7R\x89\x92\xdb\xdca\xbf\x9f\xf6_5\xfb9\x82\xbf\xef\x00y\xc4\xb1ip?N\x0e\xc2\x83\xf7\xd0W\xbf\x01t\xd8:\xff:z?b\xf5\x9a"Q;v?t\xf9\xce\xc6>\xc5\x88\xbf9\x9e@\xce\xe8\xa5u?\xd1\xcbv\x01\xc1\x8a\x84\xbfR\xba\x00i\x95\x1e\xae\xbf\xba\xa5\x01\xbe\xd62\x9b?\xa5\x05\x19\xa6\xe42\xc1?6\x01#\xde\xd2\x84\xad?\x88\x02\xbf\xd8\x8e\x81\xcc\xbf\xa8)\x88\xe00q\xbd\xbf\xd10\xb6\x86\xd6\xad\xd0?\x1f\t\x83b\xad\xd3\xa9?\x13\xbaP.\xa1\x90\xc0\xbf\xc0J\xd6I\xfcc\x9c\xbfo\x82\x89\xf9\xfc\x1cn\xbf\xedG\x93\xf0\x8eZ\x82\xbf.\xd2\x19\xdc\x1e\xc0\xab\xbf\x93\x7f\x94\xf4\xb8\xce\x96?\xd9y\xb0)\xcc\'\xa9?\xf4\n\xcb\xc4?,\x8b\xbf\xb3\x1e\xdf\xfe(\x1c\x85?\x0eo\x8f+\xe6W\xa3\xbf\x15\r\xcav_\xc1\xab\xbf\xb6\xd9\n1\xb9\xf9\xaa?\xd1\xfd\xda\xd4!\x1a\xad?,\x19\x1e}\xe9\xe6\xa9?\xc8\x87\x149 \x1es?AC\x08\x1b\xe7\x0b\x86?\xc7\x94Zw\x8b\x92u? F\x9f9X\x89\x95\xbfH\xfe\x9cJ@5\xa0\xbf\xae\xba\x05\x8e\xbb\x15m\xbf@\xe2i\x9f\x1b\x1a\x94?\\\x06\x87\xa9\xf6&\xba?\x90\x7f\xfe,Z\xc8Y\xbfb\'\r\xcaK3\xc0\xbf\xefZ9mS\xec\x81?\\5g-\xaeu`\xbf\xcbQ\xf2>\xa7\x1c`\xbfd\xa8#\x9d\xc8\xe1q\xbf\x9fq.\x89\xc0\xfb\x82\xbf\xd91\xbfA1n\xac?\xd1\xdc#\xd9\\U\xc2?\xe3\x1b\x8f\xbf\n\x83\x9d\xbf\xaf\'\x1bG\xe6\xeb\xc2?"\xf1\xd5W\xfb\xbd\x94\xbf\x8d\xd6\x86\x06\xd8\xbd\xcd\xbf\xe4\x8a`\x85\x04\xabW?,\n\xa9\r\x0e\xb2\x90?\xca\x93\'\x99\xf1u\x88\xbf\t{\xdcY\xdb/u?\xd1\x93\xb6G\xdd\x03\x89\xbf\xc7\xcb\x86\n\x94\x81\x9f\xbf\xfb)|y3\xa7\xca?\xb9\xc5\xe5h\x9c\x1a\xb6?N\xe0\xaa\xec{\x19\xe1\xbf\x13h\xe6nJf\xc4\xbf\xd2\x03a\xeak\xfb\xd8?{b\xa3\xc7\xc3y\xba?\xc4\x00\x1a\x8b\xaeW\xae\xbf[c\xfb\x7f0\xe2\xa1?\xa8\x1al\xdciFw?jD\xbb\xc8&\xdc]\xbfH{"\xc7\xb8\x98q?\x852|8H\x0c\xc1\xbf`L\xe7{\xb9\xb8\xb0\xbf~L\xea0e\xab\x97?\xfc\xe8C\x0fc\xbd\xad?\x82o\x99i\xc8\x8a\xaa?\xf4\x134I\xcb\xbd\x94?\\+W\xac\xc7KY\xbf\x1a\x95\xdb-\xc1\'\xb6\xbf\xd2M-\xf51\x89\xc0?*\x00\xec\xe3Jq\xcb?\xaf\xc7\xa6\xf27\xd6\x96\xbfDf\x7f\xab\xd7\x08\xc1\xbfw\x01\xd6\xa8#\xef\xc1\xbf\xdd\x02w\x99\x03\xaaU?h\xd1\xa92Z\xa2\xec\xbe5\xe5\xd2.\x03ej\xbf\xc0?=QTf|\xbf\xf4\x06\xc5\xd9\xe6\xb4\x82?\x1d\xac\xec,F\x93\x89?\xdba\xac\xcd\x12\xd6\x8e\xbf\xfd\xd2{c\x00\x8cy\xbf^S!\xee\xfd\xa6\x84?\xc7\xd2H\xfb\xa5\x07u?\xde\xd8\x8a\x16\xf5\xe0s\xbf\x87\xd4\xba\xf8\x84\x9cq\xbf\xc3\xcdz\xcf!\xfem?\x0b\xa8P\x07\xc9Lg\xbf#\x0f\x84\xe8\xa9\xcdq\xbf\xb6\xab\xc9v\xc14\x80?\tz\x07\xafT\x16f\xbf\xf0\xc8{\xc3\xff\xbcp\xbf|`\xa9\xdf\x8f#\x82?\xdc,\\\x16\xa9 \x81?\x98\xdf\x8ctg[_\xbf\xda{\x95\xbf4\xdby?\xd6\x88r\xd5\x94\xd6h\xbf{\x04\x88\xe1U\x90\x8a\xbfaA\xd9\xf0\xaa]u?\x1d\x91n\xe2\xc0I\x84?l\xdc\x1f(ZpN? \x98\xa2\xbd(\xdeB\xbfv\xb5^<\x91#Q\xbf\x90c0\xc3~{\x83\xbf7=k\x82o\xe0L?\xc0\x98\x01\x08\xd9\xfeE?54\xb2\xf1\xb88\\\xbf\xff\x7f\xc10\xdd\xc8d?\xf0XX\x0fZLu\xbf\xdb\x19s\xb2\xd9#w?\xdc?\x1f\x94r\xac{\xbf\xd0P\x9aktqG?.t\xb6\xb6R\x80i?\x1b\xab-\xb1\x0f\xb4\x90\xbf\xeb\xc5\xe0\xc2e/_\xbf)\xc8\x00f\x05\t|?\xd5\xbbK\xadE\x1af?4\xbc\xab\xff\xcf{S?Y\xc1>\x83-\x89q\xbf\x19!\xf7\xe4D}\x85?\xdc\x98=\xae\x8f\x98r?\x1br\xf9D\x8c\x16\x9d\xbf\xba\x88s\x02cks?"U9\x12\t\x07\x9f?@\xc4+\x8aF\xd1\xef>l\x7f\x96\x18\xbc\x0e\x8a\xbfM|N\xa7\xbe\xa7=?8]\xa2\\\xf9oJ?\x0c\xe5{j\xab\xb4|\xbf\x1a\x84\xeapK%\x97\xbf\x08\x0f\xed\x91\xbaF\x8b?\xda\x9e\x0b_\xa3\x17\xa1?xc\x0b\xfa\x01\xfc{?;\xb2\xdf\x16!\xeb\x7f?s\x07&\x9cthr\xbf\x84\x9f\xec\x96bk\x9d\xbfv\x15\x03\xbc\xd0\xe8\x81?\x0fR\xc1\xdf\xe6\x9a\x92?*\xe4\xdc\xfc\xe2\xaan\xbf\x87FM\x11\x07\x1d\xa9\xbf\xe9\x10\xe5es\xf6\x9c\xbf9\x85i\x18c\xcb\xaf?w%b\x07\x1b\xca\xa3?qV3\xcc\xddE\x92\xbf \xa5\xff\xdb4\xf8\x96\xbf>\x05\xee\x88\xce`d?\x0f\xb0\x0b\xbc\xf3D\xa3\xbf\x9c/D\xcb(\x12f?\xec\x14]\x0f\x0e\xb0\xb9?Qp})\xb7\x84\xc8?\xb9\x03\xe8P\xd30\xbb\xbf\xfa4\xea\x0el\xd1\xbd\xbf/\x16I\xcc\xbbg\xc1?K\xf2\x88Er\x89s\xbf\x1f\xed\xb9q*\x9b\xd2\xbfH\xb6l\xfc\xb2S\xbf?\xa4\xbdv\x0f\xcf\x8f\xc9?\xd6\x88|\xf5\x94\xaa\xc8\xbf\x86}8\xd6\xd16\xc4\xbfB\xd5\xad|B\xa7^?\x857\n\xf5\x83K\xb4?\xd2[nR\xe3\xc1\xc0\xbf\xee\xbd\x81\xd6c\xbf\xb6\xbf>\x0e\xdcl$Y\xcd?i\r\x96\x8b\xd1\x84\xb7?\xc1+y*\x94\x8c\x8f?oPBt\xfb\xde\xd5\xbf\xe3\xdc\xc9\x16T\xe3\xcf\xbf\x85\x8c!\x05yu\xda?\xdfY\x0f\xe8\n\x83\xc1?47\x90\xfcp\xe2\x88\xbf\x91I\x97\xe0\x8d\xc7[\xbf@b\x01\x0e_3d?F\x1b+\xe8Q\x9e\x9f\xbf\xea\xc5\xf2\xab\xe3$\xa8\xbfM\xe5\x99y\'\xd5\xbb?L\xdcwmR\xa1\x80?\x01\x82\x04\x99\xceD\xae\xbf\xc2-\xb8\xdap\x86\xa7?\x80\xa8\xd5&\xe2/\xc1?=P,\xcch>\x83\xbfl\x1b)\xd0\xad\xee\x95\xbf0\xbb\xc7\x00\x8d\xbbu?\xf6;\xffn6\x15d\xbf\xa2\x8a\x11\xba\xe5\xfa\x91\xbf\x18qcm\xa4sF?\x87\xc7\xe1\xf7\x15\xd3\xbc?n\x12:\xac\xddq\xa7\xbf$\x9dl\xb7\xf1y\xc9\xbf\xc6Ig\x89\xa0\x7f\xcb?\xec\x00\xa8p\xb6Y\xba?\xac/\xc8\xea\'\xf0\xb8\xbf\x0b\xe9\x1f\x85\x9d\x10n\xbf\x98\xec\xae!\xb1\xa5\x9d?\xc3\xe3\xfdg\x07\xe7\x8d?\x19\xadr\xe0(\xbac\xbfq\xdf\xe6\xf0\xe8c\xb1?\x16Q_b\xba\xe8v?x\xd2\xa7\xf2\xdf9\xbc\xbf6\xfa\x7fp;@\xbd\xbfN\xc6\xdcS*?\xa7?\xe75j\x91\xce\x9c\xad\xbf|\xef\xf3<\xa7\x17d\xbf\xf0\x99_E8\r\x7f?\xf2\x0f&\xab\xfe\xba\xb3\xbf\x98g\xaf\xdd\x16\x17\x95\xbf\xd7\x13\xb0.p\xdd\xc1?\xff\xaf\xe7N\x83\'\x8d\xbf\xc6\x8ek\x13\x9b\x98\xb0\xbf\xde\x8e!\xf0 \xe7\xa8\xbf\x0f\x99\xa6\x12$\xb1R\xbf\x82\x83\xac\xa3(Vq\xbfU\xac{\xd1\x1a|y\xbfh\xc4h]\x02\x14M\xbfi\x82\x80|A\xf0\x88?\x84\x96;\r\x02\xd5b\xbfSmS\x14_\x8ek\xbf\xd7,\xb0_\xfd\xe6\x8b?\x81k\xbf\x1eg\x03P9VP?UJ\xf1J}fq?\x94\xdd-\x85GsW\xbf\xb8\xfev\x86\xcd\x9ai\xbfpQ:pF\xc29\xbf\xc8\x9f\xafJ\xc3\xff3?\x88\xd5P\xd0M\xb6\x82\xbf\xa2\xa7uZ\x0e#|\xbf\xf4:~L\x8a\xf7\x92?8\x8aKI\xdf\x82d\xbf\xf0\xc4Y\x85h:p?\xf0I\xdc\xf2\x91,\x86?N\x1dn\xe6A;|\xbf\x1f!*\xe0_\'o\xbfZKj\xd0\xeb1\x8f\xbf\x98^\xf0c\xd0m\x97?\x1f\xd4\x90\xa4j=\xb0?\xb4o\xe9\xb9\xf9\x8b\x9b\xbf\xe4<(\x14o\xa9\xb6\xbf\x9fsvp\xa7C\x90\xbf"\tG\x15\xdb#\xa4?Q ^Y\x13\xe7\x9c?\xfa)\xf4\xe9\xec%\xa0\xbf\x90F\xbfD\x89n\x9e\xbf \xb2\x9f\x08H\xc3\xb0?\x1b)b\xb6(\x14\xa9?,jp2\xdd\x00\x9d\xbfx=\x88\x83\x8c\x13\x9e\xbf\x96o2\xd0h~S\xbf\x94\x18\x02\xbb\x8c\x14\x9a\xbf\x8b\xb7k^v)z\xbfN\xa1,\xdb\xb3\xf1\x81?\x9e\xef\xde\xf1h1\xa5\xbf\xd6/\x9cp#\r^?\x10\xd2F\xb1\xd7\xe0\xa0?.+\xe5\xd7\xcc.\xbe?\xe8\xc8\x1f\xe6\xd3\x1d\x83\xbf\xabF\xa6\x91\x08\x83\xb3\xbfd\xc1g\xb0|\xe3\xad?\xd7\n\xd1\x91\xeaX\x84?p\xe4\xa1\x9cH\xf2\xca\xbf\x99c\xf3\xb5\xbdO\xab?\xb0x\x1b%\x92;\xc6? \xc4\xd7\xa5C6\xbb\xbf\xe8\xfb\x11\xa0\xb8\x90\x93\xbf,\xfc\xcdUH\xa4t?\n\x0e\xbe\x8a\xa9\xf5\xb1?\\o,\xf7\xfb\xa7\xbb\xbf\xa9[\x94\xcc?\x0b\xba\xbf\x0c\x8b\xb7\xe0\xc1\xc2\xc3?G\xf7 HlE\x8f?\x80\xf2_\x8eFXT\xbf\x8e\x10\xbb\xf3 \xa9\x85\xbf\x1eK\xe5Y/\xba\xc4\xbf\x0e5\xc2\xb5\xbf>\xa6?q\xdb\x04\xc6\xf3\xdf\xbd?\xfd\xf97\xa2;r\x8c?\x15\xf6\xcfg\x8f\xdbw\xbfr\xec\x98\x9f\x96\xa1\x84\xbf\x9a(\xd5\\\x12)\xa1?f\x1d\xa3h\xa83\x92\xbf\x05\x0e\x10w\xf6\x9c\xd4\xbf\xfcv\n@\x1a\xf9v\xbf\xb9bk\xbf\xb39\xd5?m\xeek\x00\xb88\x97?\xde\xfc\x07i\xbb\xd3\xc4\xbf\xf5\xe0Qb\x96+`?\xa8\x05\x11\x88C\xa8\x89?\xca\xc8>\xdc8Hr\xbf\x0e\xd1F\x16\xe5\x05\x84\xbf\x9c\xe5m0\x1b\r{?d\x9cx{_\xff\x89\xbf\xcb\x8f\xbf)b\x7f\xa7\xbf:v}\xbaBh\xd1?\xb0\x06\xc2\xee\xa3\xf2\xbf?\xbe\xb9\xadd\x9b\x88\xe0\xbf\xaaA\x0fr@\x14\xb6\xbf\xbcF\x89\xb1]\x8a\xcb?\xe0\x98.\xe8\x19\x91q?b\xc0s\xe1\xbd\xa3\xa5\xbff?\xf5\x81\xbc\x84\x9a\xbf\xba\x17I,-\x80}?72^\xfc\xfaA\x9e?~\xa6\x87c\xeb)\x8d\xbfP\xc2\x05+\xc7o\x9a?j\xda\xf0\xf9\x14A\xcc?\xbf{\x9d?\x97\x1f\xa9\xbf\xae\x1c\xec\xf1\xfe\x9d\xab\xbf\x83\x83k\\-6\x8b?g\xf0kC\x9c\xb2\x83?4\x15\xc9\xd9\x8f\x0e\xaa?\x850\xbc\xd1\'\x87\xa0\xbftr\x0bK\x8f\x92\xb2\xbfd\xd4\xc52\xecW\xb7\xbf5\xcd\x04\x91\xb8\xc2\x99?\xa2\xfd\xe8\xe8\x9a\xe6\xc5?\xf5\xb8\xb4\x93\x97\x0e`?e=K\x07\x82\xb5\x82\xbf\xaba\\\xa0Z1\x81\xbf\xc6X\xd4\x8c\x0c\xa5\x94?\xb3\xf1]\xf2\x1e\xb8\x81?\xf9\x96A\x92\x84\\\x90\xbfy\x9el+\n9\\?u\x98!\xf9c\x98\x80?\x03n\xc7&\xe3\xfeo\xbf\x0bh\xae\xc4Q\xd8j\xbf\xc8W\x9a\xef\xa2\x00}\xbfM\xb4\xc1\x94\xe1\xd1\xab\xd0u\xbf$w\x8b9\x7f&6?p\xdc\xefJ\xe0\xb3]?\xfc0\xcd\xf3\xa9\x82i?x\tCw\x16\xacx?~\xd4mI\xc2\x9at?\x9c&\xac\xc2=\xffk\xbf\xc2\xd7\xba\xf0\xe6\xe0f\xbf\xb6\xfbM\xd1\xc85\x82\xbff@~\xa9\x96+\x80\xbfx@\xcd"\r2\x8a?W\x93\nF\xf2\xcbp?\x06"\xf8\xe8\x1a\x81t\xbfp\xcf~\x04\xe5\xe0V?\xe0nO\x00\xb7\xe2*\xbf0)\x98\xcd\xf7\xf5T?\xc8]\x89\xa5\xdfb\x90?z*kU\x96L\x88\xbf\xb9\xbb4\x80\x08\xa8\x85\xbf\xcc&yy\xadVd?\xc1\xaf\xb1\xa1#\x1at\xbf\xd6\xed\xbc\xbb+\xffx?6)\x85\x0f\xfdLp?:"h\x91\xbe\xaay\xbf\xd3C\x82\xd8\xd9\x03{\xbfTP\x13\xdb\xa9Z\x85?\xd4\xb5\xdb\\\x17\xe1\x82?\x073}H\xd2\xae\x82\xbf\xd8\xe5\xb5\xba\xd8\x07\x85\xbf\xbf\\P\xe5\x82{r?&\x9f|\x11\xb4\x81w?\x08\xfc\x11\x94@\x10F\xbf\xc4\x9aF1\x0c\xcaT?\x0bxZ0\xca\x9b\x8e?d\xdf\x0b\xbc[%\x7f\xbf\xa2s\x12\x04\xecW\xab\xbf\xc9\x03\xd2i\xb9\xdc\x97?t\x94\xa2\x8bi\xef\xb0?\x00n\x871Oev?\xe6\x8d\x9d\x98\x07G\x9f\xbf\xafG!\xbc\x08\xfe\x8b\xbf\x8f\xa9{\xea]\x84\x80?k\x94\xa6i~\x7f`?\xdc&\xd8\xbd\xe6\xedD?8BJ\x84\xc1F\x93\xbfX\x95\xa0\x01p\x85\x83\xbfio\xd1\xe3\x8b\xa0\x87?\xd0\xbcv\xef]\xacx?0l\xf6\x1a\x7f\x138?\x8cT\xd3$\x010_\xbf \x0fP\xd9\x91\xb9`?R\xe8a\xb5Ic\xa6?\xc7\x02\x07\xe1\xaa\xf7\x84?`\xf8\xfb6\xd8\x0f\x96\xbf\xf1\xe4=\x11\xe8\xcd\xcb?\xf2(\xff\x0f\xab:\x93?\xca~\xcdcC\x1e\xd0\xbf\x89\xb2B[\x17\xf7\xa7\xbf\xf9\xe6Vu\x0b\xbd\xa0\xbf\xfa8Mj.\xd1\xc5?\x95\xad\x0e4\xde\xa1\xd3?0:\xc71\x05\xf5\xc2\xbf\x8a4\xb5\xd7b\x87\xd0\xbf\x9b\xfaS\xb0>\x0e\xaa?\x042\xbf\xcc\x9b\x06\xa3\xbf^6w\x87i\xb9\xa4?:\xc3\xda\xefY#\xd0\xbf\xe5\'x\x9c\r\x19\x99\xbfi\x16\xee\xc2\xf4\xe0\xcc?\x83\xd5\xa5\xb7\xf1\xe8\xb5\xbf\x99C\xc6\x15(\x1e\x85?\\1\xa8 \x18\xc4\xd4?(\xd2\xb6p.\xf3\xd0\xbf\xe5\xdeEi\xe1R\xd4\xbf\x9c\x94|\xa8\xf2\xe9\xd3?b}\xac\xecj\x00\x8b?\x96\x89_\x8eU}]?7GMW\x02_r\xbfV\x8e"}\x8c2\x87\xbf\x1dx\x9b\x1c[l\xa5?\x11wV\x1b\xf8\xe4\xc4?\x02\xc1A\x8d\xb9\x8e\x8f\xbf\xfe8\x87[\x01\xddq?f\xf3\x7f\x83\xe1\x10\x9d\xbf\xab\xf5Z\\\xf5\xba\xc2\xbf\xfa6\xe7\x13\xdf\x99\x89?\x96"\xf4Zt\xf6m\xbf\xf8\xb37\xd4\x81\xc2\x88\xbf$\x9e\xeb\xc7\xad\xad\\?\xc2\xc6\xb9\x1e7mO\xbfLB\x7f\xf0\xb7~\x8f?\xb6\x96\xb1P2\xbd\xa5\xbf\xb3S,\xe5\x9d:\xc1\xbfir\x18\x0c\xd3=\xb5?B\xfc\xad\xd4\x04\xa3\xb9?N\x8cpMUj\xa2\xbf\xca\xaa*h\x0f\x0b\x9a?\x9e\x8c\xc0l\xe7\x10a\xbf\xa8t,\xaa\x93\xca\x83?\xc8\xdd\x99F\xb9I\x94\xbf\xd6\xb1\x81S\x1b\x90b\xbf\x98\xd85\x01\xc2\x93\x83?o\xc7\x0f\xe2\x96\xc0\xb7\xbf|D0\xac\xc47U?\xfbXZ\xc3}\x83\xb4\xbf\xac\x0b@\xd6o\xca\x94\xbf\xe1\x83R\xfd\xe3\xb7\xc6?D\xadF8\x17\xab\x94?\x97KA\'9\xfe\x80\xbf\x1b\x93\x9f\x8aF:\xa0?3?\x9e(x\xe9\xb6?w\xf3\x14~Q\xc5\x9d\xbf\xe2l\xb0\x8e\xc4M\x82\xbf\xb8\xdc*;\n\xe0y\xbf\xe4\xbd\xf5\xf4/E\xb8\xbf\xdc\xa6\xcex7\xc2P\xbf{o&rh\x8av\xbf\xd8E`\\\x086s?\xcd?#\n3"\x85?\xcd7f?\x0f\xa2u\xbf\xecg\xe9\x074\x92\x87\xbf\xd6\xa0e\xea\xab\xf5j?a\xbd\xc0\xf8v9\x81?\x13\xec\xbd\xe4i\x92Q\xbf\x8be(\xc8\x153j\xbf\xd8<\xa7\xbb\xd8\x11h\xbf\x06\xa2\xd7\xea_\xf1-?\x07Gi\xc1\x93\x99c?qa\xea\x19K\x0eo?\xa3\x9c\xd0\x9e\x88\xb5p?\x8e\x8f\x95\xc3\xec\x12q\xbf\xe8O\'\xf1\xa0q^\xbf5\x99\xa9\xb0D2e?\xe6bC\xbb\xbe\x9dk\xbf\xd2_\xc8\xba>eO\xbf}\xc9\x82\xed\xdc\xd5v?>\xb2\x9e`T\xddl?\xc9\xcdt2\x9e\x90\x7f\xbf\x97z\xab\xca\x96\x93\x88\xbf\xc1p\x02\xa4l\'`?T?\x16\xce:\x8a\x8c?K\x13E\xe6hwY\xbf=\xf38w\xacG{\xbf\xfa\xcf\xdc\xe9\x87,r?\x0e\xc4\xeck\xbd\x9c{\xbf\xc4\x1aW\x06\x8a\xef?\xbf\xb38\xcf\x1d\x1c\xd3\x89?\xacz}ER\\Y\xbf\x86A\x9d]\x8bHv\xbf\xda\xa2\xecD\xe6\x8c}\xbfw\xcb\xff.\xca.\x81?`\xae\xa8T\xcc\xdfe?\x14\xa1\xff\xaa`\x80\x88\xbf\xfc\xa7\x88.\x14\x06a?\x0eI\x99C"\xb4\x80\xbf\x01\xd9\x00\x86\xb9E\x82?\'\xed\xd0\x16F\x8f\x90?\x99a\x1e;\x95\xd0h\xbf\x8c\xbf\r\xaf\xcb\x1ey\xbfN\xc8MB#\xaen?\x97\x98\xe1S\xe3\xf6u\xbf<\x10\x14\xc8\x82#\x89\xbf^\xc5\xc1\xf8\xd99\x85?)\xba\xfes\xcf\xa4\x81?\x9f[\x91G\xa3\xe8\x83\xbf,\xe7;}CTs\xbfl\xd4B\x07G\x16f?\x00\xa4!\xaf\x99\xd36?\xa0z\x99\xe0\xf2Z;?f3r:\x055\xc2\xbf\x98\xb5T%\xa9Q\xb6?=\xda\xe4@\xf1\xd5\xdb?j\xe2\xa0UZi\xaa\xbf\xf2\x1es\x197O\xdc\xbfx\x1d\xc9~\x84\xb2\xc0\xbfI\xde\xc9\xf4\x96&\xc4?f\xd2\x05n\xfc\xc8\xb8?,\xdc\xf1D\xb7\xef\x84\xbf\xdf"N\xeae\xb2\x95\xbf\x11\xe0\x9a\x8c9\x13s\xbf\xb9\xe5\xa2V\xca{\xa4?\xf8\xd0\x9fl\x85?w?\xe4s\xf0\xb0S\x02\xa3\xbf\xdb\xbf3\xb5X\xbd\x92\xbfZ\xf21\x19\xfa\x1d\xac?\xeb\x836\xb8f)\x93?yU\x1a\xb7\x1e\xcc\xa2\xbf\x83\xd4\x90\x80\xf3!\x88?\xb1\x92DP\xcc\xf5m?\xaa\x8dHH\x9b*b\xbf\x8a>D\xcc%n\x96?X\x0bV\xecl^5?\x82\nAoG\xa4\xa3\xbf\xb4\xfd\xa5\xfd\x07Z\x92\xbf\xe4\x829\x95\xd4\xcda?\xed\xdd\x8b\xc9\xc9\xcb\xaf?7\x02&\xbb\x1aq\xa2?C\x85\x84P\x9e\xcd\xa9\xbf\xb3S1\x8aB \x99\xbfG\xa5j\xd9\x9a\xe1\x87?Y\x04\xee\xa7o\xdcx\xbf\xffU\x9c\xde"\x19\x96?IV\xa6p\x88\xa2\xa7\xbf\xf6\xc7\xf2\xba)\x1a\x99\xbf\xfbwQ\xfd\xb1\x93\xa4?\xcb\x06\xf7OZ\x0b\x84\xbf\xa7u\xb3JWcu?\x11\x9d\xfdP\xca\x7f\xaf?\x96\xf6G\xd9\xc9\x9f\xa8\xbf\xc5\xc80\xc3\x93\x85\xb0\xbf5\'\x9a/&<\xac?\x85Gs\x9d\xbdt\x94\xbfi\xf9\xb5$\xa8\x9c\x88?\n\x89Mk\xc5\xad\x83\xbf\x01Ut\x9f\xc9@\x91?<@\x8a\x1c4@l??\x10\xa9\xdaR\xaf\x9e\xbf\xf6=^O\x17\xa1\x81\xbf\x10Rx\x9f5\x03\xce\xbf\x86\xaa-w$Yn?\xbe\xee\xdc\x86\x08)\xcb?\xb6\x94\xbee\x9c\x83P\xbf} *\x01\x8d\xf3x\xbf\xa7\n,Z\xc10\x84?E\xd9#\xfeq\xfbv?D\xca\xf3A=\xacj?\xce\xf4\xb1DM)l?@\x0bF_\x806\x14?\x82+\xd6\x90\xa9\xa1\xb5\xbfP3\x0c.\x03\xa7\x98\xbf\xe4c\xbc6\xec\x18\x9e\xbf\x97\xee\xbd\x17\\\x19\x9f?K!\xf4\xefKT\xb9?\xcc\xb6\xfa\xecHz\x80\xbf\xd8\xddud!Z\x94\xbf\xbb\\\x8d4\x04\x81\x9f?\xf7\xd7\xac@D\xc7\x81\xbf\x89\xa4 E\xea\xfal?\xfeL\xb5\x98]e\xcb?\xa6\x9e\xda\xc8\x85%\x90?\xf4\xc7\t\xd1=\xae\xc7?@\xae\xd1\xe0\xd3\xcap\xbf\x081\x15NA\xd7\xd7\xbf\'\x82\xefy)\xcd\x84\xbf(/T\xc7,\x9fe\xbf\xe0\xfc"\xdf\x0e\xa2\x84?[t\x1d5\xb0\xf8\xcf?\xc7\x1e\x9dPfv\x9c\xbf\xcf\x97\x0br\xc2\xd8\xb3?\x8b+l\nf\xffW\xd9L\x15\xcc6\xbf`\xa0\xf3V\rb?\xbf\xb0\x0b\xe5x\x85+A\xbf\xe9\xe2\x8cp\xaa\xbcp?\xfe\xf1\xe1\x98W\xbbi?\xd73\x13Z\x99\xdf`\xbf\xc0\xe5g\xcc\x03\xf1T\xbf\xc4\xa8\x91\xb4\x85\x96]?[\xab|c75i\xbf\xe8\tE6\x1f\xdd\x1c?\x183\x8by\xcbn\x7f?q\x10\xc1\x08\xd5\xa7b?AiLz\xdf\xbb\x86\xbf@\xce\x8f\xf4/\x93@\xbfE6\xeeG\x93\n\x8c?n\xe8\xeb\xeb\x92\x87s\xbf\xad\xf1\xe6%$7\x84\xbf\xd6\xde`k\xba\xc4{?\xd8\xbd\xd0\xd4l\xed~?\xc0bw\xbd\xad\xc0d\xbf\xf9\xd6\x06L\x12\x7fv\xbf\x9b{2H\x1e\xa9w\xbf\xa0\xc9\x03\xc7\xa8W[\xbf\x1afp\x05\x94\xc9{?l\xc3\x88\xd3\x87\xd9G?\xcc\xab\x1f\xa7X\xb4f\xbf\x98\xb2\xe9e\x07<(\xbf\x9a\x8f\xfacA\x81}?\xe0AM?2\xb9k\xbf\xc0\xdc\xc1\xf0\x04\xfcc\xbf\xf8|\xcd\x15\xdb\xb3`?\'\x94uB=\xa8l\xbf\xe0}\xc5)\x96{ \xbf\xea\xac\xabht\xd8x\xbf\xe89\xd7\xe8\xa1\xdfA\xbf\xbc\xfe\x90\xebK\x80\x81?T\x930\x86\xd2\x00m\xbf\xdd\n\x95?\xd8\xf2\x84\xbf\x80\xa2\xf2M\x12t(?>O3\x87x\xe6z?"\x99\xeaF\x1d\xe1d?\xb0\x08\'\x17qY\xbb\xbf\x96\xf9\xc7\xd4\x1a\xd9\xa0?"\xb1j\xb7\xe7\xef\xd5?\xbeL\x95\x92\x93\xc1\x94\xbf\xf4\x0eX\xbc\x88-\xd8\xbf2\x17(@\x9b\xed\x96\xbf,\xb4\xf2\xb1\xbb\x9d\xc2?\xfd\x87W\x92\x97\x83\x96?\x00h\x87R.\xe2\x06\xbf\xed\xad3\xf0\xd8\x9e\x81\xbf2\xae\x1b\xf5m\xc9y\xbf\xb3Z\x0ch\xca]\x90?8\\H\xb9\x8c\xa9Z?\xcd\n\x96\xa0.\xff\x9d\xbf[\xf5\x10\x0c_\x15i\xbf\xc8\xde\xe7\xfc\xaf\x19\xa1?E\xe4r\x90\x00\ty?O\xd7\xcc]d\xb8\x99\xbfrQ\xb46B\x87\x8f?\xee\x14\x8c3\xc16u\xbf\xdf\xf7,g\x94\xd4\x93\xbfaB\xb8\xe2\xd8\x8c\x9c?\xe4;\x9e=`m\x98?\xd16\x18h\x13\xa5\xa6\xbfB+i\x0f\x1c\xbd\x8d\xbf\x9a\x85S\xf2\x04\xd7Q\xbf\x1c\x81n\xd6\xe3`\xaf?%4&\xa4\xe4\x12\x99?\x93n\xfd\xfd\xff\xba\xab\xbf\xc4\xe1\x01\xc6\x92\x86m\xbfp\xad\x06\x02\x80G\x96?\xf7\x8fd\xf7\xcb\xf0v?\x08O\xb3\xec\xfb~\x94?\x13~\x0c\xec>\x96\x9d\xbf\xeb\xbaA[8\x81\x95\xbf\xf8\x99\xbbS\xe6\xb4\x8d?\xaa[\xfd\xde\xe0\xbe\x9f\xbfl\x83t+\xc9\x03d\xbf\xb1\x93vm\xe8S\xbd?\xb7G\xae~/\xd5p?\xd9\xb7\xddf5\xa5\xbc\xbf\xea\x1a\xae\x0f\xe7\xbb\x88?\xfb\xe1\xc2P\xa7*c\xbf\xf4\x0f\xc4\xa4$\xe5H\xbfN\x9c2\x89j\xfdm?d\xa0\x16\xc5ux\x89?"#|)\x1aG|?vc\xb1\x16\x10\xa6\xbf\xbf\xd9\x03\x9f\xfdo\xf8t?/\xaa \x1as,\xb3?\x95g\xd0\x94\xa7\x93\x81\xbf\xd8jp\x1e\xbf\xcc\xb6?\xe0\xb8\xaa\x03\xf8\xa9\x84\xbf8|U\x00Q\xdd\x81\xbf\x9d\xbfk0\\\xbf\x8b\xeb\xa7\xbf\xefC\xc7r\xc5c\xdc?\x14f\xa7\x8b\xe6wm\xbfI\xde\x0c\xe3\xd7\xf8`?{P\xcf]\xafhu?;)<\x10\x01Oj?\x7f\xd4\xb6ec@B\xbf\xb5\xfe\xd6\x9c\xba\xab\x84\xbfvT\x001\x9f\x05f\xbfX\x0048\xc7\xc4i\xbf\xd2.b\x82\xedqJ\xbf\xc5\xc1\x841\x03\x04\x8b?\xe3\xda\r\x9e\x82\x1dt?\n\x1f\xb2@\x0c=k\xbf\xe6\x9f\x0c\x8e\xe9\x92p\xbf\x86\xc9\x86\x9a\x89[x\xbf\x8e\xb4_,\x8fir?\xa4j\xdd&\x8f\xb9m?\xdc$\x0cr\xd8\xd6\x88\xbf\xb6\x9c\x07\xa9\xe4\x84j?\xd4\x1c<^\x9b@\x83?\x05H\xccX\xb9dW?&\xef\xdc\xd8\xd3\xedk\xbf\xa4)\x08\xbb\x15ry\xbf\xb4\x11)\xb0qqs?\x8eq?N\xe6vy?\xb8]ypNlS\xbf\x963\x99\xad\x13,|\xbf\x9e\xb9J\xecfNg\xbf\x9e\xe0\x878Nsm?\x98\xaau\xe0\xedqQ\xbf\xb2\x9a2\xe2\x07c\x80\xbf\x90\x16\x9f\xcf\xc2\x88Q?\x90\xcc\x80:S\x9a\x82?P&\x87\xf6yAJ?\xafz(\xb0\xf4\x12c\xbf\x80\x08\x13\xd7D\xba\x15\xbf2\xeb*\xd1v\xd9k\xbf\xe0\xe8\xe2\xa0\xe1+\x1c?+\xe1\xd1\xca\xcf\xb9\x86?\x91\xb7\xc5!\x85wx\xbf\xa6\xc5\x8d\xfb\x0c\x94\x90\xbfY\xd3\x7f\x90>\xf0o\xbf%+`\xcc\'5\x88?\xb2\x93\xe9V\xcf\xc6S\xbf\xfcu2r\xfd\x87f?\xf0\xd4\x81\xc8f#Q\xbf\xf8\x9c\x94\xc0\xc1G?\x98\xd4\xcc\x96\xd7:|?\xd6\x94iF\xa6\xc3n?\r{ \xe0\xe3fR?\xd4\x87\x04\x01\n\xae\x7f\xbf&(fn\xed\x18u\xbf\x08u\x10U\x12\x9ev?\xe24\x86\xab\xbdVt?N!"\x0bY\x9c{\xbfuH\x05\xf0k\xa6k\xbf@c\xc9\xb3\n\xcf}?\xd2\xa8\xda\xb8!@:?\xed\x12\x99\x81^\x9f{\xbf\x95x\xc9F\xb2\x18W\xbf\xd4\xbd\xe9\x18X\xe4t?\xdf,l\x9eno\x82? \xa5\xc5\xfb\x80%6\xbf\xf99U\xfb;\x89\x80\xbf\x10\xceM\xc5a\x13@\xbfv\xca\xa9\x8f\x8e\x83v?\xfeH[\x99\r\xf1a\xbf\xcb\x04!\xb3jeF?dG\x13g\\wY?\x02\x8b|x\xe6\x19t\xbfj6d&e\x00k\xbf\xde\x81\xce\xdd\xf0\x87`?u\xc7\xc4\x0f\x12\x86\x80?\x00\xbaJ0\x9b\xda!?x\xa8\xd0\xdb\x976\x7f\xbf\\\x9103\xb9#@\xbf\x95\x16\xf7\x19\x88\x81h?>s\xc5\xe8:a^?\x8fk+\x7ff\xc0r?[A\xc3U~\x01q\xbf\xb9\r^p\x9d\x12Z\xbf\x82U\xc9\xa2d\x96q?_Z(\x1f\xbb\xb5i? T\x80\xe0;\xc4\xfd>/\x01Kw\xa0\xf5x\xbf\xdc\xa6\xd7\xb2\x18}8?\x9c6\x1b\x8d\xb2pt?\x02-.\x9dd\xf9Q\xbf\x10\xce\x11\xe0\x88gC\xbf\x00Q\x90[\xf8qQ\xbf;\x9a\xc0EkLW\xbf\xac\x11#\xb6/\xfa\x86?\xb2lt\xc6\x06\x02o\xbf\x16\x8cX\xe1\x1dy\x88\xbfhK\xd7\xd0\xa9\xfbh?\x00}\x10\xba\x89{\xf7>x\xfe\xc7\xd4\xa5\x01D\xbf\n"cS\xb7\xa9a?4mI\xbd\xea\xdaq?\xeaHyf_\xad\xb1?\x18\xfc\n\x83?X\x94\xbf\xb5:\x07\x1d\xab\x13\xb7\xbf\xbf!e=\x8b\xb2\x96?K\xe0\x036\xe9\xb8\x8f\xbf\xfdl\xfc\xa4\xbd&~\xbf\x8bj\xa3\x7f`\x0e\xa2?F[>P\x08\x8bt?O]\xd2\x98a\xc3\x84?\x92\x81G\'5\xa2\x88\xbf\xf2\xa9\xce\xe1\xde\x9f\x83\xbf\x84\x887\xa7z\xd6\x7f?&\x05\xc3\x91\xf7\xdfu\xbfm%e\x9e~ff\xbf@\xc0\x8cN\x03s\x8a?\x84\t\x1cn\xdd\x8ff?\n\xde\x12d\xa1}g\xbf\xb6)\xf6\x07\xea,n\xbf\xb0Kpx|_D\xbf\xcc\xcd5\xc5\xbe\xe8W?V\xbb5\xc0\xa9Jt?\xe2\x1a\x1f\xf7\xe7\xdc\x84\xbf\x18\x9f\x8d\xab\xe7\xe4C?\xa0!R\x81\xe0\x1b=?\x0e\x03\xa2LJ\xefr?Sy\x11y\x7f\xf2\x8a?<\xaa+`>d\x93\xbfr\x1f\xc1=RCY\xbf&\xde\xd1\xe1\xd5\xbdz?\xdd\xeb5\\X\xd2_\xbf\xdc}e\x17h\xbdt\xbf\xe2I\xcb\x94A\xa2\x94?\xbc\x05\xe8ks8\x90?\x0c\xef~\x8dDJ\x8d\xbfk\xde\n\xf8J\x06\x95\xbfm`OuKYw?P\xa9\xcc>\xe0:2?\xc8\xebr\xfb\xb8L\x98?lXplmW\x9c?v\x88\xa3\xb7\xb6\x03\xa1\xbf9)\xa1\x03*\xad\x95\xbf\x12FY\xa7\xb0\x17[\xbfV\xea\xb6\xe6\xf6\x02l?Xo\xea\xa0\xdc\xeb\x81\xbf\x18\xbf\xc7uW\x1dz?N\xf1A3\'\x1d\x8b?\xe5]\xbfn\xffI\xd2\xbfr\xb9(WE\xae\x81\xbf,L?[\xadX\xda?"_\x05\x00r\xdbr\xbfF\xf4\x18\x16\xb9\x92\xb8\xbf\xce\xb0\xb9\xc3|[j\xbf\xda\xf0b\x94\x08\xd4s?\xf4L1\x89\xa4Lk?F \xee\x0c\x14Qr?\xa2\x00\xbfb\x7f\xa9S\xbf1\x94\xc7\xb3X|a?\xe9lK}\xdfi\x8a?\xb3R\x16\xd5D\x93\xc7\xbfF\x93\x16\\\xc2NY0\xbfZ\x03f\xd1\x0c8L\xbf0`\x1e\xc6.*^\xbf0$c\xb3f\xcaQ?\xf5\x0e\x92\x06\x01\x93q?\\\xe1&\xe0\x13mf?w\xc5i< \x96V\xbf\xce\xdd)\x18\xce\x9dw\xbf\xf5\xff\xbb\x96\xd3\x80d\xbf\xa4\xc1\x9d4\x17\xe9f?\xb1\xa2\xcc\xa2\x842j?\x9ew\xf3\x03Ld4?\x83\xce\x8a_\xd10$\xbf\x9a8 o\xfe\xa8\x1b?#\xb5\xf9\xc3\xc5\x1bP\xbfp\x0c F\x0c;c?\x84\xff\xca\xdd8\x08D\xbf\x8c\xd6q\x93\xdc\x08d\xbf2\x98\x96h2\x03@?\x86\xa81bY\x9dS\xbf\x88\xe9bW:}\xf5>\xcaD\xf1]9\x19k?7u\x12\xce\x8b\xa2T\xbfb\x96\x99x\x96F\\\xbf\x07\xdcP\xf1t\x14N?b\xf5\xc50~\xa5P?aY\\\xd8\xb5\xdb[?`\xb6X,\x8dzK?\x92\x91\xc1\xc4\x04\xccI\xbf\tK;\x9cH\xc8P\xbf\xe7B\x9c\xcb\x134b\xbfX\x0cm&\x0eX7\xbf\x9e\xb9\xd6\xd6\x94%*?HQ\xefYW]d\xbf\xf2\x16m\xbc\x04{M?\x02k\xef\xc4\x18:f?\xb48L\xd2\xd4\xd1n\xbfj\x04\xb9\xd8,\xb3n\xbfHXG\xfd\xad\n ?K\xd5\xfb\xbb\xd5\xa5q?\x8aU\x12\xa9W|q?ao<\xe7_\xf8p\xbf~pk\x15"O[\xbfq^\xab\x7f\xce\xddp\xbfs\xde;U,\x16S\xbfU\xd2\x93\xf08{\x81?\xccXU\xecr\xe90?\xdb\x11\xff\xf5\xb0\x86p\xbf\x1fSMg\xed\xe5h\xbf7H2V\xcd#2\xbf_1\xec\x91Uvx?*\xe4\\\xb6 @J?\xf6E\xfd\xe7?\xfak\xbf\xd0v\xf5\xf6\'\xef\x00\xbf\xbcd\x8cw\xe2\x10\x98?*\x18R\x88\xa2\xd9i\xbf\x90\xcfK8\xb7\xa9\xb2\xbf\xc5\xb0\xa7\x96\xe1,~?\x88\x8b\x9a<\xc9\\\xb2?\x05\xfd\xbe\x94T\xd9v\xbf\xe5z\xa8\xa3a\xba\x99\xbf\xaa\xad\xb1\xf2\xba\xa6G\xbf\xa6G\xd2}\xb5\x0e[\xbf\xdc\x8b\x04\xe9\x89\xbe/?\x9b@\xbfy\xc8\x01q?\xf5\xea&\x96K\x07\x83\xbf,\xbc\x7f\xae\x11$Y\xbfg\xd0\x86\xe8\xa5\xc7\x94?\xf8y\xf2\xb3\xd4\x94i\xbf\x84\r\xbc\xc8\x1b\xe3y\xbf2S\xec\x7f\x13<2?\x90\xfa\x92\x84\xffzh?\x0b9\xc5o8\xb8a\xbf\x01}\x0f\xa1\xb5=p\xbf\x1a\x87\xc8m\x8fQp?at\x05\xfd\xf5\xf4e?\x01\xc5\xcb&8\xado\xbfO\xdex~4\x80u\xbf\xc6\x91\x15j-\xf3b\xbf\x05i\xb1^7\xd8\x88?\xad\xe9K\xba\x18\xc0i?k\xfc\x97p[\xcdx\xbf\x8d\xc5@\xda\xca\xfdf?\x8d\xaa\xde\x05kvf?\xb8\xcbO\xcb\x022(?\xbf\xda\x0e\xa9\x0crn?\x10\xd1\xd7&0\xd3o\xbfj\x85\xa3\x16M\'Z\xbf\xef\x10\x10\xebMXh?\xf6\xab\xc6\x96\x94me\xbf\xe8\xe0\xeb\xd1\x89\x82[\xbf\xd4U \xb8\xb7\xf0G?\xbc\xe7\xb3\x80Y\x01n?\xac\xf9\x88\xa6m\x9bn\xbf\x9el\xec\xb4\xef\xc2M?oPi\x8ee\x91a?\xe3\xa0\xac1\xcefO\xbfqS(\xed&\xfer\xbf\xfbD\xb9\xe8\xe9\x80\x82\xbf\x15\x02\x8eD\xb2\xb4|?\xf3]\x88\x1c\xcaN\xc7?\xfc{\xf8\xc0\x14>1?\x8c\x1bb\x95+f\xce\xbf\\~\x05V\x13\x0f_?z\xdc>8 \xb9\xa4?\xc3n\xa7q\xc2\xe0n?#V\xcc/7\rr\xbf\xc0#J\xc4\xf0\xb0w?~\xb7\xb7E\xb3\x0ef?\x88\x8d\xc8V(\xcf@?\x86\xb0\x96\x92\xa02t?1`r\xfaI5g?\xfa\xbaq\xb1C\xa3\xa2\xbf\x0c\xd5\xa0\xe4*1b\xbf9\xfe\x1e\n\xaa\x90\xbc?\x9d\xca\x08)\x0e\xbcT\xbf\xa8\x06\xc7,\xe1c\xb6\xbf/\x1f\xebp(\x83W?K\xfd\xe2d\xa8?\x80?\x04\xab\xa0\x8c\x91\x1e.?\\\xe7M\xd0P\xe80?]^\t9\xff\xf0\x94?7\x08g\xed|\x95\xdb\xbf\xce\xf0\xbc\xaf O\x9b\xbfQ:\xd3R\x94]\xe2?+6\xa3\x90x\xd5\x80\xbf\xd3\xd6]\xa97F\xc0\xbf\x1d\x02\xe8b\xcb\x8a\x83\xbf\xdc\xef}\xe9\x14Lj\xbf\xae\xcfgWR\xbes?\x8c\x82;\xd9\x1a\xa9\xc0?\x1c\xcf\xeanN\xf0\x8f?\x0e\xda.\xe4)\x1f\xdd\xbf\xd7\x90\x87\x8d2\xee\x91\xbfw\xd24\x01\x90\xde\xd5?\xf6EH\t\xe9\xe4Y?2\xebcR\x1a\xc2g?\xff\xfd\xb4\x94\x00\x06\x14?\xec\xb2\xc3\xd7f\xfaq\xbfF4F\xc3\xbf\xd7X\xbf\xe9\xbc\xe0f\xfa\xf5n?fr\x96i\x8f\x8cQ\xbf\xa308\xde\xf3cj\xbf\xdbS{K\xccN&\xbf\xfd\xf0\xfd\xcd\x00!^?cRKK\x810l?\xa3\xf2+\xf3\x03!6\xbfR\xf3\xe6\xc7\xde\xbfr\xbf\xc3@:\x0bk\x92L?\x96\x1a\xe6\xf8\xe5\x85p?u\xda\x95]\x027b\xbf\xde\xfc\x8c\x7f\x0e$f?\xd0\x88\xea\x86$to?p\x11\xf4\xb4)zv\xbfUF\x8d\xf3p\x83z\xbf\xbf\xa6\x93\x83\xed\xaf`?\x18\xb8\xf4\xeb\xe4~P?\xac\xa8\xc6U\x91\x06b\xbf\x17\xc4\x99^ozp?\xaf \x95a\x90\xeaf?\x18\x89\x01\xc2\xfb\x87r\xbf\x00Qq\xfa"Q[\xbf\xf4t,\x93`\x1co\xbf\x18H\x98\xa7"Hb\xbf,\xca1r\xf0\xa9t?\x12i\xd0k\x05\x1ah?\x90\xea\xe5~\x00\x0e\xbf&Wa\xda\xfe\x03I\xbfT\x10\xb9.\xc4\x91Z\xbf)s\xe5\xa9\xb3\xf1L\xbf\x04\xbd\x18\xaf\xc9_V?\x08Y\xb1\xf0y\xb2I\xbfh\xc2g\xc7\x1031?\x7fr>N!p@?\xe2\x1a\xae\x1e\xbbd_?\xb64\x87sO\x01i\xbfx\xf4\xab\xa4\xa4\xd4_\xbf\xd8\x8cT0OLq?YM\xed_f\xbeN?\x16\x90\xbc\xbf\xea\x7fm?\xf4\x9c\xf9\xdd\xd2*h\xbfN/\xd8\xd3b\xe1b\xbf6{\xb5\x88\xe6\xf2d?m&\x93\x97\xb6\xe5W\xbfL\xcf\xe0\xee\xce]X\xbf\xe0T9\x18\xf8\xe2u?\xb0?\xc7J\t0$\xbf\x08c\x02\xc3\xd9\x1dj\xbf\x8a6\xe1d\x05\x08\x83?7\x1b\x9d\xffF\xff\xcc\xbf\x98\x83!\xca\xf2y\x95\xbf\xf7\x1d\xd2\xf0\x83X\xe5?\xaf\x98ZM\x0e`\x98?\xfeE\x96\xa3\xb0\x0f\xe5\xbf<\xc8\xb87\xe1\xb9\x88\xbfS8p\xbeJl\xcc?\x91\xd9\xd9m\xbc\xb3n?\xe8\x1c\x96\xd0\x9c\xf5n?\xb0\xfc\xaf\xbaxa^\xbf\xc8\xf5\x1e\xee\xceLy\xbfvN\x11\xde$\x9eW\xbf`\xde\x03-\xf1)\x17\xbf\xad\xcf\xf6\x03\xdcZy?P\xc6\xe1\xbbUn{?\x9c\xd8\xa6\x16\xa9!r\xbf\x1e\xb2\xdf\xc6h\xd2S\xbf\xa9R\xb4\xb6Q\x89a?X\x8c\x93\xc6=\xa8k?\xc6\xa2\xd7\xc4\xe7\x8e\x84\xbf\x8a\xf2\x02(\xb95\x80\xbf\xf2w\xc8\xdcg\xe0t?D\x99\xa6q\x12n|?\x0ej\xc4[/\xdft\xbf\x10\xd9:\x1c\xab$7\xbfH\xae\x13!\xde\x1e\x89?\xb8\xf8b\x0e}\xfb\x84\xbf\xa4R_\x8dzWs\xbf:\xc1\x05\xe0U}{?\x12\xb3?\x1c\x92\xa2Z\xbfX}\x00?K\xa9y\xbf\x84\x0c(\x80`\xd8\x86\xbf\xac\xccVh\xdd\x03y?\xfaB\x0b\x82`\t\x91?\xcf\xf4E\x97BP|\xbf\x8cl\x97\x03\x83\x1fT\xbf\xaf\x07\xfa \x1bKi\xbfw\xb6\x04\xf4\xc0\xbb\x80\xbf\xb4b&\xac^6{?\xe8 \xe0:dHq?x\x8b"\xd6\xf3\xfbc?PX\xd2\x84d\xe9/?x\xd9\x15\xe06\xaei\xbf\xb4\x81$lo\x9cM\xbf\xdc\xa7\x06\xbf\xec<\x83\xbf\xb8\x8d\xb5I\xf1\x83r?~\x18M5\xaf\xe1e?+p\xaf~\xbaV|\xbfP\xb3*\xb6\x08\xa8\x99?|6\xd4\x1b\xa1~z?\xda&6J12|\xbf\x87^>\xd33\xb1l\xbfbC\xb2[T\xa3a?\xd0\xc8,P\x91\x81\x12\xbfl\xe3\t\xca\x9bn_?z;=\x0b\xdaVx?c\xb75\x14H\x10\xc0\x11\x81x\xfb\xf7\xdcQ@\xb6\xb7&I\x8bq.\xc0\xf5(P\xf97uR@\xc7[r\xfb\x82\xb1\xf9?\x1f(9\xdd\xbc\xa4Q@\xd0\xc8OO\xee\x182@Y\x1b0I\xcbgN@\xc4\xc0\x89\x99\xd3L@@\xc2\x04\xedn\xccdH@><\xed\x85|\xe7F@\x8e\xac\x9e\x8f\x8c7A@Z\x8d\rn\xc7DL@l\x83\x1e\x94q\xc81@\x8d\xacHl*\xc2O@\x04W\xd2T\xa6\xb6\xbe\xbf\xeb\xfe\xcc\x00W\xc6P@\x90\x12~\xb8\x0fE2\xc0%\xbc\xaa\xe1\xc73Q@\xf8a\x05eQEB\xc0\xb9 \xe0\x16_KQ@3\x9e\xc9{\x13)H\xc05Xhl\x85\x95L\xc0\x05\xc4zR\xf80L\xc070\xe3\x93\x07:H\xc0\x01\xf3d\x85?^M\xc0\xa2\xabp\xd6k\x1aB\xc0$\xb7t\xaex~L\xc0\xf4m\xc9\xe2\x84\x837\xc0\xcc;\xaa\xdd\xde\x0eJ\xc0\xdb\xbe\xd5Cn\xfe\'\xc0\x17\x87\x17\xae\x01\x8eJ\xc0dT79\xd0T#@c\xf0\x03vY\x1dM\xc0\xffW\xe3\nw\xc75@\xe2\x18r\xaf\x0f\nN\xc0\xc4\x12,\x14F4A@\xb9\x1a\x01\xc4\xce\xdcL\xc0@`$~pRG@+\x93\xfd\x0e{\x02I\xc0\xbd\n\x91l\x1f\x97K@\x93\x91\x8d)\xf71C\xc0\x0c\x8f\xbe\xe3\xf9\xb8\xe1\xbf\xe9\x07T#\x94\x9c:\xc0>\xa4\xfb\xa4E\x00\xdb\xbf\xd2)G\xb6\x99\xdb-\xc0I\x1f\xf4\xa4\xf9q\xd0\xbf\x9bc\xc2Y\x8b \x07\xc0\xf9C\x87|\xda\x97\x9e\xbf\xb8},\xbad~\x15@\x9a\x1e\xe6\xca[\xf8,\xc02\xe5\xc1C\xc9\x8c\x1f@\x04\x9f\x19\x19e\x9c\x1d\xc0\xccG\xa56\x12\xd5#@\xdbq\x82\xb0\x81;\x9f\xbf\xae\x8c\xae\x0b\xa2\x97\x1e@\x1a\xdd\xb8>\x80X\x1d@\\\x82\xb0\x9f|\xd3\x14@I\xb5\xc4\x18{\xd3+@r\x96\xbf\xba\xaf\x1bB\xc08\xa0\\\xc8\xc5xE\xc0\xeb\xbb-q\xdeUD\xc05\xa6\x9d\x88\xa0\xafA\xc0\x9a\x1cN\xf7XCD\xc0\xfcF^wpT:\xc0\x96\x99c\xe5\xd7aA\xc0\xd1\xd3&\xf8\x83\x942\xc0\x10\xaa\x8bF\xc9\x91@\xc0+\xe9\x7f\xcf\xc3\x9c:\xc0\xdd\x87,\x18:\x85@\xc0\xed\\\xbcf\x9f\xd3A\xc0\xcf1\x98\xc0\x1f\xaeA\xc0\xdf\x99z\x84\x0b\xfd0@-\xa4\xd2\xc9b\xc8D\xc0\xeb\x05\xcb\xdd\xcd\x089@\xae\xc4\x91\x1b\x90\xd2D\xc0\x06\x89"\xdf{\xfe@@PS\x0b\x1c\xbf\xb9B\xc0\x94\xb8\x11\x1bR\xb2D@~\x1fM\xa9\xf6!A\xc0\x00K\xe0\xa9\'`A@\xdf\xed&\xe8^\xf6@\xc0\x0e\xd0\x7f\x85\xf0\xe39@\xc8\xf8\xee\x0b\x08\xb9;@\xad+{fl\x97:\xc0\xf1\xcd\xb91\x13c7@W\xaa\xda\xfd\x14\x8b0\xc0\xd9\xc4\x0e\x1a\xe2A5@\x11W\x08\xe7G\x8b\x1a\xc0P\xdd\xbc\x92%\xf46@T\x9a\xab\xed\xf1\xcc\xc1\xbf\x02;.}\xec$5@\xb6\xfe\xb2hP\xf5\x1c@\x9es$x\x9617@\x9f\xb8^\xdcf_1@1\x82x\x9a\x0c\xc8:@\xd2}\xd8&=\';@\xe6\xf5 5\xfeBB@47\x95\xf78\xd71@E\'\xfcu}pD@\xd1R\xb3\xed\x89h @\x95\x87\x1ai\x94\xe8D@\xb7d\x8e\xda\xd9\xbb\xd3?\xd0"\x03"\xb7\x96D@t\x04\xeb\xeb\xac\x95\x1b\xc0\xa4y\x11\xd5\xe4\x97B@?\x85\x83\x8a\x8c\xb40\xc0W\x04\xb7\xed\xcf"<@\x81Pr\xfd\x08{6\xc0\x15"<\x82\xf4);@\x0b\xd2\xcd\x99A\x94\x1a\xc0\xf3\x98\xd76\x04\xcc;@\x08\x9a/\x81*\x8a\x97\xbf\x8b\xa8H\xa9\xa3\xed:@\x1d\xa1\xfd\x1aC\xb7\x1d@\xcf8\xcf\xf7"g;@\xe6\xf8\xe7\x8d\x16\x0b7@\xc6B\xd4r\xec\xfc?@\xcd\xb6\xfd\x99Yq\x1e@\x86!Z\rQ\x80@@\xfa\xdc\xcd w\xc0\xa6?\x07i\xc5\x13\xf9%@@\x08x\xf8:J\xed\x1a\xc0' +p196 +tp197 +bsS'n_samples' +p198 +I3148 +sS'_n_active_components' +p199 +I132 +sbsbasS'reference_shape' +p200 +g0 +(g85 +g2 +Ntp201 +Rp202 +(dp203 +g89 +g101 +sg102 +g62 +(g63 +(I0 +tp204 +g65 +tp205 +Rp206 +(I1 +(I68 +I2 +tp207 +g72 +I00 +S'\x1cv\x0e>\xc1\x8dJ@\xda[\xf5\xe8\x03\x1f6@[Yc\xebb\x06R@7\\2\xe64\xad6@\x99j\xdf\x87\x90\xc3V@\x16\x116\xd36\x0f9@|\x189g\xb0][@\xd0\x8af\xe8\'L=@@\xfb\xaes\xaf\x9d_@y[\xe5\xf4CtB@\x90L\xfa\xc20\xa8a@\x04\xbb\xa2\xb3\xb4BH@N\x0e6\xf8\xb82c@E8\x9c\x1b\xb9PO@\x84\x80\xab\xf9\xb0id@\xd8\x95p\x1c\xb1\x8eS@1\xf2\xeaJ\x18\xb9d@ \xce.\x9a2\xefW@R}-\x0f\xa1Md@\x88\x11\xd5\x99):\\@\r\x9f\x0c\xf3\xc0\x08c@\x8co_\xc12\x00`@-\xb6\xe1D\x19xa@k\xb1\xe3\xbdy\xb7a@\x8aTS\xa4\xeb2_@\x88"\x9d\x8aY\x1bc@\xb1\xd49_\xdf\xddZ@x\xd0\xf2\xa0b\x02d@\xe3\x91t*h6V@|\x10\x03\r\x0bxd@\x01\xe7\x8d[\x1c\x7fQ@(V\x97f\x87\xafd@\xe9q\x97E~\x80I@\xfa\xa4\x99\x0e2\xbad@\xa6Ti7\xb7aC@\x95b(\x9f\x1dZA@w\xd4=\x01\xe1m>@\xa7\xdc\x91\xb8z\xdeE@P]\x14\xc9\x82\x03<@IQ]\xe5\xd6:L@\xec\xa62k\xe2\xd9=@ma|EWiQ@x\x1b\xd1\xe7\x8duA@~\xf1\xe4#tfT@\xd5\xc3\xac\xc7\xdc\xf5@@nV\xbbN@\xe3%\x12!\xd0hW@ji\x8b\x7f\xafhR@C5\x80\xef\xb8tW@\x1ef\xe0/8\x8bU@>\x91\xa8\xa7\x9a\x84W@\xd7\x1f\x11\xc2\x94\xabW@V\xa0m\xb9\x00\xc2S@\xbf\xa1\xe1\x88mSX@\xb3\xa4\xc2\x18D\x99U@}\x02\xd0\x03)\xdbX@J\xaa\x12b\x84\x83W@\xd0\x16!\x06\x14EX@\x0b\xfb\xf82YmY@U\xd7\xf71T\xa2W@u\x7f\xfak\xdb"[@V\xa4\xb1\xaa\xcb\xacI@\x07\x178\x03\'\xb9H@"?a\xf80]G@\xd4\xdc\xac\xb0:\xa7L@7\x88PZ\xcaqG@3\xad\x1b\xc0\xa5\xacP@\x8d\xf3\x18\xe1\x0frJ@,\xed*\xd9}\xb0R@\x15\x84\xd3\xf5\xf7HK@\xd3\xa0\x02\x8e!\x9aP@;]]\xd8JSK@Y\xa5\x1fW\xcf\x80L@\xa9\x06t\xe0S$J@\xea\xccl:\xb4\xed[@e\xe5\xfe\x06e\xecF@=\xa57\x83L\x05^@\x94\xd6=\xa7\xcb\xe1F@\xc8\xca\x05O\xfe+`@\xfd\x1d\xcb\xa1.\x10I@\x1f"\x9b\xb0\xee!a@\xd7p\xaf\xd7\r\xb7J@`H\xf7\x02\x97E`@\x0f\x9e\xdf\x14\x93\xe2J@\xf3\xf0\xc1\xcb\xe2=^@\x00\\h\xd5\xefv]@\x94\xf8b\xbc.\x9bP@|9\x08\x82\xc8Y\\@e\xe6\x8eQ\x128S@x\x07\xa0\xd3x\xce[@B\xc6 x\xcf\xcbU@\x02d\xb8\x8bw>\\@\x8a\xe0/\x18\xce|W@\xb4a\x0e\x957\xc6[@\xf2\x19\xe9\x88=hY@\x1aO\xacw:M\\@#\x83\xf2v\xca\t\\@\xb7z\xca\xd5\x859]@\xe7Wv\xd5G\x93^@\xa2]O\x98\xf9\xc2_@M\x0f\x01\xd5\x06(\\@4\x1dr~\xa2r`@G\xba\xe9\xe9]\xa7Y@\xaa\xf1.\xfa\xaf\x91`@\x82-\xb3(\x93\x99W@\xfdqg]k|`@\x822\xbf\xb7\xc8\xb9U@\x03\x00\xd0f\xdf\xed_@\x9aa\xa3o}-S@L\xf4\x8f\xed\xc9\x92]@f\xab\xd0\xff\x81\xacQ@\xd7z\xb40\x1eW]@\xf3\x89\xd3`\xd3\xcaU@\xd0c\xac\xb9u\x80]@\x99\xa8\x0e\xbeA\x84W@`\xac\xcdW\xd8F]@\xf8P%L\x94tY@w\xa8\xee\x11;c]@\x0c\x03~\x11\x1c\x82]@ \x95\x98\x8f\x8a\x96^@\x18\x8f\xcb\x16H\x80Y@\xe7\x1f\x16\x03\xe2\xd9^@\xaa\xfe\x02\xf7\x1a\x88W@\xa5/\xa8\x98U\xab^@\x1a\xb0\x97\x01r\xc4U@' +p208 +tp209 +bsg109 +Nsbsg46 +(lp210 +g47 +asg49 +g32 +sg44 +Nsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_jaw b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_jaw new file mode 100644 index 0000000000000000000000000000000000000000..aafa25d983fe7d90fc6ef7ade046e2210ce8cb50 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_jaw @@ -0,0 +1,490 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.clm.base +CLM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'opt' +p6 +(dp7 +S'ablation' +p8 +(I01 +I01 +tp9 +sS'verbose' +p10 +I00 +sS'rho2' +p11 +I20 +sS'sigRate' +p12 +F0.25 +sS'ratio2' +p13 +F0.08 +sS'imgDir' +p14 +S'/Users/arik/Desktop/artistic_faces/applications/AF_sample' +p15 +sS'dataset' +p16 +S'demo' +p17 +sS'ratio1' +p18 +F0.12 +sS'smooth' +p19 +I01 +sS'pdm_rho' +p20 +I20 +sS'sigOffset' +p21 +I25 +sS'kernel_covariance' +p22 +I10 +sS'numIter' +p23 +I5 +ssS'_shape_model_cls' +p24 +(lp25 +cmenpofit.modelinstance +OrthoPDM +p26 +asS'max_shape_components' +p27 +(lp28 +NasS'scales' +p29 +(lp30 +I1 +asS'diagonal' +p31 +I200 +sS'holistic_features' +p32 +(lp33 +cmenpo.feature.features +no_op +p34 +asS'patch_shape' +p35 +(lp36 +(I8 +I8 +tp37 +asS'expert_ensemble_cls' +p38 +(lp39 +cmenpofit.clm.expert.ensemble +FcnFilterExpertEnsemble +p40 +asS'expert_ensembles' +p41 +(lp42 +g0 +(g40 +g2 +Ntp43 +Rp44 +(dp45 +S'sample_offsets' +p46 +NsS'cosine_mask' +p47 +I01 +sS'context_shape' +p48 +(I8 +I8 +tp49 +sg35 +g37 +sS'response_covariance' +p50 +I3 +sS'patch_normalisation' +p51 +g34 +sS'_icf' +p52 +Nsbasg47 +I01 +sS'shape_models' +p53 +(lp54 +g0 +(g26 +g2 +Ntp55 +Rp56 +(dp57 +S'similarity_model' +p58 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p59 +g2 +Ntp60 +Rp61 +(dp62 +S'_components' +p63 +cnumpy.core.multiarray +_reconstruct +p64 +(cnumpy +ndarray +p65 +(I0 +tp66 +S'b' +p67 +tp68 +Rp69 +(I1 +(I4 +I34 +tp70 +cnumpy +dtype +p71 +(S'f8' +p72 +I0 +I1 +tp73 +Rp74 +(I3 +S'<' +p75 +NNNI-1 +I-1 +I0 +tp76 +bI00 +S'hJ#\xf4?\xff\xcc\xbfa4\x1c\x16\x1b\xb0\xd0\xbfu,\xd1B\xbfB\xc4\xbf\t\xfc5^\xd1\x94\xd0\xbf\xa1\xac\xdb\x94\xe8\x1a\xb7\xbfu@a\x98\\\x0c\xd0\xbf\xf3\x01\x17Q\x84\xc4\x98\xbf&\xfcP\xff}*\xce\xbf\x16\xf3\xa8j#\x01\xa3?\x92bT\xfaT\xab\xca\xbf\xf7"\x87hj:\xb7?\x0b\xcc\xf2\x90RS\xc5\xbf\xbc\xc9\x1a\x87p[\xc1?/\xc3]D\x85\xab\xbd\xbf\x12\x08\x86\xf1\x8b\xe6\xc5?\xdf\x0e\xc0v\xec\x9c\xae\xbfO\x9a$.6\x11\xc7?\x88\xcd3*=\xfei?sj\xdde\x99{\xc5?.\xd8\xe5\xe3\xc0\x9e\xb0?\x852\xe9\xf8\x91\xbd\xc0?\xd5O\xdb\xa7\xc2\x90\xbe?*\xf0\xb9`\xbe\xd2\xb5?\x9f\xb1\x17\xd8\xdd\x9e\xc5?\x8b\x8f\x14,\xd7\xcb\x9f?\xa7\xa8CH,\xc1\xca?N|\x8b\x8e2\x1f\xa0\xbfAqXQJ\x12\xce?\xe4\xb0\xe6\x1c\x9f/\xb9\xbfp\x0eSA\xa8\xbc\xcf?\x95\xf9z\x7f\xfeC\xc5\xbfGh3\xb3^?\xd0?\xa0\x02Cm\x17\x01\xce\xbf\xb4q\xf3G\xa0M\xd0?c4\x1c\x16\x1b\xb0\xd0?lJ#\xf4?\xff\xcc\xbf\n\xfc5^\xd1\x94\xd0?v,\xd1B\xbfB\xc4\xbfv@a\x98\\\x0c\xd0?\xa2\xac\xdb\x94\xe8\x1a\xb7\xbf(\xfcP\xff}*\xce?\xf4\x01\x17Q\x84\xc4\x98\xbf\x93bT\xfaT\xab\xca?\x18\xf3\xa8j#\x01\xa3?\r\xcc\xf2\x90RS\xc5?\xf8"\x87hj:\xb7?1\xc3]D\x85\xab\xbd?\xbd\xc9\x1a\x87p[\xc1?\xe1\x0e\xc0v\xec\x9c\xae?\x13\x08\x86\xf1\x8b\xe6\xc5?\x9b\xcd3*=\xfei\xbfP\x9a$.6\x11\xc7?/\xd8\xe5\xe3\xc0\x9e\xb0\xbfwj\xdde\x99{\xc5?\xd8O\xdb\xa7\xc2\x90\xbe\xbf\x862\xe9\xf8\x91\xbd\xc0?\xa2\xb1\x17\xd8\xdd\x9e\xc5\xbf*\xf0\xb9`\xbe\xd2\xb5?\xaa\xa8CH,\xc1\xca\xbf\x8b\x8f\x14,\xd7\xcb\x9f?BqXQJ\x12\xce\xbfO|\x8b\x8e2\x1f\xa0\xbfq\x0eSA\xa8\xbc\xcf\xbf\xe7\xb0\xe6\x1c\x9f/\xb9\xbfHh3\xb3^?\xd0\xbf\x97\xf9z\x7f\xfeC\xc5\xbf\xb5q\xf3G\xa0M\xd0\xbf\xa2\x02Cm\x17\x01\xce\xbf\x14\xaf\xd2Hh\x0b\xcf\xbf\xef&z\x0c\x7f<\xb5\xbc\x14\xaf\xd2Hh\x0b\xcf\xbf*>\xa3\xae\xdf\xf1\xb2\xbc\x13\xaf\xd2Hh\x0b\xcf\xbf\xa1\x8a\x90\xac\xbem\xab\xbc\x12\xaf\xd2Hh\x0b\xcf\xbfiMT\x91\x1c*\x9e\xbc\x12\xaf\xd2Hh\x0b\xcf\xbf^\x9e\xc6\xb2\xccw\x81\xbc\x15\xaf\xd2Hh\x0b\xcf\xbf \x16\xf3\x95\x10\xd8\x8c<\x14\xaf\xd2Hh\x0b\xcf\xbf\xda\xec\x02\xdfu\xa5\x9f<\x16\xaf\xd2Hh\x0b\xcf\xbf\xf3\x84\x07q\xee\x80\xa8<\x1b\xaf\xd2Hh\x0b\xcf\xbfE\x8c5\xbb\xaf*\xad<\x1c\xaf\xd2Hh\x0b\xcf\xbf\'\xa1P\\\x03\xef\xad<\x1f\xaf\xd2Hh\x0b\xcf\xbf\xf6\xbb\xb2\x0c\xb4\x86\xaa<"\xaf\xd2Hh\x0b\xcf\xbf\x7f\x0ec\xffh=\xa5<&\xaf\xd2Hh\x0b\xcf\xbf/\xf7"<\x1c(\x9f<%\xaf\xd2Hh\x0b\xcf\xbf(\x9ar\x93G\xc8\x8b<\'\xaf\xd2Hh\x0b\xcf\xbf\x16\x89\x08\xbe\x8d9|\xbc)\xaf\xd2Hh\x0b\xcf\xbf2\xfeZ%\x00\xf8\x9a\xbc)\xaf\xd2Hh\x0b\xcf\xbf.-T\x8d\xacG\xa7\xbc\xe2\xa5\xf3\xf4\xc6*\xbc<\x12\xaf\xd2Hh\x0b\xcf\xbf\xd5R\x1azA\xcd\xb4<\x12\xaf\xd2Hh\x0b\xcf\xbf\x9a\ti\x19cD\xad<\x10\xaf\xd2Hh\x0b\xcf\xbf\xb1\x9et\x82%\x97\xa0<\x0f\xaf\xd2Hh\x0b\xcf\xbf\xf9L([\xb9\x11\x82<\x11\xaf\xd2Hh\x0b\xcf\xbf\xba\xc4\x0cj\xc1\xf1\x8a\xbc\x11\xaf\xd2Hh\x0b\xcf\xbf\x8c_O\xeb\xe1\xd1\xa1\xbc\x13\xaf\xd2Hh\x0b\xcf\xbf\r@|\xc3\xde\x8e\xaa\xbc\x17\xaf\xd2Hh\x0b\xcf\xbfK\xab6\xfa\\\x95\xaf\xbc\x19\xaf\xd2Hh\x0b\xcf\xbf*\xaa\xa2\xa0\xedF\xb0\xbc\x1b\xaf\xd2Hh\x0b\xcf\xbf\x952\xff_\xbf\x9d\xad\xbc\x1e\xaf\xd2Hh\x0b\xcf\xbfp\\\n\x03yx\xa8\xbc\x1d\xaf\xd2Hh\x0b\xcf\xbf\xf2C\xd3\x0f,k\xa0\xbc \xaf\xd2Hh\x0b\xcf\xbf\xf4\xa6\xde\xf10\xaf\x8f\xbc$\xaf\xd2Hh\x0b\xcf\xbf\x08O\x93\xf5U\xa5\x86<%\xaf\xd2Hh\x0b\xcf\xbf\x0c#\xb3\xfaDo\x9d<(\xaf\xd2Hh\x0b\xcf\xbfR+\xbc\xa7\xcb@\xaa<)\xaf\xd2Hh\x0b\xcf\xbf' +p77 +tp78 +bsS'_mean' +p79 +g64 +(g65 +(I0 +tp80 +g67 +tp81 +Rp82 +(I1 +(I34 +tp83 +g74 +I00 +S'J\x94!\x9e\xa9\xc4P\xc0\xc87\xa4W\xe2LS\xc0\xa8\xbb\xd0S\xb5nG\xc0\xfd;\xcd\nS-S\xc0\x8d)\x83)\xdc\xb8:\xc0\xb1_\xb6\xb4\x81\x8fR\xc00\x81\x8ci\x18\xa5\x1c\xc0x\xf2\xc5\xcc\xb4qQ\xc0\x89p\x95\xd0\xc0\xfa%@\xaf\xa9c|\x1e\xd8N\xc0R\x98!\xa8L\xdd:@\xce\rTB\xf4\xa9H\xc0pu\xc1\x16\n\x13D@\xcad\xd03H(A\xc0\xb2\x14\xc6\xbb9TI@\xe0\xf7T\xfd\xe0\xb31\xc0\'E\x0c\'\xa5\xadJ@\x88a9\xdd\xed\x0f\xee?e\x81#4\x89\xd8H@=\xe4\xb2\xbd\xd083@\x80\xbe\x81\xd2t\\C@\xb4\x1f\x00\\\xd8\xacA@\xe3\xca\x07\x8dR=9@\xe7?\xe0\x02S\x01I@k\xe0\xe7!\x0cc"@\xa0\xcbE\x15a\xf1N@\xf8\xb3\xf0\x85J\xa5"\xc0S\'\xf6\x01\xb6cQ@j_g~\xf7 =\xc0J\xf8|\xa4C\xc0\xadu^\x0e\xd3\x10S\xc0\x96xK\x8c\xa4\xaa5\xc0\xc3\x07.\xa0KBR\xc0\xf4U\xed\x86\xb17\x14\xc01\xc7+\r\xc6pQ\xc0\xd7\xf5\xbc\xd9\xd6\x0e(@\x87\xd6\xd6\x98C\xe3\xf7\xe7\xc8?\x81;8\x89\xe2C\xcd?\xe4Pm@\xac\x91\xad?\xe9J;\xa4\t\x9e\xc8?\x92\xc1\x1e\x8c\x08\xeb\xb1\xbf\x93\xfe^83[\xbe?^\xf5\x13\xc0\xf5\xa1\xc1\xbfK\xb7o(\xaf\xf3\x88\xbf\xfd{\xc4\xcf\x10c\xc0\xbfg\x07}t\xe3\xed\xc8\xbf\xd8;N\xe3\x18R\xb2\xbf\x87Q\xe6\xdc\xc37\xd5\xbf\x10C2#\x00\x16P\xbf\x9b\x03n\xfd#\xb0\xd5\xbf\xa9\xfaM\xc9\x84\xe3\xb2?\xfd\x0f\xa3\x8c>\x15\xcb\xbf>@]\n\x9b#\xbd?X\xe1\n\xc0U\xc4r\xbf\x17!\xb0\x9d\xc7Q\xbb?\xb7g\x18Jc\x87\xca?P\x05\xab\x94\xd3\xc4\xab?1rV\x81\x9e%\xd5?\r\x82\xb8\xb3\x14\xd0\x9f\xbfr\x8d,\xed\x1d\x95\xd4?R@4\xe0\xd7\xe5\xbc\xbfA\xbe\xb2,\xf0\xe6\xc9?9\xc8q\xb72\xd5\xc2\xbf\x89\xd4\xaf\x8e\x13T\x96?\xd2\xa2\xe9BoR\xb7\xbf\xd4\x1b\x19\x8e\xd1\x0c\xbc\xbf\x04\xf6Z\xa7\x03\xbd\x99?.bx\xd2\xf6\xa8\xc7\xbf\x16d*!p\r\xc5?N!u\x9f%\x16\xce\xbf\x0eq\x8a\xbd\x8aI\xc9\xbf\x80\xa9\x92Z\x91{\xd0?H\xb0\xd8\x7f\xe9D\xb9\xbfQ({\n)P\xc2?^\xde\xea\xba6\x14\xb1?!\xbf\xf4\x19\xa0?\xaa?\xc7\xc9\xc5F\xa5G\xca?u1\x91\xf7\xa6\xfd\x92\xbf\x88\xf2\x91*\xce\x17\xd2?)\\s8\x95g\xa4\xbf\xea\xd3\xa3 V\xe2\xd3?\xb3\x83\x94\xe6\xf2 \xb0\xbf\x15\xef\x95\x85\xa5\xe2\xd1?\xa6:+y\xc7\xa3\xbd\xbf\xa0\x94b\xda\xd8\x0b\xbf?\x91O\xc3T\xf3u\xc3\xbf\x94\x0ee0pGd\xbf:u\xce^:\xb5\xc4\xbf\x90\xa3\xf0\xc7Qh\xbf\xbfFEv\xad\xf1\x13\xc2\xbf\xb7q\x8en\xae\xde\xd0\xbfY\x05\xf3\x92%l\xbc\xbf\xc8\x80q\xf2\xee\n\xd4\xbf5\x9e`\xd2G\x82\xa7\xbf\xb8\xd3\x11R]\xc1\xd2\xbfJ\x82\x17\xc6\xc7\xf4\x88\xbf>\x99\x94z\xc0\x95\xcb\xbfr<\xa44\x89]\x8c?\x89\xb3.\x9e"\xbf\xb3\xbf\xe6\xae\xd3\x81f\xe0\xb1?3J\xffzr\x08\xb6?\xa9\x9f\x82\xbd^!\xc0?:\x9b|a\x13\xa7\xcd?\xcc\xa2\x95\xa0i\x92\xc9?\x05\xe4o\x8b\x0b\xf2\xd5?\x0f\xf5\xee0\x12\x7f\xa3\xbfO\x1f\x85Z`\xf3\xc3?\xef\xe95C\xaa\x90\xb5\xbf\xa5e\xabDd:\x9d\xbfLr1=\x9f\xc6\xc1\xbf\xbe\xe3]\xf0|\x8c\xc7\xbf\xb3\x15\xfe\x02\xdeP\xbb\xbfw\x8b\xc4\t\x97\xc8\xd1\xbf\xec5OmU\x8c\x88\xbf\xfe\xfd\xeb\x11D \xd0\xbf\xe3\x04\xceD\x1cq\xb6?"\x83\xb0E\xaf#\xb6\xbf2\xa9r\xc8\xec\x03\xc0?,#\x02\xe3\x93S\xcb?\x12\x16\x8a\x97\x9eD\xba?j\xfb\xcdd\xcf\xfb\xd4?\x05\xad\xb4\xad\xb7?\xd5y\x9e\xb9\xb1\x03\xbe\xbf-4n\xf5\x00\x0f\xa5?[\x1a\xaa\x95\xed\xec\x9b?\xb2+X\xa8\xc5\x17\xb0\xbf\x92\rWI\x1f\xc1\xbc?r\xfc\x142\xec>\xc5\xbf\x11\x10\xa5\xa8\x8fc\xb0?\x83\x1a\xc8c`{\xca\xbf\x11\x0b^!c\xd9\x9f\xbf\xf2\xadv\xcbh\xd0\xa5?/\xdc\xc5\xb7r\xdb\xc4\xbfl{\x00\x1b1\xf8\xc0?\xbcv\\7v\xc0\xb0?\xa1(S1\xdf\xd3\xb6?\x05\xeb\x90e\x8fS\xcd?\xd2\xdc\x81\xeb\xf5D\x97?\x0c\xde\xc8\xee6\xc9\xc4?\xb3\xd8\xa1\xae\x86 \x93\xbf\xc5 \x18\x86\\<\xad\xbf\x1d\x9en\xc8D\xda\x9b\xbf\xef\xe5\tyq\xa5\xce\xbfNO\xd8\x0f\x99\x12\x96\xbf\xec\x18q\x1e\xf7w\xcc\xbf\x93\x8b@\x18W\xd2\x9b\xbf[\x12\x96\xb4\xf2q\x88\xbf\x81\xe8bHE\x1b\x98\xbfQ\xbbL\n\x00\xe8\xc8?3\x84\x18\'=F\x92?\xf7\xd9.S\xea\t\xcc?\xc2\x8a:#\x1f\x02\xb4?\xeb3\xd5\xc4\xb2\x0c\xb8?4}\x9c\xba\xf9\x83\xa6?\x8e\xe0N\xaf\xadw\xbd\xbf`%\x84\xaa\xfa\xb1\xa8\xbfi\x00\xe4\x06ff\xd4\xbfY\x98`\xef[\xb8\xb2\xbfk\xed\xc43T\xf7\xd8\xbfV\x1e=\xce\xfc\xcd\x9c\xbf]\xa9rq\xfc\xb0\xc6\xbf\xf6ZO\xaell\x9f\xbf\xf8\xc9v\xcf\x02\x82\xc9?\x15\x00KZUz\xc0\xbf\xff\xce\xc5V\x04\x00\xe1?c\xe3a\x8e@y\xcc?\x9d\x96`\x18\'J\xb2\xbf\t$U\xaag\xe6Y\xbf\x07\xd7\xab\xb7\x0fA\x8c\xbf\xce\xe3\xfe*\xbf\xd5\xcc\xbf\xea\x06[\xdcA\xe8\xb2?\xbaP\xee\xa7\xa0\xe3\xd3\xbf\xf9\xc4\xaal\x84\x94\xbf?\x18\xca\xc7\xe2\xa3\x96\xc3\xbf\xa0\xa3z9%\x9c\x91\xbfh\xd9\x8e\x02\xf4\xc6\xc1?W\xfd\xe2\x9d\x9e\xc5\xbd\xbf\x9a6\x1b)\xd0[\xd9?-\x93\xbe\xe4\x0c\x91\xb7\xbfU\rK\x9aKh\xd4?\xdd>\xa3\x89\xaf\x0b\xb6?\xc0jd\x14\x06\xabi?\xdf^\xd6Rc\x1b\xbb?4\x95\xcb\x0b{]\xd3\xbf\xef%\xc8\x1c&a\x9d?\xe1\xe1\x8a-\xb7\x18\xd6\xbf\xcf\xb4\xd1\x16\x95*\xac\xbfX\x02?B\xf3\xaf\xc3\xbf\tDat\x19\x8f\xaa\xbf\xd1\xab(l{.\xc2?\x83\xeaZ\xc35:z\xbfOp\xdf\x921 \xd2?\xc3\xe4\xeedm\xb7\xa4?\xc0.y\xe5\xa7E\xca?Bq\xba\xcb\x87\xbb\x96?>\xc0\x01N\x16\'9\xbf\x180q\x80\xd9^\x8c\xbf\x81\xa6d:B\xd3\xcb\xbf\x89\xcb\xc7?\xcf\xd4\xa5\xbf\xd4\xdfaI\xe0y\xce\xbf\xc5B\xb8\xfb\xea\xa4\xb8?\x8f\xdaq\x9f\x83^\xa0?C\xa0\xeaE]\x00\xa3?\xdf1\xbe\x94^\xd9\xcf?\x8co\x01-\xa1s\x9e\xbf]o\x159\xf9\x7f\xd0?\x1c9\xe6Cal\xa4\xbf&\xf9\x0b\x08z\x9e\x95?\xbf\xec\xf0 7\xf2\xa4? \x94\xba\x9b\x8b\x18\xce\xbfd8\xe8\x99\xa1)\x8f?\x92T\xe6\x00\x99\xfa\xd1\xbf\xe8\x8dQ#o\xfb\xc1\xbf\xc0<\xa3\x02q\xfe\xb3?\x98\xdd\xe9w\xf6\x80\xc9\xbf\x84\x1c\r4\x05\xa9\xd1?\x9eA\x04\x9b}J\xa4?/\xee\xb3+\x00\xb8\xb8?\xd6*\xf4\xe7\x05_\xce? \x83\x8d\x0f\x1f\xbe\xd1\xbfHm[\x17\xee\xbf\xb6?\xf5v\xfc~\x858\xd3\xbf\xc6\x86\x10\xfe8\xcb\xb7\xbf\xed\x9cK\x89S\xf6^\xbf\x98\xbe\x00\x94\\\x1a\xb6\xbf\xc1\xf8\x94\xa9C\x95\xd2?\xdf\x91\nS\xa8\x98\xac?Y\x82\xe4B-\x92\xd1?\xea\'#\x99\x96\xe6\xb9?\x90\x81\x9b\xf7\xb5\x97\xa0?spq\xa6\xf3\xa3E\xbf\x80\x81k\xed\xff\x89\xd1\xbfA\xed\xc8<\xcb|\xbf\xbfQ\x8f\xf3\x92K#\xce\xbf\x8f\x85\x8f\xc6V\xf7\xd3\xbfJ\x91]|i\xcf\xad?\xe1\xa9(\xd2\xaf\xe0\xb9?pa$\xf6\xc6G\xc4?\x02\x1a\xcbS\xbc\xb6\xd8?\xf7\x82\x91]\x0f\x02\xb0?\xb0\x9c\xefC\xad\xf0\xcc?\xe1\x91\x812\xad8\x89?F\xb9F\x02\xca[\xc8\xbf\x01\xf2F\x9f\xbc\'\xb0\xbff\xd9\xba\x00\x07\xd9\xd5\xbf\xae\xa1z\x12"3\xc0\xbf\xe6,gn\xbf|\xae\xbfz\x871\xcam\xeb\xa7?\xbc\xbc\xd9\xeehZ\xd2?}\xd5\x9eO\x17u\xb1?\xec\n\xa7\xa5\xe8\xc0\xc8?\xde\x86\xb1iu\x04\xac?\xc8\xb6\xed\x89\xad\x89\xc5\xbf\x9fl\xf0\xdcd\x06\xa6\xbf\xcb{P\'o\t\xd4\xbf\xb8&W\x15\x8e5\x88\xbfoL\x1c\x82C6\xb9\xbfoJ\x150\xd1#\xa8?\xa1\x8e\xbeX\x96\x90\xc7?\x90\x84~\rS2\xac\xbf5\xf0\xa2\n}y\xcf?>\x8b\x8c91~\xb7\xbf\xb7K\xb6\x1a\xe9+\xb7?\x1d\xc3\xa5\xf3\xc6\xd4Q\xbfla\x9f\x01\x87@\xb3\xbf \x91l\xc7\xd0\x9d\xbe?\x13\x87\xcf\xc1\x99\xf0\xc3\xbf\xb4Z\xfd\x94"\x0f\xa2?\xdaI9\xbd\x1b\x19]\xbfb)4\xc8\x9f)\xae\xbf=\xcd\\\x03\xdf\xc3\xc0\xbfv-V\x10\t\xb8\xa1\xbf\xa7\x84\x90=\xef\xa0\xaa\xbf\x9e\x9b$\xa5k\xc2\x81\xbf$\x8fG\x91\x90\xd2\xc6?C\x8b6\xad{i\x92?\x98"TIM\xa9\xca?\xd6-\xe2K\xdb\xbe\xb3?\x17\xc3\x8c&\x19\xe1\xa2\xbfM\xcb\x0e\xe0/x\xb9?\xe9";,\x9c\x8a\xd1\xbf\xbe\x9a\xeak8\xd9\xb9\xbf%Gl\x0e\x14\x7f\xc5\xbf\xd9\x93{N\x19i\xc2\xbf\x859\\\x8d,[\xc4?t\xb7\x10Y\xe6d\xaf\xbfY]\xbbB\xcb\x0e\xd3?X@a\x8fta\xc5?\xff\x80\xfc\xc6\x9a\xe6\x83?1\xc4GH+\x1f\xb8?\x8b\xee\xe1Q\xc5\xf7\xd4\xbfCUq\x8b*x\x9d\xbf\xfd\xa8\xc4\xce\xff\xb2\xd1\xbfQ\x1f\x0bL-\xcc\xaa\xbf\xab\xc69\x9fG`\xc4?\x1aT\xdb\x0f\xc8\xcb\xbb\xbf\x08\xa9Y\xca\xd4\xe9\xdb?\x03\x89\xb1\x86\x01\xd4\xb5\xbf\xb3\xf3\x98c\xbas\xc3?x\x88}\x96\xed\x97\xc8?I\x16\xab\x1a&I\xd5\xbf8\xf3\xf3s\x00?\xc6\xbfy\xe1+\xfc\x01D\xc4?\x97\x95N\xc8\xfe\x97\xba?\xad[\xd9\x04\x043\xac\xbf\x07"\x7fi;\xa3\xcf?\xbdl<\xe5\xdee\xc9\xbf\x1c`c\'\xb1w\xac?\x80`\xf5>\xbb\xfb\xa9\xbf\x11c\xc5G\xd6S\xc7\xbf>\x12\xfa\x83Fy\xc4?{g\x91\xa2\xb3F\xcf\xbf\xa4\xdc;\xa3zk\xb5?\xdb\x9eS\xa2\xb6F\xb3?\x8c&\x9f\xce\x12]\xc0\xbf_=\xf0\xcf)\xf5\xd1?+QH\xfdPp\xb6\xbf\xe6t\xdb*\xa8 \xa4?\xaf\x0b\x18b\x12\xf8\xc0?\x1f\xd1\xdbzr\xb2\xd1\xbf\xc9\xa6\xe5#m\xe2\xb6?\xe5/\x95\x10\xb0\xcf\xc7\xbfm\xc7\xdck\x949\xbc\xbf\x1b\x1a\xa6\xf9\xf5\x85\xce?\xc8\xb2\x10\x8a\xf5\x10\xa6\xbf\xb8\xcbv"+.\xd4?*w\xe7\x04*\xbe\xc0?\x80S\x89\x9e"\x7f\x9f\xbf\xe4\xc0Sl\xeb\x87\x93?g\xe6\x8bp\x0c\x0f\xd7\xbf\x0b\x07\x9a\xa1\xfep\xc7\xbf\xa9\xec\xea/N \xc1\xbf\xe1\xa6\x1a\x8b\xe0K\xb2\xbf\x08V\x97w\x1e\xb7\xcd?m\xa5\xccJJ\xb3\xc3?\x83\x05\xc6K0\xc1\xcc\xbfm/\x11\xa9\x01\x05\xc8?CKg\xc80\x1f\xc1?pk\x0f\x1b\xa8\xb0\xc1\xbf\x98A\x7f(\xf7\xa4\xd5?\xe1I2\x06#\xd2\xc7\xbfc\x99\xf4\xf5#\xfd{?\xc8m"\x7f\x0f\xf0\xbb?>\xae\xffYY1\xd4\xbf\x87\x94\x92\'\xb0F\xc2?aeg\x83\xa9K\xc4\xbf\x90\x9d\x15\r\xb9\x14\xc6\xbf\xe9\xd3#x\x96\xac\xd1?S\xb0\xab:\xa3\xea\xbb\xbf\x89\x94+\t\x1a\xb5\xac?|9V\xdd\x8c\xd7\xd1?\xbcK5\x0e5\x1f\xc9\xbf\xfe\x13I\x9c\xf9\xcb\x9b\xbfI\xa2\xd0\x1bcm\xa1\xbf\xcf\x1d\x98\xd4\xb6\x0c\xcf\xbf\x83zh\xd7\r\x0e\xcf?BS\x9e\xfckr\xb3?\x1ff\nq\xb5,\x9c\xbf\x98t\xc9\xe5\xd7\x17\xc5?\x8cSThu\xcf\xcd\xbfq\xae\xf8\xd3)\x9b\xa1\xbf\x12\r\xdc\x98M\x8f\xb1\xbf>\xbb\x9a\x1a_Y\xb7\xbf\xa9\xf0\xfd\xd8\x99`\xcc?l\xfd\x9d5L\x99\xb2?\xd7\xcdK\x12\xc7(\xc1?"\xd2\x91y\x03S\xb3?\xb0V 3\x1d`\xc3\xbfj\xfe\xef`\x06\'\xbb\xbf\xd81\\\xc5)\x9c\xcc\xbf\xd4\x15h\x88y\xde\xc0\xbf\x18%(X\x8e\x1c\xd0?]c\xd4\xcc\xcdN\xc3?\xfc!\x0e\xc1\x17\xf1\xca?\xeb\xc5|\x1a\x9c\x1d\xc8?\x98\x9e"\x19e\xd6\xc3\xbf\xeaGv\xbc7\x96\xba\xbf*\x17-1\x84v\xca\xbf@\x10\xc4Ur\x12\xd2\xbf5\x9a\xb1\xfa\x00\xe4\x93?\xed\xe6\xaa\xa4\xf9k\xa8?p\x1f\xcd\xcb\xf5\xa2\xc9?\x06\xe5w\xf7\'\x7f\xd6?\xa7\xd8V\xc3u\xec\x99\xbf\n\xc9\xc4?\xa3H\xb8\xbf\x97\x95\'\x080\xd2\xa7\xbfF\x1fL\xb45\xdb\xd3\xbf\x10*\xbb\x8c\n\x93\x80?5\xac6wP9\xac?\x13-\x85\xfc\x00p\xa5\xbf\x00\x1cV\xb7a\xc9\xd0?\x86\xca\xacl\xc2\xf4\xb6\xbf\xce\xd9oE\xa4\xa4\x96?\rx~\x11\xd7\x00\xc3?\xda\xce\xcfW\xbd\xb5\xd0\xbf\xdf\x1aK\xa2\xc5\x14\xc2?\xcb\xc9\'\x8a~\x93\xaf\xbf\xc20\x02\xe4\xa9H\xc6\xbf/\xb7\xe1\xf9\x8a\xfb\xc7?\x8d\x85\xd3\xc1\xf9a\xc6\xbf\xbf\x0f\x07\xc8\xc5\xae\xb5?v\nW,\xbb3\xc4?\xf0yR\x8b\x81\xa9\xba\xbf\xb9!3}\xd2\x00\xb9\xbf\xf24\xe2\x93\xbf\xdc\xbd\xbf\x899\x83\xf6J\x15\xbf?6\xd3&\xa6\x92\x9d\xc4?{,%\x9au\r\xb0?\xec=\x86\t\xdcv\xc2?\x14k\xae\x1b\xfe\xf4\xa8\xbf$*\xddBbz\xc8\xbfr\x0e\xa0\xae\xd3\xef\xbb\xbf\xfd-{C"\xa2\xc5\xbfPr\t\x90\xfde\xa3\xbf\xb8\xa9zQ\x1c\xfc\xca?\x99+\xaf\x91\x19v\xc0?\xac1\xd7\xfb\xa6\x9a\xba?+\xf0O\xf7}b\xb8?\xfa\x84C\xdb\x02\x99\xd0\xbf\xad\xb3i\x9d\x85\xae\xb8\xbf\xf8\xd1vZK\x97\x98?LTNh2M\xc5\xbf\xf3V\xfc\xaaG\x8b\xce?\x99q2`,}\xb6?KR\xb1\x0c\x82}\xb6\xbf\xfd\xde\x93E{\x88\xd1?8\xb4\xd4\xf2E+\xd0\xbf\x957w^\xf4\xba\xc9\xbf\x05\xb5;VH\x86\xc0?4\xad/\xff\xfe\'\xd6\xbfW\xd2N\xdfp\xdc\xca?v\xd6>\x01\xb9b\xd1?OX\xaf&U\xf6\xaa\xbf\xa3\x14!\xfc\xbb\xd7\xd1?\xa9X\tW>\x1c\xbb\xbf\x1f\xd4\xfa\xf6\xb5\xbe\xcb\xbf\x96D\xa0\xd1)\xf2\x8b?\x1c\xb7\x1f\xef\xdd0\xa1\xbf\x10F\xe8\x0e\xa6\x8b\xb6\xbfV\'\xc48\x9b\xe8\xb6?\xf0\x80\x94\xc6\xe1\x8e\xc5?V>,\xc0>_H\xbf\xf3\xe1j\xb2\x81\xc4\x94\xbf\xd1|\x05^<|\x93\xbf\xb4\xe2\xeba\xeb\x9e\xc6\xbf\xd2b6\xd0\x15P\xb4\xbf\xb5\xfaiba\xce\xb2?\x1b\xd9\xea\xaa\xe5\x05\xa1\xbfD9#\xf7#\x1b\xc5?\\}q\xd0}\x96\xcf?\x8e\x0b\xb8\xec~\xb7\xc7\xbf^\x82%\xb0\xaa\xc2\xc3\xbf\xe4\x0e\xa1\x05\'>\xb1\xbf\x83\x96\xfe\x0c{\xd7\xcf\xbf\xb3\xe4YW*\x9e\xc6?\x13\xff\xf0j\xcda\xcc?\x84\xdd~\x83EF\xab?T\x82f\xe0\x05\xcd\xd3?\xd9en\xe2\xe4*\xc4\xbfI\x9dBll\xfc\xda\xbf\x19\xf1B\xc8|\xc5\xae\xbf\x1d\xd1r\xb4\xc9\x04\xae\xbf\x1a\x9a\xdd\xc4\xad$\xba?\xf4w?\xea\x83\xf9\xd4?\xd7 \xb3]\x91\xfe\xc9?O\xda\xdf\xae\x1b\xa2\xb9\xbf\xa6H\xb1n+t\xc0\xbf\x8au\x1f\xd5\x15\xa2\xb9\xbf\xa5\xb8\xcb\xbc\xa8\xc0\xd0\xbf7qO\xc3\xff\xe8\xab?w\x8f\xb5\xa4\xc7\x13\xca?\xd4\x9e;B\x9d\x10\xc6\xbf\x93\x1d\xdc5\x0b\xb8\xc7?\r\xaf\xa4*%\xa5\xd2?m\x89Z\x97H\x1b\xc6\xbf\xf8\xb1Yu\xe5p\xc3?K\x1d\xd1\x94 \xa0\xc4\xbfW\x19\x08Q\rL\xdb\xbft\xf4w\'v`\xc5?\xc9!\xa6\n\xcbt\xa0\xbf\x85`\x9b>\xc6B\x9c?\xb5\xb68e\xf8\xaa\xd8?6\x05\x15\n\x9d\x92\xb4\xbf\xed\xf1i$\x8e\t\xaa\xbf=w\xc4\xd9\x8d\xef\xb7?\xda\x86\xd0\xd3\xcd\xbd\xd5\xbfQ8\xf0\x9d\xb8_\xc4\xbf\xb3\xcc\xe5\xde\xf3_\xc1?\x10\xd0\xba\x80\xf8\xfa\xbd?P\xf1\x0b\xbe\xf9I\xc8?\xc24\xe3\x16\x10\xb0\xc3?\r\xdc\x94\xcd\x0f\xa3\xbd\xbfa\xbaV\x1e\x876\xd1\xbfh)\x9b\xbf8E\xb2\xbf\x99\xc7\xc4\xa3\x9dt\xa7?#\xc1MM\x86\x8f\xc0?x\xef\x0b\xc2\x9c\xfc\xc0?\xb2\x1e\xf0y\x8d\x0e\xbb\xbf\xa2\x9a\xc36\x9a\x8b\xa5\xbfe[I\x9f%\xa7\x8a?\x06\xfa\xf9zY\xfc\xb2\xbfc\xb0OpN\x18\xb8?\xa3$_\xb7he\xa1?\xbb\xe8^l\xb2\x83\xb3\xbf;\x8b\xc1\xbfO\xd0\x90\xb0\xee\xa3\xce\xbf\xc5\xab\xe6\x14\x81[\xca?\xa3\x881\xf0\x00\xc6\xd1?6\xfc\xd1\xede\x01\xa7?\xcb\r\x16^\x08Y\xce\xbf\xea\xf8\x99\xc8u\xc8\xd6\xbf/\xe2X\xc3\x07\x88\xb6?\xf0\'\xa3PpB\xcc?\xf8rSe*\xc8\xc2?\n\xca\xbbp\x07\x7f\xc3?N\xf2)\x84\xa7j\xd2\xbf,\x9c\xf0\xa1L\xeb\xd2\xbf\x15u\x88\xca\xf7H\xb7?{\xccU\x8a+|\x97?\xcc/uZ\x898\xc7?\xd9\xa8\xc9\xd4w{\xd1?\xc6\x86\xa8 y\xd7\xbd\xbf\xb6u\xd4\x0f+D\xc0\xbf\xc9M|=4v\xbc\xbf\xdc[f)\xe0\xf7\xcd\xbf\x9f\xb8\x7f\xbd\xbd\xce\xc6?\xc2\x99rl\xa3\xa2\xd2?\xc2\x08Zd7\xee\xb6\xbf\xf9\xec\x12\x08\xa6\xa1\x9e\xbf\xa9\xacJy\x1b\x9f\xb8\xbf\x1b0\x8d2n1\xc8\xbfa\xca\x97\xd2\xccR\xc5?ev\x03\xfciy\xc7?j\xa8\xac\xc5\xc7\x99\xad\xbf\xe0\xd5r5\x90\xcd\xb8?O\x91\x17\x18\xc6\xb4\x94\xbf|Z#\xe5dG\xd1\xbf\x1b\xacz\xc8\xa1\x97\x8f\xbf\xdcpl\xb8\xf7=\xb6?\x88\x03&\x1fZy\xc0?\xbc\x10\xfb\xe0\x9d\x19\xc8?,s\xf2]\x97\x98\xd0\xbf\x03\xd7VL\xaa$\xc5\xbf\xc7\x18\xbc\xecW&\xd1?Y\x00C\xb1\xc8$\xb5\xbf\xe1|^\xf5\x82D\xbb\xbf,\xe1\xfaN!5\xb9?&\x16]\x11a\xde\xbb\xbf\'\xe2ea5\'Q?\x92\x90\x06R\xd6\xe4\xcd?_(x_U\xd6\xa8?q\xf7\xdb\xbc\\\x1c\xb1\xbf%\x02\xa6\xf3\xc09\xa8\xbf\xd3\xda\x93>y\x00\xc7\xbf\x8b\x86kJS\x9e\xb9\xbf\x10R\xf3u\x02\t\xbe?Ek\xcf\x9a\x11f\xc4?L\n\x16)\xb8\xf3\xb4?r\x7f\x9c\x9c\xa2\x86\xa0?V\x01\xe9\xe9`e\xa6\xbf=\xf5\xca\xd2\x00\xbc\xd0\xbf\xb3@(\xa2\xd4L\xa0\xbft\x07v\x9d!!\xd2?\x8c\x96l%\x8cV\xbc\xbf\x98\x82G\xab\xd8\x07\xbf\xbf\xc3Z \xcd\xdc\x85\xd2?\x02>t\xbe\xa7\xf4\xc5\xbf\x84\xed\x84\x9b\x89\x95\xd4\xbf\x8dG\x1cDR\xf4\xdb?QK^\x18\xbe`\xc7?\rjz\x05\x88g\xd5\xbf\xeb\xe6\x1aJ\xcbZh?Z?\x03\xf43\xb3\xac\xbf\x12\xeb$a\xbd\x0c\xa7\xbf\xd2Wu)[\xe3\xcf?k\x1dm\xaa0\x0b\xa9\xbf\xbajY.\x07\xae\xb6\xbf>`M*\x9f\x9a\xb5?\xd5+`\x90\xb6\x0f\xbc\xbf4\x03\x80\x04\xaf\xde\xa1\xbf\xe5\x8b\xdc#\x15v\xb4?\x01\xae\xc1o\x07)\x94\xbf\x9e\xdd\xfa\x05v\x86\xb8?B\xb5\x14\xb4\x10\xd1\x9b?\xca\xb4\xc6\x9dw\xe1\xc4\xbf\x14Bn\xc6\xaeG\x95?Z\xca\xb2^\x0f7~?\xe1w\xcaB\xd3\xbd\xa0\xbfM\xda\x00v`m\xc1?\xa6\xab6\xf1st\xa2?>9\xe9\x1fe\xc0\xb7\xbf\xfc\x00\x0e-4\xa4\xa1\xbfA"\xef\xf5\xf4\xf1\xab\xbf\xf5\x07\x82C\x87\x14\x8a\xbf\x00\xc3\x0f\xdbKZ\xc0?\x18\xc5L\xf4\x1d\xc1\xb9?`\xde\x8c\xc0\xc7g\xb4\xbf\x94\x88S\xe8TS\xc7\xbfY\xc2\xf9\x93\x8dsh\xbf\x0b\xfe\xbbs\x7f\xf9\xc4?O\xdd\x89a!\xde\xac?#X\xa1\xfd} \xbc\xbf\x05\xb7\x10\xacID\x83\xbfA\xdd\x11[\x93\xfa\xc6?\x83l\x95V\xc7\xcb\xc1\xbf\x8b\x0b\xbe\xa6\x16\x86\xd3\xbf\xb1\'\x98f\xa2\xa0\xc8?w\xbfg\x182\xcd\xbe?\xb2V\xe3\xacp\x01l\xbfZ\x16\x93:\x01\xb9\xd9?\x93\xd2\xb9/r\x99\xc3\xbf\xbd\x84<\xd5G|\xe3\xbf&\xfa?C\xfd\xcd\xa6?\x85?\xe6\xc8,Y\xd0?\x89 \x0c\x1bNT\xa3?\xb1J-\xa9\xad\xac\xbe\xbfd5\x86\x10\x85\xc4\xa3?\xa4\xab\x0e\x8d\xb0\xb1\xcc?\xe9\xf1\xf7\xa3m\xeef\xbf\xf2P\x94=\xeb\xa8\xb1\xbf\xff\x8e{\xb90\x01\xb4\xbfY\x8c\xf3\xf4\xbc\xce\xc8\xbf\xdf\xbc{W]"\xa0?\xc2\xa4\x14dq\x1e\xc8?\x10x\xad\xe1\xe3\xd2\xb9?:\xc3\xf6}\x82{\xbc?\xe6\xe1\x97V\x81S\xc6\xbfd\x04\x13{\x05\xff\xd3\xbf\x02g\x80\x00\x94\x9f\xb9?,\xd9\xba\xa2\x9a\x97\xd1?\x05^\x0e\xa9\xfc|\xb7?{PTp\xf9\x1b\x93?\x85I\xb88f\x9d\xcd\xbf\xca\x14\xf2\x984\xd9\xd2\xbf1\xe5P\xf6\x06z\xc8?\xf6\xb8l4\xd7\xe7\xcf?>\xa6\xc5\xbaB\x92\xb2\xbf\xac\x8e\x08\xb9p\x93\xb1?m\xa7\xbf\xdb\x98LU?\xefS.p\x1b)\xd8\xbf\x12lZ-\xc7\xcb\x9e\xbf\xdd\xe0\xba\xe2\xf4"\xd7?\xf1r\xadw8x\xb2?\xebxD\xd2\xcc\x93\xcb\xbf/Uv\xbe\xcf4n?\xf9A\x15\x0f\xc8)\xbb?\xd6^\x89\x01\x10\xd0\xbc\xbf\xd5 \x85\xf4\x9d\xe7\x94\xbf\x9d \xf2\xc7\xb2\x19\xb2?;\xa0E`\x08p\x91?\xb7#QQ\xc5.\xb2?a\xd4\x07s4&\xa1\xbf\'o\xf9g6\x1a\xb9\xbf[\xa64\x08|\xfa\xaf?\xc3\xb5\x85\xa7\xc7F\x9c\xbf\xcb\xb2\xa1\xbe\xa1\xfb\xc3\xbf8#\xc6J\x15w\xba?\xd5xrq\x82\xce\xcb?\x92T\x16\x8cL(\xb5\xbfC\xbaj\xc0\xc3\x87\xaf\xbf\x078\x12L\xc1U\x98?\'\xc9\xea\xa0N\xa9\xcb\xbf\x82\x04\xf98B\xcc\x86?>\x05B\xe1!\xf9\xdb?\xa6\xf4\x06\rb\x96\xa5?\x80\xdd\xdcY\x18^\xdb\xbfx\xeb\xbd\x90\x85{\xc2\xbf\xc7\xb3/}\x18]\xc3?\xde\x85\xf1=(\xc8\xc2?\xbe\x9b\x96\x82P^\xc0?\xd6\x05\xe9\xdah{\xa9\xbf\xecj\xc4\xbf\x06\x94\xd3\xbf\x1b"$do\xed\xab?\x85\xff\xf1\xaf\x1ce\xd8?Iv]"\x8c$\xbc\xbf\x17-\x8a\xd5#\xee\xd3\xbf\x9b\x14\x0f\xeav\xa9\xad?\xee\xd6\x1aZ\xe9\xd9\xbf?\xf5^\xb8\x83=J\x9e?(\xe5\xdf\xfb\xa0\xe2y?\xdf\x9a\xad\xbc\xe3\xc6\xb3\xbf\xa5\xf70\xbe\xe0\xe1\x89\xbf7\xdb\x86\x16\x1aL\xa9?\xb2\xe5\x9f\xd2\xf7W\xbf?{\xabp`\x8d\xa4$?\xfb\xa9;\x04\xd3\xc4\xd6\xbf\xf5\x9fDn\xb0F\x9f\xbfZ\xf2\xaa.T\xe3\xd8?A\xd9\x7f\x9fF\xed\xa8?qZ\x1f\x8a-\xd3\xb1\xbfCQ.\xec//\x87?\x80\x1eu{\xca\x1d\xd5\xbf\x1e6\xbc\xf9\x80\x17\xc2\xbfe\xee\xc6\xd8\xb8l\xdb?\x0b\x02\x965\x1b\xc1\xcb?2\xadn\x16\x7fU\xd0\xbf\xa6W\xa6]\x10\x99\xc4\xbf\x19\xf8\xe8\xc3\t\xd0\xb8?\xc0\x01\xfb\x86\x81W\xa6?\xf9\x96\x88znM\xa3\xbf\r|.b \xbd\xa3?WP\x12\n\xb8\xe8\x8e?D\xf3\x14\xb7\xc4\xf4\xad\xbf&\x8a\xf0ZC^\xa9\xbf\xd4\xfa%x\xd3-\xa9?8\xcf(\x8d\xf42\xbb?-9Pg\xd2\xfa\x8a?\xfdr\xbe\x8e\xea\xd0\xbb\xbf\x80\x1f\xaa)2\xab\x96\xbf\xd0A\xb8\x1b\xe5d\xb5?\x9dC\x8c\x96\xde\x83\xb2\xbf\x11\x81\x1eLh\x94\x95\xbf\x92?\x03o\x00h\xce?\xe7:\n\xfc\xff\x03\x99\xbf\xb4\xf1\x98\xb6\xb7\x08\xd5\xbf\xf4>u}\xb8\x1a\x85?\xde\x8c@\xa3\x89\xe2\xc3?\xc3IK(\x0e\xb9\x88?\xcc\xbf\t\xe3\x19\xfe\xc2\xbf\xc8a\xdbT\xfb\xfc{?<\xc5\x08\xea\xec\x10\xd1?C\xacv7#\xc4\xb8\xbf\xbdF\x0en\x89I\xbc\xbf\xa7\xc5\xf1{/J\xc3?Y}\xc2\xacc\xe8\xbb\xbf\x82\xb3}g\xbf[\xbf\xbf*Zj\xfdt\x1f\xcb?\x1a7\xd5 \xe5l~?\x057\xdf#lK\xc0\xbf\xf1\xe1i\x08\xf2C\xae?F\xb5\xf3\x8b\xcfb\x82\xbfa\xc7M\xbc\x8bN\xab?\x07\xc2H\x1f\xcc"\xbf?!\xa0\xea\xd0:\xfb\xcf\xbf\xef\x88\x05\x91\xcco\xcf\xbf\xcc\xea\xeaX\xec/\xd4?\x0c.\x05X\x97j\xd4?i]`\xccD{\xd0\xbf\xc8\x17p@\xea\xc9\xd1\xbf\x06\x85\x7f\xe8\xe1O\xc3?\x83\xa9\n\xb3\xb9\xf3\xaf?\x16\x1f\xae\x15\x81\xba\xa0\xbf\x97B\xfd\xf3/\xf3\xcc?\xa9~\xf5\xf3\xcd\xf0\x9b?\x19"\xfc\x8e\xc8F\xd7\xbf\x9d\xca\xb5\x86<\xe4\xaf\xbf\xf4\x10\xceQFa\xcf?\xdb6\xa3\x9a\xcf\x01\xb3?\xce\x99\xf7S\xf8\x15\x81\xbf\x04(\xe4d\x17L\xa2\xbf\xfaT*\x0648\xab\xbf\x8f\xbc\xf31l\x04\xa9\xbf\x0clrY\x05\xf6\x90\xbf\x03=\x82\xa4\xe0\x8f\xc1?\xd6#\xbdV\xb7\xc4\xbb?\xca\x19\x1ca\x98\xf8\xc7\xbf\xd1\xcb+\'B\x9e\xc7\xbfz\xb4F\xbbx\x80\xc1?\x84\x10\x84*\xbfQ\xbd?\x9e\x16|\xeb\x0c\x11\xa6\xbf\x13\xcf\xc46\x7f7\xb4?\xa4\x0b)\x15$]\x83?b\xb68L%&\xd0\xbf\x03\xea\x0f\xce\x89d\xa5\xbf\xe8\xc8\x0b\r|\xc3\xd4?\xf9\xe8\xbd^\xae\xec\xc0?i\xc7\x1b\x8a\xf7\xaa\xd7\xbf\xe7\xdf\xcc}\xc0t\xc4\xbf\xb3T\xe2\xc8;{\xd8?\x80N\xa2h\x82\xb9\xbe?yeQ\xca\x81\xe5\xd1\xbf\x82YK\x1e$M\xbd\xbf\xab\xac\x05D-\x16\xb7?e\x0b\x81_\nB\xb9?\xe9\xb5\x9a\x93Pd\xc0?e/*%Q\x8c\xa1\xbf*\xc1\x0c\xd4-%\xcb\xbf\x9a<\xfb\xd4w_\x86\xbf\x9c\xb2\x8f\xa7k\xae\xac?\xe3Z%q\x1az\x91\xbf#\x10\xd0\xca\x1cK\xcc?z\xa8\xa39\xab\x8b\xac?t\xa8c\x0e\xeeb\xd4\xbf\xfd\x05\x9a\xd2A\xa3\xa0\xbf\xe9+I\x92\xc0\x8a\xc0?\x90\xf5\xe4(\x9e?\xc1\xbfY\x0e\xed\x12\xc4\xbc\xc1?\x92\'9\xbd\x04\xaa\xd6?\xc5*\xc3\xda1\x94\xcc\xbf\xce\xbe\xb1n\xf8\xd7\xd9\xbf\xdd\xe9\xa6\xde\x9bMx?Pcx\xd8\x85\xef\xd3?\x1dT\x13~\x82f\xcd?-]R\xee})\xc5\xbfu\xa4\xaa@\xb6\x9b\xd2\xbf\x05\x06\xbe\xcf\x07\xf9\xb0?\xfbO_\x9fS\xd0\xcb?3\xe6\x15~\x86*\xa2\xbfNC:"Z\x10\xc0\xbf\xb7\xbbyS\xf8\x0e\x8a\xbf\\\xe9\xb3\x1fs\xa6\xb8?\xfe\xd9c\xc5\xaa\xa5\xb0?6\xe9h\xc5\x0e\x87\xb1\xbfO&&\x8b\x07\t\xb7\xbf-\x97X\xe2\xf4\tv?\x9ay0\xcc\xaeu\xba?\x893\x18\xd6\xb3*\xb5?\n\xe6\x0b\x83s\x81\xbb\xbf"\xb4E\x14\xfb"\xc6\xbf2\x82\xa5\xacC\xf8\xb6?\xb6Cn\xcb?\xdd\xcc?\x92\xff\x17\xd5\xc0H\xa7\xbff7H\xb3\x05\xba\xcc\xbfl*\xd4l\x83\xf3f?\xaf\x1fh8\xf5\xba\xcc?\xff\xed\x84\xdb\xdb\x92q\xbfi\xab\xae=\x89\xb3\xc9\xbf1\xd9\x17\x90\x9emz?\xa2D?b\xd5\x91\xb4?\xde0\xbbqGf\xa1?\x82\xe3\x88D:\xe7w?~\x07\xbd^6\xdf\xba\xbf\x8e\xab\xcb\xf0\x9a\xa4\x93\xbft\xbc\xd5h\x1fc\xc9?\xe8o(\xcd\xf8\xd8\x9c?\xb7\xb3\x0b]\xd6-\xd5\xbfDOm&\x05$\xa1\xbf6;\x902\xeb6\xda?=+W\x9c\xbbu\xa4?\xba\x8d\xe6x\xceE\xd4\xbf\x8d#\\\xe1=\xa4\xad\xbf\xa6\x04\xe4\x16\xa2\x0b\xc4?7\x1f\x1a>c#\xb0?\xf6\xb8rx-\x04\xb9\xbf,\x04\xdd"&\x8a\xa9\xbf\xbb\xb4\xa7\x842.\xba?\xad+\xee\xa8\x8a\x03\xae?Sm\xb9y\x81\x18\xb5\xbf\xda\x81\x18hZ\x8b\xb6\xbf\x92F \x1f\xcd\xe0\xaa?\xfc\xd8\xa0/@6\xc2?\xf0\x8e\xb7=\xd0\xa3\xa0\xbf`\xec\xf2$\x98\xe2\xcb\xbf\xbb\xb5V\xd1\xb4\xa3\x87?\xbe\xd1h\xed\xa2\x0f\xd3?\xe9u=\xf8\x00q_?\xa4\x85\xa6p\xa0Z\xd6\xbf\xe0\x9f\xdf\xedq4_?"\x10\x84?\xeb\xd5\xd6?\xfaw\xcc\xef\x0b/\x83?\x91\xbd\x91\xbfI\x92\xbf\x17\x84\x95\x14\x84J\xbc?\xd7\xae\xd4\x95\xff"\xaf?\xe5\x01\xc1z\xb8V\xcf\xbfZ\xaa\x17L\x9c\xff\xa4\xbf\xfb-\\>n@\xc4?\xa6\xa3\xe6\x82\xd9\xcb\xab\xbfI\x16\xc1\xfd%r\xa5?\x7f\xf0\xab#\x99\x0f\xc9?p\x99y\x8e\xf3\x07\xc6\xbf5\x15w"\x0e\x17\xd1\xbfw6WuXC\xc8?\xd4\xc4\xff\xc6B\x0e\xc9?$\xbf\xe8)\x90q\xc3\xbf"\x1eE\xff7m\xc1\xbf\x97\xf5\x93\x9c["\xbb?x\xb3\xe4\x8c@\x9e\xa2?4\x9a\xc3\xc7\xce\xb7\xb3\xbf\xac\xf5\x90\xb2f\x8d\xba?9\x9bR\xbc\x87)\xc1?\x1e\x1a\xf5\xab\xe7\x8d\xc9\xbf~]\xf2\x07\x12"\xd1\xbf\x12\x05i\xcd?b\xcd?=]\x8clXf\xd9?\x99\xfe"*\xd5\xd4\xc0\xbf\xd5\xf9\xe6*\xf0\xdd\xd6\xbf\xb0\xb7\xbe\x93\xc0\x0c\xa2?A\xc84\x0f\xfd\xfc\xc1?%\xcb +/\xb9\x7f\xbf\xa0y\xcb\x02\xeb\xcd\xc1?\xbb\xb1(\x1cy\x06\x87?\xda\xb3Q*{\xd0\xd0\xbf*?"rm,\x8b\xbf\x18\x7fn<{\xea\xbd?\xd5\x9f\x16@\x93f\x90\xbf\xbb\xd6>\xf1|L\xc3?\xec\x1e\xd4F\x94\xdd\xb0?\xcc0\x8cQA\xf3\xdb\xbf\xfa\x96O\xb2Lu\xb1\xbfXB\xa2\x87)y\xe1?\xc02\xab/1%\xb1?\xa0\xfb\x12\x88\xb2\x88\xdf\xbf\x05L\xe1{\x84D\xbf\xbf\xcb\x8eS\xa1wM\xd7?\xff\xbd\xe1D\xf2\x8e\xba?\x9b\x8a\xe0\x80\xc4\xda\xc8\xbfZ\xd7M\xdb6x\xa9\xbf\x8bn ;\xe2\xf8\xb5?\xe5\'\x00\x84Iz\xa4?\xdc\xb8\x07\xed\xed\xc4\xa6\xbf$\x94x\x02\xad-\xa0\xbf\xc1C\x1f\rDb\x9b?\x1d2G\x89R\xa5}?\x0c\xca|\xa3c\xf4\x7f\xbf \x18\x1a\xb9\xa3\x90\x91?b\xaaWo<[~\xbf\xc3C\xda\xa3\x8a\x99\xaa\xbf\xcc\xcf5\xaed\xbfp?\x1c\xfc\xd2\x97\xea\xb4\xae?1bk0\x06\xd5\x97?\xb8\xf3\xc03\x08\x7f\xa3\xbf\xef\xae\x01\xe2\xe9W\xa3\xbfvaf\xf36\xab\x9c?\x8a-%\xe6\xb3\xa4\xaf?\xc0i!ho\xc6\x94\xbf\xd3)\x94\x8e\xa0\xa4\xb1\xbfC\x1d\x84\xaf|\x8d\x82?\xa5\x93\xb3\xc8\xd4\x00\x9c?' +p179 +tp180 +bsg79 +g64 +(g65 +(I0 +tp181 +g67 +tp182 +Rp183 +(I1 +(I34 +tp184 +g74 +I00 +S'J\x94!\x9e\xa9\xc4P\xc0\xc87\xa4W\xe2LS\xc0\xa8\xbb\xd0S\xb5nG\xc0\xfd;\xcd\nS-S\xc0\x8d)\x83)\xdc\xb8:\xc0\xb1_\xb6\xb4\x81\x8fR\xc00\x81\x8ci\x18\xa5\x1c\xc0x\xf2\xc5\xcc\xb4qQ\xc0\x89p\x95\xd0\xc0\xfa%@\xaf\xa9c|\x1e\xd8N\xc0R\x98!\xa8L\xdd:@\xce\rTB\xf4\xa9H\xc0pu\xc1\x16\n\x13D@\xcad\xd03H(A\xc0\xb2\x14\xc6\xbb9TI@\xe0\xf7T\xfd\xe0\xb31\xc0\'E\x0c\'\xa5\xadJ@\x88a9\xdd\xed\x0f\xee?e\x81#4\x89\xd8H@=\xe4\xb2\xbd\xd083@\x80\xbe\x81\xd2t\\C@\xb4\x1f\x00\\\xd8\xacA@\xe3\xca\x07\x8dR=9@\xe7?\xe0\x02S\x01I@k\xe0\xe7!\x0cc"@\xa0\xcbE\x15a\xf1N@\xf8\xb3\xf0\x85J\xa5"\xc0S\'\xf6\x01\xb6cQ@j_g~\xf7 =\xc0J\xf8\xdf\xbf\xbb:\xee\n\x82*\xb5\xbfI0\xf3=\x05\x8e\xcf?\xc42\x1a\x8d\x83\n\xcb\xbfA\x89\x8f%\xbcS\xc5?,J\xf9O\xff\xff\xdb?\xd0\x16\xdb|\xf1\xfc\xdd\xbfP\x0bU\x98\x03:\xde\xbf\xea\xe1T\x0c\xd8{\xd1?\xe7\xf10\xa8\x81G\xda?`\xf0\xd2\x01v\r\xbf?\xc2.\x902w\x10\xc5\xbf9/\xd9\x8a\x88\xb0\xb7\xbf\xf5\xb0\x85\xf6\xb5\xed|\xbf\x9e_V\x9b\xe03\x98?\xc6z\x14Ns\x10\x97?x\xa0M\x01>?\xcf\xbf\x849y\xd7\xa8Y\xc0?\x92\x95\x06"\xea?\xe4?\x01\xf5\x81S\xa7d\xd3\xbf\xee\xa1\xb7\x14\x87f\xe3\xbf\xafN|\x15\x05u\xc4?\x02\x06\xa7\xb85\xd3\xc8?' +p179 +tp180 +bsg79 +g64 +(g65 +(I0 +tp181 +g67 +tp182 +Rp183 +(I1 +(I10 +tp184 +g74 +I00 +S'I`\xad\xf8b\xe29@W\xa8\x8d\x1e\x11\xc6V\xc0\xf6G\x8c\x0eC\x18!\xc0F\xa7\x80\xf3\xba-K\xc0\xb4\xa2s\xe6\x99\xde1\xc0\xa1\xcb\xc60.H\x05\xc0e\xaba+\x93\xfd#\xc0\xa23\xd0HAs\xd2\xc7?\xa1\xa7\xe3\x89\xdfW\xda?\x1e\xdf\xb0\x8e\x8d\x0e\xb6\xbfm\xff\x10UP\xa7\xd2\xbf\xdf9\x1f\xa8\xa3\xdc\xb5?\x1b\xbc|\xe7\x8e\xee\xd6\xbfdg\xcf\xcb\xa0\xbc\xd4?){\x18\xa7\xa9!\xe1?:\xc6\xf7\xec\xb3\xd0\xcf\xbf\xa2\x1a1\x88*c\xc7\xbfn:S\xfc\x05\xb1\xd0\xbf_T\xb9]\xf9N\xbd\xbf\x11~\x90#\x9b4\xe2\xbf1\xa49\x06d\x8e\xd1?(\xc2\r\xed\x86J\xcc?\xa80\xd3\x16\x9b\x86\xc9\xbfE)z$=&\xcd?\xf1"\x13\x97\x17\xc8\xbe\xbfbr\xca=\x05\xbf\xdb\xbf\xffZ\x1f\x0e\xad-\xd1?v]\x9a8\xca\xe6\xce?\xd0\x8d\xdc@\xb7Z\xae\xbf\x13J\xda_t\xfc\xd3?\xbe\x18\x1ev\xcd\xf6\xc4\xbf_u\xd2-@\xa9\xd2\xbfy\xc8\xc4\xf9Z\xea\xcb\xbf\xa6\x84\xe2\x13\x04*b?\x01\x07\rE\xae+\xe5t<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\x1d\xb3\x9fq\x04\tj\xbc\xda\xed\xbf\xc5%\x9f\xcc\xbf7\xcc\x1bE3\xdb\x8d\xbc\xde\xed\xbf\xc5%\x9f\xcc\xbfx\\\x95\x05\xac\xb5\xa2\xbc\xdd\xed\xbf\xc5%\x9f\xcc\xbfL\x00F\x0e\x8c`~\xbc\xda\xed\xbf\xc5%\x9f\xcc\xbf+HV}\xa2\tw<\xd6\xed\xbf\xc5%\x9f\xcc\xbfs\x16[\xd0\x04\xa2\x8b<\xb9n&\xb8\xfc\xb1\x9c\xbc\xd6\xed\xbf\xc5%\x9f\xcc\xbf\x1fv|\xc5\t=y\xbc\xd3\xed\xbf\xc5%\x9f\xcc\xbf\t\x8f\xf37"#{<\xd7\xed\xbf\xc5%\x9f\xcc\xbf\xb3\x86o?\xc2\xee\x86<\xd9\xed\xbf\xc5%\x9f\xcc\xbfY\xa3j[\x19\xd3\x97<\xdc\xed\xbf\xc5%\x9f\xcc\xbf\xeb\xe3\xdb0\xd3\x99\x9e<\xdc\xed\xbf\xc5%\x9f\xcc\xbf\xf2\xa8\xd8P\xc6V\xa3<\xe0\xed\xbf\xc5%\x9f\xcc\xbfo\x83\xf4\xdf`\xf6\x80<\xe1\xed\xbf\xc5%\x9f\xcc\xbfE$\xd3%\xe6\xfc\x84\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbfjw\xa8\xf2\nx\x95\xbc\xdb\xed\xbf\xc5%\x9f\xcc\xbf\xfd\x17U\xee\xe3\xf1\x9b\xbc\xda\xed\xbf\xc5%\x9f\xcc\xbf\x7fm\xbeQt\x07\xa1\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbf\xb3\xa8\xd9N\r\xd7\x99\xbc\xd3\xed\xbf\xc5%\x9f\xcc\xbfqd\x01\xfb\xd9\xcar\xbc\xd7\xed\xbf\xc5%\x9f\xcc\xbf\x98?\xbeC\'5g<\xda\xed\xbf\xc5%\x9f\xcc\xbf!d\xa0\t\x05\xc2\x8e<\xdd\xed\xbf\xc5%\x9f\xcc\xbf\xa5\xe5\x8f1\xdbJ\x9f<\xde\xed\xbf\xc5%\x9f\xcc\xbf\x1a\x0b*\xce\xca\x0ft<\xdd\xed\xbf\xc5%\x9f\xcc\xbf\x7fc\xff\xed\xc5\x9bv\xbc\xdb\xed\xbf\xc5%\x9f\xcc\xbf\xc0 \xeaA(p\x88\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbf' +p77 +tp78 +bsS'_mean' +p79 +g64 +(g65 +(I0 +tp80 +g67 +tp81 +Rp82 +(I1 +(I40 +tp83 +g74 +I00 +S'+\xc4\xbcx\x90\x9b\x19\xc0\xf7\xc2:\x7f<\x0cV\xc0<%\x19\x9a\x87\xee4\xc0\x0c\xc6r\xc3^\x86K\xc0R`B\xfat?<\xc0nI\xd2\x0f\x93\xbc6\xc0\xe3\x99\xe1U@\x916\xc0\x99\'U\x8e\x02\xf9\xf8\xbf\x08!\x9c\xee\x16\x9f<\xc0Au\x8a}\xc3l6@wN\xe1D)\x845\xc0E\xa7\xb6\x90;\xc7K@R!\xe1K\x10\xf4"\xc0\xc5\xfa\xdd\x11D\xf3U@\x81\x8c\xc0\x9c\x9fN5@\x90w\t\x03\xf1\x8aL@p\x9f\xdc\x1e\x19\x87A@g\xf04\xe9h\x989@\x1b\x9a~\xd2}\nC@B\xebG\x95\x95\x95\xb4\xbfp\xa4q\x1c\xfb\x04B@a]\xfbU6\x977\xc0\xb5\xa4|\xd9\xf5n7@\x86=\xd3)\x16\xc5K\xc0\xb8z\x156\xb2\xf8\x14\xc0n\x16\xaf\xf0-\x9aR\xc0\x8e\xda=c\x88\xa8 \xc0\x07\xa2\x8d\xd5\xcc\xc66\xc0\x17PH\xd2\xae\x11\x19\xc0\xccP\x89\x14\x0b\xca\xf2\xbf@\xfd}\xef\x881"\xc0h\xeb\xb8\xfd7\x0f7@\xcf\x1f<\x11;u\x1e\xc0\x05\xc1"\xb8\xb5\x81R@\x0fV\xe42E\x7f\x15@}\x8d\x1f+\x13\x987@\xd6 yRQK!@(\x17W\x12\xec\x89\xef\xbf\x02\x8fH\'\x96\x80\x19@%n69x\x0c7\xc0' +p84 +tp85 +bsS'template_instance' +p86 +g0 +(cmenpo.shape.pointcloud +PointCloud +p87 +g2 +Ntp88 +Rp89 +(dp90 +S'points' +p91 +g64 +(g65 +(I0 +tp92 +g67 +tp93 +Rp94 +(I1 +(I20 +I2 +tp95 +g74 +I00 +S'+\xc4\xbcx\x90\x9b\x19\xc0\xf7\xc2:\x7f<\x0cV\xc0<%\x19\x9a\x87\xee4\xc0\x0c\xc6r\xc3^\x86K\xc0R`B\xfat?<\xc0nI\xd2\x0f\x93\xbc6\xc0\xe3\x99\xe1U@\x916\xc0\x99\'U\x8e\x02\xf9\xf8\xbf\x08!\x9c\xee\x16\x9f<\xc0Au\x8a}\xc3l6@wN\xe1D)\x845\xc0E\xa7\xb6\x90;\xc7K@R!\xe1K\x10\xf4"\xc0\xc5\xfa\xdd\x11D\xf3U@\x81\x8c\xc0\x9c\x9fN5@\x90w\t\x03\xf1\x8aL@p\x9f\xdc\x1e\x19\x87A@g\xf04\xe9h\x989@\x1b\x9a~\xd2}\nC@B\xebG\x95\x95\x95\xb4\xbfp\xa4q\x1c\xfb\x04B@a]\xfbU6\x977\xc0\xb5\xa4|\xd9\xf5n7@\x86=\xd3)\x16\xc5K\xc0\xb8z\x156\xb2\xf8\x14\xc0n\x16\xaf\xf0-\x9aR\xc0\x8e\xda=c\x88\xa8 \xc0\x07\xa2\x8d\xd5\xcc\xc66\xc0\x17PH\xd2\xae\x11\x19\xc0\xccP\x89\x14\x0b\xca\xf2\xbf@\xfd}\xef\x881"\xc0h\xeb\xb8\xfd7\x0f7@\xcf\x1f<\x11;u\x1e\xc0\x05\xc1"\xb8\xb5\x81R@\x0fV\xe42E\x7f\x15@}\x8d\x1f+\x13\x987@\xd6 yRQK!@(\x17W\x12\xec\x89\xef\xbf\x02\x8fH\'\x96\x80\x19@%n69x\x0c7\xc0' +p96 +tp97 +bsS'_landmarks' +p98 +NsbsbsS'similarity_weights' +p99 +g64 +(g65 +(I0 +tp100 +g67 +tp101 +Rp102 +(I1 +(I4 +tp103 +g74 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p104 +tp105 +bsS'_weights' +p106 +g64 +(g65 +(I0 +tp107 +g67 +tp108 +Rp109 +(I1 +(I36 +tp110 +g74 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p111 +tp112 +bsS'_target' +p113 +g0 +(g87 +g2 +Ntp114 +Rp115 +(dp116 +g91 +g64 +(g65 +(I0 +tp117 +g67 +tp118 +Rp119 +(I1 +(I20 +I2 +tp120 +g74 +I00 +S'(\xc4\xbcx\x90\x9b\x19\xc0\xf6\xc2:\x7f<\x0cV\xc09%\x19\x9a\x87\xee4\xc0\x0b\xc6r\xc3^\x86K\xc0N`B\xfat?<\xc0mI\xd2\x0f\x93\xbc6\xc0\xdf\x99\xe1U@\x916\xc0\x99\'U\x8e\x02\xf9\xf8\xbf\x04!\x9c\xee\x16\x9f<\xc0@u\x8a}\xc3l6@tN\xe1D)\x845\xc0D\xa7\xb6\x90;\xc7K@N!\xe1K\x10\xf4"\xc0\xc4\xfa\xdd\x11D\xf3U@~\x8c\xc0\x9c\x9fN5@\x8fw\t\x03\xf1\x8aL@m\x9f\xdc\x1e\x19\x87A@f\xf04\xe9h\x989@\x18\x9a~\xd2}\nC@/\xebG\x95\x95\x95\xb4\xbfm\xa4q\x1c\xfb\x04B@`]\xfbU6\x977\xc0\xb1\xa4|\xd9\xf5n7@\x85=\xd3)\x16\xc5K\xc0\xb6z\x156\xb2\xf8\x14\xc0m\x16\xaf\xf0-\x9aR\xc0\x8b\xda=c\x88\xa8 \xc0\x06\xa2\x8d\xd5\xcc\xc66\xc0\x13PH\xd2\xae\x11\x19\xc0\xccP\x89\x14\x0b\xca\xf2\xbf=\xfd}\xef\x881"\xc0g\xeb\xb8\xfd7\x0f7@\xc9\x1f<\x11;u\x1e\xc0\x04\xc1"\xb8\xb5\x81R@\x0cV\xe42E\x7f\x15@|\x8d\x1f+\x13\x987@\xd3 yRQK!@&\x17W\x12\xec\x89\xef\xbf\xfe\x8eH\'\x96\x80\x19@$n69x\x0c7\xc0' +p121 +tp122 +bsg98 +NsbsS'global_transform' +p123 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p124 +g2 +Ntp125 +Rp126 +(dp127 +S'_h_matrix' +p128 +g64 +(g65 +(I0 +tp129 +g67 +tp130 +Rp131 +(I1 +(I3 +I3 +tp132 +g74 +I00 +S'\xfb\xff\xff\xff\xff\xff\xef?D\xbc\xd8\x8bG\xe0k<\x00\x00\x00\x00\x00\x00\xe8\xb9F\x87\xeb\x1b:`_<\xff\xff\xff\xff\xff\xff\xef?\x00\x00\x00\x00\x00\x00\xd0\xb9\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p133 +tp134 +bsg113 +g0 +(g87 +g2 +Ntp135 +Rp136 +(dp137 +g91 +g64 +(g65 +(I0 +tp138 +g67 +tp139 +Rp140 +(I1 +(I20 +I2 +tp141 +g74 +I00 +S'+\xc4\xbcx\x90\x9b\x19\xc0\xf7\xc2:\x7f<\x0cV\xc0<%\x19\x9a\x87\xee4\xc0\x0c\xc6r\xc3^\x86K\xc0R`B\xfat?<\xc0nI\xd2\x0f\x93\xbc6\xc0\xe3\x99\xe1U@\x916\xc0\x99\'U\x8e\x02\xf9\xf8\xbf\x08!\x9c\xee\x16\x9f<\xc0Au\x8a}\xc3l6@wN\xe1D)\x845\xc0E\xa7\xb6\x90;\xc7K@R!\xe1K\x10\xf4"\xc0\xc5\xfa\xdd\x11D\xf3U@\x81\x8c\xc0\x9c\x9fN5@\x90w\t\x03\xf1\x8aL@p\x9f\xdc\x1e\x19\x87A@g\xf04\xe9h\x989@\x1b\x9a~\xd2}\nC@B\xebG\x95\x95\x95\xb4\xbfp\xa4q\x1c\xfb\x04B@a]\xfbU6\x977\xc0\xb5\xa4|\xd9\xf5n7@\x86=\xd3)\x16\xc5K\xc0\xb8z\x156\xb2\xf8\x14\xc0n\x16\xaf\xf0-\x9aR\xc0\x8e\xda=c\x88\xa8 \xc0\x07\xa2\x8d\xd5\xcc\xc66\xc0\x17PH\xd2\xae\x11\x19\xc0\xccP\x89\x14\x0b\xca\xf2\xbf@\xfd}\xef\x881"\xc0h\xeb\xb8\xfd7\x0f7@\xcf\x1f<\x11;u\x1e\xc0\x05\xc1"\xb8\xb5\x81R@\x0fV\xe42E\x7f\x15@}\x8d\x1f+\x13\x987@\xd6 yRQK!@(\x17W\x12\xec\x89\xef\xbf\x02\x8fH\'\x96\x80\x19@%n69x\x0c7\xc0' +p142 +tp143 +bsg98 +NsbsS'allow_mirror' +p144 +I00 +sS'_source' +p145 +g136 +sbsS'model' +p146 +g0 +(cmenpo.model.pca +PCAModel +p147 +g2 +Ntp148 +Rp149 +(dp150 +S'centred' +p151 +I01 +sg86 +g0 +(g87 +g2 +Ntp152 +Rp153 +(dp154 +g91 +g64 +(g65 +(I0 +tp155 +g67 +tp156 +Rp157 +(I1 +(I20 +I2 +tp158 +g74 +I00 +S'\n\x10\xa7&WA$@X\xde\x0f\xf5\xdesU\xc0j*\xf7\x87\x1a\xbf6\xc0\xec\xd1\xdaw\xe1\xa9K\xc0\xf9\xaa\x1aC\xb2pB\xc0k2\xe7r\xc8\'8\xc0\xf6\x90\x08\x1b\xd6\xc8@\xc0\x91\x88g@\xdfK\t\xc0\xf6\xcd\x8d\xf1\xe9\x87B\xc0\x0c\xe9h\xae\xb8\xfb3@\xf1\x0f_\xb4\x7fI6\xc0\xa7\x9dC\xb1\xe7KL@(\xf2(V\xe1}\x14@\x0e\x05n]\x7f\xc8W@b\x15%\xa4b15@A\xbc&\x9a\x04dL@O5\xf38N=?@\xc8\\\xd4\x14\xa6\xe35@\xdb\xa8-\xe7\xa6\xc1@@\x15\xddg\xb6jX\xd0\xbf\x1e\xb3o\x10\xe4\xf2@@S\xfd\xfd\xea,{8\xc0~\xb7\xd8\x9a?\x878@g\x97`\xadH\xc2K\xc0r\xd4i0Y\n @F\x04{\xa6v\xb3R\xc0\xc3x\xac\x11\xcf\xa9\x1b\xc0\xb5\xa4f\x06n\x8a7\xc00\x04\xcf\xbfH\x89"\xc0\xb2&"\xb8\x9b\xe4\xe4\xbf~+V*\x13\xd0"\xc0\xc5j\xf9\xfeu%4@\xe4\xb9\x0e\xf6D\xc6\x19@uk\xa1\xe0p\x85T@S\xec\x0b\x93@R\xd8\xbf\xd9JD\r\xdd=4@wG\xe3\x88\x0c\x00\x10@\xc6\x18\xd9\xf3Vr\xf2\xbfb\x92\xd2\xe1\x93\x7f\xdb?\xac\x0c\xbaa\x15\xfe7\xc0' +p159 +tp160 +bsg98 +NsbsS'_eigenvalues' +p161 +g64 +(g65 +(I0 +tp162 +g67 +tp163 +Rp164 +(I1 +(I36 +tp165 +g74 +I00 +S's\xebe\x0f^\x07\x90@q\xb5\xf4|\x96\xc6\x8f@\xb4\xac!`@D\x80@Ud X\xc2\x9fb@\xedv\x8f\xee\xc0R[@v\xe8O\x95\xe6\x9eD@\x9a\xc0\xbc\xcb\xf0\x04A@\xcb\xfb\xfch)\xa5<@~A\xc5\x0bs\x837@\xb7\xf8a\x97\x8aL4@\xe1g\x89\xf7\xf8\xeb/@1{&\xdfD\x94,@MB\xeb\x82?u*@nr\x81\x8d\xd6\xb9!@\xb8\xf6`\xaa\x9f[ @]\xbe\r\xbe\x15?\x1a@\xd7\xcc\xa8\xe7\x87\x8b\x18@:\x98\xc5\x83\xdf\x02\x15@\xfd\xb5(CNV\x12@.\xa4\x8a\xf7\'\x1c\x11@\xb2\xc2\xe8L"\xab\x0e@Aw\xd6\x11\xb9\xb7\n@\xbe\xf1\xae\xb2\xa5\x8c\x04@e\xf0\x99\xffU\x7f\x02@\xf2\xd5X\x92\xb4\xcb\x01@p@\x1f\xf0F\x9e\x00@MR\x15\xd8\x9a(\x00@]\xf5\xbd\xdfy\x04\xff?\x9c3 \xa9\xf3\x9f\xf6?\x81\xab\xf2\\\xef\x8f\xf5?\x86\xd9\xe6\x17\x7f4\xf3?\xfey[b\xe4\xfc\xf0?\nx\xc8\x91F3\xee?\x1etI^0\xba\xea?\x8eh("\x98\xcf\xe0?\xef\xf5\xcdhz\x95\xd8?' +p166 +tp167 +bsS'_trimmed_eigenvalues' +p168 +g64 +(g65 +(I0 +tp169 +g67 +tp170 +Rp171 +(I1 +(I1 +tp172 +g74 +I00 +S'j\xd0r@\xe9=\xca?' +p173 +tp174 +bsg63 +g64 +(g65 +(I0 +tp175 +g67 +tp176 +Rp177 +(I1 +(I36 +I40 +tp178 +g74 +I00 +S'\x98\x8a\xbb\xd6\x0c!p\xbfCJ_41\x93\xd7?\x7f\xd9J\xdesU\xc4\xbf\xb1\x85/\xd3~\x11\xab?@m\xcdETS\xcb\xbf\xc6ey8\x05O\xb3\xbf\xd0\n\xa2\x9ffA\xcd\xbf\xa1e\xb3-\xdd\xaf\xbd\xbf\x90\x04(\x88\xfc-\xcb\xbf\xdad\x9c_07\xc2\xbf\xf6\xa7\xacU\x07\x89\xc3\xbf"\x91\xa5k\xf9.\xa7\xbf"F\xd1!\x06\x8c\x88\xbf\x0b\xe6\x05:\x86\x8e\xa8?\xbc\x1c\xac\xde\xaeZ\xc6?\xa6\xc4\x06\xb69\x19\x90?\xd3\xac*Y_\xdf\xce?9\xdd\x16\xcd\x89\xb8\xae\xbf\xf0U\x8e{Y1\xce?\xb4\xec\x0cjIb\xa6\xbf0\xbd\xbe\xe6\xfc\x00\xcd?\x12p\xd6@\x0cB\x84\xbf\xaa\xf6\xb69\xa3\x1f\xc3?\x12^Nid\x85\xba?k\xca\xfd\x8a\xef#\x95\xbfw^\xbfOZE\xd5?u\xba\x1f5\xf7O\xc9\xbf\x0f?SD\x880\xa8\xbf\x0f\xba\x89WU\xcc\xca\xbfO\xc1\xc8\xecWD\xb8\xbfE\xf8\xf9\x9c\x04\x13\xc8\xbf\xd9}Y`\xce\x1d\xbf\xbfI/\xfa\x07\xc7\xbc\x99\xbf\x9c\x9d\x96\x93\x8d\x96\xa4?-0(\x88\xc5h\xcb?\xee\x02\x81\xack3\xb8\xbf\x18\xbfS\xcbW\x1a\xc9?\x12\xec\xf6B\x16\xe1\xb2\xbf2\x98\r?>\xa7\xc7?\x01\xb1\x0f\xb4\xa5\xbf\xa2\xbfCjX+\xd2\xf1\xad?mZ8\xdbX\x18\xd2?eCt<\x146\xb6?\x81\xb0\xd1\xd5\x04B\x8b\xbfA\xb6-\x1e\xf5(\xb8?\x13\xc8\xe9Q\xae\xa7\xca\xbf\xd3M\x95\x1cld\xba?H\x16\xab`\xa3\xa0\xca\xbfJ\xe0\x89\tCD\xb7?X\xa2\x12\xc4\xd8\xe9\xc3\xbf\xc1\xc8k\x0e$\x05\xb8?*\x15aA\xbc\x8d\xb0?D\xaauS\xba{\xa2?\xb0{\xdd\x0cI\xcc\xdb?\xb4\xd6\xf5\xc5\x15=\xad\xbf\xa9[\xcd\xf2\xc8Q\xc3?e$\x1f\x0et\x19\xbe\xbf\xadp\xf5\x05\xbf\xb9\xa6\xbf\x00\x12\xe9\xed"y\xc1\xbf\xc6\xb9\x07\xab\xb9\x03\xb9\xbf\xbf^i\x8ez9\xc3\xbfD\xeb\xf7\x85\x95m\xb7\xbf\xd7\xbaHm\x99S\xbc\xbf\xf3\xb3U\xff\xcc\xe6\xb3?\xd2\xb6T8\x94\xf0\xac?G\xd9\xd8\xda\x1e\x8f\xd0?W\xac\x07\x1f\x99\xce\xbb?\x16\x8aU\xf4~\xec\xc5\xbf[U\xf7;\xd3x\xbe?ybA\t\xaa\xf7\xc5\xbf\xda\xf3\x83\xe7\xe4\xde\xbd?\xb9\x00\n\xc0\xf1\xab\xbc\xbf\xecA\xb7\x94\x96*\xa0?F\xb9\xbe\'\x04\x14\xd9?\xac\xec\xf2\x10\xecN\xbe\xbf0n6\x93i\xbb\xb8\xbfg(y>N<\xc2\xbf{\xdeG\xa8\xca\x03\xc3\xbf\x95\x01X\xc9\x96\xdf\xc4\xbf\xa9\xc4\x02\xfb\x932\xc2\xbfy\x83\x96\x93\xa7\xcb\xdb?\x08\x85s\xc0\xef=\xaa\xbf \xf6\x7f\xad\x87\x0f\xa0\xbf\rP5\'\xfc\x1d\xa1\xbfH\x1e\x13\x14h\xad\xd1\xbf\xf5\xfb\xf7\x0b\xab\x81S?-\x91\x87D\x96b\xd0\xbf\xf0\xf4\x07Mh\xa3\x96?0\xd6H\xd7K5\xd1\xbfi\xb9\x88@\\n\x87?.\x1c\xd2s0\x1a\x87\xbfS^\xb8\xdb\xd5@\x92?\x1bXzC\xe8\xa3\xdb?\x0f\xfc1%\x1aH\xa0\xbf"\x80\x0f\xaf/\x98\xbd?t)\xe4\xfd\xa3\xe2\x84\xbf\xe8\xfesU\x89\xe4\xa8\xbf\xe4XK\xeem\xb9\x8e?\xd1\xc4\xedl\x07\xcd\xb1\xbfc\xda\xbb\xf5\x18\xdd\x9e?!\x1e\x96:T\xb4\xa7\xbfmW~\x07u\xdf\x8d?\xd5_d\xf6\xf1\\\xbb?4>\x87\x8e\xac\xe9s?m\xe6\xeb\xe9>\xff\xd3?\xcd\x8dv\xcf\x8fs\x9c?\xbat\xcbh\xff\xa6v\xbf\n\xb8q\x94\x92\x98\x7f?\xbf\xe6\x7f*\xfc\xba\xa0\xbf$\x89\x1d\x9d=u\x98?(V\x9bv\xff\x9b`?g.\x15C>~\x86?\x90%y\xbf\xb3\x96\xd4?\xe3\xf2\xb5\x10\xe1\x89\xb9\xbfJ\x97\xd6\x9bS\xc5\xcb\xbf!!!!\x9e\xf1k?_ \x83qqW\xcf\xbf*s\xb9a]\xf0\x95?5\x8bbQu\xba\xcb\xbf}:\xc0\xe8\x86\xd9\x8c?E\xf3\x82\\1\xdf\xc9\xbf\x9b\xc8H\xf3\xcf\xef\x8a\xbf\x8bg7\xad6:\xab\xbf\x0c\xb9Nu\xea\xab\xac?`w\x8d\x01\xe2^\xb2\xbf\x8e|\xc2\x98k"\xb6?\xd8\xca\xdf\xd9\x87w\x91\xbf\x0eP\x903\xae\xafD?j\xc3\xed\xdc8\xbb\xb1\xbf\xa8\xed \x11G\xc2\xba\xbf\xf6\xa0\x97Jm\x18\xaa\xbf\xe5\x96#\x18\xc9K\xb1\xbfx\xe0K`\xf2\x95\xc8\xbf\xfe\x8b\x06\xbb&\xa3\x8a?\xf1\x93\r\xa0D\xd4\xbf?I\xfa\xc4\x07\x8d\x80\xa7\xbf\xce\xc5\xa6\xe4t\xab\xd1?\xa5\xb7\xe5N\xa7\x04\xb1\xbfY_\x8fJX\xd6\xd2?\x86\xa3\xd4h\xa8\x8c\x98?\xae\xed\xed\xdeHO\xd2?F\xf8\xb7\x04\xf3\xf4\xb1?\xb7\x06\xc5\xbd3\x19\xc1?\xf1\xf6\x17OF\xb6\xa9?\x15;\xddI\xc8\n\xc0\xbf\xdb03\xee\xf0n\xae?\x93\xf5\xf8\xdd\xcc\xd3\xcf?\xa6\xab\x0ff.\r\xb7?y\xc2\xb7:#\xbc\xd0?\xf5\xed\xf9\x92\xb4{\x90?\x11\xa4\xd6\xf5w1\xd0?\xc6\x1eh\x98N\xd9\xb5\xbf\x19\xebX\x91o\xe2\xbc\xbf"g\xd9\xa2\xc4\xed\xb0\xbf\xb56\x96XG\x00\xd5\xbf\xbf\xabS}\xe1d\xbb\xbf2\xf0+\xc6\xad\xa3\xd4\xbf\xf9Bf\xb1\rv^?\xfb\xc6\xef\xf9gE\xd5\xbf\xa4\xc3\xb2,\x1b\x96\xb6?`WC\x02E\'\xa0\xbf\x8e\xc8l\xff!\x88\xce?\xce\xd07*\xb0\xb7\xa8\xbfO\x16#+\x93p\xb8\xbf\xd9\x08\xcfd\xf0\x8fz?;Y\xc7\x15c\xbd\xd0\xbf\x83\xe4\xd9e\xb1_\xab?\x98\x1e\xef\x84\x0eP\x80\xbf22\xeby\xe0]Y?\x97\xda\xa4\xe4\xdd\xb4\xd2?\xbfao\xf9\xb5\xd8\x9f\xbf\xa8\xec\x9c\xb1CV\xc0?R\x94\xc7\xf8Y\x97\xa0\xbf\xd0\xa8,\x07\xe2[\xd2\xbf\x16,\xadR\xa2\x07\xb0\xbf6\xbf\xdd7\xfe`\xc0?\xe7\xcf\xfe\x96\x93\xf6\xab?\x92r\r\x19\xd3F\xd2?x\xff\xb1(><\xbe?\x1c\x1f\\AN\xc6\x92\xbf\x93Q\xcb\x1e2\x07\xb1?\x0f\xc2\xf9\x06\xf0g\xd1\xbfk\xe1N\xd1l\xd8\xaa\xbf\xaco,F\xf7A\xbe\xbf&!\xf2Z\x9d\xcc\x88\xbfG\xa9\xe6\xdc\xa6|\xcd?_7\x90\x8a\xa5\x0f\xac?!\xd8\xd4\xd9\xfc\x0c\xd1\xbf6\x8bo\xdbxF\xb8?\x9aC\xbb\xdaV\xb8\x86\xbf\xb1\xbf[|\x98\xc0\xab?\xd0f\xe2=YS\xd2?Y\xabgp\x8a\xd7\x90\xbfv\r\xf8r\xd7h\xd0\xbfk\xcd\x98\x88\xa6\x8e\xb8\xbf\xd9\xd7\xeco\x9fP\xd2?{\x9d\xcc\xa0\x92\xb0\x9f\xbfL\x0e\x98\x0c\x87\xca\x8b\xbf\x0c\xd8m\xe81<\xb7\xbf\n:\xe2\xb9\x06\x17\xd1\xbfDu\x87<\xf5\x87\xc3\xbf\x19\xc8\xd7$\x93\xbf\xb0\xbf0\x9f4\xb3H\x87\xb1\xbf\x8e^t9I\xf6\xcc\xbfs\xd3\xf9\x10\xa2\x89\x8d?V\x08\xadwN\xe9\xd0\xbfP\x80\x92e\xdc$\x91?^={\xc5\xca\xbe\xcb\xbf\x19\x91\xc3\x8b^\xaa\xa4?"a\x8b\x12\x06\x86\xd0\xbf\xacxjPh\xd9\xb6?\xd0\x8d\x99\x1b`\x14\xc7\xbf\xc2\\T\x9b\x97\xfa\xc2?\x16\xb7+\xfb\xa4\xce\xb3\xbf\x92\x8b\xce\x0b\x9c\xaf\xc5?\xeeE\xe2Z\xf7+\xc9?\x18\xeaK\xb4R\xbf\xaa?\xfb\x85\xee\xffj4\xd6?>\xf8\x17\xe1\x15\xecy?\x04Dn\xbf/\xa3\xd8?\xed\xb4}\xc1\xd8\x8c\xa7\xbf"\x0c\xaai$\xc5\xd5?D:R3\x8b\r\xca\xbf\'\xbd\x908\xd3\xab\xc6?\x02\x07\xfeC\x95u\xc1\xbflzj\x1d\xf5Q\xb5\xbfQ^\x19\xa9\xdbj\x95\xbf\xac\xf8\xb4\xe6\x1c\xd6\xbb\xbfn\xdf\xb2\x88\xccR\x8d\xbf\x8d\xb0\x85TWq\xb5\xbf\x85\x84\xaa\x97\x89\xb7\x80\xbf\xea\xeb\x80\xa0g2\xbc\xbfg\xe7\x97\xd3\xf5\x99\xbc?\x8f\x81n\xdb\ns\xb6\xbf\xdet\xcbuP+\xbb?\xf4\xfc\xbez\xa0\xde\xb5?\xe1\xd2\xdc\x15\xf2\x9dp\xbf\x8d\xb7\xa4\xaay\xbb\xc0??\x05^\xf6Y\xb7\xb9\xbf\xb6>\x82\xb7(\xa5\xb9?\xb3/\xbc\x90\xadAp?}7\xd7_5\x05\xbc?\xf7\xaf\xae\xbd[\xfd\xc3\xbf\x0b#\xaaB\x1c\x81\xcc\xbfN\xa2[H\x94\xc2\xc8\xbf\x93\t\x03Fs\xea\xb4?-N\xb4_\xb3\xac\xc9\xbf\x1b\xfd\xe31RU\x85?\xe6\xc9\xb7\xdb>!\xc8\xbf\xae\xc5n\x00\xf9\xaf\xb8\xbf\x1fd\xf2[5\x15\xc7\xbf\xf1\xf8\xe3\x18CZ\xc7?\xf7\\H\xb9\x94\xd6w?\x91-h:l\xc8\xb7\xbf\x0c\xad\xdbJ\x05\xb7\xd1\xbf\x06\xa9\x1d\xda\xf9\xc9\xc1?\x8c\xdd\xb1\x1b\xea8\xa8\xbf\x05\xf7\xab\xaa\xe2\xa7\xb6\xbfE\x95\x19\xac\xd5\xa4\xa3\xbf\t\x0b\xb6\x86\x80\x8b\x89?"\x9d\xe5\xff\xef>\xb0\xbf\x88~J\x05\\G\xb1?etI\xed7\x96\xd3\xbf\x03\xea\\\x19`R\xc4\xbfw\xdbPQ\xf9\x01\xa4?\xc0\xdd\xcc\x0f\xd6\x0c\xa0?Z\x8bv\xd8`\xf3\xd5?Re0\xd8\xd9 \xb7?\xed\x9d\xdd\x18di\xd3??\xf8\xc5`@\xb2\x9d?)P\xc3\xa6]Q\xd5?\xb2\xdd\xdc\xf1\xcaI\xb5\xbf\x989\xb2j\x94\xb0\xa1?\x94\x80 #$\x9f\xa0\xbfI\xd4<\xf8$X\xca?\x8an\x026!$\xb8\xbfOt\xef\xdb\xf1\xcd\xc9?\xeaX\x99\xc5!\xaa\x95?\x84\x97\xecy\xb8$\xc7?\xc6\xa3\x16\x85\xc8*\xb8?\xe1WA\xae\x1f\xd6\xbc\xbf\xde\xdbw?\x05\x0f\xb2\xbf\xefC\xa2\xd7C\x82\xc5\xbf\xe8\x0c\xd5wU^\xd8?\xeb\xb3\xca$\x18\xa5\xbe\xbfy1`\xe7\x1d\x8c\xc1\xbf\xc7\xf6<$\x82\xf1\xc5\xbfU\xef\xdf\xce\xbb\xfd\x94\xbf\xcd\x08\x8ce\xd9\x16k\xb6\xb4\xbf\x14\xff~(\x8a\x91\x89?f\xb2\xebW}6\xce?\x9c\xcb\x84F\xd8H\xc5\xbf*\x19\xeb\xf0vQ\xc3\xbf}\xe3d\x8e\xe5)\xbd?\xff\xac\xfe\xb9\x7f"\xc8\xbf"\xa5U\r\xff\xbc\x92?\x10\x04A\x12\xc4\xeb\xc5\xbf\xdd\xc3\xb5\x1a\xe8\xdb\xb5\xbf>\x0c\xcf>\x9d\xbf\xcb?v\x9f\xc2t\xe6\x8f\xd1?\x19\xaf\x95\x97X\xcf\x85?\xd2\xba}\xd3\xf8?\xc6\xbf& \xee\x96}\x8b\xcb?\x82q\xbd(\x9e\xef\xc3\xbfB\x89\x1a\x7f\x93B\xca?\xe9^\xb1-b\x88\x7f\xbfJ\xa3+]\xb7\x00\xcd?\xd2\x97\x9a\n\xd6\xdb\xbf?\xf6\xcb.\xc7G<{\xbf\xcc\xcc\x8b\xc4\xeaE\xc2?\xf1\x16E1T\xce\xc1?\n~P\xedj\xfe\xbd?\x89\x0b\x8f\x1b@R\xb2?.\xb7\xfe\xff5\xd2\x85\xbf\x87{\x81\x16\xc9\xeb\xbf?\xc8B\xda\x19\xf2\xd9\xc3\xbfz\xff\xd4\xc5\xd8\xa1\xb8\xbf\x90\xbcs\x9e\x0c\xde\xcd?~\x9aA\x16\xb4\xda\xb0?\xbd\xcf\xce":\xec\xcb\xbfx8h-\xb52\x97?\xeb\x82<\xe5\xa9-\xbb?d.fx\x92\xd8\xc1\xbf3\x8d\xa0D\t9\xac?\x1eh\xa9Pz\xb7\xb1?k \xbb\xb4\xf3\x03\xb1\xbfW\xab\x90"P\x02\xb8?\xab\xd7\xde\xec\xdc\xff\xb9\xbf\xdbW\xff\xeeM\xc5\xc6\xbf=\xbb7wK\xcb\xb3\xbf\xe1\xceg3\xd96\xdc?\xd9(\x1bs\xd7\x1f\xbf?\xdfW\xd4gF\x85\xc0\xbfWkw\xd9\xbc\xeb\x8d?\xe9\x98\x03\xb5\x11N\xd2\xbf\xe8\x1a\xfd2\x9e\x1e\xb3?h\xb0\x86I"&\xbc\xbf|5\xc5\x8e\xb4\xad\xba?Yp\x7f\x99\xbe\xbd\xd1?t\xd3\xcd\n,v\xe1\xbf\xbc>\xdb@\x8c\x02\x91?\x94#\xa3g\x8c\x93\xb9?|\xec\x02\x06U0c?\xc3\x9aZ1\xf7\x07\xae?\xfc\x05\xcaN\xef\xe7\x8d\xbf\xd3;h\xac\\\xfb\xaa?\x835\xbf\x15\x0b\x81\xb0?\xc6}\x8f~\x8dJ\x9d?\xf0\xf5(\x8b\xc7\xff\xad\xbfF_\xe0\x83\xee|\xa3?p\n\xa6\xaei\xfd\x9a?q\x1f\x08e:\x99a?\x9d\x01\xb2\x86W!\xc7\xbf\x03\xb8\x95\xf1\x8b#\x97?\x906m\xfc\t\xf8\xbc?\x8e\xfc \xe9\xd4^j\xbf \xc6\xd4\x9d\xc9\x19\xc9\xbfp\x05B\xea\x14\x9e\xa8\xbfg\xe5,p\xf3\xa1\xbc\xbf\x93\xbd\x1d\x14vF\xc8?J\x13\x969\xaf\x90\x8b?\x16*\x1a\xcfOg\x80?\x18\xc7\xd3\xd4\x1b\x94\xa3\xbf\xa5\x88\x04S\xe4\xba\xc2\xbfXCj\xf8\xe9!\xab?\xc3\xcc\xd8-\xa6\xf7\xb9\xbf\xaaS\xc5\x94W1\xc1?\x87\x00:T\x18W\xd8?4j\x86\x9e\xa3\xd7\xbc?\x8c\x06\xa3.\xd7S\xc7\xbf\x0f\xf6}\xfd\xf1\x08\xce\xbf\x0c\x02\x08\xfb\xc7\xee\xda?\xc6\xf9P\xd0\x81\xa9\xbe\xbf\x0es3\xb9MG\xa3\xbfz\x19J\xd8\xc3\x1a\xbf\xbf\x935V_/\xcd\xb2\xbfEX\xe6G\x1c\x9f\x98?\xed\x05)\xf41\xdb\xb7?cBQb\'\x99\xe0?\x06\xe1z\x9c\xa67\xc0?\x84\xa7D\xaa\xf0b\xba\xbf:\x0e\x13\xa2\xac \xb4\xbf=\xd7\x91\x8a\xdc\xcd\x97\xbf\x85t\xc7\xaapHg?\x05\xd6\x13\xf0_\xa2\x85\xbf\x88}t\x8d,\x8d\xc1\xbf:`(&\\|\xa0?\xc7\x1a\xac%\x94m\xaf\xbf*\xd4T|G\x89\xb3?n\xf7\xf4\xda?\x9b\xc3\xbf\xf4"\x8b\x88\x98\xde\x8e\xbfw\xeey\xd2\xa4\xfd\xaf\xbfZ\xa1\xfe-\xbd%\xb1\xbf\x19!\xa0\xabZ\x81\xc1\xbfTOm\xe4,\x8c\xb3?\xd5H6%\x9d\xe8f\xbf\xcb\xfb\x15}\xfd\xfd\xcb\xbf\x98d\xce*\xfe\x82\x8d\xbf\x06_*z\x8fCq?\r\xe6~\x00"\x86\xca\xbf\xcbmw\xf0\x1d\xf2\xb3\xbf\xdaS\xf5+\xfc\xf2\xab\xbf\xee\xda\xd1E\xbdV\x8e\xbfg\x90\xc0\xfe^\xb7\x9e?P\xaf\xce?{{\xa4\xbf2\xd6,K\xfd\x9ek?\x15\xf4=\xa7\xbc4\xba?\x9d\x1b5\x19\x0fr\xd3\xbfz\x91q\xd9H|\xc5?.\xe6k\x84t\x89\xd4?\x10\xc91\x84\x12\xbd\xdb\xbf\xb5?mBy\xd9\xd2\xbf)\x86\xfcI\xd2\x14\xcd\xbf\x7f\xe2\xbd\xb0\xe8\x14\xba?!(\xa4\x8a\n\x10\xa4?M\x7f\xf9\x12B\xbc\xbb?\xe2QZ\xc1\xd2\xd7\xc6?\x003A\xca\x0e\xcb\xa3?`\x89\x15\xd0}\xd4\xd3?7\xd4\xe3>!+\xc1\xbf\xdf\x98\xa3\x9dj\xc0\xc3\xbf\x17^U)jj\xc9?\xd3UO\xeck\xa1\xa1?\xc6\xef\x0e\x87\x1f\xde\x82?\xf2,\x8b2\xb6\xc8\x97?4\xd3\x0f\x1c\xb6\xbb\xb5?"\'|\x8c\xca!x?E?\x92\xb6W\xf7\xb0?W\xec\x9e\x91=\xec\xc8?8\xbb\x17\x89&\xfd\xae\xbf\x17\x97o}V\x88\xbd\xbf\xc9Q?M*\r\xae?\x90@\xe0\x8ds\xcf\xb1?\xc0\x12\xca\xce\x8b~\xac?\xda\x82\xf5,\xd8r\xc3? }T\xb9\xbf{}\xbf\xfb\xc5;t\xd7\xd3\xb3?7\x05\x02\xbd\x1b\x96\xde?J\xf2}\x03i\xeb\xa2\xbf\xc2\x83\xe4\xd4\xd0\x8d\xb4\xbf\xcb\xbeQ\xcfLQP?\xb3t\x8e\xa5\xc8ji?\x10\x1b\xab\x0eO(r\xbfC\x97\x9eg\xd8\xe7~?\x02\r\xf3[\xfb\x07\x9d?\x0e\xb9\xb7X#)\x84?a~S\xeeV5\x92?\xc2\xcb\x1f\x98\xc1a\xb4\xbf9\xf6T\x84\x19\xab\xc6?\\}\xd6+P\x0b\xd6\xbf\x82\xe7\xee\xde[!\xc7\xbf\xf1v\xa6\x18\x81\x99\xbc\xbf\xba\xf1\xdd\xf1\xaa{c{.W\xdf?9G\xd5[Q\x92\xb8\xbf%\xdc\x84\x93sN\x87?Lo\xf0pD&\xaa\xbf6\x0e\xc5\xa5\x0e\xc2z\xbf\xdf\xdd`\x92{\xdc\xa1\xbfq\xef^X\xe82v?S<\x8c\xce\x03f\x9d?X\xe0\n\xaa\x80H\xa6?o\x1c_AJ\xaf\xcb\xbf1\xd1\xb5l\x8f\xee\xda\xbf\xcd\xf6\xa3U\xdc\n\xc6?\x9b.\x7f\x19.\x02\xb0\xbf$^\x84X\x0fw\xd1?F\r\xaaB\xe4\x80f\xbfkm\x18\xdf\x1d(\xaa??\x1e\x92\xd6\x0c\xea\xc0?\x95\xef\x8bj>\xab\xde\xbf\x02P\x9f\xc62\xb6\xca?Gk\xbb\xaeR8\xbc?\xe0\xa6\xe1\xdb|\xed\x82?\xbf\x9aP\x9d\'\xbc\xcf?H\xbb\x98\xe5[\xb2\xc5\xbfC\xad\xb2\xb3\x9a\xba\xc1\xbf\xcc8\x97\x98\x98\xa9\xbb\xbf\xd6\xb6\x8852\'\xbb\xbf\xdd<\xf1\xe2\x11\x15\xb3\xbf\xb17\xfe\xea\xdc\xd2\xb1\xbfx\x1c\tx` b?=\xd7S3\x83\xc8\xce?AlRy\xdf\xad\xcb?\xb7L\xb0E\xc1\x93\xc3\xbf\xbc\xb6\x87\xd7"K\xae?lP\xb9\xee\x941\xbe?\xd0\xcc\x90\x9c\xb2>\xa8?\xea\x9c+F\x91mq\xbf\x7f\x82!\x8e\x0f\xa7~\xbf\x94\xdbfl\xb5\r\xb0\xbf\xdcN\xed\xec\xff\t\xa2\xbf\x10]\x13\x13Q}\x9a?\x90\x92s\xaa(?\x9c\xbfK\xd0\xa5Q\x17p\xb0\xbf\xb4\xdd\xee`TW\x88\xbf{\xc8\xa5)\x89\xc3\xc0?\xfc\xee\xab\r\xf7n\x9e?st\xac\xb4.\xc2\xba\xbf\xb0\'<\x9e\x10\x07\xc6?VR*\xbb\xc1\xc0\xaf\xbf\xb5%\x97ln-\xb5?h&lK\xb0)\xd7?8\xb0\xa7\xfb\xcc!\xd2\xbfn\x07\x9c\xb8]\x00\xd1\xbf\t\\"\x1f@\xfa\xc1\xbf\x86\xa8\xd8e\xcf\x8f\xb8\xbf\x8aJG\xcd\xd7\xe9\xb4?\xa1\xc9P{k^\xcc\xbf;\xcdB\xcb\xac\x82\xb5?b\xc5\xa1\x87\x18\x9b\xde?R\xb6\xeb\xa7\x06\x10\xd2?G\xd1\\4-\x17\xcc\xbfn\xf7\x0e%\xb8\x13\x9b\xbf\x84\xfd\xf0;\xfa\xf4\xb9?\x91S\xf6\xa1G\xb7\xc7\xbf<$\xe6\xb7V\xdb\xa9\xbf:\xeaF\xa0m\xdd\xb2\xbf\xbe\x960\xbdo_\xa5\xbff\x15h*\xde\x1b\x91?\xe5O\xc8i\x16\xc6\xb2\xbf\xd1?\'7\xe3\xa3\xbb\xbf\xbfd\xd4H\xbf\xb9\xb6?\x17\x8e\x7fn.6\xd4?\x01\x16aOI`\xb5\xbf\xc8!\xbd\x15;T\xb4\xbfE gj\x93J\xaa?\x98\x95m!\xda\x94\xac\xbf\x1dIO\xabcV\xa5\xbf\xf3\xf1\xd0[z\x1b\xb3?\x9b\x9c\x0c2\x8es\xa6?m}\x13\x8fT\xd7\xb4\xbf\xff\xd0\x08\x8d\xaf\\\xaf\xbf\xf8\xd3\xebZ\x1c\x1c\x9e\xbf\xf6\xe2\x07\xd4\x15\t\xa2?\x91h\x87Sh\x86\xa2\xbf\xe6\xbf\xfe\t\xfe\xc8\xc0?\x17\xff\xc9\xce\xa4,\xbb?\xa0k\x1e\x88O=\xb3\xbfP\xab\tg\xb8]\xac?\x032\r\x1f\xaa\x05\xb4\xbf\x15\xa9\x19\xcb\xc6\xda\x8c\xbf.\xee\x18+p(\xc7?\x8b\xd0\xc0\xb3\xb6\xe9\xb2\xbf\x18\x8b8(\x92\xbe\xaa\xbf{F5n:2\xc8?\x9c\xb9`\x8e7\xbe\xa4\xbf\x81\xed\xcc\x17F\xf3\xd8\xbf6|\xae6.\xa5\xc2\xbf8\xad\xc6\x9b\xed(\xc8?&F\xdd\xa0\xea\x1e\xad?2\x14m\xe0\x9ai\xb0\xbf\xe4$\xd1\xcb\xfc\xc2\xa3\xbf\xb5^\x9fC\x83Qz\xbf\xf6 \x06\x83\x88p\xb4?\x99W\x85V\x03\xbd\xb3\xbf\xf1U\x98%\xe4\xa2\xb0\xbf\xbf>\xbf<\x92G\xc3?\x84fV#Th\x8c?\xb2\xc2w!\xe6\xd1\xd4\xbf\xa2\xa9\x84\xf5\xc5\xa8\xad?zi\xac\xe5\x07F\xc9?\xd4\xdd\xfe\xd3\\\xd3\xbb\xbfLt"x}k\x8f?\xa4\xcf}y\xcc\xe3\x96?\xc4\x9cXx\x01\x14t\xbfl\xa2\x9fd\xaf\xbc\xb8?\x99\xc1\xe6\x10\xff\x84\xca?.\xd3\xf1\xd0\x9d`~?\xd1\xee\xc5f:;\xd9\xbf\xdf\x8a"q#6\xaf\xbf\x94\xf7]\x0b\xb5\xcc\xcb?\xf0\x8a\x9f\x18\x03\xe1\xa6?0P\x8f\x13\xb4\x81\x90?\xffmm\xd7\xe5\x8b\x9f\xbfG\xc4\xdd\\\n\x1f\xd0?e\x95\xb3\x02\xea\xc2\x93?cm\xf98\x81\'\xd5\xbf\x1c\'\x89\xbf\x03\xea\xa4?q"\x97]Y\x99\xcf?\xde\x86\xc14\xf0p\xd3\xbfE\xcb\xe1\xdd\r\xcd\xc9\xbf7%A\xc47T\xe2?\xce\x806\xa4y1\xbb?\xbe)\xb4h\t\xc6\xbe?\xb1\x88\xfa\xa1!B\xa2\xbfC0\\\x11\x04\xaf\xb4\xbf\x8a\xfb\xeb"\xad/\xaa?\x06\xbb$S\x94\xd7\xca\xbf\xe1\x132\xc4\x0f\xaa\xa5\xbf\xa0\xd48\x9d\xcc?\xd4\xbf\xe2\x8d\xae\r\xb4|\xa3?\xcd\xc5nh.&\xcd?\xc0Ga\xe4W\xea\xd1\xbf\x18\xbd\x99D\xa6\xd8\x8c?G\x18M\x1cp\xde\xaf?lAK\xfb\\&y\xbf\x9e\x89J\x08\xdf\xb9\xa8\xbf\xa8\xfe\xcb"\xf8\xad\x84\xbf\x90m\x8e\x0e\x10\xab\xa3?\xf3\xf8\x88\x96\x80\xaf\x99?\xb2\x9f\x12;h\xd0\xb3\xbfF\x93\xfd\xfd\xa0`\x93\xbf\xe7( \xe2\x1c\xd4\xbf}\x92\x080\x8ao\xc1\xbf6\x118\xfe_\xf5\xa8\xbfNI\xf7OW\xda}\xbf\xd2\xc8\x0e)I\xa4\xfb>\xbe\x07m\xa7\x93\xe2t?\xcdh\xa8,\n\xbd\xc3?\x03hh\x18\xf2\x15\xb3?d\xa4\xc0Y\xd4\xc0\xc4?v\xde1\x08\x1f\xf8\x94\xbf\xf2s-\xe0\x00\xd9\xcb\xbfra\x11":\xcc\xd5\xbf\x92Y$\x1d\xc3A\xc1\xbf\x9fy\xfe\xa6\x1bR\xbe\xbf\xe6@\xa9\xe0\xdd\xc9\x90?\x9d\x96]\x0b\xfe#\xab\xbf\xa7\x01\xafEvO\x9d?1\xa8\x1fa\n;\x9a\xbfc`n\xe4\x9c\xa8{?<8\xd8\xa7h\xa3\x9c?r\xab?\xb5\x8c\x11\xb6?&$\xaa\x17\x94\x0f\xa0?R\xae\x80\x15\xc1\xd4\xd3?V\x12\xff\xd1\x1ei\xd5?\xed\xf4\xd211l\xb3\xbf\x08\xce\x01_\xfb)\xb5\xbf,\xac%\xe4\x14T\xb7\xbf^\x0f!\xc2\x03\xe1\xb9\xbfI\x95&\x18_5\xbb?@$\x8e\x82\x14\x1f\xb1\xbf{hE.\x991\xc0?\\P\x8e\xa5\xccG\xdb?\xe2d\xb6\xae\x7f\x88\xc0?Jw%\x8c\xf6h\xba?\xc3Yl\xadr\xee\xa9\xbf)\xbb\x82>oo\xb8?\xa0l\xe3\xfa\xc9k\xc0\xbf{\xdb(JP\x1a\xc2?\x99\xf5\xber\x9dS\xd5\xbf\xaa\x87\xf0\xbb\xe09\xcd?K\x0e\xbf\xa5\x87\xbb\xb5?\x82\x8a\xd0+yQ\xb3\xbf_\x90\xfds\xe1+\xbf?\xcc\x12h\xae\xe88\xac\xbf1\x08&r\x9as\xb2\xbf\x8e3~\xd9\x954\x9d?\x981P\x149\xed\xad?$<\x1b\xc3Q\xf5\xa3?[\x8fl\xfe\xac`\xc9\xbf8M\x88b\x968\xa9\xbfR\xd2e\xc4\xe6\xa7\xd1\xbf\x03\xd1\x8f\xd0z\xff\xbf?\x1b\xe6\xf2~t5\xb5\xbf\x1c\x08\xfd{48\xb2?Y+\xc0.\xa3\xe0\xb3?L\xfdR\x83\x01\x07\xa3\xbf\xd3/\xfd\xd5\xe2\xd8\x95?\xce{\xd1\x1fG\xe1\xa1\xbf\xf8\xa7\x82\xa2\xad\x16Y\xbfY\x84\xffX#I\xb3\xbf\x1a\xa8]&N>\x96\xbfd\xa1\xc4!\xcf\xf9\xba?/\xb8u\xa0\x0f\x9e\xd8?\xbeG\xf9\xb7v\x11\xd1\xbfG\xc1\x0e\xe3@\x08\xb4?\x882\xc9\xd71\x01\xaf?\xe7\xe6\xecR\xcc\xa9\xcf\xbf\xb7dP/\xe3\xd3\xb7?\xbf\x93\xcf\xa4\xdfRw\xbf7\xb0\x85\x93\xf2r\xa6?\xfcA\x8ab~w\xe0?\x1b\x9fF\x9ay4\xc1\xbf\xd2\xebg\xed%\xbe\xbb?\xc2\xbd\x91\xcdOe\xb0\xbf\x1aN\nv\xdb\xfd\xc0\xbf\x08\xd0\xd6,\xa4\x95\x86\xbf\xdf\xc7\xe1W\x94\x1e\xb4\xbfp+\x0f\x1by\x9a\x81?\x95a\xb66\x8b\x83\xb6\xbfc\xa7\xbd\xc0)\xdd\xa3\xbfF\xdc\x06\x87\x9d\xd4\x9c\xbf\x80\x03?s\x85h\xa9\xbf\x04\x84\x0f!\xd5\x91\xc7?\xd0\xf5\x1ae\x89\x85\xc2\xbf\x0bJ\xc9\xffl\x18\xd3\xbf\xbc\xd7\x1cF\xb7\xb5f?]\xea\xfb\xe5\xb7\xba\xc3?\xc7\x10I\xce\xad?\xc2F1\xe1\xdb\x00\xcd?O\x87\x83\x8e3\x81]\xbf\xce\xe9h\xb9\x88/\xb5\xbf A\x9c.\x8a\xee\xbe?\xe7}\xea\xa49y\xca\xbf\x99{`%E_{\xbf/\xbfu\xa1\x15\xa3\xc4?\x83\x8d\xb9\xcf\x9b9\xc0\xbf\\\xaa\x19\x17\xc2\xd3\x80?\xc6\x18\xc73\x90\xed\xd0\xbfo\xe1\x99Z\x81\xacz\xbf\x01\x1b\xee\x13\xa7\x10\xd1?\x06\x87\xba\x1c\xa1-\xb8\xbf\xf6\xd0\x08\xf5|u|\xbfO\xfd\t{\xa71\xb4\xbf\n\x1bnh\xd9\x1f\xcd?\x7f\xf6\x8f\xa1\xeaZd?\xbc\xdf\x17\xa6R\x9b\x9e?o\xd9\xda\xd0\xda{\xc3?\xaa\x16\xdeY.L\xaa\xbf_\xdd\xd4\xc5o\x8c\x88?\x1fV\xc6GI\xcd|?\'m\xa4\x82n\xb9\xc8\xbf\x04\xe3\xd6au\x91\xca?l\x0f\x13\xe0u\x99\xb0\xbf\xe9$\x1a\x98~Y\xc0\xbf\x9d\xfds\x8aa\xff\x9f\xbf\xa8\xd0v}\xac\x99\xab?\xd7B\x90yoQ\xc2?\x85{\x022{n\xcd?]\xb3]2\x04\x06\xb5?md\x03/\xd0\xdf\xd0\xbfa!\xc2\xeebH\xa9\xbf\xdd\xcerR&\xcd\xbf?\xd1 {\xa2\xcf\x1f\x94?\xbb3\x13\xa3:\xab\xc4\xbf3n\xcf\xb49\xdb\xa6\xbfyB&\xbbo6\xa7\xbfT\'%,!\x86\xa3\xbf!\\\xd6H&\x96\xb0?[\x97\x05\x10v\x95\x9d?\x85\x05\x927W\xa4\xac\xbf\x1e\x14\x0bJ\x90\xc0\xb9?\x91\xdeZ\xff\x15\x83\x97?H\xb5\x1c\xf5cB\xab?\xd9\x81c\xe6\xb2\x19r\xbfe\x8e\xc6{@G\xa3?\xd3\x04L\x9f\xc7\x95\xd1\xbf\xae\xe0\xf2\x8b\xed\x9f\xb3?\xda%X2:V\xda?\xe5\xc9S\xf1\x15\xa7\x90?\x8f\xc1\x96\xa4?\xd3\xb9\xbf\t9J6-\x15\x82?e@F\x11\x88\xe7\xd3\xbf\xcb\xdf\n<\x8d\x81\xb4?\xee\xe1REq\xe1\xc9?\xd2\x97\xf2\x15\xa2,\xab?\xc1\x1a7+;\xf0\xd3?\xd0\xa1\xea\xba\xb2\xf3\xac\xbf\xf2\xb6w\x87\xed\xde\xd4\xbf\x12\xbe\xd5\xa3\xfd\xe5\xc2\xbf\xec\x05\xf1\xb8\xc9\xdc\xa5?\xeb\n\xc1\x0e\xf3"\xd1\xbf\xfe\x99\x02\x9c\x17|\xb7\xbf\xd0\xcbM\xc4\xcc\xd0\x94\xbfm\x86\xeb?\x16\xe8\xa4\xbf\x914\x8ck\xf6\xc8\xb7\xbf&\xf3\x8f\xe2\xd6\xa0\x8b\xbf\xa0\xed\xf7z\x91O\xa8?\xbca\x985\x98I\xab\xbfTBt\xfe[\x90\xc2?\x90\x95\x9f\x0c\xb2\xd8\xa6?\xe8U\xd6\x91\x90\x05\xb0?\xe0w8\x10`\xfc\xb3?\xeens\x85\xf8i\xc6\xbf\x13Aa=\xbeo\xbb?\x0be\x1a\x81n\xe7\x8e\xbfV\x8b\xf8+\xcd\x8a\xc2?1^\xea\xb1\xb4:\xd1?\x07\xe6@\xfd\xb3@\xe2\xbf|\x88\x8b\x89\xa0\xf4\xc9\xbfV\xec\x89@\xa1\t\xc0?\x95oUj\t>\xae\xbf{\x99\xe6\xfd\xb8k\xdb?\xb0\xc2\xd4K\xed\xd5\xa5?*3\x9d\r\xbc\x04\xc0\xbf3\xdca\xdc\xb5\xbb\xc2?\xd6\n\xd1e\xb7&\xc2?\xe1J\xb0\x842\x86f\xbf/JAC\xa8%\xb0?B\xaaL\xe1J\xf3\x80\xbfc\xd8"\xd9A\x91\xa8?\xe0\xb4\xa1\xec\x83\x1b\xb0?Ki\x00\x85yv\xbe\xbf\xd2\x01\x19\xdf\x8c\x9e\xb6?\xc9\xfe\x03\xffq\xea\xc5\xbf\x99\xb9\x06\x97_\xc2\x92\xbf\x17\x19\xeb\xca\xc1\xe3\xc8?W\x16\xba\xf3g\xf6\xb0\xbf<_\x86~R\xe5\x9e?\xfb&i\xa1\xf3y\xad\xbf\x93r\n\x8d\xa4D\xcc\xbf\x00\x08\xf11:\xb4\xc2\xbf\xe3\x83\xddO\\\xb8\xb3\xbf\xedp\xcfy\x1a\xb7\xad?x\xb0\xb3\xfb\xfd\xbf\x9b\xbf \xae:\xba<\xe4\x9c\xbf\xe7u\x00\rPz\x93?\x14*b\x8e6`\xd1?\xc6\xfa$\x9d)\xb5\xa6\xbfO\x0e\xff\xb7J\x94\xd4?E\xf2\x1f\x12\xbe\x80\x89?lK\xb3\xc6\xa2\x12\xdb?j*\xc5\xdf\xdd~\x8c?\x9b\xf5L\xf9\xdep\xb1\xbf\xce\xe7P(\x8b\xb8\xaa?G\x82C\x9fqE\xaf?\x0e\xa8\xcd\xec\xf4U\xf9>\x9e\x87\x94p\xb5l\xa7?\xd9\x06\xd5\xa0\x07]v?\xfb;_G\xd1f\xce?;\xe0\xf5\xa7\xdb\x08\xb1?\xc8\xc2\xd9\x92C\x08\xbb?\x04eQ\xf6\xa7\xb7\xb5\xbf\xac\xf1_f%\xc4\xb2?\xef\xb40\xc5;\x1br?\x85\xd1\xe3\x1aH\x87\x83?\xb1\x127\xb5\xad,\xb4?Ka\x0c\x1a\xa0\xe9\xa5\xbf\xe9\xde\x8f9\xc0:\xbe?\xf2t+\x90O\xfd\xd3\xbfU\xb9"\xac\xa4Y\xa2\xbf\'\x98\xe3r\x8a\x11\xd6\xbf\x83\xf8{}\xb8r\xad\xbf\xe5"\xe2\xe5xS\xde\xbf\xbe\xe1\xa9X\xe7d\xa7\xbf1G\xe5\x1a\xf1\xe9\xa5\xbf\x12\x18\x02\xc18I\xba\xbf\xd1g\n\xa605\xc6\xbf\xab\xb1\xc2 \xd3\xf1\x97?\xec\x834\xa0\\\x90\xbd\xbf|\xd8\x92\x8b\xce\xab\xb4?\xff\xa6~!SFt\xbf6w\xd3\xc6\xa2c\x94?I\xbdv\x19F\x03\x9b\xbf.\x16\xe3\xa0\x1f\xb9\xc2?\xdd\x8d\n\xee\x00C\xaa?y\x81z\xc6v\x85\xe4\xbf&\xb15\xe3\xa2\xb4\x8f\xbfH\x1f\x85?\xde\xbc\xa7?\xd1\xd8\x9c\xfdu\n\xae\xbf\xc6\xaf\x1a{\x17\xb6\xe3?\'r\xbd0\x90\x90\x92\xbf\xcemn\x87\x80\xd8\xc3\xbf\xd7{\\\x96\x99\x80\xaa?\x1f\xf1\xfd\xf0\xa0\x0f\x86?\x92C:#\xa5\xb5\x91\xbf\xc0(\xdb\xafh\xc7\x7f?\xef_\xbe$q@\x98\xbf\xda!b|\xe3;u?\x9dE\t\x86\x8c\xb6\xa0?\x90G\xda\x82D0a\xbf\xed)\xb7A[\xc1\xb5?*H`+[\xeef\xbf\xefg\xed/$\x11\xa1\xbf\x92\xdcK\xfa\x9b\xb0v\xbf\xd6\x97!-\x19\x96\x8b\xbf\\\xc5\xa2b\x94\n\x9f\xbf\x1f\x95)\xc4:\xdc\x92?\xe3\x0c\x13\x8b\x05\x93\xd2?s\xdd\x8d\xe9\xb3\xdc\x97?\xd5\x1d:W\x93\xac\xbb\xbf9h\x9c\xa9\xd8\xfe5\xbfd\x08\xd6\xbd\xb5\xdd\xc7\xbf\xfc^\x13&\x12\x90\xa1?\xbb\x86\x85\xb7w\xd9\x8a\xbfU\x17\xbbP\xc4\x01y?N\xdec\xb2\xab\xacr\xbfg\x99\xf7.\r\xf1\xa4\xbfp\x1c{\x00\x1d\x90\x9b\xbf\xb7\x1b$\xe1i\xfa\xac\xbfBb\x92\xc8\x91I\xa1?\x7f\x83\t\xe8\x94"X?\xe8\xe7c\x0f\xf0\xa0\x91?;{A\x9eK\x81\x96\xbf\xaa\xcf\x19\xf2\xd8vs\xbf\xf3\xa8r\xc75bp\xbfNf$T::\x84\xbf\xd1\xb7 ?\xd4\x86\xc7\xbf\xbc*\xbcz\x98L\xad\xbfV\x05q\xd5G\xf3\xb3\xbf\x85:_G\x12E\xa8?PZ\x12N\xa6\xaa\xcf?\'\xe3\xfbk\xc9\xa5v\xbf\x84h%\x99!8z\xbf\x01p"\xe3\xe0\xf5\xa1\xbf;u\x8f\x1d\xea\xa7{?\x84\xefD\x19 \x8c\x96\xbf\x1aW[+\x15=\x93\xbfyi9C-\xa7\xb8?.\rO\xdck\xcf\xc6?\x9b\x8aK\xd0\xd0\xdf\xd7\xbf\xdd\xb2{J\xc8\xf6\x89?\x95\xd6\x9a\x18\xff\x8c\xd4?\xa1B\xb1\xe4n\xd8\xcb\xbfG OuRF\xab\xbf:\x88N\x1b\xcc\x89\xa4?\xddn\xecv^\xfc\x80\xbf0rH\x1c\xbf\xd9\x8e?z\xa6\x07\xad\x08\x80\xcb\xbf\x13VJ>\xd7\xad\xbc?\x9f}\x9b\xb8<\xb5\xdc?\xb2.\xc9\xe5\xed\xd3\xb4?\x07J\x17\xfaUw\xcc\xbf\xc3\x9b\xb8\xcf\x97\xb4\xc0\xbfW?\x96\xd1\x81\xe5\xa7?\x93\xca\xf2}\xf8\x98]\xbf\x91\x82F\xf9!\t\xc7?\xd2\'\x98u?5\xcf\xbft\xe5\xb0_c\xed\xcd\xbf\xa4\xf0^\xe55\x04\xa5\xbf,\xef\x05\xf3\xeb8\xb5?\xae\xd9\xe7\x83\xf6A\xd0?\x8c\x8c\xb8\x9c\xb4\x89\x8f\xbfk\xb0e\xa2\xee%w\xbfbIb\xc5\xc8b|\xbf\xb6G\xd7\xd8\xb4\x0b\xa0\xbfh\t\xa7\xec\x85h\\\xbft\xd3y\x81\xd2\x03\xc8??h\x92O2\x0f\x91\xbf1w\x0e\n\xc9\x9b\xc2?yz\x98 \xc4\x81\x9d?70&\x0f\xae\xf3\xc9\xbf\'\xd9k\xd0{\x1bt\xbf\x10\x0e&\xaa\xb8\xea\xb1;\xc5?\x88\x01&\xe4\x0bDh?pBM\x8f\xd2U\x99\xbf\'\xb0)\xd9\xdf ~?\x0b3\xb2\x92@I\x88?\xb4\xbb\xac\xf1T\xc5\x87\xbfi\xbb8\xd9\xba?\x95?\xf5\xe0\x8c\xf08\xb2\xaa?\x94%e\xc8\x83D\xd5\xbfR\xa2\x94\xa1\xb3\x97\xc0\xbf\x85T\xa0\x9e\xf2\x82\xe4?\x8e\x86CW/\x81\xb5?\xc2H\xd6O\x87\x9a\xd3\xbfR\xcbV_^%Q\xbf\x965\xcf\xb4\xc6\xff\xa5?Tj\xd8\xe6\x97\x00\x91?\xc7\xd0\x96\xc54-\x80\xbf\x19s\xb3\x7f\x92\x07\x9e\xbf\x16\xc8\x17\xcf\xf1\x8f\xa1\xbf\xa6C\xc2{\x9c\xc6\xa3\xbf\xbes?\x005\xa3\xc2\xbf>\x86\x8c\xb0\x16_\xaf?\xd0)7@\xa8\xb2\xbc?\xa0\x87\xf8\xdf\xfa.\x81\xbf\x05+\xa4)wc\x82\xbf(`\xbe)\xd7\xe0\xa7\xbf\xc1\x98P\x7f\x04\x94\x99?\xb5\xa6\x1d\x14\tY\xb7?\x1d)\x93\xa9lb\x91\xbf\xd0U#\xb3\xa2\xf5\xa5\xbfr>\x02F\xfeE\xab\xbf(\xb5\xb0\x80z6}?\x94f\x01\xd6\x86\x83v\xbf\x0e\x81\x9d\xdd\xed\x15B\xbf\xccl\xc8\xdc\x03\x10\x8e\xbf0\xba\xc1\\R\x1a\x99?\xf7^Ni<\xfc\xc9?%}\xfd|\x04L\x82\xbf\x1c|a\xc7ty\xb9\xbf\x12\x93 \xa0\xc9,\x85\xbfR$\xde J\x00\xbb\xbf\x81\x86\x7f\x16\xd6\xc1\x81?V\xd2\xc3\xd4\x92?a\xbf\tr\x03\xb0\xf7@\x81?|+\x99\xaa\xf6\xd1A?\xc4PN\x90\x9a\xc3b?\x85\xfd\x1b\xce\x08\x0fq?0G1\x10\xa1\xcb\x91\xbf\x9d#(\x11\x17\xe9\x91?\x8e\xa7x\x04\xbe?\xb0?.\xda\xac\x0f\xcd*\x96\xbf#\xb4\xef\x0f\xfe\xa0\xa7\xbf\xda\x08t\xb71\x1f\x86\xbf\xee\xf6\xa4\t\xa6\x83g?\xc0\xd8?CX\x07\x83?\xa2\x9e\x008&0\x81\xbf\x81\x8b\xff2\x04*~?\x13G\xee\xd1\xc6$\x82?\x9a(15\xf2\xc8\xe2\xbf\x7f\xe2\x14\xa7\xf4q\x84\xbf\x9e\xc4%\x98\xcf\xfa\xdf?7e\xb0!\x03\x1b\x94\xbfD\x89\xf6\xe7xx\xb7?\n\x01l)0\xe7\x89\xbfZ\xc7\x15\xb0Xho\xbf\xfe-\xa7\xa25\x17\x96?bm\x1b\x91\xceMr?B\xd9\xees\xa6k\x9b\xbf,0T3iY\xd9\xbfj\xcd\xfblc\x96\x8a?\xc4\x93/$e,\xda?\x99\r\xcb\x83\xe2\xbef?\xa1?\x18s\x9c\x90S\xbfm\xa7\x0f\xd0\xdb\xcfh?{\xd5\xa0\t\xd9Z\x86?\xde\xdd\x95\x94(T\x93?\xc8 W\x97\x85~\xd0\xbf\x1f+\xe0\xaf\xfcb\x92\xbf\xfc\xc7C\xe2\xb0\x15\xe1?\xd4\xca\xfbPIbc\xbf\x0b\x02\x88\xaf\x0e\xa7\xce\xbf\xcb\xd6S\xf0\x0c\xf1j\xbf\x97Rz\xc0{fU\xbfc\xd01\x05:\x1dE?\x81\x8a\x89\xcb\xf0\xc0?\x12c(B\x90\xf4=\xbf\x9a\x1chDc9\x80\xbf\x81.\xb5m\xb6qz\xbf\x1f\xbb\xc2\t\xc2\x05\xcc?\xe1\x0cQ7Co\x90? v\x134\xd3\xa8\xdd\xbf\x1aW0q\xf5Qs\xbf,#.\xb0=\xe6\xd1?}\xd6\x83H\xb0v\x7f?\xfd\x91\x9e\x93u\xedz\xbf\xce\xb3wL\x9f\xaa\x85?\x83\xeaV\t3C\x80\xbf\xb7"\xe7\xd4\xd9 \x91?YHv\x08\x10\xfb\xb3?\xfd=\x82\xed\xea\xbeu\xbf\xa9?C\xd0\xd1~\xbb?t\xea\xd3\x1f\xbc\xc5\x8c\xbf\xd9\x82\xa1\xc0M`\xc1\xbfqlX\x00\x94\xe8h?Yqz\xc7\xf9\x9fP?\x08\xa2\xed\xd3\x7fhL\xbf3\x9e\xf5\x0fb\xd5l\xbf\x8ao\x16\xd0\xfa|g\xbfia\rJ\x9c\xa0`\xbf\'\x95\x04\x01\xc6np\xbf\xfb\xf9CN/\xf9\xbe?\xb9[\xd7\x0e\x87mv?\xe6[\xb2\x97\xe6\x1f\xab\xbf\x16i\xd9zQ@}\xbfC\xf5\x8e\xb4\x0b\n\xac\xbf3M\x1c\xe9cI\x80?2\x18\x074tpw?\xa2\x1d\xdcUY\xd2\x95\xbf\xee\xc4\xd8M\xed^\x84?\x8c\x03\x02\x0e\x8b\xc8[?5\x07Z\x12\xea\xda\xcd\xbf\xffS\xb76\xe8\xec\x97\xbf\xee\xb6PPi}\xd6\xbf\xec2\xae\xba\xed\x89t?\x8c\x8e;"\xdcA\xe2?\xc1\xbf\xbb]["s?\x9e\xe4^.\x0e\x94d?\xf6\xb8\xb9rfwW\xbf\xc3\xf7\xcem\x91\xaf\xe1\xbf\xa9\x81\xf4\xab\x13\xe1\x93?\xb7i\xed:\xfdB\xd3?E\xf6\xec\x1d\x07\x1b_\xbfP\x96u_M\x14\xca?' +p179 +tp180 +bsg79 +g64 +(g65 +(I0 +tp181 +g67 +tp182 +Rp183 +(I1 +(I40 +tp184 +g74 +I00 +S'+\xc4\xbcx\x90\x9b\x19\xc0\xf7\xc2:\x7f<\x0cV\xc0<%\x19\x9a\x87\xee4\xc0\x0c\xc6r\xc3^\x86K\xc0R`B\xfat?<\xc0nI\xd2\x0f\x93\xbc6\xc0\xe3\x99\xe1U@\x916\xc0\x99\'U\x8e\x02\xf9\xf8\xbf\x08!\x9c\xee\x16\x9f<\xc0Au\x8a}\xc3l6@wN\xe1D)\x845\xc0E\xa7\xb6\x90;\xc7K@R!\xe1K\x10\xf4"\xc0\xc5\xfa\xdd\x11D\xf3U@\x81\x8c\xc0\x9c\x9fN5@\x90w\t\x03\xf1\x8aL@p\x9f\xdc\x1e\x19\x87A@g\xf04\xe9h\x989@\x1b\x9a~\xd2}\nC@B\xebG\x95\x95\x95\xb4\xbfp\xa4q\x1c\xfb\x04B@a]\xfbU6\x977\xc0\xb5\xa4|\xd9\xf5n7@\x86=\xd3)\x16\xc5K\xc0\xb8z\x156\xb2\xf8\x14\xc0n\x16\xaf\xf0-\x9aR\xc0\x8e\xda=c\x88\xa8 \xc0\x07\xa2\x8d\xd5\xcc\xc66\xc0\x17PH\xd2\xae\x11\x19\xc0\xccP\x89\x14\x0b\xca\xf2\xbf@\xfd}\xef\x881"\xc0h\xeb\xb8\xfd7\x0f7@\xcf\x1f<\x11;u\x1e\xc0\x05\xc1"\xb8\xb5\x81R@\x0fV\xe42E\x7f\x15@}\x8d\x1f+\x13\x987@\xd6 yRQK!@(\x17W\x12\xec\x89\xef\xbf\x02\x8fH\'\x96\x80\x19@%n69x\x0c7\xc0' +p185 +tp186 +bsS'n_samples' +p187 +I3148 +sS'_n_active_components' +p188 +I36 +sbsbasS'reference_shape' +p189 +g0 +(g87 +g2 +Ntp190 +Rp191 +(dp192 +g91 +g64 +(g65 +(I0 +tp193 +g67 +tp194 +Rp195 +(I1 +(I20 +I2 +tp196 +g74 +I00 +S'\x1f\xd0\xa4\xc6\x16\x9dx@\xff\xe4\xc0F\x8f\xbek@\x92\x83\x8a\xda\xe1\xaew@\x9dy\rz\x0b\x0ep@\x1aM\x8e\xbd\x81:w@D\x89\xe3\x88*5r@\x89\x1dp1\x10\x98w@\xaa\xb7\x08\xaf\xdf\x9es@!\x96&j\x9c3w@\xd2\x9f\x96\x8af9u@xn\xba\xf6d\xa4w@\xbd`\xfcA\x0flw@9a\xf83\xc9ix@\xe9\xd4\x98\x81\x9e\x8ay@\xc9\xa0\x97lP\x88z@\xb9\x0f\xdbEQ\x85w@5\xa4u\xbd\xd0z{@n\x1b-R"nu@\x11\xbcJ%\xb2\xae{@\xf3\xd6K/\xe8\xb6s@\x18y0\xb1)\x8b{@\xe1\xfa\xfc\x8a\x1b&r@\x92\x05\x957&\xacz@=\xd8\xb9\x934\x05p@\xb6\xd5\xdc\xfdZ\xb4x@\x13\xe0D\x0f6\x87m@O\x9fW5\x82\x82x@\xbbX\x7f\xf2W4r@I\x9f\xccL\x0b\xa5x@\x92/\nC\x19\xa5s@\x94\xd8\xe66\xeatx@~\x1b\x14A\xb5Cu@#jk\x91\xa0\x8cx@B]\x13\x1cl\xa6x@x\x8ec\xceW\x8dy@\x11\x1e\xbe\xd3{Mu@K\xeb\xad\x00\x99\xc5y@\x11\x82\xb4GP\xa8s@\xfe\xda\xd7x\xb6\x9ey@5*0}\x03/r@' +p197 +tp198 +bsg98 +Nsbsg48 +(lp199 +g49 +asg51 +g34 +sg46 +Nsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_nose b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_nose new file mode 100644 index 0000000000000000000000000000000000000000..c9134b669ebe8fab4ed4a87dae787e508b326971 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_nose @@ -0,0 +1,490 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.clm.base +CLM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'opt' +p6 +(dp7 +S'ablation' +p8 +(I01 +I01 +tp9 +sS'verbose' +p10 +I00 +sS'rho2' +p11 +I20 +sS'sigRate' +p12 +F0.25 +sS'ratio2' +p13 +F0.08 +sS'imgDir' +p14 +S'/Users/arik/Desktop/artistic_faces/applications/AF_sample' +p15 +sS'dataset' +p16 +S'demo' +p17 +sS'ratio1' +p18 +F0.12 +sS'smooth' +p19 +I01 +sS'pdm_rho' +p20 +I20 +sS'sigOffset' +p21 +I25 +sS'kernel_covariance' +p22 +I10 +sS'numIter' +p23 +I5 +ssS'_shape_model_cls' +p24 +(lp25 +cmenpofit.modelinstance +OrthoPDM +p26 +asS'max_shape_components' +p27 +(lp28 +NasS'scales' +p29 +(lp30 +I1 +asS'diagonal' +p31 +I200 +sS'holistic_features' +p32 +(lp33 +cmenpo.feature.features +no_op +p34 +asS'patch_shape' +p35 +(lp36 +(I8 +I8 +tp37 +asS'expert_ensemble_cls' +p38 +(lp39 +cmenpofit.clm.expert.ensemble +FcnFilterExpertEnsemble +p40 +asS'expert_ensembles' +p41 +(lp42 +g0 +(g40 +g2 +Ntp43 +Rp44 +(dp45 +S'sample_offsets' +p46 +NsS'cosine_mask' +p47 +I01 +sS'context_shape' +p48 +(I8 +I8 +tp49 +sg35 +g37 +sS'response_covariance' +p50 +I3 +sS'patch_normalisation' +p51 +g34 +sS'_icf' +p52 +Nsbasg47 +I01 +sS'shape_models' +p53 +(lp54 +g0 +(g26 +g2 +Ntp55 +Rp56 +(dp57 +S'similarity_model' +p58 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p59 +g2 +Ntp60 +Rp61 +(dp62 +S'_components' +p63 +cnumpy.core.multiarray +_reconstruct +p64 +(cnumpy +ndarray +p65 +(I0 +tp66 +S'b' +p67 +tp68 +Rp69 +(I1 +(I4 +I18 +tp70 +cnumpy +dtype +p71 +(S'f8' +p72 +I0 +I1 +tp73 +Rp74 +(I3 +S'<' +p75 +NNNI-1 +I-1 +I0 +tp76 +bI00 +S'T&"6\xff}\xe3\xbf_\xec+T/)y\xbf{\x9e\xf4~\xc23\xd9\xbf\xe5:;\x0f\x8f7o\xbfe\xd5@\xeb\r\x12\xc7\xbf\x05.\x11-j\x8cL\xbf,Q\x99q\xabn\xa4?\xda\xafr\xf0\x811j?E\xc8x\xd8\x08\x03\xc9?\xe9)s\x0b\xb9\xcc\xd0\xbf\xe4g\xb5~\x14\xdb\xce?\x9e\xe9\xad\x1b\xda\xea\xc0\xbf\x9dk\xa9Sg\xca\xd1?\x1dT\x0f\x81@\xe6k?\x1f\x03p"\x17I\xce?s \x18\xbf\xe7\xc7\xc1?XM[\xc4\xe1\x99\xc8?3\xb9`\xc5\\\xa3\xd0?H\xec+T/)y?R&"6\xff}\xe3\xbf\xd7:;\x0f\x8f7o?}\x9e\xf4~\xc23\xd9\xbf\xe6-\x11-j\x8cL?e\xd5@\xeb\r\x12\xc7\xbf\xd9\xafr\xf0\x811j\xbf-Q\x99q\xabn\xa4?\xe8)s\x0b\xb9\xcc\xd0?E\xc8x\xd8\x08\x03\xc9?\x9e\xe9\xad\x1b\xda\xea\xc0?\xe4g\xb5~\x14\xdb\xce?\x11T\x0f\x81@\xe6k\xbf\x9ek\xa9Sg\xca\xd1?r \x18\xbf\xe7\xc7\xc1\xbf\x1d\x03p"\x17I\xce?2\xb9`\xc5\\\xa3\xd0\xbfXM[\xc4\xe1\x99\xc8?bUUUUU\xd5\xbf\xfa\r\xf2\t\xba\x80\x92\xbc_UUUUU\xd5\xbf/ka0f\x90\x80\xbcYUUUUU\xd5\xbfT\xdfN\xfc\xb9\x10l\xbcUUUUUU\xd5\xbfK>Dm\x80\xf1[\xb3\x039\xb2\xbae\xd9?*W\xd7\xd1\xdd\xc3\xa7\xbf\xb2\xc5\xc5C\xab\x97\xe6?8/\xad\xd8\xbe[\xb7\xbfa\x1a\xf8\xa9\xce\xae\xd2\xbf\xf5\xb4\xe79\xeb\r\xb4\xbf\xad\xdc\xc5\xf0)\x8f\xc1\xbf\x03{\rLl\x18\xb3\xbf|w\xa0\xc1\x99.\x92\xbf|\xda[\x00T\'Q?\x15\x08\x93\x84X\xe2\xc3\xbf\xb1\xef\xd4\xf2\x08\x8d\xb8?\xc2\r\x8a\xc9\xa5\x10\xd2\xbf\xfe9g\xf7\xec:\xc4?\x02\xc9=\x80\xa4\t\xd8?\x95\xdb\xd0\xfc\x82\x90\xa3?\x816\xc0\xbf\xa4^\xc6?\xf4>\xdc:/\x95g?\x8aG\x06\xdc\xbf\xf8\xa3\xbf"/\x8d\xb4\xac\n\x9e\xbf\xc4\xf97\xa3N\x01\xcc\xbf5\xf0\x10\xd9\xf7\x0f\xb0\xbf\x99\xe6s0\xe5\xdc\xba\xbf\xe8S=J\xab\xce\xe0\xbf\x97\xf3\xc9\xf7vl\x98\xbf\xe2\x0b\xa7\x19u\xa7\xd1\xbfkj\x06\x8f\x9b\x03\x92?]\xf2\x88\xab\x0f\xd1~?\xc71\x80\xfc\x9fa\xac\xbf(\xe9!w\x17\xc5\xd2?\x00\xcc\x8f!y\x1e\xc0\xbf\xe5p\xe7\xfd\xee\xa3\xe1?VT\x1b\x9d\xf6m\xb3\xbf\x97\xf5\x1b\xbd4\xac\x97?\x9f\xde\x86\xcd\xcfx\x8d?5K\x84\x86\xd0i\x85?\xdb\xe0 \xdc\xfb\x81\xb7? V\xaa\x10\x0e\xe8N?\xa7"\xbc\xd2\xe55\xc1?)\xb5\xcf\xce(\xa9;?d\x90%\xe1y\xa8\xdf?\x02\xd5\x94\xd9\xef\xc3\xc4\xbf\xe0"\xab\xcc\x1c\x1f\xcb\xbf\x1f\xcc\xd6\xeb\xef\tl?\xa2V\\\x86\xd6\x83\xe4\xbf\xda \xfa\xf4\xb2uw\xbf\xe5Pdd\x82w\xcc\xbf\x98\x11B\x19\xcb\xb3d\xbfZ+\x8f\x0c\xc8\x9e\xda?\x87}n\x9bd\xe9\xc0?\xdf\xfe\x07\xe4\x0c\x1b{?\xf2\xfe^,\xcb[\xd4\xbf\xc8%\x0c*\x85\xceo?\x95\xee\x90\xdf\x04\xdb\xc5\xbf\x00m\xb4\x9c\xfc\xd9\x89?\x1b\x0f\xe6?\xa3\xc2\xa7\xbf\x90\xcc\xb4I\xf9\xccj?\xbc\tV6\x88{\xb6?\x97\xfaU\xf2\xbb\xea\xe1\xbfa\xc3\xba\xa3]Z\xb2?\xfe\x90"\xf1M\xc1\xd1\xbf\xc6\xc2S\x1c\x1d\xe0\xb0?\x94\x8f\xcc\x7f\x967\xa2\xbf\xb9\x1c\xd1\x0bC\x8f\xb8?\xa6\xc9\xbf\x80\x1b\xb0\xce?\x14N*q\x86\xd1\xb6?\x04w\x05\xe8\x9bj\xe3?\xce\xe50\x9d\xbb\xef\xbf?\x12\x88\x815B\xd0\x8c\xbf\xa9h\x1dA\x1a\xff\xbd?\xcb`\xdd\xc1\x19\x99}?\xafa\xcdh\xc6\x9c\x9c?^[\x86\xfe F\x8c?\x808t\xfem\x0b\xb4\xbf\x82-z\xf5/\xaat\xbf,o[\x1b{\xcf\xc9\xbf\xd3\xeb\x91\xd8c]\xb0\xbf5h\xeaT\x06{\xdc\xbf\xef\x9aoQj\xf5\xa0?\x06\x91\xc8\x92\x07I\xc8?\x10\xc4\tr\xd2a\x8d\xbf\x10\xdb\x87\xfd\xce\x08\xe6?\xf1\x1f\x93\xba]\xado?(\x94 X9%\xc3?{\xe0\xbf4\xa7\'\xa4?\x10K#\x05\xb2\xac\xdc\xbf\xde\x83\xe6\xc4\xd0\\\xc8?\x87\x06\x88\x1b\xf94\x81?qG\x9d\xe4\xe3Z\xc5\xbf\x0ev9\x8e\xc0[\x81?\x93\xdc\x14\xaf\x13\xee\xcc\xbf\xf8&\xc3%\x1f}\x97\xbf\xfb\xbb\x9c\xa2B\xbf\xc9?2sU\x91\xa8D\x8f?\x07z-\xa7\x98a\xb7?\x8f\x97\x11\x88o\xe5\xc4\xbf\\\xc8\xe1\xd5\xb4\xa8\xd2\xbfzi^\x89I\x96\xd4?\xa5\x15\\\xcc\x13b\xdf?}_E6\x1d\x01\x98?>:;\xf9z\xea\xdc\xbf8\xf5\x99jCo\xd6\xbf\x1e\x01\x1a\xdeO\xde\xc4?\xfa\xf8\xc6d\x8di\xc4?\x0c\xc2[\xd0\x182\xda?jP\x01\x04_\xb8\xa5?t\x01\x8b>\x88O\xd8\xbf\xa5d\xb0X\xae\x13\xa0\xbf\x08\x85\xbbp\xc7N\xdf\xbf\xa8\x93j@\xb6\xc2\xb3\xbfO/\x08A\xb1\xbc\xde?\xd8K"\xc4\x04l\xb0?LD\xec\xa4\xcd\xcf\xb6\xbf\x1e\xe8\x9c\xfa\xd6\xb0\x85\xbf\x8f%\xf9\x15\xf8\xcc\xcc?\x92\x16\x02\xd3\x16\xbd\x91?\xf1\x06\xbfd\x06\xe6\xd2\xbf\x1a\x0e;\x8e\x91X\xa5\xbf\xb6\xb5WbSX\xcb?\xa5t\xf7\x04\x1d3\xb2?\xf2\x01/A\x99$\xb3\xbf\x9d\x08N\xd9Kw\xa1\xbf &i\xdfw\xd6\xc7\xbf\xa6\x94O\x97\n\xd2\xa4?\xa9\n\x10\x92\x15k\xd3?\x8bQ\x94\xba\xb5\xd0\x92\xbf\xcaL\xa2\xa6\xa9\xec\xa7\xbf\xa5\x92\xd7Xv\xfd\xb9\xbf\xeb\x90A/\xfb\xa9\xab\xbf\xfb\x1ac!W\xd1\xb2?\xd5sp\xef~I\xc4\xbf\xca\xd7\\\r\x9b\x9f\xd1\xbf$f\x96\x82~\x9b\xd1?1\x10|L\xff\x88\xe2?\\\x91)\xdb)+\xcd\xbfQ\xf4\x0b\xe9j\xd2\xc0\xbf\x0bY\x10\xd0\x1b!\xcb?\xf5;\x7f\x99Yf\xd9\xbf\xd3/\xc23\xf4\xfa\xbd\xbf\xe2\xbb\x0c\xb2\xfau\xcd?\xa2q\xde\xa4\xd6\x91h?\x11\x98\x1f\xa1(-\x99\xbf\x93\x86%\xc8G(\xa1?\xdc\x9a\xcb\x06\x7f\xf5\x97?\xc2!\xbb\xbd\xca\xbf\xb0\xbf\xf77> \xaa\xa0v\xbf\xf1\x13\x1d\xfb\xb2W\xa2?@E\x19\xdff\x8d\xb3\xbf\'P#\x1e\x8f\xce\xd0?\x14\xc2\xb7\xf7\xf0\xf4\xbc\xbf\x8aZ\xa5\'\x83P\xe4\xbf\x8f\xfaw\xed\x92\xb9\xd0?\xef\x960\x8f\xe8\x15\xb7?\xe6y\x91#\xb5l\xca\xbf)\x08+3Ij\xe0?\xa2\x93\xc2\xd0\xd3\xd6\xcd?\xc21|^\x8bq\xce\xbf\x8b3\xd80<\x80\xb7\xbfK\x12D\x88\x1f\x1f\xcd\xbf\xe0obT\x14,\xb9?\x00\x19\x11\x9bL\xa2\xe3?/\x14\x9a\xdf\x9d\xe3h\xbf\x9f\x12p\xec\xb6\xce\xe1\xbf\x92e\xf1\xddT\xfd\xd1\xbf\xf86>\xf9\xd9\xd2\xc5?r\xe0\xd3\xe9K4\xc7?eI\xbdoTE\xa7?\xf5\x91\xac3 r\xbe?#nb\xe3\xd5\x99\xb6\xbf\x1f\xc1W\xf5Z\xa0\xce\xbff"\xc6\xad\x92\x0c\xb2?\xc4\xe7\xfe\xf12\xaf\xbb?\x1b\x1aT\xd1W^\xb1\xbfo\xf3\x87\xfc\x9e\x83\xb1?t\x89*\xf0\x9c\x89\xa4?\x90i\x97\xf1\xefx\xaa\xbf\xf7=2\x82{"\xa4\xbf\xb4l\xa9\x11\x96\xbfx?\xb1g\xa3\x18\x0fB\xb3?\xffL`\x88\x9d\x86~?\xaf\xce\x9d\xe9\x88\xae\xa0\xbfL\xfd\x05\x8a\x97^\x9b\xbf)}\xff\xf8\xfc\xf7y\xbf\xea7m\x0c\x0e\xe6\x8a?c]\xd9\x95\x1b\xcc\xb9\xbfG\x17<\x89\xb0\xac\xc0\xbf\xae\x98o\xae[t\xca?\t\xe0v/\xab\xe7\xd4?C\x0b\xd9\x120\xd3\xb0?\xceQ\x80\x99M"\xe0\xbf\xc9\x04|By\xd3\xd5\xbf\xf6\x1b\x8b\x87z\x8b\xe2?)\xe5r\x0e\x06\x12\xc6?\x82\x99\x19\x8d\x0cb\xd1\xbf\xdb\xd2\x17G=\x9b\xa2\xbf\x08\xebk\xe4\x90G\xd4?\n\x1b\x9b\x07\x96F\xbb?\x1c\xab\xbd\xbe\x83\xfe\xe7\xbf\x0f\x948\xd1x\x10\xbc\xbfet\x08D]X\xe1?\x8e\x12\x7fu\xe2]\xa5?\x1a\x85\xba\x9f\xbc\x8d\xc0\xbf\x87\xf85\xaa\\\xd2h\xbf\xf68\xc9X\xf7So?\xf9\xdf\xcf\xa5\xfe\xba\x86\xbf6#\xb0\xde~\x8c\x82?>\xf2\x7f\xfbn\xb2|?\x06x\x93`r\x98\xf8>\xbb\x02+\xf3\x84\x15n\xbfV.l\xa1\x84Lz?\xc0\xee\xb6"A`\x81?"\xa6\xfc\xca\r\xf4M?\x0b\xaem\xf8\xb5\\\xa9?\xe7\x05\xbb\x12\xd1U\xdc?\x18\x8a\xab\xa6@\xb4\xc9\xbfH\xbc\xe88J\xe5\xd7\xbfd\x84\xbe\x844\x85\xd0?K:Q\xe4!\x01\xe2\xbf\xce\x03I \xecr\xbc\xbf\xb2VS`\xa2\xd2\xdd?\xde6\x9c@.\xe8\x97?\xd9_p\x9b_@]?\x9b\xa8\x1b\x97\xe8<\xb2\xbf \x10}#\xa9\\{?\x1c>8F\xe6X\xa3?^>p\xe8k\xf5\\\xbf0|"W\x01\xd2\x96?\x89A\xa7\xb7\x88\x0e\xa2?\x1b\x9e\x07\x9c\xb0.\x80\xbf8\n!\x17\x84\x0e\x8e\xbf' +p179 +tp180 +bsg79 +g64 +(g65 +(I0 +tp181 +g67 +tp182 +Rp183 +(I1 +(I18 +tp184 +g74 +I00 +S'\x8e\t\x1b\xae\x19\xb7\\\xc0\xbdU\x1d\xb3x\x88\xf2\xbf\xa8\xfc4\xc1B\x90R\xc0\xc5\xcfI\x9bs\xfe\xe6\xbf1\x86\xef\x97M\xfe@\xc0\xcc`\xa9BB\x07\xc5\xbf\x19(h\xce\xa6\x19\x1e@\xe7\xd4\x98\xd1*K\xe3?\x14\x0b(\xde^lB@l5\xbf+\xaf\xbfH\xc0\x04M3OU\xbaF@F^\xbf\xcd\x11\xec8\xc09_}\x04f5J@\xd9\xe4\xe7\xb4\xdd\x8c\xe4?\xbf\xe3\xfa\xb3\xccNF@UE\x06\xcf\xb71:@\xe9\xf2\xee\xb6\xea\x1eB@HzJ\xdf\xc0\x82H@' +p185 +tp186 +bsS'n_samples' +p187 +I3148 +sS'_n_active_components' +p188 +I14 +sbsbasS'reference_shape' +p189 +g0 +(g87 +g2 +Ntp190 +Rp191 +(dp192 +g91 +g64 +(g65 +(I0 +tp193 +g67 +tp194 +Rp195 +(I1 +(I9 +I2 +tp196 +g74 +I00 +S'iT\xbdC\xc6\x1be@\xddP\xc4\x8e\xe2\x0et@u\xfd]V\xbc_j@\x18\xc1\x83\x89\x15\x17t@\x90\xae(m\xef\x98o@f\xa5\x9b\x0cN!t@-\xcd\x98\x8f5}r@\x92\xd5\xeeH\xef.t@5\xfaa\x94bPt@\xee\xec\xa2i\xd2\xf4p@\x9a\xf4\xb1\xc1n\xe0t@5 \x12\x9aC\x89r@\xef\xf5~X\xebTu@*\x028x\x00.t@M\x1c)\x1e\x1e\xd4t@\xa9\xa8\xf9\x1aa\xd2u@J\xd2\xbf\xdbqHt@\xeba\x88b\xdaIw@' +p197 +tp198 +bsg98 +Nsbsg48 +(lp199 +g49 +asg51 +g34 +sg46 +Nsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_r_brow b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_r_brow new file mode 100644 index 0000000000000000000000000000000000000000..44536e2be0c801cabca34c42e00e67a7030a4a91 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_r_brow @@ -0,0 +1,490 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.clm.base +CLM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'opt' +p6 +(dp7 +S'ablation' +p8 +(I01 +I01 +tp9 +sS'verbose' +p10 +I00 +sS'rho2' +p11 +I20 +sS'sigRate' +p12 +F0.25 +sS'ratio2' +p13 +F0.08 +sS'imgDir' +p14 +S'/Users/arik/Desktop/artistic_faces/applications/AF_sample' +p15 +sS'dataset' +p16 +S'demo' +p17 +sS'ratio1' +p18 +F0.12 +sS'smooth' +p19 +I01 +sS'pdm_rho' +p20 +I20 +sS'sigOffset' +p21 +I25 +sS'kernel_covariance' +p22 +I10 +sS'numIter' +p23 +I5 +ssS'_shape_model_cls' +p24 +(lp25 +cmenpofit.modelinstance +OrthoPDM +p26 +asS'max_shape_components' +p27 +(lp28 +NasS'scales' +p29 +(lp30 +I1 +asS'diagonal' +p31 +I200 +sS'holistic_features' +p32 +(lp33 +cmenpo.feature.features +no_op +p34 +asS'patch_shape' +p35 +(lp36 +(I8 +I8 +tp37 +asS'expert_ensemble_cls' +p38 +(lp39 +cmenpofit.clm.expert.ensemble +FcnFilterExpertEnsemble +p40 +asS'expert_ensembles' +p41 +(lp42 +g0 +(g40 +g2 +Ntp43 +Rp44 +(dp45 +S'sample_offsets' +p46 +NsS'cosine_mask' +p47 +I01 +sS'context_shape' +p48 +(I8 +I8 +tp49 +sg35 +g37 +sS'response_covariance' +p50 +I3 +sS'patch_normalisation' +p51 +g34 +sS'_icf' +p52 +Nsbasg47 +I01 +sS'shape_models' +p53 +(lp54 +g0 +(g26 +g2 +Ntp55 +Rp56 +(dp57 +S'similarity_model' +p58 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p59 +g2 +Ntp60 +Rp61 +(dp62 +S'_components' +p63 +cnumpy.core.multiarray +_reconstruct +p64 +(cnumpy +ndarray +p65 +(I0 +tp66 +S'b' +p67 +tp68 +Rp69 +(I1 +(I4 +I10 +tp70 +cnumpy +dtype +p71 +(S'f8' +p72 +I0 +I1 +tp73 +Rp74 +(I3 +S'<' +p75 +NNNI-1 +I-1 +I0 +tp76 +bI00 +S'\x00k\xf4]\xdd\x16\xb3\xbf@\xc4\xc7\xb1\xc9>\xe4?dj\xba*A\xe7\xaf?\xc9\xf8\x80*\x82\x02\xd4?i\xcaD\x98\xf2,\xbd??*\x9b\xef\xa9C\x96\xbf%\x96\x1as\xebk\xab?(\xcd\xc4\x05\x08P\xd6\xbf\xcao\x9d\xc4\xd5\xdf\xc3\xbf\xbc\x00\xa9t\xe9e\xe2\xbf?\xc4\xc7\xb1\xc9>\xe4\xbf\xf0j\xf4]\xdd\x16\xb3\xbf\xc7\xf8\x80*\x82\x02\xd4\xbfbj\xba*A\xe7\xaf?=*\x9b\xef\xa9C\x96?e\xcaD\x98\xf2,\xbd?%\xcd\xc4\x05\x08P\xd6?"\x96\x1as\xebk\xab?\xbb\x00\xa9t\xe9e\xe2?\xc8o\x9d\xc4\xd5\xdf\xc3\xbf\xd6\xed\xbf\xc5%\x9f\xdc\xbfzQ\xe3F\x15D\xad<\xda\xed\xbf\xc5%\x9f\xdc\xbf&\xe0_\x9d\x90\x8av<\xd9\xed\xbf\xc5%\x9f\xdc\xbf\xf6\xb2u`B<}\xbc\xd9\xed\xbf\xc5%\x9f\xdc\xbfYn\xb0\xa8\xa9\xbe\x86\xbc\xdc\xed\xbf\xc5%\x9f\xdc\xbf\x84\x0e\x14IW\xfd\x8f\xbc\x1a=K\xcc\x1f\xd7\x88\xbc\xd7\xed\xbf\xc5%\x9f\xdc\xbfM\xae?\x9a.-\x94\xbc\xdb\xed\xbf\xc5%\x9f\xdc\xbf\xb9!\x1f\xefb\xec\x81\xbc\xd9\xed\xbf\xc5%\x9f\xdc\xbf\x1c\xa2\x8e\x16,\xb7{<\xda\xed\xbf\xc5%\x9f\xdc\xbf\xcb\x82\x1c\x0f\xa3\xae\x94<\xd9\xed\xbf\xc5%\x9f\xdc\xbf' +p77 +tp78 +bsS'_mean' +p79 +g64 +(g65 +(I0 +tp80 +g67 +tp81 +Rp82 +(I1 +(I10 +tp83 +g74 +I00 +S"_\xed\x1c\x84\xbeb'@\xb4\xfd\x905E\xcdX\xc0\xbe\x9f\xc5)\xb9\x8a#\xc0\xc6|\x80\x87l\x83H\xc0*o\x02\x83\xfc\xde1\xc0B\x86\xe6\x92zF\x0b@\xa8,\x05\xff\xf0\xcb \xc0\xc3\x1b3?\xa1UK@\x9d^YU\xf2X8@\x01z \x05\xf7\x89V@" +p84 +tp85 +bsS'template_instance' +p86 +g0 +(cmenpo.shape.pointcloud +PointCloud +p87 +g2 +Ntp88 +Rp89 +(dp90 +S'points' +p91 +g64 +(g65 +(I0 +tp92 +g67 +tp93 +Rp94 +(I1 +(I5 +I2 +tp95 +g74 +I00 +S"_\xed\x1c\x84\xbeb'@\xb4\xfd\x905E\xcdX\xc0\xbe\x9f\xc5)\xb9\x8a#\xc0\xc6|\x80\x87l\x83H\xc0*o\x02\x83\xfc\xde1\xc0B\x86\xe6\x92zF\x0b@\xa8,\x05\xff\xf0\xcb \xc0\xc3\x1b3?\xa1UK@\x9d^YU\xf2X8@\x01z \x05\xf7\x89V@" +p96 +tp97 +bsS'_landmarks' +p98 +NsbsbsS'similarity_weights' +p99 +g64 +(g65 +(I0 +tp100 +g67 +tp101 +Rp102 +(I1 +(I4 +tp103 +g74 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p104 +tp105 +bsS'_weights' +p106 +g64 +(g65 +(I0 +tp107 +g67 +tp108 +Rp109 +(I1 +(I6 +tp110 +g74 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p111 +tp112 +bsS'_target' +p113 +g0 +(g87 +g2 +Ntp114 +Rp115 +(dp116 +g91 +g64 +(g65 +(I0 +tp117 +g67 +tp118 +Rp119 +(I1 +(I5 +I2 +tp120 +g74 +I00 +S"^\xed\x1c\x84\xbeb'@\xb2\xfd\x905E\xcdX\xc0\xbd\x9f\xc5)\xb9\x8a#\xc0\xc4|\x80\x87l\x83H\xc0)o\x02\x83\xfc\xde1\xc0A\x86\xe6\x92zF\x0b@\xa7,\x05\xff\xf0\xcb \xc0\xc1\x1b3?\xa1UK@\x9b^YU\xf2X8@\x00z \x05\xf7\x89V@" +p121 +tp122 +bsg98 +NsbsS'global_transform' +p123 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p124 +g2 +Ntp125 +Rp126 +(dp127 +S'_h_matrix' +p128 +g64 +(g65 +(I0 +tp129 +g67 +tp130 +Rp131 +(I1 +(I3 +I3 +tp132 +g74 +I00 +S'\xfe\xff\xff\xff\xff\xff\xef?d=\xd6\xde\xab"3<\x00\x00\x00\x00\x00\x00\xd0\xb9\xac\xaa\x13\xb1v b\xbc\xfe\xff\xff\xff\xff\xff\xef?\x00\x00\x00\x00\x00\x00\xc0\xb9\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p133 +tp134 +bsg113 +g0 +(g87 +g2 +Ntp135 +Rp136 +(dp137 +g91 +g64 +(g65 +(I0 +tp138 +g67 +tp139 +Rp140 +(I1 +(I5 +I2 +tp141 +g74 +I00 +S"_\xed\x1c\x84\xbeb'@\xb4\xfd\x905E\xcdX\xc0\xbe\x9f\xc5)\xb9\x8a#\xc0\xc6|\x80\x87l\x83H\xc0*o\x02\x83\xfc\xde1\xc0B\x86\xe6\x92zF\x0b@\xa8,\x05\xff\xf0\xcb \xc0\xc3\x1b3?\xa1UK@\x9d^YU\xf2X8@\x01z \x05\xf7\x89V@" +p142 +tp143 +bsg98 +NsbsS'allow_mirror' +p144 +I00 +sS'_source' +p145 +g136 +sbsS'model' +p146 +g0 +(cmenpo.model.pca +PCAModel +p147 +g2 +Ntp148 +Rp149 +(dp150 +S'centred' +p151 +I01 +sg86 +g0 +(g87 +g2 +Ntp152 +Rp153 +(dp154 +g91 +g64 +(g65 +(I0 +tp155 +g67 +tp156 +Rp157 +(I1 +(I5 +I2 +tp158 +g74 +I00 +S'\x1b\x9cSE\x03\xd1\x07@\x91|\x92c\xfarY\xc0\x8a\xba&\xcd\xff*\x18\xc0#H\x80v\x97SH\xc0&$\x02>\xac- \xc0%}\x17\xb3\x0e\xda\x0e@\xd6\xd7+ \xa4\xc8\x0e\xc09f\xc9\x90m\x7fI@_\x90K[\x14\x01.@\xb21\xd5\xe0>\xe6W@' +p159 +tp160 +bsg98 +NsbsS'_eigenvalues' +p161 +g64 +(g65 +(I0 +tp162 +g67 +tp163 +Rp164 +(I1 +(I6 +tp165 +g74 +I00 +S'W\x9c}\xb4\x18|d@\x8cw\x9c\x12.\x01G@\x9e\xa9\x07D\xae\x870@2E\x0c\x1c\x1c\x04"@K@H\xa0\x08\n\x18@n\xdc/3\xba\xe8\x08@' +p166 +tp167 +bsS'_trimmed_eigenvalues' +p168 +g64 +(g65 +(I0 +tp169 +g67 +tp170 +Rp171 +(I1 +(I1 +tp172 +g74 +I00 +S'\x01\x96\xb7\x9cD\xe8\xf2?' +p173 +tp174 +bsg63 +g64 +(g65 +(I0 +tp175 +g67 +tp176 +Rp177 +(I1 +(I6 +I10 +tp178 +g74 +I00 +S'\xc8\xedIShX\xdd?r\x83\'em[\xb3?h\xf9\xe1*\x92\x99\xc3\xbf\xd6\x83\xbd,;zo\xbf{\xd2\xc9\xbd?\x01\xe0\xbf\xa0\xef)Y\xd8\x15\xbd?\xf90()\xb1\xdd\xd2\xbf\x0c;\xd0\x93C\xa1\xc7?\xdf\xe4\xe2f\x91T\xdf?B\xff"\xc3\xfe\xad\xd7\xbf]\xb2\xecQ\xf6@\xc2?\xacY\xd4o\xd4\xf1\xdd?\xab$\xb23\x1f\xd2\xd3\xbf\xf4\'4\xfa\x9f\xd7\xcf\xbf+\xfb\x99\xe4O\x1a\xd0\xbf\xf6\xbc\xc2\xa4&\x1d\xd8\xbf\xd53v\xab\xc4;\xd1?\xafo\xd9b\xbbW\xd3\xbf\xa6%\xbf\x87^ \xc3?\xf4\xe6\xe1\x94\xddn\xdd?\x91a\\\xad=d\xd4\xbfE\xe1\x05\x8ce\xa9\xca?\xba\xbc\x9d\xddE\xda\xd9?\xb0\xb4\x17}\xcc]\x9e\xbf\xd0d\x166\xdc,\xc2?c03%n\xe7\xd7\xbf\x94\x13\x03\x10\x96E\xe3\xbf[`p7|\x96\x9e?\x92\x99\xb9\xd4\xb5\xfe\xd7?\x11j\x15\xc7`\x1e\xc5?P\xaf\x18O\x9f\xd7\xb8\xbf\xdfqN\x95\xb5o\xcf\xbfd\x99\x81|.\x96\xdc?\x86\x98O\xed\xc1C\xde?\xb5\xcf\x02r\x8aZ\xe2\xbf\xdf\x7fkd6\xf4\x9e\xbfL\xf4>\x06\x80\xd8\xc6?O\xe4\x8f\xf8\x97<\xd6\xbf\x8a\xbdU\xc1qD\xa7?dy\\x\xe8?\xc3?$\x9e\x89g,#\xc9\xbf8\x8d\x98\x9en\xa2\xcb?\x86\xd8\x17\x98"k\xd9?\x1e\x1f\x85\xae\xb5\x8a\xd8\xbf\xa6y\\\x1b\xb0\xe5\xd5\xbf\r V\x08\xdfY\xc4\xbf\xc3no!\x07T\xd5?\xb2\x0b\n\xaa\xef\xe7\xe0?"\xfd\xcb\xd4\xc6\x8f\xc8\xbf\xbb]`\xe1\xe2\xd2\xc9\xbf\xab\xf26\xa7\x9dd\xbe\xbf\xb6\xab\xc8\xf0\x9a\xbf\xc1?e\x12#4\xff\xfa\xce?\xd7\xa1D]qx\xe0\xbf#k\x9e\xbcKA\xb5\xbf\xed\xee\xd8Q\n\xd8\xe5?\x883\x7f\xc1\x9dQ\xba\xbfy\xd3E\xdb\x8a\xbd\xd8\xbf\x85l\x0e\xbd\x88\x01\xb0?\xd4\x8d\xe3\xe6-z\xb4?' +p179 +tp180 +bsg79 +g64 +(g65 +(I0 +tp181 +g67 +tp182 +Rp183 +(I1 +(I10 +tp184 +g74 +I00 +S"_\xed\x1c\x84\xbeb'@\xb4\xfd\x905E\xcdX\xc0\xbe\x9f\xc5)\xb9\x8a#\xc0\xc6|\x80\x87l\x83H\xc0*o\x02\x83\xfc\xde1\xc0B\x86\xe6\x92zF\x0b@\xa8,\x05\xff\xf0\xcb \xc0\xc3\x1b3?\xa1UK@\x9d^YU\xf2X8@\x01z \x05\xf7\x89V@" +p185 +tp186 +bsS'n_samples' +p187 +I3148 +sS'_n_active_components' +p188 +I6 +sbsbasS'reference_shape' +p189 +g0 +(g87 +g2 +Ntp190 +Rp191 +(dp192 +g91 +g64 +(g65 +(I0 +tp193 +g67 +tp194 +Rp195 +(I1 +(I5 +I2 +tp196 +g74 +I00 +S"\xcdM\x18:\xa5\x89a@{\xdd\x14\x98I\xebz@\xa8D\xa88\x11\x94]@w\xfd\xcbT\xeb*~@\x01\n\xf9\x11\x8c\x95[@\x9c\xb0/\xcc\xe4\xc6\x80@\xe5\x0f\x96C\xaf\x12^@}\x83\x15\x1b\x15k\x82@\xe7\xa9\xc1^u'c@\xd8\rx\x8fh\x90\x83@" +p197 +tp198 +bsg98 +Nsbsg48 +(lp199 +g49 +asg51 +g34 +sg46 +Nsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_r_eye b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_r_eye new file mode 100644 index 0000000000000000000000000000000000000000..83dcad620fd865baa44c31c7a29817d0b3e62af0 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/basic_r_eye @@ -0,0 +1,490 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.clm.base +CLM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'opt' +p6 +(dp7 +S'ablation' +p8 +(I01 +I01 +tp9 +sS'verbose' +p10 +I00 +sS'rho2' +p11 +I20 +sS'sigRate' +p12 +F0.25 +sS'ratio2' +p13 +F0.08 +sS'imgDir' +p14 +S'/Users/arik/Desktop/artistic_faces/performance/old/dupas' +p15 +sS'dataset' +p16 +S'demo' +p17 +sS'ratio1' +p18 +F0.12 +sS'smooth' +p19 +I01 +sS'pdm_rho' +p20 +I20 +sS'sigOffset' +p21 +I25 +sS'kernel_covariance' +p22 +I10 +sS'numIter' +p23 +I5 +ssS'_shape_model_cls' +p24 +(lp25 +cmenpofit.modelinstance +OrthoPDM +p26 +asS'max_shape_components' +p27 +(lp28 +NasS'scales' +p29 +(lp30 +I1 +asS'diagonal' +p31 +I200 +sS'holistic_features' +p32 +(lp33 +cmenpo.feature.features +no_op +p34 +asS'patch_shape' +p35 +(lp36 +(I8 +I8 +tp37 +asS'expert_ensemble_cls' +p38 +(lp39 +cmenpofit.clm.expert.ensemble +FcnFilterExpertEnsemble +p40 +asS'expert_ensembles' +p41 +(lp42 +g0 +(g40 +g2 +Ntp43 +Rp44 +(dp45 +S'sample_offsets' +p46 +NsS'cosine_mask' +p47 +I01 +sS'context_shape' +p48 +(I8 +I8 +tp49 +sg35 +g37 +sS'response_covariance' +p50 +I3 +sS'patch_normalisation' +p51 +g34 +sS'_icf' +p52 +Nsbasg47 +I01 +sS'shape_models' +p53 +(lp54 +g0 +(g26 +g2 +Ntp55 +Rp56 +(dp57 +S'similarity_model' +p58 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p59 +g2 +Ntp60 +Rp61 +(dp62 +S'_components' +p63 +cnumpy.core.multiarray +_reconstruct +p64 +(cnumpy +ndarray +p65 +(I0 +tp66 +S'b' +p67 +tp68 +Rp69 +(I1 +(I4 +I12 +tp70 +cnumpy +dtype +p71 +(S'f8' +p72 +I0 +I1 +tp73 +Rp74 +(I3 +S'<' +p75 +NNNI-1 +I-1 +I0 +tp76 +bI00 +S"0lY\xee\x973\xb8\xbf\x8f:\xd6\x7f\x07f\xe3?E\x84\x99\xe8\x07\x8e\xc9?\xda\x19#B\xc5\x16\xcc?\x04\x9f(\x86y\xfb\xc9?\x0b\x962\xc4\xce\x95\xca\xbf[\x05^\xe6\xacKc?\xbd\xc1-\xd9\xeb\xe0\xe1\xbf]\x8b\x8f3\x1c\xe4\xc2\xbf\xfe<%H.\xcb\xce\xbf\x18Z\x9f\xf7\xc7\xd8\xc4\xbf\xb5\xd5\x92/\xc95\xc7?\x8e:\xd6\x7f\x07f\xe3\xbf-lY\xee\x973\xb8\xbf\xd6\x19#B\xc5\x16\xcc\xbfC\x84\x99\xe8\x07\x8e\xc9?\x08\x962\xc4\xce\x95\xca?\x00\x9f(\x86y\xfb\xc9?\xba\xc1-\xd9\xeb\xe0\xe1?+\x05^\xe6\xacKc?\xfb<%H.\xcb\xce?[\x8b\x8f3\x1c\xe4\xc2\xbf\xb2\xd5\x92/\xc95\xc7\xbf\x14Z\x9f\xf7\xc7\xd8\xc4\xbfD,\x0cp\xbd \xda\xbf(B\xf6\x83:\x01\xb7\xbcC,\x0cp\xbd \xda\xbfO\xc5\xc4\xdf\xda\xd7\x82\xbc?,\x0cp\xbd \xda\xbf~;I\\\x86\x8b\xab<;,\x0cp\xbd \xda\xbf\xce\xa6V\x18\xd8\xd8\xb2<=,\x0cp\xbd \xda\xbf\xb5U`s\x10\x98\x86<>,\x0cp\xbd \xda\xbf\x9eb\x12\xde\xd7\x04\xa6\xbc\x05P.KXF\xc1i\xa4^\x87!\xb9\xbfSn\xca\xf9\xc2\xc3?\x9230\xb9\xdf\xc0\xe5\xbfH\t\xb6\x86\xfbbp\xbf\x86\xe0u`Z\xa8\xc1?\xb7\xa1P\xe8\xc6\xfa\xb5?\x87\x1av)2\xdc\xbd?\xa2r^\x01\xea\xab\xba\xbf\xf8X\xf3\x9f\t`\xaa\xbf\xf5\xbc\xb6k\x13\xea\xc5\xbf\xc2\xc3?("\x95\xab?+q\x0b\'\x96\x8d\xa7?\x88IEx\x8dI\xaa\xbf\x01Ea\xf0\x91\xba\xd3?xz\xa3\x8e\t\xe9\xb0?\x8a\xa1\x0b\xf3\xcb\x9e\xde\xbf\xa9\xdcq|y\x0f\x94\xbf1\xd61\xf6\x84\x9b\xa9\xbf\x17\x83\x9f4\x95\xd1\xc4?1U\x05#\xff\xf0\xe3?O\xa3a\xf8\x0f\x17\xcb\xbf8\x81{i\x06\xbc\xdc\xbf!g^\x15\xfe\xcd\xc8?\xae\xc6\x02\xc6FwX\xbf\x86\xe6|\xb2\xe7\x16\x91?\xd4\x018\x88\xce\x94\xc8\xbf\xbb\xd7\x96\xb2\\\xe6\x81?\xed\xef\x89)\xf0*\xb0?d\x03\xd4\x14\xa4.\xc8\xbf7\xea\x1da\xf5]\x92?Da\xefZD\xbb\xbf\xc7<\xbd\xa6\xf5\n\xe5\xbf0\xacz\xcc\xb3\x06\xcc?' +p179 +tp180 +bsg79 +g64 +(g65 +(I0 +tp181 +g67 +tp182 +Rp183 +(I1 +(I12 +tp184 +g74 +I00 +S'o g\xbf)).@\x1a\xd5kn\xd6,X\xc0\xf7\xcb\x87\xc6\xe7\xd8?\xc0\x96\xda\x1d\x8f\xb1\x80A\xc0\x06%\x1f&\xa60@\xc0o\xfd\xab\n\xd1\x90@@<\xc9\xe2\x95\xfe\x0b\xd8\xbf\xc5O\x86\xf1\xeaGV@B\xa4\xf7\x8a\xed\x8a7@\xc8\x00\x82z%0C@\xe8lr\xa2\xe1\xfa9@\xb41\x8a\xf8\xdb\xec<\xc0' +p185 +tp186 +bsS'n_samples' +p187 +I3148 +sS'_n_active_components' +p188 +I8 +sbsbasS'reference_shape' +p189 +g0 +(g87 +g2 +Ntp190 +Rp191 +(dp192 +g91 +g64 +(g65 +(I0 +tp193 +g67 +tp194 +Rp195 +(I1 +(I6 +I2 +tp196 +g74 +I00 +S'\x17\xe4\x12\xe7\\\x96x@O\x8d\xd8\x7f\x8aD\x8a@\xd0p\xb1\xfdl\x8fu@\x963\x1cJI<\x8c@\xea+O\xf8t\x85u@\x1e\xc2\xd2O\x9ck\x8e@\xfa\x00S}\xa3\x92w@F\xad\xe5\x8b\x1e\x1d\x90@\xfb. 7] y@2\x9f\xd8d\xc2\x9b\x8e@l\x94s\xeeKIy@\x84\xcdW"\x82q\x8c@' +p197 +tp198 +bsg98 +Nsbsg48 +(lp199 +g49 +asg51 +g34 +sg46 +Nsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_all b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_all new file mode 100644 index 0000000000000000000000000000000000000000..1aa569fd27df74f8b96d787a475e52f037a6ac58 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_all @@ -0,0 +1,519 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.clm.base +CLM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'opt' +p6 +(dp7 +S'ablation' +p8 +(I01 +I01 +tp9 +sS'verbose' +p10 +I00 +sS'rho2' +p11 +I20 +sS'sigRate' +p12 +F0.25 +sS'ratio2' +p13 +F0.08 +sS'smooth' +p14 +I01 +sS'dataset' +p15 +S'demo' +p16 +sS'ratio1' +p17 +F0.12 +sS'pdm_rho' +p18 +I20 +sS'sigOffset' +p19 +I25 +sS'kernel_covariance' +p20 +I10 +sS'numIter' +p21 +I5 +ssS'_shape_model_cls' +p22 +(lp23 +cmenpofit.modelinstance +OrthoPDM +p24 +asS'max_shape_components' +p25 +(lp26 +NasS'scales' +p27 +(lp28 +I1 +asS'diagonal' +p29 +I200 +sS'holistic_features' +p30 +(lp31 +cmenpo.feature.features +no_op +p32 +asS'patch_shape' +p33 +(lp34 +(I8 +I8 +tp35 +asS'expert_ensemble_cls' +p36 +(lp37 +cmenpofit.clm.expert.ensemble +FcnFilterExpertEnsemble +p38 +asS'expert_ensembles' +p39 +(lp40 +g0 +(g38 +g2 +Ntp41 +Rp42 +(dp43 +S'sample_offsets' +p44 +NsS'cosine_mask' +p45 +I01 +sS'context_shape' +p46 +(I8 +I8 +tp47 +sg33 +g35 +sS'response_covariance' +p48 +I3 +sS'patch_normalisation' +p49 +g32 +sS'_icf' +p50 +Nsbasg45 +I01 +sS'shape_models' +p51 +(lp52 +g0 +(g24 +g2 +Ntp53 +Rp54 +(dp55 +S'similarity_model' +p56 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p57 +g2 +Ntp58 +Rp59 +(dp60 +S'_components' +p61 +cnumpy.core.multiarray +_reconstruct +p62 +(cnumpy +ndarray +p63 +(I0 +tp64 +S'b' +p65 +tp66 +Rp67 +(I1 +(I4 +I136 +tp68 +cnumpy +dtype +p69 +(S'f8' +p70 +I0 +I1 +tp71 +Rp72 +(I3 +S'<' +p73 +NNNI-1 +I-1 +I0 +tp74 +bI00 +S' q\x8f/i\x88\xb5\xbf\xdc\xeb\xb3\x00\xb7\x9c\xc4\xbfT\x17m3;N\xa5\xbf\x02r\xbe\xbb\xf9u\xc4\xbf\xf6\x96\x9fg\xff\xfaC?t\xd0\xcb\xc9\xd7\xda\xc3\xbf\xe9\xde\xa5hh{\xa5?\xec\x04Y-w\xb7\xc2\xbf/]RhG\x8e\xb4?\x03\x8d\xe7\xfc\x8f\x95\xc0\xbf\xcd\xb5\xd6\x7f\xd5\x0e\xbd?c"~O]\xab\xba\xbf\x98e\xb4\x1du\x16\xc2?^g\xaf\x14{\xba\xb2\xbf>R\xe7\x8c\xa6\xf0\xc4?\xf6;$\x19w\xf3\xa3\xbfR\xf5Wi\x98\xc8\xc5?h\xf5\x90\x91sR \xbf=~\x88+U\xf2\xc4?\xb81\xee\xda7\xc4\xa3?,\rRs\x06\x1c\xc2?*+B\xea\xc7\xb1\xb2?m\x13\rE\xe0!\xbd?T\xff\xd9\xf6\xa4\xb2\xba?\xf0\xd3v}\x02\x9f\xb4?\\\xde\xc8\xeb3\xa0\xc0?\xc0\xc5\x02\x84\xe4\x8d\xa5?\xa0:\xeb{\xeb\xc3\xc2?\\\xaf\x10\xa3X:B?\xe61\'\xc0\x03\xec\xc3?\xe5.RT\x8fx\xa5\xbfi\x1a\xaba\x98\x84\xc4?\xa9\xa6%\x9a4\xa2\xb5\xbf(\x8e\xae\xe0\x1e\xa4\xc4?s\xba\xcd-+u\xbd\xbf\x98\xfc\xc8\x8e\xab\xa8\xc0\xbf,\x9e`\x9ea5\xc1\xbf\x07Q\xc5W6j\xbc\xbf~\x81\x87\xf6\xfe\xf1\xc1\xbf\xfc\x04V\x82\xc9q\xb5\xbf\xa7 \x98\xc2`\xc1\xbf\xa9\xfe,Z\x90\x7f\xac\xbf\x1f"\x82\xb2\x86\x9d\xbf\xbf\xd2!\xd5\xca\xe1\x1a\x9e\xbf\xda\xed\x83\x89l\xa5\xbf\xbfI\x1f@\x8e\x81C\x9d?\x86\x1e\xf2\xf9|e\xc1\xbfx\x1d\x0e-\n\x1e\xac?O\x9f]8\xb2\xf7\xc1\xbf\xe3\xd3\\\x8ebJ\xb5?\xc5?\xff\n\x079\xc1\xbf*,\xa7\xd2\x01F\xbc?\t\xab\xb6\x84`r\xbd\xbfS\x1d9\xcd.\x99\xc0?\xd4\x86e\xb1\x19\x0b\xb7\xbfh\xc9\'\x9f\x0f\x0b@\xbf\xfd\x823[\x91{\xb0\xbf\xff\x953]-4A\xbfU\t\'_\x8b\xf3\xa3\xbffhx\xda\x98\xb0B\xbf\xf1\x01\x1e\xf9&.\x8a\xbf\xe5!\xa3N\r\x11D\xbf\xb2\xcb\x9c\xd3\xa7ot?B\xd5\xbc&%\xd0\xa1\xbf\x82+\xbep\xf18\x85?\xc8\x8dg\x19\'\xa1\x92\xbf\xeb!\t\x018\xb1\x8e?\x1d\xe3\xf3\tx\x882\xbf\xcc+M\x14\xd4\x00\x85?;m\x90\xb90\x07\x92?\xc4Q\xc4*\xaf\xb9s?\xdd\xd4q\xb5\x03\x7f\xa1?\xfcxR\x80\xf9\xa4\xb5\xbf\x1d\xce\xc0\x95vT\xb9\xbf\xac\xfal\\\x12`\xb8\xbf\xf7H\x1a\xa9\xcc\x12\xb5\xbf\x84\xa3\x86\x00OM\xb8\xbf\xae\x80\x8b\xbc\xa0\xe4\xaf\xbf\xb7\xec\x8bL\xa1\x84\xb4\xbfS\n\x050o\xe1\xa6\xbfh\xbb\x8b\x81\xec\x8c\xb3\xbf\x17\x8e\r\xe5\x1fB\xb0\xbf\xd3\x84\xa6\x04b\xa0\xb3\xbfq\x0e\xd58\x19[\xb5\xbfg\xfbw\xd9\x82\x8b\xb4\xbfM\t\x0b\xb7\xdd\xa1\xa6?\xb1w\x0cQ\x03U\xb8\xbf\xcfI)=\xc7\x9e\xaf?Sc\x89!8h\xb8\xbf>\x02r\x8ax\xef\xb4?\xd6X\x0f\xf6=\xac\xb5\xbf\x7f\x08-gz6\xb9?\xb9\xa6H\xdeY\xa9\xb3\xbf\xff%\xf3#(A\xb5?\xd4\xf6\xd5_{\x94\xb3\xbf\xce\x82^\xa0\xf4%\xb0?I\x1f\xcd\x96RV\xb1?\xe8\x0f\xc9i\xf2\x02\xaf\xbf]\xb1\x88!V\x1b\xae?\x0b4e\xcb\xc5}\xa3\xbf\r\x8f\xafr\xad\xa4\xab?\x9f*_\x00m\x84\x8f\xbf\\a\xf0\x8a/\xa4\xad?\xd3\xb9\xe1\xec\x0f\xa25?\xb8\xae\x10\xe7\xc8\x96\xab?\x9eZ8\x0b_\x7f\x90?\x95\xb1\x18L%\xfc\xad?_(\x0b\xc1\xb2\xea\xa3?\x13\x92\x8c\x99\xbeL\xb1?\n\xc5\xfau\xb7n\xaf?)\xd9\x9cZ\x83\xd9\xb6?!\x17\xe5\x92\x08T\xa4?5)SN`H\xb9?\x9fz\xc1\xfe)\x08\x92?\xe3B\xda\x05\x07\xc0\xb9?Ha\xcd\xff\xad\x1c=?\xac\xaf\xa796O\xb9?\x18(\n\xa0\xe2\x12\x91\xbf\xa5C\xb8\xdc\xbd\xe8\xb6?\x88\xd2{0-\xd1\xa3\xbf\xe4\xbb\xfe(\x89\xa4\xb1?\x8a\x05\xe38\x9d>\xaa\xbfoW\x17_\xb37\xb1?\xef\x990\x8d\xd6\xe7\x8f\xbf\xc7\x14\x19\xb5\xcc\xa2\xb1?\xa5\x0c\xa8\xa1\xde\xa88?(\xc9\xdb[\xbe0\xb1?(|;\xa3\x11\xc5\x90?\xf0\xe3S\x98\xb7\x97\xb1?W\xffP\xa4\x18\xa8\xaa?T\xc8~\xc3^ \xb4?\xaf\xe3k\x94C\x1c\x91?\\\x8fH\xf8\x88\xa1\xb4?-\x90\x93F\x1e\xb4:?\xc25/\xb9y%\xb4?\xcd]\x01t3<\x90\xbf\xd8\xeb\xb3\x00\xb7\x9c\xc4?$q\x8f/i\x88\xb5\xbf\x03r\xbe\xbb\xf9u\xc4?V\x17m3;N\xa5\xbfv\xd0\xcb\xc9\xd7\xda\xc3?`\x96\x9fg\xff\xfaC?\xed\x04Y-w\xb7\xc2?\xe7\xde\xa5hh{\xa5?\x04\x8d\xe7\xfc\x8f\x95\xc0?/]RhG\x8e\xb4?e"~O]\xab\xba?\xcd\xb5\xd6\x7f\xd5\x0e\xbd?_g\xaf\x14{\xba\xb2?\x98e\xb4\x1du\x16\xc2?\xfa;$\x19w\xf3\xa3??R\xe7\x8c\xa6\xf0\xc4?\x90\xf7\x90\x91sR ?S\xf5Wi\x98\xc8\xc5?\xb61\xee\xda7\xc4\xa3\xbf=~\x88+U\xf2\xc4?*+B\xea\xc7\xb1\xb2\xbf,\rRs\x06\x1c\xc2?V\xff\xd9\xf6\xa4\xb2\xba\xbfn\x13\rE\xe0!\xbd?\\\xde\xc8\xeb3\xa0\xc0\xbf\xf1\xd3v}\x02\x9f\xb4?\xa0:\xeb{\xeb\xc3\xc2\xbf\xc2\xc5\x02\x84\xe4\x8d\xa5?\xe71\'\xc0\x03\xec\xc3\xbf\xd8\xaf\x10\xa3X:B?k\x1a\xaba\x98\x84\xc4\xbf\xe4.RT\x8fx\xa5\xbf*\x8e\xae\xe0\x1e\xa4\xc4\xbf\xa8\xa6%\x9a4\xa2\xb5\xbf\x98\xfc\xc8\x8e\xab\xa8\xc0?u\xba\xcd-+u\xbd\xbf\x06Q\xc5W6j\xbc?.\x9e`\x9ea5\xc1\xbf\xfc\x04V\x82\xc9q\xb5?\x7f\x81\x87\xf6\xfe\xf1\xc1\xbf\xa8\xfe,Z\x90\x7f\xac?\xa8 \x98\xc2`\xc1\xbf\xd0!\xd5\xca\xe1\x1a\x9e?!"\x82\xb2\x86\x9d\xbf\xbfM\x1f@\x8e\x81C\x9d\xbf\xda\xed\x83\x89l\xa5\xbf\xbf|\x1d\x0e-\n\x1e\xac\xbf\x86\x1e\xf2\xf9|e\xc1\xbf\xe4\xd3\\\x8ebJ\xb5\xbfO\x9f]8\xb2\xf7\xc1\xbf.,\xa7\xd2\x01F\xbc\xbf\xc5?\xff\n\x079\xc1\xbfS\x1d9\xcd.\x99\xc0\xbf\t\xab\xb6\x84`r\xbd\xbf\x03\xc9\'\x9f\x0f\x0b@?\xd4\x86e\xb1\x19\x0b\xb7\xbf\xc0\x953]-4A?\xfe\x823[\x91{\xb0\xbfFhx\xda\x98\xb0B?V\t\'_\x8b\xf3\xa3\xbf\xd9!\xa3N\r\x11D?\xf1\x01\x1e\xf9&.\x8a\xbfB\xd5\xbc&%\xd0\xa1?\xae\xcb\x9c\xd3\xa7ot?\xca\x8dg\x19\'\xa1\x92?\x81+\xbep\xf18\x85?A\xe3\xf3\tx\x882?\xed!\t\x018\xb1\x8e?\x02r\x8ax\xef\xb4\xbfRc\x89!8h\xb8\xbf\x82\x08-gz6\xb9\xbf\xd7X\x0f\xf6=\xac\xb5\xbf\x00&\xf3#(A\xb5\xbf\xb9\xa6H\xdeY\xa9\xb3\xbf\xcf\x82^\xa0\xf4%\xb0\xbf\xd4\xf6\xd5_{\x94\xb3\xbf\xe9\x0f\xc9i\xf2\x02\xaf?J\x1f\xcd\x96RV\xb1?\x0c4e\xcb\xc5}\xa3?\\\xb1\x88!V\x1b\xae?\xa2*_\x00m\x84\x8f?\x0f\x8f\xafr\xad\xa4\xab?[\xb9\xe1\xec\x0f\xa25\xbf]a\xf0\x8a/\xa4\xad?\x9dZ8\x0b_\x7f\x90\xbf\xba\xae\x10\xe7\xc8\x96\xab?^(\x0b\xc1\xb2\xea\xa3\xbf\x96\xb1\x18L%\xfc\xad?\t\xc5\xfau\xb7n\xaf\xbf\x14\x92\x8c\x99\xbeL\xb1? \x17\xe5\x92\x08T\xa4\xbf*\xd9\x9cZ\x83\xd9\xb6?\x9dz\xc1\xfe)\x08\x92\xbf7)SN`H\xb9?t`\xcd\xff\xad\x1c=\xbf\xe4B\xda\x05\x07\xc0\xb9?\x1d(\n\xa0\xe2\x12\x91?\xad\xaf\xa796O\xb9?\x89\xd2{0-\xd1\xa3?\xa5C\xb8\xdc\xbd\xe8\xb6?\x8c\x05\xe38\x9d>\xaa?\xe5\xbb\xfe(\x89\xa4\xb1?\xf3\x990\x8d\xd6\xe7\x8f?oW\x17_\xb37\xb1?\x11\x0c\xa8\xa1\xde\xa88\xbf\xc8\x14\x19\xb5\xcc\xa2\xb1?\'|;\xa3\x11\xc5\x90\xbf)\xc9\xdb[\xbe0\xb1?W\xffP\xa4\x18\xa8\xaa\xbf\xf2\xe3S\x98\xb7\x97\xb1?\xad\xe3k\x94C\x1c\x91\xbfT\xc8~\xc3^ \xb4?\xa4\x8f\x93F\x1e\xb4:\xbf\\\x8fH\xf8\x88\xa1\xb4?\xd1]\x01t3<\x90?\xc35/\xb9y%\xb4?\x15\xaf\xd2Hh\x0b\xbf\xbf\xf3pv1G \x95\xbc\x18\xaf\xd2Hh\x0b\xbf\xbf\x90\x8dDQ6\xe3\x94\xbc\x18\xaf\xd2Hh\x0b\xbf\xbfaM\xb4\xe8\xde\x8f\x92\xbc\x16\xaf\xd2Hh\x0b\xbf\xbf\x12O\xb6"_\x9c\x8f\xbc\x17\xaf\xd2Hh\x0b\xbf\xbfU\xe6\xa96KC\x88\xbc\x18\xaf\xd2Hh\x0b\xbf\xbf\xa7`\xdf>\xf4H~\xbc\x15\xaf\xd2Hh\x0b\xbf\xbf\xf9\xed\t\xd8\xd1\x9dh\xbc\x16\xaf\xd2Hh\x0b\xbf\xbfi\x9a\xf7\x0e(la<\x15\xaf\xd2Hh\x0b\xbf\xbfJ\xd0\x07\x19\x03\x00}<\x14\xaf\xd2Hh\x0b\xbf\xbf\xc1\xa8\x88l\xb0"\x87<\x19\xaf\xd2Hh\x0b\xbf\xbfL\xe1x\xda\x12\xac\x8c<\x18\xaf\xd2Hh\x0b\xbf\xbf\xb7\x0f\xd0\x17\xc7\x81\x91<\x1b\xaf\xd2Hh\x0b\xbf\xbf\xf8\x87N\x07\xba\xd8\x92<\x1a\xaf\xd2Hh\x0b\xbf\xbfb\xc3\xca\xd1\x97\xef\x94<\x1d\xaf\xd2Hh\x0b\xbf\xbf\xbb9by\xee!\x93<\x1e\xaf\xd2Hh\x0b\xbf\xbfO\x9c\xfdj\xb8\xbe\x90<\x1d\xaf\xd2Hh\x0b\xbf\xbf~.Nv\xab\xff\x8f<\x1d\xaf\xd2Hh\x0b\xbf\xbf\xc7\x0b\t\xbb\xeat\x94\xbc\x1d\xaf\xd2Hh\x0b\xbf\xbf\x10\xcc*\xd2\x9c\xd9\x92\xbc\x1d\xaf\xd2Hh\x0b\xbf\xbf]\xa8\x99\x12\x8eF\x90\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbf.\xf8\xb3J\xba\xb1\x88\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbf\xd8\x90\xb8,\xdeq\x81\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbf\x9e\x14\x92\x1ft `\xbc\x1f\xaf\xd2Hh\x0b\xbf\xbf\x86\xacS6\x81\x92Q< \xaf\xd2Hh\x0b\xbf\xbf\x9c\xc1\x01\xf20\xd3p< \xaf\xd2Hh\x0b\xbf\xbf\xbf\x84\xce\xc6\xdb\x1a~< \xaf\xd2Hh\x0b\xbf\xbf!\xab\xbf\xba\x17\xbd\x84<\x1e\xaf\xd2Hh\x0b\xbf\xbf\x8ag\x1a\xd2\x00\xb4n\xbc\x1d\xaf\xd2Hh\x0b\xbf\xbf\x16\xfd\x14\xa6HFf\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf\x1e\xc3\x99n`r[\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\xb0ic\xfe8\x9dC\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf\xd7\x170\xebdp\x84<\x17\xaf\xd2Hh\x0b\xbf\xbf>dV\x93/p\x81<\x19\xaf\xd2Hh\x0b\xbf\xbf\x7f\xbc;\x8fv\x80y<\x16\xaf\xd2Hh\x0b\xbf\xbf\xe2\xd9\xa6&JBq<\x18\xaf\xd2Hh\x0b\xbf\xbf\xf4vZ\xd3\xc6\xe1a<\x17\xaf\xd2Hh\x0b\xbf\xbf\x7f\x1ek\xdb\xeb\xc4G\xbc\x17\xaf\xd2Hh\x0b\xbf\xbf@\xaa2\xf5]\xb0l\xbc\x16\xaf\xd2Hh\x0b\xbf\xbf0\xc5\tZ\x0egO<\x17\xaf\xd2Hh\x0b\xbf\xbfG?o\x13\x16\x8ag<\x19\xaf\xd2Hh\x0b\xbf\xbf\xce1\x1a\x1f\xa3ws<\x17\xaf\xd2Hh\x0b\xbf\xbf;3\x10\x8dK_\x82<\x19\xaf\xd2Hh\x0b\xbf\xbf\xb0\xaaZL\xb3ru<\x17\xaf\xd2Hh\x0b\xbf\xbf\x05\x19!V\xa0\x89k<\x18\xaf\xd2Hh\x0b\xbf\xbf\x93ipD\x81ST<\xb9\xd4\x83i\xd9\xd5\x99<\x1e\xaf\xd2Hh\x0b\xbf\xbfp`\x9e,\xfcU\x9a<\x10\xaf\xd2Hh\x0b\xbf\xbf\xb7\x89\xc7\xda\xa9\x06\x96<\x19\xaf\xd2Hh\x0b\xbf\xbf\xf5!\xd5\x04\x07@\x92<\x16\xaf\xd2Hh\x0b\xbf\xbf\xee\x1d\xa4\x11)s\x8d<\x18\xaf\xd2Hh\x0b\xbf\xbf\x03\xe5\x05\xc8\xf9l\x82<\x17\xaf\xd2Hh\x0b\xbf\xbf\xb6R\t\xae\xec\xb7o<\x15\xaf\xd2Hh\x0b\xbf\xbf\x04\xd1a\xa0%\xe9`\xbc\x13\xaf\xd2Hh\x0b\xbf\xbfj(\xafu^E\x7f\xbc\x15\xaf\xd2Hh\x0b\xbf\xbf\xf1\x9e\x1f\xef\xee\xf4\x89\xbc\x15\xaf\xd2Hh\x0b\xbf\xbf\x83?RP\xf7\x95\x90\xbc\x17\xaf\xd2Hh\x0b\xbf\xbf\xa4\x9a\xfd\xeb\xd6\xca\x93\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf\x17\xe67\xa9\x99\xe8\x95\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\xe87\xb7b\x18}\x96\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf;\x8ek\xe5\xc72\x96\xbc\x1d\xaf\xd2Hh\x0b\xbf\xbf\x19z\x12\xd0\x10\xf6\x92\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbfY\xf8\x1b\xac\xd8\xab\x92\xbc \xaf\xd2Hh\x0b\xbf\xbf%\xb7\xfe\x1d\x92\xae\x97<\x1d\xaf\xd2Hh\x0b\xbf\xbf\x86\xfe\xc5\x93`\x11\x96<\x1d\xaf\xd2Hh\x0b\xbf\xbf\xb8@\xc6Q\x91\xbf\x92<\x1e\xaf\xd2Hh\x0b\xbf\xbf\xcb\xab\xb1*\xc3\xbd\x8c<\x1e\xaf\xd2Hh\x0b\xbf\xbf\xf8\r:|\x1a@\x82\x98|\xec!\xd97@6\x16/;a\xae/@\x15\x11\xef:\xb3\x84;@N\xe9}\x9d\xdc\xff8@Dh\x0fyW,B@G#u\x90\xf7*0@\xd4\xc5p\x82\xba\x1bD@\xd0\x93\x05\xee\xd2\xae\x1c@\x9f\xe2\x8eJ\xe4zD@\x17\xcc\r\xc5f\'\xc7?6\xf5\x8cI*!D@\xb1\xbcX+\xaa(\x1b\xc0\xe7\xb3\x10\x1bt8B@\xcb\x1a@\x82\x98|\xec!\xd97@6\x16/;a\xae/@\x15\x11\xef:\xb3\x84;@N\xe9}\x9d\xdc\xff8@Dh\x0fyW,B@G#u\x90\xf7*0@\xd4\xc5p\x82\xba\x1bD@\xd0\x93\x05\xee\xd2\xae\x1c@\x9f\xe2\x8eJ\xe4zD@\x17\xcc\r\xc5f\'\xc7?6\xf5\x8cI*!D@\xb1\xbcX+\xaa(\x1b\xc0\xe7\xb3\x10\x1bt8B@\xcb\xf7/\xf8\xc5dP\xc0U}\xd9z\xf5\xf10\xc0\x1e\x19\xb1b\xf6EP\xc0\xdd\x84\xa0\x91N\xc8\xcf?\xd2\xbf\xba\xba(\x95O\xc0XX\x81\xbb\xe3\x151@9\xf0\xe3\x02\xac\xc5M\xc0\xe3P\x9b\xb8JY@@V\xcd\xfb\x11QaJ\xc03p}\xb1c\x1cG@\x0e7Vx\x106E\xc0\xce=Yh\x8f\xc5L@\xfc\x11@\xdcw\xca=\xc0\xa2%\xb4\xd6\x87\xa7P@\xef2\xbdAS\xbc/\xc0\xe2Rx\x9eGSQ@\x06\x9by\x94\x90\xf6\xa9\xbf\xc2\xad\xb4S\xde\xa8P@U\x03"\xa3+q/@\x7fUX\xa7j\xceL@\x91\xbd\xf7(\xa1\xbc=@\rg\xe8\xc8\x88+G@\xc1\xfe\x89\xb4\xda;E@b)}8\x99f@@?\xcb\x81\xf7=rJ@\xbf\xb8\xb2[\x97$1@\xb1A\x8d\x93{\xd9M@\x95n%\xc8\xa5\xfe\xcc?g\x9f\x9dHy\xb0O@\xd6\x93 \xde\x9f\x131\xc0\xca\xdf\x8d\x0e\x97QP@/l\x9f/\xbf4A\xc0\xe3A\xd5\xd4\xa9jP@\xc9\xf5\xf1\xb5\xc7mG\xc0\x1e\x9b\xca\xf9\xb5\x7fJ\xc07\xb9wl\x89_K\xc0\x112\xb0\xa0u\x99F\xc0\'\\\x07\xca\x8f\x8bL\xc0\xa4w\xe1\xe4<\x0eA\xc0\x90\x93\x1a\xd9\x89\xa4K\xc0f\x80F\xf4p\xaa6\xc0\xd4\x8a\x84W\x17%I\xc0\xfe\x02\x03\n\x94\xf1\'\xc0\x83\x8duc_+I\xc0\x15\xf2W\x14HF\'@\xd5\xf9\xac,\x0f\xacK\xc0\x08\xf4\x04f\xe0\\6@\x9e\xb0\xcf\xfe\xa0\x94L\xc0\x8f\x8e\xacZ\xe6\xee@@F])3VeK\xc0\xb5\x12\xd9\x04\xaa|F@\x1a_YP\x8fkG\xc0\xad\x1e\xc6T\x13gJ@\x02\x9fB\xc4\xc7SB\xc08\xfa\xa7u\x01\x85\xc9\xbf\x1e\xe0"\xb4\xf77:\xc0s\xe0 \x17\x9f]\xcb\xbf})^\x81s\xbc/\xc0\xea$A\x16\xbf\xba\xcd\xbf\t\xa2\xb0mz\xd2\x14\xc0\x82S\x9b_c\xeb\xcf\xbffj2\x9a\xef@\x00@o\x16 I\xb7U,\xc0\xf6\xf9\xa5\x13\x07\xe1\x10@\xa7\x12_\xf1-\xa2\x1d\xc0\xf4j\xb8\x98%i\x18@q\xa9\x95\\\xeaz\xbd\xbf\xbd\x08R\xc1e\xb4\x10@\x0e\xa6\xdfkF\xad\x1c@W\xac \x14j`\xff?{\xb8\xf8\xd1\xa9\xd4+@\x8e\x95)\x00\xf36A\xc0\x04\xe3\x11\x82W%D\xc0"\xc5*\xc9\xf7bC\xc0#\xd6\x06\xc6\xb0\xc2@\xc0\x10\xb4\x93}\x0bTC\xc0\x1aK\xd4\x1e\xa4]9\xc0\xab\xf16&\x9eQ@\xc0\xa8a^I\xa422\xc0\xad\x7f\x1c\x0e7\x19?\xc0m\xed\x19\x12\x98\xdc9\xc0\xe3r\x9a\x07+8?\xc0\xaa\xf5IW1\xfc@\xc0\xf4~\x84-\x17W@\xc0>\x0b\xf4^\x15\x002@p\xa5\xd5%,ZC\xc0\xe2\xd9\xe7G\x16&9@\x08\x8f\xb2\xadriC\xc0l0\x8e\xa3\x97\xa6@@\x90R\x14\xb2\xba\x1a@\x85\x98|\xec!\xd97@8\x16/;a\xae/@\x18\x11\xef:\xb3\x84;@P\xe9}\x9d\xdc\xff8@Fh\x0fyW,B@H#u\x90\xf7*0@\xd7\xc5p\x82\xba\x1bD@\xd2\x93\x05\xee\xd2\xae\x1c@\xa2\xe2\x8eJ\xe4zD@\x1a\xcc\r\xc5f\'\xc7?9\xf5\x8cI*!D@\xb3\xbcX+\xaa(\x1b\xc0\xe9\xb3\x10\x1bt8B@\xcd\x1a@\x82\x98|\xec!\xd97@6\x16/;a\xae/@\x15\x11\xef:\xb3\x84;@N\xe9}\x9d\xdc\xff8@Dh\x0fyW,B@G#u\x90\xf7*0@\xd4\xc5p\x82\xba\x1bD@\xd0\x93\x05\xee\xd2\xae\x1c@\x9f\xe2\x8eJ\xe4zD@\x17\xcc\r\xc5f\'\xc7?6\xf5\x8cI*!D@\xb1\xbcX+\xaa(\x1b\xc0\xe7\xb3\x10\x1bt8B@\xcb!& \xc0\x9c\xe4]\xbe\x1e[T@\xd1a\xce\x7f\xcfLG\xc0\x892\xfa\xc7\xc9\xf2L\xc0H\x96\xf3QP\xabH\xc0\xc0\x99\x84\xf5\xb8O\x8a\xd6?9\xc3>slo7\xc0d?\xea\xf8\x81\x14\xe9\xbf_\x84\xebO\x02\xe80\xc01\x08\xa4b\xf0\xbf\x00\xc0%XT\xef\xfa\xc9#\xc0"\xc5p\xf4\xf9"\x0c\xc0\n\xea\xd4d\xa5\x1d\x0f@\xa6d\x01u\x01\x92.\xc0eZ\xd6O\x81\x83\x11@gM\x9f\x0ey\x0b"\xc0o\xff\xc9\x9b\xf4\xf2\x12@\xa3*T\xe7\xb7\xb0\x05\xc0\'\xf3\xfa\xff\r\x0f\x10@\x80\x9d\xcek\xd8m\x11@i\x11b8*y\x07@\x9e\xb8\xda*\x81\xe7%@\xc3\xfb\xde\x04\x11f<\xc0\xe0Dt\x1d\x0e"H\xc0\xa4\xa8m\xc9\xaa\x85A\xc0\n\x10\xd0^\xd9eD\xc0u\xf0\t\xb2\xc3\x9aA\xc0\xdd1\x93\x0b\xd6\x19=\xc0\xa7\n\xf4\xa8\xdfR>\xc0\xe3-\x90\x8aT\xb64\xc0\x90$\xe5F\x80\x1b=\xc0V\x98\x06\xf1W\x02=\xc0\xef\x93d(jO<\xc0\x8f\xb4\xe0II D\xc0\x94\xd7`pxl>\xc0\tl\xa5\xb9_N1@\xfb\x1d\xd9\xfe:9B\xc0Lw\xb7\xa2\xb6>:@#YX\xe1\xc3\x11B\xc0]\x84/\xc6\xaf\xd7B@\x01!\xa3\xad:Q>\xc0\xa1\xb2\xa4\x91a\xb6F@;\x16\xb4\n\x81\xaa=\xc0Q\x14\xd1f*\x98B@tWp\xe7\x17\xde=\xc0\xf3\xc5i\xf7Lx:@\x9f\xf1\x89\xfa\x8d^8@\xc8\xf0\xf8>v|?\xc0\xd6\x9c\xf6\xe7\x15\xb40@\xa29hN\xa5\xce4\xc0\x0e\xf1\x83s\xa3\xca*@\xf8\'\xa9\x1ee?$\xc0\xb8W\xe1\xab\x1fN,@\x90\xdf\x81\x1a\xaf\xae\x08\xc0\xfdJ\x0e\xbd\xc7\xa6*@\xa9\xcfy\x9e\xbb\x0b\x13@"\x03\x002\x1b\xbd0@m\xbf"\x94\xf2\xec0@\x90$\xe3)\xe5\x167@\xa8\\4\xdf\x1d\x96=@Y\xf7\xa5\xf6\x04\xda:@\xb9\xda\xe97zu0@~\xf7\xdb\x89\xfd5=@\xf1\xeb\xf7\x0f\x1aI\x12@Kt\xa6\x03\x00\xc1=@\xc7\xb1w\xae\xb3b\x07\xc0(V\xe8k\xc7\xdb=@\x01\xc3\x8f\x9d51&\xc0\xde0\xd84\xf2\xb2;@DH\xe4\x82\x81r5\xc0P\xa4\xb6vQ\xdf7@v\xa4\xbf!\xd5\xbf;\xc0\x04"\x83\xad\x93]4@\x8b\xee{\xaeK\x90$\xc01\xae4^\x9c\xcd3@\xf1\x92,^\xdbI\x04\xc0\x9a\xd7\xe8\xb7\x08\xc23@\xf2\xa4\x1a\xc7[\xea\x11@\xdel\xe4\xfd\x94g7@X\xc7\xb9\xc0\xb5+9@`d\x16\xdak\xdb5@\x14\x86,\xfdM\x9b\x11@\xb3\x130C\xdd\xe36@\xa4\xb0(5/\xed\x06\xc0,\x988\x9c\x06\x136@E\x89\x9a\x03\x04\x0c%\xc0' +p170 +tp171 +bsg109 +NsbsS'_eigenvalues' +p172 +g62 +(g63 +(I0 +tp173 +g65 +tp174 +Rp175 +(I1 +(I132 +tp176 +g72 +I00 +S'\x80X\xcc\x1e\xea\xba\xa0@\x06\x07=\x99v\xf5\x96@\xc0L\x90\x93\xf3!\x88@\xbdz\x95\xd3\x0fQ\x80@8 \xf7AC"q@?ZgZw\xbag@T\x84q\x016\x9dd@\xa2\xfc[G\x8b\x94b@=%Z:\x88\xae\\@\xf9\xf1\xd1\x92k\xf8Z@g!\xf3X\x8b\x11Y@\x0b\xcf\x0f\xe2 ~T@\xe2O\xa0j\xe2\tP@\xafO\x92\x80:_M@\xe2\xc1\x16G\x0f\xc7G@@1K%\xaf.C@V\xb2\x92\t\x00\xaf@@\xd8\xb8\xab\xd5\t\xf1;@\x0b\xfd\xec\xcb\xd667@\xa1\xc9\te\xdf\x8c4@\x9c\xf6t3\x8e\xbb3@\xf3\x80\x80_K\xa91@\xfba\xd5\x86\xb5\x010@\xcc\xc2\x9ex\xc4\xc3.@A\xa4\x93\x97\xbc\xda*@\xab\xd7\x16M\x90N\'@\x91\xd9\x01\xb5\x7f %@(\xe9\xd0f\xfc\x83$@\xaf\xe7\xd1Z\xfb\xed#@k\xc7\xef\x98\xf88#@p\xe6\xa9\xdd\xaf\xf5 @\xfc\x9cl\xabX\x1f @{Ek2Iv\x1d@wTf\xb1\x9b\xd4\x1b@\xef\x80h\xb8\xd0\xf5\x15@\x0b\x96\\\t\x82\x10\x15@.Kf\x06\xf8\xc8\x13@\x05q\xa9\xe7\xda=\x12@d\xb1\xe5\x8bZ\x01\x0f@\xd6G\xaa\x00h\xaf\r@;\x9b?_It\x0c@\xfc\xa8\xf9\xc3>\x00\x0b@\xdd\x1aP\x85\xd0\xb7\t@g5\x15n\n\xc7\x04@\xde\xbb`,\xfeI\x03@\xc945\n\xd1\xf8\x01@\xd3o\xf8y\x89\xd7\x01@(\x8dZu\xacF\x00@\xbc%<\xd7iN\xfe?w\xcbl\x90Os\xfd?\xc7LE%\xc24\xfb?\xff\x99m\xe9\xa1<\xfa?\x05~P6#\x81\xf7?KE\x1c+\xfc\xb4\xf6?\xa4\xe7\x175\xb0y\xf5?fu\x01OW\xd2\xf4?\x81\\v\xf1`\x0f\xf4?\x06`vH\x18\x10\xf3?\xfe\xdaZ\xe5\xecs\xf2?\xec5\xeb\xb0\x17S\xf1?N\xe3u-\x8e\xf3\xf0?\xcfG\x1bB\xbc\xc0\xf0?cVW\xd5\xba\xe8\xee?\xf0\x97\x8f\xcd\xb0\x89\xee?Q%6C\xe5[\xed?Z\xbbHw\x88\xa4\xeb?N\x04\xa7\xa1`\x80\xea?\x9d\xa9\xcb\xbc3h\xe8?(*3w1L\xe7?\x99\xd0\x84\xbd*\x05\xe7?Q0[\x19\xca\xb0\xe5?\xf9&\xf6d\xc58\xe5?*\x00T\xbe\xd9\xfe\xe3?\xe1Wt\xd9\xbb\xa1\xe3?\xf8\xb8^\x0e\x92>\xe3?\'\x08\x07u\xb5\xd6\xe2?\xce\xebI\x10\x1b\x92\xe2?\x93i\xaf\x8e9\x92\xe1?\xde+l\xb5mJ\xe1?\x82@\x04T\xb9<\xe0?XYx\xef\xde?`\xfe\xfdJ\x85,\xdd?\xfch~#]u\xdc?"\x12\x81\xa9\xd0`\xdb?\xf0\x81\xf2W\\;\xda?\xa38S\xea\xf3o\xd9?\x15\x8d|\xbfQ\x93\xd8?\xfb;^\xd3\xd9\xfc\xd7?,\xe7\xe2\x86\rx\xd7?t\xd6\x7f`C\xfa\xd6?l(\xcd;\xb7E\xd6?\xde\xe5 \xa7Dz\xd5?\xe4\xf2\xf8x\x7f*\xd5?\xbc\xa9\x1a\x9eCY\xd3?\x0cd\xe9\x03\rL\xd3?o\xed\xcf\xa1\xc9l\xd2?\x18\xa3\xa9l\xacn\xd1?\xb3\xaa\xa5\xb2\xba\x8d\xd0?\x90\x92Q\x9f\x0e\xe4\xcf?\xcc\xbaR\xe8\xe0N\xcc?\xac\xb2a.\x0f\xbf\xcb?5P\xb5`\xa2\xdd\xc8?81\x16-T\xa5\xc7?\xad\x16\xf4\x19\xcb\xd5\xc6?\xb9(\xfd\xf4Bq\xc6?\x9b|\x0bV\xd5\x92\xc5?c\xbf\x1bF\xb50\xc5?\x8e\xfe\x96\x07\x9b\x19\xc5?\x14\x87y7f\xef\xc3?49\xb5Z\xeb}\xc3?\x93T\x1f\x04\x89\x18\xc3?E\xddSU_\x0e\xc2?:e\xee\xfd\'\xdd\xc0?KK\xa4\x0c&\x86\xbf?G\x9bk\xcd\xbbB\xbe?\x14\xd9\x1e\xff,v\xbc?\x01\x19\xc2\x90\x1a\x1c\xbb?\xfe4\xadJ\xc0\x0e\xba?`\x98p+B8\xb9?\x93\xe1]\x81P\xb8\xb8?~7\x9b\x9e\x0e\xd3\xb7?\x95\x1bv\xe1\xe3+\xb6?Z\x96f&\xad\x88\xb4?\xf7q\x1ac.9\xb2?\xe2}>\xd7K\xa7\xb0?E0\xa7\x1d\xf2\xa9\xae?\xad\xd6\xa8\xa7\xcc\x93\xab?\x91\xfc9Z\xa3\xde\xaa?\x18\'\x85\xd0$M\xa3?\x12\x10p\x88nG\xa0?\xc6\x88\xb3\xf5[\x0f\x98?' +p177 +tp178 +bsS'_trimmed_eigenvalues' +p179 +g62 +(g63 +(I0 +tp180 +g65 +tp181 +Rp182 +(I1 +(I1 +tp183 +g72 +I00 +S'\xf7\x00cJ\r\x83\x92?' +p184 +tp185 +bsg61 +g62 +(g63 +(I0 +tp186 +g65 +tp187 +Rp188 +(I1 +(I132 +I136 +tp189 +g72 +I00 +S'\x92\xa7\xf9\xf6D\xb0\xa6?&\x0b\xc6\xd6\xcf[\xd1?\x8d\xc6\xf0L\x16xs?\xcb=\x19\x96W\xac\xd0?"5\x87&\xb5\xd0\xa0\xbfB\xf0\xc4(;^\xd0?\xdb}\x19\xfb\x97F\xb0\xbf\xa6x\xefS\x0b\xb3\xcf?\x17,\xe0N\x9d\x8a\xb3\xbf\xe9\xb8y\xf5\x97\xcc\xca?\x95\xca\x9f\x01l\xbc\xb1\xbfFK\xaa\xe7\xe6\xf9\xc2?q\x91\xa8P\xd3d\xa8\xbf\xacvl\x8e\xe9\xcc\xb3?\xfd\xe1O\x0c\xce@\x91\xbf.\xd5\xb9@=\x13\x83?\xc9\x9a\xe8\xed\xb4\x8dp?Q\xb4\xe7H\xec[\x92\xbf\xe7N\x98\xb1\xb8\xe0\x99?4L\xad\xe7\x1app?\xb0\xf5>3\xa7!\xac?\xfeK-\xec\xd5V\xb1?5\xb0:\x1a\x8bJ\xb3?\xdf\x86&-\x17Q\xc1?\x99\xb6\x9b\xeb\xd7\xda\xb4? \xe4\'#\xde\xb2\xc8?\xc5\xfc\x90\xf9\x91e\xb1?\xf1,\x81\xe5\xfd[\xcd?\xbaz\x12\xad\xdb\x01\xa3?\x8b\x1a\xe6\x8d\xbbc\xce?\xd3\xb0\xbb\xd7\xcc\x8ee\xbf\xa9y\x0bQx\x00\xcf?\x0bnS\x93D\x0b\xa7\xbf\xd4\xa1\x80[\xad@\xd0?\x88\x84\xf4\xed(Fp\xbfF\xba\xb5\x0e4\xcd\xac?\xd1R\xd8\xb7oAV?\xee\xef\x1a\x8f\xc5\xc3l?\x19(?]\x91\xf8\x86?\xba\x8c8\x9c\x8b\xe2\xa3\xbf`#v\xe1\xd3%\x84?\xc9\x7fQ\xb4\x9fb\xb3\xbf\xa9!a\xaa\xd9\x88F\xbf\x85\x9a\xa8\x16\x04\\\xbb\xbf;Q\xb5\xe2\xdb\x94\x86\xbf\xf7!\xdbJ&\xd0\xbb\xbf\x8c0\xb64\x0e\xf9\x94\xbf\x18?\x14\xf27K\xb5\xbf\xeex\xca\xee\xf0\x17\x96\xbf9\x9b\xfd\xf0R\x06\xaa\xbf\xc0:\x87D\xc1\x1c\x88\xbf\xdc\xc7S\xbblv\x8b\xbfo\xb7\xd4\x15\xf4\x98x\xbfy\xf2\xc2\x89\xe8\xab\xa2?P\xc8\xb6\xdd\x08\x17|\xbf\xef\x0b`|\nE\xbe\xbf >\xedf%;z\xbf\xac\x83i\xeb\xea\xb1\xc2\xbf\x7f\x91\xfd\xaaV\x8fv\xbfK\x1a \x90\xd0\xf2\xc6\xbf\xfc\x8f\x08\xf6\xe8\xder\xbf\xadU\x1e\x80\xbfB\xcb\xbfGg\xce*\xa3\xc4\x80\xbf\xddD\x18\x9f\xcbb\xbb\xbf\xcd\xe9\xb2N\xd1\ra\xbff\x03 F\x9d\r\xc0\xbf,:\x8e\x16\x01\x9fm\xbfS\xf7\x88B\xd3T\xc1\xbf\xbb\xe5\xbb\xbd\x03Hu\xbf*\xe0\x8b\xed=\x1f\xc0\xbf\xc5\x84\xf5\x1e\\\xebO?\xf1?|\xcc+\x8d\xbb\xbfpIU\xfb\x1c~i?\xd9L\xd4\xf2K\xae\x90?z\xd9\x16\xe6\x97UQ\xbf\x94t2+\xcf\xa3\x83\xbfy\xacI\x10\x03\xf3D\xbf[\xd9\xd0\x14\xe2\xe9\x92\xbf\xc0\\\x1akzvl\xbf\x838\xe2\xff\xba\xad\x91\xbfa\xe8\x86Ai;l\xbf,}9\xb7(5\x8e\xbf\xea\xd1\x07Hh\x8c \xbf\x0b~^B]\xcas\xbfv\xf2\x8dS\xfbMy\xbfm\x15`%\xf8\x02\x96\xbf\x9e`\xc8\xdbV\xa9\x83\xbfvf\xb0\xb6\xe9\xd7\x98\xbf\xcd\xc2\x16Q\x80_\x82\xbf\x8d\x8f\x07\xa4\xe5X\x92\xbf\x1a3n\x9f:M\x87\xbf\x9a\x90\xca\xfbk\xe8q?\x0b\x89\x82\x8b\x02\xf6\x81\xbf \x0e^*C\xe6\x8c\xbf\x97\xfb\xdd\x00\x14hy\xbfIV\x98\x86{\xe8\x95\xbf\xea\xbej\xcc\x19\xb7t?\xfbk\xe4-\xdd\x98\x9a?*\xce\x958\xbfwm?\xa1\xc5(\xcc*\x9c\xa7\xbf\xe28\xd0\xb5~Ct?9\xb9QW\x8d\x00\xb7\xbf\x0b\x05\xca\x98\xcd\nv?\xe9t\xabw?\x8b\xb8\xbfq}\xed\x84E\xfat?\xdf=\\\xc4\x84I\xb7\xbf_kn;y\xb8|?\x7f\xbf2\x04\xf9c\xa9\xbfz\xf5f\x01\xfckv?\xbc\x0e\xb8M\xd31\x93?\x14\x1e\xf8\xc3\xa8E\x88?\xa6\x88Z\xe0\xcd\x19\x9f\xbfi\xa56jdF\x83?&"\xe4h\x80\x0e\xb1\xbfN\xdc\xd5p<\xe0x?\x9a:\xe4\xdd\x07c\xb2\xbfn\x08\xb0\xda_\x84c?\x96\xf4`\xd9\n\x9c\xb0\xbf\x19r\x19\xaf\xfd\xf9D\xbf\xa5Y\xae\xae\x08\x93\x9b\xbfX\'~\xb2<\x1dw?\x13\xf3\xac\xcd\xdf3\x93?\x82\xf5\xcc:\x10\xf3k?\xf9\xac\xbdV\xb0\xd9\xb4\xbf\\\xba,#y\x87t?O\xb9\x0e\x05\xa6\xa3\xb6\xbf\x12\x92\xd9\x1b\xae\xb9x?Y\x87A\xd4\xee1\xb5\xbf\xc0\x98T<\xeb\x8et?\xd8\xb9\xa8l2w\x89?\xfeF\xb3\xb9o\xfa\x87?EB\xa6\xb8\x8ay\xb3\xbf\xc8\x8fxd\x17\x80{?\xe6Q9\xf4-\xcb\xb4\xbf\xdcm\x84\x912LQ?\xe3\x8a\xa7\x99\xdd \xb3\xbf\xaa.\xf6\x92m\xcb\xae?\xefg\xca{\xf0\xb4\xc4\xbf@\xda>\x1f\xe8M\x9e?\x05\xa3\xf1\xdfe<\xc4\xbf\xb5D<\xc0\x15\xeck\xbf\xa1J\xfeq\x10\xcf\xc3\xbf1\xc1\xfd\xad\xfd\x11\xa2\xbf\xa2W~\xec\x9b\x06\xc3\xbf7\xdfa\x99\xa4P\xb0\xbf1\n\xa4TsC\xc1\xbfQ \x90-k\xbe\xb6\xbfT\x1e\x81\xdc?\x04\xbc\xbf1\x9c\x01\x9f\x86T\xbc\xbf\x84mk\xe9"R\xb3\xbf\x00M\xbb\xf5\x1a\xef\xbf\xbf\xa9\xf2\x8a;\x07O\xa4\xbf{\xddC\x85\xcdh\xc0\xbf\xf0d\x8d\xd1HrM?\x11F<%\xce\x1d\xbf\xbf\x1bw\xef8!\xa7\xa5?s\x1d\xbb\xca\x0fB\xba\xbf\xa2X\xf31\xc5\x9c\xb5?%\xd4\x80\x85\xee\xb1\xb3\xbf\x14%\xea\xd8e\xf0\xbf?K\x7f\xa4\xd4\r\x18\xaa\xbf\x07\xa0\xa4\xbc\x0b\xec\xc3?\x93 \xad\x05\xdar\x99\xbf\xb2<4\xee{\x1d\xc6?\xaao}>\x01$i?\xc1\xbe\xf1\\M\x10\xc7?\xa3=\xf3\xbfr|\x9f?\xad\xeb]\xf1F\xc0\xc7?iAB\x04E\xad\xac?\xf8ba)\x05S\xc8?\x02{\xc8|1\xa1\xbb?\xcf\x05\x17\x95`\xa3\xc3\xbf\x98\x11\x038\x0cD\xbe?\xc0\xaa\x82\x02a\x1d\xc1\xbf#\xd3\x05c\xad)\xbf?$\xdd{\x93\x8eF\xba\xbf*q\x9eH\xbd\xa8\xbe?\x9a\xae\x14\xd1\x1e\xe7\xb1\xbf\xeb;x\x02\x8b\xb4\xbc?\n\xe44\x8a\x06\xf0\xa3\xbf\xc3\xb4\xd5\x7fSH\xbc?V\xf0+\xd8\xfcL\x9b?\x8d\xe6\xa4\x0e*\xef\xbd?\xb4A\xdb\xa0\x85\x18\xaf? \xa3v9\xffp\xbe?\xaa\xeb\xe3\xfa\xfe\xf7\xb8?\xc4\xaf\xb6_\xf6l\xbd?Q\xb8:*\x9b0\xc1?\x81\x12\xb8\r\xb7\xe3\xba?\xe3Ps~C\x8f\xc4?\x85i\xf4\xc9\xde\x1a\xb4?5_\x92\x82\n\x01w\xbf\xe6\xdb\xd5nZe\xaf?\xb3w\n\x02\xc8N|\xbf\x11\x10\xc3D\xcb\xbb\xa6?\xec\xec\x0cx\x82\x92\x81\xbf2\x1d\xd9\xe5\x99\xc1\x9b?*\xa5\x82\x1b\xf2#\x85\xbf\xd8H\x943#\xd8\x84?\xd5\xcc\xf1\xb1\x13F\xa6\xbf\xb5S\xaf\xdd\xcdh}?\xd8\x01HKvf\x9a\xbf\x89*\xa2fW\xc5t?\xc9h%\xfc\xb7\xbdy\xbf: \xc8(\x0c\x89~?\'\xd9[;Q\x00\x8d?\xc4\xb4\x8b2C\x10\x87?\':\xe6\x95\xabW\xa1?\xce\x04\xa1I/\xd9\xb2?\x02M\x8f,\xb6\xe2\xbd\xbf\x04\xc8\x1f\xaa\x15K\xb5?n\xc7J&v\xc2\xb8\xbf\xf4\t)\x9d\x16?\xb5?\xe2\xef\xc0\x1e_ \xb3\xbf\xf5m\xc3\xa2\xb9\xb8\xb2?d\xbdG\x19\x80\xdf\xab\xbf3\xfe&\xf8\xa1\xd6\xb1?\xce\xe5$t\t\x85\xb3\xbf\x97\xd2\xa4b}\xc2\xb1?\xcf\x03\xf5\xafG.\xb9\xbf\x1d\x83\x10\xa1wv\xb2?\x9d\xfe\xa9\xd8\x05\x14\xaa? /~\x88 \x06\xb5?\xd3G2.\x9bi\xb2?Mj\xf4\xf7l\x00\xb5?\xd3\xa7\xa2\xaf\x06;\xb8?\x8a\xd4\xe8\x9c\x10r\xb2?\xf6\xf0\xce"\x99\xef\xbd?\xd1=\x18\x03\x0f\x8b\xb1?)S\xe7e\x08\xd2\xb8?r;\xd7\xeaS\xb2\xb1?\x0eS2Z\xcb\xc7\xb2?!\xf3.<\x96/\xb3\xbf\xe3\xfb\xe5}\xca\xba\xb3\xbf3\xc5\xd6\x88\x8b\xf9\xae\xbf\xea\\&\xe7\x93\x90\xa9\xbfC\xe3\t\x98\xc7\xed\xab\xbf\xfd\xedT\xce(N\x99\xbf\xdb\xbd\xb6v\xeb\n\xad\xbf\xaf\xc5\x9ca\xc1jx\xbf3\xfa\xda\xc9\xba\xe0\xab\xbf\x15j\xac\x08%\xa9\x8d?\xc3\x01\x14v$\x08\xaf\xbfC\xfe^\xe2\xae\xb8\xa6?\xf5\xe4\x81\x0cf^\xb3\xbf\xe4F\x0fX\xc7+\xb4?\xb8\x11\xb9J\xb0G\xb8\xbf\xe3I\xd9\x88s\x0c\xa8?\x01y\x89y7[\xba\xbf\x82\x0e\xc9p\xccl\x91?(=\x9d\x96\xb0\xb8\xba\xbf\xed\xd7\xad\xb7\xb8\x88q\xbfEx\xe0\xfa1\x7f\xba\xbf\x17\xfc>pz\xfa\x98\xbfbW\x8f\xafD0\xb8\xbfk\xbcK\xd4\xaa]\xa9\xbfQ\x83\x9a\xf9\xdf\x1f\xb3\xbfY\xe7js\xc4b\xb1\xbf\x8d\xe1\xf4\xa2\xe7\xf0\xb0\xbf\xa2\x1e4N\xfeI\x99\xbf\x140\xe3}\xc7\xfb\xb0\xbf\xd9\x00\xc1\xaf$\xceu\xbf:^N\xbcM\xf9\xb0\xbf8\xd0\x83\x8f\xfed\x8f?\x8b\x8d\x01\xdcNE\xb3\xbfS#\xdb\x16\x1ab\xb1?! F\x9f\x16\xe7\xb5\xbf\xedk\xfb\xbb\x8f\xfb\x8f?\xeb\xea\xbc\xe8\xa9)\xb6\xbf\x8c\xff)\xbaG\x9ct\xbf\xf4\xa4O\xa0\xb6\xf9\xb5\xbf\xf9\xfedx\x1f\xdf\x99\xbf\xd6\x928{B\x93\xd0\xbf\x18\xd3?\x9d\x8e\x04\x89\xbf\x9dz\x90\xf14\xaf\xce\xbf)\\\x86C\xb5\t\x80\xbf\x1e\xf6\xa2\x9b\xe1f\xcc\xbf\xd5\x13\xf8\x106(a?\x86\x0f\x10\x99E\xb7\xca\xbf\x95?\x82\xc0\x1al\x87?\x8a\x83~)a\xf1\xc8\xbf\xbaT\r\xd8\xd0D\x96?\x04\xde\xc9\x17\xe0"\xc6\xbfc\xf4\xfb\xf9\xf1\x82\x9d?x\xa76\xa3\x8b\xbf\xc1\xbf7w\x89\xc0~\x03\x94?\xb3\x9b\xe9\xe2/\xd6\xb8\xbf\xfc\xe6\xbb\xe4e5q?\x9f\xecL\x88\xae\xb3\xb5\xbf\'\xdah\xb30\x9c~\xbf\x17\x13\xc8\xe6F\x89\xb7\xbf\xed]F\x1f\x89\xa6\x92\xbf7~\xf4\x1e\x10\x8d\xc0\xbf\xc0\xf1\xbb<\xdc\x05\x9c\xbf\xcf\xb9o\x84U\xb3\xc4\xbf\xe5]\nA\xd6\xad\xa0\xbf\xcdE\xe0\xf3\xb9\xac\xc7\xbf\xe6\x08\xc9\xe2\x9aY\x99\xbfG4\xb1\xa0D\xaf\xc9\xbf:\x0f\xd0\x8d\tI\x8a\xbf\xb3\xec\xa7\x91?k\xcb\xbf\xe4\xaf\xc0y\x96\xc9H\xbf&\x0e\xb0\x80\xf7\xb1\xcd\xbf\x80\x1a\xf0\xd6\xe5d\x86?\x9cs\xedx\xbc?\xd0\xbf\xa3\xb7\x83\xdd\x193\x91?\xa9\x0fVN&\x1d\xb1\xbf\xc3\xc0k\x83=\x8f\xa1\xbf\xba\x81_<\xb1\x94\x94\xbf\xc0\xe6\xe322\xa0\x84\xbf?\xfc:\x03v\xef\xa0?\x8eI\x8f\xd8w\xb1k\xbf`\x8c\xfd\xc3`\xb3\xb0?\xc1\xab.7\x88\xb0\x84\xbf~_+\x9fS\xd0\xb2?\xa5\x8b|\xab\xfd*\x8b\xbf\x90*\x12\xabz\xb0\xb3?\xb1a\xdaL\x87gq?8R\xcd\xff\xcc\x19\xb2?\xd8\xb9\x7f\x0c\xe8\xcfo?[\xa1M\x0c\xd6W\xa4?H7a72\xc6X\xbfn\x1eT\xd5d2\x86\xbf\xf2\xab\xe6\x9e\x89\xa2w?%H_xi\xbd\xab\xbf\xdd\xa2r\x06p&\x9f?\xae\xf6\\Z\xd1!\xad??\xd7"\xa1\x92uf\xbf\xb6yLW\x074\xba?\x89\x13]a\x98\xc0j\xbf\xd3n\xd1\xc5\xf2\'\xc3?\xee\\S\xe1\x91\x9dq\xbf\xdf\xedu\xd4\x03\xb7\xc8?\\^-PF\x89r\xbf?+N\xf6<\xe4\xba?eRV\x97\xc8\x94\x87\xbfp\xe8\xdb\xbe\xaex\xbe?`\x8ac7i\xf9\x83\xbf\x8b\x1c\xc8>\x8a\xbd\xc0?n\xcb\xdc2E\xc8k\xbf\xd5>\xeb\xd7\xb6\xcd\xbe?Q\x9a\xa4\x9d\xe8\xdfW?\x07b\xb90\xc4\x97\xbb?\x91\x929\xdd\x8c\xf7c?~Bk[1\xe1\xa2\xbf\xcd\x8b_\xb9\xd5\\\x9e\xbf*\x90]\xd6\xbe\xf3\x92\xbf\xf5\xc5eI\x85\xc5\x96\xbf\xf3^W\xb8\xc0\x13\x81\xbf|\xd3\xf7\xfd\xf1p\x89\xbf.\x88\xe5\x07|QO?{\xcb\x1d\xba\x83I\x8a\xbf\x94\xba>\xa5\x80\rs?75\xc32D\xd4\x95\xbff\x87\x9e\x94Nko\xbfC@`\x18\xdc3\xa0\xbf\xbbX\x02RH\xdex?o\xbb\xf0\x9c\xba\xea_?\x04\x95\xf6J\x1d\xfch\xbf\xf9h^0%\x1ee?\xa6\xdb\x05\xefZ\x9c\x86\xbf\xea\xc3W\xcfs\xdf\x88?#\x18\xa2O\xe6\xfa\x9b\xbf[Rh1\x05\xfa\x95?\x81u\xc6\x07\xbf1k?\xb0Q\x84\xc8oI\x94?\xc0si\x195D\x86?~\x85v\xc9\x99\x98\x84?|uX\xd1\x1e\xb5\xa7?\xbe\x96\xb0\rg]\x97?\xd5n\xac\xb9\xc4n\xbd?\x1b\xc8\xd1\xe8\xf3E\x99?9`\xbe\x99\x9co\xc2?\xd0s!m\xce4\x88?\x1e\xfb\xa1,^\xe2\xc2?\xb1a\xddP\xdd]~?\xa1\xd6\x07[\xeeu\xc2?\x06\x95N\rx"g?#x\xe1\x00Q\xbc\xbd?\x19p\xf2U\r\xc6|\xbf\x14\xf7e\xed)N\xa8?\xc6\xd95x\x1a\xefw\xbf\xca\xdc^\xdf)s\xb1?\xedx\x81\x06R\x13q\xbf\xd8b\x0e\xe9\r\x17\xb5?\x12\x06*Q\xfe\xb8l?\xb0f\xae3|\xb8\xb5?\xcc\x08\xf4\xac\xc8\x0b{?\x01\xd7\n$\xb2\xea\xb4?\xd9\xebBHXD\x86?\x8dx\xbf\xd2/\xf0\xb0?\xfab~!\x01\xaa\x95?\xad/\xe3\x03O\x99\xaf?\xe5\x11\xe7\x9a\xd2\xdc\x95?\x99\x19=\x94\x88\x07\xc0?\xed\xe0C\x81J\n\x86?\xc3\xb2d?A\xc7\xc0?\xbe\xb3\xbe\t\xe6G}?7\xc6\x00Z\x00&\xc0?\x11\x8f\x81/\xc1\xebm?\xaeG\xae\xeaT"\xb0?\xb1\xc9\xe7d\xf6\x9cr\xbf\xdf8\xbc^?\x0f\xb3?\x84l.\xf1\xf9\xb0h? \xe1.|?\xd7\xedv\x04\xee\xbd\xb2?\x95R\xf6\x97n\xa2\x87?9\xdcx\xd9\x8c\x03\xad\xbf\x9a[\xdb{Ll\x8d?\xcaQG\xb0\x191\xb2\xbfZ\xef\xddQ_Tj\xbf\xeb\xee&\x89\xc16\xb5\xbf\xb5\xda\xec\x07\xe9\xb5\x94\xbf=CHo\x15\x91\xb6\xbf\xb9\x9d\x90FK\xd4\xa2\xbf4\xb8U\x18\x82\xa2\xb5\xbf\x83]\xfb\x9b\xcd\xcf\xad\xbf\x946\x7fb\xff\xfb\xb2\xbf\xf4\xb5\x8d\x8fk\xf6\xb4\xbf\x0f\x00\xd0;i=\xaf\xbf*\x8d\x97\xe1\xbe\xcf\xba\xbf\xb0R\x87mW\xb1\xa2\xbf\xf9\'\x12R"i\xc0\xbf4\x0f\xe9X\xc7@x\xbf5\xf8\xd3\xf1/a\xc1\xbf\xacZ\xa2\xac|\xe1\x9b?\\1l\x9f@d\xc0\xbf\x18ni\x87|\xa0\xae?GR\xda\x92\xfbD\xba\xbf\xac\x11\x8d\r\x83\x00\xb6?\n\x8f\xc3\xaf\x05\xba\xb2\xbf\xeb\xf9m\xfb\x13\xfb\xb9?\xe6m\x13K\x8c\x19\xa7\xbf..\xe2W\x90\xde\xbb?\xe3\x12\xef\x94\x1b*\x97\xbf\xec&j\xf83\xe7\xba?\xf2x:\x04\x85\xb6\x83\xbfz\xbcRi\xf1\t\xb9?{\xcd6m\x8fKb?)9\x7f\x8c\x87\xa2\xb6?c\x92\x8f\xeb\x90\xf3\x90?\x8b\xfc\xbd\xd8\x0e\x80\xb1\xbf\x8e\x93\xdea&q\xa3\xbfa\x0b.\xb0\x9f\xe9\xae\xbf\xf95\n/\xc3\x9e\xa5\xbf9\xfb\'\xf4\xc1\xf6\xa6\xbf\xc3\xa8\xac,\xa0\xbd\xa7\xbf\xa2+\xc4f\n`\x9e\xbfA\xb1X\x0c\t\x19\xaa\xbf\x9e\xf8\x10\xc9\x9b\xf1\x91\xbfX\xc6!HG\xec\xad\xbf\xc1\xd0Y\x88\xea"\x96?\x01\xd5\xb9\xaf\xdc\t\xb4\xbf+:\xf4\xed#\xb6\xa0?B\xddB\xe9\xfe\x16\xb0\xbf\xed\x99\xd1t\xa1\r\xa9?T"\xa2\xde0\xe6\xa9\xbf\x90\x08\x11\xf0\xdd\x0f\xb1?\x17}\x0b\xa3y\xc0\xa4\xbf\x9bMj+w\x8f\xb4?ju\xf5\xf5{\xb7\xa3\xbf\xac\xf4za\x91N`\xbfCr\xab\x99\xd7\xca\xb9\xbf\x07\xe9\x18e\x8f)\x83\xbfJO\x15\xf3HB\xbd\xbfbA\xf0$M\xa9\x91\xbfL\xe4p\xa6\x0b~\xc0\xbf`\x0e\x97\rn\xeb\x98\xbfqB\x00\xd4\xb1T\xc2\xbfk\xd4\xbaTC\x18\xa1\xbfsLvBt\t\xbf\xbf\xcc\xf0\x9d\x0e\x06\xdc\x99\xbf/p\xa0p\xc9t\xc0\xbfP\x99\xf8\xee\x93\x8b\x93\xbf\xc0\xe1\xbe\x93\xbe\x1c\xc1\xbf\x82\xac\xcex\xe33\x84\xbf\xd0t\x9d+\x15\xdd\xc0\xbfHwfO\xaa;c?\xa9\xb0B-\x8f\x03\xc0\xbfs\xccm)\x95\x9f\xac\xbf-\x0b\xaa:EO\xaa\xbf\x82\xfc\x10r\xaa\xfe\xa8\xbf\xcbx>\xed\x12<\xab\xbf\x8e\xef\x9eU\x14\xd8\xa3\xbf\x03C2\tl\xf9\xab\xbf\x06\xc6\n\xb7C\xd4\x9f\xbf\x13\x1fL\xfd\xac\\\xad\xbf\xc2\x8fu5\xe7\xde\xa5\xbf\x17\xc9\xa9}\xa4\xd3\xae\xbf=\xfb\xe2o\x91z\xaa\xbf\xe3L\x84^-\xa9\xad\xbf\x1f\xb9^\xe5\xe1\x1e\x9c?\x84\x97\xaah8\xbc\xb0\xbf\x1dR\x89!\xb8k\xa3?y|>8\xb7G\xaf\xbfr\xf6.(\t\xe5\xa8?s\x87\xbf\x96\x83\xc3ga{\xc4? \x10\xb89\xc0Yv\xbf\x9eqw\x83c\xe5\xc3?\x9b[\x9b\x11\xd9ch?y-\\P\xc3\xfd\xc3?lR\x81\x8b[\x17\x9c?\xe4\xf2\xfd,\xc1M\xc6?\x0b\xe1\x94\xff\xea\xf7\x8a?\xea\x95\x1c\x90Z\x14\xc4?\xe4aR\x96\xa8\xf0b?\xcf\xec\xff\x1d\xb3\x06\xc4?\xa4q\x89\x05\x96){\xbf:T\xa5\xda\xeb\x88\xc4?\xdd\xb5\x071\xb2\x9f\xc4?\nU]\xba\xce\x9d\x9f\xbf\x8e\xf4\xfc\xd5\x92q\xbd?\x83\xe8\xad\x8e\xa1\xc2\x9d\xbf\x02_!\xd2\xed\xdd\xb1?K\x89\xbd\xbc\x06\x9d\x9a\xbf\x02\x1d2\xdd\xe5\x12\x98?\xc7;\xa2\xf9\x16\x1c\x99\xbfx7\xcb%+l\x9b\xbf\x05\xa0\x9a$\xba8\x9f\xbf\xd8\x15]\xe7\x0b\xc5\xb4\xbf\xd3\xf6\xb3`s\x04\xa2\xbf\xc5\xa7U\xf8A\xbe\xc2\xbfh\x912\x8e\xe6\xe0\x96\xbf6\x8e\xd9(%\x82\xcb\xbf\xce3\x99\xfe\xde4\x82\xbf%}\x88\xb6^\xd4\xce\xbf\xfdOHP\xb0\x84y\xbfm\x19\x12f\xe3\xca\xcc\xbf,\xfd\xcf{\xe2\xa2}\xbf\x0b$hs\x0f;\xc4\xbf\xd2\t\xc0\xa3\xd5\xbdy?Q\x9a\xe2\x1f|\xae\xb6\xbf\x12X\x0c\x84\xb6\x9e\x93?`D\xbb\xb0\x00\xd8\xa0\xbf\xa8*u\xfe\xe5\xec\x91?\xd7\xb5\\\xf7g\x9f\x90?\xf2\xe2\xcfsF\xbf\x8d?B\xb5\xc31\x15\x1f\xaf?\xed\xf7\x87g\xd0\xbb\x95?\xc6\x8fr\x9bn2\xbb?\xe8\xc2\x9d\'\x1cN\xa0?\x9cv\xfd\x93\x94^\xc3?\tp\xf0\xa8\xa8G\xa4?]\x96\x16\xe6F\xa0\x9e?\xd4\xb9\x11\xde\xb1k\x93\xbf\xc5\xce\xc2\xa6\xff\xc7\x92?e\x7f$\x83\x88\xa8\x99\xbf\x98\xb6Tv3,\x87\xbf\x8c\x86\xbe\x11\xfb\x06\x96\xbfV\x91:\xe5\x99k\xa1\xbf\x06\xee@\x12\x00\xd1\x82\xbf\xc8\x1c\x07;k\x04\xab\xbfN\xb1\xdb\xb0\xc6\x07b?\x9c\x8c\xad\x1a@\xd5\xb3\xbf\xe9\xa2j\xfcQN\x94?\xc5\xe67\x17\xb7\xf5\xae\xbf&\xdd\x93pa!\xa0?\xeb\xf67\xe9\x1b\x1b\xa6\xbf\xc5\xc8y\xb2%\x07\xa5?\x19\x9dYzf\xa3\x94\xbf\x0c{\x82?Ce\xa5?5&%\xc0\x8a]w\xbf\xbe\xb5p\\y\x8b\x9e?R\xd1\x96N\x0e\xd1\xa6\xbfv\x03~\x1ck8\x80?\xedX\x80\xb8o\x06\xba\xbf\xe3\x1c\x0b\x7f\x8d\xb4u?\xca|+U\rp\xc4\xbf\xce\x96\xdel\xe1\x19j?z\xf4\xae\xf0v\xc2\xcb\xbf\x11\x16\xaa\xf2\xf1\xafQ?3~\x83\xca\xdc\xfa\xbe\xbfC\x0eZ\xbb\xb9%\xa0?"{h\xde\x10\xfd\xc2\xbf\x1f\xdeAU\x0b\xa7\x93?\xf0*%9\xd8[\xc6\xbf\xf01\x95\x13\x07\xba<\xbf\xa49\xb6\xcd4O\xc3\xbf\xe7\x1ewT\x917\x94\xbf\x80\x03\x04c\x14\xe8\xbf\xbf\xcf*\xf6\x87\x07\x1b\xa0\xbf\xe9\xc8:\x04\x1c\xd3\x9b?\x97\x85\x82\x03)\x11\x94\xbf\xe6\x01aR\xb3T\x85?\xb8b\\\x9f\xa5z\x97\xbf\x186\xb5\x9f\xf1v]?\x12~\xe6\xb9r\x14\x90\xbf\x15M\xd0\xafAJ^?\x97#\x91+\xaa\xa5\x92\xbf\xb1|\x15\x84\xfa\xe6\x92?;5\xcb:q\xac\x8d\xbf\xa3\xe0,~\x95\xe2\x99?mO\x8e\x84\xd6\xf1\x95\xbf{md$Y\xe6\x96\xbf\xd6\xb7,\xe2\xb1\x84\x99?f\xbe:yg5\x9a\xbf\x88DQ*\xc4\xf4\x99?\xd7\x86mI\x18\xcf\x93\xbf\x02\xd1\xdb>\x84\x81\xa0?\xc5:e\'\x19\xa0s\xbf\xb0x\x89kK\x12\x9b?I\x0c?\xe6\x1c\xb5q\xbf\xc4"\xf1\tk!\x9f?N\x18\x95\xc5\x1b_\x82\xbf\xae\xdbf\x82y}\x97?\xd6\xa8\xe0\xf4bW\xcc?\x88\xa9\xcb\x1b"0\xc0?\xe2\x14\x0c\x1eV\x87\xc5?\x95|\xe6\xde\x19\x02\xb6?\xe0\xa0j~O5\xc0?\x02^\x0c\xb7B6\xa4?(\x1a\x14\xb8\x8f\xc5\xbe?\xec\xc3\xf1\xa2\xba?f\xbf\x11\x98a!\xc9\xb8\xbf?"\xc3\xb2\xb42\xfb\xa6\xbf\xe0\xd5\xa0T\xd2\x10\xc5?\xf0m\x1e\x03R\x85\xb8\xbf2\x83\x9b\xb0\'\x97\xcb?\x12U\xc5H\x9f;\xc1\xbf\x8d\xc6\xf3p~H\xad?^A\xed\x02Y!\xbb\xbf\xf2\xae\xb5\xc4\xb3\xe2\x91\xbfD\x16\xf0i`\x8c\xaa\xbf\xe9\xa9\x0f\xb2k,\x9c\xbfKB?\x9c\xb6\xe1u\xbf\x1ca\x06\x83UX\x8c\xbf\xc2N\x0f\x1a\x94\x18\xa5?m\xfe\xaaS\xd3i\xaf?;\xcaqq\xae\x9d\xb7?\xfe\xd5<1f\xee\xc8?A\xf0s^$\r\xc0?\x84\x14\xb3\xd9\x82\x18\xc3?\x18\xb1:\xc5=H\xa4?\x1e\xafJ\x0e\xc9\x8a\xc1?\x00\x1e\xbb\xe67>i\xbf,\xd8\xa2\xd4\xc1\xc1\xc2?K\xa5\x7f\xd0\x81\x86\xa7\xbf\xcb\xac\xaa\xc1\x96W\xc8?g\xcb:}\xecO\xc1\xbf}\x1a\x9f\xd2\x98\x053?\xef\x93{\xf0\xe5\xb6\xa9\xbf\\K\xe2*H\x17\x87\xbf\x0cB\x8d\x8a\x08Tp\xbfZ\x90\x80+<\x15j?n\x072B\x94|\xa5?\x95\x13?\x99\xd0\xecG\xbf\xf6lf\x968\r\xa8?\xf8\x07\x04\xdd"\x96\xa0\xbf\x9c\xdb\xf0\xe1CT\xa3?1\xfc\x08U\xc8\xbe\xaf\xbf\xf1\x05\x92\xda_I\x97?.?[\xa5+z\xb4\xbf\x11Q5\xa2\xcb+l?\xf0E]X)\xf1\xb5\xbfAR\xff\xc2\xdf$\x8d\xbf\xe7\x15\xd5\xd3`\xcd\xb1\xbfjs\xc7\xc1\xd5\x1b\x9b\xbfNn\xa9\xce\xfeF\xa2\xbfY\xea^\x7fRY\xa3\xbf*\xa9~\x142\xdfp\xbf\xb0\xffq\xfdJ\xe7\xa2\xbf1\xa1#\xc9\x9f\xd8|?\x95?\xa2i\xf0>\x8b\xbfe\x8fv\xf9\xf1\xc3\x7f\xbf3af\xa7\xdc\xe0\x88?\x1e\x02\xb3\xf3\xae\x01\xa4\xbf\x88\x00,\x8a\xfcV\x94?V\x03\x8d \xed\xd6\xb0\xbf\xc5\x91Y\xa3\xb5\x8b\x89?\xa9\x04\xf0Q\xe5\x1c\xb3\xbfZ\xdaQ;\xa2\xa1c?L.\xad\x8bx\xb9\xb1\xbf\xdaz\x04\xf5(\x0e\x85\xbf\x03\xb6E\xb0aX\xaa\xbfe%\xfdMR\x16\x9b\xbf\xb7\nd/\xb1\xdc\x95\xbf\xe2\xbe\xd8\xe2\xce\xd6\xa2\xbfZ\xb4P\x10\x99\x05\x87?Vk\xf3\x96\xe4]\xa4\xbf\xb1\xc9\x9a\x19/I\xc1?\xcd@\xb8f\x87\x96\x92?\xe9\xf6^j\x960\xc0?Q/2\xbdS%x?\xe1\x18\x81\xce,t\xba?\xe3\x85\xaa\x9br\xfb\x84?\xf3\xef]\xee\xbc\xb4\xb5?lX\n\xdd#\x9f\x97?\xe8@\x0e\xe0d\x9f\xb2?\xa1\x06\x9c"\xcf\x19\xa1?\xca\xb3\x0fKk+\xa4?\xa6@\xd7\xb7\xc27\x93\xbf\xdd\xe9\xee\xe4\xc9R\xaa?\xeb9\xa9Z6$\x8a\xbf|,i#<1\xb1?S\x12\x8e\xd4~\x94n\xbf)qd\xba6\xb7\xb4?\xa9\xd5\xea\xc9\xfb\xf2R?\xa9 \xcc!:\x87\xb5?\x84\x82s\xb9\x0e\xb4\x89\xbf]\xee0\xe9b\x89\xaf\xbf\\H\xf8\xf6:}{?\xac<\x0c\x16\x1fi\xba\xbfA\x19\xd2\xe5@\x7fv?\xb8\xb2_\xdddi\xc2\xbf\xac\xafS\xf1\x11!s?u\xe2Z\x86\xdc\x18\xc7\xbf\xd4\x17\x10cfun?\xd3w\xb1\xe6DL\xc9\xbf\xd3\xd6\x95\xe7=\xb3\xa3\xbf\xa5\x17PM\xc8\xa5\xc9\xbf\xa2\xc0E\x8f\x87\x08\x94\xbfUM0\xd1\x00\x17\xc9\xbfgj\twK\x07]?\xe8\xa5\xb8\xfc\xb1\xcf\xc9\xbf\xbb\x19\x01\x96q\xa2\x97?\xa3\'=\x83J\xdc\xc9\xbf(!9h\x812\xa5?\xc6T\xe38\xd3\x1f\xa0?\n\x14!\r\xd9e\x98?[;\xb6n\xc1\xeb\xa9?e\xfcU\xd04\xff\x99?g\x00u\xa6{\x0e\xa8?Y\xf8\x90\xdagE\x91?\xf6\xb7\x16x\xf6,\x85?\xc9\xa4\x05\xea\x12L\x9a?F\xe9\x88lT%\x85\xbf[\xbd=5\xc9\x9b\x96?\xa9\xc0\x15\xb2\xfa6x\xbf?\x8a?\x02o\x1e \x17\xea\x91\xbf\x9c\xf2\xd1\x99\xbc\xfa\x82\xbf4\\\x0bB\x92\xf6\x8c\xbf\xde\xd2\xf6\xdaqu\xa7\xbf\x0f\xa2\x1dZ\xbc\xcb\x95\xbf\x88\xbb\xa2\tm6\xa8\xbf\x0e\xf7h\x84.\xb8\x8e\xbfA\xad`\xdf4\xd5v\xbf\xb5\xe8jN.\x12\xc6\xbf&\xdd\x92\x8c\xf7\x01\xa3\xbf<\xa7%\xa3\xf6a\xc1\xbf\x03\xc5P\xc4\xcb\xa3\xa0\xbf:\xb0z`_\xaa\xae\xbfy\xf0T\xa7m\x12\xa2\xbf(\x0e~~\xcaJU\xbf/\x16\xbe\x025\xc6\xa1\xbf\rM\xaa\xe6C@\xad?\x17\xcd\xd1\xe8C\x80\xa5\xbf"\xb9\xa6\x148\xe7\xc0?\x84J\x1d\xaf0\x8f\x87\xbf\xd0g\xe8\xde\xc3\xae\xc5??l\x93t[\x16\xc3?T@F\xeb\xdf\xe0\xc1?\x1f\xe5\xec/\xc6\x16\xcc?g\x01\xf9\xc8/A\xb0?-\xb1\x1eI15\xcd?\xc5[\x84\x90|\xddh\xbf\x80\n\xe9\x1eGt\xcc?\x8dV*f\x98V\xb1\xbf\xdc\xcbx\x8a\xb8\xda\xc3?\x8bj\\h{\xbf\xc2\xbf38=\x04#oo?Rx\xc9tO[\xc5\xbf1\xc8\xb9\x17\x07\xbc\xa6\xbft\xfa\xdb\xb4\xc2\xb8\xae\xbf\x89\xd9D\x88x\xe5\xa5\xbf\x12\xd1\xb7\x00lWZ\xbf\x1b\xac\tL%\xaf\xa7\xbfo\xad\xe4\x9dZ&\xad?qB\x90f\x95\x99H?\xf5\x08E\xcc\x96\x18\xc5?g\x07\x9b\xc1\xf6f\xcb?\xa3\x8b\x03\x10\xeb\x05\xb0?\x00\x99\xe9k\'\xb5\xcc?\xd7\'\x9b\x18\xfa\x8a`\xbf\xecq\xbd\x14\xdb\xe2\xcb?W\x00G\x08P\xf1\xb0\xbf(X\x0b4\xc3\xa4\xab\xbfw\x1f&L\x8d\xe7\xa7\xbf\xb5\xe2\x9e\xdd5\xba\xa1\xbf\xbe\xa41\x9b\xf3%\x8f\xbf\xd6\x81[\xaf\x8b\xea\x94\xbfa\x84\xb4R\xd43\x8f?\xd9\x17\x92\xb1\x86jc\xbfQ\xe4\xc1\xaa\x93\xa1\xa6?N\xad\xc5F\xbf\xf1\x82?S\xbc\x9cE\xdcb\xb4?\x9foI\xd3u\xac\x80?g\x8fEg\xeb\x15\xc0?\xea\x8d\xfa\xdd\xdeDf?Y\xd5 \xa9\x0bf\xc4?\xee\xb1I\x91\xd3\xcb\x84\xbf\x04\xb8\x95\xf2\xfa\xc9\xc7?\xb6\xee3*\x83\xc5\x8c\xbf\xb2\xc6\x8c\x89\xfbw\xc9?\x07\xf6\t\x1d\x89\x06\x90\xbf\x14HG\xb0j0\xc9?\xeal/*U\x9e\x94\xbfpR\xcdG5%\xc6?}\xb1\xa3\xa4G\x9b\x97\xbf\xe9\xa1~\xca\xb4\xca\xc0?jo\xb1\x11\xadY\x90\xbf<\xbb\xa9L\xfa\x88\xb3?mu\x19c\x87\xb5n\xbfQhl\xb7?:\x9c?\'\xcc\xf8\xa6\x13\x9b\x8f?\x91|G\xef\x97\xeb\x81\xbf5F\n\xb3\xc1\xb8\xa2?`\x83\xf0\x87\x04*\xa4\xbf.\xd781p\t\xac?\xb3\xdd\xb7.\x1b\xaf\xb1\xbf\xf1\xae\xc4\xdd\xed\x94\xc5\xbf\xc1\xae\xe2\xb9\n\xd7\xba\xbfO\x1c\xd3\xf8/\xb4\xc5\xbf\xeb\xe4\xa9+mU\xb9\xbf\xb0\xd9\x8e\x7f~\x0c\xc5\xbf\\^u\x82\x8b\xb8\xb5\xbf)A\x1b#\xd7F\xc3\xbf\xda\x97Qy\xb0|\xb1\xbf\xbbWa\xeb\xafl\xc0\xbf\xa7f\xb3\xe5\xe9\xd3\xab\xbf\x8d\xc0g!\xc7\xc0\xbd?|\x0c\xade:>\xb3\xbf)\xc8\x84\x8c\xff\x91\xc2?\nUE2i\xcc\xb0\xbfIJ\'8\x86\xe9\xc6?\x1cO\xc0^\xaf9\xad\xbf\x1d\xa3\xd4_\x9a\x0b\xcc?_\xac\xd3u\x87J\xac\xbf[e4\xd4\x9ey\xcf?\xd3\x94\x98\x9bd\xf5\xb0\xbf\xa0_\xac\x84\x8b:\xa4\xbf\r\xd51\x80\xd6.\x9a?\xf7\xe9\xe1BZt\xa3\xbfM\xd7+c\xdcD\xa6?\x15}E\xf8\xf9\xbd\xa2\xbf~\x0e\xfa\x98\xc4\t\xb0?\xd1\xaar\xd1D\x16\xa2\xbf\xedL\xbbN,C\xb5?\xc8}\x1f_\x82\x9a\xa7\xbf\xdb\xf97\xd7\xa6U\xb1?\x93q+\xb2\x83a\xa2\xbf\xcb\xec\x9d,\xf5\x11\xb3?\xb3\xfdr\xd1\x0f\xcd\x9b\xbf\x8d\x05\xb9\xcfCS\xb4?\xb3\xcb\xbaH\xe4e\x91\xbf\x13\xe9\x9a\xc5\x14\x07\xb2?\xca\xc4L\x8d\xa3d{\xbfY\xf1\x15\xbbt\xcc\xae?\xffA"\x90\xae>\xc6\xbfP\xed\x81\x1e\xf4\xf2\xb1\xbf\x90\xe4\xd1:\xea\xf9\xc4\xbf\xf7:\xf1\xfb\x93N\xb1\xbfA\'\xcd\xc5\xc6\xe9\xc2\xbf\xb0\x9f45\x7fi\xb0\xbf\xcf\x95G\xd3|\xef\xc0\xbf+1\xb9s\x02F\xab\xbf\x07=\xca`3\x17\xc3\xbfWG\x1de\xdd\x8e\xae\xbf(\x97\x87U\x00\xee\xc4\xbf\xbe\'\xeb\xe6~\xb0\xb0\xbf\xdd.\xb0F9%\xc1?-\xcf\xc7\x0b\xa5I\xb1\xbf\x07\xe9\xea\x9eX\xfb\xc2?+\x08\xbd\xb4;#\xaf\xbf.\xbdAS9V\xc5?\x08(\xeb\x9e\xb5\xcd\xac\xbf;\xc0vG\xc7\n\xc7?d\xfa\xd3\xd31@\xaa\xbf\x8c:v\x0fo\x00\xc5?F\xcex\x96@\xc9\xac\xbf\x9d_E\x86\r\xe6\xc2?\xe3\x0fR\x85=\xe7\xaf\xbf\xbc\\\xa3$F6\x98\xbf(\xef\x87\xe1R\x12\xa2\xbf\xe6^)\x1b\xc6\xd5\x93\xbfB\x916w\x05\xa1\x9a\xbf\x01 \x1c\x93\xdd\xbfx\xbf!\xcf\x8b\xf0\x1d\xd5\x97\xbf\xd6+\xb5m.6v?ei\xd5W\x93\x9f\x93\xbf\x13\xdf\xd8\x0b\x8a\x07\x8f?\x9b\x02$:\\+\x93\xbf0\x95Uzb&\xa2?\xa2\xceg\x9b\x0e\t\x96\xbf\xdeJ\xb6\x12\xde\xa9\xac?\xe8_\xee\x97`\xba\x9f\xbf[\xebx\xf7\x91U\xa7?$$\xb5\x8e\x04k~\xbf\xa6U\xdd2\x9fk\x9d?%\xf5D\x05\xe4VY?\xcc\x9a\r\xa4N\xf7\x8f?UHns\xa6\xfaW?\x84\xf0\xe6\xa7\xc8qd?\x0c\x07n\x97\xaa\x18T\xbf\xffq\rT\xd2\x02\x91\xbf\xf3\x9e\xfau\xed\xc9\x8a\xbf\r\xe1\xb5\xa5\xfe+\x94\xbf4i\xf5\xb4\x8d\x9d\xa2\xbf\x85\xa0R\xb1\x08\x81G\xbf\xe5z\xbcHy8\x93\xbf\xea[;\xa70\x81\x86?Tb}n\x8bW\x90\xbf\xa2H\x0b\x83\x88E\x96?\tQ\x9c\xc4\xee\x08\x8e\xbf\x8c\xa4F\x9eV\xea\xa7?c\xc4\xe9\xf2\x7f\xcc\x9f\xbfH7\x99\x8e)\xe4\x98?\xda\x16w9+\xda~\xbf\xff=\xc8\xde\xc4\xeb\x89?,\x07\xb9\xc4\x00\xb6\x7f\xbfDv\xa2 \x17\xedH?ZM\xbd\x7fB\x1e\x86\xbf\x15u\xc0c\\K\xb3\xbf\x10\xe5\xa4\xb9\xa8K\xb7\xbfN\xef\xfd_\x03\x82\xb1\xbf\x98h\x023\x16h\xbd\xbf\xdfV\xe0\xc1\xe6\x0f\xaa\xbf\xff\x84\xf8l\xb6\x19\xc2\xbf\xeaj\xbe\xc0\x81\x1e\x98\xbfG\xe0rZq\xe6\xc4\xbfc+\xe8A\xac\xb3\x8a?\xca/\x8c`\xe0"\xc6\xbf\xf0@o\t\x16\xd5\xa8?\xd3\x9a\xae\x88\x9dm\xc4\xbf\x18\x1d\x91\xf1K\xe7\xb3?\xb3\xfd\xf2%\x0c\xb2\xbe\xbf>\xf2\xcb\xfa\xa4\x8a\xb8?\x8f~\xa0j\xfbV\xae\xbf8\x1eJu\x96\xf9\xb8?\xfb\x019t\x10\xe2\x87?\r`\x04\xbe\xe4\x16\xb6?i;\xf1\xe9\x1d\xe9\xb2?^\xea\x7f\xd1#.\xae?\xd20\xa6\x8b\x9e\x1a\xc0?\xe1\x051\xe2,\xd9\x97?\x14a\xd8y\xc9\x9b\xc4?L\xf4\xb9D\xbb\x0b\x90\xbf;\xabG\xcein\xc5?p3\xb8\x95O\x8c\xa9\xbf\xe1\xf9\xe2\x0e\xb41\xc4?>\xb7\xaem\xe8\xf3\xb3\xbf.T\x98\x84a\xad\xc1?bX\xe62\x88\x00\xb9\xbf\xd2\xd4\xa0\\F\x90\xbc?\xdfmx\x1c \x1d\xba\xbf\xbf\xe6:>8N\xb6?\xe8\x05\x9c\xcf\xa1\x93\xaa?\xc8\xb0\xb5\x8fL)\xc1?\xe0\xba,\xa6\xb0{\xb5?\x804<\xad\xf63\xc3?\x8ez\x10\x8cM!\xb9?\x16\x0b\xfe\x99\xa4U\xc4?\x02b\xae\xbb\xb5\x16\xba?\x19\xd8P~\x02#\xc5?J{\x84O\xa8\xed\xb8?+\x9b\x15\x84\xf8,\xc5?\x0e\xc8\x8b\nm;\xbc?^V\xdfU{A\xc2\xbf\xb5\xc78\xc6\xf8\xb2\xbd? \xc4\xfe\xe6\x97\x93\xc2\xbf\xf3ia\xc4\xf8b\xbc?\x8bK\x0f\xddh\x95\xc2\xbf\xa8\x91C\xc2\xf8\x1a\xb8?\xc1\xa5\xde\xbdO\x0b\xc2\xbf\x88y8\xa8{\x92\xb0? (\x04\xe56R\xc0\xbf\xa9\xb9\r\x9f\xb0\xd2\xa7\xbf\xbf\x10\xbe#v\x04\x8c\xbf\x89\xebQ4\xd4\xa7\xac\xbf\x7f\xbd\xca\xeal\xe2\x89\xbf\xfd$\xc00/g\xb0\xbf\xbf\xd4f\x8b\xac\xfe\x87\xbfh\x82K1\x07\x16\xb1\xbf\x96\xe4\x13\x89\x8fw\x86\xbf\xce\x98\xedu\xae@\xa7\xbf\xf9\xde\x87\x0e\xf9\x07\x87\xbf\x03\x14\xec\x0c2s\xa4\xbf\x0b\xf1\xef\xc9/\x99\x88\xbf!h\x1a\xa1\xc1@\xa4\xbf[\xf4i\x7f\xe8z\x84\xbf\xcdRw\xee\xf6\x1e\xa5\xbf\xa7E\xc9\x90Sy\x84\xbfy\x86\x15\xf1\xbe\xc3\xa9\xbf\x18E\xb4M\xae\x89\x8a\xbf7\xf4\xbd\x02\xcaS\xa1\xbf\xbf\x99\xab5\x9c\x11\xc3?\x15)\xc1\xd6\x83\x16{\xbf\xb9\x11\xaf"\xb2L\xc2?#\x8a\xf1\x89\xb8\xcd\x8a\xbf\xa1^\xf6\xbbg\x90\xbf?\xd0\xb6\xbd\x8f D\xaf\xbfx\xfbwS\x97\x92\xbc?\xe8>\xf5\xfd\xc7\x12\xb1\xbf\x8a.\x9e\x9f\x8a>\xc0?\x98\x1bo\xef\xaa\xe8\xae\xbf\xf0\xb5g{\xeb\xfc\xc2?vW{+a\xb7\xa6\xbf\x14\xe3\x1b\x1c\x91C\xb9\xbf(r\xb5\xce\xf9\xf0^?\xdboy\xc0D\xa7\xbb\xbf\x05\xed}\x812\xb5{?\xdb\xf1\xcd\x8d\x0e\t\xc0\xbf\x03\x11aa\xa3\x82\x95\xbf\xa3\xe9\xffo\xbf$\xc1\xbf\x7fD\xe4\xf8"3\xa8\xbf\xc9\xe7\x07\x83\xf8\xd9\xc0\xbf\x8f\x93\xbf\xfa\x84\xd9/$\x95\xb8\xbf\x10\xe8\xc8\xd6h2r\xbf\x87\t#I\xf7\xa5\xb7\xbf\x95hm\xbb\x9b\xf6\x88?$t\xfc\xae\xb3\x91\xa9\xbf!1P\x05\xe1Y\xa6?\x8b\x0er\x9e\xfa\xa7\xa1?\x86\xdd\n\xe6r\xd7\xa5?\xb4\xb6>\x84\xf0{\xa8?:\xf3\x18\x14\x9e\xa3\x82?\xe8TER\x03\xe6\xa6?G\xa7\xd0\x0c\xe3\xd2s\xbfm`\\z-5\xa7?y\xdc\x9d\x01M\xbe\x8f\xbf+C\xe56\xa0\xe5\x9f?\xac\x1c\xd6\xa6\x07W\xaa\xbf\x1a\x0c\x8c\xf9 \'\xb1\xbfQ|6\n\xd8\x15\x93\xbf\xd2T\xc9\xfe\xa6\xec\xb1\xbf\xc8\x06Z\r\xf2\xe5u\xbf\xcb\x9d\xb4Lb\xfc\xb0\xbf\xd1\x8f\xec\xb2:\x15\x86?\x1c\x10S\xaa{S\xcc?7\xc5^~\xbaS\xb7\xbf\xfb\xae\x82\xf62\x91\xc6?\xea\xf8+\x1c9~\xbd\xbf\xe0U\x86P\xc7O\xc1?\x9d\x8bbg\xfb\xda\xc0\xbf\xe1\xdd\xc0\x14\x11\xbc\xb6?\xd7F$\xfa\xa0\xe9\xbb\xbfu\xf0\xaef\xc0\xff\x92?\xf58\\\xcdP\t\xae\xbf\\${\x18\'\x8e\xa9\xbf\xf4M\xce;\xdc?\x85\xbf\x1d\xbc\xce\xf2|V\xbb\xbf\xc7P\xba\x06\x0f\xc2\x85?\xa6\xaaR?J\xcb\xc1\xbf\xc5s\x80\x82U\xd7\x93?\xaa\xae\xc6\x8c\x91\xbe\xc3\xbf\x8bDV\xab\xc68\x92?s\xdc\x96\xa3w9\xc5\xbf\xa0R\x18\xeb3\xfe\x7f? \x98\xddF\xb7\xc3\xc4\xbf\xa9\x82\xb4G\x0e\x13o?\xe9\x03\x05\xa2}$\xc1\xbf\x01?\x87\xbf\x11+\x91?L\n\xbd\xf1\xec\\\xb6\xbf\xa63\xda\xab+\x88\xa9?x\x89\xd7Co\xab\x9f\xbf\xa2\x80\x08\x91<(\xb7?\xe5\xfd\xc3\x93<\x0b\x90?\xdbz89]9\xbc?\xf5\x90o\x08d\xeb\xb1?\xc8s7d\xcbY\xb7?\xa8c\xd8+\xf4\\\xc1?\xd9\xf5\x8f\xfa\xaa\x9f\xb0?\x13t\xe4*\xf4\xa0\xcc\xbfR\\\xf1a\xbc\x95\xc4?sUw\xee\x0b\xf9\xc5\xbf\x80\xbb\x0b]wS\xc6?\xba\xdb!\xfb_\xa5\xc2\xbf\xc5\xe7\x9ap\xe3\x9d\xc1?\r\xd0\xb4\xfat\x99\xc1\xbf\t\x7f5C\xe7\x8d\xb7?\xe9 \x99\xb1b\xb1\xc0\xbfX\xe5\xcb\xd0\xd9r\xa6?<\x12~\x13\x14\x17\xad\xbf\nPm*#d\x88?\x1e\xc7\n\x12\x1b\xd1\xb0\xbf\x11\x03\xe4\x03-}\xa2\xbf\xd9\xa9\xda\x90CA\xb3\xbfA\xb7\x92\xba\xa7\x03\xb5\xbf\x9d$;\xa7T\x1b\xba\xbfx\x01U3\xb8\x9b\xbf\xbf\x94`\x9a\x9a\xbe3\xc3\xbf%\xf7.\x96\xb1\xfe\xbe\xbfR\xae\xbb\xee\xf9\xbb\xc4?g\xfb\xef\xd8\x7fO\xaa\xbfzp\xc6\xe1uC\xc2?\x87\xb5\x8df\xd0K\xab\xbf\xf0s\xf8\xbf\x19\r\xbf?\xb5\x14X\xa2O\xdf\xab\xbf\xd0y\th\xdfY\xb8?\'\x85\r\x9a\x87\xd8\xab\xbf;\xc8a^\xd6\n\xb6?\xbf\x0e\xa28\xf60\xb1\xbf\xcb\xd2\x96\x11\xa6\\\xb5?\xe9\x91\x1b-xH\xaf\xbf&=\xd5\xc5\x18\x95\xb4?S\x1d\x1aC9\xb2\xac\xbf0`\xa7&A\xee\xb4?Me\xfe\x12\xfe\xc8\xaa\xbf#l3\x1c-\x83\xb5?T\xd8Ve\x03P\xa9\xbf\x9e\x9d\xc2\xaf\xf4\xf4\x96\xbf\xa3\x04\xa5\xfb\xb5J\xba?\x1c\x91\xcaJ\xc2\xf5\x9f\xbf\xbf|&M\xd4\x1e\xba?\x19A\x91\xbe\xb7\xfc\x98\xbfz\xe6\xf0\x8eAP\xb8?\xcb\xbf\xada\xdd\x8ex\xbfG\xcf\xcd2#\x1c\xb3?;7\xe2\xfcX"\x88\xbf\xb3\xb7t\xb0\xc7\x18\xb6?\x7f\xad\x1a\xad\x9ee\x93\xbf\xd3\x0eh\xe9\xd1\xd2\xb8?>[=\x01\xe3\xd5\xaf?\x15G{\x05*o\x9c\xbf\xa1\x9a?\xa6\xc8\xa8\x1c]\xb8\xa1\xbf7\x05<\x07\x92\xee\xb1?\x8c}\xdb\xbdI\xc1\x94\xbfw\xa5]\x04p,\xb6?\x93+t\x1e\xb1{\xaa?\xcb\xed\x8f\x11\xc4}\xb2?\x07\x9d\xff\xdc\xdfo\xb7?A\xdd\xc4Xc\xda\x9f?\xa8\xd2"?\x89\xe9\xb8?\x1d0h\xfc6Ep?40W\xeb\xeb\x8c\xb8?\x19a:\xb32\x18\x9a\xbft^@Z\xec\xa9\xad?@\xbf\x17MS\xd6\xb3\xbf\x01\xe7^c\xc8\x82\x84\xbf\x1bn\x9e\xc2Z{\xb8\xbf\x0b\x91\x88\xe9\x14\x88\x97\xbf|\x0c\xc7\xd8\xe7\xe1\x93\xbf\xe2\x8e\x1d\xa2\r\'\x9c\xbf\xef\xc0\x9d\xebA\xbb`?}\xec\xfb\xba\x93\x06\x9b\xbf\xe0\xb8_\xf0\xfa\xeb\x98?\xbf\xe6W\xd9\x18\x19\x8d\xbf\xeb;.\xa1R\x83\xb4?\xb8\x127\xa9_O\xb4?\xd2\\jK\xb9B\x9b?\\\xb3@\xe8;k\xb4?\xe1q\xec\x9b\xd3\x15d?\xe7\x06\x9bG\x9f{\xb4?\x80\xb1\xc9\x7f\xf8\x13\x98\xbf\xa1\xf0]\x8a\xe8\xe4\xb2\xbf\x16k\xa5\xc6\x19As\xbf\x92~\xad\xea\x85\x9e\xbb\xbf\xad\xab\xa3JKQw\xbf3m\xbbl\xe8\xc5\xc1\xbf\x97\x00t\x81\x83\xfa{\xbf\xdaG_\xb4\x9a\xfc\xc3\xbf\x18u\x82\x97\xf0\xb6q\xbfo9#o\x9f\x14\xc4\xbf?U8\xed\x8f\xf0\x81\xbf\xbd]\x86\xf2\x837\xc2\xbf\xbbCm\x16i\x95\x8c\xbf\xf53\xd74\xd9F\xbf\xbf\xf9\x85\x81\xca?\xd2\x85\xbf\xe2\xbd\xbda`S\xb4\xbf\x12\xd5\x84U\x8c\xe1\x8d\xbf\x9a\x8d\xaa|oS\xa4\xbf-\xdb\xea!\x88\xa4\x94\xbf\xb0\xec\x7f+q\xa7"?t\xc9D\x92\xa2\x9e\x9c\xbf\x9b\x0e\xe4\xbb\xa5\xda\xab?h\xcd\xa5\xf4\xc5\xec\x94\xbfl\xa3~P\\r\xba?H\xf3fUn\x11>\xbf\xe1\xf9\x84\xe9\xd7\xc3\xc3?9\x8e P\xcc\xc3\xa6?mmT\x9e\xcdK\xc7?\x8f\xa9\x12\xa5\x86\\\xb7?\x82\x8a\t8\xba~\xc6?X\xbe;w\xcej\xbc?\xa41\xf9Q\xbcM\xc4?i\x13\xd0w\x04\xfe\xba?\x95\x93\x8b\xa0\\\xd3\xc2?\xbe\xe0?+\x8ex\xb8?\x98\xbcc[\xfa\xfc\x8b\xbf\xab\xd6\xeaR\xd6w\x9c\xbf\x86\x91\x9b\xc2\x8c\xc4\x87?\xb2\x12\xd2\xbe\'\xd9\xa2\xbf\x05\xbfuj\x8e\xd3\x9a?1\x98z\xe1\x06\xb9\xac\xbf\x17\xe8X\xa1\xfb\x15\xa2?\x7f\x06im,3\xb3\xbf\x91\xa2 \x97\xe9\xf3\xa3?\xb0\xe0TK\x1c\x0c\xb7\xbfo\xb6\xaf\x92\xcb\x04\xb8\xbf\xd8\xa2R%\xa5\xa6\xbc\xbf\x06\xa3\x03\xdc\xb5`\xb8\xbfz\xf3\x8cH\xe8~\xc1\xbf5>F\xd5\x8f2\xb8\xbf]\x1a\xec\xc9"\x06\xc4\xbf\xa6\xcd\x82\x8c\xfe~\xbb\xbf\x13o\x13\x9dV|\xc5\xbfi\xab,\xef\x16i\xc1\xbf\xa4\x9aCU\xd9}\xc2\xbf\xf5\xd5/x\xbct\xa5?\'<<\x80\x1dL\xc6?\xc6Yz\x9b\xe0\xb3\xa2?\xc5\xd2\x9e\xcb\xc6\x1c\xc7?\xc0\x03\x0b\xba\x18\x9e\x9f?\xe4\x107DM\xd5\xc7?\xd7\xcd\xe0\xad\x1f\xb3\x98?\xa9\xc4\xf0\xc4%h\xc8?/\x0f"\xb8\xd6\xfa\x96?\xba\xb2\xd8S\x9aN\xca?\xab\x91\x08\x0ej\x1f\x95?\xfe\xdb\xd5z&\xe3\xc9?P\x07\xbfCdd\x97?=q\x9d\x93\xe6N\xc9?\xa6%D\xb7P|\x9b?\x8e\xb5\x94\xdbM*\xc9?[\xef^t>\x15\x9d?\x87\x82\xfd\xbfW\\\xc9?\xc6\xd68\xa8\x18\xf2\xb1?\xdd\xc8\xe7\x84\xf5\x8a\xa4\xbfE\xd9\xf0O\xa43\xb2?\x9c\xc9\x8b\xeb\x9b\xfd\xa7\xbf\xa8\xa1\xae\nS\xb7\xb3?}\xc27c\x91\xb5\xa8\xbf\xf5D3\xad\x80\xce\xb5?\xb4\x83\x90F\xd7\xb4\xab\xbfB\x93|\x1bz<\xb5?c\x8e\x9f\xfd\x92\xe6\xa8\xbf\xfaq\xbc\xf0\xd1t\xb3?\xca\x89\xd1\xd1\x1b\xb6\xa6\xbf\xb0Ky\xed\xa7O\xa7\xbf(j\xd4Y\xa5\xf7\xba\xbf\xaa@^F\xb9/\xa9\xbf\x1b\x00|\xe1ME\xbf\xbfa\xce\xc5D\xeb\xb5\xa8\xbf\xe7\xef\x81I\xdf\xc1\xbf\xbfMw7^2\x18\xa6\xbf\xc4\xf4~7\x9b8\xbf\xbf$\x04\xa2{\x90-\xa6\xbf\xef\x13\x89\xf9\xb0\x8b\xbe\xbf2\x923n\xe9;\xa6\xbf\xf2\x0b6L\xc0a\xbd\xbf\xe8e\xe4&h\xff\x98\xbf\xed&\xb2\xadi\xc4x\xbf\xab\xb9\x1ej\xf9,\x95\xbfuS\xac_1A\x85\xbf\xb4O\x15\x0f\xd2j\x92\xbf\x8d\xa9\x8d\xf56B~\xbf\x16J\xeezk\x1a\x8e\xbf\x96\xe0\xf6\x92(\xfc}\xbf\xa3\xf9\x01\xe1\xa6\xd4\x84\xbf\xdb\xcf>7@\xadw\xbf\x84_\xd7`\x98\x84c\xbf\x16\xf2C\xf0\xc5&n?,\xa4\xfeH\x03\x83z?P\x06\x97\xab\xdc\xf9\x90?@\xf1\xe1F\xfe\xa1\x98?-Z\x10\x8f\x98 \x80?\x90x\xd3\x9d\x12\xb0\x99?z\x06A\x9d\xc8\xb0@?\xeb\xba\xec\xb9\xc58\x97?\xe1\x05\xf0/\x88Kv\xbfi\n)\x0e`\xea\x90?\x85 |\xa7\xd82\x80\xbf\x86g\x14\xcdm\x9dD\xbf\x8173n#\xcc{\xbf\xa8\x82{\x9b"\x8f\x93\xbf\xfc\xe3^\x99s\x9e\x7f\xbf`\x92\xf3\\\x11\xa5\x85\xbfF\xbeU\xaa9~{\xbf\xd4\xcf\xb7r<\x86\x81\xbf@,\xe0\xde\x88?|\xbf\xeb\x0f\x1d\xbf\xe5\x1ek\xbfp\xa5>\xe7]Ru\xbf\x1e<3W\xaa\xf7\x83?\x9a2\t\xb8\xd7+\x91?\x8d\xd1\x12a@v\x98?L\xa5\xa9>\xab\xb0O\xbf#\xf5.F\x82\x03\x92?\x90<&\xc8\x0bwp\xbf\x7f\xf8\x97p\xc1k\x89?\xcd\x86\xf2\x05\xe8\x0ct\xbf\\U\x01K\xd74\xc1?\xdc\x02@\xc8^T\xb0?\x9e5\x15\\\x90\x83\xb9?\xcf\xa3\x91\xf6\xba\x16\xb1?\x1d>\x1dg`\x9a\xaf?\xc2\xdc\xb4\xf6\x80\xc9\xb1?\xec\x81\x96\xae\x08L\xa1?\xc9:S\xb0NY\xaa?\xcd\x86\xd7\x9c\x9ebz?I\t\x9c\x17\xeal\x9b?\xf3\xf5r\xfc\x83\xe5\x90\xbf\xea\xbd\x16\xbc\x8f~t?\xa2b\xdf=.\x95\xa4\xbfH3.\x87\xc8A\x81\xbf\x9aL\'[\xa9\x82\xb1\xbf\xcfN%\xd4)%v\xbf]\x04\x9ez\xff\t\xb6\xbfQk\x94\xbe\xc3\x07`?K\x01\xd1\x1f\x91\xa8\xb0\xbf\x96\xc6"b\xe3\x01\x8d?#\n\x83\x7f\xcc\xdb\x9c\xbf`x\xd3\xbf\xe5$\x83?\xffo}\x81/Nh?,\x9a\xb0\xf7\xf7\xf5z\xbf;_\x04\xab9\xe3\xa1?\xa9\x966\xde\x92\xbd\x9e\xbf\xf3,\x8f\xa0\x0b\x02\xb1?<\x04L\xc3\xb1\x89\xa8\xbf\xff\x92\xac\xb6\x9a\x17\xba?\xe7\xf6R\xc3\xa5`\xb0\xbf\x07\xd46\xd3\xea\x13\xc1?(\xb6$\xff\x9a+\xb1\xbfx\xc7\x1b\x9eu\xa0\xc4?\x02\xa7G\xb5K\xf0\xb1\xbf\xb9F\xc8\xca\xf0\x1c\xb8?\xeeJ\x9f5:^\xa9\xbf\xd8 \xbf\x85\x96~\xb6?H\x04\xf6\xdaO\xfb\xa6\xbfL|\xef\x87k\x08\xb5?16\xf4W\x0b\xf4|\xbf\x91\xb7R\xa1\xeeS\xb1?\xc1\xfa\x1dI\x1a#\x9e?\xa5U>\xd8Y\xf2\xab?\xf8\xf6C\xab{C\xb0?s\t\'\xd8\x11L\xa6?\x84\xf3LW\xe2\xdf\xb2\xbf\xc4\xea\xc2\x041\'\xad?\xbb\xa0\xcf\xaa\xbe\x0b\xa5\xbf\xbei\xbe\x17\xe6\x1c\xb1?K}\xcc\x0e\xfb\xccr\xbf\x1cIe[\x1d\xae\xb2?\xaa\x8cf\x9b?,\x9f?\xd7Y\xfeHEP\xb2?:O\x90\xe9an\xa3?\x98\xa5\x0b\x1eJ\x1a\x88\xbf7\xf3\xd0\x9a\xfe\x1cW?\xdc\x93K{\xe3\xb7\xa2?\xb6\xa8\x1b\x17\x8f\x17u?\xc3 ,\xdc\x1f\xba\xb5?\xea\x97^G"^\x82?)\xee\xe1a\xe8\xe9\xc0?i\xf6\x82\xd92\xe5\x8b?\x03A\xa4y*,\xaa?\\\xf1]\x06n\xb0\xa3\xbfc\xc2In\x1a\xdc\xb1?\x1bcg\x97H\x0c\x8c\xbf\xe46\x90\x0c\xdb\xf6\xb5?p/rd\xa8\xcb\x8e?5\xd1o\\\x07Y\xb1?\x87\xc4m\x83\x12\x80\xa5?\xd8\x84LuT\xfc\xa8?\xff\xbft\x02Vy\xae?\x9e5|kGu\xc4\xbf4DD\x07K\xaf\x8e\xbf\xb1\xc2\xd9+\x94\x17\xc3\xbf\x88B\x0e\x83\x96\xd5\x81\xbf\xd4u\xba\xd9\x0c\xf8\xc2\xbf\\+\xe7\xfa\xe2\x99Q\xbfn\xc1u\xc4Y\xb9\xc5\xbf\xec\x01\x8d\x15\x8f9\x93?\x80>b\xad);\xc9\xbf\x02\x8e\x8a\xac\x9b]d?\x00\xcc\x88Y\x8d\x85\xc8\xbf\xd1\xf8\xa4\xec\x01-y\xbf\x91H%\x89\xfa(\xc7\xbf\xc0\xbe\x81\xf3d*\x9d\xbf\x91\x84W\x94\x00\xce\xc4\xbf\xa0\x0bR\xd1\x12\xe0{\xbf\x83,\x8e\x9e8\xa8\xc4\xbfQ\x82v^EZX?T%\x97L\xd8\xfa\xc5\xbf\xd4lT\'\xe7\xf5s?Zi\x052\xa1L\xca\xbf\xc8d\x98C$l^\xbf\xb9\x16\xb8?/\xc7\xca\xbf*\xfe\xb2\xd4\x854\x82\xbf\xa4\x8b\xd3c\xdfV[\xbf\xd1\x91,w\xe2\x9e\xc5\xbf\xadR\x87\xe5b\x06\xb9?\xd9\xe0o\xa5|\xff\xba\xbf\xccJ\xafab\x8a\xc2?F\x05\x8a\x15\xe4"\xae\xbf\xcd\xfez0\xa0<\xc3?\xbesi\xf4\x92>H?GLM\xb0\xc5N\xc2?;}\xf9\xe9\xdd\xaa\xae?\xbd\xe3\xd4!\xc1\xa8\xb7?\xcf\xd7\xa3K\xf5\xb4\xb9?a:\xdc\xd4\xda\xf2}\xbf\xcb\xc0\xb3\x99\xa7\x05\xc5?g\x0e\xc3\xa6\x8c\xc8\xb4\xbf\xefQ\xa1\xa8A\xd7\xba?\xda\xbf\xea\xec\x17\x9f\xbb\xbf\xd9\x86\x930\x98\xe0\xaf?F\xdb \x8c\xd6\xf0\xba\xbfJgT\xc5\xe8\x81m?\x8a\x1f\xab\xe0o\xf5\xba\xbf\xa1\x05\xf4%7\x80\xac\xbf|:\xa0\xce\x9f\x1a\xb4\xbfs3\x12\xa0\xa1\x19\xbb\xbfK\x0f\xd9N\x0b\xb0\x82?h\xfe\t\xe3\x14n\xc5\xbf\xce\xd0\x1b\x9c\xa2\n\xba?\xacx\\l\xe2\r\xaf\xbf\x12ec\xbd\x03G\xbc?aN]\xb8\x18mP?\x9f,\x1c\x1c4u\xb9?\xac\xea\xb6\xba\xd3\x15\xb0?\xec\x0e\xe25\x12\x18w?\xec\xeb\x1en\xb2\x1c\xc5?\xcf\xbc\x08\xbe6\xa6\xab\xbf~\xcb\x9e\x1f^z\xaf?Y\xb5\x02K\x04\x92\xa9\xbf\xdc)\xa3\xf5\xe7\x05Y?\xd85\x85\xb5\xe0\xef\xaa\xbf\x03\xe9\xad\xdf\xa4"\xae\xbfJG\xdd\xa4\x9dG\xb1\xbf\xc5\xbd\xab\x85\xc6\xc4\xb6?D\x92J\x97-\xe5\xb4\xbf{\xe10\x1d\x8e^\xb7?@:g\xba\x01\xdc\xb7\xbf\x9e\x80\xfa\xdd\x963\xb4?\xed#\xbe\x13U\xef\xb5\xbf\xed\x8bs\xee\xef\xc5\x97?k\xfb\xec|Q\xbf\xa6\xbf_e\xd0X\xc7!\xad\xbf\x15\x9a\xc9}\xb4xR\xbf@\x8b2\xadi@\xb9\xbf\x14h\x04\x91 \x0b\x96?\xb6\x8c\x0f\xea\t\xa8\xb7\xbf\xcb\xfb2\x91\xe9Y\x9e?\xaaUc\xaf\x18m\xa2\xbf \xb8/\xbfg\x03\x96?\xad\xc4\xcc\xe7h\xd7\xa1?\xe6\x9f+Y\xbe\xf0\x94?v\xa9\x18\xb5U\xdd\xbe?<\xfcFmO\xc0\x99\xbf\xfa\xeb\xb3@\xc7\xb9\xac?\xcb\xf9\xb4\\e3\xa7\xbfRs\xf1\x1a`\xc6\xa2\xbf}%K%\xb44\xa4\xbf{\x07\x90\xdas\xe4\xba\xbfE\xc0\xac\x9a\x0f\x96\x84\xbfRM\x9fYI\xb2\xbf\xbf4\xa3\xff\x80:\\\x8b?\xd29a&\x89\xc5\xbf\xbf\xca\xa8]\x98)\xa5\xaa?R\xb8\xcb?o\xab\x95?x\x1fnF\x1a\x18\xb5\xbf\x87\xcb\x02+\x7f\x99\x86\xbf\xb2\x9e<\xb4\x05p\xc3\xbfq\x9e\xb2\x91\'\tj\xbf"A\xa6\xa0.L\xc4\xbf\xae\xa3\x7ff\x1fE\x8d?\x99\x88\xdb\xee\x91\xe4\xbe\xbfC.m\x13mL\xa1?\x8e\x07\xe4\x15M\xb5\xc4\xbf\xf9\xf2&\xc4\xf2^\x92\xbf\x1b\xb35\xd8\n\xa3\xc8\xbf\x8en4\xae\x00\xadc?\x06\x1c\xdd\x85\xd2\xd8\xc6\xbf\ndK\xe0\xdc\x05\x90?O\x97S&\x0b;\xb9\xbf\xd5\xf7%\xe1\x9a\x99\x92?\xd1\xeek\xdex\xbe\xa6?\xfd\xa4\x93!\x980\x96\xbf&\x87F\x07\xc3(\xb8\xbfu\xa4uj\x88\xbe\x95\xbf\x8fX*\xb8m4\xb2\xbf\xaf0\xdf\x06g\xe7\x93\xbf\xae\x1e\xba\x93\xefo\xa9\xbf\xda\x00R\xe8$\t\x92\xbf@q\x18=\xa5\x18\x9a\xbfu\x89dS\x13%\x8f\xbf\xf9\x18_\xa01x~\xbf|yH\xe5\xce\xd5\xa6\xbf\xcb Y\x92\xf3f\x82\xbf\xf0\x14\xd8\xfcV\xfb\x9e\xbf\xd5\x04\x0f\x90w\x14C\xbf\x8ct(:\xf6@\x94\xbf\xdfQZ\xb7\xc4\xd3y\xbf\x99\x85\xa2+\x01(\x86\xbf\xba\xe2>\x14\x87\xd5T\xbf\xb5\xf5s^\xd5\xd2R\xbf_\x13Q>I\x82\xc3?i\xf2S\xbe\xed\xb7\xa0?\x91L\x12\x95v\xc4\xbf?yB<\x9b\xccM\x9e?m\xb09\xab\xe07\xc0?\xc4\xde\xb4\xecJ\x1c\x9a?\xb5\x12Y\xe9W\xb0\xc3?\xcb\xd2A~r\xca\xa2?e\x03\xa7xPU\xc5?\x8e\x05\x90\nq7\xa0?t\xc1\x1b\xc7\xa8\xcd\xc5??\xbbd\x95k\xc5\xa0?f\xe2 \\\xcd5\xc0?DF\xf2\xdf\xcc<\xa1\xbf\xe1\xf3\xf6\x13b\xbf\xb9?v\x93=\xb0&\xe8\x90\xbf\x9e\xe5W\x83\x19\xa2\xb9?\x92T?\xee\xe4\xff\x94\xbfi\xa9%\xd3\xb4\xd1\xc0?LZG_\xc5\xc6\x99\xbfS\x9c0\x02\xae\xaf\xc2?\xb7\xceJ\xf0\xf1l\x97\xbf\x02\xec\x15\x7fb;\xc2?\n\xa9A\xb1}\xd0\x96\xbf\x03\xc2R6Q\xc5\xbf\xa1b\xa6As\xf5\xbc?\x072\xe8\xe7\t\xba\xad\xbfH0\xd8G\x04\xc7\xbe?\x8f%\xabm$\xf7X\xbfT\\t~\x80\x0f\xbd?\xed\xa9\xb0\x91\xfa\xf8\xac?\x15\xfe{}=a\x98?e\xea\x0bG\x1c\xef\xc4?\xd2\xfb\xb0\x99\xb0s\xb9\xbfJ\x01\xd7\xba\xdc\xd9\xad?caG\x9d}W\xba\xbf\xd7\xad\x9bs@Qv?\x1b\xbat\x04\xfbc\xba\xbf\xcd\n\x9f\x06\xa0\x83\xa8\xbf.\xa5\xe9\xf0E\x90\xcf?B\xb0\xe5Nq\xd1\xc0?\x9a\xc8\xdfB\xb1\xf6\xca?\xa8\x85c\xb0\xec\x05\xbf?{\x9a\x91\x9d\xa0\x86\xc5?\x99\x13\x8a4\xea\xeb\xb9?u\x9eif\xa6\xa6\xbd?\xf0\xf1\x15\xcbw.\xb0?\x88AS\xe4\x0c\xa6\xaf?\xf9*[\xe4\x1c\x01\x10\xbf\xcc\xbdO\xbc\xa6\xa5\x89?\xb2\xddC\x9d\xf4\xa4\xb6\xbfe\xa6\xaa;s\x17\x9a\xbfs;*_\xdc\xab\xc6\xbf\xaf\xa2sv\xbeW\x9b\xbf,\x82\x12\xa3#\xdd\xd0\xbf\x1a \xb3L`\xfez\xbf\x87\r\xee&\x06\xa9\xd2\xbfLI\xf55{\x12\x9e?\x87}\x99\xcc\x1d\xc0\xd0\xbfzOXz\xe1\xdf\xa3?\x83\x9b\xfb\xafmH\xc7\xbf\\\x93\xaev\xda\x91d?\x82\xe6[?j\xb2\xb7\xbfp\xd5\xcaY\xcc(\xae\xbf\xc8\xebALT\xa3s\xbf\xcd\x00Z)By\xbf\xbf\xd8>>,!\xa0\xa9?\xc772N\xdf\xa2\xc7\xbf\xa9\x9d\x8b\xfb\xe1\xa5\xb4?\xa8*\x19\xd6\x9c1\xce\xbf#\x1d]\x88\x94\xae\xb8?{\xe1\xcf\x884R\xd1\xbf\xd7: _\xbe!\xbb?\x07\xa49\r\xcc%\x89?\x85a\xaf?c\x022?\xeb\xc81\xdb\xfd\xba\x9d\xbf*vI\xff\xddf\x9c\xbf:Y\x8f.&\xeb\xb1\xbf\xe5\x17Z\xd5\xd2\xea\xa4\xbf2`F\x0fY\xc4\xba\xbfq\x02\xc4\xc7\xcb\x07\xa6\xbf\xa8h\xd4#\xef\x81\xc0\xbf\xd1\x9b\xa4]U\x80\xa6\xbf\xf5*\xf5m\xf5+\xb2?\x8d\xb8j\xb1e\x9e\xb2\xbf\xb5RS\x97\xce!\xa7?\xb8\xb5\x82%x\xd5\xab\xbf\x97WX\xfd\xdbl\xa2?\x91\x02wg\xc3\x1b\x9f\xbfIL\x9dp\x1b%\xa3?\x13\n?\xa5[)r\xbf\xec\xe1c!\xe2\xc7\xad?a\xf7\xbbb\x03\xbb\x8a?\xf0\xb9/\x89\x05\x10\xa3\xbfc6\x12\xd6\xa3r\xc1?\xe0\xac\xd8\x0f\x8e?I\xc0\xe3\xcc\xa1\x96\x9a?\x16\xf3}\xd1i\xa1\x95?(G\xf56g\x0f\x91?Wb\x87|V\x02\xa0?\xac\x06\xc1\xa8q\x88c\xbf\x95\x9d\x19{9\xb9\xa4?UW\x89\x16\xc46\x9d\xbf\x87\x85\xd4\xbe\xec)\xb1?\x9c\xb0\xde\xd0\xe4\xa8\xa4\xbf\xf9zL4\xeb5\x85?\\.\x0em\x11\x85\xa0\xbfl\xadF\x04\x81\x1c\x8c\xbfeV\xa0\x83K\xd5\x9a\xbf\x82D\x93\x12\x0c:\x98\xbf\xfc\xf8\xfe\x9aMc\x8f\xbf\xb5p\x9a0\xd2v\x9c\xbf\x05Zp\xf7"\x05p?\x16\x8cA\xb9\xd6\x87\x98\xbf_\x0e\xda\xbf{\x11\x9b?\xa1\x8f\xcc\xd5\x14\x1dp\xbf\xa3_Z\xb9\n\xa2\x98?\x08@\xbc\xb5 \x80v?;\xc4B\x9f\xea\n\x94?\x7f\xf4k\xd3\xbd\x05\x8a?\x08\xbcT"\x89~\x8b?\xe9\xb5\xab\x83\x01Q\x98?/%\xc0\xe3\x0e\x86\x96\xbf#\xaa\x1e\xa2\xc5\x9f\xae?\xba\xf3{\xfb\x10R\x96\xbf+\x8bZ`\r\x0f`?\xd57\xc4\x1d\xe0\x16\x8c\xbf\x94\xb4+\xb3\xfaE\x82\xbf=I\xdf\xf9\xb2\xc4p\xbf\r\x99\xa8\xa9\xbe\xa0\x8b\xbf\xef\x89>P\n\xf7\xc1?\xc4~UA2r\xc0?\x11\x94\xd6d\x9f\xe8\xa2?\xfd(\xe9\xf8\x1d\x04\xb2?H\x99\xdb\x95\r\xc5\xa0\xbf\x0f\x12\x12d"5\x8e?\x8e+\xf4\xa8bV\xb2\xbf\x89k\xfdW\xd4\x98\x9e\xbf\xf7o\xf3$\'h\xb3\xbf\xedr\xbd\x82r"\xb4\xbfp\x7f\xdc)pl\xa6\xbfh\xc5\x98\'\x1eP\xbf\xbf\xdavp6\xa8\x0e\x8f?e\x8bQ\xb0Q_\xc1\xbf\x7f\xda\xfc\xd3w\xbd\xb2?\xd5\x16PHp\x16\xb8\xbf\xd6\x98\x1b\xe4{\xf8\xb8?\xea\x93\x08\\\xa9rs\xbf-G5\xd7[\xc7\xb5?\x89J\xc8>k\xcc\xb5?\x01\xbe\xe3\xa0\xfc\xb4\xa3?\\[b\xf0uC\xc0?\x97xh\xc6\xd5B\x94\xbf\xc4\x1f1%\x9f,\xbd?\xb9\xe7\xb0.\xeb$\xad\xbf\xa9t5TS\x0e\xb4?\xd8U\xc0\x9d\xc1s\xae\xbf\x9fu\xf4N\xf1\xfa\xa1?\xf0\x16c\x92\x9cD\xa5\xbf\x0b\x94\x0eu\t\xb2b\xbf\x83\xf0\xd2\xe8\x8e\xb7\x82?\x90w\x88\xc6\xd3\xe0\xb0\xbf#~v\xa1\xa9\xc7\xb7?HL$_\xefk\xc1\xbf$\xc8\xba\xfa1i\xc8\xbfcl\x97\x17\x1bb\xce?5\x19`\xab\x19\x88\x88\xbf\x86f(0\xad\x82\xc6?\xa3?\x9c&\xfa\xfd\xb4?\xc7c\x1ap7\x0fp?};\xca\xb8^O\xb7?z\x87\xe9;(\xde\xc7\xbf\x93\xf9\x08\xbcyj\xa2?\x1b\xa0\x1e\xe4\xd2_\xd6\xbf\xc3ou\xa6J\x80\xa9?\xf9\x9eSa\x0f\xb8\xd5?\xf0\xd6T\xd1\xcf\xa8\xbb?\xf6E\x87f~\x94\xc6?\xd7\xc9\xa2={\x14\xba?\x187\xde\xef\xf1\xf3\x8d\xbf\xc8\x92\xfb@\xb5_\x85?x9\xb4\x8c\\D\xc8\xbf)\x98\xf8\x81\xdf3\xc5\xbf\xed[b0\xbc%\xd0\xbf\xf4\xec\x9b\xb8\xdfiF?\xeb\x0c,\xecE\xf7F\xbf1\xa9\x1a\xf4\x9d\x93<\xbf\xe3\x87\xbb\xcc,pG?z@\xb3I\x96\x8aa?\xf3\x97\xf1E\xf8\xf6p?\xd4\xb5~\xb3,nY?\xcf!W\xd5\x0cV}?\x05\xe2!\xb4`\xbb\x96\xbf\xd7\xbf\'\xbc>2\xaa?\x9c\xd9\x9e6\xda\x1f\x8a\xbf\xb7s\x16\x87\xea#\x9f?\xe8\x00\x8fA\xa9Zq\xbfH\xab\x8as\xa6\x1a\x91?\x04"/\xce+7\x92\xbf\x1a>\x16\xa4v\x05h\xbfO\xbc\xa9v\xea\xa2\x9e\xbf{L\xe2r\xcf\xa2\x9a\xbf\xaa\xdd4GE\x7f\x90\xbfT>\x80\xb0nK\xa0?\x81pr%w\xb8x?\xae\xbb\xb5b\xb3\x1a\xa9\xbfy*Sz\xabIw?\x1d\xb8c4U\xce\xc0\xbf\xbd\xdb1#\x89\xf3\xac\xbf-\xd6(\xdf\x1c\xa2\xca\xbf\x9c\xcb\xf6\xb2\xd7\xcb\xa9\xbfG\xf7-E\xe3\xa8\xc0\xbfPV\x1aZ\xe0\x91\xa8\xbf\x17\x0b\xf8\x03;\xfa\xa2\xbf\t\x08\\@\x05\x00\xa5\xbf\xa2=*\xe4t\x91\xca?I\xb7p\xeb\xa4\x1f\x94?f\'O\xdb\x19\x90\xbf?\xa51\x9b\xdc=?\x95?\x9e\x0f\x9e/\x87\xc6\xa3?\x1d\xff3\x9a\x9f\xf6\x1f\xbfiR-\x95\x91U\xa3\xbf\x03\xb5\xe5\x80\xce\xc0\xa2\xbfU\'\xf0\xb8=\x7f\x9e?\xeduh\xdd,{\xa4\xbf\xa9d\x15\x16\xb4)\xc0?\xd0;*\x95\xb3\xec\x80?\xf3\xd39\x05\xf1\x9b1?\x06U\xff\xda\x87\xcaj?:\xf2\x862\xed\x9a\x88\xbfxv\x9e\xc3\xd9V\x96?\x05_\xc3@\xe4\xfav\xbf\xbd4\x1a\xa5w\xe4\x8f?\x9bLv\xe8J\xbaF\xbf\x84\xd2\x8b\x8f\x86\xbb\x95?`5\xab\t\xb51m?\x9aDB[_kz?\xf0\xd8\xc0N\x96{|?_\x0e\xbal+"\x8a?b>vB\xf6-F\xbf\xf2\x1e\rZ\x177\x86\xbf\xc8e\xef\x91\x06\x01\x8c?i]\x8b\x07\x108\x9e\xbf\x91+\x15G>\xe8\x81?J^IkK\xe6\x9e\xbf\x1e\x16q\x06\xdc\xc5r?u\xd3\xbd\xb6T\xa5\x9d\xbfm\xbd\xc7\xee)\x0fh?\x7f\xab\x94)\\\x1d\x90\xbf\xc0\xbd|\x95l\xeb}\xbf\xc0N\xb5\xa3\xa53\x8b?bG\x84\x9e\nv{\xbf;\xcce\xe7NG\xa0?\xf8\x1c\x9c\xa7\xfc\xbdd\xbfOY\x81oc\xd9\x9a?\x18\xb8O\x9a\xfe\xb7O?\xce\xe7f \x0e\xc8\x9e?\xa0\x85\xeeJ\x8a*r?\x96\x1f\x1e>\xc2A\x93?\x11M\xe4\x06\xad\x04\x83?\x9c\xd5\xb5i\xd6\xf2\x95\xbf\x1f5o\x84\\Vy?\xd6\x00}\xa6\xd2F\x9c\xbf\xff\x1aj\xee^mp?S\x81\xd2\x80\xc5\x1b\x98\xbf\x19}g\x14B\xa2W?_\x92\x83\xecy\xb4\xc8\xbf\xe9[\xfe\xe5\xef\xd7\xb6\xbfW\xac\x7f\x8b\t{\xb3\xbf\xd9\x0e\x10d!i\xba\xbf\xb3\xee\xee\x92\xaa_\xac?&\x1c1h\x87\xc0\xb5\xbf\x9e\xa3e\x05H\x99\xc3?\xd8\xcc\xc5?Y=\x82\xbf\xb9\xc55v\xe8\x9e\xc4?_\xe6\xd4\xa0+H\xc0?:a\x13"\xa0\xfa\xbc?\t\x0f\xfc\xfct]\xcc?\xc8\x87\r9\xb2u\xa6?\xa12\xbdV\\\x17\xcd?\xaf\xb5\x9e\x96\x84\x95\xa4\xbf\x1cQ\x8bR8\x97\xc1?R\x12\x0e\x82/\x8b\xb3\xbf\x843\xfb\x81\xb1\xcb \xbf\xc9\xe2\x81m\xa4N\xad\xbf\x7f\x95\xc4\x7f\x87\xcc\xc1\xbf\xbe\x06v\x90\x97\x86_\xbf\xe6\xa1\xb6j\xf9w\xcb\xbf\x10\x7f\xdc\x8b\xbfA\xac?3v\xd9e\xd4\xd5\xc9\xbfN\x08 ^\x1f\xfe\xb9?\x80Z4u\xecy\xbc\xbfG\xe0\x94\'\xd0\xf0\xbb?q\x0c\x08\x9eI\x02\x8c?\x18hM\xad,f\xa9?!>\x86\x82S\xea\xb6?\x93\x07;\x95B\x8c\xa5\xbf\x1a (1\xbd\xb5\xbb?\x9f\x879\xbd<\x07\xc0\xbf\x8e\xc3\xa7y\xe2\xf7\xba?\x1c%\x9d\xc0o-\xce\xbf\xad&\xaa\xca\x81V\xa2?\x82\x85\xab\xab\xcb`\xb4\xbf\x0b\x0eR\xdcp\x10\xbc?\rP\xee\xad\xe1j\xac?\x93\xa8\x9c\t\x8c\xef\xb5?,\xb3 z\xb4\xd1\xbf?\xc9\xad\x83&\x19\x7f\x9b?\xbe\\\x83\xf2~t\xc2?\xd8\x1e\xe0;\xcfo\xa0\xbf\xc9\xde\xeb\xb0\xf0\x0e\xc1?\xf4p\xd5H()\xb0?\xccA\x04H\x84\t\xc0?F,V6\xab\x8eR\xbf\x946C\x8b?\x8f\xb1?\xf3193\xff\xc0\xb2\xbf\xb3A0\xc0\xafO\xaf\xbf\x11J\xfc\rpX\xbd\xbfC\x03<&\x15a\xcc\xbf\xe2H\x90\x13m\xc7\xad\xbf~\r\xa4\xbd\x04Y\xb6\xbf\xa7#}\x08\x0b\xaf[?\x0fh\xccS%^\xb7\xbf\xa1+\xcaj\x1f\x10V\xbfH.R\x06R~\xb6\xbf\x1aE\xa2/\xe6\x10h\xbfk\xb2b\x9b\xf5\x8f\xb6\xbfI\xe2S\x83dAx\xbf\xb3F\xbb\xbeJ#\xb8\xbf,\x8f4J\xa8[\x97\xbf\x19d\x9f\x9a\x1a6\xb8\xbfb\x1cl\xbd\xc0a\x90\xbf,\x802\xd7]\xb6\xb8\xbf\x80\x13\xe1L{}\x84\xbf\x07\xbc\x08\xea4\x8b\xb8\xbf\xce\xb6\x91\xc9\xba\xb9s\xbf\xc1\x19+\x8b\xeb\xd0\xb8\xbf\xc7I\\Y\x13&8\xbf\xb5\x8f*_GJ\x86?\xdf\xb5.\xcdZ\x89\xa0\xbf{-\xd8}/\xba\xaa?\xb5B\xb8\x1f\x8e\xa6\x9b\xbf>@\x91\'\xc5\xd2\xaf?\x00\xbf3\xd0e\xbf\xa5\xbf\x7f\x03\x99\xdb\x98\x06\xa8?\x1b@\xa6-W\xa1\xac\xbf\x0b\xad\xb0H\xf5\x10\xa5?\xdc1\x16k\x0b\xed\xa7\xbfgy\x0b\xcdW\x1e\xa0?}\xf5f\x12\xae\xb5\x9f\xbfS)G\x84\xb7~\xa6?`$\xe4n[m\xa9?\x11\xd0\x8b\xab<:\xae?\xde[\x94\x1dPo\xa0?\xd4Zj\xcc\x9e\xe0\xae?z\xae?U\x16\x06\x93?\xcf\xd6$\xc7\xb7+\x96?\x15\xd3\xf4B!\xea\x96?x\xd6#\xb0\x8b\x18\xa4?\x83Y\xb7\x07\xce\xc2\x96? e\xb0<\xa9J\xa7?W\xd8\xa5\xe5\x0f:\xa3?\xebdg\xb9\xe6\x01\x98\xbf\x9b\xe5\xbc\xa1\xd4\x9d\xc0\xbf\xc3\xd0\xea\x1eT\x1f\xad?%\xfcq\x93\xd3\xbf\xae\xbf\xf9ti\x91F\xf0\xb5?v;\x8dN\xcc\xd8\x92\xbfa\xe8!\xdfYC\xb6?\xc1\xa2\xeev\xfc\x92y?\xfc\x82\r\x96E\xcb\xb6?\xd1i\x95\x96/\x06\xa1?\x17\xfc}\xd1\x00T\xb0?\xe7\nh\xea\xceX\xb1?0GcfC\xa4\x8b\xbf\xd4t\x19nNQ\xbe?\x1f!\x81\x03\x85\x82\xac\xbf\xe3\x8d\xc6\xac\xb4\x9d\xad?:\xcd\xff_g\x87\xb1\xbfxH\xa3me\xfb\x95?\xfb\xeec\xc3d5\xb2\xbf\xb1\xebT\xd9\xc6\xfdy\xbf.\x8d_X\x05\xb4\xb2\xbf\xf8\xb7t}\x9c^\xa0\xbf~\xc3&=\xcf\xf7\xb0\xbf\x9c\xa6\x95\xcf\x1f\xa9\xb0\xbf\xa3\x1d#\xcf\xe8\xda\x86\xbf>\nP\xe2\x94\x03\xbf\xbf\x13\xb3\x8c\xd4R\xfb\xb2?\x06\x19ih\xa7\xe8\x96\xbf\xca5z\x16\xeb\xef\xb3?\xf0\xf4\x01\xf8i;j?Wc\xab\xce\x04\xc4\xb3?*Ivlw\xf2\x9f?\x00\xa0\xd2\xaazC,\xbf\xd5b\x92]\xc4\x9f\xbc?a\xf5\x10W\x93\xa4\xaf\xbf\xaf\x04U.\xa4=\x99?"\x17\xb5\x92\x91\x0c\xb1\xbf wO2\xc2e\x03\xbf\xc9\\\r\xea\x84\x9c\xb0\xbf\xa0F\x1dC{\xc5\x98\xbf\xfd|\xd89*\x88\xaf\xbf\xe4\n6s2{\xb4\xbf\xa2\xf6\x857\xf7\x8d\xa4\xbf\xeeBx\xee\x89\x0c\xb8\xbf\xedE\x0b\xc39\xc3\x82\xbf"\x96\xe5$\x1fh\xbe\xbf\xef\x85\x18\x99\x1b\x95\x88?\xe5\x9e\xce\xfc\x04\xec\xb6\xbfx$0K\xf0\xd8\x14?=\x90\xe6\xe7E\xa1\x89?\xcaz\xbe\xe7\xc9\xb6\x85\xbf\x1d+%9`<\xbd?[\x9c\xe9s\x98\x89\x8d\xbf\xdd]h\x9cS}\xc3?\xd1\xda)\xa7\xda$w?K\xb4\xb4I\xa4\x0b\xbb?mQ\xff\x1e:\x14\x87?\x8e\xac\xcfN\xa6\xa6\x97?\x17\xa9\x86\x98*\xe3\x86\xbff\xf9\xa0\xdb\x80_\xb3\xbf-j\x1f\xbd[a\x9d\xbf\xac\x1e\xfc`$\xbe\xc2\xbf\xb5\xe9R\xee\x91\xe8\x8f\xbfM\x88K\xc7`\xba\xc0\xbf\xedqz\xa8\x93\xb2\x99?D\xb4\xf3X\xba\x98\xa5\xbf\x9c\x8f\x92\xc1-\xd7\xa7?\xec\xe3\xb2\xbbk\xd0\xb1?\x0ePH|\x03\xd9\x93?\x11\xda\x17\x8f\x9e~\xbd?\x97\xbd\x9b\x1a\x8a\xa6\xa1\xbf\xf0\xf4\x84\x8bw\x9c\xb8?Zd\x05+\xc8\xa2\xb2\xbf\x8f\xa0;\xc1\x96\xd3\xb4?\xd6=K\xe6\xaf\x99\xd1?uM;\x8c 1\xc2?83e\xd1\x10\xd1\xc3?Z\xd5aA>\x02\xa1\xbfm\xf2\x0b$\x1c\x7f\x94\xbfQ\xa5\x9d\xa7\xfe\xb0\xc2\xbf@V*W\xee\x9d\xbf\xbf\x1c\'OC\x176\xc9\xbf\xe7:\xc2\nh\xd6\xc8\xbf\xbb\x06\x9b\xa9 \x88\xcc\xbf}\xc4k\x87\xb3\\\xca\xbf\x8f\xc5\xcf\xe3E\x1a\xce?\x1f8\xf4\xbe\xaf\x0c\xc0\xbf\x12\x15\xccsf\x87\xc9?5ky\xf1\xb4\x07\x95\xbf\xe6\xa0\x8f\x00\xc81\xc1?\xcd\xe51\xd9z\x92\xc4?\x8d\x91\xb8\xad4\xc8\x91?\x7fOqqt\xdc\xd2?H\xb2B\x16\xd6\x19\xc4\xbfx\x0f\x03\xf6\xc5\xda\x8f\xbf~\x04\x04r\x04c\x90\xbf\xa8\x1c8\xbbWz\x87?\x98`@Af/\x8f\xbfP\x02\x85\x95E:\x9f?`\x9ao\xdf\x1e\xd4\x8a\xbf)\xb4\x80[\x9c\x8f\xa9?\xc4\xee\xce\xc3\xe6%\x87\xbf\xabn\x84P\x1a7\x89\xbf\xb1%.x&\xd5\x8f\xbf\x1b\xe0\xd1I\xae\xe7s?"\xb6\xb5O\'\xce\x85\xbf\x9a \xefnh\x8a\x88?B!\x95gsbU?e\x88\xd0\xdaD\x90f\xbf\t=Bd\xd7 w?,\xc9\xf3\x91\xb9C\x9b\xbf\xbd\x10\x15o\xcb\x9ft?\x14G\xe2\x14\x9f*\x7f?\xfa\x80\xed\xa4\x93A\xc6?U\x9c\x80\x8b\x06X\x96?\xd1en\xe8\xd9\xf8\xbd?\xb5\xec\xc2\xec\xb8O\x82?\x06\x16O\xdf\xd9\x86\xa4?p\xea\xbc\x0b\x10\xe6\x9c\xbf\x94(i\x08|J\x9c\xbf\xe0\x91\x92V\xa7\x99\xa5\xbf\xae\xdd\x93\x94\x05\xfd\xac?x\n\x03B]\xb4\xa2\xbf\xe69\xa0V\x9b*\xc1?\xb4\x99%\xde=\x0b\x9b\xbf\x7f\xafL\xa3\x97h\xa5?(\x99\xf02\x91\x9bv?\x1e\xaa\xb3\x88\xd0r\x9c\xbf\xfe\xb2L\xfc\xf5\xe8\x8e?\xc7\xfa\xca\x0f\xf0\xfe\xba\xbfW\x7f>\x109\xf5j?w\xd0y \x0b{\xc4\xbfp|4\x18\xc8\xb9\xa4\xbf\x0c^w\xc7\x8d\xf3\xbc\xbfMCO\xc4\r\x8a\xa6\xbfY\xdf9\xac\xe5\x0f\xa2\xbf\x93\xe0U\x8a\xda1\xaf\xbf"\x1a\x07Uw\xfaq?w\x7f\xf5\xe1_+\xa7?{\x93\x81\x85\x15\x0fi?\xc8\x01\xd2:\xb7C\xbd?[\xf8\xb9\xc9\x91\xc2\x84?\xd7\x9f\x9e\xd7\x88\xab\xb7?V\xa5\xda\xde\x18\xd5w\xbf\x82~\xd2\x1e\x12l\xbb?\xef\xa0\xcf\xca\xffN\x92\xbf\x1c\xa37\xc6\x8b\x87\x9f?\x08\xea\xab\xdaa\x9b\x87\xbf\xb5\xe3\x19\xaa6O\xb7\xbf\xeb\x8e\x84\xdb\xf8\np\xbf5R\xde\xaeI\xe6\xb2\xbf@\xc9\x83\xe5\x13\xa0{\xbf6\xe1\xc5\xba2\x13\xa6\xbf\xac\x81\xe5\x97\xc5\xdc\x87\xbf\xd1]DG\xb7\xbc\xa1\xbf\xbb\x93_\xf05=t?\xb56A\x82`\xdc\x9e\xbf.\xb9\x11\xde\xca\xb0\x98?\xbd`\x92\xbe\xb3\x10\xa7\xbf\xe8\xa33xf\xda\x8c?\xb9D\xed%$\xbb\xaa\xbf\xb6\xd7\x01\x01\x05\x00\x95\xbf\x0b\x12n\xdf\xe1\xf5d\xbf\xff\xe7O6\x9f>\x91?\x8d:\xf5\x91\x9d\x19]\xbf\xf5\x0b@\x03T\xceW\xbf\xdd\xe2\x16\xfd\xe7h\x86\xbf\x02\x1f\xa8*Z\t\x91\xbfu!\xec\x8f\x0b\xe8\xb3\xbf\xd4a\x98\x8f\xec\xa2\x98?\xbf\xb0F\xcbe:\xb1?et\xd2\x8f\xf7\x82\x89\xbf\x86<\xe2\xaf\x1d=\xb3?t\xdc\xbeY\xcc\x8eR?g\x19$\xefW\x18\xb4?{\x8f\xcav\xca\xa2\x90?\xe9\x89\xd6\xf1\x85\xd0\xbf\x08\x85\xfb>6\xf3\x95?\x8c\xe4&\xce\xcef\xcd\xbf\\\xe3\x87\x81\xd1|\x83?\x03\xfb\xd4\x9f\xb7\x8b\xc3\xbf\xa7y\xe8\xa4\xeb\x9e\x85?\n\xe3\x03\x99Y\xa2\x8e\xbf\xef\x83\x0e\xbe\xb9\\\xa7?\xfb\x01~\xa8a\xf8\xc0?w\xec\xae\xc1\xab\xbc\xbb?WRU\xf57\xb1\xcf?\x1e\xbe1\x1ez%\xc9?\xc9]\x93p\x06\x88\xb4\xbf\x18\x84\xa6a\xb7\xf6\x90\xbf\x04\xb0|\x8e\xf3c\xa6\xbf\x12\xe8\x188\xa8\xf0\x9c?J[P\x1a\x97\x1eq\xbf)l\xae\xdb\x1b\x81\xa3?@_u2?\xf4\xa0?\xf4\xd2\x16\x1b,\xbe\x99?\xfc\x05~\xed\xe1M\xb2?\xf9\xe5\xec\xbaUDc?\n\xa6\xa5\x02\xf4\x89\xbf\xbfo\x0ff.\x0c\xc0\xa4?\x9b\xbb\xf0\x85\x8a\x8c\xa9\xbf\x92p`\xa9\x0f\xe5\xb1?\xe0\x18\n\xa8\x9b\x01\x82?\xf1\x83\x88\xff\x16]\xb0?]eb\x10\x7f$\xb1?b\xd08\x98\x01\x8c\xa1?\x9d\xcc\x0c\x1761\xbe?\xbeG\xcd\xbc\xa3\xff\x9b\xbf\xd7\x0bX\xd1\xb6N\xb3?\x1c\x8c\x04L\x10\xd1\xc7?\xea\x1f=\x1f\x13\xdc\xae?\x96! \x12\x84\xa4\xc0?\x1eG\xe75\xbb\x7f\xa4?\xa8/|fr\xc4\xb3?]\xc3h\xa3\xb4\x05\x94?\xa2\xbd<\xce\x01\xd4\x97?\x1cU\x83V\xa8a\x94\xbf\xe5\x86\xc3\xbc\xe9\xff\x9f\xbf\xeb\xc3\xdc\x05\x16w\x96\xbfPv\x88m\xb3z\xa8\xbf^\x16\xdc\xf9\xb9?\x88\xbf-\x0f\x8d\r\xdf\xa2\xb0\xbf\xc3\xac\x84M/\xd2X\xbf~q\x9f\x0fr\x95\xac\xbf?(\xf7\xec\xfe\xa6\x81?dL\xdb\x10\x95\xc5\xa9\xbfm\xe3\xd1\x96"\xac\x90\xbfp\xf1\x9f|\xa1\xaf\xb3\xbfr\xcf\x91\\\xe0\x90W\xbfI\xed\x18@\xb0\xd8\xb1\xbfG1\x8e\xde\x1b\x04\xa4?\x10\x05S\x82n\xb3\xb1\xbf\xa7\x81\x00)My\xad?\x11\\\xad]n[\xb6\xbf\x90\xcd\xeb\xcf\xa38\xa3?j\xce\xfa,\xc8-\xb8\xbf\x14C\xa1\xb0\xc8\xaa\x91?la\xf3\xe83b\xb8\xbfUP\xd7\xf5|\xcc\xb3\xbf\xa1K\n\xd6\xabl\xb7\xbf\xfe\xfa\x81j\x92\xb9\xae\xbf\x0eA\xfb\xd4(\xad\xb4\xbff\x85=O\xb9\xdc\x98\xbf\xab\xd2\xbf:#T\xb5\xbfQ;\xc7\'|\x1cn\xbf\xa5@\x08\xeauX\xb8\xbf\xf1\xec\x93@\xb4\x7f\x9b\xbf\x97m\xf1\x7f\'\x03\xbc\xbfe\xa0\x9d\x0f\x0f\xd4\xa9\xbf;C@_Qq\xba\xbf\xee\x86\x0e\xc4\x05\x96\x8b\xbfCp\xc2P\x9e\xdbl?\xc6\xc7\xc3\x0e\xe2K\x99\xbf\'\x00\x0b;\x9f\xae\x9c?\'qC\xd8\x89\xb2\x90\xbf\xb1\x95>\xf5/\xec\xa8?U\x19o5\x17f\x87\xbf\xa4\x10L\xda\xee6\xa6?\x08/\xc7\xa4\x07#\n?\xde\x02\xd9\xb4\x01\x85\xac?%!G\x12\xfed\x8a?\x0f{\xfd\x01\x9fA\x99?t^\xba{ \xbb\xa2?\xb0\xd3Jif\x87\x8b\xbf\xf6\xe4\xdb\xf2\x05\x9a\x8d?X\x91\xdde\xc2\xdc\xa1\xbf\xb8\xf5\xa1\xb2\xc6\xafS?&\xb3\x8d\xcd\xf6b\xa0\xbfb\x19i\x905\xadg\xbf\xf1\xc8\x1c\x88\xd2\xbe\xa0\xbf\xafjg\x94\r\xaev\xbfa\xab\x86\xd5-\xd6\xa1\xbf\xc3\x98\xc5-+\x05\x8b\xbf\x05vy\x10\x03\xd0\xa1\xbf\xf4.\x98F\x8fl\x94\xbf`=\x04\x0e\xbdr?W \xd6\xb8\x01m\xd9\xbf\xfd\xcd\xda\x10\xfd0q?\xc4\x8a\xcctr\xf1\xc8\xbf\xf0cy<@\x1e\x0c\xe9=\x92\xb2\xa7\xbfAk\xe0\xca\x9et\x90\xbf)y^\xd8[q\x8b\xbf\xb6\tV\x0b%9\xa3\xbf\x95\xac\x83\xe8\x9d\xa9\x8b?\xd6\x17\xffg"\x91\xa1\xbf\x8a\x8a\xfd\x00J(\x90?:2\x14\x0b1a\xa5\xbf\x1a\x96#\xcb\xab\xf7\x83?4I\xfcQ\xf2\xed\x9e\xbf}C\xa1\x85#\xab\x8b?\x86M\xa3\xa6\t\xf5\x93\xbf\xa7\xef\xf0[\\\x1b\x8d?\x12\x85a\xa72\x0e\x93?m7\x0b\xa3\xf88\x81?C\\L\xa9\x06l\xa4?\x861\xb6<\xca?^?y\xe1\xe70\xbc\xe7\xa8?\x00\xa74e\xe8\x91}?\xad\xcb\xf2\n\x88\xe3\xaa?^-\x17\nV\x06a?^\xa5\xa0\xce\xf3\x1e\xa6?\x15\xbc\x83G\xed\xf8\x93\xbf1?\x98+5"]?kY>Z,\x9c\xa4\xbf\x88\xe3\x13\xb2\xda]\x85\xbf?\xcc\xef\x04_\xb1\x88?\xdb?7\x8b\xe4S\x8f\xbf\xae\xc3\xdb\xa1GR\x8e?\xdcw\x94\xf5\xf2\x8f\x92\xbf\x80\x1bU1\xe4\x9f\x81?\x17{\x0f\n_\x90\x83\xbf$<"m\xb9\xd3d?\xa21o\xfc\x91Qv?\xd9\xce\xf3\x1dJ\xecr?}\x13\xac\xbc!_\x87?\x05{\xa5\xa4\xf7\xf8\x82?\rS+\xb7\xe1\xcd\x89?Ye\xf5S\xfa\xdf}?w.H\x1f\xf0\xb0\xc0?\xfd@\x8b\xfc\xc9.\xb1?BN\x17\x165>\x9f?\t\xa0\xda\x96\xd8\xcc\x90\xbf:`\xd9/\xad\x07\x9e\xbf.s\x9a\xb9\x87\xe0\xb5\xbf\x1a\xf1\xe8\xbb\xb2/\xb3\xbf\xd3\xa7eR\r\x0e\xac\xbfevM\x85o]\xb8\xbf\x06\x0e1\xed_\xb8\xa2?k\xa7X\xf5\xd9\x15\xb1\xbf\x16\xf4d\'\xd0\xa1\xb6?\x98\x97\x11n\xb7\x9f\x92?C\xc3\x0c"\xff\xe5\xb0?\xf3\x99\xed\x0f\xb8\xe8\xb9?\xa0Y\x1d\x03\xe5\xa7\x9d?\xbaP\xa1\xeb\x0ec\xbd?\x7f\xca\x18\xf3^\x16}?]+\xc7`>\xc7\xb2?=y@1\xb3\xcd\x85\xbfZ\x97#pa\xb1\x9f\xbf%j\x9b\xe4\'\xa1\xb1\xbf\xb7\x99\x8e\xe2\xbc\xcf\xbd\xbfq\xeb\x08\x1f\xecn\xbb\xbf^\xed\xdae\xae\x84\xc0\xbf\xee{,\x1f\xe1\xc6\xb1\xbf\xd1T\x91m\xaa\xcb\xb1\xbf\t/\r;S#\xa4?\xb9\x98\xa7\xd8\x9b~\x84\xbf\xd1\x00=\x02D9\xb9?\xdb\x84\x11\n\xc0%\xb1?\xab-\xabS,\x93\xa8?j\x11\xdc\xe5\xfeq\xc7?\xeafC\x969$\x95\xbf\x9dy%\xec\x97\xfb\xae?\xd7\xe1\x8b\xb7n\t\xb4?\xa2\xc8\xb4\x92\x12\xf9\xa9\xbfO)P\xbas6\xa3?\xe9\xe7\xae}\xcc\x89\xb7\xbfd\x9b\x19P`6\xb5?[\xbe\xe5\x94k\xcd\xaf\xbf\xf2S\xe9\xa6\x82\x13\xc1?\xebJX\x0b\xf85\xa9?y\x8e\xcbu)g\xc0?\r\x07b:\xcfz\xa8?\x96\x17E\xc2\xeb\xed\xbf\xbfX5\xff(\xf9h\xa9\xbf\xadRvI\xc9F\xc0\xbf\x1e\xc0\xde\xd5\xc2\xb8\xb0\xbf\xbd]\xba\xc7k\xf2\xb2\xbf/\xff\x9d(\xcf"\x91\xbfW\xbd*0y\xe0\xa3\xbf\xd8\x91\x8eE-\x9a\xb6?IV\xa3\x19\x16q\xb6\xbf\x15\xb8\xd9T\xe1\xfe\xcd\xbf\x12\xa4#s\xab\xf7m?\x8a\xf0\xd8\x1d\xdd|\xc2\xbf<\xacS\xe7\x06\xe5K\xbfTS\xce\x88;l\xad\xbf\xed;\x85\x8d\xb90Y\xbf\xccv\xbf\xae\xa56\xa2?)\xa5\xbeP\xae\xe9r\xbfd\xe1\x9e\xc23<\x92\xbfC\xf5\xa8[\xc3\x7f\xd8\xbf\x83EU\x15\x12\xcd\xb1?\xcb\xce5\x16xb\xca\xbf\x84\x8fI\xc0@7\xbe?\xaf?O\x98\xcbe[\x07\xcb?\x1cSu\xcb\xd5\xc8\xa3\xbfD\x93\xeb\xd5\x88s\xd8?\xc8\xb3 \xf9\xd9\xa0\xa6?}Z\xbf\xd5\xb4\x85\xa5\xbfl5\xe6\xc88$\xb5?#\x15/\x08\r\xc0\xb3\xbf_\xf3\xb5\x9c\xab\xce\xb2?\xbdp\xff\xa9\xf9\x17\xc1\xbf}z\xcel\xe8\xd4\x89\xbf\xd2\xd1\xfb)}\xc7\xbf\xbf\xac\xb9d\xd6M\xb5\x93\xbf\xea`*\xcd\xf3\xf1\xb8\xbfk\xeb3&M%u\xbf\x80\xb1#,\xea\x81\xaa\xbf5\xb0\x83\n\r\xfa\x99\xbfL\xe9\x8d\xca\x81\x88\xbc?\x06\xac(1\xbd\x92\xa8?\xd5\x1a=/\xc2\x99\xbf?\x91\xf8\xb6\xc7\xc7\xa3\xb2?z\xf0J\xe7\xd7\xc4\xaf?\x83\x82\xa4D]\xd7\x9d?\xa4!c\xad\xd3i\x9e?\t0nU\xcd\xc2\x99\xbf\x94\xe2\xd4\xa5\x9c\xdd\xa3?\xa0\x16\xc7\x06HI\xa3\xbf\x15\x91\x02o\xe0\x83\xb7?\x88&\xb5\x8b\x9cD\xa3\xbfNT\x1f\xc1Z\x85\xac?\x85\x1bo1\x88\x18\x95?V6H:\xf0\'\xa6?\t\r\x84\xd8b\x01\xad?\xe0\xceT\xb4\x0c\x8d\x97?\xbc\xc3\x10\xd7\x01}\xab?\xed\x9f\x87\x1aY\xa2o\xbf @\x8a"\xfa\xcb\xa7?\xb1\xc8[\xab\x87\xe2\x97\xbf\xb3\x83bF,\xdas\xbf\xbe\xaa\x86\xc9\x88e\xa6\xbf\x8b\xa8\xadI\xa1\xa8\xb4\xbf\xbd\x10\x8e]\xba\xb3\xaf\xbf\r\x9c\xc0\xbaU\x82\xa8\xbf8\r"\xab\x80$\xa9\xbf\xef\xf0E\xaaN{\x84\xbf9>\xca0\xa2\x7f\x95\xbf\x8at2\x1fV\x1an?\x019\x8d\xfc\xd2\xc8J?\xa0\xd3j\xe9L\x1ao?i\xe8Coh\x11\x9e?2\xdf\xc9\xba\xd0\x8a\x91\xbfQH\xdb\\\x14\xa5\xac?\x8e\xdb\xbd\xd2\xb2\r\xa2\xbf\xe5\xcb\xa0\xb1-5\xa8?\x18\x15\xcc{;\xffh\xbfO\xd59c\x9b\xf1\x9d?WC\xb8\xf5\xf8\xf3s\xbf\x9fzl\xc1\t6b\xbf\xbd\xec0U\xfc,\x8e\xbf\rR\x04\x8dU\x0f\x9a\xbf\xdb8\xec\xe0]\xaf\xb0\xbf73\xfd\x13\xc9\xd1\xa8\xbf\xf6\xa2\xb2\xa4\xba\x87\x9e?\xedaT\x1f\xcf<\x95\xbf\x8c\x8bZ\xfb\xec\xa1\xa7?\xb3"\x1e\xb9\xe5\x8c/\xbf\x86\xd20Y\xc4\x86\xa3?\x92\x15i\xf5\xa0\r\x9c?\x01\xf5\xbcz\xf4\xee\xaa?7;sv"\xff|\xbf\xc9\xa0\x18\xb1]*\x9c?\xa8\xa9\x97X\xdb@\x9d?\x7f\xce\x82\x85\x81\xc3\x89\xbf\x15D\xfb\x00\xa3\xe6\xad?\xe9\x1bU\xcc\xce\xb7\xa8\xbf~\x9b&\xec\x15\x84\xa0?\xaa\x14\xc1NN\x11\xa8\xbf\xc9\x04\xf3\x93xe\x8a\xbf\x14E\x80~\x8cb\x83\xbf\xac\'\x98~\xa6,\xaa\xbf\xa8\x0e2Z\x8bP\xad?\x02\xa5R\x13\xb9\x9c\xae\xbf\xea f\x87z\r\xc0?\xc8\x90L\xee\xda\t\xa6\xbf\xa4^\xb7\x9b\x8e\x03\xbf?\x9a\x0f\xb0\x01\r6Y?\xa2\x10B\xe5\xd4+\xa1?ej\x95J\x13\xf4\x94?d,\xf5wY\x05\xb5\xbfW\xad\xf0\x96U5x?\xf8\x9a\xebu\x0e?\xbc\xbf\xa8\x14\xc8\x89\x82\x0cc\xbf\x11m\x88-\x81N\xb2\xbf\xc3\xd2\\\xbe\xa4\x94j?}\xa50\xb8\xf9\x19J?=\x080\xab\x7f\x00q\xbf\xfePW\n}\x06\xb3?]ck\xd3\x13\x0et\xbfh\xe5\xcf\xf2!j\xc2?"4\xb4B?\x99\x85?\xe6\xe5\x98c\xb4\xab\xc6?\xd0\xac\xa2\xe0\xb1\xac\xab?\xbd<\x11\xa9U%\xab\xbf\xb8\xd9_\xb4\xe6N\xc3\xbfZ\x99\x17\x87\xa9\xab\x97\xbf[^t\xa7\x94\x03\xbd\xbfq\x87 \xef\xb5\xa1d\xbf\xa8\x19\xf3Z)\xbf\xb6\xbf\xf7\xac\xb2\x1f\xe2B\x85\xbf9\xdf\xc2)\xb79\xb1\xbf\x9c\x10\x0f}\x8eb\xaf\xbf\xc9\xd3\x9a\xfc\xa2\x02\x85\xbf\xed\xe8H\x1d\xd9\xc8\xc5?\xfa#\x90\xa4T\x0b\xa8?\x12\xe3\xa6\x08\x88`\xbf?\x01\x10k\xfe^\xa1\xa3?a4\xccg\x1bg\xa1?Yt\x15\x1d\x80\x15\x96?\xb7\xfb\xc80X\xe0\xc0\xbf\xf6\xfa,\n,W\xa7?\xe8\xb1\xaa\x04>\x84\xd3\xbf1q\x80\xa1\xc5\x86\xc2?\x12\xfaLe\xdbZ\xae\xbf>\xe6\xfa5\x831\x9d\xbf\xf8\x07\x96\x83*v\x81\xbf\xd2\x08\x16\xa7\xf7\xdd\x92\xbf\x85J\x19\x9eW\x9c\xa4?\xa9G\xab\'xD\x84\xbf\xd0<\xaf_X\x87\xb4?1Nn8\\\xa6j\xbf\xf5TR$T\xf7\xb0\xbf\xc5r\x12L\xab\xdd\xb1?\xda\xdc4hL\xb3\xb2\xbf\xd6\x06IxB\xd6\xa2?\xee c\xbc\x1c.\xb2\xbf3\xc1r_Z\x8f\x86?\x10sK\xcd\x94\x08\xbb\xbf\xe7\xac\x1b\x9b=D\x95\xbf\xab\xca\x06w\x1fE\xc1\xbf\x1b\xce\xc5\x8c_\xab\xae\xbf\xe3\x08\x96\xb7\xe90r?\xdc7x\xb7\\R\x95?_\xe5\x12-\xdc\x19c?\xa0\n\xf6\x9c\xcc\x93\xae?\xa3\xa5\xcd\xab\xdb4\x8a\xbf\x19\'\xb2\x83\xed\xd7\xb9?\x8f\x1d\xf6\xed\x8av\xa4\xbf\x9bLe\x03l)\xc1?\xa4VXA\xc27\x95\xbf\xee\x97\xae*\x88\xd8\xb6?\x0fd\xf6}\x8frw\xbfmk\x95\x1f\x05\xb4\xaa?0\xed\xa3\xf4.\xdd\xb7?\x18c\x8e\x0f\x87\xad\xba\xbfi\x9d\xf3\xe8B\x17\xb5?\x8b#\x1e\xb1)\x0c\xb4\xbf\xf1.\xf9\x15\xe8^\x9f?\xae0\x91\xde\xab\xee\xa3\xbf\xb7\xcd\x05\xad\xa8\xa5\x89\xbf>M\x05:n\x00y\xbf\x0b0\x19^\xa5\xb5\x98?q_\x1aR\xfdi\x99\xbf\xa6\xb7?\xaf\x18\x04]\xa6t\xc2\xbfh\x80M\x08\xe2\xef\xb1?en\x13\x85$"\x9d\xbfaxp~2\xaao?W\x9av,\xeeh\xbc?\x9f\xc2/mNx\x85\xbf\xbcY\x9f\x18u\xce\xc6?$\xc0\x16\xa8\xd64\x8a?6\x9c\xdf\xb3\xc6A\xc1?\x84S\xa22\x03\x96\xa6?\x9f\x8e\xab\xa3\xcb\xd3\xa3?\xf4\x99\x12k\x91\xa5\x9e?E$E\x94\n\x99\xae\xbf02\xe5\xd2\x99kj?mPK+\xa1\x1a\xbc\xbfL\xc3{\x1fa9\x98\xbf\x0et\xff\xc4\xff<\xb8\xbf~\x1da\xfcV\x8f\x94\xbf\t*7P\xfb\x06\xae\xbf\rZ\x1e\x8dl\xd0\x88\xbf\xa3f#\xb8\x8e\xa7\x95\xbf\x17\xb4\x81\xdc<;\x90\xbfSy\x17\x99\xfb\x07\xd3\xbf\xd5\x9b\x99\xf8\x96d\xb5\xbf\xff\xad\xa32rU\xc0\xbfR$\xce}!S\x86?\xe4$\x0e^\x88\xe0\xad?\xa1(\xcb\xa4\x12V\x9c?\x06\x1f\x82\x82\x02c\xc5?r-t*\x90\x81\x8a?\xc5\xba\xf4\xc4\xb3K\xcf?r\x01\x13\x97]\x90\x8b\xbf-\x05\xca,\x1ax\xc6\xbf\xc78\x9c\xee\xa9\x19\xa3?\xbd\xf1s\xe4\x1b{\xbb\xbf\x027_\x9fN\x00\xb8?:\xe0\xe7rq\xfd\x9d\xbf\x96\x9e\xd9\x82\xb9}\xbd?\xa33\x91\xa6\x10\x89\xb2?\xd8T*{Z\xd1\xbb?B2\x19t\x17W\xc0?{\xff\x00\x96\xa6\xcc\xb1?\xd4e\xbcM\xba%\xaa\xbf\x95\x1c+\xd5Z\xf4\xa9?\xf1\xf7\r\xf7S\n\xa2\xbfb\xd9\xe55\xea\xa6\xa6?\x87\xd9h8`\xbc\x91\xbf0\xd2JU\x02/\xa3?\x92\xf9\xec\xc0\xe6\x7fQ\xbf\xaa\xf5T\xe3pn\xa0?Z\xa6,<\x10\'\xbb\xbf\xe2j\x1d\xf0\xcbB\x93\xbf\xed\x07\xb7\xf2\x9e^\xab\xbf4\xd5F\x88o\xed\x9e\xbf\xa1\x0f\\\x95\x0e\xf9\x87\xbf-\x1a\xadT\xba\xdb\xa1\xbf\\*I\xbdk\xc6\x89?\x81\xe9l-\xb7\xbb\xa1\xbf\xd1\xf4\xc2\x11/N\xa7?\xcb;\xbd\x7f\xa2\x05\xa4\xbf\x93^\xf2\'\xea\xf8\xa3\xbf\xac\x86?\xb0\xb4\xc6\x8c\xbf\xbe\x80\xc0\xf3R1\\?\x93\xa4\xe1\xa2\x16\x86s?\xb6\x98\xeb\xe5y\x1d\xb1?\x90\xf5\xf5\xb4"\x8f\xa3?Y\'\xe8\xfd\x9a\xa0\xc0?E\xed0\x97t\xbf\xa2?"\xae\xb1\xb7 \xb4\xb6?\xc5z\xfan\xd6_\x8e?\xee\xee\xc1\xecP\xbf\xa2?\x8f\xecx\xab\xbc\xce\x8e\xbf\x92\x9d\xb4\xa9\xcb\xa0\xbc\xbf\xf7\xdb\x8e\xa0\xb8\xff\xbd\xbf\x10\x87\xec\x84\x9d*\xb4\xbf\xc9Nw\x8f\x7f$\xb9\xbf9\xf6\x9f+\x8b\t\x9d\xbf\xddU\x91\xde<\xae\xb0\xbfr\xefYKqL\x96?\xab\xfbF\xc1\xa8\x1d\xad\xbf-=\xff\xeb\xe2\x9au?|\xa9\x08\x15\xb2\xd5\xb1\xbf\x0f\xf2T\xaf\xdf\xa3\xa4\xbf\x94\x8b\xf1%\x86\xa8\xba\xbfA\xb3\x89PZ\xf9\xd1\xbf6\xfe\xfc\xc3\x80/\x90?\xe4\x17\xa5\xa86b\xb8\xbf\x04\xa4\xf2\x83\xff\x0c\xb2?f\x16\x86\x18\x19\\\x9e?\xcdo\x1aI\xab\xea\xb0?>\x91\xbaG~[\xb2?\r\xb3\xcb\x11m\xd9\x8d?up\xce\x1a\x95\xba\xbf?NCd\x16b\xddo?R\xee\xbe\xf7\xc9\x0e\xc2?MZhV\r\xbb\x89?\x12\x8b\x98&\x8e\xba\xb0?1\xc5\x97\xad\x9ao\x8d?\xf6A\xd5\xe2\r]\xc0?\x11\x03\x92\xa3\xf1\xe2\xa0\xbf\x99\x13M\x15x\xcd\xb2?7\x8fi\xd5:\xe7\xb2\xbf5\xe8\xaawt\xf9q?\x86\xad"x\xcb\x9a\xae\xbf\xb8\xb3\x82\x16\x00K\xb2\xbfZ7\x8d\xda\x9e\x17\x95\xbfq\x00\'\xec\xd11\xc9\xbf\xf4I\xa9\xe2\\\xaas?\xecL\x8b\x97\xa4;\xcb\xbf\x96\xddj\x9c\xda\xcb\x85?A7\x98\xb4y\xbfMB\x84D\x06\x95\xb4?L\xd6\xb0\xdf\x99x\x96\xbf\xe6\'\x8a\x17\nz\xb0?3\x07b\xce\xc9\x96\x99?e\x97AI$6\xb6?nf\xeb\x03\x08\x14\xa5\xbf\xbd\xb3\xa1\xe3\xaec\x98?\x03\x05w\xa9S\xc2\x99\xbf\x99\t\x0fAU\x7f\xa5\xbf,\x90\xe9U\x16/\x90?\xbc\x87\x1a\x1d1\xe1\xc5?\x97\x022)%j\x92?\xc2\n\xb7^\xb6\xbfZ\xce3\xbf8\xcb\x9f\xbf\xd0\x82h\xc6\xbc\r\xc3\xbf\x0e\x05\xb6WX\xd8\xac?\x8e\xe7\xaf\x11h\x87\xc8\xbf\xac\'\x8fR\x1c\xd6\x8c?g\xc6\xf6U\x95\xb8\xc3\xbf"\xfede\xcd\xa0\x81\xbf\x0c\xf5\xadr\x97\xea\xb8\xbfT\xc4r\xf4\xbe\x02\x97?j\xd2\xbb7\x80\xa0\xc7?\xe9\xb6?t\xc4&\x0e\xb07\x82\xbfh|\x81\xf2\xf9\xa3\xa2?\xd8\x95_a\x00\xba\x8a\xbf\xcd\xd2IO`\x02\xb6?\xc9\xa6\xfa\xba\xed\xc2j\xbf\xd1\xa6\xc6\xe7V\xff\xc1?>#k\xfbUu\xc3\xbf\x0bH\xb6Q\x80\x14\xa2\xbf\x03\xb1\x1f\x83q\x87\xa0?Z\xde\xf0\xee\x0f\x93\xae?h\x07\x13\xd25f\xba?%\x99_(\x0c\xbc\xaa?\xa7\xa6N\xa2yK\xb8?\xf2^\xc2\x1d\xb7u\x84\xbf\x82(\x8a\xc6\xd7(\xba?G\x9b\x11-\'\xbc\xb1\xbfk\xa7\xba\xeb)w\xa2?%\xabO\xa9:]\xb0\xbf\x89I\xb1V\xf2\x88\xc2\xbf\t\xbc\xd1\xd9\x92\x0f\xa9?o\xf6\x88\xde\x8e:\x9a\xbf\xec^RUH\xe1\xa9\xbf"\x86\xb3\xcba\xb3\x8d\xbf\r+\xf4\xbd\xe1Z\xae\xbf\x047\xb5\xfb\xdc\xa5\x92\xbf\x10\r\xbf\xa1\xd9te?+\xa5<\x110\x8f\x8e\xbf\x88\xc2\r\x0f\xdc\xe7\xb0?\x0b\xa9\xd8\x1b|\xcc\xa1\xbf\xf0t\xe8u\x99|\xae?_\x92v[\xbd\x18\xbe\xbfu\xc2\xd6g.u\xb1\xbf\x98\xaf\xfe\xd8\xfa$\x88\xbf\x90\xb9%{2\xc7\xa8?\x138\xf0t\xb2iC\xbf)\xe4\xe3\x14\x8dv\x84\xbf\x05\xe1\xa0,\xa9\x89\x82\xbfOL\x8a\xe3\xe8\xec\xb0\xbfD\xa7\x13FO\x1c\xbe\xbf!m\x01\xc8s\x90\xb4?\xe0\x9b\xa1\xa6\xdb\x96\xbd?ve*\x9b\xc6\'\xad\xbf\xb6<\xad|\xae\x8d\xbc?\x11S\'c\xee\xf2O\xbf\xbb\xc7\xb4Y\'\xad\xbb?\xa2\x18\x01+w\xcd\xab?\x0c\x9c\x06I\x07\x1f\x8d?\xc6V\xbee\xe0\xf2\xd7\xbf\x94F+1\xa9\xab\xa9?\x1f\xb7\xb2\xdc\xac1\xc2\xbf\x1e\xd2,.Y=\x96?\x11\xdc{\x89\xce\x0f\xbb?\x8f4\xa6\xcaH-\xae\xbf\xb1\x9f@Vo_\xca?{k\x19\x99\xfc\xab\xb6\xbfV1\xd8\xdch+\xc2?\x98\x17r\xfc\xd6\xce\xa0\xbfh\xc4s\x1e\xa7\xf2\x9d?\x01\x9d\xccI\x1d\x06p?\xa9\x85\x86\xfca\xa7\x99\xbf0\xda"fPf\xb3?s9\xe6\xd4\x9fY\xa9\xbf\xbe\x80}Ao\x8e\xb8?\x0f\x012P\xdd\xbb\xa9\xbf\xce\xadR\xd4O\x8c\xb7?\xf5P\xc7\xc2\xa0\xf2\xa1\xbfN\xd2\xbf|\x14\x08~?\x96h\x1f\x15\x02\x07p?\xf2\x7f\xab?\x190\xa5\xbf\xde\n\xc9U\x9ew\xa1?.\x19\x92)\xca\xcf\xb4\xbf\xab(\xf4\x19S\x1a\x9a\xbf\xeaD\x8aTn\xaa\xb7\xbf\xa2\xfa\xce\xf3\xb2m\xc1\xbfC\xab\\\xa2i\xa0r\xbf\xde\x85\xd8\xc5\xe3\x1c\xbe\xbfws;\x88f\xcb\xb9?\x9b\xce\xaf}\xa7?\xb3?I0\xd9\x05U\x96\xb4?}\xa4.9\x86\xfe\xd1?\x08\xe1n\xbd\xd9"\xbc?\x95r\x05\xbaXs\x98?2q\xc8\xefb\x8e\x8e?\x8f6W\xb6\x8f~\xb3?\xaba\xe7\x1b\xdc{\x90?\xb7a\xc3r\xebW\xb0?\r_\xbc4\x04xq?\xf3\x8e\xa44\xda\xdbb?y\xa7\\*\x04\xad\x99\xbf\xbb}\xf7\x18R[\xa0\xbf\xe8\x1a\xecq1\x12\xa1\xbfbO\xaa\xda\x1c\xce\xa2?\xd7\xef\xf9\x82"/\x9a\xbfQh\x93tZ\x1c\x9b\xbf\x15\xe2\xf1\xc6\xbe(\xaa\xbf*m\xa126S\xb9\xbf\x86\x9c\x17\x95\xde\x1dv\xbf\xf5\xbd\xb3\x94\x8d\x9c\xbf\xbfd=\x91\\\x83Y\xc5?\x8b\x1f\x99\xdd\x96#\xc0\xbf\xc5\xabvZ\x18\xa1\xb7\xbf{~\x16V\xc35\x91?\xbf\xcf\xaf\x81\x908\x8e?S\x9f&\x8b\xa0\xf6\x8a? \xcb\x97\x9a\xdcS\xc0?\xe70\xb8\x9a\x82b\x13?\xebno\xbe\x01\xd7\xce?\x9c\xdf\x03\x0f\xcb.\x90\xbfM\x16\xca\x8c\xfd\xf6\xa5\xbf\xe0\x84\xb1lG\xaa\x85?\x14\x11\x1a\xbf\xc8U\xbf\xbf\x91\xe1\xc5\xc9\xf4\x04A\xbf\xbf\xee\x95\x1f\xf2q\xbf\xbf2\x8a"\xf0\xc3\xf8\x88\xbf\x9a_,\x1f\x82\x98\xc0\xbf\xe2}kV\x05\xa1\x91\xbf\xc7\x18\x99\x8d`\xd1\xaf\xbfASMXM\x08\x80\xbf\xde\x8c\xfa\x03\xa2\xa7\xa2\xbf\xe0\xd0V0\xa6D\x89?Y\xf0\x94\x1d0\xc2\xbf\xbfL"\xc82\xa9\xa0\x89?\xa8+lw\x17\x94\xb9\xbf\x1f\x03\x97\xf52N\xa2?U\xf6\xd9\xe5\x91P\xb0?g\xbe\xd4\x150\x99\x8d\xbf\xa5i\xaeK]-\xaf?\xca\xd2\x1e\x8a7\xe2\x93\xbf\xff\xb3\xb2\xbfV\x83\xa6??wb86\x90\xa0\xbf\x8e\xf3NZ\xb3\x0e\xb4?\xc9A\xdfp0w\xb1?x\xbb\xaa\xd6\xf3Y\xb3\xbf\xa7\xfa\xe3\xac\x8c\xb9{?\xfdE\\\xee\xebm\xc1\xbf\xf7\x91\x93\xac\x95\x7f\xa7?\xbeV#W8\xaf\x90\xbf\x1e\x0c\xb8\x07\x18\x1f\x9b?\xaf\x96\xbd\xa5\xf9\x04\xb2?\xc8\xfem\x11\x9aF\xb4?\xf7\xb7\xeel\xfd\xbb\xb7?\x12I3\xeaB\xf9\xa8?\x89\x16\xa8\x15\x8a\xe8\x9a\xbf\x05)\x0cU\xc1\x97\xa9?\r-\x1b\x94\xff\x1c\x97\xbf\x9c\xef\x15\x88\xf4)\x88\xbf\x86v\x8etB\xd7\xab\xbf\xd1\xf8t\xcch{\xb1\xbfU\x87\r\xe7\xc9\xca\x9a\xbf\x95ql&w\xdcr?\xe3IBs\xbaS\xaf\xbf\xb2\xa1\x89)\xb1\x9e\xad?V\x96M\xe3SH\xa9\xbf"3\x0bdW\xba\x90\xbf\xd5\xf7\xe9\x9f\x89\x89\xaa\xbf\xfa\x16\xe3[\xf7N\x8e\xbf\x03\xb5pK\xb5\xeb\xa7?\xe1\x9d\x0eE\x06\x93\x8f?\x8d\xb2d\xf3r6\xb1?\xce~\x07|_g\xb3?\x8c\xf8\xd4\xc3\xc5\xfb\xb7?v.`\x13>\x9b\x98?T\xd2rY\xb2+\xb8?\xfa\xa4\xa2{\xeb9\xae\xbfAm<~yq\xb3?5\xa6\xa6\x88\xdat\x91\xbf<.\xb0\x8a\x03\x9b\x88?S\x92L\x03\xa1?\xa8?[\xb3\xa4(`\xda\xc0?\xa0_\x97\xf5\x01;\xb7\xbf\x95e"\xd3iq\xc2?s\xd4\xc8\x0e\xf1\x05`?\xd4\x07\x83\xbbM\x94\xbc?\xb6\x96\xb7{X\xe4\xb3?=^$]\xd2\xa9\x9a\xbfr|\xd3\x96u$\xa5\xbf\xb1t6\xb1\xcey\xc7\xbf\xb0HAH?\x08\xaf?!\x94W\xe0\xd1\xd3\xc3\xbf\x87\xe9j\x04\xa9\xbbq?\xcd!\xc4\xf3\rs\xc5\xbf\x83\x13\xc4\xd4"-\xb3\xbf)\xd5\x8a\xf8\xdc(\xc5\xbf\x01\x07\\\xef\xd6e\xb6\xbfo\xdf\x02w\x85\x81\xb2\xbf8\xd0R\x86J\xce\xa6\xbf\x8eVN\x05`\xb2\xa0?\x8cu\xb7|\x9b\xd5w?0e\x17\xf1\x1a`\xba?V\xdf\x97X&\x0e\xb1?\xd7\x99\x7f8\x94\xd9\xbe?"i\xf4\xc4.D\xbe?\x94\xb2\xd8\x9c\xb0\xb7\xb0?\x1df\x03\x1f+\xc5\xbd?\xbd\xb1Ks7.\x8d\xbf\xb9\xfd\xe83\xf3+u\xbf\x87\xa4\xcdT\x8fy\xb4\xbf!\x93\x9d\x91/\x9b\xc4\xbf\x11yq\x05\x9b]\xa0\xbfh\x94\x12E\x19\x08\xcd\xbf\x84O\x11+\x85\xf4\x9a?\xe9B\x9b\xecf\xb9\xc3\xbfN@\x92\xcf\x15\xe6g\xbfy]\'\xf7:9f?\xab\x10\xb4)*\x1a\xa8\xbf<\xe5I\x98ZA\xc0?J\xe1\x00\xf8\x89,\xb4\xbf\x86\x8d@\x14\xcb\x80\xc6?\xfef\xf2\xed\x08\x05\xb3\xbf?Q\x1c\x90\x98\xce\xc2?[*Q\x9cI\xf8\xa5\xbfl\x93^\x91!a\xa5?\xef\xb08\xd7\xc0\xde\xa6?\xdf\x85\xfad\xd2j\xb6\xbf\x1a\x80\xcf\xb4 \xea\xc4?\x8d\xa9\xcbs\xa8\x04\xc9\xbf\xbb\x9c\x0c|\xefQ\xc6?Sv\xe8\xdao\xe6\xc0\xbf\xb4\x96/e\xd6n\xa8?\x14\x806gb\xab\xcb\xbf\xd9\x9e\xac\xb4\xcf\x04\xa2\xbf\x0fM\xb3\x7f6\xf5\xc6\xbf\x01\x81\x16g\x0fZz\xbf(\x13N\xff\xcf)\xba\xbf\xeca\xb5f \x14\xb1?\x11\xde\x84\xa5p\x18\x98\xbf\xc1+\xac\xa4\xf0\xb6i\xbf\x1bUj\rZ\xbbt\xbf\x97\xa4\x0c\xa7\x14\xc0\xf5\xbec$\xd4o\xb9u\xb8\xbf>\xc5\x97a\xc1\xb6r\xbf\x1ew\xb1\x17\x92\x9e\xc4\xbf?\xd3d\xa7\xd6\xde\xb2\xbf\xee\x1b\\\xaeF\xde\xc7\xbf<\xca[\xe4Z\'\xc1\xbf\xa7\x8c+\x84\x97\x9f\xc2\xbf\xf2\x89\xe7K\x03\xcb\x9e\xbf\xe5\x88mA8\xb2\x80?\x18\r\x9f\x9e~w\x96\xbfc0V\x05f\x98z?\x1d\xc7#\xb5\xec\xda\x8d\xbf\xcb\xc5\xba\xfb=9`\xbf\xb4N\x1dh}Xz\xbf\xbcm{\x7fS\x9d\x89\xbf\x01\x99~\xbaar\x99\xbf;>L\x01\rd\x97\xbf\xa9N\xa5;\xe2\xf4y?\xf8\xd3#\x15\xb8E\x98\xbf\x1eH^\x14b\x9f\x9b?\x04\xa0\xea\x99\x8c\x82\x8d\xbfcml\x83\x8at\xa4?\x1e\xfdQ\xcfz:[?\xe6\x12l\xee\xa9\x9a\xab?v\x8cr\xd71\xc0\x98?\xaa\xb0\x0b\xafb\x19\xb2\xbf\xfcS\xac\x1c\xca\x14\xc1?\'O\x03* \xc5\xa8\xbf\xe1n\x0eDZ\xc0\xc0?\r!\x10U\x02\x9c\x93\xbf\xe1\x1b\xa3\x8f\xcc\xdd\xbd?\x88\x9dOh\xd0\xdc\xa0??\xc4cle\xb2\xbb?\x156\x9dB\n\x90|\xbf5K\x04\r \xef\xbc?\xbdpV.\xd7\xb0\xa9\xbff\xc3\xba\x92Z\x93\xc0?\x04\x12Ip\xa0\xa8\x96\xbf\xf4\xdc\xcfo\xdd^\xc1?\xd9U\x06\xa2O\x80\x84\xbf\xcc\xfee\xd7t\xb5\xc0?\xc4{+\x94\x0c\x82\x95?8Z1\xcc7\xef\xbd?\x00j\xd1\x82-\xfd\xb1?\x9a ,\xe2\x19D\xb7?\xa1\x88\x94\xfd\xa9U\xab?_\xf3\xeb\xa7z\xda\xbc?\x9b1"\xa9U\xa1\x92?5~\xae\n\xee+\xc0?\xd9\xf7\xeb\xc5\xcfp\xc2\xbfH\x01\xd1B\xa2\x02\x90\xbf\x9cCl\x1ad\x84\xb3\xbf\xd2\xd7L\r\xe3\x83\x9e?\xd3\x8d]\xbd6\xaa\x9b\xbf\xb7\x02Z\x8c \xbb\xb1?e?\xe2\xcb\x07\x96w?/\xda\'\xdc(\x95\xa6?\x10\x96J\x93\x93\x07\xa5?\xdc\xdf\xdd5R\xdb\xa2?N\xbc\xad\x92M0\xb7?\xa9"\r\xf2\xfd:\x94?Gs\x80\x0f\x86\xc8\xc2?\xaf\xabL\x15D\xfc\x93\xbf\xf0\x05\xcd\xf9\x80\xe4\xba?R\xc40z\x10\x07\xa9\xbf\x86]\x89vxk\xa1?\x0c\x9a\xa8(>,\xae\xbf\x7f\xcd*\xbf\x1fK\x93\xbf7\xeb\x8b\xcd\xbeU\xa7\xbfCu\xbcMw\xac\xaf\xbf3\xde\xa7\x96]\x00\x9c\xbf\x10W\x83\x80\xc3\x11\xc0\xbf,$\xcd\x9a\x97\x10\x9b\xbf\xa6\x8d$\x01\x1d\xe0\xbf\xbf\xbcT\xce\x15\xa1\xd9\x94\xbf~\x0eR\x95^\x86\xb0\xbfZ\x8c\xc7\xe9\xcf\xf2\xa9?\x03q\x1c\n7\x88\x9b\xbf\x83|{\x85\xa1$\x9b?\xce\x8f\xe2\xf1\xa9\n\x90?g\x11\xb2\x9d\xa2\xa0\x8c?T\'\x03\xd8\xa1\r\xbf?\x06\t\x87\xae\x80\x1e\x92\xbft\x1b\xb8q\x9d/\xb5?\xe7\xfa$\x8cWp\x91\xbf\xa3O:\xe3X\xfd\xa4?\x90\xef\xbb9)\xf5}\xbf\xf8\x92[\xf2\x8d\xed\x84?\xde\xc1\x97#$O\x88?\xff\x8f\xa2\xa3\xf9\xcf\x90\xbf\xf3\xde\xaf>2\xc4\xb9\xbfm\xe3p\xeb\xe6U\x94?\x9d4A{\xae\xa3\x99\xbf1\x07J\xc6\xf3\x8e\xa0?\xe8\xe7\xd6\xe6\xf1Y\xa0?4\xbf@\xf4.\xd3\x82?\xf1\xa3\x80\xfd8\x80\xa5?\'\xc0>\xcc\xc6\xe7O?\xc0\x9f\xad\\:)\xa3?\x982\xc8\xe1\xa2\xee\x81?\x1a\xab,\xe1\xa3\xb2r?\xd8\xc5\t\x96O\x0bx?\x9a\x8cI\x92G\x17\x9c\xbfr.\xaep.a\x8c\xbf\xbe\x835\x1dY\xb7\x9a\xbf\x99\xa8\r\xb4iG\x94\xbfXD\x80\xcd\x9dh\x7f?\xd6A\xbbzB9@\xbf\x96>--0\xe8\xa0?:\xa7\x03=L4\x96?x\xec?\xc1\x9e\xd9\xa6?\x98*\xe4\xf8bk\x95?\xaa8q\r\xf9\x8b\x94?M\xa2\xb5\xb4kQ\x93\xbfMc\x9e\x9c%\xe4\xa9\xbf\x1a=\x016\xaeY\x9b\xbf`\xd8\xab\xaf\x07E\xbc\xbf\xddG|D`\x03G\xbfn\xca\x1c\xb0\xb1\x80\xb5\xbf\xc1\x0cv\x8c\'9\x85?Q\x92\xf1\xd3\xed\x04\x8e?S\x8d\xac\xb4\xf51\x92\xbf\x99DL}\x1f\xdc\xc0?=\x9e\xe0J\x9d\xa9\xaa\xbf\xa1JR$\xbd\xcf\xb0\xbf\x10\x94c,\xbb\x18\x9d?p\x0f\xea\xb4$\xde\x8e\xbfcd\xe9\x9e\x87\x9f\xa3?\x9f\xd7F\xdd\xb2\xf2b?XxqH\x9c\x0f\x9e\xbf\x911\x9f\x88>\x0f\x9e?\xb2u\x05\x16M\xb5\xc1\xbf-\xee\xec\xb3\x1b\xf9\xb1?\xbdd\xe8\xa1z/\xc1\xbfvlxi\xc1\xb1\xbf\xbf\xfd\x8d\xb1zR\xa2\xa7\xbf\xf1\xc8G)\x17s\xb3\xbf\x99Bf\x92\xf4\xdd\x8e?^\xad\xfcV&\xec\xa4\xbf\xc0\x1b\x97x\xe5=o\xbfoDrD\x87\x12p?wS\xf1-MV\xb7\xbf\x93)\xe7n\x83-\xb6?W\xe1\x0e\xb7Qr\xa9\xbf\x16\n\xe8c\xeeU\x97?\xbd\x98K^\xcb\xec\x9b?x\x1e\xc8\xafq;\x96?\xac\xa6\x9a\xaf\x99N\xbc?\xba\x12\x9e\x7f\xf5\xfc\x92?\xac3}\x03Q\x98\xc8?gn\x19\xad\xd5\xc1\x87?\x12\xeej\x0c-\xe4\xb1\xbf\x82\x18\xf4k\xa6\xce\xbe?.=cJI{\xad\xbf\xe9H\x90\',9\xa8?\xbf^_\x0f\xbeY\x86\xbfx8\x1c\x8e9k\x8f\xbf\xc3\x87(k\x9e\xcd\xa0\xbf!\x82T\x9f\xc5\xa3\xb1\xbf2:\xf7b\xf6\xa4\x9c\xbf\xc7\xe1B\xcfZw\xc0\xbf\xc9\'*\xaaU\x90\x9b?\x95z\x1f\xf3Y4\xa2?\xf9 \xd35\xf3\xc1\xd4?\x8d\xc4\xdb\xa223\xa1?L.~n\x7f\x81\xd2?\xd8\xe9\x98P\xea\xa3\xb1\xbf\xe4\x0f\x80\x8c\xdb\xce\xc4\xbf\xee\xbbQ\x7f\x07\x92\xb6\xbf\x9bn\x17\x9b\xe0\xb2\xc9\xbfS\xd9\x97z\xa8\x95\xa5\xbf"\x02\x89W\xb4(\xc5\xbfaz>\x02\x85m\xb0?NL\xfbL\xe8\xe4\xc3\xbf\x8c\x8c\xe8\xc8/\xb6\xba?7S]\xcd\xd9\xb1\xd2?\x92\xc7\x19!54\xba?Z\xd6~\xbd\xecW\xd5?1&\xd7\xf5\x8f\xa6\x13\xbf\x8bN\x04\xfb\xe3_\xa4?WY\xdc\x0b[\xc3\x82\xbf\xa3\xaf\xf3\x84$_\xc2\xbfC\x0e\xea\xb8\xd4L\xaa\xbf\xf9\xcc\x13\x04\xafB\xc7\xbf\xa0O+\xcd\x0e%\xac?\xcaM\x15h\r\x95\xa0\xbf\t::\x1b\xa0\x1d\xc2?3-<\xb7\xd7\x90\x9c\xbf\xba\xc8\xb8\xd0\xa4`b?.,\x9f\x9d\xa7y\x92?\x89e\xb1\xf8{k\xb9\xbf\xeaN\x9e\xd0`\x94\x9a?\xabx1H\x87\x9f\x85\xbf0\xb8~]\xd5\xe7\xa4?\xca\x05N\x7f5\xf0\xb5?nh\xc9\xf5\xedT\x96?k\x91\x03\xdfb\x05\x92?\xaaJ\x13,|Y\xae?(\xd9\xffZV\x0f\xa6\xbf\x9e\x8a\xdeb\xee\x7f\x97?Qj\xc3\x05\xcf\x9e\x99?\xffpPF`;\x7f\xbf\x88Wq\xa0\xfb\x9c\xad?\xd3\xa4z\xcew\x93\x8f\xbf*\xf2\xcb<\xba\xbf\x9a\xbf\xf8]-\x9fR\xc7\xa9\xbfe\x92\x17t\xbb`\xbb\xbf\xed\x8c\xe0\xe3\xd1/\xb2\xbf\xd3z\x03(?\x9b\x8b\xbf\x9c\x8aX\x85Is\x9d\xbf=c)\xf9 \xb6\xbc?\xc6\xe9\xd0\xe8\xda\n\xa6\xbfh\x938\xcc\xc6\xab\xbb\xbf\\\xd7\xc8\x80\xf3\x0e\x91\xbf\x02\xb8\x97C\xd7\xdb\x91\xbffI\x05\xe1\x9e\xba\x92\xbf\x84\xc3\x98\xc1\xc0\x8c\xb4?\x87\xda\xc0\x87{;\xa3?\xf1\x11)@L\xe6\x90\xbfu\x8c\x18\xcakD\xab?Rq\xc9\x8d;\xc0\xb2?\xb5o\xb7\x83\'$\xa7?x\xddth\xda\x85\x96\xbf\xf1\x08\xc7\x95s\xbc|?&\xd4X\xd3du\xbc\xbf\xa3\xa9R\x85X\x19\xb9?x\xb0v9\\\xb1\xc5?\xbd],\xc6P\xd2\xa2?#\xf7\x8e\xa5\xc3\xae\xbe?\xc3\x9fo\xbb\xb1\x9b\x95\xbfP\n\xf4\x1bF\xed\x9a?\xf1\xf0a\xce\xa2\x10\xa3\xbfDs\xb7f\x83\x10\xbd\xbf\xdc\x1e\xfc\xa3LD\x8b\xbf\xe6m\x1a3m{\xc7\xbfAH\xa2\x9c\xaf\x03~\xbfp\xad\xf9n=\x04\xbf\xbf\xa5\xfa\xe0\xe4\x1f\xcd\x91?}D\x99\xda\x14\x17\x9d?\xe7w\xec\xc2|!\x99?{\xde\x93\x93\x04C\xc5?\x18\x14\xa9\xcd\x8e\xa4U?\xb4\xc9\xd2\xa3\xa4\x7f\xca?\xfd\xd2\x08\xe5\xf0\'y\xbf\xe3\xc2\xb4\xbeK\xb7\xc2?\x9c\x88\x99\xc9\xff\xf0l?qr\x90\x98&?\x80\xbf\x13~{\x14\x11j\x96?!4)\x91\x01\x11\xc0\xbf\x10\x83\x01=\xd1\x8f\x87?\xa3{\x8cQ\x81l\xc6\xbfV\xc0\xc8\xf2q_o\xbf\xf08\x06^\xec\xd4\xc0\xbfd\xad\xf4\xacC{\x84\xbf\xbeU\xdf\rg\x1aw\xbfI-RD\n\x95\xa5\xbf\xd0S\x94\xb2a\x9e\xbf?\x83\xfb^\x980q\xb5\xbf\x1c\xb1\x93\xeb\xc8\xa5\xcb?q~bl:M\xd4?\x98\xcd6KP\x1c\x89\xbf\xab\x1cwTG\x01\xc7? \xba\x9f*\xe7u\xa3\xbf\xe1\xf9\xa9\xa8\r_\xa5?\x017b\xfd<\x19\x8f\xbf\xe2K\\\xb8\x88\xcc\xa2\xbf\x95\xa4\xc2\xd3\xa5\xf0\x95?g\xe0!M=\xda\xbc\xbf\xcfI\tQ\xfc\x01\xb1?\xb2\xd1\x04\xddkh\xa2\xbf\xdcK\xd4\xcb\xea\x82\xa8?\xda\x12\xdd\x85{~x?\x7f\x10\xcer\xa8\xf1i?B\xa6B\xa0\x1e\xa5\x93?p.\xael\x17+\xb2\xbf\xe6,m:z;\xb2\xbf%Q\xad\x0c\x84\xfa\xc1\xbf\xea\xdc\xd4\xce1\xc9\xd0\xbf9\xf0>\xfc\xd0\xc3\xb1\xbf{\xd5\x05\xa35`\xa5?\x1a\x02\xfe\xdaE\xf7\xb0?X\xaf\xd0k\xeb+\x94?\xc9\xffGf\x8ab\xb2?\xfd\xbf\xfffery\xbf\xcb\x8f4\x05\xfdK\xb3?\rr\xab\x93$\x04\xc7?W|\xe0\xea\xc9\x01\xaa\xbfU\xef\x8b\xd4\nS\xbb?\xca\xb5]\xa0\x0eg\xba\xbf\xbb\x9e\x9b\xfc\x19\x19\xa5?\xf9\xf0\xa3\xfd\xba\xc8\xad\xbf\x8cS\xfd\xe2\x8c\x06\x8b\xbfmo\x9e\xed\x04r~\xbf4\xc76hgH\xba\xbf\x9e\x9e\xa5>\x19\xd9\x9b\xbf\xd6\x14%\xc7W0\xc4\xbf\x8f\x14\xab\xb4d\x98\xa2\xbf\xf3/A08\x91\x95?\x14\x896Z\x0e\x9d\xb0?\xa4y\t\xbfP\xe0\xb1?\xc2\xd8d\x93\x81\xfa\x91?Cg\xe8\xcf\x10y\xbc?,/P\xf8\x82\x1a\x9a\xbf\x1b\xa4\xf2\x959\x0b\xbb?\xf1P\r8^\xbf\xa9?;\x11>\t\xa1\xe1\x90\xbf7-\x8f\r\x10\xef\xb0\xbf*cv\x9cg*\xb2\xbfn\xe0\x0c\x7fl\xd4\x93\xbf\xab\xdd~\xf5q\x98\xbe\xbfI\xd3\xa6\xe2\x1d\x91\xa0?\x9a\xb6\xa8\x9f\xf4\xb0\xa4\xbf\x0f\xef\x7f\xb5\x1f\xe7h\xbf#\xc5\xf0\x8a\xaa\x87\x92\xbfY\x9f\xfd\xd9.\x1b\xac\xbf\xaa\xda\'(Q\xba\x85?\x9e\xb0S1U:\xba\xbf~\xa4\x0e\xb6;\x9c\xa7?\xa3lu\xa5\x81n\xb1\xbf\x164\xacZI\x04\xab?\x99\xca\x07p2`\x86\xbf\xfa:\x88k\xcd\x9b\x97?\xc2\xabj^\r?s\xbf\x02\x0e\xc2\x9a\xa3C\xa8?\xe4\x8d\xc8\xb5\x8e(\xa0\xbf2G\xa9\x8ar\x12\x97?\xe6>8\xfa\x95=\x9a\xbf}[\xbb~k\xbds?bX\x9a\x19\xa0E\xa9?.x\xcf\x12\xb7\xa6\x87\xbf\x94\xcd\x9d@\xa4\xa4\xb6?\xe3b\xfa\xab\xe5\xb9\xa4\xbf\x94\xb6\xcb\x17\xd1?\xb2?\x16hax\x99\xda\xad\xbf\x9c\xfe\x1c\xce\x0c=\xa2\xbf}\xf33\x88\xfe.\xb3\xbf\xbe\x14\x95\x9d\x07\x00\xc1\xbfvZ\xf5\x9f9s\x97\xbfq\xbb\xeb*o\x1e\xc1\xbf\xff\xd9\x17\xa4\xa2c\x99?\xad\xb2\xb2\xdbb\xbb\xb1\xbfy\xe4\x04\x8e\xdf\xef\x9e?~\xb9)n!\xb0\x8a?\xa3=\xf1"P\xe6\xaa?W\x16\xfb\xb5\xa6\xf5\xb3?\xc0\xe1\xb2\x06b\r\xb6?o\xbdo\xf2(\xc4\xd0?\xb9\x02\xd2\x82\x1c\xe2s?tCz3\x92\xf8\xb2?1\xd1C\x91&I\xa4\xbf\xf0\x1f!p\x1f\xf8\xa1\xbf\xc2\x85\x02\x0f\xb7C\x88\xbf\xb0f\xa0\xcck\x9b\xbe\xbf\x88h\x97i\xa0\xd6\xb4?Aw\x90Y;F\xcb\xbfaf\xa3\xb3\xad\x0f\xcb?\xac\xfdP\x86\xd4N\xc2\xbfQ\xb1\x89\x9d4\x07\x95?\xab\x88Y_\x8d-\xb8\xbf\x9a\x02\xb7\xc4\xe6w\xb6\xbf\xe2\xc7;Q\x13$\x8b?\x0c\xa6\xc1b~\x0e\xbf\xbfXh\x9d \x84\xc2\xbf?\x0e\x01\xc3\x96\x97\xea\xb0\xbf>\x01\xc5B\x86d\xc9?\xc3\x97?\xad\x1a\xf4\xb2\xbf\x8a&\x1c\x86dx\x86\xbf\x8d\xb8r:u\x01\x9b\xbf\\\xf9\xc8\x93\x04\xd2\x94\xbf\xf7"O\xccU{\x9e?\x9b\x10\xc0\x0cPX\x9f\xbf|\xe8&B\x83\xf6\xb1?\xdbj\x96 \xc6}\xa5\xbf\x11\x8e\xfc\xa2L\xae\xba\xbf\x97N\x1e\xf1\xfa\xf4\xb6?\x1aZ\x87eO\xf8\x84\xbf\xdc;\xac\x8ee\xcc\xa9?\xf5\x84^\xc8\x1f\x95\x9d?\x12\xfe\x08\xa0\xd2\xe1\xa3?\xceY\xc57O\x91\x93?\xad\xdb\x84-9r\xaf?\x91\x8az\xcb\x9a+\xa4\xbfc-_\xfc\x19#\xb1?\xb6O\xde\x9a\xf1TW?!\x1dCO/\xe2\xb7?p\xa5\xd3\xf0\xb1\xe1\xc0\xbf\xe7\xaf\x9e\xf0?\x98\x95?n\x0c\x81\x0c=8\xc1\xbf\x8d\xd6\xbb\r\x9b\r\x90?\xd8\xea\xc9\xb7c\xe2i?\xaa\xe1#\x89\xd7\xd4\xa1\xbf\xc5\xb1\xf8>\x8a\xc3\xb0?\xb8\x91B\x98\x822J\xbf\xe0af\x18\xf8\x84\xb0?a\xbb8o\xab\x90\x90?\x1f\x9f\xb0*\x9f\x86\xb2?\x9f\x11O:\xc7\x97\x80\xbf/\xef#\x86S\x14\xb6\xbf\x98\xe8\xce\x96x$\x8e\xbf\xe6\x94>\x849\xfd\xb9\xbfs\x8f\xa5\xb1]\xd0|\xbf\xa3\xb3\xff\x9d]0\x8e?\xff\xff\xba\xab\x06\x10\x91\xbf\xd0\x17\xb5S6x\xb9?\xbd\x10\xc0#\x12\xda\x82\xbf\xd9\'\x84{p\xdc\xb9?\xd2]NIm\xe8\x90\xbf\xa5\xebG3]Ir?\x86u\xa8\xd7+\xfe\xcd?\x87\xc5\xfd\xa4\xf4\x9c\x91\xbf\xb7\xb8S\x1f\x90\x95\x86\xbf\xc5qL\x08J\x07\xa4?\x18!R4\xc7m\xc2\xbf\xf8\xf3\xcb!h#\xa6?,]\x8d\x9aQ\x9d\xb5\xbf\xf1Z>\x02\xf7U\xb2?g\xfc*\x87l\x01\x9b\xbf\xa3\xd2\x0b%\xc6\xfe\xb1?\xea\xf8*\x9d\xe2\x89\xb3?\x9a\x94\xba\xe1\xecH\xc0?\xd6\xbf\x0bGP.\xc0?\xa1k\xbd\x90z\xb6\x9b?\x12\xb7`\xfeF\x04\xb8?\xcf\xbeC\x1d\x9el\xa1\xbf\x86z\xf6\xbc\x06Nk\xbf\xa0c\x82\xfa\xd8\xbf\xb4\xbf\xecW,%\x98z\xb0\xbfe\xf0S\x8f\xc9L\xc1\xbfn\x17\xdb#\xc6s\xbe\xbf\xa0XqC6F\xc4\xbf\xa0\x18\n\xdc\xd4m\x94?JK}\x03\x17i\x92\xbf\xc4\xda!S\x8f\x08\xd0?\xd9\x8a\x1e\xa2{U\xc2\xbf{o\xfd\t^\xdb\xc0\xbf\x0f5\x0e\xe9\xf0\xe9\xbf\xbfQc<\xb4\'\xec\xb4\xbf\xbb\xda\xc5\xe0\xa7\\\xb6\xbf\xb6\x11\xebZ3+\xa2\xbf*\xde\xf1$\x950\xb7?\xd45j\xceZ?\xc2?!_\xb5\x16\xae\xb8\xc4?A\xf80qE\xc0k\xbf\x1d\xef&2\x90\xaf\xbd?\xf9\xf5\x81\xf8\xc7\x95\xad\xbf\x88\xf2g\xdbA\xbd\xae?\n\xb9|05\xf5\xbd\xbf^*\x85$\x81\xe2\xb3?*V\x82\xd9lF\x86?\xba\xa0=!Fq\xa8?\x9b\x04\xca\x10\x96?\x9fVy\xa6\x02d\xc0?>\x13\x86d\xbb\xaf\xb5\xbf\xb2&\xc3G\x18\xfa\xad?\xaf\x9aU~mm\xbe\xbfL\x027\xa1{\xa3\x97\xbf\xf5\xf3\xdf\xc4\x0c1\xa1\xbfo7\'ZQ\xd5\xc7\xbf\x0c\xfb\x10\xed\x02\xff\xb3\xbf\x97\x8f\xd8[\xfa)\x87?\xc0\xd2%\x90i\x8fh\xbf@\xdd\xf3\xa6\x91\x1c\x94?u\xa05\x8d\xb7`\xb3?X\xeb\x04\x1a\xbcj\xa5?\xf8\xda\xef\xed\xe8\x08\xc1?v*\xcc\xf3\xd7\xc3\xb0?\x99sP\x18\xa3\x9b\xb5\xbf#M>\xf6\x807\xa7\xbfr\x19\\\x85\x1f\x02\x82\xbf2\x03LR+\x99\xac\xbf\xd1}\'>\xec^\x95?\xfb\xd5\xff]\xa3I\xa9\xbfh\xc4\xc7-Av\x95\xbf\xdaB-\xbbt\xde\xaf\xbf2N2\xac\xce\xcc\xb7\xbf\x0fa\xac\xed`\xe5\xba\xbfT\xd8<\xbc\x87>y\xbfu{\xf6\xda\xb1;\x9b?\xc1\xd4\xaaR\x0eX\xb2\xbf\xec\x14\xa8\xde\x02|s\xbf"|=\xbdPD\xab\xbf\xe9]\x93\xc5\xb0\xca\x9e\xbf\xea\x063\x05$H\x80?L\ns\xc6\xa7.\xb2\xbf\x8e\xec\xc1\xcc\xdc\xff\xa2?\x17\xf7y\xdf\xde\xa6\x97\xbf\x14\xe9\xad|D\xf8\xa2?x:\xd9\xaf\xc7\xfcr?\xfbA.|z\xaf\x9d?D\x08\x8e\x9e\xee\xa7\x9a?[,TU\xefE\xaa\xbf\xea{-\xe0\x1e\x94\x8b\xbfV\x81\xfe\x91\x9e\xd3\xa3\xbf\xeb\xae\xd7\xe2\x1d\x17\xb1\xbf\xab\xd2[\xf9<\xe1\x91?\x80\xf0\xb6\xa5q\x16\xc3\xbf|f9M\x91\xe4\xa8?\xfb\xb4\x91\xf0\xee\xf8\xb2\xbf\xba\x1f\x9c\xa2\x11\xb5\xa9?\xa8\x0f\x80\xf7k8\x80\xbfB\xd7V\x0b\x0c\x18\xb3?"\xdb,\xc9\xe9\xdb\xa2\xbf\xb6\x90\xab\xfd\xaf>\x8d?\x8c\xfd\xc4~\xc7@\xb1\xbf\xe46\xb1\xde\xcb\xf3\xa4?9\x05dn\x9e(\x99\xbf\x00\xe2+\xb1\x16\xa5\x9d?6>M6\x1f\x9b\xbc\xf4\xee\xb7?$\x80\x0f\xab\xe9D\xb2\xbf\xdeJm\xf2\xfc\xec\x9a\xbf\xf3\xa5\xc4\x82\x96\x1b\x8e?\xfc\xe8\x9bJ)\xa0\xb7\xbf\xb0E2\x10n\x0b\xc0?\x08\xa0\x9a\x9b\x84\xc6\xbf\xbf&\x96(\x0b\xbe\xc4\xcc?\xf6\x059\xe5\xb1~\x99?\xac\xb5&=\xf2c\xc5?\x8c\xe9\xcc\xa1Xb\xbe?\xe2P\x18\xbe\x080\xb1?\x03\xa9\xfe\x1a\xd5\xc5\xc5?\x8e\xf9hz)\xa8\xad\xbf\x8f\tJn\x19\xe4\xca?@\x1fs\x07\xdd(\xc7\xbf\x12\xf8\x8a8\xe6r\xcf?\xd4\x06K\r-\xbe\x9b?\xde\xe4\xa4\xf7K\xc4\xcb?\xa0\xd9_\x7f\x88\xf1\x9c?Fh\xce\x1cm\x9e\xc9?h\xc5\'\xb4\xc7\xd4\x85?\x10\xb0i\xe9\xe2U\xc2?@\xc3i\x9c\x87\x98\xb3\xbf\xb8\x9c\xd5\xccA\xc9\xab?4\xb5\xbfWoE\xcc\xbf\xe4-\xea\xa6\xee\x12\x93\xbf\x00\xa4g]\x00c\x07\xbf\xea\x97\x15rfr\xa5?\xd8S\x00\x8c\xc2\x86{\xbf\x12F\x99\x97\xd1S\x99?\x80\xf2h\x1d"\xe2{\xbf\x08\xba\xf8\xbc\x19\'r?\x00Q\xde\x1d\xb6\xfa\x81\xbf\xe0\x94T\xe0$Q\x93\xbf\xe9\xe4I\xc5$\x0e\x97?pM\x0eD;\xdcQ?p\xe3\x8ewo\\p?TFb\x1a\xe9\x92\x90\xbf@\x1a\xb5\x95\x81\xbcC\xbf\xa2\x1aq\x87\x90\xf7\x98\xbf(\n0\xa8D/\x8c?W[\xd6\x04\xa7>\x95\xbf\xbb\x87OY "\x9c?\x80\xd3\xc9~C\xaby\xbfN\xcf+\xed-\xb3\x90?\xb2f;\x8b\xee\xc4\xc4\xbf\xadV$\xcf\xb2t\x92\xbfkn!\x88\xe0\xd3\xc0\xbfi/\xba"\xf0\x99\xb3\xbfT;{x\x0c}\xbd\xbf\xccow/.\xe7\xbb\xbf8\x88I\xdc:\xf0\xb8\xbf.Q\xe9\x92\xe2d\xab\xbf\x08\xcfoY\xd2\xe2\xc1\xbfi\x97Ov\xedY\x91\xbf|%\x92\xbdx3\xc4\xbf>z#\'\x8cv\xb7?\x8c\xe3\x0f\xc2\x87R\xbe\xbfU\x0f=\xbe\t2\xaf?\x05Ro\t\x06Y\xbc\xbfL\xd9m\x18R\x0fi?|\x00[KZ\x97\xb7\xbfB}\x02\xe5\xe5\xa2\x86\xbf\xee\xb9S\x87W>\xb7\xbf\x9b\xd8\xda\x90\x9c\x87\xa3?\x99\x06\x1f\xd2\r`\xbc\xbf\xb0*\xe1>\x84D\xb1?\xdf:`\xb5q\xaf\xc0\xbf,\xd43$\xf4\xd5\x8f?\xe9\x17\x98Is\x12\xb9?\xeeX\xfc\xa9o\xc9t?\x99\x90V\x04D\xba\x8c?\xf8E\xb0\x88\xa7\x97x?\xefe\xf7_\xd3\x8e\xa5\xbfX\x18H\x8e*\xabS\xbf\xbbI\xb1\xa2\x17k\xa2\xbf\\\x97\rs#k\x8e?\x05\x9dJ\xf1_\x0f\xa3\xbf\xf3r#J\xf7{\x90?J\x84\x0f\xb15\xa5\x93?\xb5XA\xb1\xc1o\x87\xbf\x92C \x9e\x8a.\xb7?\x1c\xa0\xbf\xcf\xf7\x07\x90?Z^\xef\xd9\xaa\x02\xa0?\xf0$\x95\xf2\x95\xabT\xbf\xa2\xaf\xe7\xa2\xde\xaf\xa7\xbfH\x0b\x89]\x85\xc5\x94\xbf\x83]Q\xdd\x17\xee\xa5\xbf\xf5\xbc\xee]\x18\x86\x9e\xbfZi(\xef\x1ej\xa8\xbf\xfa\xb1\x9e\xda\xe6}\x9f\xbf\xb2\x93J\xf7\x12u\x9b?`\xbc\xaa\xd8=\xbei?\xaaa\xc1\x17\xb3G\xbc?\x1e\xf0{\xa3d2\x9b\xbf\xaaN\xa8\xde,\xf3\xab\xbf\xca\xe8s\xd7_\xe4\x8f\xbfnD\xa3A\x95\x82\xa6\xbf\xc0\xd9\xb9\x08\x92\xc6\x80\xbf\xbf\x1d\xac\x0f\xdd1\xa8\xbf\xce\xf8]L\x07S\x86\xbf\xa2\x18\xed\xd4% \xbb?\x0f3\x1c1(\x15\xa3?\x88\x0c\x80\xcd\x8aG\xa1\xbf\xd6\x9a\xae\xc8*\xfc\x95?;j\xb4qVo\x9f\xbf\xfe6\nK\xe39w?;\xdeC\xaa\x9e\x0e\xa4\xbf\xa7M&(\xdeR\x81?4\x0b\xa8\xdd\x86\xc9\xca\xbfqy\x91\x940\x9e~?\xe7\x86\xabD\xcb9\xa0\xbf\xb8iF$Q\x97\xa0\xbflX\xb6\x17#+\xbe?o\xf8\x10\x94.\xe9\xaf\xbfE\xb8\x8d\xb58\xaf\xc4?Eq\x80Z\x00\xdd\x9d\xbf\xc2\x04W\xbf\xfe\xff\xb5?\xecu\xe8\xcdN\xc9\xa3?`\xfd\x19XN\xb1\xa1\xbf\xbf_\x06\x90\x03\xbd\xb2?\xcc\x1b_jR\xc7\xb6\xbf.\r$T\xed\xa4\x91?\x9b\xbcK\xa1\xd2m\xaf\xbfD\xc2\xe9\x80\xccj\x88\xbf\x10\xc6\xe5e\xf5F\x84?\xca\xb8O\xf7\'\xd3\x98\xbf\x00=\x80.L\xa2\xab?\x18\x97_\xdf(-\x87?\xf3\x8a*6J\x07\xa7?\x82\x8e\x18G\x9e\x0e\xa5?\x9c\r\x96\xe4ZY\x84?\xcc\x86\xbf\xf7\xcd\xa3\x85?\x9c\x98\xf7w\xc2\x16\xa9\xbf\x06\xfa\x84\'\xd6;\x93\xbfiE\x86\xd0\xf6\xd9\xbb\xbf\x17\x88t\xa8$\xac\x94\xbf\xc19r\xe5,\x12\xb3\xbf\xd0\x023l\xb0\xe2n?%\xe0\xf6H\xb8\x88\xa0?\x90\x99\xc6\xe1)\xb6\xa2\xbf\xd2H\xc0\x90\xca#\xc5?\x15\xd9~\xe9\xe6w\xc2\xbf3\x03\x01}\x9fS\x9a?\xeb\xe0\x82uA\xd7\xc1?\\\xa1W\xd5\x05\xae\xc1?p\xa1\x11\xb3\x8dA\xc7?\x9c\xe4T\x879\xbc\xaf?\x0c\xdc\x1f\x14QW\x8b?F\xe1\x1e\xe8\xb5\xbf\x82?\xb2\x08\xd0\x9d\x9dz\xce\xbf[:I\x17\xd27\x99?\xae\xc6x\x88=&\xd1\xbf\x96\x1aV\x9d\x81s\xa7\xbf8\x88\xfb\x81\x95D\x86\xbf\xb9\xa5\xadP\x8c\xd5\xa2\xbf\xea\x9f\xbf[\x02M\xc3?\x01Gc=u\x04\xb7\xbf\xaa\xc1\xaat\x00\x17\xc3?\x99\x9a\xa8\xd0\x93\xfe\xc1\xbf\xbb\xdc\xb8O\xddf\xab\xbfr\x81@X\xd8\xde\xa0\xbf\x94\xa3\xd9\xd0\xbe\xe6\x8d?\xa1L\x84\xa5{\x9f\x9e\xbf\x84\x0f\xdf\xc1+\x9dd\xbfl\xf7M\x96(K\x8e\xbf.\xe8\xcf\xf3\xb8\x85\x93\xbf@\xdc\x83\x13y\x92Z\xbf\xb2\xc4\xc0\x83\t\xfb\x9d\xbf\xa9~\x1f\x19\xdf-\x87?W\xf7n7`\x83\x96?\x90\xbfB\xb8\x84\x12\xb2\xbfnn\xed\xf3i\x96\x7f?\xf8r\xfe\xe8q\xfd\x9b\xbf\x00v\xdf\xb6cA\x10?\xd8\xe7\x86\xc1\x85\xf7x?R\xea\xca\x84\xd4\xc2\x8c?\xd1\xe7\xa4\xa2p\xa1\x9c?_O0\xd4\xe2\xa2\xa3?\x04l\xf4\xda,>\xaa?0L(\xb3&\xc3\x94?\xabT\xbb\x15\x0e\xd5\xbd\xbf\xbb\xa7\x0eU\xbd\n\xad\xbf\x95\xb8\x19P\xcd&\xb4\xbf\xcce\xf5\xc6\x9b\xe6\xab\xbf\xc2\x94?\xb4\xc7\xc6\x81?\xce\xa4\x08 \xf0y\x9f?\xe2\xd3\x0b\x07+-\xaf?\x8a\xb4\xbb,\xab\x85\xae?\xf4\xe3XW\x85\xf3\x82?$(`\xef\xae\x1d\xab?M }Z\x81d\xb3\xbf\tu\x91\xaa\xbb\xc5\x93?\x95\x8d.\xc1\xe3u\xa3\xbf \xc5\xe2\x1e\xb7\xb2\xad\xbf\x80\x89c\xcd\xda)d?[\x1d\x7fg\xa4\xdb\xaf\xbf\xdcuL*\xdf\x10\xb5?x\xd9\x08\xfbk7\x91?\xefgv\x11E\xb5\xc0?\x9d\x9ao|\x8b\xf5\xa8?\xe6\x9d>\x92_\xc3\xba?\xe9\x8do\xa2\xe8\x19\xaa?x\x9c@\x19\xd7a\x9a?\x1c\xb3\x7f\xf0\xd0\xbb\xa0?\xc0\x07B\x90dM\xba\xbfP\x8f;\x90\xf7\xb7\xa8?&\x8f"\xb7Y6\x8c?\x8d\xe9\xc4oq\xe5\xb5?:\x8dZ\xb1\xb1B\xb3?!\xebgc\x16\xc0\xa2?\x19\x05\x8d4\x8e\xeb\xa0?\x8fzc4;\xca\xb6?q\xa5\\\xc6\xd4\x90\x98\xbf\x11$\x98D\x1b\xf7\xaf?\x06\xee\xafm\x1e\x9a\xa4\xbf?\x8b\xe6;\x95\xf6\xab?\xecf\x9c\xa7{\x18\x86\xbf\xee\x8d4\x96\xf5P\xb2\xbfW\xcc\x00\xcdF\x13\xa5\xbf>l\xb86S)\xc6\xbf5K\xc9\xabWO\x9f\xbf&\xc4n\x9a5\x8b\xc7\xbf.\x92\xfd\xc4\xb8\x90\xa0?[\x15<"\x9b\x96\xc3\xbf\x9c\x0fZ\xee\xc0L\xb6?\xb0\xe2]\xce\x87\x91\xa6\xbf\x90\xcavh\xd0vs\xbf\x1a5<\x8bB\xdb\x90?\t$\xd4\xfa\x03\xb5\xc0\xbfT\xdf\x9d\x8a\x94\'\xc4\xbf\xd7b\xcc\xec\x96+\xb4?`\x10\xe9\xcb\xbe\xce\xc6\xbf\xc0\x94,\xb0cX\xa0?.l\xbe\xa8\x8b\x01\xc5\xbfa\x91e}\xbby\x98\xbf\xe3Dn\xe0l\xf5\xa3?\xd2\xafx\x12\xa15\x90\xbf\x8c\xc1#Wy\x8f\xcb?\xa6\xec\xedSI\xd9\x99\xbf\xc3\x82}3\xf4\xe2\xc9?Z\xbf\xb3\x00\xd5+\x9a?\x02\xea\x14L\xba\xe6\xcd?*\x07n\xfd\xf01\xb1?\xe8\xdf\xd1\x9d\x80\xd6\xbe?\x80\xda\xef\xdb0\x96\x96\xbf\xd2\xe3EB\xbd\xc7\x86?\x80\x97l\xc1\x03\xa9\xb1?}OV!V4\xba\xbf@\xc7\xc4\xacN\x7f\xbb?t\x16\\Up\xa8\xc2\xbfy\t\xc9\xea\xc7\x05\xb0\xbf7YQA\xfd#\x90\xbf\xa8\xc4x\xcb\xeb9\xcb\xbf\x0b+]u\x9f\xbf\xbd?y\x7f\x82\xc6\xe3\x85\xc1\xbf\xdf\xdb\x0bIe\xe3\xaa?L\x06GH\xdc\xe0\xcc?A\xf0Hx\xac\x1aZ?\xdff\xd4vA{\xd5?Xj]\xa0\x0b]\xa5\xbf\xc0y\x89\x00\xa9\xca\x99?@f\xe4.q\xe7\'?\x90\xcf\xba#\x0eS\xd2\xbf\x89\xaa\x82\xa8\x17h\xa3?\x14\x8d\xa9_G:\xce\xbf.\x90t\x13y\xba\xc2?\x19\x9e\x8c\xbf\x926\xba?nY\x18\xf9w\x91\x98?\x98m\x06QAJ\xcb?dJ\xee\xc0\x8d\xab\xc8\xbf\xcbc\x1d)m\xb3\x9e?\x0f^\x7f\x08\x88\xb0\xc4\xbf\x0c\xb0+\xa8\xe9\'\xbe\xbf\xaehq\x8a\xbc\xd0\xa2?JA\xa9\xb7\xa5q\xb2\xbf\xa0R\xd1b\xae\xa1\xc2?~L\x01\xc1\xc2\x03\xb3?\xe8+E<\x91\xaf\x90?H\xee\x9a|\xd6\xb0\x9c\xbf\xc8\xa2\x81M\x10\xcb\xa7\xbf`H~6*\n\xae?\xf8\x12\x85\xc7=\x8c\x9a?\xd3T\xd1M\xc8X\xa1?\xe5`\x1a`\xd9\xab\xba?,p\xf3.\xa0\xa8\xb0\xbf\x8a\xb8~\xe7\xbf\xd9\xa6?\xc7%it\x18:\xc2\xbf\xa5,Q\xa0\xe6[\xa3?P\x87=\xd8\x90\xd3\x85? ]\xc6S2\xd7\x88?\xe8\t\xed\xde\x8c\xd8\x8c\xbf=j\x9f\x16oo\xbc\xbf\xb4|\xa5\xdd\xa7\x8b\xa4\xbf\xd2w\x92\x85\x17f\xbe\xbf\xb7\xa5l\xd2\xc9\'\x89?L{[\xb0\xf6\x83\xa1?=\x7f\xc7>nR\xb8? \xe3\xdd%\xf1\x19z\xbfxFQ\xc2\xbf\xb4\xa1?Tl\x13\x15\x91\xf6\x96\xbfh\xb2s\xdd\x0c\t\xa6?d\xec=L\xd9(\xa9\xbf\xd8\xc7=\xe3\x05\x8f\x9d?L\x064B\xc9\r\x9f\xbfH\xc8*\x9eK\xb7\x8f?M\xab\x8c\\\xa1\x80\xc1?\xba`G\x8d9\xd5\xb1\xbfb\xcc\x85\x12^\xac\xa8\xbf\xb1\xa6e)t\x1a\x9d\xbf\xe0\x92G\xc0\x98\xda\xb8\xbf\x9e,\xad\x14\xc5d\x9d\xbf\xe8\xb5oJ\x07f\xa0\xbf\xc4\'\xcf\x9eCF\x9b\xbf\x14UeN\xac>\xc3?\xa4\xc1BJ\xf7v\xa4?\x031\x8b\x91\x99\xf9\xb3\xbfP;\xaf\x89v\xa3t?\xfa\x12\xed\xb0\xf3F\x9a\xbf\xb4\xa8\xac7m\x15\xac?(G\xb2%@\x16\x90?ycp\nZ\x84\xab?\xa8\x8d\xdcVvA\xaf?\xd4\xa8$\x16\xadl\x97?\xcc\xca\x05Mlg\xaf\xbf\xa8\x82\xa9x\xea\x16\x8e\xbf\x93\xda\x10\xd1\xd6\xd7\xb8\xbf\xa4\x04\xad\n\xb8\x11\x93\xbf\x08\'0Q\x8d\x81\xbd?\xa89\xe4\xff%\x03\x99\xbf&\xae;J!\xd7\xb5?p\xced\x91\x13\xb6\xa8\xbf\xc8\x05`\t\xd5Q\x8b\xbf\xd2}\xb7C\xbd\x83\x8a\xbf\x8d\x1a\xd0\xdeb\xf8\x9d\xbf\x04\xaa $\xf1h\xa3?\xf2d\xb5\x06\xf3\xc6\x9f\xbfsqm3l}\x8a?8\xd0HjM\xbb\x92?\xcc(\xd1\x8f\xca2\x98\xbf\x1c\xc6i\xeawh\x84\xbf\xd2K\x9c\x17\xfc\x1f\xa3?\xc0A\x89\xff7\xe2\x9f?\xd0,\xa7\xfc\xab\xc7\x8f?\xf0{\xff\xa4C\xe3\x8a\xbf\xe2\x0eK]u)\xaf\xbf\xf7\x887O]\xc8\x81?0\x9b\xc4\xc9\xcd\xd1\xa6?\x00x{\xfc\xdfO\x87\xbf\x82\xceF\xdd\xc1\xa9\xb9?\xb2#M\x82\xae\x1b\x89?\xb4\xde\xc1\x82\x9eS\xab\xbf\xf4-Y\x96)\xb3\x9b?\xf8~\xeel\x03\x16\xb3\xbf\x0c&\xef\xdb\x16W\x97\xbf\x01\xa0\xdd\xa1\x1aF\xa2\xbf\xe4\xae\xb7\xf8\xfb\x83\xb9\xbf&\xbe\x82\x00eM\xb6?l\x1a\xe2b\xfaq\xb2\xbf3A\x10\xc2\x1e\xa0\xaa?\xec\x97b@\xde\xa8\xaa\xbf\xc91\x91s\x1f\xbb\xae\xbf\x00<\xe9\x97\xa6\xc8h?\xa8\xdc\xdeD\x00\xc8\x85\xbf\xea\xba\xb1\xfc\x13\x05\x98? E\xee\x7f^r\x90\xbf\xbc\xa1*\x99\xbdj\xa0\xbf!V\x03\xb4v\x07\xbb\xbfH\xbb~\xe9\x9f\x16~\xbfz\xb8kZ"^\x9d?y4\xc1z\x1d`\xa9\xbf\x9a\x85\x1e\x15\x1d\xb3\xbe?\xd2\x97/\x9a\xca\x92\x92?F13\x9d\xb2\xaf\xb6\xbf\xda\x83R\x8f\xe9\xe5\xaf?\x11!c\xa3M\x9b\xb7?\x89\r\xc9\xaf\x7fu\xb9?b\x08i\xe3+\xe8\x93?/\xd5{3\x98r\xb7?\xcbGt[F\x15\xba\xbfv\x15;\xd9)\xed\xba?\\\xf1\xa0\\F\x8e\xad\xbfK\t\xd5\x97\xc3\xce\x9e?\x16\x82:A\xeb\xf2\x97\xbf\x83\xf88&\xb6\x9d\xa9\xbf\x84O\x96\xd4\xacn\x96?\xf8\xa21\xa2\xb7_\xbc\xbf\x9f\x81`\xa9\xcd\xcc\xac?Q\xe7\xd9\x03\x1fI\xaa\xbf%\xe1\xfa^\xa6(\x85\xbf\x9e\x18\xf3\x10\xa1\x14\xab?\x13\x96\x0f\xd0\x95\xca\xb0\xbf$T)Yf5\xbc?\xdb\xf7\xa1\xd9:y\x88\xbf\xccX*d\xd4\xb8\xb2?\xbc\xcc\xd0\x7f\xaa\x16\xa1?fP\xc9^\\\xe3\x81\xbf\xde"\xa6M\xa3\\\x9b?\xc4iLX\x15\x07\xb9\xbf\x80\xa6\xf8\x9f\x10\xf7}?\x88\xda\x8c\xe1\xef\xde\xb5\xbf\xf6\xd13,\xec\xf5\x80\xbf\xfa*\x7f\xb6\xeb\rr\xbfL;\x18\x1f\x00\xa4f?\xcaK=\xbe\xea\x18\xa6?n\x8a\x12\x19\xfbT\x92\xbf\xf5\xcf\xa5t\x87\xd1\xa7?\xf0Ry\x12\xfc\x01\xb0\xbf(\x1d\xa1\x0b\x9f\xdd\x81?\xd5\xef\x86\xc2\x8b\xee\xb1\xbf\xcc\xc9\x12\x9dop\x80\xbf,\xc1\xfe\xfc\xfe\x1f\x81\xbf\xde\xc2\x9d)\x9d\x17\xb2\xbfru\x14\xe02\xef\xb0?\x96\xfdb\xfb\xf1+\xb1\xbf\xbb\x1c\x92\xfc.\xc6\xd2\xbf\xbc|\xe3+7\xf0\xbf\xbfR\xf7\xc9-\xab0\xc5\xbf\x18r\xaak\x0f\x11\xb0\xbf\xc17\x03Qx\x9c\xa1\xbf\x00\xc5I\xa7\x1b\x14\xa7?\xf5\xe6NW\x00\xf6\xad?\x88\x84"\xecF\xfc\xc2?\x00~\xa1K@\xe1\xbb?I\xc7\x0bq9.\xa4\xbf\x14\xb2\xa4\x8c\x8f\xc1\xc6?\x80\xb2@Z\xac\x18a\xbfn\x8f\x83\xdeZ\xd8\xb4?\x96\x02\xb9`r\x07\x94?\xa2\xef$\xc4~\x96\xa2\xbfT/\xf2\x9f\x9eh\xa1?\x19\xcc\x0by\xd89\xc3\xbf\xe1\xf5\x83Y_,\xad?p\x86\xab\xb1(\x07\xd0\xbfl\x07F8\xc4\x80\x9a?\x04\xb6"\xf9\x91v\xc6?\x1d\xea\xf0\xe9W:\x90\xbf\xfc\x9c\x85#,\x89\xbb?t\x0e5x\xf4\xc6\xaf\xbf\xcc\xbb\xa3@7\xeb\xa4?\xa4\xb7\xa6d\xa3\xbf\xe9\xac\x9fw0=\xc0\xbf\xd9\xb7\xe0\xea>#\xa8\xbf\xfa\x19\xbc\\dw\xbf\xbf\xe6o\xfc\xff\xde\xdd\xb2\xbf\x03\x8b\xc8\xf0\xa3\x00\xd3?^\x9e"\xe6\xa7[\xa2?\xb4=cL\x87-\xbd\xbf\xae~\xc6\xd4\x9c\xc3\xa1?\x1e\xc5\x83\x99"\xd2\xbb\xbf]\xb7\xab\xa0\xe0\xe5\xa8?\xef\x1b\xc0\x95%\x02\xb0\xbf\xca\xadt\xca\x9c\x1b\xaa?\x7fG\x9db6\x85\xcd?p\xb7\xc9<\xa8\xfa\x8c\xbf\xae?\xb4\x86x{\xaa?1\xc5%\x81\x9f\x9a\x9c\xbf\xd2X\xeb\x07\xfb\xa7\xbc\xbfk\xec\'H\x15)\x92?L\xb5edd\xb6\xc6\xbf5>>.`m\x94?2kf\x01\xfc\xab\xbb\xbf(\xb4#\x85S\xe8X?Q\xce\x1a?\xf2\x17\x98?\xa0?\xa5\xe2*\xf7\x85?\xa49\x8e\xea6N\xb3?\xa1\x15\x90\x84\xf8\xc5\xa1?\x9d\r\xba\xaah\x8c\xa2?e\xd8\x16\xee\x9a\xd5q?\xe0\xc0\x8f\x81\xd8\xfdR\xbf2\xfb{\x0e\xe1|\x92\xbf\x98E\x18C\x83\xae\x92\xbf?9\x8e\xa2it\xaa\xbfH\xb6\xdf\xa4J\x00\xa8\xbf\x888t\x07f\x15\xa2\xbf\xdfJ\x15k\xbb\xd1\xa7\xbf\x94\xeb\xb8G\xa3\xb1\xa5?\x1e<6\x93Q9\xad?$F\x93\xe5x~\xb5?\x7fY\x81\x8e\xecj\xc2?\xeep\xdf\xf5-\xd7\xa3?F\x03\xa7e\xa5m\xb9?\xe0?|9d\xf2\xa6\xbf\xe6t\xdc\xb53\xba\xa7\xbf\xf3\x7f\xcf>\x9dm\xa7\xbfz\x86,\xc2\x11a\xcb\xbfg \xd1\xef\xf4\xae\xbc\xbf\xfcX\xad)\xaf\x0c\xb2\xbf\x14\xfeK^\x914\xb6?\x89\x06\xc3\xa5Bk{\xbf\x8f\x06w\xcee/\xc1?<@\x07\xc1\x8b,f?\x80\xfcU\xa7\xd4\xbd+?\x1cp\x88/\xef6\x94?\xe1\xab\x12\x9b\xf2\t\xc6\xbf\xd7\xb8SH\xdf\xd1\xb9?\xe9\x12\xa5~g\x0e\xd1\xbf\xad\xf4/S\xf9\x8a\xb3\xbfH}\xb2X\xf3\xd2\x93\xbf\x9c\xde>g\xc1\xcc\x9b\xbf\x08O\x0e\xf00\x0e\xc5?\xee\x0eP\xff\x1b\x80\xa9\xbf\xe7\xdc\xd8\x88\xf3\xa8\xc5?8\x91+\x03$\xed\xbb\xbf\xee\xba\xb4\xcc\x942\xa6\xbf\xfe,\xc4i\x1e\xe5\xac\xbf\x8f\x17P\\\xb1\x0b\xae\xbfB\xf5\xf4.\xe1\x97\xa4?\xc07jn*aN?\xefq\xdfX\xa7\xbe\x98?\x1fY\x1f\r)\x18\xb2?\xa4\xd1\x05]@D\x8f?\x14o\x88\x85\xdd#\xbd?\xf0\xa7\nbO\xacg?\x8c\xd2\xeb\x82|\x94\xb2\xbf\xc4I\xb0\x1bf\xfc\xa1?\xd8X\xae7!<\x9d\xbf\xc0\xbe\x8e){,W\xbfb_\xb0\x05\x8e-{\xbf\x16\x90\xe0\xa0\xce\x1e\x9a\xbf\xe4\xf4Uw\xa7\x0e\xa6\xbf\xd9\xdb\xa0\xc6t\x87\xa1\xbf\xc8,\xed\xcf\xfe\xc7\xb7\xbfI\x8ed? A\xab\xbf\x97\x85\xab\xde\x99\xbd\x88\xbf\x8aw<\x01\xdeD\xb5\xbf\x16&{\xe7\xae\xa1\xb9\xbfj\xa1\x93\xabq\xab\xaa\xbf\xcc\xd5)\xe1\x19\xc6\xb0\xbf\xe3\x82\x8c\n\x9b\xc0\xaa?jk\xcd\x0e\xcd\xa8\xb5?x2\x15\xdb\x8a\xdb\xb2?x\x13V\x95\xb1\xe7\xbd?\x94\xe9\xa5\xddL\xc9\x9b?\xfbD \xc9\xd4\xe3\xb6?\xb1NNI\x9e\x07\xb1\xbf\xc0\xec\xea\xe3s\xc7\x8f?\x81\xd8\xe4\xaf\x10\xfc\x97\xbf\xb8\x8e`\x9c\x8a\xe2\xb9\xbf\x89W\xce\x11B\x15\x87?\x90A\xdd\x96m\xf0\xb5\xbf\xda\x0e\x1c\xe5qo\xba?F\xf4`\x0c\xd9\x0e\x93?\'\x1e\xd4\xdfX\xc9\xbb?@y\x00H\x8e\xc0\xb4?w\xea9GSy\xbe?\xfa\xae}R\x1e\xa2\xb3?/&"\xbb\xff\x07\xa5?/\xb0\xdc\xdf\xbe,\xae\xbf\xcc\xa5\xb8\x81A\x93\xcc?lX\x9eO\xc0\x9d\x84\xbf\xd0&Ro\xdb\x18\xa1\xbfO\x93\x0e\xdb8@\xa7?q\xd7Z\x86\xef\x9a\xc3\xbf\xb7Ta\x99S\xa3\xad?\xaaTw\xeb\x1e\xc1\x9f\xbfQ\xb4fx\xb0\x92\xa0?c[nM\xe3C\xc0?\xd4\xea\xaf\xeez\n\x9b\xbfl\xca5\xf0.\xea\xb5?\xa10\xa2\x93\x94l\xbb\xbf\xb5@\xcd\x8c}\x96\xc0\xbf\x1f\x97{\xd0c\xe1\xb7\xbf\x7f\xefT\xa6\xc2\x14\xb2?\'H+b\x81\xe1\x9d?\xd0$pBD\xb8\xbc?5&G\xb7\xfa?\xb1?0\xd6\xe4x\x05E\xa7\xbf\xea\x8a?\xe6\xcb|\x9d?t$\x0e\xf8\x7f\x8a\xc5\xbf\xa4\x8a\xb2\xf4,W\xb2\xbf\xd2\x04_\x06\x04O\xa4\xbf\xfbyOr7\xde\xa1\xbf\xbb\xc8\xfa\x8c\x12w\xca?\x8dv\x7f\x02W{\xa5?x\x98\xc0\xbb\x16\x95\xc2\xbf\xe4\xfa\x10\xf2\x97\xe3\xb1?\x05\xfb\x02\x1b\x0ev\x9f\xbf\x9f\x88\xd9\xbfmw\xa7?kA!\x93\xa8\x00\xbd?Wfe\x85}\xfd\xb3\xbf\x10\xf1\xb9A\xf9\xc9\xb8\xbf\x80\xdb\xe8d\xc7\xdfI?\'\xc3\xd0\x98\xa5\xd3\xbf?\x8c\xf7=\x88\x14X\xa7?K\x99eB\xea\xb2\x9c\xbf \xaf\xf4\xa5\x1f\xc8u?\x87\xe4\xd5{\xc5L\xc3\xbf\xb1\xf2\xbcb\xd5=\xc1?b\xed\xf0\x01\x90?\xc2\xbfd\xa6\x95ngZ\xab?\t\xf7\xe8\xa2-\xd6\xb5\xbf51\x98\x1c )\xad\xbf)\xdfD0}\x86b\xbf.\xca\xb7T\xf1U\xc4\xbfk\xd9G\xd3\x96\x94\xb9?\x9a*\xc3S\xeci\xc0\xbf\xcc\xc4\x1f\xfa\x89P\xc0?aJ\xf7e~\x9d\xa7?\x19\t\xedgN\xd2\xae?\xc7\xdf\xb8\xe1\xd0\x98\xcb?\xf4\xfd\x06\xcf\x10\x82\xaa\xbf\xd7\xb2\x99\xaf\xf0\x1a\xcf?\x8e\x97f\xfd#\xa1\xba\xbf\x9b\xec\xd2\x85<:\xb7?\x97]v\xac\x1dp\xad\xbf\xd0\x7fKu\xf9\x18\xc6\xbf\t\xde\xc1\x19\xa6\xd2\x85\xbf@\x93\x8a\xf8B*\xd8\xbf\x1f\xd6V\xec\xb6\xd2\xa3\xbf\xb9\xd0j\xc7\x1bG\xc9\xbfJ\xbb\xde/\x82q\xa9?\xf8H\xa5\x8a\x03\xb5\xba?33\xb4\x15\xf5\x11\xb9?\xa8}\xef\x92\xccR\xd1?fF\x8b\xc4\xae\xd6\xb8?\x80\xc2%\x99\x01\x06\xca?\xe0\xd1(\x1b\xe0\xdba\xbf\x0e^\x94\xd9\xf27\x94\xbf\xfae\xf4\x01\x97\x80\xb6\xbf~\xbeX\xda` \xd1\xbf0\xe6\x02\x8dr\xcb\xc0\xbf\xa2\xe4W\x02\xfd\x0f\xa3?\x04@F\xac\x19\x86\xbc?\x90\x95\xc9\xd9\xeb+\xa9?\xbf\x13S\x92\xe2\xc9\xb7?\x08\x8b\xcb\x18Bn\xad?\xa4\x9e\x01\xd7Nf\xaa?2\x91b*N{\xaf?\xc0\xe5D=\xc1\x0ez\xbf\xa0\xb7u\x86\xbb\x9e\xa0?\xbe\x9e\xda\xe6\xca\xf5\xb2\xbf|4\xeeCE\xdd\x8d?\xb0\xfe\xcf\xee\x03\xd3\x9d\xbfE\x83\xc4\xcb\xb7I\xac\xbf )\xaeJ\xa7\xefx\xbf\x8cjX\xf5\x1bi\xbf\xbf$\x95\xf5l~>\xa1?\xdf:\xe3\xc6n\x1c\xb8\xbf^om/\x06\x83\xb4?"y\x08\xc4c\xec\xa0?nN/_L\xac\xa4?J\x16nA7\x07\xb4?\x88\xf0$\x82d\xae\xae?|\x90\xbd\x8f\x8e~\x85\xbf%\x7f\xb0zC7\xa5?v\x89\xff\xd0|\x97\xb8\xbf\xc0\xb1\x8bj\xdf\x8d\x81?IwNQr0\xc5\xbfW\xa0\xaa3\xb29\x9c\xbf\x84\xb1\xa5\xa1,A\xb1?H=\xf5[\x1b\xc7\x81\xbf\xa6\xc7\x7f\xb8\xab\xbf\x7fqf\xc6i\xa2\xbc?\x12<\xc7\xe19\x9b\xa0?\xc6`2@\xc6\xeb\x99?\x9a\rVy\x92\xa7\x81?$.\xcb\xc7\x95\xa6\xb2\xbf1R\xf7\xf5]\x03\x9e\xbf\x00)\x1d\x11\x9b\xbf\xbb\xbfC\x9d\x0f\xcd\x9e\xad\xad\xbf>!\xe1\xf4\xcb\xae\xa7\xbf\x1b7\xc1\xa2E\xea\xa3\xbf\xe9\xdeF\x97\xf5\xc7\xa2?\x1b\xc9\xbde\xb3\xdb\x89?<<~Qc\xf4\xb7?\xb4\x02\x97\xea\xbfQ\xb4?\x01\xf2\x92\x14c\xe6\xb7?\xfb\x0c\x8ea\xfc\x95\xb9?\xf0\x88~\xa7\x86Ot?\x12el\x03h\x14\x86\xbf\x87sf00R\xa3\xbfh$\xf7Gs\xda\xbb\xbf\xbbq{\x1at\xfd\xb8\xbf\xd6\xd8\xbb\xd1\xcaG\xb5\xbf\xda,\xf6\xc8\x88\x1f\xa4\xbf\x10\x8b6\xffiT\x9b?\x04\xd3\x97\xd0-(\xa3?\xd7\xdcgj\xb3\xbf\xbb?p\xba\x15\x02\x81\xd1\xb2?,se\x11\x8f"\xc0?\xe8\x05\x8f\x90\x9a\x18\xaf?Q\xea\x8d{\xb1\xf7\x9f?(U\x1d\x0c\x8a\x0b\x98\xbfGG\x12\xcc\xdd\x15\xb4\xbf\xd1\x90\xf5\xd9L\x8d\xac\xbf\xb5\xdf\x19Hzi\xc5\xbf\x99\xe9\xb6\xc9 \x9f\xa3\xbf(T\xc3?\xf6\xb8\x94\xbf\x80\x1emX\x9c\xe0o?/\xdd\xf3\xb0*C\x92?P\xaa\xbf\x12\xa0\rrf1\xb7\xbfH\xefX\x1a\r\xd7r\xbf\xdc\xf0\xb0qj\x7f\xc3\xbfGF\x896\xb0\xd8\xa9?\xbb\xbbhC@\x90\xb9\xbf\xb8&p\x95\xdd\xb6\xa7?\xda-_\xdd\x8a\x0f\xc2?\x1d2\r\xe0\x08\x17\xa3\xbf\x00\xcfN|\x7f\xa2b\xbf\x9cVr@\xe3\x95\xbf?H\xf2\xa1\xc2\xe7#\xa2?\x008\x1a\x91\xbb\n#?~K\xb5\x15o\xac\xb3\xbf\x1du\xe9I\x9a\xd2\xa3\xbf\x82\xf2\x97\x146\xfd\xb3\xbf\x00\xca&\x929\xaf\x1d?\xfa\xe7\x01\xe6cP\xb2?\xb4\x1f\x08\x88l\xd9\x9d\xbf\x8ed^E\x81\xb0\xa9?\xd0\xbau \xfcK\xa2\xbf\x96Q\x0c>f\x11\xa0\xbf\x00\x82\xce\xbb\xa5\x95w?\x04$\xa4\x1d\xc0\xd1\x89?(\xe6\xf2\xf4M\xc2\xb2?w\'j\xdd=r\xb1?\xd8\xb7\xa1t\xea\xd0\xa4?:T\x02\x82\xe2\xea\xa0\xbf\x02\xe9\x86\\\xa9\xba\xa2\xbf\xf0l4q\x9d\x8f\x8b?\xa6\xe9\x07\x1b\x86\x9a\x84?\xc6;\x1c\xbe6\x1c\x91?\xb0F\xa1\xf5\x01\xc8g\xbf\xca\xeb\xf0\x94\xe5\x97\x98?\x00 I\x05\x03\xb7u?\x94nl-8`\x85\xbf\xa6\xac\x8e\x07\xf8j\x91?\x96\x01\x00\x0f\xb8\x9a\xbd\xbf\xdd\xfa\xd8\x95\x0cW\x99?\x08\x8e<(\x10\xe9\xad?m\\: \xf3vy\xbf\x88|\x81\xe5U\xaf\xb6?<\xc4\x9a\xe6|rb?x\x9ec\x9b\x17\x8b\xa8?\xe2\t\x1b\x0e\xb7o\x7f?\xa8z\xd1tN\xfd\xbe\xbf\xc6x\xd9\x018\xd7\xab\xbf\xf8\xe2c{y\x0e\xa6?0\xbb\xfbN\x9d7\xa1\xbf\xe8dW\xc4\x96\xd6\x90?\xc6\nSV\x18\x97\xad\xbf05E\xbeTry\xbf\x85\xaaG\xf4\xc51\x9f\xbfHl\xf9GQ\xe2\xb1\xbf\x81?\xac/\x0b_\xaf?\xcc\xe1\x8a\xe7\xb8i\x98?\xeciSb\xce\xcd\xa7?\x97\x08j\xcc\xca\x98\xad?@\n\x83\x03;\x1en?\xa1`Q\x0b\xd0\x03\xba\xbfS/0\x84\x0e\xc1\xb3\xbf\x9e\x85\xddp\xdf\xba\xb1\xbf\xe0\xd3\x12\xe6\x94\x16\x95?\x1f\x82\xb2ZC\x8f\xa5?\xb7\xdb\xba9\xf3a\x91?\x02g\xe1\xd5.E\xa8?\xb8P\x18\xcf\x84\x17\x8d?\xbb\x8f\xc2\x8a{t\x9f?\xa8\xb5h\xc18\xe7w\xbf\x1aN\x85[\xf7\x8e\x98\xbf\x90o!i\xfd\xc9\x8d\xbf\x9f6D\xb9"\r\xb2\xbf\xb4\x06\xd9I\x87\x92u?\x0e\xc9\xa3\xf6\xb6+\xad\xbft\x8f\x0b\xab\xbf,~\x8f\xe4(\xa6\x96\xbfZ\xc1\x91\xab\xf2\x0f\x87?\x99\nHYW\xa2\xb8?L\xd8\x9bN\xd6\xac\x81?.\xf0\xa8\xabuY\xb9?\xa8\x06\x9e\xfa@\xa2\xa8\xbf\x16g\x8a\x9c\x89\x07\xb0?\xe0J\xa5\xe7F)\x87\xbf9{\xc5\xdf\x8e\xe2\xa4\xbf\x00\xad\\\xb6\x01"Y\xbfnt\xd8je\xf1\xb2\xbf"(\xc4\xde\x1b\x14\x87?b\x91\xc7\xe8\xc4\xd3\xa0?\xed\x7f\x14w6$\xab?\xbe\x19!M\x94\xb7\xa0?7\xcc$"\x0f`\x80\xbf\xcc\xad\x95A1\x0b\xaf?\xaf\x80q\xcd3Y\x84\xbf^\x0e\r<:w\xa0\xbfF\xfd\x8d\x8e\x13\x14\x8c\xbfM\x98\x870\x1c-\xa0\xbf(\xc5\xc1\x83n\x7f\xccw\xc4\xbfu~\x8a{\x89L\xad?\xe2m\'b\x1fk\xc8\xbf\xe2qW\xc6\xbb@\x94?\xbe\xfa\x14Q\xb0`\xcb\xbff\x0fI\x8e+\x12z\xbf\xeb3(\xb0\xa6\x04\xc8\xbf,(\x9b\x1aa\x7f\xa9\xbf\x8a1m,7R\xc5\xbf\x90.\xe6\xe2\xe5N\x9b\xbfSVPo\xb8\xcc\xa0?\x16\xb5\t\x91\xef\xff\x94\xbf\x1c\xb0\xd3 \xe1w\x9c?\x00\xb9\xa7\xdez\x06!\xbf\xcd3W$_\x0f\x93?\xa6\xe2\n\ra;\x8e\xbf\x9c\x8b\xe5\xbeP\xcb\x82\xbf"\x8d\xd2d\xea\xccx\xbf\xfc\xe1\xb6\xc4\xcf6t?\x18\xa7\x16\xf9A\x0ce?P\x91qZh\x05\x8a?\x80:\xb51\x0bs`\xbf\x82w\xccn\xa9\xba\x9e\xbf`\xef\xda\xbc\xb2V\x8a\xbf\xec\x9f\xf8V\xd9\x08\x9d?<\xa84\xd7\xdd\x10\x90?\x9e\x92\xae-\x07/\xa2?\xbb\xbee\x18\xd3_\x93?\xe2@\x1a\xc8f\xed\xa5?(\x0c\x91\x7f\x17\x8f\x86?\xa8\x91\xd9uNd\x96?\xc0\xd0\x1fZ\x1d?\x82?\xf8\xa2rVv\x08\x86?\xd4\x10\xe4\x9ec\x1c\xc2?:s"\xc1\xfayr\xbf\xa6?\x1b\x8c\xfc(\xb2?"\xea\x9dJ:h\xb1?\x8c\'-\xa0\x879\xa5?\x04\xb7\x07\x1c$j\xc2?\x9b3\x87\x89\x01\xb0\x90?\xec\xa9\x88\x90Q\xba\xb8?\x91\xecFzd\x14\x91\xbf\t\x1b\xad\xdf\xad\x84\xc2?\xeb\xcc\x94\xed?\xb7\xb0\xbf\x0eV"\xca\x1b\x1c\xb9?X\x1bu\x08\xdeO\xc3\xbf\xb6\xc9\x8a\xdc\x05\xf4\x8e\xbf\xdc\x9e\x10\xe0m\x02\xbe\xbfJ\xd2\x1d\xaa6\xe7\xb6\xbf\x06\'9b_\x1b\xa8\xbfX\x1d\xc5\x98\xe3\xbc\xbd\xbf\x07\xf6\xed\xfb\x96\xa2\x7f\xbf+\xe3\x9f\'\x0e\xdc\xc3\xbf>\x9fa\xbb.\xba\xa0?\x0e\ne\xf6\xe8\xfb\xbf\xbf\xdf\xac\xee\'lZ\xb2?\xf4\xdb\xb4\xb9GE\xbb\xbf\xe4\x19\xe9\x9b\xb5\x1a\xbf?\xd3\xde\x97\xc5Dg\xa1\xbf0ys\xea\'7\x98?]\xcb\x01\x99\x04\xd2\xb7?\xee\xd5\x07\xc7\xa4\xd6U\xbf\xb7\x00\x02a\x98\xf8\xac?iIQ\x804\xb8\x9d\xbfA\xd8\x86r\x1b*\xb7?\xdfM\xb9n\xb9\xa8\xbf\xbf\x86+y?\xe2\x9f\xa4\xbf\x12\xfe\xa2\xd3\x99\x95\xa7\xbf\xe28\x1c}\xaaN\x97\xbf\x0c\xb4m\x94d\xf9\x8e?\x92\x85\x89m\xd3\xae\xad\xbf\xba"F\x15&\xce\xb1?E\x0c\x04\x8d\xc3\x10\x99\xbf.\xba\x1a\xeep\x17\xaa?\x8e\x10\x01\xeeL\x0e\xa5?\xdf\x8d\x1e\xa3\xa7\x0c\xa2?t\xe5\xcdx\xa1\xf2\x7f\xbf\xa2+\x12j\x07Y}\xbf\xec\x83\xb3H\xffk\xb4\xbf\x11^B\x11\xa4\x8d\x81\xbfA\xd9\xc8\xf5\xa7\x91\x9f\xbfo\xab\xb9m/;\x9c\xbf@h*\xb7Cd\x9d?\x15ULZ\x93\x01\x88\xbf\xb4\xdb\xd3\xdda2\xaf?\x04"Q9\x83\xb4\xa1?\xd3\xbf2\x8d\xdck\x92?zh\xa9_\xfd=\x8b?\x81)E\x89\\\x8cl\xbfp\xb2\xf90\x99\x85@\xbf\xca\x08``\x99O\xb3\xbf\xbc\x008\xa9\xa9Bw?\xebN\x9a\x9a\xc1?\xb6\xbf\xac\x7ffs\xef\xaf\x96\xbf\xb0\x0fTr?Fn?s\xd4=\x0f\x84\xf5\x9c\xbf\xda\xe9\x96\xf1e+\xb7?\xfe\xb2\xc0\x9a\x96\xcdc?\x8b\xd6\x05}\x1e\xe5\xae?l\xe4\xe97\xeb\xf5\x9b?H<\x07\xc7\x19\x98\xa3\xbfv\xe7\x10\xab\xcaw\xa1?\x94viq~R\xb8\xbf\x14\x9a\n\xb7\x8cF\x8c\xbf\xbe\x18\xad\x18\xe0-\xa2\xbf\xee\xdd\xe0;\xe5\xa3?\xa0A9\xe1\xf8 Z?\xc8(\xd8\x98\xed\xe9|\xbf4\x9d\xf4\xf5\x84V\x9c?\x1a&W9JX\xb5\xbf,\xf3\xb3Z>\xe9\xb0?\xd6\x8b\x18\xa3\x9f\xa0\x85\xbfc>X\xaa\x98\xa2\xb0?P\x99\xe7\xccF\xfe\xa5?L;\x94\x92g\xde\xa6\xbf|\xed:\xed\xca\xbe\xb4?\xed\xe0\t\xdai\x91\xb2\xbfX\xfa\xd8\xdaQG\x92?\xae\xb2v\x13;H\xa1\xbf\xac\x10\x9e\x91\xe8\r\x99\xbf\xa4\xea0*5g\x8f\xbf\xb2%%\xe7\xd9\x18\xad\xbf\xa0\x90\xa7+\xda\xa4\x84\xbf\xef-\xc2hX\xf3\x98\xbf\xe5\x9a>\xd3o\xb2u\xbf:\xda\xacZ\xc6\x1f\x90?\x9a;\xf4,\n\xc8\xb2\xbff\x16\x9d\xa0J\xdf\xaf\xbf\xae\x16\x06\xaa(\xd7\xa2\xbf\x91\x81P\x83\x1c\x03\xc7\xbf\x06\xad\xdfc\xcf\xaf\x7f?\x92\xc9\xa4\x92Y\xbd\xcc\xbf\xfb\x9eN\xec\xdfdz?\x17P\x92\xb2\x15V\xc8\xbf\x16\x8c\xc0\x98\x88N\x92?\xaez.v\xb8E\xcc\xbf\xb3\xfdX\xdc\xde\xf1\xa4?\xeb}\xeeZ\xd51\xc7\xbf_\x0c\\{53\xb2?@\x8a\xdey>\xb1\xa3\xbfx\xe2p\xd5OI\x9a?u\xda\xef\xe6\xc0\x9c\xc1?\xe6\xee\x94Y\xdb\x06\x82?\xc5\xf8\xe2\xd8/3\xd1?\xed8\xd4m\x19\xca\x8d?\xfd\x95\xcc\xffp\x1c\xd3?b\xf5M\x131%\x91?\x02\xe5\xab"\x84\x08\xd2?*/[]Q\x0b\xa6\xbf\xd2\xa9\x1d\x80\x12\xd6\xc1?\x0c/&l\xa6^\xb6\xbfI)\x92\x96v\xc3\xaa\xbf\xb4\xed\x8a\xfd\xf4?\x81\xbf\xfc\x91\xf1\xe4\x17f\xba\xbfb\xb0\x84M~\xa6\x83\xbf\xaf\xb0\xd2\tm\xb7\xb9\xbf\xd7{2\xa1\xbd\'\x80\xbf\xc9\xe6\xd9/:\x02\xc0\xbf\x13\x070\xd3_\xbe\xa2\x9c\xbf8EIrA\x9a\x88\xbf\x00\xb2\xfe\x93\x87l@?\x82#<\xaeuV\xb3\xbfTtO\x10\x13\x0b\xbf\xbf\x14p\x87\xd6TZ\xc4\xbf\xae\x0c\x82N\xf7[\xa6\xbfD\xda\xcf|\xc9\xb1\xa4\xbf?z \xe3\xe6\xe5\xa4\xbf\xee\x9d\xf0\xc6\xbf`\xb0?pC\xe4\x05GR\xc2\xbf.-_s\x10\x07\xc5?\x81r-N\\J\xc8\xbfz\x16\x83\xcaw\xa9\xb6?\xc6H\xef\xder6\xc4\xbf\xca#\xab\xf8\xaa\xe5\xa2\xbf1\xa9\xe6k\x9bi\xb3?\xdf\xba\xb1g\xe7=\xcd\xbf\x07\xf7"\xf9`\x0c\xc2?\x1c;\xcb\x9a\x98\x8c\x8d\xbf\xc9\xe6\xbc\xa7\x07\x93\xc2?\xbc\xaeX!/\x8a\xbc?\xd6:?\xa2\x81\x8a\xc1?\x8c\t\x8e\xc2G\x83\xc2?\x82\xabBf`E\xb9?h\x01\xact\x88\xad\xbc?\xf4` \x08\x03L\xb6?\xd5K[\t\x90\xfa\x90\xbfb\x94\x7fi\x8c\xee\xae?\x96yD\x14\xe9\xd9\x9f\xbf\xe2\x8c\xbeq\x07K\x92\xbf\xb2C6\xfc\xe0\xb8\x92\xbf\x00o\xa6\xbbO\xc6I\xbf\x95c\xf2\xa7\xb3\xc5\xb2\xbf\xd4: \x18\xa8R\x7f\xbf\xcc\xdf\xc1\xe1\nM\xc2\xbf\x83\xfb\x0b\xa0\x94\xb7\x83\xbf\xe8\x98\x95\x84$\x82\xb7\xbfC\x94c\xbf\xb3\xa4\x81\xbf\xd2s\x08\xdc`\x9d\xb3\xbf\x80p\xbd,n\x00`\xbf\xc0\xfa\x8f[(\xbdJ?\x94\n\tm\xb2a\xaf\xbfP\xc6W\x82\ra\xb2?S\xc2`\xe9\xe5\x90\xb0\xbf.\xb2\t\xccy\x06\xc2?Q\x13\xd7-L\x0b\xa0\xbfB\xfe\xfc\x95\xdf\xa7\xb9?\xb0c\xd9d\xeak\x86?\xd6|\xa4\xc4\x95k\xc3?f\xf5\x882\xcb\xd2\xb9?|4`\x07\x8c\x1f\xba?\xab\x07\x89\'\xbbW\xa7?\xdb\xac^\xee\xea_\xa2\xbf)\xf3\xb4\xa86;\x8b?\xb5\xc4\xcc\xf1:\xcf\xa3\xbfTf\xb6\xad\x9f\xb6\x85\xbf\xca/\xecA]g\xba\xbf\xc0\xb72t\x0b\xc6\xa2\xbf\x1e\x88\xab\x81\xbe\x9f\xa3\xbf\xbf\x13\xcf`\nE\x82\xbf\xea\xd1q\xebxJ\x94\xbf\x1ci\xe6\xe4\xa4\x16\x80\xbf\x8e\xec\xdc\xdeqB\xa7?@\x19y\xdeRx\x88?\xb2Ib\xc4YH\x82\xbf\xd4\xc24\xc4\xe3\x9d\x9a?]\x07\x8c\x05\x89\x95\xad?\xb3d?\x88\x18_\xb6?\r.tw\x00\xb8\xb4?z[\xddz\xfct\xa4\xbf\xe1\x97\xd4\xf8\x88I\x90?\xe2\x84\xec"c\x97\xb4\xbf\xd7\xdf\xcd\x1c\xe0\x9a\xb0\xbf\x1e\xe6v\xab\x88\xe9\xa6\xbf\x9b\x0e\xb1e\'\x8c\xb4\xbf\x89\x1c\xad%6\xf7\x92?\xe9\xd7R\xa9\xff\xcb\x9a\xbf\xd6nm\x89\xb1V\xa9?y\xbc\xa2\x14!\x01\xb9?7\xf2\xc2\xc2\xd4\xb0\xa8?LVH\xb5I:\xb3?qM\xdfU\x82\x99\x90\xbf!#\xf5[\x81O\x86\xbf\xde\xa2T\x9a\xd4\x8f\xaa\xbf\xd8\x9c\xa4\xd0D]\xbc\xbf\x98\n\x98l\xba\xfba?G\x84r[\x9f\x16\xb2\xbf\xfc\x8b\n\x9f\xbe\xe2\x96?V\x044\xd04\x85\xb5?4\xf8\x8co\xe7\xc5\xa0\xbfe\xeb\xa46\xe4\xfa\xbe?i\xabl\xef\xd8F\xa3\xbf\xa8\xe5\xdd\xd9\x106\x93?\xa6dm\xeb\xbd\xad\x9a?\xf4\xae\xf1Mw\xa1\xb8\xbf\xa7\xb1\x14\xf1x\xbc\xb1?\xe665\xec\xe7\xaa\xc3\xbfv\xc4\xee7\xe4m\x90?\xec2\xdb\xb2\x13\xf8\x9d\xbf\x9f#\xcc]V\xc1\xa6\xbf6\xda\xc8%\x06f\xc4?\xda\xf9\xf5uB\x9b\xbb\xbfpK!\x1d\x98.\xc9\xbf\xd36S(7\t\xc2?F\x92\xe9\xc8\xaa#\x93\xbf\xab\\ \xfe\x87Q\xce?\x06]V\xee\x9c\xf7{?\xd5\xac\xd9\xfa\xc3U\xc5?\x91\xee\x00\xab&\xbb\xa3?g\xaf\x07\xbb\xc9\x15\xb3?\xca\x00\x0c\x9c\x0c@\xb3?\x98Pc\x04\xe0c\xc7\xbf1Z2r\x99\xce\xc0\xbf\xd14hnb\xef\xc3\xbf``,\xd6\xf1\xa3[\xbf\x80s\x9a\xbeC\xbd\xb6\xbf\x12\x05\xfe\xdc\xcf\xe5\xac?^\xbe\xfc0\xf1\xf1\x9c\xbf\xcf\x81Q*\x9f\x98\xb1?\xcdm(\xe3\xc7\x06\xb9\xbfz\x80\xa4\x8d\x10\r\xb0?\xdb\xc7\xf5\x01gP\x90?2\xac\\k1\xf6\xb3\xbf\x10\xa5\xa0\xa3\x96\xbf?\xd0jYJ<\x19\x91?\xc6m\xe5\xd7oB\xab?`\xb5!\xd9WLy\xbf\xa3.b=\xd6\xb9\xae?\x88\n\xe0v0\xbc\x8e\xbf\x0e+\x97\x12\x92T\xb3?]\xcb*\xb3b\xd4\xa9\xbf\x1e\x8dr}w\x08\xb9? \xfe\x9d5\xee;\xaa\xbfx\xadSB\xdb\xd0\xb3\xbf\x9b\x93\x19a\xa3r\x98?\xa4\x80\xa6\xd6\x8c3\xa9\xbf\x8b\xf0-ief\xaa?\xf0\xbdX}aO\xad\xbfg\xe3\x06\xfc\xd2\x7f\xa2?ZFHnV\t\xa4\xbf\x8a\xad\x9ak\xf6g\x87\xbf\x1e,u.\xd0P\xb0\xbfC.\x18G\x90\xc3\x8f\xbf\x85z\xe7\xe2\xc83\xb3?P/R\xd5\xed\xc1\xb0\xbf\x12\x1b\x05\xff\xaa\x90\x97?\x9e?k@\x1cw\xab\xbf\x88w=M\xeb\xbc\xa3\xbf\x14\xd6F\x0cgA\xa0\xbf x\xe4M\x99#\xc5\xbf8\x9b\xff\x97\x80[\x7f\xbf0\xcb\xa42\xa0\xdbv?\xb0\x8a)U\xb9\xb7z?\xae\xa3\xd0C\x91\xe3\xb2?\x81=\xcf\xafYi\x9c?\xff\xc4VJ\xad\xe6\xbb?\xd5/wO9\x8b\xa2\xbf\xf0\xebq\xdf\x03L\xa1?\xda.T\xb2\xf8\n\x90?>\xb9\xed4\xa4\x14\xaf\xbf\xd2B\x89\xc0\xacK\xb0?\xb8\xa5\xad,\xe5\x1a\xc3\xbfP\xc9\x83_\xe9-\xac?\xea\xcd\t\xf6Kj\xa1\xbf\x82a\x1c\x05\x9a\xee\xad?>%\xd1\xde\xcew\xb0?\x9ak\x17H\xae\x9a\x82?\xfe\xfa+#P"\x97?\xc0\xbb\x87\xe55\x1c\xa5\xbf@ntN\x17 ^?0Z\x192\xac\x8b|?\x92h\xff\xb9\x11\x88\x92\xbf\x0c\x94a\xa2\x10\xf0\x93?lB\xd5\xbf\x17\xfc\xb7\xbf\xd8\xe6\xea\x93\xd2\x18\x9e?\x84\x93\xf3\x08\x02U\x9b\xbf\x08\xa4\xee$\x19\xae\x9e?0\x1a,\xfe\xa8T\xab?TG\x8aR\xe6M\x99\xbfhn\x9c\xf9\x0f\xb8\x89?\xb4x\xa2\xceG\x1c\xa5\xbf\xb0<\xd1\xbaV\\\xaf?2F\xf87\xa78\xa6?\x88\xb2\x93\xb3\xefJ\x91?\xd0\x02\x1b\xc5\xe2{\xa9?\x0c\xad\xe0\xbb\xc2\xe8\xa4\xbf\xbd\xdc\xbbcw.\x9f?\x18\xb8\xb1\x0bz\x11\x99?|\x7f\x1c\xe2\xcdH\x87\xbf\x96Gg\x83\x9e)\xa2?\xde\xb1\xcdT5\x80\x92\xbf\x15\x17\xf6X\xac+\xa4?`*j\xbdh\xe0b\xbf.\x8f\ra/\xd9\x85?8\xa9\x11\xd6\xfblz\xbf\x1c\x8f\xe1i\xe2\xf4\xb1\xbf@\x1e\xb72\xc2\x03\x85?L\xb3\xc9\x88\xe6\x8d\x95\xbf\xccLa\x9a\x87\xa2y\xbfp\x03h\x7fB\xa3\x97?\\\xc4\xd9\\u\xeb\x9f\xbf\xe0\xd0k\x07\xec\x82{?`\xd5\x0c\xbd\x99\xb4\x94\xbf$\xe3\xf2\xf8,\xa1\xa8\xbf\x18\x0f\xc9\x13\xb1\xb4\x94\xbf\xb2~v\t8\x16\x93?%\xec\xab^\xe0\xa1\xb7\xbf\xee\x82\xbc\x06\xf4\xaa\xba\xbfW\xabtg\xa0\xed\xb1?kg\x93\xa9W\x1a\xb3?\x01\x1d#\xa2\x1e2\xb3?\x9b\xe5\xce\x95U\x85\xbd?\x12\xecY|\xa0\xdc\xa2?2\xd6\x98g\x06\xae\xa9?_\xf9\xd0Q\xa2z\x91\xbfG\xc5\x85\xd9\x98o\xc4\xbfP_V\xe3\xba.\xb7\xbf\xe1:\xe1F\x06\xa9\xbd\xbf\xcf\x01\xd7\xf0&\xf0\xaf\xbfck(\x05\x98\x8a\xab?\x88\x7f\xd6\xf4<\xd1\x90?\xaao\xe1\xc9"\x1a\xd1?\xe8\xab\x7f&\xe9\x8d\xb3?$^\xb6r\xc56\xa3\xbf_\xc8\x96@\x88\xea\xb5?8\x9aF\xae\x9bQ\xd1\xbf\xb8g\x8c\x1a\xb4\x1e\x9b?J\xfe\t0\x86R\x97\xbfOz\x1f\xdc\xd4y\xc7\xbf\n\x07\x902z\xaf\xc3?\xfb\x88\xe9\xcet]\xb3\xbfX\xc5[\x8c\xd6\x07\xbc?gd#\xa1"s\xaf?\xdd\xba\xff\xba\xb1\xff\xa5\xbf\xfb.\xe2\x88y\'\xc1?N\xea6\\\xb5W\xc0\xbfD\xdeS\xe5@\x14\xa9?\x8e\xac\xc5i\t\xab\xae\xbfp\xe4\x17\xe0\x86\xe3\xbb\xbf?Y^\xc4\xe5\xde\xbe?\x16\x91\x90XY5\x96\xbf`\xeb\x19\x8b%C\xb6?\xe6\xaa6[9\xd0\xc1?`\xe2<\xf7t7\x91?\xdd\x7f#N\xd5\xa7\xb3\xbf|7\xe8V\x81\x9d\x9d\xbf&\xd1y)8\xec\xc2\xbf\x80cz>\xaa\xa5\xab?\xc1\xe3\x05F\xb8F\xc6?\xf6\xe2\x88i\xbb\x98\xb1\xbf\xef\xf4\x0b\xf2F\xea\xb0?\x8c[\x85I\xe3\xa2\xa2?\xd0\xe5\x16\xf9\xf2\x99\xc1\xbf\xf6\x9b\x18l\x13"\x98\xbf\xc4\xcd\xfe\xed+\x1cj\xbf\x91\xb79#O\xc4\xaa?x\x16\xdd\xba\x12\xf0\xb9?\xe3\xc5\xcfC\xa1\xdc\x8f\xbf~P\xc0\x8b\n9\xb9\xbfUz\\\xf6}\xef\xbd\xbfX\xe6~\x00\xc45\xae?`\xb0CV\xc2F\x89\xbf\x88~de\xfc\x94\x96?\xafyP\xff(I\xa0\xbf\xde\xc2&\xd5k\xb4\x8a?b\xed\xf2#,\xea\x90\xbf\x96\xfe\xae\xcd\x80\x99\xb0\xbfWOz\xf8\x9e\x93\x91?\x02Uq\xae\xe8\xea\xcb\xbfu\xbe\xe5|t6\x96?>\xb9\xc9\x9b\xddU\xbf?\x92\xb8\xfe\xfbQ+n\xbf\xdf\xe7p?\xd6\xb5\xc6?\xc9\xb7\x8d\xbf:\x14p\x07\x1b?\xa7\xbf\xaaMi\xe5&\xa6\x93\xbfv"\x9b\x98\x93\x00\xb5?\x06\x04h\x12&\x96\xaf\xbfZS\xe2!BO\x99\xbf\x82\xf6\x93f\x1c7\xa9?\xf9us\x9c\xde\xb6\xa7?\xcb\x10e\xfd2\xb8\x99\xbf\xed,\xe3\x83\x9f\xcb\xa3?\xcem\xcd`\xfa\x81\xb0\xbf\xbc\xe3+Y\x10r\xaa?\xc4^\xf5\x9a\x1eI\x95?\x1e^"\'\xb5i\x9d?\x85\r\xe3\xc8\x93F\xab?\xb0DUk\xc7\x80g?\x01\xaaH\x97\x82\x8d\x9a\xbf\xdaJh\xe8\x08\x1c\xc1\xbf\x02\xfd,\xdcC"\x9d?)ho\xbc.H\xaa?K\x02\xf7SW=\xa0?\xbe\x1a\xed\x0fu\x98\xb4?\xbe\xaa\xe2\xcf\xa8\xcd\xb5\xbfMb\xdf\xe0\x12\xcd\xa2?^xo\x8fqK\xa1\xbf\x18\xcdH\x1bz\xa8v\xbfY\x98\x83\xc5\xa7\x88\xb1?\xd0\x8cH\x12\x8e\x7f\x7f?\xb8\xd6Y\xb9\xb9m\x8a?\x8alI^\x8c+\xb1\xbf\xfa-\xc9c\x059\xa8?\xdc+\xb1\x14;\x93\xb1\xbf\x8bnTf\x1b\xcd\xa1\xbf5*\xe7\x08"\x1f\x94\xbf+O-@\xfd\xf1\x85\xbfq\x01u1\xe2\xc7\x99?\x08\xa4\x85\x88\x9c\x9cc\xbf\xec<\xee\xbe,\xc0\xaa\xbf\x19\x85E\xab\x1c\x02\xa3?\x88F\xa5\x18\x8b]\xa6\xbfu\xa4\xf2\x19`\xbd\x9c\xbf,z-\r\xd6\xeb\x9c\xbf\xa4\xbfe?\xe9m\x96?\xf8v8\xc0\x1a\xee\x9f?m\xe7\xc5\xbc\x92\xbf\xb1\xbf\\\xa0\xede\xb7\xaf\xa3\xbf\xd0\xd7\x13\xd6X\xeb\xad?\xa7\n\xae\xf1\x10\x1b\xbd\xbfP\xba\xc6-\x08\x08\xb7?\x9eu\xc9j@\xb6\x92\xbfL\xc6\xf5\xa2Fs\x94?\xf1i\xe0\xb2\xd4\xbb\xb9?\xd5-\xd6n\xd3s\xae\xbf\xfe)\xfepo*\xb3?{/\x80gr\x81\xa2\xbf\xb2\x87\xa6c\x95p\xa1\xbf\x96\xe1\xbc\x05\xf2b\x98?\x1a\x0e S\xbfs\xc0\xbf\x83\xdd\x07\xd2\xca#\xa9?\xb8p\x02\x94\xd3\xc4\x97\xbf\xd6\x06,tE\xf9\xa5\xbf\x9c\x0cnzW\xde\xbc?\xd0\xeb\'\x15A\xf4\x82?\t\xec=\x1f\x9d\x11\xbb?\x15\xac\xc4\xf7&\x93\xa5?\x97\xca\xba\xf6\xcfX\xb9\xbf\xde7\x80n\xac\xa0\xa3\xbf\xcb\xd8&\x1f\xd5N\xbe\xbf\xfc{S`\xcd9\xaa\xbfr^\xaf?>?\x8f?#\x11i\x9f\x10\xd0\xbfic\x94\xf0Q\xd9\xae\xbf\xc7E2\xd3\xfd\x14\xd3?L\xc2&\xadr\xe5\x9b?\xa1*\xd6\xb9\x00S\x87\xbf\x82\x16?e\xc3\xcb\xb2\xbfH]R\xe7\xff8\xcb\xbf,t}\x9fqq\x83?E_Q&\xc1\xe2\xc3\xbf\xdc^\xe2C,l\xb5?\x16W\xf8x\x13I\xce?\xc5\n)\xdd\x00o\xc3\xbf{U-GG\xa9\x92?\xfe\x84\x979SQ\x90?~\xedQ\xaf%\xbcu?\xe3\xf8\xc3\xe5\x04\xdf\xa8?d\xff\x86\x10K\xfe\x86\xbf`9?\x1d\xde\xf6\xb7?\x80\xe6OD\x93\xa4\xa8\xbf\xd8\xaa\xc9I5\x0f\xbe?\x93"\xf3w]\xc7\xb1?3Vl\xa22|\xb7\xbf\xe2*[\x19[B\xb1?\xe8\xd4\xd5\xf4\xcf\xd3\xb0\xbf\x02\r~\xf3\xa0\xa8\x9a?\x98\xdfZ\x96\x9b\xf4\x9f\xbf\x8e\xed\xbcA\xf8\x11{\xbf\x97 \x9cS\xddY\xac\xbfD\xeb:\xd5\xe0y\xbc\xbfR\x84\x06#\x9b\xef\xb3\xbfK\x98*\x95\x05\xa6\xc3?\xe9\xcfQ\x02#\x02\xa4\xaa\xfe\xbc\xbf\xbd\x80\xe2\xcc\xf4\x8a\xa7?\x96UG\xc1h\'\xc4\xbf\xba\xa7cp\xc0\xcdj\xbf\x82_\x83\x14\x84\xf8\xb0?\x15o\x94\xf1\x7f-\xb2\xbf\x93\x8a\xcavf<\xc1?E\x98\xaa\x00>5\xb1?\xaaI\xe3\x8e\x89,\x93\xbfh\x84\xb5no\xfc\xb6?W\xcfL\xa2\x93\xae\xc1\xbf%\x91\xb0\xff\xc7\x86\x8e?\xca\xf2\xf7\xafl\x1fw?Ds8\x84F\x9a\x8b\xbf\xc1\xb7\xb0d:\xc7\xb8?\xd9\xedu\x1f\x16\xd7\x7f\xbf\x99\xe4\xe6U\x90\xf1\xb7?j{C\x1f[\x1d\x8d?l\xce\xa8z\xb7\x8e\x83?g\x17\x16\xcf\x82f\xa0\xbf\xce\xdf-ibk\xc4\xbfs\x1a\xc0s\xd6\xa2\xb4\xbf\'\xb1\x8cph0\xb5\xbf\xbe\xd9\xc61\xa3I\x85\xbf\xb6(\xa5\xef\x93\xfc\xbc?\x14\xfe\xf1\x86\xf8`\xad?w6\\\x8a\xee\x18\xc0\xbfe\x10T\x19\xc4G\xc3\xbf\x7f\x9d`\xba\xc8\xd0\xc5?T\x17Y\n\xed0\x8f?P\x8b\xad\xc7\xcc\x93\xaf?\xc8\xc1\xd4\xac+\xd4g?\xb2\x8fM\xa9\x9f\xc2\xb1\xbf\x81J\xd7\xd5HC\x98?\xa8\xe7\xc3\xcc\xed\xf8\xa4\xbf\xab~Y\x92#\xac\x91?\xb1:\r\x85\xfb\xf5\xbd?\xd1\xf08K\x11M\xba?K `2$\xce\xaf\xbf"\xb1\xedh,\x87\xa1\xbfG$\x1b\xea.\x8f\xb4\xbf]B\x0b:\xf5}\xa0\xbfjW\xd6\xa9/\x1b\xa0\xbfo{\xd4\x18w\xc8\x91\xbf1\x99:\x9ex\xf2\xb1?J\xb0\xe2B\xbc\xc4\xa0\xbf\x00\xd1HPu\xb5s\xbf\xb6\x07\xb4\xebUs\x19\xcd8\xb5?4\xa6\xb9\x8a$\x0b\xa5?8\x12\x13\xf7^\xd3\xb8?D\x8f\x03\n{A\x95?,4\x15\x1d\xd8\xd0\xa6?P\x12\xd0\x0f$\xc3~?\x1e\x84H\xfb\xfc5\xae?\xca\xa5\xe4\xa6\xb80\xa7?X\xe5\xdd\xd8*B\xa6?\x1a\x14B\t\x07\xe8\x97\xbf\xcc\x91\x0f$\xa2\xde\xb4\xbf\x12U\x88\xe8\xf5\xf7\xc0?\x0b\x8a\xaf\xd27\xed\x9e?g\xa4,/(\x1f\x8a\xbf\x08\xe3.\x8fj$\xbe?K\xa5\xe3T\xc4n\xb8\xbf\x8bw\x95B\xb0w\xa1?c\xddsbGZ\xb0\xbf\x93200_\xae\xba\xbfZ\xa5\xca\xebm\x94\xa3?\x0e)\n\xc3\x0eh\xbc\xbf q\xbfE(\xa9\xb8?4f\x04\xab{_\xaa?\x10C{itjv\xbf{\xb6wl\xf1B\xc6?Z`\xb9=\x03\x863\xb6\xb3?\x1d\xf1\xb1\xa5\xa6\xba\xc5?\xfe\xb0\x83)\xcf\xbc\x9f\xbf\xe2\xdd\x8b\xde=\xc9\xc0\xbf\x886Ja^\x8a\x94\xbf\x1f\xd5\xe0\x9a\x9d\x9a\xa6?\xec\xc6\x81e\xcd\x0f\x86\xbf\x1c\xf6\\\x1c#]\xaf?\x1d\x06\xc5\xca^m\xaf\xbf4\xb3\x06\t\xde\x99\x9f?\xf2oxbAq\xc3\xbfV\xa6\xc9Mq\xfa\xbd\xbf\x1euZ\xd2\x87w\xc8?d_S\xa5\x9aA\xb6\xbf\xcb\\zv\xa9}\xb1?\x10f\x88\x9c\xec\x12\xa1?HB\xbb\xd4\x9a\x16\x98\xbf\x82\xc3R\xf9I<\xaa?0\x1b\x80MN\x1c\x8d\xbf&\xaef\xaf\x96+\xa2?\xd3E\xdb\x8f\xfc\xac\xb3?\xa2\xc8\xc9\xf0\xb1s\xc5\xbf\xc1\xa7$\x08\x8f@\x9c\xbfPiVZXC\xc8\xbf\x00*\xfb\xe98$\r?\x0c\x91\n\xfb[\xad\xb0\xbfj\x8c#\xab\x98\x1b\x95?V"/\x14DB\xb4?\xd0\xf1\xf5\xeb\xa3\xe6\x9d?hJ\xb2Q\x98J\xcf?\x18d\xa7(Y*\x90\xbf\x820\x90\xe1_\x89\xb6\xbf]\x8d\xf8\x86T\xcd\xa4\xbf\x14\xfb\xd7r/\x06\x9b?o\xb6\xf7(\'\xa8\xa9\xbfo\x02\xe8\xdf\x98\x14\x9e?\xa9\x15\x8d_\x1f:u\xbf\xca:\xe3\x9c\xd7~\x98?\xcc\xf2\x0b\xc5\xcd\xc3\xb4?\xd2\xda&bk\xe1\xb2\xbf\xe2\xb0\x02\x06\xc45\xbb?uf\xc5\x993y\xb3\xbf\xb3\x08\xe1\x97\xd1o\xb1?\xf10\xf7j\x0e\x85\x85?\x7f\x1b\x88`\x84\x81\xab?\xb0\x1c\xa9\xb7p\xf8\xb1?8G/d\\\x8b\xa8\xbf\xb8\xec\x98N\xa3!\x9c\xbf\\jx\x9aH\xfb\x83?<\x15\xaad\'\x0c\xb7?\xcc\x05@\xe18\xa4\xb7?\xfb\xb1\x0f\xf9N\x14\x9b?\xa8c\x96,D/\x87?\xfa) \xec\xb4E\xb2\xbf|/\x11\x86c\xe4\xa1\xbf\x9an\x92[\xdb\x14\x9b?4\n\r\xf3\xe0\xc7\xa9\xbf\x14\x9c\xd6\x8f\x9fQ\xab?P\x95\x15\xd3\x90-\xbe\xbf\x82\xb4B\xaeC\xbc\xa5\xbf\xce\xa4\xbf\x7fY\xfe\xb8\xbf\xea\xf5\x10D\xdd\x18\xb2?\xb0\x90\x99\xf8\x11{\x8f\xbf``h\xcc\xa3a\xb2?$4e\xe3\x06<\xb7\xbfp}\xec\xa8a\xd0\x9f\xbf\xd2,X@\xeeO\xbd\xbf\xec\xee"\x82\x981\xa6?V`\xa8>\t\xb0\xb1\xbf\xed\\\xf9Z[\xbc\xc0\x90\xcb?\xb0\xabd\xaaqr\x95\xbf\x9aK\xba\xd6v\xf4\x9b\xbf\xbf\xdbe\xe8\xb5)\x96\xbf\xa5\x8c\xcfm\xd3\xe3\xbb\xbfHh\x17\xde\xd0\xa3X?L\xb2\xb2rn\xd0\xb2?\xb8\xb0v\xba}\x8ap?\x11\xa2\xae?\xb3u\x8d?J\x1c\x17\x9a\xb7\x8b\xa6\xbf\xd0\xd0\x10\xeef\x88\xa1?\x00\x17\xf8\xfd\xc7\xb9\xaa?\xa0L\xe6\x7f\\N\xb1?\xb6\\|K\x94W\xaf?\x92\xd7\xd4\x85=2\xc1\xbf\xf39\x99\xdc\x829\xb5?\x08\x97\xf7\x7f\nU\x9c\xbf\xe6e{ \xd9j\xb2?\xf7?>\xc7\x08\r\xb9\xbf\xad\x96\x96\xee\xdc\x99\xa2?wI\xb7\xfa\x12\xea\xa5\xbf0\xa9\xfc\x0b\x83/\xa5?2\x94\xa3#\x15\xe5\xc1\xbf*\xb4\xb3O"$\xaf?L\x1f\xb03*\x8e\xaf?\xa8u\xcbvQZ`\xbftUHE\xb1\xf3\xb7?\xe2u\x1d:}\x9bi\xbf\x9e\xf0\x16\xcb\xad\xc1\xa9\xbfx\xae\xeb\x10n\xba\x88?\xd4[\xacM\x9a\xfc\xb6\xbf\x85\xf5\xfd\x99\xdc\xdcR?\xec[\xfc\xfb0~\x99?\x03\x9a;0\xe6_\xa5\xbf8;\xda\x90\x9a|\xb2?dfb\xbbzz\x87\xbf\xe7\x0c\x0b\x1f\x07s\xaa?\xc8\xcb\xfb\xaf\x11\x8b\xad?\xd2CY\x80%m\xad\xbfu\x9e\xddW]h\x94\xbf\xbf\xd5Eh^xQ\xbf\xda\x06\x1e\xc1\x1bL\x80\xbf\xfc\xaa$\xaa@\xd5\xa7\xbf\xa0\x016\x93\x17\xea\x84\xbfb\xc3\x90\x14\x16\xbc\xa1\xbf.\xdf \x0b\xf3\xa7\xac?\xb4\x86[\t\x83\xd0\xb6?\x0c\xc9\x81\xa65\xc9\xaa\xbfl3\xd8\xef8\x86u?3=l<\xa3/\xa6\xbf\xad:\xab(\xbf\x83\xb1\xbf\x02,\xe8\xc7\xba\x8d\xae?\x02\x7f9\x0f\xdfe\xa3\xbf`\x826\x19Y\xd8V?\x18\xe0\x10\x7f\xfa\xb8\xb1?A9\xbb\nR\x08\xa7\xbf\x13\xa7X~\x93\x86\xb1?\x00y\xce\x90\xe1\x15\x97?`\xca{\xa6\x9f\xd8\xa9\xbf\x96\x94\x05\x1d\x0c\xe7\xa6\xbf\xc6\x05\x10K\xca\x00\xc6\xbfp\xbb\x94\xf1\xb4\xd9\xc1?\xbc\xe9&K\xefK\xae?\x06y\xe1A\xe77\x80\xbf\xd8:o\xe9\x1b@\xb2?f\xbes9\x8d1\xc2\xbfK\xd4\x05\x8b\x836\xb0?\xc5\xc4um\xe6\xd9\x91\xbf\xcd\xfb\xdf\x16\xd0\xd8\xbe\xbfv\xe1\x8eK\x18\x8d\xb7?,\x8d.\xbc=I\xad?\xad\xc9i\x8ai\n\xb9\xbf#\xe1\xc5\x88X~\xa6\xbf(QP\xbcW\x84\x8d?*\x08\xe2\xcdM\x9b\x83\xbf\x88\x9b\xf6<\xb9\x80\xbd?\xb0\xcc\xdfC\xaa\x98\x96\xbf9\xb1\x8c\x94\x90\x00\xa7\xbfn\x06FN-\xac\xb8?\xd2\x08g\x0f\xfe\x1b\x92?0\xc7\x9cAK{\xc3\xbfF\xfbF\':\x9d\x80?\xb67\xe7\xdf\x041\xa7\xbf\xb0\xbc\xa4\xc4SGL?\xde\x19\xed\xf5\xba\xfa\xb7?4skl\xf7\xf1\xa9\xbf\xd4?h\x850`\xce?kRIu!8\xbb\xbf\x9c\xdc\xa0\xde\xc3T\xb0\xbf\'\xc2\xf7;r\x8e\x9f?9\xd8D\x8c\xad\xc9\x9c\xbf\x16\xbc\x85\x99N}\xb2?@\x99h\xbc|?C\xbfRD\x99/\xaa?\xae?\x10\x89\xffF\x12\xd7m\xbf\x92L\x0ee\x0f\x95\x99\xbfj\x85\xeak/w\xb3\xbf$\x02W;Vt\x9c\xbf\x8d\xdc-\xb1\x90p\x90?\xdd\x8c\xb2\xb6\xaa\xbd\xaa\xbf\x1c_\xa4\xd8\xed>\xb7?o\x1bR\xc9\xb9\x98\xa3?\xfe|r\xa5\xcc3\x94?\x8cU\x14\xe6\xdb\x8b\xc7?Pi\x0fC\xf3\x11\xa9\xbf\xdf\xf3EK\xba\x91\x81?\xfe\xb9~/p\xd2\xa0\xbf\xce\xcdS\xf0\xbf\x8a\xb0\xbfr*\x10\xdc\x12B\x9e?\x9c\x06\xeb\x08h\x01\xc5?\xf0F\x97^$h\x82\xbf\xf4g\x83o\xd5I\x96\xbf\\L\x9d\xe7\xbd\x7f\x97?z\xde\x13\x8a\x9aT\xad\xbfx#\x15>\x9f\xe8\xa7\xbf\x8c\xf6\xe6\xe2\x9f\x1d\x98\xbf\xae\x93}Hcc\x9e\xbfE\xa6\xf7\x88r\\\xba\xbf{\xad"1J\xfa\x9c\xbf\xb3\x0e\xcc\x05sv\xa3\xbf\xfaS\xf5\x1d`:\xa5?\xa4\xa0\x18^K4\x84?\x058\xebWt\xbc\xb4\xbf<\xe9U\xb9\xc7\x1f\xbb\xbf\xaco\xfd\x00M@\xd2?\xd2\xfe\x92\x97F\x82\xa9\xbfq\x9eT5zG\xbf\xbf\xe5\x1c\x17\x16\x9cK\xa2\xbf\x1cZn\xcd\xfd\x1f\xa5\xbfI5\xff\xe8\xab\x89\xa9\xbf\xbf\xf0y\xcb,\xab\xbf?\xff\xf4\x89\xbcA\xb7\xb1\xbf\xd0\x98o\xab;\x93\xcf\xbfH\xf7\xa4\xe6\xb1\x0ea\xbf\x06\xafg\xbf\x00\xef\xb3?\xc4\xf9\xf8\xd4}\xcb\xb5?y\x8f\\T=\xef\xce\xbf(\x11k\xf6\xb1\x80\xb3\xbf\xe2\x16\x9f\xdf\x0b\x7f\xbb?\xef\x88\xeb\xb4\x06\xc3\xab\xbf\xb7\x83F-\x94\xdb\xa8\xbfR\xc0\x13\xa9\x83\xa1\xb9\xbf\xa1\x03\x82\xe0\xf9\xfa\xbb\xbf<\xc1\x97\x14E5\xc1?lY\xe4\xed\xdf3\xd3?\x92\xaa\xcc\xbf\x8c\xd6\x88?W\xba\xff\x19\xba[\xc0\xbf=i\'\xaf\xf1\xec\xa8?\xf6\xd5\xbdbb\x18\xbd\xbffV%\xd1\xd0r\xad?Fp\x0cn\x04F\xa4\xbf)\xd8\x03\x15Y}\xac?a\x8f\xbb\xe1z\xff\xbb?\x98\xe8-\x07\xf6\x8b\xa2?\xf0\xcc\x01Dr\xad\xc4?\xf6F\xcc\xae\x97c\xa1?B\xb4\xd9wSW\xc1?\xdc\x9b\x86\xff\x0f\xc9\xa7?4\xee0\xa2*T\x9b\xbfD\xec\xb7\xfd\xf0\xc7\x9e?Y?1\x93\x10\x13\xbb\xbfa\x18\x87\x90\xe6\x05\xc8\xbfXi\x9d\x80N8\xc3?\xbe\xa8\xa2\xb6\x8eb\xbc?3\x8703\xd5\xf0\xb6\xbfnQ\x95\xc4dV\xd2?R9\xe8x\xfa\x1f\xbf\xbf\xb2\xec\xd8\xb8\x07\x90\x82\xbf\xf5\xd0\xa6\x9b\xa4/\xb3??\xe9\x13"\x11\x98\xd2\xbf,o\x89\xec\x9c.\xb6?\xba\x116%\xb4\xcb\xb8\xbf\xab\x0ct\x84>\x17\xbb\xbfsC\xf6\x9c\xa9\x07\xd2?\x1c\xfc\xd7y\t\x00\xbd\xbf\xd4\xa6VU\xf8\x8b\x98?\x87\xf2\x06vwn\xc8?\x86\xfd\xbaUTM\xc6\xbf\xaa\x87\xf3\x86\xc7\xfdu\xbfK\x07\xf8\x88\xe7J\x86\xbf\xa6\xd4W\xffu\x04\xca\xbf@`\xe1DC,\xc9?J\x87V\xdd/\xda\xb8?\xe8\xe5\xbd$\xef\xc2\xaa\xbf\xa2\xd4\x825\xfe^\xbd?\xdd>M\xe8dm\xc3\xbf6\x84\xe7KT\x14\xa5\xbf W\xbeG"\xd9\x83\xbf"\x0f\xd0\xb8\x8b}\xb4\xbfX\xcb\x04\xc3\xd9\xed\xc1?#\xfb\x86\xdf\xc2/\xad?.8\xbd\xfb\xefH\xae?\x97\xbf\x8b\xdb\x92\xdd\xb4?\xe2\xb5*\x0b\xb6P\xb5\xbf\x9a\x91\x88\x04aI\xb6\xbf\x00\xed\xf6\xf9\xe8\xadO?\x8c\x0c\xd8\x1c|l\xb6?\x00\x82\xabx]\x90\x81\xbfpk\x08\xee\xa9v\xa5\xbf\x1b\xdd\xfeT~\x94\x8d?\x8e\xd4\x13\xb2\xec\x11\xaf\xbfO\xfd\xa9\xd4\xb5\xa7\xb0? \x9e\x80N\x02\xcf\xa0\xbf4\xd1\x11\xb1\xfe\t\x9d\xbf\x0b\x7f\x91P\xfa\x9a\xb8?\xca)w\x10\xef\x0f\xae\xbf\xc0y\x99\xad\n\x129\xbf\xf1\x84\xb8p\x12\xdf\x93? \xaf\xaaV\xb8\xebp\xbf\x17<]Z4W\x91\xbf\x80\xd1*L\x8a\xefx?0P\x0c\xdc)\x13\x95\xbf\x90@X\xdf\xcf\xca\x8b?\xe06\xf3Hh\'\x80?\xe4\x7fZ\r\xf0\x0b\xa1\xbf.\x89>BF\x94\x90\xbf:\xf7E%\xecV\xb5\xbf^\xe5pn9\x8c\x81\xbf\xb0\xb8\xfcV\xef&\xa2\xbf\x0c\x19\xfd\xd1\xa5\xf5\x87?T\x8a\x10\xa7\xf2\x86\xa1?\xa8H2\xa1\xfe6\x89?\xeeQ\x86\x96v1\xb9?T\xceG\x05\xf2\xc0\x90?\xac\x1d\xe2[HC\x83?\x9cs@\x086\xda\x94\xbf\xd0c\x14\xd2\xe9Xz\xbf\x8e\x1eH\xaf\xdda\xb5\xbf\xe8\x9f\xcb\x92\xddJ\x97\xbf\xe0\xb3?\x83\x1f\xe4\x89?\xd073zM,\x94\xbfp%\x94\x1b\xe1c\xa7?X\xee%\xc8e\xf8\x96?\xb12\xc5t\xd7\t\xc9\xbf\xf8k\xe6\xbdj\x9d\x85\xbf\x9e\xe9\x88\xf3\xe0g\x98\xbf\xd4\xee=\xdbm]\x9c?\x80F\xf7=\xd3\xd3\xb7?@N\xcf\xb4\xfaR\x8d?\xce@\xdbG\xce\xa4\xc8?\xb8\xcf/\x15\xa3\xff\x85?\x86X\xfc\xd6\xfe\x9b\x80?HzC:W/\xaa\xbf\x9a\nBE\x0fE\xbc\xbf\x0f\x9f\xe2\xae\xc6\xd6\xa5\xbfR\x86-L0\xd9\xc5?\xa4\x15Y\xa5\xf9\x1b\x8d?\x1e\xd3`(\x9e5\xb4?\x10\x1c\xd4\x10}N\x9f\xbf\xf0\x92\x086\xa4.R?@\x9f\x11\x8f4\x0b\xb0\xbfS\xb4\xa0\xc6c*\xc0\xbf\xbf\xfe\xbdi\x0c\x01\x99?\xa7\xa3\xf2\xceT\x02\xb2\xbfOlPJQ\xc5\x9b?\xc0\xb7\xc3\xd4\x84\xd8\x8c?b\xc6\xb8\xdd\x98\x8d\xa5?K\x1b\xdb!)?\xb0?4_\'+\xab\x0b\xb2?4d\xe9\xea\x9d\x05\xa4?\x96\xdd\xdb!+$\xc5\xbf\xb8\xcf\x02E\x14\x8bp?X\x84\x9b\x98\x1bk\x9e?@\xd7\x1b\x13\xff:u?\xb4=\xf5"]6\xa5?\x80\t\xb2:\xd01b\xbfrX\xed\xed]\xb7\xb0\xbf\xf4k\xe7\x89\x1a#\x94?\x84\xb7\xf3\xd5\xff*\x93?(\xeeDo~\xc4\x85\xbf\x80\xfc{\xdd\xaeA\x8d\xbf\xef9\xa0\x9f\xba\xc6\xb4\xbf`hT\xe2\xc6\xb1\x90\xbf\x9c\x89\x8f\xd1\xff3\xab?\xf5\xa3>f=F\xa3\xbfz4\xd9\xfa\x16F\xab?\x8e\\\x8192\x83\xa7?\x04s/\xa6\x9e^\xa1?V;\xcca\x12\xdf\x93?\x92\xe1]\x8c\xa4\x07\xc5\xbf\xc2\xb5\x15s<\x92\xbf\xbfL-Y\\\x80n\x8c?\x15\xe1\x7f\xcc\xa8\x93\xae?`\xd0mjO\x9a\x8d\xbf\xddC8\xae\xca\x88\xa4?d\xdc\xf69\xbf\x81\x92\xbf\x0fY{\xdcb`\xa7?@\xb9\xdf\x0f\xb1\xa9j\xbf\xec\x05\xd1OiO\xb3\xbf\x98\xc9m\x7f\x9a\x98\x84\xbfT\xf8\xd8q\xaa\xd2\xa4?\xc8\x03W\x08\xc1\xa1`?\x9c\xcd\x861\x0c\xbb\xa1\xbf\\\xda\xec9\xad\xc6z?\xff\xf0\xff\xc0y1\xb2? \x8fo\xbb\xda\xc3@?b)\xd7v\x8df\xab?\xa0\xb7v-\xb2\xf4\x87\xbf\x05\x94\xcd/\x01\xad\xa2\xbf\xaf\xaaI\xe3\x8e\xd5\x90?\x95\x07\xe87a\x81\xa5\xbf9\xd3\xbb8n\xa0\x95?\xea\xd3,F{\xb5\xa4?.*\xf7\xa5\x8a\xcd\xa7\xbf\xfar\x10\x00\xf6\xc6\xaa?\xbf}!G\xd4\xe5\x95\xbf\x9cj\xa6\xd5\xa5\x7ff\xbf;z\xd9\x84\x0fp\xb4?\x15[}\xe8\xadD\xba\xbf!\xa9@\xd1\xf58\xa4?\x1c\xf6\x16\xd5\xba\xe3^?E\x03Y\xcd`%\xbb\xbf\x1b>V\x7f\x05\x89\xb6?\rJ\x84\x15G\xba\xbb\xbf#\t\x8a+\xdfr\xa2?\xdb3\xf2\x97C\x91\xba?\x80w?\xd5\xbf\xda\xa3\xbf\x15\xaa)K\xad<\xca?W\xbc\xabC\xbez\x93?\x91\xf8\x17X\xdd\xbc\xb3\xbf\x8a4]\xef\x1bI{\xbf\x9bFPs\xf3\xb8\xd0\xbfIe\x90 z>\xb5\xbf\xa6\xccL\x92Ho\xb3\xbf/o\x9c\xd2\x9c\x08\xa4?i\\\x1a\x96\x1f\xde\xd0?\xca7\x9f|U\xf8\xc0?\xf9\xe2\x80\x05\x97\xe1\xc5?\xb4\x86\x7f5\xb7\x99\x8e?\xd8#!\xbf\xf7\xb9\xc9\xbf\xc1\xb8\xbelv)\xc1\xbf\xdc\x9a\xf8Ap\x0c\xaa?\x94\xe5{\t\xd6\x18p?\xd0\x12\xc0F\xc3\xf6\xba\xbf\xb0\xa3\xff\xa6L\x98r?\xb8M\xc3\xfdk\x8f\x84?\xfc\xae\x03\xbc\x92(\x9d?\x96\xf9yY\xbd\xef\xae?\xe88\xb6\x0e]7\x84\xbf\x9a\xda\xe5\x10)?\xc0\xbf\xe8\xda\x8d\xcel\xb9\x87\xbf\xb16\xba\x97\x93\xf2t?1\xa3\xe9H\xde\x13\xba\xbf\x95.\x9a,\xe6\t\xc0?,L:43<\xad?\xf0\xae\xf1\xf8\xf6\xb0\xa9?\xef\xa2\xe8\x1a\x06\x9a\xa4?\xed\xd9\x8c\xd6\xfe\x94\xb4\xbf.\xd4\x15\xfcsA\xb0?\x10\xe2\xcb\xbc\xaf\x91\x8f?D\xa1\xa7\x93Y\xbd\xad\xbf\xd0\xbdP\xc8#5N\xbf\xfb\xc3\x93N\x16\xcc\xc5?(\x05\x84\x9d\x85\x86l\xbfbA\xb8\x86\xcaa\xaf?\x99Q\x8a\x7fA\x17\x86\xbf.j|Xj`\xb5\xbf\xf4CC\r\xc8\xcdm?\xf8T\xe0F!D\xcc\xbf\xac\xbenZ\xf5:\xa9?\xda0B"\xc8\x8f\x85?\x0f\x98\t\xd8\x1b^\xa3\xbf(\x99\xa3\x03q0\x9a?\x96\x99\xde\x04\xdc\x1c\xa5\xbf,*\x9a\xab\x9aM\x92?\xc0\x95\xa3K\xcfy\xa8\xbf\xc8#\xf4{vA\x8a?\xdf\xad\xcd\xc0\xff9\xb9?$}+%\x0bL\x9c?P\x82\xa7\x0c\xfb\x80\xb5?\x04\x9c\x83]\xf8\xdb\x85?\xbf\xca)\xd6\x98-\xa0?\xc4Y\xf6\x10r\xb7\x88\xbf\xf0\x19\xbeUzfi\xbf\xf4(+\xf8s\xfe\x82?h\x05\xa5\x9f\xce\x08\xb8\xbfi\x90N\x9a"\xbc\xad\xbf\xb5\xa5\x0b\xa5\x1f\x15\x8d?\x96uB\xa8\xdf]\x99?;\xbd\xbd\x04\xefP\xb4?\x04r0\x9c\x04\x80\x8f?\xcb\x8d\xcd\x00\x98\x1e\xaf\xbf\xd8\x1c\x97+\xa1\x19\x7f\xbf\xb0\x07\xba\x03\x0b\x7f\x89\xbfH\xa9$\xa9r\xa3\x84?\xbe8@\x8b\xc1\x14\xa8\xbf~\x7fK*\x8b\t\xab?\xb6P\x81\xd6ca\xa2\xbf\x08\xdc\xc7VW\x19\xb3\xbf &\xc1tsy\x88?\xc8~\x86&\xbe\x97\x93?\xac\xd7\xd2\x0e\xf1\xe5\x94?\x08\x1b\xec\xf0\xd5\x1ax\xbf:\xf6\x84\x0b\x9f\x16\xbd\xbfjx\xd8\xda\x13\xc6\xb4\xbf&h\xbfM\xf1\x12\xbc\xbf\x03y\xc4r\xfe\xc2\xd0?\x82\xfc\xcf\xc9\x93\xd4\xb3\xbfD\xe6\xb2\xa7Uo\x9c?\\\xca\xe8g\xae\xde\xad\xbf\xa5\xf8#\x1a\xd6\xb2\xb7\xbf\xf3\x8d%a\xa09\xae\xbf\xb6\x08J\xa6D\xf0\xa8?\x88\x1bQ\xc8\x17E\x92?\x9f\x90@5\x91\xe3\xc3?\xb7\xf9\x9e\x82\x19&\xb3?4J\'\xf0\xc4\xa6\xa8\xbf\xe6\x8e\xb3\x8c(`\xbd\xbfX\xfb\xd0\xdd#\xab\xc0?\x9bS87\xf6\x9f\xb7\xbf\xc0wh\xf8l\xfdq\xbf\xe8\\\xcc\x8bw\xe3\xb2\xbf\xa4F\x9d0\x8d\xc4?\x18\xbfW\xd3/\xd4\xc8?\xa3\xa0\xca\x02\x04\x97\xaf\xbf(lh?\xcbX\xbc\xbf\xc2\xe3\xa9\r{\xdf\xb6?y\xaey\xd9\xf5\x99\xa2\xbf\xf8#\xbe\xccq\x18\xb9?\x1es\x14wj\xcc\xbe\xbf\x11\xd2\xea3NL\xb9?6y\xe7T\xaa\xba\xa8?Xr\xc5\xc6\xd5\xa9\x9c?\xd3\xd9\x8d,\xdc\x10\xb1\xbf\xdb\x90mh\x97\x10\xb0?\x13\x93\xd2g\x01D}\xbf\x18\xb3\xf4L,\xe7\xb5?\xb2?\xb1\xb1B\xfe\xc2\xbf\x1c*\xb7u\x11H\xb5?\x13\x8f\x1f\xac\xde\x04\xa6\xbf\xb3U\xf3\xee\xa7\xff\xb6?\x9b\xfb\xff9\x8d\xaa\x9e\xbf\x87\xe4\xa4L\xe0D\xae\xbf$\xf5\xf1Bs\xc2\x7f\xbfg\xe8y;\xb2\x84\xbd\xbf]\x8c\xea\x9f\xa8\x11\x94?I[\x91"}O\x98\xbf\x8e\xb2\x951\xa0\xd1\xa5?\xd8\xc8\xad\x92\x93\xd6\xbf?\xc3L\r\xd3\xd3\xa2\xa0\xbf\xc1Q\xdb\xda\x04\x1f\xb3?\xeb\r\x95K\xe7\xb6w?\xbc\xa3\xb95\x89\xed\xb5\xbfI5\xe6Kv\xba\x82\xbfuKC\xe9\xd9\x86\xb3\xbf\xff9\x07\x85\xee\xf1\x85\xbf\x06\x10\xa2\x8c\xf0\xe4\xb2?\xc0\xc9\x1ad[\x17\x9a\xbf\x8e\xafK5CH\x9b?\xfc#g\x1b\x00\x0c\x9f?r\xbc2\xc7P}\xa3?\xd2\xae\xa5\xb9\xf7\xf7\xb9?\xa7\x89@\xef\xf2*\xae\xbf\xe21\xa4F\xa8=\xa0\xbfD\x8a\x05\xc5\x9e\xf8{?\xe8\x0e\xce3^\xa3\xba\xbf\xcdj\x9f\x9b\x9b_\xa0?\xb8?b\xc4\xf3\xbcp\xbf\x1a\xec\xb4gUN\xa2\xbf!\xcb\xd2\xdb[T\xaf?\x8e\x01\xf2dU\xa2\x96\xbf\xcac\xef\x12\x93\xfb\x9c?2\x82,\xf2\xf8`\xa5?\x82\xb8\xe8D\xa6K\xaf\xbf\n\x86\xb4v\xcfg\xa1?\x80\xc1U\xb2\x16\xea\xc3\xbf\x0eq\x95q/@\xb9?\xc3\xc1\xba\xd3\x16\x82\xb4?\x9e\xf7\xa1)[\xd2\xb1\xbf\xa5T\x05\xb0\x13{\xc0?\x1bO-\xf3\x86y\xc0\xbfq\xdb\r\xa7e\xa8\xbd?\x0c@_\xd4\x82\xc6\x93??\xce\xd7\xf2\xb7$\xc9\xbf\xaeR\xf5\x84^\xa4\x9f?@\x0f\xe3\xe5\x19\x15\xa4?\x01\x90\xda"}[\xbb\xbfY\x7f%\x13\xd4l\xa7\xbftn\xf1j{I\x94?\xad<\xa3\x080\xe6\x91\xbf"G\xe8\xcd-\xa1\xc3?\x9b\xb2\xcd\xf6),\x97\xbf\x19h\xe4\x05\xbf\x8b\xb1\xbfd\xf2\x15\xee\xb5\xa5\xb0?\x88\x1e\xf6\xfb\x15*\x98\xbf\x9e\x83d\x99[\x03\xc0?`U\x0c\x04\xf9\xcd|\xbf\x82\x99\x18\xb5\x07\xca\x95?\xa9($Z\x97y\x91?\xd1\x8aF\xe2bX\xb5\xbfjGy\xef\xb6{z?\xd7\xe7}\xb2\n\x07\xc7\xbf\x9cG\xcb\x83\xd4h\xb4?\xc0\xdb\x15\x0b\x19\xb4\xa0?)\xf5b\x0f9\xd2\xa0?\xab\xc7"\xb4\xfey\xa0?\x04\x1e\xb1\x7f\x0c\xd4\xb5\xbf\xba\x17,*$l\x84?\x86\xad\xa22\xb42\xaa\xbf\xa6t\xaar\x07.\x97?\x01D\xf0N1kr\xbf\x03x\xd9\x08\xd0\xaa\xa3? !U\xb1lJ\xc3\xbfb\xd2se\x9d&\xa1\xbf\x08\x92\xc8\xfe\x9d\xe6\x86\xbf\xd4\xcb\x07\xaav\x89\xb7?0\xcdL\x11\xe9\x9b\xc0?N\x19\x93S@\x90\xa5?\x9e\xffG\xa75d\xce?\xd4N\x8d\x9f\xdb\x1b\xa2\xbf\xf1\x89\x08b\xe2\xc7\x92\xbf\xa6\xd0\x19\x8b@\xad\xa5\xbf\xd2\x9am^N\xcb\xc0\xbf\xb4\xe4X\x08<\t}\xbfRGI/\x8b\x8d\xd1?\xc3v\xa2^\x96\xa7\xa5\xbf=\xb6\x19\x0c\x9c1\xb3?\xfa\x1cG\xbdF\xf4\xa3\xbf\xd0\x99i=\xe1\xeco\xbf\x86\x17K{\x0e\x8a\xb5\xbf\xe2#\xf2\\\xa6X\xc9\xbfg\x8dV\xd3\'\xd7\xa8?\xee&\xee\xc7\xaao\xc5\xbf\xf2\xaa;b|k\xa5?(,\xc3\xba\x99\xab\x87\xbf\x17\xc4\x07@u\xbd\xb2?\x00\x18\xa6}G\x94\x06?^bY\x1bO@\xb1\xbf\xaa\xbax\xcab\xfd\xb6?n\xe6@\x9ari\x99?\x96\xa7\xa9\xa5\xb5\x88\xb3?\x18]S\xa4\xaf\xda\xa1?\xd2\xd0\xaa\xb6\xce\xb7\xb2?\xda\x0f\xfc\xb4\xecm\xb7\xbf\xe8\xe2\xba)\xd6\x95\xb3?\xce\xda\x9aU\xb7}\x8d\xbf}d\xcdjcA\xc7?pR\xc45O\xf6\xca?9\x13\xael\xccM\xa6?\x900AJ:^\xad\xbf\xda\x9eK0\xb0\xd4\xbc\xbfHo\xa7J\x08\xaa\xc5?\xd2i|$\xbc\x90\xb9?\xc4\xa1\x89\xf8}e|\xbfy7\x1b\x9a\xb87\xbd?6rt\xa6Q\xa7\xb4\xbf\x9b\x02\x13,@\x19\xb5?\xff\xec\xdc\x7f\xf17\x9e?\xe8\xd2\x03s$\x8f`\xbf\x1e\xcd\x08\x03\xd9\xd9\xa0?\xfd7WM\x15\x0e\x9f\xbf\x8e`\n\x1d\xeb-\x9a?\x18~&\xdb\x87\x1f\xc2\xbf\xf9\xf8\x9c\xd7\x18^\xb2?\x08e\xf0\x93\x8c3\xc3\xbf\xdda\xa6\x14\xfb\xaa\xb2\xbfj*)\xdf\xca\xd2\xc0\xbf\xa1rs3\xda\x97\xa0\xbf:\xa9\x8b*\xad\xb2\x9c?\x92E\x07\xf3\x8fx\xc1\xbf\xda\xbb\n\xdeo@\xb9\xbf\xaa\x99\xcd\xa4{\xfb\x91\xbf\xd6\x06\x84\x88\xd5\r\xbb\xbf\xbc\xe5\xd3_\xf3=\xb2\xbf\xf3G\xf2\xfb\xc9Y\xb8\xbf\xf916%\xf1\x19\xab?\xf2\xb3\xdf\xa6\x8c\xf0\xbb\xbf\xa5-\xb8y\x1e\xee\xbf?l\xb9A)\x92\x19\xb4?\xb1\xfcq)\xb7\x0e\xb4\xbf\xb6\x94\t\xde5\xe6\xc0?\xdd\xd1\x96\xed\xcc7\xb3\xbf\xb7\xca?\xbcg(\xb1\xbf?\x146\xeb\x9f\x1e\x88?/R\xd8;J\xc1\xc2\xbfo\xec{\xc0\x07\xdb\xaa?Hj\\\xc5\xbdb\xa9?\x00\x86\x9d\xc3\xb3\x9d\xac\xbf5\x16\x80\x96\x97\xfd\xb5?r\xdd\xd3"\xe6\x06\xaa?\x14\x89N\xe9\x0e\x04\x9d\xbf\xe4\xf6\xa0j\x1f\xee{?!\xd6\xc0}rM\xa2\xbf\x8a\xbc\x1d,k7\xa3\xbf\x9b"\xf17\xeb\xb8}?A\x8c\xb7\x0f\xbc\xff\x9a\xbf\xc4bq\x17ND|\xbfHl?\x89IYf\xbf\xff\x8c/\x15\x86h\x98?\x14\xef\xd4Cht\xb3?\xbff)\x7f\x11\x07\xa3\xbf\xb2\x9a\tp\xa1\xde\xa5\xbf<\xe9\xed*%\xf3\x94\xbf,\xe6\xf8\xb4\xac`\xb0\xbf\x16{\x1b\xdb\xafY\xa1?\xc3\xb5\x12U:f\xb5?\x9a\xed\xcd\x8dXc\xa7?\r\xfe\xe7\xe0d\xf4\xaf?\x1cY\x99\xddu\xcf\xab\xbf\xc0\xea\xa0\x0b\xc5\xe0\xb9\xbf\xe6\x06\x89M\xbf\x13\xbc?\x86\x17\x05\xd0\xbaz\xd2\xbf\xe0\x03I\xebi9\x90\xbfKv\xfe\xcfkT\xc3?S\x8b\xa5\x04Q\x07\xb3\xbf\x00\xa5g\x14>\x98\xcb?\x9b\x99#o\x9a\xfb\xb5\xbf\xd27\xf1;\xb2\xfb\xb8?\xc9\xa6&\xb5\xa6D\xbd?=k\xc8\xc3\\\x07\xd0\xbf\x96\xc1M\xbd| \xa1\xbf\x9eh\xec\x0b\xf3\xb7\xca?P\xddrf\x17\xe8\xba\xbf\x8d\xc5\x8b4Nf\xb2\xbf\xec\x9c\x19\xfd\x03\xc8h?~\x9etl\x0e\x12\xca\xbf\xa69`\xc4\xb29\xc1?2\x06\xa5\xb1?\xb6\x1f\x89\xd9_\x88\x83?\xfa\xc6C\xe3\xf3\x18\xd0?\xce\xe8+\xee\xb1\xef\xb2?\x82\xc5(;\xdaC\x93?\x9d\xda\xa8+\xeah\xa3\xbf\xb7\x98>\t\x0e\x81\xc0\xbf\x8a-\xf3\xaa\xf1G\xac\xbf+#\xd8\xf0\xd8\xc4\xc3\xbfW\xf8\x11\xbf\xcd,\x98?A<\x1b\xb8\x05\x02\xb6\xbfPF\x1bX\xaf\xe1\x95?#l\xd38\xd6\x06\xb0?6t\x9fD\xe9\xbb\xa2?\xb7>\x8b&\xcf-\xc1\xbfu\xde\xda7\xe9\xe5\xa3\xbf\xc2\x99\x12(o\x94\xad\xbf\x0e_B\x15;\xcb\x96?\xff\xb9\x02\x80\xa44\x99\xbf\xed\xa2\x02\n\xa2\x89\xb3?\x81\x1c\x8c\xd8\x84|\xca?\xdcid\xe2\xda\xbf\x97\xbf\x87_S\xbf\xbdB\xb1?\x84S\x9a-\n.\x9c\xbf\x0f\x82\xf229\xa3\xa5\xbf\tH~8\xd4-\xb5\xbfP\x80\x80\xbb]-\xa0\xbf\xee\x8a\xbeU\xf9\x92\xaa?\xd3\xebg\xdaq\x8e\xb2?\x18\x14\xbd\x15\xe9\xac\xad\xbf\xe2S\x86\x04m\xd9\x9a?\xb4\xe2\xf1\xad\xce\xeb\xa4?\x07\x12$\xe2\x8bj\x8e?\xcd\xbd\xf3\xbf~\xd1\xa6?\xd4lc\x04@\x19\x96?p\x84\x8a\x96!\x98\xa4\xbf\xc05\x01*\xa6\tH\xbf\xc8R\xba\xa3A\xd5\xb1?D\xaa\xa4\xb7\x87n\x95\xbf\x00\x04:\xad>\x17+\xbf\xb6\xa8\xf8v\xc2\xe5\xba?\xf3\xcad\xdf\x15\xaa\xb9?:\xc9\x85_#\x81\x81\xbf<\xf2\xc1\xcab\xd9\xa0\xbf9{^\xbe\xc7L\xa3\xbf%\xef\xc0\xd6\xc5&\xb4?\xaa\xe8\xe6\x84\x8c \x82?\xbf\xf2%\x8a\xe1\x82\xa7?\xc8:\xa0\xc4\x7fna\xbfC\x01P\xa0k\x9e\xba\xbf\x1c\x03\xe5/\xa9\xf5\x8a?v\x8c\xc9 @\xbc\x97?pQ\xdd\xf3\xb2\x8bw?\xecM\x95ix\x00\xa2\xbf`\xdc\xea\xfe\xc5\x10h\xbf\x90Nt\xd4\xba\x90\x93?e\x9b\xe5\x87\xbcG\xa9\xbf8\xa0)K\x17\xbfo\xbf\xbc\xbeQ\xe9\xcf\xbe\xb2\xbf\xcc\x03\x93\xd46_\xba\xbf\x18\x1b\n\xe3\xeb\x02p?S3\xad\x17\xc1\xac\xb2\xbf\xc4\xe2\x99v{6\x84\xbf.\x0f\xbe\x9b\x10\xb9w?\x88Tl\x83};\x9a\xbfp3\xb1l\x8b\xaa\x96\xbf\x1a\xff\xbb\x8c\xee\xe8\xb9\xbf".5\\\xda\xc7\xaf\xbf\x1b\xd1\xda`\x7f@\xb8?a\xaf\xce\x17`\'X\xbfi]\xad%W\x9e\xb6?\xab\xf5\xb9\x11T \xba?\x98\xb0\xfb\x92l\xfc\xb2\xbfy\xa9\xef\x19\xd2*\x9f?\x84\xc5\x0b\x17&\xec\xb1\xbf\xe1<=\xaa|Q\xb3\xbf\xec9\xa5\x94\x87F\xb5?k\x15A\xf3\xd5i\xc1\xbf\x8e\x95s1\xdd\xbd\x80\xbf\xea\x03\x93}V6\xcb?\xe9\x9dI\xa5DS\xa3\xbfz,t\t\x82\xc6\xb0?\xe0\x1c\x9c\x8f\x15d\x9e?\x1f9y(\x8e\xc7\xc7\xbf\xcc\x14\xf9`C\xd6\xb3?c\xb0\xf8\x1b\x87P\xb7\xbf;\xcd\x9f\x10t\x82\xc2\xbfIe\xba\xfd(\xc9\xc7?\x86i\xf4\x0by\x99\xb2\xbfl\xa9\x17]\\\n\xc1?Z\x11\x91~\xa5#\xc8?\xf6Q\x1e\xcf\x92~\xca\xbfv\xa1\':\xe1\x13\xc2?\xa2\xa1\x84\xddv\xcd\xc5\xbf,\xf8t\xb0\x92\x8f\xc7\xbf\xe9V\xb3Fk\xc3\xc4?\xac$\x0c5*\x07\xc7\xbf,\xfd]\x165#\xc3??I\x9e\xe0\xf4\xab\xc5?\xe0\xeb\xa9\xe2?\x7f\xbb\xbfTOAbR\x87\xa4\xbf\xf6tt\xbf\xae4\xb3?\xe8/\xf2\xcd\xbe\x97\xa1\xbf\xb0\xa1B\x06\xb9M\xa5\xbf\x9a\xf5\x07\xd4`\x04\xb1?8$R\x85\x99\xdc\xb5\xbf@\xc7~{\x88\xc7\xad?@\x85\xb9\x11&\x94\xa9\xbf(=h5x\x06\xaa\xbf_\x7f\xd0#\x06o\xbf?\xf0\xb3\x0f\x02\x9f\xa7M\xbf\x14>\xd3\xb4\xe4c\xa5\xbf\x16bl\xa60\x8d\x92?dlR F\xd8\x9d?\x80n\xc7\xda?\xb6\xa2\xbf\x074\xde\x93\t*\xa1?\xe6t\xcc\x8e\xa0\x80\x9b\xbf\xa0\xe2\x05\xc7\xa1m\x92?\x9a<\xddq9\xb3\x92?\xfa\xd0\xa5\xa8\xb39\xa9\xbf@rS\x98\x08G\xad?\x0e\x8d3\xee\xe3\xcf\x8f?\xc4\xe8\xdaGQ.\x90?\xc2r@\x07\xben\xa8?\x93_u3\x8d\x8b\xb1\xbf\x1e6/`\x0f*\x92?F\xfa\x1dxK\xe7\x90\xbf0\xdb\xb2$\xfd\xff\x96\xbf0`O\xaa\xb9\x15\xbd\xbf\x00\x8e\x9b\xbf\xb4\xb2\xb3?M\x82\xb6\xf9(\x98\xc8?\xc4\x8bs=\xec@\xb2?~\xa2\xdfM\x9f_\xab\xbf\xec\'\x8f"\xb0\xcf\xbf\xbf\x9a`\xd9\x91\x05\xa7\xc1\xbf*t\x94\x9e7\xab~?e\x95\xb1/\x8b\x8c\x8d\xbf\xad\r\xd1\xd7\xbah\xa4?\xce\xd81\xacO\xb0\xc9?\xc3!\xb1\x93\xdf\x12\x9f\xbf\xacY1\x00\'\xd8\x8c?\xefp\xcf\x04\xf9\x84\xa0\xbf2\xba=\x08\x11\x19\xce\xbf\xe4\x81-(x\x12\xc6?\x04\x0b\x01\x8d\xfe,\x9c?\xd0\xeb6\xcf\xdf\xa2\xb4\xbf\x00\xbb\x08\x18C\x01\xc5?\xc0w\xa5\x1a\x90\xf6\xce\xbfp\xd9E\xb1\xaf\xf2U?&\xefg&\xe7\x02\xc4?\xa8B\xd0\xb6Os\xb8\xbf\xa2\xdd5P\xf5h\xca?tc\xf5?i\xb2\x92\xbf\xba&\xd9`\x84\x07\xc5\xbf \x875\x91;4\xa4?\x80\xf7\xf4d\xacH\x82?\xf2\x92r\xdap\x85\xad\xbfJ\x8a8\x13\x1dE\x99\xbf`\xa6\xb4\xd7\x02\xfb\xa5?\xbcJ\xcb\x1cr(r?`\xb6\xa4\xc9\x19b\x88\xbf\x00N\xb3Y\xc6\xdb\x15?~\xc0\x94k\t-\xa7\xbf\x18#k$\xa4\x16\xa4\xbf\xa4\xcehHah\xa3? \x0c\xf9\x1c|iC\xbf\x00\xfe\xb3u\x93\xb2X?@\xc2\xd4\x12x\xb5\x8b?\xd0\xa8G\xf7\x8dc\xa6?\xd6\xd1g~\xc8\xc3\x98\xbf\xc0p\x01S\'G\x9a\xbf:,\xa4\xc4\xed\xd2\x8c?\xc1F\x16y\r\x01\xb2\xbf\xa2\x9d\xef:\xbf\'\xa0?\xf6\xbf_\x19\x80\x10\x98?vJ{?s\x08\xb5?\x96U\xfch\xdc\xf7\x90\xbfz\x84\xe8\xefF\xf5\x8b?4\xdf~\x9b\xd6X\x8d?jT\xd2\xba\x856\xb4\xbf\xb4\xd6\xea\x9fblW\xbfnb\xc1)u\x15\xad\xbfde{\x03\xd9\x00z\xbf\xfa\x87\x89\x08\x06x\xd2\xbf\xe4\xc1^\x87\xdb~\xab?\x00\x00Kq\x86\x02\xfc>\xd0\x89py\xa5\xf0\x98\xbfN\x8d\x08\xf9\xdc2\xd9?}\x84L\x1b ^\x85\xbfC?\xa1\xe7\xbc\xac\xb7?82O\x90\xe3W\x8e?\xea\x89\xe4z\xa4\x1a\xc5\xbf\x98I3\xd4\xe3\x05\x94\xbf\x0e\xb0\xd8c\x8d\xde\xa1?\xb8\xbcI\x95\xb1pi?`\x18\xc0){\x0cz?\xaay(\xf9\xdc\r\x9b?\xdb\xedl35K\xa2?=\xce\xb7\x89ld\xae?\xb0\xe8$\xf1>\xe9\xba?\x0b\xf0\xadj\x8f\xeb\xa2?\x08\x12\xf6\xb9\x9d\xa6\xaa\xbf\xce0\xa5\xc3\xf8~\xa8\xbf\x1d\xed\x11\xcb\x98+\xb4\xbfF"muF\xa4\xaf\xbf\x06@|\xdb\xb5w\xc0?P\xd1^$\xc2\xf3\x9d?!#\x7f\xbd\xba\xe7\xb8?\x96\t\xdds=-\xad\xbf\xa7\xe9\x1a\xa1X\x11\xbd\xbf?L]\xd0P\xcd\x9b?\x87\xa0\xd2\x08&\xac\xa4\xbf\xfc\xa6\x01\x9f\xf3\xaa\xad\xbf\x8f\x97-6\x81\xa2\xb5\xbfA\xb4\x00\xa7\xdb\x1a\xb1?mn\xc6\xac\xf4\xea\x94\xbf\x88I==c\xa7\x95?@3\xeb\xfd\xc3P\xa9\xbfa\xd4~+ME\x93\xbfM/\x9b))\x1e\x9d\xbf8\xb4\xd9*\xc8a\x8d\xbf\xe0\xfc\x7f,\xf6xs?\xcd\xbd\rS\xa8\x0f\xb0?\xf68\n\x02\x17)\xb1?B\x02\xca~\xbe3\xa4?\x16\x15\n\x08\xd15\xa5?\xd8\xfb~\xe8x\xf2\x8f\xbf\x9b4\xb0\x12_p\x9a\xbf@\xc5=\x0f\xb8\xed\x88?@\tc\xb1m\xd5x?\x99C\x83oL\t\xb8?\xda\xd66\x95\x02\xbf\xb8?K\xdc"\xbe\xa6x\xb1?\x96\xf2,\xade\xd2\xa5\xbfe\xd7b\x00\xa9\x8b\xa6\xbf5\xfa*\xaat\x13\xa7\xbfr_\x03\x04\xbbU\xab?\xf4\xdd;\xbd\x82\x07\x95?\x88\x9d\x1a\x91\xec\x11\x9c?V\xc9\x08\x0b84\xb2?\xb2\x98\xc0\'\xd4\xb1\xbb\xbf\x02\x12t_\xa4d\xa3?\xa4\t\x86\xf2\'\xb6\xb7?\xf4@\xf8\xdeXD\x8c\xbf\xb0+\xa5\xfa\x8d\r\xa1\xbf\x80NV\xbdM\xcaq?\xe0\x92&h#YS\xbfp\x9c^\xfa\x0f\x84\xa4\xbfd-\xe1\x98\xbfX\x90?\x90\xedCc\x1e\x83y\xbf84\xd2\xa7\xd8\x87\xc1\xbfBR\xdbHI\xe7\xa2\xbf\xa2\x91\'?\x08\x0e\xac\xbf`O\x9d\xee\x08\xd4\xa1\xbf\xe7\xb9l\x88H\xb0\x92\xbf\x9c5\x01\xf0P\x11\x91\xbfI\xd0\x01\xf9\xf2\x06\x99\xbff~\x07\xc4\xf8v\x9e?\x92*,\xecDya?\r\xb1\x8b\x1a\xc9`r\xbf"\x1b\x9d\x10+\xbb\xaf\xbf\xbc>\x02\xd2\xe7=\xb5\xbf\xe3\xdb}{\x9a\x82\xbe?\x1b\xdd\x8b\xed.w\xca?\x1f\xc5\xa4\x16\xc5\x06\x92\xbf\xe1\x8e9q\x14\xba\xa4\xbf\x1cB`\x96\xe9Jn\xbf\xfb/P\xe4\xff\xd8\x8f?\xd7\xed&\xb3P\x88\x8a?\xf1\xf3E\x1b\xb9"\xb2?\\e\x04dG\x18\x8f?h\x8b\xf2\xb0\xef\x1d\xbd?\xe3\xf3\xa9\xe5\x1e,\xa6\xbf\xe9b\x07\x9d\x03\x96\xa5?\xde\x82\x1c\xf1\x8f\xa0\xb4\xbfSl\xf7q\xc0?\xb3\xbf\xa9\x17CJ;L\xb1\xbfV\xdcO\x1f\x92\x8e\xc0\xbfmR\xae\xef\x1b\x0e\xb0?9h\xcb\x9d\xed\xdd\xb1\xbf\xe8\xa4\x19\x0fE\xab\xbe?>p\x1f@;\xa8\xaf?_\xbd\x93i`6\xae\xbf\x00\x0fpI\x05\xa0\xa0?@nm\xba\xb40R\xbf\xee\x18H\xfb:\x8d\xa1\xbf`\x968\x8a\x87Bj\xbf\x17\x98c\x9f$\xbd\xb6\xbfd\xc7\xe5\xa0\xba\xa9\xaf?\x00\x90v\x13\xe8\xa6\xb2?\x08\x842\xb9\xe4D\x8f?\x95\x08d\x9c\x1a)\xa4\xbfQ\x1e\xb6\xf1>+\xa1\xbf\xf0\x92\x03\xa2\xac%l?\x94\xd7\xf5\xb3\xb6\xb7\xb2\xbf\x10\xa9x,\xf8|\xb1?v\xe6\xa4\x84\x11\x13\xa0\xbf\xeb\xf2\xc3)\xe4A\x95\xbfT\x95\xe4\xa9\xa0\x03a?\xaa\xac, \x13\x15\xab\xbf*V\xb6\xb7\xe3\xda\xb7?\x08\x97\xf3\x1a\x18\xfd\xa3?\xa0\x8a\x94\xa1\xe0\xce\xac?\xa9\xc2\xeb\xf4\xfc\xd1\xb2\xbf\x99\xdcpd\xac\x1e\xa0\xbf;v\x1c\x9d\xfc:\xab\xbf0\x17\x8a\x01.\x84\xb8\xbf\xac^\xedJ\xb5\xe5\x9e\xbf\x892\xfa\xc80\xd5\x99?\xad\xa7Y\x00Y\xc4\xbe?%\xff\xcdu\x08J\x99?L\xb1`\x10\xd4\xb9\xb4\xbf>*e?\x92\x14\x91?\xa0\xba\x84\x94\xb1r\xaf?\xa3\xa3\xdb\xf0zW\x95?\x9d\x92\xa7\xe7\xfa;\xb7\xbf\xabKQ\xf8\x1b^\xa9?\x1c\xfd\xf5{\xdb\xb6\xc3?%\\Q\x1d\x92\xf2\xbf?\xf5\xa4\xec\xfd\xf7\t\xb0\xbf\xa1?\x10\xdb\xb5\xbf\xbd\x9bb\xb1\xf0\xda\xd1?D\xd8\xb9\xc1\\\x1b\xc1?\x18IV\xbb!\x7f\xb6\xbf(\xd1\xa20\x1a&\x9b\xbf"q\xa5\x82?\xfd\xaf\xbf\xe8\xc2\xd0\xb0\xc1=\xb3\xbf\xf7\x14\xaa\xa1\xd83\xa7\xbf*%b\xef\n\\\xab?ld+\xf3\xe1\xc6{\xbf\x04L\xd5\xa8\xddg\xba\xbf\x80\x81T\xbf\x12\xcb\xb0?\xae\xc2\xf8\x8d>\x8a}\xbf>VC\xe9\xa5\x04\xb5\xbf9=\x01\x94R\x93\xb3\xbf\x9d6\x01/\x1e\x93\xa7\xbflX\xd4;\x91\xe8\xad?\x88"\x1d0\x89\x82\x93?\xe32\xc2\xd3\x12\xa9\xae\xbfT\x0c\x0fwf\x89\xaa?\x05\xec7\xe9;Un?4\xb7 \x91\x02\xa6\xb0\xbf\xefv\xcc\x04\xac\xe3\xaa\xbf@m\xdd\xe9\x86._?\xcf\x10\xbbJ\x946G?\x10\x11\x9b\xe0\x9e\xc3v?\xc3J\xd5\xa3F\xf5\xa8?\xa0a\x92\xcaz\x08\xa4?\x8b\x8fF\xe1\x80\xa4\xa1?`\xd7\xd3`\xe8\x8d\xa0?vw\x1ds\xf7\x08\xb4\xbf\xc9Jz6j\xb3\xad\xbf\xc1\xe8\xa5{\x8a\xf1c?\x9djdlI\xd7\x95\xbfp\xc3\xce\xd0\x82\x18\xa4?v?\xda\'\xe5\xf8\x9c?Y\x9f\xc4n\xb1\x90\xa5?(\x04\xca\x08\x19d\xa3?\xb2\x8e-v=I\xa5\xbf\x19;\xfd\xab\xc3d\x8e\xbf\xb6\x90\xcaT\x83\x13\x81?+\\%\x19\xa5\x82\xa4\xbfM|\xe4\xe9l\xed\xa4?@E\xa5rW\xe5\x91?\xc8\xf2}\xfe^3\x97\xbf"E-\xd9\tr\xab?V\x82PT\xd6\x1f\xa4\xbfr\x02\xc5\xb5\xc5g\x8c\xbfR+\xd3(\xc9\xf9\xab?FS1,\xea\xa4\xae\xbf\xd4V\x8a\xd7\x1b\x83\x9b?s\xd9\xf9\xc4\x94\x04\x94?\xfae\x98X\x10b\xb0\xbf\xa2\xb0\x99\xb0\x86\xa3\xae\xbf\x12\xc0/\xf5\x1e\x92\x9d\xbf@5Q\x87l6\xbe?\xe4[\xf1\xf7\xfbAw?N\xc0\x9b@=\xa4\xa9\xbf\x8a\xae\\\xfb\xcf<\xa1\xbf\'s\xfd\x11\x96J\xc1\xbf\xaf\xe4\xea\x88\xbf5\x94\xb4)\xba\x0c\xbd?\xfe\xe4Q\xaf0\xf3\xc5?\x1dg\xb8\x8e\xf23\xa7?\xc9KW\xc6\r~\xba\xbf\x82\xb56\xee\x10\x02\xc0\xbf\x97\xba\x07.\x04S\x9b\xbf\xb7\xc0\xd7\xc4H\x03\xb3?x\xd1\xb6\xe9\x7fMt\xbf\xfb1\xab\xe7\xf4p\xa4?&\x98\xe5\x1c\x8e\xa0\x95?\xab?\xca\x18\xcd\xd7\x03\x18\xa6?\xe8\x16zU\x08\x8f\xa1?\x8b\x9d\x13\xb7F^\xaa?/\xda\xd9\xde\x14\x81\xb5\xbfY \x9e\x08\xc3\x8c\xb3\xbf&\x0fl\x1c\xf5o\xb2?^\xbe\x81i\xc3\x04\x9b\xbf\xc4>\x90B<-\xaf?D@U\xf3\\Z\x81\xbf\xd3\x91h\xf0N\x08\xb5\xbfQ\xaeDtf\x1b\xae\xbf\x87\xf7\xf8\xf2\x8a\xf5\x91?h\x97\xf4S\xe8Br\xbf\n\x04\x16\xe9\\\xa2\x96\xbf\x10\x1bO\xb1\x1d\x05\xb0?+\x00\xe6pw\x8e\xbd\xbf5y\x05\xc4\x19\xff\x88\xbf`\xc3\xb3Mg\xb8\xa5?N\x88\xce\xa0\xf9\xea\xa9?Vz\x17\xdb\xe9,\xa5?\xf4\x18\xc7\xb5\x96\x03u?p\xf4\x01n\x94_\x9e\xbf\xb2=J\xc9\xee\xcf\xbc?\xf5\xcdw.\xcf\x9e\x8b\xbf3w\x1f\r\x85\x08\xc4\xbf\xae6\xc6\x81\x0e\x8a\xa6\xbf$\x11\xa4\xa4\xbc\\\x9b?.O\xd4+\x80 \x87\xbf\xa7\x90\xfb\xbd|\xed\xb2?\xbc{\xdc\x117\xb9\x82?\xf8\xf8\xeb{\xbd\x10x\xbf\x14~W\xb2\x849\xa5?\x1cp!\x8f\xb1\xb7\xbf\xbfN<\xea\x02\xb9\'\x9b\xbf\x1cw\x82;\xe6;\xbe?vC,\x87e?\xbc\xbf.0fBF\x1e\xb9\xbfj{j\np\x91\xbe\xbf\xfb\xc3>v\x1f\x99\x93?6\x08\xf0v\xebz\xa9\xbf\xc88}\xb2\xf7\xfb\xb0?\x1f\xb1\x83\xebj\xd6\xb1?`\xd6M\x84\x0e6\x92?\x17\x91(K$\xdd\xc8?\xbf\x12R\xd7)\xa4\xc7\xbf\xb0\x82,Cw\xa4:?7\xab\xc3\'\xc5\xb2\xb1?\xecRyG\x8c\x0cj?>F\x85$F\xc6\x9e?&\x9f\x07N\x85\xb1\x83?\x94nf\xad~\xc1\xb4?vy\xb2F\x17\x99\xa3?\xab9(]\x7f\xf8\x95?_D\xd4`A\x88\x8c\xbf\xc8\xb3c|\xfa?q?\xa8\x80qZS\x97\xb1\xbf\x94\x9d2C\x01,\xa6\xbf\xa8\xac\xb8<\x97!~?\x08\x07|e\xe1\xee\x83?|Xdb\xa2>\xbb?xp\xf0\xa5\xcaC\x9d\xbf\x98\xfeD\x1f\xf5\xe3e?W\xcb\xdf\xfc\x9d]\xa8?)\xf2\xe4>\xf9\xad\xa4\xbf*o\x0f\x1d\xe2co\xbf\x82\xf0\xe24\x84\xfes\xbf\x86\xa1\xa4\xc1\x03\xe0\xa9\xbfw\xe1Z\xcc\x06}\xb2?A\xb4`\x14<\xc7k\xbf&}z\xe7W\xa8\x83\xbf3\x88\xf9\xcf\xfc\xed\xbd?P>\xf6w\x11\xa8\x9d\xbf\xc8\x84\x90\x02v<\xb0\xbf\xd8\x7f\x17U\x1a\x9e\x83?\x01\xe8\x00\xf7\xf8R\xbc\xbfs\x06\xb4\xf2r\xfb\x87\xbf 6\x00J\'z\xae?d3\xcf\xb4`\xb7\x93\xbf\xec<"<\x1az\xab?\xc2\xf2\x81\x7f\xbf~\x98?\xfbb\xa4\x13\xd4\x8f{\xbfh\x16\x86?\xfe\x05\x98?\x8d\r\x90\x7frV\xb6\xbf\xa09\x98\x0e\xc2\x07\x99\xbf\xb0\xf8\x99K\x17\xa5\x98?4\xef\xa6,\x11\xbd\x89?\xd4\xab\x14\xfde\x08\xa5?div\xc1I\xfe\x9b\xbf\xe0o=5\xe4\xe6\x91?8\x84\x1a\xb4q\xab\x94?4\xabH\x07\xe2\xcb\x9a\xbfPB#\xc2\xc0q\xa4?C\x7f\xb2am\xad\xa8\xbf\x02^\x97\rC>\x97\xbf\xc0i\xf1\x07\xe31\xaa?\xf5\x8e\x90\n\x08\xe9\xc2\xbf\xcd\xcd\x1c\\\xc5\xe2\xb7?G%\xa4\'Hc\xd0?\xaa\xc0\x8dml\xb4\x96\xbf\x96\x04\x8d\x0f\x0f\xaf\xb4\xbf\xde\x94\xa0\t1\x84\xc3\xbf\xb2\x1f\x90\x94\xd9\x97\xc3\xbf\x0cV6[M\xb9\x90?B\x10\xa3{\xfb_\xc8?\x86\xeaA\x8e\xe3\x84\xb6?\x123ib\x84u\xbb?\xa4\xae}6\x8f\xca\xa4\xbf\xc6,2J7\xe9\xca\xbf\xdd\x9b\x9f\xfcR\xef\xa0\xbf\xc4\xc4\x93\x99\x016\xb2\xbf(z*26&\xc0?S\xfcUM\x18\r\xcf?v\xe8\xb6y\xe1\x7f\x92?\x88\xb9\xca\xaa\xb8\xcd\xbf\xbf\x87\xceP\n\xe9\xc5\xb7\xbf@\xcb\xd2\xd9\xa1\xc4\x7f\xbf\xe1\xbd\x80\')<\xa5\xbf(\'K\xf2-\xe3\x80\xbf 0\t\xf5\xfb\xa7w\xbf\x14F\xfd:\x8fe\x8f\xbf7K\xef4\x80\x9c\x8e?=\x01\x1fz]z\xa6?\x96\x16\x1c\x8eV\x17\xa4?\xa6_\x95\xf5\xdf,\xd6?\xbe\xae\xfe\xebK\x10\x95\xbf\x95\xc6h\xcc\x86n\x8e?\xc0\x17N\xf4\x9f\xc2P\xbfb\xce&\xc1\'H\xb6\xbf\x80M\xb6\x16\xe1\\~\xbf\x18\'\x8d\x03\xb4\xb2\xc6\xbf_\xa3aB0\x82\x91\xbf\x11u\x0b\x1e\x96\xa0\xb9\xbf;\x1eR\xde\x84\xb9\x9c?\xc9+\r\xc1\xd1\xa6\xc3\xbf\xc1|\x06\xc9\xdb\x07\xbb?\x87LA\x11\x08\xc8\x9a?l\xe2.\xbbW2o\xbf\xab\xc6\xa2\t\x1c\xd2\x9c?zh\xd0\x89\xf4\x8f\x95?\xcf\x0f\xa5\xe2oy\xc0\xbf?\xe4.\xb7|\x1b\x9c\xbf\xd5v\xa2\x16_\x94\xb3?\xe8+\xdeON\xd3\xab\xbf!\x1bBZ\n\x9d\xad?KI%\x07a\x99\xad\xbfL\xcfB\xad\xaf[\xbc\xbf\xa9\xe0\xb6\xc4F\x1e\x94?\xe8Z\t(:?\xbe?\xf6~\x98<\x1f\x1b\xba\xbfDm\x0f\xa2w\xbez\xbf\xed0\xa7\xd8\x9aa\x98?UV\xa3\xb5t5\xc1\xbfB\xf7\x13\xeb*\xb7\x92?\xd4\xd6<\xb6\x95\x12\xb5?\x04S\x14\x9d-\x7f\xb6?\xe6\xd5\xc2\x181%\xbe?\x98\x9b\xda\xa7\xc4>\x99\xbf\xc4\xdd\x84gN\x02\xb0\xbf\x9c\xdf\xe3\xa1\x9aw\xb0\xbf\x10\xca\xa7fi\x96\xaa?\xdck\x12\xe83u\xb3?\x80`U\'\x8e\xd3S\xbf"\xa2\xab\x8b\xbb\x94w?}La\xee\xc6o\xa0\xbf\xd8\xf6\xbc\x03\x1e\xf9\x95?\\\xfc`E,<\x9e\xbf\x87\xc4g\xde\xb3\xf7\x84\xbfAk~W\x17\xa3\xa2\xbf\x94\x17\xad\xa0A\x1b\xb5?9\xdb\xfc\x8b$\x88\xb3\xbf\xe0\xd2\xd6\x80\xa6\x86\x95\xbf\x14\x96,\xc5iO\xd3?\xa4\xb6`\x14Ao\xc2?\xa8\xb6\xfa\xcb\xefj\x9a\xbfh\x0e\xf4\xc2\xc5E\x99\xbf$\x94\xf5\x941t\xc3\xbf\xf9\xdf-\xbc\x0e\xba\xa4?\x025\x94\xc2\x9a\xd3\xc0\xbf\xd6\xed\x15\x97\x02\xa9\x91\xbfz\xb4\xf7yK\xf3\xac?\xf0\xeb\x1b\x86\xf2\x96\x99?\x14)\x0e\xd4l\x82\x88?t\xf5\xc3\x8dW\x19\xcf{\xc1?~5`8\xb17\xd0\xbfA\xf73\xe0\x80\xdc\xc5\xbfn\xe8\xf5\x138\xec\xc1\xbf\xfbI\xb2\xcao\xbe\xc6\xbfu=\x93\x8f\x91\x81\xc0?\xfd\xc4\n[\x11v\xc7?\xc4\x12\x9b\'C\xa0\xc5?(qq\x9d\x1f\xc6\xcf?\xe9\x08\xd4\xc1\x1d\xd0u\xbfC\x86\xae\xdcp;\xc5\xbf\xd4\xdc\xe6\xde\x99\x88\xc4\xbf+\xc7\xb7\xe8\x9ah\xd1\xbfo\x89\x1b\xf0\x83\xfe\xa1\xbfp\xb3\x1e\xb1\xfaK\xce?\xf5Fd\x83\xce\xe1\xb0?\xe9%\xa2mPT\xc5?\xc1\x99\xf1R")\xbf?\x8f\xd6?-G\xc8\xcd\xbf\x80(c\xe7\xb1m\xae\xbfp\xf2\xae\xd6\xabb\xa5\xbf8\xe3\xf0G\xab:\xc4\xbf3\xc6H\x17:\xfa\xc6?\xdd\xba?=\xf9\x9d\xb1?\xb0\xbfYp\x85\xd2r?\xf6\xbc\xf1\x08\x1b$\xca?\xee\xaaQ\xe1d\x16\xc4\xbf\x06A\xc4E\xd1\xde\xbc\xbf\x00VVI>\xe4>\xbf~\xb2E\xca\xea\xf1\xc1\xbfxs0\xd0\xfa\xb3\xbb?\xad\xec\xddfH\x19\xb6?\x80,9X\xaf\xe8\x9e\xbf\xc0D\xb1\x1e\xe2\xef\x9d?\x08\xb4\xd4\xaf\xca)\x8f?\xdc\xb7\xca\x15\xdf\xed\xb4\xbf\xcc\x15U\xe9BI\x8e\xbf\xf8\xb2>\x9el\xa8\x9a?\xc0\xc9\x07\xebM^W?t\xb7\xf00\xd1\xec\xb2?V\xf8\x85\x02\x00M\xa2\xbf\xa8\xccD\xb2\xcc5\xae\xbf\x9aZ/\xc1\xeb\xa1\xa7?\x97@\xf4FG\xf2\xab\xbf~v\xe6\xc2\xdcx\x99\xbf\xc8=\xb1n\xc3g\xb3?\x10\xa1d\x06l@\x8f?\xb2\x98:Zd\xbf\x97?\x00i\xa9\xb2\xa0\xbf\x00\xf6\x93\xc1\xf4\x99[?\x06\xbe\xa3\xf2\nw\xc0?X\x14\xc6\xebJp\xa3?)m\x9a\x7fG0~\xbfh\xf6\x8bV\xffE\xa2\xbf\xc2\xf4pm\x12\xfb\xaf\xbf\xba\x16B\x87\xc9\x88\xb1\xbf\xdc\xa1\x02U\xa5\x9c\x87?\xb8\xb0B)u\x1fy?\xe9\xec|\xb2\xcb3\xb0\xbf\xb0D\xbc\xc4\x0fkt?\xecj\xb6f\xd7?\x82?m\xfc\xc4u\xf0%\xa6?0\xe8\xaa\x84\xb4\xb8k?$\x0e\xf3i\xba\xb5\xa4\xbfNn\xe01\xf7~\xaf\xbf\xbb<\xfe\x8d\xa2\x93\xaf?\x01FN\xff]\xecd\xbf\x11~\xbc\x0e\x82\x9a\xa1?\xbe\xe0)\x91\x81z\xc2?4\x06/~0&\x90\xbf\xf6\xa3\x88\x9dZ\x9a\x86\xbf\r\xb9-\xd5V\xd4\xa3\xbf\x9b\xc5P\xa1\x8d\xd8\xb0\xbf5\xf3\xe9\xb9\x94s\x92\xbf\xa4\x9b\x85\x86\xb4#\xac\xbf\xdd\x1e\x87\x0b\x0f\x12\x9b?`\xec\xb5YZ\x0fv?@\xfd\x0b\xe5\xfd\x894\xbf\x00\xb5\xd4!\xbf\xea{\xbf\x84\xd4\xfe\xdf]\xb0\x88?`\x18\x8f\xca\xd7\xe7\x9e\xbf\x90\xf5\xf2M\xf3\xcd\x8c?\xb0\x80\xf5\x1c\xff\x89\x80\xbf\x08+gq\xb7{p?\xa8\\\x05Z\x80\x82\xab?\xd04\xc4\xbe]\xf9t?\x90\xb2\xeb\xfc\x815\xa4?8)\x17\xc1\x8f\xa7\x8e\xbf0A-}\xbb`\xb9\xbf`\x12\x16\x91\xce\xd5}\xbf\xa4\x85 \xfb\xcf\x8d\x94?\x841\xe1\x11\x19\xd2\x93\xbf\xc2w\xbe6\xb1I\xa7?\x98\x11\xc1\xe5p}\x87\xbfD \x16f6K\x92?d\x811\xa5\xd6\x00\x9b\xbf|i\xb1\xe90i\x9a\xbf\xd4\xdd\xdf\xfa,\x0c\x91?\x04\xf6YD\xa4\xcd\x96\xbf\xb0O\xef\xc9\x03T\x9f\xbfPs\xb4\xc6\xe8\xc7\x82?p\xd6\x00\xf1\xac<\x85?\x00\xa9\xe1\xb9\x96\xbey\xbfD\xc3o\x07\x84\xe2\x91?\x00dJ\xa5\x11\xe3\x8e?\xe0\'\xf8SL\xdep?\\\x10fo\xe0\x95\x94?\xc8\xcc\x02pq\xcc\xa0?@q\xb1\xf4\x9c\xd7\x87?8+>\xa2\xa4\xbb\x90\xbf@g#N\rsx?\x90\xad\xa9(Q\x92w\xbf0\xe5\x8a\'y"\x82?pxl\xcb\\\xc3\x8c\xbf\xce9i9\xc1\xb1\x9b\xbf\xddTn\x07g\x9a\xa5?Pt;%\x00\x9d\x88?\x13n\xb5F\xfb\xdf\xb4\xbf\x15\xb8\xe9h\xea\x91\xa4?\xb9\xe0V\x90\xf0\x8a\x91?\x93\xc6\x91r\xfaw\xaf\xbf\xda\xaf\x86-Y|\xab?4"S;\xab\xb2\x92\xbf-\xbb\xd2\xaa2\xf6\x80\xbf\x16\xb1U]#D\xb2?\x05N[7\xe2\xa4\xb3\xbf\xf1\x03\x80\x9c(\xe0\xa0\xbfF\xfa(<\xc6\xe4\xc0?\x9aOj\xfa\xf0|\x88\xbf)\xea\xeei>\x90\xb5\xbf\x80\xb1\xab\xcc\xb2\xc4\xa6?P\x14\xdb\xbe}\t\xa6\xbf1\xed/m\xb8T\x8e?\x1f\x98\xee\x04\xcbo\xb3?\xb9\xf8Dlqx\xc3\xbf\xd1\xa3j.\x81\xa2\xa1\xbf[\xbf+\x94I\xbe\xc1?\xce|.\xa0P\xf3\x87?\x99s\xff\x19\\:\xaa?\x80\xbc\x9c=\x86\xbfn?}b\x83\xca*\xbc\xc4\xbf\x93\xbe\x87j\x9a\xf8\xad\xbfxS\x14$V\x15\xa3?\x0c|\xfd\xcb)\xdd\xa5?$!\x14mq\x1a\xb8?\xc8\xf6\x88c\xcd\x07\xa8? bK@G\xfd\xaf\xbf\xec\xa7\x06\xfd\x17Y\xa1\xbf\xa3\x01\x8e\xbbUX\xc1\xbf)\x8f/\x13\x93V\xbc?\x00\xe9\x02e\xf7\xdf\xb5?t[z\x8a\x07\x86\xaa\xbf\x98\\\xd2\x9f\xae\xaf\xa1?\x10\xea\x11\xa2\xbf+\xc4\xbfH\xfdb\x10\xb4H\xb0\xbf6e\xbb\xf2%\xe6\xa6\xbfeGr}\xad\xe8\x9e?(\xe2\x1d\xb1\xb3#\xc1?\x8e\xc5\x82\xcf\x17\xb1\xc0?\x08[\x91\x86h6\xb9\xbfT\xa0sd\xd3^\xb8\xbf\xfb\xa6\xfc\xfd\x1eY\xa4?\x82\xd8\xdf\xf2\xf2}\xac\xbf\xeagL\xa7\xdd\xf2\xbd?\xc4\x99\xdb\x92\x8a\xfd\xc2?\xa2\x01\xaf>\x8e\x91\x8d?\xd6\x85\x85#\xc5\xcc\xbc\xbf\x13\xdb\xc3q\xff\t\xb9\xbfL\xe3\xab\xa3\x18\x93\x97\xbfD8\xdc\x04\xd0\xc0\x87?H\xa9^\xd4zP{?\x168\x07uf\x01\xa3?\xcc\xb6\xe3\x03\xa46\x90\xbf@\xdc\xa7e\x84\xbfF?\x9c\xe1[\x85\x1d\xde\xb2?\xa1\xb0\x12\x7f\x10\xce\xa3\xbf\xcbG\xd4\xc81\xd9\xa9?p^+\x1d\xca\x9bx\xbf\x94}\x8a\xd5\xe0\xc0\xc1\xbf\x18\xd9e\x836\xc2i?\x01H\xcbU\xf5:\xab\xbf\x18\x17\x81\xed\x9a\'w\xbf\x85\xbc\xd80\x8d\xe5\xb1\xbf\x8c\t\xd7s\x93/\x91\xbf\x95\xf0\x02/\x00\xa6\xc5?\xf0\x88\x02Iu\xc4\x92?\xdb\x8e\xe5s$\xbe\xcd?X\xbf\x8fT\xc1#\x97?\xbd+\xbc\x0f!\xae\xa0\xbf|]\x0eE\x14\x00\x96\xbf\xean|F\xbc\xfc\xb3\xbf\xc3\xd3\xe8\xccF\x14\x89\xbfk\xacP\xf1\xa2\x97\xbe?MP\x99\x86\x94I\x90?\xf5Gk\xf7>\x19\xc1\xbfsp\x8f\x19{\xfbz?\x10EW\x98\xf4\xb7\xa9\xbf\xe8\xb2\xda\xf8(SV\xbf\xfcy\xeb\x84\x89\x9a\xbe?\xf0\xf6\x92\xc9aS\xa0\xbf\x1c\xb1)9\x07w\x90?\xedp\xe3UP\xd0\xb3?X\x13\x15\xeb\xbb\x8a\xc0\xbf\xdb\xfb\xca\xcev\x1f\xbb?\x83#\xd5\x96\xa5S\xcb?\xca\xef\xa8\x07\xf9@\xbd\xbf.\r\xaa\xbcY\n\xb9\xbf\x10\xeau\xe7\xf1\xb2b?\xbf\xffOP\x11,\xbf\xbfW#@\x98\xe4\xd5\x92\xbf\x9c\x03\xd5\xfd\xae\xf8\xc3?\xec\xb9\xd6J\xaa\x90\x97?\xb4\xfb\xde3\x05\x87\xa3?M\x88\x00p}\xab\xc1?\xe2\xbb\x05a\x90\xf9\xa5\xbf\x14\xb1\xd6\x11\xc4\xc2\xb1?\x0f\x7f\x0f\x9f\xe9\xa4\x95?\xbb \xab\x8b7\xb5\x8b\xbf\xb9\xc1\xda\xb82\xda\x84\xbf\xd0 Q?\x91\xdb\x90?`\x01pW\x17%\x9f?\x1e=j=\xb5;\xa7\xbf:S\xde\'\xce`\x84?M\x89\xb79\xce\xa8\xb3\xbf\xbc\xf6H\x166i\xb3\xbf\xe8\xca\xabv\xd8\xf8\x8d?!\xf5%\xeb\xdc\'\xbf?\xe0\xd7\xdf\x8br\xa1??\xf1aY\x89\xcd\n\xc3?\xc0\xe9\x9b\xf5.\xfa\x9b?\x1e\xa0\xfb\x16\xd2\xcf\xb3?\x98\x04\x8b\xc5}\xec\x93?6\xb1^\xc0I\x81\xd7\xbf\x17\xd4\x98S\x8aA\xb8?\x06I\x9a\xbav\xbe\xbc?Fn\xe7\x1dl\xfd\xc8\xbfM%w\xfe\xb1\xb1\xa3\xbf\x8b\xea\xfb\x16\x10\x07\xb4\xbf\x14\xe5R(s\x8c\x9f?&T\x10\xe9x\x98\xb2\xbf\xa6\xb4\xe9M\xb8"\xb3\xbf$\x8d\xfb\x9dE9\xa7?\x0f\xb9Aw\xa8<\xb5\xbf\xdcV\xf0\x16\xed_\xb4?0<\x08\xd1\xce\xf2\x80?p\xf8\xcd\x84\xf0\xc4B\xbfK\x18p:b\x18\x9c?3\xff\x88\xa33<\xa2\xbf\xa9>\xc7\xa52\xdd\xb6\xbf\xdcE\x99\xdf\xdc_\x90\xbf,\xfb\xb5T\xc0\xde\x9d\xbf\x16\x88\xb7i\xa38\xa4\xbf\x0fW\x10(\xae\x87\xab?\xbc\x85\xca\xeb\x92<\xaf?\xbb\x9a\xc6N\xd1$\x81\xbf\\\x10\xec\xd4[\xf8\x91\xbfE\xbd\x98\xad\x04\x1c\x80\xbf.6GG\xf4r\x9d\xbfv\x8b\x15\x7f$\xee\x95\xbf\xd1\xaa\x97\x9d2\x87\x8c\xbf8\xe4\x1c \xde\xe9\xa3\xbf\x82\\\x08Ind\xb1?5)\x86\xc7\xf3^\xae?\x07\xdb\xad\xa3\xb6\xc0\x99\xbf\xfc\xb3\xa9\x86=\x82r?\xe0\xb4 \xa3\xa8\xb5\x94\xbfj]\xfa\xd4g\xbc\xa4\xbf\xf0\n\x17\x8a\xe7\xd8\x90?)\x0f\xb7P\x17(\x9d\xbf\xfa\xc0\xa6H\xac\xaf\xb3?^*\x89\xfd\x87,\xc0?\xc4\x0e\xe7N#\xeb\xaf\xbfm_\x11\xef4B\xa2\xbfw\xd8:\xeb\x05Y\xb5\xbfR6\xd9\xce\xdbN\xb3\xbf\xec\x83\tMS\\\xb2?\x95]\xed\xc2\xc0\xd2\x90?\xbc7\x08df\n\xb5?\nv\x9a?\x10\x98\xca7j\xa3t\xbfs\x06\xc2}7\x9d\x80\xbf\xaf\xc0\xe8Ko2\xb0?\x1b\xafZ\x96\xa8\xc7\x8f\xbfi\x07c}$\x07\x97?\xe1\xe3\xe0\xb2A`\x8b\xbf\x8eOJ|\xae\xf2\xaf?\x80^B\xe3\xceM\x87\xbf=.0\xb97\xb8i?K\x1d\xed34\xe4\x8c?\xc2;\xdc\xa2~n\xc4\xbf@x\x07\xb0s\xb7\xa2?\\\xe8\xfa\xac\x83\xdde?\x98\x8f\xde\x8d\xe1#{\xbf\xba\x96\x9c\xa1\x8d\x90\xae?\xbaZ\xb7\xd4,\x1e\x91\xbf\xc1\x8aK\xc8a\xf2\xcd?\xce\xa9wd\r\x15\x97?\xd4\xe9\xdaT\xea\x1c\xb5\xbf\x90\xff?\t(\x90\x9c?s\'\x90 \xa6S\xab\xbf\x92R\xfd9\x8c6\xac\xbfC\x12\x16\x12rV\xd2?^\xfc\x1bN:\x9f\x9f\xbf&/\x0e\xbcy\xe5\xc3\xbfA\x87\xf9\xfd\x8a\x15\x98\xbf\x1e\xfa\xf2\xf58\xca\xc6\xbfZ%#t\\\xb9\xae?\x1b\x89\xf9\x11\xde\x96\xc8?\x96\xf9\xe7;\x14o\xac\xbf\xf8\xbd\xe6\x0b|!\xc3\xbfC\xdb\xe9\x81wy\xba?\xac|\xda\x94\xeb\x10\x8d\xbfG\x87\xf9\x10\x9e\x15\xa3?\x93\x06Xk\x93\xe4\xd3?X\xe8\x88\x84)_\xbd?U\x91\xbc\xf0\xbb\xef\xbf\xbf\xa9\x05\x99\xb8\x8eP\xbc\xbfAR\xc6R\x9e\xad\xc9\xbf!p\xfb\xa3\x98\xc8\xb0\xbf\xc1t\x89\x99f\\\xa5\xbf\xdd\xa8\xb4>\x91\xf3\x98\xbf\xc6\xc9y%C"\xb6\xbf\xa1M\xa3\x97\xb8P\xbc\xbfR,\x18"\xb76\xaf?\xc3\xb4n\x83\x0c\xd3\xb0\xbf\xec]\x12\xea\xadT\x8c\xbfl\x18.\x1ed\x0f\xad?k\xf2\x11\xe4\xdd\xc1\xab?\xde-Im\xa7\x0f\xa6\xbfH\xf0yg\xd6xn?\xbf\x8c\xef%^\xc0\xb9?\xe8\x8f\x8f\xd0\xd4m\xb5\xbf\x86\xd6\xea!\r\xec\x82?*\x1d{\xb2\\h\xc6?X\xd3\xff\xb9\xc9\xad\xa4?\xee}}\xa6\xd4\xa9\xb0\xbf\n\xe19z\x94I\xa9\xbf\xc4q\xae@6\xc0\xc2\xbf\x90\x81\xe7\x07\x80\x87\x82?\xdf\x1f\xfak \xac\xbb\xbf:\x9e\xd9e\xf7\xe4\xa2\xbfG\xfc[\xc9\xafP\xd2?d7#\xa4\xf5Z\xae\xbf\xeep+0\x84d\x99\xbf**V\xcd^\x7f\xc2?\x9c\xeb\x875|1v?\x164\x80`\x83\xa3\x95?\xd4$\xf1\xa6\xd3E\xa7\xbf!(\x0f(\xad(\xb9?O]\xd8\x9e\x90l\xb1?\x0b\x8fr\xc2\xdc\xd2\xae\xbf]\xa8\xcc\xe4\xb9\x82\x84\xbft\x1c\x8f\x97>R\xbb\xbf\xc6\xbd\xf7\xc2\x0fM\x9a?\xc4\xe1\xb4\x16\xe1\x91\x94\xbf\x11\xff}\xa8\xa0^\xb2\xbf\xcd\x86#\xf4\x9fe\xb6?\xfc8\x8a\xa7\xf8\x02\x94?|H\xed\x90\x95\xfe\x7f?DU\x9a~\x10\x00\x84?qmh{af\x91?3~\xeeh\x04\xcf\x9b?:b\xbb7^\xc8E?\x9d\xb4\xdaK\x19x\x95\xbf\\k}">\x9f\xa2\xbfg\xb5\xd3Ub8M?\r\xdd \x199ms?\x98\xd6\x18[\x87G\xa6\xbfI\xff\xa3|7e\xb0?P\x87\xff\x1a\xb7`\xa0?\xfd~\xe6l\xc5\x98\x87\xbf\x8dKsN\xc8;\xaf?\x13\x13\x13aM\xf1\xb0\xbf\x83\x04\xfe\xa1\x163\xb8\xbf\xd8\xa8\xb5\x04\xaa\xaf}?\xda\'\xbe\xdf\xc2K\x8a\xbf\xe6u)\x83,\xc5\xa8?\x03\x85O\xbd\x13\x88\xb7?\x17\xed\xb6\x9a\xac\x08\xad?\x8a\x05>\x95c\x87z?I3\xdaV\xdb\xbc\xb9\xbf\xc3x6\x1d\xa0\xc7\xbd\xbf\xf1phe]\x12\x92\xbf_\xf9\xba\x9b\x06\x0b\xa4?\xb7\xd5\xd3\x90d\x19\xb2?\x9e\x08\x95h\xcbX\xbd?\xd6\xa4\x81\x01\xfd\xbc\x99?D\x1bS\xdc\x12;\xac\xbf\x99\xc8,\x91\x98\x18\xb0\xbf\xad\xcc\x06\x06\xacw\xf6w3\x93?\x13[\xaf\xd7\x07\xd1\x93\xbf{\xfab0\xdcX\x98?\x84Z\x13\x96u;\xc2\xbfq\xe8{9\xa0\xda\x9c?\xd0\xd4\x10K\x1d\x10\xa8?\x18?0\t\xc7\xc5\xb5\xbf\xb8ZI\xa2M<\x84?E@\\\x04\\\xd2\x84?\xf0bn\xeb\xe5\x06\x80?\x8a\x8d\r\xe4b\x05|\xbf\x14\x98\xc9)\x8e\x8b\x88\xbfDD>\xe9\x82\xba\x99\xbf(\x135\x06\xe3\xfc\x97\xbfz\x1c\x86{s\\\xa1\xbf\xca\xaaC\xaan\xd6\xcb\xbf\x1d\xd3a\xac\xea\xd9\xaa?r~\xeb\xf7w\x0c\xb5\xbf\xe6%v\xc5GJ\x8e\xbf\xbb\xb1\xde\xc9\x89\xeb\xb0?\x93]*\x05\xf6\xc0|\xbfD\xd6\x089\x0b\xcd\xbc?\xdcr\xcf\xa8]\x90\x92\xbf\x06\xb7L\xf6"I\xc1?\x0b\x8b\xf6\x1cK\xb3\xa7?\xcd\xe5K\x19a\xb5\xc8\xbf\x98\xb3\xeb\xe2*\x05\xb6?\x8d\xf10\xb4X\xea\xa9\xbf\x1d\xa2\xfe.7#\xc1?\xca\x8bg\x7f\xac\x85\xb3?l\xac\xbb\x05\xf8>\xb9?\xec\x13\xbc\xc2r\x96\xb9?\x93\xc7\xe4\xf4U\xd5\xae\xbf\xa4heR\xfcy\xbb?\xda\xb0\rD}I\xc0\xbf\xfeP\x03Y\xda7\x85?\xa7\xf2\xe3\xd3N\xbc\xb7\xbf\x19\x05\x8c\x18\xbe\x17\xc9\xbf\t;e\xb9c\xe0\x9a\xbf\xc6\x0e\x93R\x11kj\xbf\x91\xdc\x13r\tU\x81?\x9a\xe1\xd6\xf3\xe0I\xb2? \x8f\x9d\x17\xab\x9f\xbb?T\xa5\x94i\x9e\xc7\xa9?\xb0\x01yA\x88\x07\xc2?\xff\xfb\x02\xd5\x93\xb7\xad?\x82\xd2\xcd\xbc<\xc3\xaa\xbf\x98\xaa\xe3\xe5\xdcz\xa5\xbf\x86Q\x9a\xdb\x14\t\xc2\xbf\xd6\xa7\xca\xac#\xb3\xcb?!\x9fC\xd3#\x07\x99?\xf8\xa1\xc15\x17\xb2\x99?x\xeeJ\xa2v\xf6\xc0?Lz\x11tI*\xa2?\xa0P\t\x8e\x13k\xa9\xbf\xe9\xa9f\x88o&\xa6?\xf9\xeeRA\x80\xa2\xb2?\xe4\xea\x9e8$\xb9c\xbfj\x91\x81W1\xf6\xb4\xbf\xec\xa8@Q0\x08\xbe\xbf\x1aucG\xf45\xc7?c\xc93\xc2\x9b\xd8\xb5\xbf\x94#\x18\xf6\xd00\xca\xbf\x87\x11e\x83\x83p\xbe?&H\x0bz\xb0\xbc\xc5?\x84\xe1I\xa1\xe2m\xbc?\x14*\xdf\xcfx\xd0\xb5\xbf\xf1\x14ArB\x84\x87?b\xefA>\x98q\xac?!\xed\xeeV\x11\x02\xba\xbfW\x15b\xa7\xd8]\xad\xbf\x90HY\xb0S\x8c\xc2\xbfL\xb1v\xbd\x03\x82\xc2?\xe3\x12\xed\xe8\x01\x95\xb8?\xd3\xdb\x8c\x98\xa5\x03\xcc\xbf\xaa\xdd\xa57"\xef\x8e\xbft*\tu\xd5\x7f\xb2\xbfw\x9a\xbcI\xc4\x8d\x9b?0\x9b\xb0\x9d\x18J\xb1?\xcb99\x18\x07-\x9f\xbf,\r\xcf\xe1Us\xb6\xbf\x921D\x86\xa6\xb9\xc5\xbf\x9c\xe5*\x92m\xec\x92?em\x05\xdb\x01_\xb9?\xbd\xd9\x0bF\x96L\xb2\xbf\xc0k\x01\xe0\xdb\xffq?\xdd)\n\xe5\xf4\xc2\xb8?\x98P/\x08n\x8f\xbe\xbf\x1e\xab[\x04\xff\xfa\xa5\xbf\xde\xaeN3\x8f\xe7\xb2?T|\x92\xf5\x7f\xee\x94\xbf\xc6<\x8b-\x90\xa8\xb7\xbf*\x9b\xf4"I\x81\x8c?\xcc\xa4U\xeb\xf3f\xb9\xbfb9n<\x06\x8d\x99?+\xcf\xbf\xa3\xb00\xc5?c]\x8b"\x05\x11\x92\xbf\xeaIS\xfc\xcb\x14\x98?U\x1dz@\x8f[\x93?V|>\x1e\xa9\xfd\xc2\xbf\x06\xe7d\xe9\xe7g\x8d\xbf\xa8)\x1f\x1c\xd3\xae\xb0?UPp\xa0x:\xac\xbfzy:\tw\x18\xb4?\xdd\xbf\x9e!\xb1R\xba?e2"\xd9\xbd\xe2\xa5\xbf\xb4\xe1Y\x8b\x0b\x0b\xa5\xbfy\xa0$\xb4\xaeT\x9d\xbf\xb8\xd5\xcd(TV\xba\xbf||f\xd9\xc7\xbf\x86\xbf\xf0\xe7\x94\xf5\xdf\x83\xbf?\x1d\x84\x8c\xad}k\x90?\xc3g\x94\xadE>\x95\xbfh\xf5`j\xf2\xf8p\xbf\xf8|\x16\xf7\xe3\xa4\xb4\xbf\x1cT\x0f\x00\xd9\x02\x94?BB\xa6M\xb2\xc4\xac?\xe8\x9c\xb5\xa0\x98\x8d\xa2\xbfR*`A\x19\xd2\x94?*?0\x94\xe2\xe4\x95?\xbc[\xe7\xe4y\xf7\xa3\xbf\x88\xf7\xdd 0\x86p\xbf\x0eo0\x99N\x81\x90?!\xcc\x0f\xd3~\x08\xa4\xbf~Z\xcd\x038\xf7\xb5?\xc6\xec\xfc\xa0,X\x8b\xbf\xa4\x9d\x83\xa4\'\xeb\xb1\xbf)$C\x90\x9b\xa7\xae?&\xb8\x14s\xc3\xe3\xb1\xbf9\x98\xa3v\xfd\xda\xa8?\x0c}\xe4(\xa6g\x8f\xbf\x84]\xe9<\xeb\x80\xb7\xbfH_|\xff^K\xb7?\x06i\xddW\xd7f\xb0?`\x85\'\x1az\x05\xc7?\x12j8\xe5\xf5h\x87\xbf\xaf\x01\xba\x00\xa2\x19\xa5\xbf\xe3\x00\xbb{\xbd\x07\xaf\xbf\xe7\x8f\xfe\xcaLP\xc3\xbf$gVO\xbf\xb1\xa4\xbfN\xad\xef\x7f\xe5G\xb3\xbfN\x98\x93\xd9!\xb6\xb8?\x8f\xd8{\xea\x02\xb3\xc0?\xd4\xec\xc5\xc7t\xc7\x87\xbf\xc4\xbb\x9br\x9dG\xb3?\x92\\8\x8f\xf4\xb9\x80\xbf"\x199\xa1\x180t?:\x99\x8a\x84Mv\x93?5\xd8\x0eM\xb9\x8e\x9d\xbfP\x06\x18\x85v\xb5y?\xdc\x99\x82[\xad\xc1\xb0\xbfu\x1d\x9a\t\xe8P\xc8\xbf:\xa9p\x05{\x84\x9e?\xea\xe2\x04\xf1\xe6\x8a\xb4\xbf\x08\x91\xf8\xa7\'\xe3\x80?^\x0c\x02\x01A!\xb0\xbf\xfc\xd8\xf0\x8e\xce\xa7\xa8\xbf\x80\xb5\x12\xf7\xbd#\xba?\xa8}\x93\xa5_;}\xbfP\xce\x8f\xde\xb0t\xcd?\xc5\x17\xb3\xb4\x8b\xae\xa4?k\x8e\xb0\xe4~\xf3\xa5?0roy6\xe7\xb3\xbf\x953\xa4\xa0\xfcH\x87\xbf\xa1\xee\xff\xdf\x8a\x99\xac\xbf\xa0:\xf8\xe3\x7f\x04F?\xbciJP{\x8b\xa9\xbfx\x98\x8f\xc9\x06\xafp\xbfuTyEm\xa1\x96?\x16\xdf\xd2\x93\xd4&\x9a\xbf\\\x14n\xce\xb9z\xb4?\n3R\x94\xd2Z\x97?\xd7<\x9dk\x13z\xae?\xc8\xe5|*\xedA\xa3?\xac\xbf;\x8f%\xda\x96\xbf\xd8:\xb6\xbc\xbaZ\xa4\xbf\xa4>p\xd4\xf8\x9b\x84?\xd0\n6\x94\xc1^\x9c?pg\xc5\x12 \xe3\xad\xbf\x1c\x14`\xd1\xf9\x88\x93?r\xd78\xc7"v\xa3\xbf5\xc8\x8b\xc6\xc4\x8e\xaa\xbf\x00!&[C\xb9N\xbfZ\x0b\xb6\x0fu\xee\xa0\xbf\x06S\xa3\xae\xb6\x94\xb2?\xc3w\x86;\x96\xd5\xbd?\xc1Hs\x14\xca\xfc\xcf\xbf\xe8\x1a\x12\x13\xb1\xcf\x98?\xc8U\xeb\x04A\xaf\x98?\xa0(va[\xefx\xbf\xdcs\xdcb\xbe\xb9\x9b?\xaai\xf6\xf3\xd6\xb5\xa2\xbfP\x16G\x1f\x1c0\xc0\xbf\xac\xe4\x89\xea\x80\xb2\x9c\xbfn\x9f\xdb[\xdd\x1f\xad?\x08\xf8\xa8\x87M\xb2m?G2\xb78]\xc6\xa6?\xf4\x1c\xa0\x836\x01\xd1\xbf\x8a\xcf\xba\xda\xd8b\xc0?erp\xb8\x0c4\xd2?v\xeb\xf4\x0el\x19\xa0?\xdeq#z`\xe2\xaa?\x00\x99\x94\x15\x8c\xcb\xb9??\xecM2\x0bY\xa5\xbfKJ\xd6\xf4\xbd\xca\xbb\xbfS\x9d2s\x93\x17\xc2\xbf0\x13\xa9\xec\xbe\x8d\xa4?\xe5\xee\x98\xba\\\x05\xc7\xbf\xc2\xc5\xaf@@`\xa8?7\xeb\x05\xad\xef\xbf\xc3?(*\xb9\x1a\xaeZ\xc6?<\x89\xf2\x8b\xcd\xca\xa7?\x93\xdf~&\x84\x9e\xb1?\x9a|\x8f\xf8)}\x94\xbf\x97\x1a\xeeg\x8c\xde\xbd\xbf\xaa\x1c\xb0\r\xe0\x1c\xa5?\xe7F\x9b=\xf3\xa8\xa0?\xd0\x07B\x15z$\xb5\xbf\xac\xce\x90\xc84&\xd1\xbf0u["\xe9\x96\xbc?\xee\x08\xfd^o\xcf\xb8?\xf5q\x80^\xe1ie?\x8eN|T\xaf\x8f\xb4\xbf\x07\xa8)N\x89\x89\xa1\xbf{\xb8Q\x06\xc5\xcc\xb3?\x96\x15q(\xb4&\x92?4\xdb\xca)\x1eJ\xa1\xbfUD\xab\xf7\xc4:\xa2\xbf}-\x1e%\x04\x10\xa4?czB\xb9\x95&\x81?\x01\xe1\xc5D<\xa2\xab?\x9f1\xf0\x9f\xe7\x88\xa4?\xdb\tK9\xeb\x11\xbc\xbf \xe5\xcaT\xb7\xaf\xae\xbf\xa9A\xd6/S\x98\x8b?\x0bZ\xc7\t\xc4\xa4\x84\xbf\xe3\xf0F\xb6\xdd3\xb0?*\x8d\xce\xa1\x8dg\xbc?\xa6\xd9\xca\xf9\xb0\x11\x92\xbf\xaa\x98N8\xd9\x1e\xb1\xbf\xc1\x07\xfb>\xa2j\xb4\xbf\x06pAT^\x7f\xc6\xbfr\xd3\xd19\xef\xe5\xbe?O\x00\xb1\xc3\x85$\xc6?\xa9\xaf>\xed\xc0U\x93?|gd8\xe1\xca\xc6?\x8ba9\xae\xde\x88\xb1\xbf\xe6@\x99\xcc\x06\xf0\xd1\xbf\xc0\xa7\x96!\xfdGc?\x13\xc3/\xbe\x88w\x9a\xbf\x80^\xa3\xbf\xfdF(\xbfo$\xdcl&\xa1\xcf?\xe6\xa5\xaf\xba\xc9\xf0\xbb?P\x96\xd2\xb4[\x8b\xbd\xbf\xeeX\x91\x96g\x8e\xa9\xbfG\x93\xa9w"\x8e\xb0\xbf\xd0\x83\xea:\xb9\x9c\xc7\xbf\x1ds\xc2\xad\x86\x1f\xa3?VZ\xc39\xcb\xad\xc1?XK\xbf\xcd5>\x81\xbf\xc8\x17j\xb4\xa0\xce\x95?\xc0V\xc37qm\x90\xbf\xa4\x14\xe2i\xebF\x99?\xe0\xd9\t1\xa4\x7f\x9f?\x80\x88v9\xafi\x95\xbf\x10\xcf0\\\xea>x?\xba\xb9J\xfe\xe5z\x9c\xbf[N\xaa \x94\xa6\xa6\xbf\xea\xccQ\x97\xc8]\x91?\xf3S\xe8\xab}$\xbd?\xb88\xf6S[f\x99?\xbe\x00\xb0?\xa2\xb4\xb2\xbf\xb0p\x16\xf3\x15\x9b\x80?;v\xa1P\xbaP\xb2\xbf\xa3\xcb\xb1O\xe0u\x9a\xbf3\xb9\xca\x00\xf6U\xb2?\x88f\r\xa1-&\xa3\xbf\x06s\xf9\xa6\xfec\x86\xbfQB\xe9\x06\xa7Y\xae?\x80\x0f\xab\xe1_5\x93?\xa1y\x9cvJ\xd5\x93\xbf`\x1er)\x13\x02t?\xb8\xcdU\x98\xcd\x8a\x87?\xc4\r\xbe+\x18\xe1\xb0\xbf\'%q\xd9Q\xf4\x83\xbf8\xd3=\xefEpz?*t\xddNt2\x81\xbfJ\xe9/OR\x8e\xa0?\xd1\x11\xb5L3N\xc4?\xe0\x96z\xb0\xba\xf2\xb2\xbf#\xff\xca\x9dLc\xab\xbf\xf2\x1d\xe7\x12{\x87\xbc?\xcc\x1c\x1f5\xf5\xc9\xc9\xbf-\x1c\xea\x10\x06\x1e\xa9\xbf\xf8v\x01u\xd4\x17\xa1\xbfk\x0b-\x9b\xc2\xa4\x95?~Lny!<\xc3?\x1ez\x1d9\xdev\xa2?\t\xc84\xea\xb0\xa2\xc4\xbf\xa1\x82\xe9\xc2\x8e\xab\x8a\xbfd\x86\xc6\x0c\xf2\xe6\x97\xbfMs\xdf\xa5(\x7f\x88?\xc9\xfa\x16W\x19\xdc\xc3?\x1e\xcc\x81\x90\x03\x07\xb8?\xd3\xe2\x9e\x19j\xb2\xb9?\xec\x19\x80|\x89\x1a\xaa\xbf;\x04\xdc\xe9\xeaV\xa0?\x1a(3\xdb2k\xa4\xbf\xb0*,x\x0e\xd0\xbf\xbf\x0eXk\xa4\x1ba\x93\xbfyT\x8a\rO\xc2\xb5?\xd3&\x18\xf4\xb7\xb1\xb2?\xc5\xe2\xbb\x08\xb7J\x8e?\x08\x9e\xdb\xfe,]\xb7\xbf\xde@\xc3R[\xa6\xb0?\xd8\x882\x13q\x8d\xbf?\x0c\x85\xce.\x8e\xd8\xce\xbf\xf7\xbc7\xafNn\xa9\xbf0)\xd5\t\xf9o\x9a?\x80\x00\xb8\xdd\r^\xae\xbf\xed\xb6\xa6|3\xd7\x98?b\xaf\x01\xcf_\xd0\x9e\xbfv\x1a\x9e|\xbaw\xc6?u\xbdz\xde\x1e\x8c\x8c?{P\r\x16[\x0e\xb4\xbfSm\x9b\x83\x9d\x7f\x96\xbf%\xe3\xa4\xd5\x88\x86\xc2?\xf4\xbce\x1f\x08^\xaa?N\xc5NoaW\xb8\xbf\xf5c\xd3\xef\x8a\x12\x90?\x84J\x9dk\xccU\xb3?q\x86;\xd3-\xf7\x8a?qn\xbd\xf1\xb0\n\xae\xbf\x03R(\x8d\xbe\xd3\xb1?\xf4RF\xf4\xf7G\xb2\xbf\xdd\x1f\x816+\xc5\xb2?\xe0\x9cG\xc8\x1c\x1bY\xbf\xe0\x90\x95\x1b;\x06\xb7\xbf\xfc\xa0\xf2\xa8\xa8d\x8d?\x1b\xd6\xd2\xbbQ\x9c\xae\xbf\xfe\xa0t\xd1\xa8\xa6\xa0\xbf\xd2-!\x7fl\x12\xb6?\xe2\xb4\x14\xbc\x99\xa4\xc0?e\x84a\xebEz\xb4?3F\xc2\xd5\xf4\xcc\xc0\xbf\x947z\xbdu-\x99\xbf\xfd\x92\x95\xa1\xfdC\xb4\xbf@\xf2\xb8\'\x147w\xbfP\xe4\xfa=*;\x91\xbf&\x15}\xa7\xd65\x98?\xf2\x94\x16\xc1\x8af\xc6\xbf\xf2\x95\x03\x19\xbf\xf7\xb3\xbf\xe2z\x06\xe0\x18\'\xba?nHu\xdb,\xaa\xa9\xbf\xd2\x13\xb0\x01mT\xb9?\x86\x00\xa7E\x82\xa4\xa9\xbf\xc2\x03~\x1a\x16$\xaa?\x1a\xa7\xd1\xec\xab\xdd\x8b\xbf\xd4\xcd\x88R\xcd^\xc0\xbf\x80\xea\xfdhV\xa8>\xbf>\xd3\xe04L\xe5\xb1?\x8a\xe1\xf5\x1a\xb27\xa6?\xe0?\n\xb4)r\xa1\xbfsvF\xa6Y\xbb\xb2\xbf4\x7f\x9a\xeeL\x85\x94?\xc1;\xe4\xa0\xefs\x9b\xbf\xf6y(#\xa6\x85l?\n\x0e\x8c\x83\x82y\xb4?\x87\x05\xc1\x81\xe7\xde\x81?}\x1e\xd1{w\xa8T?=\xcd?`\xc9=t?\x8ei\xd8\x88\xa6\xff\x97\xbf(`\xfaQ\xe0I\x86\xbf\xf5\xffG\x02[\xbe\xa8\xbf2k\x18\xd2~\xe2\xac\xbf\xf3\xce\x84qL3\xab?.\xec/\xf5\xa8E\xbf?`\xfc5\xf7\n\x8f\xac?\xbc\xb4\xe9\xbc\xafX\xb6\xbf*$\xa6\xc0\x93\x0e\xaa\xbf\x90\x88\x9b\x0c\x82"\xac\xbf\xe3\x8d\xcb\x86\x827\xb8\xbf>\xfb\x94\xb6\xfeq\xb4?[d=i{\x9c\xc0?\x02p\x18n\xb9\xad\x7f\xbf\x8d\xd9}u+\xb0\x9d\xbf\x8b$\x11\x05\n{\xa2\xbfb\xb7\x1f\xc2X\x08\xb4\xbf\xb0\xe7\xbe\x15\xe5&S?\x11\x19\xc3\x12f\xfc\xac?\xaeD0\x1aC\xd6\x97?\xb8r\xe3\x19T\xb7\x96?\x00\xa0$b\x85\x1e\xfd\xbey\xf0\xf5\xe1m_\x99\xbf\x98\x94\x89\xf9b\x81\x81\xbfZ4%;\xeb\xeb\xa5\xbf\xa3eI\xe1U\xf0\xa6?\xd3\xf4\xdc\xbe\x055\x90?\xd5F\x9c\xad\x04\x82\xa4\xbf\xc06\xf1\xa8~\x9c0?x\xac\xccq\x13\xfe\xae\xbf\x13H\xec\xc7\xe0\xa2\xa3\xbf$\xadX\t\x94\x93\x9c?\xe9T\x06\xc8YB\xa8?\x8eX\xb1\x16\xa4\xcf\xa8?\xc4~\xc9\xb8-\xaa\x9d\xbfA\xdf\x1c\xec\xb2\xcb\xbb?!\x8f\xf3\xa1\xc1-\x7f?~\xd3\x8b\x0b\xd3.\xa3\xbf\x00S\x9f\xf5\x9c\xef\x8f?\xcaw\x1c\x92`\x9f\xb3\xbf\x07\xbf\xfeu\xb1\x08\x9c\xbf*\xcb\xc48\xa1c\x93\xbf\xcf\x98\xa2v\x89\xb2\xa7?\xb0\xf0\x81\x85%\xd8\xab?\x80\x1d\x0c\xa9*\xd8t?\x1cNv\x1a\xf8\xff\xa7?X\xed\x1bIQ\xa4\x8b\xbf\x80\xe3\x07\xc1\xed\xbe\x81?\xc0L\xed\x924\xbdH?jJ\xe8\xb8\xf9\xa7\x86\xbf\xeb$\x18\x1d\xd3\xa1\x90\xbf:\xf4`\'R\x06\xa1\xbf\x1a\x04\xec9aB\xb5\xbf>\xa7|s\x0f\xe6\xa3\xbf\xde,\xb2\x03\xba\x9f\xa1?\xd4\xc0t\x17~\x88\x80?\xe0\x14\xf5V\x13hg?\xdc\xe1\xcb1t\xab\xaa?\xc2\x80nQ\xd7\xcb\xaa?\x86\x1c\xe7:\xb7\xfb\x9f?\xc0[LV\x12\xca\x8c?\xb8\xa8\xe9y,/\xa9\xbf\xbc\xbb\xb0\xdb\xe8\x84\xb0?\x85\xb29F\xb1\x89\xb0?\xf8\xb4"\xa6\x04\x8e}?|~9\x8e\xae\xc1\xb1\xbf\x85\xe5\xd2\xb3\xff\xc9\x9d?g\xec\x08\x1a\xae\x10\xbf\xbfT]\xd4\x8b\xd4m\xa0\xbf\x04\xc0\x1b\xeb\xcdM\xac\xbfD\x06\xd9\xb4\xef\xa8\xac\xbfE\x8e$\xb1\x9cy\xb0?l\xe1\xdb\x8fqcv?F\x1d\x97I\x8cF\xb9?u.]\x99\xe8\xdd\xc1?>>h;\xea\xc2\xb8\xbf\xe4Q\x94\xf3\xd2\xdb\x9e\xbfO\xe8\xf8\xd7\xbc\x99\xb9\xbf\xc5L\x17\x0b\xbe\x9e\x86\xbf\x85*\x86\xf5\x0f3\xac\xbfT\xebM\xd4\x83\xdd\xb6\xbfn\xeb\x0e\x04\xd0g\xb8?\x0c+a\xcb\xf6`\xab\xbf\x14\x1b\xd2\x9d\xce\xa9\xb6?Q\x17J\x88"+\xa6?\xb8,v\x15^\xaa\xa9?Xq\xd5\x01\xb8\x9c\xb8?\xecV8\xbe\x16\xee\xd7?TQ\x16\xe5\xf8\xa8\xb1\xbfC\x824v9\x86\xbe\xbfz6h\xce\x0c\x7f\xa2?\xf1\x8dv\xf9-0\x96?\x17\xa8\xb3\x81\xcc\x0f\x90?\xe7\x01\xcb,\x97\xdd\xb7\xbf\xa7\xf2\x08\x8c\x17=\xa3?\x98\x0e\x10\x15[K\x95?:\xe2\x90\xf0\x08*\xb0\xbf\x19\xca\xf03\xcd\x0e\xbe?.V\xa4\r=\xe5\x8c?\xadm;\xa2\xfb:\xd9\xbf\x0c\xba2\x8e\x19\xc7\xcf?`\x8c\n\xe8\xb4D\xa9?bw\xe2\xa3,Y\xa2\xbf\xdc\xe4\xaa\x9a\x18\xcf\x93?\xb0\xe4)r\x1d\x1a\xbf\xbf;\xdd{;?\x9d\xaf\xbfH\xdd>w\x00\xe2\xb3\xbfuM\xb2\x10\x99\xb2\xb2?\x9d\x94g\x07vL\xc1?.\xc4\x05\xc5\x88\xc5\xb1\xbf\xf2\xefk\x10\xb4\xe3\xbf\xbf\xfa\xd3\r\xa8\xef\x86\xd3\xbf\x04\xa7\x19\xb8\x93\xd4\x7f?I\xadZ\rVq\xb5?\x90XSt$\xeb\x9f?\x0c\x1a\xae\x13n[\xb0\xbfZM\xb9SF\xab\x8f?d\x11\xb1\xe3\xd9^\xa2?\xf6\x15\xca\x91\t\xa3\xb6\xbf\x13#P\x9b \x80\xd3?\x88\xe4g\x87\xfd\x0b\x80\xbf\x13\xb1\x97\xfc\x99\xaf\x9b?\xcby\xa2"\x8e\xc5\xa9\xbf\x04?u\xf6\x984\xb3\xbf\xa6$\xd8\xed\xd6\xe4U\xbfK\xa2\x02\x04K\xe7\xad?\xb6T\x1d\x9e\x06"\xc0\xbf\xb8\xfaO^\x9d\xfe\xc0?_\xccD\x1f\xa9\x1d\xc7?\xee\x9a\xe14\xc7\x8f\xb9\xbf51:U\x04\xd0\xc0?C\xfbv\x06\xd4w\xb9\xbfO\xbe\xd8Ge\x01\xd2\xbf\xe4\x11nby\t\xae?\xee\x1f\xb2\xa8w_\xa6\xbf\xc6E\xd55\xad`x\xbf\x93Z(\n\xbd\xa7\xd1?j\xfe\x00:\x84\x1e\xa1?\x19\xb5\x82\x8f\xef\xb3\x7f\xbf\x1d\xe8|\xd7i%\x97\xbf\xb6\xeb\x91\x94\xa2X\xd2\xbf\xe2\xa5\x93\xcf\xbe\x8d\xb4\xbf\xd7Aq\xe44\xdd\x90?l\xa6\xa5m)\t\xb8?W\x17q1\x0e,\xce?e\xe30\xe31\xd0\xc2?!\xc4\x919\xa8\xfa\x99?\xba\xad\xb2KZ=\xca\xbf\xb7j\x07\xf4P\xd9\xca\xbf\xa2F\xceEN\x00\xa5\xbf \x95\xc7{\xd7\x1b\xa9?\xac\x91\x0b\xfe\xf1\x15\xc3?\xd7\x9a\xdd\xf1\x14\x83\xc1?l[\xc5z\xba6\xa6?F\xf2W\x14\xf0\xd2\xc0\xbf\x19"\xe7\x0f\x17\xcd\xc0\xbf\x97\xff\xd7Pm\x0e\x8e?!UK\xe6{\x90\xb4\xbf0\xbe\xb4\xa0g]\x9c?\x0e\x96\xc5\x86=\x03\xbc?\xdck\xa8\x04;\x84\xa3\xbf.Ta\xa4\xb9\xd8\xba?\xca\x01l\xdaR\xca\xa7\xbf\xf8\xc1J\xe3\x04\xde\xb7\xbfvJ\xf9\x12\xfdA\x9d?\xbftH\xce;q\xb7\xbf\xd0Kp\xc8+\xf2\xa8?\xc08f\x13\xff\xac\x84?z\x12\x0f/\xfd\xad\xa0\xbf`".j\xb0\xbe\xb9?\xd09\x1aR\x08\xb3q?\xc1Q\xef#\xf3\x8a\xbe?\xfa\xb4X\xdfn\xc3y\xbf\x19\xb0q\xb4\xa3\'\x9e\xbf"\xbe\x7f\r\xc2(\xa2\xbf\x8d\x1c\xce\x88\x95\xf6\xb4\xbf*\xdd\x01BS\xa0\xa8?8\x9d9D\x91\x92\xab\xbf\xa0\x0b\xf3\xe1\xf0\xb2\x9d?\xe51HdR\xd3\xb1?\x18\xe9\x02)kW\x91\xbfv\xe6f_Wc\xa9?XY\x83\x82\x9d\xb9~?\xfep\xa70.\x8cq?~tH}\xd2;\xa2?\xda.\x01\x81\xcd\xd4\x8a\xbf\x80V\x83\x9c\xfc\xbf\x89\xbf\xef\xf8x\xd3\x0b\x07\xa0\xbf\xb8s\xaa\xb0T\x0c\x9a\xbf\xc4\x11\x18\x9cj\xf2\xba\xbf\xe8\xd0+\xb1\xf4\x19\x9d?t\xde\x90\x99d(\xa5?$n\xac\xcdvA\xab\xbf\x02:\xd6qz\x0f\xc0?\xdc\xf8sI\x08\xc5\xa1?\xfe\x9f\x8fl\xe2\xf6\xab?\x80Z\xa9\x88&%a?\xb4\xcc\xc9\xa7\xfa\xd3\xbf\xbf\xc5\xbd\xc0\xdagH\xa9?\xc5\xcd\x8e\xc9v\xcf\xc0?\xa8f\xd3y6\x8a\x99?\xdd\xa2\xdf\x9b\xe6I\xad\xbfA]9\x17\xa4X\x9c?v\xc7\xad\x179\x89\xc7\xbf\x92\xe5\xc97\x12T\xb1\xbf\x15X\x95\xa7\xa0P\xb0\xbfp\x8a\x99\xfe\xf1G\xa1\xbf4\x12\xc0\xc1\xef\x06\x94?\x12\x83\xae\x93\xeb\xa7\x9d?p\xb2.Ap\x02\xbe?9\xe5\xc8i\xcf\xfb\xbe?[C\xc7hyI\xc2\xbf=\xdf.\xe8\xb8N\xae\xbf\xfa\xa3\x9a\x897B\xab\xbf`\xdc\xc5\xab\xc4Y~?\xb0E\x1b\x045\n\xaf\xbf"\xb1y2^w\xc1\xbf*j\xf5\xfd\xb9\xb5\xc1?\x10\xa7\xb6\x1a\x1d\x10\x90\xbfN\xf8P\t%\xa1\xb0?8\x04\xc0\x80\x1bz\xa5?\xc6i\x0fE\x96\x0f\xa0?~\xd3\x88\xa1b\x8b\xad?\x8a\x021M\xdb@\xa4\xbfj@\x9a\xf0#Z\xb5\xbf\xee\x19E\xdb\xf6\x82L?\xb0\xbeG\xdc\x8d\x06\x81\xbf\x8dq\x89\x8dO\x8d\x84\xbf\xdcF\xe0\xaf\xc4[\x90?\x06\xd4D\x1c2\xeb\xb1\xbf`\x92\x9b\xc4&\x99\x80^\xa1?P\xa1\xb7\x8d\x92D\x90?D\xf0M\x01\xf7\xc6\x85?\x93r\x1e\xcdL\xa9\xa8\xbf@0}\xcd\xd5q\xa5?\xbc\xc4\xe1\x05\xb4\xaa\x96?\xed\x9dg1\xe8R\xae\xbf\xd0\xce\x0f\xb0\xbb \x8f?e\xd2\xfd\x80\x13\xc9\xac?V\xda2F\xadl\x98?\xac\x85\xaf\x9d\xd5\x12\xb2\xbf\xa8\xb0 cUW\xa1\xbf@\xd1\xe6\xc2/:~?t_\xfc\xfe/E\xad\xbfh\x86\x9d\xbb{y\x88?\x1e pv\x13U\x89?\xde\xd1+\xe3u\x19\xa3?\xd0\xa4\xb2\x82H\x91i\xbf\x02\xee\n\xe4\x82\xdd\xb7?\xf0%\xff\r\t\x97n?\x04>\x8f\xc5y\x9b\x8c\xbf\x168\xc0\xd5\xfa\xd2\x93?\xffC\xaa\x93\xef\x9f\xa2?\x80\x05\x84"\xa1\xd5\x9c?.\x90\t\xe4\xd6\x0f\x9a\xbf \xc9\xaa\xeds\x0e\x8d\xbf:+\'\xf5rz\x99?(\xda\xdd\xfa\x171~?@\xde\xbf\xea[\xe0\xb2\xbf\x99o\x9b\x0f\xba\x7f\x9a?\xcc\xab\xc4\x81\xe6w\x82?8\xb6o\xb6\xb3\x10\xab?\x9c@\xb2\xb9\x19Z\xc2\xbf$J\x0cV4Z\xba\xbf;#\x9c\xb6\x82\xff\xc7?\xd6\xb7\x04Y\xae2\xad\xbftW}\xbf\x11l\xb5?\xe2\x1bc\x03\xcab\xc8?B@\x94\xda\xa6T\xca\xbf\xcf9\xb6y#F\x99\xbf\x90\t\x1b\\}\x1d\x9e?6\x96\xa60\xf2\x1e\xc7\xbf\xf7n\x1e\\\tv\xbb?\x84\x83\x02x\x8c\xa2\xc0?\xd8\xce\xee\x89p\x7f\xbb\xbf\xb9\xc5Y\xdf\xa6\xe2\xb2?\xf4\x91H\x88\rLq?\xbc\xa9\x00\'\xa4\xe0\xc0\xbf\xa2\xdd\x0fe\xd3\xb7\x9e?\x86\x14\xe8\xb0\x04\x9b\x95\xbf`F\x80\x98Z\xea\x8c\xbfx\x19\xc0\x82\x9a.\xc3?\xe4\xd5\x8d\x94O\x8e\x93\xbf\x94\xaay-n\x17\xb4\xbf\x94dH\xe9X\xdf\x8f\xbfO\xbcB\xa9m-\xb4\xbfE\xda\xec\xa3U)\x9b?Z\xf9\xabG}\x94\xb6?-\xe0&S\xfb\xe0\xa4?0\xf1\xeb\x87\x0c\xf4\x80\xbf\xa6\x06\x99\xb5\x96\xbe\x85\xbf\xb1*"G}I\xa0\xbfM\xc4\xeb\x9fu\xff\xb7\xbf1\x91\x043\xe6\x9a\x9e?\xc8\xd2\xce\xcc\x84{\xab?1\xf5Oq\xd3\xa4\x91?\xd0\xde?\xfe)\xee\xa8\xbf\x98f\xde5T4\xbc\xbf\x18/"U\xaa\x87u?\xc67T\xe1\x8c\x06\x99\xbf \\\x1d\xd7\x17}a?\xa4\xe8\x1b\xdf]\x0b\x9b?\x94\xa1\x85\x8a\xcb\x99\x89\xbf\x0e\xa5\xcfb\x1c\xce\xb9?\x98\x83\x07@\x05V\x8f?3\x8492\xf5\xf0\xb8\xbf\xe8\xc5\x8e\xbdd\xc5\x9e\xbf\xa4\xea<\xd8].|\xbf\x7f\xc6\xd6\xb59\xe6\xb1?\x92v\xf3\x9b\x9cH\x86?\xf0\xf0y\x8c\n\xb8\x88?O\xa87\x01\xa8N\xb5?\xac\xb5\x9e}&\x03\xb0\xbf\xa0\xc9a\xb7DU\x84\xbf\xfb\xe4\x88y\xad+\x9f\xbf\xf0\x1b\xdeY(\x04\x96?i\xb0\xa3\x1f\'\xcb\xa1\xbf\x80\xc2\xcb\xc4\x0bhh?\x8f\x9a\x12\xde\x9c\x96\x9c?B\xab\x9e\x1b\x91c\xa3\xbf\xda`\x83m\xb3w\xa2?\x90\xbc\xe5\xb83\xa9\x94?ry\x83\xa3<\xce\xa0?\xfd?\xfd\x95\x8dA\xac\xbf\xfc\xe7\xae\x90/\xee\xa4?B{{\xfbU\x1e\xb2\xbf\x96{C\xad\x1c\xa0\x99\xbf\x96\xfe\xf5\x98\x0f\x1a\xba?\x96\xe0\x9f\x88\x10\xb7\xad\xbfx(\xb4\xdd\xce\xc9\x82?\xec\xb4\xde\x97\x13?\x9d\xbf\xc05s\xe2\x98\n\x8e?\x848\xb6\xca\x10j\x9b?R\xe3dZ\xd6\x9a\xcc?7z#\xb5\x84\x9c\xd2?+~\xa4\xa7\x05\xe0\xb8?|p\xd8,\x1e\xa9\x90\xbf\xe6\xe8K\x05\xb76\x94\xbf\xe7_jsP\xc5\xc0\xbfjF\x90l}E\xc0\xbf\xb8W\x96\xdbD:\xc2\xbfw\xa6\x9d\xea\xb1\xf1\xc4\xbfh\xb2O\x1c\x10\x89\xa6\xbfcdW\xed]\xdd\x9b\xbf\x16mw${\xea\xb6?5\x99\x9306\xde\xc6?\x1a\x18\xc4\x9ed\x06\xc5\xbfk!w\xb7\n\xdf\xa0?\x15\xe2\xbf\x98(k\xc5\xbfh\r\xe7\xc9f4\xc3\xbf\xd6\\\xbe\r\xd0\xba\xac?\x16\xde\x8d\x0b\xa9\x10\xbd\xbf\x14h\x15\x0e\xcc\x1d\xcf?\xeeS\xc4^UV\x88\xbfJ>bY\x16\xe0\xc2?\x90\xc7J\xd3\xe5\xa2\xb5?-e\xa2B9\x8b\xae\xbf\x10\x8bA\x13\x12o\x93\xbf\x00\x99q\x03\x17\x9ad?\xf4o3f^\x0c\xb1?\xc2`\xc3\x92\x1f/\xc0?\xfe-\xac\x93\xe5\xba\x9b\xbf\\\xf4Rd\xe3p\x9f\xbf\xf1\xdc\x1d\xe2,\x1d\x90\xbf1\xa4\xd5qM\xd3\xac?+@(\xe6e\xbe\x8c\xbf/R\xc0\x81\xfcL\xa8\xbfApw\x0f\x0b\x94\xac?Z\x12\x81T_\x8b\xa6\xbf\x10t\xe3U.\x1f\x9e?\xae\xc4e\xce\xae2\xb5?}\x9b\x1b\x89$L\xbe\xbfx20!\xba%\x97?\x88b\xbb\xbb\n)\xa5?\xf8\xf0^\xa0\x00\x99\x8f\xbf2\xd6\xe8z\x0f\xfe\xb6?\xfd\xdb\x13\x81\xcat\xb9?\x06ebs\xd4:\xb4?8\x08SiH\x1c\x8d\xbf\x14\xa1\xb3i\xbfR\xc0\xbf\xd8\x1f\x12\xab\xf4;\xae?:K\xed*\xee\x9b\xa3?.=A\xd8\xf8\x92\xb1\xbf\xab\x9c\n\xef\x91\xb8\x9f\xbfw\x8d\xab6\xd5)\xaf\xbf\x14{-\x03\xcb\xce\x82\xbf[\xef\xde\xa6\xa8\xbf\xb0?\xcc\xd6/\x9f\x18\xda\xa4\xbf\xcc\x93\xf4O\xd9y\x8d?\xf0\xfe][\xaf\xda\xa3?\xb8M\xd4\xffT\x85\xa6\xbfq\xee\x81+[\xf3\xab\xbf\x99\n\xc0\xbc\x13\xbd\xb7\xbf\xf8\xe9\xd8\x99\x1ae\x8b?`\x85X7\xd7\x9f}\xbfdE\x0bo\xe4\xecu?@\xd8\x13\x8c\x96\xff\xb8\xbf\xbd\x95\xad\xa2\xef]\xaa\xbfP\xa2V\x9d\x8a\xed\xb1?~\xb0-\x0bX\xc3\xb3?\x1c"\x16\xf8\x01/\xb4\xbfqbE\x93\xeb"o?"\xe6\x1a\x9b\x94\xaa\xb0\xbfQ\x84[\n\xe4\xcc\xb4\xbfz\x03\xc6\x9c\xea\x0e\xba?\x88\xf9\xd7g\x96l\x9e?\xaa\xc2\xbb\xd2^\x92\x88?\xe0\xc8,}*d\xb3?\xa3\xa2\x06\xa2R\x14\xbc\xbf\xffP\x15rf\xda\xaa\xbf1\xa4\\\x8d\xb5\x07\xb2?}\xc6\x0b\x8e\xff\x08\xb0\xbf4a2\x88w\xed\xa4?\x91\xa7\xff\xa7\xca\xeb\xb7?\xb5\x1b\xbb[\x853\xb6\xbf\xe6A\x06\x1d/@\x8a\xbf;?\x10M\xbf\xd5\xb0?\xb9\xd2\xf8&Q~\xac\xbfjz\x82\xfa\xf7E`\xbf>\xf9\x04@\xf4\x87\xb1?\xd9#\xa0q\x91"\xa8\xbf\x8fC\xf1\x13\xec\xbd\xb6\xbf\xa3_\xa7\x8f\xe8\x97\xa5?\xd0\xb8K\x01G\xb4\xb5?\xa8\x8f\xd4O\x08\x9ew\xbfx\xd8\x07\x84[\xe5\xa8\xbf\x04{I\x0b\x03\xd4\xa7\xbf\xa8|\x03D#cc?O\x9ea\xb5\x88\xb9\x98?\xbcs\xaa\x14\x05\xe9\x89?\x07\xe2d%\xd1\x9c\x8d?\xae\x7f\x1a\xea\x00+\xa1?\x94\xe6\xb1\xb9\xe6\xe7\xa4\xbf\xab\xbb;\xe7\x98\xb9\xb6\xbf\xef\x92\xc8\xa44F\xa6\xbf\xc0\\\xb5\x83~\x82X\xbf#Sd\xa6Rw\xb4?^1hx\x19\x03\xb3?ko\xc58\x1b*\xa7?\xe1\xba\xed"\xd7\xd4\x9b?\xc17\xa2\xd9\xf7\xcb\xb9\xbf\xee\x08\x9e\x9f\xcf2\xa3\xbfVpX8\xcb\xea\xb6\xbfQD\xce\xed\xd2\x18\xb0\xbf\xc8 \x89\x96\t\xc3\x9f\xbf\xa8Ke\x06\xb6\xa2\x84?`\xb5\x836~Z\xbe?H$\xf93\xd4W\xbc?\x98\xf4\xff\xdd\x99\xce\xa7?X\x877\xb8\xe3\xcd\xaf\xbf\xc7Pq\xdf\x86\r\xbf\xbf\xb0\x89\n\xe1)-}\xbf\xa4\xc9\xda\xb3/\xf4\x96\xbf\x94S\xa5\n|Hr\xbf\xf15d\xed5\x1c\x90\xbf\xfeB\xa1\xf7e\xc7\xa4?\xa7\x06\xaf\\\xb2\xed\x94?\xa8X\xf4\x98\x8c\x9c\x96\xbf\xb5\x18\xb0\x0c\x10%\xb2?\xae\xc9a3p\xec\xb6\xbf\x04\x16\xf5\xd0\x021\xd6?Pzq?\x12,T?&\xb0\xaf\x12\xc5c\xbe\xbf\xcc\x19oy\xdc\xee\xb0\xbf\xa7(\xea\xa2un\xdf\xbf\x84p\x03\xa6\xfd\xee\xbb?\xc4\x96]}\x9a!\xc0\xbf\x12I\\\x12`\x03\xa4?n\xfd\x14Gh\xe8\xd5?\x99X\x98c?\x90\xbb?\x00\xcdo\xe4\x84\xfc#?8,\xc7\xb5\xe4\xa8\xad?\xbe\xf8\x8d\x83\xa9\xfd\xb8\xbf\xcb\x0e\xd4\xa1\x99\xce\xb6\xbf8\xa9I\t[L\xb6\xbf%\xda\xa1~g\x8c\xc2\xbfT\x8e\xb3\'>\xc3\xb9?\x17(^\x15!l\x9c\xbf\x91k\x04\x0c\xac_\xb7?]\xa7-\x0e}\xb6\xa0?\x96\xed\xf4\x85nq\xac?\x0c\xc3@rg\x9b\xc1?\xf9:J\x9e\xd6\x1d\xb6?\xb2\x9f`\xcb\xdc\xf5\x8d?\x91\xfd\xb3\x86v\xcf\xa0\xbfH\x17\xd6\x93.Z|?\xeaD\x06\x1e\xb4H\xba\xbf\xb4!?2v\xc0\xc0\xbf8\xea\xbb\xf9O\xdcv?:T)7\x99S\x88\xbf,\xbb[\x8a\x92Q\x9d?\xea\x1e\xa7\xab\xb6\x9e\xa4?J?\xc3%\x9f\x19\x9e?3\xf5E\xda}\xef\xb2?\xc9\xda\x8as\xe7#\x94\xbf\xf4.i_\x1c\x89\x82?\x1f\xff\xfe(\xfdL\x9c?r:"\xa4\xb5#\x97?\x9c*\x13\x1e\xe2`\x85\xbf\xebQm\xe5z]\xae?W\xe2\x8bv\xbcj\xad?\xf8\x16\xb5,\xea\xa4\xb3\xbfR\x88e\r>p\x92?\xee\xab`{\x1c\'\x9e?f\x82%\x17\x00\xb9\xa0?\xd2\xd6\x9b?n\x94\xa0?\xce\xb1[\xa5\xff\xa2\x8e\xbf\xa89\x02\xcaG\xb7\xba?\xc3\x19\xfa\xfb\xd9\xbf\x95?\xea\xd0](na\x9b?\xc2q\xfc{\xed\x1e\xb5\xbf\x95\xbb\x9a\xeb\xa7l\xb3\xbf\xe42o\xc3u\xc1\xc1?\xb3\x10\x12\xf2\xcc\x9e\xc0?\xe1\xf7\xdf\xce\xd9c\xa1\xbf?zfM\xfa\xbd\xb0?Z\xf9U -\xcc\xb8\xbfo\x13v\xf3=\x12\xc3\xbf\xde\xa1\xf1\xed\x8f8\xb4?\xb2V\x94\x84\xab\xd9\xa2\xbfc\xc06\t\x8e\xa9\x9a?\x97}\xc2\xfcv\xef\xc9?\xaf\xe4h\x82\x18\x0f\xb8\xbf\xc8\xfb\xb1*\xb6\xb2\xb9\xbfe(\xb4\xfd\x96,\xba?]\x99\x91\xa0\x1a7\xc3\xbf0d\xa8\xbd\xf2#{?\xdc/R\x99B\x94\xcf?\x88u\xc8his\xc0\xbf\xf0J\x03{v\x0c\xbd\xbfL<\x95\xa7\xbd\xe8\xc2?\xc6\xe7\x9b.\xda$\xc6\xbf\x99_\xdf)\xfdj\xac\xbf\xd4\x9e\t\x14\x9b\x02\xcc?Nw]\xc6]\xd5\xb7\xbf\x9d\xb7\xb3y\x14\x95\xa4?\xe1]\\M\xf98\xb6?\xf2\xc3\xadT\xaa\xb5\xc9\xbf\x18\xd9c\xce\xce\r\xb4?&\xd0\xbe65\xa6\xa1?\x1aA\x05U2_\xc5\xbf\x94\xa9\x08l\x82\xfb\xc5?;\x94\xb5\x1c\xfc6\xb7?\x08\xdaO[7\x9d\xb7\xbf\x10U\xe8\x16\x03\x81f\xbf\xb5\xae.U\xa4)\xa8?\xf7\xd0`\x0084\xaa\xbfo\xd0;.\x96\xdc\xa2\xbf ;`S\xd8Ck\xbf\x14mq\x8e\xe8$\x96\xbf\x11?\x04\xf2\xc6,\xb4?\x88l1@})\x86\xbfi\x1b\xa8z\xcb\x17\x95?\x90\x00Q\xee $u\xbf\x10\xd5\x0f\xeea!\x97\xbf,\xcb\xe9-:\x90\x8e\xbf4\xa7.\xf1F8\x9f\xbfH\x91/|\x9e\xb8w\xbfD\xad4\xaf5\x7f\xb5\xbf\xf6X\x08\x9a\xe3o\x90\xbf\xdd\x8b\xe9Kd\x17\xc0?\xf0\x100\x9e\xc5g\x9e\xbf\xc4x\x81\x94~\xb8\x98\xbf8\xddFw?\xdf\xa1?\xd0;&\x85Kyv\xbf8`\xa0U\x9e\xf5\xab?0c\x99\x12\xf1\xf3a\xbf\xbb\x9aR\xfa\xf7\xfa\x95?\x12\xb3\xc0R\xf9\x00\x90?\x00\xab\x887c\n/?\x94 \xde \xf4~\x87\xbf\xb1D\xaeX\x1d\r\xa1\xbf\x06\x97\x7f\x1c2\xea\xab\xbf\xd4\x01\xf8\xe6\x11G\xba\xbf:\x17Bg\xb8\xdf\x94\xbf,\xbe\xa7\x94\r\xf7\x8a?\xb4#7\x0e\xdc\x02\x9f\xbf@\xf4\x90\x10\xb3\x8c\xbe?\xb2\x8b 9\x9fB\xa5?\xda\xd5\xb8\xf5\x97\xac\x8d?/\x15X\xe5\xeb\xbc\xae?\xd4\x9d\xbb\x08zw\xb7\xbf\xcf+c3\x8cd\xb3?}\x92\x12\x84\x91\x05\xcd\xbf\x0c\xf1\xda,o%\x94?h\xa9\xf4r\xb5\x01\xaf\xbf\xd6\x9av\xf4\xd9\x80\xb7\xbf\xc0o\xd4] yr?4.\xfb\xad\'b\xb1\xbfWI\x99UJP\xc6?\xd0\x1d\xd4V\x90\xff\x90\xbfb"\xe3\x1cTc\xbd?\xaa1\x9d\xba\xbd\x14\xa3?\xe8\xb7!\xa66,\x87?\x86\x95&>B\xe2\xc0?QKB\xac\xdb\x0e\xc4?\xe4}\x1e\xb0z\xb5\xb0?\xf1\xcb0\x02\x86\xa3\xb6?\x84\xf21\xf8\x19\xa1\x87\xbf\xd9\xe2Up\x99\x94\xb5\xbf\xf6\xe2\x1f\xf2[V\xc1\xbf\xacA\xac\xa7H\xae\xc8\xbf\x10\xa8\xaa\xb7\xa5G\xa7\xbf\xb7*\x01\xb2Vq\xa3\xbf\xc9f+\x1a\xe6\xa4\xa0?p\r\x9f\xff\xd0\xd2\xb9?_\x80\xc1`\xcc\xab\xae?\xb0/\xdf\x16\xa6$\xa2?8g\x9f\x03\xae\x16\x80?.\xdcY\x9e\n\xc1\xa6?H\x96A^\xcf\\p\xbf\xe0aZ\xe0\xa9\xa6\xb6\xbf\xb4\xe3\xb8G\x1f\xcf\x9b\xbfs(\xdas\xed\xc1\xb9?L\x99enF\xc0~?r\xcf\xf4j\xdb\x94\xa4\xbf\x88J\xa5ih\xbd\xa2?YP\xa7UA\xea\xb5?\xdak\xcd@\xb6\xac\xae\xbf\xe6v\x8e"\x00\xbc\xb2\xbf\xd2$[W=\xd5\xb6?^\x99\xb6o!f\xb5?n\x14k\xc8\xe2\xb9\xa5?\xd2\xaeg\x97\xfa\x13\xaa\xbf\xa0\xed\x8f\x00\x05\xa4~\xbf\xe3u\x11\x94\x8a\x8e\xad?\xf4t\xc8\x81D\x16\xb4\xbfs\x87\xd0`(\xd7\xaa\xbf\x1b\xc2\tK\x12K\x81\xbf\x9f\x83\xc7\xce\x94M\xb8?\x88o@\x00\x86\xb3r\xbf\r\x18o\xb7z\x04\xb9\xbfjJ\x17\\.\xe4\x95\xbf\xd8\x81\x11%AN\xaa\xbf\xd4\xbd\xc3U\xeb*\x99\xbf\xc16\xb0\x92Pv\xb9?\xdc\xf0\xdf8\x1c\x13\xac?|\x18DP\xd0\xfc\xaf\xbft\x88\xd7w\xed?\xaa\xbfpD\no\x9a\xf4\x8c\xbf_\xab\xb0\x86d:\xab?*\x81\r\xeeLZ\xb3\xbfQ8\xf1\x02\xee\xf0\x89\xbf>\x0c\x17\xbd\xcd\xc0\xb2?pkx\xf2$V\xa9\xbfR\'\x00\x8f:q\xb2\xbf\x8c\xaf\xf4\xcb\xa5\x82\xb9\xbf\x8c\xc6F\xdfts\x98\xbf\x0b\x7f\x03\xaf\x04\x9a\xc8?\x97\xbbm\x91\xa3\xa5\xa6?|\xdcZ\x10k\xa4\x97\xbfM\xeb\xa7\xba\xa5?\xa2?~\xf8v\\h#\xc5\xbf\xfen\x93\xed\xaej\xb4\xbf\x9d\x05Oy!\xd2\xb8?\xa5J\xfd\xfb\x0c*\x9e\xbf{\xdd\xd9Q\xee\x92\xac?\xd9\xaf\xbb\xd41\xf5\xc1?\x14%.\\\xb8\xec\xb6\xbf\x1d\x92\xccF\xacR\xb6\xbfP\xd6R\xed\xe7\x12\xa9?v$\\\xfa\xc0%\xb5\xbfL\xa2f\xc5\xa8\xef\x90\xbf\x80m\x17\x0b\xab\x0f\xc7?\xaf\x0e\xc3\x1d\x85\x95\x90?\x92 \x10\xe2\xaaS\xb5\xbft>x9a\x13\xaf\xbf\xf9\xa2\x92\xc0#2\xbc\xbfB\x0c6c_-\xb9?\xce\xb8\x140E\x9b\xc4?J\xf4&\xcd\xee\x99\xb0\xbf\x8f\x1f\x95\x9b\x85\n\x8f?\xa1\xf3 \xe5\x06h\xa6\xbf\n\x11\xc0\xb2\x8d\xd1\xc6\xbf;\x9f\xfe\xf6h\x1a\xcb?m\xc7^\\\xd3\xe2\xa4?\xa3\x80IZ\x1a\x82\xcf\xbf\xa3\x8d\xd7\x84\xabj\xc4?\xe6G\xfb\xff\xb4\xb4\xb8?Z1\xd3W\xbf_\xba\xbf\x1e3v\xa4L\x7f\xba\xbf\xc3\xcc\x7f?U%x\xbf~]\xb9\x97\xbf\xf5\xcb?\x1a\x1f}bH\xd2\x84?A\xdd\x04o\x82g\xb1\xbf\xcd\xe7v\xe4j\x83\xa6\xbf\xe8\x06r$\x1b\xf4\xc5\xbf\x12\xbd\x9cD\x1a@\xaa?\xd9\xb2\x87T\x0bl\xb6?.N\r\x18\x93\xbe\x91?\xe3\x9e\xb6\xc0\xfd?\xb6\xbf\xdc\xe5\x00[\xa3\xe5\xab?\xfa\x00\x8a\xef\xf8D\xc3?\x90&\xab\x92\xa5ma\xbfb\x13\xb0\x06\xce\xb2\xbb?\xfe\xe3\xe9Yz\xc4\xa8\xbf\xb8\x11\x88uS\xb6\xce\xbf\xa5\x08#\xfc\xa7;\xa8?\x00\xae\x14E\xb8\x11\xba?\x80Sl\xf0\xf1\xcb\x96\xbfP\xe4\xb0\xb2\x9eii?-+Ts\x18\xb9\xa8\xbf\x18y\xaf\xcc\x80\xbcx\xbf\xf6\xcc"\xef \xa1\x9d\xbfP\xc3\xecV\xf9\xd7\x85\xbf\x10w\xf1\x06\tJn\xbfh&*\x90\x871\x89?kY}\xc2j\x84\x9d?\xc0\x882W\t\xd0\x9e?\x83\x00\xfa\xe5\xb2:\xc3?|\xab\xcb\x9d\xfb\xa4\xa0\xbf\x94\xa4dN\xad\r\xa3\xbf\xdc":\x80\x9dH\x99\xbf$\x06h>4\xa1\xc8\xbf\xe0r\x08U\xa7\x86\x83?\xe7\xb7\'\xd8|\x14\xa0\xbfx/\x08d\xfbd\x95?\x84\xe7\xf0\x87y\xb0\xc4?`\xd0<\xf8\x99\xdcr\xbf\xf3\x97\x03r\xf7\xe7\xbd?\xf2\x14\xc4\x80\xean\x86\xbf\x00\x8b=\xd9\x1d\xa8\xa4?\x1aeb\xc6X7\xa4?P\x004\xd5\x03\xc8}?\xd8\x98!\x030P\x9e?ZT;\x81q\x18\xc3\xbf\x00S\xdf\xebvJf?\x1e&\x08\x90\x88O\xa7\xbf\x0c\xb8\x08\xd6}\x07\x95\xbf@\x16K\xc1K!a?F\xcd%\xed0\x1b\xbb\xbf\xcdf\xe8Z"4\xb6\xbf\x88\xca3\xf0BRc?\x83\xf54B+\xdb\xbd\xbfv%"xf\x18\x92\xbfBK\x8fN\xacx\xa4?\xce\xf0\xf69X$\xaa?3\x97\xae\xc9X\x12\xba?.?q\x00\xbb\x15\x96?\xc6\x0e^\x1b\t\xa9\xb6?\xec=\xc2\x0c\xe0\xb6\x86?\x94f\xfa6\xb1\xd9\xaa\xbff\x01\xba\xbf\x1a\xc2\x9b\xbf\xa4Ia\xfe\xae\xb7\xa2\xbf\xf8k\xfd\x8c{,\xb6?\x1f_x\x9a\x8f\xed\xa1\xbf\x96\xcf\xbb-\xad\x84\x8b\xbf\xc2\x06\x995\x1b\xf0\xb9?\xaa\x83h\xed?\xf1\x81\xbf\xd1Z\xf8pn\xd6\xc0\xbf\xee\xf6\xdf\x1b\xe1\xf7\xa9\xbf4gV?\x9a\xb6\xb2?C>\xae\xd6\xd9\xaf\xa3?dr\xfb\x99K\x9f\xb2\xbf@\xdb\x9dJZ\x81\x80\xbf\xcd&\x9e\xa5\x95\xf3\xa4? a\xb8\xd2\x7fWj?\x16\xef\xef\xeb\xfaa\x97\xbf<\xd7/P\x94K\xa2\xbft\x13\x96\xacT\x93\xb2?0\xb0F\xdd\\8\x92?\xa6\x19\x0eJP\xa1\xc0\xbf\xa2\xe9\xd6^@\xe4\xa7?\x89:8\x1d"A\xab?Z\xc0vT\xb5\x88\xa7\xbf\xd6-\xa4=\xe9\x97\x9a\xbfH\x0cG\xf8R\xef\x8e?i\xff\x10\x8c8\xab\xaa?\xca Ea5@\x99?\x1a\x94E\xaa\xadF\xa9?\x88\xd4I\x87\xddG\x88?S\x8f\r\xdf\x18{\xc4\xbf\x9e\xd4\xf0\xc9,\xb7\xa5\xbf\x802\xa5\xe9*Y\xae?\x81\xe7\x1cP\xe5\xea\xa0\xbf\x10\x087C\xd5gt\xbfT\xaa\xe9H\xeb;v\xbf\xd2u\xa1\xe2\x035\xbc?@U\x83Ceh}?\xf7\x1eVEg\x91\xb7\xbf\xa0+\x01\xd0\x04c\x8e?\xf4m\xf8V\xf5\xef\xb8?\xb30\xffS\xb6R\xc1?\x84\xcf\x11\x97\x19 \xb3?\xe8/\xc9%xC\xd1\xbf;.\xe7\x05\xbc\xc2\xc2\xbf\x84\xa6\x8a\xa9_\x9a\xb5?7\x0b\xcf\xcb\x07\xec\x9e?PHIn\xc9\xa8\xc5?_r\x97\xa3\x17\xc6\xc2?\x00\xf3\xf3\tFq\xbe\xbfKR\xc8\x99m\xc0\xb8\xbf\xf0R|\xcd\x01\xca\xb1\xbf\xe6y\xcd\xf4\xa3\xa5\xc3\xbf&nN\xd3\xf7\xb7\xba?\xd2\x99\xa7I\xe6\xb1\xd1?\xd6]\rv\x14.\xa3\xbfFD\x98\xc0r\x9d\xc0\xbf\x80\xc6\xf7\xbf\x00\x9eD\xbf\xdb\x8f\x9b\xb0\xbf\xd4uV\xac\x8f=\x92\xbf\x00\x8aCS\xa0\x91{\xbf\xd4\x0f\x05\xf8\x07\x8a\xa6?\x98\x8d3[\xb34~?\x80\t\x00\x8a\x9e\xeex\xbf\xfe3v\xcay\xb1\xb3\xbf`|*\xc9v\x16\xa0?\xfe\x1a\xef\x92\x12r\xc7?\x03\x8f>nL,\x9d?Ndz2c\xe5\xa9\xbf\xe8\xb7\xea\x8b\xeb\xde\xb1\xbfc\xad\xe6\r\xd1\x03\xcd\xbf\xf9B\xc9\xc4\xaf\x85\xa4? \x16\xb1z\xbd\xf5\xca?\x86\x90\xb9\xdd\xcd\xf4\x99\xbf\x8e\xb1\xd5\xfc\x0eV\xc8\xbf*\xd1\x87\n\xa7\x08\x95?rGC\x16\\V\xbd?L^\x1e\x90f\xde\x95\xbf\xe4\xfb8kr\xd2\xca?k\xcc\xde!~\x00\xb8\xbf:\xf6\xc7\xc9y\x8d\xd2\xbfJwV\x8dut\xb6?O\xf6\x82\x15\x8fg\xbc?h\xc6\x83\x95p\x18\x95? O\x9f\x83\xbe!\x80?\xb8O\x81\xca\xbe\x0c\x81?\x80\xac\x8aD\xa9\xbco\xbf\xc6\rFU\x7f\xbf\x91?\x00\xf3e\xc1\xa9h\x7f\xbf(m\xcff\xda\xa6\x87?\xf8\xb84\xfe\xab\xd2\x95?`3\xffw\xbe\x05_?\x8c;\xce\xeeo"\xaa\xbfv\xeb\xa7\xbf\xe5\xcb\xa1\xbf\xfdN\x1a\xa5\xd5\x0e\x90\xbf\xc0\x83\xad2\xb2\xedu?Z2j\xa1`\xa3\xa9?\x98~\xe5\xe6\x1c\xc4\x9b?\x80\xac\xa72\x17Vh\xbf\x10|*\x92r\x8do\xbf\xc0\x1e\x06\x18kxJ?Q\x00\x8e\x9c\xcdT\xa4\xbf\x1a\x07_\xe0\xc6\t\x97?\x9e\xe1n\x83\\\xa4\xb5\xbfT\xe9\x82\xc7\x80\x0b\x85?\xa0\xf1)\xeaL\x15\xab\xbf\xf6\xd1\xf3!\x8d\xfe\xa3\xbf\x8e3i|\x02\xe1\x9b\xbf\xe8e\xfb\xe8v\x12\xa6\xbf\x8b\xfe\xaf\x17\xacB\xaf?X\x7f\xda\xb4\x8b\x1f\x8d\xbf\xb0\xa0\xb0\xf8\xe6(\xb1?\x9e\x15E\x04\xda\xf9\x91?M\xd3\xfe2\x08\x7f\x9e?\x16\xe0s\xa5\x1a\xbb\xae?\x86>\xb8\xe2KM\xa0?H\xe2\x196\xea&\xb7?\xc2\x90\xb4b\xa8yv?-\xc1\x88ER-\x8f\xbf\x9d\xc6\xa7@\xb7\xfe\xa3\xbf\x0e\xdfG\x82D\x1d\xbe\xbf\xd4e\x175\x1d\x0e\xc2\xbf\xac\x05\xaa\xa1\x00\x86\x83\xbf\xab_\xb9\xd1\xa8\xc9\xaa?16EK\x1dl\xa3?K\x9c\xe8\x96\xaa\xaa\xb2?\xd2\xfe\x80\xdd\xaea\x9c\xbf\xc0\xae\xa1"\x07y\x89\xbf6D\x97\x96\x8d\x89\xb1?\xca\xe0\xae\xab\x8e\x82\x99?\xec\xaf\x07\xa8\xc7M\xb0\xbf\xbd\x96"\xb7\xe9\x96\x99\xbfb\xa5\xf9\x1c\x84\xe6\x98\xbf\t\xbf\x14\t\xf4\xb7\x94?\x80Q\xd6\xce\xc1Z\xa8\xbf\x00\xde\x9a\x94\xe1\x9fv\xbf\x12\x98\xad\xae\x18S\xbe?v\\\x08\x15\n\x00\xac?\x8b\x04\x8d\x94\xca<\xaf\xbf\x10C\xda:\xeeQ\x96\xbf\x18jM\xb4\xd8\xbav?8\xa9@7\xd6\xc6\x8a\xbfP\xc4~\xe7\xf0\x18\x87\xbf\x96\x96\xdf\xadK\x85\xa2\xbf\x08\x83(#]\xd6p?\xf1\x8a\xf7\n\x02\xc3\x93?*\x18\xfd\x9e\xbf\xac\x85?\xf8\xcd4\xbf\x81\xc2q\xbf\xed\xee\xff\xd8!\xf3\x98\xbfD\xbe\r\xfc=\xdf\xa7?\xe4\xeb\xdf\xce\x8a\xe0\xa2?n\xd5r\t\x17\xd3\x9a\xbft\x125\xa6\xbc\x83j\xbf\xf7\xb1y\x0c\x16h\xa1\xbf\xb8\x134\tj\xe6\x91\xbf\xc4\t\x07\x8c\x0c\x99\x8a? \xce,f\xe03c?\x90\xf0\xa8\x04\x9dAd\xbfD\xabC`\xba_\x8c?\x00\xb9\xba\x80z\x1fa\xbf\xa8\xb4\r\x90\xc3\xc0\x91?\xc8\x95Ma\x81\x91\x88\xbf\xe0#%]r\x84w?\xb0i\x9b\xb5\x96\xcf\x98?\x80\x1b\x16\xc1\x9do}\xbfW\x95(\xd5\x95\x18\x88\xbf}\xafE\x1f\xfa\xe7\xae?\x00r\xc0\x8ck\xeb\x92\xbf\x95\xb3W\xda}\x1b\xc1\xbf\xb6\xad>L\xf6\x14\xb5\xbf\xc8\xe4\x96n.[v\xbf@+\xc9,nQ\xb4?\xf2V%}{t\xc2?-\x1d\xf3\xd7i\xd9\xc1?$\xb2\xd0\xe8\xee\xf0\x8f\xbf98\x15\xcf\xa9\xd4\xc4\xbf*\xed\x97\xd4\xf0\x14\xbf\xbf\x05\xec\x9bx\xd1\x95\xaf\xbf\x81n\x08\xea\x8fl\xa2?|\xa2(\x9dT\xcf\xcb?r\xecc\\eI\xbc?\xa4\xca\xa2b\xb8x\xc6\xbf.\xf8\xa5\x0er\x98\x80\xbf\x8c \xd7\xd6\x7f\xb5\x96?\xa9\x94\xf0\x87(\x19\xc6\xbf\x8d\xb4\x81\xe7?\x90\xc2?\'I\x8b\xd3\xd9Q\xc5?\n\xc4\x81\x1bw\x0e\xd1\xbf\x1b\xd6\x9dM"h\xb0\xbfd\xa0\xad\x0fg\x04\xc1?\xe6b\xb6\xc0\xb6\x89\x9b\xbfj\xb8\x0c\xf0\x81\x95\xbf?nu\xca\x0b\x81\xa9\x92\xbfJ\xfdR&n\xc1\xc9\xbf\xbd%)"L\xa0\xb5?xL\xbc\xad(\x99\x91?\x7f\xd1\xb8\x81\xcc\xd1\xab\xbf\x08:}{\xfc\xbc\xc9?p\xd7d\x17\x87j\x8c?\x9c\xfd%z|\x95\xc1\xbf\xdc\xf4!\xd6\xcc\x99\xa7?\xee\x1b\x9a\xafW\x90\x9b?@\xe1\xda#\\\n\xc7\xbf}b\xdf\xbce\x05\xbc\xbf\xda\xc32\x93\xd6\xf2\xc0?\x96\xe8\x9b=1`\xa7?;\xa0&o!*\xc3?\x18#\x9d\x1b\xf8\x91\x9f?\x02$\x977\xdeW\xca\xbf\xd4\xdb\xb3A\xe6\xe1\x94?lx\x84\xa9\xbaQ\xc6?.\xfd\xec\xb1A\x08\xb3?)@\xa1\xff\x8c\xf1\xbd\xbf\xd2\xbb\x1a\xa6\x86\xa3\xa7\xbf\xae4\xfe\x97\xb0C\xc4\xbf\xa0\xb0\xf3\xb7\xb0\xb5u?\x1e\x8f\x96\x04\x9c\x0c\xcb?\x034k\x03m\xa0\x99\xbf\xc8\x1c\xbd\x9e\xcd\xc7\xaf\xbf\x10e\xdb\xc6#\xdf\x84?\x00\xcc^\xfdK\x06\x7f?hH\x9eyw\xa3|\xbf\xa0\xfd\x99\xd8\xfa\xc0\x84\xbfF95\x87N\xe1\x94\xbf`\x95\x98\x14\xb8\x95\x87?8n\xeds\xeb\xaa\x82\xbf\xc8\xd1\x19\xb0@\xe7\x8a\xbf\xa0\x1a\x9cT1\x03L?^\xd9q\xfe\x84f\x9a?-\xce[\x10\xcc\x88\xa7?\xa0c\xb8\xb75\x82\xb2?@K\xbcu\xef\x8bk?D\x1c,\xe2\x9a$\x96\xbf\r\xfe\xd4\xa4\xf5a\xad\xbfH\xa1\xeehU\x14\x80?\x80i\xfa\xcf.\xcef?2\x0f\xb4\x13\xf2\x8c\xb2\xbfW&J{\xef\xe2\xa7?hNK\xee\x05\xa9\xb7\xbf\xbc\x1a<\x94\xc1\xbf\xc6?\xf7Y\xff-\x0bg\xa4\xbf\xeb\xc6\xa3\xdc\xda\x19\xb3?\xeeD\nY6\xea\xb0?\xee\x87\xedA\xdf\xc9\xa0\xbf\xb7\xf8\xd0q4u\xa0?\x0c0@\xf01\xaf\xc0\xbf\x96.\x1f\x8e\xc2}\xb2?n\x89\x1d\xc5\x82\xf7\xb3\xbf<\xf0\x0e\x85P8\x96?J5\xce\xef\x14t\x8e\xbf\x13\xf0\xba\xb9\xc8%\xa2\xbfN^\xc0n\x1d(\xca\xbfQe\x08{Y(\xb3\xbf\x93\xc3\xf8\xe0b\x9b\xb0?\xd9\xd6\xd0\x0bXb\xb1?l\xb3?\xf7\x0cF\xb8?\x04\x05\xf0\xe1)\x17\xa9?\x046\xf9%\xf7\xcb\xb5?|\xf9\xca\xc1\xfd\x88\x86\xbf\x90D\x9dsk\xc6\\?0(\x18\xbe\xaa7\xa8\xbf\xc9\xc1{k\x0c\\\xac\xbf\xc7\xe3\xbe\x82\xf6@\x83\xbf\xd0\x8b\xbc\x03 \x19\x8f?\xc4\xfd_>!<\x9d\xbf\x149\xd2>\xa4\x11\xa9\xbf\x88\xff\xcd\x995\x8b\x98?\xb0\xa7\xfa\x1b\xde~\x8b\xbf\x16\x8b\xa2\x986\xcb\xa5?\xa9D\xaf\x8d\xde\xc3\xb1\xbf\xc8\x88\xe4?P2\x8c\xbf\xfe\xa3N\x1d\x0f\n\x92?\xd3Q\x0f\xa9\xf3{\xa7\xbfv:\xe3\x94\xd6\xbd\xa0?\xfcf\xad\xc4\xe8\x1e\x80\xbf\x80\xb4E\xb9f\x0c\x89\xbf\xbe\xe0\x01"\xd2\x02\xab?f\xef\x95\x846$\xa4\xbfPC\xce\xe7\xea*\x9c\xbf\xe0\x08\xc5\xf4\x9b\xd4\x96?y\xd5\xe6*t\xba\x9d\xbf-A\xb1\xe0E\xce\xae\xbf \xd03\xb4X*v\xbf\xc9\xc72W;\x88\x99?\xa4\xca\xa5\xee\x07\x91\xa2?\x18|EA\xc3~\xa0\xbf\xff\xf2\xfa\xe8;\\\x9e\xbf\xb0p\xf7R\xacg\x8d?P\xc4\xdf\xf4i\xb4~?\xf8\x87\x9ej\xaaQ\xab?\\\x08\xae\xc5h\xb4\x89\xbfwmM\xa1\xb5\xd0\xa6\xbf\xc03\xba\xd8BF]\xbf^<\xae\xb2\xa5\x93\x81\xbf\x06\xd4\xba\xf6\xb7!\xa6?\x824\xee\x15\x08x\x82?\xc0(\x95Ct\xbdl?JC\r@\xe7U\xaf?P\x82,\x8d(\xd9y\xbf\xe6\n\xc4\xbd\x87g~?\x00\xdfQA\xd2\x9bw?}\xa2\xe1M\xe0\xb1\xb3?`%\xb4\xe0\xf1\xc7\x80\xbfU\x12\xa5\x02\xf9f\xa0\xbfW\x90\xbb\x7fbm\xa0??B\xd8\xa3S\x17\xad?\x1e\xf4\xf8\x91&\x93f?Z\x91\x9dA\x00\x02\x97?\xe3\x0f\x07L\xd7W\xab\xbfUk{\xcc\xe8[\xb6\xbf\xf1\x14\x88\x1f\xeb$\xa8?W 9M\xc0\x99\x8e\xbf!\xd4b\xc6C\x18\x93\xbfvM!\xcfO\x0e\xb9?Z\x7f)\xe0\xca-\x90\xbf\x89\x84\xa8\x8c\x8b\xec\xa0\xbfOnY0\xe9\xf7\x82?\x8a\x06\xf2\xcf\x84\x92\xb3\xbf\x8d\x06\xb9\xe6\xc1\x89\xb6?,\xab\xad7`Q\xb9?!\xbe\xe2\xe07\xc4\xc3\xbf!\xc3\x14\xf6D\xf5\xa7\xbf\xc2t\xf2\xddns\xbb?\xabc\xe1V\xc1\xf4\xb8\xbf\x16>\xb0\x0c\xc5-\xbf\xbf\x94\x1a\x95I/f\xce?\xb9\x99\x8d\x83\xcb)\xc6?\xcbt\xc8cq\x0c\xc4\xbf\xc3f\xcbb`\x88\x85?\x13\r_N\xd0(\xbc\xbf\xa9\xc8yJ\xdf\x96\xda\xbf\xb7\xd7s\xd2\xd9X\xc9?\'\x0b5\x95%\xc4\xe1?\x80U\xa2s\xe3\x8di\xbf@H\x1d\x02\xd4 \xce\xbf\x0fm}>dh\xb3\xbf\xf6\x07\xf5j\x04~\x9e\xbf\x8c\xbeL+\xe0\xa4\xad\xbf\xb6\xbc\xce\xf4\r\x8c\xbf?\xe2\xef]\x10\tc\xb4?\xd2\x1f\x16\xa0\x84\xdc\xb5\xbf@\x16\xdf%\xc95x\xbf \x18\xf7\x96\xba\xd2\x81?\x00\xdd\xd49\x0bs\xa4\xbf\x80\xc9K\xf0R\xcca\xbf(Xh\xfc\xc1W\x97?X\xd1\xd9?z\xec\x98\xbf\xefs\x880\xe2\x8c\xb0\xbf\x19\xb42s\xd2\xd4\xb9?\x14\xfe\x1eL\xb4<\xa4?\xe7\x05\xe2\x11\xe2\xdb\xa3\xbf\x0c1\xa0\xbf(\xd9\x82\xad\xd1.V?\xf6z\xc31\xd3\xd9\xc1\xbf\xe6\xd8\xa5\xb5\xf6\xfc\xa6?\x96H3F!/\xac?\x90n\xbbF\\\xd5\x83?\x80sz\x9ct0B?6C?\xc0\xb2\xca\x9a?\xb0\x9f\xe4\x8a\'\xc6\xa4?0Rty\xde\xf4g\xbfT\x95\xd2W\x1f.\xa9?\xd2\x1e\xf9B\'G\xb0\xbf\x00\x88\x1f\x17\xe3\x15p?b\x99O2\xec\xcd\xa1?\x85\xa5cA:\xf3\xa7\xbf\xcb\xb7\x9f\xb9\xe0\xe3\xa5?\xbc#\x83;\x08=\xbd?\x9a=rt\xa4\xb3\x95?\x95>\xc8\\\xad\xe6\xb3\xbf4`\xaa6\xc8!\x97\xbf\x0eB\xaf\x15]\xf4\xa3\xbf\x80d\x9a\xee\xeee\x8c\xbf\x8c\xfbz\x16OB\xaf?\xfb\x92t#>\xcc\xb3?\xd8\xfc\xbb\xfcN\x9d\xae\xbf4\xfb\x8b[9\xea\x99\xbfT\xc9N\xba\xff\r\x87?\x0c\xd8\xb2\x02\xeaB\xa7\xbf\xd74\x8dD\xf5\xa6\xa2\xbf\x8e\xdbK!\x0be\x9a\xbf)d\xcf\x91\xb3\xc8\xa1?\x98\x95tu\xc6\x93\xa2?\xc0\x13\x9c>w\xd3x\xbf\xc8H\x1dT\xc1\xec\xa1\xbf\x04\x88\xa5\x04\xc0\x87\x86?\x06\xc0d\xa5\xaa\xcf\x84?\xf8\x14u\x96\xed\xa0\x8e\xbf\x00\xbb\x91m\x1e\x076? \x13\xfef\\\x85\x88?\xe0\xe2\xc6*\t\xdau\xbf|\x14\xaa\xe4M\xc0\xa3\xbf\xa0\xbcC\xae\xdc\x99\x95\xbf\xeb%So\xab|\x92?0F\x97]\x85\xfe\x9c?\xef\xad\xb8tu\xa8\x95?\xc8\xab(.\x9c\xad\x86\xbfZw\xa9".\xea\xa1\xbf\x1c\xe5\\\x162\xe7\x8b?\xe8\xbd\xe4{\xfb*\x9a?\x00{X\xa4\xf9_|\xbf\xe4A\xf87}g\x9f\xbf\xc0\t\xed\x12i\x87\x8b?Ha^\xc4\xb5\xfe\x95?p\xdb\xd5\x01\x9cor?8\x07R\x93p\x98h?\x00\xf0\xc8\x8c\x83\xe1 \xbf\xc4\x8d\xdc\xc2|\x80\x97?\xb8\x0b\xae\xc0\x01vh\xbfbM\x11)\xcf|\xa1\xbf\x1c\'\x7f\xdb\x88I{?\xc9\xea\xbd3\xe6{\x8f?\xbar\x8f\xeb\xeb\xca\xb0?\x0b\x7f\xb8\xb2+\x0b\xae\xbf5\xf8\x88\x1dI\xd7\xc0\xbfK.j_4C\xba?\xbf\x87D\xbf\x98\xef\xa8?d\xad\xae}\xd4\xf4\x90\xbf*\xe0\xc0\x8d\x11[\xad?\xe3\xb9\xdc\xae\xb8t\xa9\xbf\x14\n\xf7\xad\x8e\xd9\xa6\xbfF\xc9\x7f\x0e(\xb0U?\xbao\x0c\xae\x16\xd0\x9a\xbf6\xc9\xffw\xff1\x96?\xcf\x96\xcdS\xfe\x06\x9e?88\x1aAD\x81j?\xff#\xdc\xa5U\xa7\xa8?3\xb8\xc2\x11?\x16\x9e\xbf!c\xad\x06\xc7d\xc1\xbf(F\x86V\x967\xa7?\xcf7\xaagJ\xaa\xc0?\xd8\xc20\xdd \x1df\xbf |h\xc7\xf3\xdd\xab\xbf\x90\x9c\n\xa6\xd52\xb2\xbfb\x90\x91\xca6h\xa5\xbf\xb5\xc0[\xaa\x8e}\xac?\xbcz\xdc\xab\xebM\xb7?m\x18\x85\xff \xf6\xa5?\x8a-\xb6T\x972\xb1\xbf^jb\xfc)>\xb9\xbf\xbb\x07I/\xfev\x9b? 3\xc4\x86\xcab\x94?\xb6\x97\xe1\x11\x0e\x97\x97?\x02\xf9\xf8#\x9d\xe0\xb2?\xa2\xb2\xdc^\xb8>\x95\xbf\x00W\xb0\xefr\xcd\xaa\xbf\x00\x8c\xc9\xeaCLM?\xa2K\x8a\x90\xa7w\xa5\xbf:\x83@pd\xbe\x97?\xf8o\x93Z\xac\x82\x87\xbf\xd4\x17\xc7BX\x80\xa0?\xca\xbe\x1d\x04\xed\xbf\xa5?$\x8c\xca\xb3\xb59\xb1\xbf;\xd9\x15(A\xd1\xb1?\x18p\'\xad\xfd\x81\x97?2E\xd8\xda\x1b\x02\xb2\xbf\x80_M[\x8c\rC\xbfT\xe2,_\xefC`\xbf\xee\x83\xf8A16\xaa\xbf\xa98\xbb\x97\xee(\xa2\xbf4\x80oK\x03T\xba?\xaa\x94\xd5\xc9\x81\x1f\x88?\xdeo;f\xb0\x1e\xb3\xbf\n\xfc\xd0\x7f\xd8\xe0\xb0?\xf0\x8b\xc1\xf5V\xd8w?%\xc3\xbc\xd0\xc1\xcf\xa5\xbfx\xdc\xef"\xf8\xbc\x92\xbf)\xd7\xba\x11R\xed\x80?\x00D@\x80\xc2R-?\xc3%c\x1bql\x85?n\xf4oP\xeb\xe0\x92?,\xd4\xd7\xc9\x80"g?]V\x0c\x19\x19\xfb\x90\xbfz\xa9|\xa1\x95\xf6\x8e\xbf\ns\xa6\xf6U:\xb2?\xa0\x06\x9f\xf8\x81\xdav\xbf\x0fo\xf0\xdc\xf3!\xa8\xbf\x02\xc8\xa7<\xb8\x03\x80\xbf\xcdX`.\xfa+\xb5\xbfs|\xf2:\xd6\x07\x90?\x1cz\x951x2\x7f\xbf\xb6\x8f\tD=@\x8a\xbf\xf4\x18\xe8m\xf9~\xb5?2|W\xa3\xb4Bt?\xd7e!\x94\xf2<\x82\xbfY\xd0\xc7;\xa6\xbb\xbc?^\xd1\xc4\xae\xaa\x17\xa4\xbfW\xee\x86]\xe1_\xc2\xbfh\xee\xb5\x95\x85\xe1\x90\xbf\xbc\xb0\x99\x93\xe33\xbc\xbf\x8c\\n\x89l\xa0h?\x84\xcadwo}\xcc?\xf1\x84\xea/\xd9\xf3\xa1?\xa5E\x9ch\xe9D\x99\xbfB\xe7\xa3\xa2\xc9\x1d\x8e?\xb4\x7fZ*-\x89\xa3\xbf\xe3\xa8\xca\x88\xbb\x04\x97\xbf\xe6u \x8d\x93\xe5\xc3?(\x99\xfd\xbb\x94\xd0\xb0?\x14\xa3\x00\xc6\x19.\xbb\xbfX\xfa#\xd8(\x8bg\xbf\x161C\xe8\x10)\xc2\xbf2=\x1f\xb6\x9eTq\xbf\xc4~D\xb7\xd4\xb2\x9a?\x94\xb5\xe7\x8d\xf5\xe6\x99\xbf\xe87\xc6b\xf1\x0ez?\xd4\xb4f\x168\xa8x?f\x96sgX"\xb1?\rr\xa0\x96\xf5\x83\xc0?\xa0\x9c\xe6`5]\\\xbf\x85\xeaHF"\xdf\xdb\xbf\x88\xa8\xd42\xd1E\x98?=m\xa0\x17\'C\xcb?v\x99\x8a\xe1\xd56\x9f?\xb0\x0eT \x9f\x07\xce?Lh\xc6\xdc_w\x9f\xbf@\x8bD=\x96\xb7\xca?p\xb5X!a\xa5W\xbfK\xf11 \xa7^\xdc\xbf\x8e\xd1\x14\xaf\xba\x18\xab\xbf\x9aTC\xd2nZ\xbf?\xf4\xb0\x08\x1a\xdb\xc1\xc0?\xef\xfb\xf8\xca\xca\xc8\xaa\xbf\xe47\xb1\xd0\x99\xc1\xa1?\x88Y\x89\xe5\xfb\n\xa9?p\xab\x11\xf6o\xbb`\xbfw\x15\xaa\x93H\x17\xa2?\xbb\x96Z+\xcd\xa7\xa9\xbfK/?V\xde\xdc\x87?\x13mNJ\x83\xb5\x9f?\xe8\xa67A\xfc\x9c\x9d\xbf\x00\x10\xf7\x18{zQ\xbf9\xa2\xcf9|\x90\x96?<\x13\x0f\xca)Z\x83\xbf\xbcj\xcaY\x9b\xbf\xa4\xbf\xb9\xa5\xfcy\xd7O\xb0?\x04\xbc\xfc\xed<\x9b\x95?\xdc\t\xa8\xe4\x01\t\x90\xbf\xee0\x94\xe6tB\xa4\xbf\xc86\xb5\xd5\xe5\x98\xa1?\xc4coxZ\x84\xb0?\x98\xc26\xb0\xdf,\xb9\xbfP\xc7`D_\xde\xa2\xbf\xbc\xd7fh\xb0\xc6\x96\xbf\xc0\x90\x83H\'\x9fu?^]a\xb8\xf3L\xb1\xbf\xc4\'w\t\\\x83\xa3\xbf@\x7f%J-\rv?J\xce|\xe4U\xdb\x95\xbf BD\xf5\x99\x8f]?\x92\x98\x02\x182P\xac?y\x1d^\xd0Z\x8d\x96?\x9a\xa6\xd9h{\xd0\x9a\xbf\xc6\xb7\xd6\x8fu\'\xa3\xbf\xd7\xca\x90\x1c\x022\x9b\xbf\xeb\xe3\xe3)\xa1\xd7i\xbf\xd7\xe7\xe3\xdf\xa5%\x91?|\xaa\xa1\xa92\xa3\xb3?ppN(\x0c\x98\xb3?/@\x91XpK\xb8\xbf%\xdc\xf8\xbb`t\xc2\xbf\xb0U\x80n\x8b\xda\x96?\x86\xff\x82\xfbR^\xb1?\xb4\xb5\xc74\xb4\xb0\xbf?\xecyI4^J\xc3?u\x94\xa6z\xe9\xce\xca\xbfd@\xcdr)^\xd1\xbf\x01>\xa7\xc2\xc4y\xc1?4x_\x11\x17\xb7\xc2?\xbe\r\xc9v\x02\xc4\xb0\xbf\x1b\xd4\x0c\x12\xcb\xd8\xbc?RNS\xees\xde\xa6?\x9d\x99\x88\x0e\x16\t\xd6\xbfTX\xeb(\xd1\xfe\x94\xbf\xa3\x0bAA\xd7x\xd3?\xe8\xcb\x18\xa3?i}?]\x19\x077\xfap\xb2\xbf\xe5\n\xee\xf2_G\xa1?\n\xee\xe8Wt\r\xaf\xbf\xd4\x16\xe5= \x10\xaf\xbf0\x10\x06\x17\x18\xbd\xa3?>\x08:\t`\xaf\x96?\x90\x8064)\'\x9e\xbfn\xa5\x1e\x13\xc0\xb5\xa5\xbf\x98U\xe6,M.\xbe?n{d:\xba\x03\xc7?_\xc4zB\x1d\x02\xc7\xbf\x0c\xc6?\x9c\xb9\xce\xf9"\xb4\xc4\xbf\x8b\xf8\x83Pr\x96\x99?V\xa3p\x119\x94\x9a?\xd1\x9aje\xb3\x93\xcb\xbf\x10m\xff\xae\x9e\xbb\xa5?\xbd\x97\x0c\xef\xcd\xa6\xbb?\x00\x92t\xba\xdd\x9c4\xbf\xc0\xf6\xf6\x939\xaf\x86\xbf@\x9b\xf2\x94\xf4\x9a]?\xc2_\xc6\xfa4\x00\x84?c\x1b\xf6\x99\x08\xa7\xa2\xbf\x00@\x9ce?u\xf6>\x1e\x99h\x0f\x9d\xb0\xa1?\xc8\xb4\xa0\x81c\xcdU\xbf\xc1+!\xe9R\xb9\xa8?B\x86\xaa\x0b(\x18\x8e\xbf\xf9V\xf3\x01\x06\xa9\x9e\xbf\x80A*\xb3\xe2\x8db?4\xa8%Lj7\x99\xbf\xe6y\x82v\x84\xfe\x9f?\xa3\xac\xd2\x1a6)\xaa\xbfD$\x0bF|\xcaZ?8\xbb\x82y\x9fB\xac?\x88\xc6\xc8pO\x88\x8c\xbf\xb2u\x82B\xa7\xc9\xa0\xbf\xd6\xa8\xe1\n\x19\xfd\xb0\xbf\xef\xf9\x01\x17\xa9\x07\x84?cnk\x07\x11>\xa3?\x80\xb4\xd9u\xca\xb6\x88?6\xc1\x14f~\xe4\x96?\xd4d\xf6\xdf\xc7\x86\x83\xbf0aKokG\xb5\xbf \x95>\xd8\x16\xc3Z\xbf\x10\xf5\xbd8\x9b\x05\x87?\x99:l\xcd\x87~\x9e?4\xe9n\x01\xe6\x9a\xa7?\x10`\xf1\x9b\xbf&~\xbf\xacp\xd3\xd2\xd6\x8d\xaf\xbfX`\x8fj\x84\xc8Y\xbf\x9a\x07\xd5\x02 \x80\xaf?\x8a\x16\x17\xf5\xdf\x17\x99\xbf\xbf\xa0\'\xf8\xab\xb9\x91?\x9e\xb7l\xd4G\xe4B\xbf\xe8\xaa\xf4\xb6aw\xa9?\x1cH~\x14<\xc1{\xbf\xf9\xd6\xfe\x90{4\xa8\xbf;\x1f\xee\x95\x07\x9e\x85?\xda\xd8\xf8\xa0@S\x89\xbf\xf5\'9^w\xe6\xa9?\xc0H-0,\xef\xb6\xbf\xf5\xd2?S\x1c8\xc9\xbf\x8ez\x82\xfeZ\xec\x81?\x8e+\xfc\xb5pl\xb9?\xdaQ\xaf\x1e;\xa1\xa2?C[\xb0.\x05\x98\xbf?\xd2\xfa",\xd0\xff\x98\xbf\x8e\x99\x9a\xf8\x1a\xda\xb9?\xa6tz\xf2N\xc8\x94?\xa0\xb8s\xa7\x1e\x19\xc9\xbf\x10\x11<\x03\x18\xbf\x94\xbf-\xaf\xe5Z\xe9\xd6\xc0?\x00=\xbb\x0f;;)\xbf\x00\x01\xe3$\xec\xc63\xbf\x80d\x13\x89Mxx\xbf\x84{\xc3`E!\x88\xbf\xee\x1e\xce\xcb\x94\xca\x84\xbf\x9e\x87\xf6\x11}v\x97?\xfcQ\xef\xd9I\xaa\x84?\x01\x16|\x93\xa7H\xa9?7u\xa7?k\x9c\xa5?\xac!\x98\xc4bH\x9e\xbf\x987\xca\xb4\x19\xeb\xa2\xbf\x88\xcc-\x8a\x0c\xd8\x7f?\x8ef\xcc<\xf8G\xb9?z\xf8\xb0\x1b\xd5T\xa0\xbf\xe6\xef\x82\xfc%\xacy\xbf\t\xb1\x8c]p\x9f\x9b?Z\x8f-\xa6\xe0I\xa9\xbfR\x01\x9d\xbafq\xa6\xbf\x1c}\xa1&E\x9e\x96?`J\xf9\x9a\x81\xde\xad\xbf\xf9V\x1c\x00\xe3\xab\x81?Zu\x15\x8aXF\xa3\xbf{45\xb3s \x83?\xb88\xdeU\xf3\xcc\x80?$d\x9e\xc8\x8b\x13\x9f\xbf\x14\xa0Mo\x05:\x8d\xbf\x8d\x15\xb3uzz\x92?\x7f\xc8\xfc\x9a\xcc\x06\x9b?\xfa\xfc\xca\xd6\xa9\xday\xbf\x7f@\xc7|cq\xa1\xbf \x9e)\xa2A^n\xbf\xe6\xca|l\xa5\xfd\x80\xbf\x8e\xb6\x9e\x81\xce5\x9c?\xd7b\x8f\xe5e\xd7\xaa?1wu\x01!L\x8d?|\xa7\xa1P\xc5\xe7\xb4\xbf\x03\x93\x00\xaa"\xf8\xae\xbf\x0c"P:}\x87\xab?\xe9\x86\xe1Dh\'\xb3?\x1a\xac\x07\x16\x13\\\x8b?\xb0\x90b\x8f\x01j\x8c\xbf\xc4\xa7\xa9t\xda\xa8\x9c\xbfk\x83\xc3J\xe5\xad\xaa\xbfj\x82\xb5\xc1\xbd\xfe\xab\xbf\xd0\xc7\xea\xa0\x06\x0b\xb5?\xc2\x0cc\xd6\xb7\t\xbe?\xf6\xac\x17\x98\xd7\x92\xb3\xbf\x83\xea\xd9\xd6\xe0t\xb5\xbf\x0f\xb9\xb7j\xfd\xcb\x81?\x1b|\xd0\xc4\x9f2\x87\xbf\xadb\xfd~a\x96\xb2?D\x80L|\xdd|\xb9?\'\xda\x8f\x9d|\xe6\xb1\xbf\x16D8J\t\xd0\xa3\xbf\x08\xf6e\xc9\xb8\xe8\x96\xbf\xf9\x82\x19\xd0\x8d\xb7\xbd\xbfs\xf4Oqj\n\xb2?\xb1\x87\xa60\x06\x8d\xc4?#O>\xf6\xb5"\x99??tb\xc7\x89\xca\xb1\xbf\xb9Fz\xac\xce\x86\xac\xbfZ\xc6X+\xac3\xa6\xbfR\xac\x85\xb1\xfa\xea\xb9?G\xd7\xceV\xc6\xb0\x95?8\xe5s\x9d\x9c\x9e\xb9\xbf\x11V\xab\xe8\x8c\xc7\xa3\xbf\xb0\x01W7\xeb\xf8\xa3\xbf?\xca\xa7\xafo\x06\x96\xbf\x11\xe8\xfd\xa9\xad\xf6\xa3?fJ_\xfc\x8b\x0e\xb0?\xca\x8eW\x06\xa3n\x9c?\xfb3\x10Y \xdb\xaa\xbf\xf2G\x05\xb9\xf3s\xad?\xdf\xc4\x8e\xee\\\x00\xa7?\xe0\x80\x9c\x1d\xe1ot?\xba\xec\x1fB\x05_\x92\xbfW\x850k\x95\xef\xb1\xbf\xe0\xd1\xd6@:]T\xbf\x88-\xabv_\x00\xad\xbf\xacLU\xa7\xb5\xf9\xa7?w\xa8\x0e\x9aB.\xb3?H\xd5\x05\xb1\xea\r\x8d\xbf\x0cT\x17#\xb1\xe2\x89?\xa0&\x02\x91\x8c\xbcs?l\xb2-1x\xf9\x96\xbf\x01gdZy\x00\x9b?\xb0\xd4\xad\xe5\xf1\xcd\x8e\xbfxJ\xac\xed\x92w\x99\xbf\xfa\xa6\x84\x8d\xc9\xf7\x89?\x00\xbe]\x14\xffP\xaa?\x05&x\xe7~e\xb2?\xbcPV\x15T\xc7\xb1?\x03\x11\xddF~\x97x\xbfl=L\x1d\xc2\xce\xae\xbf\x8b\xa1\xaevza\xbf\xbf\x00\x0f1\xaf\xc8i7?@H\xf9\xa8$\xd4\x17?\xca\xce\xe6B`v\xab\xbf\xe7\xbemTt\xe7\xb1?8%n\xa7\xc0\xaa\xc1?\xdc\xe9n\xa0\xc8\xcd\xd1\xbf\\W\x95x?\xfd\x83?p\x7f$\xd9qU\xcc?#\xa9\x84i&\xb8\x85\xbf\x9d46v\xa6:\xd7?p\x16\xb3\xe4\xac\x00\xc0\xbf9\xf7\x96\xfd{[\xdc\xbf\xec\x82}\xa6\x9a\xd4\x84\xbf\xae\xfe\x1e\xfc\xfeg\xab?\xc1\x83\x14\xf9\x8c\x8d\x8e?\xfc\xa6\x1c\x8b\xad0\xa3?\x93\xc2ioh\xe0\x9b?(jb\x07\x83\x99\xc7\xbf\x04>\x9d8\x9b\xca\x8f?@b\x1f\xb1\x89D\x9e\xbf\xc8\x1c\r\x89$\xa2s\xbf\x00ZI\x10\x87\x1f\xb6?\x98\x08:\x8c\xe7\xd5\x93\xbf\xb0\xe6N\xf7\xd9\x97\xab\xbf\xa6\xaa\xb4\x13\x155\xa6\xbf\x9a\xbc0j\x82r\xbe?6\x94\xc4\xbb\xb5\xdf\x83?\xe0&RZq\x99\xa9?\x1d\xd9f3|5\xbc?\xacT\xbc\xf9G\xd7\x87\xbf\x0b\xe5\xba\xdd\xa1\r\xd2\xbf\xe1Y\x1d\xb2\xaa\xd2\x8a?\x93\xfe\x92\xfa\x18\x8a\xa1?@\xa4\xa5\x91S\xa4\xb1\xbf\xeapY\xc4\xd1\x03\xba?\x16\xd77\xb9w\x9a\xb5? \xa2\x82\x12Dj\xbd?\xbe\xd5\x88.\x84\xeb\xa0\xbfZ\rah\x0cL\xa2\xbf\x1e\x9e\xc1%":\x99?\xda\x7f2/\xcc\xa4\x9a\xbf\xd0\x91\xf71\xc8b\x96?\xa8\xfb33\xfc\x1b\xa7\xbf;\xb1C\xfbQ\xde\xa6\xbf$\x080s.\x8c\xa8?`t\xa451\x97\x9e\xbf\xc9\xa3\xaf\xbe\xea\xd6\x80?\xae\'wG\xdcB\xab?<\x9d\xbf?W\xcb\xaa\xbf \x00o9I\n\xab\xbfq|\xc5\xf8P0\xb0?~\x07)\xb8"\x81\x8f\xbf\x00zV\xc5\xb12\x18?\xb0\x9dg\xbbS\xf3R?\xb3\xb3\x9e\x83\x04\xcd\xb4\xbfpa N\xebZ\x99\xbf8G\xe0\xa2\xeb\xe9r?\xd3X\x7fHj\xb9\xb5?}\xf1J\xb7\x19$\xaa?z\x95\x9b\x07\xa7\xcd\xba\xbf\x9e\x83\x92\xec\xf3\x93\x88?\\\xb4\x06b\x83\xe1\x8f\xbf/V\xd8\x83.M\xa0?\x0c\xff\x1e\x83%\xc7}\xbfa]F\xd1\x8f\xe8\x81\xbf\xe0\xaf\xc3+\xeeI\xc1?\r\x0b\xeb\xd3\x8e|\xa8\xbf\x1a\x896\xda\x1c\xbdy\xbf\x8c\xbd(!\x82\x9b\x88\xbf\xa5G\xe4\x11G7\xb5?+%M\xa5\xbd\t\x82\xbf\x8b?\xf8\xae>\xa3\xbc\xbf\xa39\xc3\xeeE\x1b\x9a?\x81\xc9\xf7\xcf+\x98\x91\xbf\xa6:\x01\xa0 {\xa1\xbfhA\x96\x15\x84]\xc0?\x1du\xaf\xd0\r\x85\xb4?-u\xfb\x9c-O\xb9\xbfw\xf3\xc7[\xa1N\xac\xbf\xe3\xad\x7f9\xd3\x0b\x8e?\xd3(\x03\xcd\xb2\xad\xa1\xbf_W&{\xdc\xb1P?\x1d\xa7,\xe7{\x9a\xbb?Pe=\xdfZ\x83\xa2?\x13\xc8i\xc6\x16\x92\xb7\xbfH&|\x80;\xd5\xb4\xbf\xaa\xe5\xab\xe9 ns\xbf\xf9\x05\xa4?\xbb?\xb3?@&\xfc\x08e\xad\xb4?\xa0\x94\xbb\xe1\xa2.\x96\xbf\xc0+}\xeb\xc7\xde\xb4\xbf|\xb6\x13\x0c\x18\xa6\x9f\xbf@\xa7\xfc$i4\x84?e\xd92\x82\x08U\xaf?\x8f\x9b\xc0\x04\xdb&\x96?\xb6\r2?\xc2\xa7\xa5\xbf\xa0!\x01\xe3dRe\xbf\x8e)\x0e=\xd1\x95\x98\xbf8\x9c\xd8)\x15\xacd?\xf7A\xc9\xa7$+\xa5?\xf0\xe5bU!\xa4\x8a\xbf\x16\xe9\x02\xc7\xf7\xcf\x96\xbf \x10\xfbq\xec#\x87?\xd8\x0c\xee{~nA\xbfCB.\x9d\xb6`\xa8?]\xb3\xff\x81\xfa\x0f\xa1?\x9d)9\x8a\x01:\xc1\xbfP\xfb\x1dd~%d?O1\x14T\xee\x9c\xb8?\xf2\xfb\r\xdf\xf5e\x9f\xbf\x13!\xc2\xdfr;\x90\xbf\x91(\x03\xa6\x02V\x94?\x80\xa2\x05\x95Zp\x9b?\x1bb\nn\xd8W\x99\xbf\t\xd2\x10f\xb5\xe9\xa2?1`\xa0h\\\x91\x97?\x8c\xea\x1f\xbc\xb14\xc0\xbf\xee\x96_\xa8\x1e\xba\x88?\xa9\xd1X\xe9\x8e\xc4\xb1?i\x90\xe1Knm\x95\xbf\xf1\xab\xa4\xe4L\xd9\x95\xbf\x8fb\xc8O]h\x90\xbfL\x14g\xe6@ \x8a\xbfDc\xf5m\x9b\x1c\x99?\x00\x94o[\x9a\xa5^?\x80\x17w\xa4\xeaI6\xbf\x84-\xd3B\xde\xde\xa4?\x80\x17\x02\'\xbd!@\xbfI`\xde\x81\xf7#\x9d\xbf\x00\x90\xe8\xf8\xf8B\xf6>\xfb\xecVZ41\xac\xbf\x1a{*#\xf0\x87\xb5\xbf\xd5\x97\x8e\nXQ\x90?\x83\xb68\x18\xc1\xe6\x96?\x06V\xd8\xc1\x86I\x99\xbf\x88\x81oVL\x0e\xb8?:\x8d@\xa8/\x8b\x9d?\xe8g\x0b.2\x03\x84\xbf\xcb\x82\xe3S\xf8\xa9\xa4?TJX\xf5/\xdd\xa7\xbf,\x80\xc7\xbbY\x16\xc9?\xe2D7\xf9V\xb8\xb0\xbf\x89s\xc7\xf8\xf0\x90\xa8\xbf\x04\x15\xbe/h\xc7\xa3\xbf\xdcL\xa8\xcc\xbb\xebQ? \xde\r5"\xe6\xd1?\xfb\x985P\xdd,\xb0\xbfN\x03\xaff4\xb4\xb6\xbf\xd8\x06\xbam\x11\xb8\x9a\xbf\xab\xffE\x8aJ\x9a\x97?\xe7\xfeW@i\x86\xb1\xbfv\xccH\xc70\xf2\xc0\xbf>\xa9\xeaB\xe5\x83\xb5\xbfw\xd2\x02\x02j\xee\xd7?l\x1b \x1f\x18v\x8e\xbf\xed3Y6?\x18\xdf\xbf3\xef[.3\xb6\x9c?\xe2\xefB\xcc\xc6\xaf\xcb\xbf\x90\xd2^\xb5\xd7\xb1\xc9?X\xc3m$\xf1l\xcd?\x91\xd39\x00\x9d\xf4\xac\xbfK\xcb+e|\xa2\xc0?KQ\x86\xa1\xf3\xf1\xa8\xbf\xb0\xb7\xc4Z \x80q?`\xf9\'F\x97\xb7\xb8\xbf<\x8e\xd9\xf6\x89\xaf\x82?=\xcd\xb4i\xd9\xc0\xba?\x06p\x0e5\xf42\xa2?rL>!R\x17\xaa?jzJ/\x15t\xa1\xbf%\xd9\x1fi<\xbf\x96\xbf\x87A\x05<\xd9\xf6\xa4\xbf\x02\x0fn\x9a\xd4|\xa1\xbf\x90\xe9A\x9bW\xb4W?P}`\xdb\xab\xe9\x81\xbf\x00\xa8\xa7bNO\x1b?\x13\x06\xa3W\xcd$\xb5\xbf\x11\x14:\x95\xb2\xaf\xac\xbft=\xca\xb3\xfa\xf2i\xbf\xba\xc5\xf8\x185\x7f\x8d?\x00\x07\x96\xd2B;\x85?\xf3\x06\xfe\xa4\xbfL\xa5?\x1c\x8e\x01\xdbBt\x91?MnR\x90\xe9J\xad\xbf4\x7fk\xe2\xd4v\x85?l\xc6\x87N[\xb4\xad\xbf^\xcbz\xba\x91\xa8\x9e\xbf\xa3\x8f\xf6\x17\xf9^\xa1?Q\x16\xb6\xf3\xf8\xcb\xa8?[\xf1TA(?\x9e\xbf\xaf\x07\xec\xa6mE\x9f?v\x809\xb7\xba\x1f\xb2?Pc&\xda\xcb\xa3\xb5\xbf\xc0\x19\xa4\xd5\xd1zP\xbf\x80\xe1\x0b\xf6\xbaC\x91\xbf\xe8\xdf\x90\xa0\xc6C}\xbf\xb4\x07\x95\x97\x98o\xc0?\x8f\xbc@\r\xec\x99\xac?\x08\x0c\xb5f\x0f\xb1\x89\xbf\xc7\x99H\xf7N\x11\x94?\x14\xc9j\x0b0D\xaa\xbf\x13\xf5+\xbeP\x83\x91\xbf\x1epN\xc0zZ\xa4?\x14V\xd7\x18\x0c@\x92?8:\x05\xb1\xfd\x7f\xa6\xbf\x95$\xf4\\\xb5\x90\x8a?\x82\x7fY\xa8\xfe\n\xba?\x13\xc5\xac\x89]\xacm?\x06\xb3x\xad}\xe4\xae\xbf\x1a\xa3xJ\x8b?\x94\xbfH\xc9\x865\xc4\xe8\xab\xbf\x18\xb2\xbbC\x12"\xa4\xbf\x9c\xbc\xe4\x97K\xbc\xa4?$\x1a\xa6\xa8\xd9\xf7\xb8?\n\x87\\\xdb\x07\x9e\xb7?\x7f(\xf8\x87\x1d\\\xb0\xbf\x1a,\x8d\x96\xc3\x82\xc3\xbf\x9d\x98\x16l\x82w\x92\xbf\xfc!\xd3\xbb\x80\xc1\xbb?R\x8d[\xafEi\xb1?8LX\x0fu\xbe\xb8?z\xc9\x085s\xa8\xae\xbf8\xc6\x18\x1c\x1d\x02\xce\xbf\xffg"I\x80\x7f\x91?M\x1fO\x8f\xce\x1a\xc0?j\x1b\x87.\x8e+\xa1\xbf\xdc\xb8\x01\xee\xde\xa8\xb5?\xc9\xf1o\xc3\x08\xbc\xa7?\x81t\xa6\xc0\xec-\xcc\xbf\x0e\x82\xc0On\xdc\x9f\xbf\x8c\xc2\x05-\x1f\xd0\xc8? \x1a\xaa\x05}t`?\xaa\xd1hkf\x00\xc1\xbf@\xa5\x94\x05_\xa4\xb1?\x80l\xec\xa05\x0e\xb5?\xca\x0f\xa4\x1d>I\xc0\xbf\xb8\xc4p\x9dik\x9e\xbf\xe9\t=KF_\xb1?\xe8`"\x02\xaf\x18\x97?\xfaL\x19.\x08%\xbb?\xbd+\n\xa6?\xce\xc2\xbf\xff\x00\xeb\xe3\x18b\xcb\xbf\x9fT:\x02u\x15\xcc?^*\xad>e|\x9d?\x9ce1)\xd6:\xaf\xbft\xa5=8\xc78\xc9?\xf4\xbd\xa4-v&\xab\xbf\x8a\xdeB7\xe70\xbe\xbf\xe2\xd7\xd9p\xec\xbc\xa7?\'\xb6\xf8y\x9bv\xc5?\xdf\xca\xa7\xd6\xe4\x8c\xc7\xbf\x00\x02Q\x84AD\xce\xbf\x1c\xe07\x12\xa7\x84\xce?\xd9\xd0\x90p\xe0\xd7\xb2\xbf\xd0\xbcl\xc1\x05-\xb3\xbf"\x82\xdb$K\xc7\xd0?\x98l\xa8A\xf9 \x99\xbf\xba\x91\xa9\xe1m\xbc\xba\xbfh(\x96d*gm\xbf\xa5X\xf96g\x9a\x98\xbfy\xf6\x81}Y0\x90?\xd2Y\x90\x9bt\x88i\xbf_\xa2\xa5\xef\x92n\x8a\xbf\xd4\xe4Y\x10\x96\xb8\x87?D\xa9\x02\xf1\xab\xa8\x82?\x00\x9cj\x896O\x8b?\xadNN\xea\x8b2\xa3?\xec\xf6\xefO\xb0\xdb\x9b\xbf\x80\xe9A\xf0\xe1\xc6\x95\xbfv\xad\x85\x85m\x87\x8c?\xc4^]\x866U\xa6?\x92\x138F\x07v\xa0?\xac\xddB\x9b\x05\xf8\xa8\xbf\xbcc\x17\x01\xbb1\x82?\x94\xaag\r\xdd\xcf\x95\xbf.\x08\x18\xf3V\x91\x9b\xbf\x18\x07(\xc9\x16\xa7z\xbf\x1f\x90q\xfc\x84b\xa2?\x1e\xb8A\xe0/\xf5\x99\xbf\x00\xda\x1c\x12B~8\xbf\xee\xdd\xeb|h\xe4\xa0?\xca\xa41y\x83\x80\xb7?\xe0\xa3\xcb\xf3N\x93\x8d?Sml|FV\xb4\xbfp\xac\xcfT\xf1\xbf\x8a?\xc8.\x83\xb0\x1b-\x9c? X\xc0\xdd\xe0\xf4\x80\xbf9\xb2F)U\x17\xb2\xbfP\xf7\xd8y\x15\xf2\xb1\xbf\xb5y~\xd9]\x82\xba?\x90e#\xc0y\xca\xa3?9\x8a\xe2\x86\x937\xc4\xbf\xd4\xd9\xd6\xea\xfd,\xa8\xbf@T\x04M\xf0\xcfT?\xd47A\xffO\xbd\xb5?\xe2\xad\x8e\xcd\xee\x05\xa5?`\xf5\xa8\x8f`\x0c\\?\xb5%\xe6\xd9\x96\xf8\xb0?4\x01\xd5\x071&\x82\xbfL?\x11sr\x0e\xb1\xbf\xb234S\x0bb\xc4?\x85>h\xf4\x13\xaa\xa2?\xc4\xb7\x15^*t\xbc\xbf\xaa\xfd\xc2\x8fkB\x8f?\xca\xddC\x91N\xfe\xb4\xbfx\xc2\xc7>\xe3\xeb\x95?*\x1b\xf1B\x04L\x82?\xfe\xb0\x18\x86\xe5\xe0\x91?Z\xa8c\xa7\x1e\xd5\xa5?\x80\x9d\xbc\x82K\x941\xbf\t\x06\xd8\x99)k\xc1?\x96\xa6q\xcf\xb1\xa2\x9b\xbfj>\xb1\xa8\x82B\xa1?\xd7B\xebY^0\xb9?\x1c\x86%\xc3uA\x91\xbfSxn\xd2\xdc\x0c\x94\xbf\x08"\x07\x127v\x84?\xa1\xcb2\x12q\xcdl\xbfw\xe7\x08$^N\x9a?\xac\x1f\xea\x8d\x80\xf2\xac?~\xbc\xfb\xa8\xa1\x95\x92?x\xb3T\x94\x14,\x94?\xdd\xd7\xe7/\xbc\xf2\xb1\xbf\xb9T)\xd1A\x9b\x97\xbfL\x99\xe6\x82\x8d7\xb1\xbf\x1eY\x0f*\x03v\xaa\xbf\x87bSn\x96\x1c\x8a\xbf\xf6\x00\xe1y\x06n\x9c\xbf\xa1\xaae&\xe7P\x9d?T\xeaB\x9fN\x8e|\xbf\xe8\xa6=Z\xcdY\xa1?I\xd0i<\xa4s\x93?\x96U\x8c\xb3\xd0\x91\xc3\xbf\xb8\xfb4\xcc\xb0\xe6\xb3\xbf0Q\xb0\xc3E]u?\x15$\x8b\xa1\x91\xcf\x95\xbf\xe2e\x9c\xcac^\x93?\xc4\x03\x1a\xbc\xb9m~\xbf\x02:"\xcd~\x08x\xbf/\x93"8\xfc-\x90\xbf(zDB\xf7[\x9c\xbfc\xf2\x90\xf9\xfdF\x9d?\xfa\xdeN]Nf\xaa?{\x076\xd3V)\xa1\xbf\xbcQ\xbe\xff\xcc\x11r\xbfL\xf3\x99\xef\x8f\x13\xa5\xbf\xd4\x86\x85d^~\xb9\xbf\xac\x8a\xd8\x1f\x87~\xaf?xB\xcd\x0bZ\x11\xc3?\xe4o\x17\xd82q\x82\xbf\xd8\xb45/]\xf6v?\x8b\xa7Z \xc3\xaa\xa0\xbf\x0f\\Fww:\xce\xbfQ\x81\x1a\x9eH\x0e\x96?0\x11nk\x07;\xda?T\x96\r\rx\xd6\xa8?:+;\\}m\xd7\xbf\x10\xe1\xbd\x87\xcc\x82\xc3\xbf\xe7\xfa\xbc\x93Q\x85\xbd? \x8e<\x8dRm\xbb?X2\x89AH\x8d\xaa?\x011+\t\xd3\xcb\x94?\x8f\xd9z2B\xd0\xb7\xbf\xfb\xbd\xc02Q\xbd\xa8\xbf\xb7~\xfaY\xb7\xae\xb2?B\xf2\nL\xa3-\x87\xbf\xc1\n-z\xc1m\xa6\xbf\xd6Q\xc4.[\xae\xa3?\xea\xf1\x18\x9a\nM\x91?p\xa3\xca\xec\x86\x14\x99\xbf\xd0g\xee\xc8q\x95\x83?\x98\n\xe8\xa5\x15\x1a|\xbf\xe0\x80\xd1\xff\x86\xdd\x82\xbf\xd4K;\xcc1\xc9\x92?HB\xd0\xe7Y\xe7\x94\xbf\xf0Lw\xdd-\xc0\xa5\xbf\x88^\x11\xe2\xbc\x11\xbc?\x9c}\xf0\xcd.#\xa3?\xf4\xe8cMfc\xc3\xbf\x1a\xb1%\xf1\xf9\x0c\x93?\xb7\xecsCB\xe9\xb5?@\x90\x01`$Y-\xbf\x04$\xf6"\xbe\x9a\x90\xbf\xdb\x0e#:*\xbe\x95\xbfF\xda\xca\x055\xbf\xac\xbfN\xf3O\x8d\xc5\x0f\x98?\xf8\xc8\xc9\x86\x9b\xc5\xbf?\x809:\xb5^29?\x0b\x85\xc9\x98\xf8\xf6\xbb\xbf\xb6\x12;\xcb\xb4\x02\xad\xbfQs\xd3\x9cH\x1f\xa4?w\xb9\x0e&\xb6\x9e\x98?\xf0\xa82\'s7x\xbf\x0c\xf3K,j\xc5\x96?\x00L\xde\x8b\xa3\xdbF?\xaa\x11\x07\x1b&\xad\x95\xbf\x98\xab\xcd\xa6D\xce~?\x96\x8d\xbc\x1aB\x9fr\xbf\x00<\xeb_\xafz!?`6 /j\xc3]?du\x94\x9bE!\x8a\xbf\x80/z\xdfk\xcb`\xbf\x85?{\xe1\x9a_\xa2?J\xa7\xbd"\xd9g\x9b?\xf0w\xcaJw+b\xa4\xbf\x02d\xeb^p\x16\xa4?\xd3\x8a\x06\xc6\r\xee\x9d\xbf\x12\xe5 \xd4\xcf\xd0\xc4?&\x04\xa12Y-\x83\xbf\xd2\x0c\x15\xdf\xc0A\xae\xbf\xdd\xbd\xf8\xf9\xf8\xf6\xa3?n\xb2\x8f\x14\x1e\x18\xb7\xbf \x9d\x13\x06\xb51a?s\x0e\xd4EZ;\xc1?\xe0#CI\xaf\xc8X\xbf\x00k\xf9\\\x1a\x96\xb2\xbf$N\x83m\xc2\x0bs\xbf;a\xd9\xad\x03\xde\xad\xbf\x84\x81#$ 9\x9b\xbf\x13:\xac!\xde&\xb7\xbf\x00>HN\x84\x88\x96?j\xbb\x82\x12\xb4\x1e\xa6?\xb0{\x9c\xc9~\xb1s\xbf\xb8\xe23\xddya\xa2?\x90\x8d\xbb6\xbeP\x8f\xbf\x81\x05\xf9\x12\xe1#\xb9\xbf\x1ePL+J\x04\x94?\xb2G<\x16\r\xe5\xab?\x00g8\r~\xbd\x82?\x82\x96B?\xb2\xb5\xa6?pKg\xdb\xe1\xcd\xba?Z);O=\xc1\x9f?R,\xc8|7\xa0\xd1\xbf-\x97\x86$_\xf6\xb1\xbf<\xea\xb3\xbd\xe2\xa6\xc4\xbf\x10\x01\x12f\xa9\xb3\x9b\xbf\xe8p\xa3\xcfN\xf7\x92?Aws\x0eUh\xa4?\xf66hUj\xa7\xb7?4\x17Cv\x15}\x94?\xe8\xd3\xdc\x95\x87\t\xd5?e\x1e\xc4\x11e)\x9e?\xbc!d\xfcc\x0b\xc6\xbf\xe8Q\x13\x0cg\xde\x82\xbf\xfcN\xfc\x05\xb2O\xa6\xbf\x9d\xb1\x82\xff\x91\xf6\xb2\xbf\xfcQ`\xfbK\x97\x93?$\xbf\x9b\xe6xN\xa5\xbf\xac\x00=!\x1a2\x9a\xbf\xc2\xc0\xa0\x8a\xb2\xe8\xa5?@\x9b(\xd6\xff\xa2\x82\xbfG\xef\xa0u~E\x9c?\x8a8E\\\x9e\x9a\xab?\x84\xaeT\xc9)`\xaa?\xf4\xdc\xcd\xd6\xbee\xb8?<\xab\t++=\xa4\xbf\x1c\xb8\xc0\x1bN\xdc\xbe\xbf}\x9a<\x94u.\xad\xbf@\x80\x08\x92\x87s\x87?\xaa)\xd1\xfd\xee\x06\x80?\x8a\x9a\x04\xa1\xc4\xde\xba?\x06\xab5\rx\x91\x8c\xbf\xf7~\xdf\xfa\x07\x91\xa8\xbf\xe8m\xaa\xbd\x90\xefq?\x1f\xad9m(\x82\x99?\xac\xd8\x95\xbdqU\x8a?\xf5cI\x07\xebF\xa0?H\xf9\x10\r\x8d\xe6\xac?\x18%\xeev\x02M\x9e\xbf\xe0\xdd\xcc8\xc7 \x88?^\xc5.K\xb3$\xb3\xbf\x80\x0f\xd2\xf6\xcbv\xb0?NM\\\xab~\xc4\xc8?\xa6^\xb6\x84\xf9\xa5\xba\xbf\x17\'\xf2;.\xce\xbf\xbf\xa5<\xfe\x9fiD\xa5\xbfX3B\xef.y\xbf\xbf6\x82\x80\xa7\xbd\x82\xb5?jx\x9a\\\x81%\xd0?\x9e\xe5\x88\xbaa\x99\xa1?\xbd\xd7\xcb-\xda[\xbf\xbf\x11\xf2\xec\x98r|\xae\xbf\x13\xc9\xdf\xf2\x19C\xbd\xbf\xb4;\xd3\xa4\x856\x93?;\\"\xa0\xa94\xd1?I\x9aE[\xf2\x15\xa9?\x90!\xde\xac\xcdR\xc9\xbf\xa7I\x92\xac\xa6O\xb7\xbf\x00\xf6?y\x86\xb1\x8f\xbf\x82^\xfelLZ\xac?[\xe5`\xc0\x0f\xc6\xc5?|d\xbc\x8d\xded\x95\xbf\x91\xc4\xeb\xd5x\xd4\xcd\xbf\x16n\x90\n\xc5\x9a\xa9?\x9f\xea\x1c7\xd9\xf1\xc9?f\xa2F\xd0t\x8a\xb4\xbf\x86L\x06\n\xc1l\xb8\xbf\xc8u\x94\xf5\xd9\xbe\xb3?\xe1(\x18\xde"h\x9a\xbfh\xf7Si|\x91\x87\xbf\xba\x91\xce\xe0\xd4\x88\xac?L\xe5"\xcc\x18P\xa1\xbf\x88\xc76\x98/u\x90\xbfTP\x1c\r\xff\xbb\x92?\xe0Wi;0\xe5\x87\xbf\x86\xac{L\xc6/\xb1?x\x82\xe3\xb3c%\xb2\xbf\xcd\xe2\xaf\x12\x0c\xe4\xb8\xbf\x04\x9f\xe6\x04P\x8f\xc3?\xa0\xa0W\x1eX]{\xbf\xb2=\x07\xbb\xc3X\xbf\xbf\xc6\xbe\xa7\xbb3\xcd\xad?xbJf\x00d\xb3?d\xc2\xf0\x16r\xab\xa1\xbf\xb4\xc3Lv\x1e\x1c\xa0\xbf\x00\xa5\x9c\x96(+~?}Ox\xfc\x96>\xb6\xbf\x00\x9d\x92\xebW\xc3v?\x1c\xeb\xb0;\x8f\xe0\xc1?\xc05b\xbb\xed{\x7f?-\x10\xbd\x15\xf0\xbe\xb8\xbf8\x90\x1a\x19EK\xad\xbfNw\x1e,\xb3}\xa9?\x96\xe8\xdc\x00\xcaM\xa4?\x000\x96@\x1d\xc7M?\x90\x1a\xa1bHOy?\x00\xa6W~\xc7\x02\x15?\xfcO\x83MN\x86\x89?Pb\xa2}\x146t\xbf\xa4\x06\xc2(\x8e\x9f\x91?\x00\xca+\xf3w\xf6f\xbf\xc0\xa1\x9c\x1a\x86\xaf|?\x9d\xc5}\xf0P\xbc\xa4\xbf\xf5\xe4{\x9b\xec\x88\xa0\xbf&\xb0L\xdf5?\xaa\xbfz\x13~!\xd0\x0b\x91\xbf`\xa7#\xf1\xf5\xeew?^\xaa\xad\xcc\xc6\xbc\xaa? \xa9Z\xa9\xb3\xd4i?0\xe4\x95`\xec\xf3\x88\xbf\xe8%\xbe|\xad\xc6\xb5?H\xcc\xdfC\xb0\x1c\xa1\xbf\xc7\xacQ\xe3\x18\x84\xa2?\xef\xa7`\xff\x12\xd5\xaa\xbf\x18\x0c\xc4K;\xd5\x9f?]\x84\xd2=u\xa0\xaf?\xd0\x15qCU\x9b\x9c\xbf`\xe3\xeerw\xc9\x98?\xce\xe0:p\xbd\x0f\x99\xbf\xde r\x9b\x00\x11\xb3\xbfj]\x9eP\xf4\r\x9c\xbf\xf2\xe6\xda%T\x11\x93?v@\xbd\xeb\xcb\xe1\x85\xbf\xa2V\x19\xbcH.\xa0?\xf5\xca\x02\xc8\xfb\xe2\xad?dA\xf1e\x88&\xb8\xbf\xa0Sr\xba~\x07\xb0?\xea\xc8^l=\xd1\xba?\xa4\xbe\x83\xc3\x8b`\xa8\xbf\x92\xab\xed+l\xc3\xb0?4C\xa4)\x18\x0f\xbb\xbf?Qg\xff\xc8\x9b\x9e\xbf\x04N\xb1\xdc\x06\x07\x9a?6cB\x9e\x8c\x16\xa0\xbf\xd8t~\x11\x92\x87\xa1?\xa0\xcd\xf4p]o\x95\xbfg+9\xd8S\x05\xc0\xbfy&Adz\xf6\xc0\xbf\xde \xba\xba\x92\x99\xc6?\xe2\xb3\xf7\xfe^\xd0\xae?X\x994|)\x84\xc2?\xb0\x06\\=75\x89?70\xa4\x16\x19\xd6\xa2?h\xa2}5R|\x92?\x10\x83+8z\xbc\xb0\xbf\xaa\x9ed\xe9\t\xeb\x94\xbf>\x0c<\xf50\x97\xd4\xbf28\xb6\x81\xe5\xba\xab?c\xc4\x8dZ\x9f6\xc5?Q\xf6\x87-\xf4\x1e\xc3\xbf0\x07\x83_\x11k\xaf?0\xaeD\x97\xb4\xf7|\xbf\x84\x81\xf3v\xf5\xd7\xa2\xbf\xcc6\xf2\xc2:\xac\x9e\xbf\xa0\xcc\xcc\x89\x80\xadp?\xcb\x86\xe5\xa4\nI\x92?\xbc\xa0\xde\x89^\xca\xa6?\xa0\x9c\xe4\xb2\x10\'q\xbf\x91F#\x8c\x0f\xd8\xb1\xbfFi\xf6\x066\'\x96\xbf@\xa2j\xd6\x1e\x89U?7\x85\x8f\xb6\xab\x95\xbd?\x0c\x8b\xec\xe5\x96\x89\xb6?\xa0\xad\x84\x10\x0e\xd4\xaa\xbfhf\x83+\x10\xa6}?\xfcl1\xfa\xe3\xe7\x98\xbf<\xac\xd5\xc4\xdd\t\xbe\xbf@\xb3\xb0\x03\x92\xba\xa4\xbf\xee{\xee\xf7\x8f\xdd\x92?d}p\xe1\xe6\x88\xc1?\xe8\xea\xfdy\x19t\xa3\xbf\x99\xa1X\xa5u\xb5\x80?\x08,\x99\x07(\xaf\x85?\x9a\xd9\x19Kea\xa5?\xc40:gs\xd2\x90?\xa8R\xca\xcf|O\x8f?\xf0f\xbf\xc9\x0e^\x9d?\xce4\xa3\x89\x10\xc2\x85?\x89\x82\x03\x93\xbf\'\xb3\xbf9\xcc\x06\x87m\x17\xb7\xbf2\x99\xe7\x7fQr\xb2?\xde\t\xd4\x04\xb0\\\xbc?\xb7\xa5p\xc4\xb9 \x96\xbf%5\x9d\x9e\xd5\xe5\xa1?\xa8\xf9#d\x9e8\xa2\xbf+\xcfWs\xb1D\xc6\xbfo\xfc\x9dQi\xcc\xb6?\xa7{\xcf\xb7"[\xc4?\x1a\x8d\xa8\xd8\x16\xdf\xbc\xbf\xac \x90T\x12\xc2\xaa\xbfz\xb5A\xf4\x81\xcb\xc5?)\xc7\x1bWvk\xa7\xbf\xba\xb1\xcc "\xfa\xc8\xbf\x96\xf9\xb4&S\xee\xbd?w8;\x9f\xe2#\xc1?\x8ea\xffL\xc2\xd6\xc2\xbf\x1b\xc3\x98\xae\'\r\xc0\xbf\xc2 l\r!E\xc7?\xe8\x05r#\x91E\xcb?<\x13m))\x8e\xcd\xbf\xca\x0e\xf0\x8d\xf5\x99\xd3\xbf\x85\x14a\xf7\xda:\xca?z\x7f\xc5\x00Xn\xd3?[\x88\xb3\x8d\xff%\xb7\xbf\xacC\x8d\x95\x0fK\xce\xbf\xc8t&)B\xda\x9e\xbf\xf3\xb2F\x88\xd6L\xc7?\x93\x0c6\x12\x94"\xb8?S\x9f\x8e\x1ag\x81\xb4\xbf\xe8vD\x84\x9c\xa3\xa9\xbf\xaeN\xea\x13\xac\xa9\xa1\xbfT\\[r\x1b\x95\xa4?UM(M-=\xad?\xacJI\xd0\xc4\xc6\xb5\xbft\xf9\xb0\xc92\xfe\x8c\xbf\x82:8ni\x82\xa1?\x90\xc2t\x0f\xf1\xd0m\xbf\x19(O\xdbT\x18\xab?\x18\xb9\x9d\x1e\xaf.^?\xc4\xa6\x92\xc6L\xfe\xa2\xbf\r\xed\xa6\xbe\x0c\xb1\xa5\xbf\xb3\xa0z1=X\xa1?\xf8\xcb\x04bI\x15\xb3?\xd0\x13\xa7:\x8f\xa0\xa8\xbf.\xa4\xce\x07\x80I\xb2\xbf\xce;\xb0\xb0Vn\xa1\xbf\x97w-\xf2>\xb4\xa8?\xb0v\xd2h\xb4\xec\xb7?\xd2\xae\xb9\x0b&\x9b\x9c\xbf\x94\x17\x8c\xd5\xb4\xef\xa0\xbf\xd0\xab\xd7\xac\xc9My?#\xd3\x19\xce\xd4\xee\x8e?\xc0\x07\xe0\xbe\xb8\x0ey\xbf@\x19\xbb\xcc\x19\xfeQ?\xf6^(\xc6\xa5\xa0\x85?\\\x15fR\x9a\xf0b\xbf\x9e\xa6\x9b\x08[P\x8d\xbf\xc3\xde\x98\x0fY?\x86\xbfDT\x8d]v\xe5\x91\xbf\xb0\x7f\x96O\x91\xe0\xa1\xbf\x10\xb7\x0f\x8c--\x90?\xc0\n\xc1"o\x97_\xbf\x90T\xfc\xae\x11\xbc\x85\xbf\x87\x90\xa8\x94\x1d\xb2\xae?\xc0\xdff\xd4\x16U\x95?i\xa9\xcbFd\xd8\x8f?\xa0\x94#Zr\xc2o\xbf\xe6\xc9\xe7\xd8\xb0\x9b\xa3\xbf\x82\xaei1\x9dmb\xbf\xc0\x88\xa8J\x8a*\xbd?\x8e\xff\xe7\x8ft\xda\xa0\xbf \xa7y\xdf\xf6(r\xbf\xd1\xf9\xbeJ\xb9\t\xa0?\x00\xb2\xf7\x92\xf5\xa2{\xbf\xbc\xb6\x8a\xb8s\x9d\x94?\x10-O\x1e\xd5\xb3\xab?\xa8h\xda\x84\x9a\xdb\x84?\xbaBK\xd9\xbc\x8a\xb7\xbf\xd8\x99\xfb( g\x9d\xbf2vc\xd8\xd6\x1a\xb1\xbf\xa6S;\x02D\xa3\x8c\xbf=\xaa8\xb4&\xd7\xc1\xbf\xd9D\x96\x95\x8e\x8c\x88?\xba \xf4^\x98(\xb0?5\xaa\xd9\x1f\x1c)t?M\xc5\xdc\xce\xcfM\xb3?F\'\xf2,\x8f\x90\x97?i\xb4@\xd86\x8e\xc1\xbfpc[\xb7\x1er`?v\xa9k\xf0\x81\xfc\xb1?(D\xcf\xca\xac\x95\x89\xbfd\xf2\xec\xca\x943\xaa?\xeb\xa1\xdck\xca\x81\xbc\xbf\x16\xbfX\xb6|)\xa2\xbf\x18\x05T+B\x8b\xc7?\xeeB\xa5hS\x89\x9e?\x0eh-@U\x9a\xb3?\xbf@\x9e\x87\xcan\xa1\xbfP\xfa#s\xbd4\x97?\x88\x05\x90}tSf\xbf\xc9\xa5}1/!\xb7\xbf8\t\xc0\x04\xe3\\\x9c\xbf\xd2X\x93nW\x8f\xc7\xbfX\xf4\xff\'\xe1\x08v?B\xeb\xe0\x83c4\xb1?x\xa5\xc0\xa8\x82u\x9b\xbf\x0b\x8a&7\x80)\xa9?\x08P\x07\x8b\x94x\xa8?\x00\xab\xee"\x9a4M?o\xbf\x9eR\xfe\xa8\x88\xbf\x80\xc6[\xa0\x05VU\xbfE\xce\xac\xf6\xe4\x1c\x8d\xbf\xc0y\xc1\xc1r\x08}\xbf\xab~i\xe3\x05\x10\x97\xbfPD\xed\xd0S\xb9\x99\xbfC\xdc\x0b\x7f/\xedx?\x08\x83\xa6\xed\x97L|\xbf\xbc\x15\xe8Ea\x13\x9c?\xc0\x18\x02\xef\xb5`\xab?\xfc\xc9\xdb=\xe1\xa4\x8f?\x80\xf0\xb4\x9a\xc9R>?E\xb5\x7f\xc3\xb5g\x98?2\n\x1d\x0b\x9dM\xb3\xbfz\xae\x11\xf3Y\xd7\x9c\xbfdT\x12\x89\xb5\xcf\xaa?\xd8\x8ae\xe5\x92\xf4\x88?X!7|\x1c\r\x9e\xbf\x0e&qQi\\q\xbf\xb8\xf3\r\x9b\xf0\xce\x89?\xa8HM\xec8Z\x9b?\x10=HBK4v?\xf4_\x95\x19\xb6\xc2\x81?\xaa\xdc\xbc\x0c\xcb@\xb1?\xf4\xce\x80>\xa8\xef\xae?m\x93\\\xabZx\xc6\xbfX"\x0b\xfcKo\xbf\xbf\xb1\xe9\xb60l\x91\xc6?\xb1l\x0f\xc1\x07\xfb\xa2?\xa6s3&s\xcd\xad\xbf\x08\x97slh\\\xb5?\x02-\xc4\x0et\xec\xa3\xbf\x84c;\xe7\x9d\x98\xbb\xbf\xf0\xf0\xf8\xdb\xe6D\xb6?\xcdO\xe8\xb1]\xf6\xa4?\xff\t[\xd2\xa4\xb7\xb8\xbf@\xcfs\xcao8\xac?;J\xfba,\x10u\xbf\x9b+_\x18\x02\xee\xbb\xbf\xde\nHW\xf4r\xc8?)14}\x0bw\xc3?e\xd0,\xd8~\x85\xcf\xbf\x1d_&\xa7\xa2!\xc6\xbfE6\xc8\x95\xc0\x12\xc7?6=\x8d\xd6\xcd\xe7\xbb?*\xea/GpF\x9f?\x08|*\\S\xe4\xc1?\x8b\x0bZ\xd7IT\xb7?\xddk\xc7m\xc1`\xa3\xbf\xb0I\xfa\xd8R\xa5\xa6\xbfG\xb9\xb2\xf9\nX\xbf\xbf\x18\xf1S\xd7\xa21\xb6?*R\xec\xfd\xfbp\xcb?O-v\xad\xa1\x0c\xb9\xbf\xff\xb6\x88\xaeP\xca\xc3\xbf\xf8\xb8n`n\x0c\xbe\xbf\xe5\xe3\xfe\xad\x94\xca\xb2?\xd8-6"\xc8#\xc5?8\xa3\xc9\xccD\x9e\x9f\xbf\xec*r\x87\xf5W\xa8\xbf4\xa9I\x86\xf3\x15\x91\xbf7+\x13\x14p\xce\x82\xbf\xb9\x0e\xa5\xe3_l\x97?\xb3P\xf7\x83w9s\xbf\x88\xb8[JU\xc1\x82?\xfc}2{o\xca\x91?`S\x80\x10l1~\xbf\xc1\x1f\x998\xa40\x9f?[\xd9R\xbfN\xc1\x92\xbf\xa0\xec\xe0~\xb8\xb7r?\xc8\xcc\xe8N~\x10t\xbf 4\xad\xe5\x1b\xffP?\xddd\x93\xcb\xa6\xac\x95\xbfP\x8c\xf9\x9cn\x84\x97\xbfU4(g\xc7\xa0\x95?\xc0+qsnx\x9b\xbfD\xa3\xf1\x19\xd4X\x93?\x84\xc2\x0b\xee\x9e\xd1\x8d?\xde\xdaC1\x1f\xcf\xa6?\x11\xe0\xa0$`\x8b\xc0?`{\xf3(\xd2\xf4~\xbf\xfe\x87IQoV\xb3\xbfX7u%v{\x8d?(\xa3"\x87\x12\xb1z?\xff\xee=#\xd6=\xa2\xbf\xb2oV=\x86s\x9c?d\xfde0+\xff\x85\xbf`\xd6\x86\x86\xa5\xe2\x8c\xbf`\'"\x08\xd9\x1co\xbf0*,\x08\xefF\xb4\xbfC\x92\x8b\xd9\xb2&\xa9?bc\x82\xea\xede\xa2\xbf,\xe2\x97n\xa86\x94\xbf\xc8\xd6\xd8\xe3\xd0`x\xbfn+-\xbc\xae\xc2\xe9U\x97\xbf\xf2\xcd\xf1\xc0\xb8e\xb4\xbf\xe5\xe1\xacp\x14\xbf\xaa\xbf\xa7\x9d\x97\xb1[\x0c\xa8\xbf\xb4\xe6\xf2T\x19=\x94\xbf\xda\xa9\xfd\x9d\x08c\x9b?\x02V\xf6\xa5\xfe\xb2\x9e?\n\xc1\xf6\xafM\xda\x9c?0\xec\x93\x18\x10\x19\x91\xbf\xdf\xdc\xb5\x8b\xf7\x0c\xb1\xbf\xf8\xb5{\xf3B\x83\xb9\xbfp2\x08\xddz(\xc6?j\xe0\xfc3\x87\x12\xc8?\xffT%\xe4\x19Q\xc8\xbfG1\xfdP\xbc\x02\xb3\xbf\xe4\xc4\xd3\x85)\xa7\xb9?\x114\xc2\x13\xb2\x8c\xbf\xbf\x16\x9e,yf\xd1\xa0?\xacT\x9fL\xd1\x94\xce?\xe9\\#\xcd\xd3\x03\xc2\xbf\x90\x07\xed\x7fK\x02\xc5\xbf \xd9B\x82\x00\x80\xc5?A.\x9cga\xdcz?w\xc9J\xc28"\xc0\xbf\xa9\x16%\xe7~q\xb9?\xd8\x92\xa05\x11\xfa\x95\xbf\xe0jO\xa8\xb23\xc4\xbf1\x95>\xdfQ+\xc1?\xb3\xc0B\xa5\xaf9\xc9?\\>\xd6m\xc3N\xbe\xbf\xac\x1d^\x11\xcd\x86\xc5\xbf\xb4\x83\xa7\t\xc6\xb8\xb2?\x1e\x1dZ-\xe3\xf4\xb5?\xc0\xbd\x10\xb8\xa6\xe9k\xbf\xb6\x17tL\xd0^\xa0?h\x9dO\xd5\xd93\x83\xbf\xd2\x8a\xb5\xe8Z\xcc\xb1\xbf\x8cU\xfcfD{\x99\xbf\xf4r\xb5\x0c\x8e$\x99?\xf8\x10l\xff\xadJ\x9f?\xa8\xd2l;:\xbf\x98?\xc8\xed\xd3\xe3\x14\x0c\x88\xbfh\xe9\xcf)\x10;\x93\xbf\xec\xf9\xfd\xbd,\xeb\xad\xbf\xf8\'o\xf3zu\xb2?a[\x0b\xf4\xbc:\xc2?\\a\x1dt\x8d,\xc7\xbf\xd4\xf9\x90\xf2\xc5\xfa\xca\xbfZM>\x13\xf1n\xb2?\x1b\xc4\x93\xb7@\xbb\xc6?\xa1{\xbc/\x03l\xc4?\x06i?\xb5\x9d\xe6\xac\xbf\xd2y]&\xb7Z\xbc\xbf\xe6\x95E\x96\x18\xe4\xc1\xbf\\R\x96\xda\x94@\xba?6\xe0^\xd9\xd09\xcc?\t\x02\xcfU%/\xc2\xbf\xa6W\x0e\x8c\xaf4\xc7\xbf70\x93\xe5\x91\xb4\xbd\xbf\x1d\x8b\xa8tb\x95\xc2?`f\x80\xd4\xbb\xc0\xcb?\x8aGl4\xdc9\xb2\xbf\xf1\xa9\x0bR;\x08\xae\xbf@\xd4\xce(|\xf4\x8b\xbfK\x02\xc0\x07\x91\x9a\x86?\x1cN(#S\x98\x96?\x1e\'5/\x15\xf2v?p\x7f\x91\\}k\x82?\xcc\xc64\x1f\xa7(x\xbf\xfc\xb4\xcd\x84\x8d\xfb\x95\xbf\x00Q\xb2 2\x14Y\xbfR.5\xba\xef\xa2\x99\xbf\xf8\x07\xf0\xc6\x8a\xc7\xa8\xbf\xa4\xda\x9eu5!\x9c\xbfl\x86\x80\x0e\xea\xb3\x91?\x85y#\xdc\x9a\xfd\xa2?\xdauj\x83\xfeY\xae?\x90\xaax\xb6C\xbb\x8f?(\xf9\x14\x98\x9d\xea\x8f?\x80\xed\xa7\xf7"eI?\xc2L@=\n_\xad\xbf\xf6\x11n<\xee\x1a\xaa?@\xfe\xc9?cew\xbf\xc2h\x9f\x1c\x02\xe0\xa2\xbf\xea\x9e2\xdf\x80\xdc\x93\xbf\xc8/\xdc\x1cgm\x80\xbf\x87\x95!\xf2\x08\xce\xaf?\xb4\xd7\xf1Xz\x97\xa0?\xc7\x9a6\xb4\xda|\x94\xbf\x08\x92\x85\x12\x94\x07\x9a\xbf6I\xc8\xdb\t\t\x96?\x003\xcfm7<3?^\xe20\xd9\xd6p\xac\xbfd.\xabyL\xb4\xa4?\xe1\xe6\xd3Lw\x1ef\xbf\xd8\xa2\xd9\xd4\x97\xf4\x95?p0q\x92\xa4<\xac?\x9c\xc3\xfd\x89\xbc\xeev??h\x91U\t\x80\xb0?\xd8\x92\xfb\xb2w\xdf\x9d\xbf\xda8\xa7\x1b\xea\xb6\xbe\xbf\x80,\x14d\x908\x8f\xbf\xdc8N-kw\x95?\xe0\xd5\x87a\x0c\xeeA\xbf\x99\xeb\xc8\x87\xb3\xcd\x9f\xbf\xe8$\xd5\xf8\xff\xa2\xab\xbf@#$\xd0%\xd1b\xbf%+\xa4?\xc2}\x0b\xa2\xc2\xd1\x91?\xb4iQ\x84ay\x83?\x19 \xfa\x11\xe2\x87\xa2?\x92\x92"\xc6\xa3\x9b\x9f?\xb0&%\xfc\xe8n\x96\xbf\xf4\x0c\x03\x9a}\x88\x81\xbf&\x13\xa49\xdex\xa2\xbf\x87\xc8\xb2\xd2]\x0e\xa5?\x9a\x02\xa8FM$\xb3\xbf\x89\xa3\xb2BZ\xe1\x9f?qe\xbe\xdf\xdf?\xce?Q\x19\x88`\xfd5\x86?\xef\x9c\x0f\xbatF\xd3\xbf8\x9cV\x90D0\xc2\xbf\x0eq?\xbby\x00\xc9?\xf5\xf8r\xe5\x9b4\xc3?\xec\x8e\xd3kX\xaa\xa4\xbf=\xd7\xba\xa2\xb7H\xa0?\x924\x84\x98\xeah\xa7\xbf\x9e\xd1\xdb\x93\xde\xb0\xcd\xbf\xa9\xce\xc3*7\x98\xa1?-w\x17\xf19\xec\xd4?]\xca\x87\xb80\x99\x9e?\xb7\xc3\x8a\xd0\x1a\xe6\xd6\xbf\x82\x05\x87!7t\xb3\xbf\xfb\xd9\xab-I\x1e\xd6?\xda\xedYi\xedc\xb3?\x12\xe4|\xd3\xa1\x8b\xce\xbfcs\xe7D\x80\xee\xb4\xbf\xe2PQ\t\x1a\xe8\xb0?~\xae\xb1>.\x93\xbe?L\x11\x17\x13\xe4&\xb8?\xe0k\xb5PS\xa7\xc1\xbfs\x1b{{\x8c[\xc3\xbf\x16\xe0Mr\xd7a\xb6?\x04\x83\xe6Y\x84V\xb7?\xe8{\xd7\xae\xd1\x86\x8a\xbf\x96\xdc\xd6t\x1a\xf9\xb3?\x054\x94\xc1w\xa2\x92\xbf\xc2\x11\xeb;\x04\xe5\xc9\xbf\xf0\x18\xb1\xfe\xea\xb9\x7f?\xdf\x90fJc\xb9\xba?\x90y\x82\x03\xf5\xb3\x80?tn=\x0c\x84;\xa2\xbfn\xfe2\x90\x1e\x93\x93?\x92\x1f\x82\xaeO\r\xa2?\xf4\x02\n8\xd4\x11\x9e\xbf\x98r\xfc\x0e3\x9c\x8e?\xa0\xf3\xe5\xc0o\x1cj?\xde\xafZ\x9a!\x9a\xa0\xbf\xc0X\xe5t6\x05y\xbfF\xe1G\xaa\xd7\xf1\x8d?|\x84\x89\xbb\x8f\x9b\x90?\xa0\xf8\xb9\xf5<\xffh\xbfhn\x16\xce\x11I\x81\xbf\xcf \xfc\xd6\xee\x94s\xbf\xe8\xc4\x1b|X%~\xbf\\Z\xd0\xd6N\\\x98? \xb8\n\x07\x81-r?\x88[}n\xc9y\x9b\xbf\x00h\xf0\xab\xa6;Z?\x00\x9d \xdf\x98\xa5M?\xb0\xec\x01:C\xcfc\xbf\x00\'\xe6Y\xda\xcbm\xbf\x00\x1f\xb7\x03\xafum\xbf\xb0A\x17\xc2xfw?L\xf5r\xfa\xfd\xba\x86?\x10]}\x8c\x93S\x86?(\xa2\xa3BM!x\xbfpe<\x9f\x13"\x80\xbf\xf4Jz\xd0\xeb\xf3\x86?\x7f\x97\x99\xe5\xf9K\xa4\xbf\xcd\xf2\xab\x15%K\x90?\xe03\x1f\xcc\x06\x06x\xbf\xd2"\xc0Wi\x02\x97\xbf\x94\xca~fO(\xb0?h\xd8o\x16;\xc3y?\xd4=\xd29\x91y\x93?\x98\xfa\xd8\x14\xff\xf3d\xbf\x9a\xcb\x9a\xa02R\xa8\xbf|vL\x05A\x80\x93\xbfM\x9ab9!\xbe\xb3?\x1aV\xfcA$\xdf\x86?\xeb-\tb\xe4_\xb0\xbf&\x17r\x86\xdb\x9c\x9b?P\x92\x05\xd1F\x97\xac\xbf/6zF\xde\xfd\x9a?\x88\x8d07\xa2\x84\x8a?\xc80^\xca!\xdd\x84\xbf\x18\x965\xe9\x86T\x91?\xe4|\xb2\xa5\x95\xab\x9f\xbf\x08c\xa8\xcdG,\x8b?H\x12\xd7\r\x0e?\x94\xbf\x90^\xcay\xa3\x05\x96?\xa4\xde\xd9,\x02\xe3\x87?\x80\x81\x7f\t}\xdb\xb2\xbf\xae\x10\xdc}q/\x9d\xbf\x84\x1b_\xd7\x91\x0b\xa8\xbf\x80\xa2\x17\xbb\xea\xb4@?\xda\xf6s \x82\x18\xb7?\x90\x8d\x1e>\xce\xd4\x8a?\x80\'\xfc\x89\xc0\xd6F?p\x1e\xb1 \xfcY\x8e?\xfcv\xad3\x05\xfc\x97?J\xf7\x9axj\x04\xa6\xbf\x9fB\xff\xa8\x8a\xf7\xaa\xbf\xb5\x16\xd0)\x05*\xb9\xbf\x18\xd6\x18#\x13\x0f\x99?$a\xeb5be\x9a?\x90\x19\xe2\xcb\x0f\xe5\x8e\xbf\xf4I\xed\x13\xe8o\x9b\xbf\xc0aI\xc2^\xdc\x86?\xda\\Y\x0f\x08\xde\xa8?82?\xde\xe9L\x81?X\xac\x88\xec\x1d\xae\x86?&B\xfe>\xd5j\xa3?\xf8!\x9e\xabY\x08\xac\xbf>"\xc7\xaf=\xf2\xbd\xbf}\xdc\x1a\xfb\xe0\x0b\x9f\xbf\x88\x01\xe4\xd7\x97\xb6\x9f\xbf\xf0w\xe8\xe6@\xbbu?\xd7BX\x8bS\x00\xa4\xbf0\x14\x07pu\xa4t?\xd0\x06\x89\xe2?\xd9\x85\xbf\x90\xad%G\x94\x87\x92?\xc0\xea\xfe>w\x1b{\xbf\x90P\xe5U\xfc\xb2s?t\xfa:\xa9\x83\xf9\x9c\xbf4:\xe83\x1cT\xba?BYr\x00\x8b\x85\xa6?\x00\x1b\x91o}\xc7\x83?\x0c\xc9&)\xc4o\xa2?\xb6\xe7~\xa9Q\xc7\xb5\xbfa\xc9i\xc6T\x7f\x98?\xa5\xb62Z\x0b\x9d\xc8?}Nl\xfe]\xa2\xa9\xbf\xd1\x07\xd2=1b\xc2\xbf\xd6\xf7\xb1\x15\xd9%\x95?+\xb4\\\x99 t\x97\xbf\xe7\xfaN\xaa\xb5\x9ax?\xf8f\x195\xcd\x01\xc4?+&/4%w\x8d\xbfq\x8fk\xed-?\xc6\xbftA\x15\xafp~~?\xe6\xfc\xde\x8e\x95/\xc1?\x90\xd3\xe7|ra|\xbf\xc8P\xda\xd2\xb5\xa5\xc4\xbf\x12\x19^\xd2\xc6\xe8\xaa?9:\x1f\xaaMU\xcc?($\xc7D\xc7\xa7\xa1\xbf\x85b55\xf1\xba\xc6\xbf\xcdQE\x13&z\xa0\xbf>\xe9\xf8\xdc\xeaj\xbb?\xb8\xbc\xaaS!%\xa9?\xde\xa9\xbct\xc6\x88\xb3\xbf\x1ao\x13h\xc8i\xb2\xbf\xb2\x90\x93s\xc7G\x93?\xed\x87\xba\xf4\r\x97\xa5?#\x87\xc1\x0b@\xf6\x96?\xb2\x958\xac]\xa7\xa6?\x7fO\x80\xcc\x08\xfe\xa2\xbf\x19\x12\xea+\x95M\xb4\xbf\x16\'\xb3\x8d\\\x13\xa7?ol\xf3])\x8f\xb0?h\x87\xd5S\x8bn\x9b\xbf\xbd\x99\xb9[#e\x96\xbfK\x1b\x8f~\x9e\xe5T?@\xbf\r\xfe\x0cY\x87\xbf\x10ejE\xfb\x0bZ?\xb2\xc98\x19\x1d\xfc\x97?\x08\xad;\xec\x13\xfa\x7f?t\xcc\x0b\xb7\xf2\xda\x82?`\xcb\xd5\x11O\x11\x96\xbf^\x86$\xb9\xec\xee\xac\xbf`\x8a\xc3BH\xc1\xa1?^Q1\x0f\xab$\xa3?\xac*+L7N\x99\xbf\x00qd8\xaf\x1b\'?\xf0\xb0\xaf\xa4\xa4\x95\x85\xbf\xb8\xe8:a\xb3\x17\x94?h\x003\xdc\x13\xa8\xa5?\x0c\x7f\xb4\xb8\xf7j\x99\xbf\xc3\xc1\xda\xc1t\xc0\xb3\xbf\xda\xdc\xbb8\x7f\xcf\xa0\xbf\x85[\x9aP\x15\xea\xa7?\x10\t\xc5M\xcd\xaf\xa7?E1\xf9\xf7o_\x90\xbf8\x8a\x8e6bm\x90?m\xd6_\xf4\x85Qi\xbf\x0c\xc0YQiV\x88\xbf\x8d[\xbf\x16\x9b\x8d\xa0?\xae\x19x\xb59\x0e\x90\xbft\xd4\x82lv\x9e\x9b\xbf\xd2\xf8\xd2\xc21\x10\x83? h"8_4\x95?L\xac\x9e\xb7\xf8\x0c\x83\xbf\xe2\x01\xbf\xc4:\x8a\x99?|/\xf3d\x8cO\x87\xbf\xbdLQ\x96$\xae\xa9\xbf\x134\xe7r\xb7\xbb\x85?\xdd\xec\xda\xd5k\xe6\x92?{\xe9A\xa7\x80M\x93?$\xf7\x7f\xcf5Pu?\xf0\xdc\x91\x07\xd1\x82s\xbf\xc6\xaa\xf8\xb4\xc8\x86\xbb?\xe4\x99\xf0\xa0>\xd4\xce?\xc6_\xcc\xd3K3\xbb\xbf\xcc\x01C\xfd\x94e\xa8\xbf\xd3\xfc\xbc\xfd\xa0\x18\xad\xbf\xe6\x85\xb3\x14\x87u\xb4?\x98\x05\x1a/1\xf3\xa8\xbf\\\x07B\xa2\x9d\xc5\xbb?\x80\xde\xbb\x13\xf0\x15\xb2?\xfe\xae\xc0\xa4\xa7\xaf\xc5\xbf\xb0\x8fws\xec#\x86?>\x8c\xad]\xb1\x0c\xcb\xbf2\xb0]\xdbI\xec\xa3\xbf\x90\x03d\xe5\xbdv\xc7\xbf\xa8\xaa\x07\xbc;\xe9\xc0?\x14I\xc5\xf3\xafLw\xbfcW\x8548e\xb6??I\x0c^0\x16\xb2?\x8c\x07\xfe\xa9\x99\x0cx?5Q.\xaaG\xb0\xd0\xbf\xc0\x87u\xba\x92H\xbc\xbfE\x9eF\x17\xaa\xed\xc9?\x9aV\xd7\xa1\x12\n\xa8\xbf\xf3\xdf\xe4\x17\x9f\xcc\xc4?`\xab\xe2R\xe90}?@\x0b\xd8d\x13\xb4\xb1?\xac\xf4I\xbf\x86v\xb5\xbf6\xdeP\x0f0(\xc1?L[\xae\x86%H\x9e?\x0c`v\xffb:\xb0?H\x15\xc3y}\x81\xa4\xbf\xb0\xeb\xe7&\x85\xe7W\xbf\xa2\xce\x0b\xd4\x96\x18\xac?\xab|<\x9f\x15\x02\xb3\xbf@g\xf3\xc0\xca\x14[?\xb3\xadi\xcfw\xa0\xca\xbfL\xbc\x1a\xc7\x0c\x07\xb9\xbf\xb2\n)\xb1\xa9x\x9b\xbfi-R\xee"\xe7\xb3\xbfO\x9eC\x96\xe7\x0b\xc8?\xda\xb5\\\x86\x19\x9e\xaf?\xa9\x11\x92i\x1dp\xbb?\xc7\x1a\xcag\x0f\x8f|?\x91\xa2\xfc8\xfc\xe2\xab\xbf\x92\xc9yi%\x9a\xad\xbf\xc6N\xd7>$"\xc0\xbf\x8d\x19Z+B\xf1\xa9?\xe2\x87p#\xaf\x93\xc6\xbf\xb0\xb8\xadp\xa0~\xb1?\\H\xc51+!\xb0\xbfg\xa3\x87\xf1\x19\xa2\xa3\xbf\xe6\x9b)9\x11\x16\xb6?W\xf14\x9f\xa5:\xb0\xbf\xf1Q~"\x91f\xa1?\x8eC\xa2\xe4j\xb2\xb3?\xc6X,\x90\xde\x1f\xa9\xbf)\x0f\x89#\x8e\x05\xc0?(\xd00T8=\x99?\xf5VQZ0\xe8\xb3?\x01T\x07?j*\xa1?\xdej\xf6\xbb\xd3K\xad\xbf"\x02\xba\x04\x91\x98\x9c?@"\xad."\x92\xa9\xbf\xe8~\x85\x06\xca)\x8a?(\x83\xf5\xcc,\xf6s\xbf`hr\x03`\xe8\xae?b\r\x94\xa6X\x13\x9d?;\x96\xf4y\xe2Q\xc0\xbfI\xd9\xca@6\xcf\xa8\xbf\x05]y\xf7\xa8\x0f\xad?\xff\xc7]\xf0\x1c\xa4\x92?\xcc J|LL\xa8?e\x02Xk\x91\x1d\xb1?\xbeBz8\x98g\xb0\xbfW]\xec\xe4\xe1*\xc0\xbf\xe6\xdc\xc5$u\xa9\x96?\x0e\xf0:r\x81\xe8\xb7?e\x1ex*\xa3B\x7f?\xb5\xd9\x02\xf4\xe4`\x9a\xbf\x88\xefT{N-\xa1\xbf@4]\xd4\x146D?/e\xe4*~\x86\xb2?d\t\x05\x01Y\x84p?\x91\x1a\x9c\xc5\xee\xf4\xb6\xbf\xb8;Do\xd1Nx?\x88\xb8]\x97\x86\xf9\xbc?5\tF\xa3/5\x92\xbf\x8e\xf4\xba\xa35\xff\xc2\xbf\xf0\xfc\x9c\xdcLiw\xbf\x9fA\xc7c)\xda\xba?\xd6c\x02%\x17w\x9a?\xc4\x94\xeb\xd4?b\x89?\xc2D#E&\xa8\xa3\xbf\xd1\xcb\xc05\x8f\x8b\xbc\xbf\xb5\xa8V}t\x14\xa3?\xc94\x86\x83&\x81\xbe?EG[\xdeyEs\xbfz6\'\xd8\x00\xce\xaa\xbf\x18b\xf8\xbd\x85\xbe\xab\xbf\xb8\xfe\x98KRe\xa0?\x1d\x07L\x13\xf5\xb8\xa4?h\xbdDr\xc6\x95\xb8\xbf\x0c\xe0\xe9\te\x03^\xbf\x00\xc5\xb5\xe0>bB\xbfZL\xe3\x19e\xaf\x80?,P\xe3\x88[{\xa5?\x0c\x05\x16\x13\x86\xb8\xb2?\xb6_F\xc1\xfee\x98\xbfqN\xe6\x13\xed\x98\xb9\xbf\x9eu\xe5\xb4\xa5\xab\x97?\xb7+\xd63\x939\xb1?q\x1e\xb9\xf7\x0c\xe3\xa2\xbf-\xbb!T\xefQ\xb9\xbf\xa2\x00l\x0b$\x16\x9c\xbf\xf1\xb3\rZG\x9d\xac?Hh\xac{E!y\xbf\xa0\x96\xc6\xf7\xb5\xdf\x85?.;\xbf\xfb\x08\xe5\x84\xbf4\x1e}\xe6|\xdev\xbf\x12C=\\k\x19\x90\xbfZ<\xf3z\xa5\xc4\x90?\xec\x1d\xa52\xebP\x9d?\x9d\x8d\x1f\x18\x1c\xd9\x90\xbf\xa0\xa1A/v=\x93?\x9d\xb1\x02\xf2%\xe7\x80?t\xae0\x8e\x8e\x9dp\xbf\xf0}?\x02\x15Ta\xbf\xf0\x1dgY\xd2\x13w?\xc5\x8c\xddG\'\xa5\xa1\xbf\xb5\x0f\x9f=|^\x9f\xbfBu\x08D\xe3)\xb0?B\xf4U\x11zp\x99?\xa5\x8fTcdv\x9f\xbf\xe3\xa0_o\xbdt\x96\xbf\x00\x9c\xb6\x8d.\x9b\x1b\xbf\x88T?\xc3^\xd1r\xbf\x00\xd0\x9a-\xc2\xa4\xb9? \xf2\x97\xf8\xa2]v\xbf\xbb\xef\xc5\xe48\xd4\xbd\xbf\xfc0\x03\x19e\x15\xbc?\xf3\x7f\xd1\'\xff_\xd2\xbf|\xa7\xea\xd4N\xc9a?\x91\x82\xb4\xe2\x06\x1c\xb1\xbf\xfe\x8e\xea\xdd5\xe0z?$\xf9s=\x07\x16\xba? U\xfbN9W\xa9\xbfAd\xdbV\xf1\x98\xc9?\x15J\xc2\xfb\xc3x\x91\xbf\xecQ\x0b@\xb3\xbd\xb8?\xd0\xc2\xfa\xd0\xb4u\xc9?F\xa6\xf3\x7f~\x03\xd2?\xba\x82\x15\x9d\xfd\xa7\xba?;\x06B\xe6F\xe6\xb7?\x8c7f-\xfa\x94\xa5?\x9c\xe1\x0e\xbb2~\xc7\xbf\xce\x99\xb6c-\xab\xd2?U!\x86\x0e\n\xd5\xbd\xbf\xfc\xcc\xdb\x1ca^\xd2\xbf\xed\xd1\xe5\xcfo?\xbc\xbf\x820\xc7\x85)d\xd2\xbf\xc9\xddn\xf1\xaem\xb2?B\x1dc\x0b\x1aB\xa4\xbf*\xe5}\x9b\xae\xea\xc1\xbf\x00\xef\xdf\x15\\\xdd\x9e?;\x03\xfbH\xc8G\xa5\xbfO\x13\xa1\xcbM\x17\xbd?P\x02\xfbK\xbf\x7f~?\xac\xcd\xe6@\xdf\xc4\x9d\xbf\xa9D\xd5WT\xe7\xa5?\xf4\xfb\x02\xdeb\xad?\x00\x18>H\x93\xa0\x90\xbfHs?F\xfc9\xa7\xbf\xc8\x81\x16\x84\xefz\x8d? \xbcC\xf6\xa5a\x86?\xa1\x87D\x07R\xc5\xb0\xbfp\xf24\xa0\xe8w\x95\xbf<\xaaG-\'\xc2\xa0?\x00E\xf6c\x12.`?\xd0j\xe6>\x98[\x94\xbf\x14\x08\xaa\x064\xfby\xbf0/d\xa5\xd6\x96\x86?:\x19\xb2\xc8\xf1\xa6\x7f\xbf76\xd6\x9c\xcbp\x88?(\xa2m\x1d\x9b\x06\x93?\x00|e\x1f\x01t\t\xbf\x18\x98\xc4\x85D\xa5\x93?$a\x07\xdb\x0c^\x96\xbf\xbcVA\xa3\xe0\x88z\xbf\x90\xceS\x81\x83\xe2|?d\xa0\xd5D\xdc\x07\xa3\xbf\xc4\x1d\x80\xe46\x94\x9b\xbf\\\xe7\x13\xc7kN\x94\xbf\xe9\x9f\xc2\x7f`\x05\x9d\xbf \x17\x16;\x84=d? \xdfb\xecr0\xa1?\x11\xa44\x90\x8f\xfb\x9c?\xc8\xbevfb:S?h|\x1e\xc3p\xfc\x94?\xc2\xd9\xa8p\xe7\x1c\x9b?\x86\xd2\x93\x96@4\x9c\xbf\x98\x83OX\xb2\xc8\xa7?\xfd\xf4Cr\x02\xf7\xc1?\xc5\xcb\x1a\xb8\xb8\x90\xb9\xbf(\x86P\xd2\xe7x\x92\xbfn\xf9;\xba\x0f\xcb\xb5\xbf\xa5\x1c\x8e\x96\xe4\x08\x92?$\xad\xfc\xf2\xe6\xd0\xaa\xbfb\xea\xd0yh\x05\xac?r8\xad\xfdk\xd4\xae?\xa43\x01\x16\xc5\x19\xb0\xbfrZ&\x0c\xbe\xe8\xb9?Y\x951\x1aG{\xbb\xbf\xcc2\xd8\x1a\xa1\xdc\x9b?\x002]Ce\x97/?\xbb\x84\xf2\x07\rB\xc4?\xb0\xbf1w\xa1\x91`\xbf\xf8p|\xc5\xfc\xe6\x96?B\xe6\xbe\x86\x93f\xa3?\x90bel\xef^~?t"\xc3\xffP\n\x93?\x0e\xdcz\xb9\xed\xbd\xbb\xbf\xd0"&1\xc5\x9df?]T\xd1\xc6c\xb1\xb2\xbf\xac\xc6\x1ec\x0c\xf9\xa4\xbfL\r\x18\xbaW\xc2\xc9\xbfT\x8b@\xb5M\x1b\xcd\xbfr\xf3\x1d8"\xfb\x98\xbf$[9<\xc0?\x88\xbfx\x06\xfd1\xdb\xf5r\xbfD}\xbfJ!\xfd\x90?\x00\xb3\x88&\xb3\xfdJ\xbf\xfb\xf6/lMi\x9d?H\xee\xeb\x0b\xcd\xe5\x82?{D\xcf\xcf\xf6`\xb2?\xb2m3\xd6\xeaX\x99?\x189\x0f\xe2@\x01\x99?\x96\xe9\xa0\xb2\x8cd\xc0\xbfS\xd8\xc3\xc5G\x93\xd1\xbfx\xefB\xd7\xf4L\xb5\xbf%\xab\xae\xc4\x8c\xdb\xb0\xbfV\x02\x81X\x06\x18\xa0?eB\xad IC\xb5\xbf\xb8=\xb2\xc2\x1f\x80[?\xddg\xb9\xd3f\x04\x92\xbfH\xcc\xb0\xf9\xf6_p\xbfV\xad~\x03=\xfd\xa1?F\x89\xa1\xe9\xed%\xa8?\x04\x05\x02\xf68\xc8\xa4\xbf\x9c\x19\xd1\x9f[\xea\xd1?D2\xc2\x10\xfcg\xcd?\x0f\xa6\xa5\x80"S\x99\xbf\x969@~\xa0\\\xba\xbf\x9cq\\{\xc74\xab\xbf\x82\xabl\x1f\xf4\xea\xb5\xbf\x08\x0c\x8a\xf7\xbd\xbdv?\xfaOI`\xd1\xb6\x96\xbf@\x9b\x90\x0c1\xf6\xc3?\n*e\x8bk\xab\xd1?\xb7\x94\xa3\\n\xcd\xbc?\x18\xad\xf2\xa6\x83\xcc\xb2?\x9f\xf7\xcc8\x06<\xa1\xbf\x04\x0bo\xa0w\xf3\xb2?S\x8b#\xce\xb6?\x00\x83u4b\x9c\x94?U\xdc\x87\xb9p\x01\xb4?\xbf}\x1b\xdf\x84\xc7\xa2\xbf\xdcA\x96A\x93\xb5\xc7\xbf\xd0auIm\x99\x91?\xd8=i9_\x06\xb6?@\x19\x8cu\x13\xe8b?\x98\x06\x98&\x8c\x93\x9b\xbf\x86\xf1\xce96<\xa4\xbf\x883\xac"k\xd9\xb4?\xf6\xa0X\x17\x9e|\x85\xbfP,\x96nF\x18\x98\xbfRT\xd4\xb7\xfe\x94\x98?33\x00\x9a\xcc\xd7\xc3\xbf}^\xd8\\\x9f\xbf\xad?{\rT\xa8\xff\xcb\xb9?\xd8\xf2\xb8}\xfa0d\xbf\x1a\x9d9\x1a}\xc0\xa1?{\xc4\xc7\x0cS\x0c\xc1\xbff\xe6f\x9b\xae\xb6\xa6\xbf\x1d%\xacweI\xbb?4\x1f\xe6\x19u\xa4\xa0?H\x06k\x7f90\x99\xbf"V\x08\xc2\x98j\xaa\xbf\x0f\xc9\x1dz\xd29\x9f?\xc0\x93\xfa\xc7\x17\'\x7f?\xb9De\x9e\x05\xad\x89\xbf\xeeH3\xa4\x17Xr\xbf\x1aJ\xadY\x9b\xeaF\xbf\xc9\xda\xe7\xe4:Q\x93\xbf\xfe\xd0\xea\xf9\xd7\xfa\xa7?6x\x88\xa8d%\x85?\xe8;RO\xf8=\xa0\xbf\xca\xb4\x1b\xdf9{\xa3?\xb0\xae\xedV\xa7\xbc\xaf\xbf\x94J`\x98\n\xfd\x93\xbf\xbed\x024{\xeb\xb8?\x00S\x84/r\xc2m\xbf\x08]\xb5\xa6x\x0f\xb3\xbfV\x93\xfb\xa1\x13\xa0\xa2?\x1a\xf0\xe6\xe2\xbfx\xaf?g1\xd5L\xc6\xb8\xa3\xbf\x9c\xe9\xf2\xad[#\x9c\xbf \x06\xa4L.#S?\x85\xd6\x97Q\xfa\xea\xc3?5rT1\xad\xbd\xa8?\xf6&g\xfd\xdd\x96\xb6\xbf\xcc\x13T\xa1\x0b\x18\xbf?\x86\xb1\x11F\x93D\xc1\xbfojo\x97\x88*\xc3?\xf1\xa8YP}B\xb1\xbf]\xeb\xfc\x8b\rq\xa0?<0\xa0B\x9c\x11\xb2?\xbfv\xad\xb0\x80\xe9\xc5\xbf/eY\xbc\xd1\xc7\xa1?\x8f\'(_\x17.\xc4\xbf\x02Gq\x12\xd0\x13\xba?\xb7~\xa5je;\x9d\xbf0~\x14\xe3eV\xb0?**\xab\xe1<\x86\xbd?\xfd\xba-X\xe9\x94\xc3?\xa0}\xed\x94%\xc1\xaa?\xb8\x89$\x87\x0e\x85\xc1\xbf\xf8\xb1\xb9\x02gf\xb0?$N\xa5\xef\xf1;\xb8\xbffV\rL]\x9f\xbb\xbfV\x80\xa4\xd0\xbc\xfe\xb0\xbf\x8e@01\xc2\xdd\xb1\xbf@^\xb54cal?LA\xe0,\xf2\xeb\xc4?\x06\x01\x9f\x85~\x95\xc6?\x0bMR\x8do\xd6\xba\xbf\xc8\\\x03\x12L\xd7\x9d?\x0e\xda\x1e\xb7\'\xf4\x8b\xbf\xb4\xc9\x00\xd1\xe2\xf7\xa8\xbfh\xc2\x98\xaa\\#\xb1\xbf\xe5\x84\x997\x8d\xfa\xb1\xbf\x16:\x85\xa5\xdf\xda\x84\xbf\xc6M\x86\xd5\x04\xba\xb2\xbf\x00W\xea\x87fO\xab\xbf\x88\xa4\xb7Xtt\x8b?\xbfB\x07^\xc08\xc4?\xdb\xf1\x0b\x99\x82i\xb0\xbf\x9cB\x19\x9c\nk\xaf?\x8fh67\x8a\xa5\xba?\xb3\x93 F\xe6P\xa5?\xb0\\\xb3\xddSJ`\xbf\xee\xce\xb1\xb4\x15N\xc5\xbf\x18bJN\x9e\xa2\xb5\xbfT\xcd\xee\xdb\xdf\n\xb3\xbf\x9d\xe40~b\x91\xa3?~S\x0co\x85&\xba?X\xa9X\xe8\xe1\x91\xbf\xbf\xb8\xa0ftG\xa1\xc4\xbf\x94\xe3\x9d\xcaj\xf5\x95?\xdbsE\xacTT\xc1?\xa3\x89\x89\xbc\x17\xce\xa4\xbf\xfc\xf3M\xb8\xe6\xb9\x92?>\xa1\x87t\x08\x0e\xaf?\xb0\xa0\xe5\xd63\xe3e?\xa2\xc5X\x08\xf4\xd9\xab?\xf6/=3\xc6\x05\xc5\xbf\xca\x1a\x11\xbc\xf4\xd7\xb9?\x04\x80\xb5\xb2R\xe4\xb3?>\xc5".{\xec\x8c\xbf\xbc\xd7C\xe6 \x90\x80\xbf8_\xc4\xbd\xe34\xb4\xbfC\x06j\xba\xdd\x10\xb0?\xb2\x95t[`\x1c\xa7\xbf\x1c\xe2A\x8c\r\x95\x95?U\xaa\x14y{\xb6\xc2?\x90C\x12\x1a\xd1Y\xa2\xbf\\B\xda\x80\xe6q\xcb\xbfo\x02\xdc%\xe6\x18\x91\xbf\xd12}\x1fI[\xca?\xce\xf7\xb2\x87\xd9k\xb8?g\xfc\x11\xec\x96\xc7\xc2\xbf\xa8\xf5\xae\x95\xb9\x0e\xbf\xbf/x\xd0\xf6Nn\xb2?\x99\xd5!#\x1c\xf6\xb8?\x8f\xf7\xff\xb8\x0b\x92b\xbf\x9f\x8f\x01\xeb\xda\xc2\xb2\xbf\xbe\xf2\x0c:O1\xac\xbf\x86\xcd\xaf\x18\x90\xdc\xa5?\x17\xber\x12\xbe8\xb5?\xfc\xe3T\x18\x9e\x05\x82?\xbc4\x84\xbe\xee\x8a\xaf\xbfl\xeb/\x92-\x98\x9c\xbf\x90\xa3\x16\x80\xc0\x81\xa2?2\x16\xbd\xc2\x87\xa2\xaa?\xac\xa6\xbcM\xdb\xf3\xaf\xbfv\xca\x17a\xd3\x9f\xb5\xbf[x\xa4E\xc2\x8f\xb1?J\xe2\xfd\xb5\xaa6\xb8?\x0clslf\x94\x97\xbf\xbe\xfb\xb4\xc4\xa0\n\xa5\xbfpt\xccT\x7f\xed\x97\xbf\x91S\x1c\xbf)"\xb0\xbf\xa3\xf9\xc0\x8c\xc4\xf4\xa1?\xf0|\x16\x02\xe7"\xba?X\x93\xe0}\xa3C\x90\xbf\x9cVF\x12\xf1\x90\xa6\xbf\x90\x84B\xb2$k\x81\xbffHv\x89\x1f\xbd\x8d\xbf \xc7@\xcbVvU\xbfen\x12_\xf3\xad\xaa?\xc1\xa6|\xaf\'K\xaf\xbf\x1e\xe8@m\x92T\x87\xbfr\x94\xf2~\xfb-\x9e?\x04M\xf9\xb0\x12+\xbc\xbf\x88\x9ce\xf6\x86\xb0\xaa?\x86\xbe\xa4\xec\xbe\x8f\xaf?>g\x1dm\xc9\xde\x90?\xea\xb3\xf4U\x10\xe7\x94\xbf\x1a\xca\'\xbb\xf0\x19\xc1\xbf\xdc\n\x08p\xb1Q\x8e?wqj\xfb\x81Z\xc2?\x7f\xc6\t\x9a\x85D\xac?\xe0\xe01b\xef\x05\xb2\xbfL$*\x82\xd0\xfd\xba\xbf\x97\x18\xf4.Sf\xa3?;\xb5\x1e\xac\xde\x08\xa4?t\xe8\xf8LR\x96q\xbf\xa2$\xf7=\xa81u\xbf0f\xa7\xa5G*T?hj\x9b\xfd\x9d\xeau?\xe0\xea\xc4\xb4\xef?B\xbf\xa87\x97~\xb2\x8bd\xbf\x04\xb6\x04B>\xa1p?\x80Yt0@\x1dn\xbfD\x18\x95u\xb9\xea\x90\xbff\xfdA\xc3\x83\x15\xa1\xbf\x80\xcc{=\xd3iP\xbfX\xd6\x9cM\xbfcu?\x06\xbcK\\\xaf\x1c\xa0\xbf\xce\x12!/\x90L\xac?Xp\xa5|\xef1\x83?\xc3DG)J\xd4\x85\xbf\xd0\xd9\xc9\xcb\xa3\xa2\xa3?\xfe\x7f\xbf\x876\xa9\x87\xbf _\xa7L\xf4C\xbc?\x1a\x95+\xf8\x14\x9b\xc1?N,ZH\xb6q\xbe?A.K\x00/\xc5\x89\xbf\xc0\x01\x93XL\xe4\xb9?\x8d\xaa\xb6\xf8\x18J\xc2?S\xe1\xd8\xd6\xa0\xba\xc1\xbf\xa9\x9a\xc2`\xf2{\xc1?l\x85\xa4\t\xe5t\xba\xbf\xa2&\t\x91\xd8^\xc4\xbf%\xd2?fF\xc1\xb8\xbf\xcc.\x1c\x0b\xf7\xbf\xcc\xbf\xce\xf7\xab\xe8A\x7f\xb2?\xb7<\xbd\xa5o\x1d\xb4?\xa8\xa2\xf4M\xb2\x1c\xb7\xbfh(s\xea\x98\x98\x86\xbf\xc8d\x8c`s@\xb7\xbfJ\xbe\x0c\xc1\x13\xcf\xb8?\xb4\x87\xa2\x89\xff\xa6\xa8\xbfp\xa6\t\xe3\x92\x15\xb3\xbf\xc6\xed1\xb9\x15;\xb6?\xb4\x86\xcc(\x94\x8c\x81?F\xc8{gZ\xbe\xb3?nNQ\xe2\x01\xa6\xb5\xbfb\xe4\r+\xa4i\xc0?\x08y\xe3\xd8\x17\x92\xa0\xbf\x10\xcf\xb4\xdd\xc2\x05\x90?\x8eC\xaaIJ\xcc\xcb\xbf\xac\x03(4\xcd\x05\x86\xbf\x95\x90\x9f\xca\xcf\xd8\xb0\xbf\xc1b\xcb\x92o$\xaf?r\x18\x8c\xf4I\xf5\xa0\xbf\xfb*6ro\xe9\xa3\xbf\xee\xf7\xed=Ic\xbd?\xa0F20\xa7\x80V\xbf2\x19\x13\xfbZ\xa9\xca?\xcd\xbe\xdc\xc4\x19\xc7\xb5?1\xe5\xaa\x7f\xed-\xb0?^\xd6\xbe\xb7P\xd2\xa5\xbf\x9e\xbctsq\x05\xcf\xbf8\xfe\x81\xb3\x7f\xc3\x88\xbfc\xac[\xfc~\x13\xc1\xbf\xe4\x0f(\x8d\x13]\x98?\x88\xbf\x1b\xa3\x05\x87\xb5\xbf\xa0b\xff\x8f\x87\xc4a?\x1c\x8b\x97\xce\xbc\x0c\xb3?2\xeaY\xf8h\xc4\xa2?fSi\x16\x1b\xec\xca?\x86\xb4\xd2{\xea\x91\xc7\xbf\n\x19\xc3\xc4gs\x9a?\xc0\xfb\x18\x04<\xd0\x9b\xbfYh\x93\xe9^r\xa7\xbf1F\xca\x9f\x8fB\xa6?0\xd7d\n\x8d\x8e\xb3\xbf\xe0*+\xd2gn@?0Z\xb8\x8f\xc6wn?\x08\x1b\xdb?\x0b3\xbc\xbf\x83\xc7$\xb8\xe9\xe3\xa9\xbf\xd9T\xcf`\xed&\xae?f\xaf.(\xe6&\xba?h]\xf9\x93\xe7\x1f\xb0?"\xad\xf5h\x0f\xdd\xac?\xc2\xce\xef\xc6\xf0&\xb7\xbff8\x08\xa3\x9d\xf3\xbe?\xd9\xd7\x8a\xd7I\xa1\xa7\xbfvs\xaf\xb6\x84\xeet?\x03\x07\xaeTM\xd8\xbe?\xd4\x8d\xddHC\xab\x92\xbf@D5>\x9a\xe8\xbd\xbf\x90\x0bu\xf7\xd9\x03\x82?\x7f\xdb65\xc7D\xaf?0\xa1\xc4w\x96\x17~?\x18\x7fR!k#\xa0\xbfd\x00\xe1jI\xa0\xa0\xbf\xbf\xf1w\xd4\x01\xc7\x99?\xae\xa0\x90:\xf9\x80\xad?y?J9\xfb\x8d\x80\xbffy\xc2O\t\x10\xac\xbf\x83.s\x9d3\xf9\x92\xbf\xcd\xa5Lt\xe3\x93\xa5?T\xf7\xf9t\xb6\xd8w?\xd3\xba\xf8\xd8\xa97\xa1\xbf\x90\x11\r*\xbak\x85?`\x96\x8d\xa2\xaf%R\xbfp\xb0sa\x0e\xbcq\xbf2\xcb\xe8\x99\xaad\x90?\xb0\xea\xc1\x11\x86\xa6f\xbf\xc0\xd2\xfb\x88\x82\x9f`?H\xce\xbe\x92\x1c\xc0z?\x92:\x05\x83\xe2\xea\x8e\xbf\xa83T\xbc\xfe\xcc\x89\xbfH\xa5\xfdP\xd8D\x7f?\xf1\xc9\x15\x84\x97;\x92?\x80\xc5\xa0\xbfJ\xe9D\xbf`\xf2\x12\xf2L:\x86\xbfX\xac&\xc4\x1e\xfa\x8f\xbf\x80\xebE\xf7\x19\xb13\xbf\xc0Im\xe1\xe9\x96\x8b?\xce\xcao\x02\x05\xae\xa0?\x99\xec\x0e\x92\xc2\x18\xad\xbf\x06j/l\x8b\xbb\x94\xbf\x12\xe2f\xb7A\xa2\xc3?\xfe\xe6\xd1\xf1\x84\xe2\xa4?\x0458\xcdv\xc8\xb2\xbf\xf6\x05d\x00\xb8\xe3\x91\xbf8\x12Z\x86\x9a_\xb2\xbfGM\xcdBDD\x83?t\xb8\x02\x89\x0c\xd4\xb1?\xe1\xa1bJk\xe0\x9d?\x94\xf2\x8c\x17\x14\x9c\x82?]\x87\xe3\'\x83`\xa6\xbf\xc0T\xda\x9dP\x07l?\xeeu\xc7C\xa8\xff\x80?\xdc\xc8\x06\xf2z\xa7s\xbfSx\xb1\xad\x07f\x9d\xbf\xa7\x93{\xcbK\xd8\xa9?\x9e#\xf7NEm\x85\xbfv\x9aO\xb6\t\xba\xa3\xbf\x84b=\xfd\xb0|z?\xac\x13k\xbb\x9f\x90\x8b\xbf\xe0Q\x1c\x0fG[b\xbf\x006k3\xc2\xf1\r\xbf\xf6\x1c\xce0\x9d\x04\x93\xbf-q\xebT\x11\x1d\x86?\xc1\xc5\xf2\x86#\xd7\x80?\xf6\xaaV\x8e\x81\xf7\x87\xbf:\xe4\xd8\xda\x8b\x0c\x90?\xa1\xcd\xd7S\xc1\x9d\x96?\xd2P\xfe1\xb3\xf4\x97\xbf\x10C\xb6\xde>\x01R?\x80eo\xf7\xc8\xa6\x9d?$\xb6\xd2\xbc\xb3-\xa1\xbfKV\x10N\xd2\t\x90\xbfN(I\xcf\xd0\xac\x91?\x18\xf1\xd4\xed+\xacP?\xd5+\xe4o\x9d`\x89?j9\xd6\'\xc2\xf1\xa1\xbf\x1c,u\xc5U\x7f\xa7?\xd1\x05%\xf6\xc5\x93\xcc\xbf\xa3\x93\xd6^\xfe\x82\xb5\xbf\x03W?V\xcca\xcb\xbf\xb8MZbZ\x92\x93\xbf\x7f\x8d%\x11\xcaj\xb1?\x04R\xab\xbd\x16F\xb4\xbf\xefO~#\x12\x00\xc4?\xe5\r\xe7s\xbc"\xb5?WLP\x1fS\x83\xca?\x96\xf8\xd0\xa8\xa4\x85\xa1?\xd2JD\xbd\t7\xb0\xbf\xd01\xc1\x9f\xd8\x8a\xc2\xbfi\x15\xf3I\xaeX\xcd?\x1e\x03f\x0b\x00\x81\xab\xbfA\xc9_GF\xc7\xce?DY\x14\xa1\xb6\x0c\xa4\xbfu\x80\x12\xef\xd9\x99\xac?k\xeb\xbcH\xfa\xbb\xa4\xbf\x1dck\\,\x12\xce\xbf)d\xd4\xfeO[\xbc?&r\x83g\xd2:\xc7\xbf\x1d\xdf]*sG\xc3?|$D\xa7\x92\xaf\xb1\xbf\x94\xf0\x9e1\x99\x1d\xb8?\xc0j\xd2\xd9\\f \xbf\x0f8\x81&\x01Y\xb8\xbf\x84\xda\x0enA\xfc\xab?\x0e\xb5{\xf6\x02\xfc\xc0\xbf\x9c\x0b\xcc\x85N\x10\x84?\xa4\xdd\x11\xed\xa5\x9dv?\x98C\xab\x1d\x1c\xf2\xa7\xbf\xec\x9f=\x97\xea\xa8\x96?\x94T\xf1\xcd\xd8\\w\xbf\xc2O\xf7\x9c\x95d\xd3?\xd0\x0e\xbc`/\x81`?1\xb8j\xc2\xa1\x1e\xbf?\x1c\x1b\xcf\x94d[\xb6?\x87\x1c/*\x8d\x10\xd1\xbf\xcet\xf0S\xeaO\xb8\xbf\xd8\xb5(\xc5\xd7\x8a\xaa\xbf\xd2O\x07\xa9L\xf3\x86?\xb4\xb7\xccw\x0c\xc5\xba?\x8es\xe3\xf1\xaeh\xbc?M7-\xc3\x00g\xbb?\xbe\x0e\x14\x12?&\xb7\xbf\xd4\x02\x01\r\xea\xd0\xc4?)\xd8\\|\xa1\t`\xbf\x019\x0bp\xbaD\xb7\xbf\x07\x7fN\x12\x9b\xd7\xb3?\xf8\x04m2F\\\xad\xbf\t\xba\xf9\xfc\x1d7\x93\xbf\x90p\xf4z\'\xfa\xaa?qVR\xf2\xa3d\xb3\xbfZ\xa5@\xc6\xeb\xaa\x9d?6\x90E\x8ao\xcd\xb0?\xa7\x9f\x7f\x98\xfe\xfb\xba\xbfV\x1a[\xbe\x97\x08\xc7\xbf\xaf\xa3\xdf\xe7\xe0<\xbc\xbf\xc0B:\xf0\xca\x98k\xbf\xbc\x94\xba\x18\xf35\x98\xbf`\xac\xdf\xe40g\xc5?\n\xe5)\x99\xba\xeb\xb0\xbf\x92E\xaf\x1e\x842\xa5\xbf]\xab\xddw\xab.\x8a\xbf\xc9\x1d\x04\xf2\xb2\xc6\xb7?\x069\x0bIb\xbc\xae?_]@P\x9a\xb8\xb7\xbf\xe5\xd4\xacA\xc0\x17\xb3\xbf\xd5\xd7\xf7A\x84\xf4\xb6?\xd1\xe5\xc70\xb5S\\?\x13Q\xe1T(\xc0\xc2\xbf8\x0cr\xf7\xfe;\xb3?\x85R\xef\x16A\x8c\xc9??T}v\x88\xd3\xb6\xbf\x9f\xed\x1b\x10k:\xc3\xbf\xe5\x96\x19\x1d\xf7\x03\xaa?M\xb5\x13\xb6O\xb2\xae?\x84Z)\xaap\xff~\xbfd\xbak\xcd\xbb\x03\xb0?\xf0\xb5\x1c%\xd4\xb3h?0\xc6\xc7\xc3\x8f\r\xc2\xbf$\xb1\xaf\x9f\xde9\xaa\xbfr\xba\x94\xed<\xf0\xc1?\x077\x03T)\x97\xc0?\x01\x19i\x87\x16\x93\xbd\xbf|\xc4g\x7f\x8a\x04\xc6\xbf\xe236V\xf0~\xaf?\xf2\xd8\xadl\xb1\xa7\xbd?j\xc3P\xc3\xd5\x19\x9c\xbf\xf8\xe3m\xa8\xd6;\x84\xbf\x90\xf7\xf4\xe7Q:|?)\xe4\xf1P8\x08\xb4\xbf\xae\x94\xda\x80c\xbce\xbf\x81-\xa5\xa6\x04a\xba?\xd8\xac\x8c\x1c\x88\xfbu?L\x1e\t\xedi\xe6\xa8\xbfEQ\xb62a~\x93\xbfX>\xb5\xea\'\x02\xa0?\x84\x05w\x00}\x08\x98?\xcc\x04\xc0\x91\xe9r\x98\xbfM9t\x85\xa8\xae\x9b\xbf<\x9a\xd17\xba\xb8\x9a\xbf\xb4\xb6\xa8\x87n\xadd\xbf`\x9c\xd2\xef\xb5/z\xbfZ\xa3\x8a\x9c9\xed\xa1?\x83n\xb1\xf3j\x91\xa2?jgxc\xe9\x7f\xaf\xbfN\x9e\xb9\x82.O\xb3?uTo\xed"\x9d\xa4?b5\xd8\x04y\xcf\xb8\xbf\x8ch\x10\xba\xb0~\x90?\xff\x05-P\xa3\xcf\xae\xbf@k\xf2Pgh`?\xe2\x15\x10\xe6-\x18\xbe?\x00d\x9b\t\xb1\xb7e\xbf\x06I\xa1\x05\x8c\x0b\xa0\xbf\xf8O\xe9jUIg\xbfN%`\xe5\xdd\xa8\xa2\xbf\xd0c\xd8\x89\x92\xe0w?\x88\x17f\xcc\x87\x90p\xbf\xf0\x98g\x8f\xba\xbbt?\x01\xda\x11\xa5?\xae\xd5f\xf0\x11M\x9e\xbfg\xac5\xd0\\\x97\xae?\x86\xf6\xdfvN[\xac?\xa3\xb6z\x7f\x91\xbc\xc7\xbfx\xb7\x08b7\xf6\xaf?G\xb6\xdf\xb2\x8a\xd0\xb9\xbf\x97,0\x92\xbf\xe8\xc7\xbf\x1ed\x96\xa1<\x05\xcc?\x1d\x9cmP\x90.\xa4\xbf\xe0\xe9\xa3n\xd2`\x8a\xbf\xc61\xb8~\xb3\xa3\xa7?\xd6\xc6W\xfa\xbd\xec\x85\xbf nK\x1dZC\x93\xbf\xe4\x15\x9546\x9d\xad\xbf\xa0C\xd6>\x16\xe6\xaf?\xec\xff\x13j-y\x8d?2J\x92a\xc4\xc4\xb9\xbf\xb0\x91\x17\x9f\xe6\xa6\x84\xbf\x88\xfa\x16\x96\xc2\x9e\xce\xbf\xc6%\x8e\xf5Ym\xb5?\xe4\x92d\xddT\xdd\x9c?\xdc\x880\xa4\xc2\xe7\xb1?@\xd1i\x81\x07\t[\xbf\x86.Y\xed\x1f\xccx\xbf\xf5\n\x9f\xa6\xd5\x05u\xbf]\xd0Y\xc3\x05\xdd\x7f?M\x07R{\x87;\xa6?\x96Uh\xb7\xcd\n\xbb?\xaa~\xb6\xc9\xc3T\xb8\xbf\xb9\x08\xb2\x94{\xa2\x95?\xe7\xe7\x19\xac4\xc5\xd0?"4\x9d~\xe1d\xcc\xbf\x98\xee\x13\xc6\x14f\x8c?\xd4\xca\x89\x9e\xd4o\xa1?J\xefpi\xadd\xb3\xbf\xa8\x84\xad\xe9\x90\xa0\x85\xbf\xf0\xdc\x03\xbc\xe5\x81\x90\xbf\xaf\xb7\x95\x96^$\xba?\xca]\xc6u\xe2\xed\xd6?\xfb\x0c\r-\x04\xb2\xb9\xbf@\x9el\xbf\\\x13\x98\xbf\x86Q\x86\xe3\x1a\xf1\xaf\xbf\xad\xa0\xa1\xf5W\xaf\xb5\xbf\xba\xf7\x94\x1d\xf8`\xbf\xbf\x8f\xe9\x9dZ]7\xb2?s\x1f\xf6;\xa4\xfc\xa4\xbf\x88\x13\xea\xaf\xd7\xa9o\xbf\xf0t9\x81\x85*\xb7\xbf1F#\xd2\tV\x9e?\n.\xa1\x15\xa2\x13\xca?\xa5\x15J\xf2h\xd8\xb9\xbfi\x0f\xbaA\r\x04\xbd\xbf\x80\x19c?\xda\xce\xc9?\x07\xca!@7\x1b\xb0\xbf\x07x\xcc\xdb\rV\xd2\xbf\xd1\x12\xb4x\xcbw\xc1?\xdaa2*`\xe3\xd0?\x13\xf0\x13(\xb0\xef\xbb\xbf\xed\x1a\x17\xe1o\xfa\xc3\xbf\t\xbb\xa0&\x86\xc8\xae?f\xe6\\\xe4t>\xbb?%P^\xa9R!\x9b\xbf\\^(\xca-\xc1\xb6\xbfM\xd4X@\xda\x1d\x8d\xbf<\xb7/\xa1!\x85\xa0?\x0fP\xcc7\xd3\xaa\xa1?\x16q\xb5\x05\xce4\xa9?\xfc1"\xb15 \x85\xbf\xb1\xbb\xfd\x98`\x8b\xba\xbf\xce\xea\x1eJW\x01\xa6\xbf\x03K4\x9f\xff{\xbc?\xd2\xc7g{\x15z\xb1?\xe0\x9b\x90t>|\xb0\xbfh\x80Ju\xef\x17\xa3\xbf\xbc\x90~i\x8ex\x8e\xbf\xbc\xe1\x8cV~\xee\xae\xbf\x98\xc8\x0c\xa6\xec\xda\xa4?\xa5]^g\xeb$\xc1?\x10@\xe8pK\xe2\x8a\xbf\xd4\x82\xc8D\x7f\x98\xb1\xbf\xacQ\xbe\x0e\xce\xff\x8a?~\x8cw\xcd\x8dL\xa5\xbf\xe0?b\x84\xe1\x91\x86?\x99\xd6\x13\x07\xef\xd6\xb7?\r\x93\r*N\x0f\xa1\xbf(\x08\x8b\xe6\xbbXr\xbf@\xc7\x92\xb5\x7f\x18c\xbf9\x8fn|\xc0\x00\xb9\xbf\xc4"\xa7j\x9b\x1d\x97?\xb6\xf3\xdeg\x00\x16\xab?\xc2\xec\xd59\xf8k\x8e\xbf\x1a\x8b\x83\xd5\x15\xe6\x8b?`d\x10R\xbd\x97q?\xde\x91JT\x84\x91\x92\xbf\x18r\x82\x1b\xa9G\x8d?8\x93\xf7\x04\xe7\x7f\xa3\xbf\xc0\x0b\x0e\xe1\xdd\x96\xa2\xc8?@\xc4\xa9\xe4\xbez\xaf\xbf\xc6\x02\xa0\xcb\x1a\xdd\xc9\xbf\xb4s\x85\xea\xd2\xde\x93?hk\x95\t\x9b\xdd\xc3?\x13\x90vUA\xf7q\xbfO~ \x10W\x97\xbf\xbf0\x1d\x9f\xa5\xd4\xd7\xab?l\x90\xdc\x07\x9b\x9f\xbd?\xa4c[V~\xd6\xb8\xbf\xa6D\xbd\xb1L\x9e\xc0\xbf\x0b\xa3\xa4-\xd6!\xb7?\xf4\xe4[NdK\xc4?\x1e\xcb\xfb\x1b0\x17\xba\xbf\xbc.\xe5%\xc9h\xcb\xbf,mI\xe5\x8a\xfc\xab?\x84M\xc5K\x15\x1d\xc9?H@\xae?\xf4\xee\x81\xbf\x99\x9fj\xef\xb86\xb3\xbfL\xf0\x1e\x850)\x94\xbf\x92\x1e3\xb6\r{\xa7\xbfDrHG\xb6\xe7\xa2?\xce\xc9G\x8d\x13\xdc\xbb?\x8ci \x12#)\x91\xbfn\xb5o\xff=\xa5\xab\xbffW,|\x9d%\xb0?S4\xee\xcf\xfd3\xb5\xbf2\xd0\xddR\x8f\x1d\xb3\xbf\xe2\xf1\x17\xb8\x80K\xcc?\xc7\x84\xbcZ\xd3\xe4\x82\xbf\xf0\x1b\x05\xbbtb\xad\xbf\x80\xc2\t\xb4\x91\xbc~\xbf\x02\xabS\xb4\x8b\xda\xc7\xbf\xf2\xa2\xec#iN\xa2?\x8e7\xcc\x19\xff\xaa\xbd?\xc0\x1b\xd9\xd5\xbf\xf8\x84\xbf<\x89\xb4\xc1}\xee\xb5?\xf4\xd2\xd7\xa1\xb7y\xa3\xbf\xbaU\xda\xd6\xe3v\xba\xbf\x96\x82\xefL\xbdG\xa6?|b\xb3\xe2\xe3\x80\xb9\xbf\xc6\x8f[7\xe3F\xa7?\xb2\xb9:O\xf5"\xc8?\x92Nt3Gl\xa7\xbfi\x10"X\xc1\x93\xaf\xbf\xae\xa1\xc5;\xe0\x8a\x8c?\xdfwv\xf2\xde\xe4\x83?\x00z\x81\xd8\xddi~\xbf\x14\x12"\xa0\x9c\x10`?|\xf6\xab\x06\x9f\xa8\x91\xbf\xa0\xeb\xa2X\x81\x02D\xbfp1\xf7\x85Q\xa0\x83? $\x85nU\x81i\xbf I\xea\xd6\x8f\'h? 5\xf0\x19\r\xca{\xbbd\xa9\xbf\xda\xc8\x84k\xa4h\xb0\xbf\xa8\x7f\xafM\xa3\xdb\xb0?\x036\xb7?\x1d\x82iV\xe4Z\xb0?m6\xec7;\xcb\xb8? \xb8Z\x13\xf8\x13o?7\x98\x93M\xcb4\xc2?\xa8s\xa4\xa6\xd2@\xaf\xbf\xa0\xdb\xe3\xf9\xf8\xb0z\xbfNj\x14\x16M\xd5\xa2?\xa0\x1bz\x8f\xd2\xdb\x81\xbf\x82\x17\xe5\xad$-\x9d?\xaeG,E\xaei\xb0?Ng\xee\x9b\x8a\xb1\xad\xbf\t\xa8\xd2\x82\xdd\xc1\xbc?\xe9K\x03\x98\xbb\xa1\xc2?\xb4sm\x12\xad\xd5\x99\xbftlq\x80?0\xab?\xe8\x99\xfd\xf0"w\xaa\xbf\xdc~\'M\x97\x0c\xca\xbfH\x1f^\r\xd91\x84\xbf\x9d\xfa\x19\xeb\x03\xb2\x81?fY(\x98\xe3\x8a\xa2?\xb7\x88\xaf\xff&\xca\x8b\xbf\x8b\xd1\xa6\x1e>\x95\xb9\xbf\xa5\xdeVw\xe0\xb2\xa3?\xac\xb7v\xa5t\xe5\xb8?\x03\x94\xe1@]\xa6\xb3\xbfL&\xe1\xc5W%v\xbf\xae\xda0S\xb7\x9f\xbe?\x94\x8b\x81\xb2u\x7f\xb8\xbf\xe2>F\xfb\xe0\x06\xc2\xbf\x8a\xbf\x850.P\xbf?\x96\x83\xe4w\xd9\x9e\xba?[\x91o\xff\xcf\xc7\xb4\xbf+\x04\xba\x05\xec;\xaf\xbfv\x8f\xf6M\x9e\xfc\xa6?\x16\xbcW\xe57A\x81\xbfU[\xe4o\x8a{\x9b\xbfV\xe9gi\x8d\xfa\xb2?\xa1<5\x84\x96\x82\xa9?\xf2Hu\xfchB\xb8\xbf\xcb4.\x16\xff\t\xb7\xbf~\x84\xb2\x19\xecL\xb5?B\rS\xd8\x81r\xbc?\xc7\n\xe7/p\x7f\xa3\xbfd\xd4r,\x9d\xc7\xb4\xbf6\xa4f\x80*N\x9e?@\xd6q\xd1sC|?\x15\x92\xfa\xd8\xe1\x8a\x94\xbf\x80\xb6z\x91w\xae\xa0?\x10@;\x06V\x1cx\xbf\x18\x84\xcd\xd7\x98\xcd\x83\xbfR\x01\x04GX)h?\x00 y*8\x99\xe3\xbeL\xe8\xa3\xfd\x0f\xa8\xad?\xd0N\x98\x1f\xc5\x84\xbc\xbf\x07\xea@\x81\xc3\xcf\xa3\xbf\xa5\xcag\xa2\xeb<\xd1?\xa6\xbdn\xcd\xd3\xd8\xc4\xbf\x16(\x03b\xde\xaf\xae\xbf\xc1\xe1\x86{\x0eT\xc2?iN\xa5\x06\xe7\x88\xd0\xbfPh~\xb7+\xf0a\xbf\xb8\xff\xf3\xb4\xf0\xf9\xc2?(w\x87\xb23~v\xbf\xab\xc1\x02\xdd\xbe\xf8\xc0?\xfa\xf7\x0fO\xd3\x8c\xc3\xbfQ\xa0\xf5w\x0eO\xca\xbf8i\xaa=\xcc\x8f\xc6?G\xd1\x0e!\xe2\xd9\xc2\xbf\xe4\x95\xac\x92P}\xa7?r\xe8w\r\x10\xa3\xd5?\n2\x1b\x96\x16\xd6\xaf\xbfb\x8a\x1d\xb7\x1e@\xc1\xbf2\x86\xacS\x7f\x1ep?\x84\xe9\xa2\xe3\xa9\xd2w?\x90%\xdd8V\x9es\xbf\x00\xc5yl.\x1b\x87\xbf\xf8G~T\xaeYl\xbf\x1c\x0bY\x9eu!\x8f\xbf\x10Q\xbe=\xb4\xd7}?\x94\xe384\x07\x0b\x8b\xbf\x10LlA\x18Qi?@:\xda[/Wa\xbf(\x0ca\x19\xff*u\xbf\x8c#p\x04\xe8\x87\x81?\x00\xad?,\x0417\xbf\xc8\xbc\x8a`\x84\x19\x9e?\x80\x9c\xc5\x15\xc4\x8df\xbf\x8bf:u\x12!\x83\xbf\x90\xa7v\t\x074o?\\S\xe7Ktw|?\xeal4M\x14\xb1\x8e\xbf\x15\x01\xb4w\xee\n\xa0\xbf\x8a\xa2\xd0\xe2t,\xb6?\x8f\x89_\x1c\x16\xce\xb2?\xca\xeb\xf9\xf2\xdf\xb5\xb2?\xaaP\x18\x87\xfdI\x98?\xce\x18\xdb\x99\xdb\x9d\xb9\xbf\xe83z|\x12\xf0\xa1?T\xec\x06c\xd8\\\xa3\xbf2X2g\xd9~\xb1\xbf\xb8n\xfc\xaa\r\xafW\xbf~\xe17\xb7c\x84\x96\xbf\x08-DIc\x17\xbe?p}\xb8\xa9"2\x94?\x98\xc3\xb8U\xcb\xa4\xba\xbfO\xb5\xbf\xc4H\xd9\xb0?X4\x0cWEx\xb1\xbf\xa7\x19Q\'\xcd(\xb2?a\xfbR\xa0\xc1\xc4\x8f\xbfpiA\x00b\xb0t\xbf{*\xf6\xe3\xca~\x9b?\x9a\x1e\xab\xc7\x9a\x0e\xb4\xbf~\xe1\x94.\x14\xd4\xa2?\xba \xb6\xc6\x8c\x08\xb0\xbf\x0c\xb2\x16\x90\xc6\xe5\x90\xbf\xce\xe8\x15{Z=\xab\xbfA\x19\xe7\xba&J\xc3\xbf\xf96\xd6\x96\x9fw\xc5?\xb8\xd4e\xe02\x03\xb7?j,\xe6\x17\xc1sP?\xbf\'N\xe6\xe04\xa7\xbf\x86\xfc^\xfd\xe2\xa9\x9a\xbf\xeb\x10+\xd3\xb46\xaa?\xd32\xf8S\x9dK\xa5\xbf\xe6\xb9\xa7\x0cw\xe1\x90?\xe7\xca\x92h\xe9\xc3\xb4?\x10|9\x03\xf7\x80\xa4\xbf\xde\xc70\xd5\xeb\xe5\xb3\xbf\xf6a\xd5f\xe2\x80\xb7?\xf2fb\x9c\xf9\x8b\xa0\xbf\x0cW\xd0\xfc\x81A\xb5\xbf\xaa\xe7Tb\xa3\xbb\x83?\x1ao_\x85\xb3\x8e\x90\xbf\x9c\x7f\x8a\xc1\xa6\x17\x97?\xe4\xea\xeb\x86\xef\xfa\xb8?\x02\xa0\xfc\xaf\xff\xa1\xa5\xbf2\x9d_\xfc\xe57\xb3\xbf\xd2\xe8\xdb\xc1\x8dj\xbf\xbf\xd0u\xa2\tC\xb9\xb6?\xa2&\xd8M[V\xa4?\x07\xb6\xb1\xed\xd6P\xab?\r\\\xa6|K\x89\xb4\xbf8g1\xae\xbe\x85\xaa\xbf)\x13L\x0e\x1cc\xb2\xbf\x14&\xb5\xdf+_\x90\xbf^\x1b\x1d\x14j\r\xb7\xbf\xcf"$\xe5\x96\xe9\xa0?\xc8\xa3oR\x9b\x06\xac?\xd4S"\xff\\\xba\xc1\xbf\xb6\xe9\xdb\x02\x8b=\xb6?12OJb\xe2\xa6\xbf\x8c\xb4\x85\xe6>\xdf\xb9?.\xef\xb3/\\\xd9\xc3?B\x13y\x03\xf2\x1c\xb2?\xcf>\xab\x18\xae\x1f\xa3?M\xe2\xa8l\xad\x18\xb6\xbfV\xb93\xf1E\xa8\xc0\xbf\xb9\xc8\xd4\xf1\x0ci\xc2?=\xe5""\xd8\xcc\xc8?>!\x84(I\xcb\x85\xbf\xb4\x82\xca\xc255\xc9\xbf\x07\xdd9Z\x8a\xb2\xc2\xbf\xd84J\xf0\x04\xa1\xc5?\x06\xebo\x07\x80;\xca?\x9cOW\x98\xd5\xfb\xbd\xbf\'[\xe1\xa0\xe5\xa5\xc4\xbf\xa5m\xa4V\xed\xf6\xb2?c\xe4\x10\xd7(;\xb3?%\xa2\xac]\xad\x86\xb4\xbf\x03\xc5\x88\x1a\x1c,\xa6\xbf\x93\xa4?\x9dj\xb2\xb0?\x88\xcbM\xdam\x0f\xb0?\x15\xaa\x93\x93E\xfe\x85\xbf\xffl\xb9Z\x86j\xaf\xbf\xd6pm\xfbKQ\x9c\xbf\xb4\xe6?\x11\xbb\x80\xa1?\xd6\xc9e\xc3\x034\xa3?li$!\xa2&\x97\xbf\xed\xf3\x8c\xd5\xec\xa3\xa5\xbf\x9dv\x1czhX\x9a?\xb20\xf4\xe7\x9a-\xa3?\xf7`\x02U\xa3)\x99\xbf\xb2\xd4\x02\xeeB\xcf\x9a\xbfx#\x95\xcb\x81Rv\xbf\x0c\xc4\x98\xcbr\x8c\x9c?J\xd5g\xa0\x07n\xa3?\x9c\xd4}\xfdZ\x12\x8f\xbfD\xe5[\xf9\xee5\x98\xbfG|\x93\xb7\x97z\xb1\xbf\x9eT\xde\x9f \xcb\xb5?s%}*cO\xb2?\x98\xaeR< \xe1\xcb\xbf`\x0e_\x06\xd5\x80S?\x93r]{\xcb\xb0\xb4?\x9a\\\xde\xa0\x91\xd5~?\x01\xa1\xa0\x14D\x1d\xc0?\x98\xfb^\xff5\xd8\x91\xbf\x10\t\xa6\x86\x907\xb5\xbf\x91\x1cy\xd4\x1ak\x9d?$\x0e\x7f\x94?\xd0\xc2\xb8&D\xf0[\xbf\xc2\xb3-\x14\xd4\xca\x9f?x\xd1\xaf\xaeD>\x98?\xb4\x91__u\x86\xa1\xbfdh\x93U\xf4ww\xbf\xfb\x19\xce\x15\xa6A\xa4\xbfH\xc0\xa3\xc6\x13\x9d\x96?`\x12\xb8\xdf\xee\xdeY\xbf\\\xd0l\xcf\x8a\xaa\x99\xbfbUu\x80\xdf\xe8\xa3\xbf\xa6Lq\xaaG\x9f\xc1\xbf\x10\xf1\xf3\xd9\xd6\x92|\xbf$\n\xba7\xde\xaf\x96?Dl\x14\xa6&\xd1\xb9\xbf@\x876\xbf^*k\xbf\x96\x01\xfc\x1e\xde\x01\xab\xbf\xb2\xa4n\xf9\x8d\xc7\x80\xbf:C\xd1\x1b\x95$\xa3\xbf\x04hq\xfe\xb3\x1f\xbd?\xb0R\xc4i\rL\xca?\xb8\xef\x83\x95\x9a\xe9\xb0\xbfP\x07`\x9c\x13\xa7\xb3\xbf\xb0\xf4\x0f\xddP\xe2\xc2?\x9f\x843\xf1\x1c~\xc0\xbf\x99\xc9|{-\xe1\xbd\xbf\xc0n\xd3k"GU\xbf`Z\xa2Xd)\x89?^\x1b\x80\xa6\xf7x\x9c?\xd1\x96\xa6\xd1\x99#\xbd?\x08\xf2`\xfd\xf9C\x8f?\xb7\xfa\x8bx\xc8w\xc2\xbf\xd6\x13\xdd\x9eK\xa2\xb3?\xf8\x1f&O\xcf\x1a\xb6?ZWB\x02\x9b=\x80?\xd9\x14\x9a\xc2\xf4l\x98?\xb8\xe4\x8f:O\x8a\x8c?`s\x1b\xb0/\x82_\xbfH\x16\x03\x9a\x96\xb9\x91?\xacU4\xdf\x0c;\x94\xbf\xf4\x8dM\xe2\xc0|\x97\xbf\xf0\x03J&\x0bg\x8b?\x87r\x8a\xae\x15\xb8\xa9?\xd27\x0c\xe1S)\xd1\xbf\x8c\x17\xf9\xc9f|\x91?\x8d]z\xa4\xd8d\xa1\xbf^3\xf3\x91\xcdO\x9a?*\x1e|\x9e\xdd\xb3\xd2?\x80rm\xa3\xefc\x84?\x1a\xb9\xb23\x1d\xd3\x90?\x82UHUB\xbe\x87\xbf\xc9\xd7\xb1\xf0\x88\x02\xab\xbf5[\xd0\xca\xeb\x8c\xa2?\xa6k\x85\xa8\xc0\x84\xb0?\xaf\xdd\xbb\x0bN|\x9d\xbfGV\xff\x80h\x0f\xa2\xbf\xe0\xfbU\xaft\x08\x97?\x94\x1e\xd36\xf2X\x89\xbf\x8dVGT\xf20\x9c\xbf\xbf_\xed\x06\x99\x7f\xa4?\xea\x11,\xd9o^\x84?\xad\xb0\x13\x0b\xcb\xa7\xa0\xbf\xe3\x95\xb9)\x9c\xa8f?f\x96\x1b\xfd\x04h\x93?\xd0\x02Fr\xf8\xacI?R\xc2\x99w\xb5\x9f\x95\xbfsL\r\x16\xaf\xafm\xbf\x95{V\x17\xa3s\x93?\x12F\xfaG\xf6\xf2}?`\xbf\xf7\x83\x9a\xc2q\xbf\x88&\x86SB\xb9\x84?`\x90[\xb5n\tu\xbf\xd6\xb0\xe8$\xdfK\xa2\xbfD\x81\xe7\x9by1\x8d?\xa7\x12\xa7_a\xf7\xa6?\x80s\xf7\xd6o\xc3A\xbf\x9a\xca\xd3\xc5^\xf2\x96\xbf\xe5*\xc5\x85\x96j\x93\xbfth&,*\x18\x8d\xbf\x17_Z\xcb\xb1u\x93?\xf5\xcc\xe3\xf5X\x14\x9a?d\x9c\x03p\x95\xabr\xbf\x024OuXh\x8e\xbf\n\x88wg\xf3\xce\xa1?L)\xf7!\xa7\xdb\x93\xbf\xd8\x10\x1c\x89\xb4\t\xb4\xbf\x8f\xeb\x14\x0c\x0cf\xa7?\r\xcf\xb09\xb5\x16\xc1?h\xde0\xa14\xd0\xa6\xbf\x8e\xd5\x84\x0b\xcc\xbb\xc0\xbf=\xc4\xe3 \xba\xcf\x90?\xfar\xfa1\xaak\xa6?@\x08l\xe8\xd3\x17j\xbfr\xd5x\xfc%\x87\x82\xbf2p\xed\xdf\x87Y\x95\xbfQqL\xbbzl\xb6?\x9cOe\xca\xed\xcc\x9c?D\xb4\xf2\x1c\xc9\xeb\xb9\xbf\x1c&\xa2\xae\xc4\x13\x94?\xe0\xc5\xb6\x16\xf0\xf4\x96?|\xc5 \xa7\xfd\x16\xb3\xbf\x90.\xbd\xef\x81\xe0\x83? \xcd\x95|\xdb\x9a\xa6?` \xe7NA\xe3z\xbf\xf2\xfa/\x81\xc3\xfe\x81\xbf\xc0\x93\x1b\x96\xc6\x14&?\x8a]G\x80\xe5Vm?\xd7j*\x98[\n{?\xf8U\xfd\xeb@\xb7U\xbf\x90,\xa2,\x1dz\x95\xbf\x95\xf6A^\xd1\t\x85\xbf,C\x8f\xe6\xd3}\x81?\xca\xbf\x11G=\xfd\x91?\xc3\xc3\x824JN\xa1\xbf\x87\t\x7f\x93\xd1\x06\x9b\xbf\xc4\x177\x98B\x96\xa6?\x9cB\x97\xac0\x01`?8\x97\xa2\xc6\xf6R\x7f\xbfB\x08Kw\x04\xdc\x9a?q"\x03\xa9@\xd3\x82?\xc0$Yv-\xf1f\xbf|{\x16\xeb\xcd&\xaa\xbfXI\x9ap\xb4\xf2\xa4?@W\xd2\x83\xf6\x7f\x84?a\x8b\xf2g4\x15\xb9\xbfv\x08\xab\xf1\xc0\xd4\xa1?0`\xf87\xd8gh?b\xc2\x7f\xfe}=\xa6?\x89\xc3\xf8\xa4\x0b\x86\xa3\xbf4\'\\\r8[[?\xc4\x10\x81j\xf0\xc4\xb7?\x86\x10\xb2u)H\xa7\xbfd \xe8\xa5e\nb?\xbb\xbcA\xa3}\xcc\x98\xbf\xba\x00\xf9\xb3\x02\xa2\xa2?\x13\xfd\x11\x9d\xca\xd8\xb2?\xb5\x92q\xfa06\xa0\xbfZ4\xed\x0e\xe1\x07\xab\xbf\xf0\x9eA\x95\xbaK\xc2?~\xc6\xc3YT\xfd\xa6\xbf\xf8T;b\xf6\x83\xad\xbf\xd3\'\xa7/\xfa\x8e\x92?9\xbf+T\xee<\xa3?\xb9\xd1>\xb4x\xcf\x93?i\x97^\n\x80\xee\xbe\xbf:4\xce\xc5\x15\xe1\xb2?\x8c\xf6\xf8\x06\xcf\xb8\x92?\xf3|I\x19L\x8c\xaf\xbf\xa8\x85s\x06:g\x8c?\xa9\xe4\xb6vn\x9a\xd2?\xe7\x05\x99\xe3\x8e\x10\xa9\xbf6\x9d\x1b\x14\x8e\xa1\xe0\xbf {\xd9\xe3\xa8\xedn?l{\xf0\x16$\xb0\xd0?\xb2\x06\xe9&\xaf\xbe\xb9?\xa8L\x8d\x0f\xec^}?\x00E\xc6\xaa\xcf\xf3\x0e\xbfF\xc5\xc7\xbd\xd7\xfb\xad?\xbc\xe9\x0e=b\x1b\xa4?3p8\xbe\xb2\n\xab\xbf$\x93\xffM\xb78\xbe?\x1f\xd2\xbc\x13\xcf\xd3\xb2?\x97`N[\xa5\x08t?\xb2V\x80\r\x12E\x8f?R,\x0c\x88mT~\xbfx}#\xa8\xc4\xa5\xa1\xbf\xef\x1f\xe9\xc1\xdb\n`?\xbc\xab\xac\xde"\xca\x9b?\xa1f\xf3\x8a\xa2\x07{?r\x87o\x01N\x9dj?\xcf\xbe\xa2\xbc3\xd4\x83\xbf\xa9PZn\xa0\xa4\x98\xbfa\xda\xbd\xa2\xc4\x10\x84?r\xc8\xf0fY\xbd\x86?\x13T\xdcq\xe9,\x87\xbfH\xd28D\xe7\xaf\x96?\x18\x9c\xc4>\x87\xa2\x9e?\xbe\x8f\xdew\xbaK\x9e\xbf\x17\x97\x01G\x12<\xa1\xbf,d\xa5U\x05T\x87?&\xaew\x99\x1cb\x84?Ri\xfbs\xcf\x11\x8b\xbf\xd5\x9am\x0b\xf79\x8e?\xbf\xe0C\xb2\xf7\x8e\x95?F\xcf\xcf\x93\x8ed\x93\xbf"\x0b\x1f\xcak=\xa6\xbfX{\xdb\xec\x8d\xbfL?Ts\xf8\x83A\xf5\xad?I$\x8a\xad\x98Ey?K\x84[5\xb5\xf2\x8d\xbfR\x08\xf3\xfah\xb7q\xbf\x87b\x14\xb5\x04\x10\xa7\xbf\xbc\x0b\xbb\xbe\xd3\xcfu?\xc56\xe0m\xe4T\xaa?\xd0F\x15f\x85\xf4Z\xbf\xf1<\xfe\xe8\x00\xec\x92\xbf\xab\xd6q\xbdM\xb2\xb1\xbf\xa6P\xab(\x94Z\xa0?5\xca]?\xad#\xcc?\xec(,+\xfd\x02\xbf\xbfV0"\x12\x17@\xda\xbfx.\xbc\x91I\x8c\xc0?\xb0\x00G\x92e\r\xdb?\xae\x10\x8a\xdaBV\x81\xbf\x97\xc9!\xfcT\xa3\xc5\xbf\xf6\xcb\x1e\x97\xb5M\x8d\xbf\xfa\xb2\x96\'\xa8^\xbf?\x9b\x18*\xa6\xf3\x9ap\xbf\xdb#\'1/\x00\xd5\xbf\x1f_6r\xe8\x04\x9c\xbf/\xe4\x14\xdf\xbcB\xd5?\xdc#o|K\x94\xbe?O\x96\xeb\xed\x94&\xc8\xbf\x85\n\xdf{\x91[\xbf\xbf\x0f\x0f\xa7\xf6\xd6\x98\xb1?\n<\xe2\xf1\x98N\xa5?DQ\xda\xa8\xbd\xdc\x8d\xbf\xce\x01\x8f\x9cUUd\xbf\x16!/\xda-9\x88?\xc6\xf6\tjcDp?&\x14\xc3-7\x1aL?\xd2;\xb4\xf3\xbe\xc3}?\x9arL\x1c\xe5\xa8q\xbf\x90\xcbx\xfc\x1e\xc6L\xbf\xb2\x89\xac\xf3hnu\xbf\xb4<\x05\xbc$T\x99?\xce\xcc\xb1\xad\x8f\xa8{\xbf\t}\x1d\x0c]\x1b\xa6\xbf\xd3\x97\xef\xd2m\xf1\x97?\n\xfad\xefx\xabx\xbf(w\xf4\x1dg,m\xbf\x88A\xdf=~\x82\xa1?xI\xf2\xff\x8e;v\xbf\xf4L\x98\xb4\xa0$\x92\xbfIe\xd0\xc0\xa7~\xa3\xbf\xdc\xc0h\xe8\x9b"\x91\xbf\x90Q\xf8\xdai\x97\\\xbf\x89\x87\x86:\x13\r\xb1\xbf\xcc\xb2\n\xbb5\x1f\xb3\xbf\x9f\x0cR*3\xe3\xa9\xbf\xc4\xa5\xfc\x96\xab\xda\xb5?\x1a\x86\xaa\xb2\xec\xa4\xbd\xbf\xb7\xb5\x9aX*\xfd\x96?\x8d$E\xa1\xdax\xc1?\x94\x13\x9c\xfb\x19\xc5\x8f?\x18P\xe5U\x1b\xaa\xb8?\xc4\x9e\x93DG\xccx\xbf\xb76\xe9\x03\x16\xe2\x9e\xbf\xc7\x8e\xa5\xfb\x08d\xb3?\xfe\xa8\xaf\xe6P\xc3e?@\xc2\xb7\x89\x8evT?\x7fdc3g\x12\xb6?\x02\xe4\xe3%\x13g\x97\xbf\xbf\x1b\x03\xfbvj\x98\xbf\x14,G\x8e\x11\xf0\x93\xbfM\xf5\x91"\xfb\xd5\xa1?*\x80\xe1\x8b\x8b\x7f\xa3\xbf\xa1\x02R\x81zn\xb3\xbf\xd1\xce}\xba=\x0c\x85\xbf`}\xb2\xb1@C\x81\xbf\xcchu\x0bA\x1f\x9f?:\x0f\x80\x82\xc2$\x98\xbf*0\x8c\x08[\xa2\x94?\xe4\x8a\xddp \xa7f?>b\xfd\x9c\xf44\xbc\xbf\xb5\xcf\xf2\x81\x02X\xa1?n\xe9\xb7\xa1\x01\xce\xb9?\xe4\x8c\x06,\x9f\x99\x8d?\x00-\x11\x97X\x86\x9a\xbf\x8f\x94c\x042\xb9\xb5\xbf\xc3x7O\x94\xe0\xa6?\x83\xd6$\t\xdd\xdd\x9a\xbf\xc0\xf9\xdbE\x93\x94\x82\xbf\x10QX_K\x84\xb2?\x88\xad<\xde\xb4\xd5\xa9?\xc2A\xfe\x1c\x0f\xab\x91?\xeeq\x13)\xeb\xa8\xa2\xbf=\x0b\x13\xc2\x0ch\xae?H\xf4\xee\x8e\xfd\xe1\x92?*\x9e\x90\xc8f)\xaa?D\x19\x9b\xe0Bmu\xbf\xa6\x8e\xc0\x81\xac\xa3\x8b?\xd4\x109\x05\x1cu\x92?j\xef0\xb7\x9dp\x89?\x00\x9e\xf7\x81\xd4.\xa6?\x05p\xc5z\xf0\x00\x9e?\xe8\x00\x83(\x00t\xb4\xbf\xdbH\x85c\xd5\x16\xad?"\x13\xf6\xe2\xf5\x11\xa0?O\x9f+\x91\xc4\x0c\xb4?qNHG\x1f\x00\xb0\xbfL\xba\x19m\x15\x8e\x97?h\x9fg(\xc0\x8a\xb1?\x16\xbdC\xd2\xda\xca\xb9\xbf\x84Z\xf5\xd7U\xcb\xb3\xbf\xbf\x16\xd3;\x98g\xbb\xbf\xb2#\x9a\xe2\x8e\x80\x82\xbfk(\xc8\xf7\xba\x01\xbd\xbfw\xc6\xbf\xa8\xa7!\x8d?\r\x13\xb0\xd1\x87\xd8\xae\xbfI\xaf\x8e\xcf}\xbe\xa0\xbf\x94q\x1e\x96$\x85\xbe?3\x90k\x15\xc0\xa2\xa6?\x14\xc9\x01\x00As\xb2\xbf\xb5\x8b\x1f]\n@\xa1\xbf\x80\x0f\xafP"\xc0\x98\xbf\xe7z\xbe\xf3\x07\xa6\x8d\xbf\x8d]gF\x02\x04\xb5?\xdb\x05\xa9\xa6\x94\x80\xad?\xce\xd8\xb5\x8b\xd7j\xb1\xbf\x1e\xa6\xcf\x13\xcd\xe6\xa5\xbf\xa5\x8dD\xc8\xb9 \x9d?\xa7\xf1o5\x12\x97\x8c?\x8b1\xa6\xb0\x89|v\xbf\xd4\x07\x1cm[k?L\xf2U\xde\x08\x1f\x94\xbf\xc44\xd9\xd3\xd0\xd3\x86\xbf\xba\x85m\xdeT2s?>\xbb\x9c\xb9\x83*\xaa?\xde\x9d\xbf\xf86V\xa5\xbfR\xb4\x8f"ue\xb7\xbf\x0ew\x9a\xf8\x9b.\xa9?D\xe1\xa0\xcb\x04\xe6\xb8?\\\x07\xf0\xa7\xcc \x8d?t?\xcc\x12\xc1*\xa5\xbfU\xf7\xd8\xbb7e\x98\xbfV$4#\xdf\x13\x98?\xfc\xa8\xc0\xeeg1\x93\xbf\x18\xcb]\xaa\xf9i\xa5\xbfh\x1e\xef\xe7S\x8ei\xbf\x8a\x10\x0b\xac\xe2\xba\xa8?\x85\xba\xb1\xf5\xb2"\xb4?\xee-i+\xfc\x8d\xa5\xbf\xf3\x02dQ\xe8\xdb\xae\xbf\xc00\xd43\xf1\xda\x8c?0%\xa5\x95\x17\xa7\x87?4\xc4\x9eAl9T\xbf\\-\x18\\\\\x98\x9c\xbf\xfe\xc5n\x99$\x9e\x85?T\xe4r;T"\x91?v\xb5;\xa5%\xcf\x95\xbf\x8aZ[\xecL!}?\x98\xd0f\'X\xee\x91?\x18\xcb\x99h\xcb\\\xa3\xbf\x0e\xae\xcd\x02"\xfep?\x16\xd2\x02}\xc2P\x91\xbf\xaeC\xffEU\x8a\xb4\xbfld\xe4_1\xd4a?\xe2\xac\x1fk\xad<\xad?l\xcd\x80~a\x08\xa8?H\xdc\x97\x84qnV\xbf6\xaaXX\x9du\xa7?"@.\x8a\xf8\x92\x8c?q\xe41\x9fYv\xa5\xbfk\xcd\x17Q\x8b\xb7\xa8\xbf\xfa\xdapu\xf5\xf3\xaa\xbf\xf4\x13\x81z\x89a\x80? \x08\xef\xc1\x8e\x04Y?\x82[\x8f2?\xf5\xa1\xbf\xce,\x05\x9f\x92\x1c\xbb\xbf\x8aE\xecI\x1f\xe6\x92\xbf8\xed\x90G\x7f\x00\xa0\xbfe\xee\x7f\x08"Q\x8b?Z\xb4\xc9\x02\xd45\xaf?\xd3\x8a;/\x11=\xb2?1\x13\x81\x88V\x0f\xc0?\xd0\xa3\xee0L\xf3m?\x91\xb9\x99!\xb2v\xab\xbf\xf5\xd4\x97\xdb2\x80\x9f?(\\\xad\xb4\xeb\xd1\xa3\xbf\xa0;\x9bZ\x1fr\xa3\xbf\x00}\x04\x87*\x02\xc0\xbf\xc5o@\x81\x10\xc8\xb5?\xba\xe9\xe3\xa0\x85D\xa9?1\x8f\xf4P\x06\x05\xaf\xbfx\xe1\x0f\xf6CZ\xa5?\xdbq\xaf\xdcr\xd6\x91\xbf4\xdb\xe9\xd8q\xd2\xbe?I\x7f\xd5R\x9c\xb9\x9e\xbflR\x08\tl\xd2\xc5?\xdd\xac\x8ey\x03\xfc\xb2?\x10\x90l,\x0f \xc9?\xa8\x8dF\xce\x91\x93\xac\xbf\xa0$\x8d\x0f}h\xa7?}S\x9f\'\x92\x18\xa0?\xc0|\xb4\xde\x9f\xa8q?\x8bN\x1d\x9f3\xfd\xa2\xbfJ*\x90\xe0\xc7\x06\x98\xbf\xb1oy\x0fZ\xeb\x96\xbf,\x05\xac\xf8\xa7W\xb0?\xc0\xe27\xefP\xf7\x96?;Y^W\xbaS\xc4?x<\x8c\xfc\xc6\xfe\x88\xbf\xd3\xb3\xef\xf9\xcf`\xac\xbf,|\\\x8cK\xad\xac\xbf \x11$\xab\xc9\xa2\xc0\xbf\xaaR\xf1\xbac\x17\x88\xbfF\t#V\xfcK\xb7\xbf\x12Qf\xc5m\x85\xa6?\x13\xa3\x95waI\xc5\xbf\x98h\xe2\xe5\xb7k\x91?\xd9\xa0\x8b\xb0\x18T\xcb\xbf6}\xe6\xd5\xcc\\\x87\xbf&z\xb3\x9c\x9e\xa9\xc3\xbf\x8eQ\xc1\x18|U\x98?\x07\xfd\x10O\x98\xa8\xcd\xbf`\xca.\xc02\x85\xb1?\x94\'\xb0\xfa\x93a\xcb\xbf\xe7\xde\xea\x0f\xa7\xa0\xb1\xbfQX\x85\xbf\xf6\x96\xca\xbfpj\xff`\x08\xc6\x83?\x83\xb4uQ\xe5\xd6\xc3\xbfV\x1e\x97\x00\xb5v\xa1?\x8a\xa71\xf9\'\x8c\xd3?\xe9\xef\x9d\xbfN\xa2\xa2?\x1eA\xffz\xc0D\xd7?\x033\xdb\x03\x16\xa9\xac\xbfm\xd7,\xbc\x1f\x1f\xd5?`!\x83\xc5"\xf9r?t\x86\xbd?\x10R\x9a?\xf4\t\x81z;\'n\xbf_\xfc\x8a9#w\xaf\xbf0\xdch\xcdV%\x90\xbf\xad\xdc\xc0\xa1"Q\xb3?3\xfd\x8a$\x00\x8c\xaa?\xd5So\x10>\x9e\xa9\xbf\xa6\xbdr\x88#\xbe\xb0\xbf\x13R\xac\xdds\xf1\x8b?\x1a\xd5|\x85\xce]\xa0?kMY\xf0\x88\x98`\xbf\x04\xf5\xcdpE\x92c\xbf\x1f\xed`\xdc\x04/\x1a?\x90\x93KL\x8c!\x93\xbf\xcc\xc9;\xef\x8fw\xaf?7\x08\xae\x01\xbaB\xaf?\xc6Gk\x0c3\x14\xbc\xbf2\xbd\x8d\x16w\x0c\x9b?\x8e\x0e\x86]\x00h\x93?@G\x915\xafl0?\x8d\xc7\xd1\x9f\xba|\xa0\xbf[\xba\x17jY\xde\xa2\xbf\x1b-|\xee\x8d\xed\x92?\xa0B\xa0\x1e\xedRe\xbf\xc8\xdatxi\xd0\x82\xbfC\xc9\xb0\x8c\xb1_\x91\xbf\x08y\xfc\x89\xdaP\x99?\xa8<\xe89\x8e\\\xb4?a4fg\xb5\xb6\x96\xbfq\xc7XBE\xcd\xee\xa8\xbfZ4\xdb\x145\x06\xb3\xbf\xbb\x87g/\xd3\xf6\x90\xbf\x17" \xbb\x89\xd0\xad?\xe8L\xad\xa7\x9f\x17\xa4?L\xc7\xc6$\xf5\xe1\xc7\xbf^h\x0ep\xf3K\xa0\xbf\x96 \xc4{\xde[\xd0?\x16\x85\xc5xgW\x86?/ b^\xde\xe1\xcc\xbf\xa4C\xad\xf0\xaf\xb2\x86\xbf+\xc4\x8a\xb7P\x9e\xc3?\x14\xbc\xd5w\x96\xac\x91?\xa4\xc3\xe8:\x90J\xb7\xbf\xda~\xf3\xcbC\xa6\x8e\xbf\xdb\xb5p\xc5x\x04\xac?1\xdfh7\x8du\xa1?Ao\xa6G\x93\x99\xa1\xbf"\xa1\xff\x1f\xdc$\xb1\xbf\xd4\x9d\xa1\xe7\xf3\xbe\x8f?\x96\xa6Q\x87\x8c\x19\xaf?\x10)7\xc5\x1a\xcfu\xbfH\xbd/?\xb3\xc2\x9a\xbf\xb4\xb9\x0f\xb4\n|\x87\xbf\\\xf7\xa9\xc3\xab\xf2\x88?\xdf\xb8\x04\xec\x13\x91\xa2?\xba!b\xe9\x9a\x01\x94\xbf\x0b{\x87\x17\xd3\x8d\xaf\xbfV\xe3\x93\xec4\x88\x95?\xf0\xe7\xc9\x88\x7fd\xbc?\x10=\xbd\xb2\xee\x8em\xbfP\\}\xb9y\xd0\xc3\xbf\xe6\xc7Ez\x15"w\xbf|\x8c{M\xd6\xa7\xc0?\xd0\x0c\xeb\xea\x08\xdba?\x08\xabrd)V\xaa\xbf,Gl=&]\x91\xbf@\xe37],(t?D\xf67}GD\x97?\xed\xffTV\x9b\xa5\x94\xbf\xd8\x8e:@SK\x8a?xy\xd2\xbe\xf0\xc2i\xbf\xec\xc4Q\x8c\x8dV\xa7\xbf\xb4\x9b\xa3\xc3\xca\x8f\x8e?\xae\xcf\x00\xa3\xc3\xd5\xa0?\x00\x9dh\x18\xb5\x19v\xbf\x008{\x80\'\xec$\xbf\xfa1\x1a\x18\xc5\x9c\xa4\xbf\xc2\xbd\xba\xd0\xc1\xbb\x96\xbf\xaa\xf5\x03/\xc8\xa9\xb8?\x0c\x9f\x8a\x9b\x9d\xd7\x99?\xc4,\xa4\xdd3\xd1\xb0\xbfa\xebKvK}\x97\xbf\xc8\xe8\x84&\xf97q??w\xe0\x8aaL\x8a?\x081h,\x95\tz\xbf\x9c\xff\xb3\xae\xd4y\x90?,3\x81\xb8T\xef\x8c\xbf\xb8sy\xbdJ\x1fo\xbf\xbe\xfc\xe72^\x15\x94? \xc0Yk\xc2,\x92\xbfx\x08gs\x1e\xb0~?h\xf1\x155\xb5\x87f?J\xa5o\xe2\xdey\x90\xbf\xa0\x97D\x8a\xe6\xcd}?\xbc\xcd;wj\xa1\x90?\x90\xed\x1a\xc2\xacS\x90\xbf\x12\x8e9\x08IK\x9d\xbfg\xd1\xfeM\xbb\xe2\x91?\xc0#"bJY\x8a?\x00\xacr\x10$K\x12\xbf\x00T\xb2\xbbz\x8e-?H\xfa\xdd\x17\xfd\x17t\xbf\xa0~zDh\x9eq?\xcc\xce\x90_\xa59\xce\xbf\x87.\xcd\xfc\xb6\x87\xaf?(\xb3=\r\xa7V\x95?\xea\xe1\x05\x82\xf2I\xa3\xbf\x82\x03\xf9\x8f8~\xc9?\xa8\x1d\xecu\r\xd1\xab?o\ny\xb2#\x1e\xd3\xbf@\x898z\x1b\xe3J\xbf\x98\xbb5\x7f\xbdI\xb2?fEB\xbb\xb0\x9c\xa7?\xd8\x926\xc5\xaa\xca\xcd?\xc2~{l\xadx\xbc\xbfl\xe65f\x9a\x86\xd1?\x9aT\xf0h\x85\x9c\x92\xbf\x9a\xb1B\xda\xa1/\xc7\xbf\\Y3\x8e\xbf\xf7\x81?^\xd3B\x9d\x81\x11\xa6\xbf+8\xee\xda\xc6\xda\xb9\xbfF\xca\xf5)1\x18\xd1?\xf1\x96\x9e\xf4sn\xb8?\xf1\x9b6\xbe\x98g\xcd\xbf\x9f\xcc4\xda\xb8L\xb9\xbf\xa7r\xa5\xa1\x19+\xb3\xbf}Y\x10\xbf\x9f\x90\xc0?\x00\x8d\xbby\x19Q\x9b\xbf|F\xb4\xd9\xb6\x9a\x89?\xa0cN\xda\x9e\x0b\xa3?`*\xe0\xc2\xa1r\\?\xae\xb5\x99\xdaW\xc9\xa5?\xdb\x14\xdfjs\x08\xa7?<\xdb*\x93\xe0>\xb7\xbfD;\xde5\xf8,r\xbf(\x14\xd3\xf3\x8dV\xa4?\xf51\x12\xb5v:\xa0\xbfH\xbb;D.I\x8b\xbf\xccL\xecK\x1f\xe0\xa9?%\x9f\x9a(\xbc\x80\xab?\xd0:\xc2\x19\xde\xe1\x8e?\xbf\xcb\xc0\xdf;\xa1\xb2\xbf\xc4\x91\x1f\xca^z\xb9\xbf\x98\xf8\xb0^\xbc)a\xbf)\x81\xaa\xa04<\xb0?\x1e\x18gi\xc7\xb2\x82?\xd3\xed\xc2\xe1-I\xbc?\xa2\x93\x1f\xa0)\xa1\x94?\xb2\x9cq\xbb[U\x92\xbfT\x8c\x1bg\x00\xb6\xad?D\xee\xedc\xc6>\x99\xbf\xbcV1\xae\x8a\xde\x87\xbf\xc0\xc9\x07`%0p?\xda\xafZ\xfa\xf9\x1c\xa0?u\xa41\xad\x08\xb7\x92?&W\x04\xbf\x86^\xa1\xbf\x84\xc7\xba\xabTow?6\x94\x82\xccW\x94\x82?\x06\x1bE\xe2\x14\x03\x86?\x8e\xa3\xf9^:\xa1\xa7\xbf\x00~1\x07\x1f\x07~?o \xf1\x1cA\x83\xca?\x1a\x06\xd6\x9c~\xde\xab\xbfGc\xf2X\x1a6\x91\xbf\x974\x81\x1a\xc2\xf3\xa5\xbf\xc9\xa2\xd2 \xb3&\xc9\xbf{\xff\x9cx\xf9$\xb2\xbfP\x1b\xf6\x08*\xfco?\x81\xd7\xc2\x93\xb2H\xb1?e\xc7\xba \xb7wx?}\xe1\x9cr\x06Z\xcb\xbf\x11\xbd\x08\x9d\xc7\x18\x9a\xbf\xce[\xe9\xdej\x05\xd1?3G\xc5\xe6\xc1\xd2\x9f?\xe3\xac:\x0fm\xd1\xcd\xbf\xa6\xf0\x1c\xe4\xe7o\xaf\xbfA2\x863&\xdc\xc4?\nH\xf2#`\xcd\xb2?Ypm\x00\xd8g\xb1\xbf\xc90\x00$\xdb\xf0\xa9\xbf\xdc+z\xa26N\x94?\x15;\xa0\xf1}\xf7\x9c?\xd6\x96k\xd6Z\xcd\x82\xbf\xa09\x99kBAD\xbf\xa8\x82\xe4\'\x8a\xbc\x83?\xacN\xc2P\x95,\x93\xbf\xf8\x90\x9b_\x85\xfc\x92\xbf\xcf,\x8e\x9d,3\x96?\x0c\xf4|\xdd\xa8\xda\xa3?\xb2\\\xa6\xc4\x15\x90\x9f\xbfi/\x9b9\x8fH\xaf\xbf\xcdf?^\xc4\xd6\xa5?2\x0f\x10\\G\xe6\xbb?\xa9\xa8\x07\xe4\x13\x1a\xa2\xbf\x01)\xb92\xb5\xa5\xc3\xbf\xe0a1\x8f"\xa8\x9a?\x9a\x914\xbd>\x0b\xc6?\x1f\xc6\xd7b\x13v\x96\xbfTA\xc9\xc8\xb7E\xc2\xbf\x0c:\x83\xf5L\x12\x84?\xa2Z\xf6\xd5*\xfc\xa8?\x14<\xa6\xe6\x01\xdd\x8b\xbf`\xbe\xcf\xfb\xa3Ah\xbf\xf0\x8c/\xcb\xe0[\xa4?\x10\x8d\xd6h\xa0\xeaj\xbf\xee\x1f\'-\x86\\\x98\xbf\xc0*\xcd\x8d\x95\x98\x83?\xfce\x8a\xa4\x90a\x8d?\xca\xeeD0\xe6\x04\x92\xbf\xa2\xbd\x8b0=\x8c\x90\xbf\xdahX\xd6\xce]\x89?"X0\xd8\xf8w\x9e?Z\x98(\x9b\x1b\xc8\x95\xbf\xf2\xb82\xce\xd9\x93\x8f\xbf\xba\x03\xb2\xe2W\xff\xa4?p\xef\x19|\x83L\x85\xbf\xf0\xc3\x87\xc4/\x88\x8c\xbf@5\x9dT>X`?\x00\x9f\xbb\xffd\x0eZ?\x80Q\xc3K+\xccf\xbf {\\\xeb\x19\xc8m\xbfTh\t ]*\x87\xbf\xa8\x0c)\xdb\xce9\x93?V\xbd\xff%\x9aay?\xcb\x0b\xc3\xe2\xdb\xa9\xa1\xbfn#\xa8\xdfo\xd5\x91?x,\x00i\xd8\xe4\x8c\xbf\xecr+\xd0L\xc6\x8c\xbf\xe8H\x8e&\xe5e\x9d?wp\x10\xbaV\x11\x96\xbf \xd2\xefo\xb9y~\xbf\xc0!\xe0\x84[\xb6\xb2?\xded\x04L>+\xaa?\xf3(\xc7,/\\\x99\xbfd\ns\xfbu\x87\xa3\xbf\xc7\xda\x08q\xf7d\x9e\xbf\xadwD\x9e\xab,\xa8\xbf\xbe\xfa{\xbb\x14>x?j\xfewGj\xde\xa6?r\x92b\x8d\xd3\xaa\xcc?\x1a\xea"\xe9\x8a\xf4x?9($\xeb9\x06\xc7\xbf\xf0n7\x0c=Uo\xbf\xc8[M\x16C1\x9e?<\xbb8S\xd5/\xa0\xbf:\xea\xdcb~\xe0\xc5?\xcc\xcf\x9bw\xf2\x98\xa3?\xa5H\xa6\xa4@"\xbb\xbf\x86a\xbdXEi\x86?Z\xc5\x9b\xefQ\x9f\xc1\xbf2p\xee\xed\x85\x89\x90\xbf_.\x93\xd3\x1b\x94\xc3\xbf\xca\xf0ov\xd2\xd7\xa5?%\x9d-s\xdd\xda\xb2\xbf|\x04\xe5\x82i\xcf\x97?f\xc0Q\x03X\xb4\xca?\xec\xf5{\x04\xab\x0cu\xbf)\xd9\xb4qP\xbe\xcc\xbf@\x16\xe2\xa7\xe1T\x7f?H\xa3\xfd\xb53\xbe\xb6?27\xf1\xd2\x97\x9a\xa5\xbf\x05\x81\x8d\xa8\xb7h\xc3?\xba\xc2I\xe3\xf0m\x9b\xbf\xca\xfbD\xd2\xa0\x7f\x8d?\x94^\n\x99\xa1\xf6\x98?\xa7Y)p\x1e\x1e\xa2\xbf\xb8Q\xb5\x87\x96\x06\xca?\xd7SM\x19\xb6\xec\xb3?\xe5gdz%\x0f\xb1\xbf\xfa\xd8n\x7f\x1a\x94\x9b\xbf9\xb8\x98\xe0\r\xe3\xb2\xbf\x12\xe1e\n\xc7\xeb\x9d\xbf\xc8e\xca\xdb \xa2\xb5\xbf\xe0s \x93k\xfah?\xf8\x15q\x803\xdf\xc8?\xd2G\xe0w,z\x8e\xbfd\xa15,\xef\xf0\x91?n7\t\xb3\x85*\x9d\xbf>d\x14[:\xe8\xcd\xbf\xbe\x0b\x02{\xd0\r\xb9\xbf@\t\'R\xb6v\xc6?!U\x18\x15(\xce\xa3?\x7fP\x8fX\x9f\x16\xb8?\x99b\x95_\x05\x82\xb1?q,\x86A\xaf\xa5\xa2?\xffA\xb0\x11l\x85\x99?\xba(\x17\\X\x0c\xcc\xbf\xeeymFO\xb1z\xbf\xe0\x00\x1ag\\\x87{\xbfv\'\xa3%wL\xa9?\xcb\xfb\xda|\xa4\x91\xad?/\xfa\xbca\x80#\xa1\xbf&\xcb\xbb-F\xb5i?\x0e\x94\x1a\n\x8d\xdc\x91\xbf.\xe6\xda\x8ayE\xb5\xbf\xe0\xd9\x06V_\xae\x9d?\xa8\xc3\xa2\xa3\xbd\'\x8b?\x1d\xcad\xad\x95\x9e\xc4?\x90@\x84\xb1\x8f\xb4a\xbf\x81\xc5\x04IB\xa6\x93?\xe9\x98]\xff\xcd\x9b\x90\xbf<#\xf3F\xd1A\xc9\xbfzV\xf0\xc1\xc3E\xa2\xbfp\xff\xdaD\xd4\xb2R?\xb6BJ\xb7O\x80\xbd\xbf\xf8\xc0}"]\x11\x9f\xbf\xd37H\xbd\x07\x01\xd4?V$\xbb\x1e\n~\xa0?\xa4Ol\xef\xa2#\xd7\xbfn`\x13\xa1\x1f\x8a\x9a\xbf\x86G\x98y<\xdc\xd2?\x99m\xd5\xd3\x7f\x85\xa4?\xd8>\xb7\xbe\xae\xab\xc8\xbfU7\x9e\x94i\xf5\x99\xbf\xbev>\xb1CM\xb7?\xa4\xd4/\xa3Z\x1b}?\\\x07\xbfN\x9c@\xa0\xbf\xea\xfe]"+\xf3\x84\xbf\xf7N\x110q+\x88?\xa8\xae\xa4\x17\xe3\xf8r?\xf0k\xae\xb59\x03~\xbf&JE\x01\x1e\xf7\x90?\xb0\xc9\xf2;\xfc\xe6\x8d?R>\x9ca\x87\xe7\x9a\xbf\xb8\r\x92\x92\xae\x07\xa6\xbf:\xd4\x0f\x0e1\xee\xa8?\xebw\x94\xdb\x88#\xb3?c\xf6\x8b\xb3y\xb9\xaf\xbf\xe4\xc8@}oH\xbc\xbf|\xca\x89\x1ddH\xa4?\x92\xf6\xf1\xbe\xf5N\xc3?\xe6\x8b\x0cq\x84L\xa3\xbf\x0e\x0bQS\x0c\x82\xc6\xbf\x8f\x93t\xaa\xca\xff\xa6?\xa1\x19G\xce\x01\xc4\xc3?U\x7f\x11\xeaS\xc1\x89\xbf\x1a4\x1e\x19@\xbd\xaf\xbf\x8c\x8f\xaa\xf1\x900\x95\xbf.\xa8L#vQ\x96?\x88\xc5V\x0e\xc9\x9e\x8f?\xfc\xf6\x1f\xcf\x1e:\xa0\xbf\xd0\xa61\x9b\xb8Mu?\xf7\xa5\xf2\xb3C\xc7\x9b\xbf\xa8\xd8j:\xa13|?\x8224\xd7[+\xad?:\xac\x1d\x94\x07r\x92\xbf\xe8\xab\xc0\x96\xea\x82\x92\xbfV\xaa[\xaf@H\x96?\x94\x94\xc9\xd3\x8eq\x94\xbf\x8c~\xe5\xc5\x05(\x94\xbf`\xfd\xc28(\xe5\xb0?Xz\xdb\xa5\x83\xac\x83?\xec\r\xf3\xdc\xd3\xe9\xa7\xbfP\x8a{\xfav\xf0x\xbf8\x18\xb5V\xab\x80\x80? \xf5\x08\xee\xeanp?\xc0"\xf0\xb5\x81sj?\xe8~\xe2\x91\xaf\xa3\x83\xbf0\xe7\xeb2\xf9\x14}\xbf\xd6\xd6*\xb6G\x12\x8c?@V\xa1\x06\xa7\xefw\xbf\xd9\x11X\x9e{s\x84?\x00f\x81\xf8e\xebp\xbf2Yq\x0fS\xf4\x8d\xbfx\r\xc2\xde\xdc\xb3\xa0?\x0f\x02\x14\x1dSc\x83\xbf\x00\x16\xd48\xfe\xe9L\xbfp\x0fP\xa3\x9a\xae\x82\xbf\xd8K\xda\xff,\xa7\x95?\xbeP.,\xa8\xf7\xa3?@[\xa7\xa7\x83\x15}\xbf\xf9\x95\xcd)\xc6\x89\xa1\xbf\xb6,\xda\x00\xc8g\xb4\xbf<\xcf7\xebE\xc4\x85?\x82\x10\xecc\x04\x1d\xaa?\xf0\x13\x01\x8c\xe3or?P9\xde\xc0)\x0e\x7f?H\x89]\xff\xf9\xf8\x9d?"H\xdb\x1d4{\x9b\xbf`\x90\x17\x11,\x18t?\x01\xe7s\xd9\xe4\x1f\x9e?\xd0\xb2\xbc\xd7{\x0f\x8c?\x19\xff\xf9\xd1\xf0\x03\x99?r\xdb\x81\x05\xb8}\x9e\xbf6\x96\xb7\xab\xbd\xd1\x91\xbf2\xf2\x90w{\xf2\x88\xbf\xec>\x96]\xed\xd5\x96\xbfh\x8d\x82\x80\xd0\xa1\x86\xbf&\xa3.\x1f\xd0\xfb\x96?\xf4\xc7\x8b.4\xc8\x93\xbf\x1c\xb9i\xb7?\x93\x9a? \xef\x12>\xaa\x7fy\xbfH\xe2\xcd\xbb@\xa4t?,\xa0\x7fWU \x94\xbf \xaa[\xc1\xa3\xa8\x87\xbf\xb0\x0eQl\xd7\x94s?\xdc\x1c\x02\x9a\x1d\x12\x9f\xbf\xe8\x03A\xb4\x13\xe3\xa5?\xb0|\xe8\x08Dn\x94\xbfv\xb8r\xb8ac\xb1\xbf\xe8\x9f:y\x1a\xd1\xaf?L\xae*\x88\xe6\xa1\x89?V\x9ec\x00[\xf6\xc5?\'[Exz\xc5\xa3?\x06\xaawi\x8f\xc6\xa1?\x9e#esE?\x94\xbf\x1a\xecsD\x1e\xa5\xb4\xbf4\xb5\xa5\xf4\t\x08\xa5\xbf5\x9e\xe6\xa9\xbdc\xc2\xbf\xf4\xa0?,%&\x9b?\x943\xf5\xd9\xc9K\xc9?\x0c!\xd7mo\xf1\xa5?\x191a\xe0\xdb\xc7\xa6?\x00\xee\x9aA\xcfj:?\xc1\x10dm\xbf\xb9\xcd\xbf:\x82\xe7\x8f\x9c\x9f\xbf\xbf*\xab\xb7\xdb@O\xd1?\x9b.|\x00\x00\xc4\x86?\xc81\x01s\x0f,\xc3?\xa6\x01\xb4\x97\xa3$\xb9?@MgM\x83\x90C\xbf\xbf\x0c\xf4\xc4\x01\x15\x85?Po\x01\x16o\xe4\xc7\xbfr\xe1\xe3\xcbm\xac\xb8?\x10\xf5\xf4\xaa\x02-\xa9\xbf\xdcA\'\xfa<}\x96?r.\xe9\x1a\xd2z\xb8?\xd2\xe0\x101\xc5\x1f\x95\xbf8\x87\xf1\xe1\xca\xf3\x89?\x80{\xa8\xc8PFQ\xbf\xd2\x12d:\xa8L\xa4\xbf\xcc\r=\xf4a\x04\xb5\xbf\xc8\x9a\xf7\xc2m\xc5\x99\xbf%k\xe2\x82\xb9\x90\xc5?\x00\x8c\xd9|\xb4N\xaf\xbf|\xae\x9c\xb3\xb7j\xac?\xd1d\xb1wr\xb8\xb8\xbf\xaf%\xb3F\x05(\xcd\xbf\xe67F(\x82L\xc0\xbfT\xe1K\xc0\xa2rd?U@5A\x17\xaa\x0b\xbf\x1e\x82\xde\xb4s\x91\x85\xbf\x074\x02\x93\xcc\x8e\x95\xbf^\x06\x9aQ\xda\xb7h\xbf\x0e\x1bWs\x98!\xa8?s\x8b_\x8f1_\x99?D\xb1\x81N7y\x9c\xbf\x90\xf3\xf5a1]\x89\xbf\xae\x1c\xf5\xb5Ix[\xbf\xf2\x9c\'PV\xe0u\xbf\xca\xb8\xf0\x9b%@\x8e?\x11\xf6C\x1c(F\x7f?\x826\x07\x0c\xc2\x05\x8b\xbfsGV\xf7{.7?\x12`\x9f6x\xe6B\xbf\xc1*\xaa\xddY\xf4\x86\xbf hz\x98\xb1hC\xbfx\xde0#M\x8a\x85?\xff\xa5\xc0m\xfb}\x82?\xc4\x9dy\xa8\x9czn\xbf\x08\x1d\x0e\'=i\x8c\xbf\xdc\xca\xb9\xb5\xec2d\xbf\xb0\x99e\xd8\x1b\xffy?hU\x80\xcf)\xce{?\xccR\x95\xee\xfb\xc4|\xbf\xb8\xc0\x9fJ\xab\x00\x7f\xbfR\x8ao\x94\xc44\x97?0=\xd8/\xd2\xa7T\xbf\\R\xba\t\xee\xe2\x9c\xbf\\a6y\xb1]|?\xee\xe0s\xb9\x11l\x96?\xcc\xdf\xd3\xcbz\x8cr\xbf155IG\x83\x83\xbf>\xb3eD\x01\x94\xa6?\x06\xa2V\xdd\xfe\\\xab\xbfb;\x02\x8ey\xe9\xb1\xbfg\x9aZ\x13\xdc\x9f?\xe8fno,\xcft?\xa0@\xa8\xae\xe8\x81\x88?\xf0\x96\x9c\xbb\x9aW\x86\xbf\xafqe\xb6\xfd\xc0\x91\xbf\xb0\xcc\xf80\xd2\x99g?\xfcC\xbaI\xdb@\x80?D\xfbzx"\xd6l\xbf\x81Q\xec\x01cpv\xbf\xfd\x80\xfd5\xea\xe3x?OW\x12\r@,H\xbf\x17\n\xde\xbb\xc9\x97\x85\xbf\x87\xcf\xb0\xdel\xd0c\xbf\xfd:\x04\x84\xd8\x85\x95?\x16+\x00\xd2\xd4G}?\x9d)\xc1M\r\x8e\x91\xbf\x07k\xce\x97\xb6j\x8f?\xf3\'\xdf\xf7\xfe`s?[\xfe\xf2\xf1CE\x8d\xbf\x92\x98\x19^\xceL\xa5?a\xf9\xdb\xda\xf5\x18\x8f?J\xa9\xc2A\x1cs\xb1\xbf\x92_\xf1\x06\\ \xaa\xbf@\xc6/LQ\xb6\xb6?\xee\x922\xac\xe5!\xa5?\xa6\x9a\xb3O\xffw\xa1\xbf\x18;x(A3\xa1\xbfJ\xba\xe0\xbc\xc5\xfa\x8c?\xa0U\x1as\xba\x8a\xb2?\xc6\x01\xc1\xc2\xd7\xae\xa3\xbf5\xce\x1e5\x8e+\xa6\xbf\x05\x1f0\xef\x10\x8c\x9f\xbf\x15\t\x84\x1cR@\xa4\xbf\x02\xbf\xc1~\x04\x0f\xac?\xf9y\xfb\xd8\x00[\xb9?\xc0\x80\xce\xb6\xa2Q\xb9\xbfy\xb6\xfe2\xff\x86\xb3\xbf\xb4\xfd\x91\x18\xb7\xa6\xa4?X@\xb237\x82K?e\x18\xd7\xb9\xc1\xfe\xa2\xbf2\t\x16h\x1c\xa3\xa1\xbf\xfe\xdfs\xdf\xd4\\\xb2?\x8d\x16\x9d\x86\xabz\xa4?\x88U\xc8c\xb9\xa7\xa5\xbf>\x16\xe3\xb1\x93l\x8b\xbf6\xb4\x08\x04\xb2?\xab\xbf\xa0\x83\xe7\x04\xcb\xd3\x9f\xbfoe\xb7-"\xb1\x90?N\x0c\xdbh\x07n\x9f?\xb4\x11\xe5vs"\x8f\xbf\xaa\xa9\x96\xe1\x11\x89\x8a\xbf\x17\x87\xe4\xb9\x1d\x19b\xbf>q!\xfbW\xa3\xb4\xbf>_(1\xd2K\xae?p\x94<\xc1\x85\xd3V\xbf\x86\xf0\xf3K\x94\xdf\x95?\x89@\xd3\xd1\x8ct\x89\xbf~\x9f/\x90\xd7\x82\x8e?\xfa\xcf\x9f\xe1\xd1\x11\x85?\xfd\tO\xfa8\xa5\xb5\xbf\xdd\xb4V\xed\x13\xdf\xaa?\xd1m\xd2\x92\x84\xde\xa4?(\xee\xaf%\xf8\xa2\x7f?\rc\xac\x9fs\xf2\xa4?|\x03\'\x1d\xae\xe8\xba\xbf^?\x89\x8d"@\x81\xbf\xfd\xd8W"\x8d\xa2\xa5?\xbcX\x15\x0b\n/\xad?\x8c\xbd\xfa\xc9\xd0_\x82?\xe4\xc0\x1f\xbcDQ\xb2?|\xc2\x9e\x15\x1d\xfb\xb7?s\xe2\x08\xd4[*\xa1?\x08tA9\xab\x1f\xa0?\xbfz\x9e\xbf\xfb\x89\xba\xbf\x03\x95v_\xff\xac~?O\xa6\xec\x17\x8d\x19\xa3\xbf\x1aC,9\xf2\xa6\x8a?\xb3\n\x89A.\xb4\x9b?\x08\xc2\xde\x190Y`?\x04\x95\xa3_7%\xa9?\xa8\x82\x17>\xce&\x90\xbf \x8dG\xee\x87|\xb5\xbf\xd0\xc5Qi\x0b\xbe\x99\xbf\xb0[\xd0T/me\xbf}\xa5\x17@\xffH\x94\xbf%[\xfd\xf4%\xb2\x80?\x16\x8e\xa1v\x9b\xbf\xa2?h\xbc\xe6\x0e.\xf3p\xbf\xc0\x08\xdb\x81\x1e\x07\x96\xbff$\x8f\xd9\x18\xbdp?5\xfa\x9c\xacMk\x82\xbf\x9b/9\x1d]\x97\x88\xbf\x1aka\xcd~\x9c\x84?H\xfd\x02\xbc=0\x86?uH\xde\x12\xeduo\xbf\xa4f\xf1\x08M5p\xbf\x12\xcb\xf37\x89r\x88?\x92\x07a\xa9\xabJl\xbfGd9\xca\x01\x11\x84\xbf\x88\xa2\x8c\xb8\xb7m\x89?\\\xf5\xb0\xf5\x0c\x0f\x83?\xda\x0bv_\xcd\xb5\x85\xbf\x83\t\x9fB\x870\x94\xbfI#"\xd3\x8bJ\x86?\x85\x9a\xd4\xd42\xd9\x8d?\xd8\xf5\xa5E\x90\x1a\x87\xbf\x1f\x1e\x83\xe93\xb4\x83\xbf O\xe7\xbdQ\x98t?\xbcu\xf2\xc9\xa2fl?_\x91@\xe7p\xe1t\xbf\\\x935\x15\x82D\x95?\x00f\xab\xa6\x93}w\xbfGJn\xbe\xa73\xa7\xbf\x97\xcbc#\xd5\xcc\x94?\xa1\n\x1e\xef\xed\xc0\xa9?\x87\x1c\x8c$\xb2\xe1\x85\xbf\xac~\x13\xf8\xa8\x82\x9a\xbf\xf6\xb5%\xc6`\xd7h\xbf\'\xc9NR\xf0M\x86?\x8ag\xefROA\x81?\x1cQ\x11\xa0\x0bgQ?\xe0r\x9f\xdd\x0c\x90f\xbf\xbf\x17\xf2\x11\x81\x0b\x8e\xbf.\xac\xad \xcc\xc7\x84?\xd4\xd3up\xef\x08e?\x0c}\xd6\x18@L\x83\xbf\x94\xb4$\x9d\xf3\xc9\x83?fk\xb8\xd5\xc9\x0f\xa2?\xe8|\x89\xb9\xbc\xe7\x93\xbf\xe3\x9bF}\xd0\xf9\xac\xbfY\x92LG\xeb\xd8\xb7?\xcek\x8e\xf0\xa4?\x97?c\xc0p\xbc\xd8\xe3\xbc\xbf\xacj4\xdb\xdc\x08\x7f?\xccHazx\x1b\xaa?\xcbU\x1e\x12p\x1bw\xbf\n~\xc8\x11?\xadh\xbf\x88\xd0r\x02\x08\xea\x97?\xca\x1d\x05]\x10\xcfq?h&\xad%a\xd7\x9a\xbfH\xc8\x83Q\xb8\xe5\x92\xbf m\xd4\x96\xa6\xc5T?\x00\xdb\x03\xde\xa2\n\xd6>p\xe3@\x08i\xb6B\xbf\x92o\x1f\xdc*\xfc}?\x04r_)\xc3\x1b\x91\xbf+\r\x83\x0ft\xa1\xb1\xbfS\x11\xb3}v.\xa7\xbf\xc1\xf9?,\x96B\xc3?\x12l\xba\x92\x80p\xc3?]\x9b\x18k}c\x93\xbf\xa9\xaf\xe8\xfe\xf7\xe4\xc4\xbfV\xaf\xf2\x0b\xabJ\xc1\xbfoW\xb6\x11\xb2p\xb3?\xa6\xac\xfenl\x16\xb5?\xa8\xaf\x85\xbd\x15Z\xa1?\xf5\xda\xd1\xc5\xd0\x8a\x91?\xa6\x92>`y?\xa9\xbf\x926\x0b`q*\xb2\xbf\xf0O\xcbE\x84\xa5\x9f?B\x93\xca>\xd2U\xb3?\xaaEX\xc9\x8bO\xa2?>Z\x11\x97\xa3\xd2\x9a\xbf\xcc1\x1b[\xd7\x86\xba\xbfp\xcf\xc5f\xd1\xf3u?\x1c\x95X\xc4\xa4\xe2\xa7?&\xe3~\xf3~B}\xbf\xcb3TaPD\x81\xbf\xae\xd7\xb8\xb7(H\xac\xbf\xadC\xe6\x0f\x11\x1f\xb7\xbf+\xb9\x10\x04\xdau\xa8?\xd8\xf4\x82\xa0\xfc\x80\xbb?\xe2\xfa\x8b\xe9\xa9\xe8\xb4\xbf\x0f\xa7r/\xc6x\xb7\xbf\x8a\xa1o\xa0\x92r\xa6?\xa6\xd7\xe1ra\x1e\xb6?\xfc\xd7-\x94\xc8\x15\xac\xbf\xc0g)\xe0\xf2\xcbw\xbf\xcc\xa5\xa6}\xdf\x12\xb8?\x99\xaf%\xfc\xa2C\xb5\xbfJ\x0f\xae\x87_\x97\x9a?\x916!\xe3f=\xce\xbf\xae \x1c\xd6\xb3\xa6\xbf\xbfo\x15\xddC%\xd5\xb3?\x00\xa0w\x16\xc1\xdd\x9f\xbf\x14\x89y\x8e\x83\x1d\xc2?@\xe2\xccmr?\x97?\xa0\x11j\x1a+\x93\xc9\xbfXgv\xa2H^l?\xcb\xa5fV\x88\'\xcc?_\xbe\xcf\xa5<\xbc\xc2\xbf4Q\x07A\x81\xd2\xb8?h\x16x\xe5\xb1\xc1\x83\xbf\xf3\xc2 \xa4s\xe4\x9f\xbf\x80b\xfd\xf0"x\xbe?\xbf\x9b\xdc:\xdc\xdc\xb2?s\xff~\xef\xffF\xbc\xbfx\x96+\xd91%\xa0\xbf.\xba\x7f\xc2\r\x80\xb1\xbf\xee\xf3\xa1&\x9a\xc8\x9e\xbf\x86]\x93\xa3\n*\xc0\xbf\x10\xfb\xa4\xe90\x89\x8c?\xf1\x93Z\xe97\x83\xb9?\xbd|\x7f\xe0\xd9\'\xbc?Ag*mfC\x88\xbf!\xb2\xd5u\xe0\t\xe0?\x1c\x93\xe3\xd3^\xf6\xb4?\xafx\x89\x7f\xe3c\xc1\xbf\x8f\xdd\xbe\xd4\x9d\x9c\xb3?\x80Zu\x1a\x90~\xd7\xbf^L\xe7\xa8\x8d+\xa7?\xfb0h\xef?7\xc0\xbf\x1a\x9e\xac\xbc\xf0\xfb\x90?\xa68Z\x15\x12<\xb3?y\xba\x0f\xef\x80\xcc\x9c?\x8c\xff\xef\x9d\x06\xfc\xaa\xbfM\xbdj\x90\x8eR\xb4?Q\xb5\x16\xc5\xcf,\x91\xbf\x9f\xd0\xec\xe0\xbf\r\x9c?\xa6B\x13D/\xd3p\xbf\x83\x85\xa1\xe7\xd7\x89\x8a?8t\x92\x00S\x00\x90?\xe9\xa7Q\xba:B\x9f\xbf\xd6\xc2"C:D\x99\xbfx\xd0\xda\xdf\xbc\xc7\xa2?\xb9W\xe4u\x15\xbe\xa0?\xb8}\x07ol\xea\xa0\xbf+\x83\x80\xc61\x84\xa6\xbf\x8b\x14\xb6\xbb\xcb\xbd\x97?0\xc8\xda\x01\xa5h\xa3?\x88\xe8f\xe7\xd9\x19f\xbfE\x9f\xfbo\xbf\x0b\x82\xbf\xd0lQ)\xbd\x00z\xbf\xbe\xea\x80\x94\xfe\xfcj?P\x15[s\xf2\x89|\xbf8s\x92;\xfa\xaeu?\xbc,6\xd3f`{?\xab\x10\x1c\xaa/\x15\x8f\xbfT%\xa7\x7f\xcc\x82p\xbfF\x8aA\x8c9\x1a\x8c?\xe7\xd70\xba\xe8n\x83?\x9a5\xa3\xdf\xa6`\x92\xbfa\xc8\xb0\x02\xb9\x16\x90\xbf\x1d\x1b\xdew\xa7\xaf\x84?F\xd3V;\xab\x05\x9d?`Y\x96?]\xa3t\xbf\xbf\xe1\xdc\xfd\x12]\xa1\xbf\xb8.?uVtd?\x8dV\x9d\xfd\x88\xef\xa2?\xa0\xccX]J\xe7d?E\xdf\xfd\r\x9ci\xa5\xbf\xe8\xdad/s\x89l\xbfM_X\xeb\x14\x89\x95?\xe8-\xcd\xa9\x97\x85d\xbf$/\x9f^\xfc\xbd\x98?q\xe3\xc8\x87\x10\xbe\x8b?6\xa5\xbf\xde\xe2\x89\xbb\xbf2\xd4-\xb6\xc0p\x91?\x07\xdeX\x1aG\t\xcc?:)\x1c~\xfe\xe9\xaa\xbf\x14\x89W\xca\x96p\xc5\xbf\x95\xce\x0em\xce\x01\x9d?8>NiH\xb2\xa4??fU\x9b\x96?\xeaD\xa1!,\xe2\xb5\xbf\xcd3\xfd+*I\xb0\xbf\xc8\x03J\xbc\xf8[l\xbf\xe6\x1c3\xb1\x89\xc3\x81?\xa9\xf6R}\x8d\x03\xb4?\xbar\xec\xfa\x7f\xaa\xad\xbfB<\xf6\x83\xe4~\x9b\xbf\xb5\xdc\x08\xf7\xa08\xc3?\xb6\x99\x08\x7fOk\xab?\xe0\x05\xbb>\xfb(Q?z8\x15\xdb\x07\x90\xb7\xbf\xa5\xd6\x96\xdbuU\xbf\xbf\xed_\xc2\x1e\xcf\xf8\xba?\xcd\xa4\x8c?\x02A\xc0?\xe1~<\xb9k6\x7f?\xd6`Br:@\xb2\xbfPa\xa4Y\x88\x9f\xab\xbf\xb1\x1bD\x0f\r\xe9\xb2?\xb9\xd3\xdeC\xf1\xf4\x87\xbf\x9f\xe5G\x9bH1\x95\xbf\xa1$\xd9{\xbf\xa7\xb7\xbf\x00g4\x07\xd4s"?^\xda`SA\x86\x80\xbf\xba0#l!a\xc9\xbfNI.\'[\x10\x86?\x05\x8cO\x9aH:\xc4?fr4\x17\xf8 \xb5\xbfZS\xd2\x16R\xa5\x87?Q\xc8\x1d\x0f\xe6T\xc1?r\x1a\xe5\xa7\xcd\xbf\xbf\xbf\xe7\xb8Z\x9b\x87\xbf\xae\xbfu\xc0]Yz\xa3\x8c?\x85\x8c\xab.\xdb\xd8\xac?\x83\x05jX\xaa\x86\x98\xbf\xf9\xdc\xaeO\xd63\xb1?\x11=\x84\x92=\xb2\x80?\xa4\xf7:I\xfe\xcb\xcc\xbf\xf4\xa7[\x81J\xd8\xc5?;\xed\x84\xe9\x83\xa6\xb9?\x86T|\xfe\xe0.\xba\xbf\xeezW\xd8\xff\xdb\xb5?r\x81\xacB\xa1\xb1\xd1\xbf!R)\xc4f\xfd\x93\xbfB\x1e\xa7\xdf\xb2i\xcc?\xfc:\x1f\x01<\x1f\xc2?\x80\xd5\xb8\x16Y9\x8c\xbfS\r\x0e\xca\xb1\x07\xc5\xbfN\xa8\x17\xa2*\xec\xbf?O\x9d\x92+\xd1\xd4\x81\xbfS\x0bs\xe2\n:\x8e?\xef[u\xf7\x90\xbf\xc2?\xe7f>uEI\xb7\xbf\xb1VM`\xba7\xb1\xbf\xad\xd3\xb0X]\xec\x83?H\x8f\xb9\xbcR,\xa4\xbf\xaa\xf4d\xa9\xad\xba\xfc\xb4\xbf\x0c\xe7\xb3j\x18\xab\x95\xbf\xd7\xa3!\x89#\xa0\xb4?<\x99Y\x89)\xe2\xa0?\xf3\xe7c\x07\x02\xb2\xa8\xbfD\x14\xad\x8ar\xd9\x99\xbf\x1bN\x03d\x0b\x82\x9c?\xf1b\xd8\x00?F\x92?K]}\xfax\xaa\x84\xbf\xed\xdd\xac{X=\x99\xbf\x0c\x93\x1d7\x1dd\x83\xbf`\x94I!2~?\xbf\xb6 \xcb^w\xba\x96?v=\xeb\xfe\x93\xeb\x9c?\xccw \x12\xf6Z\x93\xbf\xe9\x88\xef\xbfl\x7f\x93\xbf0N\xe6v\xa9P\x84?\xe6\xb7\xe8\xf4\xabf\x8c?\xb2k\x0f\x99]ys?\x8b\xfe\xe9\t\x9a<\x8b\xbf\xedW*\x94\xf4\xf4\x92\xbf\x05\xb3\x8f\'E\x8f\x8f?J\x8d\x9fs,\xa8\x8f?\xaf\xc9D\xf9\x08\xf2\x84\xbfz\xe4G,\x1b;\x94\xbf`1\xcc\xd4~dg?ZA\xad\xa0{\x0b\xa1?Ki\x08\xe9\xeb\xe8Z?\xb4TU\r\xf1\xe9\x92\xbf\x00n\xf9\n\xe1\xe2`\xbf0\xd0%\xbbYt]\xbf\xa8\x8a\xec\x17\xfe\xd4e?v\xe8\xbf>\xd0\x95\xb0?\xd7\x12\xa7\xfa\x1fp\x93\xbf\xe6V+\x8c\t\xb8\xc6\xbf#"\xf0n|\xe7\xb1?0x \x08k\xbd\xc4?\x99\xc4\x19\x98\x997\xa1\xbf\xa2\xe8\x9b\xeeOz\xa9\xbf\x10\x9fT%[\x8b\x8c?\x04\xaet\xb3vny\xbf+\xd8\xf5\xfe\x7f\x81\xa5\xbf\x16\x1f3\xa0\x07\xb8\x97?\xfb\x0cd\xbd\xb7Q\xa2?z4\xc0\xd5d\xaa\x85\xbf\x90\xc3%\x8bb?\xa1\xbf\x10\xc0\x10\xbe\x87bV\xbfWJ\xf6\xcd\xfbD\x8c?\xc0\xdc\xd3\x00\xe2\xa6^\xbf+W\xfb\xef\'L\x84?Z@\xffG\xf4\xde\x83?\xfc\xe8/\x97i\x88s\xbfQ`\xf7vw\xba\x9f\xbf\x80\x13%P]\\J\xbf\x90\xf9K\xf9`\'v\xbf0\x07\xa2y\xab\xa1k?n\x81\x1a\xd8@\xb3\x94?\xf8\x8a\xa04=\xce\x84?XKb\xe9\x9f\xd6\xb7\xbf\x0c4%\x02e\x93\xb3\xbf\xcf\n\x13\x06\x9fE\xcb?\xe0b\x10o\xb9\xcd\xc8?\xf6\xa3X\x03\x167\xa6\xbf\xc3B\xb8\x04|\xed\xc9\xbf1\xcciP\x84?\xc8\xbf\xab\xbfh\x82\x8b3\xb1?\xed\xe8\x19\xafz\x04\xbe?\xb90\xb3\x91\x99\xfd\xbe?(\xa8\xf8\x18^\xcb\xa3?\xc2gW\xf5\xd3\xdf\xd4\xbf\xbc*"\x89<\xf9\xa2\xbf\x05\x08\x9f\x9e\xcfB\xcf?\xe9\x8a\x88\x9fQL\xa6?QE\xfd\xd6\x89O\xa2\xbf\xb7\x08\xf58\xa3\x91\x8f\xbf2\x03Q\xc2{\xfe\xba\xbf\xa4\xac\x88\x823\x08\xab?@l\x88\xb2\x00t\xb5?\xb7\x16\x7fp\xc8\xe8\xb2\xbf\n\x0c\x80\x0c\xd2~t\xbf\xc2\x00\xa7\xc1\xba\'\xab\xbf\xdf\xc7\t\x07*\x9a\xc2\xbf\x82\x13"\xbbb\r\xb5?\n#\r\x8b\xe2\x92\xc8?Wv\xdd\xe4Q\xfa\xb7\xbf<-\xef\xfbN\x08\xb4\xbfG\xa6\xe5T\xe6\x12\xb5?\x9a\xcc\xa2\xb3\x96\x1f\xae\xbf\xcb\xfc\xa0:\xfc\xf6\xbf\xbfw\x9f\xe9\x07r\x81\xbb?\x96\x03V\xccI\x0b\xbb?9\x91\xc7k\x95\xfd\xb7?\xe8\x16\xc2\x00T?\xa1\xbf\xd3\x05B\xb9k1\xc0?4D\x7f1\xbf\x95\x98?\x08\x92\xf9\x1dk\x06\xb3\xbf!O\x9f"\x7f\x94?d\xc7\xc8\xe89V\xbb?\x15I\xef\x8e\xa2\xc4\xa5?)^8]2\xa9\xc2?\xbd$\xc2\xa9\x9fb\xbc\xbf|\xd3\xff\x96h\xc8\xbd\xbfZ\xc0\xaa\x01\xe0#\xac\xbfc\x86\xeeqT9\x93\xbf\xee6j\x1dw1\x9c?kp\x87\x15\xb5\x9e\xc1?\x14\xfcRM\xa9\x05\xba\xbfN\xd8\xd6s\xe2\xf9\xc1\xbf\xc8;\xa9T\xe5G\xa9\xbf\xb3\tU\xa9`o}?NWr\x15cH\xc6?pE\xc9\xac\x81`\xb8?4\xe7Rle#\xa9\xbf\x00\xc7\x9d\xb3F\x9d@?mz\x01\x00\xa1r\xc1\xbf\x0c\x08\xd5\xf5\x11\xd1\x9c?\xbd\x8dv\xd0\xa9.\xcb\xbf\x11\xbc\xea\x0c\x81n\xc3\xbf\x07\xacjvq\xec\x82\xbf\x9d\xd83\xfb\xb8\xcd\x9e\xbf3\xfd>\xb1z\xdc\xcd?qw\x8f\x92\xb1E\x8d\xbf\xaaY\x81\xa3\x07\xf4\xb3?\x94\xf0\xcc\xa8\xc0\x9bj?\xd8\xbcM\x0e\x92\xb8\x9d?H+\xc7\xfdV`\xa6\xbf/\x03\n\x19\xc1\xf6\xb8\xbfrX\xe4\xde_H\x88?T\x88o\x91\x85\t\xb2?\xc4\xcd\t\xee\x89\xe1v?\x95W,\xa99\xbe\x7f\xbf\xac\x8f\xe7$\xed\xf2B\xbf\xf0w\x03TV\x8d\x8b?^\xc6\xf8\xc4\xb6\x81\x83?\xe2\x87\xd9\x87\x0cY.\xbf(6MV\xfe\x1dz\xbfr\x1d\x8e\xcc\xa8\x10\x8a\xbfC\xb9\xc7\xe1he\x90\xbf\xe7Lc\x18x\xb9\x89?\x08(\xa3\xa1x?\x98?\x15\x0c\xa8\xd3\x85\x88\x8e\xbf)bcni\x9a\x94\xbf\xe7+\xb7\x84`>=?\xf23\x9e\xbd\xa6\n\x8f?\\B\x00\xafV\n\x8d?82\xb1\xf9\x07\xafk\xbf\xe52\tk\xf3\xf9\x83\xbfk\xaf\xd1X\x91\x93d?O\xe6n\xab\xa0\xccu?;\x15\x06\x9b\xe5|\x83\xbfN\x1e\xd3Q\xa5\x8bx\xbf\xb4\x18\xbc<\xab\x92^?6\x17K\xe6\x02\x19\x8c?V\x92\xfb\xf8,@\x9e?\xa8\xeaJ*\xbbp\x85\xbf\xc9h\x06^\x9d\xe7\xb0\xbfxf\x86<\x83\x06\x84?\x1d\x90\r\xcc\x11\xd8\xb2?\x8dy\xf0\xf9\x00\xbb\x92\xbf1\xebfog\xc5\xb1\xbf\x10\xc7\x9a2\x07\x80k?\xdc\x82FsH\xf4\xaa?\x0c\xa6\xbd\xbb\xc2\xcd|?\x83(V\x89A5\x90\xbf`\x92G\xdd\xe5\x97R?H\x18a\xa1\xbf\xbc\x80?\xec\xf6\xea\xb8\xb4\xfeD?T~c7\xe5\x9d\xa4\xbf\xef\xcf+\xcb6\n\x9a?\xd5-\x9d\x9eP\xd4\xbb?\x0f\xe6+\xfe\xe5\xc5\xa5\xbf\xde\x0eY\xb5\x1e\x92\xbb\xbf\x9e\n\x86\x18\x98;\x9b?LJ\x9e-\xf1\x83\x9f?\x84i\xe1\xfb\xfe+\xa4\xbf\x9f\xd8\xbf\x1b=\xe3\xa1?\xbdw\t`\x02\xb5\xaf?Tq\xa9\xef\x1d\x13\xc3\xbf\xe1\xbc\xb21\x86\x82\x9c\xbf#\xfae\x8bw\xc3\xc6?\x0c\x18\x17\x18\x9f\x00}\xbf\x1b\te\x1e\x01\xf6\xb1\xbf|\xc9m_\xcfec\xbf\x06"B\xaa\xc7\xd8y?\xb6\xca\nap\xeb\x83\xbf\xf0\x14\xe1i\x10V\x89?\xd1\xb8\xf7\x01x\x1b\x86\xbf\xe6]\'{\xdaz\x97\xbf\xd4\xc9\xf2\xfb\xff\x98\xaa??\xa6\xbe\x04\xdb\xd5\x8d\xbf\xfa\xf1\xc9\xc0\x1bf\x9a\xbf\xaa\xf6\xd6\xe7&)\x99?1\xf6\x08:^\x13\x88\xbf\x81{\x88\x8b\xd5\x80\x9d\xbf\xc03\xecf\xb0\xbb\x8c?$0\xe8iD\xe5\xaa?O\xf7\xa2\xb5\xce\xcd\x8e\xbf:\xfd\xaf\xeb\xc0\xad\x94?\xae\xca\x95]i2q?\xd5G\xbb\xef\xb3\x13\xb6\xbf\x12rrb\xf9at?\xbd\xd3\x83\xbf\xc4\xdc\xa4?\xc6\xc7)\xbcrO\xa2\xbfS\'U[\xf1_\xc4\xbf\x89\x12\xf9l\xea\xe6\xab\xbfj\x035\x8a\x81\xa4\xcc?@G\xf1\xaa#\xaf\x9a?=\xed[h}\x06\xcb\xbf\xc8\x19\xef~m\x13\xb5\xbf \xe7\xa5\xe77\x99\xbf?\x96GW\xcc\xa3G\xad?\xe2N\xd0R\xb7D\xcb\xbf,g\x7f\xe1\xb5p\xb4?\xde\x1f\xe1\x875(\xce?\x92(\xa4R\x8c\x7f\xb8?\xa3\'M%\x96\xad\xb8?\xe4\x8a\xfc\xdbb\xfd\xb5\xbf\xf2\x03\x10\xca\xed\xd2\xcd\xbf\xfa\xc9\xc9\x97$\xb3\xba?\x95&\xd7\xf5\x90\xd5\xc8?\x9b:\x86[\x85\xab\xa4?\x1c\xe0\xb1\\\x9b\x9f\xc1\xbf\x8b\xfc|uOo\xa8\xbf\xe9\xca\x83\xa6D&\xca?\xd3\xf6\x9f\xd4i\xce\xb7\xbfL\x1b*\x96f\x90\xbf\xbf\xe6\x91\xd8\xd7\xf3Y\xb6?;\xbc_R\xf9y\x9e\xbf-{!\xf4\xf3|\x9a\xbf\xe8\xde\x81\x9dG\x16\xc2?\xb1R\xdddO\xfc\xa7\xbf\xd3Tr\x82VP\xcd\xbf\xbd\x1fQ\xbc\xc5\xfe\xc9?=Y\x8a\xc3\n\xba\xa1\xbf\xc3\xf0M\x1b\xaf\xdd\xc2\xbf\xf2\x93\x83h\xca\xed\xc1?\x86\xb5\x01\xcb\x84.\xa0?\xcb|\xfe\xe5\x18;\xa4\xbfy\xf62\xbc\x80\xe8\x98\xbf\xcd0\xd7\xe0x\x11u\xbfF\x1f\x85y\xac\x1f\xa0\xbf\xf4\xf1\xa1\xac\xe3C\x98?#\xbf\x14\x0ep7\x9e\xbf\x1f\xa6\xd4\x8dl\xb2\xc1\xbfY`\xecG>\xf5\xb6\xbf$\xc9\x96c\x1c\xfe@\xbf;\xe9\xce\xe2 \xbe\xc5?\x1a\xabz5\xb6\xfa\xc7?\x06\xdaZ\x9dKA\xa0\xbfzf\x85\x97\xdf\x1f\xc1\xbf\x14{\xdd\x15\xab\x9c\xbd\xbf\xe2\xddL3\x01D\xa1?\x88qh\x88\x8b\x89\xb9?\xc8\x84\xee\x03\xac\x81\x92?\x90\xb0\xef:\xe1\xfd\xb4\xbfX\xde\x1c\xee\x94Y\xa7?\xb4\xe7\xce\xb1\x14*\x9a\xbf\x86\xdd&`\x9d\x97\xb3?\x12\xe4\x8d\xff\x04\xbc\xa6?\r\x13 \x07\x19\x0b\x91?\x11\xa1\x08S\x08\xbc\xc8?\x89VV\xe2\xb1<\xb0\xbfR\xbd\xeaA\xfd\x02\xc2\xbf\xcc\x97XQ\xea\xe8\x96\xbf\x14K\xd1\xeb\xf8\xff\xa4\xbf\x14l\xe2\xb1c\xb6\x8d?Hj\x8e\x91\xdb\xd7`\xbf&\x1b\xae\xdc#Kq\xbfb\x8a\x8d%\x87Qy?xR\xe8\xfax\x9ax\xbf\xb2d[\xd4\xffC\x93\xbf2{(/\xcck\xa5?\x93w\xd7\xebPc\x9e?;V*\xaeG\xd1\xa7\xbf\xc6X#\xb9w\xc7\x9d\xbf\xaer\x8a\xb6*_\x9f?F\xbd\x96\x04\x00\xdb\x8b?I\xac~CL\xa9\x9a\xbf\xef0\x8d8\xa7\xc3}\xbf\xf5O\x89\xae\xf6=\x98?\x12\xada\x8d\xf1(\x8f?Z7\xde; \xeb\x9a\xbf:q%\xf3\xc3\x08B\xbf\xb7\x8b\xc7\xd9\x13\x17\x97?\xde\xfd~\xfeMl\x8b\xbf\x0c\x8aD_\xf0\t\x8d\xbf\xdca\xfe\xe1\x12\xd6\x80?\x07\x9f\xc5\x1b\xc0T\x96?t\x89\x98_4i\x90\xbf\x88n\xea\xf0]*\x93\xbf|8>\x04~r\x88?\xe3,*\xa3P\xd1e?\xba\xd3\x17\xf3W\xfbc\xbf\xf8\x8aN6\xcf&\x91?p\x99g+\xd0\x1aQ\xbfx\xa3D\xf0 \xa5\x9c\xbf \x1e0\x9fh\xebz?\xaa\xf0\xd2t\x83\xd9\x90?\xfa=\\\xc1\xe3\x89l\xbf\xa1\xf8.\x9aG\xf9`\xbf\xba]\xf8\xa1\xf8\xbb\x97?\xf7sT=Gs\xa2\xbf\x9b\xc3\x9fw\x06?\xa5\xbf3\x16\xa6\x8e J\xc7?\xe4\xba\xa2\xe8\x83\xd6\x9a\xbf\xed5A\x1c\x01/\xd6\xbfu\x805\xbad[\xba?\x12\x83O\x08\xf3\x84\xd2?p\xb5\xb3$\x8d5\xae\xbfl*\xf5,\xf41\xb6\xbf\x92\xce0-\x1eK\x88?A[\x13\x8e\xf4G\xa2\xbfV\xe2q\x91\xd3\xb3\xa0\xbf\x14\xbb\x98\xba\x8f\xa1\xb6?\x1f\xb1\x85\xba\xd1O\x97?Z\xbbe\x1eO\xa7\xb3\xbf\x02Dx-\x04c|\xbf`\xc5\x1c\x90\xa5\x1a\x94?\xe5_\xe2\xa2\xd1\x8f`?r\xc8\xach\xd4?e?e\x80\x8a\xc4\x18\xe6\x9b\xbfZT\x906\x81\x0bw\xbf\xbc\x10;)\x1e\xe1\xa9?\x84\xa8\xffmY\xfc\x91?g\xfbpb\xb8\x1c\x9c\xbf\x80\xbc\x0e\x00;\xf00b5(\xcd?\x94\xc4\xd6F\x13\x98\x98?\x7f\xcd\x7f\xf2 \x13\xa9\xbf#\x0b\x9b\xe0=\x00\xc1\xbf\x0cS\xd0\xfah\xdf\xb0\xbf\x13\xff)\x03\xcd\xa4\xae?D\x1e\x1f\x80\xc5\x7f\xba?\xe4\xc0\xd8\x8b\x05\xf5r?\xf7\xda\xda\xe7\x1c\xa4\xa2\xbf\\f\xab9U\xa9\xbb\xbf\xd4\x81\xbd\xae\x0e\xc9\xbf\x91_\xb3[\\\x9er?\xf5;\xbdy\x93J\xc3?\xad\x04\x11@z(\xcf\xbf\xcb\xf3\x9a\xd6\xed\x1f\xa7?f\x10G\xedv\xba\xbd?\xe6\x93{IF\xee\x88\xbff\x95:\x99\x9f\xf4\xc0?\xa0\xa7\xf3M0\x18\x86\xbf\x08\xab\xe8iu\xe9\xcf\xbfKAH\xc7\x84,\xa2\xbff\x8b\n\xe3\xe2\x0c\xd4?n2\xb7\xc1\x11\xa1\x99?\x88\x0eV\xf0\xf2\xf5\x9d\xbf\xf8\x04\xb4\xb6\x01\xdc\x86\xbf:\xb0\x95)\xa9\x1f\xca?\x04}F9/\x8d\x96?^\xa8\xb2\xd5\x0e`\xc7\xbfb\xfeuW\xa9\xc5\x95\xbf\xb6I@`\x03;}\xbf\xbf\xc9\xa2\xae8\xfab?\xff\\h\xa0\xcc,\x85?\xc3\x9b\xd4|\xcb\xb6r\xbf\x14s\xc9\xd9\x15\xb3\x8b\xbf)L\xb3\x16\xa4\x96\x84\xbf\xb5\xaf\x026J\x1a\x89?]\xa6\xb7\xea\xd4\x03\x92?\xcfN\xa7\'\xa7\x97t\xbf[\xf6\xb8\xc0\x06F\x84\xbf3\n\x0bO\x86\xf1\x80\xbfl\xf1#F\x19\x0fv\xbf\x13\xbd,\x08\x99\x1d\x83?\xda\xa6\xb9\x07\x01\xbc\x86?7D\xef\xe2\xd1\x91r?\x03\xb44\xdf\t\xean\xbf{\xf9\xf08:\x96u\xbf|+\x18z\xc6\xf6x\xbf\xd7?\x03r\xec\xb0u\xbf\xc4\xcf\xf5\xb0+9Z?\x99\xf4\x19\x1b\xe1s\x01\x08H\xa7?\xca\x9c*\xed\xc4\xd5\x92\xbfc\xcd\x83\xb6?.\x9a?\x99\x84+K#\xf5\xc3?\xba\xc0\x85\x8f\xbe\x93\xc1\xbf\xe6D\xc9\xb4\xa4+\xb4?z\xf9\x9aJ\xdao\x96\xbf\xddu\xac\x97E\x80\xd0\xbfZmO#\xed\\\xc1?k\x8e_Psj\xaf?\xe4\x1d\\\x06\xd6\xc8\xb7\xbf\xe8d\xf0s\x08\xd8\xd1?\x93^;\xd2\xed\xc1\xa3\xbf\x822&\x0cd\x89\xb5\xbf\xd8\xea\xb7\ty\xa5O\xbf\xfa\xebU%\xad\xe8\xc1?D\xfe\x8d\xb1\xa7\x1e\xa0?q=9\xe6\x10k\xb1\xbf\xb1V\xa2SUS\xb1?\xa6;qC\xab\xf8\xcb\xbfbv\n\xf2\x84\xc2\x9e\xbf\xbf7\x83L\xf0\xad\xd0\xbf\xa0d\xae\xab\xaa\xe6t\xbf*4\xa6/b\xb4\xd4?V\xf3\xb9\xb0\x10\xa4\xa5?H\xd0w\x14\x0c\xce\xb6\xbf\rYZ\x82\x89\xa1\xb1?\\\xe9}\xcd\xd2)u?\xdf\x9fAp\xed\x8b|\xbf\xc4\xde;\x90&H\x84\xbf\xb1n\xaeH|.\x92?\xcb\x04\xb8\x1cC\xc8\x85?\xcc\x9b>\xc1c\x02\xa1\xbf\xee\xe6\x95?\xe8x\x84\xbf\xd1\xb0\x06\x1ab\x89\xa3?\x9e\xe1K\xeb\x13\xb8\x85?*\xfe\xed\xb8\xdd)\xa4\xbf\xff\x19o\xc5\xb0\x00~\xbf3\x9fG\xe87\\\x98?^\x07|J2\xd1\x82\xbf0\xdd\xa2\xee;%\\?\xb0m\xff\xb1ir\x82?\x9e$Q\x86rnm\xbf\x9bU\xdde\xea\xdc`\xbf\x00{\xba\x07\x96\xce+\xbf\xd2\xa6\xda\xff\xbd\x18x\xbf\xec\xc3")\xc3\rc\xbfvY0z\xfe\x11\x80?QI\x872\xd12\x8c\xbfU\x96\rY3F\x81?\x83\x8an/\r\x13\x9c?J\x18o[\\\xf0\x94\xbf\x1d\xc59\xe2\xca@\x94\xbf|s\xfa<5+\x90?L\xad\xdf\rA\x91\x90?\xd7m\xf0\x0c8G\x85?Q\xa0\xd6*\x89=\x9e\xbf\xf6\xe2>\x86g\xff\x94\xbf\xf9\x17\x18\xdf\x8b\x9f\x9c?\xc0H\x1dnr2w?\x16\xc2\\c\x93\xb7\x83\xbf\xfd\x13\xacr\xcb\xea\x89\xbf\xaa\xd5\xdajY0\x90?\x9c\xc0\xa4\xde\xa0u\xa3?d\xdf\xee\x12\x91l\xc0\xbfd\\9G\t\x00\x90?\xc9\x12\x83`\x0e\x04\xd3?O\x07S\xed=\x91\xb5\xbf\r\x96\xbd\x01{\xdc\xd0\xbf\xa9Hj\x1dh?\xa8?\x05f%m1\x1c\xb4?\xcd\x8e\xdecN\xdc\x95\xbfF\x13\xe0\xe1\x0f\xbe\xa0?\x85;\x03)Q\xb9\xa2?\xc4^\x95vC\xd0\xbc\xbf\x1c_O\x9a\x11;\x85\xbf\xd7D\xb4\x01\x8eX\xc0?\x9c\xd6h\xcf\x13Gv\xbf!K\x9e\x11Q\xba\xa7\xbf\xf2\xa8\xdb\xaa6{d\xbf`\xf2\xdcw6\xadL\xbf\xf6,k=\r\xa6\x83\xbf:s\x9fMC3\x85\xbfk\x91\x0b\xb1\xc3t\x9d?9\xdb\xe3e\xfd\xc9\x97?\x1c\xcc\x00\x17\xfb2\x99\xbf\xd0\xd4\xed\xe3b\x03n\xbf\x80\xb4U\xae3\x04F\xbf\xa6VT\x12\x1a\xb9\x97\xbfI[q\xe72\x88\xae?;\\\xaf]\xb0\t\xa7\xbf5\t\xdb\'x\xd3\xc1\xbfd\x7f<\x85_\x9f\xba?\xbd:HS0\x9d\xc2?t}(7f\xa5\xb1\xbf\x8br\x8dg\xba\x1c\xb8\xbf\xd0\x83x=U\x91\xa0?\x13\x05ocO\'\xa2?\x18i\xafD\xf2\x9a~\xbf\x9a&&\x95gA\xa9?\xb3$.\xcc\xc4\xb4\x95\xbf\x8b\xd8\\9\xae,\xd0\xbf\xaa\xdc5v\x11\xb3\x87\xbf\xe0|\xb0\x97E\xa2\xcf?b\x96]\xb9q\xac\x9c\xbfA\xb6\xdd\xedO\xd5\xa4\xbf$EA\xba\xb7\xc7q?v\xde$nY\x87\xba\xbf\x94\t/\x14\xca\x9a\xab?\x9c\x97p \x1d<\xb8?\xf8\xdc\xeb\x0cB\x85q?\xd4\xa3\xc5+S,\x81\xbf 4o\x9cAo\x8f?{\xc5Z\xfc1\xcd\xa1?8\x9d\xd0(\xb2\xb5~?x\xa1\x1d\x9b\x8a\xb7\x98\xbf\xc9(\xbfH{\x8a\x8f?\x0b\x88\xbd\xf9\xdd6\x9c\xbf\xa4x\x1a>.\xd1s\xbf\xa1\xcf\xd4\x0ff\xfe\xa9?\xa8h\x04SP\xcd\xa0\xbf\x0f\xee{\x03f\xf2\x94\xbf\xec1\r&\x91\xefA?\xec)\xb0-d\x84\xaf?\x00\xd3\xc1]\xca\xf8r\xbfn\xa0\xd3\xb9\x8b\xf9\xa5?\xca&\x9b\x89\xb4\xa5\x92?Hb\x91;\x9a\xd8\xa2\xbf:\xed\xf0}\xdej\xc2?\xa9\xc0N\xed7m\x8f?\xa2\xef\x93K\xfa\xcc\x93\xbf\xbei\xcf\xdb\xe0\xcd\x95?\x12\xeb\xfa\x1b\x10\xcb\xb8\xbf\x91\x8e\xf3\xc0F*\x9a\xbf\xa6>[w+B\xbb?X\xd6\\\x95\x14\xd0\xa8\xbf\xea\xc3K*\xa1\x97\x86?\x8e\x19\x85L/\xba\xb7\xbf\x03\xfd\xe67\xa8\xdb\xc5\xbf\x18\x8d\x93\xd7ej\xd7?rX\x87\xcd\xf7M\xc1?\xc4\x85\x93\xce\x10\x0c\x94?\x92\xe8\xd6\x08\xb9Q\xc2?\xc6,\xfb\x0f\x06V\xd8\xbf\xc4\xda\x1bvd.\x97\xbfK/R\xdc\x0b\xfd\xb5?\xe4B\x8c7\x1e\xfd\xaf\xbf\x01$\x85}k\xe5\xba\xbf\x01\x8a\xf8@\tg\x9e?\x99(J\x19E3\xa5?\xd0\xc3\xfb\xcdc\xa8\xb3\xbfw\xc01\xe1\xb7{\x91?\xb7F\xf0\x87\x02\xd6\xb5\xbf\xad\x92\xeb\xf7\x08i\xb1\xbf\xbe\xd9\x18{\x81 \x8b?i\xcc\xab@{N\xb4?\xe0n\xb5\xbdk\xb4\x8d?\xb5\xf1\xc9\xfa\xcf\xbe\xb8\xbf\xecQD\xf4L\xb4\x85\xbf\xf2\xc0\x13*B\xf4\xbb\xbfg7*\xc1?\xcf\xa6\xbf\xe3\xd8\xb7\x83\x93H\xcb?F\x1e\xb8\xdb\x94\xb9\x94\xbf\xa8\xb3Y\x1e8c^\xbf\xb6\x16\xfc\xd6yF~\xbf>\xd5\xfdo\xe6\xdbg\xbfP-\xc3\xcd\x84-\x97?I\xfd\xd0\x03a_i?v\x03\xca\xfd\x89N\xa1\xbfFQ\xae0\x9auV?\x13\x9e\x87\xaa\xb6\x1f\xa9?%\x11E}Kln?\xbe9d\xf35`\xa7\xbfK|\x11\xcc\xf8e\x8d\xbfR2\xac\xbf\xe6\xde\x96?-\x82 \x18\xfaQ\x88?\xd5R\xe03;\x83\x82\xbfC\xda\xb3\xfa\x87\x0fd\xbf+\xc0#\n\xc9tr?Jm[C\xcb-r?h\x83#\x1eR\xfb\x8e\xbf\x00\xc2\xeb\x81 \r\x08?\xc5\xd0\xcd\x98\xb8\xf7\x87?\x0b\xd2\x1bW\x03\xa3s\xbf\n\x809a\x86\x10~\xbfp\xbc\xcdq\xea\xdcQ\xbfh\xf8\xc5TW\x17^?\x06m\x18\xf2\x8e\xa4v?L}\x16\x8a\xe1\xb8z\xbf\xf5\x1b\xf4\xac\xaa\xec\x83\xbf\xae\x06\x94>\xdb\xca\x84?\xdcyR\x85C\xc8|?x\xe17\xc2\x92\xfff?n\xed\xbc.\xf8*W?Q\xeb\x1e\xb8\xcc4r\xbf\x88\x03q\xc2x\x80F?\x05\xa4\x89\xa5\x9es[\xbf^&\xa2\x9a\x05O\x8a\xbf\nb\x00\xcc\xb5\xaa\x94?\x8e\xe4\xda\xd2\x00\xec\x97?\x11\xfa\x95\xf72\x8c\xbe\xbf\x85\x17ybE\xa4\xa8?\x0bU\xa7i\x97\xc7\xce?\x7f\xb6\x14(m\xbb\xb5\xbfnWR\xdb]\xd9\xca\xbf$\xbcJp\xdf\x83\xa2?\x0b\x8a\xa3\xf01\xd5\xb1?\xa8y\xbcS\xec\xdf\x96\xbfi\t+\x1c\xc3\xec\xa6?.>\xa0\xcc.\xfb\xa5?~\xf1\xcf\x1d~\x94\xba\xbf\nk\xf0\x90:\xd4\xa2\xbf\xe9\xf2\x01 \xee\xb1?\x91\'\xf7@o\xd5\x8a?\xbc\xfc!\x9ak\x95\x84?NzZ3\x15\xed\x8d\xbfDZYWaG\x8c\xbf\xad5\x8f\x98n\xa4\xb1?\x91D\x8d\\\xc9|\xa1\xbf\x1a8x(\xba`\xa7\xbf\x9f\x87\x03\xf6F9\xa7?\x8es\xca\xdd\xeey\xc0\xbfK\xa2]\xc7\xe5J\x8b?\xc2yw\x8a\xf3\x00\xba?\xecSe\x00\x0e[\x9c\xbf\xfcP\\w\x0e\xd1\x8a?L4\x8e\xb5\xb4\xc4\xc2?\xcav\xef\xc5F\x82\xa1?\xec\x08\x80\xb9Y\xea\xd1\xbf4\x0b&\xcd\x14\x90\xba\xbf\xae\xb3\xffQV\x84\x89\xbf"\x95/\xd1-\xbe\xb0?q\xc7\xf8DJ\x07\xd4??\xba\xfbj\xcdq{\xbf^s\x83\x9eY\xb4\xc4\xbf\x9e[\x15\xcd\x8eo\xae?"\xcd\xccX\x10\xc6\x94?\x0c\xa5{\x04Q\xb3\xb7\xbf\x1f4\x07\x8b\xb8\x0b\x8e?\xc7\x92\xc0S\xed\x0f\xac?-\x12i^6F\xa6?9\x83\xe2\x95\x97\xda\xa8?\xbb[\x85}\xc7\x8d\x9a\xbfT\x86\x9dpk\x17\xc5\xbfc\xe6c\xba\xedH\xab?%\xb4\x9b\x8a\xfbA\xb5?\x85\x16\xefQD)\xbb\xbfz@#\xe0\xb3B\xa3?0^\xf4h\x17\xe6j?\xc0\x9d\x89l\xbd\xbf\xd2\xd4\xaeI\x99o\xb3\xbf\x17\xc2\x7f\xcal\x7f\xa7\xbf\n\xd4\xf0\xe9+\xb5\xbf?\xc2*\xe9,\x1a\xc1\xa7?\'k\xbcj\xc4\xac\xcb\xbfV\x04\xc1>\xa3\x1a\xa4\xbf4\x89_(%j\xb7?\x07:\x0e\xcc\xef\xf6\x99\xbf\xe6\x07\xf6\x11l\xb3\xb3\xbf\xe4[\x83\xd1F\x02\x95\xbfp\xab\nUq\xd4M?\x80a\x022i|=\xbf|,\r\xe6\xff\xad{?m\x9eG\xbbYC2\xbf\xb2\xf3z}8\x8bz\xbf\xeb\xe5\x87\x81\x1d\x86D?\xe2~\xb4\xfa\x9a\xfd\x85?3k\xbb7\xfbNw\xbf\'\xa4S5Nf\x90\xbf0\x06{e\xb1,y?d\x87\r\xd1\r\x8f\x80?\xc7\t\xa9\xed\x13,v?Pk\xf7\xfa\xe1\xf3C?O\xdfz\xf6\xcc\x8c\x84\xbf\xbb \xd8X\xf3\x96\x87\xbf\r\xbe3\x0c\xd3\xa6\x87?P0a%\x05>\x9a?4\xa1;\xbd\xc9\x8e\x94\xbf\x18\xe0\xfb\x1d4\x03\x91\xbf\x94\xcb,\xe7ya\x97?\xec4\xf0\xb3\xf0\xadk\xbf\xce\xf2\x89\x99\x06\t\x88\xbf\x95\xc5V\'\x90\xacz?\x11d\xf4Zod\x81?4\x06E\xc2\x8f\xbc^?}\xc2=\x86\xb4\xb4y\xbfTQ~dTj\x8e\xbf\xd4\x16\x14W\x9a\x9b\x88?\xd5\xe0\x05&\xa4\xce\x8f?\x02\x15,\x16\x19\xd4v\xbf\xa4Lo(+)`?\x92\x9bk\xf4|bh\xbf0_fC^.\x7f\xbf\x0c\xbb\xdakFN\x83?\x98\xcf\xda\x81\x17#k?J\xe3\xbb4\xd1\xb5\x84\xbf\x94\xd8q\x98:ow\xbf\x83i91\xe6\xf3~?x@\xa7x\xd7/\x8b\xbf\x90, \x19+\x1c\xa4?\x01\xf8\xda\xd2\xb6\xff{\xbf\xe8\xcc\x9b\xd2\x16s\xc2\xbf\xf3\xa5\xc1\xdc\xa8k\xa1?2\xbd)}XB\xc1?\xf4\x14\xa0Qz\x99\x95\xbf\xbe\xbf\xa8\xb1\x8b1\xa5\xbf\r\xe6x\xf8\xa6\xbc\x8e\xbf$\xfe6}\x98\x8b\xa1?\x08\xbb\xd7\xcb;\xe6\xa0?\xf6-\xb9\xad\xa6\x15\xb6\xbf\xff\xf9\x91^V$a?a\xc9Z[\xd9\x87\xb6?^\xc0\xa6`\xdc\xbd\x9f\xbfnm\x9db[\xb5\xa0\xbfjh\x0c\xba\xc8\\\x8c? k\xacP\xa8\xddG\xbfc\xbf=\x1cQ\n\xb6?\x0b\xa3,Z\xb0e\xa1\xbf\xc0\xea\x87\x86H\xda\xad\xbf}@\x06\xf4b\x87\xa6?\xd1\xc6\xc9\x0c\x1ac\xc2\xbfi\xbb\xd4\xc0\x9f\xed\x9e?Y\rQ\x89,(\xbe?\x8c\x0c\x9eJ\x9dH\xa7\xbf\xe7R>\x99\x14,\xb1?\x94\x84\x11\x10\xdd\x8f\xa2\xbf[\xf1-J\x8bH\xc6\xbfD\x88\x99W\x8a\xca\xb4?\n\xec\x082\xef5\xc1?\xb8\xdf\xaa\xd5F<\xb6\xbf\x81\x1d=\xba9#\xa7\xbf\x87\x04\x19{\xb0~\xb4?\n\xdf.\xbe\xa3P\x91?\x14\x1e\x07\xca\xc0z\xa1\xbf\x82\xb3\xa8u\x04\xab\xb2\xbf2>\x9b\xa8\xee\xc6\x9f?\x1b\xc9(\xb3\x9e\x81\xd8?"F\xc4f\xd1\x0bs?\xbf?\x8a\xbex\xb6\xd8\xbf\xa8mmv\xb29\xc2?\x8e\xf8%\xe4\x01u\xbd?d\x8f\xbf\xd9\xc5\xeb\x98?\x06X\xe6\x1e\x90\xce\x9b\xbf\xf3\x10\x96\xb6\x1c\xf4\xc5\xbfH.i\xe4J+T\xbf\xcdX\xd3\x1e T\x9e\xbf\xcd9\xbc\x8b\x96J\xb4?\xe0\xd7\x18\x08\x0fS\x8c\xbfO^e\xa1@\xcc\xd5\xbfK\x96\xdf\xd1\x14\xcd\xb5\xbf1\xe0\x13\xfd\x0f+\xd6?\xf8\xd1H\xf2\x86\xe2q\xbf\x9e\x88\xd4Y\xad\x82\xb1\xbf4\xea\x83\xec\x04)u\xbfG\x9a|4\xba#\x82\xbf\x80\xa5yL\xe6\x97+?\x88\xd9\x8f\xe0\x16\x84\x8a\xbf\xf6\x14\xd7\x8c~\xf6\xba?W|M\xc7/\xcb\xb6?\x01ph\xf7\xdaO\xa0\xbf$\'\x0e\x01\x88\x08\x8a?I\xe0\x95Dt\x8a\xb0?\xd6\xd1VT@\xc8j?1\xfa\xbc>\xc7\xf3\xb5?\xba\xa5{tp\x92\xb0\xbf\xd8\xb1bI2\xf3\xa7\xbf\xcc\xe5\x94\x8eF3\xb5?@\xb8\xca\x8e\xe1\x89\x99\xbf\xd8,h\x89Y\xa9\xa6\xbfl\xd0\xaa\x9c\xc0\x12\xa0?]\x94\xfb\xc0x\xca\xb5\xbf_\xbd\xd2\x9c\xf2\xbf\xa0\xbf\xc8Sk\x8aP\xaa\xa7\xbf\x19\xa4|\xba0Z\xad\xbfY\xd0\xe0K{\t\xc3?.\x11\xf6\xe3\xc1{\x8a\xbf\xaa\x85\x06\x01=w\x94\xbfi\n\xfb{\xa4\xe7\xbf?4\x9ez\xbe\x95k\xbf\xbf\xe2v8:1\xee\x98?\r&\x11s\xf1\xa6\xa1?\xba8F\xaa\x83b\xb0\xbf]0\x99\xfa5\xa7\xbb\xbf{\x13\'\xa1\xd1\xaa\xa2?\xda\x1f\xb0\xb8\xcbo\xa2?[\xf1\\\x8d\x08\xd0\xb8\xbf\xbbZ\x9f#u\xecq?\x9d\xc9\x14Q\x94\xde\xb3\xbf\x89\x1b\xd2\xa2}*\xa4\xbf\x1e\x10U\xda\xe6Q\xba?\xf9\x00\x08\xfcx\x16\xbd?V\xee\xf0(\xfcq\xa4?\x1c\xfa\x12j\xf0\x1d\x8b\xbf\xe2B\x06\x81\xaf\x9c\x9c\xbfd\x07s\xc5\xf0x\x86\xbfJHFTH\xd7\x98\xbf$\xbel\xf0\xff=\x9d?\xfc\xca\xaa1\xda\x0f\x89\xbfHN\xf5\xec\x81\xfb\x80\xbf\x1e?\xa9i\xf9\x9e\x87?\xd5\xbaw\xcc|2\x96?\xaby\xd5\x97\'\xe6T\xbf\xb2\xac\xbc\x99\xa9\xc4\x93\xbf&\xca\x9d\x08\xbb;\x94\xbf\xc5\xd9\xffJ\xdf\xd5\x80?\x86\xdc~;]?\x8f?\xd0\xd6\xdamP\x83\x84\xbfv\x16\xc7\xeb\xaaE\x7f\xbf\x07*\x1e\xc2\r\x1d\x97?\x98\xdb\xec\xa1\x16v\x82?\x98\xe9\xce0\xad\xa9\x87\xbf\xff5\xe8n\xbe\x94\x84\xbf \t\xc08\xd2\xeeP?0\x89<\xf3\xe4QN?\xbf\x11\xc0IL\xd6\x87\xbfvj)nT^s?`\xc8\xf6},\xe5\x7f?BU\x97\x8e)\xa4k\xbf\x89_\xadoqK\x7f?\xf6\xed\xb4R\xf8\xf5|?\xda\xdey\xcf-\x04\x98\xbfD\x81-\x8c\xdc\xb9\x8a\xbf\xc2WR\x17\xb4\xdf\x9b?ZBL\x15\xb4\xb7w?M\x18_v\xea\x0e\x92\xbf\xc7H\xab\nvZ\x88\xbfyE\xae.L\x15u?\xa051\xf0\x1fD\x91?\x88\xf8\xb8w3\xea\x81\xbf\x1f\xf4\xe6\x01\x95.\x8e\xbf\x93\xb6v\x98\xbft\x80?\xb1\x9e\x0e\xaf\xce/\x86?P@\xd7\x17\n _\xbf\x00J5\xfe\xb5\xa7o\xbf\xa1j=\xff\x8e\xd8\x86?\x9b\xb2\rM\x0e\xefE?\x02\x0b\xd6\xcd\x84`\x93\xbfw\x88\xb7l\xa4o\x92\xbf\xaf\x01=\xb6&|\x8f?\xfeDs\x9dX?\xa1?\x8d~\xc5\xf5\x9f\x8e\x84\xbft\xb3\x90\xdd`\'\x95\xbf@`\xa8|\xaa[M\xbf\x00On\xc9\xc4ha?v\x89\xce\x1d@\xaab?\x85[\xbcNq\xf0\x89?\xec4\x18H1wn\xbf^\x88I\xa8\x8b\x92\x9b\xbf\xb0\xdb\xc6\x9be\xb7|?t\xf3\xbe\xc0\xc76\x9a?\xfal\xb3\xd3\xb9\xccx\xbfD\xd2\xfdF\x00\xd9~\xbf\xc8\xea:\xe4`\xf7\xdb?\t\n\x82\xae!\x93\xa4??\xbc\xb1"Y=\xe0\xbf\x0f\xef\x86\xacN\n\xb0\xbf\x12d\x04\xf7\xb2\x97\xd3\xbf\xab\xbe\x1f\xd3\xf9\xa6\x89\xbf\x12\xbaD\x93Z\xc6\xd8?\x1apW\x0e*d\xa5?}C\xa9\x9c\xf9\x02\x92\xbf\x04\xd6=Z\xd7?\xab?0\x80\x9bj\xe7{\xa1?\x96\xf0\x06\x893\x83\xbd\xbf)\x85\x01\n\x89\xf8\xb1?j\xde\xa8\xe3\xect\xb3?\xa5\x1f\xabn}\xc6\xc7\xbf\x80q\xa9\x91#\xac\xa2\xbf\x13\x95\x80\x7f1.\xb8?9Fy\xdeU6\x91?\xdc\x97\xa6\xc4\xbd\xaep\xbf\xee\xc3\x08\xf4\x17h\x97\xbff2oX\x8e\xe5\xb1\xbf\x99\xdf\x10\xde\x96\x0c\x91\xbfX\xb4\xcf\xe97f\xaf?\xe6k\xb6\xd7\xac(\x85\xbfE\xc5\xc5YX$\x9d\xbf\x88\x1cw\x03\x91G\x84?n\xb4\x99\xcb\x0e\xfe~?s4\xcdY_\\t?\x8eL \x89XG\xa1?]\xf7\xf9\xc7O\x17\xa6?\x9a\x9e9NN\x84\x96?5\xb2\xac\xf4\xa4o\x9c?\xc1\xff*[uv\xac?\xfc\xec\xa1h\x99\xf6i\xbf\x07|M\xfb\xcd]\xab\xbf\xf9B-5Dm\xa8?\xac5\x1f\xe0?L\xdf\xed\x89\x9a?2\xf0L\x84S"{?\xa1\xbe\xe2g\x97\xae\x9a\xbf\x1a-\x01\xa2\xae\x8b\x9b\xbf\xa7c\x8c\xd0\xa70\xa9?XX*m\x07\x02\xa7?\xec\x89\xf1\xdb\x0e\x85\x8f?}p8\xe7\x1b\xa1\xbd\xbf\x9aU\x8c\x08^\xb5\xb0\xbf\xbc\x87\x12\xd5\xac \x99\xbf\x8eQq\xe1\xd7\xf1\x8d?u\t\xa8\xa4oH\xa4\xbfyn,c7$}?\xeeR\xe0\xc08}f\xbf\xa6i\xa7\x13\xe6\xf3\x99\xbf\xef\x91\xb5#2=\xcc?)\x06\xa4\xa5@\xb4\x90\xbfR\x05oT\x19A\xc1?\x9f\xfa\xc2\xfe\x8b~\xaf?\x0e\x1e\x19knh\xa9\xbf\xb8\xb8\x10\x03\x19\xfa\x96\xbf@\x95\xf7\xc1N\x80\x14\xbf$G\xdf\x90\xa4\x80\xa3\xbf\x81\x1e\xef\x14.Y\xb0?\x05\xbb\x8c\x12\x99\xab\x94?K\xbfdL\x90h\xaa?\xf9\xa1\x0c\xaaI\xc3\x98?\x02\xdd`\xb3y\x1c\xa0?\xa49\xf5\xadQ;\x83?yj\xf9\xbd\x10\x1b\x85?\x12\x0f&+\'\xb5h\xbf\xd7\x9e\xf4K\x01C\x9b\xbf\x86\x80d\xe9\xda\xf1p\xbf\xc6\x9f\xd0\xbc\xedw\x88?d\x7f\xa3N\xcc\x89d\xbfi6\xa1\xbcZo~?\xda\xf5X+\x02\xfc\x90?\xbda\xf3\xea\xe8\x93|\xbf\xf5 L\x98\xef=\x93\xbfQ\x03\xf9O\x84\xfb\x81?\x80\xa1%\xc9oNt?\xc3\xc6\x0b\x01\x18\xb1d\xbf\xc5b\xc7\xcf\xb2\x9ar\xbfg\x0c\xad\x81F `?\xca\x92\x1cL+\xaaw?~\xda\x93\x01\xf3~`\xbfl\xef\xabZ\xaaVM\xbf\x0c\x9c\x99\xda\xe8\xa7\x87\xbf\xfe\xc4\x83\x9b\xfa\xe4e?\xbbN!7\x90|\x91?\xe3\xa7R\xe0Rff?\xa8\xbdJ%\xd3\x9dP\xbf\xaat\x922\xcev|\xbf2\xbb3\xd6\x0c|\x87\xbf\x17)\x17\xa7u\x8aA?\xa3\x9a\r\x8b\xd1F\x84?\xfdl\x910\xcf\xe5z?\xf7j\x13\x16\xe6R\x84?\xd0}c\xfa\xe1\xce@\xbf\xb3|\xa7\xb8\t\xc1\x90\xbfR\xd8\xca\x8e\x95\x15{\xbf`\xb9e\xa3X\x0fu?/\xcf\xc3\xc8\xc9\xa7z?\x16QZ\xe1yk`\xbf\x02\xa6\xbd(K\xd6v\xbf\x82H]\x84\xc8\xac\x96?x\x92\x17k8"0\xbf_\x1ev\xd3`Z\x9b\xbfr_R\xe50\x1c\x81?\xe2e\xe7Q\x19\xc5}?\xb1\xc24\x8e\xb84x?\xc5$:\xd6v\x8es\xbf\xea\x01\xa1\x9d\x85\xa5|?\xdb\x91\xfc`A\xf8\x96\xbf\x15g\xf6\xd1\xec\x19\x9b\xbf\xa1\x1f\x0bM\xbbl\xa9?\xc7\xdd\xc8\x02#\xcf\x81?48\x8a\x97\x86\xaf\xa2\xbf\xce\x1c_$\xa2We\xbf\xfb\x1d\xa5v{d\x7f?\x90p\x81\xfd\xd0\xe6R?\x10L0\xcd\xd2za\xbf\x0ce.w\xbb\xb7\xac?[C(\x10\x7fB\x8c\xbf\x1e\x83\x96\xdak9\xb3\xbf\x11\xb4\xde[\xd2\xf3\x95?T\x03MD\xf5\x96\x8e\xbfZ\xbd\xabX! \xa4?\xd2V3_\x89\x86\xa4?\xfcF\xad60\x87\xae\xbfR\xa3\x8b\xe5\x03\x82\xcb?\x94ra\x8e<[\xc6\xbf\x91;\xdc\xfd\x9b^\xdc\xbf\x8ep\xc4\x9d\xee\x97\xd7?\x8f\xb4\xbb\xba\xfe\xc8\x95?\x01*\xe4\xf2\xd5\xf6\xd4\xbf\x16\xed\xeeF\xe8\xc1\xd9?\x01\xa2\xd43\xbf\xe1\xd0?\xb5\x82V\xc0\xec\n\xca\xbf>\xf9\xf6\x1bd=\xbf\xbf_=\x00\x83\x8c.\x9b?\xdb\x0b\xc9\x8d-\xb1\x86\xbf\x1e\xb3qN\xdf=\xb1\xbf7\x8b\xc6&\x93\x01\x90\xbf\x9f\x9fO\xc4\xbf\x14\xac?PL\\\xba\xca\xfa\x7f?\x857\xa9\xe69\xcd\xa1\xbf\x9aTj\x1d\xcfaZ\xbf\xaa\xc9\xf0\x1a\x8a\xcc\xb1?~\xa7\x04\x1cH\x16\xa2?Mi\xb1\xd1\x9a%\xb1\xbfe@\xba\xbc\xacZ\x88\xbf"\xb9BCqXn?\xf8\x89\xb2\x98\xe1\xba\x97?\xb2:\xaf\x168\x84\xab?\xaa:\xc6\xa9\xfe\x0f\xa1?\x9e[\xaeb\x0fM\xa5\xbf *\xa0N\'p\x95?\xaa\xe8\x8cr2\xdeo\xbf;\xd5\'\x97\xdd*\x94?\xc0Q\xb4\x9b\xdcH)\xbf\xfb\x13!\xec\x19\xad\xa6\xbf\x80\x80\x19-=\xc0k?\xf2\xa0\xfc\xbf\xcc\xf7\xa8\xbf\xd9\xe5\x0b\xddK\xf9\xa3\xbf\xa8\xd2\xf8\xbaZ\x06h\xbfZ\xdcZ:K\xc1\x8f?a\xe5}%\xb9B\x96?WU\xd8g3\t\xa3\xbfj]\x10Z\x1d#\xc2\xbf?\xb7\x885\xde\xd6\xb5?\x9cTa\xbf\x07\xb5\xb5\xbf\x97\x93\xad\xf9\xb0\xdd\xa0\xbf/9\xb3\xe7\x9e\x14\xb7\xbf\xe8\x0ct@\x7f\xec\x95\xbfu\xcb\xb3\xd17+{?\xbbZ\xe5d;(\xb1?\xebj\x8c\xb5\x0c5\x8a\xbf\xa1\x00\xc0\x95\x14\tn?|\xd6\xa8\xe0=5|\xbf\xf3\xdf~\x0eeq\x9e\xbf\x19\x82\x95\x92\xcd\xab\xa1\xbf^s/\x18S\xc2\x91\xbf;\x06\xcd\xba\xd1t\xb4\xbf^LM\x00\x84\x1a\xad?\xb5p\xfa>\xf2\x15\x91\xbf\xacM\x07!\xd3\x84\x90\xbf\xf8\xf8L\xa2\xc8mN\xbf\xec\xec\xcc\x04m<\xae?P\xbb\xa5#\xa3\x83\x8c\xbff\x17\xc2\xfbR\x10\x9b\xbfd\xf6\x18\x08-\xe0\xc1?t\x9d\xe3$\xaf\xf3\xb1\xbfS<\xfc\xb0^,\xbc?\xdd\xf3\xfa\xd9\xf8\xd1\xb6?\xac\xdfTz\x8d\x07\xb5?L\xc8\xac\\/\xb7\xb5\xbf\x10\x11\xb6\x1c\x06\x81t?f\xdf\xe5\xe7\xe2\xb7\xa7?\x1d\t\x8b\xd3\x9a"\xb0?\xceCQ(d\x1c\x99\xbfz\x80\xcb\xbe\x1f\xaa\xa3?\x86&\x1c\x80I\xc0\x96\xbf\x06\x06.\x13bl\x94?f\xbc,\x9f\xd5FH?B6K9\xabBu?\xe0\x86<\xc2\xb0\x83\x8d\xbfy\xafJ\xd4\xc8"\x87\xbf*\x13.\xd8`\r\x95?\x0c\xe7W\x0es\x86U?\xd4\xbfkI\x88\xfc\x82\xbf[~#\xe8\x96\x92b?\xa4\xb2\x91P@\x11x?\x9d\xbd\xcf\x99\xdb!B\xbf\r\xe3\xa6\x9d\xdam\x88\xbf\x11!o>i\xabb\xbf!\xb8pL\xda\xce0\xbf|x\xaee\x19\x02c\xbf\xb0\'j*\xab;z?Nn\x03\x18\xcb\xc3\x80?\x02Q\xcf\x84\xd0\x9c \xbf\xcb\xe4\xb4/;O\x84?T~,\x00\x89\x19[?g\xf3,\x91\xa7\xa0\x90\xbf\xfa\xb6\xd3aaD\x82\xbf\xd3\x1f\xc4D?\x0b]\xbf\xf6\xff|\xeeaK\x8b?V\x86\xc5\xae\xb43\x93?\xab4\x16\xf78\xf4j\xbf\xdclv\x8c\x8d\x9b\x8c\xbf]YU\xe9\r\x13k\xbf&%\xd7\x02\xcd*\x85\xbf\xbf\xbc"y\xd8\x1f|?\x17\xe9CG\x84V\x95?\xa3\xfbU\xa3\xb0=\x88\xbf\xf5\xd5H\x1a\x90j\x8a\xbf@\xa7D\x9c\x80Ny?\xe4\xd2\xd2-\x0b\xbdf?D\xc80P\xf8yf?\x90F\x80\x133\xa2T?\xd8\x00\xb3\xd9\x0c\xefk\xbf\x05\xed\xc4\xa3\x08\xe2\x8d?\xef\xc6y@\x0eFk?\xc1E>H=\x8f\x90\xbf\xe8f\x07\x10\x0bGC\xbf(\xf9\xe5B\xfe\xdeb?\xccIWB\xea=t?\x7fk<\xc4\x04\xe4a?\x8c\xc8\x06$U\xa4n?L\xd2\xbb)Rm\x83\xbf\xbc\xde\n\x14\x1e*c\xbf\xce\xde\x08\xf2\xc37\xa1?5\x9dN\xa1\n]|\xbf7\xecgk\xa06\xa4\xbf`\x9d9\x83\x10\x1aK?\x19\r\xf6+\x94\x13\x89?p\xfe\x96\x8bK\xa0x?P\x93\xde\x16\x1e.S\xbf\x9e\xa3)0\xa9,\xc2\xbf\xd3\x14\x14C\xe4\x1f\xa1? gnU0r\xbd?\x8c\xe7F\x9d\xedH\xa6\xbfW\xac\xa8\x19{\x08\xca?\xe0\xab0\x1d\x83j\x90\xbf(\\\xdb9\x85\xfb\xc8\xbf\xc6\x9bd\xde\x9fF\x9b?\xb8\x83\xa1\x98s\xa5\xb4?|\x80\xd4I\x9e7\xc2?\xe6\x81\xa7\xacE\xc8\xc4\xbf]l!\xf8\xf6u\xcf\xbf\x97\xbd\x03ihE\xd4?Y\xc59\x1ez8\xbb\xbfq*\xb3\x08\x82\x91\xdb\xbf\x9d\x15\xac\xee\xbaN\xd9?@E0lZ\x8b\xcb?\xbbw\x99\x00\xf2\xbe\xc7\xbfWK\xe2GI~\x91?\xbb\x0e\\b\xac\x8e\x82?\x10\x18F:!\xa7\x9d?\x05\x98%6\xa6\xba\xad\xbf\x01R\x8b\x81]\x86\x89\xbf\x93\xbd\x85\xe2sO\x94?S(\x0e\xfc~\xa0\xae\xbf-\xb7\xcdIag\x96?Sn\xc0v>\xde\xc4?6\xeey\x17\xf1\x81\xa3\xbf\xf4\xd3\xeb\x91\x1f_\xc2\xbfV\x99/\xf5\x81\xc9\xa6?\xe0o2S\xbc\'\x95?\xf2\xdd\x99F}\xb3c?\x00\x16\xe6(\xfc\xf9\xa5\xbf\xe5w^Nz0\x93?4W)M\xf4"\x91?\xd9Z\xa8\x90\xaaK\x9d?0\x95\xb3\xf1\x95<\x92?\x91x\x1b+\x7f\xb3\x98?\xa45\xfb\x84Tq\xb4\xbf~\x02\xdaso\x8a\xa5\xbf\x9f\x8f\xeev\x7fr\xb1?O\xf3\x97\x8c$M\x9e\xbf\x04K\xb5v}L\x94?D\xcd\xb3y\n[\x90\xbfi\xf3\xdb\x0e\x07\xbd\xa2?\x1c\xc4/\xe0\xc6\xf3s?{A\xfa\x16 |\xb9\xbfj\x96\x96ub\x8e\xc8\xbf\x06Jk\x9a7c\xb2?\xb6\xa8\xffS\xbaN\x85?*\x0e\xf62\x84\x0e\x90?\xbf\x1d\x1b\x80g\xe7\x8b\xbf\x03\x8c\xbd\xe5|\x83\x80\xbfy6(\xbb%S\x9e?\xcd\xc3\x10[\xf4\xc2|\xbf\x95\xef8/5(\x93\xbf\xfd\x15\xc2\t\xffm}?8d\x9f\x91\xb2\xae\x9c\xbf\xa8Y9~;\xb5\x89\xbf\xc1\xfb\x07\x1b\x1bc\xb6?\x7fx\xfa\xbe\xa5\xeav\xbf\xc6\xb5\xca\x01\xc1\x7f\xc5\xbf\xd0f\x0e\xba7\xa8\x85?\x0c\x10\x8e\x00S4\x86?\x00*\x02\xce|*t\xbf\xd6H\xb2\x80\xc4Bj\xbf\xa6c\x9fp\x90\x02\x96\xbfN\xbaO\x89\xc26\x8c?Qu\r\xf7\tA\x95\xbf\xfd\xf4q\x93\x04\x88\xc2?\x8e\x85\x93\xb9G\xd3\x9b?\xecU\xe9E|\x8b\xc1?\xda\x91\xce\x94Lu\x88\xbfk}a\xdb\x06\xa7\xb6\xbfz\x9c\x92*\x8cRk\xbfg\xec\xecJ\xcf\x8c\x8e?.\x8e\xdb\x1c"3\xa3?\x80\x92\x9d\x84\xca\x16\x80?\x9a\x06_\xde|\xa3\xad\xbf\x1d\xb1IU\x16:\xa1?b%\xf5\xc6\x9d<\x9a?\x03\xc6\x1bsO\xf7\xa0?\x0b\x0e\xa4\xcb\xb3\x1fs\xbf\xdeBp\x1b\xbc\x81a\xbf\xa2\xb4X\xd2\xe5\xcf\x81?c\x1c\xad0\xd8\t{?\x94#\x03\xa4K\xdby\xbf\x08\xb5\xc7\x01\xa1\xf0\x93\xbf\x8b\xce0\xbc\xb20h?k\xf9\xeb\x85!\x9b\x9c?\xd6\xb5\x93V\xb7^L?\x82\xc9\x101\x0ci\x92\xbf\x96\x8e\x16\xf6\x8d\x95n\xbf\x1f\x9eN\xf1\x1a\x96\x89?^\xd9\xadl7\'q?\xeb\xe0\xb3\xa9\n\xec\x89\xbfu\xc7M~\x82\xbf \xbf\xc1\x87\xfd\xf4\xfc\x1dq?\x04\xfa\x15\xc0P\xfb\x8d\xbf\x99\xf2\xb7\x84j\xb8\x8a?\x80J\xe0\x01.\x05\x00\xbf\x03\x176\xf5\xf3\xa3\xa1\xbfg\xa87.\xcf\r\x82?k\xa5\x86\x86\xfa[\xa0?$F\xcd\x1b\xc9\xa7s\xbf3\xf0]\xc1\x0e\xe2\x83\xbf\\.\x0c\x81\x9e\xeb\xad?\x83\x19\xac\x99\x8a\xda\x94\xbfN%\xc1\t\xc2\x83\xac\xbf\x9e\xfb#?\xa6\xd7\x9e?i\xd6P\xca)l\xaf\xbf\x85\xf0\x0b\xc6\xe5\rs?\xbdi\x0eHP\xad\xaf?\xda9j\x176M\x8e\xbfT\xc3\xc6\x0b\xa5\xd7{\xbf\xfbL\xb6\xa00D\x95?\x02\xae\x9f\x0e\x06\xb8y\xbf\xe8\x90\xbfa\'8\xaa\xbf\x1e\x07\xdd9\x0e\xea\xa8\xbf>\xa2\xc4\xb3\xadO\xb4?a=\x9e\xc4\x14\xf9\xb8?\x98\xaeA\xf0\xe1z\xb6\xbfd+\xaf\x93lM\xa3\xbf\xd8m\xd7\xa3\xc9:\xa5?\x02JK\x9f\x97\xfe\xb5?\xc7Azlp\xb3\x94\xbf\xe8\xdd\x19\x91\xb4\xda\x9a\xbf\x1c*\xebe\x99\x13\xb8\xbf\x10\xa7Y\x97uzL\xbf\xd0B\xc2\x80\xb1\x8bx\xbf0\xa6M\xa3:$\xab\xbf\xd2\x8a\xf0\x0e\xa2\x1aT?\xef[\xf3\xa8\xdf\xff\xd0?T\xc3\x16\xb0\x94>\xa3?\x1f\x04\xda\x15\x16\xe7\xd1\xbf\x8c\x91uWAI\xb5?\xe0\x13\xa5\xd3\x92\xd0\xb3\xbfz\r\x11\'y`\x81\xbf,\xdae\x93\x0c\x95\xb3\xbfT\xec{\xec6\x04j?\xd9\x068\xebZ\xd9\xb4?\xdfq\x0e[\x98\x95\xb4?\x1c\'\x9fT\xb0\x13\xa4?\xf0,e\x983\x80|?\x1f\xd9_{\xbd\xfd\xd5\xbfe=i:\xd0\xe3\xb8\xbf\xab\xe0\xe0\x0c\x14C\xd8?\x12\x8a@\xf8\xe4\x17\x82?\xbd\x120+\xc1\x01\xa2\xbf\x11\xa5\x11!\x874q\xbf\xc0\x92\x1ae&C\xa4\xbf\x03\xf7\xa9\x15\xd9\xdb\x9b\xbfs\xf4\x18{u\xaa\xbd?T\\\x9dfh\xd9\x9b?\xa2\xf8H:\xd8\x86\xae\xbf\x05\xff\x0f5\xec\x8d\xa1\xbf\x986`G\xdb\x89\xb8\xbf\x91\x9d\xd4\xb4\x06(\x96\xbf\xac\xe2\xde^8`\xb3?\x9b\xfdh(\x1b"\x95\xbf\x08\xb7\xea\xda&\x07\x97?\xe8\xd2\xc8ZL\xc2\x93?j\xf9\xc1\xd0\xadR\xa7\xbf43\xb1\xfc\xdf\\y\xbf-\xc5\xce\xa74.\xc2?{\x17\xd3\x10ao\xa5\xbf5\n\x9e\xefN\xe4\xc5\xbfOO\xb6\xac\x85\xc9\xa8?\xbd\xadC\xb5[B\xb3?\xc8\xe7\xb1\xd6u\\\xb0\xbf\x04|lDe8\x88\xbf|\xfa\xe3R\xeb\xa3\xa1?W&\xc6n\t\xc7\xac?\x8c\x87\xde\xf2\xc8\x7f\x83?\xa0{V\x150\x88\xc5\xbf\xdeY\xfaiT+\xa5\xbf\x13\xe1\x8e\x1c\x8d\x13\xd9?\x10\xbe\x8b\x187Ox\xbf\x10\xcf~\xfa&N\xcc\xbf\x06\xb4V>ZS\xbe?\xca"\x16\x9f\xf7\x82\xa2\xbf\x1eC\xcf\xe2(7\x8a\xbf\xe5\xc9;\x9b\xf0\xae\xc3?\xe3\x8e\xa5:{o\x9f\xbf\xb6\x82\xf9N\xd7\xa0\xd0\xbfT\xd1\x9cT\xb9\xd3\x90?\xc4L|\x19\x1f\xaf\xbc?\x0e\x0e\xeb\x02s\xff\xa2?\x0fT\xa6\xcc4Dx?0\xf3n\xa4s?v?E\xfe\xc8-\x85\xfc\x8e\xbf\xa6\x92\xd9\xdc\x99\xe8\x93\xbf\xc0\xbe1i\xe7\xd2\x93?iEy\x12\x1e\x15\x95?\xadMdoL\x02\x87\xbfB\xe5\x0chX\xcb\x83\xbfU\xcf\xe0\x95\x86\x15a\xbfl\xadw\xa3\x0c\xa94\xbf\x9cz\x929w\xaa}?\xb5D\xd2\xb20\x04g?\xb6ndP\xf1\xf8z\xbfL1\x00\xa0]TS?^\x03\xe4I\xf4d]\xbf\xa8N\xb1q\xa41Y?\xd4,c\x14\xb3\xdf\x94?\xea\xd4O\xcd\xf5\x18h\xbf.\x02\xf5\xbd\x06\xa0\x96\xbf\xc2O\xce\xd3\xa5\xdcp\xbf$!\x1b|,\x0eY?,E\xbc\xbePGp?\x03\x10\xf2\x91\x97\xe3t?\x90\xe4\x9ff\x0fga?\x13e\xd8\xcb3\x89e?@\x82/\xec\xf6\xf37\xbf\xbe\xe5D\x84\xd2*\x80\xbf\x06\x95\xe8\x0c\x1c\x99\x8b\xbfP\xef\xd4p\xff3{?\xd6-+\x86-,\x96?Z\xf1\xc7\xa5\xff\xa9T\xbf\xce;\x16\xb9H\xd9\x91\xbf\x10\xf7\x8d\xf3\x07\xcc\x15\xbf$\x8bi\xa7\xd1\x83{?\xda[Y\xda[\xb7\x82?\xc8\xeaN\x91\xa6\x15P?\xa2)p\x1eEQ\x88\xbf,8]\xd6]c\x85?\xc0\xef\xa8\xbe\x95\x01T\xbf\x02\x7f)\x15\xf4\xcd\xa0\xbf\xac\xfc\xf9g\xe3@\x95?\xd8\xcb =oo\xac?n \x9f\xdcX\x05\x8a\xbf\x06\x86b\xd1q\xfb\x9d\xbf\xc9L\xcc\x00\xa14h?\xac2\xf3q3\xb0w\xbfr\x88\xb2\xe1;4\x84\xbfH\xdf.0\xf3s6\xbf\xba7\xab\x1c)pj?^\xd0i\x1c_\x13\x88?\x04j=\xc8\xad\xa5Z?\x0f\xff\xa0\xacb\x11\x86\xbf\xb4b_\xac\xafuH?\x08Qg\xae\x1f\x87{?\xa7\xbc^|\xf0]\xa7\xbf.\x92\xd9\xb2E\xba\xaa\xbf\x99Tm)U\xc0\x9d?\x8a\xf1\x91\xad\x08\xb3\xa2?x\x8dFz\xa0q\xb5?L>\xf8}\xded\xa6?Rqd\x0cHQ\xb4\xbf\xee\xa7@\x0fA\x15\x9f\xbf\xd8Eu\xfa\xc4\x9c\xc7?\xa3\xab\x06\xce\xf6\xa6\xc4?\x0f\xbf\xd4\x02\xa7\xba\xd5\xbf\x06\xa1[\xc0\x07\xa6\xd7\xbf\xbd\xcfu\x03sA\xb8?OPW@\x89+\xd5?\xa2\x93\x9f\x90\x03U\xc7?\xf1\x84\xa1\xba0\x8f\xca\xbf;\xd0\x05\x16b\xe8\xbb\xbf<_\\\x98HV\xb5?s\x00\xc3m\\\xfa\x9d\xbf\xaaHW\x80?\x93\x88(\xd1\xaaSq?\x94\x05\xee\xf9\x89\x96p?\x1b\x9dv\x81Bd\x95\xbf\xf77C\x97\x85\xb8J\xbf\x17N`\xbf\xc6%\x9c?\x93\xddn\xbb\xe8\xfft\xbfwp\xe1\x85\xe1\x92\x95\xbf\x97Q\xba\xfc\xba\xa8~\xbf\x1c\xf4\xba\x8e4tc?M\x8fFQc\xce~?8q\xed\xbf(@\x8a?|\xc6\xe0\xd8T\x04b\xbf\x96F\xe10\x99h\x8b\xbf\xd95\xe9V\xab\xec\x84?\xbeE3,$\xf0}?\xa8Y{@\x888T?\xa21E\n\t\xaa\x81?\x8bj}\x99A\xb6t\xbf\xb3\r\xe3t\xdb\x7f\x84\xbfH<}\x0c<\x82v\xbf\xfd\r\xf9\x1f\xd3!\x90\xbfV\xacy\xbb\xb9\xa6|?\x02\xbd\x9e\x86\x90\xf4\x9b?\x04\x04\x97\xc6\xe5\x04w\xbf\xa2\xfd7z\x95\xc6\x8c\xbf\xc4\xe0;\x8a\xe4ca?\xe4\xe2mu\xfaLx?\xc8:V\x87\xee\xafY?\x80\xc4/1\x01\xa6:\xbf\x8a\xe0\xa4[\r\rV\xbf\xa0\x94\x08R\x03\xf5\x8f?\x0e\xdcp\x1dl\xc7\x87?\xe3>\xbff\xde8\x91\xbf\xc2\x90\x9b!=\x03\x84\xbfm\x12\xf5\xefA\x99\x7f?H\xa3\xb7\xe2R\x18Q?\nk\x85[\x15\xa1l?X\xb9\xf0\xd8\x92\xc4D?P\x80\x825\xe8\xb7\x8a\xbf\x16=\xb6k\x801x?0\x8f\xfdmR\xc4\x9c?\xee\xfeY.N\x10\x81\xbf\xc7\xfa\xf7?b\xe2\x9b\xbfjy\xaf\x9e\x91yt?P\x00>\x1ce\xa9\x83?H\xc21t}\xffs\xbf\x00m\x03\x0ct\xe0^?$aSA~ \xb0\xbf\x8e\x01\r\xb2o\x93\xa4\xbf\x85\xb8\x81?\xdb)\xb6?\xd7waPO;\xa1?\xd6\\\xbd\x08\x14f\x83?\xd3m\xceKU1\x9a?\xacgx\x10\x8c\xa4\xa1\xbf\x85x\x98\xd8}\xe0\x92\xbf\x1d\xebK8\xcfm\xa8\xbf\xf34\xad\xd00\xc0\x92\xbfb:\xf5\xebU\x0e\xb7?~\xeb\xf1N\xc2\x9e\xa8?v\\\xbc\xc7\xf3\xc0\x88\xbfB\x05M\xd6D\xae\x94\xbf\xd4d\xaaL\xd7t\xb2\xbf\x8e\xfb\x92pk\xf1\xa1\xbf.\xe0\x8e\xa4\xce+\xa5?\xa0\x8dh{\xf2g\x98?\x1c\xc3\xa7\x1b{v\x91?,Wm\x12M\x82\x89?\x8b\xd1\xa5\xc6\xd1\xa0\xa0\xbf\xc3bc\xc3\xef"\xb8?\xbd~O\xb4\xc0\x13\x98?\x9cN#\xfb\x8f#\xae\xbf\x04\x06\xf1\x9cr\xd3\xa2\xbf\xea\x1e>\x9e\xa8\xac\x97\xbf\x88\xc5\xf1\xf0c\xd2\x93?\x01\xa5\xfa\xd9\x89r\xbc?\x88$_\xea_3}?0U\xf9\x00\xd9|\xc2\xbf\x8d\xa0\xf0\x08\xb7d\xb8?\x1c\xa0\xf2\xa1\xa7\x1d\x84?\xa1\xa39~\x15\xc0\x95\xbf\xdf,\x98\x17@\xfc\xb7?\x85\xc0\xa1\xc9FZ\xa4?\x1f\xb2\x87\x9aD;\xc7\xbf\xf2IM\xa0v\x8d\xb0\xbfk\\\xaa;\xe7g\x9a\xbfY\t\x7f\xa9\xc6\xb1\xd0?+\xfcOMF\xeb\xc8?\xb3f_\x0en\xbb\xd3\xbfiVtr\xff\xba\xb7\xbf\x90\xf2\xba\x07\xd4\xbde?$\x92\xa5`_1\xa3\xbf!=\xa8\xdc\xd3t\xaa?O\xfb\xa4\xbf\x01#\x9f?\x95\x96\xfa\xccS\x94\xc9\xbf\xef^\xf2KM-\xa6\xbf\xba\xe3%\x06\x80p\xbd\xbf\xf3\xb1[F\xdb\xe2\xc5\xbf\xe5\xc3\xb4\x82\xddE\xd3?E\x92\xb2\x9bF~\xd0\xbf\xf0\xc7\xb7he\x0f\xb0\xbf\xa0N\xb9\x03\xd4\n\xa6?\xa2\xf9AR\x7fL\x8e\xbf\x04\xd3\xfea\x07T\x84\xbf\xb2\xe8\xfa\x98\xa0(\x8b\xbfW\x10?\xaf\xce{\x9c\xbf\xbc\xce\xb6\xb5Y1\xa9?2Z\xcf0\xf25\xbb\xbfk\xdf\xb6K@\xe4\xcc\xbf\xad\xfb\xfap*E\x8e?m:5\x0b\xee\xb8\xca?s\xb3\x16~I\x83\xbd\xbf\r\x10^$\x05\x1f\x9f\xbfT\x96\xdc\x14\xf9\xb5\x89?\x9c\x1a\xc9\xbe\x16*[\xbf\x8a\xcbq\xa5\x17\xe7\x9b?\'\xb3\x92\x7f8S\xac\xbf^&\x87\xaa\xc9\xa3\xb3?D\xf6\xb3|\xdb\xd3\xd1?\x8e\xea\t\x0b\xaa\xd3\xba?\r\xab\xe1;Y\xfd\xca\xbfr\xa5\xb7\x8dbT\xd2?\x12\xb8\xf4\x12XA\x9c?\x88\xa2P\xb8\x1aeg\xbf\xbd\xef\x94\x08\x91\xe0\xb9?\x0c\xbb\x8e(\xa1\xdb\xb3?k\x84\xfb\x02\xb5~\xbc\xbf\xf9\x88\xd4\x98\x87=\xb3?\xf1\xdd\xf4\xb9\x8c\xf7\x93?\xa8\xff\xe0\x81\xb4]\x98?%\xb5\x97n\xb4\xc1u\xbf\xd2"E\x19\x0b\x1a~\xbf\xee\xd3\xa3q\x92\xd3w?\xcc\xd9\xdd\x0b\x98dt?h(,\xe1\xdbY\x10\xbfw\x89W\x12\x9d=\x85?"\x1c\x8cE\x8a\xe8\x7f\xbf\xb8>\xb6\x16\x05a\x8d\xbf\xd1\n\xa0e\xbb3l?\xf1\x86\xfc\xac~\x80\x87?a\xdeN\x12\x15\th?9\xf7\x013f\xf1\x83\xbf\xd2\x15\te\xde\x858?\xe76q\xa4\t\x8bp?\xe2\x8e\xdb\xd6\xc8\xdaw?\x03)\xc9\xe7\x12W\\?p\xc7\xea\x96\xac\xe0j\xbf\x08\x9e\xb24\xf4\xffr\xbf,2!cH\xaf\x87\xbf\xe6\xab\ru\xf5\xb2\x80?\xce\x97H\x9f\xe5\xd9\x8d?\xb5\xaa\x9e\xba\x15\xba\x82\xbf\xf6\xbb\xce5H\xde\x8b\xbf\xa7)ge\xb1\xebh\xbfx<\xfa;*\x9ci?n\xb0\xac\xc7\x9cC\x8f?\xda\xf1\x1d\x82r\x88?\xbf\xd3ao\xa3\x95\xdd\x84\xbf\xcc\xc0\x9c\xba^\xf2w?\x13e\xe6\x88p\x91q?\xa0AFn"\xd3l\xbfn\xd9\xa5\xbb?\xd0\x82\xd5\x08\xb85\xcc\xbf\xae{\x19\x88\xe2\xe7\xb8\xbf\x1020\xccbi\xcf?YG(\xd28R\xa0\xbf\xb8\x05U\xb0\xa5\xd5\x8b?\x07i\t~\n2\xc5?\x82\xfb v\x85\xe6\xd1\xbf\x9a\xcb7\x19\xc6I\xc5\xbf\xd9<}\xd1L\x96\xce?@\x91\xff\xbby\xaf\xa1\xbf\x96\xbay\xca&\x15v? \x1at\xe2\x933|?\xb8\xc5j$J\x16\x8a\xbf\xe4\x83I\x93\xe5\x14\xba?\xd6c-\xcb\x17bc\xbf\x8d\xf0\xd1g\x04<\xb4\xbf\xc4H\xf6\x80Z\xa2\xb1?F \x94`Y\xac\xa6\xbf\xc79(\xc9\x00\xdc~?v$\x08.\xb6\xc9\x86?\x7f\x9c\xd3\xb1\xf3\xc7\x84\xbf\xac\xbfQ\x8a\x98v\x9c?\xc25\xa7\\\xbc\x95\x91?\xb9\x15\xfc\xa6\th"?i8@\\\xdc\x0eE?\xadM\xa9;\x8c\xbb\x83?-\xd07\xd6\xf3w\xb1?\xcb\xf6\xab1\xc3>\xb9\xbf\x1b\xfe\x03g\x9e\xdc\xa5\xbfV\xe2s\xa6t^\xbc?\x80._V1\x81q\xbfL\x93J_h\xa7\x93\xbf\x07;\xa0\x80\xa1w\x94?wz\xda=\xf8\xd5\xa2?\xd5\xe1\x9dyb\xe9\x81\xbf\xa0\x0ey\xed\xd6\xed\xc4\xbfd\x19\x1e\xb1\x94)m\xbfv\xb4\xd8$\x9f\xe3\xce?\x83\xff\x95\xed\x1f=\x84?\xce\xb1\x8a\x80\x84\xa2\xb3\xbfr\x1eL>E\xdd\xb3\xbfJ[\xcec\xce-\x9f\xbf;\xbdJ\xcb\xb1\xac\x90\xbf\xf6\xf4\xfc\xe6\x17S\xb8?\x88\xf2\xf8\r\x95\xeez\xbf\xca\x9f\xb4\x15\xaa\x00\xbb\xbf\xd2L\xf0\xd0|E\x80\xbf\x97\xe1\x8c\x1ey\xc4\x84?[\xf8o\xbd\x84\xa2t\xbfY\xfd2\xbd\'\x04i\xbf{\x89\xa3\xf9\x05\x01\x87?\xe8\xeb\xcb\xceb\t`?\x9c\xff\x8c\xb1\xc4L\x93\xbfD:\x84\xf0E\x03s?\xee\x99\xb4\xcf!!w?\xe6}\xe1.L\x8b\x86\xbf\x7f\x94\xecm\xc7\x0ea?A\x9d\x07=:V\x87?\xb8\x05\x9a\xdfa\x8aE\xbfb\x88\xa6\xaf\x1d\xbey\xbf \xa7Y\xfd\xd5 k\xbfL\xd5\x1b\x9b\xeb\xa3c?\xe1\xf6\x8e\x88\x9fZS?F[j\x8b\x8c\xd3|?\xde\x81\xa1\x9a\xf4\xcam\xbf\xa24\x10\xf4\x8a\x98w\xbf\x93K\x0e\xda\xb6\x81z?LDD\xefr.F?\x062\x86\xa5\xca\xe7\x81\xbf\xf4 \x0c.`\xf0x\xbf\xffB\xff\x92\x9f\x80\x88?7+.T\xf1\xf3P\xbf\xdch\xb7\x16\xeb\xc9\x83\xbf\xe0\x87\xf2.\xa1yx?dD[R\x81{d?\xae2Vz\xcb\xcaf\xbf\xd1p\x05)<:w\xbf4\xb8\xdd\'\xe1\xfbb?\x03\xdf\x82\xf6\x10A\x91?\xe2\x9d2_\x1f\x90l\xbf\xbb\xf3\x89\x12 \x03\x94\xbf\xcbuF\xe0\xb3\x07s?\xe0\xb9b\xbb\x95_\x84?H\xc38\xa3\xd2pw\xbf\xe8\xbe\xbb\xde\x03qc\xbf\xb8\xd5WG\xeb%r?b\xf4\x7f9H\xd6M\xbf\x86i\x0c\x9d\xab\x11\x96\xbf\xf7\xf5R\rca\x87\xbf(\xdcr\xf1\xa9\x1b\x98?\xfd\x13\xfe\x94\x88H\x96?\x91QPc5J\x86\xbf@\x11\xca`,\xcf|\xbf\x80R\xa1\xe1)Z|?\n\xc3\xea8c\'e?\x950\x81\x1e\xdd\xb9\x80\xbf\xde78\x0e\x84\x86T\xbf\xe1\xcb\x8b\x12*\xeb\x8b?\xca\xb6\x98\x12]\x0e\x86?\x96\xb8\xf5\x83G\xdeu\xbf\x0cb\xad\xe6\x1cY\x83\xbf\x18N\xa0\xe9W$a?\xdaf\x9f\x16\x10\x8f`\xbf\x9e\xa5\xdb\xdeE\xa7u?\x98\x1c\xf8\x07\x8cE\xa9\xbf\x80\xf6\xac2\x91\xdb\x96?\xe8E\x81:/\xad\xaa?\xc5\xf6Xt\x19\x95\xaf\xbf\x0b\x89\xcb\xec\x90Z\x9d?\x9e\x1d(%-\xab\xa0?"n\x99$\x0b#\xa1\xbfnp\x1f\xef\xf4D\xa0\xbf\xe0\x80\x93c\x01\xc2\x93\xbfJ\x0ej[{\xd2\x97?\xd8\x95>\x08w\xfb\xab?\xc4Ywt\xd9Z\xba?U\x89~33\xd7\xb4\xbf`\xe3\x1c5\xbd\xbf>\xd6\xe5\xc2\x16@\xa3?\x01\x03\xe1\xf8\x0c\x8d\x81\xbfG\x06\xec\xd2t\xe0\xc0\xbf>\xbc\x1bu\xf6\xe3\xbb?puZ\x12\x84\xbb\xc1?\x85l\xfbjX&\xc2\xbf\xea\x98\xc8|\xb2\x8a\x8b\xbfsvD\xe1\xa8X\x9a?\x0c\xabh\x908\xed\x96?\xd6\xdb\x9b\xe4\x00\xf7\xb6?\xab\x0e\x8c\'`\xa8\xa7\xbf\xaf\x89?.\xb9\x1f\xc2\xbf\x9a\xdd\xe1%\xfb\x95\xa3?\x0csJ\xdc:\x12\x95\xbf\x8a\x02\xd2\n\x84?\x8d?\xc9\x8f\x0f\x8f\x13`\xc9?O\xda\xa7\xddQs\x9a\xbf\xbeV\xe6\xc2\xd8\xac\xc3\xbf\xed\xf7YN\xf6.u?\xf0\x04D8\xfex\x93?\xbb\xc2l\xe23\x11\xbb\xbf\x88\xb4d\xc7\xdc\x93\x98\xbfb\x18[\xa3\x8as\xe0?\xb9\x99\xc7\xdc\xaa\x9ft\xbf\xfcX\xc0*B\x07\xa4\xbf\x94)V\t\xfcK\xb9\xbf\n\xf4C\x8c\xfb3\xde\xbf\'t\x00e\x1b\xff\xb2\xbf\x14\xd6\x9d\xa7\x14@\xb7?-\x80Zs\xa8\t\x90\xbf\xfe\xc5n\xe6U\xef\x8c\xbfomro\x0e\x84\x8f?(\x1f\xf7\r\x1d\x1b\x8d\xbf\t\xbe\x94\x1db\xc9{\xbf\xee\x7f\x96[KB\x82?\xb4\xd4\xc7\x97\xd6a\xb1\xbf\xa4jX\xfb\xbfg\xa2?\x8e\xaf\xa8\xc7\xc2\xeb\x90?\xcd\xe4lE\x87<\xab\xbf\xa3\xeb\xf7\xd6\xbb\xcf\xa3\xbf\xbe\xdb\xe6\xbe>i\x96?\xf1\xc9}\x7f\x8b\x81{\xbf\xf4%\xb0\x02\xdf\x06\x87?\x8er\xddc\xb9Xx\xbf\xe6>\x8f\xae\x99m\xd2\xbf\t\xb8\xad\xdc\xf4\xf3\xa6?\xff\xa8@\x01L\t\xb6?\xc3n\xf8\xad\xb0\xca\xa8?u/\x91\x9f\x99\xc7\xc8?\xd3c\xf9\x0f\xb3\x91\xbe?\x04\xb5\xa0o-U\x8f?\xb8\xdd\xf2WT\xa6p\xbf\x07\xa7\x93H\xef\x90\xa4?\xcb\x86n\xb73Z\x98?p\xa3\x16\xa9Vi\xad\xbf+\xb6foa\xff\xa7?VQ\x10\xd8\xd7#\x93?{\xa8|\xd0o\xe9\x8a?\x9c\xbc\xc1|4\x1c[?\xde0f\xd1\xfbIv\xbfL-\xd7\x946A1\xbfR\r\xaf\x8ev\x9d\x89?\x97\xdbr=\r\x1ep\xbf\xea\x1e\xc4\xe6\x0f\xe7X?\xd7\x835\xcc\xfe}\x82?\x83B#\xdf\xe5\xe2\x90\xbf\x864\xcb\x05$p\x82\xbf\xeb\xa1\xf2\xb8[\n\x9a?\x98\x03J\xf1v\x9cp?\xafW\xa79\xd5Z\x90\xbf\xecI\xc0\xa7\x89\xd3e\xbf\xfa\xf9\x9e\x9e\xe6;t?\x8c\xe2\x05R\x80o\x81?\xfd<\xeb\xbe\xe6\'l\xbfm*\xcf\xa1\x895r?M3\xa2\xb7\x8c\x1fL?\xb2\xc2\xc3\xda=6|\xbf\x16g\x01\x802\xf8|\xbfV\x8b\xf3\xc5\x9b>s\xbf`\x8a(!a\x987\xbf\xf1\xef$=\x0c\xf2n\xbf\x80\xb1\xc0\x94t\x0fY?\x00)\xb1\x0fV\xc1\xef>\xc8\x81\xa45\xdfJF\xbf\xed\xff\r\xb2\xc9v\x85?\xc5\xe1\x04\xa3\xd3c\x8b?\xd2\x05\x06\xa9M\xb1u\xbfIb\x18\xe9\x93\x11\x8e\xbf\xe1\xcb\x7f\xff\xd2\x18o\xbf\x18\xba\xc1\x1e\xd4Y{?\t\xdc\xa7( \xc8\\?\x80\x00=\xdd\xd2\x00\x0f?d\xc8\xe2\xdd\xd6\xe1T?\xd8\xa7\xf8\xddEk\x85\xbf\xd3\xcb\xae\xa1\x14l|?\xfdG\xec\x08/\x1d\x96?\x9eX\xe0\x9c\xd8\xa5\x85\xbfg\x94us\xd0\x0c\xa0\xbf\xd0M\t\xd5\x1f\x91\x95?~\xddoC\xf9Y\xa1?\xccU+E\xce\x15\x8e\xbf\xce\x83 \xda\xaf\xd5\x8e\xbf\xecG\x85\xf5\x14\xd9f?P\x1b\xcf\xb8\x87\xaef\xbfm\x13\xd0\xdb\x7f\x98m?\xc6\x1d?\x1f\xd1\xc3S\xbfE\x8cJ5\xe0\rT\xbf1\x8f\x99\x9f\xac\xdf\x84?\xc9X\x0f\xde9\xd0\x89\xbf\xe3;\x81\xd0D\xc0p?\xac\x01\xab\xaa\xff\x89a?\x8f\xfb\xc3\xef\x8c\xf4v\xbfw\x00\x90\xd0\x13\xd3\xb1?\x03\x12\xd2\r\xb1h\x96\xbf\x98c\xf7\x0e\xfa`\xb6\xbf\x16\xd9\x933\xe5.\x8c?\xd6\x94\x0f\x8a6K\xa5\xbfV\xa5 \xfd\x97\x8b\xa8?jV\xe1:\x9fR\xae?\xb6j\xdd\xf2)\xdc\x9b\xbf\xbf\xf98\x14|\xe2\xa2?\xc4\x9a\xa0G{Nd\xbfQF\x13\x93X\xab\xb0\xbf\x02\xed\xf7\x07R]\x7f\xbf\xac<\x02\xdb\xe0\xfc\x9e?\xd0w\xc6\x96\xaf@\x83?\x9c\xd8!\xe7\xc9\xf6\x91?\xfa\x8aG\xa3\x91A\x87\xbf\x98\x9f\x011\xbb\xd0\x93\xbfN\\\x07\x8f\xb4\xbfe\\\xc4,w\x91\xb8\xbfL \xb6Fb\x94\xb5?\x9b:\xc5s\xe0\xaf\xa2?\xe4e\x0f\x8d\xb5\xe9\xc4\xbfE\x0f\xfe#\xde\x8c\x97\xbf\xc2\xb1\x9cp;\x99\xd9?\xfc\x93\xbb\x98\t\xa4v?~\xd7W[c\xcf\xd5\xbf\xbc\xff\x0f\xa3\xeaX\xb4?\xf57\xa31H\xef\xc6?\x89W\x96M\xc2Z\x8c\xbf\xc7p\xa9U\xb7r\xb3\xbf\xdd\x10\x96i\xaa\xf3\xaf?\x0c`\xf5\x04F\xe3\xb1?1\x17A\xb0\xb1\x8f\xbd\xbf\xf5t+L\xb4\xc6\xb5\xbf\xd6\x81\xd6\xca\r|w\xbf\x07pK\xc5\xf5\xcb\xd4?\xc0\xf9\xa2u\xf7{\xbd?z(N=u\x0f\xda\xbf\x0b\x1ft;\x18\xfa\xa8\xbfe\x01\xd6\xec\xad\x9c\x89\xbfu\xdd\x1a\xbb\xfa\xf8\x9d?\xf4\xf0p\xf2\xd7\xc4\xa8\xbfb\'H/Kl|\xbfzT(\xaczr\xc5?|\xd2{\xf1C~\xb6?\xd2+P\xa4z\xcf\x99\xbf\xd2E\x83\x102\xfb\xc8? \xbf\x05\xf5\xe7\xea\xc2\xbfV\x95\xe9\xe1\xf6c\xc4?\xd7*\xe8 PU\xa6?x{6W\x0fy|\xbf\xac\x80\xa0\xf4\x1b\xf1c?)\x19\x1e\x14\xb2\\\x8e?`\x95\xa8\x87\xfak"?\x8c\xfb\xbd\xc4\x88[y?\xf8{\xbb\xc7\xb1j_?a\xa7\x92\xdc\x86L\xc5?Va|\x00\xfe}\x91?8\xb6\xda\x89z\x04\xa1\xbfx+\xa2\x94\xfef\x91\xbf\x8e\xdc\xef\xb2\xfa\xa6\xb7?\xca\x1a\xc7\x8b\x94km\xbf\xca\xc5\xa7\xaffiw\xbfM\xbc\x8c7\xfb\x06\x9c?\xb4\x0c\x85\x11\xcbj\x9c\xbf\xb8\xa5mqK?\xa5\xbf\xf5\xe1\x12\xdf\xacb\xc2\xbf$\x8e\x95\xb0\xd9<\xb1?\xba\x8f\xc4\xc2\xf9\x02\xc0\xbf_\xd1\xd6\xb5\x15\x89\x97\xbfy9c\xb2\x8bL\xc8\xbf\x94\xef\xf9`bsf\xbf\xc9\x0e\x00\x85\xab4\x8a\xbf\xf4\x8f2\xcb\xd5\xdb\x82?h\x8a\x8f\r\x92\xca\xbf\xbf\x04\xd6\x84\x97\xdbhj\xbfa\x8dD\x01\xb9+\xb2\xbfj\'\xcb1ql\x8a\xbf\x1cB\xab\xf0u\x8df\xbf\x17\x88\x11\xe7\xc8bw?\xd8\x81\x88\x87\xfb?u?\xc1=\xf7\xb0\x8e`\x85\xbf\xbc\xa1sD\r\x91\x94\xbf\x91\xe8\xa4JQ\x1a\\\xbf\x94\xa5\xa2\xf9\x00k\x92?\xde\x8d2\x03\x11\x95\x82?\xc8Q\xaagejS?+\xba\xff\x00}\xcaq\xbf\'\x19mss+b?T\xdb#\xf9%$\xb5\xc9?\xb9=\xb9\xca\x02\xcbb?\xa8\x94Q*^~n?\xbbY\x9a\x10\xc6\x9d\x9d?\x88\x81: \xc1C\x8a?J\xaf\x88c\x80?\x97\xbfW1\x91\x84^G\x98\xbf\xd5\xfa\xb0\xb7\x0c@\xc2?L\xf8\xccCit\xd1?I4u(\x15\xf3\xcb\xbf\x06\xb2\xbdQj0\xcc\xbf+yT\xac"z\xba?8\xcd\xfa\xe5\xda\x17\xbf?\x1e\x9f\x04,`3\x96\xbf\x1b\xda!ebg\xa3?\x0f\xca\xc6\xe9L\x05\xaf?\x11\x85f\xfa2~\x8b\xbf\xb3\x89\xd8\x9c\x8f%\xa7\xbf\x82\xf1\xec\xaaC\xa6\x9d?\xd8\x86S\x87jw\xce?2W\xe3\xce-\x06n\xbf\xf1c\xc8!\xc8\xcb\xc7\xbf\x13\xab\x81\x0b\xb5O\xd8\xbf\\A~:\x95y\x92\xbf\x08\r\xea\xf6\xabt~\xbf\x19\x0b\xcc1~\x1a\xa1?\x18\x8eN\xb5A\xc3\xa9\xbfO\xc1\xdd\xad\xf9\x95\xb4\xbf\xa0z\xe6s\xf7\xee\xa4\xbf\xb8\x9a\xdf\xa0\xb1\xfa\xaa?4Q\xfe\xea\r\x16\xb5\xbf\nw\tZ\xa0\x90l?\x1a\x05\xe9\xe8N\x8dx\xbf\xdd\xd5\xb4\xa2\xa1\xe8\x81\xbf\xc5VC\x9b\x17\x05\x8c?\tX\xd3i\xae4\x81?\x01\ro\x11m\xb9\x8f\xbfN[\xdd\x8f\x0b~\x0e\xbf\xdc\x86P\xf0\xd3\x06\x8e?\x8fDh\x0e\x87+^\xbf\x0b\xc9\n\xc5\x14\xfd\x86\xbf\xe4G\x81\xbb\x02\xc6}\xbf\x88&\xc4\xb7\xd1TO?=\xc5\x1e\x1d\x94\x96N?\xf2/\x9a\x84\xb7)|?\xdf\x16\xb5\xb0\x0c\xc7\x94?\xee\xd1\xf2$0\xf5J?em\n)y\x9e\x9a\xbf\x16(\xe3\xe8\x0ch\x7f\xbfPk\x82\xbc\xf2\xe0\x8a?|\x04\x85\xf7\x07\x8ei?|m\xfb\xc9u\x16V\xbf\xa4\xef\x97S\xda\xe5`? \xff\x01\x02#=P?x\xc2/\x0e\x065M\xbf\xda\xe2\xd2\xdc\xf2>d\xbfno\x96\'\xe3{x\xbf\xa0]\xde*\xbf\x9az\xbf\xf7\xd5C\xe0Li\x82?\x1a\xb8\xd6\x18u\x84u?[\xd3\xd30lLS?\x80\x1c\xc4j1|t?\xf1\xa9\\$\x87\xf3h\xbf\x00\x8f5\x17\xed\xb5p\xbf\xf8\xb0\xfb\xf7\xd4\x89c\xbf\x00j\xab\x071\xc9,\xbf:\x05u;\x1fM~\xbf\x94\xac}1\xc5\x0bN?\xf8o\xc6\x83\xd2\x05\x96?c\xf4\x1f\xed\x9cy\x85\xbfsN\x16\x14zj\xa1\xbf\xfcvQA4\xaf\x90?u\xdbU7T\x96\x8d?\x90\x0c+S\xbd\xd9`\xbf<\xc1\xaa\xef[\xe0`?\xb9\xd2.w\xb8G\x7f?"~\xa1\x8f\xa8L\x80\xbf\xa3\x97!X\xfa\xac\x8e\xbf\xd0\xc0$\xe7\xda\xba\x90?\xbc\xfe\xd5+1\xa4z?\xa2L3k\xfe\xd2\x92\xbf \x92\r\xd0\xd5\xf3\x10\xbf$\x8d\xaf\xe5,\xc3\x83?X\x83\xf3\xba7D9?8\xeb\x86\x14`\xc0W\xbf|\x92+\xe1TT\x89\xbf%\xde0\xe8\xd3#\xa3\xbf\xdfQr\x83+\xa6\x95?\x82k=\xbb\xbdA\xa6?\xf4}\x0b\x04\x17\xf9\x82\xbf\xd81\x0f\xc9$n\x9a?p\x8bU!\x83W:?\xe8\xb0\xa2\x85~\xb4\x9b\xbft\xe0\x92db\xc0\x8f?z\x8d\nuQ \x87\xbf\xde\xe3\xab4\xa8j\x94\xbf\xbf\xee^\xa6r\xfc\x90?\x12\x17J&L\x99\x8f\xbf$\n}@\xafjw?\xb27\xacT\xf7[\xa6?l\xfes\x01\x7f\x03\x9e\xbf\x02\xbdK+;M\x9b\xbf\xb7\x91\x14pK\xa1\x8c?\xd2\xea\x7f3s\'\x92\xbf*_\xf7\xc4\xc8H\x92?0\xe6\xf7\xcf\xf8\xa7\x9a?i\xef\xca\xd7\xa8\xe7\xab?s\xaa\xfa\xe7b/\xa2\xbf\xe3@\x91E\xd4\x07\x93\xbf\x13 _\xf1\xaf\xa4\x91?\x0e\x1ex\xf4t\xb4h?4\xd7t\x8bk\xeb\xab\xbf\xbe\xba\xb0\xc37w\x98?\xefw\x8c\x04\xb7\xdd\xae?d\x06\x97\x93m\xfa\xb3\xbf\xe0\xe2\xec\xe4\x15\x88h?\xe2\xd8:t\x154b?\xc3~\xae&4\x7f\x94?\xd8D\xd4\t\n\x1bu?<\xff@\xd5r\x82\x80\xbf|#\xf5`\xc7ec\xbf\x9d\xf9\xd8n\xeaC\x8a\xbf\xf2\x1b\x14\x05\xb7\x01\x82\xbf\xee\x88Kn\x7f\xea\xa4?\xcd\x15aS\x7f\xfaf?\xa9#\xeb\xabQ\xa1\xa4\xbf\x10\xdc\x93\x86k\xd2h?\xf8\xad\xae?\xe7\xc4j\xbf]\x17\x9a\x85\xa4\x86\x81?*\xaa\xc0\x82\x94\xc0z?"\xbf\x91l?\xda\x99?\xf2R\xbaM\xcd#\xb4\xbfo\xa3M.S"\xc1\xbf\xc6\xff\t\xec\xddc\xa5\xbf\xddb\t\xaf\xd6M\x9f\xbf\x08\xc0/\xdcz\xad\xba?\xcf\x9a\xbdG\xa2\xc8\xc2?\xe0\xd1G\xfe;\x19O\xbf\x89\x7f\xb7=z\x08\x91\xbf\x87\x93G4\xdcZ\x95?\xc4\xaaa\x19\x06\x90V?DW{\x94\xd0\x19\xa2?\x89S`\xf2\xaf\xae\xa2?\xaa\xf6\xfc\x04"\x1f\xd7\xbf\x1c\xb9e>\x91\x05n?\xc3b4z\xbd\x08\xe3?\x91\xc9\x9e!=\xa8\x8e?h2Qy\x97\x91\xd3\xbf\x93<%\xb8\xd2*\x82\xbfT\xda\x89\x95H\x03\xa4?O7\xdd\xab\xd8\xe3\xac\xbf\x92dJ\xdbl\x04`\xbfl\xc3u2\xd7\x96w?\x82\x1d|\x8e\x95\x15\x99\xbfT7\xa9\xb5\x8e\x83\xa7?]\xc4:\x88}Z\xca?OC.e\x9bq\x86?\xab2wR\xe7H\xc6\xbfC\xed>$\xdb\xf8\x93\xbf\xd9\xe58\xbd\x81]\x9c\xbf<@+Vdwc\xbf\xaa,\x93\xc3{^\xcb?\x07u?\xb5\x82\x94\xc4\xbfb\x024\x94)\x87\xd6\xbf\xc6\x85]\xc8\x03Ry\xbf\x84\xb2%\x07\x0f\x8e\xc3?\x8fK<\xa5\xc2b\xc1?\xe8\x96<4\xb2A7?\x10\x82e\xd8\x0e\x14x\xbfr4\xa4\x93\x9f\x8dj?\x0f\xe5\x08)\xaagp?\x14H\xc2\x17\x92\xfdz\xbf\x90j\xe4\x84p\xe0p?\xd6\xe3\xf6q\xda\x1dt?\x99\x1b\x1e\xee\\\xfc;\xbf\xe5\xd4\xba\x8ehBp\xbf\xcaT\x1d\xf0\xee\xb3b\xbf{\x8e\xc5\xcd\n{i\xbf\x9b\x04\xad\xf0\xa9\xc94?C\x10\x1a"\xa5\xc2w?K\x81\xc9--\xe0]?c\xa4/\xfb+Hb\xbf\xf4h\x9d\x93"\xdcD?>\x11$\xda\x04s\\\xbf\x84\r\x1f\xa5\x88\xaag\xbf"\xb7\x88\x81yAh?HIADH\xa4W?\xd6B\x16\xd3\x026s\xbf\x00\xe8\t\x93c\xaf\xf7>\x16\x1b\x0c\xbe+\xf4t?@\xca9u\xfe\xcf.\xbf\xb6d\xfe\x06\xbbO`?Z|\xfari\x8e|?p\x14N#\xf9\x9cp\xbf_L3dz\xcc\x94\xbf\x80\xbd;\x92\x1c0\x84?\x8b1feYG\x98?\xfc\xc4\x81\xfa\xc2\x82\x8a\xbf\xaeb_FK\xd9\x91\xbf\xbcW\xf6\t8\x04l?R{e\xf9<.z?\xf0\xc0W\xb4\x01\xc0`\xbf\xa8\x85b\x0cu"J?h\xa7*7\x8e\x824\xbfC&\x02\xf1\x0e\xee\x80\xbf\x84\n\xe4b\x96\xef\x81?&\x18\x07\x0e{\t\x86?\tfNa\xbf\xaeg\xbf\xb0\xbc;\xa7#\xed{\xbf\x950\x81\xd8R\x03Y?\xc0\x8f\x87!\xc4oS?\x88ltn\xc2\x9dH?\xb3\xd5\xb0\x8ct\xb4?\x8c>#b\xf0\x06\xa5?\xab\x1e;\x90\x9d=\x92?\x8d\x1dx\x06\xf8\x10\xb7\xbf\xa0\xb6\x1eK!>\xa7\xbf\x13lR\xc6\xa8>\xa5?\xdf\xf4,\xd7\xe4M\x97?\x96\x81Z\xd4\xeeX\x8b?\xac1\xe1\x9cbB\xa2?\xe256er\x13m\xbf\xc6C\x10\xa8d0\x97\xbf\x84\x1c\xff,K\xf8\x8c?\xf0\x7f\xdc\x0ba&q?:\x99\xcb\x005\xf8\x8c\xbfs\xc4-\xdc\x9a\xfa\xa2\xbf\t\x80\xa6\xbb\x88+~\xbf\x9a\xc0\xe4u\x07\xe8\xa0?\x05\x8d\x96\xfa4)m?\xa0\xc5\xbaQy`\x84?\xd4\x9cE\x7f\x9b\xf5_\xbf\xe6\x02\x13\x93W\xd2\xa8\xbfx\xd2\xa2\x9a\x05@_?.\xf2\x84\x91iE\xa4?\xfc!\xb6\xe0\xc2\xe7\x8b?\x03\xd4\xfc\xbc\xd3\x06d\xbf\xd6\x08\x80\xb5^\xb9\x9a?\xb6\x15\x08\xbd\xf1Y\x98?\xa7\xc1l\xf6\x9fm|\xbf\xbdg\x04\xfe\xbf\x03\x95\xbf\x9e%\xdc\x13!\x95\x9a\xbfZ\x88\x80[\x1a\x88\x82?\xfc\x87\xf7\xfd\x87\xf0\xb0?\x80\xc2B \x80\xcb\xfa>\xe1\x9fR\x7f;\xe1\xb1\xbfx\xdet\xb3\xfe\x84\x82\xbfS\x05\x90\xf2V\x1f\x95\xbf\xc8O7\x05Q\xc1w?O\x8c\xd3Q_d\x90?\x81|\xf4H\xd8 \x92\xbfTlM\x12\x0e\xd6@?\x97\x8by\x85\x03t\xb0?\xf7\xe0s\xd8hE\x8c\xbf\x9bL\xea\xa4d\t\xd9\xbf\x965\xf4m\x88Ip\xbf\tW\xed\xd8\x9d\x1b\xdb?:\x08\xec\xa8\xc5\xce\x86\xbfA\x99\xad\xf1\xa6>\xa1\xbf\x04te\xe2\xcc\x91v?\x91W\xc2\xcd\xf7S\x87?Lh\xd7\x0f\x138q\xbf\x92!\xf0\xe1\x10\xa0\xa0?\xd3\x93z\xb3\xd7\xff\x9c?\x8e\x1b\x1fq\x04\xde\xca\xbf\x91\xb2\xe4g\xc5\xf0\xb1\xbfU\x90@\xba*<\xdf?\xb8tV\r\xc6|\xa2?\x13\x93\x98NO\x82\xd0\xbfc\x03\xed\x08r\xe7a?\x94ZY&\x8b\xa1\x98?\x0c\x8b\xa0\xc3\xe9\xe5\x97?\xc1\xb3\x91\r\xcc\x17\x85\xbfo[\x7f\xb6l@\xae\xbfs\xa6r<\xb4Q\xd3?\\\n\xd6\xf1\xf4\xb0\xad?\xca_\xc9\xc3\xfft\xc4\xbf\xdaxOE\xdb6\x90?_JA\xccoM\xca\xbf\xee\x8bL\xcc&\xcey\xbf/M\xad\x81\xf0\x03\x86\xbf\xb8K\xc3k\x06\xfb\x8f\xbf\xa4\xea\xd2\xda\x03\x1a\xa3\xbf\xfa\xdc\x10\xdc\xd4A\x90?\x0c\xa4<\xfa\x9c\xd1\xbd?B~\xe4<\x9a\xe8r?c\x97l\x81?^\xc1\xbf\xb0\n\xf3\xe1\x12\x93B?\x15\xe3\x8bI\xa2\xc5t\xbf9P\xe6\x1b\x15\xaat\xbf\x0f#e\xe2\xe1V\x88?\xd7\x9c\xdat\xde{\x84?C{\xa0\x98\'\xca\x8d\xbfk\xc2\xf9\xf7V?d\xbf\x1b\x19}\xaa\x87\xf2\x85?}\xd0,&\xb7\xd7f\xbfz\xaa5z\x85\xafn\xbf\xb5E\x9du=\xdaI\xbf\xc3\x1d\x96\xcc\xe6$l?J\x80\xc3\xdfT_s?\x03\x0f6\xe9\xcbP\x82\xbfj\x7f\x83N\xc0]\x81\xbfiBs\xd4\xc0r\x87?\xf07\x1e\x87\xf0\x1a\x80?\xaa\xd9\xaf\x93\xfa\x86\x81\xbfv\x04\xef\xd0\x97bS\xbf\xfe\xe3\xc9\xf0\x0b\xd9g?;\xbf\x19\xb6\x07\x98u\xbf\xc4\xb6s\tAJs?\xcfY\xc7\xea\x83\xffm?p\x80\xf0w\x0e\x86T\xbfK\xa9\xd2lv\x7fo\xbf\xc8{\xd4\xbb-\xddb\xbf\x90g\xba}91\x85?T{O$\xd8U{?\t\xd3\x0b\x82\x94\x17p\xbf\xd4Tj\xdc\xb2\xbf\x8a\xbfB\xb5w\xfb\x0cK\x80\xbf\x96\tY\x0b*\x02\x89?e\xb7Uk\xeb\xe9u?P>7\xabl\xadr\xbf_\x11s\xfdE\xe7^\xbfN\xce\xb2\xdaiij?\xd0\x1c!\t\xe9*H\xbf\xca\x05\xe7\xea|\xf3\x82?wW\x1b9\xe5\xbe\x84\xbf\x80\x82\x11\x18\x14\x03\x8f\xbf\x92\x89\xf2\xf5\xc6\x87\x80?\xed\xa3\xe2&\xcf\x0cs$\xca\x84\xbf\xc5\x9c\xbcD\xf5\x87t?\xf4R6\x80u4\x8a?\x0b\x0b[\xc8\xd8\x1c\x87\xbf\x0c\xcex\x9aW|j\xbfuA\x9d\xa8\xcb7q?\\\xf1C\x9f\xcd\x9cH?|Ty\xb7\x9b\r=\xbf\x90\x9e\x8bS\xc5jH?\xfest\x88!\xe4|?@\xbc2g\xfb\xcc\xaa?\xe5}|\xd7\x0f\x1fu\xbf5\xd8\x80#\xc2\x8e\xc2\xbf\xb2\xbf\xbbQ\xf1vp?\xa5\x9a\xd3\x15Nx\xc0?\xed\xcc\x158\x19f\x97?\xa9_\x114\xbaU\xa4\xbf\xf9lx\xc4\xd7\x9b\x96\xbf\x1a&\x87\xad\x18\x92\x9c?\x04\t\x15\xcc\xf1\xdaT?\x1d\xcb\x19T\xa1s\xa5\xbf\x8cB\x1a\x7f\xc0d\x93\xbfG\x1cC3\xc1\xb9\xa3?h\x8f\x9cqf\x97\x9e?\xa8RW\xa1\\5\x9d\xbf\x82\xe3\xfe\xb6U\x90\x88\xbf\xe9\x12\\\x12O\xb1z?xe\xeaF&\x07I\xbf\x97\xac\xd7!?\xe8\xa5?\x96\x8aCLI\x8e\x90?\x99kfx"W\xad?Q\xd5\x02u\x03\xf1\xd6?\xdcA\x90\xa5\xbeF\xaf\xbf=J\x06\xeb\xc4\xc6\xd4\xbfH\xe03\xe1\xe7\xb5`?\x896\x87\xc7"\xb8\xa2\xbfh\x1bm\x05\x8f\x08\xb4?PW>3\'l\xd8?\xc9\xa8\xdc\x1d|"\xbd\xbfkv\x13=\xf7Z\xd9\xbf\xceE\xc7\t\x82\x8c\x80?\xd8\xb4\xa4\xf8:\xf7\x98\xbf\x99,\xef\xb2\xdd\xf9\x80?\xdc\xb6\x0ei\xae\x7f\xd2\xbf\x05\xa9[\xcb\xef\xa5x\xbfXB+15\x11\xd2?)\x1b\x8d%a\xab\xa1\xbf`?\xb8\'\x8dA{\xbf$T \x92\x16U\xb9?\xa9i+\x05\xe4J\xd2\xbf\x82\x8dS\x10\xb0\xad\xb3\xbfQ*\xd3}\xafQ\xd4? -\x9a6\xfe\xf5}?PT\x18\xe1\xa4\xe78?\xf4G\r\xe0\x93\x99\x91\xbf)I\xc37\x97\x83\x95\xbf\x99d\xd35\x04%\x95?\x1e\xeb\x88\xb9z\xd9\x99?\\b\xb2Zv\x12\x9b?.\xd5\xe5\xc7_M\x98?H\xe2\xf1\x8ch\x89\x9d\xbf0\xa1z\x82D\x89\x99?\x89\xc6%aw_a?\x1e\xfc\x1c\x9f\xcb\xd5a\xbf\x18\x8e\xa9\xcb\x14\xda\x8f\xbf\xd431\xce\xc2\x00\x80?\xcf~\xa9}\x0b\xb1\x83\xbf\x07\xf5\xb5p\xfd\xa0s\xbfj7)\xf8\x8f\x0f\x9d?\x15l\xfd\xc0\x1dDX?\xb3De\x01$\xdd\xa5\xbf\xfa\xf4%\xc6p\x9dn?wR\xf0 =\xa8\x99?\xf2\xdb\xaa\xd9\xb5\x0f\x83?\r9s\x0b\xb4\x9bd?5zaU\xc1\xc7\x96?V\xe9\xe5\x80\x052\x85\xbfZ[[\xad\x07RU\xbf\x99yN\x8a\xe9v\x85?\x1c#\xa6[\x94w\x91?\xcd\xd4\'\x85\x81Ch?j9\xe9\x14;\x06\x91\xbf\x1b\xbf\x96Z\xff.\x96\xbf\x13\xf4\x9aH]=\xad\xbf\x97\x8cq\x7f\x18+\x99?\xcfs\xbdP\x8a\xd5t\xbf\xd8k\x9a\xf3\x171\x90?\xb6\xcb\xd9\x9e\x1cs\xa1?@\x885\x13\xe0Id?A>{\xa4C\xe0\x87\xbf,\x8a\xb9\xdeg\xe8\x97\xbf\xcb\xf1\xb6\xc0=-\xa9\xbf\xec\xf9A\x104\xe9k?\xd6\xc1\x01\x88\xdc\xcfY\xbf\xf9\xfd\x9cA\x11\x87r\xbf\xf5A\xaa\x99~\x8f\x89]?3\xa0\xc3\xbae\x91R?\xf0\xb4A\xb3\xa1li\xbf\x1b\xeb\x85\xc3\xbeC_?\xdc\xb5X\x0f\xb4-T?\xe6=\xdb#\x00hs?\x8f\xfe\x8f\xa5\xad\x0cd?D\x81<\xed\x06\x130?\x18n\xc3\xffA\xcbr\xbf\x9e\xcc\x97\x95}\x87\x89\xbf+r\x97"\xdf\xf9n?+\x8bzTWQ\x80?h/\xaar\xdc^K?\x02"\xce\xfd\x87\nn\xbf\x0f\xc3\xdd\xb6\x85br\xbf\x14\x9d\xfbJ\x12\xcb\xa4?c\xec\x1e\xbd\xff\r\xbc?\x0e\rH\x08\xff\x0b\xc0\xbf\xc0e$4.\x88\xbd\xbf\x0b\x14x7P\xf8\xc0?\x06h\xe5]%\'\xb3\xbf$b\xba\x9a\xcb\xa5\xaa\xbf8\xef+Y\x05\x80\xb5?6\xf8ve\xc4\xd5a\xbfY\x15\xef\xfd\x0c\xb0t\xbf\xec\x08[j\'\x94E\xbf\xc3\x0e9\x11\x9fys?\xfe5\xd7\xa7;\xb3a?\x98\x83\x8f\x87o\xaeL\xbfo\xff\xf6\x94\xe59b?\x8caDxQ9w?\xf3\x16\xec\x03\xac9k?\x86\xf2\x13y\xf3\xcfr\xbfn\xd1\x8c\xda\xf2c}?\x9d\xa7\xb6\x8c\xb1ig\xbf"\xa4\xfc\xed\x83_\x82\xbf\xe4)\xd5\x14\xdc\xc6\xa1\xbfU~\xfd\x94`\xe5v\xbf\xf2Y\x1c\xb1\'\xba\x91?\xf4U\xa3\xdf\xa3W\x9c\xbf`\x8bu\xde\xde\x84z?`\xf3b\x08p\x08\xab?Z\xad\xe1\xd7\xfa`\xa2\xbfq\x8f(\x1ew^\x98\xbf\xbb\xba\x84\xd2<\xca\xab?-\xffjFK\x16\x8f?Kd\xc8\xab_k[?\x86m\xb1\xc1\x1e\x1a\x9d\xbf&ZY\xfd9Ft\xbf\x1c\x16\x19\xb0\xcf\x12\xa5?\x16S\xfc\xd9\xc9`\x99\xbf\xf0}\xf9s.E\\?\r\x0eT\x14\xebee\xbfm) \x1f-f\x85\xbf\xd13\xd3\x9c\xad\xaf\xa8?}\xfb\xb9T\x8b\x86\x8d\xbf5\xae\xd0\xcd2\x89\x92\xbf\xce\xa4\x9aX\xdf\xcc~\xbfD\xf2\x9a\x85\x18\x03\x85?\x14\xceO\x80\xcf\xdb\\?4\xa5\xdca\xb5\x1c\x86\xbf\xd9\xba\xc16\xb5\xb0\x99?/& ~\xed&\xd0?\xa5T\xe6j\xf9\x16\xa3\xbf\xb0m\xf3\xcbi\xb5\x92\xbf\x83P\x91\xaa\x1cDy?]LY\x17\x9cb\xc8\xbf\xc4\x19Yk\x9dY\x86?\xf6g\xaf!\x19\xc8v?t$\xd8(\xfc\xc1\x8f?\x1d\x04\x1d\xc1z\xf2\x89?tl\xf1\xba\xeaoA?\x9b\xac\x88\xe4\xbd\xc1\x81?\xbd\xb5wf\xdf\xe7\xb7\xbf\x13\xf9\x84\xf7;\x01\xd0\xbf\xef_nc|\xa2\xc7?\x82\xf4\xe6\xea\x186\xb1\xbf\xfe\x14I\xe4\x8d\x91\xb4\xbf\x11j\xd6B\xe8\xac\xd4?\xe047g\xc4Oe?|\xc7.Tp\xaa`\xbf\x01\xb7\tCDm}?\x15\xfd@k\x9b\xae`\xbf\xa8\xe2+\xf8\x8f\x01m\xbf\xe5\xc5\xbc\x81\xd3\xed\x9a\xbf\x84v(\xab\x01\'\xa7?\xe0\xab\xf4\xa1\xb2b\xa8?\xeeo\xf0u\xa9B\xa4\xbf\xca\xcaV!\xf1\xa6\xb5\xbf|\xf6\xd7\x1fo\xa5\x8b\xbf\xc7]\x96\xab\\\xcc\x8c\xbf\xced\x14q\x03\xaa\xae?j)d\x1d\x13\xb6\xdf?\xfc\x17\xbb\xfb\xf3<\xc0\xbf\xbe<\xd7\x84\xa83\xad?\xd6\xbdz\xa5\xed\xf9\xa5?\x1fU\x94\x86\x9a{\xe1\xbfG\xf7\x85\xc5\x1c\x06!\xbf\xc9\xafi\xc9M*y?\xd5\x03jE\xafIW\xbf\x9a\x91/b\xfdzm\xbf\x9b\xeeNs\x13tL\xbfAa\x19\xd0\xf2\x8bV?U\x8fp\xc1\xa3g_\xbf\x04C\x9fv\xe7\xea|\xbf\xd3[\xfe:y\x1fd?:H \xcf\xad`q?\x0e\x97\x83\x1d>\x8bK\xbf\x03\xeb$\xb2\xb07p?\xe5p\xc2\xd4\x16]p?<\xba\x19lq\x0f\x85\xbf\x9c\x08{y\xe3\xfe\x86\xbf\xee}\xc8BQ\xbb\x81?\x11^\xec"zF\x81?F+\x81Gc\xe4b\xbf\x0c\xa7\xcdU8\xb1N\xbf|```#\xafn?@\xdb\xd8#4p-?\xd2\t\xc2\x92\x81\xccx\xbf\xceZM\x8d=\xe5S?\xa2\xa1MF\x9f5s?PH*\xeb\xe3\xb3S\xbf\x80\x85L.\xc2\x08\xf5\xbex\xd4ZS\x06xt?\xec\xa0\xb8\xc3\x0c\xa4f?\\o\x15\x13\x98BR\xbfo\x9c@mf\xed\xbf?\x0b\x00\x932\xe5\x8b\xd7\xbf\xb8\xb7\x97\xe5\xc8\xa7\xda\xbf\xa6@C\xe28\xb3\xd5?2N\x9d\xf3\xdb\xae\xdd?\xe1\xbc\xf9\xb0\xb1\xc2\xd7?\x9a\x91\xad\xa6\x9b\xba\xc6\xbf\x01\x80\xe8\xd5\x06\xcb\xd5\xbf\xd4\xe4\x12\xf1\x1d5\xa5\xbf\xc7f\xf6\x13\x18\xd6\x82\xbfb3\xb7D\xba\x14\xb9?\xc2\xc5\xdf\xb9\xba\x85\x9d?\xb0d);"\x14\x90\xbf\xa9\x86\x1eFtL\x9e\xbf\x83\x14\x90\x1c\x1e\xe7\xab\xbf\r\x83\xc5)\xa2\xd3_?S\x86B\xe0\x90\xeb\x94?\xd9\xff\xf0\xa1QZp?\xfa\x08gf\xc6q\x82\xbf_\xf3\xeaH\xf2\xbf\x81\xbf\xcaT\xd4\n\x15\xc8\x83\xbfg(\x14\xd0I\x9e\xae\xbf8\xa3\x12-\r\xa3\x88?\xfd\x97S\x9ei\'\xad?SG\xac\xf7\xbea\x99?\x19J\xfd?\xaa\x97n\xbf\x95\xa8P\x9b\xf5\x9b\xa5\xbfd\x9c\xd8O;\xea\xa9\xbf\xbd;\x1b\xbe\xf6\x1a\x9b?zi\xc3\x96\xb2\xeb\xaf?a\x1f@\x08\x8aq\x98\xbf\x1c\x93\x85\xb4\xd5uc?$\xb2\xf4!\xaaAW\xbfU\xdd\xbe\x90!c\xa4?\x12p\xd8\xe7\x15p\x81?GW\xc2\xde`\xd8\x85\xbf\x13VJ\xb1\xbfwv?\xe8\xa1T?\xb9\xcb\x93\xbf\x00Om\xe3\x82!\xa2\xbf\x88p\xcb\x17C\xa4\xa9?s\xef[Z\xb5\x00\xa6?h\xe2\xf39\r\xcb\xb0\xbf\xed&\xaf\xd1\x07\xf8z?6 \xb0\xcb\ru\x80\xbf\xa6%\xe8\x85\xc2I\x8d?\x88\xd4Qv\xad\xe7r?\xf8(v\x19\x1b%\xa1\xbf\xeb\x9e\x0c\xb0o\x9d\xa3?\xe9\xcb\xd2\x81H"\x8f?<\x96Mvj\xeeE\xbf?\x84kj_L\x95?/u\x00\x97V\x05|?t\xb2Z%\x1c\xb1\x8c\xbf\xc4\x92\xae\x9ew\x17j?\x1b\x0e\x11ty\xa5g?\n\x83+ \xd4}R\xbfP\x1f\xc8\xe3\xe9\x08u?7>p\x0e\xaaiS?=\x13\xdf\x89\x07gq\xbf\xa6\x99\xf3\x155\xe0\x92\xbf\x86<\xdc7\x0c\xdbh\xbf\x15W\x0f\xf8e\xc2\xb0?&\xdb\xd5\xe1E(a?\xb8\xaa\xe6d\xf8\xed\x96\xbf\x88\xbc\x80>F.L?Q\x917\x9czJr\xbf\xcc\x02p\x8d\xcc\x19j?\xc4\x9di3m\xc9h?\xac\xbc\xd0\xdb\x1c\x99j?\x1e\xe4\xef\xc3T\xc5\x82\xbf\xbb|\xed;\xcat\x89\xbf\xfe\xa3\x19[E\x9b\x9c\xbf\xf2\x10(\x06 \xbcu?\x02\x1b/\xeft\x9a\x80\xbfJ\x1f\x99\t\x82D\x88\xbfM\x89\xa0}8rX\xbf\nP.\x9a\xe6\x16\x84\xbf6\xefS\x0bw\xa4\x90?\x0c\xc5i\xe3\xea\xc3\x97?\x9dG\x80\x9f\xd4\xc5\xa3\xbf\xe4`\x91\r\xa5\xf7\x89\xbfG?\xd8j\xad\x86\xc5\xeek\xbf\xd6.\xcc\xb3\xa0\xc8g\xbf\xd0\xf8[\xa5\t~C?x\xd6\xfcziGt?\xe3"\x91u\xb1\xc7d?\x1as\xdd\x0b\x15\xb0p\xbf\x94\xbc_wz\x04^\xbf&2\x9d\x01\x18\x88k\xbf\xd4>g\xfc\x06lw\xbf|W\x12\xb3\x00\xb9z?\xfak\xd5\xf0?\xaa|?\\\xd3\xa1\x83\xb8\xcfa\xbfv$\x80\xdcR\xa0T\xbf \xd0\xcf\xa7\x87\x16\'?\xf8\x8d>-\xfb\xe9A\xbf\xe4\xd5d\xf2\x8eMc\xbf\xe1\xd6\xfa\xcd\xef\xcet?\xd0\xfbY\x1e-Ll?\x94Df\x01\x94\x8bZ\xbf5\xd8+wL\x9b\x83\xbf\x18\x8b\xe2\xbak\xc7c?\x81\x18W\xd0[\xddn?\xbf\x1c\x17y\x88\xafb\xbf\xd0\xb7\xfe8\x19YC?\xa4\xc9\x08\xdf>\x1fk?\x17O\xa8\x89t.i?\xacR{\xf4\xae\n\x84\xbf\xad\x1e8,[,o?C\xd0\xc3\x83\xdd.\x82?\xf0N\xa4\xfc\x05\xc8H?>\xce\x0000\x8a}??\xdde\xa4\xef\x9ar\xbf\x0f1\xc0$L\x8dq\xbf\x04\x03/\xf0\x12\xb7\xbf\xbf\xbb\xa1\x18:\x17\x8f\xd1\xbfd\xc3\xd2[\x8e\x96\xd8?\xf1\xf9\xbe\xc4Q\xef\xcd?\x92;\x94E\x91\xa5\xd9\xbf\xf1\xcd\x073\xc5\xce\xd4?*\x06\x1c\xe0\xb9\xc5\xc2?\xe06\xd60\xa1J\xd2\xbf\x00\r\tJ9\xe5\x82\xbfW4\x9b\x81\xac\xf9\x82?\xcb\xd2\xf7\x88}"\x96?\x96S\xfb\xea<\xc1\x8d\xbf7\xcb\x8d\xcc\x13!\x86\xbfwI\xe0u(\xc9\x94?\xcc\x8dRk\xd1\xd9\x88\xbfH\xf0L\xdd\x10\xd5\x9b\xbf\x96\xbbh\x97AAn?\xfa6D`\x93\xfd\x88?\x9cJ/\x86\xbb9z?BB\x1a\xf3\x1e\xdal\xbf\xb4\xbcm\xb1J\xb5\x9a\xbfPZ\xfc3\x94C\x81?\xc0\xd7\x161<\x1f\x98?\xa6=\xd7\n,O\x85\xbf+\xff\xa9v\xde\xa2p?\xf6I(\x0c\xb8\xa7q\xbf\xf5\xc3x\xdc\x00\xf2i?\xeb\xc8\x00\xcf\x9d\xef\x9f?\xbe\xda\x9d\x7f\xb3\x93~\xbfe\xbdm1\x9c+\x99\xbf<\x1eaV*\xc6v\xbf\xf0A\x05t;\x03*\xbf\xb4\xad\xeb\xc0\x829\x85\xbf\x94]\xa9y\x97\xc4\x95\xbf\xb9\xa6\xccZ]\x17\x86?!R\x1cF\x84,\xa1?\x98\x1f\x01\xca\x90\x93R\xbf/m\x83\xd5\x19\xe5\x85\xbf_#\\\xbb\x9e\x80\x87\xbf\xf6\x93F\xd1I\x95\xa0\xbf\xce\xaa\'\xff\xees\x8e?\xf3jM,\xf9\x18\x9b?R\xaf\xa1\xe5\xf7Fz?\xb4\xfePW\xe0_v\xbfVU\x854\x97\xc4i?f\xc92=\xf6n\x8a?\xda\x94\x98\xcb\xf1W\x9f\xbf\xed_\x87\xbc\xe1\xe7\xb8\xbf\x1a+\x8b\xaf\xcevc?\xe2\x15\xf5\x9e7m\xa1\xbf\xc4\xf54\x8f\x1e\x0f\x8f?z\x05\xbbY#t\xc4?\xb0s|\n\xcc\xbek\xbf\xd11\xda\x1d=\xd0\x8a\xbf\xcb\x81?&\xf2\x8f\x91\xbf\x02}\x0b\xe0\x89\xd2\x83\xbf\x9di\xfak$\xdar\xbf\xc2\xef5R\xc8f\x91?R\x94\xda6L~\xa9?\xe8`\xb5\xce\xa0\xd3\x96\xbf\xf7\x07\xe4\xfbV\x98\xaf\xbf\x04\x8eq\xc9r\xe6\xa8\xbf2|Y\xc2^\x00\x8b?\x0c\xdf\x1fV\xb1\xf6\xb6?\xdc\x852\x9aq&Y?_B/p\xaad\x81\xbf.\xf5\x18\x18\x10\xe1p\xbf\x086\xe7\xeeX\xc2o?\x1a\xd1\xd0\x16\xc8\xd4\x94?\xd4\xff^L\xdc\xb8\xd0?i\xd3\xbe\xae\xae\xde\x94?j\xe4\xbca%A\xa0?\xbd\xfe\x85]~s\x95\xbf\x9f\x02`l\xea\t\xd4\xbf\x87\x9cX\xf0`f\x92?\xe7 \xd7|\x07\x88}?u\x0f:k\xd9\xb1w\xbf\x8f\xfe\xbc8p\\\xc8?!\x80\xc6\x86\x85\xbb\x93\xbf\x16\x12\xdf\xdbD\xe3\x9f?\x8c\xa8\x00O\xed\xb1\x92?\xd4J\xee\xe2T-\xd0\xbf \x99\xadg\xfd\xb8g\xbf\xaem!\xaf\x0cs\xfd>l\x91\xca\xae0ov?\x8d\xff\xcc\x96mof\xbf\x07\xc6WN\xcd\xe0L\xbf\xc82\xb7a\x0e\xf0c\xbf\xea\xdf\x02 \xab\xa8o\xbfJ.\xa1m\xbf\xdb\x82?\xfb\xd5\x7f\xd4\xd9\xdfn?}\xba\x1c\xbb\xa3\xbft\xbfM:\rB\'\xa1v\xbf\x8b\xbb\xa3\xdd\xcb\x92[\xbf\x17\x81\x9d\x1c\x87\xd3s?\x9d\xc4\x99\xdd\xa5;q?\x8a\xe6\x06{\x8cB`\xbf1\x93\xd4\xec\xc5}w\xbf\xac\xb0\x07\xdaq\x1fA?\xdc\xa4%Z;2\x81?\x9d\x0b \xb5{zU?\xc6s"\xc7\xea\xcep\xbf\xfe\xa0\x9dQ\xe0\xd5q\xbf$pT\x9f\x86Sb?\xb6T\xd1a\xec\x9br?HX\xfa\xe1\xb0\xedQ?\xd8P\xe9\x92\xc1\xb4(?\xcc\'\xc9\xf3T\xdbb\xbf\x82\xf7\xd4\xb1\x80\xdeP\xbf\n\x9a\x9d\xf8y\x10^\xbf>\xb4)\x04\x05|\\?\x1e\x040\x15\x0e\xafp?\x0fXHzWZb\xbf\x89]\x0f\x9fv\xeeQ\xbf \x00\x0fh\x99&I?\x10\xef\xd8v\xe3\xdc\x16?\x96\xdamS~\xa5p?2\x0c<\xb5\x85%p\xbf:\x84C\xf6X\xdf`\xbf\xbc\x1an\x15\xa7\x82v?TCT[\xe0jt?\x98\x9b\xef0\xe8\x0fb?\xf2\x9e\'\xf6\xb8>\x80\xbf\xa1"\x9dr\x15\x8b@\xbfy\xe4r_zFv?u\xda\x8a\xfc\x13\x1ak\xbf\x18}@d7\n=?=\xe2\xb9\r\xa2\x17{\xbf#\xe7_\x1c\nSG\xbf\xe6I\x1aLX/\x91?z\xc0}i\x1f\x84d\xbf67lV\t]\x8c\xbf\x8e\x06\xab\xe4C\xf8V?\xae\xf3y/\xf04|?82~!\n\x90\\\xbf\xd1K\xd6\xc7O;n\xbf&d\xd0\x1b\xb6\xf0t\xbf\xd3\xdf\xb0\xcc\x89\xef\xaa??\xcb\x10\xca\xfa6|?!\x1e\x8c\xba\x9c,\xb7\xbf\xb1\x96S\x97)tq?\xb4\x7f\xb9*\xb8\x84\x9a?\x06[=\xeak@r\xbfPR\xd4\xe7\xb2\xa1\x88?\x9e\x87\xe4\xa3\xc8\x17Z?\\B\xc6\xd7\x00\xec`?\\\xd6G\xc7\xc9\x85\x83\xbfI\xac\xab\xe2\xc5\xeeb?\x9d\xde\x8a$`.\x7f?y\xdb\xec\xb0\xc2}\x80\xbf0\xbbCUt\xf2{\xbf\x1e\x02\xf9S\xdc<<\xbf\x9e2\xb4\x11b\xf2r?\xb8\x12\xdd\xc6_\x84j?\xeb\x9b\xf52\xc8Dx\xbf\x926\xc2FL8t?\xac\xb6Z"\x8a\xb5\x8b?\xe3\x1f7\x7f0\xbdk?\xa6t;y\xe0\xc3\x95\xbf\xc7\xdaYkJEc\xbf\x07&Z5`\x18o?(&.\xa5\xebff\xbf\x06\x90\x84\xf8A\xa4\x80?2\xcb}+\xf9\xb8d\xbf\xd1\n5\xd0ACR\xbf_\xb7\xf4\x9dd\xdc`\xbf\x94\x1c\x84\xe6\x80\xc0`?;\x1b\xa9\xcc9\x06x\xbf\x88\x9a\x16\xe8*\tX\xbf\x00\x1fi0gF\x92?\xa9A\xa2b\\\xea\x83?\xdaC9\x90*\xec\x83\xbf\xde4\x12\x0f\xbbbi?\xc0mt\xa0QI_\xbfZ\xb8\xd0{M\x1ar\xbfi\'%\xcb\x9f\xd4\x99?\xa2\xe2>1@D{\xbf\'\x88\xce:\xc9\xef\x99\xbf\xa6x\\\x91\xbd\xf5C\xbf\xc4Q\x014s\x9de?\xd4\x96\x80\x07\xe3\xdba?\x19qj\x95k\x08\x84?\xc5})\xb5C\xe2\x8a?\xe0bv5X.\xd1\xbf\xe8l\xfbhn\xe4\x85\xbf\x88\x16\xa4\x8dE\xc5\xde?\x12\x9e\x81\xe1\x18\\~\xbf\x9e\xccF:\xfc\xeb\xc3\xbf\x14\xfa\n\x08\xa0\x84=\xbf\xca\xf0$\xea)[e?nu\xbc\xee.ct\xbf}\xc2\x0e9{Ph?2|y\x05Q\xbck\xbf}q\x1b\x1f\xd8\x97}?\\=\xf3\xc7\xa8\xe6b?[?\xd6\x99\xbb\x93\xc7\xbf|\xb9`\xe7\xe2~\x89?`\x8dC\xba\xd9\x1b\xd3?.\xac\x1f\xb6\xceD\x86\xbfGV+v{\x8e\xc1\xbf\x9b\x8aF\xca\x00\xa4g\xbf\n+\xdf\xcb\xce\x88_\xbf\xddX\xaf\x11\xe9\x19p?\xf2\x00\xfc\x92\x1cBu\xbf\'K\xc5\xcc\xb2\xe2\x94\xbf\x05s\xb7\x94\x15\xad\xce?z;d7\xf3\xc1\x9e?O1\x10b\xad&\xd2\xbf\xb2\xfd\xe3\xf6?\x98X\xbf\x15\x9ddA\x8c\xf6\x94\xbf\xe0\xcc\x922\x0e\xa6d?\x96K\x91~\xf2\x12v\xbf\x8ei\x1e\t\xf5\xda}?)\x04\xd1*a\x02\xd6?\xa7\x8e\xc2\xa5\xe4\xd4\x8f\xbfFG\xc8\xc0M\xc8\xde\xbf\x06C\xe9V\xe4\xc4r?:\xe1!\xfd\x89\xd8\xc3?d\xe2I\x03\xb0\xaeF\xbf \x0e\xce\x9a\xef\xb9\\\xbf%\x9e\x0b[\x83\x00?o\xa8\n\x84\xff;E\xbf\xa97\xcc:jjV?{\x95G\xb0\xf4Aa?o\xd14\xc0c#P\xbf\xe8\xd3\xa5\xcdH\xeci\xbfag\xd3\xb2.\x98]\xbf\xc6\xea5\xd7\x84\x90\x16\xbf\x8b\xbf\xc9\x96\xbeCg?\xbe{#\xbc\xb4mE?v\x8e\xa8l..s\xbf\xf0\x04\xc0\x89\xd1\x93o?\xf4\xd6~^DT0?<&\xdc\xe1\xbe\xb0r\xbfJ\x0f\'1\n\x97m?\xfc\xfbe\x9c\xc6\x93y?\x04\xbdgo\x12\xbdp\xbf\x8dF\xda\xfc\xbf7y\xbf\xcdM\x92^DLr?f\x16=\x9f\xa5\x8d_?\x02\xd3F0\xd3\xf2k\xbfz\x9bS\x9c\x94\xc8Z?\xceL\xfcJ\t\xcd\\?\xfd\xa0`\x16\x90\x14w?\xd3|\x0bfiJA?1\x82\xf8\x8b\x8b\xfb\x81\xbfh\xfb\xd8\x9c\x13\x08]\xbf\x85\x06w\xaa\x1a\rt?\x9b[\x95f\xfd\xc3Wy\xe4?\xa8\x1a[\xed\xa8\x81g?y\xf1\x86O\xbfT\xcc\xbfv \xf2(\x86\xcd\x83\xbf\xeb\xf25\x87\xc0&\x89?-\xbc P\x8f\xfe\x82?1J\xcd\t\xd2\xbe\x8e\xbf)!\x90\xfc\x98,x\xbf\xcb\xd4\x86\xec\xe6\x10t?C$\x10Q\x1c\x00Q?\x02\xf7g\xfb\x03\xffz?K$\xc5\x9f\xe4\xfex?\xf0\xd0\x03X\x91&6\xbf\x80\xa3\n\\\xdaHi?\xbb\x91x\xbe3\xa2P\xbf(\x07\x17\nn\xd9r?\x8eZ\x8e\xfb\xe4vw?f:\xa6\xeb;ML\xbf\x80N\xf33#\x8b\xf9>\nzj\xe4\xfc\xabn\xbf\xcd,%s\x06\xe9p?\xb0FL\x16FkC\xbfl\xd7R\x03`\x18z\xbf\xf4\xfa|6\xe6}h\xbf\xac\xd10W\x15\xe3P\xbfn(\xd9>S\rh\xbf\x9c\xe7\xd6\xbe\x93"i?\xf3{\xd5<\xa3\xeb~?v\xc3"\xe7W\xd4u\xbfZ@\'\x93\xe2!\x88\xbf\xfd&.\x8c\xb3\xa2z?\x14\xae]\xf3"Cf?\xd4\x81\xf7\xd0\x14\xe5g\xbf\xa2*u\xb5D\x83o\xbf#&\xa4\xd7Z\xc6c?\xb0\x03\xec\xc6\xad\xa2\x80?6\xd4\x8e\x14LZK\xbf4\x8f\xae\x14\xcb\x9d7?>\xd6\x81\xac\x93g4\xbfl\xb5\xf2\x82Emh\xbf\xe3\x1b%m[\x19r?\xe8\xb2\xe8\xc0o\x1cw?\xd2\xcd\xe9\x89*\x92\xb3?\xc0\x81o\x00\xfd\xb3j?W\x92\xe9\xab\x03\x16\xb9\xbf\xd7N\x13\x13\xab\xc5m\xbfF\xa7`\xc28\x17W\xbf\xd6I\xd2\x85O\xdao?\xaeW\x1f\x1f\x88_P?Q\xc6\x82\x07\xdb\x91w?dt!\xf8\xaa\xa3\\?\xc0\x05\x83\xa1\x7fZw\xbf~\xf7\xfeO\x1f\x7fa\xbf\x01p\x94\x8e\xad@{\xbf\x02\x85\xf6\xa2\xfc\xe4\x8d\xbfOq\x94vI\xa5\x8f?8\xd5\xc1B\xf8\xb4\x99?\x1a7n\xf3\x9d\xa1\x83\xbf\x13~\x03\xca\xc9\xc2\x90\xbf_2\xfe\xe52\x94\x85?\xc4_\x91\xe5eW\x80\xbf\x89n\x92\x9b\xc6i^\xbf\xe8\xd1\x8f \xccdF\xbf\x96\x91bP\x1f\xb0K\xbfN\x11\xdb\x96\x0c\x0b\xc2\xbf c\xb6\xae\x88\x99\x83\xbf\xa6\x1b\xf6\xd2\xf9\xca\xc1?\x8e\x96\xee^^\xa5d?\xdd\x1f\xa0:\xd6I\x9b?!\x05\x92\xbbS=w\xbf\xf2hIi\xbc\x90]\xbf\xbf\xadF\xd8\xfbL|?1\xb7\x08\xfd\xcd.\x82\xbf\x85\xe1\xfe\x1d|\x15G\xbf9\x99\x1d\xb0+\xeb\xb1\xbf\x7f\xfa\xe4\x1f\n6z\xbf\xc9h\x8e\xc2\x85\xa6\xb6?\xcc\x83\x9b\x86\xef\x1b2?\x9f&\x94\x10?\xf7\xfe>\xa2\x7fb\xfe\x98\xb4P?\x9fQWz\x1a\xbab\xbf\x80\x97\n\xcc\xc9\xdaZ\xbf\x0bA\x88\xa3/\x83W?\x8d]Y.\xa1\xedE?\x03b\x9c\x19\x08\xc3V?\xe3\xab\xf0w\x1b\xeb3?\xe93r\xcc2\xa1Y\xbf,\xf41\xc0*\x1bK\xbfB\x04\x05\xceYYC?5?\xa9\x96\xd8\xd32\xbfD9\xd04F\x88U?\x92d\xbe\xb7\xd3\x9fg?<\x08\x83U\xaa\x1ea\xbf\xa0\x12\x10HH\xc63?\x8e\xbdA\xc3\x85\xd6b??\x11\xa4^\xf1Zn\xbffQ9v\xdd\xbbd\xbf\xb7\xc13\x81\xae[V?\x06\xfc\x12\xb1C{4\xbf\x90C,\xe2\xbc\x8eD\xbf=:\'9\xeb&h?F\xfa\xe2uvvS?2\x13uw\xb8\xdaD\xbf\xec\x15-<\xa3\xc2P\xbf4\xfc\x87c,.m\xbf\xeeYN\x81p\xceQ?\x05\x854\xc3gK`?\x9b\xab\xa0\xaf\xed\xbdO\xbf\x18wV\x99\x1a\xe4b?\xf8\xfehM>\xc6C?L\x91bz\xc53X\xbf\xdf9\xe6\xd5\xbf\x18b\xbf\xb4\x1f\xe8sgvN?\xf8\x9a\xc8\xf2\xe4\x952?\x80\x05\xb4\xca,\x7f\xf1\xbeW\xe0~w\xd4\xd6U\xbf\xeb\xd5\x07q\xfc=\x85\xbf\x88\xa0s+\xc0nj?\xa56\n\x96N4\x8c?(\xc0"<\x8f\xede\xbf\x03u\ngQst\xbf\xa2\xec\xe24\xf5\xf3K\xbf \xc9\x94\xa6\xa2)r?\xde\x91\xdf\x05\xb8\x1ff?\x99u\xd7U\xd3\xefz\xbf\x86\x8b\x8d\xad.eP\xbf8B\x9a\xddz&\\?\xfbXa\xe3\xef\x97D\xbf\x95\xb35*\x04VY\xbfI\x08&\xc7x\xcbW?\xcc\x86;O\x18cE?,\xc6j\xe9(]Q\xbf\xffc\x15#o\x8d\xa6\xbfZ\xaa\xcf\xc1S\xcf\x85?\xa8\xd2k@\xc2\xac\xc1?\x9bq\xca}\x06\r\x90\xbf\xab\x06?)\\d\xc2\xbf\xf08\x0c/\n\xc6x?eE\xa7\x18\xb2\xa2\xa9?\n\xbc;%\x03\x90\x82? zU\xc9\xae^r\xbf@\xa7Q\x0e\x85\x9d\x94\xbf.d-U\xbd\x14u?\x00\x91|\xa3\x1a\xd7\x86?B\xf4\x05\xc1\xfc\xbai?81[\x94\xfa\x88q?zg\xb0\xc0 c}\xbf)\\G\x87\x04\xacr\xbf\x02\xdaC\r\x01(g? m\x00\xa5\x94\xfa\x0b\xbfv"\x19\x06\x8c\x17q\xbf\x9cdX\xc7\xf4\x1a6?\xf0\xe7\x07\x18\x04\x8b\x81?\xecx\x8cG#\xdfe\xbf\xdb\'Lq\x81\'s\xbf\xa3\xa1\xa5\x1f\xda\x0co\xbfE\xd60\xc3\x89\xdeX?\xfaSX\xe6\x9dg|?\x90\x91(\xf8\xac\x97R\xbf7\x91\x04\xbae\xb4H?F\r\x0b\xc3\x8c\xcaQ?\xd0\xfdi#\xa8}k?/\x18\x02\xcc\xdf\x15k?/\x00\xf2\xc4_\xe1a\xbf\xf8\xbf\xf9)\x97\xbfQ\xbf\x94\xad\xee\xd4\x92+i?6\x9a\x9cF\x87\xb1\x7f\xbfcUK&\tsa\xbf\xae\xe5\xaa\xf6\x8c\x0fH\xbf\x81\x8c\x01\x02\xe32\x8a?\xd3\x15\x8c\xf9\xab\xa4\x83?\xba)\x8b\xc88&\x90\xbf\x06[\xa8\xd0\xc2\x7f_\xbfH\x92S\x05\x94\xe9m\xbf\xd0~\xf7\xbe\x8b\xc9o?l$W\x93\x87,z\xbf2qJ\x9dexu\xbf\x8c\xae\x94L\x8d\x00\x86?\x96\x87\x08\xc2\x9b\xf6\xb9?\xabzy%9\xady\xbf(\x12c\x01h\xe6\xcd\xbf"\xac\x17%\xc3\xe9r?\x0fH\xfc\xdb\xfaf\xba?\x97\x92\xec\xc9\xa6\xc5M\xbf{b\x16\xdf\xf7Tg\xbf\xc9pWa\x98gc?0*\xf1\xe9\x99\'\t\xbf\xe3\xc00v\xcf P\xbf\x9f\xd3\x0e:d\x1bR?\xc2\x7fl3\x14?\x91?\xd2\\N\xfft.\xae\xbf\x0bw\xfc\xea+"\x94\xbf\xb8\x1c\xdb\xe8\xc90\xbc?\xb6"\xd4\\s\xdb\x80?\x04\xbe:\xe9\xa3\xe5\xb0\xbf\xc8g\xaa\x06\xbe\xefm\xbf\xd4g\x85\xd9r+q?\xa9\x00\xca\xfcQ{\x85?h\x98{\x8c\x87\x90n\xbf\rR\xabc\xcaIy?\x8a;\x1a@\x82\x98|\xec!\xd97@6\x16/;a\xae/@\x15\x11\xef:\xb3\x84;@N\xe9}\x9d\xdc\xff8@Dh\x0fyW,B@G#u\x90\xf7*0@\xd4\xc5p\x82\xba\x1bD@\xd0\x93\x05\xee\xd2\xae\x1c@\x9f\xe2\x8eJ\xe4zD@\x17\xcc\r\xc5f\'\xc7?6\xf5\x8cI*!D@\xb1\xbcX+\xaa(\x1b\xc0\xe7\xb3\x10\x1bt8B@\xcb_`@|/\x9dhd)^@\x96\xf6\xa7\xe1\xfbLa@`\xf0\x0b\xbd\xfe#T@\x9fk\xa3\x0c\xb5\xb6S@\xe7L\x18t\xb2\xf0R@\x7f\xb9^\xb9\xd5\x90U@Wk\x8e\xfe\xfc\xf7R@\xa2\'a\xa5\xf8\xcbW@\xa1Y\x80K\x0e\xa0T@\x9dJ\xbd\x1c\xd3\xc1Y@\x87Gl.\xb8\rU@F\x15U\xf1\xa5\xa8W@\x8a\x98;\x9b\xed\x05U@\x9d\x95zh\xdfoU@1Y\xff\x17\xcf\x9cT@\xd5@#\x02\xf8\xdfa@\x12\xd0\xc32\xd8\xf2R@\x0e\x8b\xea\xee\xeb\xdab@\xf1\x0f\x99\xfc\xc6\xe9R@\xc1G?\xf1\xd6\xf8c@\x96\xb4\xde\xeb\xfb\x1bT@\xea\xd8\xe3\x14\xdf\xe6d@^JI\xc1\x96\xfeT@\xb9PqcC\nd@\x82\x19\x18},\x08U@\xdcU\xc4\xe7v\xedb@\xfcC@\xda\x82\x98b@\n\xeb\xb42\r\tX@d\xa9\x19\xb1\x0c\x1ab@\\\x1e5\x974\x8bZ@b_\xda\xe6\xe0\xd5a@#\xea\x1b\xaeL\x0f]@qD]4\xcb\rb@&\x0f\xff\x91M\xcf^@N\x96\xa2\xfe\xf0\xd3a@\xaf\xd0\xeac\x84H`@\xdf\xdbz\xaf\x13\x17b@+\x159z\x85\x8da@\xe0\xdf\x98\x83\x0f\x96b@\x18)\xf6F\xcf\xceb@\xab\xe2\xd6Y\xd5\xc7c@f;D\xe1\x06\x97a@\xa1\x80\x84^6Md@*\xb7\x0e\xf6\x97[`@qO&N\x80gd@9mQi\x04\xce^@\xa7\xf4\\@-Od@\xd3+\x0ff\xdb\xe6\\@w\xd6\xa54\xd8\xcac@\x03Ae\xc4=wZ@\xdd\x03d5\x18\xa9b@\x8e>\xd2+\x8d\x12Y@\xe7\xc8\xf1e\x0f\x95b@\xe2\x9e`_\x85\x08]@\xb8\x9b]0P\xacb@\x88\xe1\xac\xcc\x84\xcf^@\xae\x12\x00\xc3\x18\x93b@\xceu\x99\xf6\xdfK`@\x7fB\xb5\xed\x8c\xa6b@\xb9\x9f\xd9c}Ib@\x1e\xf91\x9c\xa2,c@\x80\x0f\xdfLuO`@\x0b\x18\x00\x8a\xfeHc@$\x8f!\'>\xce^@\xccS%\x0b7.c@!,\xdd\xf9n\xff\\@' +p208 +tp209 +bsg109 +Nsbsg46 +(lp210 +g47 +asg49 +g32 +sg44 +Nsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_jaw b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_jaw new file mode 100644 index 0000000000000000000000000000000000000000..24f2d9661b061ebc53cff1446821c34fee2c7030 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_jaw @@ -0,0 +1,486 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.clm.base +CLM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'opt' +p6 +(dp7 +S'ablation' +p8 +(I01 +I01 +tp9 +sS'verbose' +p10 +I00 +sS'rho2' +p11 +I20 +sS'sigRate' +p12 +F0.25 +sS'ratio2' +p13 +F0.08 +sS'smooth' +p14 +I01 +sS'dataset' +p15 +S'demo' +p16 +sS'ratio1' +p17 +F0.12 +sS'pdm_rho' +p18 +I20 +sS'sigOffset' +p19 +I25 +sS'kernel_covariance' +p20 +I10 +sS'numIter' +p21 +I5 +ssS'_shape_model_cls' +p22 +(lp23 +cmenpofit.modelinstance +OrthoPDM +p24 +asS'max_shape_components' +p25 +(lp26 +NasS'scales' +p27 +(lp28 +I1 +asS'diagonal' +p29 +I200 +sS'holistic_features' +p30 +(lp31 +cmenpo.feature.features +no_op +p32 +asS'patch_shape' +p33 +(lp34 +(I8 +I8 +tp35 +asS'expert_ensemble_cls' +p36 +(lp37 +cmenpofit.clm.expert.ensemble +FcnFilterExpertEnsemble +p38 +asS'expert_ensembles' +p39 +(lp40 +g0 +(g38 +g2 +Ntp41 +Rp42 +(dp43 +S'sample_offsets' +p44 +NsS'cosine_mask' +p45 +I01 +sS'context_shape' +p46 +(I8 +I8 +tp47 +sg33 +g35 +sS'response_covariance' +p48 +I3 +sS'patch_normalisation' +p49 +g32 +sS'_icf' +p50 +Nsbasg45 +I01 +sS'shape_models' +p51 +(lp52 +g0 +(g24 +g2 +Ntp53 +Rp54 +(dp55 +S'similarity_model' +p56 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p57 +g2 +Ntp58 +Rp59 +(dp60 +S'_components' +p61 +cnumpy.core.multiarray +_reconstruct +p62 +(cnumpy +ndarray +p63 +(I0 +tp64 +S'b' +p65 +tp66 +Rp67 +(I1 +(I4 +I34 +tp68 +cnumpy +dtype +p69 +(S'f8' +p70 +I0 +I1 +tp71 +Rp72 +(I3 +S'<' +p73 +NNNI-1 +I-1 +I0 +tp74 +bI00 +S'@\xe3\x11B8\x96\xcd\xbf\xd9\xb4S\xcd\xd3t\xd0\xbf\xea\xe5<\x85\xfd\xd1\xc4\xbf}o\xd3\xe6\xbe]\xd0\xbfUW\x06\xa3\x9b<\xb8\xbf\xd2\\\xa9\xff=\xd1\xcf\xbfo\xb1_k\x7f\xbb\x9c\xbf\rh\x83\x06\n\n\xce\xbf\x01\xea\xd4\xff\xbcl\xa1?|\xd5w\xb9\xa4\xa5\xca\xbf|A\x01\xc2o\x8e\xb6?*\xca~\x9f\x03r\xc5\xbfr\xcc\xdc0^\x18\xc1?\xd0@K\xca\xf3%\xbe\xbf\x8bv\xd5\xdeh\xc4\xc5?\xda\xc3\x80z9\x12\xb0\xbf\x94\xf7\xaf\xe9e(\xc7?\r\xfa\x99\x8d\xd9\x12=\xbf_\x94\n\xd1\x99\xc8\xc5?N\xde\xb3 1\x9f\xaf?\xe9\xec\xa3f\xb9#\xc1?P\xc45T\x17\xff\xbd?[\xd1)\xd8\xd4\xb1\xb6?<\xf1\xec\xfd1n\xc5?i&\xeb\x9e\xd7\xab\xa1?^\x85\xd7\xfaJ\xaf\xca?i\x89M\xb2\xedo\x9c\xbfvpq\xd2 \x18\xce?\xe0oQW\xf9>\xb8\xbf\xaf}G8\x87\xe7\xcf?P\xbfFr\xb7\xe1\xc4\xbfl@O\x06\xd2f\xd0?\x056_K\xa2\xaa\xcd\xbfQ^\x1djJx\xd0?\xda\xb4S\xcd\xd3t\xd0?<\xe3\x11B8\x96\xcd\xbf|o\xd3\xe6\xbe]\xd0?\xe9\xe5<\x85\xfd\xd1\xc4\xbf\xd1\\\xa9\xff=\xd1\xcf?UW\x06\xa3\x9b<\xb8\xbf\x0eh\x83\x06\n\n\xce?n\xb1_k\x7f\xbb\x9c\xbf|\xd5w\xb9\xa4\xa5\xca?\x02\xea\xd4\xff\xbcl\xa1?)\xca~\x9f\x03r\xc5?|A\x01\xc2o\x8e\xb6?\xcf@K\xca\xf3%\xbe?q\xcc\xdc0^\x18\xc1?\xd8\xc3\x80z9\x12\xb0?\x8bv\xd5\xdeh\xc4\xc5?W\xf9\x99\x8d\xd9\x12=?\x93\xf7\xaf\xe9e(\xc7?O\xde\xb3 1\x9f\xaf\xbf`\x94\n\xd1\x99\xc8\xc5?P\xc45T\x17\xff\xbd\xbf\xe9\xec\xa3f\xb9#\xc1?<\xf1\xec\xfd1n\xc5\xbfZ\xd1)\xd8\xd4\xb1\xb6?^\x85\xd7\xfaJ\xaf\xca\xbff&\xeb\x9e\xd7\xab\xa1?vpq\xd2 \x18\xce\xbfj\x89M\xb2\xedo\x9c\xbf\xae}G8\x87\xe7\xcf\xbf\xe1oQW\xf9>\xb8\xbfk@O\x06\xd2f\xd0\xbfQ\xbfFr\xb7\xe1\xc4\xbfQ^\x1djJx\xd0\xbf\x076_K\xa2\xaa\xcd\xbf\x14\xaf\xd2Hh\x0b\xcf\xbf\xf6W^@N&\xb1\xbc\x18\xaf\xd2Hh\x0b\xcf\xbf\xda\xb3\xb7VT+\xa3\xbc\x13\xaf\xd2Hh\x0b\xcf\xbf2\xa0\xc5&fR\x97\xbc\x15\xaf\xd2Hh\x0b\xcf\xbf\x9c\xda\x14\x16\xa6\xc6`\xbc\x16\xaf\xd2Hh\x0b\xcf\xbf\xc8\x18\x1b\x1e\x1a\xba\x8c<\x15\xaf\xd2Hh\x0b\xcf\xbf\x96n\xb32\xbe\x9b\x9b<\x19\xaf\xd2Hh\x0b\xcf\xbf6\xa4\xc9\xa8\xddm\xa4<\x1b\xaf\xd2Hh\x0b\xcf\xbf\xed!\xb8\xa0Z\x19\xa8<\x1d\xaf\xd2Hh\x0b\xcf\xbf\x98\xc5\xc9\xec\x93\xe4\xa8<\x1c\xaf\xd2Hh\x0b\xcf\xbfb\x91\xa1\x14\x9e\xbd\xa6<\x1f\xaf\xd2Hh\x0b\xcf\xbfEg\xfe;\x9f\x1c\xa1<"\xaf\xd2Hh\x0b\xcf\xbf\xd6\xb7;]s/\x94<%\xaf\xd2Hh\x0b\xcf\xbf,\xc8\xf4\x9f\xd5\xa8`<%\xaf\xd2Hh\x0b\xcf\xbf^\x08U\xcam\xda\x89\xbc%\xaf\xd2Hh\x0b\xcf\xbf\x0e_a/\x85\xe4\x9d\xbc%\xaf\xd2Hh\x0b\xcf\xbf\xd9\x0f|\x07\x1d\xfc\xa8\xbc$\xaf\xd2Hh\x0b\xcf\xbf\xb0\xc6\xa9oaB\xb1\xbcQ\x81[({\x94\xac<\x15\xaf\xd2Hh\x0b\xcf\xbf\xce\r\xbb\x10\x91K\xa1<\x15\xaf\xd2Hh\x0b\xcf\xbf\x8f\xbd6\xf7\x05\xf1\x92<\x14\xaf\xd2Hh\x0b\xcf\xbfAg\xb5\x9d\xa1\x9bq<\x14\xaf\xd2Hh\x0b\xcf\xbf\x1f\xbe\x94\x95\xb9\x8a\x8e\xbc\x16\xaf\xd2Hh\x0b\xcf\xbf6\xfa\x08\xeb\x00\x06\x9d\xbc\x18\xaf\xd2Hh\x0b\xcf\xbf-B\x93d\x84x\xa3\xbc\x19\xaf\xd2Hh\x0b\xcf\xbf\xd0\x87\xbdVH\x85\xa8\xbc\x1d\xaf\xd2Hh\x0b\xcf\xbf\xe9Y6[\xfe\xe0\xa8\xbc\x1d\xaf\xd2Hh\x0b\xcf\xbf\xe9\x15_6\xaa\xa3\xa6\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\xcf\xa5<\x89t\x07\xa0\xbc"\xaf\xd2Hh\x0b\xcf\xbfT\xe9\x90l\xd5z\x93\xbc#\xaf\xd2Hh\x0b\xcf\xbf\xc8\x9f\xf1c\xaf\xd0k\xbc#\xaf\xd2Hh\x0b\xcf\xbf\x1f*\x82\xc8\xa5#\x92<"\xaf\xd2Hh\x0b\xcf\xbf\xe4 \x05I\xeb\xa6\xa1<%\xaf\xd2Hh\x0b\xcf\xbfM\xf6:Q\x84\xc2\xaa<%\xaf\xd2Hh\x0b\xcf\xbf\xcc\xc8\x81\xa0^\x93\xb2<&\xaf\xd2Hh\x0b\xcf\xbf' +p75 +tp76 +bsS'_mean' +p77 +g62 +(g63 +(I0 +tp78 +g65 +tp79 +Rp80 +(I1 +(I34 +tp81 +g72 +I00 +S'3\xc6\xda\x8d\xb6IP\xc0\xebRu\x9ap\x1eR\xc0\x0c|I\xa0w\xecF\xc0\xe6Lp\xbd\x06\x05R\xc0\x9f\xe4J\x12r\xaf:\xc0~\xbf\x97\xa1\x11\x84Q\xc0h}Gp\x9b\xa2\x1f\xc0\xbc\x1b\x9e)y\x89P\xc0\x96\r\x1a\x8ce/#@\xd2\r \x9d\xd1VM\xc0@e\xb1\x9f\xd0\xd58@1\xe74q\xa8\x9cG\xc0\x08\xd1\xda\xa8\x80\xd2B@\xba4X\x01\xd7\x98@\xc0A\x97q\xb1`\xf7G@\xceQ\xbd\x1a\xe0\xb11\xc0\x80c\xda\xb3T\x7fI@\xc2\x83_bd\x01\xc0\xbfy\xe9^\t\xfe\xfbG@|\xd4\xca\xf7\x83h1@\x05\x8d\x1d\x94\x01\xdfB@7S?=r\x83@@\xc2\x0b\xb2!\xc9\xfc8@:#\x0f\x0bt\x98G@K\xf4\xe0;\xe0t#@\x15\xd6\xf9nqaM@\x8e\x9e\xb8BgO\x1f\xc0xw\x10\xc1:\x91P@\x93\xd3\xfa\xf7\x0c\xb2:\xc0\x86\xa7EoV\x90Q@@\x89FH\xc8\xfdF\xc0mK\x19\x90\x04\x0fR@\x07\xa5E\x8f\xf3TP\xc0\x05N\xcc\xc9@"R@' +p82 +tp83 +bsS'template_instance' +p84 +g0 +(cmenpo.shape.pointcloud +PointCloud +p85 +g2 +Ntp86 +Rp87 +(dp88 +S'points' +p89 +g62 +(g63 +(I0 +tp90 +g65 +tp91 +Rp92 +(I1 +(I17 +I2 +tp93 +g72 +I00 +S'3\xc6\xda\x8d\xb6IP\xc0\xebRu\x9ap\x1eR\xc0\x0c|I\xa0w\xecF\xc0\xe6Lp\xbd\x06\x05R\xc0\x9f\xe4J\x12r\xaf:\xc0~\xbf\x97\xa1\x11\x84Q\xc0h}Gp\x9b\xa2\x1f\xc0\xbc\x1b\x9e)y\x89P\xc0\x96\r\x1a\x8ce/#@\xd2\r \x9d\xd1VM\xc0@e\xb1\x9f\xd0\xd58@1\xe74q\xa8\x9cG\xc0\x08\xd1\xda\xa8\x80\xd2B@\xba4X\x01\xd7\x98@\xc0A\x97q\xb1`\xf7G@\xceQ\xbd\x1a\xe0\xb11\xc0\x80c\xda\xb3T\x7fI@\xc2\x83_bd\x01\xc0\xbfy\xe9^\t\xfe\xfbG@|\xd4\xca\xf7\x83h1@\x05\x8d\x1d\x94\x01\xdfB@7S?=r\x83@@\xc2\x0b\xb2!\xc9\xfc8@:#\x0f\x0bt\x98G@K\xf4\xe0;\xe0t#@\x15\xd6\xf9nqaM@\x8e\x9e\xb8BgO\x1f\xc0xw\x10\xc1:\x91P@\x93\xd3\xfa\xf7\x0c\xb2:\xc0\x86\xa7EoV\x90Q@@\x89FH\xc8\xfdF\xc0mK\x19\x90\x04\x0fR@\x07\xa5E\x8f\xf3TP\xc0\x05N\xcc\xc9@"R@' +p94 +tp95 +bsS'_landmarks' +p96 +NsbsbsS'similarity_weights' +p97 +g62 +(g63 +(I0 +tp98 +g65 +tp99 +Rp100 +(I1 +(I4 +tp101 +g72 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p102 +tp103 +bsS'_weights' +p104 +g62 +(g63 +(I0 +tp105 +g65 +tp106 +Rp107 +(I1 +(I30 +tp108 +g72 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p109 +tp110 +bsS'_target' +p111 +g0 +(g85 +g2 +Ntp112 +Rp113 +(dp114 +g89 +g62 +(g63 +(I0 +tp115 +g65 +tp116 +Rp117 +(I1 +(I17 +I2 +tp118 +g72 +I00 +S'2\xc6\xda\x8d\xb6IP\xc0\xe9Ru\x9ap\x1eR\xc0\x0b|I\xa0w\xecF\xc0\xe4Lp\xbd\x06\x05R\xc0\x9d\xe4J\x12r\xaf:\xc0|\xbf\x97\xa1\x11\x84Q\xc0f}Gp\x9b\xa2\x1f\xc0\xba\x1b\x9e)y\x89P\xc0\x95\r\x1a\x8ce/#@\xcf\r \x9d\xd1VM\xc0>e\xb1\x9f\xd0\xd58@/\xe74q\xa8\x9cG\xc0\x07\xd1\xda\xa8\x80\xd2B@\xb84X\x01\xd7\x98@\xc0@\x97q\xb1`\xf7G@\xccQ\xbd\x1a\xe0\xb11\xc0~c\xda\xb3T\x7fI@\xc1\x83_bd\x01\xc0\xbfx\xe9^\t\xfe\xfbG@z\xd4\xca\xf7\x83h1@\x04\x8d\x1d\x94\x01\xdfB@5S?=r\x83@@\xc0\x0b\xb2!\xc9\xfc8@8#\x0f\x0bt\x98G@J\xf4\xe0;\xe0t#@\x12\xd6\xf9nqaM@\x8c\x9e\xb8BgO\x1f\xc0vw\x10\xc1:\x91P@\x91\xd3\xfa\xf7\x0c\xb2:\xc0\x84\xa7EoV\x90Q@?\x89FH\xc8\xfdF\xc0kK\x19\x90\x04\x0fR@\x06\xa5E\x8f\xf3TP\xc0\x03N\xcc\xc9@"R@' +p119 +tp120 +bsg96 +NsbsS'global_transform' +p121 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p122 +g2 +Ntp123 +Rp124 +(dp125 +S'_h_matrix' +p126 +g62 +(g63 +(I0 +tp127 +g65 +tp128 +Rp129 +(I1 +(I3 +I3 +tp130 +g72 +I00 +S'\xfe\xff\xff\xff\xff\xff\xef?\xd8\x8f\x15\xd6\xe0\x0f\x12\xbc\x00\x00\x00\x00\x00\x00\xc0\xb9\x8e\x92\xa1\x17\x0e\xa7#\xbc\xfd\xff\xff\xff\xff\xff\xef?\x00\x00\x00\x00\x00\x00\xf8\xb9\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p131 +tp132 +bsg111 +g0 +(g85 +g2 +Ntp133 +Rp134 +(dp135 +g89 +g62 +(g63 +(I0 +tp136 +g65 +tp137 +Rp138 +(I1 +(I17 +I2 +tp139 +g72 +I00 +S'3\xc6\xda\x8d\xb6IP\xc0\xebRu\x9ap\x1eR\xc0\x0c|I\xa0w\xecF\xc0\xe6Lp\xbd\x06\x05R\xc0\x9f\xe4J\x12r\xaf:\xc0~\xbf\x97\xa1\x11\x84Q\xc0h}Gp\x9b\xa2\x1f\xc0\xbc\x1b\x9e)y\x89P\xc0\x96\r\x1a\x8ce/#@\xd2\r \x9d\xd1VM\xc0@e\xb1\x9f\xd0\xd58@1\xe74q\xa8\x9cG\xc0\x08\xd1\xda\xa8\x80\xd2B@\xba4X\x01\xd7\x98@\xc0A\x97q\xb1`\xf7G@\xceQ\xbd\x1a\xe0\xb11\xc0\x80c\xda\xb3T\x7fI@\xc2\x83_bd\x01\xc0\xbfy\xe9^\t\xfe\xfbG@|\xd4\xca\xf7\x83h1@\x05\x8d\x1d\x94\x01\xdfB@7S?=r\x83@@\xc2\x0b\xb2!\xc9\xfc8@:#\x0f\x0bt\x98G@K\xf4\xe0;\xe0t#@\x15\xd6\xf9nqaM@\x8e\x9e\xb8BgO\x1f\xc0xw\x10\xc1:\x91P@\x93\xd3\xfa\xf7\x0c\xb2:\xc0\x86\xa7EoV\x90Q@@\x89FH\xc8\xfdF\xc0mK\x19\x90\x04\x0fR@\x07\xa5E\x8f\xf3TP\xc0\x05N\xcc\xc9@"R@' +p140 +tp141 +bsg96 +NsbsS'allow_mirror' +p142 +I00 +sS'_source' +p143 +g134 +sbsS'model' +p144 +g0 +(cmenpo.model.pca +PCAModel +p145 +g2 +Ntp146 +Rp147 +(dp148 +S'centred' +p149 +I01 +sg84 +g0 +(g85 +g2 +Ntp150 +Rp151 +(dp152 +g89 +g62 +(g63 +(I0 +tp153 +g65 +tp154 +Rp155 +(I1 +(I17 +I2 +tp156 +g72 +I00 +S'8\xb5k{!\xfbC\xc0\x1cf\\q\'\xc0\xbc\xbd\xd6\xe7\xfb\xb3S@\x1e\xab\xca\xbe7lD\xc0\xa1%^\xae\x01\xbcS@' +p157 +tp158 +bsg96 +NsbsS'_eigenvalues' +p159 +g62 +(g63 +(I0 +tp160 +g65 +tp161 +Rp162 +(I1 +(I30 +tp163 +g72 +I00 +S"\xcc:\xf2\xd61l\x85@~\x81\x02\x12\x90\xc5w@\xc5\x83\xa6\x19NWQ@\xf5k\xccUi\xc9J@H\xcf\x8f*\xc4\x98@@\xf3\xb3\x85\x9ezz2@Z\x0f3\xe3\xa6\x15-@\x9a\x7fn\x05\xa1g%@\x0e\xd6\xdd\x05'\x7f\x1b@\xb9\x86\x13\x96:q\x14@\x03u*6\xe0\xee\x12@a\xe8%i\xa5\xdc\x11@@\x8df(\xbb\x9d\x07@\xa1[\xfa\xeb\x8d7\x03@\x87~\xd6\xf7\x87\xa1\xfc?\xca\x18q\x88\x141\xf9?tj\x1e\x1c\xae\xb2\xf3?\x1c\x0b\xe6\xa3\xc3\xf3\xf2?y.\xc0\xc7\xe3H\xee?L\x9b/j\x9f\xec\xeb?\x19'\x03\x11\xae\xbb\xea?\x10K\xf4!\xd2\xb6\xe8?8\xf2\xbc\x1e\xe5$\xe6?\x82\x0c\xc0\xcc\xfb\x0e\xe5?\xae\\\xd6\x91uS\xe4?\xbd\xcb\x06?\xbay\xe2?\xd5\r\x10\xe2\xe74\xe1?r\xa3\x97\x1d\x9a\xcf\xdd?\xe8\xb0\xe7\xa0\xa3\x0e\xdc?\xd6M\x06\x9d\xa9_\xd5?" +p164 +tp165 +bsS'_trimmed_eigenvalues' +p166 +g62 +(g63 +(I0 +tp167 +g65 +tp168 +Rp169 +(I1 +(I1 +tp170 +g72 +I00 +S'\xb3h$\xf2\x99\x00\xd2?' +p171 +tp172 +bsg61 +g62 +(g63 +(I0 +tp173 +g65 +tp174 +Rp175 +(I1 +(I30 +I34 +tp176 +g72 +I00 +S'\xe0W\xcf\xdd\x82[\xd4\xbf\xa7\x8f\xdc(\x13E\xc6?n\x9a\x15\xd9$\x80\xcd\xbf\xe2\xe5\xbf\x1e;\xcf\xc5?\xdb\xde\xca\x104\xec\xc1\xbf~\xdc\xee:\x1e\xcf\xc5?\x9e\x1b\x02\xdc\xf8\x94\xaa\xbf\x99\x96\x80\xe7\xa0F\xc5?\xfe6\x92H_\x15\xa1?\x0b\xc3\x0f\xd3\xa4\xaf\xc3?V\xf9Vr%[\xbd?=\xba\xa92\x92:\xc0?\t\xef\xc3~\xfa\xea\xc8?\xc7p-\x13J\x1f\xb5?\xd8\x00\xe6V\xa1\xaf\xd0?\x19\x88\x8f\xa8\x07\x93\xa2?\x7f\xef\xc7\x1aa\x01\xd2?\x08\xa2Ql\x1c\x12z\xbf\xd0k\xe5\x8b\xf1\xd3\xd0?\x94\xd7\x0e\x01\x1ep\xa6\xbfw\x1f\xd5\xe9\xfd\x0e\xc9?\x9d!2\x1c\x07\xb3\xb5\xbf\xdbv\xe4_y\x10\xbd?\t\xbc\x99\x88@\xe9\xbf\xbf\x83\x10\x86\xa2\xea\x9a\x9f?\x04-K \x10!\xc3\xbfPg\x13\xc3h\x87\xab\xbf\x18_G\x8c\x9b\x91\xc4\xbf\xe4\xc7^0\xac\x1e\xc2\xbf\x93E;\xdd\xf1L\xc5\xbf\x9bd,\x10\x19\xa9\xcd\xbf\x17\x06\xc7L\x7f\xc7\xc5\xbf;\x8c\xc1R\x14\x80\xd4\xbf\xc4\xf6\xdeV\xd2F\xc6\xbf\x13,\xe1\xb4\x0c\x85\xd6\xbf\xfc\xbbP!z\xf3\xba\xbf\x02\x85\xd9y\xc2t\xcf\xbfi\x03\x93Ub/\xbf\xbf\x05sZ\x02\xc7\xb6\xc1\xbf|\x08\xe8\xf1\x98\x92\xc3\xbf.\x9a\x10\x88\xc0\xb8\xa2\xbf\x84\xc9\x9a\x85\x9fO\xc6\xbf\xecD\x9c\x8e\xa3M\xa0?+\x1c\xc1\xc8*i\xbd\xbfs\xdf\xcat\x0b\xb6\xad?\x90Kur\xa7\r\x85?LC\x9aU\xed<\xaa?_z\xad\x90T\xc8\xc4?B\x86\x11+\xbda\x90?\xd5\x8bFF\x1e\xf9\xd3?\x1f\x8eeY\xa2~r?r\x9b|\xe6i\xc5\xd7?\xeaM\xef\xe5\x1bb\x86\xbfy\x01\xcbv\xb1Q\xd4?\x83\xbd\x9f\x95\xeeW\xa8\xbfk\x93\x13\x14\xb5\xcb\xc5?}I\xc6\xc5\xf4\x16\xad\xbf3\x10\x1f*\x03X\x8d?\xee\x80\xcc\xd28\xbf\x9f\xbf\xef8\\\x9e\xdf\x14\xbd\xbfy\xc1\xa4\n\xa6\xbb\xa1?3\xe6\xfa\x17:\x9b\xc6\xbf\x94W\xe9\x86\xd1\xf9\xc0?\xfb\xa6B\x08\xd3X\xc4\xbf|=\rx\xa9\xf0\xce?bd\x83\xc7\xfdO\xc0\xbfq\x80\xbf3\xeeI\xd6?h\xae\xc4\x8eA\xc8\xbc\xbf\xf3\n\xa0\x8e\x8f\xaa\xca?\x8e\xfd\x99\xa5j\xe4\xcb?\x95\xddM\xa9\xf4\x81\xa6?(\x99\xad\xc7_\xdf\xc6?\x9d\x82\x1f\x1f\x93#\xba\xbf:\xd5l(.\x05\xbd?\x12\x10\x94\xb9\x1d\x08\xc8\xbfH\xa5\xbb\t1kv\xbf\xd4\x912\xab\x13\xce\xc5\xbf\x98\xb1~|\x9b\x9f\xc6\xbf\x14\n\xe2,\x14h\xb6\xbfT\xdf7\x02\x8c\x07\xd3\xbf1\x8a\xa42\xf3\xaf\x98?\xc4\xbfF\xbfM\xe7\xd3\xbfUR\x88tR\x17\xc0?\xccb\xd2\x11l\xad\xc8\xbf\tf\x84\xda1\xc9\xc4?\x90\xf9\x90\x86/\xf8y?\xfb\xfa\xc1<\'\xa0\xc1?:X\xce\'\x9d\xfc\xca?\xcf\'OWk\xfc\xad?\x13C]\x0c\xe8\xa2\xd4?\xa9PR\xc4\x9b\xa3\xa5\xbf\xdd\xa2\xc0\x97\xd7\x85\xd3?\x01\xb8\x81\xca\xa0?\xbf\xbfo\xeau2\xa7+\xc7?Fz8o,R\xc2\xbf\x87p\x97\x94g\n\x89?\x04\xeb\x82\x96\xf6\xe1\xb6\xbf]\xbd\xf1n)\x9c\xbd\xbf"T?\x9a\xca\xfc\x98?\x96\n\xdd\xb5\xd2\x15\xc9\xbf\xc5LdGyg\xc4?\xd7\xfaD\x89H/\xd0\xbf\xe4\xcd\x87\xaf\\x\xc6\xbf\xc3\x07\xc4\xae\xfc\xec\xd3?\x1fLX\x92\x05\\\xaf\xbf\x9eB\x06Ep\xcb\xc7?r\xdbL\xa5\n~\xb5?\x8ft\xf4\x8a>\xe0\xad?Cu\xc4A\xcb$\xca?\x9a\x9e(\xe9\xa6\xa6\xaf\xbf\x83\xd9\xd3YN*\xd1?|lD-x\x99\xbd\xbf\xe5R\x14\x92:\x06\xd2?4\xee=\xd8\x10(\xc1\xbfy8\xf8#\x1bJ\xcf?\x1cSf\x96j\x8c\xc1\xbfO\xc05\x95q\x1f\xbf?\x8d\xe8i\x07g\x82\xbb\xbfSh\x0b#+H\x83?D!}\xbe\xc2\x01\xb4\xbf\x14:^-\xa5\xaa\xb9\xbf\x9d\x14ZU\\\xf2\xb1\xbf\xeb\xa6\x9a\x9b\xf2\xa8\xcd\xbf\x13?p\xf8\x1b\x19\xb6\xbfF\xf9"\xd3\xe3\xc3\xd2\xbf\xd3\x80L\xa2\\\x96\xb7\xbfY\'\x98o\xbe\xf1\xd2\xbf\xb3v\x86\x83\xce\x7f\xb8\xbf\xac\xb6$\x97\xfd\xa3\xcd\xbfu\x7f\xdc\x84\x14c\xad\xbf\x0c\x7f\x02\x869w\xb8\xbf8\x80\xcb\x81\x01+\xa7?\xef.\x8f\x91\x036\xb0?\xe2Ol\x1b\xb1]\xc4?\xe99=PG\xaa\xca?)\xa5/\x1eQ\xa8\xd1?j\x01~\x9c\xde\xf4\xcf?K!\x0e\xd2\xb1\x91\xb8\xbfoO\xc7\xcc\xe0\xc3\xb7?3\x08z\x18\xa3\xd3\xbe\xbf\x81x\xa5\xd5o\xe0\xab\xbf\xd8\xd8\xe8\x81\xa6\xd1\xbd\xbf\xc1\x11~?a!\xc9\xbfK=3,\xc9\xaf\x9f\xbf\xac\xdar?\x82R\xd2\xbf~\x96p\xc6}4\xbb?\xddB@a[\xdd\xcd\xbf\xbb\xec=}b\xb3\xc8?^q\xbb\xb5\xb5h\x96\xbf\xa7m\x19\x1d\x85\xa2\xc3?\xc9\x10k\xc7\x08\xfb\xd0?\xb0\x0c\x7f{\xbe\xa8\xb2?\xbe\x1d\x92i\x18\xe0\xd6?\x8e\xb5\xe9%\x8au\x8f?\x0e&\x0ff\x94{\xd1?J\x86h\x94\xa9\x17\xac\xbf\x7f%}I\x0b\xf0\x82\xbf\xa5\xf1\xd2\x10\xd1\xba\xc3\xbf\x97\x13\n\xe3&\x1a\xcc\xbfm\xbf\xc5b\xe5\x9b\xca\xbf\xb7;7\xc7\xbb\xa7\xd1\xbf\xebN\x0b\x9d\x91\x8b\xc1\xbf\x98h0\xbdT\x9b\xc8\xbfc\x94:F]\xf0|?O\x04\xce8\xb5\xa5\xb0\xbf\xa0`m-I\xe0\xbf?\xb2\xda\x10\xe1d\xcc\xb4?\x06\xfa\x963\xab\x9f\xc1?\xc3\xde\xe9\xa9U\x05\xce?"\x88\x9f~\xf0\x8c\xbb?\x07\xff\xd0\xfa\xb1\x03\xcb?\x96d\xb4\xec\x9f\x88\xd2?\xeb;<6\xce\x1b\xc2?z\x1c\xae\x87\xdax\xc5?\x06\xabsn1u\xad?g\x9f\xed\xbd\xc8\xb3\x97\xbf?\xc7\xfd\xe0ndS\xbf\x8a\x07P$\x7f\xd8\xcc\xbf\xb9|Y\xad\x06\x9b\xaa\xbf\xbf\xbf\x850\xf0\xeb\xd3\xbff\xf8h\xf7$\r\xbc\xbf_\xd2eZ\xda\x95\xcf\xbfL\x12ER\xc4\xe4\xc1\xbf\xe4\x84*\xbaA\x03z\xbf\x7f@C\xb8W\'\xb6\xbf\x03\xe0\xcf\xa1O\xb2\xcd?\xed\x05\xc6\x15\xd8f\x97\xbf\xf3-^\x9d\xbe\x8c\xd3?\xbf\x04\xe3}a5\xad?\xa5S\xeef\xf5\xeb\xc7?\xf0\xc8\xfe\x0b\xa9\x83\xc3?\t\t\x95\x88\xf9R\xa8\xbf{\xe6\xa4A$\x0e\xc3?\x01\r\xf4\x1c\xf3\xc5\xcd\xbf\xe8\\A\xfc\xd3\xcd\xb5?\xa1\x19#r\x9a\xff\xd1\xbf\xbb\xd1\xde\xf71\x17~?@&\x1co\x7f\xa3\xc8\xbf\x1e\x8a\x18\xf1%/\xb0\xbf\xd54\xc6\xbb\xec{7\xbfZ\xbc\xa5\xf5\x83=\xc4\xbfm|\xfc:Y\xa2\xc3?\xaa\xef\x87\xa3\x16%\xcd\xbf\xb7\xfb\x9b\xee\xba\xb1\xcd?\x7f\x99i\x08\xa6\x01\x94?\xed\xf1n\xe3<\xd2\xd9?Z9Ha\x03\xe4\xb0\xbf"g>\xc4\xfd\x18\xb6?Y\x00\xc8=\x1e\xa0\xa6\xbf\x98\xbf\xf8x\xed\xfc\xcc\xbfC\xe2\xf4\xf6\x13\xfe\xa2?\x0b\t~\xcc\xf6k\xd5\xbf\xccC\x98\x80\xb6\xaa\xad?GP\x97\xa6\xbf\x00\xc6\xbf\xb5\x8eGZ\x15X\x94?\xe1D\xab\x01O\xa8\xb2?v\xe9\xeb\xdd+\xa7\x9f\xbfv9\xdf\x86\xda\x06\xcd?R\x98@Z\x13@\x8b\xbf\xc9\x10\x8b\x1cn\xd1\xc5?\x0c\xf2_[\x83\x98\x81?\xe8\xa7L\x8bw\r\xa1\xbfV%\xfbU*zw?\x9d\x1b\xca\x93\xedQ\xc9\xbf\xd1K[\xf1B<\x98\xbf\x10\x8c|\xe0\xe0X\xca\xbfs\xd3r\x0f2\xedw\xbfO\xdcJ\xe7\x08\xb7\xa4\xbf\xe0\xdatd\x08S\xa0?\x93\xd1\x0e\x06\x8dF\xc9?\xe5s,\xef\xcc\x9c\x9e?>T\xc7\xe1V\xec\xd6?R\\rh\x8d\\\xa2\xbf\xe9\xe7\x96\x1f;\xb6\xcf?\xbb\xde`x\xe4\x00\xaf\xbf\x9b\xfd\xf6K f\xba\xbf\x8b\xccb\x1d>\xdc\xb1?I\x9e~\xa3"\xc7\xdc\xbf\x9b\xf6\x8dHf\x1d\xcb?\x1e\x94\xb0\x80\xf7\xd0\x7f\xbf\xfeQ\x14\x0e>\xb7y?\xf5\xf0\x01\xd9\r\xfbr?\xe9 \xb0\xd70\xf7\xc7\xbf \xd0\xbc\xea\xa6\xaa\x9a?\xc2\x83\x05\x89\xcd\x7f\xd1\xbf\x90\x1e\x14v\x96\x96\xa7?b\x19\xff\xdb\xaf\xe6\xc2\xbfJ\xce\x9fMTM\x98\xbf\x94\x9d\x07\x12\x17\x12\xc0?if\n{)\x8b\xb7\xbf\x85\x1e\xd7\x1e\xe7^\xd7?\x04\xce\xdb\xbe}<\xb1\xbf\xd8O\xd2\xcc\xf9M\xd4?;\xd0\xe3q\x98=\xae?j`\x86b6U\x83?q\xe27"AD\xbd?\xc9\xf7\x0c\xb4$\x84\xd3\xbf\xcf\xda6\xe9\x0bh\xb1?\x7fn\x91\xcb\xeb\x94\xd8\xbf\x03l\x8e\xae\xd1l\xb3\xbf\xf0\x06\xfa2\'\xf4\xc5\xbf\xef\xa1\x04\xab\xf1y\xb8\xbf\xfba\\\xb9\xa5\xbb\xc2?\xd7mI\xf3M%\xa6\xbf\x1b\x1d\x1eG\xb3\xff\xd3?m\x84\x81\x9d#\xd8\xb2?#E\x9b\xeb\xd4\xdb\xcd?\tar/c\x9b\xaf?$\x1b2\xed\x04\xceq\xbfr\xfe\xe0!GTv\xbfYZ-\xce|H\xd0\xbfRmk\x84\xb3\xbf\xa5\xbf<\x8d\xf9\x00\xf8\x03\xd0\xbf\x8c9\xb3(\x9a$\xbe?\x87@z\xdbq\xe4\xa4?\x85\xca\x1c\x98q\xc0\x98?\xda\xb5y9H\x9c\xd0?\xbc\r\xd00E\xf5\xb0\xbf\x87\x83l\xe3\xd9C\xd2?\xa5\xaf\x9cdk\x05\xb2\xbf\xe9*\xde\x1a\xd6\xe8\x93?\x822\x16\xc2"\xbf\xab?\xb9\x86\xf9/6j\xd1\xbf\x91rRm\xb6\\\xb1?\x12nZ\xd2\xb4j\xd4\xbf\x15\xd8\x11\xaf_\x12\xbb\xbf\xa1\x9aw\xf4\xc4[\xaf?f`\xaf\xcd\xd4*\xcd\xbf\n\x18\xf5\xe9\xf1z\xd2?\x8e\xc6\xd8\xa8\xd4fq?Mt{\x1dgk\xbf?\x9e.\x7fP\xe8b\xcb?B\x93\xf1\x9cO\xd5\xcf\xbfnUH\xdfu"\xbf?\x0bKi\x966c\xd1\xbf\xf6U\xc0\xd1\x1bh\xa9\xbf\xe8U\xa0h\xc2\xdd\x85\xbf\x08g\xfc\x86\xd3\t\xb2\xbf#9n\x82q\x1e\xd0?/f\xe1\xb2\x1e#\x9f?\x9f\xac;@1\xab\xd0?>\n\xafM\x1a<\xb1?\xcd\xfd\x86\x8b3\xaf\xa0?\xd6A\xbb\x97\xe4j\x8a\xbf\xb1x\x8c\xc2[\x06\xd0\xbf\\J\xa2?\x9c&\xb9\xbf$\x85\xf3\xa7r\x19\xa7?\xff\xe0\x00\x13\xbb\xcf\x82?\xa7\xf9!\xb1%\xea\xa1\xbfw\xb6:\x19\xc9\xbf\xae\xbfe\xb3<\x89\xa0 \xbd\xbfc\x90,\x94<\x8a\xba\xbf"\x17\x9a3\xbf\xe7\x9f\xbf\x9f\xb3:]P\xcc\xbb?@\x86\xd6\x17q\xee\xb1?]\x15\x04w\x903\xcd?\xbc\xbd\xa2/\x1dO\xc2?\xd9FR\xad\x9ea\xaa?M\xb0I\x95ec\xba?&\xdc\x1d{\x8d\x1d\xce\xbf\x01?\x88\xc5q\xf5\xc8\xbf\x97\xf3\xf7\rBK\xcf\xbfS\xd1o\xcf\x00k\xbc\xbf>\xd5%\x1fE]\xb0?\x97\xcbYf\xff\xae\xa3\xbf\x99a\xa2;\x928\xd5?\xcaX\xbd\x99K}\xcc?\x84\x85\x05\x99\xb4N\xbb?\\g\xe0\xcf\xc1\xf2m?KH\x89\x8b\x8e\xae\xd1\xbf\xe8\xa0Y0\xbc\xe3\xa0\xbf\xb4\x0e\\\xf8\xd7\xaf\xd6\xbfpe\x19\x02\xa8;j? E\xd8\xb0\xca\x1d\xc1?J\xda\xf9\x9c6\x8c\xb0\xbfm\x0e\x88\x92\x80a\xda?:^\xae\xd9e\xb7\xb8\xbf\xa2\xf1\xa6\x11\xab\xf5\xbf?\xc9?ft\xd6\\\xc0?cs{\xc9\x98\xf3\xd2\xbf\xb6\xfbze\xfdf\xcd?\xaedS\x92d\x91\xcf?jn\x1cd\x11\xa6\xa5\xbf\xaaw=\x8a\xb5hy\xbf$\xf3|\xc9bq\xcd\xbf]\xd6\x13\xb8\xecX\xd5\xbf6\xdd.;%\xa3\xba\xbf\x7f\x03\x888\xca\x9a\xcf\xbf\x8b?jm\xb0L\xb3?4S\xcb\xfd\xf1\x13\xb5?)\x17e\xe1k8\xc2?.\xc3\xb5\xa3\x08\x83\xd3?D\xbe\xcd\xc1\xbaA\xb4?\x8d\xbfo\x1e\xc2@\xc8?Yg\x86\x9f=.\xc4\xbf\xcce^\x14\'\x17\xc3\xbfL\xd5m\x07\x05\x1c\x8c\xbf\xc02\xd6,\x89\xe6\xd2\xbf\x94\x06\x1c\x13\x1cH\x9b?\xa2j6\xe6\xc2;~?N\xc1\xe2\x98\x14\x1a\xb7?u\xe3D\xe5{\xfa\xd2?\x92\xcd\xba\xc4\x06\x8c\xbe\xbfC\xb4\xc2\xa1\xa5e\xcd?zz\xee\xf3\x83\x05\xab\xbf\x95q\xa0\xa3\xa6\x8b\xc2\xbf\x96&\xbe.-p\xb3?\x9f\x81\xb8R\x06\x81\xcd\xbf\xe7H\xb3\x91\x8aJ\xc4?\xeem\x1fe\xda\xaa\xc0\xbfu Q\xde\x7f\x8at?\xa9\xb8AT\xd2Om?\x06\x11\xe4\xc5\xc5\xdf\xc4\xbf\xca>\xa1Z\xbe\x8f\xc6?\x0c[\x12\xa4\xe4\xbc\x8e\xbf\xe5\xc0\xc4bL\xcb\xd2?"\x04dR|\xe5\xba\xbf\xac\xf1\xfe\xe9\xa0A\xcb\xbfzsml8\x11\xcd?\xba&mm/\'\xcc\xbf\x84LB\x1f\r\x11\xb7?\xa3\xbb\xae\x85.\xcb\xb8\xbf\x02\x84\xb1\x17J\x07\xc9\xbf\x8e\xd7\xfe\xa69"\xc8?Z\xa1\xfb\xd6Nb\xcb\xbf\x94T\xe1(\xc7\xb6\xc8?\xf4\x7f&\xcc\xc8\x06\xc2?\xf9T\xcc)\x9b4\xb2\xbf\xc0P\x96sj\x89\xd4?\xb5\xca;\xbff\xa0\xcc\xbf\xe8\xb1@\x0e\xe7\xaf\xc7\xbft\xcc\xde?\x85D\xb8?\xfd\x19\x9a\x0bO\xf4\xc9\xbf\xc9\xb3\x84cc$\xb9?\xb8.\r\x10\xdfV\xc1\xbf\x8a\x15A\xab;\xc8\x9f?OV\\\x17\xbd\xdc\xd8?\xba.@@\xb9&\xb1\xbf\x92r7\xef\xcf\x07\xb8?\x8dw5\x88\x90\xcd\xc2? \xad{\x02W\xe6\xb3\xbf\xa6^\xffP\xf0\xbb\xc1\xbf{\xae\xe0R\x19\x01\xc8\xbf\xbd\x1c~\xde\xb9<\xc2\xbf\xee)\xafB\x9b\x13\xa8\xbf\xf7+\xa1=+\xef\xbb?M\xec8\xb6N\x97\xba?(\xff\xca\xd39\x97\x91?\xc5\xa9\xb7\xf4\xec\x9e\xd0?\xb4\x81\xf3A}z\xa7\xbf\xe8K\xc1)A\xea\xd5\xbf5\'\xb3l\xf5)\xbd\xbfa\xb2\xd9\xef\x1f6\xb7\xbf\xe6\xb1)I~\x0c\xd3?\x90\xb5\xde>\x0e^\xac?\xddN<\x08\xefY\xaa\xbf\x9b\x17\xb8\x08Q\x9f\xc4?\tN\xc0\x0b\xc7h\xc1\xbfQ\x92\xe0O\x80\x08\xa4?\xbb\x06\xc5K\x05j\xa0?\x17\xa97vH\xae\xba\xbf)\xb0\xeeVc\x87\xbb?\x0eL:\x88m\xe1\xb5?\xf9\xc9T\x02S\x00\xc5\xbf\x9e\x1a\xf2\xd9\xcd\xc7\xcc\xbf{\x10\xf3\xf9\x12\xb6\xb2?j\xb8\x10\x85\x14\x7f\xcc?\x7f\x1d\xb6$.j\xa6?T\x81\xdc\x96S\x14\xb3\xbf\x0c\xe9\xe3\x1ag?|\xbf\x1dd\x90\xfab2\xc7?\xd9\x91\xbe;\xe7W\xc6\xbf\x1d\xc7\xed\xa6\xc0\xe0\xd3\xbf\x0b\x10\xc4\x04`x\xc6?z^}\x1a\xa0\x99\xc0\xbf\xdf\xa5@_jB\xb7\xbf4Qu\xee\x0e\xef\xd1?F@\x93v\xd0\xdc\x90?\x1e\xd1N\xed\x99\x84\xcc?Z\x07\xb8\xb9\xafz\xcc?\xabe\x8a\x0f\xe5\x87\xcd\xbf\xcd\xe8\x00\xe9&\xad\xc7\xbfT\xca?\xf8\xb8\xcf\xc8? L\x8c\x9d_n\xc3\xbfy\xaeV\xceN\xdc\xba\xbf\xec\x8d\xcc\xfa}\xd1\xc0?\x8a\xfa\xba\x8e\xb8y\xd3\xbf\xf2/\x04%\x84\xa5\xb9?Z"\x88[2\x04\x95?h\xa6\x02\xedkU\xbc\xbf\x15\xf3=\x92M\x0c\xd3?\xf8 9R\x8b5\xb4\xbff\x85{\x11\xf6\xd7\xb0?\xda=\xa6y\r\xd9\xc5?2\xc3B\xa8\xf4\xc2\xd1\xbf\x13\x1c^\x94j\x14\xb5?L\xe5h\xc2_u\x93?\x94\x8aj\x16\xf8;\xcf\xbfu\xb1\xec\x17\xbf}\xce?Y\xe5\xdf$\xb3}\x80\xbfo\x15\xf7T\xc8H\xaf\xbf.\x89\xa8*\x14i\xd0?D^\xda\x9d\x81\xa9\xd1\xbf\rW\xf5\x89%\x1f\xb7\xbfz\x1c\xcbGm\x99\xba?\x1c\x12i<\xb3H\xc3\xbf>\x8ac8\xbd\xfd\xd1?i\tcE\xa4\x85\xaf?4\xc0s\x9c\xd10\x96?\x02\x89\xf1\x8f\n\xb8\xba?\x9f},\x07s\xc0\xd1\xbf\\}\x85\x1b\xe1C\xbe\xbf\xd5\xda\x0b\x06F\xa5\xc0\xbf\x96\xdf\x16q\x96\xae\xbe\xbfW\xca\x1eqWC\xc8?\xd6\x19\xce\xcd\x162\xc5?\xf4\xba6\xfb\x1d\x0e\x9c?\\ F\x9f\xb2\\\xb7?P\x02A\xfby\'\xa7?\xb1T\xd9,\xdb\x1a\x94?\xddw\xf0\xf8i\x9f\xc2\xbf\xf6\x16/\x1a.R\xd0\xbfY\x08\xe1\xba\xc6n\x86?\x8d\xd9QSW\xd8\x8f?X\xeb\x92\xb4\xc2\xfc\xb5? \x0f\x8f\xfacp\xce?\xeeB\xaa\xb6VX\xa0?n\xcd`\x98\x8c\xe2\xa1?\x97\xa2\x9en?\x07\xab\xbf\xa0\xfe\xc7z\xb7\xb8\xd2\xbf\x10\xf3\xd7\xfd\xa3\x8b\xb4\xbf)\xffL\xe5\xfa\x91\x8a?O\x1e,\xca\x88|\xb9?\xb9D9\x05\xc0r\xcd?\xb8.F\xea\xb6>\xc1\xbfx"\x95\xf7P\xce\xbc?K07e\x8b\xdc\xc9?\x9a;_\xae_\x9f\xd3\xbf\xc2\x88j`\xcb\xad\xa7?\xd5^\xd7\x84\x83\x91\xb3\xbf\x97x%Y\xea\x96\xc2\xbfe\x0b\xe9\x88\xdc}\xc7?r\x1a7iZ\x95\xd0\xbf\xfdze-\xb3B\xd0?\x05\xe9yO\xf1\x15\xce?\xc9t\xe8\x14\x07z\xc7\xbfEY\xa5C\xfa\x16\xcf?\x88Wy\x1d\xea`\xd2\xbf\x8d\\\x02\xfe\xd1\xd2\xca\xbf\x8a3\xcc:\x9b\xba\xca?\x8e5\xdf`\xaf\xa6\xcd?K\x88\x97\xe6X=\xc5?\x1e\x12\x04A\xd6\x00\xd2\xbf\x0e\xa5\xf7\x9a\xa3o\xce\xbf)\x1f\x17\xef*Y\xc3\xbf\x06\xbes\xc8\xd2\xf6\xc6\xbf\xa6\xd3\x07\xea2[\xbc?~\xa1\x9d\x01V\xc8\xcc?E\xa7\xb5L\x0ef\xca?R%\'\xce\x1b1\xd1?\xa7\x1c\x02\x0b\x84\x8c\xa0?\xdc+\xf0\x18~E\xca\xbf\xf5\xb9\xc9\x06\xac\x0c\xce\xbf\xc0\x93(c\x93\x10\xd1\xbfH\xae\xcc\xae\x96@\x92\xbf\xeb\x03\xb9&\xea\xad\xcd?\xe6\xfef\x0f\xe9\xd0\xbc?\xfd\x81\r\xb7\x17\xf0\xc7?\x88\x1a\xd4\x8f8;\xbe?\x95\x85!\xbb\xdb$\xd0\xbf\x14\xce\xca\x9f\xf4D\xc1\xbf\x1b\xda\xd6:\'\x9e\xad\xbf{\xbf@#\x8b\xcb\xb6\xbfI\xb97\xb3-\xc4\xc9?x\xf4W%c\xca\xb1?[\xd8]\x1a?`\x93?\x16\x9d\x0b;\xc6N\xc4?\t.\xad\xa2\xd5]\xcb\xbf\x9b{\xc4\xa8\xf41\xba\xbf\xd3\xc92\x02\x9b\xf1\x8e?vw\x8f\xf3*J\xba\xbf+T\xaa\xc9\xefj\xc4?N\x91R\x15\xbf\x01\xb3?\x1b%!!\xd5\xcf\xae\xbf\x17\\\x16\x96i\x06\xa8\xbf\x1c\xf7b\x06[\xa1\x87?\xeb,\xf9\xa2\xb0\xa5\xb5?\x0fs\x14\xaeJ\rq\xbf\xf32\x96\x03\xafQ\xb4\xbf%\x99\x7f\xcd\xd5o\xb6\xbf+\x02\\E\x8fVk\xbf\xcf\x0e\t\x95\xaa\xd9\xc1?\x1dl\x99p\x95\xb7\xb6?\x93\x08\xd54aPv\xbfc\xd1\xe6KZ\x1f\x83\xbf\xbb\x89\x94dkO\xc4\xbf\x8aSG\xdaT:\xc6\xbfrg\x17\x0b\x07\xe6\xbc?\rX6\xc4\xa0\xbf\xac\xa0O\xfee}\xc7?\xde\xdd\x91\x93\xcfy\xb5?\xfc|\xf9\x9e$\x9e\x85\xbf]\x91\x94\xcdE\x1eP\xbf\x8c\xed0\xdf\xf3;\xc6\xbf\x85*\xcf\xbf\xfe\xd4\xc6\xbff\xff,vX\xd5\xa7?\x0e\xc5\xeb\xe5\xd9\xc6\xc2?<\x0b\x12P]\r\xbe?0\xb6L0\xa8\xb1\xc0?.l\xa4-y\xeb\xa7\xbfg\x86\xdd?\xbc\xea?W\x97\xfa\xc2\xbf\xa45\x97B\xe2\xe6\xe3\xbfND\xce\xc3\xd8f\x9e?7\x19R\xe0z\xb5\xd0?vlt\x8d\xb9c\xa6?q2\x90X\x0b\xd3\xb0\xbfFY\x8c$\xd2\xd0\xa4?*f\x1b\x98\x9f\x91\xbb?\xf5(\x95\xcb \n\xb5\xbf\x17\x18\xa1\xeeV}\x92?GE\x8e\xcf8\x8d\xb5?\xa4u\xa9\xcf\x10\x02\xc6\xbf\xd3:N\xf0\xa7\x91\xb5\xbf\x16\xbd\xf9\xde\xb1\xac\xb9?{3\xd5\xf1f\x87\xb0?:\x01\xf1\xf6\x04\xf4\xc1?;\x90\xe5\xa3\xc4\xde\x9b\xbf\x15\xfd\xce>\x93\x17\xd1\xbf^Q\x0b\x9e\x94\x0e\xa2\xbf\x89\tw\x85\xdb\xd4\xc6?9I\xc1\xa6G\x91\xc0?\x94L\xee\x92\xd8\xae\xb9?\xc49\x8b\xf7\xbb\x98\xc1\xbf\xd6e,\xcb\xf9>\xd2\xbf\xf5\x94\xd9\x99\x8b\x92y?MW#\xaf\x02\xa3\xc3?.\tx\x83#\xe0\xbb?\xa2\xb9\xc4j\xdc\xfb\xc9?\x84X`X\xa9\xbc\xbc\xbf\xf6\x8c\xa5\xd5,\xbc\xe0\xbf \x05\xf1\xe2\x157\xaa?Q9V\x90\x86\xbc\xde?[\xee\xbchd\xda}?\x01\x08\x86\x9f\x92\xfe\xce\xbfA\xef\xc7\xda\x86\xf9q\xbf\xf2\xf1NtY\xfa\xb6?\x92\x03\x0b\xbc\xbf\x80\xa4\xbf?\x8d\xaao\x16\xe2\x90\xbf\x0eF\x14\xc3 [\x9f?\xaa\x1a\xf7Y8\x9e\xb1\xbf\x03\x89\xb0\x1fK\x99\xc1?\xec\xb1\xd9\x8f\x1c\xf6\xc0?\xc6\x01/\xb1\x84\xb0\xc7\xbf\xec\xf6\x00\xe5\x8f\x94\x9a\xbfa\xcdm\xca\xf8C\xb2\xbf\xda\xc5\x89\xb2\xe5\xbc\xca\xbf\xa3n\x94t\xe4 \xc9?\xa7Q\x12:\xf8J\xd3?\x1c\x14+\xe5\xa5\x7f\xb4\xbf\xf5q\x91\xbdm\xf4\xae\xbf\xba\xd27\xbc\xc7\xd9\xa5\xbfP&.\xc3d\xbd\xd1\xbf\xb3Idl4\xde\xac?\x86\xfd\x14\xe6j\xba\xde?++ \x1b@\x83\xaa?\x1a\xd7\x16(\x04\x95\xda\xbf[pW\r\xe6\x13\xc5\xbf[\xbb\xf4\x81\xb2\xbb\xb7?\n\xba\xe0\xaf\'|\xc0?<\xf3\'G\xc3\x02\xc8?g\xa8S\x8fH\x11\x95?\x84\x9dr<\xaa\x87\xd1\xbf[\x06\x1f\xb4\x8e\xe3\xa7\xbfPS\xf9]%\xb2\xca?g\x11\x84W\xee\xde\xab\xbfQ\xd7L\x99,\x0e\xbc\xbf\xb9\xa3\x1e\tW\xbb\xbe?\x11\x01b\xd2\xef\xf3\xa2?\xdc\x84\x00\xd4Q\xff\xb0\xbf.\xf5\xe5\x8f R\x8c\xbf\xfeRI\x14\xc1\xcd\xa6\xbfv\xaa\x15\\\xd4\xb6\x8c?K{n\xebm\xc7\xa6?\xa2\xb0\x07\xdeG\xba\xb4\xbf\x7f;|~V\xcb\xc0\xbf\xf4\xde,\x92\xd5\xf9\xcd?\xea\xfb\xe9\xb5t\x0f\xd7?\xc7\xfa\xbfD\'\x0e\xd3\xbf\xf4\x7f\xb9\xe0\x9a%\xd9\xbf\x81\xa4\x93\xaa\xa0\xfd\xcc?\xf0Z\x0f3\x92n\xd0?\xa5\x1a,\x8d\xa5\x04\xbc\xbf]\x1f[vW\x9b\xbd\xbfUf\xc4\xbd}\xf7\x98?\n\x95\xc3_\x94\x9f\xad?\xb9Is\xc2:\xffN?L?\xb7\xa8\x9c\xe7\xb2\xbf\'e\xf3V\x80@\xb4?\xcd\xb7\x19\x80b\xec\xbb?\xa6)\xcf\x9f\x16\xc1\xc8\xbf\xa4\x8bx)\xc4\xf4\xc4\xbf\xa7\xaaM\xb1\x82y\xc9?{\xbe\xfa\x8c6\xce\xc5?k\xa6\xb5\x11l,\xc2\xbf\x0f\x0f\xa9\xa1f\x95\xb9\xbf\xf2>\xb9\xfel\x12\xba?B~O\xb5{\x1b\xb0\xbf\xd8\x84\x9c{\x935\xb8\xbf\xd5\xff\xeb\x87\xe5\xd8\xcc?G\xfd#\x1cDS\xba?\xc0\xd2\t\xeb\xc9\x81\xd0\xbf\x93g\xa6\xb4\xe4\x9c\xc0\xbf9\xe41\x83\x19\x90\xbc?\x025\xea\xa22\x80\xc1?\xd3\x00\xb7\x0f\xd3r\xb5?\xa6z!e\xf3\x84\xad\xbfRz\x95\x1b\xce\xb3\xb3\xbf\xc2\x90\n\\\xa6S\xb2?J\x8e\xac$\x94\x12\x95?z\x1e\x9b`\xae-\xc6\xbf\xba\xb3\xe5z`I\x85?j\x9a,5\x92\x06\xbb?2H\xd6f\x1d\x08\xc7\xbf\xe7p\xd5m\x91(\xb7?c\xcc\xd2\x8c\xcb\xce\xd8?3\x81w]\xf5X\xcf\xbf\xf9\xa2A\xefl\x17\xdd\xbfF"\xc9\x1f\x88\x81\xd2?\xd77\x95\xa5\xf2\x08\xd2?)\xe1\xb0\xf7M\x97\xca\xbf\x14\xd9\x10\x1cv\x8b\x9a\xbf\xe9}\xe3\x1e5\x0e\xb5?\x9b\xe7\x0f\xfe7\xf3\xc3\xbfi\xb8\xfa\xe2&Y\xa4?\xe7\x81\x04\x08c}\xd0?!a\x03r\xc35\xbc\xbf@\xe9\x95\x80\xdc\xc5\xd0\xbf=\x104\x9a\xd2L\xb6?I\x0b\xa7\xcdU\x12\xca?\xce\xa6\xe9\xcf\x83T\x88\xbfjQ\x1b+?N\xb1\xbf\xb54\xdevDM\xa3\xbf\xfeJ\xa3\x06\xadY\xb2\xbf\x91eF\xce\x02\x03\x8a?\x07\xc7~N\xa09\xb4?\x1cl\xfc\xa4\x82\x08\xa6?\xda\xee\xb7\x13\xd2\xaa\xa7?\xe5<\xe4\x01BN\xad\xbfK\xd3\xae|\xa1\xad\xc4\xbf\xde\xf8n\xfbL\xd3\x95?4BhE\xd2\x9b\xb7?\xfb\x847\xc9r\xc0\xba\xbfc\xc3O\x86ai\xb2?\xb7\xe0\xba\xb3(t\xd3?~\x18\xa0t\xc0b\xb9\xbfU\xc6\x7f2\\\xe9\xd4\xbf\x16P\xce\xd5~}\xa4\xbf\xad+\x8av\xc1\xc2\xbb?>\xdcx\xefK\t\xb7?\xf9\xd3\xca\x96\xf7#\xc0?\xd8]?\\\xf6\xfc\xb0?\'^@\xd6\xa7{\xc8\xbf\xbd\xc1\x03\xb2\x9f\xc6\xd0\xbf\xa0\xc7\x9c\xb0\xcb\xab\xb9?\xf5\xe0lBn\xad\xd6?oT\xffm^\xc8\x99?\xd53-\xe6t\xcd\xd7\xbfU`\xa9\xe1@\x86\xb7\xbf$2\xe3\x96e\xda\xd6?\x08\xd69\x98F\xe6\xb8?\x1e@\xee\x0b8a\xcf\xbfeNm$\xcd\xc6\xb8\xbfv\xfb\xdd\x9f\x96\xc5\xb2?\xe5\xde\xbe\xaf\xd1\xcd\xc1?\xbb\x03\xfbhz\n\xb5?p\xf8\x97\xe5\xb5I\xc5\xbfc\xc0\x81\x0b\xf7\xe0\xc2\xbf\x06H\ns\xfa\xd4\xba?\xab\xc1{\x81p\x06\xb8?\xa3\x1eL\x84\x1d\x18\x9e\xbf\x96.i:\x80\xb9\xad?\xc3\xc9\xa7\xfb\\\x8co\xbf\xe5\x19\xeb\xca\x83\xea\xc4\xbf\xd2\x12G\x00\xc3\xffv?\x97\xa9/&\x03\t\xb5?\x18\\\xf9\xe7\x93)\xb2?:\\\xbd<\xaaT\xbe\xbfK\x0b|\xf3S\xaa\xca\xbf\xaf\x83\xf9\x84\x00\xef\xcb?\xe4\xa7L$*\xbc\xc9?\xcb_Ns\xeap\xb1\xbf7\xb3um8\x8bt?\xa3\x0f1I\xf4\xa3\xc4\xbfOf\x90\xfe\xfe\xee\xcc\xbf\x02Z\xbc<\x93E\xd0?\xdd\xcbMM\xde:\xd2?\xa6\x82U\x16\xae\xc7\xc8\xbf\x9a\x15\xca\x17\x9c+\xcd\xbf4\xb9\xb5\xd45\x86\xbb?(\xcb\xb6\x0b\xc3\xbc\xca?\x98\xc4.W$[\xa8\xbf\niu\xa7\xacr\xcb\xbfp\xe7Q\xe0\xa6\x85\xa1\xbf\x16\x84\xd2\xa1\x0c\xb8\xc3?\xd8>\xe1s\xa4\xfe\xbe?\xe7E\xd4\x12D\xde\xbf\xbf\xe0\xf50\xcbFW\xcb\xbf\x16\x00Z\xb6\x1f+\xc3?NI\x07\x96\xed\x1a\xd4?\x83\x999\x8f\xc9\xbb\xb5\xbf\xc7z\xb1\xf0\xfeG\xd1\xbf\xdfA\xd3\xadl!\x85\xbfz9\xba\x03*\x90\xa9?\x07n/\x82\xc5?\xad?\xbf-8q\x01O\xc8?u\xde\x97\xc8\xa3d\xaf\xbf\x9e\x10\xca7L\xb3\xd0\xbf\xc0,\xb2$\xb8\xa7\x9a?\xf7JC\xc1\x02\xde\xbc?DG\x08\x04."\xb1?l\x9cB\x14\xd6\x08\xbd\xbfC\xf6\xba\xaf^\xa9\xcd\xbf3\xc1\t\xd0\xf2e\xd1?\xf9\xee\x16p\xdf\x1f\xd7?\xfbQ\xb4\x1f}a\xd1\xbfjvp\xab9\xbc\xda\xbf@\x83Z~B{\xc7?\x1e\xfc\x8d$\xa2\xd6\xdb?0\x9a\x7f\x93\xd2\x04\xb6\xbfM\xf0KO\xd8\xe6\xd5\xbf\x12\xb7o\xe1\x1f\x1fI?\x0cN\xf7\xd3\xe6:\xc7?\xff\x7f\x1b\xccP\x08\x9f?\xea\x1f\xd9M\xaf`\xb5\xbf\xff\xf3\xccuG\x11\xa3\xbf\x9a\xfdkg>\xe2\x99?\xff\xd5\xcb\x03\xa9\xa0\xa5?\x8f\xa6q}\x14\x17\xa0?pP\xf2\xa0w\xc0\x99\xbf\\\xcd\x9f\xe3\x05\xda\xb1\xbfV\xc1\xab\x94)\x87[?\x1d\xfb\xb2\xde\xbd\x1c\xba?\x88\x93\x14\x8a\x08;j\xbf\x18\xd0\xdc\xa3<\x06\xbc\xbf\x17\xcc\x1anM\xcf\x99?r\xb2%\x06\x18=\xb0?\xc5f\x0b\x87\x19[\xb3\xbf\xd6Pq\xf3mV\x81\xbf\x9dp\x88\xca\x19\xb3\xc2?\xc3U\x82\xdff\xf6*\xbf\xban\x0bs\xe3`\xc2\xbf \xfd{K5\xf6n\xbf(\xf9fe\xf9\xbf\xab?K\xe6lN\xd1\x84\x91\xbf$\xf2?\x1a\xf2\xfb\xc3?y7 ^.\xdf\xb1?\xe2_\xa3\xbf\xf4\x8e\xd5\xbf\x15\xfc\x998/]\xb6\xbfS%\xcc`\xa6u\xc8?C\xda\rM\x1aH\xa9?\xc1\xd7\xa4BQA\xbc?\x8c\xa5\xaf\xcd](\xb0?\xbc\xd2Mw\xb3M\xd3\xbf\xd7:+kk\xba\xc3\xbf\xa8\x9bu)\xae\x91\xd4?V\x1e\xd0\xec\xc7\x99\xc0?\xe7 \xa9n\xd2\xeb\xce\xbf7)\xcf\x89gE\xb4\xbf\xc6E\x1fGU\xd1\xc5?\xf0\xe0T3\x0f\xea\x9b\xbf\xab\x91P\x8a.\xbf\xc1\xbfm,\xf8\xa34p\xc0?-\x1f\x92\xben\xa8\xc5?\x06\x03\xd1\xdc\x80\xa8\xc7\xbf\xd5\xb77>V\x05\xcf\xbf\x16W\xe8\xa4O\xff\xcb?\xf9\xd7x\x9f\x8f\xe9\xd3?\t\xad\'\x0c\xc0\x92\xc2\xbfA\x8fD{\xc1y\xd0\xbf\xb1Mm\xcd\xc0\x91\xa8?F\xf7`\x94\x95\xd1\xb0?\xa2g\r,\xe4\xfc\x95?zi\xe1\x11\x1f4\xc1?\x9dS\xba\xd2\x10\xf7\xa7\xbfz\x17Vn{\xb0\xc9\xbf\x86@d(&\xf7\x8a?\xe2\xa1\xe8\xf3v\xdc\xb6?\xce{\x0bi\xff"\x82\xbf\x98}W\x0b\x9a\xb0\xb1?\xd3\x14z\xfb\xa5A\xa2?\xd4\xaf\xc9]\xf5\x01\xc6\xbf\xab\x10~\xfe0L\xa2\xbfKA\xf2/\x9c\xe2\xc3?8\\Z\x00\xff\xa2\x8b?s\x01\xfcb.\x84\xb9\xbf\xef\xbb_]\xaf\x8e\x92\xbf\nk\xf7\x10\x89\x7f\xb0?\x1aa\x08f\t\xdc\x95?\xdd\x11\xec\xf21\x19\x94\xbf|2\xb0\xf6\x1e\xe3\x86\xbfx\t@>\xa1\x1ap\xbf\xf5\xa2\x85\x05\xff~n?\xa4\\vT\xe3\x06\x87?\xa9\xf6\xcb\xe9\xc1N\x85?\xa4\x082\x151x\x80\xbf~\x9e?@\xc1X\xa0\xbf[\xa8\x9b\x1fmS\x90\xbf\xd6d\xf3\x19\xa5e\xaa?\x1b7@u*\xfb\xb5?\xbf\xeb}\xe7I\xe6\xb5\xbf\xdefO\t\xc6\xae\xc8\xbf\x94x\x18\xfc*\xae\xbb??\x97}*R\r\xd5?\xbc\xfe\xda\xc3R!\xb5\xbf\x04\xe7h\x14/\xe7\xdc\xbf:\xc7\xb4\xfcG\xc8\xb1?0\x1f\x8a_\x87\x1c\xe1?Q\xb5~\x0bLG\xae\xbf\x9b\xa6\x1f\x08}q\xdd\xbf\x8e\xd4=\x05\x82\xbb\x93?\x8fh\x19\xce\xa3D\xc6?' +p177 +tp178 +bsg77 +g62 +(g63 +(I0 +tp179 +g65 +tp180 +Rp181 +(I1 +(I34 +tp182 +g72 +I00 +S'3\xc6\xda\x8d\xb6IP\xc0\xebRu\x9ap\x1eR\xc0\x0c|I\xa0w\xecF\xc0\xe6Lp\xbd\x06\x05R\xc0\x9f\xe4J\x12r\xaf:\xc0~\xbf\x97\xa1\x11\x84Q\xc0h}Gp\x9b\xa2\x1f\xc0\xbc\x1b\x9e)y\x89P\xc0\x96\r\x1a\x8ce/#@\xd2\r \x9d\xd1VM\xc0@e\xb1\x9f\xd0\xd58@1\xe74q\xa8\x9cG\xc0\x08\xd1\xda\xa8\x80\xd2B@\xba4X\x01\xd7\x98@\xc0A\x97q\xb1`\xf7G@\xceQ\xbd\x1a\xe0\xb11\xc0\x80c\xda\xb3T\x7fI@\xc2\x83_bd\x01\xc0\xbfy\xe9^\t\xfe\xfbG@|\xd4\xca\xf7\x83h1@\x05\x8d\x1d\x94\x01\xdfB@7S?=r\x83@@\xc2\x0b\xb2!\xc9\xfc8@:#\x0f\x0bt\x98G@K\xf4\xe0;\xe0t#@\x15\xd6\xf9nqaM@\x8e\x9e\xb8BgO\x1f\xc0xw\x10\xc1:\x91P@\x93\xd3\xfa\xf7\x0c\xb2:\xc0\x86\xa7EoV\x90Q@@\x89FH\xc8\xfdF\xc0mK\x19\x90\x04\x0fR@\x07\xa5E\x8f\xf3TP\xc0\x05N\xcc\xc9@"R@' +p183 +tp184 +bsS'n_samples' +p185 +I3148 +sS'_n_active_components' +p186 +I30 +sbsbasS'reference_shape' +p187 +g0 +(g85 +g2 +Ntp188 +Rp189 +(dp190 +g89 +g62 +(g63 +(I0 +tp191 +g65 +tp192 +Rp193 +(I1 +(I17 +I2 +tp194 +g72 +I00 +S'\x9f\xa93_\x8e\xfbU@(\xe83\xb7R\xfeK@\xac\xba$m\x03+[@\xbb\xf6t5:AL@\xe1P\x061L)`@\x18J\xab\x96 cM@\xb5\xdcs\xb0\x0f\xafb@o\xef#\x1e.\x86O@+\x05d\xf3;\x06e@\xd3\xd6\x06\xc8\xcf\xc5Q@\x11\xb3\xa75\xad\rg@uZ\x1a\x0e;\xd9T@\xaf\xe9\x8b\x01C\xbfh@\xc1d\x87\xa9x\x9dX@rY\x85OB\x1aj@\xc9n\x84\ni\xc5\\@\xd6\x9153x\x80j@\x00`\xb9\xb3\x14\xc0`@\xac\x90\x9apz\x1bj@`\x02\xd6\x81\x00\x1dc@\x18\xe2\x8d\x91\x0f\xc3h@\xad?\x11B\xe87e@%\x1b\xddW,\x12g@\xad\xba\\F\x07!g@?m\xa6;\x1d\ne@\xf8|[\x0e\xce\xafh@\xb4\xe6\x7f<\x92\xb0b@\'\xbeX\xbc\xc0\xb3i@{<\xf8l\xa8\'`@g\x16=\x8b\xea>j@\\\xe3\xfbN\x8f\x1e[@8\xefq#J\x86j@6\xc3{%`\xebU@`E"b~\x94j@' +p195 +tp196 +bsg96 +Nsbsg46 +(lp197 +g47 +asg49 +g32 +sg44 +Nsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_l_brow b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_l_brow new file mode 100644 index 0000000000000000000000000000000000000000..8922593382a880626f5c58b924ae905ea996d258 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_l_brow @@ -0,0 +1,486 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.clm.base +CLM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'opt' +p6 +(dp7 +S'ablation' +p8 +(I01 +I01 +tp9 +sS'verbose' +p10 +I00 +sS'rho2' +p11 +I20 +sS'sigRate' +p12 +F0.25 +sS'ratio2' +p13 +F0.08 +sS'smooth' +p14 +I01 +sS'dataset' +p15 +S'demo' +p16 +sS'ratio1' +p17 +F0.12 +sS'pdm_rho' +p18 +I20 +sS'sigOffset' +p19 +I25 +sS'kernel_covariance' +p20 +I10 +sS'numIter' +p21 +I5 +ssS'_shape_model_cls' +p22 +(lp23 +cmenpofit.modelinstance +OrthoPDM +p24 +asS'max_shape_components' +p25 +(lp26 +NasS'scales' +p27 +(lp28 +I1 +asS'diagonal' +p29 +I200 +sS'holistic_features' +p30 +(lp31 +cmenpo.feature.features +no_op +p32 +asS'patch_shape' +p33 +(lp34 +(I8 +I8 +tp35 +asS'expert_ensemble_cls' +p36 +(lp37 +cmenpofit.clm.expert.ensemble +FcnFilterExpertEnsemble +p38 +asS'expert_ensembles' +p39 +(lp40 +g0 +(g38 +g2 +Ntp41 +Rp42 +(dp43 +S'sample_offsets' +p44 +NsS'cosine_mask' +p45 +I01 +sS'context_shape' +p46 +(I8 +I8 +tp47 +sg33 +g35 +sS'response_covariance' +p48 +I3 +sS'patch_normalisation' +p49 +g32 +sS'_icf' +p50 +Nsbasg45 +I01 +sS'shape_models' +p51 +(lp52 +g0 +(g24 +g2 +Ntp53 +Rp54 +(dp55 +S'similarity_model' +p56 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p57 +g2 +Ntp58 +Rp59 +(dp60 +S'_components' +p61 +cnumpy.core.multiarray +_reconstruct +p62 +(cnumpy +ndarray +p63 +(I0 +tp64 +S'b' +p65 +tp66 +Rp67 +(I1 +(I4 +I10 +tp68 +cnumpy +dtype +p69 +(S'f8' +p70 +I0 +I1 +tp71 +Rp72 +(I3 +S'<' +p73 +NNNI-1 +I-1 +I0 +tp74 +bI00 +S"\xf8\xda\x9f \xde\xa9\xc6\xbf\xcd\xbaI\xf7\xe8g\xe2?\xecM\x89\rl\xa6\xae?\x8d6\xd1\x00.\x18\xd6?C\xdf\xba\xc0K!\xc0?^\xe5\xd7\x81\x98T\x92?\xf2\xed\x1cV\x13\xd9\xb1?\x88b\xf3\xfc\xe6&\xd4\xbf\xec\x9d\x17\x9d$\x1b\xb4\xbf\xffcG=1\xf3\xe3\xbf\xd0\xbaI\xf7\xe8g\xe2\xbf\xfc\xda\x9f \xde\xa9\xc6\xbf\x8d6\xd1\x00.\x18\xd6\xbf\xf7M\x89\rl\xa6\xae?[\xe5\xd7\x81\x98T\x92\xbfD\xdf\xba\xc0K!\xc0?\x88b\xf3\xfc\xe6&\xd4?\xef\xed\x1cV\x13\xd9\xb1?\x00dG=1\xf3\xe3?\xf3\x9d\x17\x9d$\x1b\xb4\xbf\xdc\xed\xbf\xc5%\x9f\xdc\xbff\xd3%\xf54'\xc2\xbc\xdd\xed\xbf\xc5%\x9f\xdc\xbf\xe7f\xea\x07\xee\x1a\xa7\xbc\xda\xed\xbf\xc5%\x9f\xdc\xbf2\xecY\x86\x04\xb5\x82<\xd9\xed\xbf\xc5%\x9f\xdc\xbf\x96\x02\x0ec\xee\x01\xad<\xd6\xed\xbf\xc5%\x9f\xdc\xbf\x9c\x04f\x90\xc7)\xb6\x87\xbc\xf0,@_\xa4\xdeb\xcd\x9eW\xc0^\x1a\x90\x8dy\x16\xd4\xbf\xa0 \xb0\xd9\xda\x89G\xc0\x0bk\x83\xcb\x87\xbd\x1b\xc0\xea3u\xbe\x06\xf0\x02@\xf2\xfa\x80\r\xb31\x1f\xc0\xc2\xae\x90\r.MG@\xeb\xd2\xfe\x1aKy\xe2?\xc3\xb3\xfa\x92\xa3%W@' +p157 +tp158 +bsg96 +NsbsS'_eigenvalues' +p159 +g62 +(g63 +(I0 +tp160 +g65 +tp161 +Rp162 +(I1 +(I6 +tp163 +g72 +I00 +S'\x96\xbb\r"\xd2\xf9k@\t\x9cv,\x99\xeeQ@6\x845T\xd516@I\xf4\xcfW\xf51%@G\xc5\x7f9k\x0b @HHAs\xd2\xc7?\xa1\xa7\xe3\x89\xdfW\xda?\x1e\xdf\xb0\x8e\x8d\x0e\xb6\xbfm\xff\x10UP\xa7\xd2\xbf\xdf9\x1f\xa8\xa3\xdc\xb5?\x1b\xbc|\xe7\x8e\xee\xd6\xbfdg\xcf\xcb\xa0\xbc\xd4?){\x18\xa7\xa9!\xe1?:\xc6\xf7\xec\xb3\xd0\xcf\xbf\xa2\x1a1\x88*c\xc7\xbfn:S\xfc\x05\xb1\xd0\xbf_T\xb9]\xf9N\xbd\xbf\x11~\x90#\x9b4\xe2\xbf1\xa49\x06d\x8e\xd1?(\xc2\r\xed\x86J\xcc?\xa80\xd3\x16\x9b\x86\xc9\xbfE)z$=&\xcd?\xf1"\x13\x97\x17\xc8\xbe\xbfbr\xca=\x05\xbf\xdb\xbf\xffZ\x1f\x0e\xad-\xd1?v]\x9a8\xca\xe6\xce?\xd0\x8d\xdc@\xb7Z\xae\xbf\x13J\xda_t\xfc\xd3?\xbe\x18\x1ev\xcd\xf6\xc4\xbf_u\xd2-@\xa9\xd2\xbfy\xc8\xc4\xf9Z\xea\xcb\xbf\xa6\x84\xe2\x13\x04*b?\x01\x07\r\xaa\x1e\xc0fQ3\\Z\xc5T@\xff\x07\xf0\xcb\x90:5@q\x8b\x13\x95\x89\xa5J@50"^\xe9\xf0@@\x7f2Ul\tI7@\xe0!\x10\xa9\xd4,B@WI\xa2\xe7\tU\xa2?\xd8\x16:~d\x01A@\x8e\x8d\xa9hZ&7\xc0\x12\x82=[\xfd\x815@\tI\xe2\xc8r\x83J\xc09\xa7\x9ei\xc1\x06\x18\xc0%\xfc\xf9\n\xde\x82Q\xc0\n\xa1\xab~\xfcl \xc0b\x01\xd0\xddz\xab5\xc0\xd9*q\xcc\x98\xce\x17\xc0k\xb0k9W\xf4\xb2\xbf\xcd\xb7w\x82\x13\xb0 \xc0{\xff[\xd3\xed\x985@\x05\xd0\x8f\x81\xfd\r\x19\xc0?\x9f{\xccs\x84Q@\x8b\xbf\x99R\xe3\x15\x16@\xb7\xf2a\x98K\x066@\xafJh\x89\xa1b @\x89\\\xe9\xc7\x9c\xc4\x9e\xbf\xed&|j\xb4p\x16@\xb39\xfdkA\x026\xc0' +p82 +tp83 +bsS'template_instance' +p84 +g0 +(cmenpo.shape.pointcloud +PointCloud +p85 +g2 +Ntp86 +Rp87 +(dp88 +S'points' +p89 +g62 +(g63 +(I0 +tp90 +g65 +tp91 +Rp92 +(I1 +(I20 +I2 +tp93 +g72 +I00 +S'\xea\xb02\x7fy\xf4\x1d\xc0\x0b\x1e\xc1\xf5*\xc2T\xc0\x02\x9b\xc8L\x9e\x1c4\xc0\xd2\xf3 \xb3\xf6\x17J\xc0\x1c-\x80G\t\x14;\xc0I\xe04WMj5\xc0\xfal\xd7\xf5\xb0\x8e5\xc0\x1cP\xaf\x93\x99Z\xc3\xbf\xde\xc1@Wt7;\xc0\xa6\x9a\x19\xf9\xc245@\x10\xa4<\x15\xf1g4\xc0\x83\xf2\x96\xc9\x1c\x19J@&zp\x84>\xaa\x1e\xc0fQ3\\Z\xc5T@\xff\x07\xf0\xcb\x90:5@q\x8b\x13\x95\x89\xa5J@50"^\xe9\xf0@@\x7f2Ul\tI7@\xe0!\x10\xa9\xd4,B@WI\xa2\xe7\tU\xa2?\xd8\x16:~d\x01A@\x8e\x8d\xa9hZ&7\xc0\x12\x82=[\xfd\x815@\tI\xe2\xc8r\x83J\xc09\xa7\x9ei\xc1\x06\x18\xc0%\xfc\xf9\n\xde\x82Q\xc0\n\xa1\xab~\xfcl \xc0b\x01\xd0\xddz\xab5\xc0\xd9*q\xcc\x98\xce\x17\xc0k\xb0k9W\xf4\xb2\xbf\xcd\xb7w\x82\x13\xb0 \xc0{\xff[\xd3\xed\x985@\x05\xd0\x8f\x81\xfd\r\x19\xc0?\x9f{\xccs\x84Q@\x8b\xbf\x99R\xe3\x15\x16@\xb7\xf2a\x98K\x066@\xafJh\x89\xa1b @\x89\\\xe9\xc7\x9c\xc4\x9e\xbf\xed&|j\xb4p\x16@\xb39\xfdkA\x026\xc0' +p94 +tp95 +bsS'_landmarks' +p96 +NsbsbsS'similarity_weights' +p97 +g62 +(g63 +(I0 +tp98 +g65 +tp99 +Rp100 +(I1 +(I4 +tp101 +g72 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p102 +tp103 +bsS'_weights' +p104 +g62 +(g63 +(I0 +tp105 +g65 +tp106 +Rp107 +(I1 +(I36 +tp108 +g72 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p109 +tp110 +bsS'_target' +p111 +g0 +(g85 +g2 +Ntp112 +Rp113 +(dp114 +g89 +g62 +(g63 +(I0 +tp115 +g65 +tp116 +Rp117 +(I1 +(I20 +I2 +tp118 +g72 +I00 +S'\xee\xb02\x7fy\xf4\x1d\xc0\x0c\x1e\xc1\xf5*\xc2T\xc0\x05\x9b\xc8L\x9e\x1c4\xc0\xd4\xf3 \xb3\xf6\x17J\xc0\x1f-\x80G\t\x14;\xc0J\xe04WMj5\xc0\xfdl\xd7\xf5\xb0\x8e5\xc0\x1fP\xaf\x93\x99Z\xc3\xbf\xe1\xc1@Wt7;\xc0\xa7\x9a\x19\xf9\xc245@\x13\xa4<\x15\xf1g4\xc0\x85\xf2\x96\xc9\x1c\x19J@*zp\x84>\xaa\x1e\xc0gQ3\\Z\xc5T@\x02\x08\xf0\xcb\x90:5@s\x8b\x13\x95\x89\xa5J@70"^\xe9\xf0@@\x802Ul\tI7@\xe2!\x10\xa9\xd4,B@fI\xa2\xe7\tU\xa2?\xda\x16:~d\x01A@\x8f\x8d\xa9hZ&7\xc0\x15\x82=[\xfd\x815@\x0bI\xe2\xc8r\x83J\xc0<\xa7\x9ei\xc1\x06\x18\xc0&\xfc\xf9\n\xde\x82Q\xc0\x0c\xa1\xab~\xfcl \xc0c\x01\xd0\xddz\xab5\xc0\xdc*q\xcc\x98\xce\x17\xc0m\xb0k9W\xf4\xb2\xbf\xcf\xb7w\x82\x13\xb0 \xc0|\xff[\xd3\xed\x985@\x08\xd0\x8f\x81\xfd\r\x19\xc0@\x9f{\xccs\x84Q@\x8e\xbf\x99R\xe3\x15\x16@\xb8\xf2a\x98K\x066@\xb1Jh\x89\xa1b @\x85\\\xe9\xc7\x9c\xc4\x9e\xbf\xf0&|j\xb4p\x16@\xb49\xfdkA\x026\xc0' +p119 +tp120 +bsg96 +NsbsS'global_transform' +p121 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p122 +g2 +Ntp123 +Rp124 +(dp125 +S'_h_matrix' +p126 +g62 +(g63 +(I0 +tp127 +g65 +tp128 +Rp129 +(I1 +(I3 +I3 +tp130 +g72 +I00 +S'\x02\x00\x00\x00\x00\x00\xf0?p\x1f)\xbbue7\xbc\x00\x00\x00\x00\x00\x00\xd0\xb9\xe4\xe0\xc3 o\xd2G<\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p131 +tp132 +bsg111 +g0 +(g85 +g2 +Ntp133 +Rp134 +(dp135 +g89 +g62 +(g63 +(I0 +tp136 +g65 +tp137 +Rp138 +(I1 +(I20 +I2 +tp139 +g72 +I00 +S'\xea\xb02\x7fy\xf4\x1d\xc0\x0b\x1e\xc1\xf5*\xc2T\xc0\x02\x9b\xc8L\x9e\x1c4\xc0\xd2\xf3 \xb3\xf6\x17J\xc0\x1c-\x80G\t\x14;\xc0I\xe04WMj5\xc0\xfal\xd7\xf5\xb0\x8e5\xc0\x1cP\xaf\x93\x99Z\xc3\xbf\xde\xc1@Wt7;\xc0\xa6\x9a\x19\xf9\xc245@\x10\xa4<\x15\xf1g4\xc0\x83\xf2\x96\xc9\x1c\x19J@&zp\x84>\xaa\x1e\xc0fQ3\\Z\xc5T@\xff\x07\xf0\xcb\x90:5@q\x8b\x13\x95\x89\xa5J@50"^\xe9\xf0@@\x7f2Ul\tI7@\xe0!\x10\xa9\xd4,B@WI\xa2\xe7\tU\xa2?\xd8\x16:~d\x01A@\x8e\x8d\xa9hZ&7\xc0\x12\x82=[\xfd\x815@\tI\xe2\xc8r\x83J\xc09\xa7\x9ei\xc1\x06\x18\xc0%\xfc\xf9\n\xde\x82Q\xc0\n\xa1\xab~\xfcl \xc0b\x01\xd0\xddz\xab5\xc0\xd9*q\xcc\x98\xce\x17\xc0k\xb0k9W\xf4\xb2\xbf\xcd\xb7w\x82\x13\xb0 \xc0{\xff[\xd3\xed\x985@\x05\xd0\x8f\x81\xfd\r\x19\xc0?\x9f{\xccs\x84Q@\x8b\xbf\x99R\xe3\x15\x16@\xb7\xf2a\x98K\x066@\xafJh\x89\xa1b @\x89\\\xe9\xc7\x9c\xc4\x9e\xbf\xed&|j\xb4p\x16@\xb39\xfdkA\x026\xc0' +p140 +tp141 +bsg96 +NsbsS'allow_mirror' +p142 +I00 +sS'_source' +p143 +g134 +sbsS'model' +p144 +g0 +(cmenpo.model.pca +PCAModel +p145 +g2 +Ntp146 +Rp147 +(dp148 +S'centred' +p149 +I01 +sg84 +g0 +(g85 +g2 +Ntp150 +Rp151 +(dp152 +g89 +g62 +(g63 +(I0 +tp153 +g65 +tp154 +Rp155 +(I1 +(I20 +I2 +tp156 +g72 +I00 +S'\x0b=\xe7\xa7\xa7\xd7\x1a@@\xbc\x85\xc4\xaavU\xc0\xfd+\xb1\xedI\x8f/\xc0\xb3\x9a\xf0\x83m\x1aK\xc0\x93\xd6\xdbt\x04f9\xc0`DYsh\x9b6\xc0?\xb4>\x80p\x107\xc0\x98\xc5$\xa7\xe6F\xfd\xbf\x9b+x}Qe9\xc0{%@nW[5@\xdc\xf1\r\xff\xffI.\xc0wLJ\x06\x0f\x9eL@\x19\xd3.Q\x87R\x0e@Y\\\x17[v\xa2W@yW\xcb\xb7\x12o-@\xb9\x0b\xfd\xb1h\xdbK@Dl$}|\x845@\x8c\xe9\xc4\xab`\x924@,sX\xe8\x07\x047@\xf2\x84\x9b\x08\xa4!\xf9\xbf\x8c`\x19\xb8\xa957@\x82\x84\'A\xe1\xb59\xc0M\xbfkD\x97\xaf0@="\xeaL8 L\xc0\xaeRI\xf4b.\x15@\xd8\x96Qo\xe1\xb3R\xc0bz\x94\x0b\x81C\x13\xc0?L,S\xff+7\xc0\x9a\x94\xcaa\x9dx\x19\xc0\x17\xbf\xed\xe2!b\xd2\xbf\xde\xd4\xd52>\x9c\x19\xc0\x05\xa5D\x9d~n4@\x03=P\xb6\xd1\xa2\x12@\x14\xbe>v\x87_T@\xde\x87\x0e\x17\xd8\x18\xca\xbf\xab>\x86\xde\x8e,4@\xef\x13l\xe8\t\xf5\x05@#\xe6y\xc3\xa4\xdf\xf4\xbf\xeb\'0\xb9#\x1e\xcd?\xd3\xd77T\xdb\xe87\xc0' +p157 +tp158 +bsg96 +NsbsS'_eigenvalues' +p159 +g62 +(g63 +(I0 +tp160 +g65 +tp161 +Rp162 +(I1 +(I36 +tp163 +g72 +I00 +S'\xf2|\xed!\xbe\xfc\x92@\xa0\xd5\xccH?@\x8c@\xd5o\xc5\x95\x83\xa8~@\xf1\xa3\x8a\x1et(f@\xbf\xb5\x0f\x9d\xe6\xccX@\xc7\x00Eb\x9d\tQ@9\x18G\x1a\xab\xf2?@e\x14\xcb\x80\x840<@\x1a\xc1\xf4_O\xb38@\x98\xab@B\xd2\xc55@\x87\x9b||\xe1\x8f.@\xa0\xe5Y\xe7\xe4F*@V\x1f\x00\xe6\xc2\xc9(@\xf8\t\xae\xd0\xe9\xa5$@\xd2\xa8\xd88\xa5~ @\xf2"2>\x01\xe2\x1a@|\xa3`\x9b\\5\x16@C\xc8H\xc7\xceY\x14@|\na\x1c\x9b\xcb\x11@"\x83\x10\xf8\x86\xaf\x10@\xe9u\x17k\x8dN\x10@\xaa\xd8C\x05t\xc1\n@u\xfd\x99\x87\xd8b\x04@C\x17\x8dGQP\x01@\xc6\xb5\xc2\xab\xa3\xb8\x00@\xf7P\xad\x0eu9\x00@l<\x96\xbf\xfe\xa3\xfe?v|r>[[\xfe?x\xe5\xbeY\xf9s\xf6?gW\x82\xb2\x17\xac\xf4?`\x0b\xb9U\xcf\xd1\xf1?)BB\x05\x04]\xef?+\xeb\xb0\x9f13\xeb?\xa9\x01!m\x146\xe9?=\xd9h\xa1&\xef\xde?\xe5$\x02\x912\x11\xd7?' +p164 +tp165 +bsS'_trimmed_eigenvalues' +p166 +g62 +(g63 +(I0 +tp167 +g65 +tp168 +Rp169 +(I1 +(I1 +tp170 +g72 +I00 +S'\xda\x0b\x16\xe7\x82\x17\xc8?' +p171 +tp172 +bsg61 +g62 +(g63 +(I0 +tp173 +g65 +tp174 +Rp175 +(I1 +(I36 +I40 +tp176 +g72 +I00 +S'}\x9c\xed\x11\xbe%\xa7\xbfp\x1a\x1a\xffk\xc2\xc7?%\x0b\xd7\xae\xa4i\xc8\xbf\xacS\xb2\xfe\xfe\xc2\xb3?\x0f\t:\xe7!\xb8\xcf\xbf\x8bL\xc3 \xdc`\xa4?4\xc1u2\x1d\xcb\xcf\xbf\xef^p\xe8\xba\xbdk\xbf\xcc\xc724\x19\xb6\xcf\xbf\x19\x13 qWH\xa9\xbf\x17\x82S\xa6\x12\x91\xc8\xbf\xd4\xf2^\x0c\x8f\xe8\xb3\xbf+\xcf^d-U\xa6\xbf")M\xb4\xdb\xe8\xc5\xbf\xf2P\xfa\xa9\x1d6\xc9?4\x94\xdc\xa6$\x83\xb2\xbf\xe7C\xadS2\xfc\xd2?:FS\xb3*\xa4\xa4\xbf\xe8{*&V\x8a\xd3?\x99\xca\x99\x81\xa2\xbdG\xbfO\xff<\xd4y\x04\xd3?k\xb4\x1cSh(\xa3?\x10\x195RtX\xc9?`n&>f\x1a\xb3?8\xd7}\'>H\xa9\xbf\xed\x04)\xe2\x8e\x81\xc5?W\xecIME\x82\xc8\xbf\x85\x00\x02\x1e\xb2%\xa7?|\xa5\xd8B\xab\\\xc9\xbf\x8f\xbem\t\xcd\x0ba\xbfQ\x1d\xa4e7c\xc8\xbf\x9fD\xe4\x91\x8dV\xaa\xbf\xef\xb2!\xd3<\x0e\xa9\xbfS\xe9\xb6\xcd\xcc\xd0\xc3\xbf\x9e\ru;\x14^\xc9?\xe5x\x1a\xc9\xeb\xb7\xa5\xbf\na8r\xda\xf0\xc9?\xbaB\x8e\xe0\x1d\x8eW\xbf\xf4t\x08\xef\x0bw\xc9?\xd6&\x82UX\'\xa4?aW\xfb\xa9F]q?/\xbaQ\xd5Y\x90\xda?N@=\x87\xce@+?![\x04\xa8\xa4\x1b\x96?\x9dU|\x94\xef\xf4\x85?gx\x8e\x10$\x8d\xcb\xbf=\x9e\xef\x10u\x8b\x85?\x8b\xe5\x18\xc8\x93\xb7\xce\xbf\r\xe6\xe5\x13o\xa2\x81?\xac\xf7\xe8\xa1U\xf6\xca\xbf\xc7\xfb\xe0t|\xf2\x85?j\x1c~ir\xaa\x9b?1\xd1$\x1d\x03\xf3\x92\xbf\x81\xa5^*\x08\xb4\xda?@\xd6\x0f\xa7%Q\x97?\x1dr\x18u\xb3\x16\xc1?\x15\xb4(,\x97\xde\x87?\x07C\x81\xc0\xbd\x15\xb3\xbf\x0c\x0c\xd0\xb9\xe0Nw\xbfb\x0b\x93@\x15a\xbb\xbf\x05\xc7\x18\xb7,E\x99\xbf\xc7]62\x14\xcf\xb3\xbfr_\x1b\x99\xd2o\xa2\xbfT\xef[\xbd\xf4(\xc0?\xc3\xf2\x07\x0bu=}?\xb1~\xf8\xb2\xaf\xf1\xd7?\x85\x1ar\xaf\x80\xb0z\xbfO\x91\x1c:\xc1\x81\xc5\xbf\xf1\x7f\xf4\x9a\x8d\x8eO?\x89Xi\xe5?W\xc9\xbf\x1f\x83p\x9e\x95\x01w?N\xbf.\x8c\x85\xf9\xc4\xbf,\x04\x98\xda\x9c\xb9\x90\xbf\xe6\xe4i\x98.7\xd8?\xcc\x03\xd0\x14\xb7\xde\x9f?\xd3\x81\x8c*\xa3+\xc1\xbfM\x1a\x91\x18\r\xe7x?\x94\xc9\xc4b\x89E\xc5\xbf9\x12\x98\xd2S,\x97\xbf\xaa\x96\x8e]7\xb1\xc1\xbf*\xbe=\x07J\xb7\xdb?\r\x1d\xadl\x83\xd5=?\xb7\xcf\x83~f\x17\x93\xbf]\xbd\x9c}\xfe\x00\x9e\xbfp\x16\x08MPE\xd1\xbf\x0e\xed^\xad?\xf8\x8d\xbf\xf9\xc2Uu\xbe%\xd0\xbf\xfd\xe8Z\xb9\x91V\x7f\xbfQB\x8a\xf9\xe0_\xd1\xbf7\x91\xf4\xf9bBE\xbf\xd4\xa6v\xd7qD\x93\xbf\xbe\xac\x81<-M\x97?\x99U\xb4\x94\x89\x05\xdc?2*2F|^\x92?\xfa\xa9\x16\x0f\xe7V\xbc?\xa0\x93\xf5X\xb4XG\xbf\x1b\x96te\x1c\x1e\xaa\xbf\xc1\n\xae\xc6\x83\xc6j?\x87\x978\x07\x8a\xc8\xb2\xbfJ\xa5\x86Ku\xdfh?\xa0\xe8\xa2p\x9c\xb0\xaa\xbf\x10\xc0a \x85\xc3S\xbfZ\x81R\xa3d\xdf\xba?\xdd\xc1\xfc\xcdmc\x85?l0\xb0\xcccR\xd4?&1\xefx\xda\xf1\xb0?\xae\x06\x15u\x9c~s?p\xe5\x04\xcdR\x8b\x80\xbf\\\xc1\xd2yf]\x9a\xbf\xd6\xb8\xc3^\xeckq\xbf\xbb\x0c\x13|7\xd3g?[\xd2\xfa\x1e\x15c!\xbf\xba2A.5r\xd4?\xe16\xb1q\xdcV\xab\xbf)\xd3d\xeb(\x80\xcc\xbf\xcd\xc1o\n\x89os\xbf?\xfb\xea\x97d\x15\xd0\xbf\x92\x86;\x83\xd0]U\xbf]\xa4m"T\xa9\xcc\xbfj\n\xdcC\xb9.`?\x0e\x9d"K&\x01\xc8\xbf-\x91^\xc4\xb4\x04\x88\xbf\x81\xa4/\xa6\x9f\x0b\xa9\xbf\xa1"\x00\xdb\xbc\xc0\xb1?\xb8\xc7\x81\xc5\xd5\xd0\xac\xbfE\xa8\x8d\x94\x0c:\xac?\x10\xc3\x859a\x8e\x9e?]\xba\xee\x06\x1b\xbcb\xbf\x92\xf4\x84\xb7\x90\xc7\xab\xbf\xac\xcbz\xd3\x85\xd1\xae\xbfV\xfb\xbd\xb5\x03s\xa7\xbf\x1ep\x9ep\xe6\xf0\xb0\xbf^GR\xe4hT\xc9\xbf\xb8\xbe\xc7\xe9\x01d\x8c?\x9bz\xe0Vj\xf9\xbb?H\xf6\x07\x01\xd3K\xac\xbf\xd27\xc8\x8f\x1f\x02\xd0?\xf9\x1a\xa5\xa0\xd4\xc6\xa7\xbft\x8a~n\xc6[\xd1?\xec{a\xb1c\x7fU\xbf\x9a\x8dA\xc0\xbd\xd5\xce?\xb6\xdb\x0c\xaf\x16.\xa6?6\xa6b\xd1\xab\xe5\xb7?e\x88<\x99\xdaR\xb0?\x85\x0c\xd3o\x80E\xbc\xbfD|-$\xa53\xa6?.y\xb7\x19\xdd\xd2\xd1?\xe7\xea0]\xe6g\xa8?\xa0~\x18s\xaeR\xd4?f:i\xbd\x00a<\xbf\xd6\x0b\xbcY?#\xd2?\x04\xf7iy\xfe\xfe\xa9\xbf\xecw\x12\xdd\xa1_\xbe\xbfi\xed\x9b\x87Qw\xa1\xbf\x08\x88\x03v\xb0\xcd\xd6\xbf\xc5\x9b.\xaa\xd8\xe9\xb0\xbf&\xf5\xf7\xd47f\xd5\xbf&\xea\xe6\xbc\xbf\xb0e\xbf\x17\xd5\x8e\xb1aG\xd7\xbfI\x85>\x80\xd58\xaf?\xdd\xfc\xc0y5n\x9b\xbf+7\xe7\xaa&\x96\xd0?s\xa3\xb1\xbc\xab\xdf\xa1\xbfJ\xe5\x1bT\xd7/\xbf\xbf\xd7\xd9s\xbafX\x88?O\r\xbfW\xcf\x8f\xd2\xbfVd\x02\x9a\xc4\xdc\xac?\xa3\xe0\x8f\x92i\xe9{\xbf\xe0\xbb\x10\xaf\xbc\x0b\x83?\xb3\x19\x86\x13\xc8\xa0\xd1?\xd0\xbez\xda\xf9\x03\xa1\xbf\x8d\xf595-\r\xbd?\xcd\xa7\xff\xc0PW\x89\xbfl\xbfrW\x8eM\xd1\xbf\xc3W\xfd%\x1f,\xb1\xbf\xd4\xc6*b}\xe4\xc1?N\xc3\xb9hzm\xa4?\xddoF\x1d\xbe\xdc\xd2?\x9aQ\xb7S\x07\x95\xb8?\xfa\xda\x02xg\x8d\x86?\x0c(\xf4R\x81\x1f\xa4?\xd2;\xabI\xf1Q\xd1\xbfi\xce\xcf\xb0O\xd9\xb1\xbf,_\xf6\x94\xa1\xe7\xbe\xbf\x03\x1a\x06]\x1bg\x8b\xbf\x8d@\x03\xd8\xc4\xa8\xcd?xf \xfb\xca\x0f\xa1?\xfb\xa7\t?WZ\xd2\xbf\x93w\x87\xb3-\xca\xb3?~\xc5\x14B\xb1\xa8n\xbf\xb8\x86\xe7\xbb\x9a\xd1\xa3?a\xban\x9b\xb6\xb0\xd1?\\\xdbL\xb02!Y?\x9f\x82\x140i\x1f\xcf\xbf&Gl\x96\xae`\xb1\xbffS\xa3\xf5\xdeO\xd2?\xcf9~\xf9\x84E~\xbf\x04\x02\x88T\x97\xedr?>4\xf4\xda-&\xb2\xbf{\x9a9] \xd2\xd1\xbf-\x00\xe8jMe\xc4\xbf\xba\x00\x8d/7\x8f\xb7\xbf;~x\xe4\xca\xfa\xb9\xbfT\xfc$\x036\x95\xc8\xbf\xdf\xcfp\\\xac\xaa\x9a\xbf\xed\x0e^=6N\xd0\xbf\x1d\xc0\x98\x89W&\x83\xbf}\xa76\x9d\x82H\xcc\xbf\xfc\xffGn}&\x99?{\x07\x02*\xa7\xc0?"?Z\xbe}&\xb3\xbf\xce\xaal\xa1\x8f\x9c\xb6?\xbc\x93\x91_}\xbe\xb5?n\x00U}\xf3\xd7\x83?\x15\x0c~V1e\xbf?\xad\x84\xe4c?\xe2\xb0\xbf\xf8\xf7C\xc6?\xa9}\xb7\xf5\x0b\xa1\xc1?\x02e&\x12M\xb0\xa0?M\'R\xc9`\x9f\xc0?\xa2O\x05\xe0\xaa!\xbf?e\xdb\xb7\x93r\xc0\xbf?P\xb7\xbd\xc97\x8b\xa8?\xae \xe1\xa7hN\x86?,\x97\xcdu\x0c\xf7\xc2?\x8c\x10\xb3\xd1\xe9o\xc5\xbf\xfcf\xb6:\xed\xcd\xc1\xbf\xe2-\x04\xec\xf5a\xb9?\x07\x04!\xdao\x12\x80\xbf\xe7n\xa1q\xcaM\xc3\xbfv\xf7\xa3(\xf3Z\xa6?\xdf\xe5k\xe2\xe50\xc1?\xbd\xf6\x12\xd0\xdf\'\xc3\xbf\x9f\x1eh*\xcb\xae\xaa?(y\x06"\x15(\xb7?\n\xa1({R\xbd\xbf\xbf\x92\x03j\xcc\xf6\x0e\xbf?`+\x91\xe4g\xd2\xc2?\xf9\xe5-\x06\xacc\xc9\xbf\x99\x06\xd1\xa8\x8b\x1d\xb1\xbf%\xc2\xe3\x9a\xd5\xa3\xd4?W2\x93\x18\xf1\x12\xda?\x9a\xf8\xe6\xed\xb7\x14\xb1\xbfi\x19\x86\x01\x00\xe8\xb0\xbfc\xfdg/UX\xd2\xbf}:\x10\xea\xb7%\xa4?)\x16\x98\x8f\xcc \xbd\xbf\xa8Gb\xa8\x81\xb7\xb2?0\xd0\x16\x91d\xfd\xd5?\x0cG%\xa5\xd84\xd9\xbf\xe0m\xca\\\x03\x03\x93?\xa3\x13\x925\x84\xa4\xc5?\xc1Z\xf7\xc3\x1a%\xab?q\xd5\x89\xc2\xdc\x02\xa3?\xeci\x04\x10\xc7\xf1\xa4\xbf\x81\x13\x03\xbe\xceC\x82?\xce\xacwX?b\xac?\x86\xb0s\xccR\n\xb9\xbf\x0c\xad\x97s\x84\xcdW?b\x16!\xebQ\x82\xca\xbf\xef\xe8\xe7]\xf3w\xa8?\x95Q\x0bY\x19\xfc\xb6\xbf\xe2#\x1c\xbc\x98\x14\xc8\xbfL1\xbaA\x0cu\x8a?\xbe\xf4\xb2\x7f"\xe5\xb7?\x1f\x85:w\xe9\x14\x90?\x85i\xe7C\xad\x0f\xb8\xbf\xb2]zc\xc6\xf5\xc8\xbf%\xbd# \x7fn\xc2\xbf\xc0\xc5\x96\xa4%L\xd7?m#$\xb086\x94\xbfB\xf7Q\xc7\xb0\'\x8c?\xa74^\x1b\xbc\x96\x91?E\xcd\x19\xff\x03D\xd0\xbf\x92T\x11=\x97\xd6\x99?_{\xff\xbd\xf2\xd8\x99?|7\xfd\x91\xbdD\xc3?8e\xc5\xbag~\xd4?|\xc50\xd4\xe5\xbd\xb5?z\x86H\xed.x\xb8\xbfN\xab\xb2\xf5\x8d\x82\xd1\xbf\x93[\x8e\x8c\xe3s\xd3?\xc0\n\xb8\x17&q\xaf\xbf\x83\x8d\x17*\xb64\xa8?\xfb\xc1\xc5\xb2\xc2W0\xbfU|\xcf\x81f\xfb\xc7\xbf\xba7\xd2\xe2\xed\xb4\xa6??\xc0\x9d\xee>\xda\xa4?\xb5\xba\xe4\xd9\xb7\x87\xd4?\xca\x04.\xdd\xa6\xe6\xd4?>\x0fe\xc4\x13\xf8\xac\xbf\x887j\xaa1\x15\xb8\xbf\xceZ\xc1vV\xdf\x93\xbf\n}\x9d\xd0;W{?\xf0/\r\xb4\xc7H\x8b\xbf\x05\xf8\x17\x96\xe1\xb1\xcf\xbfT-S\x82]\x1dd\xbf\xb5\x97j_\xa2\xa8\x91?\xd4\x15\x1aO\x96\xff\xaa?\x85\xa8\x1dT*\xa9\xc6\xbfby\xaeY\x06\xac\xa5\xbf\x90\xf3g\x9d&\xad\x92?\x02J\xcd\x9c\x8c\xc6I\xbfz\xb0\xc8\xb1r\xf2\xce\xbf\x04c\x92^\xf1q\xa0?6\xe5&\n\xa9\xc6\x81?\xd4\xf70L\x90\xfe\xcc\xbf\x01\xadF\xca\x94k\xc2?\x10<\x94dDO\xa0\xbf\x9a\x05\xfe\xf0\xb9\xcb\xcc\xbf\xfay>%~6j?=\xda9w\x9a\xb4\xa6\xbfp\xcb\xbfr\x11\x10\x9d?\xb3t\x01Y$\xe2\xae?\xfaN\x9d\xd7\xfc\x1d\xa1?:\x85M\x11\xeef\xaa\xbfo\x18\x8bV\x9e\xfa\xa9?\xb3tn\xbaj\xd5\xc7\xbfj\xb6\xb8b\x94\\\xcf?\xfa\xa1\xbbgp\x99\xc1?\x856\xbf\xbc\x8c*\xde\xbf~\x86\x95!g\x0e\xc5\xbf\xcd\xa3\xe8\xebK \xc9\xbf%_\xab\x8c\xfd\xb5\x9b?|\xa1V\x89\xf0B\x96?\xfb\xd7\x91\xc0dk\xbd?\x1b\x90\xc4\xfd\xa6\xdd\xce?\xd4<\x84\xcaO\xf8\xa7?\xa1O\xf4\x95\xdb\xe4\xdc?\x86"\n\xb1\x1f\x0f\xc7\xbf\xd7h\xc5o\xef/\xca\xbfpo~(\x07K\xae?\xefl\xcc\x08\xc7?\x91\xbf\xf5o\xfeh\x85\xb4\x9b?~E@Hz\xea\x93\xbf\xaf|6}\xe6}\xbb?\xfdy\xf8\x0f\xca\x15\xa0\xbf\xf20\x19\x85\x19\x0bh?m\xefh\xa3\x94\xb9\xc8?\x15\x12\x9e\x83h\x83\xa9?\x98\x82\xaaxt\x9c\xc6\xbf\xb0q\xd8\xae\xe0e\x85\xbf\x02\x9e\xf9\xa1m\x9d\x8f\xbf@\xd5\x0e\xa4\x91\x06\xb3?]6\xf7\x0f\xa8C\xbf?h.\xb7\xf7$t\x86?\x1a\x90\xe4G\\\xfa\xba\xbf\xbeb\x9d\x86\x17\x0b\xdc\xbf.i0\xd0V\xf9\x99?\xcf\xdd\xb5\x82\x10\x18\x99\xbf\x13A\x9c\x01\x88\xfb\xa0\xbf64\xb7h\x03}\xa1\xbfuF\xb2v\xac\x1c\xa0?\xa9E\x15_p\x9d\xa5\xbe\x80\x8f \x14\xf4v\xad\xbf\x84Db\xf7\x0e\xc2\x9c?v\x8fo+\x05?s\xbf^\x87/8O\xbf\xa6\xbf\xadi\xb6j\x8f)\xb5\xbf\xc8>F+ M\xdf?~y\xba\x93\xd6B\x94\xbf\x9a\xf0\xe4K$\xa3\xbf\xbf\x14\xb3(\xcc\xceD\xab\xbfq\x9f\xe2\x82XE\xa4?\x07\x8a\x0e\xb0f\x17\x91?\xb42\xe3H\xee\x9bp\xbfu\x0c\xec\x93e~\x9c\xbf\xc8\xbds\x99\x88\x95\x95\xbf\xb21V\xa5\x0b\x1f\xb6\xbfk\rZ\xe9\x9f\xb1\xa3?/\xec\xc4\xda2\x10\xba?\xc3\xdaR\xe8\x94\x80\xdf?\xb2\xb3\xc2\x10Tc\xa4?\xf0\t\x8a{\x04\x7f\x98?^T[\xd7d2\x92\xbfz\x82\x98\x13\xca&\x9a?\tr!\x89\xde7\x9d?\xbb\x19%\xafB\x02\x90?h+O\x8c\x11x\xad?\xca\xcb\xd2(T\xf2\xde\xbf\x9b\x0e\xd3M\xfb,\xa4?\xb1\xff\xd0qYJ\x8c?L\xea@gn\xf2\xbc?\x04 h\xb7\x18\xd0S?\xf8\xa5c\xccL\xd0\xa1?,\xa6M\x16\x83lx?\x8b\x97\x83\x8e\xa5\x03\x9d?;\xbc[\x8c\\)\xa5?T\xdd,!u\xf2\xc9\xbf\xad]rQ\xbe}\xd5\xbf\xb7\n\xb9\x84\x9a\xf3\xc4?_\xdc\x84\x13\xeb\xcb\xbb\xbf1\xd7c\xc4\x93\x90\xd0?\xab\x91\x05\xf2\xc8\x8c\xc2\xbf}\xc8\x0c\xb5\x94\x99\xab?5o\x99\x0c"\x8b\xb5?\xb5\xdbw\x07\xaaM\xdc\xbf]\xe5k\xcc\x0c;\xd5?\x06\xdd7\xc5\x8f\xe4\xc2?-\xa6k\xfd*\xc2\x9a\xbf\xdcu\x80_s\xf9\xd1?\xd0y|Gr\x8e\xcf\xbf\xedz=[\x9c\x0e\xc4\xbf\x00\xca\xa4:\x97\x86\xa1\xbf\xf2\xba\xd4\x1d\xd2\x17\xb8\xbfQ\x1eIp\x16P\xb7\xbfB\x80\xed,\xc9\xb9\xb1\xbfN\x08\xe1C=\xbf\xb8?\xbf\x1bC\x11\x16d\xca?\x9f+\xa5;\xfb\xb9\xc0?\xea]\xaeP\xd05\xbb\xbf\x03\xcdkZ\t&\xa4?a\'\xf6\x1fe~\xaa?\x19\x14G\xef\x84I\xc2?D\x18\xbc\xf7d\x8aw\xbf\xe1\xf6\xab\xa6\x9e\xfc\xa6\xbf\xa2\xf4\x14&<\xe1|?\x1fuH\xa6\x93\x19\xa5?I\x90\x96\xd39\xda\xb7\xbfWMD\xcf\xff\x11\x9d\xbf_]P-\'\x83\x93\xbf\xa4,\n!\x98\x0c\x91?+\x0b\xc5\x1b\xbd\xd2\xbf?!Us\xddg]\xac\xbf\xfbh\xdb\xe89\r\xc1\xbf\xaa<.\x94\xca|\xc8?^\x05l\x14\'6\xb1\xbf\xfe\xed\xa0\x0c\x1d\xdc\xb9\xbf\x87\xf2\x9a)\\P\xb6?5Qj\xb9\x1b\xaa\xbe?\xd2\xcat\xc9\x85n\xa9?\x98l\x8a\x82-~\xcf\xbf,x%\xe9\xa1\x18\xa6?=j\x7f\xfd]\x10\xd4?N\x84\x92\x0e\xaex\x99\xbf=\xba\xdc\x0c\x15\x1c\xc7\xbf1\x1c\xb3O]\xa4\xc4\xbf\xfd\x93vB&\xdf\xd1?\x87p"\xeb\x95F\xbe?\x9f\xaa\x90\xe6\xdb\x8e\xb0\xbf\x18r\tvk\x19\xb2\xbff\x02\x13\x99\xf8\x9f\xbc?yB\x9e\xca\x9b+\xaa?T\x94\x00\x02\x86\x9b\xcc\xbf\xd7\x04\xd0\x89IDW?\xb9\n\xe8\xb1\x8b\xf6\xcb?\xbc1\xc6YyJ\xb7\xbf\x0b\x85\x9c\xf2\x9f\x1a\xcb\xbf\xff\xc72\xad 5\xc0?_l_.\xc8\xce\xcf?[\x98oQ"\x80\xa7\xbfc\xe9v|\xf4\xd5{\xbf\xc8\x98\xc6\r\xb0\x85\x9f\xbf\xac\x14+d\xb7A\xca\xbfa\xcf\xec\xc8\x18\xb3\x8e\xbf.\xad\xcb\x81\xe1Q\xd4?\xf8\xbc\x0b!\xa8\x0f\xa8?GX8p[\xc9\xcc\xbfd\xb0 t3\xcc\x95\xbf\x90\xaa\x8b\xdbt\xfc\xab\xbf\xdds<\x14\x8d<\xb3?\xc5\xb0\xb1r>8\xcd\xbf\xecm@B@K\xa5?\x89\xd1\xf9\xf6e\x90\xd3?\x15D3p\xc8\xf5\xbc\xbf\x9cN\x84[\xf2f\xc5\xbf\xb9\x03)\xd0}\'\xcc\xbfw\x01\xf8D\x98\xce\xa2?xs \xc0\x8c\xd4\xe2?N\xcf\xe40\x1e\x7f\xcb\xbf\\D+_Z\x8b\xc9\xbf\x03$\xe5L\xd5\xae\xbc\xbf\x8fx\xb4Vz`\xc5\xbf\xd0\x1c\xb0\x92F\x8e\xb3\xbf\x01\xf7K\x1f\xf9\xef\xd3\xbf\xfb\xb8?\x1f\xa0\xd1\x9c\x83:t\xbfN4\xe0\xdez\xd8\xa2\xbf\xaa\xa0\xf7\xf4\xda\xd9\xb7?O\xaa7%\xd8\xcd\xd3\xbf\xc3J\xb9b\x7f-\xc0\xbfs\xa3\xaf\xe3]|\xdc?\n\xd7o\xe6"\xd9\xc4?\xce\xcd\x03\xcdS\xb2\xcf?\x169~b\x98\'\xbb?\xf3\xf0cz\x89\x9c\xb2\xbfC)\x90\xf7\x02^\xb0\xbf\xb0\x16\xb9\xb3I\xa3\xbe\xbf\xb7\xbf\xb1\xb5M\xe4\xf4\x89\x95\xbf4\x91<|F\xea\xad?/@\xb6h \x01V\xbff%\xfe\x11\xa9\xb5\x94?q\xe4\xcf\xf2mU\x8f\xbfy\xbc\x87\xa9\xaapo\xbf\x15|\xdc\xc8\xc8\xfe\xb7\xbf\xddX\xb5#\x9a\xa8\xa3?)u\x02\xa35\xf1\xce\xbf\x7f\x9e\x95\x9dL\x0f\xdb\xbf\xb5\xffn\x15\x1e\xb9\xb2?d\x9bD\xb8J\xb7\xc1?\xaa\x1c\x83!\xb6\x9e\xad?\x8f\x9b\xbe\xe0\xa0\x13\xc1?\x9f4\xaa\xa1\xd2\xd0\xab\xbf\xb1\xe6=\xbaG\xf1\xbe?U\xa3%\xc9y\x05\xb7\xbf\xc4\x90\xff\xfeZ\xeb\xdc\xbf0\x9e\xc2\x07\xf0a\xbb\xbf\xc8\x8a\\[\x8c\xc8\xc2\xbfP\x05+\x1f\x80\x00\xa5?\x91\xcc\x9d\x9a\x19#\xc4\xbf\x01\xe2\x8d\x92M\xe3\xbb?HDw\x1c\x92\xcd\xc4\xbf\xee\xd8aH\x9aj\xd2?\x92\xd9\x05l\x89\xc3\xc8\xbf\x1b\xa0\xc6\xb8\xec=\xb3?Y\xd9E.\x04\x98\xb7?\xba\xc2\xf4\\\x1a\x81\xba\xbf\xa1o\xd3\xcbF\x97\xc0?\x19w\xe4C c\xb4?\xe5K\x9a=#9\x9e?9\x90\x8e\x11<2\xbc\xbf\x0b\x14hc{\xd4\xa1\xbf\x80\xe7\xc9\xefZ\xfe\xb9?\x04\x9d\xfd\x12\x89\xa8\xb6\xbf\xc1\xcb|F\xba\xe4\xd4?\xe0\xe2\x8d\xeb\x8e0\xb1\xbf\xa5>fy\x91g\xb4?\xdf\xd7\xd9\x93n\xf2\xb5?\x16%&\x06z6\xa8\xbf\x98\\>$S\tp\xbf\x00Y7\x89+\x04\xaf\xbf\xbb\xd0\xe9\xd6\xb9a\x93?\xaa\x10\xa5\x1dz\xa4\x9a\xbf\xf5\xe1\xd9\xefH\x18u?5\n\xfc-\x11\x01\xae?\x1e\x8b\'rci\xc2\xbfj"[\xd1Y\xdd\xdc\xbf\xde1\xd5\x0eg\xf4\xcf?\xea\x03\t2\x06\x99\x98\xbfU+\xb4\x0e\x88[\xbb\xbf\x85\x80v\xd4\x8b\x16\xd2?\xc8\xff\x1fh\xee\xa3\xb8\xbf\x02\x16m\x8f\x92&\xba\xbfN\xbb\xd53\xf9$\xb2\xbf\xf6\xff\x9e\xf7NL\xde\xbff\xb7d!\x8d\xfd\xb0?X\xb4\xf5\xd5=\x9f\xb0\xbf\x80&\x82\xca\x13\xee\xb7?s\x8b4\xa8\xc8{\xbd??zK\xc4\x13\x96\xab?\x96\x10\rBa\xe3\xac?\xe2SP@\x03:\x93\xbf\x0b\xfa\xff\xd3\xe8\x19o\xbfQ\xeb\xb5\xea!\xcd\xb6\xbf\xb9\xb7~~\xde\xe0x\xbfpr]\x8d\'\x14\xb6?9i\xaf\xee]\x97\x8d\xbff\r\x14\x14eY\xba\xbf\x9e:ny!\xec\xa3?&\xb16=\xce\x1f\xba\xbf\xe0\x82\xc7\x1d\x18"\x82\xbf\xdb\x94J8\x87}\xc2\xbf\xfb\x12\x030>_1\xbf\xde[\xd1\x02\xfe]\xc6\xbf\xa26u\xe7v\xdb\xb2?DOX\xc1\xbc\xa3\xbf\xbf\xfb\xdd8R\xeb\x7f\xa2?\x16x\x8e\xb7\xbcw\xc3?Q2<\xc5k\xf4\xad\xbfx\xa6w.\xec\xbf\xd7?t\xc8\xbc\x84\xd1\xc1\xb0?\xb5\x9a\xed\xc8\xcf\xe2\xb0\xbfn\x1f>\xc2(\xb6\xb5\xbf\xf3\'\xea\xcb+\xa4\xd6\xbfL \x85\xb2\xaf\xe7\xa7?\xfa\x1fJtd@\xb9\xbf\xf5J?-\xfe\x81\x9f?~3\xb5\xd9\xd7c\xb6?\xae\x9b,:\xbb\xb7\xa8\xbf\xe1|>B\x15$\xdb?\x91w\xb7\xf4\x06\x13\xcf\xbf\xf5\xa9h\x92\x98\xeb\xd0? ~\x0c\xb7\x11\x0e\xd3?c\xa9\xf7\xc4\xb2\x0cq?2JKW\x15\x19\xbf\xbf\xdd\xc58\x97S\x94\xc0?\xa4G\x9a\x0fH\xad\xbd\xbfM\xe2\t\x9e\xced\xc9\xbfd\xc7"\'y\xad\xcb?4O\x83\x8f \xdf\xc0\xbfI\xa2\x81\xa0\xcc\xb2\xb9\xbf\x93\xc6\x1f\xfe\x8a\xfd\xb0?\xa8S\x17p&u\xb1\xbf\xbc\x89\x9d\xb6\x1c\xed\xbb\xbfy\x0c\x05$[\xf1\xc1\xbf\xcfe\xab\xb4J/\xba?5\x8b\xb3\xd6\xec\x1c\xa5?(\xfa#>\xe9\xaa\xbe\xbf\xc3-w\xc48\xf1\xa5?\xa8G\x10\x86\x07\x80z\xbf\xe6\xd2\xff\xcb\x10\x9b\xac\xbf\xe598\xb7\x9e<\xb1\xbfZ\xb6U6\xfd\xe6\xbc?\x03\x98\'\r\x90n\xce?\x9b\xc2?G2\xa7\x00O\xfd\x9a?\x1e\xbd\x1ft\xa4\x04\xa6\xbf\x0f\xd6\x80\x87\xd3\xfe\xbd\xbf\xa8v\x07\xe7a\xaci4\xc4\xbf?\xafz\x19\xda\x95\xb3?\xde\xa9\xddZ\xbc|\xc0?\xf4\xb6/\xe6B\x94\xa0\xbf\xaf\x8cv\xe0\xd1\x0e\xba?\xe5\x86\xab\x08\xf8,\xb5?\xc6\\\x90\x92\xff4\xb6\xbfR\x92(c\xc4\xe0\xca\xbf\x14Tz\x80\xb7\xab\xb1?\x08X:\xf5\x01\xc2\x9f?b6\x86\xd8\xb9\xce\xad\xbf\x0f\x97\x8fh3\\\xc5?\xf2\xa6\x01\x89\xbb3\xd4\xbf\x8eZ\x1b\xa3\xae \xb6\xbf\xb3\xe5?\x88A9\xca\xbfRg\x0f4bev?\xad\xb3\x01\x8f\x0f\xdd\xc1\xbf\x07\xd6\xfd%\xb1\n\xcf?\xb0S\xc2\xd4vB\xb1\xbf\x80bu\x1a\xc4:\xbc\xbf\xbdW\x06Q\x8b\xc9\xbc\xbfy\xa4\xd6\xc1\x0cm\xbd\xbf\xba\x96\xea`O(\xd1\xbf\xde\xfb\xa7\xa5"\xec\x98?N\xd8\xb8\xa0\xe6\x8c\xba\xbf\xe8\xd6\x0e\xcb\xfew\xb2\xbf]\xda\xc9\xa7\x9b\x11\xd1?\xaci*O\xd7\xce\xab?\xf1V\x91E\x13\x0f\xd8?%]\x9b\x8dvu\x92?Y!\xb5\x8dO\x1f\xd8?u\xceXs\x8b\xb3\x90\xbf\xd7\xda\xb8\xcf\x985\x86?0h`\xd3?7\xa5?d\xd1\x86\xe0\x96v\xd4?7\xd5H\x86\xbe\xbb\xb6?\x1b\x8d\x84\xb5\xf7\x92\x97?\x04\xda.\x8cfw\xc0\xbf\x08\xca\xc4\xd0\x8a$\xab\xbf\xbc\x07\xacN\x16\x88\x8b?\xc5C(5uA\xb1\xbf\xc6D\x9e\xfc\xb4\xbb\x89\xbf]\x0c\xa4m:\x93\xd0?yw\xb8~\xf0k\xa1?q\xe7)O\xa1\xdf\x8c?\xf0?N*\x16n\x9a\xbf?\x15wp\xe0\x19\xd4\xbfv\xbc&\x92\xdb\xbf\xc2\xbf\x8e$\x84\xfe\x9f\x9b\xcf?q\x07\xc0\xe0\x12m\x8b?_\x1a\xf7\x84\xf9\xa2\xd1?\xd1\xe0\xe7\xacZ.\xc3?0\xb6\xa0+:\xff\xcb?rE:\xc9\x9d\x0c\x8f?\x1e\x08s\x03G\xb0\xd6\xbf\xf6\xfc\x91+\xe0\x1a\xa6?*\xaam\xdf\xdb\xcbi?,\x93g(\xf9\x1a\xa0\xbf/v#"R|\x90\xbfp\\?Jsp\xa6?\x83\xaa\xec^si\x9c\xbf\xe7\x8f\xadJq\xa7\x7f\xbf\x88\xbf\x8f\xb7\xd1{\x85\xbfP}t\xfaq$\xaf\xbf\x8fN\xb9\xe2\xf8\xa4\x82?\x01\xe1e\x81\xc7\xdf\xd3?\xd5\xc1_t\xc4\xed\xc1\xbf\xb6\xfb\x96\xf8Fm\xa5?\xfb\x17\x8a\xc18Y\xc7\xbf\\\xf9\xd0\x0eHg\xd7\xbfNk\x92.\x02p\xcb\xbf\x99\x96?\x02\x1c\x0b\xd0?k\xb2S\x08%i\xa2\xbf@\xbb\xc9\xd2u\x87\xc9?p.\xb3\x9e!\r\xb1?1[\xa4\xaa\xc0^\xb0\xbf\tU\x19\xcdR\xd1\x94\xbf\xe0\x811Hj \xb0\xbf\x9aQS%\x08e\x95?\x83Lx\x98C\xa2\xbe?S\xef\x96\x85GB\xb1?\xbd\xb7\xa2\xb5\xa9w\xca\xbf\xe8\xf79\x89\xad\x8f\xa1?\xda\xf6\xbb\x12pw\xd0\xbf\x95\xd1s\xad\xbef\x82\xbf0\x14\x11,\xa8\xcf\xb5?\xeb\xa5\x018\x06\x96\xa5?\xa9|4\r\x9e9\xcf\xbf<\xa44a/:\x95?E`)\xc3d*v\xbf6+\x9cp\xa7E\xa1\xbf\xaa\xaa\xe6\x902\xb8\xcd?p\x9cZ\xef(/\x99?\x9ce\xfa\x90\x1a\xe6\xb1\xbf\xc1\xb5[^\x8d\xf1j?1owg[\xf3&\xaa\xbf6\xb2\xc4U\xb0\xf0\xd4\xbfvy\x19 \xc9\x9c\xd0?\x80w\xdb\x0e\xf3\xe8\x98\xbfD\xbc\x96\xb6\xcb\x19\xcc\xbf\xc7\x03\x1d\x14\xbdi\xcf?j\xdd\xfc3\x0b\x1d\xb1?\x9e\xc5x\xd1\xf4\xab\xb8\xbf\xef\xbd\xfc\x97\xd9\x16\xc5\xbf\x08\x13s\x91\xcdR\xa9\xbf\xb1\t\x8c\x88\x84\xa8\xa5\xbf\x1b\x1c\xa3m\x9f[\xba?\x15)\xb8\xdd\x0c\xe2\xb4?\xd7\xb7\xd5\xaf!\x1e\xc8\xbfF\x16\x97w\xe90\xb7\xbf9t\x07\xf3\x11\x9a\xa0?\x1a8\x1b\xce\xed\xb2\xa4?\xa5P\xd3.\xe9\xf7\xc8?V\x0e\xc8Z\xd5\x92w\xbf!|Y\xfaly\xc3\xbf|\x06\x17,\xc4-\xd4\xbf\x8d\xb1\x86\xca\xd0\xfe\xaf?\xf8!n\x1e\x89\x19\xd8?\xa7j\xa6\x10\xeb\x0b\xa4?\xfc\xc9\xfa\x1f50\xd3\xbf\x84h\xb5\xaf\x07\xbd\xb9?\x9f\x0f\x894\x86s\xb2\xbfb\xb7\x97>tg\xb4?\xb3\xc8@\x15V3\xcb?\x03]\x1ag\x0c\xe1\xa9?v\xe6\x025\xdb\xc2\xc0?\xb9\x84\xdf^\xdd?\xc4\xbf\xb9\xb1\xbf\t\xf3\xa6\x9c\xbf$$\x16\x11\x90f\xb2\xbf\x07O\xbe\xf2\xdaP\xb4\xbf8H\x0e\x99}\xa9\xb1?k\x9fQK\x88w\xc7?">\x88\x87\xd1T\xac\xbf\xc7&\xadN\xa0\xde\xb9\xbf\xb9\x00q\xdass\xcd\xbf\x0c6:.jE\xab?\x92+\xccn\xff\xac\xd9?\x05F}\x0b\x14v\xb0?D\x00\xca\x97\xc7\xd6\xba?\xd9\xe8q.\xdb(\xb2\xbf\xf5/\xd1\xde\x18|\xc8\xbf,\xb8\xb8\xde\x13\xec\xa8?\x80VS\x87\x9e\x01\xa6?\xd2sl\x91\x97\xa2\xc9\xbf(\xdc\x87\xd6S\x83\xad\xbf\x8b\xe0\x1c\x04\xc6\xe8\x94?\xd1\xac k\x1c"\x9c\xbf\xee\x00\xb3\xfb\xd6\xa1\xc1\xbf\x89\xa2W;7i\xd1?/H]\xa5\x87\xf0\xb0?\xfa\x0c\x9a\xbf]*\xaf?$k\xcb\xe2Y"\xa5?\xe1\xf7Q\x040\x95\xd3\xbf\xd0\xee\xadq \x1b\x82?6\x8d\xa7\xcd\x87`\xd0?\xaa!\xc2_\xc5]\xcf\xbfMm,\xa7\x7f\x81\xac?c:\x9f\xc3Gy\xce?\xd8\x8e\xcc2jX\xac?#T([\xf4F\x8a?-i=\xc9nN\x93\xbf\x94\t\xac\x95Lv\xd0\xbf`\xe2\x91\x1ef\xf0\xb3\xbf\xc6p<\xeeMM\xd1?jb\xd5i\xa23\xab?\x00\xdc\xa9\x8e\xfd\xfa\xc5?\xb7\x85\x8ci*\xd4\xa6\xbf\x14<\xa4\xedGl\xbc\xbfp\x8af\xfd\xaf\xce\xb5\xbf\x93\x96\x988\xe2\xa4\xac\xbf\xb4e\xd5\xb5\xa5\x94\xca\xbf \xf5\x85\xd8/\xd7\xbc?\x00\xec\x10\\!\x01\x86?\xff\xaaO=z\xe2\xaf?(\xb0DW\xce[\xb9?\xe2\xabf\xf7\x17+\x93?\x9b\xfbr\x11L\xadi?+\xef\x1a\x9eu*\x92\xbf\xde\xd7:\x08\x9c\x9a\xb8\xbfE\xef\xcd\xc8\x97\x86i?3\x9a\\\x85\xc2\xf7\xb5\xbfV&r\xdf\xd7\x9f\xb1\xbf\xca,\x06Dyc\xc8?l\xd9\xbd\x8b\x0e\xbe\xbe\xbf\x0bj_\x98\x87\r\x9c?\xd7^\xb42\xd4\xcb\xc1\xbf\x1f\x94\xd5Yo\x00\xd2\xbf\x93\xbb\x89\xcf8\x04\xe0?\x03\xcd><\x13\x85\xcb?\x00\xddK&@\x94\xa1?\xd41\x90\xad\xdaK\xb5?\x9e\x8b:0\xb8\\\xe1\xbf\xd8\xfd\xfcB<\xaf|\xbf\xb9/-\x8d\x19\x88\xc2?8R\x08\xe6\xcd\x93\xc4\xbf\x91\x87Q\xe0\x84-\xc6\xbf\xf4\xb5\xb2\x97\x04\x11\x92?\xa0\x06<9\xfa\xa1\xa4\xbfV\xa4wm\x0cIo?=\x13\xd6\xc9\x03\x81\x95?\xf2\xefv\xa7\xd0H\xb1\xbf\xc7d\x0bgd\xcb\x95?\xb2\x01\xd9\x08g\xcb\xb6\xbf\xe3lRk\xd3$\xc7?\xca\xaf\x19\xf1\xba\x80\x85?h\x8ar\xcaB\xfb\xc5\xbf\xccn\x06\xba\xfd\xd1\xa5?\x8f\x1c\xd3\xb5\x11\x9d\x9d\xbf\xfe7Y;\x15s\x9b?\x9d\xbe\xca,\xbe\xfb\xc9?":IU\x979\xad?)\xb5\x08\xc9\x10\xab\xb1\xbfC\xf4\xd9\x06\x9c\xe6\xb0?\x93e\xdd\x88\x95j\x86\xbf\xa2\xb4\xee\xa2Vv\xaa\xbf{L\x9f\x1c(\xd3\x80?}\xb8\xf5\xc9\x02q\xc3?~\xd0\n\xf3\xc2\xd3\x87\xbf\xda\x86\x8f\xcd\x9dH\xd3?%\x9e\xe4\x9b1\xe5\x91?\xf0\x15\xb5\x80\x95m\xdc?\xfc\x10\xe0u<\x89z\xbf\x15t\x00\xd2\x8f\xec\xb0\xbf\xe1DF\x9bI\xed\xac?\r\x0e4\x9d!\x9b\xa1?e\x15%\x04%\x06\xa1?\x01+\x93\xd9\x08\x86\xae?w\xe3}\xe0\x8e6\xb1\xbf\x9b:\xd1\xc2\xe0\x95\xca?\xf3X\xee\xcf\xc3\x81\xc2?\x86\xb3\x89\xab\xa3\xd7\xb1?\x8cO\xc4B\xc7\x7f\xbe\xbf\xcd\xd4H\xf1\x04\x92\xb5?$\xb4V\xfe\xd7\x9e\x92?\xf7\xd1\xf4\x03\xcdq\x92?07\x17\xb3\xb9I\xb1?#\xb2\x1e@\xfb\x89\xaa\xbfu\xdb\xa1V\xb6\x8b\xc3?\xd2q\x89gJ\xcd\xcf\xbf\xe7\x9dzd\xe4\x8b\xca\xbf\x94\nl\x17\x83\xf4\xcf\xbf\x85\x13AnQ\xf9\xab?\x82k\x9e\x84X\xb3\xdb\xbf>\x13\x8f)=\x89\xab\xbf\xfay9\xbcI`\x92\xbf\xb9\xa2\xb3\xd9\x92\x89\xca\xbf\x17\x08J\x8b\x0f\xbc\xce\xbf\xd6\x97ZRrW\xce?^\x0e\x82?\x85)\xc0\xbf\xbb\x937\x83\x0e\x08\xa3\xbfbe\xc9\xcb z\xa8?_h\xdaT#\xb4T\xbf\x10hy\xe1\xedz\x92\xbf:\xa3r\xbb\xf5q\xc5?\xfe{D1\xeb|\xa1?U\xfa\xde\x12d\x9f\xe4\xbfhrj\x9d\x85\x1ao\xbf\xcc1\xd9R\x81\xc2`?x\xf5\xa3F\xee]\xaa\xbf\x92\xa0H\xe4SP\xe4?kr\x82\xaa\x84p\xaa\xbf\xa1\xff\xf2\x92\xba\xc8\xc4\xbf\x1d\xb9\xd7\x9d\xf38\xaa?\xbev\x81kP\xb8\x80?v\xd1\\\x99|j\x90\xbf\xe2\x0b\x14g\xc13\x8a?\x98\xaf\xf6R\xfd\\\x95\xbfG\n\x87\\d\xa0r\xbf\xa5\xbd\x1b\x9c\x02\xc7}\xbf\x13f7}8\x07\x9f\xbf\xb5\xbd\xef\x8c\x86\x11\xb1?\x0bG\x8e\xc3n\x94\xa0?\x14\t\x1eFH\x1f\x9c\xbf\xba*\xc8\xcf}\xb7\x86\xbfR\xae_\xbfy\x81j?4\xb6\xa33\xf3O\x81\xbf\x1e\xfb\x0c\x17\xceB\x84?\x83\xc7=Tg\xb5\xd0?O\xb1\xb2\xfe\xf9\x9b\x93?Nlt\xaezc\xb6\xbf\x86\x82\x9d\x00b\x1c\x86?U\x01k=\x9f\x92\xc4\xbf\x1bJ[\x13\xf1;\xa0?\xbfD\x19\x80\x84\x9f\x87\xbf\x95\xcb>\xa4\xfbr|?\x04\xe3\xd4\xc4n\xa5\xa5\xbf!\xf9w\xaa\x1cw\x81?\x12a`v\xfb\n\xac?yCM\x06\x13}\x92\xbf\x9b`\xa9\x04K\x9f\x82\xbfaG4"\x0eM\x9c\xbf\xdc\xfeY\x0388\x9e\xbf\xcf~\xde\x1c\x88\xd6\x85\xbf\xdc?\x87\xe8JA\x8e\xbf\x18\x04J\xc2#\x88\x95\xbf\x96\xf9\x8b\xdd&dw\xbf}7s\xb0\xc4\xd1\xc5\xbf\xff\x98\x81\xa1\xceV\xa5\xbf\xd28S~4*\xaf?\x9fX\xdc\x80\x0b\xe1\xa1?^YJ\x8c\xeb\xd4\xca?\xb99\xde\xbb \xb7`\xbf;\x89\xbf1\x90^Y\xbfJ#\t\xcc\x9a{w?\xf65p-LQ\x88?\x1d&&;\n\xd3\xa7\xbf\'\x87z\xe7* \xa1\xbf\n\xcb\xa3\xcc\xe1j\xd3?\xce\xe7\x9ex\xab\x1b\xd2?\xa8CS\xfeWx\xe1\xbf\xdcR\xf3a\xd5\x87\xb4\xbf\xa7~\x03\xdf-\xc4\xd3?w1\n%F\xb1\xc3\xbf\xe4D`\x0e\xda\x9e\xa8\xbf\xd23k\x0e\xce\x8a\xaf?\xf0\x13\x12\tW\x95\xa4?e^\xa8Yz\xcb\x10?38\xb5E\x80W\xb6\xbf\xbc\x8al\x1a\xd1\r\xb4?\x18\n\x81\xb59_\xd4??\xe7\rAt\xd8\xa8?\xe3\x01\x04c\xca-\xcc\xbfc\xa9P\xbdQw\xc8\xbfxo\xca\xe0\xddr\x84?2\x9d=%\xb8Rq\xbfd\xf6U\xfd)B\xad?t\x19\xad\xe6\n\xe7\xce\xbf\xf7\xc5u_\xb7X\xae\xbf\x91\xdf\xa8m\xcb \xa9\xbfA\xda_\x10\xef\xf4\x96?\x96\x87\x0e\xab\x98\x03\xca?\xc3Co\xe3\x90\x91z\xbf=\x163!S:b\xbf\xef`\xe2\x0b\xc9#\x8a?q\xaa\xbe\x8cU\xdc\x97?\xab\xb2\x06\x8aR\xbb\xb1\xbf\xdf\x8b\xed+\xbf\xb0\xcf\xbfa\x15\xe5\xae.\x06\x91\xbf\x92N\x05&W\x08\x9a\xbf\tG\xf5\x1c\x15\x01\xb1?\xe8K\xbd\xd1.\xdb\xcb??\x81`{\xc2\x95T?>\xca\x1c\xaed\xad\x95\xbf\xb9\xe4\x04\xb8-\x0f\x87?\x9c3\xe09\xfd\xe1p\xbf}Z\xd07\x05\x99\x9b?R\x05C\xb0T\xbe\xa2?\xdd\x89!\x03w\xb1\xd2\xbf\x9a\x91\xe1\x1c\x164\xb1?1ktc\xa4c\xde?\xd8=\xbbwEc\xa3\xbf\x126\x98\xc3T\xcb\xcf\xbfcf\x87\xb6Z}\xa7\xbfx\xda\x85\xa3TG\x9e?\x1cp\xb0\xd1\xb0\xbf\xa7\xbf\x04\x92\x84\xf6\xdb\x19~?\xd4\xc58\xae\x15\\\x85?&\xbe`\xf3o\xa9\xb6\xbf\x886\x135g2\xbf?\x88#7\x7f\x10?\xd3?`\xf85U\xb8k\xaf?\t\x0bu\xfe\xfd\x81\xca\xbf]_\xa0\xea\xf0\xd9\xb4\xbf^\x1b\xbah\x07@\x9a\xbf\x16\xc5y\xa3h\xdaU\xbf\t\x04\xf9#b\x98\xcf?\xb4\xfa\x1e\xd6w\xc1\xcc\xbfa\xb3\x87\xb5\x0f\xb3\xd8\xbf\x1bq\xfe9\xa9\x92U\xbf\xab\xee\x038\x89\xbe\xc4?\xc8+[\xc3\x91\xba\xc9?\xee\xd7o\xcc\x13b\x90?\xd4\xbeh\x19}Rp\xbf\x1a\x96@uE\x0e\x80\xbf\x16\xcd\x17\xae_\xbb\x96?\xa3\x85\xfc\xc8\x0cC\xa2\xbf\x9c\xd0\x8a\xa7\xf9\xdc\xc7\xbfrS>DH\xe4\x92?\x84\xf1\xda\xd3n\xd8\xdc?D\x9c\x85\xc8\x1b\xef\x95?\xa6\xfeBT1\xf6\xd3\xbf\x10\x04iH\x10\x1a|?\x153 \xe8I\xe5\xa4?\x10\xed%0/Wh\xbf\x96Z\xe3\x9e\xfc\x1a\x87\xbfW\x9dz\xed#6\x80?\xf0bn\x97\xb8\x11\xa2\xbfy]v\xa1D\x93\x99\xbf\x06\x8a\xf8Co3\xd2?\xf2\x88\xaf\xc7\x17m\xa6?E\x05\x1d\x06\x1a@\xe4\xbf\xe4\x18-\xdf\x84\xa9\x8d\xbf\xdb\r\x17?ZT\xd7?/\xa3%\xdf\xcb>\x84\xbf>\x7f"\xf0\x9d\xd5\x95\xbf\x16\xeb\xef\xf4\xae]\x8f\xbfm\xec\x15\xfb\xd6nA?2\xf1\xcd\xcdSM\xaf?\xe5\xc1\xa0)\x9e-\xb3\xbf5jx\xaf\x16\x9a\x9a\xbf\xef\xa9W\xa0\x92\xc5\xbd?\x15s\x98\xbe\x0fQ\xa3\xbf\xd8\xaa\xb6`#\x1b\xa2\xbf\xb4:\xf3\x11\xc3\xc5t?\x02\xaf\x89\xe6v\xe3\x80?\xbf\xbaE9`q\x8d?\x87\x1e\xbd.\xd6X\xba?\xf6\xbeg\xfe\x91\x86\x94\xbf\x99\x9a.\xfe\x9df\x97\xbf\xa2\xad\x91\xaf\x8ak"\xbf1 \xb0z\xd0\xe1\xab\xbf[\x8bt\x0c\xa0 \x16?\x8fY\xd4 Q\xb1@\xbf!\xb6\xeau\xdb\xf8{\xbff~\xb4q\xd7\xf4\x8c\xbf\xdb\xa8\xbcp\x1b\x8cz?\x9bR\re\x19\xa3\xd1?\x89\xc4\xb9%\xc25V?R\xc4\xe2\x95\xa9\xa4\xd9\xbf\xf0\xa1\x96\xde\x1f\xd9p?\xa8\xe1\x99\xeb][\xb0?\xa6\xc6\x19\xbf\x11\xa9a?\x04V\xc6\xa6\x8d\xf9u?\x96l\xcc\xbc\x1d\x0b\x81?\xcd\xfe}\xbb\xfe\'=\xbf\x97=\xf7\xd2\xfb\xbf\\?K\xb7R\x88(c\x89\xbf\xb6\xea\x05\xb7\xf4e\x80\xbf\xe0w\x0b\xa4\x03\x03\xb2?7\xe9\xa9\x83g\x8c\x91?\x06\xfe/iv\xd0\xc2\xbf\x0b\xd6\xcb\xcb\xd7+y\xbf43`Q=r\xb3?w\xbd\xd3\x90\xe0\\"?\x9dC\xdb\x9b\xafje?\x99>\xfd\xeb\x19\x0bc?\xfbz7SFpp?.\xbf\\\x15Uf\x94?\x02\xe2)\xb1\x8f\x15\xe0\xbf\xd1Y\xb5\x19Xh\x97\xbf6\xa1o\xf9t\xb8\xe4?3\x7f\xb7K\xb0\xc7\x85\xbfh\xbb\x93od\xfd\xb7\xbf$0^\xed\x19?\x84\xbf6\xde5tt\x8c[?u-\x98R\x98d\x87?/Z\xfd\xe0\xcd1\x98\xbf\x97\x97q\x8b\x93\xf9\x85\xbf\xb6\xf7\xfd\xc0\x17\x14\xbf\xbf_C?\xc0\x02\xf4\x1f\xbfv\xe2\xa0\x16]\xb3\xc5?]\x17\xb5\x86\xd5d_\xbf\x05\x9dh\xa5\xd4\'B\xbf\xaf\x1f7c%1K\xbf\xea\x912~\xba\tw\xbf\x8e\x15\xe3\xcc\xa9\xb6\x91\xbf\xbd\x021\xd5\x9e\x94\xbe?\xddo\x98\x9d\x94\xbb\x93?t\xfc\x06v\xf4\xb6\xd5\xbfjT\x0c\x9d\xca\xc2U?sM\xb0\xec\xd5\xb0\xc9?\x14\x18\xb9@\x04\xfev\xbf\x06n\xfe\xf8\xe4.r\xbfwB\xfa>\x04![\xbfz%\xea\x87\x12\x8eo\xbf\xf0\x04UH\xfa\xdf\\?n\xc8\x16\x86\xbb\x1ef\xbf\xe5Bx\xfd(\x1ar\xbf\xbc\xba\x0b\x1b\x90\xe1\xc0?\x9el"\xb5\xcev\x8d\xbf\xdc\xa3\xe0\x1b\xe3\x9d\xd1\xbf\xcdg\x90\t\xd2\x9d\x91?`\xe4u\xce\xad4\xc5?\xfb\xdc\x0b\xb7\xf0\x90g?\x05\xdb\x06\xdc>\xca\x12?\x00\tK\x83x\xe8f\xbfEr\x82DZ\x80]?\xae\x98\x0b\xc6N\xd0\x90?\xcc\xe3\x8c\xc7?\x14\xc2?U\x14U\xa6\xe2.\x99\xbf\xff\xe51W\x97\xc9\xaa\xbfyL1\xb3\xd8\\\x87?>9\xb5\\\x01\xee\xaa\xbf\xceL\x07\x9b\xf3u|?\xb5dDJ\xb0\xb1z?\xaeJ\x8d\x90\xc1u\x8a\xbf\xa3\xe8\x1c3\nn\xd1\xbfg\xdaS\\\xe3/\x8b?(\xdcVD\x15\x12\xe5?\xc4\xf0\xd7\r\x14\xa4p\xbf\x99\xceg\xecJ\xad\xda\xbflv\xa1@\xbd\x7f{?c\x1b~t|\xc7x\xbf\x13{\xc2Z|\x89k?PT\xae\xdf\xde\x86f?\xef\x08Q\x0ciQu?\x8f\x18\x00\xd0k\x8f\xb6?\x93\xe0A\xff\x17\x9c_\xbf2\x84\xdeA\xb5\xfa\xb4?\x83\xd7\xc3\xd5\x1b[R?\xdb\xfc\xe6~\x1e#\xc7\xbf\x9e\xea\xd7v\x830|?\x9a\xa23\x8cO\xb9\x86?\xb4F\xf4\xaf\x9f\xd3x?oO\x14\xb7\xf2KO?\x95@\xcb\x91e\xd3n?\x18\x97\x87\x8e\x95>\x90\xbf7\x8cZ\xd1{\xe0\x83\xbf\xa2?kp\x07\xe6\xbc?\x06\x14\xf7>\xcd\x00\x80?\x99\xd8\xa3\xc2\xde8\x97\xbf\x01\xe1\xc6Rx\xd4l\xbf*\xab\x80o\xb4k\xb3\xbf\xf8a!"s\x82a?\rA\xa5%\x92\xdd\x81\xbf\x91UOc\x91\xdc\x87\xbf744\xf7c\x1c\x86?\xfc\xcb\xec=5\x1bl?\x95&\x1a\x08\x8a\r\xd6\xbfW\xf5}\x88C\xd7\xa5\xbf\xc0\xd2(\x1eI*\xce\xbf\xee\x9b\xd7e\xf2h\x90?\xf3#&\x01\xe4\xf3\xe2?\xbd\xe9\xd9\xfd\xa5(\x86\xbf\x0b\xf2\x1c#\x0b\xb1O\xbf\xca\x81\xa6l\x97\x96\x8c\xbf\xfd\xa8\x8e\xc3\x1bl\xe0\xbfA@O\x8a\x00\xcd\xa1?\xbd\x03\x87\xcdD\x8c\xc5?a\x0e\x98\x97\x94\xe5h\xbf\xad\x8cj\xeafs\xd5?' +p177 +tp178 +bsg77 +g62 +(g63 +(I0 +tp179 +g65 +tp180 +Rp181 +(I1 +(I40 +tp182 +g72 +I00 +S'\xea\xb02\x7fy\xf4\x1d\xc0\x0b\x1e\xc1\xf5*\xc2T\xc0\x02\x9b\xc8L\x9e\x1c4\xc0\xd2\xf3 \xb3\xf6\x17J\xc0\x1c-\x80G\t\x14;\xc0I\xe04WMj5\xc0\xfal\xd7\xf5\xb0\x8e5\xc0\x1cP\xaf\x93\x99Z\xc3\xbf\xde\xc1@Wt7;\xc0\xa6\x9a\x19\xf9\xc245@\x10\xa4<\x15\xf1g4\xc0\x83\xf2\x96\xc9\x1c\x19J@&zp\x84>\xaa\x1e\xc0fQ3\\Z\xc5T@\xff\x07\xf0\xcb\x90:5@q\x8b\x13\x95\x89\xa5J@50"^\xe9\xf0@@\x7f2Ul\tI7@\xe0!\x10\xa9\xd4,B@WI\xa2\xe7\tU\xa2?\xd8\x16:~d\x01A@\x8e\x8d\xa9hZ&7\xc0\x12\x82=[\xfd\x815@\tI\xe2\xc8r\x83J\xc09\xa7\x9ei\xc1\x06\x18\xc0%\xfc\xf9\n\xde\x82Q\xc0\n\xa1\xab~\xfcl \xc0b\x01\xd0\xddz\xab5\xc0\xd9*q\xcc\x98\xce\x17\xc0k\xb0k9W\xf4\xb2\xbf\xcd\xb7w\x82\x13\xb0 \xc0{\xff[\xd3\xed\x985@\x05\xd0\x8f\x81\xfd\r\x19\xc0?\x9f{\xccs\x84Q@\x8b\xbf\x99R\xe3\x15\x16@\xb7\xf2a\x98K\x066@\xafJh\x89\xa1b @\x89\\\xe9\xc7\x9c\xc4\x9e\xbf\xed&|j\xb4p\x16@\xb39\xfdkA\x026\xc0' +p183 +tp184 +bsS'n_samples' +p185 +I3148 +sS'_n_active_components' +p186 +I36 +sbsbasS'reference_shape' +p187 +g0 +(g85 +g2 +Ntp188 +Rp189 +(dp190 +g89 +g62 +(g63 +(I0 +tp191 +g65 +tp192 +Rp193 +(I1 +(I20 +I2 +tp194 +g72 +I00 +S'\xf9\x98\nt\xcf\x00\x80@\x81\xa8\xde\xa34\xaft@\xb3\xe7\x11\xaa\xf5\'\x7f@\xcd_P\xeb\xd4\xd7v@\xa6\xef8E\xa0\xb2~@\xc5\x12\x8d\xa5 \x02y@\xb20\xb5\x88\xdd\x12\x7f@q\x8aZ\xd8\xab\x83z@\xc4_\xa0\xbbJ\xaf~@e\x96B\xb2\xb3\x06|@\xd8Y\xfb\xd8\xd7"\x7f@#\xf4\x01k\x166~@\x01Bs\'g\xfd\x7f@\xbe\x0c\xb5\xe8\x89/\x80@\xcc\x82\xc1\x13\xd8\x05\x81@{\xe4\xf5\xb3rF~@\xd3x\x9d\xaa\xa0x\x81@\xc1V~\x1f\x89\'|@G\xd0\x1aT@\x8f\x81@Sx\xaf\x93\x90\x82z@V\x96\x17pQz\x81@\r\xf4u\xccR\xdfx@67\xfduo\x08\x81@\xb4\x13\xe6\xa2\xa6\xc6v@~\xdc.\xee\x14\x0f\x80@\xa7\xcd\x1c\xa8\xb0\x93u@\xf6c4V\xae\xfb\x7f@^\xfb\xadEK\xfcx@Z\xacy\x08\xda\x11\x80@K\xc8\xd8_\xdb\x83z@\xad\x9e\x837M\xf8\x7f@\xc3q\x96){\x0c|@d\xb0Us\xe4\x0c\x80@\xb3g\xbd\xae\x9cy\x7f@L\xda\xf2\x83H\x80\x80@\xbd\x82\xc8\x0c\xa6\x12|@\x8b\xf1\xa2G\xb0\x98\x80@$\xed\xa5D\xc2\x82z@\xe3^D\x90\xa4\x81\x80@\nA\x957y\xf4x@' +p195 +tp196 +bsg96 +Nsbsg46 +(lp197 +g47 +asg49 +g32 +sg44 +Nsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_nose b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_nose new file mode 100644 index 0000000000000000000000000000000000000000..5792644270e1e3fe73b0c819f3253c9d961c72e2 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_nose @@ -0,0 +1,486 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.clm.base +CLM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'opt' +p6 +(dp7 +S'ablation' +p8 +(I01 +I01 +tp9 +sS'verbose' +p10 +I00 +sS'rho2' +p11 +I20 +sS'sigRate' +p12 +F0.25 +sS'ratio2' +p13 +F0.08 +sS'smooth' +p14 +I01 +sS'dataset' +p15 +S'demo' +p16 +sS'ratio1' +p17 +F0.12 +sS'pdm_rho' +p18 +I20 +sS'sigOffset' +p19 +I25 +sS'kernel_covariance' +p20 +I10 +sS'numIter' +p21 +I5 +ssS'_shape_model_cls' +p22 +(lp23 +cmenpofit.modelinstance +OrthoPDM +p24 +asS'max_shape_components' +p25 +(lp26 +NasS'scales' +p27 +(lp28 +I1 +asS'diagonal' +p29 +I200 +sS'holistic_features' +p30 +(lp31 +cmenpo.feature.features +no_op +p32 +asS'patch_shape' +p33 +(lp34 +(I8 +I8 +tp35 +asS'expert_ensemble_cls' +p36 +(lp37 +cmenpofit.clm.expert.ensemble +FcnFilterExpertEnsemble +p38 +asS'expert_ensembles' +p39 +(lp40 +g0 +(g38 +g2 +Ntp41 +Rp42 +(dp43 +S'sample_offsets' +p44 +NsS'cosine_mask' +p45 +I01 +sS'context_shape' +p46 +(I8 +I8 +tp47 +sg33 +g35 +sS'response_covariance' +p48 +I3 +sS'patch_normalisation' +p49 +g32 +sS'_icf' +p50 +Nsbasg45 +I01 +sS'shape_models' +p51 +(lp52 +g0 +(g24 +g2 +Ntp53 +Rp54 +(dp55 +S'similarity_model' +p56 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p57 +g2 +Ntp58 +Rp59 +(dp60 +S'_components' +p61 +cnumpy.core.multiarray +_reconstruct +p62 +(cnumpy +ndarray +p63 +(I0 +tp64 +S'b' +p65 +tp66 +Rp67 +(I1 +(I4 +I18 +tp68 +cnumpy +dtype +p69 +(S'f8' +p70 +I0 +I1 +tp71 +Rp72 +(I3 +S'<' +p73 +NNNI-1 +I-1 +I0 +tp74 +bI00 +S'\xb4\x8b4\x15\xf7\r\xe3\xbfj\xa4\xc1\x86\x10\xa48\xbfD~\x8d[\xfc\xa3\xd8\xbfVCI\xfco\xfeI\xbf\xbdI\x00eg\x92\xc6\xbf3+\xb6g\xc6\xebT\xbf\xf2\xcf\xac\x1db\xda\xa3?&\xe5\xd5\xd6\xf6y\\\xbf\xc2(\xab\x89T\\\xc8?[\xff\x1cc\xabX\xd2\xbf\x86\xf0\xd0\xd0r\xd2?r\xa4\xc1\x86\x10\xa48?\xb6\x8b4\x15\xf7\r\xe3\xbfACI\xfco\xfeI?B~\x8d[\xfc\xa3\xd8\xbf.+\xb6g\xc6\xebT?\xbcI\x00eg\x92\xc6\xbf\'\xe5\xd5\xd6\xf6y\\?\xf2\xcf\xac\x1db\xda\xa3?[\xff\x1cc\xabX\xd2?\xc2(\xab\x89T\\\xc8?\xdc:\x8f\xb6\x03\xfc\xc2?\x84\xf0\xd0\xd0r\xd2\xbf(\x98f\x9f\x94+\xc8?WUUUUU\xd5\xbf[\xe0%\xa1\xd13\xbe\xbcVUUUUU\xd5\xbf\x15\tK\xe6\x83\xfa\xb3\xbcVUUUUU\xd5\xbf\xa0\xad\x19\x05fO\xa2\xbcVUUUUU\xd5\xbfE\xbdU\xfe\xca\x03\x80\xc0\x7f\xa1\xc2\x00\x0f\xaf\xcc\xbf\xc9\x81JA98\x1b@5\x18\x03\xf3w\x85\xd3\xbf`M\xa1\x7f,\xb3@@#+\x9d\x9bc'I\xc0Z\xe7\xd5\xcf\xdb\x88D@a\xf7.\x10X\x07:\xc0\x19\r\xc8.\xcb\xd8G@6Zd\xebs\x9f\xc4?\xa0\x9d\x93h%tD@\xc2!\xdc\x8edR:@p)z-\xc1\x91@@\x9cL8\xe0;KI@" +p82 +tp83 +bsS'template_instance' +p84 +g0 +(cmenpo.shape.pointcloud +PointCloud +p85 +g2 +Ntp86 +Rp87 +(dp88 +S'points' +p89 +g62 +(g63 +(I0 +tp90 +g65 +tp91 +Rp92 +(I1 +(I9 +I2 +tp93 +g72 +I00 +S"\xa9\xf5\x97\x90\xf4\x1fZ\xc0\xa6u\x01\x83Y\xe4\xb0\xbf\x8d@}\xafK\xe4P\xc0\xb2\xad\xd14\xcc\xd1\xc1\xbf]\xd9\x97x\x81\xf2>\xc0\x7f\xa1\xc2\x00\x0f\xaf\xcc\xbf\xc9\x81JA98\x1b@5\x18\x03\xf3w\x85\xd3\xbf`M\xa1\x7f,\xb3@@#+\x9d\x9bc'I\xc0Z\xe7\xd5\xcf\xdb\x88D@a\xf7.\x10X\x07:\xc0\x19\r\xc8.\xcb\xd8G@6Zd\xebs\x9f\xc4?\xa0\x9d\x93h%tD@\xc2!\xdc\x8edR:@p)z-\xc1\x91@@\x9cL8\xe0;KI@" +p94 +tp95 +bsS'_landmarks' +p96 +NsbsbsS'similarity_weights' +p97 +g62 +(g63 +(I0 +tp98 +g65 +tp99 +Rp100 +(I1 +(I4 +tp101 +g72 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p102 +tp103 +bsS'_weights' +p104 +g62 +(g63 +(I0 +tp105 +g65 +tp106 +Rp107 +(I1 +(I14 +tp108 +g72 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p109 +tp110 +bsS'_target' +p111 +g0 +(g85 +g2 +Ntp112 +Rp113 +(dp114 +g89 +g62 +(g63 +(I0 +tp115 +g65 +tp116 +Rp117 +(I1 +(I9 +I2 +tp118 +g72 +I00 +S'\xa9\xf5\x97\x90\xf4\x1fZ\xc0\xa6u\x01\x83Y\xe4\xb0\xbf\x8d@}\xafK\xe4P\xc0\xb2\xad\xd14\xcc\xd1\xc1\xbf]\xd9\x97x\x81\xf2>\xc0~\xa1\xc2\x00\x0f\xaf\xcc\xbf\xc9\x81JA98\x1b@4\x18\x03\xf3w\x85\xd3\xbf`M\xa1\x7f,\xb3@@"+\x9d\x9bc\'I\xc0Z\xe7\xd5\xcf\xdb\x88D@`\xf7.\x10X\x07:\xc0\x19\r\xc8.\xcb\xd8G@6Zd\xebs\x9f\xc4?\xa0\x9d\x93h%tD@\xc1!\xdc\x8edR:@p)z-\xc1\x91@@\x9bL8\xe0;KI@' +p119 +tp120 +bsg96 +NsbsS'global_transform' +p121 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p122 +g2 +Ntp123 +Rp124 +(dp125 +S'_h_matrix' +p126 +g62 +(g63 +(I0 +tp127 +g65 +tp128 +Rp129 +(I1 +(I3 +I3 +tp130 +g72 +I00 +S'\x00\x00\x00\x00\x00\x00\xf0?\xed\x8d7\xe6\xed\xc6\x02<\x7f\xc3\ru\xeb\xaf<9D_6`\xea\xc6\x02<\xff\xff\xff\xff\xff\xff\xef?\x00\x00\x00\x00\x00\x00\xe0\xb9\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p131 +tp132 +bsg111 +g0 +(g85 +g2 +Ntp133 +Rp134 +(dp135 +g89 +g62 +(g63 +(I0 +tp136 +g65 +tp137 +Rp138 +(I1 +(I9 +I2 +tp139 +g72 +I00 +S"\xa9\xf5\x97\x90\xf4\x1fZ\xc0\xa6u\x01\x83Y\xe4\xb0\xbf\x8d@}\xafK\xe4P\xc0\xb2\xad\xd14\xcc\xd1\xc1\xbf]\xd9\x97x\x81\xf2>\xc0\x7f\xa1\xc2\x00\x0f\xaf\xcc\xbf\xc9\x81JA98\x1b@5\x18\x03\xf3w\x85\xd3\xbf`M\xa1\x7f,\xb3@@#+\x9d\x9bc'I\xc0Z\xe7\xd5\xcf\xdb\x88D@a\xf7.\x10X\x07:\xc0\x19\r\xc8.\xcb\xd8G@6Zd\xebs\x9f\xc4?\xa0\x9d\x93h%tD@\xc2!\xdc\x8edR:@p)z-\xc1\x91@@\x9cL8\xe0;KI@" +p140 +tp141 +bsg96 +NsbsS'allow_mirror' +p142 +I00 +sS'_source' +p143 +g134 +sbsS'model' +p144 +g0 +(cmenpo.model.pca +PCAModel +p145 +g2 +Ntp146 +Rp147 +(dp148 +S'centred' +p149 +I01 +sg84 +g0 +(g85 +g2 +Ntp150 +Rp151 +(dp152 +g89 +g62 +(g63 +(I0 +tp153 +g65 +tp154 +Rp155 +(I1 +(I9 +I2 +tp156 +g72 +I00 +S"\xebR\x8c\xbb\xd9\xa6W\xc0\x17\x15\x03CWU\x13@Q\xc0;\xb1\xeb\xf0P\xc00\xbf\xbc(\x17\x8f\xf8?ND\x0c\x06y\x94D\xc0\xe8P\xc9:\xd4\xd4\x03\xc0C\x80\x93\ro+)\xc0\xc3\xce4|\xd0l\x1b\xc0\x1d9\x84C5\xabF@s\x18A\xbc\xb6\xd4I\xc0\xf9\xb4f \x82\x0bG@\xc9\xfdw\x13\xb1J:\xc0\xff\xc8#\x1dd'G@\x99\xb0\x17\x99\x8c\x0f\xe8\xbfa\xaf\xdf\xd9\xc0\x01E@H\x1d\xa9\x9aK\xa2;@\x90\xe4\x12H\x03/B@\x95\xcd\x99\\\xeb\x04K@" +p157 +tp158 +bsg96 +NsbsS'_eigenvalues' +p159 +g62 +(g63 +(I0 +tp160 +g65 +tp161 +Rp162 +(I1 +(I14 +tp163 +g72 +I00 +S"R\xd7\xb0\xbc\xe4\xe2~@>\xa6y\x94\xbc\x81s@H \xcf4Z\\l@\xa8\x95Y{F\xddH@\x9b!\xe7\xb86\x994@2\x1dL}\xe5\xab&@]\xe0i@Q\xce\x1a@\xd7-\xc2;\xcb#\x02@A\x8c/\x08\x7f\x0e\xfd?\x16\xaa=@\x96\x1f\xfb?\xf8*\\?j\xe0\xf9?\xaf\xdfk(\xb5'\xf8?\xf0)\xb0\xfe\xd2n\xe8?i\xc2\x83\xed\rE\xe6?" +p164 +tp165 +bsS'_trimmed_eigenvalues' +p166 +g62 +(g63 +(I0 +tp167 +g65 +tp168 +Rp169 +(I1 +(I1 +tp170 +g72 +I00 +S'\xedlY\xab\xd6q\xd5?' +p171 +tp172 +bsg61 +g62 +(g63 +(I0 +tp173 +g65 +tp174 +Rp175 +(I1 +(I14 +I18 +tp176 +g72 +I00 +S'oR\x1eT\xf9\xfd\xd2\xbfgr5@\x1f\x91\x8a\xbf\x8b0\x96J0\xa7\xc9\xbf\x06\n\xa5e\x0b2\x15?\x9a\xfb\t\xe3r5\xba\xbf\x86\xe6\x8b\xf5Y\xe6\x8d?\xe8\xb6o\xc1\x9a\x99}\xbf\xd4\xc6\xcf\x0c\xeaC\xa0?g\xa3\xa1j\xf0\xd0\xc0?\xcbA{\xa3pY\xe1?\x9fF\x0f\xbe\xe4\x1f\xbe?n\xb8\xd7M\xa9^\xd2?\x950\xc8\xfc\xce\xbe\xbb?gou\xfet\xd9K?\x97QR\x0bK\x93\xbe?\xe8\xa9]\xb2\xe8\xf6\xd2\xbf \xc9\xacl\xb9\xa0\xc0?\xceiuj\x84&\xe2\xbf0\xc5\x9e\xfftim?\x16G\xb6\xf2?L\xd2?!\xfe\xd4\xe8\x1a\xd5\x83\xbf\x99\xe9\x93]\xcae\x93\xbf\xb9\x0e\xce\\u\xf7\x92\xbf\xd1z\x9c\xf8\x0e"\xd8\xbf\xa7)\x96\xe5\x98\xd7\x99\xbf6\xf8\x93\x18\xe0\xbf\xe7\xbf7E\xdb"G\xe7\xb0\xbfy\xe4\xc2\xa2z\xb7\xd4?>*\xd7\xa6H\xd9b?#$oJ\xdf\x8f\xc0?\x93\x08\x89\x1e2)r?T\xdf\xc6\xf4\xa1Y\x91?\xa9k\xbb\xe7\x16\x80\x8f?\xc4\xb3u\xa1T`\xba?\x97E{$\x02\x01\xb8?N\x11CM\xd2\xde\xd1?\xe8R\x84\x13\x9cj\xd7?`)\xa7U3J\x80\xbf\x06\xef\xe0\x08-\xc6x\xbf\x9e.\xdc\x8c\x18\x08F?\xc1Ll\x82\x8c\xf3\xd8\xbf\xa0\xce\xf2\x15%\xa5\x8d?\xaf\xa0\x1a\x88\xc6\x9b\xe7\xbf\x98\xa7M@*\xa4\x99?\xb86\xc0[I0\xd1?\xbe\xa4\xf1\x1d\x1b\xdc\xa7\xbf\xbe\x8f\x89\xa9>Z\xc0?_w\xde\xc4\x96\x82[?@)~\x81v\xae!\xbf\x0f69\x8c\x7f\xdbg\xbf\x19\xe3$\xb3\x8e\xe6\xbe?A$\xc9R\xb6-\x84\xbf[\xb7\xc2\xa4\xbf\x0e\xd0?:\xbf\xa6\x05t\x10\x9a?\xf83\x0e\x88\xb3sm\xbf\xbe\x0bxr\xa3\xde\xd5?C`]\xc3e\x86L?V\xc1\x9el\xbf\xff\xc8?M\x0b[\n\x0c\xdbQ?5\xddsJs\x07\xaa?\xf1\xceo\x11M\xd8w?\xdc\xef_I}\xde\xbb\xbf\xfa\x0b\x1a\xddM\x9f\xe1?\x88\xba\x02S5\xb1\xab\xbf\xa6\xd6\x81#\x93\xbfK\xa9\xc2e\x15\x95\xaa\xbfy9\xa1\x12\xa1\xbb\x9e\xbf\x03\x8b\xe4\xdb\xe7>\xbb?\x14\xdf\xbc\xe9\xd7~\x89?\xdb\xad7\xcao\x17\xd0\xbf\x7f\x9d\xb9\xe06\xe2\xd0?\x91\xc1y\xa0>\xc2\xd7?bl\xe4y2/\xde\xbf\xb2\xcb\xf5h\xc3\xbc\xc7\xbf0\xab\'\x956n\xcc?h\x8c\x02\xa8\xd6\x0e\xa8\xbfX\x1f\xa3\xb0J|\xa7\xbf\xbe<\x0c\xf0\x0f\xea\xc8?3\xa8\x8e\xc1\xdb!\xb3?\xd0\x03\xda\xfe\xb2\x19\xd0\xbf\xc6x}\x91]1z?\xfd\xd8\x8e(\x88\n\xbc?\xa6%\xa0\xda\xe8\x90\xb4\xbf;\xf4s\x14\x8c\xb3\xca?6\x08\x9fDd\x06\xc7\xbf\xc8\xf5\xe8z\xaa*\xdb\xbf8\xc7\xf0w\xb6n\xda?\xcc\xf6\x8d\xc7\x19}\x9c?\xc1\xc8e\x17\xe3/\xd8\xbf\xba\'}\\\xd7\xcb\xd7?\xa8\xb5N\x13\xea\xf3\xd4?q\x15-m\xc1=\xc8\xbf3\xc5\xeeV\x08\x9a\xc1\xbf|\x1e7\x11\xce7\xd3\xbf\xac\x91\xb4\x8fi\r\xad\xbf\x0e\tr\x8aV\x9f\xe2?_g\xa5\xd7&\x85\xbb?\xd9\xad\x19\x8a\x97\xb2\xd0\xbf\x0c\x99}\x07\xf1j\xae\xbfg\xbb\xd3yA9\x9e\xbf\xb3\xbdl\n\xc6\xec\x99?3f\r\xc9y\xef\x8c\xbf\xd2\x92\xf2\x85\xad\x17\xc0?c\xd0`\xc9#d\x9a?\xc2\xc2?\x0f\xf6;\xcd\xbf\xd5\xea\xd1\xe9\x983\xcc?\x85\xa1*\xb3\xa6N\xae\xbf\xdb\x1a\xef}R\xe7\xdc\xbf[\xa8%\xfa\x03\xa6\xd2?-\xf3\x84q\x18<\xcd?\x189\x87E+\xb6\xc2\xbf\x9a\xd8[hU\xca\xb7?#*\xcbK\x94\xaf\xa3?\xde\xf7\xeeqh\x8eD\xbf\xdd\xb6\xb3\xd2T\xec\x98\xbf\x1d\xc8\x1fz\xed\x85\xd2\xbf\xc1Y\xbd\x8a-\x1e\xb3\xbf\xd8c\xe2\x90\x9ag\xcb?\x00\xbbv\xb4\xdc2\xb4?9`\xc1\x84"\x03\xd3\xbf\xceosw\x89\xc7\xc8\xbf*\x13)i\xe5g\xe3?\x1e\xf9\xbf\xf8;\xf8\xda?Z\xd9\x16D\x83\x17\xd0\xbf0^\x07!\x16\x10\xd2\xbf)\xf2\x07\x05b\x96\xc4\xbfU(\x02\x90H,\x97?Z\x8fj\x13x\xff\xb5?\xea\t\x8f\x88*\x90\x8b?\xf4\xa6\xa0Oo\xc1\x88\xbf\xcd)\x1d\x7f\x8c\x16\xe0?\x87M+\xc9G?\xb2?C\n:\'\x8d\x0c\xdf\xbfRR\x16\xd7\xadX\xbb\xbf\xea\xff\x14y\xaf\x18\xe0\xbf\xb5\xe3\x14\xb4KP\xa9?za\xa9(cb\xdd?\x96\x91\x1c\xc6~5\xaf?\x137\xd3r\xe2\x15\x9a?\xa9\xfc@~\x92$\xbe\xbfl\x9e1x7\x84\xa6\xbf\xae\xc8\xaa\x1b\xd6\x81\x94?~\xc7\x81\x9f\xa5*\xa7?l\x05#\x197\x0e\xb2?P\x80\x84}\xbe~\x80\xbf\xca\xb7\x0c\xce\xd66\xa2\xbf\xc9\x18P\x95~\x0e\x7f?\xb5E\x97\x84\xd8\x0b\xa5\xbf=\xc7\x1f\x93\xfb\xab\xca?}\xff\xa3v]}\xbf?\xe1\xa0\x93:(\xc6\xe4\xbf\x15\xbd\x926.3\xc0\xbfD\xbc(^\x1dM\xe5?\x96D`s\xdc)\xa8?\x98\xe3\xa7r#0\xce\xbf\xe8\xfa\xda,\xec*\x84\xbf\xac\x8f\xa7\xe6Oi\x8e?\xacX\x84\xe2=\x8c\x8f?:\t/\xd8\xa4\xe1\x94\xbf\x1c\r\n\x97\x98&\x80\xbf\x9e\t\x07\xbaFE\x88?T\xb5\xa2i\x93\xd8\x81\xbf\x02z\xec\x82Nzp?\x89>\xebC\xc2m\x81?9pB\x17\x0e\xccE?' +p177 +tp178 +bsg77 +g62 +(g63 +(I0 +tp179 +g65 +tp180 +Rp181 +(I1 +(I18 +tp182 +g72 +I00 +S"\xa9\xf5\x97\x90\xf4\x1fZ\xc0\xa6u\x01\x83Y\xe4\xb0\xbf\x8d@}\xafK\xe4P\xc0\xb2\xad\xd14\xcc\xd1\xc1\xbf]\xd9\x97x\x81\xf2>\xc0\x7f\xa1\xc2\x00\x0f\xaf\xcc\xbf\xc9\x81JA98\x1b@5\x18\x03\xf3w\x85\xd3\xbf`M\xa1\x7f,\xb3@@#+\x9d\x9bc'I\xc0Z\xe7\xd5\xcf\xdb\x88D@a\xf7.\x10X\x07:\xc0\x19\r\xc8.\xcb\xd8G@6Zd\xebs\x9f\xc4?\xa0\x9d\x93h%tD@\xc2!\xdc\x8edR:@p)z-\xc1\x91@@\x9cL8\xe0;KI@" +p183 +tp184 +bsS'n_samples' +p185 +I3148 +sS'_n_active_components' +p186 +I14 +sbsbasS'reference_shape' +p187 +g0 +(g85 +g2 +Ntp188 +Rp189 +(dp190 +g89 +g62 +(g63 +(I0 +tp191 +g65 +tp192 +Rp193 +(I1 +(I9 +I2 +tp194 +g72 +I00 +S'6\xdfs=U^q@PR\x96\xee\xaaP{@\xb4\xc9\x1bKx\xecs@F5\x85\xa2rN{@;\xd3#T\x8euv@%\xcc\xaa\xe5\xf6K{@\x06\x93\xc5\x0f\xe8\x11y@\\7)\x10\x91I{@\xda\xf2\n\xe0\x96\xd3z@J\x1ai=\xfa\xe5w@o\xba!\xa8\xab[{@\x92\xd9eC\xdf\x8by@>\x0f]\x1e\x82\xd1{@\xb6\xf1W\xb7\xe8R{@T\x19\xb0"\xf6Y{@x\xa0*\xa8I\x1b}@\xc9\x00\x9b\\\xa2\xcfz@G\x9bq\x07\xf3\xc1~@' +p195 +tp196 +bsg96 +Nsbsg46 +(lp197 +g47 +asg49 +g32 +sg44 +Nsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_r_brow b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_r_brow new file mode 100644 index 0000000000000000000000000000000000000000..14fc155b7332908aaa1c0203a9991c3e34b85188 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_r_brow @@ -0,0 +1,486 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.clm.base +CLM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'opt' +p6 +(dp7 +S'ablation' +p8 +(I01 +I01 +tp9 +sS'verbose' +p10 +I00 +sS'rho2' +p11 +I20 +sS'sigRate' +p12 +F0.25 +sS'ratio2' +p13 +F0.08 +sS'smooth' +p14 +I01 +sS'dataset' +p15 +S'demo' +p16 +sS'ratio1' +p17 +F0.12 +sS'pdm_rho' +p18 +I20 +sS'sigOffset' +p19 +I25 +sS'kernel_covariance' +p20 +I10 +sS'numIter' +p21 +I5 +ssS'_shape_model_cls' +p22 +(lp23 +cmenpofit.modelinstance +OrthoPDM +p24 +asS'max_shape_components' +p25 +(lp26 +NasS'scales' +p27 +(lp28 +I1 +asS'diagonal' +p29 +I200 +sS'holistic_features' +p30 +(lp31 +cmenpo.feature.features +no_op +p32 +asS'patch_shape' +p33 +(lp34 +(I8 +I8 +tp35 +asS'expert_ensemble_cls' +p36 +(lp37 +cmenpofit.clm.expert.ensemble +FcnFilterExpertEnsemble +p38 +asS'expert_ensembles' +p39 +(lp40 +g0 +(g38 +g2 +Ntp41 +Rp42 +(dp43 +S'sample_offsets' +p44 +NsS'cosine_mask' +p45 +I01 +sS'context_shape' +p46 +(I8 +I8 +tp47 +sg33 +g35 +sS'response_covariance' +p48 +I3 +sS'patch_normalisation' +p49 +g32 +sS'_icf' +p50 +Nsbasg45 +I01 +sS'shape_models' +p51 +(lp52 +g0 +(g24 +g2 +Ntp53 +Rp54 +(dp55 +S'similarity_model' +p56 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p57 +g2 +Ntp58 +Rp59 +(dp60 +S'_components' +p61 +cnumpy.core.multiarray +_reconstruct +p62 +(cnumpy +ndarray +p63 +(I0 +tp64 +S'b' +p65 +tp66 +Rp67 +(I1 +(I4 +I10 +tp68 +cnumpy +dtype +p69 +(S'f8' +p70 +I0 +I1 +tp71 +Rp72 +(I3 +S'<' +p73 +NNNI-1 +I-1 +I0 +tp74 +bI00 +S'\xb0\xa9u\xe1\x03\xfb\xb3\xbf\xea\xba3i\xfe\xee\xe3?\xb2\xcf\xcf\x91\xdf\xe3\xb1?m\x82t\x956*\xd4?\xf1\xaeDkX*\xc0?\xbd\xec\x04\xfa\x1a-\x92\xbf#)\xe31\xf9\x9d\xae?\xed4\x999\x83\n\xd6\xbf\x17\x8c\xea\x8fD\xc6\xc6\xbfc:Q?om\xe2\xbf\xea\xba3i\xfe\xee\xe3\xbf\xb1\xa9u\xe1\x03\xfb\xb3\xbfn\x82t\x956*\xd4\xbf\xb2\xcf\xcf\x91\xdf\xe3\xb1?\xbb\xec\x04\xfa\x1a-\x92?\xf2\xaeDkX*\xc0?\xee4\x999\x83\n\xd6?&)\xe31\xf9\x9d\xae?d:Q?om\xe2?\x18\x8c\xea\x8fD\xc6\xc6\xbf\xeb\xed\xbf\xc5%\x9f\xdc\xbfj\xfe\xa6\xeb\x88\xdf\x95<\xe1\xed\xbf\xc5%\x9f\xdc\xbf\xff%\xc0\x9d\x00\xa4\xb0<\xd7\xed\xbf\xc5%\x9f\xdc\xbf\x1c\xeaD\x93(\xd9\xac<\xcd\xed\xbf\xc5%\x9f\xdc\xbf\x80:\x9a\xb1\xe4\x92\x87\xbc\xc9\xed\xbf\xc5%\x9f\xdc\xbf\n\xe9\xecpCb\xc5\xbc\x81\x9aS\xbe9\t\xb3\xbc\xe9\xed\xbf\xc5%\x9f\xdc\xbf\xb9$G\x82\xc1>\xb2\xbc\xe0\xed\xbf\xc5%\x9f\xdc\xbfP\x1c?\x9a\xa6\xf0\xa5\xbc\xd6\xed\xbf\xc5%\x9f\xdc\xbf\x18\x04^\xc0`\xb0\x9f<\xcf\xed\xbf\xc5%\x9f\xdc\xbfk\xae\xa1\x17\x96t\xc3<\xc9\xed\xbf\xc5%\x9f\xdc\xbf' +p75 +tp76 +bsS'_mean' +p77 +g62 +(g63 +(I0 +tp78 +g65 +tp79 +Rp80 +(I1 +(I10 +tp81 +g72 +I00 +S"\xc5\x06,\x85(\x16'@\xfb);\xa6D\x08W\xc0\xad\xad\xd1\xc1\xd3\xab$\xc0m\xf7:\x83\xb1LG\xc0bt\xbd\x9a\xa9\xad2\xc0F\xd4\xfd\x7fq\x00\x05@/\xd7\xde44\xb0!\xc0\xc5\xae\xc1\x19\xa8wI@F\xb3\x7fS\x99P:@\xd1\xdf\xf7\xce\xc5JU@" +p82 +tp83 +bsS'template_instance' +p84 +g0 +(cmenpo.shape.pointcloud +PointCloud +p85 +g2 +Ntp86 +Rp87 +(dp88 +S'points' +p89 +g62 +(g63 +(I0 +tp90 +g65 +tp91 +Rp92 +(I1 +(I5 +I2 +tp93 +g72 +I00 +S"\xc5\x06,\x85(\x16'@\xfb);\xa6D\x08W\xc0\xad\xad\xd1\xc1\xd3\xab$\xc0m\xf7:\x83\xb1LG\xc0bt\xbd\x9a\xa9\xad2\xc0F\xd4\xfd\x7fq\x00\x05@/\xd7\xde44\xb0!\xc0\xc5\xae\xc1\x19\xa8wI@F\xb3\x7fS\x99P:@\xd1\xdf\xf7\xce\xc5JU@" +p94 +tp95 +bsS'_landmarks' +p96 +NsbsbsS'similarity_weights' +p97 +g62 +(g63 +(I0 +tp98 +g65 +tp99 +Rp100 +(I1 +(I4 +tp101 +g72 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p102 +tp103 +bsS'_weights' +p104 +g62 +(g63 +(I0 +tp105 +g65 +tp106 +Rp107 +(I1 +(I6 +tp108 +g72 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p109 +tp110 +bsS'_target' +p111 +g0 +(g85 +g2 +Ntp112 +Rp113 +(dp114 +g89 +g62 +(g63 +(I0 +tp115 +g65 +tp116 +Rp117 +(I1 +(I5 +I2 +tp118 +g72 +I00 +S"\xbc\x06,\x85(\x16'@\xfa);\xa6D\x08W\xc0\xb0\xad\xd1\xc1\xd3\xab$\xc0k\xf7:\x83\xb1LG\xc0at\xbd\x9a\xa9\xad2\xc0K\xd4\xfd\x7fq\x00\x05@)\xd7\xde44\xb0!\xc0\xc4\xae\xc1\x19\xa8wI@H\xb3\x7fS\x99P:@\xd0\xdf\xf7\xce\xc5JU@" +p119 +tp120 +bsg96 +NsbsS'global_transform' +p121 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p122 +g2 +Ntp123 +Rp124 +(dp125 +S'_h_matrix' +p126 +g62 +(g63 +(I0 +tp127 +g65 +tp128 +Rp129 +(I1 +(I3 +I3 +tp130 +g72 +I00 +S'\xfe\xff\xff\xff\xff\xff\xef?;\xb0=\x1a\x0f\x9d\xa7<\x00\x00\x00\x00\x00\x00\xfc\xb9@\xd6X\xf3\x0cb\xa5\xbc\xfe\xff\xff\xff\xff\xff\xef?\x00\x00\x00\x00\x00\x00\x00:\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p131 +tp132 +bsg111 +g0 +(g85 +g2 +Ntp133 +Rp134 +(dp135 +g89 +g62 +(g63 +(I0 +tp136 +g65 +tp137 +Rp138 +(I1 +(I5 +I2 +tp139 +g72 +I00 +S"\xc5\x06,\x85(\x16'@\xfb);\xa6D\x08W\xc0\xad\xad\xd1\xc1\xd3\xab$\xc0m\xf7:\x83\xb1LG\xc0bt\xbd\x9a\xa9\xad2\xc0F\xd4\xfd\x7fq\x00\x05@/\xd7\xde44\xb0!\xc0\xc5\xae\xc1\x19\xa8wI@F\xb3\x7fS\x99P:@\xd1\xdf\xf7\xce\xc5JU@" +p140 +tp141 +bsg96 +NsbsS'allow_mirror' +p142 +I00 +sS'_source' +p143 +g134 +sbsS'model' +p144 +g0 +(cmenpo.model.pca +PCAModel +p145 +g2 +Ntp146 +Rp147 +(dp148 +S'centred' +p149 +I01 +sg84 +g0 +(g85 +g2 +Ntp150 +Rp151 +(dp152 +g89 +g62 +(g63 +(I0 +tp153 +g65 +tp154 +Rp155 +(I1 +(I5 +I2 +tp156 +g72 +I00 +S"\xdc\x90i\x11\x18\xe2\xd7\xbf32\xb6(\x95CX\xc0\xe1\xec\xae\x87&S\x14\xc0I\xc4r8\x19\xf5F\xc0\x81C\xbcb\x8a\xe4\x14\xc0\xca\xce\x95']\xbd\x10@&\x97\x9f\xceu\xc5\xf5\xbf\x05\x9f!<\xbebH@Y\xd7\x94\xef\x97\x13(@\xf0ge\xd4\xec\x80V@" +p157 +tp158 +bsg96 +NsbsS'_eigenvalues' +p159 +g62 +(g63 +(I0 +tp160 +g65 +tp161 +Rp162 +(I1 +(I6 +tp163 +g72 +I00 +S'9J\xb4\x95\xfc\x86m@[\xbf\xdc\xef\x0c2Q@\xef:o\xc4D\xa34@er\x9cp: &@AU\xd8\x9e\xb4\x96!@KdT\xe1\x1d\xd2\x10@' +p164 +tp165 +bsS'_trimmed_eigenvalues' +p166 +g62 +(g63 +(I0 +tp167 +g65 +tp168 +Rp169 +(I1 +(I1 +tp170 +g72 +I00 +S'Q\xbe\xca\xca\x91_\x0b@' +p171 +tp172 +bsg61 +g62 +(g63 +(I0 +tp173 +g65 +tp174 +Rp175 +(I1 +(I6 +I10 +tp176 +g72 +I00 +S'P-\xe87\xf2\xd3\xdd?_c\xb2\x84\xa8\xc8\xc5?\t\x81\x10]\xdc\x0c\xc7\xbfGT\xa2d\xf8\x15a?\xca\x19\x11P\xef\xb7\xe0\xbf\xb1\xc9\x1bV\xafJ\x94?q\x0f\xe9\xbc\xbf\xf4\x0b\x00\x7f\xbb(\xc6?\xbc\x81\xb4\xe4\x14N\xcd?\xf0\xec\xe7\xdd\x92_\xe2\xbf\x11u\x1eL\xe8a\xb9\xbfm\xa9]\x88\x9b\x88\xe5?\x87\xe4\xbe\x088v\xa8\xbf\xe5\x8a\x13\xc8\x1a\xdf\xd4\xbfC\xa4\xae\xb8c\xa8\x9f?\xea_@\x9d]\xc5\xab?' +p177 +tp178 +bsg77 +g62 +(g63 +(I0 +tp179 +g65 +tp180 +Rp181 +(I1 +(I10 +tp182 +g72 +I00 +S"\xc5\x06,\x85(\x16'@\xfb);\xa6D\x08W\xc0\xad\xad\xd1\xc1\xd3\xab$\xc0m\xf7:\x83\xb1LG\xc0bt\xbd\x9a\xa9\xad2\xc0F\xd4\xfd\x7fq\x00\x05@/\xd7\xde44\xb0!\xc0\xc5\xae\xc1\x19\xa8wI@F\xb3\x7fS\x99P:@\xd1\xdf\xf7\xce\xc5JU@" +p183 +tp184 +bsS'n_samples' +p185 +I3148 +sS'_n_active_components' +p186 +I6 +sbsbasS'reference_shape' +p187 +g0 +(g85 +g2 +Ntp188 +Rp189 +(dp190 +g89 +g62 +(g63 +(I0 +tp191 +g65 +tp192 +Rp193 +(I1 +(I5 +I2 +tp194 +g72 +I00 +S"\xae;\x83\x0e\xed\xfbp@\xe9'\xa8h\x95N\x82@EL\x93c\xa5\xfcn@\\\xa7\x14\x1cX\xe2\x83@\x8exsB4\xe2m@\x8bB\xa1K\xcc\x93\x85@\xcd\x1f\xe1\x7fp@o@\xea\x96\x85w\x147\x87@\xbc\xcfj\x85\x9e\xf9q@8kU\xdf\xc2^\x88@" +p195 +tp196 +bsg96 +Nsbsg46 +(lp197 +g47 +asg49 +g32 +sg44 +Nsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_r_eye b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_r_eye new file mode 100644 index 0000000000000000000000000000000000000000..83dcad620fd865baa44c31c7a29817d0b3e62af0 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_r_eye @@ -0,0 +1,490 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.clm.base +CLM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'opt' +p6 +(dp7 +S'ablation' +p8 +(I01 +I01 +tp9 +sS'verbose' +p10 +I00 +sS'rho2' +p11 +I20 +sS'sigRate' +p12 +F0.25 +sS'ratio2' +p13 +F0.08 +sS'imgDir' +p14 +S'/Users/arik/Desktop/artistic_faces/performance/old/dupas' +p15 +sS'dataset' +p16 +S'demo' +p17 +sS'ratio1' +p18 +F0.12 +sS'smooth' +p19 +I01 +sS'pdm_rho' +p20 +I20 +sS'sigOffset' +p21 +I25 +sS'kernel_covariance' +p22 +I10 +sS'numIter' +p23 +I5 +ssS'_shape_model_cls' +p24 +(lp25 +cmenpofit.modelinstance +OrthoPDM +p26 +asS'max_shape_components' +p27 +(lp28 +NasS'scales' +p29 +(lp30 +I1 +asS'diagonal' +p31 +I200 +sS'holistic_features' +p32 +(lp33 +cmenpo.feature.features +no_op +p34 +asS'patch_shape' +p35 +(lp36 +(I8 +I8 +tp37 +asS'expert_ensemble_cls' +p38 +(lp39 +cmenpofit.clm.expert.ensemble +FcnFilterExpertEnsemble +p40 +asS'expert_ensembles' +p41 +(lp42 +g0 +(g40 +g2 +Ntp43 +Rp44 +(dp45 +S'sample_offsets' +p46 +NsS'cosine_mask' +p47 +I01 +sS'context_shape' +p48 +(I8 +I8 +tp49 +sg35 +g37 +sS'response_covariance' +p50 +I3 +sS'patch_normalisation' +p51 +g34 +sS'_icf' +p52 +Nsbasg47 +I01 +sS'shape_models' +p53 +(lp54 +g0 +(g26 +g2 +Ntp55 +Rp56 +(dp57 +S'similarity_model' +p58 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p59 +g2 +Ntp60 +Rp61 +(dp62 +S'_components' +p63 +cnumpy.core.multiarray +_reconstruct +p64 +(cnumpy +ndarray +p65 +(I0 +tp66 +S'b' +p67 +tp68 +Rp69 +(I1 +(I4 +I12 +tp70 +cnumpy +dtype +p71 +(S'f8' +p72 +I0 +I1 +tp73 +Rp74 +(I3 +S'<' +p75 +NNNI-1 +I-1 +I0 +tp76 +bI00 +S"0lY\xee\x973\xb8\xbf\x8f:\xd6\x7f\x07f\xe3?E\x84\x99\xe8\x07\x8e\xc9?\xda\x19#B\xc5\x16\xcc?\x04\x9f(\x86y\xfb\xc9?\x0b\x962\xc4\xce\x95\xca\xbf[\x05^\xe6\xacKc?\xbd\xc1-\xd9\xeb\xe0\xe1\xbf]\x8b\x8f3\x1c\xe4\xc2\xbf\xfe<%H.\xcb\xce\xbf\x18Z\x9f\xf7\xc7\xd8\xc4\xbf\xb5\xd5\x92/\xc95\xc7?\x8e:\xd6\x7f\x07f\xe3\xbf-lY\xee\x973\xb8\xbf\xd6\x19#B\xc5\x16\xcc\xbfC\x84\x99\xe8\x07\x8e\xc9?\x08\x962\xc4\xce\x95\xca?\x00\x9f(\x86y\xfb\xc9?\xba\xc1-\xd9\xeb\xe0\xe1?+\x05^\xe6\xacKc?\xfb<%H.\xcb\xce?[\x8b\x8f3\x1c\xe4\xc2\xbf\xb2\xd5\x92/\xc95\xc7\xbf\x14Z\x9f\xf7\xc7\xd8\xc4\xbfD,\x0cp\xbd \xda\xbf(B\xf6\x83:\x01\xb7\xbcC,\x0cp\xbd \xda\xbfO\xc5\xc4\xdf\xda\xd7\x82\xbc?,\x0cp\xbd \xda\xbf~;I\\\x86\x8b\xab<;,\x0cp\xbd \xda\xbf\xce\xa6V\x18\xd8\xd8\xb2<=,\x0cp\xbd \xda\xbf\xb5U`s\x10\x98\x86<>,\x0cp\xbd \xda\xbf\x9eb\x12\xde\xd7\x04\xa6\xbc\x05P.KXF\xc1i\xa4^\x87!\xb9\xbfSn\xca\xf9\xc2\xc3?\x9230\xb9\xdf\xc0\xe5\xbfH\t\xb6\x86\xfbbp\xbf\x86\xe0u`Z\xa8\xc1?\xb7\xa1P\xe8\xc6\xfa\xb5?\x87\x1av)2\xdc\xbd?\xa2r^\x01\xea\xab\xba\xbf\xf8X\xf3\x9f\t`\xaa\xbf\xf5\xbc\xb6k\x13\xea\xc5\xbf\xc2\xc3?("\x95\xab?+q\x0b\'\x96\x8d\xa7?\x88IEx\x8dI\xaa\xbf\x01Ea\xf0\x91\xba\xd3?xz\xa3\x8e\t\xe9\xb0?\x8a\xa1\x0b\xf3\xcb\x9e\xde\xbf\xa9\xdcq|y\x0f\x94\xbf1\xd61\xf6\x84\x9b\xa9\xbf\x17\x83\x9f4\x95\xd1\xc4?1U\x05#\xff\xf0\xe3?O\xa3a\xf8\x0f\x17\xcb\xbf8\x81{i\x06\xbc\xdc\xbf!g^\x15\xfe\xcd\xc8?\xae\xc6\x02\xc6FwX\xbf\x86\xe6|\xb2\xe7\x16\x91?\xd4\x018\x88\xce\x94\xc8\xbf\xbb\xd7\x96\xb2\\\xe6\x81?\xed\xef\x89)\xf0*\xb0?d\x03\xd4\x14\xa4.\xc8\xbf7\xea\x1da\xf5]\x92?Da\xefZD\xbb\xbf\xc7<\xbd\xa6\xf5\n\xe5\xbf0\xacz\xcc\xb3\x06\xcc?' +p179 +tp180 +bsg79 +g64 +(g65 +(I0 +tp181 +g67 +tp182 +Rp183 +(I1 +(I12 +tp184 +g74 +I00 +S'o g\xbf)).@\x1a\xd5kn\xd6,X\xc0\xf7\xcb\x87\xc6\xe7\xd8?\xc0\x96\xda\x1d\x8f\xb1\x80A\xc0\x06%\x1f&\xa60@\xc0o\xfd\xab\n\xd1\x90@@<\xc9\xe2\x95\xfe\x0b\xd8\xbf\xc5O\x86\xf1\xeaGV@B\xa4\xf7\x8a\xed\x8a7@\xc8\x00\x82z%0C@\xe8lr\xa2\xe1\xfa9@\xb41\x8a\xf8\xdb\xec<\xc0' +p185 +tp186 +bsS'n_samples' +p187 +I3148 +sS'_n_active_components' +p188 +I8 +sbsbasS'reference_shape' +p189 +g0 +(g87 +g2 +Ntp190 +Rp191 +(dp192 +g91 +g64 +(g65 +(I0 +tp193 +g67 +tp194 +Rp195 +(I1 +(I6 +I2 +tp196 +g74 +I00 +S'\x17\xe4\x12\xe7\\\x96x@O\x8d\xd8\x7f\x8aD\x8a@\xd0p\xb1\xfdl\x8fu@\x963\x1cJI<\x8c@\xea+O\xf8t\x85u@\x1e\xc2\xd2O\x9ck\x8e@\xfa\x00S}\xa3\x92w@F\xad\xe5\x8b\x1e\x1d\x90@\xfb. 7] y@2\x9f\xd8d\xc2\x9b\x8e@l\x94s\xeeKIy@\x84\xcdW"\x82q\x8c@' +p197 +tp198 +bsg98 +Nsbsg48 +(lp199 +g49 +asg51 +g34 +sg46 +Nsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_all_30 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_all_30 new file mode 100644 index 0000000000000000000000000000000000000000..6db418120a9561939d608b177cf5fed08b813ca2 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_all_30 @@ -0,0 +1,369 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I136 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'`\xc2\x1b\xed-\xaf\xb4\xbf\xf0\x82\x8c\xfb\xcf\xc7\xc4\xbf\xd1\x06\x03\x83\x80v\xa3\xbf9\x8fFm\x11\x9d\xc4\xbf\xcfa\xad{\xfa*s?\xd3\xf2\x98\x8dM\xea\xc3\xbfA\x14\xaf\xca8\x9e\xa7?\xd2\xdf\xc9,z\xae\xc2\xbfOG[_\xcf\x9a\xb5?\x8a\xae\xfd\x94Bz\xc0\xbf\xec\xea\x80\x1c\x81\x1f\xbe?Kv&\xac\xf5?\xba\xbf\xe4\xa0\xa4v\xda\x9b\xc2?\xec\xccp\xafJ\x1f\xb2\xbf\xb8\x17a\xa6Fi\xc5?\x05L\x04OcL\xa2\xbf\xba<\xe9n\x8e \xc6?\t\xaf\x9f\xff\x9b\xf5m?\x8b\xb6\xbe\xf2b\'\xc5?L\x8a\xcc\xe5\xfb\xa4\xa5?9\xb2\xac\xc1\x00;\xc2?\xc7\xf4Z\xe5\xbe\x84\xb3?3\xee\xfc]LB\xbd?\x83\x1b\x08\xd6\x90p\xbb?"\x1d*\xbf\xd2\xa8\xb4?-\x86\xc7\x99\x12\xf0\xc0?JG*\xcd\xf1\\\xa5?7\xfd_EQ\x08\xc3?}_\x8c \x96(\xbfQ\x1e\xd8J\xf6\x1b\xc4?\xec\xcb\x92c5\xda\xa5\xbf&P\'\xdf\xfb\x9f\xc4?\xec#C:\xc1\xe0\xb5\xbf\n\x00\xbf\xdc\x18\xbd\xc4?m\n\x96\x13\xbd\xfb\xbc\xbf\xb7\xa6e\r\xd6\x1f\xc1\xbf\xc2\xed\xc1\x1c\xfa\xe7\xc0\xbf\x04\r\xb6+\xb6\x05\xbd\xbf\xd5"8\x92\x00\x9c\xc1\xbf\xf2\xb7i\xb3H\xae\xb5\xbf#\xfa\x1eCK\x15\xc1\xbf\xd0\xb6\xab{\xab%\xac\xbf#\xdb\x0e\x1a\xfb=\xbf\xbf\xf4f\xc7^g\xb0\x9c\xbf\x16\x13)\xbei\xd4\xbf\xbf\x80\xd3s\x17\xe4?\x97?\x18- \xaeur\xc1\xbf%-N\x83Z&\xaa??\x9c\x1b\x10\xc4\xff\xc1\xbf\x06\xfeA\xf97\xa5\xb4?<#^\x01\xa4J\xc1\xbf\x1d\x80\xff\xda|\xfa\xbb?\x93\xabt\x02\x1e\xf6\xbd\xbf\xf9\x95\xe9\xb8\xd5\x8b\xc0?i>\xb6\xbb\xcc\x02\xb7\xbf\xe9\x1e\xd92\xda^T\xbf\x99\xb9\x89\x18\xd7\xe6\xaf\xbfq\xad\xc7\xd8\xee\'O\xbf&\x02H.\x88\xe5\xa1\xbf\xb6D\x15!\x96\x08C\xbf\xb7\xa0\x11\xd0v\xb9{\xbf\xbb\x07\\<\xaeH\x11\xbf\r\x0bR\x18\x94\xb9\x89?\xc3"\xe6rB^\xa1\xbfp\x80\x7fFo\xe6\x92?/iaVy\xc2\x91\xbf\xae\x10p\xb4C\xc6\x97?x\xaew\x9c\x8cU\x16\xbf3}\xa7s\xdeX\x92?k^\x1c$\x1f\x94\x91?\xef\x84\x83\x96g\x01\x89?~t\xb1u\xc8\xac\xa0?\x06\xad\x88\xe5\x11\xb9\xb5\xbf\xcb\xfa\xc7\x90\x1a\xba\xb9\xbfs\xf3\x01\x8d\xe6c\xb8\xbf\x94H\xceP\xe8/\xb5\xbf\xe3*\xe7\x89\xdfL\xb8\xbf\x1b\xefgK\xe5\x88\xaf\xbfT\xc0\x11\x84\x10\xd8\xb4\xbf\xe1\x88\x92\xd3\xa9?\xa6\xbf\x9d\x99d\xb7a\xdf\xb3\xbfbo(\xc5\xf1\xe0\xaf\xbfQ\x8d\x00g&\xd1\xb3\xbf\xe7\xcd\xa2\xec\xc0[\xb5\xbf]L\x9c\xebC0\xb5\xbf\x97\xf5*%\xfbc\xa4?m\xcco\xb6\xac\xe7\xb8\xbf\xe9\x96\xdb\xdeN\n\xae?=\xebo\xf1\x0e\xf3\xb8\xbf\xbf_\x9a\x8d\x0ec\xb4?\xf5w\x82\x1d\xdcn\xb6\xbff\xf2L\x8e\xeb\xd2\xb8?\x10\xf6\xe0\xc3\x9f\x86\xb4\xbf\x80\x92\x00\x1ex\xd7\xb4?F]\xea\xb7,S\xb4\xbf\xf34\x04\x96\x9b\x0f\xaf?\x13\x84blt\x9b\xb0?\x93\xf3a\xdc\xa3\xe5\xaf\xbf\xfb\x8ab\xeb&\x06\xac?K\x10\xc8\xb9.\xd9\xa3\xbfa\xca>\xb8dz\xa9?\xa2w\xd7b\x85\xe1\x8f\xbf\x87\x93_\xec)\x84\xab?EU\x19\x9f`n7\xbf\xa8\xa7\xf8\x935Z\xa9?q\xd6dW\xbeS\x91?\xdb\xf3\xe3\x03\x03\xd1\xab?\x18\xffL\xfc6\xcf\xa4?\xd6\x08\xed\x8e\xe9\x0f\xb0?\x10U\x03t\rD\xb0?\x1aGd`\xe6\xe5\xb5?a\xc0:\xe2k\\\xa5?\xc2\xc47kV\x81\xb8?N|\x9d\x88\x98\x9c\x93?\x92\x9dy\x1b\x94\x10\xb9?<\xef1\x03\x08\xc0E?0\xdd\xe9\xca\xc8\xad\xb8?\x15\xe4\x8e\xb1\xb3\x97\x90\xbf;/:=\x87H\xb6?x\xd4\xab\xa9h\r\xa4\xbf\x1bO\x1d2<\xdb\xb0?"i\xc2%"\xf8\xaa\xbfO\xb5h\x04\x84G\xb0?\x82%r\x8a\x98\xf0\x8f\xbf\xf2\xbeO~A\xa9\xb0?2]\xff\xd0\xf2>\x18\xbf\xa1obY\xa5$\xb0?\xa6\x1d\xdd\x05\xe4\xc5\x91?\xe0\xd1\x96\x92\xe4n\xb0?Q\x13\x8c\x8e\xb2\x9a\xab?\xd2\x12f\x83\n-\xb3?nk\xd3\x03\x953\x92?\x80_{\x8a\x04\xc8\xb3?\x7f\xc5U\xa65z\x0e?H\xf2,\x88\x19[\xb3?1\x94\x08\x81\x88/\x90\xbf\xf1\x82\x8c\xfb\xcf\xc7\xc4?l\xc2\x1b\xed-\xaf\xb4\xbf9\x8fFm\x11\x9d\xc4?\xd2\x06\x03\x83\x80v\xa3\xbf\xd4\xf2\x98\x8dM\xea\xc3?\xcca\xad{\xfa*s?\xd2\xdf\xc9,z\xae\xc2?A\x14\xaf\xca8\x9e\xa7?\x8b\xae\xfd\x94Bz\xc0?PG[_\xcf\x9a\xb5?Lv&\xac\xf5?\xba?\xee\xea\x80\x1c\x81\x1f\xbe?\xed\xccp\xafJ\x1f\xb2?\xe4\xa0\xa4v\xda\x9b\xc2?\x05L\x04OcL\xa2?\xb9\x17a\xa6Fi\xc5?\x03\xaf\x9f\xff\x9b\xf5m\xbf\xbb<\xe9n\x8e \xc6?L\x8a\xcc\xe5\xfb\xa4\xa5\xbf\x8c\xb6\xbe\xf2b\'\xc5?\xc6\xf4Z\xe5\xbe\x84\xb3\xbf9\xb2\xac\xc1\x00;\xc2?\x84\x1b\x08\xd6\x90p\xbb\xbf4\xee\xfc]LB\xbd?.\x86\xc7\x99\x12\xf0\xc0\xbf$\x1d*\xbf\xd2\xa8\xb4?8\xfd_EQ\x08\xc3\xbfKG*\xcd\xf1\\\xa5?R\x1e\xd8J\xf6\x1b\xc4\xbf\x1c_\x8c \x96(\xbf\'P\'\xdf\xfb\x9f\xc4\xbf\xeb\xcb\x92c5\xda\xa5\xbf\n\x00\xbf\xdc\x18\xbd\xc4\xbf\xed#C:\xc1\xe0\xb5\xbf\xb7\xa6e\r\xd6\x1f\xc1?p\n\x96\x13\xbd\xfb\xbc\xbf\x04\r\xb6+\xb6\x05\xbd?\xc2\xed\xc1\x1c\xfa\xe7\xc0\xbf\xf2\xb7i\xb3H\xae\xb5?\xd6"8\x92\x00\x9c\xc1\xbf\xd1\xb6\xab{\xab%\xac?$\xfa\x1eCK\x15\xc1\xbf\xf4f\xc7^g\xb0\x9c?$\xdb\x0e\x1a\xfb=\xbf\xbf\x82\xd3s\x17\xe4?\x97\xbf\x18\x13)\xbei\xd4\xbf\xbf%-N\x83Z&\xaa\xbf\x18- \xaeur\xc1\xbf\x07\xfeA\xf97\xa5\xb4\xbf@\x9c\x1b\x10\xc4\xff\xc1\xbf\x1e\x80\xff\xda|\xfa\xbb\xbf<#^\x01\xa4J\xc1\xbf\xf9\x95\xe9\xb8\xd5\x8b\xc0\xbf\x94\xabt\x02\x1e\xf6\xbd\xbf\xd5\x1e\xd92\xda^T?j>\xb6\xbb\xcc\x02\xb7\xbfg\xad\xc7\xd8\xee\'O?\x9b\xb9\x89\x18\xd7\xe6\xaf\xbf\xb4D\x15!\x96\x08C?&\x02H.\x88\xe5\xa1\xbf\xb4\x07\\<\xaeH\x11?\xb7\xa0\x11\xd0v\xb9{\xbf\xc4"\xe6rB^\xa1?\r\x0bR\x18\x94\xb9\x89?/iaVy\xc2\x91?p\x80\x7fFo\xe6\x92?\x85\xaew\x9c\x8cU\x16?\xaf\x10p\xb4C\xc6\x97?k^\x1c$\x1f\x94\x91\xbf4}\xa7s\xdeX\x92?~t\xb1u\xc8\xac\xa0\xbf\xf1\x84\x83\x96g\x01\x89?\xcc\xfa\xc7\x90\x1a\xba\xb9?\x06\xad\x88\xe5\x11\xb9\xb5\xbf\x95H\xceP\xe8/\xb5?s\xf3\x01\x8d\xe6c\xb8\xbf\x1d\xefgK\xe5\x88\xaf?\xe3*\xe7\x89\xdfL\xb8\xbf\xe1\x88\x92\xd3\xa9?\xa6?T\xc0\x11\x84\x10\xd8\xb4\xbfco(\xc5\xf1\xe0\xaf?\x9e\x99d\xb7a\xdf\xb3\xbf\xe7\xcd\xa2\xec\xc0[\xb5?Q\x8d\x00g&\xd1\xb3\xbf\x98\xf5*%\xfbc\xa4\xbf^L\x9c\xebC0\xb5\xbf\xea\x96\xdb\xdeN\n\xae\xbfn\xcco\xb6\xac\xe7\xb8\xbf\xc1_\x9a\x8d\x0ec\xb4\xbf>\xebo\xf1\x0e\xf3\xb8\xbfg\xf2L\x8e\xeb\xd2\xb8\xbf\xf6w\x82\x1d\xdcn\xb6\xbf\x80\x92\x00\x1ex\xd7\xb4\xbf\x10\xf6\xe0\xc3\x9f\x86\xb4\xbf\xf34\x04\x96\x9b\x0f\xaf\xbfG]\xea\xb7,S\xb4\xbf\x94\xf3a\xdc\xa3\xe5\xaf?\x14\x84blt\x9b\xb0?K\x10\xc8\xb9.\xd9\xa3?\xfd\x8ab\xeb&\x06\xac?\xa5w\xd7b\x85\xe1\x8f?`\xca>\xb8dz\xa9?LU\x19\x9f`n7?\x88\x93_\xec)\x84\xab?q\xd6dW\xbeS\x91\xbf\xa8\xa7\xf8\x935Z\xa9?\x19\xffL\xfc6\xcf\xa4\xbf\xdc\xf3\xe3\x03\x03\xd1\xab?\x10U\x03t\rD\xb0\xbf\xd6\x08\xed\x8e\xe9\x0f\xb0?a\xc0:\xe2k\\\xa5\xbf\x1bGd`\xe6\xe5\xb5?N|\x9d\x88\x98\x9c\x93\xbf\xc1\xc47kV\x81\xb8?\'\xef1\x03\x08\xc0E\xbf\x92\x9dy\x1b\x94\x10\xb9?\x16\xe4\x8e\xb1\xb3\x97\x90?0\xdd\xe9\xca\xc8\xad\xb8?z\xd4\xab\xa9h\r\xa4?=/:=\x87H\xb6?#i\xc2%"\xf8\xaa?\x1bO\x1d2<\xdb\xb0?\x84%r\x8a\x98\xf0\x8f?O\xb5h\x04\x84G\xb0?\xd9]\xff\xd0\xf2>\x18?\xf3\xbeO~A\xa9\xb0?\xa6\x1d\xdd\x05\xe4\xc5\x91\xbf\xa1obY\xa5$\xb0?Q\x13\x8c\x8e\xb2\x9a\xab\xbf\xe1\xd1\x96\x92\xe4n\xb0?mk\xd3\x03\x953\x92\xbf\xd2\x12f\x83\n-\xb3?:\xc5U\xa65z\x0e\xbf\x80_{\x8a\x04\xc8\xb3?2\x94\x08\x81\x88/\x90?I\xf2,\x88\x19[\xb3?\x1a\xaf\xd2Hh\x0b\xbf\xbfZ\xd8\xe5A(LM<\x1b\xaf\xd2Hh\x0b\xbf\xbf_\x12\x16w\xb0H\x80\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\x9f\xd1\xd3\xe7\xb0\x0e\x86\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf\xc1\xa6q\x8c=4\x87\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf8\x9b\xeewY(\x88\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbfj\xdb8\x0bj\xe4\x89\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\xe6\x8e\x18\xcb\x03\x1f\x88\xbc\x19\xaf\xd2Hh\x0b\xbf\xbfd\xc0\x80/\x89T\x86\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf\xbd\\\xc2f\xb4)\x82\xbc\x16\xaf\xd2Hh\x0b\xbf\xbf\x01@y\x82\xd4@y\xbc\x18\xaf\xd2Hh\x0b\xbf\xbf859\xddl2h\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf\xd4b]\xf5\xd6\xa4(\xbc\x18\xaf\xd2Hh\x0b\xbf\xbf\xf5\xea0`\xdc\x02l<\x16\xaf\xd2Hh\x0b\xbf\xbf,n\xae\x19\n\xec{<\x19\xaf\xd2Hh\x0b\xbf\xbfu\xf5\xf9\x9ek\x7f\x83<\x19\xaf\xd2Hh\x0b\xbf\xbfx\xb4x\xc8e\x9d\x86<\x19\xaf\xd2Hh\x0b\xbf\xbfhv\t\x9c\x91\x1e\x8d<\x1f\xaf\xd2Hh\x0b\xbf\xbf\x11\xd8\xfc\xb7]%a\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbf\x00\xb3^\xf7d\x1b\xe4;\x1f\xaf\xd2Hh\x0b\xbf\xbf\xe6\xfe\xf0\xa4H\xee^<\x1d\xaf\xd2Hh\x0b\xbf\xbf\xee\xbd\x0e\xa9\xa9\xe0o<\x1d\xaf\xd2Hh\x0b\xbf\xbf/\x06~\rCEs<\x1d\xaf\xd2Hh\x0b\xbf\xbf.\xe0\x83)\xe3H\x80<\x1c\xaf\xd2Hh\x0b\xbf\xbf\xf5r\x04\xea\x91\xcf\x84<\x1c\xaf\xd2Hh\x0b\xbf\xbf4\xe8i\x885T\x88<\x1b\xaf\xd2Hh\x0b\xbf\xbfZB\xf5\xf3\xb0^\x8b<\x1b\xaf\xd2Hh\x0b\xbf\xbf\x9a\x94\x88hx\xdf\x8c<\x1c\xaf\xd2Hh\x0b\xbf\xbffZ\xb4\x13m\x00s<\x1b\xaf\xd2Hh\x0b\xbf\xbf\xd8\xf4l\xe4yXj<\x1b\xaf\xd2Hh\x0b\xbf\xbfG\xb1"P\x12k]<\x1b\xaf\xd2Hh\x0b\xbf\xbffB\xdf\x0c|-7<\x1b\xaf\xd2Hh\x0b\xbf\xbf\xfc2\x9cq\x86Me\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\xd6\xe7Eg\xe5\x83^\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf\x8c\xd1\x7f\xfeD\x0fT\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\x84\x1a\xa9\xf26j\x0c<\x18\xaf\xd2Hh\x0b\xbf\xbf\x80>wk\x14\x08U<\x1e\xaf\xd2Hh\x0b\xbf\xbf\xa2\x0b\x161\xd4\x18U\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbfH\xc0\x0b\x8b\xb6\xf7\x1b<\x1d\xaf\xd2Hh\x0b\xbf\xbf\xfez/\xf9m\xd3V<\x1e\xaf\xd2Hh\x0b\xbf\xbf_\xae\x08j,\x87Z<\x1c\xaf\xd2Hh\x0b\xbf\xbf\x00j\x08\x04_RA<\x1e\xaf\xd2Hh\x0b\xbf\xbf\x7f\x81\xda\xc9\xc7\xadI\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\x8d\x87B\x0e5\xb1{<\x1b\xaf\xd2Hh\x0b\xbf\xbf\xdf\xda\x00l\xb2\xac\x81<\x1c\xaf\xd2Hh\x0b\xbf\xbf>!\xb9\xbb\xa4\xa0\x84<\x1c\xaf\xd2Hh\x0b\xbf\xbfC\xb0Y\x10$\x8f\x85<\x1b\xaf\xd2Hh\x0b\xbf\xbf]\xa6W\x16L~\x83<\x1c\xaf\xd2Hh\x0b\xbf\xbfV\x13d\xcd\r\xbe\x7f<\x1a\xaf\xd2Hh\x0b\xbf\xbf\xd1\xde\xe6\xd1\x03\xd9|\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\xee==\xc3\x927u\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf\xee\x98\\S/Om\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\x13\x16\xa0/z|g\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf@\x14ar\x05\x9bZ\xbc\x18\xaf\xd2Hh\x0b\xbf\xbf"\x05?\x83\x18\x1b:\xbc\x19\xaf\xd2Hh\x0b\xbf\xbfz\xaf\xec\x12N\xcaA<\x1a\xaf\xd2Hh\x0b\xbf\xbf\x99^\xd5v\x05\xe6`\xbc\x18\xaf\xd2Hh\x0b\xbf\xbf\xa4\x19\xbb+\xb8Mp\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\x7f\xe3^>\xcf\x10u\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf,\x1f!X\x8b\xe4x\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbff\xa0W\xe3jk}\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf=\xf8\x9e\'nX{\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbfc\xd9\xccC\x96\x19q\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf\x16+\xcc<\r^l\xbc\x18\xaf\xd2Hh\x0b\xbf\xbfD\x177S\xde3c\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf\x85;\xe4\x16F10\xbc\x18\xaf\xd2Hh\x0b\xbf\xbf27.0\xf9\xe1f\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\xcd\xff\xbe\xf7Y\x95p\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\x84\xd4\xca\x83C\x8bt\xbcD\x89Y:\xee\xd1M\xbc\x18\xaf\xd2Hh\x0b\xbf\xbfVF\x021>\x0c\x89\x93U@\x17\x9a\x1e|\xe3\xc07@\xc6^\x15\x9by\xf6U@\r\'-\x0eJrR@W\x18\xed\xce\xe3\xa0Y@,\xfeW{}S8@\xaf\x89m\xcb\x03pZ@;.h\xbe\xca]\xb4?b\xddufr\xdeY@3t\xbe\xa0\xcb\xa15\xc0' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'path' +p39 +cpathlib +PosixPath +p40 +(S'/' +p41 +S'Users' +p42 +S'arik' +p43 +S'Dropbox' +p44 +S'a_mac_thesis' +p45 +S'face_heatmap_networks' +p46 +S'conventional_landmark_detection_dataset' +p47 +S'training_set' +p48 +S'100032540_1.pts' +p49 +tp50 +Rp51 +sS'points' +p52 +g12 +(g13 +(I0 +tp53 +g15 +tp54 +Rp55 +(I1 +(I68 +I2 +tp56 +g22 +I00 +S'8\xb1t\xd8\xf5\xa4[\xc0\xc4\xcc\x82\xd5\xe1\xc5k\xc0uM\xcd\xdb\x11\x03J\xc0\xef&\x8b4\xc1\x8ck\xc0M\xc5\xc5\x19"\x9e\x19@\x84\x8a\x901\xd6\x9dj\xc0\x80\x96\xa3\xce\xb8\x90O@\x9a\xaa\x16\x0b\xbd\xf7h\xc02\x8e\x80\xec\xe0\xdf\\@\xd1\n\xbb\xce\xaa\x05f\xc0\xc5\x11\xce\xb8-!d@\xa2C\x95P\x95\x8aa\xc0\xddf\x05\n\xd9\xdeh@\x10\xb2iN_8X\xc0\x88\xfd!@\xad\x9dl@\xf6\xd5\xd3\x97\xa4tH\xc0\x9e\x91\x04 \xa1\x92m@\x0fGy\xb6.\x05\x14@\x13\x03z\xb7\x9dEl@Y2@\xd9y\xedL@\x0b\xd68xh]h@L\x02\xfd7\x1b\x16Z@T\xcd\x85\xd0[\x8dc@\xe3"\x97\x8b"Vb@\x84\xb3t"w\x9c[@w\xa2\xbcg\x1f\xa3f@;i\x86&2\x8dL@ms\x9e!\xcfoi@<\xe7\x08\x7f\x05n\xd0\xbf\n\xee,\xa84\xe0j@^\x8en2\x9c4M\xc0\xf6\xc3x\xd2\xa6\x90k@\x93\xd0\xc2\xf0[=]\xc0\xa1@\x93\xad\x8f\xb7k@\xd1\xb1\xc2\x195^c\xc0, 4I\xf5\xe2f\xc0Q\xca\xfa\x8aM\x98f\xc0C4\xcd1\xdfdc\xc0x\xc8\xc7\xaf\xe7\x88g\xc0e,_\xc5\xe7\xf9\\\xc0t&y`\xde\xd4f\xc0\xc0q\xbe-(\xcfR\xc0\xe2\xe0M\x82\x9d\xe0d\xc0\x81\xc0K\x83\xdd+C\xc0\xdd\xba\xfe\x12$Ee\xc0\xd0\xf3\x93H\xa6\x12?@\x81\x9e\xc4?bQg\xc0\x9a\xee\xc3\xdbxyQ@\x9fm\xb2\xfd<\x0eh\xc0\t\x81G\xdb\xa5\x97[@\xe5\xf16~*\x1cg\xc0P\'\x07\xf9L\xb2b@q&\x94\x97\x85\x05d\xc0\x13\x19c\xde\'\x1df@\xc0\xc6ok\x00\xc1^\xc0\xf18\x1b\x9b\x9a9\xfb\xbf\x0fv\xa9ltQU\xc0h\xb5\xb7\xc2\xe1\xd1\xf4\xbf\x9b\x80(F-\xebG\xc0h\x05\xe5(+p\xe9\xbf\x97\xfa\x18T\xd9\x86"\xc0\xaf[\xe8\xe1\x8b\x19\xb7\xbf\x83\xe2\xf3\x9c\xc801@B\x9c\xb8\xf1b6G\xc0"\xd2\xbei\x86B9@\xce\x02\xb7yR\xbc7\xc0\xbf\xa3\xca\x0f=\xc6?@\xedJ\xa03t\xd9\xbd\xbfj\xa6\x9f\xdfR\x858@&\x01\xc0h_~7@\x7f-\x0b\xd5\xb5\xb50@\x9c\xcd\x0c\xd20IF@\xaa\\\xad\x15R\x08]\xc0H+\xf2x"1a\xc0\n\xdfRzuL`\xc0\xda\xa7M\x18\x01Q\\\xc0\x92:\x7f)\x12=`\xc0\xb0\xd4V@\xad\x12U\xc0\x90\xfa\x91Y\x9a\xdb[\xc0m\x96\'!4\xbcM\xc0\xa1\xe4$\x95=\x8fZ\xc0N\xf1\x01\xd3\x83MU\xc0\x14d`S8|Z\xc0\xf8\x87[\xaf\x9a\x8b\\\xc0\x8e\x95\x18\x86{Q\\\xc0\x03^\xeaXu@K@\x7f\xc5\x95.\x84\xa4`\xc0\x1c!\x18\xa9\x03\x13T@u\x8e\x83\x9a\x1f\xac`\xc0\xe0\xe8\xe6$9?[@\xe6g]\x00H\xfb]\xc0\xc3\x81A\xb0\xa5\x96`@\xfe\xd1\xe6-\xc2n[\xc0\xc9\x86\x9d\xab\xce\xda[@\xb4\x8d,1\xff)[\xc0\x90\xe0\xd2k\xa0\xc1T@Q\r\xe4\x18\x082V@\x83+\xb5\x1d\xa7PU\xc090\x95e\x18\xbaR@/\xc7h\x95\xf4\x86J\xc0\x9ab\x80}\x8f\x06Q@\xdc\xd7\xcbw\xe6M5\xc0\x06b\r1;cR@\x91\x8ew<\xc7P\xdf\xbfw\x9af\xb8\r\xf1P@A\xc9k\xf7T(7@y\x80\xe7\xa5\x95\x96R@\xf9\x96\x18}\xc6\xcfK@\xb8\xab\xff\xcd\x88wU@v\xe4\xda%8\xbdU@\x97_aL\x93U@\x17\x9a\x1e|\xe3\xc07@\xc6^\x15\x9by\xf6U@\r\'-\x0eJrR@W\x18\xed\xce\xe3\xa0Y@,\xfeW{}S8@\xaf\x89m\xcb\x03pZ@;.h\xbe\xca]\xb4?b\xddufr\xdeY@3t\xbe\xa0\xcb\xa15\xc0' +p57 +tp58 +bsS'_landmarks' +p59 +NsbsbsS'similarity_weights' +p60 +g12 +(g13 +(I0 +tp61 +g15 +tp62 +Rp63 +(I1 +(I4 +tp64 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p65 +tp66 +bsS'_weights' +p67 +g12 +(g13 +(I0 +tp68 +g15 +tp69 +Rp70 +(I1 +(I30 +tp71 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p72 +tp73 +bsS'_target' +p74 +g0 +(g35 +g2 +Ntp75 +Rp76 +(dp77 +g39 +g51 +sg52 +g12 +(g13 +(I0 +tp78 +g15 +tp79 +Rp80 +(I1 +(I68 +I2 +tp81 +g22 +I00 +S'6\xb1t\xd8\xf5\xa4[\xc0\xc1\xcc\x82\xd5\xe1\xc5k\xc0sM\xcd\xdb\x11\x03J\xc0\xec&\x8b4\xc1\x8ck\xc0K\xc5\xc5\x19"\x9e\x19@\x82\x8a\x901\xd6\x9dj\xc0~\x96\xa3\xce\xb8\x90O@\x98\xaa\x16\x0b\xbd\xf7h\xc00\x8e\x80\xec\xe0\xdf\\@\xcf\n\xbb\xce\xaa\x05f\xc0\xc4\x11\xce\xb8-!d@\xa0C\x95P\x95\x8aa\xc0\xdbf\x05\n\xd9\xdeh@\x0e\xb2iN_8X\xc0\x86\xfd!@\xad\x9dl@\xf4\xd5\xd3\x97\xa4tH\xc0\x9c\x91\x04 \xa1\x92m@\rGy\xb6.\x05\x14@\x11\x03z\xb7\x9dEl@V2@\xd9y\xedL@\t\xd68xh]h@J\x02\xfd7\x1b\x16Z@S\xcd\x85\xd0[\x8dc@\xe1"\x97\x8b"Vb@\x82\xb3t"w\x9c[@u\xa2\xbcg\x1f\xa3f@9i\x86&2\x8dL@ks\x9e!\xcfoi@8\xe7\x08\x7f\x05n\xd0\xbf\x07\xee,\xa84\xe0j@\\\x8en2\x9c4M\xc0\xf3\xc3x\xd2\xa6\x90k@\x91\xd0\xc2\xf0[=]\xc0\x9e@\x93\xad\x8f\xb7k@\xd0\xb1\xc2\x195^c\xc0* 4I\xf5\xe2f\xc0P\xca\xfa\x8aM\x98f\xc0A4\xcd1\xdfdc\xc0w\xc8\xc7\xaf\xe7\x88g\xc0b,_\xc5\xe7\xf9\\\xc0s&y`\xde\xd4f\xc0\xbeq\xbe-(\xcfR\xc0\xe1\xe0M\x82\x9d\xe0d\xc0\x7f\xc0K\x83\xdd+C\xc0\xdc\xba\xfe\x12$Ee\xc0\xcd\xf3\x93H\xa6\x12?@\x80\x9e\xc4?bQg\xc0\x98\xee\xc3\xdbxyQ@\x9dm\xb2\xfd<\x0eh\xc0\x06\x81G\xdb\xa5\x97[@\xe4\xf16~*\x1cg\xc0N\'\x07\xf9L\xb2b@p&\x94\x97\x85\x05d\xc0\x11\x19c\xde\'\x1df@\xbe\xc6ok\x00\xc1^\xc0\xee8\x1b\x9b\x9a9\xfb\xbf\x0ev\xa9ltQU\xc0f\xb5\xb7\xc2\xe1\xd1\xf4\xbf\x9a\x80(F-\xebG\xc0e\x05\xe5(+p\xe9\xbf\x96\xfa\x18T\xd9\x86"\xc0\xac[\xe8\xe1\x8b\x19\xb7\xbf\x82\xe2\xf3\x9c\xc801@@\x9c\xb8\xf1b6G\xc0 \xd2\xbei\x86B9@\xcc\x02\xb7yR\xbc7\xc0\xbd\xa3\xca\x0f=\xc6?@\xebJ\xa03t\xd9\xbd\xbfh\xa6\x9f\xdfR\x858@$\x01\xc0h_~7@~-\x0b\xd5\xb5\xb50@\x9a\xcd\x0c\xd20IF@\xa8\\\xad\x15R\x08]\xc0F+\xf2x"1a\xc0\t\xdfRzuL`\xc0\xd7\xa7M\x18\x01Q\\\xc0\x91:\x7f)\x12=`\xc0\xae\xd4V@\xad\x12U\xc0\x8e\xfa\x91Y\x9a\xdb[\xc0j\x96\'!4\xbcM\xc0\x9f\xe4$\x95=\x8fZ\xc0L\xf1\x01\xd3\x83MU\xc0\x12d`S8|Z\xc0\xf5\x87[\xaf\x9a\x8b\\\xc0\x8c\x95\x18\x86{Q\\\xc0\x00^\xeaXu@K@~\xc5\x95.\x84\xa4`\xc0\x1a!\x18\xa9\x03\x13T@t\x8e\x83\x9a\x1f\xac`\xc0\xdd\xe8\xe6$9?[@\xe4g]\x00H\xfb]\xc0\xc1\x81A\xb0\xa5\x96`@\xfc\xd1\xe6-\xc2n[\xc0\xc6\x86\x9d\xab\xce\xda[@\xb2\x8d,1\xff)[\xc0\x8e\xe0\xd2k\xa0\xc1T@P\r\xe4\x18\x082V@\x81+\xb5\x1d\xa7PU\xc080\x95e\x18\xbaR@-\xc7h\x95\xf4\x86J\xc0\x99b\x80}\x8f\x06Q@\xda\xd7\xcbw\xe6M5\xc0\x05b\r1;cR@\x8f\x8ew<\xc7P\xdf\xbfv\x9af\xb8\r\xf1P@?\xc9k\xf7T(7@x\x80\xe7\xa5\x95\x96R@\xf6\x96\x18}\xc6\xcfK@\xb7\xab\xff\xcd\x88wU@t\xe4\xda%8\xbdU@\x95_aL\x93U@\x15\x9a\x1e|\xe3\xc07@\xc5^\x15\x9by\xf6U@\x0b\'-\x0eJrR@U\x18\xed\xce\xe3\xa0Y@*\xfeW{}S8@\xad\x89m\xcb\x03pZ@5.h\xbe\xca]\xb4?`\xddufr\xdeY@1t\xbe\xa0\xcb\xa15\xc0' +p82 +tp83 +bsg59 +NsbsS'global_transform' +p84 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p85 +g2 +Ntp86 +Rp87 +(dp88 +S'_h_matrix' +p89 +g12 +(g13 +(I0 +tp90 +g15 +tp91 +Rp92 +(I1 +(I3 +I3 +tp93 +g22 +I00 +S'\xfe\xff\xff\xff\xff\xff\xef?\x80S\xc6\\&\x010<\x00\x00\x00\x00\x00\x00\xf09\xc07\xce\xad\xf3U#\xbc\xfd\xff\xff\xff\xff\xff\xef?\x00\x00\x00\x00\x00\x00\xf09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p94 +tp95 +bsg74 +g0 +(g35 +g2 +Ntp96 +Rp97 +(dp98 +g39 +g51 +sg52 +g12 +(g13 +(I0 +tp99 +g15 +tp100 +Rp101 +(I1 +(I68 +I2 +tp102 +g22 +I00 +S'8\xb1t\xd8\xf5\xa4[\xc0\xc4\xcc\x82\xd5\xe1\xc5k\xc0uM\xcd\xdb\x11\x03J\xc0\xef&\x8b4\xc1\x8ck\xc0M\xc5\xc5\x19"\x9e\x19@\x84\x8a\x901\xd6\x9dj\xc0\x80\x96\xa3\xce\xb8\x90O@\x9a\xaa\x16\x0b\xbd\xf7h\xc02\x8e\x80\xec\xe0\xdf\\@\xd1\n\xbb\xce\xaa\x05f\xc0\xc5\x11\xce\xb8-!d@\xa2C\x95P\x95\x8aa\xc0\xddf\x05\n\xd9\xdeh@\x10\xb2iN_8X\xc0\x88\xfd!@\xad\x9dl@\xf6\xd5\xd3\x97\xa4tH\xc0\x9e\x91\x04 \xa1\x92m@\x0fGy\xb6.\x05\x14@\x13\x03z\xb7\x9dEl@Y2@\xd9y\xedL@\x0b\xd68xh]h@L\x02\xfd7\x1b\x16Z@T\xcd\x85\xd0[\x8dc@\xe3"\x97\x8b"Vb@\x84\xb3t"w\x9c[@w\xa2\xbcg\x1f\xa3f@;i\x86&2\x8dL@ms\x9e!\xcfoi@<\xe7\x08\x7f\x05n\xd0\xbf\n\xee,\xa84\xe0j@^\x8en2\x9c4M\xc0\xf6\xc3x\xd2\xa6\x90k@\x93\xd0\xc2\xf0[=]\xc0\xa1@\x93\xad\x8f\xb7k@\xd1\xb1\xc2\x195^c\xc0, 4I\xf5\xe2f\xc0Q\xca\xfa\x8aM\x98f\xc0C4\xcd1\xdfdc\xc0x\xc8\xc7\xaf\xe7\x88g\xc0e,_\xc5\xe7\xf9\\\xc0t&y`\xde\xd4f\xc0\xc0q\xbe-(\xcfR\xc0\xe2\xe0M\x82\x9d\xe0d\xc0\x81\xc0K\x83\xdd+C\xc0\xdd\xba\xfe\x12$Ee\xc0\xd0\xf3\x93H\xa6\x12?@\x81\x9e\xc4?bQg\xc0\x9a\xee\xc3\xdbxyQ@\x9fm\xb2\xfd<\x0eh\xc0\t\x81G\xdb\xa5\x97[@\xe5\xf16~*\x1cg\xc0P\'\x07\xf9L\xb2b@q&\x94\x97\x85\x05d\xc0\x13\x19c\xde\'\x1df@\xc0\xc6ok\x00\xc1^\xc0\xf18\x1b\x9b\x9a9\xfb\xbf\x0fv\xa9ltQU\xc0h\xb5\xb7\xc2\xe1\xd1\xf4\xbf\x9b\x80(F-\xebG\xc0h\x05\xe5(+p\xe9\xbf\x97\xfa\x18T\xd9\x86"\xc0\xaf[\xe8\xe1\x8b\x19\xb7\xbf\x83\xe2\xf3\x9c\xc801@B\x9c\xb8\xf1b6G\xc0"\xd2\xbei\x86B9@\xce\x02\xb7yR\xbc7\xc0\xbf\xa3\xca\x0f=\xc6?@\xedJ\xa03t\xd9\xbd\xbfj\xa6\x9f\xdfR\x858@&\x01\xc0h_~7@\x7f-\x0b\xd5\xb5\xb50@\x9c\xcd\x0c\xd20IF@\xaa\\\xad\x15R\x08]\xc0H+\xf2x"1a\xc0\n\xdfRzuL`\xc0\xda\xa7M\x18\x01Q\\\xc0\x92:\x7f)\x12=`\xc0\xb0\xd4V@\xad\x12U\xc0\x90\xfa\x91Y\x9a\xdb[\xc0m\x96\'!4\xbcM\xc0\xa1\xe4$\x95=\x8fZ\xc0N\xf1\x01\xd3\x83MU\xc0\x14d`S8|Z\xc0\xf8\x87[\xaf\x9a\x8b\\\xc0\x8e\x95\x18\x86{Q\\\xc0\x03^\xeaXu@K@\x7f\xc5\x95.\x84\xa4`\xc0\x1c!\x18\xa9\x03\x13T@u\x8e\x83\x9a\x1f\xac`\xc0\xe0\xe8\xe6$9?[@\xe6g]\x00H\xfb]\xc0\xc3\x81A\xb0\xa5\x96`@\xfe\xd1\xe6-\xc2n[\xc0\xc9\x86\x9d\xab\xce\xda[@\xb4\x8d,1\xff)[\xc0\x90\xe0\xd2k\xa0\xc1T@Q\r\xe4\x18\x082V@\x83+\xb5\x1d\xa7PU\xc090\x95e\x18\xbaR@/\xc7h\x95\xf4\x86J\xc0\x9ab\x80}\x8f\x06Q@\xdc\xd7\xcbw\xe6M5\xc0\x06b\r1;cR@\x91\x8ew<\xc7P\xdf\xbfw\x9af\xb8\r\xf1P@A\xc9k\xf7T(7@y\x80\xe7\xa5\x95\x96R@\xf9\x96\x18}\xc6\xcfK@\xb8\xab\xff\xcd\x88wU@v\xe4\xda%8\xbdU@\x97_aL\x93U@\x17\x9a\x1e|\xe3\xc07@\xc6^\x15\x9by\xf6U@\r\'-\x0eJrR@W\x18\xed\xce\xe3\xa0Y@,\xfeW{}S8@\xaf\x89m\xcb\x03pZ@;.h\xbe\xca]\xb4?b\xddufr\xdeY@3t\xbe\xa0\xcb\xa15\xc0' +p103 +tp104 +bsg59 +NsbsS'allow_mirror' +p105 +I00 +sS'_source' +p106 +g97 +sbsS'model' +p107 +g0 +(cmenpo.model.pca +PCAModel +p108 +g2 +Ntp109 +Rp110 +(dp111 +S'centred' +p112 +I01 +sg34 +g0 +(g35 +g2 +Ntp113 +Rp114 +(dp115 +g39 +g51 +sg52 +g12 +(g13 +(I0 +tp116 +g15 +tp117 +Rp118 +(I1 +(I68 +I2 +tp119 +g22 +I00 +S'"\xb7\x9a\x94\x1e\x86J\xc0vrqS\xe5+i\xc0P\x1c\x8e\xc1\xb7\xab\x00\xc0\x84\xeb\xd9\xf9\xb2jh\xc0q\xe9l\xcd\x94\xc0G@\xcd\xc2:R\xa0cg\xc0S\xab*\xa8d\x91W@\xdc\x8fy@\xe9Vf\xc0G\xad\xf8\x05\xf4\xc9a@\x82w\x814!\xa6e\xc0\xcf\x03c\xf5\xa6\x9cf@\x8c\x0b\xdfbFFc\xc0}\xf1\x95\xe0\xc4\xe1j@\xff\xc4^\xf5?\xb7_\xc0\xcc\xf1\xf7\xfb\xfc\x84l@mQ\x8b\x99\xc6!Q\xc0\xbe\xcaFDA|k@\xa0b\x7f\x11G\x07\x15@\xc9\xe9\r\x1cq\xd1k@:\xbb\xb2\x1b\x06\xc7V@\xd9\x18\x01\x93\x02Dj@\xa2\xbb\xd6\xd1\x0fnb@\x94\x89\xa7\xda\xa4\x0ff@.\x1b\xbfj&\x0fh@\xc0w\xc6\xa8dZa@B\xc0%\xa3\x85\x06k@\xf8\'\x88\x98\x81\xd0U@5\x81\xd7l5vl@\xdeN\x8e\xbc\x86\x9bD@\xeeQ\xd8\xc6\x99\xd2l@\x03CEx\x08\xdc\x08\xc0(n\xce\xb0\x11\xd1l@pHR\\\x942G\xc0\xf6\xac\x9fS\xbc\xacl@\xdf\xd6\xf0D<\x91e\xc0?\x08\xb2\x16\xb1\xc1e\xc0\xff\x8a\xb0\x06g\rg\xc0\xa5\xea\xcf\xf9o\xdea\xc0\xef\xbb\xc2C\xd7\x8dg\xc0\x11\xe5G\xf0.\x9a[\xc0\xa8\x02\xba\xec\x92fg\xc0\t\x15s\xfeBOT\xc0lD\xceD/#f\xc0k8\xddXNgI\xc0\xba\xdc\xaf[\xda\xa6g\xc0|\xae\xa7\x85\x7f<;@\x82\xf3\xf0\xbbN}h\xc0bF\xac\xb4\x1f\xd3\xfd\xc7a\xc0\x9dq\xf8\x16\x0f._\xc0*\xd0{\xcc\x8c\x84^\xc0\x18\xc4"~\xa0u_\xc0\x96%\x13|\xf7\x10V\xc0\x00\xa1\\\xc4ojZ\xc0r\x99\xe9\xaf\xeewO\xc0L Lv\x9d\x10Y\xc0\xb6\\w\x80\xa7\xabU\xc0\x89\x96\x1c\x0b} X\xc0\xbaf/\xfb\xbe\xc2]\xc0\xa3\xe6\xd7\x81\x8b8[\xc0EY\x00\xbfJPM@\xf6\xbd\x87\x94\xd0\xce`\xc0\xf6,(\x1e@\xccT@\xf8\xa1k\x11\xc9\xb2`\xc0\x7fJ\xf8w\x16\x17]@\xf0/\xcc\x7f\xc9][\xc07\x02e\xc9~\x80a@\xae\xd2*\xec\xcd\x9bZ\xc0\xcb\xd2\x11z\xbf\x14]@\x9f\x9eG\xe7\xb2\xb8Z\xc0\xedZ \x0c\xd1PU@\x9c\xb4bM\xfdoW@\x8ahs\xeb\xab\x93V\xc0\xf1\xdc\x1d\xb3R\x9cN@#\xbe\xc5\xdd\xf7\x87N\xc0\xd8t%k\x96{G@\x99\xf1[\xb0O\xdd>\xc0\x8c89p\xb6\xf0H@|t$V\x11\xac$\xc0^F\xed\x06#\x10G@\x12\xa9\\\xd7\x95a(@\xce\xdcq\x8c\x97\xfeM@J\x8f\xca\xfdU\x10H@\xfc\xd5\x960\x99\x89U@\x7f\x8fF\xb4\xb9\x88U@\xfd\xd0!\xb9\xdc\x99Y@\x0c\x87\xc6\xd9n{H@\x16o\r\x8d\x91.\\@\xb9\x1d\x81\xb6\xdb&.@o\x17\xe3\xf5\xd0\xd1\\@\xe1\xb2\xd4\xbci\xf9\x19\xc0p\xc5\x08N+\x01]@8\x9c\xc0)\xbd\x1e>\xc0\x8f\xb3\xe2J\xf5\xd5Z@\x15?\xc2A\xe3DN\xc0\x85\x04*g\xe3\xe1V@\x1e\xaa&\xfa|\xe6S\xc0\xe5\x9a\x88\xf2\x10\x0cS@W$\x93\xc7\xb1\xd0=\xc0\x89o\xd4=(cR@\x0e\x08\x97\xea\x1d\x17\x1e\xc0=\xb4io\x97FR@\xdb\x9c+\x9eG\x88)@\xe2\xfb\x08I\x8d\xe8U@\x00\x0b\xf7Xh[R@\x8f-.-\xfdyT@V\xe6y\xd9\xe9\xfc)@w\xe311\x02\xa0U@_\xe1\x11\x87\xc5?\x1f\xc0\x9e\xce\xe0z\x0c\xd7T@\xc2x\xa3\x90r%>\xc0' +p120 +tp121 +bsg59 +NsbsS'_eigenvalues' +p122 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I30 +tp126 +g22 +I00 +S'\xe2\x8e\x96\xe2\xd7\xe5\xdc@\x96\xf54\xfbF\xbb\xbf@-\xf8Vt&\x1b\xaa@\x85\x81!\x16\xc6\x02\xa3@Q\xa8\xc5\xe2\x86\xff\x96@BZ\xe8\xd7Re\x91@\xf9\xa7\xda$\xd6\xd7\x8c@&\xe8\xcf\x8f\xce\xdb\x89@3h\r\x0b\x88\xae\x86@\x82toF\xbc\xe5\x83@m\xa5\x94+\xcc\xdf|@\xb5\x0e\xf3\xe9:Cz@\xf0eR\xfb9.x@\x9e\xb5\x1e}Q\xbau@~\xb0\xd8\x98\xd2^n@t\x9f\x0f\xe4\xcf\x92j@iS\x86\xa0E&h@U7;&3rf@+\xd6\x1f\xdf\x1dJc@\xe9\xc8\x00\x00\x12\xb1a@\x1d\x03\x81\x83M-_@\\G\x8dK\xd3+^@\x1e?\x08,h]]@\xec\x92\xc4\x16f\x80\\@\x90\xf0\x16h3\xfdV@nq\x84\xeb\xe2\xb9U@\x90n=\xfeb\xeaT@ZF\xadmi\x08S@P%H\xedA\xb6R@\xed\x94q\x1e,bO@' +p127 +tp128 +bsS'_trimmed_eigenvalues' +p129 +g12 +(g13 +(I0 +tp130 +g15 +tp131 +Rp132 +(I1 +(I103 +tp133 +g22 +I00 +S'\x02M\xe3i\xa8\xeeN@\xea\xbb\xd7\xf9@\xd7M@U\xd7\xb2o\xda\x87L@Bv=\xea\xc5\xedI@S\x8e|r\x0c\x1dI@\x0cm\xdef\xae;G@\x8b\x82\xc1\x05T\xd1E@-\x17\x8b\xb1\x96\xaaB@\xd7d&\xf6m\xc5@@\x83\'Y\r\xb7\xa5>@j\xc4\x8f\x07`\xcf<@l\xecw\xaa\x19\xea:@\xf8y\x9cQ\xbe\xb19@)\x810\xba\xf4"8@P\t\xa3nEi6@D\x9b s_\x016@\x90S \x89\x84n4@\x95\xec\x83>\xca\x842@E\xce\x03\xb6%[1@\x037\xdf\x91\xcf41@\x91\xb0\xc1\xa2\xd8\x860@f\x97\x97&\x1eQ/@M\xea\xa6\xe1\x83X-@\xbd\xfd\xb7\x9cF\x0b+@\xc5WC\x9f\xfd\t*@p\x85\xa3[\xc3/)@vbEs\x8a\xb6\'@j\x8a\xdb\xbd\xea\x98&@\x99\x18\t\xa6 C&@\x91\xb2h\x02M\xd4$@VlN~\xe5.$@\xcf[\xd1\xf1-\xc5#@\x9dU\xb3>\xd2\x87#@\xfb\x89\xd4!\xc0h#@\xa7;\xed\x83\x9a.!@\x80U\xde\x1a\x04\xfa @\xad\xf9\xacx\x13\xaa\x1f@5*\xc4^\x13\x1c\x1e@h\x9c\x84\xf3&\xc1\x1d@\t\x00?\x83hV\x1d@G\xfbPr\xa2n\x1c@\x87F\xe5\xc5\xae\x94\x1b@U\xc2\xaeE\x1a\x96\x1a@\x7fv\xcf\xa71z\x1a@zN\x83\x89i^\x19@\xa9\xba\x82\x18e\x9e\x18@/lW)\xc2h\x17@\xf2\xddx\xd6\xa45\x17@g\xb4<\xc3\xf0\xf8\x16@^\x17v\x0e\xbc\x19\x16@\x04\xe3\x14\xea\x9d\xaf\x15@n\xbe\x1b\x1c[O\x14@\xe7\x1d$\x93\xbe\xcb\x13@z\xf5j-\xef\xb3\x12@\x02\x0f\xc8\x95\x9d\xbf\x11@\x05\x92\xa6\xbb9l\x11@_\x8d\x86\xd0\xbe\'\x11@\xa9\xa4Y\xee\xea<\x10@\xb4\x83Xn\x1a\x9f\x0f@\xbf\x1a\xb3\xd3\xc2\xeb\x0e@O\x04\x8aV\x84h\x0e@\x8c\xd5\x8di\xf8m\r@\xce\x99\x13q\x03\xfd\x0c@2\'ME\x19\xff\t@\\0q\xb3g\xf6\x08@\xbe\xe0\xac}\x06\xc5\x08@\xfc\x13\x06e,X\x07@\xc3\x03\xce\x8d\x98\xad\x06@FQ\xb57\xa8\xbf\x04@\xaf^\x8d\xfe\xb7\x01\x04@\x87\x12\n\x13\x93\x92\x02@V8\xa2\xa7BU\x02@X\x85`\x84_\x1e\x02@|\xba\xea\x02\x074\x01@\x83\xdc\x9c\xd4\x08\xb7\xff?\x8d\xcf#\xbf\xb9\t\xff?\t\x08e\xf6\x90\xb3\xfe?:\xfe\xeb|\x1aJ\xfd?\xe5\xb6\t\xf0lt\xfc?iw\x07c\xc9\xb8\xfb?P.q\xd4\x12\xe8\xfa?\xcf\x9f\x9c1\xf0\x0b\xf9?\xdfe\xcfD?\x94\xf7?\xd5\xf2|~Tg\xf6?i]Tx\x7ft\xf5?\xb4%\x12\x0e\xe8\x83\xf4?\xe6X\xd3\xdb\xa4\xe6\xf3?\xc1\x14\x1b}+@\xf2?\x96\xe3\x84\x95\x1b\xff\xf1?\xa0Y<\xbc\x99\xe8\xf0?\x97\x91#\x85I\x0b\xf0??K(\x7f\xafz\xef?\xb9xM\x00\xd2\xab\xee?w\xa7\x7f\xdd\x146\xec?g\xaf&\xa9\x0f\xfa\xe9?6\xb2\x8d\xea\x85p\xe8?*\x1d\xeec\xc5\xc2\xe5?\x7f\x8f\xd2,\xd9\xee\xe4?W\xf4\xeaE\xa3Q\xe0?\xb6W\xf3\xef\xa8\xe2\xdb?\xa6$\t\xb0\xf5L\xd7?\x8a\xdc\x1f\xbe\x1b=\xcf?\xe1\xa9\\\x9e\x9a\xe0\xca?' +p134 +tp135 +bsg11 +g12 +(g13 +(I0 +tp136 +g15 +tp137 +Rp138 +(I1 +(I30 +I136 +tp139 +g22 +I00 +S'\x896\x00\xdaw\x1f\xa9\xbf\xb0\x07Z&\x04\xc7\xd0\xbfP\xeeV\xd5F\xfb\x89\xbf\x86M\xdf\xdfe\x16\xd0\xbf\xd1\x18\xa5\xb0+,\x96?\xee\x01\xd2\xe8\xbd|\xcf\xbf\x83\xa4\x10\x12\xfd$\xa9?R\x02t\x12\xdd\xc1\xce\xbf\xa7]\x8f\xf9\x08\x99\xaf?\xa9\x1dh\x14E\x8f\xca\xbf\x18\xe7\xe5\x95S\xbc\xad?\xe6\x1f\xd9\xca\x16\x81\xc3\xbf\xee#\x85\x9e\xb0\xab\xa5?\x8f\xdd8\x9b\x93\xf5\xb5\xbf\x04\x81-S\x92\x01\x93?\xca\xd3\x8a\x0b\xf0\xf7\x96\xbf\xb5\x9e\xdao\xbcS$\xbf\x976\xa2>\x9e\xea]?\x86\xe8\xcb^\xa4\x9d\x95\xbf`\xde\xb7\xf0x;\x94\xbf\xc0\xff\xd7\x94\x95V\xab\xbf&e\xc8n\xf6Q\xb4\xbf/\x81\x03\xae\xa3\xb5\xb3\xbf\xc89\x89io/\xc2\xbf\x8a\x8el\xfe\x90\xee\xb5\xbf+\xe2\xc6\xb8\x9fl\xc9\xbf\xe0;F\x15\x13\xec\xb2\xbf\x8a3\x93Fm6\xce\xbf\x0f\xfa\xa2\xcf\x03\x97\xa6\xbf\x9a\xeff4\xe8\x98\xcf\xbf\xa3\xe1\x02\xfa_\xe6{\xbf\xd2\xd8\t\xee\x8a*\xd0\xbf\xc9\x02\x81\xc2\xc0\xd6\xa0?\x93\x14\x1c\xa5\xf7\xf3\xd0\xbf\xf5,h\x1b\xdf\xc1k?Z\xa4*;:\xa2\xac\xbf\xf8\xeb\xe6\x1c\xc7sp\xbf\xd0l\x8f\x10A\xf8}\xbfHZHr\r\xfe\x8d\xbf\x8c\xd7\x0c\xf6\x86\xb9\xa0?h\xad\xff\x8f\xfem\x8d\xbf\x9fdL\xad\x15\xa2\xb1?\xe9u\x86\xc9&\x07w\xbfF\x12\xf2\x04\xf7\xb8\xb9?\x91\xd74]\xb0\xe3\x84?\x12\xeb_\x86\x83{\xbb?\xde\x06B\xf5\\\xe9\x93?#\r\x8d/d\xfd\xb4?\x1d\xeb\x1e\xa9\x06\x1e\x96?\xd2\xd2w\xb3\xf3B\xa9?\x1aA\x0cY"\x07\x8f?\xcc\x90X\x12\xf1\xfd\x80\xbf\x93\x90\xc1\x95\x89\x8d\x90\xbf:5\xe6\xbb`Vr\xbf\x0e\xf6a`5\xc7\x81?\x0b\x19\xb9\x87\xa3$s\xbf\xb5E;UK\xc1\x90?Zk^\xe7\x8a\xb1c\xbf\x8f\x83\xc1\xcfW\xe0\x8e?^\x14%&nia\xbf\xbd\t\xf5.i\xfd\x8c?@*\x1a,\xd6Pt\xbff \xebt=\x98s?o\xc2A\xcal\x9d{?\xe6p\x15\x12CD\x95?\xbd\xd2\x8fs\xf4x\x84?\xc6\xaf\x91\x9c\xf4t\x97?k\xb1\x1aL\xd1\xd0\x83?5\x9c\x88ca\x81\x8f?\xbd\xbc\xd3v*\xed\x87?\xb2\x08g\xfeZ_}\xbfVn\x873\x81\xa2\x83?0\xbc\xc2j/\t\x88?u\xb0\xc8\x99\xa4\xa0}?O1\x1bq\xa5#\x94?x{\x8fq@\x18K?\xa1`\xd3dp\x08\x88\xbf~_9%\x1a\x18l?\xb9i\xe7\xc4U\xf3\xad?nX\xb6\xfa`\x99o?6\xc3\x83\xb9\x9f\x1f\xb9?\x1f\xd0\xdd\xd7K\x0em?,\xb5\x0c\xe9\x04Q\xba?b\xc9\x12\x04\x17\x96m?i\x1fU2\xf3\xd7\xb8?{%\xe6\xbb(\xf3(?\xe7\x1e\xfe\xa1\x9a\xf7\xac?\xf0`\xa5|c\xf2(\xbf\x80\xcc`\xd8\xc14x\xbfWGJ\xf6\x02Fj\xbf\x7f\xb1\xd3\x8b\x98\xfb\xa3?\xc4\xa9\x82\xb1\xd7y?\xbf}\x87\xe6\xc7# \xb3?\xe1\xb45\x7fl\xcag?9\xc9\x1c\xe9\x8c\xc5\xb4?\x01\xab\xcaJ\xed8y?\x03\x7f:\xb8\xc4\x85\xb3?\xa9\xd7u\x8e\x12\xc2\x81?\xdd_\xa2z\x964\xa5?\x17~X\x86\x16\\P?y\x11\xdd\xb2\x9b\xafr\xbfRX\xb6\xf2\x85Fh?\xb0\xdaE\xd4\xd18\xb7?\r\x16\x1aa\x03\xe3\\?\x0e\x08\x07;\x1e\x8b\xb8?\xf2\xa0\xc1\xa2D\x837?\xb6\x86v\x07_\xd3\xb6?\x7fy\x0f\xa5\xaa"R?\xf5%\xbe]\xf5\x07\r?9\x9bJ\x9cn\xc64\xbf\x8d+%\x85\xfcp\xb5?\x19\xf1w}\xa6\xect?\x92\xd0J"F\xf6\xb6?\xc4\x94\x05=\xa0R\x84?\xb5\xbd\x05O\xd2\xac\xb5?\xc1\xfbkq0\xf3\xd0?\xd2\x12)a\x8a9\x93?\xbcS\x8a\xed\xae6\xcf?\xe3\xb4\\u(\xa0\x84?\xd3\xdf\xe6\xf8{\xd7\xcc?8\x01\t\x9c\xf4nw\xbfG\xfb\x03Uf#\xcb?\xa5\xfa!3\t\xac\x93\xbf\x9e{\x14:\xc2\xeb\xc8?\x81D\xe1f\x05\'\x9f\xbf;0a8:\xae\xc5?\xe0\x858\x9b\x94j\xa2\xbf\xa3\x03*\xc8\x96\xc1\xc0?u\x04\xae+\xca-\x9a\xbf\xa0^\xfe,2"\xb5?U\xc9\xa6\xb3\x1c\x98\x86\xbf\xbbM.\xe5\xbc\x87\xb1?\x034 o\xb3\xf3\xcb>6\xfe\xf4\xdb\xd0\xac\xb3?\x1e\xdc}\x1f\xc9\xbc\x89?\xf2+\x9c1u\xb8\xbd?C\x9bI\xcft\xc4\x98?\x11>\\\xcd\xf8j\xc3?\xc9\xdf\xa1\x84J5\x9c?~\xbc\x8c\xba\xf9\xa0\xc6?!\x80\xe0\x91\x0e\xc2\x8b?m\x8aK\xa6\xc8\x02\xc9?\xb3_d\\\x15qo\xbf\xf8\xbfg\x13\x06|\xcb?Y\x83m\x1c3W\x91\xbf4w\xa1\xc45\xa5\xce??\xc3fD\xf1\x93\x9c\xbf\xaf\xd3\x88\x1d\x16E\xd1?$\xb2F\xc8vX\xa1\xbf+,Z,\xf7\n\xb1?\xbeYI\xb6\x8e\xc5\xa6?\xb3\xfe#\xdd\x18\xb9\x90?:\xa2\xb1!\xf0\xa6\x8b?\xf18J\x1e\x89\xa3\xa4\xbf\xfc\xc9\xc7\xc8\xbe7~?S\xd6V\x90\x0f!\xb3\xbf\xa4\xba8\xac\x1cm\x91?\xcd\xf9`\xa5\r\xe0\xb4\xbfa\xf9\x069\x95p\x95?N\x1eFF\xfb\xb4\xb4\xbf\xbd\xd8\x9e\xc3\xc3n\x7f\xbf\xc0\x1a^\x02i\x92\xb2\xbf\xa1\x18D\xfc6R}\xbf6+\xcfB2r\xa4\xbf!A\xd2\xca\x81a[\xbf\xa9\x0e\x94\xfd\x1d\xaa\x8b?\xde2-$\x8d\xd0\x87\xbf}Q{\xa1\x86`\xae?\x11\xc6^\xdb;\xd3\xa4\xbf\x8b\xa2\xd4\xbc\xd7\x16\xb1\xbfE\x9d\n\x84x\rn?b\xc2\xf9\xba\xdd>\xbe\xbf\xe3\xa5%\x99p]p?\x0c\x867-_\xf9\xc5\xbf\xe2\xda\xcew\xa9Yr?\xed\x05,\xa3\x02/\xcc\xbf\xa1\x9f\x96\xac8\x81q?\xf0\xb67\xd3\x96T\xbe\xbf\x11\'\xce\xf3m\x9c\x8a?\x1c\x8f\xdd\xb5\x8e\x19\xc1\xbf\xf7\xb7\xd1\x9d\xe6\xa7\x86?\xaf\xbd\x12\xcb\xc9\x94\xc2\xbf\x8aJ\x9e\xe8fSg?\xc7x\x8f(\xe4\xfd\xc0\xbf*\x07\xcc)>\x18r\xbf\xf7\x8d\xd4mu\x81\xbe\xbf\r\\\x01\xd6x\x87\x81\xbfx\x0b3s\xad\x89\x9f?g\x90s\x04\xb9;\xa3?[\xef\xa0\x07Tp\x88?\xef-t!\x12\xd1\x9b?\rF{\x0b\xaf"U?\x1a\x9f\x00\x9f\xa8\xe5\x8b?\xd5\xf9\xa8\xc0S\x90\x83\xbf%\x87Y\x1d,\xbc\x89?\\\xd0\xa3y\xe9\xaf\x8b\xbf\xd2\xd5\xeb\x7f\x11\xef\x97?\xfd\xae\xe0hGWu\xbf\xc0\th\x17rq\xa3?\xad`\xde\x185\xa6\x88\xbf\x95\xcaL\n\xe8\x9b\x81\xbf<\xc0\xf9\x8fbX6\xbfwv\xce\xc9\xbdB\x80\xbf\x16\xf1q\x07\xff@\x81?\x99\x956\xda\xca\xe5\x93\xbf\xb4Wa\xce\xb01\x99?d\x14\xca\xe8\x0f\xb2\x9f\xbf\xbf\xe8\xfa\xcbd\x18\x7f\xbf$\xa5\xcb\xaa\x13\x04\x9e\xbf6\x02\xe9\xbf\xde9\x91\xbfN\xfc\x0fv\xd1\xce\x92\xbf.\xa8\xc6$U\xd9\x95\xbf\xba\xd1P\xcf\xac\xb6\x84\xbf\x11\xbb\xc9Q\x94\xc3\xb9\xbf\xcc\xde\xf7\xd9\t\xb9\x8f\xbf\xc5G\x95O\x83\xf1\xc0\xbf\x97x\xf9\xa6H\x90t\xbf\xfdR\x97\xd4\xecp\xc1\xbf\xads\xe8SX&\x8c\xea\xb1\x19sd\xbfrY\xf5{\xf0\xd4\xbf\xbf\x88\xb1\xac\x90\xe3/\x90\xbfa\x19c\xa1#\x90\xc1\xbfhN\x7ft\xf6j\x98\xbf\xdd\xa2\'\x13\xb1\xb2\xc2\xbfn\xbd\xe6\xe0\xa6\xc5\xa7\xbf9\x05\xbden\x10\xbf\xbfD%\xa0F\x98X\xb5\xbfb\xdd\xe5j\x1e\x96\xb1\xbf\xe9\xac\xeb\x8a\xcb;\xba\xbfed\xfar;;\x98\xbf\x80v\x01H\x82>\xbc\xbfd\xb7\xf0\x7f0\xfc{?#\xbb\xc2\xed|\xa3\xbb\xbf\x9ff\xa0\xe7\x8d:\xa0?\x7f\xffz]\x14\xc1\xb2\xbf;c\xabV \x98\xb1?\xc7+\x0f\xae#\xa7\x99\xbf\xe0$\xda\xa4\xd0\xd8\xbd?\x0c3\xca\xb0\xa33y?\xc8AV7%{\xc2?\xd9\xac\x9e\xf6M\xaa\x84?a\xd3\xf9\xa8*;\xc2?\x8d\xf2\x94\xc1\xf4\x9d\x88?\xe1\xc9x\x02^\x17\xc1?\xd0\xba\xe7\xd5\x06H\x8e?)/$k\xd55\xc2?)g&\x1c%Or?\xd0\xc7p\xfa\xba\xda\xc4?\xef+\x8b\t\xa8\xa7\xc2?^E\xbdb\x9e\xd3\xc6\xbf\x0f\xdc\xb5\xa4\x91\xea\xbf?%\xbe\x105\x0b\x88\xc3\xbfn\xf7\xe95\x04\xda\xbc?\xf7{u8\xde\x1d\xbd\xbfE\xb1R\xbb?7\x86\xb8\xc3\xd6\r\xbe?\xf9M\xc39I0\xc3?\x86U\x97\xef\'\x80\xc1?\xec\x9e\x04\xd0\x05\xb2\xc7?\xa9\xff\nVLt\xb2?\xf6\xae\x1c2,\x8aB\xbf\xd0e\xc8\x11*\xac\xac?\xe6\xd9\xa5\x9c\xb3@i\xbf\xac"\xcd`\x13n\xa4?3\x96b\xef\xa8vw\xbf\x96\xe9\x9f\xfa\x84G\x9a?\x9e\xe8@tl\xd3\x7f\xbfa\x04\xc5\xf8\xc5\x96\x88?v\x95\x8b\xc1\x1bQ\xa5\xbf\xbe\xc4\x84\x8e\xe3\xc4{?\xf9\xb1\x16H\xbf\x1c\x97\xbf\xf6mT\xb3/\'y?{\xc4Iq\x17\x02u\xbf\x8bv\xd7,\xe2\xbfo?\x1cE$\x98\xdc?\x84?\xeac8L\xcc\xe3\x80?/\xf4\xea\x0b\x81\x00\x9a?t\x84,,a`\xb4?\xc2vn\x92\x83U\xbe\xbf"a8,?\r\xb7?k\xe0\x1c\xb0\x17\x92\xb6\xbfU\xb2?g\xba\xd6\xb6?m5\xcc\x96\x8bB\xb2\xbfd\x90\xeeb\x0f9\xb6?\xa1\x9a\xea\x98\x0bh\xa8\xbf@\x1b\xff\xa4~\x91\xb3?\tq\xb3N\x9b\xe2\xb1\xbf9\xbbpRF\x92\xb3?\xc4\xa5\xed\xe4\x02.\xb7\xbf0:-\x93]\x97\xb5?\xb6a\xc7\xef\xda\xa3\xa6?\x80\xb1\xa7\xf3\xdb\x96\xb5?\x15\xe9\x12\x93g\x84\xb2?\xcc\xb9\x84f\xa4\xa3\xb5?W~7b3\xaa\xb6?2\x8fO\xa0\xfd\x0b\xb3?\xd65\xf8\xd9^b\xbe?\x91\x06\x8f\xde\xb2S\xb2?\xb2pF\xbf\xdb>\xb7?\t\xe8\x93\xcf\x9b=\xb3?e\xe8N|F\xf5\xb1?Q\x9f\xec\x92H\xd3\xba\xbf\x0c\xd8\x07\x93;\x05\xbb\xbf^\x1e\xc7\xfcD\xab\xb0\xbf\x1bX\x08t~\xe2\xa7\xbf\\+\x8eT\xe3n\xa9\xbfN\xb1R\x88\xdbs\x93\xbf\xb6\xd1\xf8+cL\xaa\xbf75O^toF\xbf\x94\x91t\xb9\x17\x95\xaa\xbf\xc6to\\\xd0O\x99?\x13\x80;^$\xb1\xb1\xbfB\x15V\xfc\xf3\x91\xaa?\x08%\xc0\xeb,k\xbc\xbf\xda\xd7\x07\xd8\xe6{\xbb?\x96>\x8d\x14(\x9f\xbf\xbfT\xf1k\xea?0\xab?\xeb\xe1c\'\xbe\xda\xc0\xbf\xbf\x19\r\xb6\xb8\xa7\xa8\xc0\xbf\xafC\xcae\xe6[V\xbf\x13\x99\x85r\xedr\xc0\xbfS\xf5O\xefE\x9f\x92\xbf\xdd\x9b\x9d\x86\xc9B\xbe\xbf\xd9W\xda\x83\xbf\xea\xa9\xbfj\x0b\x8e\x93\x19D\xb9\xbf\x85\xf6\xd4\xf4\xbf\xc9\xb8\xbf\xd8\xaa\x80\xe7S{\xb1\xbfQ\xa0\xe5\xd0\x99L\x95\xbf!f\xb2\x80\x91\x9e\xb0\xbf\x16\xf0\x85+\xe5\x120\xbf\xfd\xebgr|\x1c\xb2\xbf\x07%\xe1TdL\x9b?Z\x05\xd7\tv\x1a\xbb\xbf\xd8\xc12G\xa8x\xb9?\xfb*:\xfeW\xf9\xba\xbf^\xd2\x1b}\x96\xa3\x9a?-\x94\x8f\xd2\xf7y\xba\xbf_\xbfc[\xb5\xb6H\xbf\x9c"F\xa6 \xfc\xb9\xbf"\xa5a@\xa7a\x95\xbf\xbc\x90X"\x1e4\xb2?\x87\x13\x87qE\xb2\xb4\xbf\x1a\x96\x16\x90\xdb2\xb1?\x81\x9c!\xd3\xefo\xb2\xbf\xb0\x9f\x1d\xb5 \x9e\xae?\x93\x89\xa8n\xf4t\xad\xbf\x9f\x16\xaeN\x02w\xaa?\r\x8f\xc9\xd3\xfac\xa6\xbf2\x93\xd5#\xba\xde\xa0?\x06Ig\xc8\x1fb\xa2\xbf\'~JC\x1a-p\xbf\xfa\xfe\x9bd\x89\xc8\x9a\xbf\xd8\n\x0f\xe6\x91\xc1\xb1\xbf\x06V\xd5\x10`\xef \xbf\xb3\xe1Wj\x93n\xc2\xbfs\x8b8\x12\x0e\x84\x90?\x83\xa9\t\x01\x1b-\xc6\xbf0R\xe1\r\x8b\xdb\x80?O7\xa0)\x82\xc7\xc3\xbf\x97fO+&\xa3"\xbf\xe8U\x1c2\xa3\x93\xb7\xbf\xe9^\xa7\x989\x8c\x8e?\x1a\x86k\xed\x0b\xbf\x9b\xbfdev$[\x1b\xa1?a\x9d\x10\x02U\xa5\x93?\x9c\xae\xb6\xe4\xcc\xcd\xa0?\xad\x08\xa8j~\x06\xa9?F\x9b\xe1\xe7\x0b=\xa1?\x94\xb5:\x81\x16\xb5\xb1?\xc2W\xc5\x8e\x91\x88\xa8?J\x8e\x02\xb1[\xdd\xb2?St\xea\xfd,\xc5\xb0?F\x8e\x14\x8d`\x8b\xb3?S\xa4\x9d\xae\x00\xcf\xb3?OC\x95*<\xb9\xa8\xbf\xf5\xe4\xa9\xb2\x9f7\xa1\xbf\xb5\x0e\xc2S\xc6\x84\xab\xbf7\x14\x03\xa91\xc5\x96\xbfaj<\xc8\xa2\x96\xaf\xbf\xc3\xc7\xdd\xdb\x19Z\x87\xbf=U\x05\x05&s\xb0\xbf\x8bQ\x86\x81\x90\xb75?$\xb2v\xb3\xc5\x1a\xb1\xbf\xba"\xba}\xb8h\x91?)\xc0=\x98N\x1d\xb1\xbfl&\xf4\x9f\xa3tR\xbf\x86\x97\x0f\xac{\x16\xb0\xbfuz% \xdc\x99\x81?\x13\xd3\xe3\xba4-\xb0\xbf\xee0\x02\xd3\x85$\x92?\xcb\x1d\xd5\xc8\xe5\xb8\xae\xbf^=\xfd\xf2R\xfe\x97?\x98\xcd\xbe\xbf\x84\xfd\xab\xbf\x00\xfb1\xba\xa5.\x9f?<\xdb+\xcf\x90t\x86\xbf\xe67D\x8e\xb0\xf2`?(\x02\xf1\xf3\x15\xaf\x9a\xbf\x8d\xbd2\xe7\xc8\x0cY?{0n\xafa\xcd\xa5\xbf\x8aVj,\xda\x0fA?#\x0f\xaa\xec\x0c\x18\xaf\xbf\xe6Z\xd8m\xf6\x11R\xbf\xa0z\xe2\xe78&\xa5?.\xff\xfa\xf8H\xab\xaa?N\xf0y6\x91\t\x93?\x01\xac\x1bb\x8dW\x9f?\xb7\x8fCQ\xa2^q\xbf\x8ev\xe6\x87/\x9b:\xbfm\x97H(\xb08\x98?\xb1>\xac\x1cC\x1c\x9d\xbfE\xe5\x05\xb1\xe9\n\xa7?)\xba\xceM\x81\xfa\xa8\xbf\x0f\x8f}W\x19f\x8b?\xf9\xd1\xfbGa\xbe\x94\xbf\xed\xd9\xbaN\xf5\x1e\x84\xbfZ\x9f\x0f\xfd.\x19\x96\xbf\x9d\xaf\xb0\xec\x85\xed\x8c\xbf1r\x82\xc03\x95v\xbf\x06.\xf8\xd7Vg\x85?\'\xa5\x9eX\x02qx\xbfFp\x86\xa1\x98\xe5\xa3?\xfe"\x9c8\xfb9x\xbf\x0b\x13\xc7\x89\xbe\x10\xa6?\xd2?\xebW\xe7\x15\x98\xbf\xfd\xa1\xe4\xb4\x183y?\x9c\xc5J\xde/j\x8a?\x1d\x90f\x1b\x18\xe4\x93\xbf\xfb\x88\xd1lA\x98\x80?VC\x1f\xb7\x11\x08\x8f\xbf5)t\x9dg1\x9a?\xf4\xdc\xb5A\\\x15\x83?\x8bd\xa6R\xb1d\x9a?r\xb4\xd6\xab\xf1?\xa2?\x7fN\xd7b\x81a\x9d?\x0c\x81\xb7|Q\xf5\xa1?@\xdb\xa1\x8aIR\x8a?\xc8\x85\xc9\xc6\xddL\xc7?\x90g\xc3?\xdb-\xc8?\x9c\x83)8t\x0c\xc4?\xcc?\xf4t1\xb6\xc2?\xc0j\x12\x8bJ\x93\xbd?X\xea\x8b\x0e;\xd3\xad?vjN&w\xab\xbd?\xc8\xce\xa8%\x86\x93L\xbf1\x90;Y\xef=\xbe?\x99\xb1B\xf0\xbe\x86\xb3\xbf\xe0Q`p>\xf6\xc4?W\xb0\xca\x9e\xec\xa7\xc3\xbf\xc9@\x0b{\r\x05\xc8?ifx\xa1[&\xc9\xbf\x03\x96^H\x87}\xae\xbfk\x14#2\xe3\xdf\xc4\xbf\xab\x9e\x1c\x1ao\x93\xc6\xbf\xc5\xcd\xb8\xcd2\x04\xb5\xbf\x15C\x87\xa0\xdc\xca\xc8\xbf5\x90\x98\x01L\x06^?c\xa6oX\x18&\xc7\xbf\x86>A\xebV\xa8\xb1?\xfel\xf4\x02A;\xb2\xbfL\x91=\xe8\t\xf5\xc4?\xc0\x94\xac\x08\xa2^\xc3?\x88\xdb\x1b\xd7m\xe5\xc8?\xed\xf8&T\x99&\xc3?\xfb\xe0i\xd6;\xbe\xae?\xdb\xe0\xc1&\xc8\n\xc2?V\x15\xfem\xc2\xc0L?\xef9\xcb\xfe\xc5\xa7\xc3?\x8f\xaa\x93Zp!\xb3\xbf\xf9\x94\xdet\xf1J\xc4?\xfdT3\x82\x86\x92\xc9\xbf\x1cS\xb3n\xac\xaf\xc5\xbf\xf61YoZO\xb5\xbf\x14\x00&c\xb3"\xc8\xbf\xbaj\xed\xe6\x06jV\xbf\x95+\xcf\xc78^\xc6\xbf2\xcb%\x0b\xae\xf9\xb0?&va\x92\xd2\xa9\xb5\xbfaa\xfdI\x81E\xa9\xbf\x14Jq\xda\xd8P\xe0\xad\xa5?\xc1\x8a\x8f\x0b\xec\x89\xc4\xbf+"f\xbb\xb9\xbe\xb5?=6\xf3\x08(\xee\xbf\xbf\xd3P\xaa\xd3\x93\x9e\xc0?\xb9\xd6Z\xa4 \r\xb4\xbfk\x014MV\x08\xc4?\xe9\xe8\xf7\x82_z\x93\xbf\x81|\xc3\xffW\xdc\xc3?\x9b\x90Z\x91\x9c\xb2\xaa?h\x0c\xc6b\xd4C\xbe?o\x9f\xf0\xd2\x036\xbc?\xd5\xe3\xe9\xdet\xa2\xb0?\x7f\xe7\x99\xd1Y\xea\xc2?\xc46\xb4\x16`\xd8\x91?\xe1\xec=\xc0\x82k\xc5?\xb4\x107\xa5k/\x9c\xbfv\xea\x1dL\x05M\xc5?\x87\xe7\xb7\x89\xd8\xf5\xb1\xbf\x98X\x1b\xc3\xbe\xc0\xc2?%\xa4\xe3\xfe"\xa2\xb9\xbf\x07y\xbe\xa1\'\x9d\xb9?\xe1|\xc1\x18\xfe$\xbc\xbf\xcb#\xab\x8dj`\xac?\xb2Tj]tkn?>\xc1\xf7\x84\xdb/\xc7?\xe6\xbd@#\x9cu\xad?H\xf6\x0f\xad\xe8t\xc8?\xc6a\xeb{\xb2\xaf\xb6?T^K\x06\xf8\xb1\xc5?\xad\t\xc7t\x8dh\xbb?\x8e^|\xd7\xb8\x99\xc1?\xe0\x19 \xc0=)\xbc?U\xa5\x8e\xc0\x8a\x1f\xba?\xf1\x90\xb4C\xcaI\xba?\xb2=\xefL\xa6\xfc\xbc\xbfL\xaeZ\x93S\xa6\xb7?\xed\xeb9}\xdf\xe6\xc2\xbf\x17\xc7\\\xda\xde\x03\xb4?\xb9\x0e\xf3\xc8\xc8\n\xc6\xbf>\x96\x0e\xc9\xc3\xb9\xa8?N\x9b\x0e\x88\xcc\xa0\xc8\xbf\xc0f}\xca\xd2_\x86?\xa4Mu\x83:e\xc8\xbf0\xe6\xc3\xe0\xce\x84j?\xcfd0\xeb\t)\x81\xbf7\x81M\x9a\xf7\x0e-?\xc8\x9c\xe8\xb2\x17Kq\xbf\x9a\xc6\xbb\x88\x82]\xf5\xbeY\x88mu\x93\xd3Y\xbf\xa1\x9a,\xed\xf2\xfbs?V\x17\x04@@\xb6L?_\xe8\xe1\xb8wWz\xbf\xdc\xed]\xc7fWq?q\xde\x16Iw`\x8d?\xef\xe4\xe4@\\\xe7t?\x18\xe9\xec/x\x10\x97?~\x17X\xcdz\xdb\x87?\xeafW7t\x8e\x86?)\xba\xfb\xe7\xc7_\x8d?|\x13\xabRp\xf1\x7f\xbfo\xfd\xdfE\xf0\xeb\x84?M\xda\x021\xedd\x89\xbf\xb7\xb9\x9a\xd9\xa4\xc4\xc3?\xe7/l\xf5M7\x92?\xde\xf2\x99]\x93\xa5\xc0?K\x1c\xa9\xcd\xd1\x13\x8c?E\xa6\xde@\xfd\xa1\xb5?\xdc\xc4\'K=\x17\xa1\xbf\x8aF\x97\xa2\x18$\xab?\xcb\x9f\x8ez\xfb\x0f\xa5\xbf\x17\xca\x8eR\xb3&\xb6?0\x17\x98^\x03\xfa\xa4\xbf\xcb\x85Fc\xa2y\xc1?\xae3LH\x8d1\xa4\xbfAb\x88f\xaa\xd8\xac\xbf\\\x9c\xa0\xf8\x96C\x7f?U\xe6\xa5=G#\xb6\xbf\xfe=\xb3\xda\xc5I\x85?\xe6\xf3\x8f\x1b\xc2{\xc0\xbfy\n\xf5\xca\xca\xc0\x93\xbf?\xb1{\x1c\xcbx\xc3\xbf\xab\xb3\xb0.LM\xa7\xbf\x95\xd8/\xd2\x81\xed\xc1\xbf\xdb\xba\xb8\xce\xac\x8d\xa9\xbf\xa7\xb0\x0f\xc4\x9d!\xb8\xbf\xb8\xdeo\x95\xef\xd8\x8c\xbf\x15\xe5\xf8]?\xbc\x9e?w\x1csV\x14\xd5\x86?\x03\xd7}z\xdc\x0f\x9f?\xc99(\n7\xeb\xa0?\xc9&\xc9\xa8\xc0\xb7\x86?\xe0\xac\xed\x931\xd4\xa0?\xa7?\x90*f\x85\xc0!\xb2\xbfq\xfa\xd6\x8d\xb4*\xaf?%\xc4\xd8\x9eOe\xb4\xbf\xb7\xc9\xa9\xa0\xe0\xe2\xa5?s\xd0c\xc6\x8c\xe4\xbd\xbfRg|\x9fu\x8d\x95?)\xc2\xbf\xd2\xb2\xd1\xc1\xbf\xa1\x1d\x1cX\xad\xe7\x8f?\x03+g\xbe\x8f\x1f\xc0\xbf\xa0\x01\\\r+\xfe\xa6?I\xe6u?\xb0\x1c\xb8\xbf\x8b[\xa8\xea`o\xb4?\xb7\x1bE\xf9\xee\x93\xb1\xbf`#\xd9\xce\x1d\xae\xbc?7\x9f\xf0\xa4!k\xaa\xbf`\xd0\x83e\x03E\xc1?\xdd\xb9\xd4\xb3=\x16\xa1\xbf\xd4\xd5\xafN$`\xc1?\x9ach\xbb\xe4t\x8d\xbf\xc3\xbf\xf0LS\xbc\xc1?;\nt\xd4\x1e\xb2\xb8\xbfh2hn\xe9 \xac?\xc1t\xaf\xfbo\x1a\xa1\xbf\xb1\xe4\x18\x8c-/\xb7?f\x11\x9c\xb3\x8c\x8a\x85\xbf\xa7\x1f\xed\xfd\x1e\x9c\xb1?\xed&*\x82\x98\xca\x82\xbf;?n\xbf\x19\x86\xa7?\xb3\xac\x80\x03\xed\xe4\x8c\xbf\xd2r/\xa0\xfep\x96?\x15\x87\x8e\x89\x7f\xf9\x8d\xbf\xb1s\xd2\xcfX\xea\x94?\xe2\n\xc5\x94\xc1\xef_\xbfd6\x9f\xa46tF?\xf9N\x10\xe6B~k\xbf\x95L\xe8&\x18\x88\x91\xbf\xc3Na\xb4\xebB\x8c\xbf\xf6\x0c$\xae\xd1;\xa4\xbf\xb5\x91UI\xd7\x07\xaf\xbfM\xf2a\x0c\xbb\xd2\xa0\xbf"P\xc0\xcds\xf7\xb3?\xfe7\x17\xeb\xda(\x8a?\xfe\x83\x1f&\x04\x19\x92\xbfz\xad@\'\xd5\x1e\x80?q,sD\x06+\xbd\xbf\xd8i\xaa\xad\xa8\xcbo?u\xdd<\xb9|\x97\xca\xbf~5.JJ\xdb!\xbf\xb8\xc5\xb3K@\xe9\xb2\xbf \xf4\x8c\xaf\x99\xed\xa3?\x9b);\xf4\xbd\x9e\xba\xbf5\xc9;\xf6F^\x97?\x13\xe9\xe7\xb9\xd5\x87\xc0\xbfP\x1e\x93\xbd\xbbIq\xbf\x7f8\xbc\xb6\x80\xbd\xb8\xbf\xe2]>!\xd7\xeb\xa0\xbf\xba\n\xb0\xd8\x03D\xb1\xbfkT\x95\x12\xf7\xdf\xaa\xbfq\x9d\xc8\r\xc2\xc5\xb7?\x14\xd6T+\xd0\xf1\x9a?\xc1\xca\x8e@g\'\xb9?9\xa8>{*\xe0\xa2?\xab\x123\xb8\x1e\xd3\xb8?*\xf7\x10\x8f\xdf\x08\xa4?\x8f\xf6\xdch\xf8I\xb9?\xee\xe8\xbf\xa6\x04\x1f\x98?\xa7\x93;J\x85%\xbc?".\x9e\xf5\xb5\xba\xa0?5\x88Y\x0f\xd8\x89\xba?y\x15\x16\x92P\xbc\x9f?ezH\xaa\xe3\x9a\xb8?\x87\xba\x081\xed\xd5y\xbf0\x0f\xf6J--\xb8?\xcda\xd7V\xa7\xc0\x97\xbf\xa0X\x02\xd0\nn\xb9?\xe2\x05\xf6\x1f\xd8v\x91\xbf\x9e\x08\xce\x00*\xaf\xb8?\x88\xa5\xcd\xfa\x15\xe4{\xbf\xd2\xb0\xf1[\xed\x98\xbb?y\x10.\xd1:2\x8e\xbf\xca\x94\xbbcp\xd0\xbc?\xd2NF^\xb0s\x94\xbf\xecnbmQS\xb3?\xf0\xa8\x135\xf2\xe9\xb3?\nx\xe7@R\x96\xb3\xbf\xfd\xfa}\x1f\xa1/\x92?a\n\xf8\x98\xd2\x9f\xc3\xbf\xa3pZ\xe4\xb7\xc4\x8e?)\xed\xc8U\r\xcc\xc4\xbf\xf9\xb0\xe5\x18\xc6/\x96\xbf\x87q\x8c\x81\xe1-\xc3\xbf\x89\xc2\x89\x13V\xd3\xb3\xbf\xfe\x015Y\x184\xb3\xbf\xa0\xa5\xb7\xa6G\x06\xb6\xbf\xdb\x0b`\x19\xc0D\xb3?$j\xa6\xaa\x01\x07\xc0\xbf\x00\xd9\x8f\xb5\x92\xf5\xc5?h6Nw\xdc\x86\xb5\xbf\x17\xaf\x05m\xcb\xf2\xc9?h"\xfd0\x87\xba\xb0\xbf\xce\xd7\x10\t\x18\x8e\xc9?\x02\x14WO\x8f\xa0\x8a\xbf\xafY\xdc\xe5y\t\xca?5 \xfb\x9eZ\x00\x91?{0\xd9LRL\xc5?\xc5\x15\xfc_f)\x99?\xe0 \xd9\xf4\x96\xcf\xa9?\xb5\xa7\xc5\x1a\xa0Z\xb5?\xed\xc34b\xca\xed\xba\xbfz\xe9\x11i\x0f_\x95?\xe9E\xd6\xe7\xb1\xc1\xbe\xbf\r\xd2\x9d\xc7\xec\xb9\x93\xbf\x811\xab\x9e\x99\xb8\xb9\xbf\xb3\xd0\xf8%S\xfa\xb3\xbfd\xc0\x9e\x16\xff[\xad?\x83<{)\xe4f\xc1\xbf\x90^\x9b\xc3\x8a\x94\xc3?\xd8O\xa6\xf7sj\xb2\xbf7\x11\xc6\x07\xa8k\xc2?\x85f+\x9fz\xcc\x91\xbf#1\xc7\xde"3\xc3?3\xce\x17\x93\xf3@\x92?\x90\xcb\x9b\x03\xad\x04\xab?\xc2G\x9a\xe2\xc4\x92\x8b\xbf\xa2:\x80\xa2\x19b\x94\xbf\xff\xf7\x89\x8a}\xa1\x91\xbf\n\x91\x1b9\xa1\xaf\xbb\xbf\xaf\xdc\x1d\x05?\xbf\x99\xbf\x130\xb7A$\xb4\xc6\xbf\xae\x87)\xfc\xc6\x93\x9f\xbf8\x059\x80\xf8K\xcb\xbf(y\x1e\xb7\x1ft\xaf\xbf\x86\x9792(\xa5\xcc\xbf\xe5Si\'\x89\xc4\xba\xbf\xc8h\xc6Pb\x05\xcb\xbf/\xe1\x8a\xa4\x82\x87\xbf\xbf<\x8d\xe6\xf2\xb1\xe5\xc0\xbf\xd7\xac\xd2\xf0\xd0\xe2\xc1\xbf\xed\xc9\xbe\xe9\xfc\x8a\xad\xbf\xa2P\xd5\x90\x05"\xc4\xbf\x1d\xaa\x82\xe6\xfc-\x8d?\xea\xae?\xef\xb5\xf4c-u\x9b?7\t\x90\x8e\x16G\x82\xbf#|\x15w\x90\t\xac?_\xc3X\x8aO,\x97\xbf\xc4\xfe\xb0c\x01\x03\xb0?8\x0e\xcdMg&\xaa\xbf\xe7\xc8\xc1\xa0\x0f\xc4\xa8?\x02\xf6\x80\x90\xab\xd3\xb3\xbf\xc6w\x8f\xdd\x9b_\x92?\x8c\x89\x1b\xe7\x18\xf5\xb7\xbf*\xdd\x0b\xa6\x1dZ\x95\xbf\xbd\xf3\xb3\x0ca\xcc\xa9\xbf\x06\x97\x11\xbd\x978\xab\xbf\r\xdb\xe36I\xb2\xb5\xbf\x83j:<\x19!\xb6\xbf8\xc8\xb0k\xb7\xdb\xbb\xbf\x16\xe1D\x99\xa0\x96\xc2\xbf\x02\xd1^j]F\xbc\xbf\x1fl\xb8\x93,\xda\xcb\xbf\xab\x89\x11\x03\xc9>\xb0\xbf\xf0\xd0\xc3\xf8\x84(\xa1?\x04_\xbb\xb8\xdc\x98\xac\xbf\x04\xfe\xe8\x033\x7f\x93?\x15\xd0\x9d\xe0\xea<\xa6\xbff~\xc4#t\xaao?\xd8J\x8f\xb56i\x9f\xbf\x18^\xc3\xc7pS\x8e\xbf*\xdb\x86\x97\tJ\x93\xbfh\xf9}\x1d\xf4\x8a\x99?Z\xee\xef?X\x19\xa0?\x9e,\x03m\xb1\xf1\x81?/RB\x8d\xc7\xa0\x99?\x8f\x19:\xb7\x10\x1a\x81\xbf@\'\x98\xa3\x9c\xd9\x93?v2}\xfe\x86\xaf\x94\xbfZ*\x8ck\xc27\x8d?\x14\x91\xc1\xdf[T\x9d\xbf]\xb2\xab\n\x12\'\x8e?\x9b\xa3\xb4\xab\xbe\x9d\xb6?\xaa;\x085\xe0\t\x9d\xbf\xb2\xd8\xceDU\'\xb1?K\xc2po\xb8\x08\x9e\xbf\xd5\x8a\xe3j\xdeX\xa9?\x93\xb3\xa0\xc3\xf2;\x94\xbf\xe9\xf6T\xac\xb3\xe8\xac?/\x11\x0b\xc8e\xad\x90\xbfi\xe3\xf0wj\xec\xb2?\x15\xa5\xcb\xe1\x96x\x8f\xbf\xf4\xfb\xb4<\x0e\xec\xb5?\xff\x05;\xd9 W\x95\xbf\t\xd4\x063\'\x0e\x8f\xbf\xc0R\xda\xc2x\xa3\x93\xbfY\x08\xca\x10\xb8S\xa9\xbf\x82<\x03\xdbYP\xa5\xbf\xef\rsB\xae\xb6\xb2\xbf\x86rx9w[\xa1\xbf\xecc\x1a\xf6\xb8\xc7\xb2\xbf\xaf\xb7\xf4\x00\xf2\xce\x99\xbfrxp\xd3\xaf\x1c\xaa\xbfh\x17B\x95\x04\xc7\x92\xbf%\x85\xb8\xd4\x10G\x9f\xbf\x14\x81\r\x8b\x10q\x94\xbf\xe2Sh\x1a\xeaP\xa5?>Reu5\x15\xbe?\x13\x12\x0er\x99;\x90?&\x1d\xc9+{\xcf\xb7?iz\xef\x17\x02_|\xbf\x91\x1dg?%\xf7\xb4?\x83fo;\xc1^\x96\xbfG\xa2\xe2\xc0k\xef\xb2?\xe2y\xe7\xe2W\xd1\xa0\xbf\xb5\x0bFIt\x0f\xb1?\x91q>-\x03!\xa7\xbf\x7fv\xbe\x00\x1a\xfa\xb6?\xcb\x1b\xed\x95\xee\x10\xa6\xbf\xd6p\x05x\x10\x9d\xbc?;\xa55\xe91Lf\xbf\xa2H\xca\xa3V\x86\xbe?\xb0\xfb\xc8^\xba<\xa1?\xd5\x02\xf4P1\x1a\xbb?[>b\xbd\x19\xc1\xa8?\x87\tlNN\xe0\xbb?\x17\x82Q\x0c\xc5o\xaf?\xdc\x812>\x9bC\xbe?6\xbf\xd8\xb4C\xef\xb0?#HF\xaf\xa8\xd6\xbe?b\xb6\xf7\xa4Ic\xa4?\x88\xb1=\x88\xfe\x07\xc0?D!\x10=I|7\xbf\x8a\x8a\xa8Rk\xf5\xb6?\x0e\xf1\x90\x7f}\x83\x90\xbf\xf5\x11w\x11\xc87\xb4?w\x7f\x02\xf5\xbc\xde\x98\xbfr\xa4\x0cH\xe6\xc3\xb2?\xd9\xec\x85\xf2\x08\xb7\xa1\xbf\xcd \xbe\xfc\x8a\xe6\xbe?.9\xcf\xd2\x80\x13\xa2?\rlI\x98\xa0\x91\xb7?\xd50\xda\x0f\xed<\xa5?\xfc\xd8h\xab3\x8b\xb8?\x08\xc1)\xa1d(\xa9?\x7f#\xe6m\xc9\xcd\xba?^0{\n\t\xae\xba\xbf\xeb\xad\xa4b\x19\x95\xb0?\xf0\x92\xa2u\xe6\x1d\xbe\xbf\xbae\xc6>\x9f\x9f\xbb?\xe9\x14-\xdd\xec\xfb\xc3\xbf$\xac\xd2\xad\x9b\xe6\xbf?\xad\xd0\xd3\x9ftE\xc5\xbfe$\xb8\xbb]\xdd\xb3?\xb8\xea\xb25\x90\x1f\xbf\xbfU\xd9\xe0\x17\xb3\xc9\x9a\xbf\xfd\x11\xa7\x98\xf8\xac\xac\xbf\xce\x08\'(\xfc\xdc\xbe\xbf;u\xaes\'\xfdx?\xa1a\xb0<\x83i\xc2\xbfY\xe3\xd8\x82/o\xb0?i4\x08X\xe2\x87\xb8\xbfO\xb0\xcb\xc3\x05\x1b\xb9?\x97%\xbc\x95\x96\x9cb\xbf\x97\xa4\xbb9\x02)\xbe?\xdd\'&\xc8\xf2\xf2\xb5?>\x97\xd0\xf1\x86\xa9\xbd?\x06L\xbe\xbe\xc1\xd0\xc1?\x96\x93\xd3x\xedd\xb0?\x97OX \xc7\xd6\xbf?1R\x13\x83\xaa\x9fx\xbf=\xcf6\xcb\x1ex\xa6?\x9ep&\xbb)\x08\xb0\xbf\xa6\x01c`\xcb%\xb0\xbf9\xa8L\xfbu\x07\xb3\xbf\xd1\x13l\x1aJ\x02\xc0\xbf\x88\xcd6I\xa5\xa8\xb2\xbf\xe9\xb8\xa2b\xaf\x90\xbe\xbf-1\xce\x0c\xd2\xba\xb2\xbfu\xa2\xab\x12`|\xb9\xbf5\x9c\xf0\xd7\xdf\xb8\xce?C\x8cm%r?\xbb\xbf\x83\x10YR\xc2\xa9\xbd?\\\xae\x1f\x1eO\x8d\xc5\xbf!):\x9e\xf5\xfb\xa4?\xc6\xbb"\xe8\xd7\xcc\xc0\xbf\x947\x87.\xe52\x91?\xab\xda\xbeO\xbb\x86\xb2\xbf\xf1\x93\xebe\xa1\x97\x82?\xec6|r"\x02\x82\xbf\x9ai\x94\xb6\xfe\xf5\xa3?\x85\xc8\xa9\xa8F?\xb4\xbf\xa2\xe2\'\xefaa\xaf?@\xf7U\xcf\xc37\x85\xbfaO\xc32`\x84\xb9?,>z9\x9a\x97\xaa?5\xa0\x97\xaa\xd3\xc1\xc6? \xebO\xe2\xc8\xc3\xb8?J_\xa7w+A\xd2?,\x1d\x8eO\xf4\xa0\xb2?\x08\xcey\n\xc54\xb3\xbff\x05\x06\x00\xbb\xbc\x97\xbf\xd3*|O>\x84\xc0\xbf\xec\xa1\x03\xaa@\xc7\x99\xbf\xfe\\\xf6\xf3g7\xc7\xbf\xf1KF5\x88{\x9d\xbf\x80\xf7?\xbe\x05N\xcc\xbf\xf8r^D`=\x9f\xbf\xa4\xd3\x84\x9f\x8c\xdc\xc0\xbfr\xa2k\xef\xe4\xbb\x88?3\xab5\xb8E\x1a\xc3\xbf\xf0\xe6d9\xe3\xcf4?\x98d\xdf%\xcd\xb6\xc4\xbf\x06\xacf{+\x06\x8a\xbf\xcfV\xd2\x0b;\x96\xc2\xbf\x80LmP\x17\xbe\x9a\xbf\xfd&L\xba\xa2\x19\xbf\xbf\xe0\x94\xba\x08\x18c\xa0\xbf\xfe\x89\xcb\xc0?9y\xbfd,J@?5\xa2\xbf\x0f\x16\xc8\x8e\xb9\xe2\x92\xbfT=\xbe\xaf\xdc[\xa7\xbf\x1e\r$W\x91W\x9e\xbf\x05P-;\'e\xa5\xbfY\xf5\xb9<\x06\x0e\xa4\xbf\'\x13\xb0\xb1\xe04\x9f\xbfY\x19T\xab\xfc[\x9b\xbf8)G~\xf2\xf7\xa0\xbf\x93\xd9\xb1\x9a\x85\xf8\x8b\xbf\x11\xa6h3\xa7\xbc\xa2\xbf\xcfY\xf1c\xa4u\x91\xbf\xc7\xbeL\xd0\x10Fp\xbf\x93\xcf\x86Y\'\xfbt?"\xb3^\x84\x8dg\x89?\xdc\x95\xfc\xcd\x1e\x9d\x97?\x8a\x81\x8f<\xb8\xe0\x90?ct\xddX\xd3\\\xa3?\'\xb9\xf8\xe2\xf9\xe2\x87?B/!H!\x90\x9a?f\xe3\x19O\xfa\x8d\x80?arK\xc1\xf4\x18~?\xca\xd6\xc8\xdbfYU\xbf\x91\xb4i\xcc\xd8\xce\xc0?\xb3vfy\xc0\xa2\xc0?\xbb\x8f\x1a\xfb\xa3\x85\xa0?\xf7\xc4\xa5\xb6\xac\x8a\xb5?\xbe\x83d\n\x81\x1c\x89\xbf&\xd6 b\x1d\xad\xa4?a\xed\xeb\xcb\xb8\xb6\x7f\xbf;6\xf0<*\x9f\x9d?g\xa0\xf3xx\xf6v\xbf\xe6\x81b\xed$\x17\x8f?zWZ\xd7wK\xab?\x8c\t\x1e\xc4\xa2?\x81\xbf~P>\xd9\xda;\xc4?\xe2\xe6\x15\'|\xb9\xa7\xbfO\xb2\x8a\x1dl\x19\xb5?\xfc\x90P\x9a$sm\xbf\x9e\xdf\x08\xcc\x19)\x9a?\x0fg4\x1aH\n\x98?\x1c\xdf\x0c\x10\xb7\xa6\x84?\x98R\t\xc9\x14k\xa3?\x8c_\xa1\xebW^\x87?\xd2\xf1\x0f\xa24\t\xac?4\xe1\x0c-*\x83\xa9?\xd4{\xdc_A]\xb7?\xfe\xe9\n\x02\x9c\xeb\xba?5xmk\x9e\x00\xc2?w\x87\x97\xc5\x94\x8d`?UI\x84\xa9\x14*\xa5?\xf7\xfb\xa3pW\x08A\xbf\xf7dP\x11\xc8*\x9e?\x97\xe1\xd3Z&z\x8b?\x112#\x92%(\x92?J\xce\xe2\xe9\xe6\xcf\xbf?\x05\xd4eF\xe1\xfd\xaa\xbf\xb1\x7f\x94\xef\x07\xb2\x9c?\xdcu?\x8b\x86\x1b\x96?\xc2\x88[\xda\x11\xd6\x8e?\xff\x0b\xa5\xd3\x01\xe1\xa1?\x00{\xd2\x94\xd8\x7f\x85?}\xad\x9c\x11\x03\xad\xa8?\xda$\x81W\x16[\xb7\xbfSx\xae\x0b`T\xb8\xbfbR@K\xc6;\xb3\xbf\xf8\x811\xe1\r\x91\xb4\xbfn\xcc%\xe2\xbd\x1e\xad\xbf\xe3\x9e\x05\r<\xe6\xb0\xbf\xd3\x9e\xe0Y\x89\\\xa1\xbf\xb0\x03\xdf73\\\x9c\xbf\x90\xfe\x0fe\x08\xb1\xa3\xbf\x18\x8b\x8f\xefZ\x90\xa2?\x95\x1a=P\xff\xc5\xa9\xbf\xe3\x8e\xd3\x1bT-\xbf?kp\xe6\x86\x84\xd3\xb0\xbf\x80\x00\xa9\x86v\xe0\xc5?\x0b\xf2I\xc4\xec\x8a\xae\xbfu\x1d\xd0\xf9\xae\xbb\xc6?Gg\xd8\x01\x84\xcb\x9b\xbf\xab\x0e-V\x83t\xc4?\x19\x9at\x1f\xef\xef`\xbf\x9d\xe3\xb0\xb8\x07\x84\xc1?\xe5\x01\xc0\xb3&\x07\x9a?\xfb]A\x1e>\xb8\xbb?\xd0\x01\x10\xb3y\xc0\xa8?\x84\xa4\xb9\xaf\xd3\xb2\xae?\xb1e\xa5\x1e\xcd`\xb3?#\xb8\x1d\n\xb2\x1a\x95?(j\x9e\xd8\xcan\xbd?\xf6\xf5\xc5j\n\\\x8c?\xdb:\nB\x02\x01\xc1?\xcd\x85\x9d\x83\xf9\x01\x87?\xe8\x8e\xdc\r,\x1b\xc1?\xbe)\xd7\xb83\xb5Z\xbf\xc3J\x8dq[\xad\xc0?\'\x16\xff\x15\x8b\x84\x96\xbf_\x12\x8f\xd6(^\xd2\xbf\xd3\xcd\xf2\xdb\x16\x06\xb4\xbfP\xf3\xaf\xcc\xebM\xcd\xbf\x98CeH\xacn\xa6\xbf\xcd\x05\x86ir\xee\xc3\xbfH\xafbo\xd2U\xa6\xbf\xa2]\xeftN\xbc\xb8\xbf\xa68\x16y\x83"\xb1\xbfM\xda\xdb\xc0\xf2.\xaa\xbf\xe5\xdba cT\xb8\xbffX\xcfj\x96\xad\xa5?\xc6\x1c\xc3\x84IN\xb4\xbf\x92\xce\xba\xe5k\x00\xb7?\xcb.5v}\n\xb3\xbf\x00\xf0\xd5\x85\xeb\x81\xc1?\x8c\xe9(\x8f\x12\xec\xb4\xbf\x9d\xef\xc5\xaeu-\xc6?\x14\x03\x81\xd5\xd9\xf9\xba\xbfqq\xed\x88b&\xc6?\xbd\x95M\xc05\xca\xbe\xbf\x17\x16)"\x85\x1b\x99?-\xb91\xbeR\xbc\xa9\xbf\x03\xfcB\xde\xc1\xa4\xa2?w\xec\x91\xe0\xa7\x88\xa3\xbf\xd8\xeeI\x81\x99\x08\xa8?\r\x0e\x12X,L\x99\xbff\x05\xa0\xe5f\x13\xad?\xb9=h\xca%z{\xbf\xf6H\xb5\xb4c\xe4\x8e\xbfl\xf00\t\x90e\xa0\xbf+\xe5CO4T\x89?Fji-\x08\xed\xa0\xbf-\x99\xb5!<\x9e\x9d?4\t~\xa3\xa8\x1c\x9a\xbf\x9bg\x91\xdbvx\xa4?;\xf7O\xcfp&\x9d\xbf\xe4\xf64\xb1%\xe5\xad?\xed\xef\x05\xf5-\xe5\x99\xbf\xa9=\xc9i\xab\x8f\xc6\xbfN5T\xa7N\xcd\xad\xbfv|\xf9\xed/U\xc3\xbf\xed\x15\xee\x83\xf2\xba\xad\xbf,_\xa5N\x17R\xbc\xbf\x1f\x89XDW\x10\xb0\xbf\x99\xd6l\x9b\xbc\x80\xb2\xbfUAb\xb4s^\xb3\xbf\x1c\x83\xb8\xc7m\xb1\xba\xbf\x1a\xbc\x83v\xb64\xb5\xbf1<\xdc\xbd%\xd4\xc1\xbf\xb3\x87J\xdf3=\xb4\xbf\xa5\xfb\xd5Y\xd7m\xb2?C:\xe470O\xb4\xbf\xe9\x9e)g"\x06\xba?\xfd\xb8\x91\xaf\x89u\xb5\xbfU89M\xd1.\xc1?K\xaa\x1a\xb4\r\xde\xb5\xbf\xfd\xa5\xa6\x1f\xef\xc7\xc3?d\xa04\xd7\xdc_\xb6\xbf\x1e\xb9F\xe4\xd6\x9f\xc0?\x15(F+\xac\xc2\xb9\xbf\xe4A\xafX\xc6o\xba?\xb0\x88,K\x061\xb9\xbfp\x16\x81E\xc1\xfa\xb8\xbf\x95\xfe\xce\x82\xea4\xaf?\x17y\xf6o=Z\xb1\xbf\xbe\x14\xbf\x05\xc2e\xb2?Y\xc5\xa5\x99$$\x99\xbf\x88\x9f\x93\x98#\x1d\xac?\xf9\x93\xb7B\xef\x95\x82\xbf\x81=\x1b\xa2\x81\x8e\xaa?mWe\x97D\x8b\x85?q\xcf\xeb\x12N\x7f\xad?\xdbT\xe8=\xc8\xc0\x9e?\xdb\x08\xdet\x9f\xef\xb2?\x13\x1cy\xb6\xd1G\xa8?\xac+f|\xbcu\xb0?\x12\x81P\xe8\x02\x14\xad?\r \xc0\xddI\x1e\xb5?\rw\xd3\t\xce\xae\xa1?\xd3\xe5\xcc\x0f\x8a\xf3\xb1?\x9dY\x91\n\xadSy?\x08L %t\x1c\xb1?!\xd2/\xcf\x95\xc7\x98\xbf&\xcc\x89\xb4\'\x04\xb1?t\xa1\xf7+ \xe8\xb2\xbfKx\xb3\x9c\xa6}\xb4?\xd9\xa5\xe5D)C\xb3\xbf\x184\x80\xb9\xee+\xb0?dr\xe20\x02\xe2\xa2\xbf\xe5D\x06"\x9c9\xaa?$v\x0e\xce\xf2\xac\x92\xbf\xf7\x9d\xee\xc3\xe3\x12\xa9?\x82e\xc3\x1f\xb49j?\x80\xc3\xe5\xd4\x1a\xd9\xaa?\x90Ql_\xf8\xa2\x9f?o3\x1f\r:\xfd\xb1?\x03\x96(\xc9Y\x07\xa4?\x0f\x9d\x8f\xd15\x7f\xb0?\x18k\xa8\x9b\xb8\xdew?7\x0f9pTN\xb0?H[H\x8b\x1aM\x99\xbf\xb5\xad|\x80\xeez\xb0?}\xf2\xeb\r\xe1\x91\xca?\xe5\xc8\x1eUYV\xc4?\x97\x17\x15ac;\xb6?\xd6\x92\x90xA\x97\xc1?D2\x8eU)\xb1\xa0\xbfR\x1e"\x84\x99\x8a\xb7?\x98r\x94>7\xa8\xb9\xbf\xed\x02\x12\x83_\xd3a\xbf\x87\xc7|I\x1d\x91\xbe\xbf+(<\x12\xf4\xfa\xc1\xbf\x8b\x93\xde%\xfbt\xba\xbf\xc0\xd6*\x14\xae\xfe\xcd\xbfZ\xa4\xbf\xc9\xf1:\xb3\xbf\xec\xbc\xf7\xe5R\x19\xcf\xbf&n\xcf\xf7\xed\xd9\x9f\xbf[y\xdf%\xe4\x9b\xc3\xbf\xb1\xb2q\xfd\x1d\\\x80\xbf\xfc\x8e)E\x1c\xf2u\xbf\x17\x88C\xfa\xff\x12\x90\xbf[\x06\x81\x9f\xe5\x17\xc3?\xd2\xd8\xaa\x0c\xafL\xab\xbf\r\xcd;\x08\xb1\xcc\xce?uS\xa2\xcc\xd1\x94\xb8\xbf\xe8\xe0\x12\xf2j#\xce?\x8df\x7f\xdd\xd9U\xc1\xbf\x87!\xfd8\x0c\xbb\xc3?8\xa7\xdd\xe8N_\xc1\xbf\xa7\x9b)\xba>\x08\x9b?\xb2\xad\xd3\xc7%\xe4\xb0\xbf\x19\xa6W\xe4\xd27\xb0\xbf\xeaW\xe7\xd3;r\xa8?J\x9d\xf2\xb0;T\xbd\xbf\xec@\xf3r\x1b\xd3\xc5??\x01jg\xf5F\xc3\xbf\x01l>\x9d\x1b\x03\xc2\xbf\xbb5\x16\xe3\x01\xe7\xb4?H1\x81\x1b\xef\x1c\xbf\xbfW\x93\x19\xdef?\xab?\xb9\x99+(\x92\x02\xbf\xbfD\xe3\xf6\xa9:\xeb\x19\xbfK\x8d\x1fD\xbb\xb8\xc0\xbf\x1aP\x82uK\x9f\xab\xbf\x92\x81\x1c\x8ac\x18\xc2\xbf\xe5\xa6\x18F\xcb\x90\xb9\xbf_`nQ\x12o\xbd\xbf\xda\xd6\xc5\xef\xfe\xcc\xb1?W0U|S\x85\xb8\xbf\xc7\xe0N\xe3#U\x95?\xd5\xd4P\x8a\xd4S\xb4\xbf\x99\t\xac(\x0e\x98\xa5\xbf\x97\xea}\xa7\xc3\xbd\xb6\xbf\xcb:\xcd\xeaN\xf8\xb9\xbf\xf2Ju=\x8ap\xc0\xbf7-* \x94\x1a\xbf\xbf\xd37m\xf1\x8b\xc3\x80?\xf2\xd7\xa9\xff\x7fK\x86?@\xd2\xa8\xc2\xaf\xabj?\x13\x84\xec\xf0\xeb\xf4\x8f?vS\xdb\x86\xf6\x9fp\xbf\x15\x19\x87-\xf9U\x93?\xbe\x12\xc6"+E\x8b\xbfpm\x04\xfa\xa8H\x94?\xd3\xf9\x0e\x10\r\xa5\x98?\xb0\xa8\x8c\x98\xb9\x82\x95?\x03p#\x94\xc5-\x91?!\xe7\xfb\xd9\x85\x1c\x94?2*\x90Rd\xca\x97?\x95\xcc\xa98S\xdf\x8c?\xf1\xb5\x9c#\x91\x13\x97?\x9e_\xea`d\xe0z?\xcfX\xe2\xda$\x91\xa3?zo\x9c\xa2\xf7rk?y\xe6\xe1\xfbd}\xb1?\xb8\n\xafMS\xbb\x8f?x`q\x82\x0fM\xb0?tg\xb5\xa05\xf2W\xbfE\x03\x8d\x01\x96\xaf\xb2?\x86\xb2u+\x0e"~\xbf\xce\x9c\x8aS\x93\xd0\xb0?\xf5\xa8.\x15\xff\xe0r\xbf\xc6Y4\x93&j\xb2?I\x95b\xfaZ\xcd\x87\xbf\xb2\xd4\x14\x86p\xd5\xb0?\xaf}X+\xf1pT\xbf\xc3g\xf5\x0cf\xc6\xb6?C\xa8\xa8\xfdq\x98\x95?\xc3\xfc\xbc0\xb4\x80\xbc?i\xaf\x85\xa9\x16\xad\x8b?\xb6\xb1\xd5\xce\x89\x10\xbc?U\xe7\x90\xd6t\xe5\x81?\xe6<0\xab\x1c\xa0\xbe?e\x99\x027\xdfLw\xbf\x07\x0b\x02\x80\xc2\xbb\xbb? \xaf\xf2\xe7\x9d|~?y\xd2mIlI\xba?r9\xe8\x9d\xb69\x90?hQ\xeab\xe2\x8b\x8a?\x19\x9d&\x90LM\xbf\xbf\xc2+c\xdd\xf8r\x8f?O\x0b\x00\x95\x19d\xb2\xbfqK(\xb3\xec\x99\x9a?N\xe7\x973S!\xa3\xbf\x98\xc6J\xab\x10/\x9f?t\xff4.\x05\n8?a\xff9\xc5Y/\xa0?\xa5\xfa\xc5\xd6Y\xdc\xa6?\xa3\xd6\xc0[\r\xb8\x9f?B\xcb\x90f\xb0K\xb3?4\xde\xd9\x81\x1f\x80\xa1?\x1d,{\x16\x97]\xbb?\xbf19\xdad\xa2\x9a?\x1f\xf1k\xfc\xd8\xbd\xb3?\'VUN\x04Fl?\xcd\xe9B\xb1\xea\x9f\xa1?\xd5=\xff\t\xa7\xfeS\xbf\xab\xf5\x1e\x7f"\xa2\x86\xbf\xf7\x89\x99\xaa\x87\xc0x\xbf\x8e\x1e\xd0\x15\xba\xcc\xa7\xbf\xb9\xf2\xaau\xe5\xf1u?\x91TSO\xe9]\xb6\xbf\x11\x12\xc1\x8b% \x9b?Dx\r\xf3v\x17\xbf\xbf\xb0,6\xcd\x1e\x10\xb2?\xe2\'\xe9\xc4\x0fP\xa4\xbfI\xd9N\x1e\xec\xd5\xb2?\x96\x81xN\x92";\xbf\xce\x85\xa0\xa17\xe7\xb2?\x02\xd2\x96_`\x06\xa7?\x136\x7f\xa0\x86\xb3\xa5?GV\x16\x8b\xe4\x9d\xb9?\xd6\xf8B\xf0T\xf8\x82\xbf*\t\xf4NR%\xa2?}L\t\x1c\xceQ\x90\xbf\x9c&\xd5"\xd4\xbb\x82\xbf\x83cB\xc7|\xd6\x90\xbf\x93\xc3\x91\xe4\xe9E\xa7\xbf\xb4\xe3\xfaSF\x14\xd5?\x9e\xfa \xeb\x85-\x86\xbfr\xe8ru\x97b\xd0?\x99\xe7\xf2m|\x8a|?7\xa21\x82\xc2\x8d\xc4?\xce*\xcb{d\xaa\x86?\x86\xd5S\xbegf\xb0?\t\x9c\xec\x86\x05:>\xbf\xc8\xaaWn\xa8\xf2\x99\xbf6\x04\x0b\x95c8\x9c\xbf\xd1\xa8\xe8\x0f\xc3\x04\xb9\xbfL\x87\xec\x91\x07\x19\xb2\xbfTI\xf34\xba\xdb\xc2\xbfDiK#\x17\x1d\xb7\xbf\x7fz\x99\x85|9\xc3\xbf\x172\x90R\xe1\xb2\xb8\xbf\x0cV\x08\xe6[A\xc0\xbf\xba\xbdb\x9cj\xc5\xb3\xbfJ\xeb_\xa0\x040\xb8\xbf/\xa4~|\xcf\xc7\xa3\xbf\xd8\x1d\xffA\xa4\xe2\xb6\xbf#;\xde\xa2\xc3\xee[\xbf\xf3\xaa\xfa\x0f\x83%\xb5\xbfEB[z\x95\'\x99?\x8d\x0f\xbb\r<\xc7\xb4\xbf\xd6\xe2\xc6:`\x06\xa0?\x143\xc3\x16$\x85\xb1\xbf5\x1d\x91Pd\xf1\xa1?\xbd&?\x89\xf1\xe4\xa1\xbfn8\x81\xcdM6\xa4?\xbe\x8a\xf6\xac\xbf:\x86?JR\t\xd0\xa4\x92\xa4?\xc3\xcc\xd3\x88\xa3\xd6\xac?K;>i\x95\xeb\x97?e_\xcc3)\x08\xae\xbf-\x1b\xda\xb3\x9e\xdf\xac\xbf\xb38i\x1f\xae\xa5\x9c\xbf\x1fz\xa3P8\x1e\xa9?\n+\xa8\t\xe9\x80\xa9?~g\xf3\x14\xe8L\xc1?n\x83\x83\xa07\x01\xbc?\xd2\x8a\xfe"l/\xc8?x\xf9_\xea\xd2i\xc6?\xb2\xb0\xd3\xd77\xd1\xca?\xad\xacO\xc6\x17\x9b\xca?\x11\xe1\xa5\x0f\x13\xa7\xc8\xbf\x1cz\xa7\xbf\xed\xae+w)\x13\xc3\xbfD\xeb9\x1d\xe6\x94\xb0\xbf|!\xf4bR0\xb4\xbf\xdb\x8bf\x0ed\xed\xa1?\x9b\xd7T\x01F\xe1\xbe\xbf\xd8,?\xa5\xd5\xf5\xa6?\xd2R\xf0[B\x07\xbd\xbf9\x14S)W\xeb\xae?\xf8\x00\x83\x8d\xb7\xbb\xb3\xbf`BV\x00\x85%\xb1?t\x0c1\xbd\xe3L\xb4\xbfys\xae&c\x01\xb0?P\x1a\x7f\x8e=T\xb5\xbfqG\xf8RW\xfa\xa9?\xca_\xf9\xd1\xcc\xd2\xa2?\xe3{~\xcek{\xa1\xbfTJ\xee\xf3\xdf\xef\x8d?$\xd2\x1c\xca\x00v\x9d\xbfs\xed\x1d%\xa9\xc6;\xbf\xa4\x14rL\x89\xabs\xbf\xa0\xf58\n>\xf5\x96?O;\xfc\xbb_u}?\xf8\x8e\x9f\xf2!E\x8c?\xc5~>\xdfn\x8f\xa1?%}\x0b\xe3\x82_\xab?\xe7\xf6\x0f\xe5\x9c\x00\xaa?\xdd\x89\xb6M5\xdb\xb6?DN\x99\xb4]e\xa7?\x08$Q\xc2X\xd3\xb7?\xcc\xdd\xbb\x98>\\\xa6?H\xe09\x15\x86,\xb8?\x01\xd1y\xdd&\xbd\x99?\xcdM\x88\x16\xf8k\xb6?%\xcf\'\xc1\xadsl\xbf\xd8/\xdf\xa1\xf4\x88\xb3?_\x9di\xe8\xd8[\x9a\xbf\xd0\xf6\xea4\xc3G\xad?\\`\x8d0\x02\x07\xa4\xbf;w\x82\xef\xf2{\xa4?*_\xd8\xaf\xf4K\x9e\xbfZ\xd5\xc3\xf8\xdd\xa5\x92?\x08\x96\xd6h\x1dD\x8a\xbf|\xc2\xd9\xcc_\xa4\x9d?M\xac3j1n^?\x93\xaf)Wc\xba\xa2?\xd8RdH\xaa\x86\x9c?\x17\xfa\x1cFhQ\xb5?\x12?\xb2?\xebT\xa7?\xd1\xa9g\t\xaa\xac\xad?(hPD/m\x9b?\xea\xe7\xceV\xe4\xb9\xaa?ZW\x86\xfaONT\xbf\xda\x9db\x1b\x94\x9e\xa4?W\x1e\'\x1e\xc4\xa6\x91\xbf\xe28\xf7\x8dS\x85\xcc?\x87\x94\x99q\xc4\x0fg\xbfF\x13\x8f\xf7\x0e\x8f\xca?9W\xf4vOV\x85?\xaar\x04\xce\x06I\xc6?9\xf0q\xc0\xb6\x1fl\xbf\x06Y\x13\xae\xedX\xbe?\xd6\xd7\x13\xb3\x1cRm\xbf\x06\xe7\x9bw4J\x9e?s-8\x8b}\x0c\x9a?\xb7*\xd8\n\x85\x91\xae\xbf\xb6B\xe8\xd3=\xd3\x98?\x0c\x17\x92\xb9C\xe6\xbc\xbfU$\x1ci\x11#\xa4\xbf\xa5q\xdf\x02\xf3}\xac\xbf\x13\xabt\xab\x16{\xc3\xbf\xcc\xebt\xf3\xb65\xa8?|$\xbb\x936\xba\xcb\xbf\xd2\xa5]\x997x\xbe?\'\xb5\x97\xc8\xb1\xe1\xcc\xbf\x81\x9b\xb4\xdff\xa7\xbc?R(\xaa\xdf\x93\xd9\xc7\xbf\xa6\xea.]\x11p\xab?nd\xa3\t\x1f\xbb\xbb\xbf\x98y\xfb\x9e\xf6\xd4\x9e\xbf-\xb0\x9d\x9c\x871\x98\xbf:\xde2L\x15\xff\xbe\xbf\x17b\xf1;=\xfb\xa8?\xa8\x07\xf0j-\xbd\xc9\xbfJ\xcaR/\x9e-\xb4?\x079\x8f]KP\xd1\xbf\x00\xa6\xbc\xfc\xd3r\xb2?\xb4~\xae\xf3\xe0\x0f\xd5\xbf&y9\x19l]\xb2?\x19*=G\x00\xe5\x7f\xbf{\xc8g=\xc9t-\xbf\xf3\xbf\x1cA2\xd2\xb6\xbfF\xa4\xbc\xa5XF\xb0\xbf\x8e\x88\xcb\xd8\x13\xd6\xc3\xbf\xb5\x01\xba\xb0\xaa\x82\xb0\xbf\x95\xfa\xb5U\xe3\xc2\xc6\xbfm\x7f$g\x9b\x89\xa0\xbf=\x00\xab\xc3\xbdd\xc4\xbf#\x8b\xc5\xd4;\xe9\x83\xbf\x12\x9a\x92\xf0\xdd\xb0\xbb\xbf\x1f\x0e\xb6nE\x80\xad\xbf\xd8\xc5\xc92\xe5\xae\xb7\xbf\xae\xcd\x9by\xec\xc7j\xbf\xf4%\xd2/\x0fi\xa1\xbf\xa2\x9e\xaa\x92\xff\x84\xac?H\x85\x17\xfa\xfag\xb8?\x0f\xa0k+C\xd4\xb5?s\x9b\xa11\xbej\xcd?\x10\xd7\x03\xba\xeeF\xa1?\xd6\xc1\x17\x03|\x10\x96?\x06\xba\xb3J\x86\x11\x85\xbf\xfd\xdf\xe5\x0b\xef\xd6\x97?T\x11\xdfai\xd6z\xbft\x94\xa6\x8dh\x90\x91?\x84\x82\x01\xbeQ5\\\xbf\xd8\x87\xf2\xde#\xb5\x85?\x82\xd5\x1f\x85\x94\\x?\xdb\x0c\xa4\x85\x06\xe9\x8b\xbfy`8\x8cL\xa9\x87\xbf\xef\x8bow\xfb\x8e\x82?\xd5Sy\xf5\x02>u\xbf\xb2\x84\xf3\x0e\xc9\xc0\x93?\xa8\n9#N\xbdr? \xc1\xcb\xf0%)\x9b?\x91R\xa0]3\x01\x85?\x0f*\xd1\x9a\x9d\xfb\xa5?\x1c\xef\x1aM\xf8\xa8\x94?/\x96\xb5*\xc2\xe0\x92\xbf\xc4\xec\xf3\xc8\x08N\xb1?\x8dz\xa2t\xadGe?\xb0V\x9f\xea\x1e\x17\xb1?tw\x94k\x8eU\x8e?\xb3\x19#\xcd\x9cm\xaa?\xf7vtae\x86\x8b?\x8e\x10\xe8\xd7\xe2F\xa3?\xc3y\xe5\x13\x92\xe9^?9\xf2\xb0\x1c,\x9a\xa9?\x8bh`NJ\xea\x80\xbf#\xc1\x18\xd31\xe0\xae?\x17\xa1\xe8Q\x90\xf7\xb3?u,\xe3\x86&\x07\xa8\xbf\x05G\x1el!E\xbc?z3\xc3\x8a\xba>\xa9\xbf\xcc\xef\x0b\xc7\x08\x8c\xc0?W\x0c\x8c1\x8d\xd7\xac\xbf\xa1\x10f\xbf\x8f\xc5\xc0?\x9b\x1d\x9aeD\x18\xb1\xbf\x9eOr\x99\x8e\x95\xbd?\xa1V\xdbB\x94\x01\xb2\xbf\n\xa6\xe4\xf0\x8b\x9f\xba?\xd53\xc8F\xb7O\xb0\xbf\xc5\x95\x8a98\x04\xba\xbf7d~\xb7W\x1d\xac?\xe2\xa1\xb3\xb7\x9a\xf3\xa0\xbf\xff\xad\x1f1F6\xb3?\x12\xd4\x9a[U\x92\x8a?\x81a\x9f\xd1P\x12\xb1?\xc4\xb5\xb3\x03\x07\x9f\x95?\xf0\xf4\xbe\x80_\xdc\xa7?H\x8c}\x87\x13\xb9\xa3?\xfa\xe8\rO\\\xca\xa6?\x88\xeajs\xfc3\xa0?\xf5yh}\x95\xeb\xa1?\x85\xdc\x86\xaf\xca\x9d\x80?\xb4\\\xf06\xf7:\x94?\x1el\xfdnA+\x85?O\xc2\x89\xba\x1f\xf5\x80?\x95\x00^\xe9\xfb\xa7K?\xa2`\x19\x06\x9c7g?\x9a\xda\xc1\xa5\xd3\xef\x93\xbf0\x8a\xcd\x13\x1dev?3M\x90\x14\x7fn\xa5\xbfB:\x90\x8aNc\x98?\xaao\xe3\x11 \xdf\xb3\xbf\x84\xefUu\xc6\x80\xa5?\xf0\x89\x02\xbd\xf0\x14\xb5\xbf\xe8\xb6\xb7N)\t\xa9?\xdd$\xff\xca~\xb4\x9f\xbf\x80g\xba\x82{ \xab?\xdc$9\xd2\xf2\xfb\x84\xbf\x13`P\x81u\xac\xa0?\x81\x9f`\x8ahlx?\xb7\x8d\xf0\xbb\xef\x03\x9d?\xcaW\xc9\x1a\x88Kp\xbf\xa8p\x90&\xafe\xa1?\x8d\xd6"\x90\xb4S\xa0?l\x9d\x9d*\xf9\xf2\x92?`w\xf1$\x8ao\x87?i\xac+\x11h\xb9\x95?\xec\x89\xbbs\x84!\x81\xbf\x97\xbd\x96r\xf3\x1b\xa4?\x05\x95\xf5\xbdh\xcd\x82?#Y\xc12\x1b\xb7\x98\xbfv\xa5\x97\x0b\x91\xdf\x9b\xbfHK\xc7\xb9\x9e\xf0\xa6\xbf\xc7\x99\x93\xdfl\\\xaf\xbf\xed\x957R\xcfg\xb4\xbf\xfdsX\xfb\\\xf9\xb4\xbf\xe3\x9d,\xca\x9e\x84\xb7\xbfo,\xa8f62\xb8\xbf\x14\xc1<\xe9@\xcc\xb0\xbf,\x87\x98\x9f]-\xb6\xbf\xb9H\xd0\xf1\x80\xd8o\xbf\n\x02\xd1\xd7\x12#\xb1\xbf\xf9\r\xc2\x11\xb2\xdf\xab?7\xba\x05\xc6\x81;\xa7\xbfF\xa0\x1a\xa4n\x84\xb7?\x83\xf9\x8b\xbfP\x06\xb2\xbf[s=V\xe5\x8c\xb5?\xc7\x1e.\xdd\x01\x80\xbf\xbf\xa6\xcf\xb0\xdbB2\xae?\x96R\xc0\xa4\xcfd\xc4\xbfP\x9aD\xedd\xe3\x94?\xe9^ \xdde\x07\xc0\xbf\xdfR\xb1\xbb5\xdd\x89?\xbe\x9e\x0e@\x1c\xde\xaa\xbfZ\xda):e\x0b\x99?\x00C\xc4\x02\x19\xed\x98?\xd9\x05\x07\x18\x85F\xa7?\xd3\x9b\xe3\x03U\x82\xb8?\xb7\x91\xd0\xdc\xf9S\xaa?\x1b\x86\xfd\xc8\x84c\xc3?k\x18!\x9d\xe2\x1c\xa3?,X\xd6\xedV,\xc9?\xdb\x8dN,O\xda\xa4?|\x93\xae\xbd\x90\xb3\xd7?\xb1?x<_\xe4\x90?\x80.\xe5\xb6\xa8\xbc\xc0?k\x13\xeb\x0e\x9d\xe5\xba\xbf\xc4S\xb9#\x9fF\xb4\xbf\x02\xaf\x91C\xa3\x9a\xaa\xbf,\xab\x92\xad\x9d\x82\xc5\xbfr\xbf\xca\x06v\xdb\xb0?G;d6\xf9\xde\xc2\xbfl)\x86\x97\xedc\xc5?v\x1eP\xa1\t\xef\xc6\xbf\xcd\xdcb}\x19{\xc4\xbf%\xf7\x88\x83\xe7H\xca\xbfoU\x8b\tA#\xb3\xbf\xf1\xbb\xe5f\x1a\x81\xc1\xbfyYpR3\xed\xa4?N\xfe\xde@\x88\xb9\xb0?>Ql\x8a\xec\xe9\xba?F\xa3\xa4\x88~z\xd3?_3\xe0\xd8\xf5B\x84?\xd99\x19#X\xc5\xa7\xbf\xb8s\xefv\x97\xeb\x80\xbf]j`\xe4\xa0\xdf\x88\xbf/\xf0l\xee\xd46u\xbf\t\x19\xdc\xa5\xbf\xb6\x89?a\xb1J\x03>\xff*\xbf\xf3w\x9a\x7f\x15h\xa4?,\x8ay\xdc\x95\x1bs?\x1c\x00d|~S\xa8?\xf7\xa3h\xa0g\xf9\xad\xbf"\x88\x0c\xcee\xee\xae?\xfa\xa9`\x10Z\xd7\x99\xbfv\xc1G\x85\xf1Y\xae?[@\xc7\xb2\x82Ft?\xd8\x16\xbe\x14\xb2\x06\xa9?\x97\xeb\x15\xbe\x96\xf0\x9d?E\x0f\x06\x9fh\x85\x9c?:\x06\xae\xd8O\xbc\xa7?\x04\xfd\xe2Z\t\xdb\x8c?\xd0A\xc0\xc8Y5\xbe?\xd6\xe1G\x1ez\xdd\x97\xbf~\x0cU\x8dK0\xbc?\x01\x8f\x19a\x10\xbe\x99\xbf\x8c\x18(\\-\xec\xb9?\xb5\xef\xf5U\x06gj?\xa1\xc4\xca_q\x1e\xb8?L\x1f9\xd3\x1d\xda\x89\xbf\xec\xc2\x15xd\x9f\xbd?z;\x0cK\x92\xf0u\xbf\x89\xbc\xfa\xdf\x7f\x8f\x80?3s\xbf\x82b\xd3\xa7?\xb7!\x1e\xa2d[\xbc?wVi^\xc6\xf9\x81\xbfl<\xda^&j\xbd?\x03~\x85\x88\x17Q\xc2\xbfI\xc5\xc4v0U\xb2?x-|v\x9d\xf9\xd0\xbfR\xbd\x15\xd6l\xb5\xa4\xbf1S\xa3\xbdh\xf4\xd4\xbf.\xa8k\x0b\x12\xcc\x8c\xbf\xf9\xe3\xc2\xd2\xdd\xec\xd4?R\xf0\xcd\xd7\xfd\xa5\xba?\xd0A\xf1-7\x03\xd1?\xd5\xc8\x80\x90\x86\xb1\xc2?dU\x96b\xd7\'\xc2?5y\x1d\x0eBy\xc0?%\xca\xdc\x92\'MD?(W+\x08\x97\xeam?S\x11\xb3\x05N\x02\xb3\xbf\xc8\n/\xd0\xc1\xe1\x88?G\x05J\x89ko{?l\xe2U4\xe7q\xb1?\xcakGt\xd0\xd4\x90?`#b\x98v{\xbe?nl\xe7\x9c\x03d\x98?\xf8\x08\xcdB0\r\xc4?\x88\x1b\xe6\xfb\xe8\xcb\x9c?\xf6\xdd\xf2\xeb\xa8\x86\x95?ye3\xc1\xffe\xbc?\xfa\xe8\'f\x8aw\x9f?\x18\x1b\xd7\xa9\xd7!\xb0?\xcb\x07\x7f\xedv\xea\xa4?\xb2\x1d\x8f\xa2X2\x99?\xc8\x12\xaaE\x11d\x9d?h\x9c\x15\'Aj\x90\xbfmW\xb2\x06\x00\x82\x85?l\xb1f\xd7\xe3\x1a\xaf\xbf\xaa \x8c\x7f\xe9\x84\xb9\xbf\'\x89\x03\xe2\xfe\xe3\xb7?\x90\xcf\xea\xad\x96k\xc0\xbf\x9e[{\xd0o\x03\xad?\x98\x80\x86QqR\xc0\xbf\xccb|\xc9\x97\xf5\xa6?O$\x1d\xf0[\x84\xba\xbf\x16\xbb\xd0"\xfb\xa3}\xbf\x07iV\xca\x1e\xc1\xb9\xbf\x08\xde\xf6\xce\x93}\x9f?\xc2\'\xf2\xa3B\x8f\xbb\xbf\x04\x8dR\x90&I\xac?\xdc\x00\xf75\xda\xf9\xb6\xbf*\xbe\x8b\xc0\xbd\xec\x90?\x88\x0f\x80\xa7\xb0+\xbb\xbfe\xbc\x1a4\r\xe8\xab\xbfc\x9a\x1aw\xban\xbd\xbf>\x85\t5\xa7\xaa\xb0\xbf\xb1\xbc\x0bg(\xdf\xb6\xbf;\x91}p\xf0x\xb6\xbf\xafb\x94bh\xdd\xb6\xbf !\xee\xe3p\x1f\xae\xbf0\x11l`G\xf7\xb6\xbf"V4y\xbf}\x9f\xbf\x01\xdd\xeb4\x9d/\xab\xbf\x97\x10\xd5\xfb\xb6\xef\xb9?n\x1f\xdd\x7f\xaf\xd1\xa0\xbf\xa1\x88\xe4K\n\'\xaa?\xf4\nq4\x96rr\xbf\x1b\x81\xe3\xdb%\xd2\xa4?\x89\xbf\xaf\x89\xf1\xdf\x95\xbf:-\x99\\\x14ZW?\xc4\xcb\x8d\xfa\xbeq\x82\xbf\xdb\xa8;\x1b\x17\x85\xa9\xbf\xa7\xd0\xdc\xd1\xa5\xcb\xa4\xbf\\\x0e\xe2\x97,8\xb5\xbf\xc7\x96z\x05\x11\x04\xaf\xbf\n\xbctXv/\xc2\xbf!\\)4\xf4\xa8p?\xbe\t\x19\x13iE\xb3\xbf\x8a\xea\xf5\xa0\xef\x9f\xa3?\xfb-\x1a%\xb2A\xaa\xbf\xc3\xef!@\xb0\xe5\xa5?\x08\x1a\xd4\xf0\xf1Bg\xbf\xc2\xfb\x1b\x9b4[\xa7?\xbd\x80b\x07\xc3f\xa1?\x9d\xd7lb\xb8\xbd\x91?\x93u\xe6h\xe3\xd5\xa6?\xefSF~\x02\xc9\xa5\xbf\x94\xa0\xb4$\xe0\t\xb4?\xb4\x821b\x99\x1e\xa7\xbfs\xf39\xeb\xed\xc8\xa5?"\xf2W\x08M\x0f\xaa\xbf\xe5\xca\x90\xeb\xb8\x81n?\xf2Mf\x7fG\xdd\xa9\xbf8\x8a;\x80\x90\x9d\xa9\xbf\xfb\x8e\x96\xbe\t\x98\xa5\xbf1Kd\x9b\xe9)\xc0\xbf\x87\xfe\xb7y\xa0\xfd\xa9?\x0e\xbdn\xe6B\'\xa9\xbfwf\xd2\x85d\x0c\xab?\xaf\x0b\x88%\xbb?X?\x942W,\x10N\xad?&Ng\xff\x9b\xec\xa3?\x19_?\xf9\xd6[\xb0\xbf\xbc \xd4\x88[\tx?\xd5\xbb\x9f\xbc\x10\x82\xa5\xbf{\x10\xa4d\xda<\xa2\xbf\xe1J\x00\xa8\xbf\x8a\x86?bm<\x02)L\xb0\xbf\xf63\x80\x04\x1b\xa1\xaf?h\xd5-\xe4Y\x1c\xaa\xbf5\x8b\x89\xd0\x8f\xcf\xaa?\x1c\xbcE8\xe8\x80\x9a?:\xdd\xc0=\tw\x90?\xef\xcb\xf7\x91Vi\xba?\x9a\xbei\xd3I\x9c\xa5\xbf\xe8\t\xe9lD\xc8\xc0?\x16\xc3\xa8*\x9fH\xbb\xbf\x80q\xa5>M\xc4\xac?Pj*\x03\xbcS\xc0\xbf\xee\xfb_\xe6\x0c\xa3\x97\xbf~\x9f\x02\x95\x80\xb2\xba\xbf\x98\xef}\x1e\xbd5\xb4\xbf}7LOn\xf7\xaf\xbf\x9c<\x1b\x10\xa1W\xbd\xbf\x8ba\xb2;b\'\x95\xbfy\x0b\x03\xc5x\x99\xb9\xbf\xd9\xd6d\x96\xa8\xab\x9a?\x17\xf8\xe574\x13\x9c\xbf\x89\x0b\rt+H\xa9?s\x90\x1a\x02\xc7\x1f\xaf?q\x95\xeb\xd7w\xe7\x89?a1k5>J\xb8?\xa3mO=\x1c\x15\xa8\xbf\xbc\x82\x87\xeb\xee\xd5\xb0?!\xb6\xf9h\x9d\xc4\xb4\xbf\xc7\xc9\x8ank\xb5\x9d?wco\xf9\xf0)\x93\xbfm\xbc\x89\x83"\xce\xb6?\x164~\xcf\'\xcb\xb9?\xcb\xcb\xf6\'\x8dv\xa7?K0\xfa\x99\xd2\x98\xbf?u\xfac\x01T\xed\xaf\xbf\xec\xefV\xeb\xe9Y\xb3?\x8c&\x96\x0fp\x1a\xc4\xbf\x94<\xd23\xb0\xde\xaa\xbf\x86\xb3\xd8\xbb\xdc\x82\xc7\xbf\x9d\x1e\xac1h1\xa7\xbf&R\xaft\x0f\x8f\xc8?\x11\xcd\x1a$\xc1\xea\xb4?rC\x00m\x14\xdd\xc1?MP\xe5c\xf2\xad\xc0?FiHn\xf3\xf4\x9b?\xc6\xc7!\xb4\x0ey\xbd?\x9a\xb8\xb2yRC\xbb\xbf\xc8\xbc\x17\xdbN\x90\x93\xbf\xb8\xc4yPz\xc2\xc4\xbf\xf1\n\x98Io\xcf\x9f\xbf\x81\xce!8\xb0\x86y?5\xeb\x8e3!x\xbe\xbf\xc6$\xe6\x95W\xb4\x90?\xac\xd3,\x10\xee\xfe\xc9\xbf\t\xf1]\xc9\x90(\x9e?V\x8c\x9c e\xe6\xd1\xbfD\xdfE\x13\xab\xfb\xa3?\x93\xdbf\x8a\x91\x91\xbc\xbf\xce\x1a\x15\x15\xe0\xc2J\xbfE3\x95\xad\x10\x15\xc1\xbf\x9d\xb8\xb1<\xad\x04\x8b?\x0b\x86\x89g=\xae\xc2\xbf\xffn\xdb,\xa7\xae\x95?\xba\x8fC\xdd=:\xbf\xbf\x08\xab\xc6HN\x1d\x9c?\xa8\xafy\xfe\xc9\x80\xb7\xbf?\xafm\xf4\xe8A\xa5?\x91\xeek}\xa6v\x85\xbfu>\xf2\xdf\xecG\xaf?\x8aUvO\xc1_\x9d?A\xa3\xf9\x93\xf7b\xa9?\x84\xd1\xbf\t\x1f\x9a\x89?\n\x95\xb0\xab\n\xd5\x96?\x94\x15"\xddUP\xa7\xbf\x99K\xc1\xb6\x12\x11~\xbf\xd7:\xf9\xcb`_\xa4\xbf\x8c\xd8J\xd1z\xa4\x94?\xb7\xbd\xe8_\x9b}\xa3\xbf>!\xa8\x19@=\xac?\x08\xc8\xd3\'\xe1\xd9\xa2\xbf\x80\xdd0\xde\xbb\xb3\x88?\xf1\x96y\xa38\xba\x98?\x9a|\x03\x03\x1a\x02\x98\xbf\xa6\xa70\xb2\x7f\x81\xa3?\x8bI\xefzf\x86\xa6\xbf\xc7\xc9F\xb9\x15\xa4{?\xb1*\x19\xb9\xcc\xf4\xab\xbf\xdb\t\xca\xbb\xb8\xb9\x8d\xbf\xed\x97\xe4R\xe6+\xaf\xbf\xa4q\x97\xb4\xbf\xa2\x9d\xbf\xd6\xe2\x1e\xc9M\xb9\x9f\xbf\x16]e\xa2\x9e\x19\xa8?\xfc\xebX\x0b\xc6r\xc3\xbf\x17+\xc9\xf9\xfd\xcf\xba?\x9a\xe0\x0c\x88\x11+\xbc\xbf}oC\x92!\xfa\xc0?G\xf5`\xbc\x96\xf6\xa5\xbfv\x94\x96\xc9\x14K\xc2?\x88"\xfd\x12\\\xc6p?\xa9?\xb2l\xe3U\xc2?\xf8&\xc3@\xb2\xf9\xad?\xc9\x96\x00G\x10c\xc0?\x14\x0e\xe8\xaff/\xc0?A\xd7\xea\xd1\xf58\xb6?O\xe2\xad\xc2\xc6o\xc3?W\x1b\x1fIb\x18\x9a?4\x14\x1060\xe7\xbb?\xcb\xaf\xca\xf7\xbe\x87t\xbf!\xf8R\xae\x88\xac\x9a?\x8c\x175\x80\x91J\x91\xbf\xd5*\xc5\x01\xbeR\x9b\xbf\xbb|[\xe2\x96/\x96\xbf\x98\xfeU\x90\xf4\xf4\xb1\xbfOH~\x97mC\x93\xbf\xa7\xcak\x86\xea\x88\xc0\xbf\xc7[S\xf7\xbd\xd0\xaf?D\x8aH\xb1\x86\xe2\xc5\xbf\xdd\xd4\x06\xe2G\r\xc1?\x16;\x13\x96+\x12\xaa\xbf\x02B/\x08\x91\xb7\xc2?:o\xe0\x8a\xc4\x93p\xbf\x06[\xee\xf6~\xde\xc2?K\x07j\xb9\x82Y\xa9?+\x1c\xd6\xa7\xc1m\xb6?\x05\x82+\x14g\xe3\xc6?u4gR\x18\x8el?V\xaf\x81\xfd\xec\xd5\xa1?\xfb\xc2Fv\xe4\xbep\xbf\xe7\xe7\xf3\x83\xa7\x85\x91\xbf\x94\xe8H\xf1\x03\x97w\xbf\x8b\x9b\x17\xa0`\xb9\xad\xbfi\xdcT7\xbc\xfb\xa0\xbf\x80\xa1\xb6V$\xd4\xc1?J\xe6\xed\x87<\xa9\xa8\xbfB\x12v\x0f\x18\xa2\x9a?R\xd5w!\xc5J\x1d?:\xb6\x92W\x12q\xae\xbf@\xdb\x08\xb04\xc9\xaa?]\x18\xb2\x86#\x03\xb3\xbf\xe2\xab4Q\xb2s\xb5?\xe4\xe8rz/\x92\xac\xbfl\x8d\xeec)\x14\xba? \x17C\x03\xc5g\xa7\xbf\xde\x96\xf9\xce\ry\xbf?I\xbe&\x88\xfd2\xb2\xbf\x8f\x8a\xa2\xa4\x0c}\xbb?nk\xed\xfc\xa6\x08\xb5\xbfW[Y\xb3N\xdb\xb0?\x02\t\x1a\xe6\xc9\xc9\xb1\xbf\xcf\r\x0f{o\xa6\x90\xbf\xf6]]\x1aH\x9d\xb1\xbf\xb7\xe6I6\xcfP\xc0\xbf\xd3\xcd\x13\xd5\x9d\xb0\xb5\xbf\x91\xe6\x17\xd4\x7f\xf2\xc8\xbf\xe2i8o\x8ck\xb7\xbf\xec\xc9Z\xcc\xd8p\xc8\xbf\x15GY<\x00\x9e\xb4\xbf\xbc\xfb\xfav\x1aK\xc1\xbf\x93\xe7\xea\x01&\x06\xa8\xbf\xc3\x96\x1c\xa9\xa6\x13\xa1\xbfI2\xa6\xe4@\xc5x?Z|6\x9e\x0fc\xb5?\\\xdc\x8e\xf5\xd4\xf5\xa5?\x8dqn\xa7.2\xc8?\xf3#Ao\x82\xa5\xb5?\xf3\x01\x8d\xc3\xe1\x96\xc7\xbf\xa2+B,\xba\xb7\xbb?\xa0\xdee\x950\x19\xb4\xbfj\n\x7f.O1\xc2?\x8b\x98\x90\x837\xbaR\xbf\xd5=\xa0\xdd\n\xe2\xba?\x96q^\xd1\x0b\xf6\x96?vg\xae\xda\x95+\xab?\xf749S\x8f\x11\x9b?\'\x87:\x12T\x92r\xbf\xce\xcf\xa6o\xff\x1bl\xbf\xbc\xbb\x81\xd4\xadh\xa9?\xd6Y\xa3\xa2\x01\xf5\x86?t\xb9\x8cm/*\xbb?H\xa3\xdf9\xed|\x9b?!\x99\xaf~"O\xc1?8\x8d\xa5m\xd9\xad\xb0?v\x11L\xac<\x14\xc2?\x8f\xd6K\xdcN\x86\xbb?\xde\xe1\xe0\x1f*\'\xbb?\xcan\xf5\x04A\x9fx?fI;\xe6\xac\x1e\xbc\xbfv\x8a\x96\xc0\xa4\xf5\x87\xbfp]\xe9\xc4~\x88\xc4\xbf\x13\xa2\xfb\xca\xdb*\xa2\xbfm>,\x8d#*\xca\xbfB~?:\xb4\x04\xac\xbfJ\xdd\x85\xf6\x08\x1d\xcf\xbf}\xaa\xc2\xbflkc\xbf\xb8t\xfd`s\xca\xc5\xbf[\xed\xfaW8?W?1BV\xcap\x91\xc7\xbf\xcf\xc2\xce.f\xa9\x88\xbf\xbe\x9d\x1f\xd5\x15\xa3\xc6\xbfCN\xeeN\x81P\xa1\xbf\xcc\xe6\xfb\x06\x11}\xc3\xbf\xe6\x0032\x94\x1e\xac\xbf\xc5.N\xab\x18\x80\xbc\xbf\x9d"\x86\xd11C\x9b?:\xe4h\x9a\xe1\x04\xa3\xbf\xc6b\xdau\x84\xab\xa8?e\xfcR\x8fa\xa0\xa4\xbfC\xbf\x15H\x82/\xaa?\xcb\xe6sc\x1fe\xa9\xbf\x96i\xf9\x14HAn?E\x0c\x85\x0f\xb1\xb4\xa5\xbf\xf5\x1eb\x16\xc2\xbfx?\xd0\xffY?ET\xa7\xbf{\xdc\x9dH\xab\x94\x8e?z\xf7Wa\xe5\x7f\xa5\xbfG\xdcR\x9e1\xed\xa0\xbf\xfa#\x96$L4\x91\xbf\x88\x8a\'1\x83\xbf\x8a?\xd9\x117\x88\xf2\x7f\x84\xbf\xbf\x9f\x16#d\x1a\x94?lp\xa8v\x8c"\x9e\xbf\xa6\x19\x98\xa9S\xe0\x8d\xbf\xcf\x94\x14\xa1\xcd\x96\xa3\xbf\xd1\xd9u\x02\r@\xa7\xbf*\xdcH\xdc\xbe\xd8\xa6\xbf\x1a\x9d(n\xdb\xfa\xa6\xbf\xfc\x0fyy\xc34\x9d\xbf\xee\xa5=\x04\x98\xb8\xb1?\x9d\x8cL\xf9LL\xac?x\xa1N\x9b\x0b-\xb7?\x8d\xf7\x8a\xe7\xcb\x7f\xb3?D\xa1U\x8fh\xea\xb2?\x99\x05\x11\x06E~\xae?$Yr\xe2\xb5\x05\xa7?\x16\x9a\x8e\x1c\x8bl\x9a?t\xdbx\xe4- \x90?;\xff\xd3,\xbc6|?AW\xe4:+S\xa6\xbf\xe6X\x7fa\x84\xae\xa5?SO\x16\x06\xbcA\xc1\xbf\xb2\x87\x98\x1a\x06\xf2\xb9?;\xab8\xe5\x171\xba\xbfhvZ\xe4\xd2\x9d\xb7?Z\x83ie)\xc9\xa8\xbfg\x95"\xff\xf9\x96\xb5?\x05V\xb6\xbb\x1b*\x84\xbfL\x04\xb2\xeb\xb3\x1e\xbc?\xf3`\xc0+\x87k\x9c?\xee\xacs,\xa0\xd2\xc2?mW\x08\x0e$\xde\xb5?\x8b\x9d\x9e-\x9b\x82\xc1?\x88\r\xe8\x11\xe2f\xb1?\xc2E\xb7\xd6\xf5\xb9\xb0?\xe9\x97\xbb\xbf\'\x99 s\xdb\xb5\xc0?\x8e\xcb\xc6\x11\xef\x96\x93\xbf\xb5\xf8\x84\x14\xeb\x88\xaf?n"\xa7\t!gx?6I\x01\x01\xa9\x06\xb5?\xc1\x96\xb4\x06\xees\x9c?|{ \x82c\xe0\xbe?\xd1\xe8\x15\xce\x001\xc2\xbfn\xae,>\xcd\xa9\xbe?\xb2pJ\xcdV\xf7\xbb\xbf\xe4\xf0\x15\xe0/G\xbe?\xcd\xd3\xd7j\x1d!\xa6\xbf=?\x1b\xcb\x9b\t\xc0?1\x1d\xc4\x9bB\x05\x95?\x89\xec\xd8\xcfM\x93\xbb?O\xf1*h*]\xb1?r\x04\x05V\x98\x87\xb2?\x9c\xcf\xd0\x87l\x1e\xbe?\x83\xe2\x05PP\xee\x92?\r\xab\xd5y\x9a;\xc1?\x13\x81+k4\x1c\xb4\xbfJ\x90X\xa7\x17@\xbf?D\xb1\x00\x946C\xc3\xbf\xdd\xbe\xa0k\x92j\xbb?U\xb8C\x1c\xc5D\xc6\xbf\x98\xf2[\xff<2\x9b?(\xca\x8d\x16dS\xc3\xbfg=\x0c:+f\xc0\xbf\xa8@V\x96\x8d\xd0\xc1\xbf8\xf4\xe2:L\x7f\xca\xbfCaFvUl\xb5\xbf\xb1\xb6\xb1\x967\xb6\xc5\xbfm\xad\x1be~$r?Yl\xacnW\xf7\xb2\xbf\x01\x96G\x8b\xbbm\xbe?T\x16\x98`\xd1\x84\x92?8\x18\x05\xe3\xa4\x17\xc8?\x82~\x9cPw\xd5\xc0?\xa1\xae\xc7\xa1\xdf\xdc\xc4?_(+\x04\xd9\x03\xcd?\x99\x1c\xf4\xccKK\xc2?\x97\x98&o\x9b\x8c\xad?h\x9d(\x0ft\x0b\xc8\xbf\x0f\x02\x89\xe4\x89\xf0\x96\xbf\xe1C\xa4v\xcft\xca\xbf\x9f\xbe&\xcft\xab\xb5\xbf\xf0e\x19\xacT\xb9\xc1\xbfN\x95\xfbj\xcdp\xb3\xbf\x86!\xc9K\xe2\xf7\xa7\xbf\xa1\x97;\xe6\x84u\xa1\xbf\xf1\x0bn%\xd2\xb5\xa7?p\\.\x0c\xcd\xa5\xb0?8\xf2\x05H\x14\x1b\xb2\xbf\xbc\xa4\x16\x1a\xc1\x8f\xb3?\xa80_<\\*\xbd\xbf,T\x90\xcfG\x1f\xb1?{U\x93\x7f\xff8\xc3\xbf\x88\\NZ\xb2,i?u\'\x08y:U\xc5\xbfX\x18\xac\x83Y9\xa3\xbf\x94<\xd5\x96\x90^\xc5\xbf$M\x0e\xae\x08\xd9\xa3?\xe06\x05m~\x8c\xb0?l\x08\xcc\xecS\x00\x7f?lP\x1d,\x87a\xb7?H~\xbc\xbe\xfe\x8c\xa0\xbf-\x9e\xc1\x15\x1d\xc2\xbf?\xcb\x9a\x9c\xa3\x81\xd5\xad\xbf\x80F\x15\x18\xc5\x0e\xc4?\x8bd\xa4\xb9q\xac\x91?=\x19G\xads\x16\xa6?\x9e\xa6\xfd\x9f\xc5 \x87??\xc7\x10|"\xc8\xb2?\xde;\x8bZ\xd2\xd6;?{{\xc1\x9c\x1b\x9b\xba?\x8ca\x1a\x8b\xdf\x08\x7f\xbfc\x1a\xb4i}\xf2\xbf?\x9a\xb1\xdd\xe3/\x08\x9a\xbf\xa0\x857@\x89a\xc1?\x9ae+\x88]g\x9c\xbf\x93\xe2.J\x16\xf9\xab\xbfI\x06E3\xf1x\x81\xbf\xf6\xe7\xf9\xea\xfa\xf8\xa4\xbf\x15?\xf04\xe1\xa4c\xbf\xc8y\xa6G0j\xa3\xbf\x10D#\xe3p"\x8b\xbf\xa7\xa7rW4Vv\xbf\x8fUL)\x052\x95\xbf\x92\xb1\xb9\xf1Jr\xa0\xbff\xf93Q|L\x93\xbf\x12$\xf0\xf6\xbaO\xa8\xbfX\xd6\\\xe9?\xf7\x8f?\x8c0\xd5\x0e\x91\xddy?\xf7\xdf~\xf2"\x8e\xa1?\xb9\x1d\x1d\x06\xde\xdd\x83?:m\xb9z*;\xae?\xec\xd5M\x91\x82@\x80?vn\x87\xce\xee\xf8\xa5?\xb7`\x13\xa6\xb1\xb8X?a\xbf\x1a5\xad\xb8\x9b?\x9d\xe7\xce\x0f\x9fS}\xbf$c\x17\xae\xdd\x9a\x92?*\x1dx\xb8\xdbar\xbf\x0fS\x94kj\xaa\x97\xbf\xebi|%\xdd\xd4\xb8\xbf\xc2\\\x1ao\x87a\x83?]k6\x8d\x86L\x94?\xf4\rM\x8c\xb0\xd1u?;0k\x9a\x94\xcc\xbe?\xaaNH_uGs?\xa8}\x1c\x7f\xd8z\xb4?l\x97\x96m\x91\xa8|\xbf8$\x82~\'X\xa3?\xa1\x01\xe4\xa6\x11\x16\x99\xbf\xbby\xdf 6!\x9a\xbfz8@\x82\xe8}\xa5\xbf\x9a\xdf\xfe\x07\x00\x91\xb8\xbfS\xd757\xe0g\xa1\xbf\x03o\x04\x96_\x02\xb4\xbf\x06\x87\x97#=J\x8f\xbf\xa4a\xf7\xd3\xa2\xaa\x9a\xbf\x1b\xd2\xec\r\xc8\xd8\x00?V\x02\xfd\x80a\x01\x92?\xef\xbbd.\x96S\x96?\x07\x11\xa3\xdb\xcb`\xaa?x\xb1\x1c\xd5\xfa}\xa5?\xf9\xe1\t\xe6=\x0c\x9a\xbf\xb1\x8e6\xf0\n\xe8\x96\xbfJ\xff\xe9?\x8bt\xb8\xbf\x8cc\xb4\xdc\x03\x89\x95?\xd24\xdd\xff*\xe3\xbb?ZD\x84\xbf\xbf\xbdy?\'N9q$\xe5\xb1?az\xbbzG]V?\xabycn\x18\xf1\x9a?\xec8\x0f\x97\xf2\xdd\x9c\xbf&\xecJW\x9e7\xbc\xbf\xc4W\x13l\xc6`\xac\xbf\xcb\xf5\xd2\xb3\xaa\xb8v\xbf\xfc\x05]<\xdb\xc8\x9d\xbf\xdd%\x06\xafp\xbb\xa2?\xd1.\x10AUHa\xbf\xaf\xc6}\xc29\xbf\xb3?\xcc\xae\xc8q\xa6\xb4\xd3?\xdbS\x1b\xcb0\x00\xbc\xbf\xeap\xe4(\x0b\x12\xbe?W\xe3\x83\xc2\xa1\xed\xbc\xbf~\xfd\xa0\xf2\x9c\xad\xb4\xbfu\xec\xd3V\x82\r\xbe\xbf\xd8s\xbc\xe6\xc4\x19\xcc\xbf0\xaf\x19\xe4\xda<\xa3\xbf\x9f\xc8O/\xaf{\xd1\xbf\xc8\xb8\x97\n\x11\xea\xb0?R\xe4\xb4\x9b&\xfd\xca\xbfp\xf2d\x1cTX\xc2?)\xf7\x0e\x1ey\xf3\x9c\xbf\x93\x9d\xf9\x8c\xaf\xe4\xc5?V$\x96f\xcb9\xca?\x11\xb9\xc8\x84\xca\xd8\xc3?\x91\xce\x944=\xe3\xd1?T\xeahN\xed\x9e\xc0?\x1d\x99\xbd\x80\xd9\x01\xce?\xb1Q\xcby\xe2\xf0\xae?\xfe`|\x1a\xba\x1b\xb3?\x87\xa6\x92\x7f\xae\xad\xa7\xbfdg\xd4\xa9\xab5\xb0\xbf1\xdb\x04\xb1ro\xc0\xbf\x1a\xb5p[\xb5T\xbe\xbf\nC\xfcF\x03\x10\xbe\xbf" \xb6\x0e\xa2\xfe\xb4\xbf\x03\xd1\xc9D\xe1\xb5\xa1\xbf.\xb5\xfa\xc9\x11\xf0\xa1\xbf\xf9\x08\xe0\x97\xf8\xd3\xa1?\xa7\xbf\xf0M\xa5E\xa4?\xd0\x89\xa0\xa5.\x86\x98?\x19\xa1\xf8\x9a\xdc{\xc1?\x97\xff\x93\xe6\xdd\x7f\x81?\xd4\xa3B\x8d\xeb4\xa1\xbf\xf2 wc\x9a\xb2\x98\xbf\n\xa2)p\xd5\x8b\x89?\xde\x8d]\x9e\xd1\xa9\x92\xbf\x86\xa23wq\xa2\x97?#\xe07g\xebh\x94\xbf\xa0K\xc4\x9b\xcb\x10\x98?\xf7\x04l\x1e\xd6c@\xbf})\x9d\xc3\x1cj\xa4?J\x94P-//\xa1?\xe9b\xea\x1c\xefv\xab?i*\xe6,\x9e\xad\xa4\xbf\xdeQT\xa9\x945\x83?A~\xdcP@\xff\xa4\xbf.\x16F\xac\x08q\x92\xbf/\x85&Xf\xd3\x96\xbf\x94N\xaa?\xff\xd1\xad\xbf\xd6)\xe9\x17n\xdbv\xbf\xb2\xe1\xbf\x9c\x13\x8e\xb9\xbfU\xac\x1d\xff}\x93\x9f?\x8c\x81\x84\xc8\xca\xd3\x9f\xbf\xa2\xbe\x0f\xefi\xa6\x80\xbf\xe3\xcdj,)X\xb2\xbfo:\xcb?\x17;\x82\xbf!\xb9.w\xfeq\xba\xbf)\xf1\xd7^\xb2\x1a}\xbfn\x19l\xc8\xc8\xd1\xbf\xbfb\xd3\xbcNWI\x85\xbf\x8d\xe6\x85E\x1a\x1c\xb8\xbf\x91Ea[\x829\xac\xbf/\xcbeG\xf9\xa6\xa8\xbf=\n\xb2\x15\xe3\xe9\xa1\xbf\x88o\x15i\xe0Z\x96\xbf\x0b>\xf2x\xf4vb?\xf5\xd6\xe5\xdf\x9a\xfc\xa4\xbf4\xa6\xcc\x0c\xee\xa7\xa1?Ja\xce*\xcc\x0e\xb2\xbf\xa7\xcc\xbe7\\\xa0\xad?\xdf\xa9 \xfc\xc1\xcf\xa4?\xbaC\xca\x8c+#`?V)QH\x9a\xc7\xb6?Uj\xce\xa1\xbah_\xbf/\x08\xc1W\xba;\xaf?G\xc8\x9d\x03JW\x90\xbfn\x05Tq\x94\x8e\xa0\xbf\x15\xe3t\xb1\xc57t\xbf"tG?-na?V\xf9\x8a\xb1\x17\x9fl?\xbf\xf1e\xd3\xdd\xef\x93?\xa3P\x1f\x18\x1e\xba\x92?sw\x9d\xfa\x99\xca\x9b\xbf\xedi\xa0E\xca \xac?e\x80X\x82o\x07\xb1?\x8b\xee\xaa\xe1\xf7\xa4\xb8?1\xea\x1b\xbaD\xdd\xb4?\xfe\xd9\xb0cc\x05\xb7?\xdbT\xc7\x91\x16\x99\xa1?\xcd\xeb;\x12\xfa\t\xb5?\xc1y\x91\x1b"w\x9b?\x85D\x83\x1b\x7f\x80\xb3?w5A\xccD\x06\x84?\x06C\xb3\x84M\xf6\xb3?H\x12+\x1751\xc3\xbfLr\xb5\xaa\xd8\xdb\x99\xbf\x0eK\xde\xd4^_\x9d?;\xf7L\xaf\xced\x9f?\x90\x96\x07\xe8\x0c:\xb9?\xf2\x97N\xde\x99|\xa5?\xe2\x0c9\x8avq\xb8?;\xefY\xd8\xd6\x16\x97\xbf\x01N\xa5\x80\xb5=\xbd?\xfdy\xbew\x80\x9b\xb8\xbf\xc3\x0f@\xae\x9bh\xb0?,N\xb3|\xc6:\xb2\xbfPi?\x04\x98Z\xb3\xbf}{C\xa3\xa3.\x93?\xa2\xbcS\xc0\xb1\x8c\x92\xbf\xa9f\x9b\xae\x8c\x89\xb2\xbfb\x85){\xb3.}\xbfnG\xdc\xee\xae\xd4\xb9\xbf`\x1drD*"\x9b\xbfa\xcbT\xd2\xa8\xa6\x9b\xbf\x11\xe9\xf4\x0f4\xea\xa3\xbf\x9a\x87-\x96\xe7\x0e\xa3?\xab2\xdf!"\xbe\xb5\xbf\xb5\x93\x15_\xf7\n\xa0?e\xee\x92\xc3X\x9f\xbb\xbfN\x02\x83\xb3(\x8b\xa2\xbf\xd6+\x1aE\xc4\xd1\xa4?L\x87\xf4\xf9\xe9\xf4\xa3?\xb8,\x92\xc5\x9b\xf2\xab?\xca\x99\xf9\xe5\xa6\xbc\x96\xbf>\xf9d \xa7\xf7\xaf?\xc3\xfa\xa6u\xb6\xe2\xb8\xbf\xd1\xddy\xab\x7f\x8c\xa9\xbf\x7fQ\x1d\xb2\x1c\xdf\x98?~\x03\x1bS8I\x8a?\x03Iq&\x94b\xb9\xbf[\x16\x05\x99.\xb5-?-1\xf1\xb7E6\x97\xbf;\xdf@\xf9\x9d\x82\x8d\xbf)\xb6/\xcc\xcdr\xa4?~\'av\x9e\x82\xad?\xd8\xb9\xf5V\x02\xf1\xb5\xbf\xdf/\x1a\x1d\xe8\xbas?\x9d*3c\xa2\x85\xba\xbfP\x15I\xd5\xc3\xcb\xa2\xbf4\xb9\x97\xf5\n\x15\xb8\xbf\xa6v\xb1p\x81b\xb3\xbf\xddZM\xe1d)`\xbf\xf82\x8d\xf3%\xd8\xb6\xbf\xc3!>\xba\xc8\xae\xb6?1\xf4?\x06]\xbe\xac\xbf\xfd%[\x95P\x17\xbe?,\xee\xec\xd4\xb7\x8f\x97?\x88\x9c\x0e\xcb\x90\xa3\xaf?qvw:\x89O\xb3?\xb9\xeb\xd6\x8b\x8f\xa7u\xbf\x89\xc1\xf8\x9a\x95\\\xb4?Z\xe3O\xb0.\x12\xa5\xbf~\x02\xa8vD5\xb8?\xc5\xf5\xec\xbf\x82\xa5\xa5\xbf\xdfq\x0f\xf0\x84E\x93?\x96!\x7f1\xdd\xc3\xac\xbfk\x88\x8f\x18\x9d~\xb2\xbf}\x87\xa8\xceN\t\xb6\xbf\x16\x88\x8a\xd8f\xd1\xbf\xbft\xdezs\xd1\x8b\xb4\xbfF\xc7\xeb\x8eg\x01\xba\xbf\xa6\xd9\xbc\xce\x12{\x9d\xbf\xd6;\x81\xde\x0e\x8c\xa8\xbf\xa6\xe8\xf5)7\xf4\xa9?\xbb\xd9t\x1a\xcar\x9a?U\xec\x18\x1f\xf0B\xb4?}V\xe9\x0f\xd1j\xbe?\r\x8a\xa1F\x80S\xb2?\xf9\xb3\x02\xcd{\xaa\xb9?\xc3\xc3>\xe4\xd2\xaf\xb8?\xf4u\xab&\xe8\xd1\xb7?hs\x8f\x98\xdc\xcd\xa5?\x98\r\x1ejIn\x98?\x8e`\x93\x99Y\xf9\x86\xbf7V\x13\xe2\x1a\xff\xaa\xbf\xcb\x81\xd66\x1b\xea\x8d\xbf\xeb\xdd\xdfrf\xb6\xc0\xbfC\xb3+\xe2\x07J\x90?\xcf\x1e\xb0=\x9e\xdb\xbb\xbf\xbc\xea\x98\xfeC\xb2}?\xc3?\x8d\xed+\xfb\x9e\xbf\xb3\x14Z\xc9\xfa\xc8\x8a?\xa2*T\xc5\xbf\xfb\xa2?\x8a*\xe6)\xe7o~\xbf\x18\x02I\x19\xd9\xe8\xb2?\xa9\xab\x1a\xed\xd6\x1a\xb1\xbf)\xf9\xffi(8\xa4?\xd7E\x99F\x87-\xbb\xbfHr/\xa4\'pz?{\x12:\x8c\x85\xfe\x90\xbf\x9eJL\x1e^\xe7\xa8?\x98v\xb7n\xf9\x0e\x94\xbfm\xfa\x1f\xe4\xfc\xf6\xb7?BS:R\x0eo\x93\xbfKcm\xc0\x8an\xc0?M\x03?D\xacQ\x96\xbf\xf2\x9b\xa7\xf7>\xbf\x84?DGr\x8a\xa4\xf0\xbe\xbf4T\x03\xcf\xba:\xaa?\x10*\xe9L\xa1\x11\xb3\xbf\n\xe9\xa2\xfc\xa8\xee\xb4?\xa4o\xe6\xc7v>\x88\xbf\x1d\xe9\xc9zx\xd1\xa9?Tqd1L\x17\xad?\xf6\xf9\x87\xf8\xdeO|?Ez\xca\xda\x04d\xbb?\x1a\xdb\x9b\x87\x10\xbbx?\xc6Z\xd3\x0c\xdc\xda\x87\xbf\x97\x92\xe3\xb5\xc2<\xa4?\xe7%gh\xfb\xd9\x8e\xbfN\xf9t\xcc\x93\xcb\x94?-\x16\x86:\x89\x8c\x98\xbfm\x17\xdbz\x94\x0c\xa9\xbfU\x1b\xb7\xdc\x97)\xa2\xbf\x89!\xbf\x82\xcd\xfd\xa2\xbf\xec9\x82\xcf\xf0:\x94\xbf"\x10u5<\x9d\x98\xbf5\x81\x83\xc3Z\nM?T\x00\xbcI\xfax\xad\xbfH\x9b\x93\x1e%\x15\xae?V\x93]m:[\x98?^I&\x16*y\xae?\x15\xf0\x98N\xf0\xf3\xa6?}\x87(]\x8d\x80\xa7?=\xf8\xce\x8an\xd7\x8a?\xda?\n\x9f\xf6\x9d\xa2?\xf2\xd2\x9c6W\x1f\x90\xbf\xb3\xc5\xf6\x0c\xc5\x03\x97?\xbb\x84)\xa0\xb5d\xa3\xbf\xf0\x92\xbc\xb2\xd4\xfc\xa4?\xd6\xba.\xfc\xb4:\xcf?\xef\xd9\xf4O\xf2\xbd\xc0?\xda\xfa\x08i\n\xb1\xb4\xbf\x87\x9a\xcbOPM\xba\xbfy\xc7\x17d\xbc\x9e\xc7\xbf\x0f\x99f\xa26x\xc5\xbf\xb9H?0Tv\xc5\xbfQ|\\\xc2\xd9\x06\xa3\xbf\xf8\xd8\x0e\x07\xb8U\xc8\xbf\xd5\x80#:CO\xbe?\x18\x15\xc7\xf9]\x98\xb2\xbfU\xb2\xd06\xdd\xa6\xc1?N\x83\x82u\xadW\xcd?\xd7\xa2C\xbdx\xb2\x9e\xbf"\xcb\x16d9\xba\x84?\xc7\x15\x03\xea\xf8\x02\xc1?\x80\xfe\xd88\x9dNN?U9Rk<\x8b\xc2?l\xfcy\xfa\xae\x7f\x91?\xd3f\x1a\xe7\x8e;\x86\xbf\xd1\xd2\xf4\xacY/U\xbf\x9e\x07w\xc4\xd6\xb9\xc1\xbf\x95\xc6q/\xdd*q?}\xa64@\x1f#\xab\xbf\x8f\xaf*\xe6\xfb]\xc7?\x90\x9fx\x03"\xe3\xc3?\x9d+\x8a\xfa\x06]I\xbf\xdd\xcf\xb5nwn\xc4\xbf\xe9f\x82\xe7}j_\xbfZ\x11\x99o\x1f\xb0\x9f\xbfX\x03\xc6s\x86\xddr?\xd2N_`\x10A\xbf?\x18\xd9\xb2\x18\xf1\xe0\xc5?||_\x91\xa4\xfb\x99\xbf\x15I\xe7C\x08^\xc5\xbfLQ\xf6fg\x84\xc0?R\x95\xad?\xcd\x8b\xc4\xbf\xc2If\xd3\x06\x97\x96\xbf\xddqsV\x91\x0e\xc7\xbf#\x96\xa87~\x91\xc2\xbf*\x7f\xa8\xfe\xb0x\xc6?{\x08\x83\xaa\xd7Q\xcf?A(6\xbd\xab\x07\x97?\x8e\xe0\x14J\xa4y\xbe?\x0b\xc2\xe5)\x07\x85\xb4\xbf\xd1\xabN\xcc\x8e*f?p\x03I\xa3[P\xbc\xbf\xb2\x10\xed5]\x0c\xb6\xbf\x89\x90\xe2\xf9\xab\x9c\xbb\xbf\xb22_\xe7\xd4n\xbe\xbfJK\x95"e\x87\xa1\xbfr\xb5\xab\x86\xf4\x8b\xb2\xbfDB\x82O\xbf\xd3\xa7?f\xb3l\x19\x8e\xef\xa4?4\xb1\xa2\x9a\x9c\x96\xb8?\x9dIH\xe0;\xb4\xc6?la\x98\x1ex\xa3\xb0?\x8062\xf2_.\xc4?G\x17\xe9\xaa\xdf\xff\x99?\x7f$\xa3?I\xf0\xa7?\x877^:Sm\x98?\x85"\xafu\xfbq\xb6\xbf\xc3\xb2\xec+\x01\x8b\x9a?\xef\xeaZ\x1d2O\xc2\xbfP\x01<\xcfZ\xf3\xae?je%\x8d\xa1\xac\xb2\xbf\xe2\x86\xa7q{%\xa8?\xd9Z\xe4\x86F\xb6\xa0?\xa0\xadlz\x93\x85\x96\xbf\xce\xe0\x1d\\\xd0\x99\xba?\xb9\xac4G\x83\xbc\xb5\xbf\'\xf4VCZ\xe6\xaf?\x058X\x06r\xb9\xb8\xbfA\xca\xec\x93\xff\xd1\x93\xbf\'\xff\x10\xa4\xfeB\xc7\xbf\xc3\x94A~\'M\x9a?\x9a\x15\x9e\xa1V"\xb2\xbf=\x94\rA\xbc\xf0\xb1?\x87\xf0\xf5\x98i/y\xbf\x14\x1a\xfbj37\xa6?\x9e\xdaW\x92\x7f\xd4\x86?\xacJ\xa7a\xdbk^\xbf#\x0f\x8cj\xdc\xa6\x9d?\xa4\xaf\xf4\x7f%\xda\xa2\xbf\xfd\xf3z\xa7\xf9c\x99?\xc8b\x0e$\xc7\xae\x95\xbf\xa7y\xd4\xf5\xd2!a?\x07\xf2\n\xc1\x9a\x98\x9e?Ez\xc4O\xe8X~?\xd4b\x84o\xbb\x12\xb8?\xe4ETQ\x95\x8d\xb6?NM\xb2O\xa5\x07\xc0?\xd9\xf6\x88\xb8)\xe4\xc5?%\nM\xd8\\\xde\xb3?\xc3l\x87\xb8\xae\x9d\xc8?\xdf\x82\x7f\xa8\xf0\xcfY\xbf\xa7\x9evo?\xe1\xb2?#Y8\xeeS\x7f\xa5?\x80\xd4\xb8\xca0\xb9\xa8\xbf7\xc3\xb5Z\xb9\xcd\xb8?\xf7\x030\x9c\xd9\xb6\xc5\xbf\xa6cnX\xb7\xed\xc2?~[\xc8\x94\xea&\xba?>3\xe7cl@\xb0?\xa4\x9d\xe4\xb2q6\xa9?\xa2\xb8\xaac\xcf\xfe\xba?2\xe6Lk\x8dJt?K\xd9\xae\xc69\x1e\xbc?\x13\xaa\xe9\xcb\xb8\xe8\xa2?\xaa\xcd=\xf2\x07\xc1\xb6?\x91Y\xb7\xdd\x87\xfa\xa5?\xbc\x84\xcbZ,\x91\xae?\x18\x1a\x05\xb3\x8cU\x98?\x13\x06`\xb6\'"\xbd\xbf\xe9\xb4\xcb2`\xed\xb9\xbfxz\x06\x83#\x99\xbd\xbf\xb4B\xd2\n *\xb6\xbf\xb4\xf0}{\x14\xb4\xa2\xbf\xa5\x97\xf7B\xbd\xda\xb7??\x97\x8c\x92\xe2t\xa1?=0O\xc8\x18>\xbc?\xc1\xbe[{L"\xa0\xbf\xc2\xd2e\xb8\t\xa0\xbb?\xa0/\xec\xab\x87\xcd\xbe\xbf\xf1\xf9\x10p\xf2\xc8\xa8?\x04\x0b;.\x15\x90\xc7\xbf\xeeY\x84\xfb\xbfV\xc4\xbf\xcbr\xb6\xfd;y\xc5\xbf\xe8\x8cT\x88i_\xc5\xbf\xd7\x0b\x86o\xad)\xb7\xbf\x8c\x85\x94\x88\xcda\xb1\xbf\xc3\x0e%\xc2\xbd\x10\xa0\xbf]bk0\xb9Jw?\xcf4\xc2T\xa6%\xaa\xbf\xd8P\x96\xa1\xb4@\xa2?\xd4\n\x88E\xe9I\xc0\xbfh\xff$&\xb6H\xc1?\xdd\x89V$\xca\x8f\xbd\xbf2\x7f=k\x18\xd6\x80? ^6\xdf\xa0\x8a\xbb\xbf\xf0\x89\xb8\xf1[\xce\xb4\xbf\x13\xedx\xfb\x17\x91\x8d\xbfw\xa4\xea\x98\xe7\x1a\xb6\xbf~\xb9\x0bg\xab[z\xbf^\xd9y\xff\xd9J\xbc\xbfO\xddG\xfc\xa8\xaa\xa2\xbf\x16\xbf~\xb87\x18\xb0\xbf;Z-\xa1\x1a\xf0\x85\xbfa\x11\xf5\n\xf5\xfb\x87?\xec\xe4\xb2;g\xfe\xa4\xbf\xa8\x84\xf7y\xe4\xba\xaf\xbfs{\xb6\xe3\x90\xd5\x82\xbf\xcb[y\x99[\xe0\x98\xbf\xdd\x8cTI\xdea\x92?4Q\x03@\x1e\x8bK?\xf5\x11\xdf!\xb5\xbf\x8b\xb4\xf7\xc4\x9e\x9e\xc6?\xd8M=[\xf6\xa4\xae\xbf1\x9b\xf9@#\x1a\xb3?S\x91sf\x8b\xa4\xaf\xbfQ\xe8\xb9\xc1!\x07\x92\xbf\xd5\x11\xf10\x94\xe1\xa2\xbfO\xbe\xfc\xa3O\x92\xb7\xbfS\xefb\x0eu-\xa7?3\x17\x1f\x14\xd2z\xc0\xbf\xaa\'B\x96\x19\xcd\xc5?\x84\xc5.\xb5\xb6\x8e\xa4?\x93\x1c\xf3\r\xda\x8e\xa1\xbf\x10j\xdae\x9fA\x94\xbfR\xde\xff\xb1!\xf1\xaa\xbf\xbf\x0e\xc1I\x97\xd4\xb2\xbf!\xb4fb\x9a\xbd\xb2\xbf\x81\xd20/\x17\x9d\xc0\xbf\xa7\x0b\xe8\x80\x9b\xb5\xb6\xbf\x1e\x92\xd4j?\x8f\xb5?\xf1\xfc\xb0o\xb4\x82\xc3?\x91\xe7\xc2V\x89\xc9\x94?k\x91\xbbZ\xc1+\xb0?l\xf1`\x19{\xf4\xa0\xbf,\x0c\xacxx\x8e\xad\xbf9E\xe3\xb9/D\x9f?\xdf\'\x8f\xdfjU\xc4\xbf\x1c\x1d\x0f|\x8c\x15\xbb?hT\x91\x8ahv\xcd\xbf)|\t\xfa\xf0\x8b\xa8\xbf\xfb3\xab=Y\xbc\xc1?\x08\x96(\x96\n\x1e\xc6\xbf\xb4\x00\xd9\\\xce{\xc6?\x1d\xcb\x91\x1c`\xb3\xc1\xbfvU\x17\xf1\xbdC\xd1?c\xc4\xab\x8cB\x19\xb3?\x94\x8bZ\xdb\xdd\x92\xd0?\x10G*!\xa2\xd7\xb5?\xfe\xe2\xe6Q\xfav\xcd?K=\xe1\xd3Y\x0b\xb1?\xa9D\xf0\\T\x96\xc1?0/\x91\x03c\xff\xbb?o\xdc!\x88n5\xb9\xbf\x15A\xf0-%\x83\xb9\xbfQ\r\xa3N\x15\xde\xb7\xbfE\x96\x03\x9d\xa7\xda\xc0\xbf\x1e\x1d\xad\x14\x00\xe4|\xbf\xc5\x94\xabj\xab\xd0`?\xe8\x1cw\xfc\x84\xa4\x97?F\x1d\xd8T\xb9\xe3\xbb?\xf3\x7f\x83,E\x8c\xa4?\x8fn\xbfY\xd3"\xc1?\x14\xd3\r\x81\xd2\x1c\xa5\xbf\xac"\x13\xce\x16\xfb\x8c\xbf\xcd\xda\x8akH3\x99\xbf\xdd\xfb@b\xc6\xdb\xa0\xbf\x0e$\x8c\xfaNA\xa0\xbfa\xf72Z\x98]\xb2\xbf\xf23\xc0&v\x1f\x98\xbf1d\xd1\xe0I\xab\xa6\xbf\xfeZ\xcdAZ\n{\xbf\x9e\xd7\xb7\xa8\xda\xab\xb0\xbf\x93D@.C\xcc\x9d?\xf99\xb2"\\\x93\x89\xbf|G\xcb\x1cws\xb4?\x1d3R\xdf\xe8\xd2\x8a?\x88\xea3[\xa9\xd7\xba?\xf9\xec\xf3\xb5~\x89\x9c?0\xd1\xc7\x8c\n\xdb\xb3?\x80\x7f\xc7\x81S{\xa2?&9\xea\x15\xa1y\xa6?\xd5|\xbf\x19\xc4\xee\xa4?\xb0<\x16R*\xe43?\xdar\xe2\xeb\xb4\x04\xa2?\x13\xc6xkf\x8f\xa3\xbfT\xb2\x99\x9c\x07\xc1\x84?7\xba\x89\xab\xd7\xe4\xa1\xbf\x03\x0fG\xb8\xe8\tt?S\xad\xe3\x19\xdfC\x8e?gV\xc3d2\xc1\xb2?4\xb2w\x9bv\x03\x9d\xbf\xa0\xc4\xba\xa8\x9b\x0c\xb4?U\x85L\x91\x91ou\xbf\x1ed\xe3j\x05\xe9\xb4??\xef\xcen\x8c\x8b\xa4?\xf9\\\x10af~\x99?\xe4>\xadQ\x07a\xb4?\xac\x02\x13#\xfdq\xbc\xbf;\xabX[\x03E\xa1?\xfb\x88\xfb\x08\xdb\xfa\xbe\xbfS\x8a\xe5o1\xa5v\xbf\xc2?\xde\xd2\xfa\x137\xfd\xb9?\xd36m(\x9aH\xb7?i/\xb9i\xc2\xd2\xb1\xbf\x0f\xc4S\xa8\xea(\xbb?\x9c\xdcRP\xe0\x1d\xb3\xbf\xd6o\x9b\xf4\xef\xf8\xbc?\xdd,\xbd\xd8\xc9\x82\xae\xbf\x02\xdd\xee\xd5\x8d*\xc4?J,\xb2>\xb5\x9b\xaf\xbf>\x9a\xed\x84p\xd5\xb4\xbf\x99\xbb\x95\\\xcbM\xbd?\xc9\xa4\xf8\x0c\x9dP\xaf\xbfJji\xaef\x01\xc2?\x90k\x94\xf2\x9f$\xbd\xbf\xc8\xc3\xf7!\xbclp\xbfQ\xf3\x96\x9c[E\xbb\xbf\xed\xf2\xb3\xb8\x80\xbf\xa3\xbf\xca\xc8\xc0\xb9y\xa5\xc2\xbf\xdb\x91a\x1c\xf6\xc3\xb0\xbf\x1a\xccp5\xc4\x0b\xbb\xbf1\x02\xd5\xde\x7f\x8f\xa7?yC\x80d\x9a\xd7\xb8?X\xfa\xed\xef\xddvy?\xdd\xf6\x1f\x8b\x1b\xa8\xa1\xbf\x91\xb6\xc4\xa3\xb4^\x9f?\x15\xf5\x11\xacc\x12\xb7\xbf\xd6,\xd3z)\xef\xa7?k\x97\x1a\xe5\xaea\x8a\xbfd\x19\xaf\xe5"\xc0\x9d?\x83\xce\xf9\xfc\x1d\xfd\xb0?`\xb8\xfd3\x8d\x83\x90?pdE\x91\x19\x01\x8d?\xf8b\xd2\xd4|8\xb0?\x80\x11\\nSl\xb2\xbf\t\x9c\xbaXa\x9b\x8c\xbf\xf8\xadn\x03\xee\xfd\x8a?\xbe\xd2;a\x02\xb6E\xbf;\xf8u\xc8\xf6d\xb2?\xb8L\xc7\xd5x\x8f\x8d?\x95\xa1^\xd9\xe9\xcd\x80\xbflr\xbf"\xc9tI\xbf\x83\x04p\x87H\xf5\xb2\xbf\x1e3G\x89\x04\xac\xa1\xbf\xd9\xf8\rJ\xd8\x01\x9e\xbf\xee\xa1\xd9\xd2q\xcf\x9b?\xed[_\x99=\xf0\xb8?\x1e\xf2\xc0G8\xd9\x9b\xbf\x83\xa2t\xcf\xde\x83\xb5\xbf\x06\xd0\xae)f\xed\x93\xbfG7\xf6\x1c\xad\xc2\x8c\xbf\x92\xe0\xa8z\xb9\x89\x9b\xbfIw{\xf1Hu\xad?\xcc"\xcc\x12\xbcY\xa5?\xf8\xebD\xe0\xf6\xd9\xb2\xbf\x7f8\x9cT\xe7V\x86?\xd8r\n\x0e\x81\xdd\xb1?k\xd0=\x9e\xfb\xb6\x9a?\xb71V\x9b\x1aZq\xbf\xd5\xb5(\x03\xda\xe8c?\xd0\x1e\xaag\x841\xb2\xbf\x1e8!\xf4\xa8\xf7\xaa?6\xe6(/\xc3\x9a\xa1?]\xb2d\xfc\xe6t\x9a?5\xac\xae^>\xfd\xbc?\xb1\x7f\xec\x1a\x94\x95\xa2\xbfW\xec\x13\xb6c*\xc0?\xd2\x0fcRw:\xa8\xbf\xd6\xe2\x16\x99v}\xa4\xbf\xfd/\x98\xcav}h\xbf\xb1o\x13<,\x8d\xca\xbf\xa9\xe4#r\xc5\x98\xaa?\xde\x13\xcd\xf7\x08\x97\xc7\xbf\xe2&\x8f\xa9\x10\xe7\xb1?\xe6\xdf\xe3\xb8\xf2\xfb\x8c?\x1b\x8a\x19\xed\xa0+\xb2?F\xc4\xf9\x0eXw\xc8?P\x0c\r[\xff\xcc\x98?\xfa\xbf\xf4R\xd1\xc8\xc4?\xab4^,\x8f\x06x?\xfc\x95\xe8;\x0c\x90\x85\xbfV\xba$0M\x8c\x9e\xbf\xb3+T\xcb#v\xb7\xbf7(\x1bS7e\x85\xbf\xc3f1\xbfi\x05\xbb\xbfO=r@2]\xb4\xbf\x04\x1eo\xe8\x94\x18\xc3\xbf\x8b[\x06\x07oL\xb0\xbf\xce\xc0\xf5\x10\x05e\xc4\xbf 4\x84\xc2\x90\xf0W\xbf\xe3Hc\x9b\xd2@\xac\xbfI\x12\x89LG\xd8\xa0?\xd4T\xba{\x1b\xee\xc3?x\\\xd1\x8f\xbf\x04\x9c\xbf\x82\xab\x15pl\xeb\xd6?\xe4\x1aX\x1fuZ\xbc?\xd9~*\xdc\x967I?E\xda\\\xcb\x10c\x8b?\x0cnJ\xb7\x18\xf5\x91?(\xb6H\xf4/)\x97\xbfD\xf0\x06\x8c\x81\x8a\xa5?\x8b\xdel\xba\x18k\x86\xbf\xb8\xaa\xc1\x9f\xa3H\xa1?\x18N\xe2v\t/\xa1\xbfq\xb7fg\xa3\xb1q?\x9dZ\x0b\x00\xe8N\xa0\xbfg6\x9b(I\x9a\x94\xbff\xa7\xfd>\xf2{y\xbfH-\xaa+\xb9\x01\xaa\xbf\x0eKB\xb2\x19\xbbn\xbf\xc5\x15\xd4\x80\x16\x15\xb4\xbf\xc7\xee\xa7^\xf1T\x93\xbf*vin\xd8P\xa2\xbf\xb7\xf8p\x8e|\xed\xb3\xbf\xa8\xc1M\xc09b\xb9?\xa1\xc7P\x9f\xc9\xb9\xa6\xbf\xb4\xdc\xb0owo\xa4?\x10c7\xbf\xceo\x8e\xbf\x02\xfan\x99_d\xa8?@\xc4\xf62\xb4\xbc\x9e?]\xc9\x84~\xf29\xaa?\xcb\xc9\xa2-\r\xda\xb3?2\x8e\xb6\xfd\x87\xc9\xab?hI\x14F[)\xa0?cO\x00\xa9P\x19\xd4?\xc9\x80\xfa4\xab \xb7\xbf\xd6> E\xb5S\xc5?\xe3\xde6\xea\xad\xdc\xbe\xbf{\x021\x06\x0c\x8d\x9a\xbfo\x12\xf9\xc7X?\xaa\xbf\xc3\xd5+\x04\x8d\x06\xc7\xbf\xf3\x91\x96\x93\xb7\xc6\xb2?\x8aNt/\xaf\x0f\xd3\xbf s$m*,\x9f\xbf\x98\xf8\x9b*\xf3\xa9\x8f?@%\x82\x93`\xdc\t?\n\x80"\xc5\xad\x13\x9b\xbf\x02\xf9\x90\x0f\xc6\x87\x99?*2>\x13\xc2\xcd\xb2\xbf\xe8\xb9Y\xf6\x8dq\x81?dr\xd5\x8a\xdc\xa8\xc4\xbf\xb1\x9cSB\xa9\x8e\x95\xbf\xf2U\t\xde\xfc\xd8\xb8\xbf\xce|\xd7:\x0bT\xa3\xbf\xbd\x85>2\x8d\xa1\xa4\xbf\xd8,\xa8O\xa1\xed\xa2?\xe7\x94\x1cb\x9bt\xb5?\xc5\xdd\xdb1F\xdc\xb1?\x8c\x8c\x99\xdd,\xaa\x8b\xbf\xcc~\xaa\x08\xdb\x0e\xa6?\xf8u\xb2\x0b\xa2\x13\xb4\xbf\xafb\xdd\x95\x80[\x8e?\x07\xf5\x9e\xb8*\xde\xb9\xbf\x1d\x7f\xc0\xbc\xbe\x1c|\xbf!\xc2\xfb\x1f\xbd\xc0\xaa\xbfg?!4\x9c\x8b\x86?p\x17\xf3u\x90\xb9\x9c?\x04tbQ\xc9\xd9\xae\xbf\xa0+\xa3\x9b+\x14\xb1?\x19\xb2\xfa\x84I\x17\x83?\xb6|\x1f\xc9\xaa\x0f\xa2?q!d4L\x7f\xa3?y\x85\xbd\rCj\xb2\xbf^v#\x05\xb1\xed\xa8?r\xee\xe1\xa5\xac\xfc\x8e?2m\x19M\x12\x9c\xb0?\xd5\xd7\xee\x06\xac*\xbf?\x04\x00\xa9\x98\xa0\xf6\xb2?\xa4p1\x15+\xea\xa9?\xca\x0fO\xc8\x98\n\x9f?\x89<\xb3\xc8\xc3\xdbl\xbf\x8bc^%\xc5\xa4\x9c?\xb9\xc4L\x9dj\xf5\x9e?$\x1d4\xbb\x84o\xa3\xbf\xccA\x85\xcc\x8b[\xae?[t\xcb\xba\xea\xd0\xa8\xbf\x10\xa7\xbf\xf5\xd3\'\xa3\xbfj\x00\x91\xa1/\xbd\xb4\xbf\xa9\xb2T\xd4\xa8s\xbe\xbf\xdc\xb3o\xadv\xf5\xaa\xbf\x12?\x8a\xaeK\xa5\x99\xbfN\x90\xce>\xee\x94\xa8\xbf\xf6\x1eA\xf9j*\xb0?1\xd6\xfb\xe4\x11\xe4\xac\xbff6>\x98\xa5t\xb9\xbf-\xa4\x9d\xffn\x04\x9d\xbf\xe8\x065\xa3\'\xdck\xbf\xfa\xfd\xcc\xe7;\xcf\xa0\xbf\'F)\xbe%\x9f\xbb?\x8c5\x04]\xb4\x80\x9c?\xc6\xd4#[Z\xfe\x96?d\xdd?`\xc5j\xb0?L2\xb1=\xf2\xe5\xb7?>\x01\x1f\x9d\xc1 \xb0?k\xd6W\x9b_?\x8d\xbf\xa3\x9eI\x9e!P\xa4?\xebJ\xb2\x1bq.\xbc\xbf\xdf\xbay\x88R`\xab?\xfe\xdaNs40\xce?+1\xe4\xad\x17`S\xbf\xa9?y0\x99\x94\xb7?\xcby.d1\x0b\x9d\xbf\x9e\xd2\xdfe\xae\xb4\xb3\xbf~\x06\x8e\xd3^b\x81?\xa5\xd4W\xe4M\x13\xc7\xbf\x9a\\\x14B\x19\xcd\xb1?]\xc1U\xd0\x10\\\xcc\xbfJ\x87\xc5v\x8e_\xbc?yq\xca\xc4q\x83\xc3\xbf\xa8W*^\xff\xee\xba?`Q\\\xb4\xa1\xdd\x8b\xbf\xa4\xd0\x168F\x15P?pP$\x87\x1cf\xc2?\xc0\x11\x95\xe4\xbb\x97\xb5\xbfa\xcd\xa2\x8f\xa1T\xc2?\xddw\x97m!b\xbb\xbf\x9b\xd7-\xd18\x0e\xb0?\xfae\'%\x0b\x98\xaa\xbf\xe1\xb4\xf6\xae0\xb2\xab\xbf\x95)\xac\xb6\xcb\xd8h?\xdb\xdc\xd7\x8d\xa8\x86\xbf\xbf\x95\xc8H\xa4Gr\xa6?4\xab>\x1dmK\xc0\xbf\xbfe0\xbc\x008\xa0?O)\xd2\xc9(%\xb3\xbf\xb1\x08\x00\xb1y\xba\x94\xbf\x0es\x9b\x041iV?t\xa5*\x9a*\x0e\xb5\xbf\x91\x86V\x0bt\xd0\x9e?\xcc\xae\xdd\x022\n\xbc\xbf\xa3\xbb\x18a|5\x90?:\x1b0SHs\xc0?\x18\n\xe8\xf5\x90\xec\xc8?\xa8\xd0\xed\x9d\xba\x9c\xab?c\x1d\x93\x8b\x16=\xa1\xbf\xb6\xaaS\xe6h\x1e\xa3\xbfL0-\x95\xbeN\xc1\xbf\xed0\x1d\xdcL+\xb2\xbfZ@\xa3MZh\xc7\xbf\xc9\x8c\x97\xfe\xe1)\xb8\xbf\xde7E\xdc\xf5\x16\xca\xbf\xccb\x08\xff5\xf1\xa3?\xe7r\xd0\x03Y\xe1\xbd\xbf\x81\xfe~\x8a>\x04\xa6?K\xe9\xaek\x8cG\xc3\xbf\xae\x8a(\xdd\r&\xab?knj\xf8\x93K\xc4\xbfx\x95Ws)\x0b\x9e?s\xf3\x89\xaf\x03\xf8\xc2\xbfa\x889\r\x9b\x05j?.a\xcb\x0ch\xe1\xb6\xbf\x0e\x18\xe0@\x00\x16s\xbfTWt\x89\x16\xb2\xa1\xbfa\xc5\xf9\x940jj?f\x11yR@\x01\xaa\xbf.1\xb6J}}~?$\xb8L>\x8a\xe6\xb1\xbf\x8f\xede!%\xaa\x91?\x92ZFn\xcd8\xb6\xbf\x1aB.\xcc\x9a\x7fA?\t\x8f\x19q\xaf\xca\xc2\xbfnW\x12\x00\x07^\xa9?q\xbc\x90\xc4,\x08\xbc\xbf\xbb\x03\xccXg2\xb1?\x93.\xff\xe7\xfd\xc8\xab\xbfC\xea\x12\x8a\xa5\x8f\xae?\x9e?\xc2\xb1\xd6\x17l\xbf\xaf\xcd\x8a\xe4\xbab\xa1?H\xad4\x02\x82"\xa9?\x84\x8e/\xf3F\xa1\xb2\xbf\x19\xa9\xb5}\xa0\xbf\xaau\x17a\xf7\xc4\xb0?\x1aB\x13;\x0eS\xa2\xbf\xa8Iv\x0c&R\x94?m\x8b\x9cZt\xd7\x99\xbf\xd8\xb5[w\xb3\x04\xa7\xbf\x9b\xd0\xe8\xa0\xfd\x85\x99?\x1c\xdaYUs\'\x96?\x87\xb6J\xb3\x94z\x93?\x0f\xa3\xb3y*w\xa7\xbf\x84_\xbd\x0eq\xc8S\xbf\xd6\x9d}\xa8(\xbf\x93?#\x07\xf9\xec\xf0qF?n\xa3\xa9W\x85|\xb0?Y\x19\x87u\xa5\xe6\xc1?\xf2]\x8c5\xfez\xb5\xbfa\xe3\r];\x0e\x91?[oB\x0b\x0e\xd1\xa7\xbf\xbdN\n\xba\xf6\xdb\xb6\xbf\x991>[(+\x81?\xdc\xec\x7f\x97\x07\x91\xc1\xbf\xc5\xc2h6Hf\xb7?pV\x07\xb9\xd86\xb0\xbf\xa1U\xe6\x86\xae\xae\xb3?\xd93F\x0e\x01i\xaa?\xdd\x80~\xef<\xda\x98?\x83\xcf)\x06\xaeK\xc2?&\xfc\xcb\x7fr\x16\x95\xbf\xf0\xfch\xe5\xfd\xe9\xb1?\xf8\x12\x08\x00T#\x82\xbf\x88"\x98\xb8\xd2<\x99\xbfS\xfd\xc3^\xbf\xb6v\xbfNy\x96\xfa\xbc\xbe\xb1\xbfdMh\x80\xcal\x9d\xbf\xa0\x98Jt\x9e\xc9\x92\xbf^[\xf1C\x13\xaf\xa3\xbfs\x04R\xd9\xda\xd5\x92?\xeb\x96\xa9qm\x8d\x88\xbf\xedI\x14E\xe8\xdf\xa5?\x9d\xd1\x17\xd3\x90\xcc\x8f?d\r\x012\xc3U\x84?\xf4P\x16\xe2H\xbe\xa6?\xd5\xa0\xf1G\x12\n\xa9\xbf\xff\xc8Uot\x85\xa6?7r~)\xd7\xfd\xab\xbf\x0c\xe2\xb4Q\x06\xb4\x87\xbf\xb2"\xc1HX\x96\x97\xbfU\x08]Mo\x14\xa7\xbf\x08\xd5\xb5\xf5\xf0H\xad\xbf\xeb\xeb\x85zSa\xc2\xbf\xa2\x88\x00\xabH\xdc\xa3\xbf0\xeb\xa3e\x14\x86\xb3\xbf\xa5BS\x07\xf4\xf0\xa5\xbf\xcf\xd5#i$\x84\x87\xbf\xfd~T7\x17\xa3\xa1\xbfm\xe3R\xd2/\x82\xaf?X\xd5\xa8\x0f>&z\xbf\xeaNps\x86\xe6\xc2?\xc9\xa8\xbawu4\x93?&\x131\\|\x1d\xc1?\x9b?SBV\xc6\xa5?g&/\xbe^\xfd\xb6?&\xfa\x02\xa4\xb0;\xab?g\x87\x1a\x14\xcc\xef\x9b?\x9c.t\xec\xaaC\xa0?\x10\x8adZr\xa0\xb9\xbfB\x07\xbe\x04uE\xac\xbf6\x02\x84\xf4Y\xf5\xc8\xbf\x88G\xf2[\xc3\x80\xad?\x1a9\xb7?.\x87{?\x8f \x9d\x15t|`\xbfQ6\xe2\xa1\x9a\xe5\x97\xbf\xda\xd1\xf6\x92?\xe1\xae\xbfy\xc3\x9cg\xe8\xdb\xa6\xbf\xd5\x07Q\x80Y\x8b\xbe\xbf\x86\xc7\xc6\'\x9a\xc1\xb1\xbf\xf5- @\xcd\xd4\xaf?E\xd6)SB\xe2\x9b\xbff\xde\xc3\xf7\xe0v\xb4?^q\x9d\xd0\xe2a\xa0\xbf\xf9\'&*\xc0 \xad?\xdf\x0f#\x87*\x8e\x9d\xbf\xa2\xae)\x86\xe7\xc4\xaf?\xf2\x9e\xb0\xabmO\xa8\xbf\xa9\xe4$7\xddx\xa3?`\xfd\xca\x10\xd4\x8d\xad\xbf\xa8\xe6\xdb\xef.|\x8b\xbf_\x14\xcez\xef\xaf\x9d\xbf\xa2\xfb\xd2\x9dU\x16\xb7\xbf\x13\x8d\x08\x99Y\xc9U\xbf\xf1\xf7\xafr\xa7\xcd\xb4\xbf\xc4\xb9\xd3\x00\x8f\x93\xb1?\xf8\x8e\xc4\x0518\x95?{`\xefqR\xe9\xbf?\x8f\t\x0f#VT\xac?h\x83-7\xc5O\xb0?\xf9j\xf67VF\xa8?C\xc6c\xe1\xdbLx\xbf1\xea\xae\xe9TF\xa2?\xc5\xad\x14+\xdd\xdf\x96\xbfg \xd5!\x9f\xb6\xae\xbf_V\x9b\x8e\xa9\xd4\x82?U2\xc4q=\xd8\xad\xbf7\x87\x87\xcb\xb6\x80\xad?O\xd0\x10\xbdgw\x97?QH.\xbb}q\xa3?\xe0\x01\x19,\xd4\x1b\xb2?\x9f\xad\x0e\'\xfd\x94\xad?\x95\xd7\xd4#\xdb$\xb2?Y\xe2\xa8,~\xb5\x8c?h\x90\xb1\xc6\xfa\x94\xc6?W]\xed>J\r\x9b?\x90G\x01\xfb\xca"\xb5?\xc3\x92\xe9Z>=\xb1\xbf>\x03\x85\x83FP\xb6?\x06\xee\x01\\\xc3d\xb4\xbf\x98\xb3y7$N\xab?qp9\xddX\x9f\x9f\xbf\xfac\xe6\x15\x8a\xf4\xac?r\x95\xb9%\xf2\xc9\x9f?}\xd0\xe7y<7\x95?\xca\xaf\xc6\xb4\x18\xaf\xa4?\xa5wsI\xdc\x84\xb1?s{t\'\xcb\xcb\xa4\xbf\x91U\xec\x92"2\xcb\xbf\xa1r\xc4DT \xaf?\xc9#\xec\x13\xa0Q\xcd\xbfX\xbbY4Z\\\xb3?l_\x1a*\xa8\x10\xca\xbf\x19_\xbd?4\xf0-)\xe4!\xa2\xbf\xfbO\xa2\xbcb\xb2\xb4?\x8f\x0f\x95\xae\x14\xe2a?\x8f\xd8\xb2iU\xc0\x88?3\x10\xeb\xa9\xa2\xe8\x8b\xbf\xb0\xfb"\xf0\x00\\\x9f\xbfd\x99q\x05\x9b\xcc\xa7\xbf(G\x1e\xe2M]\xb0\xbf[>\x9c\xf5\xc1\xd5\xb4\xbfII\xc2{4\x08\x84\xbf\xda0(\x13\xe0:\x9a\xbf\x0c\xfan\x9d\\!\xb3?\xd7.\x02\x9b\xeco\xb3?\xbf\xfeSJ\xb5s\xba?xF\xec\xd0\xe2\xf8\xb4?\x16b\xe5b \x9d4\xbf\x9c\x128\x93\xad\xb7\x95\xbfxVL\x927`\xc1\xbf,\xb0P\xf3\x9f\x10\xbf\xbf\x87;\xda\x9fo[\xc2\xbf0\x160 P\x92\xbf\xbf\xe9\x01\x99e(\xd9\xaa\xbf\xfa\xa2\xcc\xf0\t\xc1\x9a\xbff\xfdPe\xdcu\xaa?\xc0&\xd0\x07\xd4\\\xb0?\xd8\xec\x85\xfb\x15\x82\xc2?Dz\xb5\x065.\xc3?\xf0\xc6\xef5B\xb7\x82?\x17B\x15;^\x0c\xae?\x9a\xae\xaf\xe8wE\xbe?\xde\x9f\x97U\x817\xa3?\tgR\x16\x17\x92\xc0?C\xe5\xf9\xbc\xa9\x98s\xbf\x86;[\x96v\xe6\xb2?zo?7GA\x8b\xbf\xb9\xcc\x04\x99+kW?\x1cmB\xb1\xaa\x14\x88?Y\x9fI\x9f!\xf6\xaf\xbf\x7f\x8f\xa1\x8ed\xa4y\xbf:\xee\xb7z\xb1\xe9\x9e\xbfI)\x9a\x8fB\xf0\x98?\x00\xce\x81s"C\x82\xbf\x07\xd7-\xcc\xd3\xd1\xa8?\x8dA:\x06\xb1s\xa7\xbf+\xef\xfd\x9f?\xf3\x8f?\xb3\xec\xea\xf8\xf6V\xc1\xbf\x03\x84\x11\xeb\x9f+\x9c?\xe1\x89\xd1\x8b\x10A\xae?\x81_U\xe3aBt?#\xee\xabd\x92\xf8\x82?\x8a\x90\r\xd6\xa7\xce\xa1?\xc8\xeb%\xbaeq\xa6\xbf\xd5\x8e=\xaa\xa9\xec\xb1?\x1b\x90\xd7$G(\xbb\xbf\xe2\x15\x8aV\xb7\xa6\xb8?\xa6u\xd5\xef\x16\xd5p\xbf\xe8\xfbg\xecB\x92\xb8\xbf\x12\x1dt\xce\xde\x89\xa8?\xf4\xbb\xea\x8c,.\xa1\xbf\x95w.S\x90o\xaf?J\x89\xc8>)\xf2\xa0?\xc3\x16\x01\xc7\xfdh\xb7?\xf7\xdaL\xfd\xb87\xbf?\xfc\xd4\xd3\x9e>B\xb1?UG\x10+\xa2r\xc7?I!\xe1;W\xc9\x82?_\xb0 \xcc9\x1e\xc0\xbf\xc7\x80!\xc6OB\xb3\xbf~\xbc^\x8es\x07\xba\xbftJ\xbe@\\\x8b\xb5\xbf\x80\x84J\xd81\xb4\x96\xbf\xb7\xa0\xc2w\xfa\x92\x82?e\x19H2\x80t\xaa?\x99,\x8d\'\x01\xa2\xa9?\x0c\xff\xc4\xe9\xb5\xa9\x85\xbf\x1a\x8e\x02\x81\x97\xc4\xaf?*\x97)\x84J\xda\xb9\xbf\xb01\xedsL\xaf\x92?F@\xd0\xc5aG\xc6\xbf\xed\xfa?\x92\xd2\x8e\xba\xbf\xd6\x05UH\xfa\x1b\xbc\xbf\xca \xbc\x9c\n\xba\xb5\xbf\x0e\xb5D\x13uf\x95\xbf$<\xd1_\xc1\x8d\x87?\xf5\xc7O)\x91\xd7\x8c?k\xc9\x060\xf1\x12\xaf?\xfeS\x93>\xbd\x9f\xa4\xbf\xbc\x9fvo\x1d\xb2\xa9?C\x8aC\x9c\xff\xeb\xc0\xbf\xc0\xea\x1bl\xf1\xa1\xb1\xbf7\xe4J\xd1an\xc3?/Q\xd1\x94\xd1t\xb1\xbf~;\x03;\xf0m\xb3?\xe4\xdc\xfb\xad\x9b~\x97\xbf\xce\xfb\x15xlI\xa5?\xe4\xf7\xc0v\xe2n\x8d\xbf\x9f9}\xe4\xee\x90\x9e\xbf\x05\x0f\x85\xdf\xbc\xe5\xa1?(\x14M\xdd\xc8\xad\xb1\xbf\xf0\x138@\xa1\'\xb3?\xc3\xb5\xd8\xde\tW\xa9?It2\xa7?\xbb\xa2\x90\xd3\x0e\xa8\x11\xbflJ\x9dX\x8d\x96\xcb?z\xa4{\xe1\xeb\x19\xb0\xbf\xe5z\xc7\xbc\x9f\x87\xd0?\x0e\xb7);\n\xef\xb5\xbf\xc0\xd1\xda\x96V\xec\xb8?d[\x9aa\niC\xbfo\xe1\xfdZY\xb4\xc1\xbf\x00\x16u4\xec\xb6\xc2?\xa3\xa9\xfat\x1b\x1c\xd6\xbf\x81\xdc&E\xac&\xc1?g(t\xd2\\\x0e\xa5\xbf%!7*Ze\xb2\xbf\x03\xcd\xae\xfe\xf6\xa9\xbe\xbfD\xba\xa68\xf1I\xb8\xbf\xddl2\x86mO\xac\xbf\x80\xd7\x89\xe5\xca\n\x96?U\xfc\xc0F\x0b\xe4\x91? \x8e;\xb3B\xa0\xc1?\x05\x1b\xc6\xee\xe6\x12\xa7?\x9d\xba\xc6\x9a\xe5\xe9\xc1?e\\\xf5\xdd\x13.\xb6?\xfd\xd3\xab\x1f\x16\xd7\x81?w\xe0,\xfe=\xb4\xa8?\xeen&\xc0c\xd5\xbd\xbf<\xf2S!+\x86\xa7?\xb3\xf3\x99A\r\x8c\xc0\xbf\xeaK\xe0\x80\xd8f\xad?\xe6\xad\xddR\xe8o\x98\xbf\xd4\x04\x1b\x0b\xd7\x97\x9b\xbf\xaf\x7f\xff\xef\\\x99\xbc?\x81\xcc\xd9\xb21k\x96?\xc6\x93~t\x87\xe6\xb1?c\xf4\x1b\x8b\xd5H\x8b?y\x0c\xf5a\x1a\x1e\x98?\x95:\x1b\'\x05\x9d\x84?\xcb0\x12n<\x19\x93\xbfA\xc9Y\x8cL\xdcu?i\x8b\xeak\xf8BK?{F,\x85{"\xa6?\x98\xd2rD\x055\x92\xbf\x0b\x98\xd6\rv*\x89?\x9f@b\x85\xbf\x00\xc9g\xb2\x97\x11\x8a\xbf\xb7\xab\x12\xc1\xe4v\xb1\xbfm7\xb2\xfb\xedW\xa7\xbfw(>\xe0\xd8\xd2\x93\xbf\x02f\x12\x9bW\x83\xa3\xbf\xa6gAR,\x82\xa4?\xac\x15?p\x9c\x08\x86\xbfr\xb5\x03r\xb1\xc2\xc3?}2Jyl\xf4X\x95\xbf*\xab\x83\x01\x14\xde\x9d\xbf\'k\xbe\xcd\xe1\xd1\xb5\xbf\x03cF\xcf\x89\xc6\x8f?\xe1\xa0\xec\xb3&c\xba\xbfVI*>q\x16\x91?\xfa\x88d\x17\xc9\xfa\xa4\xbf\x8e\xbe\xe88s0v?Fy-8!1\xa3?T\xdf\xe8\xfe\xb6\xd4\xa5\xbfd\xc6\x0b,\xb2\x8b\xb2?\x14+\xca\xf1\xe1\x07\xb7\xbf\n\xe8\xa9%\x8a\xee\xad?\x11\xae\xf5\x91\x9a\x0e\xa0\xbf\x17\x9fR\xcd\xb6\xc4A\xbf\x1e\xad\x15\xde\xfe\x9f\xa9?\xc7.\x8en\xf4\xba\xad\xbf\xe3\x18\xa9{\x00\xe4\xc5?n\xab\xbe\xcbT|\xb7\xbf\x82\xce\xc8#7\xcf\xce\xbf\x1fWq\x06\x82\xf0\xc8?\xb9\xc2\x10\x96U\xc4\x8f?\x98\xe8\x8004\xf8\xc4?\xc6g\x1dD\x88\xdb\xb9?51\xe7\x0eB\x1b\x97\xbf\x7fPl\xf7\xa0V\xa5?\xca\xf3\x08\xa2\xc0\x0f\xca\xbf\xdb9\xcc6\xe3\x14\xa8\xbf8|\x16<\xaeP\xd5\xbfE\x12\xd3<\nZ\xa9?\xd2\x06.\x97\xa52\xd6\xbf\xc7t\r\'x\x88\x96\xbf\x81\xe3\x954\xbe(\xcb\xbfj[\x93P\xc6\xfe\xa3\xbf\\*2\xe1\x86b\xa0\xbf$\xb3\x9f\x92=\x1e\x80?\xacDF\xc8\xe7r\xc3?\x8f\xa2U\x95$d\xbd?\xe1\xab%#:\x1d\xd2?\x17?\x1f \xa1\xe1\xb8\xbf\xa5H\xb3\\F1\xb1\xbf\xaf\x03w[\xab\xb9\xb1\xbf\x8dp\x98\n\xc7$\x92\xbf\xd1\x16@\x87\\\x18\xa6\xbf\xdf\xab\xc7\xc58\xe8\x9c?4\xccwY\x0c\x1b\x96\xbf*R\xd9\xb1\xf4#\xa4?[\xaa\xdc\xa6\xc9\x06\xbf?\x97\xa4\xb9e\xa0;\xa2?C\x8a5b\xe3\xd9\xb8?_\xd9\xb7\xbf.\xbf\x8d?}\xfbUE\xc7c\xad?X\xe3v\xd8\xae\x9f\xb1?\xf2\x9a\x95\xc0w%\xa0?\x1c\xf7\x92\xbf\xfa1\xb8?\xfdS\xa3,\x1c\xe2y?g\'\xa3\x08\x8e\xd8\xaf?^\t\xd9\x82q\x8b\x90\xbfr"w\x9aK\xc2\x96\xbfln\xb2=Z\xcaq?\x0f\xf7\x9a8N\xbbo\xbf\xd9\x92\xd6\xc2w\xb5j?\xcd\xedj\x05\xda6\x95?\xd5\x89\x98\xed/\xe4\x9e?T?l\x95\xce)\xab\xbf\xa5\xe9\x9f?>\x80\x7f?\x19\x84m2;Oy?m*Xm\xfa\x8c\xa2?\xfc\xb7\x99U\xeb.\x8a?\xe1\x11@\xc5Dw\xa1?(\xe9Y\x91\xbd8\x9c\xbf\x18c\xe9\xa2A\xaa\xb1?\xea\xc2\xf6a\xba\x9b\xaa\xbf\x8d\x02Q\x02!]\x95?\xae\xf6\xd2\xff\xff\xd0\xac\xbfc@U\xf3C\xa9\x91?\xae\xe2\xd8L\n\xf0\x9d?s\xfd\xd1m?\x0c|?z/z\xf7m\xa8\x96?n\xdb\x0e4\xbe\x91\xa4\xbf\x7fz9\xa6\xc12\xa6?\x8b)\x8a0(;\xa1\xbf[\xcf\x94\xf3\x03R\xa8?y\xacX>\x80\x08\xa2?\xd4\x01V?\xbd\xe0\xa2?\xe5\x17\xbfPq\x96\xb5?\x08\x96\xec\\#\xbe\x92?neIg\x0b\xa5m?B\x1fX\xbf\xcby\xa7?g*\xbfh\xf6\xa1\xc0\xbf\x9c\x96$v\xf9\x0f\xb9\xbfc\xd5Qj\x11~\x93\xbf\xef8\xfbS7\x98\xb2\xbf\xed\xc2\xd0\xe5\xb6\xfb\xac?\x08\xb6Q\x99/\xfe\xad\xbf/ \xfa"\xf5)a?\xb3UK\xf2\xa3\xf7\xb4\xbfnM$\xe3\xb3\xbd\xae\xbf\x1a\x86\xf3\xc5\xde\x81\xba\xbfk\x0b\xce\xc0\xd7\xea\xab\xbf\xbe\xe4\xfa\r.~\x90?Ij\x9b\xb3n\xf9\x93\xbf\x81-^\xdd\xd1\x83\xb4\xbf\xe5\xf1\x15g;y\xa0\xbfC\xef\xf4M:J\xb1\xbf(\xac\x80T3\xba\x9f?\x91"HbQ\xb9\xb4\xbf\xc7ZD\xf1A\xf5\xb3?0\x1b<\x05d5\x9f?\x8b\x0e{\xd5\xe0\x00\xc0\xbf\x0b\xc8\x89\x82\xe4\xd7\xbf?\xc1&w\xdd\xb4\x0c\xb2?-O\xe5h\xe1Z\xc3?\xd02L\xdf\xa6\\\x89?\x13\x8f\xc5Z\x0bE\xc1?\xb2\xd9\x16j\xdd\xfd\xac\xbf\xf4\x00\x07\xde\xc9\xeb\xb1?ph\x864\x82\xf6\xb6?\nV\xa7[\x16Kk\xbf\xb7\xed*\x13\x97\xde\x96?\xf3W\x9d\x92\xfc\x8f\xa3\xbfq*\xa9\x8a\x1f;\x95\xbf~\xc5/0\xdbh\xac\xbf\xde\xc0\x07`\xcb.\x8c?\x04\n\xdd\x17\x85\xf3\xa2\xbf\x9f\x92S\x11\x89\xc8\x83\xbf\xe3\xbfF\x97\xe8\xcf\xa3?\ta\xf9\xc8\xb1\xa9\xa1\xbf\xfd\x0b\xf7\xfe\x7f\xb6\xb5?\xff"vf\x9b\xbe\x96\xbf\x80\x12\xcc\xde\xc0\x83\xa1\xbf\xda\xb2\xe8\x85\xb2\x95\x9d?\xda\xb8\xbd\x08M&\xb9\xbf\x80\xae\xb89\xfes\x93?f\xa0R\x03\t\x17\xb2\xbf\xc3]I\xe3v\xfb\x80\xbf\x80\xa5\x9d$\xdf\xc7\x9d?$\xff\x07\x90\n$t\xbf\x0e\xe8\x1f\xb7\xf8\xd5\xa1?\xb8\xc29_\x0f\xbe\x8b\xbf!\xfc\xe5%\xeb\x0f\x9a?N\xb9\xe2h\x87\xec\x8d\xbf\x10}\xedl\xce\xec~?!"\x071\xecy\x8f\xbf\x04\xb9\x16\x94\xce\xaaz\xbf\xa0\xd8\xef\xae\x97\xea\x8c?\xf2)e\xa4\x99\xd8\xa0\xbf\xc714\x07\xa6\xa6\x86?\x85\xea\x99"\xc5[\x9a\xbfI\xb1?~,-\x91\xbf<\x05\xc54,\xd8\xb6\xbf-\xe5\x9f\xc06\x88\xc3\xbf=d\xfc\xd0<\xa4\xb1?\xda\x18\xcb"\xc4X\xb1\xbf\x14\xd9\xf0+\x87\x1f\xb6?\xb3\xec\x14\xbd\x85M\xa2\xbfuQ\x0bX\xdeJ\xa6?\xc4\xc4$pjI\x91?\xb1\x1a \xa1iv\x8a?\xfd\xc14\xc2\xbea\xb7?\xbc\xa5\x18\x98(]\xaa\xbf\x82-\xc1\xdfu\xd3\x81?\x1a\x98\xe2v\xba&v?\x14\xe0v\xb1\r\x1f\xaf?\xc2\x9a)\xd4u\xa4\xad?u\xe4A\x0eY\x1b\xb1?\x03U\xc8G\x1a\x1d\xae?\x1f\x81\x83\xa12_7?N\x17\xe3\xaa\xf3\xe3\xae\xbf@\xc9\xc0\x81\x8c1\x86\xbf\x19\xa9\xc0\xee\rv\xd3\xbfV\x17\xfe\xd9p\xbd\xa0\xbf\xcc=.\x91\r{\xd0\xbf\xa7\xa5t\x00\xe5K\x95\xbf( \xc5+;\x03\xcb\xbf\xdc\x81\x14f\x91\xcc(?\x10\x133X{\xb1\xc4\xbf\t;\xc0\xec\x03\xfa\x9b?\xe9\xa7\x8bl\x92\x7f\xd0?\xf6\xc0\xf2P\xa0\x80\xbb?-\xa7\xbe\xa4;\xf4\xcd?\xf3\xd7\x10\xca8\xa6\xb1?o\x1b\xdc\xf0\xec3\xc8?\x86\x1e\xeekk_\x92?,\x95V\x14\x01F\xcf?y\xbf3\xd7f7\xa7\xbf\xf1\xe0\x977Nw\xd1?\x00:\x8c!\x19\xd5\xb8\xbf\x9f\r0\xe1R+y?R\xb5lABD\xa8\xbf\x8e\xf3\xfdK\xe9\xe9\xc8?\xb4\xfd\xaa\xefm\xbb\x97?\xd4\xa8\x03\x15\x12\x01\xc1?:0\xc0\xfa\xd4N\x93\xbf\x9e\x02Eh-\x91\xc1\xbf\x98\x8b\xae\xf7\x08\xe1\xb1?T\x9b?#\xbe>H\xec\xb1\xcb?\x1fF\xaa;3\x16a?\x9a\x8e\x05\x0f\xd2v\xa2?\x82\x8f*-\t\xcf\x93?\xc0\xddu\x1f"\xcf\xb0\xbf2\xe85\xf8az\xb3\xbf\xe0@^\x9cjM\xbf\xbf\xb3^s\xa6\xb6\xa3\xb0\xbfc\xfb\xa6\x906\xe0{\xbfL\x92?\xab\x06\x92\xa0?5\xabf\x01\xab\xf8\xaa\xbf\xd1\xd93\xdf\xe8\x87@?\x1d\x91\xc49\x81\xe3\xb3\xbfH\xe3\x9b\x05\xcez\x95?\xc2\xdbQ\x97\x1d\xa5\xaf\xbf@\xa7\xfe\x9f\xaf\xfe\x82\xbfr#E\'`\x97\xb4\xbf6\x0b7\x18\xe2n\xa9\xbfni\x93E\x95\xec\xa9\xbfK\x80\xa4\xc8v4\x97?\xff\x9eZu\xa6\x92\x95\xbf\xd3\x8b\x0b\xb64\x07\x94?\xee\xee\x00%\x98q\x90\xbf\x12\xbe \xb6\xde\x1b\x82?\x95\x88k\xca\xf1\x10\xb3?\xd0\xba\xd5o\x8c\xa7\xa5\xbf\xc8)82\xc1@\xb3?\xfb\x89\xaabdJr\xbf\x8f\xf9R\xb1\xfb\r\xb2?&\xec\x8b\x8809\x96?\xca`\x0f\xd9\n\x89v?\x90\xecx\x9b3\xec~?\xa9\xfd\xcd\xd4\x05\xcbt?7\xf8\x92\x90J\t\xa0?\x13\xf0\t\xb4\xab\xafi\xbf@W\xae\x9c\x89\x97\x9b?\x1f\xac\xac\x1d\xae\x95\x83\xbfz\xf9\xfd\xdc\x9c\'s\xbf0\x15#\x1fi\xc1\x80\xbf\x87\xc4\x03<\x8f\x9e\xaa\xbfD\xa2\xd9\xa2\xb0C\x92\xbf\xfe\xe5\\\x06\xf9\xab\xa5?\x08\xd9y\xd2\xaa\'\xa5\xbf\xb7\xcf\x94\xbfs\xc1\xf4\xeer\x10\x97?\xae\xb1\xf8\x8b\x1b\x0c\xa8\xbf\xde\xaf\x84s\x85\xaa\xa9\xbfi\xd9\xdf56\x1d\xab\xbfq\xd5\xf6\xce P\xbd\xbfp\x9f\xe5\xbbw\xc4\xae\xbfB\xd3\xe62#3\xc7\xbf\xeb\xa4$\xa8\xb6\xb5\xaf\xbf%\xe77$\x13\xad\x94\xbf/[w-\xa0Q\xb6\xbf2:\xb5$\x9a\x0f\xa6?\x90\xce&\xf9\xe4\xc2\xb6\xbf\x02B\xdfd\xba\x14\xb2?\x8c\xab\x03\xf9\xab\x02\xb0\xbf\xac\xd1\xcd1fb\xb2?\xe7\x8f\x92\xdbv\xfe\xa8\xbf|^\xed\xdd\x1c\xb0\xac?x\xfa\\Wh\x06\x9b\xbf\xe7W\xbb\x9f\x1a\xbf\xa2\xbf\x8aF\xea$\xad\xe6\xb5\xbfN\xbb\x96pdj\xb2\xbf\xee\xe2Z"\x91[\xb2\xbfZ\xa0\x05wr<\xb3\xbf\xb9;6\x14!\x85l\xbfe\xf9\xd0!?\xd1\x92\xbf\x8a!\xe2\xf9y\xc9\x90?\x01Dd\x18\xebO\x9f?%(cm\xa5\xdem\xbf\xe6A\x9c8\x11\x8b\xa3?\n\xf4\x88\xd9\\%\xb1\xbf\xbeE\x9e\x8d\xf7>\xa0?\x89\n\x96\x86\'\x9b\xb7\xbfd\xa0\xa9\x93+O\xa2\xbf\xd6\x00S\xb6\x83\xf3\xa3\xbfs\x83]\xfd\xdc8\x95\xbf\x86\xab\xa0\x0b\xab\xb8\xa5?I\x18\xc0\xed\xc7\xd0\xa0?\x82\x12K\xd3\xf6\xe3\xae?\x946S\xb4\xacI\xbb?\tV\xe9^5\xe6\xa8?b\xd0\xd4\xab\xaa-\xba?t\x87\x92r\x1ax\x9d\xbf\x0b\xa8\x89\x8f5\x8a\xcd\xbf$\xe9\x9b\xa1\xb13\xa8?t\xbc\xc6\xbcM|\xae\xbf\xcc\x85j\x1fk\xe9\xa1\xbf\tn\r^\xdbF\xad?iQ:\xf78\xed\xa0\xbf\x00LO\xe2\xf7e\xb5?\x8f\xdb\xc0\xe8\xe1=\xb4?\xaf\xfb\x0fUC\xfd\xad?\x83>\x891\x99\x95\xcc?\x10\xc4\x04w\x1f|\x8e?\\\xf4\xc3\xca\xdf\x89r?3\xff\xfd]\x82x\xb0\xbf\xa0\xc7m\x8egz\xd4\xbf\x1c|\xc2\x82\xe4\xbe\xb0\xbf\xa8\x06R\xff \xa8\x9a\xbf\xd8\xc5\xce\xe1\x1eg\xad?\xee/}@\xc0\xc8\xc9?\xad\xa8\x02\x7f\xedd\xbb?\xdc\x05\xa1`\x8e7\xac?"\xea\xfdu\x93\xc2\xae?V\xc3N!\x87\xac\xb2\xbfb\xc3\xec\xb7\x16g\xc0\xbf\xe3G\xb7\xb1ua\xb3\xbfQ\xde\xfb\xe2\xa4\xf4\xc6\xbf\x10\x94M,\x15\x93\xa5?\x0b\xf7\x8a\x9b\xdaN\xa6?\xa2hKKW\x9b\xa2\xbfC\x94\xab\xfb\xf6:\xb5?G\xfd\xf9$@%\xb3?\xf82\x1b\xfc\x93\r\xaf?$z\xff\xdd\xdei\xca?\x97\xbf\xbdO7t\xa9\xbfH_\xdf\x14\x13\xce\xd5\xbf\xf1\x18\xca"\xac#\x83?\xf0\xeb;\xec0\xd6\xc9?\x8a#\xf6P\x83\xbf\xae?J\xa3\x85[\x84\x08\xb0?\xb7\'`\xfa&\x8a\x8c\xbf\xd1\xf9\xbdd\'c\xac\xbf' +p140 +tp141 +bsg27 +g12 +(g13 +(I0 +tp142 +g15 +tp143 +Rp144 +(I1 +(I136 +tp145 +g22 +I00 +S'8\xb1t\xd8\xf5\xa4[\xc0\xc4\xcc\x82\xd5\xe1\xc5k\xc0uM\xcd\xdb\x11\x03J\xc0\xef&\x8b4\xc1\x8ck\xc0M\xc5\xc5\x19"\x9e\x19@\x84\x8a\x901\xd6\x9dj\xc0\x80\x96\xa3\xce\xb8\x90O@\x9a\xaa\x16\x0b\xbd\xf7h\xc02\x8e\x80\xec\xe0\xdf\\@\xd1\n\xbb\xce\xaa\x05f\xc0\xc5\x11\xce\xb8-!d@\xa2C\x95P\x95\x8aa\xc0\xddf\x05\n\xd9\xdeh@\x10\xb2iN_8X\xc0\x88\xfd!@\xad\x9dl@\xf6\xd5\xd3\x97\xa4tH\xc0\x9e\x91\x04 \xa1\x92m@\x0fGy\xb6.\x05\x14@\x13\x03z\xb7\x9dEl@Y2@\xd9y\xedL@\x0b\xd68xh]h@L\x02\xfd7\x1b\x16Z@T\xcd\x85\xd0[\x8dc@\xe3"\x97\x8b"Vb@\x84\xb3t"w\x9c[@w\xa2\xbcg\x1f\xa3f@;i\x86&2\x8dL@ms\x9e!\xcfoi@<\xe7\x08\x7f\x05n\xd0\xbf\n\xee,\xa84\xe0j@^\x8en2\x9c4M\xc0\xf6\xc3x\xd2\xa6\x90k@\x93\xd0\xc2\xf0[=]\xc0\xa1@\x93\xad\x8f\xb7k@\xd1\xb1\xc2\x195^c\xc0, 4I\xf5\xe2f\xc0Q\xca\xfa\x8aM\x98f\xc0C4\xcd1\xdfdc\xc0x\xc8\xc7\xaf\xe7\x88g\xc0e,_\xc5\xe7\xf9\\\xc0t&y`\xde\xd4f\xc0\xc0q\xbe-(\xcfR\xc0\xe2\xe0M\x82\x9d\xe0d\xc0\x81\xc0K\x83\xdd+C\xc0\xdd\xba\xfe\x12$Ee\xc0\xd0\xf3\x93H\xa6\x12?@\x81\x9e\xc4?bQg\xc0\x9a\xee\xc3\xdbxyQ@\x9fm\xb2\xfd<\x0eh\xc0\t\x81G\xdb\xa5\x97[@\xe5\xf16~*\x1cg\xc0P\'\x07\xf9L\xb2b@q&\x94\x97\x85\x05d\xc0\x13\x19c\xde\'\x1df@\xc0\xc6ok\x00\xc1^\xc0\xf18\x1b\x9b\x9a9\xfb\xbf\x0fv\xa9ltQU\xc0h\xb5\xb7\xc2\xe1\xd1\xf4\xbf\x9b\x80(F-\xebG\xc0h\x05\xe5(+p\xe9\xbf\x97\xfa\x18T\xd9\x86"\xc0\xaf[\xe8\xe1\x8b\x19\xb7\xbf\x83\xe2\xf3\x9c\xc801@B\x9c\xb8\xf1b6G\xc0"\xd2\xbei\x86B9@\xce\x02\xb7yR\xbc7\xc0\xbf\xa3\xca\x0f=\xc6?@\xedJ\xa03t\xd9\xbd\xbfj\xa6\x9f\xdfR\x858@&\x01\xc0h_~7@\x7f-\x0b\xd5\xb5\xb50@\x9c\xcd\x0c\xd20IF@\xaa\\\xad\x15R\x08]\xc0H+\xf2x"1a\xc0\n\xdfRzuL`\xc0\xda\xa7M\x18\x01Q\\\xc0\x92:\x7f)\x12=`\xc0\xb0\xd4V@\xad\x12U\xc0\x90\xfa\x91Y\x9a\xdb[\xc0m\x96\'!4\xbcM\xc0\xa1\xe4$\x95=\x8fZ\xc0N\xf1\x01\xd3\x83MU\xc0\x14d`S8|Z\xc0\xf8\x87[\xaf\x9a\x8b\\\xc0\x8e\x95\x18\x86{Q\\\xc0\x03^\xeaXu@K@\x7f\xc5\x95.\x84\xa4`\xc0\x1c!\x18\xa9\x03\x13T@u\x8e\x83\x9a\x1f\xac`\xc0\xe0\xe8\xe6$9?[@\xe6g]\x00H\xfb]\xc0\xc3\x81A\xb0\xa5\x96`@\xfe\xd1\xe6-\xc2n[\xc0\xc9\x86\x9d\xab\xce\xda[@\xb4\x8d,1\xff)[\xc0\x90\xe0\xd2k\xa0\xc1T@Q\r\xe4\x18\x082V@\x83+\xb5\x1d\xa7PU\xc090\x95e\x18\xbaR@/\xc7h\x95\xf4\x86J\xc0\x9ab\x80}\x8f\x06Q@\xdc\xd7\xcbw\xe6M5\xc0\x06b\r1;cR@\x91\x8ew<\xc7P\xdf\xbfw\x9af\xb8\r\xf1P@A\xc9k\xf7T(7@y\x80\xe7\xa5\x95\x96R@\xf9\x96\x18}\xc6\xcfK@\xb8\xab\xff\xcd\x88wU@v\xe4\xda%8\xbdU@\x97_aL\x93U@\x17\x9a\x1e|\xe3\xc07@\xc6^\x15\x9by\xf6U@\r\'-\x0eJrR@W\x18\xed\xce\xe3\xa0Y@,\xfeW{}S8@\xaf\x89m\xcb\x03pZ@;.h\xbe\xca]\xb4?b\xddufr\xdeY@3t\xbe\xa0\xcb\xa15\xc0' +p146 +tp147 +bsS'n_samples' +p148 +I3148 +sS'_n_active_components' +p149 +I30 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_jaw_10 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_jaw_10 new file mode 100644 index 0000000000000000000000000000000000000000..25e1b9a4e3f8b430a4ad85a459940fa7b117cbf8 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_jaw_10 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I34 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xb0\x1c\xd8\xce6\x04\xcd\xbf*\x8c\xe0\xb0\xf2\xad\xd0\xbf\xe3t\xf66\xaeG\xc4\xbfr\x03gNO\x93\xd0\xbf\xe1\xb5l\x8cu$\xb7\xbf\xa6L,v\x80\x0b\xd0\xbf\xb0\xfe\xf3\x14m\xe8\x98\xbf\xd1\xdcC\xc7\x07*\xce\xbf\xdf\x84\xd3\x7fD\xf1\xa2?/\xc3 \x90\t\xac\xca\xbf2\xee\x98\x91\x114\xb7?@\x8a-\xb5\x0cU\xc5\xbfE1?/;Y\xc1?\x06J\xc7y\xaf\xb0\xbd\xbf9\xa0\xd8\x1eh\xe5\xc5?\x0f\x86\x8e\xa2\xf4\xa9\xae\xbf\x90\xf3\xa5.E\x11\xc7?\xd9nJ\x17\x9c"i?|\xca\xdb\xb0\xd5|\xc5?\x88R\x90\x1e\\\x98\xb0?\xb4b0\xf4\xd7\xbf\xc0?r\x10]6\xc7\x8b\xbe?-\x8c/\xa4-\xd9\xb5?\x01x\xb0\x05>\x9d\xc5?3\xba\xd7N\xb0\xeb\x9f?\xd7\xfb\xdd\x85\x94\xc0\xca?j\xc8\xde\x0bM\r\xa0\xbf\xc8\xa5\x13r\xe3\x12\xce?\x85\xf0\xadd-&\xb9\xbf\xeb\xbd\x89\xbe\x87\xbe\xcf?1f\xd1\x80(?\xc5\xbf\xc0B\xc4t\xf3@\xd0?9\x8b\xba\x01=\xfc\xcd\xbf`x<\x8e\xdbO\xd0?*\x8c\xe0\xb0\xf2\xad\xd0?\xb2\x1c\xd8\xce6\x04\xcd\xbfq\x03gNO\x93\xd0?\xe2t\xf66\xaeG\xc4\xbf\xa5L,v\x80\x0b\xd0?\xe0\xb5l\x8cu$\xb7\xbf\xd0\xdcC\xc7\x07*\xce?\xac\xfe\xf3\x14m\xe8\x98\xbf.\xc3 \x90\t\xac\xca?\xe1\x84\xd3\x7fD\xf1\xa2?>\x8a-\xb5\x0cU\xc5?2\xee\x98\x91\x114\xb7?\x03J\xc7y\xaf\xb0\xbd?E1?/;Y\xc1?\x0c\x86\x8e\xa2\xf4\xa9\xae?9\xa0\xd8\x1eh\xe5\xc5?\xffnJ\x17\x9c"i\xbf\x8f\xf3\xa5.E\x11\xc7?\x88R\x90\x1e\\\x98\xb0\xbf{\xca\xdb\xb0\xd5|\xc5?r\x10]6\xc7\x8b\xbe\xbf\xb2b0\xf4\xd7\xbf\xc0?\x00x\xb0\x05>\x9d\xc5\xbf,\x8c/\xa4-\xd9\xb5?\xd8\xfb\xdd\x85\x94\xc0\xca\xbf+\xba\xd7N\xb0\xeb\x9f?\xc8\xa5\x13r\xe3\x12\xce\xbfl\xc8\xde\x0bM\r\xa0\xbf\xea\xbd\x89\xbe\x87\xbe\xcf\xbf\x85\xf0\xadd-&\xb9\xbf\xbfB\xc4t\xf3@\xd0\xbf1f\xd1\x80(?\xc5\xbf`x<\x8e\xdbO\xd0\xbf:\x8b\xba\x01=\xfc\xcd\xbf\x1b\xaf\xd2Hh\x0b\xcf\xbf\xa5\xbf\xbc8W!^\xbc\x1b\xaf\xd2Hh\x0b\xcf\xbf\x02-m\xd6\xde\xa0f<\x1a\xaf\xd2Hh\x0b\xcf\xbf:\x19\x98\x8c\x01}\x81<\x1b\xaf\xd2Hh\x0b\xcf\xbf\xf5nr\xab\x87\xcd\x91<\x1a\xaf\xd2Hh\x0b\xcf\xbf\xab\x15\x8a\xf6c\xbc\x96<\x1b\xaf\xd2Hh\x0b\xcf\xbf*\x9d\xf9\xd7\xf7\xbb\x98<\x1f\xaf\xd2Hh\x0b\xcf\xbf\xf6\x88N\x15\x1f \x99<\x1f\xaf\xd2Hh\x0b\xcf\xbf\xa3\xc1\x91\x08_\xa0\x9aq\xcce\xf1E\x1d@\x85\xfc\x00\x83U\xda\x1b@\x04\xee\xa7\xe5S\xe0\x19@a\xf5M\xa2P=\x18@\x1a\xb1\xb39\xf2V\x17@_\xee\x82\x8f\xd6v\x15@\xe1wa\x91\xf7H\x13@\x04\xa9_\r\x1a0\x11@\xb62\x00\x8c,\x9f\x0f@$\x8dm]\x8f\x8d\x08@ \r\xb6Y'\x94\x04@" +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I10 +I34 +tp126 +g22 +I00 +S'\xfa\xb1\xb0gi%\xd6\xbfE6=\x16\xb8X\xb5\xbf\xa0G\xe7\x0b\xf3\xeb\xce\xbf"\xbfUU\x07\x9b\xbb\xbf4\x13bo\xa8\r\xc1\xbf\xd4\xd1`\x04A\xe4\xc2\xbf\xa3\xffn\x9b\xc2 \xa1\xbflS\x1b\xad\xc0C\xc7\xbf;\xc0%p\x948\xa1?\xf1XM\x15\xba\xe4\xc0\xbf ^]\xe3\xf0>\xb0?H\xa5Y9\x10\xc6\x80\xbf\xdd\x99\xd6\xc1\xf7\xe3\xae?V\xafF\xce$\xab\xc3?\xb2\xed\xa6bm\xfc\x9a?\xf0(x c\xe9\xd3?#\xa4\xa8>\x89\x9e\x85?\xfb\xdc\xf8Z\x96\xc5\xd7?\x94\xafg#\xa6O\x81\xbf\xe1\xfd_\'\x86/\xd4?\xf1\xaf=\x11\xb3\xf5\xab\xbf\x9f\xe9"\x0b\x96\xa6\xc5?u\x01\xc3\xa2\xb6\xd1\xb2\xbfXR=\xa6\xd5\xc6\x90?A\x9a\x16#\x92\x93\xab\xbfz=7\xb9N@\xbd\xbf\xfaOF\x1f\xfe\xba\x90?.\xab\x8aR\x9f%+\xc6\xbf\x15\xe0\x8b\xe2\x02/\xaf\xbfW\x16\xd8\xb5X\xe2\xc2\xbf\x83\xc61\xb5\\v\xc8\xbf\xc4\xd7N\xbf\x95\xdf\xb2\xbfu\xcak\x06\xc4\xcd\xd3\xbf\xd5\xf0\xd7\xaeN\xaf\x90\xbf\xa2\x9c\xda\xe8R?\xd6\xbf-\t\x80\xe6\x84f{?\xf3\x16N\xa4\xad\xde\xd4\xbf[}\xda\xa0\xe8\xd8\x9d?\xdc2;\xb1%\x93\xca\xbf1\xdf\xab \xa8)\xb4?_\xca\x1av\x1bz\xb0\xbf\x04\xa3\n#*\xca\xc1?\n\xa9\x9b\xc6\xa8\x9e\xa6?\xf36\xed\xff\xe6p\xc4?v}):;\xf7\xbb?\x15d\x86\x8a\xae\xa5\xc3?\xaaR\x86\x88[\x8b\xc4?l=\x18\xaf\xff\xdf\xc2?\xdeD\x86c\xd8q\xca?!:8\x1b\x1b\x94\xc3?r\xca`M@L\xcf?\xdb\xde~\xc7\xc6\xa3\xc5?\x01\x9c\x8f\xa6P\xec\xc8?\xe9r\xd0\x04+@\xcd?K\xedVjF\xa0\xad?\x99\xb4\xf9\xcd\xe5\x9c\xc8?\xdb\x06-*\x85\xe6\xb1\xbft\xb4.C\xdd]\xbe?\xcf\x95\x16=,\xa2\xc1\xbf1\xfc\x1b\xab8\xc9\x88\xbfE\xa3%\xba\xcbf\xc0\xbf\xe0\xb6\x96>m\xeb\xc8\xbfZ\xb6\xe1"\xc7^\xb2\xbf\xa8Lt\x05\x137\xd5\xbf\xa3qd\xfb\ts\xbf\x83\xc1\xe9\xec\xb9Y\xbb?\x91K\x89\xd5Y\x85\xca?\x04\xe9\xe3\xc5\x11\xde\xab?|\x95\xa4!\x1c%\xd5?\xa1\xaa\xca6\xe9\x9e\x9f\xbf\xb6\x88m\xbfi\x95\xd4?\x93\xf9qL%\xde\xbc\xbf\x18:U\x15\x16\xe9\xc9?\xa0n\x12\xd6\xd1\xd4\xc2\xbf|\x16\xd4\xe4dj\x96?c\xaf-\xf0\x97V\xb7\xbf\xe8(y\x04^\t\xbc\xbfr"\x13\xba\xd8\xa0\x99?\xc1\xce3\xddq\xa9\xc7\xbf\xd4(6\xec\xf9\x08\xc5?o0\xad\xecG\x19\xce\xbf\xd5\xea\xc6t\xa6D\xc9\xbf\xae\x1c\x8d\xefq}\xd0?d\xf4gsd?\xb9\xbf\x1d\xf5\xee\xba\x0bR\xc2?F0s\xfb+\x16\xb1?k\xba\xef\xfe\xa9:\xaa?\x83\x81\xc8\x97EG\xca?vQ[\xd4\xf6\x1c\x93\xbfx\xdb\x8a\x1fm\x17\xd2?\xb1`\xfc\xad<}\xa4\xbf\x82\x9b\xbe\x07\xb8\xe1\xd3?\x16\xc0\xee|\xc4,\xb0\xbfD\x1f\xe6\x9d\x8e\xe1\xd1?x\xba\xd4Bw\xae\xbd\xbf~\xc6\x12\xb6\x11\x06\xbf?R\xf9\xdaVCx\xc3\xbf\xae\xf2\x0f\xff\xb0\ne\xbf\xef\x9d\xc2\xd7*\xb5\xc4\xbfL\xff\xbc=\xc3m\xbf\xbf\xf0\x8c0\xce\xa0\x11\xc2\xbf\nS\xdc\xc9\xbc\xdf\xd0\xbf"\xf8\x0b\xec\x01b\xbc\xbf\xc7\x1a\xe3Rc\x0b\xd4\xbf\xba\xe8R\x00\x8bj\xa7\xbfs\xf4\x0c>x\xc1\xd2\xbf*3\x96\xf7\xca\x9a\x88\xbf\x0bK\xc1\x9ev\x95\xcb\xbf\x89\x80p\xf6\xbe\x9e\x8c?Jy\xba\xec}\xbc\xb3\xbf\x0bFkCN\xe3\xb1?Xd \xdf<\r\xb6?\xec\x10I<\xbe\x1f\xc0?"\x15\x92\xf1\xe0\xaa\xcd?5\xa4#\xe1\xff\x8d\xc9?\x81\xf3\x14\xcc\xae\xf1\xd5?\xa4\xab\x84\xba%\x99\xa3\xbf\x81`\xc7\x9b\xc7\xf1\xc3?=\x94\x0c\x84\x92\x96\xb5\xbf\x01|.\xfe\x81O\x9d\xbf\x13\xb3\xde\xd8\n\xc6\xc1\xbfE\xba\t{\x8b\x8e\xc7\xbf\xeeB\x91d\xe3I\xbb\xbf\xa9\xaa\xdf\x9d\xb2\xc8\xd1\xbff\xe2\x13\x8f\x158\x88\xbf\xa3\xa3\x9a\x85n\x1f\xd0\xbfM\x94\x90\xf4\x9az\xb6?\x9f\x93F\x81\xd7\x1e\xb6\xbf?\xaf7B\x95\x05\xc0?\xd1Qz~\x83U\xcb?\xaa\x9d3N\x96<\xba?zQ\xb5=F\xfc\xd4?\xb7_\xe1\xc3\xb3I\xa8?c\xed\x80(\xdb\xba\xcd?L\xfe\x1c\xc8Ug\xa8\xbf&=\xc8\xf9:h\xb0\xbfs\xc6\xfb\xdbp\xb0\xc3\xbf\xc3E\xdf\x17\x81\x99\xce\xbf\x1d\xd6N\n\n\xa1\xc7\xbf|\xd5\xce\xac\xfc\xa6\xd1\xbfy~,j\x00\x92\xb8\xbfLQ\xab\n*%\xc7\xbf\xacB{&\xd5\xb9\xa9?\xd3a\x05\x98C\xa7\xab\xbf\xf7K\xe2\xf2\x8b\xa5\xc4?\xe7\xff\xbe\x0b\x0c\xa8\xbb?y\xedp\xe7\t\xf3\xc3?\xcd?\x9f"S\xc8\xd0?\xd8\xf8\xa3)\xbb\xd9\xc0?\xd9\xf1U\x96\xb6\xb2\xc1?\x110:}\x85\xcd\xe0?>\xdf\xd1\x9c\xa91\x9f?1d2\x00\x85\x8d\xcd?\xc4%\xa1\xe3l\xa6\x8b?\xa6~\x8fW\xfbW\xbb\xbfo0\x8a5\xf7\xf6\xab?\xb2\x08V\xfe\x98\xe4\xd6\xbf\xcb\xbf\xec\x8f~e\xab?\xd6i\x90c\x85@\xd7\xbf\x00\x06\xe5\x8b\\#\x9e?\xff+\xd2}\xd2V\xc9\xbf,s#h\xde\xa7\x9e\xbf\xd5h\xaa\xdf\xe7\xec\xb3?\x84\xcb\x02\x9cyf\xb0\xbf\xe0/X\xe3\xc2\xa0\xd1?\xef\xc4\x99\xbdW\xec\xb0\xbfH\xd8q\xb1\xff\xaa\xca?Y\xd2\xc3\x14b\xca\x90\xbfi1\\\x0809\x93?Z\x84o\x95[\x15\xae?\x0c\xba\xe9\xf3\xe9\x8e\xc4\xbf}V\x057o\x9c\xb9?t\x05\x08\xd7MJ\xca\xbf\xe2\xd9an%\xa9\xb7?\xa2\x8c^\xc1\xa1\x07\xbe\xbf\xe9\x94\x01}\xff\x10\xa5?\x8e\x0c\x18m\xb5\xe4\x9b?r\x93\xf6\xd7}\x13\xb0\xbf\xd4yj\x12%\xc3\xbc?\xa0\xb2\xd0\xae\xbb=\xc5\xbff2?\xd7-j\xb0?)N\x1d[\x11|\xca\xbf\xe8\xc4p<\'\xb7\x9f\xbf\xba=\x03\xe4X\xc3\xa5?\x00\x81\xc9\xa5\x9f\xdc\xc4\xbf\xd3\xedIWa\xf9\xc0?_q\x18s\x14\xbb\xb0?r\x07\r\x03\xbe\xdc\xb6?k\xbd?\xa2\xf4Q\xcd?\x8c\x93\xcb\x970^\x97?K\x83ph\x02\xc9\xc4?`dz\xbc\xd5(\x93\xbfn[\xf3w\xf79\xad\xbfM\xceH\xeeb\xff\x9b\xbf\xc2\x1e\xbf\xc2\xc9\xa4\xce\xbfU\xbcN\xc7\x8f5\x96\xbfq\xf7\x1f\x10\x99w\xcc\xbf\xb8\x88\xf35\x9b\xd4\x9b\xbfA_\xf3\x9e6l\x88\xbf\xb5\xdf\xa9\xef\x89\xfd\x97\xbf\x98\xb6i3W\xe8\xc8?\x84\xbb\xdc\xd8\xcch\x92?\xdf\xfcX_u\t\xcc?\xe4\xdc5\xe3\xeb\x05\xb4?\xe0x\xe8\x8f\xf5\t\xb8?\xa9\xdf\xfd[\xeaz\xa6?\x8bf\xa4\xa7\xfdx\xbd\xbfp\xf9\x19\xf5e\xca\xa8\xbf\xe8?!\xcf\xe5e\xd4\xbf\xa9VN\x19\x8c\xc7\xb2\xbfh3\x87\x18\xa4\xf6\xd8\xbf\xf0\xfd3\x17J\xe9\x9c\xbf\x9b\xc9%\x19\x88\xb0\xc6\xbf\xe4\x0e\x06\xae\xfbL\x9f\xbf{\xe9\xed\xa2\x90\x82\xc9?\xfd\xda\xf5\xd2\x00p\xc0\xbf0\r\xbfN\xa1\x00\xe1?0\nzV\xfaw\xcc?C\x04\x05\xf3\xbfR\xb2\xbf\x1d\xc6\x97\x07?\x05Z\xbf\xdd\xf0\xf6c\x80?\x8c\xbf:\x1f\xaa\xc6e\xd4\xcc\xbf\x94\xca\xec\x01\xfa\xf0\xb2?\xb6\x8e\x96\xfay\xe2\xd3\xbf\x0fi\xf3\xecm\xa0\xbf?#\x80\xacO\xee\x96\xc3\xbf\xe5%a\x83O\x85\x91\xbf\xe5w\xe4\x96\xc8\xc4\xc1?m\x85\x15\x82\x05\xcb\xbd\xbfr\x9d\xdbW\xf2Z\xd9?\x03\xf9|(=\xa0\xb7\xbf\xc0=\xf8N\x1di\xd4?rL7\xc7p\xff\xb5?Q\x03\x0b\xa1\xa1#j?a\x82\x9a\xd1h\x1b\xbb?\xd1\xf2\x07\xb28]\xd3\xbf Q\x00\xc2Y\x90\x9d?Y\x10\xca\xdd,\x19\xd6\xbf\xe2\x16H\xcb&\x10\xac\xbf\xf9\x19\x86\xfa\xd6\xb0\xc3\xbfUF\xd2\xbc\xad\x83\xaa\xbf\xb6\x19\xd3\xf1].\xc2?q\' \xc3\x87\x93z\xbf\x8e\xb7\xb8u\x92 \xd2?2\xd2\xc1`n\xa1\xa4?]\x86 G\xe9E\xca?\xf9\x11;6\xa8\x9b\x96?\xad\xa3\x8a\x10@\x999\xbf\xebZ\xfa{\xf5^\x8c\xbf\xc7!*\xa2\x1b\xd4\xcb\xbfJ;\xe9vb\xc3\xa5\xbf\xda\xdb\xcav\xf4w\xce\xbf\x97P\xfct\xef\xad\xb8?\xdbOo\x7f\na\xa0?\x1e\xab\xd6\x1b\xa9\xfd\xa2?b\xaf\xa0\x7f\xbe\xd8\xcf?\x81\x06\xc3%\x10\x99\x9e\xbf\xca\x1b\xdc\xb1\x98\x7f\xd0?iyy\xe6\xcd\x7f\xa4\xbf\x86\xf4E\xa3L\xa4\x95?\xda\'\x97\x0e\xad\xf0\xa4?\x9c9\x8f\xe7=\x18\xce\xbf\xc1\xf1\xd9\xca\x91p\x8f?\xc4\xf3y\x14\xe7\xfb\xd1\xbf\xf6q<\xce\x1d\xf6\xc1\xbf\xa7\xfe\x98\xdd\xf0\xf6\xb3?\xa4\xbaj\x1be\x82\xc9\xbfx\xe5mYf\xa9\xd1?(\x93\x83\xd2\x815\xa4?\xcb+\xa6Q\x03\xc1\xb8?T-\x8d\x99 ]\xce?\x10\xd1\xeaPL\xbd\xd1\xbf\xc6\x97\x91\xb7\x8f\xca\xb6?\xc0\xf9\xc4}u9\xd3\xbf\xc8%\xe6\xbf\xb0\xbf\xb7\xbf\xe74\x99\xc09\xc2_\xbf\xbe\x88\xb5\x08<\x1a\xb6\xbf]\x9c\xae\xae\xd8\x95\xd2?\x1c\xf8\xb3\xcd?\x82\xac?\xde\x9da\xf5*\x93\xd1?VE\xfeW\x12\xdc\xb9?\x80QV\nq\x97\xa0?\x8633\xeb\xc3DF\xbf\xb8\x0eP\xea.\x8b\xd1\xbf8\x89\xe6\xb5Ir\xbf\xbf\xe5\xe9\xcf\xee\x1f)\xce\xbf\x9d\xf3,f\x17\xf5\xd3\xbf\xed\x1d\xf6I\xa1\xd6\xad?\xad"\xb8*`\xde\xb9? \xe2\xb72\xf3N\xc4?\x8fS\xd9\x128\xb5\xd8?\x1c\x95q\xba\xc9\n\xb0?\xc8\x7fH\r\x8f\xef\xcc?\xa9p\xeaL,\x00\x89?xp\xf2\xa4\xf1[\xc8\xbf\xf8\xcd\x05\x8f\x9c4\xb0\xbf\x1d:\x8a\xbd\x7f\xd8\xd5\xbfW\xba\x0cB74\xc0\xbf\xb0\x0b<\xb4\x02s\xae\xbf\x9d\xc5?4\xba\xd7N\xb0\xeb\x9f?\xd6\xfb\xdd\x85\x94\xc0\xca?g\xc8\xde\x0bM\r\xa0\xbf\xc8\xa5\x13r\xe3\x12\xce?\x80\xf0\xadd-&\xb9\xbf\xe9\xbd\x89\xbe\x87\xbe\xcf?0f\xd1\x80(?\xc5\xbf\xbeB\xc4t\xf3@\xd0?9\x8b\xba\x01=\xfc\xcd\xbf`x<\x8e\xdbO\xd0?)\x8c\xe0\xb0\xf2\xad\xd0?\xb2\x1c\xd8\xce6\x04\xcd\xbfq\x03gNO\x93\xd0?\xe4t\xf66\xaeG\xc4\xbf\xa5L,v\x80\x0b\xd0?\xde\xb5l\x8cu$\xb7\xbf\xd0\xdcC\xc7\x07*\xce?\xaf\xfe\xf3\x14m\xe8\x98\xbf.\xc3 \x90\t\xac\xca?\xdf\x84\xd3\x7fD\xf1\xa2?<\x8a-\xb5\x0cU\xc5?1\xee\x98\x91\x114\xb7?\x03J\xc7y\xaf\xb0\xbd?D1?/;Y\xc1?\x0c\x86\x8e\xa2\xf4\xa9\xae?9\xa0\xd8\x1eh\xe5\xc5?\xfcnJ\x17\x9c"i\xbf\x8f\xf3\xa5.E\x11\xc7?\x88R\x90\x1e\\\x98\xb0\xbf{\xca\xdb\xb0\xd5|\xc5?t\x10]6\xc7\x8b\xbe\xbf\xb4b0\xf4\xd7\xbf\xc0?\x00x\xb0\x05>\x9d\xc5\xbf-\x8c/\xa4-\xd9\xb5?\xd8\xfb\xdd\x85\x94\xc0\xca\xbf8\xba\xd7N\xb0\xeb\x9f?\xca\xa5\x13r\xe3\x12\xce\xbfg\xc8\xde\x0bM\r\xa0\xbf\xeb\xbd\x89\xbe\x87\xbe\xcf\xbf\x81\xf0\xadd-&\xb9\xbf\xbfB\xc4t\xf3@\xd0\xbf0f\xd1\x80(?\xc5\xbf`x<\x8e\xdbO\xd0\xbf;\x8b\xba\x01=\xfc\xcd\xbf\x13\xaf\xd2Hh\x0b\xcf\xbfM\'\x7f\xce\x08\xc4b\xbc\x1a\xaf\xd2Hh\x0b\xcf\xbf\x9cR\x1f$\xccR\x88<\x18\xaf\xd2Hh\x0b\xcf\xbf\xab\x90:\x80^\xb4\x95<\x1a\xaf\xd2Hh\x0b\xcf\xbf\x0f\x9b\x9a\xbcu\xfa\x97<\x1a\xaf\xd2Hh\x0b\xcf\xbf\xb55\xcb\xa8\xed|\x9d<\x1c\xaf\xd2Hh\x0b\xcf\xbf\xb9\xced/RO\x9d<\x1c\xaf\xd2Hh\x0b\xcf\xbfOD\x7f\xb8\x91\x0e\x9c<\x1f\xaf\xd2Hh\x0b\xcf\xbf\x19\x19\x1d\xec\xfe\xb0\x98< \xaf\xd2Hh\x0b\xcf\xbf~\x0e\xd2\'\xect\x92< \xaf\xd2Hh\x0b\xcf\xbf~\xd7)\x1f\xa0\x15\x84<#\xaf\xd2Hh\x0b\xcf\xbf\xa1\x01\xb3;\xe6\xcb@<\x1e\xaf\xd2Hh\x0b\xcf\xbf$\xac\xfcH\x08\x8c\x86\xbc \xaf\xd2Hh\x0b\xcf\xbf\x0b\xa6\x9c=\xab\xba\x95\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\x89=\xf1\xcb\x03?\x9f\xbc\x1e\xaf\xd2Hh\x0b\xcf\xbf\xd9q{\x90P\xe2\xa3\xbc\x1e\xaf\xd2Hh\x0b\xcf\xbfc\xba\xf0\x91i\'\xa8\xbc\x1d\xaf\xd2Hh\x0b\xcf\xbf\x11\x91[.\x03\xe5\xab\xbc\xd8\xd3\xe0\xed\x02\xce\x8b<\x16\xaf\xd2Hh\x0b\xcf\xbf\x85\xacS\xe0\x00\xfa\x90\xbc\x1c\xaf\xd2Hh\x0b\xcf\xbf\t\x0b\xfb,\xb3"\x8d\xbc\x17\xaf\xd2Hh\x0b\xcf\xbf{\xa4(8.\xd6\x96\xbc\x17\xaf\xd2Hh\x0b\xcf\xbf\x90\x1czxB\xc2\x9b\xbc\x19\xaf\xd2Hh\x0b\xcf\xbf\xb8\xcf\x9f\xfd\x16w\x9e\xbc\x1a\xaf\xd2Hh\x0b\xcf\xbf\x17\x95I\xd1\xff\x89\x9e\xbc\x1d\xaf\xd2Hh\x0b\xcf\xbf\x84\xa9\xf7\xfc\xd4\xad\x9d\xbc\x1e\xaf\xd2Hh\x0b\xcf\xbfD\xadi7\x92L\x97\xbc \xaf\xd2Hh\x0b\xcf\xbf\xf5R\xe4\x06\xb4c\x8d\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\x14\xb3\xeaB\xdc\xe3p\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\xa8\xe2\x1f\xbe\xec#{\xd2\xc8F\xbc\x00\x00\x00\x00\x00\x00\x10:L\x16\xf4\xff\xe3)\\<\x02\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\x08:\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I17 +I2 +tp89 +g22 +I00 +S'P\x1ab\x96cqh\xc0\xde\xf4\x0ea\xd9\x19l\xc0\x05\xe8\x0f\xf6_\x15a\xc0\x96-\x8fU\xf8\xeck\xc0\x8cc\xf3f\xa7~S\xc0\x8f\x00\x81s*\x08k\xc0s4\x94\xe6a\xfb4\xc0\x10B\xe1\xf5\xe4hi\xc0\xffP#y\xdd\xe9?@\x84\xa6\xd7\xb2\xcfwf\xc0\x9a.6\x93\xcd\x8bS@\x9b5BOI\xf8a\xc0\xcd\xe9\x84\xafk:]@\xe4\xde\xa3\xf8\xac\x02Y\xc0\xb0\x95.\xdc\xe3qb@\x91\xff\x8a\xfc\xa7\xd4I\xc0\xb0\xaa\xfeP}nc@\x97M\xb8-e,\x05@\x0eJ\x0e\xf3\xcc\x19b@k\xe2\xe4jz\xf5K@\x17\xefT\xb8\xff7\\@\x93\xc9\x0b<<\xbbY@W\xfb\x86\xcd\x96gR@\xf1\x0e\xcf\x9f\x195b@KH\xc7\x9b\xad\xe3:@6=\x16\xb8X\xb5\xbf\x98G\xe7\x0b\xf3\xeb\xce\xbf%\xbfUU\x07\x9b\xbb\xbf;\x13bo\xa8\r\xc1\xbf\xd4\xd1`\x04A\xe4\xc2\xbf\xa2\xffn\x9b\xc2 \xa1\xbfkS\x1b\xad\xc0C\xc7\xbf;\xc0%p\x948\xa1?\xf2XM\x15\xba\xe4\xc0\xbf\x1e^]\xe3\xf0>\xb0?U\xa5Y9\x10\xc6\x80\xbf\xdd\x99\xd6\xc1\xf7\xe3\xae?W\xafF\xce$\xab\xc3?\xb5\xed\xa6bm\xfc\x9a?\xf0(x c\xe9\xd3?*\xa4\xa8>\x89\x9e\x85?\xff\xdc\xf8Z\x96\xc5\xd7?\x9b\xafg#\xa6O\x81\xbf\xe1\xfd_\'\x86/\xd4?\xf3\xaf=\x11\xb3\xf5\xab\xbf\x9e\xe9"\x0b\x96\xa6\xc5?v\x01\xc3\xa2\xb6\xd1\xb2\xbfUR=\xa6\xd5\xc6\x90?D\x9a\x16#\x92\x93\xab\xbf\x84=7\xb9N@\xbd\xbf\xfdOF\x1f\xfe\xba\x90?0\xabm\xeb\xc8\xbfb\xb6\xe1"\xc7^\xb2\xbf\xa8Lt\x05\x137\xd5\xbf\xf38t\x99\x87RS\xbf\xdd\x07\xff\x05!\xb0\xd5\xbf\x97}\xe5-\x84\xdb\xb2?P\x89\x8e6\xa6\x16\xcb\xbf\xc04g\tl#\xbd?0>qd\xfb\ts\xbf\x95\xc1\xe9\xec\xb9Y\xbb?\x99K\x89\xd5Y\x85\xca?\x16\xe9\xe3\xc5\x11\xde\xab?w\x95\xa4!\x1c%\xd5?\x96\xaa\xca6\xe9\x9e\x9f\xbf\xb6\x88m\xbfi\x95\xd4?\x97\xf9qL%\xde\xbc\xbf\x15:U\x15\x16\xe9\xc9?\xa3n\x12\xd6\xd1\xd4\xc2\xbfu\x16\xd4\xe4dj\x96?u\xaf-\xf0\x97V\xb7\xbf\xdd(y\x04^\t\xbc\xbf\x8a"\x13\xba\xd8\xa0\x99?\xc2\xce3\xddq\xa9\xc7\xbf\xd3(6\xec\xf9\x08\xc5?n0\xad\xecG\x19\xce\xbf\xc8\xea\xc6t\xa6D\xc9\xbf\xad\x1c\x8d\xefq}\xd0?\xbf\xf4gsd?\xb9\xbf$\xf5\xee\xba\x0bR\xc2?U0s\xfb+\x16\xb1?\xcb\xba\xef\xfe\xa9:\xaa?\x99\x81\xc8\x97EG\xca?\x9eQ[\xd4\xf6\x1c\x93\xbf\x7f\xdb\x8a\x1fm\x17\xd2?\xc9`\xfc\xad<}\xa4\xbf\x84\x9b\xbe\x07\xb8\xe1\xd3?\x1e\xc0\xee|\xc4,\xb0\xbf?\x1f\xe6\x9d\x8e\xe1\xd1?~\xba\xd4Bw\xae\xbd\xbfm\xc6\x12\xb6\x11\x06\xbf?M\xf9\xdaVCx\xc3\xbf\x85\xf4\x0f\xff\xb0\ne\xbf\xfe\x9d\xc2\xd7*\xb5\xc4\xbfa\xff\xbc=\xc3m\xbf\xbf\xe8\x8c0\xce\xa0\x11\xc2\xbf\x05S\xdc\xc9\xbc\xdf\xd0\xbf\x0f\xf8\x0b\xec\x01b\xbc\xbf\xc0\x1a\xe3Rc\x0b\xd4\xbf\xa2\xe8R\x00\x8bj\xa7\xbfr\xf4\x0c>x\xc1\xd2\xbf\x193\x96\xf7\xca\x9a\x88\xbf\tK\xc1\x9ev\x95\xcb\xbf1\x80p\xf6\xbe\x9e\x8c?8y\xba\xec}\xbc\xb3\xbf\xfdEkCN\xe3\xb1?Ad \xdf<\r\xb6?\xef\x10I<\xbe\x1f\xc0?\x1b\x15\x92\xf1\xe0\xaa\xcd?-\xa4#\xe1\xff\x8d\xc9?]\xf3\x14\xcc\xae\xf1\xd5?\xd3\xab\x84\xba%\x99\xa3\xbf\xbc`\xc7\x9b\xc7\xf1\xc3?"\x94\x0c\x84\x92\x96\xb5\xbfG{.\xfe\x81O\x9d\xbf\x0f\xb3\xde\xd8\n\xc6\xc1\xbf8\xba\t{\x8b\x8e\xc7\xbf\xe9B\x91d\xe3I\xbb\xbf\xaa\xaa\xdf\x9d\xb2\xc8\xd1\xbf\xc4\xe2\x13\x8f\x158\x88\xbf\xa4\xa3\x9a\x85n\x1f\xd0\xbfE\x94\x90\xf4\x9az\xb6?\x8b\x93F\x81\xd7\x1e\xb6\xbf?\xaf7B\x95\x05\xc0?\xd7Qz~\x83U\xcb?\x9c\x9d3N\x96<\xba?wQ\xb5=F\xfc\xd4?\xb2_\xe1\xc3\xb3I\xa8?n\xed\x80(\xdb\xba\xcd?u\xfe\x1c\xc8Ug\xa8\xbf-=\xc8\xf9:h\xb0\xbf\x80\xc6\xfb\xdbp\xb0\xc3\xbf\xcfE\xdf\x17\x81\x99\xce\xbf\'\xd6N\n\n\xa1\xc7\xbf\x86\xd5\xce\xac\xfc\xa6\xd1\xbfw~,j\x00\x92\xb8\xbfQQ\xab\n*%\xc7\xbf\xc7B{&\xd5\xb9\xa9?\x17b\x05\x98C\xa7\xab\xbf\x07L\xe2\xf2\x8b\xa5\xc4?\xf5\xff\xbe\x0b\x0c\xa8\xbb?z\xedp\xe7\t\xf3\xc3?\xd5?\x9f"S\xc8\xd0?\xe4\xf8\xa3)\xbb\xd9\xc0?\xd1\xf1U\x96\xb6\xb2\xc1?\x070:}\x85\xcd\xe0?\x0f\xdf\xd1\x9c\xa91\x9f?Rd2\x00\x85\x8d\xcd?\\)\xa1\xe3l\xa6\x8b?\\~\x8fW\xfbW\xbb\xbf\xfe0\x8a5\xf7\xf6\xab?\xb4\x08V\xfe\x98\xe4\xd6\xbfJ\xbf\xec\x8f~e\xab?\xdai\x90c\x85@\xd7\xbfA\x05\xe5\x8b\\#\x9e?\x1f,\xd2}\xd2V\xc9\xbf\xe8s#h\xde\xa7\x9e\xbf\xd8h\xaa\xdf\xe7\xec\xb3?\x8b\xcb\x02\x9cyf\xb0\xbf\xe1/X\xe3\xc2\xa0\xd1?\xea\xc4\x99\xbdW\xec\xb0\xbfD\xd8q\xb1\xff\xaa\xca?\xec\xd1\xc3\x14b\xca\x90\xbf%2\\\x0809\x93?\xfc\x84o\x95[\x15\xae?\xff\xb9\xe9\xf3\xe9\x8e\xc4\xbf\x84V\x057o\x9c\xb9?|\x05\x08\xd7MJ\xca\xbf\xba\xd9an%\xa9\xb7?\xe8\x8c^\xc1\xa1\x07\xbe\xbfa\x94\x01}\xff\x10\xa5?\x90\x0b\x18m\xb5\xe4\x9b?v\x93\xf6\xd7}\x13\xb0\xbf\x8eyj\x12%\xc3\xbc?\x8a\xb2\xd0\xae\xbb=\xc5\xbf\xa82?\xd7-j\xb0?CN\x1d[\x11|\xca\xbf\x14\xc3p<\'\xb7\x9f\xbf2=\x03\xe4X\xc3\xa5?N\x81\xc9\xa5\x9f\xdc\xc4\xbf\xe6\xedIWa\xf9\xc0?oq\x18s\x14\xbb\xb0?s\x07\r\x03\xbe\xdc\xb6?j\xbd?\xa2\xf4Q\xcd?\x18\x93\xcb\x970^\x97?T\x83ph\x02\xc9\xc4?\xb4cz\xbc\xd5(\x93\xbf\x9bZ\xf3w\xf79\xad\xbf5\xceH\xeeb\xff\x9b\xbf\x8c\x1e\xbf\xc2\xc9\xa4\xce\xbf\xfb\xbcN\xc7\x8f5\x96\xbf\x89\xf7\x1f\x10\x99w\xcc\xbfE\x89\xf35\x9b\xd4\x9b\xbf3b\xf3\x9e6l\x88\xbf\x8d\xdf\xa9\xef\x89\xfd\x97\xbf\x82\xb6i3W\xe8\xc8?\xe0\xbb\xdc\xd8\xcch\x92?\xd2\xfcX_u\t\xcc?\xf6\xdc5\xe3\xeb\x05\xb4?$y\xe8\x8f\xf5\t\xb8?\x9e\xdf\xfd[\xeaz\xa6?Jf\xa4\xa7\xfdx\xbd\xbf\xb3\xf9\x19\xf5e\xca\xa8\xbf\xe7?!\xcf\xe5e\xd4\xbf\x98VN\x19\x8c\xc7\xb2\xbfs3\x87\x18\xa4\xf6\xd8\xbf+\xfe3\x17J\xe9\x9c\xbf\x99\xc9%\x19\x88\xb0\xc6\xbfY\x0f\x06\xae\xfbL\x9f\xbfg\xe9\xed\xa2\x90\x82\xc9?\xcb\xda\xf5\xd2\x00p\xc0\xbf4\r\xbfN\xa1\x00\xe1?\xf8\tzV\xfaw\xcc?\xf3\x03\x05\xf3\xbfR\xb2\xbf\xfb\x95\x97\x07?\x05Z\xbf\xd0\xef\xf6c\x80?\x8c\xbf)\x1f\xaa\xc6e\xd4\xcc\xbf\x87\xca\xec\x01\xfa\xf0\xb2?\xae\x8e\x96\xfay\xe2\xd3\xbf\xd8h\xf3\xecm\xa0\xbf?*\x80\xacO\xee\x96\xc3\xbf\xbf&a\x83O\x85\x91\xbf\xb0w\xe4\x96\xc8\xc4\xc1?\x83\x85\x15\x82\x05\xcb\xbd\xbfn\x9d\xdbW\xf2Z\xd9?\x02\xf9|(=\xa0\xb7\xbf\xd0=\xf8N\x1di\xd4?CL7\xc7p\xff\xb5?\xbe\x05\x0b\xa1\xa1#j?}\x82\x9a\xd1h\x1b\xbb?\xca\xf2\x07\xb28]\xd3\xbf\xd1R\x00\xc2Y\x90\x9d?g\x10\xca\xdd,\x19\xd6\xbf\xc3\x16H\xcb&\x10\xac\xbf\x13\x1a\x86\xfa\xd6\xb0\xc3\xbf\x05G\xd2\xbc\xad\x83\xaa\xbf\xaf\x19\xd3\xf1].\xc2?(+ \xc3\x87\x93z\xbf\x9c\xb7\xb8u\x92 \xd2?\x11\xd2\xc1`n\xa1\xa4?t\x86 G\xe9E\xca?\x0f\x12;6\xa8\x9b\x96?\x07\xcb\x8a\x10@\x999\xbfCX\xfa{\xf5^\x8c\xbf\xdf!*\xa2\x1b\xd4\xcb\xbf=;\xe9vb\xc3\xa5\xbf\xad\xdb\xcav\xf4w\xce\xbfmP\xfct\xef\xad\xb8?\xb4Mo\x7f\na\xa0?(\xab\xd6\x1b\xa9\xfd\xa2?\x89\xaf\xa0\x7f\xbe\xd8\xcf?\x07\x05\xc3%\x10\x99\x9e\xbf\xf6\x1b\xdc\xb1\x98\x7f\xd0?\xb5yy\xe6\xcd\x7f\xa4\xbf\xbb\xf5E\xa3L\xa4\x95?\x96(\x97\x0e\xad\xf0\xa4?\xb79\x8f\xe7=\x18\xce\xbf\xae\xec\xd9\xca\x91p\x8f?\xe6\xf3y\x14\xe7\xfb\xd1\xbf\xe3q<\xce\x1d\xf6\xc1\xbf\x1e\xfe\x98\xdd\xf0\xf6\xb3?b\xbaj\x1be\x82\xc9\xbf~\xe5mYf\xa9\xd1?\xfb\x92\x83\xd2\x815\xa4?\x91,\xa6Q\x03\xc1\xb8?\xf4,\x8d\x99 ]\xce?\xfd\xd0\xeaPL\xbd\xd1\xbf\xd5\x97\x91\xb7\x8f\xca\xb6?\xd1\xf9\xc4}u9\xd3\xbf]%\xe6\xbf\xb0\xbf\xb7\xbf\xc6K\x99\xc09\xc2_\xbfr\x88\xb5\x08<\x1a\xb6\xbfW\x9c\xae\xae\xd8\x95\xd2?\xef\xf7\xb3\xcd?\x82\xac?\xd8\x9da\xf5*\x93\xd1?\x04E\xfeW\x12\xdc\xb9?\rSV\nq\x97\xa0?\x91?3\xeb\xc3DF\xbf\xd8\x0eP\xea.\x8b\xd1\xbf&\x89\xe6\xb5Ir\xbf\xbf\x8d\xe9\xcf\xee\x1f)\xce\xbf\xb6\xf3,f\x17\xf5\xd3\xbf$\x1c\xf6I\xa1\xd6\xad?\x9e"\xb8*`\xde\xb9?\xa0\xe1\xb72\xf3N\xc4?pS\xd9\x128\xb5\xd8?\xa8\x95q\xba\xc9\n\xb0?=\x80H\r\x8f\xef\xcc?\x87u\xeaL,\x00\x89?\xebo\xf2\xa4\xf1[\xc8\xbf\xcb\xcd\x05\x8f\x9c4\xb0\xbf\x1b:\x8a\xbd\x7f\xd8\xd5\xbf,\xba\x0cB74\xc0\xbf\x88\x0e<\xb4\x02s\xae\xbf8DD$\xc5\x00\xa8?v\x8a\xcb{\xf5Y\xd2?ob\x0f\x9f:|\xb1?\x14\xa4L\xc7\x9d\xbf\xc8?\x81\x8a\xf7a\x1f\xf8\xab?\xaf]\xd1\x01\x9e\x8a\xc5\xbf\x8f\x1b\xef\x0e\x04\x1e\xa6\xbf\xb2Vu\x98\x0f\t\xd4\xbf)\xf5\x07e\xb2T\x88\xbfZA\x07%\xcf5\xb9\xbf\xb6\r\x86\xb0\xb31\xa8?\xa8\xc9B\x7f\x95\x8f\xc7?\xc9:\x1f-\x94\x1f\xac\xbf\xeb\xf8\x1c.\xa7z\xcf?\x18\xaf.\xaa\x83z\xb7\xbf\xae\xa8\x88`\xbf/\xb7?\x0b\x1bd\x1fm\x87R\xbf?w\x0fo\x81@\xb3\xbfAx)\xb1\xc1\x97\xbe?\xc7\xd1\xa7N\x0e\xf3\xc3\xbf\xf7\t\xfa\x90\xae\x0f\xa2?/\xb6d\xc3\x1ef]\xbf=:\xf5\x9f(4\xae\xbf\x9d\x93%]\xc7\xc2\xc0\xbf\x97\xcf\x90\xc5\x87\xbc\xa1\xbf\n6\x8a_s\x9e\xaa\xbf\x0cE\xe0\x8d\xb0\x89\x81\xbf\xf3\xfb \xbb\x89\xd2\xc6?\x0c\x0c\x0b\xe8\x01\x89\x92?P\xe3\xeb; \xa9\xca?h@\x04\x07\xa1\xbd\xb3?D\xe0\xdb\x01p\xe6\xa2\xbf*\xa2}\x90\xbdm\xb9?\r\xe4\xd6N\xa3\x8b\xd1\xbf\x10\x9a_C\xea\xdf\xb9\xbf$e\x8b\xd43}\xc5\xbfY\xd2\xce\xb4\x18f\xc2\xbf\x04\xda\xeb\xbf\xf6]\xc4?\xac\x19L\xe7\xc2M\xaf\xbf\xc0Oj\x1eb\x0f\xd3?\x1d*\xa7\xaf\xb8a\xc5?\xb1\xcc~\xf6\x1d\xb5\x83?DrQGq\x12\xb8?{\xac\xb5\x8b\xba\xf8\xd4\xbf\xec\xe7\x93\xe2\xfc\xa2\x9d\xbf\xba*\x9c\xe1\xb1\xb2\xd1\xbf\x11\xad\x05\x814\xc0\xaa\xbf\xc9[g\xf5Na\xc4?\xdc\'\xe9\x8f\xe5\xba\xbb\xbf\'m6+\xd7\xea\xdb?iA\x95\xca\xef\xcd\xb5\xbfk\x86s==u\xc3?\xed\x90\x13\x9cp\x91\xc8?\xe8!M\xce\xe8J\xd5\xbf3\xad\xdd\xc0\x0f<\xc6\xbf-\x81J\xce:G\xc4?u\x00G\xf7\xe7\x95\xba?\n\x1d\x94\x87\xfa:\xac\xbf\xe3\'\x1c?\x8f\x9f\xcf?yr\xbb\x97|j\xc9\xbf\xe0\x00\xa0\xe3\xa8s\xac?\x0c7C\xd7\x85\xff\xa9\xbf\xcb\xe6O\xec\xadP\xc7\xbf\xb9N M\xc1|\xc4?\xa2\xbd\xb4\xb8BE\xcf\xbf\xd6\x03\xe2|lt\xb5?\xfd\xc8\xe9\x8c\xd1A\xb3?\xa0f\xd8\x04\x83^\xc0\xbf\xbb\xff<\x1eZ\xf4\xd1?>\x1cj\xdd\xfcz\xb6\xbf\xdb\xde\xafy{*\xa4?;\xa5\x13\x04r\xf7\xc0?\xf6\xdd\xaf\xc3\x90\xb1\xd1\xbf\xd59\x17\xc2\x1e\xed\xb6?&\x97k6\xd2\xd1\xc7\xbfz\x08z\xff\xc52\xbc\xbf\xeb\x1c\xe4\xfbB\x85\xce?\x04V\xb2H\xd1#\xa6\xbfXI\xb8Ph/\xd4?A^\xa2\xad;\xb8\xc0?\xda\x8aD\x0b,~\x9f\xbf\x8b\x11\x19q/\x8d\x93?\x96\xb9\x97[\xb2\x10\xd7\xbf\xf4\xcd\xa1\x85\xfci\xc7\xbf\x92I\x89u\xb1!\xc1\xbfA/\xc3Q\xd8F\xb2\xbf3\xbfw\xdf\x12\xba\xcd?\'\'\xab\xc8\xc8\xae\xc3?\x90\xd4,\xe2\x9f\xbd\xcc\xbfa\r\x02c:\t\xc8?\x05\x1a\x8e\xcf\xaa\x1c\xc1?\x84\xe7+\xc9)\xb3\xc1\xbf\xeb1\\\xd3\x18\xa3\xd5?\xb6*\xff[\x92\xd8\xc7\xbf\xca0\xa5\xaa8B|?\xf9#\xedM\xc0\xef\xbb?\xa5?\xeb\x10\x070\xd4\xbf\x02\x8eh:\xc5L\xc2?H\xa5\x7f_\xf2N\xc4\xbf&A,z\xae\x11\xc6\xbfZ\x9c@\xa9\xa8\xab\xd1?\xdd\x93\t\xf9]\xf5\xbb\xbfN\xa5\xaf\xbb\xab\xc9\xac?.\x87\x82t\x0c\xd7\xd1?\xb9Z\xe1!\xc6\x1f\xc9\xbf\xbd\x9f\x1f\x0eQ\xad\x9b\xbfu\xc3\x1c\x1b(\x7f\xa1\xbf\xc3\xe1\xcd&/\x0c\xcf\xbf\xb1\xf8\xca\x16\x88\x0f\xcf?\xca\xb4*(\x03i\xb3?\x8fu73A\x16\x9c\xbfZ\xc5\x95\x82\x8b\x18\xc5?\xfc\x9c\xb1\xab\n\xd0\xcd\xbf\x9a\xb0\xf6Z\x89\x89\xa1\xbf)\x0b2!\xf0\x91\xb1\xbfzR;\xd4\x17W\xb7\xbfb: \x1b\xd0a\xcc?>\x0f\xc4g&\x91\xb2?\xa0A\xc6\xae\xf3)\xc1?\xf04\xa5h\xd3M\xb3?\x1f(\xdd\xee\xfaa\xc3\xbfKj\xf9\rC!\xbb\xbf\xd0f\x88tk\x9e\xcc\xbf\xcaA)\x97\x12\xda\xc0\xbf\xd1\xdd\xb3l\xca\x1d\xd0?7\x1f.\x94\xadI\xc3?F\xad)\x0b\xa4\xf4\xca?\xe7\xd4\xaeXk\x19\xc8??\xb0R\xa0.\xd8\xc3\xbf\xbe)\xb1EL\x8f\xba\xbfO\xec4\x1b\xc6{\xca\xbfu$\x04zg\x10\xd2\xbf\x97[\xde\xf1\xf0\xeb\x93?\x90\xf1x\xe0=i\xa8?\xf5\x03(z\\\xa9\xc9?\xba\xf77\x03#}\xd6?{\x94Z{\x1f\xfc\x99\xbf\xa6\x9b\xcf\xf20G\xb8\xbf\x85\xe9\x96\xb7\xc0\xe8\xa7\xbf\t\xd8\xfb\xda\xac\xda\xd3\xbf\x05<$\xe0\x8b\xa5\x80?1\x98\xef\xd0F7\xac?p5\xbdtn\\\xa5\xbf\xd1\xa6?\xa5\xdd\xc9\xd0?\x91\xbd\xe8\xbf\xc8\xf4\xb6\xbf\x85\xc9^o\x90\xb4\x96?\x19u\xf9Uj\xfc\xc2?\xc7O\x14\x08J\xb7\xd0\xbf\x81D7\x9d\x01\x14\xc2?\x1ck\xd6\xba\xb5\x9f\xaf\xbf4\xf3\x13\xb4\x8aE\xc6\xbfn\x94\x1b\xbc,\xff\xc7?\n\xb5\x12\x80\xf7`\xc6\xbf_\'\x8e\x98\xbc\xb5\xb5?\r/\x83P>2\xc4?Z\xfaYH\xba\xaf\xba\xbf\xe6\x7f\xfcJ\xbf\x06\xb9\xbf\x19\xd3\x15\xa4&\xd9\xbd\xbf\xf7\xc1\x8a\xb3+\x1d\xbf?\x87\x8c\x8fUr\x9b\xc4?\xb3\x8f\x17\xc1#\x14\xb0?\xe9\x7f\xdfU\xc5u\xc2?.s&\xb7\xd6\x05\xa9\xbfXE+]sy\xc8\xbf\xe1h\xe6a;\xf7\xbb\xbf\xa0\xbcu\xf7u\xa0\xc5\xbf\xfb\xf0N\x83\x82T\xa3\xbfd@\xf7;\xca\xfc\xca?Uqg;Vx\xc0?h-\x0eH\xc2\x96\xba?R\xc4";\xd5W\xb8?\x80\x803\x01\xf2\x99\xd0\xbf-\xb1\xb2\xd7g\xad\xb8\xbf\x05\x94\xe8bj\xa2\x98?\x10\x05.\x93gH\xc5\xbf<\xaf\xbdSm\x8e\xce?\xc4k\x8a8Py\xb6?\x05\xf1\xf9\xd97\x80\xb6\xbf\xfeS\xba\xcc\x12\x86\xd1?\xa8P\x88J\xbf-\xd0\xbf+\xfc\xcek~\xb8\xc9\xbf\x1fg\n\xab\xb3\x89\xc0?\x01a\x94b\xf0%\xd6\xbf\xe3\xde\xc5\xdf\xb8\xe2\xca?+@\x99\x9cAb\xd1?9\xa9K\x13\x92\t\xab\xbf\x9f\xec~\x8d\x9b\xd6\xd1?\xf7YX\\H&\xbb\xbf\x7fJ&Hb\xbe\xcb\xbf\xb7%s|\x9a/\x8c?{\xc5\xb4\x1c\xd98\xa1\xbf\xd8"\xba3\xee\x89\xb6\xbf\x9bF\xe3\xa1)\xf0\xb6?\x14H6\x17\x07\x8d\xc5?e!\t\xac\xa9xH\xbfB@/S\x1d\xc6\x94\xbf\x86\x80\x9f\x98\xc0\x9e\x93\xbf\xf6\xcb+\x93o\x9e\xc6\xbf\xbb\xad\xf3|\x0bM\xb4\xbf\xef\xb5\xcb%\x9c\xd1\xb2?\xa8\xdb\xc8=\xc2\xf6\xa0\xbf[#*%{\x1b\xc5?W#\xf6\x03\xdf\x92\xcf?\x89\x91\xd1\x8d\x9d\xbb\xc7\xbf\xa02}\xf1\xb6\xc4\xc3\xbf\xf1k\xd6\x89>9\xb1\xbf\xber\xe9\xe7\xa0\xd3\xcf\xbf\x9f\x19o-\xd2\xa2\xc6?\x01\xdd\x10\x7f\x1ac\xcc?\xd0\x08@\xce\'8\xab?i\x98\x97h\\\xcb\xd3?3P\xd1\x89u1\xc4\xbf\xc7@A\x97\xf8\xfc\xda\xbf@\xf6R\xb6~\xa5\xae\xbf\xb6\x1b\xb4ll\xfc\xad\xbfN+\xed\x9b\xe5\'\xba?C\x1f*\xc2`\xfb\xd4?L\x10HR]\xf8\xc9?\xf3At@\xc1\xa6\xb9\xbfo\xbf\x1d\x96\xd0r\xc0\xbf-qG\xe6i\xac\xb9\xbfD.\xc3\xac\xa5\xbf\xd0\xbf\x12\xb3D{\xb9\xf8\xab?|\xae\xb1\xc0\xdb\x12\xca?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I34 +tp132 +g22 +I00 +S'P\x1ab\x96cqh\xc0\xde\xf4\x0ea\xd9\x19l\xc0\x05\xe8\x0f\xf6_\x15a\xc0\x96-\x8fU\xf8\xeck\xc0\x8cc\xf3f\xa7~S\xc0\x8f\x00\x81s*\x08k\xc0s4\x94\xe6a\xfb4\xc0\x10B\xe1\xf5\xe4hi\xc0\xffP#y\xdd\xe9?@\x84\xa6\xd7\xb2\xcfwf\xc0\x9a.6\x93\xcd\x8bS@\x9b5BOI\xf8a\xc0\xcd\xe9\x84\xafk:]@\xe4\xde\xa3\xf8\xac\x02Y\xc0\xb0\x95.\xdc\xe3qb@\x91\xff\x8a\xfc\xa7\xd4I\xc0\xb0\xaa\xfeP}nc@\x97M\xb8-e,\x05@\x0eJ\x0e\xf3\xcc\x19b@k\xe2\xe4jz\xf5K@\x17\xefT\xb8\xff7\\@\x93\xc9\x0b<<\xbbY@W\xfb\x86\xcd\x96gR@\xf1\x0e\xcf\x9f\x195b@KH\xc7\x9b\xad\xe3:@\x9d\xc5?3\xba\xd7N\xb0\xeb\x9f?\xd7\xfb\xdd\x85\x94\xc0\xca?j\xc8\xde\x0bM\r\xa0\xbf\xc8\xa5\x13r\xe3\x12\xce?\x82\xf0\xadd-&\xb9\xbf\xeb\xbd\x89\xbe\x87\xbe\xcf?1f\xd1\x80(?\xc5\xbf\xc0B\xc4t\xf3@\xd0?9\x8b\xba\x01=\xfc\xcd\xbf`x<\x8e\xdbO\xd0?*\x8c\xe0\xb0\xf2\xad\xd0?\xb2\x1c\xd8\xce6\x04\xcd\xbfq\x03gNO\x93\xd0?\xe3t\xf66\xaeG\xc4\xbf\xa5L,v\x80\x0b\xd0?\xe0\xb5l\x8cu$\xb7\xbf\xd0\xdcC\xc7\x07*\xce?\xac\xfe\xf3\x14m\xe8\x98\xbf.\xc3 \x90\t\xac\xca?\xdf\x84\xd3\x7fD\xf1\xa2?>\x8a-\xb5\x0cU\xc5?2\xee\x98\x91\x114\xb7?\x04J\xc7y\xaf\xb0\xbd?E1?/;Y\xc1?\r\x86\x8e\xa2\xf4\xa9\xae?8\xa0\xd8\x1eh\xe5\xc5?\xefnJ\x17\x9c"i\xbf\x8f\xf3\xa5.E\x11\xc7?\x88R\x90\x1e\\\x98\xb0\xbf{\xca\xdb\xb0\xd5|\xc5?t\x10]6\xc7\x8b\xbe\xbf\xb2b0\xf4\xd7\xbf\xc0?\x00x\xb0\x05>\x9d\xc5\xbf,\x8c/\xa4-\xd9\xb5?\xd8\xfb\xdd\x85\x94\xc0\xca\xbf+\xba\xd7N\xb0\xeb\x9f?\xc8\xa5\x13r\xe3\x12\xce\xbfk\xc8\xde\x0bM\r\xa0\xbf\xeb\xbd\x89\xbe\x87\xbe\xcf\xbf\x82\xf0\xadd-&\xb9\xbf\xbfB\xc4t\xf3@\xd0\xbf1f\xd1\x80(?\xc5\xbf`x<\x8e\xdbO\xd0\xbf:\x8b\xba\x01=\xfc\xcd\xbf\x18\xaf\xd2Hh\x0b\xcf\xbfF\xea\x96\xf1\xf6\xdct<\x1b\xaf\xd2Hh\x0b\xcf\xbf\xc8Z\x9ei)\x95w<\x19\xaf\xd2Hh\x0b\xcf\xbf\xdb;7\x11VL\x8b<\x1b\xaf\xd2Hh\x0b\xcf\xbfJ\x9fw\x0e\xd8i\x94<\x1b\xaf\xd2Hh\x0b\xcf\xbfz\xa1\xf8\xb5\x0e\xd0\x9a<\x1c\xaf\xd2Hh\x0b\xcf\xbf\x8a\xefW\xd5\xb0\xfe\x9b<\x1f\xaf\xd2Hh\x0b\xcf\xbf\x02\xef\x16/\x01e\x9d<\x1e\xaf\xd2Hh\x0b\xcf\xbfU\x121\x8cV\xcc\x9b<\x1f\xaf\xd2Hh\x0b\xcf\xbfKe\x85\xa9\x9c\x1f\x967b\x83A.\xbc\x02\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\x08:\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I17 +I2 +tp89 +g22 +I00 +S'P\x1ab\x96cqh\xc0\xdd\xf4\x0ea\xd9\x19l\xc0\x05\xe8\x0f\xf6_\x15a\xc0\x97-\x8fU\xf8\xeck\xc0\x8ec\xf3f\xa7~S\xc0\x90\x00\x81s*\x08k\xc0u4\x94\xe6a\xfb4\xc0\x10B\xe1\xf5\xe4hi\xc0\xfcP#y\xdd\xe9?@\x84\xa6\xd7\xb2\xcfwf\xc0\x9a.6\x93\xcd\x8bS@\x9c5BOI\xf8a\xc0\xce\xe9\x84\xafk:]@\xe6\xde\xa3\xf8\xac\x02Y\xc0\xaf\x95.\xdc\xe3qb@\x94\xff\x8a\xfc\xa7\xd4I\xc0\xb0\xaa\xfeP}nc@nM\xb8-e,\x05@\x0eJ\x0e\xf3\xcc\x19b@j\xe2\xe4jz\xf5K@\x16\xefT\xb8\xff7\\@\x92\xc9\x0b<<\xbbY@V\xfb\x86\xcd\x96gR@\xf1\x0e\xcf\x9f\x195b@HH\xc7\x9b\xad\xe3:@\xb0?c\xa5Y9\x10\xc6\x80\xbf\xe2\x99\xd6\xc1\xf7\xe3\xae?U\xafF\xce$\xab\xc3?\xb4\xed\xa6bm\xfc\x9a?\xee(x c\xe9\xd3?+\xa4\xa8>\x89\x9e\x85?\x00\xdd\xf8Z\x96\xc5\xd7?\xaa\xafg#\xa6O\x81\xbf\xe1\xfd_\'\x86/\xd4?\xf9\xaf=\x11\xb3\xf5\xab\xbf\x9e\xe9"\x0b\x96\xa6\xc5?w\x01\xc3\xa2\xb6\xd1\xb2\xbfgR=\xa6\xd5\xc6\x90?C\x9a\x16#\x92\x93\xab\xbf}=7\xb9N@\xbd\xbf\xf6OF\x1f\xfe\xba\x90?0\xabm\xeb\xc8\xbfh\xb6\xe1"\xc7^\xb2\xbf\xa8Lt\x05\x137\xd5\xbf\x91>t\x99\x87RS\xbf\xda\x07\xff\x05!\xb0\xd5\xbf\x87}\xe5-\x84\xdb\xb2?L\x89\x8e6\xa6\x16\xcb\xbf\xc54g\tl#\xbd?r>qd\xfb\ts\xbf\x84\xc1\xe9\xec\xb9Y\xbb?\x94K\x89\xd5Y\x85\xca?\t\xe9\xe3\xc5\x11\xde\xab?|\x95\xa4!\x1c%\xd5?\xab\xaa\xca6\xe9\x9e\x9f\xbf\xb5\x88m\xbfi\x95\xd4?\x96\xf9qL%\xde\xbc\xbf\x14:U\x15\x16\xe9\xc9?\xa2n\x12\xd6\xd1\xd4\xc2\xbft\x16\xd4\xe4dj\x96?c\xaf-\xf0\x97V\xb7\xbf\xe1(y\x04^\t\xbc\xbf\x89"\x13\xba\xd8\xa0\x99?\xbf\xce3\xddq\xa9\xc7\xbf\xd8(6\xec\xf9\x08\xc5?h0\xad\xecG\x19\xce\xbf\xc9\xea\xc6t\xa6D\xc9\xbf\xa8\x1c\x8d\xefq}\xd0?}\xf4gsd?\xb9\xbf!\xf5\xee\xba\x0bR\xc2?M0s\xfb+\x16\xb1?\xad\xba\xef\xfe\xa9:\xaa?\x87\x81\xc8\x97EG\xca?\x82Q[\xd4\xf6\x1c\x93\xbfs\xdb\x8a\x1fm\x17\xd2?\xa2`\xfc\xad<}\xa4\xbf{\x9b\xbe\x07\xb8\xe1\xd3?\x15\xc0\xee|\xc4,\xb0\xbf?\x1f\xe6\x9d\x8e\xe1\xd1?~\xba\xd4Bw\xae\xbd\xbf\x97\xc6\x12\xb6\x11\x06\xbf?T\xf9\xdaVCx\xc3\xbf\x9f\xee\x0f\xff\xb0\ne\xbf\xfc\x9d\xc2\xd7*\xb5\xc4\xbf&\xff\xbc=\xc3m\xbf\xbf\xf4\x8c0\xce\xa0\x11\xc2\xbf\x07S\xdc\xc9\xbc\xdf\xd0\xbf-\xf8\x0b\xec\x01b\xbc\xbf\xcd\x1a\xe3Rc\x0b\xd4\xbf\xb7\xe8R\x00\x8bj\xa7\xbf{\xf4\x0c>x\xc1\xd2\xbfG3\x96\xf7\xca\x9a\x88\xbf\x14K\xc1\x9ev\x95\xcb\xbf6\x81p\xf6\xbe\x9e\x8c?Fy\xba\xec}\xbc\xb3\xbf\x18FkCN\xe3\xb1?ed \xdf<\r\xb6?\xf3\x10I<\xbe\x1f\xc0?(\x15\x92\xf1\xe0\xaa\xcd?+\xa4#\xe1\xff\x8d\xc9?{\xf3\x14\xcc\xae\xf1\xd5?\xcd\xab\x84\xba%\x99\xa3\xbf\x88`\xc7\x9b\xc7\xf1\xc3?.\x94\x0c\x84\x92\x96\xb5\xbf~{.\xfe\x81O\x9d\xbf\x16\xb3\xde\xd8\n\xc6\xc1\xbf<\xba\t{\x8b\x8e\xc7\xbf\tC\x91d\xe3I\xbb\xbf\xad\xaa\xdf\x9d\xb2\xc8\xd1\xbfF\xe3\x13\x8f\x158\x88\xbf\xaa\xa3\x9a\x85n\x1f\xd0\xbfN\x94\x90\xf4\x9az\xb6?\xbd\x93F\x81\xd7\x1e\xb6\xbfI\xaf7B\x95\x05\xc0?\xc5Qz~\x83U\xcb?\xe3\x9d3N\x96<\xba?zQ\xb5=F\xfc\xd4?\xef_\xe1\xc3\xb3I\xa8?a\xed\x80(\xdb\xba\xcd?V\xfe\x1c\xc8Ug\xa8\xbf\x14=\xc8\xf9:h\xb0\xbf\x87\xc6\xfb\xdbp\xb0\xc3\xbf\xb2E\xdf\x17\x81\x99\xce\xbf\'\xd6N\n\n\xa1\xc7\xbfs\xd5\xce\xac\xfc\xa6\xd1\xbfi~,j\x00\x92\xb8\xbfCQ\xab\n*%\xc7\xbf\xbdB{&\xd5\xb9\xa9?\xd2a\x05\x98C\xa7\xab\xbf\xf9K\xe2\xf2\x8b\xa5\xc4?\xdc\xff\xbe\x0b\x0c\xa8\xbb?r\xedp\xe7\t\xf3\xc3?\xca?\x9f"S\xc8\xd0?\xd9\xf8\xa3)\xbb\xd9\xc0?#\xf2U\x96\xb6\xb2\xc1?\x110:}\x85\xcd\xe0?\xbe\xdc\xd1\x9c\xa91\x9f?\'d2\x00\x85\x8d\xcd?r%\xa1\xe3l\xa6\x8b?d~\x8fW\xfbW\xbb\xbf\xfc0\x8a5\xf7\xf6\xab?\xa7\x08V\xfe\x98\xe4\xd6\xbf\xfd\xbf\xec\x8f~e\xab?\xdai\x90c\x85@\xd7\xbf\xa4\x06\xe5\x8b\\#\x9e?\r,\xd2}\xd2V\xc9\xbf\xc4r#h\xde\xa7\x9e\xbf\xbbh\xaa\xdf\xe7\xec\xb3?\xaf\xcb\x02\x9cyf\xb0\xbf\xd4/X\xe3\xc2\xa0\xd1?\x01\xc5\x99\xbdW\xec\xb0\xbf"\xd8q\xb1\xff\xaa\xca?\x00\xd3\xc3\x14b\xca\x90\xbf}3\\\x0809\x93?\xc8\x84o\x95[\x15\xae?\xfc\xb9\xe9\xf3\xe9\x8e\xc4\xbftV\x057o\x9c\xb9?w\x05\x08\xd7MJ\xca\xbf\xe8\xd9an%\xa9\xb7?\xfa\x8c^\xc1\xa1\x07\xbe\xbf\xed\x94\x01}\xff\x10\xa5?\xde\n\x18m\xb5\xe4\x9b?\x86\x93\xf6\xd7}\x13\xb0\xbf\xb6yj\x12%\xc3\xbc?\xb4\xb2\xd0\xae\xbb=\xc5\xbf\xba2?\xd7-j\xb0?8N\x1d[\x11|\xca\xbfq\xc3p<\'\xb7\x9f\xbf\x80<\x03\xe4X\xc3\xa5?1\x81\xc9\xa5\x9f\xdc\xc4\xbf\xf2\xedIWa\xf9\xc0?xq\x18s\x14\xbb\xb0?\xde\x07\r\x03\xbe\xdc\xb6?L\xbd?\xa2\xf4Q\xcd?2\x94\xcb\x970^\x97?E\x83ph\x02\xc9\xc4?\x18cz\xbc\xd5(\x93\xbfGZ\xf3w\xf79\xad\xbf\x8a\xcfH\xeeb\xff\x9b\xbf\xa0\x1e\xbf\xc2\xc9\xa4\xce\xbf\xf2\xbdN\xc7\x8f5\x96\xbf\x7f\xf7\x1f\x10\x99w\xcc\xbf\xab\x8a\xf35\x9b\xd4\x9b\xbf\ta\xf3\x9e6l\x88\xbf|\xdf\xa9\xef\x89\xfd\x97\xbf\x8d\xb6i3W\xe8\xc8?\xe7\xbc\xdc\xd8\xcch\x92?\xb2\xfcX_u\t\xcc?g\xdd5\xe3\xeb\x05\xb4?%y\xe8\x8f\xf5\t\xb8?\xf8\xdf\xfd[\xeaz\xa6?`f\xa4\xa7\xfdx\xbd\xbf\xfa\xf9\x19\xf5e\xca\xa8\xbf\xdf?!\xcf\xe5e\xd4\xbf\x11WN\x19\x8c\xc7\xb2\xbfr3\x87\x18\xa4\xf6\xd8\xbf)\xff3\x17J\xe9\x9c\xbf\xa5\xc9%\x19\x88\xb0\xc6\xbf5\x0f\x06\xae\xfbL\x9f\xbfo\xe9\xed\xa2\x90\x82\xc9?\xa9\xda\xf5\xd2\x00p\xc0\xbf7\r\xbfN\xa1\x00\xe1?.\nzV\xfaw\xcc?\x19\x04\x05\xf3\xbfR\xb2\xbfB\xc3\x97\x07?\x05Z\xbf+\xf1\xf6c\x80?\x8c\xbf\x00\x1f\xaa\xc6e\xd4\xcc\xbf?\xca\xec\x01\xfa\xf0\xb2?\xa8\x8e\x96\xfay\xe2\xd3\xbfti\xf3\xecm\xa0\xbf?2\x80\xacO\xee\x96\xc3\xbf,%a\x83O\x85\x91\xbf\xcbw\xe4\x96\xc8\xc4\xc1?\xa1\x85\x15\x82\x05\xcb\xbd\xbfa\x9d\xdbW\xf2Z\xd9?y\xf9|(=\xa0\xb7\xbf\xc9=\xf8N\x1di\xd4?\x07L7\xc7p\xff\xb5?\x84\x08\x0b\xa1\xa1#j?\xe8\x82\x9a\xd1h\x1b\xbb?\xce\xf2\x07\xb28]\xd3\xbf\xecR\x00\xc2Y\x90\x9d?h\x10\xca\xdd,\x19\xd6\xbfL\x16H\xcb&\x10\xac\xbf\t\x1a\x86\xfa\xd6\xb0\xc3\xbf\xc1F\xd2\xbc\xad\x83\xaa\xbf\xb0\x19\xd3\xf1].\xc2?N/ \xc3\x87\x93z\xbf\x9d\xb7\xb8u\x92 \xd2?\xb1\xd0\xc1`n\xa1\xa4?d\x86 G\xe9E\xca?\xe4\x10;6\xa8\x9b\x96?8\xbf\x8a\x10@\x999\xbf\xedW\xfa{\xf5^\x8c\xbf\xe7!*\xa2\x1b\xd4\xcb\xbf\xa69\xe9vb\xc3\xa5\xbf\xf9\xdb\xcav\xf4w\xce\xbf\xa8P\xfct\xef\xad\xb8?\x9cOo\x7f\na\xa0?o\xab\xd6\x1b\xa9\xfd\xa2?\xdb\xaf\xa0\x7f\xbe\xd8\xcf?\x00\x06\xc3%\x10\x99\x9e\xbf\xca\x1b\xdc\xb1\x98\x7f\xd0?\xa7zy\xe6\xcd\x7f\xa4\xbf\xc1\xf2E\xa3L\xa4\x95?\xbd(\x97\x0e\xad\xf0\xa4?\x969\x8f\xe7=\x18\xce\xbf\xa2\xef\xd9\xca\x91p\x8f?\xcb\xf3y\x14\xe7\xfb\xd1\xbf\xdcq<\xce\x1d\xf6\xc1\xbf7\xfe\x98\xdd\xf0\xf6\xb3?\xac\xbaj\x1be\x82\xc9\xbf\x81\xe5mYf\xa9\xd1?\xc5\x92\x83\xd2\x815\xa4?\xf0+\xa6Q\x03\xc1\xb8?V-\x8d\x99 ]\xce?\xfe\xd0\xeaPL\xbd\xd1\xbf\x0f\x98\x91\xb7\x8f\xca\xb6?\xb4\xf9\xc4}u9\xd3\xbf\xa4%\xe6\xbf\xb0\xbf\xb7\xbfR2\x99\xc09\xc2_\xbf4\x89\xb5\x08<\x1a\xb6\xbfe\x9c\xae\xae\xd8\x95\xd2?\x05\xf8\xb3\xcd?\x82\xac?\xb5\x9da\xf5*\x93\xd1?eE\xfeW\x12\xdc\xb9?\xffPV\nq\x97\xa0?\xdb!3\xeb\xc3DF\xbf\xa4\x0eP\xea.\x8b\xd1\xbf6\x89\xe6\xb5Ir\xbf\xbf+\xea\xcf\xee\x1f)\xce\xbf\xa3\xf3,f\x17\xf5\xd3\xbf\xce \xf6I\xa1\xd6\xad?t#\xb8*`\xde\xb9?u\xe1\xb72\xf3N\xc4?pS\xd9\x128\xb5\xd8?T\x95q\xba\xc9\n\xb0?\xda\x7fH\r\x8f\xef\xcc?\xb8r\xeaL,\x00\x89?\x95p\xf2\xa4\xf1[\xc8\xbf9\xce\x05\x8f\x9c4\xb0\xbf\':\x8a\xbd\x7f\xd8\xd5\xbf\x0e\xba\x0cB74\xc0\xbf\xaa\x0b<\xb4\x02s\xae\xbf\xcbDD$\xc5\x00\xa8?\xa5\x8a\xcb{\xf5Y\xd2?\xd9b\x0f\x9f:|\xb1?\xa9\xa3L\xc7\x9d\xbf\xc8?\x89\x8a\xf7a\x1f\xf8\xab?5^\xd1\x01\x9e\x8a\xc5\xbfW\x1c\xef\x0e\x04\x1e\xa6\xbf\x8eVu\x98\x0f\t\xd4\xbf_\xf9\x07e\xb2T\x88\xbf|@\x07%\xcf5\xb9\xbfg\r\x86\xb0\xb31\xa8?\xd2\xc9B\x7f\x95\x8f\xc7?\xd59\x1f-\x94\x1f\xac\xbf\x9e\xf8\x1c.\xa7z\xcf?4\xae.\xaa\x83z\xb7\xbf!\xa8\x88`\xbf/\xb7?:\x10d\x1fm\x87R\xbfAw\x0fo\x81@\xb3\xbf7w)\xb1\xc1\x97\xbe?\xad\xd1\xa7N\x0e\xf3\xc3\xbf\x8e\x08\xfa\x90\xae\x0f\xa2?\xd1\xcfd\xc3\x1ef]\xbfs9\xf5\x9f(4\xae\xbf\x19\x94%]\xc7\xc2\xc0\xbf]\xce\x90\xc5\x87\xbc\xa1\xbf:4\x8a_s\x9e\xaa\xbf\x1bH\xe0\x8d\xb0\x89\x81\xbf\xa0\xfc \xbb\x89\xd2\xc6?,\t\x0b\xe8\x01\x89\x92?&\xe3\xeb; \xa9\xca?kA\x04\x07\xa1\xbd\xb3?=\xe1\xdb\x01p\xe6\xa2\xbf\x9c\xa1}\x90\xbdm\xb9?P\xe4\xd6N\xa3\x8b\xd1\xbf@\x9a_C\xea\xdf\xb9\xbf\x95d\x8b\xd43}\xc5\xbfS\xd2\xce\xb4\x18f\xc2\xbf\xa9\xda\xeb\xbf\xf6]\xc4?\xea\x18L\xe7\xc2M\xaf\xbf\x7fOj\x1eb\x0f\xd3?-*\xa7\xaf\xb8a\xc5?\x18\xc0~\xf6\x1d\xb5\x83?mrQGq\x12\xb8?i\xac\xb5\x8b\xba\xf8\xd4\xbf\x02\xe8\x93\xe2\xfc\xa2\x9d\xbf|*\x9c\xe1\xb1\xb2\xd1\xbf\xe0\xad\x05\x814\xc0\xaa\xbf\x1d\\g\xf5Na\xc4?\xaa(\xe9\x8f\xe5\xba\xbb\xbf&m6+\xd7\xea\xdb?\xe0@\x95\xca\xef\xcd\xb5\xbf\x05\x86s==u\xc3?.\x91\x13\x9cp\x91\xc8?\xe1!M\xce\xe8J\xd5\xbfX\xad\xdd\xc0\x0f<\xc6\xbfG\x80J\xce:G\xc4?\x8f\x01G\xf7\xe7\x95\xba?]\x17\x94\x87\xfa:\xac\xbfj\'\x1c?\x8f\x9f\xcf?\x81r\xbb\x97|j\xc9\xbf\xa3\xff\x9f\xe3\xa8s\xac?\xa38C\xd7\x85\xff\xa9\xbf\xa8\xe6O\xec\xadP\xc7\xbf#N M\xc1|\xc4?W\xbd\xb4\xb8BE\xcf\xbf\xde\x04\xe2|lt\xb5?\x93\xc8\xe9\x8c\xd1A\xb3?af\xd8\x04\x83^\xc0\xbf\xfb\xff<\x1eZ\xf4\xd1?A\x1cj\xdd\xfcz\xb6\xbfC\xdd\xafy{*\xa4?\xcf\xa4\x13\x04r\xf7\xc0?\x0f\xde\xaf\xc3\x90\xb1\xd1\xbfo:\x17\xc2\x1e\xed\xb6?\xff\x96k6\xd2\xd1\xc7\xbf\xd9\x08z\xff\xc52\xbc\xbfv\x1d\xe4\xfbB\x85\xce?\x07W\xb2H\xd1#\xa6\xbfTI\xb8Ph/\xd4?T^\xa2\xad;\xb8\xc0?\xd1\x8fD\x0b,~\x9f\xbf\xaf\x15\x19q/\x8d\x93?{\xb9\x97[\xb2\x10\xd7\xbf\x18\xce\xa1\x85\xfci\xc7\xbf\xfbI\x89u\xb1!\xc1\xbf\xca/\xc3Q\xd8F\xb2\xbf\x9a\xbfw\xdf\x12\xba\xcd?G\'\xab\xc8\xc8\xae\xc3?\xea\xd3,\xe2\x9f\xbd\xcc\xbfi\x0e\x02c:\t\xc8?\xc0\x18\x8e\xcf\xaa\x1c\xc1?\xe2\xe8+\xc9)\xb3\xc1\xbfD2\\\xd3\x18\xa3\xd5?e*\xff[\x92\xd8\xc7\xbfSS\xa5\xaa8B|?\xe1$\xedM\xc0\xef\xbb?S@\xeb\x10\x070\xd4\xbf\xc3\x8ch:\xc5L\xc2?R\xa5\x7f_\xf2N\xc4\xbf\xad@,z\xae\x11\xc6\xbfX\x9c@\xa9\xa8\xab\xd1?\x86\x92\t\xf9]\xf5\xbb\xbf@\xa8\xaf\xbb\xab\xc9\xac?\x1c\x87\x82t\x0c\xd7\xd1?\xf0Z\xe1!\xc6\x1f\xc9\xbf\xbc\xa5\x1f\x0eQ\xad\x9b\xbf\xd6\xc4\x1c\x1b(\x7f\xa1\xbf&\xe1\xcd&/\x0c\xcf\xbf\x91\xf8\xca\x16\x88\x0f\xcf?+\xb5*(\x03i\xb3?\xc3s73A\x16\x9c\xbf2\xc5\x95\x82\x8b\x18\xc5?\x8e\x9c\xb1\xab\n\xd0\xcd\xbf.\xb0\xf6Z\x89\x89\xa1\xbf/\x0b2!\xf0\x91\xb1\xbf\x96R;\xd4\x17W\xb7\xbf\xe99 \x1b\xd0a\xcc?\x1a\x0f\xc4g&\x91\xb2?\xbbA\xc6\xae\xf3)\xc1?\xf13\xa5h\xd3M\xb3?#(\xdd\xee\xfaa\xc3\xbfhi\xf9\rC!\xbb\xbf\x97f\x88tk\x9e\xcc\xbf\xa1C)\x97\x12\xda\xc0\xbf\xf2\xdd\xb3l\xca\x1d\xd0?\x15".\x94\xadI\xc3?\xbd\xac)\x0b\xa4\xf4\xca?C\xd5\xaeXk\x19\xc8?\\\xb0R\xa0.\xd8\xc3\xbf\xb4,\xb1EL\x8f\xba\xbf\xe3\xec4\x1b\xc6{\xca\xbfH%\x04zg\x10\xd2\xbf\xfcZ\xde\xf1\xf0\xeb\x93?\x87\xf9x\xe0=i\xa8?5\x04(z\\\xa9\xc9?I\xf87\x03#}\xd6?|\x80Z{\x1f\xfc\x99\xbf\xcc\x9f\xcf\xf20G\xb8\xbfh\xed\x96\xb7\xc0\xe8\xa7\xbf/\xd8\xfb\xda\xac\xda\xd3\xbfl\x05$\xe0\x8b\xa5\x80?\xed\x9e\xef\xd0F7\xac?\xd4,\xbdtn\\\xa5\xbf\xf8\xa6?\xa5\xdd\xc9\xd0?\x1a\xb8\xe8\xbf\xc8\xf4\xb6\xbf\x04\xb7^o\x90\xb4\x96?\xadr\xf9Uj\xfc\xc2?\x8aO\x14\x08J\xb7\xd0\xbfXA7\x9d\x01\x14\xc2?Xf\xd6\xba\xb5\x9f\xaf\xbf"\xf0\x13\xb4\x8aE\xc6\xbf\xbe\x94\x1b\xbc,\xff\xc7?\xba\xb3\x12\x80\xf7`\xc6\xbf\x06&\x8e\x98\xbc\xb5\xb5?\xcd-\x83P>2\xc4?P\xfaYH\xba\xaf\xba\xbf\x11z\xfcJ\xbf\x06\xb9\xbf\xb7\xd0\x15\xa4&\xd9\xbd\xbf\x86\xbb\x8a\xb3+\x1d\xbf?\xb6\x8a\x8fUr\x9b\xc4?\x8a\x89\x17\xc1#\x14\xb0?\xdd~\xdfU\xc5u\xc2?\xf2i&\xb7\xd6\x05\xa9\xbf\x9bC+]sy\xc8\xbfcb\xe6a;\xf7\xbb\xbf5\xbbu\xf7u\xa0\xc5\xbf\x15\xf8N\x83\x82T\xa3\xbf\x15?\xf7;\xca\xfc\xca?\xa2og;Vx\xc0?f*\x0eH\xc2\x96\xba?\x02\xc6";\xd5W\xb8?B\x803\x01\xf2\x99\xd0\xbfx\xae\xb2\xd7g\xad\xb8\xbfb\xaa\xe8bj\xa2\x98?Z\x06.\x93gH\xc5\xbf\x17\xad\xbdSm\x8e\xce?\xc2j\x8a8Py\xb6?\xfa\xf0\xf9\xd97\x80\xb6\xbf?U\xba\xcc\x12\x86\xd1?\x12Q\x88J\xbf-\xd0\xbf\x00\xfe\xcek~\xb8\xc9\xbf\xf5h\n\xab\xb3\x89\xc0?$b\x94b\xf0%\xd6\xbfN\xde\xc5\xdf\xb8\xe2\xca?\xa7A\x99\x9cAb\xd1?L\xabK\x13\x92\t\xab\xbf\x1d\xed~\x8d\x9b\xd6\xd1?,YX\\H&\xbb\xbf\xf0K&Hb\xbe\xcb\xbfa#s|\x9a/\x8c?\xd2\xc1\xb4\x1c\xd98\xa1\xbf\xcd&\xba3\xee\x89\xb6\xbf\x1fC\xe3\xa1)\xf0\xb6?VI6\x17\x07\x8d\xc5?!M\n\xac\xa9xH\xbfP"/S\x1d\xc6\x94\xbf\xf2`\x9f\x98\xc0\x9e\x93\xbf\x7f\xce+\x93o\x9e\xc6\xbfT\xad\xf3|\x0bM\xb4\xbf\x8e\xaf\xcb%\x9c\xd1\xb2?\x89\xf3\xc8=\xc2\xf6\xa0\xbfB\'*%{\x1b\xc5?\xcf&\xf6\x03\xdf\x92\xcf?\xc0\x92\xd1\x8d\x9d\xbb\xc7\xbf\xc50}\xf1\xb6\xc4\xc3\xbf\xd0k\xd6\x89>9\xb1\xbfBs\xe9\xe7\xa0\xd3\xcf\xbf\xf2\x19o-\xd2\xa2\xc6?\x16\xda\x10\x7f\x1ac\xcc?f\x00@\xce\'8\xab?;\x99\x97h\\\xcb\xd3?\x9cM\xd1\x89u1\xc4\xbf\xfd?A\x97\xf8\xfc\xda\xbf\xf5\xfaR\xb6~\xa5\xae\xbf\xe2#\xb4ll\xfc\xad\xbf\\+\xed\x9b\xe5\'\xba?\x15\x1f*\xc2`\xfb\xd4?2\x10HR]\xf8\xc9?\xfc>t@\xc1\xa6\xb9\xbf!\xbf\x1d\x96\xd0r\xc0\xbf\xf1qG\xe6i\xac\xb9\xbf\x96-\xc3\xac\xa5\xbf\xd0\xbf8\xb3D{\xb9\xf8\xab?0\xad\xb1\xc0\xdb\x12\xca?wM\xafF\xcf\x0c\xc6\xbf\x91\x908B\xb3\xbb\xc7?\x0e\xdf\xae 6\xa3\xd2?\x1fQN\x8ap!\xc6\xbf\xcd\x8b0\x1b\xfem\xc3?\xe8\t\xe2g1\xa3\xc4\xbfsW>pnJ\xdb\xbfa$\xb4\xd3@i\xc5?\xb4\xa5\x0e\xb6\x8aq\xa0\xbff\xb2\xe5_\xadJ\x9c?&+\xc1\x1f-\xaa\xd8?s\'\x9d\x91\x13\xa4\xb4\xbf\xe1~s=\xb0\x03\xaa\xbf\x9bb\xf0j2\xf3\xb7?\x9f\xd4mul\xbf\xd5\xbf\n\x06X\x97\xc3X\xc4\xbf\xed\xe4\x94\x99>c\xc1?\xf1\x1b\xfe\x90\xe0\xf3\xbd?\xfd\x0fM\xc3IL\xc8?\xaf\x0e;\xb3\x8c\xac\xc3?\\\x17\xb2\x93i\xae\xbd\xbf\x86-\x87\xee\x125\xd1\xbf\xe44\xc5@"B\xb2\xbf\x17w-\n\xd5x\xa7?\x81\x18]3\xfc\x91\xc0?E\xd4.\xe2\xfe\xf9\xc0?\xddd\xdc\x03(\x10\xbb\xbf4\xcc\'\xad\x90\x84\xa5\xbf\xf0^r\x84\x8a\x8c\x8a?n\xcc\xc4|U\xfc\xb2\xbf+\xa6,\xc2\xd5\x19\xb8?;@\xbc\xd0\xaf^\xa1?\x84>6\xf5\x9d\x83\xb3\xbf\x10\xe9V\x86\x06R]?*_S\xf1\xd7o\x9d?;\xce\xba\x0e\xa1y\xb0\xbfZe\xb3d\xb5\xf6\xad\xbf\xba=\x92\'\xb0g\xc4?\x02\x1ekp\xff\xebp\xbf\x8fU\x01d\x0e\xb6\xc5\xbf|r\xce\x97 \x98\xb8?\x9b\x80\xf7\xab\x8b\xcf\x91?o\x91\x98\xd7\xbf5\xbd\xbf\x97\x97\x82\x84\x95M\xcb?\x92\xb4G\x89(r\xab?\xa2c\x91N4\x9a\xd1\xbfr[\xd3-\xb1`\xad?\xb5yAK\xe3\xe5\xb5?)U\x84\x0c\xc1%\xcb\xbf\xf9\x82S\x08\xde\xc7\xc6?7\xc4\xb2\x97\xcf\x9d\xd2?\x95\xcek\x02\x18\xda\xd1\xbf~\xfc{\xba3\x10\xc8\xbf\x9c\xaa\xb6\xcf\x08\xa1\xc7?609\xac\x80O\xb5?\xe85\xb6$J\x98N\xbf5\x01\x1c\xe9dj\xb2\xbf9\x00\xd8\x89\xb4\x03\x9f\xbfl2\x06\xf7\xe7"\xc3?1\xed\x1d\xf6\xc0?\xc1\xbf\x87\xcd\x14\x85>\x9e\xce\xbfL]RN\xf7`\xca?\x98\x8d\xc7f|\xc5\xd1?n\x19\x17n\x0b\xe5\xa6?-\xd2\x9b\x8fC^\xce\xbf"\xfe\xec`%\xc6\xd6\xbfD+\x97\x1d)\x8f\xb6?C\xed\x99WHA\xcc?\x9c5\x07\xea\x08\xcb\xc2?\x05L\x8c5\xc7|\xc3?\xa4b[\x1bom\xd2\xbf\xa0Y\xde7Z\xe9\xd2\xbf\x0b\x82h\x13%I\xb7?&\x9ax\xbf\xd3|\x97?\'\x06N\xbd\x00>\xc7?\xc7\x9d\xc5?4\xba\xd7N\xb0\xeb\x9f?\xd6\xfb\xdd\x85\x94\xc0\xca?i\xc8\xde\x0bM\r\xa0\xbf\xc8\xa5\x13r\xe3\x12\xce?\x84\xf0\xadd-&\xb9\xbf\xeb\xbd\x89\xbe\x87\xbe\xcf?1f\xd1\x80(?\xc5\xbf\xbeB\xc4t\xf3@\xd0?9\x8b\xba\x01=\xfc\xcd\xbf`x<\x8e\xdbO\xd0?)\x8c\xe0\xb0\xf2\xad\xd0?\xb2\x1c\xd8\xce6\x04\xcd\xbfs\x03gNO\x93\xd0?\xe3t\xf66\xaeG\xc4\xbf\xa5L,v\x80\x0b\xd0?\xe1\xb5l\x8cu$\xb7\xbf\xd3\xdcC\xc7\x07*\xce?\xab\xfe\xf3\x14m\xe8\x98\xbf.\xc3 \x90\t\xac\xca?\xdf\x84\xd3\x7fD\xf1\xa2?>\x8a-\xb5\x0cU\xc5?1\xee\x98\x91\x114\xb7?\x05J\xc7y\xaf\xb0\xbd?E1?/;Y\xc1?\x14\x86\x8e\xa2\xf4\xa9\xae?9\xa0\xd8\x1eh\xe5\xc5?\xccnJ\x17\x9c"i\xbf\x8f\xf3\xa5.E\x11\xc7?\x87R\x90\x1e\\\x98\xb0\xbf{\xca\xdb\xb0\xd5|\xc5?q\x10]6\xc7\x8b\xbe\xbf\xb5b0\xf4\xd7\xbf\xc0?\x00x\xb0\x05>\x9d\xc5\xbf-\x8c/\xa4-\xd9\xb5?\xd8\xfb\xdd\x85\x94\xc0\xca\xbf8\xba\xd7N\xb0\xeb\x9f?\xca\xa5\x13r\xe3\x12\xce\xbfh\xc8\xde\x0bM\r\xa0\xbf\xef\xbd\x89\xbe\x87\xbe\xcf\xbf\x84\xf0\xadd-&\xb9\xbf\xbfB\xc4t\xf3@\xd0\xbf1f\xd1\x80(?\xc5\xbf`x<\x8e\xdbO\xd0\xbf;\x8b\xba\x01=\xfc\xcd\xbf\x17\xaf\xd2Hh\x0b\xcf\xbf\x0ez1\xf7\x1f\xb6\x8d<\x1b\xaf\xd2Hh\x0b\xcf\xbf8x\x1bV\xf1I\x83<\x18\xaf\xd2Hh\x0b\xcf\xbf\xa4NC\xa3o9\x91<\x1b\xaf\xd2Hh\x0b\xcf\xbf\x10Zy/H\xf3\x95<\x1b\xaf\xd2Hh\x0b\xcf\xbf\xa1\xd07T_\r\x9e<\x1c\xaf\xd2Hh\x0b\xcf\xbf\xe3`<\x88[\xf6\x9e<\x1f\xaf\xd2Hh\x0b\xcf\xbf\xa3\xe6\xe6fX\x17\x9d<\x1e\xaf\xd2Hh\x0b\xcf\xbf)\x8d\xed\x16&\xb4\x9b< \xaf\xd2Hh\x0b\xcf\xbf\x98\xe9\xcc\x9e\xa34\x96<"\xaf\xd2Hh\x0b\xcf\xbf-\x93\x10\x01\x16\x7f\x8b< \xaf\xd2Hh\x0b\xcf\xbf\xd8\xe7u\x9c\xf6\x93e<"\xaf\xd2Hh\x0b\xcf\xbf\x1e\x15\x19\xfc\xad\xbc\x85\xbc$\xaf\xd2Hh\x0b\xcf\xbfv\x13\xfc!\xedF\x94\xbc"\xaf\xd2Hh\x0b\xcf\xbfU_a\xa9\xfa\x1d\x9d\xbc!\xaf\xd2Hh\x0b\xcf\xbf\x10l\x19\xd4\x81\xb5\xa4\xbc \xaf\xd2Hh\x0b\xcf\xbf\xee\xdc\x96\xcch\xd7\xa8\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbfLH!\xb0\xf8\x91\xac\xbc}\xe6\xdf\xde\xf5\xd4L\xbc\x1b\xaf\xd2Hh\x0b\xcf\xbf\x81\xb1#r\xbf1\x80\xbc\x15\xaf\xd2Hh\x0b\xcf\xbf\x02\xb8/\xb5\xd7\xfd\x88\xbc\x17\xaf\xd2Hh\x0b\xcf\xbftEY\xd1\xf1\x0e\x96\xbc\x18\xaf\xd2Hh\x0b\xcf\xbf\xe2|@f\xdc\x90\x9a\xbc\x1a\xaf\xd2Hh\x0b\xcf\xbf\re\xe8Ip\xa1\x9b\xbc\x1b\xaf\xd2Hh\x0b\xcf\xbff\xf0P\xae@r\x9d\xbc\x1c\xaf\xd2Hh\x0b\xcf\xbf\xba^\x01[\xa8\xb3\x9c\xbc \xaf\xd2Hh\x0b\xcf\xbf\x161\x17\xef\xfdQ\x98\xbc!\xaf\xd2Hh\x0b\xcf\xbf\xa7\xd2\xdc\x08\xf6\xd7\x90\xbc\x1e\xaf\xd2Hh\x0b\xcf\xbff\x81\xb3\xe5\xe9;z\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf#y\x9e\x9a\xf7\xe5h<#\xaf\xd2Hh\x0b\xcf\xbf\xd3\xd3\xb3\x18\x18X\x8f<"\xaf\xd2Hh\x0b\xcf\xbf\x15\xc8\x96\x07\xb5&\x99< \xaf\xd2Hh\x0b\xcf\xbf\x15\xc9"\x95\xfb\x16\xa2\x8a\xaa\xac\xa7< \xaf\xd2Hh\x0b\xcf\xbf\x81H\xc6|#N\xac<\x1f\xaf\xd2Hh\x0b\xcf\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I34 +tp31 +g22 +I00 +S'P\x1ab\x96cqh\xc0\xde\xf4\x0ea\xd9\x19l\xc0\x04\xe8\x0f\xf6_\x15a\xc0\x9a-\x8fU\xf8\xeck\xc0\x8ec\xf3f\xa7~S\xc0\x90\x00\x81s*\x08k\xc0p4\x94\xe6a\xfb4\xc0\x12B\xe1\xf5\xe4hi\xc0\xffP#y\xdd\xe9?@\x84\xa6\xd7\xb2\xcfwf\xc0\x9a.6\x93\xcd\x8bS@\x9c5BOI\xf8a\xc0\xcf\xe9\x84\xafk:]@\xe6\xde\xa3\xf8\xac\x02Y\xc0\xb0\x95.\xdc\xe3qb@\x97\xff\x8a\xfc\xa7\xd4I\xc0\xb0\xaa\xfeP}nc@gM\xb8-e,\x05@\x0eJ\x0e\xf3\xcc\x19b@j\xe2\xe4jz\xf5K@\x17\xefT\xb8\xff7\\@\x91\xc9\x0b<<\xbbY@V\xfb\x86\xcd\x96gR@\xf1\x0e\xcf\x9f\x195b@KH\xc7\x9b\xad\xe3:@\xb0?_\xa5Y9\x10\xc6\x80\xbf\xe0\x99\xd6\xc1\xf7\xe3\xae?W\xafF\xce$\xab\xc3?\xb1\xed\xa6bm\xfc\x9a?\xf0(x c\xe9\xd3?5\xa4\xa8>\x89\x9e\x85?\xfb\xdc\xf8Z\x96\xc5\xd7?\xa6\xafg#\xa6O\x81\xbf\xdf\xfd_\'\x86/\xd4?\xf3\xaf=\x11\xb3\xf5\xab\xbf\x9f\xe9"\x0b\x96\xa6\xc5?v\x01\xc3\xa2\xb6\xd1\xb2\xbffR=\xa6\xd5\xc6\x90?D\x9a\x16#\x92\x93\xab\xbf}=7\xb9N@\xbd\xbf\xf0OF\x1f\xfe\xba\x90?*\xab37\xca\x87\x9f\xc2\xbfa\x1e\xba}\r\x0b\xc3?^\x1d\xcd\xbfm7\xc3\xbf\x92\xea*T\xd92\xb8?~\x0e\xb4\xb1.\xd4\xc4\xbf\xd62M\xfa\xaaZ\x9f?;\x8aR\x9f%+\xc6\xbf\r\xe0\x8b\xe2\x02/\xaf\xbfW\x16\xd8\xb5X\xe2\xc2\xbf\x85\xc61\xb5\\v\xc8\xbf\xca\xd7N\xbf\x95\xdf\xb2\xbfv\xcak\x06\xc4\xcd\xd3\xbf\xd9\xf0\xd7\xaeN\xaf\x90\xbf\xa5\x9c\xda\xe8R?\xd6\xbf$\t\x80\xe6\x84f{?\xf6\x16N\xa4\xad\xde\xd4\xbfP}\xda\xa0\xe8\xd8\x9d?\xe12;\xb1%\x93\xca\xbf0\xdf\xab \xa8)\xb4?]\xca\x1av\x1bz\xb0\xbf\x03\xa3\n#*\xca\xc1?\r\xa9\x9b\xc6\xa8\x9e\xa6?\xf56\xed\xff\xe6p\xc4?|}):;\xf7\xbb?\x17d\x86\x8a\xae\xa5\xc3?\xa7R\x86\x88[\x8b\xc4?k=\x18\xaf\xff\xdf\xc2?\xdeD\x86c\xd8q\xca?!:8\x1b\x1b\x94\xc3?u\xca`M@L\xcf?\xd6\xde~\xc7\xc6\xa3\xc5?\x0e\x9c\x8f\xa6P\xec\xc8?\xe8r\xd0\x04+@\xcd?Z\xedVjF\xa0\xad?\x9b\xb4\xf9\xcd\xe5\x9c\xc8?\xed\x06-*\x85\xe6\xb1\xbfl\xb4.C\xdd]\xbe?\xd5\x95\x16=,\xa2\xc1\xbf\xc1\xfc\x1b\xab8\xc9\x88\xbfN\xa3%\xba\xcbf\xc0\xbf\xe2\xb6\x96>m\xeb\xc8\xbfa\xb6\xe1"\xc7^\xb2\xbf\xa6Lt\x05\x137\xd5\xbfK;t\x99\x87RS\xbf\xdb\x07\xff\x05!\xb0\xd5\xbf\x9e}\xe5-\x84\xdb\xb2?L\x89\x8e6\xa6\x16\xcb\xbf\xc74g\tl#\xbd?Q=qd\xfb\ts\xbf\x84\xc1\xe9\xec\xb9Y\xbb?\x91K\x89\xd5Y\x85\xca?\x07\xe9\xe3\xc5\x11\xde\xab?u\x95\xa4!\x1c%\xd5?\xae\xaa\xca6\xe9\x9e\x9f\xbf\xb4\x88m\xbfi\x95\xd4?\x9b\xf9qL%\xde\xbc\xbf\x14:U\x15\x16\xe9\xc9?\xa2n\x12\xd6\xd1\xd4\xc2\xbf\x9e\x16\xd4\xe4dj\x96?b\xaf-\xf0\x97V\xb7\xbf\xe0(y\x04^\t\xbc\xbf\x99"\x13\xba\xd8\xa0\x99?\xbd\xce3\xddq\xa9\xc7\xbf\xd2(6\xec\xf9\x08\xc5?i0\xad\xecG\x19\xce\xbf\xc8\xea\xc6t\xa6D\xc9\xbf\xae\x1c\x8d\xefq}\xd0?\x99\xf4gsd?\xb9\xbf#\xf5\xee\xba\x0bR\xc2?D0s\xfb+\x16\xb1?\x98\xba\xef\xfe\xa9:\xaa?\x88\x81\xc8\x97EG\xca?wQ[\xd4\xf6\x1c\x93\xbf|\xdb\x8a\x1fm\x17\xd2?\xc9`\xfc\xad<}\xa4\xbf\x84\x9b\xbe\x07\xb8\xe1\xd3?\x16\xc0\xee|\xc4,\xb0\xbf@\x1f\xe6\x9d\x8e\xe1\xd1?r\xba\xd4Bw\xae\xbd\xbfr\xc6\x12\xb6\x11\x06\xbf?S\xf9\xdaVCx\xc3\xbf5\xf4\x0f\xff\xb0\ne\xbf\xf6\x9d\xc2\xd7*\xb5\xc4\xbfM\xff\xbc=\xc3m\xbf\xbf\xf2\x8c0\xce\xa0\x11\xc2\xbf\x02S\xdc\xc9\xbc\xdf\xd0\xbf+\xf8\x0b\xec\x01b\xbc\xbf\xc4\x1a\xe3Rc\x0b\xd4\xbf\xa4\xe8R\x00\x8bj\xa7\xbfr\xf4\x0c>x\xc1\xd2\xbf\xe52\x96\xf7\xca\x9a\x88\xbf\x0bK\xc1\x9ev\x95\xcb\xbf\xbd\x80p\xf6\xbe\x9e\x8c?My\xba\xec}\xbc\xb3\xbf\x0cFkCN\xe3\xb1?Md \xdf<\r\xb6?\xec\x10I<\xbe\x1f\xc0?#\x15\x92\xf1\xe0\xaa\xcd?+\xa4#\xe1\xff\x8d\xc9?o\xf3\x14\xcc\xae\xf1\xd5?\xea\xab\x84\xba%\x99\xa3\xbf\x8f`\xc7\x9b\xc7\xf1\xc3?B\x94\x0c\x84\x92\x96\xb5\xbf[{.\xfe\x81O\x9d\xbf\x0b\xb3\xde\xd8\n\xc6\xc1\xbf;\xba\t{\x8b\x8e\xc7\xbf\xf6B\x91d\xe3I\xbb\xbf\xa4\xaa\xdf\x9d\xb2\xc8\xd1\xbf\xc2\xe1\x13\x8f\x158\x88\xbf\xa5\xa3\x9a\x85n\x1f\xd0\xbfU\x94\x90\xf4\x9az\xb6?\xa6\x93F\x81\xd7\x1e\xb6\xbf8\xaf7B\x95\x05\xc0?\xd2Qz~\x83U\xcb?\xbd\x9d3N\x96<\xba?}Q\xb5=F\xfc\xd4?\xb4_\xe1\xc3\xb3I\xa8?_\xed\x80(\xdb\xba\xcd?{\xfe\x1c\xc8Ug\xa8\xbf)=\xc8\xf9:h\xb0\xbf\x84\xc6\xfb\xdbp\xb0\xc3\xbf\xc3E\xdf\x17\x81\x99\xce\xbf#\xd6N\n\n\xa1\xc7\xbf|\xd5\xce\xac\xfc\xa6\xd1\xbfx~,j\x00\x92\xb8\xbfJQ\xab\n*%\xc7\xbf\xc8B{&\xd5\xb9\xa9?\x05b\x05\x98C\xa7\xab\xbf\xf3K\xe2\xf2\x8b\xa5\xc4?\xde\xff\xbe\x0b\x0c\xa8\xbb?|\xedp\xe7\t\xf3\xc3?\xd5?\x9f"S\xc8\xd0?\xea\xf8\xa3)\xbb\xd9\xc0?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I34 +tp132 +g22 +I00 +S'P\x1ab\x96cqh\xc0\xde\xf4\x0ea\xd9\x19l\xc0\x04\xe8\x0f\xf6_\x15a\xc0\x9a-\x8fU\xf8\xeck\xc0\x8ec\xf3f\xa7~S\xc0\x90\x00\x81s*\x08k\xc0p4\x94\xe6a\xfb4\xc0\x12B\xe1\xf5\xe4hi\xc0\xffP#y\xdd\xe9?@\x84\xa6\xd7\xb2\xcfwf\xc0\x9a.6\x93\xcd\x8bS@\x9c5BOI\xf8a\xc0\xcf\xe9\x84\xafk:]@\xe6\xde\xa3\xf8\xac\x02Y\xc0\xb0\x95.\xdc\xe3qb@\x97\xff\x8a\xfc\xa7\xd4I\xc0\xb0\xaa\xfeP}nc@gM\xb8-e,\x05@\x0eJ\x0e\xf3\xcc\x19b@j\xe2\xe4jz\xf5K@\x17\xefT\xb8\xff7\\@\x91\xc9\x0b<<\xbbY@V\xfb\x86\xcd\x96gR@\xf1\x0e\xcf\x9f\x195b@KH\xc7\x9b\xad\xe3:@\x9d\xc5?7\xba\xd7N\xb0\xeb\x9f?\xd7\xfb\xdd\x85\x94\xc0\xca?h\xc8\xde\x0bM\r\xa0\xbf\xc8\xa5\x13r\xe3\x12\xce?\x82\xf0\xadd-&\xb9\xbf\xeb\xbd\x89\xbe\x87\xbe\xcf?1f\xd1\x80(?\xc5\xbf\xc0B\xc4t\xf3@\xd0?:\x8b\xba\x01=\xfc\xcd\xbf`x<\x8e\xdbO\xd0?,\x8c\xe0\xb0\xf2\xad\xd0?\xb1\x1c\xd8\xce6\x04\xcd\xbfr\x03gNO\x93\xd0?\xe2t\xf66\xaeG\xc4\xbf\xa5L,v\x80\x0b\xd0?\xdf\xb5l\x8cu$\xb7\xbf\xd1\xdcC\xc7\x07*\xce?\xaa\xfe\xf3\x14m\xe8\x98\xbf.\xc3 \x90\t\xac\xca?\xde\x84\xd3\x7fD\xf1\xa2?>\x8a-\xb5\x0cU\xc5?2\xee\x98\x91\x114\xb7?\x04J\xc7y\xaf\xb0\xbd?F1?/;Y\xc1?\x11\x86\x8e\xa2\xf4\xa9\xae?9\xa0\xd8\x1eh\xe5\xc5?\xf5nJ\x17\x9c"i\xbf\x8f\xf3\xa5.E\x11\xc7?\x89R\x90\x1e\\\x98\xb0\xbfz\xca\xdb\xb0\xd5|\xc5?s\x10]6\xc7\x8b\xbe\xbf\xb4b0\xf4\xd7\xbf\xc0?\x00x\xb0\x05>\x9d\xc5\xbf+\x8c/\xa4-\xd9\xb5?\xd8\xfb\xdd\x85\x94\xc0\xca\xbf.\xba\xd7N\xb0\xeb\x9f?\xc8\xa5\x13r\xe3\x12\xce\xbfk\xc8\xde\x0bM\r\xa0\xbf\xea\xbd\x89\xbe\x87\xbe\xcf\xbf\x83\xf0\xadd-&\xb9\xbf\xbfB\xc4t\xf3@\xd0\xbf1f\xd1\x80(?\xc5\xbf`x<\x8e\xdbO\xd0\xbf;\x8b\xba\x01=\xfc\xcd\xbf\x18\xaf\xd2Hh\x0b\xcf\xbf@\x1f\xb1o\x0e\x8d\x8a<\x1b\xaf\xd2Hh\x0b\xcf\xbf\xc8Z\x9ei)\x95\x7f<\x19\xaf\xd2Hh\x0b\xcf\xbf\xbe\x91Q\x1a\xc3-\x8f<\x1b\xaf\xd2Hh\x0b\xcf\xbfJ\x9fw\x0e\xd8i\x94<\x1b\xaf\xd2Hh\x0b\xcf\xbfz\xa1\xf8\xb5\x0e\xd0\x9a<\x1c\xaf\xd2Hh\x0b\xcf\xbf\x8a\xefW\xd5\xb0\xfe\x9b<\x1f\xaf\xd2Hh\x0b\xcf\xbf\x02\xef\x16/\x01e\x9c<\x1e\xaf\xd2Hh\x0b\xcf\xbf 2\xc7\xa8\xcd\xd7\x99<\x1f\xaf\xd2Hh\x0b\xcf\xbf\xe3\xe5O.\xac+\x95\xb0?V\xa5Y9\x10\xc6\x80\xbf\xe5\x99\xd6\xc1\xf7\xe3\xae?X\xafF\xce$\xab\xc3?\xd0\xed\xa6bm\xfc\x9a?\xef(x c\xe9\xd3?m\xa4\xa8>\x89\x9e\x85?\xfc\xdc\xf8Z\x96\xc5\xd7?T\xafg#\xa6O\x81\xbf\xdf\xfd_\'\x86/\xd4?\xe7\xaf=\x11\xb3\xf5\xab\xbf\x9e\xe9"\x0b\x96\xa6\xc5?w\x01\xc3\xa2\xb6\xd1\xb2\xbfWR=\xa6\xd5\xc6\x90?H\x9a\x16#\x92\x93\xab\xbf\x7f=7\xb9N@\xbd\xbf\xe5OF\x1f\xfe\xba\x90?.\xabm\xeb\xc8\xbfq\xb6\xe1"\xc7^\xb2\xbf\xa5Lt\x05\x137\xd5\xbf\xb0>t\x99\x87RS\xbf\xd8\x07\xff\x05!\xb0\xd5\xbf\x99}\xe5-\x84\xdb\xb2?I\x89\x8e6\xa6\x16\xcb\xbf\xc74g\tl#\xbd?\x81=qd\xfb\ts\xbf\x8e\xc1\xe9\xec\xb9Y\xbb?\x93K\x89\xd5Y\x85\xca?\t\xe9\xe3\xc5\x11\xde\xab?v\x95\xa4!\x1c%\xd5?\xab\xaa\xca6\xe9\x9e\x9f\xbf\xb3\x88m\xbfi\x95\xd4?\x99\xf9qL%\xde\xbc\xbf\x11:U\x15\x16\xe9\xc9?\xa0n\x12\xd6\xd1\xd4\xc2\xbfo\x16\xd4\xe4dj\x96?e\xaf-\xf0\x97V\xb7\xbf\xe0(y\x04^\t\xbc\xbf\x91"\x13\xba\xd8\xa0\x99?\xbb\xce3\xddq\xa9\xc7\xbf\xd3(6\xec\xf9\x08\xc5?i0\xad\xecG\x19\xce\xbf\xc5\xea\xc6t\xa6D\xc9\xbf\xab\x1c\x8d\xefq}\xd0?\xd8\xf4gsd?\xb9\xbf!\xf5\xee\xba\x0bR\xc2?F0s\xfb+\x16\xb1?\x9b\xba\xef\xfe\xa9:\xaa?\x85\x81\xc8\x97EG\xca?\xe8P[\xd4\xf6\x1c\x93\xbf\x82\xdb\x8a\x1fm\x17\xd2?\x96`\xfc\xad<}\xa4\xbf\x8c\x9b\xbe\x07\xb8\xe1\xd3?#\xc0\xee|\xc4,\xb0\xbfI\x1f\xe6\x9d\x8e\xe1\xd1?\x99\xba\xd4Bw\xae\xbd\xbfm\xc6\x12\xb6\x11\x06\xbf?[\xf9\xdaVCx\xc3\xbfE\xf8\x0f\xff\xb0\ne\xbf\xff\x9d\xc2\xd7*\xb5\xc4\xbfo\xff\xbc=\xc3m\xbf\xbf\xe7\x8c0\xce\xa0\x11\xc2\xbf\x04S\xdc\xc9\xbc\xdf\xd0\xbf\x05\xf8\x0b\xec\x01b\xbc\xbf\xbd\x1a\xe3Rc\x0b\xd4\xbfi\xe8R\x00\x8bj\xa7\xbfp\xf4\x0c>x\xc1\xd2\xbfN2\x96\xf7\xca\x9a\x88\xbf\x05K\xc1\x9ev\x95\xcb\xbfb\x80p\xf6\xbe\x9e\x8c?6y\xba\xec}\xbc\xb3\xbf\xf3EkCN\xe3\xb1?Md \xdf<\r\xb6?\xe7\x10I<\xbe\x1f\xc0?\x15\x15\x92\xf1\xe0\xaa\xcd?"\xa4#\xe1\xff\x8d\xc9?]\xf3\x14\xcc\xae\xf1\xd5?\xc0\xab\x84\xba%\x99\xa3\xbf\xa5`\xc7\x9b\xc7\xf1\xc3?#\x94\x0c\x84\x92\x96\xb5\xbf\xe2z.\xfe\x81O\x9d\xbf\x1b\xb3\xde\xd8\n\xc6\xc1\xbf(\xba\t{\x8b\x8e\xc7\xbf\xf4B\x91d\xe3I\xbb\xbf\xa2\xaa\xdf\x9d\xb2\xc8\xd1\xbfY\xe2\x13\x8f\x158\x88\xbf\xa0\xa3\x9a\x85n\x1f\xd0\xbfp\x94\x90\xf4\x9az\xb6?\xa7\x93F\x81\xd7\x1e\xb6\xbfH\xaf7B\x95\x05\xc0?\xcdQz~\x83U\xcb?~\x9d3N\x96<\xba?\x80Q\xb5=F\xfc\xd4?\xaa_\xe1\xc3\xb3I\xa8?_\xed\x80(\xdb\xba\xcd?\xc5\xfe\x1c\xc8Ug\xa8\xbfG=\xc8\xf9:h\xb0\xbf\x8b\xc6\xfb\xdbp\xb0\xc3\xbf\xdbE\xdf\x17\x81\x99\xce\xbf#\xd6N\n\n\xa1\xc7\xbf\x88\xd5\xce\xac\xfc\xa6\xd1\xbfz~,j\x00\x92\xb8\xbfRQ\xab\n*%\xc7\xbf\xf1B{&\xd5\xb9\xa9?\xeea\x05\x98C\xa7\xab\xbf\nL\xe2\xf2\x8b\xa5\xc4?\xea\xff\xbe\x0b\x0c\xa8\xbb?z\xedp\xe7\t\xf3\xc3?\xde?\x9f"S\xc8\xd0?\xe9\xf8\xa3)\xbb\xd9\xc0?\x10\xf2U\x96\xb6\xb2\xc1?\x010:}\x85\xcd\xe0?\x19\xdf\xd1\x9c\xa91\x9f?Xd2\x00\x85\x8d\xcd?\'\'\xa1\xe3l\xa6\x8b?\xfc}\x8fW\xfbW\xbb\xbf\xd40\x8a5\xf7\xf6\xab?\x9b\x08V\xfe\x98\xe4\xd6\xbf\x9e\xbf\xec\x8f~e\xab?\xe4i\x90c\x85@\xd7\xbf\x94\x05\xe5\x8b\\#\x9e?=,\xd2}\xd2V\xc9\xbf\xe3r#h\xde\xa7\x9e\xbf[h\xaa\xdf\xe7\xec\xb3?\x84\xcb\x02\x9cyf\xb0\xbf\xe3/X\xe3\xc2\xa0\xd1?\xf9\xc4\x99\xbdW\xec\xb0\xbf_\xd8q\xb1\xff\xaa\xca?\x05\xd2\xc3\x14b\xca\x90\xbf\xa33\\\x0809\x93?\xb8\x84o\x95[\x15\xae?\xe5\xb9\xe9\xf3\xe9\x8e\xc4\xbfxV\x057o\x9c\xb9?\xa3\x05\x08\xd7MJ\xca\xbf\xab\xd9an%\xa9\xb7?t\x8d^\xc1\xa1\x07\xbe\xbf\x8d\x94\x01}\xff\x10\xa5?\x9e\x08\x18m\xb5\xe4\x9b?o\x93\xf6\xd7}\x13\xb0\xbfryj\x12%\xc3\xbc?\xb6\xb2\xd0\xae\xbb=\xc5\xbf\x043?\xd7-j\xb0?NN\x1d[\x11|\xca\xbf[\xbfp<\'\xb7\x9f\xbfE<\x03\xe4X\xc3\xa5?\x8d\x81\xc9\xa5\x9f\xdc\xc4\xbf\xea\xedIWa\xf9\xc0?\xd2p\x18s\x14\xbb\xb0?\xcb\x07\r\x03\xbe\xdc\xb6?p\xbd?\xa2\xf4Q\xcd?\x11\x93\xcb\x970^\x97?\x97\x83ph\x02\xc9\xc4?8dz\xbc\xd5(\x93\xbf{Y\xf3w\xf79\xad\xbf\xf5\xceH\xeeb\xff\x9b\xbf\\\x1e\xbf\xc2\xc9\xa4\xce\xbf\xa8\xbdN\xc7\x8f5\x96\xbf\x87\xf7\x1f\x10\x99w\xcc\xbf\xf0\x88\xf35\x9b\xd4\x9b\xbf-e\xf3\x9e6l\x88\xbf\xad\xde\xa9\xef\x89\xfd\x97\xbf?\xb6i3W\xe8\xc8?b\xbc\xdc\xd8\xcch\x92?\xd8\xfcX_u\t\xcc?\xfa\xdc5\xe3\xeb\x05\xb4?my\xe8\x8f\xf5\t\xb8?p\xdf\xfd[\xeaz\xa6?\x03f\xa4\xa7\xfdx\xbd\xbf#\xfa\x19\xf5e\xca\xa8\xbf\xda?!\xcf\xe5e\xd4\xbf\xeaVN\x19\x8c\xc7\xb2\xbfq3\x87\x18\xa4\xf6\xd8\xbfY\xfe3\x17J\xe9\x9c\xbf\xbe\xc9%\x19\x88\xb0\xc6\xbf\xc9\r\x06\xae\xfbL\x9f\xbf`\xe9\xed\xa2\x90\x82\xc9?\x90\xda\xf5\xd2\x00p\xc0\xbf7\r\xbfN\xa1\x00\xe1?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I34 +tp132 +g22 +I00 +S'P\x1ab\x96cqh\xc0\xde\xf4\x0ea\xd9\x19l\xc0\x04\xe8\x0f\xf6_\x15a\xc0\x97-\x8fU\xf8\xeck\xc0\x8fc\xf3f\xa7~S\xc0\x8f\x00\x81s*\x08k\xc0y4\x94\xe6a\xfb4\xc0\x10B\xe1\xf5\xe4hi\xc0\xf7P#y\xdd\xe9?@\x84\xa6\xd7\xb2\xcfwf\xc0\x99.6\x93\xcd\x8bS@\x9c5BOI\xf8a\xc0\xcd\xe9\x84\xafk:]@\xe6\xde\xa3\xf8\xac\x02Y\xc0\xaf\x95.\xdc\xe3qb@\x97\xff\x8a\xfc\xa7\xd4I\xc0\xb0\xaa\xfeP}nc@]M\xb8-e,\x05@\rJ\x0e\xf3\xcc\x19b@j\xe2\xe4jz\xf5K@\x17\xefT\xb8\xff7\\@\x92\xc9\x0b<<\xbbY@U\xfb\x86\xcd\x96gR@\xf1\x0e\xcf\x9f\x195b@KH\xc7\x9b\xad\xe3:@\xca?:\xad5\xed\xa4@\xcb?\x11q^\xd9S\x02\xc9?\xc92\x90\xa9\xdf\x05\xcc\xbf\\\xc9\xa5\xf3B\xc2\xb4\xbf\x9a\x03D\x14\x8c\xdf\xe2\xbf\x9c7\xf8\n\x97\xe4\xc3\xbf1\x13\x83\xb8L3\xca\xbf{A\xa0\n#0\xc4\xbf>E\xa9j\x1b\xed\xcc?\xa1\x18\xd1\x16gb\xe2\xbf\xd1\xfc\xf9\xeaWby\xbf9\xad5\xed\xa4@\xcb\xbff\xbcdu\x9a>\xca?\xca2\x90\xa9\xdf\x05\xcc?\x10q^\xd9S\x02\xc9?\x99\x03D\x14\x8c\xdf\xe2?c\xc9\xa5\xf3B\xc2\xb4\xbf0\x13\x83\xb8L3\xca?\x9e7\xf8\n\x97\xe4\xc3\xbf?E\xa9j\x1b\xed\xcc\xbfyA\xa0\n#0\xc4\xbf-,\x0cp\xbd \xda\xbf\x7fB\x0bl\xef\xd0\xb8\xbc9,\x0cp\xbd \xda\xbf\xf7\xa4y!\x85*\xc0\xbcG,\x0cp\xbd \xda\xbf\x95\x07\xb0\xe0\r\x88\xb1\xbcP,\x0cp\xbd \xda\xbfA\xbf\xd4\xe7\x8c`\xbb\xd0\xb7\x1b\xb9?\x97e\xc0\x84\xd4\x83\xda?\xecZZ\x04\xba\xe7\xdf\xbf\xc0\x0c\xbcA\xb8&\xb6\xbf\xef{\xb9\xe1Y"\xde\xbf\xf9Y\x04\xe1\x9b\x7f\xa1\xbf^O\xf9\xbe_\x99\xbb?N\x81\x06h\xcen\xc5\xbfK\xf4\xb9\x93\x7f*\xd7?\xb3%\xbb\xa3\xf8\xaf\xae\xbf\x9b\xd7\x8bnN\xb2\xd9?*\xc7\xd8\xbe2\xf3\xb0\xbf\x9aL\xe6UG:\xc8?\xd4\xe4*/9@\xda?]_\xdb\x16\x9f\xa2\xb6\xbf\xa3K\xb0%b\x9c\xd2\xbfr\xac\xf3\xf8\xf2&\xb5?\xf4\xc5V2D\xf9\xd6\xbf\xdc\x9aAnC\x00\xd5?\xc1\xc0\xc0\xfb\x00\r\xe1?\x9b\x96\xb4e\xab\xfe\xcf\xbf\x0e5\x0e\xe6\xee#\xc7\xbf!\x89\xe0^&\xbf\xd0\xbf\xda\xe8xnu\xca\xbc\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I12 +tp132 +g22 +I00 +S"z\xd7\xc3\xce0H\xdb?\x17\x90\xc6\x9eF\xc2C\xc0\x83\xa3d\x13\xeb4,\xc0\x15Y\x05d@J-\xc0\x0b\x11\xf3\x03\xff\xe0*\xc0\x14\x08'\x0e:\x1e.@\x85\xbe\x0c\xc5\x94O\x16@\xa6yK\xd9\xc6HD@\xb5\xb5\xa6\x1dVa%@\x9d\xa7\xfe\xfc\xc4(,@\x14\x81\xb4\x10\x88\xb2%@t\xfd3\x91\xbf\x16/\xc0" +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I2 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_l_eye_3 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_l_eye_3 new file mode 100644 index 0000000000000000000000000000000000000000..654fb432856d4252e105ae08f118f06f9077a8d4 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_l_eye_3 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I12 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\x00\xfd\xf9\xeaWby\xbf\x9f\x18\xd1\x16gb\xe2?f\xbcdu\x9a>\xca?:\xad5\xed\xa4@\xcb?\x12q^\xd9S\x02\xc9?\xca2\x90\xa9\xdf\x05\xcc\xbf\\\xc9\xa5\xf3B\xc2\xb4\xbf\x9a\x03D\x14\x8c\xdf\xe2\xbf\x9b7\xf8\n\x97\xe4\xc3\xbf2\x13\x83\xb8L3\xca\xbf}A\xa0\n#0\xc4\xbf?E\xa9j\x1b\xed\xcc?\xa1\x18\xd1\x16gb\xe2\xbf\x1b\xfd\xf9\xeaWby\xbf7\xad5\xed\xa4@\xcb\xbff\xbcdu\x9a>\xca?\xca2\x90\xa9\xdf\x05\xcc?\x10q^\xd9S\x02\xc9?\x99\x03D\x14\x8c\xdf\xe2?b\xc9\xa5\xf3B\xc2\xb4\xbf0\x13\x83\xb8L3\xca?\x9d7\xf8\n\x97\xe4\xc3\xbf?E\xa9j\x1b\xed\xcc\xbfzA\xa0\n#0\xc4\xbf,,\x0cp\xbd \xda\xbf\xb5\x8epd\xb4]\xb6\xbc9,\x0cp\xbd \xda\xbfC\xb0\x91\xc9^\x7f\xc1\xbcH,\x0cp\xbd \xda\xbf&\xe5\xe4\xe4t\xb0\xaf\xbcO,\x0cp\xbd \xda\xbfq\x1e\xd5\xean~\xc1\xd0\xb7\x1b\xb9?\x97e\xc0\x84\xd4\x83\xda?\xefZZ\x04\xba\xe7\xdf\xbf\xbd\x0c\xbcA\xb8&\xb6\xbf\xef{\xb9\xe1Y"\xde\xbf\nZ\x04\xe1\x9b\x7f\xa1\xbf^O\xf9\xbe_\x99\xbb?P\x81\x06h\xcen\xc5\xbfL\xf4\xb9\x93\x7f*\xd7?\xad%\xbb\xa3\xf8\xaf\xae\xbf\x9e\xd7\x8bnN\xb2\xd9?$\xc7\xd8\xbe2\xf3\xb0\xbf\x98L\xe6UG:\xc8?\xd7\xe4*/9@\xda?w_\xdb\x16\x9f\xa2\xb6\xbf\xa4K\xb0%b\x9c\xd2\xbf\xa8\xac\xf3\xf8\xf2&\xb5?\xf1\xc5V2D\xf9\xd6\xbf\xd0\x9aAnC\x00\xd5?\xc1\xc0\xc0\xfb\x00\r\xe1?\x91\x96\xb4e\xab\xfe\xcf\xbf\x195\x0e\xe6\xee#\xc7\xbf\x1b\x89\xe0^&\xbf\xd0\xbf\xf7\xe8xnu\xca\xbc\xbf\xcc\xab\xcbV\x19#\xe2\xbf*\xf2\x07\xd7X\xd6\xd1?\xee3\x8f\xae\xe5\x17\xcc?B\x96:\x15I\xbe\xc9\xbf\x02\x08h\xc0B\x07\xcd?\xd1\xcbZc\xc4:\xbf\xbf,\xeao\x0c\xd9\x9c\xdb\xbf\xab-\xf1\x86Od\xd1?\xb3\x9ct\xb7\xaf\xd7\xce?\tU\xb2\x13pN\xaf\xbfoU\xd1\xa6\x9f\xe7\xd3?:\xae\x1dp\tF\xc5\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I12 +tp132 +g22 +I00 +S"\x88\xd7\xc3\xce0H\xdb?\x17\x90\xc6\x9eF\xc2C\xc0\x83\xa3d\x13\xeb4,\xc0\x15Y\x05d@J-\xc0\x0b\x11\xf3\x03\xff\xe0*\xc0\x14\x08'\x0e:\x1e.@\x84\xbe\x0c\xc5\x94O\x16@\xa6yK\xd9\xc6HD@\xb4\xb5\xa6\x1dVa%@\x9d\xa7\xfe\xfc\xc4(,@\x15\x81\xb4\x10\x88\xb2%@t\xfd3\x91\xbf\x16/\xc0" +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I3 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_l_eye_4 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_l_eye_4 new file mode 100644 index 0000000000000000000000000000000000000000..790f53c159d9eb75eb2145e63af4ae4f48ac306e --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_l_eye_4 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I12 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\x00\xfd\xf9\xeaWby\xbf\x9f\x18\xd1\x16gb\xe2?c\xbcdu\x9a>\xca?9\xad5\xed\xa4@\xcb?\x12q^\xd9S\x02\xc9?\xc72\x90\xa9\xdf\x05\xcc\xbfZ\xc9\xa5\xf3B\xc2\xb4\xbf\x98\x03D\x14\x8c\xdf\xe2\xbf\x9b7\xf8\n\x97\xe4\xc3\xbf3\x13\x83\xb8L3\xca\xbf|A\xa0\n#0\xc4\xbf>E\xa9j\x1b\xed\xcc?\x9f\x18\xd1\x16gb\xe2\xbf\xad\xfd\xf9\xeaWby\xbf;\xad5\xed\xa4@\xcb\xbfb\xbcdu\x9a>\xca?\xc62\x90\xa9\xdf\x05\xcc?\x14q^\xd9S\x02\xc9?\x98\x03D\x14\x8c\xdf\xe2?T\xc9\xa5\xf3B\xc2\xb4\xbf5\x13\x83\xb8L3\xca?\x9a7\xf8\n\x97\xe4\xc3\xbf=E\xa9j\x1b\xed\xcc\xbf|A\xa0\n#0\xc4\xbf*,\x0cp\xbd \xda\xbf\x16\x1c8\xf9\x0e\xef\xba\xbc:,\x0cp\xbd \xda\xbf)\x96\x01$\x8f@\xc3\xbcH,\x0cp\xbd \xda\xbfY\xce\xedT\x1bO\xab\xbcN,\x0cp\xbd \xda\xbf\x11\x9c\xaa\xd8\xbf\x1a\xc4\xd0\xb7\x1b\xb9?\x96e\xc0\x84\xd4\x83\xda?\xf1ZZ\x04\xba\xe7\xdf\xbf\xc2\x0c\xbcA\xb8&\xb6\xbf\xeb{\xb9\xe1Y"\xde\xbf\tZ\x04\xe1\x9b\x7f\xa1\xbfVO\xf9\xbe_\x99\xbb?R\x81\x06h\xcen\xc5\xbfK\xf4\xb9\x93\x7f*\xd7?\xaa%\xbb\xa3\xf8\xaf\xae\xbf\x9f\xd7\x8bnN\xb2\xd9? \xc7\xd8\xbe2\xf3\xb0\xbfuL\xe6UG:\xc8?\xdd\xe4*/9@\xda?N_\xdb\x16\x9f\xa2\xb6\xbf\xa9K\xb0%b\x9c\xd2\xbf\x9b\xac\xf3\xf8\xf2&\xb5?\xf7\xc5V2D\xf9\xd6\xbf\xcb\x9aAnC\x00\xd5?\xc5\xc0\xc0\xfb\x00\r\xe1?\x8b\x96\xb4e\xab\xfe\xcf\xbf\x175\x0e\xe6\xee#\xc7\xbf\x10\x89\xe0^&\xbf\xd0\xbf\xfa\xe8xnu\xca\xbc\xbf\xcc\xab\xcbV\x19#\xe2\xbf\x1c\xf2\x07\xd7X\xd6\xd1?\xea3\x8f\xae\xe5\x17\xcc?3\x96:\x15I\xbe\xc9\xbf\x04\x08h\xc0B\x07\xcd?\xb7\xcbZc\xc4:\xbf\xbf6\xeao\x0c\xd9\x9c\xdb\xbf\xa3-\xf1\x86Od\xd1?\xc1\x9ct\xb7\xaf\xd7\xce?\xf4T\xb2\x13pN\xaf\xbfyU\xd1\xa6\x9f\xe7\xd3?8\xae\x1dp\tF\xc5\xbf!\xc1\xfe\xd4\xdc\xc4\xd2\xbf7.W\xe5\xc2\x9f\xcb\xbf\xa6\xbe\xa1\xd8\xdf\xae]?\x8f\x93\x8f\x18\x97\xec\xaa\xbf\xbc\xdb\xd0\xf3\x94\xed\xbe\xbfr\xce\xe2\x8dR\x1b\xe3\xbf\xf5\xb7:3\xbbk\xce?~Z!\t@\xb2\x86?R\xc4\x97\xb7\xb2U\xa6?^`\x03\x0f8\xef\xd0?\x99\x03\x14\x83\xfe\xc3\xc0?\xa1]\x1b\xb1\xa7\xdf\xe2?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I12 +tp132 +g22 +I00 +S"\xb1\xd7\xc3\xce0H\xdb?\x17\x90\xc6\x9eF\xc2C\xc0\x80\xa3d\x13\xeb4,\xc0\x14Y\x05d@J-\xc0\x0b\x11\xf3\x03\xff\xe0*\xc0\x11\x08'\x0e:\x1e.@\x81\xbe\x0c\xc5\x94O\x16@\xa4yK\xd9\xc6HD@\xb3\xb5\xa6\x1dVa%@\x9e\xa7\xfe\xfc\xc4(,@\x14\x81\xb4\x10\x88\xb2%@s\xfd3\x91\xbf\x16/\xc0" +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I4 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_l_eye_6 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_l_eye_6 new file mode 100644 index 0000000000000000000000000000000000000000..ed6f3ef2755fd2b898b8d92e0a87d171a61700d1 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_l_eye_6 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I12 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\x00\xfd\xf9\xeaWby\xbf\x9f\x18\xd1\x16gb\xe2?g\xbcdu\x9a>\xca?:\xad5\xed\xa4@\xcb?\x12q^\xd9S\x02\xc9?\xca2\x90\xa9\xdf\x05\xcc\xbf]\xc9\xa5\xf3B\xc2\xb4\xbf\x9a\x03D\x14\x8c\xdf\xe2\xbf\x9c7\xf8\n\x97\xe4\xc3\xbf2\x13\x83\xb8L3\xca\xbf}A\xa0\n#0\xc4\xbf?E\xa9j\x1b\xed\xcc?\xa1\x18\xd1\x16gb\xe2\xbf\x1b\xfd\xf9\xeaWby\xbf9\xad5\xed\xa4@\xcb\xbff\xbcdu\x9a>\xca?\xc92\x90\xa9\xdf\x05\xcc?\x10q^\xd9S\x02\xc9?\x99\x03D\x14\x8c\xdf\xe2?^\xc9\xa5\xf3B\xc2\xb4\xbf1\x13\x83\xb8L3\xca?\x9d7\xf8\n\x97\xe4\xc3\xbf?E\xa9j\x1b\xed\xcc\xbf|A\xa0\n#0\xc4\xbf,,\x0cp\xbd \xda\xbf\xb5\x8epd\xb4]\xbe\xbc9,\x0cp\xbd \xda\xbfC\xb0\x91\xc9^\x7f\xc1\xbcH,\x0cp\xbd \xda\xbf&\xe5\xe4\xe4t\xb0\xad\xbcP,\x0cp\xbd \xda\xbfq\x1e\xd5\xean~\xc0\xd0\xb7\x1b\xb9?\x97e\xc0\x84\xd4\x83\xda?\xf3ZZ\x04\xba\xe7\xdf\xbf\xbb\x0c\xbcA\xb8&\xb6\xbf\xf1{\xb9\xe1Y"\xde\xbf\xfcY\x04\xe1\x9b\x7f\xa1\xbf[O\xf9\xbe_\x99\xbb?R\x81\x06h\xcen\xc5\xbfL\xf4\xb9\x93\x7f*\xd7?\xb4%\xbb\xa3\xf8\xaf\xae\xbf\x9d\xd7\x8bnN\xb2\xd9?\'\xc7\xd8\xbe2\xf3\xb0\xbf\x08M\xe6UG:\xc8?\xbd\xe4*/9@\xda?\xc4_\xdb\x16\x9f\xa2\xb6\xbf\x90K\xb0%b\x9c\xd2\xbfH\xac\xf3\xf8\xf2&\xb5?\xea\xc5V2D\xf9\xd6\xbf\xfc\x9aAnC\x00\xd5?\xb6\xc0\xc0\xfb\x00\r\xe1?\xc2\x96\xb4e\xab\xfe\xcf\xbf\x085\x0e\xe6\xee#\xc7\xbf@\x89\xe0^&\xbf\xd0\xbf\xb3\xe8xnu\xca\xbc\xbf\xc2\xab\xcbV\x19#\xe2\xbfN\xf2\x07\xd7X\xd6\xd1?\xd23\x8f\xae\xe5\x17\xcc?{\x96:\x15I\xbe\xc9\xbf\x1b\x08h\xc0B\x07\xcd?\x80\xccZc\xc4:\xbf\xbf\x0c\xeao\x0c\xd9\x9c\xdb\xbf\xe1-\xf1\x86Od\xd1?|\x9ct\xb7\xaf\xd7\xce?\x97U\xb2\x13pN\xaf\xbfZU\xd1\xa6\x9f\xe7\xd3?K\xae\x1dp\tF\xc5\xbf\x1d\xc1\xfe\xd4\xdc\xc4\xd2\xbf+.W\xe5\xc2\x9f\xcb\xbf\x8b\xbd\xa1\xd8\xdf\xae]?\xee\x93\x8f\x18\x97\xec\xaa\xbf\xcb\xdb\xd0\xf3\x94\xed\xbe\xbfr\xce\xe2\x8dR\x1b\xe3\xbf\r\xb8:3\xbbk\xce?DZ!\t@\xb2\x86?\x0e\xc4\x97\xb7\xb2U\xa6?d`\x03\x0f8\xef\xd0?\x94\x03\x14\x83\xfe\xc3\xc0?\xa0]\x1b\xb1\xa7\xdf\xe2?\x1c\xa8Mq{S\xb9?\x97\xe6\x1bn\xb6\x9a\xc6\xbf\xf2WH8\x94\xbb\xb5\xbf8\x99KR\x0c)\xe4?\x1f\xde\x91\xa0\xe6\x8c\xac\xbf\x05|\x94\xa6\x05\xa6\xcf\xbfX\x08\xc9\x18^\xe6\xc5\xbf\n\x1d]\x04\xf0\x12\xd3?\x16\xf0\x87\x87\xbc\x05\xc3?}F\x0f\xc5\x89\xa9\xe2\xbfi\xcf\xc59\xcfo\xb0?b\xbb\t\xae\xa39\xb4?\xaby\x96\x01\x1d\xe6\xbd?\xf6\xa1\x94\xe2\xbe=\xb1\xbf2\xab\x06\'\x8d\xbc\xe4\xbf\xad\x8c\x1b\xcaW-\x9c?0?\xc6\xbd\x13\x1f\xe5?Ud\xd0H\xffo\xba\xbf\x8f\xce\x8d\x1f\xdc\xc4\xc6\xbf\xb7\x04\x19\x17\xf97\xac\xbf\\{Z\x0c\t|\xc1\xbf\xe04\xa6O\tt\xc4?\x1b\xbd\x1eP\xbc\xc3\xc7?vw\xca?;\xad5\xed\xa4@\xcb?\x12q^\xd9S\x02\xc9?\xca2\x90\xa9\xdf\x05\xcc\xbf_\xc9\xa5\xf3B\xc2\xb4\xbf\x9a\x03D\x14\x8c\xdf\xe2\xbf\x9c7\xf8\n\x97\xe4\xc3\xbf3\x13\x83\xb8L3\xca\xbf}A\xa0\n#0\xc4\xbf?E\xa9j\x1b\xed\xcc?\x9f\x18\xd1\x16gb\xe2\xbf\xad\xfc\xf9\xeaWby\xbf7\xad5\xed\xa4@\xcb\xbfc\xbcdu\x9a>\xca?\xc62\x90\xa9\xdf\x05\xcc?\x0eq^\xd9S\x02\xc9?\x97\x03D\x14\x8c\xdf\xe2?a\xc9\xa5\xf3B\xc2\xb4\xbf.\x13\x83\xb8L3\xca?\x9b7\xf8\n\x97\xe4\xc3\xbf\xfb\xbd\xbcD,\x0cp\xbd \xda\xbfJ\xbf\x89\x9a\x141\x99\xbc7,\x0cp\xbd \xda\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I12 +tp31 +g22 +I00 +S"\xb5\xd7\xc3\xce0H\xdb?\x17\x90\xc6\x9eF\xc2C\xc0\x83\xa3d\x13\xeb4,\xc0\x16Y\x05d@J-\xc0\x0b\x11\xf3\x03\xff\xe0*\xc0\x14\x08'\x0e:\x1e.@\x87\xbe\x0c\xc5\x94O\x16@\xa6yK\xd9\xc6HD@\xb5\xb5\xa6\x1dVa%@\x9e\xa7\xfe\xfc\xc4(,@\x15\x81\xb4\x10\x88\xb2%@u\xfd3\x91\xbf\x16/\xc0" +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I6 +I2 +tp43 +g22 +I00 +S"\xb5\xd7\xc3\xce0H\xdb?\x17\x90\xc6\x9eF\xc2C\xc0\x83\xa3d\x13\xeb4,\xc0\x16Y\x05d@J-\xc0\x0b\x11\xf3\x03\xff\xe0*\xc0\x14\x08'\x0e:\x1e.@\x87\xbe\x0c\xc5\x94O\x16@\xa6yK\xd9\xc6HD@\xb5\xb5\xa6\x1dVa%@\x9e\xa7\xfe\xfc\xc4(,@\x15\x81\xb4\x10\x88\xb2%@u\xfd3\x91\xbf\x16/\xc0" +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I8 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I6 +I2 +tp68 +g22 +I00 +S"\xc8\xd7\xc3\xce0H\xdb?\x17\x90\xc6\x9eF\xc2C\xc0\x85\xa3d\x13\xeb4,\xc0\x16Y\x05d@J-\xc0\r\x11\xf3\x03\xff\xe0*\xc0\x14\x08'\x0e:\x1e.@\x87\xbe\x0c\xc5\x94O\x16@\xa6yK\xd9\xc6HD@\xb6\xb5\xa6\x1dVa%@\x9e\xa7\xfe\xfc\xc4(,@\x16\x81\xb4\x10\x88\xb2%@u\xfd3\x91\xbf\x16/\xc0" +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x01\x00\x00\x00\x00\x00\xf0?\x06\x1a\xd4\x123\xedz\xbc\x00\x00\x00\x00\x00\x00\xd0\xb9"\x18q\xf12\x1e\x82<\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I6 +I2 +tp89 +g22 +I00 +S"\xb5\xd7\xc3\xce0H\xdb?\x17\x90\xc6\x9eF\xc2C\xc0\x83\xa3d\x13\xeb4,\xc0\x16Y\x05d@J-\xc0\x0b\x11\xf3\x03\xff\xe0*\xc0\x14\x08'\x0e:\x1e.@\x87\xbe\x0c\xc5\x94O\x16@\xa6yK\xd9\xc6HD@\xb5\xb5\xa6\x1dVa%@\x9e\xa7\xfe\xfc\xc4(,@\x15\x81\xb4\x10\x88\xb2%@u\xfd3\x91\xbf\x16/\xc0" +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I6 +I2 +tp106 +g22 +I00 +S'\xd1\xc6h\xb7up\x16@w\x86h\x88\xd4NC\xc0i\x1e\x84\xd5\x9d[2\xc08eE\xf0b\xaa.\xc0\xcc\x14cg\x9b.-\xc0\x19\x17\xac&\x11\x181@W\x8c\xb0\x90\t\x93 @\xcb\x9d\xce\xe1(1C@\x96\xe8\r\x14(\x19$@K\x05[\xe2\x04\xe5-@ty\xf8\x91j\x01"@\x14\x16\x83\xd2\nz0\xc0' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I8 +tp113 +g22 +I00 +S"\xdc\x1d\x88\xa3D'I@ua\x1f\xb2\xa5W*@_\x97\xa8U#('@+%\x99\xaa\xbed\x10@jr\x9e1\xd0\x00\t@\x86\xe3(\x9c\x82\x0c\xfd?\xe0X\xf2m$H\xf8?K\xb4\xb1\x9c\x9bH\xf3?" +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I1 +tp120 +g22 +I00 +S'\x9a\xc5\x06\x84\xa2\t\xe5?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I8 +I12 +tp126 +g22 +I00 +S't\xdc>\xd0\xb7\x1b\xb9?\x93e\xc0\x84\xd4\x83\xda?\xeeZZ\x04\xba\xe7\xdf\xbf\xbe\x0c\xbcA\xb8&\xb6\xbf\xee{\xb9\xe1Y"\xde\xbf\xfcY\x04\xe1\x9b\x7f\xa1\xbfUO\xf9\xbe_\x99\xbb?Q\x81\x06h\xcen\xc5\xbfM\xf4\xb9\x93\x7f*\xd7?\xa8%\xbb\xa3\xf8\xaf\xae\xbf\x9a\xd7\x8bnN\xb2\xd9?\x1d\xc7\xd8\xbe2\xf3\xb0\xbf\x86L\xe6UG:\xc8?\xda\xe4*/9@\xda?h_\xdb\x16\x9f\xa2\xb6\xbf\xa5K\xb0%b\x9c\xd2\xbf\x91\xac\xf3\xf8\xf2&\xb5?\xf3\xc5V2D\xf9\xd6\xbf\xd3\x9aAnC\x00\xd5?\xc3\xc0\xc0\xfb\x00\r\xe1?\x8e\x96\xb4e\xab\xfe\xcf\xbf\x185\x0e\xe6\xee#\xc7\xbf\x1a\x89\xe0^&\xbf\xd0\xbf\xee\xe8xnu\xca\xbc\xbf\xcc\xab\xcbV\x19#\xe2\xbf&\xf2\x07\xd7X\xd6\xd1?\xe83\x8f\xae\xe5\x17\xcc?B\x96:\x15I\xbe\xc9\xbf\x0c\x08h\xc0B\x07\xcd?\xe0\xcbZc\xc4:\xbf\xbf/\xeao\x0c\xd9\x9c\xdb\xbf\xa9-\xf1\x86Od\xd1?\xb4\x9ct\xb7\xaf\xd7\xce?\xecT\xb2\x13pN\xaf\xbfrU\xd1\xa6\x9f\xe7\xd3?4\xae\x1dp\tF\xc5\xbf\x1d\xc1\xfe\xd4\xdc\xc4\xd2\xbf9.W\xe5\xc2\x9f\xcb\xbf&\xbf\xa1\xd8\xdf\xae]?\x8b\x93\x8f\x18\x97\xec\xaa\xbf\xc5\xdb\xd0\xf3\x94\xed\xbe\xbft\xce\xe2\x8dR\x1b\xe3\xbf\xfd\xb7:3\xbbk\xce?\xa4Z!\t@\xb2\x86?(\xc4\x97\xb7\xb2U\xa6?\\`\x03\x0f8\xef\xd0?\x95\x03\x14\x83\xfe\xc3\xc0?\xa1]\x1b\xb1\xa7\xdf\xe2?2\xa8Mq{S\xb9?\x8b\xe6\x1bn\xb6\x9a\xc6\xbf\xf2WH8\x94\xbb\xb5\xbf7\x99KR\x0c)\xe4?\x03\xde\x91\xa0\xe6\x8c\xac\xbf\xff{\x94\xa6\x05\xa6\xcf\xbfh\x08\xc9\x18^\xe6\xc5\xbf\x0c\x1d]\x04\xf0\x12\xd3?0\xf0\x87\x87\xbc\x05\xc3?|F\x0f\xc5\x89\xa9\xe2\xbf5\xcf\xc59\xcfo\xb0?3\xbb\t\xae\xa39\xb4?\x94y\x96\x01\x1d\xe6\xbd?\xdd\xa1\x94\xe2\xbe=\xb1\xbf.\xab\x06\'\x8d\xbc\xe4\xbfI\x8e\x1b\xcaW-\x9c?&?\xc6\xbd\x13\x1f\xe5?\x84d\xd0H\xffo\xba\xbfp\xce\x8d\x1f\xdc\xc4\xc6\xbf\xbc\x04\x19\x17\xf97\xac\xbf\x92{Z\x0c\t|\xc1\xbf\xeb4\xa6O\tt\xc4?g\xbd\x1eP\xbc\xc3\xc7?\xa6v\xc4?\x93\x17R\x7f\x16\x87\xba\xbf\x88\xf7\x97\xc2\xfcM\xba?\xcaJ\xbd\xd0.6\xcf\xbf\xd9\xd6\xebxx\xb7\x97\xbfeP\xe1\xec6\xe7\xd4\xbf\x9d\xff$\x08\x10\xbe\xa2\xbf%\x18\x0c2$\x97\xb9\xbf\xbes&\x10X,\x9c\xbf\xd0\\\x96\x1c8\x10u\xbf\x0f\xfe\xfdW\xd0k\xa4\xbf\xb4\x94;\'\xc9\xea\xb9?K\xed+t\xcc\t\xa1\xbf\xf8b\xb7\xa8"\xcc\xd4?\x86}c\x0cg4\x98?\xfb\r\xde)\xb2\x82\xba?\r7\xea\x19\xd5n\xa3?\xbc\x86Tel\xcaq\xbf%%\xd6\xeem\x9c\x9c?\x86\xc7\xa16U\xe7\xb9\xbf\xec\xf1\x16\x8a^\xc6\xd8?\xd8\x87\xe8\x94_\xf4\x9c\xbf\xfdL\xc0\x1a\xd5\xec\xce?qx\xaf\xa7\xa6\x8c\xb7\xbf\x00\x02\xcb|\x10\x89\xb9?\x86\x0f\x87\x84 \xc1\xbf\xbfX\x8c\x96O0\xe1{?\x15jL\xd9@\\\xb9\xbf\xe4\xfa\x82\x17\xc06\xb9\xbf\xd1\xa78\x04^\x13\xc0\xbf\xf1m8\\x8\xcf\xbf\xb9n\xb9:w&\xb8\xbf\x8a\x8cD\xb5\xd2\xaa\xd8\xbf\xe1\x91 \x91\xa45\xa5\xbf\xfe\xc0\x14\x13\xcf\x08\xd0\xbfd\x8b\xe6H\xe4\xf8\xb7?\x06\xce\xa0\x19\x8f\xbe\xbc\xbf\xf7\x1a\x8c\xba\xed\xb3\xc3?;A\xc11\x9a\x11\xc4?\xc8J\xbd\xd0.6\xcf?\x88\xf7\x97\xc2\xfcM\xba?eP\xe1\xec6\xe7\xd4?\xd5\xd6\xebxx\xb7\x97\xbf$\x18\x0c2$\x97\xb9?\x9b\xff$\x08\x10\xbe\xa2\xbf\xd0\\\x96\x1c8\x10u?\xbcs&\x10X,\x9c\xbf\xb1\x94;\'\xc9\xea\xb9\xbf\x10\xfe\xfdW\xd0k\xa4\xbf\xf6b\xb7\xa8"\xcc\xd4\xbfM\xed+t\xcc\t\xa1\xbf\xfa\r\xde)\xb2\x82\xba\xbf\x82}c\x0cg4\x98?\xbd\x86Tel\xcaq?\x0c7\xea\x19\xd5n\xa3?\x85\xc7\xa16U\xe7\xb9?%%\xd6\xeem\x9c\x9c?\xce\xed\xbf\xc5%\x9f\xcc\xbfIc4V\t\x13\xb2<\xd3\xed\xbf\xc5%\x9f\xcc\xbf\xe3\x11\x8b\x16\xcb\xbf\xa1<\xd4\xed\xbf\xc5%\x9f\xcc\xbf\x81\x92\xf8K\x8a Q\xbc\xd7\xed\xbf\xc5%\x9f\xcc\xbfPb\xcab\x9b\xa5\x91\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbfJ\x89z\xe8\xf0A\xa7\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf\xb5$\x13\xdf\xe7w\xb2\xbc\xe3\xed\xbf\xc5%\x9f\xcc\xbfOE\x8by\xcfZ\xb7\xbc\xdf\xed\xbf\xc5%\x9f\xcc\xbf\x10|"\xc7d\x8b\xa3\xbc\xe2\xed\xbf\xc5%\x9f\xcc\xbf/)\xbd{\xca}r<\xdd\xed\xbf\xc5%\x9f\xcc\xbfu\x19\x87\xb6\xc0(\xa0<\xda\xed\xbf\xc5%\x9f\xcc\xbf\x06\xc8\x98g\xa3]\xab<\xd6\xed\xbf\xc5%\x9f\xcc\xbfN\xeb\x1d\x87\xc2\x95\xb2<\xd1\xed\xbf\xc5%\x9f\xcc\xbf\x82\x93\xff\xb7\x10\xf2\xb0<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\x84}\x87\xaee\xe7\x8d<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\xf5d\x1c\x80\xed\xc8p\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf\xeez\xf4h\xd4\xfd\x9e\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf4\x1a\xff3.!\xb3\xbc\xdd\xed\xbf\xc5%\x9f\xcc\xbf(\xee\xf4\x8b\x90\x9f\x92\xbc\xda\xed\xbf\xc5%\x9f\xcc\xbf{\xaf\x12\x97\x00\xb1\x80<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\xd8\xb5z\xaf0t\x9d<\x03\x05\xa5{!\x17\xb3\xbc\xcb\xed\xbf\xc5%\x9f\xcc\xbf\x063\'x\xbe`\xa8\xbc\xd5\xed\xbf\xc5%\x9f\xcc\xbf\xc4\xd2\xb7\xb5\xe1\xcf]\xbc\xd3\xed\xbf\xc5%\x9f\xcc\xbf\xde\x95\xca\xc3\xf0\xea\x90<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\x801\x1a~\x9b4\xa9<\xd7\xed\xbf\xc5%\x9f\xcc\xbf-kn\x81U\xae\xb3<\xdb\xed\xbf\xc5%\x9f\xcc\xbf`\x02\xfb{WE\xba<\xdf\xed\xbf\xc5%\x9f\xcc\xbf\xd8\xbbn\xc5*K\xa7<\xe1\xed\xbf\xc5%\x9f\xcc\xbf\x00U\xb8^6\x1fU\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf\x95\x9a\xe6Q x\xa0\xbc\xdf\xed\xbf\xc5%\x9f\xcc\xbf\xf4=_T\xf9T\xac\xbc\xdb\xed\xbf\xc5%\x9f\xcc\xbf\xaf\xc2A\xb7M\x82\xb4\xbc\xd6\xed\xbf\xc5%\x9f\xcc\xbf,\xeeTe\xa5\xc6\xb3\xbc\xd0\xed\xbf\xc5%\x9f\xcc\xbf\xd0\xbcI\x04\x96\xe0\x92\xbc\xd5\xed\xbf\xc5%\x9f\xcc\xbf\xc5\x0f#\x11H\xc1j<\xd8\xed\xbf\xc5%\x9f\xcc\xbf\xd6_~\xf1\r\x14\xa0<\xd9\xed\xbf\xc5%\x9f\xcc\xbf-\x86\x83y\xd2S\xb6<\xdf\xed\xbf\xc5%\x9f\xcc\xbf?J\xa6\xb5\xd6\xcf\x94<\xdc\xed\xbf\xc5%\x9f\xcc\xbfr\xb2$\xf6\xb9\xa8\x81\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbfy\x8b\xc78\x0c"\x9f\xbc\xd9\xed\xbf\xc5%\x9f\xcc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I40 +tp31 +g22 +I00 +S'\xc7\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x95m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xc0I\xf2\xe1#-\xf8\xbf\xbb\xe8\xb8\x87m\xe1;\xc0\xef\xe4\xd1\x02Z\xdd5@j\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xbf\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc1\xcb9\x00\xb7\xc94@Je\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe0*O$\xfd\x8dB@\xde4\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc00t_\xd6\xfb\x90\x14\xc0\xaf9H\xa1f R\xc0\x19\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe7/\xdb\xf9On\x18\xc0\x8d\x10\xb0s\xf5C\xf2\xbf)~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@~\xf4A\x95\xd2\x8c\x1d\xc0\x8c=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb6\xb3\x81\xb2\x03\xda @\xf3b\xe4\t\xe6\xda\xee\xbf\xee\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I20 +I2 +tp43 +g22 +I00 +S'\xc7\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x95m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xc0I\xf2\xe1#-\xf8\xbf\xbb\xe8\xb8\x87m\xe1;\xc0\xef\xe4\xd1\x02Z\xdd5@j\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xbf\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc1\xcb9\x00\xb7\xc94@Je\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe0*O$\xfd\x8dB@\xde4\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc00t_\xd6\xfb\x90\x14\xc0\xaf9H\xa1f R\xc0\x19\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe7/\xdb\xf9On\x18\xc0\x8d\x10\xb0s\xf5C\xf2\xbf)~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@~\xf4A\x95\xd2\x8c\x1d\xc0\x8c=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb6\xb3\x81\xb2\x03\xda @\xf3b\xe4\t\xe6\xda\xee\xbf\xee\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I10 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I20 +I2 +tp68 +g22 +I00 +S'\xca\xfd\x9a|\xc5\x1b\x19\xc07\xb2W\xfb\xe5{U\xc0\x98m<\x1a\xdak4\xc0h\xa3\x10\xdb8\xd1J\xc07\xb7\x92.Q\x89;\xc0&?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xc0I\xf2\xe1#-\xf8\xbf\xbe\xe8\xb8\x87m\xe1;\xc0\xf0\xe4\xd1\x02Z\xdd5@m\x8a\x103<\xf14\xc0\x0bd#\x0c\xd0\x12K@\xc1\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc4\xcb9\x00\xb7\xc94@Le\xc5\xb8\x1d\xcfK@X\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@\x075\x8au\x1fW\xb8\xbf@n\xa4\x1e\xd6\x8dA@\xb5re>\x03\x017\xc0\x96\xb3}6\x7f\xcf6@\xf9\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x1b\xd8m\xb1\xb9@ \xc0\x0b\xccRU\xf006\xc0\xea/\xdb\xf9On\x18\xc0\x8e\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x17\xf7\xe6\xf5xy6@\x82\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x84z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xf6b\xe4\t\xe6\xda\xee\xbf\xf1\xd0/`\x82\xcf\x18@\x07_\xb7ozv6\xc0' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x02\x00\x00\x00\x00\x00\xf0?47d0\x0e\xf10\xbc\x00\x00\x00\x00\x00\x00\xf89\xec\x81\xfc\x18\x81\x0eq\xbc\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xe09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I20 +I2 +tp89 +g22 +I00 +S'\xc7\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x95m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xc0I\xf2\xe1#-\xf8\xbf\xbb\xe8\xb8\x87m\xe1;\xc0\xef\xe4\xd1\x02Z\xdd5@j\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xbf\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc1\xcb9\x00\xb7\xc94@Je\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe0*O$\xfd\x8dB@\xde4\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc00t_\xd6\xfb\x90\x14\xc0\xaf9H\xa1f R\xc0\x19\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe7/\xdb\xf9On\x18\xc0\x8d\x10\xb0s\xf5C\xf2\xbf)~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@~\xf4A\x95\xd2\x8c\x1d\xc0\x8c=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb6\xb3\x81\xb2\x03\xda @\xf3b\xe4\t\xe6\xda\xee\xbf\xee\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I20 +I2 +tp106 +g22 +I00 +S'\xbf\xa9\xb5\xb5\x9b\xa9#@\x8e#\xc41\xec\xe7T\xc0\xd7\xfc\x98\x14\xbc06\xc0\x9b\x80t\xd0\xab\xf3J\xc0\xe9\x0cG\x8bv\xf9A\xc0\xa7!W\xf1w\x857\xc0\xae\xa7\xfbQD[@\xc0\x97\xcc\xca\xe2\x15\x89\x08\xc0\x96\x85\x1c\xab\x90\rB\xc0t\xe9\x11x\x11}3@\xfc\xbe\x00\x97w\xb15\xc0\xc9\x98\x89D&\x94K@e\xe3\xe2\x7fr"\x14@&\xd66\x01\xd6,W@\xb1\xfe\x81\x19q\xad4@C\xf2\x9b\xd11\xa9K@t\xb0\x1b\x9bgs>@\x01r\xccF\xeaP5@-\x9c\tn\x11T@@\xa8k8!\xe2\xec\xd0\xbf\xf1et\xef\xca\x82@@otN\xde\xde\xde7\xc0\xdc<\xed\x81\x8a\xe07@s\xa2\xa0\x86\x18\x0eK\xc0\xa8D^\x92\'"\x1f@\r\x98\xd1\xd4k9R\xc0\xedA\xf1\x01\xfb\xfe\x1a\xc0\xfe\n\x17w\x97\xef6\xc0\x9d\xebM\xc8R\x10"\xc0\x11\x01\x9a\xca\x887\xe4\xbf\x00\xf1\x807+P"\xc0\xb3\xc4UA\xf0\xa23@KU\x89\x13\xbbA\x19@\xf6{r\xc1\x1e\xffS@\x8f)\xc8zv(\xd7\xbf\xd9i\x87\\\x84\xb93@?\x85\xb0n\x8b,\x0f@\xc3\x84[\x92$\x04\xf2\xbf\xee{&\xbft\x16\xda?\xf7O\x15\xb0Ga7\xc0' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I10 +tp113 +g22 +I00 +S'\xe3\xf2\xf3\xdc\xdep\x8e@\x1aU\xfet\\,\x8e@\x1c5\r\xf7\x7f\xe4~@\xc1/"bT\xafa@\xab\x17\xc4\x10\x00\xf2Y@R\xc0\x1f\xd0\xb4\x94C@y\xf8}f<)@@3\xd8M\xb7Z3;@\x11N13\xe2S6@\xc97\x86}\x83F3@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I27 +tp120 +g22 +I00 +S"\x7f\x8d;\x08\xdaO.@\xa4\x82\x99yc#+@N\xc4/\xb4\xac\x1f)@pI\x8eT\xfa\xd4 @\x1e\xc0\xf4\xda\xdc\x10\x1f@\xc0/\xbe\xe3<\xec\x18@a\xc9\\\xfb\x95N\x17@\xb6\x12\t2\x8f\xf3\x13@\x1do\xba\x97\x8ei\x11@\xf6f\x80\x91J?\x10@Z\x91/\x95A\x1f\r@\xa3\xbc\xb1A\xa6^\t@*\xb4L2Q\x83\x03@\xe5\xa5P\x13\x83\x90\x01@\xbcB'\xde\xf7\xe5\x00@\xdf\x18\xda\x8bb\x8f\xff?V6\xc7\xda\x01\xb0\xfe?\x90\x8f\x15\x0bGt\xfd?\xec\xd6\xc1\xfe\xd0{\xf5?j\xf6\xbcE~y\xf4? \x02%\xf9y<\xf2?\xb6\xe0Y\xe1\x8b!\xf0?:\xd5\xe52`\xad\xec?J\xe2\xb8\x19Ta\xe9?\xe6?A\xa9E\xed\xdf?,?\xc55\xd2W\xd7?\xf42\xc1\xf2&\xeb\xc8?" +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I10 +I40 +tp126 +g22 +I00 +S'\xa1l\x03\x86g\xecn\xbf\xd2\xf6\xf6\xae\xf8\x92\xd7?\xd6E\xec\xe1\xd2T\xc4\xbf\xbf\xa3n\x01\xfa\x1a\xab?\x80\xaemK\x9eT\xcb\xbf\xfba\xa0\xe8\x0bH\xb3\xbf\xc3\xd2\xdd>KC\xcd\xbfvA\xf0\x89k\xa8\xbd\xbf\xc7\x0e\x10u90\xcb\xbf\xdbR\xe7c\xcb3\xc2\xbf\xed5\x84C\xdb\x89\xc3\xbf<\xe3t\xe0`&\xa7\xbf5\xb1];\x82\x81\x88\xbf\xc8\xd1\xc0\xaeN\x8c\xa8?\xcf\x08(!\x00[\xc6?\x1dRY\xedP\x02\x90?")\xcdx\xad\xde\xce?\x94\xa2\xf9\xd3m\xc6\xae\xbf\xb6\x08P\x01\xf20\xce?G\xce\x178\x8bo\xa6\xbf\xdd?\xa9\xd6\x1a\x01\xcd?\x15\x96o\xba\xbat\x84\xbf[\x15S\xe4`!\xc3?\x8b\x14\x84\x8f\xb8\x80\xba?\xaa.\xed\xf1\x97\xfd\x94\xbfFpr\xc5JE\xd5?"eT\xab\xd8P\xc9\xbf\x1c\x827\x07\xab#\xa8\xbf\x8f\xc6|\x92\xf0\xcd\xca\xbf\xa0\x11\x96m\x90=\xb8\xbf\xb7?Y=\x85\xb1h\xeb\xc3\xbf&9E[\x87\x06\xb8?\xa6)%\x03\xc7\x8a\xb0?\xd7\xcd\xd7~!\x95\xa2?R\xe3+\x8b\x0e\xcc\xdb?px\x1eC\xfe2\xad\xbf`H\xb4\xf8\xa7R\xc3?\xdd\x86[\xe5\xef\x19\xbe\xbf\xc4\xa5&\x929\xb3\xa6\xbf*EL\xc4*z\xc1\xbf\xe4\'\xc0S\xea\xff\xb8\xbft\xcb+\x93m:\xc3\xbf{\xefeR$i\xb7\xbf\xdc\xe6\nv\xd1P\xbc\xbfW\x89\xa1\xe1r\xea\xb3?\xcb\x9f6\xa9\xb0\xff\xac?\xf1\x14\xaa$\xfc\x8e\xd0? \xd3\x16\xa2\xdb\xc8\xbb?\x82\x91\xae\x99.\xee\xc5\xbf\xdc\xdaw\x84\x14s\xbe?\xbf\xf8D\x12\x97\xf9\xc5\xbf\xb0\x94\xe44\xf8\xda\xbd?$\x80G\x98\xcc\xaf\xbc\xbfQ?}\x9c|A\xa0?BcU\xb6\xd2\x13\xd9?M\xa1`5\x03Q\xbe\xbf\x1de\x87\xd82\xb8\xb8\xbf\xdd\x89\xbb\x80&>\xc2\xbfr\xaf\x06n\xd3\x01\xc3\xbf\x9e!\x15\x03_\xe1\xc4\xbf\xac\xa1p\x8b90\xc2\xbf\x10W\xc7\x91G\xcb\xdb?}\xbd\x82\x1frW\xaa\xbf\xe2}\xb6\x1cn\x11\xa0\xbfa\xc65\xa91\x1c\xa1\xbfd\x89\xbfCg\xad\xd1\xbf)E\xeb\x8b\xd5\x88U?\x81\xaf\xdf\xd5ib\xd0\xbf+1-i\x9f\xc1\x96?\xee\xd5D\xef25\xd1\xbf\xe3o\xff\x85\x1a\xae\x87?\xf6M\xab\xd0\xd0\x15\x87\xbf\xa2PW\xe0oB\x92?\xe0^\xcb\x8c\xac\xa3\xdb?\xbdL\xcf\x1d\x9aa\xa0\xbfL0d\xd8\xd0\x97\xbd?\xb6\xc1\xbd\x8f\xe8\xfd\x84\xbf\xd4y\xde\x17\xbf\xe3\xa8\xbf\xa3\x96\xfeqH\xc4\x8e?\\\x0f;\xa8&\xcc\xb1\xbf\xfam\xdah`\xe5\x9e?\xcd\x9b\x1c\xd3v\xb3\xa7\xbfn\xcd\x1fOA\xea\x8d?E\xf5\x8bU\x17]\xbb?\xd0\x02\xe9\xe0\xf1\xb6s?\x8f\xdcdAu\xff\xd3?\xed\'`\xf5\xbeN\x9c?E\xcb^\xedn\xa4v\xbfo\xf2A.\xa4\x9a\x7f?\x07\x80:j\x88\xb9\xa0\xbf\xb3~+U\xf5x\x98?\xf8E5F\'\xa9`?i\xeb\xa3\xb5\x01~\x86?\x90\xc0\x1d\xee\xf5\x95\xd4?\xd9^\xc5,Q\x93\xb9\xbfP\xe8\xa8iD\xc5\xcb\xbf\xc0\x14\xeb\x9e\xfe\xbfl?[\x8e&\xb1&W\xcf\xbf\x92\x93e\x01F\r\x96?\xdb\xc1\x95.E\xba\xcb\xbfQo\xbft\xe9\xd0\xbf\xb6\xba\x82\xf3\xfa\x0b\x91?e\xa1\x98|\xf8\xbe\xcb\xbf\xfa\xa8\xcb\x8dr\x9b\xa4?\xa9\x91\xf6\x1fX\x86\xd0\xbf\xaf\xcfe\n\xee\xd3\xb6?\x91\xfbH\xd5\xb9\x15\xc7\xbfF\xa3K;j\xf9\xc2?\xe8\xd9\x16_\xd1\xd2\xb3\xbf\x03P\x96\xd4\xa1\xb2\xc5?\x90\xad\x03\r^)\xc9?\xd2\xc6\x1d\x16\xc4\xd3\xaa?\xe4\xfc\x8f#\x114\xd6?&\xe7\xb7\x04\x95\xa0z?W\xde\x96\x8c\x14\xa3\xd8?<\x8e\xe3\xa0\x01y\xa7\xbf&\xf5\xe8\x84|\xc5\xd5?=\xdb\x9f-\xf2\n\xca\xbf\x1c\xea\xb9\xff\xc9\xae\xc6?\xfb\xa1\x931\xd0v\xc1\xbf\xefk\xda\x03\xf8M\xb5\xbf\xef\xe3I91x\x95\xbf\x13F\xe9\xaa\xc0\xd5\xbb\xbf\xac/A\xb1\xe2f\x8d\xbf\xcdwP\x0e\xd6p\xb5\xbf1\x03zQ\xb5\xd3\x80\xbf\xa0\x08\xec\xa0\xd71\xbc\xbfoy\r \x85\x97\xbc?\x822\xfcy\x87v\xb6\xbf\x96U}\xab\xca-\xbb?}\xfe\'\xa8\xaf\xdb\xb5?\x91\x05`\xe4dap\xbfc\xfdmy\xa9\xbb\xc0?M\x99\xc5>K\xb4\xb9\xbf\xa7Z\xf1$\xf6\xa7\xb9?Pj\x85K\xf1tp?\xb5m\xa5X\x0c\x05\xbc?\x9e\xcdF*\xb1\x00\xc4\xbf\xea\xce\xafN\x14\x7f\xcc\xbf\xca~-D:\xc1\xc8\xbfd.\xec\xde\x1f\xf0\xb4?\xe9\xb0P\xcb\x80\xac\xc9\xbf\xdf\xfd\xf3\x97s\x84\x85?d\xf0\xa7\x1d\x9e"\xc8\xbf\xea\xaa\x86\xfa\xa6\xaa\xb8\xbf\x0f\xcc\xdd\xe4e\x12\xc7\xbf\xae\x0e\xcc\xaa\x1b]\xc7?\xee?8|\xd3\xaew?\x04\xc3]\x86\xa4\xc8\xb7\xbf\x88\xa8\x85\xa0\x0c\xb6\xd1\xbfxZT\x14@\xce\xc1?O\xf6\x84\xf0\xec=\xa8\xbf\x94?\xec\x1e\xb4\xa6\xb6\xbf\xea\xec\xb3\xd9\xea\xa3\xa3\xbfHr\xfc\x80\xee\x95\x89?\xc5\xd7\x83~\xd0<\xb0\xbf\xd3\x88\xae\xe2bI\xb1?\xec\xbd\xa4\x0b]\x97\xd3\xbf\\y\xa9\xba\xccM\xc4\xbf\xb2\xd5\xd7\xa4\x88\x03\xa4?\x11\xa3\x97\xef\xdd\n\xa0?\x19\x88\x959\xfa\xf3\xd5?,h7\xbb\xf3\x16\xb7?\x8fW9\x03\x93i\xd3?\x08\xf8\xc2\xf3\x13\x8e\x9d?^p\xe9]\xb9P\xd5?\xce\x80Bk\xbaS\xb5\xbf\xd7\x9eg#l\xae\xa1?\xad\x1b\r\xe3\xc5\xa1\xa0\xbfOx\x8b\xd1\xc7V\xca?j\x02\x0b:Q*\xb8\xbf\xdf\xcc\x98\xb3\x1e\xce\xc9?V\x93\x08M\xa1\x92\x95?\xaf\xfb\x8c\xb3\x12&\xc7?c-\x82j\x8d%\xb8?\xf7\xa8\x93\x1e\xfb\xd7\xbc\xbfD\xdcX\xb4\xac\x0b\xb2\xbf)\xe2\x9c\xbe\xae|\xc5\xbf\xf1\x97\x17\xc8\x95_\xd8?,\x13\xf2\x12x\xa9\xbe\xbf\x08\xa2\x1c\xafK\x8a\xc1\xbfR\xf5\x9b\xfe\xca\xf1\xc5\xbf\x0c\t\x199\xae\xe9\x94\xbf\xa8\x85\x08\xc0\xb0\xad\xbf\xbf\xd2\x8a\x97l\xc4\x14\xb2?\xc4+v\t_u\xc3\xbf%\xa2\xcb>!g\xd1\xbf\x00\xd4\xfax+\xb6\xb4\xbf=?f{&\xa4\x89?\x8a\xa1\xd0\xbf\xe13\xce?\xca\x7fZXsL\xc5\xbfb=?#\xb8O\xc3\xbf\xb6vK\xf0I.\xbd?\x1d\xc2\xac\x14%"\xc8\xbf\xf6l^\xb14\xd2\x92?\x98"x^ \xed\xc5\xbf\x11P\x92\x9d\xa1\xd6\xb5\xbf\x9c\x07N\xcc\x80\xc3\xcb?\x03x\x9a\x91I\x8e\xd1?\xee\xa2.4\x8a\xa6\x85?Z\xbc\xfc\xb5*@\xc6\xbf|\xbeN58\x89\xcb?\t%\xa8)\xe3\xf2\xc3\xbf\x83\xd1Cq\xb9B\xca?&&\xac\xc1\n\xec\x7f\xbf9\xb8\x1a\x16\xb9\x02\xcd?\xfb|\xdd\x8e>\xd5\xbf?\xa2&\xf0\xcd;\xfaz\xbf\x02_S\xd8\xfaE\xc2?\xb5g\xddE5\xd0\xc1?\x91:\xbc)d\xfa\xbd?\x1a\xfb\xe0\x12RR\xb2?6n\x99\x12\xcc\xe4\x85\xbf=\xe1\xd4j\xf7\xe6\xbf?2\x16U\xa8\x81\xdb\xc3\xbf\xa6\x81\xaf\xceK\x9c\xb8\xbf\xeb\xb0\xe6\x02q\xdf\xcd?\x88\x9a\xa6\xa0\xa5\xd3\xb0?9\xe45\xab\xfd\xec\xcb\xbf_\xf16\xc7\xfc=\x97?\xc0\xc1\xa4U\x7f,\xbb?S\x01\xaf}\xdd\xd7\xc1\xbf2[\xcdF\xa6@\xac?d\xdc\x00B4\xb5\xb1?\xc8Bm\xce\x89\x06\xb1\xbf\xcf\xd7\xc3\xe7\x90\x00\xb8?\xe9n\xa4\x12\xe1\x01\xba\xbf\xc1+\n\xf3]\xc6\xc6\xbfV\xb5]\xfc\x16\xc6\xb3\xbf\x13n\x01\xd8c7\xdc?\xb4l\n\x17k\x13\xbf?\xd1w\x17Y\xb7\x85\xc0\xbf\xc6Ln\xcd[\x10\x8e?\xd2w\x04\x0f\xa3M\xd2\xbfi\xfe\x15\x1f\xe5%\xb3?\xcb\xdf\x8b\xc6}"\xbc\xbfP\xb5\xaf&V\xb1\xba?\xb6\x1a)__\xba\xd1?\xc2~`}.w\xe1\xbf@zl\xc8S\r\x91?\xc2\xdb\x9c\t\x13\x93\xb9?\xd9RV\x98\xbeac?\x18&\x13 \xfc\x06\xae?\xccO\x9a\xe3\x0e\xd6\x8d\xbf\xfd\x19\xa7K\xd9\xfb\xaa?\xe0>*O\xd9\x81\xb0?.e1\xb3bC\x9d?\x93\xc6T$\xdb\xfb\xad\xbf\xe4\xcf\xc0y1\x7f\xa3?\xfc\xdd\x96\x7f\xf0\xfb\x9a?\x88\x1a\xf2\xf3\\\x85a?s\xad\'v\x9b \xc7\xbf\xdcJ\xb6E\x156\x97?\xfb\x9c\n\x91\xf2\xf7\xbc?\x0b\xc5n\x15\x93\xa2j\xbf~8\xdcxi\x1a\xc9\xbf\x99\x15\x83\xd2S\x94\xa8\xbf\x1a\xfe\xca\xb5[\x9c\xbc\xbf\xae\x11\xa9bdH\xc8?\xfe\xbde\x11\n\x92\x8b?\xeaX\xfdN\xa3a\x80?s|\xc6\x00\x81\x9b\xa3\xbfo\x07h\xb1g\xba\xc2\xbfn\xf1\x1cod\x1b\xab?\xc3p\xaa\xec\xe7\xf8\xb9\xbf\n\x7f\xc2\x05\xe56\xc1?6\xf0\x01|\x17V\xd8?B\xe5\xc2z\xfe\xd2\xbc?\x06\x1e(\x80cU\xc7\xbfbg\xbd\xc0\x8b\x03\xce\xbfNL\xe0\xc8_\xf0\xda?\'\x99\x90\xb7\xa1\xaa\xbe\xbf\xa8\xe1\x06Y\xc8>\xa3\xbf\xc3\xe6"M\xe3\x1b\xbf\xbf\xda\xa3\x14S\xea\xc9\xb2\xbf\xe9\xf8\xaf\xb5Q\xac\x98?\x18m\x1c\x8b\xf2\xd9\xb7?jU\x06\x86\x90\x99\xe0?\xfaW\xe7\x05\x001\xc0?\xc0\x8c]\xfage\xba\xbf}HO\xe0\xec\x1d\xb4\xbf\x99&\x9a-\xb7\xd0\x97\xbf\xc7\xd3l\x9b\xe0Lg?\x1e\xfarz-\xc1\x85\xbf\x9c%\xbe\'\xf1\x8c\xc1\xbf\x0c$\xf2\x82\x97x\xa0?`\x0c\xd9 \x0cp\xaf\xbf\xc5\xcb\\\xc5\xf4\x84\xb3?\xf5\x0f\x9a8N\x9c\xc3\xbfc\xe7#\xf9M\xeb\x8e\xbf\xa6\x90\xdf\x0c\xa6\xfd\xaf\xbf\x00\x8e\x80b\xd7(\xb1\xbfU\x7f\x10\x85c\x80\xc1\xbfy\xe1T \xf3\x8a\xb3?\xd6\n\xfd{,&g\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I40 +tp132 +g22 +I00 +S'\xc7\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x95m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xc0I\xf2\xe1#-\xf8\xbf\xbb\xe8\xb8\x87m\xe1;\xc0\xef\xe4\xd1\x02Z\xdd5@j\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xbf\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc1\xcb9\x00\xb7\xc94@Je\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe0*O$\xfd\x8dB@\xde4\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc00t_\xd6\xfb\x90\x14\xc0\xaf9H\xa1f R\xc0\x19\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe7/\xdb\xf9On\x18\xc0\x8d\x10\xb0s\xf5C\xf2\xbf)~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@~\xf4A\x95\xd2\x8c\x1d\xc0\x8c=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb6\xb3\x81\xb2\x03\xda @\xf3b\xe4\t\xe6\xda\xee\xbf\xee\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I10 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_mouth_20 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_mouth_20 new file mode 100644 index 0000000000000000000000000000000000000000..7a58f318340bcf6c0ce96426ba4541c523092eec --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_mouth_20 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I40 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xc0\x87\xe8\x94_\xf4\x9c\xbf\xec\xf1\x16\x8a^\xc6\xd8\xbfvx\xaf\xa7\xa6\x8c\xb7\xbf\xfeL\xc0\x1a\xd5\xec\xce\xbf\x86\x0f\x87\x84 \xc1\xbf\xbf\x00\x02\xcb|\x10\x89\xb9\xbf\x16jL\xd9@\\\xb9\xbfC\x8c\x96O0\xe1{\xbf\xd2\xa78\x04^\x13\xc0\xbf\xe9\xfa\x82\x17\xc06\xb9?\xb7n\xb9:w&\xb8\xbf\xf2m8\\x8\xcf?\xe1\x91 \x91\xa45\xa5\xbf\x8d\x8cD\xb5\xd2\xaa\xd8?g\x8b\xe6H\xe4\xf8\xb7?\x00\xc1\x14\x13\xcf\x08\xd0?\xf5\x1a\x8c\xba\xed\xb3\xc3?\x07\xce\xa0\x19\x8f\xbe\xbc?\xed\x014\xcf\x96e\xc5?\x83@\xc11\x9a\x11<\xbf\xc9\xf0\x10\x0c3>\xc4?\x93\x17R\x7f\x16\x87\xba\xbf\x85\xf7\x97\xc2\xfcM\xba?\xcaJ\xbd\xd0.6\xcf\xbf\xdc\xd6\xebxx\xb7\x97\xbffP\xe1\xec6\xe7\xd4\xbf\x9e\xff$\x08\x10\xbe\xa2\xbf%\x18\x0c2$\x97\xb9\xbf\xc0s&\x10X,\x9c\xbf\xbf\\\x96\x1c8\x10u\xbf\x12\xfe\xfdW\xd0k\xa4\xbf\xb4\x94;\'\xc9\xea\xb9?K\xed+t\xcc\t\xa1\xbf\xf9b\xb7\xa8"\xcc\xd4?\x84}c\x0cg4\x98?\xfb\r\xde)\xb2\x82\xba?\r7\xea\x19\xd5n\xa3?\xaa\x86Tel\xcaq\xbf"%\xd6\xeem\x9c\x9c?\x86\xc7\xa16U\xe7\xb9\xbf\xea\xf1\x16\x8a^\xc6\xd8?\xe4\x87\xe8\x94_\xf4\x9c\xbf\xfcL\xc0\x1a\xd5\xec\xce?tx\xaf\xa7\xa6\x8c\xb7\xbf\x00\x02\xcb|\x10\x89\xb9?\x85\x0f\x87\x84 \xc1\xbf\xbfK\x8c\x96O0\xe1{?\x15jL\xd9@\\\xb9\xbf\xe5\xfa\x82\x17\xc06\xb9\xbf\xd1\xa78\x04^\x13\xc0\xbf\xf2m8\\x8\xcf\xbf\xb8n\xb9:w&\xb8\xbf\x8b\x8cD\xb5\xd2\xaa\xd8\xbf\xe6\x91 \x91\xa45\xa5\xbf\xff\xc0\x14\x13\xcf\x08\xd0\xbfc\x8b\xe6H\xe4\xf8\xb7?\x06\xce\xa0\x19\x8f\xbe\xbc\xbf\xf5\x1a\x8c\xba\xed\xb3\xc3?\xc2?\xc11\x9a\x11\xc4?\xc9J\xbd\xd0.6\xcf?\x85\xf7\x97\xc2\xfcM\xba?fP\xe1\xec6\xe7\xd4?\xd0\xd6\xebxx\xb7\x97\xbf%\x18\x0c2$\x97\xb9?\x9a\xff$\x08\x10\xbe\xa2\xbf\xc0\\\x96\x1c8\x10u?\xbfs&\x10X,\x9c\xbf\xb1\x94;\'\xc9\xea\xb9\xbf\x11\xfe\xfdW\xd0k\xa4\xbf\xf8b\xb7\xa8"\xcc\xd4\xbfM\xed+t\xcc\t\xa1\xbf\xfa\r\xde)\xb2\x82\xba\xbf\x82}c\x0cg4\x98?\xaa\x86Tel\xcaq?\x0c7\xea\x19\xd5n\xa3?\x84\xc7\xa16U\xe7\xb9?#%\xd6\xeem\x9c\x9c?\xce\xed\xbf\xc5%\x9f\xcc\xbfIc4V\t\x13\xb2<\xd4\xed\xbf\xc5%\x9f\xcc\xbfR\x11\xb9D\xc4\xa4\xa3<\xd4\xed\xbf\xc5%\x9f\xcc\xbf\xfe\xda\x0eh\xeb\xbeM<\xd7\xed\xbf\xc5%\x9f\xcc\xbf\xd8B\x7f\xc7\xf1.\x90\xbc\xd7\xed\xbf\xc5%\x9f\xcc\xbf\xdc\x89L\xba\xf7\\\xa6\xbc\xdb\xed\xbf\xc5%\x9f\xcc\xbf\xb5$\x13\xdf\xe7\xf7\xb1\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf\xe1E]K\xd6u\xb6\xbc\xdf\xed\xbf\xc5%\x9f\xcc\xbf3}\xc6jr\xc1\xa4\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf\xbc\xa4\xf4\xee)\xf7Y<\xde\xed\xbf\xc5%\x9f\xcc\xbf?v\x88a\x9f\xdf\x9d<\xdb\xed\xbf\xc5%\x9f\xcc\xbf\x06\xc8\x98g\xa3\xdd\xa9<\xd6\xed\xbf\xc5%\x9f\xcc\xbfN\xeb\x1d\x87\xc2\x95\xb2<\xd1\xed\xbf\xc5%\x9f\xcc\xbf\x14\x94\xd1\x89\x17\r\xb2<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\xc2\xbeC\xd7\xb2\xf3\x90<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\xc0\xce\xb1\xf7\x94\xf7m\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf\xeez\xf4h\xd4\xfd\x9e\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf\xc5\x1a\xd1\x055<\xb4\xbc\xde\xed\xbf\xc5%\x9f\xcc\xbf(\xee\xf4\x8b\x90\x9f\x93\xbc\xda\xed\xbf\xc5%\x9f\xcc\xbf\x8c\xdch2$\x0f\x7f<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\xd8\xb5z\xaf0t\x9c<\\\x8a\xae\xd0\xf9I\xb5\xbc\xcc\xed\xbf\xc5%\x9f\xcc\xbf,@\x03S\xe5\xf5\xa8\xbc\xd6\xed\xbf\xc5%\x9f\xcc\xbf\x91\xfa\xad\x00;\xact\xbc\xd3\xed\xbf\xc5%\x9f\xcc\xbfZ\x1b(\xf0\xb7\xb9\x8e<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\xa3\xb8\x18\xe7\xf8+\xa8<\xd6\xed\xbf\xc5%\x9f\xcc\xbfu\xfd\x15\x07\xd6\x80\xb4<\xda\xed\xbf\xc5%\x9f\xcc\xbfn\xfa\xb3\x9c\xcd\x9a\xbb<\xdf\xed\xbf\xc5%\x9f\xcc\xbf\x82#\xaf\xac\xf4+\xa9<\xe0\xed\xbf\xc5%\x9f\xcc\xbfw\xcc\xe5\r\xd5\x1ec<\xe0\xed\xbf\xc5%\x9f\xcc\xbfL\x82\xa1(0\xeb\x9e\xbc\xdf\xed\xbf\xc5%\x9f\xcc\xbf\x0c\x8d\x1b\x00\x81\xfe\xac\xbc\xdb\xed\xbf\xc5%\x9f\xcc\xbfZ\xf0\xda\x15\xd9\xce\xb4\xbc\xd9\xed\xbf\xc5%\x9f\xcc\xbf\xc0\x80\x7f\x80\xb6c\xb5\xbc\xd1\xed\xbf\xc5%\x9f\xcc\xbf\xfe^G\xe4k\xb5\x94\xbc\xd5\xed\xbf\xc5%\x9f\xcc\xbf}Y\xba\t\xc7Sj<\xd8\xed\xbf\xc5%\x9f\xcc\xbfe\xba\x97\xb7\xfd\x82\xa1<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\xcb:\xcfps\xc9\xb6<\xdf\xed\xbf\xc5%\x9f\xcc\xbfV\x94I(w^\x98<\xdc\xed\xbf\xc5%\x9f\xcc\xbfI\x94\xe2\xa7\xf3\xfd\x80\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbf\xe0\xfd.\xcc}\x83\xa0\xbc\xd9\xed\xbf\xc5%\x9f\xcc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I40 +tp31 +g22 +I00 +S'\xc5\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0e\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xb3I\xf2\xe1#-\xf8\xbf\xbb\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc1\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc1\xcb9\x00\xb7\xc94@Le\xc5\xb8\x1d\xcfK@T\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe1*O$\xfd\x8dB@\xd13\x8au\x1fW\xb8\xbf=n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x90\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0~\x10\xb0s\xf5C\xf2\xbf*~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@~\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb6\xb3\x81\xb2\x03\xda @\xd6b\xe4\t\xe6\xda\xee\xbf\xec\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I20 +I2 +tp43 +g22 +I00 +S'\xc5\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0e\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xb3I\xf2\xe1#-\xf8\xbf\xbb\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc1\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc1\xcb9\x00\xb7\xc94@Le\xc5\xb8\x1d\xcfK@T\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe1*O$\xfd\x8dB@\xd13\x8au\x1fW\xb8\xbf=n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x90\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0~\x10\xb0s\xf5C\xf2\xbf*~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@~\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb6\xb3\x81\xb2\x03\xda @\xd6b\xe4\t\xe6\xda\xee\xbf\xec\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I20 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I20 +I2 +tp68 +g22 +I00 +S'\xca\xfd\x9a|\xc5\x1b\x19\xc07\xb2W\xfb\xe5{U\xc0\x98m<\x1a\xdak4\xc0g\xa3\x10\xdb8\xd1J\xc06\xb7\x92.Q\x89;\xc0&?SP\xbb$6\xc0HSmz\xdf\xfd5\xc0\xb3I\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf3\xe4\xd1\x02Z\xdd5@j\x8a\x103<\xf14\xc0\x0bd#\x0c\xd0\x12K@\xc1\xe3hPid"\xc0\x1c\x0f^\xdc\x02dU@\xc2\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@U\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@\x084\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb5re>\x03\x017\xc0\x91\xb3}6\x7f\xcf6@\xf9\xf3"H\xd4\x10K\xc06t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1b\xd8m\xb1\xb9@ \xc0\x0b\xccRU\xf006\xc0\xeb/\xdb\xf9On\x18\xc0\x7f\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x17\xf7\xe6\xf5xy6@~\xf4A\x95\xd2\x8c\x1d\xc0\x8e=&1\xeb\x08R@\x82z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xb7\xb3\x81\xb2\x03\xda @\xd9b\xe4\t\xe6\xda\xee\xbf\xed\xd0/`\x82\xcf\x18@\x07_\xb7ozv6\xc0' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x01\x00\x00\x00\x00\x00\xf0?4(5\xa7\x8e&\x7f<\x00\x00\x00\x00\x00\x00\xe09%\xba\xf3\xaf\xff\rw\xbc\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xe09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I20 +I2 +tp89 +g22 +I00 +S'\xc5\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0e\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xb3I\xf2\xe1#-\xf8\xbf\xbb\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc1\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc1\xcb9\x00\xb7\xc94@Le\xc5\xb8\x1d\xcfK@T\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe1*O$\xfd\x8dB@\xd13\x8au\x1fW\xb8\xbf=n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x90\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0~\x10\xb0s\xf5C\xf2\xbf*~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@~\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb6\xb3\x81\xb2\x03\xda @\xd6b\xe4\t\xe6\xda\xee\xbf\xec\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I20 +I2 +tp106 +g22 +I00 +S'\xbe\xa9\xb5\xb5\x9b\xa9#@\x8e#\xc41\xec\xe7T\xc0\xd7\xfc\x98\x14\xbc06\xc0\x9b\x80t\xd0\xab\xf3J\xc0\xea\x0cG\x8bv\xf9A\xc0\xa6!W\xf1w\x857\xc0\xaf\xa7\xfbQD[@\xc0\x8f\xcc\xca\xe2\x15\x89\x08\xc0\x97\x85\x1c\xab\x90\rB\xc0u\xe9\x11x\x11}3@\xfc\xbe\x00\x97w\xb15\xc0\xc9\x98\x89D&\x94K@c\xe3\xe2\x7fr"\x14@&\xd66\x01\xd6,W@\xb1\xfe\x81\x19q\xad4@C\xf2\x9b\xd11\xa9K@t\xb0\x1b\x9bgs>@\x02r\xccF\xeaP5@,\x9c\tn\x11T@@hk8!\xe2\xec\xd0\xbf\xf0et\xef\xca\x82@@ntN\xde\xde\xde7\xc0\xdc<\xed\x81\x8a\xe07@s\xa2\xa0\x86\x18\x0eK\xc0\xa6D^\x92\'"\x1f@\r\x98\xd1\xd4k9R\xc0\xefA\xf1\x01\xfb\xfe\x1a\xc0\xfd\n\x17w\x97\xef6\xc0\x9e\xebM\xc8R\x10"\xc0\xf1\x00\x9a\xca\x887\xe4\xbf\x01\xf1\x807+P"\xc0\xb4\xc4UA\xf0\xa23@IU\x89\x13\xbbA\x19@\xf6{r\xc1\x1e\xffS@\xad)\xc8zv(\xd7\xbf\xdai\x87\\\x84\xb93@;\x85\xb0n\x8b,\x0f@\xb3\x84[\x92$\x04\xf2\xbf\xd0{&\xbft\x16\xda?\xf6O\x15\xb0Ga7\xc0' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I20 +tp113 +g22 +I00 +S'\xdf\xf2\xf3\xdc\xdep\x8e@\x12U\xfet\\,\x8e@!5\r\xf7\x7f\xe4~@\xc5/"bT\xafa@\xa5\x17\xc4\x10\x00\xf2Y@M\xc0\x1f\xd0\xb4\x94C@u\xf8}f<)@@3\xd8M\xb7Z3;@\x0fN13\xe2S6@\xb97\x86}\x83F3@Z\x8d;\x08\xdaO.@\x98\x82\x99yc#+@C\xc4/\xb4\xac\x1f)@zI\x8eT\xfa\xd4 @\x07\xc0\xf4\xda\xdc\x10\x1f@\xca/\xbe\xe3<\xec\x18@l\xc9\\\xfb\x95N\x17@\xbf\x12\t2\x8f\xf3\x13@\x0eo\xba\x97\x8ei\x11@\x06g\x80\x91J?\x10@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I17 +tp120 +g22 +I00 +S"\xfc\x90/\x95A\x1f\r@\xb7\xbc\xb1A\xa6^\t@\xd6\xb4L2Q\x83\x03@\xf5\xa5P\x13\x83\x90\x01@\nB'\xde\xf7\xe5\x00@M\x19\xda\x8bb\x8f\xff?Z5\xc7\xda\x01\xb0\xfe?\xa3\x91\x15\x0bGt\xfd?i\xd6\xc1\xfe\xd0{\xf5?\x0f\xf5\xbcE~y\xf4?\xcf\x02%\xf9y<\xf2?\xa9\xe0Y\xe1\x8b!\xf0?;\xd4\xe52`\xad\xec?_\xe4\xb8\x19Ta\xe9?\x93BA\xa9E\xed\xdf?\x94B\xc55\xd2W\xd7?\xba2\xc1\xf2&\xeb\xc8?" +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I20 +I40 +tp126 +g22 +I00 +S'\xead\x03\x86g\xecn\xbf\x12\xf7\xf6\xae\xf8\x92\xd7?\xaeE\xec\xe1\xd2T\xc4\xbf\xa8\xa3n\x01\xfa\x1a\xab?_\xaemK\x9eT\xcb\xbf\xc3b\xa0\xe8\x0bH\xb3\xbf\x96\xd2\xdd>KC\xcd\xbf-B\xf0\x89k\xa8\xbd\xbf\xa2\x0e\x10u90\xcb\xbf\x1bS\xe7c\xcb3\xc2\xbf\xc35\x84C\xdb\x89\xc3\xbf\xc9\xe2t\xe0`&\xa7\xbf`\xb0];\x82\x81\x88\xbf\xb6\xd4\xc0\xaeN\x8c\xa8?\xb9\x08(!\x00[\xc6?\x1cTY\xedP\x02\x90?\xf4(\xcdx\xad\xde\xce?\xe5\xa2\xf9\xd3m\xc6\xae\xbf}\x08P\x01\xf20\xce?\xf4\xce\x178\x8bo\xa6\xbf\x9b?\xa9\xd6\x1a\x01\xcd?\xa3\x98o\xba\xbat\x84\xbf*\x15S\xe4`!\xc3?\xce\x14\x84\x8f\xb8\x80\xba?\xda-\xed\xf1\x97\xfd\x94\xbf|pr\xc5JE\xd5?\xf3dT\xab\xd8P\xc9\xbf:\x837\x07\xab#\xa8\xbf]\xc6|\x92\xf0\xcd\xca\xbf2\x12\x96m\x90=\xb8\xbf\tWN~\x02\x15\xc8\xbf\x8d\x06-\x96\xe1\x17\xbf\xbf\xc0\x07pmA\xb8\x99\xbf\xd9\x86\x80\x98Y\x95\xa4?R\xa5\x90{\x8eg\xcb?x\xbe\xcdQk9\xb8\xbf8\xfadf}\x19\xc9?\xce\x12\xf0?T\xe6\xb2\xbf>\xeem\x96\xfa\xa6\xc7?\x0b\xe7\x95?\xa4\xc9\xa2\xbf\xfd\xcd\xd6\xe3]\x02\xae?\xaa \xe1\x90:\x18\xd2?U\xb6\x1bL#5\xb6?A\xear\xaf\x13U\x8b\xbf\xbe\xbd\xea\xe0\x19"\xb8?"\xf4\x8a/4\xa9\xca\xbf\x83]\xb2J\x86]\xba?^7\xba\xa7^\xa2\xca\xbfS;E\xe6\xf5>\xb7?\x19=\x85\xb1h\xeb\xc3\xbf\xaa9E[\x87\x06\xb8?\xcb)%\x03\xc7\x8a\xb0?\x12\xce\xd7~!\x95\xa2?F\xe3+\x8b\x0e\xcc\xdb?\xa1y\x1eC\xfe2\xad\xbfYH\xb4\xf8\xa7R\xc3?\xbb\x87[\xe5\xef\x19\xbe\xbfZ\xa5&\x929\xb3\xa6\xbf\x96EL\xc4*z\xc1\xbf\xbd\'\xc0S\xea\xff\xb8\xbf\xdc\xcb+\x93m:\xc3\xbfq\xefeR$i\xb7\xbfY\xe7\nv\xd1P\xbc\xbf\xfe\x88\xa1\xe1r\xea\xb3?)\xa06\xa9\xb0\xff\xac?\xa9\x14\xaa$\xfc\x8e\xd0?\xc6\xd3\x16\xa2\xdb\xc8\xbb?n\x91\xae\x99.\xee\xc5\xbf\x8d\xdbw\x84\x14s\xbe?\x96\xf8D\x12\x97\xf9\xc5\xbfP\x95\xe44\xf8\xda\xbd?\xb6\x7fG\x98\xcc\xaf\xbc\xbf\x98?}\x9c|A\xa0?7cU\xb6\xd2\x13\xd9?\x0b\xa2`5\x03Q\xbe\xbf\xcbd\x87\xd82\xb8\xb8\xbf3\x8a\xbb\x80&>\xc2\xbfO\xaf\x06n\xd3\x01\xc3\xbf\xee!\x15\x03_\xe1\xc4\xbf\x9a\xa1p\x8b90\xc2\xbf\x0eW\xc7\x91G\xcb\xdb?\x93\xbd\x82\x1frW\xaa\xbf\xc2}\xb6\x1cn\x11\xa0\xbfk\xc65\xa91\x1c\xa1\xbfe\x89\xbfCg\xad\xd1\xbf\xf7H\xeb\x8b\xd5\x88U?\x84\xaf\xdf\xd5ib\xd0\xbfW1-i\x9f\xc1\x96?\xee\xd5D\xef25\xd1\xbf\x1ap\xff\x85\x1a\xae\x87?"N\xab\xd0\xd0\x15\x87\xbf\x99PW\xe0oB\x92?\xe2^\xcb\x8c\xac\xa3\xdb?\xeaL\xcf\x1d\x9aa\xa0\xbfE0d\xd8\xd0\x97\xbd?\r\xc2\xbd\x8f\xe8\xfd\x84\xbf\xd9y\xde\x17\xbf\xe3\xa8\xbf\x8e\x96\xfeqH\xc4\x8e?Z\x0f;\xa8&\xcc\xb1\xbf\x08n\xdah`\xe5\x9e?\xb9\x9b\x1c\xd3v\xb3\xa7\xbf\x9f\xcd\x1fOA\xea\x8d?T\xf5\x8bU\x17]\xbb?\x82\x02\xe9\xe0\xf1\xb6s?\x8e\xdcdAu\xff\xd3?\xc2\'`\xf5\xbeN\x9c?\x16\xcb^\xedn\xa4v\xbf:\xf3A.\xa4\x9a\x7f?\x10\x80:j\x88\xb9\xa0\xbf\xd0~+U\xf5x\x98?$E5F\'\xa9`?\xa3\xeb\xa3\xb5\x01~\x86?\x8e\xc0\x1d\xee\xf5\x95\xd4?\xe6^\xc5,Q\x93\xb9\xbfS\xe8\xa8iD\xc5\xcb\xbf\n\x15\xeb\x9e\xfe\xbfl?W\x8e&\xb1&W\xcf\xbf\xa5\x93e\x01F\r\x96?\xd6\xc1\x95.E\xba\xcb\xbf\x83?\xd85\n\x0c\x8d?\xdf\t+\xa1e\xdf\xc9\xbfO\x8c\xedD\x15\xbf\x8a\xbf\xdc\xf9a\xf6\x057\xab\xbf\xd8)\xe5\xe7\xdc\xae\xac?\x0e\xd3\xcax\\\\\xb2\xbfn\xed!\xf0Y$\xb6?\x8a\xbf\xbc\x9a[w\x91\xbf^\x17\xf4\x16\xb1\xe3D?d\xf3\x82\xaf4\xbe\xb1\xbf\xe4\xcc\xa2\xa9\'\xc0\xba\xbf\xc5)\xaf\xb29\x1c\xaa\xbf\x15\xe7q\x90XJ\xb1\xbf\xb6\x05B\x88\xb4\x95\xc8\xbf\x15\xd2W\xf7f\xcf\x8a?a8\x17}\xd1\xd2\xbf?\xe6\x95\xfb\xb4\x88\x87\xa7\xbfR\xc7\xfff\x01\xab\xd1?\xc8\xdc\x15\x08\x80\x0c\xb1\xbfM\x7f\xea\x96\x87\xd6\xd2?\xce\xec\x19f\xebi\x98?\xf2\xbfS\x97\xd1O\xd2?\xd41z\xca\x91\xec\xb1?\x81\xb2\x10F\xe6\x19\xc1?\xc3S\xec\xd4F\xae\xa9?\xb9=\xda\xa1\xeb\t\xc0\xbf-\xc5\xc6X^v\xae?M\x86&\xa9\x1e\xd5\xcf?\xe0\xac\x93\xfc\xce\x05\xb7?\x9aq\x135@\xbc\xd0?\x93!g\xa6G\\\x90?\x9d\xa3\xa6|\xd60\xd0?\xaf[\xdc\xda\x87\xe0\xb5\xbfW\xf8\xfc3d\xe4\xbc\xbfG\x8f\xc8\xdc\xa6\xea\xb0\xbf\x1e@\xfb\x91\x16\x01\xd5\xbf\xc5\xe0[q\xffZ\xbb\xbf\x8b\x17\xb0\x9b\xad\xa3\xd4\xbf\xa0m\xa6\xa7\x8cg`?\xd8\xe7\xa9\x04\xc6D\xd5\xbf\xec\x91\xd4B\xdc\x9f\xb6?\x12\xd5W\xa86\x19\xa0\xbf\xf3\x8a+N\x96\x88\xce?\xf1\xce\x94VN\xbd\xa8\xbf\xdc\x99WP\no\xb8\xbf\xbd\xe5\x07\xe3\xbd\x15z?\xdf\x82\x1b\xadt\xbd\xd0\xbfG\x8c\x11\x06*_\xab?M\x15\x9a\x0c6\\\x80\xbf\xf4m5\x1d/\x88[?L\xcd\x1e\xa4\xe5\xb4\xd2?\xd4\x08=\x1d\xbc\xc9\x9f\xbfD\x1aW\x06\xc4V\xc0?9\xfbh\xcd\x17\xa8\xa0\xbf\xe3\x1c\xff\xef\xa6[\xd2\xbfs\x9cJ\x05"\x04\xb0\xbfrL\xdf\x1e\xeba\xc0?V\\d\xa8O\x07\xac?\x82\xcc\x92\xdagF\xd2?\x82#d\x91\x9a;\xbe?\xb6TT:\xac\xd4\x92\xbf\xb9\x81\xd7\x8f\x0b\xff\xb0?T\x97\xe1+|h\xd1\xbf>\x90\xda"~\xdf\xaa\xbfH^\xdd\x8de@\xbe\xbfu\x9d\xe2Os\x94\x88\xbf\xfc\x1d\xcb.\xce|\xcd?\x87\x1d)\xab\xce\xff\xab?\x82\xd6\xbd\xdac\r\xd1\xbfVB\xac\xc8\xfbE\xb8?\xb7\x90YG\x81\xce\x86\xbf\x19\x17\xd8\xdb?\xd1\xab?HQ\x7f\xd0\xf2R\xd2?C\x9eoY\xd1\xf5\x90\xbf\xc6\xa2]T\xb1h\xd0\xbf\x938B7\xf4\x85\xb8\xbfL\xf4n\xedUQ\xd2?z\xeeR\xbf\x96\xb1\x9f\xbf\x99$\x82\xf8\xb4\xc3\x8b\xbfq\xa4\xa7s\xe7C\xb7\xbf&\x85\x08\xf8X\x16\xd1\xbf\xd83\x9c\x05\xcb\x88\xc3\xbfS\x94\xe9\x81\xf2\xba\xb0\xbf\x0cLA\x070\x8e\xb1\xbf[\x16\xac\xe9C\xf5\xcc\xbf\x00\x12\x94A\x99L\x8d?FQo\xbft\xe9\xd0\xbf:\xbc\x82\xf3\xfa\x0b\x91?^\xa1\x98|\xf8\xbe\xcb\xbf\x0b\xa8\xcb\x8dr\x9b\xa4?\xac\x91\xf6\x1fX\x86\xd0\xbfn\xcfe\n\xee\xd3\xb6?b\xfbH\xd5\xb9\x15\xc7\xbfG\xa3K;j\xf9\xc2?\xfb\xd9\x16_\xd1\xd2\xb3\xbf\x92O\x96\xd4\xa1\xb2\xc5?\xbe\xad\x03\r^)\xc9?\xf4\xc4\x1d\x16\xc4\xd3\xaa?\xe8\xfc\x8f#\x114\xd6?\x0e\xdf\xb7\x04\x95\xa0z?a\xde\x96\x8c\x14\xa3\xd8?>\x8d\xe3\xa0\x01y\xa7\xbf-\xf5\xe8\x84|\xc5\xd5?\xe5\xda\x9f-\xf2\n\xca\xbf\x04\xea\xb9\xff\xc9\xae\xc6?\xfa\xa1\x931\xd0v\xc1\xbf\'k\xda\x03\xf8M\xb5\xbf\x16\xe1I91x\x95\xbf\x07F\xe9\xaa\xc0\xd5\xbb\xbf\xac/A\xb1\xe2f\x8d\xbf\xf4wP\x0e\xd6p\xb5\xbf\x0c\xffyQ\xb5\xd3\x80\xbf\xca\x08\xec\xa0\xd71\xbc\xbfaz\r \x85\x97\xbc?\xdd2\xfcy\x87v\xb6\xbf\xb7U}\xab\xca-\xbb?\x84\xfe\'\xa8\xaf\xdb\xb5?2\xfe_\xe4dap\xbfN\xfdmy\xa9\xbb\xc0?\xdf\x98\xc5>K\xb4\xb9\xbf\xafZ\xf1$\xf6\xa7\xb9?Zu\x85K\xf1tp?\x83m\xa5X\x0c\x05\xbc?\x97\xcdF*\xb1\x00\xc4\xbf\xb6\xce\xafN\x14\x7f\xcc\xbf\x9c~-D:\xc1\xc8\xbf\x8d.\xec\xde\x1f\xf0\xb4?\x1f\xb1P\xcb\x80\xac\xc9\xbf\x1e\xff\xf3\x97s\x84\x85?S\xf0\xa7\x1d\x9e"\xc8\xbf~\xaa\x86\xfa\xa6\xaa\xb8\xbf\x06\xcc\xdd\xe4e\x12\xc7\xbf\xfe\x0e\xcc\xaa\x1b]\xc7?M;8|\xd3\xaew?\xc3\xc3]\x86\xa4\xc8\xb7\xbf\x80\xa8\x85\xa0\x0c\xb6\xd1\xbfdZT\x14@\xce\xc1?\x1b\xf6\x84\xf0\xec=\xa8\xbfK@\xec\x1e\xb4\xa6\xb6\xbf\x8d\xec\xb3\xd9\xea\xa3\xa3\xbf\xe4m\xfc\x80\xee\x95\x89?\xa3\xd7\x83~\xd0<\xb0\xbf\x8f\x88\xae\xe2bI\xb1?\t\xbe\xa4\x0b]\x97\xd3\xbfhy\xa9\xba\xccM\xc4\xbf"\xd6\xd7\xa4\x88\x03\xa4?O\xa3\x97\xef\xdd\n\xa0?\x02\x88\x959\xfa\xf3\xd5?\x83h7\xbb\xf3\x16\xb7?\x94W9\x03\x93i\xd3?D\xf7\xc2\xf3\x13\x8e\x9d?Vp\xe9]\xb9P\xd5?\xcc\x80Bk\xbaS\xb5\xbf\x17\x9eg#l\xae\xa1?\xda\x19\r\xe3\xc5\xa1\xa0\xbf2x\x8b\xd1\xc7V\xca?\xa7\x02\x0b:Q*\xb8\xbf\xe6\xcc\x98\xb3\x1e\xce\xc9?\xc4\x92\x08M\xa1\x92\x95?\xb4\xfb\x8c\xb3\x12&\xc7?\x7f-\x82j\x8d%\xb8?\xce\xa9\x93\x1e\xfb\xd7\xbc\xbf\xb0\xdcX\xb4\xac\x0b\xb2\xbf&\xe2\x9c\xbe\xae|\xc5\xbf\x0c\x98\x17\xc8\x95_\xd8?\x15\x13\xf2\x12x\xa9\xbe\xbf\x1a\xa2\x1c\xafK\x8a\xc1\xbf`\xf5\x9b\xfe\xca\xf1\xc5\xbf\xa1\n\x199\xae\xe9\x94\xbfi\x86\x08\xc0\xb0\xad\xbf\xbfc\x8a\x97l\xc4\x14\xb2?~+v\t_u\xc3\xbf\x05\xa2\xcb>!g\xd1\xbf\xc6\xd3\xfax+\xb6\xb4\xbfqJf{&\xa4\x89?\x03\xa1\xd0\xbf\xe13\xce?\xa7\x7fZXsL\xc5\xbf\xd0=?#\xb8O\xc3\xbf\xaevK\xf0I.\xbd?)\xc2\xac\x14%"\xc8\xbfRm^\xb14\xd2\x92?\x81"x^ \xed\xc5\xbf\xecO\x92\x9d\xa1\xd6\xb5\xbf2\x08N\xcc\x80\xc3\xcb?\xf1w\x9a\x91I\x8e\xd1?1\xa0.4\x8a\xa6\x85?\x1f\xbc\xfc\xb5*@\xc6\xbf\x92\xbeN58\x89\xcb?\xdb$\xa8)\xe3\xf2\xc3\xbf\x95\xd1Cq\xb9B\xca?\xad!\xac\xc1\n\xec\x7f\xbfP\xb8\x1a\x16\xb9\x02\xcd?\xd5|\xdd\x8e>\xd5\xbf?G\x1d\xf0\xcd;\xfaz\xbf\x1e^S\xd8\xfaE\xc2?\xa5g\xddE5\xd0\xc1?\xa9:\xbc)d\xfa\xbd?\x89\xfb\xe0\x12RR\xb2?\x8ep\x99\x12\xcc\xe4\x85\xbf\xb5\xe1\xd4j\xf7\xe6\xbf?D\x16U\xa8\x81\xdb\xc3\xbf\xa3\x83\xaf\xceK\x9c\xb8\xbfN\xb0\xe6\x02q\xdf\xcd?Q\x97\xa6\xa0\xa5\xd3\xb0?\xcd\xe45\xab\xfd\xec\xcb\xbf\xd8\xf36\xc7\xfc=\x97?\xe1\xc2\xa4U\x7f,\xbb?\'\x01\xaf}\xdd\xd7\xc1\xbf8Z\xcdF\xa6@\xac?H\xdb\x00B4\xb5\xb1?\nDm\xce\x89\x06\xb1\xbf\x80\xda\xc3\xe7\x90\x00\xb8?\xa7n\xa4\x12\xe1\x01\xba\xbf\xf0+\n\xf3]\xc6\xc6\xbf\x19\xb3]\xfc\x16\xc6\xb3\xbfRm\x01\xd8c7\xdc?|l\n\x17k\x13\xbf?!y\x17Y\xb7\x85\xc0\xbfqTn\xcd[\x10\x8e?\xbcw\x04\x0f\xa3M\xd2\xbf\xbc\xfe\x15\x1f\xe5%\xb3?\xae\xdf\x8b\xc6}"\xbc\xbf\xf1\xb5\xaf&V\xb1\xba?\xc1\x1b)__\xba\xd1?\xb8~`}.w\xe1\xbf\xdfwl\xc8S\r\x91?\xb4\xdd\x9c\t\x13\x93\xb9?\x1eqV\x98\xbeac?\xa7%\x13 \xfc\x06\xae?qN\x9a\xe3\x0e\xd6\x8d\xbf\x04\x1b\xa7K\xd9\xfb\xaa?[>*O\xd9\x81\xb0?}e1\xb3bC\x9d?>\xc1T$\xdb\xfb\xad\xbfD\xcb\xc0y1\x7f\xa3?\xee\xd7\x96\x7f\xf0\xfb\x9a?\xdd+\xf2\xf3\\\x85a?\xea\xac\'v\x9b \xc7\xbf%D\xb6E\x156\x97?\xbf\x9e\n\x91\xf2\xf7\xbc?\xaa\xd0n\x15\x93\xa2j\xbf\x038\xdcxi\x1a\xc9\xbf\t\x17\x83\xd2S\x94\xa8\xbf\x1d\xff\xca\xb5[\x9c\xbc\xbf\xef\x11\xa9bdH\xc8?\xdc\xc2e\x11\n\x92\x8b?\xfbX\xfdN\xa3a\x80?@{\xc6\x00\x81\x9b\xa3\xbf\x05\x07h\xb1g\xba\xc2\xbf\xa6\xf1\x1cod\x1b\xab?\xbep\xaa\xec\xe7\xf8\xb9\xbf\x13\x7f\xc2\x05\xe56\xc1?\x8f\xf0\x01|\x17V\xd8?\x8c\xe5\xc2z\xfe\xd2\xbc?\xda\x1d(\x80cU\xc7\xbf\xb1h\xbd\xc0\x8b\x03\xce\xbf.L\xe0\xc8_\xf0\xda?+\x98\x90\xb7\xa1\xaa\xbe\xbf9\xe3\x06Y\xc8>\xa3\xbf\xc3\xe4"M\xe3\x1b\xbf\xbf\x9f\xa4\x14S\xea\xc9\xb2\xbf\xc5\xf9\xaf\xb5Q\xac\x98?\xa8l\x1c\x8b\xf2\xd9\xb7?@U\x06\x86\x90\x99\xe0?\xe7X\xe7\x05\x001\xc0?/\x8c]\xfage\xba\xbf\xc9HO\xe0\xec\x1d\xb4\xbf\xe8%\x9a-\xb7\xd0\x97\xbf\xfc\xd3l\x9b\xe0Lg?\xe8\xferz-\xc1\x85\xbfW%\xbe\'\xf1\x8c\xc1\xbf5"\xf2\x82\x97x\xa0?\xbe\r\xd9 \x0cp\xaf\xbf\x19\xcc\\\xc5\xf4\x84\xb3?\x06\x10\x9a8N\x9c\xc3\xbf\xd7\xea#\xf9M\xeb\x8e\xbf\xbd\x91\xdf\x0c\xa6\xfd\xaf\xbfJ\x8d\x80b\xd7(\xb1\xbf\x9b\x7f\x10\x85c\x80\xc1\xbf\xba\xe0T \xf3\x8a\xb3?7\x0e\xfd{,&g\xbf\xef\x1cx\x0f#\xfe\xcb\xbf<\xc1\x82+\x10[\x8d\xbf\xb7\x92\x01\x01\x92\xe1p?\xc5\xc1\xe7\x1a\xc0\x85\xca\xbf\xe2\x83Tz\xd4\xf3\xb3\xbff\xd4\x9a\xc3\xfc\xed\xab\xbf3\x9d\xf2\xed\xefM\x8e\xbf\xe6\'\xd9\x1d\xa3\xb7\x9e?\xae\x95\x8b\xaf`{\xa4\xbf<\xc6\x11\xb1\xdd\xc0k?_\x14-\x18[+\xba? ]6\x9e\xcer\xd3\xbfBR\xa6\t\x1e\x81\xc5?\x85\x8c\xe9#z\x88\xd4?\x19\x99\xb1\xda^\xbf\xdb\xbf\xd40\x89\x8cR\xd6\xd2\xbfJ\x1f\xb2}&\x13\xcd\xbf\x8eG\xc3\xb7\xd1\x1b\xba?\xff\xad\x1fWs\x17\xa4?\xefb\x82\xa2\xf8\xba\xbb?\xb8\xde\xeb]L\xd8\xc6?@|\x86\x96\xa8\xbf\xa3?\xeb\xd8@\xdf>\xd3\xd3?\x1e\x7f\xfb\xeb1/\xc1\xbf\xca\xaf\xf7\x18N\xbd\xc3\xbf\xafZj\xa1\x0cm\xc9?\x93\xb8$\x0f\xb4\xa1\xa1?4\xd4\xc7\xcb]\xd3\x82?4F\xb4\xda\xa3\xd3\x97?\x14\xba\xeas3\xbb\xb5?\\\xad\xf6\xd4-Bx? \x02\xed\xbd5\xf7\xb0?!\xaa\xfc\x18I\xeb\xc8?\x84\x02\x02P\xc0\n\xaf\xbfk\xae"\xe8z\x86\xbd\xbf`\xd3\xe8\x97\xef\x13\xae?\xa7\xd5Q\xe2\x83\xd1\xb1?\xe6\xd3\xe3\xa5\xfdz\xac?4`\x9b\'\xb7r\xc3?bUc\xf3&\xcb}\xbf\x0f\xfd\x9afq\xe1\xb3?|f\xea\x96\x8f\x95\xde?\xa96\xe4\xfd\xf8\xf1\xa2\xbf\xd4\x04\xf54E\x8e\xb4\xbf/\x1a\xeb\n\x89\x8dP?\x9b*8E\x92ni?M\x7f\x7f\xb1\t\x17r\xbfL\xf3\x0ff\x82\xe7~?\xa1\x0cDcu\x08\x9d?\xcc\xcd\xf8t*&\x84?3R\xa47\xe6%\x92?\x84\xb5/\x1a\xe5b\xb4\xbfQW[Gg\xa6\xc6? \xe6\xd3\xfem\x0c\xd6\xbf\xea7\n\x860#\xc7\xbfR\x96S\xc0\xfb\x94\xbc\xbfJ\x96\x12%L6w?\xd6Y\x01:e \x98?w\xf1\x94\x0e\xda4\xb6?\nX\x92"\xa2k\x99?\xb5\xcc\x0bic\x9b\xc1?\x98"\xae6\xb1O\xa2?v\xf8\xb4\x83\x95\xa2\xb1?\x04S\xc9\x01@4\x98\xbfr\xb3\xcb\x0c\xb9\x11\xc1\xbf\xdf\x88o67\xb7\xdf\xbf\xc7\x1a\xe6\xb1m\xc2\x92\xbf\xd4\x959\xd4\xc2>\x84?\xcf\x19\x0f27P\x93?\xa9\xcc?\x13\xe1\x06\x88?\t\x865\x00\xdc\xee\xa7\xbfA}G\xf85\xd6\x9f?r\xda\x89x\xfeH\x91\xbfs\x011gEW\xdf?\x1b\xc0\x1f\xd3\xa6\x91\xb8\xbf\xcd\n\xbf?4f\x87?bi\x19O\xd2%\xaa\xbfJ\x85\xd4\xd5\xb1\xa8z\xbf\xc7\x87\xa9\\9\xdd\xa1\xbf\xb7Q\x94\xd4\xd0Fv?\x1d\x9eG\x94\xa9j\x9d?\xf7\x0c\x17\x86*D\xa6?\x8daE\x97\xbd\xb4\xcb\xbf\xd8\xed\x1a\xc4\xfe\xec\xda\xbf39\x81\xad\'\n\xc6?_\xd2?\x02\r\x06\xb0\xbf\xf0\xf0\xbd\xa4\xdcv\xd1?\t\xfb\r\xf4y\x9bg\xbf\r&O,j0\xaa?\xdc\xba\xc6\x87\x19\xe9\xc0?\xe1\x9dU\xc6\xf7\xa9\xde\xbfD\xbcN\xc2}\xbd\xca?)\x1f\xb9X\xb98\xbc?\xf66\xdb\xfd<\xdd\x82?\xab\x9c\x19\xb3\xab\xb9\xcf?1\x9b\xdd\x96\x1d\xb6\xc5\xbf`p\x19M\x04\xbc\xc1\xbf\x7f\x86*q\x04\xa6\xbb\xbf\xb4f\x8d i)\xbb\xbf\x1a\x1a\xa9\x91\x97\x10\xb3\xbf\x88\xbe\xba\x1bJ\xd3\xb1\xbf\xd1\xa4c\x90\x83-b?\x9f\x0e\xe5\x9f\xbf\xcb\xce?\x89\xbe\xd1\x84\xa1\xaa\xcb?kA\xd1\xc9K\x93\xc3\xbf\x05\x18\x08d\x05W\xae?3\x1cHi\xc33\xbe?v\x9e[\xd3\x029\xa8?\xdc\xf9Lw4\x86q\xbfvM\r#\r\xad~\xbf\xc7Z[\x99\x11\x0e\xb0\xbf\x07\x8a\xcd\x81A\x06\xa2\xbf\xdff\xccC}z\x9a?`L\x7f\x1f\x1fH\x9c\xbf\x96\xefVf\x8fo\xb0\xbftf\xad\xd5\xa1B\x88\xbf\xd8\xddM\xeaM\xc3\xc0?\x8b\x11ye\xbeb\x9e?\x9d:\x9b\xfd}\xbc\xba\xbfm\xaa/+\xdd\x07\xc6?y\xc1\xd5z\x01\xbe\xaf\xbf\xe0\xed\x92I\xed.\xb5?GS\x0cT9(\xd7?+B\xfd\xf7\xc5$\xd2\xbf#\xcdl~p\x01\xd1\xbf\xf1\x9d\xa0\xef\x18\xf5\xc1\xbf\xb6.\x06n\xb0\x8e\xb8\xbf\x94`\nG\xb4\xe7\xb4?f7k\xe3\x96]\xcc\xbf\xe0+n\x88[\x8b\xb5?F\x11\xf024\x9d\xde?\x8fo\x8cQg\x0c\xd2?\xde\xef\x07\xf6=\x17\xcc\xbf\xe7\xd5,V\xf2\xfb\x9a\xbf5r\xe2\x1b\x80\xef\xb9?>\x18\xab\xd9\xaa\xb9\xc7\xbf\xa4\xbd\xffS\x98\xe0\xa9\xbf\xed\x91\xe5\xf3!\xdb\xb2\xbf\xf3\xef\xcb\x12\xb4\\\xa5\xbf#\xcd\xec4\xf8\x1a\x91?d\x8a\xbd\xcc\x80\xc8\xb2\xbf\xaf\xb6\x1a\xd3\x94\xa0\xbb\xbf\xb6E\x08\x16\xe1\xc1\xb6?\xba+\xc9?\xaf5\xd4?Z\xc7\x96\xa4\xb6b\xb5\xbfg,\x9d-\xa0Q\xb4\xbf\xf0f\x07\x9doJ\xaa?\xf5y\x92\xd6|\x92\xac\xbf\xcf\xfe\x03\x8f]S\xa5\xbfU]\xf5\xf7\xf4\x17\xb3?\xd2\xea\xba\'\xa3m\xa6?\xa4~X\x7f\x97\xd6\xb4\xbf\x85\x00\xe1\xfep^\xaf\xbf\x13K\xafP\xba\x10\x9e\xbf\x1f\x0c \x0em\x07\xa2?\x98\xf1\xb3\xdd\xe4\x81\xa2\xbfjc\x9aI5\xca\xc0?\xf3\xf5[&=&\xbb?2\x05\xcb\x06`;\xb3\xbfiq\xdc\xc0De\xac?\xa7\xfc\x8b\xd7\x12\x05\xb4\xbfw\x9a\xb3C\x99\xca\x8c\xbf\x921>2\x1b%\xc7?<{Dn_\xed\xb2\xbf\xc5z\x7f\xae\x8b\xae\xaa\xbf\x8a\xadX\xf6\xc73\xc8?\x06\xe3\x07:P\xd3\xa4\xbf\x9a\xdb\xf2/\r\xf3\xd8\xbf\xb2R\xa9=\xdc\xa0\xc2\xbf\xd9\xbe\x13\x90\xd8*\xc8?p\x0eNI\x81\x11\xad?\xcc\xd0\n\x01\xcem\xb0\xbf\x16GP\xf0+\xbf\xa3\xbf\x83[fZ\xe2)z\xbf\xd9\xab\xd4\x84nl\xb4?\x80-1\xad\xea\xbd\xb3\xbf\t\x17%\x84\xd0\x9d\xb0\xbf\x1a\x0b\xe5\xcc\xf3H\xc3?\xc8\xad3A\x84#\x8c?rQ\xdfk\x13\xd2\xd4\xbf9>\x8e\xab9\xb5\xad?\xe9;\x1d\xea6F\xc9?\xb2\xf1\x9f\xad\xbc\xd3\xbb\xbf\x9a\x98\xacw\xf5t\x8f?\x15G\x9e%f\xe8\x96?\xdb\xbc8\xf3\xb0\x1dt\xbf5\x1f\xc9\xea\x02\xc1\xb8?\xff?\x9a\x83\xf9\x83\xca?\x8a\xbeL\xe5\xd7\xb1}?}R2m\x89;\xd9\xbf\x13\x07\xdb\x97\xcd(\xaf\xbfj\xcf\xc6\xbf@\xce\xcb?8U\x8c\x92\x0c\xe3\xa6?\x02o\xeeY{x\x90?\xa1\x04\xde\xf3\xbfk\x9f\xbf\x1e\xd2<\xb9I\x1f\xd0?vT\x98\xbaV\x95\x93?\x1dVZ\xb5((\xd5\xbf\x854:\xc7T\xf9\xa4?\x06\x1c\xa4\x03 \x98\xcf?w\xce\x86\xf9\'r\xd3\xbf8\xf9\xd0\xf1\x9a\xc7\xc9\xbf\xf5\x88`O\xf8T\xe2?\xa4bI\\i"\xbb?\xf3\x02\xbb\x89\xc5\xc5\xbe?\xa0\xe62\xfa\x1fH\xa2\xbf\xe1\x12\xaa\xcf\xe9\xae\xb4\xbf\x921H[\xe60\xaa?\n\xfc\x13\xc9\xcf\xd8\xca\xbf\xf1\xd9r\x9e\x02\x9e\xa5\xbf\xea\xba\xa5\xaa\xbc?\xd4\xbf\xf8~\xaf\xdd\xd7\x8d\xa3?\xcb]\xfe\xe1h#\xcd?B\x18\x0f`L\xeb\xd1\xbf\x7f\xc7\x80\x10Q\xf0\x8c?\xe9\x88\xa1\xcb\xba\xdf\xaf?D\x99\xc0\xa8J7y\xbfr\x86\xfb\x81p\xb8\xa8\xbfI\xcd\xcak>\xa7\x84\xbf\xa5\xb7G\xb0\xe9\xaa\xa3?\x16\xfc\x85\x97\xaa\xa6\x99?\xa7\xb8\x9c^\x1b\xd0\xb3\xbf0\xafL\xfc\xa0m\x93\xbf\xb7\xc3X\xe6\xd8L\xb0\xbf[\x8aQ\x84\xa3\x01\xb3\xbf\xaf\xbc<\xce\x0e\x80\xcc?C\xb1\xc9\xe3\xbb]\xc0?<\xdf\xc1\x1b9\xca\xb3\xbf\x97\xb1\xe1\xc5\x86jy\xbfc\x9f\x0b\x1e\xc3\x02\x97?\xd1\x93\xba\xafG|\xc2\xbf\xd8p\x87\xb8\xbd\xec\xb7\xbf\xf4\x83\xc9\x9e\xc9\xae\xb8?\x1e\x96L\xb8\xce\xfb\xd1?{\xdc\x00\xd0\xc8\x11w\xbfz\x93\x90D\x13>v?I\x06K\x0e\xddX\x89\xbf\x1a&\x05\xe1\x12\xbf\xb9?\nk\x07\x18C*s?\xcd\x06H6\xe0\xd3\x81\xbfZY\xd4\xd2\xa9\xa7\xb0\xbf\xce\xb0+\x900g\xd2\xbf?\n\xdfM)\x1c\xd4\xbf\x0f$\xb3%\xa9j\xc1\xbf\xf3\x94\xe6\xe6\x8b\xf1\xa8\xbf\xcdwl~M\xc4}\xbf\x14\x9c\xc19\x946\xe9>O\xc4IU\x9f\xe8t?\xf6\x14\xa7.a\xbd\xc3?\x91\xe1\xd4w8\x11\xb3?M+\xd7l\xd7\xbe\xc4?\xf5d\xd4j\xd4\t\x95\xbf\x1d\xc4_\xbe\xd9\xdc\xcb\xbfui\x07\x90\x1e\xcb\xd5\xbf\xc9q\xf1\x11}C\xc1\xbf\xe3B\xa8w;N\xbe\xbf\xb2\xb3\xc5`\xa3\xc2\x90?\xd1\x1b>o\x1f#\xab\xbf\x1eM[\xb5\xe6N\x9d?6W\x8cw\xb5=\x9a\xbf\x8c\x1a){\x87\xb3{?=\x1f\x8c6\xc2\x9c\x9c?X\xa2\x9byM\x12\xb6?\xce\xe2mU\xff\t\xa0?\xd6\x8f\xff\x1b$\xd7\xd3?X\xc4\x82\x00Sg\xd5?\xceZ?\xe6kl\xb3\xbf\xe6\xc7i\xc0\xbfb\xb2r\x167\x1c\xc2?i\xf3\xe9R\xa7Q\xd5\xbf\xa3\xa2]m\xc3>\xcd?\xed#\xeezd\xbb\xb5?[\xc2\xd4V\x0fS\xb3\xbf\x80\t\xa1V\xb8)\xbf?\xc6\xdcn\xf6X>\xac\xbf\x7f\xe2M\xa0)s\xb2\xbfW\xaad8\xae:\x9d?U\xce\x13\xa5\x8f\xef\xad?%\x07j\xb5\xa6\xf0\xa3?\x96M\xf9F\xe0a\xc9\xbf\x89T\x18%\xb30\xa9\xbf\xe8\xfaL\x11\xdb\xa6\xd1\xbf\x03\xdd\xbd"\x04\x04\xc0?\xb4\xae\x99\xf0\x974\xb5\xbf\xb0\xc0\x7f\xdak<\xb2?,\xf0\xff\xc0O\xe0\xb3?I\x84\x1d\x86\x91\n\xa3\xbf\x1d\xd1#B\xb8\xd3\x95?*\x9c\x8el\x00\xe3\xa1\xbff\x92\xa98\x9f\xecY\xbf\x85\x06\xd68\xc5L\xb3\xbf\xc1w1!u+\x96\xbf\x81Q&\xba\x9b\xf9\xba?\x944\xf2-y\x9b\xd8?\x16\xec\x8atJ\x14\xd1\xbf\x81\xd4\xd9\x9eG\x0b\xb4?w\x16\xdc\xa0k\xfd\xae?5\xc9?\x06\x19\xa9\xcf\xbfj\x01\xb6\xe1\x14\xdb\xb7?\x82\x8dU8\x892w\xbf\x06\xf0\x83W\xa5p\xa6?U\x0b,!\xfcv\xe0?\x9e\xd4\xbb\x8e@<\xc1\xbfnY\xe7E\xd4\xbe\xbb?B\xe3\x98\xc1eg\xb0\xbf\xd3\xc5o\xff\xdc\xfd\xc0\xbf\xcb\xb70\x00\xd5e\x86\xbf0\xf3\xc2\x07\xd4 \xb4\xbf\x0b\n\xacc\xdf\xb9\x81?\x90u\t &\x86\xb6\xbfP\x83\x01(\xa3\xd4\xa3\xbf\xae\x8d\x0b &\xda\x9c\xbf\xc1\x1e\xb1\xb3yg\xa9\xbf\xbd\xb0>=d\x90\xc7?\xc4$e&\x94\x88\xc2\xbf\xc7\xac]\xb6\xe9\x18\xd3\xbf\xe5z\x81\xbf]\xfag?\xff0\x8d\n\x82\xbc\xc3?R\x1f\x93[\xc4\xca\xaf?\x81\xa8\xac\xa5\xad\x18\x8c\xbfm\x8bX\xfd\x87K\xd5?aH,\xbbl\x03\xb5?\\S\x90u\xe3\x0c\x8c?\xa3\x18o/\xe0\xec\xaf?\xbe\x9d,Y\xcfg\xd5\xbfS9\xd3NU#y?~\xed$\xde\xd1\xc4\xc3\xbf~A\xa0\xa8\x9e\x1ao\xbf\x96\xb8Gz\xc8\xfe\xbe?\x0c\xf243\xeb\xa3\xc2?\xd8\xf2\x95\x99\x04\x8a\xd7?s\xd4\x95\x84~P\xc6\xbf\x17$:\xd9\xb2\xa0\xbc?go\xa7\x88P\xaf\xb9?\x01\x8b\xa0\xa29\x8d\x9b?v\xe4\xdb\xd29b\x7f\xbf5\xeba\x93.\x01\xbe\xbf\xc7\xb1wS^0\xa0\xbf8\xe0\xd1d\xf6D\x03\xbfB\xbe\x1eS\x88\\\xa4?ZK\xf5O\xd9\xbc\xc3?\xd9\x0f\xce\xb2H\x93\xb7\xbf\xda\xcb1\x0e\x94\xbc^\xbf\xf0a(b\xa1)\xbf\xbf\\\x0f \xfe\xf1\x07\xa9\xbf\xf5\xde\x08\xdf\xe7$\xd2\xbf\x7f79{x\x1a\xb9\xbf\xa0\xd4(/4\x94\xd7?g\xde\xfa\xb46B\xca\xbfR>\xb1E\xba,\xc3\xbfNZ\xd7\x9dk\x12s\xbf\xf9k\xf0\x82\x0f\xea\xc6\xbf\xb1K\xa4\xbec\xe2\xbd?\xe4\xd3\r\x91\xc0\r\xbe\xbf\x8d\xf7\xc1j|\x9b\x94\xbf\xe0\xf7P\xea\xe5\x81\xd5?X\xef\x99\xf9\xb4\xa8\x9e\xbf\xb7\xdbso\xa4X\xc7\xbf\xfb\xea7\xae\xcd\xdb\xc2\xbf \xd2\xc2\x8a\x8b\x94\xbc?x\xa8[\xad\x99\x03\xbf?\x1d:\x8b\xeb\xa3\xbb\xc2\xbf\x131\xd1\xfat\x90\xbb\xbffl\xa2\xc0\xc0\xf7\xc8?\xc1\xd1\x0bGV\xc4t?X\x1agT\x8f\xf4\xc7\xbf\x1bj\xff\x1a\x00\xf0\xb1?\x89\x9d\x890\xa2m\x9f?\x8c\xa6\xefu\')\xba?\x9a\x0e\xb5\x15\x18\xec\xb3?Y%\xf2\xd8Ey\xa6\xbf+B\xdb\xe4G\xbc\xc2\xbf\x88X\xd4\x1c\xc3d\xac\xbf`\xac9\xb8\x96\xd2\xcb?#\x1f\xcc\xe4Cc\x83\xbf\xa1\x8en\x85\xa2&\x8d?0)8(\x83q\xa9?\xdf9\x1a\xaf41\xc1?\xcf\x8cT\xab\x10\x8e\xb4?\xf4\x94\x95WT\xf4\xcd\xbf\xa5k\x9d\xb8;\xbd\x9e\xbf\x8bZ\xa8\x0b\xc2|\xcb?Q\xa1Lv!F\xb5?\x07\xd9\xe3\x88\xc8n\xdf\xbf/x-\x0b\xb8\xce\xbc\xbf\xe8)\xc6\xa1\xe3j\xcc?\xd4\x11\x03Zl\xc9\xa0\xbf\xe4<\x0e\x93\xa0\xe6\xd1?\xdc\xde(\x1e\xe1\x9f\xa1\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I40 +tp132 +g22 +I00 +S'\xc5\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0e\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xb3I\xf2\xe1#-\xf8\xbf\xbb\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc1\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc1\xcb9\x00\xb7\xc94@Le\xc5\xb8\x1d\xcfK@T\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe1*O$\xfd\x8dB@\xd13\x8au\x1fW\xb8\xbf=n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x90\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0~\x10\xb0s\xf5C\xf2\xbf*~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@~\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb6\xb3\x81\xb2\x03\xda @\xd6b\xe4\t\xe6\xda\xee\xbf\xec\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I20 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_mouth_25 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_mouth_25 new file mode 100644 index 0000000000000000000000000000000000000000..457e4b89c2a2863b192267a4de7c66d070a7b2e6 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_mouth_25 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I40 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xc0\x87\xe8\x94_\xf4\x9c\xbf\xec\xf1\x16\x8a^\xc6\xd8\xbfvx\xaf\xa7\xa6\x8c\xb7\xbf\xffL\xc0\x1a\xd5\xec\xce\xbf\x87\x0f\x87\x84 \xc1\xbf\xbf\x04\x02\xcb|\x10\x89\xb9\xbf\x16jL\xd9@\\\xb9\xbfE\x8c\x96O0\xe1{\xbf\xd3\xa78\x04^\x13\xc0\xbf\xe9\xfa\x82\x17\xc06\xb9?\xb7n\xb9:w&\xb8\xbf\xf2m8\\x8\xcf?\xe2\x91 \x91\xa45\xa5\xbf\x8d\x8cD\xb5\xd2\xaa\xd8?i\x8b\xe6H\xe4\xf8\xb7?\x01\xc1\x14\x13\xcf\x08\xd0?\xf6\x1a\x8c\xba\xed\xb3\xc3?\x08\xce\xa0\x19\x8f\xbe\xbc?\xee\x014\xcf\x96e\xc5?\xec@\xc11\x9a\x11<\xbf\xca\xf0\x10\x0c3>\xc4?\x93\x17R\x7f\x16\x87\xba\xbf\x85\xf7\x97\xc2\xfcM\xba?\xcbJ\xbd\xd0.6\xcf\xbf\xde\xd6\xebxx\xb7\x97\xbfgP\xe1\xec6\xe7\xd4\xbf\xa0\xff$\x08\x10\xbe\xa2\xbf%\x18\x0c2$\x97\xb9\xbf\xc0s&\x10X,\x9c\xbf\xc1\\\x96\x1c8\x10u\xbf\x13\xfe\xfdW\xd0k\xa4\xbf\xb5\x94;\'\xc9\xea\xb9?L\xed+t\xcc\t\xa1\xbf\xf8b\xb7\xa8"\xcc\xd4?\x84}c\x0cg4\x98?\xfd\r\xde)\xb2\x82\xba?\x0f7\xea\x19\xd5n\xa3?\xae\x86Tel\xcaq\xbf"%\xd6\xeem\x9c\x9c?\x86\xc7\xa16U\xe7\xb9\xbf\xec\xf1\x16\x8a^\xc6\xd8?\xd8\x87\xe8\x94_\xf4\x9c\xbf\xfdL\xc0\x1a\xd5\xec\xce?sx\xaf\xa7\xa6\x8c\xb7\xbf\x03\x02\xcb|\x10\x89\xb9?\x85\x0f\x87\x84 \xc1\xbf\xbfT\x8c\x96O0\xe1{?\x15jL\xd9@\\\xb9\xbf\xe8\xfa\x82\x17\xc06\xb9\xbf\xd3\xa78\x04^\x13\xc0\xbf\xf1m8\\x8\xcf\xbf\xb9n\xb9:w&\xb8\xbf\x8b\x8cD\xb5\xd2\xaa\xd8\xbf\xea\x91 \x91\xa45\xa5\xbf\x01\xc1\x14\x13\xcf\x08\xd0\xbfe\x8b\xe6H\xe4\xf8\xb7?\x08\xce\xa0\x19\x8f\xbe\xbc\xbf\xf5\x1a\x8c\xba\xed\xb3\xc3?\xaf?\xc11\x9a\x11\xc4?\xc8J\xbd\xd0.6\xcf?\x86\xf7\x97\xc2\xfcM\xba?fP\xe1\xec6\xe7\xd4?\xd0\xd6\xebxx\xb7\x97\xbf%\x18\x0c2$\x97\xb9?\x9b\xff$\x08\x10\xbe\xa2\xbf\xc3\\\x96\x1c8\x10u?\xbfs&\x10X,\x9c\xbf\xb4\x94;\'\xc9\xea\xb9\xbf\x13\xfe\xfdW\xd0k\xa4\xbf\xf6b\xb7\xa8"\xcc\xd4\xbfQ\xed+t\xcc\t\xa1\xbf\xfb\r\xde)\xb2\x82\xba\xbf\x81}c\x0cg4\x98?\xab\x86Tel\xcaq?\x0e7\xea\x19\xd5n\xa3?\x84\xc7\xa16U\xe7\xb9?$%\xd6\xeem\x9c\x9c?\xd0\xed\xbf\xc5%\x9f\xcc\xbfb\xb2\xe8\xe8\x89\x91\xb1<\xd4\xed\xbf\xc5%\x9f\xcc\xbf&~\x85\xf9\x98\xde\xa1<\xd4\xed\xbf\xc5%\x9f\xcc\xbf@\xf6\xb0\xa3D\x923\xbc\xd7\xed\xbf\xc5%\x9f\xcc\xbf2b\xaa\xda\xad\x06\x90\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbfj2+\xb0\xcd\x18\xa5\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf3\\0Z\x02\x85\xb1\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf\xd81\xbe|\x03\xf6\xb4\xbc\xe3\xed\xbf\xc5%\x9f\xcc\xbfZ\x11\x1f2\x82\x04\xa3\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf\xc4\x82\xeeRy\x1db<\xde\xed\xbf\xc5%\x9f\xcc\xbfy\xa8\xfaX\xaf\xc4\x9d<\xda\xed\xbf\xc5%\x9f\xcc\xbf\x10-\xa9\xa7@\x8f\xa8<\xd7\xed\xbf\xc5%\x9f\xcc\xbf\x9a\xff\xaf6r\xb0\xb1<\xd1\xed\xbf\xc5%\x9f\xcc\xbfr\xa1\xedR\xdd\xe2\xb0<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\xf4xi\xd4\x05\xcb\x8c<\xd9\xed\xbf\xc5%\x9f\xcc\xbf#\xf3x\xaem\x80m\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf\xc6)\x8d\xcb\x95\x85\x9d\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf\x0fE\x86\x85\x92\xdd\xb2\xbc\xdd\xed\xbf\xc5%\x9f\xcc\xbf\xe9N\x914\x16\x1e\x92\xbc\xda\xed\xbf\xc5%\x9f\xcc\xbf\xbe\xfb\xd2G\xf6\xc4~<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\xde\xc0a\xfa \xe1\x9b<\x89\x0b0l\xc8d\xb4\xbc\xcc\xed\xbf\xc5%\x9f\xcc\xbf\xc2C\xcdB\xea\xe7\xa6\xbc\xd5\xed\xbf\xc5%\x9f\xcc\xbfv\x92\xc8j\xf4\xbbf\xbc\xd3\xed\xbf\xc5%\x9f\xcc\xbf\xa4*\x9a\x05\xe0w\x8f<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\xa0\x11\xec)\xfc~\xa7<\xd6\xed\xbf\xc5%\x9f\xcc\xbfI5\xf2\xe3\xdc\x15\xb3<\xdb\xed\xbf\xc5%\x9f\xcc\xbf\xeb\x17\x99P\t\xa4\xb9<\xdf\xed\xbf\xc5%\x9f\xcc\xbf\xbb\xdf\xa0\xf2C8\xa6<\xe0\xed\xbf\xc5%\x9f\xcc\xbf@\x03\xff\xb0\xa6F3<\xe0\xed\xbf\xc5%\x9f\xcc\xbf\x93e\xce\x97\xc3(\x9e\xbc\xdf\xed\xbf\xc5%\x9f\xcc\xbf\xbf\xfc\xec\xad\x07`\xab\xbc\xdb\xed\xbf\xc5%\x9f\xcc\xbf\xe9\xce\x8c\x8cCs\xb3\xbc\xd7\xed\xbf\xc5%\x9f\xcc\xbf\xe4F9\xf2\x8c^\xb3\xbc\xd1\xed\xbf\xc5%\x9f\xcc\xbf\x7f\x9cU\r\xc2y\x92\xbc\xd5\xed\xbf\xc5%\x9f\xcc\xbf\xdeI8a\x03\x18n<\xd8\xed\xbf\xc5%\x9f\xcc\xbf\xb6\x06p7\xcc\xaf\xa0<\xd9\xed\xbf\xc5%\x9f\xcc\xbfm\x12\xb9t\xd7\xb5\xb5<\xe0\xed\xbf\xc5%\x9f\xcc\xbf\xf5i\xde\xfajd\x96<\xdc\xed\xbf\xc5%\x9f\xcc\xbf\xe8/3\x1cW\xd4\x7f\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbf\xd0\xa2\x14\xba\xe4\x1f\x9e\xbc\xd9\xed\xbf\xc5%\x9f\xcc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I40 +tp31 +g22 +I00 +S'\xcb\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc05\xb7\x92.Q\x89;\xc0\'?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xb5I\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc2\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc3\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@U\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@,4\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x90\xb3}6\x7f\xcf6@\xf8\xf3"H\xd4\x10K\xc05t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1b\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x80\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x17\xf7\xe6\xf5xy6@\x80\xf4A\x95\xd2\x8c\x1d\xc0\x8c=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xddb\xe4\t\xe6\xda\xee\xbf\xec\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I20 +I2 +tp43 +g22 +I00 +S'\xcb\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc05\xb7\x92.Q\x89;\xc0\'?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xb5I\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc2\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc3\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@U\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@,4\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x90\xb3}6\x7f\xcf6@\xf8\xf3"H\xd4\x10K\xc05t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1b\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x80\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x17\xf7\xe6\xf5xy6@\x80\xf4A\x95\xd2\x8c\x1d\xc0\x8c=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xddb\xe4\t\xe6\xda\xee\xbf\xec\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I25 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I20 +I2 +tp68 +g22 +I00 +S'\xcd\xfd\x9a|\xc5\x1b\x19\xc07\xb2W\xfb\xe5{U\xc0\x9am<\x1a\xdak4\xc0h\xa3\x10\xdb8\xd1J\xc08\xb7\x92.Q\x89;\xc0(?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xb6I\xf2\xe1#-\xf8\xbf\xc0\xe8\xb8\x87m\xe1;\xc0\xf2\xe4\xd1\x02Z\xdd5@l\x8a\x103<\xf14\xc0\x0bd#\x0c\xd0\x12K@\xc4\xe3hPid"\xc0\x1c\x0f^\xdc\x02dU@\xc6\xcb9\x00\xb7\xc94@Pe\xc5\xb8\x1d\xcfK@W\xc7\x8d\xb4\xee\x15A@\xf6\xcd5\xf7\x1a\xed8@\xe4*O$\xfd\x8dB@G4\x8au\x1fW\xb8\xbf@n\xa4\x1e\xd6\x8dA@\xb5re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xfa\xf3"H\xd4\x10K\xc07t_\xd6\xfb\x90\x14\xc0\xb29H\xa1f R\xc0\x1d\xd8m\xb1\xb9@ \xc0\x0b\xccRU\xf006\xc0\xec/\xdb\xf9On\x18\xc0\x81\x10\xb0s\xf5C\xf2\xbf-~\x90Kd\xb5!\xc0\x18\xf7\xe6\xf5xy6@\x85\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x83z\xe1\x18R\xfd\x14@E\x1e\xf7A4\xfd6@\xba\xb3\x81\xb2\x03\xda @\xe0b\xe4\t\xe6\xda\xee\xbf\xef\xd0/`\x82\xcf\x18@\x07_\xb7ozv6\xc0' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x02\x00\x00\x00\x00\x00\xf0?\xbc\xe4\xd5\x8d\xfc\x1ab\xbc\x00\x00\x00\x00\x00\x00\xf892<\xc8?3\x1af\xbc\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xe09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I20 +I2 +tp89 +g22 +I00 +S'\xcb\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc05\xb7\x92.Q\x89;\xc0\'?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xb5I\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc2\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc3\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@U\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@,4\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x90\xb3}6\x7f\xcf6@\xf8\xf3"H\xd4\x10K\xc05t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1b\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x80\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x17\xf7\xe6\xf5xy6@\x80\xf4A\x95\xd2\x8c\x1d\xc0\x8c=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xddb\xe4\t\xe6\xda\xee\xbf\xec\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I20 +I2 +tp106 +g22 +I00 +S'\xbb\xa9\xb5\xb5\x9b\xa9#@\x8c#\xc41\xec\xe7T\xc0\xd5\xfc\x98\x14\xbc06\xc0\x99\x80t\xd0\xab\xf3J\xc0\xe7\x0cG\x8bv\xf9A\xc0\xa5!W\xf1w\x857\xc0\xac\xa7\xfbQD[@\xc0\x8d\xcc\xca\xe2\x15\x89\x08\xc0\x94\x85\x1c\xab\x90\rB\xc0s\xe9\x11x\x11}3@\xf9\xbe\x00\x97w\xb15\xc0\xc7\x98\x89D&\x94K@e\xe3\xe2\x7fr"\x14@$\xd66\x01\xd6,W@\xae\xfe\x81\x19q\xad4@A\xf2\x9b\xd11\xa9K@r\xb0\x1b\x9bgs>@\xffq\xccF\xeaP5@+\x9c\tn\x11T@@uk8!\xe2\xec\xd0\xbf\xefet\xef\xca\x82@@mtN\xde\xde\xde7\xc0\xd9<\xed\x81\x8a\xe07@q\xa2\xa0\x86\x18\x0eK\xc0\xa0D^\x92\'"\x1f@\x0b\x98\xd1\xd4k9R\xc0\xedA\xf1\x01\xfb\xfe\x1a\xc0\xfc\n\x17w\x97\xef6\xc0\x9c\xebM\xc8R\x10"\xc0\xf4\x00\x9a\xca\x887\xe4\xbf\xff\xf0\x807+P"\xc0\xb1\xc4UA\xf0\xa23@KU\x89\x13\xbbA\x19@\xf4{r\xc1\x1e\xffS@\x99)\xc8zv(\xd7\xbf\xd7i\x87\\\x84\xb93@7\x85\xb0n\x8b,\x0f@\xb4\x84[\x92$\x04\xf2\xbf\xc2{&\xbft\x16\xda?\xf5O\x15\xb0Ga7\xc0' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I25 +tp113 +g22 +I00 +S'\xe5\xf2\xf3\xdc\xdep\x8e@\x1aU\xfet\\,\x8e@\x175\r\xf7\x7f\xe4~@\xd0/"bT\xafa@\xaf\x17\xc4\x10\x00\xf2Y@T\xc0\x1f\xd0\xb4\x94C@|\xf8}f<)@@+\xd8M\xb7Z3;@\x15N13\xe2S6@\xc47\x86}\x83F3@\x85\x8d;\x08\xdaO.@\x86\x82\x99yc#+@4\xc4/\xb4\xac\x1f)@xI\x8eT\xfa\xd4 @\xdb\xbf\xf4\xda\xdc\x10\x1f@A/\xbe\xe3<\xec\x18@\x95\xc9\\\xfb\x95N\x17@\xc0\x12\t2\x8f\xf3\x13@\xefn\xba\x97\x8ei\x11@\xbaf\x80\x91J?\x10@k\x91/\x95A\x1f\r@-\xbd\xb1A\xa6^\t@|\xb4L2Q\x83\x03@Q\xa5P\x13\x83\x90\x01@\xf8A\'\xde\xf7\xe5\x00@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I12 +tp120 +g22 +I00 +S'\xae\x18\xda\x8bb\x8f\xff?\x186\xc7\xda\x01\xb0\xfe?\x7f\x91\x15\x0bGt\xfd?\xd0\xd6\xc1\xfe\xd0{\xf5?P\xf5\xbcE~y\xf4?\xff\x02%\xf9y<\xf2?\x08\xe1Y\xe1\x8b!\xf0?\t\xd6\xe52`\xad\xec?F\xe2\xb8\x19Ta\xe9?\nFA\xa9E\xed\xdf?\xe7C\xc55\xd2W\xd7?L4\xc1\xf2&\xeb\xc8?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I25 +I40 +tp126 +g22 +I00 +S'\x84h\x03\x86g\xecn\xbf\xec\xf6\xf6\xae\xf8\x92\xd7?\xc2E\xec\xe1\xd2T\xc4\xbf\xb2\xa3n\x01\xfa\x1a\xab?s\xaemK\x9eT\xcb\xbfMb\xa0\xe8\x0bH\xb3\xbf\xbb\xd2\xdd>KC\xcd\xbf\xc7A\xf0\x89k\xa8\xbd\xbf\xb7\x0e\x10u90\xcb\xbf\xf3R\xe7c\xcb3\xc2\xbf\xdb5\x84C\xdb\x89\xc3\xbf\x0e\xe3t\xe0`&\xa7\xbf\x83\xb0];\x82\x81\x88\xbf\x02\xd3\xc0\xaeN\x8c\xa8?\xc8\x08(!\x00[\xc6?\x0bSY\xedP\x02\x90?\x0e)\xcdx\xad\xde\xce?\xaa\xa2\xf9\xd3m\xc6\xae\xbf\x99\x08P\x01\xf20\xce?\x8c\xce\x178\x8bo\xa6\xbf\xbe?\xa9\xd6\x1a\x01\xcd?3\x97o\xba\xbat\x84\xbfD\x15S\xe4`!\xc3?\xa6\x14\x84\x8f\xb8\x80\xba?\x11.\xed\xf1\x97\xfd\x94\xbf]pr\xc5JE\xd5?\x13eT\xab\xd8P\xc9\xbf\x9a\x827\x07\xab#\xa8\xbfz\xc6|\x92\xf0\xcd\xca\xbf\xdd\x11\x96m\x90=\xb8\xbf\'WN~\x02\x15\xc8\xbfQ\x06-\x96\xe1\x17\xbf\xbf\xe8\x07pmA\xb8\x99\xbfG\x85\x80\x98Y\x95\xa4?q\xa5\x90{\x8eg\xcb?E\xbe\xcdQk9\xb8\xbf\\\xfadf}\x19\xc9?\x84\x12\xf0?T\xe6\xb2\xbfh\xeem\x96\xfa\xa6\xc7?\x87\xe6\x95?\xa4\xc9\xa2\xbf\xbf\xcd\xd6\xe3]\x02\xae?\xdc \xe1\x90:\x18\xd2?\x15\xb6\x1bL#5\xb6?\xa5\xe9r\xaf\x13U\x8b\xbfW\xbd\xea\xe0\x19"\xb8?7\xf4\x8a/4\xa9\xca\xbf\x18]\xb2J\x86]\xba?z7\xba\xa7^\xa2\xca\xbf\xf1:E\xe6\xf5>\xb7?<=\x85\xb1h\xeb\xc3\xbf^9E[\x87\x06\xb8?\xb8)%\x03\xc7\x8a\xb0?\xe9\xcd\xd7~!\x95\xa2?N\xe3+\x8b\x0e\xcc\xdb?\xf6x\x1eC\xfe2\xad\xbf\\H\xb4\xf8\xa7R\xc3?9\x87[\xe5\xef\x19\xbe\xbf\x95\xa5&\x929\xb3\xa6\xbfYEL\xc4*z\xc1\xbf\xd5\'\xc0S\xea\xff\xb8\xbf\xa1\xcb+\x93m:\xc3\xbfy\xefeR$i\xb7\xbf\x0f\xe7\nv\xd1P\xbc\xbf,\x89\xa1\xe1r\xea\xb3?\xe9\x9f6\xa9\xb0\xff\xac?\xcf\x14\xaa$\xfc\x8e\xd0?e\xd3\x16\xa2\xdb\xc8\xbb?y\x91\xae\x99.\xee\xc5\xbf$\xdbw\x84\x14s\xbe?\xad\xf8D\x12\x97\xf9\xc5\xbf\xf2\x94\xe44\xf8\xda\xbd?\xf5\x7fG\x98\xcc\xaf\xbc\xbfh?}\x9c|A\xa0?\xc2\xbfb\xaf\x06n\xd3\x01\xc3\xbf\xbf!\x15\x03_\xe1\xc4\xbf\xa2\xa1p\x8b90\xc2\xbf\x0eW\xc7\x91G\xcb\xdb?\xaf\xbd\x82\x1frW\xaa\xbf\xbc}\xb6\x1cn\x11\xa0\xbf]\xc65\xa91\x1c\xa1\xbfc\x89\xbfCg\xad\xd1\xbf\xebF\xeb\x8b\xd5\x88U?\x83\xaf\xdf\xd5ib\xd0\xbf41-i\x9f\xc1\x96?\xea\xd5D\xef25\xd1\xbf\x1ap\xff\x85\x1a\xae\x87?\xf6M\xab\xd0\xd0\x15\x87\xbf\x91PW\xe0oB\x92?\xe1^\xcb\x8c\xac\xa3\xdb?\xceL\xcf\x1d\x9aa\xa0\xbf:0d\xd8\xd0\x97\xbd?\xc3\xc1\xbd\x8f\xe8\xfd\x84\xbf\xe7y\xde\x17\xbf\xe3\xa8\xbf\x9f\x96\xfeqH\xc4\x8e?b\x0f;\xa8&\xcc\xb1\xbf\xfcm\xdah`\xe5\x9e?\xd1\x9b\x1c\xd3v\xb3\xa7\xbf\x89\xcd\x1fOA\xea\x8d?H\xf5\x8bU\x17]\xbb?\xc0\x02\xe9\xe0\xf1\xb6s?\x8e\xdcdAu\xff\xd3?\xf1\'`\xf5\xbeN\x9c?\xdb\xca^\xedn\xa4v\xbf\xba\xf2A.\xa4\x9a\x7f?\x01\x80:j\x88\xb9\xa0\xbf\xbf~+U\xf5x\x98?\x13F5F\'\xa9`?|\xeb\xa3\xb5\x01~\x86?\x8e\xc0\x1d\xee\xf5\x95\xd4?\xd5^\xc5,Q\x93\xb9\xbfR\xe8\xa8iD\xc5\xcb\xbf\xdc\x14\xeb\x9e\xfe\xbfl?Z\x8e&\xb1&W\xcf\xbf\x9c\x93e\x01F\r\x96?\xda\xc1\x95.E\xba\xcb\xbf[?\xd85\n\x0c\x8d?\xd9\t+\xa1e\xdf\xc9\xbf{\x8c\xedD\x15\xbf\x8a\xbf\xb5\xf9a\xf6\x057\xab\xbf\x9f)\xe5\xe7\xdc\xae\xac?\'\xd3\xcax\\\\\xb2\xbfl\xed!\xf0Y$\xb6?\x9f\xbf\xbc\x9a[w\x91\xbf\xc5\x16\xf4\x16\xb1\xe3D?c\xf3\x82\xaf4\xbe\xb1\xbf\xe9\xcc\xa2\xa9\'\xc0\xba\xbf\xba)\xaf\xb29\x1c\xaa\xbf\x16\xe7q\x90XJ\xb1\xbf\xb6\x05B\x88\xb4\x95\xc8\xbf\xf1\xd1W\xf7f\xcf\x8a?Z8\x17}\xd1\xd2\xbf?\xf2\x95\xfb\xb4\x88\x87\xa7\xbfR\xc7\xfff\x01\xab\xd1?\xbf\xdc\x15\x08\x80\x0c\xb1\xbfP\x7f\xea\x96\x87\xd6\xd2?\xfc\xec\x19f\xebi\x98?\xf2\xbfS\x97\xd1O\xd2?\xd91z\xca\x91\xec\xb1?\x87\xb2\x10F\xe6\x19\xc1?\xdaS\xec\xd4F\xae\xa9?\xca=\xda\xa1\xeb\t\xc0\xbfS\xc5\xc6X^v\xae?K\x86&\xa9\x1e\xd5\xcf?\xee\xac\x93\xfc\xce\x05\xb7?\x95q\x135@\xbc\xd0?\x98!g\xa6G\\\x90?\xa1\xa3\xa6|\xd60\xd0?\xb0[\xdc\xda\x87\xe0\xb5\xbfT\xf8\xfc3d\xe4\xbc\xbfO\x8f\xc8\xdc\xa6\xea\xb0\xbf @\xfb\x91\x16\x01\xd5\xbf\xc0\xe0[q\xffZ\xbb\xbf\x86\x17\xb0\x9b\xad\xa3\xd4\xbf\x7fm\xa6\xa7\x8cg`?\xda\xe7\xa9\x04\xc6D\xd5\xbf\xe1\x91\xd4B\xdc\x9f\xb6?\xd5\xd4W\xa86\x19\xa0\xbf\x01\x8b+N\x96\x88\xce?\xd6\xce\x94VN\xbd\xa8\xbf\x1e\x9aWP\no\xb8\xbfX\xe8\x07\xe3\xbd\x15z?\xee\x82\x1b\xadt\xbd\xd0\xbfy\x8c\x11\x06*_\xab?\x85\x15\x9a\x0c6\\\x80\xbf\x8er5\x1d/\x88[?I\xcd\x1e\xa4\xe5\xb4\xd2?^\x08=\x1d\xbc\xc9\x9f\xbf<\x1aW\x06\xc4V\xc0?\x11\xfbh\xcd\x17\xa8\xa0\xbf\xe7\x1c\xff\xef\xa6[\xd2\xbf-\x9cJ\x05"\x04\xb0\xbf\x7fL\xdf\x1e\xeba\xc0?\xcd\\d\xa8O\x07\xac?\x8d\xcc\x92\xdagF\xd2?\x98#d\x91\x9a;\xbe?\xf8ST:\xac\xd4\x92\xbf\x9f\x81\xd7\x8f\x0b\xff\xb0?L\x97\xe1+|h\xd1\xbf\xc9\x90\xda"~\xdf\xaa\xbf<^\xdd\x8de@\xbe\xbf\xe6\x9d\xe2Os\x94\x88\xbf\xed\x1d\xcb.\xce|\xcd?\x10\x1d)\xab\xce\xff\xab?\x7f\xd6\xbd\xdac\r\xd1\xbf>B\xac\xc8\xfbE\xb8?\xd9\x90YG\x81\xce\x86\xbf\xc9\x16\xd8\xdb?\xd1\xab?DQ\x7f\xd0\xf2R\xd2?\xb5\x9eoY\xd1\xf5\x90\xbf\xc9\xa2]T\xb1h\xd0\xbf\x928B7\xf4\x85\xb8\xbfM\xf4n\xedUQ\xd2?\xb4\xeeR\xbf\x96\xb1\x9f\xbfk$\x82\xf8\xb4\xc3\x8b\xbf\xa7\xa4\xa7s\xe7C\xb7\xbf!\x85\x08\xf8X\x16\xd1\xbfN3\x9c\x05\xcb\x88\xc3\xbf\x86\x94\xe9\x81\xf2\xba\xb0\xbf:KA\x070\x8e\xb1\xbf*\x16\xac\xe9C\xf5\xcc\xbf\x85\x15\x94A\x99L\x8d?IQo\xbft\xe9\xd0\xbf\xb8\xbb\x82\xf3\xfa\x0b\x91?o\xa1\x98|\xf8\xbe\xcb\xbf\\\xa9\xcb\x8dr\x9b\xa4?\xa3\x91\xf6\x1fX\x86\xd0\xbf\xe7\xcfe\n\xee\xd3\xb6?\x86\xfbH\xd5\xb9\x15\xc7\xbf;\xa3K;j\xf9\xc2?\x08\xda\x16_\xd1\xd2\xb3\xbf8P\x96\xd4\xa1\xb2\xc5?\x89\xad\x03\r^)\xc9?\xf8\xc6\x1d\x16\xc4\xd3\xaa?\xd9\xfc\x8f#\x114\xd6?\x8d\xe1\xb7\x04\x95\xa0z?Y\xde\x96\x8c\x14\xa3\xd8?\xa8\x8d\xe3\xa0\x01y\xa7\xbf(\xf5\xe8\x84|\xc5\xd5?h\xdb\x9f-\xf2\n\xca\xbf\x0b\xea\xb9\xff\xc9\xae\xc6?\xf5\xa1\x931\xd0v\xc1\xbfxk\xda\x03\xf8M\xb5\xbf*\xe5I91x\x95\xbf\xd5E\xe9\xaa\xc0\xd5\xbb\xbfT3A\xb1\xe2f\x8d\xbf\xc6wP\x0e\xd6p\xb5\xbf\x01\x05zQ\xb5\xd3\x80\xbf\xdf\x08\xec\xa0\xd71\xbc\xbf=y\r \x85\x97\xbc?M2\xfcy\x87v\xb6\xbfvU}\xab\xca-\xbb?\x98\xfe\'\xa8\xaf\xdb\xb5?\xa9\x01`\xe4dap\xbff\xfdmy\xa9\xbb\xc0?\x95\x99\xc5>K\xb4\xb9\xbf\xd3Z\xf1$\xf6\xa7\xb9?\xf2i\x85K\xf1tp?Tm\xa5X\x0c\x05\xbc?\xc8\xcdF*\xb1\x00\xc4\xbf\xc5\xce\xafN\x14\x7f\xcc\xbf\xa1~-D:\xc1\xc8\xbf\x04.\xec\xde\x1f\xf0\xb4?\n\xb1P\xcb\x80\xac\xc9\xbf!\xfb\xf3\x97s\x84\x85?V\xf0\xa7\x1d\x9e"\xc8\xbf\xe1\xaa\x86\xfa\xa6\xaa\xb8\xbf/\xcc\xdd\xe4e\x12\xc7\xbf\xa4\x0e\xcc\xaa\x1b]\xc7?\xcf?8|\xd3\xaew?f\xc3]\x86\xa4\xc8\xb7\xbfn\xa8\x85\xa0\x0c\xb6\xd1\xbf\x95ZT\x14@\xce\xc1?\xbb\xf6\x84\xf0\xec=\xa8\xbf\\?\xec\x1e\xb4\xa6\xb6\xbf\xf3\xec\xb3\xd9\xea\xa3\xa3\xbf\xd8s\xfc\x80\xee\x95\x89?\xb4\xd7\x83~\xd0<\xb0\xbf\xec\x88\xae\xe2bI\xb1?\x01\xbe\xa4\x0b]\x97\xd3\xbf@y\xa9\xba\xccM\xc4\xbf\x9e\xd5\xd7\xa4\x88\x03\xa4?J\xa3\x97\xef\xdd\n\xa0?\x0e\x88\x959\xfa\xf3\xd5?Qh7\xbb\xf3\x16\xb7?\x90W9\x03\x93i\xd3?[\xf6\xc2\xf3\x13\x8e\x9d?jp\xe9]\xb9P\xd5?\xa5\x80Bk\xbaS\xb5\xbfg\x9fg#l\xae\xa1?"\x1b\r\xe3\xc5\xa1\xa0\xbf\x11x\x8b\xd1\xc7V\xca?\x92\x02\x0b:Q*\xb8\xbf\x14\xcd\x98\xb3\x1e\xce\xc9?\xc7\x93\x08M\xa1\x92\x95?\xd0\xfb\x8c\xb3\x12&\xc7?w-\x82j\x8d%\xb8?\x82\xa9\x93\x1e\xfb\xd7\xbc\xbf\x1f\xdbX\xb4\xac\x0b\xb2\xbfX\xe1\x9c\xbe\xae|\xc5\xbf\xc7\x97\x17\xc8\x95_\xd8?f\x13\xf2\x12x\xa9\xbe\xbf\xc3\xa1\x1c\xafK\x8a\xc1\xbfi\xf5\x9b\xfe\xca\xf1\xc5\xbf\'\t\x199\xae\xe9\x94\xbf\x1c\x86\x08\xc0\xb0\xad\xbf\xbf$\x8a\x97l\xc4\x14\xb2?\x90+v\t_u\xc3\xbfL\xa2\xcb>!g\xd1\xbf\xd4\xd4\xfax+\xb6\xb4\xbf\xe9@f{&\xa4\x89?Y\xa2\xd0\xbf\xe13\xce?\xa4\x7fZXsL\xc5\xbft=?#\xb8O\xc3\xbf\x1ewK\xf0I.\xbd?x\xc2\xac\x14%"\xc8\xbf\x93n^\xb14\xd2\x92?\x95"x^ \xed\xc5\xbf3P\x92\x9d\xa1\xd6\xb5\xbf\x89\x07N\xcc\x80\xc3\xcb?\xbbw\x9a\x91I\x8e\xd1?P\xa2.4\x8a\xa6\x85?\x97\xbc\xfc\xb5*@\xc6\xbf`\xbeN58\x89\xcb?\t%\xa8)\xe3\xf2\xc3\xbfr\xd1Cq\xb9B\xca?\x03\x1f\xac\xc1\n\xec\x7f\xbf>\xb8\x1a\x16\xb9\x02\xcd?\x17}\xdd\x8e>\xd5\xbf?\xde \xf0\xcd;\xfaz\xbf\xcf^S\xd8\xfaE\xc2?\x95g\xddE5\xd0\xc1?@;\xbc)d\xfa\xbd?\xc2\xfa\xe0\x12RR\xb2?\xecm\x99\x12\xcc\xe4\x85\xbfv\xe1\xd4j\xf7\xe6\xbf?W\x16U\xa8\x81\xdb\xc3\xbf\xc1\x80\xaf\xceK\x9c\xb8\xbf\x14\xb1\xe6\x02q\xdf\xcd?Z\x9b\xa6\xa0\xa5\xd3\xb0?\xab\xe45\xab\xfd\xec\xcb\xbf\xda\xed6\xc7\xfc=\x97?\xd5\xc1\xa4U\x7f,\xbb?\xe5\x00\xaf}\xdd\xd7\xc1\xbf\xad^\xcdF\xa6@\xac?\x08\xdd\x00B4\xb5\xb1?QDm\xce\x89\x06\xb1\xbf\xc6\xd8\xc3\xe7\x90\x00\xb8?\xf9l\xa4\x12\xe1\x01\xba\xbf\xdd,\n\xf3]\xc6\xc6\xbf\xd0\xb6]\xfc\x16\xc6\xb3\xbfjn\x01\xd8c7\xdc?Hn\n\x17k\x13\xbf?\xe9v\x17Y\xb7\x85\xc0\xbf,Gn\xcd[\x10\x8e?\xe8w\x04\x0f\xa3M\xd2\xbfd\xfe\x15\x1f\xe5%\xb3?\x8b\xdf\x8b\xc6}"\xbc\xbf\xbd\xb4\xaf&V\xb1\xba?\xfd\x19)__\xba\xd1?\x9e~`}.w\xe1\xbf4\x80l\xc8S\r\x91?\x12\xdb\x9c\t\x13\x93\xb9?\x1b+V\x98\xbeac?&\'\x13 \xfc\x06\xae?hX\x9a\xe3\x0e\xd6\x8d\xbf\xb6\x1c\xa7K\xd9\xfb\xaa?\xf9>*O\xd9\x81\xb0?wc1\xb3bC\x9d?\xa4\xc5T$\xdb\xfb\xad\xbf&\xd0\xc0y1\x7f\xa3?\x1f\xdb\x96\x7f\xf0\xfb\x9a?\xa5\x04\xf2\xf3\\\x85a?\xb2\xad\'v\x9b \xc7\xbf\x04F\xb6E\x156\x97?\'\x9d\n\x91\xf2\xf7\xbc?\x88\xd7n\x15\x93\xa2j\xbf\x888\xdcxi\x1a\xc9\xbf\xe1\x11\x83\xd2S\x94\xa8\xbf\xd4\xfc\xca\xb5[\x9c\xbc\xbf\xa9\x11\xa9bdH\xc8?\x91\xb8e\x11\n\x92\x8b?8Y\xfdN\xa3a\x80?N|\xc6\x00\x81\x9b\xa3\xbf\x08\x07h\xb1g\xba\xc2\xbf\x89\xf0\x1cod\x1b\xab?Cq\xaa\xec\xe7\xf8\xb9\xbf\x00\x7f\xc2\x05\xe56\xc1?@\xf0\x01|\x17V\xd8?\xc5\xe4\xc2z\xfe\xd2\xbc?\xa6\x1e(\x80cU\xc7\xbf\x01g\xbd\xc0\x8b\x03\xce\xbf]L\xe0\xc8_\xf0\xda?\x07\x99\x90\xb7\xa1\xaa\xbe\xbf\xb2\xe1\x06Y\xc8>\xa3\xbf\x19\xe7"M\xe3\x1b\xbf\xbf\xb6\xa3\x14S\xea\xc9\xb2\xbf\xc5\xf8\xaf\xb5Q\xac\x98?@m\x1c\x8b\xf2\xd9\xb7?oU\x06\x86\x90\x99\xe0?AX\xe7\x05\x001\xc0?I\x8d]\xfage\xba\xbf\xceJO\xe0\xec\x1d\xb4\xbf?%\x9a-\xb7\xd0\x97\xbf\xb1\xb7l\x9b\xe0Lg?\xb6\xfdrz-\xc1\x85\xbfK%\xbe\'\xf1\x8c\xc1\xbf\xb2$\xf2\x82\x97x\xa0?\xed\x0c\xd9 \x0cp\xaf\xbf(\xcc\\\xc5\xf4\x84\xb3?_\x0f\x9a8N\x9c\xc3\xbf\xce\xe1#\xf9M\xeb\x8e\xbfK\x90\xdf\x0c\xa6\xfd\xaf\xbf\xa5\x8e\x80b\xd7(\xb1\xbff\x7f\x10\x85c\x80\xc1\xbf\x13\xe1T \xf3\x8a\xb3?-\x1c\xfd{,&g\xbf\x19\x1ex\x0f#\xfe\xcb\xbf\xaf\xd0\x82+\x10[\x8d\xbfb\x97\x01\x01\x92\xe1p?\x9e\xc2\xe7\x1a\xc0\x85\xca\xbf\xfd\x82Tz\xd4\xf3\xb3\xbf#\xd3\x9a\xc3\xfc\xed\xab\xbf\xf5\x9b\xf2\xed\xefM\x8e\xbff(\xd9\x1d\xa3\xb7\x9e?[\x95\x8b\xaf`{\xa4\xbf\xa7\xa4\x11\xb1\xdd\xc0k?\xbd\x12-\x18[+\xba?0]6\x9e\xcer\xd3\xbf\xf6P\xa6\t\x1e\x81\xc5?\xcd\x8c\xe9#z\x88\xd4?+\x97\xb1\xda^\xbf\xdb\xbfU0\x89\x8cR\xd6\xd2\xbf\x97 \xb2}&\x13\xcd\xbf\xf5H\xc3\xb7\xd1\x1b\xba??\xa5\x1fWs\x17\xa4?Sd\x82\xa2\xf8\xba\xbb?a\xdd\xeb]L\xd8\xc6?\x04~\x86\x96\xa8\xbf\xa3?\xee\xd9@\xdf>\xd3\xd3?]\x81\xfb\xeb1/\xc1\xbf\xdd\xaf\xf7\x18N\xbd\xc3\xbfB]j\xa1\x0cm\xc9?\xee\xbb$\x0f\xb4\xa1\xa1?\xc3\xd4\xc7\xcb]\xd3\x82?\xc5B\xb4\xda\xa3\xd3\x97?\xa4\xb9\xeas3\xbb\xb5?e\xb6\xf6\xd4-Bx?A\x02\xed\xbd5\xf7\xb0?v\xaa\xfc\x18I\xeb\xc8?\xb1\x08\x02P\xc0\n\xaf\xbf\xcc\xac"\xe8z\x86\xbd\xbf\x16\xd3\xe8\x97\xef\x13\xae?v\xd4Q\xe2\x83\xd1\xb1?\x92\xd4\xe3\xa5\xfdz\xac?\x8b`\x9b\'\xb7r\xc3?\x95Wc\xf3&\xcb}\xbf\xc6\xfc\x9afq\xe1\xb3?_f\xea\x96\x8f\x95\xde?\x19=\xe4\xfd\xf8\xf1\xa2\xbfG\x07\xf54E\x8e\xb4\xbf\xf8c\xeb\n\x89\x8dP?\x1a\x168E\x92ni?_^\x7f\xb1\t\x17r\xbfC\x04\x10f\x82\xe7~?\xea\tDcu\x08\x9d?\x04\xcc\xf8t*&\x84?\x84?\x14\x1c\x0f27P\x93?\x87\xdd?\x13\xe1\x06\x88?A\x875\x00\xdc\xee\xa7\xbf\x02}G\xf85\xd6\x9f?\x7f\xd3\x89x\xfeH\x91\xbfa\x011gEW\xdf?R\xc1\x1f\xd3\xa6\x91\xb8\xbf\xa1\t\xbf?4f\x87?\x0eh\x19O\xd2%\xaa\xbf\xecy\xd4\xd5\xb1\xa8z\xbf\xe3\x85\xa9\\9\xdd\xa1\xbfrZ\x94\xd4\xd0Fv?\xaf\xacG\x94\xa9j\x9d?v\t\x17\x86*D\xa6?)fE\x97\xbd\xb4\xcb\xbf\xf8\xec\x1a\xc4\xfe\xec\xda\xbfQ<\x81\xad\'\n\xc6?D\xd0?\x02\r\x06\xb0\xbf\xd4\xf0\xbd\xa4\xdcv\xd1?Y\x1a\x0e\xf4y\x9bg\xbf\xf4%O,j0\xaa?\xc8\xba\xc6\x87\x19\xe9\xc0?\x97\x9dU\xc6\xf7\xa9\xde\xbf\x0c\xbcN\xc2}\xbd\xca?\x02\x1d\xb9X\xb98\xbc?\xfe0\xdb\xfd<\xdd\x82?\x11\x9e\x19\xb3\xab\xb9\xcf?:\x9a\xdd\x96\x1d\xb6\xc5\xbf\x97q\x19M\x04\xbc\xc1\xbf\x80\x85*q\x04\xa6\xbb\xbfrd\x8d i)\xbb\xbfT\x19\xa9\x91\x97\x10\xb3\xbf~\xbf\xba\x1bJ\xd3\xb1\xbf\x84\xcbc\x90\x83-b?!\x0e\xe5\x9f\xbf\xcb\xce?\xaa\xbc\xd1\x84\xa1\xaa\xcb?\xd5@\xd1\xc9K\x93\xc3\xbfr\x1b\x08d\x05W\xae?\x8e\x1cHi\xc33\xbe?\x0f\x9c[\xd3\x029\xa8?D\xf3Lw4\x86q\xbfZ`\r#\r\xad~\xbf\xdd[[\x99\x11\x0e\xb0\xbf0\x8c\xcd\x81A\x06\xa2\xbf\x00g\xccC}z\x9a?\xa7K\x7f\x1f\x1fH\x9c\xbf\x96\xefVf\x8fo\xb0\xbf\x8bl\xad\xd5\xa1B\x88\xbf\xe5\xddM\xeaM\xc3\xc0?\xe8\x0fye\xbeb\x9e?t;\x9b\xfd}\xbc\xba\xbf\x8c\xaa/+\xdd\x07\xc6?9\xb3\xd5z\x01\xbe\xaf\xbf\x1b\xee\x92I\xed.\xb5?\x9dP\x0cT9(\xd7?\x05C\xfd\xf7\xc5$\xd2\xbf?\xccl~p\x01\xd1\xbf]\x9d\xa0\xef\x18\xf5\xc1\xbfx+\x06n\xb0\x8e\xb8\xbft]\nG\xb4\xe7\xb4?\xf98k\xe3\x96]\xcc\xbf\xf1,n\x88[\x8b\xb5?V\x12\xf024\x9d\xde?\x00p\x8cQg\x0c\xd2?K\xf0\x07\xf6=\x17\xcc\xbf<\xd4,V\xf2\xfb\x9a\xbf\xaas\xe2\x1b\x80\xef\xb9?\xe3\x1a\xab\xd9\xaa\xb9\xc7\xbf\xdc\xc4\xffS\x98\xe0\xa9\xbf\xa5\x90\xe5\xf3!\xdb\xb2\xbfb\xeb\xcb\x12\xb4\\\xa5\xbf\xd6\xc3\xec4\xf8\x1a\x91?\xba\x8a\xbd\xcc\x80\xc8\xb2\xbfI\xb4\x1a\xd3\x94\xa0\xbb\xbfsF\x08\x16\xe1\xc1\xb6?\xbf+\xc9?\xaf5\xd4?\x02\xcb\x96\xa4\xb6b\xb5\xbf\x9d+\x9d-\xa0Q\xb4\xbf\xa5h\x07\x9doJ\xaa?hw\x92\xd6|\x92\xac\xbf\x93\xfa\x03\x8f]S\xa5\xbf\x05\\\xf5\xf7\xf4\x17\xb3?5\xe8\xba\'\xa3m\xa6?`}X\x7f\x97\xd6\xb4\xbf\xdf\x05\xe1\xfep^\xaf\xbf\xafG\xafP\xba\x10\x9e\xbf\xd5\t \x0em\x07\xa2?\xbc\xee\xb3\xdd\xe4\x81\xa2\xbfJe\x9aI5\xca\xc0?{\xf4[&=&\xbb?\x1d\x07\xcb\x06`;\xb3\xbfAw\xdc\xc0De\xac?t\xf8\x8b\xd7\x12\x05\xb4\xbf\xc4\x9f\xb3C\x99\xca\x8c\xbf\x10.>2\x1b%\xc7?\xd5{Dn_\xed\xb2\xbfg{\x7f\xae\x8b\xae\xaa\xbf\xc5\xadX\xf6\xc73\xc8?\xeb\xdf\x07:P\xd3\xa4\xbf\xd7\xdb\xf2/\r\xf3\xd8\xbf\x13Q\xa9=\xdc\xa0\xc2\xbf\x1f\xbf\x13\x90\xd8*\xc8?y\x10NI\x81\x11\xad?|\xd1\n\x01\xcem\xb0\xbf\xc7HP\xf0+\xbf\xa3\xbf\x1axfZ\xe2)z\xbf,\xab\xd4\x84nl\xb4?d/1\xad\xea\xbd\xb3\xbf\xb4\x16%\x84\xd0\x9d\xb0\xbf\x01\x0b\xe5\xcc\xf3H\xc3?_\xaa3A\x84#\x8c?[Q\xdfk\x13\xd2\xd4\xbf/?\x8e\xab9\xb5\xad?c=\x1d\xea6F\xc9?\xae\xf0\x9f\xad\xbc\xd3\xbb\xbfD\x82\xacw\xf5t\x8f?\x1eE\x9e%f\xe8\x96?\x95\x9f8\xf3\xb0\x1dt\xbf\xa4\x1d\xc9\xea\x02\xc1\xb8?/@\x9a\x83\xf9\x83\xca?s\xc5L\xe5\xd7\xb1}?\xc7R2m\x89;\xd9\xbf\x91\x04\xdb\x97\xcd(\xaf\xbf\xa5\xcf\xc6\xbf@\xce\xcb?\x84R\x8c\x92\x0c\xe3\xa6?\xc9z\xeeY{x\x90?\x12\x00\xde\xf3\xbfk\x9f\xbf\x81\xd2<\xb9I\x1f\xd0?\x80N\x98\xbaV\x95\x93?WVZ\xb5((\xd5\xbf\x843:\xc7T\xf9\xa4?!\x1c\xa4\x03 \x98\xcf?+\xcd\x86\xf9\'r\xd3\xbf\xd4\xfe\xd0\xf1\x9a\xc7\xc9\xbf\xfd\x87`O\xf8T\xe2?\x1f\\I\\i"\xbb?\xd4\xfe\xba\x89\xc5\xc5\xbe?\xbf\xef2\xfa\x1fH\xa2\xbf\x18\x11\xaa\xcf\xe9\xae\xb4\xbf\x080H[\xe60\xaa?C\xfc\x13\xc9\xcf\xd8\xca\xbfc\xcer\x9e\x02\x9e\xa5\xbf\'\xb8\xa5\xaa\xbc?\xd4\xbfH\x89\xaf\xdd\xd7\x8d\xa3?\x8bZ\xfe\xe1h#\xcd?\xb3\x1b\x0f`L\xeb\xd1\xbf\xd9\xcc\x80\x10Q\xf0\x8c?\xbfw\xa1\xcb\xba\xdf\xaf?\xa7\xb3\xc0\xa8J7y\xbf\xdf\x8a\xfb\x81p\xb8\xa8\xbf3\xc2\xcak>\xa7\x84\xbfi\xb4G\xb0\xe9\xaa\xa3?\x88\xfa\x85\x97\xaa\xa6\x99?\xa7\xb4\x9c^\x1b\xd0\xb3\xbf=\xabL\xfc\xa0m\x93\xbf)\xc0X\xe6\xd8L\xb0\xbf!\x8bQ\x84\xa3\x01\xb3\xbf\x1d\xc3<\xce\x0e\x80\xcc?\xd7\xb0\xc9\xe3\xbb]\xc0?g\xe0\xc1\x1b9\xca\xb3\xbf\x94\xb5\xe1\xc5\x86jy\xbf\x9b\x89\x0b\x1e\xc3\x02\x97?\xab\x92\xba\xafG|\xc2\xbfms\x87\xb8\xbd\xec\xb7\xbf\xca\x82\xc9\x9e\xc9\xae\xb8?\x19\x9aL\xb8\xce\xfb\xd1?U\xee\x00\xd0\xc8\x11w\xbf\x8f\xcd\x90D\x13>v?\x89\xf7J\x0e\xddX\x89\xbf\x82&\x05\xe1\x12\xbf\xb9?)g\x07\x18C*s?\xcc\xcdG6\xe0\xd3\x81\xbf\x8dJ\xd4\xd2\xa9\xa7\xb0\xbf\xf8\xaf+\x900g\xd2\xbf\xc8\x0e\xdfM)\x1c\xd4\xbf\x0b$\xb3%\xa9j\xc1\xbf\xf2\x9d\xe6\xe6\x8b\xf1\xa8\xbf\xb3\x1el~M\xc4}\xbf\x17\xcf\xdb9\x946\xe9>\xa5\x8fIU\x9f\xe8t?\x00\x19\xa7.a\xbd\xc3?O\xe2\xd4w8\x11\xb3?\xdf0\xd7l\xd7\xbe\xc4?F}\xd4j\xd4\t\x95\xbf\xde\xc5_\xbe\xd9\xdc\xcb\xbfvg\x07\x90\x1e\xcb\xd5\xbf\xf6r\xf1\x11}C\xc1\xbf@>\xa8w;N\xbe\xbf!\xb1\xc5`\xa3\xc2\x90?y\x1e>o\x1f#\xab\xbf\x1aT[\xb5\xe6N\x9d?+W\x8cw\xb5=\x9a\xbf*\xf5({\x87\xb3{?n\x19\x8c6\xc2\x9c\x9c?\'\xa5\x9byM\x12\xb6?\x15\xe1mU\xff\t\xa0?\xc5\x8e\xff\x1b$\xd7\xd3?j\xc3\x82\x00Sg\xd5?\x87^?\xe6kl\xb3\xbf\x11q\xc1}g\'\xb5\xbf\xd9\xd5\xac\x8f\xadW\xb7\xbf\xe3\xc5_\xfdZ\xde\xb9\xbf\xb1\x90n\xee{1\xbb?\xb0K@\x8c\xe0#\xb1\xbf\xc4G|\x92[8\xc0?\xd7Q\x87dmG\xdb?\xc7\x10\xb6q)\x8a\xc0?\\Ws\xbe\xf5d\xba?\xc7\x01\xef\xd0\x9b\xe9\xa9\xbf;\xeaU.\xccq\xb8?\xd9,>\xe6\xc7i\xc0\xbf\x12\xb2r\x167\x1c\xc2?Z\xf3\xe9R\xa7Q\xd5\xbf\x92\x9f]m\xc3>\xcd?\xd2,\xeezd\xbb\xb5?9\xc5\xd4V\x0fS\xb3\xbf\xb3\x10\xa1V\xb8)\xbf?\x83\xe0n\xf6X>\xac\xbf^\xeaM\xa0)s\xb2\xbf\xfa\xaad8\xae:\x9d?F\xc3\x13\xa5\x8f\xef\xad?\x98\x10j\xb5\xa6\xf0\xa3?&M\xf9F\xe0a\xc9\xbf\x16P\x18%\xb30\xa9\xbfV\xfbL\x11\xdb\xa6\xd1\xbf\x99\xd9\xbd"\x04\x04\xc0?\x80\xb0\x99\xf0\x974\xb5\xbf-\xbd\x7f\xdak<\xb2?\x99\xef\xff\xc0O\xe0\xb3?\xad\x82\x1d\x86\x91\n\xa3\xbfY\xcf#B\xb8\xd3\x95?\xc1\xa0\x8el\x00\xe3\xa1\xbf\x8a\x1c\xa98\x9f\xecY\xbf\xe0\x07\xd68\xc5L\xb3\xbf\xf1o1!u+\x96\xbf\x82S&\xba\x9b\xf9\xba?\xd62\xf2-y\x9b\xd8?`\xea\x8atJ\x14\xd1\xbf\x92\xda\xd9\x9eG\x0b\xb4?\xd3\x11\xdc\xa0k\xfd\xae?\x05\xcc?\x06\x19\xa9\xcf\xbf\x89\xfe\xb5\xe1\x14\xdb\xb7?\xb7\x8dU8\x892w\xbf\xf3\xe9\x83W\xa5p\xa6?\xd0\x0b,!\xfcv\xe0?\xc2\xd0\xbb\x8e@<\xc1\xbf\xc3b\xe7E\xd4\xbe\xbb?L\xe2\x98\xc1eg\xb0\xbf\x89\xc6o\xff\xdc\xfd\xc0\xbf\xe2\xa50\x00\xd5e\x86\xbf\x89\xfb\xc2\x07\xd4 \xb4\xbfb5\xacc\xdf\xb9\x81?Oo\t &\x86\xb6\xbf\xb6\x88\x01(\xa3\xd4\xa3\xbf\xc8m\x0b &\xda\x9c\xbf]3\xb1\xb3yg\xa9\xbf\xf8\xac>=d\x90\xc7?\xf8%e&\x94\x88\xc2\xbf\xe5\xaf]\xb6\xe9\x18\xd3\xbf$\xb5\x81\xbf]\xfag?\xe4:\x8d\n\x82\xbc\xc3?V0\x93[\xc4\xca\xaf?\x8f\xde\xac\xa5\xad\x18\x8c\xbf\xce\x88X\xfd\x87K\xd5?\x08O,\xbbl\x03\xb5?9k\x90u\xe3\x0c\x8c?\x19\x03o/\xe0\xec\xaf?\xba\x9c,Y\xcfg\xd5\xbf\x1d\xcb\xd3NU#y?E\xf1$\xde\xd1\xc4\xc3\xbf9\xea\xa0\xa8\x9e\x1ao\xbfL\xb2Gz\xc8\xfe\xbe?\xc3\xf243\xeb\xa3\xc2?o\xf2\x95\x99\x04\x8a\xd7?<\xd1\x95\x84~P\xc6\xbf\x1c-:\xd9\xb2\xa0\xbc?\x8bh\xa7\x88P\xaf\xb9?\xde\x95\xa0\xa29\x8d\x9b?\xfe\x19\xdc\xd29b\x7f\xbf\x95\xeaa\x93.\x01\xbe\xbfb\xc8wS^0\xa0\xbfA\xc7\xecd\xf6D\x03\xbf\x8f\xe3\x1eS\x88\\\xa4?*M\xf5O\xd9\xbc\xc3?\x86\x1b\xce\xb2H\x93\xb7\xbf\x1d92\x0e\x94\xbc^\xbf\xd7J(b\xa1)\xbf\xbf2\x02 \xfe\xf1\x07\xa9\xbf\x90\xe2\x08\xdf\xe7$\xd2\xbf\xed49{x\x1a\xb9\xbfc\xd2(/4\x94\xd7?o\xdc\xfa\xb46B\xca\xbft@\xb1E\xba,\xc3\xbf\x10m\xd7\x9dk\x12s\xbf\x00p\xf0\x82\x0f\xea\xc6\xbfVJ\xa4\xbec\xe2\xbd?\x1b\xc2\r\x91\xc0\r\xbe\xbf\xdd\r\xc2j|\x9b\x94\xbf\xc6\xf3P\xea\xe5\x81\xd5?x\xe1\x99\xf9\xb4\xa8\x9e\xbf\xbd\xd9so\xa4X\xc7\xbf\x0c\xe97\xae\xcd\xdb\xc2\xbf\xb8\xd4\xc2\x8a\x8b\x94\xbc?J\xb6[\xad\x99\x03\xbf?\x81<\x8b\xeb\xa3\xbb\xc2\xbf\x97/\xd1\xfat\x90\xbb\xbfEm\xa2\xc0\xc0\xf7\xc8?l\xf3\nGV\xc4t?^\x1bgT\x8f\xf4\xc7\xbf\xc1`\xff\x1a\x00\xf0\xb1?W\xa4\x890\xa2m\x9f?\x19\xac\xefu\')\xba?\\\x19\xb5\x15\x18\xec\xb3?\xce\xfd\xf1\xd8Ey\xa6\xbf{G\xdb\xe4G\xbc\xc2\xbf\\N\xd4\x1c\xc3d\xac\xbf\xa1\xb09\xb8\x96\xd2\xcb?j\x1f\xcc\xe4Cc\x83\xbf\xe1\xafn\x85\xa2&\x8d?\xca\x158(\x83q\xa9?K4\x1a\xaf41\xc1?\x99\x89T\xab\x10\x8e\xb4?\xf4\x92\x95WT\xf4\xcd\xbf\xb2L\x9d\xb8;\xbd\x9e\xbf\x95]\xa8\x0b\xc2|\xcb?\x84\xa0Lv!F\xb5?\xbb\xd9\xe3\x88\xc8n\xdf\xbf\x11y-\x0b\xb8\xce\xbc\xbf\x14!\xc6\xa1\xe3j\xcc?_\x1d\x03Zl\xc9\xa0\xbf\x06A\x0e\x93\xa0\xe6\xd1?\x01\xf1(\x1e\xe1\x9f\xa1\xbf\xed\x88\xdb\xbc}\xa3\xc3?\xe4.]\x03\xbe?Y_\xd2\x1e\xb2\xbd\x96?\xcb\x7f\xf0\xe8\x85$\xbc?l\x1b\x18W\xdaK\xb7\xbfL\x0e\xa9\xe1\xccD\x8d\xbf\xe9\xec\xec\x0b\x02\x92\xb1\xbf\x12\x8c\xd6\xf2\x89\x86\xb1?\x10eG\x90\x86l\xc0?\xdcl\x13\xe5\x06\x08\xb9\xbf\x8a\xc5\x93\xea,\xe7\xc9?\xeez,t\xdc1\xa2?Vy\xf2W?k\xab\xbf\xd4\xf5\x0e\x02\xfe\x93\xb8?Qp\x11\x88n\xc4\xd6\xbf\x93F3\xf4\xd0\r\xb8\xbf$\xf9\x984\xf9\xe4\xb9?3F\xe9!\x9d\xa6\xc9\xbf\xc1\\\x0c{\xb5\xd0\xb0?\x89\x18Q%\xb3\x1b\xd2?L:Fn\x1aq\xcc?\x03\xdb\x0c\xf6v\xc5\xd8\xbfs\xf4\xa0\xf7\xe4\xe7\xbe?\xdf\xf0R\xc2\xebf\xc1?\xd9\xee\xce\xf2\xc7\xb9\xb4\xbf\xa9\x12\x86\x8b\xd6\x92\x7f?\xb56\xae\x1e\xbcU\xb0?\xc3\x80\x8d\xfa \xb0\xcd\xbf5\xf5-\x8a9x\xbf\xbf\x06\x06\xdc\x06\x11\xa1\x9d?\xaa\x1eGz@^\x9c\xbf\xc0\x0by\x00\n\xbd\xc7?<\x10\xda^\x1a\xb3\xc2?\xa6\x88\x9eE\xa8\x8a\xa4\xbfr\x85\xd9\x00\xed\xe1\xba\xbf\xd1\xc0\xb7\x89\xc9\x98\xbd?\xc3%Q\xe1\xf7\xb9\xd1\xbf\xe8\x17M#\x84\xe7\xc0\xbf\x13\xfb\xdb\x10^\xb4\xb4?,\x80\xf3\x85I\xad\xbf?\xdf\x8bZ\xc7\x06\xc3\xb6?l=\xaf\n\xc5z\x91\xbf\xe8F\x83hZ\x95\xba?N\xbd\xa7\xc0\x80\'\xb3\xbfZl\xda\xdb\xf5\xcc\xcb\xbf\xec\xc9\xf5Z\xaf`\xa3?h\xf5>\x9ax}\xbe\xbf\xf4\x19\xf6r\xb7\xd7\x9a\xbf\x97T\x10\xc9\xe2\xa5\xc8?\xa34P\x8c\x80\xce\xc5?:\xfd\xb4\xdfz\x10\xb9?\xdb\x82\xfd\x80c\xc2\x97\xbfQ\x8fxZ\xd5\xe9\x80?\xf0\xd4\x8cO\x92\xa1\xc5\xbfD|\xc2&\\q\xb3?L++\xfc\xde?\xa2?|\x8eb\xb3&g\xd0?\xb4\xf0\xf5\xc2 sW\xbfwJ4\xcdl\x86\xb9?\x93w\x13m^\xe3\xd0\xbf%?\x95\xf6Z\x04\xcb?w\xc3\x83\xfb1G\x89?1\xce(\xb7\xd0\xcd\xc6?sk\xc6\xcb\xd5\x1d\xcf?\x17\x8eU\x17y\xd6\xc6?\x8a\'=\x1fa\x98\x97\xbf\xa7<\x92\xbf\x17V\xbc?(\xa7:\xdc\x19\x85\xb7\xbf<\x84>_%J\xd3\xbf\xe8E\xdf4Q\xaa\x94?\x8d8\xc55\x8fk\xd7\xbf@\xf3%\xac0\x98\xba?%\x07>\x0f\x7f\x02\xd3\xbf\xe6\xbc\xcb\x1b\x01z\x98?\xc4$\xf2{7l;?\xf9w]\xc1\xae\xdb\xad?1\xf0;\xca\x1f\xff\xcc?a\x15\x0f\xe9\xbc\xb4]\xbfK\xd4Y\xb4\xdb-\xb5\xbf\x15\xb9\x1d\xd6\x84\xe8\xbe?\r\xb5PY\x90\x17\xb6\xbf\xf1\x12\xa5h\x9d+\xb3\xbf\x00\x91\xf5\x14\x81\x9a\xa4?h\xe0R\xe4}!\xb8\xbfG\x85A\xb6\xa4t\xd1?\xf5\xfa@9\xa1^\xa0\xbf` \xc3\xba\x9a\xff\x8a\xbf\x0fR\x073#Q\x9a?J]\x9e\x83X\x17\xd2\xbf1\x82\xf3\x98J~\xce\xbf\xef!<\x9d{\x1d\xd5?\x8c\xe3\x98%"\xe6\xa6?\xf8t\xfb\xc2 \x8c\xca?\xd5&\x18G\x16\x0b\xc3?\x8b\x06\xdf^q\xc5\xb1?\xcf\x11\x9d\xfd\xc4\xaan?\r\x1di(\xbej\xcf\xbf=\xabzq\xaa\xaal?\xd1\xfd}5\xa4\x85e?\x15>k\xb6\xb9\xea\xb8\xbfc\x7f\xc1\xaby\xdc\xbc?\x05Y\xe0\xbexe\xcc\xbf\xd5W\xe3\xe29\xac\xa1?h@\xfd\xa2\x92]\xd3?q\x0e\xe7\x13\xb2\xb6\xb0\xbfT\x99\xa6fl\x9f\x8a?\xcf\xa8\xce\x96 F\x95?m\xc0\x8e~\x08{\xca?7eM\x11\xa1\xc5\xd0\xbf\x8d3\x1d!qO\xbc?w\xea\xe0r\x90\x83\xcf\xbfn\xe7\xaaV\xd2U\xd3\xbf\xcb\xb1A\xd5\xae!\xa1\xbf\x1b\xaa)\xf7\xab\xf1\xd1?,\xc6.\xa4\xb7\x1c\x97\xbf\x8f\x1f\x83\x00\xbaU\xc0?&gr\x9e%\x8e\xb9?\t\xe1\x04j\xe3\x8f\xbc\xbf\xea\xa2,\x84\xac\xf6\xbf\xbf\xc1\xd7\xc3G\xc5^\xb1?\xb6%uf\x98\xcd\xa9?3G\xf88\x94]\x95?\xd6\x04\xd5\xbb\xb5\xaa\xca?\xebR=\x8cA\x9a\xbd\xbfu\xfa2}`U\xb8\xbf\'\x19&\x95Aj\xd2\xbf\xd0\xa2t0"q\x9b\xbf\xe4\xbc\xd5F\x82\x01\xa5?b1\x8eMB\x9f\xc5?(q\xb2\x1c\xd3)\xc2\xbf\xc8\x08\x1f\xab;\xfd\xd0\xbf\xfa\x89\x14(\xdd-\x92\xbf4\x9b<\xdf\x00\xb5\x99\xbf&\x88\xa5\x8eA\xe1\xc8?%\xb1C\xb5\xa2B\xcc?\xd55\xa2*\xc1\xf7\xb6\xbf\xaa\xad-\x82aw\x9d\xbfz\xfc\x8a6\xc1`\xd8\xbfBBD\xbe\x05\x08U\xbf\x9e\xd7M\x03\xb0;\xc9\xbfAs\xc8{\xc6\xd3\xca\xbf\xccI\xb0\x80\x9b\xc5\xa6\xbf%\xe9\xe6\xd9 \x05\xb5\xbf\xd4\xd2O\xa5\xfbV\xd0?5\x9d\xae\x9c\xc6>\xa6\xbf\x08\x85I\xd6t\x1b\xd9?\xa4\xe9W\x1bH\xad\x80?56N\xc4tQ\xbc\xbf\xaf\xccw\xea\x1d\xf7\xa2?\x08_\\-q\x03w?\x1c\xceE\x9a$\x0e\xb0?1\xea\xb4\xe8%\xb3\xbc?\xd9\xe1?\x108\xa2\xb1?\x99\xa2\x89\r\xd2\xd5\xb5\xbf|\xecY\xfd\xa1\xf1\xa2?\xc6\xe1b3\x06\x1f\x9a?B\xe2\x01v\xec\x9c\xab\xbf/\xbe\xb3\t\xeb?\xc7\xbf1\x03\x8c*w\x0c\xbb?\xb8\x19\xd3E\xa6\xe6\xd8?\x9f\x9a\x8f\xfeW#\x8f?{\xdd\xd5D\xf1\x18\xc2\xbfoX#\xeb\xdfo\xbf\xbf\xa1\xa2\xc3g\xa0c\xb2\xbf\xcb\xef\xd0\xb6\x94\xea\x83?y\xc8\xf9\xa9N-\xc3?L\xc9ol\xfd*\x98?p8\x8e\xc1D\x81\x9d?\xb3\x85\xe0\x0b\x88\x9fI?\xcbVN\x9b\x0b\x11\xb9\xbf\xc5#&c_\xce\xb1?=W\xf8\xff\x10l\xa4\xbf\xd9\t\x80\xcb>\xa9\xaf\xbf3\xa9Q\xbe\x1b\xbf\xc5?\xb6\x93\x96\x10\xbbD\xce\xbf4\xa6\x06b\x90\xdd\xb3\xbf\x84n\xa1\x8d\x8bp\xba?\xd5\xda\xd9\xfd\xd63\xb9?\xff/\xa3\x8b7\xd9\xa9\xbf\x17\xfc\xd1h\xdc\xd2\xb7\xbf[\x92F\x9aW\xcd\xa7\xbfZ`\xa2zZx\xcf\xbf\x89\x7f\x08\xcd\x1d\xbd\xb3\xbfp6N&cI\xd5?\xb1i\xb8|*\x16\xba\xbf=2z\x80\x13\xc4\xc6\xbf\xa2\xb6VAr\x95\x9f\xbf\xd9v\x06\xd0\xc5\xcf\xba?H\x0bi\xe1\xdes\xc4?\x134Q\xf2\xfb\x17\xdb\xbf\xd5\xd1\xcc;3\xb4\xc3?\xa36\xf2j\xb3\x8d\xd5?W\xe3\xd0\xc3Dt\xba?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I40 +tp132 +g22 +I00 +S'\xcb\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc05\xb7\x92.Q\x89;\xc0\'?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xb5I\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc2\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc3\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@U\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@,4\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x90\xb3}6\x7f\xcf6@\xf8\xf3"H\xd4\x10K\xc05t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1b\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x80\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x17\xf7\xe6\xf5xy6@\x80\xf4A\x95\xd2\x8c\x1d\xc0\x8c=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xddb\xe4\t\xe6\xda\xee\xbf\xec\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I25 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_mouth_5 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_mouth_5 new file mode 100644 index 0000000000000000000000000000000000000000..4e27600b7e5602605de25f9c78f6c2415c549b21 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_mouth_5 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I40 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xc0\x87\xe8\x94_\xf4\x9c\xbf\xeb\xf1\x16\x8a^\xc6\xd8\xbfvx\xaf\xa7\xa6\x8c\xb7\xbf\x00M\xc0\x1a\xd5\xec\xce\xbf\x87\x0f\x87\x84 \xc1\xbf\xbf\x03\x02\xcb|\x10\x89\xb9\xbf\x17jL\xd9@\\\xb9\xbfQ\x8c\x96O0\xe1{\xbf\xd1\xa78\x04^\x13\xc0\xbf\xe8\xfa\x82\x17\xc06\xb9?\xb6n\xb9:w&\xb8\xbf\xf2m8\\x8\xcf?\xde\x91 \x91\xa45\xa5\xbf\x8d\x8cD\xb5\xd2\xaa\xd8?i\x8b\xe6H\xe4\xf8\xb7?\xff\xc0\x14\x13\xcf\x08\xd0?\xf8\x1a\x8c\xba\xed\xb3\xc3?\x05\xce\xa0\x19\x8f\xbe\xbc?\xed\x014\xcf\x96e\xc5?\xeaA\xc11\x9a\x11<\xbf\xca\xf0\x10\x0c3>\xc4?\x96\x17R\x7f\x16\x87\xba\xbf\x86\xf7\x97\xc2\xfcM\xba?\xc9J\xbd\xd0.6\xcf\xbf\xda\xd6\xebxx\xb7\x97\xbfeP\xe1\xec6\xe7\xd4\xbf\x9c\xff$\x08\x10\xbe\xa2\xbf&\x18\x0c2$\x97\xb9\xbf\xbds&\x10X,\x9c\xbf\xc9\\\x96\x1c8\x10u\xbf\x0e\xfe\xfdW\xd0k\xa4\xbf\xb3\x94;\'\xc9\xea\xb9?I\xed+t\xcc\t\xa1\xbf\xf9b\xb7\xa8"\xcc\xd4?\x86}c\x0cg4\x98?\xfd\r\xde)\xb2\x82\xba?\x0f7\xea\x19\xd5n\xa3?\xbb\x86Tel\xcaq\xbf"%\xd6\xeem\x9c\x9c?\x86\xc7\xa16U\xe7\xb9\xbf\xe8\xf1\x16\x8a^\xc6\xd8?\xb6\x87\xe8\x94_\xf4\x9c\xbf\xfeL\xc0\x1a\xd5\xec\xce?vx\xaf\xa7\xa6\x8c\xb7\xbf\x01\x02\xcb|\x10\x89\xb9?\x85\x0f\x87\x84 \xc1\xbf\xbfM\x8c\x96O0\xe1{?\x15jL\xd9@\\\xb9\xbf\xe9\xfa\x82\x17\xc06\xb9\xbf\xd0\xa78\x04^\x13\xc0\xbf\xf0m8\\x8\xcf\xbf\xb5n\xb9:w&\xb8\xbf\x8c\x8cD\xb5\xd2\xaa\xd8\xbf\xdc\x91 \x91\xa45\xa5\xbf\xfe\xc0\x14\x13\xcf\x08\xd0\xbfh\x8b\xe6H\xe4\xf8\xb7?\x03\xce\xa0\x19\x8f\xbe\xbc\xbf\xf6\x1a\x8c\xba\xed\xb3\xc3?\x0fB\xc11\x9a\x11\xc4?\xc7J\xbd\xd0.6\xcf?\x85\xf7\x97\xc2\xfcM\xba?dP\xe1\xec6\xe7\xd4?\xd9\xd6\xebxx\xb7\x97\xbf%\x18\x0c2$\x97\xb9?\x9b\xff$\x08\x10\xbe\xa2\xbf\xc8\\\x96\x1c8\x10u?\xbbs&\x10X,\x9c\xbf\xb1\x94;\'\xc9\xea\xb9\xbf\x0e\xfe\xfdW\xd0k\xa4\xbf\xf8b\xb7\xa8"\xcc\xd4\xbfF\xed+t\xcc\t\xa1\xbf\xfb\r\xde)\xb2\x82\xba\xbf\x83}c\x0cg4\x98?\xb8\x86Tel\xcaq?\x0e7\xea\x19\xd5n\xa3?\x85\xc7\xa16U\xe7\xb9?!%\xd6\xeem\x9c\x9c?\xd1\xed\xbf\xc5%\x9f\xcc\xbf\xba\xb2\xe1\xc0\x86k\xab<\xd4\xed\xbf\xc5%\x9f\xcc\xbf\xda\xb4\xd4\xbc\x06\t\xa2<\xd4\xed\xbf\xc5%\x9f\xcc\xbf\xd4)6`\xa5\xffR\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbf\xf5"\xffg\xee\xdf\x8f\xbc\xd7\xed\xbf\xc5%\x9f\xcc\xbfh\x861B5\xa9\xa5\xbc\xdd\xed\xbf\xc5%\x9f\xcc\xbf\xf2\xf7\xbe\x97\x8f\x0b\xb1\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf\xd4\xa7n\x15\x1a6\xb6\xbc\xe4\xed\xbf\xc5%\x9f\xcc\xbf(Y\x83\xce\xee\xb9\xa1\xbc\xe1\xed\xbf\xc5%\x9f\xcc\xbf\xe0\xaa\xa0s*\xa3k<\xde\xed\xbf\xc5%\x9f\xcc\xbf\x06\x8aX\x8d\xe8\xac\x9d<\xda\xed\xbf\xc5%\x9f\xcc\xbfo`l\x82\x99P\xa9<\xd8\xed\xbf\xc5%\x9f\xcc\xbf\x0b\x892\x88\x01\x9c\xb1<\xd3\xed\xbf\xc5%\x9f\xcc\xbf\xb5\xa6\xee*/\n\xb1<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\xcfw\xfe\x8a\xe3r\x8b<\xd9\xed\xbf\xc5%\x9f\xcc\xbfW\x83}+Bfn\xbc\xdb\xed\xbf\xc5%\x9f\xcc\xbf\xc7\x7fLp\xe5\x85\x9c\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf\x0e\xdb\x1b\x80\xcbV\xb2\xbc\xdd\xed\xbf\xc5%\x9f\xcc\xbf\x01\x7f\xf6\x9f\xd5O\x92\xbc\xda\xed\xbf\xc5%\x9f\xcc\xbf\xc3\x0c\x15_p\xb3~<\xd9\xed\xbf\xc5%\x9f\xcc\xbfbF\xd5\x1f\x99\x17\x9b<\x83hc#\x04\x82\xb2\xbc\xcc\xed\xbf\xc5%\x9f\xcc\xbf\xc1w\xaf\xb1\x10\x13\xa7\xbc\xd6\xed\xbf\xc5%\x9f\xcc\xbf\xf8Ne\xd0\x05\xa1E\xbc\xd3\xed\xbf\xc5%\x9f\xcc\xbf.@\xf8\\\x12\xf4\x8f<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\xf1h\xbaE\xc4\xf5\xa6<\xd7\xed\xbf\xc5%\x9f\xcc\xbf_I\';\xceU\xb2<\xdb\xed\xbf\xc5%\x9f\xcc\xbfUG\x0c\xd2\xa5>\xb8<\xdf\xed\xbf\xc5%\x9f\xcc\xbf_<\xfe\xcd\x81\xee\xa3<\xe2\xed\xbf\xc5%\x9f\xcc\xbf\x10`\xc3\xe8\x8c\xb2c\xbc\xdf\xed\xbf\xc5%\x9f\xcc\xbfA\xf4\x84C\xad\x01\x9e\xbc\xde\xed\xbf\xc5%\x9f\xcc\xbf\x83?\xec\xc9D\x1c\xaa\xbc\xdb\xed\xbf\xc5%\x9f\xcc\xbfG\xcf\xa6\x9e\xc7\x1a\xb2\xbc\xd6\xed\xbf\xc5%\x9f\xcc\xbfP\xe51H\x03.\xb2\xbc\xd1\xed\xbf\xc5%\x9f\xcc\xbf\xda\x05\x12{\x81\xdf\x8f\xbc\xd5\xed\xbf\xc5%\x9f\xcc\xbf^m\x8f\xebs\x1ep<\xd8\xed\xbf\xc5%\x9f\xcc\xbf\xd6-\xc03\xa5\xa9\x9e<\xd9\xed\xbf\xc5%\x9f\xcc\xbfp+2\x01Vh\xb4<\xdf\xed\xbf\xc5%\x9f\xcc\xbf3\xed\xedz\xed\xad\x94<\xdc\xed\xbf\xc5%\x9f\xcc\xbf\x06\xf7\x06\xba~\xa5~\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbf\xb2\x7f\xf4\xf7\x8d\xc7\x9b\xbc\xd9\xed\xbf\xc5%\x9f\xcc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I40 +tp31 +g22 +I00 +S'\xcd\xfd\x9a|\xc5\x1b\x19\xc07\xb2W\xfb\xe5{U\xc0\x99m<\x1a\xdak4\xc0j\xa3\x10\xdb8\xd1J\xc08\xb7\x92.Q\x89;\xc0)?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xc2I\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf3\xe4\xd1\x02Z\xdd5@j\x8a\x103<\xf14\xc0\x0cd#\x0c\xd0\x12K@\xc0\xe3hPid"\xc0\x1e\x0f^\xdc\x02dU@\xc5\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@X\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe3*O$\xfd\x8dB@\x0b5\x8au\x1fW\xb8\xbf@n\xa4\x1e\xd6\x8dA@\xb8re>\x03\x017\xc0\x94\xb3}6\x7f\xcf6@\xf9\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\r\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x89\x10\xb0s\xf5C\xf2\xbf*~\x90Kd\xb5!\xc0\x18\xf7\xe6\xf5xy6@~\xf4A\x95\xd2\x8c\x1d\xc0\x8f=&1\xeb\x08R@\x84z\xe1\x18R\xfd\x14@F\x1e\xf7A4\xfd6@\xba\xb3\x81\xb2\x03\xda @\xf5b\xe4\t\xe6\xda\xee\xbf\xef\xd0/`\x82\xcf\x18@\t_\xb7ozv6\xc0' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I20 +I2 +tp43 +g22 +I00 +S'\xcd\xfd\x9a|\xc5\x1b\x19\xc07\xb2W\xfb\xe5{U\xc0\x99m<\x1a\xdak4\xc0j\xa3\x10\xdb8\xd1J\xc08\xb7\x92.Q\x89;\xc0)?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xc2I\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf3\xe4\xd1\x02Z\xdd5@j\x8a\x103<\xf14\xc0\x0cd#\x0c\xd0\x12K@\xc0\xe3hPid"\xc0\x1e\x0f^\xdc\x02dU@\xc5\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@X\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe3*O$\xfd\x8dB@\x0b5\x8au\x1fW\xb8\xbf@n\xa4\x1e\xd6\x8dA@\xb8re>\x03\x017\xc0\x94\xb3}6\x7f\xcf6@\xf9\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\r\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x89\x10\xb0s\xf5C\xf2\xbf*~\x90Kd\xb5!\xc0\x18\xf7\xe6\xf5xy6@~\xf4A\x95\xd2\x8c\x1d\xc0\x8f=&1\xeb\x08R@\x84z\xe1\x18R\xfd\x14@F\x1e\xf7A4\xfd6@\xba\xb3\x81\xb2\x03\xda @\xf5b\xe4\t\xe6\xda\xee\xbf\xef\xd0/`\x82\xcf\x18@\t_\xb7ozv6\xc0' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I5 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I20 +I2 +tp68 +g22 +I00 +S'\xd0\xfd\x9a|\xc5\x1b\x19\xc08\xb2W\xfb\xe5{U\xc0\x9cm<\x1a\xdak4\xc0l\xa3\x10\xdb8\xd1J\xc0;\xb7\x92.Q\x89;\xc0*?SP\xbb$6\xc0MSmz\xdf\xfd5\xc0\xc2I\xf2\xe1#-\xf8\xbf\xc0\xe8\xb8\x87m\xe1;\xc0\xf4\xe4\xd1\x02Z\xdd5@m\x8a\x103<\xf14\xc0\x0ed#\x0c\xd0\x12K@\xc2\xe3hPid"\xc0\x1f\x0f^\xdc\x02dU@\xc8\xcb9\x00\xb7\xc94@Pe\xc5\xb8\x1d\xcfK@Z\xc7\x8d\xb4\xee\x15A@\xf6\xcd5\xf7\x1a\xed8@\xe5*O$\xfd\x8dB@+5\x8au\x1fW\xb8\xbfBn\xa4\x1e\xd6\x8dA@\xbare>\x03\x017\xc0\x97\xb3}6\x7f\xcf6@\xfb\xf3"H\xd4\x10K\xc06t_\xd6\xfb\x90\x14\xc0\xb29H\xa1f R\xc0\x1c\xd8m\xb1\xb9@ \xc0\x0e\xccRU\xf006\xc0\xec/\xdb\xf9On\x18\xc0\x8a\x10\xb0s\xf5C\xf2\xbf,~\x90Kd\xb5!\xc0\x19\xf7\xe6\xf5xy6@\x82\xf4A\x95\xd2\x8c\x1d\xc0\x90=&1\xeb\x08R@\x87z\xe1\x18R\xfd\x14@G\x1e\xf7A4\xfd6@\xbc\xb3\x81\xb2\x03\xda @\xf8b\xe4\t\xe6\xda\xee\xbf\xf2\xd0/`\x82\xcf\x18@\n_\xb7ozv6\xc0' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x02\x00\x00\x00\x00\x00\xf0?\x80\\\xff\x82\x9bU.<\x00\x00\x00\x00\x00\x00\xf89,n\xc07\xc0\x19j\xbc\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xe09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I20 +I2 +tp89 +g22 +I00 +S'\xcd\xfd\x9a|\xc5\x1b\x19\xc07\xb2W\xfb\xe5{U\xc0\x99m<\x1a\xdak4\xc0j\xa3\x10\xdb8\xd1J\xc08\xb7\x92.Q\x89;\xc0)?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xc2I\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf3\xe4\xd1\x02Z\xdd5@j\x8a\x103<\xf14\xc0\x0cd#\x0c\xd0\x12K@\xc0\xe3hPid"\xc0\x1e\x0f^\xdc\x02dU@\xc5\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@X\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe3*O$\xfd\x8dB@\x0b5\x8au\x1fW\xb8\xbf@n\xa4\x1e\xd6\x8dA@\xb8re>\x03\x017\xc0\x94\xb3}6\x7f\xcf6@\xf9\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\r\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x89\x10\xb0s\xf5C\xf2\xbf*~\x90Kd\xb5!\xc0\x18\xf7\xe6\xf5xy6@~\xf4A\x95\xd2\x8c\x1d\xc0\x8f=&1\xeb\x08R@\x84z\xe1\x18R\xfd\x14@F\x1e\xf7A4\xfd6@\xba\xb3\x81\xb2\x03\xda @\xf5b\xe4\t\xe6\xda\xee\xbf\xef\xd0/`\x82\xcf\x18@\t_\xb7ozv6\xc0' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I20 +I2 +tp106 +g22 +I00 +S'\xbf\xa9\xb5\xb5\x9b\xa9#@\x8f#\xc41\xec\xe7T\xc0\xd7\xfc\x98\x14\xbc06\xc0\x9d\x80t\xd0\xab\xf3J\xc0\xea\x0cG\x8bv\xf9A\xc0\xa9!W\xf1w\x857\xc0\xaf\xa7\xfbQD[@\xc0\x99\xcc\xca\xe2\x15\x89\x08\xc0\x97\x85\x1c\xab\x90\rB\xc0v\xe9\x11x\x11}3@\xfb\xbe\x00\x97w\xb15\xc0\xcc\x98\x89D&\x94K@j\xe3\xe2\x7fr"\x14@(\xd66\x01\xd6,W@\xb3\xfe\x81\x19q\xad4@E\xf2\x9b\xd11\xa9K@w\xb0\x1b\x9bgs>@\x03r\xccF\xeaP5@.\x9c\tn\x11T@@\x9fk8!\xe2\xec\xd0\xbf\xf1et\xef\xca\x82@@ptN\xde\xde\xde7\xc0\xde<\xed\x81\x8a\xe07@u\xa2\xa0\x86\x18\x0eK\xc0\xa6D^\x92\'"\x1f@\x0e\x98\xd1\xd4k9R\xc0\xf0A\xf1\x01\xfb\xfe\x1a\xc0\x00\x0b\x17w\x97\xef6\xc0\x9e\xebM\xc8R\x10"\xc0\x11\x01\x9a\xca\x887\xe4\xbf\x01\xf1\x807+P"\xc0\xb5\xc4UA\xf0\xa23@PU\x89\x13\xbbA\x19@\xf7{r\xc1\x1e\xffS@x)\xc8zv(\xd7\xbf\xdai\x87\\\x84\xb93@A\x85\xb0n\x8b,\x0f@\xc3\x84[\x92$\x04\xf2\xbf\xe9{&\xbft\x16\xda?\xf9O\x15\xb0Ga7\xc0' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I5 +tp113 +g22 +I00 +S'\xe5\xf2\xf3\xdc\xdep\x8e@ U\xfet\\,\x8e@$5\r\xf7\x7f\xe4~@\xd0/"bT\xafa@\xb1\x17\xc4\x10\x00\xf2Y@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I32 +tp120 +g22 +I00 +S"i\xc0\x1f\xd0\xb4\x94C@}\xf8}f<)@@+\xd8M\xb7Z3;@ N13\xe2S6@\xc77\x86}\x83F3@o\x8d;\x08\xdaO.@\xb2\x82\x99yc#+@<\xc4/\xb4\xac\x1f)@\xa1I\x8eT\xfa\xd4 @\xee\xbf\xf4\xda\xdc\x10\x1f@\x90/\xbe\xe3<\xec\x18@\xc8\xc9\\\xfb\x95N\x17@\xec\x12\t2\x8f\xf3\x13@\xf9n\xba\x97\x8ei\x11@\x04g\x80\x91J?\x10@\x1f\x91/\x95A\x1f\r@\xe1\xbc\xb1A\xa6^\t@}\xb4L2Q\x83\x03@\xaf\xa5P\x13\x83\x90\x01@\xceB'\xde\xf7\xe5\x00@>\x19\xda\x8bb\x8f\xff?\xbe5\xc7\xda\x01\xb0\xfe?r\x91\x15\x0bGt\xfd?a\xd6\xc1\xfe\xd0{\xf5?\xeb\xf4\xbcE~y\xf4?\xde\x02%\xf9y<\xf2?\xcf\xe0Y\xe1\x8b!\xf0??\xd4\xe52`\xad\xec?\x86\xe5\xb8\x19Ta\xe9?MEA\xa9E\xed\xdf?\xed@\xc55\xd2W\xd7?\x0f2\xc1\xf2&\xeb\xc8?" +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I5 +I40 +tp126 +g22 +I00 +S'\xa8m\x03\x86g\xecn\xbf\xcc\xf6\xf6\xae\xf8\x92\xd7?\xe5E\xec\xe1\xd2T\xc4\xbf\xc0\xa3n\x01\xfa\x1a\xab?\x8b\xaemK\x9eT\xcb\xbf\xe9a\xa0\xe8\x0bH\xb3\xbf\xca\xd2\xdd>KC\xcd\xbfdA\xf0\x89k\xa8\xbd\xbf\xcb\x0e\x10u90\xcb\xbf\xcaR\xe7c\xcb3\xc2\xbf\xf35\x84C\xdb\x89\xc3\xbfX\xe3t\xe0`&\xa7\xbf\x9a\xb1];\x82\x81\x88\xbf3\xd1\xc0\xaeN\x8c\xa8?\xda\x08(!\x00[\xc6?\xeaQY\xedP\x02\x90?2)\xcdx\xad\xde\xce?g\xa2\xf9\xd3m\xc6\xae\xbf\xc3\x08P\x01\xf20\xce?\x1a\xce\x178\x8bo\xa6\xbf\xe6?\xa9\xd6\x1a\x01\xcd?\xab\x95o\xba\xbat\x84\xbfV\x15S\xe4`!\xc3?~\x14\x84\x8f\xb8\x80\xba?\xd4.\xed\xf1\x97\xfd\x94\xbf\xb7?`=\x85\xb1h\xeb\xc3\xbf\x129E[\x87\x06\xb8?\x9d)%\x03\xc7\x8a\xb0?\xd5\xcd\xd7~!\x95\xa2?S\xe3+\x8b\x0e\xcc\xdb?7x\x1eC\xfe2\xad\xbf^H\xb4\xf8\xa7R\xc3?\xbd\x86[\xe5\xef\x19\xbe\xbf\xd7\xa5&\x929\xb3\xa6\xbf\x18EL\xc4*z\xc1\xbf\xea\'\xc0S\xea\xff\xb8\xbfg\xcb+\x93m:\xc3\xbf{\xefeR$i\xb7\xbf\xc8\xe6\nv\xd1P\xbc\xbfg\x89\xa1\xe1r\xea\xb3?\xb9\x9f6\xa9\xb0\xff\xac?\xfb\x14\xaa$\xfc\x8e\xd0?\xf9\xd2\x16\xa2\xdb\xc8\xbb?\x83\x91\xae\x99.\xee\xc5\xbf\xb5\xdaw\x84\x14s\xbe?\xc8\xf8D\x12\x97\xf9\xc5\xbf\x90\x94\xe44\xf8\xda\xbd?2\x80G\x98\xcc\xaf\xbc\xbfJ?}\x9c|A\xa0?AcU\xb6\xd2\x13\xd9?&\xa1`5\x03Q\xbe\xbf+e\x87\xd82\xb8\xb8\xbf\xcd\x89\xbb\x80&>\xc2\xbfs\xaf\x06n\xd3\x01\xc3\xbf\x8d!\x15\x03_\xe1\xc4\xbf\xaa\xa1p\x8b90\xc2\xbf\x0eW\xc7\x91G\xcb\xdb?R\xbd\x82\x1frW\xaa\xbf\xe4}\xb6\x1cn\x11\xa0\xbfg\xc65\xa91\x1c\xa1\xbfe\x89\xbfCg\xad\xd1\xbfoE\xeb\x8b\xd5\x88U?\x81\xaf\xdf\xd5ib\xd0\xbf\r1-i\x9f\xc1\x96?\xf0\xd5D\xef25\xd1\xbf\xdeo\xff\x85\x1a\xae\x87?\x1eN\xab\xd0\xd0\x15\x87\xbf\xb1PW\xe0oB\x92?\xe3^\xcb\x8c\xac\xa3\xdb?\xbaL\xcf\x1d\x9aa\xa0\xbfD0d\xd8\xd0\x97\xbd?\xb6\xc1\xbd\x8f\xe8\xfd\x84\xbf\xe3y\xde\x17\xbf\xe3\xa8\xbf\x9d\x96\xfeqH\xc4\x8e?`\x0f;\xa8&\xcc\xb1\xbf\xf7m\xdah`\xe5\x9e?\xcb\x9b\x1c\xd3v\xb3\xa7\xbf\x86\xcd\x1fOA\xea\x8d?Q\xf5\x8bU\x17]\xbb?\xd4\x02\xe9\xe0\xf1\xb6s?\x90\xdcdAu\xff\xd3?\xcf\'`\xf5\xbeN\x9c?1\xcb^\xedn\xa4v\xbfI\xf2A.\xa4\x9a\x7f?\x15\x80:j\x88\xb9\xa0\xbf\xac~+U\xf5x\x98?\\E5F\'\xa9`?g\xeb\xa3\xb5\x01~\x86?\x8c\xc0\x1d\xee\xf5\x95\xd4?\xd6^\xc5,Q\x93\xb9\xbfP\xe8\xa8iD\xc5\xcb\xbf\x9c\x14\xeb\x9e\xfe\xbfl?U\x8e&\xb1&W\xcf\xbf\x88\x93e\x01F\r\x96?\xd4\xc1\x95.E\xba\xcb\xbfC?\xd85\n\x0c\x8d?\xd2\t+\xa1e\xdf\xc9\xbf\xda\x8c\xedD\x15\xbf\x8a\xbf\x89\xf9a\xf6\x057\xab\xbf\xf7)\xe5\xe7\xdc\xae\xac? \xd3\xcax\\\\\xb2\xbf\x86\xed!\xf0Y$\xb6?\xbd\xbf\xbc\x9a[w\x91\xbf\r\x18\xf4\x16\xb1\xe3D?j\xf3\x82\xaf4\xbe\xb1\xbf\xf2\xcc\xa2\xa9\'\xc0\xba\xbf\xd8)\xaf\xb29\x1c\xaa\xbf\n\xe7q\x90XJ\xb1\xbf\xb5\x05B\x88\xb4\x95\xc8\xbf\x97\xd2W\xf7f\xcf\x8a?g8\x17}\xd1\xd2\xbf?\xf3\x95\xfb\xb4\x88\x87\xa7\xbfR\xc7\xfff\x01\xab\xd1?\xda\xdc\x15\x08\x80\x0c\xb1\xbfL\x7f\xea\x96\x87\xd6\xd2?\xbe\xec\x19f\xebi\x98?\xf1\xbfS\x97\xd1O\xd2?\xdb1z\xca\x91\xec\xb1?\x83\xb2\x10F\xe6\x19\xc1?\xc2S\xec\xd4F\xae\xa9?\xc7=\xda\xa1\xeb\t\xc0\xbf9\xc5\xc6X^v\xae?A\x86&\xa9\x1e\xd5\xcf?\xf9\xac\x93\xfc\xce\x05\xb7?\x99q\x135@\xbc\xd0?\xa1!g\xa6G\\\x90?\x9d\xa3\xa6|\xd60\xd0?\xb5[\xdc\xda\x87\xe0\xb5\xbfK\xf8\xfc3d\xe4\xbc\xbfU\x8f\xc8\xdc\xa6\xea\xb0\xbf\x1e@\xfb\x91\x16\x01\xd5\xbf\xd3\xe0[q\xffZ\xbb\xbf\x89\x17\xb0\x9b\xad\xa3\xd4\xbf?m\xa6\xa7\x8cg`?\xdb\xe7\xa9\x04\xc6D\xd5\xbf\xee\x91\xd4B\xdc\x9f\xb6?\x16\xd5W\xa86\x19\xa0\xbf\xfb\x8a+N\x96\x88\xce?\x08\xcf\x94VN\xbd\xa8\xbf\x1a\x9aWP\no\xb8\xbf\xf9\xe6\x07\xe3\xbd\x15z?\xf8\x82\x1b\xadt\xbd\xd0\xbf\x9f\x8c\x11\x06*_\xab?\xbd\x16\x9a\x0c6\\\x80\xbf\x86p5\x1d/\x88[?@\xcd\x1e\xa4\xe5\xb4\xd2?\\\x08=\x1d\xbc\xc9\x9f\xbf6\x1aW\x06\xc4V\xc0?\t\xfbh\xcd\x17\xa8\xa0\xbf\xea\x1c\xff\xef\xa6[\xd2\xbf2\x9cJ\x05"\x04\xb0\xbf|L\xdf\x1e\xeba\xc0?\xd6\\d\xa8O\x07\xac?\x94\xcc\x92\xdagF\xd2?\xa5#d\x91\x9a;\xbe?\x91ST:\xac\xd4\x92\xbf\xa0\x81\xd7\x8f\x0b\xff\xb0?@\x97\xe1+|h\xd1\xbf\xfb\x90\xda"~\xdf\xaa\xbf ^\xdd\x8de@\xbe\xbf;\x9e\xe2Os\x94\x88\xbf\xdf\x1d\xcb.\xce|\xcd?D\x1d)\xab\xce\xff\xab?~\xd6\xbd\xdac\r\xd1\xbfaB\xac\xc8\xfbE\xb8?]\x91YG\x81\xce\x86\xbf\r\x17\xd8\xdb?\xd1\xab?FQ\x7f\xd0\xf2R\xd2?]\x9eoY\xd1\xf5\x90\xbf\xcb\xa2]T\xb1h\xd0\xbf\x898B7\xf4\x85\xb8\xbfP\xf4n\xedUQ\xd2?)\xefR\xbf\x96\xb1\x9f\xbfe#\x82\xf8\xb4\xc3\x8b\xbf\xab\xa4\xa7s\xe7C\xb7\xbf\x1d\x85\x08\xf8X\x16\xd1\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I40 +tp132 +g22 +I00 +S'\xcd\xfd\x9a|\xc5\x1b\x19\xc07\xb2W\xfb\xe5{U\xc0\x99m<\x1a\xdak4\xc0j\xa3\x10\xdb8\xd1J\xc08\xb7\x92.Q\x89;\xc0)?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xc2I\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf3\xe4\xd1\x02Z\xdd5@j\x8a\x103<\xf14\xc0\x0cd#\x0c\xd0\x12K@\xc0\xe3hPid"\xc0\x1e\x0f^\xdc\x02dU@\xc5\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@X\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe3*O$\xfd\x8dB@\x0b5\x8au\x1fW\xb8\xbf@n\xa4\x1e\xd6\x8dA@\xb8re>\x03\x017\xc0\x94\xb3}6\x7f\xcf6@\xf9\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\r\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x89\x10\xb0s\xf5C\xf2\xbf*~\x90Kd\xb5!\xc0\x18\xf7\xe6\xf5xy6@~\xf4A\x95\xd2\x8c\x1d\xc0\x8f=&1\xeb\x08R@\x84z\xe1\x18R\xfd\x14@F\x1e\xf7A4\xfd6@\xba\xb3\x81\xb2\x03\xda @\xf5b\xe4\t\xe6\xda\xee\xbf\xef\xd0/`\x82\xcf\x18@\t_\xb7ozv6\xc0' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I5 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_mouth_7 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_mouth_7 new file mode 100644 index 0000000000000000000000000000000000000000..f4749fc86cc230ab92af2a4c5412c6467b4d4fcc --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_mouth_7 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I40 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xc0\x87\xe8\x94_\xf4\x9c\xbf\xec\xf1\x16\x8a^\xc6\xd8\xbfvx\xaf\xa7\xa6\x8c\xb7\xbf\x01M\xc0\x1a\xd5\xec\xce\xbf\x86\x0f\x87\x84 \xc1\xbf\xbf\x04\x02\xcb|\x10\x89\xb9\xbf\x16jL\xd9@\\\xb9\xbf]\x8c\x96O0\xe1{\xbf\xd3\xa78\x04^\x13\xc0\xbf\xe7\xfa\x82\x17\xc06\xb9?\xbbn\xb9:w&\xb8\xbf\xf2m8\\x8\xcf?\xe1\x91 \x91\xa45\xa5\xbf\x8c\x8cD\xb5\xd2\xaa\xd8?h\x8b\xe6H\xe4\xf8\xb7?\xff\xc0\x14\x13\xcf\x08\xd0?\xf7\x1a\x8c\xba\xed\xb3\xc3?\x07\xce\xa0\x19\x8f\xbe\xbc?\xee\x014\xcf\x96e\xc5?\'B\xc11\x9a\x11<\xbf\xc9\xf0\x10\x0c3>\xc4?\x96\x17R\x7f\x16\x87\xba\xbf\x88\xf7\x97\xc2\xfcM\xba?\xcbJ\xbd\xd0.6\xcf\xbf\xd9\xd6\xebxx\xb7\x97\xbfgP\xe1\xec6\xe7\xd4\xbf\x9d\xff$\x08\x10\xbe\xa2\xbf(\x18\x0c2$\x97\xb9\xbf\xc0s&\x10X,\x9c\xbf\xd3\\\x96\x1c8\x10u\xbf\x14\xfe\xfdW\xd0k\xa4\xbf\xb4\x94;\'\xc9\xea\xb9?L\xed+t\xcc\t\xa1\xbf\xf8b\xb7\xa8"\xcc\xd4?\x84}c\x0cg4\x98?\xfb\r\xde)\xb2\x82\xba?\x0f7\xea\x19\xd5n\xa3?\xc2\x86Tel\xcaq\xbf$%\xd6\xeem\x9c\x9c?\x89\xc7\xa16U\xe7\xb9\xbf\xec\xf1\x16\x8a^\xc6\xd8?\xd8\x87\xe8\x94_\xf4\x9c\xbf\xffL\xc0\x1a\xd5\xec\xce?ux\xaf\xa7\xa6\x8c\xb7\xbf\x02\x02\xcb|\x10\x89\xb9?\x85\x0f\x87\x84 \xc1\xbf\xbfd\x8c\x96O0\xe1{?\x15jL\xd9@\\\xb9\xbf\xe4\xfa\x82\x17\xc06\xb9\xbf\xd2\xa78\x04^\x13\xc0\xbf\xf1m8\\x8\xcf\xbf\xban\xb9:w&\xb8\xbf\x8a\x8cD\xb5\xd2\xaa\xd8\xbf\xe3\x91 \x91\xa45\xa5\xbf\xfe\xc0\x14\x13\xcf\x08\xd0\xbfd\x8b\xe6H\xe4\xf8\xb7?\x06\xce\xa0\x19\x8f\xbe\xbc\xbf\xf7\x1a\x8c\xba\xed\xb3\xc3?\xaf@\xc11\x9a\x11\xc4?\xc8J\xbd\xd0.6\xcf?\x88\xf7\x97\xc2\xfcM\xba?gP\xe1\xec6\xe7\xd4?\xd0\xd6\xebxx\xb7\x97\xbf&\x18\x0c2$\x97\xb9?\x9c\xff$\x08\x10\xbe\xa2\xbf\xd4\\\x96\x1c8\x10u?\xbfs&\x10X,\x9c\xbf\xb1\x94;\'\xc9\xea\xb9\xbf\x13\xfe\xfdW\xd0k\xa4\xbf\xf6b\xb7\xa8"\xcc\xd4\xbfM\xed+t\xcc\t\xa1\xbf\xfa\r\xde)\xb2\x82\xba\xbf\x82}c\x0cg4\x98?\xbf\x86Tel\xcaq?\x0f7\xea\x19\xd5n\xa3?\x89\xc7\xa16U\xe7\xb9?$%\xd6\xeem\x9c\x9c?\xce\xed\xbf\xc5%\x9f\xcc\xbfIc4V\t\x13\xb4<\xd4\xed\xbf\xc5%\x9f\xcc\xbf\x07\x13/\xba\xd8\xf5\xa0<\xd4\xed\xbf\xc5%\x9f\xcc\xbf\xce\x1d&\xbd\xd0\x03s\xbc\xd7\xed\xbf\xc5%\x9f\xcc\xbf\xec\x01\x8a\xb2\x06\xd3\x93\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbfJ\x89z\xe8\xf0A\xa8\xbc\xde\xed\xbf\xc5%\x9f\xcc\xbf\xb5$\x13\xdf\xe7\xf7\xb1\xbc\xe4\xed\xbf\xc5%\x9f\xcc\xbfOE\x8by\xcfZ\xb7\xbc\xe3\xed\xbf\xc5%\x9f\xcc\xbf\x10|"\xc7d\x8b\xa1\xbc\xe2\xed\xbf\xc5%\x9f\xcc\xbf\x98\x94\xde=\xe5>\x81<\xde\xed\xbf\xc5%\x9f\xcc\xbf\x93\x93\xf7\x1fY\x11\xa2<\xdb\xed\xbf\xc5%\x9f\xcc\xbf\xe0\xc8S\xa2-\x06\xac<\xd7\xed\xbf\xc5%\x9f\xcc\xbf\x97\xeb\x06\xf0E\xa3\xb2<\xd1\xed\xbf\xc5%\x9f\xcc\xbf\xa6\x94\xa3[\x1e(\xb0<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\xed\x80s\x99\x8e\x89\x8a<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\x88\xe4\xbeb\xa84s\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf\xeez\xf4h\xd4\xfd\x9f\xbc\xe2\xed\xbf\xc5%\x9f\xcc\xbf4\x1a\xff3.!\xb4\xbc\xde\xed\xbf\xc5%\x9f\xcc\xbf(\xee\xf4\x8b\x90\x9f\x91\xbc\xda\xed\xbf\xc5%\x9f\xcc\xbf\xe8/p\xb4Ee\x82<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\x8d\xb7\xf0$E\xc5\x9c<.^\x9eIi\xef\xad\xbc\xca\xed\xbf\xc5%\x9f\xcc\xbf\xfbqH\xbd\xf5\xd9\xa8\xbc\xd5\xed\xbf\xc5%\x9f\xcc\xbfK\xa8Ghw\xa3^<\xd3\xed\xbf\xc5%\x9f\xcc\xbf\xc4c\x03nc-\x94<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\xc4\xbe;\xddk\xb6\xaa<\xd6\xed\xbf\xc5%\x9f\xcc\xbf;h\x8bd)\x8f\xb4<\xdb\xed\xbf\xc5%\x9f\xcc\xbf@g\xd5?\xdco\xb9<\xe1\xed\xbf\xc5%\x9f\xcc\xbf\t\x1e\xc2q\xf0\x8a\xa5<\xe1\xed\xbf\xc5%\x9f\xcc\xbf\xeb\xd8\xd1\xa5\xd7\x93\x80\xbc\xe2\xed\xbf\xc5%\x9f\xcc\xbf\xf6w\xc2~\x8cc\xa4\xbc\xdf\xed\xbf\xc5%\x9f\xcc\xbf\x06\xa6Q\xf1RZ\xb0\xbc\xdb\xed\xbf\xc5%\x9f\xcc\xbf7\xd7\x81FHy\xb5\xbc\xd7\xed\xbf\xc5%\x9f\xcc\xbfc\x0c\x9fQ\xed\xe4\xb3\xbc\xcf\xed\xbf\xc5%\x9f\xcc\xbf\xca2\xb5\x17Y\x80\x92\xbc\xd5\xed\xbf\xc5%\x9f\xcc\xbf\x8f\x84*/m\xbbm<\xd8\xed\xbf\xc5%\x9f\xcc\xbf\x88\xd9K\xacq\xf3\xa0<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\xdbdR\x8a\xfau\xb6<\xe0\xed\xbf\xc5%\x9f\xcc\xbf*|\xc6\xf1\xcan\x93<\xdc\xed\xbf\xc5%\x9f\xcc\xbf\x1d+^\xdch;\x86\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbfR\x98\xf1\x91\xeb\xf2\xa0\xbc\xd7\xed\xbf\xc5%\x9f\xcc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I40 +tp31 +g22 +I00 +S'\xc7\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0h\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0\'?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xcaI\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xef\xe4\xd1\x02Z\xdd5@k\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc1\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc2\xcb9\x00\xb7\xc94@Je\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@=5\x8au\x1fW\xb8\xbf=n\xa4\x1e\xd6\x8dA@\xb6re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf8\xf3"H\xd4\x10K\xc00t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x19\xd8m\xb1\xb9@ \xc0\x0c\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x90\x10\xb0s\xf5C\xf2\xbf,~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@\x80\xf4A\x95\xd2\x8c\x1d\xc0\x8c=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xfeb\xe4\t\xe6\xda\xee\xbf\xed\xd0/`\x82\xcf\x18@\t_\xb7ozv6\xc0' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I20 +I2 +tp43 +g22 +I00 +S'\xc7\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0h\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0\'?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xcaI\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xef\xe4\xd1\x02Z\xdd5@k\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc1\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc2\xcb9\x00\xb7\xc94@Je\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@=5\x8au\x1fW\xb8\xbf=n\xa4\x1e\xd6\x8dA@\xb6re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf8\xf3"H\xd4\x10K\xc00t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x19\xd8m\xb1\xb9@ \xc0\x0c\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x90\x10\xb0s\xf5C\xf2\xbf,~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@\x80\xf4A\x95\xd2\x8c\x1d\xc0\x8c=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xfeb\xe4\t\xe6\xda\xee\xbf\xed\xd0/`\x82\xcf\x18@\t_\xb7ozv6\xc0' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I7 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I20 +I2 +tp68 +g22 +I00 +S'\xcd\xfd\x9a|\xc5\x1b\x19\xc07\xb2W\xfb\xe5{U\xc0\x9am<\x1a\xdak4\xc0j\xa3\x10\xdb8\xd1J\xc07\xb7\x92.Q\x89;\xc0(?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xc8I\xf2\xe1#-\xf8\xbf\xc0\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@n\x8a\x103<\xf14\xc0\x0bd#\x0c\xd0\x12K@\xc2\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc5\xcb9\x00\xb7\xc94@Le\xc5\xb8\x1d\xcfK@X\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe4*O$\xfd\x8dB@\xa25\x8au\x1fW\xb8\xbf?n\xa4\x1e\xd6\x8dA@\xb8re>\x03\x017\xc0\x96\xb3}6\x7f\xcf6@\xfa\xf3"H\xd4\x10K\xc05t_\xd6\xfb\x90\x14\xc0\xb29H\xa1f R\xc0\x1b\xd8m\xb1\xb9@ \xc0\r\xccRU\xf006\xc0\xec/\xdb\xf9On\x18\xc0\x90\x10\xb0s\xf5C\xf2\xbf.~\x90Kd\xb5!\xc0\x17\xf7\xe6\xf5xy6@\x82\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x84z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xba\xb3\x81\xb2\x03\xda @\x03c\xe4\t\xe6\xda\xee\xbf\xef\xd0/`\x82\xcf\x18@\n_\xb7ozv6\xc0' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x02\x00\x00\x00\x00\x00\xf0?\x87\xee\xf1\x14|\xf0~<\x00\x00\x00\x00\x00\x00\xf89tM|\xca#\x87\x85\xbc\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xe09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I20 +I2 +tp89 +g22 +I00 +S'\xc7\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0h\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0\'?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xcaI\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xef\xe4\xd1\x02Z\xdd5@k\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc1\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc2\xcb9\x00\xb7\xc94@Je\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@=5\x8au\x1fW\xb8\xbf=n\xa4\x1e\xd6\x8dA@\xb6re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf8\xf3"H\xd4\x10K\xc00t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x19\xd8m\xb1\xb9@ \xc0\x0c\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x90\x10\xb0s\xf5C\xf2\xbf,~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@\x80\xf4A\x95\xd2\x8c\x1d\xc0\x8c=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xfeb\xe4\t\xe6\xda\xee\xbf\xed\xd0/`\x82\xcf\x18@\t_\xb7ozv6\xc0' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I20 +I2 +tp106 +g22 +I00 +S'\xbb\xa9\xb5\xb5\x9b\xa9#@\x8e#\xc41\xec\xe7T\xc0\xd8\xfc\x98\x14\xbc06\xc0\x9b\x80t\xd0\xab\xf3J\xc0\xea\x0cG\x8bv\xf9A\xc0\xa7!W\xf1w\x857\xc0\xae\xa7\xfbQD[@\xc0\x94\xcc\xca\xe2\x15\x89\x08\xc0\x96\x85\x1c\xab\x90\rB\xc0t\xe9\x11x\x11}3@\xfb\xbe\x00\x97w\xb15\xc0\xca\x98\x89D&\x94K@n\xe3\xe2\x7fr"\x14@&\xd66\x01\xd6,W@\xb2\xfe\x81\x19q\xad4@C\xf2\x9b\xd11\xa9K@u\xb0\x1b\x9bgs>@\xffq\xccF\xeaP5@-\x9c\tn\x11T@@\xfak8!\xe2\xec\xd0\xbf\xf0et\xef\xca\x82@@ptN\xde\xde\xde7\xc0\xda<\xed\x81\x8a\xe07@s\xa2\xa0\x86\x18\x0eK\xc0\x9fD^\x92\'"\x1f@\r\x98\xd1\xd4k9R\xc0\xf0A\xf1\x01\xfb\xfe\x1a\xc0\xff\n\x17w\x97\xef6\xc0\x9d\xebM\xc8R\x10"\xc0\x17\x01\x9a\xca\x887\xe4\xbf\xff\xf0\x807+P"\xc0\xb2\xc4UA\xf0\xa23@SU\x89\x13\xbbA\x19@\xf6{r\xc1\x1e\xffS@t)\xc8zv(\xd7\xbf\xd8i\x87\\\x84\xb93@>\x85\xb0n\x8b,\x0f@\xcb\x84[\x92$\x04\xf2\xbf\xbf{&\xbft\x16\xda?\xf8O\x15\xb0Ga7\xc0' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I7 +tp113 +g22 +I00 +S'\xda\xf2\xf3\xdc\xdep\x8e@\x1fU\xfet\\,\x8e@&5\r\xf7\x7f\xe4~@\xd0/"bT\xafa@\xa7\x17\xc4\x10\x00\xf2Y@Z\xc0\x1f\xd0\xb4\x94C@v\xf8}f<)@@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I30 +tp120 +g22 +I00 +S"?\xd8M\xb7Z3;@\x16N13\xe2S6@\xca7\x86}\x83F3@j\x8d;\x08\xdaO.@q\x82\x99yc#+@3\xc4/\xb4\xac\x1f)@gI\x8eT\xfa\xd4 @\xfe\xbf\xf4\xda\xdc\x10\x1f@P/\xbe\xe3<\xec\x18@1\xc9\\\xfb\x95N\x17@\x99\x12\t2\x8f\xf3\x13@\xd3n\xba\x97\x8ei\x11@\xb0f\x80\x91J?\x10@\x8e\x91/\x95A\x1f\r@\xe6\xbc\xb1A\xa6^\t@\x93\xb4L2Q\x83\x03@\xc4\xa5P\x13\x83\x90\x01@2B'\xde\xf7\xe5\x00@!\x18\xda\x8bb\x8f\xff?\xa05\xc7\xda\x01\xb0\xfe?+\x91\x15\x0bGt\xfd?H\xd6\xc1\xfe\xd0{\xf5?v\xf5\xbcE~y\xf4?9\x02%\xf9y<\xf2?M\xe1Y\xe1\x8b!\xf0?\xbb\xd5\xe52`\xad\xec?\xa9\xe2\xb8\x19Ta\xe9?\xe5FA\xa9E\xed\xdf?y@\xc55\xd2W\xd7?n4\xc1\xf2&\xeb\xc8?" +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I7 +I40 +tp126 +g22 +I00 +S':p\x03\x86g\xecn\xbf\xae\xf6\xf6\xae\xf8\x92\xd7?\xf8E\xec\xe1\xd2T\xc4\xbf\xca\xa3n\x01\xfa\x1a\xab?\x9d\xaemK\x9eT\xcb\xbf\xc4a\xa0\xe8\x0bH\xb3\xbf\xde\xd2\xdd>KC\xcd\xbf\nA\xf0\x89k\xa8\xbd\xbf\xd7\x0e\x10u90\xcb\xbf\xa6R\xe7c\xcb3\xc2\xbf\x046\x84C\xdb\x89\xc3\xbf\x86\xe3t\xe0`&\xa7\xbf\xb7\xb1];\x82\x81\x88\xbf\xc0\xcf\xc0\xaeN\x8c\xa8?\xe6\x08(!\x00[\xc6?\x05QY\xedP\x02\x90?E)\xcdx\xad\xde\xce?+\xa2\xf9\xd3m\xc6\xae\xbf\xdb\x08P\x01\xf20\xce?\xc3\xcd\x178\x8bo\xa6\xbf\x01@\xa9\xd6\x1a\x01\xcd?\x91\x94o\xba\xbat\x84\xbff\x15S\xe4`!\xc3?]\x14\x84\x8f\xb8\x80\xba?%/\xed\xf1\x97\xfd\x94\xbf"pr\xc5JE\xd5?EeT\xab\xd8P\xc9\xbfw\x817\x07\xab#\xa8\xbf\xb1\xc6|\x92\xf0\xcd\xca\xbfB\x11\x96m\x90=\xb8\xbf]WN~\x02\x15\xc8\xbf\xdd\x05-\x96\xe1\x17\xbf\xbf\xa1\x08pmA\xb8\x99\xbfl\x82\x80\x98Y\x95\xa4?\xaf\xa5\x90{\x8eg\xcb?\xdd\xbd\xcdQk9\xb8\xbf\xa4\xfadf}\x19\xc9?\xf6\x11\xf0?T\xe6\xb2\xbf\xb6\xeem\x96\xfa\xa6\xc7?\x8d\xe5\x95?\xa4\xc9\xa2\xbf\x96\xcd\xd6\xe3]\x02\xae?/!\xe1\x90:\x18\xd2?\x96\xb5\x1bL#5\xb6?\r\xe8r\xaf\x13U\x8b\xbf\x8c\xbc\xea\xe0\x19"\xb8?W\xf4\x8a/4\xa9\xca\xbfD\\\xb2J\x86]\xba?\xb17\xba\xa7^\xa2\xca\xbf,:E\xe6\xf5>\xb7?\x7f=\x85\xb1h\xeb\xc3\xbf\xd38E[\x87\x06\xb8?\x8b)%\x03\xc7\x8a\xb0?\xbb\xcd\xd7~!\x95\xa2?Z\xe3+\x8b\x0e\xcc\xdb?\xa7w\x1eC\xfe2\xad\xbfhH\xb4\xf8\xa7R\xc3?V\x86[\xe5\xef\x19\xbe\xbf\xfe\xa5&\x929\xb3\xa6\xbf\xe8DL\xc4*z\xc1\xbf\xf8\'\xc0S\xea\xff\xb8\xbf3\xcb+\x93m:\xc3\xbfz\xefeR$i\xb7\xbf\x84\xe6\nv\xd1P\xbc\xbf\x94\x89\xa1\xe1r\xea\xb3?\xaa\x9f6\xa9\xb0\xff\xac?\x1d\x15\xaa$\xfc\x8e\xd0?\xb3\xd2\x16\xa2\xdb\xc8\xbb?\x91\x91\xae\x99.\xee\xc5\xbfl\xdaw\x84\x14s\xbe?\xda\xf8D\x12\x97\xf9\xc5\xbfO\x94\xe44\xf8\xda\xbd?e\x80G\x98\xcc\xaf\xbc\xbf7?}\x9c|A\xa0?DcU\xb6\xd2\x13\xd9?\xdc\xa0`5\x03Q\xbe\xbfRe\x87\xd82\xb8\xb8\xbf\xa8\x89\xbb\x80&>\xc2\xbf\x85\xaf\x06n\xd3\x01\xc3\xbfn!\x15\x03_\xe1\xc4\xbf\xb3\xa1p\x8b90\xc2\xbf\x0eW\xc7\x91G\xcb\xdb?\x83\xbd\x82\x1frW\xaa\xbf\xee}\xb6\x1cn\x11\xa0\xbfe\xc65\xa91\x1c\xa1\xbfb\x89\xbfCg\xad\xd1\xbf\x0bE\xeb\x8b\xd5\x88U?~\xaf\xdf\xd5ib\xd0\xbf(1-i\x9f\xc1\x96?\xef\xd5D\xef25\xd1\xbf\xf5o\xff\x85\x1a\xae\x87? N\xab\xd0\xd0\x15\x87\xbf\xa5PW\xe0oB\x92?\xe2^\xcb\x8c\xac\xa3\xdb?\xc7L\xcf\x1d\x9aa\xa0\xbfG0d\xd8\xd0\x97\xbd?\xaf\xc1\xbd\x8f\xe8\xfd\x84\xbf\xd2y\xde\x17\xbf\xe3\xa8\xbf\xaa\x96\xfeqH\xc4\x8e?a\x0f;\xa8&\xcc\xb1\xbf\xf1m\xdah`\xe5\x9e?\xd1\x9b\x1c\xd3v\xb3\xa7\xbf\x88\xcd\x1fOA\xea\x8d?D\xf5\x8bU\x17]\xbb?0\x03\xe9\xe0\xf1\xb6s?\x8d\xdcdAu\xff\xd3?I(`\xf5\xbeN\x9c?q\xcb^\xedn\xa4v\xbfW\xf2A.\xa4\x9a\x7f?\x0b\x80:j\x88\xb9\xa0\xbf\xaa~+U\xf5x\x98?\xaaE5F\'\xa9`?\x7f\xeb\xa3\xb5\x01~\x86?\x8c\xc0\x1d\xee\xf5\x95\xd4?\xd4^\xc5,Q\x93\xb9\xbfO\xe8\xa8iD\xc5\xcb\xbfj\x14\xeb\x9e\xfe\xbfl?U\x8e&\xb1&W\xcf\xbf\x8d\x93e\x01F\r\x96?\xd6\xc1\x95.E\xba\xcb\xbf(?\xd85\n\x0c\x8d?\xd5\t+\xa1e\xdf\xc9\xbfC\x8c\xedD\x15\xbf\x8a\xbf\xf4\xf9a\xf6\x057\xab\xbf\xc9)\xe5\xe7\xdc\xae\xac? \xd3\xcax\\\\\xb2\xbfo\xed!\xf0Y$\xb6?\xbe\xbf\xbc\x9a[w\x91\xbf)\x10\xf4\x16\xb1\xe3D?h\xf3\x82\xaf4\xbe\xb1\xbf\xde\xcc\xa2\xa9\'\xc0\xba\xbf\xce)\xaf\xb29\x1c\xaa\xbf\x11\xe7q\x90XJ\xb1\xbf\xb7\x05B\x88\xb4\x95\xc8\xbfc\xd1W\xf7f\xcf\x8a?i8\x17}\xd1\xd2\xbf?\xef\x95\xfb\xb4\x88\x87\xa7\xbfS\xc7\xfff\x01\xab\xd1?\xc1\xdc\x15\x08\x80\x0c\xb1\xbfT\x7f\xea\x96\x87\xd6\xd2?\xf7\xec\x19f\xebi\x98?\xf6\xbfS\x97\xd1O\xd2?\xd31z\xca\x91\xec\xb1?\x88\xb2\x10F\xe6\x19\xc1?\xd4S\xec\xd4F\xae\xa9?\xc6=\xda\xa1\xeb\t\xc0\xbfR\xc5\xc6X^v\xae?E\x86&\xa9\x1e\xd5\xcf?\xe9\xac\x93\xfc\xce\x05\xb7?\x99q\x135@\xbc\xd0?\xb6!g\xa6G\\\x90?\x9a\xa3\xa6|\xd60\xd0?\xab[\xdc\xda\x87\xe0\xb5\xbfV\xf8\xfc3d\xe4\xbc\xbfh\x8f\xc8\xdc\xa6\xea\xb0\xbf @\xfb\x91\x16\x01\xd5\xbf\xbb\xe0[q\xffZ\xbb\xbf\x87\x17\xb0\x9b\xad\xa3\xd4\xbf2n\xa6\xa7\x8cg`?\xd5\xe7\xa9\x04\xc6D\xd5\xbf\xe6\x91\xd4B\xdc\x9f\xb6?\xda\xd4W\xa86\x19\xa0\xbf\xe5\x8a+N\x96\x88\xce?\x9c\xce\x94VN\xbd\xa8\xbf\xee\x99WP\no\xb8\xbf\xc1\xe6\x07\xe3\xbd\x15z?\xe4\x82\x1b\xadt\xbd\xd0\xbf\x00\x8c\x11\x06*_\xab?0\x16\x9a\x0c6\\\x80\xbf\x8ex5\x1d/\x88[?J\xcd\x1e\xa4\xe5\xb4\xd2?y\x08=\x1d\xbc\xc9\x9f\xbfJ\x1aW\x06\xc4V\xc0?M\xfbh\xcd\x17\xa8\xa0\xbf\xeb\x1c\xff\xef\xa6[\xd2\xbfJ\x9cJ\x05"\x04\xb0\xbf~L\xdf\x1e\xeba\xc0?i\\d\xa8O\x07\xac?\x89\xcc\x92\xdagF\xd2?\x80#d\x91\x9a;\xbe?8TT:\xac\xd4\x92\xbf\x95\x81\xd7\x8f\x0b\xff\xb0?R\x97\xe1+|h\xd1\xbf\xea\x90\xda"~\xdf\xaa\xbf?^\xdd\x8de@\xbe\xbf\xfd\x9d\xe2Os\x94\x88\xbf\xf0\x1d\xcb.\xce|\xcd?T\x1d)\xab\xce\xff\xab?~\xd6\xbd\xdac\r\xd1\xbf[B\xac\xc8\xfbE\xb8?H\x91YG\x81\xce\x86\xbf0\x17\xd8\xdb?\xd1\xab?GQ\x7f\xd0\xf2R\xd2?f\x9eoY\xd1\xf5\x90\xbf\xc7\xa2]T\xb1h\xd0\xbf\x9c8B7\xf4\x85\xb8\xbfN\xf4n\xedUQ\xd2?\x14\xeeR\xbf\x96\xb1\x9f\xbfL$\x82\xf8\xb4\xc3\x8b\xbf}\xa4\xa7s\xe7C\xb7\xbf!\x85\x08\xf8X\x16\xd1\xbf\x903\x9c\x05\xcb\x88\xc3\xbf\xb3\x94\xe9\x81\xf2\xba\xb0\xbf\x00LA\x070\x8e\xb1\xbf_\x16\xac\xe9C\xf5\xcc\xbf\x13\x16\x94A\x99L\x8d?%Qo\xbft\xe9\xd0\xbfo\xb8\x82\xf3\xfa\x0b\x91?x\xa1\x98|\xf8\xbe\xcb\xbf\xca\xa8\xcb\x8dr\x9b\xa4?\xa3\x91\xf6\x1fX\x86\xd0\xbfp\xcfe\n\xee\xd3\xb6?\x88\xfbH\xd5\xb9\x15\xc7\xbf\x1b\xa3K;j\xf9\xc2?\xd1\xd9\x16_\xd1\xd2\xb3\xbf\xd6O\x96\xd4\xa1\xb2\xc5?\xb4\xad\x03\r^)\xc9?\xad\xc5\x1d\x16\xc4\xd3\xaa?\xea\xfc\x8f#\x114\xd6?\x94\xd9\xb7\x04\x95\xa0z?]\xde\x96\x8c\x14\xa3\xd8?\x00\x8e\xe3\xa0\x01y\xa7\xbf2\xf5\xe8\x84|\xc5\xd5?\r\xdb\x9f-\xf2\n\xca\xbf\x0c\xea\xb9\xff\xc9\xae\xc6?\x1e\xa2\x931\xd0v\xc1\xbf\x19k\xda\x03\xf8M\xb5\xbf)\xe1I91x\x95\xbf\x1dF\xe9\xaa\xc0\xd5\xbb\xbf*/A\xb1\xe2f\x8d\xbf\x06xP\x0e\xd6p\xb5\xbf\xcc\xfcyQ\xb5\xd3\x80\xbf\xbe\x08\xec\xa0\xd71\xbc\xbf&z\r \x85\x97\xbc?\xd92\xfcy\x87v\xb6\xbf\xccU}\xab\xca-\xbb?\x89\xfe\'\xa8\xaf\xdb\xb5?\xb3\xfc_\xe4dap\xbfU\xfdmy\xa9\xbb\xc0?\xee\x98\xc5>K\xb4\xb9\xbf\xaaZ\xf1$\xf6\xa7\xb9?4w\x85K\xf1tp?[m\xa5X\x0c\x05\xbc?\xcf\xcdF*\xb1\x00\xc4\xbfF\xce\xafN\x14\x7f\xcc\xbf\xcc~-D:\xc1\xc8\xbfA.\xec\xde\x1f\xf0\xb4?5\xb1P\xcb\x80\xac\xc9\xbf\xed\xfe\xf3\x97s\x84\x85?/\xf0\xa7\x1d\x9e"\xc8\xbf\x9c\xaa\x86\xfa\xa6\xaa\xb8\xbf\x10\xcc\xdd\xe4e\x12\xc7\xbf\xe4\x0e\xcc\xaa\x1b]\xc7?\xc268|\xd3\xaew?\x17\xc3]\x86\xa4\xc8\xb7\xbfj\xa8\x85\xa0\x0c\xb6\xd1\xbf~ZT\x14@\xce\xc1?\xc0\xf5\x84\xf0\xec=\xa8\xbf+@\xec\x1e\xb4\xa6\xb6\xbf:\xed\xb3\xd9\xea\xa3\xa3\xbf\xdal\xfc\x80\xee\x95\x89?\xdd\xd7\x83~\xd0<\xb0\xbfD\x88\xae\xe2bI\xb1?\x13\xbe\xa4\x0b]\x97\xd3\xbf>y\xa9\xba\xccM\xc4\xbf\x99\xd6\xd7\xa4\x88\x03\xa4?\xb2\xa2\x97\xef\xdd\n\xa0?\x0c\x88\x959\xfa\xf3\xd5?4h7\xbb\xf3\x16\xb7?\x9dW9\x03\x93i\xd3?\xb8\xf7\xc2\xf3\x13\x8e\x9d?ip\xe9]\xb9P\xd5?\xaa\x80Bk\xbaS\xb5\xbf\xd5\x9dg#l\xae\xa1?H\x1b\r\xe3\xc5\xa1\xa0\xbf x\x8b\xd1\xc7V\xca?\xbe\x02\x0b:Q*\xb8\xbf\x08\xcd\x98\xb3\x1e\xce\xc9?\x8f\x93\x08M\xa1\x92\x95?\xdb\xfb\x8c\xb3\x12&\xc7?\x9c-\x82j\x8d%\xb8?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I40 +tp132 +g22 +I00 +S'\xc7\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0h\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0\'?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xcaI\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xef\xe4\xd1\x02Z\xdd5@k\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc1\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc2\xcb9\x00\xb7\xc94@Je\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@=5\x8au\x1fW\xb8\xbf=n\xa4\x1e\xd6\x8dA@\xb6re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf8\xf3"H\xd4\x10K\xc00t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x19\xd8m\xb1\xb9@ \xc0\x0c\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x90\x10\xb0s\xf5C\xf2\xbf,~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@\x80\xf4A\x95\xd2\x8c\x1d\xc0\x8c=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xfeb\xe4\t\xe6\xda\xee\xbf\xed\xd0/`\x82\xcf\x18@\t_\xb7ozv6\xc0' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I7 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_nose_14 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_nose_14 new file mode 100644 index 0000000000000000000000000000000000000000..06603a3920063addf4756686e20c1f9fef09efcd --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_nose_14 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I18 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xa4\xc7\x95\xee\x19~\xe3\xbf\x0f$\xbf\xde"Ps\xbf\x18\x87.z\xe33\xd9\xbf\xc0\xe1\xc6\x02J\xa8g\xbf\x91\xedjL\x1a\x12\xc7\xbfg\xe0\x9f\x9b\xd2h=\xbf\x8c{\x8b\x0f\xa1o\xa4?\xb29\xfb4@mi?I\xaf8@\xdb\xee\xc8?\x87Z\xf8\x047\xd4\xd0\xbf\xc2\xb6}\xa5\xe8\xd0\xce?&\x0b\xeb\xd1Y\xfd\xc0\xbfl\x18\x1c\x84\x85\xca\xd1?\xca\xa5\x02\x04\xf5\x8ff?J\xe3\xac\xbd\xbdS\xce?\x8a\xc8\x87V\xb9\xb5\xc1?;\xc1\xa0\x0b\xd4\xad\xc8? r_,\xf8\x9b\xd0?\x12$\xbf\xde"Ps?\xa2\xc7\x95\xee\x19~\xe3\xbf\xc3\xe1\xc6\x02J\xa8g?\x18\x87.z\xe33\xd9\xbft\xe0\x9f\x9b\xd2h=?\x91\xedjL\x1a\x12\xc7\xbf\xb19\xfb4@mi\xbf\x8c{\x8b\x0f\xa1o\xa4?\x87Z\xf8\x047\xd4\xd0?I\xaf8@\xdb\xee\xc8?&\x0b\xeb\xd1Y\xfd\xc0?\xc1\xb6}\xa5\xe8\xd0\xce?\xcd\xa5\x02\x04\xf5\x8ff\xbfl\x18\x1c\x84\x85\xca\xd1?\x8a\xc8\x87V\xb9\xb5\xc1\xbfH\xe3\xac\xbd\xbdS\xce? r_,\xf8\x9b\xd0\xbf:\xc1\xa0\x0b\xd4\xad\xc8?VUUUUU\xd5\xbf\x8d}\xe9\xb5\xaa\x7f\xcb\xbcXUUUUU\xd5\xbf\xfbg\x83|G\xa8\xc1\xbcVUUUUU\xd5\xbf\x9d\x97\x12\x12\x06+\xb0\xbcUUUUUU\xd5\xbf\x81\x94\xed\xc6\x88\x8a\x8c+\xc0\x81\x12j@\xdf\xa7\x14\xc0\xf0'\xb8\xc1!\xbeF@\x9d\x17\x16h|\x9eB\xc04\xe9\x1fW\x06\xbcG@\x90\xd0\xab\xb8:\xad2\xc0C\xf0\xb0\xad\xc1rH@\xf72\xd4\xc2N\x81l?\x1e\xcb\xcf*\xb7\xd8F@\xaf\xb54\xb8\x8d\xb54@n\x90\xaf\xf7+{D@\xe3v\xdf\x92\xb0\xf9C@" +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I14 +tp113 +g22 +I00 +S'\xeeu\xb3\xf6dWo@\x14\x18\xd8\xf5,\xbcm@\xfd\x08\xc2\xc5Z\xc9^@\xd8\xd4\x9c\x1bC\xe51@\xff0k\xbd\xb3a.@q\xce\xcdi\xe5\xb7!@\xc7\x8f\xfe0\x18\xff\x02@\x0f\xf5d\xc0\xe3\xe7\xff?\x14U\xfa\xb6\xea-\xfc?\xab\xbe:\xca}\xb4\xf7?\xed$\x89\xf7\x9f\xf3\xf5?\xd6\x82\x10\xb3\x0fw\xf1?\xb2h\xbc7\xc8&\xe7?=\x12\xfe\xee\xf6\xb7\xe2?' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I1 +tp120 +g22 +I00 +S'\xc7;\xfb\x80\xec\xcc\xd0?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I14 +I18 +tp126 +g22 +I00 +S'\x19\xadM-\x8bQ{?\x86T\x01\x1c\xe9!\xd3?\xf6\x18w\xd9\xf3\x98\x9c\xbfT\x7f\xe9\xb4\xb9\xd4\x85\xbfWw\xc9\xccay\xa9\xbfJt\x0e?\xa9\xc8\xd7\xbf\xb1\xd6\xab{\x15H\xb1\xbf\r\x07_\xba\xc1\x99\xe7\xbf\xd5\xe30\xcc_\xf0\x88\xbf\xc0\xff~\xe8\x16\x85\xd6?\x1b\r\xcaeD\xa9\x9f?\xaa\xff=w\x08\xf1\xc1?i\xd2>\x95\xd0\x01v\xbf\xe6J\xa0\xa20\xee\x83?7Gz)t\x15\x8d?\xdf0h\xe9[\x97\xb4?;\xbb\xd1\t\x14g\xbc?i\xd7\xca\x83\x0b\x8c\xce?\xcf\xa9\xed\xb5\xc5\x8a\xd1\xbf?\x01\x93p"\x8a\xa2?F\xbb\xae\xf5:\x91\xac?\xdc\xc0\xa6tv5\x1b\xbf\xec\xc1Y\xbe\xeac\xd9?\xec0\x10\x8eh>\xa8\xbf\xf2\xbe\x1aw\xe7\x95\xe6?2\x89\xfcm\xdd\xc8\xb7\xbf\xaf\n\n\x91\xcd\xb1\xd2\xbf\xb1\x84\x105\x84\xe0\xb3\xbf(sG\xb0\xda\x94\xc1\xbf\xf2K\xcbh0\x03\xb3\xbf\xec\x85\xc8\xe3,.\x92\xbf\xe3\xabK\x870\xdbQ?\xb5 \x95\xc6\xf2\xda\xc3\xbf\x1e\x19\xf5\x1e\xd1\xa4\xb8?j\x90\xa2:\x84\n\xd2\xbf\xc8\xe9\x90K\xa2P\xc4?\xe8\xa4)\x8c\x13\x0b\xd8?\xef\xee;Z\x07\x1d\xa3?\x0e8\x8cd\xd4^\xc6?\xeaB\x13\xf3\xcaR\xfa\xea\x1e\xcb\xbf\xc9)\x11\x00\xa1\x0cp??m\x87\x13\xf7\x83\xe4\xbf\x17)\xeaE\xe5Hq\xbf\xc8=\xa0\xcaqw\xcc\xbf\xd7\x93\xa2\x16\x19e`\xbf\xcb\xeb\x98\xf5\xef\xa3\xda?v \xb6\rM\xc9\xc0?\xea\x19\xe3\x7f\xaa\x0bx?\x14rP\x17\x18\\\xd4\xbfP,\xc0R\x08\x8dl?\x01\x7f\xd4n\x1f\xdb\xc5\xbf\x1aJZ\xd5h\xa0\x89?y\x08\xe8\xbe\xb5\xc6\xa7\xbf{7\xae\x87\xc7ul?p@gu\xedz\xb6?\xf5d\xea\x0f_\xe9\xe1\xbf\xe4\x7f\x08\xf0\x94\xb0\xb2?\xbbI\x82/\xcc\xbe\xd1\xbfm\x86\xf1\x80\xc3\n\xb1?\x006\x02\x863\x19\xa2\xbf\x03\x01\x8a\x02\x87\x94\xb8?\xb5\xcdo\x0c9\xb7\xce?[\x9b\x9f\xda\xd2\xac\xb6?\x04\x1c\xc0T\xeel\xe3?g\xe7\xd3VZ\x92\xbf?\xd6\xed\xa7\xd7DA\x8c\xbf\x0b\x02>\x7fC\x01\xbe?\xec\x10<\x86\xd0\xdc}?\x82\xddO(\x95\x98\x9c?\x8b\\#{\xe2\xea\x8b?A\x8eC\xfc\xe9\r\xb4\xbf/\xafP\x81\xb8\xa1v\xbf>\xc16\xd5\xfa\xce\xc9\xbf\xfcbU0\xc9\xa1\xb0\xbf0G2\xf6|x\xdc\xbf\xd0\x8a`|\xf1.\xa1?\xee \x99\xc2AF\xc8?\xc7\xc7\xea\x120\x11\x8a\xbfEyL\x9b\x1a\t\xe6?+\xf8\x1fvGLq?\xfd\xf2Vt\xea$\xc3?4\xa6\xc4\x90\x99\x9d\xa3?}\xef\x86\xa40\xae\xdc\xbf\x9f\x99\x90\xed9]\xc8?\xb4\x1bb,\x8dD\x80?\xa7c\xdb\xce\xbaY\xc5\xbf \xe5\xeaZo/\x82?\xb3N\xeb\xc17\xf0\xcc\xbf\xc5\x1e\x8fN\x1f\xf0\x96\xbf\x80\xc2\xbf*\x93\xc0\xc9?p\x04\x91+\x1bH\x8e?\x1a8u\x0eiH\xb7?\xe5b\xcc\xb4\x90\xec\xc4\xbf\xa4b$\x9bT\x9c\xd2\xbf\x82m\x968\x88\xa1\xd4?q5\xd6\xa5\xdeb\xdf??\xafa\x91\xdd\xd4\x96?\xaa\xe2h\x80\xe9\xf7\xdc\xbf?\xaaS\x0b\xef]\xd6\xbf\xe7\xd9\xa9\xdc\xaf\xea\xc4?\xfd\xa9\xbe\x16\x05]\xc4?\xa9\xe3\xac\xb8U3\xda?-\xc4\xca&\xdd9\xa5?\xcf`q\x1f\xffO\xd8\xbf\xe6\x82a0\xd39\x9f\xbf\xe4\xfc\xb8\xab\x12R\xdf\xbf\xe0\x99\xc1BYx\xb3\xbf\x95\xda\xc2~\x1d\xbf\xde?7\xfa\x9b0\xdb"\xb0?\x95\xa2M\x17\xa3\xd4\xb6\xbf|\xa2\x8dP3G\x85\xbf\x97\xc8\xd3Q\x98\xd1\xcc?\xf7\x8a[cw5\x91?\x05\xe7\xb7\x07\xf2\xe7\xd2\xbfG\x0b"\xf5\xcb\xfb\xa4\xbfXV\x07M\xeb[\xcb?\x91\xa8\xae\x18\x98\x0f\xb2?w\x81\x9e\xb8!(\xb3\xbf\x18f\x14\x84J^\xa1\xbf\xaa]\x9b\x1b\x13\xd5\xc7\xbfh\x155\x19?\n\xa5??-.\xdd\xaek\xd3?UP\xf8\xf9\xa9\x84\x93\xbf\xc1\xd8\x82\x9f*\x0c\xa8\xbf\xaf2\x05\xcbD\xf7\xb9\xbf\xd2\xb0wd\xdd\x96\xab\xbf\xa9B(\xf4\x9f\xda\xb2?\x86\x9b\xbf\xfa9`\xc4\xbf\xd9Aja\x12\x99\xd1\xbf!Z\xcd\x95\xb5\xb3\xd1?\xa2\xac\xd6\xdd/\x83\xe2?>\x86\xc1\x95\x185\xcd\xbf\x8f\xfc\xae&\xc1\xbf\xc0\xbf\x8c\xe9\x8d\xdb\x06\xfe\xca?%\xf3~\xa5\xc1n\xd9\xbf\xe1\xac\xd3(P\xd3\xbd\xbf\xbc\xf0\x86\xa1\x01\x7f\xcd?\xda{ 1\x95\xeeg?\xcf\xd1\xde%"\'\x99\xbfJ\x02/\xc2\xc5<\xa1?\n\xaa:+\xc0\x82\x12j@\xdf\xa7\x14\xc0\xf2'\xb8\xc1!\xbeF@\x9f\x17\x16h|\x9eB\xc06\xe9\x1fW\x06\xbcG@\x92\xd0\xab\xb8:\xad2\xc0F\xf0\xb0\xad\xc1rH@t%\xd4\xc2N\x81l?!\xcb\xcf*\xb7\xd8F@\xb0\xb54\xb8\x8d\xb54@p\x90\xaf\xf7+{D@\xe4v\xdf\x92\xb0\xf9C@" +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I3 +tp113 +g22 +I00 +S'\xf5u\xb3\xf6dWo@\x16\x18\xd8\xf5,\xbcm@\xf9\x08\xc2\xc5Z\xc9^@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I12 +tp120 +g22 +I00 +S'\xd9\xd4\x9c\x1bC\xe51@\xf60k\xbd\xb3a.@t\xce\xcdi\xe5\xb7!@\xc3\x8f\xfe0\x18\xff\x02@\x1c\xf5d\xc0\xe3\xe7\xff?\x14T\xfa\xb6\xea-\xfc?\x8f\xbe:\xca}\xb4\xf7?\xcc$\x89\xf7\x9f\xf3\xf5?\xdc\x82\x10\xb3\x0fw\xf1?\xd3h\xbc7\xc8&\xe7?\xf4\x11\xfe\xee\xf6\xb7\xe2?k:\xfb\x80\xec\xcc\xd0?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I3 +I18 +tp126 +g22 +I00 +S'\xfe\xabM-\x8bQ{?\x85T\x01\x1c\xe9!\xd3?\x17\x19w\xd9\xf3\x98\x9c\xbf\x9c\x7f\xe9\xb4\xb9\xd4\x85\xbf]w\xc9\xccay\xa9\xbfKt\x0e?\xa9\xc8\xd7\xbf\x9f\xd6\xab{\x15H\xb1\xbf\r\x07_\xba\xc1\x99\xe7\xbf\xe1\xe30\xcc_\xf0\x88\xbf\xc8\xff~\xe8\x16\x85\xd6?-\r\xcaeD\xa9\x9f?\xb2\xff=w\x08\xf1\xc1?\xd6\xd1>\x95\xd0\x01v\xbf\x15K\xa0\xa20\xee\x83?WGz)t\x15\x8d?\xd20h\xe9[\x97\xb4?5\xbb\xd1\t\x14g\xbc?[\xd7\xca\x83\x0b\x8c\xce?\xce\xa9\xed\xb5\xc5\x8a\xd1\xbf2\x01\x93p"\x8a\xa2?\xf8\xba\xae\xf5:\x91\xac?4\xca\xa6tv5\x1b\xbf\xec\xc1Y\xbe\xeac\xd9?\xc80\x10\x8eh>\xa8\xbf\xf1\xbe\x1aw\xe7\x95\xe6?)\x89\xfcm\xdd\xc8\xb7\xbf\xab\n\n\x91\xcd\xb1\xd2\xbf\x8b\x84\x105\x84\xe0\xb3\xbf$sG\xb0\xda\x94\xc1\xbf\xdaK\xcbh0\x03\xb3\xbf\xed\x85\xc8\xe3,.\x92\xbf\xd8\xabK\x870\xdbQ?\xb2 \x95\xc6\xf2\xda\xc3\xbf\x04\x19\xf5\x1e\xd1\xa4\xb8?g\x90\xa2:\x84\n\xd2\xbf\xac\xe9\x90K\xa2P\xc4?\xe8\xa4)\x8c\x13\x0b\xd8?\x04\xef;Z\x07\x1d\xa3?\x068\x8cd\xd4^\xc6?\xe9C\x13\xf3\xca+\xc0\x82\x12j@\xdf\xa7\x14\xc0\xf3'\xb8\xc1!\xbeF@\x9d\x17\x16h|\x9eB\xc06\xe9\x1fW\x06\xbcG@\x90\xd0\xab\xb8:\xad2\xc0F\xf0\xb0\xad\xc1rH@\xda+\xd4\xc2N\x81l?!\xcb\xcf*\xb7\xd8F@\xaf\xb54\xb8\x8d\xb54@p\x90\xaf\xf7+{D@\xe3v\xdf\x92\xb0\xf9C@" +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I5 +tp113 +g22 +I00 +S'\xf5u\xb3\xf6dWo@\x18\x18\xd8\xf5,\xbcm@\xfd\x08\xc2\xc5Z\xc9^@\xd7\xd4\x9c\x1bC\xe51@\xfd0k\xbd\xb3a.@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I10 +tp120 +g22 +I00 +S'l\xce\xcdi\xe5\xb7!@\xc0\x8f\xfe0\x18\xff\x02@\x0b\xf5d\xc0\xe3\xe7\xff?|T\xfa\xb6\xea-\xfc?\xa4\xbe:\xca}\xb4\xf7?\xe7$\x89\xf7\x9f\xf3\xf5?\xd7\x82\x10\xb3\x0fw\xf1?\xach\xbc7\xc8&\xe7?}\x11\xfe\xee\xf6\xb7\xe2?\xd6:\xfb\x80\xec\xcc\xd0?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I5 +I18 +tp126 +g22 +I00 +S'\xed\xadM-\x8bQ{?\x87T\x01\x1c\xe9!\xd3?\xfa\x18w\xd9\xf3\x98\x9c\xbfs\x7f\xe9\xb4\xb9\xd4\x85\xbfvw\xc9\xccay\xa9\xbfMt\x0e?\xa9\xc8\xd7\xbf\xb0\xd6\xab{\x15H\xb1\xbf\x0c\x07_\xba\xc1\x99\xe7\xbf\x1b\xe40\xcc_\xf0\x88\xbf\xbe\xff~\xe8\x16\x85\xd6?+\r\xcaeD\xa9\x9f?\xa9\xff=w\x08\xf1\xc1?\xb3\xd1>\x95\xd0\x01v\xbf\xf9J\xa0\xa20\xee\x83?[Gz)t\x15\x8d?\xdf0h\xe9[\x97\xb4?2\xbb\xd1\t\x14g\xbc?j\xd7\xca\x83\x0b\x8c\xce?\xcf\xa9\xed\xb5\xc5\x8a\xd1\xbfI\x01\x93p"\x8a\xa2?J\xbb\xae\xf5:\x91\xac?N\xd4\xa6tv5\x1b\xbf\xed\xc1Y\xbe\xeac\xd9?\xea0\x10\x8eh>\xa8\xbf\xf1\xbe\x1aw\xe7\x95\xe6?.\x89\xfcm\xdd\xc8\xb7\xbf\xae\n\n\x91\xcd\xb1\xd2\xbf\xb5\x84\x105\x84\xe0\xb3\xbf&sG\xb0\xda\x94\xc1\xbf\xf0K\xcbh0\x03\xb3\xbf\xf0\x85\xc8\xe3,.\x92\xbf\x1a\xacK\x870\xdbQ?\xb5 \x95\xc6\xf2\xda\xc3\xbf\x1d\x19\xf5\x1e\xd1\xa4\xb8?k\x90\xa2:\x84\n\xd2\xbf\xc6\xe9\x90K\xa2P\xc4?\xe5\xa4)\x8c\x13\x0b\xd8?\xe1\xee;Z\x07\x1d\xa3?\x158\x8cd\xd4^\xc6?\x0cD\x13\xf3\xcaR\xfa\xea\x1e\xcb\xbf\xba)\x11\x00\xa1\x0cp??m\x87\x13\xf7\x83\xe4\xbf_(\xeaE\xe5Hq\xbf\xbf=\xa0\xcaqw\xcc\xbf^\x91\xa2\x16\x19e`\xbf\xd7\xeb\x98\xf5\xef\xa3\xda?y \xb6\rM\xc9\xc0?\x15\x1b\xe3\x7f\xaa\x0bx?\x16rP\x17\x18\\\xd4\xbf\xf0(\xc0R\x08\x8dl?\x06\x7f\xd4n\x1f\xdb\xc5\xbf"JZ\xd5h\xa0\x89?<\x08\xe8\xbe\xb5\xc6\xa7\xbfs7\xae\x87\xc7ul?^@gu\xedz\xb6?\xfbd\xea\x0f_\xe9\xe1\xbf\xdf\x7f\x08\xf0\x94\xb0\xb2?\xb3I\x82/\xcc\xbe\xd1\xbf\x91\x86\xf1\x80\xc3\n\xb1?\xa45\x02\x863\x19\xa2\xbf\xfb\x00\x8a\x02\x87\x94\xb8?\xb6\xcdo\x0c9\xb7\xce?W\x9b\x9f\xda\xd2\xac\xb6?\x01\x1c\xc0T\xeel\xe3?`\xe7\xd3VZ\x92\xbf?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I18 +tp132 +g22 +I00 +S'\xce<\xe8\xff\xf6\xb5Z\xc0Z\xfd\xba\x86\xfav\xea\xbf\xd2[\\\xbd\x87DQ\xc0t\xfc\xf5\xed{5\xe0\xbf\x10\xf81\xbc*\x9d?\xc0U\x8a~\x0fe&\xb4\xbf\x8c*\x1d\x8e\xee\x00\x1c@o\x96c\x06\xd5k\xe1?\x02i\xf6\x8f;\x15A@q\xd7\xc2l\x92\x0fG\xc0\x9c\xef7\xda\x1b\x1dE@\xf3s\x97\xd7\xf0G7\xc0Y\xc7T^\x16aH@e\x99\\\xde\xd3\xea\xde?\x7f\x03\xfe\x8fY\xc7D@(\xa8\xc7\x9d\x96D8@~d]\xae\xad\xe8@@\x9a\xf8.\x9a\x7f\xc2F@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I5 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_nose_7 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_nose_7 new file mode 100644 index 0000000000000000000000000000000000000000..538b86fc8c8a497d4ab8c07ad9b0d423735dddba --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_nose_7 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I18 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xa4\xc7\x95\xee\x19~\xe3\xbf\x12$\xbf\xde"Ps\xbf\x18\x87.z\xe33\xd9\xbf\xc3\xe1\xc6\x02J\xa8g\xbf\x91\xedjL\x1a\x12\xc7\xbfw\xe0\x9f\x9b\xd2h=\xbf\x8d{\x8b\x0f\xa1o\xa4?\xb29\xfb4@mi?I\xaf8@\xdb\xee\xc8?\x87Z\xf8\x047\xd4\xd0\xbf\xc2\xb6}\xa5\xe8\xd0\xce?&\x0b\xeb\xd1Y\xfd\xc0\xbfl\x18\x1c\x84\x85\xca\xd1?\xcc\xa5\x02\x04\xf5\x8ff?K\xe3\xac\xbd\xbdS\xce?\x8a\xc8\x87V\xb9\xb5\xc1?:\xc1\xa0\x0b\xd4\xad\xc8? r_,\xf8\x9b\xd0?\x17$\xbf\xde"Ps?\xa2\xc7\x95\xee\x19~\xe3\xbf\xc9\xe1\xc6\x02J\xa8g?\x18\x87.z\xe33\xd9\xbf\x8e\xe0\x9f\x9b\xd2h=?\x91\xedjL\x1a\x12\xc7\xbf\xb49\xfb4@mi\xbf\x8d{\x8b\x0f\xa1o\xa4?\x87Z\xf8\x047\xd4\xd0?I\xaf8@\xdb\xee\xc8?&\x0b\xeb\xd1Y\xfd\xc0?\xc1\xb6}\xa5\xe8\xd0\xce?\xd1\xa5\x02\x04\xf5\x8ff\xbfl\x18\x1c\x84\x85\xca\xd1?\x8a\xc8\x87V\xb9\xb5\xc1\xbfJ\xe3\xac\xbd\xbdS\xce? r_,\xf8\x9b\xd0\xbf9\xc1\xa0\x0b\xd4\xad\xc8?VUUUUU\xd5\xbf\xe3\xd2>\x0b\x00G\xca\xbcXUUUUU\xd5\xbf\xa6\x12.\'\xf2_\xc1\xbcVUUUUU\xd5\xbf\xe4\xd9\xcf\xce\xb6\xd1\xaf\xbcUUUUUU\xd5\xbf,?\x98q3\x15\x8c+\xc0\x80\x12j@\xdf\xa7\x14\xc0\xf3'\xb8\xc1!\xbeF@\x9d\x17\x16h|\x9eB\xc06\xe9\x1fW\x06\xbcG@\x90\xd0\xab\xb8:\xad2\xc0F\xf0\xb0\xad\xc1rH@\xf7.\xd4\xc2N\x81l?!\xcb\xcf*\xb7\xd8F@\xaf\xb54\xb8\x8d\xb54@p\x90\xaf\xf7+{D@\xe3v\xdf\x92\xb0\xf9C@" +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I7 +tp113 +g22 +I00 +S'\xf6u\xb3\xf6dWo@\x1a\x18\xd8\xf5,\xbcm@\xf6\x08\xc2\xc5Z\xc9^@\xd4\xd4\x9c\x1bC\xe51@\x041k\xbd\xb3a.@m\xce\xcdi\xe5\xb7!@\xb6\x8f\xfe0\x18\xff\x02@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I8 +tp120 +g22 +I00 +S'\x14\xf5d\xc0\xe3\xe7\xff?;T\xfa\xb6\xea-\xfc?\x96\xbe:\xca}\xb4\xf7?\xd2$\x89\xf7\x9f\xf3\xf5?\xe5\x82\x10\xb3\x0fw\xf1?\xe2h\xbc7\xc8&\xe7?\x9b\x11\xfe\xee\xf6\xb7\xe2?b;\xfb\x80\xec\xcc\xd0?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I7 +I18 +tp126 +g22 +I00 +S'C\xabM-\x8bQ{?\x86T\x01\x1c\xe9!\xd3?\xeb\x18w\xd9\xf3\x98\x9c\xbf\x15\x7f\xe9\xb4\xb9\xd4\x85\xbf\xf8v\xc9\xccay\xa9\xbfKt\x0e?\xa9\xc8\xd7\xbfb\xd6\xab{\x15H\xb1\xbf\x0e\x07_\xba\xc1\x99\xe7\xbf\xc9\xe40\xcc_\xf0\x88\xbf\xbb\xff~\xe8\x16\x85\xd6?\xe8\x0c\xcaeD\xa9\x9f?\xa6\xff=w\x08\xf1\xc1?\x84\xd2>\x95\xd0\x01v\xbf\xfbJ\xa0\xa20\xee\x83?\xb0Fz)t\x15\x8d?\xe90h\xe9[\x97\xb4?\x15\xbb\xd1\t\x14g\xbc?o\xd7\xca\x83\x0b\x8c\xce?\xce\xa9\xed\xb5\xc5\x8a\xd1\xbf\x05\x01\x93p"\x8a\xa2?\xf0\xba\xae\xf5:\x91\xac?J\xd0\xa6tv5\x1b\xbf\xeb\xc1Y\xbe\xeac\xd9?\x9b0\x10\x8eh>\xa8\xbf\xf6\xbe\x1aw\xe7\x95\xe6?\xd9\x88\xfcm\xdd\xc8\xb7\xbf\xac\n\n\x91\xcd\xb1\xd2\xbf\xb1\x84\x105\x84\xe0\xb3\xbf&sG\xb0\xda\x94\xc1\xbf\xecK\xcbh0\x03\xb3\xbf\xf3\x85\xc8\xe3,.\x92\xbf\xa0\xabK\x870\xdbQ?\xb6 \x95\xc6\xf2\xda\xc3\xbf\xfa\x18\xf5\x1e\xd1\xa4\xb8?l\x90\xa2:\x84\n\xd2\xbf\xa6\xe9\x90K\xa2P\xc4?\xe4\xa4)\x8c\x13\x0b\xd8?\xf2\xee;Z\x07\x1d\xa3?\x0e8\x8cd\xd4^\xc6?\xf9C\x13\xf3\xcaR\xfa\xea\x1e\xcb\xbfB*\x11\x00\xa1\x0cp??m\x87\x13\xf7\x83\xe4\xbf\xc8(\xeaE\xe5Hq\xbf\xbb=\xa0\xcaqw\xcc\xbf\xf7\x92\xa2\x16\x19e`\xbf\xde\xeb\x98\xf5\xef\xa3\xda?{ \xb6\rM\xc9\xc0?\xd0\x17\xe3\x7f\xaa\x0bx?\x1arP\x17\x18\\\xd4\xbft-\xc0R\x08\x8dl?\xf9~\xd4n\x1f\xdb\xc5\xbf\xf7LZ\xd5h\xa0\x89?]\x08\xe8\xbe\xb5\xc6\xa7\xbf\xdd,\xae\x87\xc7ul?S@gu\xedz\xb6?\x00e\xea\x0f_\xe9\xe1\xbf\xed\x7f\x08\xf0\x94\xb0\xb2?\xb1I\x82/\xcc\xbe\xd1\xbfx\x86\xf1\x80\xc3\n\xb1?d5\x02\x863\x19\xa2\xbf\x10\x01\x8a\x02\x87\x94\xb8?\xbb\xcdo\x0c9\xb7\xce?\x85\x9b\x9f\xda\xd2\xac\xb6?\x02\x1c\xc0T\xeel\xe3?;\xe7\xd3VZ\x92\xbf?\xed\xec\xa7\xd7DA\x8c\xbf\x1b\x02>\x7fC\x01\xbe?\x04\x12<\x86\xd0\xdc}?\xa1\xddO(\x95\x98\x9c?\xf1X#{\xe2\xea\x8b?H\x8eC\xfc\xe9\r\xb4\xbf\x87\xaaP\x81\xb8\xa1v\xbf7\xc16\xd5\xfa\xce\xc9\xbf\xe0bU0\xc9\xa1\xb0\xbf0G2\xf6|x\xdc\xbf\xe4\x8a`|\xf1.\xa1?\xda \x99\xc2AF\xc8?a\xc8\xea\x120\x11\x8a\xbfFyL\x9b\x1a\t\xe6?\xab\xf7\x1fvGLq?\x06\xf3Vt\xea$\xc3?\x0e\xa6\xc4\x90\x99\x9d\xa3?\x7f\xef\x86\xa40\xae\xdc\xbfn\x9b\x90\xed9]\xc8?\x94\x19b,\x8dD\x80?ie\xdb\xce\xbaY\xc5\xbf5\xe8\xeaZo/\x82?\xb1P\xeb\xc17\xf0\xcc\xbfv \x8fN\x1f\xf0\x96\xbfv\xc4\xbf*\x93\xc0\xc9?\xd9\x05\x91+\x1bH\x8e?\x088u\x0eiH\xb7?\x80b\xcc\xb4\x90\xec\xc4\xbf\x94b$\x9bT\x9c\xd2\xbf"m\x968\x88\xa1\xd4?\x0f5\xd6\xa5\xdeb\xdf?e\xafa\x91\xdd\xd4\x96?=\xe2h\x80\xe9\xf7\xdc\xbf\xd3\xa9S\x0b\xef]\xd6\xbf\xb2\xd9\xa9\xdc\xaf\xea\xc4?\x8a\xa9\xbe\x16\x05]\xc4?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I18 +tp132 +g22 +I00 +S'\xce<\xe8\xff\xf6\xb5Z\xc0e\xfd\xba\x86\xfav\xea\xbf\xd1[\\\xbd\x87DQ\xc0x\xfc\xf5\xed{5\xe0\xbf\x10\xf81\xbc*\x9d?\xc0J\x8a~\x0fe&\xb4\xbf\x8d*\x1d\x8e\xee\x00\x1c@t\x96c\x06\xd5k\xe1?\x02i\xf6\x8f;\x15A@q\xd7\xc2l\x92\x0fG\xc0\x9c\xef7\xda\x1b\x1dE@\xf3s\x97\xd7\xf0G7\xc0Y\xc7T^\x16aH@\x82\x99\\\xde\xd3\xea\xde?\x80\x03\xfe\x8fY\xc7D@(\xa8\xc7\x9d\x96D8@}d]\xae\xad\xe8@@\x9a\xf8.\x9a\x7f\xc2F@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I7 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_nose_9 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_nose_9 new file mode 100644 index 0000000000000000000000000000000000000000..b8729df1e88394ab6a93fb9d13ba08e080aff309 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_nose_9 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I18 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xa0\xc7\x95\xee\x19~\xe3\xbf\x01$\xbf\xde"Ps\xbf\x1a\x87.z\xe33\xd9\xbf\xa8\xe1\xc6\x02J\xa8g\xbf\x93\xedjL\x1a\x12\xc7\xbf\x1b\xe0\x9f\x9b\xd2h=\xbf\x8d{\x8b\x0f\xa1o\xa4?\xb49\xfb4@mi?I\xaf8@\xdb\xee\xc8?\x88Z\xf8\x047\xd4\xd0\xbf\xc3\xb6}\xa5\xe8\xd0\xce?\'\x0b\xeb\xd1Y\xfd\xc0\xbfn\x18\x1c\x84\x85\xca\xd1?\xbc\xa5\x02\x04\xf5\x8ff?L\xe3\xac\xbd\xbdS\xce?\x8b\xc8\x87V\xb9\xb5\xc1?<\xc1\xa0\x0b\xd4\xad\xc8? r_,\xf8\x9b\xd0?\x0b$\xbf\xde"Ps?\xa2\xc7\x95\xee\x19~\xe3\xbf\xa7\xe1\xc6\x02J\xa8g?\x1a\x87.z\xe33\xd9\xbf\x1a\xe0\x9f\x9b\xd2h=?\x92\xedjL\x1a\x12\xc7\xbf\xb39\xfb4@mi\xbf\x8c{\x8b\x0f\xa1o\xa4?\x87Z\xf8\x047\xd4\xd0?I\xaf8@\xdb\xee\xc8?\'\x0b\xeb\xd1Y\xfd\xc0?\xc1\xb6}\xa5\xe8\xd0\xce?\xbc\xa5\x02\x04\xf5\x8ff\xbfn\x18\x1c\x84\x85\xca\xd1?\x8a\xc8\x87V\xb9\xb5\xc1\xbfJ\xe3\xac\xbd\xbdS\xce?\x1fr_,\xf8\x9b\xd0\xbf:\xc1\xa0\x0b\xd4\xad\xc8?VUUUUU\xd5\xbf8(\x94`Ul\xca\xbcYUUUUU\xd5\xbfP\xbd\xd8\xd1\x9cr\xc1\xbcVUUUUU\xd5\xbf\x8f\x84zya\xee\xaf\xbcUUUUUU\xd5\xbf\xd7\xe9B\x1c\xde_\x8c+\xc0\x81\x12j@\xdf\xa7\x14\xc0\xf2'\xb8\xc1!\xbeF@\x9f\x17\x16h|\x9eB\xc05\xe9\x1fW\x06\xbcG@\x92\xd0\xab\xb8:\xad2\xc0E\xf0\xb0\xad\xc1rH@t\x1d\xd4\xc2N\x81l? \xcb\xcf*\xb7\xd8F@\xb0\xb54\xb8\x8d\xb54@o\x90\xaf\xf7+{D@\xe4v\xdf\x92\xb0\xf9C@" +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I9 +tp113 +g22 +I00 +S'\xf3u\xb3\xf6dWo@\x18\x18\xd8\xf5,\xbcm@\xfc\x08\xc2\xc5Z\xc9^@\xd0\xd4\x9c\x1bC\xe51@\x011k\xbd\xb3a.@n\xce\xcdi\xe5\xb7!@\xce\x8f\xfe0\x18\xff\x02@\x1c\xf5d\xc0\xe3\xe7\xff?gS\xfa\xb6\xea-\xfc?' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I6 +tp120 +g22 +I00 +S'\xa0\xbe:\xca}\xb4\xf7?\xce$\x89\xf7\x9f\xf3\xf5?\xf6\x82\x10\xb3\x0fw\xf1?\xc5h\xbc7\xc8&\xe7?\xc6\x11\xfe\xee\xf6\xb7\xe2?8;\xfb\x80\xec\xcc\xd0?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I9 +I18 +tp126 +g22 +I00 +S'\xd7\xacM-\x8bQ{?\x89T\x01\x1c\xe9!\xd3?(\x19w\xd9\xf3\x98\x9c\xbf3\x7f\xe9\xb4\xb9\xd4\x85\xbf]w\xc9\xccay\xa9\xbfNt\x0e?\xa9\xc8\xd7\xbf\xb0\xd6\xab{\x15H\xb1\xbf\x0c\x07_\xba\xc1\x99\xe7\xbf\xdd\xe30\xcc_\xf0\x88\xbf\xc4\xff~\xe8\x16\x85\xd6?9\r\xcaeD\xa9\x9f?\xb1\xff=w\x08\xf1\xc1?\xb7\xd1>\x95\xd0\x01v\xbf\x0cK\xa0\xa20\xee\x83?qGz)t\x15\x8d?\xd30h\xe9[\x97\xb4?5\xbb\xd1\t\x14g\xbc?b\xd7\xca\x83\x0b\x8c\xce?\xcf\xa9\xed\xb5\xc5\x8a\xd1\xbf?\x01\x93p"\x8a\xa2?\xf9\xba\xae\xf5:\x91\xac?I\xcb\xa6tv5\x1b\xbf\xed\xc1Y\xbe\xeac\xd9?\xda0\x10\x8eh>\xa8\xbf\xf1\xbe\x1aw\xe7\x95\xe6?2\x89\xfcm\xdd\xc8\xb7\xbf\xac\n\n\x91\xcd\xb1\xd2\xbf\x9a\x84\x105\x84\xe0\xb3\xbf$sG\xb0\xda\x94\xc1\xbf\xe2K\xcbh0\x03\xb3\xbf\xe8\x85\xc8\xe3,.\x92\xbf\xa6\xabK\x870\xdbQ?\xb2 \x95\xc6\xf2\xda\xc3\xbf\r\x19\xf5\x1e\xd1\xa4\xb8?h\x90\xa2:\x84\n\xd2\xbf\xbb\xe9\x90K\xa2P\xc4?\xeb\xa4)\x8c\x13\x0b\xd8?\xfd\xee;Z\x07\x1d\xa3?\n8\x8cd\xd4^\xc6?)C\x13\xf3\xcaR\xfa\xea\x1e\xcb\xbf\x00(\x11\x00\xa1\x0cp?>m\x87\x13\xf7\x83\xe4\xbf\xb1)\xeaE\xe5Hq\xbf\xc6=\xa0\xcaqw\xcc\xbfb\x94\xa2\x16\x19e`\xbf\xd9\xeb\x98\xf5\xef\xa3\xda?\x83 \xb6\rM\xc9\xc0?/\x1a\xe3\x7f\xaa\x0bx?\x1crP\x17\x18\\\xd4\xbf\xae*\xc0R\x08\x8dl?\xfd~\xd4n\x1f\xdb\xc5\xbf\xfdJZ\xd5h\xa0\x89?\x02\x08\xe8\xbe\xb5\xc6\xa7\xbf\xa54\xae\x87\xc7ul??@gu\xedz\xb6?\xfad\xea\x0f_\xe9\xe1\xbf\xed\x7f\x08\xf0\x94\xb0\xb2?\xb8I\x82/\xcc\xbe\xd1\xbfw\x86\xf1\x80\xc3\n\xb1?\xa25\x02\x863\x19\xa2\xbf\x0c\x01\x8a\x02\x87\x94\xb8?\xb2\xcdo\x0c9\xb7\xce?h\x9b\x9f\xda\xd2\xac\xb6?\x05\x1c\xc0T\xeel\xe3?S\xe7\xd3VZ\x92\xbf?!\xee\xa7\xd7DA\x8c\xbf8\x02>\x7fC\x01\xbe?7\x12<\x86\xd0\xdc}?\x01\xddO(\x95\x98\x9c?C[#{\xe2\xea\x8b?r\x8eC\xfc\xe9\r\xb4\xbfV\xadP\x81\xb8\xa1v\xbf)\xc16\xd5\xfa\xce\xc9\xbf\xe0bU0\xc9\xa1\xb0\xbf1G2\xf6|x\xdc\xbf\xc9\x8a`|\xf1.\xa1?\xeb \x99\xc2AF\xc8?\x9d\xc8\xea\x120\x11\x8a\xbfDyL\x9b\x1a\t\xe6?\xa4\xf6\x1fvGLq?\n\xf3Vt\xea$\xc3?a\xa6\xc4\x90\x99\x9d\xa3?\x82\xef\x86\xa40\xae\xdc\xbf\xcc\x9d\x90\xed9]\xc8?)\x1bb,\x8dD\x80?\xc3g\xdb\xce\xbaY\xc5\xbfs\xec\xeaZo/\x82?5S\xeb\xc17\xf0\xcc\xbf\xcb%\x8fN\x1f\xf0\x96\xbf\x16\xc7\xbf*\x93\xc0\xc9?}\r\x91+\x1bH\x8e?\xe76u\x0eiH\xb7?\xf8a\xcc\xb4\x90\xec\xc4\xbf\xb5a$\x9bT\x9c\xd2\xbf\x7fl\x968\x88\xa1\xd4?J4\xd6\xa5\xdeb\xdf?\xc3\xb5a\x91\xdd\xd4\x96?\n\xe2h\x80\xe9\xf7\xdc\xbf\xed\xa9S\x0b\xef]\xd6\xbf\x8f\xd9\xa9\xdc\xaf\xea\xc4?}\xa9\xbe\x16\x05]\xc4?\xbb\xe3\xac\xb8U3\xda?o\xc0\xca&\xdd9\xa5?\x8faq\x1f\xffO\xd8\xbf\xf8wa0\xd39\x9f\xbf\xab\xfb\xb8\xab\x12R\xdf\xbf\xca\x99\xc1BYx\xb3\xbf\xf8\xd9\xc2~\x1d\xbf\xde?\x7f\xf9\x9b0\xdb"\xb0?\\\xa1M\x17\xa3\xd4\xb6\xbf\x12R\x8dP3G\x85\xbf\xeb\xc8\xd3Q\x98\xd1\xcc?\xdd7[cw5\x91?"\xe8\xb7\x07\xf2\xe7\xd2\xbfb\x01"\xf5\xcb\xfb\xa4\xbf\xecW\x07M\xeb[\xcb?\xdd\xb4\xae\x18\x98\x0f\xb2?\xa7\x81\x9e\xb8!(\xb3\xbf\xa7s\x14\x84J^\xa1\xbf\xceT\x9b\x1b\x13\xd5\xc7\xbf\xbe\n5\x19?\n\xa5?\xa9%.\xdd\xaek\xd3?\xe7;\xf8\xf9\xa9\x84\x93\xbf\xde\xc9\x82\x9f*\x0c\xa8\xbfz-\x05\xcbD\xf7\xb9\xbf\x84\xa5wd\xdd\x96\xab\xbf<>(\xf4\x9f\xda\xb2?\xe1\x9c\xbf\xfa9`\xc4\xbf\x9aBja\x12\x99\xd1\xbf\xb0[\xcd\x95\xb5\xb3\xd1?<\xad\xd6\xdd/\x83\xe2?\t\x8a\xc1\x95\x185\xcd\xbf^\xfb\xae&\xc1\xbf\xc0\xbf\xfa\xec\x8d\xdb\x06\xfe\xca?\xac\xf5~\xa5\xc1n\xd9\xbf(\xb0\xd3(P\xd3\xbd\xbf]\xf3\x86\xa1\x01\x7f\xcd?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I18 +tp132 +g22 +I00 +S'\xcc<\xe8\xff\xf6\xb5Z\xc0L\xfd\xba\x86\xfav\xea\xbf\xd2[\\\xbd\x87DQ\xc0e\xfc\xf5\xed{5\xe0\xbf\x11\xf81\xbc*\x9d?\xc0\n\x8a~\x0fe&\xb4\xbf\x8c*\x1d\x8e\xee\x00\x1c@t\x96c\x06\xd5k\xe1?\x02i\xf6\x8f;\x15A@q\xd7\xc2l\x92\x0fG\xc0\x9c\xef7\xda\x1b\x1dE@\xf4s\x97\xd7\xf0G7\xc0[\xc7T^\x16aH@k\x99\\\xde\xd3\xea\xde?\x80\x03\xfe\x8fY\xc7D@(\xa8\xc7\x9d\x96D8@~d]\xae\xad\xe8@@\x9a\xf8.\x9a\x7f\xc2F@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I9 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_2 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_2 new file mode 100644 index 0000000000000000000000000000000000000000..fe1d3951ff43aa67a93c9ee49c87750c32a57826 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_2 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I10 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\x80\xecY!\xaaO\xb0\xbf\x06\x8b\xc2W~H\xe4?D\xfe\xf3;$R\xb1?\xda\xc4\xf8\xc9C\xf0\xd3?\xceq\xee\xe8l\x13\xbd?\xaa\x81\x10\xbd\xc2B\x98\xbf\xc8\xeb&=\xdb[\xa8?L\xb5\xbc\xa1:^\xd6\xbf\xd6\xfc\rQ\xea!\xc5\xbf\xaa\x0e\xf8\xd5lO\xe2\xbf\x08\x8b\xc2W~H\xe4\xbfm\xecY!\xaaO\xb0\xbf\xd9\xc4\xf8\xc9C\xf0\xd3\xbfI\xfe\xf3;$R\xb1?\xb1\x81\x10\xbd\xc2B\x98?\xcaq\xee\xe8l\x13\xbd?J\xb5\xbc\xa1:^\xd6?\xb2\xeb&=\xdb[\xa8?\xa8\x0e\xf8\xd5lO\xe2?\xd9\xfc\rQ\xea!\xc5\xbf\xd0\xed\xbf\xc5%\x9f\xdc\xbfp\x08\x8f\xb1\xf2\xe9\x85\xbc\xd3\xed\xbf\xc5%\x9f\xdc\xbf\x08\x0b~\x1do\xf7\xa2\xbc\xd9\xed\xbf\xc5%\x9f\xdc\xbfJ\xd5\xd4\xc5\xa3\xfb\xa3\xbc\xe2\xed\xbf\xc5%\x9f\xdc\xbfP\xd6\xb7\xfeuC\x8e\xbc\xe7\xed\xbf\xc5%\x9f\xdc\xbf\xf6\x9eo\x13Z\xc1\xb3<\xc6R\xda\xc4\xd3\xf4\x9d<\xcc\xed\xbf\xc5%\x9f\xdc\xbfs^\xeei\xf5=\xaa<\xd3\xed\xbf\xc5%\x9f\xdc\xbf\xf2\x18&\x0b\xe2\xc5\xa0<\xd9\xed\xbf\xc5%\x9f\xdc\xbf\xd1\xd9\xf1\x16\x08\x15\x91\xbc\xde\xed\xbf\xc5%\x9f\xdc\xbf\xea\xf1\xcc\xf9X4\xb9\xbc\xe3\xed\xbf\xc5%\x9f\xdc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I10 +tp31 +g22 +I00 +S'\xb4\x9c\x04\x0fq\xf1\x1f@\xc0k\x8e\xb9`\xdcS\xc0\xea\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd7\xf6\x8d\x1eqx,\xc0\x0e\xbe\xf7oq\xc1\x07@\x97pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I5 +I2 +tp43 +g22 +I00 +S'\xb4\x9c\x04\x0fq\xf1\x1f@\xc0k\x8e\xb9`\xdcS\xc0\xea\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd7\xf6\x8d\x1eqx,\xc0\x0e\xbe\xf7oq\xc1\x07@\x97pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I2 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I5 +I2 +tp68 +g22 +I00 +S'\xba\x9c\x04\x0fq\xf1\x1f@\xc1k\x8e\xb9`\xdcS\xc0\xea\x9d\xb7\xde\xd0\xf5 \xc0l\xf6-u\xfc\x85C\xc0\xd9\xf6\x8d\x1eqx,\xc0\x0e\xbe\xf7oq\xc1\x07@\x9apt+\x04\xda\x17\xc0;\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd5\xe1\x00d\xd3\xedQ@' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x01\x00\x00\x00\x00\x00\xf0?\xc8C\xbfV\xa4\xf4\x8b\xbc\x00\x00\x00\x00\x00\x00\xe0\xb9\xf4Y\xdfg\x8f\x01\x84<\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I5 +I2 +tp89 +g22 +I00 +S'\xb4\x9c\x04\x0fq\xf1\x1f@\xc0k\x8e\xb9`\xdcS\xc0\xea\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd7\xf6\x8d\x1eqx,\xc0\x0e\xbe\xf7oq\xc1\x07@\x97pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I5 +I2 +tp106 +g22 +I00 +S')\xab\x923\x12\x84\xef?\x93${u0YT\xc0Ej>\x05\xd5\xf9\x15\xc0w9\xf4\xd1EfC\xc0\xc2\x99\xd7\x8f\xa5\xa6\x19\xc0\x9f\xd6\xbf\xf3]\x8c\t@\xed\x8f\xfb\xc6z\x04\x03\xc0\xf3\xcf\xf6t4gD@|\xbb\x10\xd9\x1a\x99*@\x93\xda[4V\x0cS@' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I2 +tp113 +g22 +I00 +S'6\x9f\x9e\x9fo,Z@\xbbB\xdb\x13\xabd=@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I5 +tp120 +g22 +I00 +S'\x0cL\xe6\xdb\xe5\x1e%@\xbc\xa5C\x91\xfb\x04\x17@\xe4\xf9-\xc8\xeb\xb6\x0e@\x01\xc4\x060o\xd3\xff?p\x16\x9f\xaaw(\xe8?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I2 +I10 +tp126 +g22 +I00 +S"\xe1\x02\xb3S\x85l\xdd?\xa1\xee\xd9\x91\xc1W\xb1?\x0b\x0bt\xce\xef\x9a\xc3\xbf~\xd2\x84\xc8\r\xedS\xbf\xc3\xf7IAj\xe1\xdf\xbf\xbe\xc5_\xdc:F\xbf?+\x9a\xfb\xcd'\xa9\xd2\xbf\xf0+*0\xf2E\xc8?\x93\x94\xcc\xa2\x84\xeb\xde?>\xfe\xda%\x8b6\xd8\xbf\xe0\xad\xec\xb8\x07G\xc3?\xf8\r\xf1u\xa3\xc8\xdd?s\x07\xe4\xf03\x17\xd4\xbf\xb4\x93g\x1by(\xcf\xbf|\xc7\xff\xaf\x92\x83\xd0\xbf:M\x8b\x92\x99\xd5\xd7\xbf\xe9k\xfe\xd1^\xe6\xd0?\xf9\x043'\x96\xa2\xd3\xbf%\x18\xde\xe4\xc7!\xc4?\x15\x0e\x81\xd1\xc8C\xdd?" +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I10 +tp132 +g22 +I00 +S'\xb4\x9c\x04\x0fq\xf1\x1f@\xc0k\x8e\xb9`\xdcS\xc0\xea\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd7\xf6\x8d\x1eqx,\xc0\x0e\xbe\xf7oq\xc1\x07@\x97pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I2 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_3 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_3 new file mode 100644 index 0000000000000000000000000000000000000000..2859f3a86a169cf38cd8163a79789dee86de5359 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_3 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I10 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S"\x80\xecY!\xaaO\xb0\xbf\x07\x8b\xc2W~H\xe4?C\xfe\xf3;$R\xb1?\xda\xc4\xf8\xc9C\xf0\xd3?\xcdq\xee\xe8l\x13\xbd?\xb0\x81\x10\xbd\xc2B\x98\xbf\xc5\xeb&=\xdb[\xa8?M\xb5\xbc\xa1:^\xd6\xbf\xd4\xfc\rQ\xea!\xc5\xbf\xa9\x0e\xf8\xd5lO\xe2\xbf\x07\x8b\xc2W~H\xe4\xbfm\xecY!\xaaO\xb0\xbf\xd7\xc4\xf8\xc9C\xf0\xd3\xbfF\xfe\xf3;$R\xb1?\xb3\x81\x10\xbd\xc2B\x98?\xc9q\xee\xe8l\x13\xbd?K\xb5\xbc\xa1:^\xd6?\xb2\xeb&=\xdb[\xa8?\xa7\x0e\xf8\xd5lO\xe2?\xd6\xfc\rQ\xea!\xc5\xbf\xd0\xed\xbf\xc5%\x9f\xdc\xbf\xa0\x1a\xcf\xeb\xccJ\x89\xbc\xd3\xed\xbf\xc5%\x9f\xdc\xbf\x10\x16\xfc:\xde\xee\x9d\xbc\xd9\xed\xbf\xc5%\x9f\xdc\xbf\x94T\x8e?\xdb\x99\xa2\xbc\xe2\xed\xbf\xc5%\x9f\xdc\xbfp\x9a/\xc3\x11&y\xbc\xe6\xed\xbf\xc5%\x9f\xdc\xbf\xb0\x9c'\xcc>U\xb1<\r0\xe7O\x05\xbb\xa8<\xcb\xed\xbf\xc5%\x9f\xdc\xbfms\xcb\xb6\xe7\x1a\xa7<\xd3\xed\xbf\xc5%\x9f\xdc\xbf\x1cZMT\x85\xd6\xa2<\xd9\xed\xbf\xc5%\x9f\xdc\xbf.\xb0\xc5,\xc6\xed\x91\xbc\xde\xed\xbf\xc5%\x9f\xdc\xbf\xb7\xd7|\xf7P\xf5\xb7\xbc\xe3\xed\xbf\xc5%\x9f\xdc\xbf" +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I10 +tp31 +g22 +I00 +S'\xbb\x9c\x04\x0fq\xf1\x1f@\xc1k\x8e\xb9`\xdcS\xc0\xe9\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0;\x8eI\t\x00\xe7E@k\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I5 +I2 +tp43 +g22 +I00 +S'\xbb\x9c\x04\x0fq\xf1\x1f@\xc1k\x8e\xb9`\xdcS\xc0\xe9\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0;\x8eI\t\x00\xe7E@k\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I3 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I5 +I2 +tp68 +g22 +I00 +S'\xc8\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xe4\x9d\xb7\xde\xd0\xf5 \xc0l\xf6-u\xfc\x85C\xc0\xd5\xf6\x8d\x1eqx,\xc0\x16\xbe\xf7oq\xc1\x07@\x9bpt+\x04\xda\x17\xc0<\x8eI\t\x00\xe7E@g\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\xff\xff\xff\xff\xff\xff\xef?\xd0\x1e;_v\t\xa7\xbc\x00\x00\x00\x00\x00\x00\xe0\xb9\xa8\xf4\xd42G\x06\x84\xbc\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I5 +I2 +tp89 +g22 +I00 +S'\xbb\x9c\x04\x0fq\xf1\x1f@\xc1k\x8e\xb9`\xdcS\xc0\xe9\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0;\x8eI\t\x00\xe7E@k\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I5 +I2 +tp106 +g22 +I00 +S'B\xab\x923\x12\x84\xef?\x93${u0YT\xc0Dj>\x05\xd5\xf9\x15\xc0w9\xf4\xd1EfC\xc0\xc2\x99\xd7\x8f\xa5\xa6\x19\xc0\xa6\xd6\xbf\xf3]\x8c\t@\xf0\x8f\xfb\xc6z\x04\x03\xc0\xf3\xcf\xf6t4gD@{\xbb\x10\xd9\x1a\x99*@\x93\xda[4V\x0cS@' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I3 +tp113 +g22 +I00 +S'6\x9f\x9e\x9fo,Z@\xbaB\xdb\x13\xabd=@\rL\xe6\xdb\xe5\x1e%@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I4 +tp120 +g22 +I00 +S'\xbd\xa5C\x91\xfb\x04\x17@\xd7\xf9-\xc8\xeb\xb6\x0e@\x04\xc4\x060o\xd3\xff?z\x16\x9f\xaaw(\xe8?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I3 +I10 +tp126 +g22 +I00 +S"\xe1\x02\xb3S\x85l\xdd?\x9d\xee\xd9\x91\xc1W\xb1?\x13\x0bt\xce\xef\x9a\xc3\xbf\xfe\xd0\x84\xc8\r\xedS\xbf\xc0\xf7IAj\xe1\xdf\xbf\xc2\xc5_\xdc:F\xbf?-\x9a\xfb\xcd'\xa9\xd2\xbf\xf0+*0\xf2E\xc8?\x94\x94\xcc\xa2\x84\xeb\xde?A\xfe\xda%\x8b6\xd8\xbf\xde\xad\xec\xb8\x07G\xc3?\xf6\r\xf1u\xa3\xc8\xdd?q\x07\xe4\xf03\x17\xd4\xbf\xb1\x93g\x1by(\xcf\xbf|\xc7\xff\xaf\x92\x83\xd0\xbf:M\x8b\x92\x99\xd5\xd7\xbf\xe7k\xfe\xd1^\xe6\xd0?\xf6\x043'\x96\xa2\xd3\xbf*\x18\xde\xe4\xc7!\xc4?\x14\x0e\x81\xd1\xc8C\xdd?>#\xad\xf3\xfc(\xd4\xbfI\xdeq\xe1\\[\xcb?3\xb0\xb4E\xf0\xd0\xd9?\xb9\xf1\x13\xcd~\xb9\xa2\xbf\xd0\x1c\x11 oZ\xc1?\xc4\xabv\x87w\x0e\xd8\xbf \x19\x06E\xa6@\xe3\xbf\xa7\xb9\xee\xc0\x06\x93\xa4?\xeb\x16\xfc\xa7!,\xd8?D\xc7\x8400K\xc4?" +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I10 +tp132 +g22 +I00 +S'\xbb\x9c\x04\x0fq\xf1\x1f@\xc1k\x8e\xb9`\xdcS\xc0\xe9\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0;\x8eI\t\x00\xe7E@k\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I3 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_4 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_4 new file mode 100644 index 0000000000000000000000000000000000000000..4df34fe61095502a48e5837a8f43387a00f6d652 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_4 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I10 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'p\xecY!\xaaO\xb0\xbf\x05\x8b\xc2W~H\xe4?C\xfe\xf3;$R\xb1?\xd9\xc4\xf8\xc9C\xf0\xd3?\xcbq\xee\xe8l\x13\xbd?\xae\x81\x10\xbd\xc2B\x98\xbf\xc4\xeb&=\xdb[\xa8?L\xb5\xbc\xa1:^\xd6\xbf\xd3\xfc\rQ\xea!\xc5\xbf\xa9\x0e\xf8\xd5lO\xe2\xbf\x07\x8b\xc2W~H\xe4\xbfm\xecY!\xaaO\xb0\xbf\xd9\xc4\xf8\xc9C\xf0\xd3\xbfJ\xfe\xf3;$R\xb1?\xb5\x81\x10\xbd\xc2B\x98?\xc9q\xee\xe8l\x13\xbd?K\xb5\xbc\xa1:^\xd6?\xb2\xeb&=\xdb[\xa8?\xa8\x0e\xf8\xd5lO\xe2?\xd8\xfc\rQ\xea!\xc5\xbf\xce\xed\xbf\xc5%\x9f\xdc\xbf\xa1\xbc\xe0\xed\xbf\xc5%\x9f\xdc\xbf6\xd6&\xa0e\xe8p<\xe4\xed\xbf\xc5%\x9f\xdc\xbfh\x85\r\xd9\x03\x0f\xb2<[\xc7/G\r\xf0\x83<\xcc\xed\xbf\xc5%\x9f\xdc\xbf\xb5\xa9\xa0h\xc3\xec\xa0<\xd2\xed\xbf\xc5%\x9f\xdc\xbfw\xedV{\x85\xd2\x9e<\xd9\xed\xbf\xc5%\x9f\xdc\xbfm\xad\x9b\xfd\x93\xef\x8a\xbc\xe1\xed\xbf\xc5%\x9f\xdc\xbf2\xbd\xc3k\x81\x1e\xba\xbc\xe2\xed\xbf\xc5%\x9f\xdc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I10 +tp31 +g22 +I00 +S'\xba\x9c\x04\x0fq\xf1\x1f@\xc1k\x8e\xb9`\xdcS\xc0\xea\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0;\x8eI\t\x00\xe7E@k\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I5 +I2 +tp43 +g22 +I00 +S'\xba\x9c\x04\x0fq\xf1\x1f@\xc1k\x8e\xb9`\xdcS\xc0\xea\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0;\x8eI\t\x00\xe7E@k\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I4 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I5 +I2 +tp68 +g22 +I00 +S'\xbc\x9c\x04\x0fq\xf1\x1f@\xc3k\x8e\xb9`\xdcS\xc0\xec\x9d\xb7\xde\xd0\xf5 \xc0m\xf6-u\xfc\x85C\xc0\xda\xf6\x8d\x1eqx,\xc0\x15\xbe\xf7oq\xc1\x07@\x96pt+\x04\xda\x17\xc0>\x8eI\t\x00\xe7E@n\xbf\xbe\xc5E\xb14@\xd6\xe1\x00d\xd3\xedQ@' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x02\x00\x00\x00\x00\x00\xf0?\xb6\x13\xb2UL\x05x<\x00\x00\x00\x00\x00\x00\xe0\xb9\xcc\x9d\xa3m\x8a\xf9w<\x02\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\x00:\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I5 +I2 +tp89 +g22 +I00 +S'\xba\x9c\x04\x0fq\xf1\x1f@\xc1k\x8e\xb9`\xdcS\xc0\xea\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0;\x8eI\t\x00\xe7E@k\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I5 +I2 +tp106 +g22 +I00 +S'?\xab\x923\x12\x84\xef?\x94${u0YT\xc0Gj>\x05\xd5\xf9\x15\xc0x9\xf4\xd1EfC\xc0\xc3\x99\xd7\x8f\xa5\xa6\x19\xc0\xa4\xd6\xbf\xf3]\x8c\t@\xec\x8f\xfb\xc6z\x04\x03\xc0\xf4\xcf\xf6t4gD@\x80\xbb\x10\xd9\x1a\x99*@\x94\xda[4V\x0cS@' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I4 +tp113 +g22 +I00 +S'8\x9f\x9e\x9fo,Z@\xbcB\xdb\x13\xabd=@\rL\xe6\xdb\xe5\x1e%@\xbc\xa5C\x91\xfb\x04\x17@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I3 +tp120 +g22 +I00 +S'\xe5\xf9-\xc8\xeb\xb6\x0e@\xff\xc3\x060o\xd3\xff?f\x16\x9f\xaaw(\xe8?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I4 +I10 +tp126 +g22 +I00 +S"\xdd\x02\xb3S\x85l\xdd?\x9e\xee\xd9\x91\xc1W\xb1?\x06\x0bt\xce\xef\x9a\xc3\xbf\xd2\xd1\x84\xc8\r\xedS\xbf\xc2\xf7IAj\xe1\xdf\xbf\xbd\xc5_\xdc:F\xbf?+\x9a\xfb\xcd'\xa9\xd2\xbf\xee+*0\xf2E\xc8?\x93\x94\xcc\xa2\x84\xeb\xde??\xfe\xda%\x8b6\xd8\xbf\xe9\xad\xec\xb8\x07G\xc3?\xf3\r\xf1u\xa3\xc8\xdd?x\x07\xe4\xf03\x17\xd4\xbf\xb3\x93g\x1by(\xcf\xbf{\xc7\xff\xaf\x92\x83\xd0\xbf2M\x8b\x92\x99\xd5\xd7\xbf\xf1k\xfe\xd1^\xe6\xd0?\xf8\x043'\x96\xa2\xd3\xbf\x1e\x18\xde\xe4\xc7!\xc4?\x11\x0e\x81\xd1\xc8C\xdd?>#\xad\xf3\xfc(\xd4\xbfV\xdeq\xe1\\[\xcb?+\xb0\xb4E\xf0\xd0\xd9?\xc9\xf1\x13\xcd~\xb9\xa2\xbf\xce\x1c\x11 oZ\xc1?\xc8\xabv\x87w\x0e\xd8\xbf!\x19\x06E\xa6@\xe3\xbfo\xb9\xee\xc0\x06\x93\xa4?\xed\x16\xfc\xa7!,\xd8?T\xc7\x8400K\xc4?\xf0\xfe\x19vF\xea\xb9\xbf\xb9\x1eb\xb7N8\xcf\xbf{\x01\xb0i\xbd\x19\xdd?\x0c\xaf\xd4\xe4z\xc5\xdd?n\xa6x\xf1\x07^\xe2\xbfH@&*\x11\xe5\x94\xbf]\xb3\x1b9y\x14\xc6?\xc4\xda`Z\xd5m\xd6\xbfR\x8b\xcf\xd1;\x95\xa8?8>\xbf\xc7\xa5%\xc3?" +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I10 +tp132 +g22 +I00 +S'\xba\x9c\x04\x0fq\xf1\x1f@\xc1k\x8e\xb9`\xdcS\xc0\xea\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0;\x8eI\t\x00\xe7E@k\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I4 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_5 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_5 new file mode 100644 index 0000000000000000000000000000000000000000..d153138d64585757431cfe38bc894981cb1001d8 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_5 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I10 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'p\xecY!\xaaO\xb0\xbf\x04\x8b\xc2W~H\xe4?A\xfe\xf3;$R\xb1?\xd7\xc4\xf8\xc9C\xf0\xd3?\xc9q\xee\xe8l\x13\xbd?\xad\x81\x10\xbd\xc2B\x98\xbf\xc2\xeb&=\xdb[\xa8?M\xb5\xbc\xa1:^\xd6\xbf\xd2\xfc\rQ\xea!\xc5\xbf\xa8\x0e\xf8\xd5lO\xe2\xbf\x05\x8b\xc2W~H\xe4\xbf{\xecY!\xaaO\xb0\xbf\xd8\xc4\xf8\xc9C\xf0\xd3\xbfB\xfe\xf3;$R\xb1?\xad\x81\x10\xbd\xc2B\x98?\xcaq\xee\xe8l\x13\xbd?M\xb5\xbc\xa1:^\xd6?\xc8\xeb&=\xdb[\xa8?\xa9\x0e\xf8\xd5lO\xe2?\xd2\xfc\rQ\xea!\xc5\xbf\xcd\xed\xbf\xc5%\x9f\xdc\xbf\x96\x90\xa7\x84\x96\xc7\xa3\xbc\xd2\xed\xbf\xc5%\x9f\xdc\xbf\xfc\xb6\x9d\xdd\xaa&\xa5\xbc\xd9\xed\xbf\xc5%\x9f\xdc\xbf\x85|\x12\x01\x89\xaf\x9f\xbc\xe0\xed\xbf\xc5%\x9f\xdc\xbf/\x88\x04\xe3\x1eT\x92<\xe4\xed\xbf\xc5%\x9f\xdc\xbf[v\x94t\xbd\xc9\xb7<\x92\xe6\xc0y\xd92\xa3<\xcd\xed\xbf\xc5%\x9f\xdc\xbf\x11J\xad\xa33\x99\xa3<\xd3\xed\xbf\xc5%\x9f\xdc\xbf\x83\x10Rk6W\xa1<\xd9\xed\xbf\xc5%\x9f\xdc\xbf\x93nd\x04q\x06p\xbc\xdf\xed\xbf\xc5%\x9f\xdc\xbf\x95gj\xdf\x1d\x04\xb7\xbc\xe2\xed\xbf\xc5%\x9f\xdc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I10 +tp31 +g22 +I00 +S'\xbb\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xe9\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0=\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I5 +I2 +tp43 +g22 +I00 +S'\xbb\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xe9\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0=\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I5 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I5 +I2 +tp68 +g22 +I00 +S'\xc0\x9c\x04\x0fq\xf1\x1f@\xc1k\x8e\xb9`\xdcS\xc0\xe6\x9d\xb7\xde\xd0\xf5 \xc0j\xf6-u\xfc\x85C\xc0\xd5\xf6\x8d\x1eqx,\xc0\x11\xbe\xf7oq\xc1\x07@\x96pt+\x04\xda\x17\xc0<\x8eI\t\x00\xe7E@j\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\xff\xff\xff\xff\xff\xff\xef?\xb8*\xf2h\x80\x0c\x94\xbc\x00\x00\x00\x00\x00\x00\x00\x00LH\xba\xec2\xdd\x83<\xff\xff\xff\xff\xff\xff\xef?\x00\x00\x00\x00\x00\x00\xe0\xb9\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I5 +I2 +tp89 +g22 +I00 +S'\xbb\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xe9\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0=\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I5 +I2 +tp106 +g22 +I00 +S'?\xab\x923\x12\x84\xef?\x94${u0YT\xc0Gj>\x05\xd5\xf9\x15\xc0x9\xf4\xd1EfC\xc0\xc3\x99\xd7\x8f\xa5\xa6\x19\xc0\xa4\xd6\xbf\xf3]\x8c\t@\xec\x8f\xfb\xc6z\x04\x03\xc0\xf4\xcf\xf6t4gD@\x80\xbb\x10\xd9\x1a\x99*@\x94\xda[4V\x0cS@' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I5 +tp113 +g22 +I00 +S'5\x9f\x9e\x9fo,Z@\xbaB\xdb\x13\xabd=@\x11L\xe6\xdb\xe5\x1e%@\xbb\xa5C\x91\xfb\x04\x17@\xe5\xf9-\xc8\xeb\xb6\x0e@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I2 +tp120 +g22 +I00 +S'\x0c\xc4\x060o\xd3\xff?n\x16\x9f\xaaw(\xe8?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I5 +I10 +tp126 +g22 +I00 +S"\xdc\x02\xb3S\x85l\xdd?\xa4\xee\xd9\x91\xc1W\xb1?\x08\x0bt\xce\xef\x9a\xc3\xbf\x1c\xd0\x84\xc8\r\xedS\xbf\xc2\xf7IAj\xe1\xdf\xbf\xbf\xc5_\xdc:F\xbf?+\x9a\xfb\xcd'\xa9\xd2\xbf\xed+*0\xf2E\xc8?\x92\x94\xcc\xa2\x84\xeb\xde?@\xfe\xda%\x8b6\xd8\xbf\xe1\xad\xec\xb8\x07G\xc3?\xf8\r\xf1u\xa3\xc8\xdd?t\x07\xe4\xf03\x17\xd4\xbf\xb3\x93g\x1by(\xcf\xbf|\xc7\xff\xaf\x92\x83\xd0\xbf:M\x8b\x92\x99\xd5\xd7\xbf\xe8k\xfe\xd1^\xe6\xd0?\xf5\x043'\x96\xa2\xd3\xbf%\x18\xde\xe4\xc7!\xc4?\x14\x0e\x81\xd1\xc8C\xdd?E#\xad\xf3\xfc(\xd4\xbfN\xdeq\xe1\\[\xcb?A\xb0\xb4E\xf0\xd0\xd9?\xf6\xf1\x13\xcd~\xb9\xa2\xbf\xa8\x1c\x11 oZ\xc1?\xc4\xabv\x87w\x0e\xd8\xbf\x1c\x19\x06E\xa6@\xe3\xbf\xca\xb9\xee\xc0\x06\x93\xa4?\xe7\x16\xfc\xa7!,\xd8?F\xc7\x8400K\xc4?\xd2\xfe\x19vF\xea\xb9\xbf\xc9\x1eb\xb7N8\xcf\xbfs\x01\xb0i\xbd\x19\xdd?\x11\xaf\xd4\xe4z\xc5\xdd?o\xa6x\xf1\x07^\xe2\xbf\x12@&*\x11\xe5\x94\xbfn\xb3\x1b9y\x14\xc6?\xca\xda`Z\xd5m\xd6\xbf7\x8b\xcf\xd1;\x95\xa8?6>\xbf\xc7\xa5%\xc3?o4\xf0\x8f+\xa9\xc8\xbf\xe6\x04\x9dq\x95\x0f\xcc??\x8d\x89\xf2\xb6\xfe\xd8?R\t\xf4fT\xf9\xd8\xbfA\xdf\xf5@\x9b\x11\xd6\xbf\xc3S\x1b\xe7\x91\x98\xc3\xbf8\rVN\x88\xe7\xd5?\xfd\xe7\xc1\x00p\xb8\xe0?\xfeA\xe3o\x1c\x00\xc9\xbfl>\xa1\xbf\x1af\xc9\xbf" +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I10 +tp132 +g22 +I00 +S'\xbb\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xe9\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0=\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I5 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_6 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_6 new file mode 100644 index 0000000000000000000000000000000000000000..4d84452a0913cb00a9fcf7f48a461bd4a468a162 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_brow_6 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I10 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'p\xecY!\xaaO\xb0\xbf\x07\x8b\xc2W~H\xe4?C\xfe\xf3;$R\xb1?\xd9\xc4\xf8\xc9C\xf0\xd3?\xcfq\xee\xe8l\x13\xbd?\xaa\x81\x10\xbd\xc2B\x98\xbf\xc4\xeb&=\xdb[\xa8?K\xb5\xbc\xa1:^\xd6\xbf\xd5\xfc\rQ\xea!\xc5\xbf\xa9\x0e\xf8\xd5lO\xe2\xbf\x08\x8b\xc2W~H\xe4\xbfc\xecY!\xaaO\xb0\xbf\xd9\xc4\xf8\xc9C\xf0\xd3\xbfF\xfe\xf3;$R\xb1?\xb0\x81\x10\xbd\xc2B\x98?\xceq\xee\xe8l\x13\xbd?I\xb5\xbc\xa1:^\xd6?\xb2\xeb&=\xdb[\xa8?\xa9\x0e\xf8\xd5lO\xe2?\xd7\xfc\rQ\xea!\xc5\xbf\xce\xed\xbf\xc5%\x9f\xdc\xbfp\x9b\xca\xe0\xb5tV\xbc\xd3\xed\xbf\xc5%\x9f\xdc\xbff\x01\x91N!N\x9f\xbc\xda\xed\xbf\xc5%\x9f\xdc\xbf\xd7\xf0\xb9\x19\xa7\x99\xa2\xbc\xe0\xed\xbf\xc5%\x9f\xdc\xbf\xfc;\x19\x9atxr\xbc\xe6\xed\xbf\xc5%\x9f\xdc\xbfh\x85\r\xd9\x03\x0f\xb2<\xe02\xc6)4\xa1\x86\xbc\xcb\xed\xbf\xc5%\x9f\xdc\xbf\x1cCj\x87\xf3\x1b\x9b<\xd2\xed\xbf\xc5%\x9f\xdc\xbf\xc9Y$Xs7\x9f<\xd8\xed\xbf\xc5%\x9f\xdc\xbf\x9bA!@\xda\xe3i\xbc\xdf\xed\xbf\xc5%\x9f\xdc\xbf\x1d%\x9e\x89\\\x04\xb3\xbc\xe4\xed\xbf\xc5%\x9f\xdc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I10 +tp31 +g22 +I00 +S'\xb4\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xea\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd9\xf6\x8d\x1eqx,\xc0\x0f\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@m\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I5 +I2 +tp43 +g22 +I00 +S'\xb4\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xea\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd9\xf6\x8d\x1eqx,\xc0\x0f\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@m\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I6 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I5 +I2 +tp68 +g22 +I00 +S'\x9d\x9c\x04\x0fq\xf1\x1f@\xc3k\x8e\xb9`\xdcS\xc0\xf1\x9d\xb7\xde\xd0\xf5 \xc0l\xf6-u\xfc\x85C\xc0\xdb\xf6\x8d\x1eqx,\xc0\x16\xbe\xf7oq\xc1\x07@\x87pt+\x04\xda\x17\xc0<\x8eI\t\x00\xe7E@t\xbf\xbe\xc5E\xb14@\xd5\xe1\x00d\xd3\xedQ@' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x01\x00\x00\x00\x00\x00\xf0?\x87\x17(uk\x81\xb4<\x00\x00\x00\x00\x00\x00\xf49\x1e\x16\xf6\xc3\xe9\xf0\xa8\xbc\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I5 +I2 +tp89 +g22 +I00 +S'\xb4\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xea\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd9\xf6\x8d\x1eqx,\xc0\x0f\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@m\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I5 +I2 +tp106 +g22 +I00 +S'\x19\xab\x923\x12\x84\xef?\x92${u0YT\xc0Hj>\x05\xd5\xf9\x15\xc0v9\xf4\xd1EfC\xc0\xc3\x99\xd7\x8f\xa5\xa6\x19\xc0\x9e\xd6\xbf\xf3]\x8c\t@\xf0\x8f\xfb\xc6z\x04\x03\xc0\xf2\xcf\xf6t4gD@}\xbb\x10\xd9\x1a\x99*@\x92\xda[4V\x0cS@' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I6 +tp113 +g22 +I00 +S'2\x9f\x9e\x9fo,Z@\xbaB\xdb\x13\xabd=@\x0cL\xe6\xdb\xe5\x1e%@\xb9\xa5C\x91\xfb\x04\x17@\xd6\xf9-\xc8\xeb\xb6\x0e@\xf9\xc3\x060o\xd3\xff?' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I1 +tp120 +g22 +I00 +S')\x16\x9f\xaaw(\xe8?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I6 +I10 +tp126 +g22 +I00 +S"\xdf\x02\xb3S\x85l\xdd?\x96\xee\xd9\x91\xc1W\xb1?\x0f\x0bt\xce\xef\x9a\xc3\xbf\xe8\xce\x84\xc8\r\xedS\xbf\xbb\xf7IAj\xe1\xdf\xbf\xc6\xc5_\xdc:F\xbf?,\x9a\xfb\xcd'\xa9\xd2\xbf\xf0+*0\xf2E\xc8?\x91\x94\xcc\xa2\x84\xeb\xde?A\xfe\xda%\x8b6\xd8\xbf\xfb\xad\xec\xb8\x07G\xc3?\xf3\r\xf1u\xa3\xc8\xdd?~\x07\xe4\xf03\x17\xd4\xbf\xb1\x93g\x1by(\xcf\xbf~\xc7\xff\xaf\x92\x83\xd0\xbf0M\x8b\x92\x99\xd5\xd7\xbf\xf2k\xfe\xd1^\xe6\xd0?\xf8\x043'\x96\xa2\xd3\xbf\x1d\x18\xde\xe4\xc7!\xc4?\x11\x0e\x81\xd1\xc8C\xdd?;#\xad\xf3\xfc(\xd4\xbff\xdeq\xe1\\[\xcb?+\xb0\xb4E\xf0\xd0\xd9?\x10\xf2\x13\xcd~\xb9\xa2\xbf\xbc\x1c\x11 oZ\xc1?\xc9\xabv\x87w\x0e\xd8\xbf\x1e\x19\x06E\xa6@\xe3\xbf\x86\xb9\xee\xc0\x06\x93\xa4?\xeb\x16\xfc\xa7!,\xd8?V\xc7\x8400K\xc4?\xec\xfe\x19vF\xea\xb9\xbf\xbe\x1eb\xb7N8\xcf\xbf|\x01\xb0i\xbd\x19\xdd?\x11\xaf\xd4\xe4z\xc5\xdd?o\xa6x\xf1\x07^\xe2\xbff@&*\x11\xe5\x94\xbf]\xb3\x1b9y\x14\xc6?\xcb\xda`Z\xd5m\xd6\xbf\x86\x8b\xcf\xd1;\x95\xa8?6>\xbf\xc7\xa5%\xc3?q4\xf0\x8f+\xa9\xc8\xbf\xec\x04\x9dq\x95\x0f\xcc?=\x8d\x89\xf2\xb6\xfe\xd8?C\t\xf4fT\xf9\xd8\xbf>\xdf\xf5@\x9b\x11\xd6\xbf\x15T\x1b\xe7\x91\x98\xc3\xbf2\rVN\x88\xe7\xd5?\x07\xe8\xc1\x00p\xb8\xe0?\xeeA\xe3o\x1c\x00\xc9\xbfn>\xa1\xbf\x1af\xc9\xbfA\xce\xf9\x84\x9d\xc7\xbd\xbf\x1d\x19\xd1\xf9_\x01\xc2?\x0b\x88T\xd5\xe2\xd8\xcd?\xc5R\x17\x91\xac\x99\xe0\xbf^eu\x90VB\xb2\xbf\x89\x199\xee\xe1\xe2\xe5?_,\xd7\xc1\r\x03\xbc\xbf\x00c\xc4;\x02\xa0\xd8\xbf\xe8O\x9d,<[\xb0?\xaf#a\x12\x9e3\xb4?" +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I10 +tp132 +g22 +I00 +S'\xb4\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xea\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd9\xf6\x8d\x1eqx,\xc0\x0f\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@m\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I6 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_eye_2 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_eye_2 new file mode 100644 index 0000000000000000000000000000000000000000..2d8acefc392ae0e52202130f38528ae5930b7728 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/basic_r_eye_2 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I12 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S"\xd0\xf6'\x90%\xbb\xb8\xbfA/\\\xc3[c\xe3?8\xd1\xce\xa7su\xc9?\xce\xe8\x1b\x91\x0b-\xcc?\xf9\x01\x86R\xaa\x12\xca?\xf1&N\xdd\x10\x7f\xca\xbf\xaa\x8a\xc309uq?\x8e-fd\xd4\xe0\xe1\xbfQ\x18\xf3\x91.\xc9\xc2\xbf\xb4\x81\xa1I\xa1\xdb\xce\xbf\xa8\xdb\xd3i\x06\xed\xc4\xbf\xd1\xb8\xfb\x19\x89#\xc7?B/\\\xc3[c\xe3\xbf\xd6\xf6'\x90%\xbb\xb8\xbf\xce\xe8\x1b\x91\x0b-\xcc\xbf9\xd1\xce\xa7su\xc9?\xf2&N\xdd\x10\x7f\xca?\xf9\x01\x86R\xaa\x12\xca?\x8f-fd\xd4\xe0\xe1?\x99\x8a\xc309uq?\xb6\x81\xa1I\xa1\xdb\xce?R\x18\xf3\x91.\xc9\xc2\xbf\xd2\xb8\xfb\x19\x89#\xc7\xbf\xa9\xdb\xd3i\x06\xed\xc4\xbfG,\x0cp\xbd \xda\xbf\xf4\xbd#\xbc\xcb\xe0\x94<<,\x0cp\xbd \xda\xbfr\xc2tu\xe2\xe2\xb1<:,\x0cp\xbd \xda\xbf*\xf5\xba\x0b\x06<\x92<7,\x0cp\xbd \xda\xbf'> |\x90w\xb1\xbc;,\x0cp\xbd \xda\xbf\x05\xa6\x89\x90f,\xae\xbcA,\x0cp\xbd \xda\xbf\xa8(q\xeeb\x12\x90\xbc\x9e\x12\xec\xff\xabs\xb3\xbcG,\x0cp\xbd \xda\xbfs\xb39\xe7\x93\xe3\xb0\xbcB,\x0cp\xbd \xda\xbfyO\x02:\xe0\x8bU\xbc;,\x0cp\xbd \xda\xbfe\x07go\x0f\x9e\xb4<8,\x0cp\xbd \xda\xbf\x0f\x8a\xa2\x15O\xb9\xb0\xd1\xce\xa7su\xc9?\xf3&N\xdd\x10\x7f\xca?\xf8\x01\x86R\xaa\x12\xca?\x8f-fd\xd4\xe0\xe1?K\x8a\xc309uq?\xb5\x81\xa1I\xa1\xdb\xce?T\x18\xf3\x91.\xc9\xc2\xbf\xd2\xb8\xfb\x19\x89#\xc7\xbf\xa8\xdb\xd3i\x06\xed\xc4\xbfI,\x0cp\xbd \xda\xbfxZcd\xa3\xcf\xa5<;,\x0cp\xbd \xda\xbf\xf2,HP\xf6\xac\xb3<:,\x0cp\xbd \xda\xbf\xd8\x98{q\x95\xc6p<7,\x0cp\xbd \xda\xbf\xd8\xd35\xb0\x10\xcf\xb6\xbc<,\x0cp\xbd \xda\xbf\xc9\xaal\x7fzz\xb2\xbcB,\x0cp\xbd \xda\xbf\x88\x7f\x980\xf3>l\xbck*iB\x90\xe3\xbb\xbcF,\x0cp\xbd \xda\xbf4\xc2e\xbc\xd9,\xb1\xbcA,\x0cp\xbd \xda\xbf\xa8#\xfb=w`o<8,\x0cp\xbd \xda\xbf\xd1:.\x85t\xa6\xb6<8,\x0cp\xbd \xda\xbf\xa3n\x00!Ci\xb1<>,\x0cp\xbd \xda\xbf\x98\xbd\xc7\xc1\xb2\xacd\x88\x1f\x8c\xbc\x00\x00\x00\x00\x00\x00\x00\x00\xa8\xdf\xe2ba>\x90<\xff\xff\xff\xff\xff\xff\xef?\x00\x00\x00\x00\x00\x00\xd09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I6 +I2 +tp89 +g22 +I00 +S'\x9c\xb56b\xa1\xbe\xd9\xca?\x06\x7f\xb61\xca0\xa6\xbf\xc2\x18\xadzx`\xc9?\xa7G1\xeda\r\xa5?\xef\x15\xac\x9d\xeb\xd3\xe2\xbf\x1bV\xce\xf7=\x9a\xb3\xbf\xab\xe6\x9f\x101\xf7\xd6?\xbfcT\x96\xb3@\xbb?l\x93\x11s\xa9\x0c\xd7?rk\xff]_\x19w?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I12 +tp132 +g22 +I00 +S'\x9c\xb56\xd1\xce\xa7su\xc9?\xf4&N\xdd\x10\x7f\xca?\xfb\x01\x86R\xaa\x12\xca?\x8f-fd\xd4\xe0\xe1?\x9b\x8a\xc309uq?\xb7\x81\xa1I\xa1\xdb\xce?T\x18\xf3\x91.\xc9\xc2\xbf\xd3\xb8\xfb\x19\x89#\xc7\xbf\xa9\xdb\xd3i\x06\xed\xc4\xbfI,\x0cp\xbd \xda\xbffO`\x08tG\xa7<;,\x0cp\xbd \xda\xbfT\x8e\xc8;\xfc}\xb4<:,\x0cp\xbd \xda\xbf\xad`]\xae\x8d\xed\x90<5,\x0cp\xbd \xda\xbfON4\x02\xf9\x8a\xb3\xbc;,\x0cp\xbd \xda\xbf+\x0c\xedj\x80K\xb2\xbcB,\x0cp\xbd \xda\xbf\xe2\x1f&\xcc\xbc\x0f\x87\xbc\xebF\xe3\xb5\x9a\xef\xb0\xbcF,\x0cp\xbd \xda\xbf6oC?F\xf3\xb5\xbc=,\x0cp\xbd \xda\xbf'U@\xbb\xa0\x1f\x8c\xbc7,\x0cp\xbd \xda\xbf#+\x95\xe5\x95!\xb7<6,\x0cp\xbd \xda\xbf/\xf4>p\xa4\x86\xb2<=,\x0cp\xbd \xda\xbfkD'\x0e\xfc\xd8d\xb5\x8a\xbc\x00\x00\x00\x00\x00\x00\xc09\x16\x8b\x85\x01*\xb9~\xbc\xff\xff\xff\xff\xff\xff\xef?\x00\x00\x00\x00\x00\x00\xd09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I6 +I2 +tp89 +g22 +I00 +S'\x9c\xb56b\xa1\xbe\xd9\xca?"~\xb61\xca0\xa6\xbf\xd2\x18\xadzx`\xc9?aH1\xeda\r\xa5?\xf4\x15\xac\x9d\xeb\xd3\xe2\xbf\x98V\xce\xf7=\x9a\xb3\xbf\xa8\xe6\x9f\x101\xf7\xd6?\xe8cT\x96\xb3@\xbb?d\x93\x11s\xa9\x0c\xd7?\xf9l\xff]_\x19w?mb\x0f\xd2\x9b\xf7\xcf?\x95YN;\x8e\xb0\xb9?\xa4BW\xe7\xa6\xa3\xc9\xbf]\xb9\xdc\xfa\x9a\xb3\xe0?\x93F\xb0\xb8\xa7y\xa4?\xf8\xb6\x1f\xb8\xef\xfe\xb9?sR\x83B?\xfc\xd3\xbf+H\x92e)J\xca?C?Mn\x16\xa1\xc0?W>\x8eF\xe4\xa5\xe0\xbfph\xaa{\x12\xca\xb7?E\x9eA\x98a,\xda\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I12 +tp132 +g22 +I00 +S'\x9c\xb56\xd1\xce\xa7su\xc9?\xce\xe8\x1b\x91\x0b-\xcc?\xf9\x01\x86R\xaa\x12\xca?\xf5&N\xdd\x10\x7f\xca\xbf\x9b\x8a\xc309uq?\x8e-fd\xd4\xe0\xe1\xbfS\x18\xf3\x91.\xc9\xc2\xbf\xb7\x81\xa1I\xa1\xdb\xce\xbf\xa8\xdb\xd3i\x06\xed\xc4\xbf\xd2\xb8\xfb\x19\x89#\xc7?B/\\\xc3[c\xe3\xbf\xd6\xf6'\x90%\xbb\xb8\xbf\xcd\xe8\x1b\x91\x0b-\xcc\xbfA\xd1\xce\xa7su\xc9?\xf7&N\xdd\x10\x7f\xca?\xf7\x01\x86R\xaa\x12\xca?\x8f-fd\xd4\xe0\xe1?\x19\x8a\xc309uq?\xb7\x81\xa1I\xa1\xdb\xce?V\x18\xf3\x91.\xc9\xc2\xbf\xd3\xb8\xfb\x19\x89#\xc7\xbf\xa9\xdb\xd3i\x06\xed\xc4\xbfH,\x0cp\xbd \xda\xbf`.r\xe6\xd9\xb7\x9d<:,\x0cp\xbd \xda\xbfc\xa8\x9eXo\xb0\xb4<9,\x0cp\xbd \xda\xbf\x15]\x08\xaa\x8ej\x95<5,\x0cp\xbd \xda\xbf;F*\xbfD\x81\xb1\xbc;,\x0cp\xbd \xda\xbf\xaa\x81\xd9\xbabj\xb2\xbcB,\x0cp\xbd \xda\xbf\x88YA\xd3\x14+\x92\xbc\x00a\\\x80\xf1\x1d\xb0\xbcH,\x0cp\xbd \xda\xbf_\x89\x8d\x10x \xb2\xbc=,\x0cp\xbd \xda\xbf:\xd5\xeb!\x92\r\x8a\xbc9,\x0cp\xbd \xda\xbf\xb3je\xfa\xbd\x9a\xb0<6,\x0cp\xbd \xda\xbf^\x07\x90z:\x9b\xaf<;,\x0cp\xbd \xda\xbf~4\xb6\x87/\xad\x8a<>,\x0cp\xbd \xda\xbf" +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I12 +tp31 +g22 +I00 +S'\x9f\xb56b\xa1\xbe\xd9\xca?\xad~\xb61\xca0\xa6\xbf\xab\x18\xadzx`\xc9?\xeaG1\xeda\r\xa5?\xef\x15\xac\x9d\xeb\xd3\xe2\xbfVV\xce\xf7=\x9a\xb3\xbf\xae\xe6\x9f\x101\xf7\xd6?\xe0cT\x96\xb3@\xbb?k\x93\x11s\xa9\x0c\xd7?\x87m\xff]_\x19w?Ub\x0f\xd2\x9b\xf7\xcf?\xb5YN;\x8e\xb0\xb9?\x87BW\xe7\xa6\xa3\xc9\xbfX\xb9\xdc\xfa\x9a\xb3\xe0?OF\xb0\xb8\xa7y\xa4?\x13\xb7\x1f\xb8\xef\xfe\xb9?vR\x83B?\xfc\xd3\xbf)H\x92e)J\xca?G?Mn\x16\xa1\xc0?U>\x8eF\xe4\xa5\xe0\xbf\x8fh\xaa{\x12\xca\xb7?O\x9eA\x98a,\xda\xbf\xc3\xf2\xcaH\x01\xe2\xb8\xbf@\xea\x87n\xdd(\xd2\xbfD\xea7;\x88\xdd\xb4\xbf\xb8T\xa6\xe6\x9a\xf6\xd4?\xcb\x05K?v\xb3\xa9\xbf\xdf\xec\x9da\x82\x00\xe4\xbf_J\x89\xa9\xe5\xd8\xa6?\xf3\x9f\x13\x04\xec`\xcd?p-\xdb\x84,\x1a\xb6?\xb5\xac\x1e;\x86u\xc8\xbfN\x8d\x08J\xa5\x12\xb9?\xd5zQ3\xca^\xe1?\xd1$M\xec"d\xc4\xbf\xce\xbf\xc3\xfc\xe3\xc2\xa3?sU\xe5\xfc\xb9T\xe4?\x0b\xb7\x8dMb\n\xc4?\x8b\xac}\x98\xc2\xc0\xe5\xbf2\xa0\xc6\xdb\xd9\xf4y\xbfzd\x7f\xcf\x1c\x9f\xc1?q\xe6\xe8\x88\xe4\x19\xb6?U<\xad\xfa\xa4\xf1\xbd?LN\xb1\x17\x00\x92\xba\xbf\xb9\x05\x9e\xc8\xa7\x0e\xaa\xbf\x13>|\xb6f\xef\xc5\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I12 +tp132 +g22 +I00 +S'\x9f\xb56b\xa1\xbe\xd9\xca?\xee~\xb61\xca0\xa6\xbf\xbe\x18\xadzx`\xc9?\xd5G1\xeda\r\xa5?\xf0\x15\xac\x9d\xeb\xd3\xe2\xbf?V\xce\xf7=\x9a\xb3\xbf\xab\xe6\x9f\x101\xf7\xd6?\xc8cT\x96\xb3@\xbb?j\x93\x11s\xa9\x0c\xd7?\xc2k\xff]_\x19w?^b\x0f\xd2\x9b\xf7\xcf?\xabYN;\x8e\xb0\xb9?\x8dBW\xe7\xa6\xa3\xc9\xbfZ\xb9\xdc\xfa\x9a\xb3\xe0?HF\xb0\xb8\xa7y\xa4?<\xb7\x1f\xb8\xef\xfe\xb9?rR\x83B?\xfc\xd3\xbf#H\x92e)J\xca?>?Mn\x16\xa1\xc0?Y>\x8eF\xe4\xa5\xe0\xbf\x8ah\xaa{\x12\xca\xb7?N\x9eA\x98a,\xda\xbf\xdb\xf2\xcaH\x01\xe2\xb8\xbf=\xea\x87n\xdd(\xd2\xbf%\xea7;\x88\xdd\xb4\xbf\xc0T\xa6\xe6\x9a\xf6\xd4?\x12\x06K?v\xb3\xa9\xbf\xdf\xec\x9da\x82\x00\xe4\xbf[J\x89\xa9\xe5\xd8\xa6?\x01\xa0\x13\x04\xec`\xcd?g-\xdb\x84,\x1a\xb6?\xd3\xac\x1e;\x86u\xc8\xbfx\x8d\x08J\xa5\x12\xb9?\xd4zQ3\xca^\xe1?\xb8$M\xec"d\xc4\xbf\xfa\xbf\xc3\xfc\xe3\xc2\xa3?xU\xe5\xfc\xb9T\xe4?\xd1\xb6\x8dMb\n\xc4?\x8b\xac}\x98\xc2\xc0\xe5\xbf\x8d\x9b\xc6\xdb\xd9\xf4y\xbfHd\x7f\xcf\x1c\x9f\xc1?t\xe6\xe8\x88\xe4\x19\xb6?>=\xad\xfa\xa4\xf1\xbd?\x94N\xb1\x17\x00\x92\xba\xbfi\x07\x9e\xc8\xa7\x0e\xaa\xbf\xe3=|\xb6f\xef\xc5\xbf\xa9\x14\xa7\xb8\xb8\x81\xab?\x90\xb2w\xf1\xef\xa5\xa7?\xbc\x8f\xd87\x13\xd2\xaa\xbfw\xb1\xee\xf5I\xb7\xd3?\xe9\xfc\xf6 \x93S\xb1?\xc3\xd0\xa9\xb0\xf4\x9a\xde\xbf\xf0\x7f-\xa4\x10\xe6\x93\xbf\x05\xefM\x83^\xa4\xa9\xbfj\x13J)\xa4\x8d\xc4?\xe5q\xa3H~\xf5\xe3?\x1d\x83s\x05\x95\xe6\xca\xbf\xf1\xfcP\x04\x84\xc7\xdc\xbf\xdcl\x9fa\xb6\xcd\xc8?\xda\xb6\xa7r\xc79K\xbf\x83Is \xe7\xcb\x91?\xb0\xdbQ/\xa4\x93\xc8\xbf)\xb7\xcf\xea\xa7b\x81?\xa6\xaf\xfc\x84\x97/\xb0?\xce\xdfI\xe2U0\xc8\xbfVM8\x9aP\xb7\x91?\x92\xc9M\xd0\xad\x15\xe4?\xc1ea`\xa5\xbb\xba\xbf\xfc\x05\xd2\xc8\xef\x10\xe5\xbf\xc9\xd4/\xd1\xfa\xbd\xcb?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I12 +tp132 +g22 +I00 +S'\x9f\xb56\xbf\xba@ef\x94{\xb0\xbf"\xe7\x80\xf2hu@\xbf0\x1f\xbf\x0c\x92\xf3\xa3\xbf\xa4\x8c)\xfb#=B\xbfB\xe7\x7f\xe5C.\x8a\xbf>\xa9H\x12-\xebC\xbf<\n\x84\x1c\xc5bt?)\xa9\x9a5`\xd0\xa1\xbf\xdeL\x1c\xe6\x925\x85?\xff+\x98\xa5\x1c\xa2\x92\xbf\xbe\x17\x05y*\xb1\x8e?X\xc0zdF\xe12\xbf\xa5\r*\x9b\x16\x04\x85?w_x\x90=\x06\x92?\xbe\x0c>\x08W\xc6s?~\xed&\x90\xca~\xa1?W{*\xbdC\xa7\xb5\xbf\xae\xb65w\x81R\xb9\xbf\x84\x97Z\x0f\xfaa\xb8\xbf\x06i\x9fX\x98\x10\xb5\xbf\x13\xd0\xb1\x06\xc0N\xb8\xbf\n\xda\xf4\x8a;\xe0\xaf\xbf\x08\xdb\xb9\x07\xaa\x85\xb4\xbf\xc2\t\xf34\xb9\xdd\xa6\xbf!\xe1\x1b\xc4d\x8e\xb3\xbf\xe7"EH[@\xb0\xbf{r\x18FP\xa2\xb3\xbf\xdd\x13I\xd4RY\xb5\xbfx\x08\n\xd3|\x8a\xb4\xbf\x1e\x00\x0b\xc1\x94\xa5\xa6?\xf2\xd2g@\x95S\xb8\xbfS\xa4\xf4\x90-\xa3\xaf?\xd7\x9aSmSf\xb8\xbf\xff\xd8\x8ek\xad\xf1\xb4?<\xab\xf7A\xf6\xa9\xb5\xbf%V\x0c\xf9o8\xb9?\xeb\xcf5\xccm\xa7\xb3\xbf\xc0\xc6~+\xefB\xb5?zB]\x80\x05\x93\xb3\xbf\xaaz0\xca\xb9\'\xb0?\x1a2\t\x99\xebT\xb1?@e\xff\xe9\x14\x06\xaf\xbf\x9dR\xfa\xd4\x92\x19\xae?\\)\x05\x9d~\x80\xa3\xbfA\xbb\xad\xf2\xf6\xa3\xab?;\xfd\x9e^l\x8e\x8f\xbf\xf0\xbfoU3\xa4\xad?{\x93\x9b\xd9\xffJ4?3\x85\x92\xba\x87\x97\xab?\xdb\x8b\x81\xbdaz\x90?:0$3\xf2\xfd\xad?4\x18+\x98\xfc\xe7\xa3?\xa2\xf6]R*N\xb1?\xe0\x84\xd6o\x96k\xaf?F\xc0\t\x89n\xda\xb6?\xa1\x14\xba\xa9\xe6O\xa4?\xc8W\x1a\x8d\xc8H\xb9?[E\x0e\xfd\x04\xff\x91?\x8e9\xc8\x8c\t\xc0\xb9?\xa7\xce\xde\x89\xa0\xc8:?v\x8fWQ\xd3N\xb9?\xd9E\xea\xf5\t\x1c\x91\xbf\xed\xd5\xebh\xd8\xe7\xb6?\xd9\xfe\xa5\xb0Q\xd5\xa3\xbf\x1d\xd6\xc5VY\xa3\xb1?\xa9\xb3\xf9\xe2\xcdA\xaa\xbfC\xa1\xe3\xfbV7\xb1?\xf9\x18\xe1\xc7J\xf4\x8f\xbf\xa5Ru\xdd\xce\xa2\xb1?\xcc\xa7\xf5\xf0\xa3\x107?\xe6\xe9cU\x1f1\xb1?\xd5;\xcd\xe7\xd9\xbe\x90?}<\x80\n\xec\x98\xb1?\x03=N\x14\xea\xa4\xaa?r\xd6\x8a\xb2\xc1 \xb4?\xa8\xabZ\xff\xfb\x14\x91?b8\xd2L\x8b\xa1\xb4?|&I\x86\x8f\xd68?\xcc\x1c\xa1\xb0\x1b%\xb4?\x94\x8a\xe1\xbe|C\x90\xbf\x9d\x0f\xb4\xb3\xbd\x9b\xc4?\xc0\x93-W#\x8c\xb5\xbf\x99\xfdK[~u\xc4?~Y\x8c\x96\xa1U\xa5\xbfw\x91\x84\x83\xd9\xda\xc3?M0\xd9\xe8g/B?\xcb\xab:j\xf3\xb7\xc2?F\xec6W\xa3t\xa5?\x17\xbc\x01\xd4}\x96\xc0?\xbc\xd4\xfb\x8dG\x8b\xb4? \x12o\xd2\xfd\xad\xba?\xedU\x99\x0cl\x0c\xbd?\xf1m\xa9`\xc0\xbd\xb2?9\xaa\x82H\x9c\x15\xc2?\xe6m)\xdc\t\xfb\xa3?\x9b\xcb\xa6\x023\xf0\xc4?\xb7\xa0}\xc6e3(?\xbc\xee\x17\xf4\x97\xc8\xc5?\x10\xab\x9aR\xa4\xbc\xa3\xbf\xc8j\x89x\xc7\xf2\xc4?\xca\xff]u\x81\xae\xb2\xbf\x05t\xf0\xbd\xde\x1c\xc2?}\x07K\x83\x02\xb0\xba\xbf\xd0^\xe3#J$\xbd?\xd4aK0E\x9f\xc0\xbf\x19\x14H\x19\x04\xa2\xb4?\x04\xdb\xd8\xacn\xc3\xc2\xbfI\x8c~\xe9\xad\x94\xa5?\xcd\xca_\x05\x02\xec\xc3\xbf\x1f\xec\x9dq}\x07D?\x0f\x8d.\x8c\x14\x85\xc4\xbf\x93\xa8\xdaz#q\xa5\xbf\x9a6\x0c-\x19\xa5\xc4\xbf\xdc\xd7\x89\xeex\x9e\xb5\xbfr\x86\x87\x8dV\xa7\xc0?\x9c\xb7bH.x\xbd\xbf\xf7\x80c\x8e\x19g\xbc?\x8b7\x7fj\xaa6\xc1\xbf\xd8\xc4O\xa4\x8an\xb5?\x08iU\x15\xf7\xf2\xc1\xbf\x0e\xf4\x9a4Gy\xac?\x9fx\x8fpga\xc1\xbfi\xf0\xd6er\x0f\x9e?5\xc4J\xc84\x9e\xbf\xbfk\x16_\x90\xf3N\x9d\xbf\x9d\r\xdf\x0f\xc3\xa4\xbf\xbf\xe3\x1c%\xcdT$\xac\xbf\n\xc4y1\xdad\xc1\xbf\xcc\x16\x8eG\xa2M\xb5\xbf\xb9\xef\x01\xbc\xbb\xf6\xc1\xbfI\xa9\x82\t\x1fI\xbc\xbf\xa7\x13\xe0\xbd\xbf7\xc1\xbf\xb4t]\x8b\x83\x9a\xc0\xbf\xefC{\xf9_o\xbd\xbf\xc4\x145W\xb9\x00>?y\x0e\xff\x7f\x1c\x0b\xb7\xbf\xfb\xe6\x80\xf2hu@?\xb8@ef\x94{\xb0\xbf\x96\x8c)\xfb#=B?.\x1f\xbf\x0c\x92\xf3\xa3\xbf9\xa9H\x12-\xebC?A\xe7\x7f\xe5C.\x8a\xbf\'\xa9\x9a5`\xd0\xa1?9\n\x84\x1c\xc5bt?\xfe+\x98\xa5\x1c\xa2\x92?\xdcL\x1c\xe6\x925\x85?Z\xc0zdF\xe12?\xba\x17\x05y*\xb1\x8e?v_x\x90=\x06\x92\xbf\xa3\r*\x9b\x16\x04\x85?}\xed&\x90\xca~\xa1\xbf\xbf\x0c>\x08W\xc6s?\xac\xb65w\x81R\xb9?V{*\xbdC\xa7\xb5\xbf\x04i\x9fX\x98\x10\xb5?\x83\x97Z\x0f\xfaa\xb8\xbf\x07\xda\xf4\x8a;\xe0\xaf?\x10\xd0\xb1\x06\xc0N\xb8\xbf\xbf\t\xf34\xb9\xdd\xa6?\x07\xdb\xb9\x07\xaa\x85\xb4\xbf\xe6"EH[@\xb0?\x1f\xe1\x1b\xc4d\x8e\xb3\xbf\xdc\x13I\xd4RY\xb5?zr\x18FP\xa2\xb3\xbf\x1c\x00\x0b\xc1\x94\xa5\xa6\xbfv\x08\n\xd3|\x8a\xb4\xbfQ\xa4\xf4\x90-\xa3\xaf\xbf\xef\xd2g@\x95S\xb8\xbf\xfd\xd8\x8ek\xad\xf1\xb4\xbf\xd4\x9aSmSf\xb8\xbf#V\x0c\xf9o8\xb9\xbf:\xab\xf7A\xf6\xa9\xb5\xbf\xbd\xc6~+\xefB\xb5\xbf\xe8\xcf5\xccm\xa7\xb3\xbf\xa8z0\xca\xb9\'\xb0\xbfyB]\x80\x05\x93\xb3\xbf?e\xff\xe9\x14\x06\xaf?\x172\t\x99\xebT\xb1?Z)\x05\x9d~\x80\xa3?\x9aR\xfa\xd4\x92\x19\xae?8\xfd\x9e^l\x8e\x8f??\xbb\xad\xf2\xf6\xa3\xab?R\x93\x9b\xd9\xffJ4\xbf\xee\xbfoU3\xa4\xad?\xd9\x8b\x81\xbdaz\x90\xbf0\x85\x92\xba\x87\x97\xab?1\x18+\x98\xfc\xe7\xa3\xbf90$3\xf2\xfd\xad?\xde\x84\xd6o\x96k\xaf\xbf\xa1\xf6]R*N\xb1?\xa0\x14\xba\xa9\xe6O\xa4\xbfE\xc0\t\x89n\xda\xb6?YE\x0e\xfd\x04\xff\x91\xbf\xc6W\x1a\x8d\xc8H\xb9?r\xce\xde\x89\xa0\xc8:\xbf\x8b9\xc8\x8c\t\xc0\xb9?\xd8E\xea\xf5\t\x1c\x91?t\x8fWQ\xd3N\xb9?\xd7\xfe\xa5\xb0Q\xd5\xa3?\xeb\xd5\xebh\xd8\xe7\xb6?\xa7\xb3\xf9\xe2\xcdA\xaa?\x1b\xd6\xc5VY\xa3\xb1?\xf9\x18\xe1\xc7J\xf4\x8f?A\xa1\xe3\xfbV7\xb1?\xb5\xa7\xf5\xf0\xa3\x107\xbf\xa4Ru\xdd\xce\xa2\xb1?\xd3;\xcd\xe7\xd9\xbe\x90\xbf\xe5\xe9cU\x1f1\xb1?\x00=N\x14\xea\xa4\xaa\xbf{<\x80\n\xec\x98\xb1?\xa6\xabZ\xff\xfb\x14\x91\xbfp\xd6\x8a\xb2\xc1 \xb4?C&I\x86\x8f\xd68\xbfa8\xd2L\x8b\xa1\xb4?\x93\x8a\xe1\xbe|C\x90?\xca\x1c\xa1\xb0\x1b%\xb4?\x12\xaf\xd2Hh\x0b\xbf\xbf @"\xaf\xe5\nX\xbc&\xaf\xd2Hh\x0b\xbf\xbf\x9b^\xdc\x9d\x99\x98\x87<\x19\xaf\xd2Hh\x0b\xbf\xbf\x08\xdf\x00]\xf9\xf9\x87<\x1b\xaf\xd2Hh\x0b\xbf\xbfu\xeb5\xc7\xc3\x10\x8b<\x1c\xaf\xd2Hh\x0b\xbf\xbf3\xf7\x18\xa3\xbaM\x8b<\x1c\xaf\xd2Hh\x0b\xbf\xbfS5\xfe$\xccg\x89<\x1c\xaf\xd2Hh\x0b\xbf\xbf]Q\x17\'!\xaf\x85<\x1e\xaf\xd2Hh\x0b\xbf\xbf?\x98\xc8\xd5\x9e1\x81<\x1d\xaf\xd2Hh\x0b\xbf\xbf4\xd3\xa0\xbe\xc7\x0cw<\x1e\xaf\xd2Hh\x0b\xbf\xbfs\xd0\x97\x84\x05\x02a<\x1e\xaf\xd2Hh\x0b\xbf\xbf@\xa6\xf5[:XZ\xbc\x1f\xaf\xd2Hh\x0b\xbf\xbf9\xcf\x9ae\x94\xafs\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf\xbff{\xe1\x94,\x81\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\x14\xba6\xe0\x87\x81\x85\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf$2\x01\xab3\x16\x89\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\xc9a\xb4>e\xca\x8d\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf\xb0\x8f`\xaeMp\x8e\xbc\x16\xaf\xd2Hh\x0b\xbf\xbfwKBYb3{<\x16\xaf\xd2Hh\x0b\xbf\xbf0\xe7\xd5i\x9e\x02q<\x17\xaf\xd2Hh\x0b\xbf\xbf\xe4\xd39\xeb\x81\xbee<\x17\xaf\xd2Hh\x0b\xbf\xbf\xa0JQ\x88:\x93\xf9\xbb\x18\xaf\xd2Hh\x0b\xbf\xbf\xf2\x89\xb9\xbf\xa9kY\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf\x95-\xa5{6Lz\xbc\x17\xaf\xd2Hh\x0b\xbf\xbf\x0ey\x89\xadMS\x83\xbc\x18\xaf\xd2Hh\x0b\xbf\xbf\xb3\xf6\'0\xff\xcf\x86\xbc\x18\xaf\xd2Hh\x0b\xbf\xbf\xd7@\x8d\xac\x84\x11\x8a\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf\xb8\x9e\x8c\xa2o\xb1\x8e\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf\xe8\xa7\xa5\xfed\x0eg\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf6-^\xebq\x82`\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbfB\x84\x0e\xa6\xf2\xeaS\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf\xfe\x8f\xba\xaa\xd7\x9d7\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf\xeaF\xfb"=\xdcf<\x1c\xaf\xd2Hh\x0b\xbf\xbf&2\x97\x93\x7f\x92]<\x1a\xaf\xd2Hh\x0b\xbf\xbfv\x87\x88\xed\xd3\xbf@<\x1c\xaf\xd2Hh\x0b\xbf\xbf\x03\xad?\x95\xc6\xa8P\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\x11\xd8*Q\xc1(e\xbc\x18\xaf\xd2Hh\x0b\xbf\xbf\xbd$5\'\x84*v<\x19\xaf\xd2Hh\x0b\xbf\xbf@aXc\x02%p<\x18\xaf\xd2Hh\x0b\xbf\xbfU8\x8f\xf4\x07\x9a`<\x17\xaf\xd2Hh\x0b\xbf\xbf\x164\xd0\x8c\xb9)S<\x19\xaf\xd2Hh\x0b\xbf\xbf8\x95\xe1%\x0e\x8ed<\x18\xaf\xd2Hh\x0b\xbf\xbf\xb3\x89?\xcf\x19\x7fs<\x1a\xaf\xd2Hh\x0b\xbf\xbf\xad\xed\xcdX}iy\xbc\x18\xaf\xd2Hh\x0b\xbf\xbf\r.o\xdaG`\x80\xbc\x18\xaf\xd2Hh\x0b\xbf\xbf\x17k\xa3Qf\xdd\x83\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\xe5\x0f\xe5\xbe\xdf\xb6\x86\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\x00\x9f\xec1h>\x84\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf|z\xf3\xbf\xf8\xf8~\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf\xc7\xeetR\x15\xd1{<\x1b\xaf\xd2Hh\x0b\xbf\xbf\n~-\x05p\xd9t<\x1c\xaf\xd2Hh\x0b\xbf\xbf\xa7d\xb0@k\xceh<\x1a\xaf\xd2Hh\x0b\xbf\xbf\x84\xde\x1cC~k^<\x1b\xaf\xd2Hh\x0b\xbf\xbf\x84\xf6\xac\x84\x90\xc4;<\x1d\xaf\xd2Hh\x0b\xbf\xbf\xd2\x13\xa9u\x00jT\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\x92\x0c\xcfDx\x19f\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\xec\n\x97\x1a\x8dX$\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbfqL\xbe\xd4\xc7\x84\\<\x1e\xaf\xd2Hh\x0b\xbf\xbf\x10\xbd\xaa:\xee\x88\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\xf7\x9f\x17\x05\x11\xed\x88\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbf\x1d^_\xa1\xe8\x06^\xbc\x19\xaf\xd2Hh\x0b\xbf\xbfR\x00+\x1c\xe8\xc0m\xbc\x19\xaf\xd2Hh\x0b\xbf\xbf\xc6\x9e\xdak\xf2-s\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\x16`\xbe5\xbc\'v<\x1a\xaf\xd2Hh\x0b\xbf\xbf\xa1\x84Y\x9c\x00\xb6|<\x1a\xaf\xd2Hh\x0b\xbf\xbf\x18-4\xdeS\x96\x81<\x1b\xaf\xd2Hh\x0b\xbf\xbf\x87j\xbc,\x13\x93\x84<\x1a\xaf\xd2Hh\x0b\xbf\xbf\xc9m0\x15\xa3T\x82<\x1a\xaf\xd2Hh\x0b\xbf\xbfm0\xd9WJ\xa0{<\x1a\xaf\xd2Hh\x0b\xbf\xbf\xc5\xc5Tt\x85\x8dw\xbc\x1a\xaf\xd2Hh\x0b\xbf\xbf\xaf\xc5\xda\x06\xf6hm\xbc\x1b\xaf\xd2Hh\x0b\xbf\xbf\xb0\x88C\xc8\x8b\x99\\\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\x86\xe8\xf61\x01\x05E\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\x08RWd\x94?I<\x1c\xaf\xd2Hh\x0b\xbf\xbf|\x15\x0f\x15\x0fYd<\x1c\xaf\xd2Hh\x0b\xbf\xbfp_r\xf2\xd3\xc2q<\x1e\xaf\xd2Hh\x0b\xbf\xbf\xd0\xb8\xae\xc8\xe6\xb2b<\x1e\xaf\xd2Hh\x0b\xbf\xbf\xbd\x02\x97\xbea\xd1\x1a<\x1f\xaf\xd2Hh\x0b\xbf\xbf\xc4\xa4\x94\xbc\x9c\x0eV\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbf\x17\xbch\x90\xd9\xc1e\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\xe3M\xbb\x16\x83\x01r\xbc\x1c\xaf\xd2Hh\x0b\xbf\xbf\']\x13\xce\xe5\xecs\xbc\x1d\xaf\xd2Hh\x0b\xbf\xbf\x19\xc7Y,\x11|`\xbc\x1d\xaf\xd2Hh\x0b\xbf\xbfpb\xb8\x9f\xcc-K\xbc\x1f\xaf\xd2Hh\x0b\xbf\xbf\x85\x01\xcc\x8bR\xc9C<\x1c\xaf\xd2Hh\x0b\xbf\xbf\x81cD\x1c\x01gl<\x1d\xaf\xd2Hh\x0b\xbf\xbf\x8bY\x9cp=\xa03<\x1e\xaf\xd2Hh\x0b\xbf\xbfK\xb6\x10\xb54\xa5P\xbc\x1f\xaf\xd2Hh\x0b\xbf\xbf\xa9=\xd7\x98\xfe\tc\xbc\x1e\xaf\xd2Hh\x0b\xbf\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I136 +tp31 +g22 +I00 +S'\xea\xad\xc1\xb0\xf7(C\xc0P\xc6Q\xab4SR\xc0\x83\x92"\xf8\x7f\xf82\xc0\xd6\x1fy,21R\xc0\xb4\xe7a\r\x9a+\xd0?@\xbe\xfd\xa5\xaf\xa7Q\xc0Z\xef\x83>\x12\x143@\xb9)`\x99\x04\xa5P\xc0\x1bJ\x9bo\x91DB@\xf81\xcc\xd2\xfc\x7fM\xc0Fo\x91~}\xd4I@\xa1\x1f\xdf\r@\xb9G\xc0\xfe\xb71\x16\xaa\x14P@b8Z\x08-\xaa@\xc0\xa5\xcd\xd3gN\x9eR@Fc\x96\xfdN\xc41\xc0\r\x03F\x8b\xb9^S@\x01F\x99\x9e\xf7\x84\xb5\xbfU\x08l\xb0\x99\xa0R@\xe3\xf7.E\xd3\x8c1@\xfa\x9aT\xa2\x1e\x1bP@\xf7od\x8b\x9e\x9c@@R\x0bV\x9b\xb6\xe9I@\xb1\xd9Q\x7f\x0b\xbbG@\xac\xcc\x15\x15\xc9XB@\xb6\xf9-\x8b\x99\x8fM@\x97e1\xff\x8f03@\x1d<\xdd2:\xafP@5\x93wfa\xcf\xd1?\xa6\xd8\xd7z\xf1\xb6Q@5\xeeU\xa4\xf5\x103\xc0\x02\x88\xa5C\x0e?R@\x0c\xc0+?E9C\xc0\xdccz\xbb\x86[R@\xb0\xd5\xdfBO4J\xc0\x93y\xbc\x99\xf2\x9dM\xc0\xb5u\xd9\xa4\xd7\x9cN\xc0N\xd0\xdc2|AI\xc0\xaf*\xb8!\xb7\xebO\xc0!\xbd?w\xa6\x0eC\xc0h\xa3\xf0:\xd9\xe8N\xc0\x9a\xe1\x0b=\xa6Q9\xc0\x88\xbe\x82\xd9d\x1dL\xc0\x0bR(\xde\xd0\xba*\xc0\xac\xfad.9#L\xc0\x15\xa9\xbb\xf8\xa5\x0f*@/K\xf4\x1f\xfb\xeeN\xc0!}=D\x1d\x069@\xbeg_\xacj\xf2O\xc0\x07\x04\xf8~c\xf1B@"\xa9{\xd7\xc4\x9eN\xc0|\x0e\xeb\xfd\xd3&I@\x99\xc9!\xb9z,J\xc0n\xf9\xcd\x13$\x87M@\xf8=\xb83\x82}D\xc0\xa4S\x00i\xb9\xad\xca\xbf\x93\'\xd5\x9e P=\xc0\x9d\xb80\xb6\'E\xcd\xbf\xf7\xe2\xb9\x00\xab\xbd1\xc0\xd7y\xe6\x8d\xd07\xd0\xbf7\xbc]\xf4\xacG\x17\xc0h\xda\xd9\x1f4\xb6\xd1\xbf\xd1\xe38\x01\x8c \x02@a\x13C\x913\xae/\xc0\xcb\xcd\x18\x8e\xfe\xdb\x12@*W2E\x99\x91 \xc0|\xe0H\xf2\x9dJ\x1b@:\xc0\xadu\xc3\xc9\xc0\xbf\x8d\x9af\xde\xfd\xaf\x12@~\x0cuR\xff\x06 @\x04\xfeI\xe7r\x95\x01@\xf1z\x9ff\x1c\x1d/@\x9e\xf5\xf0\xab\x16AC\xc0\xc6\x80K\xc7C\x84F\xc07\x15?\xbbb\xaeE\xc0w{\xc1\xdd\x1c\xbbB\xc0t\x1c\x13\x0bJ\x9dE\xc0E\xa3\x8d\xd6\x1aX<\xc0\xa0\xd5D/\x93?B\xc0\x02x\x1dJ&U4\xc0\xf4\x17\xae\x7f\xb3cA\xc0[ \xf9\xfd\xcd\xe6<\xc0+\xb2O\xffiuA\xc0\xd1;\x11{\xc8\xfbB\xc0\xc3O\xe6*\xddCB\xc0\xb1\xb99B:#4@\xc0\xbd$0\x96\xa1E\xc0)=\xf4\x9c\xd0!<@\x0b}\xb1\xbd@\xb2E\xc01O\x86\xe3\x9e\x9fB@\x17F\xe1\xae|CC\xc0\xf2\xac\xf9\xaf\x15mF@\xf0\x9d\x1cn\xf6yA\xc0\x85/\xf8\xde\xdf\xe7B@l\xdd\x1e\xf8\xd0gA\xc0J\xf4\x95C\x00\xbb<@\xeb\x8f\x81\xb9\xa5\xd2>@\xd67w\xd6\x1f\x96;\xc0c9\x89\x11\xd2\xc3:@\xb1\xf9\xf9\x93WW1\xc0\xb3\x8e\xd9f\xf8\x938@;\xca\n\x1a\\\x0f\x1c\xc0\xb4\x05\xbf\xbcs[:@P\x8f\x91\xf8h\x0b\xc2?\x920\x85\xdf\xe9\x888@5\x90@\x82\xd5[?b\xf0;@\x1a\xb3\xb9\xfb8RD@as1\xc1\xc4\x0f2@b\xca\xb7\xa0\x9e{F@\xa2\x8f\x04\x90\x93\x00 @JK_\x1c\xa9\xe5F@\xb1\xb0WG\xef\xd0\xc7?@\xd8~\x04\xfe\x80F@\xb3\xa9X7}m\x1e\xc0\xe4(?e&^D@]\xbf\x85\xb1\xc4\xa21\xc0\x86\xf9\x87\x1b ^?@A\x8cy\xbd\x0cY7\xc0\xed\x9c4\x8a\n\x9e>@\xfb]\xab\x1b\xf1i\x1c\xc0\x95\x82>\xd8)]?@\xb1E!\xd1l\x82\xc4?\xfe\x96L\xf0\xfb\x92>@L\xf5\xa3t\xc3\xc7\x1d@\x9c\x88\xd5\x02\x95K?@c\xddW\xc6-\xb17@\x0f\xb6\xf3\xfd\xd8\xe5A@H\x99\xd7z\xf1`\x1e@e\xd5\xf4\xaa]XB@\xf3\xcb\xe7i\r\x16\xc6?(\xe6\xc5\x8e\xb7\xe9A@HD\xcfQ_\xec\x1c\xc0' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'path' +p39 +cpathlib +PosixPath +p40 +(S'/' +p41 +S'Users' +p42 +S'arik' +p43 +S'Dropbox' +p44 +S'epoch_data' +p45 +S'epoch_aug_geom_texture' +p46 +S'0_to_19' +p47 +S'0' +p48 +S'100032540_1.pts' +p49 +tp50 +Rp51 +sS'points' +p52 +g12 +(g13 +(I0 +tp53 +g15 +tp54 +Rp55 +(I1 +(I68 +I2 +tp56 +g22 +I00 +S'\xea\xad\xc1\xb0\xf7(C\xc0P\xc6Q\xab4SR\xc0\x83\x92"\xf8\x7f\xf82\xc0\xd6\x1fy,21R\xc0\xb4\xe7a\r\x9a+\xd0?@\xbe\xfd\xa5\xaf\xa7Q\xc0Z\xef\x83>\x12\x143@\xb9)`\x99\x04\xa5P\xc0\x1bJ\x9bo\x91DB@\xf81\xcc\xd2\xfc\x7fM\xc0Fo\x91~}\xd4I@\xa1\x1f\xdf\r@\xb9G\xc0\xfe\xb71\x16\xaa\x14P@b8Z\x08-\xaa@\xc0\xa5\xcd\xd3gN\x9eR@Fc\x96\xfdN\xc41\xc0\r\x03F\x8b\xb9^S@\x01F\x99\x9e\xf7\x84\xb5\xbfU\x08l\xb0\x99\xa0R@\xe3\xf7.E\xd3\x8c1@\xfa\x9aT\xa2\x1e\x1bP@\xf7od\x8b\x9e\x9c@@R\x0bV\x9b\xb6\xe9I@\xb1\xd9Q\x7f\x0b\xbbG@\xac\xcc\x15\x15\xc9XB@\xb6\xf9-\x8b\x99\x8fM@\x97e1\xff\x8f03@\x1d<\xdd2:\xafP@5\x93wfa\xcf\xd1?\xa6\xd8\xd7z\xf1\xb6Q@5\xeeU\xa4\xf5\x103\xc0\x02\x88\xa5C\x0e?R@\x0c\xc0+?E9C\xc0\xdccz\xbb\x86[R@\xb0\xd5\xdfBO4J\xc0\x93y\xbc\x99\xf2\x9dM\xc0\xb5u\xd9\xa4\xd7\x9cN\xc0N\xd0\xdc2|AI\xc0\xaf*\xb8!\xb7\xebO\xc0!\xbd?w\xa6\x0eC\xc0h\xa3\xf0:\xd9\xe8N\xc0\x9a\xe1\x0b=\xa6Q9\xc0\x88\xbe\x82\xd9d\x1dL\xc0\x0bR(\xde\xd0\xba*\xc0\xac\xfad.9#L\xc0\x15\xa9\xbb\xf8\xa5\x0f*@/K\xf4\x1f\xfb\xeeN\xc0!}=D\x1d\x069@\xbeg_\xacj\xf2O\xc0\x07\x04\xf8~c\xf1B@"\xa9{\xd7\xc4\x9eN\xc0|\x0e\xeb\xfd\xd3&I@\x99\xc9!\xb9z,J\xc0n\xf9\xcd\x13$\x87M@\xf8=\xb83\x82}D\xc0\xa4S\x00i\xb9\xad\xca\xbf\x93\'\xd5\x9e P=\xc0\x9d\xb80\xb6\'E\xcd\xbf\xf7\xe2\xb9\x00\xab\xbd1\xc0\xd7y\xe6\x8d\xd07\xd0\xbf7\xbc]\xf4\xacG\x17\xc0h\xda\xd9\x1f4\xb6\xd1\xbf\xd1\xe38\x01\x8c \x02@a\x13C\x913\xae/\xc0\xcb\xcd\x18\x8e\xfe\xdb\x12@*W2E\x99\x91 \xc0|\xe0H\xf2\x9dJ\x1b@:\xc0\xadu\xc3\xc9\xc0\xbf\x8d\x9af\xde\xfd\xaf\x12@~\x0cuR\xff\x06 @\x04\xfeI\xe7r\x95\x01@\xf1z\x9ff\x1c\x1d/@\x9e\xf5\xf0\xab\x16AC\xc0\xc6\x80K\xc7C\x84F\xc07\x15?\xbbb\xaeE\xc0w{\xc1\xdd\x1c\xbbB\xc0t\x1c\x13\x0bJ\x9dE\xc0E\xa3\x8d\xd6\x1aX<\xc0\xa0\xd5D/\x93?B\xc0\x02x\x1dJ&U4\xc0\xf4\x17\xae\x7f\xb3cA\xc0[ \xf9\xfd\xcd\xe6<\xc0+\xb2O\xffiuA\xc0\xd1;\x11{\xc8\xfbB\xc0\xc3O\xe6*\xddCB\xc0\xb1\xb99B:#4@\xc0\xbd$0\x96\xa1E\xc0)=\xf4\x9c\xd0!<@\x0b}\xb1\xbd@\xb2E\xc01O\x86\xe3\x9e\x9fB@\x17F\xe1\xae|CC\xc0\xf2\xac\xf9\xaf\x15mF@\xf0\x9d\x1cn\xf6yA\xc0\x85/\xf8\xde\xdf\xe7B@l\xdd\x1e\xf8\xd0gA\xc0J\xf4\x95C\x00\xbb<@\xeb\x8f\x81\xb9\xa5\xd2>@\xd67w\xd6\x1f\x96;\xc0c9\x89\x11\xd2\xc3:@\xb1\xf9\xf9\x93WW1\xc0\xb3\x8e\xd9f\xf8\x938@;\xca\n\x1a\\\x0f\x1c\xc0\xb4\x05\xbf\xbcs[:@P\x8f\x91\xf8h\x0b\xc2?\x920\x85\xdf\xe9\x888@5\x90@\x82\xd5[?b\xf0;@\x1a\xb3\xb9\xfb8RD@as1\xc1\xc4\x0f2@b\xca\xb7\xa0\x9e{F@\xa2\x8f\x04\x90\x93\x00 @JK_\x1c\xa9\xe5F@\xb1\xb0WG\xef\xd0\xc7?@\xd8~\x04\xfe\x80F@\xb3\xa9X7}m\x1e\xc0\xe4(?e&^D@]\xbf\x85\xb1\xc4\xa21\xc0\x86\xf9\x87\x1b ^?@A\x8cy\xbd\x0cY7\xc0\xed\x9c4\x8a\n\x9e>@\xfb]\xab\x1b\xf1i\x1c\xc0\x95\x82>\xd8)]?@\xb1E!\xd1l\x82\xc4?\xfe\x96L\xf0\xfb\x92>@L\xf5\xa3t\xc3\xc7\x1d@\x9c\x88\xd5\x02\x95K?@c\xddW\xc6-\xb17@\x0f\xb6\xf3\xfd\xd8\xe5A@H\x99\xd7z\xf1`\x1e@e\xd5\xf4\xaa]XB@\xf3\xcb\xe7i\r\x16\xc6?(\xe6\xc5\x8e\xb7\xe9A@HD\xcfQ_\xec\x1c\xc0' +p57 +tp58 +bsS'_landmarks' +p59 +NsbsbsS'similarity_weights' +p60 +g12 +(g13 +(I0 +tp61 +g15 +tp62 +Rp63 +(I1 +(I4 +tp64 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p65 +tp66 +bsS'_weights' +p67 +g12 +(g13 +(I0 +tp68 +g15 +tp69 +Rp70 +(I1 +(I30 +tp71 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p72 +tp73 +bsS'_target' +p74 +g0 +(g35 +g2 +Ntp75 +Rp76 +(dp77 +g39 +g51 +sg52 +g12 +(g13 +(I0 +tp78 +g15 +tp79 +Rp80 +(I1 +(I68 +I2 +tp81 +g22 +I00 +S'\xeb\xad\xc1\xb0\xf7(C\xc0Q\xc6Q\xab4SR\xc0\x84\x92"\xf8\x7f\xf82\xc0\xd7\x1fy,21R\xc0\xb5\xe7a\r\x9a+\xd0?A\xbe\xfd\xa5\xaf\xa7Q\xc0[\xef\x83>\x12\x143@\xba)`\x99\x04\xa5P\xc0\x1cJ\x9bo\x91DB@\xfa1\xcc\xd2\xfc\x7fM\xc0Ho\x91~}\xd4I@\xa2\x1f\xdf\r@\xb9G\xc0\xff\xb71\x16\xaa\x14P@c8Z\x08-\xaa@\xc0\xa6\xcd\xd3gN\x9eR@Gc\x96\xfdN\xc41\xc0\x0e\x03F\x8b\xb9^S@\xffE\x99\x9e\xf7\x84\xb5\xbfV\x08l\xb0\x99\xa0R@\xe4\xf7.E\xd3\x8c1@\xfb\x9aT\xa2\x1e\x1bP@\xf8od\x8b\x9e\x9c@@T\x0bV\x9b\xb6\xe9I@\xb2\xd9Q\x7f\x0b\xbbG@\xad\xcc\x15\x15\xc9XB@\xb8\xf9-\x8b\x99\x8fM@\x98e1\xff\x8f03@\x1e<\xdd2:\xafP@6\x93wfa\xcf\xd1?\xa7\xd8\xd7z\xf1\xb6Q@6\xeeU\xa4\xf5\x103\xc0\x03\x88\xa5C\x0e?R@\r\xc0+?E9C\xc0\xddcz\xbb\x86[R@\xb2\xd5\xdfBO4J\xc0\x95y\xbc\x99\xf2\x9dM\xc0\xb7u\xd9\xa4\xd7\x9cN\xc0P\xd0\xdc2|AI\xc0\xb1*\xb8!\xb7\xebO\xc0"\xbd?w\xa6\x0eC\xc0j\xa3\xf0:\xd9\xe8N\xc0\x9c\xe1\x0b=\xa6Q9\xc0\x8a\xbe\x82\xd9d\x1dL\xc0\rR(\xde\xd0\xba*\xc0\xae\xfad.9#L\xc0\x17\xa9\xbb\xf8\xa5\x0f*@1K\xf4\x1f\xfb\xeeN\xc0#}=D\x1d\x069@\xc0g_\xacj\xf2O\xc0\x08\x04\xf8~c\xf1B@$\xa9{\xd7\xc4\x9eN\xc0~\x0e\xeb\xfd\xd3&I@\x9b\xc9!\xb9z,J\xc0p\xf9\xcd\x13$\x87M@\xf9=\xb83\x82}D\xc0\xa6S\x00i\xb9\xad\xca\xbf\x95\'\xd5\x9e P=\xc0\x9f\xb80\xb6\'E\xcd\xbf\xf8\xe2\xb9\x00\xab\xbd1\xc0\xd8y\xe6\x8d\xd07\xd0\xbf8\xbc]\xf4\xacG\x17\xc0i\xda\xd9\x1f4\xb6\xd1\xbf\xd2\xe38\x01\x8c \x02@c\x13C\x913\xae/\xc0\xcc\xcd\x18\x8e\xfe\xdb\x12@+W2E\x99\x91 \xc0~\xe0H\xf2\x9dJ\x1b@;\xc0\xadu\xc3\xc9\xc0\xbf\x8e\x9af\xde\xfd\xaf\x12@\x7f\x0cuR\xff\x06 @\x05\xfeI\xe7r\x95\x01@\xf3z\x9ff\x1c\x1d/@\x9f\xf5\xf0\xab\x16AC\xc0\xc7\x80K\xc7C\x84F\xc08\x15?\xbbb\xaeE\xc0x{\xc1\xdd\x1c\xbbB\xc0u\x1c\x13\x0bJ\x9dE\xc0G\xa3\x8d\xd6\x1aX<\xc0\xa1\xd5D/\x93?B\xc0\x03x\x1dJ&U4\xc0\xf5\x17\xae\x7f\xb3cA\xc0] \xf9\xfd\xcd\xe6<\xc0,\xb2O\xffiuA\xc0\xd2;\x11{\xc8\xfbB\xc0\xc4O\xe6*\xddCB\xc0\xb2\xb99B:#4@\xc1\xbd$0\x96\xa1E\xc0+=\xf4\x9c\xd0!<@\x0c}\xb1\xbd@\xb2E\xc02O\x86\xe3\x9e\x9fB@\x18F\xe1\xae|CC\xc0\xf3\xac\xf9\xaf\x15mF@\xf1\x9d\x1cn\xf6yA\xc0\x86/\xf8\xde\xdf\xe7B@m\xdd\x1e\xf8\xd0gA\xc0L\xf4\x95C\x00\xbb<@\xed\x8f\x81\xb9\xa5\xd2>@\xd87w\xd6\x1f\x96;\xc0e9\x89\x11\xd2\xc3:@\xb2\xf9\xf9\x93WW1\xc0\xb5\x8e\xd9f\xf8\x938@=\xca\n\x1a\\\x0f\x1c\xc0\xb6\x05\xbf\xbcs[:@R\x8f\x91\xf8h\x0b\xc2?\x940\x85\xdf\xe9\x888@7\x90@\x84\xd5[?b\xf0;@\x1b\xb3\xb9\xfb8RD@bs1\xc1\xc4\x0f2@c\xca\xb7\xa0\x9e{F@\xa3\x8f\x04\x90\x93\x00 @KK_\x1c\xa9\xe5F@\xb3\xb0WG\xef\xd0\xc7?A\xd8~\x04\xfe\x80F@\xb5\xa9X7}m\x1e\xc0\xe5(?e&^D@^\xbf\x85\xb1\xc4\xa21\xc0\x88\xf9\x87\x1b ^?@B\x8cy\xbd\x0cY7\xc0\xef\x9c4\x8a\n\x9e>@\xfd]\xab\x1b\xf1i\x1c\xc0\x97\x82>\xd8)]?@\xb3E!\xd1l\x82\xc4?\x00\x97L\xf0\xfb\x92>@N\xf5\xa3t\xc3\xc7\x1d@\x9e\x88\xd5\x02\x95K?@d\xddW\xc6-\xb17@\x10\xb6\xf3\xfd\xd8\xe5A@J\x99\xd7z\xf1`\x1e@f\xd5\xf4\xaa]XB@\xf5\xcb\xe7i\r\x16\xc6?)\xe6\xc5\x8e\xb7\xe9A@JD\xcfQ_\xec\x1c\xc0' +p82 +tp83 +bsg59 +NsbsS'global_transform' +p84 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p85 +g2 +Ntp86 +Rp87 +(dp88 +S'_h_matrix' +p89 +g12 +(g13 +(I0 +tp90 +g15 +tp91 +Rp92 +(I1 +(I3 +I3 +tp93 +g22 +I00 +S'\x01\x00\x00\x00\x00\x00\xf0?P\xe4\x0e\x84tt\x15\xbc\x00\x00\x00\x00\x00\x00\xc09\xca\x92\x12}\xf6\x9c#<\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xa09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p94 +tp95 +bsg74 +g0 +(g35 +g2 +Ntp96 +Rp97 +(dp98 +g39 +g51 +sg52 +g12 +(g13 +(I0 +tp99 +g15 +tp100 +Rp101 +(I1 +(I68 +I2 +tp102 +g22 +I00 +S'\xea\xad\xc1\xb0\xf7(C\xc0P\xc6Q\xab4SR\xc0\x83\x92"\xf8\x7f\xf82\xc0\xd6\x1fy,21R\xc0\xb4\xe7a\r\x9a+\xd0?@\xbe\xfd\xa5\xaf\xa7Q\xc0Z\xef\x83>\x12\x143@\xb9)`\x99\x04\xa5P\xc0\x1bJ\x9bo\x91DB@\xf81\xcc\xd2\xfc\x7fM\xc0Fo\x91~}\xd4I@\xa1\x1f\xdf\r@\xb9G\xc0\xfe\xb71\x16\xaa\x14P@b8Z\x08-\xaa@\xc0\xa5\xcd\xd3gN\x9eR@Fc\x96\xfdN\xc41\xc0\r\x03F\x8b\xb9^S@\x01F\x99\x9e\xf7\x84\xb5\xbfU\x08l\xb0\x99\xa0R@\xe3\xf7.E\xd3\x8c1@\xfa\x9aT\xa2\x1e\x1bP@\xf7od\x8b\x9e\x9c@@R\x0bV\x9b\xb6\xe9I@\xb1\xd9Q\x7f\x0b\xbbG@\xac\xcc\x15\x15\xc9XB@\xb6\xf9-\x8b\x99\x8fM@\x97e1\xff\x8f03@\x1d<\xdd2:\xafP@5\x93wfa\xcf\xd1?\xa6\xd8\xd7z\xf1\xb6Q@5\xeeU\xa4\xf5\x103\xc0\x02\x88\xa5C\x0e?R@\x0c\xc0+?E9C\xc0\xdccz\xbb\x86[R@\xb0\xd5\xdfBO4J\xc0\x93y\xbc\x99\xf2\x9dM\xc0\xb5u\xd9\xa4\xd7\x9cN\xc0N\xd0\xdc2|AI\xc0\xaf*\xb8!\xb7\xebO\xc0!\xbd?w\xa6\x0eC\xc0h\xa3\xf0:\xd9\xe8N\xc0\x9a\xe1\x0b=\xa6Q9\xc0\x88\xbe\x82\xd9d\x1dL\xc0\x0bR(\xde\xd0\xba*\xc0\xac\xfad.9#L\xc0\x15\xa9\xbb\xf8\xa5\x0f*@/K\xf4\x1f\xfb\xeeN\xc0!}=D\x1d\x069@\xbeg_\xacj\xf2O\xc0\x07\x04\xf8~c\xf1B@"\xa9{\xd7\xc4\x9eN\xc0|\x0e\xeb\xfd\xd3&I@\x99\xc9!\xb9z,J\xc0n\xf9\xcd\x13$\x87M@\xf8=\xb83\x82}D\xc0\xa4S\x00i\xb9\xad\xca\xbf\x93\'\xd5\x9e P=\xc0\x9d\xb80\xb6\'E\xcd\xbf\xf7\xe2\xb9\x00\xab\xbd1\xc0\xd7y\xe6\x8d\xd07\xd0\xbf7\xbc]\xf4\xacG\x17\xc0h\xda\xd9\x1f4\xb6\xd1\xbf\xd1\xe38\x01\x8c \x02@a\x13C\x913\xae/\xc0\xcb\xcd\x18\x8e\xfe\xdb\x12@*W2E\x99\x91 \xc0|\xe0H\xf2\x9dJ\x1b@:\xc0\xadu\xc3\xc9\xc0\xbf\x8d\x9af\xde\xfd\xaf\x12@~\x0cuR\xff\x06 @\x04\xfeI\xe7r\x95\x01@\xf1z\x9ff\x1c\x1d/@\x9e\xf5\xf0\xab\x16AC\xc0\xc6\x80K\xc7C\x84F\xc07\x15?\xbbb\xaeE\xc0w{\xc1\xdd\x1c\xbbB\xc0t\x1c\x13\x0bJ\x9dE\xc0E\xa3\x8d\xd6\x1aX<\xc0\xa0\xd5D/\x93?B\xc0\x02x\x1dJ&U4\xc0\xf4\x17\xae\x7f\xb3cA\xc0[ \xf9\xfd\xcd\xe6<\xc0+\xb2O\xffiuA\xc0\xd1;\x11{\xc8\xfbB\xc0\xc3O\xe6*\xddCB\xc0\xb1\xb99B:#4@\xc0\xbd$0\x96\xa1E\xc0)=\xf4\x9c\xd0!<@\x0b}\xb1\xbd@\xb2E\xc01O\x86\xe3\x9e\x9fB@\x17F\xe1\xae|CC\xc0\xf2\xac\xf9\xaf\x15mF@\xf0\x9d\x1cn\xf6yA\xc0\x85/\xf8\xde\xdf\xe7B@l\xdd\x1e\xf8\xd0gA\xc0J\xf4\x95C\x00\xbb<@\xeb\x8f\x81\xb9\xa5\xd2>@\xd67w\xd6\x1f\x96;\xc0c9\x89\x11\xd2\xc3:@\xb1\xf9\xf9\x93WW1\xc0\xb3\x8e\xd9f\xf8\x938@;\xca\n\x1a\\\x0f\x1c\xc0\xb4\x05\xbf\xbcs[:@P\x8f\x91\xf8h\x0b\xc2?\x920\x85\xdf\xe9\x888@5\x90@\x82\xd5[?b\xf0;@\x1a\xb3\xb9\xfb8RD@as1\xc1\xc4\x0f2@b\xca\xb7\xa0\x9e{F@\xa2\x8f\x04\x90\x93\x00 @JK_\x1c\xa9\xe5F@\xb1\xb0WG\xef\xd0\xc7?@\xd8~\x04\xfe\x80F@\xb3\xa9X7}m\x1e\xc0\xe4(?e&^D@]\xbf\x85\xb1\xc4\xa21\xc0\x86\xf9\x87\x1b ^?@A\x8cy\xbd\x0cY7\xc0\xed\x9c4\x8a\n\x9e>@\xfb]\xab\x1b\xf1i\x1c\xc0\x95\x82>\xd8)]?@\xb1E!\xd1l\x82\xc4?\xfe\x96L\xf0\xfb\x92>@L\xf5\xa3t\xc3\xc7\x1d@\x9c\x88\xd5\x02\x95K?@c\xddW\xc6-\xb17@\x0f\xb6\xf3\xfd\xd8\xe5A@H\x99\xd7z\xf1`\x1e@e\xd5\xf4\xaa]XB@\xf3\xcb\xe7i\r\x16\xc6?(\xe6\xc5\x8e\xb7\xe9A@HD\xcfQ_\xec\x1c\xc0' +p103 +tp104 +bsg59 +NsbsS'allow_mirror' +p105 +I00 +sS'_source' +p106 +g97 +sbsS'model' +p107 +g0 +(cmenpo.model.pca +PCAModel +p108 +g2 +Ntp109 +Rp110 +(dp111 +S'centred' +p112 +I01 +sg34 +g0 +(g35 +g2 +Ntp113 +Rp114 +(dp115 +g39 +g51 +sg52 +g12 +(g13 +(I0 +tp116 +g15 +tp117 +Rp118 +(I1 +(I68 +I2 +tp119 +g22 +I00 +S'\xb5C\xfe\x93\x93\x8e(\xc0\x1bO\xed\xe8"\xcaR\xc0\x0e\xb9f\xf0\xd13\xf5?\x1f\t\xd2\x9f2vR\xc01\xc6t{v#-@\xd4}X\xaa\x9b\xeaQ\xc0\x02\xf5\xd98\xd9\x0f;@\x12\x1f\xe8\xff\xe7VQ\xc0\xa2\xa3)\x16+\xf1C@\xf2b\r\x9b\xeb\x0bQ\xc0\xe0Z\xba\xdd\xdf\x1dI@\x10j\x1f&\xde\xcfN\xc0j\xd3\xa1\xa2y\xb7M@b_rd\x8a\xe0I\xc0m\xbai\xd1w\x90O@\x91\xab\r\xe8\xe3}=\xc0\xdf\xcc\xed\x8dd\x97N@\x05\x9do\x99\xb5\xc4\xea\xbf\xf3\xaa:g\xb0\x18O@I\xa7w\xd1U!@@]\xba\x0c![\x8aM@\x00MT\x1e\x1b!K@\xe2JK-\'#I@x1\xe2@\x85\x14R@\xef\ts\xfb\xfd(D@f\xb5\xf5\x17\x14\x8fT@\xa9\xf7M\xda\x1e\x9e:@}\xf98\xc8\x18\xedU@\x8fU\xa3\xaa\x83\xb6,@\xe0\n\x13neoV@j1~\xc0\x03]\x04@\xb8\x99\x11&\xff\xa6V@z\xf1\x9b\x84\x92\xfd!\xc0\x85\xd9B\x8dU\xc2V@\x7f\x9e\x9bV\xb2\x0fJ\xc0\x8e\xcf\xd8\xc0\x85-P\xc07\xe3\xa9\x1c\x03\x97K\xc0\xcd\x02"ri;J\xc0P\xc4\xbc\x0cV\x11L\xc0\xfd\t\x8c\x11\xd4\xe8C\xc0F\xa2\xcb\xeed\xdaK\xc0Hz\xa0sz\x94<\xc0\x13@\xbd\xd1\ttJ\xc0\xc4\xe2b\x1bP\x081\xc0FK\x11#D\xc3K\xc0\xf5\xab\xff*\x0c\xb2!@\x17_\xc9\rH\x95L\xc0\xf8^\xabUX\x159@\xaa\xa5\x90\xd08\xadL\xc0Sx=\xeb"\x80D@\xf2\xaf\xd0(N L\xc0Nd[8\xd5\x96K@/\x19\xf1\xb6U\x0eJ\xc0\x11\xcdh`\x81\x14Q@\\\xef\\\xe7\xb3\xc9@\xc0M\xb0\xf8\xe4\x9d\xf5\xd9?Me\xf1)\x8c3:\xc0\x1f\xba\xe2\xd8o\xbe\xeb\xbf f\xb3\xcc\x01\xe72\xc05 -\xddR\xac\x02\xc0\x93\x0e\x83u\x92 &\xc0\xc6\xb7\x9d\x95\x0fm\x0f\xc0\x04\xa5\x96\xad\xb0^\x11@\xf5\x9a\xe3/4\x171\xc0\xaf\x0cE\x9c\xfe\x90\x13@k\xba_\xec\x8a-$\xc0m\xbe7\xed\\.\x15@\xb8C\xe9\xe4\xdfC\x08\xc0\x98\xa6\xbc\x8e\xff\xf5\x11@?HH\xb4\xcdz\x13@\xdc>\xe3q7G\n@}`\xf7\xc0\xb3|(@/\xf9\xe0;\xf3\xc4?\xc0\x18\xbb\xc0\x08\xbf\xf9J\xc0L\x02\xa1D\x1f\x99C\xc0\x0c\x00\x06\xa1Z\xccF\xc0\x91\x89+B\x1e\xb0C\xc0\x88\xb3\xbd\xa8\xbfB@\xc0\xe8\x1e\x88\xf1\x90\xf4@\xc0\x83kB\x10\n%7\xc0\xae\x08E\xe4\xecF@\xc0\xa5C)\xac\xec5@\xc0\xc6\xc1\xf3\x9a\xd0\xaa?\xc0\x1e\xe6\xf2\xfe\xeb~F\xc0\xe6\x18\xe2\x0f\xf4\x00A\xc0\\\xefR\x1bQ\\3@@R3\x1a}^D\xc0\xcdX;\x0fU[=@\xbe4=\x99\xc91D\xc0\xc7B\x91\x83\xcc\x12E@\xf7\x8d\x12\xd1M\xf0@\xc0\x98\xaf\x8d\xa4\x1efI@\xc6\xf1\n\xf4\x84\x93@\xc0\x99\xc1\x0e=t\xcbD@\xac0\x8ai\xe6\xb0@\xc0\xf8c\xb4\xfc\x0c\x9b=@\x84\xf99b\xa3;;@\xa2;\xe7\x0b\x1b\x9bA\xc0\xcb6D\xfa\xa3\xaa2@\xecH\xce\x80\xfaD7\xc0\xbeX\x82-\n\xf2-@e\x93Gb\xd7\xa5&\xc0Q:d\xb8\xad\xa4/@\xaa\x19\xa5^\xda\xa3\x0b\xc0\x14$\xda\x87\xf5\xcc-@L\xda\x9e\xbf\xc5E\x15@\xe7a\xebN\x8a\xb82@_\x82\xcd\xe6\x9f\xea2@\xc2\x9e9\x94{\xd39@\xf8Qn\xd4\xd5\x88@@v6cU\xf2\x06>@\x87Y\xabK\x08d2@\x9a\xe1\x92v\x7fT@@_\xb6kr\xbfe\x14@\x8d\x1a\xdb\xa8\xd3\xa1@@B\xe7\xe0\xdbN=\n\xc0\xeeS9$b\xb0@@\x00i\xbbW\xbc\xd5(\xc0\xe0bv\x8d\xa4\xf5>@n\x05=\xf1I\xfd7\xc0\xf7\x1cGh\xc3\xad:@\x0f\xcfq\xa8\xa1\x08?\xc0*\x13Bb\xd6\xc36@\xcdz\\\xed\xb2\x01\'\xc0\xb8 @\xe9\xa9#6@\xa2\xf3\xb8Q\xd8\xbe\x06\xc0\xeb\xfc\x92\tn\x176@\xe60\xa0?\xa5\xff\x13@:E\x89\xe8>-:@5#\x9c\x9f\xd2!<@\x0f:q&;p8@\xd6\xda<\xb8i\xa6\x13@\x0c\xd7g\x0c&\x979@\x199*\xcd^\xb4\t\xc0\x1ef\xaf\x9f\xe3\xac8@\xbe\xa8e\xa2]\x8c\'\xc0' +p120 +tp121 +bsg59 +NsbsS'_eigenvalues' +p122 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I30 +tp126 +g22 +I00 +S'2\x96\x19\x88\x7f\xe9\xa4@\x7f\x90[O\xa1\xb2\x9c@\xf94\x94\xed:*\x8e@5\xc2\xf2\x94/e\x84@D\xf2\xc0\x0e\xaeju@F\xf8\xb7\x8b\xe0\xa8m@\xa3\x1be\xc5U\xc4i@xw\xff\xdf\x849g@m\xbd\x1dS\xf5\xeca@%\xfekP%\xdb`@~\xb5\xbe\x90\xb6U_@\xfc\x00\x1a\xa3{\x9dY@\xe70\xabo7\x0cT@);\x00\xfbc[R@Z"\xa0W\x9e\xb8M@f\xfcd_0\xfaG@\xb9\xce\x06\x08\x9b\xdaD@5Qh&\x87vA@\xde\xc1\xae\xfdX\x04=@t\x03!\xa6\xe9\xaf9@N\xad\x93\xf8E\xaa8@\xee\x92\x1a\x08w\x136@(\x97\x0ee\xff\x014@k\x04\x7f\xaa8:3@\xde\x97T\x14\x98\xc80@@G}\xaa\x00"-@yS\x8e\xc2ph*@X5\r\xfc\xcd\xa4)@\xd2\xed\xdf\xf9M\xe9(@\xde\xc8\x1b\x19\x0c\x07(@' +p127 +tp128 +bsS'_trimmed_eigenvalues' +p129 +g12 +(g13 +(I0 +tp130 +g15 +tp131 +Rp132 +(I1 +(I103 +tp133 +g22 +I00 +S'\xd36J4\xf62%@\xc2\xca\t\x11\x0b\'$@!V\x98\x10\xcdi"@XDHo\xc2d!@\xb5N\x8d-\x14s\x1b@\x98\x01z\xcfsT\x1a@F\xb5x"\n\xbb\x18@\x05{\xad()\xcd\x16@4_Y2\xb6`\x13@\xac- \x12\x80\x8d\x12@P`\xccJ\x8e\xc8\x11@\xd8qxF\t\xe0\x10@\x95\x88\xa5\xcb\xc5\x12\x10@\xd8 `\xf0\x9e\xf8\t@\xfc\x84\xab\xebR\x1c\x08@#\x9f\x11m\xddv\x06@\xf8\xaa\x95BDM\x06@\xf0&4v3X\x04@[j\xd3\x87\xe0\xf0\x02@\x15\xc3\x9f\x0e\xf1g\x02@/Z\x06)\xdb\x00\x01@\x00\x81\xe2\x16\xc8e\x00@D\x9f\xd0\xdd7a\xfd?\xee\xcd\xbf\xd4\x08b\xfc?\xcc\\\xcc\x9c\xec\xd7\xfa?`\x96q\xf0\xbe\x06\xfa?\xf3E\x15\xac\x0c\x13\xf9?_\r;\x0f\xf4\xd3\xf7?9\x84\xd5-\xbf\x10\xf7?\xc9\x8f\x1e-\xb7\xa7\xf5?\xbe\x13\xbd\x1cL0\xf5?R\x16Q\'\xc6\xf0\xf4?\xfd\xb8s{RQ\xf3?u[\x04\xa0\xec\x15\xf3?\xc6&Y\xb8NY\xf2?\xda\xa2O\xa0\xb6F\xf1?C\xf6\xdc\xfe\x1e\x90\xf0?\xa0\x1e@\x85\n\x82\xee?\xf3\xd7e$\n\x1f\xed?r\x10\xdcYB\xc6\xec?\xb7$\xdc\x7f\xcc\x1c\xeb?\xc3\xa4\xa7\xa8\xc7\x86\xea?\xbd\x0f\xd8\xd0c\xfe\xe8?\xd3\xceXA\xff\x89\xe8?\xbe\x81\x87\xdf\x0b\x0e\xe8?=\x15B\x069\x8c\xe7?\xc9%\x8b\xa0x6\xe7?\xe4cA\xf6\xa0\xf6\xe5?\x03L\xfa\xc5\xe2\x9c\xe5?3\xe1\x9a\xa2\xc3K\xe4?0\x7f\x96)\xc8\xb5\xe3?\xccH\xd7\xe1dU\xe3?J_\xc1\xf1\xb2;\xe2?I%A\xa4:\xc9\xe1?\x8a5\xce\nd\x1c\xe1?\\bb\x9d\xfcd\xe0?\x17\xa1\xfet\xb8\xcb\xdf?\x91\x98\xf9\xa8\xef\xb7\xde?\x1f{\xa9\x0f\xdb\xfb\xdd?]\xa4\xac\xd6\xdcU\xdd?\xc9v\xc6=\xa1\xb8\xdc?J9\x80\xa0\xf3\xd6\xdb?_\x8f\x11*\xa6\xd8\xda?=\xabPa\xf0t\xda?\xd0\xcd\xee\x97i/\xd8?~\xb0\x83t\xe5\x1e\xd8?-\xd7g)\xd3\x07\xd7?\xd1H\x9c\xda0\xca\xd5?\xf4t,\xa5\x04\xb1\xd4?\x9d\x18\xe4\xc2e\xee\xd3?\x8d\xf3\xf9)-\xb1\xd1?0\x06O\xb5JW\xd1?\xea\xd1\x9a\xcd\xd3\x14\xcf?4\xba\xf6\xc1t\x8e\xcd?\x19s\x846\x0b\x8b\xcc?D\x05]\xe7a\r\xcc?\xe1\x9b-\xceZ\xf7\xca?K\xb6\xf6\x93\xb3|\xca?N\xe1\x0c\xf9\xd2_\xca?\xdaB\x8b\x8a\x13\xeb\xc8?}\x98^\xf2:]\xc8?i\x06\x12\xe7\x80\xde\xc7?\xf9!\x1c\x1b\xcf\x91\xc6?jE\x0c\x93L\x14\xc5?\x91\x8dh\xcf\xb4\xb3\xc3?W\xe3\xa6\xce\x93\xe9\xc2?\xfa\xd9\x9f\x8c\xbc\xc9\xc1?\xc5\x05\x92\x87r\xf1\xc0?\xb2\x16\x96F\x1bI\xc0?\xa1\xb1\xf6\xc1\x1a\x86\xbf?\xdf\x9b<\xc9-\xe6\xbe?\xf6\xd1vj\x9d\xc7\xbd?\xc3\xaf\xea\xa8\xab\xb6\xbb?\xb4\xa3$\xe1\xaa\xaa\xb9?\x8f\'\\\x8dQ\xc7\xb6?\xb6\x86/\xda\xf9\xd0\xb4?]\x98LN\x15*\xb3?\x90G\x15QA<\xb1?\x01D\xa7I\x08\xcb\xb0?\xa14\xe11C \xa8?\x10Wh\x0c&Y\xa4?\x03\x81y\x91\xfd\x12\x9e?\xd6,\x99\x8a\xa7#\x97?' +p134 +tp135 +bsg11 +g12 +(g13 +(I0 +tp136 +g15 +tp137 +Rp138 +(I1 +(I30 +I136 +tp139 +g22 +I00 +S'\xe8\xe5tZ\xd3\xbc\xa6?5\xef\xb3\x1e\x8e[\xd1?x\xc7\xf9\xa5\x92\xd8s?\xb2\x1c\x01zP\xac\xd0?\xfa\xac\xe1\x07\xde\xc4\xa0\xbf\x9e\xa6\x13\xbfk^\xd0?`\x1e\x1ac\xdc@\xb0\xbfA\xfd\x00\x92\xc7\xb3\xcf?\xb6\xd3i\x8e\xc4\x85\xb3\xbf/Y\x97\x04z\xcd\xca?6\x8a\xe7m\xfd\xb8\xb1\xbfp\xd2\xa6\x19\xb4\xfa\xc2?d\x077\x8d>a\xa8\xbf\xbb\\\xf1\xcd\x03\xce\xb3?\xf7\x93\xb04\xf1?\x91\xbfJp]\xe9[\x16\x83?m\xb6\xb3\xfd\x10\x87p?\x04l\xc7\x00L\\\x92\xbf\x84\xbe_\xb6\x17\xe1\x99?\xf3\xfd\x1f\xce\xbefp?\xa5M<\xce\xc9$\xac?\xd3\x08\xb1C\x90U\xb1?\xbf\x10~\xb4\xacM\xb3?\xba\xdej\xd57P\xc1?A\x1e\xafCO\xdf\xb4?\x15v\xb6\xaa\xec\xb1\xc8?\xd44\x11\x19\xe1j\xb1?;R$n4[\xcd?p\xe4g`\xd9\x0c\xa3?\xf1Z\xe9oMc\xce?\xa6@\xd2Ge\xdbd\xbf\xd9b\xa4\xfc\x7f\x00\xcf?\xd1\xab\x12\xcf\x82\xff\xa6\xbf!0\xb3\xf7\xef@\xd0?\x8e8\xd8_S1p\xbf\xb3\x7f\x15\x07c\xcd\xac?:\xf2sJ\xa3FV?\xd7\xf2\xc9\xdb\xc3\xc2l?E\xb4W\x1e`\xf1\x86?\x9d\x0f\xa0u\x10\xe3\xa3\xbf>\xf3Q\x07\xce\x17\x84?\xa4\xa8\xed\xeb\xd9b\xb3\xbfM7F\x82\x80\xc5G\xbf\x94\x04\xcb\xe6\xff[\xbb\xbfA2\xd8;\xfa\xa8\x86\xbfd2)\xd7\xe4\xcf\xbb\xbf\x7fIe\xb8\xc1\x00\x95\xbf\xe7\xff\xab}\xbeJ\xb5\xbf\'\x82\xbc\xa8\xa5\x1c\x96\xbf\x8be)!S\x05\xaa\xbf\xae\x01c\xdc<\x1f\x88\xbf\xde\xfa\x7fz>t\x8b\xbf\xf3\x1f.br\x8bx\xbf!\xe6\x0e\xa2/\xac\xa2?\xa0\xfc\x83v\xd3B|\xbfb\xacB\xb9\xe1D\xbe\xbf\x99\xdd\x82\x15=qz\xbfM\x83^\xde\xd7\xb1\xc2\xbfC\x8aL\x07\xbd\xd1v\xbf+\xc7s&\xc0\xf2\xc6\xbf<\xef\xcd\x81\xc9-s\xbf\xb6\xb4\x18\xbd\xb1B\xcb\xbf\xdb\xf9\xador\xd8\x80\xbf\x84i\xea\xfd\x9ab\xbb\xbfp\xed\x90\x1f\xb7ja\xbf\x0f\xb5I\n\x97\r\xc0\xbf3\xee\xd2bL\x03n\xbf\x07S\xc4y\xc8T\xc1\xbf\xd3\xca\xf5\x99\xa9vu\xbf7r\xc9w.\x1f\xc0\xbf\xac\xa7\xf7#|\xacN?\xf3C[u1\x8d\xbb\xbf\xec[\n\xd8-\x8ai?\xc8\x97g\x1e\x02\xae\x90?\xb2\x1e.\xc0\xcccQ\xbf\x87o\xc1\xee\x9c\xa3\x83\xbfs5 \xb3\xbc)E\xbf\xd7~\xa7\xd9\xd2\xe9\x92\xbf\x82?\x1a\nD\x83l\xbfG\xcdd\x92h\xad\x91\xbf\t$\x04\x13VFl\xbfKcm7\x854\x8e\xbfnaqw\xab\xc5 \xbf\xcf\xc7H5Q\xcas\xbfJ\xa3UH\xf1Uy\xbf\x10\xd1\x03\x9fe\x02\x96\xbf\xb7\x08&\xe8\xd4\xad\x83\xbf\x11\x8f\xf8\r\x06\xd7\x98\xbf\xe7dB\xa1\xd1b\x82\xbf\x103\x95\xeb\x10X\x92\xbf\x02\xd3\xecCkL\x87\xbfRM\xdc\xa9\xa2\xecq?P\xefll\x9f\xf8\x81\xbf\xc3\xf0\x7fK\xa3\xe4\x8c\xbf\x08\x87\x0ea\x00py\xbfQ\x8fRi\xe8\xe7\x95\xbf\xcf\xd3\xe9X\xb8\xc0t?G\xf5\xa11e\x98\x9a?-\xd1\x0b\xde\x96Um?\xb0\x0e\'UU\x9c\xa7\xbf0e\xc2\x867"t?\\\x84\x1c\x90\xaa\x00\xb7\xbf\x15d\ndK\xe7u?\\\xb2\x8dA_\x8b\xb8\xbf\x87\x86S\xc5\x94\xd8t?.5H\x05\xa3I\xb7\xbf\x7f\xa7eI\x1b\xa6|?]\xe0\x99\x03Ld\xa9\xbf3\xf3W&\xedrv?\x1b\x9f\xfexQ1\x93?9-\xf3\xd9\x08@\x88?\xfc\x8eS\xab\xe6\x1a\x9f\xbf\xc9>>\xc7\r:\x83?\xe3\x83n\x1c\xb8\x0e\xb1\xbfg\x1bu\x92\xa2\xc5x?t\xbe\xb7\xc7+c\xb2\xbf\x85\xfdG\xb9PTc?+t-\xe6\x18\x9c\xb0\xbf\x87g\xd2\x86\xc6IE\xbf\xd0\x85^e\xf9\x92\x9b\xbfm\xc9\x1a\x94.$w?\x82|5\xf7Y3\x93?\\\xde\\\xce\xbb\xb6k?\xc2\xb2\x9cx\xc4\xd9\xb4\xbf"\x1c\xcb[\xb8ft?z\xfd\x92\xa0\xc3\xa3\xb6\xbf\xd8\x83\\0\x04\x9bx?N\xc4\\\x83\x122\xb5\xbf\xd4b\xf5\x15\x86\x93t?\x8c\xc4-bDv\x89?D\xfc\xa3GY\xec\x87?\x15f\x7f\x05\xd0y\xb3\xbfm6\xe6\x1d\x02b{?\x88\xec\x85\xa7U\xcb\xb4\xbf\xa2\x99\xfc\xdf\x80\xddP?J\xfb:\xc7\xe3 \xb3\xbf\x0c\xfd\x833\xf0\xc3\xae?\xc7\x91\xa6\x9a\xa2\xb5\xc4\xbf.\xd0\x00\xb3D?\x9e?\xf0\xad\xd7y\xbd<\xc4\xbf\r!\x8aS\xb7^l\xbf\x864\xf0C\x06\xcf\xc3\xbf\x9e\x0e\xed5\xdf\x18\xa2\xbfn\xb5zF3\x06\xc3\xbf\xd0\xe5K\xbf\xc3S\xb0\xbf~\x01\x06o\xb6B\xc1\xbf\xe3b\xd6\x99\xf3\xc0\xb6\xbfP\x99dH1\x02\xbc\xbf5\x1bZ\xbcEV\xbc\xbf\xb0\xde\xeb\x0e\x93O\xb3\xbf\x8e\xd4\xba\xe0\x05\xf0\xbf\xbf\x89\xa6\xd1\xc2@I\xa4\xbf1a|\xca\xcah\xc0\xbf\x10\xf1?\x07\x1f\xeeN?\xdf\x01\xb9i\xd3\x1c\xbf\xbf\xf4\xfb(\xac\xc1\xac\xa5?\xd0\xdc"i\x1b@\xba\xbf\xff\x16\xa5\xea$\x9f\xb5?\xe3\xdb?!\x0b\xaf\xb3\xbf\x8a\xfd\xe4\x9b-\xf2\xbf?\xebq\xe5"\xd9\x10\xaa\xbf\x0bS\x87\xa8\xa2\xec\xc3?t\xa1\xc1\x9e\xdab\x99\xbf\x89\x07my\xc5\x1d\xc6?\xaf\xfd\xd1\xafx\xa9i?\xdb\xf8\x08-D\x10\xc7?-\xec\x92\xdb\xa0\x8d\x9f??\x80\x0e\xbe\xeb\xbf\xc7?\xddr\x82\x17\x11\xb6\xac?\x83Z\xd1\x1c_R\xc8?"C\xd78\xa4\x9d\xbb?\xd9_\x1dH\xa0\xa4\xc3\xbfs\x05\xe3\xc3\xf3@\xbe?%\xf8\xca:\xbf\x1e\xc1\xbf\xdaC\x0b\x0bM\'\xbf?\xc9h\xbd\xcf_I\xba\xbfV\xbe}\xc0\x1e\xa7\xbe?4\xfb\x80m\xe4\xe9\xb1\xbf\x8d\xf3\x90#\xa4\xb3\xbc?*J\x02_7\xf5\xa3\xbf\x93T\xbd^\xf1H\xbc?\x84%\x18\x0c\xc2B\x9b?\xac\x89\xa5\xd4\x91\xf0\xbd?<\x818\xb1\x1b\x13\xaf?FK\xb6\x10As\xbe?N\x11\xe7;>\xf5\xb8?\x84\xe4~\x0f\x12p\xbd?3\xc1d\x87F/\xc1?\xc2\x13\xfb\xc0n\xe7\xba?h\x97U2\x0c\x8e\xc4?Z\xb9\x1cm\xbd\x1a\xb4?\x10M>\x82 \x1ew\xbf\xd6Q\xd3e\x08e\xaf?\xae\x92N\xcd}e|\xbf\xb3\xf2\x98|e\xbb\xa6?=.\xc7M\xbb\x9a\x81\xbf\xaa\xd9#\x1c\xa5\xc0\x9b?\xb6S\r\x00\xf7(\x85\xbf-F\x1e\xc9\x14\xd0\x84?]6F:\x8cF\xa6\xbf\xc9\xecRWA_}?xw\x03` g\x9a\xbf(\xae\x02y\x03\xc3t?\xdd\xbc\xaa\xac\x98\xbfy\xbfN@y\xa6J\x8e~?\xa9s>\xb4\xef\xfe\x8c?\xa0U\x85\xd8\x88\x16\x87?\x13=p\x0c&W\xa1?jc\x9bn{\xd6\xb2?c\xad\x87Xj\xe4\xbd\xbf\xb0L\xees\xd8H\xb5?K\xa4\xae\xefb\xc4\xb8\xbfV\xa0\xe0\xcb[=\xb5??\xafZ\xd8J"\xb3\xbf0)v\xf6v\xb7\xb2?\xbe\x06\xe2\xb3\xe2\xe2\xab\xbf$\xfcF\x10\xde\xd4\xb1?\xab\r\x1dJ\xa6\x86\xb3\xbf_\x86ip6\xc0\xb1?\tB\xbe\xad\xe2/\xb9\xbfm\xea\x8d`\xa5w\xb2?\x99\xac\x02\x01\xaf\x10\xaa?\x05\x99\xf6\xa6\xca\x07\xb5?\xf0\x81\xd2s\xb4g\xb2?\x1e<\xe2\xc2\x9d\x02\xb5?\xe8\x93%s 9\xb8?\xa6\x8b0{\xc5t\xb2?C\x9d4\x0b\xee\xed\xbd?t\x06\x14yM\x8d\xb1?I{\xe26r\xd0\xb8?\t\xc9\x04\x91\x06\xb4\xb1?k2\x83\xa41\xc6\xb2?/\x92\x95\xd9^1\xb3\xbf\x0f\xef\x01N\x0e\xb9\xb3\xbf\xe3\xb5i+\xdb\xfb\xae\xbfI!\xca\xce\xc6\x8d\xa9\xbf7,\x96[\xec\xee\xab\xbf\n\xa4\xf7\xbb\x1bI\x99\xbf\\w\x86\xfe1\x0b\xad\xbf\x9c\\\'&\xbfUx\xbf\xe7\x0e\xfa\x07\x0f\xe0\xab\xbf\x12\x99\x17!:\xb3\x8d? e\x93c\x16\x06\xaf\xbfQZ\x18\x1a}\xbb\xa6?\xb3\xd0\\\x0f\x93\\\xb3\xbf\xd6]\xc6\x99\x87-\xb4?\x1eQ\xe6\xdb\x99F\xb8\xbf\xb0`\xb5{\xd7\x10\xa8?O\xbb\xcc\x87\xd2Z\xba\xbf\x82\x91\xe7\xb4Tv\x91?\x94T\x94\xd8\xc9\xb8\xba\xbf\xe8\x06#\x11\x10bq\xbf\x8f\x94Hk\xc2\x7f\xba\xbfum~\xfc\xe4\xf0\x98\xbf\xdcC\x84*j1\xb8\xbf\xa4\x1c\xf9\xe9JY\xa9\xbfg\xba\xfcUr!\xb3\xbf\xee:\xac\xb1\ta\xb1\xbf\xdf\x18\x82\xe9y\xf1\xb0\xbf\x85.\xb4\xa0\xddC\x99\xbf\xa8\xd3\xeb\xf7\xe6\xfb\xb0\xbf(\xafU\x91\x92\xb5u\xbf.\xdb\xef\xd3\xf2\xf8\xb0\xbfZ\xe7\x06\xa8Eq\x8f?\xb4\xbf\xd6f\xbcC\xb3\xbf\xf4\xc9\xb3\x16\xd8c\xb1?m\x07\x17\xfe\xb9\xe6\xb5\xbf!\xd3\xda\xc6\xb3\x05\x90??t\xda\xa2\xc7)\xb6\xbfR\x1cKm7|t\xbf|q\x97@L\xfa\xb5\xbf}@9\xa7,\xd7\x99\xbf\xb9p\xac\x82T\x93\xd0\xbfX#\xb4\xdf\x98\xd4\x88\xbf<\nC\x05L\xaf\xce\xbfT\x1b7\xca\xa1\xba\x7f\xbf\x17\xe4SI\xdbf\xcc\xbfVn\x95\xc7\x91\xcca?\x86\xa5f\x9a#\xb7\xca\xbf\xf8\x98\xf7.\xc1\x92\x87?\x9f\xeae\xa0 \xf1\xc8\xbf\xde]T\xb0\xdbV\x96?I\x7f\xd0\x9c\x8a"\xc6\xbf\x92\xda\xc7\r\xf5\x92\x9d?\xa7q\x19\xa8Q\xbf\xc1\xbf\xd2\xb7|KU\x10\x94?\xdb3\x8b\xe3\x16\xd6\xb8\xbf\x13E\xc0ZTYq?\x00.c\xba\xda\xb3\xb5\xbf\x14\x94\x0e\x0c\xcb|~\xbf\xd4\xa6\xde\xbb\xb2\x89\xb7\xbfX\xca\x03\xd2\x05\x9e\x92\xbf\xa8#\xcf"a\x8d\xc0\xbf\xe5\xf3*2\xe3\xf9\x9b\xbffh\xda\xf3\xb5\xb3\xc4\xbf\xf0\xa9\x06\x85Y\xa6\xa0\xbfw\x19j4\x03\xad\xc7\xbf\xffi\x0e\xb0zH\x99\xbf\xc7&\xdb\x8cj\xaf\xc9\xbf\x16\x8d}\xdb\xe0#\x8a\xbf\xca\xc3\xb9\xb2Ak\xcb\xbf\x8a\n \xe1\xe7NF\xbf-k\xb2\xfb\xd6\xb1\xcd\xbf\x87\x19y\xaf\xdb\x8f\x86?"y\xda\x85\xa3?\xd0\xbf\x8f\x04q\xc7\x9bJ\x91?\x8dUdw\xf1\x1d\xb1\xbf!\xad\x13\'%\x8c\xa1\xbf\xff\xc1\xb6\xde\x9f\x95\x94\xbfM=\x1fRy\x9c\x84\xbf\n\xf0\x03\xe1M\xef\xa0?\xf4\x08\xe2\xef\xf7\xc9k\xbf\xb8\xb1K\xd5$\xb3\xb0?6z\xf7\xc5\x9c\xbc\x84\xbf\x92#\x9a\xef\x04\xd0\xb2?$j\xd3\x80\x998\x8b\xbf$\x8eb\xc4\x93\xb0\xb3?W-8\x0e\x0bKq?^-\xda\xef\xe3\x19\xb2?\xac\x97\x1aE\x88\x9bo?E R\x0b\xc4W\xa4?(\x08\x1b\xb6\x0e\x01Y\xbf\xa0\x0c\x992S1\x86\xbf\xe5\xb5K \x8d\xa6w?\xd0l\x0b\xd5\x00\xbc\xab\xbfJ\xb7H\x1et+\x9f?\xec\xda\xea\xbd\xb0!\xad?^\x06.\xee\xb7\x9ff\xbf\xc9\x05\xe6\xe1\xf33\xba?\x9fn<\x95i\x0ck\xbfj\xde\xbb\xf3\xe5\'\xc3?\xbc\xfc\xe5\x1c\xff\xd4q\xbf\xee\xe6\rR\xf6\xb6\xc8?\x81\x0bm\x1b\xc9\xd0r\xbf8\xe2\x17\x9f\xf8\xe3\xba?Q\'\x19I<\xa8\x87\xbfK\xd3\xa1\xd3tx\xbe?<\xb9\x94\xd8s\x0f\x84\xbf\x04g\xe8 \x80\xbd\xc0?\x83\xbb\x90\x08%)l\xbf\x91\x82FZ\xbf\xcd\xbe?\xabE\xd6\xc1\xa6-W?g\xe0_\x85\xd2\x97\xbb?\xb6\xb6\xad)\xb6\xa7c?\xe4U\xbf\xb0\x90\xe2\xa2\xbf\xb7@;\x90kY\x9e\xbf\xb1\xd4\xb7\xdd\xcd\xf5\x92\xbf\xe3\x02m\x7f\xce\xc3\x96\xbfcwJ\x8d\r\x16\x81\xbf\xef!\xe1\x97fo\x89\xbf\xd7\xba|(t+O?=u\xba\xed\xb0I\x8a\xbf\xc4_Vf\x9b\x05s?a7s]\xb2\xd4\x95\xbf\x899\x18A\xbf\x82o\xbf\x19\x11\xf1\x92\xae3\xa0\xbf\xb8\x92\xfc\xea\x00\xdfx?$\xf6;\xec\xbb\xe1_?:\xd8\xd9]4\xfah\xbf*wBpg e?\xef~f\x18\x1b\x9a\x86\xbf\xeb1f\x17\x7f\xe1\x88?\xe4U\xbc}\xe9\xf8\x9b\xbfc\x0c\xe8\xc5\x8c\xfc\x95?\x96\x1c=\xa6k@k?\xbdR\xc2\x03!I\x94?\xd6a\xed\xc1\x11F\x86?>\x85\xefI\x96\x96\x84?\xdcF\xfe#-\xb6\xa7?\x9b\xd0\xd3j\x1dY\x97?\x08~\xc6\xdbVo\xbd?\x17\t\x87\xa0N;\x99?\xb0\x99\x81\x8b\xbfo\xc2?\xe8\'"\\"\x1a\x88?\xf7\xc4-\x10t\xe2\xc2?\xc6\x8c\x0879\'~?(\x1f\xc0\xa5\xf6u\xc2?\x15;n\x83\xa3\xb7f?\xcf\xc8 A\'\xbc\xbd?\xe3\x03\xeb \x12\xf1|\xbf%r\x8b\x93\xe4M\xa8?\xf6\x87\x15?\xaf\x00x\xbf\x02\x83\x01\x19\x11s\xb1?}I\x07\xb4\x90,q\xbf\x1c\xac\xd5\x99"\x17\xb5?\x9bx\xd3T\xf8{l?\x0e\xd4\xb8=\xa3\xb8\xb5?\xb6\xb3\x1a\x16\\\xecz?\x85(\xc4{\xf2\xea\xb4?Cd\xfe\xcf65\x86?j\xa9\x1f\x1f\xad\xf0\xb0?$\x87h\xba\xe0\xa3\x95?\xdc\xe79\xebK\x9a\xaf?]z\xbf\xa4\x1b\xd7\x95?+\xf9Jf\xa8\x07\xc0?\xfd\xc7\xd8\xbd\x19\xf3\x85?\x1d\x19\x13\\V\xc7\xc0?\xd3X\xd8\xd5Y\x17}?\xfd\xe3|\x1b\x0b&\xc0?z\x85\x18\rN\x8em?\xddO9\xec9"\xb0?\xb6\xc3\xa4\xc3M\xb4r\xbfG,\x1d\'Q\x0f\xb3?\xa5gB\x01\xd4yh?\xc5\x938\x14X\x10\xb4?`\'\x89\x897\x11|?R\xa9jS2\xbe\xb2?c\r~\xdc\xdf\x94\x87?=9\x7fv\xe2\x02\xad\xbf\xb0\xb3\xa1\xc3\xcav\x8d?\xd0\xc2\xf4\xa8,1\xb2\xbf*\xacX&\xbc\x1fj\xbf&\x10\x85L97\xb5\xbf\xb3uG\xbf<\xae\x94\xbf+\x06\xb2D\xef\x91\xb6\xbf\x94N\x15x6\xd0\xa2\xbfk2\x85\n\xdb\xa3\xb5\xbfl\xa9\xe4\xe6\xe3\xcb\xad\xbf\xec\xb9-\x8a\xe4\xfd\xb2\xbf\xd9\xb3\x88\x08\xb4\xf4\xb4\xbf\xd7Q\x12YBB\xaf\xbfd.A5U\xce\xba\xbf|\xdb\xfb\xd1F\xb7\xa2\xbf\x13\x94\xa5\x14\xb6h\xc0\xbf5\x84\xf7\xb9\x10sx\xbf\x16[qT\x1ea\xc1\xbf\x0bT|\'\xa1\xd5\x9b?\x81|/:\x91d\xc0\xbf\xf2\xa9\x88A\xbc\x9b\xae?N\xeeg\xef]F\xba\xbf\xb7\xbb\xa3|\xd1\xfe\xb5?\xc3\x11\r\xe7\x02\xbc\xb2\xbf}&*\x86\x08\xfa\xb9?\x93\xa3M\xfb>\x1e\xa7\xbf\x98\xf9\xda-\n\xde\xbb?r\xdc\x90\xeb/4\x97\xbf\xa9fq\xd2\xfa\xe6\xba?\xa7\xb1\x00\xdf\xfa\xc9\x83\xbf\xfb3\x07\x8b\xfe\t\xb9?5M5\x89\x1c\x03b?\'\x91e\x8d\xe9\xa2\xb6?\xe4\x8a\xfa\x14a\xeb\x90?\x14\xf9\xe0\xca\xef\x80\xb1\xbf*\x05\xbc \xfcm\xa3\xbf\xddA\x17\x04\x94\xeb\xae\xbf\x1e\xadY\x8b\xf7\x9b\xa5\xbf\xa1\'Uf\xe7\xf8\xa6\xbfB\xa7\xf1\x84\x8c\xbb\xa7\xbfu\xa3Nz\xc2d\x9e\xbf~\xa3\xdcb\xa9\x17\xaa\xbf^\x00\xcb\xff\x04\xf7\x91\xbf\x12Pk{w\xeb\xad\xbfZh\r\x12\xab\x1b\x96?\x05\x8c\x95\xb4\\\n\xb4\xbf\xba\x10\x15\xfb:\xb3\xa0?\xf2\xe4\xaeB\xc0\x17\xb0\xbfr\xef\xe3\xd9I\x0b\xa9?!tp\xaft\xe8\xa9\xbf\x04\xa3\xd0\xb0\xed\x0e\xb1?V\xaaCp\x8f\xc3\xa4\xbfkvs\xe3\x92\x8e\xb4?."\x1e\xba3\xbb\xa3\xbf\x82\xc9\nF2\x99`\xbf:\xf0\xf2\xb2\xcb\xca\xb9\xbf\xa5\xec\x8c\x7f\xb9>\x83\xbf\xb01|b\x11B\xbd\xbfI\xbc\xd9";\xb5\x91\xbf\x1b\x14\n{\xd8}\xc0\xbf\x0c|\xf2v\xb0\xf8\x98\xbf\xaa/H\xa6iT\xc2\xbf\xd7\xd3\x96\x1e\xe0\x1d\xa1\xbf\x91\xa7\x11H\xae\x08\xbf\xbfx\xacqQ\xed\xe7\x99\xbf\x90\x9c\xb9\x8c~t\xc0\xbf\x8cl\xe0\xb6\xf4\x97\x93\xbfQ\xc5@\xf4\x85\x1c\xc1\xbfx\x8f\x91\x02IL\x84\xbf\x99_\xac\xdf\xf7\xdc\xc0\xbf\xfb\xacx\x88\xfe\xdeb?\x92qJ\x11\x96\x03\xc0\xbf\xb1]\x8f\x0c\xf6\xa1\xac\xbf\x90\xfa{\x8f\xaeL\xaa\xbf\xd9\x01j\xc2 \x01\xa9\xbf\xb4\xb0@?\xd09\xab\xbf\xd9\xe9L\xca\x9b\xda\xa3\xbfTh}\x94\xa0\xf7\xab\xbf\x8cg"\xe7\x92\xd9\x9f\xbf;m^|<[\xad\xbf\x1d\xee\xd8\xae\xb0\xe1\xa5\xbf\xbd>y\x1c\xaa\xd1\xae\xbf\xbcX\xb6\xe7?}\xaa\xbfB\xf4-T\xc8\xa6\xad\xbf\\N\x01C\xd4\x18\x9c?oWN\x12\xdb\xbc\xb0\xbf\x01\xf7)\xfe\xe3h\xa3?\xff\x84\xb3\xa2xI\xaf\xbf\xbd\xad\xe5\xb2H\xe2\xa8?\xc8\x8b\xbeo\x11p\xae\xbf2f\x1fz\x05s\xad?\xb2<\xa9\t\xff\xeb\xad\xbfw:\'b\x9a\xd3\xa7?\x99`\xb9\xd9\xe1\xbc\xb0\xbftu\x89\x13\x8d\xf4\xa2?\xcaX\xc7\xdb\xa1&\xb1\xbfP\x87\xa0W\xdb\xe7\x96\xbf\x04\x14\xa9\x05+5\xc7?m\x9a\xa1\xfc\xb9,\x91\xbf_\x9a\x987*\t\xc6?\xa9\xe2[\xeb\xa0z\x83\xbf\xecJ\xb6"e\xd7\xc4?\xda\xb0\xa5\xde(Yp\xbfk%jpK$\xc4?\t\x1bWa\xfa\xf7k?YI\x1a\xbb\xcc_\xc4?\xf2w&\x8bo\xa0\x91?\xad\x1c\xe85\xc0K\xc5?\xde\x8eZ\x92\xa1\xc2\xa1?7\x0c\x16\xee\x889\xc6?\x96\xa5\xc2b\xc0\xc1\x96?\xaed\x06\xb1c\xa4\xc4?\xa9\xef\xbdi7w\x80?\x96`\t\xae\x16\x83\xc3?\xd9\x9c9U\xd8oT\xbf\x87\xbc\x0b\x98\xfe\x89\xc3?\xe2\xeb\xe6\xc0\xe5\xae\x83\xbf\xcf\xab\xda\x12W\xf5\xc3?!\xe6\xa2\x08\xea\xfc\x90\xbfK~U\x94?\xc5\xe8\xbf\x95A\xf4\xae\xbf\xdc\x15\xb0\x04.$\xa0?\xfd}_\x135\x19\xa6\xbfP\x83 O%\t\xa5?3\x85+\xe2\x87\x9f\x94\xbf\x01\x99/\x062f\xa5?\xd4\x1d\xd1\x7f~Rw\xbftJSs\x00\x8c\x9e?\x7f\'5Y\xb0\xd0\xa6\xbf\x9d*B\xa4\xab@\x80?\x12\x1a\x846P\x06\xba\xbfqX\x88\x1a4\xdau?\xe3\xc4\x17\xcf\x03p\xc4\xbf\xbd\xcef\xa0&\x90j?K \xd0\xa0s\xc2\xcb\xbfZ\xe1>\x87:\xf1R?\x95KL\xc7!\xfa\xbe\xbf\x89J\xa9\xe2S+\xa0?\x1c\x01\x82\xed\xd7\xfc\xc2\xbf\xc6E&\x8f\xc7\xb4\x93?h\\>n\xd9[\xc6\xbf7F\xd1\xe7\xec\xae8\xbfzA\xbe8oO\xc3\xbf6\xb5\x15\x86\x99)\x94\xbf\xfcY\xaf\xa8\xce\xe8\xbf\xbf"\x10\xebXB\x15\xa0\xbf\xb7\xcdgfK\xd1\x9b?g\x05I\x01\xad\x13\x94\xbf\x8e\xb9qDtP\x85?\xbd\x84\xddg\x9c{\x97\xbf\x17EZ%\xae_]?\xd3U\xb1I\x9d\x14\x90\xbf\xbc\xdf\xfeeG/^?\x80\x9bO\xea\xd5\xa5\x92\xbf\xd28\xcd\x00\xa3\xe5\x92?\x95\x15\xfa0\xdc\xaf\x8d\xbf\xb6t\xe4k\x99\xe0\x99?4\x92\xf9\x9a-\xf4\x95\xbf\xd4ld\\\n\xe4\x96\xbf\xa8\xa6\x83\xda\xc3\x86\x99?\xf9\x92\x9e\x8b\x0e3\x9a\xbf\x05\x1e\x8d\xb9"\xf7\x99?<6\xdb\x0f\x1c\xcc\x93\xbf9\x87bqi\x82\xa0?\xee\x9e\xf5\x84N\x96s\xbf\xf4\xdeJ\xe1\xbc\x12\x9b?a\xb2\x04q\xda\xa9q\xbf\x88L\x1fb\xd1!\x9f?8\xa1\xa37\xdcZ\x82\xbfC]\x9f\nN~\x97?\xf2\xc5\xca\x8d\xd9X\xcc?\xd7\xea\\\x02\x92-\xc0?\xdd\x9e\\\xbfT\x88\xc5?\x8a\x8d\xe5\x1b5\xfe\xb5?\xf1hSd\xc45\xc0?.\xf2>\xe8e0\xa4?4g\xcc\x7f\x7f\xc5\xbe?QX\xaf\xd5\xc3\x98f\xbf\xa2\xc9V\x05\xbf\xb7\xbf?\x063[-\xef\x00\xa7\xbf\x084Cr\xb6\x0f\xc5?v\x0e\xc2&!\x89\xb8\xbf/Pt\xad\x98\x95\xcb?\x17`\x86\xdd\x1d>\xc1\xbf\x86-\xa3R\x96C\xad?ObK\xd1\xab"\xbb\xbf\x0fV\r\xc1\x80\xe7\x91\xbf\x87\x1dBM\x91\x8b\xaa\xbf\xc2\xd0\x155\xea,\x9c\xbf\xd9e\xab\xed\x85\xd7u\xbf\xf1\xc8\x87\x1c\xb4P\x8c\xbf\x066\x91\x0b8\x19\xa5?\x80(Y\x80\x18n\xaf?\r&h\xc6B\x9c\xb7?\xc5\x0f\xc3\xa3\xd9\xef\xc8?.\xc8\xb04\xe3\n\xc0?\x9ao\xa4$\xf8\x18\xc3?\xcd\xdd\x97\x9bUA\xa4?\x9c\x85\xac\xda\xbf\x8a\xc1?yw6z\xbb\xa3i\xbf\x8b\xe2k\x9d9\xc1\xc2?#\xfc\xadkJ\x8d\xa7\xbf\x11D\xfb\xeb\x05V\xc8?\xab\xed,\xe1\x1fR\xc1\xbf\r\xb4\xe4\xbb\xfb\xdb1?\xa4\xe3.F\xe9\xb6\xa9\xbf\xe5\x08~\r\x05\x18\x87\xbf\xa4\xc8\x01z\xdbOp\xbf\x9a\xba\xf4\xdfQ4j?\n\xd8\x95on|\xa5?.\xfa\xdac\xa1aG\xbf\xbf\x1cR$A\r\xa8?\xc6\xd9\x85_c\x94\xa0\xbf\xdaJR\xbd\xc3U\xa3?\x92\xfd<\xb0\xba\xbd\xaf\xbf+\x8e\x88h\x1dO\x97?y\xec2/\x17z\xb4\xbf;\x1d\x08t\x0bgl?P\x13\x07\x95}\xf1\xb5\xbf\x03\xfa_g\x00\x15\x8d\xbf4\x7fC\xa1\xfd\xcd\xb1\xbf\xf2\x7fMTe\x15\x9b\xbf8z\xdd\x9c\xbeH\xa2\xbf}\x90\x97W\xabW\xa3\xbf\xbc#\x84\x91\xde\xecp\xbfU\xa6\x1a\x18\x1a\xe7\xa2\xbf\x1e\x15\x17Q\xb2\xd3|?\x02bV(>@\x8b\xbf\xea\x9cE\x19r\xbf\x7f\xbf\xce\x07j3L\xe2\x88?\x82\xedOv\xc3\x00\xa4\xbfs\n\x12\xaa\x9aZ\x94?:5\xad$\xa3\xd6\xb0\xbf\x960:\xe4\xe3\x97\x89?\xe3\x96\x9e\n\xd7\x1c\xb3\xbf.\xf3\xfcy\xef\xd8c?\xb8\xaeGe\xb5\xb9\xb1\xbf\xecP\xff\xa3V\x01\x85\xbf\xf2\xe5\x0b\x15\x9bY\xaa\xbf0\x0f\xb2\x89\x8e\x11\x9b\xbf-A\x13A\x19\xe0\x95\xbf\xd2\x9c<\xc8\xd1\xd5\xa2\xbf9\xd5l4;\xfe\x86?\xad\xad8\xbbi^\xa4\xbf4\x9b\x01\xd0dI\xc1?MmoQ\x06\x8a\x92?3\xea\xb7\xd0\xa70\xc0?\xd1\xc6\xcc\x80{\xf6w?\xccJ\xc0hit\xba?/\xc5\xfe\xcaO\xe8\x84?\xb5R\xbf\x89E\xb5\xb5?|\xe4\x93\x00J\x97\x97?\x87#V\xb8*\xa0\xb2?\x98p\xa2\xedp\x16\xa1?\xa5\x1c\xde\xc9\x8c*\xa4?|\r\x06eh;\x93\xbf\x011x\x822R\xaa?\x80{\xaf\x89\xbb-\x8a\xbf \xbb\xaf\xf2%1\xb1?\xfc\x02\xefp=\xc6n\xbf\x1c_Q\x7f=\xb7\xb4?\x91\xa1\x91\x96\x1a{R?d\x1dV\xac\xef\x86\xb5?z\x1dk:\xa1\xc3\x89\xbf?nh>\x13\x89\xaf\xbf\xe2\x95\xe5\xd3\n\x94{?\xf9\x9f_n\xfeh\xba\xbf2\xfb\xd1Ev\xa5v?:L\xbf\xf3Vi\xc2\xbf\xad\xd9\xae\xcfWVs?\xaab\xffi\xd1\x18\xc7\xbf\xf6\x13\xa0W\x0f\xfbn?\xa2\x9a\xe7\xcc\xb6L\xc9\xbfKT\xaa{\x17\xaa\xa3\xbf&\xae\x95)\x02\xa6\xc9\xbfnK\x92\x0b\xfa\xf5\x93\xbfR\x8a\nw\xfb\x16\xc9\xbfQ\x82]\xc6\xad)^?U\x89\x12\x7fm\xcf\xc9\xbf\x085\x85=\x1d\xb5\x97?\xf6Y\x93\xbd\xcf\xdb\xc9\xbf;\x81i\xc0\xdb;\xa5?\\\x85\xe4\x87\xed \xa0?\xbd\xdb[y\xeeb\x98?\xb9WO5\xee\xec\xa9?w{\xff\xb1\x84\xfa\x99?\xef\xeb\x83qC\x0f\xa8?\xda\xd8\xc6\x14\x0eA\x91?\\\\\xa7\xcf\xb71\x85?a)~\xb9\x1dK\x9a?u^\xb1\xac=!\x85\xbf\xe0\x0f>\xda\xbd\x9c\x96?\x89`\xb5\r\xc6+x\xbfKj\xc6\xb6\xb5\xfb\x9e?b\x15\xe8d\x04\x0e\x99\xbfS\x1f\x93\x19\xaf\xd6\x90\xbf\x8eR, \xb2\xa8\x85?\x8ee\xa1S\t\xdd\x86\xbf\x8d\xd0V\xcf\xb7;\x8a?\x00\xa1:\xd1F\xeb\x91\xbf\xe0i\x9d\xf2Z\xfd\x82\xbf\xbc\x0c\xfb\xcf\xda\xf4\x8c\xbf\x1d\x1c\xe8\x04nv\xa7\xbf\xd6T\xa2<~\xc7\x95\xbfH\xf3S\xb5\x1e7\xa8\xbf\xa1\x8b\xd4\x8al\xaf\x8e\xbf{#\xadD\x11\x15w\xbf>}$\xb3\x1d\x12\xc6\xbf\x84\x9c7\x8f?3\x06\x87\xeb\xc8Ic\xbf\xe5\xa8Z\xaa\xaf\xa1\xa6?3MxQ~\x00\x83?\xcd9\xf9_\xa5b\xb4?\xb5\xbb\xae=\xbb\xc3\x80?\xc8\xd4=7\xd3\x15\xc0?\xbe\x1f;*\xea\xbaf?\xc80\xf3\x85\x03f\xc4?\xc3\x05{\xf9h\xa9\x84\xbf2K\xd1\xef\x18\xca\xc7?\x1e\xfc\xdaq\xaa\xa0\x8c\xbf\xc1\xcb\xbb\x0e%x\xc9?\xbdo(\x07\xa1\xe8\x8f\xbf\xa0]S\xf4\x980\xc9?\xfcV\xd41P\x8e\x94\xbf\xf3`\x1d\xd9p%\xc6?V3\x0c\x07"\x8f\x97\xbf\x86\x85\xbc\x06\xf9\xca\xc0?\xf3\xc6:>\x9cR\x90\xbf,B \xd6X\x89\xb3?\x0e\xd0P\r\x1c\xa1n\xbf\x8ayct\x98:\x9c?\x0f\x9b]\xb7t\x99\x8f?J\xe4\xb0us\xee\x81\xbf+\xd2x\xdf\xee\xb6\xa2?\xbe\x9b~\xcf\xb5+\xa4\xbf{Y\xf3d=\x06\xac?\xd4\x12J\x9a_\xb0\xb1\xbf\xfc\xd8$k$\x96\xc5\xbf\x887\xc0|#\xd3\xba\xbf\x9e\xd7\r\x17U\xb5\xc5\xbfp\x8e\xf7H\x80Q\xb9\xbf\xc7P\x17\xcey\r\xc5\xbf^\xd7\xe7\xf6\xbc\xb4\xb5\xbf\xb9\xbd.s\xa1G\xc3\xbf\xc3\xbc\'\xfc3y\xb1\xbf\xabW\x88\xe3Pm\xc0\xbf\x8d?\xf0\x07\xf9\xcd\xab\xbfD.\x03\x94\t\xbf\xbd?O\xe4?\x07\xeb@\xb3\xbf\xc5\x9f\x04\r=\x91\xc2?ag\x7f\xd7\xc4\xcf\xb0\xbfW\x0cm\x00\xdd\xe8\xc6?W\xd0H\xb2\xf8A\xad\xbf\xf7O\xb1\x8a\xf6\n\xcc?o\xf1A\x11\xacT\xac\xbf\xf8X\xdel\xdax\xcf?w[M\xae\x15\xfb\xb0\xbf\xa5\xfa9f\\9\xa4\xbf]P\xa2\xe2~2\x9a?\xdalT\xb5Vr\xa3\xbf\x12\xd7\x1f\x9f\x9eF\xa6?\xd6\xf4eg\x13\xbb\xa2\xbf\x9cm\x0bs\x9d\n\xb0?\x16c\xe1el\x12\xa2\xbfF\xd6R\x8e\xfdC\xb5?\xef\x8d\x8b\xc4_\x97\xa7\xbf\xd4\xa3\xe1\xf3\xb7V\xb1?\xa3r\xdd\xc3\x10^\xa2\xbf\xa9\xa9`\xd5\xc9\x12\xb3?\xf5\xdcT\xc8\xb5\xc5\x9b\xbfb:;\x9c\xe4S\xb4?\xdbP\x96\x06__\x91\xbfY\xac\tay\x07\xb2?`\xaeI\x1f\\N{\xbfe\xb6\xc2\xdd\xc3\xcc\xae?\xdb\xb7\xce5~?\xc6\xbfK\xa9\xed7\xee\xee\xb1\xbf\xbaRds\xb2\xfa\xc4\xbfen$\xd1\xc8J\xb1\xbf\x95\xb02\xa5\x84\xea\xc2\xbf\xacW\x8e\x8d\x13f\xb0\xbf\xedu\xa5\x95\x1a\xf0\xc0\xbf\x86\xe3\xa3G\xe2?\xab\xbf\xf5\xdc\xd3"\xe4\x17\xc3\xbf\xad\xc6Y\xaa\xf5\x87\xae\xbfE\xd7\x81h\xc1\xee\xc4\xbf\x07\xc2O\xe4\xb5\xac\xb0\xbf\x88\x93T\x1fq$\xc1?\x8f\x02H\xb9\xbeL\xb1\xbfd\xe1eZ\xa4\xfa\xc2?\xd2!\x16\x1c\x19*\xaf\xbf\xb8\xe7\x11\x8e\x92U\xc5?\x7fFF\x15m\xd5\xac\xbf\xd1wPF/\n\xc7?$a\x891\x87H\xaa\xbf\x99\x80rd\xc8\xff\xc4?\x1a\xb9}\x05\xd9\xd0\xac\xbf\x04\x07\x99\xd3T\xe5\xc2?jZI8\x13\xee\xaf\xbfah\xaa\xab\x8a9\x98\xbf+\x0c\x17\x95:\x11\xa2\xbfU\xae\xf2k.\xd8\x93\xbf\x9d\xeb$9:\x9f\x9a\xbf#\xee\xc0!|\xc8x\xbf}@\x93\x9e\x8e\xd4\x97\xbf\xec\x12\xc6g\x15/v?\x7f\xd2\x9c\xcc\x13\xa0\x93\xbfc\xdf=x\x12\x04\x8f?\xa75\xefF\xc3,\x93\xbf\xa5n\xee^c%\xa2?b^o\xc5V\x0c\x96\xbf\xd8y\x08\xben\xa8\xac?\xf2fcr\x8f\xbf\x9f\xbf#\x0b\xb3\xdb9U\xa7?\xb9g$|\xe5{~\xbf\xfct\xb9\xbc\xc3k\x9d?\xf6\x1a\xa7\xbeS,Y?]\xcdQ\xe4\x93\xf7\x8f?%\xaa3\xdd\x86\xe3W?\xc2m\xe1\xfa\xdfpd?\xa0\xe7\x14\xfc\\\x1cT\xbf\x15\xefyN\x08\x04\x91\xbf\n6\xbf\xd2\xd9\xc6\x8a\xbf\xa6\xd3\x9d^\\/\x94\xbf\xbd\x16x*\xa4\x9c\xa2\xbf\x00j#\xbc\xa5\xb8G\xbfP\xfd\x0e4h8\x93\xbf\x86\x8a\xb3\x01<~\x86?;\xa9$\xd4\x8fX\x90\xbf\x1a\xc9\x93\xcd,D\x96?&!~\xb6\xf5\x0c\x8e\xbf,\\\xd6|\xe6\xe8\xa7?\x1by9\xfc\xd2\xd0\x9f\xbf\xa5U\x94\xeav\xe3\x98?o\xd9\xbd\xc9+\xe3~\xbf\xe8r\xf0>\xd8\xfb\x8b\xbf\x8ao\xb7\xe0i\xa8\xac\xbf\xe7\x96 \x95\x0f\xd8\x89\xbf\xe5\xa6\x1f\x8dtg\xb0\xbf\xcc\x08\xc9\xea\xce\xf2\x87\xbfy\xb2W!H\x16\xb1\xbf\xfb.Kp3k\x86\xbf,\x08\x07\xa53A\xa7\xbf\xf7+L\xfd\x8f\xff\x86\xbf\x19)\xbeP\xc0s\xa4\xbf\x05AR7\xca\x91\x88\xbf^\xc9)\x108A\xa4\xbf\x93\xb9s/\x95s\x84\xbf\x99\xcekSm\x1f\xa5\xbf.\x98\xc8\xe2\xafq\x84\xbfrJthX\xc4\xa9\xbf\xfb\xc2\xf5\xa3\\\x80\x8a\xbf\xcf]8[\xe4L\xa1\xbf\xad5#g\x00\x12\xc3?K\xa1?\xd2\x90\xe1z\xbf>\'\xad\xa7\xc5L\xc2?/\x1a\xd8`\xe3\xb6\x8a\xbf\xc68\xe2(\xb5\x90\xbf?\xbf\xcd\'\xa9\xf5>\xaf\xbfb\xbfz\x13\x01\x94\xbc?#Z\xeb\xe3\xd7\x0f\xb1\xbf\x13\x90\x0c)P?\xc0?\xa3\xa6f\xb5\xcc\xe1\xae\xbf\xf8QBE\x9e\xfd\xc2?\x8b\xdf\x0e\xac\xf2\xbb\xa6\xbf\x99\x86\xc4\x17\x8aB\xb9\xbf\xa2W!\xc9\xf2P^?\x00\xfes\xd4O\xa7\xbb\xbf\xb7\xdd\x96\xa6\xcc\x86{?$\xe4\x01\x88"\t\xc0\xbf\xccXA\xf0\t\x8f\x95\xbf\xe1\xbd\xf6 \x81$\xc1\xbf\xd7\xa3\xa6&;9\xa8\xbfs\xfc\xddfl\xd9\xc0\xbf\x925^(\xdb\x19\xaa\xbf\xad2\x9bi\x99\x91\xbc\xbf/\xa8\x1d\x86\xe8\x9b\xa6?2\x85\xca\xee\x8d\xf2\xa6?s\x9e\xb7\xf7\xbd\xee\xaa?\xfdh6W\x19\xef\xa3?/\x1e\xa2r]\x05\xae?O\xbe\x08/\xdf\xba\x82?3\xe9\x87\xae\\v\xad?VMk\xfb\xd9\xcbp\xbf\xb2\xffYp\xee\xc2\xac?\xa8\xc3\x8f\x84`\xb3\x8c\xbf\xfd\x07\xa6\xda\x04S\xa9?\x85\x1e2\x94\xcc\xa9\xa5\xbf\x85\x0b\xae]`\xbf\xa3?@\xaf`\xf7O\x18\xac\xbf)\xea\x17\xe1\xefw\xa9\xbf(\xb4]d/\xee\xa8\xbf\xc7\x03\xd7\xc3z\x8e\xb7\xbfm\r\xab]\xb9\x86\x93\xbf\x8c\x96ui>\x95\xb8\xbf\xf2>\x01V\xd8\x0er\xbf\xd34o\xf5\xae\xa5\xb7\xbf3K\xda\xd5\xb6\x07\x89?\x89%\x9d4\xae\x8f\xa9\xbfP\xc4\x06\xcb0\\\xa6?NSS \xf4\xa9\xa1?nA\xd3\x1c\xda\xd5\xa5?Q\xd7WG\\|\xa8?\x89r\xc6\x02\xc3\x9a\x82?\xf8:J\xde\xc9\xe5\xa6?\x9d\xe4\xb0Rs\xe3s\xbf}\xcf\xfe\xafu4\xa7?=\xcb\xed\xaf\xb1\xc6\x8f\xbf\xe5\xa7K\xac\xdc\xe0\x9f?\xee\x9a\xae\xb6xX\xaa\xbf:1[Y\x8f\'\xb1\xbf\x19H\xc9\xc6\xa3\x0f\x93\xbfW\x076\x9a\xc6\xec\xb1\xbf\x9b?\xf9t\x03\xccu\xbf\x8c\x8c\x8fU"\xfc\xb0\xbf@X\xd8\x0f\x84!\x86?\x10\x0e)\x91mR\xcc?\t.!\xc2\xd9X\xb7\xbfu\xa63\x86\xdd\x8f\xc6?\xb0\xfa]\xbdM\x82\xbd\xbfb\x9a\x02\x15AN\xc1?\xadZ\x99\x0e\x8c\xdc\xc0\xbf\x99\x05\xdf\xe0\x8a\xb9\xb6?\xd6@K\x1d\xaf\xeb\xbb\xbf\x1b\xe27\xc8Q\xfa\x92?\x00\xb0\x08\x92,\n\xae\xbf\x90=\xea\xf5\xa1\x8e\xa9\xbfb\xcc\xb5\xfa\x9d6\x85\xbf\xb1\xc3\xa3\xe1=V\xbb\xbf\x93\x8b\xd8^\xd5\xd5\x85?\xff\xfd\xf1\xc3\x10\xcb\xc1\xbf,\xf0g\x8c4\xe4\x93?\xc0\x12\xd4\xbe\\\xbe\xc3\xbf#\xfe\xa5\xdf\x0eG\x92?\xe4\xd1\xe2h`9\xc5\xbfw\x05\x05\x9d\xce\x1d\x80?7=\xeb\xf3\xab\xc3\xc4\xbfg\t\x9e\x9f7\x8bo?`\xa6\'\xe3K$\xc1\xbf\x06O\xc1$x7\x91?\xc4\xc7\x0eZ\xc5[\xb6\xbfX\xe9}\xdd6\x8c\xa9?\xb1\xc0\x82\x01\x0f\xa3\x9f\xbfQJ\xc1\xbd\xf3(\xb7?\xaew\x8c\xc9q\x15\x90?\xb6\x1f\xa9C\x009\xbc?N\xb4%y\x80\xed\xb1?6\x04\xed\x80,X\xb7?\xad\xa2\xe6\x7f\xb4]\xc1?\x0c\xf3~\x15\x87\x9c\xb0?\xa4\x93z\x8f\x17\x9f\xcc\xbf\xba\x04\xca\xfbR\x98\xc4?\xb9sv\x0c\x07\xf7\xc5\xbf\x06\xa5\xbf\xe3sU\xc6?\x95\xd0\xcf\x1e\xc8\xa3\xc2\xbf>C\x14\xfa\x92\x9f\xc1?\x84\xae\x9cKd\x98\xc1\xbf\xc6g\x05\xef\x15\x91\xb7?3\x17\xcf\xb7\xe0\xb0\xc0\xbf\xbd\xfc\x8bR\xe3x\xa6?t\xa9l\xcf\x86\x16\xad\xbf\xf2`\x0f\x88\xa8n\x88?\xe5Eu\xfd\xf0\xd1\xb0\xbfij4g"z\xa2\xbf\x8d)\xdb\xea)C\xb3\xbf\x8bR<\xf0\xe9\x01\xb5\xbf\xf7d\xb030\x1e\xba\xbf\xf2\x02\x9d\xc3[\x99\xbf\xbfP\xc2\xff@%5\xc3\xbf\xf0\xc1\xf6~8\xfb\xbe\xbf\xc9Z{\x97a\xbb\xc4?\x06<\xce\x87\xffV\xaa\xbfr\x97\xf3\xd8\xd7B\xc2?g7\x98OkR\xab\xbfx\xce\xdf\x08\xd7\x0b\xbf?\xb2\xb2U\t\xed\xe4\xab\xbf\x9d\xb7[\x06\x9dX\xb8?\xebAd\xd2\xee\xdc\xab\xbf\x13\xbf\xbfWH\t\xb6?\xe4[A`\xf42\xb1\xbf\xeaZ\xe6\xea;[\xb5?\x86\xc1\x95\xffTL\xaf\xbf\x0b\x81\x9e\x90\xcc\x93\xb4?\x89\xe8\x1f\x02\xf2\xb5\xac\xbfL\xf6]\x0f\x0b\xed\xb4?\x98\x1b\xaf\xf3\xc6\xcc\xaa\xbf_hj\x0f\x08\x82\xb5?\xdch\xf65\xe7S\xa9\xbfE7v8r\xeb\x96\xbfk\xfeY\xb9:K\xba?\x0c\xc1:\xa9O\xec\x9f\xbfP\xe4\xa3$\x8d\x1f\xba?\xa8\xce\nr\xec\xf3\x98\xbf\xd6\xacx\x0e\xd2P\xb8?n\xab.\xb27sx\xbf\x8a4\xff\xa5F\x1c\xb3?\x92\xd6\x9e\xfb\\\x12\x88\xbfNP\xeam\r\x19\xb6?D#/-\xa4\\\x93\xbfJ\xc5\xd2\x0eB\xd3\xb8?\x8eP\xea\xc8\x99\xd4\xaf?)\x9a\xc7\xbb\xebt\x9c\xbf\x12U\xdd\x8d|\x03\xa6?\xb8\xde\x1d\xbc\xe7s\xa6\xbfs\xdd\x89_\xa9\x1c\xa2?t\x91j\xfb\xd3\xd7\xab\xbf\xf9FS e\xf2\xa4?\xac\x96\xb9\xd9F\xcf\xaf\xbfH\xc9\xb5V\xad,\xa7?\x82\x906M\x1a\xe3\xa9\xbf\xb0\xca\tz\xf2\x8e\xab?\xb2J\x84J\x07\x0c\xa3\xbf\xbeV-%\xe5c\x8e\xbf\xa0\xd9\xeb9\xec\xe9\xb8\xbfN\xc6NE\xb8#\xa0\xbf\xca\x80\xdfW\xc8\x0f\xb3\xbf2\xf9`2$K\xa1\xbf\xd2\xeb\xae\xf5k\xcb\x95\xbf\x1a\x8e\x82\xd4^\xad\xa3\xbf\xb2\x119P\xfa\x8cd?v\xf6\x02(\x89\xa3\xa1\xbfN\xc9\xf0i\xd3A\x9a?\xb3DI\xe1\x1e\xb5\xa1\xbfS\xd9:\x0b_\xef\xb1?}\xa5A\x99D\xb9\x94\xbf\xfbnf\x08\xe8,\xb6?:*6\x11\t\x7f\xaa?\'\xf0q{\x91|\xb2?\xef\x14\'\x19\x98p\xb7?)\x02[-\xe9\xd1\x9f?\xf9\x9c\x1a\xaf\xa0\xe9\xb8?\x13\xea\xf2d,!p?\xb9,3\xd0T\x8c\xb8?\xf3\x92\x11\xba\x13!\x9a\xbf\x07L\xac\xddU\xa6\xad?O\xcf\xa0\x8a\xaa\xd7\xb3\xbf%\xd2\xf1\xdd}\x94\x84\xbf\x18x\xf7O\x1f{\xb8\xbfa,\x1f\x0c\xe1\x89\x97\xbf\xfb\x01\xf1\x10\xc7\xdf\x93\xbfMt\xa0\x1b\xdd&\x9c\xbf?/T\'\x9f\xcf`?\x1fC\xfe\xbdR\x04\x9b\xbf\x19\x96#jl\xee\x98?\xc5\xe0R B\n\x8d\xbf\xa4\xea\x16\xbd\xa6\x83\xb4?\xf8\xc2)U\xfdO\xb4?\x13-^\xab`;\x9b?\x9f\n]ZJk\xb4?gc\x0b\xd0\xbe\xdac?\xa4\x89\x07\xdc\x13{\xb4?\x8d)\x95\xea`\x1b\x98\xbf\xd1G\xe9Q\x04\xe5\xb2\xbf\x14\x8e\x8f\x07\xc4%s\xbfM$\xec\x89\xa7\x9e\xbb\xbf|\xb5\x9b\x1bV)w\xbf\xa40Q\x97\xfc\xc5\xc1\xbf3L\xdfz\x16\xc7{\xbf\xbbf\xf1o\xa7\xfc\xc3\xbf\x02:\x81\xe7\x1b}q\xbf<\xbcUN\xb9\x14\xc4\xbf#)\x91\xcc\x82\xd3\x81\xbf\x8d\xa2\xb99\xad7\xc2\xbf}\x98\xe9(\x0e{\x8c\xbf\xbe\x9b\x877\x18G\xbf\xbf!\xb4\x0c\xdc\x9f\xbb\x85\xbf\t\x1a\xd7\xc1\xb6S\xb4\xbfM\x87\xefJ\xd8\xd2\x8d\xbf"P\xe7P^T\xa4\xbf\xb7\xd4\xec\x0e\xdb\xa0\x94\xbf\xa4w`\x97\x7f\xbf\xa6\xcc\xfdyO\xa6\x85\xbf\x16\xf1|\x7fOz{\xbf\x80\x13\x83Q\x83\x87\x81\xbf_1\x93v]<|\xbfQ\x94\xf5\xbd\xc0"k\xbfj\x191\xef#Qu\xbf\xa7\xd894\xc5\xfa\x83?d\xdf\x80\x8b\xf0*\x91?\x06\\\x1e[)v\x98?sp9\xa6r\xf7O\xbf\x86_\\\xeb"\x03\x92?(\x9e\xb1\x9b\x8f}p\xbf\x0c#\x05G\xd9j\x89?\xc5\xf5\x93\xcc\x80\x11t\xbfy\xdf\xbd7\x945\xc1?XFU$BQ\xb0?x\x9b\xc0\xd1\x1b\x85\xb9?gQ\xb8Nl\x14\xb1?\xf8\xa2\xfb\xba\x97\x9d\xaf?\xf5\x89\xa5\x1f\x13\xc8\xb1?(\x10\xba\x85jN\xa1?X\x8b12\xbeW\xaa?\x8b\xd1\xfd\xd2\x89lz?CU\x0bJQl\x9b?O\xedPR\r\xe5\x90\xbf\x13vJ\x19\xac\x84t?\xd0V\x0f\x06\x92\x95\xa4\xbf7\xc3$\xb3V:\x81\xbf\xbe\xd3\xc5R\xc9\x82\xb1\xbf\xac+A\x93\xd4\x0bv\xbf\xee5A\xcb\xf3\t\xb6\xbfU{\xf8{\x88G`?\x13\x01$ =\xa8\xb0\xbf\xc9K\'\x16\xf0\r\x8d?\xfcr\xb5\xcf\xee\xda\x9c\xbf\x01R\x0f\xaf\x1d*\x83?V\xf8\xef@OIh?~\xd3\x1a(\x11\xf7z\xbf\xf3a\xca\xcf\xd5\xe1\xa1?<#\x02\xd9\xce\xc0\x9e\xbfm\xf4\xfa\x8f\xef\x00\xb1?\xc3Y\x0e\x0c\xc5\x8c\xa8\xbf.\xcb\xfc\x81\x1f\x16\xba?\xb4\x8e_\xaa\x01c\xb0\xbf"\xb5\xaa\x07$\x13\xc1?\x08\x0bD\x8b\xb1.\xb1\xbf\xd6\'j\xea\xa5\x9f\xc4?\xc8\x9f\xb0\x8d\x06\xf4\xb1\xbf\xe9\xe1\x82\x16\xcb\x1b\xb8?\xec\x1d\xafk\x96b\xa9\xbfh\xe1\xe4q\x8c}\xb6?\xe5M\xef$a\xff\xa6\xbf\x12r\xad\x8eA\x08\xb5?\xb5cx\xf9x\x12}\xbf\xebo\x97\xf5\x9cT\xb1?I\x8a\x10\xc6\xd5\x1c\x9e?\x9d/\xd9\xa7J\xf5\xab?w>k\'8B\xb0?\xb0q\x01\xf4\xa7H\xa6?5\xa4\xbdS\xe4\xe0\xb2\xbf\xa9\x90\xec\xbcI%\xad?\x83\x9e\x1cha\x0e\xa5\xbf[i\xaa\xd2\xca\x1c\xb1?K\x01d\xf3\xbc\xe5r\xbf\xf3\x80t\xac\xd1\xae\xb2?\xd7\xf2\xd7\xdf}%\x9f?\xcc3\xe5\x19&Q\xb2?Njl\x00\x12k\xa3?\xf4\xd6\xcf"\x07\x1a\x88\xbf/\x1d\x93\xe7m.W?F\x12_o \xb8\xa2?\x9a;\xdf\xbf\x04\nu?\x159\xf2\xeaT\xba\xb5?\x92\xf3\xdb\xc8jN\x82?\xd8r\x92\xab\x10\xea\xc0?\xe4\x97+\x91\xba\xcc\x8b?\xf9\xaa\xd2\x9cb*\xaa?\xa3\x9c\xd6\xc5\xcb\xb2\xa3\xbf@\x90\xf23\xc9\xdb\xb1?\xf9\xa2\xa4\xc03\x19\x8c\xbf2\xa8\x9c\x104\xf7\xb5?\x0c\xed\xd0\xea\xc4\xbb\x8e?\xe5\xadO!\x00Z\xb1?[lfO\xef|\xa5?\x12CC\xc1\x15\xff\xa8?q\xc1\x91\x87\x13w\xae?|\x04~\xbasu\xc4\xbfM\xf6\x98\x02\xb2\x91\x8e\xbfY\x99\xfe\xe4\xad\x17\xc3\xbf}\xbb\x14w\xf7\xb9\x81\xbf=\xfe\xb3\xf4\x0f\xf8\xc2\xbfx\xdfZ\x06X\xbeP\xbf\xe2Gp\r"\xb9\xc5\xbf\x9fTN\xdfEI\x93?\x8e\xc8K5";\xc9\xbf\xdc\xc2\xf1\x10\x9e\xefd?\xb9\xc8\xecu\x9f\x85\xc8\xbf\xfa\xb2,\x10\x0e\xe6x\xbfLE\x81\xd4N)\xc7\xbf&O\xf2\n\xa4\x19\x9d\xbf|\xf2\x87\xa8\x14\xce\xc4\xbf!Cc:\xe0\xa3{\xbfG\x8c\x89!4\xa8\xc4\xbf\xc0\xc5\x10\xe6YIY?*^J\xc5\xc9\xfa\xc5\xbfd&\xd8\x04\x805t?\xddO\xea\x96\xa6L\xca\xbf\xd2R\xee=\xc2;]\xbf1\x0e.zI\xc7\xca\xbf(@:7\xc8\r\x82\xbf\x9b[&\xd1\x1aQ\\\xbf\xcb\x11\xe9n\xdd\x9e\xc5\xbf/\xf8A\xdb\xf1\x03\xb9?\xd85r\xcd\xbf\x01\xbb\xbf\x0c#\x0b\xe9\xb3\x89\xc2?\xc6\x81\xe2\xa2\x98)\xae\xbf\xda\x05\x89M\xa2<\xc3?\xbcf\x8e\xcaI\x81F?u\x15<\x15wO\xc2?{\xfb\x95\xac>\xa4\xae?,\xfa/\x16\x14\xab\xb7?I\x92\xb8\x89\xd1\xb2\xb9?\x9d:\xa8/\x07\xb6}\xbf\x05\xde\xa7-\xbd\x05\xc5?\xb2\x93\x1eD\x1f\xc6\xb4\xbf\x0e)R\xa2"\xd9\xba?O\xe2\xff\xde\xa6\x9d\xbb\xbf\xa4\x17X\xcc\x96\xe5\xaf?\x02\xa1\xa3\x17\xc1\xf0\xba\xbf\xf7\xb0\xaaD\xdc\xcfm?\x99\x07*\xa1\xb9\xf6\xba\xbf\xe9\xe5a\xf9V{\xac\xbfE\xdb\xc7\x06\x13\x1d\xb4\xbfk\xab\xfd\'\xd0\x17\xbb\xbf\x15\xec\xe2d\n\x91\x82?\xb1H\xd6\xd5/n\xc5\xbf/\x9c\xa2\x16;\t\xba?\x7f(\x91\xe4\x97\x12\xaf\xbf\x9e\xf4\xaf\x90\tG\xbc?#g\xe3\x8b\xea\x92O?u:\x1cW\xa8v\xb9?(\x91\x8d`\x86\x13\xb0?I\x16\xa7O(Uw?\xa2\xd8\x81\xa3\xa1\x1c\xc5?\xc8\'i\xfd]\xa3\xab\xbfA~\x11\x02\xde|\xaf?/{V\x16\xf2\x91\xa9\xbf7/Zd\xe4OY?;\x13f(\x9a\xf2\xaa\xbf\xa3\xa6y95 \xae\xbfl6\x08\x89\x8eE\xb1\xbf\xe2T\x9fiV\xc6\xb6??\x8c\xf9\x8f\x10\xe3\xb4\xbf\xb3\xac\x14\xb1q`\xb7?7\xfc\xc7\x03.\xda\xb7\xbf\xe1uI\x12\xbf5\xb4?\xb6n\x18j\xcb\xee\xb5\xbf\x13\x0e\xd1\xca\xde\xcd\x97?\xd6Bd\xba\xf3\xc1\xa6\xbfB\xceo\xae\xb8\x1f\xad\xbf\xfc>`@\xd5\nS\xbf$\x97O\xe4b@\xb9\xbf\xec\xf5\xfc\x1f\x92\x02\x96?\xc4\x1fMa\x89\xa8\xb7\xbf+\xe5\xfdf\x94V\x9e?#B2\xe3wn\xa2\xbfJ8\xfd\xa0\xa1\x06\x96?\xdbZ0\x0ej\xd6\xa1?\x14P\x84\xac\x1c\xfa\x94?g\xd3\x03\x19\xd2\xe6\xb9?\xfaW\xfd\x92U\xbf\x91?\xbed!&>h\xc1?\x17\xec\xd0\xedls`?\x85_\xd9\xeeI\xdd\xbe?\xd2n\x06v\x1d\xbb\x99\xbf\x828T,\xf1\xba\xac?3\x9c1\xdc\x175\xa7\xbf@\x9a\xe6\xfcF\xc4\xa2\xbfE\xfd\xbc\x0c\x919\xa4\xbf\x06U\xaf\xe2\x89\xe3\xba\xbf\x93\xa2v\x15\xfd\xac\x84\xbf\x91\xbe\xbf\xa7\r\xb2\xbf\xbf\x01\xb1\xc2\xe6>E\x8b?\xfe4Y/\xd8\xc5\xbf\xbf\x17\xaahI$\xa6\xaa?\xef\xccS\x9e\x9d\xa6\x95?\r\x00S\x94[\x18\xb5\xbf\x05\x013\xda<\x8a\x86\xbf[z\x86\n\x0fp\xc3\xbfL\xa0H\xc6\xab\x98i\xbfZS\xe92\x04L\xc4\xbf\xb7\x95\xa8\xb6|b\x8d?\xecZ\xdd\x98\xc9\xe3\xbe\xbfS\x83\x871\x03R\xa1?\x9e\x05\xe9\'\x82\xb5\xc4\xbf=\x01\xa3\xef\xf7O\x92\xbf\'\xc0\x99\xa0\x03\xa3\xc8\xbfT\x14\xff\xc1\x92;d?\xe2Nf\x11\xa4\xd8\xc6\xbf\xdc\x1a<\x9fc\x16\x90?\x1a\xb4\xf6h\x9f:\xb9\xbfM\xee \xea\xba\xa2\x92?\xa2\xb7\xde\xf4w\xbd\xa6?@\xcf9\xfa\xb44\x96\xbfh\xaf\x18\xc3@)\xb8\xbf\xff\xf4\x12k\xcb\xb5\x95\xbf\xa7\xa4\xc6\xd3\xe04\xb2\xbf8\n\xcc[\xd1\xe0\x93\xbfm=\x0e7\xc0p\xa9\xbf\xda?\x8f6\x8b\x04\x92\xbf\xd0\x85u\x98\r\x1a\x9a\xbf\x98\xb1w\x11[ \x8f\xbf\x97\xd4\x96"\xb6\x88~\xbf\xae\xd3\xff\xa3v\xd5\xa6\xbf\xe67\x8e\xcd\x8dl\x82\xbf\xc6\x01\xf6\xe0\x81\xfa\x9e\xbf\x83v\xb7\xe2\x11OC\xbf<\xf1\xabW\xe8@\x94\xbf\x06#\xb7V\xc6\xd7y\xbf\x0f\xaf\xf6(\xd6&\x86\xbfBS\xc1\xb8:\xd7T\xbf:MT\x05\xf3\xd0R\xbf\xc6\x9b^\xe9\xa9\x82\xc3?/\xf9\xa5V\xdf\xb0\xa0?\xd4\x0c[\xd1%\xc5\xbf?T\x97\xcd OB\x9e?\x10\x89\xe2&,8\xc0?/\xef\xb6\x82\x8f\x10\x9a?\x8e[E\x92\xc4\xb0\xc3?\xad\xc4\x07lS\xc3\xa2?J\xb0B:\xaeU\xc5?uI4\xb9\xb9/\xa0?QN\xd7\xbd\t\xce\xc5?dH\xa8\xbc\x88\xbd\xa0?U\xb9\xc9\x8ai5\xc0?\xef\xde\x1c\xb5\xa9B\xa1\xbfR6\x83"\x00\xbf\xb9?\x12\xd7L\x98v\xf1\x90\xbf-\xda\xd6\xe2\x9f\xa1\xb9?\xb8\xf0\xa1:*\t\x95\xbf\xf2\x96_,j\xd1\xc0?="\xf4\xd8\xef\xd2\x99\xbf\x94\xd2\xd1&j\xaf\xc2?_\x8a\xd0+vz\x97\xbfy\x9b\xe1h ;\xc2?\x7f\xd4\xec\xcd\xad\xdd\x96\xbf\xd7\xd2\xef_\xd6\x1e\x83?p\xeaw\xbfl&\xc7\xbf\x843\xbd-\xc2\xd3\xb4?\x19\x88+w\xf8\xd2\xb8\xbf\xd3\xda\x15\xf6"\xe7\xbd?\xae\xec\xe7\x97L\xa7\xad\xbf\x81\\\xd0\xf4|\xf1\xbe?O\x90\xfa9\x1e)p\xbf\x9b0VO\x9ai\xbe?Oh\x1a\xbe\x8f\x18\xaa?X@\x1b\x93_\x9e\xb7?u\xe49\xe0d\xfd\xb6?9\x02\x8f\xce\x99\xf9\x90?\xa8\xd3Y\x93\xfa|\xc6?n\x7f(h\xd2\x1d\xb6\xbf\xf9\xea\t\x95\xc3&\xba?\x8a\x0fd/v\xae\xc1\xbf\xbc#\xdc4\xfd\x89\xae?.\x96>\xbd\xc41\xc2\xbf\xbb\xb6\x11p\x93\xeb\x81?\x11\xdaY\xdc\xdd\x10\xc2\xbf\x96\xdd\xb0f\x95k\xa5\xbfb\xe4naVb\xb7\xbf2\xcbO\xe2e\x9c\xb7\xbf\'b\xbagNu\x92?u\x05\x83\xd1kQ\xc5\xbf\xe5ds\x16\x1b\xf4\xbc?\x14\x9fdoF\xbf\xad\xbf!\x13\x1c \xfb\xc6\xbe?\xc7y=T?\xa9Y\xbf\xbaF\x8b\xb2\xcf\x10\xbd?{\xcd\xc7\x16\xb9\xf3\xac?\x88\xc5\x9a\xf6ap\x98?\xe4-}\xa6\xd5\xee\xc4?H\x95\xe2\x01Wr\xb9\xbf4]?\xe8v\xde\xad?w\x9bG8]W\xba\xbfG4\xd0Q\\wv?\xecP\x9b\xa1\x16e\xba\xbf\xf6\xd5\x0f,\xda~\xa8\xbf\xfe\x90G\x1c\xcb\x91\xcf?\xf5E\xb1\x9e\x96\xce\xc0?\xbe\x8b\xb24\x18\xf8\xca?t\x00\xf6F\x0c\x01\xbf?F\xdc\xa8\x89\xcc\x87\xc5?w\xa4C\x8e\x05\xe8\xb9?p-}\xd7\x1c\xa8\xbd?\xdfM a\xc9+\xb0?\xe6*8\n\x0c\xa6\xaf?W\xe5}2J\xba\x15\xbf\xc59gWE\x95\x89?\xd5/\xe6\xba>\xa5\xb6\xbf\x890\xcci\xd9\'\x9a\xbf\xb9\xa7\xcf\xc8\x90\xab\xc6\xbf\xe0i\x91\r$p\x9b\xbfyx\xbc\x02\xfc\xdc\xd0\xbf\xe7\xb7^M\\j{\xbf\xb1 \x0fP\xfc\xa8\xd2\xbf\x15"\x81_?\xfa\x9d?8\xd1\xa6]k?_\xc7\x91]T\xa2\xbc?\xf4\xe4+\xf2!\x8fJ?Q\x86\xb0f\xc2J\xbc?\xe2\x96\xa2\xa8\xbc\xc6r\xbf\xf36$\xa841\xbd?\x89r\'=\xdc\xd9\x90\xbf\x00\n\x03\xc6*\x15\xc0?]\x9b\xd3wb\xfa\x95\xbf\xd9H\x94Nsq\xc2?!\xed^\x07\'.\x9d\xbf\xf2\xea\xda\x18h\xae\x93\xbf\xeb;\xf0r\x89\xf6\xa5\xbf\xe8&\x05\x91\xd0.\x97\xbf\x87\xbb\xa5\xe1\xb7M\xae\xbf\x92\xf7\xa9@\x91\xd2\x99\xbf\x1d1j\x03\xea\xc3\xae\xbf\x7f\xf7E\xe3\xba\xc6\x91\xbf\x92\x80{"\xd2\xe7\xa9\xbf\xed\x0f\xff\x97\xe9\xb3\x9c\xbf\xcd\x98q\x92\xcc\xd9\xa2\xbf\x01$\xfb\xe4It\x9a\xbf|R\xfc\x80\xe9\xe9\xb9?\x01\xf8\xc9\x15\x9a\xde\xa1\xbf\xa7Ec\\\x97\x7f\xb5?\xd1UGv%\x07\xa0\xbf\xee\x85\xd3r\xd7\x18\xb2?R\xb54d\x19^\x9b\xbf\xf2{\x15\xe5B\x7f\xb0?\xf7p\x01\xc1n\xdf\x94\xbf\x90\xa5_\x8c\x1d\xe1\xb4?\xaf*W\xae\x9cz\xa1\xbf\xc17\x89\x147z\xb7?9\xe8mAV-\xa3\xbf\xf6\xd6T\x9c?\xbf\x9b?\xc9*kM[?f\xbf\xb4\xc6n\x13\xe6{\xa4?n\xd7p)kGc?=x\x83\xd1x\xbe\xa0?l\xed\x15\xdb/\t\x8e?Y\xafyb\x96\x98\x9a?\x89\xc9&F\x02\x9f\x95?\x1b2\xf8IL\x12\x91?\xa8\x1a\x80\xf8\x90\x01\xa0?l<\xbadvjc\xbf9>\xb8\xa7U\xb9\xa4?\x1c\xf5^\xc5\x8e0\x9d\xbf0\r\xa7\xbb\x95*\xb1?O\x95\xd0\xfci\xa8\xa4\xbf\xe6\xee\xb0\x01d=\x85?w]\x07\t\xb4\x85\xa0\xbf\x16=\xe9T\x87\x16\x8c\xbf^w\x9b1|\xd7\x9a\xbf\xa8{\x03\xda\x9e7\x98\xbf\xf5\xc4!:sh\x8f\xbf\x10\xac/\xccfu\x9c\xbf\xd2\xbd\xb45\x87\xf8o?x\x80}T3\x88\x98\xbf\x83\x1d\xffc\x1e\x11\x9b?\x92\xb9\xcd\x06\xdf&p\xbf\xdd5\xa8\xd4\x8c\xa2\x98?\x9cX\xdf\xd87wv?~M\xb3\xb7\x17\x0c\x94?qV\x18\xd8\x1d\x02\x8a?jM\xc7\xc0\xee\x82\x8b?@\xe0\xda3\xc3O\x98?N\xd9\xfa\x0c\x85\x80\x96\xbf1\x91 1\xca\xa0\xae?a\xc5\xf4l\xe2Q\x96\xbfm\xab\xd2\xa32\x1f`?[\r\n\xfc\x86\x18\x8c\xbf\xcc\xe8\x11mpC\x82\xbf\x99\x86\xad\xf1\xb1\xc9p\xbf641z\xfc\x9f\x8b\xbf\x12\xc6X\xed\x86\xf8\xc1?\xf0\xc8\xb2W\x92p\xc0?[z\xd4_\xe1\xeb\xa2?\xa9\x87\xf5\rC\x03\xb2?\xe5_\x8a\xb5^\xc4\xa0\xbf\xc7\xa40\xfc2;\x8e?"\x0b\xa1\xa5\x13W\xb2\xbf\xb2|\xadY2\x92\x9e\xbf\xfc\xb1\xb0!\xf9i\xb3\xbf\xff\xc0)5\xb1 \xb4\xbf2\xe2\xc2\xb5\x19r\xa6\xbf=\x02p\x80\x1aO\xbf\xbf\x81\tO\x0c\x86\xf5\x8e?\x8c%\x9f\x8c~_\xc1\xbfa\xc9r.J\xbb\xb2?\x0f\xfe\xe7\xf8!\x18\xb8\xbf\xd4\xdc^\xa7_\xf8\xb8?gh&o\xc9\x96s\xbfOZ\x9bUT\xc9\xb5?\xb8\x84\t\x08s\xca\xb5?\x81\xdf\'d\xde\xba\xa3?\x0f7\x9f\xd4\x03C\xc0?\xb1\xb2\xf8oH8\x94\xbf\x0b\xc3jF\x14-\xbd?\xf8\xbb?\x92J!\xad\xbf[\xb4T\x8e\xa4\x0f\xb4?V\x00OK!r\xae\xbfM\xa4\xe3 \xb2\xfd\xa1?r\xfce\x88\xb7D\xa5\xbfS\xedV\x8cD\x93b\xbf\xfe\x07BPY\xab\x82?\xfd\xb6!\xdd\t\xe1\xb0\xbfF\xc4m\xff\x82\xc4\xb7?5\x81H\x86\x02m\xc1\xbf\x8do\xd6\x94rf\xc8\xbf\xafZ`\x05Pd\xce?\x8a\n\x8f\x92\x88g\x88\xbf\xaf>\x0f\x96\xd0\x82\xc6?\x18\xe6LL\x11\xfe\xb4?K \x95j\xb1\xe1o?N$\xb7\xa9\rK\xb7?\xaaq\x00\xec5\xdf\xc7\xbff(,_JZ\xa2?a_\xc8\x15\x08`\xd6\xbfN\xfa\xedy\x00\x90\xa9?\xb3\xceV\x81\xc5\xb7\xd5?\xed>\xd0\x0c\xe5\xac\xbb?\xae\xf8+/>\x93\xc6?\xd1\x19sw$\x14\xba?-\x997Q\xcf\x06\x8e\xbf\xb4\xd7q\x9b\x99<\x85?\x7f\x8b?_{D\xc8\xbf-\x84X\xf7\xca6\xc5\xbf]Uu\xba\xc6$\xd0\xbf\xde\xa1b\x10\xccgF?\xfa\x04"\xa1L\xf9F\xbf"k?\xb3`\x8f<\xbfg\xa0/vwqG?T\xd8\xf9\x9a\xa7\x8da?\xdc1\xb1/-\xf6p?\xb6\x009\xd8\xc8xY?\xbd6\x8a\x8dyU}?\x90\xbb\xd5\xd9\xa3\xb6\x96\xbf\x8cc\xf9\xb8E3\xaa?\xb6R0v8\x1a\x8a\xbf\xf1\xff^\xc2\x18%\x9f?p\xe3\xb1\x82yTq\xbf\xf9\x1f\x00\xcf\n\x1b\x91?\xa3w \x1f\xfb@b`\xbf\xaeX[\x9a\xf3w\xcb\xbf\xb2\x89+Vg8\xac?qj\x96\xcfw\xd6\xc9\xbf\xf2\xc2\xed\x1a\x8c\xfb\xb9?]\x83\xeb\x01F|\xbc\xbf\xba\xca\x1c\x15!\xf1\xbb?\x8dd\xcao\x13\xee\x8b?\x137\x02qQj\xa9?-=\xc6s-\xe9\xb6?\x1b\xc9\xec\xa8?\x87\xa5\xbf?\xb6\x0fx\xb6\xb6\xbb?\x91kJ\x8c\x04\x06\xc0\xbf\xa2\\.e\xc8\xfa\xba?\xff\xe6\xbb\x82\x05-\xce\xbf\x19\x90\xa5\xdbka\xa2?.9D\xf8A^\xb4\xbf\xe7eJsH\x12\xbc?>\x82\xe1\x14\xd9n\xac?\x89\\\xf9\x0cC\xee\xb5?1\x7f\x95wS\xd2\xbf?\x0f\xa3\x1b\xe5\x96s\x9b?\x15V6\xc1\x1ft\xc2?\xbf\xdc \xed{v\xa0\xbfeR\xbf\xa9\xab\x0f\xc1?\xed\x02\n\x80\x12&\xb0?\xec\x83A\xdc\x80\t\xc0?2&\xc5|GHS\xbf%\x17\xad]\x8d\x8d\xb1?\x9f\x1c\xcc\x95\x95\xc2\xb2\xbf\xf6i\xf9,\xfeT\xaf\xbfK\x18\xbc\x8b\x05W\xbd\xbf\xc1&\xc0\\\xc1a\xcc\xbf_S\xe0P)\xbd\xad\xbf\x90\xb9\xc3\xa2\xfaX\xb6\xbf\xd8\xedu\xd6]0\\?\x077\x006-^\xb7\xbf%Q\xedK\xe5\x88U\xbf9\xb5>Wc~\xb6\xbf\x1fY<\xb3\xd0\xcfg\xbf;v\x06\x9b\x18\x90\xb6\xbf\xe9\x9a\xc03\xc0 x\xbfH)\x19\xd1\xd1#\xb8\xbf\xc0.*C\xedR\x97\xbf\x13\xde\x1eNy6\xb8\xbf\xb5\x95\x15\xf0\xfeX\x90\xbf\x1e\xb1\xe9\x06\x99\xb6\xb8\xbf\xe93\xd7\xf7\x9ak\x84\xbf"\x88\xf3YQ\x8b\xb8\xbfa&`\xa78\x96s\xbfs\xba0\xa0\xed\xd0\xb8\xbf\xb0eh\xc0\xa4\xe75\xbf^\x8d\xc3\'LD\x86?\x92\x84\xc4\xb9\xdb\x89\xa0\xbf\xed\xe6\x1e\\\xef\xb8\xaa?\xdb.([c\xab\x9b\xbf\xf7\xa6\x89\x9e\xcd\xd0\xaf?\xe5\xe5\x91[F\xc2\xa5\xbf\xc2\xa5\x05\n\x02\x04\xa8?\x0cCV3\x83\xa3\xac\xbf5,\xb7^\xcb\x0e\xa5?])8\xf4\xf2\xee\xa7\xbf\xb5\xf2\xca\xbb\xe8\x1c\xa0?\x13\xb8h\'\x98\xb8\x9f\xbf\x1f.Q\x00\x04\x81\xa6?\x98\x89C\xa0Rk\xa9?\xdb\x0f\xdb\xf8\xb8;\xae?l\x10B[\x94l\xa0?\x17\xf6N\xd9z\xe1\xae?4 \\\xc8\x80\x00\x93?\xbeT5\x1a\xca-\x96?\x95\xe0=\xf8\x1f\xe8\x96?\x8c\xea\x1e\t\x93\x19\xa4?CP\xe0\x98+\xbf\x96?\xdf\xdc\xe61fL\xa7?\x06\xa4\xad\xac\xf47\xa3?x\x81\x92\xae\xeb\r\x98\xbf0#x\x19\x8f\x9d\xc0\xbf\xe1\xd2\xb2:\x8c\x1c\xad?b\x05\xcd\x8fu\xc2\xae\xbf\xb4*\xc0i\xd9\xef\xb5?\\\xe8\xf4\x86\xbb\xe0\x92\xbf\xfc\x9fd\xc7~C\xb6?/\xcd\x8d\xfb\xc6ry?\xeaj\xc3\x86\n\xcc\xb6?\x18\x89.D\x10\x02\xa1?\xd5S6J\x92U\xb0?\xc4\xc0V\xe3TW\xb1?17\x8b\x0eU\x8e\x8b\xbf\\\xc9\x0bI\x9eQ\xbe?\xfct\x7f[\xd7\x7f\xac\xbf9\xda\x91|H\xa0\xad?.\x8at\x18\xe8\x86\xb1\xbfZ\'JX\xbc\x01\x96?\xac\x92lJ\x8a5\xb2\xbf\xf9xF\x00o\xe3y\xbf\x93I\xf1\xb9\xc2\xb4\xb2\xbf\x8a~X\x8e:[\xa0\xbf\x04\xe7\x8c\xd2P\xf9\xb0\xbf\xdba\x89\xf9\x96\xa7\xb0\xbf\xf4\xf5\x9d\xe6W\xf1\x86\xbf\x92\xbav\xa0R\x03\xbf\xbfW\x12\x92.\xce\xfa\xb2?%\xaf<\xd6\x84\xef\x96\xbf\t\xb4E\xfb\xfd\xef\xb3?I;\x1b\xf5\xb9\x01j?D\xac\xdd\x99\xbd\xc4\xb3?\xe4\x0e\xb2.Q\xeb\x9f?I\xf1/\x9aR\x16\'\xbf\x91y\x9c\x86\xc5\x9f\xbc?\xd9\xcaV\x14o\xa3\xaf\xbfs\x1f\xf3\xfc\\C\x99?\xde\x86\xff\xb8\x91\x0c\xb1\xbf\x05\xae\x8f\xf5dB\xec\xbe\xab\x0b!2\x14\x9d\xb0\xbf\x93ld\x1by\xbf\x98\xbf1\x02\xddG\xde\x8b\xaf\xbfy\xa4Bl\xc5y\xb4\xbf\xb3\xf4\xdc{P\x92\xa4\xbf~,\x81\xf0\x9b\x0b\xb8\xbfz\xc7\x9bi8\xd9\x82\xbfE\x9cJ\xbb\xe8g\xbe\xbf\xe9~&\xcf\x86\x84\x88?\xf4\xfb\xa0\x05L\xec\xb6\xbf\x8b\xbc\xc6=\x94\x01\x16?\xf4F\xd3\x08B\xa1\x89?\xb0\x17\xcc\xe6\xa3\xa1\x85\xbf\xe6\xee\xd4\xee\x9e<\xbd?nW~(fm\x8d\xbf\xc2\xdf\xabC~}\xc3?$\xe8\xdb#\xfbKw?X\x08\xf0\xb1\x82\x0b\xbb?\x00A \xf2\x80\x18\x87?H\xedQ\x19\x9b\xa5\x97?o&\x1a\x05.\xf1\x86\xbf|Xo\x8e>_\xb3\xbf\x9cF\xdfh\xean\x9d\xbfwA\xe3J\xcf\xbd\xc2\xbf\xec\x94\x16\x9bb\x00\x90\xbf\xd6\xc1>\x8c2\xba\xc0\xbf=\xc3\xe3\xbc\xab\xae\x99?\xd2?~\xad\xe3\x99\xa5\xbf\x06\x15\x10^f\xda\xa7?Q}K\xbcW\xcf\xb1?\xc9\xa8gQ\xae\xe3\x93?\x9a\xee\x18\x95+~\xbd?\x8dAN\xa7\x16\xa2\xa1\xbf\xa0(t\xbaC\x9d\xb8?f`^\x02\xe6\xa0\xb2\xbf[\x87y\x0bF\xd5\xb4?\xdd\x0b_`\x82\x9a\xd1?c\x82\xd9\xa9\xf1-\xc2?\xb1/\x14O\xae\xd0\xc3?*\x10\xdd\x03i\t\xa1\xbf\xa4\xe7\x17V\xa1\x8c\x94\xbf-\x82\xcbE\xc3\xb0\xc2\xbf\xd4\xa9\xdb^}\xa2\xbf\xbfE\xec\x82;\xa94\xc9\xbf\xc6\xe3ca\xfc\xd8\xc8\xbf#u!\x9e\xe1\x85\xcc\xbf\xbb\xd0`\x9e\xfaY\xca\xbfOYA\xfc\xa7\x1c\xce?\xda\x8d\x8f\xbf`\n\xc0\xbf\xe8\xe3\x1f\xdb\xd9\x88\xc9?\x91\x1fd\xc7D\xfb\x94\xbfD\xee\x02\xc8\x042\xc1?aC47\xae\x92\xc4?\xa0\xaf\xd7\tS\xb9\x91?\xb7=\xe4\xb8\x8b\xdb\xd2?H\xef\x18/?\x1d\xc4\xbf;<\x8bs\xbc\xdd\x8f\xbf\xb2p\x05\xb3\x93a\x90\xbf0Hv\xc7\x85w\x87?d\xa8\xff\x94\x851\x8f\xbfP\xfa\xd1\xf2\x0e9\x9f?\x04\xc5\xefr\xc4\xd9\x8a\xbf\x0b\xe0\rL\x16\x8f\xa9?\x9d\xdb\x16^%/\x87\xbfc\xa6[\x10\xfb9\x89\xbf5$)\xab\xde\xd2\x8f\xbf\x8f\x9d\x81\xb7\xbc\xe3s?\xf97>\x99\r\xcf\x85\xbf7\x85\x833\xa6\x8a\x88?\xc6"Q\xdc\xb2PU?%\x8b\xe6\x0e\x16\x8cf\xbf\xde\xc8\xe3p\xdc!w?\xb8\x93l\x1cBC\x9b\xbf\xcd\xa6\xe3\xc7\xa7\xa9t?\xa4HT\x93\x04k\x7f?\x16\xc6,\x02}A\xc6?\xd5\xcc=\x93\xddb\x96?\xff\xcd\xda{X\xf8\xbd?t\x94\xc3m%W\x82? \xd4e\xd2o\x86\xa4?\xce\xfe \xcb\x9e\xe8\x9c\xbf\x08\xda\xeb\xfb\xdeG\x9c\xbf\xb0Jf=\x08\x97\xa5\xbfl\x00\x1at\xf9\xfe\xac?\xa6\xc1\xcb\xbc\'\xae\xa2\xbfL\xd7]\x82\x07+\xc1?":8\xa5^\x07\x9b\xbf\x8a\x8d\xf7\x8c\xd0i\xa5?\xe7m\xc3\rG\x91v?\xd2"\xee>Ss\x9c\xbf\xbc9f\xc1n\xd5\x8e?p\x95>cI\xff\xba\xbf4\x87\x9b\t\xb4~j?e\x19\x12\xcb\x14{\xc4\xbf\x04\xefFQ\x04\xbf\xa4\xbf\xb5\x939\xc9\x9d\xf2\xbc\xbfe\xe4\xaa\xc4\xaf\x8b\xa6\xbf\x07\x05\xac\xde\xdb\r\xa2\xbf/{\xcfd\xa61\xaf\xbfx\xbd\xd7\xe8\x07\x11r?l%\xb1\n\x84+\xa7?\xddk\x88\\\x90\xedh?\x8f\xc9\xb6-\xf3C\xbd?\x0c\x08\xaf|f\xad\x84?o![Df\xab\xb7?\xb7\xf9\x91\x91?|\xb4uz\xc4\x1b]\xbffY\x1cQ\xb2\xcbW\xbf\xf1\xd15\x9a\xfck\x86\xbf\x86\x00\x0b\xbbV\x08\x91\xbf\x04V\xab\xe9|\xe7\xb3\xbf7\xca\x1f\x9a\x1f\xaa\x98?\x91\xd2B\xe8\x1b:\xb1?\xf9\\\x80\xc4m\x8f\x89\xbf\x84,\x06R$=\xb3? p\xeb+w\x1fR?\x01+G\x1f\xb8\x18\xb4?\x8d\x86Z\xc9\x85\x9b\x90?`\x8f\x0f\xdeo.\xd0\xbfo\x12]\xf4x\x99\xca?5\xd8\x1f\xdf\x16\xdb\xc1\xbf\\\xd7\x87\xcc\xb4\xfd\xc0?\xf5;\xf4\xc7\xdf7\x88?:b#h\xcd\xeb\xb2?V\x1a\xb1\xdch\xb4\xc2?5\x0c\xff\xde(\xad\x8f?\xb6\xee\xb3x\x82\xeb\xcc?\xf2\x01\rT\xef^\x8b\xbfsO`\x85\xfd\x92\xd0?>$\x1bG\\D\x9d\xbf\x94\x08\x1f\x81\xf9\xec\xcd?\x91\x06\x90"\x96 \xb1\xbf\x84\x7f\xbf\xfe\xdd>\xbe?\xbf/\xf4\t\xdf\xad\xb4\xbf\xa69\xe9\x1a\xa8Fr?]\xe1\x91\xc7\x83-\xb1\xbfq\xe7&~tY\xbb\xbf\x0b\xc5\x9e\xec\x8e\x0e\xa2\xbf\xaf\xa5+\xac7\xb3\xcc\xbfj\x9fb\xbb\x1a&(\xbf2y\xd4\x03\xd2\x85\xd0\xbf\xf8\xc7\xb5\xb6\x1d\x0b\x96?\x1b\'\xf9}\xb2f\xcd\xbf\xf3+\x1e\xa1Z\xa7\x83?\xc1J\xdeC\x98\x8b\xc3\xbf\xda&\x90\x8b2\xbb\x85?\xaa*`[\xe6\x99\x8e\xbf\xc4\xb8N\xecj]\xa7?+\x96m\x9c\xa2\xf9\xc0?\xce\x1e\xee\x00\x9a\xb9\xbb?\xba\xae/\xe8}\xb3\xcf?\xc8=\xa2j\x9c"\xc9?x\xaa\xd6\x85h\x88\xb4\xbf@\xb9\xa9OJ\xef\x90\xbf\xa4\xe0\xd4\x84\xa4b\xa6\xbf\x00\x84\xdd\xaa\xb4\xf4\x9c?\xbc\x05V6{\x10q\xbf \x86\xf9OM\x81\xa3?\x10\x00\xdc\x11i\xf5\xa0?\x13\xea\xfc\x1b\x1b\xbb\x99?\xae\xcd/\xca\xefM\xb2?k[\xd3Q_\x0fc?\xc7q\x1c\xb9\x03\x89\xbf\xbf\x1c\x12\x031\xc0\xc5\xa4?H\x89_\xfaM\x89\xa9\xbf|\xc5HI7\xe6\xb1?l@\xd6\xceq\r\x82?A\xf6\xa1\xd4\xe2\\\xb0?\x88\x9b\xde\x13J%\xb1?y{\xb9\xe7\xe7\x88\xa1?)x\x00\xf1\x930\xbe?\xb7S$!\x8f\n\x9c\xbf\xb5:-U\x05S\xb3?\r\x9d8\xbd0\xd0\xc7?I6\xca\xf0\x17\xe2\xae?\xa7S\xd9k\xd1\xa3\xc0?>\x83EBN\x83\xa4?p\xc5\xb2\x11\x85\xc3\xb3?\xb4\x98\xbd\x1e\xdc\x07\x94?\xcb\x97\x95=2\xd2\x97?\x8e\xb3\x83\xf7\x8cd\x94\xbf-\x96\xbf\xb35\xb8\xe5\x0e\x96\x0c\xbf\x9d&sy\x0ef\x93\xbf\xc3\xae\xf0\xc5\xf8M\x8c?\xf6\x12\x1f\xb2\xf1\xd6\xa1\xbf\xa7g\xbc\x90L\xd6x?\xb6\x1ei\xc7\xc9\x7f\xa8\xbf\xc3\x92\xb7owi\x88\xbf8M\xdc\xb0\x9b\xfb\xb0\xbf)\xc9d\xa1sF\x95\xbf\xd7\xce\xf3\xf7\x7f\xf9\xb0\xbf\x91U\xd5\xb0\x89\xbf\x93\xbfN\t\x03\xef\x97^\xaa\xbf9V\xd8\xf8\x82\xa0\x93\xbfrmZh+Q\x95\xbf\xd1\xc3;P6\xebm\xbf\xf9\xf2\xe2\x93\x01\xaa\x93?\x95\xccm{b\xdd\x9a?\x1e\xb7\x01\xc0&\xa1\xa8?\x84\xbd.\xaa8\xc9\xad?P;\xab\xae\x80Q\xb2?\x00\xb4w\x14&\xe1\xb2?U\x0b\x1a\x82d\x06\x9a?5\x87E\x03`\x12\x8e?\x1d\x97\x88:\xa9\xff\xad?\x9a|%\x07m\xd2\x99?\x0b\x9c\x9aB}\x80\xa9?\xa7\xf7\xf1\x9aI\x90\x8c?T\xb3^D\x97;\x99?\x00 y\xa7J\x1fs?\x95l#\xd9\xcdN\x84?D\x11\xe6`A}\x7f\xbfZ\xc0\xde%\xe7\xe6t?\x7f\x00O\xf5_]\x8e?\x1c\xcb\xc6H\x16\xab\x95?\xfdE\x13\xf8\xcf\xcdy?\x98\x90\x0c^\xf8\x13\xa4?h\x1dy(\xba\xf1\x82\xbf\x83+\xe6\xd6\x10\xe8\xa7?\xa9t0\xbe\xcf\xf2\x92\xbf\xf7>\xc5\xebg\xa2\x81?`\xb01\xf2\xeb\xd3\x93\xbf\x19X\xa4*05\xe3\xbfC\xe3 \x82\xa4\x1cs?S\twf\xfbl\xd9\xbf\xea\xca\xfe\xe4\x1f\xc4q?[\x10\x08\xe3e\xf1\xc8\xbf7\xf7\xfd\x19l\x84q?\x1d\xa9\xed\xf3\x98p\x82?o\x00j\xfeXh|?s\xaf\xbb\x0cb\x8c\xc6?\xe6\xa1a\xfb\xb7\x19\xd0?\x9c>\x15)\xf4\x0f\xc9?FjE\xfa\x1f\xa6\xc0?\xae\xed\xc3\x91\xe9\xcb\xcb?\\\xb9\xe2Q\r\x8b\x83\xbf\xfe\xb4`p_\xe5\xc8?\x90\xf1\x85\xad|\xa3\xc3\xbf\xd9\x106p\xcaf\xc5?x\xf0\xa9\xe5\x80-\xd2\xbf\x8f\x8a-\xe1\x8b\xa6\x93?\xea\xc1xe\xa4\xbb\x89\xbfu\xaaj@\x11Zq?Z\x9c\xc6\xc4\x91k\x80\xbf!x\xa5\xb0\x12\x0cj?\xf1\x01d\xf3\xb4\x03\x85?\x89\xc6\xa5\x0c\xc04y?\xd8\x1b\xb8h\xb1\xb7\x8d?\xfe4\xae\xb6=\xdb\x91?\rN\x88\x8a#\\W?\xe2\xda9\xe3R\xa7\x96?\xa7]\xb6\t\x81\xb2\x89\xbf\x0b\xf0\xa4@L\xc4y?\x11\x81\xcb\xda\xa1X\x95\xbf\xd6\x9fI\xd5}L}\xbfo\x0b\x12O\xe7\x8e\x8f\xbf\x8b$\x02\x18lLq\xbf\xac\xddt\xb8\x84-G?K\x82)s p\x85?\xc6\xbbs\xd7\xb1lx?\xf20l\x14\xa5l\x8a?\xaax\xd4\xd3\x97\xfb7?\x1e\x7f1\xb1\r\xaf\x90?\xd4\x92\x910\xe6\xca\x87\xbf\xbaf\x8a\x84\x1f1\xe8\xbe\x1am\xb83\x92\xb2\xa7\xbfFT\x9bW\xdcu\x90\xbf\xd3\xf2\xfa\xeban\x8b\xbf\xa0\xff\x9c\xe2\x848\xa3\xbf\x01\xf5U\xad\x91\xb0\x8b?y\xd1\rUg\x90\xa1\xbfE\x15`3w+\x90?\xb5\xb0\xedg\xbd`\xa5\xbf\xcea%Bg\xff\x83?Z\xaa\xd5\xf6\xb1\xec\x9e\xbf5\x98\xdfJ\xbb\xb0\x8b?\xb0!x\xb1\xb8\xf3\x93\xbf\xaf!<)\xf8\x1e\x8d?f\xc8\xe7\xe7\xf9\x0e\x93?\xc4\xdemd\x865\x81?Ty}u\x1cl\xa4?\xc0\xb3\xe5\x1b\xb3\x04^?c\xc9\xf0\xa5\x11\xe8\xa8?9\x84\xbaP\xe4\x7f}?\xd4#\x13\x90\xa0\xe3\xaa?\xf1;Sio\xdf`?Q\xfe\x8a\x8f\x0c\x1e\xa6?\xba\x91\xa0I\xed\xfc\x93\xbf\xb2\x90P\xb9\x92\xe6\\?\xf6\xeb\xacWA\x9c\xa4\xbf\x9dvn\x07\x9f[\x85\xbf&{\xc4\x80M\xb3\x88?\xed\xc1\x80\x8c&Q\x8f\xbf\xc0\xe5\xff\xaa\x1cU\x8e?\xfc\xdfr\xe6&\x8f\x92\xbf\n<\xd6v?\xa3\x81?i\xa8\xa1o\xe6\x8f\x83\xbf\xee\xa3\x05\xc7\xcc\xdad?\xdb#U\xebGSv?1\xf3\xd9jE\xear?t\xa2k\xcf\xd8`\x87?\xdcR\xdf\x91\xda\xf6\x82?\x15 c`;\xcf\x89?Q\xdc\x85\x98O\xdb}?v\x03q\xec\xb6\xb1\xc0?\xcd\xa0\x982\xc5+\xb1?`j]\x13\xb0<\x9f?\xb1g\x07\xb8\xab\xcf\x90\xbfY\xbd\xdf\xaa\x96\x0f\x9e\xbf\xda!\x0e\xdb\xd9\xdf\xb5\xbf\x86\xe6[[\xf70\xb3\xbf\x8f+\xb4\xf9\x94\n\xac\xbf\xf0\xa2\xf1\xc1\x96\\\xb8\xbf\x9b\xb39\xd4\xc7\xbc\xa2?\xb7\xb9\xd2\x02\xce\x13\xb1\xbfY\xa1\xb3\x8b[\xa3\xb6?\xf9\xb0\xd1\xfb\xd3\xa5\x92?Nw=J\x93\xe5\xb0?0UV\x92c\xe9\xb9?9\xbb\xa2\xf7\x85\x9e\x9d?\x81f\xbf\xe18c\xbd?5w\xd8\r\xdb\xeb|?\x81\xde\xba6\xff\xc6\xb2?\xf1\x17X{H\xdb\x85\xbfH\x0e\x99\xa1\xc1\xb7\x9f\xbf\xd9\xa6\x1dkp\xa0\xb1\xbf\x99\xb1\xf7\xc67\xd2\xbd\xbfd\xb9S\xf29l\xbb\xbf-\x88r\x13|\x85\xc0\xbf\xe0S7U\xe4\xc3\xb1\xbfM\xf0BH\xc1\xca\xb1\xbf\xa6(o\xff\x8a&\xa4?\xe1\x13\x82\xd2\\l\x84\xbf\x87\x1e\xc74\x7f9\xb9?\xa7D\xf1d\xdc&\xb1?\xc4\x06\xf3a\x12\x90\xa8?\x9b\x07q\xa1\xc1q\xc7?K\xb12\x1d/5\x95\xbf\x82\xd0{g7\xff\xae?\xc0:\xdf\x0b\x08\x08\xb4?zwO\xbdU\xf7\xa9\xbfh\xbb\x8e\xdb\xcc8\xa3?\xdeV*a\xe1\x87\xb7\xbf\xba6I\x14\x818\xb5?]\xc6\x9c\\>\xc7\xaf\xbf\x1b\x9d\x86\x9e:\x14\xc1?\xdd\xe4@\xb2\xe6;\xa9?:v@\x80\x97f\xc0?\xb8\x03\xc1\xf4\x08u\xa8?6&\x89\xf3\x06\xef\xbf\xbf\xcbM\xd6\x19\xdcn\xa9\xbf\xebs\xe3,6F\xc0\xbf\xee\xef\xc2Wy\xba\xb0\xbfM\xdd\xbb\xa2\xe8\xf0\xb2\xbf,d\xb0Jg&\x91\xbf\x8dR?\xc7\xb2\xdf\xa3\xbf\xefs\xd3\xb4%\x98\xb6?[\xc5\xdc1!s\xb6\xbf\xdaY\xed^\xd6\xfe\xcd\xbf\xf4 \xb9&@\xa5n?\xe0\xa8L\x90\xdf|\xc2\xbf\x98\xc1f\x93\x149J\xbf\xa4\xdf\xf4\xa2Ml\xad\xbf\xf9\xf2\xf5[\x97\xdbX\xbfaO\x9d\xe2n6\xa2?\xd6Eq\x04\xdb\xf6r\xbfm\x8d}/\xa5_\x92\xbf4\xa7V\xe0\xa8\x7f\xd8\xbf\xff\x98\xcd\x87L\xc8\xb1?\xfc\xd8\x03\x01Fc\xca\xbfI\xd3\xcaII7\xbe?\x07\x8b\x06#2CW?\xf0\xb6Z\x98RH\xaf?]q\xb6z\xa6\x06\xcb?\xc8\x99j\xcf%\xb7\xa3\xbf{\xd6\x12\xfb\xc1s\xd8?\xb2e<\xb1\xe7\x9e\xa6?\xb0\xfa|\x89\xc0\x87\xa5\xbf\xd9\xe9\x92\x87o"\xb5?\xf6\x7f0S\xf6\xc1\xb3\xbf\x8c2\xbb.\x94\xcb\xb2?\x99\xdd\x00D\xd3\x18\xc1\xbf<\x04\x088\xe5\xeb\x89\xbf\xee\xe3\x83J2\xc7\xbf\xbf(:\xcenS\xbe\x93\xbfPRW\xa6\x81\xf1\xb8\xbf\xe2\xb6e\xbby8u\xbf`\xfb!\xe1\xac\x81\xaa\xbf\xe5\xce\xc9\x08\xbb\xef\x99\xbf\xad\x9a\xc5\xff\x17\x89\xbc?\x12\x8f\xff\x0bt\x98\xa8?8\x1a\x86\xa6\xa5\x98\xbf?\xd4\xb1\x02d7\xa5\xb2?\xdc\xd9\xe9\xd7x\xc1\xaf?~\x846$\x1d\xda\x9d?\x0c\x13\xf3\xcc g\x9e?\xecFn\x8b5\xbf\x99\xbf9\x02\xd4\xb7\xc6\xde\xa3?\xaf\xeb\x90O\x07E\xa3\xbfc\xcfd\x8d\xbf\x84\xb7?\xa1\xe8^G\x08B\xa3\xbf\x0f\xda\x1f\xa5\x18\x87\xac?\t\x8f\xef\xd2\x89\x1c\x95?B\xaa\x9b\xfa\xfb&\xa6?!t\x8aMs\x02\xad?\xab\xe2\xe8\xcc\xcd\x87\x97?\xfd\xf6\xa1\xf6\xd3|\xab?\xc5\x94\xba\x91\x1d\xcao\xbf\x88\xd1\xc0\x99\xe5\xca\xa7?>\xe2\x89?\xd5\xe6\x97\xbfpm\x1d\x9d_\xeas\xbf\xee\x17EAOe\xa6\xbf\xbc\xf8&\x1e\x10\xaa\xb4\xbf\xdc\x8a\xae\xd6\xfd\xaf\xaf\xbf\x8d\r\xe6\x9e\x9b\x84\xa8\xbf}\xd8i=I"\xa9\xbf(6\xab\xdc1\x7f\x84\xbfF\xea\xad\r\xb5~\x95\xbf\x05\xb7\x84\xff\xf0\x1an?\xdd\x1e@\xa8\xef\xbdJ?\x1ev3\xcc\x0c0o??\xe5\xb7Q\x0e\x11\x9e?\x8ft\x96\x8a\xa2\x85\x91\xbf\x96;\xaeF\xdf\xa5\xac?\xac\x16\x9ef\x82\x0b\xa2\xbf3\xd33}\xcf6\xa8?\xd6\xf4T]\x92\xe9h\xbf\xb8\xb5\x1c\x98\xe3\xf1\x9d?\xde\xc6\xdb\xa4\xcb\xf4s\xbfi\x1a\x92\xf3m2b\xbf\xb0\x00\x8f\xa7\xb21\x8e\xbf\xa0\xcb\xc72\xf8\r\x9a\xbf\x9a\x0b&\x11}\xb0\xb0\xbf\x0f\x10\x9a\x8a\xc4\xce\xa8\xbf\xff\xaao\xec\xce\x85\x9e?\xba\xf3\\\xbc\x91?\x95\xbf\x0b\xc0\xb1\x08\xea\xa1\xa7?\xfa\x8e\x17F\xf7\xd70\xbfa\xa3\xd2\xf3\x08\x88\xa3?J\xcf\xec\xdd\x18\n\x9c?\xdc\xdcpw\xa0\xee\xaa?X\xb0\x1d\xe4\x9d\x12}\xbf\x11?\x81\xb7\x02-\x9c?Q^\xc9CO>\x9d?\x8e(\xd1\xe2\xb0\xb8\x89\xbfC\xffg\xf97\xe7\xad?\xe3\xc1\x96dP\xb6\xa8\xbfEB\\\x04R\x86\xa0?#\x8b\x12\xf6\xe6\x11\xa8\xbf\xc0$\x01\x0c\xc4\\\x8a\xbf\r8\xb9\xe7\x03l\x83\xbf\xc4n\xd756,\xaa\xbfg\x00\xc6\xa2\xc6M\xad?\x93&\x8b\x83_\x9f\xae\xbfw\xfb\xce\xed\xfa\x0c\xc0?\xbf\xca\xfd(\xa9\x0f\xa6\xbf\xf7\x9dj\x99\x97\x03\xbf?P\x0eY\x92\x93\x82X?\xb4\x8a\x84U\xc7,\xa1?\xb0\xdf\x80C\xf8\xf0\x94?\xae\xb0?\\6\x05\xb5\xbf1*\x11\xd1\xbeSx?\xe0\xa8\xcc\x1f\x1c?\xbc\xbf\xa3\x16o\xc9\xc7\xbab\xbf=\xd9\x03\xe0mN\xb2\xbf7i&\xc6\x9c\xc9j?\xdeQbC\xad\rJ?N9\xda!\xcb\x00q\xbf1\xe0\xef\xf2_\x06\xb3?\xc2+\xe0\xff\x99)t\xbf\xb8\xf8\xd3\x1eAj\xc2?-v6!\x9b~\x85?\xdan(rT\xac\xc6?#Q\x81\xad~\xa4\xab?\x97MsLQ,\xab\xbfic\x15\x89IN\xc3\xbf\x03J\xc5\xd6\'\xb6\x97\xbf\xa1$\x87\x8e\x0b\x03\xbd\xbf"\x1ax\xd6\x86\xe3d\xbfM\xf6\xbfV\x1a\xbf\xb6\xbfzh\xb3\xdbWO\x85\xbf\tET\x93y9\xb1\xbf\x8d\xe3\xa6\xf2\x07c\xaf\xbf*\xf7\xee\xf6H\xf7\x84\xbfq\x9b\xcb*d\xc9\xc5?\xabi\xd0\x81s\x03\xa8?\xac\xee\x91\x1aka\xbf?GD\xeeN\xb2\x9b\xa3?\xe782\xee\x1ah\xa1?\x9c@*\\Z\x12\x96?\xbe!\x81\r\xd1\xdf\xc0\xbf\xb0\xa2w\x87F]\xa7?\xd1\xa0\x84\x84g\x83\xd3\xbfH\xe1\xd6\x13M\x8a\xc2?\x8e\xf2\x9d%-\\\xae\xbf_w\xbfVF\xe4\xdbH\xb4\xaa?\x08\x98\xf5T\xc5\xda\xb7?\x04&hX\xaf\xaf\xba\xbf\xeb;\xd8\xc5r\x15\xb5?3y\xf5\xcf\x11\x0e\xb4\xbf\x1b\xa4\xf4/M[\x9f?i\xf5\xb5\xdd\x16\xf0\xa3\xbf\xbb\xab\xdd\xef\xc9\xa6\x89\xbf\x8c\xac`\xc9\xca\xfbx\xbf\xef\xa3\xb0\xfeX\xb3\x98?y\xdb\xa7.9l\x99\xbf\xab\xd3\x8d\x86=\x98\xad?}`!\xe2\xc9o\xb0\xbf\xbb\xac\x12 \xe4k\xc8\xbft\x92v2A\xa8\x81?\xa3B\xea\xbfB\xd5\xb5?p\xc5\xc7B\x02#\xb2?T\xa2\xfc\xfaS\xac\xc9?\x18\xa8l;\x87\xd3\xad?g{\xf5u\xe2\xd6\xc5?%P*5*[y?\xa6\xd8T>\xbc6\xc4?\x9a\x1c\xd1\x1fU\x7f\xaf\xbf"Z\xbc\xb4\r\xc6\x99\xbf\xeby\x05\x19\xea#\xbb\xbfkI[*J\xcd\xd6\xbf\xac\r\xde\xb2$w\xa8\xbf\x04\xaaU\xee\xbd\xc1\xc0\xbf\xe6\x8d\xbb\xd7$>\xb2\xbf\xce\x02?\xf0\xb2\x82\x96\xbf\xe5v\x80N\x15\xe9\xa5\xbf*\tm\x81z\xaf\x90?\xbfl\xb7s?"\x97?\xd1\xe7\x90\xfe\\#\xa6?t6\r\xa3\x12\x15\xb4?@D\x1b\xf9\xf6:\x94?i\xadp\x12b0\xb0?V\xaez\x8fi9\xc0\xbf\x81\xf3\xc7\xa4;\xa2\x99\xbf\x19d1v\xcd\xd0\xb3?\\\x1d\x1f\xbd\xa0\'\xb0?\\\xfa\xc3N\'|\xb2?\x88\xb7hU\xbb\xff\x8a?\xdb\x9a\xe0\xc5\xd6\xf4\x9c?SQ\x1f\xce\xe3\xdd\xa8\xbf\xf5BTC\xa9\x99\xd0\xbfiAB\xfe,\x0c\x97\xbf%L\xb1_6d\xaa?*2\xce^\x98\x1c\xa9\xbfZ|\xe0\xb6\x00j\xb8?0;\xe5\x84]\t\x8a?P\x80\x01&*\xaa\xbd?\x17\x12{\x1e\x13T\xb0?\xf8\x15\xf8R\x14\xbb\xcc?\x08\x96\x97PuM\xb2\xbfpKU\xf5e\xbe\xc5?0H\xfa6\xe90\xae\xbfz\x15nC\xff\xad\xb9?\x80\x9e\xb7A"\x97\xa4\xbf\xed\x05(\xa8\x8cB\x97?\x8b=\xf7\xe0\xab=l\xbf\'\xdd\x01G\xe6T\xb4\xbf%\xf7\xce:jg\xaa?Z\xf8\xb9\x84\xf1\xd3\xc2\xbf\x8f\xa5\xa6\x14\xa3A\xb7?:?5\xb0\xd6s\xc2\xbf\xf1M\xa4]8\xf3\xb1?\x89U4\xc7\xc8!\x9d\xbfU\xde\xdeHE\xbfo?\xc4\x19\x94\xef\xafh\xbc?j]\xdaK\xdb\x8c\x85\xbf\xdb\xf5\x93\xea\x9a\xce\xc6?3V\xc0\xeb\xd7\x13\x8a?\xe9N\x98UIB\xc1?*9\xf1G\xc5\x8f\xa6?*\xcehA.\xd5\xa3?\xbd\xbeTb\xfb\xa1\x9e?\xebg];\xe4\x98\xae\xbf\\g\xe5\xf5\xdd\x97j?%\x8f\x8b<-\x1b\xbc\xbf\xbbe\x12\xdd6/\x98\xbfYg\xe2\xa5v=\xb8\xbfF>\xeb\xab\x92\x86\x94\xbf\\oE\xc9\x8a\x07\xae\xbf\x8e4:7\x90\xc5\x88\xbf/\x8dkX\x06\xa9\x95\xbf\x8f\xf5\xc2\x8bG9\x90\xbfeF\x9eQw\x08\xd3\xbf\xaa\n\xa0\xc8\xb4]\xb5\xbf\x80vf\xd5QU\xc0\xbfY\xcb\x9a\xc8\xc2j\x86?\x14\xa6\xb13\xd0\xe1\xad?[u,]\xabP\x9c?\x14\xd6\xf7\xc4(c\xc5?\x15\x9b\x99=\x9fb\x8a?M\xd8\xa7\xc3\x8bK\xcf?\x9c\x81i.\xa4\xbd\x8b\xbf\xc0\xe8H\x8d\xabw\xc6\xbf\xe3\x0ezG\xca!\xa3?7v\xea5\xf0x\xbb\xbfR\xf2\xfd\xa3\xca\x02\xb8?\xa4\xf9\xa3\xbc\xc6\xf2\x9d\xbf\xba\x1d\x8c\xf0f~\xbd? T\x08}\x94\x8b\xb2?\x91\x1bWQ\xad\xcf\xbb?90\x90d\xe5W\xc0?U\xaa\x86\n\xb2\xc9\xb1?\x88y\x05ja#\xaa\xbf\xa2\x06a\xf9\xb7\xf6\xa9?\xbdS\x84\x8dG\x08\xa2\xbf\xc7\xbf5\xb5\x8b\xa8\xa6?t[\xec\t\xe8\xb8\x91\xbf\x01\xdf\x99\x86\xcf/\xa3?\xc1\xbc_\x8c[PQ\xbf\xa9\xa0\xdaz}n\xa0?o\xba\xc8\x95\x7f\'\xbb\xbf|\xb1\xe2\xcb\xf98\x93\xbf\x1d\xe9\xcc\xc8\x04`\xab\xbf-\x0c\xd4S|\xe8\x9e\xbf@\x03\x00\xfe\x83\xff\x87\xbf\x9a\x03\x85\x87/\xdb\xa1\xbf>>\x0f\xb4\x01\xc0\x89?\xa2v\x8bW\x99\x90\xf9\xa3\xbfO9;T{\xbf\x8c\xbf\xe3\xed.\x8db8\\?\xaf\xe8Qis\x85s?\x01\xf2\x843\\\x1e\xb1?=9\xaeG\n\x8c\xa3?x\x15nj\x07\xa1\xc0?\xf7]\xbf\xfbp\xb9\xa2?\xc5A\xe4\x82x\xb4\xb6?\x8b\x8ae\x0bjO\x8e?\x01\x85z\x91\x9e\xbe\xa2?\xff\xf9\x83\\\x84\xd5\x8e\xbf\xa3\x1e}\xf2\x81\xa3\xbc\xbf\xe27\x7f\xd5!\xfd\xbd\xbfh\xbd\xfcl\xe3,\xb4\xbf\x1d\xfbD\xa7\xac"\xb9\xbf\x9bag\x83\x93\x0f\x9d\xbf@\xa5\x0e\xc4\x94\xad\xb0\xbf\x0bF\xeeG-G\x96?\xbcj&\xb7\xaa\x1e\xad\xbf\xd0\x9d\x08\x8a\x15\x81u?E)\x0bD\xd1\xd5\xb1\xbf\xea\xee\xcd\xbf\xb1\xa8\xa4\xbf\x82Z\xae\'\x97\xa7\xba\xbf8\xd1G\xd3B\xf9\xd1\xbf\x00\xfa\xb4\x93\x81I\x90?B\xe1;\xba\x94`\xb8\xbfTy\x1e\xdd3\x0f\xb2?_8;K7b\x9e?\x17\x8bP\x87\xfb\xe9\xb0?`?\xbc\x92\xd4[\xb2?\xb7\xfe3\x85%\xcc\x8d?\x83#\x7f\x06\xac\xba\xbf?"c\xb5\xb7\x93\x81o?\xc8Px\x1e\xef\x0e\xc2?\x96\x18\xbbU\xed\xa0\x89?\xcaS\x8c@\xe3\xba\xb0?C\xef\x8d\xb6\x80c\x8d?\xea\xa06\x19\xac\\\xc0?R#\xc1\xab\xdc\xe8\xa0\xbf0\x15\xae\xcc\xe5\xcf?\x02%/-\xb0\xa8r\xbf\xa5\x99\x87\xba\x0e\xbd\xc8?\xfb\x80 )t\x9d\xae\xbfD7\xd2\x81\xdd\xb6\x9a?\x1fZi\x1f7y\xc2\xbfI\x07\x9a\x1eB\x1b\xc2\xbfd&L\x03\x19\xa8\xc8\xbf\x06\xd4,\x93\xa8\xcd\xc9\xbf\x81\x98\xe7\x88\xc8\n\xbf\xbf\xc1k\x02"\xdd\x05\xc2\xbf\x9du9\xc3\x17\xfc\xa5?\xbd]L\x0c\xef\xf9\xb3\xbf\xe1M\x84l\xd2^\xc3?\xd2\xccQdG\xee\xa1?j\x83\xe4l\x963\xb8?\xcf\xd3\xf4\x98\x87\n\xcb?\xad\xf2$\x14\x0e\xf7\x90\xbfr\xb4fY\x9a\xe0b\xbf\x99\xc1K\xab\x86\xfc\xaa\xbf\xe8U\xab\xe6\\\x18\x9a?=\xd5\x8b?\xbe\x82\xb7\xbft\r\x06\xbf\xfb\xba\x9f\xbf6\xdcE32*\xb2\xbf\xebl*b\xc2\xd9\xa7\xbfa\x16\xb2OX>r?K\xf7\xda\x00<<\xa7\xbf\x1d]\x86\xd0dK\xb4?\xf3\xa4\xf7\xd9\x8c\x9ep?k\xc7\xfb\x89e\x98\xb2\xbf\xeaR#\xe1\xe9R\x93?J\xdc\xb5\x81\x84v\xa3\xbf\x90\x7f\x178.\x1c\xa5?\xa8w\xd3\xbb\x00\x1aU?yD\xc9\x06\x193\x97?@\xbc\xd5*\xd3\x9b\x85?\x93y\xf0\xc4.\xb6\xb2\xbf\x8b\xa4\xc7\xd4m)\x99?_\xd2\xd1\x05\xc6)\xcd?\xc0\xca\x9e\x06\xbc\xcc\x9c\xbf\x9cS{Gku\xb6?\x10\xb1>l\xe7\xc0\x98\xbfa/h\xfd\xee\xc5\xa8\xbf/\x7f}\xbe{\xfb\x85\xbf\xf8\xaa\xad\xa6f\x13\xc8\xbf\x9cp\xb0\xfd\xabSk?\xec\x00m/\xe3\x19\x96?a\x13t?\x90\x03\xca?\xaa\x19_A\xe2\xcd\x92?\x02I\\Y\xd3\xbb\xbd?d\x82F\x13\xb9T\x93\xbf\r\xd0\xd2\xc8\xda\xa7\x8f?\xea\xaeO\xba\xc2\xde{?b\r\xb0^;\xd0\xb6\xbf\xdeg\xda\xc5\x8b\xaci?\xfe\x1eIFPU\xc8\xbfE\xb6\x8adF\xa6\x91?B\xca\x05U\x98\x8a\x92?\x1b\xf8j+Gtl? $\xaa?\x0ck\x82\xbfP^\x94\xc3]\xb2\x93\xbfD\xecF\x9c\x11\xb8\x8f?\x0er6\xa6\xb8\xc9\xab\xbf`\xda{\xafM\x0e\xa1?\x9cl\xda\xdb\xab*x?\x0f\xc5\n\x08\xda^\xa4?2$\x8c%#d\x99?\x8dR\x0e \x186\x94?=\x06\xa5\x16l1\xa6\xbf>\x1dj\xea\xb2\x95\x80?Q\xe0\x1c\xe0\xba\xb4\x91\xbf\xfcC\x043\x9b\x92w?[5\xc1\xa4\xe7\x80\x86?\xc7\xfb!\xef`\xfe\x93?\xf3\x04\xa2\xae\xfd\xe3\x8a?\x1d\xe9\xda\xa6$\x99\x8a?\x95\x8f\xf8\x1f\xd9I\x90?\x05\xbbt\x1d\xe7F\x95?p >\xf6\xe2\xdc@?z\xb2z\x18\x007\x92?\xc4\x8eE\xa4\xf3|\xc5?v3K\xc3\xa7\x0b\xb0\xbf\x97\xa3\xf2w\xdc\xe2\xa4?&\x8ek\x0f\xe7\x9e\xb6\xbf\xa7\xa8\x8a3\x16n\x99\xbfTT\xc3)\xf1\x90\x93\xbf\xa6\xc3<\xb0\xdc\xef\x91?)\x0cS\xbc?\xab\xbc?\xe5\xf3"\xf4n\xde\x81?\x02$\xee\xff\xb1\x98\xab\xbf=\xe7\x94\xfd\x8b$\x96?I\xc7\x1aymQ\xaf\xbf4\x8e\xbc\x00MHq?\x90NCB\xee\xc0\xa6\xbf`\x90\x7f\x8b\xe9\x96b?\xba*\x18\xf1\x8d\xb9w?\xd5W\xf4\xe6 \xb0\x9e?\xc6\x08\x9762-_?\xd4\xfc+#&/\x91?\xb7\x90\xc4\xf8\xb3\xefP\xbfg\xb0\xd7\x15\xaa\xd8\x95\xbf\x1a7d\xd9i.\x87?\xf0@\xc7 \x8b \xb0\xbf3\xdeY\xf5\x1c\t\x9e?\x95 \xceu\x7f$\xb0\xbf\xe7\x89Bv\x93\x9c\x8b?\x9cQ\xb1\x13\\!\x93\xbf}r~\xa2\x1b\xc4\x98\xbfh#J\xd0\t\xdd\xa1?#\x1f\xe3\x93Dv\x94\xbf3\xc7\xc3(;\xda\xa4?\x99\xf0\xae\xbd\xbf\xe4m\xbfc}\x81\xadWdp\xbf+\xf0\x87\xf2\x1c\x1c^?\xde\xbf\xc3\xe7\xeb\x01\xa4\xbf>\xd8\xa9\x14\x04Ro\xbf\xffa\x99M\xfa\x9f\x91\xbf\x135\xff\xcc\x08\xd4\x99?\xf8\x901\xab*z\xa2?\x11\xd8\xa9\xc6\xd0C\xa1?yD\xa8\xf1]\x12\xb0?\x94\t\x1c\xdb\xea%x?F\xac\x1e\xc2B\xb9\xa8?\xa9m\xf4\x1d\xab!\x8a\xbfbr\xffnN8}?\t<:8\x85i\x8c\xbfr\xe9$G\xad6\x99\xbf\xc3\xd8y\x83>Y\xa0\xbf\xec\xb3\x10\x17\xa1d\xa1\xbf\xa9G\x9a\xc1=\xd7\xc1?\x84\xaa\xb3f\x90\xe7\xb3?\xfdG\xd06\xe6-\xaf\xbfb\xa7\x1f\x08\xba\x04\xb5?N-\xee\x86\n\x96\xbc\xbfbv^\xfa\x7f\xd5\xc0?\xf8\x96pE|E\xad\xbf\n\xafp\xcc[H\xc4?H\x90h\xd6k\xb8\xba?\x9dlF\xab\xbf\xd0\xc0?uY\x839"\x87\xb0?\x87\xc7O\xbb\x1aN\xc1\xbf^\xf6\xe0C\xc5\xb5\xbc\xbf\xcb\xa8\x11\xc0\x93\xac\xc4\xbf\xdf\xfc\x07"`\'\xc3\xbfZ\xabYmX\xb3\xbc\xbf]:\xa1\xf5\xf2\xb6\x9d\xbf\x08F\xa9\xf4H\r\xab\xbf\xbc\x02\xea/\xbfU\xd0?\x98>\x92\xd5\x17\x80\xb5\xbfo^o,\xff\t\xc2?\x8d\x87P4\xe2\xaf{?\x85wE\xec\xbf\x15\xb6?{S\xd4S\xa7N{?\xf3\x968G\x8d0\xa2?\x06Zy\x0e4gZ?\xebbz\x89\xe97b\xbf\x0f\xd1]\xd0\x8c\x12=\xbf\xb5[\x1a\xc9;\xf0\x94\xbf\xdcQ\xdd\x14\xbd3\xd3?\xbf\xca-\xbdf\xa1\xad\xbf`\xa4X\xff\xc6\xad\xc4?\xfe}\xff0\xb6.\xb2\xbf\x85/\xc8\xf6\xb7K{?G\xf3@\n2\x8e\xad\xbf\xaf\x07i\xe2_B\xc4\xbf\xfb\x96\xea\x1fb\xbe\x91\xbf\x7f\x89\xc1\xaez\xcc\xd2\xbf\x85\xb8\xf8(e\xe6\x86\xbf\x9b\x90a[\xd7\r\xa5\xbf^\x05\x7f\xbc\xa3\xb9\xa9\xbf\xf9\xc3\xd8\xb8\x14]\xb6\xbf\x03\x15\xf2\xfb\x00\xd9\x9f\xbf}\xa3\x0c\xb4`\r\xc3\xbf-\n\x1f\x16y\xcf\xac?c\x1fb\xe4\x0e\x88\xc8\xbf\xc1g\xb0N\x94\xb9\x8c?\xe1Y6\xf9\xbe\xb8\xc3\xbf\x18e}Y\xd3\xb2\x81\xbf\x8a\xde)Wd\xea\xb8\xbfu\x08S\x1d\xd6\x13\x97?\xe6\x9ea\x8a=\xa0\xc7?C33e6|\xa8\xbf\xd6\x94\x18\x07\xec\xb8\xc2?\xfe]\xabG\x83h\xad\xbf\x95\x1bd!\x98?\xb6?2\xde\xe3\x0c\xf20\x82\xbf\xcd\xb8DKc\xa4\xa2?\xde\xcf\x8d\x94\x14\xaa\x8a\xbf\xf6\x851\x8d\xad\x02\xb6?WG\x87q\xc7Zj\xbf\x0b\xfa\xbb\x82`\xff\xc1?\r\x06\xdb\x87\xbeu\xc3\xbf\xc2\x9a\xa4\x97v\r\xa2\xbffb\'+5\x8a\xa0?\x83\xa7\xb83\x91\x91\xae?\xbbg\x03"kg\xba?\x7f\xbbP\xe4E\xb7\xaa?\xe2\xce\xf1U>K\xb8?\x93?\xc5\xf5I\x87\x84\xbfR\xb6\xc2%=\'\xba?\x04\x10(\xa2\x84\xbe\xb1\xbf\x04\x9eXC4t\xa2?\x92\x16\x8dO\x10^\xb0\xbf\xe7\'P=a\x88\xc2\xbf\xb9\x02D\xe7F\x16\xa9?R\xbe\xf7\xe0\\\xbe\x8d\xbf\xecGO\xbe5Z\xae\xbf[/\xf9\xd1\x9e\xa5\x92\xbf\x13\x7fB\xc7V\x82e?\xcc\xd2)T\xf5\x82\x8e\xbf\xb6\xf7ki4\xe8\xb0??\x92nW\xba\xc9\xa1\xbf\xaf\xe1\xc7U5~\xae?\xd65\xd0VQ\x1a\xbe\xbf\x18\xb4\xa6\xabur\xb1\xbf\xf8\x17\x92\x88\x04\x1c\x88\xbf\xc5^\xdc\x19\xbe\xc7\xa8?\xf0W\x96\x06M\x87C\xbf\x0b\x8f\xce\xe9pv\x84\xbf\x13}\xd3Z\xe7\x95\x82\xbf\x99\xab\x93.\xb3\xec\xb0\xbf\xe8_\xb2#s\x1a\xbe\xbf!(\x06\xaf,\x93\xb4?.k\x91\x17\x8a\x95\xbd?]d\xb2S -\xad\xbf\x82\xf3\xc1\x97\xa8\x8d\xbc?\x9b\xd4\xffq\xb3\x9eP\xbf\xfb2\xc0\x04i\xae\xbb?d\xf8\xf9\xc5u\xc8\xab?\xc3\xb3\xbf\xd3\xbb\xd9\x8c?]Bo]\xf5\xf2\xd7\xbfm/\x19\x7f\x14\xa5\xa9?w\xe2=WA2\xc2\xbfa\x8b \xbd"G\x96?;g@\xbaM\x0f\xbb?z\xdf\xb4\xce\xbe#\xae\xbf\xaf\xfd\x14\xdc\x1d`\xca?M\xa5\x19X\xb3\xa8\xb6\xbf]d\x0f0o,\xc2?\xbf+)O|\xcd\xa0\xbf\xcdL\xf9 \xb1\xf5\x9d?J*&\xdf\xab\xf9o?r\xdd$\x9c\xbe\xa7\x99\xbfL\x9c\xc5\xec*e\xb3?F\x8d\xbc\xd6!]\xa9\xbf<\xb5\xacQE\x8d\xb8?\xf4\xa3A\x0cN\xc0\xa9\xbfa\x13\xc1\x02\x80\x8b\xb7?j\xdf\xdb\xd8\xe2\xf6\xa1\xbf\x89\x83\x0b\\\x87\t~?\x08\xb7\xcb\xdbJ\x04p?\xc4\x13\xe5\xd6\x84.\xa5\xbf\xe0p*\xb5\x88y\xa1?\xa1\xdf\xe8!a\xd0\xb4\xbf\x14y\xa6\x0b\xcc\x12\x9a\xbf\xdc@\xc0\x16\x95\xad\xb7\xbf\xd4\xea\xbb\xfa\xa0l\xc1\xbf\xb6\xe4\xce0\xfa\xcbr\xbf\xb5\x97\x98\xb3\xc8\x1c\xbe\xbf\x9f\xd7Y\xfc#\xcd\xb9?\x04\xafMUR=\xb3?\xd67\xb7\x07\xd7\x9c\xb4?\xae\xcb\xa1\x03\x0f\xfe\xd1?\x0b#\x14\x1eg#\xbc?\x92x\x00\x7f+i\x98?\x02\xf46\xca|\x9c\x8e?rIS87~\xb3?\xa2\x97\xcaH\xc5\x81\x90?*6\xc3\xfd\x8bW\xb0?\xeb\xa5Yf\xdexq?\xad\xe9th\xb1\xd8b?W\x1e\xa3L\xf9\xaf\x99\xbf\xef\xe9\x10\xdd(Z\xa0\xbfbh\\\x15~\x10\xa1\xbfq\xf1\x15\xee\xa7\xcf\xa2?@\x1f\xad\xf3\x951\x9a\xbfN\x1b\xf5>\xfc\x19\x9b\xbf\xa7xA\x18S-\xaa\xbf\xdf\xbd\x7fU\x07R\xb9\xbf\x7f\xa0o*\x9aKv\xbf5\x9a\x9ftm\x9c\xbf\xbf(S\xf6\xb1\rX\xc5?z\xbd\x10\xfe\x84%\xc0\xbft\xb2\xdb\xa9\xb4\xa0\xb7\xbf%\xb4]\x1bO>\x91?v\xf6\xa1\x85\x00;\x8e?\xdbR\x82\xe4\xe4\xf3\x8a?\xc1\x04\x8d\xc1\xdcS\xc0?\xa2\x02\xf7Y\xd7K\xfe>\xb8\xd7\x0f\xcb\xd2\xd6\xce?]/\x0f\xef\x19E\x90\xbf\x11\xbe,\x16\x80\xf6\xa5\xbfp\xe5\x1f\x109\xb2\x85?"\xb7\x1c\xb2\xcbU\xbf\xbfFQG\xc6\x944?\xbfkq\x96?:r\xbf\xbf\xeb\x96N\xd1\x04\xe2\x88\xbf@\x89\xed\x0f\xb5\x98\xc0\xbf\x94\x9c\x15\x0f\x04\x95\x91\xbf\t\xae~3\xbd\xd1\xaf\xbf\x1f\xf6\x92\x83\x96\xf9\x7f\xbf\x9e\xd1\xf1\xb6\x0f\xa7\xa2\xbfl\t\xadVeK\x89?\x8f\x98c\xd5\xe5\xc1\xbf\xbf\x1fG\xe8\'\xa2\xb7\x89?\x99)\x9b\x7fC\x93\xb9\xbf\x04\x00\x11\x0b\xd3R\xa2?\xc8\xedv0\xc8\x1f\x9a \x9b?y\xa0\xa8\xe8\xce\x06\xb2?.\xec \xe1\xf8D\xb4?\x9d\x9a8^\x1e\xbd\xb7?\xcf\xa0\x8b\x07\xf8\xf4\xa8?\xb3L\xba%\xe9\xe3\x9a\xbfy}w\xa8\xf8\x98\xa9?5\xb0\x12&\x17\x1e\x97\xbf\x9d\x80\xf9f\xc6%\x88\xbfP\x9a\xcb\xack\xda\xab\xbf\x7f9\xd1\x80&z\xb1\xbfl\x08+\xa5\\\xca\x9a\xbf.\xa7\xfc\xc2\'\xe6r?]W\x84\xb1\x0cQ\xaf\xbf\xff\x96\xa1/\x86\xa1\xad?\x9c\xefjc\x15I\xa9\xbf\x03\xb6\x13\xdd\xc4\xb5\x90\xbf\xf8a\xe5\xe78\x8a\xaa\xbf\x16#N$^E\x8e\xbf.,\xcc\xe9k\xec\xa7?\x8a0\xc5P_\x8a\x8f?\x81\x8d\xa9\x0748\xb1?\x834+\xf9\xd0e\xb3?7\xa4u\x0fT\xfc\xb7?"=\x82V\x91\x92\x98?\x8dp\xe8jT*\xb8?R\xae\x05XJ>\xae\xbf\xa6\xa8\re\x14q\xb3?\x102\xe5\xb7\xe2{\x91\xbf\xf1Kz\xa1\xc8\xa3\x88?Q\xf1\xff\x85\x12?\xa8?\xe2*x9S\xd9\xc0?\xf3\x1a\xba\x13\x0e>\xb7\xbf/\x058\x8boq\xc2?\xc3^Hbm6_?#\xd7\x95\x10\x1a\x96\xbc?\xbb\xa6K\xdc\xc2\xe1\xb3?x$~\n\xa5\xad\x9a\xbf\x96\'\xe9\xe7@#\xa5\xbf4c \x04\x1by\xc7\xbf\xe1d"\xc9\xbc\x10\xaf?_\x81\xbe\xf7\xc4\xd3\xc3\xbf\x9a\x1c\x13\x8c\x07\xf5q?\xff\xd2\x87\xce\xebs\xc5\xbf(m\x9e\xbfA)\xb3\xbf\xe7\xf0\x8e\x1c\xe0)\xc5\xbf@\'\xa5A\x03b\xb6\xbfB\x1c\xb4V\x8d\x82\xb2\xbf\xe2d9\xb2\xf1\xca\xa6\xbf\xa4\xbab\xea\xa4\xb2\xa0?\x12\ru{\x87\xc9w?\xf1^\x12\x9f\xa5a\xba?\xc9\xd3\x15\xc0\xc3\x0b\xb1?\xcd\x9e\xa2\xafP\xdc\xbe?\xb02\x91\x8bdA\xbe?\xc9\x19\xce\xa6a\xba\xb0?^\xdc`\x07\xa8\xc3\xbd?\x11J\xe5],/\x8d\xbf\xc9\xa9\xe13\xac&u\xbf?B\xbb6I}\xb4\xbf\xf2\n]\x83B\x9a\xc4\xbf\x07n.\x00\x1bh\xa0\xbftU\xe3q\xba\x07\xcd\xbf\x06\x96\xde\x83@\xe6\x9a?\x0e\x1f=\xd6\xb4\xb9\xc3\xbf\xc5\xb9?L\x13\xe4g\xbf\xbdd\xdb\x11d;f?\xdb\x8c\x9a\xfbH\x14\xa8\xbf\t\x17_\x01\xe6A\xc0?h@\x14\x1ax(\xb4\xbfI9\x00z\xb4\x81\xc6?\xfc{\x8d-\xa2\x01\xb3\xbf\x88)\x9f\x9dt\xcf\xc2?\xcfLr\xa3Z\xf6\xa5\xbf\x0f \x9e\x07\x1ec\xa5?\xc7Y\xc4\xef\xb2\xda\xa6?o\x1c-\xff\xdak\xb6\xbf$\x03\x9c\x82\xdd\xe7\xc4?)\x8d\xa7x\x8c\x06\xc9\xbf\xd2\x7f@2hP\xc6?\xe2\xd9\xf5pt\xe8\xc0\xbf\xaf,Q_\xd4d\xa8?+\x19W\xae\xef\xab\xcb\xbf\x86\x9ajN\x1d\r\xa2\xbf\xba\xed\xd3!\xce\xf4\xc6\xbf\xdc&\xa7+\xe9\x7fz\xbfP|/\xc4\xa9)\xba\xbfA1\xc7\xe4\x94\x13\xb1?\xd6FU\xdc\x9d\x1e\x98\xbfV\x9faP\xb0\xbai\xbf\x18%+X0\xbat\xbf\x9c6%K\x87\x91\x0c\xbf\x98\xb9\xbd6\xb9u\xb8\xbf\xc6X\x85\x8fj\xf2r\xbf\xe9\xd6\xb3x\x84\x9e\xc4\xbf-\xfa\x95\x8f\'\xe3\xb2\xbf\xfd\xd5a.l\xdd\xc7\xbf\x9eHp\xe8\t)\xc1\xbf\xb1"\xa3_\n\x9e\xc2\xbf9\xef\xc4\xeeA\xca\x9e\xbfY\t\xb4\xbf\xc9\xb7\x80?\xdc\xe5\x7f\x9f\xe4v\x96\xbfTk\xaa\x1c\x86\xa0z?x\x19\xafwJ\xdb\x8d\xbf\xd3\x17U\x9eq.`\xbf\xae\xda\xf1\x1e\x1f]z\xbfD?\xcbx"\x9c\x89\xbf5\x02x\x10\x7ft\x99\xbf\xd8(/\xe1\xbfa\x97\xbf\x17\xc3\xeb\xbd\x1a\xecy?7k\x021NF\x98\xbf\xf6\x9bRl\x0c\x9e\x9b?G\x88iE\x8b\x87\x8d\xbf\xbf\xa1\xf8\x1f\x9et\xa4?\xc3{\xd8\x0bK\xffZ?j\xc1\x1bG\xc8\x9b\xab?B\x86>\xcd3\xbb\x98?\x8f\xcfL\xd5K\x16\xb2\xbf\x00\x08\x94\x84\x9b\x15\xc1?5D\xbb\x0c\x11\xbf\xa8\xbf\xaa.\xe8\x89\xe9\xc0\xc0?\xa7\x87\x9e\xea4\x91\x93\xbf\x95_\x9a\xea=\xde\xbd?\xb9f\x84\x91\xd2\xe1\xa0?\x82\x88\x8d%\xa2\xb1\xbb?\xe9\x8cC\x16.f|\xbf>[AAI\xef\xbc?y\x91>V\xd8\xaa\xa9\xbf\xf2\x96\xd7,\xef\x93\xc0?\xdf\xd8r\xa7\x0f\x9c\x96\xbf}\x1fs\xed\x1e_\xc1?\r\x90TB#h\x84\xbf\xd9*\xc0n\x92\xb5\xc0?\x98SC \xe0\x8c\x95?\xe4\xb6\xfe5\xbb\xee\xbd?g\n"\xfdG\xff\xb1?\xfe\x8dDcyB\xb7?L}\xef\xa6\xe1Z\xab?\xb1\x01n,>\xd9\xbc?\xcbu(@\x08\xad\x92?7\x1b\xfe\x11\xb8+\xc0?\x9bP\xce\x05\xfep\xc2\xbf\x8b\xe6\xd3\xb1\x96\xea\x8f\xbfQ\xb0yo\xb3\x83\xb3\xbf\xbe\xffw\x06\xf2\x8a\x9e?\x0b*\xa9\xe9\xcc\xa3\x9b\xbf\x08\x15\x02\x92\xc0\xbb\xb1?\x08\\\xa9\x90]\xa6w?\xb1\x17D\x86\xe4\x94\xa6?\xad*\xd9\xf9G\t\xa5?9P\xd2Yk\xd9\xa2?\x83,\x9a\x8c\xc20\xb7?\xb7?\n\xd1\x9a2\x94?\xfdD\'(L\xc8\xc2?\x85\xfa\xeeM\xda\t\x94\xbf\\\xd8\xa63_\xe3\xba?\xc7\x8eE_\xed\x0b\xa9\xbf\xdd\xd2\xf7\xf6\xbdh\xa1?\xde0\xedB\xd1-\xae\xbf8^\xe2\xf5WO\x93\xbf3\xff\xb3h\xdfT\xa7\xbf{5dA\xbb\xad\xaf\xbf\xba\xac\xcd"\xa3\xfa\x9b\xbf\x92l\x1f\xbf\x11\x12\xc0\xbf\xfe\xaeX\xc2\xf7\x04\x9b\xbf7\xf0\x14\x88\x95\xe0\xbf\xbf*UZ\xa6\x19\xce\x94\xbf\x03\x9aq12\x85\xb0\xbf\x7f\x9e\x87\xd4\xcc\xf5\xa9?;W\xfd\xa0\xc2\x85\x9b\xbf"\xab\x01\xb7\x1e\'\x9b?\xbe\x90_5\xf5\x0b\x90?%\x90\xde\xda\xbb\x9d\x8c?\xec\xe0\xec\xdc8\r\xbf?\xc0\x82&\xd7\xbb)\x92\xbf\x9e\\\xbap8/\xb5?\xbf\x91\xbf\x17\x01x\x91\xbf\x93B\xd1\x1e\x02\xfd\xa4?u9+\xf9W\x04~\xbfW\xb6\x0b\x8f\xc0\xef\x84?\x9b\xc0\xf2\x9b?M\x88?\xce\xd6SIK\xd9\x90\xbf\x9a\xc2F\xd9\xd0\xc3\xb9\xbf\\,\xe2X\x95S\x94?"\x03l\x18\x85\xa5\x99\xbf\xaf\x9bM3n\x90\xa0?^;\x8c\x8crX\xa0?B\x8c\xe4\xa5\xf5\xda\x82?\xec0H\xf7\xcb\x7f\xa5?\x96d\x7fYT+P?\xeb\xa8\xd5\xbe.)\xa3?\xf3\x96p6{\xef\x81?\x96+\xda\xa2e\xafr?KjL\x89&\x01x?;\x8aq\x99\xd2\x17\x9c\xbf\xab11(\x03f\x8c\xbfJ\x8a\x88\x8c\x10\xb6\x9a\xbf\xd2e\xca\xdc\xb3F\x94\xbf/\x98{L\xf3o\x7f?\xa73[H\xd7\xae?\xbf/5\xa2\xf95\xe8\xa0?;\xce\xee\xfem8\x96?\xe31\xad\xac\x9d\xd8\xa6?Y\x911~>m\x95?\xc0\xc6@)\t\x8a\x94?\xc73\x17C\x1aV\x93\xbf\xdc\xb8\x16\xecE\xe3\xa9\xbfI\xc4\xa0\x97\xe7c\x9b\xbf0\\\x03LiD\xbc\xbfA\x94XQ>\xfcG\xbf+o!p\xad\x80\xb5\xbfFk,U\xde;\x85?\xf6\x07\x18p\x02\x03\x8e?Cg\xfd\x83\xc3%\x92\xbf9\x96&\x11T\xdc\xc0?\xe1\xf8Uy\xa7\xac\xaa\xbf\x82\xfa\xc1|\x88\xce\xb0\xbf2_\xa8\xcbU\x17\x9d?n\xf3%\x9dg\xe3\x8e\xbf\x9d\xcd\xe2\xf3\xa2\x9f\xa3?\xe5\xf0c!O\xd6b?\x0f\xca\xa0Z\xe4\x0c\x9e\xbfg\xfb\xe6?\xf6\x11\x9e?\xd8\x991\xff|\xb4\xc1\xbf=\x0c\xecnO\xfc\xb1?\x15\xa5\xc7b\xe90\xc1\xbfbG\xde\xad\xa5\xae\xbf\xbf\xcb~\xa4\xcd\xd6\xa5\xa7\xbfa4\xd7\x8b\x05r\xb3\xbfos\xd0:c\xd6\x8e?x\x8b\xf6\xe0\xd8\xec\xa4\xbf\xe0\xc3\xf0D\xfd:o\xbfO\xe4\xac\xc7\xf0\x13p?\x9dR\xcc\xb8KT\xb7\xbf\xde[\x0c\x8a\x9f/\xb6?\xa8\x92Q\x87Cq\xa9\xbf\xba]\x9bX\x88Z\x97?\x05\xd0=\xe0\xcd\xee\x9b?zde3\xeb8\x96?\xf0\xf6\xc8s\x07O\xbc?H aw\xb8\xf2\x92?\xc2\x15mHs\x98\xc8?\xdb\xf0\xcf\x8e@\x9e\x87?t\xed\x00\xddc\xe1\xb1\xbfr\xa1\x8foD\xd0\xbe?\x10ftu\x18y\xad\xbf\xa7\x9ea{\xd6;\xa8?\xb0\xcad<\x95\\\x86\xbf\'\x9a\xeb\x104i\x8f\xbf\x9fv\xb2\xfb\xce\xd0\xa0\xbf\x98M\xea\x12\x03\xa3\xb1\xbfK\xeaQ~\xdf\xb0\x9c\xbf\xe5\x82\x8e\xdc\x07w\xc0\xbf_\xb7\xebT\xa0\x93\x9b?K\xe6\xb7\xdb\x1a3\xa2?\xdaX\x87\xe4$\xc2\xd4?\xf1w*\xa9.$\xa1?\x0f \x0cF\x19\x81\xd2?\r)2\xb4\x9b\xaa\xb1\xbf\xdc_V\xb0\xe0\xcf\xc4\xbfT\xae,\x18D\x8e\xb6\xbf1\x91\x94h]\xb3\xc9\xbf\x912!\xf0\\\x8c\xa5\xbf2$\xa7\x1f\xf6\'\xc5\xbf\x9f\xe7\x19\x80Xq\xb0?@\xeb\x8d\x10\xb3\xe3\xc3\xbf\x0e\xf9\xcf\xad\xc8\xb9\xba?\x11\xc0u]q\xb2\xd2?\x17&\xb7\x12r-\xba?[\r\xbf\x8a\xecW\xd5?\xafb\x1b\x1a\xacC)\xbf\xae\x11JQw_\xa4?\xd1\xee\xcet\xb9\xca\x82\xbfe_\xe9\xa3\xbc_\xc2\xbf\xbd\xeb\xff\x7f\x8e\xa0\xbf\xe3H\xc2\xfd\xff\x1d\xc2?\xa7\x89kl\xa2\x90\x9c\xbf0\xc5\xf0\x91Nub?\xa2\xe3A\xe9up\x92?S\xde\xe3\xc7\xe6k\xb9\xbf\x97\x8d\x1frf\x93\x9a?\x05j\x18\xb2U\xa4\x85\xbf|\x1a\xdd\xea\xcc\xeb\xa4?\xed\x14tsC\xef\xb5?\x10\xfaC\x03\x8fV\x96?\xbd\xb8\xbb\xde]\x03\x92?\xd5\x9f(j}W\xae?<\xa8\xf9\xc8\x14\x12\xa6\xbfF"eV?\x82\x97?\xc5\xa2<\xf4\xae\x9c\x99?\'\xbc\x88]\xf4%\x7f\xbf\x05.\xaa\xdfU\x9d\xad?\x07\x05\x84\x06N\x98\x8f\xbf\xa5\x98#\xacL\xbe\x9a\xbf\xf6\x0ef\xfaE\xcc\xa9\xbf\xdf\x9e%\xfc\x90_\xbb\xbf&\xd7\x84\xb1!0\xb2\xbf\xbd+84\x17\x8e\x8b\xbf>,F\x00\xe7h\x9d\xbfvA\xc2G\xcb\xb6\xbc?Q6R\xda\xdb\x0f\xa6\xbfq\xbc\xe4\x91\xc7\xaa\xbb\xbf\x11\x9f\x8f\xd2\x90\x10\x91\xbf\xfe\xb5\'TL\xda\x91\xbfI\xbb\xd0\x170\xb3\x92\xbf4y\x12\x0e-\x8d\xb4?\xe1^\x04\xdc\xb7:\xa3?\xac\xf0\x84\x8c\xc6\xe9\x90\xbfAg \xc1\xcfG\xab?\xd3\xa9Q\xe4\xff\xbe\xb2?\x84\x08\x19\xbf"#\xa7?\x9a\xa9\xf4\xa3\t\x8a\x96\xbf\x81\xb1\xb4\x89G\x93|?&}!H\x8eu\xbc\xbf\x80&\xa7\xb0D\x1d\xb9?\x07N)\xa59\xb0\xc5?B\x92\xcc\'\xdd\xd7\xa2?\r\rj\xaf\xe9\xad\xbe?>\xdd\x8fZB\x99\x95\xbf\xbf0\xd9-:\xef\x9a?\xe7\xc4\nF\xe4\x15\xa3\xbf\xbc\xc7\xc5\xa0\xa6\x0f\xbd\xbfv\xd0\xeeeEf\x8b\xbfS\x87\xf2\xa7E{\xc7\xbf\x11S\x9a\xd0\x8e0~\xbf\x10\na\xe2\x11\x04\xbf\xbf&7\xec/\xc1\xcf\x91?\xc2\xcfn\xadx\x15\x9d?\x0c\xd99\xed\xdd0\x99?\xdf\td\xc6\xbbB\xc5?\xbf\x86\xa0\x19?\xd7V?\x8e\xba1\x9e\xa0\x7f\xca?\xa7\x1b}p\xc9\xf1x\xbf1i\x94\xdd]\xb7\xc2? \xa8)d\x1f\xebl?V\xfd\xa8\x02\xce?\x80\xbfK\x05\xc1\xccq^\x96?\xc4q/[B\x11\xc0\xbf2\x8cK:`o\x87?W8\x80P\xa3l\xc6\xbfv\xf6\xab\x11\xd9\xc0o\xbfh\x11\x92\xf3\xe0\xd4\xc0\xbf1Y\xdc\xfaN|\x84\xbf\xef&\x80\xc1\xb2\x16w\xbf\xd8\x93\x83cR\x8f\xa5\xbfC\xbd9[[\x9f\xbf?\xf2\x19I\x8f0l\xb5\xbf\xc7{[\xf9\xc0\xa6\xcb?\xcd\xd6\x19-(M\xd4?\xd7\x9cT\x14\x0eW\x89\xbf?[\xaa\x9e\xd6\x00\xc7?\xd7\x9f\xcf\x1f9~\xa3\xbf\x98\xcd\x9c\x9bY^\xa5?&s?\xa3\xf7 \x8f\xbf\x0b~\xc2\xb6\x8a\xcb\xa2\xbf\xcd\x94?\t\x0c\xf4\x95?\xeb\x06\xdb~\xb3\xd8\xbc\xbf]>\x8d\x1c\x98\x04\xb1?\x1a\xd0 i4f\xa2\xbf\xa3(\xb0\xca\x94\x84\xa8?\x00\xb5\x15\xb0\xa7\x7fx?<\x85\xbc]:\xedi?\xea6\xf0U\x8c\x9e\x93? \xc3\xb1\x08\x89+\xb2\xbf\x9fNMy\xba>\xb2\xbf\xca\xd4~\xf5\xb0\xf9\xc1\xbf^}\xf1\x8a\x98\xc9\xd0\xbf\x7fyA\xb3\xbe\xbd\xb1\xbfi@\x0b\xfdFc\xa5?\x80\x05\xeebN\xf6\xb0?\x98\t\xa5\x9a\x912\x94?L\x89\xf3\x97\x15b\xb2?p\xc4\\\x80zVy\xbf\x926\x95\xc1!L\xb3?=E\x1c)gc\x9b\xbf\xcb\xd7\xfc\tt\x05\xb3?\x16$,o\xdc \xa2\xbf\x95!K\x07\xa4\x87\xba\xbf\xfb2\x89\xad\x87\x01\xa8\xbfY\xed\x9c\xb4h\x86\xb5\xbf\x8al\xda\xda\x8e\xad\x98\xbfg\x9f\x9cUy\x18\xb5\xbf1\xe2\xb1\xc6#q\x92?\x13\xf9\xf4-;\xc9\xb0\xbf_\x93L\xa0\xe8\xfc\xb4?\x02\x155\xb6yR\xa8\xbf\xfb\x9b\xdb\xfa\xeaC\xb1\xbfZ\x07\'\x8e\x16\x06\xaa\xbf\xef@HC\x01\xfd\xb2\xbf\xc5`\x11\x94\x16^\x92\xbf%\x00\xb2\xfa&\t\xb3\xbf\x1d\xb4\xad\x06"sd?\x00)\x07\xdfSZ\xa9\xbfU\x1e\xfd\x02\x86>\x93\xbf\xdb]BrG[\xae\xbf]\x04\x92+Xl\x9b\xbf=\x87\x90\'\xe1?\xaf\xbf+\x05\x01\xfd\x03\x93\xa9\xbf\xf0k\xdd-\xce\xb2\xb0? \xf5$A+p\xa0\xbf\x07\xd4\xe59\xf1\xc2\xa3?m\xa5j\x07\x02\x96\x92?\x92\xdb\x8a\x84\x87\xa5\xa2?\xbd.\x98\x03B\x1f\xa9?1\xdb\x87\xa2\xac\xb3\xab?n\xa5e\xcd\x1d\x06\xa3?nJu\xc9\x01\x96\xb2?scg+\xd0\x19\x9d?\xbc\xa5\xad\xfcl\x84\xb3?f\x00\x03G\xcb\xa4e\xbf\xe1\x8b\xf4\xc7\x0bk\xca\xbfY\x81\xf7\x1e\xe9\xf2\xa0\xbf\x8d\xa9`G\x1b&\xbd\xbf{@\xc5\xa7mu\xad?jtJw\xaf\xca\xae\xbf\x85\xf9_A\xdf\xaa\xbb?\x1a&$\xe4\x17K\x92\xbf:\xb9\xba\x80\x8eL\xa6?/\xef)\x02\x8d.\x94?\xb8g\xdd\xd8\x11\x95r?\xba\x1eI\xaf\x8d\xa1\xb7?Y\x07\\\xc7\xdc\xd8\x8f?\xe6\x95Q\x89E\xdf\xbd?j\xb1N\x13R\xf6\xae?~A>\xfb\x8d\x03\xc7?\xc5\x04\x17\xe3\x1c\n\xaa\xbf?Q4\x90\xa7P\xbb?\x06\x16\xa3\x02\x87i\xba\xbfq\xf6\x8exh\x16\xa5?n\xb0J<\xa3\xca\xad\xbf\x99\x8a9%\xed\x07\x8b\xbfu\n\xe1\xa3!m~\xbf\xf2\xf7\tt\x08I\xba\xbf}\x08\x06\x9a\x97\xcf\x9b\xbf!\x1c\xecM\xc30\xc4\xbf#\'\x9eX\x17\x91\xa2\xbf\xc5#\xbcX:\x97\x95?+\xedpz\x91\x9c\xb0?\xa0Cn\xb6\xb8\xe0\xb1?l\xf0\xfeW\n\xf4\x91?RP\x11\xa3yx\xbc?\xd8]\xbe+\xcf$\x9a\xbf\x1f\xc2\xd8xc\x0c\xbb?b\x17\xf4\x1bz\xba\xa9?A$\x0e\xe0\xc0\xe7\x90\xbf1\x0f\xcaJ\xae\xee\xb0\xbf\xaa\xce\x19J\xda*\xb2\xbf\xa6QIs\xda\xcd\x93\xbf$\x94\x9d\x17\xb2\x97\xbe\xbf]\x90\x9c=\xa6\x96\xa0?\x10\xfe\x9e\x90\x18\xb1\xa4\xbf\xb1\x17pc0\xc9h\xbfF\xddT\xa4\xbf\x8c\x92\xbf\xf7\x809FX\x1a\xac\xbf\xcdH\xc8/X\xa7\x85?\xb9N\xe5\xf3\x93:\xba\xbf"#\x1f\x9d\x14\x99\xa7?\xe8\t\x95\xd5\x92o\xb1\xbf\xf7\xcc\x98\xc1\xc7\x03\xab?\x85\x85o\xd2\xf7i\x86\xbf\xd0\xac\xf4\xf0]\x9b\x97?S\x9a\xe13\x97Gs\xbf\xc6\x92]y-B\xa8?V\xaa]M\xc0*\xa0\xbf\xa4\xf9F\t\x13\x10\x97?lx\x07\xef\xab?\x9a\xbf\xb6^[H\xb3\xcfs?\xa1f\xaa\xe1fE\xa9?\xa8\xcc\xd1\xe6U\x96\x87\xbfn\xb13\x98\xe8\xa4\xb6?\rU\xc3\xba\x98\xb6\xa4\xbfz\xe6E\xe6\xc0@\xb2??\x8ba\x85?\xdc\xad\xbf\x95(c\xafY:\xa2\xbf;X\xb8y\x112\xb3\xbf\x94\xd4\x0b\x85)\xff\xc0\xbf\x9c\x9aq\x9c\x9b\x7f\x97\xbf\xde0\xe8>+\x1e\xc1\xbfz\xb1\x84\xba8]\x99?P\rg\xb5\xf5\xbb\xb1\xbf\xcb\x979N\x14\xf1\x9e?\xf5\xfd~\x19\x89\xaa\x8a?\xc6n\xf6\r\xec\xe9\xaa?$\'\x84Lo\xf4\xb3?\xc9m\xcaTr\x13\xb6?J8\x98C\xa9\xc3\xd0?\xe5~\x87\x8a\x8e\xfds?\xdb\xea@[u\xf8\xb2?i\x1fyn\xc6J\xa4\xbf\xea\xbf2\xccI\xf6\xa1\xbf\x88\x81\x8e\xcd\xdaY\x88\xbfC\x91\x9ev%\x9b\xbe\xbf\xccA.\xa9\xb1\xd1\xb4?\x8b;Xj,G\xcb\xbf\xcb\xb9\xf1\xce\x05\x0e\xcb?\xc8\xf8\x87\xd9FQ\xc2\xbfa\xb4V\xe3u\xfe\x94?E\xfb\x80\xf5\x06.\xb8\xbf\xb3\x03\xc8%\x98w\xb6\xbf\xc9o\x01\xebS4\x8b?N\xe8Z\x19\x9f\x0b\xbf\xbf\x97\xa8\xdd\xe1R\xc5\xbf??B>\xf7\xff\xe5\xb0\xbf\xdb=8\xf1Ie\xc9?\xfeu\xf5\x9d[\xf4\xb2\xbf\x98\xc2\xe1\x9a\xaej\x86\xbf\xf5q\n\x0fW\x03\x9b\xbf*\xe8\x93_\x93\xcf\x94\xbfR\x81\xb2\x1e\x80x\x9e?\x8b\x88\xd2~\x11[\x9f\xbf\x1fY\xb9s\x8a\xf5\xb1?\xf7\xd1\xdf\xa1\x05\x81\xa5\xbf\xf3\xfb\xe3!9\xac\xba\xbfK\x04\x86qd\xf7\xb6?\xbb\x19\x04\xa2\xfa\xee\x84\xbfG\x95\xc6\xcc\xde\xcc\xa9?\xcbn\xa8\x1b\xb8\x98\x9d?\xec\x81\xd5(|\xe0\xa3?94^\xf1\xfe\x96\x93?\xac\xb5\n\x93Vq\xaf?\xe4\x1aoY\x81(\xa4\xbf\xd0\x925\\\x03$\xb1?:\xae\xf9\x98\'\xdfW?7s\xea\xc5&\xe2\xb7?\x10\x01\x9ccs\xe1\xc0\xbf\\)\x94\xfeu\xa4\x95?\xf0\xea\xb1\x87\x0e8\xc1\xbf\xc0~\t\xbb\x0f\x1a\x90?\xb4\xaf\x1a\x87\x97\xc8i?fi/\xea\xfc\xd4\xa1\xbf\x00\xaf\x94p\x85\xc3\xb0?\x81\xe5,\x07\x88\xf4J\xbf\xe0 `\xe3W\x85\xb0?\x93w\xcf\xd3\xb1\x8a\x90?x\xc3\xc3\x14o\x86\xb2?\xa3\xb1Y\xc9-\xa5\x80\xbf\xb3.>\xa6\xaa\x14\xb6\xbff\x8e\xbc\xcb\x7f\x14\x8e\xbf$\x83\x8e\x18c\xfd\xb9\xbf\x85\x1a\x84:\xc4\xaa|\xbf\x82\xad\xbb\x95G-\x8e?%\xe8,\x03d\x11\x91\xbf\xb1Hb\xad\xffw\xb9?\x88\xa7\xde\x8b~\xec\x82\xbf\xd3L\x9f\x88\x0e\xdc\xb9?\xd6\xc5\\\xb4\xc7\xf1\x90\xbfy\xb4\xa4{%\xa0r?\x7fO\xbd}\x1e\xfe\xcd?\xa28\xf1\xf5\xf9\x9d\x91\xbf\xd3\xc2\x9e\xa3`\x92\x86\xbf\x85\xcdc\x9f\x9f\x00\xa4?\xf8\xae\x04\x08;n\xc2\xbf5\xdfMe\x7f\x1f\xa6?E\x01\xb4\xbcQ\x9e\xb5\xbf\xf3\x122\xa8ZU\xb2?P\xf8!\x1e\x0e\x08\x9b\xbf~\xe4\x1dX\x8a\x00\xb2?H\x96d\xfdA\x88\xb3?\x9bn\xa9]cJ\xc0?\x7f\xf6\xf1@\xd7,\xc0?\x0e\xe1\xa8)*\xbf\x9b?\xe0\x98$\x86\xa6\x03\xb8?]\xcbZ\x8c\xc5l\xa1\xbf%\xcdUG\xd14k\xbf\x08\x82fWV\xc1\xb4\xbf\x16l\x7f\xc7\xb7x\xb0\xbf\x02N \xf0)N\xc1\xbf\n\x9f\x0b\x1d\xa5p\xbe\xbf\x19%m\x12\xfbE\xc4\xbf\x19\xae\xff)\x7f|\x94?\xc6I\xc1\xc8\xe4Q\x92\xbf|y\xc2\xe4\xa9\x08\xd0?\x01\t\x8f\xc1\x01W\xc2\xbfn\xcc\xa8\x95\xb5\xd9\xc0\xbfx\xda?\x16\xd5\xeb\xbf\xbf\xe0\xd6\xb9\xe3D\xe9\xb4\xbf!\xf6\xdf\x11z]\xb6\xbf\x9f\x9c\xaa\x06(\'\xa2\xbf\xc3yM\xd2\xe13\xb7?\xbbo\xe6UN>\xc2?\x8dO\xf3\xf7\xa3\xb8\xc4?\xa4\x0b\x16\xd3.8l\xbf3\xf1\x95\xaa9\xae\xbd?\xe7E\x87\'&\x9b\xad\xbfK\xeb\x9b\xd5\xd6\xb7\xae?m%K\xd6\x98\xf6\xbd\xbf]\xe7\xad\x83\xc1\xe2\xb3?nh\xc1\x7f\n8\x86?q\x8b\xd7b\xf3r\xa8?\x10\x02\xdba<\x8a\xa2?L8TN@\xa8\x81?;\xa5c\xe3v\x14\xb1?6k\xf7\x19\x97`\xa1\xbf\xb0\xf3\x06\xd6\xa8\xf6\xb2?\xc4\x1f\x1d\xe9\xbd\xb2\xa6\xbf$I\xd5\xed$Y\xa7?\xb7\xb6\xb2B|\x9a\xa4\xbfx\xdb\xc3\xb7*\xfd\x95\xbfz"\xc1\xc7\x91\x97\x86\xbf\x8ayJ\xf3\x96\xfc\xb5\xbf+;\x80Z\xf4\x85\x8a\xbf\x04o)\xb4!\x8f\xa3\xbfrc^\xb5\xbd\xf4\x9f\xbf\xa8\x80\x80)\xde\xe9\xb0?`a\xd5\x98\'\xa9\x89\xbf&\xea\xf2\x94\xcb\xd8\xb9?\xc9d\xc88\xb9\x1c\xa0?\x97=\x9f\xfe\x0f\x1e\xa8?\x19\xc4\x95\x11]3\xa0?{\x061\x00\xccd\xa7\xbfY\x95)\x8d[\xbf\xac?k=\xa9\x94\xc3\xfd\xb0\xbf\xf3\xf9R~\xed\x9e\xb6?c\xbb\x19\xa0\x9ca\x9c?\x86\x97p\xa4s*\xa7?\xe8\xe2\x02\xc9\xf91\xb7?k\xed\xbe\xc0\xe61\xa8\xbf\xd9\xb8q\x9fa\x13\xb6?jn!PV\xb5\xbe\xbf\xcd+\x975(\x84\xa8?n\tYL?f\xbf?\x9cf\x1a\x05q\xd9\xc5\xbf\\\x0f\x9fi\xe8\xe6\xbe\xbf\xb9%zD\x85\x9a\xc2\xbf}\xff0\x80K\xc2\xc2\xbf+\x97\x08\xbb%\x80s?\x9bX) \xf08\x81\xbf\xc0VW\x1bn\xee\xbf?\x01Jm\x0bW\x88\xcb?\xf9\xcf\t\x0f-\x00\xc5?8\xd44\xc2\xb9\xb7\xc6?\xd2\xbd\xad\xe9\xd6\xa9\xcb?\x84\x00\x81\x0f\x1a\x1c\x96?\x1c7s\xbe\xc2c\xc0?\xed\xcf\x1e[`\xae\xb5\xbf\xa0}\xda!\x04\xfe\xad?\xefA\xdf(\xf6m\xbe\xbf\xbb\x81\x06Bz\x98\x97\xbfm\x95Sk\xab9\xa1\xbf\xec\xabL\xc5\xed\xd4\xc7\xbft{\xb1\xd1\xbf\xfe\xb3\xbf\x98\t\xa8&q8\x87?\xf5M!,\xdd\x80h\xbf@!\xb4\xa1\xd8\x1c\x94?\xd4i\xb3X\xafa\xb3?et\xad\xea:g\xa5?m2\xc0\xe4\xaa\t\xc1?\x9a\xb9\x9aA\xc3\xc0\xb0?|\xf2\xe4\xb5\xaf\x9c\xb5\xbf<\xe6\xce\x86\x983\xa7\xbf.\x01\x0b^w\x0c\x82\xbf\xa6\xb2/\xfe\xc2\x98\xac\xbf\x8d=\\uYZ\x95?\xd3\xe4\xc6\x9a\x9aJ\xa9\xbf\xb8\xd9\x90x\x04|\x95\xbf\x8e\xb4\xd24|\xdd\xaf\xbf\x805\xf8&=\xcf\xb7\xbf\xd4\x19\x18\xe89\xe3\xba\xbf\x88\x89\xfe\x19\xae4y\xbf\xc8\x8bD\xd4C<\x9b?cN\x13o*X\xb2\xbf7\xceb\xe3xas\xbf\xaf\x05\xa3\xff\xb4E\xab\xbf\xd7~\xdeQ\xc2\xc5\x9e\xbf\rf\x82\xf7\xfc:\x80?D\xb09\xcf\xd6.\xb2\xbfT\xa7\x02\xfb\xca\xfe\xa2?X_\x1cZN\xaa\x97\xbf=\x9c\xf5X{\xf8\xa2?\xac\xb4\xb7\xcb\x0e\xefr?\xed\x1df`\xe3\xb1\x9d?\xd5,{^?\xa5\x9a?p\xef\xac\xd1\x8eF\xaa\xbfj\n\x1f\x1d\x9e\x8a\x8b\xbf~\xf9(\xaf\xb5\xd6\xa3\xbfi\xd4\x9dX8\x16\xb1\xbf\x10V\x0b\xf0O\xfa\xa9?\r\'\xf1_}\x9c\xbb?\xe8\xa14\x1e\xde+\xcf\xbf\xf9\x89\x07*\x8a~\xba\xbfs9\xc6&\xba\xf8h?M\xb6\x16\x96\x9ei\xb7\xbf\x07\xd0\xc5\x9a\x9f\xdc\xc0?\xe2T\xb6\xcd\x93\x8a\xb1\xbf\x17d=\xfa[\xfd\x90?\x1c\x7f\xc2>X<\xb2\xbf\x80\xc647\x00\x02\xb1\xbf\xf2\x04\xd0\xfej\xf2\xb0\xbf\x87\xbe\x88 \x92\xdb\xb9\xbf\x15\\\x10I\xb0\xad\x9f?j\x06#\xc4q\xee\xa6\xbfF\xa4\xb6\t\xf5\x18\xc0\xbfD\xfe\xb5\xa0V\x1b\x93\xbf\xf0\x81\xcaU\xc8\xd6\xc0\xbf\x04\x1c\xda! \r\xae?1w\x1c\xbeQ1\xc1\xbfmb\x80Y\xc7\xa0\xc4?\xc6\x9bb\x85\xd1&\xb2?Q[\xfa-B\xc6\xce\xbf1\x0b\xe0\xd0o\xb9\xb8?yE\x02%\x90\x17\xc3?\x86CS\xae*Z\xc0?\xfcU$P\xe0\xf7\xa1?.\xda\xb8\xd63B\xc0?\xa5}\x13ay\xac\xaa\xbf\x1e4\x82F]3\xb0\xbf4\xb9\xd1D\xe7\xd8\xb8\xbf7\x15\xd1r\x9a\r\x9f\xbf\xf3\x1cK#\x88\x92\xb7\xbf\xf6L\x8c\x17\xe49\x8a?\xddz5\xdb\xd4\xda\xa6\xbf\t\x9a\xa6\xa96\xea\x95?\xe4\xdehn\x12\xc1\xa4?\xef\xe0\x19k\xe4tH?w\x12\x16\xb3d~\xc1?\t\x8cW\xbcI\xe4\xac\xbf\xd5\xb0!\x11\xd7u\xc5?\x16F\xe5\xcei\xd6\xb4\xbfa\xcb\x9bY\x86`\xb9?>\xc81\xeb\xa4\xe1\xa9\xbf\xee\x1f\x91P8\xae\xac\xbf\x8e\x18\xc3}o\x03}?\xb0\xad\xee\xe8\xbd\xc5\xc1\xbf\x9aTz\'`a\xb1?\x86G\x9bTf2\xbc\xbf\x05\x8d\xb9-\xc9\x8a\xb8?\xe3\xd4t\xec\x03\xa1\x9a?@t\x1b[\x8a?\xb4?\xc3>\xff\x00\']\xc2?\xc3\x1e1\x7fX\xbf\x8e\xbf\xfa@E\xe7@\xcc\xc7?\xbe\xe5\x1f\r\xda7\xb1\xbf\xfc\x93\xccd\x83\xf0\xb7?\x00\x93\xf6h\x85E\xb2\xbf3\xfa\x7fHa\xe6\x9a\xbf\xfd\x01\x8d`\x7f\n\x8e?\xbb3\x06O\x80\xa0\xb7\xbfSC+<\xfe\t\xc0?\x92\xb0\x02Dk\xc9\xbf\xbf\xd5\xbf\xff\xb1\x07\xc5\xcc?\x1ez)j\xe2i\x99?x7\x9c\xcfQe\xc5?\xb1X\r\x0e\x97?>\x8d.Z\xe0\xbaQ?R\x98\x04\xd0pVp?!j/\xb8G\x93\x90\xbf\xe3pn\'\xbf\x04D\xbf(c\x83\'\x82\xf7\x98\xbf\xa1\x178\x03m+\x8c?\xc4\xcc\xc2#\xed?\x95\xbf\xf9 \x8b\xb0\x8b!\x9c?\xb1\xb8yIp\xb5y\xbf\xe1\xcc\x15\xcb\'\xa4\x90?n\x05\x89\xc7\x1e\xc5\xc4\xbf\n#\xd3\xe2\xde\x80\x92\xbfgc\xe5\x0f\xab\xd3\xc0\xbf\x85oF\xa4\x9a\x9c\xb3\xbf4\xd3\xb3\xa0F{\xbd\xbf\x08\xac\xa3Uo\xe9\xbb\xbf\x05m(\xdf\xb4\xed\xb8\xbf\xfd\xaf\x8b\x88Zk\xab\xbf\x83\x1e\xfe\xbf3\xe2\xc1\xbf\x95q\x1f<\x8ah\x91\xbfm\xc4\x02tF3\xc4\xbf\xec\x0c\xf9*\xces\xb7?\xa4\x119\xbf\xa6T\xbe\xbf\xb7\xbb\xf4@\xe9,\xaf?\xaf\x1bi\xf8nZ\xbc\xbf!P\xb0y\x0f\xcbh?\x9f\xc8ZSl\x97\xb7\xbfq\x86\x12\x0b\xb6\xb3\x86\xbfdT\x11\xf0\x15>\xb7\xbf\xdb\x07j\xdaz\x82\xa3?\x93\x13\x00\xbd\xef`\xbc\xbf\xfe\xfb\xe0\xb9\x7fA\xb1?J\xf0\x04~9\xb0\xc0\xbf~Iv\xdd\x16\xe8\x8f?\x02HF\x11\x17\x12\xb9?\xdb\x16q\x85\xa1\xcet?\x95\xd2\xd7OS\xb9\x8c?\xfbqJT\x0f\x88x?\xa4S\x03q\x1a\x8f\xa5\xbf\x1e\xf4\xc5Su\xe0S\xbf\x06\xefXT\tk\xa2\xbf\xb2\x92f\x8d>d\x8e?\xac\xa0^\xe3\x0f\x10\xa3\xbf\xea\xa5U\xf7\xbd}\x90?\xdc@\x8a\n\xb8\xa3\x93?\x8ae\x96\xc4\xfc^\x87\xbf\x80]\xbdT\xce.\xb7?\x19X\xef\xf2\xdc\n\x90?\x15\xfd^>\xf1\x01\xa0?6\xeb\xfbZ\x1f\xf0T\xbf\xe6\xac\x85\x95\xcf\xaf\xa7\xbf\x84D&\x89|\xc9\x94\xbf\xbf\xc7\x16^\'\xed\xa5\xbf\x89\xc6\x7f\x84\x82\x8a\x9e\xbfj6\xe0\x8e\xbdh\xa8\xbf\x0b\x8bk(k{\x9f\xbf\xdd\xeec\xce\xebw\x9b?\xd3,\xabe\x11\x10j?\xc8\x1aQZ\xa0G\xbc?\xd1\xb7\x8fyr7\x9b\xbf\x9e\x03\xdf\xfb\xf1\xf1\xab\xbf\xb9\x86+\xee\x83\xec\x8f\xbfO\xea\x12\x9b\xdc\x81\xa6\xbf\xd9\x8b\x8e+R\xcf\x80\xbf\x95\xc7\x0e\xe1{1\xa8\xbf\x06\xcd`\x12h?\x86\xbf\x99\x1f\x94Of \xbb?g\xa0(#\x98\x13\xa3?\x1e\x90\xd1qDI\xa1\xbf\xd9*$\x0eS\xf9\x95?\xda<\xe45Sq\x9f\xbf\xa1\xb7\xcd\x05a+w?\xa4\x1c\x1f\xc9\xe1\x0e\xa4\xbf' +p140 +tp141 +bsg27 +g12 +(g13 +(I0 +tp142 +g15 +tp143 +Rp144 +(I1 +(I136 +tp145 +g22 +I00 +S'\xea\xad\xc1\xb0\xf7(C\xc0P\xc6Q\xab4SR\xc0\x83\x92"\xf8\x7f\xf82\xc0\xd6\x1fy,21R\xc0\xb4\xe7a\r\x9a+\xd0?@\xbe\xfd\xa5\xaf\xa7Q\xc0Z\xef\x83>\x12\x143@\xb9)`\x99\x04\xa5P\xc0\x1bJ\x9bo\x91DB@\xf81\xcc\xd2\xfc\x7fM\xc0Fo\x91~}\xd4I@\xa1\x1f\xdf\r@\xb9G\xc0\xfe\xb71\x16\xaa\x14P@b8Z\x08-\xaa@\xc0\xa5\xcd\xd3gN\x9eR@Fc\x96\xfdN\xc41\xc0\r\x03F\x8b\xb9^S@\x01F\x99\x9e\xf7\x84\xb5\xbfU\x08l\xb0\x99\xa0R@\xe3\xf7.E\xd3\x8c1@\xfa\x9aT\xa2\x1e\x1bP@\xf7od\x8b\x9e\x9c@@R\x0bV\x9b\xb6\xe9I@\xb1\xd9Q\x7f\x0b\xbbG@\xac\xcc\x15\x15\xc9XB@\xb6\xf9-\x8b\x99\x8fM@\x97e1\xff\x8f03@\x1d<\xdd2:\xafP@5\x93wfa\xcf\xd1?\xa6\xd8\xd7z\xf1\xb6Q@5\xeeU\xa4\xf5\x103\xc0\x02\x88\xa5C\x0e?R@\x0c\xc0+?E9C\xc0\xdccz\xbb\x86[R@\xb0\xd5\xdfBO4J\xc0\x93y\xbc\x99\xf2\x9dM\xc0\xb5u\xd9\xa4\xd7\x9cN\xc0N\xd0\xdc2|AI\xc0\xaf*\xb8!\xb7\xebO\xc0!\xbd?w\xa6\x0eC\xc0h\xa3\xf0:\xd9\xe8N\xc0\x9a\xe1\x0b=\xa6Q9\xc0\x88\xbe\x82\xd9d\x1dL\xc0\x0bR(\xde\xd0\xba*\xc0\xac\xfad.9#L\xc0\x15\xa9\xbb\xf8\xa5\x0f*@/K\xf4\x1f\xfb\xeeN\xc0!}=D\x1d\x069@\xbeg_\xacj\xf2O\xc0\x07\x04\xf8~c\xf1B@"\xa9{\xd7\xc4\x9eN\xc0|\x0e\xeb\xfd\xd3&I@\x99\xc9!\xb9z,J\xc0n\xf9\xcd\x13$\x87M@\xf8=\xb83\x82}D\xc0\xa4S\x00i\xb9\xad\xca\xbf\x93\'\xd5\x9e P=\xc0\x9d\xb80\xb6\'E\xcd\xbf\xf7\xe2\xb9\x00\xab\xbd1\xc0\xd7y\xe6\x8d\xd07\xd0\xbf7\xbc]\xf4\xacG\x17\xc0h\xda\xd9\x1f4\xb6\xd1\xbf\xd1\xe38\x01\x8c \x02@a\x13C\x913\xae/\xc0\xcb\xcd\x18\x8e\xfe\xdb\x12@*W2E\x99\x91 \xc0|\xe0H\xf2\x9dJ\x1b@:\xc0\xadu\xc3\xc9\xc0\xbf\x8d\x9af\xde\xfd\xaf\x12@~\x0cuR\xff\x06 @\x04\xfeI\xe7r\x95\x01@\xf1z\x9ff\x1c\x1d/@\x9e\xf5\xf0\xab\x16AC\xc0\xc6\x80K\xc7C\x84F\xc07\x15?\xbbb\xaeE\xc0w{\xc1\xdd\x1c\xbbB\xc0t\x1c\x13\x0bJ\x9dE\xc0E\xa3\x8d\xd6\x1aX<\xc0\xa0\xd5D/\x93?B\xc0\x02x\x1dJ&U4\xc0\xf4\x17\xae\x7f\xb3cA\xc0[ \xf9\xfd\xcd\xe6<\xc0+\xb2O\xffiuA\xc0\xd1;\x11{\xc8\xfbB\xc0\xc3O\xe6*\xddCB\xc0\xb1\xb99B:#4@\xc0\xbd$0\x96\xa1E\xc0)=\xf4\x9c\xd0!<@\x0b}\xb1\xbd@\xb2E\xc01O\x86\xe3\x9e\x9fB@\x17F\xe1\xae|CC\xc0\xf2\xac\xf9\xaf\x15mF@\xf0\x9d\x1cn\xf6yA\xc0\x85/\xf8\xde\xdf\xe7B@l\xdd\x1e\xf8\xd0gA\xc0J\xf4\x95C\x00\xbb<@\xeb\x8f\x81\xb9\xa5\xd2>@\xd67w\xd6\x1f\x96;\xc0c9\x89\x11\xd2\xc3:@\xb1\xf9\xf9\x93WW1\xc0\xb3\x8e\xd9f\xf8\x938@;\xca\n\x1a\\\x0f\x1c\xc0\xb4\x05\xbf\xbcs[:@P\x8f\x91\xf8h\x0b\xc2?\x920\x85\xdf\xe9\x888@5\x90@\x82\xd5[?b\xf0;@\x1a\xb3\xb9\xfb8RD@as1\xc1\xc4\x0f2@b\xca\xb7\xa0\x9e{F@\xa2\x8f\x04\x90\x93\x00 @JK_\x1c\xa9\xe5F@\xb1\xb0WG\xef\xd0\xc7?@\xd8~\x04\xfe\x80F@\xb3\xa9X7}m\x1e\xc0\xe4(?e&^D@]\xbf\x85\xb1\xc4\xa21\xc0\x86\xf9\x87\x1b ^?@A\x8cy\xbd\x0cY7\xc0\xed\x9c4\x8a\n\x9e>@\xfb]\xab\x1b\xf1i\x1c\xc0\x95\x82>\xd8)]?@\xb1E!\xd1l\x82\xc4?\xfe\x96L\xf0\xfb\x92>@L\xf5\xa3t\xc3\xc7\x1d@\x9c\x88\xd5\x02\x95K?@c\xddW\xc6-\xb17@\x0f\xb6\xf3\xfd\xd8\xe5A@H\x99\xd7z\xf1`\x1e@e\xd5\xf4\xaa]XB@\xf3\xcb\xe7i\r\x16\xc6?(\xe6\xc5\x8e\xb7\xe9A@HD\xcfQ_\xec\x1c\xc0' +p146 +tp147 +bsS'n_samples' +p148 +I3148 +sS'_n_active_components' +p149 +I30 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_jaw_10 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_jaw_10 new file mode 100644 index 0000000000000000000000000000000000000000..e06b45e42132146f2658b35a766f02e00d4ebd57 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_jaw_10 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I34 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xb0\x1c\xd8\xce6\x04\xcd\xbf)\x8c\xe0\xb0\xf2\xad\xd0\xbf\xe2t\xf66\xaeG\xc4\xbfq\x03gNO\x93\xd0\xbf\xe0\xb5l\x8cu$\xb7\xbf\xa5L,v\x80\x0b\xd0\xbf\xb3\xfe\xf3\x14m\xe8\x98\xbf\xd1\xdcC\xc7\x07*\xce\xbf\xdc\x84\xd3\x7fD\xf1\xa2?-\xc3 \x90\t\xac\xca\xbf/\xee\x98\x91\x114\xb7??\x8a-\xb5\x0cU\xc5\xbfD1?/;Y\xc1?\x04J\xc7y\xaf\xb0\xbd\xbf7\xa0\xd8\x1eh\xe5\xc5?\x0f\x86\x8e\xa2\xf4\xa9\xae\xbf\x8f\xf3\xa5.E\x11\xc7?\xcbnJ\x17\x9c"i?z\xca\xdb\xb0\xd5|\xc5?\x87R\x90\x1e\\\x98\xb0?\xb3b0\xf4\xd7\xbf\xc0?q\x10]6\xc7\x8b\xbe?,\x8c/\xa4-\xd9\xb5?\xffw\xb0\x05>\x9d\xc5?2\xba\xd7N\xb0\xeb\x9f?\xd6\xfb\xdd\x85\x94\xc0\xca?i\xc8\xde\x0bM\r\xa0\xbf\xc6\xa5\x13r\xe3\x12\xce?\x82\xf0\xadd-&\xb9\xbf\xeb\xbd\x89\xbe\x87\xbe\xcf?2f\xd1\x80(?\xc5\xbf\xbeB\xc4t\xf3@\xd0?9\x8b\xba\x01=\xfc\xcd\xbf`x<\x8e\xdbO\xd0?*\x8c\xe0\xb0\xf2\xad\xd0?\xb2\x1c\xd8\xce6\x04\xcd\xbfq\x03gNO\x93\xd0?\xe3t\xf66\xaeG\xc4\xbf\xa5L,v\x80\x0b\xd0?\xe1\xb5l\x8cu$\xb7\xbf\xd3\xdcC\xc7\x07*\xce?\xb4\xfe\xf3\x14m\xe8\x98\xbf.\xc3 \x90\t\xac\xca?\xdc\x84\xd3\x7fD\xf1\xa2??\x8a-\xb5\x0cU\xc5?0\xee\x98\x91\x114\xb7?\x03J\xc7y\xaf\xb0\xbd?E1?/;Y\xc1?\x12\x86\x8e\xa2\xf4\xa9\xae?8\xa0\xd8\x1eh\xe5\xc5?\xbenJ\x17\x9c"i\xbf\x8f\xf3\xa5.E\x11\xc7?\x87R\x90\x1e\\\x98\xb0\xbf{\xca\xdb\xb0\xd5|\xc5?s\x10]6\xc7\x8b\xbe\xbf\xb4b0\xf4\xd7\xbf\xc0?\x00x\xb0\x05>\x9d\xc5\xbf,\x8c/\xa4-\xd9\xb5?\xd8\xfb\xdd\x85\x94\xc0\xca\xbf6\xba\xd7N\xb0\xeb\x9f?\xc8\xa5\x13r\xe3\x12\xce\xbfi\xc8\xde\x0bM\r\xa0\xbf\xef\xbd\x89\xbe\x87\xbe\xcf\xbf\x84\xf0\xadd-&\xb9\xbf\xbfB\xc4t\xf3@\xd0\xbf3f\xd1\x80(?\xc5\xbf`x<\x8e\xdbO\xd0\xbf:\x8b\xba\x01=\xfc\xcd\xbf\x14\xaf\xd2Hh\x0b\xcf\xbf\x92C\x8a+c\xf4\x91<\x1a\xaf\xd2Hh\x0b\xcf\xbf\x03\\\x9ep\x95\x10\x8d<\x18\xaf\xd2Hh\x0b\xcf\xbf\xf4\xdf\x92\xe5\x19!\x96<\x1b\xaf\xd2Hh\x0b\xcf\xbfe\x8a~\x92\x98\x8f\x9a<\x1b\xaf\xd2Hh\x0b\xcf\xbf8.\xd3\t\x85\x10\xa1<\x1c\xaf\xd2Hh\x0b\xcf\xbf)\xc4\x86\x00/$\xa1< \xaf\xd2Hh\x0b\xcf\xbf\xafL\xaf\x80:\\\x9f<\x1f\xaf\xd2Hh\x0b\xcf\xbf\x97(\xb0;K\xdc\x9c< \xaf\xd2Hh\x0b\xcf\xbf\x9e\x04\x8f~Eu\x95<"\xaf\xd2Hh\x0b\xcf\xbfO\x96\xee%\xb9\xf5\x87< \xaf\xd2Hh\x0b\xcf\xbf\x10\xa3\xa5I^N5<"\xaf\xd2Hh\x0b\xcf\xbfb\xc6\xc3\xb51X\x88\xbc$\xaf\xd2Hh\x0b\xcf\xbff\x81\xb4\xb6\xbb]\x98\xbc"\xaf\xd2Hh\x0b\xcf\xbf\xef\xcd3F\x17\xcc\xa1\xbc!\xaf\xd2Hh\x0b\xcf\xbf2\x10\xf9\xfd\x93"\xa6\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\x06C\x9a`iS\xab\xbc\x1e\xaf\xd2Hh\x0b\xcf\xbf\xe0\xfe\xcc\x8e@\x10\xaf\xbc\'\x8c \x13\x1f\xc5\x99<\x15\xaf\xd2Hh\x0b\xcf\xbfB\xfb\x0b\xca\xc8\x01\x8b\xbc\x1b\xaf\xd2Hh\x0b\xcf\xbf7\xc8\xb8\xcf\xbe\xc0\x91\xbc\x15\xaf\xd2Hh\x0b\xcf\xbf\xf4 \xa9\xfa\x82\xb8\x9c\xbc\x17\xaf\xd2Hh\x0b\xcf\xbf:\x95\xa6\xcf\xf1\x0e\xa1\xbc\x18\xaf\xd2Hh\x0b\xcf\xbf\x01\xf8$\x9d\x12\xbb\xa2\xbc\x1a\xaf\xd2Hh\x0b\xcf\xbf\xce%{\x07\xa9\xf0\xa2\xbc\x1d\xaf\xd2Hh\x0b\xcf\xbf"\x1f\x11\xd1d2\xa2\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbfK+\xca\xed0\x1a\x9e\xbc \xaf\xd2Hh\x0b\xcf\xbf\xdf\xf4"\x8dB\x99\x94\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbfXZ\xdf\x9e\xc5\x12~\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\x0b\xf4"\xa2o\xd6s\xb0?n\xa5Y9\x10\xc6\x80\xbf\xe1\x99\xd6\xc1\xf7\xe3\xae?W\xafF\xce$\xab\xc3?\xb6\xed\xa6bm\xfc\x9a?\xec(x c\xe9\xd3?\'\xa4\xa8>\x89\x9e\x85?\xfe\xdc\xf8Z\x96\xc5\xd7?\xa4\xafg#\xa6O\x81\xbf\xe2\xfd_\'\x86/\xd4?\xf4\xaf=\x11\xb3\xf5\xab\xbf\x9e\xe9"\x0b\x96\xa6\xc5?w\x01\xc3\xa2\xb6\xd1\xb2\xbfkR=\xa6\xd5\xc6\x90?G\x9a\x16#\x92\x93\xab\xbf{=7\xb9N@\xbd\xbf\xe9OF\x1f\xfe\xba\x90?1\xabm\xeb\xc8\xbfj\xb6\xe1"\xc7^\xb2\xbf\xa9Lt\x05\x137\xd5\xbf\xf1=t\x99\x87RS\xbf\xda\x07\xff\x05!\xb0\xd5\xbf\x8e}\xe5-\x84\xdb\xb2?J\x89\x8e6\xa6\x16\xcb\xbf\xc84g\tl#\xbd?\xad>qd\xfb\ts\xbf\x93\xc1\xe9\xec\xb9Y\xbb?\x96K\x89\xd5Y\x85\xca?\x1b\xe9\xe3\xc5\x11\xde\xab?z\x95\xa4!\x1c%\xd5?\x93\xaa\xca6\xe9\x9e\x9f\xbf\xb6\x88m\xbfi\x95\xd4?\x99\xf9qL%\xde\xbc\xbf\x16:U\x15\x16\xe9\xc9?\x9fn\x12\xd6\xd1\xd4\xc2\xbfo\x16\xd4\xe4dj\x96?m\xaf-\xf0\x97V\xb7\xbf\xe5(y\x04^\t\xbc\xbf\x9a"\x13\xba\xd8\xa0\x99?\xc1\xce3\xddq\xa9\xc7\xbf\xd3(6\xec\xf9\x08\xc5?d0\xad\xecG\x19\xce\xbf\xc8\xea\xc6t\xa6D\xc9\xbf\xa0\x1c\x8d\xefq}\xd0?\x8e\xf4gsd?\xb9\xbf \xf5\xee\xba\x0bR\xc2?;0s\xfb+\x16\xb1?\xc2\xba\xef\xfe\xa9:\xaa?\x82\x81\xc8\x97EG\xca?\x01Q[\xd4\xf6\x1c\x93\xbfw\xdb\x8a\x1fm\x17\xd2?\x83`\xfc\xad<}\xa4\xbf\x81\x9b\xbe\x07\xb8\xe1\xd3?\x1d\xc0\xee|\xc4,\xb0\xbfB\x1f\xe6\x9d\x8e\xe1\xd1?\x95\xba\xd4Bw\xae\xbd\xbf\x84\xc6\x12\xb6\x11\x06\xbf?Y\xf9\xdaVCx\xc3\xbf\x05\xf2\x0f\xff\xb0\ne\xbf\xfa\x9d\xc2\xd7*\xb5\xc4\xbf[\xff\xbc=\xc3m\xbf\xbf\xf4\x8c0\xce\xa0\x11\xc2\xbf\x02S\xdc\xc9\xbc\xdf\xd0\xbf\x11\xf8\x0b\xec\x01b\xbc\xbf\xc4\x1a\xe3Rc\x0b\xd4\xbf\x9c\xe8R\x00\x8bj\xa7\xbfx\xf4\x0c>x\xc1\xd2\xbf\r3\x96\xf7\xca\x9a\x88\xbf\x0bK\xc1\x9ev\x95\xcb\xbf\xf1\x80p\xf6\xbe\x9e\x8c?9y\xba\xec}\xbc\xb3\xbf\x04FkCN\xe3\xb1?Md \xdf<\r\xb6?\xec\x10I<\xbe\x1f\xc0?%\x15\x92\xf1\xe0\xaa\xcd?)\xa4#\xe1\xff\x8d\xc9?u\xf3\x14\xcc\xae\xf1\xd5?@\xab\x84\xba%\x99\xa3\xbf\x9a`\xc7\x9b\xc7\xf1\xc3?G\x94\x0c\x84\x92\x96\xb5\xbf\xf8{.\xfe\x81O\x9d\xbf/\xb3\xde\xd8\n\xc6\xc1\xbf>\xba\t{\x8b\x8e\xc7\xbf\x0bC\x91d\xe3I\xbb\xbf\xa2\xaa\xdf\x9d\xb2\xc8\xd1\xbfJ\xe3\x13\x8f\x158\x88\xbf\xa5\xa3\x9a\x85n\x1f\xd0\xbfW\x94\x90\xf4\x9az\xb6?\x9d\x93F\x81\xd7\x1e\xb6\xbfW\xaf7B\x95\x05\xc0?\xc5Qz~\x83U\xcb?\xcb\x9d3N\x96<\xba?xQ\xb5=F\xfc\xd4?\xce_\xe1\xc3\xb3I\xa8?a\xed\x80(\xdb\xba\xcd?\x93\xfe\x1c\xc8Ug\xa8\xbf\x0c=\xc8\xf9:h\xb0\xbf\x85\xc6\xfb\xdbp\xb0\xc3\xbf\xc1E\xdf\x17\x81\x99\xce\xbf$\xd6N\n\n\xa1\xc7\xbf}\xd5\xce\xac\xfc\xa6\xd1\xbfm~,j\x00\x92\xb8\xbfMQ\xab\n*%\xc7\xbf\xbfB{&\xd5\xb9\xa9?\xeea\x05\x98C\xa7\xab\xbf\tL\xe2\xf2\x8b\xa5\xc4?\xe7\xff\xbe\x0b\x0c\xa8\xbb?u\xedp\xe7\t\xf3\xc3?\xd0?\x9f"S\xc8\xd0?\xd7\xf8\xa3)\xbb\xd9\xc0?9\xf2U\x96\xb6\xb2\xc1?\xfe/:}\x85\xcd\xe0?*\xdd\xd1\x9c\xa91\x9f?hd2\x00\x85\x8d\xcd?\x07&\xa1\xe3l\xa6\x8b?\xd9}\x8fW\xfbW\xbb\xbf\xb50\x8a5\xf7\xf6\xab?\x9e\x08V\xfe\x98\xe4\xd6\xbf\xce\xbf\xec\x8f~e\xab?\xe2i\x90c\x85@\xd7\xbf\xea\x06\xe5\x8b\\#\x9e?D,\xd2}\xd2V\xc9\xbf\x19r#h\xde\xa7\x9e\xbfJh\xaa\xdf\xe7\xec\xb3?c\xcb\x02\x9cyf\xb0\xbf\xdb/X\xe3\xc2\xa0\xd1?\x06\xc5\x99\xbdW\xec\xb0\xbfT\xd8q\xb1\xff\xaa\xca?P\xd3\xc3\x14b\xca\x90\xbf\x914\\\x0809\x93?\x11\x84o\x95[\x15\xae?\xea\xb9\xe9\xf3\xe9\x8e\xc4\xbfqV\x057o\x9c\xb9?\x96\x05\x08\xd7MJ\xca\xbf\xe2\xd9an%\xa9\xb7?\x80\x8d^\xc1\xa1\x07\xbe\xbf\x1c\x95\x01}\xff\x10\xa5?\xf5\x08\x18m\xb5\xe4\x9b?F\x93\xf6\xd7}\x13\xb0\xbfIyj\x12%\xc3\xbc?\x99\xb2\xd0\xae\xbb=\xc5\xbf\xf32?\xd7-j\xb0?\x8dN\x1d[\x11|\xca\xbf\xc4\xbfp<\'\xb7\x9f\xbf\xb6<\x03\xe4X\xc3\xa5?\xa5\x81\xc9\xa5\x9f\xdc\xc4\xbf\xea\xedIWa\xf9\xc0?\x18q\x18s\x14\xbb\xb0?\xbf\x07\r\x03\xbe\xdc\xb6?p\xbd?\xa2\xf4Q\xcd?"\x92\xcb\x970^\x97?\x81\x83ph\x02\xc9\xc4?rdz\xbc\xd5(\x93\xbf\xa6Y\xf3w\xf79\xad\xbfW\xcfH\xeeb\xff\x9b\xbfO\x1e\xbf\xc2\xc9\xa4\xce\xbf\xc4\xbcN\xc7\x8f5\x96\xbf\x8d\xf7\x1f\x10\x99w\xcc\xbfH\x88\xf35\x9b\xd4\x9b\xbf/e\xf3\x9e6l\x88\xbfq\xde\xa9\xef\x89\xfd\x97\xbfO\xb6i3W\xe8\xc8?\xf3\xbb\xdc\xd8\xcch\x92?\xd4\xfcX_u\t\xcc?\xa7\xdc5\xe3\xeb\x05\xb4?hy\xe8\x8f\xf5\t\xb8?c\xdf\xfd[\xeaz\xa6?\x02f\xa4\xa7\xfdx\xbd\xbf\xfd\xf9\x19\xf5e\xca\xa8\xbf\xd5?!\xcf\xe5e\xd4\xbf\xc3VN\x19\x8c\xc7\xb2\xbf~3\x87\x18\xa4\xf6\xd8\xbf\xcc\xfd3\x17J\xe9\x9c\xbf\xc0\xc9%\x19\x88\xb0\xc6\xbf\xd6\r\x06\xae\xfbL\x9f\xbff\xe9\xed\xa2\x90\x82\xc9?\xa5\xda\xf5\xd2\x00p\xc0\xbf;\r\xbfN\xa1\x00\xe1?\x08\nzV\xfaw\xcc?I\x04\x05\xf3\xbfR\xb2\xbf/\xc5\x97\x07?\x05Z\xbf\xf7\xf4\xf6c\x80?\x8c\xbf\x08\x1f\xaa\xc6e\xd4\xcc\xbfV\xca\xec\x01\xfa\xf0\xb2?\xa6\x8e\x96\xfay\xe2\xd3\xbf\x94i\xf3\xecm\xa0\xbf?\'\x80\xacO\xee\x96\xc3\xbf\xb7$a\x83O\x85\x91\xbf\xa8w\xe4\x96\xc8\xc4\xc1?\x16\x85\x15\x82\x05\xcb\xbd\xbfT\x9d\xdbW\xf2Z\xd9?j\xf9|(=\xa0\xb7\xbf\xd2=\xf8N\x1di\xd4?\xc2K7\xc7p\xff\xb5?\x18\x14\x0b\xa1\xa1#j?\xa1\x82\x9a\xd1h\x1b\xbb?\xcf\xf2\x07\xb28]\xd3\xbf\xa5R\x00\xc2Y\x90\x9d?r\x10\xca\xdd,\x19\xd6\xbf\x0f\x16H\xcb&\x10\xac\xbf\'\x1a\x86\xfa\xd6\xb0\xc3\xbf\x91F\xd2\xbc\xad\x83\xaa\xbf\x98\x19\xd3\xf1].\xc2?\x90( \xc3\x87\x93z\xbf\xa1\xb7\xb8u\x92 \xd2?\x9a\xd1\xc1`n\xa1\xa4?\x88\x86 G\xe9E\xca?6\x12;6\xa8\x9b\x96?\x0f\x1b\x8a\x10@\x999\xbf\xa8Z\xfa{\xf5^\x8c\xbf\xf8!*\xa2\x1b\xd4\xcb\xbf\x0e;\xe9vb\xc3\xa5\xbf\xed\xdb\xcav\xf4w\xce\xbfRP\xfct\xef\xad\xb8?*Oo\x7f\na\xa0?w\xab\xd6\x1b\xa9\xfd\xa2?\xa0\xaf\xa0\x7f\xbe\xd8\xcf?.\x04\xc3%\x10\x99\x9e\xbf\xe9\x1b\xdc\xb1\x98\x7f\xd0?ozy\xe6\xcd\x7f\xa4\xbfa\xf5E\xa3L\xa4\x95?%(\x97\x0e\xad\xf0\xa4?\xb79\x8f\xe7=\x18\xce\xbf\x97\xef\xd9\xca\x91p\x8f?\xea\xf3y\x14\xe7\xfb\xd1\xbf\xc1q<\xce\x1d\xf6\xc1\xbf\x1b\xfe\x98\xdd\xf0\xf6\xb3?\xa1\xbaj\x1be\x82\xc9\xbfs\xe5mYf\xa9\xd1?r\x92\x83\xd2\x815\xa4?\x9e,\xa6Q\x03\xc1\xb8?<-\x8d\x99 ]\xce?\xed\xd0\xeaPL\xbd\xd1\xbf\xb9\x97\x91\xb7\x8f\xca\xb6?\xc7\xf9\xc4}u9\xd3\xbf\xaa%\xe6\xbf\xb0\xbf\xb7\xbf\xfdM\x99\xc09\xc2_\xbf\xc0\x88\xb5\x08<\x1a\xb6\xbfH\x9c\xae\xae\xd8\x95\xd2?\xbd\xf8\xb3\xcd?\x82\xac?\xca\x9da\xf5*\x93\xd1?ZE\xfeW\x12\xdc\xb9?(RV\nq\x97\xa0?\x11B3\xeb\xc3DF\xbf\xae\x0eP\xea.\x8b\xd1\xbfC\x89\xe6\xb5Ir\xbf\xbf\x16\xea\xcf\xee\x1f)\xce\xbf\x8d\xf3,f\x17\xf5\xd3\xbf\x8d\x1f\xf6I\xa1\xd6\xad?I#\xb8*`\xde\xb9?2\xe2\xb72\xf3N\xc4?cS\xd9\x128\xb5\xd8?\x16\x95q\xba\xc9\n\xb0?\xc8\x7fH\r\x8f\xef\xcc?\xf0k\xeaL,\x00\x89?\xcfp\xf2\xa4\xf1[\xc8\xbfj\xce\x05\x8f\x9c4\xb0\xbf\x08:\x8a\xbd\x7f\xd8\xd5\xbf&\xba\x0cB74\xc0\xbf\xc0\x0b<\xb4\x02s\xae\xbf\x9bFD$\xc5\x00\xa8?\xd3\x8a\xcb{\xf5Y\xd2?\xbbb\x0f\x9f:|\xb1?\xa2\xa3L\xc7\x9d\xbf\xc8?x\x8a\xf7a\x1f\xf8\xab?\xab^\xd1\x01\x9e\x8a\xc5\xbfv\x1d\xef\x0e\x04\x1e\xa6\xbf\x9fVu\x98\x0f\t\xd4\xbfJ\xf5\x07e\xb2T\x88\xbf^?\x07%\xcf5\xb9\xbf\xba\r\x86\xb0\xb31\xa8?&\xcaB\x7f\x95\x8f\xc7?F:\x1f-\x94\x1f\xac\xbfH\xf8\x1c.\xa7z\xcf?\xb3\xae.\xaa\x83z\xb7\xbf\xd5\xa6\x88`\xbf/\xb7?\xcc\xf9c\x1fm\x87R\xbf\x9bw\x0fo\x81@\xb3\xbf)w)\xb1\xc1\x97\xbe?\t\xd1\xa7N\x0e\xf3\xc3\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I34 +tp132 +g22 +I00 +S'P\x1ab\x96cqh\xc0\xde\xf4\x0ea\xd9\x19l\xc0\x04\xe8\x0f\xf6_\x15a\xc0\x97-\x8fU\xf8\xeck\xc0\x8fc\xf3f\xa7~S\xc0\x90\x00\x81s*\x08k\xc0x4\x94\xe6a\xfb4\xc0\x12B\xe1\xf5\xe4hi\xc0\xfaP#y\xdd\xe9?@\x84\xa6\xd7\xb2\xcfwf\xc0\x99.6\x93\xcd\x8bS@\x9d5BOI\xf8a\xc0\xcd\xe9\x84\xafk:]@\xe6\xde\xa3\xf8\xac\x02Y\xc0\xaf\x95.\xdc\xe3qb@\x95\xff\x8a\xfc\xa7\xd4I\xc0\xb0\xaa\xfeP}nc@fM\xb8-e,\x05@\x0eJ\x0e\xf3\xcc\x19b@j\xe2\xe4jz\xf5K@\x17\xefT\xb8\xff7\\@\x92\xc9\x0b<<\xbbY@V\xfb\x86\xcd\x96gR@\xf1\x0e\xcf\x9f\x195b@IH\xc7\x9b\xad\xe3:@\x9d\xc5?2\xba\xd7N\xb0\xeb\x9f?\xd5\xfb\xdd\x85\x94\xc0\xca?g\xc8\xde\x0bM\r\xa0\xbf\xc9\xa5\x13r\xe3\x12\xce?\x82\xf0\xadd-&\xb9\xbf\xec\xbd\x89\xbe\x87\xbe\xcf?2f\xd1\x80(?\xc5\xbf\xbfB\xc4t\xf3@\xd0?<\x8b\xba\x01=\xfc\xcd\xbf`x<\x8e\xdbO\xd0?,\x8c\xe0\xb0\xf2\xad\xd0?\xb9\x1c\xd8\xce6\x04\xcd\xbfs\x03gNO\x93\xd0?\xe3t\xf66\xaeG\xc4\xbf\xa6L,v\x80\x0b\xd0?\xdf\xb5l\x8cu$\xb7\xbf\xd4\xdcC\xc7\x07*\xce?\xaa\xfe\xf3\x14m\xe8\x98\xbf-\xc3 \x90\t\xac\xca?\xe1\x84\xd3\x7fD\xf1\xa2?@\x8a-\xb5\x0cU\xc5?3\xee\x98\x91\x114\xb7?\x02J\xc7y\xaf\xb0\xbd?E1?/;Y\xc1?\x11\x86\x8e\xa2\xf4\xa9\xae?9\xa0\xd8\x1eh\xe5\xc5?\xf4nJ\x17\x9c"i\xbf\x90\xf3\xa5.E\x11\xc7?\x88R\x90\x1e\\\x98\xb0\xbf{\xca\xdb\xb0\xd5|\xc5?u\x10]6\xc7\x8b\xbe\xbf\xb4b0\xf4\xd7\xbf\xc0?\xffw\xb0\x05>\x9d\xc5\xbf-\x8c/\xa4-\xd9\xb5?\xd6\xfb\xdd\x85\x94\xc0\xca\xbf0\xba\xd7N\xb0\xeb\x9f?\xc8\xa5\x13r\xe3\x12\xce\xbfj\xc8\xde\x0bM\r\xa0\xbf\xeb\xbd\x89\xbe\x87\xbe\xcf\xbf\x84\xf0\xadd-&\xb9\xbf\xbfB\xc4t\xf3@\xd0\xbf2f\xd1\x80(?\xc5\xbfax<\x8e\xdbO\xd0\xbf=\x8b\xba\x01=\xfc\xcd\xbf\x16\xaf\xd2Hh\x0b\xcf\xbf\x10\x02\xd1\x14w\x04v\xbc\x1a\xaf\xd2Hh\x0b\xcf\xbfh\x89m%*\xdb|<\x17\xaf\xd2Hh\x0b\xcf\xbfj\xd4]\xb9\xfd\xdb\x90<\x19\xaf\xd2Hh\x0b\xcf\xbf\xd7\x14{P\xb8|\x99<\x1a\xaf\xd2Hh\x0b\xcf\xbfl\xea\xf4\xb6\xfc\xac\xa0<\x1c\xaf\xd2Hh\x0b\xcf\xbf\xb4\xa8\xbcV\xf1\r\xa0<\x1e\xaf\xd2Hh\x0b\xcf\xbf!o[\xcf\xd7\xe4\xa0< \xaf\xd2Hh\x0b\xcf\xbf\xbbN\xf8q(\xca\xa0< \xaf\xd2Hh\x0b\xcf\xbf\xf6\x83%[\x15F\x9b<"\xaf\xd2Hh\x0b\xcf\xbf\xb5T\xdf:#W\x91<"\xaf\xd2Hh\x0b\xcf\xbf\xd2O1:\xffow<$\xaf\xd2Hh\x0b\xcf\xbfIM\rC\xbdf\x7f\xbc$\xaf\xd2Hh\x0b\xcf\xbf\xfe\x8d\xfe\xb1I\x85\x95\xbc#\xaf\xd2Hh\x0b\xcf\xbf\xd3\x81\x92v\xf3\x96\x9e\xbc"\xaf\xd2Hh\x0b\xcf\xbf?8U$\xe3|\xa7\xbc \xaf\xd2Hh\x0b\xcf\xbf\xc4\xe93@\xc4\xa3\xac\xbc \xaf\xd2Hh\x0b\xcf\xbf\xfb7\xfbH\x8b\xaf\xb0\xbc\xa3\x8d\xd1\x94\x8fh\x95<\x16\xaf\xd2Hh\x0b\xcf\xbf=9\xde\x19\xe3p\x89\xbc\x1b\xaf\xd2Hh\x0b\xcf\xbfk\x92&\';\xa1\x90\xbc\x15\xaf\xd2Hh\x0b\xcf\xbfP\xb5[\xfdu^\x99\xbc\x17\xaf\xd2Hh\x0b\xcf\xbf+-\x91\x0b\x1cB\xa0\xbc\x19\xaf\xd2Hh\x0b\xcf\xbfrm\xd5cT\xfd\xa1\xbc\x1a\xaf\xd2Hh\x0b\xcf\xbf\x8e\xda=\x80\xb3\xb7\xa2\xbc\x1d\xaf\xd2Hh\x0b\xcf\xbfm\xe4\xcc\x81\xad\x17\xa2\xbc\x1e\xaf\xd2Hh\x0b\xcf\xbf%\xd5\x14\xf0\x12:\x9e\xbc \xaf\xd2Hh\x0b\xcf\xbfm\xfb\xbcr\xdc\xb2\x94\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\x91\xa8\xae\x1e!\x7f~\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\xf2\xd5ZcT\xee|\xb0?\x89\xa5Y9\x10\xc6\x80\xbf\xd5\x99\xd6\xc1\xf7\xe3\xae?V\xafF\xce$\xab\xc3?\x98\xed\xa6bm\xfc\x9a?\xef(x c\xe9\xd3?\xfe\xa3\xa8>\x89\x9e\x85?\xff\xdc\xf8Z\x96\xc5\xd7?\xc9\xafg#\xa6O\x81\xbf\xe0\xfd_\'\x86/\xd4?\xfe\xaf=\x11\xb3\xf5\xab\xbf\x9e\xe9"\x0b\x96\xa6\xc5?w\x01\xc3\xa2\xb6\xd1\xb2\xbfqR=\xa6\xd5\xc6\x90?D\x9a\x16#\x92\x93\xab\xbfy=7\xb9N@\xbd\xbf\xf7OF\x1f\xfe\xba\x90?-\xabm\xeb\xc8\xbfd\xb6\xe1"\xc7^\xb2\xbf\xa6Lt\x05\x137\xd5\xbf\x86qd\xfb\ts\xbf\x8c\xc1\xe9\xec\xb9Y\xbb?\x95K\x89\xd5Y\x85\xca?"\xe9\xe3\xc5\x11\xde\xab?z\x95\xa4!\x1c%\xd5?\xa0\xaa\xca6\xe9\x9e\x9f\xbf\xb5\x88m\xbfi\x95\xd4?\x94\xf9qL%\xde\xbc\xbf\x13:U\x15\x16\xe9\xc9?\xa2n\x12\xd6\xd1\xd4\xc2\xbfo\x16\xd4\xe4dj\x96?g\xaf-\xf0\x97V\xb7\xbf\xeb(y\x04^\t\xbc\xbfr"\x13\xba\xd8\xa0\x99?\xc1\xce3\xddq\xa9\xc7\xbf\xd1(6\xec\xf9\x08\xc5?g0\xad\xecG\x19\xce\xbf\xc8\xea\xc6t\xa6D\xc9\xbf\xa2\x1c\x8d\xefq}\xd0?\xb2\xf4gsd?\xb9\xbf\x1d\xf5\xee\xba\x0bR\xc2?A0s\xfb+\x16\xb1?\xb0\xba\xef\xfe\xa9:\xaa?\x8a\x81\xc8\x97EG\xca?\x83P[\xd4\xf6\x1c\x93\xbf\x80\xdb\x8a\x1fm\x17\xd2?\xa4`\xfc\xad<}\xa4\xbf\x86\x9b\xbe\x07\xb8\xe1\xd3?*\xc0\xee|\xc4,\xb0\xbfD\x1f\xe6\x9d\x8e\xe1\xd1?\x98\xba\xd4Bw\xae\xbd\xbfw\xc6\x12\xb6\x11\x06\xbf?`\xf9\xdaVCx\xc3\xbfu\xf7\x0f\xff\xb0\ne\xbf\xf3\x9d\xc2\xd7*\xb5\xc4\xbfu\xff\xbc=\xc3m\xbf\xbf\xeb\x8c0\xce\xa0\x11\xc2\xbf\x05S\xdc\xc9\xbc\xdf\xd0\xbf\r\xf8\x0b\xec\x01b\xbc\xbf\xbe\x1a\xe3Rc\x0b\xd4\xbfv\xe8R\x00\x8bj\xa7\xbfo\xf4\x0c>x\xc1\xd2\xbfw2\x96\xf7\xca\x9a\x88\xbf\x06K\xc1\x9ev\x95\xcb\xbfL\x80p\xf6\xbe\x9e\x8c?/y\xba\xec}\xbc\xb3\xbf\xfbEkCN\xe3\xb1?=d \xdf<\r\xb6?\xe4\x10I<\xbe\x1f\xc0?\x1a\x15\x92\xf1\xe0\xaa\xcd?(\xa4#\xe1\xff\x8d\xc9?s\xf3\x14\xcc\xae\xf1\xd5?\xaf\xab\x84\xba%\x99\xa3\xbf\x87`\xc7\x9b\xc7\xf1\xc3?&\x94\x0c\x84\x92\x96\xb5\xbf\xaa{.\xfe\x81O\x9d\xbf\x11\xb3\xde\xd8\n\xc6\xc1\xbf5\xba\t{\x8b\x8e\xc7\xbf\xedB\x91d\xe3I\xbb\xbf\x9f\xaa\xdf\x9d\xb2\xc8\xd1\xbf\xf2\xe2\x13\x8f\x158\x88\xbf\x9c\xa3\x9a\x85n\x1f\xd0\xbfQ\x94\x90\xf4\x9az\xb6?\x8d\x93F\x81\xd7\x1e\xb6\xbfB\xaf7B\x95\x05\xc0?\xcbQz~\x83U\xcb?\xad\x9d3N\x96<\xba?\x7fQ\xb5=F\xfc\xd4?\x9e_\xe1\xc3\xb3I\xa8?`\xed\x80(\xdb\xba\xcd?\x91\xfe\x1c\xc8Ug\xa8\xbf)=\xc8\xf9:h\xb0\xbf\x82\xc6\xfb\xdbp\xb0\xc3\xbf\xd3E\xdf\x17\x81\x99\xce\xbf!\xd6N\n\n\xa1\xc7\xbf\x86\xd5\xce\xac\xfc\xa6\xd1\xbf\x8d~,j\x00\x92\xb8\xbfXQ\xab\n*%\xc7\xbf\xafB{&\xd5\xb9\xa9?\x0cb\x05\x98C\xa7\xab\xbf\xfaK\xe2\xf2\x8b\xa5\xc4?\xf7\xff\xbe\x0b\x0c\xa8\xbb?\x86\xedp\xe7\t\xf3\xc3?\xd4?\x9f"S\xc8\xd0?\xe9\xf8\xa3)\xbb\xd9\xc0?3\xf2U\x96\xb6\xb2\xc1?\xfd/:}\x85\xcd\xe0?8\xdf\xd1\x9c\xa91\x9f?Od2\x00\x85\x8d\xcd?\xff$\xa1\xe3l\xa6\x8b?\xe6}\x8fW\xfbW\xbb\xbfX0\x8a5\xf7\xf6\xab?\x86\x08V\xfe\x98\xe4\xd6\xbf\xd6\xbf\xec\x8f~e\xab?\xe1i\x90c\x85@\xd7\xbf\xb1\x06\xe5\x8b\\#\x9e?c,\xd2}\xd2V\xc9\xbfPr#h\xde\xa7\x9e\xbf\x1fh\xaa\xdf\xe7\xec\xb3?^\xcb\x02\x9cyf\xb0\xbf\xe4/X\xe3\xc2\xa0\xd1? \xc5\x99\xbdW\xec\xb0\xbf\x82\xd8q\xb1\xff\xaa\xca?\xb5\xd2\xc3\x14b\xca\x90\xbf\xef3\\\x0809\x93?\x92\x84o\x95[\x15\xae?\xe6\xb9\xe9\xf3\xe9\x8e\xc4\xbf]V\x057o\x9c\xb9?\x9a\x05\x08\xd7MJ\xca\xbf\xb3\xd9an%\xa9\xb7?\x9d\x8d^\xc1\xa1\x07\xbe\xbf\xc6\x94\x01}\xff\x10\xa5?S\x07\x18m\xb5\xe4\x9b?@\x93\xf6\xd7}\x13\xb0\xbfVyj\x12%\xc3\xbc?\xb6\xb2\xd0\xae\xbb=\xc5\xbf$3?\xd7-j\xb0?mN\x1d[\x11|\xca\xbfu\xbep<\'\xb7\x9f\xbf\xae;\x03\xe4X\xc3\xa5?\xc7\x81\xc9\xa5\x9f\xdc\xc4\xbf\x01\xeeIWa\xf9\xc0?\xe9p\x18s\x14\xbb\xb0?\xd5\x07\r\x03\xbe\xdc\xb6?\x83\xbd?\xa2\xf4Q\xcd?k\x93\xcb\x970^\x97?\x85\x83ph\x02\xc9\xc4?\xe6dz\xbc\xd5(\x93\xbf\x8fX\xf3w\xf79\xad\xbf\x88\xcfH\xeeb\xff\x9b\xbfM\x1e\xbf\xc2\xc9\xa4\xce\xbf\xef\xbcN\xc7\x8f5\x96\xbf\x97\xf7\x1f\x10\x99w\xcc\xbf\xd7\x88\xf35\x9b\xd4\x9b\xbfTf\xf3\x9e6l\x88\xbf@\xdf\xa9\xef\x89\xfd\x97\xbf+\xb6i3W\xe8\xc8?I\xbc\xdc\xd8\xcch\x92?\xd1\xfcX_u\t\xcc?\x06\xdd5\xe3\xeb\x05\xb4?\xaey\xe8\x8f\xf5\t\xb8?\xa5\xdf\xfd[\xeaz\xa6?\xebe\xa4\xa7\xfdx\xbd\xbf\x11\xfa\x19\xf5e\xca\xa8\xbf\xd5?!\xcf\xe5e\xd4\xbf\xecVN\x19\x8c\xc7\xb2\xbfr3\x87\x18\xa4\xf6\xd8\xbf\xd9\xfe3\x17J\xe9\x9c\xbf\xd0\xc9%\x19\x88\xb0\xc6\xbfx\r\x06\xae\xfbL\x9f\xbfW\xe9\xed\xa2\x90\x82\xc9?\x82\xda\xf5\xd2\x00p\xc0\xbf9\r\xbfN\xa1\x00\xe1?4\nzV\xfaw\xcc?w\x04\x05\xf3\xbfR\xb2\xbf7\xcc\x97\x07?\x05Z\xbfo\xf4\xf6c\x80?\x8c\xbf\n\x1f\xaa\xc6e\xd4\xcc\xbf\xb1\xca\xec\x01\xfa\xf0\xb2?\xb3\x8e\x96\xfay\xe2\xd3\xbf_i\xf3\xecm\xa0\xbf?5\x80\xacO\xee\x96\xc3\xbf\xfb$a\x83O\x85\x91\xbf\xb9w\xe4\x96\xc8\xc4\xc1?H\x85\x15\x82\x05\xcb\xbd\xbf^\x9d\xdbW\xf2Z\xd9?"\xf9|(=\xa0\xb7\xbf\xd7=\xf8N\x1di\xd4?\xfcK7\xc7p\xff\xb5?J\x0e\x0b\xa1\xa1#j?A\x82\x9a\xd1h\x1b\xbb?\xe1\xf2\x07\xb28]\xd3\xbf1S\x00\xc2Y\x90\x9d?_\x10\xca\xdd,\x19\xd6\xbf\xdb\x15H\xcb&\x10\xac\xbf\x05\x1a\x86\xfa\xd6\xb0\xc3\xbfcF\xd2\xbc\xad\x83\xaa\xbf\xb3\x19\xd3\xf1].\xc2?y- \xc3\x87\x93z\xbf\x91\xb7\xb8u\x92 \xd2?\xf6\xd0\xc1`n\xa1\xa4?d\x86 G\xe9E\xca?\xac\x10;6\xa8\x9b\x96?\xd8~\x8a\x10@\x999\xbf*Y\xfa{\xf5^\x8c\xbf\xd4!*\xa2\x1b\xd4\xcb\xbf\xed9\xe9vb\xc3\xa5\xbfS\xdc\xcav\xf4w\xce\xbfiP\xfct\xef\xad\xb8?>Qo\x7f\na\xa0?\x18\xac\xd6\x1b\xa9\xfd\xa2?\xcb\xaf\xa0\x7f\xbe\xd8\xcf?\x00\x06\xc3%\x10\x99\x9e\xbf\xc8\x1b\xdc\xb1\x98\x7f\xd0?\x82yy\xe6\xcd\x7f\xa4\xbf\xc8\xf3E\xa3L\xa4\x95?b(\x97\x0e\xad\xf0\xa4?\xbf9\x8f\xe7=\x18\xce\xbfr\xeb\xd9\xca\x91p\x8f?\xc6\xf3y\x14\xe7\xfb\xd1\xbf\x0er<\xce\x1d\xf6\xc1\xbf\x89\xfe\x98\xdd\xf0\xf6\xb3?i\xbaj\x1be\x82\xc9\xbfc\xe5mYf\xa9\xd1?\x16\x94\x83\xd2\x815\xa4?e,\xa6Q\x03\xc1\xb8?\x03-\x8d\x99 ]\xce?\n\xd1\xeaPL\xbd\xd1\xbfj\x97\x91\xb7\x8f\xca\xb6?\xb9\xf9\xc4}u9\xd3\xbf\xc2%\xe6\xbf\xb0\xbf\xb7\xbf=@\x99\xc09\xc2_\xbf\xa9\x88\xb5\x08<\x1a\xb6\xbfJ\x9c\xae\xae\xd8\x95\xd2?\xd5\xf8\xb3\xcd?\x82\xac?\xd1\x9da\xf5*\x93\xd1?\xadE\xfeW\x12\xdc\xb9?\xd4QV\nq\x97\xa0?0G3\xeb\xc3DF\xbf\xb0\x0eP\xea.\x8b\xd1\xbf\x81\x89\xe6\xb5Ir\xbf\xbf\x8b\xea\xcf\xee\x1f)\xce\xbf\xbd\xf3,f\x17\xf5\xd3\xbf$#\xf6I\xa1\xd6\xad?\x81$\xb8*`\xde\xb9?\xf3\xe1\xb72\xf3N\xc4?\x87S\xd9\x128\xb5\xd8?d\x94q\xba\xc9\n\xb0?\xe6~H\r\x8f\xef\xcc?xi\xeaL,\x00\x89?\x9fp\xf2\xa4\xf1[\xc8\xbfp\xce\x05\x8f\x9c4\xb0\xbf\xf59\x8a\xbd\x7f\xd8\xd5\xbf\xb1\xb9\x0cB74\xc0\xbf@\n<\xb4\x02s\xae\xbf\x97FD$\xc5\x00\xa8?\xc8\x8a\xcb{\xf5Y\xd2?\xdfb\x0f\x9f:|\xb1?n\xa3L\xc7\x9d\xbf\xc8?\\\x89\xf7a\x1f\xf8\xab?\xd9^\xd1\x01\x9e\x8a\xc5\xbf\x89\x1d\xef\x0e\x04\x1e\xa6\xbf\xa2Vu\x98\x0f\t\xd4\xbf\x0c\xf3\x07e\xb2T\x88\xbf\x15?\x07%\xcf5\xb9\xbfH\x0e\x86\xb0\xb31\xa8?r\xcaB\x7f\x95\x8f\xc7?\xc9:\x1f-\x94\x1f\xac\xbfP\xf8\x1c.\xa7z\xcf?\x04\xaf.\xaa\x83z\xb7\xbf\xd9\xa5\x88`\xbf/\xb7?x\xecc\x1fm\x87R\xbf\xcbw\x0fo\x81@\xb3\xbf&w)\xb1\xc1\x97\xbe?\xc8\xd0\xa7N\x0e\xf3\xc3\xbf\xa8\x06\xfa\x90\xae\x0f\xa2?2\x15e\xc3\x1ef]\xbf\xff8\xf5\x9f(4\xae\xbf\xe4\x93%]\xc7\xc2\xc0\xbfp\xcd\x90\xc5\x87\xbc\xa1\xbf\x830\x8a_s\x9e\xaa\xbf\xd1?\xe0\x8d\xb0\x89\x81\xbf\xa7\xfc \xbb\x89\xd2\xc6?\xd4\t\x0b\xe8\x01\x89\x92?\xe8\xe2\xeb; \xa9\xca?\x85?\x04\x07\xa1\xbd\xb3?\xc5\xe3\xdb\x01p\xe6\xa2\xbf\xb2\xa1}\x90\xbdm\xb9?Z\xe4\xd6N\xa3\x8b\xd1\xbf\x0c\x99_C\xea\xdf\xb9\xbf=d\x8b\xd43}\xc5\xbf+\xd2\xce\xb4\x18f\xc2\xbf\n\xdb\xeb\xbf\xf6]\xc4?G\x1aL\xe7\xc2M\xaf\xbf\x92Oj\x1eb\x0f\xd3?\xb1)\xa7\xaf\xb8a\xc5?\x05\xb4~\xf6\x1d\xb5\x83?-sQGq\x12\xb8?\xa9\xac\xb5\x8b\xba\xf8\xd4\xbf\x95\xe2\x93\xe2\xfc\xa2\x9d\xbf9*\x9c\xe1\xb1\xb2\xd1\xbf\x0f\xae\x05\x814\xc0\xaa\xbf\xb5\\g\xf5Na\xc4?$*\xe9\x8f\xe5\xba\xbb\xbf#m6+\xd7\xea\xdb?\xb3A\x95\xca\xef\xcd\xb5\xbf\xa6\x85s==u\xc3?\xd5\x91\x13\x9cp\x91\xc8?\xe3!M\xce\xe8J\xd5\xbf\x87\xad\xdd\xc0\x0f<\xc6\xbf\xc5\x81J\xce:G\xc4?@\x02G\xf7\xe7\x95\xba?@\x1c\x94\x87\xfa:\xac\xbf\xdf\'\x1c?\x8f\x9f\xcf?os\xbb\x97|j\xc9\xbf\xac\xff\x9f\xe3\xa8s\xac?\x917C\xd7\x85\xff\xa9\xbf\xc3\xe7O\xec\xadP\xc7\xbfMN M\xc1|\xc4?\xdf\xbc\xb4\xb8BE\xcf\xbf\xa3\x04\xe2|lt\xb5?\xe9\xc8\xe9\x8c\xd1A\xb3?\xe9e\xd8\x04\x83^\xc0\xbf\xd3\xff<\x1eZ\xf4\xd1?G\x1cj\xdd\xfcz\xb6\xbf\xd2\xdd\xafy{*\xa4?A\xa5\x13\x04r\xf7\xc0?\xef\xdd\xaf\xc3\x90\xb1\xd1\xbf\xe37\x17\xc2\x1e\xed\xb6?\xc5\x96k6\xd2\xd1\xc7\xbfP\x08z\xff\xc52\xbc\xbf\xcd\x1c\xe4\xfbB\x85\xce?\xcbR\xb2H\xd1#\xa6\xbf"I\xb8Ph/\xd4?\xe5^\xa2\xad;\xb8\xc0?\x85\x8bD\x0b,~\x9f\xbf\x07\x0c\x19q/\x8d\x93?#\xb9\x97[\xb2\x10\xd7\xbfX\xce\xa1\x85\xfci\xc7\xbf.J\x89u\xb1!\xc1\xbf\xa50\xc3Q\xd8F\xb2\xbf)\xbfw\xdf\x12\xba\xcd?\xfa\'\xab\xc8\xc8\xae\xc3?\x1e\xd4,\xe2\x9f\xbd\xcc\xbfr\r\x02c:\t\xc8?\xfd\x19\x8e\xcf\xaa\x1c\xc1?\x9e\xe7+\xc9)\xb3\xc1\xbf\xa61\\\xd3\x18\xa3\xd5?s*\xff[\x92\xd8\xc7\xbf\x030\xa5\xaa8B|?\x15$\xedM\xc0\xef\xbb?\x90?\xeb\x10\x070\xd4\xbf\xa1\x8ch:\xc5L\xc2?\xd9\xa5\x7f_\xf2N\xc4\xbf\xec?,z\xae\x11\xc6\xbf\x00\x9d@\xa9\xa8\xab\xd1?\x1e\x93\t\xf9]\xf5\xbb\xbf\x8f\xa2\xaf\xbb\xab\xc9\xac?\xc8\x86\x82t\x0c\xd7\xd1?\r[\xe1!\xc6\x1f\xc9\xbfe\x9e\x1f\x0eQ\xad\x9b\xbf\xdf\xc2\x1c\x1b(\x7f\xa1\xbf\xcd\xe1\xcd&/\x0c\xcf\xbf9\xf9\xca\x16\x88\x0f\xcf?4\xb5*(\x03i\xb3?\x90w73A\x16\x9c\xbfY\xc5\x95\x82\x8b\x18\xc5?K\x9d\xb1\xab\n\xd0\xcd\xbf\x01\xb1\xf6Z\x89\x89\xa1\xbfl\x0b2!\xf0\x91\xb1\xbf\nS;\xd4\x17W\xb7\xbf\xee: \x1b\xd0a\xcc?^\x0f\xc4g&\x91\xb2?\x82A\xc6\xae\xf3)\xc1?\xcb6\xa5h\xd3M\xb3?:(\xdd\xee\xfaa\xc3\xbf\x95k\xf9\rC!\xbb\xbf+h\x88tk\x9e\xcc\xbfaC)\x97\x12\xda\xc0\xbf>\xdf\xb3l\xca\x1d\xd0?:".\x94\xadI\xc3?\xda\xac)\x0b\xa4\xf4\xca?\xee\xd5\xaeXk\x19\xc8?_\xb1R\xa0.\xd8\xc3\xbf\xbc/\xb1EL\x8f\xba\xbf3\xee4\x1b\xc6{\xca\xbf\x9d%\x04zg\x10\xd2\xbf]e\xde\xf1\xf0\xeb\x93?\xd6\xffx\xe0=i\xa8?\xe0\x04(z\\\xa9\xc9?\xb0\xf87\x03#}\xd6?U\x86Z{\x1f\xfc\x99\xbf\xaf\xa4\xcf\xf20G\xb8\xbfC\xed\x96\xb7\xc0\xe8\xa7\xbf\xf5\xd7\xfb\xda\xac\xda\xd3\xbf\x17\xfb#\xe0\x8b\xa5\x80?P\xa8\xef\xd0F7\xac?\xba*\xbdtn\\\xa5\xbf@\xa6?\xa5\xdd\xc9\xd0?\xa4\xb5\xe8\xbf\xc8\xf4\xb6\xbfS\xa8^o\x90\xb4\x96?qq\xf9Uj\xfc\xc2?\xc9N\x14\x08J\xb7\xd0\xbf\x9f?7\x9d\x01\x14\xc2?\xf3^\xd6\xba\xb5\x9f\xaf\xbf\xbb\xee\x13\xb4\x8aE\xc6\xbfu\x93\x1b\xbc,\xff\xc7?\xc9\xb1\x12\x80\xf7`\xc6\xbf|$\x8e\x98\xbc\xb5\xb5?C,\x83P>2\xc4?\x8d\xf9YH\xba\xaf\xba\xbf\xcdw\xfcJ\xbf\x06\xb9\xbf\xb0\xce\x15\xa4&\xd9\xbd\xbf\x93\xb9\x8a\xb3+\x1d\xbf?\x0f\x8a\x8fUr\x9b\xc4?\x11\x88\x17\xc1#\x14\xb0?P}\xdfU\xc5u\xc2?ci&\xb7\xd6\x05\xa9\xbfVD+]sy\xc8\xbf\xafb\xe6a;\xf7\xbb\xbf\x9b\xb8u\xf7u\xa0\xc5\xbf\xf5\xefN\x83\x82T\xa3\xbf\x80@\xf7;\xca\xfc\xca??ng;Vx\xc0?Q"\x0eH\xc2\x96\xba?\x86\xc3";\xd5W\xb8?\xd5\x7f3\x01\xf2\x99\xd0\xbf\xa8\xac\xb2\xd7g\xad\xb8\xbf\xe4\xbb\xe8bj\xa2\x98?A\x06.\x93gH\xc5\xbf\x8d\xad\xbdSm\x8e\xce?%l\x8a8Py\xb6?\x92\xf6\xf9\xd97\x80\xb6\xbf\x11U\xba\xcc\x12\x86\xd1?\x1aQ\x88J\xbf-\xd0\xbf5\xfe\xcek~\xb8\xc9\xbfBk\n\xab\xb3\x89\xc0?9b\x94b\xf0%\xd6\xbf\xe8\xde\xc5\xdf\xb8\xe2\xca?AA\x99\x9cAb\xd1?\x04\xb2K\x13\x92\t\xab\xbf=\xee~\x8d\x9b\xd6\xd1?-\\X\\H&\xbb\xbf*M&Hb\xbe\xcb\xbf\xa09\xb1\xbf\xc1p\xe9\xe7\xa0\xd3\xcf\xbf\xb3\x1co-\xd2\xa2\xc6?;\xdd\x10\x7f\x1ac\xcc?\xd1\x02@\xce\'8\xab?^\x98\x97h\\\xcb\xd3?(P\xd1\x89u1\xc4\xbfqAA\x97\xf8\xfc\xda\xbf}\xf9R\xb6~\xa5\xae\xbfj\x13\xb4ll\xfc\xad\xbf\x95.\xed\x9b\xe5\'\xba?u\x1e*\xc2`\xfb\xd4?\xa5\x0fHR]\xf8\xc9?\x8fCt@\xc1\xa6\xb9\xbf\xa9\xc0\x1d\x96\xd0r\xc0\xbf\x16kG\xe6i\xac\xb9\xbf\x1c-\xc3\xac\xa5\xbf\xd0\xbf2\xacD{\xb9\xf8\xab?>\xad\xb1\xc0\xdb\x12\xca?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I34 +tp132 +g22 +I00 +S'S\x1ab\x96cqh\xc0\xde\xf4\x0ea\xd9\x19l\xc0\x05\xe8\x0f\xf6_\x15a\xc0\x9a-\x8fU\xf8\xeck\xc0\x8fc\xf3f\xa7~S\xc0\x92\x00\x81s*\x08k\xc0u4\x94\xe6a\xfb4\xc0\x14B\xe1\xf5\xe4hi\xc0\xffP#y\xdd\xe9?@\x84\xa6\xd7\xb2\xcfwf\xc0\x9b.6\x93\xcd\x8bS@\x9e5BOI\xf8a\xc0\xcf\xe9\x84\xafk:]@\xe6\xde\xa3\xf8\xac\x02Y\xc0\xb1\x95.\xdc\xe3qb@\x97\xff\x8a\xfc\xa7\xd4I\xc0\xb2\xaa\xfeP}nc@nM\xb8-e,\x05@\x0fJ\x0e\xf3\xcc\x19b@k\xe2\xe4jz\xf5K@\x18\xefT\xb8\xff7\\@\x95\xc9\x0b<<\xbbY@X\xfb\x86\xcd\x96gR@\xf1\x0e\xcf\x9f\x195b@JH\xc7\x9b\xad\xe3:@\x9d\xc5?7\xba\xd7N\xb0\xeb\x9f?\xd6\xfb\xdd\x85\x94\xc0\xca?f\xc8\xde\x0bM\r\xa0\xbf\xca\xa5\x13r\xe3\x12\xce?\x84\xf0\xadd-&\xb9\xbf\xed\xbd\x89\xbe\x87\xbe\xcf?2f\xd1\x80(?\xc5\xbf\xbfB\xc4t\xf3@\xd0?:\x8b\xba\x01=\xfc\xcd\xbf`x<\x8e\xdbO\xd0?+\x8c\xe0\xb0\xf2\xad\xd0?\xba\x1c\xd8\xce6\x04\xcd\xbfs\x03gNO\x93\xd0?\xe3t\xf66\xaeG\xc4\xbf\xa5L,v\x80\x0b\xd0?\xdf\xb5l\x8cu$\xb7\xbf\xd3\xdcC\xc7\x07*\xce?\xab\xfe\xf3\x14m\xe8\x98\xbf.\xc3 \x90\t\xac\xca?\xe0\x84\xd3\x7fD\xf1\xa2?>\x8a-\xb5\x0cU\xc5?2\xee\x98\x91\x114\xb7?\x02J\xc7y\xaf\xb0\xbd?F1?/;Y\xc1?\x0c\x86\x8e\xa2\xf4\xa9\xae?9\xa0\xd8\x1eh\xe5\xc5?\x11oJ\x17\x9c"i\xbf\x8f\xf3\xa5.E\x11\xc7?\x89R\x90\x1e\\\x98\xb0\xbf{\xca\xdb\xb0\xd5|\xc5?t\x10]6\xc7\x8b\xbe\xbf\xb4b0\xf4\xd7\xbf\xc0?\x00x\xb0\x05>\x9d\xc5\xbf.\x8c/\xa4-\xd9\xb5?\xd6\xfb\xdd\x85\x94\xc0\xca\xbf5\xba\xd7N\xb0\xeb\x9f?\xcb\xa5\x13r\xe3\x12\xce\xbfg\xc8\xde\x0bM\r\xa0\xbf\xed\xbd\x89\xbe\x87\xbe\xcf\xbf\x85\xf0\xadd-&\xb9\xbf\xc0B\xc4t\xf3@\xd0\xbf2f\xd1\x80(?\xc5\xbf_x<\x8e\xdbO\xd0\xbf;\x8b\xba\x01=\xfc\xcd\xbf\x18\xaf\xd2Hh\x0b\xcf\xbf\\|\xff\xd3\xa9:g\xbc\x1b\xaf\xd2Hh\x0b\xcf\xbfG\x83\xe9\xbd\x01\xac\x87<\x18\xaf\xd2Hh\x0b\xcf\xbf\x84=\x86,\x9d\xf0\x8e<\x1a\xaf\xd2Hh\x0b\xcf\xbf;\xca\x04\x93\x8eZ\x98<\x1a\xaf\xd2Hh\x0b\xcf\xbf\\\xf7\x12\xbf{\xb1\x9e<\x1c\xaf\xd2Hh\x0b\xcf\xbf_p\xffb\xd4\xd0\x9f<\x1d\xaf\xd2Hh\x0b\xcf\xbf\xe5D18nF\x9f< \xaf\xd2Hh\x0b\xcf\xbfF=\xbe\x10\r=\x9d<"\xaf\xd2Hh\x0b\xcf\xbf\x1f\x02\'.\xc6\xd6\x96<"\xaf\xd2Hh\x0b\xcf\xbfi\x12\xa9\xce@H\x8c<"\xaf\xd2Hh\x0b\xcf\xbf"\xdf[\rWSk<"\xaf\xd2Hh\x0b\xcf\xbf?\x85\xfaqDj\x83\xbc"\xaf\xd2Hh\x0b\xcf\xbf\xc2\x19\xa1\x1f\xb4\xda\x94\xbc"\xaf\xd2Hh\x0b\xcf\xbf\xc8g\xbd`\xb8\x95\x9f\xbc \xaf\xd2Hh\x0b\xcf\xbfZ5$\xc6{\xe6\xa3\xbc \xaf\xd2Hh\x0b\xcf\xbf\x90e@\x9bh\x03\xa9\xbc\x1e\xaf\xd2Hh\x0b\xcf\xbf\x94K\xd9R\x91\xb5\xad\xbc_(]>\xa5\x92\x89<\x16\xaf\xd2Hh\x0b\xcf\xbf\xd8g\xc5\xd2y=\x91\xbc\x1b\xaf\xd2Hh\x0b\xcf\xbf\xdd{\xf8\xb8\x1d\x97\x90\xbc\x17\xaf\xd2Hh\x0b\xcf\xbf\x9e\xae\xa1\xe5!\xeb\x98\xbc\x17\xaf\xd2Hh\x0b\xcf\xbfb7C>[\xaa\x9d\xbc\x1a\xaf\xd2Hh\x0b\xcf\xbf\xec}l,\xfba\x9e\xbc\x1a\xaf\xd2Hh\x0b\xcf\xbf\x0f\xb0\xf2~\xcab\x9e\xbc\x1d\xaf\xd2Hh\x0b\xcf\xbf\x93}\xc8@\xfe\x85\x9d\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf6\xd0\xe8\xb5\xb0 \x97\xbc \xaf\xd2Hh\x0b\xcf\xbf\x91c:\x15\x83\x95\x8d\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\x89\xa9\xc89\x89\x88p\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\x88\x189\xc9G6{O\x94\xbf\x1d\x89f@)\x17]m2\x0b;\xc0i\xc5\xbcifUi@\x9c\xd0\x04\x87f/U\xc0%S\x8c4\xa3\xbdj@\x8az\xa6n\xd8\xe5a\xc0\x82/\xc9\x0c7bk@\xd2\x9e\x91\xeaQBi\xc0\x8eK\xa3ET{k@' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x01\x00\x00\x00\x00\x00\xf0?\x13ZQ4)\xbcH\xbc\x00\x00\x00\x00\x00\x00\xf09\xb0\x8b\xeb\tq`F<\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\x00:\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I17 +I2 +tp89 +g22 +I00 +S"S\x1ab\x96cqh\xc0\xde\xf4\x0ea\xd9\x19l\xc0\x05\xe8\x0f\xf6_\x15a\xc0\x9a-\x8fU\xf8\xeck\xc0\x8fc\xf3f\xa7~S\xc0\x90\x00\x81s*\x08k\xc0u4\x94\xe6a\xfb4\xc0\x13B\xe1\xf5\xe4hi\xc0\x00Q#y\xdd\xe9?@\x85\xa6\xd7\xb2\xcfwf\xc0\x9b.6\x93\xcd\x8bS@\x9c5BOI\xf8a\xc0\xd1\xe9\x84\xafk:]@\xe6\xde\xa3\xf8\xac\x02Y\xc0\xb1\x95.\xdc\xe3qb@\x93\xff\x8a\xfc\xa7\xd4I\xc0\xb1\xaa\xfeP}nc@\x97M\xb8-e,\x05@\x0fJ\x0e\xf3\xcc\x19b@n\xe2\xe4jz\xf5K@\x18\xefT\xb8\xff7\\@\x95\xc9\x0b<<\xbbY@Y\xfb\x86\xcd\x96gR@\xf2\x0e\xcf\x9f\x195b@NH\xc7\x9b\xad\xe3:@=O\x94\xbf\x1d\x89f@'\x17]m2\x0b;\xc0g\xc5\xbcifUi@\x9b\xd0\x04\x87f/U\xc0#S\x8c4\xa3\xbdj@\x89z\xa6n\xd8\xe5a\xc0\x80/\xc9\x0c7bk@\xd0\x9e\x91\xeaQBi\xc0\x8cK\xa3ET{k@" +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I17 +I2 +tp106 +g22 +I00 +S"\xc6\xe6\xc5\xf1T\xecd\xc0u\xd9&F\t\xa8l\xc0I:*\x89a\xa5\\\xc0\x8b\xe3\xe7\xb5\xe0\xc3k\xc0]\xa0\\\xf1\xb3\x9fO\xc0\xbc2\x9d\xd6\xed\x97j\xc0\x00\x99L*\x82\xaf-\xc0L\x97\x01\xd6\xa6gi\xc0\xff,\\+1wA@R-\xb9\x1d\x1e\x96h\xc0\xe5\x9eP\td\xaaR@\xa1\x01\xbc\x1b:\nf\xc0f\x10W'6j[@v/L\xd6\xc8kb\xc0I=\x9aUZ\x91^@un\xc3\xcd\xd0\xa5U\xc0x\x87\xd7\xb3\xca\x1b\\@\xe0\x18!\xab\xacF$\xc0\xea\xdc\xf03\xa1o\\@\xe2\xa4(\xe9\xb9\xc1S@L8v\xd7{\xf9X@u\xb2\xc2\xd1H)a@\n\x05P\x06\x08\x0eP@\x9dk\xa4{\xfe\xeef@\xde\x1c\x80\xbaS\xb88@\x1e\xb1-\x7f\xdc\xeei@%\xcf\x97\xbf\xfc\x00=\xc0#\xcf;\xec\x9aPk@\xd9\xbe\xec8C6S\xc0\xa1z \xed\x91\x97k@Z\xd2\xfd\xd8\xcd\xb6^\xc0\x9b\x11\xc2\x05\xf8}k@!\x1e\xd0\xf1\xb5\xf8d\xc0\xb80\xbbI\xcd@k@" +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I20 +tp113 +g22 +I00 +S"N\xe7x\x18}\xf4\xaa@C\x96\xe4\x92uG\x9b@\xf5\x9cv\x16\xd5\xce\x83@\xfc\x9bNx\xecmt@\xf7\x8a\xbe\xc4\xc4|l@q\xad8\xee\xbc\x07b@\xd8\x18\xc2]\xcfs_@\x0b\x98\xe3\xdc\x1b\xf2W@M\xfd4wT]O@^\x91\xa9U)tF@\x08\xf1\x95\xda\x90\xa6B@KcY\xb0PM:@\x99\x15\xd2\x9e\xe5\xec5@\xf1\x18\xa2]m\x070@[\x1aP\xd5\x86\xf6-@\x9c\xc4\xc6\xb4\xdaE'@\xe7\xce\xed]Q\x10%@\xca\xb9\xab\xa7\x87h#@\x9a\x80\x03\xe3\xb3\x94!@\x01\xa7\xe6\xb3o' @" +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I11 +tp120 +g22 +I00 +S"\xe9p\xcce\xf1E\x1d@{\xfc\x00\x83U\xda\x1b@\xf9\xed\xa7\xe5S\xe0\x19@-\xf5M\xa2P=\x18@\xd9\xb0\xb39\xf2V\x17@w\xee\x82\x8f\xd6v\x15@\x05wa\x91\xf7H\x13@\xd5\xa8_\r\x1a0\x11@M3\x00\x8c,\x9f\x0f@5\x8cm]\x8f\x8d\x08@\xb6\x0b\xb6Y'\x94\x04@" +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I20 +I34 +tp126 +g22 +I00 +S'\xfe\xb1\xb0gi%\xd6\xbf.6=\x16\xb8X\xb5\xbf\x9aG\xe7\x0b\xf3\xeb\xce\xbf(\xbfUU\x07\x9b\xbb\xbf6\x13bo\xa8\r\xc1\xbf\xd5\xd1`\x04A\xe4\xc2\xbf\x9d\xffn\x9b\xc2 \xa1\xbfmS\x1b\xad\xc0C\xc7\xbf@\xc0%p\x948\xa1?\xf4XM\x15\xba\xe4\xc0\xbf"^]\xe3\xf0>\xb0?U\xa5Y9\x10\xc6\x80\xbf\xe6\x99\xd6\xc1\xf7\xe3\xae?W\xafF\xce$\xab\xc3?\xc2\xed\xa6bm\xfc\x9a?\xed(x c\xe9\xd3?Z\xa4\xa8>\x89\x9e\x85?\xfc\xdc\xf8Z\x96\xc5\xd7?n\xafg#\xa6O\x81\xbf\xe1\xfd_\'\x86/\xd4?\xe9\xaf=\x11\xb3\xf5\xab\xbf\x9d\xe9"\x0b\x96\xa6\xc5?u\x01\xc3\xa2\xb6\xd1\xb2\xbfUR=\xa6\xd5\xc6\x90?F\x9a\x16#\x92\x93\xab\xbf\x81=7\xb9N@\xbd\xbf\xeeOF\x1f\xfe\xba\x90?/\xab37\xca\x87\x9f\xc2\xbf\\\x1e\xba}\r\x0b\xc3?V\x1d\xcd\xbfm7\xc3\xbf\x8c\xea*T\xd92\xb8?\x83\x0e\xb4\xb1.\xd4\xc4\xbf\xc62M\xfa\xaaZ\x9f?@\x8aR\x9f%+\xc6\xbf\x12\xe0\x8b\xe2\x02/\xaf\xbfY\x16\xd8\xb5X\xe2\xc2\xbf\x83\xc61\xb5\\v\xc8\xbf\xc6\xd7N\xbf\x95\xdf\xb2\xbfv\xcak\x06\xc4\xcd\xd3\xbf\xc9\xf0\xd7\xaeN\xaf\x90\xbf\xa0\x9c\xda\xe8R?\xd6\xbfi\t\x80\xe6\x84f{?\xf3\x16N\xa4\xad\xde\xd4\xbfy}\xda\xa0\xe8\xd8\x9d?\xdc2;\xb1%\x93\xca\xbf8\xdf\xab \xa8)\xb4?^\xca\x1av\x1bz\xb0\xbf\x05\xa3\n#*\xca\xc1?\r\xa9\x9b\xc6\xa8\x9e\xa6?\xf36\xed\xff\xe6p\xc4?z}):;\xf7\xbb?\x15d\x86\x8a\xae\xa5\xc3?\xa9R\x86\x88[\x8b\xc4?l=\x18\xaf\xff\xdf\xc2?\xdeD\x86c\xd8q\xca?\x1f:8\x1b\x1b\x94\xc3?w\xca`M@L\xcf?\xd6\xde~\xc7\xc6\xa3\xc5?\x1a\x9c\x8f\xa6P\xec\xc8?\xe0r\xd0\x04+@\xcd?.\xedVjF\xa0\xad?\x9d\xb4\xf9\xcd\xe5\x9c\xc8?\xfc\x06-*\x85\xe6\xb1\xbff\xb4.C\xdd]\xbe?\xd6\x95\x16=,\xa2\xc1\xbf\x87\xfc\x1b\xab8\xc9\x88\xbfP\xa3%\xba\xcbf\xc0\xbf\xdb\xb6\x96>m\xeb\xc8\xbfc\xb6\xe1"\xc7^\xb2\xbf\xa8Lt\x05\x137\xd5\xbf\xe5:t\x99\x87RS\xbf\xdb\x07\xff\x05!\xb0\xd5\xbf\x9b}\xe5-\x84\xdb\xb2?L\x89\x8e6\xa6\x16\xcb\xbf\xce4g\tl#\xbd?\xa0>qd\xfb\ts\xbf\x90\xc1\xe9\xec\xb9Y\xbb?\x94K\x89\xd5Y\x85\xca?\xf8\xe8\xe3\xc5\x11\xde\xab?w\x95\xa4!\x1c%\xd5?\xb1\xaa\xca6\xe9\x9e\x9f\xbf\xb6\x88m\xbfi\x95\xd4?\x9d\xf9qL%\xde\xbc\xbf\x11:U\x15\x16\xe9\xc9?\xa2n\x12\xd6\xd1\xd4\xc2\xbf\x82\x16\xd4\xe4dj\x96?f\xaf-\xf0\x97V\xb7\xbf\xe3(y\x04^\t\xbc\xbf\x8c"\x13\xba\xd8\xa0\x99?\xbc\xce3\xddq\xa9\xc7\xbf\xd0(6\xec\xf9\x08\xc5?h0\xad\xecG\x19\xce\xbf\xdb\xea\xc6t\xa6D\xc9\xbf\xa4\x1c\x8d\xefq}\xd0?\x8a\xf4gsd?\xb9\xbf,\xf5\xee\xba\x0bR\xc2?b0s\xfb+\x16\xb1?\x9c\xba\xef\xfe\xa9:\xaa?\x94\x81\xc8\x97EG\xca?\xf9P[\xd4\xf6\x1c\x93\xbfz\xdb\x8a\x1fm\x17\xd2?\xbb`\xfc\xad<}\xa4\xbf\x80\x9b\xbe\x07\xb8\xe1\xd3?*\xc0\xee|\xc4,\xb0\xbf=\x1f\xe6\x9d\x8e\xe1\xd1?}\xba\xd4Bw\xae\xbd\xbf{\xc6\x12\xb6\x11\x06\xbf?T\xf9\xdaVCx\xc3\xbf\x0f\xf5\x0f\xff\xb0\ne\xbf\xf8\x9d\xc2\xd7*\xb5\xc4\xbfQ\xff\xbc=\xc3m\xbf\xbf\xf0\x8c0\xce\xa0\x11\xc2\xbf\x03S\xdc\xc9\xbc\xdf\xd0\xbf\x1d\xf8\x0b\xec\x01b\xbc\xbf\xc3\x1a\xe3Rc\x0b\xd4\xbf\x94\xe8R\x00\x8bj\xa7\xbfq\xf4\x0c>x\xc1\xd2\xbf\xa42\x96\xf7\xca\x9a\x88\xbf\nK\xc1\x9ev\x95\xcb\xbf\x1b\x81p\xf6\xbe\x9e\x8c??y\xba\xec}\xbc\xb3\xbf\xfbEkCN\xe3\xb1?Qd \xdf<\r\xb6?\xe3\x10I<\xbe\x1f\xc0?\x1b\x15\x92\xf1\xe0\xaa\xcd?+\xa4#\xe1\xff\x8d\xc9?|\xf3\x14\xcc\xae\xf1\xd5?\xb2\xab\x84\xba%\x99\xa3\xbf\x7f`\xc7\x9b\xc7\xf1\xc3?0\x94\x0c\x84\x92\x96\xb5\xbf\xe1{.\xfe\x81O\x9d\xbf\x14\xb3\xde\xd8\n\xc6\xc1\xbf9\xba\t{\x8b\x8e\xc7\xbf\x03C\x91d\xe3I\xbb\xbf\xa7\xaa\xdf\x9d\xb2\xc8\xd1\xbf\xdc\xe2\x13\x8f\x158\x88\xbf\x9d\xa3\x9a\x85n\x1f\xd0\xbfY\x94\x90\xf4\x9az\xb6?\x86\x93F\x81\xd7\x1e\xb6\xbfQ\xaf7B\x95\x05\xc0?\xc5Qz~\x83U\xcb?\xb1\x9d3N\x96<\xba?~Q\xb5=F\xfc\xd4?\xa2_\xe1\xc3\xb3I\xa8?]\xed\x80(\xdb\xba\xcd?n\xfe\x1c\xc8Ug\xa8\xbf6=\xc8\xf9:h\xb0\xbf\x84\xc6\xfb\xdbp\xb0\xc3\xbf\xc4E\xdf\x17\x81\x99\xce\xbf-\xd6N\n\n\xa1\xc7\xbf\x81\xd5\xce\xac\xfc\xa6\xd1\xbf\x83~,j\x00\x92\xb8\xbfNQ\xab\n*%\xc7\xbf\xa0B{&\xd5\xb9\xa9?\xe0a\x05\x98C\xa7\xab\xbf\x0bL\xe2\xf2\x8b\xa5\xc4?\xcd\xff\xbe\x0b\x0c\xa8\xbb?}\xedp\xe7\t\xf3\xc3?\xd4?\x9f"S\xc8\xd0?\xe6\xf8\xa3)\xbb\xd9\xc0?\xf0\xf1U\x96\xb6\xb2\xc1?\t0:}\x85\xcd\xe0?\xba\xde\xd1\x9c\xa91\x9f?Ed2\x00\x85\x8d\xcd?\x93\'\xa1\xe3l\xa6\x8b?V~\x8fW\xfbW\xbb\xbf60\x8a5\xf7\xf6\xab?\xa6\x08V\xfe\x98\xe4\xd6\xbfT\xbf\xec\x8f~e\xab?\xdai\x90c\x85@\xd7\xbfk\x06\xe5\x8b\\#\x9e?!,\xd2}\xd2V\xc9\xbf\x08r#h\xde\xa7\x9e\xbf\xa8h\xaa\xdf\xe7\xec\xb3?U\xcb\x02\x9cyf\xb0\xbf\xed/X\xe3\xc2\xa0\xd1?\x0f\xc5\x99\xbdW\xec\xb0\xbf6\xd8q\xb1\xff\xaa\xca?\xa0\xd2\xc3\x14b\xca\x90\xbf"2\\\x0809\x93?\x15\x84o\x95[\x15\xae?\x00\xba\xe9\xf3\xe9\x8e\xc4\xbfsV\x057o\x9c\xb9?w\x05\x08\xd7MJ\xca\xbf\xdc\xd9an%\xa9\xb7?\xe2\x8c^\xc1\xa1\x07\xbe\xbf\xe1\x94\x01}\xff\x10\xa5?\xaf\x0b\x18m\xb5\xe4\x9b?I\x93\xf6\xd7}\x13\xb0\xbf\x87yj\x12%\xc3\xbc?}\xb2\xd0\xae\xbb=\xc5\xbf\xb22?\xd7-j\xb0?jN\x1d[\x11|\xca\xbf\xc3\xc3p<\'\xb7\x9f\xbfc=\x03\xe4X\xc3\xa5?)\x81\xc9\xa5\x9f\xdc\xc4\xbf\xde\xedIWa\xf9\xc0?Vq\x18s\x14\xbb\xb0?\x9b\x07\r\x03\xbe\xdc\xb6?P\xbd?\xa2\xf4Q\xcd?\x17\x93\xcb\x970^\x97?H\x83ph\x02\xc9\xc4?\xb7dz\xbc\xd5(\x93\xbf[Z\xf3w\xf79\xad\xbf\xad\xceH\xeeb\xff\x9b\xbf\x91\x1e\xbf\xc2\xc9\xa4\xce\xbf\xfe\xbbN\xc7\x8f5\x96\xbf\x8d\xf7\x1f\x10\x99w\xcc\xbf\x8e\x88\xf35\x9b\xd4\x9b\xbfEb\xf3\x9e6l\x88\xbf\xa5\xdf\xa9\xef\x89\xfd\x97\xbf\x91\xb6i3W\xe8\xc8?c\xbb\xdc\xd8\xcch\x92?\xd8\xfcX_u\t\xcc?\xe9\xdc5\xe3\xeb\x05\xb4?$y\xe8\x8f\xf5\t\xb8?\x8d\xdf\xfd[\xeaz\xa6?Jf\xa4\xa7\xfdx\xbd\xbf\xa0\xf9\x19\xf5e\xca\xa8\xbf\xed?!\xcf\xe5e\xd4\xbf\xb3VN\x19\x8c\xc7\xb2\xbfn3\x87\x18\xa4\xf6\xd8\xbf\xfd\xfd3\x17J\xe9\x9c\xbf\xab\xc9%\x19\x88\xb0\xc6\xbf&\x0e\x06\xae\xfbL\x9f\xbfg\xe9\xed\xa2\x90\x82\xc9?\xee\xda\xf5\xd2\x00p\xc0\xbf9\r\xbfN\xa1\x00\xe1?\xf7\tzV\xfaw\xcc?"\x04\x05\xf3\xbfR\xb2\xbf\xa8\xb8\x97\x07?\x05Z\xbf\x01\xf3\xf6c\x80?\x8c\xbf\x17\x1f\xaa\xc6e\xd4\xcc\xbfH\xca\xec\x01\xfa\xf0\xb2?\xa5\x8e\x96\xfay\xe2\xd3\xbfFi\xf3\xecm\xa0\xbf? \x80\xacO\xee\x96\xc3\xbf\xfa$a\x83O\x85\x91\xbf\xc1w\xe4\x96\xc8\xc4\xc1?\xfb\x84\x15\x82\x05\xcb\xbd\xbf]\x9d\xdbW\xf2Z\xd9?%\xf9|(=\xa0\xb7\xbf\xd3=\xf8N\x1di\xd4?\xa8K7\xc7p\xff\xb5?\xb6\r\x0b\xa1\xa1#j?W\x82\x9a\xd1h\x1b\xbb?\xd3\xf2\x07\xb28]\xd3\xbfGS\x00\xc2Y\x90\x9d?r\x10\xca\xdd,\x19\xd6\xbf>\x16H\xcb&\x10\xac\xbf.\x1a\x86\xfa\xd6\xb0\xc3\xbf\xc3F\xd2\xbc\xad\x83\xaa\xbf\xa6\x19\xd3\xf1].\xc2?l) \xc3\x87\x93z\xbf\xac\xb7\xb8u\x92 \xd2?\xec\xd1\xc1`n\xa1\xa4?\x7f\x86 G\xe9E\xca?M\x12;6\xa8\x9b\x96?\x9al\x8a\x10@\x999\xbf\xc7Z\xfa{\xf5^\x8c\xbf\xec!*\xa2\x1b\xd4\xcb\xbf\x1e;\xe9vb\xc3\xa5\xbf$\xdc\xcav\xf4w\xce\xbfyP\xfct\xef\xad\xb8?\xe8Oo\x7f\na\xa0?\x9a\xab\xd6\x1b\xa9\xfd\xa2?\xe2\xaf\xa0\x7f\xbe\xd8\xcf?\xca\x05\xc3%\x10\x99\x9e\xbf\xe5\x1b\xdc\xb1\x98\x7f\xd0?azy\xe6\xcd\x7f\xa4\xbf\x10\xf3E\xa3L\xa4\x95?s(\x97\x0e\xad\xf0\xa4?\xbb9\x8f\xe7=\x18\xce\xbfd\xef\xd9\xca\x91p\x8f?\xe2\xf3y\x14\xe7\xfb\xd1\xbf\xe8q<\xce\x1d\xf6\xc1\xbf_\xfe\x98\xdd\xf0\xf6\xb3?g\xbaj\x1be\x82\xc9\xbfe\xe5mYf\xa9\xd1?\x92\x92\x83\xd2\x815\xa4?\x97,\xa6Q\x03\xc1\xb8?\x15-\x8d\x99 ]\xce?\xfb\xd0\xeaPL\xbd\xd1\xbf\xe8\x97\x91\xb7\x8f\xca\xb6?\xaf\xf9\xc4}u9\xd3\xbf\x93%\xe6\xbf\xb0\xbf\xb7\xbf?H\x99\xc09\xc2_\xbf\xa6\x88\xb5\x08<\x1a\xb6\xbfA\x9c\xae\xae\xd8\x95\xd2?Q\xf8\xb3\xcd?\x82\xac?\xc4\x9da\xf5*\x93\xd1?DE\xfeW\x12\xdc\xb9?&RV\nq\x97\xa0?\xae93\xeb\xc3DF\xbf\xad\x0eP\xea.\x8b\xd1\xbfI\x89\xe6\xb5Ir\xbf\xbf\xe4\xe9\xcf\xee\x1f)\xce\xbf\x94\xf3,f\x17\xf5\xd3\xbf\xb2\x1e\xf6I\xa1\xd6\xad?\x98"\xb8*`\xde\xb9?\xfa\xe1\xb72\xf3N\xc4?nS\xd9\x128\xb5\xd8?\x03\x95q\xba\xc9\n\xb0?\xe4\x7fH\r\x8f\xef\xcc?`o\xeaL,\x00\x89?\'p\xf2\xa4\xf1[\xc8\xbf\x89\xce\x05\x8f\x9c4\xb0\xbf,:\x8a\xbd\x7f\xd8\xd5\xbf\xfd\xb9\x0cB74\xc0\xbf\x16\r<\xb4\x02s\xae\xbf\xedED$\xc5\x00\xa8?\xb7\x8a\xcb{\xf5Y\xd2?\x8cb\x0f\x9f:|\xb1?\t\xa4L\xc7\x9d\xbf\xc8?h\x8a\xf7a\x1f\xf8\xab?\xa1^\xd1\x01\x9e\x8a\xc5\xbf\xb6\x1c\xef\x0e\x04\x1e\xa6\xbf\x8aVu\x98\x0f\t\xd4\xbf\xa8\xf4\x07e\xb2T\x88\xbf @\x07%\xcf5\xb9\xbf\x85\r\x86\xb0\xb31\xa8?\xf6\xc9B\x7f\x95\x8f\xc7?\xdc:\x1f-\x94\x1f\xac\xbf\x95\xf8\x1c.\xa7z\xcf?\xaa\xae.\xaa\x83z\xb7\xbf&\xa7\x88`\xbf/\xb7?\\\xe8c\x1fm\x87R\xbfRw\x0fo\x81@\xb3\xbfDw)\xb1\xc1\x97\xbe?H\xd1\xa7N\x0e\xf3\xc3\xbf\x9c\x06\xfa\x90\xae\x0f\xa2?s\xbdd\xc3\x1ef]\xbf\x808\xf5\x9f(4\xae\xbf\xbd\x93%]\xc7\xc2\xc0\xbf\xbb\xcc\x90\xc5\x87\xbc\xa1\xbfg5\x8a_s\x9e\xaa\xbfO=\xe0\x8d\xb0\x89\x81\xbfV\xfc \xbb\x89\xd2\xc6?\x92\x06\x0b\xe8\x01\x89\x92?Z\xe3\xeb; \xa9\xca?6?\x04\x07\xa1\xbd\xb3?&\xe1\xdb\x01p\xe6\xa2\xbfq\xa2}\x90\xbdm\xb9?\x8c\xe4\xd6N\xa3\x8b\xd1\xbf\xcd\x98_C\xea\xdf\xb9\xbf)d\x8b\xd43}\xc5\xbf|\xd2\xce\xb4\x18f\xc2\xbfn\xda\xeb\xbf\xf6]\xc4?\xfe\x1aL\xe7\xc2M\xaf\xbf\xabOj\x1eb\x0f\xd3?\xf0)\xa7\xaf\xb8a\xc5?R\xbe~\xf6\x1d\xb5\x83??sQGq\x12\xb8?\x90\xac\xb5\x8b\xba\xf8\xd4\xbfw\xe4\x93\xe2\xfc\xa2\x9d\xbfa*\x9c\xe1\xb1\xb2\xd1\xbfS\xae\x05\x814\xc0\xaa\xbfD\\g\xf5Na\xc4?\xf2(\xe9\x8f\xe5\xba\xbb\xbf\nm6+\xd7\xea\xdb?=B\x95\xca\xef\xcd\xb5\xbf\xe3\x85s==u\xc3?\xa2\x91\x13\x9cp\x91\xc8?\xcd!M\xce\xe8J\xd5\xbf/\xae\xdd\xc0\x0f<\xc6\xbf\x16\x82J\xce:G\xc4?v\x02G\xf7\xe7\x95\xba?\xe8\x1d\x94\x87\xfa:\xac\xbfv)\x1c?\x8f\x9f\xcf?\x8es\xbb\x97|j\xc9\xbfp\xfe\x9f\xe3\xa8s\xac?*7C\xd7\x85\xff\xa9\xbf\xb6\xe8O\xec\xadP\xc7\xbf\x03O M\xc1|\xc4?C\xbd\xb4\xb8BE\xcf\xbfB\x03\xe2|lt\xb5?\xa7\xca\xe9\x8c\xd1A\xb3?\xccf\xd8\x04\x83^\xc0\xbf\xa8\xff<\x1eZ\xf4\xd1?\x10\x19j\xdd\xfcz\xb6\xbf\xe6\xdc\xafy{*\xa4?\x00\xa5\x13\x04r\xf7\xc0?\xbd\xdd\xaf\xc3\x90\xb1\xd1\xbf\x086\x17\xc2\x1e\xed\xb6?\x9e\x96k6\xd2\xd1\xc7\xbf\x07\x08z\xff\xc52\xbc\xbf\x98\x1c\xe4\xfbB\x85\xce?JO\xb2H\xd1#\xa6\xbf\xe2H\xb8Ph/\xd4?\x8d^\xa2\xad;\xb8\xc0?w\x8aD\x0b,~\x9f\xbf\xaf\x0b\x19q/\x8d\x93?\xea\xb8\x97[\xb2\x10\xd7\xbf\x8e\xce\xa1\x85\xfci\xc7\xbf\x03J\x89u\xb1!\xc1\xbf\xbd/\xc3Q\xd8F\xb2\xbf\xe3\xbew\xdf\x12\xba\xcd?\xa9\'\xab\xc8\xc8\xae\xc3?-\xd3,\xe2\x9f\xbd\xcc\xbfH\r\x02c:\t\xc8?\x0f\x19\x8e\xcf\xaa\x1c\xc1?\xda\xe7+\xc9)\xb3\xc1\xbfB1\\\xd3\x18\xa3\xd5?U*\xff[\x92\xd8\xc7\xbf\xca6\xa5\xaa8B|?\xe2$\xedM\xc0\xef\xbb?e?\xeb\x10\x070\xd4\xbf\xcd\x8ch:\xc5L\xc2?\x8a\xa4\x7f_\xf2N\xc4\xbf\xb3@,z\xae\x11\xc6\xbf[\x9c@\xa9\xa8\xab\xd1?\xe4\x92\t\xf9]\xf5\xbb\xbf\x8e\xa0\xaf\xbb\xab\xc9\xac?k\x87\x82t\x0c\xd7\xd1?\xffZ\xe1!\xc6\x1f\xc9\xbf\xeb\xa4\x1f\x0eQ\xad\x9b\xbfI\xbd\x1c\x1b(\x7f\xa1\xbf\x9a\xe2\xcd&/\x0c\xcf\xbfV\xf9\xca\x16\x88\x0f\xcf?\xff\xb5*(\x03i\xb3?\xe4\x8073A\x16\x9c\xbfL\xc6\x95\x82\x8b\x18\xc5??\x9e\xb1\xab\n\xd0\xcd\xbfk\xb2\xf6Z\x89\x89\xa1\xbf\x1c\n2!\xf0\x91\xb1\xbfBS;\xd4\x17W\xb7\xbf\xc6< \x1b\xd0a\xcc?\xa2\x0e\xc4g&\x91\xb2?P@\xc6\xae\xf3)\xc1?\xa66\xa5h\xd3M\xb3?D(\xdd\xee\xfaa\xc3\xbf\tk\xf9\rC!\xbb\xbf\x0cd\x88tk\x9e\xcc\xbf\x19@)\x97\x12\xda\xc0\xbf\xbd\xdb\xb3l\xca\x1d\xd0?5\x1c.\x94\xadI\xc3?\x0b\xad)\x0b\xa4\xf4\xca?V\xd3\xaeXk\x19\xc8?\x99\xaeR\xa0.\xd8\xc3\xbf\x89!\xb1EL\x8f\xba\xbf?\xeb4\x1b\xc6{\xca\xbf/$\x04zg\x10\xd2\xbf\x9aW\xde\xf1\xf0\xeb\x93?\x05\xe5x\xe0=i\xa8?\x10\x03(z\\\xa9\xc9?\xb1\xf77\x03#}\xd6?\xe2\x9cZ{\x1f\xfc\x99\xbf\xcb\x94\xcf\xf20G\xb8\xbf\xba\xe2\x96\xb7\xc0\xe8\xa7\xbf\xc1\xd8\xfb\xda\xac\xda\xd3\xbf\x15M$\xe0\x8b\xa5\x80?\x08\x8e\xef\xd0F7\xac?F:\xbdtn\\\xa5\xbf\xb6\xa7?\xa5\xdd\xc9\xd0?\x02\xc2\xe8\xbf\xc8\xf4\xb6\xbf\xb9\xde^o\x90\xb4\x96?Mw\xf9Uj\xfc\xc2?\xc0P\x14\x08J\xb7\xd0\xbf\x00H7\x9d\x01\x14\xc2?ku\xd6\xba\xb5\x9f\xaf\xbf7\xf6\x13\xb4\x8aE\xc6\xbf\x0c\x95\x1b\xbc,\xff\xc7?~\xb8\x12\x80\xf7`\xc6\xbf8+\x8e\x98\xbc\xb5\xb5?\xd61\x83P>2\xc4?E\xfbYH\xba\xaf\xba\xbf\x96\x84\xfcJ\xbf\x06\xb9\xbf\xde\xd3\x15\xa4&\xd9\xbd\xbf\x9e\xc5\x8a\xb3+\x1d\xbf?Q\x8c\x8fUr\x9b\xc4?\xa7\x96\x17\xc1#\x14\xb0?p\x82\xdfU\xc5u\xc2?\xfcv&\xb7\xd6\x05\xa9\xbf}E+]sy\xc8\xbf\xf9p\xe6a;\xf7\xbb\xbf`\xc0u\xf7u\xa0\xc5\xbfi\xeeN\x83\x82T\xa3\xbf\xd2?\xf7;\xca\xfc\xca?ssg;Vx\xc0?"8\x0eH\xc2\x96\xba?\xe6\xc3";\xd5W\xb8?\xd3\x803\x01\xf2\x99\xd0\xbf\xaa\xae\xb2\xd7g\xad\xb8\xbf7q\xe8bj\xa2\x98?\xbb\x06.\x93gH\xc5\xbf\xb7\xae\xbdSm\x8e\xce?yh\x8a8Py\xb6?\x9e\xe6\xf9\xd97\x80\xb6\xbf\x8eT\xba\xcc\x12\x86\xd1?\xdaP\x88J\xbf-\xd0\xbf2\xfa\xcek~\xb8\xc9\xbf\xb0c\n\xab\xb3\x89\xc0?\xe1`\x94b\xf0%\xd6\xbf\xc6\xdd\xc5\xdf\xb8\xe2\xca?\r?\x99\x9cAb\xd1?\xf5\x9eK\x13\x92\t\xab\xbf\x13\xec~\x8d\x9b\xd6\xd1?\xbfVX\\H&\xbb\xbf\xf1H&Hb\xbe\xcb\xbf\xaa\ts|\x9a/\x8c?\x1b\xc5\xb4\x1c\xd98\xa1\xbf\x9d \xba3\xee\x89\xb6\xbf\xb1D\xe3\xa1)\xf0\xb6?\xbeD6\x17\x07\x8d\xc5?\xdd\x00\x07\xac\xa9xH\xbfl#/S\x1d\xc6\x94\xbfD}\x9f\x98\xc0\x9e\x93\xbf\xde\xca+\x93o\x9e\xc6\xbf\xb6\xb3\xf3|\x0bM\xb4\xbf\x1e\xaa\xcb%\x9c\xd1\xb2?\xc1\xda\xc8=\xc2\xf6\xa0\xbfB&*%{\x1b\xc5?\xa4%\xf6\x03\xdf\x92\xcf?x\x8e\xd1\x8d\x9d\xbb\xc7\xbf\x0c4}\xf1\xb6\xc4\xc3\xbf\xe3t\xd6\x89>9\xb1\xbf\xa9r\xe9\xe7\xa0\xd3\xcf\xbf\xdb\x1bo-\xd2\xa2\xc6?\xb5\xdc\x10\x7f\x1ac\xcc?z\t@\xce\'8\xab?\xf0\x98\x97h\\\xcb\xd3?jP\xd1\x89u1\xc4\xbf\x13AA\x97\xf8\xfc\xda\xbf\xef\xfbR\xb6~\xa5\xae\xbf\x12\x1b\xb4ll\xfc\xad\xbf\x8c.\xed\x9b\xe5\'\xba?\x9c\x1e*\xc2`\xfb\xd4?b\x10HR]\xf8\xc9?\x04?t@\xc1\xa6\xb9\xbfu\xc0\x1d\x96\xd0r\xc0\xbf\xbepG\xe6i\xac\xb9\xbf\xb1-\xc3\xac\xa5\xbf\xd0\xbf\xe6\xb0D{\xb9\xf8\xab?\xd2\xad\xb1\xc0\xdb\x12\xca?\x18N\xafF\xcf\x0c\xc6\xbf\xe0\x908B\xb3\xbb\xc7?\xfe\xdf\xae 6\xa3\xd2?\x0bRN\x8ap!\xc6\xbf\xea\x880\x1b\xfem\xc3?\x9e\t\xe2g1\xa3\xc4\xbf\x8bW>pnJ\xdb\xbfG$\xb4\xd3@i\xc5?\xf1\x9d\x0e\xb6\x8aq\xa0\xbf \xc9\xe5_\xadJ\x9c?\x98,\xc1\x1f-\xaa\xd8?4.\x9d\x91\x13\xa4\xb4\xbfV\x98s=\xb0\x03\xaa\xbf\xddd\xf0j2\xf3\xb7?\x97\xd2mul\xbf\xd5\xbf\xf8\x04X\x97\xc3X\xc4\xbfv\xe6\x94\x99>c\xc1?\xfc\x19\xfe\x90\xe0\xf3\xbd?\xfd\rM\xc3IL\xc8?\xf0\x0c;\xb3\x8c\xac\xc3?(\x1e\xb2\x93i\xae\xbd\xbf\xd7,\x87\xee\x125\xd1\xbfT+\xc5@"B\xb2\xbf\xc8~-\n\xd5x\xa7?\x14\x18]3\xfc\x91\xc0?\xef\xd2.\xe2\xfe\xf9\xc0?\xcak\xdc\x03(\x10\xbb\xbf\xb6\xdb\'\xad\x90\x84\xa5\xbf:\x9br\x84\x8a\x8c\x8a?\x0b\xc8\xc4|U\xfc\xb2\xbf$\xa1,\xc2\xd5\x19\xb8?\xbdT\xbc\xd0\xaf^\xa1?u<6\xf5\x9d\x83\xb3\xbf\x1e\xf5T\x86\x06R]?!\xebS\xf1\xd7o\x9d?[\xac\xba\x0e\xa1y\xb0\xbfl\xf1\xb3d\xb5\xf6\xad\xbfL\x1c\x92\'\xb0g\xc4?b\xa8ip\xff\xebp\xbf\xc2Q\x01d\x0e\xb6\xc5\xbf\xcb\x9f\xce\x97 \x98\xb8?2k\xf8\xab\x8b\xcf\x91?\x84\xb6\x98\xd7\xbf5\xbd\xbf\xa9\x8a\x82\x84\x95M\xcb?K\x9eG\x89(r\xab?\xd0q\x91N4\x9a\xd1\xbf\x12\x88\xd3-\xb1`\xad?\xe0\xbfAK\xe3\xe5\xb5?GT\x84\x0c\xc1%\xcb\xbf\x18\x80S\x08\xde\xc7\xc6?\x1b\xbb\xb2\x97\xcf\x9d\xd2?\x17\xdck\x02\x18\xda\xd1\xbf\x19\xea{\xba3\x10\xc8\xbf\xc7\xc9\xb6\xcf\x08\xa1\xc7?4+9\xac\x80O\xb5?\xb9w\xb8$J\x98N\xbf\xb4\t\x1c\xe9dj\xb2\xbf{\xa1\xd8\x89\xb4\x03\x9f\xbf\x18/\x06\xf7\xe7"\xc3?\xf3\xe4\x1d\xf6\xc0?\xc1\xbf\xe5\xbb\x14\x85>\x9e\xce\xbfImRN\xf7`\xca?\xe7}\xc7f|\xc5\xd1?\n\xe6\x16n\x0b\xe5\xa6?\xe9\xb2\x9b\x8fC^\xce\xbfs\x04\xed`%\xc6\xd6\xbf\x9b\x12\x97\x1d)\x8f\xb6?E\xf9\x99WHA\xcc?\x0e0\x07\xea\x08\xcb\xc2?\xccU\x8c5\xc7|\xc3?\xda\\[\x1bom\xd2\xbf\xddb\xde7Z\xe9\xd2\xbf6\x80h\x13%I\xb7?{\xfdx\xbf\xd3|\x97?A\xf5M\xbd\x00>\xc7?H>C\x07\xd0y\xd1?\x1d\x1f\x97I\xd0\xda\xbd\xbf\xadc\x1f\xb3\xc6D\xc0\xbf#B(\x0e"\x81\xbc\xbf}\x84\xff\x8c\xcf\xf2\xcd\xbf\xf6\xfa\xb8zd\xd3\xc6?\xe1h\xbb\xe7\xc7\xa0\xd2?\xbd\xe02\xb3\x84\xe8\xb6\xbf<\xcc\xac\xe8\x81\xa4\x9e\xbf\xc7\xce\xf1\xbe!\xad\xb8\xbfU\xa8\x8ecM-\xc8\xbf\xf1\x00\x91:&W\xc5?9Xk+Ku\xc7?\x19]\xf4\xf2b\x90\xad\xbf\xe4`\xec\x1ds\xcd\xb8?Y\xce\xafJ\xdc\xdc\x94\xbfO"f\x0f\x7fF\xd1\xbf\t7\xbf\xa4\xc1\x93\x8f\xbfb\xacU\x7f\xbd@\xb6?\x8bZ\xe0\xb5*\x7f\xc0?\xad,Z\x02\x8b\x14\xc8?x\xfa\x94\x10~\x9b\xd0\xbf\xb4q\xd6\x97\xae\x1f\xc5\xbf\xf6\xd1e-\xc8&\xd1?E\x9a:W\x02(\xb5\xbf\x9fH\x9b\xb3\x95B\xbb\xbf\xcfG\xc1U\xac4\xb9?\xbb\\\xd6\xc0o\xdd\xbb\xbf\xbd,\x96\xb9%_R?;\xfc\x16t\xb8\xe4\xcd?\x19*\xbd\xf5\'\xc2\xa8?\n/\xd2\xbeN\x1d\xb1\xbf\xf8\x89\xd6/16\xa8\xbf\x02\xa9|\xb6\xa2\x01\xc7\xbf;\xf3\xa2\xa7\x05\x95\xb9\xbf\x0by\x1e\x1e\x01\x0e\xbe?W\xed\xa5(\\c\xc4?\x13\xe5\xf6\x062\xf4\xb4?\xffS\xf3=\xd8|\xa0?\xf7\xfdd\xfb\x15w\xa6\xbf\xfc\xf0[d-\xbb\xd0\xbf\x0e\x85W\xa4#8\xa0\xbf\x9b[Ap\xb7!\xd2?\xbbo\xfa\xbb\n\\\xbc\xbf\x9bG\x87\xc9\x98\x06\xbf\xbf\xa8&\x88=\x97\x84\xd2?>\xc4\x1c_\xf9\xf8\xc5\xbf\xfeU\xbeV\x82\x91\xd4\xbfA\xeb\x11\x8aZ\xf7\xdb?o?x\xb5\rZ\xc7?\xb0\xf9\x0eI\\i\xd5\xbf\xae\x9e\xfb\xb3\x8d\x9d\xc5?7\xba\xd7N\xb0\xeb\x9f?\xd6\xfb\xdd\x85\x94\xc0\xca?e\xc8\xde\x0bM\r\xa0\xbf\xc8\xa5\x13r\xe3\x12\xce?\x80\xf0\xadd-&\xb9\xbf\xe9\xbd\x89\xbe\x87\xbe\xcf?0f\xd1\x80(?\xc5\xbf\xbeB\xc4t\xf3@\xd0?9\x8b\xba\x01=\xfc\xcd\xbf`x<\x8e\xdbO\xd0?)\x8c\xe0\xb0\xf2\xad\xd0?\xb3\x1c\xd8\xce6\x04\xcd\xbfq\x03gNO\x93\xd0?\xe4t\xf66\xaeG\xc4\xbf\xa5L,v\x80\x0b\xd0?\xdd\xb5l\x8cu$\xb7\xbf\xd4\xdcC\xc7\x07*\xce?\xad\xfe\xf3\x14m\xe8\x98\xbf/\xc3 \x90\t\xac\xca?\xdf\x84\xd3\x7fD\xf1\xa2?>\x8a-\xb5\x0cU\xc5?1\xee\x98\x91\x114\xb7?\x03J\xc7y\xaf\xb0\xbd?E1?/;Y\xc1?\x0e\x86\x8e\xa2\xf4\xa9\xae?9\xa0\xd8\x1eh\xe5\xc5?\xecnJ\x17\x9c"i\xbf\x8f\xf3\xa5.E\x11\xc7?\x88R\x90\x1e\\\x98\xb0\xbf{\xca\xdb\xb0\xd5|\xc5?t\x10]6\xc7\x8b\xbe\xbf\xb4b0\xf4\xd7\xbf\xc0?\x00x\xb0\x05>\x9d\xc5\xbf/\x8c/\xa4-\xd9\xb5?\xd8\xfb\xdd\x85\x94\xc0\xca\xbf8\xba\xd7N\xb0\xeb\x9f?\xca\xa5\x13r\xe3\x12\xce\xbfe\xc8\xde\x0bM\r\xa0\xbf\xeb\xbd\x89\xbe\x87\xbe\xcf\xbf\x81\xf0\xadd-&\xb9\xbf\xbfB\xc4t\xf3@\xd0\xbf0f\xd1\x80(?\xc5\xbf`x<\x8e\xdbO\xd0\xbf;\x8b\xba\x01=\xfc\xcd\xbf\x14\xaf\xd2Hh\x0b\xcf\xbf\xf1E\xa2?\x99kp\xbc\x1a\xaf\xd2Hh\x0b\xcf\xbf\x03\\\x9ep\x95\x10\x81<\x19\xaf\xd2Hh\x0b\xcf\xbf\xf4\xdf\x92\xe5\x19!\x92<\x1a\xaf\xd2Hh\x0b\xcf\xbft_\xf1\r\xe2\x9e\x98<\x1c\xaf\xd2Hh\x0b\xcf\xbf~1\x19\x8fS0\x9e<\x1c\xaf\xd2Hh\x0b\xcf\xbf\xa2Y\xcdB\x8a\x1c\xa0<\x1e\xaf\xd2Hh\x0b\xcf\xbf\xafL\xaf\x80:\\\x9f<\x1f\xaf\xd2Hh\x0b\xcf\xbf\x10\xbe\xf6}\xa6T\x9d< \xaf\xd2Hh\x0b\xcf\xbf\xc2\xce\xe7\x9ac\x95\x96<"\xaf\xd2Hh\x0b\xcf\xbf\xc8+5h\x14\xee\x8b<"\xaf\xd2Hh\x0b\xcf\xbf\'`i\xdb\xa5lj< \xaf\xd2Hh\x0b\xcf\xbfb\xc6\xc3\xb51X\x80\xbc"\xaf\xd2Hh\x0b\xcf\xbff\x81\xb4\xb6\xbb]\x94\xbc"\xaf\xd2Hh\x0b\xcf\xbf\xfcEM\x83\xc1\xb6\x9f\xbc!\xaf\xd2Hh\x0b\xcf\xbf#;\x86\x82J\x13\xa5\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\x06C\x9a`iS\xa8\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\xe0\xfe\xcc\x8e@\x10\xae\xbcHE\xb7\x05w\x89\x8e<\x17\xaf\xd2Hh\x0b\xcf\xbf7\\\x97\xc5W\xe8\x8a\xbc\x1c\xaf\xd2Hh\x0b\xcf\xbf_\x06\xb7\xac!*\x8e\xbc\x16\xaf\xd2Hh\x0b\xcf\xbf\xc92Gs\xea\x8c\x97\xbc\x18\xaf\xd2Hh\x0b\xcf\xbf)\xcf\xa6\x85\xac\x82\x9c\xbc\x19\xaf\xd2Hh\x0b\xcf\xbf\xee\xaa\xde\xbd\x9d\xbb\xa0\xbc\x1a\xaf\xd2Hh\x0b\xcf\xbf\x1a\xa9O\x8e\x82h\xa0\xbc\x1d\xaf\xd2Hh\x0b\xcf\xbf\xba\xc67\xcf\x84L\x9f\xbc\x1e\xaf\xd2Hh\x0b\xcf\xbf\x9c\xc8\xa8\xeb\x82\x8b\x9a\xbc \xaf\xd2Hh\x0b\xcf\xbf\x06\xb2t\xb3JP\x92\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\xca\xf6\x1d\xac\xde\xc1\x7f\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf0\x13pa{\xffv\xb0?n\xa5Y9\x10\xc6\x80\xbf\xe0\x99\xd6\xc1\xf7\xe3\xae?V\xafF\xce$\xab\xc3?\xb8\xed\xa6bm\xfc\x9a?\xef(x c\xe9\xd3?*\xa4\xa8>\x89\x9e\x85?\xfd\xdc\xf8Z\x96\xc5\xd7?\x9b\xafg#\xa6O\x81\xbf\xe2\xfd_\'\x86/\xd4?\xf4\xaf=\x11\xb3\xf5\xab\xbf\xa0\xe9"\x0b\x96\xa6\xc5?v\x01\xc3\xa2\xb6\xd1\xb2\xbf^R=\xa6\xd5\xc6\x90?F\x9a\x16#\x92\x93\xab\xbf\x7f=7\xb9N@\xbd\xbf\xf8OF\x1f\xfe\xba\x90?2\xabm\xeb\xc8\xbfU\xb6\xe1"\xc7^\xb2\xbf\xa8Lt\x05\x137\xd5\xbf\x9a:t\x99\x87RS\xbf\xde\x07\xff\x05!\xb0\xd5\xbf\x87}\xe5-\x84\xdb\xb2?W\x89\x8e6\xa6\x16\xcb\xbf\xc34g\tl#\xbd?\xef>qd\xfb\ts\xbf\x88\xc1\xe9\xec\xb9Y\xbb?\x93K\x89\xd5Y\x85\xca?\x13\xe9\xe3\xc5\x11\xde\xab?x\x95\xa4!\x1c%\xd5?\x92\xaa\xca6\xe9\x9e\x9f\xbf\xb9\x88m\xbfi\x95\xd4?\x95\xf9qL%\xde\xbc\xbf\x18:U\x15\x16\xe9\xc9?\xa2n\x12\xd6\xd1\xd4\xc2\xbf_\x16\xd4\xe4dj\x96?d\xaf-\xf0\x97V\xb7\xbf\xf2(y\x04^\t\xbc\xbfn"\x13\xba\xd8\xa0\x99?\xc2\xce3\xddq\xa9\xc7\xbf\xce(6\xec\xf9\x08\xc5?h0\xad\xecG\x19\xce\xbf\xc5\xea\xc6t\xa6D\xc9\xbf\xa0\x1c\x8d\xefq}\xd0?\x8c\xf4gsd?\xb9\xbf\x1f\xf5\xee\xba\x0bR\xc2?U0s\xfb+\x16\xb1?_\xba\xef\xfe\xa9:\xaa?\x7f\x81\xc8\x97EG\xca?\xeaP[\xd4\xf6\x1c\x93\xbfr\xdb\x8a\x1fm\x17\xd2?\x8f`\xfc\xad<}\xa4\xbf|\x9b\xbe\x07\xb8\xe1\xd3?\x0e\xc0\xee|\xc4,\xb0\xbf:\x1f\xe6\x9d\x8e\xe1\xd1?j\xba\xd4Bw\xae\xbd\xbf\x91\xc6\x12\xb6\x11\x06\xbf?R\xf9\xdaVCx\xc3\xbf!\xf0\x0f\xff\xb0\ne\xbf\xf1\x9d\xc2\xd7*\xb5\xc4\xbf7\xff\xbc=\xc3m\xbf\xbf\xf9\x8c0\xce\xa0\x11\xc2\xbf\x04S\xdc\xc9\xbc\xdf\xd0\xbf6\xf8\x0b\xec\x01b\xbc\xbf\xc7\x1a\xe3Rc\x0b\xd4\xbf\xbe\xe8R\x00\x8bj\xa7\xbfy\xf4\x0c>x\xc1\xd2\xbf\xf92\x96\xf7\xca\x9a\x88\xbf\x17K\xc1\x9ev\x95\xcb\xbf\xf0\x80p\xf6\xbe\x9e\x8c?Oy\xba\xec}\xbc\xb3\xbf\x13FkCN\xe3\xb1?Vd \xdf<\r\xb6?\xf2\x10I<\xbe\x1f\xc0?5\x15\x92\xf1\xe0\xaa\xcd?-\xa4#\xe1\xff\x8d\xc9?n\xf3\x14\xcc\xae\xf1\xd5?\x93\xab\x84\xba%\x99\xa3\xbf\xb0`\xc7\x9b\xc7\xf1\xc3?P\x94\x0c\x84\x92\x96\xb5\xbf\xae{.\xfe\x81O\x9d\xbf\x13\xb3\xde\xd8\n\xc6\xc1\xbf>\xba\t{\x8b\x8e\xc7\xbf\xfeB\x91d\xe3I\xbb\xbf\xaf\xaa\xdf\x9d\xb2\xc8\xd1\xbf"\xe3\x13\x8f\x158\x88\xbf\xae\xa3\x9a\x85n\x1f\xd0\xbfH\x94\x90\xf4\x9az\xb6?\xc5\x93F\x81\xd7\x1e\xb6\xbfF\xaf7B\x95\x05\xc0?\xbfQz~\x83U\xcb?\xab\x9d3N\x96<\xba?\x82Q\xb5=F\xfc\xd4?\xdf_\xe1\xc3\xb3I\xa8?o\xed\x80(\xdb\xba\xcd?5\xfe\x1c\xc8Ug\xa8\xbf\x0b=\xc8\xf9:h\xb0\xbfp\xc6\xfb\xdbp\xb0\xc3\xbf\xb3E\xdf\x17\x81\x99\xce\xbf\x1f\xd6N\n\n\xa1\xc7\xbf{\xd5\xce\xac\xfc\xa6\xd1\xbfj~,j\x00\x92\xb8\xbfFQ\xab\n*%\xc7\xbf\xc9B{&\xd5\xb9\xa9?\xdaa\x05\x98C\xa7\xab\xbf\xfcK\xe2\xf2\x8b\xa5\xc4?\xc9\xff\xbe\x0b\x0c\xa8\xbb?o\xedp\xe7\t\xf3\xc3?\xcf?\x9f"S\xc8\xd0?\xce\xf8\xa3)\xbb\xd9\xc0?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I34 +tp132 +g22 +I00 +S'P\x1ab\x96cqh\xc0\xdd\xf4\x0ea\xd9\x19l\xc0\x05\xe8\x0f\xf6_\x15a\xc0\x97-\x8fU\xf8\xeck\xc0\x8cc\xf3f\xa7~S\xc0\x90\x00\x81s*\x08k\xc0s4\x94\xe6a\xfb4\xc0\x13B\xe1\xf5\xe4hi\xc0\x00Q#y\xdd\xe9?@\x85\xa6\xd7\xb2\xcfwf\xc0\x9a.6\x93\xcd\x8bS@\x9c5BOI\xf8a\xc0\xce\xe9\x84\xafk:]@\xe6\xde\xa3\xf8\xac\x02Y\xc0\xb0\x95.\xdc\xe3qb@\x93\xff\x8a\xfc\xa7\xd4I\xc0\xb0\xaa\xfeP}nc@\x89M\xb8-e,\x05@\x0eJ\x0e\xf3\xcc\x19b@k\xe2\xe4jz\xf5K@\x17\xefT\xb8\xff7\\@\x93\xc9\x0b<<\xbbY@X\xfb\x86\xcd\x96gR@\xf1\x0e\xcf\x9f\x195b@MH\xc7\x9b\xad\xe3:@\x9d\xc5?;\xba\xd7N\xb0\xeb\x9f?\xd8\xfb\xdd\x85\x94\xc0\xca?g\xc8\xde\x0bM\r\xa0\xbf\xca\xa5\x13r\xe3\x12\xce?\x84\xf0\xadd-&\xb9\xbf\xed\xbd\x89\xbe\x87\xbe\xcf?2f\xd1\x80(?\xc5\xbf\xc1B\xc4t\xf3@\xd0?:\x8b\xba\x01=\xfc\xcd\xbfax<\x8e\xdbO\xd0?,\x8c\xe0\xb0\xf2\xad\xd0?\xb1\x1c\xd8\xce6\x04\xcd\xbfr\x03gNO\x93\xd0?\xe6t\xf66\xaeG\xc4\xbf\xa6L,v\x80\x0b\xd0?\xdf\xb5l\x8cu$\xb7\xbf\xd3\xdcC\xc7\x07*\xce?\xae\xfe\xf3\x14m\xe8\x98\xbf/\xc3 \x90\t\xac\xca?\xe0\x84\xd3\x7fD\xf1\xa2??\x8a-\xb5\x0cU\xc5?2\xee\x98\x91\x114\xb7?\x06J\xc7y\xaf\xb0\xbd?F1?/;Y\xc1?\x0f\x86\x8e\xa2\xf4\xa9\xae?9\xa0\xd8\x1eh\xe5\xc5?\xd5nJ\x17\x9c"i\xbf\x92\xf3\xa5.E\x11\xc7?\x89R\x90\x1e\\\x98\xb0\xbf{\xca\xdb\xb0\xd5|\xc5?l\x10]6\xc7\x8b\xbe\xbf\xb5b0\xf4\xd7\xbf\xc0?\x02x\xb0\x05>\x9d\xc5\xbf/\x8c/\xa4-\xd9\xb5?\xd9\xfb\xdd\x85\x94\xc0\xca\xbf6\xba\xd7N\xb0\xeb\x9f?\xc9\xa5\x13r\xe3\x12\xce\xbfh\xc8\xde\x0bM\r\xa0\xbf\xee\xbd\x89\xbe\x87\xbe\xcf\xbf\x84\xf0\xadd-&\xb9\xbf\xc0B\xc4t\xf3@\xd0\xbf2f\xd1\x80(?\xc5\xbfbx<\x8e\xdbO\xd0\xbf;\x8b\xba\x01=\xfc\xcd\xbf\x1b\xaf\xd2Hh\x0b\xcf\xbf\xa0H8?\xa0ia<\x1b\xaf\xd2Hh\x0b\xcf\xbf\x90\x84\xd6\xfa\x92&f<\x19\xaf\xd2Hh\x0b\xcf\xbf\x1eo\xb2\x95n^\x89<\x1a\xaf\xd2Hh\x0b\xcf\xbf\xf5nr\xab\x87\xcd\x91<\x1a\xaf\xd2Hh\x0b\xcf\xbf\x9c@\x17{\x1a\xad\x98<\x1c\xaf\xd2Hh\x0b\xcf\xbf*\x9d\xf9\xd7\xf7\xbb\x9c<\x1f\xaf\xd2Hh\x0b\xcf\xbf\xf6\x88N\x15\x1f \x9d< \xaf\xd2Hh\x0b\xcf\xbf_\x0c\xb5\xa9\x8c\x1c\x9d<\x1f\xaf\xd2Hh\x0b\xcf\xbf\x97wza\xef\'\x98\xd2\xe0\x99\xa7\x12\x9a\xbc\x19\xaf\xd2Hh\x0b\xcf\xbf-\x81\xb2\xde\x15t\x9c\xbc\x18\xaf\xd2Hh\x0b\xcf\xbf\x10\xae~\xcd\xc9&\xa0\xbc\x1c\xaf\xd2Hh\x0b\xcf\xbf\x03\xca\xa0\xaa7N\x9f\xbc\x1e\xaf\xd2Hh\x0b\xcf\xbfU,>\x8a\x0e{\x9a\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\x08\xe5V\xfc\xbdY\x93\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbfg\xb2*\xd2\x15g~\xbc\x1f\xaf\xd2Hh\x0b\xcf\xbf\xd2\xa2#\x8fBFs\xb0?f\xa5Y9\x10\xc6\x80\xbf\xea\x99\xd6\xc1\xf7\xe3\xae?U\xafF\xce$\xab\xc3?\xcd\xed\xa6bm\xfc\x9a?\xef(x c\xe9\xd3?c\xa4\xa8>\x89\x9e\x85?\xfc\xdc\xf8Z\x96\xc5\xd7?t\xafg#\xa6O\x81\xbf\xe2\xfd_\'\x86/\xd4?\xea\xaf=\x11\xb3\xf5\xab\xbf\xa0\xe9"\x0b\x96\xa6\xc5?u\x01\xc3\xa2\xb6\xd1\xb2\xbfeR=\xa6\xd5\xc6\x90?E\x9a\x16#\x92\x93\xab\xbf~=7\xb9N@\xbd\xbf\xe8OF\x1f\xfe\xba\x90?.\xab\x8aR\x9f%+\xc6\xbf\t\xe0\x8b\xe2\x02/\xaf\xbfX\x16\xd8\xb5X\xe2\xc2\xbf\x87\xc61\xb5\\v\xc8\xbf\xc2\xd7N\xbf\x95\xdf\xb2\xbfw\xcak\x06\xc4\xcd\xd3\xbf\xce\xf0\xd7\xaeN\xaf\x90\xbf\xa5\x9c\xda\xe8R?\xd6\xbf-\t\x80\xe6\x84f{?\xf6\x16N\xa4\xad\xde\xd4\xbfw}\xda\xa0\xe8\xd8\x9d?\xe12;\xb1%\x93\xca\xbf2\xdf\xab \xa8)\xb4?`\xca\x1av\x1bz\xb0\xbf\x05\xa3\n#*\xca\xc1?\r\xa9\x9b\xc6\xa8\x9e\xa6?\xf26\xed\xff\xe6p\xc4?{}):;\xf7\xbb?\x13d\x86\x8a\xae\xa5\xc3?\xa6R\x86\x88[\x8b\xc4?j=\x18\xaf\xff\xdf\xc2?\xdfD\x86c\xd8q\xca? :8\x1b\x1b\x94\xc3?u\xca`M@L\xcf?\xd6\xde~\xc7\xc6\xa3\xc5?\x07\x9c\x8f\xa6P\xec\xc8?\xe1r\xd0\x04+@\xcd?i\xedVjF\xa0\xad?\xa5\xb4\xf9\xcd\xe5\x9c\xc8?\xe8\x06-*\x85\xe6\xb1\xbfu\xb4.C\xdd]\xbe?\xd4\x95\x16=,\xa2\xc1\xbfr\xfc\x1b\xab8\xc9\x88\xbfJ\xa3%\xba\xcbf\xc0\xbf\xe3\xb6\x96>m\xeb\xc8\xbf^\xb6\xe1"\xc7^\xb2\xbf\xa8Lt\x05\x137\xd5\xbfHqd\xfb\ts\xbfy\xc1\xe9\xec\xb9Y\xbb?\x95K\x89\xd5Y\x85\xca?\t\xe9\xe3\xc5\x11\xde\xab?x\x95\xa4!\x1c%\xd5?\x98\xaa\xca6\xe9\x9e\x9f\xbf\xb8\x88m\xbfi\x95\xd4?\x95\xf9qL%\xde\xbc\xbf\x15:U\x15\x16\xe9\xc9?\x9fn\x12\xd6\xd1\xd4\xc2\xbfw\x16\xd4\xe4dj\x96?e\xaf-\xf0\x97V\xb7\xbf\xe4(y\x04^\t\xbc\xbf\x80"\x13\xba\xd8\xa0\x99?\xbe\xce3\xddq\xa9\xc7\xbf\xd1(6\xec\xf9\x08\xc5?l0\xad\xecG\x19\xce\xbf\xb8\xea\xc6t\xa6D\xc9\xbf\xa0\x1c\x8d\xefq}\xd0?p\xf4gsd?\xb9\xbf!\xf5\xee\xba\x0bR\xc2?C0s\xfb+\x16\xb1?\x89\xba\xef\xfe\xa9:\xaa?~\x81\xc8\x97EG\xca?HQ[\xd4\xf6\x1c\x93\xbfk\xdb\x8a\x1fm\x17\xd2?\xb7`\xfc\xad<}\xa4\xbfy\x9b\xbe\x07\xb8\xe1\xd3?\x15\xc0\xee|\xc4,\xb0\xbfA\x1f\xe6\x9d\x8e\xe1\xd1?g\xba\xd4Bw\xae\xbd\xbf\xac\xc6\x12\xb6\x11\x06\xbf?N\xf9\xdaVCx\xc3\xbf\x0f\xee\x0f\xff\xb0\ne\xbf\xec\x9d\xc2\xd7*\xb5\xc4\xbf\'\xff\xbc=\xc3m\xbf\xbf\xf8\x8c0\xce\xa0\x11\xc2\xbf\tS\xdc\xc9\xbc\xdf\xd0\xbf;\xf8\x0b\xec\x01b\xbc\xbf\xcd\x1a\xe3Rc\x0b\xd4\xbf\xfc\xe8R\x00\x8bj\xa7\xbf~\xf4\x0c>x\xc1\xd2\xbf\x893\x96\xf7\xca\x9a\x88\xbf\x1cK\xc1\x9ev\x95\xcb\xbfN\x81p\xf6\xbe\x9e\x8c?Dy\xba\xec}\xbc\xb3\xbf\'FkCN\xe3\xb1?ad \xdf<\r\xb6?\xfc\x10I<\xbe\x1f\xc0?4\x15\x92\xf1\xe0\xaa\xcd?5\xa4#\xe1\xff\x8d\xc9?\x87\xf3\x14\xcc\xae\xf1\xd5?\x11\xab\x84\xba%\x99\xa3\xbf\x8a`\xc7\x9b\xc7\xf1\xc3?a\x94\x0c\x84\x92\x96\xb5\xbf\x9f{.\xfe\x81O\x9d\xbf/\xb3\xde\xd8\n\xc6\xc1\xbfF\xba\t{\x8b\x8e\xc7\xbf0C\x91d\xe3I\xbb\xbf\xaf\xaa\xdf\x9d\xb2\xc8\xd1\xbf*\xe3\x13\x8f\x158\x88\xbf\xaf\xa3\x9a\x85n\x1f\xd0\xbf\\\x94\x90\xf4\x9az\xb6?\xef\x93F\x81\xd7\x1e\xb6\xbfU\xaf7B\x95\x05\xc0?\xbcQz~\x83U\xcb?\xd6\x9d3N\x96<\xba?\x80Q\xb5=F\xfc\xd4?\xd3_\xe1\xc3\xb3I\xa8?f\xed\x80(\xdb\xba\xcd?\x0b\xfe\x1c\xc8Ug\xa8\xbf\xfa<\xc8\xf9:h\xb0\xbf}\xc6\xfb\xdbp\xb0\xc3\xbf\xa8E\xdf\x17\x81\x99\xce\xbf\x1e\xd6N\n\n\xa1\xc7\xbfq\xd5\xce\xac\xfc\xa6\xd1\xbfk~,j\x00\x92\xb8\xbf6Q\xab\n*%\xc7\xbf\xd7B{&\xd5\xb9\xa9?\xcfa\x05\x98C\xa7\xab\xbf\xfeK\xe2\xf2\x8b\xa5\xc4?\xc9\xff\xbe\x0b\x0c\xa8\xbb?m\xedp\xe7\t\xf3\xc3?\xc6?\x9f"S\xc8\xd0?\xbe\xf8\xa3)\xbb\xd9\xc0?\xf0\xf1U\x96\xb6\xb2\xc1?\x000:}\x85\xcd\xe0?2\xdf\xd1\x9c\xa91\x9f?fd2\x00\x85\x8d\xcd?d%\xa1\xe3l\xa6\x8b?\xf7}\x8fW\xfbW\xbb\xbf\xc20\x8a5\xf7\xf6\xab?\x9d\x08V\xfe\x98\xe4\xd6\xbf\\\xbf\xec\x8f~e\xab?\xdbi\x90c\x85@\xd7\xbf\xb9\x06\xe5\x8b\\#\x9e?M,\xd2}\xd2V\xc9\xbf\x9cq#h\xde\xa7\x9e\xbfRh\xaa\xdf\xe7\xec\xb3?d\xcb\x02\x9cyf\xb0\xbf\xe2/X\xe3\xc2\xa0\xd1?,\xc5\x99\xbdW\xec\xb0\xbf\x80\xd8q\xb1\xff\xaa\xca?\xdb\xd3\xc3\x14b\xca\x90\xbf\xdb1\\\x0809\x93?\x8a\x84o\x95[\x15\xae?\xe9\xb9\xe9\xf3\xe9\x8e\xc4\xbf\xa3V\x057o\x9c\xb9?~\x05\x08\xd7MJ\xca\xbf\xfb\xd9an%\xa9\xb7?%\x8d^\xc1\xa1\x07\xbe\xbf\xfe\x94\x01}\xff\x10\xa5?1\t\x18m\xb5\xe4\x9b?l\x93\xf6\xd7}\x13\xb0\xbf}yj\x12%\xc3\xbc?\xad\xb2\xd0\xae\xbb=\xc5\xbf\xc92?\xd7-j\xb0?^N\x1d[\x11|\xca\xbf-\xc1p<\'\xb7\x9f\xbf\xf1<\x03\xe4X\xc3\xa5?\x8b\x81\xc9\xa5\x9f\xdc\xc4\xbf\xd4\xedIWa\xf9\xc0?$q\x18s\x14\xbb\xb0?\xb3\x07\r\x03\xbe\xdc\xb6?z\xbd?\xa2\xf4Q\xcd?\x8d\x93\xcb\x970^\x97?X\x83ph\x02\xc9\xc4?ocz\xbc\xd5(\x93\xbf\x8aY\xf3w\xf79\xad\xbf\xdd\xcfH\xeeb\xff\x9b\xbfj\x1e\xbf\xc2\xc9\xa4\xce\xbf(\xbeN\xc7\x8f5\x96\xbf~\xf7\x1f\x10\x99w\xcc\xbf)\x89\xf35\x9b\xd4\x9b\xbf\xbfd\xf3\x9e6l\x88\xbf\xb3\xde\xa9\xef\x89\xfd\x97\xbf^\xb6i3W\xe8\xc8?\xac\xbc\xdc\xd8\xcch\x92?\xde\xfcX_u\t\xcc?\x1a\xdd5\xe3\xeb\x05\xb4?6y\xe8\x8f\xf5\t\xb8?\xd4\xdf\xfd[\xeaz\xa6?2f\xa4\xa7\xfdx\xbd\xbf<\xfa\x19\xf5e\xca\xa8\xbf\xdd?!\xcf\xe5e\xd4\xbf\x15WN\x19\x8c\xc7\xb2\xbfp3\x87\x18\xa4\xf6\xd8\xbf\xa5\xfe3\x17J\xe9\x9c\xbf\xb1\xc9%\x19\x88\xb0\xc6\xbf\x10\x0e\x06\xae\xfbL\x9f\xbfb\xe9\xed\xa2\x90\x82\xc9?\x94\xda\xf5\xd2\x00p\xc0\xbf:\r\xbfN\xa1\x00\xe1?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I34 +tp132 +g22 +I00 +S'O\x1ab\x96cqh\xc0\xde\xf4\x0ea\xd9\x19l\xc0\x04\xe8\x0f\xf6_\x15a\xc0\x96-\x8fU\xf8\xeck\xc0\x8dc\xf3f\xa7~S\xc0\x8f\x00\x81s*\x08k\xc0t4\x94\xe6a\xfb4\xc0\x10B\xe1\xf5\xe4hi\xc0\xfcP#y\xdd\xe9?@\x83\xa6\xd7\xb2\xcfwf\xc0\x99.6\x93\xcd\x8bS@\x9c5BOI\xf8a\xc0\xcd\xe9\x84\xafk:]@\xe6\xde\xa3\xf8\xac\x02Y\xc0\xaf\x95.\xdc\xe3qb@\x93\xff\x8a\xfc\xa7\xd4I\xc0\xb0\xaa\xfeP}nc@jM\xb8-e,\x05@\rJ\x0e\xf3\xcc\x19b@j\xe2\xe4jz\xf5K@\x16\xefT\xb8\xff7\\@\x8c\xc9\x0b<<\xbbY@W\xfb\x86\xcd\x96gR@\xf1\x0e\xcf\x9f\x195b@MH\xc7\x9b\xad\xe3:@@\x1d\xb2<\xcd\xed\xbf\xc5%\x9f\xdc\xbf+\xb8\xeb`}\x9b\xa8<\xc1\xed\xbf\xc5%\x9f\xdc\xbf\x96&\xad\x19\x8fM\x99\xbc\xff\x11|\xe0*\x19\xc4<\xee\xed\xbf\xc5%\x9f\xdc\xbf\xf3\x80\xc5X\xe6\xf0\x89\xbc\xe6\xed\xbf\xc5%\x9f\xdc\xbf\x1bYv\xad\xc1R\xb3\xbc\xd9\xed\xbf\xc5%\x9f\xdc\xbfL}\x10\\\xb5\x00\xb2\xbc\xcb\xed\xbf\xc5%\x9f\xdc\xbf\x8cr\x9b\xda16\x84\xbc\xc1\xed\xbf\xc5%\x9f\xdc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I10 +tp31 +g22 +I00 +S'6\x0e\xe8\xb4\xd4\x8e5@\xe6\x14\x81\\\xae\x02R\xc0z\xa4\xf6\xda\x85\xbe\x18\xc0\x03\x9e\x11/i\xa0E\xc0$;\xfc\xfeGQ,\xc0\xaa \xb8\xab\x01z\x02\xc0\xfd\x94E\xe2u\xfb \xc0hA\x8c\x14\xfb\xe4C@\x15\x0c\xda\xc9\xae\x1c\x1d@d\x84!w5tS@' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I5 +I2 +tp43 +g22 +I00 +S'6\x0e\xe8\xb4\xd4\x8e5@\xe6\x14\x81\\\xae\x02R\xc0z\xa4\xf6\xda\x85\xbe\x18\xc0\x03\x9e\x11/i\xa0E\xc0$;\xfc\xfeGQ,\xc0\xaa \xb8\xab\x01z\x02\xc0\xfd\x94E\xe2u\xfb \xc0hA\x8c\x14\xfb\xe4C@\x15\x0c\xda\xc9\xae\x1c\x1d@d\x84!w5tS@' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I5 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I5 +I2 +tp68 +g22 +I00 +S';\x0e\xe8\xb4\xd4\x8e5@\xe7\x14\x81\\\xae\x02R\xc0w\xa4\xf6\xda\x85\xbe\x18\xc0\x04\x9e\x11/i\xa0E\xc0(;\xfc\xfeGQ,\xc0\xad \xb8\xab\x01z\x02\xc0\x02\x95E\xe2u\xfb \xc0iA\x8c\x14\xfb\xe4C@\x0e\x0c\xda\xc9\xae\x1c\x1d@e\x84!w5tS@' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x02\x00\x00\x00\x00\x00\xf0?\xd1\xef\xcf#y\x8c\xa1\xbc\x00\x00\x00\x00\x00\x00\xec9\x9d\x83\xaf\xdd\x0e\xdc\x94<\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\x00\xba\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I5 +I2 +tp89 +g22 +I00 +S'6\x0e\xe8\xb4\xd4\x8e5@\xe6\x14\x81\\\xae\x02R\xc0z\xa4\xf6\xda\x85\xbe\x18\xc0\x03\x9e\x11/i\xa0E\xc0$;\xfc\xfeGQ,\xc0\xaa \xb8\xab\x01z\x02\xc0\xfd\x94E\xe2u\xfb \xc0hA\x8c\x14\xfb\xe4C@\x15\x0c\xda\xc9\xae\x1c\x1d@d\x84!w5tS@' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I5 +I2 +tp106 +g22 +I00 +S'\xa8^$\x13\xe9\xa1/@\xbaTX\x04`\x9aS\xc0\xadB\x93\xa1\x9f|\xf3\xbf\xfc@\xbc\xc7&\xd0C\xc0\x83\xb5\x1c\x04p\xb0 \xc0s\x83\x88\xa7\xd4\xad\xf7?\xd4\x85\xe4\xf4\xc93!\xc0[H\xd41[PC@\x00\x14=h\x93\xc7\x02@\x18/\xae|\x8e{S@' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I5 +tp113 +g22 +I00 +S"8}\x1f,D\xf3Y@\x18\xec\x02P\xa2G:@2\xcdw'\xb3\r$@E\xa0\xa6\x83\x8bD\x17@&\xee\x14\x97\xbb\xd9\x11@" +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I2 +tp120 +g22 +I00 +S'7%sQ\xf1a\x05@\xa8\x95\xdd\xc5xr\xe6?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I5 +I10 +tp126 +g22 +I00 +S'"\xdaOz\xa4Q\xde?%t\xdf\x8f\xa9\xa1\xd8?8\x18V\x94@\xa4\xd3\xbf\x81G\x04\xdb\xe6X\xca\xbf[\xd5\x13P\xf2e\xdf\xbf\x87\x14b\x97\xeeT\xbf\xbfa\xe8\xd6\xb6\x93c\xc1\xbf\x86\xd9*\x97\xc1^\x90?\x9f\x87\x85EXj\xdd?n\xe3\xddW\x9a\x97\xb2\xbfjc\x0b\x83J[\xc0\xbfZ\x83\xe2b\xdd\x8d\xdb?Y\xec\xf9h\x8e\x92\xd3\xbf\x95\xb1s\xf3\xc4;\xd4\xbf\xc8w\xbf8\xc7\x01\xd1?\x95\x97\xb1\xe3\xab\x06\xd5\xbf\x0c\x13RPa\x0f\xd7?=\xfe\x96~\x80O\xce\xbf\x8c\xd9#\xbd\xe9\xa1\xc8\xbf\xefD\x8e\xb3S\xdc\xdc?)\xd3\xb0\xdbT\xac\xd6\xbf\xef\xb2\xab1`\x02\xc5?^"VL\x80G\xe1?\xa3\xe2\xf9\x1d{\xa1\xb7?\x08\x94-+@\xe7\xc0\xbf\x18\xff\x98\x8e\x8a\xc0\xdb\xbf\x99\xd4\x02V6\xa5\xd7\xbf[\x0c+\x1a\x8f\xa4\xbf\xbf\x0b-\x9e\xae*6\xd4?\rp\xcft\x1f@\xd3?\xda\xee\xda@\xde\xd7\xc3?\xc6B\xb0\x0e^\x19\xcc\xbf\xbb\xd2\xad\x01\xc6\x85o?\xc2\x97\xa8m5\x18\xe0?<\xd3\x13\xf1\xe0\xd4\xdd\xbf\x1f6\x15\x81\xc7\x8b\xa7\xbf\xf6\xd6fb\xaa,\xd9?\xb7\xf6\x1e\xa0\xfb\xe5\xde\xbf<[\x0fw\x10\x0b\xb6\xbf\xb3\x1e\x91xqg\xcf?V\xa9*\x83\x17V\xcb\xbf\x7f`\xb5\xd2:\xf3\xc4?\x8c\x99M\x0b0j\xdc?j\xde\x81\x85\xdb\x98\xdd\xbfU\x87\xd6\x0c6w\xde\xbf\x06\xa4\x17\x9e\xe3\x0f\xd1?\x9b,\xc8\xf1\xce*\xda?h\xdc\xb6z\xebA\xc0?M\xd4S]z\xe5\xc4\xbf7\x90/\xfdlF\xb8\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I10 +tp132 +g22 +I00 +S'6\x0e\xe8\xb4\xd4\x8e5@\xe6\x14\x81\\\xae\x02R\xc0z\xa4\xf6\xda\x85\xbe\x18\xc0\x03\x9e\x11/i\xa0E\xc0$;\xfc\xfeGQ,\xc0\xaa \xb8\xab\x01z\x02\xc0\xfd\x94E\xe2u\xfb \xc0hA\x8c\x14\xfb\xe4C@\x15\x0c\xda\xc9\xae\x1c\x1d@d\x84!w5tS@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I5 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_brow_6 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_brow_6 new file mode 100644 index 0000000000000000000000000000000000000000..9b16953953aadb828f5647143a660e5116724f1a --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_brow_6 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I10 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\x88\xed\xf6\xaa\xf4#\xc6\xbf\xfe\x1c\x80ID\x7f\xe2?\xf0\xdd\xc7H\xb0i\xa9?\x1bk\xba\xc0\x026\xd6?\xca\xa2\xb0,*\x15\xbd?\x93\n\xad\x04\xd1\xf9\x92?N\xf3\xe0\x01\xefp\xb1?;\xba\x11D\x99n\xd4\xbf\xbe\x94\n\x01N\xe4?\xb5]-v\xfa\xd9\xd2\xbf6\xeb\x18\x86\x91\x88\xe3\xbf\xc3\x82,\x9c\xf6\x1b\xc4?\xe0l<\xfbQ\x1b\xc9?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I10 +tp132 +g22 +I00 +S'7\x0e\xe8\xb4\xd4\x8e5@\xe6\x14\x81\\\xae\x02R\xc0|\xa4\xf6\xda\x85\xbe\x18\xc0\x03\x9e\x11/i\xa0E\xc0%;\xfc\xfeGQ,\xc0\x9e \xb8\xab\x01z\x02\xc0\xfc\x94E\xe2u\xfb \xc0jA\x8c\x14\xfb\xe4C@\x12\x0c\xda\xc9\xae\x1c\x1d@c\x84!w5tS@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I6 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_eye_2 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_eye_2 new file mode 100644 index 0000000000000000000000000000000000000000..ea359ce36a2e9f74a7dacff33928f5bee0accab0 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_eye_2 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I12 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\x00\xfd\xf9\xeaWby\xbf\x9f\x18\xd1\x16gb\xe2?c\xbcdu\x9a>\xca?:\xad5\xed\xa4@\xcb?\x10q^\xd9S\x02\xc9?\xc82\x90\xa9\xdf\x05\xcc\xbf]\xc9\xa5\xf3B\xc2\xb4\xbf\x9a\x03D\x14\x8c\xdf\xe2\xbf\x9d7\xf8\n\x97\xe4\xc3\xbf2\x13\x83\xb8L3\xca\xbf}A\xa0\n#0\xc4\xbf?E\xa9j\x1b\xed\xcc?\xa1\x18\xd1\x16gb\xe2\xbf\x1b\xfd\xf9\xeaWby\xbf7\xad5\xed\xa4@\xcb\xbfd\xbcdu\x9a>\xca?\xc82\x90\xa9\xdf\x05\xcc?\rq^\xd9S\x02\xc9?\x99\x03D\x14\x8c\xdf\xe2?f\xc9\xa5\xf3B\xc2\xb4\xbf0\x13\x83\xb8L3\xca?\x9e7\xf8\n\x97\xe4\xc3\xbf?E\xa9j\x1b\xed\xcc\xbfzA\xa0\n#0\xc4\xbf+,\x0cp\xbd \xda\xbfeU\xd4\xaea\xa6\xb6\xbc:,\x0cp\xbd \xda\xbf\xde\x8a\xe9{\xb5k\xc2\xbcH,\x0cp\xbd \xda\xbf^\xf8h1\xc2\xae\xac\xbcO,\x0cp\xbd \xda\xbf~\x1a\xbf\x8a\x8b\xaa\xc4<@,\x0cp\xbd \xda\xbf.rV\xf3ts\xbe<3,\x0cp\xbd \xda\xbfS\x93}\x0b\x04\x84\xa2<\x1b.;\x0e\xf5\x94\xbf<,,\x0cp\xbd \xda\xbf\xda7\x12\xb7?\xf8\xbe<7,\x0cp\xbd \xda\xbf\xbc\xcb\xdf\x81C\xe7\x9f\xd0\xb7\x1b\xb9?\x97e\xc0\x84\xd4\x83\xda?\xeaZZ\x04\xba\xe7\xdf\xbf\xc7\x0c\xbcA\xb8&\xb6\xbf\xec{\xb9\xe1Y"\xde\xbf\xffY\x04\xe1\x9b\x7f\xa1\xbfSO\xf9\xbe_\x99\xbb?I\x81\x06h\xcen\xc5\xbfM\xf4\xb9\x93\x7f*\xd7?\xa8%\xbb\xa3\xf8\xaf\xae\xbf\x9f\xd7\x8bnN\xb2\xd9?*\xc7\xd8\xbe2\xf3\xb0\xbf\xa2L\xe6UG:\xc8?\xd6\xe4*/9@\xda?c_\xdb\x16\x9f\xa2\xb6\xbf\x9fK\xb0%b\x9c\xd2\xbfw\xac\xf3\xf8\xf2&\xb5?\xed\xc5V2D\xf9\xd6\xbf\xdc\x9aAnC\x00\xd5?\xc1\xc0\xc0\xfb\x00\r\xe1?\x9f\x96\xb4e\xab\xfe\xcf\xbf\x1a5\x0e\xe6\xee#\xc7\xbf!\x89\xe0^&\xbf\xd0\xbf\xf4\xe8xnu\xca\xbc\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I12 +tp132 +g22 +I00 +S"\xb1\xd7\xc3\xce0H\xdb?\x17\x90\xc6\x9eF\xc2C\xc0\x80\xa3d\x13\xeb4,\xc0\x15Y\x05d@J-\xc0\t\x11\xf3\x03\xff\xe0*\xc0\x12\x08'\x0e:\x1e.@\x85\xbe\x0c\xc5\x94O\x16@\xa6yK\xd9\xc6HD@\xb6\xb5\xa6\x1dVa%@\x9d\xa7\xfe\xfc\xc4(,@\x15\x81\xb4\x10\x88\xb2%@t\xfd3\x91\xbf\x16/\xc0" +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I2 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_eye_3 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_eye_3 new file mode 100644 index 0000000000000000000000000000000000000000..cc9538f50c39941b803cea4a6e8f301cd8a2e556 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_eye_3 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I12 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S"\x00\xfc\xf9\xeaWby\xbf\x9f\x18\xd1\x16gb\xe2?e\xbcdu\x9a>\xca?=\xad5\xed\xa4@\xcb?\x13q^\xd9S\x02\xc9?\xc92\x90\xa9\xdf\x05\xcc\xbfW\xc9\xa5\xf3B\xc2\xb4\xbf\x9a\x03D\x14\x8c\xdf\xe2\xbf\x987\xf8\n\x97\xe4\xc3\xbf1\x13\x83\xb8L3\xca\xbf{A\xa0\n#0\xc4\xbf>E\xa9j\x1b\xed\xcc?\xa0\x18\xd1\x16gb\xe2\xbf\x1a\xfd\xf9\xeaWby\xbf<\xad5\xed\xa4@\xcb\xbff\xbcdu\x9a>\xca?\xca2\x90\xa9\xdf\x05\xcc?\x13q^\xd9S\x02\xc9?\x99\x03D\x14\x8c\xdf\xe2?^\xc9\xa5\xf3B\xc2\xb4\xbf/\x13\x83\xb8L3\xca?\x9a7\xf8\n\x97\xe4\xc3\xbf@E\xa9j\x1b\xed\xcc\xbfzA\xa0\n#0\xc4\xbf,,\x0cp\xbd \xda\xbf0\to\xb6\x9c\x19\xb7\xbc9,\x0cp\xbd \xda\xbf\x00\xdb!\xe5\xa5\xba\xbf\xbcG,\x0cp\xbd \xda\xbf\xf4\xd3\xf2]@\xa9\xb0\xbcP,\x0cp\xbd \xda\xbf\\\xb7\xa8'\xc6\xb8\xbd\xd0\xb7\x1b\xb9?\x96e\xc0\x84\xd4\x83\xda?\xeeZZ\x04\xba\xe7\xdf\xbf\xc6\x0c\xbcA\xb8&\xb6\xbf\xee{\xb9\xe1Y"\xde\xbf\xfeY\x04\xe1\x9b\x7f\xa1\xbfLO\xf9\xbe_\x99\xbb?M\x81\x06h\xcen\xc5\xbfN\xf4\xb9\x93\x7f*\xd7?\xa5%\xbb\xa3\xf8\xaf\xae\xbf\xa0\xd7\x8bnN\xb2\xd9?-\xc7\xd8\xbe2\xf3\xb0\xbf\x96L\xe6UG:\xc8?\xdb\xe4*/9@\xda?x_\xdb\x16\x9f\xa2\xb6\xbf\xa4K\xb0%b\x9c\xd2\xbf\xa9\xac\xf3\xf8\xf2&\xb5?\xf2\xc5V2D\xf9\xd6\xbf\xcc\x9aAnC\x00\xd5?\xc3\xc0\xc0\xfb\x00\r\xe1?\x8c\x96\xb4e\xab\xfe\xcf\xbf\x165\x0e\xe6\xee#\xc7\xbf\x1c\x89\xe0^&\xbf\xd0\xbf\xfd\xe8xnu\xca\xbc\xbf\xcc\xab\xcbV\x19#\xe2\xbf&\xf2\x07\xd7X\xd6\xd1?\xf13\x8f\xae\xe5\x17\xcc?>\x96:\x15I\xbe\xc9\xbf\x0f\x08h\xc0B\x07\xcd?\xc2\xcbZc\xc4:\xbf\xbf0\xeao\x0c\xd9\x9c\xdb\xbf\xa8-\xf1\x86Od\xd1?\xae\x9ct\xb7\xaf\xd7\xce?\x18U\xb2\x13pN\xaf\xbfrU\xd1\xa6\x9f\xe7\xd3?=\xae\x1dp\tF\xc5\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I12 +tp132 +g22 +I00 +S"u\xd7\xc3\xce0H\xdb?\x17\x90\xc6\x9eF\xc2C\xc0\x83\xa3d\x13\xeb4,\xc0\x18Y\x05d@J-\xc0\r\x11\xf3\x03\xff\xe0*\xc0\x14\x08'\x0e:\x1e.@\x80\xbe\x0c\xc5\x94O\x16@\xa6yK\xd9\xc6HD@\xb1\xb5\xa6\x1dVa%@\x9d\xa7\xfe\xfc\xc4(,@\x14\x81\xb4\x10\x88\xb2%@u\xfd3\x91\xbf\x16/\xc0" +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I3 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_eye_4 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_eye_4 new file mode 100644 index 0000000000000000000000000000000000000000..44bc8e3584df48fd83e70666b3a2ec93f18a31f6 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_eye_4 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I12 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\x00\xfd\xf9\xeaWby\xbf\x9f\x18\xd1\x16gb\xe2?d\xbcdu\x9a>\xca?:\xad5\xed\xa4@\xcb?\x10q^\xd9S\x02\xc9?\xc72\x90\xa9\xdf\x05\xcc\xbf]\xc9\xa5\xf3B\xc2\xb4\xbf\x98\x03D\x14\x8c\xdf\xe2\xbf\x9c7\xf8\n\x97\xe4\xc3\xbf2\x13\x83\xb8L3\xca\xbf}A\xa0\n#0\xc4\xbf@E\xa9j\x1b\xed\xcc?\x9e\x18\xd1\x16gb\xe2\xbf\xf6\xfc\xf9\xeaWby\xbf;\xad5\xed\xa4@\xcb\xbfc\xbcdu\x9a>\xca?\xc52\x90\xa9\xdf\x05\xcc?\x11q^\xd9S\x02\xc9?\x97\x03D\x14\x8c\xdf\xe2?W\xc9\xa5\xf3B\xc2\xb4\xbf3\x13\x83\xb8L3\xca?\x9b7\xf8\n\x97\xe4\xc3\xbf?E\xa9j\x1b\xed\xcc\xbf~A\xa0\n#0\xc4\xbf*,\x0cp\xbd \xda\xbf\x16\x1c8\xf9\x0e\xef\xba\xbc:,\x0cp\xbd \xda\xbfyeA.\x0cX\xc2\xbcH,\x0cp\xbd \xda\xbfY\xce\xedT\x1bO\xab\xbcO,\x0cp\xbd \xda\xbf\x11\x9c\xaa\xd8\xbf\x1a\xc4\xd0\xb7\x1b\xb9?\x95e\xc0\x84\xd4\x83\xda?\xeaZZ\x04\xba\xe7\xdf\xbf\xb9\x0c\xbcA\xb8&\xb6\xbf\xec{\xb9\xe1Y"\xde\xbf\x03Z\x04\xe1\x9b\x7f\xa1\xbfSO\xf9\xbe_\x99\xbb?R\x81\x06h\xcen\xc5\xbfO\xf4\xb9\x93\x7f*\xd7?\xaa%\xbb\xa3\xf8\xaf\xae\xbf\x9e\xd7\x8bnN\xb2\xd9?"\xc7\xd8\xbe2\xf3\xb0\xbf\x8dL\xe6UG:\xc8?\xdc\xe4*/9@\xda?y_\xdb\x16\x9f\xa2\xb6\xbf\x9fK\xb0%b\x9c\xd2\xbf\xa4\xac\xf3\xf8\xf2&\xb5?\xf9\xc5V2D\xf9\xd6\xbf\xcd\x9aAnC\x00\xd5?\xc6\xc0\xc0\xfb\x00\r\xe1?\x89\x96\xb4e\xab\xfe\xcf\xbf\x1f5\x0e\xe6\xee#\xc7\xbf\x1a\x89\xe0^&\xbf\xd0\xbf\x07\xe9xnu\xca\xbc\xbf\xce\xab\xcbV\x19#\xe2\xbf \xf2\x07\xd7X\xd6\xd1?\xec3\x8f\xae\xe5\x17\xcc?;\x96:\x15I\xbe\xc9\xbf\x06\x08h\xc0B\x07\xcd?\xdc\xcbZc\xc4:\xbf\xbf1\xeao\x0c\xd9\x9c\xdb\xbf\xab-\xf1\x86Od\xd1?\xb5\x9ct\xb7\xaf\xd7\xce?\xf4T\xb2\x13pN\xaf\xbfvU\xd1\xa6\x9f\xe7\xd3?3\xae\x1dp\tF\xc5\xbf\x15\xc1\xfe\xd4\xdc\xc4\xd2\xbf<.W\xe5\xc2\x9f\xcb\xbf\xf9\xb4\xa1\xd8\xdf\xae]?\x16\x93\x8f\x18\x97\xec\xaa\xbf\xb4\xdb\xd0\xf3\x94\xed\xbe\xbf|\xce\xe2\x8dR\x1b\xe3\xbf\xf6\xb7:3\xbbk\xce?o\\!\t@\xb2\x86?T\xc4\x97\xb7\xb2U\xa6?R`\x03\x0f8\xef\xd0?\x91\x03\x14\x83\xfe\xc3\xc0?\xa1]\x1b\xb1\xa7\xdf\xe2?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I12 +tp132 +g22 +I00 +S"\xad\xd7\xc3\xce0H\xdb?\x16\x90\xc6\x9eF\xc2C\xc0\x80\xa3d\x13\xeb4,\xc0\x14Y\x05d@J-\xc0\x08\x11\xf3\x03\xff\xe0*\xc0\x10\x08'\x0e:\x1e.@\x84\xbe\x0c\xc5\x94O\x16@\xa3yK\xd9\xc6HD@\xb4\xb5\xa6\x1dVa%@\x9c\xa7\xfe\xfc\xc4(,@\x14\x81\xb4\x10\x88\xb2%@t\xfd3\x91\xbf\x16/\xc0" +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I4 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_eye_6 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_eye_6 new file mode 100644 index 0000000000000000000000000000000000000000..075697b782d925fa5eeabc28a8f381f02383a249 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_l_eye_6 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I12 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\x00\xfd\xf9\xeaWby\xbf\x9f\x18\xd1\x16gb\xe2?c\xbcdu\x9a>\xca?9\xad5\xed\xa4@\xcb?\x12q^\xd9S\x02\xc9?\xc72\x90\xa9\xdf\x05\xcc\xbfZ\xc9\xa5\xf3B\xc2\xb4\xbf\x98\x03D\x14\x8c\xdf\xe2\xbf\x9b7\xf8\n\x97\xe4\xc3\xbf3\x13\x83\xb8L3\xca\xbf|A\xa0\n#0\xc4\xbf>E\xa9j\x1b\xed\xcc?\x9f\x18\xd1\x16gb\xe2\xbf\xad\xfd\xf9\xeaWby\xbf;\xad5\xed\xa4@\xcb\xbfb\xbcdu\x9a>\xca?\xc62\x90\xa9\xdf\x05\xcc?\x14q^\xd9S\x02\xc9?\x98\x03D\x14\x8c\xdf\xe2?T\xc9\xa5\xf3B\xc2\xb4\xbf5\x13\x83\xb8L3\xca?\x9a7\xf8\n\x97\xe4\xc3\xbf=E\xa9j\x1b\xed\xcc\xbf|A\xa0\n#0\xc4\xbf*,\x0cp\xbd \xda\xbf\x16\x1c8\xf9\x0e\xef\xba\xbc:,\x0cp\xbd \xda\xbf)\x96\x01$\x8f@\xc3\xbcH,\x0cp\xbd \xda\xbfY\xce\xedT\x1bO\xab\xbcN,\x0cp\xbd \xda\xbf\x11\x9c\xaa\xd8\xbf\x1a\xc4\xd0\xb7\x1b\xb9?\x95e\xc0\x84\xd4\x83\xda?\xefZZ\x04\xba\xe7\xdf\xbf\xbf\x0c\xbcA\xb8&\xb6\xbf\xee{\xb9\xe1Y"\xde\xbf\x07Z\x04\xe1\x9b\x7f\xa1\xbfTO\xf9\xbe_\x99\xbb?S\x81\x06h\xcen\xc5\xbfP\xf4\xb9\x93\x7f*\xd7?\xaf%\xbb\xa3\xf8\xaf\xae\xbf\xa0\xd7\x8bnN\xb2\xd9? \xc7\xd8\xbe2\xf3\xb0\xbf~L\xe6UG:\xc8?\xe0\xe4*/9@\xda?g_\xdb\x16\x9f\xa2\xb6\xbf\xa9K\xb0%b\x9c\xd2\xbf\xb0\xac\xf3\xf8\xf2&\xb5?\xf3\xc5V2D\xf9\xd6\xbf\xc6\x9aAnC\x00\xd5?\xc5\xc0\xc0\xfb\x00\r\xe1?\x83\x96\xb4e\xab\xfe\xcf\xbf\x1a5\x0e\xe6\xee#\xc7\xbf\x15\x89\xe0^&\xbf\xd0\xbf\x06\xe9xnu\xca\xbc\xbf\xcd\xab\xcbV\x19#\xe2\xbf\x1b\xf2\x07\xd7X\xd6\xd1?\xe63\x8f\xae\xe5\x17\xcc?4\x96:\x15I\xbe\xc9\xbf\x0b\x08h\xc0B\x07\xcd?\xc8\xcbZc\xc4:\xbf\xbf5\xeao\x0c\xd9\x9c\xdb\xbf\xa4-\xf1\x86Od\xd1?\xc0\x9ct\xb7\xaf\xd7\xce?\xddT\xb2\x13pN\xaf\xbfxU\xd1\xa6\x9f\xe7\xd3?/\xae\x1dp\tF\xc5\xbf\x1d\xc1\xfe\xd4\xdc\xc4\xd2\xbf5.W\xe5\xc2\x9f\xcb\xbfu\xc2\xa1\xd8\xdf\xae]?g\x93\x8f\x18\x97\xec\xaa\xbf\xd9\xdb\xd0\xf3\x94\xed\xbe\xbft\xce\xe2\x8dR\x1b\xe3\xbf\x05\xb8:3\xbbk\xce?\x89[!\t@\xb2\x86?\xf7\xc3\x97\xb7\xb2U\xa6?T`\x03\x0f8\xef\xd0?\xa2\x03\x14\x83\xfe\xc3\xc0?\xa0]\x1b\xb1\xa7\xdf\xe2?)\xa8Mq{S\xb9?\x88\xe6\x1bn\xb6\x9a\xc6\xbf\xd2WH8\x94\xbb\xb5\xbf5\x99KR\x0c)\xe4?2\xde\x91\xa0\xe6\x8c\xac\xbf\xe2{\x94\xa6\x05\xa6\xcf\xbfb\x08\xc9\x18^\xe6\xc5\xbf\x0b\x1d]\x04\xf0\x12\xd3?\x1e\xf0\x87\x87\xbc\x05\xc3?\x82F\x0f\xc5\x89\xa9\xe2\xbfJ\xcf\xc59\xcfo\xb0?4\xbb\t\xae\xa39\xb4?\x9dy\x96\x01\x1d\xe6\xbd?\xff\xa1\x94\xe2\xbe=\xb1\xbf-\xab\x06\'\x8d\xbc\xe4\xbfP\x8e\x1b\xcaW-\x9c?+?\xc6\xbd\x13\x1f\xe5?\x91d\xd0H\xffo\xba\xbf\x82\xce\x8d\x1f\xdc\xc4\xc6\xbf\xb1\x04\x19\x17\xf97\xac\xbfp{Z\x0c\t|\xc1\xbf\xec4\xa6O\tt\xc4?>\xbd\x1eP\xbc\xc3\xc7?\xf0v\xca?;\xad5\xed\xa4@\xcb?\x12q^\xd9S\x02\xc9?\xc72\x90\xa9\xdf\x05\xcc\xbf_\xc9\xa5\xf3B\xc2\xb4\xbf\x9a\x03D\x14\x8c\xdf\xe2\xbf\x9c7\xf8\n\x97\xe4\xc3\xbf2\x13\x83\xb8L3\xca\xbf}A\xa0\n#0\xc4\xbf?E\xa9j\x1b\xed\xcc?\xa1\x18\xd1\x16gb\xe2\xbf\x1b\xfd\xf9\xeaWby\xbf9\xad5\xed\xa4@\xcb\xbfe\xbcdu\x9a>\xca?\xc72\x90\xa9\xdf\x05\xcc?\x10q^\xd9S\x02\xc9?\x99\x03D\x14\x8c\xdf\xe2?b\xc9\xa5\xf3B\xc2\xb4\xbf1\x13\x83\xb8L3\xca?\x9d7\xf8\n\x97\xe4\xc3\xbf?E\xa9j\x1b\xed\xcc\xbf|A\xa0\n#0\xc4\xbf*,\x0cp\xbd \xda\xbf\x16\x1c8\xf9\x0e\xef\xb6\xbc:,\x0cp\xbd \xda\xbf\xc84\x818\x89o\xc2\xbcH,\x0cp\xbd \xda\xbfY\xce\xedT\x1bO\xaf\xbcP,\x0cp\xbd \xda\xbf\x8c\x16\xa9*\xa8\xd6\xc2\xa2\xc8\xa8\x9e\xc2<:,\x0cp\xbd \xda\xbf\xf4>P\xf5\xa4.\xad\xd0\xb7\x1b\xb9?\x96e\xc0\x84\xd4\x83\xda?\xf3ZZ\x04\xba\xe7\xdf\xbf\xc0\x0c\xbcA\xb8&\xb6\xbf\xed{\xb9\xe1Y"\xde\xbf\x02Z\x04\xe1\x9b\x7f\xa1\xbfhO\xf9\xbe_\x99\xbb?O\x81\x06h\xcen\xc5\xbfI\xf4\xb9\x93\x7f*\xd7?\xb7%\xbb\xa3\xf8\xaf\xae\xbf\x9c\xd7\x8bnN\xb2\xd9?$\xc7\xd8\xbe2\xf3\xb0\xbf\xb7L\xe6UG:\xc8?\xce\xe4*/9@\xda?\x83_\xdb\x16\x9f\xa2\xb6\xbf\xa0K\xb0%b\x9c\xd2\xbf\x83\xac\xf3\xf8\xf2&\xb5?\xef\xc5V2D\xf9\xd6\xbf\xe0\x9aAnC\x00\xd5?\xbe\xc0\xc0\xfb\x00\r\xe1?\xa6\x96\xb4e\xab\xfe\xcf\xbf\x0e5\x0e\xe6\xee#\xc7\xbf\'\x89\xe0^&\xbf\xd0\xbf\xd0\xe8xnu\xca\xbc\xbf\xc9\xab\xcbV\x19#\xe2\xbf6\xf2\x07\xd7X\xd6\xd1?\xdb3\x8f\xae\xe5\x17\xcc?X\x96:\x15I\xbe\xc9\xbf\x0c\x08h\xc0B\x07\xcd?\x05\xccZc\xc4:\xbf\xbf#\xeao\x0c\xd9\x9c\xdb\xbf\xbb-\xf1\x86Od\xd1?\xa0\x9ct\xb7\xaf\xd7\xce?6U\xb2\x13pN\xaf\xbfoU\xd1\xa6\x9f\xe7\xd3?B\xae\x1dp\tF\xc5\xbf#\xc1\xfe\xd4\xdc\xc4\xd2\xbf..W\xe5\xc2\x9f\xcb\xbf?\xbc\xa1\xd8\xdf\xae]?\xed\x93\x8f\x18\x97\xec\xaa\xbf\xb0\xdb\xd0\xf3\x94\xed\xbe\xbfr\xce\xe2\x8dR\x1b\xe3\xbf\x00\xb8:3\xbbk\xce?\xe3Y!\t@\xb2\x86?$\xc4\x97\xb7\xb2U\xa6?f`\x03\x0f8\xef\xd0?\x9a\x03\x14\x83\xfe\xc3\xc0?\xa2]\x1b\xb1\xa7\xdf\xe2?\xf7\xa7Mq{S\xb9?\x8f\xe6\x1bn\xb6\x9a\xc6\xbf\x9dWH8\x94\xbb\xb5\xbf9\x99KR\x0c)\xe4?\xae\xde\x91\xa0\xe6\x8c\xac\xbf\x15|\x94\xa6\x05\xa6\xcf\xbfV\x08\xc9\x18^\xe6\xc5\xbf\x0c\x1d]\x04\xf0\x12\xd3?.\xf0\x87\x87\xbc\x05\xc3?zF\x0f\xc5\x89\xa9\xe2\xbfK\xcf\xc59\xcfo\xb0?B\xbb\t\xae\xa39\xb4?\xedy\x96\x01\x1d\xe6\xbd?\x03\xa2\x94\xe2\xbe=\xb1\xbf6\xab\x06\'\x8d\xbc\xe4\xbf\x8c\x8c\x1b\xcaW-\x9c?0?\xc6\xbd\x13\x1f\xe5?]d\xd0H\xffo\xba\xbf\xbd\xce\x8d\x1f\xdc\xc4\xc6\xbf\x82\x04\x19\x17\xf97\xac\xbf\xe0zZ\x0c\t|\xc1\xbf\xbb4\xa6O\tt\xc4?\xbf\xbc\x1eP\xbc\xc3\xc7?\x0cx\xc4?\x93\x17R\x7f\x16\x87\xba\xbf\x88\xf7\x97\xc2\xfcM\xba?\xcaJ\xbd\xd0.6\xcf\xbf\xd5\xd6\xebxx\xb7\x97\xbffP\xe1\xec6\xe7\xd4\xbf\x9c\xff$\x08\x10\xbe\xa2\xbf%\x18\x0c2$\x97\xb9\xbf\xbds&\x10X,\x9c\xbf\xc6\\\x96\x1c8\x10u\xbf\x0e\xfe\xfdW\xd0k\xa4\xbf\xb4\x94;\'\xc9\xea\xb9?I\xed+t\xcc\t\xa1\xbf\xf9b\xb7\xa8"\xcc\xd4?\x86}c\x0cg4\x98?\xfb\r\xde)\xb2\x82\xba?\x0f7\xea\x19\xd5n\xa3?\xb0\x86Tel\xcaq\xbf)%\xd6\xeem\x9c\x9c?\x86\xc7\xa16U\xe7\xb9\xbf\xeb\xf1\x16\x8a^\xc6\xd8?\xe4\x87\xe8\x94_\xf4\x9c\xbf\xfdL\xc0\x1a\xd5\xec\xce?rx\xaf\xa7\xa6\x8c\xb7\xbf\x00\x02\xcb|\x10\x89\xb9?\x85\x0f\x87\x84 \xc1\xbf\xbfQ\x8c\x96O0\xe1{?\x14jL\xd9@\\\xb9\xbf\xe3\xfa\x82\x17\xc06\xb9\xbf\xd1\xa78\x04^\x13\xc0\xbf\xf1m8\\x8\xcf\xbf\xb8n\xb9:w&\xb8\xbf\x8a\x8cD\xb5\xd2\xaa\xd8\xbf\xe4\x91 \x91\xa45\xa5\xbf\xfe\xc0\x14\x13\xcf\x08\xd0\xbfe\x8b\xe6H\xe4\xf8\xb7?\x07\xce\xa0\x19\x8f\xbe\xbc\xbf\xf5\x1a\x8c\xba\xed\xb3\xc3?\xe2?\xc11\x9a\x11\xc4?\xc8J\xbd\xd0.6\xcf?\x88\xf7\x97\xc2\xfcM\xba?eP\xe1\xec6\xe7\xd4?\xcb\xd6\xebxx\xb7\x97\xbf%\x18\x0c2$\x97\xb9?\x99\xff$\x08\x10\xbe\xa2\xbf\xc6\\\x96\x1c8\x10u?\xbcs&\x10X,\x9c\xbf\xb2\x94;\'\xc9\xea\xb9\xbf\x0f\xfe\xfdW\xd0k\xa4\xbf\xf8b\xb7\xa8"\xcc\xd4\xbfL\xed+t\xcc\t\xa1\xbf\xfa\r\xde)\xb2\x82\xba\xbf\x84}c\x0cg4\x98?\xad\x86Tel\xcaq?\x0e7\xea\x19\xd5n\xa3?\x84\xc7\xa16U\xe7\xb9?)%\xd6\xeem\x9c\x9c?\xce\xed\xbf\xc5%\x9f\xcc\xbfn\xc5\xc4\x08\x05\xf0\xaf<\xd2\xed\xbf\xc5%\x9f\xcc\xbf\xe3\x11\x8b\x16\xcb\xbf\xa1<\xd4\xed\xbf\xc5%\x9f\xcc\xbf@I\xfc%E\x90h\xbc\xd7\xed\xbf\xc5%\x9f\xcc\xbf\xa1\x82\xd08\xcfD\x92\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbfJ\x89z\xe8\xf0A\xa7\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf\xb5$\x13\xdf\xe7w\xb2\xbc\xe4\xed\xbf\xc5%\x9f\xcc\xbfOE\x8by\xcfZ\xb7\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf\x10|"\xc7d\x8b\xa2\xbc\xe2\xed\xbf\xc5%\x9f\xcc\xbf/)\xbd{\xca}v<\xdd\xed\xbf\xc5%\x9f\xcc\xbf;\x84\x84{\xee\x9e\xa0<\xda\xed\xbf\xc5%\x9f\xcc\xbf\x06\xc8\x98g\xa3\xdd\xab<\xd6\xed\xbf\xc5%\x9f\xcc\xbfN\xeb\x1d\x87\xc2\x15\xb3<\xd1\xed\xbf\xc5%\x9f\xcc\xbf\x14\x94\xd1\x89\x17\r\xb2<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\x84}\x87\xaee\xe7\x8d<\xd9\xed\xbf\xc5%\x9f\xcc\xbfaf\xa9\x8c~Lq\xbc\xdb\xed\xbf\xc5%\x9f\xcc\xbf\xeez\xf4h\xd4\xfd\x9e\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf\xc5\x1a\xd1\x055<\xb3\xbc\xdd\xed\xbf\xc5%\x9f\xcc\xbf(\xee\xf4\x8b\x90\x9f\x92\xbc\xda\xed\xbf\xc5%\x9f\xcc\xbf\xb3\xee\x916\xd7\xfb\x80<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\xd8\xb5z\xaf0t\x9dn\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc0-t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x18\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe6/\xdb\xf9On\x18\xc0\x84\x10\xb0s\xf5C\xf2\xbf(~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@z\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xdfb\xe4\t\xe6\xda\xee\xbf\xf1\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I20 +I2 +tp43 +g22 +I00 +S'\xc5\xfd\x9a|\xc5\x1b\x19\xc05\xb2W\xfb\xe5{U\xc0\x96m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xb8I\xf2\xe1#-\xf8\xbf\xba\xe8\xb8\x87m\xe1;\xc0\xef\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc0\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc2\xcb9\x00\xb7\xc94@Je\xc5\xb8\x1d\xcfK@U\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe0*O$\xfd\x8dB@(4\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc0-t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x18\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe6/\xdb\xf9On\x18\xc0\x84\x10\xb0s\xf5C\xf2\xbf(~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@z\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xdfb\xe4\t\xe6\xda\xee\xbf\xf1\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I10 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I20 +I2 +tp68 +g22 +I00 +S'\xc9\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0h\xa3\x10\xdb8\xd1J\xc06\xb7\x92.Q\x89;\xc0&?SP\xbb$6\xc0HSmz\xdf\xfd5\xc0\xb8I\xf2\xe1#-\xf8\xbf\xbc\xe8\xb8\x87m\xe1;\xc0\xf0\xe4\xd1\x02Z\xdd5@j\x8a\x103<\xf14\xc0\x0bd#\x0c\xd0\x12K@\xc0\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc3\xcb9\x00\xb7\xc94@Le\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe1*O$\xfd\x8dB@H4\x8au\x1fW\xb8\xbf?n\xa4\x1e\xd6\x8dA@\xb5re>\x03\x017\xc0\x94\xb3}6\x7f\xcf6@\xf9\xf3"H\xd4\x10K\xc00t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x19\xd8m\xb1\xb9@ \xc0\x0b\xccRU\xf006\xc0\xe8/\xdb\xf9On\x18\xc0\x85\x10\xb0s\xf5C\xf2\xbf)~\x90Kd\xb5!\xc0\x17\xf7\xe6\xf5xy6@z\xf4A\x95\xd2\x8c\x1d\xc0\x8e=&1\xeb\x08R@\x83z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xb9\xb3\x81\xb2\x03\xda @\xe2b\xe4\t\xe6\xda\xee\xbf\xf2\xd0/`\x82\xcf\x18@\x07_\xb7ozv6\xc0' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x01\x00\x00\x00\x00\x00\xf0?\xe7\x85&\xf8\xb6%}<\x00\x00\x00\x00\x00\x00\xe09\xeam\x10J[\x1ej\xbc\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xe09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I20 +I2 +tp89 +g22 +I00 +S'\xc5\xfd\x9a|\xc5\x1b\x19\xc05\xb2W\xfb\xe5{U\xc0\x96m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xb8I\xf2\xe1#-\xf8\xbf\xba\xe8\xb8\x87m\xe1;\xc0\xef\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc0\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc2\xcb9\x00\xb7\xc94@Je\xc5\xb8\x1d\xcfK@U\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe0*O$\xfd\x8dB@(4\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc0-t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x18\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe6/\xdb\xf9On\x18\xc0\x84\x10\xb0s\xf5C\xf2\xbf(~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@z\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xdfb\xe4\t\xe6\xda\xee\xbf\xf1\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I20 +I2 +tp106 +g22 +I00 +S'\xbc\xa9\xb5\xb5\x9b\xa9#@\x8b#\xc41\xec\xe7T\xc0\xd3\xfc\x98\x14\xbc06\xc0\x98\x80t\xd0\xab\xf3J\xc0\xe6\x0cG\x8bv\xf9A\xc0\xa4!W\xf1w\x857\xc0\xac\xa7\xfbQD[@\xc0\x8e\xcc\xca\xe2\x15\x89\x08\xc0\x94\x85\x1c\xab\x90\rB\xc0r\xe9\x11x\x11}3@\xf7\xbe\x00\x97w\xb15\xc0\xc6\x98\x89D&\x94K@g\xe3\xe2\x7fr"\x14@#\xd66\x01\xd6,W@\xaf\xfe\x81\x19q\xad4@@\xf2\x9b\xd11\xa9K@q\xb0\x1b\x9bgs>@\xfeq\xccF\xeaP5@*\x9c\tn\x11T@@\x83k8!\xe2\xec\xd0\xbf\xeeet\xef\xca\x82@@ltN\xde\xde\xde7\xc0\xd9<\xed\x81\x8a\xe07@p\xa2\xa0\x86\x18\x0eK\xc0\xa1D^\x92\'"\x1f@\x0b\x98\xd1\xd4k9R\xc0\xeaA\xf1\x01\xfb\xfe\x1a\xc0\xfb\n\x17w\x97\xef6\xc0\x99\xebM\xc8R\x10"\xc0\xf9\x00\x9a\xca\x887\xe4\xbf\xfc\xf0\x807+P"\xc0\xb1\xc4UA\xf0\xa23@MU\x89\x13\xbbA\x19@\xf3{r\xc1\x1e\xffS@f)\xc8zv(\xd7\xbf\xd7i\x87\\\x84\xb93@=\x85\xb0n\x8b,\x0f@\xb7\x84[\x92$\x04\xf2\xbf\xf6{&\xbft\x16\xda?\xf4O\x15\xb0Ga7\xc0' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I10 +tp113 +g22 +I00 +S'\xdf\xf2\xf3\xdc\xdep\x8e@\x1aU\xfet\\,\x8e@!5\r\xf7\x7f\xe4~@\xc2/"bT\xafa@\xa1\x17\xc4\x10\x00\xf2Y@C\xc0\x1f\xd0\xb4\x94C@{\xf8}f<)@@\x1f\xd8M\xb7Z3;@\x0bN13\xe2S6@\xbf7\x86}\x83F3@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I27 +tp120 +g22 +I00 +S"\x88\x8d;\x08\xdaO.@\xb0\x82\x99yc#+@M\xc4/\xb4\xac\x1f)@\x95I\x8eT\xfa\xd4 @\x07\xc0\xf4\xda\xdc\x10\x1f@\x9c/\xbe\xe3<\xec\x18@\xb5\xc9\\\xfb\x95N\x17@\xd7\x12\t2\x8f\xf3\x13@\xccn\xba\x97\x8ei\x11@\tg\x80\x91J?\x10@h\x91/\x95A\x1f\r@\xea\xbc\xb1A\xa6^\t@7\xb4L2Q\x83\x03@^\xa5P\x13\x83\x90\x01@1B'\xde\xf7\xe5\x00@E\x18\xda\x8bb\x8f\xff?\xa35\xc7\xda\x01\xb0\xfe?[\x91\x15\x0bGt\xfd?j\xd6\xc1\xfe\xd0{\xf5?x\xf5\xbcE~y\xf4?\x98\x02%\xf9y<\xf2?\xec\xe0Y\xe1\x8b!\xf0?\xb3\xd3\xe52`\xad\xec?Q\xe3\xb8\x19Ta\xe9?@EA\xa9E\xed\xdf?\nB\xc55\xd2W\xd7?\x968\xc1\xf2&\xeb\xc8?" +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I10 +I40 +tp126 +g22 +I00 +S'\x07i\x03\x86g\xecn\xbf\xe2\xf6\xf6\xae\xf8\x92\xd7?\xcbE\xec\xe1\xd2T\xc4\xbf\xb0\xa3n\x01\xfa\x1a\xab?|\xaemK\x9eT\xcb\xbfAb\xa0\xe8\x0bH\xb3\xbf\xb7\xd2\xdd>KC\xcd\xbf\xaaA\xf0\x89k\xa8\xbd\xbf\xbe\x0e\x10u90\xcb\xbf\xe7R\xe7c\xcb3\xc2\xbf\xe15\x84C\xdb\x89\xc3\xbf\x1e\xe3t\xe0`&\xa7\xbf\xb3\xb0];\x82\x81\x88\xbf\x81\xd2\xc0\xaeN\x8c\xa8?\xcb\x08(!\x00[\xc6?\x9dRY\xedP\x02\x90?\x15)\xcdx\xad\xde\xce?\xa8\xa2\xf9\xd3m\xc6\xae\xbf\xa2\x08P\x01\xf20\xce?u\xce\x178\x8bo\xa6\xbf\xc9?\xa9\xd6\x1a\x01\xcd?\xba\x96o\xba\xbat\x84\xbfM\x15S\xe4`!\xc3?\x9e\x14\x84\x8f\xb8\x80\xba?V.\xed\xf1\x97\xfd\x94\xbfWpr\xc5JE\xd5?\x18eT\xab\xd8P\xc9\xbf`\x827\x07\xab#\xa8\xbf\x84\xc6|\x92\xf0\xcd\xca\xbf\xc2\x11\x96m\x90=\xb8\xbf.WN~\x02\x15\xc8\xbfB\x06-\x96\xe1\x17\xbf\xbf\x03\x08pmA\xb8\x99\xbf\xda\x84\x80\x98Y\x95\xa4?y\xa5\x90{\x8eg\xcb?<\xbe\xcdQk9\xb8\xbff\xfadf}\x19\xc9?m\x12\xf0?T\xe6\xb2\xbfu\xeem\x96\xfa\xa6\xc7?R\xe6\x95?\xa4\xc9\xa2\xbf\xe0\xcd\xd6\xe3]\x02\xae?\xe6 \xe1\x90:\x18\xd2?\x0c\xb6\x1bL#5\xb6?\n\xe9r\xaf\x13U\x8b\xbf1\xbd\xea\xe0\x19"\xb8?>\xf4\x8a/4\xa9\xca\xbf\xf1\\\xb2J\x86]\xba?\x827\xba\xa7^\xa2\xca\xbf\xcb:E\xe6\xf5>\xb7?I=\x85\xb1h\xeb\xc3\xbfI9E[\x87\x06\xb8?\xb0)%\x03\xc7\x8a\xb0?\x00\xce\xd7~!\x95\xa2?N\xe3+\x8b\x0e\xcc\xdb?\xbbx\x1eC\xfe2\xad\xbf^H\xb4\xf8\xa7R\xc3?\x1a\x87[\xe5\xef\x19\xbe\xbf\xaa\xa5&\x929\xb3\xa6\xbfJEL\xc4*z\xc1\xbf\xda\'\xc0S\xea\xff\xb8\xbf\x93\xcb+\x93m:\xc3\xbfx\xefeR$i\xb7\xbf\xfd\xe6\nv\xd1P\xbc\xbf@\x89\xa1\xe1r\xea\xb3?\xf4\x9f6\xa9\xb0\xff\xac?\xdd\x14\xaa$\xfc\x8e\xd0?G\xd3\x16\xa2\xdb\xc8\xbb?\x7f\x91\xae\x99.\xee\xc5\xbf\x04\xdbw\x84\x14s\xbe?\xb6\xf8D\x12\x97\xf9\xc5\xbf\xdb\x94\xe44\xf8\xda\xbd?\x05\x80G\x98\xcc\xaf\xbc\xbfv?}\x9c|A\xa0??cU\xb6\xd2\x13\xd9?\x82\xa1`5\x03Q\xbe\xbf\x08e\x87\xd82\xb8\xb8\xbf\xf7\x89\xbb\x80&>\xc2\xbfg\xaf\x06n\xd3\x01\xc3\xbf\xb6!\x15\x03_\xe1\xc4\xbf\xa9\xa1p\x8b90\xc2\xbf\nW\xc7\x91G\xcb\xdb?\x87\xbd\x82\x1frW\xaa\xbf\xd3}\xb6\x1cn\x11\xa0\xbfl\xc65\xa91\x1c\xa1\xbfe\x89\xbfCg\xad\xd1\xbf\x94G\xeb\x8b\xd5\x88U?\x81\xaf\xdf\xd5ib\xd0\xbfP1-i\x9f\xc1\x96?\xee\xd5D\xef25\xd1\xbfIp\xff\x85\x1a\xae\x87?&N\xab\xd0\xd0\x15\x87\xbf\xa1PW\xe0oB\x92?\xe5^\xcb\x8c\xac\xa3\xdb?\xefL\xcf\x1d\x9aa\xa0\xbfH0d\xd8\xd0\x97\xbd?\xe8\xc1\xbd\x8f\xe8\xfd\x84\xbf\xe3y\xde\x17\xbf\xe3\xa8\xbf\xc0\x96\xfeqH\xc4\x8e?_\x0f;\xa8&\xcc\xb1\xbf\x08n\xdah`\xe5\x9e?\xcb\x9b\x1c\xd3v\xb3\xa7\xbf\x92\xcd\x1fOA\xea\x8d?P\xf5\x8bU\x17]\xbb?E\x02\xe9\xe0\xf1\xb6s?\x92\xdcdAu\xff\xd3?\xad\'`\xf5\xbeN\x9c?6\xcb^\xedn\xa4v\xbf\xf2\xf2A.\xa4\x9a\x7f?\x18\x80:j\x88\xb9\xa0\xbf\xd1~+U\xf5x\x98?\xfcD5F\'\xa9`?\xb8\xeb\xa3\xb5\x01~\x86?\x8e\xc0\x1d\xee\xf5\x95\xd4?\xe2^\xc5,Q\x93\xb9\xbfR\xe8\xa8iD\xc5\xcb\xbf\xbd\x15\xeb\x9e\xfe\xbfl?X\x8e&\xb1&W\xcf\xbf\xa6\x93e\x01F\r\x96?\xd6\xc1\x95.E\xba\xcb\xbfe?\xd85\n\x0c\x8d?\xd7\t+\xa1e\xdf\xc9\xbf\x01\x8c\xedD\x15\xbf\x8a\xbf\x8c\xf9a\xf6\x057\xab\xbf\xe7)\xe5\xe7\xdc\xae\xac?\x15\xd3\xcax\\\\\xb2\xbfv\xed!\xf0Y$\xb6?\xdf\xbf\xbc\x9a[w\x91\xbfJ\x15\xf4\x16\xb1\xe3D?_\xf3\x82\xaf4\xbe\xb1\xbf\xe6\xcc\xa2\xa9\'\xc0\xba\xbf\xdb)\xaf\xb29\x1c\xaa\xbf\x14\xe7q\x90XJ\xb1\xbf\xb1\x05B\x88\xb4\x95\xc8\xbf\x07\xd2W\xf7f\xcf\x8a?m8\x17}\xd1\xd2\xbf?\xeb\x95\xfb\xb4\x88\x87\xa7\xbfU\xc7\xfff\x01\xab\xd1?\xcd\xdc\x15\x08\x80\x0c\xb1\xbfL\x7f\xea\x96\x87\xd6\xd2?\xc5\xec\x19f\xebi\x98?\xf2\xbfS\x97\xd1O\xd2?\xd81z\xca\x91\xec\xb1?\x88\xb2\x10F\xe6\x19\xc1?\xc1S\xec\xd4F\xae\xa9?\xbf=\xda\xa1\xeb\t\xc0\xbf)\xc5\xc6X^v\xae?G\x86&\xa9\x1e\xd5\xcf?\xf1\xac\x93\xfc\xce\x05\xb7?\x98q\x135@\xbc\xd0?\xaf!g\xa6G\\\x90?\x9d\xa3\xa6|\xd60\xd0?\xb3[\xdc\xda\x87\xe0\xb5\xbfX\xf8\xfc3d\xe4\xbc\xbfT\x8f\xc8\xdc\xa6\xea\xb0\xbf!@\xfb\x91\x16\x01\xd5\xbf\xc8\xe0[q\xffZ\xbb\xbf\x8b\x17\xb0\x9b\xad\xa3\xd4\xbf\xa2m\xa6\xa7\x8cg`?\xda\xe7\xa9\x04\xc6D\xd5\xbf\xe4\x91\xd4B\xdc\x9f\xb6?\xcb\xd4W\xa86\x19\xa0\xbf\xf8\x8a+N\x96\x88\xce?\x18\xcf\x94VN\xbd\xa8\xbf\xc0\x99WP\no\xb8\xbf\xac\xe6\x07\xe3\xbd\x15z?\xe8\x82\x1b\xadt\xbd\xd0\xbf\x03\x8d\x11\x06*_\xab?\xe0\x15\x9a\x0c6\\\x80\xbfKt5\x1d/\x88[?M\xcd\x1e\xa4\xe5\xb4\xd2?\xeb\x08=\x1d\xbc\xc9\x9f\xbfH\x1aW\x06\xc4V\xc0?\x1f\xfbh\xcd\x17\xa8\xa0\xbf\xdb\x1c\xff\xef\xa6[\xd2\xbfL\x9cJ\x05"\x04\xb0\xbfuL\xdf\x1e\xeba\xc0?\xc7\\d\xa8O\x07\xac?\x88\xcc\x92\xdagF\xd2?\xb0#d\x91\x9a;\xbe?`TT:\xac\xd4\x92\xbf\x9e\x81\xd7\x8f\x0b\xff\xb0?Q\x97\xe1+|h\xd1\xbf\x96\x90\xda"~\xdf\xaa\xbfE^\xdd\x8de@\xbe\xbf\xf9\x9c\xe2Os\x94\x88\xbf\xef\x1d\xcb.\xce|\xcd?,\x1d)\xab\xce\xff\xab?\x7f\xd6\xbd\xdac\r\xd1\xbf,B\xac\xc8\xfbE\xb8?\x0e\x91YG\x81\xce\x86\xbf\xe4\x16\xd8\xdb?\xd1\xab?GQ\x7f\xd0\xf2R\xd2?\xf3\x9eoY\xd1\xf5\x90\xbf\xd3\xa2]T\xb1h\xd0\xbf\xa68B7\xf4\x85\xb8\xbfK\xf4n\xedUQ\xd2?\x9d\xeeR\xbf\x96\xb1\x9f\xbf\xe4$\x82\xf8\xb4\xc3\x8b\xbf\x9f\xa4\xa7s\xe7C\xb7\xbf$\x85\x08\xf8X\x16\xd1\xbfl3\x9c\x05\xcb\x88\xc3\xbf\x14\x94\xe9\x81\xf2\xba\xb0\xbf\xcfKA\x070\x8e\xb1\xbfy\x16\xac\xe9C\xf5\xcc\xbf\xdc\x16\x94A\x99L\x8d?\x1aQo\xbft\xe9\xd0\xbf\xc3\xbb\x82\xf3\xfa\x0b\x91?f\xa1\x98|\xf8\xbe\xcb\xbf\x1f\xa9\xcb\x8dr\x9b\xa4?\xaa\x91\xf6\x1fX\x86\xd0\xbf\xb8\xcfe\n\xee\xd3\xb6?\x86\xfbH\xd5\xb9\x15\xc7\xbf=\xa3K;j\xf9\xc2?>\xda\x16_\xd1\xd2\xb3\xbf\xf5O\x96\xd4\xa1\xb2\xc5?\xb0\xad\x03\r^)\xc9?\xdd\xc6\x1d\x16\xc4\xd3\xaa?\xea\xfc\x8f#\x114\xd6?\xf7\xe4\xb7\x04\x95\xa0z?Y\xde\x96\x8c\x14\xa3\xd8?\xca\x8d\xe3\xa0\x01y\xa7\xbf*\xf5\xe8\x84|\xc5\xd5?U\xdb\x9f-\xf2\n\xca\xbf\x16\xea\xb9\xff\xc9\xae\xc6?\xe7\xa1\x931\xd0v\xc1\xbf\x9ck\xda\x03\xf8M\xb5\xbf\xba\xe3I91x\x95\xbf$F\xe9\xaa\xc0\xd5\xbb\xbfP3A\xb1\xe2f\x8d\xbf\xe8wP\x0e\xd6p\xb5\xbfS\x02zQ\xb5\xd3\x80\xbf\xba\x08\xec\xa0\xd71\xbc\xbf\x9cy\r \x85\x97\xbc?V2\xfcy\x87v\xb6\xbf`U}\xab\xca-\xbb?y\xfe\'\xa8\xaf\xdb\xb5?\xd9\x01`\xe4dap\xbfQ\xfdmy\xa9\xbb\xc0?e\x99\xc5>K\xb4\xb9\xbf\xa1Z\xf1$\xf6\xa7\xb9?\xc5h\x85K\xf1tp?\x82m\xa5X\x0c\x05\xbc?;\xcdF*\xb1\x00\xc4\xbf\xa2\xce\xafN\x14\x7f\xcc\xbf\xe4~-D:\xc1\xc8\xbf\x88.\xec\xde\x1f\xf0\xb4?\xeb\xb0P\xcb\x80\xac\xc9\xbf\xdf\xf8\xf3\x97s\x84\x85?\x9d\xf0\xa7\x1d\x9e"\xc8\xbf\xdf\xaa\x86\xfa\xa6\xaa\xb8\xbf\xd9\xcb\xdd\xe4e\x12\xc7\xbf\xf2\x0e\xcc\xaa\x1b]\xc7?\xf6>8|\xd3\xaew?\x04\xc3]\x86\xa4\xc8\xb7\xbf\x7f\xa8\x85\xa0\x0c\xb6\xd1\xbf\xb6ZT\x14@\xce\xc1?\xff\xf6\x84\xf0\xec=\xa8\xbf\xb9?\xec\x1e\xb4\xa6\xb6\xbf\x82\xec\xb3\xd9\xea\xa3\xa3\xbfcp\xfc\x80\xee\x95\x89?\x95\xd7\x83~\xd0<\xb0\xbf\xa2\x88\xae\xe2bI\xb1?\xfe\xbd\xa4\x0b]\x97\xd3\xbfjy\xa9\xba\xccM\xc4\xbf\xa8\xd5\xd7\xa4\x88\x03\xa4?7\xa3\x97\xef\xdd\n\xa0?\x03\x88\x959\xfa\xf3\xd5?+h7\xbb\xf3\x16\xb7?\x8fW9\x03\x93i\xd3?\xdb\xf6\xc2\xf3\x13\x8e\x9d?fp\xe9]\xb9P\xd5?\xae\x80Bk\xbaS\xb5\xbfx\x9eg#l\xae\xa1?\xa0\x1c\r\xe3\xc5\xa1\xa0\xbf-x\x8b\xd1\xc7V\xca?g\x02\x0b:Q*\xb8\xbf\x07\xcd\x98\xb3\x1e\xce\xc9?b\x93\x08M\xa1\x92\x95?\xb4\xfb\x8c\xb3\x12&\xc7?\xa3-\x82j\x8d%\xb8?s\xa9\x93\x1e\xfb\xd7\xbc\xbfW\xdcX\xb4\xac\x0b\xb2\xbf\x83\xe2\x9c\xbe\xae|\xc5\xbf\xfa\x97\x17\xc8\x95_\xd8?\xef\x12\xf2\x12x\xa9\xbe\xbf\xfb\xa1\x1c\xafK\x8a\xc1\xbf\x1c\xf5\x9b\xfe\xca\xf1\xc5\xbf;\r\x199\xae\xe9\x94\xbf\x11\x86\x08\xc0\xb0\xad\xbf\xbf\x89\x8a\x97l\xc4\x14\xb2?\xba+v\t_u\xc3\xbf\x11\xa2\xcb>!g\xd1\xbf\x8f\xd3\xfax+\xb6\xb4\xbf\x1d>f{&\xa4\x89?8\xa1\xd0\xbf\xe13\xce?l\x7fZXsL\xc5\xbf\x84=?#\xb8O\xc3\xbf\x01wK\xf0I.\xbd?H\xc2\xac\x14%"\xc8\xbf!n^\xb14\xd2\x92?Z"x^ \xed\xc5\xbf\xecO\x92\x9d\xa1\xd6\xb5\xbf\xdb\x07N\xcc\x80\xc3\xcb?\nx\x9a\x91I\x8e\xd1?8\xa1.4\x8a\xa6\x85?k\xbc\xfc\xb5*@\xc6\xbf~\xbeN58\x89\xcb?\xe8$\xa8)\xe3\xf2\xc3\xbf\x8d\xd1Cq\xb9B\xca?s\'\xac\xc1\n\xec\x7f\xbfU\xb8\x1a\x16\xb9\x02\xcd?\xd7|\xdd\x8e>\xd5\xbf?\x86\x1f\xf0\xcd;\xfaz\xbf\xc7^S\xd8\xfaE\xc2?\x8cg\xddE5\xd0\xc1?\x8d:\xbc)d\xfa\xbd?Y\xfb\xe0\x12RR\xb2?~n\x99\x12\xcc\xe4\x85\xbfu\xe1\xd4j\xf7\xe6\xbf?=\x16U\xa8\x81\xdb\xc3\xbf~\x82\xaf\xceK\x9c\xb8\xbf\x81\xb1\xe6\x02q\xdf\xcd?V\x97\xa6\xa0\xa5\xd3\xb0?x\xe45\xab\xfd\xec\xcb\xbf\xa9\xeb6\xc7\xfc=\x97?,\xc3\xa4U\x7f,\xbb?\xa0\x00\xaf}\xdd\xd7\xc1\xbfPV\xcdF\xa6@\xac?3\xdd\x00B4\xb5\xb1?VBm\xce\x89\x06\xb1\xbfq\xd9\xc3\xe7\x90\x00\xb8?\x11o\xa4\x12\xe1\x01\xba\xbf\xb4+\n\xf3]\xc6\xc6\xbf\xe5\xb6]\xfc\x16\xc6\xb3\xbf\xaem\x01\xd8c7\xdc?\x91n\n\x17k\x13\xbf?fx\x17Y\xb7\x85\xc0\xbfSNn\xcd[\x10\x8e?\x07x\x04\x0f\xa3M\xd2\xbf)\xfe\x15\x1f\xe5%\xb3?\x92\xde\x8b\xc6}"\xbc\xbfK\xb5\xaf&V\xb1\xba?P\x1b)__\xba\xd1?\xa4~`}.w\xe1\xbf!|l\xc8S\r\x91?9\xda\x9c\t\x13\x93\xb9?\tSV\x98\xbeac?\xc8\'\x13 \xfc\x06\xae?\x90N\x9a\xe3\x0e\xd6\x8d\xbf\xdc\x18\xa7K\xd9\xfb\xaa?\xcb>*O\xd9\x81\xb0?vf1\xb3bC\x9d?\xa5\xc4T$\xdb\xfb\xad\xbf\xb9\xd1\xc0y1\x7f\xa3?5\xd5\x96\x7f\xf0\xfb\x9a?H\x13\xf2\xf3\\\x85a?\xf5\xac\'v\x9b \xc7\xbf\x01H\xb6E\x156\x97?\x12\x9e\n\x91\xf2\xf7\xbc?\xe0\xcan\x15\x93\xa2j\xbf\xe17\xdcxi\x1a\xc9\xbf\x97\x14\x83\xd2S\x94\xa8\xbf\x8a\xfe\xca\xb5[\x9c\xbc\xbf\xe4\x11\xa9bdH\xc8?\x01\xbbe\x11\n\x92\x8b?xR\xfdN\xa3a\x80?cy\xc6\x00\x81\x9b\xa3\xbf\xa8\x07h\xb1g\xba\xc2\xbf\x0b\xf2\x1cod\x1b\xab?Jp\xaa\xec\xe7\xf8\xb9\xbf\x16\x7f\xc2\x05\xe56\xc1?d\xf0\x01|\x17V\xd8?\x14\xe6\xc2z\xfe\xd2\xbc?\xf9\x1e(\x80cU\xc7\xbfbh\xbd\xc0\x8b\x03\xce\xbfOL\xe0\xc8_\xf0\xda?\t\x98\x90\xb7\xa1\xaa\xbe\xbf\xe1\xe2\x06Y\xc8>\xa3\xbf*\xe5"M\xe3\x1b\xbf\xbfp\xa4\x14S\xea\xc9\xb2\xbf\x12\xfd\xaf\xb5Q\xac\x98?\xe4l\x1c\x8b\xf2\xd9\xb7?:U\x06\x86\x90\x99\xe0?\x08Y\xe7\x05\x001\xc0?\x0b\x8d]\xfage\xba\xbfxJO\xe0\xec\x1d\xb4\xbf\xde\'\x9a-\xb7\xd0\x97\xbf(\xe7l\x9b\xe0Lg?^\xferz-\xc1\x85\xbf\x8b%\xbe\'\xf1\x8c\xc1\xbf\xb3!\xf2\x82\x97x\xa0?r\r\xd9 \x0cp\xaf\xbf\x07\xcc\\\xc5\xf4\x84\xb3?\xe2\x0e\x9a8N\x9c\xc3\xbf5\xee#\xf9M\xeb\x8e\xbf=\x91\xdf\x0c\xa6\xfd\xaf\xbf\x9a\x8d\x80b\xd7(\xb1\xbfL\x7f\x10\x85c\x80\xc1\xbf\x81\xe0T \xf3\x8a\xb3?\xe9\x03\xfd{,&g\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I40 +tp132 +g22 +I00 +S'\xc5\xfd\x9a|\xc5\x1b\x19\xc05\xb2W\xfb\xe5{U\xc0\x96m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xb8I\xf2\xe1#-\xf8\xbf\xba\xe8\xb8\x87m\xe1;\xc0\xef\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc0\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc2\xcb9\x00\xb7\xc94@Je\xc5\xb8\x1d\xcfK@U\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe0*O$\xfd\x8dB@(4\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc0-t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x18\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe6/\xdb\xf9On\x18\xc0\x84\x10\xb0s\xf5C\xf2\xbf(~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@z\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xdfb\xe4\t\xe6\xda\xee\xbf\xf1\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I10 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_mouth_20 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_mouth_20 new file mode 100644 index 0000000000000000000000000000000000000000..7cd046bda816a9f8393077696913a59e6eecf62c --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_mouth_20 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I40 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xc0\x87\xe8\x94_\xf4\x9c\xbf\xec\xf1\x16\x8a^\xc6\xd8\xbfvx\xaf\xa7\xa6\x8c\xb7\xbf\xffL\xc0\x1a\xd5\xec\xce\xbf\x87\x0f\x87\x84 \xc1\xbf\xbf\x00\x02\xcb|\x10\x89\xb9\xbf\x16jL\xd9@\\\xb9\xbf;\x8c\x96O0\xe1{\xbf\xd3\xa78\x04^\x13\xc0\xbf\xe9\xfa\x82\x17\xc06\xb9?\xb7n\xb9:w&\xb8\xbf\xf2m8\\x8\xcf?\xe2\x91 \x91\xa45\xa5\xbf\x8d\x8cD\xb5\xd2\xaa\xd8?i\x8b\xe6H\xe4\xf8\xb7?\x00\xc1\x14\x13\xcf\x08\xd0?\xf7\x1a\x8c\xba\xed\xb3\xc3?\x08\xce\xa0\x19\x8f\xbe\xbc?\xee\x014\xcf\x96e\xc5?u@\xc11\x9a\x11<\xbf\xca\xf0\x10\x0c3>\xc4?\x93\x17R\x7f\x16\x87\xba\xbf\x88\xf7\x97\xc2\xfcM\xba?\xcaJ\xbd\xd0.6\xcf\xbf\xdc\xd6\xebxx\xb7\x97\xbffP\xe1\xec6\xe7\xd4\xbf\x9e\xff$\x08\x10\xbe\xa2\xbf%\x18\x0c2$\x97\xb9\xbf\xbes&\x10X,\x9c\xbf\xb7\\\x96\x1c8\x10u\xbf\x13\xfe\xfdW\xd0k\xa4\xbf\xb6\x94;\'\xc9\xea\xb9?L\xed+t\xcc\t\xa1\xbf\xfbb\xb7\xa8"\xcc\xd4?\x86}c\x0cg4\x98?\xfd\r\xde)\xb2\x82\xba?\x0f7\xea\x19\xd5n\xa3?\xa7\x86Tel\xcaq\xbf$%\xd6\xeem\x9c\x9c?\x86\xc7\xa16U\xe7\xb9\xbf\xeb\xf1\x16\x8a^\xc6\xd8?\xde\x87\xe8\x94_\xf4\x9c\xbf\xfdL\xc0\x1a\xd5\xec\xce?rx\xaf\xa7\xa6\x8c\xb7\xbf\x01\x02\xcb|\x10\x89\xb9?\x87\x0f\x87\x84 \xc1\xbf\xbfI\x8c\x96O0\xe1{?\x15jL\xd9@\\\xb9\xbf\xe8\xfa\x82\x17\xc06\xb9\xbf\xd3\xa78\x04^\x13\xc0\xbf\xf1m8\\x8\xcf\xbf\xb9n\xb9:w&\xb8\xbf\x8b\x8cD\xb5\xd2\xaa\xd8\xbf\xe9\x91 \x91\xa45\xa5\xbf\xff\xc0\x14\x13\xcf\x08\xd0\xbfd\x8b\xe6H\xe4\xf8\xb7?\x08\xce\xa0\x19\x8f\xbe\xbc\xbf\xf7\x1a\x8c\xba\xed\xb3\xc3?U>\xc11\x9a\x11\xc4?\xc8J\xbd\xd0.6\xcf?\x89\xf7\x97\xc2\xfcM\xba?fP\xe1\xec6\xe7\xd4?\xcb\xd6\xebxx\xb7\x97\xbf%\x18\x0c2$\x97\xb9?\x99\xff$\x08\x10\xbe\xa2\xbf\xba\\\x96\x1c8\x10u?\xbds&\x10X,\x9c\xbf\xb5\x94;\'\xc9\xea\xb9\xbf\x13\xfe\xfdW\xd0k\xa4\xbf\xf9b\xb7\xa8"\xcc\xd4\xbfR\xed+t\xcc\t\xa1\xbf\xfb\r\xde)\xb2\x82\xba\xbf\x82}c\x0cg4\x98?\xa1\x86Tel\xcaq?\x0e7\xea\x19\xd5n\xa3?\x84\xc7\xa16U\xe7\xb9?&%\xd6\xeem\x9c\x9c?\xd3\xed\xbf\xc5%\x9f\xcc\xbf\x08)\xf7\xc4JO\xb2<\xd4\xed\xbf\xc5%\x9f\xcc\xbf\x8b \xfd\xcd\xcd\x0c\xa2<\xd4\xed\xbf\xc5%\x9f\xcc\xbf\xb0\xb4\xbf&FF\t<\xd8\xed\xbf\xc5%\x9f\xcc\xbfK#\x91)\x1a\xbd\x8c\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbf?/\xf9\xa0\x8er\xa3\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf\xe0^\xb8%T1\xaf\xbc\xdf\xed\xbf\xc5%\x9f\xcc\xbf\xca\x93\xcfFG\xb6\xb5\xbc\xe2\xed\xbf\xc5%\x9f\xcc\xbf\xbe\xec\t\xc4\xf7\xe1\xa0\xbc\xdf\xed\xbf\xc5%\x9f\xcc\xbf`\xa4\xe9cC)^<\xdd\xed\xbf\xc5%\x9f\xcc\xbf8I\xac!\xe1t\x9a<\xda\xed\xbf\xc5%\x9f\xcc\xbf\x9f\xc4\xc1\x87\xac\xd9\xa6<\xd8\xed\xbf\xc5%\x9f\xcc\xbfW\x9d\xc47\xb16\xb0<\xd2\xed\xbf\xc5%\x9f\xcc\xbf$h\x15\xe8\xe9\xbf\xaf<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\x1dr<\rv \x8c<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\x1f\xad\x8f\xab\xdboj\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf\xc2/\x89v\xb4C\x9a\xbc\xdf\xed\xbf\xc5%\x9f\xcc\xbf\x0c\x07Gu=I\xb2\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf0\xdf\xc0vT\xb3\x91\xbc\xda\xed\xbf\xc5%\x9f\xcc\xbf\xb1\xa8\x07>\xdb\xad{<\xd9\xed\xbf\xc5%\x9f\xcc\xbfhQ\xbcj\x89\x84\x9an\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe7/\xdb\xf9On\x18\xc0x\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x18\xf7\xe6\xf5xy6@\x80\xf4A\x95\xd2\x8c\x1d\xc0\x8e=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xd0b\xe4\t\xe6\xda\xee\xbf\xed\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I20 +I2 +tp43 +g22 +I00 +S'\xca\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc05\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xadI\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc2\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc3\xcb9\x00\xb7\xc94@Le\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@\xc53\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe7/\xdb\xf9On\x18\xc0x\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x18\xf7\xe6\xf5xy6@\x80\xf4A\x95\xd2\x8c\x1d\xc0\x8e=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xd0b\xe4\t\xe6\xda\xee\xbf\xed\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I20 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I20 +I2 +tp68 +g22 +I00 +S'\xcd\xfd\x9a|\xc5\x1b\x19\xc07\xb2W\xfb\xe5{U\xc0\x9am<\x1a\xdak4\xc0h\xa3\x10\xdb8\xd1J\xc08\xb7\x92.Q\x89;\xc0&?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xaeI\xf2\xe1#-\xf8\xbf\xc0\xe8\xb8\x87m\xe1;\xc0\xf2\xe4\xd1\x02Z\xdd5@l\x8a\x103<\xf14\xc0\x0bd#\x0c\xd0\x12K@\xc4\xe3hPid"\xc0\x1c\x0f^\xdc\x02dU@\xc6\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@X\xc7\x8d\xb4\xee\x15A@\xf6\xcd5\xf7\x1a\xed8@\xe4*O$\xfd\x8dB@\xe03\x8au\x1fW\xb8\xbf@n\xa4\x1e\xd6\x8dA@\xb5re>\x03\x017\xc0\x96\xb3}6\x7f\xcf6@\xf9\xf3"H\xd4\x10K\xc06t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1c\xd8m\xb1\xb9@ \xc0\x0b\xccRU\xf006\xc0\xea/\xdb\xf9On\x18\xc0y\x10\xb0s\xf5C\xf2\xbf-~\x90Kd\xb5!\xc0\x19\xf7\xe6\xf5xy6@\x84\xf4A\x95\xd2\x8c\x1d\xc0\x8f=&1\xeb\x08R@\x84z\xe1\x18R\xfd\x14@E\x1e\xf7A4\xfd6@\xba\xb3\x81\xb2\x03\xda @\xd3b\xe4\t\xe6\xda\xee\xbf\xf0\xd0/`\x82\xcf\x18@\x07_\xb7ozv6\xc0' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x02\x00\x00\x00\x00\x00\xf0?@\x1a\x12\x80x*.<\x00\x00\x00\x00\x00\x00\xf89\xd25\xf1)\x8f\x1cf\xbc\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xe09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I20 +I2 +tp89 +g22 +I00 +S'\xca\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc05\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xadI\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc2\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc3\xcb9\x00\xb7\xc94@Le\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@\xc53\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe7/\xdb\xf9On\x18\xc0x\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x18\xf7\xe6\xf5xy6@\x80\xf4A\x95\xd2\x8c\x1d\xc0\x8e=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xd0b\xe4\t\xe6\xda\xee\xbf\xed\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I20 +I2 +tp106 +g22 +I00 +S'\xc3\xa9\xb5\xb5\x9b\xa9#@\x8e#\xc41\xec\xe7T\xc0\xd7\xfc\x98\x14\xbc06\xc0\x9d\x80t\xd0\xab\xf3J\xc0\xea\x0cG\x8bv\xf9A\xc0\xa7!W\xf1w\x857\xc0\xaf\xa7\xfbQD[@\xc0\x92\xcc\xca\xe2\x15\x89\x08\xc0\x97\x85\x1c\xab\x90\rB\xc0v\xe9\x11x\x11}3@\xfd\xbe\x00\x97w\xb15\xc0\xca\x98\x89D&\x94K@_\xe3\xe2\x7fr"\x14@\'\xd66\x01\xd6,W@\xb0\xfe\x81\x19q\xad4@D\xf2\x9b\xd11\xa9K@v\xb0\x1b\x9bgs>@\x03r\xccF\xeaP5@.\x9c\tn\x11T@@3k8!\xe2\xec\xd0\xbf\xf2et\xef\xca\x82@@ntN\xde\xde\xde7\xc0\xde<\xed\x81\x8a\xe07@t\xa2\xa0\x86\x18\x0eK\xc0\xadD^\x92\'"\x1f@\x0e\x98\xd1\xd4k9R\xc0\xeeA\xf1\x01\xfb\xfe\x1a\xc0\xfe\n\x17w\x97\xef6\xc0\x9e\xebM\xc8R\x10"\xc0\xed\x00\x9a\xca\x887\xe4\xbf\x02\xf1\x807+P"\xc0\xb5\xc4UA\xf0\xa23@FU\x89\x13\xbbA\x19@\xf7{r\xc1\x1e\xffS@\xab)\xc8zv(\xd7\xbf\xdbi\x87\\\x84\xb93@@\x85\xb0n\x8b,\x0f@\xad\x84[\x92$\x04\xf2\xbf\x00|&\xbft\x16\xda?\xf7O\x15\xb0Ga7\xc0' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I20 +tp113 +g22 +I00 +S'\xe3\xf2\xf3\xdc\xdep\x8e@\x1aU\xfet\\,\x8e@!5\r\xf7\x7f\xe4~@\xd2/"bT\xafa@\xa7\x17\xc4\x10\x00\xf2Y@F\xc0\x1f\xd0\xb4\x94C@w\xf8}f<)@@4\xd8M\xb7Z3;@\x11N13\xe2S6@\xc07\x86}\x83F3@q\x8d;\x08\xdaO.@\x9d\x82\x99yc#+@6\xc4/\xb4\xac\x1f)@\x9aI\x8eT\xfa\xd4 @\xfb\xbf\xf4\xda\xdc\x10\x1f@j/\xbe\xe3<\xec\x18@|\xc9\\\xfb\x95N\x17@\xc7\x12\t2\x8f\xf3\x13@\xc2n\xba\x97\x8ei\x11@\x10g\x80\x91J?\x10@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I17 +tp120 +g22 +I00 +S"\xae\x90/\x95A\x1f\r@X\xbd\xb1A\xa6^\t@=\xb4L2Q\x83\x03@}\xa5P\x13\x83\x90\x01@&B'\xde\xf7\xe5\x00@\xb3\x17\xda\x8bb\x8f\xff?\xce5\xc7\xda\x01\xb0\xfe?\x13\x91\x15\x0bGt\xfd?M\xd6\xc1\xfe\xd0{\xf5?\xd8\xf4\xbcE~y\xf4?'\x01%\xf9y<\xf2?C\xe1Y\xe1\x8b!\xf0?\xe0\xd3\xe52`\xad\xec?}\xe4\xb8\x19Ta\xe9?\xb6DA\xa9E\xed\xdf?\x83@\xc55\xd2W\xd7?\t.\xc1\xf2&\xeb\xc8?" +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I20 +I40 +tp126 +g22 +I00 +S'ne\x03\x86g\xecn\xbf\x17\xf7\xf6\xae\xf8\x92\xd7?\xaeE\xec\xe1\xd2T\xc4\xbf\xa6\xa3n\x01\xfa\x1a\xab?Y\xaemK\x9eT\xcb\xbf\xc6b\xa0\xe8\x0bH\xb3\xbf\x94\xd2\xdd>KC\xcd\xbf7B\xf0\x89k\xa8\xbd\xbf\xa1\x0e\x10u90\xcb\xbf\x1fS\xe7c\xcb3\xc2\xbf\xc25\x84C\xdb\x89\xc3\xbf\xc5\xe2t\xe0`&\xa7\xbf\xfa\xaf];\x82\x81\x88\xbf\xec\xd4\xc0\xaeN\x8c\xa8?\xb5\x08(!\x00[\xc6?QTY\xedP\x02\x90?\xed(\xcdx\xad\xde\xce?\xe4\xa2\xf9\xd3m\xc6\xae\xbfr\x08P\x01\xf20\xce?\x03\xcf\x178\x8bo\xa6\xbf\x93?\xa9\xd6\x1a\x01\xcd?\xd8\x98o\xba\xbat\x84\xbf(\x15S\xe4`!\xc3?\xcf\x14\x84\x8f\xb8\x80\xba?\xb3-\xed\xf1\x97\xfd\x94\xbf\x81pr\xc5JE\xd5?\xf3dT\xab\xd8P\xc9\xbfW\x837\x07\xab#\xa8\xbf\\\xc6|\x92\xf0\xcd\xca\xbf?\x12\x96m\x90=\xb8\xbf\x07WN~\x02\x15\xc8\xbf\x92\x06-\x96\xe1\x17\xbf\xbf\xa3\x07pmA\xb8\x99\xbf\x05\x87\x80\x98Y\x95\xa4?R\xa5\x90{\x8eg\xcb?\x80\xbe\xcdQk9\xb8\xbf3\xfadf}\x19\xc9?\xd8\x12\xf0?T\xe6\xb2\xbf=\xeem\x96\xfa\xa6\xc7?)\xe7\x95?\xa4\xc9\xa2\xbf\xc7\xcd\xd6\xe3]\x02\xae?\xa6 \xe1\x90:\x18\xd2?g\xb6\x1bL#5\xb6?E\xear\xaf\x13U\x8b\xbf\xd2\xbd\xea\xe0\x19"\xb8?)\xf4\x8a/4\xa9\xca\xbf\x92]\xb2J\x86]\xba?[7\xba\xa7^\xa2\xca\xbfb;E\xe6\xf5>\xb7?\x15=\x85\xb1h\xeb\xc3\xbf\xb79E[\x87\x06\xb8?\xd1)%\x03\xc7\x8a\xb0?\t\xce\xd7~!\x95\xa2?F\xe3+\x8b\x0e\xcc\xdb?\xb9y\x1eC\xfe2\xad\xbfZH\xb4\xf8\xa7R\xc3?\xc6\x87[\xe5\xef\x19\xbe\xbfN\xa5&\x929\xb3\xa6\xbf\x9fEL\xc4*z\xc1\xbf\xbb\'\xc0S\xea\xff\xb8\xbf\xe3\xcb+\x93m:\xc3\xbfo\xefeR$i\xb7\xbfb\xe7\nv\xd1P\xbc\xbf\xf7\x88\xa1\xe1r\xea\xb3?\x14\xa06\xa9\xb0\xff\xac?\xa3\x14\xaa$\xfc\x8e\xd0?\xd3\xd3\x16\xa2\xdb\xc8\xbb?n\x91\xae\x99.\xee\xc5\xbf\x9d\xdbw\x84\x14s\xbe?\x93\xf8D\x12\x97\xf9\xc5\xbfb\x95\xe44\xf8\xda\xbd?\xb0\x7fG\x98\xcc\xaf\xbc\xbf\x94?}\x9c|A\xa0?6cU\xb6\xd2\x13\xd9?\x1c\xa2`5\x03Q\xbe\xbf\xc4d\x87\xd82\xb8\xb8\xbf:\x8a\xbb\x80&>\xc2\xbfM\xaf\x06n\xd3\x01\xc3\xbf\xf5!\x15\x03_\xe1\xc4\xbf\x9b\xa1p\x8b90\xc2\xbf\x12W\xc7\x91G\xcb\xdb?\x8b\xbd\x82\x1frW\xaa\xbf\xd3}\xb6\x1cn\x11\xa0\xbfa\xc65\xa91\x1c\xa1\xbfc\x89\xbfCg\xad\xd1\xbf;H\xeb\x8b\xd5\x88U?\x80\xaf\xdf\xd5ib\xd0\xbfF1-i\x9f\xc1\x96?\xed\xd5D\xef25\xd1\xbf:p\xff\x85\x1a\xae\x87?\x0fN\xab\xd0\xd0\x15\x87\xbf\x9aPW\xe0oB\x92?\xdf^\xcb\x8c\xac\xa3\xdb?\xe2L\xcf\x1d\x9aa\xa0\xbfI0d\xd8\xd0\x97\xbd?\xe4\xc1\xbd\x8f\xe8\xfd\x84\xbf\xe0y\xde\x17\xbf\xe3\xa8\xbf\xa1\x96\xfeqH\xc4\x8e?_\x0f;\xa8&\xcc\xb1\xbf\xf5m\xdah`\xe5\x9e?\xcc\x9b\x1c\xd3v\xb3\xa7\xbfl\xcd\x1fOA\xea\x8d?E\xf5\x8bU\x17]\xbb?~\x02\xe9\xe0\xf1\xb6s?\x8d\xdcdAu\xff\xd3?\xd2\'`\xf5\xbeN\x9c?\xb5\xcb^\xedn\xa4v\xbf\xb3\xf2A.\xa4\x9a\x7f?\x1c\x80:j\x88\xb9\xa0\xbf\xc5~+U\xf5x\x98?[D5F\'\xa9`?\xa8\xeb\xa3\xb5\x01~\x86?\x8d\xc0\x1d\xee\xf5\x95\xd4?\xde^\xc5,Q\x93\xb9\xbfM\xe8\xa8iD\xc5\xcb\xbfX\x15\xeb\x9e\xfe\xbfl?S\x8e&\xb1&W\xcf\xbf\xa4\x93e\x01F\r\x96?\xd8\xc1\x95.E\xba\xcb\xbf>?\xd85\n\x0c\x8d?\xd6\t+\xa1e\xdf\xc9\xbf\xa9\x8b\xedD\x15\xbf\x8a\xbf\xb5\xf9a\xf6\x057\xab\xbf\xc6)\xe5\xe7\xdc\xae\xac? \xd3\xcax\\\\\xb2\xbfW\xed!\xf0Y$\xb6?\xeb\xbf\xbc\x9a[w\x91\xbf\xf5\x0b\xf4\x16\xb1\xe3D?b\xf3\x82\xaf4\xbe\xb1\xbf\xd3\xcc\xa2\xa9\'\xc0\xba\xbf\xb8)\xaf\xb29\x1c\xaa\xbf\x04\xe7q\x90XJ\xb1\xbf\xb1\x05B\x88\xb4\x95\xc8\xbfO\xd1W\xf7f\xcf\x8a?i8\x17}\xd1\xd2\xbf?\xd4\x95\xfb\xb4\x88\x87\xa7\xbfW\xc7\xfff\x01\xab\xd1?\xb5\xdc\x15\x08\x80\x0c\xb1\xbfT\x7f\xea\x96\x87\xd6\xd2?\xeb\xec\x19f\xebi\x98?\xf3\xbfS\x97\xd1O\xd2?\xc71z\xca\x91\xec\xb1?\x80\xb2\x10F\xe6\x19\xc1?\xc6S\xec\xd4F\xae\xa9?\xc3=\xda\xa1\xeb\t\xc0\xbf[\xc5\xc6X^v\xae?K\x86&\xa9\x1e\xd5\xcf?\xdd\xac\x93\xfc\xce\x05\xb7?\x99q\x135@\xbc\xd0?\x8e!g\xa6G\\\x90?\x9c\xa3\xa6|\xd60\xd0?\x9d[\xdc\xda\x87\xe0\xb5\xbf[\xf8\xfc3d\xe4\xbc\xbfk\x8f\xc8\xdc\xa6\xea\xb0\xbf"@\xfb\x91\x16\x01\xd5\xbf\xb8\xe0[q\xffZ\xbb\xbf\x8c\x17\xb0\x9b\xad\xa3\xd4\xbf\x11n\xa6\xa7\x8cg`?\xdd\xe7\xa9\x04\xc6D\xd5\xbf\xe2\x91\xd4B\xdc\x9f\xb6?\xda\xd4W\xa86\x19\xa0\xbf\x03\x8b+N\x96\x88\xce?\x90\xce\x94VN\xbd\xa8\xbf\xe8\x99WP\no\xb8\xbf#\xe8\x07\xe3\xbd\x15z?\xe1\x82\x1b\xadt\xbd\xd0\xbf\xd3\x8c\x11\x06*_\xab?\x82\x14\x9a\x0c6\\\x80\xbfjj5\x1d/\x88[?N\xcd\x1e\xa4\xe5\xb4\xd2?\xeb\x08=\x1d\xbc\xc9\x9f\xbfX\x1aW\x06\xc4V\xc0?&\xfbh\xcd\x17\xa8\xa0\xbf\xe0\x1c\xff\xef\xa6[\xd2\xbf\\\x9cJ\x05"\x04\xb0\xbfsL\xdf\x1e\xeba\xc0?Q\\d\xa8O\x07\xac?\x81\xcc\x92\xdagF\xd2?\x85#d\x91\x9a;\xbe?\x13UT:\xac\xd4\x92\xbf\xba\x81\xd7\x8f\x0b\xff\xb0?Z\x97\xe1+|h\xd1\xbf\x7f\x90\xda"~\xdf\xaa\xbfe^\xdd\x8de@\xbe\xbf\x1f\x9d\xe2Os\x94\x88\xbf\xf6\x1d\xcb.\xce|\xcd?\xf2\x1c)\xab\xce\xff\xab?~\xd6\xbd\xdac\r\xd1\xbf4B\xac\xc8\xfbE\xb8?\xf4\x90YG\x81\xce\x86\xbf\xa6\x16\xd8\xdb?\xd1\xab?HQ\x7f\xd0\xf2R\xd2?U\x9eoY\xd1\xf5\x90\xbf\xca\xa2]T\xb1h\xd0\xbf\x8e8B7\xf4\x85\xb8\xbfO\xf4n\xedUQ\xd2?\x80\xeeR\xbf\x96\xb1\x9f\xbf\xe1$\x82\xf8\xb4\xc3\x8b\xbft\xa4\xa7s\xe7C\xb7\xbf(\x85\x08\xf8X\x16\xd1\xbf\x8f3\x9c\x05\xcb\x88\xc3\xbf\xc3\x93\xe9\x81\xf2\xba\xb0\xbf\xe4JA\x070\x8e\xb1\xbf\x8c\x16\xac\xe9C\xf5\xcc\xbf\x98\x16\x94A\x99L\x8d? Qo\xbft\xe9\xd0\xbf\x10\xbd\x82\xf3\xfa\x0b\x91?\x8d\xa1\x98|\xf8\xbe\xcb\xbf\xc2\xa8\xcb\x8dr\x9b\xa4?\xa0\x91\xf6\x1fX\x86\xd0\xbf\xa9\xcfe\n\xee\xd3\xb6?u\xfbH\xd5\xb9\x15\xc7\xbfc\xa3K;j\xf9\xc2?/\xda\x16_\xd1\xd2\xb3\xbf\xebO\x96\xd4\xa1\xb2\xc5?\xa6\xad\x03\r^)\xc9?\xf3\xc5\x1d\x16\xc4\xd3\xaa?\xeb\xfc\x8f#\x114\xd6?\xf3\xe2\xb7\x04\x95\xa0z?\\\xde\x96\x8c\x14\xa3\xd8?\xa0\x8c\xe3\xa0\x01y\xa7\xbf)\xf5\xe8\x84|\xc5\xd5?\x11\xdb\x9f-\xf2\n\xca\xbf\xdf\xe9\xb9\xff\xc9\xae\xc6?4\xa2\x931\xd0v\xc1\xbf\x81k\xda\x03\xf8M\xb5\xbf\x16\xe5I91x\x95\xbf\x1bF\xe9\xaa\xc0\xd5\xbb\xbfh3A\xb1\xe2f\x8d\xbf\xdewP\x0e\xd6p\xb5\xbf\x17\x06zQ\xb5\xd3\x80\xbf\x96\x08\xec\xa0\xd71\xbc\xbf\xf2y\r \x85\x97\xbc?\x842\xfcy\x87v\xb6\xbfEU}\xab\xca-\xbb?\xb5\xfe\'\xa8\xaf\xdb\xb5?P\x05`\xe4dap\xbfQ\xfdmy\xa9\xbb\xc0?z\x99\xc5>K\xb4\xb9\xbf\x92Z\xf1$\xf6\xa7\xb9?\xa3j\x85K\xf1tp?\rm\xa5X\x0c\x05\xbc?\x92\xcdF*\xb1\x00\xc4\xbfw\xce\xafN\x14\x7f\xcc\xbf\x85~-D:\xc1\xc8\xbf9.\xec\xde\x1f\xf0\xb4?<\xb1P\xcb\x80\xac\xc9\xbf\x8d\xfc\xf3\x97s\x84\x85?q\xf0\xa7\x1d\x9e"\xc8\xbf\xfd\xaa\x86\xfa\xa6\xaa\xb8\xbf)\xcc\xdd\xe4e\x12\xc7\xbf\xdf\x0e\xcc\xaa\x1b]\xc7?P>8|\xd3\xaew?\xb1\xc3]\x86\xa4\xc8\xb7\xbf_\xa8\x85\xa0\x0c\xb6\xd1\xbf\xcaZT\x14@\xce\xc1?R\xf6\x84\xf0\xec=\xa8\xbf{?\xec\x1e\xb4\xa6\xb6\xbf\xbc\xec\xb3\xd9\xea\xa3\xa3\xbf\xf3p\xfc\x80\xee\x95\x89?\x06\xd8\x83~\xd0<\xb0\xbf\xda\x88\xae\xe2bI\xb1?\x06\xbe\xa4\x0b]\x97\xd3\xbf\ny\xa9\xba\xccM\xc4\xbf\xd9\xd5\xd7\xa4\x88\x03\xa4?\xf7\xa2\x97\xef\xdd\n\xa0?\x12\x88\x959\xfa\xf3\xd5?\xc0g7\xbb\xf3\x16\xb7?\x8eW9\x03\x93i\xd3?\t\xf6\xc2\xf3\x13\x8e\x9d?np\xe9]\xb9P\xd5?\xd2\x80Bk\xbaS\xb5\xbf\xb3\x9eg#l\xae\xa1?C\x1b\r\xe3\xc5\xa1\xa0\xbf`x\x8b\xd1\xc7V\xca?t\x02\x0b:Q*\xb8\xbf\x01\xcd\x98\xb3\x1e\xce\xc9?\x1f\x93\x08M\xa1\x92\x95?\x8e\xfb\x8c\xb3\x12&\xc7?y-\x82j\x8d%\xb8?P\xaa\x93\x1e\xfb\xd7\xbc\xbf\xdd\xdcX\xb4\xac\x0b\xb2\xbfi\xe2\x9c\xbe\xae|\xc5\xbf\xe8\x97\x17\xc8\x95_\xd8?\xde\x12\xf2\x12x\xa9\xbe\xbf\xad\xa1\x1c\xafK\x8a\xc1\xbf\xe3\xf4\x9b\xfe\xca\xf1\xc5\xbf\xdf\x0b\x199\xae\xe9\x94\xbf\xe4\x85\x08\xc0\xb0\xad\xbf\xbf\t\x8a\x97l\xc4\x14\xb2?\xb8+v\t_u\xc3\xbf/\xa2\xcb>!g\xd1\xbf\xf3\xd3\xfax+\xb6\xb4\xbfO?f{&\xa4\x89?S\xa1\xd0\xbf\xe13\xce?D\x7fZXsL\xc5\xbf\xd2=?#\xb8O\xc3\xbf\xa3wK\xf0I.\xbd?h\xc2\xac\x14%"\xc8\xbf\x15o^\xb14\xd2\x92?M"x^ \xed\xc5\xbf\xc4O\x92\x9d\xa1\xd6\xb5\xbf\x83\x08N\xcc\x80\xc3\xcb?\x00x\x9a\x91I\x8e\xd1?\xd9\xa0.4\x8a\xa6\x85?\x06\xbc\xfc\xb5*@\xc6\xbfR\xbeN58\x89\xcb?\x18%\xa8)\xe3\xf2\xc3\xbf\x85\xd1Cq\xb9B\xca?\x85*\xac\xc1\n\xec\x7f\xbf\x05\xb8\x1a\x16\xb9\x02\xcd?\xb2|\xdd\x8e>\xd5\xbf?h\x0e\xf0\xcd;\xfaz\xbf\xa0^S\xd8\xfaE\xc2?\xa7g\xddE5\xd0\xc1?\xfc:\xbc)d\xfa\xbd?2\xfb\xe0\x12RR\xb2?\xe3p\x99\x12\xcc\xe4\x85\xbf\xe7\xe0\xd4j\xf7\xe6\xbf?n\x16U\xa8\x81\xdb\xc3\xbfz\x83\xaf\xceK\x9c\xb8\xbf\x81\xb0\xe6\x02q\xdf\xcd?T\x97\xa6\xa0\xa5\xd3\xb0?%\xe55\xab\xfd\xec\xcb\xbf\xe5\xec6\xc7\xfc=\x97?7\xc4\xa4U\x7f,\xbb?\xba\xff\xae}\xdd\xd7\xc1\xbf\x9b[\xcdF\xa6@\xac?\xc5\xdb\x00B4\xb5\xb1?\xfcCm\xce\x89\x06\xb1\xbf\xe3\xd8\xc3\xe7\x90\x00\xb8?\x88n\xa4\x12\xe1\x01\xba\xbf\xd6+\n\xf3]\xc6\xc6\xbf\xd9\xb6]\xfc\x16\xc6\xb3\xbfLm\x01\xd8c7\xdc?\x9fn\n\x17k\x13\xbf?\xebx\x17Y\xb7\x85\xc0\xbfgQn\xcd[\x10\x8e?\x02x\x04\x0f\xa3M\xd2\xbfT\xfe\x15\x1f\xe5%\xb3?\xb3\xde\x8b\xc6}"\xbc\xbf\\\xb5\xaf&V\xb1\xba?\xda\x1b)__\xba\xd1?\xa2~`}.w\xe1\xbftzl\xc8S\r\x91?\x19\xdd\x9c\t\x13\x93\xb9?&*O\xd9\x81\xb0?\xf6c1\xb3bC\x9d?\xff\xc0T$\xdb\xfb\xad\xbf\x88\xd1\xc0y1\x7f\xa3?\xfa\xdb\x96\x7f\xf0\xfb\x9a?\xbc\t\xf2\xf3\\\x85a?\x18\xad\'v\x9b \xc7\xbf\xc0C\xb6E\x156\x97?%\x9d\n\x91\xf2\xf7\xbc?\xd9\xe2n\x15\x93\xa2j\xbf~8\xdcxi\x1a\xc9\xbf\xa1\x16\x83\xd2S\x94\xa8\xbf\xb6\xfd\xca\xb5[\x9c\xbc\xbf3\x11\xa9bdH\xc8?\xf9\xb8e\x11\n\x92\x8b?ZZ\xfdN\xa3a\x80?\x9by\xc6\x00\x81\x9b\xa3\xbf\x07\x07h\xb1g\xba\xc2\xbfc\xf0\x1cod\x1b\xab?\xb7p\xaa\xec\xe7\xf8\xb9\xbf\x81\x7f\xc2\x05\xe56\xc1?\x1b\xf0\x01|\x17V\xd8?\x9b\xe6\xc2z\xfe\xd2\xbc?\x84\x1d(\x80cU\xc7\xbf\xf8i\xbd\xc0\x8b\x03\xce\xbf\xefK\xe0\xc8_\xf0\xda?5\x99\x90\xb7\xa1\xaa\xbe\xbfp\xe1\x06Y\xc8>\xa3\xbfe\xe4"M\xe3\x1b\xbf\xbf\xd0\xa3\x14S\xea\xc9\xb2\xbf\xe7\x00\xb0\xb5Q\xac\x98?\x9al\x1c\x8b\xf2\xd9\xb7?dU\x06\x86\x90\x99\xe0?.Y\xe7\x05\x001\xc0?\xc0\x8d]\xfage\xba\xbf\xa4HO\xe0\xec\x1d\xb4\xbf\x95(\x9a-\xb7\xd0\x97\xbf\'\xd3l\x9b\xe0Lg?\x82\xfarz-\xc1\x85\xbf:%\xbe\'\xf1\x8c\xc1\xbf\xd2 \xf2\x82\x97x\xa0?\xb5\r\xd9 \x0cp\xaf\xbf\x91\xcd\\\xc5\xf4\x84\xb3?\xc8\x0f\x9a8N\x9c\xc3\xbf\xd1\xeb#\xf9M\xeb\x8e\xbf\xe5\x90\xdf\x0c\xa6\xfd\xaf\xbf\x0c\x8d\x80b\xd7(\xb1\xbfl\x7f\x10\x85c\x80\xc1\xbfx\xe0T \xf3\x8a\xb3?\xf6\x1d\xfd{,&g\xbf{\x1dx\x0f#\xfe\xcb\xbfg\x14\x83+\x10[\x8d\xbf.\xaa\x01\x01\x92\xe1p?\x8e\xc1\xe7\x1a\xc0\x85\xca\xbf`\x83Tz\xd4\xf3\xb3\xbf*\xd7\x9a\xc3\xfc\xed\xab\xbf\x85\xa3\xf2\xed\xefM\x8e\xbf\x17+\xd9\x1d\xa3\xb7\x9e?L\x96\x8b\xaf`{\xa4\xbf\x96\xd3\x11\xb1\xdd\xc0k?\xc5\x12-\x18[+\xba?\x1c]6\x9e\xcer\xd3\xbf\xc3O\xa6\t\x1e\x81\xc5?\x86\x8e\xe9#z\x88\xd4?k\x97\xb1\xda^\xbf\xdb\xbf\xa70\x89\x8cR\xd6\xd2\xbfZ\x1f\xb2}&\x13\xcd\xbfEG\xc3\xb7\xd1\x1b\xba?L\xa9\x1fWs\x17\xa4?\xfab\x82\xa2\xf8\xba\xbb?\xfe\xdc\xeb]L\xd8\xc6?\x12{\x86\x96\xa8\xbf\xa3?\x1c\xd8@\xdf>\xd3\xd3?\xf8\x7f\xfb\xeb1/\xc1\xbfg\xae\xf7\x18N\xbd\xc3\xbf\xdd`j\xa1\x0cm\xc9?\xf1\xbc$\x0f\xb4\xa1\xa1?\x8f\xd2\xc7\xcb]\xd3\x82?\rA\xb4\xda\xa3\xd3\x97?O\xba\xeas3\xbb\xb5?=\xbd\xf6\xd4-Bx?\xb5\x01\xed\xbd5\xf7\xb0?e\xaa\xfc\x18I\xeb\xc8?\x8b\x16\x02P\xc0\n\xaf\xbf\xcf\xab"\xe8z\x86\xbd\xbfD\xd3\xe8\x97\xef\x13\xae?\x8a\xd6Q\xe2\x83\xd1\xb1?J\xd6\xe3\xa5\xfdz\xac?\x81`\x9b\'\xb7r\xc3?\x91Hc\xf3&\xcb}\xbf\x9d\xf8\x9afq\xe1\xb3?2f\xea\x96\x8f\x95\xde?u6\xe4\xfd\xf8\xf1\xa2\xbf\x90\x08\xf54E\x8e\xb4\xbf\xba\xa3\xea\n\x89\x8dP?\x03\xf57E\x92ni?\x7f\x89\x7f\xb1\t\x17r\xbf\xdf\xfe\x0ff\x82\xe7~?\x01\tDcu\x08\x9d?\xf2\xca\xf8t*&\x84?c[\xa47\xe6%\x92?\x9c\xbb/\x1a\xe5b\xb4\xbfYY[Gg\xa6\xc6?D\xe4\xd3\xfem\x0c\xd6\xbf\xfb=\n\x860#\xc7\xbf\x97\x9eS\xc0\xfb\x94\xbc\xbf\x9bZ\x12%L6w?\x95c\x01:e \x98?m\xf3\x94\x0e\xda4\xb6?\x1fb\x92"\xa2k\x99?\xf8\xce\x0bic\x9b\xc1?\x87"\xae6\xb1O\xa2?d\xfd\xb4\x83\x95\xa2\xb1?\xf7\\\xc9\x01@4\x98\xbf\xba\xb4\xcb\x0c\xb9\x11\xc1\xbf\xa8\x87o67\xb7\xdf\xbf\x80\x19\xe6\xb1m\xc2\x92\xbf\xd7\x959\xd4\xc2>\x84?\xe2\x1b\x0f27P\x93?\xae\xeb?\x13\xe1\x06\x88?\xfb\x845\x00\xdc\xee\xa7\xbfk\x82G\xf85\xd6\x9f?\xf2\xc8\x89x\xfeH\x91\xbfA\x011gEW\xdf?\xc6\xc2\x1f\xd3\xa6\x91\xb8\xbf\xf1\r\xbf?4f\x87?\xc5e\x19O\xd2%\xaa\xbf\xbdg\xd4\xd5\xb1\xa8z\xbf\xaf\x80\xa9\\9\xdd\xa1\xbf\xa1D\x94\xd4\xd0Fv?!\xaaG\x94\xa9j\x9d?\t\x13\x17\x86*D\xa6?\xbacE\x97\xbd\xb4\xcb\xbf\xff\xec\x1a\xc4\xfe\xec\xda\xbf\xaf;\x81\xad\'\n\xc6?\x1f\xd7?\x02\r\x06\xb0\xbf\xe6\xef\xbd\xa4\xdcv\xd1?\xd1\xe0\r\xf4y\x9bg\xbfH-O,j0\xaa?1\xba\xc6\x87\x19\xe9\xc0?\n\x9eU\xc6\xf7\xa9\xde\xbf\x9d\xbdN\xc2}\xbd\xca?!\x1f\xb9X\xb98\xbc?:L\xdb\xfd<\xdd\x82?\x8e\x9c\x19\xb3\xab\xb9\xcf?\xb5\x9b\xdd\x96\x1d\xb6\xc5\xbf\x91p\x19M\x04\xbc\xc1\xbf]\x87*q\x04\xa6\xbb\xbf\xa6b\x8d i)\xbb\xbf.\x19\xa9\x91\x97\x10\xb3\xbf\xb5\xbf\xba\x1bJ\xd3\xb1\xbf}\xc9c\x90\x83-b?\xc0\r\xe5\x9f\xbf\xcb\xce?\xb1\xbd\xd1\x84\xa1\xaa\xcb?\x05B\xd1\xc9K\x93\xc3\xbf\xe5\x0f\x08d\x05W\xae?H\x1eHi\xc33\xbe?\xaa\x9e[\xd3\x029\xa8?\xb7-Mw4\x86q\xbf\xed)\r#\r\xad~\xbfhZ[\x99\x11\x0e\xb0\xbf\x02\x8a\xcd\x81A\x06\xa2\xbfNi\xccC}z\x9a?^X\x7f\x1f\x1fH\x9c\xbf?\xf2Vf\x8fo\xb0\xbf\xf0m\xad\xd5\xa1B\x88\xbf\x1f\xddM\xeaM\xc3\xc0?x\x10ye\xbeb\x9e?\x178\x9b\xfd}\xbc\xba\xbf\xf2\xaa/+\xdd\x07\xc6?V\xbb\xd5z\x01\xbe\xaf\xbf\x9a\xed\x92I\xed.\xb5?\xb4Q\x0cT9(\xd7?@B\xfd\xf7\xc5$\xd2\xbf\x84\xccl~p\x01\xd1\xbf\'\xa0\xa0\xef\x18\xf5\xc1\xbf\xa2/\x06n\xb0\x8e\xb8\xbf\xf9b\nG\xb4\xe7\xb4?\x0c6k\xe3\x96]\xcc\xbf\xab(n\x88[\x8b\xb5?R\x11\xf024\x9d\xde?\x96p\x8cQg\x0c\xd2?\xf9\xef\x07\xf6=\x17\xcc\xbfY\xd5,V\xf2\xfb\x9a\xbf\xb8s\xe2\x1b\x80\xef\xb9?v\x1a\xab\xd9\xaa\xb9\xc7\xbf\xfc\xbe\xffS\x98\xe0\xa9\xbf\xa1\x93\xe5\xf3!\xdb\xb2\xbf\x8a\xed\xcb\x12\xb4\\\xa5\xbf%\xda\xec4\xf8\x1a\x91?O\x8c\xbd\xcc\x80\xc8\xb2\xbf\xce\xb6\x1a\xd3\x94\xa0\xbb\xbf\x8bF\x08\x16\xe1\xc1\xb6?\xac+\xc9?\xaf5\xd4?M\xc8\x96\xa4\xb6b\xb5\xbf`+\x9d-\xa0Q\xb4\xbf\xacf\x07\x9doJ\xaa?\x0e|\x92\xd6|\x92\xac\xbf\x94\x00\x04\x8f]S\xa5\xbf\xe2a\xf5\xf7\xf4\x17\xb3?\xb7\xee\xba\'\xa3m\xa6?\x98~X\x7f\x97\xd6\xb4\xbfL\x04\xe1\xfep^\xaf\xbf|I\xafP\xba\x10\x9e\xbfg\x08 \x0em\x07\xa2?\xe5\xf3\xb3\xdd\xe4\x81\xa2\xbf\x03c\x9aI5\xca\xc0?[\xf8[&=&\xbb?}\x02\xcb\x06`;\xb3\xbf\x9cn\xdc\xc0De\xac?\x16\xfa\x8b\xd7\x12\x05\xb4\xbf\x1f\xa7\xb3C\x99\xca\x8c\xbfi/>2\x1b%\xc7?\x99\x81Dn_\xed\xb2\xbf\xd8\x82\x7f\xae\x8b\xae\xaa\xbf?\xacX\xf6\xc73\xc8?\xfb\xe0\x07:P\xd3\xa4\xbf\xbd\xdb\xf2/\r\xf3\xd8\xbf\xebQ\xa9=\xdc\xa0\xc2\xbf*\xc0\x13\x90\xd8*\xc8?\xab\x1bNI\x81\x11\xad?e\xcd\n\x01\xcem\xb0\xbf;OP\xf0+\xbf\xa3\xbf\x0f\x9cfZ\xe2)z\xbfs\xac\xd4\x84nl\xb4?\x9621\xad\xea\xbd\xb3\xbf#\x17%\x84\xd0\x9d\xb0\xbfn\n\xe5\xcc\xf3H\xc3?\x8c\xa83A\x84#\x8c?\xa4Q\xdfk\x13\xd2\xd4\xbf\xb7;\x8e\xab9\xb5\xad?X<\x1d\xea6F\xc9?\xf7\xee\x9f\xad\xbc\xd3\xbb\xbf\x08\xb6\xacw\xf5t\x8f?\xf9F\x9e%f\xe8\x96?\x98\x8f8\xf3\xb0\x1dt\xbf\xb1\x1e\xc9\xea\x02\xc1\xb8?R@\x9a\x83\xf9\x83\xca?p\xabL\xe5\xd7\xb1}?dR2m\x89;\xd9\xbf1\x02\xdb\x97\xcd(\xaf\xbfF\xcf\xc6\xbf@\xce\xcb?,R\x8c\x92\x0c\xe3\xa6?\x89\x82\xeeY{x\x90?\xd2\x04\xde\xf3\xbfk\x9f\xbf!\xd2<\xb9I\x1f\xd0?qV\x98\xbaV\x95\x93?\xc8UZ\xb5((\xd5\xbf\x084:\xc7T\xf9\xa4?\xfa\x1c\xa4\x03 \x98\xcf?\n\xcd\x86\xf9\'r\xd3\xbf\x18\xfd\xd0\xf1\x9a\xc7\xc9\xbf\x7f\x88`O\xf8T\xe2?)`I\\i"\xbb?\xd8\xfd\xba\x89\xc5\xc5\xbe?G\xed2\xfa\x1fH\xa2\xbf\x1a\x0e\xaa\xcf\xe9\xae\xb4\xbfs-H[\xe60\xaa?\x0c\xfc\x13\xc9\xcf\xd8\xca\xbf\xfb\xd5r\x9e\x02\x9e\xa5\xbf\xe1\xb9\xa5\xaa\xbc?\xd4\xbf\xf9\x85\xaf\xdd\xd7\x8d\xa3?\xaf\\\xfe\xe1h#\xcd?\x1d\x1a\x0f`L\xeb\xd1\xbf\xad\xd4\x80\x10Q\xf0\x8c?I~\xa1\xcb\xba\xdf\xaf?\xaa\xa9\xc0\xa8J7y\xbf\xa6\x89\xfb\x81p\xb8\xa8\xbf\xc3\xc4\xcak>\xa7\x84\xbf\x8a\xb5G\xb0\xe9\xaa\xa3?;\xf5\x85\x97\xaa\xa6\x99?\xbc\xb5\x9c^\x1b\xd0\xb3\xbf\x86\xabL\xfc\xa0m\x93\xbf\xd8\xc2X\xe6\xd8L\xb0\xbf\x9a\x8eQ\x84\xa3\x01\xb3\xbf\r\xc1<\xce\x0e\x80\xcc?;\xb1\xc9\xe3\xbb]\xc0?)\xdd\xc1\x1b9\xca\xb3\xbf\xa3\xaf\xe1\xc5\x86jy\xbf\x8e\x8f\x0b\x1e\xc3\x02\x97?P\x93\xba\xafG|\xc2\xbfGp\x87\xb8\xbd\xec\xb7\xbf\xbf\x81\xc9\x9e\xc9\xae\xb8?6\x98L\xb8\xce\xfb\xd1?Y\xf8\x00\xd0\xc8\x11w\xbf\x06\xc9\x90D\x13>v?\xca\xf6J\x0e\xddX\x89\xbf\xa0$\x05\xe1\x12\xbf\xb9?\x89t\x07\x18C*s?<\xe6G6\xe0\xd3\x81\xbf\x0eK\xd4\xd2\xa9\xa7\xb0\xbf:\xb1+\x900g\xd2\xbf\xc8\r\xdfM)\x1c\xd4\xbf\x11#\xb3%\xa9j\xc1\xbf\x0f\x9d\xe6\xe6\x8b\xf1\xa8\xbf\x92sl~M\xc4}\xbff\x1f\t;\x946\xe9>{\xd6IU\x9f\xe8t?\xd6\x14\xa7.a\xbd\xc3?\x95\xe0\xd4w8\x11\xb3?f.\xd7l\xd7\xbe\xc4?\xbcj\xd4j\xd4\t\x95\xbf\x07\xc3_\xbe\xd9\xdc\xcb\xbf"i\x07\x90\x1e\xcb\xd5\xbf8q\xf1\x11}C\xc1\xbf)?\xa8w;N\xbe\xbf\xbd\xa3\xc5`\xa3\xc2\x90? %>o\x1f#\xab\xbf\xe2U[\xb5\xe6N\x9d?YI\x8cw\xb5=\x9a\xbfm\x05){\x87\xb3{?\xc6\x18\x8c6\xc2\x9c\x9c?^\xa4\x9byM\x12\xb6?\x85\xddmU\xff\t\xa0?e\x8d\xff\x1b$\xd7\xd3?\xf4\xc4\x82\x00Sg\xd5?R]?\xe6kl\xb3\xbfks\xc1}g\'\xb5\xbf\xb7\xd2\xac\x8f\xadW\xb7\xbfo\xc6_\xfdZ\xde\xb9\xbf\x0b\x8cn\xee{1\xbb?\xf1M@\x8c\xe0#\xb1\xbf,G|\x92[8\xc0?kS\x87dmG\xdb?\xeb\r\xb6q)\x8a\xc0?\xe7Ts\xbe\xf5d\xba?:\xf7\xee\xd0\x9b\xe9\xa9\xbf\xa0\xedU.\xccq\xb8?o,>\xe6\xc7i\xc0\xbf.\xb3r\x167\x1c\xc2?\xc7\xf2\xe9R\xa7Q\xd5\xbf\xc9\x9d]m\xc3>\xcd??*\xeezd\xbb\xb5?/\xc3\xd4V\x0fS\xb3\xbfL\x10\xa1V\xb8)\xbf?\xb2\xe7n\xf6X>\xac\xbf\xe0\xf2M\xa0)s\xb2\xbf\xb9\xa7d8\xae:\x9d?\xee\xd8\x13\xa5\x8f\xef\xad?\x88\x12j\xb5\xa6\xf0\xa3?\x17M\xf9F\xe0a\xc9\xbf\x05U\x18%\xb30\xa9\xbfh\xfbL\x11\xdb\xa6\xd1\xbf\xaf\xd8\xbd"\x04\x04\xc0?\xdf\xb5\x99\xf0\x974\xb5\xbf:\xbc\x7f\xdak<\xb2?\x89\xf5\xff\xc0O\xe0\xb3?\x80\x86\x1d\x86\x91\n\xa3\xbf\xb5\xd3#B\xb8\xd3\x95?\xc4\xa7\x8el\x00\xe3\xa1\xbf\xa6\xc9\xa98\x9f\xecY\xbf\xe2\x04\xd68\xc5L\xb3\xbf\x02k1!u+\x96\xbf`P&\xba\x9b\xf9\xba?&3\xf2-y\x9b\xd8?i\xe9\x8atJ\x14\xd1\xbf\xd5\xda\xd9\x9eG\x0b\xb4?\xf1\x0e\xdc\xa0k\xfd\xae?\xc0\xce?\x06\x19\xa9\xcf\xbf\xba\xfc\xb5\xe1\x14\xdb\xb7?\x804U8\x892w\xbf\x93\xeb\x83W\xa5p\xa6?\x96\x0b,!\xfcv\xe0?\x0e\xcf\xbb\x8e@<\xc1\xbf\xe8f\xe7E\xd4\xbe\xbb?\xc2\xdd\x98\xc1eg\xb0\xbf"\xcao\xff\xdc\xfd\xc0\xbf8\x900\x00\xd5e\x86\xbf\xef\xf9\xc2\x07\xd4 \xb4\xbf\xc9R\xacc\xdf\xb9\x81?\xa9v\t &\x86\xb6\xbf\xf5\x8a\x01(\xa3\xd4\xa3\xbf\x8e\xa0\x0b &\xda\x9c\xbf\xef\x11\xb1\xb3yg\xa9\xbf\n\xab>=d\x90\xc7?\xe7$e&\x94\x88\xc2\xbf\x83\xaa]\xb6\xe9\x18\xd3\xbf`4\x81\xbf]\xfag?M3\x8d\n\x82\xbc\xc3?# \x93[\xc4\xca\xaf?\xb2\xa1\xac\xa5\xad\x18\x8c\xbf\xba\x8aX\xfd\x87K\xd5?yG,\xbbl\x03\xb5?!2\x90u\xe3\x0c\x8c?\xa5\x1ao/\xe0\xec\xaf?\xae\x9c,Y\xcfg\xd5\xbf4\xda\xd2NU#y?\xb4\xef$\xde\xd1\xc4\xc3\xbf;\xd2\xa0\xa8\x9e\x1ao\xbf\xe7\xbbGz\xc8\xfe\xbe?\xea\xf743\xeb\xa3\xc2?\xcf\xf2\x95\x99\x04\x8a\xd7?V\xd6\x95\x84~P\xc6\xbf0\x1f:\xd9\xb2\xa0\xbc?\x87u\xa7\x88P\xaf\xb9?\x96\x99\xa0\xa29\x8d\x9b?N\x0b\xdc\xd29b\x7f\xbf}\xefa\x93.\x01\xbe\xbf\x89\xb4wS^0\xa0\xbf\xbfk\xe7d\xf6D\x03\xbf\xc4\xc4\x1eS\x88\\\xa4?\x92K\xf5O\xd9\xbc\xc3?\xc6\x10\xce\xb2H\x93\xb7\xbf\xe9\xc20\x0e\x94\xbc^\xbf2a(b\xa1)\xbf\xbf#\x0f \xfe\xf1\x07\xa9\xbf0\xe0\x08\xdf\xe7$\xd2\xbf\xcc29{x\x1a\xb9\xbf\xcd\xd5(/4\x94\xd7??\xdd\xfa\xb46B\xca\xbfL?\xb1E\xba,\xc3\xbf\xd2\xdd\xd6\x9dk\x12s\xbf\xe3k\xf0\x82\x0f\xea\xc6\xbfWL\xa4\xbec\xe2\xbd?V\xce\r\x91\xc0\r\xbe\xbf\x18\x05\xc2j|\x9b\x94\xbf\xdd\xf7P\xea\xe5\x81\xd5?~\xde\x99\xf9\xb4\xa8\x9e\xbf\x02\xddso\xa4X\xc7\xbf<\xe97\xae\xcd\xdb\xc2\xbf\x1a\xce\xc2\x8a\x8b\x94\xbc?\xf2\xa1[\xad\x99\x03\xbf?H@\x8b\xeb\xa3\xbb\xc2\xbf9+\xd1\xfat\x90\xbb\xbf\xc8j\xa2\xc0\xc0\xf7\xc8?\x86P\x0cGV\xc4t?l\x19gT\x8f\xf4\xc7\xbf,d\xff\x1a\x00\xf0\xb1?^\xaa\x890\xa2m\x9f?x\xa4\xefu\')\xba?\xdb\x0b\xb5\x15\x18\xec\xb3?\x0b#\xf2\xd8Ey\xa6\xbf\x15B\xdb\xe4G\xbc\xc2\xbf\xd0X\xd4\x1c\xc3d\xac\xbfT\xad9\xb8\x96\xd2\xcb?)f\xcc\xe4Cc\x83\xbf\xac\xadn\x85\xa2&\x8d?5(8(\x83q\xa9?\x977\x1a\xaf41\xc1?H\x8dT\xab\x10\x8e\xb4?\xac\x96\x95WT\xf4\xcd\xbfGo\x9d\xb8;\xbd\x9e\xbf\xe4d\xa8\x0b\xc2|\xcb?\xd9\x9aLv!F\xb5?z\xd8\xe3\x88\xc8n\xdf\xbf8w-\x0b\xb8\xce\xbc\xbf\x9b)\xc6\xa1\xe3j\xcc?|\x11\x03Zl\xc9\xa0\xbf\xdb;\x0e\x93\xa0\xe6\xd1?\xae\xda(\x1e\xe1\x9f\xa1\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I40 +tp132 +g22 +I00 +S'\xca\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc05\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xadI\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc2\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc3\xcb9\x00\xb7\xc94@Le\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@\xc53\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe7/\xdb\xf9On\x18\xc0x\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x18\xf7\xe6\xf5xy6@\x80\xf4A\x95\xd2\x8c\x1d\xc0\x8e=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xd0b\xe4\t\xe6\xda\xee\xbf\xed\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I20 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_mouth_25 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_mouth_25 new file mode 100644 index 0000000000000000000000000000000000000000..a6816133cfb59619135cf2ca6ebc6906a2bcc6f3 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_mouth_25 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I40 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xc0\x87\xe8\x94_\xf4\x9c\xbf\xec\xf1\x16\x8a^\xc6\xd8\xbfvx\xaf\xa7\xa6\x8c\xb7\xbf\xffL\xc0\x1a\xd5\xec\xce\xbf\x87\x0f\x87\x84 \xc1\xbf\xbf\x04\x02\xcb|\x10\x89\xb9\xbf\x19jL\xd9@\\\xb9\xbfK\x8c\x96O0\xe1{\xbf\xd3\xa78\x04^\x13\xc0\xbf\xe9\xfa\x82\x17\xc06\xb9?\xbbn\xb9:w&\xb8\xbf\xf2m8\\x8\xcf?\xe3\x91 \x91\xa45\xa5\xbf\x8c\x8cD\xb5\xd2\xaa\xd8?g\x8b\xe6H\xe4\xf8\xb7?\xff\xc0\x14\x13\xcf\x08\xd0?\xf6\x1a\x8c\xba\xed\xb3\xc3?\x07\xce\xa0\x19\x8f\xbe\xbc?\xee\x014\xcf\x96e\xc5?\x9d@\xc11\x9a\x11<\xbf\xca\xf0\x10\x0c3>\xc4?\x93\x17R\x7f\x16\x87\xba\xbf\x86\xf7\x97\xc2\xfcM\xba?\xcaJ\xbd\xd0.6\xcf\xbf\xd8\xd6\xebxx\xb7\x97\xbffP\xe1\xec6\xe7\xd4\xbf\x9e\xff$\x08\x10\xbe\xa2\xbf%\x18\x0c2$\x97\xb9\xbf\xc0s&\x10X,\x9c\xbf\xc2\\\x96\x1c8\x10u\xbf\x13\xfe\xfdW\xd0k\xa4\xbf\xb4\x94;\'\xc9\xea\xb9?L\xed+t\xcc\t\xa1\xbf\xf9b\xb7\xa8"\xcc\xd4?\x84}c\x0cg4\x98?\xfb\r\xde)\xb2\x82\xba?\x0f7\xea\x19\xd5n\xa3?\xae\x86Tel\xcaq\xbf"%\xd6\xeem\x9c\x9c?\x86\xc7\xa16U\xe7\xb9\xbf\xeb\xf1\x16\x8a^\xc6\xd8?\xde\x87\xe8\x94_\xf4\x9c\xbf\xfdL\xc0\x1a\xd5\xec\xce?tx\xaf\xa7\xa6\x8c\xb7\xbf\x02\x02\xcb|\x10\x89\xb9?\x85\x0f\x87\x84 \xc1\xbf\xbfP\x8c\x96O0\xe1{?\x18jL\xd9@\\\xb9\xbf\xe8\xfa\x82\x17\xc06\xb9\xbf\xd3\xa78\x04^\x13\xc0\xbf\xf1m8\\x8\xcf\xbf\xban\xb9:w&\xb8\xbf\x8a\x8cD\xb5\xd2\xaa\xd8\xbf\xe6\x91 \x91\xa45\xa5\xbf\xfe\xc0\x14\x13\xcf\x08\xd0\xbfc\x8b\xe6H\xe4\xf8\xb7?\x07\xce\xa0\x19\x8f\xbe\xbc\xbf\xf5\x1a\x8c\xba\xed\xb3\xc3?U@\xc11\x9a\x11\xc4?\xc8J\xbd\xd0.6\xcf?\x86\xf7\x97\xc2\xfcM\xba?fP\xe1\xec6\xe7\xd4?\xd3\xd6\xebxx\xb7\x97\xbf$\x18\x0c2$\x97\xb9?\x9b\xff$\x08\x10\xbe\xa2\xbf\xc3\\\x96\x1c8\x10u?\xbfs&\x10X,\x9c\xbf\xb2\x94;\'\xc9\xea\xb9\xbf\x12\xfe\xfdW\xd0k\xa4\xbf\xf8b\xb7\xa8"\xcc\xd4\xbfP\xed+t\xcc\t\xa1\xbf\xfa\r\xde)\xb2\x82\xba\xbf\x84}c\x0cg4\x98?\xad\x86Tel\xcaq?\x0e7\xea\x19\xd5n\xa3?\x84\xc7\xa16U\xe7\xb9?#%\xd6\xeem\x9c\x9c?\xd1\xed\xbf\xc5%\x9f\xcc\xbf\xef\xd9B2\xca\xd0\xb1<\xd4\xed\xbf\xc5%\x9f\xcc\xbfH\xb4\x02\xeb\xff\xed\xa3<\xd4\xed\xbf\xc5%\x9f\xcc\xbf^\x10\x8b!\x9c\xa7`\xbc\xd7\xed\xbf\xc5%\x9f\xcc\xbf\xb1Q\xae\xc2\x19\n\x92\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbf\xb1\x86\x1a\xab\xb8\xb6\xa7\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf\xf2\xf7\xbe\x97\x8f\x8b\xb2\xbc\xe3\xed\xbf\xc5%\x9f\xcc\xbfB\xa7\x9cC\x13\x1b\xb8\xbc\xe3\xed\xbf\xc5%\x9f\xcc\xbf\x96X\xb1\xfc\xe7\x9e\xa2\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf\xe4P@\xab^\xf9p<\xde\xed\xbf\xc5%\x9f\xcc\xbf\xa7`\xe5\xf5Y\xbb\xa0<\xde\xed\xbf\xc5%\x9f\xcc\xbf\x95_\xb1G\x0f(\xab<\xd7\xed\xbf\xc5%\x9f\xcc\xbfT\x89\x1b\xf1\x84\xa9\xb2<\xd1\xed\xbf\xc5%\x9f\xcc\xbfF\xa7\xc0\xfc5%\xb2<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\xacvZ\xe7\xd5<\x8f<\xd8\xed\xbf\xc5%\x9f\xcc\xbf\xaaB\xee\x04m"q\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf,@\x0f!vP\xa0\xbc\xdf\xed\xbf\xc5%\x9f\xcc\xbf\x0e\xdb\x1b\x80\xcbV\xb3\xbc\xdd\xed\xbf\xc5%\x9f\xcc\xbfo~$\xce\xce4\x92\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf\x87\x85\xcf\xf4-\x11\x81<\xd9\xed\xbf\xc5%\x9f\xcc\xbfbF\xd5\x1f\x99\x17\x9dn\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x91\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc0/t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x81\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@\x81\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xddb\xe4\t\xe6\xda\xee\xbf\xec\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I20 +I2 +tp43 +g22 +I00 +S'\xc7\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc05\xb7\x92.Q\x89;\xc0\'?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xbaI\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@k\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc3\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc1\xcb9\x00\xb7\xc94@Je\xc5\xb8\x1d\xcfK@U\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@\xe73\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x91\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc0/t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x81\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@\x81\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xddb\xe4\t\xe6\xda\xee\xbf\xec\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I25 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I20 +I2 +tp68 +g22 +I00 +S'\xcb\xfd\x9a|\xc5\x1b\x19\xc07\xb2W\xfb\xe5{U\xc0\x9am<\x1a\xdak4\xc0h\xa3\x10\xdb8\xd1J\xc08\xb7\x92.Q\x89;\xc0(?SP\xbb$6\xc0MSmz\xdf\xfd5\xc0\xb9I\xf2\xe1#-\xf8\xbf\xc0\xe8\xb8\x87m\xe1;\xc0\xf3\xe4\xd1\x02Z\xdd5@n\x8a\x103<\xf14\xc0\x0bd#\x0c\xd0\x12K@\xc4\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc4\xcb9\x00\xb7\xc94@Le\xc5\xb8\x1d\xcfK@W\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe4*O$\xfd\x8dB@,4\x8au\x1fW\xb8\xbf@n\xa4\x1e\xd6\x8dA@\xb5re>\x03\x017\xc0\x94\xb3}6\x7f\xcf6@\xf9\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1c\xd8m\xb1\xb9@ \xc0\x0b\xccRU\xf006\xc0\xec/\xdb\xf9On\x18\xc0\x81\x10\xb0s\xf5C\xf2\xbf-~\x90Kd\xb5!\xc0\x17\xf7\xe6\xf5xy6@\x84\xf4A\x95\xd2\x8c\x1d\xc0\x8e=&1\xeb\x08R@\x83z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xba\xb3\x81\xb2\x03\xda @\xe1b\xe4\t\xe6\xda\xee\xbf\xef\xd0/`\x82\xcf\x18@\x07_\xb7ozv6\xc0' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x02\x00\x00\x00\x00\x00\xf0?\xc0&\xe9\xab\xfa\xefp<\x00\x00\x00\x00\x00\x00\xf89\xf56\x08\xa5-\x0f}\xbc\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xe09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I20 +I2 +tp89 +g22 +I00 +S'\xc7\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc05\xb7\x92.Q\x89;\xc0\'?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xbaI\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@k\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc3\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc1\xcb9\x00\xb7\xc94@Je\xc5\xb8\x1d\xcfK@U\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@\xe73\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x91\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc0/t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x81\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@\x81\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xddb\xe4\t\xe6\xda\xee\xbf\xec\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I20 +I2 +tp106 +g22 +I00 +S'\xbb\xa9\xb5\xb5\x9b\xa9#@\x8d#\xc41\xec\xe7T\xc0\xd6\xfc\x98\x14\xbc06\xc0\x9a\x80t\xd0\xab\xf3J\xc0\xe8\x0cG\x8bv\xf9A\xc0\xa5!W\xf1w\x857\xc0\xad\xa7\xfbQD[@\xc0\x8d\xcc\xca\xe2\x15\x89\x08\xc0\x95\x85\x1c\xab\x90\rB\xc0t\xe9\x11x\x11}3@\xf9\xbe\x00\x97w\xb15\xc0\xc8\x98\x89D&\x94K@i\xe3\xe2\x7fr"\x14@%\xd66\x01\xd6,W@\xb0\xfe\x81\x19q\xad4@B\xf2\x9b\xd11\xa9K@s\xb0\x1b\x9bgs>@\x00r\xccF\xeaP5@,\x9c\tn\x11T@@\x8ak8!\xe2\xec\xd0\xbf\xf0et\xef\xca\x82@@ntN\xde\xde\xde7\xc0\xda<\xed\x81\x8a\xe07@r\xa2\xa0\x86\x18\x0eK\xc0\xa0D^\x92\'"\x1f@\x0c\x98\xd1\xd4k9R\xc0\xeeA\xf1\x01\xfb\xfe\x1a\xc0\xfd\n\x17w\x97\xef6\xc0\x9d\xebM\xc8R\x10"\xc0\xf5\x00\x9a\xca\x887\xe4\xbf\xff\xf0\x807+P"\xc0\xb2\xc4UA\xf0\xa23@OU\x89\x13\xbbA\x19@\xf5{r\xc1\x1e\xffS@\x8c)\xc8zv(\xd7\xbf\xd8i\x87\\\x84\xb93@9\x85\xb0n\x8b,\x0f@\xb6\x84[\x92$\x04\xf2\xbf\xc4{&\xbft\x16\xda?\xf6O\x15\xb0Ga7\xc0' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I25 +tp113 +g22 +I00 +S'\xe1\xf2\xf3\xdc\xdep\x8e@\x1cU\xfet\\,\x8e@%5\r\xf7\x7f\xe4~@\xcd/"bT\xafa@\xa6\x17\xc4\x10\x00\xf2Y@>\xc0\x1f\xd0\xb4\x94C@z\xf8}f<)@@.\xd8M\xb7Z3;@\x19N13\xe2S6@\xbe7\x86}\x83F3@h\x8d;\x08\xdaO.@\xa3\x82\x99yc#+@I\xc4/\xb4\xac\x1f)@\x93I\x8eT\xfa\xd4 @\x1e\xc0\xf4\xda\xdc\x10\x1f@ /\xbe\xe3<\xec\x18@\x87\xc9\\\xfb\x95N\x17@\xcb\x12\t2\x8f\xf3\x13@\x0eo\xba\x97\x8ei\x11@\xa1f\x80\x91J?\x10@Y\x91/\x95A\x1f\r@\x8c\xbc\xb1A\xa6^\t@\xe9\xb4L2Q\x83\x03@\xbe\xa5P\x13\x83\x90\x01@\x8fB\'\xde\xf7\xe5\x00@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I12 +tp120 +g22 +I00 +S'v\x19\xda\x8bb\x8f\xff?\xbf5\xc7\xda\x01\xb0\xfe?\xe0\x90\x15\x0bGt\xfd?\xa1\xd6\xc1\xfe\xd0{\xf5?{\xf4\xbcE~y\xf4?\x1f\x02%\xf9y<\xf2?\x02\xe1Y\xe1\x8b!\xf0?\xa7\xd4\xe52`\xad\xec?m\xe5\xb8\x19Ta\xe9?\\DA\xa9E\xed\xdf?VC\xc55\xd2W\xd7?\xe91\xc1\xf2&\xeb\xc8?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I25 +I40 +tp126 +g22 +I00 +S'\x99k\x03\x86g\xecn\xbf\xe2\xf6\xf6\xae\xf8\x92\xd7?\xd0E\xec\xe1\xd2T\xc4\xbf\xaa\xa3n\x01\xfa\x1a\xab?x\xaemK\x9eT\xcb\xbf?b\xa0\xe8\x0bH\xb3\xbf\xb3\xd2\xdd>KC\xcd\xbf\xacA\xf0\x89k\xa8\xbd\xbf\xbb\x0e\x10u90\xcb\xbf\xe7R\xe7c\xcb3\xc2\xbf\xe25\x84C\xdb\x89\xc3\xbf#\xe3t\xe0`&\xa7\xbf\xe3\xb0];\x82\x81\x88\xbfu\xd2\xc0\xaeN\x8c\xa8?\xcb\x08(!\x00[\xc6?\xcfRY\xedP\x02\x90?\x14)\xcdx\xad\xde\xce?\x85\xa2\xf9\xd3m\xc6\xae\xbf\xa3\x08P\x01\xf20\xce?_\xce\x178\x8bo\xa6\xbf\xc6?\xa9\xd6\x1a\x01\xcd?\xaa\x96o\xba\xbat\x84\xbfI\x15S\xe4`!\xc3?\x9f\x14\x84\x8f\xb8\x80\xba?|.\xed\xf1\x97\xfd\x94\xbfUpr\xc5JE\xd5?\x19eT\xab\xd8P\xc9\xbfv\x827\x07\xab#\xa8\xbf\x81\xc6|\x92\xf0\xcd\xca\xbf\xca\x11\x96m\x90=\xb8\xbf.WN~\x02\x15\xc8\xbfA\x06-\x96\xe1\x17\xbf\xbf\x1d\x08pmA\xb8\x99\xbf\xd1\x84\x80\x98Y\x95\xa4?z\xa5\x90{\x8eg\xcb?.\xbe\xcdQk9\xb8\xbfj\xfadf}\x19\xc9?k\x12\xf0?T\xe6\xb2\xbfv\xeem\x96\xfa\xa6\xc7?a\xe6\x95?\xa4\xc9\xa2\xbf\xcf\xcd\xd6\xe3]\x02\xae?\xe6 \xe1\x90:\x18\xd2?\x08\xb6\x1bL#5\xb6?"\xe9r\xaf\x13U\x8b\xbf/\xbd\xea\xe0\x19"\xb8?=\xf4\x8a/4\xa9\xca\xbf\xf5\\\xb2J\x86]\xba?\x867\xba\xa7^\xa2\xca\xbf\xcc:E\xe6\xf5>\xb7?K=\x85\xb1h\xeb\xc3\xbfK9E[\x87\x06\xb8?\xb1)%\x03\xc7\x8a\xb0?\xf1\xcd\xd7~!\x95\xa2?Q\xe3+\x8b\x0e\xcc\xdb?\xb8x\x1eC\xfe2\xad\xbf_H\xb4\xf8\xa7R\xc3?\x19\x87[\xe5\xef\x19\xbe\xbf\xa8\xa5&\x929\xb3\xa6\xbfGEL\xc4*z\xc1\xbf\xdb\'\xc0S\xea\xff\xb8\xbf\x91\xcb+\x93m:\xc3\xbfy\xefeR$i\xb7\xbf\xfa\xe6\nv\xd1P\xbc\xbfC\x89\xa1\xe1r\xea\xb3?\xf1\x9f6\xa9\xb0\xff\xac?\xdd\x14\xaa$\xfc\x8e\xd0?I\xd3\x16\xa2\xdb\xc8\xbb?\x7f\x91\xae\x99.\xee\xc5\xbf\x07\xdbw\x84\x14s\xbe?\xb6\xf8D\x12\x97\xf9\xc5\xbf\xdb\x94\xe44\xf8\xda\xbd?\x07\x80G\x98\xcc\xaf\xbc\xbfi?}\x9c|A\xa0??cU\xb6\xd2\x13\xd9?\x7f\xa1`5\x03Q\xbe\xbf\x08e\x87\xd82\xb8\xb8\xbf\xf6\x89\xbb\x80&>\xc2\xbfg\xaf\x06n\xd3\x01\xc3\xbf\xb5!\x15\x03_\xe1\xc4\xbf\xa8\xa1p\x8b90\xc2\xbf\x0cW\xc7\x91G\xcb\xdb?q\xbd\x82\x1frW\xaa\xbf\xe7}\xb6\x1cn\x11\xa0\xbfi\xc65\xa91\x1c\xa1\xbfd\x89\xbfCg\xad\xd1\xbfyG\xeb\x8b\xd5\x88U?\x80\xaf\xdf\xd5ib\xd0\xbfF1-i\x9f\xc1\x96?\xee\xd5D\xef25\xd1\xbf\x14p\xff\x85\x1a\xae\x87?\x16N\xab\xd0\xd0\x15\x87\xbf\xa5PW\xe0oB\x92?\xdf^\xcb\x8c\xac\xa3\xdb?\xe1L\xcf\x1d\x9aa\xa0\xbfJ0d\xd8\xd0\x97\xbd?\xd7\xc1\xbd\x8f\xe8\xfd\x84\xbf\xd6y\xde\x17\xbf\xe3\xa8\xbf\x99\x96\xfeqH\xc4\x8e?\\\x0f;\xa8&\xcc\xb1\xbf\xf3m\xdah`\xe5\x9e?\xc6\x9b\x1c\xd3v\xb3\xa7\xbf}\xcd\x1fOA\xea\x8d?L\xf5\x8bU\x17]\xbb?\xb3\x02\xe9\xe0\xf1\xb6s?\x8e\xdcdAu\xff\xd3?\xc7\'`\xf5\xbeN\x9c?\x9f\xcb^\xedn\xa4v\xbf\x96\xf2A.\xa4\x9a\x7f?\x19\x80:j\x88\xb9\xa0\xbf\xc5~+U\xf5x\x98?\xe1D5F\'\xa9`?\xa1\xeb\xa3\xb5\x01~\x86?\x8d\xc0\x1d\xee\xf5\x95\xd4?\xdf^\xc5,Q\x93\xb9\xbfO\xe8\xa8iD\xc5\xcb\xbfs\x15\xeb\x9e\xfe\xbfl?T\x8e&\xb1&W\xcf\xbf\x9c\x93e\x01F\r\x96?\xd6\xc1\x95.E\xba\xcb\xbfc?\xd85\n\x0c\x8d?\xd8\t+\xa1e\xdf\xc9\xbf\x05\x8c\xedD\x15\xbf\x8a\xbf\x08\xfaa\xf6\x057\xab\xbf\xce)\xe5\xe7\xdc\xae\xac?\x11\xd3\xcax\\\\\xb2\xbff\xed!\xf0Y$\xb6?\xb0\xbf\xbc\x9a[w\x91\xbf\xd5\n\xf4\x16\xb1\xe3D?\\\xf3\x82\xaf4\xbe\xb1\xbf\xe8\xcc\xa2\xa9\'\xc0\xba\xbf\xcb)\xaf\xb29\x1c\xaa\xbf\x12\xe7q\x90XJ\xb1\xbf\xb7\x05B\x88\xb4\x95\xc8\xbf\xb5\xd1W\xf7f\xcf\x8a?j8\x17}\xd1\xd2\xbf?\xd0\x95\xfb\xb4\x88\x87\xa7\xbfP\xc7\xfff\x01\xab\xd1?\xb7\xdc\x15\x08\x80\x0c\xb1\xbfS\x7f\xea\x96\x87\xd6\xd2?\t\xed\x19f\xebi\x98?\xf6\xbfS\x97\xd1O\xd2?\xd61z\xca\x91\xec\xb1?\x86\xb2\x10F\xe6\x19\xc1?\xceS\xec\xd4F\xae\xa9?\xc3=\xda\xa1\xeb\t\xc0\xbfF\xc5\xc6X^v\xae?G\x86&\xa9\x1e\xd5\xcf?\xe0\xac\x93\xfc\xce\x05\xb7?\x99q\x135@\xbc\xd0?\x9c!g\xa6G\\\x90?\xa0\xa3\xa6|\xd60\xd0?\xa0[\xdc\xda\x87\xe0\xb5\xbfL\xf8\xfc3d\xe4\xbc\xbfm\x8f\xc8\xdc\xa6\xea\xb0\xbf"@\xfb\x91\x16\x01\xd5\xbf\xb8\xe0[q\xffZ\xbb\xbf\x87\x17\xb0\x9b\xad\xa3\xd4\xbf)n\xa6\xa7\x8cg`?\xdb\xe7\xa9\x04\xc6D\xd5\xbf\xdf\x91\xd4B\xdc\x9f\xb6?\x92\xd4W\xa86\x19\xa0\xbf\x05\x8b+N\x96\x88\xce?\xf2\xce\x94VN\xbd\xa8\xbf\xd4\x99WP\no\xb8\xbf\xf8\xe7\x07\xe3\xbd\x15z?\xe9\x82\x1b\xadt\xbd\xd0\xbf\xde\x8c\x11\x06*_\xab?N\x15\x9a\x0c6\\\x80\xbf\xd4v5\x1d/\x88[?T\xcd\x1e\xa4\xe5\xb4\xd2?\xa2\x08=\x1d\xbc\xc9\x9f\xbfU\x1aW\x06\xc4V\xc0?F\xfbh\xcd\x17\xa8\xa0\xbf\xde\x1c\xff\xef\xa6[\xd2\xbf[\x9cJ\x05"\x04\xb0\xbfkL\xdf\x1e\xeba\xc0?\x91\\d\xa8O\x07\xac?\x81\xcc\x92\xdagF\xd2?\x91#d\x91\x9a;\xbe?\xdfTT:\xac\xd4\x92\xbf\xa0\x81\xd7\x8f\x0b\xff\xb0?X\x97\xe1+|h\xd1\xbf\x91\x90\xda"~\xdf\xaa\xbff^\xdd\x8de@\xbe\xbf\xcf\x9c\xe2Os\x94\x88\xbf\xef\x1d\xcb.\xce|\xcd?\xed\x1c)\xab\xce\xff\xab?}\xd6\xbd\xdac\r\xd1\xbfDB\xac\xc8\xfbE\xb8?\xb5\x90YG\x81\xce\x86\xbf\xac\x16\xd8\xdb?\xd1\xab?IQ\x7f\xd0\xf2R\xd2?\xae\x9eoY\xd1\xf5\x90\xbf\xcb\xa2]T\xb1h\xd0\xbf\x9f8B7\xf4\x85\xb8\xbfM\xf4n\xedUQ\xd2?\xe9\xeeR\xbf\x96\xb1\x9f\xbf\xae$\x82\xf8\xb4\xc3\x8b\xbf\x82\xa4\xa7s\xe7C\xb7\xbf\'\x85\x08\xf8X\x16\xd1\xbf\xaa3\x9c\x05\xcb\x88\xc3\xbfd\x94\xe9\x81\xf2\xba\xb0\xbf\xfaJA\x070\x8e\xb1\xbf\x95\x16\xac\xe9C\xf5\xcc\xbf\xa3\x16\x94A\x99L\x8d?3Qo\xbft\xe9\xd0\xbf=\xbe\x82\xf3\xfa\x0b\x91?r\xa1\x98|\xf8\xbe\xcb\xbf+\xa9\xcb\x8dr\x9b\xa4?\x90\x91\xf6\x1fX\x86\xd0\xbf\xce\xcfe\n\xee\xd3\xb6?r\xfbH\xd5\xb9\x15\xc7\xbfD\xa3K;j\xf9\xc2?2\xda\x16_\xd1\xd2\xb3\xbf\xefO\x96\xd4\xa1\xb2\xc5?\xa0\xad\x03\r^)\xc9?w\xc6\x1d\x16\xc4\xd3\xaa?\xe4\xfc\x8f#\x114\xd6?\xa3\xe1\xb7\x04\x95\xa0z?\\\xde\x96\x8c\x14\xa3\xd8?.\x8d\xe3\xa0\x01y\xa7\xbf2\xf5\xe8\x84|\xc5\xd5?\x00\xdb\x9f-\xf2\n\xca\xbf\xe2\xe9\xb9\xff\xc9\xae\xc6?\x01\xa2\x931\xd0v\xc1\xbf\xe7j\xda\x03\xf8M\xb5\xbf\xfb\xe5I91x\x95\xbf\x17F\xe9\xaa\xc0\xd5\xbb\xbf\xd63A\xb1\xe2f\x8d\xbf\x03xP\x0e\xd6p\xb5\xbf\xa6\x07zQ\xb5\xd3\x80\xbf\xb1\x08\xec\xa0\xd71\xbc\xbf\x1fz\r \x85\x97\xbc?~2\xfcy\x87v\xb6\xbf\x16U}\xab\xca-\xbb?\x98\xfe\'\xa8\xaf\xdb\xb5?\xee\x05`\xe4dap\xbfa\xfdmy\xa9\xbb\xc0?y\x99\xc5>K\xb4\xb9\xbf\xa5Z\xf1$\xf6\xa7\xb9?bi\x85K\xf1tp?\xc6m\xa5X\x0c\x05\xbc?\xc9\xcdF*\xb1\x00\xc4\xbf\xba\xce\xafN\x14\x7f\xcc\xbf\xa7~-D:\xc1\xc8\xbfE.\xec\xde\x1f\xf0\xb4?\x1b\xb1P\xcb\x80\xac\xc9\xbf\\\xfa\xf3\x97s\x84\x85?C\xf0\xa7\x1d\x9e"\xc8\xbf-\xab\x86\xfa\xa6\xaa\xb8\xbfR\xcc\xdd\xe4e\x12\xc7\xbf\xa6\x0e\xcc\xaa\x1b]\xc7?C@8|\xd3\xaew?\xac\xc3]\x86\xa4\xc8\xb7\xbfE\xa8\x85\xa0\x0c\xb6\xd1\xbf\xa4ZT\x14@\xce\xc1?\xbc\xf6\x84\xf0\xec=\xa8\xbf:?\xec\x1e\xb4\xa6\xb6\xbfP\xed\xb3\xd9\xea\xa3\xa3\xbf5s\xfc\x80\xee\x95\x89?\xe7\xd7\x83~\xd0<\xb0\xbf\xf1\x88\xae\xe2bI\xb1?\x01\xbe\xa4\x0b]\x97\xd3\xbf(y\xa9\xba\xccM\xc4\xbf\xd3\xd5\xd7\xa4\x88\x03\xa4?\x15\xa2\x97\xef\xdd\n\xa0?\x19\x88\x959\xfa\xf3\xd5?\xd3g7\xbb\xf3\x16\xb7?\x92W9\x03\x93i\xd3?+\xf7\xc2\xf3\x13\x8e\x9d?xp\xe9]\xb9P\xd5?\x8e\x80Bk\xbaS\xb5\xbf\xb3\x9eg#l\xae\xa1?\xdf\x1a\r\xe3\xc5\xa1\xa0\xbf3x\x8b\xd1\xc7V\xca?@\x02\x0b:Q*\xb8\xbf\xfc\xcc\x98\xb3\x1e\xce\xc9?\xc6\x93\x08M\xa1\x92\x95?\xbf\xfb\x8c\xb3\x12&\xc7?\\-\x82j\x8d%\xb8?\x8b\xaa\x93\x1e\xfb\xd7\xbc\xbf\x01\xdcX\xb4\xac\x0b\xb2\xbf\xcb\xe1\x9c\xbe\xae|\xc5\xbf\x03\x98\x17\xc8\x95_\xd8?\xd4\x12\xf2\x12x\xa9\xbe\xbfU\xa2\x1c\xafK\x8a\xc1\xbf \xf5\x9b\xfe\xca\xf1\xc5\xbf_\x0c\x199\xae\xe9\x94\xbf\x7f\x86\x08\xc0\xb0\xad\xbf\xbf\x82\x8a\x97l\xc4\x14\xb2?u+v\t_u\xc3\xbf$\xa2\xcb>!g\xd1\xbfR\xd3\xfax+\xb6\xb4\xbf\x8e@f{&\xa4\x89?\xd7\xa0\xd0\xbf\xe13\xce?\xa6\x7fZXsL\xc5\xbf\xea=?#\xb8O\xc3\xbf\x98wK\xf0I.\xbd?\xe9\xc1\xac\x14%"\xc8\xbf\x16p^\xb14\xd2\x92?P"x^ \xed\xc5\xbf\x88O\x92\x9d\xa1\xd6\xb5\xbf\x9c\x08N\xcc\x80\xc3\xcb?\x15x\x9a\x91I\x8e\xd1?\xb0\x98.4\x8a\xa6\x85?\xa3\xbc\xfc\xb5*@\xc6\xbfU\xbeN58\x89\xcb? %\xa8)\xe3\xf2\xc3\xbf|\xd1Cq\xb9B\xca? )\xac\xc1\n\xec\x7f\xbf\xe7\xb7\x1a\x16\xb9\x02\xcd?\xa0|\xdd\x8e>\xd5\xbf?7\x08\xf0\xcd;\xfaz\xbf\xc1^S\xd8\xfaE\xc2?Sg\xddE5\xd0\xc1?\xce:\xbc)d\xfa\xbd?A\xfb\xe0\x12RR\xb2?\x17n\x99\x12\xcc\xe4\x85\xbf\\\xe1\xd4j\xf7\xe6\xbf?I\x16U\xa8\x81\xdb\xc3\xbf6\x85\xaf\xceK\x9c\xb8\xbf\xd4\xb0\xe6\x02q\xdf\xcd?"\x96\xa6\xa0\xa5\xd3\xb0?\x91\xe45\xab\xfd\xec\xcb\xbf\xdd\xf76\xc7\xfc=\x97?c\xc2\xa4U\x7f,\xbb?\xaa\x00\xaf}\xdd\xd7\xc1\xbf\xaeX\xcdF\xa6@\xac?\xd4\xdb\x00B4\xb5\xb1?CCm\xce\x89\x06\xb1\xbf\xe4\xd8\xc3\xe7\x90\x00\xb8?#l\xa4\x12\xe1\x01\xba\xbf5+\n\xf3]\xc6\xc6\xbfH\xb7]\xfc\x16\xc6\xb3\xbf\xe1l\x01\xd8c7\xdc?\xc0n\n\x17k\x13\xbf?\x03z\x17Y\xb7\x85\xc0\xbf\xdbMn\xcd[\x10\x8e?\xd8w\x04\x0f\xa3M\xd2\xbf\x80\xfe\x15\x1f\xe5%\xb3?\xc0\xde\x8b\xc6}"\xbc\xbf\xc2\xb6\xaf&V\xb1\xba?\xf8\x1c)__\xba\xd1?\x94~`}.w\xe1\xbfyql\xc8S\r\x91?\x08\xdc\x9c\t\x13\x93\xb9?\x93`V\x98\xbeac?\x13&\x13 \xfc\x06\xae?\xecK\x9a\xe3\x0e\xd6\x8d\xbf.\x18\xa7K\xd9\xfb\xaa?\xd9=*O\xd9\x81\xb0?\x0bb1\xb3bC\x9d?\x8b\xbcT$\xdb\xfb\xad\xbf\xca\xd0\xc0y1\x7f\xa3?J\xd2\x96\x7f\xf0\xfb\x9a?\xb7\xfa\xf1\xf3\\\x85a?A\xad\'v\x9b \xc7\xbfWE\xb6E\x156\x97?b\x9f\n\x91\xf2\xf7\xbc?\x95\xd9n\x15\x93\xa2j\xbf\xff7\xdcxi\x1a\xc9\xbf:\x19\x83\xd2S\x94\xa8\xbf\x8d\xfd\xca\xb5[\x9c\xbc\xbf\x14\x12\xa9bdH\xc8?\xbe\xb9e\x11\n\x92\x8b?\x18M\xfdN\xa3a\x80?\xddx\xc6\x00\x81\x9b\xa3\xbfz\x07h\xb1g\xba\xc2\xbf\xd1\xef\x1cod\x1b\xab?\xd4o\xaa\xec\xe7\xf8\xb9\xbf\x00\x7f\xc2\x05\xe56\xc1?\xa4\xf0\x01|\x17V\xd8?l\xe7\xc2z\xfe\xd2\xbc?\xe2\x1d(\x80cU\xc7\xbf\xa1j\xbd\xc0\x8b\x03\xce\xbf\xd6K\xe0\xc8_\xf0\xda?\xe8\x97\x90\xb7\xa1\xaa\xbe\xbf\x9b\xe2\x06Y\xc8>\xa3\xbf~\xe2"M\xe3\x1b\xbf\xbf\xaf\xa4\x14S\xea\xc9\xb2\xbfP\x00\xb0\xb5Q\xac\x98?0l\x1c\x8b\xf2\xd9\xb7?\rU\x06\x86\x90\x99\xe0?\xe1Z\xe7\x05\x001\xc0?\xd4\x8d]\xfage\xba\xbf\xaaIO\xe0\xec\x1d\xb4\xbf\xc3&\x9a-\xb7\xd0\x97\xbfU\xd1l\x9b\xe0Lg?\x8e\xfcrz-\xc1\x85\xbf\xa1%\xbe\'\xf1\x8c\xc1\xbf7 \xf2\x82\x97x\xa0?\xe0\r\xd9 \x0cp\xaf\xbfq\xcd\\\xc5\xf4\x84\xb3?\xaf\x0f\x9a8N\x9c\xc3\xbf\xf1\xf2#\xf9M\xeb\x8e\xbf\x07\x92\xdf\x0c\xa6\xfd\xaf\xbf\xb7\x8b\x80b\xd7(\xb1\xbfo\x7f\x10\x85c\x80\xc1\xbf7\xe0T \xf3\x8a\xb3?\x1e\x00\xfd{,&g\xbf%\x1dx\x0f#\xfe\xcb\xbf1\xef\x82+\x10[\x8d\xbf\xdc\xad\x01\x01\x92\xe1p?\xa3\xc1\xe7\x1a\xc0\x85\xca\xbfI\x83Tz\xd4\xf3\xb3\xbf[\xd5\x9a\xc3\xfc\xed\xab\xbfV\xa6\xf2\xed\xefM\x8e\xbf\xb0,\xd9\x1d\xa3\xb7\x9e?\xeb\x94\x8b\xaf`{\xa4\xbf\xf7\xa4\x11\xb1\xdd\xc0k?\xaf\x13-\x18[+\xba?\x0b]6\x9e\xcer\xd3\xbfMQ\xa6\t\x1e\x81\xc5?P\x8d\xe9#z\x88\xd4?\xa6\x98\xb1\xda^\xbf\xdb\xbf\xad0\x89\x8cR\xd6\xd2\xbf\xe9\x1e\xb2}&\x13\xcd\xbf\x98G\xc3\xb7\xd1\x1b\xba?\x1a\xac\x1fWs\x17\xa4?0c\x82\xa2\xf8\xba\xbb?T\xde\xeb]L\xd8\xc6?8z\x86\x96\xa8\xbf\xa3?b\xd8@\xdf>\xd3\xd3?\x10\x7f\xfb\xeb1/\xc1\xbfV\xaf\xf7\x18N\xbd\xc3\xbf\xd6]j\xa1\x0cm\xc9?\x99\xba$\x0f\xb4\xa1\xa1?\x9a\xcf\xc7\xcb]\xd3\x82?p@\xb4\xda\xa3\xd3\x97?\xa9\xba\xeas3\xbb\xb5?\xae\xb2\xf6\xd4-Bx?\xb6\x01\xed\xbd5\xf7\xb0?q\xaa\xfc\x18I\xeb\xc8?\x18\x0b\x02P\xc0\n\xaf\xbf\xbc\xac"\xe8z\x86\xbd\xbf.\xd4\xe8\x97\xef\x13\xae?\x1d\xd6Q\xe2\x83\xd1\xb1?\x15\xd5\xe3\xa5\xfdz\xac?\xdb_\x9b\'\xb7r\xc3?\xe6Xc\xf3&\xcb}\xbf\xc9\xfb\x9afq\xe1\xb3?Df\xea\x96\x8f\x95\xde?\xa8=\xe4\xfd\xf8\xf1\xa2\xbfm\n\xf54E\x8e\xb4\xbf?\x85\xeb\n\x89\x8dP?\x15\xef7E\x92ni?\xe56\x7f\xb1\t\x17r\xbf\xe6\x05\x10f\x82\xe7~?\x1a\x0cDcu\x08\x9d?|\xcc\xf8t*&\x84?\xa1A\xa47\xe6%\x92?D\xb6/\x1a\xe5b\xb4\xbfOY[Gg\xa6\xc6?(\xe5\xd3\xfem\x0c\xd6\xbf\x8b:\n\x860#\xc7\xbf#\x9cS\xc0\xfb\x94\xbc\xbf\x1cu\x12%L6w?ZX\x01:e \x98?"\xf3\x94\x0e\xda4\xb6?cZ\x92"\xa2k\x99?\xba\xcd\x0bic\x9b\xc1?\xba!\xae6\xb1O\xa2?X\xfb\xb4\x83\x95\xa2\xb1?\x9dL\xc9\x01@4\x98\xbfB\xb4\xcb\x0c\xb9\x11\xc1\xbf\x19\x88o67\xb7\xdf\xbf=\x19\xe6\xb1m\xc2\x92\xbfc\x989\xd4\xc2>\x84?O\x18\x0f27P\x93?N\xdf?\x13\xe1\x06\x88?0\x885\x00\xdc\xee\xa7\xbf\xf4~G\xf85\xd6\x9f?\x0f\xd1\x89x\xfeH\x91\xbfM\x011gEW\xdf?\xf1\xc1\x1f\xd3\xa6\x91\xb8\xbf@\x0b\xbf?4f\x87?\xaae\x19O\xd2%\xaa\xbf\x17o\xd4\xd5\xb1\xa8z\xbf\xf3\x87\xa9\\9\xdd\xa1\xbf:k\x94\xd4\xd0Fv?\xbf\x9dG\x94\xa9j\x9d?\xe2\x04\x17\x86*D\xa6?\xaebE\x97\xbd\xb4\xcb\xbf\xa8\xed\x1a\xc4\xfe\xec\xda\xbfu9\x81\xad\'\n\xc6?\xde\xd2?\x02\r\x06\xb0\xbf\xba\xf0\xbd\xa4\xdcv\xd1?\xfa\xd2\r\xf4y\x9bg\xbf\xae*O,j0\xaa?\xc9\xb9\xc6\x87\x19\xe9\xc0?\xdd\x9dU\xc6\xf7\xa9\xde\xbft\xbcN\xc2}\xbd\xca?\xa8\x1e\xb9X\xb98\xbc?\x15`\xdb\xfd<\xdd\x82?\x8e\x9c\x19\xb3\xab\xb9\xcf?\xe7\x9a\xdd\x96\x1d\xb6\xc5\xbf\x07p\x19M\x04\xbc\xc1\xbf\x9e\x86*q\x04\xa6\xbb\xbfTg\x8d i)\xbb\xbf\x1a\x1b\xa9\x91\x97\x10\xb3\xbf\x15\xbe\xba\x1bJ\xd3\xb1\xbf\xaduc\x90\x83-b?\xc9\r\xe5\x9f\xbf\xcb\xce?\xd9\xbf\xd1\x84\xa1\xaa\xcb??@\xd1\xc9K\x93\xc3\xbf\t\x1e\x08d\x05W\xae?\xe7\x1dHi\xc33\xbe?\x8c\x9d[\xd3\x029\xa8?\x82*Mw4\x86q\xbf\xed3\r#\r\xad~\xbf\xd9Y[\x99\x11\x0e\xb0\xbf\xee\x88\xcd\x81A\x06\xa2\xbf:c\xccC}z\x9a?\x99d\x7f\x1f\x1fH\x9c\xbf\x9c\xeeVf\x8fo\xb0\xbf\x19Z\xad\xd5\xa1B\x88\xbf#\xdeM\xeaM\xc3\xc0?^\tye\xbeb\x9e?\x1b;\x9b\xfd}\xbc\xba\xbf\xb9\xaa/+\xdd\x07\xc6?\x18\xb5\xd5z\x01\xbe\xaf\xbf\xbe\xf0\x92I\xed.\xb5?\xeaP\x0cT9(\xd7?WB\xfd\xf7\xc5$\xd2\xbf/\xcdl~p\x01\xd1\xbf\xa4\x9e\xa0\xef\x18\xf5\xc1\xbf\xe9+\x06n\xb0\x8e\xb8\xbf\x0ba\nG\xb4\xe7\xb4?07k\xe3\x96]\xcc\xbf^\'n\x88[\x8b\xb5?\x90\x12\xf024\x9d\xde?\x01p\x8cQg\x0c\xd2?\xaf\xef\x07\xf6=\x17\xcc\xbff\xcb,V\xf2\xfb\x9a\xbf\xb8s\xe2\x1b\x80\xef\xb9?\x08\x1a\xab\xd9\xaa\xb9\xc7\xbf7\xc0\xffS\x98\xe0\xa9\xbf\xee\x91\xe5\xf3!\xdb\xb2\xbf]\xf0\xcb\x12\xb4\\\xa5\xbf\xf9\xd1\xec4\xf8\x1a\x91?\xa3\x89\xbd\xcc\x80\xc8\xb2\xbf\xbe\xb6\x1a\xd3\x94\xa0\xbb\xbf`E\x08\x16\xe1\xc1\xb6?U+\xc9?\xaf5\xd4?*\xc8\x96\xa4\xb6b\xb5\xbf\x93.\x9d-\xa0Q\xb4\xbf\x8bc\x07\x9doJ\xaa?\x9fv\x92\xd6|\x92\xac\xbf\xa8\xfe\x03\x8f]S\xa5\xbfg`\xf5\xf7\xf4\x17\xb3?\x02\xf1\xba\'\xa3m\xa6?\x16}X\x7f\x97\xd6\xb4\xbf\x1c\x0e\xe1\xfep^\xaf\xbf\nT\xafP\xba\x10\x9e\xbfA\n \x0em\x07\xa2?\xcb\xec\xb3\xdd\xe4\x81\xa2\xbf\x11d\x9aI5\xca\xc0?\x95\xf4[&=&\xbb?\x15\x05\xcb\x06`;\xb3\xbfjq\xdc\xc0De\xac?k\xf9\x8b\xd7\x12\x05\xb4\xbf\xf2\xa1\xb3C\x99\xca\x8c\xbf\xda/>2\x1b%\xc7?\x84~Dn_\xed\xb2\xbf4\x7f\x7f\xae\x8b\xae\xaa\xbf\x8f\xadX\xf6\xc73\xc8?\xf1\xe3\x07:P\xd3\xa4\xbf\xde\xdb\xf2/\r\xf3\xd8\xbf\xc0Q\xa9=\xdc\xa0\xc2\xbfg\xbf\x13\x90\xd8*\xc8?v\x17NI\x81\x11\xad?\x17\xd0\n\x01\xcem\xb0\xbf\x03JP\xf0+\xbf\xa3\xbf\xb6\x83fZ\xe2)z\xbf\x9a\xab\xd4\x84nl\xb4?\x0711\xad\xea\xbd\xb3\xbf\xf3\x17%\x84\xd0\x9d\xb0\xbf+\x0b\xe5\xcc\xf3H\xc3?q\xb43A\x84#\x8c?uQ\xdfk\x13\xd2\xd4\xbfX=\x8e\xab9\xb5\xad?\\<\x1d\xea6F\xc9?9\xf0\x9f\xad\xbc\xd3\xbb\xbf5\x9d\xacw\xf5t\x8f?kA\x9e%f\xe8\x96?\xe3\x9b8\xf3\xb0\x1dt\xbf\xfe\x1d\xc9\xea\x02\xc1\xb8?\xf3?\x9a\x83\xf9\x83\xca?\x1f\xbdL\xe5\xd7\xb1}?rR2m\x89;\xd9\xbf\xb1\x02\xdb\x97\xcd(\xaf\xbf\x92\xcf\xc6\xbf@\xce\xcb?\xbcP\x8c\x92\x0c\xe3\xa6?!~\xeeY{x\x90?+\x07\xde\xf3\xbfk\x9f\xbf+\xd2<\xb9I\x1f\xd0?LX\x98\xbaV\x95\x93?\xe6UZ\xb5((\xd5\xbf\xf63:\xc7T\xf9\xa4?Q\x1c\xa4\x03 \x98\xcf?\x9b\xcc\x86\xf9\'r\xd3\xbfv\xfa\xd0\xf1\x9a\xc7\xc9\xbfN\x89`O\xf8T\xe2?\x01`I\\i"\xbb?\xf2\x00\xbb\x89\xc5\xc5\xbe?0\xea2\xfa\x1fH\xa2\xbfw\x11\xaa\xcf\xe9\xae\xb4\xbfQ-H[\xe60\xaa?\x80\xff\x13\xc9\xcf\xd8\xca\xbf\xfa\xd6r\x9e\x02\x9e\xa5\xbf\xf1\xb8\xa5\xaa\xbc?\xd4\xbf\x9a\x8c\xaf\xdd\xd7\x8d\xa3?2]\xfe\xe1h#\xcd?\xf5\x18\x0f`L\xeb\xd1\xbf\x06\xe9\x80\x10Q\xf0\x8c?{~\xa1\xcb\xba\xdf\xaf?\xd3\xc0\xc0\xa8J7y\xbf\xfc\x87\xfb\x81p\xb8\xa8\xbfp\xbe\xcak>\xa7\x84\xbfK\xb7G\xb0\xe9\xaa\xa3?{\xf5\x85\x97\xaa\xa6\x99?z\xb8\x9c^\x1b\xd0\xb3\xbf\x02\xb4L\xfc\xa0m\x93\xbfm\xc0X\xe6\xd8L\xb0\xbfq\x94Q\x84\xa3\x01\xb3\xbf\r\xbe<\xce\x0e\x80\xcc?k\xb2\xc9\xe3\xbb]\xc0??\xde\xc1\x1b9\xca\xb3\xbf~\xa5\xe1\xc5\x86jy\xbf\xbe\x9b\x0b\x1e\xc3\x02\x97?\x02\x94\xba\xafG|\xc2\xbf5q\x87\xb8\xbd\xec\xb7\xbf\x0f\x7f\xc9\x9e\xc9\xae\xb8?\x94\x96L\xb8\xce\xfb\xd1?C\x0b\x01\xd0\xc8\x11w\xbf6\xa1\x90D\x13>v?\x03\xe6J\x0e\xddX\x89\xbf\xb5%\x05\xe1\x12\xbf\xb9?\xe3y\x07\x18C*s?\n\xfbG6\xe0\xd3\x81\xbf\xa5T\xd4\xd2\xa9\xa7\xb0\xbfu\xb1+\x900g\xd2\xbfD\n\xdfM)\x1c\xd4\xbf]$\xb3%\xa9j\xc1\xbf\x03\x98\xe6\xe6\x8b\xf1\xa8\xbfEfl~M\xc4}\xbf\xb3\x8c\x969\x946\xe9>\x1e\xd0IU\x9f\xe8t?\xfa\x15\xa7.a\xbd\xc3?\'\xe3\xd4w8\x11\xb3?\xc2+\xd7l\xd7\xbe\xc4?5t\xd4j\xd4\t\x95\xbft\xc3_\xbe\xd9\xdc\xcb\xbf\xbci\x07\x90\x1e\xcb\xd5\xbf\x1cr\xf1\x11}C\xc1\xbfK<\xa8w;N\xbe\xbf\xb3\xb3\xc5`\xa3\xc2\x90?3%>o\x1f#\xab\xbfZ?\xe6kl\xb3\xbfbq\xc1}g\'\xb5\xbfA\xd5\xac\x8f\xadW\xb7\xbf\x8e\xc4_\xfdZ\xde\xb9\xbf\x8d\x8an\xee{1\xbb?gM@\x8c\xe0#\xb1\xbf\x9bJ|\x92[8\xc0?\x02T\x87dmG\xdb?x\x0f\xb6q)\x8a\xc0?\xa6Ts\xbe\xf5d\xba?Z\x00\xef\xd0\x9b\xe9\xa9\xbfA\xeaU.\xccq\xb8?\x17,>\xe6\xc7i\xc0\xbf.\xb3r\x167\x1c\xc2?*\xf4\xe9R\xa7Q\xd5\xbfp\xa0]m\xc3>\xcd?H,\xeezd\xbb\xb5?\xeb\xc1\xd4V\x0fS\xb3\xbfa\r\xa1V\xb8)\xbf?\xf3\xdfn\xf6X>\xac\xbf\xf6\xe4M\xa0)s\xb2\xbf\xaf\xacd8\xae:\x9d?C\xbd\x13\xa5\x8f\xef\xad?0\x06j\xb5\xa6\xf0\xa3?\x13L\xf9F\xe0a\xc9\xbf\xb7M\x18%\xb30\xa9\xbf\xee\xfaL\x11\xdb\xa6\xd1\xbf_\xda\xbd"\x04\x04\xc0?+\xb0\x99\xf0\x974\xb5\xbf4\xbd\x7f\xdak<\xb2?\x08\xf2\xff\xc0O\xe0\xb3?\x82\x85\x1d\x86\x91\n\xa3\xbfP\xcb#B\xb8\xd3\x95?\x91\xa1\x8el\x00\xe3\xa1\xbf\x0c1\xa98\x9f\xecY\xbf\x08\x06\xd68\xc5L\xb3\xbf%x1!u+\x96\xbf\xa1Q&\xba\x9b\xf9\xba?\xf83\xf2-y\x9b\xd8?\xe9\xea\x8atJ\x14\xd1\xbf\x8f\xdb\xd9\x9eG\x0b\xb4?\xbf\x10\xdc\xa0k\xfd\xae?\x1a\xcc?\x06\x19\xa9\xcf\xbf\x86\xfe\xb5\xe1\x14\xdb\xb7?\x07\xa9U8\x892w\xbf-\xee\x83W\xa5p\xa6?\x87\x0b,!\xfcv\xe0?\xca\xd1\xbb\x8e@<\xc1\xbf@_\xe7E\xd4\xbe\xbb?\x97\xde\x98\xc1eg\xb0\xbf\xe1\xc7o\xff\xdc\xfd\xc0\xbf\xa4\xaa0\x00\xd5e\x86\xbf\xfc\xf4\xc2\x07\xd4 \xb4\xbfS&\xacc\xdf\xb9\x81?\xbbo\t &\x86\xb6\xbf\x9d\x8b\x01(\xa3\xd4\xa3\xbfH\x83\x0b &\xda\x9c\xbf\xd0&\xb1\xb3yg\xa9\xbf\xab\xae>=d\x90\xc7?\x89&e&\x94\x88\xc2\xbfZ\xae]\xb6\xe9\x18\xd3\xbf\xbcy\x81\xbf]\xfag?\xe05\x8d\n\x82\xbc\xc3?\x0f3\x93[\xc4\xca\xaf?T\xbc\xac\xa5\xad\x18\x8c\xbf\x19\x89X\xfd\x87K\xd5?]F,\xbbl\x03\xb5?\xf6?\x90u\xe3\x0c\x8c?(\x12o/\xe0\xec\xaf?\xbb\x9b,Y\xcfg\xd5\xbf\xf1h\xd3NU#y?M\xf1$\xde\xd1\xc4\xc3\xbf\xffg\xa0\xa8\x9e\x1ao\xbf\xaf\xb5Gz\xc8\xfe\xbe?O\xf243\xeb\xa3\xc2?S\xf3\x95\x99\x04\x8a\xd7?\xfb\xd3\x95\x84~P\xc6\xbf\xbf(:\xd9\xb2\xa0\xbc?\x1ci\xa7\x88P\xaf\xb9?\x1c\x9a\xa0\xa29\x8d\x9b?\xe7N\xdc\xd29b\x7f\xbf\x8c\xeba\x93.\x01\xbe\xbf\xac\xb2wS^0\xa0\xbf\xcf\xdf\xe3d\xf6D\x03\xbf\xe3\xcf\x1eS\x88\\\xa4?cL\xf5O\xd9\xbc\xc3?\x89\x0e\xce\xb2H\x93\xb7\xbf\x0f\x181\x0e\x94\xbc^\xbf!`(b\xa1)\xbf\xbfT\x13 \xfe\xf1\x07\xa9\xbf\xb6\xdf\x08\xdf\xe7$\xd2\xbf\xcb39{x\x1a\xb9\xbf\xf1\xd4(/4\x94\xd7?\x89\xdd\xfa\xb46B\xca\xbfA?\xb1E\xba,\xc3\xbf\rO\xd7\x9dk\x12s\xbf\xafn\xf0\x82\x0f\xea\xc6\xbf\x7fK\xa4\xbec\xe2\xbd?\xb0\xcf\r\x91\xc0\r\xbe\xbf\x02\x03\xc2j|\x9b\x94\xbf\x08\xf8P\xea\xe5\x81\xd5?\xcf\xe3\x99\xf9\xb4\xa8\x9e\xbf\x12\xdcso\xa4X\xc7\xbf\x00\xeb7\xae\xcd\xdb\xc2\xbfj\xd2\xc2\x8a\x8b\x94\xbc?*\xad[\xad\x99\x03\xbf?\xd6:\x8b\xeb\xa3\xbb\xc2\xbfD.\xd1\xfat\x90\xbb\xbf\x9ek\xa2\xc0\xc0\xf7\xc8?\xaff\x0bGV\xc4t?\x9a\x19gT\x8f\xf4\xc7\xbf\xc8c\xff\x1a\x00\xf0\xb1?\xf9\x95\x890\xa2m\x9f?\x90\xa6\xefu\')\xba?W\x13\xb5\x15\x18\xec\xb3?\xd8\x12\xf2\xd8Ey\xa6\xbftC\xdb\xe4G\xbc\xc2\xbf\xcfW\xd4\x1c\xc3d\xac\xbfy\xae9\xb8\x96\xd2\xcb?\xdd#\xcc\xe4Cc\x83\xbf\xd5\xb1n\x85\xa2&\x8d?G\x1b8(\x83q\xa9?\xb88\x1a\xaf41\xc1?/\x8bT\xab\x10\x8e\xb4?\xd7\x96\x95WT\xf4\xcd\xbf\x93_\x9d\xb8;\xbd\x9e\xbf\x06\\\xa8\x0b\xc2|\xcb?\x98\x9fLv!F\xb5?d\xd8\xe3\x88\xc8n\xdf\xbfKt-\x0b\xb8\xce\xbc\xbfb&\xc6\xa1\xe3j\xcc?J\x12\x03Zl\xc9\xa0\xbf\xab=\x0e\x93\xa0\xe6\xd1?\x9e\xdf(\x1e\xe1\x9f\xa1\xbf\x13\x86\xdb\xbc}\xa3\xc3?\x987p\xb4u\x14\xb8\xbf/~\x0fL\xd1\xbe\xba\xbf\x13\x10\xe7\x87DA\x99\xbf\x83Z\x0f\x98\xdb\t\xd0?\xact\xe0KB\xbf\xb7\xbfH\xb1\xaf\x84T\xe8\xd5\xbfE\xaa\x05\xe1w\xff\xae\xbf,\x97>.]\x03\xbe?\xb2/\xd2\x1e\xb2\xbd\x96?\xa9\x81\xf0\xe8\x85$\xbc?E\x12\x18W\xdaK\xb7\xbf\x84\x07\xa9\xe1\xccD\x8d\xbfF\xe9\xec\x0b\x02\x92\xb1\xbf\x9b\x8f\xd6\xf2\x89\x86\xb1?\xdeaG\x90\x86l\xc0?(s\x13\xe5\x06\x08\xb9\xbf\xc9\xc5\x93\xea,\xe7\xc9?l\x88,t\xdc1\xa2?vq\xf2W?k\xab\xbfL\xf4\x0e\x02\xfe\x93\xb8?\x96r\x11\x88n\xc4\xd6\xbf\xa4H3\xf4\xd0\r\xb8\xbf\xbb\xf3\x984\xf9\xe4\xb9?~A\xe9!\x9d\xa6\xc9\xbfKW\x0c{\xb5\xd0\xb0?\x97\x1cQ%\xb3\x1b\xd2?;9Fn\x1aq\xcc?\\\xdb\x0c\xf6v\xc5\xd8\xbfH\xf4\xa0\xf7\xe4\xe7\xbe?\x94\xe8R\xc2\xebf\xc1?W\xf5\xce\xf2\xc7\xb9\xb4\xbf\x02\xfb\x85\x8b\xd6\x92\x7f?\x8b2\xae\x1e\xbcU\xb0?\x1c\x81\x8d\xfa \xb0\xcd\xbf\xf4\xe9-\x8a9x\xbf\xbf\xd6\x02\xdc\x06\x11\xa1\x9d?\xc4\nGz@^\x9c\xbf\xc7\x0by\x00\n\xbd\xc7?B\x13\xda^\x1a\xb3\xc2?>\x84\x9eE\xa8\x8a\xa4\xbf>\x87\xd9\x00\xed\xe1\xba\xbf\x15\xbd\xb7\x89\xc9\x98\xbd?4%Q\xe1\xf7\xb9\xd1\xbf+\x12M#\x84\xe7\xc0\xbfx\xfd\xdb\x10^\xb4\xb4?]y\xf3\x85I\xad\xbf?\x07\x86Z\xc7\x06\xc3\xb6?\x99P\xaf\n\xc5z\x91\xbfCJ\x83hZ\x95\xba?\x1b\xb8\xa7\xc0\x80\'\xb3\xbfTm\xda\xdb\xf5\xcc\xcb\xbf\xf4\xcb\xf5Z\xaf`\xa3?w\xf6>\x9ax}\xbe\xbf\xff\r\xf6r\xb7\xd7\x9a\xbf-V\x10\xc9\xe2\xa5\xc8?\xd50P\x8c\x80\xce\xc5?@\x08\xb5\xdfz\x10\xb9?\x8e\x85\xfd\x80c\xc2\x97\xbf\xd8\xacxZ\xd5\xe9\x80?\x8d\xd0\x8cO\x92\xa1\xc5\xbf\xa2o\xc2&\\q\xb3?\xff"+\xfc\xde?\xa2?s\x8eb\xb3&g\xd0?\x85\xba\xf6\xc2 sW\xbf\xb8K4\xcdl\x86\xb9?\x1fu\x13m^\xe3\xd0\xbf\x1dC\x95\xf6Z\x04\xcb?fh\x83\xfb1G\x89?L\xd2(\xb7\xd0\xcd\xc6?\x9fl\xc6\xcb\xd5\x1d\xcf?x\x8bU\x17y\xd6\xc6?v.=\x1fa\x98\x97\xbfu=\x92\xbf\x17V\xbc?\xd3\xa6:\xdc\x19\x85\xb7\xbf\xb1\x86>_%J\xd3\xbf\xf6<\xdf4Q\xaa\x94?o9\xc55\x8fk\xd7\xbfl\xf5%\xac0\x98\xba?\xa8\x07>\x0f\x7f\x02\xd3\xbf\x9d\xc3\xcb\x1b\x01z\x98?\xed\xa4\xf3{7l;?\xe1\x83]\xc1\xae\xdb\xad?f\xf3;\xca\x1f\xff\xcc?\xd7\xb5\x13\xe9\xbc\xb4]\xbfk\xe7Y\xb4\xdb-\xb5\xbf\x9b\xbd\x1d\xd6\x84\xe8\xbe?\xdf\xb3PY\x90\x17\xb6\xbfB\x02\xa5h\x9d+\xb3\xbf\xa2\x94\xf5\x14\x81\x9a\xa4?I\xe9R\xe4}!\xb8\xbf\xe3\x84A\xb6\xa4t\xd1?\xc8\x01A9\xa1^\xa0\xbf\xa2\x1b\xc3\xba\x9a\xff\x8a\xbf\x14f\x073#Q\x9a?\x8b[\x9e\x83X\x17\xd2\xbfM\x8a\xf3\x98J~\xce\xbf\xe0\x1c<\x9d{\x1d\xd5?\xce\xe3\x98%"\xe6\xa6?,u\xfb\xc2 \x8c\xca?\xe7/\x18G\x16\x0b\xc3?_\x07\xdf^q\xc5\xb1?\x1c2\x9c\xfd\xc4\xaan?,\x1ei(\xbej\xcf\xbf\xc0uzq\xaa\xaal?\xb0\x9a}5\xa4\x85e?\xa4Dk\xb6\xb9\xea\xb8\xbf\xa3~\xc1\xaby\xdc\xbc?B]\xe0\xbexe\xcc\xbfwT\xe3\xe29\xac\xa1?\xf2C\xfd\xa2\x92]\xd3?\x92\x10\xe7\x13\xb2\xb6\xb0\xbf\xb1\xc6\xa6fl\x9f\x8a?\x87\xa0\xce\x96 F\x95?\x96\xbc\x8e~\x08{\xca?eaM\x11\xa1\xc5\xd0\xbf\x9e3\x1d!qO\xbc?C\xe9\xe0r\x90\x83\xcf\xbf\xd2\xe5\xaaV\xd2U\xd3\xbf\xe0\x92A\xd5\xae!\xa1\xbf\xd0\xa7)\xf7\xab\xf1\xd1?\xdc\xc5.\xa4\xb7\x1c\x97\xbf\x9e\x1e\x83\x00\xbaU\xc0?\xb3_r\x9e%\x8e\xb9?n\xe7\x04j\xe3\x8f\xbc\xbfV\xb3,\x84\xac\xf6\xbf\xbf\xda\xd9\xc3G\xc5^\xb1?\xab\x1euf\x98\xcd\xa9?\xa4L\xf88\x94]\x95?\xed\t\xd5\xbb\xb5\xaa\xca?kL=\x8cA\x9a\xbd\xbf\x90\x123}`U\xb8\xbf_\x16&\x95Aj\xd2\xbf\x03\xabt0"q\x9b\xbfw\xc4\xd5F\x82\x01\xa5?\xa5?\x8eMB\x9f\xc5?\x1as\xb2\x1c\xd3)\xc2\xbf\x95\x0e\x1f\xab;\xfd\xd0\xbf\x95\x8b\x14(\xdd-\x92\xbf\x91\xd4<\xdf\x00\xb5\x99\xbfL\x8a\xa5\x8eA\xe1\xc8?\x94\xadC\xb5\xa2B\xcc?\xe58\xa2*\xc1\xf7\xb6\xbf\xa8\x88-\x82aw\x9d\xbf\x1b\xfa\x8a6\xc1`\xd8\xbf\xfd\x91D\xbe\x05\x08U\xbf\x8b\xd2M\x03\xb0;\xc9\xbf\x85o\xc8{\xc6\xd3\xca\xbf|U\xb0\x80\x9b\xc5\xa6\xbf?\xdc\xe6\xd9 \x05\xb5\xbf\xbe\xd1O\xa5\xfbV\xd0?Y\x8f\xae\x9c\xc6>\xa6\xbf\xa4\x81I\xd6t\x1b\xd9?\x1b\xebW\x1bH\xad\x80?\xacAN\xc4tQ\xbc\xbf\x1e\xcew\xea\x1d\xf7\xa2?\xba\x9f\\-q\x03w?\xfc\xd8E\x9a$\x0e\xb0?u\xf1\xb4\xe8%\xb3\xbc?>\xee?\x108\xa2\xb1?m\xa7\x89\r\xd2\xd5\xb5\xbfM\xe6Y\xfd\xa1\xf1\xa2?.\xdab3\x06\x1f\x9a?\xbe\xe8\x01v\xec\x9c\xab\xbf%\xc0\xb3\t\xeb?\xc7\xbf\x82\t\x8c*w\x0c\xbb?\xf9\x16\xd3E\xa6\xe6\xd8?q\xa5\x8f\xfeW#\x8f?\x00\xd6\xd5D\xf1\x18\xc2\xbf\xdcb#\xeb\xdfo\xbf\xbf\xd3\xa0\xc3g\xa0c\xb2\xbfD\xd5\xd0\xb6\x94\xea\x83?\xb5\xcc\xf9\xa9N-\xc3?\x16\xc7ol\xfd*\x98?\xe0H\x8e\xc1D\x81\x9d?\xcfW\xe3\x0b\x88\x9fI?\xa6cN\x9b\x0b\x11\xb9\xbfH\x19&c_\xce\xb1?\x85M\xf8\xff\x10l\xa4\xbf\x0b\x16\x80\xcb>\xa9\xaf\xbf\xcc\xadQ\xbe\x1b\xbf\xc5?\x13\x91\x96\x10\xbbD\xce\xbfW\xaa\x06b\x90\xdd\xb3\xbf\xc9s\xa1\x8d\x8bp\xba?b\xe2\xd9\xfd\xd63\xb9?L+\xa3\x8b7\xd9\xa9\xbf\x1d\xfb\xd1h\xdc\xd2\xb7\xbf\xf7\x9bF\x9aW\xcd\xa7\xbfe]\xa2zZx\xcf\xbf\xefz\x08\xcd\x1d\xbd\xb3\xbf\xdd4N&cI\xd5?\xbfa\xb8|*\x16\xba\xbf@8z\x80\x13\xc4\xc6\xbf\xc2\xb7VAr\x95\x9f\xbfdu\x06\xd0\xc5\xcf\xba?\xa9\x10i\xe1\xdes\xc4?d4Q\xf2\xfb\x17\xdb\xbfP\xd2\xcc;3\xb4\xc3?\x167\xf2j\xb3\x8d\xd5?5\xdb\xd0\xc3Dt\xba?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I40 +tp132 +g22 +I00 +S'\xc7\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc05\xb7\x92.Q\x89;\xc0\'?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xbaI\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf1\xe4\xd1\x02Z\xdd5@k\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc3\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc1\xcb9\x00\xb7\xc94@Je\xc5\xb8\x1d\xcfK@U\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe2*O$\xfd\x8dB@\xe73\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x91\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc0/t_\xd6\xfb\x90\x14\xc0\xb09H\xa1f R\xc0\x1a\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x81\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@\x81\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x80z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xddb\xe4\t\xe6\xda\xee\xbf\xec\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I25 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_mouth_5 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_mouth_5 new file mode 100644 index 0000000000000000000000000000000000000000..7dc1923c4eda819af2b96d4a5d6157cc71eb5cc9 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_mouth_5 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I40 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xc0\x87\xe8\x94_\xf4\x9c\xbf\xeb\xf1\x16\x8a^\xc6\xd8\xbfux\xaf\xa7\xa6\x8c\xb7\xbf\xffL\xc0\x1a\xd5\xec\xce\xbf\x86\x0f\x87\x84 \xc1\xbf\xbf\x00\x02\xcb|\x10\x89\xb9\xbf\x16jL\xd9@\\\xb9\xbfF\x8c\x96O0\xe1{\xbf\xd1\xa78\x04^\x13\xc0\xbf\xe7\xfa\x82\x17\xc06\xb9?\xb7n\xb9:w&\xb8\xbf\xf2m8\\x8\xcf?\xe0\x91 \x91\xa45\xa5\xbf\x8c\x8cD\xb5\xd2\xaa\xd8?h\x8b\xe6H\xe4\xf8\xb7?\x00\xc1\x14\x13\xcf\x08\xd0?\xf6\x1a\x8c\xba\xed\xb3\xc3?\x07\xce\xa0\x19\x8f\xbe\xbc?\xec\x014\xcf\x96e\xc5?\xe5@\xc11\x9a\x11<\xbf\xca\xf0\x10\x0c3>\xc4?\x93\x17R\x7f\x16\x87\xba\xbf\x88\xf7\x97\xc2\xfcM\xba?\xcaJ\xbd\xd0.6\xcf\xbf\xd5\xd6\xebxx\xb7\x97\xbfgP\xe1\xec6\xe7\xd4\xbf\x9c\xff$\x08\x10\xbe\xa2\xbf%\x18\x0c2$\x97\xb9\xbf\xbds&\x10X,\x9c\xbf\xc6\\\x96\x1c8\x10u\xbf\x0e\xfe\xfdW\xd0k\xa4\xbf\xb4\x94;\'\xc9\xea\xb9?J\xed+t\xcc\t\xa1\xbf\xf9b\xb7\xa8"\xcc\xd4?\x88}c\x0cg4\x98?\xfb\r\xde)\xb2\x82\xba?\x0f7\xea\x19\xd5n\xa3?\xb0\x86Tel\xcaq\xbf)%\xd6\xeem\x9c\x9c?\x86\xc7\xa16U\xe7\xb9\xbf\xea\xf1\x16\x8a^\xc6\xd8?\xea\x87\xe8\x94_\xf4\x9c\xbf\xfdL\xc0\x1a\xd5\xec\xce?sx\xaf\xa7\xa6\x8c\xb7\xbf\x00\x02\xcb|\x10\x89\xb9?\x85\x0f\x87\x84 \xc1\xbf\xbfG\x8c\x96O0\xe1{?\x15jL\xd9@\\\xb9\xbf\xe4\xfa\x82\x17\xc06\xb9\xbf\xd1\xa78\x04^\x13\xc0\xbf\xf2m8\\x8\xcf\xbf\xb7n\xb9:w&\xb8\xbf\x8a\x8cD\xb5\xd2\xaa\xd8\xbf\xe1\x91 \x91\xa45\xa5\xbf\xff\xc0\x14\x13\xcf\x08\xd0\xbfe\x8b\xe6H\xe4\xf8\xb7?\x06\xce\xa0\x19\x8f\xbe\xbc\xbf\xf6\x1a\x8c\xba\xed\xb3\xc3?\x88@\xc11\x9a\x11\xc4?\xc8J\xbd\xd0.6\xcf?\x87\xf7\x97\xc2\xfcM\xba?fP\xe1\xec6\xe7\xd4?\xd2\xd6\xebxx\xb7\x97\xbf$\x18\x0c2$\x97\xb9?\x9a\xff$\x08\x10\xbe\xa2\xbf\xc4\\\x96\x1c8\x10u?\xbcs&\x10X,\x9c\xbf\xb2\x94;\'\xc9\xea\xb9\xbf\x0e\xfe\xfdW\xd0k\xa4\xbf\xf8b\xb7\xa8"\xcc\xd4\xbfK\xed+t\xcc\t\xa1\xbf\xfa\r\xde)\xb2\x82\xba\xbf\x86}c\x0cg4\x98?\xaf\x86Tel\xcaq?\x0e7\xea\x19\xd5n\xa3?\x85\xc7\xa16U\xe7\xb9?\'%\xd6\xeem\x9c\x9c?\xd0\xed\xbf\xc5%\x9f\xcc\xbf\xd0\xb1\x16\x17\x83v\xb4<\xd4\xed\xbf\xc5%\x9f\xcc\xbf&~\x85\xf9\x98\xde\xa0<\xd5\xed\xbf\xc5%\x9f\xcc\xbf\xd8XL\x80\xd8\xf5Y\xbc\xd7\xed\xbf\xc5%\x9f\xcc\xbf)B\x8dm\xfd\xa4\x90\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbf\xd81Y\xde\xc6\xfd\xa5\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf3\\0Z\x02\x05\xb1\xbc\xe3\xed\xbf\xc5%\x9f\xcc\xbfF1\xec\xaa\xfc\xda\xb6\xbc\xe3\xed\xbf\xc5%\x9f\xcc\xbf7\x10{\x8et\xce\xa1\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf\xa8C\xbf\xf0\xd7zq<\xdc\xed\xbf\xc5%\x9f\xcc\xbfu\xea=)\xf2\xd3\x9e<\xda\xed\xbf\xc5%\x9f\xcc\xbf\x10-\xa9\xa7@\x0f\xaa<\xd7\xed\xbf\xc5%\x9f\xcc\xbfR\xff\xc6\xcd\xee"\xb2<\xd2\xed\xbf\xc5%\x9f\xcc\xbfr\xa1\xedR\xdd\xe2\xb0<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\xf4xi\xd4\x05\xcb\x8c<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\xb7\xf1\xeb\xa1\xdcn\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc0-t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x18\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe6/\xdb\xf9On\x18\xc0\x84\x10\xb0s\xf5C\xf2\xbf(~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@}\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x83z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xdfb\xe4\t\xe6\xda\xee\xbf\xf1\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I20 +I2 +tp43 +g22 +I00 +S'\xc5\xfd\x9a|\xc5\x1b\x19\xc05\xb2W\xfb\xe5{U\xc0\x96m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xb6I\xf2\xe1#-\xf8\xbf\xba\xe8\xb8\x87m\xe1;\xc0\xef\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc0\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc2\xcb9\x00\xb7\xc94@Le\xc5\xb8\x1d\xcfK@U\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe0*O$\xfd\x8dB@&4\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc0-t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x18\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe6/\xdb\xf9On\x18\xc0\x84\x10\xb0s\xf5C\xf2\xbf(~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@}\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x83z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xdfb\xe4\t\xe6\xda\xee\xbf\xf1\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I5 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I20 +I2 +tp68 +g22 +I00 +S'\xc8\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x97m<\x1a\xdak4\xc0h\xa3\x10\xdb8\xd1J\xc06\xb7\x92.Q\x89;\xc0&?SP\xbb$6\xc0HSmz\xdf\xfd5\xc0\xb7I\xf2\xe1#-\xf8\xbf\xbc\xe8\xb8\x87m\xe1;\xc0\xf0\xe4\xd1\x02Z\xdd5@j\x8a\x103<\xf14\xc0\x0bd#\x0c\xd0\x12K@\xc0\xe3hPid"\xc0\x1b\x0f^\xdc\x02dU@\xc3\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe1*O$\xfd\x8dB@A4\x8au\x1fW\xb8\xbf?n\xa4\x1e\xd6\x8dA@\xb5re>\x03\x017\xc0\x94\xb3}6\x7f\xcf6@\xf9\xf3"H\xd4\x10K\xc0/t_\xd6\xfb\x90\x14\xc0\xb29H\xa1f R\xc0\x19\xd8m\xb1\xb9@ \xc0\x0b\xccRU\xf006\xc0\xe8/\xdb\xf9On\x18\xc0\x85\x10\xb0s\xf5C\xf2\xbf)~\x90Kd\xb5!\xc0\x17\xf7\xe6\xf5xy6@~\xf4A\x95\xd2\x8c\x1d\xc0\x8e=&1\xeb\x08R@\x84z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xb9\xb3\x81\xb2\x03\xda @\xe2b\xe4\t\xe6\xda\xee\xbf\xf3\xd0/`\x82\xcf\x18@\x07_\xb7ozv6\xc0' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x01\x00\x00\x00\x00\x00\xf0?l`,>\r&q<\x00\x00\x00\x00\x00\x00\xe09b\xac\x06\x80\xcb\x1df\xbc\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xe09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I20 +I2 +tp89 +g22 +I00 +S'\xc5\xfd\x9a|\xc5\x1b\x19\xc05\xb2W\xfb\xe5{U\xc0\x96m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xb6I\xf2\xe1#-\xf8\xbf\xba\xe8\xb8\x87m\xe1;\xc0\xef\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc0\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc2\xcb9\x00\xb7\xc94@Le\xc5\xb8\x1d\xcfK@U\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe0*O$\xfd\x8dB@&4\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc0-t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x18\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe6/\xdb\xf9On\x18\xc0\x84\x10\xb0s\xf5C\xf2\xbf(~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@}\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x83z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xdfb\xe4\t\xe6\xda\xee\xbf\xf1\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I20 +I2 +tp106 +g22 +I00 +S'\xbc\xa9\xb5\xb5\x9b\xa9#@\x8b#\xc41\xec\xe7T\xc0\xd3\xfc\x98\x14\xbc06\xc0\x98\x80t\xd0\xab\xf3J\xc0\xe6\x0cG\x8bv\xf9A\xc0\xa4!W\xf1w\x857\xc0\xac\xa7\xfbQD[@\xc0\x8e\xcc\xca\xe2\x15\x89\x08\xc0\x94\x85\x1c\xab\x90\rB\xc0r\xe9\x11x\x11}3@\xf7\xbe\x00\x97w\xb15\xc0\xc6\x98\x89D&\x94K@g\xe3\xe2\x7fr"\x14@#\xd66\x01\xd6,W@\xaf\xfe\x81\x19q\xad4@@\xf2\x9b\xd11\xa9K@q\xb0\x1b\x9bgs>@\xfeq\xccF\xeaP5@*\x9c\tn\x11T@@\x83k8!\xe2\xec\xd0\xbf\xeeet\xef\xca\x82@@ltN\xde\xde\xde7\xc0\xd9<\xed\x81\x8a\xe07@p\xa2\xa0\x86\x18\x0eK\xc0\xa1D^\x92\'"\x1f@\x0b\x98\xd1\xd4k9R\xc0\xeaA\xf1\x01\xfb\xfe\x1a\xc0\xfb\n\x17w\x97\xef6\xc0\x99\xebM\xc8R\x10"\xc0\xf9\x00\x9a\xca\x887\xe4\xbf\xfc\xf0\x807+P"\xc0\xb1\xc4UA\xf0\xa23@MU\x89\x13\xbbA\x19@\xf3{r\xc1\x1e\xffS@f)\xc8zv(\xd7\xbf\xd7i\x87\\\x84\xb93@=\x85\xb0n\x8b,\x0f@\xb7\x84[\x92$\x04\xf2\xbf\xf6{&\xbft\x16\xda?\xf4O\x15\xb0Ga7\xc0' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I5 +tp113 +g22 +I00 +S'\xe2\xf2\xf3\xdc\xdep\x8e@\x1aU\xfet\\,\x8e@!5\r\xf7\x7f\xe4~@\xbd/"bT\xafa@\xb1\x17\xc4\x10\x00\xf2Y@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I32 +tp120 +g22 +I00 +S"`\xc0\x1f\xd0\xb4\x94C@{\xf8}f<)@@3\xd8M\xb7Z3;@\nN13\xe2S6@\xc57\x86}\x83F3@u\x8d;\x08\xdaO.@\x99\x82\x99yc#+@E\xc4/\xb4\xac\x1f)@\x82I\x8eT\xfa\xd4 @\xe8\xbf\xf4\xda\xdc\x10\x1f@;/\xbe\xe3<\xec\x18@\x9e\xc9\\\xfb\x95N\x17@\xc8\x12\t2\x8f\xf3\x13@\xfbn\xba\x97\x8ei\x11@\xe6f\x80\x91J?\x10@$\x91/\x95A\x1f\r@\xf6\xbc\xb1A\xa6^\t@^\xb4L2Q\x83\x03@m\xa5P\x13\x83\x90\x01@\x87B'\xde\xf7\xe5\x00@\x98\x18\xda\x8bb\x8f\xff?\xe24\xc7\xda\x01\xb0\xfe?\x1b\x92\x15\x0bGt\xfd?\xb4\xd5\xc1\xfe\xd0{\xf5?\x03\xf4\xbcE~y\xf4?Q\x01%\xf9y<\xf2?\xb0\xe0Y\xe1\x8b!\xf0?\xcd\xd2\xe52`\xad\xec?\xf5\xe5\xb8\x19Ta\xe9?|EA\xa9E\xed\xdf?\x96@\xc55\xd2W\xd7?\x824\xc1\xf2&\xeb\xc8?" +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I5 +I40 +tp126 +g22 +I00 +S'\x00h\x03\x86g\xecn\xbf\xed\xf6\xf6\xae\xf8\x92\xd7?\xcaE\xec\xe1\xd2T\xc4\xbf\xac\xa3n\x01\xfa\x1a\xab?u\xaemK\x9eT\xcb\xbfPb\xa0\xe8\x0bH\xb3\xbf\xbc\xd2\xdd>KC\xcd\xbf\xbcA\xf0\x89k\xa8\xbd\xbf\xb7\x0e\x10u90\xcb\xbf\xedR\xe7c\xcb3\xc2\xbf\xdd5\x84C\xdb\x89\xc3\xbf\x16\xe3t\xe0`&\xa7\xbf\xb3\xb0];\x82\x81\x88\xbf\xc8\xd2\xc0\xaeN\x8c\xa8?\xc8\x08(!\x00[\xc6?\xe3RY\xedP\x02\x90?\x11)\xcdx\xad\xde\xce?\x9c\xa2\xf9\xd3m\xc6\xae\xbf\x9f\x08P\x01\xf20\xce?}\xce\x178\x8bo\xa6\xbf\xc1?\xa9\xd6\x1a\x01\xcd?\x18\x97o\xba\xbat\x84\xbfD\x15S\xe4`!\xc3?\x9e\x14\x84\x8f\xb8\x80\xba?*.\xed\xf1\x97\xfd\x94\xbfZpr\xc5JE\xd5?\x14eT\xab\xd8P\xc9\xbf\x8f\x827\x07\xab#\xa8\xbf{\xc6|\x92\xf0\xcd\xca\xbf\xd6\x11\x96m\x90=\xb8\xbf(WN~\x02\x15\xc8\xbfM\x06-\x96\xe1\x17\xbf\xbf\x04\x08pmA\xb8\x99\xbf\x1b\x85\x80\x98Y\x95\xa4?v\xa5\x90{\x8eg\xcb?>\xbe\xcdQk9\xb8\xbfa\xfadf}\x19\xc9?{\x12\xf0?T\xe6\xb2\xbfl\xeem\x96\xfa\xa6\xc7?{\xe6\x95?\xa4\xc9\xa2\xbf\xd4\xcd\xd6\xe3]\x02\xae?\xdc \xe1\x90:\x18\xd2?\r\xb6\x1bL#5\xb6?\x8b\xe9r\xaf\x13U\x8b\xbfI\xbd\xea\xe0\x19"\xb8?7\xf4\x8a/4\xa9\xca\xbf\x08]\xb2J\x86]\xba?}7\xba\xa7^\xa2\xca\xbf\xdd:E\xe6\xf5>\xb7?A=\x85\xb1h\xeb\xc3\xbfT9E[\x87\x06\xb8?\xad)%\x03\xc7\x8a\xb0?\xfa\xcd\xd7~!\x95\xa2?N\xe3+\x8b\x0e\xcc\xdb?\xd8x\x1eC\xfe2\xad\xbf]H\xb4\xf8\xa7R\xc3?.\x87[\xe5\xef\x19\xbe\xbf\x9c\xa5&\x929\xb3\xa6\xbfTEL\xc4*z\xc1\xbf\xd3\'\xc0S\xea\xff\xb8\xbf\x9d\xcb+\x93m:\xc3\xbfr\xefeR$i\xb7\xbf\x03\xe7\nv\xd1P\xbc\xbf4\x89\xa1\xe1r\xea\xb3?\xf1\x9f6\xa9\xb0\xff\xac?\xd3\x14\xaa$\xfc\x8e\xd0?X\xd3\x16\xa2\xdb\xc8\xbb?z\x91\xae\x99.\xee\xc5\xbf\x18\xdbw\x84\x14s\xbe?\xae\xf8D\x12\x97\xf9\xc5\xbf\xeb\x94\xe44\xf8\xda\xbd?\xf8\x7fG\x98\xcc\xaf\xbc\xbfz?}\x9c|A\xa0?:cU\xb6\xd2\x13\xd9?\x97\xa1`5\x03Q\xbe\xbf\xfcd\x87\xd82\xb8\xb8\xbf\xfd\x89\xbb\x80&>\xc2\xbfc\xaf\x06n\xd3\x01\xc3\xbf\xbe!\x15\x03_\xe1\xc4\xbf\xa4\xa1p\x8b90\xc2\xbf\x0cW\xc7\x91G\xcb\xdb?x\xbd\x82\x1frW\xaa\xbf\xde}\xb6\x1cn\x11\xa0\xbfa\xc65\xa91\x1c\xa1\xbfd\x89\xbfCg\xad\xd1\xbf\xc6G\xeb\x8b\xd5\x88U?~\xaf\xdf\xd5ib\xd0\xbfG1-i\x9f\xc1\x96?\xed\xd5D\xef25\xd1\xbfGp\xff\x85\x1a\xae\x87? N\xab\xd0\xd0\x15\x87\xbf\xa9PW\xe0oB\x92?\xe1^\xcb\x8c\xac\xa3\xdb?\xe9L\xcf\x1d\x9aa\xa0\xbfC0d\xd8\xd0\x97\xbd?\xed\xc1\xbd\x8f\xe8\xfd\x84\xbf\xe4y\xde\x17\xbf\xe3\xa8\xbf\xad\x96\xfeqH\xc4\x8e?b\x0f;\xa8&\xcc\xb1\xbf\xfdm\xdah`\xe5\x9e?\xcb\x9b\x1c\xd3v\xb3\xa7\xbf\x81\xcd\x1fOA\xea\x8d?I\xf5\x8bU\x17]\xbb?3\x02\xe9\xe0\xf1\xb6s?\x8f\xdcdAu\xff\xd3?\x8e\'`\xf5\xbeN\x9c?R\xcb^\xedn\xa4v\xbf\xde\xf2A.\xa4\x9a\x7f?\x13\x80:j\x88\xb9\xa0\xbf\xcd~+U\xf5x\x98?\xbeD5F\'\xa9`?\xbd\xeb\xa3\xb5\x01~\x86?\x8e\xc0\x1d\xee\xf5\x95\xd4?\xdd^\xc5,Q\x93\xb9\xbfQ\xe8\xa8iD\xc5\xcb\xbfC\x15\xeb\x9e\xfe\xbfl?S\x8e&\xb1&W\xcf\xbf\xa0\x93e\x01F\r\x96?\xd6\xc1\x95.E\xba\xcb\xbfY?\xd85\n\x0c\x8d?\xd7\t+\xa1e\xdf\xc9\xbf\x89\x8d\xedD\x15\xbf\x8a\xbf\xc2\xf9a\xf6\x057\xab\xbf9*\xe5\xe7\xdc\xae\xac?\x12\xd3\xcax\\\\\xb2\xbf\x96\xed!\xf0Y$\xb6?\xd2\xbf\xbc\x9a[w\x91\xbf7\x19\xf4\x16\xb1\xe3D?`\xf3\x82\xaf4\xbe\xb1\xbf\x02\xcd\xa2\xa9\'\xc0\xba\xbf\xda)\xaf\xb29\x1c\xaa\xbf\x1d\xe7q\x90XJ\xb1\xbf\xb0\x05B\x88\xb4\x95\xc8\xbfG\xd3W\xf7f\xcf\x8a?m8\x17}\xd1\xd2\xbf?\t\x96\xfb\xb4\x88\x87\xa7\xbfQ\xc7\xfff\x01\xab\xd1?\xf4\xdc\x15\x08\x80\x0c\xb1\xbfK\x7f\xea\x96\x87\xd6\xd2?\xb5\xec\x19f\xebi\x98?\xf1\xbfS\x97\xd1O\xd2?\xe81z\xca\x91\xec\xb1?\x91\xb2\x10F\xe6\x19\xc1?\xd7S\xec\xd4F\xae\xa9?\xb5=\xda\xa1\xeb\t\xc0\xbf\x08\xc5\xc6X^v\xae?G\x86&\xa9\x1e\xd5\xcf?\x0b\xad\x93\xfc\xce\x05\xb7?\x94q\x135@\xbc\xd0?\x92!g\xa6G\\\x90?\x96\xa3\xa6|\xd60\xd0?\xd0[\xdc\xda\x87\xe0\xb5\xbfM\xf8\xfc3d\xe4\xbc\xbf6\x8f\xc8\xdc\xa6\xea\xb0\xbf @\xfb\x91\x16\x01\xd5\xbf\xe8\xe0[q\xffZ\xbb\xbf\x87\x17\xb0\x9b\xad\xa3\xd4\xbfQm\xa6\xa7\x8cg`?\xd6\xe7\xa9\x04\xc6D\xd5\xbf\xfd\x91\xd4B\xdc\x9f\xb6?\xf9\xd4W\xa86\x19\xa0\xbf\xf8\x8a+N\x96\x88\xce?\xe5\xce\x94VN\xbd\xa8\xbf\xd2\x99WP\no\xb8\xbfi\xe5\x07\xe3\xbd\x15z?\xf8\x82\x1b\xadt\xbd\xd0\xbf.\x8c\x11\x06*_\xab?\xb6\x15\x9a\x0c6\\\x80\xbfwp5\x1d/\x88[?E\xcd\x1e\xa4\xe5\xb4\xd2?\xb1\x08=\x1d\xbc\xc9\x9f\xbf9\x1aW\x06\xc4V\xc0?6\xfbh\xcd\x17\xa8\xa0\xbf\xe1\x1c\xff\xef\xa6[\xd2\xbf#\x9cJ\x05"\x04\xb0\xbfqL\xdf\x1e\xeba\xc0?\xf5\\d\xa8O\x07\xac?\x8f\xcc\x92\xdagF\xd2?\xb0#d\x91\x9a;\xbe?\xd2ST:\xac\xd4\x92\xbf\xc9\x81\xd7\x8f\x0b\xff\xb0?B\x97\xe1+|h\xd1\xbf\x0e\x91\xda"~\xdf\xaa\xbf-^\xdd\x8de@\xbe\xbf\x96\x9e\xe2Os\x94\x88\xbf\xdd\x1d\xcb.\xce|\xcd?\x9b\x1d)\xab\xce\xff\xab?~\xd6\xbd\xdac\r\xd1\xbf\x98B\xac\xc8\xfbE\xb8?A\x91YG\x81\xce\x86\xbfE\x17\xd8\xdb?\xd1\xab?BQ\x7f\xd0\xf2R\xd2?Q\x9foY\xd1\xf5\x90\xbf\xd1\xa2]T\xb1h\xd0\xbf\x8b8B7\xf4\x85\xb8\xbfK\xf4n\xedUQ\xd2?\xf1\xeeR\xbf\x96\xb1\x9f\xbf\xde#\x82\xf8\xb4\xc3\x8b\xbf\xd6\xa4\xa7s\xe7C\xb7\xbf\x1d\x85\x08\xf8X\x16\xd1\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I40 +tp132 +g22 +I00 +S'\xc5\xfd\x9a|\xc5\x1b\x19\xc05\xb2W\xfb\xe5{U\xc0\x96m<\x1a\xdak4\xc0f\xa3\x10\xdb8\xd1J\xc04\xb7\x92.Q\x89;\xc0%?SP\xbb$6\xc0GSmz\xdf\xfd5\xc0\xb6I\xf2\xe1#-\xf8\xbf\xba\xe8\xb8\x87m\xe1;\xc0\xef\xe4\xd1\x02Z\xdd5@i\x8a\x103<\xf14\xc0\td#\x0c\xd0\x12K@\xc0\xe3hPid"\xc0\x1a\x0f^\xdc\x02dU@\xc2\xcb9\x00\xb7\xc94@Le\xc5\xb8\x1d\xcfK@U\xc7\x8d\xb4\xee\x15A@\xf4\xcd5\xf7\x1a\xed8@\xe0*O$\xfd\x8dB@&4\x8au\x1fW\xb8\xbf>n\xa4\x1e\xd6\x8dA@\xb3re>\x03\x017\xc0\x93\xb3}6\x7f\xcf6@\xf7\xf3"H\xd4\x10K\xc0-t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x18\xd8m\xb1\xb9@ \xc0\n\xccRU\xf006\xc0\xe6/\xdb\xf9On\x18\xc0\x84\x10\xb0s\xf5C\xf2\xbf(~\x90Kd\xb5!\xc0\x16\xf7\xe6\xf5xy6@}\xf4A\x95\xd2\x8c\x1d\xc0\x8d=&1\xeb\x08R@\x83z\xe1\x18R\xfd\x14@C\x1e\xf7A4\xfd6@\xb8\xb3\x81\xb2\x03\xda @\xdfb\xe4\t\xe6\xda\xee\xbf\xf1\xd0/`\x82\xcf\x18@\x06_\xb7ozv6\xc0' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I5 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_mouth_7 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_mouth_7 new file mode 100644 index 0000000000000000000000000000000000000000..27e5cf06add484b14d73779322a84d8486db9441 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_mouth_7 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I40 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xc0\x87\xe8\x94_\xf4\x9c\xbf\xe9\xf1\x16\x8a^\xc6\xd8\xbfux\xaf\xa7\xa6\x8c\xb7\xbf\x00M\xc0\x1a\xd5\xec\xce\xbf\x87\x0f\x87\x84 \xc1\xbf\xbf\x01\x02\xcb|\x10\x89\xb9\xbf\x17jL\xd9@\\\xb9\xbfT\x8c\x96O0\xe1{\xbf\xd1\xa78\x04^\x13\xc0\xbf\xe8\xfa\x82\x17\xc06\xb9?\xb7n\xb9:w&\xb8\xbf\xf0m8\\x8\xcf?\xdf\x91 \x91\xa45\xa5\xbf\x8b\x8cD\xb5\xd2\xaa\xd8?f\x8b\xe6H\xe4\xf8\xb7?\xff\xc0\x14\x13\xcf\x08\xd0?\xf5\x1a\x8c\xba\xed\xb3\xc3?\x05\xce\xa0\x19\x8f\xbe\xbc?\xed\x014\xcf\x96e\xc5?\x03B\xc11\x9a\x11<\xbf\xca\xf0\x10\x0c3>\xc4?\x96\x17R\x7f\x16\x87\xba\xbf\x83\xf7\x97\xc2\xfcM\xba?\xc9J\xbd\xd0.6\xcf\xbf\xda\xd6\xebxx\xb7\x97\xbfeP\xe1\xec6\xe7\xd4\xbf\x9e\xff$\x08\x10\xbe\xa2\xbf&\x18\x0c2$\x97\xb9\xbf\xbds&\x10X,\x9c\xbf\xd0\\\x96\x1c8\x10u\xbf\x10\xfe\xfdW\xd0k\xa4\xbf\xb2\x94;\'\xc9\xea\xb9?K\xed+t\xcc\t\xa1\xbf\xf9b\xb7\xa8"\xcc\xd4?\x83}c\x0cg4\x98?\xf9\r\xde)\xb2\x82\xba?\x0f7\xea\x19\xd5n\xa3?\xc0\x86Tel\xcaq\xbf!%\xd6\xeem\x9c\x9c?\x86\xc7\xa16U\xe7\xb9\xbf\xe8\xf1\x16\x8a^\xc6\xd8?\x03\x88\xe8\x94_\xf4\x9c\xbf\xffL\xc0\x1a\xd5\xec\xce?vx\xaf\xa7\xa6\x8c\xb7\xbf\x01\x02\xcb|\x10\x89\xb9?\x87\x0f\x87\x84 \xc1\xbf\xbfQ\x8c\x96O0\xe1{?\x16jL\xd9@\\\xb9\xbf\xe7\xfa\x82\x17\xc06\xb9\xbf\xd2\xa78\x04^\x13\xc0\xbf\xf0m8\\x8\xcf\xbf\xb7n\xb9:w&\xb8\xbf\x8b\x8cD\xb5\xd2\xaa\xd8\xbf\xde\x91 \x91\xa45\xa5\xbf\x00\xc1\x14\x13\xcf\x08\xd0\xbff\x8b\xe6H\xe4\xf8\xb7?\x05\xce\xa0\x19\x8f\xbe\xbc\xbf\xf4\x1a\x8c\xba\xed\xb3\xc3?\x0fC\xc11\x9a\x11\xc4?\xc9J\xbd\xd0.6\xcf?\x83\xf7\x97\xc2\xfcM\xba?eP\xe1\xec6\xe7\xd4?\xd9\xd6\xebxx\xb7\x97\xbf&\x18\x0c2$\x97\xb9?\x9d\xff$\x08\x10\xbe\xa2\xbf\xcf\\\x96\x1c8\x10u?\xbds&\x10X,\x9c\xbf\xb1\x94;\'\xc9\xea\xb9\xbf\x10\xfe\xfdW\xd0k\xa4\xbf\xf9b\xb7\xa8"\xcc\xd4\xbfJ\xed+t\xcc\t\xa1\xbf\xf9\r\xde)\xb2\x82\xba\xbf\x84}c\x0cg4\x98?\xc4\x86Tel\xcaq?\x0f7\xea\x19\xd5n\xa3?\x85\xc7\xa16U\xe7\xb9?!%\xd6\xeem\x9c\x9c?\xce\xed\xbf\xc5%\x9f\xcc\xbf\x94a\xbe\xe0\xf4\xc1\xb5<\xd3\xed\xbf\xc5%\x9f\xcc\xbfu\x12]\xe8\xd1\xda\xa4<\xd3\xed\xbf\xc5%\x9f\xcc\xbfL\xbb\x93h\xf1G`<\xd6\xed\xbf\xc5%\x9f\xcc\xbf="\x90\x88:\x12\x90\xbc\xd7\xed\xbf\xc5%\x9f\xcc\xbf\x93\x89cQt\xcf\xa7\xbc\xdb\xed\xbf\xc5%\x9f\xcc\xbf#$A\r\xe1\\\xb3\xbc\xe3\xed\xbf\xc5%\x9f\xcc\xbf\xbeD\xb9\xa7\xc8?\xb8\xbc\xdf\xed\xbf\xc5%\x9f\xcc\xbf\xa1|\xf4\x98k\xa6\xa5\xbc\xe0\xed\xbf\xc5%\x9f\xcc\xbf\xdcmiR\x08\xb0J<\xde\xed\xbf\xc5%\x9f\xcc\xbf\x13q?Q\x00T\x9e<\xde\xed\xbf\xc5%\x9f\xcc\xbf\xe0\xc8S\xa2-\x06\xab<\xd7\xed\xbf\xc5%\x9f\xcc\xbf\x05\xeb4\x1e?\x88\xb3<\xd1\xed\xbf\xc5%\x9f\xcc\xbf\x82\x93\xff\xb7\x10\xf2\xb2<\xd6\xed\xbf\xc5%\x9f\xcc\xbfS\xbf\x15\xa9\xb9\x0e\x92<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\xeb\xc98\x00\xdb\x11n\xbc\xdc\xed\xbf\xc5%\x9f\xcc\xbf\xe5<\xa8b\xe3c\xa0\xbc\xdf\xed\xbf\xc5%\x9f\xcc\xbf\xc5\x1a\xd1\x055<\xb5\xbc\xde\xed\xbf\xc5%\x9f\xcc\xbf\x05\xedP\xe8\x82i\x95\xbc\xda\xed\xbf\xc5%\x9f\xcc\xbf\x88_\xf7\xff\x07}\x7f<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\xd8\xb5z\xaf0t\x9d<\xe5\xd81\x9a\x08\x82\xb5\xbc\xcb\xed\xbf\xc5%\x9f\xcc\xbfqe\x7f$\x88\x05\xa7\xbc\xd6\xed\xbf\xc5%\x9f\xcc\xbf\x95\xcf9%\x88Yj\xbc\xd3\xed\xbf\xc5%\x9f\xcc\xbf\xd78\xd0\xa9+\xe8\x90<\xd6\xed\xbf\xc5%\x9f\xcc\xbfi\x05\xe7\xc7l\x9d\xa9<\xd6\xed\xbf\xc5%\x9f\xcc\xbf\x88\xb2\x8aq\n\xe8\xb4<\xda\xed\xbf\xc5%\x9f\xcc\xbf\xd3\x8fSvoG\xbb<\xe0\xed\xbf\xc5%\x9f\xcc\xbf\xcdsT<\xf8\x0c\xa9<\xe0\xed\xbf\xc5%\x9f\xcc\xbf\n\x0b\xcd\xdd\x86\xb5b<\xe0\xed\xbf\xc5%\x9f\xcc\xbf\xdd[\x88[\xcd]\x9f\xbc\xdf\xed\xbf\xc5%\x9f\xcc\xbf\x97\x81W{\xa01\xad\xbc\xdb\xed\xbf\xc5%\x9f\xcc\xbf\xc7\xc5D`u\xc4\xb4\xbc\xd7\xed\xbf\xc5%\x9f\xcc\xbf\xb2\xf7\x86\x11\x96\xd4\xb4\xbc\xd0\xed\xbf\xc5%\x9f\xcc\xbf`"\xd21\xc5n\x93\xbc\xd5\xed\xbf\xc5%\x9f\xcc\xbf\xb7\xca0\x8aK^o<\xd8\xed\xbf\xc5%\x9f\xcc\xbf\x12eE_\x87\xd6\xa1<\xd9\xed\xbf\xc5%\x9f\xcc\xbf\x8e\xb0\xd3\x94\xd8u\xb6<\xe0\xed\xbf\xc5%\x9f\xcc\xbf\x94\x0c\xf6 \xbf\x08\x97<\xdd\xed\xbf\xc5%\x9f\xcc\xbf\x0f\xeb\xa1\xdf{\x7f\x80\xbc\xd8\xed\xbf\xc5%\x9f\xcc\xbfJ\xe8+\xb0\xc7\xde\x9f\xbc\xd9\xed\xbf\xc5%\x9f\xcc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I40 +tp31 +g22 +I00 +S'\xcd\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x98m<\x1a\xdak4\xc0j\xa3\x10\xdb8\xd1J\xc08\xb7\x92.Q\x89;\xc0(?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xc5I\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf3\xe4\xd1\x02Z\xdd5@k\x8a\x103<\xf14\xc0\nd#\x0c\xd0\x12K@\xc1\xe3hPid"\xc0\x1c\x0f^\xdc\x02dU@\xc3\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe3*O$\xfd\x8dB@ 5\x8au\x1fW\xb8\xbf@n\xa4\x1e\xd6\x8dA@\xb8re>\x03\x017\xc0\x91\xb3}6\x7f\xcf6@\xf9\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1b\xd8m\xb1\xb9@ \xc0\r\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x8f\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x17\xf7\xe6\xf5xy6@\x81\xf4A\x95\xd2\x8c\x1d\xc0\x8f=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xba\xb3\x81\xb2\x03\xda @\xfeb\xe4\t\xe6\xda\xee\xbf\xee\xd0/`\x82\xcf\x18@\t_\xb7ozv6\xc0' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I20 +I2 +tp43 +g22 +I00 +S'\xcd\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x98m<\x1a\xdak4\xc0j\xa3\x10\xdb8\xd1J\xc08\xb7\x92.Q\x89;\xc0(?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xc5I\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf3\xe4\xd1\x02Z\xdd5@k\x8a\x103<\xf14\xc0\nd#\x0c\xd0\x12K@\xc1\xe3hPid"\xc0\x1c\x0f^\xdc\x02dU@\xc3\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe3*O$\xfd\x8dB@ 5\x8au\x1fW\xb8\xbf@n\xa4\x1e\xd6\x8dA@\xb8re>\x03\x017\xc0\x91\xb3}6\x7f\xcf6@\xf9\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1b\xd8m\xb1\xb9@ \xc0\r\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x8f\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x17\xf7\xe6\xf5xy6@\x81\xf4A\x95\xd2\x8c\x1d\xc0\x8f=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xba\xb3\x81\xb2\x03\xda @\xfeb\xe4\t\xe6\xda\xee\xbf\xee\xd0/`\x82\xcf\x18@\t_\xb7ozv6\xc0' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I7 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I20 +I2 +tp68 +g22 +I00 +S'\xd2\xfd\x9a|\xc5\x1b\x19\xc07\xb2W\xfb\xe5{U\xc0\x9bm<\x1a\xdak4\xc0l\xa3\x10\xdb8\xd1J\xc0;\xb7\x92.Q\x89;\xc0)?SP\xbb$6\xc0MSmz\xdf\xfd5\xc0\xc4I\xf2\xe1#-\xf8\xbf\xc0\xe8\xb8\x87m\xe1;\xc0\xf5\xe4\xd1\x02Z\xdd5@n\x8a\x103<\xf14\xc0\x0cd#\x0c\xd0\x12K@\xc2\xe3hPid"\xc0\x1d\x0f^\xdc\x02dU@\xc6\xcb9\x00\xb7\xc94@Pe\xc5\xb8\x1d\xcfK@X\xc7\x8d\xb4\xee\x15A@\xf6\xcd5\xf7\x1a\xed8@\xe5*O$\xfd\x8dB@\\5\x8au\x1fW\xb8\xbfBn\xa4\x1e\xd6\x8dA@\xbare>\x03\x017\xc0\x94\xb3}6\x7f\xcf6@\xfb\xf3"H\xd4\x10K\xc07t_\xd6\xfb\x90\x14\xc0\xb29H\xa1f R\xc0\x1d\xd8m\xb1\xb9@ \xc0\x0e\xccRU\xf006\xc0\xec/\xdb\xf9On\x18\xc0\x90\x10\xb0s\xf5C\xf2\xbf-~\x90Kd\xb5!\xc0\x18\xf7\xe6\xf5xy6@\x84\xf4A\x95\xd2\x8c\x1d\xc0\x90=&1\xeb\x08R@\x84z\xe1\x18R\xfd\x14@E\x1e\xf7A4\xfd6@\xbc\xb3\x81\xb2\x03\xda @\x02c\xe4\t\xe6\xda\xee\xbf\xf1\xd0/`\x82\xcf\x18@\n_\xb7ozv6\xc0' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\x02\x00\x00\x00\x00\x00\xf0?b\x07\x16\x1a\x90\xf2t<\x00\x00\x00\x00\x00\x00\xf89\x13P\xdc\x97\xa6\x0cy\xbc\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xe09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I20 +I2 +tp89 +g22 +I00 +S'\xcd\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x98m<\x1a\xdak4\xc0j\xa3\x10\xdb8\xd1J\xc08\xb7\x92.Q\x89;\xc0(?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xc5I\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf3\xe4\xd1\x02Z\xdd5@k\x8a\x103<\xf14\xc0\nd#\x0c\xd0\x12K@\xc1\xe3hPid"\xc0\x1c\x0f^\xdc\x02dU@\xc3\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe3*O$\xfd\x8dB@ 5\x8au\x1fW\xb8\xbf@n\xa4\x1e\xd6\x8dA@\xb8re>\x03\x017\xc0\x91\xb3}6\x7f\xcf6@\xf9\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1b\xd8m\xb1\xb9@ \xc0\r\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x8f\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x17\xf7\xe6\xf5xy6@\x81\xf4A\x95\xd2\x8c\x1d\xc0\x8f=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xba\xb3\x81\xb2\x03\xda @\xfeb\xe4\t\xe6\xda\xee\xbf\xee\xd0/`\x82\xcf\x18@\t_\xb7ozv6\xc0' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I20 +I2 +tp106 +g22 +I00 +S'\xbe\xa9\xb5\xb5\x9b\xa9#@\x90#\xc41\xec\xe7T\xc0\xdf\xfc\x98\x14\xbc06\xc0\x9e\x80t\xd0\xab\xf3J\xc0\xef\x0cG\x8bv\xf9A\xc0\xaa!W\xf1w\x857\xc0\xb3\xa7\xfbQD[@\xc0\x99\xcc\xca\xe2\x15\x89\x08\xc0\x9b\x85\x1c\xab\x90\rB\xc0v\xe9\x11x\x11}3@\x00\xbf\x00\x97w\xb15\xc0\xcd\x98\x89D&\x94K@z\xe3\xe2\x7fr"\x14@)\xd66\x01\xd6,W@\xb8\xfe\x81\x19q\xad4@F\xf2\x9b\xd11\xa9K@~\xb0\x1b\x9bgs>@\x02r\xccF\xeaP5@1\x9c\tn\x11T@@\xbdk8!\xe2\xec\xd0\xbf\xf5et\xef\xca\x82@@rtN\xde\xde\xde7\xc0\xe1<\xed\x81\x8a\xe07@v\xa2\xa0\x86\x18\x0eK\xc0\xa3D^\x92\'"\x1f@\x0f\x98\xd1\xd4k9R\xc0\xfaA\xf1\x01\xfb\xfe\x1a\xc0\x02\x0b\x17w\x97\xef6\xc0\xa2\xebM\xc8R\x10"\xc0\x17\x01\x9a\xca\x887\xe4\xbf\x03\xf1\x807+P"\xc0\xb4\xc4UA\xf0\xa23@_U\x89\x13\xbbA\x19@\xf8{r\xc1\x1e\xffS@f)\xc8zv(\xd7\xbf\xdai\x87\\\x84\xb93@F\x85\xb0n\x8b,\x0f@\xc8\x84[\x92$\x04\xf2\xbf\xaf{&\xbft\x16\xda?\xfbO\x15\xb0Ga7\xc0' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I7 +tp113 +g22 +I00 +S'\xe7\xf2\xf3\xdc\xdep\x8e@"U\xfet\\,\x8e@+5\r\xf7\x7f\xe4~@\xc9/"bT\xafa@\xa9\x17\xc4\x10\x00\xf2Y@U\xc0\x1f\xd0\xb4\x94C@\x83\xf8}f<)@@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I30 +tp120 +g22 +I00 +S"N\xd8M\xb7Z3;@\x15N13\xe2S6@\xd07\x86}\x83F3@\x80\x8d;\x08\xdaO.@\x92\x82\x99yc#+@P\xc4/\xb4\xac\x1f)@\xb5I\x8eT\xfa\xd4 @\xfb\xbf\xf4\xda\xdc\x10\x1f@\x92/\xbe\xe3<\xec\x18@\xc6\xc9\\\xfb\x95N\x17@\xda\x12\t2\x8f\xf3\x13@\xe8n\xba\x97\x8ei\x11@\xfff\x80\x91J?\x10@\x9b\x90/\x95A\x1f\r@\x90\xbc\xb1A\xa6^\t@\x07\xb4L2Q\x83\x03@\xa6\xa5P\x13\x83\x90\x01@6B'\xde\xf7\xe5\x00@/\x18\xda\x8bb\x8f\xff?e5\xc7\xda\x01\xb0\xfe?\xf8\x90\x15\x0bGt\xfd?\xac\xd6\xc1\xfe\xd0{\xf5?\xb1\xf4\xbcE~y\xf4?\xa4\x02%\xf9y<\xf2?\x91\xe0Y\xe1\x8b!\xf0?\x84\xd4\xe52`\xad\xec?\xe7\xe3\xb8\x19Ta\xe9?\x04CA\xa9E\xed\xdf?\x9aA\xc55\xd2W\xd7?\xe11\xc1\xf2&\xeb\xc8?" +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I7 +I40 +tp126 +g22 +I00 +S'\xb6o\x03\x86g\xecn\xbf\xc3\xf6\xf6\xae\xf8\x92\xd7?\xe3E\xec\xe1\xd2T\xc4\xbf\xc8\xa3n\x01\xfa\x1a\xab?\x92\xaemK\x9eT\xcb\xbf\xcfa\xa0\xe8\x0bH\xb3\xbf\xd0\xd2\xdd>KC\xcd\xbf@A\xf0\x89k\xa8\xbd\xbf\xd4\x0e\x10u90\xcb\xbf\xc4R\xe7c\xcb3\xc2\xbf\xf85\x84C\xdb\x89\xc3\xbf`\xe3t\xe0`&\xa7\xbf\xb4\xb1];\x82\x81\x88\xbf\xe7\xd0\xc0\xaeN\x8c\xa8?\xda\x08(!\x00[\xc6?~QY\xedP\x02\x90?6)\xcdx\xad\xde\xce?\x81\xa2\xf9\xd3m\xc6\xae\xbf\xc5\x08P\x01\xf20\xce?\x19\xce\x178\x8bo\xa6\xbf\xec?\xa9\xd6\x1a\x01\xcd?`\x95o\xba\xbat\x84\xbff\x15S\xe4`!\xc3?v\x14\x84\x8f\xb8\x80\xba?\xc4.\xed\xf1\x97\xfd\x94\xbf5pr\xc5JE\xd5?4eT\xab\xd8P\xc9\xbf\xb5\x817\x07\xab#\xa8\xbf\xa1\xc6|\x92\xf0\xcd\xca\xbfo\x11\x96m\x90=\xb8\xbfJWN~\x02\x15\xc8\xbf\x0c\x06-\x96\xe1\x17\xbf\xbfT\x08pmA\xb8\x99\xbf^\x83\x80\x98Y\x95\xa4?\x9b\xa5\x90{\x8eg\xcb?\r\xbe\xcdQk9\xb8\xbf\x8a\xfadf}\x19\xc9?&\x12\xf0?T\xe6\xb2\xbf\x9d\xeem\x96\xfa\xa6\xc7?\xcb\xe5\x95?\xa4\xc9\xa2\xbf\xc3\xcd\xd6\xe3]\x02\xae?\x13!\xe1\x90:\x18\xd2?\xc9\xb5\x1bL#5\xb6?v\xe8r\xaf\x13U\x8b\xbf\xc1\xbc\xea\xe0\x19"\xb8?L\xf4\x8a/4\xa9\xca\xbf\x84\\\xb2J\x86]\xba?\x9b7\xba\xa7^\xa2\xca\xbfc:E\xe6\xf5>\xb7?k=\x85\xb1h\xeb\xc3\xbf\xfd8E[\x87\x06\xb8?\x98)%\x03\xc7\x8a\xb0?\xe0\xcd\xd7~!\x95\xa2?T\xe3+\x8b\x0e\xcc\xdb?\x0ex\x1eC\xfe2\xad\xbfbH\xb4\xf8\xa7R\xc3?\x9f\x86[\xe5\xef\x19\xbe\xbf\xe0\xa5&\x929\xb3\xa6\xbf\x0eEL\xc4*z\xc1\xbf\xeb\'\xc0S\xea\xff\xb8\xbfZ\xcb+\x93m:\xc3\xbfz\xefeR$i\xb7\xbf\xb0\xe6\nv\xd1P\xbc\xbfs\x89\xa1\xe1r\xea\xb3?\xd0\x9f6\xa9\xb0\xff\xac?\x04\x15\xaa$\xfc\x8e\xd0?\xe5\xd2\x16\xa2\xdb\xc8\xbb?\x87\x91\xae\x99.\xee\xc5\xbf\x9b\xdaw\x84\x14s\xbe?\xcf\xf8D\x12\x97\xf9\xc5\xbfy\x94\xe44\xf8\xda\xbd??\x80G\x98\xcc\xaf\xbc\xbfU?}\x9c|A\xa0?@cU\xb6\xd2\x13\xd9?\x16\xa1`5\x03Q\xbe\xbf5e\x87\xd82\xb8\xb8\xbf\xc4\x89\xbb\x80&>\xc2\xbfw\xaf\x06n\xd3\x01\xc3\xbf\x84!\x15\x03_\xe1\xc4\xbf\xb0\xa1p\x8b90\xc2\xbf\x08W\xc7\x91G\xcb\xdb?k\xbd\x82\x1frW\xaa\xbf\xd1}\xb6\x1cn\x11\xa0\xbfn\xc65\xa91\x1c\xa1\xbff\x89\xbfCg\xad\xd1\xbf\xdeE\xeb\x8b\xd5\x88U?\x81\xaf\xdf\xd5ib\xd0\xbf(1-i\x9f\xc1\x96?\xef\xd5D\xef25\xd1\xbf\xfco\xff\x85\x1a\xae\x87?,N\xab\xd0\xd0\x15\x87\xbf\xa7PW\xe0oB\x92?\xdf^\xcb\x8c\xac\xa3\xdb?\xcdL\xcf\x1d\x9aa\xa0\xbfH0d\xd8\xd0\x97\xbd?\xb7\xc1\xbd\x8f\xe8\xfd\x84\xbf\xd3y\xde\x17\xbf\xe3\xa8\xbf\xc2\x96\xfeqH\xc4\x8e?U\x0f;\xa8&\xcc\xb1\xbf\x01n\xdah`\xe5\x9e?\xb3\x9b\x1c\xd3v\xb3\xa7\xbf\x98\xcd\x1fOA\xea\x8d?W\xf5\x8bU\x17]\xbb?i\x02\xe9\xe0\xf1\xb6s?\x91\xdcdAu\xff\xd3?\xb4\'`\xf5\xbeN\x9c?\xf8\xca^\xedn\xa4v\xbf\x9c\xf2A.\xa4\x9a\x7f?\r\x80:j\x88\xb9\xa0\xbf\xc4~+U\xf5x\x98?\xa4E5F\'\xa9`?\x95\xeb\xa3\xb5\x01~\x86?\x8d\xc0\x1d\xee\xf5\x95\xd4?\xdd^\xc5,Q\x93\xb9\xbfS\xe8\xa8iD\xc5\xcb\xbf\xf3\x14\xeb\x9e\xfe\xbfl?V\x8e&\xb1&W\xcf\xbf\x9f\x93e\x01F\r\x96?\xd6\xc1\x95.E\xba\xcb\xbf=?\xd85\n\x0c\x8d?\xd3\t+\xa1e\xdf\xc9\xbfS\x8c\xedD\x15\xbf\x8a\xbf\x99\xf9a\xf6\x057\xab\xbf\x14*\xe5\xe7\xdc\xae\xac?\x0c\xd3\xcax\\\\\xb2\xbfb\xed!\xf0Y$\xb6?\x98\xbf\xbc\x9a[w\x91\xbf\xdf\x17\xf4\x16\xb1\xe3D?U\xf3\x82\xaf4\xbe\xb1\xbf\xde\xcc\xa2\xa9\'\xc0\xba\xbf\xbe)\xaf\xb29\x1c\xaa\xbf\x0e\xe7q\x90XJ\xb1\xbf\xb4\x05B\x88\xb4\x95\xc8\xbf\xb8\xd1W\xf7f\xcf\x8a?`8\x17}\xd1\xd2\xbf?\xd8\x95\xfb\xb4\x88\x87\xa7\xbfS\xc7\xfff\x01\xab\xd1?\xc3\xdc\x15\x08\x80\x0c\xb1\xbfR\x7f\xea\x96\x87\xd6\xd2?\xf5\xec\x19f\xebi\x98?\xf4\xbfS\x97\xd1O\xd2?\xd01z\xca\x91\xec\xb1?\x80\xb2\x10F\xe6\x19\xc1?\xbfS\xec\xd4F\xae\xa9?\xc9=\xda\xa1\xeb\t\xc0\xbf@\xc5\xc6X^v\xae?;\x86&\xa9\x1e\xd5\xcf?\xe3\xac\x93\xfc\xce\x05\xb7?\x98q\x135@\xbc\xd0?b!g\xa6G\\\x90?\x99\xa3\xa6|\xd60\xd0?\xb0[\xdc\xda\x87\xe0\xb5\xbfX\xf8\xfc3d\xe4\xbc\xbfZ\x8f\xc8\xdc\xa6\xea\xb0\xbf\x1f@\xfb\x91\x16\x01\xd5\xbf\xbd\xe0[q\xffZ\xbb\xbf\x88\x17\xb0\x9b\xad\xa3\xd4\xbf\xfdl\xa6\xa7\x8cg`?\xdc\xe7\xa9\x04\xc6D\xd5\xbf\xdd\x91\xd4B\xdc\x9f\xb6?\xfc\xd4W\xa86\x19\xa0\xbf\xfc\x8a+N\x96\x88\xce?\xef\xce\x94VN\xbd\xa8\xbf\n\x9aWP\no\xb8\xbf\xd8\xe5\x07\xe3\xbd\x15z?\xe1\x82\x1b\xadt\xbd\xd0\xbft\x8c\x11\x06*_\xab?\xb6\x15\x9a\x0c6\\\x80\xbf\xacm5\x1d/\x88[?P\xcd\x1e\xa4\xe5\xb4\xd2?\xe7\x08=\x1d\xbc\xc9\x9f\xbfA\x1aW\x06\xc4V\xc0?p\xfbh\xcd\x17\xa8\xa0\xbf\xe7\x1c\xff\xef\xa6[\xd2\xbfS\x9cJ\x05"\x04\xb0\xbfpL\xdf\x1e\xeba\xc0?U\\d\xa8O\x07\xac?\x85\xcc\x92\xdagF\xd2?\x83#d\x91\x9a;\xbe?\xc1TT:\xac\xd4\x92\xbf\xb3\x81\xd7\x8f\x0b\xff\xb0?R\x97\xe1+|h\xd1\xbfj\x90\xda"~\xdf\xaa\xbf4^\xdd\x8de@\xbe\xbf}\x9d\xe2Os\x94\x88\xbf\xf8\x1d\xcb.\xce|\xcd?N\x1d)\xab\xce\xff\xab?\x81\xd6\xbd\xdac\r\xd1\xbfHB\xac\xc8\xfbE\xb8?\xdf\x90YG\x81\xce\x86\xbf&\x17\xd8\xdb?\xd1\xab?NQ\x7f\xd0\xf2R\xd2?\x19\x9eoY\xd1\xf5\x90\xbf\xc8\xa2]T\xb1h\xd0\xbf\x868B7\xf4\x85\xb8\xbfJ\xf4n\xedUQ\xd2?\x83\xeeR\xbf\x96\xb1\x9f\xbf\x02$\x82\xf8\xb4\xc3\x8b\xbff\xa4\xa7s\xe7C\xb7\xbf(\x85\x08\xf8X\x16\xd1\xbf\xc33\x9c\x05\xcb\x88\xc3\xbf\x05\x94\xe9\x81\xf2\xba\xb0\xbf\x9dKA\x070\x8e\xb1\xbf\x90\x16\xac\xe9C\xf5\xcc\xbf\xaf\x12\x94A\x99L\x8d?KQo\xbft\xe9\xd0\xbf\xcb\xbd\x82\xf3\xfa\x0b\x91?V\xa1\x98|\xf8\xbe\xcb\xbfL\xa8\xcb\x8dr\x9b\xa4?\x98\x91\xf6\x1fX\x86\xd0\xbf\x8e\xcfe\n\xee\xd3\xb6?\xa8\xfbH\xd5\xb9\x15\xc7\xbf*\xa3K;j\xf9\xc2?\xe6\xd9\x16_\xd1\xd2\xb3\xbf\xebO\x96\xd4\xa1\xb2\xc5?\x84\xad\x03\r^)\xc9?m\xc5\x1d\x16\xc4\xd3\xaa?\xe6\xfc\x8f#\x114\xd6?\x81\xdc\xb7\x04\x95\xa0z?X\xde\x96\x8c\x14\xa3\xd8?\xa8\x8d\xe3\xa0\x01y\xa7\xbf2\xf5\xe8\x84|\xc5\xd5?\xa5\xda\x9f-\xf2\n\xca\xbf$\xea\xb9\xff\xc9\xae\xc6?#\xa2\x931\xd0v\xc1\xbf\x7fk\xda\x03\xf8M\xb5\xbfG\xe3I91x\x95\xbf\xffE\xe9\xaa\xc0\xd5\xbb\xbf\x122A\xb1\xe2f\x8d\xbf\xc2wP\x0e\xd6p\xb5\xbf~\x01zQ\xb5\xd3\x80\xbf\x8b\x08\xec\xa0\xd71\xbc\xbf]z\r \x85\x97\xbc?\x872\xfcy\x87v\xb6\xbf\x84U}\xab\xca-\xbb?\xa2\xfe\'\xa8\xaf\xdb\xb5?\x8a\x02`\xe4dap\xbfQ\xfdmy\xa9\xbb\xc0?\x19\x99\xc5>K\xb4\xb9\xbf\x90Z\xf1$\xf6\xa7\xb9?Gg\x85K\xf1tp?\xa9m\xa5X\x0c\x05\xbc?\xc4\xcdF*\xb1\x00\xc4\xbf\x9d\xce\xafN\x14\x7f\xcc\xbf\x8e~-D:\xc1\xc8\xbf=.\xec\xde\x1f\xf0\xb4?\x05\xb1P\xcb\x80\xac\xc9\xbf\xb0\xff\xf3\x97s\x84\x85?w\xf0\xa7\x1d\x9e"\xc8\xbf\x07\xab\x86\xfa\xa6\xaa\xb8\xbf\x87\xcc\xdd\xe4e\x12\xc7\xbf\xaf\x0e\xcc\xaa\x1b]\xc7?\x04>8|\xd3\xaew?\x9d\xc3]\x86\xa4\xc8\xb7\xbfI\xa8\x85\xa0\x0c\xb6\xd1\xbf\x8bZT\x14@\xce\xc1?H\xf7\x84\xf0\xec=\xa8\xbf\x8c?\xec\x1e\xb4\xa6\xb6\xbf\xb6\xed\xb3\xd9\xea\xa3\xa3\xbf\xa5q\xfc\x80\xee\x95\x89?\xe7\xd7\x83~\xd0<\xb0\xbf\xd9\x88\xae\xe2bI\xb1?\xd8\xbd\xa4\x0b]\x97\xd3\xbf+y\xa9\xba\xccM\xc4\xbf\x92\xd5\xd7\xa4\x88\x03\xa4?E\xa2\x97\xef\xdd\n\xa0?0\x88\x959\xfa\xf3\xd5?\xe7g7\xbb\xf3\x16\xb7?\x91W9\x03\x93i\xd3?\x0f\xf7\xc2\xf3\x13\x8e\x9d?xp\xe9]\xb9P\xd5?\xce\x80Bk\xbaS\xb5\xbfD\x9fg#l\xae\xa1?h\x1a\r\xe3\xc5\xa1\xa0\xbfRx\x8b\xd1\xc7V\xca?r\x02\x0b:Q*\xb8\xbf\xf6\xcc\x98\xb3\x1e\xce\xc9?\xed\x92\x08M\xa1\x92\x95?\xaf\xfb\x8c\xb3\x12&\xc7?X-\x82j\x8d%\xb8?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I40 +tp132 +g22 +I00 +S'\xcd\xfd\x9a|\xc5\x1b\x19\xc06\xb2W\xfb\xe5{U\xc0\x98m<\x1a\xdak4\xc0j\xa3\x10\xdb8\xd1J\xc08\xb7\x92.Q\x89;\xc0(?SP\xbb$6\xc0JSmz\xdf\xfd5\xc0\xc5I\xf2\xe1#-\xf8\xbf\xbd\xe8\xb8\x87m\xe1;\xc0\xf3\xe4\xd1\x02Z\xdd5@k\x8a\x103<\xf14\xc0\nd#\x0c\xd0\x12K@\xc1\xe3hPid"\xc0\x1c\x0f^\xdc\x02dU@\xc3\xcb9\x00\xb7\xc94@Ne\xc5\xb8\x1d\xcfK@V\xc7\x8d\xb4\xee\x15A@\xf5\xcd5\xf7\x1a\xed8@\xe3*O$\xfd\x8dB@ 5\x8au\x1fW\xb8\xbf@n\xa4\x1e\xd6\x8dA@\xb8re>\x03\x017\xc0\x91\xb3}6\x7f\xcf6@\xf9\xf3"H\xd4\x10K\xc03t_\xd6\xfb\x90\x14\xc0\xb19H\xa1f R\xc0\x1b\xd8m\xb1\xb9@ \xc0\r\xccRU\xf006\xc0\xe9/\xdb\xf9On\x18\xc0\x8f\x10\xb0s\xf5C\xf2\xbf+~\x90Kd\xb5!\xc0\x17\xf7\xe6\xf5xy6@\x81\xf4A\x95\xd2\x8c\x1d\xc0\x8f=&1\xeb\x08R@\x81z\xe1\x18R\xfd\x14@D\x1e\xf7A4\xfd6@\xba\xb3\x81\xb2\x03\xda @\xfeb\xe4\t\xe6\xda\xee\xbf\xee\xd0/`\x82\xcf\x18@\t_\xb7ozv6\xc0' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I7 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_nose_14 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_nose_14 new file mode 100644 index 0000000000000000000000000000000000000000..2311a3b042d1de75df675f33137ea930f1ac91ad --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_nose_14 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I18 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xa0\xc7\x95\xee\x19~\xe3\xbf\x04$\xbf\xde"Ps\xbf\x1a\x87.z\xe33\xd9\xbf\xab\xe1\xc6\x02J\xa8g\xbf\x92\xedjL\x1a\x12\xc7\xbf$\xe0\x9f\x9b\xd2h=\xbf\x8d{\x8b\x0f\xa1o\xa4?\xb29\xfb4@mi?I\xaf8@\xdb\xee\xc8?\x88Z\xf8\x047\xd4\xd0\xbf\xc3\xb6}\xa5\xe8\xd0\xce?\'\x0b\xeb\xd1Y\xfd\xc0\xbfm\x18\x1c\x84\x85\xca\xd1?\xc0\xa5\x02\x04\xf5\x8ff?L\xe3\xac\xbd\xbdS\xce?\x8b\xc8\x87V\xb9\xb5\xc1?=\xc1\xa0\x0b\xd4\xad\xc8?!r_,\xf8\x9b\xd0?\xf2#\xbf\xde"Ps?\xa0\xc7\x95\xee\x19~\xe3\xbf\xa2\xe1\xc6\x02J\xa8g?\x1a\x87.z\xe33\xd9\xbf\x08\xe0\x9f\x9b\xd2h=?\x92\xedjL\x1a\x12\xc7\xbf\xb19\xfb4@mi\xbf\x8d{\x8b\x0f\xa1o\xa4?\x87Z\xf8\x047\xd4\xd0?J\xaf8@\xdb\xee\xc8?)\x0b\xeb\xd1Y\xfd\xc0?\xc3\xb6}\xa5\xe8\xd0\xce?\xb9\xa5\x02\x04\xf5\x8ff\xbfm\x18\x1c\x84\x85\xca\xd1?\x8a\xc8\x87V\xb9\xb5\xc1\xbfJ\xe3\xac\xbd\xbdS\xce?!r_,\xf8\x9b\xd0\xbf=\xc1\xa0\x0b\xd4\xad\xc8?VUUUUU\xd5\xbf\x8d}\xe9\xb5\xaa7\xcb\xbcYUUUUU\xd5\xbf\xfbg\x83|Gn\xc1\xbcVUUUUU\xd5\xbf\x8f\x84zy\xe1\xe6\xaf\xbcUUUUUU\xd5\xbf\x81\x94\xed\xc6\x88j\x8c+\xc0\x81\x12j@\xdf\xa7\x14\xc0\xf3'\xb8\xc1!\xbeF@\x9d\x17\x16h|\x9eB\xc07\xe9\x1fW\x06\xbcG@\x8f\xd0\xab\xb8:\xad2\xc0F\xf0\xb0\xad\xc1rH@\xf7B\xd4\xc2N\x81l?!\xcb\xcf*\xb7\xd8F@\xb0\xb54\xb8\x8d\xb54@p\x90\xaf\xf7+{D@\xe3v\xdf\x92\xb0\xf9C@" +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I14 +tp113 +g22 +I00 +S"\xecu\xb3\xf6dWo@\x1c\x18\xd8\xf5,\xbcm@\xfb\x08\xc2\xc5Z\xc9^@\xd4\xd4\x9c\x1bC\xe51@\xf80k\xbd\xb3a.@l\xce\xcdi\xe5\xb7!@\xe4\x8f\xfe0\x18\xff\x02@'\xf5d\xc0\xe3\xe7\xff?\xf3T\xfa\xb6\xea-\xfc?\x99\xbe:\xca}\xb4\xf7?\xe2$\x89\xf7\x9f\xf3\xf5?\xe5\x82\x10\xb3\x0fw\xf1?\x13i\xbc7\xc8&\xe7?\xa2\x11\xfe\xee\xf6\xb7\xe2?" +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I1 +tp120 +g22 +I00 +S'\xd0:\xfb\x80\xec\xcc\xd0?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I14 +I18 +tp126 +g22 +I00 +S'\xb1\xadM-\x8bQ{?\x87T\x01\x1c\xe9!\xd3?\x00\x19w\xd9\xf3\x98\x9c\xbfa\x7f\xe9\xb4\xb9\xd4\x85\xbf\x97w\xc9\xccay\xa9\xbfKt\x0e?\xa9\xc8\xd7\xbf\xbd\xd6\xab{\x15H\xb1\xbf\x0c\x07_\xba\xc1\x99\xe7\xbf\x88\xe30\xcc_\xf0\x88\xbf\xc2\xff~\xe8\x16\x85\xd6?A\r\xcaeD\xa9\x9f?\xae\xff=w\x08\xf1\xc1?\xfc\xd1>\x95\xd0\x01v\xbf\xe3J\xa0\xa20\xee\x83?pGz)t\x15\x8d?\xd50h\xe9[\x97\xb4?<\xbb\xd1\t\x14g\xbc?a\xd7\xca\x83\x0b\x8c\xce?\xce\xa9\xed\xb5\xc5\x8a\xd1\xbfZ\x01\x93p"\x8a\xa2?\xff\xba\xae\xf5:\x91\xac?\x83\xbc\xa6tv5\x1b\xbf\xeb\xc1Y\xbe\xeac\xd9?\r1\x10\x8eh>\xa8\xbf\xf1\xbe\x1aw\xe7\x95\xe6?B\x89\xfcm\xdd\xc8\xb7\xbf\xac\n\n\x91\xcd\xb1\xd2\xbf\x94\x84\x105\x84\xe0\xb3\xbf#sG\xb0\xda\x94\xc1\xbf\xe3K\xcbh0\x03\xb3\xbf\xf3\x85\xc8\xe3,.\x92\xbf9\xacK\x870\xdbQ?\xb3 \x95\xc6\xf2\xda\xc3\xbf\x15\x19\xf5\x1e\xd1\xa4\xb8?g\x90\xa2:\x84\n\xd2\xbf\xc0\xe9\x90K\xa2P\xc4?\xea\xa4)\x8c\x13\x0b\xd8?\xf8\xee;Z\x07\x1d\xa3?\x0c8\x8cd\xd4^\xc6?zC\x13\xf3\xcaR\xfa\xea\x1e\xcb\xbf\xab)\x11\x00\xa1\x0cp?Am\x87\x13\xf7\x83\xe4\xbfa(\xeaE\xe5Hq\xbf\xb7=\xa0\xcaqw\xcc\xbf@\x90\xa2\x16\x19e`\xbf\xe9\xeb\x98\xf5\xef\xa3\xda?} \xb6\rM\xc9\xc0?\xe1\x19\xe3\x7f\xaa\x0bx?\x17rP\x17\x18\\\xd4\xbf6+\xc0R\x08\x8dl?\r\x7f\xd4n\x1f\xdb\xc5\xbf\xd2KZ\xd5h\xa0\x89?A\x08\xe8\xbe\xb5\xc6\xa7\xbf\x02/\xae\x87\xc7ul?\\@gu\xedz\xb6?\x00e\xea\x0f_\xe9\xe1\xbf\n\x80\x08\xf0\x94\xb0\xb2?\xb6I\x82/\xcc\xbe\xd1\xbf\x80\x86\xf1\x80\xc3\n\xb1?\n5\x02\x863\x19\xa2\xbf\xf3\x00\x8a\x02\x87\x94\xb8?\xcd\xcdo\x0c9\xb7\xce?l\x9b\x9f\xda\xd2\xac\xb6?\xfc\x1b\xc0T\xeel\xe3?Q\xe7\xd3VZ\x92\xbf?\xa0\xec\xa7\xd7DA\x8c\xbf"\x02>\x7fC\x01\xbe?\r\x0e<\x86\xd0\xdc}?1\xddO(\x95\x98\x9c?\xed[#{\xe2\xea\x8b?[\x8eC\xfc\xe9\r\xb4\xbf\x8d\xadP\x81\xb8\xa1v\xbf1\xc16\xd5\xfa\xce\xc9\xbf\xfbbU0\xc9\xa1\xb0\xbf-G2\xf6|x\xdc\xbf\xc5\x8a`|\xf1.\xa1?\xd5 \x99\xc2AF\xc8?\xe4\xc7\xea\x120\x11\x8a\xbfJyL\x9b\x1a\t\xe6?\x1b\xf7\x1fvGLq?\xfa\xf2Vt\xea$\xc3?`\xa6\xc4\x90\x99\x9d\xa3?{\xef\x86\xa40\xae\xdc\xbf\x89\x9a\x90\xed9]\xc8?\xe4\x1cb,\x8dD\x80?\xcdc\xdb\xce\xbaY\xc5\xbf\xd5\xe8\xeaZo/\x82?9Q\xeb\xc17\xf0\xcc\xbf1%\x8fN\x1f\xf0\x96\xbfW\xc4\xbf*\x93\xc0\xc9?E\x0c\x91+\x1bH\x8e?\xa37u\x0eiH\xb7?\xbab\xcc\xb4\x90\xec\xc4\xbfVb$\x9bT\x9c\xd2\xbf^m\x968\x88\xa1\xd4?\xf74\xd6\xa5\xdeb\xdf?\x06\xb0a\x91\xdd\xd4\x96?L\xe2h\x80\xe9\xf7\xdc\xbf2\xaaS\x0b\xef]\xd6\xbf\xaf\xd9\xa9\xdc\xaf\xea\xc4?\xe7\xa9\xbe\x16\x05]\xc4?\x19\xe3\xac\xb8U3\xda?g\xc4\xca&\xdd9\xa5?\xb3_q\x1f\xffO\xd8\xbf;\x80a0\xd39\x9f\xbfv\xfd\xb8\xab\x12R\xdf\xbf\xfd\x9b\xc1BYx\xb3\xbf\x99\xda\xc2~\x1d\xbf\xde?g\xfb\x9b0\xdb"\xb0?7\xa2M\x17\xa3\xd4\xb6\xbf\x89\x8a\x8dP3G\x85\xbf{\xc8\xd3Q\x98\xd1\xcc?\x97s[cw5\x91?\x86\xe7\xb7\x07\xf2\xe7\xd2\xbf\x85\x08"\xf5\xcb\xfb\xa4\xbf\x94W\x07M\xeb[\xcb?\xff\xab\xae\x18\x98\x0f\xb2?\x00\x82\x9e\xb8!(\xb3\xbf\xc1i\x14\x84J^\xa1\xbfm[\x9b\x1b\x13\xd5\xc7\xbf\xc2\x0e5\x19?\n\xa5?\xe2*.\xdd\xaek\xd3?\xad?\xf8\xf9\xa9\x84\x93\xbf\x8b\xcd\x82\x9f*\x0c\xa8\xbfy1\x05\xcbD\xf7\xb9\xbf\xd2\xb1wd\xdd\x96\xab\xbf\xf7?(\xf4\x9f\xda\xb2?t\x9a\xbf\xfa9`\xc4\xbfNBja\x12\x99\xd1\xbf\xd5X\xcd\x95\xb5\xb3\xd1?\x0b\xad\xd6\xdd/\x83\xe2?\x17\x87\xc1\x95\x185\xcd\xbf\x97\xfc\xae&\xc1\xbf\xc0\xbf\xed\xed\x8d\xdb\x06\xfe\xca?\xa9\xf3~\xa5\xc1n\xd9\xbf\x0b\xb1\xd3(P\xd3\xbd\xbf`\xf1\x86\xa1\x01\x7f\xcd?D\xbf 1\x95\xeeg?\xc9\xd5\xde%"\'\x99\xbf\x18\xfa.\xc2\xc5<\xa1?\xea\xae:\xac}\xc5\x9cI\xa2?\x87c"\x04\xd3\x8f\xb3\xbf!\x18\x92%\xa2\xc9\xd0?\x89tpb\x01 \xbd\xbf\x9e\xad\xaa\xb8\xd9J\xe4\xbf\xd6o\x1e\xe1f\xd3\xd0?\x9cr\x8e\x11\x80\xf1\xb6?Co1\x8dht\xca\xbf\x1c\x1f\x8566o\xe0?i\x02\x87\xa8l\xad\xcd?;\x17n\x90\xady\xce\xbfj\xa6j\nrY\xb7\xbf\xa2o\x8f{\xbc\x17\xcd\xbf\x081\xa6\xe6[L\xb9?\x08\x14p\x93:\xa2\xe3?\xccLe)\r#r\xbf\xba\xa7"\x84\xf7\xd3\xe1\xbf\x93\n\xbf?h\xe7\xd1\xbf\xb3N:5I\xe0\xc5?Q\x11\x08RQ&\xc7?M\x9d\xa4t-f\xa7?N\xeb\xe72Dm\xbe?\xa6|\x13\xb1\x89\xb9\xb6\xbf\xf7\x1a\xec\xf9\xe0\x9b\xce\xbf\xbb\x910o!\x1e\xb2?\xb6Va\x1c-\xa5\xbb?\xb2\x14\x88B\x18[\xb1\xbfq\xd3\x9aiK\x90\xb1?\xeb \xaf\xb8o\x80\xa4?1h_\xfcN\x88\xaa\xbf,F\x1a:\xd2\x1e\xa4\xbf*\xd2V\xeeD\x08y?\x15~\x8c\xa2+@\xb3?\xabz\xf4\xd8\x86\xf6}?\xbb,C\xa3\xf8\xaf\xa0\xbfy\xb0\xd6\xc7\xebK\x9b\xbf\xa9n_c\xe0\xeby\xbf\xb3\x14\xcf\xc8(\xe8\x8a?\xbb\xe6\xcb*\xd8\xdf\xb9\xbf\xaa\xb6\xfe\xa1\xd3\xa4\xc0\xbf\x89\xdf+\x06/\x8d\xca?a\xfe\xf7x|\xdf\xd4?\x8b\xc8\xfaHu\x86\xb0?T\x15\xe9w}#\xe0\xbf\x00\xc9\xae\xb0o\xbd\xd5\xbf\x1b+4\x1c\x1d\x92\xe2?\xb5ZF\xb5]\xfd\xc5?f\tu\xa9\xcfh\xd1\xbf\xbb\xbbo\x9a\xae3\xa2\xbf#\xdct\xd3\x7fP\xd4?\x13\x19\xac\x18<\xc7\xba?\xef\xc9\xe8\xf4\xb4\x03\xe8\xbf\x8bNN%\xa0\xad\xbb\xbf\x98\xf0L:\x93U\xe1?)d\xcd|\x87(\xa5?zcD=\xe3\x80\xc0\xbfC\xfez\x024\xa7h\xbf\x8bg\xdb\xbc+Mo?[\x03\x802\x1d\xcd\x86\xbf\xfa\xce\x7f\xac\xfe\xa9\x82?\xd1\xbcl\xfbG\xd8|?\xf1n\xdf\xc5Cs\xee\xbed\x92Y\xf3\x92\xe3m\xbf9{\xd9D\x8c\x92z?$\xd3\xd9\xcdgc\x81?\xe1\xb7\xf1\xf6Q{L?^\xff\x96\x7f\xc8\xe8\xa9?\xd2\x84\xf4\x0f\xa6N\xdc?m\xa2\x16t?\xd3\xc9\xbf\xae?\x9c*\xe7\xd0\xd7\xbf\'\xb56Hxp\xd0?\xd1\xb6i\r\xdc\n\xe2\xbfp\x17\'\xe6I,\xbc\xbf\xf5\x82\x9c(\\\xd9\xdd?\x0c\x85\xe1.F\xea\x97?I9\xad\x86\xeaF\\?K\x0c\xdaQ`;\xb2\xbf\x96\xf5\x0f\xd6l\n|?K\x08\x9a\xd3\x97W\xa3?>\xa9\xbd\x10\xcas^\xbf\xb6\xad\xa5\xf5S\xe7\x96?\xd4\xc5\x80\x95\xe8\x04\xa2?\xab\xe45\x9buB\x80\xbf3S\xf43\x9b\xff\x8d\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I18 +tp132 +g22 +I00 +S'\xcc<\xe8\xff\xf6\xb5Z\xc0Q\xfd\xba\x86\xfav\xea\xbf\xd2[\\\xbd\x87DQ\xc0g\xfc\xf5\xed{5\xe0\xbf\x10\xf81\xbc*\x9d?\xc0\x11\x8a~\x0fe&\xb4\xbf\x8d*\x1d\x8e\xee\x00\x1c@s\x96c\x06\xd5k\xe1?\x02i\xf6\x8f;\x15A@q\xd7\xc2l\x92\x0fG\xc0\x9c\xef7\xda\x1b\x1dE@\xf4s\x97\xd7\xf0G7\xc0Y\xc7T^\x16aH@p\x99\\\xde\xd3\xea\xde?\x80\x03\xfe\x8fY\xc7D@(\xa8\xc7\x9d\x96D8@\x7fd]\xae\xad\xe8@@\x9b\xf8.\x9a\x7f\xc2F@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I14 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_nose_3 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_nose_3 new file mode 100644 index 0000000000000000000000000000000000000000..2b593077ec541e043438964f428fbdab2b4ac905 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_nose_3 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I18 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xa4\xc7\x95\xee\x19~\xe3\xbf\x10$\xbf\xde"Ps\xbf\x1a\x87.z\xe33\xd9\xbf\xc1\xe1\xc6\x02J\xa8g\xbf\x91\xedjL\x1a\x12\xc7\xbf\xac\xe0\x9f\x9b\xd2h=\xbf\x8c{\x8b\x0f\xa1o\xa4?\xaa9\xfb4@mi?I\xaf8@\xdb\xee\xc8?\x87Z\xf8\x047\xd4\xd0\xbf\xc2\xb6}\xa5\xe8\xd0\xce?&\x0b\xeb\xd1Y\xfd\xc0\xbfl\x18\x1c\x84\x85\xca\xd1?\xbe\xa5\x02\x04\xf5\x8ff?J\xe3\xac\xbd\xbdS\xce?\x8a\xc8\x87V\xb9\xb5\xc1?;\xc1\xa0\x0b\xd4\xad\xc8? r_,\xf8\x9b\xd0?\x12$\xbf\xde"Ps?\xa2\xc7\x95\xee\x19~\xe3\xbf\xc4\xe1\xc6\x02J\xa8g?\x1a\x87.z\xe33\xd9\xbf\xb8\xe0\x9f\x9b\xd2h=?\x91\xedjL\x1a\x12\xc7\xbf\xaa9\xfb4@mi\xbf\x8c{\x8b\x0f\xa1o\xa4?\x87Z\xf8\x047\xd4\xd0?I\xaf8@\xdb\xee\xc8?&\x0b\xeb\xd1Y\xfd\xc0?\xc1\xb6}\xa5\xe8\xd0\xce?\xc0\xa5\x02\x04\xf5\x8ff\xbfl\x18\x1c\x84\x85\xca\xd1?\x8a\xc8\x87V\xb9\xb5\xc1\xbfH\xe3\xac\xbd\xbdS\xce? r_,\xf8\x9b\xd0\xbf:\xc1\xa0\x0b\xd4\xad\xc8?UUUUUU\xd5\xbf\x8f\x96`\xfa\x7f\x99\xca\xbcXUUUUU\xd5\xbfX\xa1\x13\x97\xb1s\xc1\xbcVUUUUU\xd5\xbf\x0e\x13\x98\x98\xa4\xf5\xaf\xbcVUUUUU\xd5\xbf\xbf5\x89\x9c\xbb:\x8c+\xc0\x82\x12j@\xdf\xa7\x14\xc0\xf3'\xb8\xc1!\xbeF@\x9d\x17\x16h|\x9eB\xc06\xe9\x1fW\x06\xbcG@\x90\xd0\xab\xb8:\xad2\xc0F\xf0\xb0\xad\xc1rH@\xda+\xd4\xc2N\x81l?!\xcb\xcf*\xb7\xd8F@\xaf\xb54\xb8\x8d\xb54@p\x90\xaf\xf7+{D@\xe3v\xdf\x92\xb0\xf9C@" +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I3 +tp113 +g22 +I00 +S'\xeeu\xb3\xf6dWo@\x19\x18\xd8\xf5,\xbcm@\x00\t\xc2\xc5Z\xc9^@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I12 +tp120 +g22 +I00 +S"\xcf\xd4\x9c\x1bC\xe51@\xf80k\xbd\xb3a.@p\xce\xcdi\xe5\xb7!@\xd7\x8f\xfe0\x18\xff\x02@)\xf5d\xc0\xe3\xe7\xff?bT\xfa\xb6\xea-\xfc?\xa1\xbe:\xca}\xb4\xf7?\xd9$\x89\xf7\x9f\xf3\xf5?\xec\x82\x10\xb3\x0fw\xf1?\x15i\xbc7\xc8&\xe7?\xeb\x11\xfe\xee\xf6\xb7\xe2?';\xfb\x80\xec\xcc\xd0?" +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I3 +I18 +tp126 +g22 +I00 +S'\xb2\xacM-\x8bQ{?\x85T\x01\x1c\xe9!\xd3?\r\x19w\xd9\xf3\x98\x9c\xbf;\x7f\xe9\xb4\xb9\xd4\x85\xbf:w\xc9\xccay\xa9\xbfMt\x0e?\xa9\xc8\xd7\xbf\x9d\xd6\xab{\x15H\xb1\xbf\x0c\x07_\xba\xc1\x99\xe7\xbf\x1a\xe40\xcc_\xf0\x88\xbf\xc1\xff~\xe8\x16\x85\xd6?\t\r\xcaeD\xa9\x9f?\xab\xff=w\x08\xf1\xc1?\x81\xd2>\x95\xd0\x01v\xbf\xe4J\xa0\xa20\xee\x83?\x19Gz)t\x15\x8d?\xda0h\xe9[\x97\xb4?7\xbb\xd1\t\x14g\xbc?k\xd7\xca\x83\x0b\x8c\xce?\xcf\xa9\xed\xb5\xc5\x8a\xd1\xbfB\x01\x93p"\x8a\xa2?\x00\xbb\xae\xf5:\x91\xac?T\xd0\xa6tv5\x1b\xbf\xeb\xc1Y\xbe\xeac\xd9?\xe10\x10\x8eh>\xa8\xbf\xf1\xbe\x1aw\xe7\x95\xe6?\x16\x89\xfcm\xdd\xc8\xb7\xbf\xa9\n\n\x91\xcd\xb1\xd2\xbf\x9d\x84\x105\x84\xe0\xb3\xbf&sG\xb0\xda\x94\xc1\xbf\xe1K\xcbh0\x03\xb3\xbf\xf4\x85\xc8\xe3,.\x92\xbf\xfa\xabK\x870\xdbQ?\xb4 \x95\xc6\xf2\xda\xc3\xbf\x05\x19\xf5\x1e\xd1\xa4\xb8?i\x90\xa2:\x84\n\xd2\xbf\xb2\xe9\x90K\xa2P\xc4?\xe4\xa4)\x8c\x13\x0b\xd8?\xf2\xee;Z\x07\x1d\xa3?\x0c8\x8cd\xd4^\xc6? B\x13\xf3\xca+\xc0\x82\x12j@\xdf\xa7\x14\xc0\xf2'\xb8\xc1!\xbeF@\x9e\x17\x16h|\x9eB\xc07\xe9\x1fW\x06\xbcG@\x90\xd0\xab\xb8:\xad2\xc0F\xf0\xb0\xad\xc1rH@56\xd4\xc2N\x81l?!\xcb\xcf*\xb7\xd8F@\xb0\xb54\xb8\x8d\xb54@p\x90\xaf\xf7+{D@\xe4v\xdf\x92\xb0\xf9C@" +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I5 +tp113 +g22 +I00 +S'\xf3u\xb3\xf6dWo@\x18\x18\xd8\xf5,\xbcm@\x00\t\xc2\xc5Z\xc9^@\xd9\xd4\x9c\x1bC\xe51@\x011k\xbd\xb3a.@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I10 +tp120 +g22 +I00 +S'n\xce\xcdi\xe5\xb7!@\xb5\x8f\xfe0\x18\xff\x02@\x13\xf5d\xc0\xe3\xe7\xff?\xd6S\xfa\xb6\xea-\xfc?\x9d\xbe:\xca}\xb4\xf7?\xee$\x89\xf7\x9f\xf3\xf5?\xdf\x82\x10\xb3\x0fw\xf1?\xb7i\xbc7\xc8&\xe7?T\x12\xfe\xee\xf6\xb7\xe2?I;\xfb\x80\xec\xcc\xd0?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I5 +I18 +tp126 +g22 +I00 +S'\xb4\xadM-\x8bQ{?\x85T\x01\x1c\xe9!\xd3?#\x19w\xd9\xf3\x98\x9c\xbfF\x7f\xe9\xb4\xb9\xd4\x85\xbf[w\xc9\xccay\xa9\xbfNt\x0e?\xa9\xc8\xd7\xbf\xd0\xd6\xab{\x15H\xb1\xbf\x0c\x07_\xba\xc1\x99\xe7\xbf\xab\xe30\xcc_\xf0\x88\xbf\xc2\xff~\xe8\x16\x85\xd6?A\r\xcaeD\xa9\x9f?\xae\xff=w\x08\xf1\xc1?\xbe\xd1>\x95\xd0\x01v\xbf\x05K\xa0\xa20\xee\x83?tGz)t\x15\x8d?\xd80h\xe9[\x97\xb4?;\xbb\xd1\t\x14g\xbc?e\xd7\xca\x83\x0b\x8c\xce?\xcd\xa9\xed\xb5\xc5\x8a\xd1\xbfT\x01\x93p"\x8a\xa2?T\xbb\xae\xf5:\x91\xac?E\xb2\xa6tv5\x1b\xbf\xed\xc1Y\xbe\xeac\xd9?\x021\x10\x8eh>\xa8\xbf\xef\xbe\x1aw\xe7\x95\xe6?M\x89\xfcm\xdd\xc8\xb7\xbf\xae\n\n\x91\xcd\xb1\xd2\xbf\xaa\x84\x105\x84\xe0\xb3\xbf&sG\xb0\xda\x94\xc1\xbf\xeeK\xcbh0\x03\xb3\xbf\xe8\x85\xc8\xe3,.\x92\xbf\x90\xacK\x870\xdbQ?\xb5 \x95\xc6\xf2\xda\xc3\xbf\x1e\x19\xf5\x1e\xd1\xa4\xb8?j\x90\xa2:\x84\n\xd2\xbf\xcd\xe9\x90K\xa2P\xc4?\xe5\xa4)\x8c\x13\x0b\xd8?\xee\xee;Z\x07\x1d\xa3?\x148\x8cd\xd4^\xc6?\xc1C\x13\xf3\xcaR\xfa\xea\x1e\xcb\xbf\xb7(\x11\x00\xa1\x0cp?=m\x87\x13\xf7\x83\xe4\xbfv)\xeaE\xe5Hq\xbf\xc7=\xa0\xcaqw\xcc\xbf8\x93\xa2\x16\x19e`\xbf\xce\xeb\x98\xf5\xef\xa3\xda?z \xb6\rM\xc9\xc0?\xc3\x17\xe3\x7f\xaa\x0bx?\x1erP\x17\x18\\\xd4\xbf\xd6+\xc0R\x08\x8dl?\xf3~\xd4n\x1f\xdb\xc5\xbf\'MZ\xd5h\xa0\x89?\xfd\x07\xe8\xbe\xb5\xc6\xa7\xbf\xde.\xae\x87\xc7ul?I@gu\xedz\xb6?\xf7d\xea\x0f_\xe9\xe1\xbf\xff\x7f\x08\xf0\x94\xb0\xb2?\xb8I\x82/\xcc\xbe\xd1\xbff\x86\xf1\x80\xc3\n\xb1?\xed5\x02\x863\x19\xa2\xbf\xde\x00\x8a\x02\x87\x94\xb8?\xb9\xcdo\x0c9\xb7\xce?i\x9b\x9f\xda\xd2\xac\xb6?\x02\x1c\xc0T\xeel\xe3?f\xe7\xd3VZ\x92\xbf?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I18 +tp132 +g22 +I00 +S'\xd1<\xe8\xff\xf6\xb5Z\xc0V\xfd\xba\x86\xfav\xea\xbf\xd2[\\\xbd\x87DQ\xc0l\xfc\xf5\xed{5\xe0\xbf\x11\xf81\xbc*\x9d?\xc0\x1f\x8a~\x0fe&\xb4\xbf\x89*\x1d\x8e\xee\x00\x1c@s\x96c\x06\xd5k\xe1?\x02i\xf6\x8f;\x15A@q\xd7\xc2l\x92\x0fG\xc0\x9c\xef7\xda\x1b\x1dE@\xf3s\x97\xd7\xf0G7\xc0Y\xc7T^\x16aH@r\x99\\\xde\xd3\xea\xde?\x80\x03\xfe\x8fY\xc7D@*\xa8\xc7\x9d\x96D8@~d]\xae\xad\xe8@@\x9b\xf8.\x9a\x7f\xc2F@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I5 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_nose_7 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_nose_7 new file mode 100644 index 0000000000000000000000000000000000000000..c699a32ad14749cadbe3a3ea94fbdd40dcbddb5c --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_nose_7 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I18 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xa0\xc7\x95\xee\x19~\xe3\xbf\t$\xbf\xde"Ps\xbf\x1a\x87.z\xe33\xd9\xbf\xb2\xe1\xc6\x02J\xa8g\xbf\x92\xedjL\x1a\x12\xc7\xbfQ\xe0\x9f\x9b\xd2h=\xbf\x8d{\x8b\x0f\xa1o\xa4?\xb49\xfb4@mi?I\xaf8@\xdb\xee\xc8?\x88Z\xf8\x047\xd4\xd0\xbf\xc4\xb6}\xa5\xe8\xd0\xce?\'\x0b\xeb\xd1Y\xfd\xc0\xbfm\x18\x1c\x84\x85\xca\xd1?\xc6\xa5\x02\x04\xf5\x8ff?L\xe3\xac\xbd\xbdS\xce?\x8b\xc8\x87V\xb9\xb5\xc1?=\xc1\xa0\x0b\xd4\xad\xc8? r_,\xf8\x9b\xd0?\xfb#\xbf\xde"Ps?\xa0\xc7\x95\xee\x19~\xe3\xbf\xaa\xe1\xc6\x02J\xa8g?\x1a\x87.z\xe33\xd9\xbf5\xe0\x9f\x9b\xd2h=?\x92\xedjL\x1a\x12\xc7\xbf\xb39\xfb4@mi\xbf\x8d{\x8b\x0f\xa1o\xa4?\x87Z\xf8\x047\xd4\xd0?J\xaf8@\xdb\xee\xc8?\'\x0b\xeb\xd1Y\xfd\xc0?\xc5\xb6}\xa5\xe8\xd0\xce?\xc0\xa5\x02\x04\xf5\x8ff\xbfm\x18\x1c\x84\x85\xca\xd1?\x8a\xc8\x87V\xb9\xb5\xc1\xbfJ\xe3\xac\xbd\xbdS\xce? r_,\xf8\x9b\xd0\xbf=\xc1\xa0\x0b\xd4\xad\xc8?VUUUUU\xd5\xbf\x8d}\xe9\xb5\xaaM\xcb\xbcYUUUUU\xd5\xbf\xfbg\x83|G\x86\xc1\xbcVUUUUU\xd5\xbf\x9d\x97\x12\x12\xc6\t\xb0\xbcUUUUUU\xd5\xbf\xd7\xe9B\x1c\xde\x9f\x8c\x92,\xb0+\xc0\x81\x12j@\xdf\xa7\x14\xc0\xf3'\xb8\xc1!\xbeF@\x9d\x17\x16h|\x9eB\xc07\xe9\x1fW\x06\xbcG@\x8f\xd0\xab\xb8:\xad2\xc0F\xf0\xb0\xad\xc1rH@\xf7B\xd4\xc2N\x81l?!\xcb\xcf*\xb7\xd8F@\xb0\xb54\xb8\x8d\xb54@p\x90\xaf\xf7+{D@\xe3v\xdf\x92\xb0\xf9C@" +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I7 +tp113 +g22 +I00 +S'\xf0u\xb3\xf6dWo@\x1b\x18\xd8\xf5,\xbcm@\x03\t\xc2\xc5Z\xc9^@\xcd\xd4\x9c\x1bC\xe51@\xf50k\xbd\xb3a.@m\xce\xcdi\xe5\xb7!@\xd1\x8f\xfe0\x18\xff\x02@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I8 +tp120 +g22 +I00 +S'\x1d\xf5d\xc0\xe3\xe7\xff?\xd6S\xfa\xb6\xea-\xfc?\xa4\xbe:\xca}\xb4\xf7?\xcb$\x89\xf7\x9f\xf3\xf5?\xf9\x82\x10\xb3\x0fw\xf1?7h\xbc7\xc8&\xe7?;\x11\xfe\xee\xf6\xb7\xe2?D;\xfb\x80\xec\xcc\xd0?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I7 +I18 +tp126 +g22 +I00 +S't\xafM-\x8bQ{?\x86T\x01\x1c\xe9!\xd3?,\x19w\xd9\xf3\x98\x9c\xbf\x19\x7f\xe9\xb4\xb9\xd4\x85\xbf\xd9w\xc9\xccay\xa9\xbfLt\x0e?\xa9\xc8\xd7\xbf\t\xd7\xab{\x15H\xb1\xbf\x0b\x07_\xba\xc1\x99\xe7\xbf\xdf\xe20\xcc_\xf0\x88\xbf\xc4\xff~\xe8\x16\x85\xd6?\x80\r\xcaeD\xa9\x9f?\xb6\xff=w\x08\xf1\xc1?v\xd1>\x95\xd0\x01v\xbf\tK\xa0\xa20\xee\x83?\tHz)t\x15\x8d?\xc60h\xe9[\x97\xb4?\\\xbb\xd1\t\x14g\xbc?W\xd7\xca\x83\x0b\x8c\xce?\xce\xa9\xed\xb5\xc5\x8a\xd1\xbf\x8b\x01\x93p"\x8a\xa2?\x0f\xbb\xae\xf5:\x91\xac?2\xc1\xa6tv5\x1b\xbf\xeb\xc1Y\xbe\xeac\xd9?T1\x10\x8eh>\xa8\xbf\xf1\xbe\x1aw\xe7\x95\xe6?\x8f\x89\xfcm\xdd\xc8\xb7\xbf\xae\n\n\x91\xcd\xb1\xd2\xbf{\x84\x105\x84\xe0\xb3\xbf%sG\xb0\xda\x94\xc1\xbf\xdbK\xcbh0\x03\xb3\xbf\xe3\x85\xc8\xe3,.\x92\xbf\xe8\xabK\x870\xdbQ?\xb2 \x95\xc6\xf2\xda\xc3\xbf%\x19\xf5\x1e\xd1\xa4\xb8?e\x90\xa2:\x84\n\xd2\xbf\xd3\xe9\x90K\xa2P\xc4?\xe7\xa4)\x8c\x13\x0b\xd8?\xfb\xee;Z\x07\x1d\xa3?\x0e8\x8cd\xd4^\xc6?\xa5C\x13\xf3\xcaR\xfa\xea\x1e\xcb\xbf\xa5)\x11\x00\xa1\x0cp?Am\x87\x13\xf7\x83\xe4\xbfi(\xeaE\xe5Hq\xbf\xb7=\xa0\xcaqw\xcc\xbfF\x92\xa2\x16\x19e`\xbf\xde\xeb\x98\xf5\xef\xa3\xda?\x80 \xb6\rM\xc9\xc0?\x15\x1a\xe3\x7f\xaa\x0bx?\x17rP\x17\x18\\\xd4\xbf\x07+\xc0R\x08\x8dl?\x08\x7f\xd4n\x1f\xdb\xc5\xbf}KZ\xd5h\xa0\x89?,\x08\xe8\xbe\xb5\xc6\xa7\xbf\xdd0\xae\x87\xc7ul?\\@gu\xedz\xb6?\xfcd\xea\x0f_\xe9\xe1\xbf\x07\x80\x08\xf0\x94\xb0\xb2?\xb8I\x82/\xcc\xbe\xd1\xbfa\x86\xf1\x80\xc3\n\xb1?[5\x02\x863\x19\xa2\xbf\xff\x00\x8a\x02\x87\x94\xb8?\xc3\xcdo\x0c9\xb7\xce?x\x9b\x9f\xda\xd2\xac\xb6?\x00\x1c\xc0T\xeel\xe3?P\xe7\xd3VZ\x92\xbf?\xe1\xec\xa7\xd7DA\x8c\xbf"\x02>\x7fC\x01\xbe?\xd9\x0e<\x86\xd0\xdc}?v\xddO(\x95\x98\x9c?\x10\\#{\xe2\xea\x8b?\x87\x8eC\xfc\xe9\r\xb4\xbf\x97\xadP\x81\xb8\xa1v\xbf#\xc16\xd5\xfa\xce\xc9\xbf\xf5bU0\xc9\xa1\xb0\xbf.G2\xf6|x\xdc\xbf\xbe\x8a`|\xf1.\xa1?\xdd \x99\xc2AF\xc8?E\xc8\xea\x120\x11\x8a\xbfCyL\x9b\x1a\t\xe6?0\xf8\x1fvGLq?\x17\xf3Vt\xea$\xc3?G\xa6\xc4\x90\x99\x9d\xa3?\x81\xef\x86\xa40\xae\xdc\xbf\x00\xa0\x90\xed9]\xc8?\xda\x1eb,\x8dD\x80?Bj\xdb\xce\xbaY\xc5\xbf\xe3\xda\xeaZo/\x82?\xe2T\xeb\xc17\xf0\xcc\xbf\n\x1b\x8fN\x1f\xf0\x96\xbf"\xc9\xbf*\x93\xc0\xc9?\xa1\x04\x91+\x1bH\x8e?\xc96u\x0eiH\xb7?\xd6a\xcc\xb4\x90\xec\xc4\xbf\x98a$\x9bT\x9c\xd2\xbfTl\x968\x88\xa1\xd4?\xc83\xd6\xa5\xdeb\xdf?.\xb4a\x91\xdd\xd4\x96?\x80\xe1h\x80\xe9\xf7\xdc\xbfz\xa9S\x0b\xef]\xd6\xbf>\xd9\xa9\xdc\xaf\xea\xc4?\x14\xa9\xbe\x16\x05]\xc4?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I18 +tp132 +g22 +I00 +S'\xcc<\xe8\xff\xf6\xb5Z\xc0X\xfd\xba\x86\xfav\xea\xbf\xd2[\\\xbd\x87DQ\xc0l\xfc\xf5\xed{5\xe0\xbf\x10\xf81\xbc*\x9d?\xc00\x8a~\x0fe&\xb4\xbf\x8c*\x1d\x8e\xee\x00\x1c@t\x96c\x06\xd5k\xe1?\x02i\xf6\x8f;\x15A@q\xd7\xc2l\x92\x0fG\xc0\x9d\xef7\xda\x1b\x1dE@\xf3s\x97\xd7\xf0G7\xc0Y\xc7T^\x16aH@x\x99\\\xde\xd3\xea\xde?\x80\x03\xfe\x8fY\xc7D@(\xa8\xc7\x9d\x96D8@\x7fd]\xae\xad\xe8@@\x9a\xf8.\x9a\x7f\xc2F@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I7 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_nose_9 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_nose_9 new file mode 100644 index 0000000000000000000000000000000000000000..6b974557123cebc4048d14a6daac711f73fe9abe --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_nose_9 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I18 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\xa6\xc7\x95\xee\x19~\xe3\xbf\xfb#\xbf\xde"Ps\xbf\x16\x87.z\xe33\xd9\xbf\xa0\xe1\xc6\x02J\xa8g\xbf\x90\xedjL\x1a\x12\xc7\xbf\xf9\xdf\x9f\x9b\xd2h=\xbf\x8f{\x8b\x0f\xa1o\xa4?\xac9\xfb4@mi?H\xaf8@\xdb\xee\xc8?\x87Z\xf8\x047\xd4\xd0\xbf\xc3\xb6}\xa5\xe8\xd0\xce?%\x0b\xeb\xd1Y\xfd\xc0\xbfl\x18\x1c\x84\x85\xca\xd1?\xb2\xa5\x02\x04\xf5\x8ff?K\xe3\xac\xbd\xbdS\xce?\x89\xc8\x87V\xb9\xb5\xc1?;\xc1\xa0\x0b\xd4\xad\xc8?\x1fr_,\xf8\x9b\xd0?\xf6#\xbf\xde"Ps?\xa4\xc7\x95\xee\x19~\xe3\xbf\x98\xe1\xc6\x02J\xa8g?\x14\x87.z\xe33\xd9\xbf\xe5\xdf\x9f\x9b\xd2h=?\x8e\xedjL\x1a\x12\xc7\xbf\xaa9\xfb4@mi\xbf\x8d{\x8b\x0f\xa1o\xa4?\x85Z\xf8\x047\xd4\xd0?G\xaf8@\xdb\xee\xc8?$\x0b\xeb\xd1Y\xfd\xc0?\xc1\xb6}\xa5\xe8\xd0\xce?\xad\xa5\x02\x04\xf5\x8ff\xbfj\x18\x1c\x84\x85\xca\xd1?\x87\xc8\x87V\xb9\xb5\xc1\xbfH\xe3\xac\xbd\xbdS\xce?\x1dr_,\xf8\x9b\xd0\xbf:\xc1\xa0\x0b\xd4\xad\xc8?VUUUUU\xd5\xbf\xe3\xd2>\x0b\x00I\xcb\xbcXUUUUU\xd5\xbf\xa6\x12.\'\xf2z\xc1\xbcUUUUUU\xd5\xbf\x9d\x97\x12\x12\xc6\x00\xb0\xbcUUUUUU\xd5\xbf,?\x98q35\x8c\xb0\xd1\xb4\xbcWUUUUU\xd5\xbf\x8d\xf3\xe2h\xa3\x99\xaf\xbc[UUUUU\xd5\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I18 +tp31 +g22 +I00 +S'\xd5<\xe8\xff\xf6\xb5Z\xc0I\xfd\xba\x86\xfav\xea\xbf\xd2[\\\xbd\x87DQ\xc0b\xfc\xf5\xed{5\xe0\xbf\x12\xf81\xbc*\x9d?\xc0\xf6\x89~\x0fe&\xb4\xbf\x94*\x1d\x8e\xee\x00\x1c@r\x96c\x06\xd5k\xe1?\x04i\xf6\x8f;\x15A@s\xd7\xc2l\x92\x0fG\xc0\xa0\xef7\xda\x1b\x1dE@\xf4s\x97\xd7\xf0G7\xc0[\xc7T^\x16aH@b\x99\\\xde\xd3\xea\xde?\x83\x03\xfe\x8fY\xc7D@*\xa8\xc7\x9d\x96D8@\x80d]\xae\xad\xe8@@\x9c\xf8.\x9a\x7f\xc2F@' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I9 +I2 +tp43 +g22 +I00 +S'\xd5<\xe8\xff\xf6\xb5Z\xc0I\xfd\xba\x86\xfav\xea\xbf\xd2[\\\xbd\x87DQ\xc0b\xfc\xf5\xed{5\xe0\xbf\x12\xf81\xbc*\x9d?\xc0\xf6\x89~\x0fe&\xb4\xbf\x94*\x1d\x8e\xee\x00\x1c@r\x96c\x06\xd5k\xe1?\x04i\xf6\x8f;\x15A@s\xd7\xc2l\x92\x0fG\xc0\xa0\xef7\xda\x1b\x1dE@\xf4s\x97\xd7\xf0G7\xc0[\xc7T^\x16aH@b\x99\\\xde\xd3\xea\xde?\x83\x03\xfe\x8fY\xc7D@*\xa8\xc7\x9d\x96D8@\x80d]\xae\xad\xe8@@\x9c\xf8.\x9a\x7f\xc2F@' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I9 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I9 +I2 +tp68 +g22 +I00 +S'\xd2<\xe8\xff\xf6\xb5Z\xc0I\xfd\xba\x86\xfav\xea\xbf\xd0[\\\xbd\x87DQ\xc0b\xfc\xf5\xed{5\xe0\xbf\x0f\xf81\xbc*\x9d?\xc0\xf8\x89~\x0fe&\xb4\xbf\x91*\x1d\x8e\xee\x00\x1c@r\x96c\x06\xd5k\xe1?\x02i\xf6\x8f;\x15A@r\xd7\xc2l\x92\x0fG\xc0\x9e\xef7\xda\x1b\x1dE@\xf3s\x97\xd7\xf0G7\xc0Y\xc7T^\x16aH@b\x99\\\xde\xd3\xea\xde?\x81\x03\xfe\x8fY\xc7D@)\xa8\xc7\x9d\x96D8@~d]\xae\xad\xe8@@\x9b\xf8.\x9a\x7f\xc2F@' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\xfd\xff\xff\xff\xff\xff\xef?\x9cO\xd0\x13\x08^C\xbc\x00\x00\x00\x00\x00\x00\xa4\xb9\x1d\xa3\x87\x1el\xc07<\xff\xff\xff\xff\xff\xff\xef?\x00\x00\x00\x00\x00\x00\xf0\xb9\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I9 +I2 +tp89 +g22 +I00 +S'\xd5<\xe8\xff\xf6\xb5Z\xc0I\xfd\xba\x86\xfav\xea\xbf\xd2[\\\xbd\x87DQ\xc0b\xfc\xf5\xed{5\xe0\xbf\x12\xf81\xbc*\x9d?\xc0\xf6\x89~\x0fe&\xb4\xbf\x94*\x1d\x8e\xee\x00\x1c@r\x96c\x06\xd5k\xe1?\x04i\xf6\x8f;\x15A@s\xd7\xc2l\x92\x0fG\xc0\xa0\xef7\xda\x1b\x1dE@\xf4s\x97\xd7\xf0G7\xc0[\xc7T^\x16aH@b\x99\\\xde\xd3\xea\xde?\x83\x03\xfe\x8fY\xc7D@*\xa8\xc7\x9d\x96D8@\x80d]\xae\xad\xe8@@\x9c\xf8.\x9a\x7f\xc2F@' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I9 +I2 +tp106 +g22 +I00 +S"\xaf\x85-\xf0\x82\xefX\xc0\xe7\xb6a\xda\xb2?\x03@.Yp\x00\x19\xe2Q\xc0\x19\xa3M64\x1a\xd4?[+;\x14\x13\xceE\xc0\xc1\x1d\xe5\xdc5p\x02\xc0_\xd0E\xce\x07>+\xc0\x82\x12j@\xdf\xa7\x14\xc0\xf3'\xb8\xc1!\xbeF@\x9e\x17\x16h|\x9eB\xc06\xe9\x1fW\x06\xbcG@\x91\xd0\xab\xb8:\xad2\xc0F\xf0\xb0\xad\xc1rH@t)\xd4\xc2N\x81l?!\xcb\xcf*\xb7\xd8F@\xb0\xb54\xb8\x8d\xb54@p\x90\xaf\xf7+{D@\xe4v\xdf\x92\xb0\xf9C@" +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I9 +tp113 +g22 +I00 +S'\xf7u\xb3\xf6dWo@\x1f\x18\xd8\xf5,\xbcm@\n\t\xc2\xc5Z\xc9^@\xd0\xd4\x9c\x1bC\xe51@\xf80k\xbd\xb3a.@o\xce\xcdi\xe5\xb7!@\xcb\x8f\xfe0\x18\xff\x02@\x1d\xf5d\xc0\xe3\xe7\xff?\x12T\xfa\xb6\xea-\xfc?' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I6 +tp120 +g22 +I00 +S'\x9e\xbe:\xca}\xb4\xf7?\xf9$\x89\xf7\x9f\xf3\xf5?\xe5\x82\x10\xb3\x0fw\xf1?\xc4h\xbc7\xc8&\xe7?\x01\x12\xfe\xee\xf6\xb7\xe2?\x06;\xfb\x80\xec\xcc\xd0?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I9 +I18 +tp126 +g22 +I00 +S'\x1a\xadM-\x8bQ{?\x85T\x01\x1c\xe9!\xd3?\x14\x19w\xd9\xf3\x98\x9c\xbf1\x7f\xe9\xb4\xb9\xd4\x85\xbf[w\xc9\xccay\xa9\xbfMt\x0e?\xa9\xc8\xd7\xbf\xae\xd6\xab{\x15H\xb1\xbf\x0b\x07_\xba\xc1\x99\xe7\xbf\r\xe40\xcc_\xf0\x88\xbf\xc0\xff~\xe8\x16\x85\xd6??\r\xcaeD\xa9\x9f?\xb1\xff=w\x08\xf1\xc1?K\xd1>\x95\xd0\x01v\xbf>K\xa0\xa20\xee\x83?CGz)t\x15\x8d?\xde0h\xe9[\x97\xb4?(\xbb\xd1\t\x14g\xbc?f\xd7\xca\x83\x0b\x8c\xce?\xcc\xa9\xed\xb5\xc5\x8a\xd1\xbfJ\x01\x93p"\x8a\xa2?=\xbb\xae\xf5:\x91\xac?\xf2\xcf\xa6tv5\x1b\xbf\xeb\xc1Y\xbe\xeac\xd9?\xed0\x10\x8eh>\xa8\xbf\xf1\xbe\x1aw\xe7\x95\xe6?1\x89\xfcm\xdd\xc8\xb7\xbf\xad\n\n\x91\xcd\xb1\xd2\xbf\xb1\x84\x105\x84\xe0\xb3\xbf(sG\xb0\xda\x94\xc1\xbf\xefK\xcbh0\x03\xb3\xbf\xe5\x85\xc8\xe3,.\x92\xbf\x1c\xacK\x870\xdbQ?\xb7 \x95\xc6\xf2\xda\xc3\xbf\x1d\x19\xf5\x1e\xd1\xa4\xb8?k\x90\xa2:\x84\n\xd2\xbf\xc5\xe9\x90K\xa2P\xc4?\xe5\xa4)\x8c\x13\x0b\xd8?\xeb\xee;Z\x07\x1d\xa3?\x168\x8cd\xd4^\xc6?XC\x13\xf3\xcaR\xfa\xea\x1e\xcb\xbf@)\x11\x00\xa1\x0cp?Am\x87\x13\xf7\x83\xe4\xbf\xeb\'\xeaE\xe5Hq\xbf\xb5=\xa0\xcaqw\xcc\xbf\xf3\x91\xa2\x16\x19e`\xbf\xea\xeb\x98\xf5\xef\xa3\xda?\x8a \xb6\rM\xc9\xc0?\xf7\x19\xe3\x7f\xaa\x0bx?\x17rP\x17\x18\\\xd4\xbfC+\xc0R\x08\x8dl?\x02\x7f\xd4n\x1f\xdb\xc5\xbf\x06KZ\xd5h\xa0\x89?\x1d\x08\xe8\xbe\xb5\xc6\xa7\xbf=1\xae\x87\xc7ul?J@gu\xedz\xb6?\x03e\xea\x0f_\xe9\xe1\xbf\xfb\x7f\x08\xf0\x94\xb0\xb2?\xb5I\x82/\xcc\xbe\xd1\xbf\x80\x86\xf1\x80\xc3\n\xb1?\xf24\x02\x863\x19\xa2\xbf\x01\x01\x8a\x02\x87\x94\xb8?\xcc\xcdo\x0c9\xb7\xce?l\x9b\x9f\xda\xd2\xac\xb6?\xfd\x1b\xc0T\xeel\xe3?<\xe7\xd3VZ\x92\xbf?\xe4\xed\xa7\xd7DA\x8c\xbf\x19\x02>\x7fC\x01\xbe?\xd7\x12<\x86\xd0\xdc}?\x80\xddO(\x95\x98\x9c?\xc4Z#{\xe2\xea\x8b?R\x8eC\xfc\xe9\r\xb4\xbf\x18\xadP\x81\xb8\xa1v\xbf3\xc16\xd5\xfa\xce\xc9\xbf\xeabU0\xc9\xa1\xb0\xbf2G2\xf6|x\xdc\xbf\xd5\x8a`|\xf1.\xa1?\xef \x99\xc2AF\xc8?\x00\xc8\xea\x120\x11\x8a\xbfIyL\x9b\x1a\t\xe6?\xed\xf6\x1fvGLq?\xe5\xf2Vt\xea$\xc3?4\xa6\xc4\x90\x99\x9d\xa3?w\xef\x86\xa40\xae\xdc\xbf8\x9a\x90\xed9]\xc8?o\x11b,\x8dD\x80?jd\xdb\xce\xbaY\xc5\xbf.\xef\xeaZo/\x82?\x01O\xeb\xc17\xf0\xcc\xbf$\x1a\x8fN\x1f\xf0\x96\xbf\xf6\xc2\xbf*\x93\xc0\xc9?B\xfc\x90+\x1bH\x8e?!8u\x0eiH\xb7?\xbab\xcc\xb4\x90\xec\xc4\xbf\x9fb$\x9bT\x9c\xd2\xbfUm\x968\x88\xa1\xd4?R5\xd6\xa5\xdeb\xdf?\xcd\xb0a\x91\xdd\xd4\x96?}\xe2h\x80\xe9\xf7\xdc\xbfQ\xaaS\x0b\xef]\xd6\xbf\xc0\xd9\xa9\xdc\xaf\xea\xc4?\x11\xaa\xbe\x16\x05]\xc4?\xe3\xe3\xac\xb8U3\xda?{\xbf\xca&\xdd9\xa5?Naq\x1f\xffO\xd8\xbf\x14za0\xd39\x9f\xbf\x9a\xfc\xb8\xab\x12R\xdf\xbf\x9c\x97\xc1BYx\xb3\xbf\x8b\xda\xc2~\x1d\xbf\xde?+\xf8\x9b0\xdb"\xb0?(\xa2M\x17\xa3\xd4\xb6\xbf\xfb\x94\x8dP3G\x85\xbf4\xc8\xd3Q\x98\xd1\xcc?@|[cw5\x91?\x10\xe7\xb7\x07\xf2\xe7\xd2\xbf\x19\x08"\xf5\xcb\xfb\xa4\xbf\xb3V\x07M\xeb[\xcb?V\xa9\xae\x18\x98\x0f\xb2?\x9f\x81\x9e\xb8!(\xb3\xbf\x02g\x14\x84J^\xa1\xbf\x04[\x9b\x1b\x13\xd5\xc7\xbf\x02\x085\x19?\n\xa5?\xce*.\xdd\xaek\xd3?h8\xf8\xf9\xa9\x84\x93\xbfi\xd1\x82\x9f*\x0c\xa8\xbf\x04+\x05\xcbD\xf7\xb9\xbf\xe0\xaewd\xdd\x96\xab\xbf)<(\xf4\x9f\xda\xb2?\xd5\x9b\xbf\xfa9`\xc4\xbf\x11Bja\x12\x99\xd1\xbf\x8cZ\xcd\x95\xb5\xb3\xd1?\xc9\xac\xd6\xdd/\x83\xe2?\xae\x87\xc1\x95\x185\xcd\xbf\x9a\xfb\xae&\xc1\xbf\xc0\xbf3\xeb\x8d\xdb\x06\xfe\xca?\x8f\xf4~\xa5\xc1n\xd9\xbf\x92\xae\xd3(P\xd3\xbd\xbf0\xf2\x86\xa1\x01\x7f\xcd?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I18 +tp132 +g22 +I00 +S'\xd5<\xe8\xff\xf6\xb5Z\xc0I\xfd\xba\x86\xfav\xea\xbf\xd2[\\\xbd\x87DQ\xc0b\xfc\xf5\xed{5\xe0\xbf\x12\xf81\xbc*\x9d?\xc0\xf6\x89~\x0fe&\xb4\xbf\x94*\x1d\x8e\xee\x00\x1c@r\x96c\x06\xd5k\xe1?\x04i\xf6\x8f;\x15A@s\xd7\xc2l\x92\x0fG\xc0\xa0\xef7\xda\x1b\x1dE@\xf4s\x97\xd7\xf0G7\xc0[\xc7T^\x16aH@b\x99\\\xde\xd3\xea\xde?\x83\x03\xfe\x8fY\xc7D@*\xa8\xc7\x9d\x96D8@\x80d]\xae\xad\xe8@@\x9c\xf8.\x9a\x7f\xc2F@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I9 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_2 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_2 new file mode 100644 index 0000000000000000000000000000000000000000..adb0f53b6bdfaa67f8b58607b93f9bcc29d87829 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_2 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I10 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\x80\xecY!\xaaO\xb0\xbf\x06\x8b\xc2W~H\xe4?B\xfe\xf3;$R\xb1?\xda\xc4\xf8\xc9C\xf0\xd3?\xcdq\xee\xe8l\x13\xbd?\xab\x81\x10\xbd\xc2B\x98\xbf\xc5\xeb&=\xdb[\xa8?L\xb5\xbc\xa1:^\xd6\xbf\xd7\xfc\rQ\xea!\xc5\xbf\xaa\x0e\xf8\xd5lO\xe2\xbf\x06\x8b\xc2W~H\xe4\xbff\xecY!\xaaO\xb0\xbf\xd8\xc4\xf8\xc9C\xf0\xd3\xbfB\xfe\xf3;$R\xb1?\xaa\x81\x10\xbd\xc2B\x98?\xcaq\xee\xe8l\x13\xbd?J\xb5\xbc\xa1:^\xd6?\xbc\xeb&=\xdb[\xa8?\xa8\x0e\xf8\xd5lO\xe2?\xd6\xfc\rQ\xea!\xc5\xbf\xcf\xed\xbf\xc5%\x9f\xdc\xbf\xde\rJ>\xb5}\x94\xbc\xd3\xed\xbf\xc5%\x9f\xdc\xbf\xdeEc\xe2?O\xa5\xbc\xd9\xed\xbf\xc5%\x9f\xdc\xbf\xfe"\x8d\x95DG\xa4\xbc\xe2\xed\xbf\xc5%\x9f\xdc\xbf8\xd1\x11/\xc1\xfe]\xbc\xe6\xed\xbf\xc5%\x9f\xdc\xbf/\x92>\xf6.\xe8\xb5<\xcb^\xa7\x7f\x18\x84\x9c<\xcc\xed\xbf\xc5%\x9f\xdc\xbf(\xf4\x15\x82\xafI\xaa<\xd3\xed\xbf\xc5%\x9f\xdc\xbf \x91\xad\x8b\x91Y\xa2<\xd8\xed\xbf\xc5%\x9f\xdc\xbf\xa9/H|\x0b\xcc]\xbc\xde\xed\xbf\xc5%\x9f\xdc\xbf\xe5b\x11Y\xb5x\xb5\xbc\xe3\xed\xbf\xc5%\x9f\xdc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I10 +tp31 +g22 +I00 +S'\xb7\x9c\x04\x0fq\xf1\x1f@\xc0k\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0f\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@m\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I5 +I2 +tp43 +g22 +I00 +S'\xb7\x9c\x04\x0fq\xf1\x1f@\xc0k\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0f\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@m\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I2 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I5 +I2 +tp68 +g22 +I00 +S'\xac\x9c\x04\x0fq\xf1\x1f@\xbfk\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0j\xf6-u\xfc\x85C\xc0\xd2\xf6\x8d\x1eqx,\xc0\x0f\xbe\xf7oq\xc1\x07@\x8dpt+\x04\xda\x17\xc09\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\xfc\xff\xff\xff\xff\xff\xef?\xa4$\xeb\x82\xdf\xf6\x97<\x00\x00\x00\x00\x00\x00\xf09V\x04\xc2{\x8b\t\x8c\xbc\xfe\xff\xff\xff\xff\xff\xef?\x00\x00\x00\x00\x00\x00\xf0\xb9\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I5 +I2 +tp89 +g22 +I00 +S'\xb7\x9c\x04\x0fq\xf1\x1f@\xc0k\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0f\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@m\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I5 +I2 +tp106 +g22 +I00 +S'0\xab\x923\x12\x84\xef?\x93${u0YT\xc0Dj>\x05\xd5\xf9\x15\xc0w9\xf4\xd1EfC\xc0\xc1\x99\xd7\x8f\xa5\xa6\x19\xc0\x9f\xd6\xbf\xf3]\x8c\t@\xec\x8f\xfb\xc6z\x04\x03\xc0\xf3\xcf\xf6t4gD@}\xbb\x10\xd9\x1a\x99*@\x93\xda[4V\x0cS@' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I2 +tp113 +g22 +I00 +S'2\x9f\x9e\x9fo,Z@\xb9B\xdb\x13\xabd=@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I5 +tp120 +g22 +I00 +S'\rL\xe6\xdb\xe5\x1e%@\xbc\xa5C\x91\xfb\x04\x17@\xd7\xf9-\xc8\xeb\xb6\x0e@\xf6\xc3\x060o\xd3\xff?7\x16\x9f\xaaw(\xe8?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I2 +I10 +tp126 +g22 +I00 +S"\xdc\x02\xb3S\x85l\xdd?\xa0\xee\xd9\x91\xc1W\xb1?\x0e\x0bt\xce\xef\x9a\xc3\xbf\x07\xd0\x84\xc8\r\xedS\xbf\xbf\xf7IAj\xe1\xdf\xbf\xc4\xc5_\xdc:F\xbf?-\x9a\xfb\xcd'\xa9\xd2\xbf\xf1+*0\xf2E\xc8?\x91\x94\xcc\xa2\x84\xeb\xde?A\xfe\xda%\x8b6\xd8\xbf\xe8\xad\xec\xb8\x07G\xc3?\xf1\r\xf1u\xa3\xc8\xdd?y\x07\xe4\xf03\x17\xd4\xbf\xa5\x93g\x1by(\xcf\xbf|\xc7\xff\xaf\x92\x83\xd0\xbf7M\x8b\x92\x99\xd5\xd7\xbf\xeek\xfe\xd1^\xe6\xd0?\xf9\x043'\x96\xa2\xd3\xbf!\x18\xde\xe4\xc7!\xc4?\x10\x0e\x81\xd1\xc8C\xdd?" +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I10 +tp132 +g22 +I00 +S'\xb7\x9c\x04\x0fq\xf1\x1f@\xc0k\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0f\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@m\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I2 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_3 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_3 new file mode 100644 index 0000000000000000000000000000000000000000..038986a30128169fc472dc8a37d75b0ea869b35a --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_3 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I10 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'p\xecY!\xaaO\xb0\xbf\x07\x8b\xc2W~H\xe4?B\xfe\xf3;$R\xb1?\xd9\xc4\xf8\xc9C\xf0\xd3?\xcbq\xee\xe8l\x13\xbd?\xa9\x81\x10\xbd\xc2B\x98\xbf\xc0\xeb&=\xdb[\xa8?K\xb5\xbc\xa1:^\xd6\xbf\xd6\xfc\rQ\xea!\xc5\xbf\xa8\x0e\xf8\xd5lO\xe2\xbf\x08\x8b\xc2W~H\xe4\xbfc\xecY!\xaaO\xb0\xbf\xd9\xc4\xf8\xc9C\xf0\xd3\xbfF\xfe\xf3;$R\xb1?\xad\x81\x10\xbd\xc2B\x98?\xcaq\xee\xe8l\x13\xbd?K\xb5\xbc\xa1:^\xd6?\xb2\xeb&=\xdb[\xa8?\xa8\x0e\xf8\xd5lO\xe2?\xd9\xfc\rQ\xea!\xc5\xbf\xce\xed\xbf\xc5%\x9f\xdc\xbf\xb7\xa9\x0c^Kg\x91\xbc\xd3\xed\xbf\xc5%\x9f\xdc\xbf\xb3\x80H\xa7\x10\xa7\xa3\xbc\xda\xed\xbf\xc5%\x9f\xdc\xbf\xfbp.\xceh\xa0\xa3\xbc\xe2\xed\xbf\xc5%\x9f\xdc\xbf\xfc;\x19\x9atxr\xbc\xe6\xed\xbf\xc5%\x9f\xdc\xbf"\x83\xc5\x91\xe8\xa2\xb5<\x14&\x03\x88\xa3@\x97<\xca\xed\xbf\xc5%\x9f\xdc\xbf\x1a\xc4\xab\xced\\\xa4<\xd2\xed\xbf\xc5%\x9f\xdc\xbf\xfb\xb8@\xd8A\xe5\xa2<\xd9\xed\xbf\xc5%\x9f\xdc\xbfhp\xd3_\xb0\xc1\x90\xbc\xdf\xed\xbf\xc5%\x9f\xdc\xbfE7\xdbU\xb5/\xb7\xbc\xe6\xed\xbf\xc5%\x9f\xdc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I10 +tp31 +g22 +I00 +S'\xb6\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xe9\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0e\xbe\xf7oq\xc1\x07@\x90pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@n\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I5 +I2 +tp43 +g22 +I00 +S'\xb6\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xe9\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0e\xbe\xf7oq\xc1\x07@\x90pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@n\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I3 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I5 +I2 +tp68 +g22 +I00 +S'\xca\x9c\x04\x0fq\xf1\x1f@\xc3k\x8e\xb9`\xdcS\xc0\xe3\x9d\xb7\xde\xd0\xf5 \xc0l\xf6-u\xfc\x85C\xc0\xd5\xf6\x8d\x1eqx,\xc0\x0b\xbe\xf7oq\xc1\x07@\x9bpt+\x04\xda\x17\xc0;\x8eI\t\x00\xe7E@h\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\xff\xff\xff\xff\xff\xff\xef?b\x94oj\t\x02\xb1\xbc\x00\x00\x00\x00\x00\x00\xf0\xb9#\xb9A\x02\x15\xf7\xa4<\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I5 +I2 +tp89 +g22 +I00 +S'\xb6\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xe9\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0e\xbe\xf7oq\xc1\x07@\x90pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@n\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I5 +I2 +tp106 +g22 +I00 +S'9\xab\x923\x12\x84\xef?\x92${u0YT\xc0Dj>\x05\xd5\xf9\x15\xc0v9\xf4\xd1EfC\xc0\xbf\x99\xd7\x8f\xa5\xa6\x19\xc0\x9e\xd6\xbf\xf3]\x8c\t@\xe8\x8f\xfb\xc6z\x04\x03\xc0\xf2\xcf\xf6t4gD@\x7f\xbb\x10\xd9\x1a\x99*@\x92\xda[4V\x0cS@' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I3 +tp113 +g22 +I00 +S'5\x9f\x9e\x9fo,Z@\xbdB\xdb\x13\xabd=@\x10L\xe6\xdb\xe5\x1e%@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I4 +tp120 +g22 +I00 +S'\xbf\xa5C\x91\xfb\x04\x17@\xe1\xf9-\xc8\xeb\xb6\x0e@\x01\xc4\x060o\xd3\xff?[\x16\x9f\xaaw(\xe8?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I3 +I10 +tp126 +g22 +I00 +S"\xdd\x02\xb3S\x85l\xdd?\x9f\xee\xd9\x91\xc1W\xb1?\x0f\x0bt\xce\xef\x9a\xc3\xbfR\xce\x84\xc8\r\xedS\xbf\xbf\xf7IAj\xe1\xdf\xbf\xc7\xc5_\xdc:F\xbf?+\x9a\xfb\xcd'\xa9\xd2\xbf\xef+*0\xf2E\xc8?\x90\x94\xcc\xa2\x84\xeb\xde??\xfe\xda%\x8b6\xd8\xbf\xe7\xad\xec\xb8\x07G\xc3?\xf1\r\xf1u\xa3\xc8\xdd?x\x07\xe4\xf03\x17\xd4\xbf\xb2\x93g\x1by(\xcf\xbfy\xc7\xff\xaf\x92\x83\xd0\xbf5M\x8b\x92\x99\xd5\xd7\xbf\xeak\xfe\xd1^\xe6\xd0?\xf7\x043'\x96\xa2\xd3\xbf#\x18\xde\xe4\xc7!\xc4?\x12\x0e\x81\xd1\xc8C\xdd?A#\xad\xf3\xfc(\xd4\xbfL\xdeq\xe1\\[\xcb?=\xb0\xb4E\xf0\xd0\xd9?\xe6\xf1\x13\xcd~\xb9\xa2\xbf\xb7\x1c\x11 oZ\xc1?\xbf\xabv\x87w\x0e\xd8\xbf\x1e\x19\x06E\xa6@\xe3\xbf\x9a\xb9\xee\xc0\x06\x93\xa4?\xeb\x16\xfc\xa7!,\xd8?D\xc7\x8400K\xc4?" +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I10 +tp132 +g22 +I00 +S'\xb6\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xe9\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0e\xbe\xf7oq\xc1\x07@\x90pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@n\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I3 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_4 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_4 new file mode 100644 index 0000000000000000000000000000000000000000..16627e63eaf655e7bcb5260418834f675c85c861 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_4 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I10 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'\x80\xecY!\xaaO\xb0\xbf\x06\x8b\xc2W~H\xe4?B\xfe\xf3;$R\xb1?\xda\xc4\xf8\xc9C\xf0\xd3?\xcdq\xee\xe8l\x13\xbd?\xab\x81\x10\xbd\xc2B\x98\xbf\xc5\xeb&=\xdb[\xa8?L\xb5\xbc\xa1:^\xd6\xbf\xd7\xfc\rQ\xea!\xc5\xbf\xaa\x0e\xf8\xd5lO\xe2\xbf\x06\x8b\xc2W~H\xe4\xbff\xecY!\xaaO\xb0\xbf\xd8\xc4\xf8\xc9C\xf0\xd3\xbfB\xfe\xf3;$R\xb1?\xaa\x81\x10\xbd\xc2B\x98?\xcaq\xee\xe8l\x13\xbd?J\xb5\xbc\xa1:^\xd6?\xbc\xeb&=\xdb[\xa8?\xa8\x0e\xf8\xd5lO\xe2?\xd6\xfc\rQ\xea!\xc5\xbf\xcf\xed\xbf\xc5%\x9f\xdc\xbf\xde\rJ>\xb5}\x94\xbc\xd3\xed\xbf\xc5%\x9f\xdc\xbf\xdeEc\xe2?O\xa5\xbc\xd9\xed\xbf\xc5%\x9f\xdc\xbf\xfe"\x8d\x95DG\xa4\xbc\xe2\xed\xbf\xc5%\x9f\xdc\xbf8\xd1\x11/\xc1\xfe]\xbc\xe6\xed\xbf\xc5%\x9f\xdc\xbf/\x92>\xf6.\xe8\xb5<\xcb^\xa7\x7f\x18\x84\x9c<\xcc\xed\xbf\xc5%\x9f\xdc\xbf(\xf4\x15\x82\xafI\xaa<\xd3\xed\xbf\xc5%\x9f\xdc\xbf \x91\xad\x8b\x91Y\xa2<\xd8\xed\xbf\xc5%\x9f\xdc\xbf\xa9/H|\x0b\xcc]\xbc\xde\xed\xbf\xc5%\x9f\xdc\xbf\xe5b\x11Y\xb5x\xb5\xbc\xe3\xed\xbf\xc5%\x9f\xdc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I10 +tp31 +g22 +I00 +S'\xb7\x9c\x04\x0fq\xf1\x1f@\xc0k\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0f\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@m\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I5 +I2 +tp43 +g22 +I00 +S'\xb7\x9c\x04\x0fq\xf1\x1f@\xc0k\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0f\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@m\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I4 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I5 +I2 +tp68 +g22 +I00 +S'\xac\x9c\x04\x0fq\xf1\x1f@\xbfk\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0j\xf6-u\xfc\x85C\xc0\xd2\xf6\x8d\x1eqx,\xc0\x0f\xbe\xf7oq\xc1\x07@\x8dpt+\x04\xda\x17\xc09\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\xfc\xff\xff\xff\xff\xff\xef?\xa4$\xeb\x82\xdf\xf6\x97<\x00\x00\x00\x00\x00\x00\xf09V\x04\xc2{\x8b\t\x8c\xbc\xfe\xff\xff\xff\xff\xff\xef?\x00\x00\x00\x00\x00\x00\xf0\xb9\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I5 +I2 +tp89 +g22 +I00 +S'\xb7\x9c\x04\x0fq\xf1\x1f@\xc0k\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0f\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@m\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I5 +I2 +tp106 +g22 +I00 +S'0\xab\x923\x12\x84\xef?\x93${u0YT\xc0Dj>\x05\xd5\xf9\x15\xc0w9\xf4\xd1EfC\xc0\xc1\x99\xd7\x8f\xa5\xa6\x19\xc0\x9f\xd6\xbf\xf3]\x8c\t@\xec\x8f\xfb\xc6z\x04\x03\xc0\xf3\xcf\xf6t4gD@}\xbb\x10\xd9\x1a\x99*@\x93\xda[4V\x0cS@' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I4 +tp113 +g22 +I00 +S'2\x9f\x9e\x9fo,Z@\xb9B\xdb\x13\xabd=@\rL\xe6\xdb\xe5\x1e%@\xbc\xa5C\x91\xfb\x04\x17@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I3 +tp120 +g22 +I00 +S'\xd7\xf9-\xc8\xeb\xb6\x0e@\xf6\xc3\x060o\xd3\xff?7\x16\x9f\xaaw(\xe8?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I4 +I10 +tp126 +g22 +I00 +S"\xdc\x02\xb3S\x85l\xdd?\xa0\xee\xd9\x91\xc1W\xb1?\x0e\x0bt\xce\xef\x9a\xc3\xbf\x07\xd0\x84\xc8\r\xedS\xbf\xbf\xf7IAj\xe1\xdf\xbf\xc4\xc5_\xdc:F\xbf?-\x9a\xfb\xcd'\xa9\xd2\xbf\xf1+*0\xf2E\xc8?\x91\x94\xcc\xa2\x84\xeb\xde?A\xfe\xda%\x8b6\xd8\xbf\xe8\xad\xec\xb8\x07G\xc3?\xf1\r\xf1u\xa3\xc8\xdd?y\x07\xe4\xf03\x17\xd4\xbf\xa5\x93g\x1by(\xcf\xbf|\xc7\xff\xaf\x92\x83\xd0\xbf7M\x8b\x92\x99\xd5\xd7\xbf\xeek\xfe\xd1^\xe6\xd0?\xf9\x043'\x96\xa2\xd3\xbf!\x18\xde\xe4\xc7!\xc4?\x10\x0e\x81\xd1\xc8C\xdd?@#\xad\xf3\xfc(\xd4\xbfY\xdeq\xe1\\[\xcb?5\xb0\xb4E\xf0\xd0\xd9?\r\xf2\x13\xcd~\xb9\xa2\xbf\xc7\x1c\x11 oZ\xc1?\xc2\xabv\x87w\x0e\xd8\xbf\x1f\x19\x06E\xa6@\xe3\xbf\x89\xb9\xee\xc0\x06\x93\xa4?\xec\x16\xfc\xa7!,\xd8?L\xc7\x8400K\xc4?\xda\xfe\x19vF\xea\xb9\xbf\xce\x1eb\xb7N8\xcf\xbfp\x01\xb0i\xbd\x19\xdd?\x1a\xaf\xd4\xe4z\xc5\xdd?f\xa6x\xf1\x07^\xe2\xbf\xc1?&*\x11\xe5\x94\xbfF\xb3\x1b9y\x14\xc6?\xd7\xda`Z\xd5m\xd6\xbf\x92\x8b\xcf\xd1;\x95\xa8?B>\xbf\xc7\xa5%\xc3?" +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I10 +tp132 +g22 +I00 +S'\xb7\x9c\x04\x0fq\xf1\x1f@\xc0k\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0f\xbe\xf7oq\xc1\x07@\x94pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@m\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I4 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_5 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_5 new file mode 100644 index 0000000000000000000000000000000000000000..6d03a5ae179889d1ad09aeb5351fc7d909fbbfef --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_5 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I10 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'p\xecY!\xaaO\xb0\xbf\x04\x8b\xc2W~H\xe4?C\xfe\xf3;$R\xb1?\xd7\xc4\xf8\xc9C\xf0\xd3?\xcaq\xee\xe8l\x13\xbd?\xad\x81\x10\xbd\xc2B\x98\xbf\xc5\xeb&=\xdb[\xa8?M\xb5\xbc\xa1:^\xd6\xbf\xd2\xfc\rQ\xea!\xc5\xbf\xa8\x0e\xf8\xd5lO\xe2\xbf\x05\x8b\xc2W~H\xe4\xbf{\xecY!\xaaO\xb0\xbf\xd9\xc4\xf8\xc9C\xf0\xd3\xbfC\xfe\xf3;$R\xb1?\xac\x81\x10\xbd\xc2B\x98?\xcaq\xee\xe8l\x13\xbd?M\xb5\xbc\xa1:^\xd6?\xc8\xeb&=\xdb[\xa8?\xa9\x0e\xf8\xd5lO\xe2?\xd2\xfc\rQ\xea!\xc5\xbf\xcd\xed\xbf\xc5%\x9f\xdc\xbf\x96\x90\xa7\x84\x96\xc7\xa3\xbc\xd3\xed\xbf\xc5%\x9f\xdc\xbf\xfc\xb6\x9d\xdd\xaa&\xa1\xbc\xd9\xed\xbf\xc5%\x9f\xdc\xbf\x85|\x12\x01\x89\xaf\x9f\xbc\xe0\xed\xbf\xc5%\x9f\xdc\xbf/\x88\x04\xe3\x1eT\x92<\xe4\xed\xbf\xc5%\x9f\xdc\xbf[v\x94t\xbd\xc9\xb7<\xb8\x98!G4l\xa2<\xcd\xed\xbf\xc5%\x9f\xdc\xbfD\xbc\xf5\x87\xf1\x11\xa6<\xd3\xed\xbf\xc5%\x9f\xdc\xbf\xe7\xa3\xdd\xa6\xefy\xa1<\xd9\xed\xbf\xc5%\x9f\xdc\xbf\xd7M\xd3\xa7\xae\xdf\x8f\xbc\xdf\xed\xbf\xc5%\x9f\xdc\xbfp\x9a\xe1J\x88\x13\xb5\xbc\xe2\xed\xbf\xc5%\x9f\xdc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I10 +tp31 +g22 +I00 +S'\xba\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xeb\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd7\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x96pt+\x04\xda\x17\xc0=\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I5 +I2 +tp43 +g22 +I00 +S'\xba\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xeb\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd7\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x96pt+\x04\xda\x17\xc0=\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I5 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I5 +I2 +tp68 +g22 +I00 +S'\xbf\x9c\x04\x0fq\xf1\x1f@\xc1k\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0j\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x11\xbe\xf7oq\xc1\x07@\x98pt+\x04\xda\x17\xc0<\x8eI\t\x00\xe7E@j\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\xff\xff\xff\xff\xff\xff\xef?\xb8*\xf2h\x80\x0c\x94\xbc\x00\x00\x00\x00\x00\x00\xd0\xb9LH\xba\xec2\xdd\x83<\xff\xff\xff\xff\xff\xff\xef?\x00\x00\x00\x00\x00\x00\xe0\xb9\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I5 +I2 +tp89 +g22 +I00 +S'\xba\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xeb\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd7\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x96pt+\x04\xda\x17\xc0=\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I5 +I2 +tp106 +g22 +I00 +S'B\xab\x923\x12\x84\xef?\x93${u0YT\xc0Dj>\x05\xd5\xf9\x15\xc0w9\xf4\xd1EfC\xc0\xc2\x99\xd7\x8f\xa5\xa6\x19\xc0\xa6\xd6\xbf\xf3]\x8c\t@\xf0\x8f\xfb\xc6z\x04\x03\xc0\xf3\xcf\xf6t4gD@{\xbb\x10\xd9\x1a\x99*@\x93\xda[4V\x0cS@' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I5 +tp113 +g22 +I00 +S'7\x9f\x9e\x9fo,Z@\xbbB\xdb\x13\xabd=@\nL\xe6\xdb\xe5\x1e%@\xbc\xa5C\x91\xfb\x04\x17@\xdd\xf9-\xc8\xeb\xb6\x0e@' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I2 +tp120 +g22 +I00 +S'\x02\xc4\x060o\xd3\xff?\x94\x16\x9f\xaaw(\xe8?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I5 +I10 +tp126 +g22 +I00 +S"\xd8\x02\xb3S\x85l\xdd?\xa6\xee\xd9\x91\xc1W\xb1?\x08\x0bt\xce\xef\x9a\xc3\xbfp\xcf\x84\xc8\r\xedS\xbf\xbd\xf7IAj\xe1\xdf\xbf\xbe\xc5_\xdc:F\xbf?,\x9a\xfb\xcd'\xa9\xd2\xbf\xee+*0\xf2E\xc8?\x91\x94\xcc\xa2\x84\xeb\xde?@\xfe\xda%\x8b6\xd8\xbf\xdf\xad\xec\xb8\x07G\xc3?\xf6\r\xf1u\xa3\xc8\xdd?q\x07\xe4\xf03\x17\xd4\xbf\xb2\x93g\x1by(\xcf\xbfy\xc7\xff\xaf\x92\x83\xd0\xbf:M\x8b\x92\x99\xd5\xd7\xbf\xe4k\xfe\xd1^\xe6\xd0?\xf6\x043'\x96\xa2\xd3\xbf-\x18\xde\xe4\xc7!\xc4?\x12\x0e\x81\xd1\xc8C\xdd?C#\xad\xf3\xfc(\xd4\xbfM\xdeq\xe1\\[\xcb?2\xb0\xb4E\xf0\xd0\xd9?3\xf2\x13\xcd~\xb9\xa2\xbf\xdb\x1c\x11 oZ\xc1?\xbd\xabv\x87w\x0e\xd8\xbf!\x19\x06E\xa6@\xe3\xbf\xe8\xb9\xee\xc0\x06\x93\xa4?\xe7\x16\xfc\xa7!,\xd8?<\xc7\x8400K\xc4?\xe7\xfe\x19vF\xea\xb9\xbf\xcb\x1eb\xb7N8\xcf\xbfr\x01\xb0i\xbd\x19\xdd?\x1a\xaf\xd4\xe4z\xc5\xdd?f\xa6x\xf1\x07^\xe2\xbfG@&*\x11\xe5\x94\xbf4\xb3\x1b9y\x14\xc6?\xd9\xda`Z\xd5m\xd6\xbf\xb7\x8b\xcf\xd1;\x95\xa8?L>\xbf\xc7\xa5%\xc3?w4\xf0\x8f+\xa9\xc8\xbf\xd1\x04\x9dq\x95\x0f\xcc?H\x8d\x89\xf2\xb6\xfe\xd8?)\t\xf4fT\xf9\xd8\xbfI\xdf\xf5@\x9b\x11\xd6\xbf\x1fT\x1b\xe7\x91\x98\xc3\xbf;\rVN\x88\xe7\xd5?\x04\xe8\xc1\x00p\xb8\xe0?\xf8A\xe3o\x1c\x00\xc9\xbfe>\xa1\xbf\x1af\xc9\xbf" +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I10 +tp132 +g22 +I00 +S'\xba\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xeb\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd7\xf6\x8d\x1eqx,\xc0\x13\xbe\xf7oq\xc1\x07@\x96pt+\x04\xda\x17\xc0=\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I5 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_6 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_6 new file mode 100644 index 0000000000000000000000000000000000000000..9206a26ddd82cf00bb37886385ee34c1d91cb1b9 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_brow_6 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I10 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S'p\xecY!\xaaO\xb0\xbf\x07\x8b\xc2W~H\xe4?A\xfe\xf3;$R\xb1?\xd9\xc4\xf8\xc9C\xf0\xd3?\xcbq\xee\xe8l\x13\xbd?\xa9\x81\x10\xbd\xc2B\x98\xbf\xc0\xeb&=\xdb[\xa8?K\xb5\xbc\xa1:^\xd6\xbf\xd4\xfc\rQ\xea!\xc5\xbf\xa8\x0e\xf8\xd5lO\xe2\xbf\x07\x8b\xc2W~H\xe4\xbfh\xecY!\xaaO\xb0\xbf\xd7\xc4\xf8\xc9C\xf0\xd3\xbfD\xfe\xf3;$R\xb1?\xaf\x81\x10\xbd\xc2B\x98?\xcaq\xee\xe8l\x13\xbd?K\xb5\xbc\xa1:^\xd6?\xb7\xeb&=\xdb[\xa8?\xa7\x0e\xf8\xd5lO\xe2?\xd7\xfc\rQ\xea!\xc5\xbf\xce\xed\xbf\xc5%\x9f\xdc\xbf\xb7\xa9\x0c^Kg\x91\xbc\xd3\xed\xbf\xc5%\x9f\xdc\xbf\xb3\x80H\xa7\x10\xa7\xa3\xbc\xd9\xed\xbf\xc5%\x9f\xdc\xbf\xfbp.\xceh`\xa3\xbc\xe2\xed\xbf\xc5%\x9f\xdc\xbf\x08\x88\xcd\xcb\x16\x0fk<\xe5\xed\xbf\xc5%\x9f\xdc\xbf"\x83\xc5\x91\xe8\xa2\xb5<\xe9\x8d\xf6\xbf\xee\x9e\xa5<\xca\xed\xbf\xc5%\x9f\xdc\xbfY\xa0\x90\x12xA\xa9<\xd3\xed\xbf\xc5%\x9f\xdc\xbfA\xcd\xabIJ\xbe\xa1<\xd9\xed\xbf\xc5%\x9f\xdc\xbf\xe8I\xb7\xe4)7\x95\xbc\xdf\xed\xbf\xc5%\x9f\xdc\xbf\xa3f\x1f\x07{\x0f\xba\xbc\xe6\xed\xbf\xc5%\x9f\xdc\xbf' +p25 +tp26 +bsS'_mean' +p27 +g12 +(g13 +(I0 +tp28 +g15 +tp29 +Rp30 +(I1 +(I10 +tp31 +g22 +I00 +S'\xb7\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0e\xbe\xf7oq\xc1\x07@\x90pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p32 +tp33 +bsS'template_instance' +p34 +g0 +(cmenpo.shape.pointcloud +PointCloud +p35 +g2 +Ntp36 +Rp37 +(dp38 +S'points' +p39 +g12 +(g13 +(I0 +tp40 +g15 +tp41 +Rp42 +(I1 +(I5 +I2 +tp43 +g22 +I00 +S'\xb7\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0e\xbe\xf7oq\xc1\x07@\x90pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p44 +tp45 +bsS'_landmarks' +p46 +NsbsbsS'similarity_weights' +p47 +g12 +(g13 +(I0 +tp48 +g15 +tp49 +Rp50 +(I1 +(I4 +tp51 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p52 +tp53 +bsS'_weights' +p54 +g12 +(g13 +(I0 +tp55 +g15 +tp56 +Rp57 +(I1 +(I6 +tp58 +g22 +I00 +S'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' +p59 +tp60 +bsS'_target' +p61 +g0 +(g35 +g2 +Ntp62 +Rp63 +(dp64 +g39 +g12 +(g13 +(I0 +tp65 +g15 +tp66 +Rp67 +(I1 +(I5 +I2 +tp68 +g22 +I00 +S'\xc6\x9c\x04\x0fq\xf1\x1f@\xc3k\x8e\xb9`\xdcS\xc0\xe3\x9d\xb7\xde\xd0\xf5 \xc0l\xf6-u\xfc\x85C\xc0\xd5\xf6\x8d\x1eqx,\xc0\x0b\xbe\xf7oq\xc1\x07@\x98pt+\x04\xda\x17\xc0;\x8eI\t\x00\xe7E@g\xbf\xbe\xc5E\xb14@\xd4\xe1\x00d\xd3\xedQ@' +p69 +tp70 +bsg46 +NsbsS'global_transform' +p71 +g0 +(cmenpofit.transform.homogeneous +DifferentiableAlignmentSimilarity +p72 +g2 +Ntp73 +Rp74 +(dp75 +S'_h_matrix' +p76 +g12 +(g13 +(I0 +tp77 +g15 +tp78 +Rp79 +(I1 +(I3 +I3 +tp80 +g22 +I00 +S'\xff\xff\xff\xff\xff\xff\xef?\xfd\x94\xe4\x8b{\x08\xa9\xbc\x00\x00\x00\x00\x00\x00\xe8\xb9\xbf\xd6\x92\x1e\xa7\xf3\xa2<\x01\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I5 +I2 +tp89 +g22 +I00 +S'\xb7\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0e\xbe\xf7oq\xc1\x07@\x90pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p90 +tp91 +bsg46 +NsbsS'allow_mirror' +p92 +I00 +sS'_source' +p93 +g84 +sbsS'model' +p94 +g0 +(cmenpo.model.pca +PCAModel +p95 +g2 +Ntp96 +Rp97 +(dp98 +S'centred' +p99 +I01 +sg34 +g0 +(g35 +g2 +Ntp100 +Rp101 +(dp102 +g39 +g12 +(g13 +(I0 +tp103 +g15 +tp104 +Rp105 +(I1 +(I5 +I2 +tp106 +g22 +I00 +S'6\xab\x923\x12\x84\xef?\x93${u0YT\xc0Dj>\x05\xd5\xf9\x15\xc0w9\xf4\xd1EfC\xc0\xc1\x99\xd7\x8f\xa5\xa6\x19\xc0\x9f\xd6\xbf\xf3]\x8c\t@\xea\x8f\xfb\xc6z\x04\x03\xc0\xf3\xcf\xf6t4gD@}\xbb\x10\xd9\x1a\x99*@\x93\xda[4V\x0cS@' +p107 +tp108 +bsg46 +NsbsS'_eigenvalues' +p109 +g12 +(g13 +(I0 +tp110 +g15 +tp111 +Rp112 +(I1 +(I6 +tp113 +g22 +I00 +S'6\x9f\x9e\x9fo,Z@\xb8B\xdb\x13\xabd=@\x0fL\xe6\xdb\xe5\x1e%@\xbc\xa5C\x91\xfb\x04\x17@\xde\xf9-\xc8\xeb\xb6\x0e@\xfd\xc3\x060o\xd3\xff?' +p114 +tp115 +bsS'_trimmed_eigenvalues' +p116 +g12 +(g13 +(I0 +tp117 +g15 +tp118 +Rp119 +(I1 +(I1 +tp120 +g22 +I00 +S'\x84\x16\x9f\xaaw(\xe8?' +p121 +tp122 +bsg11 +g12 +(g13 +(I0 +tp123 +g15 +tp124 +Rp125 +(I1 +(I6 +I10 +tp126 +g22 +I00 +S"\xdb\x02\xb3S\x85l\xdd?\xa0\xee\xd9\x91\xc1W\xb1?\x10\x0bt\xce\xef\x9a\xc3\xbf<\xcd\x84\xc8\r\xedS\xbf\xbf\xf7IAj\xe1\xdf\xbf\xc6\xc5_\xdc:F\xbf?+\x9a\xfb\xcd'\xa9\xd2\xbf\xf1+*0\xf2E\xc8?\x91\x94\xcc\xa2\x84\xeb\xde?A\xfe\xda%\x8b6\xd8\xbf\xe5\xad\xec\xb8\x07G\xc3?\xf2\r\xf1u\xa3\xc8\xdd?v\x07\xe4\xf03\x17\xd4\xbf\xb0\x93g\x1by(\xcf\xbf}\xc7\xff\xaf\x92\x83\xd0\xbf9M\x8b\x92\x99\xd5\xd7\xbf\xebk\xfe\xd1^\xe6\xd0?\xf7\x043'\x96\xa2\xd3\xbf'\x18\xde\xe4\xc7!\xc4?\x12\x0e\x81\xd1\xc8C\xdd??#\xad\xf3\xfc(\xd4\xbfS\xdeq\xe1\\[\xcb?5\xb0\xb4E\xf0\xd0\xd9?\x13\xf2\x13\xcd~\xb9\xa2\xbf\xc5\x1c\x11 oZ\xc1?\xc2\xabv\x87w\x0e\xd8\xbf\x1f\x19\x06E\xa6@\xe3\xbf\xc3\xb9\xee\xc0\x06\x93\xa4?\xea\x16\xfc\xa7!,\xd8?C\xc7\x8400K\xc4?\xe1\xfe\x19vF\xea\xb9\xbf\xcc\x1eb\xb7N8\xcf\xbfv\x01\xb0i\xbd\x19\xdd?\x18\xaf\xd4\xe4z\xc5\xdd?k\xa6x\xf1\x07^\xe2\xbf\x05@&*\x11\xe5\x94\xbfL\xb3\x1b9y\x14\xc6?\xd7\xda`Z\xd5m\xd6\xbf|\x8b\xcf\xd1;\x95\xa8?B>\xbf\xc7\xa5%\xc3?n4\xf0\x8f+\xa9\xc8\xbf\xdc\x04\x9dq\x95\x0f\xcc?=\x8d\x89\xf2\xb6\xfe\xd8?/\t\xf4fT\xf9\xd8\xbfB\xdf\xf5@\x9b\x11\xd6\xbf2T\x1b\xe7\x91\x98\xc3\xbf<\rVN\x88\xe7\xd5?\x0b\xe8\xc1\x00p\xb8\xe0?\xfbA\xe3o\x1c\x00\xc9\xbfo>\xa1\xbf\x1af\xc9\xbfS\xce\xf9\x84\x9d\xc7\xbd\xbf)\x19\xd1\xf9_\x01\xc2?\x19\x88T\xd5\xe2\xd8\xcd?\xcaR\x17\x91\xac\x99\xe0\xbfzeu\x90VB\xb2\xbf\x86\x199\xee\xe1\xe2\xe5?8,\xd7\xc1\r\x03\xbc\xbf\xf3b\xc4;\x02\xa0\xd8\xbf\xd6O\x9d,<[\xb0?\xa0#a\x12\x9e3\xb4?" +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I10 +tp132 +g22 +I00 +S'\xb7\x9c\x04\x0fq\xf1\x1f@\xc2k\x8e\xb9`\xdcS\xc0\xe8\x9d\xb7\xde\xd0\xf5 \xc0k\xf6-u\xfc\x85C\xc0\xd6\xf6\x8d\x1eqx,\xc0\x0e\xbe\xf7oq\xc1\x07@\x90pt+\x04\xda\x17\xc0:\x8eI\t\x00\xe7E@l\xbf\xbe\xc5E\xb14@\xd3\xe1\x00d\xd3\xedQ@' +p133 +tp134 +bsS'n_samples' +p135 +I3148 +sS'_n_active_components' +p136 +I6 +sbsb. \ No newline at end of file diff --git a/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_eye_2 b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_eye_2 new file mode 100644 index 0000000000000000000000000000000000000000..db28ec31f4c75161d4026551618bbba320bc6320 --- /dev/null +++ b/MakeItTalk/thirdparty/face_of_art/pdm_clm_models/pdm_models/g_t_r_eye_2 @@ -0,0 +1,338 @@ +ccopy_reg +_reconstructor +p0 +(cmenpofit.modelinstance +OrthoPDM +p1 +c__builtin__ +object +p2 +Ntp3 +Rp4 +(dp5 +S'similarity_model' +p6 +g0 +(cmenpofit.modelinstance +_SimilarityModel +p7 +g2 +Ntp8 +Rp9 +(dp10 +S'_components' +p11 +cnumpy.core.multiarray +_reconstruct +p12 +(cnumpy +ndarray +p13 +(I0 +tp14 +S'b' +p15 +tp16 +Rp17 +(I1 +(I4 +I12 +tp18 +cnumpy +dtype +p19 +(S'f8' +p20 +I0 +I1 +tp21 +Rp22 +(I3 +S'<' +p23 +NNNI-1 +I-1 +I0 +tp24 +bI00 +S"\xd0\xf6'\x90%\xbb\xb8\xbfA/\\\xc3[c\xe3?<\xd1\xce\xa7su\xc9?\xcc\xe8\x1b\x91\x0b-\xcc?\xfb\x01\x86R\xaa\x12\xca?\xf3&N\xdd\x10\x7f\xca\xbf\xc6\x8a\xc309uq?\x8f-fd\xd4\xe0\xe1\xbfS\x18\xf3\x91.\xc9\xc2\xbf\xb7\x81\xa1I\xa1\xdb\xce\xbf\xa8\xdb\xd3i\x06\xed\xc4\xbf\xd2\xb8\xfb\x19\x89#\xc7?C/\\\xc3[c\xe3\xbf\xd2\xf6'\x90%\xbb\xb8\xbf\xcb\xe8\x1b\x91\x0b-\xcc\xbf?\xd1\xce\xa7su\xc9?\xf5&N\xdd\x10\x7f\xca?\xfa\x01\x86R\xaa\x12\xca?\x8f-fd\xd4\xe0\xe1?\x0b\x8a\xc309uq?\xb6\x81\xa1I\xa1\xdb\xce?V\x18\xf3\x91.\xc9\xc2\xbf\xd4\xb8\xfb\x19\x89#\xc7\xbf\xa8\xdb\xd3i\x06\xed\xc4\xbfI,\x0cp\xbd \xda\xbffO`\x08tG\xab<;,\x0cp\xbd \xda\xbf\x90\xcb\xc7d\xf0\xdb\xb3<:,\x0cp\xbd \xda\xbf\xad`]\xae\x8d\xed\x90<5,\x0cp\xbd \xda\xbf\xd8\xd35\xb0\x10\xcf\xb6\xbc;,\x0cp\xbd \xda\xbf+\x0c\xedj\x80K\xb2\xbcB,\x0cp\xbd \xda\xbf\xe2\x1f&\xcc\xbc\x0f\x87\xbc\x16(\x19\xaa\x97E\xb3\xbcG,\x0cp\xbd \xda\xbf|\xf9\xa7v\xef\xeb\xb4\xbc=,\x0cp\xbd \xda\xbf\xe7ZS\xdb\xee\xd8\x91\xbc9,\x0cp\xbd \xda\xbf\xaat\x16\x96\xe1\x9d\xb4<5,\x0cp\xbd \xda\xbf\x04*\xdd\xb0\x85a\xb2<;,\x0cp\xbd \xda\xbf\x16H\x9fD\xf1\xe9\x80 |\x90w\xb7\xbc;,\x0cp\xbd \xda\xbf\xcah\x8agr\xce\xaf\xbcB,\x0cp\xbd \xda\xbf\x08\xe7\x82\xfc\xa5\x8di<\xae\xe2B\xef\xc0/\xad\xbcG,\x0cp\xbd \xda\xbf\xea\xbe\x9aU\x19\xaa\xb0\xbc>,\x0cp\xbd \xda\xbfP\xc9\x85\xd2\xb2\xb5t\xbc<,\x0cp\xbd \xda\xbf4\x87\xba\xea\x1f\xc7\xb1<9,\x0cp\xbd \xda\xbf\x06\n>*Ky\xb0<>,\x0cp\xbd \xda\xbf\x88o\xfa\xd8\xd5(sb\xa1\xbe\xd9\xca?\x1e~\xb61\xca0\xa6\xbf\xbc\x18\xadzx`\xc9?NH1\xeda\r\xa5?\xf2\x15\xac\x9d\xeb\xd3\xe2\xbf\x9eV\xce\xf7=\x9a\xb3\xbf\xa4\xe6\x9f\x101\xf7\xd6?\xd7cT\x96\xb3@\xbb?j\x93\x11s\xa9\x0c\xd7?\x18n\xff]_\x19w?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I12 +tp132 +g22 +I00 +S'\xa2\xb56t\x9f\x0e\xa0<\xff\xff\xff\xff\xff\xff\xef?\x00\x00\x00\x00\x00\x00\xd09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?' +p81 +tp82 +bsg61 +g0 +(g35 +g2 +Ntp83 +Rp84 +(dp85 +g39 +g12 +(g13 +(I0 +tp86 +g15 +tp87 +Rp88 +(I1 +(I6 +I2 +tp89 +g22 +I00 +S'\xa2\xb56b\xa1\xbe\xd9\xca?H\x7f\xb61\xca0\xa6\xbf\xd1\x18\xadzx`\xc9?{G1\xeda\r\xa5?\xf1\x15\xac\x9d\xeb\xd3\xe2\xbf\xe6U\xce\xf7=\x9a\xb3\xbf\xad\xe6\x9f\x101\xf7\xd6?\xaccT\x96\xb3@\xbb?o\x93\x11s\xa9\x0c\xd7?\x12j\xff]_\x19w?db\x0f\xd2\x9b\xf7\xcf?\xabYN;\x8e\xb0\xb9?\xa0BW\xe7\xa6\xa3\xc9\xbf]\xb9\xdc\xfa\x9a\xb3\xe0?uF\xb0\xb8\xa7y\xa4?\x19\xb7\x1f\xb8\xef\xfe\xb9?oR\x83B?\xfc\xd3\xbf*H\x92e)J\xca?/?Mn\x16\xa1\xc0?Y>\x8eF\xe4\xa5\xe0\xbf\x97h\xaa{\x12\xca\xb7?G\x9eA\x98a,\xda\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I12 +tp132 +g22 +I00 +S'\xa2\xb56\xd1\xce\xa7su\xc9?\xf4&N\xdd\x10\x7f\xca?\xfb\x01\x86R\xaa\x12\xca?\x8f-fd\xd4\xe0\xe1?\x9b\x8a\xc309uq?\xb7\x81\xa1I\xa1\xdb\xce?T\x18\xf3\x91.\xc9\xc2\xbf\xd2\xb8\xfb\x19\x89#\xc7\xbf\xa9\xdb\xd3i\x06\xed\xc4\xbfI,\x0cp\xbd \xda\xbffO`\x08tG\xa7<;,\x0cp\xbd \xda\xbfT\x8e\xc8;\xfc}\xb4<:,\x0cp\xbd \xda\xbf\xad`]\xae\x8d\xed\x90<5,\x0cp\xbd \xda\xbfON4\x02\xf9\x8a\xb3\xbc;,\x0cp\xbd \xda\xbf+\x0c\xedj\x80K\xb2\xbcB,\x0cp\xbd \xda\xbf\xe2\x1f&\xcc\xbc\x0f\x87\xbcs\x0c\x97\xad\xc3\xeb\xb0\xbcF,\x0cp\xbd \xda\xbf\xc2}l\x8b\xf8\xf3\xb5\xbc=,\x0cp\xbd \xda\xbf\xce\xdd\xbc\x84U%\x8c\xbc7,\x0cp\xbd \xda\xbf\x0f\xfbw\x13\x92!\xb7<6,\x0cp\xbd \xda\xbf\x97]\xc0\x00(\x87\xb2<=,\x0cp\xbd \xda\xbf$=cn\xac\xfbab\xa1\xbe\xd9\xca?\xcf~\xb61\xca0\xa6\xbf\xd1\x18\xadzx`\xc9?\xf4G1\xeda\r\xa5?\xf2\x15\xac\x9d\xeb\xd3\xe2\xbfDV\xce\xf7=\x9a\xb3\xbf\xa8\xe6\x9f\x101\xf7\xd6?\xd6cT\x96\xb3@\xbb?k\x93\x11s\xa9\x0c\xd7?ml\xff]_\x19w?gb\x0f\xd2\x9b\xf7\xcf?\x93YN;\x8e\xb0\xb9?\xb3BW\xe7\xa6\xa3\xc9\xbf[\xb9\xdc\xfa\x9a\xb3\xe0?\xd7F\xb0\xb8\xa7y\xa4?\xd1\xb6\x1f\xb8\xef\xfe\xb9?yR\x83B?\xfc\xd3\xbf6H\x92e)J\xca?N?Mn\x16\xa1\xc0?X>\x8eF\xe4\xa5\xe0\xbf{h\xaa{\x12\xca\xb7??\x9eA\x98a,\xda\xbf\x07\xf3\xcaH\x01\xe2\xb8\xbfC\xea\x87n\xdd(\xd2\xbf\xc5\xe97;\x88\xdd\xb4\xbf\xb4T\xa6\xe6\x9a\xf6\xd4?\xbb\x06K?v\xb3\xa9\xbf\xdf\xec\x9da\x82\x00\xe4\xbf\xb9J\x89\xa9\xe5\xd8\xa6?\xf0\x9f\x13\x04\xec`\xcd?j-\xdb\x84,\x1a\xb6?\xba\xac\x1e;\x86u\xc8\xbfh\x8d\x08J\xa5\x12\xb9?\xd8zQ3\xca^\xe1?\xbc$M\xec"d\xc4\xbfl\xc0\xc3\xfc\xe3\xc2\xa3?uU\xe5\xfc\xb9T\xe4?\xf6\xb6\x8dMb\n\xc4?\x88\xac}\x98\xc2\xc0\xe5\xbf\xe5\x9a\xc6\xdb\xd9\xf4y\xbf5d\x7f\xcf\x1c\x9f\xc1?W\xe6\xe8\x88\xe4\x19\xb6?-=\xad\xfa\xa4\xf1\xbd?:N\xb1\x17\x00\x92\xba\xbf\xe7\x06\x9e\xc8\xa7\x0e\xaa\xbfK>|\xb6f\xef\xc5\xbf' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I12 +tp132 +g22 +I00 +S'\x9c\xb56F\xdf\x80\x96\x9c\x81\xbc\xf4]s\xcc\x91b\xae\xbcG,\x0cp\xbd \xda\xbf\x8d\x06\x11LF\x8e\xb2\xbcA,\x0cp\xbd \xda\xbf\xcd\xc9\xa0$l"\x89\xbc8,\x0cp\xbd \xda\xbfu\xd5\xac<\xd0\x0b\xb3<7,\x0cp\xbd \xda\xbfl6\xb6\x0b\xc95\xb2<=,\x0cp\xbd \xda\xbf\xd1\xc6\x9a\xe9\x15\xcd\x85b\xa1\xbe\xd9\xca?\xda~\xb61\xca0\xa6\xbf\xc2\x18\xadzx`\xc9?\xebG1\xeda\r\xa5?\xf2\x15\xac\x9d\xeb\xd3\xe2\xbfFV\xce\xf7=\x9a\xb3\xbf\xad\xe6\x9f\x101\xf7\xd6?\xdecT\x96\xb3@\xbb?i\x93\x11s\xa9\x0c\xd7?8l\xff]_\x19w?`b\x0f\xd2\x9b\xf7\xcf?\x9dYN;\x8e\xb0\xb9?\xa7BW\xe7\xa6\xa3\xc9\xbf\\\xb9\xdc\xfa\x9a\xb3\xe0?\xb5F\xb0\xb8\xa7y\xa4?\x10\xb7\x1f\xb8\xef\xfe\xb9?wR\x83B?\xfc\xd3\xbf\x1fH\x92e)J\xca?B?Mn\x16\xa1\xc0?V>\x8eF\xe4\xa5\xe0\xbf\x86h\xaa{\x12\xca\xb7?L\x9eA\x98a,\xda\xbf\xe6\xf2\xcaH\x01\xe2\xb8\xbf<\xea\x87n\xdd(\xd2\xbf\n\xea7;\x88\xdd\xb4\xbf\xbbT\xa6\xe6\x9a\xf6\xd4?J\x06K?v\xb3\xa9\xbf\xdf\xec\x9da\x82\x00\xe4\xbfmJ\x89\xa9\xe5\xd8\xa6?\xfe\x9f\x13\x04\xec`\xcd?Z-\xdb\x84,\x1a\xb6?\xcb\xac\x1e;\x86u\xc8\xbf\x80\x8d\x08J\xa5\x12\xb9?\xd1zQ3\xca^\xe1?\xb3$M\xec"d\xc4\xbfL\xc0\xc3\xfc\xe3\xc2\xa3?vU\xe5\xfc\xb9T\xe4?\xee\xb6\x8dMb\n\xc4?\x89\xac}\x98\xc2\xc0\xe5\xbf\x8f\x9d\xc6\xdb\xd9\xf4y\xbf:d\x7f\xcf\x1c\x9f\xc1?k\xe6\xe8\x88\xe4\x19\xb6?Y=\xad\xfa\xa4\xf1\xbd?EN\xb1\x17\x00\x92\xba\xbfa\x07\x9e\xc8\xa7\x0e\xaa\xbf+>|\xb6f\xef\xc5\xbf\x9e\x14\xa7\xb8\xb8\x81\xab?\x87\xb2w\xf1\xef\xa5\xa7?\x9d\x90\xd87\x13\xd2\xaa\xbfx\xb1\xee\xf5I\xb7\xd3?X\xfd\xf6 \x93S\xb1?\xca\xd0\xa9\xb0\xf4\x9a\xde\xbf\x89\x7f-\xa4\x10\xe6\x93\xbf%\xefM\x83^\xa4\xa9\xbf/\x13J)\xa4\x8d\xc4?\xecq\xa3H~\xf5\xe3?\xea\x82s\x05\x95\xe6\xca\xbf\xf2\xfcP\x04\x84\xc7\xdc\xbf\xe1l\x9fa\xb6\xcd\xc8?\xd6\xb7\xa7r\xc79K\xbf\x99Is \xe7\xcb\x91?\x8b\xdbQ/\xa4\x93\xc8\xbf\xe4\xb6\xcf\xea\xa7b\x81??\xaf\xfc\x84\x97/\xb0?\xcc\xdfI\xe2U0\xc8\xbfBM8\x9aP\xb7\x91?\x96\xc9M\xd0\xad\x15\xe4?\\ea`\xa5\xbb\xba\xbf\x02\x06\xd2\xc8\xef\x10\xe5\xbf\xac\xd4/\xd1\xfa\xbd\xcb?' +p127 +tp128 +bsg27 +g12 +(g13 +(I0 +tp129 +g15 +tp130 +Rp131 +(I1 +(I12 +tp132 +g22 +I00 +S'\x9f\xb56-1): + print(f, ii, length) + ii += 1 + + ret,frame = cap.read() + if(not ret): + break + frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) + + # calculate optical flow + p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params) + + # Select good points + good_new = p1[st==1] + good_old = p0[st==1] + + # draw the tracks + for i,(new,old) in enumerate(zip(good_new,good_old)): + a,b = new.ravel() + c,d = old.ravel() + # mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2) + # frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1) + if(ori_ab is None): + ori_ab = [a, b] + + # add dot + # img = cv2.add(frame,mask) + + # rgb = img + rgb = scipy.ndimage.shift(frame, shift=[ori_ab[1]-b, ori_ab[0]-a, 0], mode='reflect') + + # cv2.imshow('frame',rgb) + writer.write(rgb) + + # Now update the previous frame and previous points + old_gray = frame_gray.copy() + p0 = good_new.reshape(-1,1,2) + + cv2.destroyAllWindows() + cap.release() + writer.release() + + f = f[:-4] + os.system('ffmpeg -loglevel error -y -i {} -vn {}'.format( + os.path.join('../examples', '{}.mp4'.format(f)), os.path.join('../examples', 'a_' + f + '.wav') + )) + + os.system('ffmpeg -loglevel error -y -i {} -i {} -pix_fmt yuv420p -shortest -strict -2 {}'.format( + os.path.join('../examples', 'tmp_{}.mp4'.format(f)), os.path.join('../examples', 'a_' + f + '.wav'), + os.path.join('../examples', 'f_' + f + '.mp4') + )) + os.remove(os.path.join('../examples', 'tmp_{}.mp4'.format(f))) + os.remove(os.path.join('../examples', 'a_' + f + '.wav')) diff --git a/MakeItTalk/util/utils.py b/MakeItTalk/util/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..a999008c4da864631d87c30c814c865a83a137db --- /dev/null +++ b/MakeItTalk/util/utils.py @@ -0,0 +1,390 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import torch.nn as nn +import torch.nn.init as init +import os +import cv2 +import matplotlib.pyplot as plt +import numpy as np + +class Point: + def __init__(self, x, y): + self.x = x + self.y = y + +class ShapeParts: + def __init__(self, np_pts): + self.data = np_pts + + def part(self, idx): + return Point(self.data[idx, 0], self.data[idx, 1]) + + +class Record(): + def __init__(self, type_list): + self.data, self.count = {}, {} + self.type_list = type_list + self.max_min_data = None + for t in type_list: + self.data[t] = 0.0 + self.count[t] = 0.0 + + def add(self, new_data, c=1.0): + for t in self.type_list: + self.data[t] += new_data + self.count[t] += c + + def per(self, t): + return self.data[t] / (self.count[t] + 1e-32) + + def clean(self, t): + self.data[t], self.count[t] = 0.0, 0.0 + + def is_better(self, t, greater): + if(self.max_min_data == None): + self.max_min_data = self.data[t] + return True + else: + if(greater): + if(self.data[t] > self.max_min_data): + self.max_min_data = self.data[t] + return True + else: + if (self.data[t] < self.max_min_data): + self.max_min_data = self.data[t] + return True + return False + +def weight_init(m): + ''' + Usage: + model = Model() + model.apply(weight_init) + ''' + if isinstance(m, nn.Conv1d): + init.normal_(m.weight.data) + if m.bias is not None: + init.normal_(m.bias.data) + elif isinstance(m, nn.Conv2d): + init.xavier_normal_(m.weight.data) + if m.bias is not None: + init.normal_(m.bias.data) + elif isinstance(m, nn.Conv3d): + init.xavier_normal_(m.weight.data) + if m.bias is not None: + init.normal_(m.bias.data) + elif isinstance(m, nn.ConvTranspose1d): + init.normal_(m.weight.data) + if m.bias is not None: + init.normal_(m.bias.data) + elif isinstance(m, nn.ConvTranspose2d): + init.xavier_normal_(m.weight.data) + if m.bias is not None: + init.normal_(m.bias.data) + elif isinstance(m, nn.ConvTranspose3d): + init.xavier_normal_(m.weight.data) + if m.bias is not None: + init.normal_(m.bias.data) + elif isinstance(m, nn.BatchNorm1d): + init.normal_(m.weight.data, mean=1, std=0.02) + init.constant_(m.bias.data, 0) + elif isinstance(m, nn.BatchNorm2d): + init.normal_(m.weight.data, mean=1, std=0.02) + init.constant_(m.bias.data, 0) + elif isinstance(m, nn.BatchNorm3d): + init.normal_(m.weight.data, mean=1, std=0.02) + init.constant_(m.bias.data, 0) + elif isinstance(m, nn.Linear): + init.xavier_normal_(m.weight.data) + init.normal_(m.bias.data) + elif isinstance(m, nn.LSTM): + for param in m.parameters(): + if len(param.shape) >= 2: + init.orthogonal_(param.data) + else: + init.normal_(param.data) + elif isinstance(m, nn.LSTMCell): + for param in m.parameters(): + if len(param.shape) >= 2: + init.orthogonal_(param.data) + else: + init.normal_(param.data) + elif isinstance(m, nn.GRU): + for param in m.parameters(): + if len(param.shape) >= 2: + init.orthogonal_(param.data) + else: + init.normal_(param.data) + elif isinstance(m, nn.GRUCell): + for param in m.parameters(): + if len(param.shape) >= 2: + init.orthogonal_(param.data) + else: + init.normal_(param.data) + +def get_n_params(model): + pp=0 + for p in list(model.parameters()): + nn=1 + for s in list(p.size()): + nn = nn*s + pp += nn + return pp + + +def vis_landmark_on_img(img, shape, linewidth=2): + ''' + Visualize landmark on images. + ''' + if (type(shape) == ShapeParts): + def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth): + for i in idx_list: + cv2.line(img, (shape.part(i).x, shape.part(i).y), (shape.part(i + 1).x, shape.part(i + 1).y), + color, lineWidth) + if (loop): + cv2.line(img, (shape.part(idx_list[0]).x, shape.part(idx_list[0]).y), + (shape.part(idx_list[-1] + 1).x, shape.part(idx_list[-1] + 1).y), color, lineWidth) + + draw_curve(list(range(0, 16))) # jaw + draw_curve(list(range(17, 21)), color=(0, 0, 255)) # eye brow + draw_curve(list(range(22, 26)), color=(0, 0, 255)) + draw_curve(list(range(27, 35))) # nose + draw_curve(list(range(36, 41)), loop=True) # eyes + draw_curve(list(range(42, 47)), loop=True) + draw_curve(list(range(48, 59)), loop=True, color=(0, 255, 255)) # mouth + draw_curve(list(range(60, 67)), loop=True, color=(255, 255, 0)) + + else: + def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth): + for i in idx_list: + cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth) + if (loop): + cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]), + (shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth) + + draw_curve(list(range(0, 16))) # jaw + draw_curve(list(range(17, 21)), color=(0, 0, 255)) # eye brow + draw_curve(list(range(22, 26)), color=(0, 0, 255)) + draw_curve(list(range(27, 35))) # nose + draw_curve(list(range(36, 41)), loop=True) # eyes + draw_curve(list(range(42, 47)), loop=True) + draw_curve(list(range(48, 59)), loop=True, color=(0, 255, 255)) # mouth + draw_curve(list(range(60, 67)), loop=True, color=(255, 255, 0)) + + return img + + +def vis_landmark_on_plt(fl, x_offset=0.0, show_now=True, c='r'): + def draw_curve(shape, idx_list, loop=False, x_offset=0.0, c=None): + for i in idx_list: + plt.plot((shape[i, 0] + x_offset, shape[i + 1, 0] + x_offset), (-shape[i, 1], -shape[i + 1, 1]), c=c, lineWidth=1) + if (loop): + plt.plot((shape[idx_list[0], 0] + x_offset, shape[idx_list[-1] + 1, 0] + x_offset), + (-shape[idx_list[0], 1], -shape[idx_list[-1] + 1, 1]), c=c, lineWidth=1) + + draw_curve(fl, list(range(0, 16)), x_offset=x_offset, c=c) # jaw + draw_curve(fl, list(range(17, 21)), x_offset=x_offset, c=c) # eye brow + draw_curve(fl, list(range(22, 26)), x_offset=x_offset, c=c) + draw_curve(fl, list(range(27, 35)), x_offset=x_offset, c=c) # nose + draw_curve(fl, list(range(36, 41)), loop=True, x_offset=x_offset, c=c) # eyes + draw_curve(fl, list(range(42, 47)), loop=True, x_offset=x_offset, c=c) + draw_curve(fl, list(range(48, 59)), loop=True, x_offset=x_offset, c=c) # mouth + draw_curve(fl, list(range(60, 67)), loop=True, x_offset=x_offset, c=c) + + if(show_now): + plt.show() + + +def try_mkdir(dir): + try: + os.mkdir(dir) + except: + pass + +import numpy +def smooth(x, window_len=11, window='hanning'): + """smooth the data using a window with requested size. + + This method is based on the convolution of a scaled window with the signal. + The signal is prepared by introducing reflected copies of the signal + (with the window size) in both ends so that transient parts are minimized + in the begining and end part of the output signal. + + input: + x: the input signal + window_len: the dimension of the smoothing window; should be an odd integer + window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' + flat window will produce a moving average smoothing. + + output: + the smoothed signal + + example: + + t=linspace(-2,2,0.1) + x=sin(t)+randn(len(t))*0.1 + y=smooth(x) + + see also: + + numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve + scipy.signal.lfilter + + the window parameter could be the window itself if an array instead of a string + NOTE: length(output) != length(input), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y. + """ + + if x.ndim != 1: + raise(ValueError, "smooth only accepts 1 dimension arrays.") + + if x.size < window_len: + raise(ValueError, "Input vector needs to be bigger than window size.") + + if window_len < 3: + return x + + if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: + raise(ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'") + + s = numpy.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]] + # print(len(s)) + if window == 'flat': # moving average + w = numpy.ones(window_len, 'd') + else: + w = eval('numpy.' + window + '(window_len)') + + y = numpy.convolve(w / w.sum(), s, mode='valid') + return y + + +def get_puppet_info(DEMO_CH, ROOT_DIR): + import numpy as np + B = 5000 + # for wilk example + if (DEMO_CH == 'wilk_old'): + bound = np.array([-B, -B, -B, 459, -B, B+918, 419, B+918, B+838, B+918, B+838, 459, B+838, -B, 419, -B]).reshape(1, -1) + # bound = np.array([0, 0, 0, 459, 0, 918, 419, 918, 838, 918, 838, 459, 838, 0, 419, 0]).reshape(1, -1) + scale, shift = -0.005276414887140783, np.array([-475.4316, -193.53225]) + elif (DEMO_CH == 'sketch'): + bound = np.array([-10000, -10000, -10000, 221, -10000, 10443, 232, 10443, 10465, 10443, 10465, 221, 10465, -10000, 232, -10000]).reshape(1, -1) + scale, shift = -0.006393177201290783, np.array([-226.8411, -176.5216]) + elif (DEMO_CH == 'onepunch'): + bound = np.array([0, 0, 0, 168, 0, 337, 282, 337, 565, 337, 565, 168, 565, 0, 282, 0]).reshape(1, -1) + scale, shift = -0.007558707536598317, np.array([-301.4903, -120.05265]) + elif (DEMO_CH == 'cat'): + bound = np.array([0, 0, 0, 315, 0, 631, 299, 631, 599, 631, 599, 315, 599, 0, 299, 0]).reshape(1, -1) + scale, shift = -0.009099476040795225, np.array([-297.17085, -259.2363]) + elif (DEMO_CH == 'paint'): + bound = np.array([0, 0, 0, 249, 0, 499, 212, 499, 424, 499, 424, 249, 424, 0, 212, 0]).reshape(1, -1) + scale, shift = -0.007409177996872789, np.array([-161.92345878, -249.40250103]) + elif (DEMO_CH == 'mulaney'): + bound = np.array([0, 0, 0, 255, 0, 511, 341, 511, 682, 511, 682, 255, 682, 0, 341, 0]).reshape(1, -1) + scale, shift = -0.010651548568731444, np.array([-333.54245, -189.081]) + elif (DEMO_CH == 'cartoonM_old'): + bound = np.array([0, 0, 0, 299, 0, 599, 399, 599, 799, 599, 799, 299, 799, 0, 399, 0]).reshape(1, -1) + scale, shift = -0.0055312373170456845, np.array([-398.6125, -240.45235]) + elif (DEMO_CH == 'beer'): + bound = np.array([0, 0, 0, 309, 0, 618, 260, 618, 520, 618, 520, 309, 520, 0, 260, 0]).reshape(1, -1) + scale, shift = -0.0054102709937112374, np.array([-254.1478, -156.6971]) + elif (DEMO_CH == 'color'): + bound = np.array([0, 0, 0, 140, 0, 280, 249, 280, 499, 280, 499, 140, 499, 0, 249, 0]).reshape(1, -1) + scale, shift = -0.012986159189209149, np.array([-237.27065, -79.2465]) + else: + if (os.path.exists(os.path.join(ROOT_DIR, DEMO_CH + '.jpg'))): + img = cv2.imread(os.path.join(ROOT_DIR, DEMO_CH + ".jpg")) + elif (os.path.exists(os.path.join(ROOT_DIR, DEMO_CH + '.png'))): + img = cv2.imread(os.path.join(ROOT_DIR, DEMO_CH + ".png")) + else: + print('not file founded.') + exit(0) + size = img.shape + h = size[1] - 1 + w = size[0] - 1 + bound = np.array([-B, -B, + -B, w//4, + -B, w // 2, + -B, w//4*3, + -B, B + w, + h // 2, B+w, + B+h, B+w, + B+h, w // 2, + B+h, -B, + h//4, -B, + h // 2, -B, + h//4*3, -B]).reshape(1, -1) + ss = np.loadtxt(os.path.join(ROOT_DIR, DEMO_CH + '_scale_shift.txt')) + scale, shift = ss[0], np.array([ss[1], ss[2]]) + + return bound, scale, shift + + +def close_input_face_mouth(shape_3d, p1=0.7, p2=0.5): + shape_3d = shape_3d.reshape((1, 68, 3)) + index1 = list(range(60 - 1, 55 - 1, -1)) + index2 = list(range(68 - 1, 65 - 1, -1)) + mean_out = 0.5 * (shape_3d[:, 49:54] + shape_3d[:, index1]) + mean_in = 0.5 * (shape_3d[:, 61:64] + shape_3d[:, index2]) + shape_3d[:, 50:53] -= (shape_3d[:, 61:64] - mean_in) * p1 + shape_3d[:, list(range(59 - 1, 56 - 1, -1))] -= (shape_3d[:, index2] - mean_in) * p1 + shape_3d[:, 49] -= (shape_3d[:, 61] - mean_in[:, 0]) * p2 + shape_3d[:, 53] -= (shape_3d[:, 63] - mean_in[:, -1]) * p2 + shape_3d[:, 59] -= (shape_3d[:, 67] - mean_in[:, 0]) * p2 + shape_3d[:, 55] -= (shape_3d[:, 65] - mean_in[:, -1]) * p2 + # shape_3d[:, 61:64] = shape_3d[:, index2] = mean_in + shape_3d[:, 61:64] -= (shape_3d[:, 61:64] - mean_in) * p1 + shape_3d[:, index2] -= (shape_3d[:, index2] - mean_in) * p1 + shape_3d = shape_3d.reshape((68, 3)) + + return shape_3d + +def norm_input_face(shape_3d): + scale = 1.6 / (shape_3d[0, 0] - shape_3d[16, 0]) + shift = - 0.5 * (shape_3d[0, 0:2] + shape_3d[16, 0:2]) + shape_3d[:, 0:2] = (shape_3d[:, 0:2] + shift) * scale + face_std = np.loadtxt('src/dataset/utils/STD_FACE_LANDMARKS.txt').reshape(68, 3) + shape_3d[:, -1] = face_std[:, -1] * 0.1 + shape_3d[:, 0:2] = -shape_3d[:, 0:2] + + return shape_3d, scale, shift + +def add_naive_eye(fl): + for t in range(fl.shape[0]): + r = 0.95 + fl[t, 37], fl[t, 41] = r * fl[t, 37] + (1 - r) * fl[t, 41], (1 - r) * fl[t, 37] + r * fl[t, 41] + fl[t, 38], fl[t, 40] = r * fl[t, 38] + (1 - r) * fl[t, 40], (1 - r) * fl[t, 38] + r * fl[t, 40] + fl[t, 43], fl[t, 47] = r * fl[t, 43] + (1 - r) * fl[t, 47], (1 - r) * fl[t, 43] + r * fl[t, 47] + fl[t, 44], fl[t, 46] = r * fl[t, 44] + (1 - r) * fl[t, 46], (1 - r) * fl[t, 44] + r * fl[t, 46] + + K1, K2 = 10, 15 + length = fl.shape[0] + close_time_stamp = [30] + t = 30 + while (t < length - 1 - K2): + t += 60 + t += np.random.randint(30, 90) + if (t < length - 1 - K2): + close_time_stamp.append(t) + for t in close_time_stamp: + fl[t, 37], fl[t, 41] = 0.25 * fl[t, 37] + 0.75 * fl[t, 41], 0.25 * fl[t, 37] + 0.75 * fl[t, 41] + fl[t, 38], fl[t, 40] = 0.25 * fl[t, 38] + 0.75 * fl[t, 40], 0.25 * fl[t, 38] + 0.75 * fl[t, 40] + fl[t, 43], fl[t, 47] = 0.25 * fl[t, 43] + 0.75 * fl[t, 47], 0.25 * fl[t, 43] + 0.75 * fl[t, 47] + fl[t, 44], fl[t, 46] = 0.25 * fl[t, 44] + 0.75 * fl[t, 46], 0.25 * fl[t, 44] + 0.75 * fl[t, 46] + + def interp_fl(t0, t1, t2, r): + for index in [37, 38, 40, 41, 43, 44, 46, 47]: + fl[t0, index] = r * fl[t1, index] + (1 - r) * fl[t2, index] + + for t0 in range(t - K1 + 1, t): + interp_fl(t0, t - K1, t, r=(t - t0) / 1. / K1) + for t0 in range(t + 1, t + K2): + interp_fl(t0, t, t + K2, r=(t + K2 - 1 - t0) / 1. / K2) + + return fl \ No newline at end of file diff --git a/MakeItTalk/util/vis.py b/MakeItTalk/util/vis.py new file mode 100644 index 0000000000000000000000000000000000000000..1d89c61102ce8a415cb15186c65f5e1321157d0f --- /dev/null +++ b/MakeItTalk/util/vis.py @@ -0,0 +1,268 @@ +""" + # Copyright 2020 Adobe + # All Rights Reserved. + + # NOTICE: Adobe permits you to use, modify, and distribute this file in + # accordance with the terms of the Adobe license agreement accompanying + # it. + +""" + +import numpy as np +import os +import matplotlib.pyplot as plt +import cv2 +import ffmpeg + +OTHER_SPECIFIC_VOICE = None + +class Vis(): + + def __init__(self, fls, filename, audio_filenam=None, fps=100, frames=1000): + + # from scipy.signal import savgol_filter + # fls = savgol_filter(fls, 21, 3, axis=0) + + # adj nose + # fls[:, 27 * 3:28 * 3] = fls[:, 28 * 3:29 * 3] * 2 - fls[:, 29 * 3:30 * 3] + # fls[:, 28 * 3:29 * 3] = fls[:, 27 * 3:28 * 3]*0.75 + fls[:, 31 * 3:32 * 3]*0.25 + # fls[:, 29 * 3:30 * 3] = fls[:, 27 * 3:28 * 3]*0.5 + fls[:, 31 * 3:32 * 3]*0.5 + # fls[:, 30 * 3:31 * 3] = fls[:, 27 * 3:28 * 3] * 0.25 + fls[:, 31 * 3:32 * 3] * 0.75 + + fls = fls * 120 + fls[:, 0::3] += 200 + fls[:, 1::3] += 100 + + fls = fls.reshape((-1, 68, 3)) + fls = fls.astype(int) + + writer = cv2.VideoWriter(os.path.join('examples', 'tmp.mp4'), + cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps, (400, 400)) + + frames = np.min((fls.shape[0], frames)) + for i in range(frames): #fls.shape[0]): + # print(i, fls.shape[0]) + frame = np.ones((400, 400, 3), np.uint8) * 0 + frame = self.__vis_landmark_on_img__(frame, fls[i]) + writer.write(frame) + writer.release() + + if(audio_filenam is not None): + print(audio_filenam) + os.system('ffmpeg -y -i {} -i {} -strict -2 -shortest {}'.format( + os.path.join('examples', 'tmp.mp4'), + audio_filenam, + os.path.join('examples', '{}_av.mp4'.format(filename)) + )) + else: + os.system('ffmpeg -y -i {} {}'.format( + os.path.join('examples', 'tmp.mp4'), + os.path.join('examples', '{}_av.mp4'.format(filename)) + )) + + os.remove(os.path.join('examples', 'tmp.mp4')) + + + + + def __vis_landmark_on_img__(self, img, shape, linewidth=2): + ''' + Visualize landmark on images. + ''' + def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth): + for i in idx_list: + cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth) + if (loop): + cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]), + (shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth) + + # draw_curve(list(range(0, 16)), color=(0, 255, 0)) # jaw + # draw_curve(list(range(17, 21)), color=(0, 127, 255)) # eye brow + # draw_curve(list(range(22, 26)), color=(0, 127, 255)) + # draw_curve(list(range(27, 35)), color=(255, 0, 0)) # nose + # draw_curve(list(range(36, 41)), loop=True, color=(204, 0, 204)) # eyes + # draw_curve(list(range(42, 47)), loop=True, color=(204, 0, 204)) + # draw_curve(list(range(48, 59)), loop=True, color=(0, 0, 255)) # mouth + # draw_curve(list(range(60, 67)), loop=True, color=(0, 0, 255)) + # draw_curve(list(range(60, 64)), loop=False, color=(0, 0, 255)) + + draw_curve(list(range(0, 16)), color=(0, 255, 0)) # jaw + draw_curve(list(range(17, 21)), color=(0, 255, 0)) # eye brow + draw_curve(list(range(22, 26)), color=(0, 255, 0)) + draw_curve(list(range(27, 35)), color=(0, 255, 0)) # nose + draw_curve(list(range(36, 41)), loop=True, color=(0, 255, 0)) # eyes + draw_curve(list(range(42, 47)), loop=True, color=(0, 255, 0)) + draw_curve(list(range(48, 59)), loop=True, color=(0, 255, 255)) # mouth + draw_curve(list(range(60, 67)), loop=True, color=(255, 255, 0)) + draw_curve(list(range(60, 64)), loop=False, color=(0, 0, 255)) + + return img + + + +class Vis_old(): + + def __init__(self, run_name, pred_fl_filename, audio_filename, av_name='NAME', fps=100, frames=625, + postfix='', root_dir=r'E:\Dataset\TalkingToon\Obama', ifsmooth=True, rand_start=0): + + print(root_dir) + self.src_dir = os.path.join(root_dir, r'nn_result/{}'.format(run_name)) + self.std_face = np.loadtxt(r'src/dataset/utils/STD_FACE_LANDMARKS.txt') + self.std_face = self.std_face.reshape((-1, 204)) + + fls = np.loadtxt(os.path.join(self.src_dir, pred_fl_filename)) + + fls = fls * 120 + fls[:, 0::3] += 200 + fls[:, 1::3] += 100 + + fls = fls.reshape((-1, 68, 3)) + fls = fls.astype(int) + + writer = cv2.VideoWriter(os.path.join(self.src_dir, 'tmp.mp4'), + cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps, (400, 400)) + + frames = np.min((fls.shape[0], frames)) + for i in range(frames): #fls.shape[0]): + # print(i, fls.shape[0]) + frame = np.ones((400, 400, 3), np.uint8) * 0 + frame = self.__vis_landmark_on_img__(frame, fls[i]) + writer.write(frame) + writer.release() + + if(os.path.exists(os.path.join(root_dir, 'demo_wav', '{}'.format(audio_filename)))): + ain = os.path.join(root_dir, 'demo_wav', '{}'.format(audio_filename)) + else: + ain = os.path.join(root_dir, 'raw_wav', '{}'.format(audio_filename)) + # print(ain) + # vin = ffmpeg.input(os.path.join(self.src_dir, 'tmp.mp4')).video + # ain = ffmpeg.input(ain).audio + # out = ffmpeg.output(vin, ain, os.path.join(self.src_dir, '{}_av.mp4'.format(pred_fl_filename[:-4])), shortest=None) + # out = out.overwrite_output().global_args('-loglevel', 'quiet') + # out.run() + + os.system('ffmpeg -y -loglevel error -i {} -ss {} {}'.format( + ain, rand_start/62.5, + os.path.join(self.src_dir, '{}_a_tmp.wav'.format(av_name)) + )) + + os.system('ffmpeg -y -loglevel error -i {} -i {} -pix_fmt yuv420p -strict -2 -shortest {}'.format( + os.path.join(self.src_dir, 'tmp.mp4'), + os.path.join(self.src_dir, '{}_a_tmp.wav'.format(av_name)), + os.path.join(self.src_dir, '{}_av.mp4'.format(av_name)) + )) + + os.remove(os.path.join(self.src_dir, 'tmp.mp4')) + os.remove(os.path.join(self.src_dir, '{}_a_tmp.wav'.format(av_name))) + + # os.remove(os.path.join(self.src_dir, filename)) + # exit(0) + + + + + + def __vis_landmark_on_img__(self, img, shape, linewidth=2): + ''' + Visualize landmark on images. + ''' + def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth): + for i in idx_list: + cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth) + if (loop): + cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]), + (shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth) + + # draw_curve(list(range(0, 16)), color=(0, 255, 0)) # jaw + # draw_curve(list(range(17, 21)), color=(0, 127, 255)) # eye brow + # draw_curve(list(range(22, 26)), color=(0, 127, 255)) + # draw_curve(list(range(27, 35)), color=(255, 0, 0)) # nose + # draw_curve(list(range(36, 41)), loop=True, color=(204, 0, 204)) # eyes + # draw_curve(list(range(42, 47)), loop=True, color=(204, 0, 204)) + # draw_curve(list(range(48, 59)), loop=True, color=(0, 0, 255)) # mouth + # draw_curve(list(range(60, 67)), loop=True, color=(0, 0, 255)) + # draw_curve(list(range(60, 64)), loop=False, color=(0, 0, 255)) + + draw_curve(list(range(0, 16)), color=(0, 255, 0)) # jaw + draw_curve(list(range(17, 21)), color=(0, 255, 0)) # eye brow + draw_curve(list(range(22, 26)), color=(0, 255, 0)) + draw_curve(list(range(27, 35)), color=(0, 255, 0)) # nose + draw_curve(list(range(36, 41)), loop=True, color=(0, 255, 0)) # eyes + draw_curve(list(range(42, 47)), loop=True, color=(0, 255, 0)) + draw_curve(list(range(48, 59)), loop=True, color=(0, 255, 255)) # mouth + draw_curve(list(range(60, 67)), loop=True, color=(255, 255, 0)) + draw_curve(list(range(60, 64)), loop=False, color=(0, 0, 255)) + + return img + + +class Vis_comp(): + + def __init__(self, run_name, pred1, pred2, audio_filename, av_name='NAME', fps=100, frames=625, postfix='', root_dir=r'E:\Dataset\TalkingToon\Obama', ifsmooth=True): + + print(root_dir) + self.src_dir = os.path.join(root_dir, r'nn_result/{}'.format(run_name)) + self.std_face = np.loadtxt(r'src/dataset/utils/STD_FACE_LANDMARKS.txt') + self.std_face = self.std_face.reshape((-1, 204)) + + def fls_adj(fls): + fls = fls * 120 + fls[:, 0::3] += 200 + fls[:, 1::3] += 100 + fls = fls.reshape((-1, 68, 3)) + fls = fls.astype(int) + return fls + + fls = np.loadtxt(os.path.join(self.src_dir, pred1)) + fls2 = np.loadtxt(os.path.join(self.src_dir, pred2)) + fls = fls_adj(fls) + fls2 = fls_adj(fls2) + + writer = cv2.VideoWriter(os.path.join(self.src_dir, 'tmp.mp4'), + cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps, (400, 400)) + + frames = np.min((fls.shape[0], frames)) + for i in range(frames): #fls.shape[0]): + # print(i, fls.shape[0]) + frame = np.ones((400, 400, 3), np.uint8) * 0 + frame = self.__vis_landmark_on_img__(frame, fls[i]) + frame = self.__vis_landmark_on_img__(frame, fls2[i]) + writer.write(frame) + writer.release() + + if(os.path.exists(os.path.join(root_dir, 'demo_wav', '{}'.format(audio_filename)))): + ain = os.path.join(root_dir, 'demo_wav', '{}'.format(audio_filename)) + else: + ain = os.path.join(root_dir, 'raw_wav', '{}'.format(audio_filename)) + + os.system('ffmpeg -y -loglevel error -i {} -i {} -pix_fmt yuv420p -strict -2 -shortest {}'.format( + os.path.join(self.src_dir, 'tmp.mp4'), + ain, + os.path.join(self.src_dir, '{}_av.mp4'.format(av_name)) + )) + + os.remove(os.path.join(self.src_dir, 'tmp.mp4')) + + + def __vis_landmark_on_img__(self, img, shape, linewidth=2): + ''' + Visualize landmark on images. + ''' + def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth): + for i in idx_list: + cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth) + if (loop): + cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]), + (shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth) + + draw_curve(list(range(0, 16)), color=(0, 255, 0)) # jaw + draw_curve(list(range(17, 21)), color=(0, 255, 0)) # eye brow + draw_curve(list(range(22, 26)), color=(0, 255, 0)) + draw_curve(list(range(27, 35)), color=(0, 255, 0)) # nose + draw_curve(list(range(36, 41)), loop=True, color=(0, 255, 0)) # eyes + draw_curve(list(range(42, 47)), loop=True, color=(0, 255, 0)) + draw_curve(list(range(48, 59)), loop=True, color=(0, 255, 255)) # mouth + draw_curve(list(range(60, 67)), loop=True, color=(255, 255, 0)) + draw_curve(list(range(60, 64)), loop=False, color=(0, 0, 255)) + + return img \ No newline at end of file diff --git a/MakeItTalk/workspace.code-workspace b/MakeItTalk/workspace.code-workspace new file mode 100644 index 0000000000000000000000000000000000000000..5beae576cd39b84f9335a9df8de7d8cde1a3ed8e --- /dev/null +++ b/MakeItTalk/workspace.code-workspace @@ -0,0 +1,13 @@ +{ + "folders": [ + { + "name": "RapGod-main", + "path": "../RapGod-main" + }, + { + "name": "MakeItTalk-main", + "path": "." + } + ], + "settings": {} +} \ No newline at end of file diff --git a/face-alignment b/face-alignment new file mode 160000 index 0000000000000000000000000000000000000000..c49ca6fef8ffa95a0ac7ce698e0b752ac91f6d42 --- /dev/null +++ b/face-alignment @@ -0,0 +1 @@ +Subproject commit c49ca6fef8ffa95a0ac7ce698e0b752ac91f6d42