File size: 4,414 Bytes
dddb041 b8a701a 7ce51a2 b8a701a 34fdbfd dddb041 223f8b4 a166abf a146eda a166abf 3733cf2 ccde57b 3733cf2 a146eda ccde57b b8a701a 7ea1b80 b8a701a 0347515 b8a701a 2a5f183 a146eda 49f145b 0347515 7ce51a2 9f29ad9 baeab79 7ce51a2 322db57 7ce51a2 322db57 7ce51a2 db08793 a146eda 322db57 bf71179 7ce51a2 2a5f183 f0850f3 a166abf 2a5f183 9f29ad9 538d554 057bc07 3733cf2 a200bb2 1b088a5 057bc07 c133494 057bc07 c49f67b a166abf 057bc07 7ce51a2 a200bb2 057bc07 c49f67b 057bc07 c03b3ba 7ce51a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import gradio as gr
import requests
import io
from PIL import Image
import json
import os
import logging
import math
from tqdm import tqdm
import time
#logging.basicConfig(level=logging.DEBUG)
with open('loras.json', 'r') as f:
loras = json.load(f)
def update_selection(selected_state: gr.SelectData):
logging.debug(f"Inside update_selection, selected_state: {selected_state}")
selected_lora_index = selected_state.index
selected_lora = loras[selected_lora_index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
return (
gr.update(placeholder=new_placeholder),
updated_text, # Retorna o texto Markdown atualizado
selected_state
)
def run_lora(prompt, selected_state, progress=gr.Progress(track_tqdm=True)):
logging.debug(f"Inside run_lora, selected_state: {selected_state}")
if not selected_state:
logging.error("selected_state is None or empty.")
raise gr.Error("You must select a LoRA before proceeding.") # Popup error when no LoRA is selected
selected_lora_index = selected_state.index # Changed this line
selected_lora = loras[selected_lora_index]
api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}"
trigger_word = selected_lora["trigger_word"]
#token = os.getenv("API_TOKEN")
payload = {
"inputs": f"{prompt} {trigger_word}",
"parameters":{"negative_prompt": "bad art, ugly, watermark, deformed"},
}
#headers = {"Authorization": f"Bearer {token}"}
# Add a print statement to display the API request
print(f"API Request: {api_url}")
#print(f"API Headers: {headers}")
print(f"API Payload: {payload}")
error_count = 0
pbar = tqdm(total=None, desc="Loading model")
while(True):
response = requests.post(api_url, json=payload)
if response.status_code == 200:
return Image.open(io.BytesIO(response.content))
elif response.status_code == 503:
#503 is triggered when the model is doing cold boot. It also gives you a time estimate from when the model is loaded but it is not super precise
time.sleep(1)
pbar.update(1)
elif response.status_code == 500 and error_count < 5:
print(response.content)
time.sleep(1)
error_count += 1
continue
else:
logging.error(f"API Error: {response.status_code}")
raise gr.Error("API Error: Unable to fetch the image.") # Raise a Gradio error here
with gr.Blocks(css="custom.css") as app:
title = gr.Markdown("# artificialguybr LoRA portfolio")
description = gr.Markdown(
"### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr). \n"
"**Note**: The speed and generation quality are for demonstration purposes. "
"For best quality, use Auto or Comfy or Diffusers. \n"
"**Warning**: The API might take some time to deliver the image. \n"
"Special thanks to Hugging Face for their free inference API."
)
selected_state = gr.State()
with gr.Row():
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=3
)
with gr.Column():
prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
selected_info = gr.Markdown("") # Novo componente Markdown para exibir o texto da LoRA selecionada
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA")
button = gr.Button("Run")
result = gr.Image(interactive=False, label="Generated Image")
gallery.select(
update_selection,
outputs=[prompt, selected_info, selected_state] # Adicionado selected_info aqui
)
prompt.submit(
fn=run_lora,
inputs=[prompt, selected_state],
outputs=[result]
)
button.click(
fn=run_lora,
inputs=[prompt, selected_state],
outputs=[result]
)
app.queue(max_size=20, concurrency_count=5)
app.launch() |