|
import gradio as gr |
|
import requests |
|
import io |
|
from PIL import Image |
|
import json |
|
import os |
|
import logging |
|
import math |
|
from tqdm import tqdm |
|
import time |
|
|
|
|
|
|
|
with open('loras.json', 'r') as f: |
|
loras = json.load(f) |
|
|
|
def update_selection(selected_state: gr.SelectData): |
|
logging.debug(f"Inside update_selection, selected_state: {selected_state}") |
|
selected_lora_index = selected_state.index |
|
selected_lora = loras[selected_lora_index] |
|
new_placeholder = f"Type a prompt for {selected_lora['title']}" |
|
lora_repo = selected_lora["repo"] |
|
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" |
|
return ( |
|
gr.update(placeholder=new_placeholder), |
|
updated_text, |
|
selected_state |
|
) |
|
|
|
|
|
def run_lora(prompt, selected_state, progress=gr.Progress(track_tqdm=True)): |
|
logging.debug(f"Inside run_lora, selected_state: {selected_state}") |
|
if not selected_state: |
|
logging.error("selected_state is None or empty.") |
|
raise gr.Error("You must select a LoRA before proceeding.") |
|
|
|
selected_lora_index = selected_state.index |
|
selected_lora = loras[selected_lora_index] |
|
api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}" |
|
trigger_word = selected_lora["trigger_word"] |
|
|
|
payload = { |
|
"inputs": f"{prompt} {trigger_word}", |
|
"parameters":{"negative_prompt": "bad art, ugly, watermark, deformed", "num_inference_steps": 30, "scheduler":"DPMSolverMultistepScheduler"}, |
|
} |
|
|
|
|
|
|
|
print(f"API Request: {api_url}") |
|
|
|
print(f"API Payload: {payload}") |
|
|
|
error_count = 0 |
|
pbar = tqdm(total=None, desc="Loading model") |
|
while(True): |
|
response = requests.post(api_url, json=payload) |
|
if response.status_code == 200: |
|
return Image.open(io.BytesIO(response.content)) |
|
elif response.status_code == 503: |
|
|
|
time.sleep(1) |
|
pbar.update(1) |
|
elif response.status_code == 500 and error_count < 5: |
|
print(response.content) |
|
time.sleep(1) |
|
error_count += 1 |
|
continue |
|
else: |
|
logging.error(f"API Error: {response.status_code}") |
|
raise gr.Error("API Error: Unable to fetch the image.") |
|
|
|
|
|
|
|
with gr.Blocks(css="custom.css") as app: |
|
title = gr.Markdown("# artificialguybr LoRA portfolio") |
|
description = gr.Markdown( |
|
"### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr). \n" |
|
"**Note**: The speed and generation quality are for demonstration purposes. " |
|
"For best quality, use Auto or Comfy or Diffusers. \n" |
|
"**Warning**: The API might take some time to deliver the image. \n" |
|
"Special thanks to Hugging Face for their free inference API." |
|
) |
|
selected_state = gr.State() |
|
with gr.Row(): |
|
gallery = gr.Gallery( |
|
[(item["image"], item["title"]) for item in loras], |
|
label="LoRA Gallery", |
|
allow_preview=False, |
|
columns=3 |
|
) |
|
with gr.Column(): |
|
prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it") |
|
selected_info = gr.Markdown("") |
|
with gr.Row(): |
|
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA") |
|
button = gr.Button("Run") |
|
result = gr.Image(interactive=False, label="Generated Image") |
|
|
|
gallery.select( |
|
update_selection, |
|
outputs=[prompt, selected_info, selected_state] |
|
) |
|
prompt.submit( |
|
fn=run_lora, |
|
inputs=[prompt, selected_state], |
|
outputs=[result] |
|
) |
|
button.click( |
|
fn=run_lora, |
|
inputs=[prompt, selected_state], |
|
outputs=[result] |
|
) |
|
|
|
app.queue(max_size=20, concurrency_count=5) |
|
app.launch() |