JaesungHuh commited on
Commit
8324298
1 Parent(s): 703bed7
Files changed (3) hide show
  1. app.py +4 -3
  2. model.py +174 -0
  3. requirements.txt +2 -0
app.py CHANGED
@@ -1,7 +1,8 @@
1
  import gradio as gr
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
  demo.launch()
 
1
  import gradio as gr
2
+ from model import ECAPA_gender
3
 
4
+ def greet(audio):
5
+ print(audio)
6
 
7
+ demo = gr.Interface(fn=greet, inputs="audio", outputs="text")
8
  demo.launch()
model.py CHANGED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ import torchaudio
6
+ from torchaudio.functional import resample
7
+ import math
8
+
9
+
10
+ class SEModule(nn.Module):
11
+ def __init__(self, channels, bottleneck=128):
12
+ super(SEModule, self).__init__()
13
+ self.se = nn.Sequential(
14
+ nn.AdaptiveAvgPool1d(1),
15
+ nn.Conv1d(channels, bottleneck, kernel_size=1, padding=0),
16
+ nn.ReLU(),
17
+ # nn.BatchNorm1d(bottleneck), # I remove this layer
18
+ nn.Conv1d(bottleneck, channels, kernel_size=1, padding=0),
19
+ nn.Sigmoid(),
20
+ )
21
+
22
+ def forward(self, input):
23
+ x = self.se(input)
24
+ return input * x
25
+
26
+ class Bottle2neck(nn.Module):
27
+
28
+ def __init__(self, inplanes, planes, kernel_size=None, dilation=None, scale = 8):
29
+ super(Bottle2neck, self).__init__()
30
+ width = int(math.floor(planes / scale))
31
+ self.conv1 = nn.Conv1d(inplanes, width*scale, kernel_size=1)
32
+ self.bn1 = nn.BatchNorm1d(width*scale)
33
+ self.nums = scale -1
34
+ convs = []
35
+ bns = []
36
+ num_pad = math.floor(kernel_size/2)*dilation
37
+ for i in range(self.nums):
38
+ convs.append(nn.Conv1d(width, width, kernel_size=kernel_size, dilation=dilation, padding=num_pad))
39
+ bns.append(nn.BatchNorm1d(width))
40
+ self.convs = nn.ModuleList(convs)
41
+ self.bns = nn.ModuleList(bns)
42
+ self.conv3 = nn.Conv1d(width*scale, planes, kernel_size=1)
43
+ self.bn3 = nn.BatchNorm1d(planes)
44
+ self.relu = nn.ReLU()
45
+ self.width = width
46
+ self.se = SEModule(planes)
47
+
48
+ def forward(self, x):
49
+ residual = x
50
+ out = self.conv1(x)
51
+ out = self.relu(out)
52
+ out = self.bn1(out)
53
+
54
+ spx = torch.split(out, self.width, 1)
55
+ for i in range(self.nums):
56
+ if i==0:
57
+ sp = spx[i]
58
+ else:
59
+ sp = sp + spx[i]
60
+ sp = self.convs[i](sp)
61
+ sp = self.relu(sp)
62
+ sp = self.bns[i](sp)
63
+ if i==0:
64
+ out = sp
65
+ else:
66
+ out = torch.cat((out, sp), 1)
67
+ out = torch.cat((out, spx[self.nums]),1)
68
+
69
+ out = self.conv3(out)
70
+ out = self.relu(out)
71
+ out = self.bn3(out)
72
+
73
+ out = self.se(out)
74
+ out += residual
75
+ return out
76
+
77
+ class PreEmphasis(torch.nn.Module):
78
+
79
+ def __init__(self, coef: float = 0.97):
80
+ super().__init__()
81
+ self.coef = coef
82
+ self.register_buffer(
83
+ 'flipped_filter', torch.FloatTensor([-self.coef, 1.]).unsqueeze(0).unsqueeze(0)
84
+ )
85
+
86
+ def forward(self, input: torch.tensor) -> torch.tensor:
87
+ input = input.unsqueeze(1)
88
+ input = F.pad(input, (1, 0), 'reflect')
89
+ return F.conv1d(input, self.flipped_filter).squeeze(1)
90
+
91
+
92
+ class ECAPA_gender(nn.Module, PyTorchModelHubMixin):
93
+ def __init__(self, config):
94
+ super(ECAPA_gender, self).__init__()
95
+ self.config = config
96
+ C = config["C"]
97
+
98
+ self.torchfbank = torch.nn.Sequential(
99
+ PreEmphasis(),
100
+ torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=512, win_length=400, hop_length=160, \
101
+ f_min = 20, f_max = 7600, window_fn=torch.hamming_window, n_mels=80),
102
+ )
103
+
104
+ self.conv1 = nn.Conv1d(80, C, kernel_size=5, stride=1, padding=2)
105
+ self.relu = nn.ReLU()
106
+ self.bn1 = nn.BatchNorm1d(C)
107
+ self.layer1 = Bottle2neck(C, C, kernel_size=3, dilation=2, scale=8)
108
+ self.layer2 = Bottle2neck(C, C, kernel_size=3, dilation=3, scale=8)
109
+ self.layer3 = Bottle2neck(C, C, kernel_size=3, dilation=4, scale=8)
110
+ # I fixed the shape of the output from MFA layer, that is close to the setting from ECAPA paper.
111
+ self.layer4 = nn.Conv1d(3*C, 1536, kernel_size=1)
112
+ self.attention = nn.Sequential(
113
+ nn.Conv1d(4608, 256, kernel_size=1),
114
+ nn.ReLU(),
115
+ nn.BatchNorm1d(256),
116
+ nn.Tanh(), # I add this layer
117
+ nn.Conv1d(256, 1536, kernel_size=1),
118
+ nn.Softmax(dim=2),
119
+ )
120
+ self.bn5 = nn.BatchNorm1d(3072)
121
+ self.fc6 = nn.Linear(3072, 192)
122
+ self.bn6 = nn.BatchNorm1d(192)
123
+ self.fc7 = nn.Linear(192, 2)
124
+ self.pred2gender = {0 : 'male', 1 : 'female'}
125
+
126
+ def forward(self, x):
127
+ with torch.no_grad():
128
+ x = self.torchfbank(x)+1e-6
129
+ x = x.log()
130
+ x = x - torch.mean(x, dim=-1, keepdim=True)
131
+
132
+ x = self.conv1(x)
133
+ x = self.relu(x)
134
+ x = self.bn1(x)
135
+
136
+ x1 = self.layer1(x)
137
+ x2 = self.layer2(x+x1)
138
+ x3 = self.layer3(x+x1+x2)
139
+
140
+ x = self.layer4(torch.cat((x1,x2,x3),dim=1))
141
+ x = self.relu(x)
142
+
143
+ t = x.size()[-1]
144
+
145
+ global_x = torch.cat((x,torch.mean(x,dim=2,keepdim=True).repeat(1,1,t), torch.sqrt(torch.var(x,dim=2,keepdim=True).clamp(min=1e-4)).repeat(1,1,t)), dim=1)
146
+
147
+ w = self.attention(global_x)
148
+
149
+ mu = torch.sum(x * w, dim=2)
150
+ sg = torch.sqrt( ( torch.sum((x**2) * w, dim=2) - mu**2 ).clamp(min=1e-4) )
151
+
152
+ x = torch.cat((mu,sg),1)
153
+ x = self.bn5(x)
154
+ x = self.fc6(x)
155
+ x = self.bn6(x)
156
+ x = self.relu(x)
157
+ x = self.fc7(x)
158
+
159
+ return x
160
+
161
+ def load_audio(self, path):
162
+ audio, sr = torchaudio.load(path)
163
+ if sr != 16000:
164
+ audio = resample(audio, sr, 16000)
165
+ return audio
166
+
167
+ def predict(self, audio):
168
+ audio = self.load_audio(audio)
169
+ self.eval()
170
+ with torch.no_grad():
171
+ output = self.forward(audio)
172
+ _, pred = output.max(1)
173
+ return self.pred2gender[pred.item()]
174
+
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ torch
2
+ torchaudio