File size: 1,431 Bytes
f3305db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""
Launch an OpenAI API server with multiple model workers.
"""
import os
import argparse


def launch_process(cmd):
    os.popen(cmd)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--multimodal", action="store_true", default=False)
    args = parser.parse_args()

    launch_process("python3 -m fastchat.serve.controller")
    launch_process("python3 -m fastchat.serve.openai_api_server")

    if args.multimodal:
        models = [
            ("liuhaotian/llava-v1.5-7b", "sglang_worker"),
        ]
    else:
        models = [
            ("lmsys/vicuna-7b-v1.5", "model_worker"),
            ("lmsys/fastchat-t5-3b-v1.0", "model_worker"),
            ("THUDM/chatglm-6b", "model_worker"),
            ("mosaicml/mpt-7b-chat", "model_worker"),
            ("meta-llama/Llama-2-7b-chat-hf", "vllm_worker"),
        ]

    for i, (model_path, worker_name) in enumerate(models):
        cmd = (
            f"CUDA_VISIBLE_DEVICES={i} python3 -m fastchat.serve.{worker_name} "
            f"--model-path {model_path} --port {40000+i} "
            f"--worker-address http://localhost:{40000+i} "
        )

        if "llava" in model_path.lower():
            cmd += f"--tokenizer-path llava-hf/llava-1.5-7b-hf"

        if worker_name == "vllm_worker":
            cmd += "--tokenizer hf-internal-testing/llama-tokenizer"

        launch_process(cmd)

    while True:
        pass