File size: 1,167 Bytes
143c05b
19dfe9f
 
 
143c05b
19dfe9f
 
 
 
 
143c05b
19dfe9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr
from transformers import AutoProcessor, Pix2StructForConditionalGeneration
import torch
from PIL import Image

# Load the processor and model
processor = AutoProcessor.from_pretrained("google/matcha-base")
processor.image_processor.is_vqa = False
model = Pix2StructForConditionalGeneration.from_pretrained("martinsinnona/visdecode_B").to("cuda" if torch.cuda.is_available() else "cpu")
model.eval()

def generate_caption(image):

    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    inputs = processor(images=image, return_tensors="pt", max_patches=1024).to(device)
    generated_ids = model.generate(flattened_patches=inputs.flattened_patches, attention_mask=inputs.attention_mask, max_length=600)
    generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

    return generated_caption

# Create the Gradio interface
demo = gr.Interface(
    fn=generate_caption,
    inputs=gr.Image(type="pil"),
    outputs="text",
    title="Image to Text Generator",
    description="Upload an image and get a generated caption."
)

# Launch the interface
if __name__ == "__main__":
    demo.launch(share=True)