File size: 3,372 Bytes
af771af
0fe9ba3
af771af
 
 
b2de2a8
af771af
bd1ea7f
 
 
af771af
bd1ea7f
 
af771af
 
 
 
 
 
611c38a
af771af
611c38a
 
 
af771af
 
 
0b403b2
af771af
0fe9ba3
 
 
 
af771af
 
bd1ea7f
 
 
 
 
af771af
 
bd1ea7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af771af
 
b2de2a8
bd1ea7f
 
b2de2a8
af771af
 
 
611c38a
cf58338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af771af
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import gradio as gr
from PIL import Image,ImageDraw, ImageFont, ImageOps
import sys
import torch
from util import Detection
import os

if os.environ.get('FACE_MODEL') is not None:
    face_model = os.environ.get('FACE_MODEL')
    age_model = os.environ.get('AGE_MODEL')

    torch.hub.download_url_to_file(face_model, 'face_model.pt')
    torch.hub.download_url_to_file(age_model, 'age_model.pt')

sys.path.append("./")
sys.path.append("./yolov5")

from yolov5.detect import predict, load_yolo_model

# Load Models
model, stride, names, pt, jit, onnx, engine = load_yolo_model("face_model.pt", imgsz=[320,320])
age_model_ts = torch.jit.load("age_model.pt")

roboto_font = ImageFont.truetype("Roboto-Regular.ttf")

def run_yolo(img):

    img_path = img
    img0 = Image.open(img_path).convert("RGB")

    img0 = ImageOps.contain(img0, (720,720))
    img0 = ImageOps.exif_transpose(img0)

    draw = ImageDraw.Draw(img0)

    predictions = predict(age_model_ts, model, 
        stride, imgsz=[320, 320], 
        conf_thres=0.5, iou_thres=0.45,
        source=img0
    )

    detections : list[Detection] = []
    for k, bbox  in enumerate(predictions):
        det = Detection(
            (k+1),
            bbox["xmin"],
            bbox["ymin"],
            bbox["xmax"],
            bbox["ymax"],
            bbox["conf"],
            bbox["class"],
            bbox["class"],
            img0.size
        )

        detections.append(det)
        draw.rectangle(((det.xmin, det.ymin), (det.xmax, det.ymax)), fill=None, outline=(255,255,255))
        draw.rectangle(((det.xmin, det.ymin - 10), (det.xmax, det.ymin)), fill=(255,255,255))
        draw.text((det.xmin, det.ymin - 10), det.class_name, fill=(0,0,0), font=roboto_font)

    return img0


# run_yolo("D:\\Download\\IMG_20220803_153335.jpg")

inputs = gr.inputs.Image(type='filepath', label="Input Image")
outputs = gr.outputs.Image(type="pil", label="Output Image")

title = "AgeGuesser"
description = "Guess the age of a person from a facial image!"
article = """<p>A fully automated system based on YOLOv5 and EfficientNet to perform face detection and age estimation in real-time.</p>
<p><b>Links</b></p>
<ul>
<li>
<a href='https://link.springer.com/chapter/10.1007/978-3-030-89131-2_25'>Springer</a>
</li>
<li>
<a href='https://www.researchgate.net/publication/355777953_Real-Time_Age_Estimation_from_Facial_Images_Using_YOLO_and_EfficientNet'>Paper</a> 
</li>
<li>
<a href='https://github.com/ai-hazard/AgeGuesser-train'>Github</a> 
</li>
</ul>

<p>Credits to my dear colleague <a href='https://www.linkedin.com/in/nicola-marvulli-904270136/'>Dott. Nicola Marvulli</a>, we've developed AgeGuesser together as part of two university exams. (Computer Vision + Deep Learning)</p>

<p>Credits to my dear professors and the <a href='https://sites.google.com/site/cilabuniba/'>CILAB</a> research group</p>
<ul>
<li>
<a href='https://sites.google.com/site/cilabuniba/people/giovanna-castellano'>Prof. Giovanna Castellano</a>
</li>
<li>
<a href='https://sites.google.com/view/gennaro-vessio/home-page'>Prof. Gennaro Vessio</a> 
</li>
</ul>
"""

examples = [['images/1.jpg'], ['images/2.jpg'], ['images/3.jpg'], ['images/4.jpg'], ['images/5.jpg'], ]

gr.Interface(run_yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(enable_queue=True)