Spaces:
Build error
Build error
# YOLOv5 π by Ultralytics, GPL-3.0 license | |
import os | |
import sys | |
from pathlib import Path | |
import cv2 | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[0] # YOLOv5 root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
import torch | |
from yolov5.utils.torch_utils import select_device, time_sync | |
from yolov5.utils.plots import Annotator, colors, save_one_box | |
from yolov5.utils.general import (check_img_size, | |
increment_path, non_max_suppression, scale_coords, xyxy2xywh) | |
from yolov5.utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages | |
from yolov5.models.common import DetectMultiBackend | |
import torchvision | |
test_transforms = torchvision.transforms.Compose([ | |
torchvision.transforms.ToPILImage(), | |
torchvision.transforms.transforms.ToTensor(), | |
torchvision.transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | |
torchvision.transforms.Resize((224, 224)), | |
]) | |
def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s) | |
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam | |
data=ROOT / 'data/coco128.yaml', # dataset.yaml path | |
imgsz=(640, 640), # inference size (height, width) | |
conf_thres=0.25, # confidence threshold | |
iou_thres=0.45, # NMS IOU threshold | |
max_det=1000, # maximum detections per image | |
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
save_img = False, | |
view_img=False, # show results | |
save_txt=False, # save results to *.txt | |
save_conf=False, # save confidences in --save-txt labels | |
save_crop=False, # save cropped prediction boxes | |
nosave=False, # do not save images/videos | |
classes=None, # filter by class: --class 0, or --class 0 2 3 | |
agnostic_nms=False, # class-agnostic NMS | |
augment=False, # augmented inference | |
visualize=False, # visualize features | |
update=False, # update all models | |
project=ROOT / 'runs/detect', # save results to project/name | |
name='exp', # save results to project/name | |
exist_ok=False, # existing project/name ok, do not increment | |
line_thickness=3, # bounding box thickness (pixels) | |
hide_labels=False, # hide labels | |
hide_conf=False, # hide confidences | |
half=False, # use FP16 half-precision inference | |
dnn=False, # use OpenCV DNN for ONNX inference | |
): | |
import torch | |
from utils.torch_utils import select_device, time_sync | |
from utils.plots import Annotator, colors, save_one_box | |
from utils.general import (check_img_size, | |
increment_path, non_max_suppression, scale_coords, xyxy2xywh) | |
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages | |
from models.common import DetectMultiBackend | |
source = str(source) | |
save_dir = None | |
save_path = None | |
# save_img = not nosave and not source.endswith('.txt') # save inference images | |
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) | |
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) | |
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file) | |
# Directories | |
if project is not None: | |
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run | |
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir | |
# Load model | |
device = select_device(device) | |
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data) | |
stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine | |
imgsz = check_img_size(imgsz, s=stride) # check image size | |
# Half | |
half &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16 supported on limited backends with CUDA | |
if pt or jit: | |
model.model.half() if half else model.model.float() | |
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) | |
bs = 1 # batch_size | |
vid_path, vid_writer = [None] * bs, [None] * bs | |
# Run inference | |
model.warmup(imgsz=(1, 3, *imgsz), half=half) # warmup | |
dt, seen = [0.0, 0.0, 0.0], 0 | |
#with tqdm(dataset) as pbar: | |
# pbar.set_description("Document Image Analysis") | |
for path, im, im0s, vid_cap, s in dataset: | |
#print(path) | |
t1 = time_sync() | |
im = torch.from_numpy(im).to(device) | |
im = im.half() if half else im.float() # uint8 to fp16/32 | |
im /= 255 # 0 - 255 to 0.0 - 1.0 | |
if len(im.shape) == 3: | |
im = im[None] # expand for batch dim | |
t2 = time_sync() | |
dt[0] += t2 - t1 | |
# Inference | |
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False | |
pred = model(im, augment=augment, visualize=visualize) | |
t3 = time_sync() | |
dt[1] += t3 - t2 | |
# NMS | |
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) | |
dt[2] += time_sync() - t3 | |
# Second-stage classifier (optional) | |
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) | |
# Process predictions | |
preds = [] | |
for i, det in enumerate(pred): # per image | |
seen += 1 | |
if webcam: # batch_size >= 1 | |
p, im0, frame = path[i], im0s[i].copy(), dataset.count | |
s += f'{i}: ' | |
else: | |
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) | |
p = Path(p) # to Path | |
if save_dir is not None: | |
save_path = str(save_dir / p.name) # im.jpg | |
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt | |
s += '%gx%g ' % im.shape[2:] # print string | |
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh | |
imc = im0.copy() if save_crop else im0 # for save_crop | |
annotator = Annotator(im0, line_width=line_thickness, example=str(names)) | |
if len(det): | |
# Rescale boxes from img_size to im0 size | |
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() | |
# Print results | |
for c in det[:, -1].unique(): | |
n = (det[:, -1] == c).sum() # detections per class | |
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string | |
# Write results | |
if save_txt: | |
with open(txt_path + '.txt', 'w') as f: | |
for *xyxy, conf, cls in reversed(det): | |
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |
preds.append({"class": str(int(cls)), "xmin": int(xyxy[0]), "ymin": int(xyxy[1]), "xmax": int(xyxy[2]),"ymax": int(xyxy[3]), "conf": float(conf)}) | |
if save_txt: # Write to file | |
line = (int(cls), *xywh, conf) if save_conf else (cls, *xywh) # label format | |
f.write(('%g ' * len(line)).rstrip() % line + '\n') | |
if save_img or save_crop or view_img: # Add bbox to image | |
c = int(cls) # integer class | |
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') | |
annotator.box_label(xyxy, label, color=colors(c, True)) | |
if save_crop: | |
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) | |
else: | |
for *xyxy, conf, cls in reversed(det): | |
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |
preds.append({"class": str(int(cls)), "xmin": int(xyxy[0]), "ymin": int(xyxy[1]), "xmax": int(xyxy[2]),"ymax": int(xyxy[3]), "conf": float(conf)}) | |
# Print time (inference-only) | |
# LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)') | |
# Stream results | |
if save_img: | |
im0 = annotator.result() | |
if view_img: | |
cv2.imshow(str(p), im0) | |
cv2.waitKey(1) # 1 millisecond | |
# Save results (image with detections) | |
if save_img: | |
if dataset.mode == 'image': | |
cv2.imwrite(save_path, im0) | |
else: # 'video' or 'stream' | |
if vid_path[i] != save_path: # new video | |
vid_path[i] = save_path | |
if isinstance(vid_writer[i], cv2.VideoWriter): | |
vid_writer[i].release() # release previous video writer | |
if vid_cap: # video | |
fps = vid_cap.get(cv2.CAP_PROP_FPS) | |
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
else: # stream | |
fps, w, h = 30, im0.shape[1], im0.shape[0] | |
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos | |
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) | |
vid_writer[i].write(im0) | |
yield preds, save_path | |
# Print results | |
#t = tuple(x / seen * 1E3 for x in dt) # speeds per image | |
#LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) | |
""" if save_txt or save_img: | |
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' | |
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") | |
if update: | |
strip_optimizer(weights) # update model (to fix SourceChangeWarning) """ | |
def load_yolo_model(weights, device="cpu", imgsz=[1280, 1280]): | |
# Load model | |
device = select_device(device) | |
model = DetectMultiBackend(weights, device=device, dnn=False, data=ROOT / 'data/coco128.yaml') | |
stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine | |
imgsz = check_img_size(imgsz, s=stride) # check image size | |
half = False | |
# Half | |
half &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16 supported on limited backends with CUDA | |
if pt or jit: | |
model.model.half() if half else model.model.float() | |
model.warmup(imgsz=(1, 3, *imgsz), half=half) | |
return model, stride, names, pt, jit, onnx, engine | |
def predict( | |
age_model, | |
model, # model.pt path(s) | |
stride, names, pt, jit, onnx, engine, | |
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam | |
data=ROOT / 'data/coco128.yaml', # dataset.yaml path | |
imgsz=(640, 640), # inference size (height, width) | |
conf_thres=0.5, # confidence threshold | |
iou_thres=0.45, # NMS IOU threshold | |
max_det=1000, # maximum detections per image | |
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
save_img = False, | |
view_img=False, # show results | |
save_txt=False, # save results to *.txt | |
save_conf=False, # save confidences in --save-txt labels | |
save_crop=False, # save cropped prediction boxes | |
nosave=False, # do not save images/videos | |
classes=None, # filter by class: --class 0, or --class 0 2 3 | |
agnostic_nms=False, # class-agnostic NMS | |
augment=False, # augmented inference | |
visualize=False, # visualize features | |
update=False, # update all models | |
project=None, # save results to project/name | |
name='exp', # save results to project/name | |
exist_ok=False, # existing project/name ok, do not increment | |
line_thickness=3, # bounding box thickness (pixels) | |
hide_labels=False, # hide labels | |
hide_conf=False, # hide confidences | |
half=False, # use FP16 half-precision inference | |
dnn=False, # use OpenCV DNN for ONNX inference | |
): | |
source = str(source) | |
save_dir = None | |
save_path = None | |
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) | |
# Run inference | |
dt, seen = [0.0, 0.0, 0.0], 0 | |
#with tqdm(dataset) as pbar: | |
# pbar.set_description("Document Image Analysis") | |
for path, im, im0s, vid_cap, s in dataset: | |
#print(path) | |
t1 = time_sync() | |
im = torch.from_numpy(im).to(device) | |
im = im.half() if half else im.float() # uint8 to fp16/32 | |
im /= 255 # 0 - 255 to 0.0 - 1.0 | |
if len(im.shape) == 3: | |
im = im[None] # expand for batch dim | |
t2 = time_sync() | |
dt[0] += t2 - t1 | |
# Inference | |
visualize = False | |
pred = model(im, augment=augment, visualize=visualize) | |
t3 = time_sync() | |
dt[1] += t3 - t2 | |
# NMS | |
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) | |
dt[2] += time_sync() - t3 | |
# Process predictions | |
preds = [] | |
for i, det in enumerate(pred): # per image | |
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) | |
if len(det): | |
# Rescale boxes from img_size to im0 size | |
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() | |
for *xyxy, conf, cls in reversed(det): | |
face = im0[int(xyxy[1]):int(xyxy[3]),int(xyxy[0]):int(xyxy[2])] | |
face_img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) | |
im = test_transforms(face_img).unsqueeze_(0) | |
with torch.no_grad(): | |
y = age_model(im) | |
age = y[0] | |
preds.append({"class": str(int(age)), "xmin": int(xyxy[0]), "ymin": int(xyxy[1]), "xmax": int(xyxy[2]),"ymax": int(xyxy[3]), "conf": float(conf)}) | |
yield preds, save_path |