Spaces:
Build error
Build error
# YOLOv5 π by Ultralytics, GPL-3.0 license | |
""" | |
Experimental modules | |
""" | |
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from .common import Conv | |
from utils.downloads import attempt_download | |
class CrossConv(nn.Module): | |
# Cross Convolution Downsample | |
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): | |
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut | |
super().__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = Conv(c1, c_, (1, k), (1, s)) | |
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) | |
self.add = shortcut and c1 == c2 | |
def forward(self, x): | |
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) | |
class Sum(nn.Module): | |
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 | |
def __init__(self, n, weight=False): # n: number of inputs | |
super().__init__() | |
self.weight = weight # apply weights boolean | |
self.iter = range(n - 1) # iter object | |
if weight: | |
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights | |
def forward(self, x): | |
y = x[0] # no weight | |
if self.weight: | |
w = torch.sigmoid(self.w) * 2 | |
for i in self.iter: | |
y = y + x[i + 1] * w[i] | |
else: | |
for i in self.iter: | |
y = y + x[i + 1] | |
return y | |
class MixConv2d(nn.Module): | |
# Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595 | |
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy | |
super().__init__() | |
n = len(k) # number of convolutions | |
if equal_ch: # equal c_ per group | |
i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices | |
c_ = [(i == g).sum() for g in range(n)] # intermediate channels | |
else: # equal weight.numel() per group | |
b = [c2] + [0] * n | |
a = np.eye(n + 1, n, k=-1) | |
a -= np.roll(a, 1, axis=1) | |
a *= np.array(k) ** 2 | |
a[0] = 1 | |
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b | |
self.m = nn.ModuleList( | |
[nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)]) | |
self.bn = nn.BatchNorm2d(c2) | |
self.act = nn.SiLU() | |
def forward(self, x): | |
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) | |
class Ensemble(nn.ModuleList): | |
# Ensemble of models | |
def __init__(self): | |
super().__init__() | |
def forward(self, x, augment=False, profile=False, visualize=False): | |
y = [] | |
for module in self: | |
y.append(module(x, augment, profile, visualize)[0]) | |
# y = torch.stack(y).max(0)[0] # max ensemble | |
# y = torch.stack(y).mean(0) # mean ensemble | |
y = torch.cat(y, 1) # nms ensemble | |
return y, None # inference, train output | |
def attempt_load(weights, map_location=None, inplace=True, fuse=True): | |
from models.yolo import Detect, Model | |
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a | |
model = Ensemble() | |
for w in weights if isinstance(weights, list) else [weights]: | |
ckpt = torch.load(attempt_download(w), map_location=map_location) # load | |
ckpt = (ckpt['ema'] or ckpt['model']).float() # FP32 model | |
model.append(ckpt.fuse().eval() if fuse else ckpt.eval()) | |
# Compatibility updates | |
for m in model.modules(): | |
t = type(m) | |
if t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]: | |
m.inplace = inplace # pytorch 1.7.0 compatibility | |
if t is Detect: | |
if not isinstance(m.anchor_grid, list): # new Detect Layer compatibility | |
delattr(m, 'anchor_grid') | |
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl) | |
elif t is Conv: | |
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility | |
elif t is nn.Upsample: | |
m.recompute_scale_factor = None # torch 1.11.0 compatibility | |
elif t is Conv: | |
m._non_persistent_buffers_set = set() # torch 1.6.0 compatibility | |
if len(model) == 1: | |
return model[-1] # return model | |
else: | |
print(f'Ensemble created with {weights}\n') | |
for k in ['names']: | |
setattr(model, k, getattr(model[-1], k)) | |
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride | |
return model # return ensemble | |